Advanced Software Software Engineering 2023

Green Vehicle Routing Problem

Beschreibung | http://www.vrp-rep.org/variants/item/g-vrp.html

The vertex set is made up of a depot (vertex 0), a set of n customers and a set of s refuelling stations. It is assumed that all the refuelling stations can handle an unlimited number of vehicles. An unlimited fleet of alternative fuel vehicles (AFVs) is based at the depot. The objective is to find m routes for m AFVs (m unrestricted) such that each customer is visited by exactly one route and the sum of the routes' distances is minimized. Each route can travel a maximum driving distance without refuelling of Q units and has a maximum driving time T. A route travelling from i to j consumes c(ij) units of distance and t(ij) units of time. The time t(ij) is assumed to be proportional to the distance c(ij) from i to j and computed as t(ij)=c(ij)/v where v is the vehicle speed. A route visiting a customer i consumes a service time s(i) and a route visiting a refuelling station k consumes a refuelling time r(k)(service times are assumed equal for all customers, refuelling times are assumed equal for all stations). It is also assumed that the refuelling time is incurred when leaving the depot for the first time. The time consumption of a route cannot exceed T and the distance consumption of a route cannot exceed Q. However, whenever a route visits a refuelling station its distance consumption is reset to 0.

Bearbeitung | Team | 2 (S01, S02), 3 (S01, S02, S03) oder 4 Studierende (S01, S02, S03, S04). Implementierung einer technisch einwandfrei lauffähigen Applikation in Java 17.0.7 (LTS).

- S01 | Import und Zielfunktion | 100 Punkte
 - [01a] Import der Dateninstanz (siehe Anlage)

25 Punkte (Implementierung: 20 Punkte | Test: 5 Punkte)

[01b] Zielfunktionⁱ zu Dateninstanz

25 Punkte (Implementierung: 20 | Test: 5 Punkte)

- [01c] Parallelisierte Bruteforce-Sucheⁱⁱ (1 Mrd. Iterationen). | 50 Punkte ▶ Basis Qualität
- S02 | Algorithmus | Parameteroptimierung | > 80% Basis Qualitätiii | 100 Punkte
 - [02a] Single-Threaded ACO (Implementierung: 35 Punkte | Test: 5 Punkte)
 - [02b] Multi-Threaded ACO (Implementierung: 55 Punkte | Test: 5 Punkte)
- S03 | Visualisierung mit JavaFX und Data Analytics | 100 Punkte
 - [03a] Konvergenz (20 Punkte), [03b] Touren (40 Punkte),
 - [03c] Bereiche mit hoher/niedriger Konvergenz (20 Punkte),
 - [03d] Anzahl Verbesserungen je Ameise bezüglich Gesamtanzahl Iterationen (20 Punkte).
- S04 | Graphischer Editor^{iv} in JavaFX zwecks Erstellung eigener Dateninstanz (100 Punkte)

Abgabe | 7-Zip-Datei mit IntelliJ-Projekt sowie readme.txt mit Zuordnung Aufgabe/Matrikelnummer.

Prof. Dr. Carsten Müller | Software Engineering

Datensatz

ID	Type	Longitude	Latitude
D	d	-77.49439265	37.6085124
F1	f	-76.338677	36.796046
F2	f	-77.08760885	39.45787498
F3	f	-78.656076	36.683343
F4	f	-77.7805233	38.5949498
F5	f	-77.6346422	36.0411489
F6	f	-78.662793	38.1516542
F7	f	-76.7016898	38.1591068
F8	f	-77.4972867	39.2386125
F9	f	-77.497103	37.8196863
F10	f	-77.7016264	36.5419902
C1	С	-78.0437897	39.2076926
C2	С	-77.4830207	38.6320579
С3	С	-76.5816904	38.5484459
C4	С	-76.6699444	39.2244848
C5	С	-76.5175185	38.8720171
C6	С	-76.9156324	39.4531152
C7	С	-76.9601149	39.4765768
C8	С	-76.8558316	38.0936128
C9	С	-76.7331691	38.2958019
C10	С	-77.0789373	37.0073934
C11	С	-76.6676795	38.5252501
C12	С	-79.1236556	37.1550335
C13	С	-76.6181277	39.0390968
C14	С	-78.1169379	37.3849536
C15	С	-77.2780601	36.8474804
C16	С	-78.6362676	37.1526609
C17	С	-77.3864664	39.1338399
C18	С	-76.9596143	36.6121017
C19	С	-77.7418786	35.0957116
C20	С	-77.933929	35.2200284

Vehicle Routing Problem (exemplarische Darstellung)

i Basis

Bedingungen | 1 Depot (D), 10 Tankstellen (F), 20 Kunden (C) mit je der Ortsangabe,

ein Fahrzeug besucht einmalig einen Kunden,

Depot verfügt über beliebige Anzahl von Fahrzeugen,

maximales Volumen Tank (Q): 60 Gallonen | Verbrauch pro Meile (r): 0,2 Gallonen,

maximale Durchschnittsgeschwindigkeit (v): 40 Meilen / Stunde,

konstante Verweil-/Servicedauer je Kunde: 30 Minuten.

konstante Dauer je Tankvorgang: 15 Minuten,

maximale Dauer bis alle Touren abgeschlossen sein müssen : 10:45 Stunden.

Gesucht | Minimale Wegstrecke unter Berücksichtigung der vorgenannten Bedingungen.

- ii In einem **Logfile bruteforce_gvrp.log** ist jede Verbesserung im Format Zeitstempel in Millisekunden | Touren | #Fahrzeuge #Tankstops | Gesamtdauer | Total Wegstrecke.
- iii Durch ggf. automatisierte Parameteroptimierung ist eine Lösungsqualität von 80% gegenüber der durch Bruteforce ermittelten kürzesten Wegstrecke sicherzustellen.
- iv In einem Arbeitsbereich (2D-Grid) können per Mausklick Knoten (Depot, Tankstelle(n) und Kunden) und Kanten definiert werden. Depot ist ein schwarzes Rechteck. Tankstelle(n) sind rote ausgefüllte Kreise. Kunden sind schwarze nicht-ausgefüllte Kreise. Aus der Positionierung der Knoten ergeben sich die Koordinaten, werden beim Speichern in das definierte Format in Longitude und Latitude umgewandelt.