

ChIP-Seq Analysis

Presenter:

Paula Moolhuijzen | Centre for Crop Disease Management (CCDM), Curtin University

Xi Li | CSIRO, AU Remco Loos | EMBL-EBI, UK Myrto Kostadima | EMBL-EBI, UK

DATE: 12-07-2016

ChIP-Seq Overview

- Introduction to ChIP-Seq
 - Background
- Experimental Design
- Overview of Analysis
 - How to do
- Introduction to hands-on workshop
 - Let's do

ChIP-Seq - Introduction

Chromatin ImmunoPrecipitation + Sequencing

Structure and Function of chromatin

- Chromatin packages DNA to enable it to fit in the cell
- Chromatin serves as a mechanism to control gene expression

ChIP-Seq - Why Study?

- Study of gene regulation:
 - Protein-DNA interaction: Transcription factor binding locations, core transcriptional machinery
 - Histone modifications, Nucleosome positioning,
 DNA methylation

ChIP-Seq - First Application

- One of the early applications of NGS
- First studies published in 2007
 - Johnson et al (Science) NRSF, Genomewide mapping of in vivo protein-DNA interactions
 - Barski et al (Cell) High-resolution profiling of histone methylations in the human genome
 - Robertson et al (Nature Methods). Genomewide profiles of STAT1 DNA association
 - Mikkelsen et al (Nature) Natural variation of histone modification and its impact on gene expression in the rat genome

Pubmed - Chip-Seq versus RNA-Seq

Total Publications (PubMed) ChIP-Seq + 2,349 RNA-Seq +6,883

ChIP-Seq - ENCODE Key Task

Encyclopedia of DNA Elements (ENCODE) Project: Key Tasks

Mapping of the chromosomal locations of transcription factors, nucleosomes, histone modifications, chromatin remodeling enzymes, chaperones and polymerases

Long-range regulatory elements (enhancers, repressors/ silencers, insulators)

cis-regulatory elements (promoters, transcription factor binding sites)

Transcript

A User's Guide to the Encyclopedia of DNA Elements (ENCODE), 2011 PLOS | BIOLOGY

ChIP-Seq - lab procedures

- 1. **Cross-linking**: proteins bound to chromatin
- 2. **Shearing:** fragments the chromatin
- 3. Immunoprecipitation: captures the DNA fragments bound to one protein using an antibody specific to it.
- 4. Sequencing: and sequences the ends of the captured fragments using next-generation sequencing (NGS).

ChIP-chip vs ChIP-seq

	ChIP-chip	ChIP-seq
Resolution	Array-specific	High - single nucleotide
Coverage	Limited by sequences on the array	Limited by "alignability" of reads to the genome, increases with read length
Repeat elements	Masked out	Many can be covered (47% of human genome is non-repetitive but ~80% is uniquely mapped)
Cost	\$400-800 per array (1-6M probes), multiple arrays needed for human genome	Around \$1000 per lane; 20-30M reads
Source of noise	Cross hybridization	Sequencing bias, GC bias, sequencing error
Amount of ChIP DNA required	High, few micrograms	Low 10-50ng
Dynamic range	Lower detection limit and saturation at high signal	Not limited
Multiplexing	Not possible	Possible

Chip-Seq Overview

- Introduction to Chip-Seq
- Experimental Design
- Overview of Analysis
- Introduction to hands-on workshop
 - Let's Do

Experimental Design considerations

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Antibody quality

- Antibody quality a sensitive and specific antibody will give a high level of enrichment
 - Limited efficiency of antibody is the main reason for failed ChIP-seq experiments
 - Check your antibody ahead if possible.
 - Immunoprecipitation / immunohistochemistry / immunocytochemistry are good indicators of success in ChIP
 - Western blotting to check the reactivity of the antibody with unmodified and non-histone proteins.

Antibody quality

 If an antibody works in IP, IHC or ICC, there is a good chance that the epitope will also be recognized in ChIP

Experimental Design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Why we need a control sample

- Open chromatin regions are fragmented more easily than closed regions.
- Repetitive sequences might seem to be enriched (inaccurate repeats copy number in the assembled genome).
- Uneven distribution of sequence tags across the genome
- A ChIP-seq peak should be compared with the same region in a matched control

Rozowsky, Nature Biotechnology, 2009

Control type

- Input DNA
- Mock IP DNA obtained from IP without antibody
 - Very little material can be pulled down leading to inconsistent results of multiple mock IPs.
- Nonspecific IP using an antibody against a protein that is not known to be involved in DNA binding
- There is no consensus on which is the most appropriate
- Sequencing a control can be avoided when looking at:
 - time points
 - differential binding pattern between conditions

Experimental Design

- Depth of sequencing
- Multiplexing
- Paired-end reads

Depth of sequencing

- More prominent peaks are identified with fewer reads, whereas weaker peaks require greater depth
- Number of putative target regions continues to increase significantly as a function of sequencing depth
- GA1 generated 4-6M reads, GA2 12-15M reads, GA2X 18-30M, HiSeq2500 up to 250 M reads per lane
- With current sequencing technologies, one lane is usually sufficient

Consider size of the genome and number and size of DNA binding sites

Sequence Saturation: MACS "diag" table

		% of p	eaks cov	ered afte	r samplin	g 90%	20% of	the tota	l tags
FC	# peaks	90%	80%	70%	60%	50%	40%	30%	20%
0-20	31530	75.01	55.98	39.58	26.01	15.35	7.43	2.64	0.51
20-40	5481	99.62	97.7	92.52	80.46	61.34	36.75	14.61	2.81
40-60	235	100	100	100	100	99.57	90.21	68.51	28.09
60-80	40	100	100	100	100	100	100	95	62.5
80-100	7	100	100	100	100	100	100	100	85.71
100-120	2	100	100	100	100	100	100	100	100
120-140	5	100	100	100	100	100	100	100	100
160-180	1	100	100	100	100	100	100	100	100

Experimental Design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Multiplexing

- Number of reads per run continue to increase
- The ability to sequence multiple samples at the same time becomes important, especially for small genomes
- Different barcode adaptors are ligated to different samples
- Useful in experimental design to control technical variation

Experimental Design

- Antibody quality
- Control experiment
- Depth of sequencing
- Multiplexing
- Paired-end reads

Paired-end sequencing

- Reads are sequenced from both ends
- Increase "mappability" especially in repetitive regions
- Costs ~twice as much as single end reads

- For ChIP-Seq, usually not worth the extra cost, unless you have a specific interest in repeat regions
- Can assist in identifying duplicated regions

Chip-Seq Overview

- Introduction to Chip-Seq
- Experimental Design
- Overview of Analysis
- Introduction to hands-on workshop
 - Let's Do

A Challenge - Bioinformatics

Mapping *in-vivo* interactions of Protein-DNA poses multiple computational challenges

Chip-Seq - Key analysis steps

- 1. Sequence alignment
 - Align sample(s) and control to a reference genome
- 2. Peak Calling
 - Read alignment depth of coverage
- 3. Enrichment Analysis
 - Peak annotation
- 4. Motif Analysis
 - Identify specific sequence motifs for binding sites
- 5. Differential binding analysis

Analysis – Overview tools

Short-read alig	ners				
BWA	http://bio-bwa.sourceforge.net	Fast and efficient; based on the Burrows–Wheeler transform			
Bowtie	http://bowtie-bio.sourceforge.net	Similar to BWA, part of suite of tools that includes TopHat and CuffLinks for RNA-seq processing			
GSNAP	http://research-pub.gene.com/gmap	Considers a set of variant allele inputs to better align to heterozygous sites			
Wikipedia list of aligners	http://en.wikipedia.org/wiki/List_of_ sequence_alignment_software#Short- Read_Sequence_Alignment	A comprehensive list of available short-read aligners, with descriptions and links to download the software			
Peak callers					
MACS	http://liulab.dfci.harvard.edu/MACS	Fits data to a dynamic Poisson distribution; works with and without control data			
PeakSeq	http://info.gersteinlab.org/PeakSeq	Takes into account differences in mappability of genomic regions; enrichment based on FDR calculation			
ZINBA	http://code.google.com/p/zinba	Can incorporate multiple genomic factors, such as mappability and GC content; can work with point-source and broad-source peak data			
Differential peak calling					
edgeR	http://www.bioconductor.org/ packages/2.9/bioc/html/edgeR.html	Uses negative binomial distribution to model differences in tag counts; uses replicates to better estimate significant differences			
DESeq	http://www-huber.embl.de/users/ anders/DESeq	Also uses negative binomial distribution modelling, but differs in the calculation of the mean and variance of the distribution			
baySeq	http://www.bioconductor.org/packages/release/bioc/html/baySeq.html	Uses empirical Bayes approach to identify significant differences; assumes negative binomial distribution of data			
SAMSeq	http://www.stanford.edu/~junli07/ research.html#SAM	Based on the popular SAM software; a non-parametric method that uses resampling to normalize for differences in sequencing depth			
		F TO 0040			

Analysis - Overview

Analysis - Overview

Alignment

Computational mapping of the sequenced DNA identifies the genomic locations of bound

- DNA-binding enzymes,
- modified histones,
- chaperones,
- · nucleosomes, and
- transcription factors

Alignment- Genome Mappability

- Not all of the genome is 'available' for mapping
- Align your reads to the unmasked genome

		Nonrepetitive sequence		Mappable sequence		
Organism	Genome size (Mb)	Size (Mb)	Percentage	Size (Mb)	Percentage	
Caenorhabditis elegans	100.28	87.01	86.8%	93.26	93.0%	
Drosophila melanogaster	168.74	117.45	69.6%	121.40	71.9%	
Mus musculus	2,654.91	1,438.61	54.2%	2,150.57	81.0%	
Homo sapiens	3,080.44	1,462.69	47.5%	2,451.96	79.6%	

^{*}Calculated based on 30nt sequence tags

Rozowsky, 2009

- For ChIP-seq, usually short reads are used (50bp)
- Limited gain in using longer reads (again, unless you have a specific interest in repeat regions)

Analysis - Overview

Peak Calling

- Basic regions are scored by the number of tags in a window of a given size. Then assess by enrichment over control and minimum tag density.
- Advanced take advantage of the directionality of the reads.
- Advanced methods make more assumptions, making them less appropriate in certain cases

Peaks => regions with "significant" number of mapped reads

Peak Calling - Challenges

- Adjust for sequence alignments regions that contain repetitive elements have different expected tag count
- Different ChIP-seq applications produce different type of peaks. Most current tools have been designed to detect sharp peaks (TF binding, histone modifications at regulatory elements)
- Alternative tools exist for broader peaks (histone modifications that mark domains - transcribed or repressed), e.g. SICER

Park J, Nature Reviews Genetics, 2009

MACS tool

- Model the shift size between +/- strand tags
 - Scan the genome to find regions with tags more than m-fold enriched relative to random tag distribution
 - Randomly sample 1000 of these (high quality peaks) and calculate the distance between the modes of their +/- peaks
 - Shift all the tags by d/2 toward the 3' end.

MACS - Peak detection

- Duplicate tags are removed (in excess of what can be expected by chance)
- 2. Candidate peaks with significant tag enrichment are found in a sliding window across the genome (Poisson distribution, global background, p-value 10e-5)
- 3. Overlapping peaks are merged, and each tag base distance extended from its center
- 4. Peaks are eliminated that are not significant with respect to local background levels. The control sample is used to eliminates peaks that are also significantly represented in the location.

Analysis - Overview

Analysis downstream to peak calling

- Peak Annotation: finding interesting features surrounding peak regions: PeakAnalyzer
- Visualization: genome browser: Ensembl, UCSC, IGV
- Discovery of binding sequence motifs:
 - Split peaks
 - Fetch summit sequences
 - Run motif prediction tool
- Gene Ontology analysis: on genes that bind the same factor or have the same modification
- Correlation with expression data
- Correlation with SNP data to find allele-specific binding

Visualization in a genome browser

Motif Analysis

GAATCCCACA TTTGCATAACAAAAG ACTCCTGGTG
CAGCTGCTCT TCTGCATAACAAAGG GTGGCCCTGC
CCGGTTTTTC TTTGCATAACAATAA GATCTGGCTA
TTATTCTCAC TTTGCATAGGAATGG GGCAGTTAGA
CACAGCCACA TTTGCATAACAGAAG CCGAGCCCGC
CTTGGGTGAA TTTGCAAGACAAAGG ACAATGATCA

Discovery of binding sequence motifs

- 1. Split peaks
- 2. Fetch summit sequences
- 3. Run motif prediction tool

Analysis - Overview

Chip-Seq Overview

- Introduction to Chip-Seq
- Experimental Design
- Overview of Analysis
- Introduction to hands-on workshop
 - Let's Do

Hands-on

- The data we will use today was reported in Chen, X et al. (2008) Integration of external signaling pathways with the core transcriptional network in embryonic stem cells. Cell. Jun 13;133(6):1106-17 (http://www.cell.com/cell/pdf/S0092-8674(08)00617-X.pdf)
- You have already performed the first step, alignment of the reads to the genome, in the previous session. We start from the aligned reads. Go to the Chip-Seq module in your electronic handout.
- In a terminal shell go to the /home/trainee/chipseq directory where we will perform simple ChIP-Seq analysis
 - Detect immuno-enriched areas using the peak caller program MACS
 - Visualize peak regions in the Ensembl genome browser
 - Perform functional annotation (PeakAnalyzer) and detect potential binding sites (motifs) in the predicted binding regions using motif discovery tool, MEME.

Thank you

