ECOLE POLYTECHNIQUE

CONCOURS D'ADMISSION 2025

MARDI 15 AVRIL 2025 08h00 - 12h00 FILIERES MP-MPI - Epreuve n° 3

MATHEMATIQUES B (X)

Durée : 4 heures

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve Si I est un intervalle de \mathbb{R} d'intérieur non vide et si f est une fonction n fois dérivable de I dans \mathbb{R} , on note $f^{(n)}$ sa dérivée n-ième, avec la convention $f^{(0)} = f$. On dit qu'une fonction f de I dans \mathbb{R} est de classe \mathscr{C}^{∞} si elle est n fois dérivable pour tout entier $n \geq 1$.

On note $\mathbb{R}[X]$ le \mathbb{R} -espace vectoriel des polynômes à coefficients réels. Si $n \geqslant 0$ est un entier, on note $\mathbb{R}_n[X]$ le sous- \mathbb{R} -espace vectoriel de $\mathbb{R}[X]$ constitué des polynômes de degré inférieur ou égal à n. Par convention, on note $\mathbb{R}_{-1}[X]$ le sous-espace vectoriel de $\mathbb{R}[X]$ réduit au polynôme nul. On dit qu'un polynôme $P \in \mathbb{R}[X]$ est unitaire s'il est non nul et si son coefficient dominant est égal à 1.

Si V est un \mathbb{R} -espace vectoriel de dimension finie muni d'un produit scalaire, pour tout sous- \mathbb{R} -espace vectoriel W de V on note W^{\perp} l'orthogonal de W dans V.

Si m et n sont deux entiers naturels non nuls, on note $\mathcal{M}_{m,n}(\mathbb{R})$ l'ensemble des matrices à m lignes et n colonnes et à coefficients réels. Si m=n, on note $\mathcal{M}_n(\mathbb{R})=\mathcal{M}_{m,n}(\mathbb{R})$. Si $M\in\mathcal{M}_{m,n}(\mathbb{R})$, on note $M^T\in\mathcal{M}_{n,m}(\mathbb{R})$ la matrice transposée de M. Si $(a_{i,j})_{\substack{1\leqslant i\leqslant m\\1\leqslant j\leqslant n}}$ est une famille de nombres réels indexée par les couples (i,j) d'entiers tels que $1\leqslant i\leqslant m$ et $1\leqslant j\leqslant n$, on note $(a_{i,j})\in\mathcal{M}_{m,n}(\mathbb{R})$ la matrice dont le coefficient à la ligne i et la colonne j est $a_{i,j}$.

Le problème comporte quatre parties. Les trois premières parties sont indépendantes entre elles. On pourra utiliser des résultats des trois premières parties dans la quatrième et dernière partie.

Première partie

Soit a et b deux nombres réels tels que a < b. Soit b une fonction \mathscr{C}^{∞} de [a,b] dans \mathbb{R} . On fixe un entier $N \geqslant 1$. On dit que b s'annule à l'ordre b dans [a,b] s'il existe des nombres $a \leqslant c_1 < c_2 < \cdots < c_m \leqslant b$ et des entiers strictement positifs k_1, \ldots, k_m tels que $\sum_{i=1}^m k_i = N$ et, pour tout entier $1 \leqslant i \leqslant m$ et tout entier $0 \leqslant k < k_i$, on a $b^{(k)}(c_i) = 0$.

1a. Soit $N \ge 1$ un entier. Montrer que si h s'annule à l'ordre N+1 dans [a,b], alors h' s'annule à l'ordre N dans [a,b].

1b. Pour tout entier $N \ge 1$, montrer que si h s'annule à l'ordre N+1 dans [a,b], il existe $c \in [a,b]$ tel que $h^{(N)}(c) = 0$.

On fixe, pour le reste de cette partie, f une fonction de classe \mathscr{C}^{∞} de [a,b] dans \mathbb{R} . Soit $P \in \mathbb{R}[X]$ un polynôme non nul, scindé dans \mathbb{R} et dont toutes les racines sont dans]a,b[. On note $a < t_1 < \cdots < t_m < b$ les racines de P et, pour tout entier $1 \le i \le m$, on note k_i le plus petit entier tel que $P^{(k_i)}(t_i) \ne 0$.

2a. Montrer que si $Q \in \mathbb{R}[X]$ est un polynôme tel que $\deg(Q) < \deg(P)$ et, pour tout entier $1 \le i \le m$ et tout entier $0 \le k < k_i$, $Q^{(k)}(t_i) = 0$, alors Q = 0.

2b. Montrer qu'il existe un unique polynôme $H(f,P) \in \mathbb{R}[X]$ tel que $\deg(H(f,P)) < \deg(P)$ et tel que, pour tout entier $1 \leq i \leq m$ et tout entier $0 \leq k < k_i$,

$$H(f,P)^{(k)}(t_i) = f^{(k)}(t_i).$$

Pour $t \in [a, b] \setminus \{t_1, \dots, t_m\}$. On pose

$$Q(f,P)(t) = \frac{f(t) - H(f,P)(t)}{(t-t_1)^{k_1} \cdots (t-t_m)^{k_m}}.$$

3a. On pose g=f-H(f,P). Montrer que, pour tout entier $1\leqslant i\leqslant m$ et tout réel $x\in [a,b]$, on a

$$f(x) - H(f, P)(x) = (x - t_i)^{k_i} \int_0^1 \frac{v^{k_i - 1}}{(k_i - 1)!} g^{(k_i)}(t_i v + x(1 - v)) dv.$$

3b. Montrer que la fonction Q(f, P) se prolonge de façon unique en une fonction de classe \mathscr{C}^{∞} de [a, b] dans \mathbb{R} .

4a. Soit $s_0 \in [a, b]$ et soit un entier $n \ge 1$. Montrer que

$$Q(f, (X - s_0)^n)(s_0) = \frac{f^{(n)}(s_0)}{n!}.$$

4b. Soient $P_1, P_2 \in \mathbb{R}[X]$ deux polynômes unitaires et scindés dans]a, b[. Montrer que

$$H(f, P_1P_2) = H(f, P_1) + P_1H(Q(f, P_1), P_2)$$
 et $Q(f, P_1P_2) = Q(Q(f, P_1), P_2)$.

On fixe $t \in [a, b] \setminus \{t_1, \dots, t_m\}$. Pour tout $s \in [a, b]$, on pose

$$Q_t(s) = f(s) - H(f, P)(s) - Q(f, P)(t) \prod_{i=1}^{m} (s - t_i)^{k_i}.$$

5a. Montrer que la fonction Q_t s'annule à l'ordre $\deg(P)+1$ dans l'intervalle $[\min(t,t_1),\max(t,t_m)]$.

5b. En déduire que si P est unitaire, il existe $\xi \in [\min(t, t_1), \max(t, t_m)]$ tel que

$$f(t) - H(f, P)(t) = \frac{f^{(\deg(P))}(\xi)}{\deg(P)!} P(t).$$

On dit qu'une fonction h de [a, b] dans \mathbb{R} est absolument monotone sur un intervalle [a, b] si elle est de classe \mathscr{C}^{∞} sur [a, b] et si, pour tout entier $n \ge 0$, la fonction $h^{(n)}$ est à valeurs positives sur [a, b]. En particulier h est à valeurs positives.

6. On suppose que f est absolument monotone sur [a, b]. Montrer que, pour tout polynôme $P \in \mathbb{R}[X]$ scindé dans [a, b], la fonction Q(f, P) est absolument monotone sur [a, b].

Deuxième partie

Soit I = [-1, 1]. On fixe un entier $n \ge 2$ pour toute cette partie. Soit $f: I \to]0, +\infty[$ une fonction continue. On rappelle que l'on définit un produit scalaire sur $\mathbb{R}_n[X]$ en posant, pour tous $P, Q \in \mathbb{R}[X]$,

$$\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x)f(x) dx.$$

Soit $D \in \mathbb{R}_n[X]$ un polynôme ayant n racines réelles distinctes $r_1 > \cdots > r_n$ dans I. On suppose de plus que $D \in \mathbb{R}_{n-1}[X]^{\perp}$.

7a. Montrer qu'il existe des nombres réels $\lambda_1, \ldots, \lambda_n$ tels que, pour tout $P \in \mathbb{R}_{n-1}[X]$,

$$\int_{-1}^{1} P(x)f(x) dx = \sum_{i=1}^{n} \lambda_i P(r_i).$$

7b. Montrer que si $P \in \mathbb{R}_{2n-1}[X]$, on a

$$\int_{-1}^{1} P(x)f(x) dx = \sum_{i=1}^{n} \lambda_i P(r_i).$$
 (1)

Indication : on pourra considérer la division euclidienne de P par D.

7c. En évaluant l'égalité (1) sur le polynôme $\prod_{\substack{1 \leq j \leq n \\ j \neq i}} (X - r_j)^2$, montrer que $\lambda_i > 0$ pour tout

 $1 \leqslant i \leqslant n$.

Pour $1 \leqslant j \leqslant n-1$ et $t \in \mathbb{R}$, on pose $f_j(t) = \prod_{i=1}^j (r_i - t)$ ainsi que $f_0(t) = 1$. Si $0 \leqslant j \leqslant n-1$ et $P, Q \in \mathbb{R}_n[X]$, on pose

$$\langle P, Q \rangle_j = \langle P, Q f_j \rangle.$$

7d. Montrer que, pour tout $0 \le j \le n-1$, $\langle \cdot, \cdot \rangle_j$ définit un produit scalaire sur $\mathbb{R}_{n-j-1}[X]$. Dans les questions **8.** à **12.** ci-dessous, on fixe un entier naturel $0 \le j \le n-1$.

8a. Montrer qu'il existe une unique famille q_0, \ldots, q_{n-j-1} de polynômes unitaires de $\mathbb{R}[X]$ telle que $\deg(q_i) = i$ pour $0 \le i \le n-j-1$ et telle que pour tous $0 \le i \ne i' \le n-j-1$,

$$\langle q_i, q_{i'} \rangle_i = 0.$$

8b. On pose $q_{n-j}=\prod_{i=j+1}^n (X-r_i)$. Montrer que q_{n-j} est l'unique polynôme unitaire de degré n-j vérifiant, pour tout $0 \le i \le n-j-1$,

$$\langle q_i, q_{n-j} \rangle_j = 0.$$

9a. Soit $2 \leq i \leq n-j$. Montrer qu'il existe des nombres réels a_i et b_i tels que

$$q_i - Xq_{i-1} = a_iq_{i-1} + b_iq_{i-2}$$
.

9b. Montrer que

$$b_i \langle q_{i-2}, q_{i-2} \rangle_j = -\langle X q_{i-1}, q_{i-2} \rangle_j.$$

9c. Montrer que $b_i < 0$.

10a. Pour $i \in \{0,1\}$, montrer que le polynôme q_i a exactement i racines dans \mathbb{R} (noter que l'on ne demande pas que les racines appartiennent à l'intervalle I).

- **10b.** Montrer que, pour tout $1 \le i \le n j$, le polynôme q_i a exactement i racines réelles distinctes, que ces racines sont simples et que si $x_1 < x_2$ sont deux racines consécutives de q_i , il existe une unique racine de q_{i-1} dans l'intervalle $]x_1, x_2[$.
- **10c.** En déduire que, pour tout $0 \le i \le n j 1$, on a $q_i(r_{j+1}) > 0$.

Pour $0 \le i \le n-j-1$, il existe donc un unique nombre réel α_i tel que

$$q_{i+1}(r_{j+1}) + \alpha_i q_i(r_{j+1}) = 0.$$

On fixe $0 \le i \le n - j - 1$ et on pose

$$p_i = \frac{q_{i+1} + \alpha_i q_i}{X - r_{i+1}}.$$

On note $c_0, \ldots, c_i \in \mathbb{R}$ les coordonnées de p_i dans la base (q_0, \ldots, q_i) de $\mathbb{R}_i[X]$.

11a. Montrer que, pour $0 \le \ell \le i$,

$$\left\langle q_{i+1} + \alpha_i q_i, \frac{q_\ell - q_\ell(r_{j+1})}{X - r_{j+1}} \right\rangle_i = 0.$$

- **11b.** Montrer que, pour tout entier $0 \le \ell \le i$, il existe un réel $\gamma_{\ell} > 0$ tel que $c_{\ell} = \gamma_{\ell} c_0$ et en déduire que $c_{\ell} > 0$.
- **12.** Montrer que, si $0 \le j \le n-2$, pour tout $0 \le i \le n-j-1$, le polynôme p_i est orthogonal à $\mathbb{R}_{i-1}[X]$ pour le produit scalaire $\langle \cdot, \cdot \rangle_{j+1}$.
- 13. Soit $\mathscr{B} = (a_0, \ldots, a_n)$ l'unique base orthogonale de $(\mathbb{R}_n[X], \langle \cdot, \cdot \rangle)$ telle que a_i est un polynôme unitaire de degré i pour tout $0 \le i \le n$. Montrer que, pour tout $0 \le j \le n-1$, les coefficients du polynôme $\prod_{\ell=j+1}^n (X-r_\ell)$ dans la base \mathscr{B} sont des nombres réels strictement positifs.

Indication : on pourra noter $(q_{j,0},\ldots,q_{j,n-j})$ la base de $(\mathbb{R}_{n-j}[X],\langle\cdot,\cdot\rangle_j)$ obtenue dans les questions $\mathbf{8a}$ et $\mathbf{8b}$ et raisonner par récurrence descendante sur j.

Troisième partie

Soit λ un nombre réel strictement positif. Pour tous réels x et r tels que |x|<1 et |r|<1, on pose

$$F_{\lambda}(x,r) = (1 - 2rx + r^2)^{-\lambda}.$$

- **14.** Montrer que la fonction F_{λ} est de classe \mathscr{C}^{∞} sur $]-1,1[^2]$.
- **15.** Montrer que pour $x \in]-1,1[$, la fonction $r \mapsto F_{\lambda}(x,r)$ est développable en série entière au voisinage de 0.

Pour $x \in]-1,1[$, on note $a_n^{(\lambda)}(x)$ le n-ième coefficient du développement de la fonction $r \mapsto F_{\lambda}(x,r)$ de sorte que, pour r dans un voisinage de 0,

$$F_{\lambda}(x,r) = \sum_{n \geqslant 0} a_n^{(\lambda)}(x)r^n.$$

16a. Pour $x \in]-1,1[$, montrer que $a_1^{(\lambda)}(x) = 2\lambda x a_0^{(\lambda)}(x)$ et que, pour tout entier $n \geqslant 1$,

$$(n+1)a_{n+1}^{(\lambda)}(x) = 2(n+\lambda)xa_n^{(\lambda)}(x) - (n+2\lambda-1)a_{n-1}^{(\lambda)}(x).$$

Indication : on pourra commencer par calculer $(1-2xr+r^2)\frac{\partial F_{\lambda}}{\partial r}(x,r)$.

16b. En déduire que, pour tout $n \ge 0$, la fonction $a_n^{(\lambda)}$ est un polynôme de degré n dont on déterminera le coefficient dominant ainsi que la parité.

On suppose désormais que $\lambda>\frac{1}{2}.$ Pour $P,Q\in\mathbb{R}[X],$ on pose

$$\langle P, Q \rangle = \int_{-1}^{1} P(x)Q(x)(1-x^2)^{\lambda-\frac{1}{2}} dx.$$

17a. Montrer que, pour tout entier $n \ge 0$ et tout $x \in [-1, 1[$,

$$a_n^{(\lambda)}(x) = \frac{1}{n!} \frac{\partial^n F_\lambda}{\partial r^n}(x,0).$$

17b. En déduire que, pour tout entier $n \ge 1$, on a $(a_n^{(\lambda)})' = 2\lambda a_{n-1}^{(\lambda+1)}$.

17c. Montrer que $\int_{-1}^{1} (1-t^2)^{\lambda+\frac{1}{2}} dt = (2\lambda+1) \int_{-1}^{1} t^2 (1-t^2)^{\lambda-\frac{1}{2}} dt$ et en déduire que $\langle a_2^{(\lambda)}, 1 \rangle = 0$.

17d. Montrer par récurrence sur $n \ge 1$ que $\langle a_n^{(\lambda)}, 1 \rangle = 0$ pour tout entier $n \ge 1$ et $\langle X a_n^{(\lambda)}, 1 \rangle = 0$ pour tout entier $n \ge 2$.

Indication : on pourra commencer par démontrer l'égalité

$$\langle X a_n^{(\lambda)}, 1 \rangle = \frac{2\lambda}{2\lambda + 1} \int_{-1}^1 a_{n-1}^{(\lambda+1)}(t) (1 - t^2)^{\lambda + \frac{1}{2}} dt.$$

17e. En déduire que, pour tout $n \ge 0$, la famille $(a_0^{(\lambda)}, \dots, a_n^{(\lambda)})$ est une base orthogonale de $\mathbb{R}_n[X]$ muni du produit scalaire $\langle \cdot, \cdot \rangle$.

Quatrième partie

Pour tout entier $n \ge 1$, on note $x \cdot y \in \mathbb{R}$ le produit scalaire canonique de deux vecteurs x et y de \mathbb{R}^n . On note \mathbb{S}^{n-1} la sphère unité de \mathbb{R}^n , c'est-à-dire

$$\mathbb{S}^{n-1} = \{ x \in \mathbb{R}^n \mid x \cdot x = 1 \}.$$

Pour un entier $n \ge 1$, on note S_n^+ l'ensemble des matrices symétriques $M \in \mathcal{M}_n(\mathbb{R})$ telles que, pour tout $X \in \mathbb{R}^n$,

$$X^T M X \ge 0$$
.

Soit $N \ge 2$ un entier et soit f une fonction de \mathbb{R} dans \mathbb{R} . On dit que f est de type positif en dimension N si, pour tout entier $k \ge 1$ et tout k-uplet $(x_1, \ldots, x_k) \in (\mathbb{S}^{N-1})^k$, on a $(f(x_i \cdot x_j)) \in S_k^+$.

Si $A = (a_{i,j})$ et $B = (b_{i,j})$ sont deux matrices de $\mathcal{M}_n(\mathbb{R})$, on note $A \odot B$ la matrice $(a_{i,j}b_{i,j})$ de $\mathcal{M}_n(\mathbb{R})$.

- **18a.** Montrer que si $U \in \mathbb{R}^n$, alors $UU^T \in S_n^+$.
- **18b.** Montrer que si $A, B, C \in \mathcal{M}_n(\mathbb{R})$, on a $A \odot (B + C) = (A \odot B) + (A \odot C)$.
- **18c.** Montrer que si $M \in S_n^+$, il existe des nombres réels positifs $d_i \geqslant 0$ et des vecteurs $U_i \in \mathbb{R}^n$, $1 \leqslant i \leqslant n$ tels que

$$M = \sum_{i=1}^{n} d_i U_i U_i^T.$$

Indication: on pourra commencer par écrire $M = P^T DP$ où $P \in \mathcal{M}_n(\mathbb{R})$ est une matrice inversible et $D \in \mathcal{M}_n(\mathbb{R})$ une matrice diagonale à coefficients positifs.

- **18d.** En déduire que si $A, B \in S_n^+$, alors $A \odot B \in S_n^+$.
- **18e.** Pour tout entier $N \ge 2$, montrer que le produit de deux fonctions de type positif en dimension N est de type positif en dimension N.

On rappelle que, pour tout entier $n \ge 0$, il existe un unique polynôme T_n de degré n tel que, pour tout $\theta \in \mathbb{R}$, $T_n(\cos \theta) = \cos(n\theta)$.

19. Montrer que les polynômes T_n sont des fonctions de type positif en dimension 2. Indication : on pourra utiliser la forme exponentielle du cosinus.

On admettra, dans la suite du problème, que pour tout entier $n \ge 0$ et tout entier $N \ge 4$, le polynôme $a_n^{(\frac{N}{2}-1)}$ est de type positif en dimension N.

Pour un entier $N \geq 2$, on dit qu'un polynôme $P \in \mathbb{R}[X]$ est N-conductif si, pour toute fonction absolument monotone f de [-1,1] dans \mathbb{R} , le polynôme H(f,P) est une fonction de type positif en dimension N.

20. Soient P_1 et P_2 deux polynômes N-conductifs. Montrer que si P_1 est de type positif en dimension N, alors P_1P_2 est N-conductif.

On fixe un entier $N\geqslant 4$ et un entier $n\geqslant 2$. On admet que le polynôme $a_n^{(\frac{N}{2}-1)}$ possède n racines réelles simples $r_1>r_2>\cdots>r_n$ dans]-1,1[. Soit $f:[-1,1]\to\mathbb{R}$ une fonction absolument monotone.

21. Montrer que le polynôme $H\left(f,\prod_{i=1}^n(X-r_i)\right)$ est une fonction de type positif en dimension N.

6