Feedback — Elementary Sorts

Help Center

You submitted this quiz on **Sun 13 Sep 2015 4:39 PM EDT**. You got a score of **1.48** out of **3.00**. You can attempt again, if you'd like.

To specify an array or sequence of values in an answer, separate the value s in

the sequence by whitespace. For example, if the question asks for the firs

ten powers of two (starting at 1), then the following answer is acceptabl e:

1 2 4 8 16 32 64 128 256 512

If you wish to discuss a particular question and answer in the forums, ple ase

post the entire question and answer, including the seed (which can be used by

the course staff to uniquely identify the question) and the explanation (w

contains the correct answer).

Question 1

(seed = 882703)

Give the array that results after the first 4 exchanges when selection sorting the

following array:

31 90 67 59 22 41 44 81 27 49

Your answer should be a sequence of 10 integers, separated by whitespace.

You entered:

22 27 31 41 90 59 44 81 67 49

Your Answer		Score	Explanation
22 27 31 41 90 59 44 81 67 49	×	0.00	
Total		0.00 / 1.00	

Question Explanation

The correct answer is: 22 27 31 41 67 59 44 81 90 49

Here is the array after each exchange:

31 90 67 59 22 41 44 81 27 49

1: 22 90 67 59 31 41 44 81 27 49

2: 22 27 67 59 31 41 44 81 90 49

3: 22 27 31 59 67 41 44 81 90 49

4: 22 27 31 41 67 59 44 81 90 49

Question 2

(seed = 196599)

The column on the left contains an input array of 16 strings to be sorted; the column

on the right contains the strings in sorted order; each of the other 6 columns contains

the array at some intermediate step during either insertion sort, selection sort, or shellsort

(with different columns potentially corresponding to different algorithms).

MUSE	MUSE	BLUR	BLUR	BLUR	BLUR	BLUR	BLUR
CAKE	CAKE	BUSH	CAKE	BUSH	BUSH	BUSH	BUSH
TOTO	TACO	CAKE	BUSH	CAKE	CAKE	CAKE	CAKE
RUSH	RUSH	CARS	CARS	CARS	CARS	CARS	CARS
BLUR	BLUR	CHER	CHER	KISS	MUSE	CHER	CHER
WEEN	WEEN	KISS	PINK	MUSE	RUSH	WEEN	KISS
BUSH	BUSH	MUSE	TACO	RUSH	TOTO	TOT0	MUSE
CARS	CARS	PINK	RUSH	SOAD	WEEN	RUSH	PINK
KISS	KISS	WEEN	KISS	TOT0	KISS	KISS	RUSH
SOAD	SOAD	SOAD	SOAD	WEEN	SOAD	SOAD	SOAD

WHAM	WHAM	WHAM	TUFF	WHAM	WHAM	WHAM	TAC0
TS0L	TS0L	TS0L	TOTO	TS0L	TS0L	TS0L	T0T0
CHER	CHER	TOT0	MUSE	CHER	CHER	MUSE	TS0L
PINK	PINK	RUSH	WEEN	PINK	PINK	PINK	TUFF
TUFF	TUFF	TUFF	WHAM	TUFF	TUFF	TUFF	WEEN
TACO	TOTO	TACO	TS0L	TACO	TACO	TACO	WHAM
0	?	?	?	?	?	?	4

Match up each column with the corresponding sorting algorithm from the give n list:

- 0. Original input
- 1. Insertion sort
- 2. Selection sort
- 3. Shellsort (3x + 1 increments)
- 4. Sorted

You should use each choice at least once. Your answer should be a sequence of 8 integers

between 0 and 4 (starting with 0 and ending with 4), separated by whitespac e.

Hint: think about algorithm invariants. Do not trace code.

You entered:

01231124

Your Answer		Score	Explanation
0	~	0.12	
1	×	0.00	
2	~	0.12	
3	~	0.12	
1	~	0.12	
1	~	0.12	
2	~	0.12	

Question Explanation

The correct answer is: 0 3 2 3 1 1 2 4

- 0: Original input
- 3: Shellsort after 13-sorting
- 2: Selection sort after 8 iterations
- 3: Shellsort after 4-sorting
- 1: Insertion sort after 11 iterations
- 1: Insertion sort after 8 iterations
- 2: Selection sort after 5 iterations
- 4: Sorted

Question 3

(seed = 342879)

Which of the following statements about elementary sorting algorithms are t rue? Check all that apply. Unless otherwise specified, assume that the sort ing implementations are the ones from the lectures.

Your Answer		Score	Explanation
Insertion sort uses on ly a constant amount o f memory (other than t he input array).	×	0.00	This is a key property of insertion sort.
Suppose that we modify insertion sort to use binary search to locat e the position within the first i-1 entries of the array into which entry i should be in	•	0.20	The total number of compares becomes linearithmic (but number of exchanges is still quadratic). This is still a worthwhile improvement.

serted. Then, the numb er of compares to inse rtion sort an array of N elements is ~ N lg N in the worst case.		
The number of compares to selection sort a so rted array of N distin ct keys is ~ N.	✔ 0.20	Selection sort uses N(N-1)/2 compares to sort any array of N keys.
The number of compares to insertion sort an a rray of N/2 keys in st rictly increasing order followed by the same N/2 keys in strictly decreasing order (e.g., 0 1 2 3 4 4 3 2 1 0) i s ~1/8 N^2.	× 0.00	The number of inversions is $0 + 2 + 4 + 6 + + (N-2) \sim 1/4$ N^2. Thus, the number of compares is $\sim 1/4$ N^2.
The number of compares to selection sort a re verse-sorted array of N distinct keys is ~ 1/2 N^2.	✔ 0.20	Selection sort uses N(N-1)/2 compares to sort any array of N keys.
Total	0.60 / 1.00	