Pythagrean Taple: (a,b,c) \(Z^3 \)

Such that $C^2 = a^2 + b^2$ Therem: A pythagrean triple exists.

Proof: C = S, q = 4, b = 3, Then $c^2 = a^2 + b^2$.

Fermet Triple: $(a,b,c) \in \mathbb{Z}^3$, $a \neq 0$, $b \neq 0$, $c \neq 0$.

Fermet Triple: $(a,b,c) \in \mathbb{Z}^3$, $a \neq 0$, $b \neq 0$, $c \neq 0$.

So that $C^3 = a^3 + b^3$ Therew: No Fermat Triple exists. [$a \neq 0$, $a \neq 0$, $a \neq 0$]

Proof: Typically by controlich.

Proof: Typically by controlich.

Assum: a,b,c sets fires $c^3 = a^2 + b^3$ Heading a controliction.

Leding a controliction.