WELTORGANISATION FUR GEISTIGES EIGENTUM Internationales Büro

INTERNATIONALE ANMELDUNG VERÖFFENTLICHT NACH DEM VERTRAG ÜBER DIE INTERNATIONALE ZUSAMMENARBEIT AUF DEM GEBIET DES PATENTWESENS (PCT)

(51) Internationale Patentklassifikation 7:

C07C 321/28, 323/18, 323/20, C10M 105/72, 135/28, 135/30

(11) Internationale Veröffentlichungsnummer: WO 00/26184

A1

(43) Internationales Veröffentlichungsdatum:

11. Mai 2000 (11.05.00)

(21) Internationales Aktenzeichen:

PCT/DE99/03096

(22) Internationales Anmeldedatum:

22. September 1999 (22.09.99)

(30) Prioritätsdaten:

198 50 532.9

3. November 1998 (03.11.98) DE

(71) Anmelder (für alle Bestimmungsstaaten ausser US): NE-MATEL DR. RUDOLF EIDENSCHINK [DE/DE]; Galileo-Galilei-Strasse 10, D-55129 Mainz (DE).

(72) Erfinder: und

- (75) Erfinder/Anmelder (nur für US): KRETSCHMANN, Holger [DE/DE]; Rieslingweg 12, D-55452 Rümmelsheim (DE). EIDENSCHINK, Rudolf [DE/DE]; Galileo-Galilei-Strasse 28, D-55129 Mainz (DE).
- (74) Anwälte: WEBER, D. usw.; Gustav-Freytag-Strasse 25, D-65189 Wiesbaden (DE).

(81) Bestimmungsstaaten: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DK, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO Patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), eurasisches Patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), europäisches Patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI Patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht

Mit internationalem Recherchenbericht.

(54) Title: BISPHENYL THIOCOMPOUNDS

(54) Bezeichnung: BISPHENYLTHIO-VERBINDUNGEN

$$X_{3} \xrightarrow{X_{2}} X_{1} \xrightarrow{Y_{1}} Y_{2} \xrightarrow{Y_{2}} Y_{3}$$

$$X_{4} \xrightarrow{X_{5}} X_{5} \xrightarrow{Y_{5}} Y_{4}$$

$$(1)$$

(57) Abstract

The invention relates to bisphenyl thiocompounds of formula (I), wherein X1 to X5 independently represent H, Cl, F, OH, SH, R, -OR and -SR, wherein R is an organic radical with 1 to 18 C atoms, which can be an alkyl or alkenyl radical that can also contain -O-, -S- instead of a one to four non-adjacent CH2 groups and that can be substituted once or multiple times by -OH, -SH or halogen, an unsubstituted phenyl, cyclohexyl or cyclohexylmethyl radical or substituted by one or up to three alkyl groups with a total of 1 to 9 C atoms in which a CH2 group may be substituted by, provided that at least 3 of the radicals X1 to X5 arer; Y1 to Y5 independently have the meaning cited for X_1 to X_5 and Z represents an α , ω -alkylene group with 2 to 18 C atoms in which one to three CH₂ groups may be substituted by -O- or -S- and 1,4-cyclohexandimethyl group or a simple bond. The invention also relates to the use of said compounds as lubricants.

(57) Zusammenfassung

Die Erfindung betrifft Bisphenylthio-Verbindungen der Formel (I), worin X_1 bis X_5 jeweils unabhängig voneinander für H, Cl, F, OH, SH, R-CR und -SR steht, wobei R ein organischer Rest mit 1 bis 18 C-Atomen ist, der einen Alkyl- oder Alkenyl-Rest, der auch anstelle von einer oder bis zu vier nichtbenachbarten CH₂-Gruppen -O-, -S-, enthalten kann und auch ein- oder mehrfach durch -OH, -SH oder Halogen substituiert sein kann, einen unsubstituierten oder mit einer oder bis zu 3 Alkyl-Gruppen mit insgesamt 1 bis 9 C-Atomen, in denen jeweils eine CH₂-Gruppe durch -O- ersetzt sein kann, substituierten Phenyl-, Cyclohexyl- oder Cyclohexylmethyl-Rest bedeuter, mit der Maßgabe, daß mindestens 3 der Reste X_1 bis X_5 -SR sind; Y_1 bis Y_5 jeweils unabhängig voneinander die für X_1 bis X_5 gegebene Bedeutung haben; und Z eine α , ω -Alkylen-Gruppe mit 2 bis 18 C-Atomen, in denen auch eine bis 3 CH₂-Gruppen durch -O- oder -S- ersetzt sein konnen, eine 1,4-Cyclohexandimethyl-Gruppe der Formel (II) oder eine Einfachbindung bedeutet und ihre Verwendung als Schmierstoff.

LEDIGLICH ZUR INFORMATION

Codes zur Identifizierung von PCT-Vertragsstaaten auf den Kopfbögen der Schriften, die internationale Anmeldungen gemäss dem PCT veröffentlichen.

AL	Albanien	ES	Spanien	LS	Lesotho	SI	Slowenien
AM	Armenien	FI	Finnland	LT	Litauen	SK	Slowakei
ΑT	Österreich	FR	Frankreich	LU	Luxemburg	SN	Senegal
AU	Australien	GA	Gabun	LV	Lettland	SZ	Swasiland
AZ	Aserbaidschan	GB	Vereinigtes Königreich	MC	Monaco	TD	Tschad
BA	Bosnien-Herzegowina	GE	Georgien	MD	Republik Moldau	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagaskar	TJ	Tadschikistan
BE	Belgien	GN	Guinea	MK	Die ehemalige jugoslawische	TM	Turkmenistan
BF	Burkina Faso	GR	Griechenland		Republik Mazedonien	TR	Türkei
BG	Bulgarien	HU	Ungarn	ML	Mali	TT	Trinidad und Tobago
ВЈ	Benin	ΙE	Irland	MN	Mongolei	UA	Ukraine
BR	Brasilien	IL	Israel	MR	Mauretanien	UG	Uganda
BY	Belarus	IS	Island	MW	Malawi	US	Vereinigte Staaten vo
CA	Kanada	IT	Italien	MX	Mexiko		Amerika
CF	Zentralafrikanische Republik	JP	Japan	NE	Niger	UZ	Usbekistan
CG	Kongo	KE	Kenia	NL	Niederlande VN		Vietnam
CH	Schweiz	KG	Kirgisistan	NO	Norwegen	YU	Jugoslawien
CI	Côte d'Ivoire	KP	Demokratische Volksrepublik	NZ	Neuseeland	ZW	Zimbabwe
CM	Kamerun		Korea	PL	Polen		
CN	China	KR	Republik Korea	PT	Portugal		
CU	Kuba	ΚZ	Kasachstan	RO	Rumänien		
CZ	Tschechische Republik	LC	St. Lucia	RU	Russische Föderation		
DE	Deutschland	LI	Liechtenstein	SD	Sudan		
DK	Dänemark	LK	Sri Lanka	SE	Schweden		
EE	Estland	LR	Liberia	SG	Singapur		

WO 00/26184 PCT/DE99/03096

Bisphenylthio-Verbindungen

Beschreibung

Die Erfindung betrifft neue Bisphenylthio-Verbindungen und ihre Verwendung als Schmierstoff.

Zur Herabsetzung des Verschleißes und des Energieverlustes durch Reibung werden Maschinenlager und Getriebe bekanntlich mit einem Schmierstoff versehen, der während des Betriebes eine möglichst vollständige Trennung der gegeneinander bewegten Festkörper ermöglicht. Die Schmierstoffe können in Schmierflüssigkeiten und Schmierfette unterteilt werden. Als herkömmliche Schmierflüssigkeiten sind aus Erdöl gewonnene Mineralöle, synthetische Öle, wie Polyalkylenglykole, Ethylenpolysulfide, Esteröle oder Phosphorsäureester und Silikonöle in Gebrauch (Ullmann's Encyclopedia of Industrial Chemistry, 5. Aufl., Bd. A15, S.423ff, VCH Weinheim 1990). Bekannt sind auch mesogene Flüssigkeiten, d.h. thermotrop flüssigkristalline Phasen bildende Flüssigkeiten, die im Schmierspalt aus einer niederviskosen in eine hochviskose Phase, und umgekehrt, übergehen können (US 5,160,451). Allgemein nennt man eine Flüssigkeit mesogen, wenn sie unter bestimmten Bedingungen (Druck, Temperatur, Scherung, Oberflächenwechselwirkungen) eine oder mehrere flüssigkristalline Phasen bilden kann. Die Zusammenhänge zwischen chemischer Struktur und der Anordnung der Moleküle in solchen Phasen sowie dem Temperaturbereich, in welchem solche Phasen auftreten können, ist bekannt (z.B. H. Kelker, R. Hatz, Handbook of Liquid Crystals, Verlag Chemie, Weinheim 1980; C. Destrade et al., Mol. Cryst. Liq. Cryst. Vol. 106, 121 (1984)). Weitverbreitet ist die Schmierung mit Schmierfetten. Diese bestehen aus einer Schmierflüssigkeit und einem darin in feiner Form dispergierten Festkörper, dem sog. Eindicker, der auf die tribologischen Eigenschaften nur geringen Einfluß hat und in erster Linie ein Speicher für die Schmierflüssigkeit ist. Daneben können auch sehr niederviskose organische Stoffe, wie Kraftstoffe für Ottomotoren (Benzin) und Dieselmotoren (Dieselkraftstoff) als Schmierstoff aufgefaßt werden, was durch den bekannten Einfluß des Kraftstoffes auf den Verschleiß von Düsennadeln von Kraftstoffeinspritzdüsen deutlich wird. Auch Lösungen und Emulsionen von organischen Verbindungen in Wasser dienen als Schmierstoff, insbesondere als sog. Kühlschmierstoffe bei der spanabhebenden Verformung von metallenen Werkstücken.

A

Die in einer Reibpaarung - dies sind allgemein durch einen Schmierspalt getrennte, gegeneinander bewegliche feste Körper - auftretenden Energieverluste und Verschleißerscheinungen hängen in komplexer Weise vom Werkstoff des Maschinenelementes selbst, den Eigenschaften des Schmieröls, wie seiner Viskosität und seinen Wechselwirkungen mit dem Werkstoff, sowie von den Druck- und Geschwindigkeitsverhältnissen ab. Günstig sind geschlossene Tragfilme, wie sie etwa im hydrodynamischen Bereich von Gleitlagern oder im elastohydrodynamischen Bereich von Wälzlagern auftreten. Hohe Reibungsverluste, charakterisierbar durch den allgemein gebräuchlichen Reibungskoeffizienten, und die im allgemeinen mit ihnen korrelierenden Verschleißerscheinungen treten besonders in Gleitlagern bei sog. Grenz- und Mischreibungen auf (vgl. Ullmann's Encycl.).

Neben den Ethylenpolysulfiden sind u. a. als schwefelhaltige Schmierstoffe Hexakis-, Pentakis- und Tetrakis[alkylthio]benzole bekannt (DE 196 11 466). Letztere Verbindungen zeichnen sich durch besonders gute Schmiereigenschaften aus. Wegen ihrer Neigung, unter Normaldruck schon bei Temperaturen im Bereich von 0 bis –10 °C diskotische Phasen zu bilden, und zwar solche, die durch einen besonders hohen Ordnungsgrad der Moleküle und sehr hohe Viskositäten gekennzeichnet sind, sind diese Schmierstoffe nicht für Maschinenlager geeignet, die bei Temperaturen bis zu –40 °C durch einen Nachfließvorgang mit einem flüssigen Medium versorgt werden müssen.

Aufgabe der Erfindung war es, Schwefelverbindungen bereitzustellen, die die günstigen Reib- und Verschleißeigenschaften der o.g. Alkylthiobenzole aufweisen aber auch bei tiefen Temperaturen keinen Übergang in eine für die Fließfähigkeit ungünstige flüssigkristalline Phase zeigen.

Die Aufgabe wurde gelöst durch Bereitstellung der erfindungsmäßigen Verbindungen der allgemeinen Formel I

$$X_2$$
 X_1
 X_2
 X_3
 X_4
 X_5
 X_5
 X_5
 X_5
 X_5
 X_4
 X_5
 X_5

worin

d

X₁ bis X₅ jeweils unabhängig voneinander für H, Cl, F, OH, SH, R, -OR und –SR steht, wobei R ein organischer Rest mit 1 bis 18 C-Atomen ist, der einen Alkyl- oder Alkenyl-Rest, der auch anstelle von einer oder bis zu vier nichtbenachbarten CH₂-Gruppen -O-, -S-, enthalten kann und auch ein- oder mehrfach durch -OH, -SH oder Halogen substituiert sein kann, einen unsubstituierten oder mit einer oder bis zu 3 Alkyl-Gruppen mit insgesamt 1 bis 9 C-Atomen, in denen jeweils eine CH₂-Gruppe durch –O- ersetzt sein kann, substituierten Phenyl-Cyclohexyl- oder Cyclohexylmethyl-Rest bedeutet, mit der Maßgabe, daß mindestens 3 der Reste X₁ bis X₅ -SR sind,

- Y₁ bis Y₅ jeweils unabhängig voneinander die für X₁ bis X₅ gegebene Bedeutung haben und
- Z eine α, ω-Alkylen-Gruppe mit 2 bis 18 C-Atomen, in denen auch eine bis 3 CH₂-Gruppen durch -O- oder -S- ersetzt sein können, eine 1,4-Cyclohexandimethyl-Gruppe

$$--$$
CH $_2$ $--$ CH $_2$ $--$

oder eine Einfachbindung bedeutet.

Es wurde gefunden, daß die erfindungsmäßigen Verbindungen als Schmierstoffe geeignet sind, die besonders niedrige Reibungsverluste in Reibpaarungen ermöglichen und überraschenderweise bei tiefen Temperaturen fließfähig sind.

Die Moleküle der Verbindungen der Formel I enthalten zwei Phenylringe, die über eine, mindestens zwei S-Atome enthaltende Brücke verbunden sind. Insgesamt sind mindestens 8 S-Atome im Molekül enthalten, wobei jeder Phenyl-Ring mit mindestens 4 S-Atomen verknüpft ist. Bevorzugt sind Verbindungen, in denen beide Phenyl-Gruppen mit mindestens je 5 S-Atomen verknüpft sind, besonders bevorzugt solche, in denen beide Phenyl-Gruppen mit je 6 S-Atomen verknüpft sind.

Die Substituenten X_1 bis X_5 und jeweils unabhängig davon Y_1 bis Y_5 sind bevorzugterweise -SR, -H oder -SH. Der Rest R bezeichnet bevorzugterweise einen

Alkyl-Rest mit 1 bis 18 C-Atomen, in welchen auch eine oder bis zu 4 nichtbenachbarte CH₂-Gruppen durch -O-, -S- ersetzt sein können, und der durch -OH oder -SH substituiert sein kann. Besonders bevorzugt sind unverzweigte Alkylketten, ganz besonders solche mit 6 bis 12 C-Atomen.

Die Gruppe Z enthält bevorzugterweise 2 bis 10 C-Atome. Besonders bevorzugt sind hierbei unverzweigte α , ω -Alkylen-Gruppen. Ebenfalls bevorzugt ist die 1,4-Cyclohexandimethyl-Gruppe.

Die Formeln la bis If sind Beispiele von erfindungsmäßigen Verbindungen:

$$H_{17}C_8S$$
 SC_8H_{17} $C_8H_{17}S$ SH $S-(CH_2)_6-S$ $S-(CH_2)_8SH$ SC_8H_{17} SC_8H_{17} SC_8H_{17}

$$H_{21}C_{10}S$$
 CI SCH_3 CH_3 $H_{21}C_{10}S$ OH $H_{17}C_8S$ $SC_{10}H_{21}$ CH_3

Die Herstellung der Verbindungen der Formel I erfolgt nach allgemein bekannten Methoden der synthetischen Chemie, wie sie z.B. in R.C. Larock, Comprehensive Organic Transformations, VCH Publishers, Innc. (1989) und in Houben-Weyl, Methoden der Organischen Chemie, Georg-Thieme-Verlag, Stuttgart, beschrieben sind.

Verbindungen der Fomel I werden bevorzugterweise dadurch hergestellt, daß man zunächst in einem aprotischen Lösungsmittel, wie N-Methyl-2-pyrrolidinon, N,N-Dimethylformamid oder Tetramethylenglykoldimethylether aus einem Gemisch der Thiole RSH und HS-Z-SH durch Umsetzung mit Natriumamid oder Natriumhydrid die entsprechenden Natriumthiolate erzeugt, die dann durch Zugabe von Halogenbenzolen, wie Hexa-, Penta- oder Tetrachlorbenzol oder die entsprechenden Fluorverbindungen in einer Substitutionsreaktion bei Temperaturen zwischen 50 °C und 180 °C zu Gemischen von Verbindungen der Formel I umgesetzt werden.

Setzt man Gemische der Thiole RSH, wie etwa Gemische ausgewählt aus den Verbindungen Octadecylthiol, Hexadecylthiol, Tetradecylthiol, Dodecylthiol, Decylthiol, Nonylthiol, Octylthiol, Heptythiol, Hexylthiol, Pentylthiol, Butylthiol, Propylthiol, Ethylthiol und Methylthiol ein, so entstehen Gemische von zahlreichen Verbindungen der Formel I mit statistisch verteilter Anordnung der verschiedenen Substitutenten RS. Durch Auswahl der Alkylkettenlänge der eingesetzten Thiole und ihren Anteilen lassen sich Viskosität und Fließverhalten bei tiefen Temperaturen beeinflussen.

Wählt man bei den erwähnten Reaktionen einen Unterschuß an Metallthiolaten, so können Verbindungen der Formel I mit Halogen-Substituenten erhalten werden.

Die Einführung der -SZS- Brücke kann auch durch Umsetzung von Phenylthiolen mit Dihalogenalkanen in aprotischen Lösungsmitteln unter Zusatz von Basen erfolgen, z.B.

Bevorzugte Dihalogenverbindungen sind 1,4-Dibrombutan, 1,6-Dibromhexan, 1,8-Dibromoctan, 1,12-Dibromdodecan und 1,4-Bis[brommethyl]cylohexan. Durch bekannte Oxidationsreaktionen können aus den zuvor erwähnten Phenylthiolen substituierte Diphenyldisulfide der Formel 1 (Z ist die Einfachbindung) erhalten werden.

Nachdem die Substitutionsreaktion beendet und das Lösungsmittel abdestilliert ist, wird der Destillationsrückstand mit verdünnter Salzsäure versetzt. Die sich von der wäßrigen Phase separierende organische Phase enthält Verbindungen der Formel I neben Verbindungen der Formel II, in der die Reste X₁ bis X₅ die o.g. Bedeutungen haben. Der

$$X_6$$
 X_2
 X_3

zusätzliche Substituent X_6 kann eine dieser Bedeutungen haben oder auch -SZSH und im Falle, daß Z eine Alkylen-Gruppe ist, auch -SZCI, -SZBr sein. Daneben entsteht ein geringer Anteil von Verbindungen der Formel III, denen folgende allgemeine Strukturformel

$$X_2$$
 X_1
 X_3
 X_4
 X_5
 X_5
 X_4
 X_5
 X_5
 X_4
 X_5
 X_4
 X_5

zukommt. In Formel III kann der mittlere Phenylring durch die zwei Brücken-Gruppen in Ortho-, Meta- oder Para-Stellung substituiert sein. Die Gruppen U₁ bis U₄ haben die Bedeutung, wie sie oben unter X₁ bis X₅ angegeben sind.

Die Verbindungen der allgemeinen Formein II und III werden für den Verwendungszweck als Schmierstoff in der Regel nicht aus dem Gemisch entfernt. Vielmehr kann es als glückliche Fügung aufgefaßt werden, daß diese Stoffe ebenfalls günstige Schmiereigenschaften haben. Die Abtrennung der Verbindungen der Formel I kann aber durch chromatographische Methoden erfolgen.

Der erfindungsmäßige Schmierstoff enthält 1 bis 100, bevorzugt 1 bis 60 und sehr bevorzugt 5 bis 40 Masseprozent an Verbindungen der Formel I.

Die Bestimmung des Gehaltes an Verbindungen der Formel I in dem erfindungsmäßigen Schmierstoff erfolgt zweckmäßigerweise durch die allgemein bekannte Methode der Gel-Permeations-Chromatographie (GPC). Zur Identifikation der Verbindungen bedient man sich vorteilhafterweise der bekannten Feld-Desorptions-Massenspektroskopie (FD-MS). Man kann mit dieser massenspektroskopischen Methode allein eine Gehaltsbestimmung vornehmen, weil in den Spektren nur die Massen der Molekülionen angezeigt werden. In diesem Falle ist die Verwendung von Eichsubstanzen notwendig.

Es wurde gefunden, daß die erfindungsmäßigen Verbindungen der Formel I als Schmierstoff geeignet sind. Sie lassen gegenüber herkömmlichen Schmierstoffen in Getrieben und Lagern deutlich geringere Reibungsverluste zu.

Der von der Erfindung umfaßte Schmierstoff kann ausschließlich Verbindungen der Formel I enthalten. In der Regel sind aber Verbindungen der Formel II und III sowie

WO 00/26184 8 PCT/DE99/03096

weitere Komponenten enthalten. Solche Komponenten können u.a. Antioxidantien, wie Derivate des 2,6-Di-tert.-butyl-phenols, Hochdruckzusätze, wie Zink-dialkyl-dithiophosphate, Reibminderer, Lichtschutzmittel, Emulgatoren oder Demulgatoren sein. Es können aber auch organische Verbindungen zur Variation der Viskosität, wie Verbindungen, deren Moleküle mehrfach durch Alkyl-Gruppen substituierte Benzol- oder Naphthalinkeme enthalten, sein. Von der Erfindung umfaßt sind auch solche Schmierstoffe, deren Hauptanteil (bis zu 99 Masseprozent) aus herkömmlichen synthetischen oder mineralischen Ölen (s. Ullmann's Encycl.) bestehen. Handelt es sich bei dem erfindungsmäßigen Schmierstoff um ein Schmieröl, so liegen alle Komponenten in molekulardisperser Form in der homogenen Flüssigkeit vor.

Ölförmige Schmierstoffe können in allgemein bekannter Weise (vgl. Ullmann's Encycl.) durch Zusatz von nichtmolekulardispers vorliegenden Eindickern in ein Schmierfett überführt werden. Besonders geeignete Eindicker sind Lithium-12-hydroxystearat und Pulver aus Polytetrafluorethylen (z.B. Mikroteflonpulver 5µ, Dr. Tillwich GmbH, Horb). Innerhalb der vorliegenden Erfindungen werden auch zur Bildung von Gelen dienende Polymere, wie etwa sog. Seitenkettenpolymere (H. Ringsdorf et al., Angew. Chem. 101, 934 (1989) und dort zitierte Literatur), als auch anorganische feste Zusätze, wie Molybdändisulfid oder Graphit, zu den Eindickern gezählt. Solche Schmierfette, die eine oder mehrere Verbindungen der Formel I enthalten und die bis zu 35 % solcher Eindicker enthalten können, sind hier als erfindungsgemäße Schmierstoffe aufzufassen.

Von der Erfindung umfaßt sind auch sog. Kühlschmierstoffe, die Emulsionen von organischen Schmierölen in wäßrigen Lösungen sind. Als erfindungsmäßiger Schmierstoff wird der Anteil eines Kühlschmierstoffs aufgefaßt, der sich aus der Emulsion durch bekannte Methoden der Demulgierung, wie Ultrazentrifugation, Aussalzen oder nach Zusatz von Demulgatoren, als homogene nichtwäßrige Phase isolieren läßt.

Die erfindungsmäßigen Schmierstoffe zeichnen sich durch ein gutes Nachfließverhalten bei tiefen Temperaturen aus. Dieses ist vorteilhaft für den störungsfreien Betrieb von Maschinenlagern und insbesondere von Getrieben. Zur Beurteilung des Nachfließverhaltens von Schmierstoffen bei tiefen Temperaturen wird der sog. Channelling Test (Federal Test Method Std. No. 791C, USA) herangezogen: ca. 600 ml Schmierstoff werden in einem Behälter von 90 mm Durchmesser und 100 mm Höhe 18 bis 20 Stunden bei der gewünschten Prüftemperatur gekühlt. Sodann wird mit einem Stahlblechstreifen (230 x 20 mm, Dicke 3 mm) eine 20 mm breite Furche durch die Probe gezogen. Fließt

der Schmierstoff innerhalb von 10 Sekunden so zurück, daß der Boden des Behälters wieder bedeckt ist, ist eine für Getriebe ausreichende Fließfähigkeit des Schmierstoffes gegeben.

Die folgenden Beispiele sollen die Erfindung erläutem, ohne sie zu begrenzen.

Beispiel 1

100,8 g (4,20 mol) Natriumhydrid und 1,1 t Tetraethylenglykoldimethylether werden unter Stickstoff in einem 6 ¿ Dreihalskolben mit Tropftrichter und KPG-Rührer vorgelegt und bei Raumtemperatur stark gerührt. Ein Gemisch aus 50,0 g (0,33 mol) 1,6-Dimercaptohexan und 486,7 g (3,33 mol) n-Octylmercaptan wird zügig zugetropft. Die Temperatur steigt dabei auf ca. 50 °C an. Nach vollständiger Zugabe wird noch 20 min kräftig gerührt. Sodann werden 379,0 g (1,33 mol) Hexachlorbenzol portionsweise zugefügt, wobei die Innentemperatur weiter ansteigt und der weiße, zähe Brei sich langsam gelb färbt. Nach vollständiger Zugabe wird ein Ölbad untergeschoben und das Gemisch unter starkem Rühren für 3 h auf 130 °C erhitzt. In einem separaten Kolben mit Bodenablaß werden 121,2 g (5,05 mol) Natriumhydrid in 1,4 ℓ Tetraethylenglykoldimethylether vorgelegt und 700,0 g (4,78 mol) n-Octylmercaptan zügig unter starkem Rühren zugetropft. Nach vollständiger Zugabe wird noch 15 min gerührt und das 50 °C warme Gemisch in den 6 ℓ Kolben laufen gelassen. Die zähe Mischung wird nun weitere 24 h auf 130 °C erwärmt, wobei sich der weiße Niederschlag unter Gelbfärbung der Mischung löst. Das Lösungsmittel wird im Vakuum (Ölpumpe) entfernt (Kopftemperatur 115 °C), der Rückstand abkühlen gelassen und mit 1000 ml Petrolether sowie 1 ℓ verd. Salzsäure versetzt und gut durchgerührt. Die Phasen werden getrennt und die organische Phase noch dreimal mit jeweils 300 ml konzentrierter Kochsalzlösung und mehrfach mit Wasser ausgeschüttelt. Die organische Phase wird mit Natriumsulfat getrocknet, filtriert und einrotiert. Man erhält 1362 g Rohprodukt, das noch flüchtige Anteile enthält. Nach Abdestillieren derselben im Ölpumpenvakuum (0,1 mbar) verbleiben 1116 g eines braunen Öls.

Nach GPC-Chromatographie und FD-massenspektroskopischer Identifizierung (Isotopenmuster des Molpeaks entspricht der Summenformel C₉₈H₁₈₂S₁₂) ist der Anteil an 1,6-Bis{pentakis[octylthio]phenylthio}hexan hierin 15 %; der Hauptanteil ist Hexakis[octylthio]benzol.

Die Viskosität des Produktes ist bei 40 °C 86 mm²/s. In einem standardisierten Schwing-Reibungs-Verschleißtest (Broschüre SRV, Optimol Prüftechnik GmbH, München) mit einem auf einer Stahlscheibe (Durchmesser 24 mm) oszillierendem Stahlzylinder (Durchmesser 15 mm, Länge 22 mm; Last 50 N, Amplitude 1 mm, Frequenz 50 Hz, 80 °C, Dauer 10 h) zeigte dieses Öl deutlich geringere Reibungskoeffizienten als ein herkömmliches mineralisches Schmieröl gleicher Viskosität. Die Fließfähigkeit nach o.g. Channelling Test ist bei –25 °C gegeben. Reines Hexakis[octylthio]benzol ist unterhalb von –10 °C gemäß diesem Test nicht mehr fließfähig.

Beispiel 2

Analog zu Beispiel 1 wird aus 120,7 g (8,78 mol) Natriumhydrid, 2,5 ℓ Tetraethylengiykoldimethylether, 1240 g (8,38 mol) Octanthiol und 379,0 g (1,33 mol) Hexachlorbenzol eine Lösung von Hexakis[octylthio]benzol und überschüssigem Natriumoctylthiolat hergestellt. Durch 3tägiges Rühren unter Stickstoff bei 140 °C wird durch Dealkylierung (vgl. S. D. Pastor, E. T. Hessel., J. Org. Chem. 50, 4812 (1985)) ein Teil des Produktes in Pentakis[octylthio]thiobenzol umgewandelt. Nach Abdestillieren des Lösungsmittels wird in der in Beispiel 1 gezeigten Weise aufgearbeitet. Das entstandene Öl (1155 g) enthält nach FD-MS 32 % Pentakis[octylthiol]thiobenzol. Das Öl wird zusammen mit 50,0 g 1,6-Dibromhexan in 3 ℓ Aceton gelöst. Nach Zugabe von 230 g Kaliumcarbonat wird 24 h bei Raumtemperatur gerührt, die Suspension filtriert und das Filtrat eingedampft. Die Entfernung von flüchtigen Verunreinigungen erfolgt im Vakuum (0,1 mbar) bei 190 °C Sumpftemperatur. Das Öl (1170 g) hat einen Anteil von 30 % an

1,6-Bis{Pentakis[octylthio]phenylthio}hexan. Seine Viskosität bei 40 °C ist 171 mm²/s. Die Fließfähigkeit nach o.g. Channelling Test ist bei -40 °C gegeben. Aus 10 g des Öles können durch säulenchromatographische Trennung (Kieselgel/Petrolether-Toluol-Gemisch) 2,0 g des erfindungsmäßigen Bisphenylthio-Hexans als hochviskoses gelbes Öl erhalten werden.

Beispiel 3

Wie in Beispiel 2 beschrieben, wird ein Öl mit 32 Masseprozent Pentakis[octylthio]thiobenzol hergestellt. 120 g dieses Öles werden zusammen mit 5,3 g des bekannten trans-1,4 -Bis[bromethyl]cyclohexans in 300 ml Aceton gelöst und nach Zusatz von 23,0 g Kaliumcarbonat wie beschrieben umgesetzt und weiterverarbeitet. Aus dem Produkt kann trans-1,4-Bis{pentakis[octylthio](phenylthio)methyl}cyclohexan als hochviskoses gelbes Öl durch die beschriebene chromatographische Trennmethode isoliert werden.

Patentansprüche:

1. Verbindungen der allgemeinen Formel I

$$X_2$$
 X_1
 X_2
 X_3
 X_4
 X_5
 X_5
 X_4
 X_5
 X_5
 X_4
 X_5
 X_4
 X_5
 X_5
 X_4
 X_5
 X_5
 X_5
 X_5
 X_5
 X_6
 X_7
 X_8
 X_8
 X_8
 X_8
 X_8
 X_8
 X_9
 X_9

worin

- X₁ bis X₅ jeweils unabhängig voneinander für H, Cl, F, OH, SH, R, -OR und -SR steht, wobei R ein organischer Rest mit 1 bis 18 C-Atomen ist, der einen Alkyl- oder Alkenyl-Rest, der auch anstelle von einer oder bis zu vier nichtbenachbarten CH₂-Gruppen -O-, -S-, enthalten kann und auch ein- oder mehrfach durch -OH, -SH oder Halogen substituiert sein kann, einen unsubstituierten oder mit einer oder bis zu 3 Alkyl-Gruppen mit insgesamt 1 bis 9 C-Atomen, in denen jeweils eine CH₂-Gruppe durch -O- ersetzt sein kann, substituierten Phenyl-Cyclohexyl- oder Cyclohexylmethyl-Rest bedeutet, mit der Maßgabe, daß mindestens 3 der Reste X₁ bis X₅ -SR sind,
- Y₁ bis Y₅ jeweils unabhängig voneinander die für X₁ bis X₅ gegebene Bedeutung haben und
- Z eine α , ω -Alkylen-Gruppe mit 2 bis 18 C-Atomen, in denen auch eine bis 3 CH₂-Gruppen durch -O- oder -S- ersetzt sein können, eine 1,4-Cyclohexandimethyl-Gruppe

oder eine Einfachbindung bedeutet.

Verbindungen nach Anspruch 1 der allgemeinen Formel

worin Z eine α , ω - Alkylen-Gruppe mit 2 bis 18 C-Atomen, in denen 1 bis 3 CH₂-Gruppen durch -O- ersetzt sein können, bedeutet.

3. Verbindungen nach Ansprüchen 1 bis 2 der allgemeinen Formel

Verbindungen nach Anspruch 1 der allgemeinen Formel

- Verwendung einer Verbindung nach einem der vorangehenden Ansprüche als Schmierstoff.
- Schmierstoff enthaltend 1 bis 60 Masseprozent an Verbindungen aus Ansprüchen 1 bis 4.

INTERNATIONAL SEARCH REPORT

Inter. July Application No PCT/DE 99/03096

A. CLASS IPC 7	FICATION OF SUBJECT MATTER C07C321/28 C07C323/18 C07C32 C10M135/30	3/20 C10M105/72	C10M135/28
According to	o International Patent Classification (IPC) or to both national classi	ification and IPC	
	SEARCHED		
Minimum do	cumentation searched (classification system followed by classific ${\tt C07C-C10M}$	ation symbols)	
Documenta	tion searched other than minimum documentation to the extent the	it such documents are included in t	he fields searched
Electronic d	ata base consulted during the international search (name of data	base and, where practical, search t	erms used)
C. DOCUM	ENTS CONSIDERED TO BE RELEVANT		
Category °	Citation of document, with indication, where appropriate, of the	relevant passages	Relevant to claim No.
A	EP 0 798 366 A (NEMATEL ET AL) 1 October 1997 (1997-10-01) claims & DE 196 11 466 A cited in the application		1,5
Furth	er documents are listed in the continuation of box C.	X Patent family members	are listed in annex.
"A" documer conside "E" earlier do filling da "L" documer	egories of cited documents: If defining the general state of the art which is not red to be of particular relevance occument but published on or after the international ite in the published on priority claim(s) or scited to establish the publication date of another	cited to understand the princ invention "X" document of particular releval cannot be considered novel involve an inventive step wh	nflict with the application but ciple or theory underlying the nce; the claimed invention or cannot be considered to en the document is taken alone
citation "O" documei other m	or other special reason (as specified) It referring to an oral disclosure, use, exhibition or	document is combined with	nce; the claimed invention blve an inventive step when the one or more other such docu- ing obvious to a person skilled
later the	in the phority date claimed	"&" document member of the san	ne patent family
	February 2000	Date of mailing of the interna	tional search report
Name and ma	alling address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL - 2280 HV Rijswijk	Authorized officer	
	Tel. (+31-70) 340-2040, Tx. 31 651 epo ni, Fax: (+31-70) 340-3016	Van Amsterdam	n, L

INTERNATIONAL SEARCH REPORT

information on patent family members

Inter nal Application No
PCT/DE 99/03096

	information on patent family me		PCT/DE 99/03096		
Patent document cited in search report	Publication date	Patent family Primember(s)		Publication date	
EP 798366	A 01-10-1997	DE 19611 US 5866	466 A 522 A	02-10-1997 02-02-1999	
				,	
			•		

Form PCT/ISA/210 (patent family annex) (July 1992)

INTERNATIONALER RECHERCHENBERICHT

Inter: nates Aktenzeichen PCT/DE 99/03096

A. KLASS IPK 7	ifizierung des anmeldungsgegenstandes C07C321/28 C07C323/18 C07C323 C10M135/30	/20 C10M105/72 C10	M135/28
Nach der In	sternationalen Patentklassitikation (IPK) oder nach der nationalen Kl	assifikation und der IPK	
	RCHIERTE GEBIETE		
IPK 7	nter Mindestprüfstoff (Klassifikationssystem und Klassifikationssymt C07C C10M		
	rte aber nicht zum Mindestprüfstoff gehörende Veröffentlichungen, s		
	er internationalen Recherche konsultierte elektronische Datenbank (Name der Datenbank und evtl. verwendet	e Suchbegriffe)
	SENTLICH ANGESEHENE UNTERLAGEN		···
Kategorie°	Bezeichnung der Veröffentlichung, soweit erforderlich unter Angal	be der in Betracht kommenden Teile	Betr. Anspruch Nr.
A	EP 0 798 366 A (NEMATEL ET AL) 1. Oktober 1997 (1997-10-01) Ansprüche & DE 196 11 466 A in der Anmeldung erwähnt		1,5
Weite entne	ere Veröffentlichungen sind der Fortsetzung von Feld C zu ehmen	Siehe Anhang Patentfamilie	
° Besondere	nhmen Kategorien von angegebenen Veröffentlichungen :	"T" Spätere Veröffentlichung, die nach der	m internationalen Anmeldedatum
aber ni	ttlichung, die den allgemeinen Stand der Technik definiert, cht als besonders bedeutsam anzusehen ist	oder dem Prioritätsdatum veröffentlich Anmeldung nicht kollidiert, sondern n Erfindung zugrundeliegenden Prinzipi	ur zum Verständnis des der
"E" älteres C Anmelo	Ookument, das jedoch erst am oder nach dem internationalen Jedatum veröffentlicht worden ist	Theorie angegeben ist "X" Veröffentlichung von besonderer Bede	
scheine	tlichung, die geeignet ist, einen Prioritätsanspruch zweifelhaft er- en zu lassen, oder durch die das Veröffentlichungsdatum einer	kann allein aufgrund dieser Veröffentl	ichung nicht als neu oder auf
andere	n im Recherchenbericht genannten Veröffentlichung belegt werden er die aus einem anderen besonderen Grund angegeben ist (wie	"Y" Veröffentlichung von besonderer Bede	utung; die beanspruchte Erfindung
ausgen "O" Verötter	unn) utlichung, die sich auf eine mündliche Offenbarung.	kann nicht als auf erfinderischer Tätig werden, wenn die Veröffentlichung mi Veröffentlichungen dieser Kategorie is	t einer oder mehreren anderen
eine Be "P" Veröffen	enutzung, eine Ausstellung oder andere Maßnahmen bezieht tlichung, die vor dem internationalen Anmeldedatum, aber nach	diese Verbindung für einen Fachmani	n nahellegend ist
dem be	anspruchten Prioritätsdatum veröffentlicht worden ist bschlusses der internationalen Recherche	"&" Veröffentlichung, die Mitglied derselbe Absendedatum des internationalen Re	
10). Februar 2000	25/02/2000	
Name und Po	ostanschrift der Internationalen Recherchenbehörde Europäisches Patentamt, P.B. 5818 Patentiaan 2	Bevotlmächtigter Bediensteter	
	NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo ni,		
	Fax: (+31-70) 340-3016	Van Amsterdam, L	

INTERNATIONALER RECHERCHENBERICHT

Angaben zu Veröffentlichungen, die zur selben Patentfamilie genoren

Interi lales Aktenzeichen
PCT/DE 99/03096

1 1		lie zur selben Patentfamilie geno				99/03096
୍ୟୁଲ Recherchenbericht angeführtes Patentdokument		Datum der Veröffentlichung	M . F	Mitglied(er) der Patentfamilie		Datum der Veröffentlichung
EP 798366	Α	01-10-1997	DE US	196114 58665	66 A 22 A	02-10-1997 02-02-1999
						·
						·
		•				