Tianjin International Engineering Institute

Formal Languages and Automata

Lesson 6: Regular Expressions

Marc Gaetano Edition 2018

Operations on strings

• Given two strings $s = a_1...a_n$ and $t = b_1...b_m$, we define their concatenation $st = a_1...a_nb_1...b_m$

$$s = abb$$
, $t = cba$ $st = abbcba$

• We define s^n as the concatenation ss...s n times

$$s = 011$$

$$s^3 = 011011011$$

Operations on languages

• The concatenation of languages L_1 and L_2 is

$$L_1L_2 = \{st: s \in L_1, t \in L_2\}$$

- Similarly, we write L^n for LL...L (n times)
- The union of languages $L_1 \cup L_2$ is the set of all strings that are in L_1 or in L_2
- Example: $L_1 = \{01, 0\}, L_2 = \{\varepsilon, 1, 11, 111, \ldots\}.$ What is L_1L_2 and $L_1 \cup L_2$?

Operations on languages

 The star (Kleene closure) of L are all strings made up of zero or more chunks from L:

$$L^* = L^0 \cup L^1 \cup L^2 \cup \dots$$

– This is always infinite, and always contains ϵ

• Example: $L_1 = \{01, 0\}, L_2 = \{\epsilon, 1, 11, 111, \ldots\}.$ What is L_1^* and L_2^* ?

Constructing languages with operations

- Let's fix an alphabet, say $\Sigma = \{0, 1\}$
- We can construct languages by starting with simple ones, like $\{0\}$, $\{1\}$ and combining them

$$\{0\}(\{0\}\cup\{1\})^*$$
 all strings that start with 0
$$(\{0\}\{1\}^*)\cup(\{1\}\{0\}^*)$$

$$0(0+1)^*$$

$$01^*+10^*$$

Regular expressions

- A regular expression over Σ is an expression formed using the following rules:
 - The symbol \varnothing is a regular expression
 - The symbol ϵ is a regular expression
 - For every $a \in \Sigma$, the symbol a is a regular expression
 - If R and S are regular expressions, so are RS, R+S and R^* .
- Definition of regular language

A language is regular if it is represented by a regular expression

Examples

- 1. $01* = \{0, 01, 011, 0111, \ldots\}$
- 2. $(01*)(01) = \{001, 0101, 01101, 011101, \dots\}$
- 3. (0+1)*
- 4. (0+1)*01(0+1)*
- 5. ((0+1)(0+1)+(0+1)(0+1)(0+1))*
- 6. ((0+1)(0+1))*+((0+1)(0+1)(0+1))*
- 7. $(1+01+001)*(\epsilon+0+00)$

Examples

- Construct a RE over $\Sigma = \{0,1\}$ that represents
 - All strings that have two consecutive 0s. (0+1)*00(0+1)*

- All strings except those with two consecutive 0s. (1*01)*1* + (1*01)*1*0

- All strings with an even number of 0s. (1*01*01*)*

Main theorem for regular languages

Theorem

A language is regular if and only if it is the language of some DFA

Proof plan

 For every regular expression, we have to give a DFA for the same language

 For every DFA, we give a regular expression for the same language

εNFA reminder

- An ϵ NFA is an extension of NFA where some transitions can be labeled by ϵ
 - Formally, the transition function of an ϵ NFA is a function

$$\delta: \mathcal{Q} \times (\Sigma \cup \{\epsilon\}) \rightarrow \text{subsets of } \mathcal{Q}$$

The automaton is allowed to follow ε-transitions without consuming an input symbol

Example of εNFA

- Which of the following is accepted by this εNFA:
 - aab, bab, ab, bb, a, ε

Examples: regular expression $\rightarrow \varepsilon NFA$

 $\mathbf{R}_1 = 0$ \mathbf{q}_0 \mathbf{q}_1

• $R_2 = 0 + 1$ $q_0 = q_2 + q_3 = q_1$ $q_1 = q_2 + q_3 = q_1$

General method

Convention

- When we draw a box around an εNFA:
 - The arrow going in points to the start state
 - The arrow going out represents all transitions going out of accepting states
 - None of the states inside the box is accepting
 - The labels of the states inside the box are distinct from all other states in the diagram

General method continued

regular expr

 ϵNFA

Road map

Example of ENFA to NFA conversion

Transition table of corresponding NFA:

$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$				inputs		inputs
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			_	a		a b
$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	states	$\begin{array}{ c c }\hline q_0\\q_1\\q_2\end{array}$	states	$\{q_0, q_1, q_2\}$ $\{q_0, q_1, q_2\}$ \emptyset		

Accepting states of NFA: $\{q_0, q_1, q_2\}$

Example of εNFA to NFA conversion

General method

- To convert an εNFA to an NFA:
 - States stay the same
 - Start state stays the same
 - The NFA has a transition from q_i to q_j labeled a iff the ϵ NFA has a path from q_i to q_j that contains one transition labeled a and all other transitions labeled ϵ
 - The accepting states of the NFA are all states that can reach some accepting state of εNFA using only ε-transitions

Why the conversion works

In the original ε -NFA, when given input $a_1 a_2 \dots a_n$ the automaton goes through a sequence of states:

$$q_0 \rightarrow q_1 \rightarrow q_2 \rightarrow \dots \rightarrow q_m$$

Some ε -transitions may be in the sequence:

$$q_0 \xrightarrow{\varepsilon} \xrightarrow{a_1} \xrightarrow{\varepsilon} q_{i_1} \xrightarrow{\varepsilon} \xrightarrow{a_2} \xrightarrow{\varepsilon} q_{i_2} \xrightarrow{\varepsilon} \dots \xrightarrow{\varepsilon} q_{i_n}$$

In the new NFA, each sequence of states of the form:

$$q_{i_k} \xrightarrow{\varepsilon} \xrightarrow{a_{k+1}} \xrightarrow{\varepsilon} q_{i_{k+1}}$$

will be represented by a single transition $q_{i_k} \stackrel{a_{k+1}}{\to} q_{i_{k+1}}$ because of the way we construct the NFA.

Proof that the conversion works

• More formally, we have the following invariant for any $k \ge 1$:

After reading k input symbols, the set of states that the ϵNFA and NFA can be in are exactly the same

- We prove this by induction on k
- When k = 0, the ε NFA can be in more states, while the NFA must be in q_0

Proof that the conversion works

- When $k \ge 1$ (input is **not** the empty string)
 - If ε NFA is in an accepting state, so is NFA
 - Conversely, if NFA is an accepting state q_i , then some accepting state of ϵ NFA is reachable from q_i , so ϵ NFA accepts also
- When k = 0 (input is the empty string)
 - The ϵ NFA accepts iff one of its accepting states is reachable from q_0
 - This is true iff q_0 is an accepting state of the NFA

From DFA to regular expressions

Example

Construct a regular expression for this DFA:

General method

- We have a DFA M with states $q_1, q_2, \dots q_n$
- We will inductively define regular expressions $R_{ij}^{\ \ k}$

 R_{ij}^{k} will be the set of all strings that take M from q_i to q_j with intermediate states going through $q_1, q_2,...$ or q_k only.

Example

$$R_{11}^{0} = \{ \epsilon, 0 \} = \epsilon + 0$$

 $R_{12}^{0} = \{ 1 \} = 1$
 $R_{22}^{0} = \{ \epsilon, 1 \} = \epsilon + 1$
 $R_{11}^{1} = \{ \epsilon, 0, 00, 000, ... \} = 0*$
 $R_{12}^{1} = \{ 1, 01, 001, 0001, ... \} = 0*1$

General construction

• We inductively define $R_{ij}^{\ k}$ as:

$$R_{ii}^{0} = a_{i_1} + a_{i_2} + \dots + a_{i_t} + \varepsilon$$
(all loops around q_i and ε)

$$R_{ij}^{\ 0} = a_{i_1} + a_{i_2} + \dots + a_{i_t} \quad \text{if } i \neq j$$

$$(\text{all } q_i \rightarrow q_i)$$

$$R_{ij}^{k} = R_{ij}^{k-1} + R_{ik}^{k-1} (R_{kk}^{k-1}) * R_{kj}^{k-1}$$
(for $k > 0$)

Informal proof of correctness

• Each execution of the DFA using states $q_1, q_2, ...$ q_k will look like this:

Final step

- Suppose the DFA start state is q_1 , and the accepting states are $F = \{q_{j_1} \cup q_{j_2} \dots \cup q_{j_t}\}$
- Then the regular expression for this DFA is

$$R_{1j_1}^{n} + R_{1j_2}^{n} + \dots + R_{1j_t}^{n}$$

All models are equivalent

A language is regular iff it is accepted by a DFA, NFA, ε NFA, or regular expression

Example

Give a RE for the following DFA using this method:

