Homework Signal 2

Week 2

6733172621 Patthadon Phengpinij
Collaborators. ChatGPT (for LATEX styling and grammar checking)

1 Convolution

Problem 1. Evaluate the convolution of the following signals

1.1 rect
$$\left(\frac{t-a}{a}\right) * \delta(t-b)$$

Solution. From the sifting property of the delta function, we have:

$$f(t) * \delta(t - b) = f(t - b)$$

Applying this property to our problem, we get:

$$\operatorname{rect}\left(\frac{t-a}{a}\right) * \delta(t-b) = \operatorname{rect}\left(\frac{(t-b)-a}{a}\right) = \operatorname{rect}\left(\frac{t-(a+b)}{a}\right)$$

Thus, the result of the convolution is:

$$\boxed{ \operatorname{rect}\left(\frac{t - (a + b)}{a}\right)}$$

Using Python to verify this result, we can implement the convolution and plot the results. The plot of the signal is shown below:

1.2 rect $\left(\frac{t}{a}\right) * rect \left(\frac{t}{a}\right)$

Solution. To evaluate the convolution of two rectangular functions, we start with the definition of the rectangular function:

$$\operatorname{rect}\left(\frac{t}{a}\right) = \begin{cases} 1 & \text{if } |t| \le \frac{a}{2} \\ 0 & \text{otherwise} \end{cases}$$

The convolution of two functions f(t) and g(t) is defined as:

$$(f * g)(t) = \int_{-\infty}^{\infty} f(\tau)g(t - \tau) d\tau$$

Applying this to our rectangular functions, we have:

$$(\operatorname{rect}\left(\frac{t}{a}\right) * \operatorname{rect}\left(\frac{t}{a}\right))(t) = \int_{-\infty}^{\infty} \operatorname{rect}\left(\frac{\tau}{a}\right) \operatorname{rect}\left(\frac{t-\tau}{a}\right) d\tau$$

$$= \int_{-\frac{a}{2}}^{\frac{a}{2}} \operatorname{rect}\left(\frac{t-\tau}{a}\right) d\tau$$

$$= \int_{\max(-\frac{a}{2}, t - \frac{a}{2})}^{\min(\frac{a}{2}, t + \frac{a}{2})} 1 d\tau$$

$$(\operatorname{rect}\left(\frac{t}{a}\right) * \operatorname{rect}\left(\frac{t}{a}\right))(t) = \min\left(\frac{a}{2}, t + \frac{a}{2}\right) - \max\left(-\frac{a}{2}, t - \frac{a}{2}\right)$$

Evaluating the limits, we find that the result is a triangular function:

$$\operatorname{rect}\left(\frac{t}{a}\right) * \operatorname{rect}\left(\frac{t}{a}\right) = \begin{cases} 0 & |t| > a \\ t+a & -a \le t < 0 \\ a-t & 0 \le t \le a \end{cases}$$

Using Python to verify this result, we can implement the convolution and plot the results. The plot of the signal is shown below:

1.3
$$t[u(t) - u(t-1)] * u(t)$$

Solution. First, we define the functions involved in the convolution:

$$x(t) = t[u(t) - u(t-1)] = \begin{cases} 0 & t < 0 \\ t & 0 \le t < 1 \\ 0 & t \ge 1 \end{cases}$$

$$u(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0 \end{cases}$$

The convolution y(t) = x(t) * u(t) is given by:

$$y(t) = \int_{-\infty}^{\infty} x(\tau)u(t-\tau) d\tau$$

Evaluating the convolution integral, we find:

$$y(t) = \int_0^1 \tau \cdot u(t - \tau) d\tau$$
$$y(t) = \int_0^{\min(t, 1)} \tau d\tau$$

Thus,

$$y(t) = \begin{cases} 0 & t < 0\\ \frac{t^2}{2} & 0 \le t < 1\\ \frac{1}{2} & t \ge 1 \end{cases}$$

Using Python to verify this result, we can implement the convolution and plot the results. The plot of the signal is shown below:

Problem 2. Determine the convolution y(t) = h(t) * x(t) using Graphical Interpretation of the pairs of the signals shown

Solution. The convolution y(t) = h(t) * x(t) can be determined graphically by following these steps:

- 1. Flip one of the signals, typically h(t), to get $h(-\tau)$.
- 2. Shift the flipped signal by t to get $h(t-\tau)$.
- 3. For each value of t, calculate the area of overlap between $x(\tau)$ and $h(t-\tau)$.
- 4. The value of the convolution y(t) at each t is the area of overlap calculated in the previous step.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step.

The resulting convolution y(t) is shown in the gif files in my GitHub repository for this homework.

TO SUBMIT

2.1 Solution.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.1 Animation.

The plot of the signal is shown below:

Solution. Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.2 Animation.

The plot of the signal is shown below:

TO SUBMIT

2.3 Solution.

Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.3 Animation.

The plot of the signal is shown below:

2.4

Solution. Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 2.4 Animation.

The plot of the signal is shown below:

Problem 3. Let f(t) and g(t) be given as follows:

3.1 Sketch the function : x(t) = f(t) * g(t)

Solution. Using Python to visualize and compute the convolution graphically, we can create an animation that demonstrates the convolution process step-by-step as shown in the gif files in Problem 3.1 Animation.

3.2 Show that if a(t) = b(t) * c(t), then (Mb(t)) * c(t) = Ma(t), for any real number M (hint: use the convolution integral formula)

Solution. Given that a(t) = b(t) * c(t), we can express this using the convolution integral:

$$a(t) = \int_{-\infty}^{\infty} b(\tau)c(t-\tau) d\tau$$

Now, we want to show that (Mb(t))*c(t) = Ma(t). We start by writing the convolution of Mb(t) with c(t):

$$(Mb(t)) * c(t) = \int_{-\infty}^{\infty} Mb(\tau)c(t-\tau) d\tau$$

Factoring out the constant M from the integral, we have:

$$(Mb(t))*c(t) = M \int_{-\infty}^{\infty} b(\tau)c(t-\tau) d\tau$$

$$(Mb(t)) * c(t) = Ma(t)$$

Thus, we have shown that:

$$(Mb(t)) * c(t) = Ma(t)$$

Problem 4. Find the convolution y[n] = h[n] * x[n] of the following signals:

TO SUBMIT

$$4.1 \ x[n] = \begin{cases} -1, -5 \le n \le -1 \\ 1, 0 \le n \le 4 \end{cases} , \ h[n] = 2u[n]$$

Solution. To find the convolution y[n] = h[n] * x[n], we use the discrete convolution formula:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Consider the value of y[n]:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$= \sum_{k=-5}^{-1} x[k]h[n-k] + \sum_{k=0}^{4} x[k]h[n-k]$$

$$= \sum_{k=-5}^{-1} (-1) \cdot 2u[n-k] + \sum_{k=0}^{4} (1) \cdot 2u[n-k]$$

$$= -2 \left[\sum_{k=-5}^{-1} u[n-k] - \sum_{k=0}^{4} u[n-k] \right]$$

$$y[n] = -2 \left[\sum_{j=n+1}^{n+5} u[j] - \sum_{j=n-4}^{n} u[j] \right]$$

Calculating the convolution for different ranges of n:

• For $-5 \le n < 0$:

$$y[n] = -2 \left[\sum_{j=n+1}^{n+5} u[j] - \sum_{j=n-4}^{n} u[j] \right]$$
$$= -2 [n+6]$$
$$y[n] = -2n - 12$$

• For $0 \le n < 5$:

$$y[n] = -2 \left[\sum_{j=n+1}^{n+5} u[j] - \sum_{j=n-4}^{n} u[j] \right]$$
$$= -2 \left[5 - (n-3) \right]$$
$$y[n] = 2n - 8$$

$$y[n] = \begin{cases} -2n - 12 & -5 \le n < 0 \\ 2n - 8 & 0 \le n < 5 \\ 0 & \text{otherwise} \end{cases}$$

4.2 $x[n] = u[n], h[n] = 1; 0 \le n \le 9$

Solution. To find the convolution y[n] = h[n] * x[n], we use the discrete convolution formula:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Consider the value of y[n]:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$
$$= \sum_{k=0}^{\infty} u[k] \cdot h[n-k]$$
$$= \sum_{k=0}^{\infty} 1 \cdot h[n-k]$$
$$y[n] = \sum_{j=-\infty}^{n} h[j]$$

Calculating the convolution for different ranges of n:

• For $0 \le n < 9$:

$$y[n] = \sum_{j=-\infty}^{n} h[j]$$
$$= \sum_{j=0}^{n} 1$$
$$y[n] = n + 1$$

• For $n \geq 9$:

$$y[n] = \sum_{j=-\infty}^{n} h[j]$$
$$= \sum_{j=0}^{9} 1$$
$$y[n] = 10$$

$$y[n] = \begin{cases} n+1 & 0 \le n < 9 \\ 10 & n \ge 9 \\ 0 & \text{otherwise} \end{cases}$$

TO SUBMIT

4.3
$$x[n] = \left(\frac{1}{2}\right)^n u[n], h[n] = \delta[n] + \delta[n-1] + \left(\frac{1}{3}\right)^n u[n]$$

Solution. To find the convolution y[n] = h[n] * x[n], we use the discrete convolution formula:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Consider the value of y[n]:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$= \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k u[k] \cdot \left(\delta[n-k] + \delta[n-k-1] + \left(\frac{1}{3}\right)^{n-k} u[n-k]\right)$$

$$y[n] = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k \delta[n-k] + \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k \delta[n-k-1] + \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k \left(\frac{1}{3}\right)^{n-k} u[n-k]$$

Calculating the convolution for different ranges of n:

• For $n \geq 0$:

$$y[n] = \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k \delta[n-k] + \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k \delta[n-k-1] + \sum_{k=0}^{\infty} \left(\frac{1}{2}\right)^k \left(\frac{1}{3}\right)^{n-k} u[n-k]$$

$$= \left(\frac{1}{2}\right)^n + \left(\frac{1}{2}\right)^{n-1} + \sum_{k=0}^n \left(\frac{1}{2}\right)^k \left(\frac{1}{3}\right)^{n-k}$$

$$= \left(\frac{1}{2}\right)^n + 2\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n \sum_{k=0}^n \left(\frac{3}{2}\right)^k$$

$$= 3\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n \frac{1 - \left(\frac{3}{2}\right)^{n+1}}{1 - \frac{3}{2}}$$

$$= 3\left(\frac{1}{2}\right)^n + \left(\frac{1}{3}\right)^n (-2)\left(1 - \left(\frac{3}{2}\right)^{n+1}\right)$$

$$= 3\left(\frac{1}{2}\right)^n + (-2)\left(\frac{1}{3}\right)^n + 3\left(\frac{1}{2}\right)^n$$

$$y[n] = 6\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n$$

$$y[n] = \begin{cases} 6\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n & n \ge 0\\ 0 & \text{otherwise} \end{cases}$$

4.4
$$x[n] = \left(\frac{1}{3}\right)^n u[n], h[n] = \delta[n] + \left(\frac{1}{2}\right)^n u[n]$$

Solution. To find the convolution y[n] = h[n] * x[n], we use the discrete convolution formula:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

Consider the value of y[n]:

$$y[n] = \sum_{k=-\infty}^{\infty} x[k]h[n-k]$$

$$= \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k u[k] \cdot \left(\delta[n-k] + \left(\frac{1}{2}\right)^{n-k} u[n-k]\right)$$

$$y[n] = \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k \delta[n-k] + \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k \left(\frac{1}{2}\right)^{n-k} u[n-k]$$

Calculating the convolution for different ranges of n:

• For $n \geq 0$:

$$y[n] = \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k \delta[n-k] + \sum_{k=0}^{\infty} \left(\frac{1}{3}\right)^k \left(\frac{1}{2}\right)^{n-k} u[n-k]$$

$$= \left(\frac{1}{3}\right)^n + \sum_{k=0}^n \left(\frac{1}{3}\right)^k \left(\frac{1}{2}\right)^{n-k}$$

$$= \left(\frac{1}{3}\right)^n + \left(\frac{1}{2}\right)^n \sum_{k=0}^n \left(\frac{2}{3}\right)^k$$

$$= \left(\frac{1}{3}\right)^n + \left(\frac{1}{2}\right)^n \cdot \frac{1 - \left(\frac{2}{3}\right)^{n+1}}{1 - \frac{2}{3}}$$

$$= \left(\frac{1}{3}\right)^n + 3\left(\frac{1}{2}\right)^n \left[1 - \left(\frac{2}{3}\right)^{n+1}\right]$$

$$= \left(\frac{1}{3}\right)^n + 3\left(\frac{1}{2}\right)^n - 2\left(\frac{1}{3}\right)^n$$

$$y[n] = 3\left(\frac{1}{2}\right)^n - \left(\frac{1}{3}\right)^n$$

$$y[n] = \begin{cases} 3\left(\frac{1}{2}\right)^n - \left(\frac{1}{3}\right)^n & n \ge 0\\ 0 & \text{otherwise} \end{cases}$$