第14屆泛珠三角物理奧林匹克暨中華名核邀請賽力學基礎試 (2018年2月22日)

I. 答案

选择题 (20×2分)

4.	_ (- :	/ -	,																
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20
Е	В	D	Е	В	D	С	Α	Α	F	С	A	F	F	D	С	В	Е	Α	С

21.(12 分)

GMm	(2)卫星与地球中心最短距离和最长距离					
(1)卫星的机械能 $E_0 = \frac{1}{2} m v_0^2 - \frac{GMm}{r_0}$	$r_{\text{max}} = r_0 \left(\frac{GM}{1 + r_0} + \left(\frac{GM}{1 + r_0} \right)^2 - \frac{r_0 v_0^2 \sin^2 \theta_0}{1 + r_0} \right)$					
和角动量 $L_0=mr_0\nu_0\sin\theta_0$.	$r_{\min} = r_0 \left(2GM - r_0 v_0^2 - \sqrt{2GM - r_0 v_0^2} \right)$					
(3)椭圆轨道半长轴 $a=\frac{GMr_0}{2GM-r_0v_0^2}$.	(4)卫星的轨道周期 $\tau = 2\pi GM \left(\frac{r_0}{2GM - r_0 v_0^2}\right)^{3/2}$					

22.(20分)

(1) 简谐振动,固	固有频率 ω	$r = \frac{g}{R}$ 和周期	$\forall T=2\pi\sqrt{\frac{R}{g}}$	(2)由 <u>机械能守恒</u> 定律,最大速度 $V = \sqrt{\frac{g}{R}}L$.				
(3) 铁路隧道	s=	θ =	(i)隧道全长 2L	(ii)最大深度(<i>R-r</i>)	(iii)最大速度 V	(iv)所需的时间		
(a)北京至广州	1,250km	5.5953 ⁰	1,248 km	30.49 km	780 m/s	2,512 s(秒)		
(b)广州至香港	150km	0.6714^{0}	150 km	0.439 km	93.75m/s	2,512 s(秒)		
(4)由 <u>动量守恒</u> 和	(4)由 <u>动量守恒</u> 和 <u>机械能守恒</u> 定律瞬时速度:发射卫星 $v_1 = \frac{3m_2 - m_1}{m_1 + m_2} V$ 和重物 $v_2 = \frac{3m_1 - m_2}{m_1 + m_2} V$.							
(5)由 <u>机械能守恒</u> 定律速度 $u^2 = \frac{8m_2(m_2 - m_1)}{(m_1 + m_2)^2} \frac{g}{R} L^2$. (6)比值 $\frac{r}{R} = \sqrt{1 - \frac{(m_1 + m_2)^2}{8m_2(m_2 - m_1)}}$								
(7)最大深度: (, , , , , , , , , , , , , , , , , , ,							

23.(12 分)

	(a) 5	11柱体	(b) 圆台体					
	液体浸到 H/3 高度	液体浸到 2H/3 高度	正立	倒立				
$(1) 密度 \frac{P}{\rho} = \frac{V}{V} =$	$\frac{1}{3}$	$\frac{2}{3}$	$\frac{37}{56}$	19 56				
(2) 质量 <i>M=ρV=</i>	$\frac{1}{3}\pi R^2 H \rho$	$\frac{2}{3}\pi R^2 H \rho$	$\frac{37}{12}\pi R^2 H \rho$	$\frac{19}{12}\pi R^2 H \rho$				
(3) $a+\omega^2x=0$,频率 $\omega^2=$	$\frac{3g}{H}$	$\frac{3g}{2H}$	$\frac{27g}{37H}$	$\frac{27g}{19H}$				

24.(16分)

设转动惯量 I=kMR ²	实心球 k=2/5	空心薄壁球 k=2/3
(1) 球心 C 的速度 $v_c^2 = 2g(R_0 + R) \frac{1 - \cos \varphi}{1 + k}$	$v_c^2 = \frac{10}{7} g(R_0 + R)(1 - \cos \varphi)$	$v_c^2 = \frac{6}{5} g(R_0 + R)(1 - \cos(1))$
(2) 支持力 $N = Mg \frac{(3+k)\cos\varphi - 2}{1+k}$	$N=Mg\frac{17\cos\varphi-10}{7}$	$N=Mg\frac{11\cos\varphi-6}{5}$
和 其所受静摩擦力 $f = Mg \frac{k \sin \varphi}{1+k}$.	$f = \frac{2}{7} Mg \sin \varphi$	$F = \frac{2}{5} Mg \sin \varphi$
(3) 当 $N=0$ 即临界角 $\cos \varphi_0 = \frac{2}{3+k}$ 时,球滑落.	$\varphi_0 = 53.97^0$	$\varphi_0 = 56.94^0$
(4) 静摩擦系数 $\mu(\varphi) = \frac{k \sin \varphi}{(3+k)\cos \varphi - 2} = \mu_{\min}$	$\mu_{\min} = \frac{2\sin\varphi}{17\cos\varphi - 10}$	$\mu_{\min} = \frac{2\sin\varphi}{11\cos\varphi - 6}$
(5) 球在范围 $\varphi \le 30^0$ 做纯滚动 $\mu(30^0) \ge \frac{k}{(3+k)\sqrt{3}-4} = \mu_{\min}$	$\mu_{\min} = \frac{2}{17\sqrt{3} - 20} = 0.2118$	$\mu_{\min} = \frac{2}{11\sqrt{3} - 12} = 0.2836$
(6) 角度最小值 ϕ_{min} =0, 球将会由圆柱面顶部直接滑落	$\varphi_{\min}=0 \stackrel{\text{\tiny def}}{=} \mu=0$	φ _{min} =0 當μ=0
最大值 $\cos \varphi_{\text{max}} = \frac{2}{3+k}$,即球与圆柱面分离时的临界角 φ_0	$\varphi_{\text{max}} = 54^0 \stackrel{\text{def}}{=} \mu \rightarrow \infty$	$\varphi_{\text{max}}=57^0 \stackrel{\omega}{=} \mu \rightarrow \infty$

Ⅱ. 赛题和解答

1. 两个质量为 M 和半径 OA=OB=R 均匀等厚度圆板: (i)在半径 OA 上挖去一个直径为 R 的圆洞; (ii)在半径 OB 中点 P 贴上一个质量为 m 的质点。若二者形心 C 位置相同,则 m=kM,其中 k=

A. 0.1

B. 0.2

C. 0.3

D. 0.4

E. 0.5

F. 0.6

答案: E

解答:

,	· — ·				
	质量	半径		质量	半径
圆板	M	R	圆板	M	R
圆洞	− <i>M/</i> 4	R/2	质点	kM	3 <i>R/</i> 2
圆板-圆洞	3 <i>M/</i> 4	d_{AC}	圆板+质点	(1+k)M	d_{AC}

 $MR+(-M/4)(R/2) = (M-M/4) d_{AC} \Rightarrow d_{AC} = 7R/6;$

 $MR+(kM)(3R/2)=(1+k)M(d_{AC})=(1+k)M(7R/6) \Rightarrow k=0.5.$

一辆质量为 2,000kg 的汽车,发动机额定功率为 80kW。它在公路上行驶时所受阻力为车重的 0.2 倍。若汽车 保持恒定功率行驶,运动的最大速度 v_m =

B. 20m/s

C. 25m/s

D. 30m/s

E. 35m/s

F. 40m/s

3. (续上题)若汽车以加速度 $2m/s^2$ 做匀加速行驶,匀加速运动的最长时间 t=

A. 2s

B. 3s

C. 4s

D. 5s

E. 6s

F. 7s

答案: **B D**

解答: 已知质量M=2,000kg, 额定功率 $P_e=80,000$ W, 阻力f=0.2Mg=4,000N.

由汽车的受力运动图,应用牛顿运动定律,有F-f=Ma.

(1) 匀速运动 a=0, 恒力 F=f=4,000N.

由 P_e =Fv, 得到汽车做匀速运动的最大速度 v= 20m/s.

(2) 匀加速运动a=2m/s², F=f+Ma=8,000N.

由 P_e =Fv, 得到汽车做匀加速运动的最终速度 v=10m/s; 由 v=at 有最长时间 t=5s.

4. 重力场中质量为m的小球A位于某一高度;质量为M的平板B位于水平地面上。在平板表面的上方,存在一 定厚度的排斥力场, 当小球 A 进入「相互作用区域」时, 平板 B 与球 A 之间会有竖直方向的排斥力 F=6mg; 恒力 F对 A 的作用使其不与 B 的上表面接触。在水平方向上 A 和 B 之间没有相互作用力。

球在点 A 经历时间 t_1 =1s 到达排斥力场,则它从开始自由下落到再次回到初始位置所经历的时间 T=

B. 2.1s

C. 2.2s

D. 2.3s

E. 2.4s

F. 2.5s

5. (续上题)小球A在运动的一个周期所经过的路程S=

A. 11m

B. 12m

C. 13m

D. 14m

E.15m

F. 16m

(续上题)当小球A开始自由下落的时刻,平板B以速度 v_0 =20m/s向右滑动,并且平板与水平地面之间的滑动摩擦 系数 μ =0.25和质量之比m:M=1:10。假设平板足够长,保证A总能落入上方的该区域。在小球A运动的一个周期T内, 平板B速度的减少 $\Delta v=$

A. 3.2m/s

B. 4.0m/s

C. 5.0m/s

D. 6.6m/s E.9.8m/s

F. 16m/s

7. (续上题)当平板B停止滑动时,球A已经回到初始位置的次数N=

A. 1

B. 2

C. 3

D. 4

E. 5

F. 6

答案: EBDC

解答1: (过程法)

过程	I	II	III	IV
A	(ia) $v_t = v_0 + at$	(ib) $s = v_0 t + \frac{1}{2} a t^2$	(ic) $v_t^2 = v_0^2 + 2as$	(ii) ΣF=ma
运动	自由落体	匀减速	匀加速	竖直上抛
ΣF =	mg	mg-6mg=-5mg	-5 <i>mg</i>	mg
a=	g	-5g	−5 <i>g</i>	g
<i>t</i> =	1 s	$0=10+(-5g)t \Rightarrow \underline{0.2s}$	0.5s	1s
v_0 =	0	10m/s	0	10m/s
v_t =	$gt=10\times1=\underline{10\text{m/s}}$	0	10m/s	0
h=	$\frac{1}{2}gt^2 = \frac{1}{2} \times 10 \times 1^2 = \underline{5m}$	$0=10^2+2(-5g)h \Rightarrow \underline{1m}$	1m	5m
В	(iii) $f = \mu N$	$\Rightarrow -f = Ma \Rightarrow a = -\mu \frac{N}{M}$		
运动	匀减速i	匀减速ii	匀减速ii	匀减速i
N=	Mg=10mg	<i>Mg</i> +6 <i>mg</i> =16 <i>mg</i>	13mg	10mg
a=	$-\mu g = -2.5 \text{m/s}^2$	$-1.6\mu g = -4 \text{m/s}^2$	-4m/s ²	-2.5m/s ²
$v_0 =$	20m/s	17.5m/s	16.7m/s	15.9m/s
v_t =	$v_0+at=20-2.5\times1=17.5$ m/s	$=17.5-4\times0.2=\underline{16.7\text{m/s}}$	<u>15.9m/s</u>	<u>13.4m/s</u>
s=	$20 \times 1 + \frac{1}{2} (-2.5) \times 1^2 = \underline{18.75m}$	$17.5 \times 0.2 + \frac{1}{2} (-4) \times 0.2^2 = 3.42 \text{m}$	<u>3.26m</u>	<u>14.65m</u>

解答2: (状态法)

(1) 在小球A从开始下落到进入「相互作用区域」,所经历的时间 t_1 =1s和高度 h_1 =5m; 之后其做减速运动直至速度为零,所经历的时间设为 t_2 和下落的高度设为 t_2 。

对全过程应用动量定理 ΣFt = $\Delta(mv)$ 即 $mg(t_1+t_2)$ - $(6mg)t_2$ = $0 \Rightarrow t_2$ =0.2s.

:. 球A运动的一个周期 $T=2(t_1+t_2)=2.4s$.

对全过程应用动能定理 $\Sigma W=\Delta E$ 即 $mg(h_1+h_2)-(6mg)h_2=\Rightarrow h_2=\frac{mgH}{F-mg}=\frac{5}{6-1}=1$ m.

- :. 球A运动的一个周期经过的路程 $S=2(h_1+h_2)=12m$.
- (2) 设在小球A运动的一个周期T内,平板B的速度减少为 Δv ,

由动量定理 $\mu(Mg)2t_1+\mu(Mg+6mg)2t_2=M$ $\Delta v \Rightarrow \mu(10g)2t_1+\mu(10g+6g)2t_2=10$ $\Delta v \Rightarrow \Delta v=2\mu g(t_1+1.6t_2)=\underline{6.6}$ m/s.

小球A回到初始位置的次数 $n = \frac{v_0}{\Delta v} = \frac{20}{6.6} \approx 3.03.$: $N = \underline{3}$.

8. 长度为 L 的水平细绳(不计质量和不可伸长),左端有一个质量为 M 的小球,右端系在半径为 R 和圆心为 O 的固定圆柱体顶端的 A 点上。小球被释放后绕圆柱体摆动,运动到点 P 时,摆线与圆柱体在 Q 点相切。

设切线 PQ=s 和圆心角 $AOQ=\varphi$;则摆球运动到 P 点时下降的高度 $h(\varphi)=$

A. $L\sin\varphi + R(1-\cos\varphi - \varphi\sin\varphi)$

B. $L\cos\varphi + R(1-\cos\varphi-\varphi\sin\varphi)$

C. $L\sin\varphi + R(1-\sin\varphi - \varphi\cos\varphi)$

D. $L\sin\varphi - R(1-\cos\varphi - \varphi\sin\varphi)$

E. $L\sin\varphi + R(1+\cos\varphi - \varphi\sin\varphi)$

F. $L\sin\varphi + R(1-\cos\varphi + \varphi\sin\varphi)$

9. (续上题)已知 $L=(2+\pi/2)R$,则摆球运动到最低点时下降的高度 H=

- A. 3.0*R*
- B. 3.2*R*
- C. 3.4R
- D. 3.6*R*
- E. 3.8*R*
- F. 4.0*R*

10. (续上题)设 V 为摆球运动过程的最大速度,则 V^2 =

A. gR

- B. 2*gR*
- C. 3*gR*
- D. 4*gR*
- E. 5*gR*

11. (续上题)摆球在最大速度时,细绳的张力 T=

- A. 2Mg
- B. 3*Mg*
- C. 4*Mg*
- D. 5*Mg*
- E. 6*Mg*

F. 7Mg

F. 6*gR*

答案: AAFC

解答:

(1) L=MA=直线 PQ+弧线 $QA=s+R\varphi \Rightarrow s$ 和 φ 的关系 $s=L-R\varphi$.

质点摆动到 P 点时下降高度 $h=R(1-\cos\varphi)+s\sin\varphi$, $=R(1-\cos\varphi)+(L-R\varphi)\sin\varphi$ \Rightarrow

 $h(\varphi) = L\sin\varphi + R(1 - \cos\varphi - \varphi\sin\varphi).$

(2) 质点在最低点时 φ =90⁰= $\frac{\pi}{2}$ \Rightarrow H= $h(\frac{\pi}{2})$ =L+ $R(1-\frac{\pi}{2})$.

已知 $L=(2+\frac{\pi}{2})R$, $H=(2+\frac{\pi}{2})R+R(1-\frac{\pi}{2})=\underline{3R}$.

- (3) 机械能守恒 $MgH = \frac{1}{2}MV^2 \Rightarrow V^2 = 2gH = \underline{6gR}$.
- (4) 牛顿定律ΣF= $ma \Rightarrow T Mg = M \frac{V^2}{3R R} \Rightarrow T = 4Mg$.
- **12.** 半径 R=5cm 和偏心距 e=3cm 的偏心圆盘绕水平轴 O 以匀角速度 $\omega=4$ rad/s 作顺时针转动,使顶杆 AB 沿着轴线通过点 O 在的竖直滑槽上下移动。当圆心 C 与轴 O 在同一水平线上时顶杆以 cm/s 为单位元的速率是
- 13. (续上题)以 cm/s² 为单位的加速度大小是
- A. 12B. 16
- C. 20
- D. 24
- E. 30
- F. 36

答案: AF

解答:

(1) 顶杆 AB 与凸轮之间存在相对运动。

动点	<i>AB</i> 杆的 <i>A</i> 点	绝对运动	A 点沿铅直方向的直线运动
动系	凸轮	相对运动	A 点沿凸轮表面的圆周运动
静系	基座	牵连运动	凸轮绕 0 轴的匀速转动

(2) 速度分析和加速度分析

	v_a	v_e	v_r	\boldsymbol{a}_a	a_e	$a_r^{\ au}$	$\boldsymbol{a}_r^{\ n}$	\boldsymbol{a}_k
方向	竖直	水平向右	沿凸轮切线	竖直	指向 0	沿凸轮切线	指向 0	沿 CA
大小	未知	$\sqrt{R^2-e^2}\omega$	未知	未知	$\sqrt{R^2 - e^2} \omega^2$	未知	$\frac{{v_r}^2}{R} = R\omega^2$	$2\omega v_r = 2R\omega^2$

(3) 求速度和求加速度

应用速度合成定理 $\mathbf{v}_{q}=\mathbf{v}_{e}+\mathbf{v}_{r}$ 画出速度合成图.

$$\frac{v_a}{v_e} = \frac{e}{\sqrt{R^2 - e^2}} \implies v_a = v_e \frac{e}{\sqrt{R^2 - e^2}} = e \omega.$$

顶杆速率 v_a =3cm×4/s=12cm/s 方向竖直向上.

$$\frac{v_r}{v_e} = \frac{R}{\sqrt{R^2 - e^2}}, v_r = v_e \frac{R}{\sqrt{R^2 - e^2}} = R\omega$$
方向指向左上方.

应用牵连运动为定轴转动时的加速度合成定理 $a_o=a_e+a_r+a_r^n+a_k$ 画出加速度 合成图. $a_a \sin \theta = a_k - a_r^n - a_e \sin \theta \Rightarrow$

$$a_{a} = \frac{a_{k} - a_{r}^{n}}{\sin \theta} - a_{e} = \frac{R}{\sqrt{R^{2} - e^{2}}} (2R\omega^{2} - R\omega^{2}) - \sqrt{R^{2} - e^{2}} \omega^{2} = \frac{e^{2}}{\sqrt{R^{2} - e^{2}}} \omega^{2}.$$

顶杆加速度 $q_0=3^2/\sqrt{5^2-3^2}\times 4^2=36$ cm/s².

14. 如图(a)所示,在水平地面上有二完全相同的均匀圆柱/圆球形刚体,刚体 1 做质心速度为 v_0 的纯滚动,刚体 2则静止不动。若两者做完全弹性碰撞,则碰撞后它们的瞬时质心速度和瞬时角速度分别为

刚体	A.	B.	C.	D.	E.	F.
1	v_0 和 ω_0	0.5v₀和 0.5 <i>∞</i> ₀	0.25v₀和 0.25 <i>ω</i> ₀	0和0	v _o 和 0	0和 ω ₀
2	0和0	0.5v₀和 0.5 <i>∞</i> ₀	0.75v₀和 0.75 <i>ぬ</i> ₀	v_0 和 ω_0	0和 ω ₀	ν ₀ 和 0

- **15.** (接题 14)若两者是均匀圆柱体,则完全弹性碰撞后它们达到纯滚动时的质心速度 v_1 和 v_2 =
- **16.** (接题 14)若两者是转动惯量为 $I=2MR^2/3$ 的薄壁球壳,则完全弹性碰撞后达到纯滚动时 v_1 和 $v_2=$

B. 48%

- A. $\frac{2}{3}v_0 \pi \frac{1}{3}v_0$ B. $\frac{1}{2}v_0 \pi \frac{1}{2}v_0$ C. $\frac{2}{5}v_0 \pi \frac{3}{5}v_0$ D. $\frac{1}{3}v_0 \pi \frac{2}{3}v_0$ E. $\frac{2}{7}v_0 \pi \frac{5}{7}v_0$ F. $\frac{1}{4}v_0 \pi \frac{3}{4}v_0$

- 17. (接 15 题)
- **18.** (接 16 题) 由图(a)至图(b)整个过程中损失机械能的百分数为
 - C.46.7%
- D. 45.5%
- E. 44.4%
- F. 40.8%

答案: FDCEB

如图所示,两刚体完成弹性碰撞时,交换质心速度 $v_0=R\omega_0$ 而角速度 ω_0 不变。 设两刚体各经过时间 T_1 和 T_2 达到角速度为 ω_1 和 ω_2 的纯滚动,则质心速度 $v_1=R\omega_1$ 和 $v_2=R\omega_2$ 。 对它们使用动量定理和动量矩定理,完全弹性碰撞后球达到纯滚动时的质心速度

刚体	动量定理	动量矩定理	质心速度
1	$fT_1=Mv_1$	$(fR)T_1=I(\omega_0-\omega_1)$	$v_1 = \frac{I_c}{I_c + MR^2} v_0 = \frac{k}{k+1} v_0$
2	$fT_2=M(v_0-v_2)$	$(fR)T_2=I\omega_2$	$v_2 = \frac{MR^2}{I_c + MR^2} v_0 = \frac{1}{k+1} v_0$

系统原机械能 $E_k = \frac{1}{2}Mv_0^2 + \frac{1}{2}I\omega_0^2 = \frac{1+k}{2}Mv_0^2$,

完全弹性碰撞后两球达到纯滚动时机械能 $E_k' = \frac{1}{2}Mv_1^2 + \frac{1}{2}I\omega_1^2 + \frac{1}{2}Mv_2^2 + \frac{1}{2}I\omega_2^2 = \frac{1+k}{2}M(v_1^2 + v_1^2)$.

全部过程中损失的机械能 $\eta = \frac{E_k - E_k'}{E_k} = 1 - \frac{v_1^2 + v_2^2}{v_0^2}$.

	薄壁圆柱壳	薄壁球壳	圆柱体	球体
转动惯量 $I_c=kMR^2$, 其中 $k=$	1	$\frac{2}{3}$	$\frac{1}{2}$	$\frac{2}{5}$
达到纯滚动时的质心速度 $\frac{v_1}{v_0} = \frac{k}{k+1} \pi \frac{v_2}{v_0} = \frac{1}{k+1}$	$\frac{1}{2}$ 和 $\frac{1}{2}$	$\frac{2}{5}$ π $\frac{3}{5}$	$\frac{1}{3}$ π $\frac{2}{3}$	$\frac{2}{7}$ π $\frac{5}{7}$
全部过程中损失的机械能 $\eta=1-\frac{{v_1}^2+{v_2}^2}{{v_0}^2}=$	$\frac{1}{2}$ =50%	$\frac{12}{25}$ =48%	$\frac{4}{9}$ =44.4%	$\frac{20}{49}$ =40.8%

19. 陀螺仪(Gyroscope)是一种用来感测与维持方向的装置,基于角动量守恒的理论设计出来的。陀螺仪主要是由 一个位于轴心且可旋转的转子构成。陀螺仪一旦开始旋转,由于转子的角动量,陀螺仪有抗拒方向改变的趋向。 如图所示,一陀螺仪均匀盘转子质量为M和半径为R并且以角速度 α 转动,转轴长度为H并且其质量远小于均匀 盘。转轴的另外一端铰合在桌上,但是转轴可以在任何方向上自由转动并且倾斜于垂直方向。

转子的角动量向量的大小和方向为

- $\frac{MR^2}{2}\omega$ 沿转轴向上 B. $\frac{MR^2}{2}\omega$ 沿转轴向下 C. $\frac{MR^2}{2}\omega$ 垂直于转轴

- $MR^2\omega$ 沿转轴向上
- E. $MR^2\omega$ 沿转轴向下
- F. $MR^2ω$ 垂直于转轴
- **20**. (续上题) 陀螺仪进动的角速度 $\Omega = k (gH/R^2\omega)$, 其中 k=
- B. 1.5 C. 2

- F. 3.5

答案: AC

解答: 角动量 $L=I\omega=\frac{MR^2}{2}\omega$.

扭矩 τ = $MgH\sin\theta$ 并指向垂直于纸面. 角动量的变化 ΔL = $L\sin\theta$ $\Delta\phi$.

角动量定理
$$\tau \Delta t = \Delta L \Rightarrow \tau = \frac{\Delta L}{\Delta t} = J \sin \theta \frac{\Delta \phi}{\Delta t} = (L \sin \theta) \Omega \Rightarrow \Omega = \frac{2gH}{R^2 \omega}$$
.

21. (12 分)

质量为m的卫星环绕质量为M的地球运行。当与地球中心距离为 r_0 时,卫星的速率为 v_0 并且速度方向 与向外的径向矢量成角度 θ 。试写出如下表达式:

- (1) 卫星的机械能 E_0 和角动量 L_0 ; (2) 卫星与地球中心最短距离 r_{\min} 和最长距离 r_{\max} ;
- (3) 椭圆轨道的半长轴 a;
- (4) 卫星轨道的周期 T。

- 卫星的机械能 $E_0=E_k+E_p=\frac{1}{2}mv_0^2-\frac{GMm}{r}$ 和角动量 $L_0=mr_0v_0\sin\theta_0$ 垂直于轨道平面指向外.
- 在最远和最近距离,速度与矢径垂直即 $\theta_0=0$ 和 180^0 ,则

角动量守恒
$$L_0=mrv \Rightarrow v = \frac{L_0}{mr} \Rightarrow E_k = \frac{1}{2}m\left(\frac{L_0}{mr}\right)^2 = \frac{{L_0}^2}{2mr^2}$$

机械能守恒
$$\frac{{L_0}^2}{2mr^2} - \frac{GMm}{r} = E_0 \Rightarrow r^2 + \frac{GMm}{E_0} r - \frac{{L_0}^2}{2mE_0} = 0 \Rightarrow r = -\frac{GMm}{2E_0} \pm \sqrt{(\frac{GMm}{2E_0})^2 + \frac{{L_0}^2}{2mE_0}}$$

$$\Rightarrow r_{\text{max}} = r_0 \left(\frac{GM}{2GM - r_0 v_0^2} \pm \sqrt{\left(\frac{GM}{2GM - r_0 v_0^2}\right)^2 - \frac{r_0 v_0^2 \sin^2 \theta_0}{2GM - r_0 v_0^2}} \right)$$

(3)
$$\# \text{Kin} \ a = \frac{1}{2} (r_{\text{max}} + r_{\text{min}}) = \frac{GMr_0}{2GM - r_0 v_0^2}$$
.

(4) 开普勒第三定律
$$\frac{\tau^2}{a^3}$$
= $K \Rightarrow \tau^2 = \frac{4\pi^2}{GM}a^3 = \frac{4\pi^2}{GM}(\frac{GMr_0}{2GM - r_0v_0^2})^3 = (2\pi GM)^2(\frac{r_0}{2GM - r_0v_0^2})^3$

$$\Rightarrow$$
 卫星的轨道周期 $\tau=2\pi GM(\frac{r_0}{2GM-r_0v_0^2})^{3/2}$.

22. (20分)

沿半径 R=6,400km 和重力加速度 g=10m/s² 的地球弦线 ACB 挖一条光滑通道,设 AC=BC=L。

- (1) 试描述质量为m的物体在中心点C附近的运动情况。
- (2) 试写出物体在信道中运动的最大速度 V。
- (3) 已知地球表面距离: (a) 北京至广州之间为 1,250 公里; (b) 广州至香港 150 公里。

当局拟建造二条连接贯穿三座城市的铁路隧道。试分别计算: (i) 隧道长度 2L, (ii) 隧道距离地球表面的最大深度; (iii) 列车在隧道行驶的最大速度 V; (iv) 列车通过隧道所需的时间 t。

- (4) 有学者提出了不用火箭发射人造地球卫星的设想:在通道出口 A 和 B,分别将质量为 m_1 的待发射卫星和质量为 m_2 的重物同时自由释放,只要 $m_1 < m_2$,它们弹性碰撞后卫星就会从信道口 A 冲出。试求:
- (i) 发射卫星 m_1 和重物 m_2 弹性碰撞之后的瞬时速度 v_1 和 v_2 ;
- (ii) 发射卫星返回到出口 A 的速度为 u;
- (5) 设发射卫星上有一种装置,在卫星刚离开出口A时,立刻把速度方向变为沿该处地球切线的方向,但是不改变速度的大小。这样,发射卫星便有可能绕地心O做匀速圆周运动,成为一颗人造地球卫星。试求:地心到该通道的距离与地球半径之比r/R(以参量 m_1 和 m_2 表达)。
- (6) 设质量 $(i)m_2=2m_1$; 和 $(ii)m_2=20m_1$ 。试计算两种情况下通道距离地球表面的最大深度。

解答:

(1) 质量为 m 的物体在距离地心为 r 处所受万有引力 $F(r) = \frac{GmM_r}{r^2} = \frac{GmM}{r^2} (\frac{r}{R})^3 = \frac{GmM}{R^3} r$.

质量 m 在地球表面所受万有引力 $F(R) = \frac{GmM}{R^2} ≈ mg$.

对于质量m在平衡位置C点沿信道方向的位移x,有地心引力

$$F = \frac{GmM}{R^3} \sqrt{r^3 + x^2} \implies F_x = (\frac{GmM}{R^3} \sqrt{r^2 + x^2}) \frac{x}{\sqrt{r^2 + x^2}} = \frac{GmM}{R^3} x = \frac{mg}{R} x.$$

$$F_x = -\frac{mg}{R}x = ma \Rightarrow a + \omega^2 x = 0, \ \omega^2 = \frac{g}{R}$$
,即质量 m 以 C 为平衡位置做周期 $T = 2\pi \sqrt{\frac{R}{g}}$ 简谐振动.

(2) 机械能守恒
$$\frac{1}{2}mV^2 = \frac{1}{2}kL^2 \Rightarrow V^2 = \frac{k}{m}L^2 = \frac{g}{R}L^2 \Rightarrow$$
 列车在 C 点具有最大速度 $V = \sqrt{\frac{g}{R}}L$.

(3)
$$(i)\theta = \frac{s/2}{R} \cdot \frac{180}{\pi} = \frac{90s}{\pi R}$$
,隧道长度 $2L=2R\sin\theta$, (ii) 最大深度 $R-r=R(1-\cos\theta)$;

(iii) 最大速度
$$V = \sqrt{\frac{g}{R}}L$$
; (iv) 通过隧道所需的时间 $t = +$ 周期= $\pi \sqrt{\frac{R}{g}}$.

铁路隧道	s=	$\theta = \frac{90s}{\pi R} \approx$	(i) 隧道长度 2 <i>L</i> =2 <i>R</i> sin <i>θ</i> ≈	(ii) 最大深度 =R(1-cos θ)≈	(iii) $V = \sqrt{\frac{g}{R}}L$	(iv) $=\pi\sqrt{\frac{R}{g}}$
(a)北京至广州	1,250 km	5.5953^{0}	1,248 km	30.49 km	780 m/s	2,512 s
(b)广州至香港	150 km	0.6714^{0}	150 km	0.4394 km	93.75m/s	=41.87 min.

(4) 质量为m的待发射卫星和质量为Km的重物在通道的两个出口处A和B同时自由释放,经历时间

 $\frac{\pi}{2}\sqrt{\frac{R}{g}}$ 后在中心点 C 相遇,同时达到最大速度 $V=\sqrt{\frac{g}{R}}L$ 。它们弹性碰撞后的瞬时速度为 v_1 和 v_2 ,则

动量守恒
$$m_1V+m_2(-V)=m_1(-v_1)+m_2v_2 \Rightarrow m_2v_2=(m_1-m_2)V+m_1v_1$$
 (a)

机械能守恒
$$\frac{1}{2}m_1V^2 + \frac{1}{2}m_2V^2 = \frac{1}{2}m_1v_1^2 + \frac{1}{2}m_2v_2^2 \Rightarrow (m_1+m_2)V^2 = m_1v_1^2 + m_2v_2^2$$
 (b)

(b)×
$$m_2$$
 \bar{q} $(m_1+m_2)m_2V^2=m_1m_2v_1^2+(m_2v_2)^2$ (c)

- (a)代入(c)有 $(m_1+m_2)v_1^2+2(m_1-m_2)Vv+(m_1-3m_2)V^2=0$
- $\Rightarrow (v_1+V)[(m_1+m_2)v_1+(m_1-3m_2)V]=0 \Rightarrow v_1+V=0 \text{ or } (m_1+m_2)v_1+(m_1-3m_2)V=0.$

解得
$$v_1$$
=- V 及 v_2 =- V (舍去),或 v_1 = $\frac{3m_2-m_1}{m_1+m_2}V$ 及 v_2 = $\frac{3m_1-m_2}{m_1+m_2}V$.

(ii) 发射卫星 m_1 在中心点 C 以速度 $v_1 = \frac{3m_2 - m_1}{m_1 + m_2} V$ 。设返回到信道出口 A 的速度为 u

机械能守恒 $\frac{1}{2}m_1v_1^2 = \frac{1}{2}m_1u^2 + \frac{1}{2}kL^2 = \frac{1}{2}m_1u^2 + \frac{1}{2}m_1V^2$

$$\Rightarrow u^2 = v_1^2 - V^2 = \left[\left(\frac{3m_2 - m_1}{m_1 + m_2} \right)^2 - 1 \right] V^2 = \frac{8m_2(m_2 - m_1)}{(m_1 + m_2)^2} \frac{g}{R} L^2 = \frac{8m_2(m_2 - m_1)}{(m_1 + m_2)^2} gR(1 - \left(\frac{r}{R} \right)^2)$$
 (iv)

(5) 人造地球卫星 m_1 绕地心 O 做匀速圆周运动,则 $m_1g=m_1\frac{u^2}{R}$ \Rightarrow $u^2=gR$, 即

$$\frac{8m_2(m_2 - m_1)}{(m_1 + m_2)^2} gR(1 - (\frac{r}{R})^2) = gR \Rightarrow 1 - (\frac{r}{R})^2 = \frac{(m_1 + m_2)^2}{8m_2(m_2 - m_1)} \Rightarrow \frac{r}{R} = \sqrt{1 - \frac{(m_1 + m_2)^2}{8m_2(m_2 - m_1)}} \le 1.$$

通道距离地球表面的最大深度 $h=R-r=R(1-\sqrt{1-\frac{(1+c)^2}{8c(c-1)}})$.

(i) $m_2=2m_1$, h=2,167km; (ii) $m_2=20m_1$, h=482km.

		/	, ,	/ =	1,									
c=	2	3	4	5	6	7	8	9	10	20	50	100	500	1000
r/R=	0.6614	0.8165	0.8600	0.8803	0.8921	0.8997	0.9051	0.9091	0.9121	0.9246	0.9313	0.9334	0.9350	0.9352
h/R=	0.3386	0.1835	0.1400	0.1197	0.1079	0.1003	0.0949	0.0909	0.0879	0.0754	0.0687	0.0666	0.0650	0.0648
h/km=	2167	1174	896.1	765.8	690.6	641.7	607.4	582.0	562.5	482.4	439.8	426.4	415.9	414.6

23. (12分)

密度为 ρ 的液体中,静止地浸有密度为P及质量为M的

- (a) 高度为 H 和底面半径为 R 的圆柱体,液体分别浸到圆柱的 H/3 和 2H/3 高度处;
- (b) 高度为 2H、底面半径为 R 和 2R 的正立和倒立圆台,液体浸到圆台的一半高度处。 试分别填写四种情况下物体(1)质量 M,(2)与液体的密度之比 $H\rho$,和(3)受到微小干扰后的振荡频率 ω 。

解答:

已知液体密度 ρ 并且设圆台在液体内部分的体积为V,则液体对圆锥体的浮力 $f = \rho Vg$.

由阿基米得定理G=f,即 $Mg=\rho gV\Rightarrow PV_0=\rho V\Rightarrow$ 密度之比 $\frac{P}{\rho}=\frac{V}{V_0}$.

(a) 密度为P的圆柱体积 $V_0=\pi R^2H$,则质量 $M=PV=P\pi R^2H$.

平衡时 $\Sigma F = G - f = 0$. 圆台向下微小位移 x 时浸在液体内体积增加 $\Delta V = \pi R^2 x$.

合力 $\Sigma F = G - (f + \Delta f) = -\Delta f = -\rho \Delta V = -\rho \pi R^2 x$

3 3 1	,	
圆台体积 $V_0=\pi R^2H$	液体浸到圆柱的 H/3 高度处	液体浸到圆柱的 2H/3 高度处
平衡时浸在液体内体积 V=	$\pi R^2 H /3$	$2\pi R^2 H/3$
(1) 密度之比 <i>PIρ</i> =	1/3	2/3
(2) 质量 <i>M=ρV=</i>	$\rho\pi R^2 H/3$	$2\rho\pi R^2H/3$
合力ΣF=-ρgΔV =Ma	$-\rho g \pi R^2 x = (\rho \pi R^2 H / 3)a$	$-\rho\pi R^2 x = (2\rho\pi R^2 H/3)a$
$(3) a + \omega^2 x = 0$	$a + \frac{3g}{H}x = 0, \text{\sharp} \div \omega^2 = \frac{3g}{H}$	$a + \frac{3g}{2H}x = 0$, $\sharp + \omega^2 = \frac{3g}{2H}$

密度为P的圆台体积 $V_0 = \frac{1}{3}\pi[R^2 + R(2R) + (2R)^2](2H) = \frac{14}{3}\pi R^2 H$,则质量 $M = PV = \frac{14}{3}\pi R^2 H$ P.

圆台体积 $V_0 = \frac{14}{3} \pi R^2 H$	正立圆台	倒立圆台		
平衡时浸在液体内体积 V=	$\frac{\pi}{3} \left[\frac{3}{2} R \right]^2 + \left(\frac{3}{2} R \right) (2R) + (2R)^2 \right] H = \frac{37}{12} \pi R^2 H$	$\frac{\pi}{3}[R^2 + R(\frac{3}{2}) + (\frac{3}{2}R)^2]H = \frac{19}{12}\pi R^2 H$		
$(1) 密度 \frac{P}{\rho} = \frac{V}{V_0} =$	$\frac{37}{56}$	19 56		
(2) 质量 <i>M=ρV</i> =	$\frac{37}{12}\pi R^2 H \rho$	$\frac{19}{12}\pi R^2 H \rho$		
合力ΣF=-ρgΔV =Ma	$-\rho \frac{9}{4} \pi R^2 x = (\frac{37}{12} \pi R^2 H \rho) a$	$-\rho \frac{9}{4} \pi R^2 x = (\frac{19}{12} \pi R^2 H \rho) a$		
(3) $a+\omega^2x=0$,振荡频率 $\omega^2=$	$a + \frac{27g}{37H}x = 0$, $\sharp + \omega^2 = \frac{27g}{37H}$	$a + \frac{27g}{19H}x = 0$, $\sharp + \omega^2 = \frac{27g}{19H}$		

24. (16分)

一个球心为 C、质量为 M、半径为 R 和转动惯量 $I=kMR^2$ 的均质刚性球体,静止在圆心为 O 和半径为 $R_0(>R)$ 的圆柱面顶点,受微小干扰后而自由滚下。设球和圆柱面之间静摩擦系数为 μ 。试

- (1) 求球心 C 的速度 $v_c(\varphi)$, 其中 φ 为联机 CO 的转动角度。
- (2) 写出圆柱面对球的支持力N和其所受静摩擦力f的表达式。
- (3) 求球与圆柱面分离时的临界角 φ_0 。
- (4) 为使球在 $\varphi \leq 30^{0}$ 范围内做纯滚动,求圆柱面和小球之间静摩擦系数的最小值 μ_{\min} 。
- (5) 通过讨论摩擦系数 μ ,确定角度 φ 的最小值 φ_{\min} 和最大值 φ_{\max} 。
- (6) 已知实心球 $I=2MR^2/5$ 和空心薄壁球 $I=2MR^2/3$,填写答题纸中表格。

解答:

设球在圆柱表面滚动时,中心 C 的速度为 v_c 和角加速度为 α 。

(1) 球做纯滚动,静摩擦力 $f(\leq \mu N)$ 不做功。由机械能守恒有

$$Mg(R_0+R)(1-\cos\varphi) = \frac{1}{2}Mv_c^2 + \frac{1}{2}I\omega^2 = \frac{1}{2}Mv_c^2 + \frac{1}{2}(kMR^2)(\frac{v_c}{R})^2 = \frac{1+k}{2}Mv_c^2 \implies v_c^2 = 2g(R_0+R)\frac{1-\cos\varphi}{1+k}.$$

(2) 由质心运动定律和转动定律有
$$\Sigma F_n = Mg\cos\varphi - N = M\frac{{v_C}^2}{R_0 + R} \Rightarrow N = M(g\cos\varphi - \frac{{v_C}^2}{R_0 + R})$$
 (i)

$$\Sigma F_t = Mg\sin\varphi - f = M(R\alpha) \qquad \Rightarrow f = M(g\sin\varphi - R\alpha)$$
 (ii)

$$\Sigma \tau = I\alpha$$
 $\Rightarrow fR = I\alpha$ (iii)

以
$$v_c^2$$
代入式(i)有圆柱面对球的 支持力 $N = Mg \frac{(3+k)\cos\varphi - 2}{1+k}$ (vi)

由(ii)和(iii)有
静摩擦力
$$f = Mg \frac{k \sin \varphi}{1+k}$$
 (v)

- (3) 当 N>0 时,小球在圆柱面上滚动;当 N=0 即 $\cos \varphi_0 = \frac{2}{3+k}$ 时,小球由圆柱面滑落。
- (4) 由 $f \le \mu N$ 有 $\mu(\varphi) \ge \frac{f}{N} = \frac{k \sin \varphi}{(3+k)\cos \varphi 2}$.
- (5) 球在 $\varphi \le 30^{\circ}$ 范围内做纯滚动 $\mu(30^{\circ}) \ge \frac{k}{(3+k)\sqrt{3}-4} = \mu_{\min}$.
- (5) μ =0 光滑表面 $\Rightarrow \sin \varphi$ =0 即 φ =0= φ_{\min} 球由圆柱面顶部直接滑落; $\mu \rightarrow \infty$ 完全粗糙表面 $\Rightarrow \cos \varphi = \frac{2}{3+k} = \cos \varphi_{\max}$ 即球与圆柱面分离时的临界角 φ_0 。

3 I K		
设 转动惯量 I=kMR ²	实心球 k=2/5	空心薄壁球 k=2/3
(1) 球心 C 的速度 $v_c^2 = 2g(R_0 + R) \frac{1 - \cos \varphi}{1 + k}$	$v_c^2 = \frac{10}{7} g(R_0 + R)(1 - \cos \varphi)$	$v_c^2 = \frac{6}{5} g(R_0 + R)(1 - \cos \varphi)$
(2) 支持力 $N=Mg\frac{(3+k)\cos\varphi-2}{1+k}$ 和	$N=Mg\frac{17\cos\varphi-10}{7}$ π	$N=Mg\frac{11\cos\varphi-6}{5}$ 和
其所受静摩擦力 $f=Mg\frac{k\sin\varphi}{1+k}$.	$f = \frac{2}{7} Mg \sin \varphi$	$F = \frac{2}{5} Mg \sin \varphi$
(3) 当 $N=0$ 即临界角 $\cos \varphi_0 = \frac{2}{3+k}$ 时,球滑落.	$\varphi_0 = 53.97^0$	(0=56.940
(4) 静摩擦系数 $\mu(\varphi) \ge \frac{k \sin \varphi}{(3+k)\cos \varphi - 2} = \mu_{\min}$	$\mu_{\min} = \frac{2\sin\varphi}{17\cos\varphi - 10}$	$\mu_{\min} = \frac{2\sin\varphi}{11\cos\varphi - 6}$
(5) 球在范围 $\varphi \le 30^0$ 做纯滚动 $\mu(30^0) \ge \frac{k}{(3+k)\sqrt{3}-4} = \mu_{\min}$	$\mu_{\min} = \frac{2}{17\sqrt{3} - 20} = 0.2118$	$\mu_{\min} = \frac{2}{11\sqrt{3} - 12} = 0.2836$
(6) 角度最小值 φ_{min} =0, 球将会由圆柱面顶部直接滑落.	$\varphi_{\min}=0 \stackrel{\text{\tiny μ}}{=} 0$	$\varphi_{\min}=0 \stackrel{\omega}{=} \mu=0$
最大值 $\cos \varphi_{\text{max}} = \frac{2}{3+k}$,即球与圆柱面分离时的临界角 φ_0	$\varphi_{\text{max}} = 54^0 \stackrel{\text{def}}{=} \mu \rightarrow \infty$	$\varphi_{\text{max}}=57^0 \stackrel{\text{\tiny \perp}}{=} \mu \rightarrow \infty$