# Spettrometro a Reticolo

Nicolò Cavalleri, Giacomo Lini, Davide Passaro 13 novembre 2016

#### Sommario

Di seguito vengono riportate ed esaminate le procedure compiute per la misura di diverse grandezze fisiche caratteristiche di un sistema composto da un reticolo che presenta fenomeni di interferenza e diffrazione. Nello specifico, dato un reticolo, viene determinato il passo, cioè la distanza tra due fenditure, a partire dallo spettro di emissione di una sostanza con lunghezza d'onda nota; vengono determinati anche il potere dispersivo e risolutivo, rispettivamente la distanza angolare tra due righe spettrali a un determinato ordine e un indice della capacità dello strumento di risolvere in maniera precisa delle righe di dispersione. Data inoltre una lampada al mercurio (Hg), ne viene determinato lo spettro di emissione, con le lunghezze d'onda caratteristiche.

# 1 Introduzione

Uno spettrometro a reticolo è un sistema fisico composto da una base fissa su cui sono disposte due strutture rotanti, collegate a un goniometro e dei noni per la misura di angoli. Al centro di questa struttura si trova un sostegno dove viene posto il reticolo, vale a dire una lastra di vetro con delle fenditure molto numerose e sottili. A questa piattaforma sono poi collegati un collimatore, cioè un dispositivo che "raddrizza" o "collima", il fascio di luce rendendolo perpendicolare al reticolo, e un cannocchiale che consente di osservare lo spettro di emissione della luce incidente il reticolo. Avvicinando il collimatore ad una lampada è possibile catturare la luce emessa dalla stessa e osservarne lo spettro di emissione.

Dal punto di vista matematico la relazione fondamentale nell'analisi di uno spettro di emissione di una fonte luminosa è la seguente:

$$d\sin\theta = k\,\lambda\tag{1}$$

dove d rappresenta il passo del reticolo, cioè la distanza tra i punti medi di due fenditure vicine,  $\theta$  l'angolo di deflessione del raggio di luce reso monocromatico dal reticolo, k l'ordine dello spettro contenente il raggio considerato e  $\lambda$  la lunghezza d'onda della radiazione luminosa emessa. Chiaramente a

diverse lunghezze d'onda corrispondono anche diverse intensità di emissione, che sperimentalmente si osservano in maniera intuitiva a partire dalla luminosità delle righe di emissione. La relazione matematica che sta alla base di questo fenomeno è la seguente:

$$I(\theta) \propto \frac{\sin^2\left(m\frac{d}{\lambda}\pi\sin\theta\right)}{\sin^2\left(\frac{d}{\lambda}\pi\sin\theta\right)}$$
 (2)

dove I rappresenta l'intensità luminosa, m il numero di fessure del reticolo che sono investite dalla luce e le altre costanti sono come per la formula (1).

L'equazione (1), con gli strumenti a disposizione è caratterizzata dal fatto di avere due incognite,  $\lambda$  e d. Per questa ragione l'esperimento si è svolto in due fasi: la determinazione del passo (d) a partire da uno spettro noto, e la determinazione dello spettro una volta noto il passo. Nel nostro caso per la determinazione del passo è stata usata una lampada al sodio la cui emissione è caratterizzata da due lunghezze d'onda specifiche:

$$\lambda_1 = 589.0 \,\text{nm}$$
  $\lambda_2 = 589.6 \,\text{nm}$ 

corrispondenti a due righe gialle distinte ma molto vicine nello spettro. Risolvendo (1) rispetto a d è possibile dunque determinare il passo del reticolo, che da incognita diventa un termine noto, con errore associato. A questo punto la stessa relazione garantisce di poter determinare le lunghezze d'onda dello spettro di emissione di un diverso elemento chimico, nel caso in questione il mercurio (Hg).

# 2 Strumentazione

Per estrarre i valori della distanza delle fenditure e quelli delle lunghezze d'onda è stata usata la seguente strumentazione:

Lampada al sodio Questa lampada è stata utilizzata per misurare il passo del reticolo di rifrazione. La scelta di questa lampada è dovuta al fatto che presentava lunghezze d'onda note, ben chiare e separabili a tutti gli ordini.

Lampada al mercurio Usata per la misura delle lunghezze d'onda dei principali fasci di luce dello spettro del mercurio.

Reticolo di diffrazione Strumento servito separare i raggi di luce degli spettri a seconda della lunghezza d'onda. Il reticolo era dotato di 300 fenditure al millimetro per un totale di 2.4 millimetri. Questo risultato è stato verificato tramite lo studio dello spettro del sodio.

**Spettrometro** Principale strumento utilizzato. Lo spettrometro è servito per la misura degli angoli sottesi dai fasci di luce deviati dal reticolo. Questo era composto da quattro parti:

Collimatore Componente utilizzata per collimare i raggi provenienti dalla lampada. Il collimatore era fisso alla base dello spettrometro, senza possibilità di movimento. Per la messa a punto del collimatore erano presenti due viti. Una per regolare il fuoco del collimatore e una per variare l'apertura della fenditura dalla quale entrava la luce.

Piatto Utilizzato come sostegno per il reticolo a diffrazione. Il piatto era posto parallelamente al piano di lavoro ed era dotato di due pinze verticali per impedire il movimento al reticolo. Il piatto era regolabile in altezza e per rotazioni sul suo asse. Era dotato di tre viti, una di bloccaggio rispetto alle regolazioni in altezza, una di bloccaggio rispetto alle rotazioni e una vite micrometrica per piccole rotazioni sul suo asse.

Cannocchiale Utilizzato per l'osservazione dei raggi luminosi diffratti dal reticolo. Il cannocchiale era collegato allo spettrometro in modo che potesse girare intorno al piatto. Inoltre era dotato di tre viti: una per la regolazione del fuoco, una per il bloccaggio rispetto alle rotazioni intorno al piatto ed una vite (presumibilmente) micrometrica, purtroppo non funzionante.

Goniometro Utilizzato per la misura degli angoli, dotato di due coppie di noni contrapposti. Il goniometro possedeva una sensibilità al terzo di grado (ossia venti primi), teoricamente estendibile tramite l'utilizzo dei noni al mezzo primo. Più realisticamente l'incertezza dovuta alla difficoltosa lettura del nonio contribuiva con un errore di circa un primo.

Righello Utilizzato per misurare la larghezza del reticolo. Il righello aveva sensibilità al millimetro.

# 3 Iter sperimentale

È possibile dividere la procedura sperimentale in tre fasi:

- Calibrazione e messa a punto degli strumenti.
- Misura del passo del reticolo.
- Analisi dello spettro del mercurio.

Ciascuna fase è servita strettamente alla successiva e tutte le misure effettuate sono state usate per un'accurata analisi dei dati.

### 3.1 Calibrazione dello spettrometro

La calibrazione dello spettrometro era necessaria al fine di rendere più chiaramente visibile gli spettri del sodio e del mercurio.

#### Cannocchiale

In primo luogo è stato spostato il fuoco del cannocchiale in modo da poter mettere a fuoco luce proveniente dall'infinito. Per fare ciò è stato puntato il cannocchiale fuori dalla finestra ed è stato messo a fuoco il palazzo di fronte al laboratorio (l'altra ala del Dipartimento di Fisica), posto ad una distanza di circa 50 metri. La calibrazione ottimale del cannocchiale era necessaria per permettere una chiara visione dei raggi di luce paralleli provenienti dal collimatore.

#### Collimatore

Per la calibrazione del collimatore è stato rimesso a posto il cannocchiale ed è stata accesa la lampada al sodio. Una volta scaldata attraverso una delle viti del collimatore è stata stretta la fenditura tanto da poter, senza fatica, osservare la luce della lampada attraverso il cannocchiale. Successivamente è stato sistemato il fuoco del collimatore in modo da poter vedere nitidamente la fenditura. Come ultimo passaggio è stata stretta ancora la fenditura fino al punto che il fascio di luce centrale avesse uno spessore di mezzo millimetro circa.

### Piatto

La calibrazione del piatto era volta alla corretta misura degli angoli. Questa consisteva nel posizionamento del reticolo perpendicolarmente al fascio di luce.

Per fare ciò è stato inizialmente posto a mano il reticolo quanto più perpendicolarmente al fascio possibile e sono stati misurati gli angoli sottesi dal raggio più interno al quarto ordine sia a destra che a sinistra del centro. Per la misura degli angoli di deflessione, in questo caso come in tutti gli altri, è stato preso il valore assoluto della differenza dei valori individuati dal massimo centrale e il raggio la cui deflessione si voleva misurare. È stato quindi calcolato l'angolo  $\beta$  tra la normale al reticolo e il fascio collimato attraverso la relazione:

$$\beta = \arctan\left(\sin\left(\frac{\theta_2 - \theta_1}{2}\right) \cdot \frac{\cos\left(\frac{\theta_2 + \theta_1}{2}\right)}{1 - \cos\left(\frac{\theta_2 - \theta_1}{2}\right)\cos\left(\frac{\theta_1 + \theta_2}{2}\right)}\right)$$

dove  $\theta_1$ ,  $\theta_2$  sono gli angoli di deflessione misurati. Noto l'errore  $\beta$  attraverso la vite micrometrica si è corretta la posizione del reticolo e il procedimento è stato ripetuto fino ad ottenere un valore di  $\beta$  minore di cinque primi.

# 3.2 Misura del passo del reticolo

Verificata la perpendicolarità del reticolo rispetto al fascio di luce collimato si è potuto proseguire con la determinazione del passo.

Per calcolare il passo sono stati misurati gli angoli sottesi dai fasci di luce dei primi ordini (sia da una parte dello zero che dall'altra) dei due raggi di luce distinguibili. Infine è stato trovato il passo d tramite la relazione:

$$d = \frac{k\lambda}{\sin\theta_{k,\lambda}}$$

dove k è l'ordine,  $\lambda$  è la lunghezza d'onda e  $\theta_{k,\lambda}$  è l'angolo sotteso da un raggio di lunghezza d'onda  $\lambda$  al k-esimo ordine.

Per una stima del potere risolutivo dello strumento sono stati misurati gli angoli sottesi da i fasci di luce al prim'ordine in quanto erano i più vicini misurati in tutta l'esperienza.

# 3.3 Analisi dello spettro del mercurio

In modo simile alla misura del passo è stato analizzato lo spettro del mercurio. Per fare ciò era necessario conoscere la misura del passo del reticolo. Infatti, una volta sostituita la lampada sono state misurate le lunghezze d'onda appartenenti allo spettro del mercurio. Questo è stato fatto campionando angoli agli ordini più grandi ai quali i raggi risultavano nitidamente distinguibili e inserendoli nella relazione:

$$\lambda = \frac{d\sin\theta_{k,\lambda}}{k}$$

trovata invertendo la precedente.