AD-776 650

DEFENSE NUCLEAR AGENCY REACTION RATE HANDBOOK. SECOND EDITION. REVISED NUMBER 3

M. H. Bortner, et al

General Electric Company

Prepared for:

Defense Nuclear Agency

1 September 1973

DISTRIBUTED BY:

National Technical Information Service
U. S. DEPARTMENT OF COMMERCE
5285 Port Royal Road, Springfield Vz. 22151

MEMORANDUM

TO:

All Recipients of the DNA Reaction Rate Handbook

(DNA 1948H)

FROM:

The Editors

Enclosed herewith you will find a copy of Revision Number 3 to the Handbook. It is comprised of a complete revision of Chapter 24, Summary of Suggested Rate Constants.

You should immediately substitute the enclosed item into your copy of the Handbook, discarding the corresponding pages which they replace.

You should also enter on page iii in front of your Handbook the following information: Revision No. 3; Date of Issue-September 1973; Date of Receipt-whatever day you receive this; and sign your name in the last column.

Revision Number 2, which was expected to be issued during the summer of 1973 has been delayed for various reasons and will be published in the near future. Thank you for your patience and cooperation.

THE STREET OF TH

24. SUMMARY OF SUGGESTED RATE CONSTANTS

M.H. Bortner, General Electric Company R.H. Kummler, Woyne State University T. Baurer, General Electric Company (Latest Revision 1 September 1973)

24.1 INTRODUCTION

This chapter presents in Table 24-1 a summary of reactions, with suggested rate coefficients, relevant to the problems of atmospheric chemical recovery following a perturbation. The present generation of computers permits the convenient handling of large numbers of reactions in relation to the solution of such problems. Thus, one may now include in detailed calculations of this type, hundreds of individual reactions, and follow the complete histories of large numbers of individual species as atmospheric constituents. Many computer codes exist, e.g., the Keneshea code (Reference 24-1), which have been designed for the study of atmospheric reactions, and are capable of carrying out the appropriate calculations. Such codes are in use at various institutes and laboratories throughout the country. In order to promote communications among these installations it is convenient to have one standard set of rate coefficients which are recognized universally as valid for all common purposes, e.g., the comparative solution of test problems, or the complementary solution of different aspects of one large problem.

24.2 PRESENTATION OF REACTIONS AND RATE DATA

J

The reactions are listed in Table 24-1 by type, in the same order as the reaction types given in Chapter 6 (Table 6-1); however, the type numbers used are not the same in the two tabulations. For each reaction type, i.e., within each section of Table 24-1, reactions are usually listed according to the identity of the more energetic reactant, and in the following order: oxygen and nitrogen or "pure air" species, hydrogen species, carbon species, metallic species. For each such group of species, the suborder of listing is: monatomic, diatomic, triatomic, polyatomic, and complex or clustered.

Wherever the authors of the various chapters of this Handbook have recommended specific values for the reaction rate constants

or coefficients, those values are used in Table 24-1. However, such data are either uncertain or unavailable for certain reactions which are nevertheless considered sufficiently important to be included. Values of these rate constants or coefficients have been estimated. either by an appropriate expert, e.g., the cognizant chapter author, or by a committee of knowledgeable workers. These cases are annotated accordingly (in the "Sources" column of the table) as either a rather good estimate (Est.) or a somewhat shakier "guesstimate" (Gst.) IT SHOULD BE STRESSED THAT, INASMUCH AS A SIGNIFICANT NUMBER OF THE REACTIONS LISTED MAY BE CHARACTERIZED IN ONE OF THESE FASHIONS, ONE SHOULD BE EXTREMELY CAREFUL NOT TO CONSIDER THESE RATES AS FINAL. In several cases the indicated degree of uncertainty is based on the unavailability of any experimental data for the reaction considered. Where this is true, a notation to that effect is included among the applicable notes. There are, perhaps, many more reactions in Table 24-1 to which such a designation should have been applied than has actually been the case.

It may be argued by some Handbook users that many of the reactions listed are not important. This is perhaps true under certain sets of conditions, in which case the reactions may be totally ignored, or alternatively their rates may be set equal to zero for coding purposes. However, under other, equally important circumstances, these same reactions may either contribute directly to or act as precursors of other processes which are influential within the given context. On the other hand, although the numbers of reactions and species included in the table are large, there certainly are some important omissions as well, since it can be anticipated that particular reactions, not yet thought to be of any importance to the deionization problem, or perhaps not yet even conceived of, may be found in the future to play some weighty role in the overall atmospheric chemical scheme.

In Table 24-1, the rate coefficients are presented in cgs units, i.e., in sec-1, cm³ sec-1, and cm⁶ sec-1 for one-, two-, and three-body processes, respectively. Species densities are in cm⁻³ and temperature in K. The letter "M" is used to represent a collision partner; unless specifically noted otherwise, it represents any possible species present and acting as catalyst. The numerical notation [-x] signifies multiplication by 10^{-x}. Most rate functions "k" are represented by sets of numbers "a", "b", and "c", which refer in turn to the formulation:

 $k = a(T/300)^b \exp(-c/T) ,$

where 300 in the first parenthesized term is the usual reference temperature (in K), unless another T_{ref} is designated in the table. A few rate functions follow a more complex variation with temperature than that given above, or are dependent on other parameters as well, e.g., local species densities. These complex functions are presented in brackets, transcending the usual format of the table. Elsewhere, only the coefficient "a" is itself density-dependent rather than constant. Here, too, brackets are used.

The temperature dependence mentioned above refers in most instances to the ordinary gas-kinetic or translational temperature T or $T_{\rm gas}$. However, certain reaction rates turn out to depend preferentially upon specialized temperatures, which are here designated accordingly, e.g., the kinetic temperature of interacting electrons $(T_{\rm e})$ or ions $(T_{\rm i})$, and the vibrational temperature of interacting molecules $(T_{\rm u})$ or ions $(T_{\rm iv})$.

A high degree of uncertainty for some of the data was implied in preceding paragraphs of this discussion. This uncertainty is particularly appropriate to the values of the exponent "b" in the above mathematical expression. For example, little or no experimental knowledge of the temperature dependence (to which "b" relates directly) is available for many exothermic reactions, which have been observed primarily at laboratory temperatures. Moreover, most of the reactions included in Table 24-1 are indeed exothermic, despite two recent trends, viz.: (a) an increasing emphasis within the atmospheric effects community on the study of high-temperature (including endothermic) processes; and hence (b) the inclusion of more endothermic reactions in the present edition of the Handbook than in its predecessor.

Wherever, in Table 24-1, $c \neq 0$, it follows that the rate constant at 300 K is unequal to the listed value of the "a" parameter; in all such cases the rate constant at 300 K, k_{300} , has been calculated from the three parameters and is listed in the "Notes" column. Such values are not to be construed as implying actual measurement at 300 K, unless specifically so stated in the table.

Finally, it should he noted that for a few reactions, e.g., in Section XX, some unusually high values of the "a" parameters are tabulated. These appear to fit the available data (Reference 24-2), but

more work is obviously needed. In some cases the reaction products are uncertain, and the noncommittal notation, "Products", is provided in the reaction equation itself, as an alternative to any guess or "guess-timate" as to the true identities of specific products.

Table 24-1. Reactions and suggested rate constants. $k = a(1/300)^b \ e^{-c/T}$

Š	Reaction	D	þ	v	Notes	Sources
- &	1. Radiative Recombination:					
,:	0 + e - 0 + hv	(3.5±1.0)[-12]	(-0.7±0.1)	0		
2.	Z'.e Z hu	(3.5±1.0)[-12]	(-0.7±0.1)	0		Chp. 16
8	T + e - H + hv	(3.5±1.0)[-12]	(-0.7±0.1)	0		
4	0_2 - e 02 + hu	(4)[-12±1]	(-0.7±0.3)	0		
ŝ.	N2 + 6 · N2 + hv	(4)[-12±1]	(-0.7±6.5)	0	pared to dissocia-	Est.
۰,	NO + e - NO + hu	(4)[-12±]]	(-0.7±0.5)	0	Tive (ecompinorie)	<u> </u>
=	II. Photoionization:					
.0.	0 h					
<u>ئ</u> ـ	- o ⁺ (² _D) - e					
j	- O* (² P) + e					
2.0.	N2 + hv - N2 + e				wavelength and	Chps. 12, 13
هٔ	Z + • + + Z.				Hux dependent	
3.9.	02 + hu					
<u>ئ</u> ـ	0 + • + 0 -					
4	NO + ht = NO + e					
=	III. Three-Body Recombination:	AND THE PERSON NAMED AND THE P			4	
 -	X - e + M - Products	(2)[-27.0±0.2]	(-2.5)	00	X = atomic ion: M = atam	\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
		(3)f-26.0±6.3f	(-2.5)	0	M = molecute M = polar molecute	

Table 24-1. (Cont'd.)

ģ	Reaction	٥	þ	C	Notes	Sources
= '	III. Three-Body Recombination (Cant'd.):					
J.b.	XY + + + M - Products	(6)[-27.0±0.3]	(-2.5) (-2.5)	00	XY = molecular ion: M = otom or mole- cule M = polor molecule	Chp. 16 + Est.
រ	X ⁺ (±luster) + e + M → Products	(5)[-26.0±0.3]	(-2.5)	0	X [†] (cluster) = ony clustered ian. M = ony third body.	Gst.
2.a.	X + e + e - Products	(7±3){-20	(-4.5)	0	X ⁺ = ony otomic or moleculor ion.	Chp. 16
ۀ	X ⁺ (cluster) + a + e - Products	(3)[-19.0±0.3]	(-4.5)	0	X ⁺ (cluster) = any clustered ion	Gst.
.≻	 V. Dissociative Recombination:					
	0, + - 0 + 0	(2.1±0.2)[-7]	(-0.63±0.07)	0	<u>+</u> +-	
		For $T_{i\nu} > \sim 1000~K$, multiply obove formulo by a factor $[1-\exp(-2677/T_{i\nu})]$.	nultiply obove fo	rmulo by o focto		
ف	-1.00(*P) +0.9 O(*D)	(2.1±0.2)[-7]	(-0.63±0.07)	0	_ = T ● T	
		Branching measured at 300 K; branching rotio probably chonges with increasing T.	0 K; branching	otio probably ch	onges	Chp. 16 + Est.
2.0.	Z + Z - * + Z	(1.8+C.4)[-7]	(-0.39)	٥	Ţ=Ţ	
		For $T_{i\nu} > \sim 1200$ K, multiply above formulo by a factor [1-exp(-3152/T; ν)].	witiply above fo	rmulo by a facto		
ف	- 1.08 N(D) + 0.92 N(S)	Theore	Theoretical bronching ratio,	ratio.		Est. (Ref. 24-3)

Table 24-1. (Cont'd.)

			-			
20	Reaction	0	٥	υ	Notes	Sources
≥.	I IV. Dissociative Recombination (Cont'd.):					
3.0.	3.a. NO++ - N+O	(4.0±0.3)[-7]	(-1.0±0.2)	0	T=200-300 K	Chp. 16
Ġ	O + Z 1	(4.0±0.3) -7	(-0.8±0.2)	0	7=1 •	Chp. 16 + Est.
		For $T_{i,v} > \infty$ 1300 K, multiply above formula by a factor [1-exp(-3230/T; $_{i,v}$)].	ultiply above for	rmula by a facto		(xer. 24.4)
រ	- N(20) + O(3p)	Ā	Theoretical prediction	.8		Est. (Ref. 24-3)
÷	Z+ Z + Z + Z	[7±4](-7]	(-1.0±0.5)	0		Ğ.
หา๋	N++0-N2+N2	(2±1)[-6]	(-1.0±0.3)	0		Chp. 16
÷	NO2 + e - Products	(3±2)[-7]	(-0.5±0.2)	0		Est.
7.	ON + ON TO + ON TON	(1.7±0.5)[-6]	(-1.0±0.5)	o		Chp. 16 + Est.
œ	NO+H2O+6-N+O+H2O	[9~ i (1)	(-0.2-0.8)	0		
o.	NO+(H2O)2 + 6 - N + O + 2H2O	(2)(→	(-0.2-0.8)	0		Est.
.0	NO*(H2O)3+6-N+O+3H2O	[9-](€)	(-0.2-0.8)	0		_
Ξ	02.02 +6-0+02	(2.0±0.5)[-6]	(-1.0±0.5)	0	Products Uncertain	Chp. 16
12.	02. H20+0-0+H20	l o- l(s·1)	(-0.2-0.8)	0		Ē.
	H ₃ O ⁺ + e - H ₂ O + H	(1.3±0.3)[-6]	(0.2+0.1)	0		Chp. 16

Table 24-1. (Cont'd.)

Š	Raction	O	Ą	C	Notes	Sources
≥.	IV. Dissociative Recombination (Cant'd.):				,	
<u>:</u>	H30-H20+е-2H20+H	(2.8±0.4)[-6]	(-0.2+0.1)	0		
	-H2+OH+H2O		()			
15.	H ₃ O ⁺ (H ₂ O) ₂ + е - 3H ₂ O + H)	14-17 71-41 14-17 71-41	(1.0-0-0)	c		
	- H ₂ + OH + 2H ₂ O	D. Karaari ook	(4.0-7.5)	•		
9	H ₃ O ⁺ (F ₂ O) ₃ + е - 4H ₂ O + H	17 NO 171	(,,,+0.1)	<		С. 16
	- H2 + OH + 3H2O	(0.1±1.2) -o	(-0.4)	>	Products uncertain	
17.	H3O+H2O)+++1H2O+H	17 16 177 27	(1.0+0.1)	c		
	-H2+OH+4H2O	G : 31-2)	(4.0-7.0)	•		
D .	H3O+(H2O,2+e-6H2O+H	0,000	(1.0+0.1)	c		
	-H2+OH+5H2O	(7.322.0) -0	1-0.4	>		
<u>6</u>	130 - OH + 6 - H20 - H + OH	17	13 000	•		, i
	- H2 + CH + OH)	10-1(c)	(-1.020.3)	>	/	587.
>	V. Mutual Neutrulization:					
<u>.</u> :	0+00+0	(2.7±1.3) -7	(-0.5)	0		:
2.	O2 + O - Products (probably O2 + O)	(9.6±3.0)[-8]	(-0.5)	0		9 .d5

Note: ^a For the analogous reactions for higher hydrotes, i.e., H₃O⁺(H₂O)_r, where nz 6, use the rate coefficients for Reaction IV.18.

Table 24-1. (Cont'd.)

ż	Reaction	O	q ,	U	Notes	Sources
> >	V. Mutual Neutralization (Cont'd.):					, li
က်	$O_2^+ + O_2^ Products$	(4,2±1,3)[-7]	(-0.5)	o		
	$(probably O_2 + O_2)$					
→	O2 + NO2 - Products	(4.1±1.3)(-7)	(-0.5)	0		
	(probably O ₂ + NO ₂)					
بې	$O_2^+ + NO_3^-$ - Products	(1.3±0.5)[-7]	(-0.5)	٥		
	(probably O ₂ + NO ₃)					
•	N ₂ + O ₂ - Products	(1.6±0.5)[-7]	(-0.5)	0		
	(probably N ₂ + O ₂)					
7.	NO + O - Products	(4.9±1.5)[-7]	(-0.5)	٥		/ Culp. 10
	(probably NO + O)					
œ	NO+ + NO - Products	(3.5±2.€)	(-0.5)	0		
	(probably NO + NO ₂)					
6	NO+ + NO3 - Products	(4 ⁺⁵)(-7)	(-0.5)	0		
	(probably NO + NO ₃)					
.0	0+2,0+2	(2.6±0.8)[-7]	(-0.5)	0		_
=	X ⁺ + Y ⁻ - Products (probably X + Y)	(1.0 -4.0)[-7]	(-0.5)	0	X and Y are either atomic ar molecular.	Est.
12.	X (cluster) + Y - Products	(5)[-7.0±0.3]	(-0.5)	0		
	X + Y (cluster) - Products	(5)[-7,0±0,3]	(-0.5)	0	(X (cluster) and	- Gat
7	X (cluster) + Y (cluster) - Products	(5)[-7.0±0.3]	(-0.5)	0	clustered ions.	

Table 24-1. (Cont'd.)

No. Reaction VI. Three-Body ion-lon Recombination: 1.					_	
VI. Three-Body ion-lon B 2.	Reaction	5	q	v	Notes	Sources
1.	Recombination:					
2. X ⁺ (cluster) + Y ⁻ + Y ⁻ (cluster) + Y ⁻ 4. X ⁺ + Y ⁻ (cluster) +	oduch	(3±1)[-25]	(-2.5)	0	X ⁺ , Y ⁻ , and M are either atomic or mole- culor "air" species.	Сћр. 16
3. X+Y'(cluster)+Y'(c - Products VII. Radictive Attachmen 1. O+e - O + hu 2. O ₂ +e - O ₂ + hu 3. O ₃ +e - O ₃ + hu 4. NO ₂ +e - NO ₂ - 5. OH +e - OH + t	- M - Products	(3±1); -25]	(-2.5)	0		_
4. X ⁺ (cluster) + Y ⁻ (c - Products VII. Radictive Artachmen 1. O+e - O ⁻ + hu 2. O ₂ +e - O ⁻ ₂ + hu 3. O ₃ +e - O ⁻ ₃ + hu 4. NO ₂ +e - NO ⁻ ₂ 5. OH +e - OH ⁻ + i	- M - Products	(3±1)/-25)	(-2.5)	0	X (cluster) and Y (cluster) are any	Ç.
VII. Radiative Attachmen 1. O+e - O - + hv 2. O ₂ + e - O ₂ + hv 3. O ₃ + e - O ₃ + hv 4. NO ₂ + e - NO ₂ 5. OH + e - OH - + 1	cluster) + M	(3±1[-25]	(-2.5)	0	clustered ions.	
1. 0+e-O ⁺ +hy 2. 0 ₂ +e-O ² +hy 3. 0 ₃ +e-O ³ +hy 4. NO ₂ +e-NO ² 5. OH +e-OH ⁻ +i Will. Protoderachment:	# <u></u>					
2. $O_2 + e - O_2^2 + hv$ 3. $O_3 + e - O_3^2 + hv$ 4. $NO_2 + e - NO_2^2$ 5. OH + e - OH + i	ne e manue	(1.3±0.1)(-15)	0	0		
3. O ₃ + e - O ₃ + h ₂ 4. NO ₂ + e - NO ₂ 5. OH + e - OH + 1 VIII. Protodehachment:		[[*61-](2)	0	0		- de -
4. NO ₂ + e - NO ₂ 5. OH + e - OH + F VIII. Protodetachment:		[£*21-](t)	0	0	Slaw compared with Reactions XI.2(a, b).	ئے
5. OH +e - OH + +	- hz	(1)[-17±2]	0	ပ	See Reaction IX.7.	
VIII. Photodetachment:	ą.	(2.5±1.5)ן-15ן	(-0.25)	0	Detailed balance calculation	Ref. 24-5
					1	
1. 0 +hu - 0+e		(1.4±0.1)[0]	0	0	normal -incidence	
2. $0_2^- + h\nu - 0_2 + \bullet$		(0.33±0.10)pol	0	0	flux at top af earth's atmosphere	Chp. 17
3. O3 + hv - O3 +e		(2±1)(-1)	0	0	Vary with altitudes and solar zenith angles.	(

_
Ü
Cont
=
_:
24-1.
- 1

Sources		II. 1. Ref. 24-6	Ref. 24-7		Chp. 17	Ref. 24-7		data. Est.	-30:			Chp. 17		2 - 2 - Re-
Notes		See Reaction XXII. 1.		_				No experimental data.	T = 195-600 K k = (1.9±0.3)[-30]	300	T = 300-400 K	T = 300-525 K	ON = X	Observed to be a saturated 3-body process. k is the effective 2-body value. See Reaction VII.4.
v		•	0	0	•	0		0	009	0	0	.0	0	0
•		0	Ö	0	0	0		0	(-1)	0	0	0	0	0
•		(2)[0.0±0.3)	(8)[-2±2]	12*E-XS)	(1)(C+1)	(3)[-1±2]		(1)(-31±2,	(1, 4±0, 2)(-29)	(1.0±0.5)[-31]	(1.4±0.2);-291	(3.3±0.7)/-30	11E-K8)	(4)K-111
Reaction	VIII. Photodetachmint (Cont'd.):	02:02+14-02+02+6	NO2+hv-NO2++	NO3+12-NO3++	OH + hv - OH +•	CO + + hu - CO + C2 + 0	IX. Three-Body Attachment:	02 + + 0 - 02 + 0	02+02-02+02	02+++N2-0+N2	02+++20-02+420	02+++++++++++++++++++++++++++++++++++++	NO + + + M - Products	NO2 + • (+M) - NO2(+M)
2	√III.	÷	5.	ó	7.	89	×	_:	2.	က်	4	.5.	ó	۲.

Table 24-1. (Cont'd.)

Š	Reaction	э		U	Nates	Sources
ڻا ×	X. Callisional Detachment:					
-:	0-+00-+0-	(2, 3±1, 0, -9	0	26, 000±3000	$T_1 < 20,000 \text{ K}$ $K_{200} = (1.0)[-46]$	
2.	0-+ N2 - 0 + 0 + N2	(2.3)[-9.0±0.5]	0	26, 000±3000	T ₁ < 20,000 K kmc = (1,0)[-46]	Cub.
e,	0-0-0-0-0	(3.6)[-11]	•	2000	Detailed balance calculation.	Ref. 24-8
÷	02+N2-02+++N2	(1.9±0.4)[-12]	(1.5)	7664	$k_{300} = (2.1)[-18]$ T = 375-600 K $k_{200} = (1, 1 \pm 0, 2)[-19]$	
s.	02+02-02+0+02	(2.7±0.3)[-10]	(0.5)	5590	T = 375 - 600 % $k_{200} = (2.2 \pm 0.2)[-18]$)
٠.	0-+02(01Ag).02++02	(2+2)	0	0		Chps. 17, 20
7.	02 · H20 - 02 + 4 + H20	l6-J(0°5)	0	2000	Detailed balance calculation.	
6	02 + c02 - 02 + • + c02	(1.2)[-9]	o	2009	k ₃₀₀ = (2.9)[-27] Detailed batance calculation. k ₃₀₀ = (7.9)[-28]	Ref. 24-8
×	Dissocietive Attechment:					
-:	0, +•-0 +0	,	ı	ı	k<(1) -16 for T<2000 K Endothermic c>(4) 4 at 1<300 K. Strong dependence on T _v at	Сћрs. 17, 20
				· · · · · ·	high le-	

Table 24-1. (Cont'd.)

ġ	Recetion	o	۵.	υ	Notes	Sources
ا ۾	XI. Dissociative Attachment (Cont'd.):			<u> </u>		
.0.	2.a. 03+0-0-+0 ₂	(942)(-121	(1.5)	O	T = 200-300 K See Reaction VII.3	Сћр. 17
ė.	-02+0	(1.7)[-11.0±0.3)	(1.5)	13, 200	T = T _e . No depend- ence on T for T<360 K, k ₃₀₀ = (1,3)[-30]	Est. based on Ref. 24-9.
Ę.	XII. Associative Detachment:					,
-:	0-+0-02+	(2^{+2}_{-1}) [-10]	0	0		
2.	0-+02-03+e	ı	ı	ı	k < (5)[-15] at T = 300 K and $T_1 = 300-10,000 \text{ K}$ Endothermic c ~ 5000	Chp. 17
m.	0-+02(6 1Ag)-03+e	(3.0+3.0)	0	0	Cf. Reaction XV. 1.	Chps. 17, 20
	0-+03-02+02+6	ı	1	1	Rate is slaw, compared with Reaction XV.2.	Est.
	+ ON 1 N + O	(2+2)[-10]		0		- 17
•	0_+ N_2 - N_2 O -	1	ı	ı	$k < (1)(-12)$ at $T_{i} = 300 \text{ K}$	
	0" + NO - NO + +	(2.2±0.5)(-10)	(-0.56)	. •	T; = 300-2000 K	·
er.	0"+H2-H20+	(6.5±1.0)(-10)	(-0.19)	0	T = T < 3000 K	Ref. 24-10
	0_+00-00-0	(0+1)(1+9)	(-0.32)	0	$T = T_{i} < 3000 \text{ K}$	_
	02+0-03+	(3.0+3.0)(-10)	0	0		С. 17

Table 24-1. (Cont'd.)

ź	Reaction	0	P	Ų	Notes	Sources
	Associative Deta					
=	0, + N - NO, + •	(5.042.5)[-10]	0	0		Сьр. 17
12.	03+0-02+02+	(1) [-11+1]	0	0	No experimental data.	Est.
.5	OH-+0-HO2++	(2-1) -10	٥	0		Ref. 24-11
7	co3+0-co2+02+0		ı	ı	Rate is slow, compared with maction XVI.22.	Сър. 17
X E	XIII. Positive-ton Charge Transfer:					
_:	O+H-O+H+	(6.8±3.0)[-10]	0	0		Chp. 18A
	+ () () () () () () () () () () () () ()	(2.0±0.2)[-11]	(-0.40±0.14)	0	T<1800 K	Chp. 18A +
	0 +02 -0 +02	(1.3±0.2)[-12]	(1,20±0.13)	•	T> 1800 K	Ref. 24-12
ŕ	0+(2)+02-0+0+(0,4)	$(3) \begin{bmatrix} -10.0 & +0.5 \\ -1.0 \end{bmatrix}$	٥	0		Chp. 20
4	0 + NO - O + NO + O	ı	ı	•	Chp. 18A gives k. (1.3)-12). See Reaction XIV.2.	
પ્ રં	0+ NO2 - O + NO2	(1.6±0.3)[-9]	0	0	Date at 393 K	C. 186.
•	0+N20-0+N20+	(2.2±1.0/-10)	0	0	Cf. Reaction XIV. 3.	
7.	0+H20-0+H20+	(2.3±0.3)[-9]	0	0		
æ	0+(20)+N2-0+N+	(3)(-10±1)	0	0		Chp. 20
٥,	†O+Z-O+Z	13(-)(1)	0	0		Ē.

Table 24-i. (Cant'd.)

₹.

1

1

Š	Reaction	0	ų	3	Notes	Sources
XIII.	XIII. Positive-lon Charge Transfer (Cont'd.):		1			
<u>م</u>	+ C - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -	(2.8±1.C)(-10)	(0.00-0.17)	0	T<4600 K	سر
2	2 - 2 - 2 - 2	(11-)(1+9)	(0.57±0.05)	0	T>4500 K	3
Ξ.	V + NO - N + NO + N	(8.0±2.4)[-10]	0	0		Crp. 18A
15.	N+ H20 - N + H20+	(2.6±0.4)[-9]	0	0		
13.	N+ + CO + N + CO+ N	(9±3)[-10]	0	0		2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2
ž	N+ + CO2 - N + CO2	(1.3±0.4)[-9]	o	0		Ker. 24-13
15.	0++NO-02-NO+	(6.3±2.4) -10	0	0		
<u>%</u>	02+NO2-O2+NO2	(6.6±2.0)[-10]	0	0	Cf. Reaction XIV. 10.	ا ا
.71	02+Na - C2 + Na+	(6.7)[-10±1]	0	0	Cf. Reaction XIV.2.	Cub. 194
18.	02(0th,)+N2.02+N2	101-1(575)	0	0)

Note:

channels indicated is somewhat uncertain, and for vouch the energy dependence of the separate branches has not been measured. The rate constant for the overall process (both Reactions) is: b The sum of Reactions XIII, 10 and XIV. 6 represent c averall reaction, as measured experimentally, for which the division into the

$$k = (5.5\pm0.5) \lor 10^{-10} \binom{T}{300} \binom{0.00^{+0.80}}{-0.17}_{af} T < 4600 K;$$

These values have been arbitrarily halved between the two channels, as seemingly the most reasonable resolution of the problem at this time. The product N, in Reaction XIII. 10 may include some proportion of the (²D) state, but no apperlmental evidence is available to support any estimates in this regard. This entire footnote was obtained fram Ref. 24-12. $k = (1.2 \pm 0.2) \times 10^{-10} \left(\frac{T}{300}\right)^{(0.57 \pm 0.05)}$ at $T \sim 4600 \text{ K}$.

Table 24-1. (Cont'd.)

2	Reaction	0	q	U	Notes	Sources
ž	Positive-Ion Charge Transfer (Cont'd.):					
<u>6</u>	x+0-x-0+	(6.6)[-11±1]	,	1945	Gst; no experimental dato. ^c Cf. Reaction XIV, 13.	Ref. 24-12
·					$k_{300} = (1)[-13\pm 1].$	
8	Z + Z - Z + Z + Z + Z + Z + Z + Z + Z +	ı	ı	•	k<(1)[-11]	
or 5	† ((5.0±1.0)[-10]	(-0.8±0.2)	0	T< 3560 K	
:	N2 102 172 102	(2.5±0.5)[-13]	(1.4±0.3)	0	T>3560 K	
23.	Z+ ZO + Z + ZO+	(3,3±1,5)[-10]	0	0	N ₂ (A) or NO ⁺ (a) may be formed.	Chp. 18A
23.	N2 + H2O - N2 + H2O+	1	ı	ì	This reaction combined with Reaction XIV. 16 add to k = (2.2)[-9]	
2,	N2+CO2-N2+CO2	(Ci-)(E+6)	0	0		Ref. 24-13
25.	Z+ Z0 - Z + Z0+	(5.8±3.0)[-10]	0	0		
26.	+ ON	(7.0±3.0)[-11]	0	0		
27.	NO2+NO-NO2+NO+	(2.9±1.0)(-10)	0	0		Chp. 18A
28.	H ⁺ +0-H+0 ⁺	(3.8±2.0)[-10]	0	0)
Notes:						

Notes: C. However, Rutherford has measured $k = 5 \times 10^{-11}$ at 1 eV, in good agreement with the kinetic parameters here indicated (Ref. 24-12). Cf. Reaction XIV. 14.

ध

·
p,t.
Š
-:
24-
4
꿈

ž	Reaction	О	р	U	Notes	Sources
XIII	Positive-Ion Charge Transfer (Cont'd.):					
&	H + NO - H + NO +	(1.9±0.5)[-9]	0	0		
8	OH + O2 - OH + O2	(2.0±0.5)[-10]	0	0		
31.	$H_2O^+ + O_2 - H_2O + O_2^+$	(2.0±0.5)[-10]	0	0		
32.	±0+0¬-0+↓00	(1.4±0.8)[-16]	0	0		Cho. 184
33.	CO+ + NO - CC + NO	(3.3±1.0)[-10]	0	0		
સં	co ⁺ + 0 - co ² + o ⁺	(1.0±0.6)[-10]	0	0	Cf. Reaction XIV. 36	
સ્	co ⁺ + o ₂ - co ₂ + o ⁺	(11-)(2+5)	0	0		
%	CO2+NO-CO2+NO+	(1.2±0.4)[-10]	0	0		
XIV.	XIV. Positive Ion-Atom Interchange:					
•	2 + C 2 + C	(1,2±0,1)[-12]	(-1.0±0.4)	0	T<750 K	7 281
	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	(8.0±2.0)[-14]	(2.6±0.2)	0	T>750 K	- dip
~	0+ + NO - O+ + N	•	+	t I	k<(1)[-12], See Re- action XIII.J.	Est.
3.	0+ + 0 - NO+ NO	(2.3±1.0)[-10]	0	0	See Reaction XIII.6.	Chp. 18A
Note:	ording to Ref. 24-12,	n Reaction XIV.1 to we valid for $T = T_1$ o	distinguish betw r T ≃ T _v .	••n T¡(O˚) and	it is not necessary in Reaction XIV. I to distinguish between $T_i(O^{\perp})$ and $T_{\nu}(N_2)$, admittedly a surprising new te parameters given are valid for $T=T_i$ or $T=T_{\nu}$.	prising new

24-17

•
P,t
ပို
÷
24-1
2
Ř

Ž	Reaction	o	Ą	u	Notes	Sources
XIV.	XIV. Positive Ion-Atom Interchange (Cont'd.):					
→	0+H2-OH+H	(2.3±0.5)[-9]	٥	0		
۶,	0+00-04-0	(1.1±0.3){-9	0	0		
6. f	0 + CZ	(2.8±1.0)[-10]	(0.00+0.80)	0	T< 4600 K	
	2	[-]([+9)	(0, 57±0.05)	0	T>4600 K	Chp. 18A
7.	N + H2 - NH + H	(5.6±2.0)[-10]	۰	0		
9.0	8.0. O+ N-NO+O	(1.8±0.6)[-10]	۰	0		
	0×+ 0 '	ı	1	1	Endothermic by 0.153 eV.	
٥.	0+ N2 - NO+ NO	(1) [-16-3]	0	0	Chp. 18A gives k<(1)[-15].	
.0	02+NO2-NC+O3	0	0	0	k<(1)[-11]. Cf. Re- action XIII. 16.	
Ë	O2+H2-Products	,	1	1	k<(1)[-11]	
13.	O2 + Na - NaO + O	(7.7±3.0)[-11]	0	0	Cf. Reaction XIII, 17.	Chp. 18A
13.4.	13.9. N+ + O + NO+ N	(1.4±0.8)f-10l	٥	0	Cf. Reaction XIII, 19.	
ь.	- NO+ 0.5N(4s) + 0.5N(2D)				Overall Reaction.	Est.
Note:	Note: Cf. Reaction XIII.10, and its accompanying footnote.	iootnote.				

24-18

Table 24-1. (Cont'd.)

(

$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ģ	Reaction	•	م	U	Notes	Sources
$N_2^+ + O_2 - NO^+ + NO \qquad (1) 7\pm 2 \qquad 0 \qquad Cf. \text{ Reaction XIII.21.}$ $N_2^+ + N_2 - N_2H^- + H \qquad (1.7\pm 0.3) -9 \qquad 0 \qquad Cf. \text{ Reaction XIII.23.}$ $NO^+ + O_3 - NO_2^+ + O_2 \qquad - \qquad - \qquad K<(1) -14 \qquad - \qquad - \qquad K<(1) -14 $ $NO^+ + O_3 - NO_2^+ + O_2 \qquad - \qquad - \qquad K<(1) -14 \qquad 0 \qquad 0 \qquad Date at 200 K. Parking Products includes (a) NO^+ + O_1 N_2^- in NO^+ + O_1 N_2^- in NO^+ + O_2^- + N_2^- + N_2^-$	× .	Positive Ion-Atom Interchange (Cont'd.):					
$N_2^+ + H_2 - N_2 H^+ + H$ $N_2^+ + H_2 - N_2 H^+ + H$ $N_2^+ + H_2 - N_2 H^+ + H$ $N_3^+ + H_2 - N_2 H^+ + GH$ $N_3^+ + G_3 - N_2 H^+ + GH$ $N_3^+ + G_2 - N_2 H^+ + GH$ $N_3^+ + G_2 - N_2 H^+ + G_3$ $N_3^+ + G_2 - N_2 H^+ + G_3$ $N_3^+ + G_2 - N_2 H^+ + G_3$ $N_3^+ + G_2 - N_2 + N_2 H^+ + G_3$ $G_2^+ + N_2 - N_2 + N_2 H^+ + G_3$ $G_2^+ + N_2 - G_3^+ + N_2$ $G_2^+ + N_2 - G_3^+ + N_2$ $G_2^+ + G_3^+ +$	-	N++02-NO+NO	(1)[-,7±2]	o	0	Cf. Reaction XIII.21.	Est.
See Reaction XIII.23 k<(1) -14 k<(1) -14 (1.0±0.3) -10 0 0 Date at 200 K. Pos- sible products include: (a) NO ⁺ + O + N ² ; End (b) O ² + N + N ² ; End (c) NO ² + N + N ² ; End (c) NO ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (d) O ² + N + N ² ; End (e) NO ² + N + N ² ; End (15.	N2++2-N2H+H	(1.7±0.3)[-9]	0	0		
$N_3^+ + O_2 - NO_2^+ + O_2$ $N_3^+ + O_2 - Roducts$ $N_3^+ + O_3 - Roducts$ $N_3^+ + O_3 - Roducts$ $N_3^+ + O_3 - O_3 - Roducts$ $N_3^+ + O_3 - O_3 - O_3 - O_3$ $N_3^+ + O_3$	16.	N2++20-N2++0H	•	ı	•	See Reaction XIII.23.	
$N_3^+ + O_2 - Products$ $N_3^+ + O_2 - Products$ $N_4^+ + O_2 - N_2 + N_2 + O_2^+$ $O_2^+ \cdot O_2 - O_2^+ + N_2$ $O_2^+ \cdot O_2 - O_2^+ + O_2^+$ $O_2^+ \cdot O_2^+ + O_2^+$ $O_2^+ $	17.	NO++O3-NO++O2	,	ı		k<(1) -14	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	8	N ₃ + O ₂ Products	(1.0±0.3)[-10]	0		Date at 200 K. Possible products include: (a) NO ⁺ +O +N ⁻ ; (b) O ² / ₂ +N +N ² ; and (c) NO ² / ₂ +N ² , in roughly comparable magnitudes.	Онр. 18.А
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		-	(4±1)[-10]	0	0	Date of 200 K.	
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	ė.	0, 10 + 0 - 0 + N2	(1.0±0.5)[-9]	0	0		Est.
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	21.	02.12+40-02.420+N2	(4±2)[-6]	0	0		ا ا
$ O_2^+ \cdot O_2 + NO NO^+ + O_2 + O_2 $ (5) -10 0 0 0	22.	0,0,0,0,0,0,0,0,0	(3±2)[-10]	0	0		Chp. 18A
$O_2^+ \cdot O_2 + H_2O - O_2^+ \cdot H_2O + O_2$ $O_2^+ \cdot O_2 + H_2O - O_2^+ \cdot H_2O$ $O_2^+ \cdot H_2O + O_2 - O_2^+ \cdot O_2^+ + H_2O$ $O_2^+ \cdot H_2O + O_2^- \cdot O_2^+ \cdot O_2^+ + H_2O$ $O_3^+ \cdot H_2O + O_2^- \cdot O_2^+ \cdot O_2^+ \cdot O_2^+ + H_2O$ $O_3^+ \cdot H_2O + O_2^- \cdot O_2^+ \cdot O_2^+ \cdot O_2^+ + H_2O$ $O_3^+ \cdot H_2O + O_2^- \cdot O_2^+ \cdot O$	23.	$o_2^+ \cdot o_2^- + NO - NO^+ + O_2^- + O_2^-$	(5)(-10)	c	٥		Œ.
O_2^+ H_2^+ $O_2^ O_2^+$ O_2^+ O_2^+ O_2^+ $O_2^ O_2^+$ O_2^+ $O_2^$	24.	02.02+420-02.420+02	16-3(5.0±5.1)	0	0		Сһр. 18А
		02.420+02-02.02+H20	(2)[-10]	0	2300	$k_{300} = (9.4)[-14]$	Est.

Table 24-1. (Cont'd.)

° Ž	Reaction	0	٩	υ	Notes	Sources
× K V	XIV. Positive Ion-Atom Interchange (Cont'd.);					
26.	02+420 - NO - NO + O2 + H20	lot-l(t)	0	0		Est.
27.0.	27.0. 0++0+0+H20-H30++02	(2.0±1.0) -10	0	0		
ڼ	- H30 + O2	(1.0±0.4)[-9]	٥	0		Chp. 18A
28.	NO . NO + H20 - NO . H20 + NO	(1.4±0.3)[-9]	0	0		
8.	NO + H2O + NO - NO + H2O	(2)I-10l	0	2300	$k_{300} = (9.4)[-14]$	Ref. 24-14
8	NO (H2O)3 + H2O					
	- H3O+(H2O)2 + HNO2	[11-](27-)	0	٥		
 	NO . CO . + H2O					
	-NO +H2O + CO2	(1.0±0.3)[-9]	0	0		Стр. 18А
33.	H20++20-H30+OH	(1.8±0.3)[-9]	0	0		
E	н30-04+ н20					
	- н30+040+	(1.4±0.5)(-9)	0	0		
ਨੰ	c+o ² -co ⁺ o	[1.1±0.3][-9]	0	0		
ж <u>.</u>	c++co2co++co	(1.8±0.6¥-9]	0	0		(Ket. 24-13

Ž	Reaction	٥	P	U	Notes	Sources
×i<	XIV. Positive ton-Atom interchange (Cont'd.):					
,	+ O + O - O + + O -	101-319 0-7 17	c	c	of Breeding VIII 34	
ġ	2 - 2 - 5 - 5	01-10-03-011	>	>	ייי אפקבוומו אווי אי	
37.	Fe + O ₃ - FeO + O ₂	(1.5±0.8) -10	0	0		
8	0 + 0° - ° 0 + °	(1.6±0.3)[-11]	0	0		1
8	0 + 0 - 0 - 0	(8.5 ^{+4.0})[-10]	0	0	·	Chp. 18A
5	***				1	
į	Z + Z - Z + D	•	•	1	tected for kinetic	
÷	N+ NO- UN+ U	[1-6-](1)	0	٥		Est.
×.	Negative-Ion Charge Transfer:					
٠.	C-+02(010)-07+0	ı		1	k ₃₀₀ <(1)[-10]. Cf. Reaction XII.3	Est.
-2	0.+0,-0+0,	(5,3±2.0)[-10]	0	٥	See Reaction XII.4.	
e	0 + NO - 0 + NO -	(1.2±0.4)[-9]	0	0		Chp. 18A
-	0,+0-0,+0	1	•	ì	k<(1)[-10]	Est.
ń	0-10-0-0-0	(4.0±1.3)(-10)	0	0		
•	02+NO2+O2+NO2	(8±3) [−10]	0	٥		Chp. 18A

Table 24-1. (Cont'd.)

Chp. 18A Chp. 18A Chp. 18A Sources Chp. 18A Chp. 18A Est. Est. Est. <u>5</u> No experimental data. Products uncertain; of. Reaction XVI. 5. Notes |\c| -|(1)| (2.8±1.0)(-10) (3.0±1.0)[-10] (3.4±1.0)[-10] (2, 3±0, 5)|-101 (2.9±1.0)[+9] (5±2)[-10] (1.0±0.3)[-9] (1) $\begin{bmatrix} -11 + 1 \\ -2 \end{bmatrix}$ (5)[-10] (5)f-10) (5)(-10)XV. Negative-lon Charge Transfer (Cont'd.): Negative ion-Atom interchange: NO2 + NO3 - NO2 + NO3 02.420+03 - Products O2(H2O)2 + O3 - Products OH + NO - OH + NO 0-+ N20-NO-+NO $O_3^- + NO_3 - O_3 + NO_3^-$ 03 + NO2 - O3 + NO2 $o_2^- + No_3 - o_2^- + No_3^-$ Reaction NO + O2 - NO + O2 03+N2-N20+02 H-+NO2-H-NO2 03+0-07+02 ₹ ģ ž 15. 12. 13. <u>∘</u> 2

ध्य

į

24-22

Table 24-1. (Cont'd.)

Table 24-1. (Cont'd.)

ž	Reaction	O	a	U	Notes	Sources
× -	Negative ion-Atom Interchange (Cont'd.):					
4	03 + NO - NO2 + O2	11-)(5.0±0.1)	0	0	Ref. 18A-27 identifies products as NO3 + O. This is probably incorrect.	Сћр. 18А
r,	03+NO2-NO3+O2	(2±1)[-11]	0	0	Products uncertain; cf. Reaction XV. 8.	Est.
•	03+002-003+02	(4.0±1.2)[-10]	0	٥		/
۲.	03+H-OH-+O2	(8.4±4.0)[-10]	0	0		
œ	NO2+O+ Products	ı	ı	1		
6	NO2+N + Products	•	ı	ı		
.0	NO2+03-02+NO3	(1.8±0.6)[-11]	0	٥		
Ξ.	NO2+NO2-NO3+NO	(4.0±1.2)[-12]	0	0	Reverse Reactions (XVI. 14, 15) important.	Chp. 18A
12.	NO3 + O - Products	•	ı	ı	k<(1)[-1]1]	
. <u>.</u>	NO3+N + NO2+NO	1	ı	1		
ž	NO3+NO+NO2+NO2	1	1		k<(1)[-12]. See Re- octions XVI.11, 15.	
15.	00NO + NO - NO + NO	(1.5)[-11±1]	0	0	See Reactions XVI.11, 14.	

Table 24-1. (Cont'd.)

	Reaction	O	٩	U	Notes	Sources
Negative lon-	XVI. Negative Ion-Atom Interchange (Cant'd.):	:-1				
0.00	0.02+0-0.03+02	(4±2)[-10]	0	0	2O ₂ + O may be a minor product channel.	
0-20 + N	02.02 + NO - CONO + 02	(2.5±0.8)[-10]	0	٥		
0-02 + H	0-0-1-0-0-0	(1.4±0.4)[-9]	0	٥		
0-0-0	$o_2^+ o_2^- + co_2^ co_4^- + o_2^-$	(4.3±1.3)[-10]	•	0		
0-H20+	02.420 + NO - 00NO + H20	(3, 1±1, 0)[-10]	O	•		
0-1-0+	02-420+002-004+H20	(5.8±1.0)[-10]	0	0		Chp. 18A
co3 + 0 - o2 + co2	o ₂ + co ₂	(8.0±2.4)f-11]	0	0	See Reaction XII. 14.	
CO3 + NO	$CO_3^- + NO - NO_2^- + CO_2$	(9.0±3.0)[-12]	0	0		
CO3 + NO.	$CO_3^2 + NO_2 + NO_3^2 + CO_2$	(8.0±3.0)[-11]	0	0		
CO + 0 -	co + 0 - co + 0 2	(1.5±0.8)[-10]	0	0	CO ₂ + O ₃ may be a minor product channel.	_
CO + O2	co2 + 02 - 04 + co2	(4.3)[-10]	0	3000	$k_{300} = (2.0)[-14]$	Est.
ON + 100	CO_+ NO - DONO - CO_	(4.8*2.0)[-11]	0	0		Chp. 18A
						-

~
C
Ę
ů
`.
<u>.</u> .
24-1. (
62
able 24-1. (

į	Keaction	0	o	υ	Nores	Sources
× KH.	XVII. Radiation-Stabilized Positive-10n-Neutral Association:	al Association:				
		(1)[- 3.0±0.5]	0	0	Monatomic reactonts	
	$X^+ + Y = (XY^+)^* - XY^+ + h\nu$	(1)[-15.0±0.5]	0	0	Diotomic reactants	
		(1);-13.0±0.5	0	0	Polyatimic reactonts and couplex reactants	
× × =	Positive-Ion Photodissociation:					
	Reactions of this type are not currently considered relevant to problems invalving a maspheric chemical recovery following a perturbation (Ref. 24–2). Nevertheless, this section of the table is reserved pending any future change in the situation.	considered relevant to this section of the t	problems invalable is reserved	ving o mospheri pending ony fut	c chemical recovery follo ure chonge in the situation	wing a
××	XIX. Three-Body Positive-Ion-Neutral Association:	ion:				
-	0+ + N + W - NO + N + W	(5.4)[-29]	(-1.0+0.5)	0	Tref = 82 K; M = He; Apparently N ₂ O predissociates.	Chp. 18A
2	N+ N- N+ N	(1.8±0.2)[-29]	(-1.0+0.5)	o	X = X	Refs. 24-16,
က်	02+02+M-04+M	(2.8)[-30]	(-1.0+0.5)	0	$T_{ref} = 307 \text{ K; M} = O_2.$	
÷	02+N2+M-0+M	(8±4)[-31]	$(-1.0^{+0.5}_{-1.0})^9$	0	T _{ref} = 200 K; M = He.	
'n	02+H20+M-02.H20+M	(1.9) -28}	$\begin{pmatrix} -1.0^{+0.5} \\ -1.0^{-1.0} \end{pmatrix}$	0	Tref = 296 K; M = O2.	Cip. 18A
•	N2+2+M-N+ M	(5.0)[-29]	$(-1.0^{+0.5}_{-1.0})^9$	0	Z = ¥	·
7.	NO+ + N - NO+ W + W	(2)(-31)	$\begin{pmatrix} -1.0^{+0.5}_{-1.0} \end{pmatrix}$	0	0 2 *	
Zote:						
٥ ٥	Value of "b" estimated (Ref. 24-12).			i		

_
٠.
О
•
•
F
ō
17
\sim
_
_:
<u>-</u>
1
24-1.
1
- 24-
- 24-
- 24-
le 24-

ż	Reaction	0	9	υ	Notes	Sources
× ×	XIX. Three-Body Positive-ton-Neutral Association (Cont'd.):	tion (Cont'd.):				
∞:	M+ ON- NO + W + ON + ON	(5.0)[-30]	(-1.0+0.5)	٥	OZ = X	
9.	NO++H2O+M-NO+H2O+M	(1.5)[-28]	(-1.0+0.5)	0	¥ = \$	
8	NO+ CO2+M-NO+CO2+M	(3)i-29	(-1.0+0.5)	0	Tref = 200 K; M = N2	
ė		(2)[-36]	(-1.0+0.5)	•	M = CO ₂	
Ë	NO ⁺ ·H ₂ O + H ₂ O + M - NO ⁺ (H ₂ O) ₂ + M	(1.1)[-27]	(-1.0.1.0)	0	Z = ¥	
12.	$NO^{+}(H_2O)_2 + H_2O + M$ - $NO^{+}(H_2O)_3 + M$	(1.6)[-27]	(-1.0+0.5)	0	Z = ¥) Chp. 18A
13.0.	O.	(3.7)[-27]	(-1.0-1.0)	0	Tref = 307 K; M = 32	
اف		(3.4)[-27]	(-1.0-0.5)	0	Z = Z	
14.0.	14.a. H30-H20+M	(2.0)(-27)	(-1.0.5)	0	T = 307 K; M = O ₂	
þ.		(2.3)[-27]	(-1.0+0.5)	0	Z Z ¥	_
Note:	Note: 9 Value of "b" estimated (Ref. 24–12).					

24-26

Table 24-1. (Cont'd.)

* *

Š	Reaction	0	9	υ	Notes	Sources
XIX.	XIX. Three-Body Positive-Ion-Neutral Association (Cont'd.):	ion (Cont'd.):				
15.0	15.0. H30+(H2O)2+H2O+M					
	- H30 (H20)3 + M	(2.0)(-27)	(-1.0+0.5)	0	$T_{ref} = 307 \text{ K}; M = O_2$	
۵		(2.4)[-27]	(-1.0+0.5)	0	Z Z ₩	Chp. 18A
16.	H3O (H2O)3 + H2O + M	(9.0)[-28]	(-1.0,+0.5)8	0	ref = 307 K; M = O ₂	
× ×	XX. h Positive-Ion Collisional Dissociation:					
:	02.02 + M - O2 + O2 + M	(2.4±1.2)[-6]	(-)	4900	$k{300} = (2.0 \pm 1.0)[-13];$ $M = O_2.$	Refs. 24-18 through 24-20
44	W+ ON+ ON - W+ ON- ON	(4) [-5±1]	ĵ.	7300±1000	k ₃₀₀ = (9±2)[-16]; M = NO.	Refs. 24-14, 24-21
e.	H30-0H+M-H30-+OH+M	(3) -3±2	(1-)	12,000	k300 = (1)[-20]; bond- ing energy liss be- tween 0.77 and 1.52 eV.	Refs. 24-2, 24-22 + Est.
→	H30-H20+M-H30+H20+M	(8.8±1.3)[0]	(-)	18,000	k300 = (7)(-26); M = N ₂	Refs. 24-23, 24-24
Notes						

Zotes:

9 Value of "b" estimated (Ref. 24-12).

h in this section, the 'a" parameters have been obtained by back-colculation from measured or estimated volues of "c" and of the rate constant at or very near 300 K,i.e., k₃₀₀, as referenced. The "b" parameter has been uniformly estimated as equal to (-1) (Ref. 24-2).

Table 24-1. (Cont'd.)

Ž	• eaction	D	q	2	Notes	Sources
XX.	XX. h Positive-lon Callistanal Dissociation (Cont'd.):	nt'd.):				
γ,	H30+(H2)2+M				- T-	
	- H30-H20+H20+M	(8.0±3.2) -2)	(I-)	11,000	k300 = (1.0±0.4)[-17]; Refs. 24-23 M = N ₂ , O ₂ .	Refs. 24-23 through 24-25
ý		(-, +5.0).		3	7.42)	
	- H ₃ O (H ₂ O) ₂ + H ₂ O + M	(5.0-2.5)	ĵ.	0098	$k_{300} = {2 \atop -1} -14 ;$ $M = N_2, O_2, NO.$	Refs. 24-14, 24-23 thraugh 24-25
7.	H30+1H20)4+M					
	-H3C*(H2O)3+H2O+M	(7.6±1.2)[-1]	(-1)	7700	$k_{300} = (6)[-12];$ $M = O_2$	Refs. 24-24, 24-25
XXI.	XXI. Radiation-Stabilized Negative-Ion-Neutral Association:	ral Association:				
<u>-</u>	0-+02-03+hv	(1) -17+2)	0	0		Est.
XXII.	XXII. Negative-lon Photodissociation:					
<u>.</u> :	02.02+hv-02+02	(2)(0±3)	0	0	Cf. Reaction VIII.4.	Ref. 24-6
XXIII	XXIII. Three-Body Negative-Ion-Neutral Association:	ciation:				
-	0-+C2+M-O3+M	(1.1±0.1) -30	$\begin{pmatrix} -1 & +0.5 \\ -1 & -1.0 \end{pmatrix}$	0	M = O ₂	Chp. 18A
Notes						

Notes

9 Value of "b" estimated (Ref. 24-12).

In this section, the "a" parameters have been obtained by back-calculation from measured ar estimated values of "c" and of the rate constant at ar very near 300 K, i.e., 1/300, as referenced. The "b" parameter has been uniformly estimated as equal to (-1) (Ref. 24-2).

Ŋ

Table 24-1. (Cont'd.)

ż	Rection	0	q	υ	Notes	Sources
XXIII.	Three-Body Negative-Ion-Neutral Association (Cont'd.):	iation (Cont'd.):				
2.	0-+N2+M-N20-+M	(16-1(6)	(-1.0+0.5)	0	T _{ref} = 200 K; M = He.	Chp. 18A
က်	0 + NO + M - NO + M	(1)[-29±2]	(-1.0 ^{+0.5})	0	Reaction XII.7 is dominant.	Est.
4	O-+H2O+M-O-H2O+M	(1.0)[-28]	(-1.0+0.5)	0	M = 0 ₂	
ห่	O-+CO2+M-CO3+M	(8.0)(-29)	(-1.0+0.5)	0	M = CO ₂	
ø	02+02+M-04+M	(3.5±0.5) -31)	(-1.0+0.5)		M = O ₂	
7.	O2+N2+M-O2.N2+M	(3)(-32)	(-1.0+0.5)	0	Tref = 200 K; M = Ha.	
&	02+H20+M-02.H20+M	(3)(-28)	(-1.0+0.5)	0	M = O ₂	V Chp. 19.4
۰,	02+C02+M-C04+M	(2.0)[-29]	(-1.0+0.5)		M = 0 ₂	
<u>6</u>	O3+H2O+M-O3.H2O+M	(2.1)[-28]	(-1.0+0.5)	0	M = 02	
Ë	NO2+H2O+M-NO2.H2O+M	(1.3) -28	(-1.0+0.5)	0	O Z = ¥	
13.	02.420 + H20 + M - 02(H20)2 + M	(4)(-281	(-1.6+0.5)	0	M = O ₂	/
XXIV	XXIV. ³ Negative-ion Callisional Dissociation:					
÷	02.02 + M-02+02+M	(2.0±1.2)[-5]	(-)	9300	k ₃₀₀ = (1,7±1.0)(-14); Refs. 24-27 M = O ₂ . through 24-30.	Refs. 24-27 through 24-30.
2 × 2 × 3	Notes: 9 Value of "b" estimated (Ref. 24-12). 5ee Footnote "h".			:		

Table 24-1. (Cont'd.)

Š	Reaction	6	q	J	Notes	Sources
Š.	XXV. Radiation-Stabilized Neutral Recombination:	ion	-			
ė.	1.0. $O + O - O_2(A^3\Sigma_0^+) - O_2 + h\nu$ (Herzhers)	(2.4+0.;)[-21]	0	0		Refs. 24-31, 24-32
ė.	$-o_2(b^{\dagger}E_3^{\dagger})-o_2^{\dagger}+h\nu$	(1.7±0.2)[-37; nN2	0	0		Ref. 24-32
ů	$-O_2(8^3\Sigma_0^-)-O_2+h\nu$ (Schumonn-Runge)	(2)[-17]	0	12,000±1100	k ₃₀₀ = (8.5)[-35]	Ref. 24-33
2.0.	$O + N - NO(A^2 \Sigma^+) - NO + hv$ (gamma)	$\left\{1.2\times10^{-17}\left(\frac{1}{300}\right)^{-0.35}\right\}$	T)-0.35 + 2.1	$\begin{array}{c} 15 \\ +2.1 \times 10^{-34} & \text{nN}_2 \left(\frac{1}{300} \right)^{-1.24} \end{array}$	5)-1.24	75
ف	v (beta)	(3. 1±0. 1) -34 ·nN2	(-1.4)	0		Net: 44-35
ů	- NO(C'II) - NO + hu (delta)	(6.8±3.0) -18	(-0.35)	0		
		(8±2)[-17]	(-2.0±0.5)	0	p≥ 0, 3 torr	ر و و
:		(7±2)į-18i	(-2.0±0.5)	0	p ≤ 10 3 tor	Cubs of
4.	N+N+N2+H0	(1.0±0.5)[-17]	(-0.90±0.05)	0		Ref. 24-35
XXVI	XXVI. Neutral Photodisacciation:					
1.0.	02+hr-0+0					
ė.	(a ₁)o + o ·				length dependent.	
	(Schumann-Runge)				See Chp. 12.	
2.	0 + N - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 - 1 -					
<u></u>						

(Cont'd.); g g mbination:	Notes Sources
Neutral Photodissociation (Cont'd.): $O_3 + h_{\nu} - O + O_2$ $- O + O_2(o^1 A_g)$ $- O (^1 D) + O_2(o^1 A_g)$ $- O (^1 D) + O_2(b^2 \Sigma_g)$ $NO_2 + h_{\nu} - O + NO$ $N_2 + h_{\nu} - O + NO$ $O + h_{\nu} - N + O + O$ $O + h_{\nu} - O + O + O + O + O + O + O + O + O + O$	
Neutral Photodissociation (Cont'd.): O ₃ + hu - O + O ₂ - O + O ₂ (o ¹ A _g) - O(¹ D) + O ₂ (o ¹ A _g) - O(¹ D) + O ₂ (o ¹ A _g) - O(¹ D) + O ₂ (o ¹ A _g) NO ₂ + hu - O + NO NO ₂ + hu - O + NO OH + hu - N ₂ - O - N + NO OH + hu - O + H H ₂ O + hu - H + O H H ₂ O + hu - O H + O H CO ₂ + hu - O H + O H CO ₂ + hu - CO + O Three-Body Neutral Recombination: O + O + O - O - O ₃ + O(¹ S) (1.5)	q
Neutral Photodissociation (Cont'd.): $O_3 + h\nu - O + O_2$ $O_3 + h\nu - O + O_2$ $- O + O_2(a^1A_3)$ $- O(^1D) + O(^1D) + O(^1D)$ $- O(^1D) + O(^1D) + O(^1D)$ $- O(^1D) + O(^1D) + O(^1D)$ $+ O(^1D) + O(^1D) + O(^1D)$	D
	Reaction

1

Ref. 24-36 Sources Chp. 20 Chp. 19 Chp. 19 Chp. 19 Chp. 20 Chp. 19 Chp. 19 Chp. 19 Chp. 20 Est. $k_{300} = (4.0)[-33]$ $k_{300} = (5.5)[-32]$ $k_{300} = (1.4)[-45]$ $k_{300} = (6.0)i - 34$ $r_{ref} = 3000 \, \text{K}$ T_{ref} = 3000 K Notes -500±200 -300±100 -510±200 7500 (-2.9±0.4) (-2.5 ± 0.5) (-0.5 ± 0.2) (-2.5 ± 0.3) (-0.6 ± 0.2) (-1.7) (8.3)(-33.0±0.5) (1.1±0.3)[-32] (1.0±0.1) (2.1±0.4)[-32] (2.1)[-37±1] (7.6±2.0)[-34] (4.6±0.2)[-33] (1.7)[-37±1] (1.4)[-33±1] (3.0)[-33](3)[-33+1] (3.9)[-34] (1)[-34±1] (1.1)[-34] (1)[-34±2] Three-Body Neutral Recombination (Cont'd.): $- O_2(A^3E_3^+) + N_2$ - $O_2(b^1E_9^+) + N_2$ N+0+N2-NO(8-11)+N2 $-N_2 + N_2(B^3\Pi)$ 0+N0+N2-NO2+N2 (S) 0 + 0 + 0 + 0 + 0 H + O2 + N2 - HO2 + N2 0+05+N2-03+N2 0+N2+M-N20+M N + O + N - 1 NO + N2 0+0+N2 - 02 +N2 N + N + N2 + N2 Reaction H+H+M-H2+M Š Ž 3.0. 4.0. <u>.</u> ij ف = 12. <u>.</u> 'n ø 7 6

Q

24-32

Table 24-1. (Cont'd.)

Table 24-1. (Cont'd.)

Ž.	Reaction	٥	Q	U	Notes	Sources
XXVII.	Three-Body Neutral Recombination (Cont'd.):	nr'd.):				
<u></u>	H+OK+M+H2O+M	(7±4)[-32]	٥	0	T = 2000 K	Ref. 24-37
ž	CO+O+N2-CO2+N2	(1.4±0.3)[-35]	0	0		Ref. 24-38
XXVII	XXVIII. Neutral Callisional Dissociation:					
-	02+02-0+002	(2.1±1.0)[-7]	(=3.5±0.5)	29,000	T = 3000-5000 K	Ref. 24-33
2.	N2 + N2 + N + N2	(6.7±1.7)[-7]	(-1.6±0.5)	113,000	T ≈ 8000-15, 000 K	
.;	Z + A - Z + A - A	(2.5±0.3)[-7]	(-1.6±0.5)	113,000	T = 8000-15, 000 K	Ker. 24-37
4	¥ + 0 + Z 1 ¥ + 0 Z	(1.3±0.6)[-7]	(-1.5±0.5)	75,000	T = 3000 - 8000 K; $M = Ar, C_2' N_2$	Ref. 24-40
5.	$O_3 + O_2(a^{\dagger} \Delta_g) - O + O_2 + O_2$	(4.5)[-]]	0	2800±200	T = 283-321 K; $k_{300} = (4)[-15]$	Ref. 24-41
	$o_3 + o_2(b^1 E_g^+) - o + o_2 + o_2$	(2.5±0.5) -11	0	0		Ref. 24-42
7.	03+N2-0+O2+N2	(6.4±1.6)[-10]	0	11,400	T = 200-1000 K; k300 = (2)[-26]	Ref. 24-43
XX	XXIX. Neutral Rea-rangement:					
-	0+N2-N0+N	(1.0±0.3)[-10]	0	37,900±300	$k_{300} = (1.1)[-65]$	
2.	0+N0-02+N	(5.3±1.1)[-12]	0	20, 200±200	k ₃₀₀ = (3.1)[-4]]	Chp. 19
က်	0.03-02+02	(1.5±0,3)[-11]	0	2240±200	k ₃₀₀ = (8.0)[-15]	

Chp. 19 + Est. Chps. 19, 20 Ref. 24-42 Ref. 24-44 Ref. 24-45 Ref. 24-46 Ref. 24-47 Sources Chp. 19 Chp. 20 Chp. 19 | Products uncertain; |k300 = (2.7)[-15| $k_{300} = (3.9)[-17]$ $k_{300} = (5.7)[-13]$ 14, 000±2000 | k 200 = (7.8)[-31] 14, 000±2000 | k300 = (2.6)(-31) Possibly b = 0.5 Notes: k≥(1)[-1]] 4000±200 ş 1200 0 0 0 0 0 (0.5)(0.5)0 $(2.5 \pm 1.0)[-10]$ (9.1±2.0)[-12] (1.5±0.5)[-10] (2.4±0.3)[-11] (7.0±0.1)[-12] (2.0±0.8);-14| (2.2±0.6)[-11] (3.1±0.8)[-11] (3.5)[-10±1] (5±2)[-11] (5±2)[-11] (2±1)[-10] XXIX. Neutral Regrangement (Cont'd.): N+NO-N2 (v= 3-6)+O N+O2(010)-NO+O O(10)+H2O-OH+OH Reaction 0(10)+03-02+02 N(20)+02-NO+0 0+N20-N0+N0 -02 + N2 0+NO2-NO+O2 O(10) + H2 - OH + H O+HO2-OH+O2 N+03-1-0+N N+02-N0+0 0+OH-H+O2 6.0. ģ ف = 12. <u>.</u> <u>..</u> Ŧ. 7 5. s, œ;

ध्य

Table 24-1. (Cont'd.)

3
P. ±
Ö
_
$\tilde{}$
-1.
24-1. (
able 24-1. (

ż	Reaction	0	þ	υ	Nates	Sources
XXIX.	XXIX. Neutral Rearrangement (Cont'd.):					
16.9.	N+NO2-N20+O	(8+1)[-12]	0	6		
ف	O Z + O Z 1	(21-)(179)	0	°	Chp. 19 gives a = (1.8±0.2)[-1]] for Ref. 24-48 gives	Ref. 24-48 gives
ن	0 + 0 + 2 ,	 - (+2)	0	0	overall reaction: N + NO ₂ - Products	branching ratia.
Ÿ	0 + Z 1	(2+1)(-15)	0	0		
17.	NO + 02 + NO - NO2 + NO2	(6.6±3,3)[-39]	0	-526	k ₃₀₀ = (3.8) -38	Ref. 24-49
<u>æ</u>	NO+03-NO2+02	(9.5±1.0)(-13)	0	1300≠100	$k_{300} = (1,3)[-14]$	Chp. 19
79. a.	19.4. NO. + O3 - NO3 + O2 b NO + O2 + O2	(9.8)[-12]	0	3500±300	Values given are for the averall reaction: $NO_2 + O_3 - Products$; $k_{300} = (8.5)[-17]$.	Ref. 24-50
20.6.	20.a. H + O ₃ - OH + O ₂ b.	(2.6±0.5)[-11]	0	0	i.	Ref. 24-51
21.	H + OH - H ₂ + O	(1.2±0.4)[-11]	o	3650	k ₃₀₀ = (6.3)[-17]	Ref. 24-37
22.0.	H + HO2 - OH + OH	(4.2)[-10,6±0,3]	0	950	$k_{300} = (1.8)[-11]$	
ۀ	-H ₂ + O ₂	(4.2)[-11.0±0.4]	0	320	k ₃₀₀ = (1.3)[-11]	Ref. 24-52
23.	H+H2O2-H2+HO2	(2.8)[-12.0±0.3]	0	1900	k ₃₀₀ = (5.0)[-151	(

Table 24-1. (Cont'd.)

	Reaction	0	þ	v	Notes	Sources
xxix.	Neutral Rearrangement (Cont'd.):					
24.	24. OH - O ₃ - HO ₂ · O ₂	(1.3±0.4)[·12]	0	950	$k_{300} = (5.5)[-14]$	2
25.	OH + OH - H2O + O	(4.9+0.8)[-11]	0	400	$k_{300} = (1.3)[-11]$	Net. 24-33
%	Он - Н2 - Н2 С + Н	(3.6±1.3)[-11]	0	2590	$k_{300} = (6.4)[-15]$	Ref. 24-37
27.	OH + HO2 - H2O + O2	ı	ı	1	k ≥ (1)[-11]	Ref. 24-54
28.	OH + H2O2 . H2O + HO2	(1.7:0.9)[-11]	0	910	k ₃₀₀ = (8,2)[-13]	
. %	но ₂ - но ₂ - н ₂ 0 ₂ - 0 ₂	(3.3±0,7)[-12]	0	0		Ket. 24-52
ଞ	CO - OH - CO2 + H	(9.3±1.3) -13	0	540±250	$k_{300} = (1.5)(-13)$	Ref. 24-55
× × ×	XXX. Radiative Electronic-State Deexcitation:					
_:	~u+ 0 - (a₁)0	(6.8±2.0)[-3]	0	0		
2.	O(15) - O - hu	(1.35±0.40)[0]	0	0	Pressure-dependent	
3. 0.	$N(^2D)_{3/2} - N + h\nu$	(1.6)[-5.0±0.3]	0	0		Chp. 20
Þ	N(2D)1/2 - N + hu	(7,1)[-6.0±0.3]	0	0		
4	N(2P) - N + hv	(7.7)[-2.0+0.3]	0	0		
5.	O2(0 10) - O2 + hu	(2.6±1.0)[-4]	0	0	Pressure-dependent	

Table 24-1. (Cont'd.)

ż	Reaction	0	9	υ	Notes	Sources
×××	XXX. Radiative Electronic-State Deexcitation (Cont'd.):	(Cont'd.):				/
9	02(12) -02+hv	(8.3)[-2.0±0.3]	•	0		
7.0.	N2(A35,)(F2) - N2 + hv	(7.7)[-1.0±0.3]	0	0		
ė	b. $N_2(A^3\Sigma_0^+)(F_1,F_3) - N_2 + h\nu$	(3.7)[-1.0±0.3]	0	0		
80	NO(0 T) - NO + hv	(6.3)[0.0±0.3]	0	0		
9.	NO2(281)-NO2+hv	(1.4±0.2)[+4]	0	0		
10.0.	10.0. 0+(2D)5/2-0+hu	(4.8)[-5.0±0.3]	0	0		Сър. 20
à	b. 0+(2D)3/2-0+hv	(1.7)[-4.0±0.3]	0	0		
11.0.	11.a. 0+(2p)3/2-0+hu	(2.4)[-1.0±0.3]	0	0		
Ģ	b. 0+(2)1/2-0+hv	(1.9)[-1.0±0.3]	0	0		
12.	12. N+(10) - N+h	(4.0)[-3.0±0.3]	0	0		_
13.	N (1s) - N + hu	(1.1)(0.0±0.3]	0	0		
XXXI.	XXXI. Electronic State Phatoexcitation:				\	
-:	1. O2 + hv - O2(0 1 A B)				Flux and wr elength	
2.	02+hv-O2(h12g)				dependent	·

Table 24-1. (Cont'd.)

ż	Reaction	0	q	υ	Notes:	Sources
XXX	XXXII. Calitional Electronic State Quenching:					
- -	1. O(10) + O(3p) + .	(1.5) (-9 ±1)	0	0		Сhр. 20
2.	$O(^{1}_{0}) + O_{2} - C + O_{2}(b^{1}_{\Sigma_{g}})$	(7±2)[-11]	0	0	,(a¹),	Refs. 24-56, 24-57
က်	O(10)+N2-0+N2	(8.0±4.0)[-11]	0	0	(see lable 20-8.	Chp. 20
4	0(10)+002-0+002	(3±1)(-12)	0	0		Ref. 24-56
5.0.	0(15)+0(39)+.	(1.8)[-9±1]	0	0		С. 20
م	•+ (a ₁)o-	(4)(-10+1)	0	٥	Ct. Figure 20-9.	Ref. 24-58
•	0+0-0+(5,)0	(1.8±0.2)[-13]	C	0		С. 20
	0(15)+02-0+02	(3±1)(-131	0	•		Refs. 24-59 through 24-61
တ်	O(151+N2-0+N2	•	•	ī	k<(1)[-17]	Ref. 24-62
٥.	0(15)+420-0+420	(01-)(2+£)	0	0		Refs. 24-63, 24-64
.00	0(,3)+co2-0+co2	(3.3±0.3)[-13]	0	0		Refs. 24-60, 24-6]
Ξ.	0+20++-0++	(1)[-7±2]	0	0		Ref. 24-65
12.	N(2D) + • - N + •	(1+01-)(5)	0	0		Chp. 20
13.	N(20) + N2 - N + N2	•	•	•	k ≤ (6)(-151	Ref. 24-60

Table 24-1. (Cont'd.)

XXXII.	Recetion	•		٠	Z To Z	SOUCES
	XXXII. Callisional Electronic-State Quenching (Cont'd.):	(Cont'd.):				
. <u></u>	14. k O2(0 1 Ag) + e - O2 + e	[1]+11-](1)	0	0	Detailed balance calculation	Kef. 24-66 + Chp. 20 (Fig. 20-8)+Est.
15. ^k	15. k O2(0 1 0) + O - O2 + O	1	ı	ı	y = (1)(-16	С. 29 С. 29
16. ^k	16. k O2(0 10g) + O2 - O2 + O2	(2.4±0.2)[-18]	0	0		(Toble 20-6)
17. ^k	17. k O2(0 1 bg) + O2(0 1 bg)	_				
	$-c_2 + c_2(b^1\Sigma_g^+)$	(2)[-18±1]	0	0		Ref. 24-67
*.	O2(010g)+N2-O2+N2	•	•	ı	k<(1.1)[-19]	Cho. 20
19. k	02(0109)+03-02+03	(3±2)[-15]	0	0		(Toble 20-6)
20.	02(612)+02-02+02	(4.5±4.0)[-16]	0	0		2.0
21.	O2(6 12)+ N2 - O2 + N2	(2.0±1.0)[-15]	0	0		Ker. 24-39
23.	N2(A3)+0-N2+0	ı	ı	ı	$k \leq (3)[-11]$	
23.	N2(A3) + N - N2 + N	(5)[-11 -0]	0	0		Chp. 20 (Toble 20-4)
24.	$N_2(A^3E) + O_2 - N_2 + O_2$	(3.8±2.0),-12	0	0		
K For a	Note: k For additional quenchants of $\dot{\mathcal{O}}_2(a^{I}\Delta_g)$, see Table 20-6.	æle 20-6.				

Table 24-1. (Cont'd.)

Š	Reaction	0	q	υ	Notes	Sources
XXXII	XXXII. Collisional Electronic - State Quenching (Cont'd.):	g (Cont'd.):				
25.	N2(N2) + NO - N2 N2	(7±4)[-11]	0	0		Chp. 20 (Table 20-4)
26.	$N_2^{+}(A^2\pi) + N_2 - N_2^{+} + N_2$	l1*6~k(1)	0	0		
27.	$N_2^{+}(B^2\Sigma) + O_2 - N_2^{+} \cdot O_2$	(2)[-9+1]	0	0		Спр. 20
28.	$N_2^+(B^2r) + N_2 - N_2^+ + N_2$	l(≎)[-](9)	0	0)
XXXII	XXXIII. Radiotive Vibrational-State Deexcitation:	ion:				
_	CO(v=1) - CO(v=0) + hv	(3.3±0.3)[+1]	0	0		
2.	CO2(001) - CO2(000) + hu	(4.00±0.20)[+21	0	0		CAP. 1
XXX	XXXIV. Callisional Vibrational-State Quenching:	ğ				
<u></u>	$O_2(v=1) + M - O_2(v=0) + M$	$ \frac{(2.5 \times 10^{-12} \text{ T exp}[-(2.95 \times 10^6/7)]^{1/3}}{(1 - e^{-2270/7})} $	$\frac{xp[-(2.95 \times 10^6)]}{-2270/7}$	\(\frac{1}{2}\)	$M = N_2 \text{ or } O_2;$ T = 800-3200 K	2
	$O_2(\sqrt{-1}) + O - O_2(\sqrt{-0}) + O$	(5.7±3.0)[-12]	(-0.5)	483	T = 300-1700 K; k ₃₀₀ = (i, 1)[-12] T = 2000-4000 K	(Tobie 20-5)
e,	N ₂ (~1) + 0 + N ₂ (~0) + 0	$ \begin{cases} 6.21 \times 10^{-14} \text{ T exp[-(1.37 \times 10^{5} \text{/T})]}^{1/3} \\ (1 - 3390 \text{/T}) \end{cases} $ $ \begin{vmatrix} 0 & & & & & & & & & & & & \\ & & & & & &$	T exp[-(1.37×10 1 -e -3390,7) or T exp[-(3.74 × 10 1 -e -3390,7)	$\left\{\frac{5\sqrt{1}}{\sqrt{1}}\right\}$	T = 3000-4500 K	Chp. 20 (Toble 20-2)

ध्य

Chp. 20 (Toble 20-2) Chr. 20 (Toble 20-2) Chp. 20 (Toble 20-5) Sources Case of resonant VV at T = 300 K. Endothermic by 39 cm⁻¹ (~0.005 eV) T = 1000-10,000 K T = 300-5000 K. T = 300-1200 K Notes 1.3×10-11 T exp[-(1.06×107/T)| 0 0 $\frac{2.5 \times 10^{-7} \exp[-(1.82 \times 10^7/T)]^{1/3}}{(1 - 3390/7)}$ (-0.5) 6.5 $N_2(-1) + N_2(-0) - N_2(-0) + N_2(-1)$ (3) -13.0+1.5 (1.7)(-11±1) (6±2)[-13] Collisional Vibrational-State Quenching (Cont'd.): XXXV. Collisional Vibrational Energy Exchange $N_2(-1) + O_2(-0) - N_2(-0) + O_2(-1)$ $O_2(\sqrt{-1}) + H_2O - O_2(\sqrt{-0}) + H_2O(010)$ N2(v=1) + N2 - N2(v=0) + N2 $-N_2(v=0) + CO_2(001)$ Reaction N2(~1) + CO2(000) XXXIV. ż ₹ 5 4 က်

Table 24-1. (Cont'd.)

REFERENCES

- 24-1. Keneshea, T.J., Air Force Cambridge Research Laboratories, Rept. AFCRL-63-711 (1963).
- 24-2. Niles, F. E., private communications (1971; 1973).
- 24-3. Michels, H., private communication (1973).
- 24-4. Walls, F., and G. Dunn, private communication (1973).
- 24-5. Hotop, H., T.A. Patterson, and W.C. Lineberger, private communication (1973).
- 24-6. Burt, J.A., J. Geophys. Res. 77, 6280 (1972).
- 24-7. Swider, W., private communication (1973).
- 24-8. Lindgren, R.G., private communication (1973).
- 24-9. Chantry P.J., private communication (1970).
- 24-10. McFarland, M., Thesis, University of Colorado and NOAA Laboratories (1973).
- 24-11. Ferguson, E.E., Accts. Chem. Research 3, 402 (1970).
- 24-12. Ferguson, E.E., private communication (1973).
- 24-13. Fehsenfeld, F.C., A.L. Schmeltekopf, and E.E. Ferguson, J. Chem. Phys. 44, 4537 (1966).
- 24-14. Puckett, L.J., and M.W. Teague, J. Chem. Phys. <u>54</u>, 2564 (1971).
- Fehsenfeld, F.C., A. I. Schmeltekopf, and E. E. Ferguson,
 J. Chem. Phys. 45, 23 (1966).
- 24-16. Moseley, J.T., R.M. Snuggs, D.W. Martin, and E.W. McDaniel, Phys. Rev. 178, 240 (1969).
- 24-17. Bohme, D.K., D.B. Dunkin, F.C. Fehsenfeld, and E.E. Ferguson, J. Chem. Phys. 51, 863 (1969).

- 24-18. Durden, D.A., P. Kebarle, and A. Good, J. Chem. Phys. 50, 805 (1969).
- 24-19. Howard, C.J., V.M. Bierbaum, H.W. Rundle, and F. Kaufman, J. Chem. Phys. <u>57</u>, 3491 (1972).
- 24-20. Yang, J.-H., and D.C. Conway, J. Chem. Phys. 40, 1729 (1964).
- 24-21. Dunkin, D.B., F.C. Fehsenfeld, A.L. Schmeltekopf, and E.E. Ferguson, J. Chem. Phys. 54, 3817 (1971).
- 24-22. Fehsenfeld, F.C., M. Mosesman, and E.E. Ferguson, J. Chem. Phys. 55, 2115 (1971).
- 24-23. Good, A., D. A. Durden, and P. Kebarle, J. Chem. Phys. 52, 212 (1970).
- 24-24. Kebarle, P., S.K. Searles, A. Zolla, J. Scarborough, and M. Arshadi, J. Am. Chem. Soc. 89, 6393 (1967).
- 24-25. Good, A., D.A. Durden, and P. Kebarle, J. Chem. Phys. 52, 222 (1970).
- 24-26. Phelps, A. V., private communication (1973).

.(

- 24-27. Pack, J. L., and A. V. Phelps, Bull. Am. Phys. Soc. <u>16</u>, 214 (1971).
- 24-28. Payzant, J.D., and P. Kebarle, J. Chem. Phys. <u>56</u>, 3482 (1972).
- 24-29. Parkes, D.A., Trans. Far. Soc. 67, 711 (1971).
- 24-30. McKnight, L.G., and J.M. Sawina, Phys. Rev. <u>A4</u>, 1043 (1971).
- 24-31. McNeal, R.J., and S.C. Durana, J. Chem. Phys. <u>51</u>, 2955 (1969).
- 24-32. Young, R.A., and G. Black, J. Chem. Phys. 44, 3741 (1966).

- 24-33. Sharma, R.D., and K.L. Wray, J. Chem. Phys. <u>54</u>, 4578 (1971).
- 24-34. Gross, R.W.F., and N. Cohen, J. Chem. Phys. 48, 2582 (1968).
- 24-35. Gross, R.W.F., J. Chem. Phys. 48, 1302 (1968).
- 24-36. Ham, D.O., D.W. Trainor, and F. Kaufman, J. Chem. Phys. 53, 4395 (1970).
- 24-37. Baulch, D. L., D. D. Drysdale, and A. C. Lloyd, Leeds
 University High Temperature Reaction Rate Data Series,
 No. 2 (1968).
- 24-38. Slanger, T.G., and G. Black, J. Chem. Phys. <u>53</u>, 3722 (1970).
- 24-39. Appleton, J.P., M. Steinberg, and D.J. Liquornik, J. Chem. Phys. 48, 599 (1968).
- 24-40. Wray, K.L., and J.D. Teare, J. Chem. Phys. <u>36</u>, 2582 (1962).
- 24-41. Findlay, F.D., and D.R. Snelling, J. Chem. Phys. <u>54</u>, 2750 (1971).
- 24-42. Gilpin, R., H.I. Schiff, and K.H. Welge, J. Chem. Phys. 55, 1087 (1971).
- 24-43. Johnston, H.S., National Bureau of Standards, Rept. NSRDS-NBS-20 (1968).
- 24-44. Donovan, R.J., D. Husain, and L.J. Kirsch, Chem. Phys. Letts. 6, 488 (1970).
- 24-45. Scott, P.M., and R.J. Cvetanovic, J. Chem. Phys. <u>54</u>, 1440 (1971).
- 24-46. Wayne, R.P., Annals N.Y. Acad. Sci. 171, 199 (1970).
- 24-47. Phillips, L.F., and H.I. Schiff, J. Chem. Phys. <u>36</u>, 1509 (1962).

- 24-48. Phillips, L.F., and H.I. Schiff, J. Chem. Phys. <u>42</u>, 3171 (1965).
- 24-49. Greig, J.D., and P.G. Hall, Trans. Far. Soc. <u>63</u>, 655 (1967).
- 24-50. Johnston, H.S., and D.M. Yost, J. Chem. Phys. <u>17</u>, 286 (1949).
- 24-51. Phillips, L.F., and H.I. Schiff, J. Chem. Phys. <u>37</u>, 1233 (1962).
- 24-52. Baulch, D. L., D. D. Drysdale, D. G. Horne, and A. C. Lloyd, Evaluated Kinetic Data for High Temperature

 Reactions, Vol. 1: Homogeneous Gas Phase Reactions of the H₂-O₂ System, Butterworths, London (1972).
- 24-53. Kaufman, F., private communications (1971; 1973).
- 24-54. Kaufman, F., Ann. Geophys. 20, 77 (1964).

1

(

- 24-55. Baulch, D. L., D. D. Drysdale, and A. C. Lloyd, Leeds University High Temperature Reaction Rate Data Series, No. 1 (1968).
- 24-56. Noxon, J., J. Chem. Phys. 52, 1852 (1970).
- 24-57. Clark, I.D., Chem. Phys. Letts. 5, 317 (1970).
- 24-58. Seaton, M.J., in <u>The Airglow and the Aurora</u>, E. Armstrong and A. Dalgarno, Eds., Pergamon Press, London (1956); p. 289.
- 24-59. Zipf, E.C., Jr., Can. J. Chem. 47, 1863 (1969).
- 24-60. Black, G., T.G. Slanger, G. St. John, and R.A. Young, J. Chem. Phys. 51, 116 (1969).
- 24-61. Filseth, S. V., F. Stuhl, and K. H. Welge, J. Chem. Phys. 52, 239 (1970).
- 24-62. Young, R.A., and G. Black, J. Chem. Phys. 44, 3741 (1966).

- 24-63. Stuhl, F., and K.H. Welge, Can. J. Chem. <u>47</u>, 1879 (1969).
- 24-64. Young, R.A., G. Black, and T.G. Slanger, J. Chem. Phys. 50, 309 (1969).
- 24-65. Dalgarno, A., private communication (1966).
- 24-66. Kummler, R.H., and M.H. Bortner, General Electric Company, Rept. TIS R67SD20 (1967).
- 24-67. Arnold, S.J., and E.A. Ogryzlo, Can. J. Phys. <u>45</u>, 2053 (1967).