Определения по матану, семестр 4

15 февраля 2018 г.

Содержание

1	Свойство, выполняющееся почти везде	2
2	Сходимость почти везде	2
3	Сходимость по мере	2
4	Теорема Егорова о сходимости почти везде и почти равномерной сходимости	2
5	Интеграл ступенчатой функции	2
6	Интеграл неотрицательной измеримой функции	2
7	Суммируемая функция	2
8	Интеграл суммируемой функции	3

- 1 Свойство, выполняющееся почти везде
- 2 Сходимость почти везде
- 3 Сходимость по мере
- 4 Теорема Егорова о сходимости почти везде и почти равномерной сходимости

5 Интеграл ступенчатой функции

< X, A, $\mu>$ - пространство с мерой $f=\sum_{k=1}^n(\lambda_k\cdot\chi_{E_k})$ - ступенчатая функция, E_k - измеримые дизъюнктные множества, $f\geqslant 0$

Интегралом ступенчатой функции f на множестве $\mathbb X$ назовём

$$\int_{\mathbb{X}} f d\mu := \sum_{k=0}^{n} \lambda_k \cdot \mu E_k$$

Будем считать, что $[0 \cdot \infty = 0]$

6 Интеграл неотрицательной измеримой функции

< X, $\mathbb{A}, \mu>$ - пространство с мерой f - измеримо, $f\geqslant 0$, её интегралом на множестве X назовём

$$\int\limits_{\mathbb{X}} f d\mu := \sup(\int\limits_{\mathbb{X}} g)$$

, где $0 \leqslant g \leqslant f, g$ —ступенчатая

7 Суммируемая функция

< $X, A, \mu >$ - пространство с мерой f – измерима, $\int\limits_{\mathbb{X}} f^+$ или $\int\limits_{\mathbb{X}} f^-$ конечен (хотя бы один из них).

Тогда интегралом f на \mathbb{X} назовём

$$\int_{\mathbb{X}} f d\mu := \int_{\mathbb{X}} f^{+} - \int_{\mathbb{X}} f^{+}$$

Тогда если конечен $\int\limits_{\mathbb{X}} f$, (то есть конечны интегралы по обеим срезкам), то f называют суммируемой

8 Интеграл суммируемой функции

< ${\bf X},$ ${\bf A},$ $\mu>$ - пространство с мерой f- измерима, $E\in {\bf A}$ Тогда интегралом f на множестве E назовём

$$\int\limits_{\mathbb{R}} f d\mu := \int\limits_{\mathbb{R}} f \cdot \chi(E) d\mu$$

f суммируемая на E, если $\int\limits_{\mathbb{X}} f^+\chi(E)$ и $\int\limits_{\mathbb{X}} f^-\chi(E)$ конечны