

Fahrerassistenzsysteme im Kraftfahrzeug

Prof. Dr.-Ing. Markus Lienkamp

Vorlesungsübersicht

01 Einführung	01 Einführung	01 Übung Einführung
28.04.2022 - Prof. Lienkamp	28.04.2022 - Prof. Lienkamp	28.04.2022 - Hoffmann
02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I	02 Sensorik / Wahrnehmung I
05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp	05.05.2022 – Prof. Lienkamp
03 Sensorik / Wahrnehmung II	03 Sensorik / Wahrnehmung II	03 Übung Sensorik / Wahrnehmung II
12.05.2022 – DrIng. Diermeyer	12.05.2022 – DrIng. Diermeyer	12.05.2022 – Schimpe
04 Sensorik / Wahrnehmung III	04 Sensorik / Wahrnehmung III	04 Übung Sensorik / Wahrnehmung III
19.05.2022 – Schimpe	19.05.2022 – Schimpe	19.05.2022 – Schimpe
05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler	05 Funktionslogik / Regelung 02.06.2022 – DrIng. Winkler
06 Übung Funktionslogik / Regelung 09.06.2022 – DrIng. Winkler	06 Funktionale Systemarchitektur 09.06.2022 – Prof. Lienkamp	06 Aktorik 09.06.2022 – Prof. Lienkamp
07 Deep Learning	07 Deep Learning	07 Übung Deep Learning
23.06.2022 – Majstorovic	23.06.2022 – Majstorovic	23.06.2022 – Majstorovic
08 MMI 30.06.2022 – Prof. Bengler	08 MMI 30.06.2022 – Prof. Bengler	08 MMI Übung 30.06.2022 – Prof. Bengler
09 Controllability 07.07.2022 – Prof. Bengler	09 Controllability 07.07.2022 – Prof. Bengler	09 Übung Controllability 07.07.2022 – Winkle
10 Entwicklungsprozess	10 Entwicklungsprozess	10 Übung Entwicklungsprozess
14.07.2022 – DrIng. Diermeyer	14.07.2022 – DrIng. Diermeyer	14.07.2022 – Hoffmann
11 Analyse und Bewertung FAS	11 Analyse und Bewertung FAS	11 Übung Analyse und Bewertung FAS
21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig	21.07.2022 – DrIng. Feig
12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme	12 Aktuelle und künftige Systeme
28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp	28.07.2022 – Prof. Lienkamp

Übung Einführung Simon Hoffmann, M.Sc.

Agenda

- 1. Grundlagen der Fahrdynamik
- 2. Grundlagen der Regelungstechnik

Übung Einführung Simon Hoffmann, M.Sc.

Agenda

- 1. Grundlagen der Fahrdynamik
- 2. Grundlagen der Regelungstechnik

Umfrage

- 谁知道贪婪率是多少?
- 谁知道浮动角这个词?
- 谁知道 "倾斜刚度 "这个词?
- Wer kennt den Begriff Gierrate?
- Wer kennt den Begriff Schwimmwinkel?
- Wer kennt den Begriff Schräglaufsteifigkeit?

Koordinatensystem zur Definition von Fahrzeugbewegungen

Betrachtung im fahrzeugfesten, horizontierten Koordinatensystem

1. Grundlagen der Fahrdynamik Ü1- 6

Ü1-7

Einspurmodell – Annahmen

Einfachstes Fahrzeugmodell, das Querdynamik abbildet

Vereinfachungen:

Räder einer Achse werden

zusammengefasst

Schwerpunkt befindet sich auf Fahrbahnhöhe

- | kein Wanken
- kein Nicken
- keine Radlastunterschiede vorne/hinten
- Fahrzeuglängsgeschwindigkeit ist konstant
- keine Vertikaldynamik
- kleine Winkel

 $y \triangleleft$

Kurvenfahrt ohne Querbeschleunigung

 Bei langsamer Kurvenfahrt quasi ohne Querbeschleunigung rollen die Reifen entlang ihrer Längsachsen ab

 $\delta_{\rm f} = \delta_{\rm A}$

→ Momentanpol liegt auf Höhe der Hinterachse

ightarrow Lenkwinkel ist der Ackermannlenkwinkel $\delta_{\rm A}$

 \rightarrow es wird der Bahnradius R_A gefahren

Bahnkurve

Kurvenfahrt mit Querbeschleunigung

 Seitenkraftübertragung erfordert Schräglauf der Reifen

- → Schräglaufwinkel bauen sich durch zusätzliche Querbewegung der Radaufstandspunkte auf
- → Momentanpol wandert nach vorne
- → Schwimmwinkel baut sich auf

Momentanpol Bahnradius R

Übung Einführung Simon Hoffmann, M.Sc.

Agenda

- 1. Grundlagen der Fahrdynamik
- 2. Grundlagen der Regelungstechnik

Umfrage

- Wer hat die Grundlagenvorlesung "Regelungstechnik" von Prof. Lohmann gehört?
- Wer hat die Vorlesung "Systemtheorie" von Prof. Lohmann gehört?
- Wer hat die Vorlesungen "Moderne Methoden der Regelungstechnik" von Prof. Lohmann gehört?

Motivation

Anwendung von Systemtheorie / Regelungstechnik in VL-Kapiteln

02 Sensorik / Wahrnehmung I

03 Sensorik / Wahrnehmung II

04 Sensorik / Wahrnehmung III

05 Funktionslogik / Regelung

06 Funktionale Systemarchitektur / Aktorik

Umgebungsrepräsentation

Objekttracking

Selbstrepräsentation

Sensordatenfusion

Längs-/Querführung

Trajektorienplanung

Definition System (abstrakt)

Definition (System):
 Durch den Anwender gegenüber der Umgebung abgegrenzter
 Prozessteil, der über Ein- und Ausgangssignale mit der Umgebung in Verbindung steht.

Quelle: Systemtheorie der Mechatronik (Prof. Lohmann)

Definition System (anschaulich)

Definition (System):
 Durch den Anwender gegenüber der Umgebung abgegrenzter
 Prozessteil, der über Ein- und Ausgangssignale mit der Umgebung in Verbindung steht.

Einführung Regelungstechnik

Ziel Regelungstechnik:

- gezielte Beeinflussung der Ausgangsgrößen
- Dynamik des Systems
- Stabilität von
 - systeminterne Größen (Übertragungsfunktion Pole, Nullstellen)
 - Ein-/Ausgangsgrößen (Übertragungsstabilität)

bestimmte Musgara

Standardregelkreis (abstrakt)

Modellierung

- Modell = vereinfachtes Abbild der Realität
- Vereinfachung ist stark abhängig von Funktion
- Extrembeispiele
 - Tempomat (Längsführung)
 vs.
 - hochautomatisiertes Fahrzeug (Längs- und Querführung)

1-D Masse-Modell (zeitkontinuierlich)

Physikalische Gleichung:

$$u = \ddot{x}(t) = \frac{1}{m} F(t)$$
 (Newton)

Zustandsgrößen:

$$\mathbf{x}(t) = \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}$$

 $\mathbf{x}(t) = \begin{bmatrix} x(t) \\ \dot{x}(t) \end{bmatrix}$...einmal abgeleitet... $\dot{\mathbf{x}}(t) = \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix}$

$$\dot{\boldsymbol{x}}(t) = \begin{bmatrix} \dot{x}(t) \\ \ddot{x}(t) \end{bmatrix}$$

Umformung zu einem allgemeinen Zustandsraum-Modell der Form

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A} \cdot \boldsymbol{x}(t) + \boldsymbol{b} \cdot \boldsymbol{u}(t),$$

$$\mathbf{y}(\mathbf{t}) = \mathbf{C} \cdot \mathbf{x}(t) + \mathbf{d} \cdot u(t)$$

$$\mathbf{y}(t) = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \cdot \mathbf{x}(t)$$

2-D Masse-Modell (zeitkontinuierlich)

$$\dot{y}(t) = \frac{1}{m} F_{X}(t)$$

$$\dot{v}_{Y}(t) = \frac{1}{m} F_{Y}(t)$$

$$\dot{v}_{Y}(t) = \frac{1}{m} F_{Y}(t)$$

■ Umformung mit
$$x(t) = \begin{bmatrix} x(t) \\ y(t) \\ v_X(t) \end{bmatrix} = \begin{bmatrix} x(t) \\ y(t) \\ \dot{x}(t) \\ \dot{y}(t) \end{bmatrix}$$

$$\begin{bmatrix}
\dot{x}(t) \\
\dot{y}(t)
\end{bmatrix}$$

$$\dot{x}(t) = \left\{ -x(t) + \beta - u(t) \right\}$$

1-D Masse-Modell (zeitdiskret, k = Zeitschritte)

Gleichung:

$$x_k = x_{k-1} + \Delta T \cdot v_{k-1}$$

Annahme:

$$v = \text{const.}$$

• Umformung:

$$\begin{bmatrix} x \\ v \end{bmatrix}_k = \begin{bmatrix} 1 & \Delta T \\ 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ v \end{bmatrix}_{k-1}$$

2-D Masse-Modell (zeitdiskret, k = Zeitschritte)

Gleichung:

$$\begin{vmatrix} x_k = x_{k-1} + \Delta T \cdot v_{X,k-1} \\ y_k = y_{k-1} + \Delta T \cdot v_{Y,k-1} \end{vmatrix}$$

Annahme:

$$v = \text{const.}$$

Umformung:

$$\begin{bmatrix} x \\ y \\ v_{X} \\ v_{Y} \end{bmatrix}_{k} = \begin{bmatrix} 1 & 0 & \Delta T & 0 \\ 0 & 1 & 0 & \Delta T \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ v_{X} \\ v_{Y} \end{bmatrix}_{k-1}$$

Aussagekraft verschiedener Fahrzeugmodelle

Parameteranzahl

Einspurmodell – Lineares Zustandsraummodell

$$\underline{\dot{x}} = \begin{pmatrix}
-\frac{c_{\alpha,f} + c_{\alpha,r}}{mv} & -1 + \frac{l_r c_{\alpha,r} - l_f c_{\alpha,f}}{mv^2} \\
\frac{l_r c_{\alpha,r} - l_f c_{\alpha,f}}{J_{ZZ}} & -\frac{l_f^2 c_{\alpha,f} + l_r^2 c_{\alpha,r}}{J_{ZZ}v}
\end{pmatrix} \cdot \underline{x} + \begin{pmatrix}
\frac{c_{\alpha,f}}{mv} \\
\frac{l_f c_{\alpha,f}}{J_{ZZ}}
\end{pmatrix} \cdot u$$

Zustandsgrößen

$$\underline{x} = \begin{pmatrix} \beta \\ \dot{\psi} \end{pmatrix}$$

Eingangsgröße $u = \delta_{\rm f}$

Als Ausgang wird hier die Querbeschleunigung gewählt:

$$a_{Y} = \beta \cdot \left(-\frac{c_{\alpha,f} + c_{\alpha,r}}{m}\right) + \dot{\psi} \cdot \left(\frac{l_{r}c_{\alpha,r} - l_{f}c_{\alpha,f}}{mv}\right) + \delta_{f} \cdot \frac{c_{\alpha,f}}{m}$$

$$\underline{y} = \left(-\frac{c_{\alpha,f} + c_{\alpha,r}}{m} \quad \frac{l_r c_{\alpha,r} - l_f c_{\alpha,f}}{mv} \right) \cdot \underline{x} + \left(\frac{c_{\alpha,f}}{m} \right) \cdot u$$

Ausgangsgrößen

$$\underline{y} = \begin{pmatrix} a_{\mathrm{Y}} \\ \dot{\psi} \end{pmatrix}$$

Signalflussplan einer geregelten Strecke

Allgemeines Zustandsraum-Modell:

$$\dot{\boldsymbol{x}}(t) = \boldsymbol{A} \cdot \boldsymbol{x}(t) + \boldsymbol{b} \cdot \boldsymbol{u}(t),$$
 $\boldsymbol{y}(t) = \mathbf{c}^{\mathrm{T}} \cdot \boldsymbol{x}(t) + \boldsymbol{d} \cdot \boldsymbol{u}(t)$