Decision Support Systems Utility in ML

Andrea Campagner, PhD, Post-Doc Researcher

IRCCS Istituto Ortopedico Galeazzi, Milan, Italy MUDI Lab, Department of Computer Science, University of Milano-Bicocca, Milan, Italy

Contacts: onyris93@gmail.com; andrea.campagner@unimib.it https://andreacampagner.github.io/

18 April 2023

Table of Contents

Recap on ML

2 Cost-Sensitive Classification

3 Net Benefit and Decision Curves

Brief Recap on ML

Let X be a feature space and Y be a target space. A *data generating distribution* is a probability distribution \mathcal{D} over $X \times Y$.

Sometimes we assume that \mathcal{D} is *deterministic*, i.e. exists $f: X \to Y$ with $\mathcal{D}(y|x) = 1$ iff f(x) = y.

Let \mathcal{H} be a class of models (i.e., functions $X \to Y$), and $I: Y \times Y \to \mathbb{R}$ be a *loss function*: intuitively, I(y',y) is the cost of saying y' when the correct answer would be y.

The goal of ML is to design an algorithm A that allows us to select a model h for each finite sample $S \sim \mathcal{D}^m$ s.t. $\mathbb{E}_{(x,y)\sim \mathcal{D}} I(h(x),y)$ is small.

Utilities and Loss Functions

Loss functions inherently describe a utility function (or, dually, a regret function) for our learning problem.

For example, the 0-1 loss associates utility 1 (regret 0) when $y=y^\prime$ and otherwise utility 0 (regret 1).

True Predicted	Positive class	Negative class
Positive class	1	0
Negative class	0	1

Applications of Loss Functions

Crucially, loss functions (dually, utilities) have two applications: *training* and *evaluation*

In training, we use the loss function as the objective of an optimization problem (empirical risk minimization): $\arg\min_{h\in\mathcal{H}}\frac{1}{|Tr|}\sum_{(x,y)\in Tr}l(h(x),y)$

In evaluation, we use the loss function to estimate the real (population-wise) loss of a given selected model: $\frac{1}{|Te|} \sum_{(x,y) \in Te} I(h(x),y)$

In this lecture we focus on evaluation!

Cost-sensitive Classification

Most common metric for evaluation of ML models is accuracy:

$$\frac{|\{(x,y)\in Te: h(x)=y\}|}{|Te|}$$

Accuracy corresponds to the 0-1 loss: assumes that all decisions (both errors and correct ones) have the same cost/utility... hardly true in practice!

True Predicted	Cancer	Not Cancer
Cancer	Patient improves	Side-effects
Not Cancer	Patient Dies	OK

Cost-sensitive Classification (cont.)

Cost-sensitive Classification aims to weight different decisions differently!

True Predicted	Positive	Negative
Positive	a	b
Negative	С	d

$$Cost(h, Te) = a|TP| + b|FP| + c|FN| + d|TN|$$

The costs should reflect some notion of utility in the considered application!

Limitations of Cost-sensitive Classification

Cost-sensitive classification considers models as *classification supports* (functions $X \to Y$) and the target as deterministic... However:

- Our models are *probabilistic supports*: functions $X \to \Delta(Y)$ that associate with each x a probability distribution over y
- The data generating distribution \mathcal{D} is not deterministic (e.g., what happens when some relevant features are not observed?)

In these settings, (cost-sensitive) accuracy is not enough and we want other guarantees (e.g., calibration: h(x) should be close to $\mathcal{D}(\cdot|x)$)

Net Benefit and Decision Curves

Net benefit theory aims to address the limitations of simple cost-sensitive classification in a principled manner.

It decouples prediction from decision:

- **Prediction**: Our models are probabilistic $X \to [0, 1]$, where h(x) denotes the probability of the positive class;
- **Decision**: We get a label $\hat{y} \in \{0,1\}$ by thresholding h(x) at a fixed threshold τ

Net Benefit and Decision Curves (cont.)

Net benefit theory gives two main tools:

- A way to select a threshold and evaluate models at this value (net benefit metric);
- A qualitative way to evaluate a model at different decision thresholds (decision curves);

Net Benefit: Selecting a Threshold

In the cost-sensitive setting, imagine the threshold τ at which we would be most undecided between the two labels:

where Cost = d - b is the cost of a false positive, Benefit = a - c is the utility of a true positive: you should set the decision threshold based on your utilities!

Net Benefit: Deriving a Metric

Assume we fix Benefit = a - c = 1, then the value of a false positive is:

$$b - d = -\frac{\tau}{1 - \tau}$$

Then the utility (**net benefit**) of our model, at threshold τ is defined as:

$$NB(\tau) = \frac{|TP|}{n} - \frac{\tau}{1 - \tau} \frac{|FP|}{n}$$

Intuitively, the net benefit evaluates our model by checking how many times we correctly get the positive cases, discounted by the fraction of false positives: however, false positives are weighted by their cost!

Net Benefit: Decision Curves

What if we do not precisely know the utilities? We can compute the net benefit at different thresholds and get a **decision curve**

Net Benefit: Variations and Current Research

- NB has range $[-\infty, \pi]$ where π is the proportion of positive labels... if we multiply the FP term by $\frac{1-\pi}{\pi}$ we obtain the **Standardized Net Benefit**, with range $[-\infty, 1]$;
- One can consider different decision thresholds for different instances:
 Weighted Utility [1];
- Net Benefit can be related to other metrics, e.g. AUC and ROC curves [2]

- Campagner, A., Sternini, F., Cabitza, F. (2022). Decisions are not all equal—Introducing a utility metric based on case-wise raters' perceptions. Computer Methods and Programs in Biomedicine, 221, 106930.
- Carrington, A. M., Fieguth, P. W., Mayr, et al. (2022). The ROC Diagonal is Not Layperson's Chance: A New Baseline Shows the Useful Area. In: International Cross-Domain Conference, CD-MAKE 2022.