	doc_1		doc_2		decision	id
	authors	Ziqi Liu Wei Cai Zhiqin Xu	authors title publication_date	Ziqi Liu Wei Cai Zhi-Qin John Xu		
	title	Multi-Scale Deep Neural Network (MscaleDNN) for Solving Poisson- Boltzmann Equation in Complex Domains		Multi-scale Deep Neural Network (MscaleDNN) for Solving Poisson-Boltzmann Equation in Complex Domains 2020-09-28 00:00:00		
	publication_date 2020-07-22 00:00:00		source	SupportedSources.INTERNET_ARCHIVE		1
	source	SupportedSources.OPENALEX	journal		DUPLICATES 256	
cases	journal	Communications in Computational Physics	volume			256
	volume	28	doi			
	doi	10.4208/cicp.oa-2020-0179 • https://openalex.org/W3045146186	urls	• https://web.archive.org/web/20201001000309/https://arxiv.org/pdf/2007.11207v3.pdf		
		• https://doi.org/10.4208/cicp.oa- 2020-0179 • http://arxiv.org/pdf/2007.11207	id	id-2075114719914309915		
	urls		abstract	In this paper, we propose multi-scale deep neural networks (MscaleDNNs) using the idea of radial scaling in frequency domain and activation functions with compact support. The radial scaling converts the problem of approximation of high frequency contents of PDEs' solutions to a problem of learning about lower frequency functions, and the compact support activation functions facilitate the separation of frequency contents of the target function to be approximated by corresponding DNNs. As a result, the		
	id	id-2802600063412691543		MscaleDNNs achieve fast uniform convergence over multiple scales. The proposed MscaleDNNs are shown to be superior to traditional fully connected DNNs and be an effective mesh-less numerical method for Poisson-Boltzmann equations with ample frequency contents over complex and singular domains.		
	abstract		versions			
	versions		701310113		<u> </u>	