Festkörperoptik

Guilherme Stein & Ulrich Müller

Mithilfe von drei Röntgenanoden sowie verschiedenen Streuobjekten konnten wir die theoretischen Werte der K_{α} - und K_{β} -Linie von Kupfer, Eisen und Molybdän bestätigen. Zudem war die Feinstruktur von Eisen und Molybdän im Spektrum erkennbar. Über das Duane-Hunt-Gesetz haben wir Plancksche Wirkungsquantum zu $h = (6.645 \pm 0.059) \times 10^{-34} \,\mathrm{J}\,\mathrm{s}$ bestimmt. Anhand des Effekts der inelastischen Streuung von Photonen an Elektronen haben wir die Compton-Wellenlänge zu $\lambda_c = (2.25 \pm 0.43)\,\mathrm{pm}$ ermittelt. Schließlich haben wir zwei Laue-Aufnahmen eines Materials gemacht, den Reflexen Miller-Indices zugeordnet und damit die Diamandstruktur der Probe identifiziert haben.

Betreuer: Dr. Charles Gould Versuchsdurchführung: 05. Oktober 2012

Protokollabgabe: 12. Oktober 2012

1 Einleitung

In den ersten 20 Jahren nach der Entdeckung der Röntgenstrahlung durch Wilhelm Conrad Röntgen ...

2 Theorie

Eine Röntgenröhre besteht aus ...

3 Experimenteller Aufbau

Die Experimente und die Erzeugung der dafür notwendigen Röntgenstrahlung findet in einem Vollschutzröntgengerät der Firma PHYWE statt...

3.1 Charakteristische Röntgenstrahlung von Kupfer

...

4 Auswertung

- 4.1 Charakteristische Röntgenstrahlung von Kupfer
- 4.2 Charakteristische Röntgenstrahlung von Kupfer
- 4.3 Laue-Aufnahme
- 4.4 Laue-Aufnahme

5 Zusammenfassung

Wir konnten mit dem Versuch einen guten Einblick in die Röntgenspektroskopie gewinnen. Die charakteristischen Linien von Eisen, Molybdän und Kupfer wurden mit recht hoher Genaugikeit nachgewiesen, wobei der größte Abstand von unseren Bestwerten zu den Theoriewerten 0.65% betrag. Im Rahmen der Fehler gab es keine Abweichung. Das empirische Gesetz zwischen der Intensität der charakteristischen Strahlung und der Spannung zeigt systematische Abweichungen für Spannungen ab 30 kV und sollte eher als Faustregel verstanden werden. Das Duane-Hunt-Gesetz hingegen konnte gut bestätigt werden und hat uns erlaubt, das Plancksche Wirkungsquantum zu bestimmen. Das Moseley-Gesetz wurde ausführlich disku-

tiert und hat gute Abschätzungen für die Rydberg-Konstante ergeben. Allerdings ist die Auswertung der Abschirmkonstante $\sigma(Z)$ nicht wirklich sinnvoll. Mit dem Compton-Effekt konnte eine überraschend gute Bestimmung der Compton-Wellenlänge durchgeführt werden. Eine vollständige Aufnahme des Transmissionsspektrums von Al im gesamten Wellenlängenbereich der Kupferanode würde helfen zu verstehen, warum die Näherung eines linearen Spektrums solch gute Ergebnisse liefert. Die Laue-Aufnahme hat insgesamt gut funktioniert. Allerdings könnte man die Aufhängung der Dentalfilme zum Beispiel mit einer optischen Bank o.Ä. verbessern. Dadurch wird ein zentrales Auftreffen garantiert. Die Auflösung der Filme ist gut, eine größere Fläche wäre zwar wünschenswert, ist für die Auswertung aber nicht unbedingt notwendig.

Literatur

- [1] Röntgenstrahlung (Versuchsbeschreibung), Universität Würzburg (2010)
- [2] D. Meschede, Gerthsen Physik, 24. Auflage (2010)
- [3] CODATA Physical Constants, http://physics. nist.gov/cuu/Constants/index.html (September 2012)
- [4] H.G.J. Moseley, Philos. Mag. 26, 1024 (1913).
- [5] A. M. Lesk, Am. J. Phys. 48, 492 (1980), doi:10.1119/1.12320.
- [6] L. Bergmann & C. Schaefer, Lehrbuch der Experimentalphysik, Bd. 4 (2003)

6 Anhang