Formazione: Risveglio muscolare

Overview

Printer SLA

UV curing

Printer FDM

Laser Engraving and Cutter

Soldering

Oscillating electric scroll saw

Oscilloscope

Electronics

Laser Engraving and cutting

- Diode laser (5-15w)
- Desktop co2 laser (35-55w)
- Midrange co2 laser (60-100w)
- Fiber laser (engrave metal, no cutting)

What about metal cutting?

REALLY EXPENSIVE LASER CUTTING

OR... A CNC MACHINE

Better safe than sorry

- DANGERS: laser and fumes
- laser safety glasses
- ventilated working area or FFP2 masks

It's ok to make mistakes, but let's be safe

Softwares

Lightburn

Xtool creative

lasergrbl

What's next?

Gcode

Dark Edges

Curved surfaces

Careful about reflective materials

Different materials -> different settings

Lighter color reflects more light -> laser less effective

Come funziona

La stampa SLA utilizza una **resina liquida** fotosensibile che viene solidificata strato per strato da un **raggio laser UV**.

Il laser disegna ogni strato del modello sulla resina, polimerizzandola e creando il solido.

La piattaforma si alza gradualmente per consentire la costruzione del pezzo successivo.

Preparazione del file: Caricare il modello 3D nel software dedicato (formato STL).

Impostare i parametri: Selezionare risoluzione, orientamento del pezzo e supporti necessari.

Avvio stampa: Riempire il serbatoio di resina e avviare il processo di stampa.

Post-processing: Lavare l'oggetto in alcool isopropilico per rimuovere la resina residua, quindi polimerizzare completamente l'oggetto con luce UV.

Come si usa

Perché usarla

Alta precisione: Ideale per dettagli complessi e superfici lisce

Materiali specializzati: Resine specifiche per diverse applicazioni, come quelle biocompatibili o resistenti al calore.

Prototipazione rapida: Perfetta per modelli di alta qualità e precisione richiesti in ambiti come l'odontoiatria, gioielleria o design industriale

Rischi Legati all'Uso di una Stampante SLA

- 1. Esposizione ai Fumi e Resina:
- La **resina liquida** è tossica se toccata a mani nude e può causare irritazioni alla pelle o agli occhi. Inoltre, i fumi della resina possono essere nocivi se inalati.
 - **Prevenzione**: Utilizzare guanti, occhiali di protezione e lavorare in un'area ben ventilata.

• 2. Raggi UV:

- La stampante SLA utilizza un laser UV ad alta intensità per solidificare la resina. L'esposizione diretta può essere dannosa per gli occhi.
 - Prevenzione: Non aprire la stampante durante il funzionamento e utilizzare protezioni adeguate per gli occhi se necessario.
- 3. Manipolazione della Resina Post-Stampa:
- La resina non polimerizzata rimasta sull'oggetto stampato può essere irritante e pericolosa.
 - Prevenzione: Effettuare il lavaggio degli oggetti con alcool isopropilico in modo sicuro e polimerizzare completamente il pezzo con luce UV.

Manutenzione

La resina Lo schermo Gli strumenti di pulizia UV Curing

Come si usa

- **Preparazione**: Il pezzo (stampato in resina o rivestito con un materiale fotosensibile) viene inserito nella camera di cura UV.
- **Esposizione**: Viene attivata la lampada UV o la fonte luminosa LED UV, che emette luce su lunghezze d'onda specifiche (es. 365 nm, 405 nm).
- Polimerizzazione: La resina si solidifica progressivamente sotto l'esposizione alla luce, migliorando le proprietà meccaniche e superficiali.
- Completamento: Il pezzo è pronto per l'uso una volta completamente curato.

Altri accorgimenti

- **Protezione da raggi UV**: Evitare l'esposizione diretta alla luce UV, utilizzando protezioni come occhiali e schermi di sicurezza.
- Manutenzione: Pulire regolarmente il macchinario e sostituire le lampade UV quando necessarie (in caso di macchinari con lampade).
- **Ventilazione**: Assicurarsi che l'area di lavoro sia ben ventilata per evitare il surriscaldamento e l'accumulo di eventuali vapori.
- **Tempi di cura**: Regolare correttamente i tempi di esposizione e la potenza della lampada in base al materiale utilizzato per evitare sovra-esposizione o mancata polimerizzazione.

Potenziali Rischi

- Esposizione ai Raggi UV: Rischio di danni oculari e alla pelle in caso di esposizione diretta alla luce UV.
 - Prevenzione: Uso di occhiali di protezione e guanti, schermare la luce durante l'uso.
- Surriscaldamento: Un utilizzo prolungato del macchinario senza pause può causare il surriscaldamento dei componenti.
 - Prevenzione: Monitorare la temperatura e seguire le indicazioni del produttore.
- Manipolazione Materiali Polimerizzati: Le resine non completamente polimerizzate possono rilasciare sostanze irritanti.
 - Prevenzione: Verificare che la polimerizzazione sia completa prima di manipolare i pezzi

Manutenzione

Pulizia:

 Pulire regolarmente le superfici interne della camera di cura e la fonte luminosa per garantire una polimerizzazione uniforme.

• Sostituzione Lampade:

 Cambiare periodicamente le lampade UV per garantire un'efficacia ottimale del processo di curing.

Controlli Periodici:

 Effettuare verifiche regolari del sistema di raffreddamento e dei circuiti elettronici per evitare malfunzionamenti. Stampante a filamento (FDM)

Cos'è una Stampante FDM

Definizione:

- •La stampante **FDM** è una tecnologia di stampa 3D che utilizza un filamento termoplastico che
- viene fuso e depositato strato per strato per creare oggetti tridimensionali.

Materiali Utilizzati:

•Materiali comuni includono PLA, ABS, PETG, TPU e filamenti speciali come carbonio e legno.

Ambiti di Utilizzo:

 Prototipazione rapida, produzione di parti funzionali, modelli architettonici,e prodotti di consumo personalizzati

Come si usa

- Caricare il Filamento: Inserire il filamento nel sistema di estrusione e verificare che l'ugello sia pulito.
- Preparazione del Piano di Stampa: Livellare il piano di stampa per assicurare un primo strato uniforme.
- Avviare la Stampa: Impostare i parametri di stampa (temperatura dell'ugello, velocità di stampa, altezza strato) e avviare il processo.
- **Monitoraggio**: Supervisione durante i primi strati per garantire l'adesione corretta e prevenire errori.
- Rimozione del Modello: Al termine, attendere il raffreddamento del piano e rimuovere delicatamente l'oggetto.

Perché usarla

Facilità d'uso:

• Tecnologia accessibile, anche per principianti, con setup relativamente semplice.

Materiali Economici:

• Il filamento termoplastico è a basso costo rispetto ad altre tecnologie di stampa 3D.

Versatilità:

• Ampia gamma di materiali (flessibili, rigidi, trasparenti, resistenti al calore, ecc.).

Prototipazione Rapida:

• Perfetto per la prototipazione veloce, utile per iterazioni di design e test funzionali.

Rischi e sicurezza

Emissioni di Fumi:

- Alcuni materiali come ABS rilasciano fumi potenzialmente nocivi durante la fusione.
- **Prevenzione**: Stampare in aree ben ventilate e utilizzare filtri HEPA o a carbone attivo per purificare l'aria.

Rischio di Ustioni:

- L'estrusore e il piano di stampa raggiungono temperature elevate (fino a 250°C o più).
- **Prevenzione**: Non toccare l'ugello o il piano di stampa durante il funzionamento o subito dopo.

Inceppamenti del Filamento:

- Il filamento può bloccarsi nell'estrusore causando malfunzionamenti.
- **Prevenzione**: Monitorare il sistema di alimentazione e utilizzare materiali di qualità.

Manutenzione

Pulizia dell'Estrusore:

• Rimuovere residui di plastica dall'ugello per garantire un flusso uniforme del materiale.

Livellamento del Piano di Stampa:

• Controllare regolarmente l'allineamento del piano per prevenire fallimenti nella stampa.

Sostituzione del Filamento:

 Cambiare il filamento quando è esaurito o sostituirlo con uno nuovo quando necessario, assicurandosi che il vecchio sia completamente estratto.

Controlli Periodici:

• Verificare il corretto funzionamento dei componenti meccanici (cinghie, motori) e lubrificare le parti mobili per mantenere precisione e fluidità di movimento.

Cos'è un Multimetro?

- Definizione: Il multimetro è uno strumento usato per misurare vari parametri elettrici come tensione (volt), corrente (ampere) e resistenza (ohm).
- **Tipi di Multimetro**: Analogici (con ago) e Digitali (con display numerico), con quelli digitali molto più comuni e facili da usare.
- **Utilità Principale**: Ideale per diagnosticare problemi nei circuiti e per verificare il corretto funzionamento di componenti come batterie, resistori, e cavi.

Come è Fatto un Multimetro?

- •Display: mostra i risultati delle misurazioni (nei multimetri digitali).
- •Manopola di Selezione: permette di scegliere cosa misurare (V per Volt, A per Ampere, Ω per Ohm).
- Porte di Connessione:
 - Porta COM (comune, sempre collegata al filo nero).
 - •Porte aggiuntive per misurare corrente (spesso ci sono due porte, una per correnti basse e una per correnti alte).
- •Puntali: cavi rossi e neri per connettere il multimetro al circuito.

Misurare la Tensione (Volt)

- •Imposta il multimetro su "V" in corrente continua (DC), se stai misurando batterie o circuiti elettronici, o su AC se stai misurando la corrente alternata (come una presa di corrente).
- •Collega il puntale nero alla porta COM e il puntale rosso alla porta V.
- •Posiziona i puntali nei punti del circuito dove vuoi misurare la tensione (es. ai terminali di una batteria).
- Leggi la tensione sul display.

Misurare la Corrente (Ampere)

- •Imposta il multimetro su "A" in corrente continua (DC) o alternata (AC).
- •Collega il puntale nero alla porta COM e il puntale rosso alla porta per la corrente (A).
- •Per misurare la corrente, collega i puntali in **serie** al circuito, cioè il multimetro diventa parte del percorso della corrente.
- Leggi il valore sul display.

Elettronica

Cos'è l'Elettronica?

Definizione: "L'elettronica è lo studio e l'uso dell'elettricità per creare, trasferire e utilizzare informazioni."

Esempi: elettrodomestici, computer, smartphone.

Goal: capire come funzionano i componenti elettronici principali e come possiamo usarli per costruire progetti semplici.

I Componenti Fondamentali

- Resistori: limitano il "flusso" di corrente.
- Condensatori: immagazzinano energia e possono essere utilizzati per stabilizzare circuiti.
- **Diodi e LED**: i diodi lasciano passare corrente solo in una direzione; i LED sono diodi che emettono luce.
- •Transistor: usati come interruttori o amplificatori, fondamentali per creare circuiti complessi.
- Microcontrollori: piccoli "computer" che controllano altri componenti, come Arduino.

Dove Troviamo Questi Componenti?

- Resistori e Condensatori: presenti in praticamente tutti i dispositivi elettronici.
- **LED**: indicazione luminosa per apparecchi come telecomandi, elettrodomestici, dispositivi elettronici vari.
- **Microcontrollori**: la parte intelligente dietro i dispositivi elettronici.

Come Assemblare un Circuito Base

Schema di un circuito semplice

Circuiti in Serie e in Parallelo

Definizione di Circuito in Serie:

- In un circuito in serie, i componenti sono collegati uno di seguito all'altro in un'unica linea.
- La corrente elettrica attraversa ogni componente uno dopo l'altro.
- Caratteristiche: Se un componente si guasta (ad esempio, un LED si spegne), l'intero circuito si interrompe.
- Applicazioni Pratiche: Circuiti semplici dove si vuole una singola via per la corrente; esempio: alcune decorazioni natalizie.
- Utilizzo: divisione del voltaggio

Definizione di Circuito in Parallelo:

- In un circuito in parallelo, i componenti sono collegati in rami separati.
- La corrente si divide e attraversa ciascun ramo separatamente, quindi i componenti funzionano indipendentemente.
- Caratteristiche: Se un componente si guasta, gli altri continuano a funzionare.
- Applicazioni Pratiche: Circuiti domestici, dove più dispositivi devono funzionare indipendentemente.
- Utilizzo: divisione della corrente

Risveglio muscolare completato

Assignment 1

- Accendi un pc
- Apri un software di slicing
- Apri un software di progettazione

Assignment 2

- Trova questo modello
- Preparalo per la stampa

Assignment 3

• Come mettiamo le luci nel fantasma?