

Monitorización de actividad de gases

UAM - Proyecto de Fund. Aprendizaje Automático - 2020/2021

David Cabornero Pascual david.cabornero@estudiante.uam.es José Manuel Chacón Aguilera josem.chacon@estudiante.uam.es Mario García Pascual mario.garciapascual@estudiante.uam.es Alejandro Santorum Varela alejandro.santorum@estudiante.uam.es

Contenido

- Definición del proyecto
- Análisis exploratorio de los datos
- Preprocesamiento de los datos
- Datasets utilizados
- Métodos de clasificación
- Resultados obtenidos
- Conclusiones

Definición del proyecto

- Desarrollo constante iterando las fases habituales de un proyecto de aprendizaje automático.
- Objetivo: modelar la monitorización de gases a tiempo real a través de varios sensores

Uso de varios **modelos** de la librería de **Scikit-learn**

Análisis exploratorio de los datos

	R1	R2	R3	R4	R5	R6	R7	R8	Temp.	Hum.
vi	11.27	7.12	6.52	8.08	13.64	14.65	3.67	4.13	27.09	57.10
$_{\rm pl}$	12.13	9.09	8.82	10.16	19.18	15.06	5.28	6.42	27.07	57.75
bg	12.32	9.21	9.31	10.42	14.95	16.36	5.65	6.12	27.33	57.62

- 100 series temporales con mediciones de 10 sensores.
- 3 clases a distinguir: vino, plátano y background.
- **Desbalance** de ejemplos de **cada clase**.

Background \rightarrow 79.99 % Vino \rightarrow 11.57 % Plátano \rightarrow 8.44 %

El gran reto

Sensor Reading on Day 18 (banana)

David Cabornero Pascual david.cabornero@estudiante.uam.es Mario García Pascual mario.garciapascual@estudiante.uam.es José Manuel Chacón josem.chacon@estudiante.uam.es Alejandro Santorum Varela alejandro.santorum@estudiante.uam.es

Tratamiento de datos

- Corrección inicio y final de los estímulos.
- Estandarización los datos si es necesario.
- Síntesis de datos nuevos de las clases minoritarias.

- No mezclar lecturas de la misma serie en el train y test set.
- La precisión no es suficiente para validar con clases desbalanceadas.
 - Uso adicional de F1-Score.
- Evitar fuerte dependencia de la probabilidad *a priori*.

Datasets utilizados

- Dataset original
- Dataset con estímulos corregidos
- Dataset de ventanas móviles (~2 mins)
- Dataset con secuencias de muestras (~2 mins)
- Uso de SMOTE: síntesis de clases minoritarias

Modelos de clasificación

- Redes neuronales y Bagging
- Métodos Kernel y Bagging
- Conjuntos de árboles de decisión:
 - Random Forest
 - Boosting
- Redes convolucionales
- Redes recurrentes

Resultados obtenidos

MODELO	Val. acc.	Val. F1-Sre.	Test acc.	Test F1-Sre.
RNN	$83.1\% \pm 4\%$	$78.6\% \pm 6\%$	81.7%	77.0%
CNN-1D	$81.8\% \pm 5\%$	$76.7\%\pm7\%$	84.0%	79.4%
CNN-2D	$81.9\% \pm 3\%$	$78.4\% \pm 3\%$	83.0%	79.3%

Precisión

- Mejora usando ventanas.
- Mejor rendimiento con *ensembles*.
- La élite se sitúa en torno al 86-88%.

MODELO	CL-DB	CL-DB-Sm	MW-DB	MW-DB-Sm
NN	$84.6\% \pm 3\%$		$84.9\% \pm 2\%$	$82.2\% \pm 3\%$
Ens. NN	$84.4\% \pm 6\%$		$85.7\% \pm 3\%$	$86.2\% \pm 3\%$
Kernels	$79.1\% \pm 2\%$		$82.8\% \pm 3\%$	$82.6\% \pm 3\%$
Ens. Kernels	$80.8\% \pm 3\%$		$85.6\% \pm 3\%$	$84.8\% \pm 4\%$
Rand. Forest	$84.1\% \pm 5\%$	$83.1\% \pm 5\%$	$87.8\% \pm 4\%$	$85.6\% \pm 3\%$
AdaBoost	$83.3\% \pm 1\%$	$83.7\% \pm 1\%$	$86.3\% \pm 1\%$	$87.6\% \pm 2\%$

F1-Score

MODELO	CL-DB	CL-DB-Sm	MW-DB	MW-DB-Sm
NN	$83.5\% \pm 3\%$		$84.2\% \pm 2\%$	$83.0\% \pm 3\%$
Ens. NN	$83.0\% \pm 7\%$		$84.2\% \pm 3\%$	$86.3\% \pm 3\%$
Kernels	$73.4\% \pm 3\%$		$79.5\% \pm 4\%$	$82.2\% \pm 3\%$
Ens. Kernels	$74.9\% \pm 2\%$		$82.7\% \pm 3\%$	$84.9\% \pm 3\%$
Rand. Forest	$80.3\% \pm 5\%$	$81.6\% \pm 5\%$	$84.3\% \pm 3\%$	$85.1\% \pm 4\%$
AdaBoost	$79.7\% \pm 2\%$	$81.4\% \pm 2\%$	$83.6\% \pm 1\%$	$84.3\% \pm 2\%$

Resultados obtenidos II

- Con el uso de SMOTE el vino es claramente diferenciable.
- SMOTE potencia el rendimiento en el estímulo banana.
- Bagging de redes neuronales aportan los mejores resultados.

Conclusiones

- Aumento del *F1-Score* con ventanas y SMOTE.
- Mejores clasificadores:
 - Random Forest
 - Bagging con Redes Neuronales
- **Siguientes** pasos:
 - Nueva recolección de atributos
 - Pulir modelos más complejos

¡Gracias por su atención!

David Cabornero Pascual david.cabornero@estudiante.uam.es Mario García Pascual mario.garciapascual@estudiante.uam.es José Manuel Chacón Aguilera josem.chacon@estudiante.uam.es Alejandro Santorum Varela alejandro.santorum@estudiante.uam.es

Gonzalo Martínez Muñoz gonzalo.martinez@uam.es