

Source: xkcd comics and statistical thinking

# TRENDING TIME SERIES



# USING DIFFERENCES TO HANDLE TREND

### **Trends**



Line with slope = 2 (y-intercept =2) At x=0, y=2At x=1, y=4At x=2, y=6At x=3, y=8Etc....

### **Trends**



What happens when we difference

**y**?

22-20=2

20-18=2

18-16=2

Etc.

### **Trends**



So, if we think about Y as a time series with a trend, when we take the difference, we remove that trend

### Differenced series:



### Differencing to remove a trend

- So <u>one</u> way we can deal with a trending time series is take the difference and then try to model the ARMA terms on the differenced series (same thing we did with a Random Walk!!)
- In fact, there is a Random Walk with drift defined as:

$$Y_t = \omega + Y_{t-1} + \varepsilon_t$$

Where  $\omega$  is the "drift" of the Random Walk (think drifting up or drifting down)

NOTE: IF you use an automated search procedure and the time series has a trend, IT will find that d = 1 or d=2!

### Procedure:

- Clean your time series data set
- If you notice that your time series has a trend, it is NOT stationary (you cannot start fitting AR and MA terms yet)
- Take differences of your time series data and look at ACF and PACF plots of your differenced data to try some models
- Try some automated models
- Pick best models and see if you have white noise and can forecast well
- Choose your best model

# Example: Consumer spending example

 The consumer data set has disposable consumer spending in thousands of dollars from September 1982 through June 1990



#### ndiffs(consume\_train\$Disposable\_income)

[1] 1

consume\_train<-consume.ts %>% filter(year(date2)<1990)
consume\_train<- consume\_train %>% mutate(income\_diff =
difference(Disposable\_income))
autoplot(consume\_train,income\_diff)+labs(title="Time Series of Differenced Monthly Disposable Income", x="Time", y="Differences")

#### Time Series of Differenced Monthly Disposable Income



consume\_train %>% gg\_tsdisplay(income\_diff,plot\_type = 'partial')



```
consume_model <-consume_train %>%

model(ar1 = ARIMA(Disposable_income ~ pdq(1,1,0) + PDQ(0,0,0)),

ma1 = ARIMA(Disposable_income ~ pdq(0,1,1) + PDQ(0,0,0)),

ar6 = ARIMA(Disposable_income ~ pdq(6,1,0) + PDQ(0,0,0)),

ma6 = ARIMA(Disposable_income ~ pdq(0,1,6) + PDQ(0,0,0)),

search1 = ARIMA(Disposable_income),

search2 = ARIMA(Disposable_income,stepwise = F))

consume_model2<-as.data.frame(consume_model)

t(consume_model2)
```

[,1] ar1 ARIMA(1,1,0) w/ drift ma1 ARIMA(0,1,1) w/ drift ar6 ARIMA(6,1,0) w/ drift ma6 ARIMA(0,1,6) search1 ARIMA(0,1,1) w/ drift search2 ARIMA(0,1,1) w/ drift

glance(consume\_model) %>% arrange(AICc) %>% select(.model:BIC)

| .model<br><chr></chr> | sigma2<br><dbl></dbl> | log_lik<br><dbl></dbl> | AIC<br><dbl></dbl> | AICc<br><dbl></dbl> | BIC<br><dbl></dbl> |
|-----------------------|-----------------------|------------------------|--------------------|---------------------|--------------------|
| mal                   | 545.6705              | -396.6613              | 799.3225           | 799.6117            | 806.7202           |
| search1               | 545.6705              | -396.6613              | 799.3225           | 799.6117            | 806.7202           |
| search2               | 545.6705              | -396.6613              | 799.3225           | 799.6117            | 806.7202           |
| ar6                   | 520.1097              | -392.1708              | 800.3416           | 802.1877            | 820.0688           |
| arl                   | 570.8393              | -398.5659              | 803.1318           | 803.4209            | 810.5295           |
| ma6                   | 610.4192              | -399.7644              | 813.5287           | 814.9464            | 830.7901           |

#### MA(1)

consume\_model %>% select(ma1) %>% residuals() %>% ggAcf(lag.max = 10) consume\_model %>% select(ma1) %>% residuals() %>% ggPacf(lag.max = 10) augment(consume\_model) %>% filter(.model=='ma1') %>% features(.innov,ljung\_box, lag=10, dof = 1)



#### **AR(6)**

consume\_model %>% select(ar6) %>% residuals() %>% ggAcf(lag.max = 10) consume\_model %>% select(ar6) %>% residuals() %>% ggPacf(lag.max = 10) augment(consume\_model) %>% filter(.model=='ar6') %>% features(.innov,ljung\_box, lag=10, dof = 6)



```
pred_ar6 <- consume_model %>% select(ar6) %>% fabletools::forecast(h=6) error_ar6 <- consume$Disposable_income[89:94] - pred_ar6$.mean
MAPE_ar6 <-mean(abs(error_ar6/consume$Disposable_income[89:94]))
MAE_ar6 <- mean(abs(error_ar6))
```

> MAPE\_ar6 [1] 0.006767987 > MAE\_ar6 [1] 20.56257

> MAPE\_ma1 [1] 0.006698975 > MAE\_ma1 [1] 20.3521



# Example 2: Raleigh housing price index

All-transaction housing price index for Raleigh-Cary



Raleigh\_train %>% features(price\_index,unitroot\_ndiffs)





### Model search

```
Raleigh_model <-Raleigh_train %>%

model(ma5 = ARIMA(price_index ~ pdq(0,2,5)+ PDQ(0,0,0)+0),

ar2 = ARIMA(price_index ~ pdq(2,2,0)+ PDQ(0,0,0)+0),

ma2 = ARIMA(price_index ~ pdq(0,2,2)+ PDQ(0,0,0)+0),

search1 = ARIMA(price_index~PDQ(0,0,0)),

search2 = ARIMA(price_index,stepwise = FALSE))

Raleigh_model2<-as.data.frame(Raleigh_model)

t(Raleigh_model2)
```

```
[,1]
ma5 ARIMA(0,2,5)
ar2 ARIMA(2,2,0)
ma2 ARIMA(0,2,2)
search1 ARIMA(1,2,3)
search2 ARIMA(0,2,5)
```

glance(Raleigh\_model) %>% arrange(AICc) %>% select(.model:BIC)

| .model<br><chr></chr> | sigma2<br><dbl></dbl> | log_lik<br><dbl></dbl> | AIC<br><dbl></dbl> | AICc<br><dbl></dbl> | BIC<br><dbl></dbl> |
|-----------------------|-----------------------|------------------------|--------------------|---------------------|--------------------|
| ma5                   | 7.646308              | -219.4104              | 450.8209           | 451.8329            | 465.8197           |
| search2               | 7.646308              | -219.4104              | 450.8209           | 451.8329            | 465.8197           |
| search1               | 8.355466              | -222.5903              | 455.1805           | 455.8948            | 467.6795           |
| ar2                   | 9.501725              | -228.7792              | 463.5585           | 463.8375            | 471.0579           |
| ma2                   | 10.083476             | -231.2456              | 468.4911           | 468.7702            | 475.9906           |

### Notes:

- Some of the original AR and ARIMA models were not stationary, so I removed them from the list
- Search1 wanted to do a seasonal ARIMA, so I had to tell it NO (PDQ(0,0,0))
- The ARIMA(0,2,5) model did not have white noise (some spikes beyond the confidence intervals and Ljung-Box p-value was less than 0.02).
- Therefore, showing results for Search1 (ARIMA(1,2,3))

Raleigh\_model %>% select(search1) %>% residuals() %>% ggAcf(lag.max = 10)
Raleigh\_model %>% select(search1) %>% residuals() %>% ggPacf(lag.max = 10)
Raleigh\_model %>% select(search1) %>% gg\_tsresiduals()

augment(Raleigh\_model) %>% filter(.model=='search1') %>% features(.innov,ljung\_box, lag=10, dof = 4)





| .model      | <b>lb_stat</b> | lb_pvalue   |  |
|-------------|----------------|-------------|--|
| <chr></chr> | <dbl></dbl>    | <dbl></dbl> |  |
| search1     | 7.755857       | 0.2565411   |  |

pred\_arima123 <- Raleigh\_model %>% select(search1) %>% fabletools::forecast(h=5) error\_arima123 <- Raleigh.ts\$price\_index[93:97] - pred\_arima123\$.mean MAPE\_arima123 <-mean(abs(error\_arima123/Raleigh.ts\$price\_index[93:97])) MAE\_arima123 <- mean(abs(error\_arima123))

> MAPE [1] 0.06067555 > MAE [1] 5.986266





# ARIMAX FOR TREND

### Trending time series

- If a time series is trending, there is another way of modeling the trend (besides differencing)
- We could fit a linear regression to the time series data set (x = Time, y = value)
- When we fit a linear regression model to time series data, this is referred to as ARIMAX (ARIMA with an "X" variable....in this case X=time)
- In doing an ARIMAX for trend, we are fitting a linear model with time and then fitting an ARMA to the residuals:

$$Y_t = \beta_0 + \beta_1 t + \eta_t$$
$$\eta_t = ARMA(p, 0, q)$$

After fitting the ARMA to the residuals, what is left should be white noise

### Consumer spending:

```
consume_linear <-consume_train %>% model(trend1 = ARIMA(Disposable_income~ trend() + pdq(0,0,0) + PDQ(0,0,0)+1))
report(consume_linear)
```

```
Series: Disposable_income
Model: LM w/ ARIMA(0,0,0) errors

Coefficients:
    trend() intercept
    7.8743 2368.4594
s.e. 0.1168 5.9841
```





consume\_linear %>% residuals() %>% ggAcf(lag.max = 10) consume\_linear %>% residuals() %>% ggPacf(lag.max = 10)





```
consume_linear <-consume_train %>% model(
trend1 = ARIMA(Disposable_income~ trend() + pdq(6,0,0) + PDQ(0,0,0)+1),
trend2 = ARIMA(Disposable_income ~ trend() + PDQ(0,0,0) +1))
consume_linear2<-as.data.frame(consume_linear)
t(consume_linear2)
```

[,1] trend1 LM w/ ARIMA(6,0,0) errors trend2 LM w/ ARIMA(1,0,0) errors

glance(consume\_linear) %>% arrange(AICc) %>% select(.model:BIC)

| .model<br><chr></chr> | sigma2<br><dbl></dbl> | log_lik<br><dbl></dbl> | AIC<br><dbl></dbl> | AICc<br><dbl></dbl> | BIC<br><dbl></dbl> |
|-----------------------|-----------------------|------------------------|--------------------|---------------------|--------------------|
| trend2                | 503.8598              | -397.3595              | 802.7190           | 803.201             | 812.6284           |
| trend1                | 486.4234              | -393.3921              | 804.7843           | 807.092             | 827.0803           |









Raleigh\_linear <-Raleigh\_train %>% model(
trend1 = ARIMA(price\_index~ trend() + pdq(0,0,0) + PDQ(0,0,0)+1))
Raleigh\_linear %>% residuals() %>% ggAcf(lag.max = 10)
Raleigh\_linear %>% residuals() %>% ggPacf(lag.max = 10)





```
Raleigh_linear <-Raleigh_train %>% model(
trend1 = ARIMA(price_index~ trend() + pdq(2,0,0) + PDQ(0,0,0)+1),
trend2 = ARIMA(price_index ~ trend() + PDQ(0,0,0) + 1),
trend3 = ARIMA(price_index ~ trend() + PDQ(0,0,0) + 1,stepwise = FALSE))
Raleigh_linear2<-as.data.frame(Raleigh_linear)
t(Raleigh_linear2)
```

[,1] trend1 LM w/ ARIMA(2,0,0) errors trend2 LM w/ ARIMA(2,0,2) errors trend3 LM w/ ARIMA(1,0,4) errors

glance(Raleigh\_linear) %>% arrange(AICc) %>% select(.model:BIC)

| .model<br><chr></chr> | sigma2<br><dbl></dbl> | log_lik<br><dbl></dbl> | AIC<br><dbl></dbl> | AICc<br><dbl></dbl> | BIC<br><dbl></dbl> |
|-----------------------|-----------------------|------------------------|--------------------|---------------------|--------------------|
| trend3                | 7.445263              | -224.2592              | 464.5184           | 466.2533            | 484.6927           |
| trend2                | 8.534616              | -229.9226              | 473.8452           | 475.1785            | 491.4977           |
| trend1                | 10.462400             | -239.2474              | 488.4948           | 489.1924            | 501.1037           |

After looking at all 3 models, the best one for white noise is trend2 (Linear model with ARMA(2,0,2) errors)

Raleigh\_linear %>% select(trend2) %>% residuals() %>% ggAcf(lag.max = 10) Raleigh\_linear %>% select(trend2) %>%residuals() %>% ggPacf(lag.max = 10)

augment(Raleigh\_linear) %>% filter(.model=='trend2') %>% features(.innov,ljung\_box, lag=10, dof = 4)





### Trending time series

- If you have a trending time series, you will either
  - Fit a random walk with drift (d = 1 or d = 2)
  - Fit a trend line and ARMA on the errors
- How do you decide?
  - Can use AIC, AICc, BIC on training data
  - See which one follows the data the best (on training or validation data)
  - Can use MAPE, MAE on validation data
- Once you decide on a model AND you are completely done with the modeling phase, you should combine your training and validation and update the parameter values (keep the EXACT same model!!) before comparing it to the test data

### RW with drift versus LM with ARMA errors

- The Random Walk with drift will have a wider confidence interval (very uncertain where it will be going)
- Linear model assumes a constant trend (RW with drift does not)
- Each method has its pros and cons.....you need to decide what is best for your data!!

