MAKALAH

ANALISIS PREDIKTIF KARAKTERISTIK BANGUNAN TAHAN GEMPA MENGGUNAKAN XGBOOST CLASSIFIER

Disusun oleh:

Thesion Marta Sianipar Tech Savants Rendika Nurhartanto Suharto Tech Savants Ahmad Mu'min Faisal Tech Savants

Disusun guna berpartisipasi dalam Babak Penyisihan JOINTS Data Competition 2023

FAKULTAS TEKNOLOGI INFORMASI DAN BISNIS INSTITUT TEKNOLOGI TELKOM SURABAYA 2023

DAFTAR ISI

DAFTA:	R ISI
DAFTA	R GAMBAR ii
BAB I P	PENDAHULUAN 1
1.1	Latar Belakang
1.2	Rumusan Masalah
1.3	Tujuan
1.4	Manfaat
BAB II	METODE
1.5	Perangkat Lunak
1.6	Dataset
1.7	Algoritma
	1.7.1 Frequent Category Imputation
	1.7.2 K-Nearest Neighbour Imputation
	1.7.3 Gradient Boosting Machines
1.8	<i>Data Cleaning</i>
1.9	Feature Engineering
BAB III	ANALISIS DATA EKSPLORASI DAN MODEL PREDIKSI 6
1.10	Analisis Data Eksplorasi
	1.10.1 Analisis Univariat
	1.10.2 Analisis Bivariat
1.11	Model Prediksi
BAB IV	KESIMPULAN
4.1	Hasil dan Pembahasan
4.2	Kesimpulan
DAFTA	R PUSTAKA
LAMPI	RAN
1.1	Biodata Ketua Tim
1.2	Biodata Anggota 1
1.3	Biodata Anggota 2

DAFTAR GAMBAR

Gambar	1:	Informasi mengenai tabel train set dan test set	2
Gambar	2:	Melakukan pemeriksaan setiap kemungkinan kekosongan kolom dan	
		banyak barisnya	3
Gambar	3:	Menghapus baris yang memiliki lebih dari 30% kolom yang kosong	4
Gambar	4:	Persentase nilai kosong pada setiap kolom setelah melakukan pengha-	
		pusan baris	4
Gambar	5:	Mengatasi salah satu kolom bertipe data string yang belum ternormalisasi.	5
Gambar	6:	Imputasi berdasarkan median untuk data yang tidak berdistribusi normal.	5
Gambar	7:	Pemisahan matriks fitur X dan target y , dilanjutkan pemisahan kolom-	
		kolom numerik dengan kategorikal pada matriks fitur X	6
Gambar	8:	Label encoding untuk kolom-kolom berjenis kategorikal	6
Gambar	9:	Banyak bangunan yang rusak pada setiap tingkat kerusakan	7
Gambar	10:	Instansiasi objek XGB Classifier dengan parameter yang mungkin	9
Gambar	11:	hyperparameter tuning menggunakan GridSearchCV	9
Gambar	12:	Pelatihan dan prediksi model XGB Classifier	9

BAB I PENDAHULUAN

1.1 Latar Belakang

Gempa bumi adalah salah satu bencana alam yang menimbulkan banyak kerusakan, baik dari segi korban jiwa maupun dari segi kerusakan material. Dalam artikel yang diterbitkan oleh Reuters, 10 dari 12 bencana alam dengan akibat kerusakan paling tinggi di abad ke-21 adalah gempa bumi. Bahkan, gempa Haiti pada tahun 2010 mengakibatkan tewasnya kira-kira 316.000 jiwa serta rusaknya 80.000 bangunan di kota Port-au-Prince dan sekitarnya [1]. Dua kerugian tersebut memiliki relasi, dimana sebagian besar korban berada di bangunan yang ambruk pada saat gempa [2]. Selain itu, jatuhnya korban juga berkorelasi dengan kerusakan ruang interior saat terjadinya gempa [3].

Berangkat dari hal tersebut, maka jatuhnya korban jiwa pada saat gempa dapat diminimalisir dengan cara melakukan analisis terhadap karakteristik-karakteristik bangunan yang memiliki tingkat kerusakan rendah. Kemudian, kesimpulan yang didapat dari analisis tersebut dapat dijadikan standar untuk pendirian bangunan untuk antisipasi kerusakan yang lebih besar apabila terjadi gempa lagi di kemudian hari. Model yang sama juga dapat digunakan untuk memprediksi tingkat kerusakan bangunan yang sudah ada sebagai apabila terjadi gempa dengan kekuatan dan kedalaman yang sama di tempat tersebut.

1.2 Rumusan Masalah

- 1. Bagaimana karakteristik-karakteristik bangunan yang memiliki tingkat kerusakan rendah setelah terkena gempa?
- 2. Bagaimana memilih model yang tepat untuk memprediksi tingkat kerusakan bangunan berdasarkan fitur-fiturnya apabila terjadi gempa dengan kekuatan dan kedalaman yang sama di kemudian hari?
- 3. Berapa akurasi dari hasil prediksi yang didapatkan dari model yang telah dipilih?

1.3 Tujuan

- 1. Mencari karakteristik-karakteristik bangunan yang memiliki tingkat kerusakan rendah setelah terkena gempa.
- Memilih model yang tepat untuk memprediksi tingkat kerusakan bangunan berdasarkan fitur-fiturnya apabila terjadi gempa dengan kekuatan dan kedalaman yang sama di kemudian hari.
- 3. Mengetahui akurasi dari hasil prediksi yang didapatkan dari model yang telah dipilih.

1.4 Manfaat

- Manfaat bagi masyarakat adalah hasil analisis prediktif ini dapat digunakan untuk perbaikan standar pendirian bangunan yang lebih tahan gempa berdasarkan karakteristikkarakteristiknya.
- 2. Manfaat bagi ilmu pengetahuan adalah makalah ini dapat digunakan sebagai referensi bagi para peneliti lain dan sebagai sumbangsih untuk ilmu pengetahuan dalam pencarian metode untuk antisipasi kerusakan bencana alam.

BAB II METODE

1.5 Perangkat Lunak

Perangkat-perangkat lunak yang digunakan dalam mengolah dan memprediksi dataset adalah sebagai berikut:

Bahasa Pemrograman Python v3.9.16 Package Manager Conda v22.11.1

Package jupyter, pandas, numpy, scikit-learn, xgboost, pickle, mat-

plotlib, seaborn, cudatoolkit

Perangkat Lunak lainnya Microsoft Excel

1.6 Dataset

Data awal yang akan diolah terdiri dari 2 dataset berekstensi csv (comma separated values), yaitu train set yang memiliki nama file train.csv dan test set yang memiliki nama file test.csv. Tabel train set terdiri dari 25 kolom dan 722814 baris. Dataset ini masih belum ternormalisasi dan terdapat nilai hilang (missing values). Sedangkan, tabel test set terdiri dari 24 kolom dan 242082 baris. Tabel ini memiliki kolom-kolom yang sama dengan tabel train set, kecuali kolom damage_grade yang tidak ada pada tabel test set. Seperti pada tabel sebelumnya, data-data pada tabel ini juga masih belum ternormalisasi, namun tidak terdapat nilai hilang.

				a.info()				
Range	ss 'pandas.core.frame.DataFrame' eIndex: 722815 entries, 0 to 722 columns (total 25 columns): Column		Dtype	Rang	ass 'pandas.core.frame.DataFrame geIndex: 242082 entries, 0 to 24 a columns (total 24 columns): Column		Dtype	
0 1	Unnamed: 0 floors before eq (total)	722815 non-null 390009 non-null		0	id floors before eq (total)	242082 non-null 242082 non-null		
2	old building	483611 non-null		2	old building	242082 non-null	int64	
3	plinth_area (ft^2)	301607 non-null	object	3	plinth area (ft^2)	242082 non-null		
4	height_before_eq (ft)	390009 non-null	float64	4	height before eq (ft)	242082 non-null		
5	land_surface_condition	421209 non-null	object	5	land surface condition	242082 non-null		
6	type_of_foundation	483611 non-null		6	type of foundation	242082 non-null		
7	type_of_roof	301607 non-null		7	type of roof	242082 non-null	_	
8	type_of_ground_floor	390009 non-null		8	type of ground floor	242082 non-null	_	
9	type_of_other_floor	421209 non-null		9	type of other floor	242082 non-null	object	
10	position	410809 non-null		10		242082 non-null	object	
11	building_plan_configuration	421209 non-null	5	11	building_plan_configuration	242082 non-null	object	
12 13	technical_solution_proposed legal ownership status	46801 non-null 598013 non-null	object	12	technical_solution_proposed	242082 non-null	object	
14	has secondary use	525211 non-null	•	13	legal_ownership_status	242082 non-null	object	
15	type_of_reinforcement_concrete			14	·	242082 non-null		
16	residential type	452411 non-null	object	15	type_of_reinforcement_concrete	242082 non-null	int64	
17	no family residing	577213 non-null	object	16		242082 non-null	9	
18	public place type	722815 non-null	object	17	no_family_residing	242082 non-null	_	
19	industrial use type	608413 non-null	•	18	F F > F	242082 non-null		
20	govermental use type	473211 non-null	•	19	industrial_use_type	242082 non-null		
21	flexible_superstructure	660415 non-null	object	20	8	242082 non-null		
22	wall_binding	660415 non-null	float64	21	- '	242082 non-null		
23	wall_material	494011 non-null	float64		wall_binding	242082 non-null		
24	damage_grade	722815 non-null	float64		wall_material	242082 non-null	int64	
dtypes: float64(7), int64(1), object(17) memory usage: 137.9+ MB				<pre>dtypes: float64(1), int64(6), object(17) memory usage: 44.3+ MB</pre>				
(a) train.csv					(b) test.csv			

Gambar 1: Informasi mengenai tabel train set dan test set

Pada tahap selanjutnya, train set (train.csv) akan dipergunakan untuk melakukan analisis data eksplorasi (EDA), pelatihan model prediksi, sekaligus evaluasi model melalui pemisahan

dataset (train-test splitting).

1.7 Algoritma

1.7.1 Frequent Category Imputation

Frequent Category Imputation/Mode Imputation merupakan algoritma imputasi untuk mengisi nilai dengan menggunakan nilai yang paling banyak muncul (modus). Algoritma imputasi ini akan digunakan untuk melakukan imputasi pada kolom-kolom kategorikal yang memiliki persentasi nilai hilang kurang dari 10%.

1.7.2 K-Nearest Neighbour Imputation

K-Nearest Neighbour Imputation merupakan salah satu algoritma imputasi fitur pada training set yang memanfaatkan algoritma K-Nearest Neighbour. Algoritma imputasi ini menggunakan rataan (mean) jarak Euclidean dari k tetangga terdekat dari nilai yang hilang untuk melakukan imputasi terhadap nilainya yang hilang [4]. Jarak Euclidean dari dua titik (x, y) dan (a, b) pada sebuah koordinat Cartesius dapat dihitung menggunakan:

$$dist((x,y),(a,b)) = \sqrt{(x-a)^2 + (y-b)^2}$$

1.7.3 Gradient Boosting Machines

Gradient Boosting Machines merupakan salah satu algoritma ensemble tree yang dapat digunakan untuk masalah regresi maupun klasifikasi. Algoritm ini dimulai dengan menghasilkan pohon klasifikasi awal dan terus menyesuaikan pohon baru melalui minimalisasi fungsi kerugian (loss function) [5].

1.8 Data Cleaning

Pembersihan data diawali dengan menghapus baris-baris yang memiliki banyak nilai hilang. Sebelum melakukan penghapusan, maka perlu ditentukan batasan berapa banyak kolom minimal dalam suatu baris agar bisa dihapuskan.

Gambar 2: Melakukan pemeriksaan setiap kemungkinan kekosongan kolom dan banyak barisnya.

Dilihat dari gambar di atas, maka dapat ditentukan bahwa setiap baris yang memiliki sebanyak lebih dari 30% kolom yang kosong dapat dihapus.

Gambar 3: Menghapus baris yang memiliki lebih dari 30% kolom yang kosong.

Setelah melakukan penghapusan baris, maka perlu diperiksa ulang berapa banyak nilai kosong yang ada pada setiap kolom. Pada pemeriksaan ini, didapatkan bahwa kolom technical_solution_proposed sebagian besar datanya kosong sehingga perlu dihapus. Selain itu, terdapat kolom plinth_area (ft2) dan type_of_roof yang memiliki jumlah nilai kosong yang cukup signifikan (28,39%), serta beberapa kolom lain yang memiliki nilai kosong di bawah 10%. Kolom-kolom tersebut akan dinormalisasi (untuk kolom yang belum ternormalisasi) terlebih dahulu sebelum dilakukan imputasi.

```
[17]: train_data.isnull().sum()*100/len(train_data)
[17]: floors before eq (total)
                                                 7.407249
                                                  0.000000
       old building
       plinth_area (ft^2)
                                                28.394930
        height_before_eq (ft)
                                                  7.407249
       land surface condition
                                                 0.000000
       type_of_foundation
type_of_roof
type_of_ground_floor
type_of_other_floor
                                                 0.000000
                                                 28.394930
                                                 7.407249
                                                  0.000000
       position
                                                  2.469083
       building_plan_configuration
                                                 0.000000
                                                 88.88889
       technical_solution_proposed
       legal ownership status
                                                 0.000000
       has_secondary_use
                                                  0.000000
       type_of_reinforcement_concrete
residential_type
                                                  0.000000
                                                  0.000000
       no family residing
                                                  0.000000
       public_place_type
industrial_use_type
govermental_use_type
                                                  0.000000
                                                  0.000000
                                                  0.000000
        flexible_superstructure
                                                  0.000000
                                                  0.000000
       wall binding
       wall material
                                                  0.000000
```

Gambar 4: Persentase nilai kosong pada setiap kolom setelah melakukan penghapusan baris.

Untuk kolom yang sudah ternormalisasi seperti kolom industrial_use_type dan memiliki nilai kosong sebanyak kurang dari 10%, maka dapat langsung dilakukan imputasi berdasarkan nilai paling banyak muncul (frequent category imputation). Namun, untuk kolom string yang belum normal seperti kolom flooars_before_eq (total), maka perlu dinormalisasi dulu dengan cara mengubahnya menjadi bentuk numerik sesuai dengan substring yang terkandung di dalamnya. Sebagai contoh, string "one floor" dapat diubah menjadi 1 karena mengandung substring "one" atau string "fifth" dapat diubah menjadi 5 karena "fifth" merupakan substring dari data tersebut.

```
[19]: train_data['floors_before_eq (total)'] = train_data['floors_before_eq (total)'].astype(str).str.lower()

[20]: for i in range(len(train_data)):
    if ("1" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("one" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("f train_data.loc[i, 'floors_before_eq (total)']) or ("two" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("s train_data.loc[i, 'floors_before_eq (total)']) or ("three" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("train_data.loc[i, 'floors_before_eq (total)']) or ("train_data.loc[i, 'floors_before_eq (total)']) or ("four" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("four" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("four" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("five" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("five" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("six" in str(train_data.loc[i, 'floors_before_eq (total)']) or ("s
```

Gambar 5: Mengatasi salah satu kolom bertipe data string yang belum ternormalisasi.

Untuk kolom numerik yang memiliki nilai hilang seperti kolom height_before_eq (ft), maka perlu dilakukan pemeriksaan terlebih dahulu mengenai distribusi datanya. Setelah diperiksa, didapatkan bahwa distribusinya berbentuk *skewness* positif (data tidak berdistribusi normal) sehingga perlu dilakukan imputasi menggunakan median (*median imputation*) karena mean sudah tidak bisa lagi merepresentasikan pusat distribusi datanya.

Gambar 6: Imputasi berdasarkan median untuk data yang tidak berdistribusi normal.

Pada tahap ini, masih ada kolom yang memiliki nilai yang hilang, yaitu kolom plinth_area (ft2) yang akan diimputasi pada tahap berikutnya, yaitu tahap *feature engineering*.

1.9 Feature Engineering

Sebelum melakukan feature engineering, matriks fitur (X) perlu dipisahkan dengan targetnya (y) karena dalam feature engineering hanya berfokus pada pengolahan fitur agar dapat dijadikan training set yang cocok dalam pembuatan model prediksi. Kemudian, dalam matrix fitur X, dilakukan pemisahan lagi antara kolom-kolom numerik dan kategorikal karena akan menggunakan metode encoding yang berbeda. Perlu diperhatikan bahwa kolom plinth_area (ft2) masih bertipe object karena masih mengandung nilai kosong.

```
[241]: X = train_data_drop('damage_grade', axis=1)|
y = train_data('damage_grade')

[242]: column_type_dict = dict(X.dtypes)
categorical_features = []
for key, Value in column type_dict.items():
    if str(Value) == 'category':
        categorical_features_append(str(key))
    else:
        numerical_features_append(str(key))

categorical_features_append(str(key))

categorical_features, numerical_features

[242]: (['land_surface_condition',
    'type_of_roof',
    'type_of_roof',
    'type_of_ound_floor',
    'type_of_ound_floor',
    'type_of_ound_floor',
    'position',
    'building_plan_configuration',
    'legal_ownership_status',
    'residential_type',
    'no_family_residing',
    'public_place_type',
    'industrial_use_type',
    'industrial_use_type',
    'iflexible_superstructure'),
    ['floors_before_eq_(ftotal)',
    'old_building',
    'plain_area (ft'z)',
    'height_before_eq_(ftt),
    'has secondary_use',
```

Gambar 7: Pemisahan matriks fitur X dan target y, dilanjutkan pemisahan kolom-kolom numerik dengan kategorikal pada matriks fitur X.

Setelah pemisahan tersebut, maka kolom-kolom yang berjenis kategorikal dilakukan *label encoding*. Encoding jenis ini dilakukan untuk membuat dimensi fitur tetap sama untuk menghemat biaya komputasi.

243]:	<pre>from sklearn.preprocessing import LabelEncoder encoder = LabelEncoder()</pre>										
244]:	<pre>for col in categorical_features : X[col] = encoder.fit_transform(X[col])</pre>										
245]:	# concat X_encoded = p X_encoded	d.concat(([X[numerica	l_features]	.copy(), X[cate	gorical_features]], axis=1)				
245]:	floors_	before_eq (total)	old_building	plinth_area (ft^2)	height_before_eq (ft)	has_secondary_use	type_of_reinforcement_concrete	wall_binding	wall_material	land_surface_condition	type_of_f
	0	2	1	256	22	0	0	0	0	0	
	1	3	3	985	18	0	0	5	2	0	
	2	2	7	NaN	14	0	0	5	2	0	
	3	2	18	185	15	0	0	5	2	0	
	4	2	22	290	17	0	0	5	2	0	
	421204	2	32	NaN	12	0	0	1	0	2	
	421205	3	45	NaN	18	0	0	5	2	1	
	421206	3	72	NaN	21	0	0	5	1	0	
	421207	1	22	NaN	6	0	0	5	2	0	

Gambar 8: Label encoding untuk kolom-kolom berjenis kategorikal.

BAB III ANALISIS DATA EKSPLORASI DAN MODEL PREDIKSI

1.10 Analisis Data Eksplorasi

Analisis Data Eksplorasi dilakukan sebelum melakukan *feature engineering* karena labellabel asli masih diperlukan dalam melakukan analisis.

1.10.1 Analisis Univariat

Dalam analisis ini, didapatkan bahwa pada saat gempa, sebagian besar dari bangunan yang rusak mengalami tingkat kerusakan yang lebih parah.

Gambar 9: Banyak bangunan yang rusak pada setiap tingkat kerusakan.

1.10.2 Analisis Bivariat

Kemudian, ketika melakukan analisis mengenai kolom type_of_foundation dengan damage_grade, informasi menarik yang dapat diambil dari data tersebut adalah bahwa type_of_foundation yang menggunakan Clay Sand Mixed mortar-Stone/Brick memiliki jumlah bangunan yang mengalami damage_grade 5 yang paling banyak dibandingkan dengan type_of_foundation lainnya. Selain itu, bangunan dengan foundation Reinforced Concrete memiliki jumlah bangunan yang mengalami damage_grade 1 yang paling banyak dibandingkan dengan type_of_foundation lainnya. Selain itu, bangunan dengan foundation Mud mortar-Stone/Brick memiliki jumlah bangunan yang mengalami damage_grade 4 dan 5 yang paling sedikit dibandingkan dengan type_of_foundation lainnya.

Informasi menarik yang dapat diambil data ini adalah bahwa bangunan yang memiliki tingkat kerusakan paling tinggi (damage grade tingkat 5, 4, dan 3) didominasi oleh bangunan yang menggunakan tipe pondasi Clay Sand Mixed mortar-Stone/Brick, Clay mortar-Stone/Brick, Mud

mortar-Stone/Brick. Sedangkan, bangunan yang menggunakan tipe pondasi Reinforced Concrete, Bamboo of Timber, dan Cement-Stone/Brick lebih banyak mengalami kerusakan tingkat rendah (1, 2, 3) dibandingkan tingkat kerusakan lainnya. Dalam hal ini, dapat disimpulkan bahwa bangunan-bangunan yang menggunakan tipe pondasi Reinforced Concrete, Bamboo of Timber, dan Cement-Stone/Brick lebih tahan gempa karena memiliki tingkat kerusakan yang lebih rendah

Selain itu, pada damage grade 1, dinding dengan material 0 (mud brick/stone) memiliki jumlah bangunan yang paling banyak mengalami kerusakan dibandingkan dengan material dinding lainnya. Sedangkan pada damage grade 2, dinding dengan material 2 (concrete) memiliki jumlah bangunan yang paling banyak mengalami kerusakan dibandingkan dengan material dinding lainnya.

1.11 Model Prediksi

Dalam pembuatan model prediksi, semua fitur pada test set harus dipastikan identik dengan fitur yang ada pada train set. Sehingga, *preprocessing* yang sama perlu dilakukan untuk test set. Setelah dilakukan preprocessing, maka objek model XGBoost Classifier dibuat dengan opsi memilih GPU untuk akselerasi komputasi dan parameter-parameter yang akan di-*tuning* menggunakan GridSearchCV.

Gambar 10: Instansiasi objek XGB Classifier dengan parameter yang mungkin.

Kemudian, *hyperparameter tuning* dilakukan menggunakan GridSearchCV untuk menelusuri parameter-parameter yang ditentukan sehingga dapat menentukan parameter terbaik dari penelurusan tersebut.

Gambar 11: hyperparameter tuning menggunakan GridSearchCV.

Setelah itu, parameter terbaik setelah penelusuran GridSearchCV diambil untuk melakukan pelatihan model XGB Classifier. Setelah model dilatih, prediksi dilakukan dari data test set (test.csv) kemudian dieksport menjadi sample_submission.csv untuk dilakukan evaluasi di Kaggle menggunakan metrics *fl-score*.

Gambar 12: Pelatihan dan prediksi model XGB Classifier.

BAB IV KESIMPULAN

4.1 Hasil dan Pembahasan

Melalui analisis data eksplorasi, didapatkan bahwa lebih banyak bangunan yang mengalami tingkat kerusakan yang berat daripada tingkat kerusakan yang lebih rendah. Di antara banyaknya bangunan tersebut, tentu saja terdapat **struktur-struktur yang mempengaruhi sedemikian sehingga suatu bangunan dengan struktur tertentu lebih tahan kerusakan saat gempa** daripada bangunan lainnya. Struktur-struktur tersebut di antaranya adalah:

- 1. tipe pondasi: reinforced concrete, bambi atau timber, dan cement-stone/brick.
- 2. jenis lantai dasar bangunan: reinforced concrete.
- 3. jenis beton bertulang: tipe 1
- 4. bahan perekat dinding: bahan tipe 0 dan tipe 2.
- 5. material dinding: tipe 0 dan tipe 1.

Kemudian, evaluasi model XGB Classifier dalam Kaggle Competition menggunakan 65% dari test data dan metrics *f1-score* menghasilkan akurasi 0.31614.

4.2 Kesimpulan

Melalui makalah ini, dapat disimpulkan bahwa terdapat struktur-struktur yang membuat bangunan lebih tahan gempa daripada bangunan dengan struktur-struktur lainnya. Sehingga, hasil dari analsis data eksplorasi dapat digunakan untuk menentukan struktur bangunan yang lebih tahan gempa pada saat membangun bangunan untuk antisipasi gempa dengan kekuatan dan kedalaman yang sama di kemudian hari. Namun, pembuatan model prediksi menggunakan XGB Classifier masih belum mencapai hasil dan performa yang maksimal. Sehingga, disarankan untuk membuat model prediksi menggunakan algoritma lain dan *hyperparameter tuning* yang lebih baik lagi.

DAFTAR PUSTAKA

- [1] Reuters, "Factbox: Turkey earthquake and some of the worst natural disasters of this century," 2023. [Online]. Available: https://www.reuters.com/business/environment/turkey-quake-other-major-natural-disasters-this-century-2023-02-09/
- [2] L. Hengjian, M. Kohiyama, K. Horie, N. Maki, H. Hayashi, and S. Tanaka, "Building damage and casualties after an earthquake," *Natural Hazards*, vol. 29, pp. 387–403, 2003. [Online]. Available: http://www.jstor.org/stable/26058899
- [3] F. Aiko, S. Robin, O. Yutaka, and S. Emily, "Analytical study on vulnerability functions for casualty estimation in the collapse of adobe buildings induced by earthquake," *Bulletin of Earthquake Engineering*, vol. 8, no. 2, pp. 451–479, 2010. [Online]. Available: https://doi.org/10.1007/s10518-009-9156-z
- [4] O. Troyanskaya, M. Cantor, G. Sherlock, P. Brown, T. Hastie, R. Tibshirani, D. Botstein, and R. B. Altman, "Missing value estimation methods for dna microarrays," *Bioinformatics*, vol. 17, no. 6, pp. 520–525, 2001.
- [5] A. Natekin and A. Knoll, "Gradient boosting machines, a tutorial," *Front Neurorobots*, vol. 7, no. 21, pp. 1 21, 2013.

LAMPIRAN

1.1 Biodata Ketua Tim

1.	Nama Lengkap	Thesion Marta Sianipar
2.	Jenis Kelamin	Perempuan
3.	Program Studi	S1 Sains Data
4.	NIM	1206210004
5.	Perguruan Tinggi	Institut Teknologi Telkom Surabaya
6.	Tempat, Tanggal Lahir	Pematang Sianipar, 4 Desember 2002
7.	E-mail	thesion.jambi2018@gmail.com
8.	Nomor Telepon/HP	082198287359

1.2 Biodata Anggota 1

1.	Nama Lengkap	Rendika Nurhartanto Suharto
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S1 Sains Data
4.	Nama NIM	1206210011
5.	Perguruan Tinggi	Institut Teknologi Telkom Surabaya
6.	Tempat, Tanggal Lahir	Sleman, 22 Oktober 2003
7.	E-mail	rendikarendi96@gmail.com
8.	Nomor Telepon/HP	081998396441

1.3 Biodata Anggota 2

1.	Nama Lengkap	Ahmad Mu'min Faisal
2.	Jenis Kelamin	Laki-laki
3.	Program Studi	S1 Informatika
4.	Nama NIM	1203210101
5.	Perguruan Tinggi	Institut Teknologi Telkom Surabaya
6.	Tempat, Tanggal Lahir	Nganjuk, 22 Juni 2003
7.	E-mail	ahmad.faisalewy@gmail.com
8.	Nomor Telepon/HP	0895365037183