

AML5102 | Applied Machine Learning | PCA Problem Set

1. Consider the direction $\mathbf{u} = \begin{bmatrix} 1/\sqrt{2} \\ 1/\sqrt{2} \end{bmatrix}$. Using the image template below where the samples in the data matrix

$$\mathbf{X} = \begin{bmatrix} 4 & 1 \\ 2 & 3 \\ 5 & 4 \\ 1 & 0 \end{bmatrix}$$

are shown,

- (a) identify the samples $\mathbf{x}^{(1)}, \mathbf{x}^{(2)}, \mathbf{x}^{(3)}$, and $\mathbf{x}^{(4)}$ in the image (counting starts from 1);
- (b) clearly draw the direction \mathbf{u} ;
- (c) clearly show the projections of all samples in the data matrix \mathbf{X} onto \mathbf{u} ;
- (d) identify which two samples are nearest and farthest from each other after the projections.
- (e) Calculate the variance of the samples after the projections.

2. At the beginning of the 20th century, one researcher obtained measurements on seven physical characteristics for each of 3000 convicted male criminals. The characteristics he measured are:

 X_1 : length of head from front to back (in cm.)

 X_2 : head breadth (in cm.)

 X_3 : face breadth (in cm.)

 X_4 : length of left forefinger (in cm.)

 X_5 : length of left forearm (in cm.)

 X_6 : length of left foot (in cm.)

 X_7 : height (in inches)

The sample correlation matrix, eigenvalues, and eigenvectors of the sample correlation matrix are shown below:

	\mathbf{X}_1	X_2	X_3	X_4	X_5	X_6	X_7
\mathbf{X}_1	1	0.402	0.395	0.301	0.305	0.399	0.340
X_2	0.402	1	0.618	0.150	0.135	0.206	0.183
X_3	0.395	0.618	1	0.321	0.289	0.363	0.345
X_4	0.301	0.150	0.321	1	0.846	0.759	0.661
X_5	0.305	0.135	0.289	0.846	1	0.797	0.800
X_6	0.399	0.206	0.363	0.759	0.797	1	0.736
X_7	0.340	0.183	0.345	0.661	0.800	0.736	1

	1	2	3	4	5	6	7
	.285	351	.877	088	076	.112	023
	.211	643	246	.686	098	010	.020
Principal	.294	515	387	693	112	.029	074
	.435	.240	113	.126	604	.330	.500
Components	.453	.282	079	.127	024	.270	787
	.453	.167	.028	.023	065	873	.024
	.434	.182	027	090	.776	.208	.352
Explained Variand	e 3.82	1.49	0.65	0.36	0.34	0.23	0.11

- (a) What is the shape of the data matrix?
- (b) Length of the left forearm has the highest correlation with which other feature?
- (c) What proportion of variance is explained by the first principal component?
- (d) How many minimum principal components are needed to explain more than 90% of the variance in the data?
- (e) Which two features are identically loaded for calculating the 1st principal component score?
- (f) Which principal component assigns the greatest weight (in magnitude) to head breadth?
- (g) In plain English, interpret what the PC-3 score of a sample captures in reference to the data.