Reto: Arranque del proyecto

Modelación de sistemas multiagentes con gráficas computacionales

Omar Jiménez Armendáriz A01732097

Francisco Rocha Juárez A01730560

Alejandro Alfonso Ubeto Yañez A01734977

1	Conformación del equipo	2
	1.1 Fortalezas:	2
	1.2 Áreas de oportunidad:	2
	1.3 Expectativas del bloque:	2
	1.4 Lista de lo que esperamos lograr:	3
	1.5 Compromisos para lograrlo:	3
	1.6 Herramientas colaborativas	4
2	Descripción del reto a desarrollar:	5
	2.1 Identificación de los agentes involucrados:	5
	2.2 Diagrama de protocolos de interacción:	7
	2.3 Plan de trabajo y aprendizaje adquirido:	8

1.- Conformación del equipo

1.1.- Fortalezas:

- Omar: lógica computacional, pensamiento basado en problemas, aprendizaje rápido.
 Compromiso y constancia.
- Francisco: Organización, buena lógica de programación, aprendizaje autodidacta y mucha dedicación.
- Alejandro: Organización, trabajo en equipo, bastos conocimientos de Python y Git, buena disposición.

1.2.- Áreas de oportunidad:

- Omar: habilidades de comunicación, falta de experiencia con diferentes tecnologías, manejo de estrés.
- Francisco: Python P00.
- Alejandro: Creatividad, Java y modelado en 3D.

1.3.- Expectativas del bloque:

Omar: De este bloque espero aprender más sobre la modelación basada en agentes, sus aplicaciones en la vida real, su conexión con la inteligencia artificial y tener un acercamiento a la creación de simulaciones inteligentes. También aprender sobre los principios fundamentales de las gráficas computacionales para comprender mejor las tecnologías más avanzadas y finalmente familiarizarme con la nube y comprender la terminología utilizada para moverme entre plataformas como IBM Cloud y de otras empresas.

Francisco: Aprender sobre los agentes para posteriormente incursionar en el campo de la inteligencia artificial. Lograr hacer un modelo del tránsito vehicular ocupando WebGL, Python, Three.js, JavaScript y las librerías adecuadas, además de implementarlo en IBM Cloud.

Alejandro: Dominar las bases del lenguaje Java al nivel de poder transmitir estos conocimientos a otra personas, tener un primer contacto exitoso con la IBM cloud, crear un

sistema multiagentes de interacción compleja como producto final y desarrollar un poco de aplicaciones web usando frameworks de Python como Flask.

1.4.- Lista de lo que esperamos lograr:

- Comprender cómo es que los agentes interactúan y poder asignarles comportamientos condicionados a las variables del modelo.
- Realizar buenos modelos tridimensionales de la ciudad en la que los vehículos van a transitar.
- Aprender las bases del software en contenedores y poder montar el código en un servidor remoto en la nube, en este caso IBM Cloud.
- Entregar todas las actividades de cada uno de los módulos del bloque en tiempo y forma.
- Aprender a trabajar más con las herramientas de colaboración como lo es BitBucket y GitHub.
- Llevarnos una base sólida de conocimientos de cómo es que funciona la graficación/modelación computacional, además de conocer cómo es que funcionan internamente las operaciones de rotación, traslación y escalamiento.
- Mejorar nuestras habilidades al programar en Python y la librería "mesa".

1.5.- Compromisos para lograrlo:

- 1. Reunirnos como equipo a programar las actividades, para todos llevarnos la misma carga de conocimiento y aprendizaje.
- 2. Estudiar por cuenta propia los contenidos vistos en clase.
- 3. Preguntar todas nuestras dudas a los profesores.
- 4. Asistir a todas las clases.
- 5. Hacer lluvias de ideas dentro del equipo para intercambiar ideas e implementar la mejor solución.
- 6. Hacer las actividades con tiempo por si surgen dudas haya tiempo de solucionarlas.
- 7. Estudiar la documentación de las diferentes tecnologías que serán aplicadas en el proyecto.

1.6.- Herramientas colaborativas

Accede al <u>repositorio en BitBucket</u> del proyecto y también a su <u>versión de GitHub</u>. Estos son repositorios que recopilan los contenidos de la unidad de formación y evidencias de la misma. En ambos se ha realizado la invitación a los docentes a cargo del bloque para que sean capaces de revisar el progreso del equipo en cualquier momento.

2.- Descripción del reto a desarrollar:

Este bloque trae consigo una situación problema a resolver que plantea mejorar la problemática movilidad urbana que hay en México reduciendo la congestión vehicular a través de **procesos de planeación y diseño** de infraestructura <u>utilizando herramientas de modelación</u> que simulen gráficamente el tráfico vehicular.

Para esto se construirá un sistema multiagentes desarrollado con el lenguaje de programación *Python*, herramientas de despliegue de aplicaciones en la nube como la *IBM Cloud* y librerías gráficas de simulación de agentes cómo *WebGL*, mismo que deberá tener las siguientes características:

- Control sobre la asignación de espacios de estacionamiento disponibles en una zona de la ciudad, evitando así que los autos estén dando vueltas para encontrar estacionamiento.
- Toma de decisión que opte por las rutas menos congestionadas. Quizás no las más cortas, pero sí las rutas con menos tráfico, favoreciendo la movilidad, reduciendo el consumo y generando menos contaminación.
- Coordinación de los tiempos de los semáforos para así reducir la congestión de un cruce. Incluyendo la posibilidad de indicar en qué momento un vehículo va a cruzar una intersección y que de esta forma, el semáforo pueda determinar el momento y duración de la luz verde.

2.1.- Identificación de los agentes involucrados:

- 1. **Vehículos**: representa a todos los automóviles de la simulación. Realizan su movimiento según la dirección de la carretera y el semáforo.
- Semáforos: representa a los semáforos de tránsito. Cada cierto tiempo (por ejemplo, cada 5 segundos) cambian de color. En el color verde permiten el tránsito por un carril. En rojo lo detienen.

 Carretera: representa una unidad de carretera. Tiene una dirección que puede ser adelante, atrás, izquierda, derecha o detenerse. Dicta a dónde se puede mover un automóvil.

Imagen 1.- Diagrama de clase presentando los distintos agentes involucrados

2.2.- Diagrama de protocolos de interacción:

Imagen 2.- Diagrama de protocolos de interacción entre los agentes del sistema

2.3.- Plan de trabajo y aprendizaje adquirido:

Tareas en general					
Tarea	Responsables	Fecha	Tiempo	Aprendizaje	
HW 1.1	Ale Ubeto, Franciso Rocha, Omar Jiménez	anciso Rocha, de trabajo de graficación simple en :		Principios básicos de Java y de graficación simple en 2D de figuras sencillas.	
HW 1.2	Ale Ubeto, Franciso Rocha, Omar Jiménez	4/11/2022	medio día de trabajo	Trabajo con librerías gráficas de Java. Manejo de colores y funcionamiento de una gradiente.	
HW 1.3	Ale Ubeto, Franciso Rocha, Omar Jiménez	11/11/202 2	2 días de trabajo	Graficación de un cuerpo en 2D. Transformaciones en 2 dimensiones (traslación, rotación, escalado). Control por teclado.	
Modelo de propagación de incendios.	Ale Ubeto, Franciso Rocha, Omar Jiménez	14/11/202 2	1 día y medio de trabajo	[PENDIENTE DE ENTREGAR]	

Actividades en general					
Actividad	Responsables	Fecha	Tiempo	Aprendizaje	
Quiz 4: Pacman	Ale Ubeto, Franciso Rocha, Omar Jiménez	ocha, medio de Comportam enez trabajo agentes. Im de pathfindi		Fundamentos de Mesa. Comportamiento básico de agentes. Implementación de pathfinding y movimiento aleatorio.	
M1. Actividad	Ale Ubeto, Franciso Rocha, Omar Jiménez	11/11/2022	2 días de trabajo	Control de parámetros de una simulación. Captura y graficación de datos. Generación de elementos aleatoriamente.	

Revisiones y presentación final				
Revisión	Responsables	Fecha	Tiempo	Aprendizaje
1: Arranque (6%)	Ale Ubeto, Franciso Rocha, Omar Jiménez	11/11/2022	1 día de trabajo	Las fortalezas y áreas de oportunidad de cada integrante del equipo. El primer boceto de la simulación de tránsito, conceptualizar la lógica del problema y conocer el trabajo pendiente.
2 (10%)				
3 (10%)				
Presentación final (10%)				

Actividad Integrado	Actividad Integradora (20%)				
Responsables	Fecha	Tiempo	Aprendizaje		