Introduction to Big Data

CS454: Big Data Analysis and Visualization

John J. Tran
California State University Los Angeles

Course Roadmap

- Introduction
- · Data generation and collection
- · Building infrastructure to do data science
 - Map reduce, statistical analysis, machine learning, and visualization
- · Mashing data and information visualization
 - Writing algorithms to coalesce data collected into visual displays
- Automating the process: end-to-end product

What is Big Data?

- Big data is data that
 - Exceeds <u>processing capacity</u> of conventional database
 - Exceeds <u>storage capacity</u> of conventional database
 - Does not follow strict structure
- Big data "hides" data (meaning)
 - We must extract (derive) meaning
 - · Manipulation: process, aka slice and dice
 - · Visualize: look at data differently

Drew Conway's Venn diagram of Data Science

Source: Doing Data Science

Disciplines with Data Science

- · According to Nathan Yau:
 - Statistics
 - · Numbers, stats, theoretical
 - Data "munging"
 - · Parsing, scraping and formatting
 - Visualization
 - · Graphs and plots

Data Products

- Loukides suggests
 - Use of data and metadata are becoming overt
 - Ubiquitous (iTunes, Facebook)
 - · In your face
 - Recent trend: look at data in the background
 - Results-centric
 - · Impact society
 - Efficient routing, road condition > energy saving
 - Self-driving car (do we need data?)

Data Deluge

- According Loukides, challenges with growth data dependency
 - Humans cannot "manually" handle large amount of data
 - Re-examine needs:
 - Doctors don't need data, they need to heal patients with good data
 - Hotel companies use data to efficiently manage occupancy, discounts, and promotions
- · Trending: ambient data
 - How capitalize on data noise (explicit or implicit)

Combining Data

- Evolve from "single database" to joining of multiple databases to extract key meaning
- Thought experiment: How does facebook know how to identify pictures (this is a <u>very</u> <u>difficult problem</u>):
 - It knows your friends and your network
 - Search space is a whole lot smaller

Key point: combining picture database with social graph

Data Discovery

- 3rd order knowledge (Holy Grail of big data research)
 - Predictive aspect of big data analysis
 - Recommendations
- Examples
 - Google suggestion
 - Apple Genius
 - Facebook friend recommendation

(User) Interfaces

- User interface is extremely important
 - Apple recognize this
- Data is product <u>must include designers</u>
- · Case studies:
 - GPS
 - Apple iTunes
- Ultimately: data to users in a meaningful way

Evolution of Big Data

- Evolve from early days of High Performance Computing
 - HPC serves scientific computing community (e.g. weather prediction)
 - Big Data (or data science) serves business community (e.g. behavior prediction)
- The Yahoo phenomena
 - Need to index large data (for advertisement purpose)

Birth of the Cloud

- Open source technologies:
 - Hadoop
 - Linux
 - OpenStack
- · Economy of scale
 - Joe "the plumber" can do cloud computing
- · Purchase resource on demand
 - Amazon's elastic cloud
 - Microsoft's Azure cloud technology

Clouds & Big Data

Cloud provides computation and storage

Big Data is accessible to/from all cloud platforms

Source: Disruptive Possibilities

Making Sense of Data

- Once infrastructure has been built, what do we do next?
- In short Data Science is the following cycle
 - Collect data from sensors
 - Analyze data collected
 - · Derive 1st order meaning
 - · Categorize, binning, classification
 - Make sense of data collection
 - · Derive 2nd order meaning
 - · What is the data telling us?
 - Anticipate trends
 - · Derive 3rd order meaning
 - · What is the future?

First Order Meaning

- Classification of data collected
 - Requires some domain expertise
 - · Temperature and weather data requires climate scientists
 - · GPS data requires cartographer
 - · Images data requires imagery experts
- · Impose some kind of organization on the data
 - Put data into collection
 - · Images can be classified as "indoor" vs. "outdoor"
 - · Temperature data vs. precipitation data
 - Slice and dice along various dimensions
 - · Temporal, spatial, etc.
- Two immediate payoffs:
 - Physical storage of data organizational value
 - Hierarchical cognitive organization

Second Order Meaning

- Comprehending temporal and spatial location of the data collected
- Asking key pertinent questions about the data:
 - What is it?
 - Where is it?

First order meaning

- When is it?
- What is the person doing? → Second order meaning
- For example: with a collection of pictures with GPS data we can ask where is the picture taken?

Third Order Meaning

- · Much more difficult to derive
- Predictive and anticipatory in nature
- Asking trending questions
- For example, given a set of data
 - What is the tendency of the actors?
 - What is the intention of the image?
 - Where do teenage girls shop when it's raining?

Data Relationship

- Social network no data is isolated
- · Visualize using graph network tools
- Applying <u>centrality</u> theorem
 - Some mathematics to explain relationship between entities and physics behind our data model

Ultimately to tie everything back

 Derive 1st, 2nd, and 3rd order meanings from the social network graph models

Wrapping things up

- This course is about data science
 - Capture data
 - Analyze data
 - Visualize data
- · Ultimately to
 - Derive meaning
 - Predict behavior
 - Visualize patterns

Framework for Course Software Development

- We will use python as the primary development tool
- Class will work together as a team requiring some expertise with CM
 - Will use either SVN or Git
- Code will have to be properly documented
- Will use third-party open source software
- Expectations:
 - Our code will be open source
 - We will write a "paper" for our findings and discovery

Next Step

- **Learn python** (this is non-negotiable)
 - Write simple trivial examples:
 - Hello World
 - · Parse command line arguments
- Learn the python eco system
 - Rome was not built in one day, but Rome was built; so you will need to develop python code within the eco system
- Learn LaTeX (this is not negotiable)
 - Required for our paper
- Adopt third-party python libraries
 - No one builds a car from scratch anymore let's go shopping!