# Supplementary Materials

# Evolutionary Heterogeneous Multitasking for Quality Diversity Optimization

## I. RESULT AND ANALYSIS

A. Standard Deviations of Experimental Results across Different Test Problems

Tables S.I, S.II, and S.III present the standard deviations of the experimental results for the HMQD-based algorithms and the corresponding single-task QD baseline algorithms over several different metrics in the CEC17M benchmark, manipulators, and higher-dimensional hexapod robot problems. The standard deviation values in Tables S.I, S.II, and S.III correspond to each entry in Tables IV, V, and XII of the main text, and are used to evaluate the performance stability of the algorithm in different tasks. It can be observed that HMQD-based algorithms exhibit low standard deviations in most tasks and metrics, indicating stable performance.

## B. Comparative Analysis on Manipulator Problems

- 1) Comparisons of Convergence Curves: This section provides a comparison of the QD-score convergence curves for the manipulator problems, as shown in Fig. S1, aiming to illustrate the performance differences between QD algorithms and their corresponding HMQD-based variants across three groups of problems. The convergence trends on the two tasks in each group show that the HMQD framework could simultaneously solve both tasks more efficiently, resulting in a higher QD-score. Therefore, with the help of the HMQD framework, the HMQD-based variants can achieve significantly better performance than the original single-task solvers. Besides, the results indicate that when the dimensions of the source task and the target task are different, the knowledge transfer method designed is still effective.
- 2) Comparisons of Archive Heatmaps: To provide a more intuitive demonstration of the performance of the HMQD framework, we constructed a heatmap using the planar manipulator experiment  $G_3$  as an example to validate the optimization performance of the tasks. At 1000 generations, the ME-ME results (Fig. S2(a) and Fig. S2(c)) still have many dark areas and noise in parts of the search space, indicating poor performance. In contrast, the HMQD-ME-ME results (Fig. S2(e) and Fig. S2(g)) exhibit more uniformly bright colors, indicating the discovery of high-performance solutions over a wider range, with better optimization results than ME-ME. As the number of iterations increases to 2000 generations, although the ME-ME results (Fig. S2(b) and Fig. S2(d)) improve, some dark areas and noise remain. In contrast, the HMQD-ME-ME heatmaps (Fig. S2(f) and Fig. S2(h)) are almost entirely bright yellow, indicating that it has found higher-quality and more uniformly distributed solutions across the entire behavior space. This demonstrates that the HMQD



Fig. S1. Convergence curves on metric QD-score (QDS) of HMQD-Iso+LineDD-ME, HMQD-CMA-ME, HMQD-ME-ME, Iso+LineDD-ME, CMA-ME, and ME-ME algorithms in 30 repetitions of the manipulator problems. The shaded areas around the curves represent the standard deviation. (a), (b):  $G_1$ ; (c), (d):  $G_2$ ; (e), (f):  $G_3$ .

framework enhances multitask quality diversity optimization through cross-task knowledge transfer.

# C. Effectiveness of Knowledge Transfer Based on VAEs

The convergence curves of mean fitness obtained by CMA-ME, NVAE-CMA-ME, and HMQD-CMA-ME to solve benchmark problems are shown in Fig. S3. The HMQD-based algorithms outperform both the NVAE-based and the baseline single-task optimization algorithms on the benchmark problems, validating the effectiveness of the proposed VAE-based knowledge transfer strategy.

Moreover, the results reveal an intriguing observation that traditional implicit knowledge transfer fails to achieve competitive performance on the benchmark problems, even performing worse than the original CMA-ME algorithm. This may be attributed to two primary factors. Firstly, traditional implicit transfer does not prioritize the selection of elite solutions but instead applies crossover and mutation directly to the solution set, potentially introducing numerous invalid

1

TABLE S.I

STANDARD DEVIATION OF EXPERIMENTAL RESULTS FOR THE HMQD-CVT-ME, HMQD-ISO+LINEDD-ME, HMQD-CMA-ME, CVT-ME, ISO+LINEDD-ME, AND CMA-ME ALGORITHMS ON THE CEC17M BENCHMARK TEST PROBLEMS OVER THE METRICS QDS, BEF, AND COV. THE VALUES IN THIS TABLE REPRESENT THE STANDARD DEVIATIONS CORRESPONDING TO EACH ENTRY IN TABLE IV OF THE MAIN TEXT.

| Problem   | Metrics | HMQD-0                | CVT-ME                | CVT                   | -ME                   | HMQD-Iso+             | LineDD-ME             | Iso+LineDD-ME         |                       | HMQD-CMA-ME           |                       | CMA-ME                |                       |
|-----------|---------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|-----------------------|
| FIODICIII | Metrics | Task1                 | Task2                 |
|           | QDS     | $1.33 \times 10^{2}$  | $1.37 \times 10^{5}$  | $2.30 \times 10^{3}$  | $2.19 \times 10^{6}$  | $2.11 \times 10^{2}$  | $2.19 \times 10^{5}$  | $5.75 \times 10^{2}$  | $8.42 \times 10^{5}$  | $8.70 \times 10^{1}$  | $1.08 \times 10^{5}$  | $8.91 \times 10^{1}$  | $7.61 \times 10^{4}$  |
| CI+HS     | BEF     | 0.0227                | 31.1640               | 0.6353                | 566.8527              | 0.0196                | 29.7665               | 0.0488                | 84.6471               | 0.0154                | 25.7039               | 0.0481                | 59.0702               |
|           | COV     | 0.1795                | 0.0                   | 0.1795                | 0.0                   | 0.0                   | 0.1795                | 0.0                   | 0.1795                | 0.0                   | 0.2494                | 0.0                   | 0.0                   |
| -         | QDS     | $3.36 \times 10^{2}$  | $1.13 \times 10^{5}$  | $2.30 \times 10^{3}$  | $4.13 \times 10^{5}$  | $4.21 \times 10^{2}$  | $1.83 \times 10^{5}$  | $6.54 \times 10^{2}$  | $5.31 \times 10^{5}$  | $3.34 \times 10^{2}$  | $1.12 \times 10^{5}$  | $1.69 \times 10^{2}$  | $8.40 \times 10^{4}$  |
| CI+MS     | BEF     | 0.4502                | 30.5371               | 1.3106                | 149.9458              | 0.3946                | 29.3537               | 0.5289                | 58.3662               | 0.4726                | 17.6723               | 0.5457                | 41.8787               |
|           | COV     | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.1795                | 0.0                   | 0.0                   | 0.0                   |
|           | QDS     | $5.05 \times 10^{0}$  | $8.14 \times 10^{5}$  | $4.50 \times 10^{0}$  | $9.64 \times 10^{5}$  | $4.48 \times 10^{0}$  | $2.09 \times 10^{6}$  | $5.00 \times 10^{0}$  | $2.10 \times 10^{6}$  | $4.50 \times 10^{0}$  | $2.37 \times 10^{6}$  | $2.51 \times 10^{0}$  | $2.96 \times 10^{6}$  |
| CI+LS     | BEF     | 0.0363                | 330.4463              | 0.0318                | 304.6215              | 0.0368                | 639.2448              | 0.0364                | 503.1734              | 0.0301                | 621.4849              | 0.0358                | 700.4650              |
|           | COV     | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   |
| -         | QDS     | $3.25 \times 10^{5}$  | $3.09 \times 10^{6}$  | $2.04 \times 10^{6}$  | $8.44 \times 10^{6}$  | $3.06 \times 10^{5}$  | $3.86 \times 10^{6}$  | $4.73 \times 10^{5}$  | $4.97 \times 10^{6}$  | $2.29 \times 10^{5}$  | $3.82 \times 10^{5}$  | $8.77 \times 10^{4}$  | $2.58 \times 10^{5}$  |
| PI+HS     | BEF     | 54.6964               | 603.4079              | 512.0042              | 2081.3399             | 36.8673               | 702.9388              | 58.7007               | 855.3005              | 81.8648               | 264.2997              | 57.0238               | 251.7909              |
|           | COV     | 0.1795                | 0.0                   | 0.0                   | 0.1795                | 0.1795                | 0.2494                | 0.0                   | 0.0                   | 0.3000                | 0.2494                | 0.1795                | 0.2494                |
|           | QDS     | $3.68 \times 10^{2}$  | $1.62 \times 10^{10}$ | $3.12 \times 10^{3}$  | $1.96 \times 10^{10}$ | $4.70 \times 10^{2}$  | $1.61 \times 10^{10}$ | $7.60 \times 10^{2}$  | $1.55 \times 10^{10}$ | $3.37 \times 10^{2}$  | $1.56 \times 10^{10}$ | $2.10 \times 10^{2}$  | $1.76 \times 10^{10}$ |
| PI+MS     | BEF     | 0.4726                | $2.15 \times 10^{4}$  | 1.0646                | $2.49 \times 10^{6}$  | 0.4271                | $7.31 \times 10^{3}$  | 0.4589                | $5.09 \times 10^{4}$  | 0.3228                | $9.26 \times 10^{3}$  | 0.4714                | $1.77 \times 10^{5}$  |
|           | COV     | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.1795                | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   |
|           | QDS     | $7.72 \times 10^{2}$  | $2.56 \times 10^{3}$  | $6.08 \times 10^{3}$  | $1.83 \times 10^{3}$  | $2.23 \times 10^{3}$  | $3.47 \times 10^{3}$  | $1.82 \times 10^{3}$  | $3.47 \times 10^{3}$  | $4.56 \times 10^{3}$  | $2.49 \times 10^{3}$  | $1.10 \times 10^{4}$  | $2.87 \times 10^{3}$  |
| PI+LS     | BEF     | 0.5264                | 0.7853                | 2.5693                | 0.6853                | 1.0983                | 1.1805                | 0.8923                | 1.2834                | 2.2982                | 1.0454                | 5.1008                | 0.9933                |
|           | COV     | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   |
|           | QDS     | $1.38 \times 10^{10}$ | $1.65 \times 10^{5}$  | $1.23 \times 10^{11}$ | $2.15 \times 10^{6}$  | $1.46 \times 10^{10}$ | $3.49 \times 10^{5}$  | $2.27 \times 10^{10}$ | $6.47 \times 10^{5}$  | $1.59 \times 10^{10}$ | $1.56 \times 10^{5}$  | $1.43 \times 10^{10}$ | $1.04 \times 10^{5}$  |
| NI+HS     | BEF     | $3.77 \times 10^{4}$  | 34.6345               | $2.68 \times 10^{7}$  | 502.1091              | $2.11 \times 10^{4}$  | 29.1618               | $1.63 \times 10^{5}$  | 53.0772               | $4.42 \times 10^{4}$  | 44.4700               | $3.49 \times 10^{5}$  | 56.1058               |
|           | COV     | 0.0                   | 0.1795                | 0.0                   | 0.0                   | 0.1795                | 0.2494                | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.2494                | 0.1795                |
|           | QDS     | $3.49 \times 10^{2}$  | $1.51 \times 10^{3}$  | $5.23 \times 10^{2}$  | $5.57 \times 10^{3}$  | $4.39 \times 10^{2}$  | $1.94 \times 10^{3}$  | $4.80 \times 10^{2}$  | $4.50 \times 10^{3}$  | $1.01 \times 10^{2}$  | $2.24 \times 10^{3}$  | $9.65 \times 10^{1}$  | $3.95 \times 10^{3}$  |
| NI+MS     | BEF     | 0.0555                | 1.3478                | 0.1491                | 1.5258                | 0.0617                | 1.0934                | 0.0771                | 1.3248                | 0.0683                | 1.4650                | 0.0582                | 1.4285                |
|           | COV     | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   |
|           | QDS     | $1.01 \times 10^{5}$  | $1.07 \times 10^{6}$  | $4.88 \times 10^{6}$  | $1.15 \times 10^{6}$  | $2.50 \times 10^{5}$  | $2.03 \times 10^{6}$  | $2.69 \times 10^{5}$  | $2.30 \times 10^{6}$  | $8.96 \times 10^{4}$  | $8.96 \times 10^{6}$  | $8.56 \times 10^{4}$  | $2.68 \times 10^{6}$  |
| NI+LS     | BEF     | 60.5430               | 362.5471              | 1510.9854             | 380.9641              | 29.3287               | 551.0663              | 48.3805               | 621.2823              | 36.2434               | 677.0162              | 41.9219               | 573.1455              |
|           | COV     | 0.0                   | 0.0                   | 0.7118                | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   | 0.0                   |

### TABLE S.II

STANDARD DEVIATION OF EXPERIMENTAL RESULTS FOR THE HMQD-ISO+LINEDD-ME, HMQD-CMA-ME, HMQD-ME-ME, ISO+LINEDD-ME, CMA-ME, AND ME-ME ALGORITHMS ON REACHABLE SPACE EXPLORATION PROBLEMS OF MANIPULATORS OVER THE METRICS QDS, BEF, AND COV. THE VALUES IN THIS TABLE REPRESENT THE STANDARD DEVIATIONS CORRESPONDING TO EACH ENTRY IN TABLE V OF THE MAIN TEXT.

| Group | Index | HMQD-Iso+LineDD-ME |         | Iso+LineDD-ME |         | HMQD-CMA-ME |         | CMA-ME  |         | HMQD-ME-ME |         | ME-ME   |         |
|-------|-------|--------------------|---------|---------------|---------|-------------|---------|---------|---------|------------|---------|---------|---------|
|       |       | Task1              | Task2   | Task1         | Task2   | Task1       | Task2   | Task1   | Task2   | Task1      | Task2   | Task1   | Task2   |
|       | QDS   | 61.0596            | 79.9025 | 65.6762       | 63.1356 | 21.5977     | 27.6176 | 23.9667 | 25.6431 | 25.2931    | 48.6991 | 60.1341 | 40.5376 |
| $G_1$ | BEF   | 0.0062             | 0.0062  | 0.0108        | 0.0107  | 0.0037      | 0.0041  | 0.0058  | 0.0061  | 0.0032     | 0.0026  | 0.0082  | 0.0080  |
|       | COV   | 65.3982            | 90.6196 | 72.9937       | 81.1126 | 25.2110     | 29.4866 | 27.0471 | 26.1518 | 33.3341    | 60.1048 | 46.4360 | 43.1992 |
|       | QDS   | 47.215             | 58.1030 | 65.6762       | 59.7201 | 28.6241     | 30.9255 | 23.9667 | 26.7926 | 27.7388    | 39.7812 | 60.1341 | 51.2098 |
| $G_2$ | BEF   | 0.0077             | 0.0071  | 0.0108        | 0.0088  | 0.0028      | 0.0033  | 0.0058  | 0.0055  | 0.0008     | 0.0013  | 0.0082  | 0.0038  |
|       | COV   | 47.0619            | 57.7602 | 72.9937       | 64.1266 | 30.8257     | 31.0531 | 27.0471 | 34.7748 | 31.6806    | 46.7343 | 46.4360 | 58.4193 |
| $G_3$ | QDS   | 51.8567            | 55.1684 | 65.6762       | 72.8000 | 24.1441     | 36.0082 | 23.9667 | 27.0938 | 35.3340    | 26.3586 | 60.1341 | 34.2146 |
|       | BEF   | 0.0069             | 0.0064  | 0.0108        | 0.0097  | 0.0029      | 0.0036  | 0.0058  | 0.0053  | 0.0008     | 0.0015  | 0.0082  | 0.0088  |
|       | COV   | 49.7531            | 60.2377 | 72.9937       | 77.1601 | 24.5990     | 37.9256 | 27.0471 | 31.8552 | 39.4056    | 28.8129 | 46.4360 | 28.8038 |

## TABLE S.III

STANDARD DEVIATION OF EXPERIMENTAL RESULTS FOR THE HMQD-ME-ME AND ME-ME ON HEXAPOD PROBLEMS OVER THE METRICS QDS, BEF, AND COV. THE VALUES IN THIS TABLE REPRESENT THE STANDARD DEVIATIONS CORRESPONDING TO EACH ENTRY IN TABLE XII OF THE MAIN TEXT.

| Metrics | HM      | MQD-ME-N | ИE      | ME-ME   |         |         |  |
|---------|---------|----------|---------|---------|---------|---------|--|
|         | Task1   | Task2    | Task3   | Task1   | Task2   | Task3   |  |
| QDS     | 1.2244  | 0.9511   | 2.1042  | 3.0200  | 2.9747  | 3.4383  |  |
| BEF     | 0.0023  | 0.0028   | 0.0031  | 0.0033  | 0.0025  | 0.0038  |  |
| COV     | 68.5601 | 50.7887  | 81.9481 | 46.0656 | 79.4754 | 36.2064 |  |

or even detrimental solutions, thereby degrading performance. Secondly, it overlooks the deeper structural features or latent patterns of the solutions, limiting its effectiveness. In contrast, the proposed HMQD framework selectively filters high-quality solution sets and utilizes a VAE-based approach to learn the representations from them, effectively capturing useful latent features from the source task that are relevant to the target task. This enables a more accurate and effective knowledge transfer process.

Likewise, Fig. S4 shows the convergence curves of QD-score obtained by ME-ME, NVAE-ME-ME, and HMQD-ME-ME to solve manipulator problems. It can be observed that the HMQD framework significantly outperforms the NVAE method and the baseline of single-task optimization. Interestingly, in the manipulator experiments, NVAE exhibits a



Fig. S2. Heatmap comparisons of ME-ME and HMQD-ME-ME during optimization in the manipulator problem  $G_3$ . (a), (b): ME-ME for Task 1 at 1000, 2000 generations; (c), (d): ME-ME for Task 2 at 1000, 2000 generations; (e), (f): HMQD-ME-ME for Task 1 at 1000, 2000 generations; (g), (h): HMQD-ME-ME for Task 2 at 1000, 2000 generations.

certain degree of effectiveness, possibly because when using QD algorithms to explore the reachable space of manipulators, the behavior space is dispersed, but all solutions in the archive tend to cluster into a specific region in the genotypic space. Therefore, if two manipulator tasks share a certain degree of similarity, knowledge transfer may still be effective without



Fig. S3. Convergence curves of the HMQD-CMA-ME, NVAE-CMA-ME, and CMA-ME algorithms in 30 repetitions of the benchmark problems. (a), (b): CI+HS; (c), (d): CI+MS; (e), (f): CI+LS.



Fig. S4. Convergence curves of the HMQD-ME-ME, NVAE-ME-ME, and ME-ME algorithms in 30 repetitions of the manipulator problems. (a), (b):  $G_1$ ; (c), (d):  $G_2$ ; (e), (f):  $G_3$ .

additional processing in the later stages of the optimization process, as the solution space distribution becomes relatively simple.

# D. Effectiveness of the ARAKT Method



Fig. S5. Convergence curves of the HMQD-CMA-ME, AET-CMA-ME, GNT-CMA-ME, RDT-CMA-ME, and CMA-ME algorithms in 30 repetitions of the manipulator problems. (a), (b): CI+HS; (c), (d): CI+MS; (e), (f): CI+LS.

The convergence curves of mean fitness obtained by CMA-ME, AET-CMA-ME, GNT-CMA-ME, RDT-CMA-ME, and HMQD-CMA-ME to solve benchmark problems are shown in Fig. S5. Compared to AET, GNT, and RDT methods, HMQD effectively leverages the UCB1-based strategy to dynamically select transfer methods, ultimately achieving better convergence and performance, particularly in tasks with higher similarity (e.g., CI+HS). In CI+MS problems with relatively low similarity, it can be observed that HMQD does not perform so good in the early stages but surpasses AET, GNT, and RDT in the later stages. This phenomenon may be attributed to the early exploration phase of HMQD, during which the algorithm extensively evaluates the effectiveness of various transfer methods. Furthermore, the substantial differences between tasks likely contribute to reduced exploration efficiency in the initial stages, resulting in suboptimal optimization performance. However, as the optimization progresses, the accumulation of data and a clearer understanding of taskspecific characteristics enable the adaptive mechanisms within the HMOD framework to identify and select more appropriate transfer methods with greater precision, thereby improving its performance in the later stages. Notably, as shown in Fig. S5(f), even when knowledge transfer methods appear less effective than the original CMA-ME algorithm in the lowsimilarity CI+LS task, the HMQD framework nevertheless



Fig. S6. Convergence curves of the HMQD-ME-ME, AET-ME-ME, GNT-ME-ME, RDT-ME-ME, and ME-ME algorithms in 30 repetitions of the manipulator problems. (a), (b):  $G_1$ ; (c), (d):  $G_2$ ; (e), (f):  $G_3$ .

achieves better performance compared to AET, GNT, and RDT.

Additionally, the QD-score curves obtained by ME-ME, AET-ME-ME, GNT-ME-ME, RDT-ME-ME, and HMQD-ME-ME to solve manipulator problems are shown in Fig. S6. As can be seen from the detail view in Fig. S6, in the manipulator experiment, HMQD-ME-ME achieved a faster convergence speed than all other variants, validating the effectiveness of the adaptive knowledge transfer method proposed in the HMQD framework.

Another important consideration is that the GNT method can generate high-performance solutions representing the source task archive in the early stages of optimization, which is more conducive to assimilation by the target task. In contrast, the AET method randomly selects solutions from the target task as inputs to the VAE encoder, providing greater exploratory diversity. However, the preferred transfer method may vary across different convergence stages of the same task or between different tasks (i.e., some methods favor AET, while others are more suited to GNT). Therefore, the adaptive knowledge transfer strategy is crucial for enhancing the generalization ability of the proposed HMQD framework across various task scenarios.

# E. Discussions on Alternative Variants for Knowledge Transfer

During the development of the HMQD framework, we have explored and preliminarily evaluated alternative approaches for knowledge transfer between tasks. This section details two alternative variants (i.e., AET-T and ESDT). While these

variants show promise in certain aspects or provide valuable insights, our current AET method is found to be more consistently effective in our primary experimental setups. Nevertheless, we still agree that AET-T and ESDT remain valuable and interesting approaches for knowledge transfer. One of the strengths of the HMQD framework is its modularity, and AET-T and ESDT could certainly be integrated as an alternative transfer component within HMQD, potentially being more suitable for specific task pairings or scenarios. The descriptions of alternative variants and the experimental results are presented in the following subsections.

1) Target Oriented AutoEncoder-based Method (AET-T): The AET-T variant was conceptualized as a straightforward approach where a solution from the source task is directly processed using the VAE trained on the target task's archive. AET-T intuitively aims to adapt the source solution to the target task's learned representational space. Specifically, the AET-T transfer process begins by sampling a solution p from the source task's archive  $A_s$ . This sampled solution p is then directly reconstructed using the autoencoder (VAE) trained on the target task's archive, that is  $x = M_t.decode(M_t.encode(p))$ . Finally, this reconstructed solution x is evaluated on the target task. Similarly, when the dimensionality of the source task differs from that of the target task, the sampled source task solution's dimensionality is directly aligned with the target task's by truncation or concatenation.

# TABLE S.III MEAN EXPERIMENTAL RESULTS OF THE AET-T-CMA-ME SOLVER AND AET-CMA-ME SOLVER ON CEC17M BENCHMARK TEST PROBLEMS OVER THE METRICS MEF, BEF, AND COV. BOLD INDICATES THE TOP PERFORMER IN THE PAIRWISE COMPARISON.

| Problem | Metric  | AET-T-C                     | MA-ME                       | AET-CI                  | MA-ME                   |
|---------|---------|-----------------------------|-----------------------------|-------------------------|-------------------------|
| riobiem | Wietric | Task1                       | Task2                       | Task1                   | Task2                   |
|         | MEF     | $-2.8241 \times 10^{0} (+)$ | $-2.3069 \times 10^3 (+)$   | $-2.7921 \times 10^{0}$ | $-2.2689 \times 10^3$   |
| CI+HS   | BEF     | $-1.1600 \times 10^{0}$     | $-5.6659 \times 10^{2}$     | $-1.0590 \times 10^{0}$ | $-4.5375 \times 10^{2}$ |
|         | COV     | 4999.94                     | 5000.00                     | 5000.00                 | 5000.00                 |
|         | MEF     | $-1.4731 \times 10^{1} (+)$ | $-2.2490 \times 10^3 (+)$   | $-1.4500 \times 10^{1}$ | $-2.2053 \times 10^3$   |
| CI+MS   | BEF     | $-6.9101 \times 10^{0}$     | $-5.2516 \times 10^{2}$     | $-5.3488 \times 10^{0}$ | $-4.2587 \times 10^{2}$ |
|         | COV     | 5000.00                     | 5000.00                     | 5000.00                 | 5000.00                 |
|         | MEF     | $-2.3815 \times 10^3 (-)$   | $-9.0399 \times 10^{3} (-)$ | $-2.8283 \times 10^{3}$ | $-9.4439 \times 10^3$   |
| PI+HS   | BEF     | $-5.6628 \times 10^{2}$     | $-1.9958 \times 10^{3}$     | $-8.9620 \times 10^{2}$ | $-1.8474 \times 10^{3}$ |
|         | COV     | 4999.80                     | 5000.00                     | 4999.83                 | 4999.83                 |
|         | MEF     | $-1.4948 \times 10^{1} (+)$ | $-2.3694 \times 10^{8} (+)$ | $-1.4929 \times 10^{1}$ | $-2.3382 \times 10^{8}$ |
| PI+MS   | BEF     | $-7.7249 \times 10^{0}$     | $-5.6695 \times 10^5$       | $-7.2177 \times 10^{0}$ | $-9.9831 \times 10^4$   |
|         | COV     | 5000.00                     | 5000.00                     | 5000.00                 | 5000.00                 |
|         | MEF     | $-2.4082 \times 10^{8} (+)$ | $-2.3364 \times 10^{3} (-)$ | $-2.3774 \times 10^{8}$ | $-2.4061 \times 10^3$   |
| NI+HS   | BEF     | $-7.9603 \times 10^{5}$     | $-5.7576 \times 10^{2}$     | $-7.0860 \times 10^{5}$ | $-5.5386 \times 10^{2}$ |
|         | COV     | 5000.00                     | 5000.00                     | 5000.00                 | 5000.00                 |
|         | MEF     | $-3.0122 \times 10^{0} (-)$ | $-3.7794 \times 10^{0} (+)$ | $-3.3063 \times 10^{0}$ | $-3.7108 \times 10^{1}$ |
| NI+MS   | BEF     | $-1.2650 \times 10^{0}$     | $-2.4466 \times 10^{1}$     | $-1.4517 \times 10^{0}$ | $-2.4183 \times 10^{1}$ |
|         | COV     | 5000.00                     | 5000.00                     | 5000.00                 | 5000.00                 |

' $\approx$ ', '+', and '-' indicate that the comparison algorithm is similar to, significantly worse than, and significantly better than the AET-CMA-ME algorithm, respectively, based on Wilcoxon rank-sum tests. The significance level is  $\alpha=0.05$ .

To evaluate the effectiveness of AET-T relative to our proposed AET, we conduct experiments using the CMA-ME solver on benchmark problems with high and medium similarity (i.e., HS, MS), and the ME-ME solver on the manipulator problems. The comparative results are presented in Tables S.III and S.IV. We can observe that AET-T does not achieve better performance than the current AET on most tasks. We speculate that AET-T underperforms because directly transforming source task solutions into the new task

space via the target VAE may lead to the loss of critical information or the introduction of unnecessary biases during the transfer process. This could make it difficult for the transferred solutions to fully adapt to the target task's specific demands. Therefore, AET-T has not been adopted in HMQD at this time.

#### TABLE S.IV

MEAN EXPERIMENTAL RESULTS OF THE AET-T-ME-ME SOLVER AND AET-ME-ME SOLVER ON REACHABLE SPACE EXPLORATION PROBLEMS OF MANIPULATORS OVER THE METRICS QDS, BEF, AND COV. BOLD INDICATES THE TOP PERFORMER IN THE PAIRWISE COMPARISON.

| Group | Metric   | AET-T-      | ME-ME              | AET-ME-ME |         |  |
|-------|----------|-------------|--------------------|-----------|---------|--|
| Group | Wictific | Task1       | Task2              | Task1     | Task2   |  |
|       | QDS      | 3488.05 (+) | 3519.61 (+)        | 3589.96   | 3537.31 |  |
| $G_1$ | BEF      | 0.99496     | 0.99376            | 0.99623   | 0.99547 |  |
|       | COV      | 3761.43     | 3756.53            | 3781.77   | 3750.59 |  |
|       | QDS      | 3509.69 (+) | <b>3539.67</b> (≈) | 3594.00   | 3538.64 |  |
| $G_2$ | BEF      | 0.99468     | 0.99547            | 0.99540   | 0.99548 |  |
|       | COV      | 3776.80     | 3815.47            | 3811.97   | 3802.87 |  |
| $G_3$ | QDS      | 3534.68 (+) | 3378.03 (+)        | 3568.85   | 3382.81 |  |
|       | BEF      | 0.99158     | 0.99483            | 0.99243   | 0.99447 |  |
|       | COV      | 3789.25     | 3695.30            | 3802.17   | 3698.13 |  |

' $\approx$ ', '+', and '-' indicate that the comparison algorithm is similar to, significantly worse than, and significantly better than the AET-ME-ME algorithm, respectively, based on Wilcoxon rank-sum tests. The significance level is  $\alpha=0.05$ .

# TABLE S.V

MEAN EXPERIMENTAL RESULTS OF THE ESDT-CMA-ME SOLVER AND AET-CMA-ME SOLVER ON CEC17M BENCHMARK TEST PROBLEMS OVER THE METRICS MEF, BEF, AND COV. BOLD INDICATES THE TOP PERFORMER IN THE PAIRWISE COMPARISON.

|         |        | FSDT-C                  | MA-ME                   | ΔFT-C                   | MA-ME                          |
|---------|--------|-------------------------|-------------------------|-------------------------|--------------------------------|
| Problem | Metric | Task1                   | Task2                   | Task1                   | Task2                          |
|         | MEF    | $-2.8370 \times 10^{0}$ | $-2.3390 \times 10^3$   | $-2.7921 \times 10^{0}$ | $\frac{-2.2689 \times 10^3}{}$ |
| CI+HS   | BEF    | $-1.1271 \times 10^{0}$ | $-5.5385 \times 10^2$   | $-1.0590 \times 10^{0}$ | $-4.5375 \times 10^{2}$        |
| CITIE   | COV    | 4999.97                 | 4999.93                 | 5000.00                 | 5000.00                        |
|         | MEF    | $-1.4623 \times 10^{1}$ | $-2.2234 \times 10^3$   | $-1.4500 \times 10^{1}$ | $\frac{-2.2053 \times 10^3}{}$ |
| CI+MS   | BEF    | $-6.4895 \times 10^{0}$ | $-4.8165 \times 10^2$   | $-5.3488 \times 10^{0}$ | $-4.2587 \times 10^{2}$        |
| CITIVIS | COV    | 5000.00                 | 5000.00                 | 5000.00                 | 5000.00                        |
|         |        |                         |                         |                         |                                |
|         | MEF    | $-2.3643 \times 10^3$   | $-7.3620 \times 10^3$   | $-2.8283 \times 10^3$   | $-9.4439 \times 10^3$          |
| PI+HS   | BEF    | $-5.3098 \times 10^{2}$ | $-3.1908 \times 10^{2}$ | $-8.9620 \times 10^{2}$ | $-1.8474 \times 10^3$          |
|         | COV    | 4999.96                 | 5000.00                 | 4999.83                 | 4999.83                        |
|         | MEF    | $-1.4651 \times 10^{1}$ | $-2.3814 \times 10^{8}$ | $-1.4929 \times 10^{1}$ | $-2.3382 \times 10^8$          |
| PI+MS   | BEF    | $-6.2301 \times 10^{0}$ | $-4.0531 \times 10^5$   | $-7.2177 \times 10^{0}$ | $-9.9831 \times 10^4$          |
|         | COV    | 5000.00                 | 5000.00                 | 5000.00                 | 5000.00                        |
|         | MEF    | $-2.4177 \times 10^{8}$ | $-2.4651 \times 10^3$   | $-2.3774 \times 10^{8}$ | $-2.4061 \times 10^3$          |
| NI+HS   | BEF    | $-8.1238 \times 10^{5}$ | $-5.2911 \times 10^{2}$ | $-7.0860 \times 10^{5}$ | $-5.5386 \times 10^{2}$        |
|         | COV    | 5000.00                 | 5000.00                 | 5000.00                 | 5000.00                        |
|         | MEF    | $-2.8261 \times 10^{1}$ | $-3.8179 \times 10^{1}$ | $-3.3063 \times 10^{0}$ | $-3.7108 \times 10^{1}$        |
| NI+MS   | BEF    | $-1.0693 \times 10^{0}$ | $-2.2272 \times 10^{1}$ | $-1.4517 \times 10^{0}$ | $-2.4183 \times 10^{1}$        |
|         | COV    | 5000.00                 | 5000.00                 | 5000.00                 | 5000.00                        |

' $\approx$ ', '+', and '-' indicate that the comparison algorithm is similar to, significantly worse than, and significantly better than the AET-CMA-ME algorithm, respectively, based on Wilcoxon rank-sum tests. The significance level is  $\alpha=0.05$ .

2) Encoder-Source Decoder-Target Transfer Method (ESDT): The ESDT variant is designed as another strategy to handle knowledge transfer, particularly when addressing tasks with differing solution dimensionalities, by explicitly using components from both source and target VAEs. This method leverages the shared latent space z as an intermediary for transfer. Specifically, the ESDT transfer process begins by sampling a solution p from the source task's archive  $A_s$ . This solution p is then encoded into a shared latent space vector p using the source task's encoder, p subsequently, this latent vector p is decoded into a new solution p tailored

for the target task t by employing the target task's decoder  $M_t.decode(z)$ . Finally, the transferred solution x is evaluated on the target task.

#### TABLE S.VI

MEAN EXPERIMENTAL RESULTS OF THE ESDT-ME-ME SOLVER AND AET-ME-ME SOLVER ON REACHABLE SPACE EXPLORATION PROBLEMS OF MANIPULATORS OVER THE METRICS QDS, BEF, AND COV. BOLD INDICATES THE TOP PERFORMER IN THE PAIRWISE COMPARISON.

| Group | Metric  | ESDT-1      | ME-ME       | AET-ME-ME |         |  |
|-------|---------|-------------|-------------|-----------|---------|--|
| Group | Wictiic | Task1       | Task2       | Task1     | Task2   |  |
|       | QDS     | 3558.04 (+) | 3499.92 (+) | 3589.96   | 3537.31 |  |
| $G_1$ | BEF     | 0.99339     | 0.99569     | 0.99623   | 0.99547 |  |
|       | COV     | 3779.00     | 3749.63     | 3781.77   | 3750.59 |  |
|       | QDS     | 3564.87 (+) | 3512.59 (+) | 3594.00   | 3538.64 |  |
| $G_2$ | BEF     | 0.99486     | 0.99518     | 0.99540   | 0.99548 |  |
|       | COV     | 3806.45     | 3801.30     | 3811.97   | 3802.87 |  |
| $G_3$ | QDS     | 3523.38 (+) | 3358.92 (+) | 3568.85   | 3382.81 |  |
|       | BEF     | 0.99186     | 0.99416     | 0.99243   | 0.99447 |  |
|       | COV     | 3796.93     | 3690.13     | 3802.17   | 3698.13 |  |

' $\approx$ ', '+', and '-' indicate that the comparison algorithm is similar to, significantly worse than, and significantly better than the AET-ME-ME algorithm, respectively, based on Wilcoxon rank-sum tests. The significance level is  $\alpha=0.05$ .

For instance, preliminary experiments using the CMA-ME solver on benchmark problems with high and medium similarity (i.e., HS, MS), and the ME-ME solver on the manipulator problems are conducted. The comparative results are summarized in Tables S.V and S.VI. We can observe that ESDT also generally does not achieve better performance than the current AET on most tasks. We suspect ESDT underperforms compared to our main AET due to a potential encoder-decoder mismatch. While using a shared latent space, the source encoder's feature emphasis might not fully align with the target decoder's reconstruction capabilities for high-quality target solutions, leading to less effective or poorly adapted transfers. Therefore, ESDT has also not been adopted as the primary transfer mechanism in HMQD at this time. Therefore, how to better handle tasks with different dimensions is a direction worthy of further research in the heterogeneous multitasking framework in the immediate future.