Rule creation

Just my random thoughts, but having to implement something I wonder what is the best practice for creating rules to mitigate volumetric attacks based on flowspec?

According to awsstatic.com DDoS attacks are most common at layers 3, 4, 6, and 7 of the Open Systems Interconnection (OSI) model.

Layer 3 and 4 attacks correspond to the Network and Transport layers of the OSI model: these are volumetric infrastructure layer attacks.

Layer 6 and 7 attacks correspond to the Presentation and Application layers of the OSI model, these are as application layer attacks and only the volumetric attacks can be detected by fastnetmon.

#	Layer	Unit	Description	Vector Examples
7	Application	Data	Network process to application	HTTP floods, DNS query floods
6	Presentation	Data	Data representation and encryption	SSL abuse
5	Session	Data	Interhost communication	N/A
4	Transport	Segments	End-to-end connections and reliability	SYN floods
3	Network	Packets	Path determination and logical addressing	UDP reflection attacks
2	Data Link	Frames	Physical addressing	N/A
1	Physical	Bits	Media, signal, and binary transmission	N/A

From awsstatic.com

Fastnetmon detects the following type of attacks:

- 1. syn_flood: TCP packets with enabled SYN flag
- 2. udp_flood: flood with UDP packets (so recently in result of amplification)
- 3. icmp flood: flood with ICMP packets
- 4. ip_fragmentation_flood: IP packets with MF flag set or with non zero fragment offset
- 5. DNS amplification:
- 6. NTP amplification:
- 7. SSDP amplification:
- 8. SNMP amplification:

First: it is sometimes possible to distinguish between legitimate and illegitimate packets, as Not All SYNs Are Created Equal. And empty UDP and TCP packet might be rare:

For ethernet is the *minimum payload* 42 octets when an 802.1Q tag is present and 46 octets when absent according to wikipedia on ethernet frames. The minimum Layer 2 Ethernet frame size is 64 bytes for an *empty tcp or udp packet*.

We have the following values for creating a filter:

```
Type 1 - Destination Prefix

Type 2 - Source Prefix

Type 3 - IP Protocol

Type 4 - Source or Destination Port

Type 5 - Destination Port

Type 6 - Source Port

Type 7 - ICMP Type

Type 8 - ICMP Code

Type 9 - TCP flags

Type 10 - Packet length

Type 11 - DSCP

Type 12 - Fragment Encoding
```

Suggestion for rule creation:

Attack type	Mitigation	Match on	
syn_flood	rate-limit	tcp option (syn) protocol, destination port, tcp flags, size, (ttl would be nice but is still in draft), and source any	
udp_flood	rate-limit	protocol and destination host and port	
icmp flood	discard	protocol and destination	
ip_fragmentation_flood	rate-limit	protocol and destination	
DNS amplification	rate-limit	protocol, port and destination	
NTP amplification	rate-limit	protocol, port and destination	
SSDP amplification	discard	protocol, port 1900, source any	
SNMP amplification	discard	protocol, port, destination	

Note: SSDP - Simple Service Discovery Protocol (see draft-cai-ssdp-v1-03 does not belong on a WAN an anyway? It's used for UPnP discovery. The same goes for TCP / UDP port 1 - 19.

SNMP does to my best understanding not pass the boundaries of a company network, even not protocol version 3. And sacrificing monitoring data for the sake of the network is fine with me.