Zeughausstrasse 43, 8004 Zurich, Switzerland Phone +41 44 245 9700, Fax +41 44 245 9779 info@speag.com, http://www.speag.com

Certificate of Conformity / First Article Inspection

Item	Oval Flat Phantom ELI 5.0	
Type No	QD OVA 002 A	
Series No	1108 and higher	
Manufacturer	Untersee Composites	
	Knebelstrasse 8, CH-8268 Mannenbach, Switzerland	

Tests

Complete tests were made on the prototype units QD OVA 001 A, pre-series units QD OVA 001 B as well as on some series units QD OVA 001 B. Some tests are made on all series units QD OVA 002 A.

Test	Requirement	Details	Units tested
Shape	Internal dimensions, depth and sagging are compatible with standards	Bottom elliptical 600 x 400 mm, Depth 190 mm, dimension compliant with [1] for f > 375 MHz	Prototypes
Material thickness	Bottom: 2.0mm +/- 0.2mm	dimension compliant with [3] for f > 800 MHz	all
Material parameters	rel. permittivity 2 – 5, loss tangent ≤ 0.05, at f ≤ 6 GHz	rel. permittivity 3.5 +/- 0.5 loss tangent ≤ 0.05	Material samples
Material resistivity	Compatibility with tissue simulating liquids .	Compatible with SPEAG liquids. **	Phantoms, Material sample
Sagging	Sagging of the flat section in tolerance when filled with tissue simulating liquid.	within tolerance for filling height up to 155 mm	Prototypes, samples

^{**} Note: Compatibility restrictions apply certain liquid components mentioned in the standard, containing e.g. DGBE, DGMHE or Triton X-100. Observe technical note on material compatibility.

Standards

- [1] OET Bulletin 65, Supplement C, "Evaluating Compliance with FCC Guidelines for Human Exposure to Radiofrequency Electromagnetic Fields", Edition 01-01
- [2] IEEE 1528-2003, "Recommended Practice for Determining the Peak Spatial-Average Specific Absorption Rate (SAR) in the Human Head from Wireless Communications Devices: Measurement Techniques, December 2003
- [3] IEC 62209–1 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 1: Procedure to determine the specific absorption rate (SAR) for hand-held devices used in close proximity to the ear (frequency range of 300 MHz to 3 GHz)", 2005-02-18
- [4] IEC 62209–2 ed1.0, "Human exposure to radio frequency fields from hand-held and body-mounted wireless communication devices Human models, instrumentation, and procedures Part 2: Procedure to determine the specific absorption rate (SAR) for wireless communication devices used in close proximity to the human body (frequency range of 30 MHz to 6 GHz)", 2010-03-30

Conformity

Based on the sample tests above, we certify that this item is in compliance with the uncertainty requirements of **body-worn** SAR measurements and system performance checks as specified in [1-4] and further standards.

Date

25.7.2011

Signature / Stamp

Schmid & Partner-Engineering AG
Zeughaufentrasse 43, 8004 Zerich, Schrizerland
Phone 441 44/245 8708, FS-4-44 84-45 9779
info@speag.com, http://www.speag.com

Calibration Laboratory of Schmid & Partner **Engineering AG** Zeughausstrasse 43, 8004 Zurich, Switzerland

Schweizerischer Kalibrierdienst Service suisse d'étalonnage Servizio svizzero di taratura **Swiss Calibration Service**

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA Multilateral Agreement for the recognition of calibration certificates

Client

Intertek

Accreditation No.: SCS 108

C

Certificate No: DAE4-358 Sep13

CALIBRATION CERTIFICATE

Object DAE4 - SD 000 D04 BJ - SN: 358

QA CAL-06.v26 Calibration procedure(s)

Calibration procedure for the data acquisition electronics (DAE)

Calibration date: September 13, 2013

This calibration certificate documents the traceability to national standards, which realize the physical units of measurements (SI). The measurements and the uncertainties with confidence probability are given on the following pages and are part of the certificate.

All calibrations have been conducted in the closed laboratory facility: environment temperature (22 ± 3)°C and humidity < 70%.

Calibration Equipment used (M&TE critical for calibration)

Primary Standards	ID#	Cal Date (Certificate No.)	Scheduled Calibration
Keithley Multimeter Type 2001	SN: 0810278	02-Oct-12 (No:12728)	Oct-13
Secondary Standards	ID#	Check Date (in house)	Scheduled Check
Auto DAE Calibration Unit	SE UWS 053 AA 1001	07-Jan-13 (in house check)	In house check: Jan-14
Calibrator Box V2.1	SE UMS 006 AA 1002	07-Jan-13 (in house check)	In house check: Jan-14

Calibrated by:

Name

Function

Signature

Dominique Steffen

Technician

Approved by:

Fin Bomholt

Deputy Technical Manager

Issued: September 13, 2013

This calibration certificate shall not be reproduced except in full without written approval of the laboratory.

Certificate No: DAE4-358 Sep13

Page 1 of 5

Calibration Laboratory of Schmid & Partner Engineering AG Zeughausstrasse 43, 8004 Zurich, Switzerland

S Schweizerischer Kalibrierdienst
C Service suisse d'étalonnage
Servizio svizzero di taratura
Swiss Calibration Service

Accredited by the Swiss Accreditation Service (SAS)

The Swiss Accreditation Service is one of the signatories to the EA

Multilateral Agreement for the recognition of calibration certificates

Accreditation No.: SCS 108

Glossary

DAE data acquisition electronics

Connector angle information used in DASY system to align probe sensor X to the robot

coordinate system.

Methods Applied and Interpretation of Parameters

 DC Voltage Measurement: Calibration Factor assessed for use in DASY system by comparison with a calibrated instrument traceable to national standards. The figure given corresponds to the full scale range of the voltmeter in the respective range.

- Connector angle: The angle of the connector is assessed measuring the angle mechanically by a tool inserted. Uncertainty is not required.
- The following parameters as documented in the Appendix contain technical information as a result from the performance test and require no uncertainty.
 - DC Voltage Measurement Linearity: Verification of the Linearity at +10% and -10% of the nominal calibration voltage. Influence of offset voltage is included in this measurement.
 - Common mode sensitivity: Influence of a positive or negative common mode voltage on the differential measurement.
 - Channel separation: Influence of a voltage on the neighbor channels not subject to an input voltage.
 - AD Converter Values with inputs shorted: Values on the internal AD converter corresponding to zero input voltage
 - Input Offset Measurement: Output voltage and statistical results over a large number of zero voltage measurements.
 - Input Offset Current: Typical value for information; Maximum channel input offset current, not considering the input resistance.
 - Input resistance: Typical value for information: DAE input resistance at the connector, during internal auto-zeroing and during measurement.
 - Low Battery Alarm Voltage: Typical value for information. Below this voltage, a battery alarm signal is generated.
 - Power consumption: Typical value for information. Supply currents in various operating modes.

Certificate No: DAE4-358_Sep13

DC Voltage Measurement

A/D - Converter Resolution nominal

High Range:

1LSB =

6.1μV ,

full range = -100...+300 mV

Low Range:

1LSB =

61nV,

full range = -1.....+3mV

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Calibration Factors	х	Y	Z
High Range	404.136 ± 0.02% (k=2)	403.782 ± 0.02% (k=2)	403.648 ± 0.02% (k=2)
Low Range	3.94286 ± 1.50% (k=2)	3.96886 ± 1.50% (k=2)	3.99248 ± 1.50% (k=2)

Connector Angle

Connector Angle to be used in DASY system	326.5 ° ± 1 °
---	---------------

Certificate No: DAE4-358_Sep13

Page 3 of 5

Appendix

1. DC Voltage Linearity

High Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	199994.94	-3.24	-0.00
Channel X	+ Input	20005.85	4.49	0.02
Channel X	- Input	-19995.09	5.27	-0.03
Channel Y	+ input	199998.80	0.70	0.00
Channel Y	+ Input	20003.31	2.01	0.01
Channel Y	- Input	-19999.86	0.57	-0.00
Channel Z	+ Input	199997.56	-0.51	-0.00
Channel Z	+ Input	20001.09	-0.15	-0.00
Channel Z	- Input	-20000.62	-0.13	0.00

Low Range		Reading (μV)	Difference (μV)	Error (%)
Channel X	+ Input	2002.82	1.44	0.07
Channel X	+ Input	202.82	0.95	0.47
Channel X	- Input	-197.50	0.65	-0.33
Channel Y	+ Input	2002.31	0.96	0.05
Channel Y	+ Input	201.72	-0.17	-0.08
Channel Y	- Input	-199.09	-1.05	0.53
Channel Z	+ Input	2001.93	0.74	0.04
Channel Z	+ Input	200.76	-0.94	-0.47
Channel Z	- Input	-199.21	-0.99	0.50

2. Common mode sensitivity

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Common mode Input Voltage (mV)	High Range Average Reading (μV)	Low Range Average Reading (μV)
Channel X	200	9.03	6.95
* * * * * * * * * * * * * * * * * * * *	- 200	-5.15	-7.15
Channel Y	200	-4.01	-4.37
	- 200	3.21	3.30
Channel Z	200	11.51	11.32
_	- 200	-14.09	-13.63

3. Channel separation

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	Input Voltage (mV)	Channel X (μV)	Channel Y (μV)	Channel Z (μV)
Channel X	200	-	-2.85	-2.90
Channel Y	200	8.60	-	-1.89
Channel Z	200	6.43	5.42	-

Certificate No: DAE4-358_Sep13

4. AD-Converter Values with inputs shorted

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

	High Range (LSB)	Low Range (LSB)
Channel X	16029	15248
Channel Y	16127	15801
Channel Z	15843	15816

5. Input Offset Measurement

DASY measurement parameters: Auto Zero Time: 3 sec; Measuring time: 3 sec

Input $10M\Omega$

	Average (μV)	min. Offset (μV)	max. Offset (μV)	Std. Deviation (μV)
Channel X	1.21	-0.22	2.07	0.37
Channel Y	-0.45	-1.89	1.20	0.47
Channel Z	0.04	-1.05	2.14	0.48

6. Input Offset Current

Nominal Input circuitry offset current on all channels: <25fA

7. Input Resistance (Typical values for information)

	Zeroing (kOhm)	Measuring (MOhm)
Channel X	200	200
Channel Y	200	200
Channel Z	200	200

8. Low Battery Alarm Voltage (Typical values for information)

Typical values	Alarm Level (VDC)	
Supply (+ Vcc)	+7.9	
Supply (- Vcc)	-7.6	

9. Power Consumption (Typical values for information)

Otto: Oottoanipeton (1)picar			
Typical values	Switched off (mA)	Stand by (mA)	Transmitting (mA)
Supply (+ Vcc)	+0.01	+6	+14
Supply (- Vcc)	-0.01	-8	-9