# Teopuя вычислительных процессов Process calculus Сети Петри

ИВТ и ПМ ЗабГУ

2021

## Outline

#### Дискретные системы

Сети Петри

Примеры

Формальное описание

диаграммы маркировок

Классификация сетей Петри

Классификация по динамическим ограничениям

Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

## Дискретные системы

- Дискретная динамическая система одно из наиболее общих понятий в теоретическом программировании.
- Примеры: компьютеры, их элементы и устройства, компьютерные сети;
   компьютерные программы и операционные системы;
   системы сбора и автоматической обработки цифрово
  - системы сбора и автоматической обработки цифровой информации;
  - системы автоматического управления объектами и процессами; производственные системы дискретного характера (сборочные линии);
  - социально-экономические и другие.

- ▶ Приведенные примеры сложные системы, имеющие сложную внутреннюю структуру.
- Эти системы дискретные:
  - в их внутренней структуре можно выделить счетное число состояний (в которых они могут пребывать в некоторые моменты времени)
  - а также переходить из состояния в состояние в некоторые моменты времени.
- множество может быть очень и очень большим, но чаще всего, оно конечно и счетно.

- ▶ Приведенные примеры сложные системы, имеющие сложную внутреннюю структуру.
- Эти системы дискретные:
  - в их внутренней структуре можно выделить счетное число состояний (в которых они могут пребывать в некоторые моменты времени)
  - а также переходить из состояния в состояние в некоторые моменты времени.
- множество может быть очень и очень большим, но чаще всего, оно конечно и счетно.
- Многие непрерывные (или аналоговые) системы можно представить дискретными, вводя некоторые границы дискретизации. Например: звук.

- ▶ Автомат математическая абстракция последовательной дискретной системы<sup>1</sup>.
- Постоянно появляется необходимость моделировать новые динамические дискретные системы.
- Например параллельные системы с недетерминированным поведением, в которых отдельные компоненты функционируют, в основном, независимо, взаимодействуя друг с другом время от времени.

Примеры: многопроцессорные вычислительные системы; параллельные программы;

многозадачные операционные системы;

асинхронные электронные схемы и т.д.

 $<sup>^{1}</sup>$ см. также автоматное программирование

- Системы с параллельно функционирующими и асинхронно (т.е. в произвольные моменты времени)
   взаимодействующими компонентами не описываются адекватно в терминах классической теории автоматов.
- Среди многих существующих методов описания и анализа дискретных параллельных систем выделился подход, который основан на сетевых моделях специального вида – сети Петри.

## Outline

Дискретные системь

## Сети Петри

Примеры

Формальное описание

Диаграммы маркировок

Классификация сетей Петри

Классификация по динамическим ограничениям

Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

# Сети Петри

Сети Петри – это инструмент для математического моделирования и исследования сложных систем.



# Сети Петри

- Сеть Петри описывает структуру и поведение динамической системы.
- Идея Сети Петри впервые использована немецким математиком и информатиком Карлом Адамом Петри для описания химических процессов в первой половине XX века
- Формальное описание сети опубликовано в 1962 году
- Сети Петри позволили в том числе развить идеи из области параллельных и распределённых вычислений
- Business Process Model and Notation, диаграмма деятельности, событийная цепочка процессов – графический аналоги сети Петри

## Определим сеть Петри как четвёрку:

$$N = (P, T, I, O)$$

- ▶ P = {p1, p2, ..., pn } конечное множество позиций;
- ► T = {t1, t2, ..., tm } конечное множество переходов;
- ►  $I: T \to P$  входная функция, сопоставляющая переходу Т мультимножество<sup>2</sup> его входных позиций P;
- $O: T \to P$  выходная функция, сопоставляющая переходу мультимножество его выходных позиций P.

 $<sup>^2</sup>$ множество, которое может содержать несколько экземпляров одного и того же объекта

# Сеть Петри <sub>Пример</sub>

```
P = \{p_1, p_2, p_3\}
T = \{t_1, t_2\}
I(t_1) = \{p_1, p_1, p_2\}; O(t_1) = \{p_3\}
I(t_2) = \{p_1, p_2, p_2\}; O(t_2) = \{p3\}
```

Наглядное представление сети Петри – двудольный, ориентированный мультиграф.

Наглядное представление сети Петри – двудольный, ориентированный мультиграф.

Двудольный граф (биграф) – граф, множество вершин которого можно разбить на две части таким образом, что каждое ребро графа соединяет какую-то вершину из одной части с какой-то вершиной другой части. Т.е. то есть не существует рёбер между вершинами одной и той же части.

Мультиграф – граф, в котором разрешается присутствие кратных рёбер.

#### Пример

$$P = \{p_1, p_2, p_3\}$$

$$T = \{t_1, t_2\}$$

$$I(t_1) = \{p_1, p_1, p_2\}; O(t_1) = \{p_3\}$$

$$I(t_2) = \{p_1, p_2, p_2\}; O(t_2) = \{p3\}$$



Симуляция и задание сетей Петри: petri.hp102.ru/pnet.html

Пример

#### Задание в виде продукционных правил:

```
t_1: \{p_3, p_1\} \to \{p_1, p_2, p_3\}

t_2: \{p_1\} \to \{p_1, p_2\}
```

#### аналогично

$$\begin{split} P &= \{p_1, p_2, p_3\} \\ T &= \{t_1, t_2\} \\ I(t_1) &= \{p_3, p_1\}; \quad O(t_1) = \{p_1, p_2, p_3\} \\ I(t_2) &= \{p_1\}; \quad O(t_2) = \{p_1, p_2\} \end{split}$$

# Маркировка

- Маркировка это размещение по позициям сети Петри фишек, изображаемых на графе сети Петри точками.
- Фишки используются для определения выполнения сети
   Петри. Количество фишек в позиции при выполнении сети
   Петри может изменяться от 0 до бесконечности.



# Маркировка сетей Петри

Выполнение сети Петри. Пример. http://petri.hp102.ru/pnet.html

Для выполнения сети Петри на бумаге можно использовать монеты

# Правила выполнения Сети Петри

- Сеть Петри выполняется посредством запусков переходов.
- Запуск перехода управляется фишками в его входных позициях и сопровождается удалением фишек из этих позиций и добавлением новых фишек в его выходные позиции.
- Переход может запускаться только в том случае, когда он разрешен.
- Переход называется разрешенным, если каждая из его входных позиций содержит число фишек, не меньшее, чем число дуг, ведущих из этой позиции в переход (или кратности входной дуги).
- Разрешённые переходы можно запускать в произвольном порядке

## Outline

Дискретные системь

## Сети Петри

Примеры

Формальное описание Диаграммы маркировон

Классификация сетей Петри

Классификация по динамическим ограничениям Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

# Химическая реакция

$$2P + 3Cl_2 = 2PCl_3$$



# Примеры моделирования сетями Петри

- Простой процесс с двумя состояниями
- Запуск параллельных процессов
- Запуск одного из параллельных процессов
- || процесс с общим ресурсом
- deadlock

# Пример

Как можно распараллелить вычисление арифметического выражения?

$$z = (a+b) \cdot (c-d) - \frac{e}{f}$$

# Пример

Как можно распараллелить вычисление арифметического выражения?

$$z = (a+b) \cdot (c-d) - \frac{e}{f}$$



Вычисление арифметического выражения

# Примеры моделирования сетями Петри

Последовательная обработка запросов сервером Опишем обработку как набор состояний. Сами состояния будем обозначать позициями

- ► s1 сервер ждёт
- ▶ s2 запрос поступил и ждёт
- s3 запрос обрабатывается
- s4 запрос обработан

Смену состояний будем называть событиями. События обозначим переходами

- ► t1 поступил запрос
- t2 сервер начал обработку
- ▶ t3 сервер закончил обработку
- ▶ t3 результат отправлен клиенту

## Outline

Дискретные системь

## Сети Петри

Примеры

Формальное описание

Диаграммы маркировок

Классификация сетей Петри

Классификация по динамическим ограничениям Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

# Переходы

- + #^:  $T \times P \rightarrow \mathbb{N}_0$
- $\blacktriangleright$  #  $\hat{}(t,p)$  кратность дуги из t в р
- $\blacktriangleright$   $^*\#: P \times T \rightarrow \mathbb{N}_0$
- ▶ ^# (p, t) кратность дуги из р в t
- ▶  $\mathbb{N}_0$  множество натуральных чисел и 0
- $\mu(p)$  число фишек в позиции p

# Расширенные входные и выходные функции

- ▶ Расширенная входная функция:  $I: P \to T^*$
- ▶ Расширенная входная функция:  $O: P \to T^*$
- ▶ T\* мультимножество

# Переходы

- ▶ Переход t разрешён если  $\forall p \in I(t)$  справедливо  $\mu(p) \ge \hat{\ } \# (p,t)$
- Запуск перехода

$$\mu'(p) = \mu(p) - \hat{\#}(p, t) + \#\hat{\ }(t, p)$$

- Сеть можно запускать до тех пор, пока в ней есть разрешённые переходы
- Порядок запуска переходов не определён

# Переходы

- $\mu = < 5, 1 >$
- $\mu' = <3,2>$
- ▶ Запуск  $\mu \rightarrow \mu'$



- Фишки обычно означает: в буфере есть запись, переменная доступна
- место переменная буфер
- переход функция устройство

# Одновременность и конфликт

- Сети Петри асинхронны
- Не измеряем время
- Переход примитивное событие, не занимающее времени
- Но различаем порядок событий
- В один и тот же момент времени может быть запущен только один переход

# Конфликт



При данной маркировке разрешены обо перехода, но запуск любого из них деактивует другой переход

## Outline

Дискретные системь

## Сети Петри

Примеры

Формальное описание

Диаграммы маркировок

Классификация сетей Петри

Классификация по динамическим ограничениям Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

## Диаграммы маркировок

**Диаграмма маркировок** – орграф, вершинами которого являются маркировки из множества М достижимых маркировок, а дуги направлены из маркировки  $\mu^a$  в маркировку  $\mu^b$ , если  $\mu^a$ ,  $\mu^b \in M$  и существует непосредственный переход  $\mu^a \to \mu^b$ 

Каждая дуга – запуск перехода.

 $\mu^a 
ightarrow \mu^a$  – петля в вершине диаграммы маркировок

Пометка дуг вида  $(t_i \oplus t_k) \cdot t_k$  – срабатывание переходов  $t_i, t_k$  или  $t_{,t_k}$ 

# Диаграммы маркировок

## Построим диаграмму маркировок для сети



# Диаграммы маркировок



## Диаграммы маркировок

- В примере выше получилась всего одна конечная маркировка: 0100210
- В общем случае одной начальной маркировке могут соответствовать несколько результирующих маркировок.
- ▶ Выполнение модели асинхронно
- Порядок срабатывания переходов неопределён

#### Outline

Дискретные системь

Сети Петри

Примеры

Формальное описание

. Диаграммы маркировон

#### Классификация сетей Петри

Классификация по динамическим ограничениям Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

## Классификация сетей Петри

- Различные СП могут отличаться друг от друга не только структурами графов, но и диаграммами смены маркировок.
- Как правило одной модели соответствует несколько одинаковых сетей Петри с разными маркировками
- Классифицируем сети Петри по динамическим (зависящих от маркировок) и по статическим (зависящим только от конфигурации сети, но не от маркировки)

#### Outline

Дискретные системь

Сети Петри

Примеры

Формальное описание

Диаграммы маркировон

Классификация сетей Петри

Классификация по динамическим ограничениям

Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

- **k-ограниченной** (k 1 целое число), если на множестве ее достижимых состояний не найдется ни одной позиции  $p_i \in P$ , для которой  $\mu(p_i) > k$  (в которой при функционировании сети Петри появилось бы более k маркеров);
- безопасной, если она 1-ограничена (ни в одной ее позиции не может появиться более одного маркера);
- ограниченной, если найдется такое k, для которого она k-ограничена;

Свойство ограниченности СП отражает конечность информации, хранимой в «памяти» СП

**1-консервативной**, если в процессе функционирования сети Петри общее число маркеров в ней остается постоянным, т.е. для любого  $t_r \in T$  имеет место

$$\sum_{p_i \in I(t_r)} \mu(p_i) = \sum_{p_j \in I(t_r)} \mu(p_j)$$

**Консервативной** если существует положительная целочисленная функция f: PBN такая, что для любого перехода  $t_r \in T$  имеет место

$$\sum_{p_i \in I(t_r)} f(p_i) = \sum_{p_j \in I(t_r)} f(p_j)$$

- ► Консервативность СП может, например, показывать, что в моделируемой системе ограничен объем ресурсов.
- ▶ В современных постановках задач часто необходимо моделировать потоки потребляемой энергии (важнейшего ресурса в мобильных системах с ограниченной емкостью батарейки). Моделируя маркерами кванты энергии, выделяемой на выполнение операций (переходов СП), таким образом можно связать ограничения по энергии со свойствами модели системы.

## Примеры

Слева приведён пример, справа – контрпример



ограниченные (1) безопасные (2) 1-консервативные (3)

- **живой** ( активной), если каждый переход  $t \in T$  является потенциально срабатывающим при любой маркировке из M;
- **устойчивой**, если для всех пар  $t_i, t_j \in T, i \neq j$  и любой допустимой маркировки, при которой  $t_i$  и  $t_j$  возбуждены, срабатывание одного из них не может снять возбуждения другого.

- если мы хотим, чтобы все органы в моделируемой системе оставлись активными в течение всего цикла ее работы, соответствующая сеть Петри должна быть живой.
- В системе с нарушением устойчивости в ее модели возможны поведенческие конфликты

## Примеры



консервативные (4) живые (5) устойчивые (6)

#### Outline

Дискретные системь

Сети Петри

Примеры

Формальное описание

Диаграммы маркировок

#### Классификация сетей Петри

Классификация по динамическим ограничениям

Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

Смысл следующей классификации связан с возможностью представления в поведении параллельных вычислительных процессов определенных черт: ветвлений, обусловленных выбором, и параллельных потоков, связанных с независимыми действиям на разных ресурсах.

**сеть свободного выбора**, если для любых  $t_j \in T$  и  $p_i \in I(t_j)$  позиция  $p_i$  является либо единственной входной позицией перехода  $t_j$ , т.е.  $|O(p_i)|=1$ , либо этот переход имеет единственную входную позицию, т.е.  $|I(t_i)|=1$ 

другими словами, если два перехода имеют общую входную позицию, то эта позиция единственна для каждого перехода

**маркированный граф**, если каждая позиция имеет в точности по одному входному и выходному переходу, т.е. если |O(pi)| = |I(pi)| = 1

Марикированные графы – это класс СП, в которых невозможен выбор по условиям. В них может лишь присутствовать параллельность. Полезны при моделировании не меняющихся (от данных) последовательностями инструкций, например, в конвейерах.

**автоматной**, если каждый переход t j имеет не более одного входа и не более одного выхода, т.е. если |O(tj)| = |I(tj)| = 1

В автоматной СП, напротив, не может быть параллельности, зато может быть выбор. Эти классы в принципе дуальны, и дополняют друг друга, что отражено в сетях свободного выбора, которые покрывают оба этих класса по своим возможностям

### Примеры

Слева допустимые фрагменты, справа недопустимые



СП свободного выбора (1) СП - маркированный граф (2)

автоматная СП (3)

бесконфликтая СП (4)

• **бесконфликтной**, если либо для каждой ее позиции  $p_i \in P$  существует не более одной исходящей дуги, т.е.  $|O(pi)| \le 1$ , либо для всех  $t_j \in O(p_i)$  выполняется  $t_j \in I(p_i)$  (любая позиция, являющаяся входной для более, чем одного перехода, является одновременно и выходной для каждого такого перехода).

Бесконфликтные СП устойчивы, хотя обратное справедливо не всегда.

#### Outline

Дискретные системь

#### Сети Петри

Примеры

Формальное описание

Диаграммы маркирово

#### Классификация сетей Петри

Классификация по динамическим ограничениям

Классификация по статическим ограничениям

#### Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

**Взаимная блокировка** (deadlock) — ситуация в многозадачной среде или СУБД, при которой несколько процессов находятся в состоянии ожидания ресурсов, занятых друг другом, и ни один из них не может продолжать свое выполнение.

| Шаг | Процесс 1                           | Процесс 2                           |  |
|-----|-------------------------------------|-------------------------------------|--|
| 0   | Хочет захватить А и В, начинает с А | Хочет захватить А и В, начинает с В |  |
| 1   | Захватывает ресурс А                | Захватывает ресурс В                |  |
| 2   | Ожидает освобождения ресурса В      | Ожидает освобождения ресурса А      |  |
| 3   | Взаимная блокировка                 |                                     |  |

**Дедлоком** в сети Петри – подмножество позиций D, обусловливающих попадание сети в тупиковое состояние (маркировку), в котором не возбуждается ни один переход.

 $D \subseteq P$  такое, что  $I(D) \subseteq O(P)$ .

Дедлок – это не обязательно тупиковая маркировка, скорее это потенциальный тупик, т.е. маркировка, обещающая стать тупиковой вследствие возможного дефицита маркеров



Какие позиции образуют дедлок?

$$D = \{p_3, p_4\}.$$

```
D=\{p_3,p_4\}.
Докажем это I(p_3)=\{t_3\},\,I(p_4)=\{t_2\},\, Тогда I(p_3,p_4)=I(p_3)\cup I(p_4)=\{t_2,t_3\},\, O(p_3)=t_2,O(p_4)=\{t_3,t_4\},\, O(\{p_3,p_4\})=O(p_3)\cup O(p_4)=\{t_2,t_3,t_4\},\, откуда
```

 $I(p_3,p_4)\subset O(p_3,p_4)$ , так что позиции  $p_3$  и  $p_4$  образуют дедлок.

#### Ловушка

**Ловушкой** в сети Петри называется такое множество позиций L, что каждый переход, входом для которого является одна из позиций множества, имеет выходом другую позицию этого же множества.

Ловушка – цикл в сети Петри, из которого нет выхода.

 $L \subseteq P$  такое, что  $O(L) \subseteq I(L)$ .

## Ловушка



$$L = p_3, p_4$$

#### Outline

Дискретные системь

Сети Петри

Примеры

Формальное описание

Диаграммы маркировок

Классификация сетей Петри

Классификация по динамическим ограничениям

Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

С ростом размерности сети сложность выявления таких фундаментальных свойств, как ограниченность и живость путём построения диаграммы маркировок становится слишком большой.

#### Будем задавать сеть Петри так: $N = < P, T, \alpha, \beta >$

- Р непустое множество позиций
- Т непустое множество переходов
- ▶  $\alpha: P \times T \to \mathbb{N}_0$  функция инцидентности по входу
- ▶  $\beta: T \times P \to \mathbb{N}_0$  функция инцидентности по выходу

Тогда сеть N можно описать матрицей инцидентности, где

$$c_{ij} = egin{cases} eta(t_j, p_i), & ext{ если } eta(t_j, p_i) 
et 0 \ -lpha(p_i, t_j), & ext{ если } lpha(p_i, t_j) 
et 0 \ 0, & ext{ в противном случае} \end{cases}$$

Тогда запуск перехода  $t_i$  можно записать так:

$$\mu'=\mu+C_j$$

- ▶ Матрица входной функции  $D^- = ||d_{ij}||$ , где  $d_{ij} = \alpha(p_i, t_i)$
- ▶ Матрица выходной функции  $D^+ = ||d_{ij}||$ , где  $d_{ij} = \beta(p_j, t_j)$



Сеть Петри и её матрица инцидентности

#### Введём дополнительные обозначения:

•  $\sigma = t_{j_1}t_{j_2}...t_{j_k}$  – последовательность срабатывания k переходов, приводящая k маркировке  $\mu^k$ 

Для этой последовательности можно записать вектор

 $ar{\sigma}=(\sigma_1,...,\sigma_1),$  каждая компонента равна числу вхождений  $t_j$  в  $\sigma$ 

Тогда

$$\mu^k = \mu^0 + \sigma C$$

Это уравнение фундаментальное уравнением СП

Пример выполнения сети

#### Outline

Дискретные системь

Сети Петри

Примеры

Формальное описание

Диаграммы маркировок

Классификация сетей Петри

Классификация по динамическим ограничениям

Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

| Номер рис. | Тип вершины<br>в ПАБС      | Название<br>вершины | Фрагмент<br>сети Петри                       |
|------------|----------------------------|---------------------|----------------------------------------------|
| a)         | $A_i$                      | Оператор            | <b>O</b> <sup>A<sub>i</sub></sup> → <b>O</b> |
| б)         |                            | Условный<br>переход |                                              |
| в)         | >0→                        | Сборка              | a,+0<br>+0                                   |
| г)         | <b>→•</b> ⟨ <sup>*</sup> ⟨ | Бифуркатор          | O+\0                                         |
| д)         | <b>→</b>                   | Синхронизатор       | 0;+0                                         |



 $p_1$  – общий для двух процессов ресурс



 $p_1$  – общий для двух процессов ресурс

Будет ли выполнение || алгоритма эффектным, если один из процессов выполняется быстрее?





#### Outline

Дискретные системь

Сети Петри

Примеры

Формальное описание

Диаграммы маркировок

Классификация сетей Петри

Классификация по динамическим ограничениям

Классификация по статическим ограничениям

Дедлоки и ловушки

Анализ диаграммы переходов: матричный подход

|| программирование и сети Петри

Ссылки

#### Ссылки

- Моделирование параллельных процессов. Сети Петри.
   Мараховский В. Б., Розенблюм Л. Я., Яковлев А. В. СПб.:
   Профессиональная литература, 2014. 400 с
- Теория сетей Петри и моделирования систем, Питерсон Дж. 1984
- ▶ petri.hp102.ru/pnet.html создание и запуск сетей Петри
- ▶ apo.adrian-jagusch.de создание и анализ сетей Петри

#### Ссылки

Материалы дисциплины github.com/ivtipm/ProcessCalculus