Notas em Lógica Matemática

Ref. H. D. Ebbnghaus Primavera 2022

Contents

1	Sint	taxe de Linguagens de Primeira Ordem	1
	1.1	Alfabetos	1
	1.2	O Alfabeto de uma Linguagem de Primeira Ordem	2
	1.3	Termos e Fórmulas em Linguagens de Primeira Ordem	2
	1.4	Indução no Cálculo de Termos e Fórmulas	3
	1.5	Variáveis Livres e Sentenças	4
_			
2	Sen	nântica de Linguagens de Primeira Ordem	5
2	Sen 2.1	nântica de Linguagens de Primeira Ordem Estruturas e Interpretações	
2			5
2	2.1	Estruturas e Interpretações	5 5
2	2.1 2.2	Estruturas e Interpretações	5 5 7
2	2.12.22.3	Estruturas e Interpretações	5 5 7 8

1 Sintaxe de Linguagens de Primeira Ordem

1.1 Alfabetos

Definição 1. Um alfabeto $\mathcal{A} \neq \emptyset$ é um conjunto de símbolos. Denominamos uma sequência finita de símbolos em \mathcal{A} strings ou palavras e denotamos por \mathcal{A}^* o conjunto de todas elas. O comprimento (len : $\mathcal{A}^* \to \mathbb{N}$) de um $\zeta \in \mathcal{A}^*$ é o número de símbolos em \mathcal{A} que ocorrem em ζ . A string vazia \Box tq len(\Box) = 0 também é considerada uma palavra.

Nota 1. Mais a frente definiremos linguagens L e é interessante ressaltar a distinção que tem de ser feita entre a linguagem objeto e a metalinguagem, a última é utilizada

para se fazer a investigação sobre a primeira, que é o objeto de estudos, nessa formalização usaremos tanto a linguagem natural corrente quanto uma teoria dos conjuntos informalizada como metalinguagem, visto que dessa forma muitos conceitos já vistos anteriormentes podem ser reciclados.

Lema 1. Se $\mathcal{A} \leq \aleph_0$ então $\mathcal{A}^* \approx \aleph_0$.

1.2 O Alfabeto de uma Linguagem de Primeira Ordem

Definição 2. O alfabeto de uma linguagem de primeira ordem contém os símbolos:

- (a) v_0, v_1, v_2, \ldots (variáveis); (b) $\neg, \land, \lor, \rightarrow, \leftrightarrow$ (não, e, ou, se-então, se e somente se (sse));
- (c) \forall , \exists (para todo, existe);
- $(d) \equiv (igualdade);$
- (e)),((parênteses);
- (f) um conjunto S = ((1), (2), (3)), possivelmente vazio, de assinaturas:
 - (1) $\forall n \ge 1$ um, possivelmente vazio, conjunto de símbolos de relações n-árias;
 - (2) $\forall n \ge 1$ um, possivelmente vazio, conjunto de símbolos de funções n-árias;
 - (3) $\forall n \ge 1$ um, possivelmente vazio, conjunto de constantes.

 \mathcal{S} determina uma linguagem de primeira ordem $\mathcal{A}_{\mathcal{S}} := \mathcal{A} \cup \mathcal{S}$

Nota 2. A partir de agora, usaremos P, Q, R, \ldots para símbolos de relações, f, g, h, \ldots para funções, c, c_0, c_1, \ldots para constantes e x, y, z, \ldots para variáveis.

1.3 Termos e Fórmulas em Linguagens de Primeira Ordem

Definição 3. Os S-termos, elementos de $\mathcal{T}^{\mathcal{S}}$, são precisamente aquelas strings em $\mathcal{A}_{\mathcal{S}}^*$ obtidas por aplicações finitas das seguintes regras:

- (T1) Toda variável é um S-termo;
- (T2) Toda constante é um S-termo;
- (T3) Se t_1, \ldots, t_n é um S-termo e $f \in S$ um símbolo de função n-ária então $ft_1 \ldots t_n \in \mathcal{T}^S$.

Definição 4. As S-fórmulas, elementos de $\mathcal{L}^{\mathcal{S}}$, são precisamente aquelas strings em $\mathcal{A}_{\mathcal{S}}^*$ obtidas por aplicações finitas das seguintes regras:

- (F1) Se $t_1, t_2 \in \mathcal{T}^{\mathcal{S}}$, então $t_1 \equiv t_2$ é uma \mathcal{S} -fórmula;
- (F2) Se $t_1, \ldots, t_n \in \mathcal{T}^{\mathcal{S}}$ e $R \in \mathcal{S}$ é um símbolo de relação n-ária, então $Rt_1 \ldots t_n \in \mathcal{L}^{\mathcal{S}}$;
- (F3) Se $\varphi \in \mathcal{L}^{\mathcal{S}}$, então $\neg \varphi \in \mathcal{L}^{\mathcal{S}}$;
- (F5) Se $\varphi \in \mathcal{L}^{\mathcal{S}}$, entace $\varphi \in \mathcal{L}^{\mathcal{S}}$, com $\varphi \in \mathcal{L}^{\mathcal{S}}$.

S-fórmulas derivadas de (F1) e (F2) são ditas atômicas e as fórmulas $\neg \varphi$, $(\varphi * \psi)$ com $* = \land, \lor, \rightarrow, \leftrightarrow$ são denominadas, respectivamente, negação de φ , conjunção, disjunção, implicação e bi-implicação.

Nota 3. Por convenção não usaremos parênteses quando não houver ambiguidade e consideremos ∧, ∨ associativos à esquerda, além de terem preferência em relação ao →.

Lema 2. Se $S \leq \aleph_0$ então $\mathcal{T}^{\mathcal{S}}, \mathcal{L}^{\mathcal{S}} \approx \aleph_0$.

1.4 Indução no Cálculo de Termos e Fórmulas

Seja $\mathcal{Z} \subset \mathcal{A}_{\mathcal{S}}^*$, quando $\mathcal{Z} = \mathcal{T}^{\mathcal{S}}, \mathcal{L}^{\mathcal{S}}$ descrevemos uma lista de regra para sua construção que permitia a passagem de certas strings $\zeta_1, \ldots, \zeta_n \in \mathcal{Z}$ para uma nova string $\zeta \in \mathcal{Z}$, podemos escrever isso esquematicamente da seguinte forma:

$$\frac{\zeta_1,\ldots,\zeta_n}{\zeta}$$

Incluímos nesse esquema o caso "livre de premissas" que é quando n=0. Assim podemos escrever **Definition 3.** da seguinte forma:

$$\begin{array}{ll} & \overline{x} & (T1);\\ & \overline{c} & (T2), \text{ se } c \in \mathcal{S};\\ & \frac{t_1, \dots, t_n}{ft_1 \dots t_n} & (T3), \text{ se } f \in \mathcal{S} \text{ e } f \text{ \'e n-\'aria}. \end{array}$$

Quando definimos \mathcal{Z} a partir de um cálculo \mathfrak{C} podemos fazer afirmações sobre os elementos de \mathcal{Z} por meio de indução sobre \mathfrak{C} . Para provar que todo elemento em \mathcal{Z} tem uma propriedade P é suficiente mostrar que todas as fórmulas livre de premissas deriváveis gozam de P (hipótese de indução) e que toda regra em \mathfrak{C} preserva P. No caso particular em que $\mathcal{Z} = \mathcal{T}^{\mathcal{S}}, \mathcal{L}^{\mathcal{S}}$ denominamos o procedimento de prova por indução em termos e fórmulas, respectivamente. Para provar que todo \mathcal{S} -termo goza de P é suficiente mostrar:

- (T1)' Toda variável goza de P;
- (T2)' Toda constante em S goza de P;
- (T3)' Se $t_1, \ldots, t_n \in \mathcal{T}^{\mathcal{S}}$ goza de P e $f \in \mathcal{S}$ é n-ária, então $ft_1 \ldots t_n$ também goza de P.

Para provar que toda \mathcal{S} -fórmula goza de P é suficiente mostrar:

- (F1)' Toda S-fórmula da forma $t_1 \equiv t_2$ goza de P;
- (F2)' Toda S-fórmula da forma $Rt_1 \dots t_n$ goza de P;
- (F3)' Se $\varphi \in \mathcal{L}^{\mathcal{S}}$ goza de P, então $\neg \varphi$ também;
- (F4)' Se $\varphi, \psi \in \mathcal{L}^{\mathcal{S}}$ gozam de P, então $(\varphi * \psi)$, com $* = \land, \lor, \rightarrow, \leftrightarrow$ também;
- (F5)' Se $\varphi \in \mathcal{L}^{\mathcal{S}}$ goza de P e x é uma variável, então $\forall x \varphi, \exists x \varphi$ também.

Lema 3. (a) $\forall t, t' \in \mathcal{T}^{\mathcal{S}}$, t não é um segmento inicial próprio de t' (i.e. $\neg \exists \zeta \neq \Box$ tq $t\zeta = t'$); (b) $\forall \varphi, \varphi' \in \mathcal{L}^{\mathcal{S}}$, φ não é um segmento inicial próprio de φ' .

Lema 4. (a) Se $t_1, \ldots, t_n, t'_1, \ldots, t'_m \in \mathcal{T}^{\mathcal{S}}$ e $t_1 \ldots t_n = t'_1 \ldots t'_m$ então m = n e $t_i = t'_i, 1 \leq i \leq n$. (b) Se $\varphi_1, \ldots, \varphi_n, \varphi'_1, \ldots, \varphi'_m \in \mathcal{L}^{\mathcal{S}}$ e $\varphi_1 \ldots \varphi'_n = \varphi'_1 \ldots \varphi'_m$ então m = n e $\varphi_i = \varphi'_i, 1 \leq i \leq n$.

Teorema 1. Todo elemento de $\mathcal{T}^{\mathcal{S}}$ e $\mathcal{L}^{\mathcal{S}}$ é unicamente determinado pelos seus constituintes, i.e., possui uma única decomposição.

Corolário 1. É imediato que as condições abaixo são suficientes para definir uma função f com $\mathsf{Dom}(f) = \mathcal{T}^{\mathcal{S}}$:

- (T1)" associar um valor a cada variável;
- (T2)" associar um valor a cada constante;
- (T3)" associar um valor a cada termo da forma $ft_1 \dots t_n$ com t_1, \dots, t_n já tendo valores associados. Como tais fórmulas são unicamente determinadas a função existe.

Definição 5. (a) A função var_S (ou var) associa a cada S-termo o conjunto das variáveis que ocorrem nele:

$$\mathsf{var}(x) := x$$

$$\mathsf{var}(c) := \varnothing$$

$$\mathsf{var}(ft_1 \dots t_n) := \bigcup_{n \in \mathbb{N}} \mathsf{var}(t_n).$$

(b) A função SF, que associa a cada fórmula o conjunto das subfórmulas:

$$\mathsf{SF}(t_1 \equiv t_2) := \{t_1 \equiv t_2\}$$

$$\mathsf{SF}(Rt_1 \dots t_n) := \{Rt_1 \dots t_n\}$$

$$\mathsf{SF}(\neg \varphi) := \{\neg \varphi\} \cup \mathsf{SF}(\varphi)$$

$$\mathsf{SF}((\varphi * \psi)) := \{(\varphi * \psi)\} \cup \mathsf{SF}(\varphi) \cup \mathsf{SF}(\psi)$$

$$\mathsf{para} * = \land, \lor, \rightarrow, \leftrightarrow$$

$$\mathsf{SF}(\forall x \varphi) := \{Qx\varphi\} \cup \mathsf{SF}(\varphi)$$

$$\mathsf{para} \ Q = \forall, \exists$$

1.5 Variáveis Livres e Sentenças

Definição 6. A função free (φ) que associa a cada fórmula φ o conjunto de variáveis livres nela:

$$\begin{split} \operatorname{free}(t_1 \equiv t_2) &:= \operatorname{var}(t_1) \cup \operatorname{var}(t_2) \\ \operatorname{free}(Pt_1 \dots t_n) &:= \bigcup_{n \in \mathbb{N}} \operatorname{var}(t_n) \\ \operatorname{free}(\neg \varphi) &:= \operatorname{free}(\varphi) \\ \operatorname{free}((\varphi * \psi)) &:= \operatorname{free}(\varphi) \cup \operatorname{free}(\psi) \\ &*= \wedge, \vee, \rightarrow, \leftrightarrow \\ \operatorname{free}(Qx\varphi) &:= \operatorname{free}(\varphi) \backslash \{x\} \end{split}$$

Denotamos por $\mathcal{L}_n^{\mathcal{S}} := \{ \varphi \mid \varphi \in \mathcal{L}^{\mathcal{S}} \land \mathsf{free}(\varphi) \subset \{v_0, \dots, v_{n-1}\} \}$. Portanto o conjunto de \mathcal{S} -sentenças é denotado por $\mathcal{L}_0^{\mathcal{S}}$

2 Semântica de Linguagens de Primeira Ordem

2.1 Estruturas e Interpretações

Definição 7. Uma S-estrutura é um par $\mathfrak{A} = (A, \mathfrak{a})$ satisfazendo:

- (a) $A \neq \emptyset$ é o domínio do discurso ou universo de \mathfrak{A} , representado por $\mathsf{Dom}(\mathfrak{A})$.
- (b) \mathfrak{a} é uma mapeamento em \mathcal{S} satisfazendo:
 - (1) $\forall R \in \mathcal{S}$ símbolo de relação n-ária, $\mathfrak{a}(R) \subseteq A^n$ é uma relação em A;
 - (2) $\forall f \in \mathcal{S}$ símbolo de função n-ária, $\mathfrak{a}(f): A^n \to A$;
 - (3) $\forall c \in \mathcal{S}$ constante, $\mathfrak{a}(c) \in A$.

Nota 4. Denotaremos $\mathfrak{a}(R)$, $\mathfrak{a}(f)$, $\mathfrak{a}(c)$ por $R^{\mathfrak{A}}$, $f^{\mathfrak{A}}$, $c^{\mathfrak{A}}$, respectivamente, e uma R, f, g-estrura como sendo $\mathfrak{A} = (A, R^{\mathfrak{a}}, f^{\mathfrak{a}}, g^{\mathfrak{a}})$. Quando a estrutura estiver subtendida escreveremos somente $\mathfrak{A} = (A, R, f, g)$

Definição 8. Uma assinatura em uma \mathcal{S} -estrutura \mathfrak{A} é um mapeamento $\gamma:\{v_n\mid n\in\mathbb{N}\}\to A$.

Definição 9. Uma S-interpretação \mathfrak{I} é um par (\mathfrak{A}, γ) consistindo de uma S-estrutura \mathfrak{A} e uma assinatura γ em \mathfrak{A} .

Nota 5. Se μ é uma assinatura em $\mathfrak{B}, a \in \mathsf{Dom}(\mathfrak{B})$ e x é uma variável, então $\mu^{\underline{a}}_{x}$ denota a assinatura que mapeia x em a e concorda com μ em todas as outras variáveis distintas de x:

$$\mu \frac{a}{x}(y) := \begin{cases} \mu(y) & y \neq x \\ a & y = x \end{cases}$$

E para $\mathfrak{I}=(\mathfrak{B},\mu)$ temos $\mathfrak{I}^{\underline{a}}_{\overline{x}}:=\left(\mathfrak{B},\mu^{\underline{a}}_{\overline{x}}\right)$.

2.2 Relação de Satisfação

Definiremos o que $\Im(t)$ significa, com $t \in \mathsf{Dom}(\mathfrak{A})$ e $\Im = (\mathfrak{A}, \beta)$, por indução nos termos:

Definição 10. (a) Para uma variável x, $\Im(x) := \beta(x)$;

- (b) Para uma constante $c \in \mathcal{S}$, $\mathfrak{I}(c) := c^{\mathfrak{A}}$;
- (c) Para um símbolo de função n-ária $f \in \mathcal{S}$ e $t_1, \ldots, t_n \in \mathcal{T}^{\mathcal{S}}$:

$$\mathfrak{I}(ft_1 \dots t_n) := f^{\mathfrak{A}}(\mathfrak{I}(t_1), \dots, \mathfrak{I}(t_n)).$$

Agora definiremos a relação de satisfação.

Definição 11. Para todo $\mathfrak{I} = (\mathfrak{A}, \beta)$ temos:

$$\mathfrak{I} \vDash t_{1} \equiv t_{2} \quad \text{sse} \quad \mathfrak{I}(t_{1}) = \mathfrak{I}(t_{2});$$

$$\mathfrak{I} \vDash Rt_{1} \dots t_{n} \quad \text{sse} \quad R^{\mathfrak{A}}\mathfrak{I}(t_{1}) \dots \mathfrak{I}(t_{n});$$

$$\mathfrak{I} \vDash \neg \varphi \quad \text{sse} \quad \text{n\~ao ocorre } \mathfrak{I} \vDash \varphi;$$

$$\mathfrak{I} \vDash (\varphi \wedge \psi) \quad \text{sse} \quad \mathfrak{I} \vDash \varphi \text{ e } \mathfrak{I} \vDash \psi;$$

$$\mathfrak{I} \vDash (\varphi \vee \psi) \quad \text{sse} \quad \mathfrak{I} \vDash \varphi \text{ ou } \mathfrak{I} \vDash \psi;$$

$$\mathfrak{I} \vDash (\varphi \to \psi) \quad \text{sse} \quad \text{se} \quad \mathfrak{I} \vDash \varphi \text{ ent\~ao } \mathfrak{I} \vDash \psi;$$

$$\mathfrak{I} \vDash (\varphi \leftrightarrow \psi) \quad \text{sse} \quad \mathfrak{I} \vDash \varphi \text{ sse } \mathfrak{I} \vDash \psi;$$

$$\mathfrak{I} \vDash \forall x \varphi \quad \text{sse} \quad \text{para todo } a \in A, \mathfrak{I}\frac{a}{x} \vDash \varphi;$$

$$\mathfrak{I} \vDash \exists x \varphi \quad \text{sse} \quad \text{existe um } a \in A \text{ tq } \mathfrak{I}\frac{a}{x} \vDash \varphi.$$

Nota 6. Dado um conjunto Φ de S-fórmulas, dizemos que \Im é um modelo de Φ e escrevemos $\Im \models \Phi$ se $\Im \models \varphi$ para todo $\varphi \in \Phi$

Seja $\mathsf{Pos}^{\mathcal{S}}$ o conjunto de S-fórmulas positivas, definimos $\mathsf{Pos}^{\mathcal{S}}$ indutivamente:

$$\frac{\varphi}{\varphi} \varphi$$
 é atômica; $\frac{\varphi}{(\varphi * \psi)} * = \land, \lor, \rightarrow, \leftrightarrow; \frac{x}{Qx\varphi} x$ é uma variável, $Q = \forall, \exists$.

Seja $\mathfrak{I} = (\mathfrak{A}, \beta)$ uma \mathcal{S} -interpretação onde $\mathfrak{A} = (c^{\mathfrak{A}}, \mathfrak{a})$ é uma \mathcal{S} -estrutura. Então $\forall c \in \mathcal{S} (\mathfrak{a}(c) = c^{\mathfrak{A}})$, $\forall v (\beta(v) = c^{\mathfrak{A}})$, sendo v uma variável, e $\forall c (\mathfrak{I}(c) = c^{\mathfrak{A}})$. Seja $\mathcal{P}(\varphi) := \mathfrak{I} \models \varphi$ provaremos por indução em fórmulas que \mathcal{P} vale para todo elemento em $\mathsf{Pos}^{\mathcal{S}}$:

Hipótese de indução: $\mathcal{P}(\varphi)$ onde φ é atômica:

$$\varphi = t_1 \equiv t_2$$
: $\mathfrak{I} \models \varphi$ sse $\mathfrak{I}(t_1) = c^{\mathfrak{A}} = \mathfrak{I}(t_2)$.

 $\varphi = Rt_1 \dots t_n$: como não temos R na estrutura então é satisfeito por vacuidade.

 $\varphi=(\psi*\chi)$: como pela hipótese de indução $\mathfrak{I}\models\psi$ e $\mathfrak{I}\models\chi$ então $\mathfrak{I}\models\varphi$

 $\varphi = \forall x \psi$: $\mathcal{P}(\varphi)$ sse para todo $a \in A$, i.e. $c^{\mathfrak{A}}$, $\mathfrak{I}^{\underline{a}}_{\underline{x}} \models \psi$ mas $\mathfrak{I}^{\underline{a}}_{\underline{x}} = (\mathfrak{A}, \beta^{\underline{a}}_{\underline{x}}) = (\mathfrak{A}, \beta) = \mathfrak{I}$ portanto, pela hipótese de indução, $\mathfrak{I} \models \psi$ então $\mathfrak{I} \models \varphi$.

 $\varphi = \exists x \varphi$: O argumento é análogo ao anterior.

2.3 A Relação de Consequência

Definição 12. Seja Φ um conjunto de fórmulas e φ uma fórmula. φ é uma consequência de Φ (escrito $\Phi \models \varphi$) sse toda interpretação que é um modelo de Φ também é modelo de φ .

Nota 7. Se $\Phi = \{\psi\}$ escrevemos $\psi \models \varphi$ ao invés de $\{\psi\} \models \varphi$.

Definição 13. Uma fórmula φ é válida (escrito $\models \varphi$) sse $\varnothing \models \varphi$.

Assim uma fórmula é válida sse toda interpretação é um modelo dela.

Definição 14. Uma fórmula φ é satisfatível (escrito $\mathsf{Sat}(\varphi)$) sse há uma interpretação que é um modelo de φ . Para um conjunto de fórmulas Φ este é satisfatível $(\mathsf{Sat}(\Phi))$ sse existe uma interpretação que é modelo de todas as fórmulas em Φ .

Lema 5. Para todo Φ e φ

$$\Phi \models \varphi$$
 sse não é o caso que $\mathsf{Sat}(\Phi \cup \{\neg \varphi\})$.

Em particular, φ é válida sse $\neg \varphi$ não é satisfatível.

Definição 15. Duas fórmulas φ e ψ são logicamente equivalentes (escrito $\varphi \models \exists \psi$) sse $\varphi \models \psi$ e $\psi \models \varphi$. Portanto $\varphi \models \exists \psi$ sse ambas são válidas nas mesmas interpretações i.e. $\models \varphi \leftrightarrow \psi$.

Evidentemente as seguintes fórmulas são equivalentes:

$$\varphi \wedge \psi \models \exists \neg (\neg \varphi \vee \neg \psi)$$

$$\varphi \to \psi \models \exists \neg \varphi \vee \psi$$

$$\varphi \leftrightarrow \psi \models \exists \neg (\varphi \vee \psi) \vee \neg (\neg \varphi \vee \neg \psi)$$

$$\forall x \varphi \models \exists \neg \exists x \neg \varphi.$$

Portanto é possível definir um mapeamento * por indução em fórmulas que associa a cada φ um $\varphi*$ tal que $\varphi \models \exists \varphi*$ e não contém $\land, \rightarrow, \leftrightarrow, \forall$ o que diminui as provas por indução em fórmulas. O lema a seguir expressa a formulação exata do - intuitivamente claro - fato que a relação de satisfatibilidade entre uma \mathcal{S} -interpretação \mathfrak{I} e uma \mathcal{S} -fórmula φ depende somente da interpretação dos \mathcal{S} -símbolos e das variáveis livres que ocorrem em φ .

Lema 6. Lema da Coincidência. Seja $\mathfrak{I}_1=(\mathfrak{A}_1,\beta_1)$ uma \mathcal{S}_1 -interpretação e $\mathfrak{I}_2=(\mathfrak{A}_2,\beta_2)$ uma \mathcal{S}_2 -interpretação tq $\mathsf{Dom}(\mathfrak{A}_1)=\mathsf{Dom}(\mathfrak{A}_2)$, seja $\mathcal{S}:=\mathcal{S}_1\cap\mathcal{S}_2$:

- (a) Seja t um S-termo. Se \mathfrak{I}_1 e \mathfrak{I}_2 concordam nos S-símbolos, i.e. $\kappa^{\mathfrak{A}_1} = \kappa^{\mathfrak{A}_2}$, e variáveis, i.e. $\beta_1(x) = \beta_2(x)$, que ocorrem em t, então $\mathfrak{I}_1(t) = \mathfrak{I}_2(t)$;
- (b) Seja φ uma \mathcal{S} -fórmula. Se \mathfrak{I}_1 e \mathfrak{I}_2 concordam nos \mathcal{S} -símbolos e nas variáveis que ocorrem livre em φ , então $\mathfrak{I}_1 \models \varphi$ e $\mathfrak{I}_2 \models \varphi$.

Se $\varphi \in \mathcal{L}_n^{\mathcal{S}}$ pelo teorema acima somente os valores $a_i = \beta(v_i), i = 0, \dots, n-1$ são significantes, portanto introduzimos a seguinte notação:

Nota 8. Ao invés de $(\mathfrak{A}, \beta) \models \varphi$ escreveremos:

$$\mathfrak{A} \vDash \varphi[a_0, \dots, a_{n-1}].$$

Da mesma forma, se $var(t) \subset \{v_0, \dots, v_{n-1}\}$ então ao invés de $\mathfrak{I}(t)$ escrevemos $t^{\mathfrak{A}}[a_0, \dots, a_{n-1}]$.

Se n=0 escrevemos $\mathfrak{A} \models \varphi$ e dizemos que \mathfrak{A} é um modelo de φ ou, para um conjunto de sentenças Φ , $\mathfrak{A} \models \Phi$ significa que $\mathfrak{A} \models \varphi$ para todo $\varphi \in \Phi$.

Definição 16. Sejam $\mathcal{S} \subset \mathcal{S}'$ conjuntos de símbolos e $\mathfrak{A} = (A, \mathfrak{a}), \mathfrak{A}' = (A', \mathfrak{a}')$ \mathcal{S} e \mathcal{S}' estruturas, respectivamente. Dizemos que \mathfrak{A} é uma \mathcal{S} -redução de \mathfrak{A}' (ou que \mathfrak{A}' é uma \mathcal{S} expansão de \mathfrak{A}) sse A = A' e \mathfrak{a} , \mathfrak{a}' concordam em \mathcal{S} . Denotamos por $\mathfrak{A} = \mathfrak{A}'$ | \mathfrak{S} .

Note que a definição de interpretação, satisfatilibidade e consequência se referem a um conjunto de símbolos S fixo. Entretanto é possível remover tal referência a partir do **Lema da Coincidência**.

Corolário 2. Φ é satisfatível com respeito a \mathcal{S} sse também é com respeito a \mathcal{S}' .

2.4 Dois Lemas Sobre a Relação de Satisfatibilidade

Os resultados a seguir serão sobre estruturas e subestruturas isomórficas.

Definição 17. Sejam \mathfrak{A} e \mathfrak{B} S-estruturas.

- (a) Um mapeamento $\pi: \mathsf{Dom}(\mathfrak{A}) \to \mathsf{Dom}(\mathfrak{B})$ é denominado um *isomorfismo* de \mathfrak{A} em \mathfrak{B} (denotado $\pi: \mathfrak{A} \cong \mathfrak{B}$) sse
- (i) π é uma bijeção de $\mathsf{Dom}(\mathfrak{A})$ em $\mathsf{Dom}(\mathfrak{B})$;
- (ii) Para $R, f \in \mathcal{S}$ n-árias, $c \in \mathcal{S}$ e $a_1, \ldots, a_n \in \mathsf{Dom}(\mathfrak{A})$:

$$R^{\mathfrak{A}}a_1 \dots a_n$$
 sse $R^{\mathfrak{B}}\pi(a_1) \dots \pi(a_n)$;

$$\pi(f^{\mathfrak{A}}(a_1,\ldots,a_n)) = f^{\mathfrak{B}}(\pi(a_1),\ldots,\pi(a_n));$$
$$\pi(c^{\mathfrak{A}}) = c^{\mathfrak{B}}.$$

(b) Estruturas \mathfrak{A} e \mathfrak{B} são ditas isomórficas (denotado $\mathfrak{A} \cong \mathfrak{B}$) sse há um isomorfismo $\pi : \mathfrak{A} \cong \mathfrak{B}$.

O lema a seguir mostra que sentenças de primeira ordem não conseguem distinguir estruturas isomórficas:

Lema 7. Lema do Isomorfismo. Para S-estruturas isomórficas $\mathfrak A$ e $\mathfrak B$ e toda S-sentença φ :

$$\mathfrak{A} \models \varphi \text{ sse } \mathfrak{B} \models \varphi.$$

Corolário 3. Se $\pi:\mathfrak{A}\cong\mathfrak{B}$ então para $\varphi\in\mathcal{L}_n^{\mathcal{S}}$ e $a_0,\ldots,a_{n-1}\in\mathsf{Dom}(\mathfrak{A})$:

$$\mathfrak{A} \models \varphi[a_0,\ldots,a_{n-1}] \text{ sse } \mathfrak{B} \models \varphi[a_0,\ldots,a_{n-1}]$$

Estruturas isomórficas são indistinguíveis em $\mathcal{L}_0^{\mathcal{S}}$

Definição 18. Sejam \mathfrak{A} e \mathfrak{B} S-estruturas. Então \mathfrak{A} é dito subestrutura de \mathfrak{B} (denotado $\mathfrak{A} \subseteq \mathfrak{B}$)

- (a) $\mathsf{Dom}(\mathfrak{A}) \subseteq \mathsf{Dom}(\mathfrak{B})$
- (b) (1) Para $R \in \mathcal{S}$ n-ário, $R^{\mathfrak{A}} = R^{\mathfrak{B}} \cap \mathsf{Dom}(\mathfrak{A})^n$
 - (2) Para $f \in \mathcal{S}$ n-ário, $f^{\mathfrak{A}} = f^{\mathfrak{B}} \mid_{\mathsf{Dom}(\mathfrak{A})^n}$ (3) Para $c \in \mathcal{S}$ $c^{\mathfrak{A}} = c^{\mathfrak{B}}$.

Lema 8. Sejam \mathfrak{A} e \mathfrak{B} S-estruturas tq $\mathfrak{A} \subseteq \mathfrak{B}$ e seja $\beta : \{v_n \mid n \in \mathbb{N}\} \to \mathsf{Dom}(\mathfrak{A})$ uma assinatura em \mathfrak{A} . Então para todo \mathcal{S} -termo t vale:

$$(\mathfrak{A},\beta)(t)=(\mathfrak{B},\beta)(t);$$

E para toda S-fórmulas livre de quantificadores φ :

$$(\mathfrak{A},\beta) \models \varphi \text{ sse } (\mathfrak{B},\beta) \models \varphi.$$

Definição 19. As fórmulas deriváveis no seguinte cálculo são ditas fórmulas universais:

(i)
$$\overline{\varphi}$$
 Se φ é livre de quantificadores (ii) $\frac{\varphi \quad \psi}{(\varphi * \psi)} * = \land, \lor;$ (iii) $\frac{\varphi}{\forall x \varphi}$.

Nota 9. Todas as fórmulas universais são logicamente equivalentes as da forma $\forall x_1 \dots \forall x_n \psi$ sendo ψ livre de quantificadores.

Lema 9. Lema da Subestrutura. Sejam $\mathfrak A$ e $\mathfrak B$ $\mathcal S$ -estruturas tq $\mathfrak A\subseteq \mathfrak B$ e $\varphi\in \mathcal L_n^{\mathcal S}$ uma fórmula universal. Então para todo $a_0, \ldots, a_{n-1} \in \mathsf{Dom}(\mathfrak{A})$:

Se
$$\mathfrak{B} \models \varphi[a_0,\ldots,a_{n-1}]$$
, então $\mathfrak{A} \models \varphi[a_0,\ldots,a_{n-1}]$.

Corolário 4. Se $\mathfrak{A} \subseteq \mathfrak{B}$ então para toda sentença universal φ :

Se
$$\mathfrak{B} \models \varphi$$
, então $\mathfrak{A} \models \varphi$.

2.5 Substituição

Definição 20.

$$x \frac{t_0 \dots t_r}{x_0 \dots x_r} := \begin{cases} x & \text{se } x \neq x_0, \dots, x \neq x_r \\ t_i & \text{se } x = x_i \end{cases}$$

$$c \frac{t_0 \dots t_r}{x_0 \dots x_r} := c$$

$$[ft'_1 \dots t'_n] \frac{t_0 \dots t_r}{x_0 \dots x_r} := ft'_1 \frac{t_0 \dots t_r}{x_0 \dots x_r} \dots t'_n \frac{t_0 \dots t_r}{x_0 \dots x_r}$$

$$[t'_1 \equiv t'_2] \frac{t_0 \dots t_r}{x_0 \dots x_r} := t'_1 \frac{t_0 \dots t_r}{x_0 \dots x_r} \equiv t'_2 \frac{t_0 \dots t_r}{x_0 \dots x_r}$$

$$[Rt'_1 \dots t'_n] \frac{t_0 \dots t_r}{x_0 \dots x_r} := Rt'_1 \frac{t_0 \dots t_r}{x_0 \dots x_r} \dots t'_n \frac{t_0 \dots t_r}{x_0 \dots x_r}$$

$$[\neg \varphi] \frac{t_0 \dots t_r}{x_0 \dots x_r} := \neg [\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r}]$$

$$(\varphi \vee \psi) \frac{t_0 \dots t_r}{x_0 \dots x_r} := \left(\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} \vee \psi \frac{t_0 \dots t_r}{x_0 \dots x_r} \right)$$

(h) Sejam $x_{i_1}, \dots, x_{i_s} (i_1 < \dots < i_s)$ as variáveis x_i entre x_0, \dots, x_r tq

$$x_i \in \mathsf{free}(\exists x \varphi), x_i \neq t_i$$

com $x \neq x_{i_1}, \dots, x \neq x_{i_s}$, então

$$\left[\exists x\varphi\right] \frac{t_0 \dots t_r}{x_0 \dots x_r} := \exists u \left[\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r}\right]$$

Para a generalização da definição de $\Im \frac{a}{x}$ temos:

Definição 21. Sejam x_0, \ldots, x_r distintos dois a dois e seja $\mathfrak{I} = (\mathfrak{A}, \beta)$ com $a_0, \ldots, a_r \in \mathsf{Dom}(\mathfrak{A})$:

$$\beta \frac{a_0 \dots a_r}{x_0 \dots x_r} := \begin{cases} \beta(y) & \text{se } y \neq x_0, \dots, y \neq x_r \\ a_i & \text{se } y = x_i \end{cases}$$
$$\Im \frac{a_0 \dots a_r}{x_0 \dots x_r} := \left(\mathfrak{A}, \beta \frac{a_0 \dots a_r}{x_0 \dots x_r} \right).$$

Lema 10. Lema da Substituição. (a) Para todo termo t:

$$\Im\left(t\frac{t_0\dots t_r}{x_0\dots x_r}\right) = \Im\frac{\Im(t_0)\dots\Im(t_r)}{x_0\dots x_r}(t).$$

(b) Para toda fórmula φ :

$$\mathfrak{I} \vDash \varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} \text{ sse } \mathfrak{I} \frac{\mathfrak{I}(t_0) \dots \mathfrak{I}(t_r)}{x_0 \dots x_r} \vDash \varphi.$$

Lema 11. Para toda permutação π de $\{0,\ldots,r\}$:

$$\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} = \varphi \frac{t_{\pi(0)} \dots t_{\pi(r)}}{x_{\pi(0)} \dots x_{\pi(r)}}.$$

(b) Se $0 \le i \le r$ e $x_i = t_i$, então

$$\varphi \frac{t_0 \dots t_r}{x_0 \dots x_r} = \varphi \frac{t_0 \dots t_{i-1} \ t_{i+1} \dots t_r}{x_0 \dots x_{i-1} \ x_{i+1} \dots x_r}.$$

(c) Para toda variável y

(i) Se $y \in \text{var}\left(t\frac{t_0...t_r}{x_0...x_r}\right)$, então $y \in \bigcup_{0 \leqslant i \leqslant r} \text{var}(\mathsf{t_i})$ ou $(y \in \text{var}(t) \text{ e } y \neq x_0,\ldots,y \neq x_r);$ (ii) Se $y \in \text{var}\left(\varphi\frac{t_0...t_r}{x_0...x_r}\right)$, então $y \in \bigcup_{0 \leqslant i \leqslant r} \text{var}(\mathsf{t_i})$ ou $(y \in \text{var}(\varphi) \text{ e } y \neq x_0,\ldots,y \neq x_r).$

Corolário 5. Suponha free $(\varphi) \subseteq \{x_0, \dots, x_r\}$ distintos dois a dois.