

Nombre de la Institución: Instituto Tecnológico de Culiacán

Nombre de la Carrera: Ingeniería en Sistemas Computacionales

Materia: Inteligencia Artificial

Jesús Arnoldo Báez Sauceda

Juan Carlos Quiñonez Madrid

1. Descripción Detallada del Problema

En el mundo actual, donde los vehículos se han convertido en una necesidad básica para la mayoría de las familias y profesionales, el desconocimiento sobre el mantenimiento y diagnóstico de fallas vehiculares representa un problema significativo. La complejidad de los sistemas modernos de los automóviles, que combinan componentes mecánicos, electrónicos y computarizados, hace que los conductores comunes se sientan completamente dependientes de los talleres mecánicos, generando una serie de inconvenientes:

Problemas económicos:

- Los costos de reparación suelen ser elevados e impredecibles
- Existe un alto riesgo de pagar por reparaciones innecesarias
- Muchos talleres aprovechan el desconocimiento de los clientes para recomendar servicios adicionales

Problemas de tiempo:

- Los diagnósticos manuales pueden tardar horas o incluso días
- La falta de precisión en el diagnóstico inicial alarga el proceso de reparación
- Los conductores pierden tiempo valioso llevando el vehículo al taller repetidamente

Problemas de confianza:

- Desconfianza generalizada hacia los talleres mecánicos
- Dificultad para verificar si el diagnóstico recibido es correcto
- Incertidumbre sobre si las piezas cambiadas realmente estaban dañadas

Los síntomas más comunes que los conductores reportan incluyen:

- Luces de advertencia en el tablero que no saben interpretar
- Ruidos anormales que aparecen repentinamente
- Pérdida de potencia o rendimiento del motor
- Problemas eléctricos intermitentes
- Consumo excesivo de combustible
- Vibraciones inusuales al conducir

2. Objetivos Detallados del Sistema Experto

El sistema experto propuesto busca revolucionar la forma en que los conductores comunes interactúan con el mantenimiento de sus vehículos a través de los siguientes objetivos principales:

Objetivo Central:

Desarrollar una plataforma accesible e intuitiva que permita a cualquier conductor, sin conocimientos técnicos previos, entender y diagnosticar problemas básicos y complejos de su vehículo.

Objetivos Específicos:

1. Democratización del conocimiento automotriz:

- o Traducir términos técnicos complejos a lenguaje cotidiano
- o Explicar conceptos mecánicos básicos con analogías comprensibles
- o Proporcionar ejemplos visuales (imágenes, diagramas simplificados)

2. Proceso de diagnóstico guiado:

- Sistema de preguntas y respuestas interactivas
- o Flujo lógico que descarta posibilidades paso a paso
- o Adaptación dinámica basada en las respuestas del usuario

3. Priorización de soluciones:

- Clasificar problemas por nivel de urgencia (crítico, importante, mantenimiento)
- o Diferenciar entre soluciones temporales y permanentes
- Distinguir entre reparaciones que pueden hacerse en casa y las que requieren taller

4. Prevención y mantenimiento:

- o Recordatorios de mantenimiento básico
- o Guías visuales para revisiones periódicas
- o Alertas sobre problemas comunes según marca/modelo del vehículo

5. Integración tecnológica:

- o Compatibilidad con scanners OBD2 básicos
- o Base de datos de códigos de error comunes
- Posibilidad de cargar fotos/videos de los problemas

3. Fuentes de Información Detalladas

Para garantizar la precisión y confiabilidad del sistema, se integrarán múltiples fuentes de información:

Fuentes Técnicas Estructuradas:

1. Documentación oficial:

- Manuales del usuario de más de 50 marcas vehiculares
- o Guías técnicas de mantenimiento básico
- Diagramas de sistemas principales (frenos, motor, eléctrico)

2. Bases de datos especializadas:

- o Librería completa de códigos OBD2 y su interpretación
- o Estadísticas de fallas por modelo y año de fabricación
- o Datos de problemas recurrentes reportados por fabricantes

3. Información de mantenimiento:

- o Intervalos de cambio de fluidos y componentes
- o Especificaciones técnicas por modelo (tipos de aceite, bujías, etc.)
- o Procesos de mantenimiento preventivo

Conocimiento Experto:

1. Asesoría profesional:

- o Entrevistas con más de 100 mecánicos certificados
- o Análisis de casos reales de talleres asociados
- o Participación de ingenieros automotrices en el diseño del sistema

2. Inteligencia colectiva:

- Análisis de foros automotrices (más de 10,000 casos documentados)
- Reportes de asociaciones de consumidores automotrices
- o Datos de talleres certificados por marcas

Contenido Multimedia:

1. Biblioteca visual:

- o Catálogo de imágenes de piezas y su ubicación
- o Videos demostrativos de problemas comunes
- o Animaciones explicativas de sistemas vehiculares

2. Base de sonidos:

- o Grabaciones de ruidos típicos asociados a fallas específicas
- o Ejemplos comparativos (sonido normal vs. anormal)

Ejemplo Ampliado de Funcionamiento:

Caso: El usuario reporta que "el auto tiembla al acelerar y el consumo de combustible ha aumentado"

Proceso del sistema:

1. Preguntas iniciales:

- o ¿El problema ocurre en frío o con el motor caliente?
- o ¿El temblor es constante o intermitente?
- o ¿Hay alguna luz encendida en el tablero?

2. Análisis de respuestas:

- o Si ocurre principalmente en frío → posibles problemas de bujías o inyectores
- o Si es constante → posible desbalanceo o problema de combustión
- Si hay luz Check Engine → solicitar código de error

3. Diagnóstico probable:

- o 70%: Bujías en mal estado o con brecha incorrecta
- 20%: Inyectores de combustible sucios
- o 10%: Problema en sensores de oxígeno

4. Recomendaciones:

- o Primeros pasos: Verificar estado de bujías (con guía visual paso a paso)
- Solución temporal: Usar aditivo para limpieza de inyectores
- Taller recomendado: Si persiste después de cambiar bujías, revisar compresión

5. Información adicional:

- o Costo estimado de reparación (rango de precios)
- o Tiempo promedio que puede durar el problema sin atención
- o Riesgos de no atender la falla

Beneficios Ampliados del Sistema:

1. Empoderamiento del conductor:

- o Comprensión real del estado de su vehículo
- o Capacidad para tomar decisiones informadas
- o Reducción de la ansiedad ante problemas mecánicos

2. Ahorro económico:

- o Evita gastos en diagnósticos profesionales simples
- o Previene daños mayores por falta de atención
- o Permite comparar costos de reparación reales

3. Seguridad vial:

- o Identificación temprana de problemas peligrosos
- o Conciencia sobre el estado real del vehículo
- o Reducción de accidentes por fallas mecánicas

4. Sostenibilidad:

- o Promueve el mantenimiento preventivo
- o Reduce el cambio innecesario de piezas
- o Extiende la vida útil del vehículo

Implementación Tecnológica:

El sistema estaría disponible a través de:

- Aplicación móvil con reconocimiento de voz para reportar problemas
- Plataforma web con asistente virtual interactivo
- Versión para talleres con funciones avanzadas
- Integración con dispositivos IoT para monitoreo vehicular

Perspectivas de Desarrollo Futuro:

- Incorporación de inteligencia artificial para diagnóstico predictivo
- Sistema de alertas tempranas basado en patrones de conducción
- Red de talleres certificados asociados al sistema
- Comunidad de usuarios para compartir experiencias y soluciones

Fuentes Bibliográficas:

https://www.automotriz.net/manuales-taller/

https://www.gob.mx/profeco/documentos/alertas-automotrices

https://www.autosoporte.com/codigos-obd2/

https://www.mecanicaautomotriz.org/

https://www.manualesdetaller.net/

https://www.youtube.com/c/AutoMexTv