CS 97SI: INTRODUCTION TO PROGRAMMING CONTESTS

Today's Lecture: Dynamic Programming

- What is DP?
- □ 1-dimensional DP
- 2-dimensional DP
- Interval DP
- □ Tree DP
- Subset DP

What is DP?

 Wikipedia definition: "a method for solving complex problems by breaking them down into simpler subproblems"

- This definition will make sense once we see some examples
 - Actually, we'll only see problem solving examples today

Steps for solving DP problems

- □ 1. Define subproblems
- 2. Write down the recurrence that relates subproblems
- □ 3. Recognize and solve the base cases

Each step is very important!

- $lue{}$ Problem: given n, find the number of different ways to write n as the sum of 1, 3, 4
- \square Example: for n=5, the answer is 6

```
5 = 1+1+1+1+1
= 1+1+3
= 1+3+1
= 3+1+1
= 1+4
= 4+1
```

- Define subproblems
 - Let D_n be the number of ways to write n as the sum of 1, 3, 4
- Find the recurrence
 - Consider one possible solution $n = x_1 + x_2 + \cdots + x_m$
 - lacksquare If x_m is 1, the rest of the terms must sum to n-1
 - lacksquare Thus, the number of sums that end with $x_m=1$ is equal to D_{n-1}
 - \blacksquare Take other cases into account ($x_m = 3$, $x_m = 4$)

□ Find the recurrence

$$D_n = D_{n-1} + D_{n-3} + D_{n-4}$$

Solve the base cases

- $D_0 = 1$
- $\square D_n = 0$ for all negative n
- \blacksquare Alternatively, can set: $D_0=D_1=D_2=1$, $D_3=2$

We're basically done!

Implementation

```
D[0] = D[1] = D[2] = 1; D[3] = 2;
for(i = 4; i <= n; i++)
D[i] = D[i-1] + D[i-3] + D[i-4];
```

- □ Too short that it's almost disappointing ⊕
- □ Extension: solving this for huge *n*
 - Recall the matrix form of Fibonacci numbers

POJ 2663: Tri Tiling

- \square Given n, find the number of ways to fill a $3 \times n$ board with dominoes
- \square Here is one possible solution for n=12

POJ 2663: Tri Tiling

- Define subproblems
 - lacksquare Define D_n as the number of ways to tile a 3 imes n board

- □ Find recurrence
 - □ Uuuhhhhh...

Troll Tiling

Defining Subproblems

- Obviously, the previous definition didn't work very well
 - \square D_n 's don't relate in simple terms

What if we introduce more subproblems?

Defining Subproblems

Finding Recurrences

Finding Recurrences

- $lue{}$ Consider different ways to fill the nth column
 - And see what the remaining shape is
- □ Exercise:
 - \blacksquare Finding recurrences for A_n , B_n , C_n
 - lacksquare Understanding why E_n is always zero

- □ Extension: solving the problem for $n \times m$ grids, where n is small ($n \leq 10$)
 - How many subproblems should we consider?

- \square Problem: given two strings x and y, find the longest common subsequence (LCS) and print its length
- Example:
 - $\square x: ABCBDAB$
 - □ y: BDCABC
 - "BCAB" is the longest subsequence found in both sequences, so the answer is 4

Solving the LCS Problem

- Define subproblems
 - lacksquare Let $D_{i,j}$ be the length of the LCS of $x_{1...i}$ and $y_{1...j}$
- Find the recurrence
 - \blacksquare If $x_i = y_i$, they both contribute to the LCS
 - $D_{i,j} = D_{i-1,j-1} + 1$
 - $lue{}$ Otherwise, either x_i or y_j does **not** contribute to the LCS, so one can be dropped
 - $D_{i,j} = \max \left(D_{i-1,j}, D_{i,j-1} \right)$
- \square Find and solve the base cases: $D_{i,0}=D_{0,i}=0$

Implementation

```
for(i = 0; i <= n; i++) D[i][0] = 0;
for(j = 0; j <= m; j++) D[0][j] = 0;
for(i = 1; i <= n; i++) {
  for(j = 1; j <= m; j++) {
    if(x[i] == y[j]) D[i][j] = D[i-1][j-1] + 1;
    else D[i][j] = max(D[i-1][j], D[i][j-1]);
}</pre>
```

□ Again, very short ☺

Interval DP Example

- □ Problem: given a string $x = x_{1...n}$, find the minimum number of characters that need to be inserted to make it a palindrome
- Example:
 - x: Ab3bd
 - Can get "dAb3bAd" or "Adb3bdA" by inserting 2 characters (one 'd', one 'A')

Interval DP Example

- Define subproblems
 - Let $D_{i,j}$ be the minimum number of characters that need to be inserted to make $x_{i...j}$ into a palindrome
- Find the recurrence
 - $lue{}$ Consider an optimal solution $y_{1...k}$ for $x_{i...j}$
 - Either $y_1 = x_i$ or $y_k = x_j$ (why?)
 - \mathbf{D} $y_{2...k-1}$ is then an optimal solution for $x_{i+1...j}$ or $x_{i...j-1}$ or $x_{i+1...j-1}$
 - Last case possible only if $y_1 = y_k = x_i = x_j$

Interval DP Example

Find the recurrence

$$D_{i,j} = 1 + \min (D_{i+1,j}, D_{i,j-1}), \text{ if } x_i \neq x_j$$

$$D_{i,j} = D_{i+1,j-1}$$
, if $x_i = x_j$

Find and solve the base cases

$$D_{i,i} = D_{i,i-1} = 0$$
 for all *i*

□ The entries of D must be filled in increasing order of j-i

Implementation

- Note how we use an additional variable t to fill the table in correct order
- And yes, for loops can work with multiple variables

An Alternate Solution

- \square Reverse x to get x^R
- □ The answer is n-L, where L is the length of the LCS of x and x^R

Think about why this works

Tree DP Example

- Problem: given a tree, color nodes black as many as possible without coloring two adjacent nodes
- Subproblems:
 - lacksquare First, we arbitrarily decide the root node r
 - $lue{v}$: the optimal solution for a subtree having v as the root, where we color v black
 - $lue{v}_v$: the optimal solution for a subtree having v as the root, where we don't color v
 - The answer is max (B_r, W_r)

Tree DP Example

- □ Find the recurrence
 - $lue{}$ Crucial observation: once v's color is determined, its subtrees can be solved independently
 - $lue{}$ If v is colored, its children must not be colored
 - $\blacksquare B_v = 1 + \sum_{u:v' \text{s child}} W_u$
 - lacktriangleq If v is not colored, its children can have any color
 - $W_v = \sum_{u:v' \text{ s child}} \max(B_u, W_u)$

Base cases: leaf nodes

Subset DP Example

 $lue{}$ Problem: given a weighted graph with n nodes, find the shortest path that visits every node exactly once (Traveling Salesman Problem)

- Wait, isn't this an NP-hard problem?
 - lacksquare Yes, but we can solve it in $O(n^2 2^n)$ time
 - lacksquare Note: brute force algorithm takes O(n!) time

Subset DP Example

- Define subproblems
 - $\square D_{S,v}$: the length of the optimal path that visits every node in S exactly once and ends at v
 - lacktriangle There are approximately $n2^n$ subproblems
 - lacksquare The answer is $\min_{v \in V} D_{V,v}$, where V is the set of nodes
- Let's solve the base cases first
 - $lue{}$ For each node v, $D_{\{v\},v}=0$

Subset DP Example

- Find the recurrence
 - $lue{}$ Consider a path that visits all nodes in S exactly once and ends at v
 - The path must have come from some node u in $S \{v\}$ right before arriving v
 - lacksquare And that subpath has to be the optimal one that covers $S-\{v\}$

Working with Subsets

- lacktriangle We work with all subsets of V, so it's good to have a nice representation of them
- Number the nodes from 0 and use bitmask!
 - Use an integer to represent a subset
 - \blacksquare If the *i*th (least significant) digit is 1, *i* is in the subset
 - \blacksquare If the *i*th digit is 0, *i* is not in the subset
 - \blacksquare e.g. 010011 in binary represent a set $\{0, 1, 4\}$

Using Bitmasks

- \square Union of two sets x and y: $x \mid y$
- □ Intersection: x & y
- Symmetric difference: x ^ y
- \square Singleton set $\{i\}: 1 << i$
- \square Membership test: x & (1 << i) == 0

Can easily work with a small set and its subsets

Conclusion

- Wikipedia definition: "a method for solving complex problems by breaking them down into simpler subproblems"
 - Does this make sense now?

- Remember the three steps!
 - Defining subproblems
 - Finding recurrences
 - Solving the base cases