

LÓGICA

Test de Validación 2

Nombre:	Grupo:	NIU/NIA:
NOTIFIC:	Grapo.	1410/141/1

1. Compruebe si la deducción que sigue es correcta (1.5 pt)

$$\forall x \exists y (P(x,y) \rightarrow Q(x)), \, \exists y (\, {}^{\sim}R(y) \rightarrow {}^{\sim}Q(y)) \Rightarrow \exists x \exists y \, ({}^{\sim}P(x,y) \vee R(x))$$

- 2. 1. $\forall x \exists y (P(x,y) \rightarrow Q(x))$
- 3. 2. $\exists y (^{\sim}R(y) \rightarrow ^{\sim}Q(y))$
- 4. 4. $^{\sim}$ R(a) \rightarrow $^{\sim}$ Q(a) Supuesto E.E. 2 (y:a)
- 5. 5. $\exists y(P(a,y) \rightarrow Q(a))$ E.U. 1
- 6. 6. $P(a,b) \rightarrow Q(a)$ Supuesto E.E. 5 (y:b)
- 7. 7. P(a,b) Supuesto T.D
- 8. Q(a)
- 9. $P(a,b) \rightarrow R(a)$ Cancelación del supuesto por T.D. 7-17
- 10. 10. ∼P(a,b) V R(a) Interdefinición
- 11. 11. ∃y (~P(a,y) ∨ R(a)) Cierre EE 6-11
- 12. 13. ∃x∃y (~P(x,y) ∨ R(x)) Cierre EE 4-11

2.1 Verifique si la fórmula que sigue es válida usando el método del contraejemplo en teoría semántica (1 pt)

$$\sim (p \rightarrow \sim q \lor r) \lor (\sim r \lor t \rightarrow (\sim p \rightarrow \sim q \land \sim p))$$

	\sim (p \rightarrow \sim q V r) V (\sim r V t \rightarrow (\sim p \rightarrow \sim q \land \sim p)) debe ser F							
\sim (p \rightarrow \sim q V r) debe ser F				~r v	\sim r V t \rightarrow (\sim p \rightarrow \sim q \land \sim p) debe ser F			
p → ~q V r debe ser V			∼r∨t debe ser V	\sim p → \sim q \wedge \sim p debe ser F				
					~p debe ser V	~q ∧ ~p debe ser F		er F
p=F	Varias posibilidades: por ejemplo, ~q∨r=V				p = F	Así que ~p=V	,luego	q=V
	~q=F , por lo tanto:	r=V		,luego t debe ser V				

Hemos encontrado un contrajemplo (no necesariamente el único): (p=F, q=V, r=V, t=V), por tanto la fórmula no es válida

2.2 Dada la siguiente interpretación, utilizando teoría semántica evalúe la siguiente fórmula $\forall x \exists y (Q(y) \Rightarrow P(x,y))$ (0.5 pt)

	Х	У	P(x,y)
	а	а	1
Ī	b	а	0
	а	b	1
	b	b	1

Х	Q(x)	
а	0	
b	1	

Х	У	P(x,y)	Q(y)	$Q(y) \rightarrow P(x,y)$	$\exists y (Q(y) \rightarrow P(x,y))$	$\forall x \exists y (Q(y) \rightarrow P(x,y))$
а	а	1	0	1	1	
а	b	1	1	1		1
b	а	0	0	1	1	
b	b	1	1	1		

Fórmula válida para esta interpretación