

SRM Institute of Science and Technology Kattankulathur

DEPARTMENT OF MEATHEMATICS

18MAB201T- TRANSFORMS AND BOUNDARY VALUE PROBLEMS

UNIT - I Partial Differential Equations Tutorial Sheet - 1

	Sl. No.	Questions	Answer
		Part - A	
1	Form the PDE	by eliminating arbitrary constants 'a' and 'b' from $(x-a)^2 + (x-b)^2 + z^2 = c^2$	$(p^2 + q^2 + 1)z^2 = c^2$
2	Form the PDE by eliminating arbitrary constants 'a' and 'b' from $log(az-1) = x + ay + b$		p = q(z - p)
3	Eliminate the arbitrary function 'f' from $z = f(x^2 + y^2)$		py = qx
4	Solve $\sqrt{p} + \sqrt{q} = 1$		$z = ax + (1 - \sqrt{a})^2 y + c$
5	Solve the equation $pq + p + q = 0$		$z = ax - \frac{a}{a+1}y + c$
	1	Part - B	,
6	Form the PDE b	y eliminating 'f' from $f(x^2 + y^2 + z^2, xyz) = 0$	$\begin{vmatrix} x(y^2 - z^2)p + y(z^2 - x^2)q \\ = z(x^2 - y^2) \end{vmatrix}$
N	Form the PDE	by eliminating 'f' from $z = xy + f(x^2 + y^2 + z^2)$	$p(y+xz)-q(x+yz)$ $= y^2 - x^2$
8	Form the PDE b	y eliminating 'f' from $xyz = f(x + y + z)$	x(y-z)p + y(z-x)q $= z(x-y)$
3	Form the PDE $z = f(x+ct) + ct$	by eliminating 'f' and 'g' from $+ g(x-ct)$	$q^2 = c^2 p^2$
10	Obtain the PDE $\frac{x^2}{a^2} + \frac{y^2}{b^2} + \frac{z^2}{c^2} =$	E by eliminating 'a', 'b' and 'c' from 1	zs + pq = 0