DYNAMIC PROGRAMMING

RECAP

PREVIOUSLY ON CMPUT 365

Compute v_{π} by iterative updates

$$v_i^{k+1} = \sum_{a} \pi(a \mid s_i) \left(r(s, a) + \gamma \sum_{j} p(s_i, a, s_j) v_j^k \right)$$

Can compute q_{π} the same way

DIRECTION

TODAY

Ways to use estimates of v_{π} to improve π

- Policy Improvement Theorem
- Policy Iteration
- Value Iteration

DYNAMIC PROGRAMMING

WHAT IS IT?

It is not the dynamic programming referred to in an algorithms courses

• The name comes from Bellman (1957)

Dynamic Programming is a class of algorithms that use value functions to organize and structure the search for π_*

Assume that a perfect model of the environment is known, e.g., $p(s', r \mid s, a)$ is known

There is no agent interacting with an environment

IMPROVING π

USING VALUE ESTIMATES

Assume we know q_{π} . How can we choose actions to improve π ?

IMPROVING π

USING VALUE ESTIMATES

Assume we know q_{π} . How can we choose actions to improve π ?

$$\pi'(s) \in \max_{a} q_{\pi}(s, a)$$

 π' is greedy with respect to q_π

Set action $A_t = \pi'(s)$ then take action according to π ,

IMPROVING π

USING VALUE ESTIMATES

Assume we know q_{π} . How can we choose actions to improve π ?

$$\pi'(s) \in \max_{a} q_{\pi}(s, a)$$

 π' is greedy with respect to q_π

Set action $A_t = \pi'(s)$ then take action according to π ,

It is not immediately clear that $v_{\pi'}(s) \ge v_{\pi}(s)$

$$\max_{a} q_{\pi}(s, a) \stackrel{?}{=} v_{\pi'}(s) - \text{usually not}$$

STATEMENT

For any policy π , if π' is a deterministic policy such that $\forall s \in \mathcal{S}$

$$q_{\pi}(s, \pi'(s)) \ge \nu_{\pi}(s),$$

then $\pi' \geq \pi$

STATEMENT

For any policy π , if π' is a deterministic policy such that $\forall s \in \mathcal{S}$

$$q_{\pi}(s, \pi'(s)) \geq \nu_{\pi}(s),$$

then $\pi' \geq \pi$

Being greedy with respect to q_{π} leads to a better policy

PROOF

$$v_{\pi}(s) \leq q_{\pi}(s, \pi'(s))$$

$$\vdots$$

$$= v_{\pi'}(s)$$

PROOF

$$\begin{split} v_{\pi}(s) &\leq q_{\pi}(s,\pi'(s)) \\ &= \mathbb{E}\left[R_{t+1} + \gamma v_{\pi}(S_{t+1}) \,|\, S_t = s, A_t = \pi'(s)\right] \\ &\leq \mathbb{E}\left[R_{t+1} + \gamma q_{\pi}(S_{t+1},\pi'(S_{t+1})) \,|\, S_t = s, A_t = \pi'(s)\right] \\ &= \mathbb{E}\left[R_{t+1} + \gamma \mathbb{E}\left[R_{t+2} + \gamma v_{\pi}(S_{t+2}) \,|\, S_t = s, A_t = \pi'(S_t), A_{t+1} = \pi'(S_{t+1})\right] \,|\, S_t = s, A_t = \pi'(s)\right] \\ &= \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 v_{\pi}(S_{t+2}) \,|\, S_t = s, A_t = \pi'(S_t), A_{t+1} = \pi'\right] \\ &\leq \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 q_{\pi}(S_{t+2}, \pi'(S_{t+1})) \,|\, S_t = s, A_t = \pi'(S_t), A_{t+1} = \pi'\right] \\ &\vdots \\ &\leq \mathbb{E}\left[R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \dots \,|\, S_t = s, A_t = \pi'(S_t), A_{t+1} = \pi'(S_{t+1}), A_{t+2} = \pi'(S_{t+2}), \dots\right] \\ &= v_{\pi}(s) \end{split}$$

Scott Jordan

SEARCHING FOR π_*

IDEA

Being greedy w.r.t q_{π} leads to a improved policy

Compute q_{π} —> compute π' as greedy on q_{π} —> compute $q_{\pi'}$ —> compute π'' —> ...

Scott Jordan

POLICY ITERATION

ALGORITHM

```
\pi^1 \leftarrow \text{initialize } \pi \text{ arbitrarily} for k \in \{1,2,\ldots\} q_{\pi^k} \leftarrow \text{compute\_value}(\pi^k,\mathcal{S},\mathcal{A},p,r,\gamma) \forall s \in \mathcal{S}, \ \pi^{k+1}(s) \leftarrow \arg\max_a q_{\pi^k}(s,a) \ \text{// break ties deterministically} if \forall s \in \mathcal{S}, \ \pi^{k+1}(s) = \pi^k(s) \ \text{// terminate when policy stops changing} return \pi^k \ \text{// } \pi^k \text{ is optimal}
```

POLICY ITERATION

ALGORITHM

```
\pi^1 \leftarrow \text{initialize } \pi \text{ arbitrarily} for k \in \{1,2,\ldots\} q_{\pi^k} \leftarrow \text{compute\_value}(\pi^k,\mathcal{S},\mathcal{A},p,r,\gamma) \quad \text{Could take an infinite amount of time} \forall s \in \mathcal{S}, \ \pi^{k+1}(s) \leftarrow \arg\max_{a} q_{\pi^k}(s,a) \ \text{// break ties deterministically} if \forall s \in \mathcal{S}, \ \pi^{k+1}(s) = \pi^k(s) \ \text{// terminate when policy stops changing} \text{return } \pi^k \ \text{// } \pi^k \text{ is optimal}
```

POLICY ITERATION

PROBLEMS

Computing the value function can take an infinite number of Bellman operator updates

New idea: perform K Bellman operator updates to estimate q_π

 $\pi' \geq \pi$ — not guaranteed, but

 $\lim_{k\to\infty}v_{\pi^k}\to v_{\pi_*}$, i.e., this process still finds the optimal policy eventually

For K=1 this algorithm is called Value Iteration

ALGORITHM — VERSION 1

 $v^0 \leftarrow \text{ initialize value estimates (usually } v_i^0 = 0)$

For
$$k \in \{1, 2, 3, ...\}$$

$$\forall i, \ \pi^k(s_i) \leftarrow \arg\max_a r(s_i, a) + \gamma \sum_j p(s_i, a, s_j) v_j^{k-1}$$

$$\forall i, \ v_i^k \leftarrow r(s_i, \pi^k(s_i)) + \gamma \sum_{j} p(s_i, \pi^k(s_i), s_j) v_j^{k-1}$$

If π^k OPTIMAL terminate

Repeated computation for π^k and v^k

ALGORITHM — VERSION 2

 $v^0 \leftarrow \text{ initialize value estimates (usually } v_i^0 = 0)$

For $k \in \{1, 2, 3, ...\}$

$$\forall i, \ v_i^k \leftarrow \max_a r(s_i, a) + \gamma \sum_j p(s_i, a, s_j) v_j^{k-1}$$

If π^k OPTIMAL terminate

Policy is implicitly defined based on v^k

ALGORITHM — VERSION 2

 $v^0 \leftarrow \text{ initialize value estimates (usually } v_i^0 = 0)$

For $k \in \{1, 2, 3, ...\}$

$$\forall i, \ v_i^k \leftarrow \max_a r(s_i, a) + \gamma \sum_j p(s_i, a, s_j) v_j^{k-1}$$

If π^k OPTIMAL terminate

How do we know when to terminate?

TERMINATION

If
$$\forall i$$
, $v^{k+1} = v^k$ then $v^k = v_{\pi^k}$

TERMINATION

If
$$\forall i$$
, $v^{k+1} = v^k$ then $v^k = v_{\pi^k}$

Bellman Optimality Equation: $v_*(s) = \max_a r(s, a) + \gamma \sum_{s'} p(s, a, s') v_*(s')$

 $\pi^k \in \Pi_*$, the optimal policy is reached

TERMINATION

If
$$\forall i$$
, $v^{k+1} = v^k$ then $v^k = v_{\pi^k}$

Bellman Optimality Equation: $v_*(s) = \max_a r(s, a) + \gamma \sum_{s'} p(s, a, s') v_*(s')$

 $\pi^k \in \Pi_*$, the optimal policy is reached

For
$$k < \infty \|v^{k+1} - v^k\|_{\infty} > 0$$

Takes an infinite number of updates for the value estimate to converge

TERMINATION

Stop when v^k is close to v_* , π^k is probably optimal, or at least good enough.

$$\|\mathbf{v}^k - \mathbf{v}_*\|_{\infty} \le \epsilon$$

Return π^k

How do we know $||v^k - v_*||_{\infty}$?

TERMINATION

$$\|\mathbf{v}^{k+1} - \mathbf{v}^k\|_{\infty} < \epsilon$$

then
$$\|v_{\pi^k} - v_*\|_{\infty} \le \frac{2\epsilon\gamma}{1-\gamma}$$

For proof

Williams, Ronald J., and Leemon C. Baird. *Tight performance bounds on greedy policies based on imperfect value functions*. Tech. rep. NU-CCS-93-14, Northeastern University, College of Computer Science, Boston, MA, 1993.

ALGORITHM — VERSION 2

 $v^0 \leftarrow \text{ initialize value estimates (usually } v_i^0 = 0)$

For
$$k \in \{1, 2, 3, ...\}$$

$$\forall i, \ v_i^k \leftarrow \max_a r(s_i, a) + \gamma \sum_j p(s_i, a, s_j) v_j^{k-1}$$

If
$$\max_{i} |v_i^k - v_i^{k-1}| < \epsilon$$

Return π^k

PROOF THAT $v^k \rightarrow v_*$

$$\lim_{k \to \infty} v^k \to v_*$$

Recall that the Bellman Operator was a contraction mapping

Thus, converged to v_{π}

Define $\mathcal{T}: \mathbb{R}^{|\mathcal{S}|} \to \mathbb{R}^{|\mathcal{S}|}$

$$\mathcal{T}(v)_i = \max_a r(s_i, a) + \gamma \sum_j p(s_i, a, s_j) v_j$$

Show \mathcal{T} is a contraction mapping, then $v^k \to v_*$

PROOF THAT $v^k \rightarrow v_*$

Need to use the following property

Let $f\colon \mathcal{X} \to \mathbb{R}$ and $g\colon \mathcal{X} \to \mathbb{R}$ be functions on arbitrary sets \mathcal{X}

We have that:

$$\max_{x \in \mathcal{X}} f(x) - \max_{x \in \mathcal{X}} g(x) \le \max_{x \in \mathcal{X}} |f(x) - g(x)|$$

CONTRACTION MAPPING

$$\|\mathcal{T}(v) - \mathcal{T}(v')\|_{\infty} = \max_{i} |\mathcal{T}(v)_{i} - \mathcal{T}(v')_{i}|$$

$$\vdots$$

$$\leq \gamma \|v - v'\|_{\infty}$$

CONTRACTION MAPPING

$$\|\mathcal{T}(v) - \mathcal{T}(v')\|_{\infty} = \max_{i} \|\mathcal{T}(v)_{i} - \mathcal{T}(v')_{i}\|$$

$$= \max_{i} \left| \max_{a} \left(r(s, a) + \gamma \sum_{j} p(s_{i}, a, s_{j})v_{j} \right) - \max_{a} \left(r(s, a) + \gamma \sum_{j} p(s_{i}, a, s_{j})v_{j}' \right) \right|$$

$$\leq \max_{i} \max_{a} \left| r(s, a) + \gamma \sum_{j} p(s_{i}, a, s_{j})v_{j} - r(s, a) - \gamma \sum_{j} p(s_{i}, a, s_{j})v_{j}' \right|$$

$$= \max_{i} \max_{a} \left| \gamma \sum_{j} p(s_{i}, a, s_{j})(v_{j} - v_{j}') \right|$$

$$= \max_{i} \max_{a} \gamma \sum_{j} p(s_{i}, a, s_{j}) \left| (v_{j} - v_{j}') \right|$$

$$\leq \max_{i} \max_{a} \gamma \sum_{j} p(s_{i}, a, s_{j}) \max_{k} \left| (v_{k} - v_{k}') \right|$$

$$= \max_{i} \max_{a} \gamma \max_{k} \left| (v_{k} - v_{k}') \right|$$

$$= \max_{i} \max_{a} \gamma \max_{k} \left| (v_{k} - v_{k}') \right|$$

$$= \gamma \max_{k} \left| (v_{k} - v_{k}') \right|$$

$$= \gamma \|v - v'\|_{\infty}$$

NEXT CLASS

WHAT YOU SHOULD DO

1. Programming assignment due Wednesday night

Wednesday: Exercises