Распределенные методы второго порядка с быстрой скоростью сходимости и компрессией

Исламов Рустем Ильфакович

Московский физико-технический институт Кафедра Интеллектуальных систем

Научный руководитель: д.ф.-м.н. Стрижов В.В. Консультант: Ph.D. (к.ф.-м.н) П. Рихтарик

Июнь, 2021

Постановка задачи

Оптимизационная задача

Определить оптимальные параметры модели машинного обучения путем решения оптимизационной задачи:

$$\min_{x \in \mathbb{R}^d} \left\{ P(x) := f(x) + \frac{\lambda}{2} ||x||^2 \right\},\tag{1}$$

где x — параметры модели, а f — функция потерь.

Предполагается, что данные для обучения распределены между n клиентами, каждый клиент $i \in \{1, \dots, n\}$ имеет доступ к m векторам признаков объектов $a_{ij} \in \mathbb{R}^d, j \in \{1, \dots, m\}$. Функция f имеет вид

$$f(x) = \frac{1}{n} \sum_{i=1}^{n} f_i(x), \qquad f_i(x) = \frac{1}{m} \sum_{i=1}^{m} f_{ij}(x), \qquad f_{ij}(x) = \varphi_{ij}(a_{ij}^{\top} x). \tag{2}$$

Модель распределенной оптимизации

Достоинства и недостатки модели

- + Возможно обучать модели на больших объемах данных, распределенных между устройствами;
- + Возможно параллелизовать вычисления на устройствах;
- Скорость обмена данными между клиентом и сервером намного медленнее, чем скорость вычислений на самих устройствах и сервере.

Архитектура модели «клиент-сервер».

Мотивация

Существующие подходы и их недостатки

- Скорость сходимости методов первого порядка зависит от числа обусловленности поставленной оптимизационной задачи;
- Скорость сходимости методов второго порядка зависит от числа обусловленности поставленной оптимизационной задачи;
- Стоимость коммуникации между сервером и клиентом для методов второго порядка очень дорогая.

Цель

Предложить эффективный с точки зрения коммуникации метод второго порядка, чья скорость сходимости не зависит от числа обусловленности.

Предположения на функции и структура Гессианов

Предположения

Поставленная оптимизационная задача имеет хотя бы одно решение x^* . Для всех i,j функция потерь $\varphi_{ij}:\mathbb{R}\to\mathbb{R}$ является дважды непрерывно дифференцируемой функцией с ν -липшецевой второй производной.

Гессианы функций

Гессианы функций f, f_i, f_{ij} соответственно имеют вид

$$\mathbf{H}(x) = \frac{1}{n} \sum_{i=1}^{n} \mathbf{H}_{i}(x), \quad \mathbf{H}_{i}(x) = \frac{1}{m} \sum_{i=1}^{m} \mathbf{H}_{ij}(x), \quad \mathbf{H}_{ij}(x) = \varphi_{ij}''(a_{ij}^{\top} x) a_{ij} a_{ij}^{\top}.$$
(3)

Основная идея: NEWTON-STAR

NEWTON-STAR

Предположим, что серверу известен гессиан $\mathbf{H}(x^*)$ функции f в оптимуме. Шаг метода NEWTON-STAR имеет вид:

$$x^{k+1} = x^k - (\nabla^2 P(x^*))^{-1} \nabla P(x^k) = x^k - (\mathbf{H}(x^*) + \lambda \mathbf{I})^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k \right).$$
(4)

Теорема 1 (Исламов, 2021)

Предположим, что $\mathbf{H}(x^*) \succeq \mu^* \mathbf{I}, \mu^* \geq 0$, причем $\mu^* + \lambda > 0$. Тогда NEWTON-STAR сходится локально квадратично:

$$\left\| x^{k+1} - x^* \right\| \le \frac{\nu}{2(\mu^* + \lambda)} \left(\frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m \|a_{ij}\|^3 \right) \left\| x^k - x^* \right\|^2. \tag{5}$$

Свойства NEWTON-STAR

Достоинства и недостатки NEWTON-STAR

- + Локальная квадратичная сходимость, наследованная от стандартного метода Ньютона. Скорость сходимости не зависит от числа обусловленности;
- + Стоимость коммуникаций между сервером и клиентом $\mathcal{O}(d)$ такая же, как и у градиентных методов. Каждый клиент пересылает серверу только градиент $\nabla f_i(x^k)$;
- Метод имеет только теоретическую значимость, Гессиан в оптимуме не известен.

NEWTON-LEARN

Дополнительные предположения

Каждая функция φ_{ij} является выпуклой, параметр регуляризации λ положительный.

Основная идея метода

Аппроксимируем матрицу $\mathbf{H}(x^*)$ на шаге k матрицей \mathbf{H}^k вида

$$\mathbf{H}^k = \left(\frac{1}{n}\sum_{i=1}^n \frac{1}{m}\sum_{j=1}^m h_{ij}^k a_{ij} a_{ij}^\top\right), \quad x^{k+1} = x^k - \left(\mathbf{H}^k + \lambda \mathbf{I}\right)^{-1} \left(\frac{1}{n}\sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k\right).$$
(6)

Требования:

- $h_{ij}^k \to \varphi_{ij}''(a_{ij}^\top x^*)$ при $k \to \infty$;
- обновление элементов вектора $h_i^k := (h_{i1}^k, \dots, h_{im}^k)^\top$ должно быть слабым, т.е вектор $h_i^{k+1} h_i^k$ разрежен.

Оператор несмещенной компрессии

Определение

Рандомизированное отображение $C: \mathbb{R}^m \to \mathbb{R}^m$ называется оператором несмещенной компрессии, если оно удовлетворяет условиям:

$$\mathbb{E}\left[\mathcal{C}(h)\right] = h, \qquad \mathbb{E}\left[\left\|\mathcal{C}(h)\right\|^{2}\right] \leq (\omega + 1) \left\|h\right\|^{2}, \qquad \forall \ h \in \mathbb{R}^{m}. \quad (7)$$

$$h = \begin{pmatrix} 1 \\ -15 \\ -7 \\ 10 \end{pmatrix}$$

Оператор Rand-r

Оператор Rand-r, определенный по формуле $\mathcal{C}(h):=\frac{m}{r}\cdot\xi\circ h$, где ξ — случайный вектор из равномерного распределения над множеством $\{h\in\{0,1\}^m:\|h\|_0=r\}$, а \circ определяет поэлементное умножение. Данный оператор имеет параметр $\omega=\frac{m}{r}-1$.

$$C(h) = \frac{4}{2} \begin{pmatrix} 1\\0\\-7\\0 \end{pmatrix}$$

Пример: Rand-2.

Механизм обновления коэффициентов

Введем вектор вторых производных функций потерь:

$$h_i(x) := \left(\varphi_{i1}''(a_{i1}^\top x), \dots, \varphi_{i1}''(a_{im}^\top x)\right)^\top.$$

Механизм обновления (DIANA-trick ¹)

Вектор $h_i^k = (h_{i1}^k, \cdots, h_{im}^k)^{\top}$ обновляется согласно формуле:

$$h_i^{k+1} = \left[h_i^k + \eta \mathcal{C}_i^k (h_i(x^k) - h_i^k) \right]_+,$$

где C_i^k — оператор несмещенной компресии, а η — числовой коэффициент.

(8)

¹Mishchenko et al, *Distributed learning with compressed gradient differences*, arXiv preprint.

Алгоритм NEWTON-LEARN

Algorithm Шаг метода NEWTON-LEARN

- 1: каждый клиент $i \in \{1, \dots, n\}$:
- 2: вычисляет $\nabla f_i(x^k)$
- 3: обновляет $h_i^{k+1} = [h_i^k + \eta C_i^k (h_i(x^k) h_i^k)]_+$
- 4: отправляет $\nabla f_i(x^k)$, $h_i^{k+1} h_i^k$ и $\{a_{ij}: h_{ij}^{k+1} h_{ij}^k \neq 0\}$ на сервер
- 5: **сервер:**

6:
$$x^{k+1} = x^k - (\mathbf{H}^k + \mathbf{I})^{-1} \left(\frac{1}{n} \sum_{i=1}^n \nabla f_i(x^k) + \lambda x^k \right)$$

7:
$$\mathbf{H}^{k+1} = \mathbf{H}^k + \frac{1}{nm} \sum_{i=1}^n \sum_{j=1}^m (h_{ij}^{k+1} - h_{ij}^k) a_{ij} a_{ij}^\top$$

Сходимость NEWTON-LEARN

Введем функцию Ляпунова
$$\Phi_1^k := \|x^k - x^*\|^2 + \frac{1}{3mn\eta\nu^2R^2} \sum_{i=1}^n \|h_i^k - h_i(x^*)\|^2$$
, где $R = \max_{i,j} \|a_{ij}\|$.

Теорема 2 (Исламов, 2021)

Пусть $\eta \leq \frac{1}{\omega + 1}$ и $\|x^k - x^*\|^2 \leq \frac{\lambda^2}{12\nu^2 R^6}$ для всех $k \geq 0$. Тогда выполнено

$$\mathbb{E}\left[\Phi_{1}^{k}\right] \leq \theta_{1}^{k}\Phi_{1}^{0}, \qquad \mathbb{E}\left[\frac{\left\|x^{k+1} - x^{*}\right\|^{2}}{\left\|x^{k} - x^{*}\right\|^{2}}\right] \leq \theta_{1}^{k}\left(6\eta + \frac{1}{2}\right)\frac{\nu^{2}R^{6}}{\lambda^{2}}\Phi_{1}^{0},$$

где $\theta_1 = 1 - \min\left\{\frac{\eta}{2}, \frac{5}{8}\right\}$.

Лемма: при использовании оператора Rand-r достаточно предположить, что $\|x^0 - x^*\|^2 \le \frac{\lambda^2}{12\nu^2R^6}$, для следующих x^k неравенство будет выполнено автоматически.

Свойства NEWTON-LEARN

Достоинства и недостатки NEWTON-LEARN

- + Локальная линейная и сверхлинейная сходимость, независимые от числа обусловленности;
- + Стоимость коммуникаций между сервером и клиентом есть $\mathcal{O}(d)$, если $r = \|h_i^{k+1} h_i^k\|_0 = \mathcal{O}(1)$ такая же, как и у градиентных методов;
- Из сходимости функции Ляпунова следует, что алгоритм итеративно приближает Гессиан в оптимуме;
- Передаются локальные данные клиентов;
- Используется явный вид гессиана функции f_{ij} .

Эксерименты: описание

Проведены сравнения предложенного метода с BFGS, $ADIANA^2$ и $DINGO^3$ с точки зрения коммуникаций. Эксперименты проведены для логистической регрессии на наборах данных из библиотеки LibSVM.

- w8a содержит описание характеристик человека;
- а9а содержит описание характеристик человека;
- phishing содержит описание посещений фишинговых сайтов.

$$P(x) = \frac{1}{nm} \sum_{i=1}^{n} \sum_{j=1}^{m} \log \left(1 + \exp(-b_{ij} a_{ij}^{\top} x) \right) + \frac{\lambda}{2} ||x||^{2}, \quad a_{ij} \in \mathbb{R}^{d}, b_{ij} \in \{-1, 1\}.$$
 (9)

²Z. Li et al. Acceleration for compressed gradient descent in distributed and federated optimization, ICML 2020.

 $^{^3\}mathrm{R.}$ Crane et al. DINGO: Distributed Newton-type method for gradient-norm optimization, NeurIPS, 2019

Эксперименты: результаты

Сравнение NL с BFGS, ADIANA и DINGO в терминах сложности коммуникаций.

Вывод из экспериментов

Предложенный метод NEWTON-LEARN превосходит state-of-the-art методы на несколько порядков с точки зрения коммуникаций.

Результаты, выносимые на защиту

Полученные результаты

- 1. Экспериментальное и теоретическое подтверждение сходимости предложенного метода;
- 2. Экспериментальные данные показывают превосходство предложенного метода над существующими SOTA методами в терминах сложности коммуникаций;
- 3. Придуман первый метод второго порядка в дистрибутивной оптимизации. Его скорость сходимости не зависит от числа обусловленности функции.

Дальнейшие исследования

- 1. Обобщение теории для произвольных дважды непрерывно дифференцируемых функций;
- 2. Разработка алгоритма, которому не требуется раскрывать локальные данные клиента; покрывающего случаи частичного участия клиентов, двухсторонней компрессии.

Публикации за время обучения

- [1] Rustem Islamov, Xun Qian, and Peter Richtarik

 Distributed Second Order Methods with Fast Rates and Compressed Communication.

 Proceedings of the 38th International Conference on Machine Learning, 2021.
- [2] Mher Safaryan, Rustem Islamov, Xun Qian, and Peter Richtarik FedNL: Making Newton-Type Methods Applicable to Federated Learning arXiv preprint arXiv: 2106.02969, 2021.