Multiplexer and Decoder

Jia Chen jiac@ucr.edu

Multiplexer

Let's start with a 2-to-1 Multiplexer (MUX)

- The MUX has two input ports numbered as 0 and 1
- To select from two inputs, you need a 1-bit control/select signal to indicate the desired input port

Input			Output
Α	В	Sel	Output
0	0	0	0
0	1	0	0
1	0	0	1
1	1	0	1
0	0	1	0
0	1	1	1
1	0	1	0
1	1	1	1

2-to-1 **MUX**

Output = ASel' + BSel

4-to-1 **MUX**

16-to-1 MUX

A 16-to-1 multiplexer.

N-bit MUX

What if we need to output an N-bit (say 4-bit) number from the input set?

Decoder

Decoders

Only one of the outputs is asserted at a time (i.e., which is different from all the others), and each output corresponds to one valuation of the inputs.

An n-to- 2^n binary decoder.

Decoders

(c) Logic circuit

Decoders

A 3-to-8 decoder using two 2-to-4 decoders.

Incompletely Specified Functions

Certain input conditions can never occur

E. g. (x1, x2) = 11 is a don't-care condition: a circuit can be designed by ignoring this condition

 A function that has don't-care condition(s) is said to be incompletely specified.

 Assume that the function value for these valuations is either 1 or 0, whichever is more useful

Truth table with Don't Cares

• Each "x" for these valuations is either 1 or 0, whichever is more useful