

Desvendando Deep Learning com PyTorch

Unip Santos - Outubro/2020

Daniel Petrini

Introdução

Nesta palestra vamos recapitular os conceitos básicos sobre aprendizado de máquina

Conhecer um pouco mais do PyTorch. Esta que é uma biblioteca de pesquisa, desenvolvimento e produção voltada a redes neurais profundas, poderosa, fácil de usar e que está crescendo recentemente.

Vamos usar exemplos práticos com Jupyter Notebooks.

Bio

Formado em Engenharia Elétrica Poli, experiência com desenvolvimento e gestão de software, mestrado em Informática, UFAM - Manaus e aluno regular de doutorado no PEE-Poli.

No momento atuando nas áreas:

Veículos Autônomos Agrícolas

Classificação de mamografias

Problemas

Processamento de imagens

Detectar objetos

Separar objetos (Segmentar)

https://mc.ai/a-guide-fo-the-object-detection-exercise-using-yolo-model/

https://www.cityscapes-dataset.com

Processamento de Imagem

Aprendizado de Máquina

Abordagens

- -Encontrar retas
- -Encontrar círculos, contornos
- -Encontrar padrões, texturas
- -Separar cores, espaço de cores
- -Conectividade de componentes

- . . .

Aprendizado de máquina

É o estudo de algoritmos de computador que se aprimoram automaticamente com a experiência. [1]

É visto como um subconjunto da inteligência artificial.

Algoritmos de aprendizado de máquina constroem um **modelo matemático** baseado em **dados de treinamento**, a fim de **fazer previsões sem ser explicitamente programado para isso** [2]

[1] http://www.cs.cmu.edu/~tom/mlbook.html

[2] Arthur Samuel, 1959

Aprendizado de máquina (fluxo)

- KNN
- SVM Support **Vector Machine**
- Decision Trees
- Random Forest
- Redes Neurais
- ...Dezenas

= OK

= Não!

Uso em novas imagens!

Modelo

O processo de desenvolvedor!

Classificação com Machine Learning

Como aprender features?

-Hierarquia de elementos nos objetos:

- Representação mínima dos objetos:

Pedaços de objetos

Objetos

Redes Neurais - Neurônio - Perceptron

Redes Neurais - Neurônio - Perceptron

Redes Neurais Artificiais

Camada de entrada

Camada Escondida 1 Camada Escondida 2 Camada de Saída

Rede Neural aprende representações internas - "Features intermediárias"

Aprender Features com Hierarquia de Extratores

Aprender Features com Hierarquia de extratores

Aprender Features com Hierarquia de extratores

Aprender Features com Hierarquia de extratores

Complementando, as rede Deep Learning...

Para serem treinadas (colocar os valores certos nos grafos da rede neural) usam o algoritmo "**Back Propagation**", onde a cada iteração calcula o quanto distante estão do resultado esperado e propagam o resultado para dentro atualizando os pesos.

Usam redes Convolucionais!

Sumário

Algoritmos que aprendem com dados. Resolvem problemas sem ter sido programados para a tarefa

Prática

Jupyter Notebooks

Aplicação Web Open Source que permite criar e compartilhar documentos com código fonte que executa na página, equações, gráficos, visualizações e muito mais.

Rodar código Python ao vivo numa página web

Instalação

https://jupyter.org/install

pip

If you use pip, you can Install It with:

```
pip install notebook
```

Congratulations, you have installed Jupyter Notebook! To run the notebook, run the following command at the Terminal (Mac/Linux) or Command Prompt (Windows):

```
jupyter notebook
```

PyTorch

Lançado pela Facebook Al Research (FAIR)

Objetivo era plataforma intuitiva baseada em álgebra linear

Muito similar ao Numpy

Suporte total Python

Baseado em Tensores

PyTorch

Tensores são representações computacionais de dados matemático. É um container que armazena dados em N-dimensões

Vetores, matrizes (2D, 3D \rightarrow Imagens escala de cinza, cor), 4D

RGB (100, 100, 3)

Cinza (100, 100, 1)

Prática PyTorch

https://bit.ly/3jUHPJQ

Classificador Simples

Cats & Dogs

Rede similar "Lenet"

Treinamento

Obrigado!

Email: <u>dpetrini@usp.br</u>

Twitter: @dpetrini

Código:

http://www.github.com//dpetrini/lectures/unip