

2022 中国系统架构师大会

SYSTEM ARCHITECT CONFERENCE CHINA 2022

激发架构性能 点亮业务活力

荔枝混合云网实践分享

荔枝集团 运维总监 熊振

公司介绍

2020年1月17日

荔枝集团登陆纳斯达克交易所,成为

中国在线音频第一股

个人介绍

熊振

荔枝运维负责人

曾就职于网易游戏、腾讯云

聚焦 laaS 建设、SDN、全球化混合云网络架构设计

- 出海浪潮中的混合云趋势
- 混合云管理的痛点和挑战
- 荔枝混合云iRock介绍
- 混合云网络产品在荔枝的实现
- 演进规划和未来展望

- 出海浪潮中的混合云趋势
- 混合云管理的痛点和挑战
- 荔枝混合云iRock介绍
- 混合云网络产品在荔枝的实现
- 演进规划和未来展望

混合云发展历程

单一公有云 单一异构私有云 多个公有云 多个私有云

多个公有云 多个私有云 基础混合云管理

单一混合云 Single Hybrid Cloud

孤立混合云 Isolated Hybrid Cloud

集成混合云 Integrated Hybrid Cloud

多个公有云 多个私有云 全栈混合云管理

协同混合云 Collaborative Hybrid Cloud

出海浪潮中的混合云趋势

Figure 1: Organizations Use Hybrid IT Approach Across Myriad Workloads

- 出海浪潮中的混合云趋势
- 混合云管理的痛点和挑战
- ·荔枝混合云iRock介绍
- 混合云网络产品在荔枝的实现
- 演进规划和未来展望

混合云管理的痛点与挑战

● 第一大挑战: 多云异构带来安全的新挑战。

● 第二大挑战: 混合多云环境下运营复杂度直线升高,需要CloudOps、DevOps、NetworkOps之间通力协作

● 第三大挑战: 混合云环境下, 从单一降低成本转向成本管理。

图出自《2022 Global Hybrid Cloud Trends Report》

混合云管理的痛点

多云异构

多个公有云 + 一个私有云, 架构各异,也意味着体验各 异,如何统一所有云的使用 体验?

互联互通

多云如何高效、稳定、安全的互联互通?

业务无关

公有云是业务和组织架构无 关的,也就没有相应的审批 流程,如何进行资源使用的 管控?

供给效率

如何让真正的使用者以自助 化服务的方式高效获取到所 需要的云资源

- 出海浪潮中的混合云趋势
- 混合云管理的痛点和挑战
- 荔枝混合云iRock介绍
- 混合云网络产品在荔枝的实现
- 演进规划和未来展望

荔枝混合云iRock介绍

ALL CLOUD IN ONE, ONE CLOUD FOR ALL

荔枝混合云iRock-多云资源管理

SACC 2022

荔枝混合云iRock-资源生命周期管理

荔枝混合云iRock-devops

冷压化光型							
资源组关联							× 互维
资源组信息							
当前资源组: 亚太皮聊线上 资源类型:	ECS						
资源列表							
● 资源显示格式为: [资源名称] ~ [内网IP] ~ [外网IP]							×
可使用资源		31		已使用资源			1
Q 请输入搜索内容	Mic.			Q 请输入搜索内容	Alexander de la companya de la comp		操作
.24.42.123] ~ [无]				[sdn_etcd_learner] ~ [10]	51] ~ [178]		更多
□ [as 12.121] ~ [无]			〈移除 添加〉				更多
□ [logs002] ~101] ~ [无] □ [logs0011 ~32.100] ~ [无]							更多
□ [es1] ~ [更多
□ [es] ~ [17′ .32.98] ~ [无] □ [k8s] ~ .32.95] ~ [无]							更多
							更多
						关	闭保存

- 出海浪潮中的混合云趋势
- 混合云管理的痛点和挑战
- 荔枝混合云iRock介绍
- 混合云网络产品在荔枝的实现
- 演进规划和未来展望

网络流量分类和网络需求

01

02

03

互联互通

- VPC内互通
- •与Internet互通
- ·与IDC互通
- 与其他VPC互通

安全

- •租户隔离
- •安全组配置
- 访问控制
- •可插入安全产品

可用性

- 自助操作
- 高可用
- •可计量计费
- 可观测

跨云跨VPC互联互通需求

网络产品-BC产品功能需求

- 可用户自助创建,跨云跨VPC互通(必须是SDN的实现而不是人手工操作)
- 可针对不同业务采用不同的调度策略,提高链路利用率(路径可编程)
- 可以自动发现和规避故障(高可用、路径编程)
- 不hack公有云本身网络架构(利用已有的公有云网络产品)
- 结合业务做多云调度 (租户隔离, 互不影响)

- VPNGW (IPSec VPN Over Internet)
- DirectConnect
- SRv6 = Segment Routing IPV6

	Version Traffic Class		Flow Label					
IPv6 Hdr	Payload Length				Next=43	Hop Limit		
	Source Address = A::							
	Destination Address = B::							
	Next Header Hea		Header	Length	Type=4	SL=n		
	Last Entry		Flags		Тад			
SRv6 Hdr	Segment List[0] = (128 bits IPv6 Address)							
								
	Segment List[n] = (128 bits IPv6 Address)							
Payload								

SRv6 Endpoint Behaviors

H.Encaps—SR Headend Behavior with Encapsulation in an SRv6 Policy

SRv6 Endpoint Behaviors

- The following is a subset of defined SRv6 endpoint behaviors that can be associated with a SID.
- End—Endpoint function. The SRv6 instantiation of a Prefix SID [RFC8402].
- End.DX6—Endpoint with decapsulation and IPv6 cross-connect (IPv6-L3VPN equivalent to per-CE VPN label).
- End.DX4—Endpoint with decapsulation and IPv4 cross-connect (IPv4-L3VPN equivalent to per-CE VPN label).
- End.DT6—Endpoint with decapsulation and IPv6 table lookup (IPv6-L3VPN equivalent to per-VRF VPN label).
- End.DT4—Endpoint with decapsulation and IPv4 table lookup (IPv4-L3VPN equivalent to per-VRF VPN label).
- End.DX2—Endpoint with decapsulation and L2 cross-connect (L2VPN use-case).

Source Node

Source node is SR-capable

- IPv6 Hdr SA=A::, DA=B::
 SRv6 Hdr (D::,C::,B::) SL=2
 Payload
- SR Header (SRH) is created with
 - Segment list in reversed order of the path
 - Segment List [0] is the LAST segment
 - Segment List [n-1] is the FIRST segment
 - Segments Left is set to n-1
 - Last Entry is set to n-1
- IP DA is set to the first segment
- Packet is send according to the IP DA
 - Normal IPv6 forwarding

	Version	Version Traffic Class			Flow Label			
IPv6	Payload Length				Hop Limit			
Hdr	Source Address = A::							
	Destination Address = B::							
	Next Header		Length=6		Type=4	SL=2		
	Last Er	Entry=2 Fla		gs	Tag			
SRv6 Hdr		Segment List[0] = D::						
	Segment List[1] = C::							
		Segment List[2] = B::						
	Payload							

Non-SR Transit Node

- Plain IPv6 forwarding
- Solely based on IPv6 DA
- No SRH inspection or update

SR Segment Endpoints

A:: B:: ---▶ C:: D:: D::

- SR Endpoints: SR-capable nodes whose address is in the IP DA
- SR Endpoints inspect the SRH and do:
 - IF Segments Left > 0, THEN
 - Decrement Segments Left (-1)
 - Update DA with Segment List [Segments Left]
 - Forward according to the new IP DA

/	Version T	raffic Class		Flow Label				
IPv6 Hdr	Payload Length			Next=43	Hop Limit			
	Source Address = A::							
	Destination Address = C::							
	Next Heade	I AI	Length=6 Type=4		SL=1			
	Last Entr	y=2	Flags	Tag				
SRv6 Hdr	Segment List[0] = D::							
	Segment List[1] = C::							
Payload								

SR Segment Endpoints

SR Endpoints: SR-capable nodes whose address is in the IP DA

- SR Endpoints inspect the SRH and do:
 - IF Segments Left > 0, THEN
 - Decrement Segments Left (-1)
 - Update DA with Segment List [Segments Left]
 - Forward according to the new IP DA
 - ELSE (Segments Left = 0)
 - Remove the IP and SR header
 - Process the payload:
 - Inner IP: Lookup DA and forward
 - TCP / UDP: Send to socket

	Version	Version Traffic Class			Flow Label			
IPv6	Payload Length				Next=43	Hop Limit		
Hdr	Source Address = A::							
	Destination Address = D::							
		ext ader	Leng	th=6	Type=4	SL=0		
	Last Entry=2 F		Fla	ıgs	Tag			
SRv6 Hdr	Segment List[0] = D::							
	Segment List[1] = C::							
	Segment List[2] = B::							
	Payload							

SACC

168.com

- 出海浪潮中的混合云趋势
- 混合云管理的痛点和挑战
- 荔枝混合云iRock介绍
- 混合云网络产品在荔枝的实现
- 演进规划和未来展望

演进规划与愿景

- 自定义TEP
- End to End Path Visualization
- 网络流量分析,如ntopng
- 性能提升
- 结合业务做多云调度

