Кафедра №

ОТЧЁТ ПО ПРАКТИКЕ ЗАЩИЩЁН С ОЦЕНКОЙ РУКОВОДИТЕЛЬ

должность, уч		подпись, дата	инициалы, фамилия	
		ОТЧЁТ ПО	ПРАКТИКЕ	Ξ
вид практики	Учебная			
тип практики	Ознакомите	пьная		
на тему индивиду	уального задан	ия Реализа	щия численнь	их методов в среде MATLAB
выполнен	фамилия,	имя, отчество обуч	ающегося в творит	гельном падеже
по направлению	подготовки	09.03.04	Γ	Ірограммная инженерия
	•	код	Dana 6 a mus	наименование направления
направленности		01	систем	а программно-информационных
	•	код		наименование направленности
Обучающийся гр	уппы №	ер подп	ись, дата	инициалы, фамилия

Содержание:

1.1. Раздел 1. Математическая постановка задачи	3
1.2. Суть метода численной реализации задания	4
1.3.Описание ручного счета тестового примера и аналитический метод отделения корней Error! Bookmark not defi	ned.
1.4. Разработка алгоритмов решения задачи.	6
1.5 Листинг программы	8
1.6. Результат работы программы.	9
1.7. Результат реализации метода с помощью встроенных функций	9
1.8. Заключение.	9
2.1. Раздел 2. Математическая постановка задачи	10
2.2. Описание метода численной реализации задания	10
2.3. Описание ручного счета тестового примера предложенным методом.	10
2.4. Разработка алгоритмов решения задачи.	13
2.5. Листинг программы	14
2.6. Результат работы программы.	15
2.7. Результат реализации метода с помощью встроенных функций	15
2.8. Заключение.	16
3.1. Раздел 3. Математическая постановка задачи	16
3.2. Описание метода численной реализации задания	16
3.3. Описание ручного счета тестового примера предложенным методом.	16
3.4. Разработка алгоритмов решения задачи.	19
3.5. Листинг программы	21
3.6. Результат работы программы	22
3.7. Результат реализации метода с помощью встроенных функций	22
3.8.Заключение	22
Список использованной литературы:	23

1.1 Раздел 1. Постановка задачи.

Требуется решить уравнение $at^3 + bt^2 + ct - d = 0$ методом простых итераций. Для отделения корней использовать аналитический метод.

№ варианта	a	b	c	d
17	6	1	1	1.8

Согласно варианту a = 6, b = 1, c = 1, d = 1,8.

$$6 * t3 + t2 + t - 1.8 = 0$$

Постановка задачи:

Пусть функция y=f(x) непрерывна на промежутке [a; b]. Требуется найти корни, такие, что f(x)=0. Для решения этой задачи требуется использовать метод простых итераций, при котором

График:

входными данными будут являться:

а, b, c, d – коэффициенты

А, В – начало и конец отрезка

 ε - точность вычислений;

Выходные данные:

х – корень уравнения

1.2Суть метода численной реализации:

Метод простых итераций заключается в том, что функцию преобразуют к виду: $\mathbf{x} = \phi(\mathbf{x})$. Задается интервал, в котором и будут производиться расчеты и начальное приближение. Процесс строится по схеме $\mathbf{x}_n = \mathbf{f}(\mathbf{x}_{n-1})$. Вычисления оканчивается, как только выполнится условие: $|x_n - x_{n-1}| \le \varepsilon$, то есть, как только будет достигнута заданная точность. [1]

<u>1.3Описание ручного счета тестового примера и аналитический</u> метод отделения корней:

Найдем корни уравнения: 6 * t3 + t2 + t - 1.8 = 0. Для этого выполним следующие шаги:

$$\frac{dF}{dt} = 18 * t^2 + 2 * t + 1$$

$$18 * t^2 + 2 * t + 1 = 0$$

$$D_1 = 2^2 - 4 * 18 * 1; -68 < 0.$$

График функции:

Тогда функция возрастает на всей области определения, значит, уравнение имеет лишь один корень. Если t=0, тогда f(0)=-1.8<0.; если t=1, тогда f(1)=4.2>0.

Возьмем промежуток [0;1]. Первым элементом последовательности в промежутке [a; b] будет являться середина промежутка, то есть $t_0 = \frac{a+b}{2}$. Следующие элементы будут считаться по формуле $t_n = t_{n-1} - c * f(t_{n-1})$, где $c = \frac{1}{\min(f'(t)) + \max(f'(t))}$.

Итак, пусть $\varepsilon = 0.01$, промежуток [0;1], тогда:

$$t_0 = \frac{0+1}{2} = 0.5;$$

$$t1 = 0.5 - \frac{1}{11} * (6 * 0.5^3 + 0.5^2 + 0.5 - 1.8) = 0.527$$

 $|0.5 - 0.527| \le 0.01$; Получим, $0.027 \le 0.01$ - неверно. Повторяем вычисления:

$$t2 = 0.527 - \frac{6*0.527^3 + 0.527^2 + 0.527 - 1.8}{11} = 0.538.$$

 $|0.527 - 0.538| \le 0.01$ Получим, $0.011 \le 0.01$ - неверно. Повторяем вычисления:

$$t3 = 0.538 - \frac{6*0.538^3 + 0.538^2 + 0.538 - 1.8}{11} = 0.542.$$

 $|0.538 - 0.542| \le 0.01$ верно. Приближенный корень: t = 0.542.

1.4. Разработка алгоритмов решения задачи.

1.5. Листинг программы.

```
Untitled.m:
      clc; clear;
      e = read num("Введите погрешность(0.001): ");
      disp("Введите коэффициенты a, b, c, d")
      a = read_num("a(6):");
      b = read_num("b(1): ");
      c = read_num("c(1):");
      d = read_num("d(1.8):");
      disp("Введите начало и конец отрезка")
      A = read num("Начало отрезка(0): ");
      B = read num("Конец отрезка(1): ");
      x=iter(A,B,a,b,c,d,e);%высчитывание методом простых итераций
      fprintf("Метод простых итераций: %f\n",(x))
      fprintf("Встроенная функция Matlab: %f\n",(fzero(strcat(string(a), '*x.^3+', string(b), '*x^2+', string(c), '*x-
', string(d)),A)))
      iter.m:
      function [x] = iter(A,B,a,b,c,d,e)
      x0 = (A+B)/2;
      C = 1/(11);
      x = x0-C*(a*x0^3+b*x0^2+c*x0-d);
      while abs(x-x0) >= e\%если текущие минус предыдущее больше чем погрешность, то...
        х0 = х;%предыдущему присваивается текущее
        x = x0-C*(a*x0^3+b*x0^2+c*x0-d);%расчет нового текущего значения
      end
```

```
read_num.m:
function [out] = read_num(text)
out = input (text,'s');
while( isnan(str2double(out)))
disp ('Вы ввели не число');
out = input('Введите число:','s');
end
out = str2double(out);
end
```

1.6. Результат работы программы.

```
Введите погрешность (0.001): 0.001
Введите коэффициенты а, b, c, d
a(6): 6
b(1): 1
c(1): 1
d(1.8): 1.8
Введите начало и конец отрезка
Начало отрезка(0): 0
Конец отрезка(1): 1
Метод простых итераций: 0.543011
```

1.7. Результат реализации метода с помощью встроенных функций.

```
Введите погрешность (0.001): 0.001
Введите коэффициенты а, b, c, d
a(6): 6
b(1): 1
c(1): 1
d(1.8): 1.8
Введите начало и конец отрезка
Начало отрезка(0): 0
Конец отрезка(1): 1
Метод простых итераций: 0.543011
Встроенная функция Matlab: 0.543207
```

1.8.Заключение.

В данной задаче важно корректно указать погрешность и границы отрезка. Разница между результатами методом итераций и встроенной функцией Matlab напрямую зависит от введённой погрешности и границ.

2.1. Раздел 2. Математическая постановка задачи.

Для заданной таблично функции уn = f (xn) и найти значения функции в точках: x = 1.25 и x = 3.55 с помощью интерполяционного многочлена Ньютона.

№ вар.	x_n	1,2	1,5	1,7	2,0	2,4	2,6	3,1	3,3	3,5	3,9
17	$f(x_n)$	8,278	8,547	8,811	9,087	9,354	9,625	9,897	10,166	10,436	10,707

2.2. Описание метода численной реализации задания.

Условия, которые накладываются на исходные данные: Значение X должно быть на промежутке от 1.2 до 3.9.

Входные данные:

1)Значения узлов Xn и F(Xn);

2)Значения узла X0, в котором нужно найти значение F(X0) .

Выходные данные:

Приближённое значение функции в X0

[2]

2.3. Описание метода численной реализации задания

Пример решения: Нам даны следующие значения узлов Х и Ү:

X	1.2	1.5	1.7	2.0	2.4	2.6	3.1	3.3	3.5	3.9
Y	8.278	8.547	8.815	9.087	9.354	9.625	9.897	10.166	10.436	10.707

Нам нужно найти значение Y в точке x = 1.25

В общем виде интерполяционный многочлен Ньютона записывается в следующем виде:

$$Pn(x) = f(x0) + \sum_{k=1}^{n} \left(f(x0; ...; xk) \times \prod_{i=0}^{k-1} (x - xi) \right)$$

$$(x+a)^n = \sum_{k=0}^n \binom{n}{k} x^k a^{n-k}$$

где n - степень полинома, $f(x_0,\dots,x_k)$ - разделенная разность k-го порядка, вычисляемая как:

$$f(xi; xi + 1; ...; xi + k) = \frac{f(xi + 1; xi + 2 ...; xi + k) - f(xi; xi + 1; ...; xi + k - 1)}{xi + k - xi}$$

Пример:

$$f(x0; x1) = \frac{f(x1) - f(x0)}{x1 - x0}$$

$$F(x0; x1) = \frac{269}{300}x + \frac{3601}{500}$$

F(x0;x1) = 8.32

$$f(x0; x1; x2) = \frac{f(x1; x2) - f(x0; x1)}{x2 - x0} = \frac{\frac{f(x2) - f(x1)}{x2 - x1} - \frac{f(x1) - f(x0)}{x1 - x0}}{x2 - x0}$$
$$F(x0; x1; x2) = \frac{133}{150}x^2 - \frac{1123}{750}x + \frac{4399}{500}$$

F(x0;x1;x2) = 8.31

$$F(x0; x1x2; x3) = -\frac{263}{120}x^3 - \frac{1053}{100}x^2 - \frac{7441}{480}x + \frac{31009}{2000}$$

F(x0;x1;x2;x3) = 8.30

Разделенную разность k-го порядка также можно выразить через значения функции в точках с помощью такой формулы:

$$f(x0; x1; ...; xk) = \sum_{i=0}^{k} \left(\frac{f(xi)}{\prod_{j=0, j \neq i}^{k} (xi - xj)} \right)$$

Подставим в эту формулу табличные значения. Интерполяционный многочлен Ньютона имеет вид:

$$\frac{78756131875}{35715856176}x^9 - \frac{1181289078625}{23810570784}x^8 + \frac{17417331949775}{35715856176}X^7 - \frac{301824029665}{10989494208}X^6 \\ + \frac{185906926036533}{190484566272}X^5 - \frac{129581920074296623}{5714536988160}X^4 \\ + \frac{29807341316079641}{865838937600}X^3 - \frac{65308074785162089}{1984214232000}X^2 \\ + \frac{23778782529449341}{1322809488000}X - \frac{52174757989}{12236000}$$

При подстановке x = 1.25 получим Y = 8.50, что и является ответом.

2.4. Разработка алгоритмов решения задачи.

2.5. Листинг программы.

```
Untitled.m:
clear all
clc
x = 0;
while( x < 1.2 \parallel x > 3.9)
x = read\_num();% функция, котороя проверяет корректность введенного числа
end
disp('Рассчёт функцией Ньютона: ')
newNewton(x);%функция, которая рассчитывает значение Y по Ньютону
disp('Встроенная функция Matlab: ')
build_in(x);%функция, которая рассчитывает значение Y по встроенной функции Матлаба
read_num.m:
function [out] = read_num()
out = input ('Введите число x, которое находится от 1.2 до 3.9: ', 's');
while( isnan(str2double(out)))
disp ('Вы ввели не число, нужно ввести число от 1.2 до 3.9');
out = input('Введите число от 1.2 до 3.9:','s');
end
 out = str2double(out);
end
```

```
newNewton.m:
function out = newNewton(fx)
x = [1.2 \ 1.5 \ 1.7 \ 2.0 \ 2.4 \ 2.6 \ 3.1 \ 3.3 \ 3.5 \ 3.9];
y = [8.278 \ 8.547 \ 8.815 \ 9.087 \ 9.354 \ 9.625 \ 9.897 \ 10.166 \ 10.436 \ 10.707];
n = length(x)-1;% длина вектора x
sum = 0;%для суммы
for i = 1 : n+1
rr = 1;%для умножения
  for j = 1 : n+1
  if i \sim = i
  rr = rr*(fx-x(j))/(x(i)-x(j));%вычисление полиномиального коэффициента
  end
  end
sum = sum + y(i) * rr;% получение уравнения
out = sum;
disp(out)
build_in.m:
function [] = build_in(fx)
  x = [1.2 \ 1.5 \ 1.7 \ 2.0 \ 2.4 \ 2.6 \ 3.1 \ 3.3 \ 3.5 \ 3.9];
  y = [8.278 \ 8.547 \ 8.815 \ 9.087 \ 9.354 \ 9.625 \ 9.897 \ 10.166 \ 10.436 \ 10.707];
  warning('off','all');
  Yx = polyfit(x,y,10);
  %вычисление полиномиального коэффициента
  out = polyval(Yx, fx);
  %высчитывает значение Y из полученного уравнения
  disp(out)
end
```

2.6. Результат работы программы.

```
Введите число x, которое находится от 1.2 до 3.9: 1.25
Рассчёт функцией Ньютона:
8.5024
```

2.7. Результат реализации метода с помощью встроенных функций.

```
Введите число x, которое находится от 1.2 до 3.9: 1.25
Рассчёт функцией Ньютона:
8.5024
Встроенная функция Matlab:
8.4028
```

2.8.Заключение.

В данной задаче для нахождения значения функции нужно учитывать условия для интерполирования, результат работы программы совпадет со значением встроенной функции в пределах погрешности.

3.1. Раздел 3. Математическая постановка задачи.

Найдите приближенное значение интеграла Лапласа:

$$\Phi 0(c) = \int_0^c e^{\frac{x^2}{2}dx}$$

с точностью $\varepsilon = 0,001$ методом Симпсона.

3.2. Описание метода реализации задания.

Рассмотрим определенный интеграл $1 = \int_a^b f(x) dx$ функция, непрерывная на отрезке [a;b]. Проведём разбиение отрезка [a;b] на **чётное** количество **равных** отрезков. Чётное количество отрезков обозначают через 2n. [3]

3.3. Описание ручного счета тестового примера предложенным методом.

На практике отрезков может быть:

два: 2n = 2

четыре: 2n = 4

восемь: 2n = 8

десять: 2n = 10

Разбиение имеет следующий вид:

$$[a = x_0; x_1], [x_1; x_2], [x_2; x_3], ..., [x_{2n-2}; x_{2n} = b]$$

Точки x_0 ; x_1 ; x_2 ; x_3 ; x_{2n-2} ; x_{2n} называют **узлами**.

Формула Симпсона для приближенного вычисления определенного интеграла имеет следующий вид:

$$\int_{a}^{b} f(x)dx \approx \frac{h}{3} [f(x0) + f(x2n) + 2(f(x2) + f(x4) + \dots + f(x2n - 2)) + 4(f(x1) + f(x3) + \dots + f(x2n - 1))]$$

, где:

 $h=rac{({
m b-a})}{2{
m n}}$ длина каждого из маленьких отрезков или **шаг**; f(xi) – значения подынтегральной функции в точках ${
m x_0}; {
m x_1}; {
m x_2}; {
m x_3}; {
m x_{2n-2}}; {
m x_{2n}}$.

Формула подробнее:

f(x0) + f(x2n)— сумма первого и последнего значения подынтегральной функции;

 $2(f(x^2) + f(x^4) + \dots + f(x^2n - 2) -$ сумма членов с *чётными* индексами умножается на 2;

 $4(f(x1) + f(x3) + \cdots + f(x2n-1)$ — сумма членов с *нечётными* индексами умножается на 4.

Пример:

$$\Phi 0(c) = \int_0^c e^{\frac{x^2}{2}dx}$$
c= 0.042

$$2n = 2$$

$$h = \frac{0,042 - 0}{2} = 0,021$$

i	0	1	2
\mathbf{x}_{i}	0	0.021	0.042

f(v)	1	0.006479	0.005007
$f(x_i)$	1	0.996478	0.985987

$$\frac{0,021}{3}[1 + 0.985987 + 4 \cdot 0.996478] = 0.08360659$$

$$2n = 4$$

$$h = \frac{0.042 - 0}{4} = 0.0105$$

i	0	1	2	3	4
X _i	0	0.0105	0.021	0.0315	0.042
f(x _i)	1	0.999118	0.996478	0.992093	0.985987

$$\frac{0.0105}{3}[1 + 0.985987 + 2 \cdot 0.996478 + 4 \cdot (0.999118 \cdot 0.992093)] = 0.028$$

Погрешность:

$$\frac{[0.042 - 0.028] * 1}{15} = 0.0009$$

Основная идея (для метода Рунге) состоит в вычислении приближения выбранным методом с шагом h, а затем с шагом h/2, и дальнейшем рассмотрении разностей погрешностей для этих двух вычислений.

k=4 для составной формулы Симпсона

$$I - I_{\frac{h}{2}} \approx \frac{\frac{|I_h - I_h|}{2}}{2^k - 1}$$

Если неравенство для соответствующего метода не выполняется, то найденное значение интеграла не удовлетворяет заданной точности.

Тогда проводят новые вычисления с шагом h/2 и вновь проверяют выполнение неравенства. Этот прием многократного уменьшения шага применяют до тех пор, пока соответствующее неравенство не станет истинным. [4]

Расписать алгоритм, что если точность не уд

3.4. Разработка алгоритмов решения задачи.

3.5. Листинг программы.

```
integ.m:
function [integ1] = integ(e1,n,a,b)
F=@(x)exp(1)^{(-(x^2)/2)};
integ1=0;
e=1;
s=0;
while(e>e1)
  dx=(b-a)/(n);%высчитывание шага
  x=a:dx:b;%определение вектора х исходя из шага
  for i=2:n
    if i-2*ceil(i/2)==0%ceil-округление до ближайшего целого числа к большему
    k=4;%если число оказалось четным, то k=4
    else
    k=2;%если число оказалось не четным, то k=2
    end
  s=s+k*F(x(1,i));
  end
  s=(dx/3)*(s+F(x(1,1))+F(x(1,n-1)));
  e=abs(integ1 - s);
  integ1=s;
  disp("Количество шагов= ")
  n=n+2;
  s=0;
end
read_num.m:
function [out] = read_num(text)
out = input (text, 's');
  while( isnan(str2double(out)))
  disp ('Вы ввели не число, нужно ввести число');
  out = input('Введите число:','s');
  end
out = str2double(out);
end
Untitled.m:
clc:
clear;
а=0;%нижняя граница интегрирования
b=read_num('Введите верхнюю границу интегрирования(0.042):\n');
n=read_num('Введите количество равных отрезков(например 2):\n');
e1=read_num('Введите точность(0.001):\n');
i=0;
integ2=2;
integ1=1;
Matlab=quad('exp(1).^(x.^2./2)',a,b,e1);
while(abs(Matlab-integ1)>e1)
```

```
if(i>0)
    n=n*2;
  end
i=i+1;
n1=n*2;
disp("Подсчет интеграла с шагом n ")
integ1=integ(e1,n,a,b);%рассчет интеграла с шагом п
disp("Подсчет интеграла с шагом 2*n ")
integ2=integ(e1,n1,a,b);%рассчет интеграла с шагом 2n
end
disp('Встроенная функция Matlab: ')
disp(Matlab)%функция матлаба
disp('Функция Симпсона: ')
disp(integ1)%вывод результата с шагом n
disp('Погрешность равна:')
disp(abs(integ2-integ1)*1/15)%рунге
```

3.6. Результат работы программы.

```
Введите верхнюю границу интегрирования(0.042):
0.042
Введите количество равных отрезков(например 2):
2
Введите точность(0.001):
0.001

Функция Симпсона:
0.0420
```

3.7. Результат реализации метода с помощью встроенных функций.

```
Введите верхнюю границу интегрирования (0.042):
0.042
Введите количество равных отрезков (например 2):
2
Введите точность (0.001):
0.001
Встроенная функция Matlab:
0.0420
функция Симпсона:
0.0420
Погрешность равна:
7.8092e-08
```

3.8.Заключение.

В данной задаче погрешность подсчета зависит от точности, заданной пользователем, чем больше точность, тем меньше погрешность.

Список использованной литературы:

- 1. https://studme.org/199277/informatika/metod_prostyh_iteratsiy
- 2. https://matica.org.ua/metodichki-i-knigi-po-matematike/spravochnik-a-a-gusak-v-m-gusak/31-3-interpoliatcionnyi-mnogochlen-niutona
- 3. mathprofi.ru/formula_simpsona_metod_trapecij.html
- 4. https://matica.org.ua/metodichki-i-knigi-po-matematike/kurs-vyssheimatematiki-3/06-metod-runge-kutta