Билеты Высшая Математика - 3

Тимур Адиатуллин | telegram, github

Содержание

1	Определение решения ОДУ. Эквивалентные дифференциальные уравнения. Задача Коши для ОДУ п-го порядка.	2
2	Общий интеграл ОДУ 1-го порядка.	3
3	Уравнение с разделяющимися переменными. Линейное уравнение 1-го порядка. Уравнение в полных дифференциалах.	4
4	Формулировка теоремы о существовании и единственности решения задачи Коши для нормального ДУ п-го порядка.	7
5	Линейные дифференциальные уравнения n-го порядка (ЛДУ). Теорема о существовании и единственности решения задачи Коши.	8
6	Линейно зависимые и независимые системы функций. Определение фундаментальной системы решений (ФСР) однородного ЛДУ. Теорема о свойствах ФСР.	9
7	Теорема о существовании ФСР однородного ЛДУ.	10
8	Определение общего решения ЛДУ п-го порядка. Теорема о связи ФСР и общего решения однородного ЛДУ.	11
9	Комплекснозначные функции действительной переменной. Лемма о комплекснозначном решении однородного ЛДУ.	12
10	Теорема о построении ФСР однородного ЛДУ с постоянными коэффициентами, если известны корни его характеристиче- кого многочлена.	13
11	Теорема о построении ФСР однородного ЛДУ с вещественными постоянными коэффициентами, состоящей только из вещественнозначных функций.	14
12	Теорема о структуре общего решения неоднородного ЛДУ.	15
13	Метод вариации произвольных постоянных (метод Лагранжа) нахождения решения неоднородного ЛДУ.	16
14	Линейные нормальные системы дифференциальных уравнений (СЛДУ). Запись в векторной форме. Теорема о существовании и единственности решения задачи Коши. Определение общего решения.	17
15	Общее решение однородной системы ЛДУ в случае, когда количество линейно- независимых собственных векторов матрицы системы совпадает с порядком системы.	18
16	Общее решение однородной системы ЛДУ в случае, когда количество линейно- независимых собственных векторов матрицы системы меньше порядка системы.	19
17	Понятие числового ряда. Асимптотическая формула для частичной суммы гармонического ряда.	20
18	Теоремы о сходящихся рядах (возможность заключать элементы в скобки; сходимость ряда с элементами - линейными комбинациями элементов сходящихся рядов).	21
19	Остаток ряда. Связь между сходимостью ряда и его остатка. Необходимое условие сходимости ряда.	22
20	Первый и второй признаки сравнения рядов с неотрицательными членами.	23
21	Признак Даламбера.	24
22	Признак Коши.	25
23	Интегральный признак сходимости рядов. Сходимость обобщенного гармонического ряда.	26
24	Абсолютно сходящиеся ряды.	27
25	Признак Дирихле.	28
26	Признак Абеля. Признак сходимости знакочередующихся рядов. Оценка остатка знакочередующегося ряда.	29
27	Теорема о произведении абсолютно сходящихся рядов.	30
28	Степенные ряды. Теорема о существовании радиуса сходимости степенного ряда (с леммой). Теорема о непрерывности суммы степенного ряда на концах интервала сходимости.	31
29	Теорема о дифференцировании и интегрировании суммы степенного ряда. Бесконечная дифференцируемость суммы степенного ряда. Связь коэффициентов степенного ряда с производными его суммы.	32
30	Ряд Тейлора функции в точке. Пример: показать, что ряд Тейлора функции (посмотреть в списке и написать)	33
31	Разложение в степенные ряды элементарных функций действительной переменной.	34
32	Предел последовательности с комплексными членами. Сходимость последовательностей действительных и мнимых частей.	35
33	Сумма ряда с комплексными членами, ее связь с суммой рядов действительных и мнимых частей. Связь сходимости и абсолютной сходимости.	36
34	Степенной ряд с комплексными членами, его круг сходимости.	37
35	Функция e^z и далее переписать из списка	38
36	Функция $cos(z), sin(z)$ дальше переписать из списка	39
37	Тригонометрический ряд Фурье. Формулы для его коэффициентов. Свойства ряда Фурье, вытекающие из полноты тригонометрической системы функций.	40
38	Теорема о сходимости тригонометрического ряда Фурье кусочно-дифференцируемой на $[-\pi,\pi]$ функции. Теорема о сходимости тригонометрического ряда Фурье 2π -периодической кусочно-дифференцируемой функции.	41
	Замечание о 21-периодических функциях.	42
	Определение площади плоской фигуры. Необходимое и достаточное условие измеримости плоской фигуры. Следствие.	43
	Площадь кривой. Следствие.	44
	Основные свойства площади.	45
	Определение двойного интеграла.	46
44	Сведение двойного интеграла к повторному.	47

1 Определение решения ОДУ. Эквивалентные дифференциальные уравнения. Задача Коши для ОДУ п-го порядка.

Определение 1.1

Уравнение

$$F(x, y, y', y'', \dots, y^{(n)}) = 0,$$

где F — известная функция n+2 переменных, x — независимая переменная, а y — функция, которую нужно найти, называется обыкновенным дифференциальным уравнением (ОДУ) n-го порядка.

Функция y(x) называется **решением** уравнения.

Определение 1.2

Пусть $F(T) = F(t_1, t_2, \dots, t_{n+2})$ определена и непрерывна на множестве $\Omega \subset \mathbb{R}^{n+2}$. Функция y(x), определённая на некотором промежутке (a, b), называется **решением ОДУ** (1), если выполняются условия:

- 1. $\exists y, ..., y^{(n)}$ на (a, b),
- 2. $(x, y, y', \dots, y^{(n)}) \in \Omega \quad \forall x \in (a, b),$
- 3. $F(x, y, y', \dots, y^{(n)}) = 0 \quad \forall x \in (a, b).$

Пример

- 1. $y' = -xy^2$ (здесь $F(t, t_2, t_3) = t_1t_2^2 + t_3$),
- 2. $y=\frac{2}{x^2}$ $(x\in (-\infty,0))$ и $y=\frac{2}{x^2}$ $(x\in (0,+\infty))$ разные решения.

Определение 1.3

График решения ОДУ называется интегральной кривой этого уравнения.

Определение 1.4

Два алгебраических уравнения $F_1(T)=0$ и $F_2(T)=0$ называются эквивалентными на множестве $\Omega\subset R^{n+2}$, если множества их решений совпадают.

Соответственно, два ДУ называются эквивалентными на множестве Ω , если на Ω эквивалентны соответствующие им алгебраические уравнения.

Множества решений эквивалентных ДУ совпадают.

Определение 1.5

Задача Коши для ДУ n-го порядка:

Требуется найти решение y(x) ДУ (1), удовлетворяющее начальным условиям

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}, \quad y^{(n)} = y_n,$$

где $(x_0, y_0, y_1, \dots, y_{n-1})$ — заданные значения.

В частности, для ДУ 1-го порядка F(x, y, y') = 0 имеем одно условие $y(x_0) = y_0$. То есть, требуется найти интегральную кривую, проходящую через точку (x_0, y_0) .

Задача Коши может иметь или не иметь решение.

Общий интеграл ОДУ 1-го порядка.

Определение 2.1

Рассмотрим ДУ 1-го порядка F(x,y,y')=0 (2), где $F(t_1,t_2,t_3),\ \frac{\partial F}{\partial t_2},\ \frac{\partial F}{\partial t_3},$ непрерывны в области $\Omega\subset R^3.$ Общим интегралом уравнения (2) называется равенство $\Phi(x,y,c)=0$ (3), где $\Phi(t_1,t_2,t_3)$ непрерывно дифференцируемо в

некоторой области $G \subset R_3$ и обладает свойством: если y(x) непрерывно, дифференцировать равенство (3) по x, то

(при этом получим $\frac{\partial \Phi}{\partial x} + \frac{\partial \Phi}{\partial y} \cdot y'(x) = 0$ (4)), и исключить сиз уравнений (3) и (4) , то получим ДУ, эквивалентное исходному уравнению (2)

Уравнение (2, общий интеграл) называют также дифференциальным уравнением функций, заданных (возможно, неявно) уравнением (3).

Замечание

Не всегда общий интеграл (3) содержит все решения ДУ (2).

Теорема 2.1

Добавим в определение 2.1 требование, чтобы равенство (3) было разрешимо относительно параметра c, то есть, имело вид

$$c = \varphi(x, y) \tag{5}$$

 $(\varphi$ — непрерывно дифференцируемая в некоторой области \tilde{G})

Тогда, если y(x), определенная на (a,b), и $(x,y(x)) \in \tilde{G}$, $(x,y,y') \in \Omega \forall x \in (a,b)$ — непрерывно дифференцируемая функция, удовлетворяющая уравнению (2), при некотором значении параметра c, то она является решением ДУ (2).

И обратно, любое решение ДУ (2), определенное на (a, b), удовлетворяет равенству (5) при некотором значении c (то есть, в общем интеграле (5) содержатся все решения ДУ).

Определение 2.2

ДУ 1-го порядка, разрешенное относительно производной, называется нормальным:

$$y' = f(x, y) \tag{6}$$

Теорема 2.2

Существование и единственность решения задачи Коши для нормального ДУ 1-го порядка (6).

Пусть f, f_y непрерывны в области $G \subset R^2$. Тогда $\forall (x_0, y_0) \in G \exists !$ решение y(x) уравнения (6), определенное на некотором промежутке $[x_0-h,\ x_0+h]$ и удовлетворяющее начальному условию $y(x_0)=y_0$ (hcвое для каждой точки) $(x_0,\ y_0$ — любая точка G).

То есть, через каждую точку G проходит ровно одна интегральная кривая. (без доказательства)

3 Уравнение с разделяющимися переменными. Линейное уравнение 1-го порядка. Уравнение в полных дифференциалах.

Некоторые классы нормальных ДУ 1-го порядка.

Рассмотрим нормальное ДУ первого порядка:

$$y' = f(x, y) \tag{6}$$

Другая записи:

$$M(x, y) dx + N(x, y) dy = 0$$

Этот вид объединяет два уравнения:

$$y' = -\frac{M(x,y)}{N(x,y)} \quad \text{if} \quad x' = -\frac{N(x,y)}{M(x,y)}$$

Напоминание: по определению производной

$$\frac{dy}{dx} = y'(x) dx \quad \Rightarrow \quad y' = \frac{dy}{dx}$$

І. Уравнение с разделяющимися переменными

Пусть дана функция g(x)f(y), где g(x)f(y) непрерывна на $(a,b)\times(c,d)=\Omega$.

1. Рассмотрим область $\Omega^* \subset \Omega$, в которой $g_2(y) \neq 0$.

$$g_1(x)dx - \left(\frac{1}{g_2(y)}\right)dy = 0 \Leftrightarrow d(G(x) - F(y)) = 0 \Leftrightarrow G(x) - F(y) = \text{const}$$
 (всюду в области $\Omega^* \subset \Omega$, общий интеграл)

(Здесь G(y) — некоторая фиксированная первообразная функции $g_1(y)$; Здесь F(y) — некоторая фиксированная первообразная функции $1/g_2(y)$.)

Если $g_2(y)$ непрерывно дифференцируема, уравнение удовлетворяет теореме о существовании и единственности решения задачи Коши. Следовательно, через каждую точку Ω^* проходит ровно одна интегральная кривая. Также выполнены требования теоремы 2.1. Следовательно, равенство G(x)-F(y)= const содержит все решения ДУ в области Ω^* .

- 2. Если $\exists c : g_2(c^*) = 0$, то $y(x) = c^*$ решение ДУ.
- 3. Другая запись ДУ с разделяющимися переменными:

$$M_1(x)M_2(y) dx + N_1(x)N_2(y) dy = 0 \quad \Leftrightarrow \quad \begin{cases} y' = -\frac{M_1(x)M_2(y)}{N_1(x)N_2(y)} \\ x' = -\frac{N_1(x)N_2(y)}{M_1(x)M_2(y)} \end{cases}$$

В этом случае, если $\exists c^* : N_1(c^*) = 0$, то $x(y) = c^*$ также будет решением ДУ.

Пример.

$$y' = \frac{xy}{x+1}$$

Ответ: $y = \frac{ce^x}{x+1}$ — общий интеграл (содержит все решения).

Замечания к примеру.

- а. Если бы пример был записан в виде xydx (x+1) dy = 0, то добавилось бы решение x(y) = -1.
- b. Найдём решение, удовлетворяющее начальным условиям y(0) = -2.

Отметим, что в каждой из полуплоскостей x > -1, x < -1 выполнены требования теоремы о существовании и единственности решения задачи Коши. Следовательно, через каждую точку полуплоскости проходит ровно одна интегральная кривая.

Обозначим начальные условия: $-2=c \to c=-2 \to y=\frac{-2e^x}{x+1}$ — особое решение, определенное на $(-1;+\infty)$.

II. Линейное ДУ 1-го порядка

y' + p(x)y = g(x), (7), где p(x) и g(x) непрерывны на (a, b).

$$y' = -p(x)y + g(x).$$

$$f(x,y) = -p(x)y + g(x), \quad \frac{\partial f}{\partial y} = -p(x)$$

непрерывны в области $G = (a, b) \times R$. Следовательно, выполнены требования теоремы о существовании и единственности решения задачи Коши. Следовательно, через каждую точку области G проходит ровно одна интегральная кривая.

Следовательно, g(x) = 0 и f(x, y) = -p(x)y.

1. Решим однородное уравнение y' + p(x)y = 0.

Это уравнение с разделяющимися переменными.

$$\frac{dy}{y} = -p(x)dx; \quad \ln|y| = \Phi(x) + c_1$$

(где $\Phi(x)$ - некоторая фиксированная первообразная функции -p(x) на $(a,b),c_1$ - произвольная постоянная);

$$|y| = e^{\Phi(x)} \cdot c_2$$
 (где $c_2 = e^{c_1} > 0$); $y = c_3 \cdot e^{\Phi(x)}$ (где $c_3 \neq 0$);

потеряли решение y(x)=0. Следовательно, общий интеграл $y=c\cdot e^{\Phi(x)}$ (c произвольной постоянной); также называется общим решением однородного линейного уравнения; содержит все решения (так как разрешим относительно параметра c).

2. Будем искать решение неоднородного уравнения в виде $y = e^{F(x)}c(x)$, где c(x) — неизвестная функция.

Подставим в уравнение (7):

Так как
$$y'=e^{\Phi(x)}c(x)\Phi'(x)+e^{\Phi(x)}c'(x)=-p(x)e^{\Phi(x)}c(x)+e^{\Phi(x)}c'(x)$$
, то

$$-p(x)e^{\Phi(x)}c(x) + e^{F(x)}c'(x) + p(x)e^{\Phi(x)}c(x) = g(x); \quad c'(x) = e^{-\Phi(x)}g(x);$$

$$c(x) = F(x) + c^*$$

(где F(x) — некоторая фиксированная первообразная функция $e^{-\Phi(x)}g(x)$ на $(a,b),c^*$ - произвольная постоянная)

Следовательно, $y(x) = e^{\Phi(x)} F(x) + e^{\Phi(x)} c^*$ — общий интеграл, также называется общим решением неоднородного линейного уравнения; содержит все решения (так как разрешим относительно параметра c^*).

Отметим, что первое слагаемое $e^{\Phi(x)}F(x)$ — это частное решение неоднородного уравнения, второе слагаемое $e^{\Phi(x)}c^*$ — это общее решение соответствующего однородного уравнения.

III. Уравнение в полных дифференциалах

$$P(x,y) dx + Q(x,y) dy = 0;$$
 $P(x,y), Q(x,y)$ непрерывны в области $D \subset \mathbb{R}^2$.

Это уравнение называется уравнением в полных дифференциалах, если существует непрерывно дифференцируемая в D функция u(x,y): $du=P\,dx+Q\,dy$. в D

В этом случае равенство u(x,y)=c является общим интегралом уравнения, так как

$$\frac{\partial u}{\partial x} \, dx + \frac{\partial u}{\partial y} \, dy = 0$$

$$P\,dx + Q\,dy = 0.$$

Общий интеграл u(x,y) = c содержит все решения (так как разрешен относительно параметра c).

Определение 2.3

- 1. Множество $D \subset \mathbb{R}^2$ называется связным, если любые две точки из него можно соединить непрерывной кривой, целиком лежащей в D.
- 2. Связное множество $D \subset \mathbb{R}^2$ называется односвязным, если любую замкнутую непрерывную кривую в D, как бы она ни была взята, можно стянуть в точку непрерывным образом, не выходя из D.
- 3. Открытое связное множество называется областью.

Лемма 2.1

Пусть $D\subset R^2$ — односвязная область, и в D существуют и непрерывны $\frac{\partial Q}{\partial x}$ и $\frac{\partial P}{\partial y}$. Тогда, для того, чтобы уравнение $P(x,y)\,dx+Q(x,y)\,dy=0$ было уравнением в полных дифференциалах, необходимо и достаточно, чтобы

$$\frac{\partial Q}{\partial x} = \frac{\partial P}{\partial y} \quad {\rm B} \quad D.$$

4 Формулировка теоремы о существовании и единственности решения задачи Коши для нормального ДУ n-го порядка.

Определение 3.1

 Π У n-го порядка, разрешенное относительно старшей производной, называется нормальным.

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)})$$

Теорема 3.1 — Существование и единственность решения задачи Коши для нормального ДУ n-го порядка

Пусть f непрерывна и имеет непрерывные частные производные по 2-й, 3-й, ..., n+1-й переменным в окрестности некоторой точки $(x_0,y_0,y_1,\ldots,y_{n-1})$. Тогда существует интервал $[x_0-h,x_0+h]$ и определённая на нём n раз дифференцируемая функция y(x), которая удовлетворяет уравнению и начальным условиям:

$$y^{(n)} = f(x, y, y', \dots, y^{(n-1)}), \quad y(x_0) = y_0, \quad y'(x_0) = y_1, \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

Такая функция единственна (без доказательства).

5 Линейные дифференциальные уравнения п-го порядка (ЛДУ). Теорема о существовании и единственности решения задачи Коши.

Определение 3.2

ДУ вида

$$a_n(x)y^{(n)} + a_{n-1}(x)y^{(n-1)} + \ldots + a_1(x)y' + a_0(x)y = g(x)$$

называется ЛДУ n-го порядка (функции $a_n(x), a_{n-1}(x), \ldots, a_1(x), a_0(x)$, которые называются коэффициентами уравнения, функция g(x), которая называется правой частью уравнения, непрерывны на промежутке (a,b), и $a_n(x) \neq 0$ на (a,b)). Разделим обе части уравнения на $a_n(x)$, получим

$$y^{(n)} + p_{n-1}(x)y^{(n-1)} + \dots + p_1(x)y' + p_0(x)y = q(x)$$
 (3.1).

Теорема 3.2

Пусть $p_{n-1}(x), \ldots, p_1(x), p_0(x)$ и q(x) непрерывны на (a,b). Тогда для любого набора значений $(x_0, y_0, \ldots, y_{n-1})$, где $x_0 \in (a,b), (y_0, \ldots, y_{n-1}) \in \mathbb{R}^n$, существует единственное решение y(x) ЛДУ (3.1), удовлетворяющее начальным условиям:

$$y(x_0) = y_0, \quad y'(x_0) = y_1, \quad \dots, \quad y^{(n-1)}(x_0) = y_{n-1}.$$

Замечание

Можно показать, что для ЛДУ каждое решение определено на всём промежутке (a, b) (без доказательства).

6	Линейно зависимые и независимые системы функций. Определение фундаментальной системы решений (ФСР) однородного ЛДУ. Теорема о свойствах ФСР.

7	Теорема о существовании ФСР однородного ЛДУ.

8	Определение общего решения ЛДУ n-го порядка. Теорема о связи ФСР и общего решения однородного ЛДУ.

9	Комплекснозначные функции действительной переменной. Лемма о комплекснозначном решении однородного ЛДУ.

10	Теорема о построении ФСР однородного ЛДУ с постоянными коэффициентами, если известны корни его характеристичекого многочлена.

11	Теорема о построении ФСР однородного ЛДУ с вещественными постоянными коэффициентами, состоящей только из вещественнозначных функций.

12	Теорема о структуре общего решения неоднородного ЛДУ.

13	Метод вариации произвольных постоянных (метод Лагранжа) нахождения решения неоднородного ЛДУ.

14	Линейные нормальные системы дифференциальных уравнений (СЛДУ). Запись в векторной форме. Теорема о существовании и единственности решения задачи Коши. Определение общего решения.

15	Общее решение однородной системы ЛДУ в случае, когда количество линейнонезависимых собственных векторов матрицы системы совпадает с порядком системы.

16	Общее решение однородной системы ЛДУ в случае, когда количество линейнонезависимых собственных векторов матрицы системы меньше порядка системы.

17	Понятие числового ряда. Асимптотическая формула для частичной суммы гармонического ряда.

19	Остаток ряда. Связь между сходимостью ряда и его остатка. Необходимое условие сходимости ряда.

20	Первый и второй признаки сравнения рядов с неотрицательными членами.

•
•

23	Интегральный признак сходимости рядов. Сходимость обобщенного гармонического ряда.

24	Абсолютно сходящиеся ряды.

Признак Дири	ихле.
	Признак Дири

26	Признак Абеля. Признак сходимости знакочередующихся рядов. Оценка остатка знакочередующегося ряда.

27	Теорема о произведении абсолютно сходящихся рядов.

29	Теорема о дифференцировании и интегрировании суммы степенного ряда. Бесконечная дифференцируемость суммы степенного ряда. Связь коэффициентов степенного ряда с производными его суммы.

30	Ряд Тейлора функции в точке. Пример: показать, что ряд Тейлора функции (посмотреть в списке и написать)

31	Разложение в менной.	з степенные	ряды	элементарных	функций	действитель	ной пере-

32	Предел последовательности с комплексными членами. Сходимость последовательностей действительных и мнимых частей.

33	Сумма ряда с комплексными членами, ее связь с суммой рядов действительных и мнимых частей. Связь сходимости и абсолютной сходимости.

34	Степенной ряд с комплексными членами, его круг сходимости.

37	Тригонометрический ряд Фурье. Формулы для его коэффициентов. Свойства ряда Фурье, вытекающие из полноты тригонометрической системы функций.

39 Замечание о 21-периодических функциях.

40	Определение площади плоской фигуры. Необходимое и достаточно измеримости плоской фигуры. Следствие.	е условие

41	Площадь кривой. Следствие.

42	Основные свойства площади.

43	Определение двойного интеграла.

44	Сведение двойного интеграла к повторному.