Matemática Aplicada I

Guilherme Willian Castro castro.ethng@gmail.com

Resumo

Este artigo apresenta uma análise vetorial sobre a habilidade "Cabos de Aço"da personagem Fanny do jogo Mobile Legends, para fins educativos.

Introdução

Mobile Legends é um popular jogo MOBA lançado pela Shangai Moonton Technology em 2016. Nele, dois times de 5 jogadores competem para destruir a base inimiga, usando estratégia e trabalho em equipe, onde cada jogador controla um campeão com habilidades únicas e papéis específicos. A campeã Fanny é uma personagem notável por sua agilidade pelo mapa do jogo com a habilidade "Cabos de Aço", que utiliza conceitos de álgebra vetorial para ser executada.

Figura 1: Fanny executando "Cabos de Aço"

1 Metodologia

Considere o sistema de coordenadas Oxyz de eixos ortogonais. Um plano π é definido como estando alinhado com os semi-eixos +x e +y localizado a uma distância h, em +z. Adicionalmente, consideremos polígonos regulares Δ_n distribuídos sobre xOy, ortogonais e paralelos a π , de altura l, onde $h \leq l$. Os planos δ_{nk} contidos em Δ_n junto as interseções $\delta_{ni} \cap \pi$ representam a caixa de colisão dos objetos no mapa do jogo.

"Cabos de Aço"pode ser representada por uma circunferência C, de raio r e centro P_n em π . Para todo evento de cabo de aço $k_1, k_2, k_3...k_n$, há um vetor diretor $\vec{v_1}, \vec{v_2}, \vec{v_3}...\vec{v_n}$, ortogonal a z de origem na posição atual P_n de Fanny em direção a algum ponto p_n no infinito xy. De sorte que $\Delta_i \subset C$, e se $v_i \cap \delta_{ij}$, então $||v_i|| \leq r$ e

$$P_{n+1} \approx \vec{v_i}(x_i, y_i) \cap \delta_{ni}(x_i, y_i) \pm \Delta_F(l/2, l/2)$$

Figura 2: Plano π e vetor $\vec{v_i}$ em interseção com δ_{ni} .

Figura 3: P_{n+1} quando $v_i \cap \delta_{ni}$.

considerando a caixa de colisão Δ_F de Fanny como um cilindro de diâmetro l/2 e comprimento infinito.

Em outro caso, se $v_i \not\subset \delta_i$ ou $\Delta_i \not\subset C$, então

$$P_{n+1} = P_n$$

Figura 4: Lorem Ipsum.

