Vietnam National University Ho Chi Minh City University of Science

Faculty of Information Technology

PROJECT PROGRESS REPORT Brand Fashion Market Seasonal Trend Analysis

Course Introduction to Data Science

Class 22CLC

Students 22127225 – Trần Thi Thiên Kim

22127357 – Phạm Trần Yến Quyên

22127374 – Lê Thanh Tâm 22127449 – Mai Đức Vân

Github: Brand Fashion Market Seasonal Trend Analysis

HCMC, 2024

 $\label{eq:continuous_problem} To \ have \ a \ good \ experience, \ please \ use \ a \ PDF \ reader \ that \ supports \ hyperlinks$

Mục lục

1	Cur	rrent Status of the Project 2				
	1.1	Data Collection				
	1.2	Data Preprocessing				
	1.3	Initial Analysis				
		1.3.1 Visualization				
		1.3.2 Statistical Insights				
	1.4	Modeling (Theory only)				
2	Cur	rrent Issues				
	2.1	Data Quality Issues				
	2.2	Technical Challenges				
3	Proposed Solutions to Current Issues					
	3.1	Data Quality Solutions				
	3.2	Improving Model Performance				
	3.3	Technical Adjustments				
	3.4	Time Management				
4	Pla	n for Remaining Time				
	4.1	Immediate Next Steps				
	4.2	Timeline				
	4.3	Milestones				
	4.4	Final Deliverables				
5	Appendices					
	5.1	Code Snippets Example:				
	5.2	Data Samples				
	5.3	References and Links				

1 Current Status of the Project

1.1 Data Collection

- We've collected data from reputable sources that include branded fashion shops, including:
 - + Tiki: Collected product data including prices, brands, sales numbers, and review statistics. This platform provides a wide range of fashion items that cater to diverse customer needs.
 - + Uniqlo: Data was scraped to understand how a global brand structures its inventory and categorizes products for customers.
 - + Shein: Using Selenium for dynamically rendered pages.

– Tools Used:

- BeautifulSoup and Selenium for scraping structured and dynamic web content.
- Requests library for making HTTP requests to extract static data.
- APIs where available for direct data extraction, reducing scraping overhead.

- Process:

- Data was extracted using automation scripts.
- Data cleaning and basic validation were applied during extraction to minimize errors.

1.2 Data Preprocessing

- 1. Handling missing values:
 - (a) For the Tiki dataset, Thương hiệu (Brand) contains null values.
 - (b) Products with 0 reviews and sales were flagged for removal or replacement.
- 2. Removing duplicates: Ensured no duplicated products in the datasets (Same product from the same shop but under a slighty different name, Ex: multiple listing in one product page, etc.)
- 3. Removing non-relevant features: Irrelevant columns (e.g., URLs for modeling) were retained only for validation and categorization purposes.

1.3 Initial Analysis

1.3.1 Visualization

Visualization tools were used to analyze patterns. In tiki.csv:

• Distribution of product prices.

• Sales trends for different brands.

• Reviews and ratings correlation with sales.

• Missing values in the dataset.

1.3.2 Statistical Insights

- Price Analysis: Median product price is \$155,000 VND, with a range between \$50,000 VND and \$2,000,000 VND.
- Sales Performance: Approximately 60% of products have fewer than 5 sales recorded.

1.4 Modeling (Theory only)

1. Regression:

- Objective: Predict pricing trends based on features like sales, reviews, and brand.
- Reason: Helps identify optimal pricing strategies and competitive positioning.
- Proposed Models:
 - + Linear Regression: Quick to implement, interpretable results.
 - + Random Forest Regressor: Handles non-linear relationships and feature importance analysis.

2. Clustering:

- Objective: Group products into clusters based on price, sales, and engagement.
- Reason: Useful for segmentation and targeted marketing campaigns.
- Proposed Models:
 - + K-Means: Efficient for identifying distinct product categories.
 - + DBSCAN: Handles clusters with varying densities and outliers.

3. Performance Metrics:

- Regression: R² score for goodness-of-fit, Mean Absolute Error (MAE) for interpretability.
- Clustering: Silhouette Score and Davies-Bouldin Index for cluster quality.

2 Current Issues

2.1 Data Quality Issues

- 1. Some of the current quality issues are:
 - Missing values in Thương hiệu.
 - Many products have Lượt đánh giá (reviews) and Số lượng đã bán (units sold) as 0, indicating potential invalid or inactive data.
 - Non-standardized format for brand names, leading to data inconsistencies.

2.2 Technical Challenges

1. **Dynamic Content**: Shein's use of JavaScript requires Selenium, which increases resource consumption and scraping time.

2. API Limitations:

- Tiki API pagination and rate limits required delays between requests.
- Websites like Shein doesn't provide easy to access APIs for crawling data.
- Crawl-prevention: Some website like Shopee make it so that reviews and some other important data can only be crawl fully through their APIs.

3 Proposed Solutions to Current Issues

3.1 Data Quality Solutions

- Data Enrichment: Incorporate additional data sources to improve data coverage and variety.
- **Imputation:** Use statistical methods to estimate missing values (e.g., median imputation for prices).

3.2 Improving Model Performance

- Feature engineering, such as creating composite features (e.g., price-to-rating ratio).
- Hyperparameter tuning for optimal model performance.

3.3 Technical Adjustments

- Use Scrapy for faster scraping and parallel processing.
- Employ proxies to avoid IP bans during large-scale data collection.

3.4 Time Management

• Prioritize preprocessing and modeling over secondary tasks like extended visualizations.

4 Plan for Remaining Time

4.1 Immediate Next Steps

- Finalize preprocessing steps:
 - (a) Handle missing values and remove low-quality data.
 - (b) Perform exploratory data analysis (EDA) with visualizations.
 - (c) Begin testing regression and clustering models.

4.2 Timeline

Break down remaining weeks with tasks:

- Week 1: Complete data cleaning and feature engineering.
- Week 2: Develop and test initial models.
- Week 3: Finalize analysis and compile documentation.

4.3 Milestones

Specify milestones such as completing data preprocessing, achieving model performance goals, and generating insights.

4.4 Final Deliverables

- Comprehensive final report with actionable insights.
- Model performance summary and visualization dashboard.

5 Appendices

5.1 Code Snippets Example:

1. Syntax API urls:

```
api_url = f"{self.base_url}?limit={self.limit_per_page}&q={self.query}&page={page}"
```

2. Filter out unsold products:

```
data['Thương hiệu'] = data['Thương hiệu'].fillna(data.groupby('Category' ['Thương hiệu'] data = data[data['Số lượng đã bán'] > 0]
```

5.2 Data Samples

1. tiki.csv:

- (a) Dataset Information:
 - Total Records: 2000 (per category)
 - Columns: 8
 - Tên sản phẩm (Product Name)
 - Tên cửa hàng (Store Name)
 - Giá (Price)
 - Thương hiệu (Brand) Some null values
 - Lượt đánh giá (Number of Reviews)
 - Điểm đánh giá trung bình (Average Rating)
 - Số lượng đã bán (Units Sold)
 - Link (URL to Product)
- (b) Some Data Overview:

Tên sản phẩm	Tên cửa hàng	Giá	•••
Đầm Jean Nữ Thời Trang	THỜI TRANG TINA	235000	
Đầm bông thời trang	Hương Nemo Style	155000	

2. uniqlo.csv:

- (a) Dataset Information:
 - Total Records: 955 (Uniqlo's official product)
 - Columns: 8
 - Product ID
 - Product Name
 - Price Currency
 - URL
 - Rating
 - Total Ratings
 - Fit
 - Rating Count
- (b) Some Data Overview:

Product ID	Product Name	Price	•••
E471117-000	AIRism Áo Hoodie Chống UV	686000.0000	
E467410-000	Áo Parka Chống UV Bỏ Túi	784000.0000	

5.3 References and Links

- Tiki API Documentation
- Selenium documentation.
- BeautifulSoup Documentation