Einführung in die lineare und kombinatorische Optimierung Serie 4

Maurice Althoff (FU 4745454) Michael R. Jung (HU 502133) Felix Völker (TU 331834)

13. November 2014

1 Aufgabe 15

Sei D=(V,A) ein Digraph mit $n\geq 2$ Knoten.

Zu zeigen: $(1) \Rightarrow (2)$

Wir nehmen an, dass D eine Arboreszenz ist(A1) und zerlegen die Aussage in zwei Teilbeweise.

Zu zeigen(Z1): D hat n-1 Bögen.

Wir beweisen die Aussage per Widerspruch und nehmen an, dass D keine n-1 Bögen besitzt(A2). Somit gibt es zwei Fälle:

Fall 1: |A| < n - 1

Da D genau n Knoten besitzt und es nur maximal n-2 Bögen geben kann, ex. ein Knoten $u \in V$, der auf keinem Weg w mit maximaler Länge enthalten ist. Dies gilt, da ein Weg über alle Knoten mindestens n-1 Kanten hätte. Daraus folgt, dass $\{uv,vu\} \cap A = \emptyset$ für alle $v \in V/\{u\}$ und somit kann D kein zusammenhängender Graph bzw. ein Baum, sowie keine Arboreszenz sein. Widerspruch!

Fall 2: |A| > n - 1

Da D genau n Knoten besitzt und es mindestens n Bögen gibt. Nehmen wir an, dass aus allen Knoten eine Kante ausgehen, dann für einen beliebigen Knoten $v \in V$ gelten, dass n Zu zeigen(Z2): D ist quasi-stark zusammenhängend.

Zu zeigen: $(2) \Rightarrow (3)$

Da D quasi-stark zusammenhängend ist, folgt dass für jedes Paar aus Knoten $u,v\in V$ ein Knoten w ex. , so dass es von w einen gerichteten Weg zu u und einen gerichteten Weg zu v gibt. Setzen wir nun r=w, so enthält D einen Knoten r, so dass es einen gerichteten (r,u)-Weg und einen gerichteten (r,v)-Weg in D gibt. Da u,v ein beliebes Paar aus Knoten ist, folgt dass es für jeden Knoten v' ein gerichteter (r,v')- Weg existiert.

Zu zeigen: $(3) \Rightarrow (4)$

Annahme(A1): Denthält einen Knoten r, so dass es in D für jeden anderen Knoten v genau

ein gerichteten (r, v)-Weg gibt.

Zu zeigen(Z1): D ist quasi-stark zusammenhängend.

Da A1 gilt, gibt es auch für ein beliebiges Paar von Knoten $u, v \in V$ einen gerichteten (r, u)-Weg und einen gerichteten (r, v)-Weg. Somit ist D nach Definition quasi-zusammenhängend. Zu zeigen(Z2): D besitzt einen Knoten r mit $\delta^-(r) = 0$ und erfüllt $\delta^-(v) = 1$ für alle $v \in V$ $\{r\}$.

Da A1 gilt, muss r der Knoten, der zu allen anderen Knoten $v \in V$ einen gerichteten (r,v)-Weg besitzt, mit $\delta^-(r)=0$ sein. Hätte r nämlich einen Innengrad größer 0, so gäbe es folgendermaßen einen Kreis in D(denn es ex. ein gerichteter Weg von r zu allen anderen Knoten v). Da deswegen auch mehr als ein gerichteten Weg von r zu den anderen Knoten v existieren kann, indem man mehrmals über den Knoten r läuft, entsteht ein Widerspruch zur Annahme A1. Zusätzlich müssen alle anderen Knoten $v \in V$

- $\{r\}$ den Innengrad 1 besitzen, da es nur genau einen gerichteten (r,v)-Weg gibt. Hätte ein Knoten $v'\in V$
- $\{r\}$ einen Innengrad von 0, so gäbe es keinen gerichteten (r, v')-Weg. Hätte v' einen Innengrad größer 1, sochieden gäbe es zwei vers Zu zeigen: $(4) \Rightarrow (5)$ Zu zeigen: $(5) \Rightarrow (1)$

Da D genau n Knoten besitzt und damit n-1 viele Knoten enthält, die einen Innengrad von 1 besitzen, muss D genau n-1 Kanten besitzen. Hätte D mehr Kanten, so würde $deg^-(r)>0$ oder $deg^-(v)>1$ für einen Knoten $v\in V$

- $\{r\}$. Hätte D weniger Kanten als n-1 Kanten, so würde $deg^-(v)=0$ für einen Knoten $v\in V$ $\{r\}$ gelten. Da D kreisfrei ist muss es somit einen Weg der Länge n-1 geben, der über alle Knoten
- $v' \in V$ läuft(da sonst ein Knoten doppelt im Weg vorkommen und D somit einen Kreis enthalten würde). Daraus folgt, dass D zusammenhängend sein muss. Aus dieser Folgerung, der Annahme, dass D kreisfrei ist und für alle Knoten $v' \in V$ $deg^-(v') \le 1$ gilt, folgt per Definition, dass D eine Arboreszenz ist.

2 Aufgabe 16

Eingabe: ein Graph $G=(V,E), c\in E$ mit Kantengewichten $c(W) \forall e\in E$ Ausgabe: Wald $W\subseteq E$ mit max Gewicht c(W)

- 1. (Sortieren): Ist k die Anzahl der Kanten von G mit positivem Gewicht, so numeriere diese k Kanten, so dass gilt $c(e_1) \ge c(e_2) \ge \ldots \ge c(e_k) > 0$.
- 2. Setze $W := \emptyset$.
- 3. FOR i=1 TO k DO: Falls $W\cup\{e_i\}$ keinen Kreis enthält, setze $W:=W\cup\{e_i\}$
- 4. Gib W aus.

Induktionsannahme:

 W_{i-1} ist ein maximaler Wald, der die ersten i-1 vom Greedy-Max Algorithmus bestimmte Kanten $e_1, ..., e_{i-1}$ enthält.

Induktionsschritt: $i - 1 \rightarrow i$:

Zu seigen, es gibt einen maximalen Wald W_i , der die vom Algorithmus ausgewählten Kanten $e_i \forall j \geq i$ enthält.

Der Algorithmus wählt die im i-ten Schritt die Kante e_i aus, für diese Kante muss gelten: $c(e_1) \ge c(e_K) \forall \notin W_{i-1}$, so dass $W_{i-1} \cup \{e_K\}$ keinen Kreis enthält.

Da W_{i-1} einen Wald ist, insbesondere $\forall e_K \in W_{i-1} \setminus \{e_1, ..., e_{i-1}\}$, d.h. für alle Kanten in W_{i-1} , die der Greedy Algorithmus noch nicht gewählt hat.

Füge nun diese Kante e_i zu W_{i-1} hinzu. Dann entsteht in W_{i-1} ein Kreis, da W_{i-1} bereits ein maximaler Wald war und durch hinzufügen einer Kante genau ein Kreis entsteht.

Entfernte aus diesem Kreis die Kante K, wobei $k \neq e_j \forall j \geq i$ ist. Diese Kante existiert in W_{i-1} , da der Greedy Max-Algorithmus sonst einen Kreis fabriziert hätte.

D.h. $W_i := (W_{i-1} \setminus \{k\}) \cup \{e_i\}$ ist ein Wald, der $e_j \forall j \geq i$ enthält und ausserdem maximal ist, da $c(e_i) \geq c(k)$.