Lista 14, Capítulo 9 - Geometria Analítica e Álgebra Linear

Profa. Roseli

Considere fixado um sistema ortogonal de coordenadas cartesianas.

1. Estude a posição relativa das retas \mathbf{r} e \mathbf{s} nos seguintes casos:

(a) r:
$$X = (1, -1, 1) + \lambda(-2, 1, -1)$$
 s: $y + z = 3$ $x + y - z = 6$

(b)
$$x - y - z = 2$$
 $x + y - z = 0$ s: $2x - 3y + z = 5$ $x + y - 2z = 0$

(c) r:
$$\frac{x+1}{2} = \frac{y}{3} = \frac{z+1}{2}$$
 s: $X = (0, 0, 0) + \lambda(1, 2, 0)$

(d) r:
$$\frac{x+3}{2} = \frac{y-1}{4} = z$$
 s: $2x - y + 7 = 0$
 $x + y - 6z + 2 = 0$

(e) r:
$$X = (8, 1, 9) + \lambda(2, -1, 3)$$
 s: $X = (3, -4, 4) + \lambda(1, -2, 2)$

(f) r:
$$\frac{x-1}{3} = \frac{y-5}{3} = \frac{z+2}{5}$$
 s: $x = -y = \frac{z-1}{4}$

(g) r:
$$\frac{x+1}{2} = y = -z$$
 s: $\begin{cases} x + y + -3z = 1 \\ 2x - y - 2z = 0 \end{cases}$

(h) r:
$$x + 3 = \frac{2y-3}{4} = \frac{z-1}{3}$$
 s: $X = (0, 2, 2) + \lambda(1, 1, -1)$

2. Calcule $\mathbf{m} \in \mathbb{R}$ para que

- (a) r e s sejam paralelas;
- (b) r, s e t sejam paralelas a um mesmo plano;
- (c) \mathbf{r} e \mathbf{t} sejam concorrentes;
- (d) s e t sejam coplanares;
- (e) r e s sejam reversas.

São dadas: r:
$$x = my - 1$$

 $z = y - 1$ s: $x = \frac{y}{m} = z$ t: $-x + z = y = -z - 1$

3. No Exercício 1, obtenha, quando possível, uma equação geral para o plano determinado pelas retas ${\bf r}$ e ${\bf s}$.

1

- 4. Nos itens do Exercício 1 em que as retas \mathbf{r} e \mathbf{s} são reversas, obtenha uma equação geral para o plano que contém a reta \mathbf{r} e é paralelo à reta \mathbf{s} .
- **5.** Determine **m** para que as retas dadas r: $X = (1, 0, 2) + \lambda(2, 1, 3)$ e s: $X = (0, 1, -1) + \lambda(1, m, 2m)$ sejam coplanares e, nesse caso, estude sua posição relativa.

Considere fixado um sistema ortogonal de coordenadas cartesianas.

6. Estude a posição relativa da reta ${\bf r}$ e do plano Π e, quando forem tranversais, obtenha o ponto intersecção P, nos casos:

(a) r:
$$X = (1, 1, 0) + \lambda(0, 1, 1)$$
 Π : $x - y - z = 2$

(b) r:
$$\frac{x-1}{2} = y = z$$
 Π : $X = (3, 0, 1) + \lambda(1, 0, 1) + \mu(2, 2, 0)$

(c)
$$x-y+z=0$$

 $2x+y-z-1=0$ $\Pi: X=(0,\frac{1}{2},0)+\lambda(1,-\frac{1}{2},0)+\mu(0,1,1)$

(f) r:
$$\frac{x+2}{3} = y - 1 = \frac{z+3}{3}$$

 Π : $3x - 6y - z = 0$

- 7. Calcule o valor de **m** para que a reta r: $X = (1, 1, 1) + \lambda(2, m, 1)$ seja paralela ao plano Π : $X = (0, 0, 0) + \alpha(1, 2, 0) + \beta(1, 0, 1)$.
- **8.** Calcule \mathbf{m} , $\mathbf{n} \in \mathbb{R}$ para que a reta r: $X = (n, 2, 0) + \lambda(2, m, m)$ esteja contida no plano Π : x 3y + z = 1.
- 9. Calcule **m** para que a reta r: $\frac{x-1}{m} = \frac{y}{2} = \frac{z}{m}$ seja transversal ao plano Π : x + my + z = 0.
- 10. Estude a posição relativa de Π_1 e Π_2 nos casos:

(a)
$$\Pi_1$$
: $X = (1, 1, 1) + \lambda(0, 1, 1) + \mu(-1, 2, 1)$
 Π_2 : $X = (1, 0, 0) + \lambda(1, -1, 0) + \mu(-1, -1, -2)$

(b)
$$\Pi_1$$
: $2x - y + 2z - 1 = 0$
 Π_2 : $4x - 2y + 4z = 0$

(c)
$$\Pi_1$$
: $x - 2y + 2z - 2 = 0$
 Π_2 : $X = (0, 0, 1) + \lambda(1, 0, 3) + \mu(-1, 1, 1)$

11. Encontre o valor de m para que os planos

$$\Pi_1$$
: X = (1, 1, 0) + λ (m, 1, 1) + μ (1, 1, m)

$$\Pi_2$$
: $2x + 3y + 2z + n = 0$

sejam paralelos distintos, nos casos: (a) n = -5 e (b) n = 1.

12. Mostre que os planos

$$\Pi_1$$
: X = (0, 0, 0) + λ (-1, m, 1) + μ (2, 0, 1)

$$\Pi_2$$
: X = (1, 2, 3) + α (m, 1, 0) + β (1, 0, m)

são transversais, para todo $\mathbf{m} \in \mathbb{R}$.

A partir daqui, considere, quando necessário, fixado um sistema ortogonal de coordenadas.

13. Obtenha uma equação vetorial para a reta ${\bf t}$ que passa por P e é concorrente com ${\bf r}$ e ${\bf s}$, nos seguintes casos:

(a)
$$P = (1, 1, 1)$$
 r: $x + 3 = \frac{y-2}{2} = \frac{z-1}{3}$ s: $X = (-2, 0, 4) + \lambda(1, 1, -1)$

(b)
$$P = (-2, 2, 4)$$
 r: $X = (-1, 1, 3) + \lambda(-2, -2, 2)$ s: $X = (-2, 4, 4) + \lambda(1, 2, 3)$

(c)
$$P = (1, 0, 6)$$
 r: $\begin{cases} x - y - z + 5 = 0 \\ 2x - z + 4 = 0 \end{cases}$ s: $\frac{x-3}{2} = \frac{y-2}{3} = \frac{z}{3}$

(d)
$$P = (1, -2, -1)$$
 r: $z = x - 2$ s: $z = x - 1$ $y = 1 - x$

(e)
$$P = (1, 0, 3)$$
 r: $X = (1, 0, 0) + \lambda(3, -1, 2)$ s: $X = (-5, 2, -4) + \lambda(1, 5, -1)$

14. Obtenha uma equação vetorial para a reta t, concorrente com r e s, nos seguintes casos:

(a) r:
$$X = (1, 1, -1) + \lambda(2, 1, -1)$$
 s: $\begin{cases} x + y - 3z = 1 \\ 2x - y - 2z = 0 \end{cases}$ e t é paralela à reta determinada por $M = (1, -1, 4)$ e $N = (0, -3, -1)$

(b) **r**:
$$\frac{x+1}{2} = y = -z$$
 s: $X = (\frac{1}{3}, \frac{2}{3}, 0) + \lambda(5, 4, 3)$ e **t**: é paralela ao vetor $\vec{v} = (1, 0, 1)$

(c) r:
$$X = (1, 2, 3) + \lambda(2, -1, 0)$$
 s: $X = (0, 1, -3) + \lambda(-1, 1, 2)$ e t é paralela à reta h: $X = (0, 0, 0) + \lambda(\frac{43}{9}, \frac{86}{27}, -\frac{43}{27})$

15. Obtenha uma equação vetorial para a reta \mathbf{t} que passa pelo ponto P, é paralela ou contida no plano Π e concorrente com a reta \mathbf{r} nos seguintes casos:

(a)
$$P = (1, 1, 0)$$
 $\Pi: 2x + y - z - 3 = 0$ $r: X = (1, 0, 0) + \lambda(-1, 0, 1)$

(b)
$$P = (1, 0, 1)$$
 $\Pi: x - 3y - z = 1$ $r: X = (0, 0, 0) + \lambda(2, 1, -1)$

(c)
$$P = (1, 2, 1)$$
 $\Pi: x - y = 0$ $r: X = (1, 0, 0) + \lambda(2, 2, 1)$

- 16. Obtenha uma equação vetorial para a reta ${\bf t}$ contida no plano Π : ${\bf x}$ ${\bf y}$ + ${\bf z}$ = 0 e que é concorrente com as retas ${\bf r}$: ${\bf z}$ = ${\bf x}$ 2 ${\bf y}$ = 1 ${\bf x}$ ${\bf s}$: ${\bf z}$ = ${\bf x}$ 1 ${\bf y}$ = 1 + 2 ${\bf x}$
- 17. Obtenha uma equação vetorial para a reta ${\bf t}$ paralela aos planos α e β e concorrente com as retas ${\bf r}$ e ${\bf s}$, sendo:

r:
$$x - 2y = z - x = y + 1$$

s: $\begin{cases} x + 2y - z = 3 \\ x - 2y + z + 1 = 0 \end{cases}$
 α : $x + 2y + z - 1 = 0$
 β : $x + 4y + 2z = 0$

- 18. Obtenha uma equação geral para o plano que contém a reta r: $X=(1,\,1,\,0)+\lambda(2,\,1,\,2)$ e é paralelo à reta s: $\frac{x+1}{2}=y=z+3$.
- 19. Obtenha uma equação geral para o plano que passa pelo ponto $P=(1,\,3,\,4)$ e é paralelo ao plano $\Pi\colon x+y+z+1=0.$
- **20.** Projete o ponto $P=(1,\,4,\,0)$ sobre o plano Π : x+y-2z+1=0, paralelamente à reta r: $X=(0,\,0,\,0)+\lambda(1,\,4,\,1)$.

RESPOSTAS

1. (a) paralelas distintas

- (e) concorrentes em P = (-2, 6, -6)
- (b) concorrentes em P = (1, -1, 0)

(b) m = 1

(f) concorrentes em P = (-2, 2, -7)

(c) reversas

(g) reversas

(d) r = s

(h) reversas

- 2. (a) m = 1

- (c) \forall m (d) $\not\exists$ m (e) m \neq 0
 - e $m \neq 1$

- 3. (a) 3x 4y 10z + 3 = 0
 - (b) x z 1 = 0
 - (e) 4x y 3z 4 = 0
 - (f) 17x 7y 6z + 6 = 0
- 4. (c) Π : 4x 2y z + 3 = 0
 - (g) Π : 7x 11y + 3z + 7 = 0
 - (h) Π : 5x 4y + z + 20 = 0
- 5. para m = $\frac{2}{3}$ concorrentes no ponto (-9, -5, -13) e determinam o plano Π : 2x y z = 0
- 6. (a) transversais, P = (1, 0, -1)
- (d) r $//\Pi$

(b) r ∥ ∏

(e) r transversal a $\Pi,\,P=(-\frac{1}{9},\,-\frac{4}{9},\,-\frac{1}{9})$

(c) $r \subset \Pi$

(f) r $//\Pi$

- 7. m = 2
- 8. m = 1e n = 7
- 9. \forall m \neq 0
- 10. (a) $\Pi_1 = \Pi_2$
- (b) paralelos distintos
- (c) transversais,
- $r = \Pi_1 \, \cap \, \Pi_2 : \, X = (0, \, 0, \, 1) \, + \, \lambda \, \, (\text{-}6, \, 7, \, 10)$
- 11. (a) $\not\exists$ m, pois $(1, 1, 0) \in \Pi_1 \cap \Pi_2$, \forall m
 - (b) m = $-\frac{5}{2}$

- 13. (a) t: X = (1, 1, 1) + λ (1, -1, -1), $\lambda~\in~\mathbb{R}$
 - (b) t: X = (-2, 2, 4) + λ (0, 1, 0), $\lambda~\in~\mathbb{R}$
 - (c) $\not\exists t$, pois $P \in r \cap t$
 - (d) t: X = (1, -2, -1) + λ (1, 2, 1), $\lambda~\in~\mathbb{R}$
 - (e) t: X = (1, 0, 3) + λ (6, -2, 7), $\lambda~\in~\mathbb{R}$
- 14. (a) não existe solução
 - (b) t: X = $\left(-\frac{1}{5}, \frac{2}{5}, -\frac{2}{5}\right) + \lambda$ (1, 0, 1), $\lambda \in \mathbb{R}$
 - (c) t: X = (6, 10, 0) + λ (3, 2, -1), $\lambda~\in~\mathbb{R}$
- 15. (a) t: $X = (1, 1, 0) + \lambda (1, -3, -1)$
 - (b) infinitas soluções
 - (c) r // t, $\not\exists$ t
- 16. $\not\exists$ solução, pois s // Π , s $\not\subset$ Π e t \subset Π
- 17. t: $X = (1, 0, 2) + \lambda (0, -1, 2)$
- 18. $\Pi : x 2y + 1 = 0$
- 19. $\Pi : x + y + z 8 = 0$
- 201. Q = (-1, -4, -2)