Soit $D \subset \mathbb{R}$, $a \in D$, $f : D \to D$ une fonction et $(u_n) \in D^{\mathbb{N}}$ l'unique suite telle que $u_0 = a$ et $\forall n \in \mathbb{N}, u_{n+1} = f(u_n)$.

1. Le signe de $x \mapsto f(x) - x$ renseigne sur la monotonie de (u_n) :

$$\begin{cases} \forall x \in D, f(x) \ge x \implies \forall n \in \mathbb{N}, u_{n+1} \ge u_n \\ \forall x \in D, f(x) \le x \implies \forall n \in \mathbb{N}, u_{n+1} \le u_n \end{cases}$$

- **2.** Si f est croissante, alors (u_n) est :
 - croissante si $u_1 \ge u_0$
 - décroissante si $u_1 \leq u_0$
- 3. si f est décroissante, alors (u_{2n}) et (u_{2n+1}) sont monotones et de sens contraire :
 - si $u_2 \ge u_0$ alors (u_{2n}) est croissante et (u_{2n+1}) est décroissante
 - si $u_2 \leq u_0$ alors (u_{2n}) est décroissante et (u_{2n+1}) est croissante