

(51) Internationale Patentklassifikation 6 : C07C 255/23, 255/30, 255/41, C09K 15/16		A2	(11) Internationale Veröffentlichungsnummer: WO 96/15102 (43) Internationales Veröffentlichungsdatum: 23. Mai 1996 (23.05.96)
(21) Internationales Aktenzeichen: PCT/EP95/04312 (22) Internationales Anmeldedatum: 3. November 1995 (03.11.95)		(81) Bestimmungsstaaten: AU, BG, BR, BY, CA, CN, CZ, FI, HU, JP, KR, KZ, MX, NO, NZ, PL, RU, SG, SK, UA, US, europäisches Patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).	
(30) Prioritätsdaten: P 44 40 055.1 10. November 1994 (10.11.94) DE 195 19 895.6 31. Mai 1995 (31.05.95) DE		Veröffentlicht <i>Ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts.</i>	
(71) Anmelder (<i>für alle Bestimmungsstaaten ausser US</i>): BASF AKTIENGESELLSCHAFT [DE/DE]; D-67056 Ludwigshafen (DE).			
(72) Erfinder; und			
(75) Erfinder/Anmelder (<i>nur für US</i>): HOLDERBAUM, Martin [DE/DE]; Maudacher Strasse 366, D-67065 Ludwigshafen (DE). AUMÜLLER, Alexander [DE/DE]; Rieslingweg 25, D-67435 Neustadt (DE). TRAUTH, Hubert [DE/DE]; Milanstrasse 6, D-67373 Dudenhofen (DE). VOIT, Guido [DE/DE]; Zentgrafenstrasse 41, D-69198 Schriesheim (DE). SPERLING, Karin [DE/DE]; Im Kirchenstück 12, D-67433 Neustadt (DE). KRAUSE, Alfred [DE/DE]; Im Sankt-Klara-Klosterweg 2d, D-67346 Speyer (DE).			
(74) Gemeinsamer Vertreter: BASF AKTIENGESELLSCHAFT; D-67056 Ludwigshafen (DE).			
(54) Titel: 2-CYANOACRYLIC ACID ESTERS			
(54) Bezeichnung: 2-CYANACRYLSÄUREESTER			
(57) Abstract			
<p>Described are 2-cyanoacrylic acid esters (I) in which the groups are defined as follows: R¹ and R² are hydrogen or a group with an isocyclic or heterocyclic ring system having at least one iso-aromatic or hetero-aromatic nucleus, whereby one of the groups R¹ and R² must be different from hydrogen, n is from 2 to 10, X in the case when n = 2 is a group of the formula (II) in which m is from 2 to 8, X in the case when n > 2 is an n-hydric aliphatic or cycloaliphatic polyol group with 3 to 20 C-atoms, whereby the cycloaliphatic polyol group may include 1 to 2 hetero-atoms and the aliphatic polyol group may include up to 8 non-adjacent oxygen atoms, sulphur atoms, imino groups or C₁-C₄ alkylimino groups in the carbon chain. Compounds of the formula (I) are suitable for use as light-protection agents.</p>			
(57) Zusammenfassung			
<p>Neue 2-Cyanacrylsäureester (I), wobei die Reste folgende Bedeutung haben: R¹ und R² Wasserstoff oder ein Rest mit einem iso- oder heterocyclischen Ringsystem mit mindestens einem iso- oder heteroaromatischen Kern, wobei einer der Reste R¹ oder R² von Wasserstoff verschieden sein muß, n = 2 bis 10, X für n = 2 ein Rest der Formel (II), wobei m = 2 bis 8 ist, X für n > 2 der Rest eines n-wertigen aliphatischen oder cycloaliphatischen Polyols mit 3 - 20 C-Atomen, wobei ein cycloaliphatischer Rest auch 1 bis 2 Heteroatome enthalten kann und ein aliphatischer Rest durch bis zu 8 nicht benachbarte Sauerstoffatome, Schwefelatome, Imino- oder C₁-C₄-Alkyliminogruppen unterbrochen sein kann. Die Verbindungen (I) dienen als Lichtschutzmittel.</p>			

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AT	Ostreich	GA	Gabon	MR	Mauretanien
AU	Australien	GB	Vereinigtes Königreich	MW	Malawi
BB	Barbados	GE	Georgien	NE	Niger
BE	Belgien	GN	Guinea	NL	Niederlande
BF	Burkina Faso	GR	Griechenland	NO	Norwegen
BG	Bulgarien	HU	Ungarn	NZ	Neuseeland
BJ	Benin	IE	Irland	PL	Polen
BR	Brasilien	IT	Italien	PT	Portugal
BY	Belarus	JP	Japan	RO	Rumänien
CA	Kanada	KE	Kenya	RU	Russische Föderation
CF	Zentrale Afrikanische Republik	KG	Kirgisistan	SD	Sudan
CG	Kongo	KP	Demokratische Volksrepublik Korea	SI	Schweden
CH	Schweiz	KR	Republik Korea	SI	Slowenien
CI	Côte d'Ivoire	KZ	Kasachstan	SK	Slowakei
CM	Kamerun	LI	Liechtenstein	SN	Senegal
CN	China	LK	Sri Lanka	TD	Tschad
CS	Tschechoslowakei	LU	Luxemburg	TG	Togo
CZ	Tschechische Republik	LV	Lettland	TJ	Tadschikistan
DE	Deutschland	MC	Monaco	TT	Trinidad und Tobago
DK	Dänemark	MD	Republik Moldau	UA	Ukraine
ES	Spanien	MG	Madagaskar	US	Vereinigte Staaten von Amerika
FI	Finnland	ML	Mali	UZ	Usbekistan
FR	Frankreich	MN	Mongolei	VN	Vietnam

2-Cyanacrylsäureester

Beschreibung

5

Die vorliegende Erfindung betrifft neue 2-Cyanacrylsäureester der Formel I,

10

I

15 in der die Reste R¹ und R² Wasserstoff oder einen Rest mit einem iso- oder heterocyclischen Ringsystem mit mindestens einem iso- oder heteroaromatischen Kern bedeuten, wobei mindestens einer der Reste R¹ oder R² von Wasserstoff verschieden sein muß,

20 n einen Wert von 2 bis 10 hat und

X für den Fall, daß n = 2 ist, einen Rest der Formel II

25

30 bedeutet, wobei m einen Wert von 2 bis 8 hat und

X für den Fall, daß n > 2 ist, den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Polyols mit 3 - 20 C-Atomen bezeichnet, wobei ein cycloaliphatischer Rest auch 1 bis 2 Hetero-35 atome enthalten kann und ein aliphatischer Rest durch bis zu 8 nicht benachbarte Sauerstoffatome, Schwefelatome, Imino- oder C₁-C₄-Alkyliminogruppen unterbrochen sein kann.

Weiterhin betrifft die Erfindung ein Verfahren zur Herstellung
40 der Verbindungen I, ihre Verwendung als Lichtschutzmittel oder Stabilisatoren für organische Materialien, insbesondere für kosmetische oder dermatologische Zubereitungen, Kunststoffe oder Lacke sowie organische Materialien, welche die Verbindungen I enthalten.

45

Aus der US-A 3 215 725 und der DE-A 41 22 475 sind 2-Cyanacrylsäureester von einwertigen und zweiwertigen Alkoholen als Lichtschutzmittel für Kunststoffe und Lacke bekannt.

5 Diese Verbindungen haben jedoch den anwendungstechnischen Nachteil einer relativ hohen Flüchtigkeit. Da sie außerdem mit vielen organischen Materialien, insbesondere mit Polyolefinen nur bedingt verträglich sind, neigen sie vor allem bei Wärmelagerung zur Migration und darauf beruhenden Ausschwitzeffekten.

10 Es war daher Aufgabe der Erfindung, diesen Nachteilen durch neue Stabilisatoren vom Typ der 2-Cyanacrylsäureester abzuhelpfen.

Demgemäß wurden die eingangs definierten 2-Cyanacrylsäureester
15 der allgemeinen Formel I gefunden.

Weiterhin wurde ein Verfahren zur Herstellung dieser Verbindungen, ihre Verwendung als Lichtschutzfaktoren oder Stabilisatoren von organischen Materialien sowie organische Zu-
20 bereitungen, die diese Verbindungen als Stabilisatoren enthalten,
gefunden.

Wenn die Reste R¹ und R² ungleich sind, können die 2-Cyanacrylsäureestergruppen von I sowohl in der cis- als auch in der trans-
25 Form vorliegen. Bei der Herstellung der Verbindungen entstehen meist Gemische dieser Isomeren. Eine Trennung dieser Isomeren ist möglich, jedoch für die meisten anwendungstechnischen Zwecke nicht erforderlich.

30 Als organische Reste für R¹ bzw. R² kommen allgemein Ringstrukturen in Betracht, die mindestens einen iso- oder heteroaromatischen Kern enthalten, der vorzugsweise direkt an das 3-C-Atom der Acrylsäuregruppierung gebunden ist, aber auch über aliphatische oder cycloaliphatische Gruppierungen sowie über ein
35 Brückenglied -NR³- mit diesem C-Atom verknüpft sein kann.

Bevorzugt steht R¹ bzw. R² für einen Rest der Formel III

40

45

3

worin R³ Wasserstoff oder C₁-C₁₀-Alkyl bedeutet, r für die Zahl 0 oder 1 steht und R⁴ bis R⁸ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, Chlor, Brom, Cyano, Nitro, Amino, Mono(C₁-C₄-alkyl)amino, Di(C₁-C₄-alkyl)amino, Hydroxy, C₁-C₈-Acyl, 5 C₁-C₈-Acyloxy, C₁-C₁₈-Alkoxy, C₁-C₁₂-Alkoxycarbonyl, C₃-C₆-Cyclo-alkyl oder C₃-C₆-Cycloalkoxycarbonyl bezeichnen.

Als Reste R³ kommen neben Wasserstoff C₁-C₁₀-Alkylreste in Betracht wie Methyl, Ethyl, n-Propyl, iso-Propyl, iso-Propyl, n-10 Propyl, n-Butyl, iso-Butyl- sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, tert.-Pentyl, neo-Pentyl, n-Hexyl, n-Heptyl, n-Octyl, iso-Octyl, 2-Ethylhexyl, n-Nonyl, iso-Nonyl, n-Decyl und iso-Decyl.

15 Sind eine oder mehrere der Reste R⁴ bis R⁸ C₁-C₈-Alkyl, C₁-C₈-Acyl, C₁-C₁₈-Alkoxy oder C₁-C₁₂-Alkoxycarbonyl, so können die darin enthaltenen Alkylreste beispielsweise Methyl, Ethyl, n-Propyl, iso-Propyl, n-Propyl, n-Butyl, iso-Butyl, sec.-Butyl, tert.-Butyl, n-Pentyl, iso-Pentyl, sec.-Pentyl, tert.-Pentyl, neo-Pentyl, n-He-20 xyl, n-Heptyl, n-Octyl oder 2-Ethylhexyl sein.

Als längerkettige Alkylreste in C₁-C₁₈-Alkoxy bzw. C₁-C₁₂-Alkoxy-carbonylgruppen kommen z.B. Nonyl, 2-Methylnonyl, Isononyl, 2-Methyloctyl, Decyl, Isodecyl, 2-Methylnonyl, Undecyl, Isoundecyl, 25 Dodecyl, Isododecyl, Tridecyl, Isotridecyl, Tetradecyl, Pentedecyl, Hexadecyl, Heptadecyl und Octadecyl in Betracht. (Die Bezeichnungen Isooctyl, Isononyl, Isodecyl und Isotridecyl sind Trivialbezeichnungen und stammen von den nach der Oxsynthese erhaltenen Carbonylverbindungen ab; vgl. dazu Ullmann's Encyklo-30 pedia of Industrial Chemistry, 5 th Edition, Vol. A1. Seiten 290-293, sowie Vol. A10, Seiten 284 und 285).

Als C₃- bis C₆-Cycloalkylreste eignen sich beispielsweise Cyclopropyl, Cyclobutyl, Cyclopentyl, Methylcyclopentyl oder Cyclo-35 hexyl. Diese Cycloalkylgruppen sind auch geeignete Reste in C₃-bis C₆-Cycloalkylcarbonylgruppen.

Bevorzugte 2-Cyanacrylsäureester I sind solche, in denen R³ Wasserstoff, Methyl oder Ethyl bedeutet.
40 Weiterhin sind solche 2-Cyanacrylsäureester I bevorzugt, in denen bis zu drei, besonders bevorzugt einer der Reste R⁴ bis R⁸ Wasserstoff, C₁-C₄-Alkyl, Chlor, Cyano, Hydroxy, Acetyl, C₁-C₅-Alkoxy, C₁-C₈-Alkoxycarbonyl oder Cyclohexoxycarbonyl und die übrigen die-45 ser Reste Wasserstoff bedeuten.

4

Besonders bevorzugt sind solche 2-Cyanacrylsäureester I, in denen R⁶ eine Hydroxy-, Methoxy-, Ethoxy-, Propoxy-, Isopropoxy-, Butoxy-, Isobutoxy-, sec-Butoxy- oder tert.-Butoxygruppe bedeutet, da derartige 4-substituierte Phenylgruppen zum stabilisierenden Effekt der Verbindungen beitragen. Aus dem gleichen Grund sind auch solche 2-Cyanacrylsäureester besonders bevorzugt, in denen R⁵ und/oder R⁷ Wasserstoff, eine Methyl- oder tert.-Butylgruppe bedeuten, insbesondere, wenn R⁶ eine Hydroxylgruppe bedeutet.

10

Unter den erfindungsgemäßen Verbindungen I sind diejenigen bevorzugt, in denen r = O ist.

Weiterhin sind die erfindungsgemäßen Verbindungen bevorzugt, in denen R¹ oder R² Wasserstoff bedeutet, diejenigen, in denen R¹ und R² gleiche Reste sind, sowie diejenigen, in denen einer der Reste R¹ oder R² für Phenylamino, p-Tolylamino, p-Methoxy- oder p-Ethoxycarbonylphenylamino und der andere für Wasserstoff steht.

20 Ein weiterer bevorzugter Rest für R¹ bzw. R² ist der Chromanrest Ib

25

Ib

bzw. seine substituierten Derivate, da auch diese die stabilisierende Wirkung der Verbindungen I verstärken.

Als weitere Reste R¹ bzw. R² kommen heterocyclische Gruppen wie substituierte oder unsubstituierte Thiophenyl-, Furfuryl- und Pyridylreste in Betracht.

35

Ist n = 2 steht X für einen Rest der Formel II

40

wobei m einen Wert von 2 bis 8, vorzugsweise 2 bis 6 bedeutet, 45 besonders bevorzugt jedoch für 2 steht.

5

Wenn n > 2 ist, steht X für den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Alkohols. Diese Alkohole können linear oder verzweigt sein, und ihre C-Ketten können durch ein oder mehrere Sauerstoff- oder Schwefelatome, durch Iminogruppen (-NH-) oder C₁-C₄-Alkyliminogruppen unterbrochen sein.

Die Gruppierung X leitet sich vorzugsweise von folgenden bekannten Polyolen ab:

10

15

25

45

6

Die 2-Cyanacrylsäureester der Formel I, in denen R¹ und R² nicht
10 über ein Stickstoffatom an das β-C-Atom gebunden sind, sind vor-
zugsweise durch Umsetzung von Cyanessigsäureestern der allgemei-
nen Formel III

15

20

mit n mol einer Verbindung (IV)

25

unter den Bedingungen der Knoevenagel-Kondensation erhältlich.

Die Umsetzung kann z.B. in aromatischen Lösungsmitteln wie Toluol
30 oder Xylool durchgeführt werden (s. z.B. Organikum, Ausgabe 1976,
S. 572). Bevorzugt werden jedoch polare organische Lösungsmittel
wie Dimethylformamid, Dimethylacetamid, N-Methylpyrrolidon, Tri-
alkylorthoformiat oder Alkohole wie n-Propanol, n-Butanol,
Ethylenglykol, Diethyleglykol, Ethylenglykolmonomethylether,
35 Cyclohexanol oder ähnliche Verbindungen verwendet. Bilden die
verwendeten Ausgangsverbindungen bereits eine flüssige Mischung,
kann auf ein zusätzliches Lösungsmittel verzichtet werden. Die
Reaktionstemperaturen liegen bevorzugt zwischen 20 und 180°C, be-
sonders bevorzugt zwischen 40 und 150°C. Der Druck ist bevorzugt
40 normaler Atmosphärendruck. In Abhängigkeit von der Reaktivität
der eingesetzten Verbindung IV ist die Verwendung eines Katalysa-
tors bzw. eines Katalysatorgemisches vorteilhaft. Als
Katalysatoren eignen sich z.B. Ammoniumacetat, Piperidin und β-
Alanin und deren Acetate.

45

Als Katalysatoren für die Umsetzung können bei sehr langen Reaktionszeiten zusätzlich Lewis-Säuren wie AlCl₃, ZrCl₄, TiCl₄ oder vor allem ZnCl₂ in den hierfür üblichen Mengen verwendet werden.

5 Die 2-Cyanacrylsäureester der Formel I, in denen r = 1 ist, d.h., in denen ein Rest R¹ oder R² über ein Stickstoffatom an das β-C-Atom gebunden ist, lassen sich vorteilhaft herstellen, indem man einen Cyanessigsäureester der allgemeinen Formel IV

10

15

mit einem aromatischen Amin der Formel Va

20

25

in Gegenwart von Trialkylorthoformiat umgesetzt. Als Trialkylorthoformate haben sich z.B. Trimethylorthoformiat und Triethylorthoformiat bewährt.

30 Die Cyanessigester II können beispielsweise durch Umsetzung von Cyanessigsäure oder deren Estern mit den entsprechenden Polyolen X(OH)_n in Gegenwart eines Katalysators wie Borsäure, Na₂CO₃ oder K₂CO₃ oder Tetrabutylorthotitanat vorzugsweise in Toluol oder Xylool hergestellt werden.

35

Die erfindungsgemäßen Verbindungen eignen sich in hervorragender Weise zum Stabilisieren von organischen Materialien gegen die Einwirkung von Licht, Sauerstoff und Wärme.

40 Als Kunststoffe, die durch die erfindungsgemäßen Verbindungen I stabilisiert werden können, seien beispielsweise genannt:

Polymere von Mono- und Diolefinen, wie z.B. Polyethylen niedriger oder hoher Dichte, Polypropylen, lineares Polybuten-1, Polyisopren, Polybutadien sowie Copolymerivate von Mono- oder Diolefinen oder Mischungen der genannten Polymeren;

Copolymerisate von Mono- oder Diolefinen mit anderen Vinylmonomeren, wie z.B. Ethylen-Alkylacrylat-Copolymere, Ethylen-Alkylmethacrylat-Copolymere, Ethylen-Vinylacetat-Copolymere oder Ethylen-Acrylsäure-Copolymere;

5

Polystyrol sowie Copolymeren von Styrol oder α -Methylstyrol mit Dienen und/oder Acrylderivaten, wie z.B. Styrol-Butadien, Styrol-Acrylnitril (SAN), Styrol-Ethylmethacrylat, Styrol-Butadien-Ethylacrylat, Styrol-Acrylnitril-Methacrylat, Acrylnitril-Butadien-Styrol (ABS) oder Methylmethacrylat-Butadien-Styrol (MBS);

Halogenhaltige Polymere, wie z.B. Polyvinylchlorid, Polyvinylfluorid, Polyvinylidenfluorid sowie deren Copolymeren;

15 Polymere, die sich von α, β -ungesättigten Säuren und deren Derivaten ableiten, wie Polyacrylate, Polymethacrylate, Polyacrylamide und Polyacrylnitrile;

Polymere, die sich von ungesättigten Alkoholen und Aminen bzw. 20 von deren Acrylderivaten oder Acetalen ableiten, z.B. Polyvinylalkohol und Polyvinylacetat;

Polyurethane, Polyamide, Polyharnstoffe, Polyphenylenether, Polyester, Polycarbonate, Polyoxymethylene, Polysulfone, Polyether-25 sulfone und Polyetherketone.

Weiterhin können mit den erfindungsgemäßen Verbindungen I Lacküberzüge stabilisiert werden, z.B. Industrielackierungen. Unter diesen sind Einbrennlackierungen, unter diesen wiederum Fahrzeuglackierungen, vorzugsweise Zweischichtlackierungen, besonders hervorzuheben.

Die erfindungsgemäßen Verbindungen I können in fester oder gelöster Form dem Lack zugesetzt werden. Ihre gute Löslichkeit 35 in Lacksystemen ist dabei von besonderem Vorteil.

Bevorzugt werden die erfindungsgemäßen Verbindungen I zum Stabilisieren von Polyolefinen, insbesondere von Polyethylen, von Polycarbonaten, von Polyamiden, von Polyestern, von Polystyrol, 40 von ABS und von Polyurethanen verwendet. Insbesondere können auch Folien aus den genannten Kunststoffen stabilisiert werden.

Für diese Anwendungsbereiche werden die Verbindungen in Konzentrationen von 0,01 bis 5 Gew.-%, bezogen auf die Menge des Kunststoffs, eingesetzt, bevorzugt in einer Konzentration von 0,02 bis 45 2 Gew.-%. Die Kombination mit anderen Stabilisatoren, beispielsweise Antioxidantien, Metalldesaktivatoren oder anderen Licht-

schutzmitteln sowie mit antistatischen oder flammhemmenden Mitteln, ist oft vorteilhaft. Besonders wichtige Costabilisatoren sind beispielsweise sterisch gehinderte Phenole sowie Phosphite, Phosphonite, Amine und Schwefelverbindungen.

5

Als geeignete Costabilisatoren kommen z.B. in Betracht:

- Phenolische Antioxidationsmittel wie
2,6-Di-tert.-butyl-4-methylphenol,
- 10 n-Octadecyl- β -(3,5-di-tert.-butyl-4-hydroxyphenol)-propionat,
1,1,3-Tris-(2-methyl-4-hydroxy-5-tert.-butylphenyl)-butan,
1,3,5-Trimethyl-2,4,6-tris-(3,5-di-tert.-butyl-4-hydroxybenzyl)-benzol,
1,3,5-Tris-(3,5-di-tert.-butyl-4-hydroxybenzyl)-isocyanurat,
- 15 1,3,5-Tris-[β -(3,5-di-tert.-butyl-4-hydroxyphenyl)-propionyl-ethyl]-isocyanurat,
1,3,5-Tris-(2,6-di-methyl-3-hydroxy-4-tert.-butylbenzyl)-iso-
cyanurat und
Pentaerythrit-tetrakis-[β -(3,5-di-tert.-butyl-4-hydroxy)-propio-
- 20 nat],

- phosphorhaltige Antioxidantien wie
Tris-(nonylphenyl)-phosphit, Distearyl pentaerythrit phosphit,
Tris-(2,4-di-tert.-butyl-phenyl)-phosphit,
- 25 Tris-(2-tert.-butyl-4-methylphenyl)-phosphit,
Bis-(2,4-di-tert.-butylphenyl)-pentaerythritdiphosphit und
Tetrakis-(2,4-di-tert.-butylphenyl)-4,4'-biphenylen diphosphit,

- schwefelhaltige Antioxidantien wie
30 Dilaurylthiodipropionat,
Dimyristylthiodipropionat,
Distearylthiodipropionat,
Pentaerythrittetraakis-(β -laurylthiopropionat) und
Pentaerythrittetraakis-(β -hexylthiopropionat),
- 35 sterisch gehinderte Amine wie
Bis-(2,2,6,6-tetramethylpiperidyl)-sebacat,
Bis-(1,2,2,6,6-pentamethylpiperidyl)-sebacat,
Bis-(1,2,2,6,6-pentamethylpiperidyl)-ester,
- 40 N,N'-Bis(formyl)-bis(2,2,6,6-tetramethyl-4-piperidyl)-1,6-hexan-diamin,
das Kondensationsprodukt von
1-Hydroxy-2,2,6,6-tetramethyl-4-hydroxypiperidin und Bernstein-säure,
- 45 das Kondensationsprodukt von
N,N'-(2,2,6,6-Tetramethylpiperidyl)-hexamethylenediamin und
4-tert.-Octylamino-2,6-dichlor,1,3,5-s-triazin,

10

Poly-[3-(Eicosyl/Tetracosyl)-1-(2,2,6,6-tetramethylpiperidin-4-yl)-pyrrolidin-2,5-dion],
Tris-(2,2,6,6-Tetramethylpiperidyl)-nitrilotriacetat,
Tetrakis-(2,2,6,6-tetramethyl-4-piperidyl)-1,2,3,4-butantetra-

5 bonsäure,

1,1'-(1,2-Ethandiyl)-bis-(3,3,5,5-tetramethylpiperazinon),
die Kondensationsprodukte von
4-Amino-2,2,6,6-tetramethylpiperidinen und Tetramethylolacetylen-
diharnstoffen sowie

10

2-(2'-Hydroxyphenyl)-benztriazole,

2-Hydroxybenzophenone,

Arylester von Hydroxybenzoësäuren,

α-Cyanozimtsäurederivate,

15 Nickelverbindungen oder

Oxalsäuredianilide.

Zur Vermischung der erfindungsgemäßen Verbindungen I, vor allem mit Kunststoffen, können alle bekannten Vorrichtungen und Methoden zum Einmischen von Stabilisierungsmitteln oder anderen Zusätzen in Polymere angewandt werden.

Die erfindungsgemäßen 2-Cyanacrylsäureester I zeichnen sich durch eine gute Verträglichkeit mit den üblichen Kunststoffarten und 25 durch eine gute Löslichkeit und eine ausgezeichnete Verträglichkeit in den üblichen Lacksystemen aus. Sie haben in der Regel keine oder nur eine sehr geringe Eigenfarbe, sind bei den üblichen Kunststoff- und Lack-Verarbeitungstemperaturen stabil und nicht flüchtig und bewirken eine lange Schutzdauer der mit ihnen 30 behandelten Materialien. Vor allem jedoch zeigen sie praktisch keine Migrationsneigung in Kunststoffen.

Die UV-Strahlung wird in drei Bereiche eingeteilt: den UV-A-Bereich (320-400 nm), den UV-B-Bereich (290-320 nm) und den UV-C-Bereich (200-290 nm). Der hochenergetische UV-C-Bereich wird überwiegend von der Ozonschicht absorbiert. Strahlung im UV-B-Bereich ist vor allem für die Entstehung von Sonnenbrand und Hautkrebs verantwortlich. Die UV-A-Strahlung bewirkt bei längerer Einwirkung sowohl die Hautbräunung, ist aber auch für die Alterung der Haut mitverantwortlich.

40 Wegen der günstigen Löslichkeitseigenschaften sowie der guten Absorptionseigenschaften, besonders im UV-A-Bereich, eignen sich die erfindungsgemäßen Verbindungen besonders für Anwendungen im kosmetischen und dermatologischen Bereich. Auch zum Schutz kosmetischer Präparate wie Parfums, Cremes und Lotions können die 45 Verbindungen vorteilhaft eingesetzt werden. Besonders bevorzugt

11

sind Kombinationen mit Lichtschutzmitteln, die im UV-B-Bereich absorbieren. Für kosmetische Formulierungen werden die 2-Cyanacrylsäureester I in Konzentrationen von 0,05 bis 15-Gew.-%, bevorzugt von 0,1 bis 10 Gew.-%, bezogen auf die Gesamtmenge der 5 kosmetischen Formulierung, eingesetzt.

Weitere organische Materialien, denen die erfindungsgemäß den Verbindungen vorteilhaft zugemischt werden, sind Arzneimittelformulierungen wie Pillen und Zäpfchen, photographische 10 Aufzeichnungsmaterialien, insbesondere photographische Emulsionen, sowie Vorprodukte für Kunststoffe und Lacke.

Beispiele

15 Herstellungsbeispiele

Beispiel 1

16,2 g (0,04 mol) 2,2-Bis-(hydroxymethyl)-1,3-propandioltetra-
20 cyanoacetat wurden in 100 ml N,N-Dimethylformamid (DMF) gelöst und auf 80°C erhitzt. Dazu tropfte man unter leichtem Stickstoffstrom 29,6 g (0,16 mol) Benzophenonimin (97 gew.-%ig), gelöst in 25 ml DMF, über 2 h zu. Bis zum Ende der Ammoniakentwicklung erwärmt man auf ca. 110°C. Danach kühlte man ab und setzte 300 ml 25 Ethanol zu. Das Produkt wurde zunächst ölig und unter längeren Röhren fest. Man saugte ab und wusch mit Ethanol.

Man erhielt 37,5 g (88,4 %) der Theorie der Verbindung der Formel

30

35

40

vom Schmelzpunkt 123 bis 126°C (glasartig); UV (CH_2Cl_2): λ_{\max} = 310 nm, ϵ = 50000.

45

12

Beispiel 2

Die Verbindung der Formel

5

10

15

20

wurde in Analogie zu Beispiel 1 aus dem entsprechenden Cyanessigsäureester und Benzophenonimin hergestellt; Schmelzpunkt: 100 bis

104°C; UV (CH_2Cl_2): $\lambda_{\max} = 310 \text{ nm}$, $\epsilon = 36400$.

Beispiel 3

Die Verbindung der Formel

25

30

35

45

wurde in Analogie zu Beispiel 1 aus dem entsprechenden Cyanessigsäureester und Benzophenonimin hergestellt; Schmelzpunkt: 92°C; UV (CH_2Cl_2): $\lambda_{\max} = 308 \text{ nm}$, $\epsilon = 36700$.

Beispiel 4

Die Verbindung der Formel

wurde in Analogie zu Beispiel 1 aus dem entsprechenden Cyanessigsäureester und Benzophenonimin hergestellt; Schmelzpunkt: 83 bis 20 95°C; UV (CH_2Cl_2): $\lambda_{\max} = 308 \text{ nm}$, $\epsilon = 51700$.

Beispiel 5

Die Verbindung der Formel

40

wurde in Analogie zu Beispiel 1 aus dem entsprechenden Cyanessigsäureester und Benzophenonimin hergestellt; Schmelzpunkt: 124 bis 128°C; UV (CH_2Cl_2): $\lambda_{\max} = 308 \text{ nm}$, $\epsilon = 76000$.

45

Beispiel 6

30,3 g (0,075 mol) 2,2-Bis-(hydroxymethyl)-1,3-propandiol-tetracyanoacetat wurden mit 29,8 g (0,32 mol) Anilin und 52 g 5 (0,35 mol) Trimethylorthoformiat 6 h unter Rückfluß erhitzt. Danach gab man 80 ml Ethanol zu und kochte die Suspension noch 1 h unter Rückfluß. Danach saugte man heiß ab und wusch den Rückstand gut mit Ethanol.

10 Man erhielt 55 g (90 % der Theorie) einer gelblichen Verbindung der Formel

vom Schmelzpunkt 298 bis 300°C; UV (DMSO): $\lambda_{\text{max}} = 322 \text{ nm}$, $\epsilon = 98000$ (DMSO = Dimethylsulfoxid).

Beispiele 7 und 8

30 Die Verbindung der Formel

15

$R^{10} = \text{CH}_3$ (Beispiel 7) oder $\text{COOCH}_2\text{CH}_3$ (Beispiel 8)

wurden in Analogie zu Beispiel 6 aus dem entsprechenden Cyan-
essigsäureester, dem entsprechenden aromatischen Amin und Tri-
5 methylorthoformiat hergestellt; Schmelzpunkte: 321 bis 323°C (Bei-
spiel 7) und 269 bis 273°C (Beispiel 8); UV (DMSO): $\lambda_{\max} = 326$ nm
(Beispiel 7) und 334 nm (Beispiel 8), $\epsilon = 99000$ (Beispiel 7) und
150000 (Beispiel 8).

10**15****20****25****30****35****40****45**

Beispiel 9

Die Verbindung der Formel

wurde in Analogie zu Beispiel 6 aus dem entsprechenden Cyanessigsäureester, Anilin und Trimethylolorthoformiat hergestellt; Schmelzpunkt: 240 bis 248°C; UV (CH_2Cl_2): $\lambda_{\text{max}} = 320 \text{ nm}$; $\epsilon = 145000$.

Beispiele 10-36

Allgemeine Herstellvorschrift für die Umsetzung von Cyanessigsäureestern IV mit Aldehyden (R^1 oder R^2 = Wasserstoff)

0,1 mol eines n-wertigen Cyanessigsäureesters IV,

10

15

welcher durch Umsetzung von Cyanessigsäure mit dem entsprechenden n-wertigen Alkohol in bekannter Weise erhalten wurde,

wurden mit 0,12 n mol eines Aldehyds Vb

20

25

in 100 ml N,N-Dimethylacetamid in Gegenwart von 0,5 ml Piperidin und 0,3 ml Eisessig umgesetzt. Nach 3 Stunden bei 70°C wurde der Niederschlag abgetrennt, mit Methanol und Wasser gewaschen und getrocknet.

30

Die Einzelheiten dieser Versuche sowie die Eigenschaften der erhaltenen Verbindungen I sind der folgenden Tabelle zu entnehmen.

35

Nr.	X	R^1 bzw. R^2	λ_{\max}^* [nm]	molarer Extinktions- koeffizient ϵ [$l \cdot cm^{-1} \cdot mol^{-1}$]	Schmelz- punkt [°C]	Aus- beute [%]
40	10		$H_3CO-\text{C}_6\text{H}_4-$	342	57 000	>265
45	11		$HO-\text{C}_6\text{H}_3(X)_2-$	350	59 000	70

18

Nr.	X	R ¹ bzw. R ²	* λ_{max} [nm]	molarer Extinktions- koeffizient ϵ [1·cm ⁻¹ ·mol ⁻¹]	Schmelz- punkt [°C]	Aus- beute [%]	
5	12		H ₃ CO	336	47 000	>265	92
10	13			306	59 188	110-112	70
15	14		H ₃ C	322	66 678	115-120	77
20	15		H ₃ CO	346	76 912	75-80	90
25	16		+	324	73 332	90-95	84
30	17		H ₃ CO	340	72 000	179-181	70
35	18		HO	353	72 000	170-174	77
40	19		H ₃ CO	354	72 100	95-100	88
45	20			306	58 256	114-116	63
	21		H ₃ C	322	67 090	95-102	74
	22		H ₃ CO	346	75 519	30-35	73
	23		+	322	57 601	168-170	67

19

Nr.	X	R ¹ bzw. R ²	* λ_{max} (nm)	molarer Extinktions- koeffizient ϵ [1·cm ⁻¹ ·mol ⁻¹]	Schmelz- punkt [°C]	Aus- beute [%]
5 24	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2^- \end{array}$		338	68 000	103-105	74
10 25	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{CH}_3 \\ \\ \text{CH}_2^- \end{array}$		354	72 000	85-87	74
15 26	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2^- \\ \\ \text{CH}_2^- \end{array}$		358	106 480	275-276	66
20 27	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2^- \\ \\ \text{CH}_2^- \end{array}$		346	102 298	215-216	90
25 28	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2^- \\ \\ \text{CH}_2^- \end{array}$		308	63 909	148-155	79
30 29	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2^- \\ \\ \text{CH}_2^- \end{array}$		324	102 273	250	79
35 30	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2^- \\ \\ \text{CH}_2^- \end{array}$		324	101 131	130-131	67
40 31	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2^- \\ \\ \text{CH}_2^- \end{array}$		342	51 000	98-100	60
45 32	$\begin{array}{c} \text{CH}_2^- \\ \\ -\text{CH}_2-\text{C}-\text{CH}_2^- \\ \\ \text{CH}_2^- \end{array}$		356	110 500	115-118	87
33	$\begin{array}{c} \text{CH}_2^- & \text{CH}_2^- \\ & \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{O}-\text{CH}_2-\text{C}-\text{CH}_2^- & \text{CH}_2^- \\ & \\ \text{CH}_2^- & \text{CH}_2^- \end{array}$		320	120 582	128-132	65
34	$\begin{array}{c} \text{CH}_2^- & \text{CH}_2^- \\ & \\ -\text{CH}_2-\text{C}-\text{CH}_2-\text{O}-\text{CH}_2-\text{C}-\text{CH}_2^- & \text{CH}_2^- \\ & \\ \text{CH}_2^- & \text{CH}_2^- \end{array}$		342	145 000	105-108	88

20

Nr.	X	R ¹ bzw. R ²	* λ_{max} [nm]	molarer Extinktions- koeffizient ϵ [l·cm ⁻¹ ·mol ⁻¹]	Schmelz- punkt [°C]	Aus- beute [%]	
5	35			338	149 300	150-151	58
10	36			352	145 000	135-140	51

* UV-Messungen in CH₂Cl₂

15 Beispiel 37

Anwendungsbeispiel: Migrationstest in Polyethylen

0,3 Gew.-% des nachfolgend angegebenen UV-Stabilisators wurden
20 in Polyethylen durch zweimaliges Extrudieren bei 180°C Masse-
temperatur im Polymeren gelöst, danach wurde das Polymere
granuliert und zu 100 µm dicken Folien geblasen.

Nach zehntägiger Lagerung bei Raumtemperatur (20°C) oder im Ofen
25 (50°C) wurde die Oberfläche der Folie visuell nach folgenden
Kriterien beurteilt:

- + kein Belag
- o geringer Belag
- starker Belag

30 Die nachfolgende Tabelle zeigt die verwendeten UV-Stabilisatoren
und die Ergebnisse der Prüfungen:

35	UV-Stabilisator	Lagerung bei 20°C	Lagerung bei 50°C
	Verbindung aus Beispiel Nr. 1	+	+
	Verbindung A (zum Vergleich)	o	-
	Verbindung B (zum Vergleich)	-	-

40

Patentansprüche

1. 2-Cyanacrylsäureester der Formel I

5

10

15

in der die Reste R¹ und R² Wasserstoff oder einen Rest mit einem iso- oder heterocyclischen Ringsystem mit mindestens einem iso- oder heteroaromatischen Kern bedeuten, wobei mindestens einer der Reste R¹ oder R² von Wasserstoff verschieden sein muß,

n einen Wert von 2 bis 10 hat und

20

X für den Fall, daß n = 2 ist, einen Rest der Formel II

25

bedeutet, wobei m einen Wert von 2 bis 8 hat und

30

X für den Fall, daß n > 2 ist, den Rest eines n-wertigen aliphatischen oder cycloaliphatischen Polyols mit 3 - 20 C-Atomen bezeichnet, wobei ein cycloaliphatischer Rest auch 1 bis 2 Heteroatome enthalten kann und ein aliphatischer Rest durch bis zu 8 nicht benachbarte Sauerstoffatome, Schwefelatome, Imino- oder C₁-C₄-Alkyliminogruppen unterbrochen sein kann.

2. 2-Cyanacrylsäureester nach Anspruch 1, in denen einer der Reste R¹ und R² einen Rest der Formel III

40

45

22

bedeutet, worin R³ Wasserstoff oder C₁-C₁₀-Alkyl bedeutet, r für die Zahl 0 oder 1 steht und R⁴ bis R⁸ unabhängig voneinander Wasserstoff, C₁-C₈-Alkyl, Chlor, Brom, Cyano, Nitro, Amino, Mono(C₁-C₄-alkyl)amino, Di(C₁-C₄-alkyl)amino, Hydroxy, C₁-C₈-Acyl, C₁-C₈-Acyloxy, C₁-C₁₈-Alkoxy, C₁-C₁₂-Alkoxy-carbonyl, C₃-C₆-Cycloalkyl oder C₃-C₆-Cycloalkoxycarbonyl bezeichnen.

3. 2-Cyanacrylsäureester nach Anspruch 1 oder 2, in denen R³
10 Wasserstoff, Methyl oder Ethyl bedeutet.

4. 2-Cyanacrylsäureester nach den Ansprüchen 1 bis 2, in denen
bis zu drei der Reste R⁴ bis R⁸ Wasserstoff, C₁-C₄-Alkyl,
Chlor, Cyano, Hydroxy, Acetyl, C₁-C₅-Alkoxy, C₁-C₈-Alkoxy-
15 carbonyl oder Cyclohexoxycarbonyl und die übrigen dieser Re-
ste Wasserstoff bedeuten.

5. 2-Cyanacrylsäureester nach den Ansprüchen 1 bis 4, in denen
R⁶ eine Hydroxygruppe oder eine C₁-C₄-Alkoxygruppe bedeutet.
20

6. 2-Cyanacrylsäureester nach den Ansprüchen 1 bis 5, in denen
R⁵ und/oder R⁷ Wasserstoff, Methyl oder tert.-Butyl bedeuten.

7. 2-Cyanacrylsäureester nach den Ansprüchen 1 bis 6, in denen
25 r=0 ist.

8. 2-Cyanacrylsäureester nach den Ansprüchen 1 bis 7, in denen X
den Rest eines n-wertigen Polyols mit 3 bis 12 C-Atomen be-
deutet, welcher in seinem linearen oder verzweigten Kohlen-
30 stoffgerüst durch bis zu 3 nichtbenachbarte Sauerstoffatome
unterbrochen sein kann und n für eine Zahl von 3 bis 6 steht.

9. Verfahren zur Herstellung von 2-Cyanacrylsäureestern gemäß
den Ansprüchen 1 bis 8, in denen r = 0 ist, dadurch gekenn-
35 zeichnet, daß man einen Cyanessigsäureester der allgemeinen
Formel IV

mit n mol einer Verbindung der allgemeinen Formel V

5

in der Z Sauerstoff oder NH bedeutet, unter den Bedingungen der Knoevenagel-Kondensation in einem polaren Lösungsmittel und in Gegenwart eines Katalysators umsetzt.

10

10. Verfahren zur Herstellung von 2-Cyanacrylsäureestern gemäß den Ansprüchen 2 bis 6 und 8, in denen r = 1 ist, dadurch gekennzeichnet, daß man einen Cyanessigsäureester der allgemeinen Formel IV

15

20

mit einem aromatischen Amin der Formel Va

25

30

in Gegenwart von Trialkylorthoformiat umsetzt.

11. Verwendung der 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 8 als Lichtschutzmittel oder Stabilisatoren für organische Materialien.

12. Verwendung der 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 8 als Lichtschutzmittel oder Stabilisatoren in kosmetischen oder dermatologischen Zubereitungen.

13. Verwendung der 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 8 als Lichtschutzmittel oder Stabilisatoren in Kunststoffen oder Lacken.

45

24

14. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabili-
sierte organische Materialien, welche 0,01 bis 10 Gew.-%, be-
zogen auf die Menge des organischen Materials, eines oder
mehrerer 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 8
5 enthalten.

15. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabili-
sierte kosmetische oder dermatologische Zubereitungen, welche
0,01 bis 15 Gew.-%, bezogen auf die Menge dieser Zu-
10 bereitungen, eines oder mehrerer 2-Cyanacrylsäureester gemäß
den Ansprüchen 1 bis 8 enthalten.

16. Gegen die Einwirkung von Licht, Sauerstoff und Wärme stabili-
sierte Kunststoffe und Lacke, welche 0,01 bis 10 Gew.-%, be-
zogen auf die Menge des Kunststoffs oder Lacks, eines oder
15 mehrerer 2-Cyanacrylsäureester gemäß den Ansprüchen 1 bis 8
enthalten.

20

25

30

35

40

45