МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра ИИСТ

Отчёт по лабораторной работе №3 по дисциплине «Метрология»

Студенты гр. 7301	 Литвинов К.Л.
	 Гарцев Е.А.
	 Бурков М.П.
Преподаватель	Варшавский И.Е.

Санкт-Петербург 2019

Определение шага квантования

Расчётные формулы:

Предел измерений 2кОм

Значение кванта
$$q = \frac{x_{max}}{N_{max}} = \frac{x_{max}}{(2*10^n)} = \frac{2}{(2*10^3)} = 10^{-3} = 0.001$$
, где x_{max} — предел

измерений, п — число разрядов отсчётного устройства.

Статическая характеристика преобразования ЦИП

Расчётные формулы:

Погрешность квантования: $\Delta R = R_n - R = 0.0012 - 0.001 = 0.0002$ Ом

Номер измерения	R_{n} , к O м	R , кОм
1	0.0012	0.001
2	0.0022	0.002
3	0.0032	0.003
4	0.0042	0.004
5	0.0052	0.005
6	0.0062	0.006
7	0.0072	0.007
8	0.0082	0.008
9	0.0092	0.009
10	0.0102	0.01

Графики:

График 1 Статическая характеристика ЦИП

График 2: График абсолютной погрешности

Абсолютная инструментальная погрешность

Расчётные формулы:

Инструментальная погрешность:

 $\Delta R_{uN} = R_n - 0.5 * q - R_N = 1 - 0.5 * 0.0001 - 1.0029 = -0.003$

Номер измерения	R_{nN} , κO_M	R_N , κO_M	ΔR_{uN} , $\kappa O_{\mathcal{M}}$
1	1	1.0029	-0.00295
2	1.1	1.1028	-0.00285
3	1.2	1.2033	-0.00335

4	1.3	1.303	-0.00305
5	1.4	1.4034	-0.00345
6	1.5	1.5034	-0.00345
7	1.6	1.6035	-0.00355
8	1.7	1.7036	-0.00365

Графики:

График 3: График инструментальной погрешности Получим уравнение у = - 0.00182 - 0.00108 х , где -0.00182 — аддитивная состовляющая, а -0.00108 — мультипликативная

Измерение сопротивлений

Расчётные формулы:

1 единица младшего разряда = $\frac{x_{max}}{2000}$

Абсолютная погрешность при диапазоне от 0 до 2000 кОм:

 ΔR = 0.002 * $R_{_{\text{изм}}}$ + 1 $e\partial$. мл. pasp . = 0.002 * 1.145 + 0.0005 = 0.00279

Абсолютная погрешность при диапазоне от 0 до 20 МОм: $\Delta R = 0.005 * R_{_{13M}} + 1 \, e \partial$. мл. разр.

Номер	Диапазон	Значение	Показания	Абсолютная	Относительна	Результат
резистора	измерения	кванта для	ЦИП R_n ,	погрешност	я погрешность	измерения
		диапазона	кОм	ь измерения	измерения, %	$R_n \pm \Delta R$,
		измерения,		ΔR , к O м		кОм
		Ом				
2	2кОм	1	1.145	0.00279	0.24	1.145 ± 0.003
2	20кОм	10	1.14	0.00728	0.64	1.14 ± 0.01

2	200кОм	100	1.2	0.0524	4.37	1.20±0.05
3	20кОм	10	8.27	0.02154	0.26	8.27 ± 0.02
3	200кОм	100	8.3	0.067	0.8	8.30 ± 0.07
3	2MO	1000	8	0.516	6.45	8.0 ± 0.5

Вывод: Чем меньше предел и диапазон измерений, тем точнее