

Balancing Safety and Exploration in Policy Gradient

Supervisor: Prof. Marcello Restelli Co-supervisor: Dott. Matteo Papini

Andrea Battistello, 873795

July 25, 2018

- Reinforcement Learning
- Safe Reinforcement Learning
- The role of exploration
- Safely-Exploring Policy Gradient (SEPG)
- 6 Results
- 6 Conclusions

- Reinforcement Learning
- 2 Safe Reinforcement Learning
- The role of exploration
- 4 Safely-Exploring Policy Gradient (SEPG)
- 6 Results
- 6 Conclusions

Reinforcement Learning

We learn from the **interaction** with the environment For each step, the agent performs an action and receives an observation

Example: Mountain Car

Example: Mountain Car

A Reinforcement Learning method

Policy

A policy π_{θ} is a function that maps states to actions

Performance

The performance $J(\theta)$ of a policy is the discounted sum of rewards obtained by following π_{θ}

$$J(\boldsymbol{\theta}) = \mathbb{E}_{a_t \sim \pi_{\boldsymbol{\theta}}} \left[\sum_{k=0}^T \gamma^k r(s_k, a_k) \right]$$

Policy Gradient method

The optimal policy can be found by gradient ascent on policy parameters:

$$\boldsymbol{\theta} \leftarrow \boldsymbol{\theta} + \alpha \nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})$$

Gaussian policies

 x, \dot{x}

$$\pi(a|s) = \frac{1}{\sqrt{2\pi\sigma}} \exp\left(-\frac{1}{2} \left(\frac{a-v \cdot s}{\sigma}\right)^2\right)$$

$$s = [x; \dot{x}]^T$$

$$\sigma = e^w$$

$$\boldsymbol{\theta} = [\boldsymbol{v}^T; w]^T$$

- Reinforcement Learning
- Safe Reinforcement Learning
- The role of exploration
- 4 Safely-Exploring Policy Gradient (SEPG)
- 6 Results
- Conclusions

Safe Reinforcement Learning

Safe Reinforcement Learning

Definition

Given a reference \underline{J} and a confidence level δ , a RL algorithm is **safe** if it yields a policy with performance lower than \underline{J} with probability at most δ .

Figure: Example of monotonic improvements

State of the art in Safe Reinforcement Learning

We will mainly refer to the results on Adaptive Step Size from Pirotta et al.

• Assuming a policy gradient method with Gaussian-parameterized policies π_{θ} , an update rule of the form $\theta \leftarrow \theta + \alpha \nabla_{\theta} J(\theta)$ and **fixed variance** $\sigma = e^w = const$:

$$J(\theta') - J(\theta) \ge \frac{\alpha}{\alpha} \|\nabla_{\theta} J(\theta)\|_{2}^{2} - \frac{\alpha^{2}}{\alpha^{2}} \|\nabla_{\theta} J(\theta)\|_{1}^{2} \frac{c_{3} + c_{2}\sigma}{c_{1}\sigma^{3}}$$

• that is maximized by the following step size:

$$\alpha^* = \frac{c_1 \sigma^3 \|\nabla_{\theta} J(\theta)\|_2^2}{\left(c_2 \sigma + c_3\right) \|\nabla_{\theta} J(\theta)\|_1^2},$$

• that guarantees an improvement of:

$$J(\boldsymbol{\theta}') - J(\boldsymbol{\theta}) \ge \frac{1}{2} \alpha^* \|\nabla_{\boldsymbol{\theta}} J(\boldsymbol{\theta})\|_2^2.$$

Problems of Safe Reinforcement Learning

The results seen so far suffer from the following problems:

- They target only monotonic improvements
 - This covers only specific user needs.
- They are overly conservative
 - Resulting in a very slow convergence speed.
- They do not consider an adaptive variance
 - The exploration factor remains constant and highly depends on the domain.

- Reinforcement Learning
- 2 Safe Reinforcement Learning
- 3 The role of exploration
- 4 Safely-Exploring Policy Gradient (SEPG)
- 6 Results
- 6 Conclusions

Exploration in Reinforcement Learning

Exploration in Reinforcement Learning

Exploration is intended as performing actions that are **different** than the ones the agent is used to.

- Obtain more informations about the environment
- Find new solutions (possibly better)
- Escape from local maxima

- Reinforcement Learning
- 2 Safe Reinforcement Learning
- The role of exploration
- Safely-Exploring Policy Gradient (SEPG)
- 6 Results
- 6 Conclusions

Contributions (1)

We extended the performance improvement bounds to include an adaptive exploration factor:

$$J(\mathbf{v}, w') - J(\mathbf{v}, w) \ge \frac{\beta}{\beta} \nabla_w J(\mathbf{v}', w)^2 - d\beta^2 \nabla_w J(\mathbf{v}', w)^2$$

that is maximized by:

$$\beta^* = \frac{1}{2d}$$

which guarantees:

$$J(\mathbf{v}, w') - J(\mathbf{v}, w) \ge \frac{\nabla_w J(\mathbf{v}', w)^2}{4d}$$

Recall:

$$\boldsymbol{\theta} = [\boldsymbol{v}; w]$$

Contributions (1)

We adapted the results by employing a new gradient direction:

$$w \leftarrow w + \beta \nabla_w \mathcal{L}(\mathbf{v}, w),$$

where:

$$\nabla_{w} \mathcal{L}(\boldsymbol{v}, w) := \nabla_{w} \left(J(\boldsymbol{v}', w) - J(\boldsymbol{v}, w) \right)$$

Contributions (1)

We employed the budget trick to allow for a customizable implementation of this type of update (and more).

Contributions (2)

The second contribution was to introduce a new framework that goes beyond the single monotonic improvement case.

Type-I

- We guarantee J(θ^t) ≥ J^t_B for each policy update.
- Suited for systems that requires high reliability.

Type-II

- We guarantee $J(\theta^t) \ge J_B^t$ on average over a learning iteration (e.g., a production day).
- Suited for systems with lower safety needs.

Contributions (2)

Contributions (2)

Among these classes we have identified several variants:

- MI Monotonic Improvement with type-I safety
- LB-I Lower bounds to the initial policy with type-I safety
- LB-II Lower bounds to the initial policy with type-II safety
 - Variants with an additional target policy evaluation —
 - **LV** A low variance (e.g., prototype) policy is tested
 - **ZV** The deterministic policy is tested

Contributions (3)

We devised a new general algorithm that can be customized to specific user needs.

Algorithm 1 Safely-Exploring Policy Gradient

```
1: input: \boldsymbol{\theta}^0 = [\mathbf{v}^0, w^0], B^0

2: for t = 1, 2 \dots do

3: \mathbf{v}^{t+1} \leftarrow \mathbf{v}^t + \overline{\alpha} \nabla_{\mathbf{v}} J(\mathbf{v}^t, w^t) \triangleright \mathbf{v}-update

4: B \leftarrow B + J(\mathbf{v}^{t+1}, w^t) - J(\mathbf{v}^t, w^t). \triangleright \mathbf{v}-budget update

5: \mathbf{w}^{t+1} \leftarrow \mathbf{w}^t + \overline{\beta} \nabla_{\mathbf{w}} \mathcal{L}(\mathbf{v}^{t+1}, w^t) \triangleright \mathbf{w}-update

6: B \leftarrow B + J(\mathbf{v}^{t+1}, w^{t+1}) - J(\mathbf{v}^{t+1}, w^t). \triangleright \mathbf{w}-budget update

7: end for
```

- Reinforcement Learning
- 2 Safe Reinforcement Learning
- The role of exploration
- 4 Safely-Exploring Policy Gradient (SEPG)
- 6 Results
- 6 Conclusions

Results - Mountain Car task

(a) Evolution of the performance

(b) Evolution of the exploration parameter

Results - Linear Quadratic Gaussian controller

(a) Performance of MI, LB-I and LB-II variants

(b) Evolution of variance σ

(c) Evolution of the mean **v**

- Reinforcement Learning
- 2 Safe Reinforcement Learning
- The role of exploration
- 4 Safely-Exploring Policy Gradient (SEPG)
- 6 Results
- 6 Conclusions

Conclusions

In this work we have introduced:

- An adaptive way to explore the environment
- A new general framework for safe reinforcement learning
- A general algorithm that can be customized to the user needs

Further works can focus on:

- New methods to adapt exploration using previous knowledge about the environment
- New ways to invest the budget
- Extend the result beyond the policy gradient method

Conclusions

Thank you for your attention

Questions?