Fluid Catalytic Cracking: Process Design and Economics

Basir Miah Christian Pena Slah Yehya Jameel Hammad

Introduction

- According to the U.S. EIA, there are 700 petroleum refineries worldwide, roughly 500 of these facilities utilize FCC (processing 56,000 to 227,000 bbl/cd per unit).
- In petroleum refineries, cracking is a process where highmolecular weight hydrocarbons are broken into lighter hydrocarbons.
- Fluid Catalytic Cracking (FCC) is a chemical process that converts gas oil into saleable petroleum products, in the presence of zeolite catalyst.

Overall Process: Zone-by-Zone Breakdown

Reactants and Products of Gas Oil Catalytic Cracking

Two Observations in Cracking Chemistry:

- Long-Chain Paraffin → Short-Chain Paraffin + Olefin
- Olefin \rightarrow Coke

Model w/ Aspen's activity factor option

Reaction* (Lump Form)	Reaction (Explicit Form)
$GO \rightarrow LCO$	$C_{28}H_{58} \rightarrow C_{14}H_{30} + C_{14}H_{28}$
$GO \rightarrow GLN$	$C_{28}H_{58} \rightarrow C_8H_{18} + 2.5C_8H_{16}$
$GO \rightarrow LPG$	$C_{28}H_{58} \rightarrow C_4H_{10} + 6C_4H_8$
$GO \rightarrow DG$	$C_{28}H_{58} \rightarrow C_2H_6 + 13C_2H_4$
$GO \rightarrow CK$	$C_{28}H_{56} \rightarrow 28C + 28H_2$
$LCO \rightarrow GLN$	$C_{14}H_{30} \rightarrow C_8H_{18} + 0.75C_8H_{16}$
$LCO \rightarrow LPG$	$C_{14}H_{30} \rightarrow C_4H_{10} + 2.5C_4H_8$
LCO →DG	$C_{14}H_{30} \rightarrow C_2H_6 + 6C_2H_4$
$GLN \rightarrow LPG$	$C_8H_{18} \rightarrow C_4H_{10} + C_4H_8$
$GLN \rightarrow DG$	$C_8H_{18} \rightarrow C_2H_6 + 3C_2H_4$
$LPG \rightarrow DG$	$C_4H_{10} \rightarrow C_2H_6 + C_2H_4$
$LCO \rightarrow CK$	$C_{14}H_{28} \rightarrow 14C + 14H_2$
$GLN \rightarrow CK$	$C_8H_{16} \rightarrow 8C + 8H_2$
$\mathrm{LPG} \to \mathrm{CK}$	$C_4H_8 \rightarrow 4C + 4H_2$
$DG \rightarrow CK$	$C_2H_4 \rightarrow 2C + 2H_2$

Riser Yield Profiles

- Residence Time (RPlug): 2.7 seconds
- Gas Oil Conversion: 95 wt%
- C/O Ratio: 6.4 kg catalyst/kg gas oil

	Simulation Yield	Commercial Yield
GLN	49 wt%	46 - 51 wt%
LPG	16 wt%	12 - 15 wt%
LCO	18 wt%	15 - 23 wt%
DG	6 wt%	~ 5 wt%
CK	7 wt%	4 - 6 wt%

Regenerator

 Used to burn off the solid coke generated in the riser reactor from the catalyst.

• Coke burns and forms CO and CO₂.

• The outlet enters a solid cyclone in which the regenerated catalyst is separated from the gases generated from the burning of the coke.

CO Boiler

- Comprised of a furnace and heat exchanger.
- Treats the gases coming from the regenerator outlet to ensure that excess CO is not emitted into the environment.

- Reactions have also been included to model the formation of nitrogen based pollutants during combustion.
- The hot flue gases that are emitted enter a heat exchanger where they are used to heat water to generate steam.

Petroleum Product Fractionation (Zone 2)

Compound	GLN	LCO	
Purity (wt%)	99.8	98.6	
Recovery (wt%)	99.5	99.0	
Stage No.	6	14	
Flow Rate (kg/s)	17.79	6.65	

- Lighter gases (LPG and DG)
 comprise the overhead distillate
 and are further separated
- Bottoms product (Slurry) contains unreacted gas oil and ~ 4 wt% LCO

Petroleum Product Fractionation (Zone 2)

Variables held constant:

- Purity Targets (via Design-Spec)
- Number of Stages (30)
- Operating Pressure (~ 29 bar)
- Feed Composition, Temperature,
 Pressure, and Flow Rate

Compound	DG	LPG
Purity (wt%)	99.9	99.9
Recovery (wt%)	99.8	99.2
Stage No.	1	30
Flow Rate (kg/s)	2.16	5.76

Breakdown of Capital Investment

- Total Direct Cost includes purchased equipment, installation, instrumentation and controls, electrical systems, land, etc.
- Total Indirect Cost includes engineering an supervision, construction, legal expenses, and contingency.
- The working capital was estimated to be 89% of the purchased equipment cost and is required to get us up and running.

Economic Analysis (Annual Sales and Cost of Materials)

Sales of Products (USD/Year)

Cost of Materials (USD/Year)

Material	Sales (USD/year)
Gas Oil	702,748,224.00
Catalyst	94,608,000.00
Air	6,816,964.30
Water	154,021.82
Cost per Year	804,327,210.13

Breakdown of Total Operation and Maintenance Costs

Revenue, Costs, Profit, ROI, and Payback Period

Revenue (USD/Year)	903,261,076.7
Costs of Materials (USD/Year)	804,327,210.1
Annualized Capital Cost (USD/Year)	9,802,414.915
O&M Costs (USD/Year)	57,053,144.11
Profit Before Taxes (USD/Year)	32,078,307.57
Profit After Taxes (USD/Year)	21,492,466.07
ROI	3.68 %
Payback Period	4.60 Years

- Revenue is approximately 903
 million dollars. Total operating and
 maintenance cost is about 861
 million dollars. Annualized capital
 cost is almost 10 million dollars.
 After taxes, we have a profit of
 almost 21 million dollars.
- Revenue, costs, profit, ROI, and payback period were all determined accounting for depreciation, a yearly inflation of 3%, a discount factor of 10%, and a flat tax rate of 33%.

Environment, Health, and Safety

- Most of the environmental concerns are due to flue gas emission to the atmosphere primarily by producing NOx (nitric oxide) compounds
- Refineries in the U.S. are operating under consent an agreement with the EPA to lower air emissions from their FCC units.

Nitrous oxide emissions

Source: CAIT Climate Data Explorer via. Climate Watch

Note: Emissions from land use change and forestry are included.

100-year global warming potential value.

Add country

500 million t 400 million t 300 million 200 million 100 million

EPA limits allowable NOx emission to the atmosphere to 20 ppm.

OurWorldInData.org/co2-and-other-greenhouse-gas-emissions • CC BY

Environment, Health, and Safety

General and Environmental Hazards of FCC Products and Reactants			
Gas Oil	 Oil spills contaminate land and water; deadly to animals. Air and water pollution hurts local communities. 		
LCO	• Toxic to aquatic life, with a long term effect on its environment.		
Gasoline	May be fatal if swallowed or enters airways.Can cause skin and eye irritation.		
LPG	 Skin and eye irritant. May cause explosive mixture with air. At high concentration, may displace oxygen and cause suffocation. 		
Dry Gas	Extremely flammable gas.		
Catalyst (Zeolite Y)	May cause respiratory irritation if inhaled.		

Thank You!

Questions?

Applications

Dry Gas

- Generate electricity 0
- Fuel for process heating Heat buildings and water
- Fuel to operate compressors

Liquified Petroleum Gas

- Vehicle fuel
- Cooking

Gasoline

- Fuel for vehicles, boats, and small aircraft... etc.
- **Light Cycle Oil**
 - Fuel usually for larger, commercial automobiles
- Slurry
 - Asphalt base for roads
 - Heating oil for engines

Thermal cracking vs. Catalytic cracking

Thermal cracking	Catalytic cracking
Involves cracking by applying temperature that ranges from 500 to 700 degrees Celsius.	Involves cracking by applying temperature that ranges from 475 to 530 degrees Celsius.
Requires high pressure (around 70 atm)	Can go under relatively low pressure (>20 atm)
Used to obtain high yield of C2 and C3 olefins and low yield of gasoline and other distillates	Used to obtain high yield of C4 olefins and high yield of gasoline and other distillates
Produces thermal gasoline (low octane number)	Produces gasoline with higher octane number
Doesn't use catalyst	Uses catalyst

Process Flow Diagram

Zone 1: Gas Oil Cracking and Catalyst Regeneration

Zone 2: Product Separation and Purification

Zone 3: Flue Gas Treatment and Heat Recovery

Full Set of Regenerator and CO Boiler Reactions

Reaction	Pre-Exponential Factor (\frac{m^3}{kmol*s})	Activation Energy $(\frac{J}{mol})$	Reactor the Reaction Takes Place In
$C + O_2 \rightarrow CO_2$	$4.12 * 10^7$	97,000	Regenerator (R-2)
$2C + O_2 \rightarrow 2CO$	1.65 * 10 ⁷	97,000	Regenerator (R-2)
$CO + O_2 \rightarrow CO_2 + O$	2.5 * 10 ⁹	199,576.8	CO Boiler (COB*)
$CO + O \rightarrow CO_2$	1.8 * 10 ⁷	995,792	CO Boiler (COB*)
$N + O_2 \rightarrow NO + O$	5.9 * 10 ⁶	26,275.52	CO Boiler (COB*)
$NO + O_2 \rightarrow NO_2 + O$	1.7 * 10 ⁹	194,538.42	CO Boiler (COB*)
$CO + NO_2 \rightarrow CO_2 + NO$	1.9 * 10 ⁹	122,426.19	CO Boiler (COB*)
$N_2 + O \rightarrow N + NO$	7.6 * 10 ¹⁰	315,917.10	CO Boiler (COB*)
$N_2 + O_2 \rightarrow N_2 O + O$	6.3 * 10 ¹⁰	458,911.16	CO Boiler (COB*)

Overall Mass Balance

Mass Flow In: 75 kg/s

Gas Oil: 37 kg/s

Air: 32 kg/s

Water: 5 kg/s

Fresh Catalyst: 1 kg/s

Fluid Catalytic Cracking Process

Mass Flow Out: 75 kg/s

Slurry: 2 kg/s

Dry Gas: 2 kg/s

LPG: 6 kg/s

Gasoline: 18 kg/s

LCO: 7 kg/s

Treated Flue Gases: 34 kg/s

Steam: 5 kg/s

Withdrawn Catalyst: 1 kg/s

Overall Energy Balance

Deriving Lumped Reactions (Part 1)

Take for example the reaction: $GO \rightarrow LCO$ (1 of 15 reactions in the 6-lump network) Important Data:

Lump	Gas Oil (GO)	Light Cycle Oil (LCO)	
Boiling Point (Range)	330 - 550 °C	221+ °C	
Molecular Weight	~ 400 g/mol	~ 200 g/mol	
Model Component (N-Alkane)	N-Octacosane (C ₂₈ H ₅₈)	N-Tetradecane (C ₁₄ H ₃₀)	

Now, let's put it together:

$$GO \rightarrow LCO$$

$$C_{28}H_{58} \rightarrow C_{14}H_{30} + ?$$

Stoichiometry is NOT balanced; need additional compound(s)

What should we do now? How do we go about choosing this second compound?

Deriving Lumped Reactions (Part 2)

We are strictly considering two observations in FCC chemistry:

- (1) Long, straight-chain paraffin → shorter, straight-chain paraffin + **olefin**
- (2) Olefin \rightarrow coke

Olefins end with "-ene" in their name. We need an alkene that has 14 carbon atoms. This secondary LCO needs to have a boiling point close to that of N-Tetradecane. Let's go with.... 1-Tetradecene ($C_{14}H_{28}$).

Let's try this again:

$$GO \to LCO$$

 $C_{28}H_{58} \to C_{14}H_{30} + C_{14}H_{28}$

Balanced; lump reaction created.

Now, do the remaining 14

This is it!

Deriving Lumped Reactions (Part 3)

Now, the coke (CK) formation reactions are a little different. In the literature, we discovered that coke has a little bit of hydrogen in it. So, we thought about using solid hydrogen (H₂). Not a good idea. So, the H₂ that forms is **coupled** with the dry gas (DG).

Here's an example:

GO \rightarrow CK

Treat the H₂ (g) as a dry gas (DG) attribute

Olefin \rightarrow Coke $C_{28}H_{56} \rightarrow 28 \text{ C (s)} + 28 \text{ H}_2 \text{ (g)}$

In total, there are **5 reactions** (in our 6-lump network) that form coke.

Economic Analysis (Capital Investment Summary)

Equipment	Purchased Cost	Direct Cost	Percent of Delivered Equipment Cost	Plant Cost
	(USD)	Purchased Equipment Delivered	1	16,530,210.65
Reactor Cyclone (CS-1)	306,433.58	Purchased Equipment Installation	0.47	7,769,199.006
Regenerator	1,254,721.29	Instrumentation and Controls	0.36	5,950,875.834
Cyclone (CS-2)		Piping (Installed)	0.68	11,240,543.24
Main Fractionator	3.750.000	Electrical Systems (Installed)	0.11	1,818,323.172
(T-1)	-,,	Buildings	0.18	2,975,437.917
(= -)		Yard Improvement	0.1	1,653,021.065
Distillation Column (T-2)	70,000	Service Facilities (Installed)	0.7	11,571,147.46
Cotumn (1-2)		Total Direct Cost	3.6	59,508,758.34
CO D -: 1 /D 2	1 065 408 73	Indirect Costs		
CO Boiler (R-3 and E-1)	1,065,408.73	Engineering and Supervision	0.33	5,454,969.515
		Construction Expenses	0.41	6,777,386.367
Heat Exchanger	5,360	Legal Expenses	0.04	661,208.426
(E-2)		Contractor's Fee	0.22	3,636,646.343
		Contingency	0.44	7,273,292.686
Water Pump	40,000	Total Indirect Plant Cost	1.44	23,803,503.34
Compressor	26,000	Fixed Capital Investment	5.04	83,312,261.68
Total Purchased	16,530,210.65	Working Capital	0.89	14,711,887.48
Equipment Cost	10,530,210.05	Total Capital Investment	5.93	98,024,149.15

Materials and Products

Material	gal/sec	USD/gal	Cost (USD/day)	Product	gal/Sec	USD/gal	Sales (USD/Day)
Gas Oil	18.57	1.20	1,925,337.60	Gasoline	7.50	2.54	1,646,446.69
Air	6,732.00	0.00003211	18,676.61	LCO	2.93	1.62	409,385.79
Water	1.32	0.0037	421.98	Slurry	0.76	1.18	77,483.52
Material	ton/sec	USD/ton	Cost (USD/day)	Dry Gas	43.03	0.00	3,513.31
Catalyst	0.001	3,000.00	259,200.00	LPG	3.76	1.04	337,858.56

Yields were compared to yields reported in literature (ensure *realistic* product output). Bumping down GLN caused the other component yields to change (i.e., they were "fixed").

Incorporate activity factors to model catalyst deactivation. Find a handbook with typical product yields corresponding to a set/range of operating conditions/parameters.

Then, employ trial-and-error.

