11 Quadratic Residues

Introduction: The concept of Quadratic Residues is a fundamental tool which has ramifications in lots of other number theory places: Cryptography, Factoring, etc...

11.1 Quadratice Residues & Nonresidues

1. **Introduction:** Suppose we asked the following, given a modulus m: Which numbers are perfect squares mod m?

Ex. Let m = 7. What are the perfect squares? We could of course work backwards, squaring each value:

$$0^{2} \equiv 0 \mod 7$$

$$1^{2} \equiv 1 \mod 7$$

$$2^{2} \equiv 4 \mod 7$$

$$3^{2} \equiv 2 \mod 7$$

$$4^{2} \equiv 2 \mod 7$$

$$4^2 \equiv 2 \mod 7$$
$$5^2 \equiv 4 \mod 7$$

$$5 \equiv 4 \mod 7$$

 $6^2 \equiv 1 \mod 7$

Then the perfect squares are 0, 1, 2, 4 and 3, 5, 6 are not.

2. Quadratice Residues & Nonresidues - Counting

(a) **Definition:** Let m be a modulus and $a \in \mathbb{Z}$ with $\gcd(a, m) = 1$. We say a is a quadratic residue mod m if $\exists x \in \mathbb{Z}$ such that $x^2 \equiv a \mod m$. Otherwise, we say a is a quadratic nonresidue mod m if $\nexists x \in \mathbb{Z}$ such that $x^2 \equiv a \mod m$.

Ex. If m = 7 then QR:1, 2, 4, QNR:3, 5, 6, and Neither:0.

(b) **Theorem:** If p is an odd prime and $a \in \mathbb{Z}$ with $p \nmid a \implies \gcd(p, a) = 1$, then $x^2 \equiv a \mod p$ has either no solutions or exactly two solutions mod p.

Proof. If there are none, we are done. Suppose x is one solution to $x^2 \equiv a \mod p$. Claim -x is also a solution. Then $2x \equiv 0 \mod p$. Since p is odd we can do $x \equiv 0 \mod p$ which implies $p \mid x \Longrightarrow p \mid x^2$. Then, $x^2 \equiv 0 \mod p \Longrightarrow a \equiv 0 \mod p$ which contradicts $p \nmid a$.

Let's show that for any two solutions, they are negative of one another. Suppose $x_1^2 \equiv a \mod p$ and $x_2^2 \equiv a \mod p$. Then $x_1^2 - x_2^2 \equiv 0 \mod p$ so

 $p \mid (x_1^2 - x_2^2)$ so $p \mid (x_1 - x_2)(x_1 + x_2)$ so $p \mid (x_1 - x_2)$ or $p \mid (x_1 + x_2)$. If $p \mid (x_1 - x_2)$ then $x_1 \equiv x_2 \mod p$. If $p \mid (x_1 + x_2)$ then $x_1 \equiv -x_2 \mod p$. Thus, there can only be the two which are negatives of one another \square

(c) **Theorem:** Suppose p is an odd prime. Then $\exists \frac{p-1}{2}$ QR and $\exists \frac{p-1}{2}$ QNR.

Proof. If we square all of $1,2,3,\cdots,p-1$ the results will be in pairs (two of every result) the $\frac{p-1}{2}$ we do get are the QR. We miss $\frac{p-1}{2}$ results, those are the QNR.

(d) **Theorem:** Let p be an odd prime and r a primitive root mod p. Suppose $p \nmid a$, then a is a QR mod p if and only if $\operatorname{ind}_r a$ is even.

Proof.

- \rightarrow Suppose a is a quadratice residue mod p, $\exists x$ such that $x^2 \equiv a \mod p$. Then take the index of both sides to get $\operatorname{ind}_r x^2 \equiv \operatorname{ind}_r a \mod p 1$ and so $2\operatorname{ind}_r x \equiv \operatorname{ind}_r a \mod p 1$. From here we see $\operatorname{ind}_r a = 2\operatorname{ind}_r x + k(p-1)$ for some $k \in \mathbb{Z}$ and so since p-1 is even we know $\operatorname{ind}_r a$ is even.
- \leftarrow Suppose ind_r a is even. Say ind_r a=2k for $k \in \mathbb{Z}$ so $r^{2k} \equiv a \mod p$ so $(r^k)^2 \equiv a \mod p$. Then, a is a quadratice residue mod p.

To illustrate: r = 3 is a primitive root mod 17.

ĺ	$a \mod 17$	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16
Ì	ind_3a	16	14	1	12	5	15	11	10	2	3	7	13	4	9	6	8

So what this theorem tells us is that a=1,2,4,8,9,13,15,16 are the quadratic residues

3. The Legendre Symbol and Properties

(a) **Definition:** Given an odd prime p and $a \in \mathbb{Z}$ with gcd(a, p) = 1, define the Legendre Symbol:

$$\left(\frac{a}{p}\right) = \begin{cases} 1 & \text{if } a \text{ is a quadratice residue mod } p \\ -1 & \text{if } a \text{ is a quadratic nonresidue mod } p \end{cases}$$

Ex. If p = 7 we have:

$$\left(\frac{1}{7}\right) = \left(\frac{2}{7}\right) = \left(\frac{4}{7}\right) = 1$$

$$\left(\frac{3}{7}\right) = \left(\frac{5}{7}\right) = \left(\frac{6}{7}\right) = -1$$

Since 1, 2, 4 are QR mod 7 and 3, 5, 6 are QNR mod 7.

(b) **Euler's Criterion:** If p is an odd prime and $a \in \mathbb{Z}$ with $\gcd(a,p) = 1$ then:

$$\left(\frac{a}{p}\right) \equiv a^{(p-1)/2} \bmod p$$

Proof. Suppose $\left(\frac{a}{p}\right) = 1$ then $\exists x$ such that $x^2 \equiv a \mod p$. Then observe, $a^{(p-1)/2} \equiv (x^2)^{(p-1)/2} = x^{p-1} \equiv 1 \mod p$ by Euler's Theorem/Fermat's Little Theorem they are equal.

Suppose $\left(\frac{a}{p}\right)=-1$. Consider the list $\{1,2,\cdots,p-1\}$, each is coprime to p and there are an even number of them because p is odd. Suppose $b\in\{1,2,\cdots,p-1\}$, then consider the equation $bx\equiv a \bmod p$. Since $\gcd(b,p)=1\mid a,\exists!$ solution. Could $x\equiv b \bmod p$? No because if $b\cdot b\equiv a \bmod p\implies b^2\equiv a \bmod p$ but then a would be a QR $\bmod p$. Since the solution is not b it is another element in the set $\{1,2,\cdots,p-1\}$. Thus all of $\{1,2,\cdots,p-1\}$ pair up to give pairs whose products are a. Thus,

$$\underbrace{(1)(2)\cdots(p-1)}_{\text{Wilson's Theorem}} \equiv a^{(p-1)/2} \mod p$$
$$a^{(p-1)/2} \equiv -1 \mod p$$

Ex. $\left(\frac{6}{11}\right) = 6^{(11-1)/2} = 6^5 \equiv 10 \equiv -1 \mod 11$. So 6 is a QNR mod 11. i.e. $x^2 \equiv 6 \mod 11$ has no solution.

- (c) **Theorem:** If p is an odd prime and $a \in \mathbb{Z}$ with gcd(a, p) = gcd(b, p) = 1 then:
 - i. If $a \equiv b \mod p$ then $\left(\frac{a}{p}\right) = \left(\frac{b}{p}\right)$. This statements that we can reduce the numerator mod the denominator.

Proof. Clear because $x^2 \equiv a \mod p$ if and only if $x^2 \equiv b \mod p$ because $a \equiv b \mod p$.

ii.
$$\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$$

Proof. Well,

$$\left(\frac{ab}{p}\right) \equiv (ab)^{(p-1)/2} \equiv a^{(p-1)/2}b^{(p-1)/2} \equiv \left(\frac{a}{p}\right)\left(\frac{b}{p}\right) \bmod p$$

So $\left(\frac{ab}{p}\right) \equiv \left(\frac{a}{p}\right) \left(\frac{b}{p}\right) \mod p$ so $p \mid \left[\left(\frac{ab}{p}\right) - \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)\right]$ but $p \geq 3$ Since $\left(\frac{ab}{p}\right) - \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$ is between -2 and 2 and p divides it, we know that it must be 0. Therefore, $\left(\frac{ab}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right)$.

iii.
$$\left(\frac{a^2}{p}\right) = 1$$

Proof. Obvious.

(d) **Gauss' Lemma:** Suppose p is an odd prime and $a \in \mathbb{Z}$ with gcd(a, p) = 1. Let s be the number of least nonnegative residues in the set $\{a, 2a, \cdots, ((p-1)/2) a\}$ which are > p/2. Then $\left(\frac{a}{p}\right) = (-1)^s$.

Ex. Consider $\left(\frac{8}{13}\right)$. Note that $\left(\frac{p-1}{2}\right) = \frac{12}{2} = 6$ so look at

$$\{8, 2 \cdot 8, 3 \cdot 8, \dots, 6 \cdot 8\} \equiv \{8, 3, 11, 6, 1, 9\} \mod 13$$

Since only three of these are greater than p/2=6.5 we have $\left(\frac{8}{13}\right)=(-1)^3=-1$. Thus, 8 is a quadratic nonresidue mod 13.

4. Two Special Cases

These will turn out to be really useful after 11.2 and 11.3.

(a) **Theorem:** Suppose p is an odd prime, then

$$\left(\frac{-1}{p}\right) = \begin{cases} 1 & \text{if } p \equiv 1 \mod 4\\ -1 & \text{if } p \equiv 3 \mod 4 \end{cases}$$

Proof. By Euler's Criterion we have,

$$\left(\frac{-1}{p}\right) \equiv (-1)^{(p-1)/2} \bmod p$$

If $p \equiv 1 \mod 4$ then p = 4k+1 for some $k \in \mathbb{Z}$ so:

$$(-1)^{(p-1)/2} = (-1)^{(4k+1-1)/2} = (-1)^{2k} = 1$$

If $p \equiv 3 \mod 4$ then p = 4k + 3 for some $k \in \mathbb{Z}$ so:

$$(-1)^{(p-1)/2} = (-1)^{(4k+3-1)/2} = (-1)^{2k+1} = -1$$

(b) **Theorem:** Suppose p is an odd prime, then

$$\begin{pmatrix} 2 \\ -p \end{pmatrix} = \begin{cases} 1 & \text{if } p \equiv 1,7 \mod 8 \\ -1 & \text{if } p \equiv 3,5 \mod 8 \end{cases}$$

Proof. Not obvious as it uses Gauss' Lemma and is lengthy.

Note: This is equivalent to

$$\left(\frac{2}{p}\right) = (-1)^{(p^2 - 1)/8}$$