Électrostatique

Exercice 1

L'atome d'hydrogène est constitué d'un proton de charge $e = 1.6 \cdot 10^{-19} \text{C}$ et d'un électron de charge $e = -1.6 \cdot 10^{-19} \text{C}$ séparés par une distance $r = 5.3 \cdot 10^{-11} \text{m}$ (figure 1).

Figure 1

Calculer le module de la force électrique entre ces deux particules.

On donne
$$K = 1/4\pi\epsilon_0 = 9.10^9 \text{ N.m}^2/\text{C}^2$$

Est -elle attractive ou répulsive ?

Exercice2

On considère trois charges ponctuelles placées aux sommets d'un triangle rectangle comme montré sur la figure 2, où $q_1=q_3=5\mu C$, $q_2=-2\mu C$ et a=0.1m.

Déterminer le module et la direction de la force \vec{F} exercée sur q_3 par q_1 et q_2 .

Exercice3

Trois charges ponctuelles sont situées suivant l'axe des x comme montré sur la figure 3. La charge q_1 = 6 μ C est à l'origine, la charge q_2 = 15 μ C est à x=2m de q_1 .

Quelle est l'abscisse x de q3 pour que la force résultante agissant sur q3 soit nulle?

Figure 3

Exercice4

Deux sphères conductrices identiques de masse m=10g portent des charges q_1 et q_2 ; on les met en contact, puis on les sépare.

- 1- Calculer les charges q'1 et q'2 qu'elles prennent dans les cas suivants :
 - a) q_1 =+4.10⁻⁸C et q_2 = 0C; b) q_1 =+3.10⁻⁸C et q_2 =+8.10⁻⁸C; c) q_1 =+3.10⁻⁸C et q_2 =-8.10⁻⁸C Préciser à chaque fois le sens du transfert d'électrons.
- 2- Les deux masses sont suspendues au même point O par deux fils identiques de nylon de longueur l = 80cm (figure 4). En négligeant la masse des fils, calculer la distance 2x séparant les deux sphères pour les 3 cas précédents (on suppose que l'angle θ est suffisamment petit).

Figure 4