Лабораторная работа 2

Определение времени отверждения полимеров.

Свойства эпоксидных полимеров

Эпоксидные полимеры представляют собой соединения, содержащие в своем составе эпоксидные группы, имеющие форму трехчленных кислородсодержащих циклов. Они относятся к классу поликонденсаци-онных. Переход эпоксидных полимеров в нерастворимые соединения, обла-дающие сетчатой структурой, т.е. процесс их отверждения возможен при взаимодействии их с веществами, имеющими подвижный атом водорода (аминами, спиртами, фенолами). В зависимости от типа отверждающего агента (отвердителя) этот процесс протекает при обычной температуре и со-провождается значительным выделением тепла или требует нагревания. Наи-более широко для отверждения эпоксидных полимеров применяются амино-соединения. Эпоксидные полимеры обладают комплексом ценных свойств: в неотвержденном состоянии легко растворяются в органических растворителях, хорошо совмещаются с другими синтетическими смолами (фенолоальдегидными, мочевино-формальдегидными, поливинилбутиралем и др.), могут храниться длительное время без изменения своих свойств. Отвержденные эпоксидные полимеры имеют высокую прочность, отличную адгезию (прилипание) к большинству строительных материалов, обладают стойкостью к действию многих химических реагентов, хорошими диэлектрическими свойствами. Благодаря ценным свойствам эпоксидные полимеры находят широкое применение в качестве клеев, защитных и защитно-декоративных покрытий, электроизоляционных лаков, мастик, полимербетонов и др. Недостатками этих полимеров являются в неотвержденном виде значительная вязкость, в отвержденном состоянии – хрупкость. Для снижения влияния этих недостатков в эпоксидные полимеры вводят разбавители и пластификаторы.

Свойства поливинилового спирта и его растворов.

Свойства карбоксиметил целлюлозы и ее растворов.

Цель работы

В работе ставится задача изучить влияние различных факторов на скорость отверждения исходных полимеров, процессы их отверждения и свойства в отвержденном состоянии.

Используемые материалы

- 1. Эпоксидный полимер дианового типа марки ЭД-20 и отвердитель полиэтиленполиамин (ПЭПА.
- 2. Растворы поливинилового спирта
- 3. Растворы карбоксиметилцеллюлозы.

Определение скорости отверждения приготовленных составов проводят с использованием пластиковых формочек, покровных стекол и полимерных подложек.

Цель работы.

- 1. Определить влияние количества отвердителя, температуры на скорость отверждения эпоксидного полимера и его свойства в отвержденном состоянии.
- 2.Определить влияние температуры, подложки и концентрации на скорость отверждения и свойства водорастворимых полимеров.

За скорость отверждения (жизнеспособность) эпоксидного полимера принимают время от момента его смешивания с отвердителем или помещения образцов на воздух, момента повышения температуры и др. до момента резкого возрастания вязкости (потери текучести) состава Необходимо определить скорость отверждения композиций, в которых на 100 масс. частей эпоксидного полимера приходится соответственно 5,10,20, 50 масс. ч. отвердителя. Определение проводят следующим образом. В фарфоровые чашечки взвешивают по 10 г. эпоксидной смолы и соответст-венно 0,5, 1 и 2, 5 г отвердителя. Записывают время, перемешивают составы стеклянной полочкой и переносят их в формочки. Выдерживают образцы до потери текучести. Записывают время. Опыт повторяют при нагревании. Для водорастворимых полимеров каплю раствора переносят на предметное стекло и равномерно распределяют. Выдерживают до удаления влаги без нагревании и с нагреванием при определенной температуре. Меняют подложку и опыт повторяют. Записывают время. При заполнении таблицы отмечают изменяющийся фактор (подложка, концентрация полимера, температура).

Экспериментальная часть

Количество полимера гр.	Количество отвердителя гр.	T °C	Время (скорость)	
5	0.5	17	11:07	
		120	11:06	12:23
		150	11:05	12:22
5	2	17	11:07	
		120	11:06	
		150	11:05	

Отношение полимера к отвердителю 10/1		
Т отверждения	Примечание	
17	Скорость отверждения ниже, чем у других, приведённых в таблице вариантов. После изъятия образец обладает липкостью. Не отвердился полностью.	
120	Образец отвердел за 77 минут. Как и предыдущий, обладает липким свойством. Не отвердился полностью.	
150	Схож по скорости с предыдущим, липкие свойства. Не отвердился полностью.	

Отношение полимера к отвердителю 10/4		
Т отверждения	Примечание	
17	Самая низкая скорость отверждения среди образцов. Липкие свойства. Не отверждён полностью.	
120	Скорость отверждения составила около 2 часов. Липкие свойства. Не отверждён полностью.	
150	Скорость — 2 часа Липкие свойства. Не отверждён полностью	

В пробирки был залит полимер в количестве 5 грамм. Имеем 6 пробирок, в 3 из них добавляем отвердитель количестве 0.5 гр, в другие — 2 гр. Перемешиваем вещества и попарно оставляем эти пробирки на отверждение при разных Т.

Вывод: Из данных таблиц следует:

- 1) С повышением температуры увеличивается и скорость отверждения.
- 2) Влияние отвердителя на скорость отверждения заметно.

Существует определённая % доля отвердителя, после достижения которой количество объёма отвердителя отрицательно влияет на скорость отверждения.

3) Вне зависимости от температуры и количества отвердителя, мы не смогли добиться полного отверждения.