CS 611: Theory of Computation

Hongmin Li

Department of Computer Science California State University, East Bay

Operations on Languages

- Recall: A language is a set of strings
- We can consider new languages derived from operations on given languages
 - e.g., $L_1 \cup L_2$, $L_1 \cap L_2$, $\frac{1}{2}L$, ...
- A simple but powerful collection of operations:
 - Union, Concatenation and Kleene Closure

Concatenation of Languages

Definition

Given languages L_1 and L_2 , we define their concatenation to be the language $L_1 \circ L_2 = \{xy \mid x \in L_1, y \in L_2\}$

Example

- $L_1 = \{\text{hello}\}\ \text{and}\ L_2 = \{\text{world}\}\ \text{then}\ L_1 \circ L_2 = \{\text{helloworld}\}\$
- $L_1 = \{00, 10\}; L_2 = \{0, 1\}.$ $L_1 \circ L_2 = \{000, 001, 100, 101\}$
- L_1 = set of strings ending in 0; L_2 = set of strings beginning with 01. $L_1 \circ L_2$ = set of strings containing 001 as a substring
- $L \circ \{\epsilon\} = L$. $L \circ \emptyset = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

Definition

$$L^n = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

Definition

$$L^n = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

• If
$$L = \{0, 1\}$$
, then $L^0 =$

Definition

$$L^n = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

• If
$$L=\{0,1\}$$
, then $L^0=\{\epsilon\}$

Definition

$$L^n = \begin{cases} \{\epsilon\} & \text{if } n = 0 \\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

• If
$$L = \{0, 1\}$$
, then $L^0 = \{\epsilon\}$, $L^2 =$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

• If
$$L = \{0, 1\}$$
, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.

Definition

$$L^n = \begin{cases} \{\epsilon\} & \text{if } n = 0 \\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- Ø⁰ =

Definition

$$L^n = \begin{cases} \{\epsilon\} & \text{if } n = 0 \\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\bullet \ \emptyset^0 = \{\epsilon\}.$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i =$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$.

Definition

$$L^n = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases}$$

$$L^* = \bigcup_{i>0} L^i$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i>0} L^{i}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i>0} L^{i}$$

• If
$$L = \{0, 1\}$$
, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \{0, 1\}$

•
$$\emptyset^0 = \{\epsilon\}$$
. For $i > 0$, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i>0} L^{i}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of } all \text{ binary strings (including } \epsilon)$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$.

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of } all \text{ binary strings (including } \epsilon)$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$. $\emptyset^* =$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0 \\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of } all \text{ binary strings (including } \epsilon)$.
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$. $\emptyset^* = \{\epsilon\}$

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0\\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i \geq 0} L^{i}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of }$ all binary strings (including ϵ).
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$. $\emptyset^* = \{\epsilon\}$
- Ø is one of only two languages whose Kleene closure is finite. Which is the other?

Definition

$$L^{n} = \begin{cases} \{\epsilon\} & \text{if } n = 0 \\ L^{n-1} \circ L & \text{otherwise} \end{cases} \qquad L^{*} = \bigcup_{i>0} L^{i}$$

- If $L = \{0, 1\}$, then $L^0 = \{\epsilon\}$, $L^2 = \{00, 01, 10, 11\}$. $L^* = \text{set of }$ all binary strings (including ϵ).
- $\emptyset^0 = \{\epsilon\}$. For i > 0, $\emptyset^i = \emptyset$. $\emptyset^* = \{\epsilon\}$
- \emptyset is one of only two languages whose Kleene closure is finite. Which is the other? $\{\epsilon\}^* = \{\epsilon\}$.

Definition and Identities Regular Expressions and Regular Languag Regular Expressions to NFA

Regular Expressions

A Simple Programming Language

Stephen Cole Kleene

A regular expression is a formula for representing a (complex) language in terms of "elementary" languages combined using the three operations union, concatenation and Kleene closure.

Regular Expressions

Formal Inductive Definition

Syntax and Semantics

A regular expression over an alphabet Σ is of one of the following forms:

$$\begin{array}{ccc} & \text{Syntax} & \text{Semantics} \\ \emptyset & & L(\emptyset) = \{\} \\ \text{Basis} & \epsilon & L(\epsilon) = \{\epsilon\} \\ & a & L(a) = \{a\} \end{array}$$

$$\begin{array}{cccc} (R_1 \cup R_2) & L((R_1 \cup R_2)) = L(R_1) \cup L(R_2) \\ (R_1 \circ R_2) & L((R_1 \circ R_2)) = L(R_1) \circ L(R_2) \\ (R_1^*) & L((R_1^*)) = L(R_1)^* \end{array}$$

Notational Conventions

Removing the brackets

To avoid cluttering of parenthesis, we adopt the following conventions.

- Precedence: $*, \circ, \cup$. For example, $R \cup S^* \circ T$ means $(R \cup ((S^*) \circ T))$
- Associativity: $(R \cup (S \cup T)) = ((R \cup S) \cup T) = R \cup S \cup T$ and $(R \circ (S \circ T)) = ((R \circ S) \circ T) = R \circ S \circ T$.

Also will sometimes omit \circ : e.g. will write RS instead of $R \circ S$

Regular Expression Examples

R
$$(0 \cup 1)^*$$
 $0\emptyset$
 $0^* \cup (0^*10^*10^*10^*)^*$
 $(0 \cup 1)^*001(0 \cup 1)^*$

$$= (\{0\} \cup \{1\})^* = \{0,1\}^*$$
 \emptyset Strings where the number of 1s is divisible by 3

is divisible by 3
Strings that have 001 as a substring

L(R)

More Examples

R
$$(10)^* \cup (01)^* \cup 0(10)^* \cup 1(01)^*$$
 $(\epsilon \cup 1)(01)^*(\epsilon \cup 0)$
 $(0 \cup \epsilon)(1 \cup 10)^*$

L(R) Strings that consist of alternating 0s and 1s

ing 0s and 1s Strings that consist of alternating 0s and 1s Strings that do not have two consecutive 0s

Some Regular Expression Identities

We say $R_1 = R_2$ if $L(R_1) = L(R_2)$.

- Commutativity: $R_1 \cup R_2 = R_2 \cup R_1$ (but $R_1 \circ R_2 \neq R_2 \circ R_1$ typically)
- Associativity: $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$ and $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$
- Distributivity: $R \circ (R_1 \cup R_2) = R \circ R_1 \cup R \circ R_2$ and $(R_1 \cup R_2) \circ R = R_1 \circ R \cup R_2 \circ R$
- Concatenating with ϵ : $R \circ \epsilon = \epsilon \circ R = R$
- Concatenating with \emptyset : $R \circ \emptyset = \emptyset \circ R = \emptyset$
- $R \cup \emptyset = R$. $R \cup \epsilon = R$ iff $\epsilon \in L(R)$
- $(R^*)^* = R^*$
- $\emptyset^* = \epsilon$

Useful Notation

Definition

Define $R^+ = RR^*$. Thus, $R^* = R^+ \cup \epsilon$. In addition, $R^+ = R^*$ iff $\epsilon \in L(R)$.

Regular Expressions and Regular Languages

Why do they have such similar names?

Theorem

L is a regular language if and only if there is a regular expression R such that L(R) = L

i.e., Regular expressions have the same "expressive power" as finite automata.

Proof.

- Given regular expression R, will construct NFA N such that L(N) = L(R)
- Given DFA M, will construct regular expression R such that L(M) = L(R)

Regular Expressions to Finite Automata

... to Non-determinstic Finite Automata

Lemma

For any regex R, there is an NFA N_R s.t. $L(N_R) = L(R)$.

Proof Idea

We will build the NFA N_R for R, inductively, based on the number of operators in R, #(R).

- Base Case: #(R) = 0 means that R is \emptyset , ϵ , or a (from some $a \in \Sigma$). We will build NFAs for these cases.
- Induction Hypothesis: Assume that for regular expressions R, with $\#(R) \le n$, there is an NFA N_R s.t. $L(N_R) = L(R)$.
- Induction Step: Consider R with #(R) = n + 1. Based on the form of R, the NFA N_R will be built using the induction hypothesis.

Regular Expression to NFA

Base Cases

If R is an elementary regular expression, NFA N_R is constructed as follows.

$$R = \emptyset$$

$$R = \epsilon$$

$$Q_0$$

$$Q_0$$

$$R = a$$

Case $R = R_1 \cup R_2$

Case $R = R_1 \cup R_2$

By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$.

Case $R = R_1 \cup R_2$

By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$. Build NFA N s.t. $L(N) = L(N_1) \cup L(N_2)$

Case $R = R_1 \cup R_2$

By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$. Build NFA N s.t. $L(N) = L(N_1) \cup L(N_2)$

Formal Definition

Case $R = R_1 \cup R_2$

Let $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ and $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$ (with $Q_1\cap Q_2=\emptyset$) such that $L(N_1)=L(R_1)$ and $L(N_2)=L(R_2)$. The NFA $N=(Q,\Sigma,\delta,q_0,F)$ is given by

- $Q = Q_1 \cup Q_2 \cup \{q_0\}$, where $q_0 \not\in Q_1 \cup Q_2$
- $F = F_1 \cup F_2$
- \bullet δ is defined as follows

$$\delta(q,a) = \left\{ egin{array}{ll} \delta_1(q,a) & ext{if } q \in Q_1 \ \delta_2(q,a) & ext{if } q \in Q_2 \ \{q_1,q_2\} & ext{if } q = q_0 ext{ and } a = \epsilon \ \emptyset & ext{otherwise} \end{array}
ight.$$

Induction Step: Union

Correctness Proof

Need to show that $w \in L(N)$ iff $w \in L(N_1) \cup L(N_2)$.

- $\Rightarrow w \in L(N) \text{ implies } q_0 \xrightarrow{w}_N q \text{ for some } q \in F. \text{ Based on the transitions out of } q_0, \ q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q \text{ or } q_0 \xrightarrow{\epsilon}_N q_2 \xrightarrow{w}_N q. \text{ Consider } q_0 \xrightarrow{\epsilon}_N q_1 \xrightarrow{w}_N q. \text{ (Other case is similar) This means } q_1 \xrightarrow{w}_{N_1} q \text{ (as N has the same transition as N_1 on the states in Q_1) and $q \in F_1$. This means $w \in L(N_1)$.}$
- $\Leftarrow w \in L(N_1) \cup L(N_2)$. Consider $w \in L(N_1)$; case of $w \in L(N_2)$ is similar. Then, $q_1 \xrightarrow{w}_{N_1} q$ for some $q \in F_1$. Thus, $q_0 \xrightarrow{\epsilon}_{N} q_1 \xrightarrow{w}_{N} q$, and $q \in F$. This means that $w \in L(N)$.

Case
$$R = R_1 \circ R_2$$

Case $R = R_1 \circ R_2$

• By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$

Case $R = R_1 \circ R_2$

- By induction hypothesis, there are N_1, N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$
- Build NFA N s.t. $L(N) = L(N_1) \circ L(N_2)$

Case $R = R_1 \circ R_2$

- By induction hypothesis, there are N_1 , N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$
- Build NFA N s.t. $L(N) = L(N_1) \circ L(N_2)$

Case $R = R_1 \circ R_2$

- By induction hypothesis, there are N_1 , N_2 s.t. $L(N_1) = L(R_1)$ and $L(N_2) = L(R_2)$
- Build NFA N s.t. $L(N) = L(N_1) \circ L(N_2)$

Formal definition and proof of correctness left as exercise.

Case
$$R = R_1^*$$

Case
$$R = R_1^*$$

• By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$

Case
$$R = R_1^*$$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Case
$$R = R_1^*$$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

First Attempt

Case $R = R_1^*$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Problem: May not accept ϵ ! One can show that $L(N) = (L(N_1))^+$.

Case
$$R = R_1^*$$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Case
$$R = R_1^*$$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Case
$$R = R_1^*$$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Second Attempt

Case $R = R_1^*$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Problem: May accept strings that are not in $(L(N_1))^*$!

Example NFA N

Example NFA N

$$L(N) = (0 \cup 1)^*1(0 \cup 1)^*.$$

Example NFA N

$$L(N) = (0 \cup 1)^* 1 (0 \cup 1)^*$$
. Thus, $(L(N))^* = \epsilon \cup (0 \cup 1)^* 1 (0 \cup 1)^*$.

Example NFA N

Incorrect Kleene Closure of N

$$L(N) = (0 \cup 1)^*1(0 \cup 1)^*$$
. Thus, $(L(N))^* = \epsilon \cup (0 \cup 1)^*1(0 \cup 1)^*$.

Example NFA N

Incorrect Kleene Closure of N

$$L(N)=(0\cup 1)^*1(0\cup 1)^*$$
. Thus, $(L(N))^*=\epsilon\cup(0\cup 1)^*1(0\cup 1)^*$. The previous construction, gives an NFA that accepts $0\not\in(L(N))^*!$

Correct Construction

Case $R = R_1^*$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Correct Construction

Case $R = R_1^*$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Correct Construction

Case $R = R_1^*$

- By induction hypothesis, there is N_1 s.t. $L(N_1) = L(R_1)$
- Build NFA N s.t. $L(N) = (L(N_1))^*$

Formal definition and proof of correctness left as exercise.

To Summarize

We built an NFA N_R for each regular expression R inductively

To Summarize

We built an NFA N_R for each regular expression R inductively

• When R was an elementary regular expression, we gave an explicit construction of an NFA recognizing L(R)

To Summarize

We built an NFA N_R for each regular expression R inductively

- When R was an elementary regular expression, we gave an explicit construction of an NFA recognizing L(R)
- When $R = R_1 \text{ op } R_2$ (or $R = \text{op}(R_1)$), we constructed an NFA N for R, using the NFAs for R_1 and R_2 .

An Example

Example Continued

Build NFA for
$$(1 \cup 01)^*$$

$$N_{(1 \cup 01)^*}$$

Today

- Defined Regular Expressions
 - Syntax: what a regex is built out of \emptyset , ϵ , characters in Σ , and operators \cup , \circ , *.
 - Semantics: what language a regex stands for.
- Expressive power of regular expressions: can express (any and only) regular languages
 - Today: Languages represented by regular expressions are regular (we showed how to build NFAs for them).
 - Coming up: Regular languages can be represented by regular expressions (by building regex for any given DFA).