MA 544: Homework 8

Carlos Salinas

 $March\ 7,\ 2016$

PROBLEM 8.1 (WHEEDEN & ZYGMUND §5, Ex. 2)

Show that the conclusion of (5.32) are not true without the assumption that $\varphi \in L(E)$. [In part (ii), for example, take $f_k = \chi_{(k,\infty)}$.]

Proof. (ii) Following the hint, consider the family of decreasing functions $f_k = \chi_{(k,\infty)}$ on \mathbf{R} which converge pointwise to 0. Since $\int_{\mathbf{R}} f_k = \int_{\mathbf{R}} \chi_{(k,\infty)} = |(k,\infty)| = \infty$ for all k, the sequence of integrals $\int_{\mathbf{R}} f_k \to \infty$, but $\int_{\mathbf{R}} 0 = 0$.

For part (i) we may again consider the indicator function $\chi_{(k,\infty)}$ and define $f_k := -\chi_{(k,\infty)}$. Then $f_k \nearrow 0$, but $\int_{\mathbf{R}} f_k = -\int_{\mathbf{R}} \chi_{(k,\infty)} = -\infty$ for all k.

Problem 8.2 (Wheeden & Zygmund §5, Ex. 4)

If $f \in L(0,1)$, show that $x^k f(x) \in L(0,1)$ for k = 1, 2, ..., and $\int_0^1 x^k f(x) dx \to 0$.

Proof. Since x^k is a polynomial and therefore continuous, x^k is measurable as a consequence of Theorem 4.3. Moreover, since $|x^k| \leq 1$ for all k, by Theorem 5.30, $x^k f \in L(0,1)$.

Now, by the Stone–Weistraß approximation theorem, given $\varepsilon > 0$ there exists a polynomial p such that $|p - f| < \varepsilon$ for every $x \in [0, 1]$. Hence, we have

$$|x^k f| = |x^k f + x^k p - x^k p|$$
$$= |x^k (f - p)| + |x^k p|$$
$$= |x^k|(\varepsilon + |p|)$$

which goes to 0 as $k \to \infty$ a.e. except at x=1. Thus, by Lebesgue's dominated convergence theorem, since $x^k f \to 0$ a.e. on [0,1] and $\left|x^k f\right| \le |f|$ a.e. in [0,1] for all k, we have $\int_0^1 x^k f \to 0$ as desired.

PROBLEM 8.3 (WHEEDEN & ZYGMUND §5, Ex. 6)

Let f(x,y), $0 \le x, y \le 1$, satisfy the following conditions: for each x, f(x,y) is an integrable function of y, and $\partial f(x,y)/\partial x$ is a bounded function of (x,y). Show that $\partial f(x,y)/\partial x$ is a measurable function of y for each x and

$$\frac{d}{dx} \int_0^1 f(x,y) \ dy = \int_0^1 \frac{\partial}{\partial x} f(x,y) \ dy.$$

Proof. First we will show that $\partial f/\partial x$ is measurable as a function of y. Since $\int_0^1 f(x,y) dy$ exists for every x, by Theorem 5.1 f(x,y) is measurable as a function of y so $\partial f/\partial x$ is measurable by Theorem 4.12 since it is limit of the sequence

$$f_n(x,y) := \frac{f(x + (1/n), y) - f(x,y)}{1/n}$$
(8.1)

which is a sum of measurable functions of y.

To prove the second half we will show that the sequence

$$g_n := \int_0^1 f_n(x) \, dy \longrightarrow \frac{d}{dx} \int_0^1 f(x, y) \, dy. \tag{8.2}$$

Since $\partial f/\partial x$ is bounded, there exists M such that $|\partial f/\partial x| < M$ so convergence of f_n to $\partial f/\partial x$ means that for every $\varepsilon > 0$, there exists N such that $n \ge N$ implies $|f_n| < M + \varepsilon$. Then by the bounded convergence theorem, $\int_0^1 f_n \to \int_0^1 \to \partial f/\partial x$. But by definition the limit as $n \to \infty$ of

$$\int_0^1 f_n(x) \ dy = \int_0^1 \frac{f(x+1/n,y) - f(x,y)}{1/n} \ dy$$
$$= \frac{\int_0^1 f(x+1/n,y) \ dy - \int_0^1 f(x,y) \ dy}{1/n}$$

is

$$\frac{d}{dx} \int_0^1 f(x, y) \ dy.$$

Hence, by the uniqueness of limit, we have

$$\frac{d}{dx} \int_0^1 f(x,y) \ dy = \int_0^1 \frac{\partial}{\partial x} f(x,y) \ dy$$

a.e. on [0, 1].

PROBLEM 8.4 (WHEEDEN & ZYGMUND §5, Ex. 7)

Give an example of an f that is not integrable, but whose improper Riemann integral exists and is finite.

Proof. The following is a standard example of a function f that is improperly Riemann integrable, but not Lebesgue integrable. Set $f := \sin(x)/x$. Then the Riemann $\int_{-\infty}^{\infty} f \, dx = 2\pi$ may be computed fairly easily by contour integration noting that $f = \Im(e^{ix}/x)$ and applying Jordan's lemma.

However, by Theorem 5.21, f is Lebesgue integrable if and only if |f| is Lebesgue integrable however, we show that $\int_{\mathbf{R}} |f| dx = \infty$. To see this note that

$$\int_{\pi}^{(n+1)\pi} \left| \frac{\sin x}{x} \right| dx = \sum_{k=1}^{n} \int_{k\pi}^{(k+1)\pi} \left| \frac{\sin x}{x} \right| dx$$

make the substitution $x = t + k\pi$, then

$$= \sum_{k=1}^{n} \int_{0}^{\pi} \left| \frac{\sin(t+k\pi)}{t+k\pi} \right| dt$$
$$= \sum_{k=1}^{n} \int_{0}^{\pi} \left| \frac{\sin(t+k\pi)}{t+k\pi} \right| dt$$

and since $t + k\pi \le \pi + k\pi$ for $0 \le t \le \pi$ we have

$$\geq \sum_{k=1}^{n} \int_{0}^{\pi} \left| \frac{\sin(t+k\pi)}{\pi+k\pi} \right| dt$$

$$\geq \sum_{k=1}^{n} \frac{1}{\pi(k+1)} \int_{0}^{\pi} \sin(t+k\pi) dt$$

$$\geq \sum_{k=1}^{n} \frac{2}{\pi(k+1)}$$

which clearly diverges as $n \to \infty$ since the lower bound above is the scaled harmonic series starting at 2. Thus, |f| is not integrable over \mathbf{R} so f is not integrable over \mathbf{R} .

PROBLEM 8.5 (WHEEDEN & ZYGMUND §5, Ex. 21)

If $\int_A f = 0$ for every measurable subset A of a measurable set E, show that f = 0 a.e. in E.

Proof. Since E is measurable, $\int_E f = 0$ so f is measurable. Write E as the union

$$E = \{ f > 0 \} \cup \{ f = 0 \} \cup \{ f < 0 \}. \tag{8.3}$$

Then

$$\int_{\{f>a\}} f \, dx = \int_E f^+ \, dx$$

$$= 0$$

$$\int_{\{f<0\}} f \, dx = -\int_E f^- \, dx$$

$$= 0.$$

Hence, by Theorem 5.11, $f^+=0$ and $f^-=0$ a.e. on E. Thus, $f=f^+-f^-=0$ a.e. on E

PROBLEM 8.6 (WHEEDEN & ZYGMUND §6, Ex. 10)

Let V_n be the volume of the unit ball in \mathbf{R}^n . Show by using Fubini's theorem that

$$V_n = 2V_{n-1} \int_0^1 (1-t^2)^{(n-1)/2} dt.$$

(We also observe that by setting $w=t^2$, the integral is a multiple of a classical β -function and so can be expressed in terms of the Γ -function: $\Gamma(s)=\int_0^\infty e^{-t}t^{s-1}\ dt,\ s>0.$)

Proof.

PROBLEM 8.7 (WHEEDEN & ZYGMUND §6, Ex. 11)

Use Fubini's theorem to prove that

$$\int_{\mathbf{R}^n} e^{-|\mathbf{x}|^2} d\mathbf{x} = \pi^{n/2}.$$

(For n=1, write $\left(\int_{-\infty}^{\infty}e^{-x^2}\,dx\right)^2=\int_{-\infty}^{\infty}\int_{-\infty}^{\infty}e^{-x^2-y^2}\,dxdy$ and use polar. For n>1, use the formula $e^{-|\mathbf{x}|^2}=e^{-x_1^2}\cdots e^{-x_n^2}$ and Fubini's theorem to reduce the case n=1.)

Proof. Using the hint, by induction for n = 1 we have

$$\left(\int_{-\infty}^{\infty} e^{-x^2} dx\right)^2 = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy. \tag{8.4}$$

Now we make a change of $x = r \cos \theta$, $y = r \sin \theta$, $0 \le r \le \infty$, $0 \le \theta \le \pi$ and the determinant of the Jacobian is r so we have

$$\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} e^{-x^2 - y^2} dx dy = \int_{0}^{2\pi} \int_{0}^{\infty} r e^{-r^2} dr d\theta$$
$$= 2\pi \int_{0}^{\infty} r e^{-r^2} dr$$

by making the substitution, $u = r^2$

$$= \pi \int_0^\infty e^{-u} du$$
$$-\pi$$

so $\int_{\mathbf{R}} e^{-x^2} = \sqrt{\pi}$.

Assume by induction that $\int_{\mathbf{R}^k} e^{-|\mathbf{x}|^2} d\mathbf{x} = \pi^{k/2}$ for all k < n. Then writing

$$\int_{\mathbf{R}^n} e^{-|\mathbf{x}|^2} d\mathbf{x} = e^{-|\mathbf{x}|^2} = \int \cdots \int_{\mathbf{R}^n} e^{-x_1^2} \cdots e^{-x_n^2} dx_1 \cdots dx_n$$
 (8.5)

Then by Fubini's theorem

$$\int \cdots \int_{\mathbf{R}^{n}} e^{-x_{1}^{2}} \cdots e^{-x_{n}^{2}} dx_{1} \cdots dx_{n} = \int_{\mathbf{R}} \left(\int \cdots \int_{\mathbf{R}^{n-1}} e^{-x_{1}^{2}} \cdots e^{-x_{n}^{2}} \right) dx_{1}$$

$$= \int_{\mathbf{R}} \left(\int \cdots \int_{\mathbf{R}^{n-1}} e^{-x_{1}^{2}} \cdots e^{-x_{n}^{2}} \right) dx_{1}$$

$$= \int_{\mathbf{R}} \left(\int \cdots \int_{\mathbf{R}^{n-1}} e^{-x_{2}^{2}} \cdots e^{-x_{n}^{2}} \right) e^{-x_{1}^{2}} dx_{1}$$

$$= \pi^{(n-1)/2} \int_{\mathbf{R}} e^{-x_{1}^{2}} dx_{1}$$

$$= \pi^{(n-1)/2} \pi^{1/2}$$

$$= \pi^{n/2}$$

as desired.

MA 544: Homework 8