UNIDAD 3: EVOLUCION Y BIODIVERSIDAD

EVOLUCIÓN

La **evolución biológica** es el proceso mediante el cual los seres vivos **cambian a lo largo del tiempo**, dando origen a nuevas especies. Este proceso explica la diversidad de formas de vida actuales y su relación con formas ancestrales.

teorías evolutivas

A lo largo de la historia, diferentes científicos han propuesto teorías para explicar cómo cambian las especies. Algunas fueron descartadas, pero otras sentaron las bases del pensamiento evolutivo moderno.

1. Teoría del fijismo (Descartada)

- Propuesta por Carl Linneo.
- Afirma que las especies son **inmutables** y fueron creadas tal como existen hoy.
- Contradice la evidencia fósil y genética.

2. Teoría del catastrofismo (Georges Cuvier)

- Propone que extinciones masivas fueron causadas por catástrofes naturales, y nuevas especies aparecían después.
- Fue una forma de explicar los fósiles sin aceptar la evolución.

3. Teoría de Lamarck (Jean-Baptiste Lamarck)

- Primera teoría evolutiva formal.
- Propuso que los organismos evolucionan mediante:

 Uso y desuso de órganos.
 - Herencia de caracteres adquiridos.
- Ejemplo: el cuello largo de las jirafas se desarrolló por estirarse para alcanzar hojas.
- Aunque fue rechazada, reconoció la idea de cambio a lo largo del tiempo.

teoría evolutiva de Charles Robert Darwin

Charles Darwin propuso su teoría en 1859, en su obra **"El origen de las especies"**. Su teoría se basó en observaciones realizadas durante su viaje en el HMS Beagle, especialmente en las **islas Galápagos**.

Principales ideas de Darwin:

- 1. Variabilidad: en una población, los individuos presentan diferencias heredables.
- 2. **Lucha por la existencia**: los recursos son limitados, y los individuos compiten por sobrevivir.
- Selección natural: los organismos con características más favorables tienen mayor probabilidad de sobrevivir y reproducirse.
- 4. **Adaptación**: con el tiempo, las características útiles se vuelven más comunes en la población.
- 5. **Evolución gradual**: los cambios acumulados a lo largo de generaciones conducen a nuevas especies.

evolución por selección natural

La **selección natural** es el mecanismo central de la teoría de Darwin. Este proceso ocurre cuando ciertas características genéticas **aumentan la supervivencia o la reproducción** de un organismo.

Ejemplo clásico: las polillas de Manchester

- Durante la Revolución Industrial, el color del ambiente cambió por la contaminación.
- Las polillas oscuras eran más difíciles de detectar en los árboles ennegrecidos y sobrevivían más.
- Su población aumentó frente a la de polillas claras.

Claves de la selección natural:

- Actúa sobre poblaciones, no sobre individuos aislados.
- No tiene una dirección específica: selecciona lo que funciona mejor en un ambiente dado.

• No siempre produce perfección, sino adaptación.

Cuestionario de repaso:

- 1. ¿Qué es la evolución biológica?
- 2. ¿Qué propone el fijismo respecto a las especies?
- 3. ¿Cuál fue la principal idea de Lamarck sobre la evolución?
- 4. ¿Cómo se diferencia la teoría de Darwin de la de Lamarck?
- 5. ¿Qué observaciones ayudaron a Darwin a formular su teoría?
- 6. ¿Qué es la selección natural?
- 7. ¿Qué papel juega la variabilidad genética en la evolución?
- 8. ¿Por qué no todas las mutaciones llevan a una evolución favorable?
- 9. ¿Qué significa adaptación en el contexto de la evolución?
- 10. ¿Cómo se explica la evolución de las especies según Darwin?

CLASIFICACIÓN

La clasificación biológica es el proceso de organizar a los seres vivos en grupos o categorías con base en sus características compartidas, relaciones evolutivas y estructura. Esta rama de la biología se conoce como sistemática.

sistemática

La **sistemática** es la ciencia que se encarga de **estudiar la diversidad biológica** y de **clasificar a los organismos** en un sistema ordenado, reflejando su evolución y relaciones de parentesco.

Incluye dos áreas principales:

- Taxonomía: identifica, nombra y clasifica organismos.
- Filogenia: estudia las relaciones evolutivas entre los organismos. Los niveles jerárquicos de clasificación (categorías taxonómicas) son:

Dominio → Reino → Filo → Clase → Orden → Familia → Género → Especie Ejemplo:

Ser humano

Dominio: Eukarya

Reino: Animalia

Filo: Chordata

Clase: Mammalia

Orden: Primates

Familia: Hominidae

Género: Homo

• Especie: Homo sapiens

nomenclatura binominal

También llamada **nomenclatura binaria**, fue creada por **Carlos Linneo**. Es el sistema universal para **nombrar científicamente a los seres vivos**.

Características:

- Usa dos nombres latinos por cada especie:
 - 1. **Género** (con mayúscula, subrayado o en cursiva).
 - 2. **Especie** (con minúscula, subrayado o en cursiva).

Ejemplos:

- Homo sapiens \rightarrow ser humano
- *Felis catus* → gato doméstico
- Canis lupus \rightarrow lobo **Ventajas**:
- Estándar internacional.
- Evita confusión entre idiomas.
- Permite ubicar al organismo en su grupo natural.

sistema de clasificación natural

Es un tipo de clasificación que **agrupa a los seres vivos según sus relaciones evolutivas reales**, no solo por su apariencia externa. Utiliza información de:

- Anatomía comparada
- Embriología
- Genética molecular
- Fósiles
- Bioquímica

Ventajas del sistema natural:

- Refleja la historia evolutiva de los organismos.
- Permite identificar ancestros comunes.
- Es más preciso que la clasificación artificial, que solo considera características superficiales.

Ejemplo:

Aves y reptiles se clasifican en grupos cercanos porque comparten **un ancestro común**, aunque a simple vista parezcan muy distintos.

Cuestionario de repaso:

- 1. ¿Qué estudia la sistemática?
- 2. ¿Cuál es la diferencia entre taxonomía y filogenia?
- 3. ¿Qué es una categoría taxonómica?
- 4. Ordena jerárquicamente las principales categorías taxonómicas.
- 5. ¿Qué es la nomenclatura binominal?
- 6. ¿Quién creó el sistema de nombres científicos?
- 7. ¿Por qué es importante escribir los nombres científicos en latín?
- 8. Da tres ejemplos de nombres científicos usando la nomenclatura binaria.

- 9. ¿Qué información se usa en la clasificación natural que no se considera en la artificial?
- 10. ¿Qué ventaja tiene el sistema natural sobre uno basado solo en apariencia?

NIVELES TAXONÓMICOS

Los **niveles taxonómicos** son las categorías jerárquicas utilizadas en la **clasificación biológica** para organizar a los seres vivos según su grado de parentesco evolutivo. Estas categorías permiten ubicar a cada organismo dentro de un sistema ordenado que va desde lo más general hasta lo más específico.

Categorías taxonómicas principales

De mayor a menor jerarquía:

- 1. Dominio
- 2. Reino
- 3. Filo (o División en plantas y hongos)
- 4. Clase
- 5. Orden
- 6. Familia
- 7. Género
- 8. Especie

Ejemplo (ser humano):

Dominio: Eukarya

Reino: Animalia

Filo: Chordata

Clase: Mammalia

Orden: Primates

Familia: Hominidae

· Género: Homo

Especie: Homo sapiens

CLASIFICACIÓN DE LOS REINOS

Tradicionalmente, se clasifican los organismos en **cinco o seis reinos**, según sus características celulares, nutrición, y organización.

Clasificación en cinco reinos (Robert Whittaker):

1. Monera: organismos unicelulares procariotas (bacterias).

2. **Protista**: organismos unicelulares eucariotas (protozoos, algas).

3. **Fungi**: hongos, unicelulares o pluricelulares, heterótrofos.

4. **Plantae**: plantas multicelulares, autótrofas por fotosíntesis.

5. Animalia: animales pluricelulares, heterótrofos.

Clasificación en seis reinos:

Debido a diferencias entre bacterias, el reino Monera se divide:

- 1. **Eubacteria** (bacterias verdaderas)
- 2. Archaebacteria (bacterias primitivas/extremófilas)
- 3. Protista
- 4. Fungi
- 5. Plantae
- 6. Animalia

CLASIFICACIÓN DE WOESE (TRES DOMINIOS)

Carl Woese propuso en 1990 una nueva clasificación basada en la secuencia del ARN ribosomal, dividiendo a los seres vivos en tres dominios, por encima del nivel de reino:

1. Bacteria:

Procariotas.

- Incluye bacterias comunes (eubacterias).
- o Pared celular con peptidoglucano.

2. Archaea:

- Procariotas primitivas.
 Viven en condiciones extremas (altas temperaturas, salinidad, acidez).
- Diferencias bioquímicas con las bacterias.

3. Eukarya:

- Todos los organismos eucariotas.
- o Incluye los reinos Protista, Fungi, Plantae y Animalia.

Importancia de la clasificación de Woese:

- Refleja mejor la evolución molecular.
- Separa claramente a las Archaea de las Bacteria.
- Es la base del sistema actual en biología molecular y filogenia.

Cuestionario de repaso

- 1. ¿Qué es un nivel taxonómico?
- 2. ¿Cuál es la categoría taxonómica más amplia? ¿Y la más específica?
- 3. ¿Cuál es el orden correcto de los niveles taxonómicos, de mayor a menor?
- 4. ¿Cuántos reinos hay en la clasificación de Whittaker? Menciónalos.
- 5. ¿En qué se diferencian Eubacteria y Archaebacteria?
- 6. ¿Qué tipo de organismos incluye el reino Protista?
- 7. ¿Qué propone Carl Woese con su sistema de tres dominios?
- 8. ¿Qué caracteriza a los organismos del dominio Archaea?
- 9. ¿Qué dominios incluyen organismos procariotas?
- 10. ¿A qué dominio pertenece el ser humano?

BIODIVERSIDAD

La **biodiversidad** es la variedad de formas de vida que existen en la Tierra: incluye **especies animales y vegetales, ecosistemas y la variabilidad genética**. Esta diversidad es esencial para el equilibrio ecológico y la supervivencia de todas las formas de vida.

MÉXICO COMO UN PAÍS MEGADIVERSO

México es considerado uno de los 17 países megadiversos del mundo, por su enorme cantidad de especies y ecosistemas variados.

Características que lo hacen megadiverso:

- Gran diversidad de climas y ecosistemas (selvas, desiertos, montañas, costas, etc.).
- Posición geográfica entre dos regiones biogeográficas: Neártica y Neotropical.
- Alta proporción de especies endémicas (que solo existen en México).
- Importante cantidad de plantas, reptiles, mamíferos, aves y anfibios.

RIQUEZA NATURAL DE MÉXICO

- 12% de la biodiversidad mundial se encuentra en México.
- Ocupa: 1º lugar en reptiles. 2º lugar en mamíferos. 5º lugar en anfibios.
 - o 8º lugar en aves.
- Cuenta con más de 200,000 especies conocidas.

CENTROS DE DIVERSIDAD DE PLANTAS

Son regiones que concentran una **alta variedad de especies vegetales**, muchas de ellas **endémicas**.

En México destacan:

- Sierra Madre del Sur
- Chiapas y Oaxaca
- Cuenca del Balsas

- Selva Lacandona
- Península de Yucatán

Estos lugares son clave para la conservación de flora única.

ESPECIE ENDÉMICA

Una especie endémica es aquella que solo habita en una región geográfica específica y no se encuentra naturalmente en ninguna otra parte del mundo.

Ejemplos de especies endémicas mexicanas:

- Ajolote (Ambystoma mexicanum)
- Pino de Jalisco
- Teporingo o zacatuche (conejo del volcán)
- · Guacamaya verde
- Cacomixtle

ÁREAS DE AVES ENDÉMICAS

México cuenta con **14 áreas reconocidas** por su alta concentración de **aves endémicas**, ubicadas principalmente en:

- Sierra Madre Occidental y Oriental
- Altiplano Central
- Península de Baja California
- Región de los Tuxtlas (Veracruz)
- Sierra de Manantlán
- Yucatán y selvas tropicales del sureste

Estas zonas son prioritarias para la conservación.

RIQUEZA MARINA

México tiene acceso a **dos océanos**: el Pacífico y el Atlántico (Golfo de México y Mar Caribe), lo que lo convierte en un país con **alta biodiversidad marina**.

- Más de 2,000 especies de peces marinos.
- Gran cantidad de corales, moluscos, mamíferos marinos y tortugas.
- Ecosistemas como manglares, arrecifes coralinos, lagunas costeras y marismas.

Destacan:

- Arrecife Mesoamericano (el segundo más grande del mundo).
- Mar de Cortés, también llamado "el acuario del mundo".

AMENAZAS A LA BIODIVERSIDAD

- 1. Deforestación y cambio de uso de suelo
- 2. Contaminación del agua, suelo y aire
- 3. Caza y pesca ilegal
- 4. Cambio climático
- 5. Especies invasoras
- 6. Urbanización descontrolada
- 7. Sobreexplotación de recursos naturales

Estas actividades humanas ponen en riesgo ecosistemas completos.

EXTINCIÓN DE ESPECIES

La **extinción** es la desaparición total de una especie. Puede ocurrir de forma natural, pero hoy en día está fuertemente **acelerada por la actividad humana**.

Ejemplos de especies mexicanas extintas o en peligro:

- Extintas: Carpita del Ameca, Zampullín de Atitlán.
- En peligro crítico: Vaquita marina, Ajolote, Jaguar, Perrito de San Pedro.

La extinción afecta la cadena alimenticia y el equilibrio ecológico, por lo que su prevención es clave para el medio ambiente.

Cuestionario de repaso

- 1. ¿Qué significa que México sea un país megadiverso?
- 2. ¿Qué factores geográficos y ecológicos contribuyen a la biodiversidad de México?
- 3. ¿Qué es una especie endémica? Da dos ejemplos.
- 4. ¿Por qué son importantes los centros de diversidad de plantas?
- 5. ¿Dónde se localizan la mayoría de las áreas de aves endémicas en México?
- 6. ¿Qué ecosistemas marinos hacen única a la biodiversidad marina mexicana?
- 7. ¿Qué impacto tiene el cambio climático en la biodiversidad?
- 8. Menciona tres amenazas actuales para la biodiversidad en México.
- 9. ¿Qué es la extinción y por qué ocurre con mayor frecuencia hoy?
- 10. ¿Cómo podemos contribuir a la conservación de la biodiversidad?