Regression

hypothesis function:

h(theta) = theta0 + theta1 * x

Credit rating (CIBIL score): 1. Age 2. Income 3. past credit statements 4. Location 5. Assets/colla.. age = 20 income = past credit statements = good/excellent/bad/avg/poor excellent = 5good = 4avg = 3bad = 2poor = 1CIBIL score = w1* age + income * 0.1 + past credit history * 1 = 750 CIBIL score = age *x + x0y = mx + ctraining set -> learning algo/model -> hypothesis $x \rightarrow$ hypothesis \rightarrow predicted 'y' \sim around the actual numbers < (actual - predicted) regression: with one variable

Training (x) say age	Actuals(y) CIBIL score	
20	700	
22	650	
25	720	

h(theta) <- training set and predicts

here m = 3 since we have only 3 values on our training set

Cost function = 1/2m sumOfAllValInRange (1, m) (h(theta) - (y)^2 reduce your cost function

one variable hypothesis function

$$\frac{goal:}{S(00,01)=1|2m|} = \frac{\sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}}{\sum_{i=1}^{n} (h_{\theta}(x^{(i)}) - y^{(i)})^{2}}$$

Gradient descent algorithm

$$0_j := 0_j - \times 0 \quad \text{T(00,0)}$$

COSHOONE

$$x$$
- leavilled state

grows minimum.

largar 'x' would mean we make bigger steps and we might potentially go past global minimum.

substitute linear Regnession model in avadient descent algorithm

aus

hours 80+ 01x in apon early

$$\frac{\partial}{\partial \theta_{i}} \Im(\theta_{0}, \theta_{i}) = \frac{\partial}{\partial \theta_{i}} \left[i_{2m} \sum_{i=1}^{m} \left[\theta_{0} + \theta_{i} \alpha_{i}^{(i)} \right] - y_{i}^{(i)} \right]^{2}$$

$$\frac{\partial}{\partial \Theta_{0}} J(\Theta_{0},\Theta_{1}) = \frac{1}{2m} \sum_{i=1}^{m} \frac{1}{2m} \sum_{i=1}^{$$

of
$$j=1$$
 $\frac{\partial}{\partial \theta_{i}} \mathcal{J}(\theta_{0},\theta_{i}) = \frac{1}{2} \lim_{n \to \infty} \frac{\partial}{\partial \theta_{i}} \mathcal{J}(x^{(n)}) - y^{(n)} \mathcal{J}(x^{(n)}) = \frac{1}{2} \lim_{n \to \infty} \frac{\partial}{\partial \theta_{i}} \mathcal{J}(x^{(n)}) - y^{(n)} \mathcal{J}(x^{(n)}) = \frac{1}{2} \lim_{n \to \infty} \frac{\partial}{\partial \theta_{i}} \mathcal{J}(x^{(n)}) - y^{(n)} \mathcal{J}(x^{(n)}) = \frac{1}{2} \lim_{n \to \infty} \frac{\partial}{\partial \theta_{i}} \mathcal{J}(x^{(n)}) = \frac{1}{2} \lim_{n \to \infty} \frac{\partial}{\partial \theta_{i}} \mathcal{J}(x^{(n)}) = \frac{\partial}{\partial \theta$

gradient descent algorithm for linear segression

model

Explant antil carresponce
$$\theta_{0} := \theta_{0} - \propto \frac{1}{m} \sum_{i=1}^{\infty} \left[h_{0}(x_{i}) - y_{i} \right] x_{i}^{(i)}$$

$$\theta_{1} := \theta_{1} - \propto \frac{1}{m} \sum_{i=1}^{\infty} \left[h_{0}(x_{i}) - y_{i} \right] x_{i}^{(i)}$$

multi-variable lineas sugression

house price

\$ **£**\look

4020

x, a one four vectors

whose xo-1 almosts.

$$\mathcal{L}^{\mathfrak{I}} = [0, 0, 0, 0] \times (n+1)$$

commun re gas

gradient descent for multi-variable

$$J(00,01,....0n) = 1/2m \sum_{i=1}^{m} [n_0(x) - y]^2$$

$$= 1/2m \sum_{i=1}^{m} [0^T x^{(i)} - y^{(i)}]^2$$

when h=1

Important note:

update 00,0, simultaneously

For nzi

En genoral

$$X = y$$
 $Y = y$
 $Y = y$

Example: House price estimator

x0	size of	#rooms(x	#Floors	Age of	Y (House
	house (ft)	2)	(x3)	house in	price in
	x1			months(x	*1000)
				4)	
1	2100	5	1	45	460
1	1400	3	2	40	232
1	1500	3	2	30	315
1	850	2	1	36	178

$$\Theta = \kappa^{-1} Y$$

$$= (\kappa^{7} \chi)^{-1} \kappa^{7} Y$$