CSI 445/660 - Part 1 (Graph Theory Basics)

<u>Ref:</u> Chapter 2 of [Easley & Kleinberg].

Types of Graphs

Undirected and Directed.

Undirected graph:

- Example: Friendship relation among people.
- A symmetric relationship.

Directed graph:

- **Example:** Follower relationship in Twitter.
- May not be symmetric.

Undirected Graphs: Notation and Definitions

Example:

$$V = \{a, b, c, d, e, f\}$$
 (nodes or vertices)
 $E = \{ \{a,b\}, \{a,f\}, \{b,c\}, \{c,d\}, \{c,f\}, \{d,e\}, \{e,f\} \}$ (edges)

$$|V| = \text{No. of nodes} = 6$$
 $|E| = \text{No. of edges} = 7$

Notation and Definitions (continued)

Definition: The **degree** of a node v is the number of edges **incident on** v.

Example: Degree of a = 2, degree of f = 3.

Some observations:

Sum of the degrees of all the nodes

$$=$$
 Degree(a) + Degree(b) + ... + Degree(f)

$$= 2 + 2 + 3 + 2 + 2 + 3 = 14$$
 (even)

$$=$$
 2 \times No. of edges.

■ Nodes with **odd** degree = {c, f}; thus, the number of nodes of odd degree is **even**.

Notation and Definitions (continued)

Theorem: [First Theorem of Graph Theory]

In any undirected graph, the sum of the degrees of all the nodes is equal to twice the number of edges.

Corollary: In any undirected graph, the number of nodes of odd degree is even.

Examples of paths in graph *G*:

- There is a path between every pair of nodes.
- Graph *G* is **connected**.

Notation and Definitions (continued)

- Disconnected graph.
- Has two connected components.

Evolution of a large social network: Imagine the following global friendship graph.

- One node per person in the world (No. of nodes ≈ 7.3 billion).
- An edge between each pair of friends.

Friendship Network Evolution

Friendship Network Evolution (continued)

Friendship Network Evolution (continued)

Friendship Network Evolution (continued)

- Components get merged over time.
- The graph is likely to contain paths between people in remote parts of the world.
- A large subset of the nodes are in one component, called the giant component. (This is typical of many social networks arising in practice.)

An Illustration by Prof. Alistair Sinclair (UC Berkeley):

Giant Component: Another Example

Collaboration graph at a research center (from [EK]):

Shortest Paths

Paths between a and e:

- $\mathbf{a} \mathbf{f} \mathbf{e}$: Length = 2 (No. of edges)
- $\mathbf{a} \mathbf{b} \mathbf{c} \mathbf{f} \mathbf{e}$: Length = 4
- There is no path between a and e with length < 2.
- So, $\mathbf{a} \mathbf{f} \mathbf{e}$ is a **shortest path** between a and e.
- Shortest paths can be found using a procedure called breadth-first-search (BFS).

Breadth-First-Search: Example I

Observation: Each node is within a distance of 3 from node a.

Breadth-First-Search: Example II

Observation: Each node is within a distance of 2 from node f.

Definition of Diameter

Shortest Path Lengths: (Partial list)

Node pair	Shortest Distance
a, b	1
a, c	2
a, d	3
:	:
b, e	3
:	:
e, f	1

- Diameter: Maximum among the shortest path lengths.
- Diameter of the above graph = 3.

Some Notes About Diameter

- Diameter is meaningful only for **connected** graphs. (Some references use ∞ as the diameter of a disconnected graph.)
- If a graph is disconnected, one needs to consider the diameter each connected component.
- For a connected graph with n nodes, the diameter is at most n-1.
- In communication networks, diameter gives an indication of the worst-case delay for message delivery.
- Typically, giant components of social networks have small diameters (small world phenomenon).

BFS and Diameter

Observation: For any **connected** graph, if a BFS produces r levels, then the diameter of the graph is at most 2r.

Small World Phenomenon

Example: Erdős Collaboration Network

- Paul Erdős (1913 1996)
- Hungarian Mathematician

- Each node is a researcher and edge $\{x, y\}$ means that researchers x and y co-authored at least one paper.
- Level 0: Node corresponding to Erdős.
- Level 1: Nodes corresponding to researchers who have published a paper with Erdős.

Erdős Collaboration Network (continued)

■ Level 2: Nodes corresponding to researchers who have published a paper with some researcher in Level 1.

```
: :
```

- Level j: Nodes corresponding to researchers who have published a paper with some researcher in Level j-1.
- Erdős Number of a researcher: The level number in the graph for the node corresponding to the researcher.

Largest known Erdős Number = 8.

Example for Erdős Number

- Ravi's Erdős Number ≤ 3.
- Erdős Numbers of Teri Harrison, Catherine Dumas and Dan Lamanna ≤ 4.