

Autoencoding any Data through Kernel Autoencoders

Pierre Laforgue, Stephan Clémençon, Florence d'Alché-Buc

Télécom ParisTech (Chaire Machine Learning for Big Data)

Representation Learning

Autoencoders

Kernel Methods

Kernel Autoencoders

Experiments

Representation Learning

Autoencoders

Kernel Methods

Kernel Autoencoders

Experiments

- Representation 1: (PL, 42, dark brown, green, 175 cm, ...)
 - → Diabetes occurrence prediction complex (impossible)

- Representation 1: (PL, 42, dark brown, green, 175 cm, ...)
 - → Diabetes occurrence prediction complex (impossible)
- Representation 2: (175 cm, 62 kg, 25 years old, ♂, ...)
 - ightarrow Diabetes occurrence prediction possible

- Representation 1: (PL, 42, dark brown, green, 175 cm, ...)
 - → Diabetes occurrence prediction complex (impossible)
- Representation 2: (175 cm, 62 kg, 25 years old, ♂, ...)
 - \rightarrow Diabetes occurrence prediction possible
- Representation 3: (BMI=20.24, family background, ...)
 - ightarrow Diabetes occurrence prediction facilitated

Representation Learning

- Feature engineering: implies domain experts
- Feature learning / Representation learning: automate the processus

Figure 1: Machine Learning Pipeline

Representation Learning

Autoencoders

Kernel Methods

Kernel Autoencoders

Experiments

Autoencoders (AEs): Principle

- Idea: reconstruct the input after having compressed it
- Neural network: symmetric, hour-glass shaped
- Self-supervised framework

(a) 1 hidden layer AE

(b) 3 hidden layers AE

Autoencoders: Training

- $z = f_{\mathbf{W},\mathbf{b}}(x) = \sigma(\mathbf{W}x + \mathbf{b})$ $x' = f_{\mathbf{W}',\mathbf{b}'}(z) = \sigma(\mathbf{W}'z + \mathbf{b}')$
- $\theta^* = \operatorname{argmin}_{\theta} ||x x'||^2 = \operatorname{argmin}_{\theta} ||x f_{\mathbf{W}', \mathbf{b}'} \circ f_{\mathbf{W}, \mathbf{b}}(x)||^2$
- Encoding $z = \sigma(\mathbf{W}^* x + \mathbf{b}^*)$

Autoencoders: Uses

- Data compression (PCA) [Bourlard 1988, Hinton 2006]
- Pre-training of neural networks [Bengio & al. 2007]
- Denoising [Vincent, Larochelle & al. 2010]

(e) PCA / AE

(f) Pre-training by AE

Representation Learning

Autoencoders

Kernel Methods

Kernel Autoencoders

Experiments

Definitions: positive definite (scalar) kernel

- $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$
- $\forall (x, x') \in \mathcal{X} \times \mathcal{X}, \quad k(x, x') = k(x', x)$ (symmetry)
- $\sum_{i,j=1}^{n} \alpha_i k(x_i, x_j) \alpha_j = \alpha^T K \alpha \ge 0$ (positiveness)
- $\exists \phi, \mathcal{H}_k$ Hilbert, $k(x, x') = \langle \phi(x), \phi(x') \rangle_{\mathcal{H}_k}$ $\phi(x) = k(\cdot, x)$
- $\mathcal{H}_k = \overline{Span\{k(\cdot,x), x \in \mathcal{X}\}}$ (RKHS)

• $f^* \in \underset{f \in \mathcal{H}_k}{\operatorname{argmin}} V(f(x_1), \dots, f(x_n), ||f||), \quad f^* = \sum_{i=1}^n k(\cdot, x_i) \alpha_i$ $V = \sum_{i=1}^n \ell(f(x_i), y_i) + \lambda ||f||_{\mathcal{H}_k}^2 \qquad \text{(representer theorem)}$

Kernelization of the Ridge regression

$$X \in \mathbb{R}^{n \times p}, Y \in \mathbb{R}^n$$

- $\min_{\beta \in \mathbb{R}^p} \|Y X\beta\|^2 + 2n\lambda \|\beta\|^2$
- $\min_{\beta \in \mathbb{R}^p} \sum_i (y_i \langle x_i, \beta \rangle_{\mathbb{R}^p})^2 + 2n\lambda \|\beta\|_{\mathbb{R}^p}^2$
- $\min_{\omega \in \mathcal{H}_k} \sum_i (y_i \langle \phi(x_i), \omega \rangle_{\mathcal{H}_k})^2 + 2n\lambda \|\omega\|_{\mathcal{H}_k}^2 \quad \omega^* = \sum_j \phi(x_j) \alpha_j^*$
- $\min_{\alpha \in \mathbb{R}^n} ||Y K\alpha||^2 + 2n\lambda\alpha^T K\alpha$

Kernelization of other problems

Kernel K-Means

- $c_k = \frac{1}{|\mathcal{C}_k|} \sum_{i \in \mathcal{C}_k} x_i \in \mathbb{R}^p$ $\tilde{c}_k = \frac{1}{|\widetilde{\mathcal{C}}_k|} \sum_{i \in \widetilde{\mathcal{C}}_k} \phi(x_i) \in \mathcal{H}_k$
- $\min_{k \le K} \|x_i c_k\|_{\mathbb{R}^p}^2$ $\min_{k \le K} \|\phi(x_i) \tilde{c}_k\|_{\mathcal{H}_k}^2$

Kernel PCA

- Standard PCA: solve eigenproblem $\left(X^TX\right)u=\lambda u$
- Kernel PCA: solve eigenproblem $\left(\phi(X)^T\phi(X)\right)u=\lambda u$
- KPCA: equivalent to solve $\left(\phi(X)\phi(X)^T\right)u := Ku = \lambda u$

Representation Learning

Autoencoders

Kernel Methods

Kernel Autoencoders

Experiments

Schema

Figure 2: Standard and Kernel 2-layer Autoencoders

$$\mathbf{AE}: \min_{f_i \in \mathbf{NN}} \frac{1}{n} \sum_{i=1}^n \|x_i - f_L \circ \ldots \circ f_1(x_i)\|_{\mathcal{X}_0}^2$$

KAE:
$$\min_{f_l \in \text{vv-RKHS}} \frac{1}{n} \sum_{i=1}^n \|x_i - f_L \circ \dots \circ f_1(x_i)\|_{\mathcal{X}_0}^2 + \sum_{l=1}^L \lambda_l \|f_l\|_{\mathcal{H}_l}^2$$

$$\mathbf{AE}: \min_{f_i \in \mathbf{NN}} \frac{1}{n} \sum_{i=1}^n \|x_i - f_L \circ \ldots \circ f_1(x_i)\|_{\mathcal{X}_0}^2$$

KAE:
$$\min_{f_l \in \text{vv-RKHS}} \frac{1}{n} \sum_{i=1}^n \|x_i - f_L \circ \dots \circ f_1(x_i)\|_{\mathcal{X}_0}^2 + \sum_{l=1}^L \lambda_l \|f_l\|_{\mathcal{H}_l}^2$$

1. Novel algorithm of Representation Learning

$$\mathbf{AE}: \min_{f_i \in \mathbf{NN}} \frac{1}{n} \sum_{i=1}^n \|x_i - f_L \circ \ldots \circ f_1(x_i)\|_{\mathcal{X}_0}^2$$

KAE:
$$\min_{f_l \in \text{vv-RKHS}} \frac{1}{n} \sum_{i=1}^n \|x_i - f_L \circ \dots \circ f_1(x_i)\|_{\mathcal{X}_0}^2 + \sum_{l=1}^L \lambda_l \|f_l\|_{\mathcal{H}_l}^2$$

- 1. Novel algorithm of Representation Learning
- 2. \mathcal{X}_0 Hilbert non necessarily Euclidean (not only \mathbb{R}^d)

$$\mathbf{AE}: \min_{f_l \in \mathbf{NN}} \frac{1}{n} \sum_{i=1}^n \|x_i - f_L \circ \ldots \circ f_1(x_i)\|_{\mathcal{X}_0}^2$$

KAE:
$$\min_{f_l \in \text{vv-RKHS}} \frac{1}{n} \sum_{i=1}^n \|x_i - f_L \circ \dots \circ f_1(x_i)\|_{\mathcal{X}_0}^2 + \sum_{l=1}^L \lambda_l \|f_l\|_{\mathcal{H}_l}^2$$

- 1. Novel algorithm of Representation Learning
- 2. \mathcal{X}_0 Hilbert non necessarily Euclidean (not only \mathbb{R}^d)
- 3. Interesting Hilbert: (kernel) feature space

Autoencoding any data

K²**AE:**
$$\min_{f_l \in \text{vv-RKHS}} \frac{1}{n} \sum_{i=1}^n \|\phi(x_i) - f_L \circ \dots \circ f_1(\phi(x_i))\|_{\mathcal{X}_0}^2 + \sum_{l=1}^L \lambda_l \|f_l\|_{\mathcal{H}_l}^2$$

Finite Dimensional Representation

Figure 3: Autoencoding on any \mathcal{X}_0

Representation Learning

Autoencoders

Kernel Methods

Kernel Autoencoders

Experiments

Concentric Circles

Figure 4: KAE performance on concentric circles

Molecular data (table)

Table 1: NMSEs on Molecular Activity for Different Types of Cancer

	KRR	$\mathrm{KPCA}\ 10\ +\ \mathrm{RF}$	$\mathrm{KPCA}\ 50\ +\ \mathrm{RF}$	$\mathrm{K^2AE}\ 10\ +\ \mathrm{RF}$	$\mathrm{K}^{2}\mathrm{AE}\ 50\ +\ \mathrm{RF}$
Cancer 01	0.02978	0.03035	0.03035	0.03097	0.02808
Cancer 02	0.03004	0.02978	0.02978	0.03099	0.02775
Cancer 03	0.02878	0.02914	0.02914	0.02989	0.02709
Cancer 04	0.03003	0.03074	0.03074	0.03218	0.02924
Cancer 05	0.02954	0.02903	0.02903	0.03065	0.02754
Cancer 06	0.02914	0.03083	0.03083	0.03134	0.02838
Cancer 07	0.03113	0.03207	0.03207	0.03257	0.03018
Cancer 08	0.02899	0.02898	0.02898	0.03065	0.02770

Molecular data (graph)

Figure 5: Performance of the different strategies on 8 cancer

Representation Learning

Autoencoders

Kernel Methods

Kernel Autoencoders

Experiments

Conclusion & Future Work

- Flexible tool for Representation Learning
- Advantages from AEs and Kernel Methods
- Extension of standard AEs to any type of data

- Parallel with Kernel PCA
- Combine with a supervised criterion

Preprint available at: http://arxiv.org/abs/1805.11028