On the Subject of Boolean Keypads

Whoever designs these modules must really like Boolean logic.

IF AND ONLY IF a buttons operation results in a True value shall the button be pressed. Buttons must be pressed IN READING ORDER.

Operations

Buttons can have one of the following boolean operations:

- AND
- OR
- XOR
- NAND
- NOR
- XNOR

The operation is determined by the symbol on the button. Please refer to the following table:

Symbol Table

AND	OR	XOR	NAND	NOR	XNOR
પ	ננ	٨	† ,	ω	Ъ
H	3	Ф	Ь	=	ζ
7	Н	3	Q	Ž	ي
Ъ	ی	Л	Ф	X	ŗ
Я	, 1	%	Т	\oint_{\circ}	
ۺ)	Э	@	L	Ы

Evaluating the Operation

- 1. Find out the input values of the button. This is done by looking at the LEDs above and to the right of the button: ON = True, OFF = False
- 2. Find out the operation on the button by referring to the table above.
- 3. Evaluate the operation with the given inputs. In case you don't know how and don't wanna blow up, refer to the last section.

Logic Gate Identification Reference

- An AND gate returns TRUE only if both inputs are TRUE.
- . An OR gate returns TRUE if at least one input is TRUE.
- An XOR gate returns TRUE if exactly one input is TRUE.
- A NAND gate returns FALSE if both inputs are TRUE. Otherwise, it returns TRUE.
- A NOR gate returns FALSE if at least one input is TRUE. Otherwise, it returns TRUE.
- An XNOR gate returns TRUE if both inputs are equal.