

Revisão de Sistemas Digitais

1. Identifique do que se trata o circuito abaixo e descreva resumidamente seu funcionamento.

2. A tabela-verdade a seguir trata-se de qual circuito que conhecemos? Explique-a.

S	1 S ₀	Output
C	0	I_0
0	1	I_1
1	0	I_2
1	1	I_3

- 3. Monte a tabela verdade para um circuito que realiza a comparação de dois bits por magnitude, e seu diagrama.
- 4. Qual é o complemento 1 do número binário 10010110? Qual é o complemento 2 mesmo número? Pra que serve o complemento 2?
- 5. Como podemos representar números positivos e negativos em sistema binário? Represente o número -11.
- 6. Represente o código Gray com 2 bits, mostre como ele é formado através das reflexões. Cite a principal característica deste código.
- 7. Construa uma ULA (Unidade Lógica Aritmética) de 8 bit com a seguinte especificação:

```
ENTRADA

- duas linhas de dados de um 8 bits (A e B),

- as linhas seleção necessárias para escolher UMA das quatro operações realizadas pela ULA.

OPERAÇÕES DA ULA

- A AND B

- A OR B

- B'

- A + B

SAÍDA

- linha de resultado da operação (S)
```


8. Descreva as tabelas de estados abaixo sob a forma de diagramas de estados clássico (FSM), indicando claramente que tipo de máquina de estados as mesmas representam.

a)		Entrada		
	Estado	A	В	
	S_0	$S_0, 0$	S_2 , 1	
	S_1	$S_0, 1$	$S_1, 0$	
	S_2	$S_0, 1$ $S_3, 0$	$S_1, 1$	
	S_2	S_2 , 0	S_0 , 1	

b)		Entrada		
	Estado	A	В	
	$S_0, 00$	S_0	S_1	
	S_1 , 10	S_2	S_3	
	S ₂ , 11	S_1	S_2	
	$S_3, 00$	S_0	S_3	