```
otherwise
                         = Comb (Comb S (bracketabs x u)) (bracketabs x (Cte y))
bracketabs x (Comb u v)
  | freein x (Comb u v) = Comb K (Comb u v)
  | otherwise
                        = Comb (Comb S (bracketabs x u)) (bracketabs x v)
                        = Comb K a
bracketabs _ a
-- | SKI abstraction of a named lambda term. From a lambda expression
-- creates a SKI equivalent expression. The following algorithm is a
-- version of the algorithm (9.10) on the Hindley-Seldin book.
skiabs :: NamedLambda -> Ski
skiabs (LambdaVariable x)
                               = Cte x
skiabs (LambdaApplication m n) = Comb (skiabs m) (skiabs n)
skiabs (LambdaAbstraction x m) = bracketabs x (skiabs m)
```

USAGE

7.1 INSTALLATION

The complete Mikrokosmos suite is divided in multiple parts:

- 1. the **Mikrokosmos interpreter**, written in Haskell;
- 2. the **Jupyter kernel**, written in Python;
- 3. the **CodeMirror Lexer**, written in Javascript;
- 4. the **Mikrokosmos libraries**, written in the Mikrokosmos language;
- 5. the **Mikrokosmos-js** compilation, which can be used in web browsers.

These parts will be detailed on the following sections. A system that already satisfies all dependencies (Stack, Pip and Jupyter), can install Mikrokosmos using the following script, which is detailed on this section

```
# Mikrokosmos interpreter
stack install mikrokosmos
# Jupyter kernel for Mikrokosmos
sudo pip install imikrokosmos
# Libraries
git clone https://github.com/M42/mikrokosmos-lib.git ~/.mikrokosmos
```

The **Mikrokosmos interpreter** is listed in the central Haskell package archive, *Hackage* ¹. The packaging of Mikrokosmos has been done using the **cabal** tool; and the configuration of the package can be read in the file mikrokosmos.cabal on the Mikrokosmos code. As a result, Mikrokosmos can be installed using the **cabal** and **stack** Haskell package managers. That is,

```
# With cabal
cabal install mikrokosmos
# With stack
stack install mikrokosmos
```

^{1 :} Hackage can be accesed in: http://hackage.haskell.org/ and the Mikrokosmos package can be found in https://hackage.haskell.org/package/mikrokosmos

The **Mikrokosmos Jupyter kernel** is listed in the central Python package archive. Jupyter is a dependency of this kernel, which only can be used in conjunction with it. It can be installed with the pip package manager as

```
sudo pip install imikrokosmos
```

and the installation can be checked by listing the available Jupyter kernels with

```
jupyter kernelspec list
```

The **Mikrokosmos libraries** can be downloaded directly from its GitHub repository. ² They have to be placed under ~/.mikrokosmos if we want them to be locally available or under /usr/lib/mikrokosmos if we want them to be globally available.

```
git clone https://github.com/M42/mikrokosmos-lib.git ~/.mikrokosmos
```

The following script installs the complete Mikrokosmos suite on a fresh system. It has been tested under Ubuntu 16.04.3 LTS (Xenial Xerus).

```
# 1. Installs Stack, the Haskell package manager
wget -q0- https://get.haskellstack.org | sh
STACK=$(which stack)
# 2. Installs the ncurses library, used by the console interface
sudo apt install libncurses5-dev libncursesw5-dev
# 3. Installs the Mikrokosmos interpreter using Stack
$STACK setup
$STACK install mikrokosmos
# 4. Installs the Mikrokosmos standard libraries
sudo apt install git
git clone https://github.com/M42/mikrokosmos-lib.git ~/.mikrokosmos
# 5. Installs the IMikrokosmos kernel for Jupyter
sudo apt install python3-pip
sudo -H pip install --upgrade pip
sudo -H pip install jupyter
sudo -H pip install imikrokosmos
```

^{2 :} The repository can be accessed in: https://github.com/M42/mikrokosmos-lib.git

7.2 MIKROKOSMOS INTERPRETER

Once installed, the Mikrokosmos λ interpreter can be opened from the terminal with the mikrokosmos command. It will enter a *read-eval-print loop* where λ -expressions and interpreter commands can be evaluated.

```
$> mikrokosmos
Welcome to the Mikrokosmos Lambda Interpreter!
Version 0.5.0. GNU General Public License Version 3.
mikro>
```

The interpreter evaluates every line as a lambda expression. Examples on the use of the interpreter can be read on the following sections. Apart from the evaluation of expressions, the interpreter accepts the following commands

- :quit and :restart, stop the interpreter;
- :verbose activates verbose mode;
- :ski activates SKI mode;
- : types changes between untyped and simply typed λ -calculus;
- :color deactivates colored output;
- :load loads a library.

Figure 2 is an example session on the mikrokosmos interpreter.

7.3 JUPYTER KERNEL

The **Jupyter Project** [Jup] is an open source project providing support for interactive scientific computing. Specifically, the Jupyter Notebook provides a web application for creating interactive documents with live code and visualizations.

We have developed a Mikrokosmos kernel for the Jupyter Notebook, allowing the user to write and execute arbitrary Mikrokosmos code on this web application. An example session can be seen on Figure 3.

The implementation is based on the pexpect library for Python. It allows direct interaction with any REPL and collects its results. Specifically, the following Python lines represent the central idea of this implementation

```
# Initialization
mikro = pexpect.spawn('mikrokosmos')
mikro.expect('mikro>')

# Interpreter interaction
# Multiple-line support
output = ""
```