Impact of transmission type on Miles per Gallon

Executive Summary

Looking at a data set of a collection of cars, we are interested in exploring the relationship between a set of variables and miles per gallon (MPG) (outcome). They are particularly interested in the following two questions:

- Is an automatic or manual transmission better for MPG
- Quantifying how different is the MPG between automatic and manual transmissions?

Conclusions

After analysys we can conclude that the manual transmission improve eficiency for MPG; on the other hand, it can be seriously influenced by horsepower variable.

Data

We will use the mtcars dataset, from the 1974 Motor Trend US magazine, to compare 32 different car models.

Load Data

data(mtcars)
str(mtcars)

```
##
   'data.frame':
                     32 obs. of
                                 11 variables:
                 21 21 22.8 21.4 18.7 18.1 14.3 24.4 22.8 19.2 ...
##
    $ mpg : num
##
      cyl : num
                 6 6 4 6 8 6 8 4 4 6 ...
                 160 160 108 258 360
##
     disp: num
                 110 110 93 110 175 105 245 62 95 123
##
     hp
          : num
    $ drat: num
                 3.9 3.9 3.85 3.08 3.15 2.76 3.21 3.69 3.92 3.92
##
##
                 2.62 2.88 2.32 3.21 3.44 ...
     wt
          : num
                 16.5 17 18.6 19.4 17 ...
##
     qsec: num
##
                 0 0 1 1 0 1 0 1 1 1
     ٧S
          : num
##
                 1 1 1 0 0 0 0 0 0 0
     am
          : num
                 4 4 4 3 3 3 3 4 4
##
     gear: num
    $ carb: num
                 4 4 1 1 2 1 4 2 2 4
##
```

We can observe that our dataset contains 32 observations and 11 variables.

Model

Initially, we will create a *Multivarible Regression* with all variables. Then, we will then use the **backward elimination strategy** to eliminate the unrelated variables, throw an iterative process where we eliminate the lessest significant variables.

Multivarible Regression

Let's create a linear regression model with all variables.

```
multi_lm <- lm(mpg ~ ., data = mtcars)
summary(multi_lm)</pre>
```

```
##
## Call:
## lm(formula = mpg \sim ., data = mtcars)
##
## Residuals:
                             3Q
1.22
##
      Min
                10 Median
                                      Max
            -1.60 -0.12
##
    -3.45
                                     4.63
##
## Coefficients:
##
                 Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                  12.3034
                              18.7179
                                           0.66
                                                    0.518
## cyl
                  -0.1114
                               1.0450
                                          -0.11
                                                    0.916
                               0.0179
## disp
                   0.0133
                                           0.75
                                                    0.463
## hp
                  -0.0215
                               0.0218
                                          -0.99
                                                    0.335
## drat
                   0.7871
                               1.6354
                                          0.48
                                                    0.635
                  -3.7153
                               1.8944
                                          -1.96
                                                    0.063
## wt
## qsec
                   0.8210
                               0.7308
                                          1.12
                                                    0.274
                   0.3178
                               2.1045
                                          0.15
                                                    0.881
## VS
## am
                   2.5202
                               2.0567
                                           1.23
                                                    0.234
## gear
                               1.4933
                   0.6554
                                           0.44
                                                    0.665
                  -0.1994
                               0.8288
                                          -0.24
                                                    0.812
## carb
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
## Residual standard error: 2.65 on 21 degrees of freedom
## Multiple R-squared: 0.869, Adjusted R-squared: 0.869 ## F-statistic: 13.9 on 10 and 21 DF, p-value: 3.79e-07
```

Backward Strategy

Now, we eliminate the largest p-value variables in each iteration.

The final model contains wt, qsec and am variables.

```
model <- lm(mpg ~ wt + qsec + am, data = mtcars)
summary(model)</pre>
```

```
##
## Call:
## lm(formula = mpg \sim wt + qsec + am, data = mtcars)
## Residuals:
## Min 1Q Median 3Q
## -3.481 -1.556 -0.726 1.411
                                   Max
                                 4.661
## Coefficients:
##
               Estimate Std. Error t value Pr(>|t|)
                                      1.38
                              6.960
## (Intercept)
                  9.618
                                             0.17792
                                      -5.51
                                               7e-06 ***
## wt
                 -3.917
                              0.711
                                             0.00022 ***
## qsec
                  1.226
                              0.289
                                       4.25
                              1.411
## am
                  2.936
                                       2.08 0.04672 *
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 2.46 on 28 degrees of freedom
## Multiple R-squared: 0.85, Adjusted R-squared: 0.834
## F-statistic: 52.7 on 3 and 28 DF, p-value: 1.21e-11
```

Exploratory Analysis

Now we will explore the relation between mpg and the three variables in our final model.

```
tidy_data <- mtcars[, c("mpg","wt", "qsec", "am")]
pairs(tidy_data, panel = panel.smooth, main = "mtcars data")</pre>
```


As we can see, there is a high relationship bewteen the three variables and the outcome.

We can also plot the residual

```
par(mfrow = c(2, 2))
plot(model)
```


Conclusion

We can conclude that our linear model is a resonable fit.

```
sum_coefficients <- summary(model)$coefficients
result <- sum_coefficients["am", 1] + c(-1, 1) * qt(0.975, df =
model$df) * sum_coefficients["am", 2]; result</pre>
```

```
## [1] 0.04573 5.82594
```

With 95% confidence, we estimate that a the change from automatic to manual transmission results in a 0.05 to 5.83 increase in miles per gallon for the cars.

In conclusion, the manual transmission is better than automatic transmission for mpg.