Capítulo 16

Problema 01

- (a) $\hat{z}_i = 101,50 0,55x_i$.
- (b) $\hat{\alpha}$: a acuidade visual média estimada para recém-nascidos (zero anos de idade) é 101,50; $\hat{\beta}$: a acuidade visual média estimada diminui 0,55 a cada ano.
- (c) -0,5; 9,5; -10,5; -0,5; 12,3; 2,3; etc. Ocorre desvio alto para o indivíduo 19 (-19,5).

Problema 02

- (a) $\hat{y}_i = 6.87 0.26x_i$.
- **(b)** Parece haver um efeito de curvatura.

- (c) O valor médio do aluguel diminui 0,26 unidades a cada ano de aumento da idade da casa.
- (d) O valor médio estimado do aluguel de casas recém-construídas (idade zero) é 6,87 unidades.

Problema 03

(a)

- **(b)** $\hat{y}_i = 50,457 0,381x_i$.
- (c) O modelo parece adequado (valores observados próximos dos ajustados).

(d)
$$\hat{y}_i = 0 \Rightarrow 50,457 - 0,381x_i = 0 \Rightarrow x_i = 132,43^{\circ}$$
.

Problema 04

$$\hat{y}_i = 162,079 - 0,642z_i$$
.

Problema 05

FV	g.l.	SQ	QM	F
Regressão	1	302,5	302,5	3,408
Resíduo	18	1597,5	88,75	
Total	19	1900,0		

- (a) $S_e^2 = SQR/(n-2) = 88,75$; $s_e^2 = SQTo/(n-1) = 100$.
- (b) Não.
- (c) $R^2 = 15,9\%$. Proporção da variabilidade total da acuidade visual explicada pela relação linear com a idade.

Problema 06

(a)

(b) $\hat{y}_i = 0.662 + 0.539x_i$.

(c)

FV	g.l.	SQ	QM	F
Regressão	1	168,939	168,939	165,129
Resíduo	7	7,161	1,023	
Total	8	176,100		

- (d) $S_e^2 = SQR/(n-2) = 1,023$; $s_e^2 = SQTo/(n-1) = 22,013$. Sim, é pequeno.
- (e) Sim.

Problema 07

FV	g.l.	SQ	QM	F
Regressão	1	9,391	9,391	46,286
Resíduo	3	0,609	0,203	
Total	4	10,000		

Rejeitamos H_0 : $\beta = 0$ (p-value=0,006). A idade das casas influencia o valor do aluguel.

Problema 08

FV	g.l.	SQ	QM	F
Regressão	1	609,524	609,524	43,98
Resíduo	8	110,876	13,860	
Total	9	720,400		

Rejeitamos H_0 : $\beta = 0$ (p-value=0,0002). A temperatura influencia a potência do antibiótico.

FV	g.l.	SQ	QM	F
Regressão	1	783,368	783,368	23,914
Resíduo	18	589,632	32,757	
Total	19	1373,000		

Rejeitamos H_0 : $\beta = 0$ (p-value=0,0001). A acuidade visual influencia o tempo de reação.

Problema 10

(a)
$$IC(\beta;95\%) = -0.55 \pm 2.101 \times \sqrt{88.75} \times \sqrt{\frac{1}{1000}} = -0.55 \pm 2.101 = [-1.18;0.08]$$

(b)
$$IC(\alpha;95\%) = 101,5 \pm 2,101 \times \sqrt{88,75} \times \sqrt{\frac{19000}{20 \times 1000}} = [82,21;120,79].$$

- (c) F=3,408 (p-value=0,081). Não rejeitamos H_0 a um nível de significância de 5%.
- (d) Em construção
- (e) Em construção

Problema 11

Sim. Estatística $F = QM \operatorname{Re} g / S_e^2 = 23,914$.

Problema 12

 $IC(\beta;95\%) = 2,83 \pm 2,101 \times 1,65 = [-0,64;6,30]$. Não, pois o intervalo de confiança para β contém o zero.

i	x_i	Z_i	e_i	z_i	r_i
1	20	90	-0,50	-0,09	100,00
2	20	100	9,50	1,70	100,00
3	20	80	-10,50	-1,88	100,00
4	20	90	-0,50	-0,09	100,00
5	25	100	12,25	2,19	25,00
6	25	90	2,25	0,40	25,00

O indivíduo 19 (40 anos) tem resíduos altos, podendo ser considerado uma observação discrepante.

Problema 15

(a)

A variância dos erros tende a aumentar com o aumento da variável preditora x.

(b)

Os erros aumentam no decorrer da coleta de dados.

Problema 16

(a)
$$IC(E(Y \mid x = 18);95\%) = 91,60 \pm 2,101 \times \sqrt{88,75} \times \sqrt{\frac{1}{20} + \frac{(18 - 30)^2}{1000}} = [82,84;100,32]$$

(b)
$$IC(E(Y \mid x = 30);95\%) = 85 \pm 2,101 \times \sqrt{88,75} \times \sqrt{\frac{1}{20} + \frac{(30 - 30)^2}{1000}} = [80,57;89,43]$$

(c) em construção

Problema 17

$$IC(E(Y \mid x = 30);95\%) = 16,832 \pm 2,365 \times \sqrt{1,023} \times \sqrt{\frac{1}{9} + \frac{(30 - 26,338)^2}{580,8372}} = [15,96;17,71]$$

Problema 18

(a)

- **(b)** $\hat{y}_i = 32,120 2,520x_i$.
- (c) Gráfico acima
- (d) $(\bar{x}, \bar{y}) = (6;17)$. Este ponto se encontra sobre a reta de regressão ajustada.

(e)
$$IC(E(Y \mid x = 5);95\%) = 19,52 \pm 2,306 \times \sqrt{1,12} \times \sqrt{\frac{1}{10} + \frac{(5-6)^2}{100}} = [18,711;20,329].$$

Problema 19

 $\hat{y}_i = 0.954 - 0.392x_i$.

(a)
$$IC(E(Y \mid x = 170); 95\%) = 67,594 \pm 2,306 \times \sqrt{2,688} \times \sqrt{\frac{1}{10} + \frac{(170 - 63,8)^2}{40629,6}} = [65,27;69,92]$$

(b)
$$IC(E(Y \mid x = 1000); 95\%) = 392,95 \pm 2,306 \times \sqrt{2,688} \times \sqrt{\frac{1}{10} + \frac{(1000 - 63,8)^2}{40629,6}} = [375,35;410,55]$$

(c) Não parece razoável, pois é muito maior que os valores observados. O gasto com alimentação deve se estabilizar para rendas mais altas.

Problema 20

Em elaboração

Problema 21

Quando se publica um anúncio a mais, ocorre um aumento de 1,516 no número médio de carros vendidos.

Problema 22

- (a) $\hat{y}_i = 323,622 + 131,716x_i$. $F_{obs} = 13,684$; $F_c = F(1;15;90\%) = 3,07$. Logo, devemos rejeitar $H_0: \beta = 0$.
- (b) $R^2 = 47,71\%$. Esse valor é baixo, indicando que talvez seja melhor procurar um modelo mais adequado.

(c)
$$IC(E(Y \mid x = 5);95\%) = 982,2 \pm 1,753 \times \sqrt{80360} \times \sqrt{\frac{1}{17} + \frac{(5 - 3,647)^2}{63,382}} = [835,0;1129,4]$$

(d)
$$t_{obs} = \frac{323,622-300}{\sqrt{\frac{80360\times289,5}{17\times63,382}}} = 0,16$$
; $t_c = t(15;95\%) = 1,753$. Logo, não há evidências para

rejeitar H_0 .

$$\hat{y}_i = 10,607 + 0,318x_i$$
.

α : o diâmetro médio mínimo estimado para ervilhas filhas é de 10,607 polegadas;

 $\hat{\beta}$: o diâmetro médio estimado aumenta 0,318 centésimos de polegada quando ocorre o aumento de 1 centésimo de polegada no diâmetro das ervilhas-pais.

Problema 24

 $E(y_i | x_i) = \alpha + \beta x_i$, onde y_i é a concentração medida pelo instrumento e x_i é a concentração real de ácido lático.

Hipóteses de interesse: H_{01} : $\alpha = 0 \times H_{a1}$: $\alpha \neq 0$;

$$H_{02}: \beta = 1 \times H_{a2}: \beta \neq 1.$$

Problema 25

$$\hat{y}_i = 0.159 + 1.228x_i$$
.

$$t_{obs} = \frac{1,228 - 1}{\sqrt{\frac{1,164}{526,2}}} = 4,848;$$
 $t_c = t(18;97,5\%) = 2,101.$ Devemos rejeitar H_0 , ou seja, o

instrumento não está bem calibrado.

Problema 26

- (a) Não, pois volumes de precipitação muito altos ou muito baixos devem prejudicar a plantação, fazendo com que a produção seja baixa.
- **(b)**

$$\hat{y}_i = 2,250 + 90,625x_i$$
.

FV	g.l.	SQ	QM	F
Regressão	1	2628,13	2628,13	11,599

Resíduo	10	2265,88	226,59
Total	11	4894,00	

Rejeitamos H_0 : $\beta_1 = 0$ (p-value=0,007). A log-dose de insulina ajuda a prever a queda na quantidade de açúcar no sangue.

Problema 28

(a)

- **(b)** $\hat{y}_i = 1.312 + 1.958x_i$; $\hat{y}_i = 25.710 1.126z_i$.
- (c) y=f(x), pois sua estatística F é maior.

(d)
$$IC(E(Y \mid x = 8);95\%) = 16,976 \pm 2,447 \times \sqrt{4,646} \times \sqrt{\frac{1}{8} + \frac{(8 - 7,5)^2}{72}} = [15,09;18,87].$$

Problema 29

(a)
$$b^2 = \frac{SQ \operatorname{Re} g}{(n-1)s_x^2} = \frac{SQTot \times r^2}{(n-1)s_x^2} = \frac{(n-1)s_y^2 \times r^2}{(n-1)s_x^2} = \left(0.92 \times \frac{13.84}{216.02}\right)^2 \Rightarrow b = 0.0589.$$

 $a = \overline{y} - b\overline{x} = 60 - 0.0589 \times 400 = 36.440 \cdot \operatorname{Logo}: \ \hat{y}_i = 36.440 + 0.0589x_i.$

(b)

FV	g.l.	SQ	QM	F
Regressão	1	972,75	972,75	27,55
Resíduo	5	176,52	35,30	
Total	6	1149,27		

(c) $F_c = F(1;5;95\%) = 6,61$. Devemos rejeitar H_0 , ou seja, a quantidade de fertilizante usada influi na produtividade.

Problema 30

Teórico.

Problema 31

Teórico.

Problema 32

Teórico.

Problema 33

Teórico.

Problema 34

Teórico.

Problema 35

FV	g.l.	SQ	QM	F
Regressão	1	26,21	26,21	243,51
Resíduo	8	0,86	0,11	
Total	9	27,07		

 $IC(\alpha^*;95\%) = [5,033;5,512]; IC(\beta;95\%) = [0,240;0,323].$

Problema 36

W
$$IC(\alpha;95\%) = [e^{5,033};e^{5,512}] = [153,40;247,54]$$

Problema 37

(a)
$$IC(E(Y \mid x = 28);95\%) = 105,7 \pm 2,101 \times \sqrt{31,28} \times \sqrt{\frac{1}{20} + \frac{(28-30)^2}{1000}} = [102,98;108,43]$$

(b)
$$IP(Y(28);95\%) = 105,7 \pm 2,101 \times \sqrt{31,28} \times \sqrt{1 + \frac{1}{20} + \frac{(28 - 30)^2}{1000}} = [93,64;117,76].$$

(c) O intervalo de previsão tem amplitude maior que o intervalo de confiança.

$$IC(E(Y \mid x);95\%) = 50,457 - 0,381x \pm 2,306 \times \sqrt{13,86} \times \sqrt{\frac{1}{10} + \frac{(x - 60)^2}{4200}}$$
.

$$IP(Y(x);95\%) = 50,457 - 0,381x \pm 2,306 \times \sqrt{13,86} \times \sqrt{1 + \frac{1}{10} + \frac{(x - 60)^2}{4200}}$$
.

Pelo gráfico, a potência média já poderia ser zero a uma temperatura de aproximadamente 110°.

Problema 39

(a)
$$\hat{\beta} = \frac{\sum x_i y_i - n \overline{x} \overline{y}}{\sum x_i^2 - n \overline{x}^2} = 12$$
; $\hat{\alpha} = \overline{y} - \hat{\beta} \overline{x} = 10$; $\hat{y}_i = 10 + 12x_i$.

- (b) Para uma viagem com "duração zero", a despesa média é de 10 U.M. Ou seja, esta é uma despesa fixa, possivelmente relacionada com os preparativos com a viagem. Além disso, a despesa média diária é de 12 U.M.
- (c) P(Y > c) = 90%, onde c é o limite superior do intervalo de previsão para Y(7) com coeficiente de confiança de 80%.

$$c = 94 \pm 1,289 \times \sqrt{100} \times \sqrt{1 + \frac{1}{102} + \frac{(7-5)^2}{1600}} = 106,97$$
. Logo, o viajante deverá levar

106,97 U.M. para que a chance de lhe faltar dinheiro seja de uma em 10.