Equazioni cartesiane di un sottospazio vettoriale

Esercizio 1. Nello spazio vettoriale $\mathbf{V} = \mathbb{R}^4$ si consideri il sottospazio vettoriale \mathbf{W} generato dai vettori

$$\mathbf{w}_1 = (1, 0, -1, 0)$$
 $\mathbf{w}_2 = (1, 1, 1, 1)$ $\mathbf{w}_3 = (3, 1, -1, 1)$

Determinare le equazioni cartesiane di W rispetto alla base canonica di V.

Primo svolgimento. Innanzitutto troviamo una base di W. Scrivo i vettori \mathbf{w}_1 , \mathbf{w}_2 , e \mathbf{w}_3 come colonne di una matrice M:

$$M = \left(\begin{array}{rrr} 1 & 1 & 3 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \\ 0 & 1 & 1 \end{array}\right)$$

Abbiamo

$$\begin{vmatrix} 1 & 1 \\ 0 & 1 \end{vmatrix} = 1 \neq 0, \qquad \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ -1 & 1 & -1 \end{vmatrix} = \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 2 & 2 \end{vmatrix} = 0, \qquad \begin{vmatrix} 1 & 1 & 3 \\ 0 & 1 & 1 \\ 0 & 1 & 1 \end{vmatrix} = 0,$$

quindi, per il principio dei minori orlati il rango della matrice M è 2 e le prime due colonne di M sono linearmente indipendenti, dunque $\dim(\mathbf{W}) = 2$ e \mathbf{w}_1 , \mathbf{w}_2 formano una base di \mathbf{W} . Il generico vettore di \mathbf{V} di componenti X_1 , X_2 , X_3 , X_4 rispetto alla base canonica appartiene al sottospazio vettoriale \mathbf{W} se e soltanto se risulta combinazione lineare di \mathbf{w}_1 , \mathbf{w}_2 . Ciò equivale a imporre che il rango della matrice

$$\left(\begin{array}{cccc}
1 & 1 & X_1 \\
0 & 1 & X_2 \\
-1 & 1 & X_3 \\
0 & 1 & X_4
\end{array}\right)$$

sia uguale a 2. Questa condizione si verifica se e soltanto se gli orlati del minore

$$\left|\begin{array}{cc}1&1\\0&1\end{array}\right|$$

sono uguali a zero. Questi orlati sono

Uguagliando a zero lo sviluppo di Laplace di ciascun determinante rispetto alla terza colonna otteniamo le equazioni

$$X_1 \left| \begin{array}{cc|c} 0 & 1 \\ -1 & 1 \end{array} \right| - X_2 \left| \begin{array}{cc|c} 1 & 1 \\ -1 & 1 \end{array} \right| + X_3 \left| \begin{array}{cc|c} 1 & 1 \\ 0 & 1 \end{array} \right| = 0, \qquad \qquad X_1 \left| \begin{array}{cc|c} 0 & 1 \\ 0 & 1 \end{array} \right| - X_2 \left| \begin{array}{cc|c} 1 & 1 \\ 0 & 1 \end{array} \right| + X_4 \left| \begin{array}{cc|c} 1 & 1 \\ 0 & 1 \end{array} \right| = 0,$$

vale a dire, il sistema omogeneo di equazioni lineari

$$\begin{cases} X_1 & -2X_2 & +X_3 & = & 0 \\ & -X_2 & & +X_4 & = & 0 \end{cases}$$

Secondo svolgimento. Dopo aver verificato come nel precedente svolgimento che i vettori \mathbf{w}_1 , \mathbf{w}_2 formano una base di \mathbf{W} , completiamo $\{\mathbf{w}_1, \mathbf{w}_2\}$ a una base di tutto $\mathbf{V} = \mathbb{R}^4$. Lo possiamo fare

aggiungendovi due vettori opportunamente scelti da una base di V, per esempio la base canonica $\{e_1, e_2, e_3, e_4\}$. Il determinante della matrice

$$\left(\begin{array}{ccccc}
1 & 1 & 0 & 0 \\
0 & 1 & 0 & 0 \\
-1 & 1 & 1 & 0 \\
0 & 1 & 0 & 1
\end{array}\right)$$

è uguale a

$$\left|\begin{array}{cc} 1 & 1 \\ 0 & 1 \end{array}\right| = 1 \neq 0,$$

pertanto $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{e}_3, \mathbf{e}_4\}$ è una base di **V**. Si consideri l'operatore lineare $F: \mathbf{V} \to \mathbf{V}$ definito ponendo $F(\mathbf{w}_1) = \mathbf{0}$, $F(\mathbf{w}_2) = \mathbf{0}$, $F(\mathbf{e}_3) = \mathbf{e}_3$, $F(\mathbf{e}_4) = \mathbf{e}_4$.

Abbiamo $Im(F) = \langle F(\mathbf{w}_1), F(\mathbf{w}_2), F(\mathbf{e}_3), F(\mathbf{e}_4) \rangle = \langle \mathbf{0}, \mathbf{0}, \mathbf{e}_3, \mathbf{e}_4 \rangle = \langle \mathbf{e}_3, \mathbf{e}_4 \rangle$, quindi $\dim(Im(F)) = 2$. Dalla formula dimensionale per le funzioni lineari segue $\dim(N(F)) = 2$, da cui, essendo $\mathbf{W} \subseteq N(F)$, otteniamo $\mathbf{W} = N(F)$. Se A è la matrice associata all'operatore lineare F rispetto alla base canonica possiamo concludere che il nucleo di F (cioè \mathbf{W}) è proprio l'insieme dei vettori le cui componenti X_1, X_2, X_3, X_4 rispetto alla base canonica formano le soluzioni del sistema omogeneo di equazioni lineari $AX = \mathbf{0}$.

Si tratta quindi di calcolare A. Abbiamo $\mathbf{e}_1 = \mathbf{w}_1 + \mathbf{e}_3$, $\mathbf{e}_2 = -\mathbf{w}_1 + \mathbf{w}_2 - 2\mathbf{e}_3 - \mathbf{e}_4$. Calcoliamo

$$F(\mathbf{e}_1) = F(\mathbf{w}_1) + F(\mathbf{e}_3) = \mathbf{0} + \mathbf{e}_3 = \mathbf{e}_3,$$

$$F(\mathbf{e}_2) = -F(\mathbf{w}_1) + F(\mathbf{w}_2) - 2F(\mathbf{e}_3) - F(\mathbf{e}_4) = -2\mathbf{e}_3 - \mathbf{e}_4,$$

$$F(\mathbf{e}_3) = \mathbf{e}_3,$$

$$F(\mathbf{e}_4) = \mathbf{e}_4.$$

Otteniamo quindi

$$A = \left(\begin{array}{cccc} 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 1 & -2 & 1 & 0 \\ 0 & -1 & 0 & 1 \end{array}\right)$$

e un sistema di equazioni cartesiane per W risulta essere il seguente

$$\begin{cases} X_1 & -2X_2 & +X_3 & = & 0 \\ & -X_2 & & +X_4 & = & 0 \end{cases}$$

che è proprio uguale a quello trovato con il primo metodo (in generale i due metodi daranno luogo a sistemi equivalenti).