$$\iint_D \frac{1}{\sqrt{|x-y|}} dx \ dy.$$

13. Sea W el primer octante de la bola $x^2+y^2+z^2 \le a^2$, donde $x \ge 0, y \ge 0, z \ge 0$. Calcular la integral impropia

$$\iiint_W \frac{(x^2 + y^2 + z^2)^{1/4}}{\sqrt{z + (x^2 + y^2 + z^2)^2}} dx dy dz$$

por medio de un cambio de variables.

- **14.** Sea f una función no negativa que puede ser no acotada y discontinua en la frontera de una región elemental D. Sea g una función similar tal que $f(x,y) \leq g(x,y)$ siempre que ambas estén definidas. Supongamos que $\iint_D g(x,y) \, dA$ existe. Razonar informalmente que esto implica la existencia de $\iint_D f(x,y) \, dA$.
- **15.** Utilizar el Ejercicio 14 para demostrar que

$$\iint_D \frac{\sin^2(x-y)}{\sqrt{1-x^2-y^2}} \, dy \, dx$$

existe, donde D es el disco unidad $x^2 + y^2 \le 1$.

- **16.** Sea f como en el Ejercicio 14 y sea g una función tal que $0 \le g(x,y) \le f(x,y)$ siempre que ambas estén definidas. Supongamos que $\iint_D g(x,y) dA$ no existe. Razonar informalmente por qué $\iint_D f(x,y) dA$ no puede existir.
- 17. Utilizar el Ejercicio 16 para demostrar que

$$\iint_D \frac{e^{x^2 + y^2}}{x - y} \, dy \, dx$$

no existe, siendo D el conjunto de puntos (x,y) tales que $0 \le x \le 1$ y $0 \le y \le x$.

18. Sea D la región no acotada definida como el conjunto de puntos (x, y, z) con $x^2 + y^2 + z^2 \ge 1$. Por medio de un cambio de variables, calcular la integral impropia

$$\iiint_D \frac{dx \, dy \, dz}{(x^2 + y^2 + z^2)^2}.$$

19. Calcular

$$\int_0^1 \int_0^y \frac{x}{y} dx dy \qquad y \qquad \int_0^1 \int_x^1 \frac{x}{y} dy dx.$$

¿Se puede aplicar el teorema de Fubini?

20. En el Ejercicio 17 de la Sección 5.2 demostramos que

$$\int_0^1 \! \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dy \, dx \neq \int_0^1 \! \int_0^1 \frac{x^2 - y^2}{(x^2 + y^2)^2} \, dx \, dy.$$

Por tanto, el teorema de Fubini no se verifica en este caso, a pesar de que existen ambas integrales impropias iteradas. ¿Qué es lo que falla?

21. Si $0 \le f(x,y) \le g(x,y)$ para todo $(x,y) \in D$, y si existe la integral impropia de g

$$\iint\limits_{D} g(x,y) \ dx \ dy,$$

entonces $\iint_D f(x,y) \, dx \, dy$ también existe. Utilizar este hecho y los Ejercicios 5 y 6 para demostrar que si $0 < \alpha, \beta < 1$ y $1 < \gamma, \rho$, entonces existe

$$\iint\limits_{D} \frac{dx \, dy}{x^{\alpha} y^{\beta} + x^{\gamma} y^{\rho}}$$

donde $D = [0, \infty) \times [0, \infty)$. [SUGERENCIA: escribir $D = D_1 \cup D_2$ y aplicar el Ejercicio 14 por separado a cada D_i .]

Ejercicios de repaso del Capítulo 6

- **1.** (a) Hallar una transformación lineal que transforme el cuadrado $S = [0,1] \times [0,1]$ en el paralelogramo P con vértices (0,0),(2,0),(1,2),(3,2).
 - (b) Dar una fórmula de cambio de variables
- apropiada para la transformación hallada en el apartado (a).
- **2.** (a) Hallar la imagen del cuadrado $[0,1] \times [0,1]$ por la transformación T(x,y) = (2x,x+3y).