

Mark Scheme (Results)

January 2017

Pearson Edexcel International Advanced Subsidiary Level In Further Pure Mathematics F1 (WFM01) Paper 01

Edexcel and BTEC Qualifications

Edexcel and BTEC qualifications are awarded by Pearson, the UK's largest awarding body. We provide a wide range of qualifications including academic, vocational, occupational and specific programmes for employers. For further information visit our qualifications websites at www.edexcel.com or www.btec.co.uk. Alternatively, you can get in touch with us using the details on our contact us page at www.edexcel.com/contactus.

Pearson: helping people progress, everywhere

Pearson aspires to be the world's leading learning company. Our aim is to help everyone progress in their lives through education. We believe in every kind of learning, for all kinds of people, wherever they are in the world. We've been involved in education for over 150 years, and by working across 70 countries, in 100 languages, we have built an international reputation for our commitment to high standards and raising achievement through innovation in education. Find out more about how we can help you and your students at: www.pearson.com/uk

General Marking Guidance

- All candidates must receive the same treatment. Examiners must mark the first candidate in exactly the same way as they mark the last.
- Mark schemes should be applied positively.
 Candidates must be rewarded for what they have shown they can do rather than penalised for omissions.
- Examiners should mark according to the mark scheme not according to their perception of where the grade boundaries may lie.
- There is no ceiling on achievement. All marks on the mark scheme should be used appropriately.
- All the marks on the mark scheme are designed to be awarded. Examiners should always award full marks if deserved, i.e. if the answer matches the mark scheme. Examiners should also be prepared to award zero marks if the candidate's response is not worthy of credit according to the mark scheme.
- Where some judgement is required, mark schemes will provide the principles by which marks will be awarded and exemplification may be limited.
- When examiners are in doubt regarding the application of the mark scheme to a candidate's response, the team leader must be consulted.
- Crossed out work should be marked UNLESS the candidate has replaced it with an alternative response.

PEARSON EDEXCEL IAL MATHEMATICS

General Instructions for Marking

- 1. The total number of marks for the paper is 75
- 2. The Edexcel Mathematics mark schemes use the following types of marks:
- **M** marks: Method marks are awarded for 'knowing a method and attempting to apply it', unless otherwise indicated.
- A marks: Accuracy marks can only be awarded if the relevant method (M) marks have been earned.
- **B** marks are unconditional accuracy marks (independent of M marks)
- Marks should not be subdivided.

3. Abbreviations

These are some of the traditional marking abbreviations that will appear in the mark schemes.

- bod benefit of doubt
- ft follow through
- the symbol $\sqrt{}$ will be used for correct ft
- cao correct answer only
- cso correct solution only. There must be no errors in this part of the question to obtain this mark
- isw ignore subsequent working
- awrt answers which round to
- SC: special case
- o.e. or equivalent (and appropriate)
- d... or dep dependent
- indep independent
- dp decimal places
- sf significant figures
- * The answer is printed on the paper or ag- answer given
- or d... The second mark is dependent on gaining the first mark

- 4. All A marks are 'correct answer only' (cao.), unless shown, for example, as A1 ft to indicate that previous wrong working is to be followed through. After a misread however, the subsequent A marks affected are treated as A ft, but manifestly absurd answers should never be awarded A marks.
- 5. For misreading which does not alter the character of a question or materially simplify it, deduct two from any A or B marks gained, in that part of the question affected.
- 6. If a candidate makes more than one attempt at any question:
 - If all but one attempt is crossed out, mark the attempt which is NOT crossed out.
 - If either all attempts are crossed out or none are crossed out, mark all the attempts and score the highest single attempt.
- 7. Ignore wrong working or incorrect statements following a correct answer.

General Principles for Further Pure Mathematics Marking

(But note that specific mark schemes may sometimes override these general principles).

Method mark for solving 3 term quadratic:

1. Factorisation

$$(x^{2} + bx + c) = (x + p)(x + q)$$
, where $|pq| = |c|$, leading to x = ...

$$(ax^2 + bx + c) = (mx + p)(nx + q)$$
, where $|pq| = |c|$ and $|mn| = |a|$, leading to $x = ...$

2. Formula

Attempt to use the correct formula (with values for a, b and c).

3. Completing the square

Solving
$$x^2 + bx + c = 0$$
: $\left(x \pm \frac{b}{2}\right)^2 \pm q \pm c = 0$, $q \neq 0$, leading to $x = \dots$

Method marks for differentiation and integration:

1. Differentiation

Power of at least one term decreased by 1. $(x^n \rightarrow x^{n-1})$

2. Integration

Power of at least one term increased by 1. $(x^n \rightarrow x^{n+1})$

Use of a formula

Where a method involves using a formula that has been learnt, the advice given in recent examiners' reports is that the formula should be quoted first.

Normal marking procedure is as follows:

<u>Method mark</u> for quoting a correct formula and attempting to use it, even if there are small errors in the substitution of values.

Where the formula is <u>not</u> quoted, the method mark can be gained by implication from <u>correct</u> working with values, but may be lost if there is any mistake in the working.

Exact answers

Examiners' reports have emphasised that where, for example, an exact answer is asked for, or working with surds is clearly required, marks will normally be lost if the candidate resorts to using rounded decimals.

January 2017 WFM01 Further Pure Mathematics F1 Mark Scheme

Question Number	Scheme		Notes	Marks	
1.	$f(x) = 2^x - 10\sin x - 2, x \text{ measured in radians}$	$-10\sin x - 2$, x measured in radians			
(a)	f(2) = -7.092974268 Attempts to for both f			M1	
	Sign change {negative, positive} {and $f(x)$ is continuous} therefore {a root} a is between $x = 2$ and $x = 3$	f(3) = awrt	Both f(2) = awrt - 7 and 5 or truncated 4 or truncated 4.5, sign change and conclusion.	A1 cso	
				(2)	
(b)	$\frac{a-2}{"7.092974268"} = \frac{3-a}{"4.588799919"}$ or $\frac{a-2}{3-a} = \frac{"7.092974268"}{"4.588799919"}$ or $\frac{a-2}{"7.092974268"} = \frac{3-2}{"4.588799919" + "7.092974268"}$	2974268"	A correct linear interpolation method. Do not allow this mark if a total of one or three negative lengths are used or if either fraction is the wrong way up. This mark may be implied.	M1	
	Either $a = \left(\frac{(3)("7.092974268") + (2)("4.58879991}{"4.588799919" + "7.092974268"}\right)$ or $a = 2 + \left(\frac{"7.092974268"}{"4.588799919" + "7.092974268}\right)$ or $a = 2 + \left(\frac{"-7.092974268"}{"-4.588799919" + "-7.092974268}\right)$)(1)	dependent on the previous M mark. Rearranges to make $a =$	dM1	
	$\{a = 2.607182963\} \bowtie a = 2.607 (3 dp)$	<u> </u>	2.607	A1 cao	
			2.007	(3)	
(b) Way 2	$\frac{x}{"7.092974268"} = \frac{1-x}{"4.588799919"} \Rightarrow x = \frac{"7}{2}$	7.092974268 11.68177419	·" = 0.6071829632	(8)	
	a = 2 + 0.6071829632]	Finds x using a correct method of iangles and applies "2 + their x "	M1 dM1	
	${a = 2.607182963} \bowtie a = 2.607 (3 dp)$		2.607	Al cao	
(b) Way 3	$\frac{1-x}{"7.092974268"} = \frac{x}{"4.588799919"} \Rightarrow x = \frac{"4}{2}$ $a = 3 - 0.3928170366$	4.588799919 11.68177419 I	M1 dM1		
	$\{a = 2.607182963\} \Rightarrow a = 2.607 \text{ (3 dp)}$	Siiiiiai U	iangles and applies "3 - their x "	A1 ass	
	a = 2.00/102903 $P = 2.00/(3 dp)$		2.607	A1 cao	
				5	

	Question 1 Notes						
1. (a)	A1	correct solution only					
		Candidate needs to state both $f(2) = awrt - 7$ and $f(3) = awrt 5$ or truncated 4 or truncated 4.5					
		along with a reason and conclusion. Reference to change of sign or e.g. $f(2) f(3) < 0$					
		or a diagram or < 0 and > 0 or one negative, one positive are sufficient reasons. There must					
		be a (minimal, not incorrect) conclusion, e.g. root is between 2 and 3, hence root is in the					
		interval, QED and a square are all acceptable. Ignore the presence or absence of any reference to					
		continuity. A minimal acceptable reason and conclusion is "change of sign, hence root".					
(a)	Note	In degrees, $f(2) = 1.651005033$, $f(3) = 5.476640438$					
	Note	Some candidates will write $f(2) = 4$, $f(3) = -0.4147$					

Question Number	Scheme	Notes	Marks
2.	$2x^2 - x + 3 = 3$	= 0 has roots a, b	
	Note: Parts (a) and	(b) can be marked together.	
(a)	$a + b = \frac{1}{2}$, $ab = \frac{3}{2}$	Both $\partial + b = \frac{1}{2}$ and $\partial b = \frac{3}{2}$	B1
			(1)
4.5	1 1 $b+a=\frac{1}{2}$	Attempts to substitute at least one of	3.64
(b)	$\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \frac{\frac{1}{2}}{\frac{3}{2}}$	their $(a + b)$ or their ab into $\frac{b+a}{ab}$	M1
	$=\frac{1}{3}$	$\frac{1}{3}$ from correct working	A1 cso
			(2)
(c)	$Sum = \left(2a - \frac{1}{b}\right) + \left(2b - \frac{1}{a}\right)$	Uses at least one of $2(\text{their } (a + b))$ or their	
	$=2(a+b)-\left(\frac{1}{a}+\frac{1}{b}\right)$	$\frac{1}{a} + \frac{1}{b}$ in an attempt to find a numerical value	M1
	$= 2\left(\frac{1}{2}\right) - \left(\frac{1}{3}\right) = \frac{2}{3}$	for the sum of $\left(2a - \frac{1}{b}\right)$ and $\left(2b - \frac{1}{a}\right)$.	
	$Product = \left(2a - \frac{1}{b}\right)\left(2b - \frac{1}{a}\right)$	Expands $\left(2a - \frac{1}{b}\right)\left(2b - \frac{1}{a}\right)$ and uses their	
	$= 4ab - 2 - 2 + \frac{1}{ab}$	ab at least once in an attempt to find a	N 4 1
	- 4(3) - 4 + 1	numerical value for the	M1
	$= 4\left(\frac{3}{2}\right) - 4 + \frac{1}{\left(\frac{3}{2}\right)}$	product of $\left(2a - \frac{1}{b}\right)$ and $\left(2b - \frac{1}{a}\right)$.	
	$= 6 - 4 + \frac{2}{3} = \frac{8}{3}$	b) (a).	
	$x^2 - \frac{2}{3}x + \frac{8}{3} = 0$	Applies x^2 - (their sum) x + their product (Can be implied) Note: (" = 0" not required for this mark.)	M1
	$3x^2 - 2x + 8 = 0$	Any integer multiple of $3x^2 - 2x + 8 = 0$ including the "= 0"	A1
		morading the 0	(4)
			7

	Question 2 Notes					
2. (a)	Note	Finding $a + b = \frac{1}{2}$, $ab = \frac{3}{2}$ by writing down a , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ or by applying				
		$\partial + b = \left(\frac{1+\sqrt{23}i}{4}\right) + \left(\frac{1-\sqrt{23}i}{4}\right) = \frac{1}{2} \text{ and } \partial b = \left(\frac{1+\sqrt{23}i}{4}\right)\left(\frac{1-\sqrt{23}i}{4}\right) = \frac{3}{2}$				
		scores B0 in part (a).				
(b), (c)	Note	Those candidates who apply $\partial + b = \frac{1}{2}$, $\partial b = \frac{3}{2}$ in part (b) and/or part (c) having				
		written down/applied ∂ , $D = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ in part (a) will be				
		penalised the final A mark in part (b) and penalised the final A mark in part (c).				
(b)	Note	Applying ∂ , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ explicitly in part (b) will score M0A0.				
		E.g.: Give no credit for $\frac{1}{1+\sqrt{23}i} + \frac{1}{1-\sqrt{23}i} = \frac{1}{3}$				
		4 4				
		or for $\frac{1}{a} + \frac{1}{b} = \frac{b+a}{ab} = \left(\left(\frac{1+\sqrt{23}i}{4} \right) + \left(\frac{1-\sqrt{23}i}{4} \right) \right) \cdot \left(\left(\frac{1+\sqrt{23}i}{4} \right) \left(\frac{1-\sqrt{23}i}{4} \right) \right) = \frac{1}{3}$				
(c)	Note	Candidates are not allowed to apply a , $b = \frac{1 + \sqrt{23}i}{4}$, $\frac{1 - \sqrt{23}i}{4}$ explicitly in part (c).				
	Note	A correct method leading to a candidate stating $p = 3$, $q = -2$, $r = 8$ without writing a				
		final answer of $3x^2 - 2x + 8 = 0$ is final A0				

Question Number		Scheme	Notes	Marks			
3.	$f(x) = x^4$	$+2x^3+26x^2+32x+160$,	$x_1 = -1 + 3i$ is given.				
		$x_2 = -1 - 3i$	Writes down the root -1 - 3i Note: -1 - 3i needs to be stated explicitly somewhere in the candidate's working for B1	B1			
		$x^2 + 2x + 10$	Attempt to expand $(x - (-1+3i))(x - (-1-3i))$ or $(x - (-1+3i))(x - (\text{their complex } x_2))$ or any valid method to establish a quadratic factor e.g. $x = -1 \pm 3i \bowtie x + 1 = \pm 3i \bowtie x^2 + 2x + 1 = -9$ or sum of roots -2 , product of roots 10 to give $x^2 \pm (\text{their sum})x + (\text{their product})$	M1			
			$x^2 + 2x + 10$	A1			
	f(x) = (x	$^2 + 2x + 10)(x^2 + 16)$	Attempts to find the other quadratic factor. e.g. using long division to get as far as $x^2 +$ or e.g. $f(x) = (x^2 + 2x + 10)(x^2 +)$	M1			
			$x^2 + 16$	A1			
	${x^2 + 16} =$	$=0 \bowtie x = $ = $\pm \sqrt{16}i$; = =	dependent on only the previous M mark Correct method of solving <i>their</i> 2 nd quadratic	dM1			
			factor to give $x = \dots$ 4 i and -4 i	A1			
				(7)			
			Question 3 Notes	7			
3.	Note	$x_1 = -1 + 3i, x_2 = -1 -$	3i leading to $(x - 1 + 3i)(x - 1 - 3i)$ is 1st M0 1st A0				
	Note		= 0, $k > 0$ \Rightarrow at least one of either $x = \sqrt{k}$ i or $x = -\sqrt{k}$	- '' i			
	- 11000		eading to a final answer of $x = \sqrt{16}i$ only is 3^{rd} M1.				
	Note		$c = \pm \sqrt{(16i)}$ unless recovered is 3 rd M0 3 rd A0.				
	Note	Give 3 rd M0 for $x^2 + k =$					
	Note		$= 0, k > 0 \triangleright x = \pm k $ or $x = \pm \sqrt{k}$				
	Note						
		Therefore $x^2 + 16 = 0$ leading to $x = \pm 4$ is 3^{rd} M0.					
	Note	Therefore $x^2 + 16 = 0$ leading to $(x + 4)(x - 4) = 0 \triangleright x = \pm 4$ is $3^{rd} M0$. No working leading to $x = -1 - 3i$, $4i$, $-4i$ is $B1M0A0M0A0M0A0$.					
	Note	-					
	Note		$x^2 + 16 = 0$ to $x = \pm 4i$ for the final dM1A1 marks.	0			
	3 rd dM1	You can give this mark to which can be a 3TQ.	for a correct method for solving <i>their</i> quadratic ${}^{1}x^{2} + k, k$	> 0			
	Note	e.g. their 2 nd quadratic i	$\sin x^2 - 16 = 0$ leading to $(x + 4)(x - 4) = 0 \implies x = \pm 4$ gets 3	Brd M1.			

Question Number	Scheme		Notes		Marks		
4. (a)	$\left\{ \sum_{r=1}^{n} r(2r -$	$+1)(3r+1) = \begin{cases} \bigcap_{r=1}^{n} (6r^3 + 5r^2 + r) \\ \bigcap_{r=1}^{n} (6r^3 + 5r^2 + r) \end{cases}$		$6r^3 + 5r^2 + r$		B1	
		$(n+1)^2$ + 5 $\left(\frac{1}{6}n(n+1)(2n+1)\right)$ +		Attempts to expand $r(2r+1)(3r+1)$ and attempts to substitute at least one correct standard formula into their resulting expression.		M1	
				Correct expressi	on (or equivalent)	A1	
	$=\frac{1}{6}n(n+$	-1)(9n(n+1) + 5(2n+1) + 3)		dependent on the pmpt to factorise at lead substitute all three s	ast $n(n+1)$ having	dM1	
	$=\frac{1}{6}n(n+$	$-1)(9n^2+19n+8)$		Correct completi	ion with no errors. a = 9, $b = 19$, $c = 8$	A1 cso	
			20			(5)	
(b)	Let f(n)	$= \frac{1}{6}n(n+1)(9n^2+19n+8).$ S	So $\sum_{r=10}^{\infty} r(2r+1)$	(3r+1) = f(20) - f(9)			
	$=\left(\frac{1}{6}(20)\right)$	$ \begin{array}{c} \text{Attempts to} \\ \text{find either} \\ \text{f(20)} - \text{f(9)} \\ \text{f(20)} - \text{f(9)} \\ \text{or} \\ \text{f(20)} - \text{f(10)} \\ \end{array} $				M1	
	$\begin{cases} = \left(\frac{1}{6}\right)(20) \end{cases}$	$0)(21)(3988) - \left(\frac{1}{6}(9)(10)(908)\right)$	$(9)(21)(3988) - \left(\frac{1}{6}(9)(10)(908)\right) = 279160 - 13620 = 265540$				
		, and the second					
			Question	4 Notes		7	
4. (a)	Note	Applying e.g. $n = 1$, $n = 2$, $n = 1$ to give $a = 9$, $b = 19$, $c = 8$ is	= 3 to the printe	ed equation without a	pplying the standar	rd formulae	
	Alt 1	Alt Method 1: Using $\frac{3}{2}n^4 + \frac{14}{3}n^3 + \frac{9}{2}n^2 + \frac{4}{3}n \circ \frac{1}{6}an^4 + \frac{1}{6}(a+b)n^3 + \frac{1}{6}(b+c)n^2 + \frac{1}{6}cn$ o.e					
	dM1	Equating coefficients and finds at least two of $a = 9$, $b = 19$, $c = 8$					
	A1 cso	1 0	Finds $a = 9$, $b = 19$, $c = 8$ and demonstrates the identity works for all of its terms.				
	Alt 2	Alt Method 2: $6\left(\frac{1}{4}n^2(n+1)^2\right) + 5\left(\frac{1}{6}n(n+1)(2n+1)\right) + \left(\frac{1}{2}n(n+1)\right) = \frac{1}{6}n(n+1)(an^2+bn+c)$					
	dM1 A1	Substitutes $n = 1$, $n = 2$, $n = 3$ into this identity o.e. and finds at least two of $a = 9$, $b = 19$, $c = 8$.				= 19, c = 8	
	Note	Allow final dM1A1 for $\frac{3}{2}n^4 + \frac{14}{3}n^3 + \frac{9}{2}n^2 + \frac{4}{3}n$ or $\frac{1}{6}n(9n^3 + 28n^2 + 27n + 8)$					
		or $\frac{1}{6}(9n^4 + 28n^3 + 27n^2 + 8)$	$n) \rightarrow \frac{1}{6}n(n+1)$	$(9n^2 + 19n + 8)$, from	n no incorrect work	ring.	
(b)	Note	Give M1A0 for applying $f(20) - f(10)$. i.e. $279160 - 20130 = 259030$					
	Note	Give M0A0 for applying 200					
	Note	Give M0A0 for applying 200				265512	
	Note	Give M0A0 for listing individual	dual terms. e.g	g. 6510 + 8602 +	+ 42978 + 50020 =	265540	

Question Number	Scheme		Notes	Marks
5.	z =	$-7 + 3i; \frac{z}{1 + z}$	$\frac{1}{1} + w = 3 - 6i$	
(a)	$\left\{ \left z \right = \sqrt{(-7)^2 + (3)^2} \right\} = \sqrt{58} \text{ or } 7$.61577	$\sqrt{58}$ or awrt 7.62	B1
(b)	$\arg z = \rho - \arctan\left(\frac{3}{7}\right)$ $\operatorname{or} = \frac{\rho}{2} + \arctan\left(\frac{7}{3}\right)$ $\operatorname{or} = -\rho - \arctan\left(\frac{3}{7}\right)$		es trigonometry in order to find an angle in the 2^{nd} quadrant. i.e. in the range of either $\left(1.57, 3.14\right)$ or $\left(-3.14, -4.71\right)$ or $\left(90^{\circ}, 180^{\circ}\right)$ or $\left(-180^{\circ}, -270^{\circ}\right)$. arctan $\left(-\frac{3}{7}\right)$ by itself is not sufficient for M1.	(1) M1
(c) Way 1		$\frac{(-7+3i)}{(1+i)}\frac{(1-i)}{(1-i)} + w = 3-6i \text{ or } \frac{z}{(1+i)}\frac{(1-i)}{(1-i)} + w = 3-6i$ or can be implied by $-2+5i + w = 3-6i$		
	w = 5 - 11i		dependent on the previous M mark Rearranges to make $w =$ 5 - 11i	dM1
(c) Way 2	z + w(1+i) = (3-6i)(1+i) $w(1+i) = (9-3i) - (-7+3i)$	Fully corre	ect method of multiplying each term by $(1 + i)$	(3) M1
	$w = \frac{(16 - 6i)}{(1 + i)} \frac{(1 - i)}{(1 - i)}$ $w = 5 - 11i$	Rearrar	dependent on the previous M mark nges to make $w =$ and multiplies by $\frac{(1-i)}{(1-i)}$ 5 - 11i	dM1
(d)	(-7,3) Im ♠		Plotting -7 + 3i correctly. ne point must be indicated by a scale (could be ticks on the axes) or labelled with coordinates or a complex number z.	(3) B1
	0		Plotting their w correctly. ne point must be indicated by a scale (could be ticks on the axes) or labelled with coordinates or a complex number w.	B1ft
	(5, -11)		ward SC B1B0 if both -7 + 3i and their w are ed correctly relative to each other without any scale or labelled coordinates.	
				8

Question Number		Scheme			Notes	Marks
6.	f	$(x) = x^3 - \frac{1}{2x} + x^{\frac{3}{2}}, x > 0$				
(a)	or $f(x) = 3x^2 + \frac{1}{2}x^{-2} + \frac{3}{2}x^{\frac{1}{2}}$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$ $x^3 \to \pm Ax^2 \text{ or } -\frac{1}{2x} \to \pm Bx^{-2} \text{ or } x^{\frac{3}{2}} \to \pm Cx$		3 and <i>C</i> are non-zero constants.	M1		
		2		71t least 2	Correct differentiation.	A1
	$\left\{\alpha \simeq 0.6\right\}$	$-\frac{f(0.6)}{f'(0.6)} \} \Rightarrow \alpha \approx 0.6 - \frac{-0.152575}{3.630783}$	893	Valid atte	dent on the previous M mark empt at Newton-Raphson using r values of $f(0.6)$ and $f(0.6)$	dM1
	a = 0.64	420226971 } $\triangleright a = 0.642 $ (3 dp)			on their first iteration nore any subsequent iterations)	A1 cso cao
	Correct differentiation followed by a correct answer scores full marks in (a)					
	Correct answer with <u>no</u> working scores no marks in (a)					
						(5)
(b) Way 1	` ′) = -0.001630649) = 0.002020826	w	ithin ± 0.00	suitable interval for x , which is 05 of their answer to (a) and at st one attempt to evaluate $f(x)$.	M1
	Sign change {negative, positive} {and $f(x)$ is continuous} therefore {a root} $a = 0.642 (3 dp)$ Both values correct awrt (or truncated) to 1 sf, sign change and conclusion.			A1 cso		
						(2)
(b)	Applying	Newton-Raphson again Using a	$\theta = 0.642$	or better e.	g. $a = 0.64200226971$	
Way 2		$\alpha \simeq 0.642 - \frac{0.0001949626}{3.651474882} \left\{ = 0.64 \right.$ $\alpha \simeq 0.642022697 - \frac{0.0002778408}{3.651497787} \left\{ = 0.64 \right.$			Evidence of applying Newton-Raphson for a second time on their answer to part (a)	M1
	a = 0.64	42 (3 dp)			a = 0.642 (3 dp)	A1 cso
		Note: You can recove	r work f	or Way 2 in	part (a)	(2)
						7
				6 Notes		
6. (a)	Note	NR formula is final dM0A0.				
	Final dM1 This mark can be implied by applying at least one correct <i>value</i> of either $f(0.6)$ or in $0.6 - \frac{f(0.6)}{f^{0}(0.6)}$. So just $0.6 - \frac{f(0.6)}{f^{0}(0.6)}$ with an incorrect answer and no other evid scores final dM0A0.					ee
	Note	If a candidate writes $0.6 - \frac{f(0.6)}{f(0.6)}$	= 0.642	with no diff	ferentiation, send the response to	review.

	Question 6 Notes							
6. (b)	A1	Way 1: correct solution only Candidate needs to state both of their values for $f(x)$ to awrt (or truncated) 1 sf along with a reason and conclusion. Reference to change of sign or e.g. $f(0.6415) f(0.6425) < 0$ or a diagram or < 0 and > 0 or one negative, one positive are sufficient reasons. There must be a correct conclusion, e.g. $\partial = 0.642$ (3 dp). Ignore the presence or absence of any reference to continuity. A minimal acceptable reason and conclusion is "change of sign, so $\partial = 0.642$ (3 dp)."						
	Note	Stating "root is in between 0.6415 and 0.6425" without some reference to $a = 0.642$ (3 dp) is not sufficient for A1.						
	Note	The root of $f(x) = 0$ is 0.6419466, so candidates can also choose x_1 which is less than 0.6419466 and choose x_2 which is greater than 0.6419466 with both x_1 and x_2 lying in the interval $\begin{bmatrix} 0.6415, 0.6425 \end{bmatrix}$ and evaluate $f(x_1)$ and $f(x_2)$.						
	Note	Conclusions to part (b) Their conclusion needs to convey that they understand that $a = 0.642$ to 3 decimal places. Therefore acceptable conclusions are: e.g. 1: $a = 0.642$ (3 dp) e.g. 2: (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642} e.g. 3: my answer to part (a) is correct to 3 dp {Note: their answer to part (a) must be 0.642} e.g. 4: the answer is correct to 3 d.p. {Note: their answer to part (a) must be 0.642} Note that saying "a is correct to 3 dp" or "0.642 is correct" or "a = 0.642" are not acceptable conclusions.						
	Note	$0.642 - \frac{f(0.642)}{f(0.642)} = 0.642(3 \text{ dp}) \text{ is sufficient for M1A1 in part (b)}.$						
6. (b)	Note	Helpful Table x $f(x)$ 0.6415 -0.001630649 0.6416 -0.001265547 0.6417 -0.000900435 0.6418 -0.000535312 0.6419 -0.000170180 0.6420 0.000194963 0.6421 0.000560115 0.6422 0.000925278 0.6423 0.001290451 0.6424 0.001655634 0.6425 0.002020827						

Question Number		Scheme		Notes	Marks	
7. (i)(a)	Reflection	1		Reflection	B1	
	in the y-ax	xis.		dependent on the previous B mark	dB1	
				Allow y-axis or $x = 0$	(2	
(i)(a)	Stretch sc	ale factor - 1		Stretch scale factor -1	B1	')
Way 2				dependent on the previous B mark		
	parallel to	the x-axis		parallel to the x-axis	dB1	
					(2	2)
(b)	$\left\{ \mathbf{B} = \right\} \left(\begin{array}{c} 3 \\ 0 \end{array} \right)$	$\begin{pmatrix} 0 \\ 1 \end{pmatrix}$		$\begin{pmatrix} 3 & \dots \\ \dots & 1 \end{pmatrix} \text{ or } \begin{pmatrix} 1 & \dots \\ \dots & 3 \end{pmatrix}$	M1	
		-)		Correct matrix	A1	
					(2	2)
		Note: Parts (ii)(a) and (ii)(b) can	be marked together.		
	$\{k=\}\sqrt{(}$	$\overline{(-4)^2 - (3)(-3)}$; = 5	Att	empts $\sqrt{\pm 16 \pm 9}$ or uses full method of	M1;	
(ii)(a)	or			trigonometry to find $k =$	IVII,	
(11)(a)	$k\cos q = -4$, $k\sin q = -3$ to give $q =$ and then $k =$		5 only		A1 cao	
					(2	2)
(b)		-4, $5\sin q = -3$, $\tan q = \frac{3}{4}$ $\left(\frac{3}{4}\right)$ and e.g. $q = p + \tan^{-1}\left(\frac{3}{4}\right)$		Uses trigonometry to find an expression in the range (3.14, 4.71) or (-3.14, -1.57) or (180°, 270°) or (-180°, -90°)	M1	
		0.64350 = 3.78509 $\{=3.79(2)$	dp)}	awrt 3.79 or awrt - 2.50	A1	
					(2	2)
(c)	${\mathbf{M}^{-1}} =$	$\begin{vmatrix} 1 \\ -4 \end{vmatrix} = \begin{cases} \frac{1}{25} \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$		$\frac{1}{25} \text{ or } \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$	M1	
(c)	[141 -]			$\frac{1}{25} \begin{pmatrix} -4 & -3 \\ 3 & -4 \end{pmatrix}$ or $\begin{pmatrix} -0.16 & -0.12 \\ 0.12 & -0.16 \end{pmatrix}$ o.e.	A1 o.e.	
					(2	_
			Jugatia	17 Notes	10	0
7. (i)	Note	Give B1B0 for "Reflection in the	_			
(i)	Note	Send to review a response which s	tates, e.	g. "enlargement parallel to the <i>x</i> -axis"		
(ii)(b)	Note	Allow M1 (implied) for awrt 217	or awi	t -143°		
(ii)(b)	Note	$ \begin{pmatrix} k\cos q & -k\sin q \\ k\sin q & k\cos q \end{pmatrix} = \begin{pmatrix} -4 & 3 \\ -3 & -4 \end{pmatrix} $				
(ii) (c)	Note	Allow M1 for $ \begin{pmatrix} -0.8 & -0.6 \\ 0.6 & -0.8 \end{pmatrix}$				

Question Number	Scheme			Notes	Marks	3
8.	$C: y^2 = 4ax$, a is a positive constant. $P(at^2, 2at)$ lies on C ; k, p, q are constants.					
(a)	$y = 2a^{\frac{1}{2}}x^{\frac{1}{2}} \Rightarrow \frac{dy}{dx} = \frac{1}{2}(2)a^{\frac{1}{2}}x^{-\frac{1}{2}} = \frac{\sqrt{a}}{\sqrt{x}}$ $\frac{dy}{dx} = \pm kx^{-\frac{1}{2}}$			-		
	$y^2 = 4ax \triangleright 2y \frac{\mathrm{d}y}{\mathrm{d}x} =$	4 <i>a</i>		$py\frac{\mathrm{d}y}{\mathrm{d}x}=q$	M1	
	$\frac{\mathrm{d}y}{\mathrm{d}x} = \frac{\mathrm{d}y}{\mathrm{d}t} \cdot \frac{\mathrm{d}t}{\mathrm{d}x} = 2a \left(\frac{1}{2at}\right)$			dx $py \frac{dy}{dx} = q$ their $\frac{dy}{dt} \cdot \frac{1}{\text{their } \frac{dx}{dt}}$		
	$\frac{\mathrm{d}y}{\mathrm{d}x} = a^{\frac{1}{2}}x^{-\frac{1}{2}} \text{ or } 2y\frac{\mathrm{d}y}{\mathrm{d}x} = 4a \text{ or}$	$\frac{\mathrm{d}y}{\mathrm{d}x} = 2a\left(\frac{1}{2}\right)$	$\left(\frac{1}{2at}\right)$	Correct differentiation	A1	
	So, $m_N = -t$	pplies $m_N =$	$=\frac{-1}{m_T},$	where m_T is found from using calculus.	M1	
				Can be implied by later working		
	$y - 2at = -t(x - at^2)$		-	line method for an equation of a normal	M1	
	$\mathbf{or} y = -tx + 2at + at^3$,	where	$m_N(^1 m_T)$ is found from using calculus.	IVI I	
	leading to $y + tx = at^3 + 2at$ (*)			Correct solution only	A1	
	Note: m_N must be a full	nction of t f	or the	2 nd M1 and the 3 rd M1 mark.		(5)
(b)	Coordinates of B are $(5a, 0)$	(5a, 0).	Cond	one $x = 5a$ if coordinates are not stated.	B1	
					(1)	
(c)	$\left\{\text{their } (5a,0) \text{ into } y + tx = at^3 + 2at \ \triangleright \right\} \ 5at = at^3 + 2at$					
	$\left\{ m_{BP} = \right\} \ \frac{2at - 0}{at^2 - 5a} = -t$					
	$PB^2 = (at^2 - 5a)^2 + (2a^2 - 5a)^2 + (2a^2$	$(dt)^2 \rhd \frac{\mathrm{d}(PR)}{\mathrm{d}t}$	$\frac{B^2}{a} = 2$	$2(at^2 - 5a)2at + 2(2at)2a = 0$	M1	
	$PB^{2} = a^{2}t^{4} - 10a^{2}t^{2} + 25a^{2} + 4a^{2}t^{2} = a^{2}t^{4} - 6a^{2}t^{2} + 25a^{2} \Rightarrow \frac{d(PB^{2})}{dt} = 4a^{2}t^{3} - 12a^{2}t = 0$					
	Substitutes their coordinates of <i>B</i> in	nto the norn	nal equ	ation or finds m_{BP} and sets this equal to		
	their m_N or minimises PB or PB^2	to obtain a	n equa	tion in a and t only. Note: $t \circ q$ or p.		
	$t^3 - 3t = 0$ or $t^2 - 3 = 0$ $\triangleright t =$			dependent on the previous M mark Solves to find $t =$	dM1	
	$\{Q, R \text{ are}\}\ (3a, 2\sqrt{3}a) \text{ and } (3a, -1)$	$2\sqrt{3}a$		At least one set of coordinates is correct.	A1	
	(2, 1 m e) (5u, 2 v 5u) min (5u,	_ 104)		Both sets of coordinates are correct.	A1	(4)
(d)	1 ~		Poir	its are in the form $B(ka, 0)$, $Q(a, b)$		(4)
` /	Area $BQR = \frac{1}{2}(2(2a\sqrt{3}))(5a - 3a)$)		and $R(a, -b), k^{-1}$ 0 and		
	or = $\frac{1}{2}$ $\begin{vmatrix} 5a & 3a & 3a & 5 \\ 0 & 2\sqrt{3}a & -2\sqrt{3}a \end{vmatrix}$	$\bar{b}a$	applies either $\frac{1}{2} \left(\left(ka - a \right) \right) \left(2b \right)$ or writes		M1	
	'	v		down a correct ft determinant statement.		
	$=4a^2\sqrt{3}$			$4a^2\sqrt{3}$	A1	
						(2)
						12

Question Number		Scheme	Notes	Marks
8. (c) Way 2	$(x-5a)^2 + $ $x^2 - 10ax + $ $x^2 - 6ax + 2$	nto $(x-5a)^2 + y^2 = r^2$ $4ax = r^2$ $25a^2 + 4ax = r^2$ $25a^2 - r^2 = 0$ $= 0" \triangleright 36a^2 - 4(1)(25a^2 - r^2) = 0$	Substitutes $y^2 = 4ax$ into $(x - \text{their } x_A)^2 + y^2 = r^2$ and applies " $b^2 - 4ac = 0$ " to the resulting quadratic equation.	M1
	$4r^2 = 64a^2$ So $r = 4a$ §	$ a^{2} + 4r^{2} = 0$ $ r^{2} = 16a^{2} r = 4a$ gives $x^{2} - 6ax + 25a^{2} - 16a^{2} = 0$ $ r^{2} = 0 (x - 3a)(x - 3a) = 0$	dependent on the previous M mark Obtains $r = ka$, $k > 0$, where k is a constant and uses this result to form and solve a quadratic to find x which is in terms of a .	dM1
		$ \Rightarrow \begin{cases} y^2 = 4a(3a) = 12a^2 \Rightarrow y = \pm 2\sqrt{3}a \\ (3a, 2\sqrt{3}a) \text{ and } (3a, -2\sqrt{3}a) \end{cases} $	At least one set of coordinates is correct. Both sets of coordinates are correct.	A1 A1
			0.37	(4)
		Question		
8. (c)	A marks	Allow $(3a, \sqrt{12} a)$ and $(3a, -\sqrt{12} a)$ as erespectively.	exact alternatives to $(3a, 2\sqrt{3}a)$ and $(3a, 2\sqrt{3}a)$	$(a, -2\sqrt{3}a)$

Question Number	Scheme	Notes		Marks		
9.	(i) $\bigcap_{r=1}^{n} (4r^3 - 3r^2 + r) = n^3(n+1)$; (ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9					
(i)	$n = 1$: LHS = $4 - 3 + 1 = 2$, RHS = $1^3(1 + 1) = 2$	Shows or states both LHS = 2 and $RHS = 2 \text{ or states LHS} = RHS = 2$			B1	
	(Assume the result is true for $n = k$) Adds the $(k+1)^{th}$ term to the sum of k terms				M1	
	$= (k+1) [k^3 + 4(k+1)^2 - 3(k+1) + 1]$ or $(k+1) [k^3 + 4k^2 + 5k + 2]$ or $(k+2) [k^3 + 3k^2 + 3k + 1]$ dependent on the previous Mark. Takes out a factor of either $(k+1)$ or $(k+2)$			dM1		
	= (k+1)(k+1)(k+1)(k+2) dependent on both the previous M marks. Factorises out and obtains either $(k+1)(k+1)()$ or $(k+1)(k+2)()$					
	$= (k+1)^3(k+1+1) \text{ or } = (k+1)^3(k+2)$		A	chieves this result with no errors.	A1	
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> . As the result has been shown to be true for $n = 1$, then the result <u>is true for all n</u> (\widehat{l}					
	Note: Expanded quartic is $k^4 + 5k^3 + 9k^2 + 7k + 2$					
(ii)	f(1) = $5^2 + 3 - 1 = 27$ f(1) = 27 is the minimum			B1		
Way 1	$f(k+1) - f(k) = (5^{2(k+1)} + 3(k+1) - 1) - (5^{2k} + 3k)$	<u> </u>		Attempts $f(k+1) - f(k)$	M1	
	$f(k+1) - f(k) = (3^{(k+1)} - 1) - (3^{(k+1)} - 1) - (3^{(k+1)} - 1)$ $f(k+1) - f(k) = 24(5^{2k}) + 3$ Attempts $f(k+1) - f(k) = 4(5^{2k}) + 3$				1111	
	$= 24(5^{2k} + 3k - 1) - 9(8k - 3)$			$24(5^{2k} + 3k - 1)$ or $24f(k)$	A1	
	or = $24(5^{2k} + 3k - 1) - 72k + 27$ -9(8k - 3) or $-72k + 27$				A1	
	f(k+1) = 24f(k) - 9(8k-3) + f(k) or $f(k+1) = 24f(k) - 72k + 27 + f(k)$ dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subjection					
				in terms of $f(k)$ or $(5^{2k} + 3k - 1)$		
	If the result is $\underline{\text{true for } n = k}$, then it is $\underline{\text{true for } n = k + 1}$, As the result has been shown to be $\underline{\text{true for } n = 1}$, then the result is true for all n (\widehat{l})					
(ii)	$f(1) = 5^2 + 3 - 1 = 27$			f(1) = 27 is the minimum	B1	
Way 2	$f(k+1) = 5^{2(k+1)} + 3(k+1) - 1$			Attempts $f(k+1)$	M1	
	$f(k+1) = 25(5^{2k}) + 3k + 2$			25(5 ² k 21 1) 255(1)	A 1	
	$= 25(5^{2k} + 3k - 1) - 9(8k - 3)$ $= 25(5^{2k} + 3k - 1) - 72k + 27$			$25(5^{2k} + 3k - 1) \text{ or } 25f(k)$ $-9(8k - 3) \text{ or } -72k + 27$	A1	
	or = $25(5^{2k} + 3k - 1) - 72k + 27$					
	or $f(k+1) = 25(5^{2k} + 3k - 1) - 72k + 27$ and expresses it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$ If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be					
	true for $n = 1$, then the result is true for all n (\hat{l}					
					12	

Question Number		Scheme		Notes		
	(ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9					
(ii)	General Method: Using $f(k+1) - mf(k)$; where m is an integer					
Way 3		$f(1) = 5^2 + 3 - 1 = 27$		f(1) = 27 is the minimum		
	f(k+1)-	$mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - n$	$n(5^{2k} + 3k - 1)$	Attempts $f(k+1) - mf(k)$	M1	
	f(k+1)-	$f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$				
	= (2	$(5-m)(5^{2k}+3k-1)-9(8k-3)$	(25	$(25-m)(5^{2k}+3k-1)$ or $(25-m)f(k)$		
	or = (2	$(5-m)(5^{2k}+3k-1)-72k+27$		-9(8k-3) or $-72k+27$		
	f(k+1) = (25 - m)f(k) - 9(8k - 3) + mf(k) or $f(k+1) = (25 - m)f(k) - 72k + 27 + mf(k)$		$\mathcal{E}(k)$	dependent on at least one of the previous accuracy marks being awarded. Makes $f(k+1)$ the subject and expresses it in		
	terms of $f(k)$ or $(5^{2k} + 3k - 1)$					
	If the result is <u>true for $n = k$</u> , then it is <u>true for $n = k + 1$</u> , As the result has been shown to be					
	<u>true for $n = 1$</u> , then the result is <u>is true for all n</u> (\hat{l} \uparrow)					
(ii)		General Method: Using $f(k+1) - mf(k)$				
Way 4		$f(1) = 5^2 + 3 - 1 = 27$		f(1) = 27 is the minimum	B1	
	f(k+1) -	$mf(k) = (5^{2(k+1)} + 3(k+1) - 1) - n$	$n(5^{2k}+3k-1)$	Attempts $f(k+1) - mf(k)$	M1	
	$f(k+1) - mf(k) = (25 - m)(5^{2k}) + 3k(1 - m) + (2 + m)$					
	e.g. $m = -2 \Rightarrow f(k+1) + 2f(k) = 27(5^{2k}) + 9k$ $m = -2 \text{ and } 2$				A1	
	c.g. m = =			m = -2 and 9.		
	C(1 1)	dependent on at least one of the previous accuracy $f(k+1) = 27(5^{2k}) + 9k - 2f(k)$ marks being awarded. Makes $f(k+1)$ the subject				
	I(K+1) =	$= 2/(5^{-n}) + 9k - 2I(k)$	_	it in terms of $f(k)$ or $(5^{2k} + 3k - 1)$	dM1	
	If the result is true for $n = k$, then it is true for $n = k + 1$, As the result has been shown to be					
	true for $n = 1$, then the result is true for all $n(\widehat{1})$					
	Note		-	rove the following general result		
	11000	• $\{f(k+1) = 25f(k) - 9(8)\}$	_			
		,	•			
		• $\{f(k+1) = 25f(k) - 72k + 27\} \triangleright f(k+1) = 225M - 72k + 27$ Question 9 Notes				
(i)	Note	LHS = RHS by itself is not sufficient for the 1 st B1 mark in part (i).				
(i) & (ii)	Note	Final A1 for parts (i) and (ii) is dependent on all previous marks being scored in that part.				
		It is gained by candidates convey		*		
	either at the end of their solution or as a narrative in their solution.					
(ii)	Note In part (ii), Way 4 there are many alternatives where candidates focus on isolating $b(5^{2k})$, where b is a multiple of 9. Listed below are some alternative results: $f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9$ $f(k+1) = 18(5^{2k}) + 7f(k) - 18k + 9$ $f(k+1) = 27(5^{2k}) - 2f(k) + 9k$ $f(k+1) = 9(5^{2k}) + 16f(k) - 45k + 18$ See the next page for how these are derived.					
		see the next page for now these	are derived.			

	Question 9 Notes Continued						
	(ii) $f(n) = 5^{2n} + 3n - 1$ is divisible by 9 i) The A1A1dM1 marks for Alternatives using $f(k+1) - mf(k)$						
9. (ii)							
	Way 4.1	$f(k+1) = 25(5^{2k}) + 3k + 2$					
		$= 36(5^{2k}) - 11(5^{2k}) + 3k + 2$					
		$= 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$	$m = -11 \text{ and } 36(5^{2k})$ m = -11 and 36k - 9	A1 A1			
		$f(k+1) = 36(5^{2k}) - 11f(k) + 36k - 9$ or $f(k+1) = 36(5^{2k}) - 11[(5^{2k}) + 3k - 1] + 36k - 9$	as before	dM1			
	Way 4.2	$f(k+1) = 25(5^{2k}) + 3k + 2$					
		$= 27(5^{2k}) - 2(5^{2k}) + 3k + 2$					
		$= 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$	$m = -2$ and $27(5^{2k})$	A1			
			m = -2 and $9k$	A1			
		$f(k+1) = 27(5^{2k}) - 2f(k) + 9k$ or $f(k+1) = 27(5^{2k}) - 2[(5^{2k}) + 3k - 1] + 9k$	as before	dM1			
	Way 4.3	$f(k+1) = 25(5^{2k}) + 3k + 2$					
		$= 18(5^{2k}) + 7(5^{2k}) + 3k + 2$					
		$= 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$	$m = 7$ and $18(5^{2k})$ m = 7 and $-18k + 9$	A1 A1			
		$f(k+1) = 18(5^{2k}) + 7f(k) - 18k + 9$ or $f(k+1) = 18(5^{2k}) + 7[(5^{2k}) + 3k - 1] - 18k + 9$	as before	dM1			
	Way 4.4	$f(k+1) = 25(5^{2k}) + 3k + 2$					
		$= 9(5^{2k}) + 16(5^{2k}) + 3k + 2$					
		$= 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$	$m = 16$ and $9(5^{2k})$	A1			
			m = 16 and $-45k + 18$	A1			
		$f(k+1) = 9(5^{2k}) + 16f(k) - 45k + 18$ or $f(k+1) = 9(5^{2k}) + 16[(5^{2k}) + 3k - 1] - 45k + 18$	as before	dM1			