数学分析作业 4 月 18 日交

May 5, 2019

习题 9.1

4. 解

(1) $\sum_{i=1}^{\infty} ne^{-nx}$, $x \in (0, +\infty)$ since $\sqrt[n]{ne^{-nx}} = \sqrt[n]{ne^{-x}} \to e^{-x} < 1$ 故它收敛,但不一致收敛:如果一致收敛,则必有 $ne^{-nx} \rightrightarrows 0$ 但 $x = \frac{1}{n}$ 时,它取值为 $\frac{n}{e} > 1$,于是 ne^{-nx} 不一致收敛于 0.

(3) $\sum_{n=1}^{\infty} \frac{1}{x^2 + n^2}$ 一致收敛: $\frac{1}{x^2 + n^2} < \frac{1}{n^2}$. $\sum_{n=1}^{\infty} \frac{1}{n^2} < +\infty$.

(5) $\sum_{n=1}^{\infty} \frac{1}{(1+nx)^2}$, $x \in (0,+\infty)$ 不一致收敛: 假设一致收敛, 则 $\forall \epsilon > 0, \exists N, s.t.n > N$ 时,

 $\begin{aligned} & |\sum_{k=n+1}^{2n} \frac{kx}{1+k^3x^2}| < \epsilon, \forall x \in (-\infty, +\infty), \text{ but } |\sum_{k=n+1}^{2n} \frac{kx}{1+k^3x^2}| = \sum_{k=n+1}^{2n} \frac{k|x|}{1+k^3x^2} = |x| \sum_{k=n+1}^{2n} \frac{1}{1/k+k^2x^2} \ge \\ & |x| \sum_{k=n+1}^{2n} \frac{1}{1/n+4n^2x^2} = \frac{n^2|x|}{1+4n^3x^2} \text{ but when } x = n^{-3/2}, |\sum_{k=n+1}^{2n} \frac{kx}{1+k^3x^2}| \ge \frac{n^2n^{-3/2}}{1+4} = \frac{\sqrt{n}}{5}. \end{aligned}$

 $\Rightarrow \sup_{x \in (-\infty, +\infty)} \left| \sum_{k=n+1}^{2n} \frac{kx}{1+k^3x^2} \right| \ge \frac{\sqrt{n}}{5} \to \infty.$

证明. $b_n(x) := \frac{1}{n^x}$ for $\forall x \in [0, +\infty), b_n(x)$ 对 n 单调且一直有界: $|b_n(x)| \le 1$. 由 Abel 判别法, $\sum_{n=1}^{\infty} \frac{a_n}{n^x}$ 在 $[0, +\infty)$ 一致收敛。 \square 7.

证明. $\forall \epsilon > 0$. since $f_n \Rightarrow f, \exists N, s.t. \forall n > N$ 时,有 $|f_n(x) - f(x)| < \frac{\epsilon}{3} \forall x \in I$. 由 f_N 的一致收敛性, $\exists \delta > 0$,s.t. $\forall x, y \in I$ and $|x - y| < \delta$,有 $|f_N(x) - f_N(y)| < \frac{\epsilon}{3}$. 于是 $|f(x) - f(y)| \le |f(x) - f_N(x)| + |f_N(x) - f_N(y)| + |f_N(y) - f(y)| < \frac{\epsilon}{3} + \frac{\epsilon}{3} + \frac{\epsilon}{3} = \epsilon$.

证明. let $|g(x)| \le K, K > 0$. $\forall \epsilon > 0, \exists N, s.t. \forall n > N$ 时, 有 $|f_n(x) - f(x)| < \frac{\epsilon}{K}, \forall x \in I$. so $|f_n(x)g(x) - f(x)g(x)| \le K|f_n(x) - f(x)| < \epsilon, \forall x \in I$. therefore, $f_ng \Rightarrow fg$. \Box 10.

证明. (换成 (a,b) 不对,例: $f_n(x) = x - \frac{1}{n}$ on (0,1), $f_n \Rightarrow x$ on (0,1) but 每个 f_n 都有负的部分). $f \in C^0[a,b]$ and $f > 0 \Rightarrow \exists \delta > 0$ s.t. $f(x) \geq \delta$, $\forall x \in [a,b]$. since $f_n \Rightarrow f, \exists N, s.t. \, \forall n > N, |f_n(x) - f(x)| < \frac{\delta}{2} \Rightarrow f_n(x) \geq f(x) - \frac{\delta}{2} \geq \frac{\delta}{2} > 0$. so $|\frac{1}{f_n(x)} - \frac{1}{f(x)}| = \frac{|f_n(x) - f(x)|}{|f_n(x)f(x)|} \leq \frac{|f_n(x) - f(x)|}{\delta \frac{\delta}{2}} = \frac{2}{\delta^2} |f_n(x) - f(x)|$. $\forall \epsilon > 0$, take N_1 s.t. $\forall n > N_1$, $|f_n(x) - f(x)| < \frac{\delta^2}{2} \epsilon$. so when $n > \max\{N, N_1\}$, $|\frac{1}{f_n(x)} - \frac{1}{f(x)}| < \epsilon$, $\forall x \in [a,b] \Rightarrow \frac{1}{f_n(x)} \Rightarrow \frac{1}{f(x)}$ on [a,b].

证明. let $|f_n(x)| \leq K_n$. since $f_n \Rightarrow f$, $\exists N$, $s.t. \forall n > N$ 时, 有 $|f_n(x) - f_N(x)| \leq 1, \forall x \in I$. $\Rightarrow |f_n(x)| \leq |f_N(x)| + 1 \leq K_N + 1 \Rightarrow |f(x)| \leq K_N + 1$. 同理,g 有界,设 $|f_n|, |g_n| \leq K, \forall n, K > 0, \forall \epsilon > 0$, $\exists N$, $s.t. \forall n > N, |f_n(x) - f(x)| < \frac{\epsilon}{2K}, |g_n(x) - g(x)| < \frac{\epsilon}{2K}, \forall x \in I$. $\Rightarrow |f_n(x)g_n(x) - f(x)g(x)| \leq |f_n(x)g_n(x) - f_n(x)g(x)| + |f_n(x)g(x) - f(x)g(x)| < \frac{\epsilon}{2K}K + \frac{\epsilon}{2K}K = \epsilon$. $\Rightarrow f_ng_n \Rightarrow fg$.

13.

证明. 由 Cauchy 准则,对 $\epsilon=1$, $\exists N,\ s.t.\ \forall m,n>N, |P_m(x)-P_n(x)|\leq 1$ 但 P_m-P_n 是多项式,在 $\mathbb R$ 上有界,当且仅当 $deg(P_m-P_n)=0$. 所以 n>N 时, $P_n=P(x)+c_n$,P(x) 为一固定多项式, $c_n\in\mathbb R$. $\Rightarrow c_n\to c\in\mathbb R$. $\Rightarrow f(x)=P(x)+c$ 为多项式。 □ 习题 9.2

1.

证明. 首先 f 绝对一致收敛,故 f 连续。而 $\sum\limits_{n}\frac{cosnx}{n^2}$ 在 \mathbb{R} 上一致收敛且极限连续。于是

$$f'(x) = \sum_{n=1}^{\infty} \frac{(sinnx)'}{n^3} = \sum_{n=1}^{\infty} \frac{cosnx}{n^2}.$$

证明.
$$(\frac{1}{n^x})' = (n^{-x})' = (e^{-lnnx})' = (-lnn)\frac{1}{n^x}. \Rightarrow (\frac{1}{n^x})^k = \frac{(-lnn)^k}{n^x}. \forall \delta > 0$$
, 在 $[1 + \delta, +\infty)$ 上有 $\sum_{n=1}^{\infty} \frac{(lnn)^k}{n^x} \leq \sum_{n=1}^{\infty} \frac{(lnn)^k}{n^{1+\delta}} < +\infty$. 故可逐项求导。

5.(1). (一致收敛的验证: $0 < ne^{-nx} \le ne^{-nln2} = \frac{n}{2^n}$. $\sqrt[n]{\frac{n}{2^n}} \to \frac{1}{2} < 1 \Rightarrow \sum_{n} \frac{n}{2^n} < +\infty \Rightarrow \sum_{n} ne^{-nx}$ 在 [ln2, ln5] 上一致收敛。)

$$\sum_{n} ne^{-nx} \, \text{在} \, [\ln 2, \ln 5] \, \text{上} - \text{致收敛。})$$

$$\int_{\ln 2}^{\ln 5} \sum_{n=1}^{\infty} ne^{-nx} dx = \sum_{n=1}^{\infty} \int_{\ln 2}^{\ln 5} ne^{-nx} dx = \sum_{n=1}^{\infty} \int_{n\ln 2}^{n\ln 5} e^{-y} dy = \sum_{n=1}^{\infty} \left(\frac{1}{2^n} - \frac{1}{5^n}\right) = \frac{1/2}{1 - 1/2} - \frac{1/5}{1 - 1/5} = 1 - 1/4 = \frac{3}{4}.$$
8.

证明. 设 $F'_n = f_n$. 改造 $G_n(x) = F_n(x) - F_n(a)$. 则 $G'_n = f_n$ 且 $G_n(a) = 0$. $\Rightarrow \{G_n(a)\}_{n=1}^{\infty}$ 收敛。 $\Rightarrow G_n(x) \Rightarrow G(x)$ on [a,b] 且 G'(x) = f.