

Departamento de Matemáticas 1º Bachillerato CCSS

Examen final 2^a Evaluación

Nombre:	Fecha:
Tiempo: 80 minutos	Tipo: A

Esta prueba tiene 5 ejercicios. La puntuación máxima es de 17. La nota final de la prueba será la parte proporcional de la puntuación obtenida sobre la puntuación máxima.

Ejercicio:	1	2	3	4	5	Total
Puntos:	4	4	2	4	3	17

1. Una oficina bancaria ha tabulado las cantidades de dinero que retiran de sus cuentas 100 clientes jóvenes en un determinado día:

	Euros	Clientes
0	[0, 40)	40
1	[40, 80)	35
2	[80, 120)	25

- (a) Realizar una tabla de frecuencias con los datos que vayas a necesitar para resolver el ejercicio
- (b) Calcula la media y la varianza. (1 punto)

(1 punto)

(c) Calcula la mediana. Ayuda: (1 punto)

$$P_k = L_i + \frac{k \frac{N}{100} - F_{i-1}}{f_i} \cdot C_i$$

- (d) ¿Qué porcentaje de clientes ha retirado menos de 60€? (1 punto)
- 2. La temperatura media en los meses de invierno en varias ciudades y el gasto medio por habitante en calefacción ha sido:

Temperatura (°C)	10	12	14	16
Gasto (€)	150	120	102	90

- (a) ¿Cuál es el gasto medio? (1 punto)
- (b) Halla el coeficiente de correlación lineal e interprétalo (2 puntos)
- (c) Estima el gasto medio por habitante de una ciudad si la temperatura media hubiera sido de 11°C (1 punto)
- 3. Tiramos un dado. Si sale 1 o 2, extraemos una bola de la urna A y si no, la extraemos de la urna B. Siendo la composición de las urnas:
 - Urna A: 2 rojas, 2 verdes v 2 azules
 - Urna B: 1 roja, 3 verdes y 4 azules
 - (a) ¿Qué probabilidad hay de obtener un 1 o un 2 y extraer una bola (1 punto) verde?

(b) esté entre 290 y 310, ambos incluídos

(1 punto)

(b) ¿Qué probabilidad hay de obtener 3 y bola azul? (1 punto)4. Luis es saltador de altura, y en el 70 % de sus saltos consigue superar (1 punto)los 2.10 m. Sabiendo que en una competición tiene que saltar tres veces, halla la probabilidad de que: (a) En todas supere los 2.10 m. (1 punto)(b) No los supere en ninguna (1 punto)(c) Si su primer salto fue nulo, supere los 2.10 m en, al menos, una (1 punto) ocasión. 5. Una moneda se lanza 600 veces. Calcula la probabilidad de que el número de caras: (a) sea al menos 301 (2 puntos)

Cuadro 1: Tabla de probabilidades de la **normal estándar** Z(0,1)

${f z}$	0	0,01	0,02	0.03	0.04	0,05	0,06	0.07	0,08	0,09
0	0,5	0,50399	0,50798	0,51197	0,51595	0,51994	0,52392	0,5279	0,53188	0,53586
0,1	0,53983	0,5438	0,54776	0,55172	0,55567	0,55962	0,56356	0,56749	0,57142	0,57535
0,2	0,57926	0,58317	0,58706	0,59095	0,59483	0,59871	0,60257	0,60642	0,61026	0,61409
0,3	0,61791	0,62172	0,62552	0,6293	0,63307	0,63683	0,64058	0,64431	0,64803	0,65173
0,4	0,65542	0,6591	0,66276	0,6664	0,67003	0,67364	0,67724	0,68082	0,68439	0,68793
0,5	0,69146	0,69497	0,69847	0,70194	0,7054	0,70884	0,71226	0,71566	0,71904	0,7224
0,6	0,72575	0,72907	0,73237	0,73565	0,73891	0,74215	0,74537	0,74857	0,75175	0,7549
0,7	0,75804	0,76115	0,76424	0,7673	0,77035	0,77337	0,77637	0,77935	0,7823	0,78524
0,8	0,78814	0,79103	0,79389	0,79673	0,79955	0,80234	0,80511	0,80785	0,81057	0,81327
0,9	0,81594	0,81859	0,82121	0,82381	$0,\!82639$	0,82894	0,83147	0,83398	0,83646	0,83891
1	0,84134	0,84375	0,84614	0,84849	0,85083	0,85314	0,85543	0,85769	0,85993	0,86214
1,1	0,86433	0,8665	0,86864	0,87076	$0,\!87286$	0,87493	0,87698	0,879	0,881	0,88298
1,2	0,88493	0,88686	0,88877	0,89065	$0,\!89251$	0,89435	0,89617	0,89796	0,89973	0,90147
1,3	0,9032	0,9049	0,90658	0,90824	0,90988	0,91149	0,91309	0,91466	0,91621	0,91774
1,4	0,91924	0,92073	0,9222	0,92364	0,92507	0,92647	0,92785	0,92922	0,93056	0,93189
1,5	0,93319	0,93448	0,93574	0,93699	0,93822	0,93943	0,94062	0,94179	0,94295	0,94408
1,6	0,9452	0,9463	0,94738	0,94845	0,9495	0,95053	0,95154	0,95254	0,95352	0,95449
1,7	0,95543	0,95637	0,95728	0,95818	0,95907	0,95994	0,9608	0,96164	0,96246	0,96327
1,8	0,96407	0,96485	0,96562	0,96638	0,96712	0,96784	0,96856	0,96926	0,96995	0,97062
1,9	0,97128	0,97193	0,97257	0,9732	0,97381	0,97441	0,975	0,97558	0,97615	0,9767
2	0,97725	0,97778	0,97831	0,97882	0,97932	0,97982	0,9803	0,98077	0,98124	0,98169
2,1	0,98214	0,98257	0,983	0,98341	0,98382	0,98422	0,98461	0,985	0,98537	0,98574
2,2	0,9861	0,98645	0,98679	0,98713	0,98745	0,98778	0,98809	0,9884	0,9887	0,98899
2,3	0,98928	0,98956	0,98983	0,9901	0,99036	0,99061	0,99086	0,99111	0,99134	0,99158
2,4	0,9918	0,99202	0,99224	0,99245	0,99266	0,99286	0,99305	0,99324	0,99343	0,99361
2,5	0,99379	0,99396	0,99413	0,9943	0,99446	0,99461	0,99477	0,99492	0,99506	0,9952
2,6	0,99534	0,99547	0,9956	0,99573	0,99585	0,99598	0,99609	0,99621	0,99632	0,99643
2,7	0,99653	0,99664	0,99674	0,99683	0,99693	0,99702	0,99711	0,9972	0,99728	0,99736
2,8	0,99744	0,99752	0,9976	0,99767	0,99774	0,99781	0,99788	0,99795	0,99801	0,99807
2,9	0,99813	0,99819	0,99825	0,99831	0,99836	0,99841	0,99846	0,99851	0,99856	0,99861
3	0,99865	0,99869	0,99874	0,99878	0,99882	0,99886	0,99889	0,99893	0,99896	0,999
3,1	0,99903	0,99906	0,9991	0,99913	0,99916	0,99918	0,99921	0,99924	0,99926	0,99929
3,2	0,99931	0,99934	0,99936	0,99938	0,9994	0,99942	0,99944	0,99946	0,99948	0,9995
3,3	0,99952	0,99953	0,99955	0,99957	0,99958	0,9996	0,99961	0,99962	0,99964	0,99965
3,4	0,99966	0,99968	0,99969	0,9997	0,99971	0,99972	0,99973	0,99974	0,99975	0,99976
3,5	0,99977	0,99978	0,99978	0,99979	0,9998	0,99981	0,99981	0,99982	0,99983	0,99983
3,6	0,99984	0,99985	0,99985	0,99986	0,99986	0,99987	0,99987	0,99988	0,99988	0,99989
3,7	0,99989	0,9999	0,9999	0,9999	0,99991	0,99991	0,99992	0,99992	0,99992	0,99992
3,8	0,99993	0,99993	0,99993	0,99994	0,99994	0,99994	0,99994	0,99995	0,99995	0,99995
3,9	0,99995	0,99995	0,99996	0,99996	0,99996	0,99996	0,99996	0,99996	0,99997	0,99997
4	0,99997	0,99997	0,99997	0,99997	0,99997	0,99997	0,99998	0,99998	0,99998	0,99998