

Randomized Algorithms

Yannic Maus

Part I: Randomized algorithms:

Las Vegas algorithms (LV), Monte Carlo algorithms (MC)

Part I: Randomized algorithms:

Las Vegas algorithms (LV), Monte Carlo algorithms (MC)

Part II: Karger's min-cut algorithm

Part I: Randomized algorithms:

Las Vegas algorithms (LV), Monte Carlo algorithms (MC)

Part II: Karger's min-cut algorithm

Part III: Small toolbox:

Probability boosting, Turn MC to LV

Linearity of expectation, Markov's inequality, with high probability

Part I: Randomized algorithms:

Las Vegas algorithms (LV), Monte Carlo algorithms (MC)

Part II: Karger's min-cut algorithm

Part III: Small toolbox:

Probability boosting, Turn MC to LV

Linearity of expectation, Markov's inequality, with high probability

Part IV: Randomized Approximation algorithm for max-cut

A glimpse at the computational model

Det. Algorithm = Function(Input)

A glimpse at the computational model

A glimpse at the computational model

Det. Algorithm = Function(Input)

Rand. Algorithm = Function (Input, Random Bits)

• **High level:** Your algorithm can flip coins

- High level: Your algorithm can flip coins
- Example Quicksort:

The algorithm flips a coin to decide which element to take as the pivot element.

Expected Runtime: $O(n \cdot \log n)$

Worst case runtime: $O(n^2)$

- High level: Your algorithm can flip coins
- Example Quicksort:

The algorithm flips a coin to decide which element to take as the pivot element.

Expected Runtime: $O(n \cdot \log n)$

Worst case runtime: $O(n^2)$

- The output of a randomized algorithm is a random variable
- The execution path of a randomized algorithm is a random variable

- The output of a randomized algorithm is a random variable
- The execution path of a randomized algorithm is a random variable

Think of input *x* as fixed:

- 1. Flip coins $r_1, r_2, ... \in \{Heads, Tails\}$
- 2. Do some computation
- 3. Output $Alg(x, r_1, r_2, ...)$

- The output of a randomized algorithm is a random variable
- The execution path of a randomized algorithm is a random variable

Think of input *x* as fixed:

- 1. Flip coins $r_1, r_2, ... \in \{Heads, Tails\}$
- 2. Do some computation
- 3. Output $Alg(x, r_1, r_2, ...)$

Possible Statements:

```
For all inputs x:
```

```
E[Running\ Time\ (Alg(x,r_1,r_2,...))] \le 10|x| (expected running time)
```


- The output of a randomized algorithm is a random variable
- The execution path of a randomized algorithm is a random variable

Think of input *x* as fixed:

- 1. Flip coins $r_1, r_2, ... \in \{Heads, Tails\}$
- 2. Do some computation
- 3. Output $Alg(x, r_1, r_2, ...)$

Possible Statements:

```
For all inputs x:
```

$$\mathbb{E}[Running\ Time\ (Alg(x, r_1, r_2, ...))] \le 10|x|$$
 (expected running time)

For all inputs x:

$$Pr(Alg(x, r_1, r_2, ...) \text{ is correct}) \ge 0.3$$

(error probability)

Las Vegas and Monte Carlo Algorithms

Las Vegas (LV): Always correct, but may be slow

- output always correct
- running time is a random variable (one demands $E[runtime] < \infty$)

Las Vegas and Monte Carlo Algorithms

Las Vegas (LV): Always correct, but may be slow

- output always correct
- running time is a random variable (one demands $E[\text{runtime}] < \infty$)

Monte Carlo (MC): Always fast, but may be incorrect

- output is a random variable, may be false
- runtime is bounded by something deterministically

Las Vegas and Monte Carlo Algorithms

Las Vegas (LV): Always correct, but may be slow

- output always correct
- running time is a random variable (one demands $E[\text{runtime}] < \infty$)

Monte Carlo (MC): Always fast, but may be incorrect

- output is a random variable, may be false
- runtime is bounded by something deterministically

memory aid: *MC* = *Mostly correct*

Main focus of this lecture: Monte Carlo Algorithms (MC)

The question that we're asking: \forall inputs x:

- Fix runtime upper bound deterministically as asymptotic function f(|x|)
- Provide a lower bound for $Pr(Alg(x, r_1, r_2, ...) = correct output for x))$

Typical statement on a MC algorithm:

The algorithm has runtime $O(n^3)$ and its output is correct with probability 0.9.

Karger's min-cut algorithm

Karger's Min-Cut algorithm

Definition: A **cut** of a graph G = (V, E) is a partition of its vertices into two disjoint sets $U, W = V \setminus U \subseteq V$. E(U, W) are the edges crossing the cut.

A minimum cut (min-cut) is a cut that minimizes the number of edges crossing the cut among all cuts.

Karger's Min-Cut algorithm

Definition: A **cut** of a graph G = (V, E) is a partition of its vertices into two disjoint sets $U, W = V \setminus U \subseteq V$. E(U, W) are the edges crossing the cut.

A minimum cut (min-cut) is a cut that minimizes the number of edges crossing the cut among all cuts.

There may be several minimum cuts.

Remark:

The max-flow min-s-t-cut theorem yields a deterministic (involved) algorithm to compute a min-s-t-cut. E.g., in $O(|E|^2|V|) = O(n^5)$, via the Edmonds-Karp Algorithm.

But this is an min-s-t-cut ... not a min-cut. What's the difference?

Karger's contraction algorithm

Input: Graph G=(V,E)

Output: Cut (U,W) of G

While |V|>2
 pick a random edge e in E
 contract e
 remove self-loops

Output the cut induced by the two remaining vertices

(remove no self loops)

(the probability for remaining edges to become selected increases)

(remove no self loops)

(the probability for remaining edges to become selected increases)

- After i steps, we have n i vertices remaining
- We repeat this for n-2 steps, until we have exactly 2 vertices remaining
- The remaining 2 "super" vertices induce a cut

- After i steps, we have n i vertices remaining
- We repeat this for n-2 steps, until we have exactly 2 vertices remaining
- The remaining 2 "super" vertices induce a cut

We want to show the following seemingly weak lemma:

- After i steps, we have n i vertices remaining
- We repeat this for n-2 steps, until we have exactly 2 vertices remaining
- The remaining 2 "super" vertices induce a cut

We want to show the following seemingly weak lemma:

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

- After i steps, we have n i vertices remaining
- We repeat this for n-2 steps, until we have exactly 2 vertices remaining
- The remaining 2 "super" vertices induce a cut

We want to show the following seemingly weak lemma:

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

Remark: This seems horrible, but indeed it is pretty good as we will see. It is much better than picking a random cut. There are exponentially $(2^{|V|} = 2^n)$ many different cuts. **Intuitively** Karger's algorithm is better than picking a random cut, because it is unlikely that we contract an edge of a minimum cut, simply because there are few such edges.

Karger's contraction algorithm: Proof

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

Proof:

Consider an arbitrary min cut $(U, W = V \setminus U)$ with C = E(U, W)

Karger's contraction algorithm: Proof

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

Proof:

Consider an arbitrary min cut $(U, W = V \setminus U)$ with C = E(U, W)

- $e_1, e_2, e_3, \dots, e_{n-2}$: the edges contracted by Karger's algorithm
- E_i : event that e_i does not cross the cut C.

Karger's contraction algorithm: Proof

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

Proof:

Consider an arbitrary min cut $(U, W = V \setminus U)$ with C = E(U, W)

- $e_1, e_2, e_3, \dots, e_{n-2}$: the edges contracted by Karger's algorithm
- E_i : event that e_i does not cross the cut C.

 $\Pr(\text{Karger returns cut } C) = \Pr(E_1 \land E_2 \land E_3, ..., \land E_{n-2})$

Karger's contraction algorithm: Proof

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

Proof:

Consider an arbitrary min cut $(U, W = V \setminus U)$ with C = E(U, W)

- $e_1, e_2, e_3, \dots, e_{n-2}$: the edges contracted by Karger's algorithm
- E_i : event that e_i does not cross the cut C.

$$\Pr(\text{Karger returns cut } C) = \Pr(E_1 \land E_2 \land E_3, ..., \land E_{n-2})$$
$$= \Pr(E_1) \cdot \Pr(E_2 | E_1) \cdot ... \Pr(E_{n-2} | E_1 \land ... \land E_{n-3})$$

Karger's contraction algorithm: Proof

Lemma: Karger contraction algorithm outputs a min-cut with probability at least 2/((n-1)n).

Proof:

Consider an arbitrary min cut $(U, W = V \setminus U)$ with C = E(U, W)

- $e_1, e_2, e_3, \dots, e_{n-2}$: the edges contracted by Karger's algorithm
- E_i : event that e_i does not cross the cut C.

$$\Pr(\text{Karger returns cut }C) = \Pr(E_1 \land E_2 \land E_3, ..., \land E_{n-2})$$

$$= \Pr(E_1) \cdot \Pr(E_2 | E_1) \cdot ... \Pr(E_{n-2} | E_1 \land ... \land E_{n-3})$$

$$... \text{(we will show) } ... \geq \frac{2}{n(n-1)}$$

$$\Pr(\overline{E}_i|E_1 \wedge .. \wedge E_{i-1})$$

 $\Pr(\overline{E_i}|E_1 \land .. \land E_{i-1}) \leq \frac{\delta}{\#remaining\ edges\ after\ i-1\ contractions}$

#edges in cut
$$C$$

 $\Pr(\overline{E_i}|E_1 \land .. \land E_{i-1}) \leq \frac{\varepsilon}{\# remaining \ edges \ after \ i-1 \ contractions}$

$$\#remaining\ edges \geq \#remainingVertices \cdot \frac{minDegree}{2}$$

$$\Pr(\overline{E_i}|E_1 \land .. \land E_{i-1}) \leq \frac{\#edges \ in \ cut \ C}{\#remaining \ edges \ after \ i-1 \ contractions}$$

#remaining edges
$$\geq$$
 #remainingVertices $\cdot \frac{minDegree}{2}$

$$\geq (n - (i - 1)) \cdot \frac{minDegree}{2}$$

$$\geq (n - i + 1) \cdot (\# edges \ in \ cut \ C)/2$$

$$\Pr(\overline{E}_i|E_1 \land .. \land E_{i-1}) \leq \frac{\#edges \ in \ cut \ C}{\#remaining \ edges \ after \ i-1 \ contractions} \leq \frac{2}{n-i+1}$$

#remaining edges
$$\geq$$
 #remainingVertices $\cdot \frac{minDegree}{2}$

$$\geq (n - (i - 1)) \cdot \frac{minDegree}{2}$$

$$\geq (n - i + 1) \cdot (\# edges \ in \ cut \ C)/2$$

$$\Pr(\overline{E_i}|E_1 \land .. \land E_{i-1}) \leq \frac{\#edges \ in \ cut \ C}{\#remaining \ edges \ after \ i-1 \ contractions} \leq \frac{2}{n-i+1}$$

$$\Pr(E_i \mid E_1 \land \dots \land E_{i-1}) = 1 - \Pr(\overline{E_i} \mid E_1 \land \dots \land E_{i-1}1) \ge (n-i-1)/(n-i+1)$$

#remaining edges
$$\geq$$
 #remainingVertices $\cdot \frac{minDegree}{2}$

$$\geq (n - (i - 1)) \cdot \frac{minDegree}{2}$$

$$\geq (n - i + 1) \cdot (\# edges \ in \ cut \ C)/2$$

Lemma: Karger's contraction algorithm outputs a min-cut with probability at least 2/(n-1)n.

Proof:

$$\Pr(E_i \mid E_1 \land \dots \land E_{i-1}) = 1 - \Pr(\overline{E_i} \mid E_1 \land \dots \land E_{i-1}1) \ge (n-i-1)/(n-i+1)$$

 $\Pr(\text{Karger returns cut } C) = \Pr(E_1 \land E_2 \land E_3, ..., \land E_{n-2})$

Lemma: Karger's contraction algorithm outputs a min-cut with probability at least 2/(n-1)n.

Proof:

$$\Pr(E_i \mid E_1 \land \dots \land E_{i-1}) = 1 - \Pr(\overline{E_i} \mid E_1 \land \dots \land E_{i-1}1) \ge (n-i-1)/(n-i+1)$$

$$Pr(Karger returns cut C) = Pr(E_1 \land E_2 \land E_3, ..., \land E_{n-2})$$
$$= Pr(E_1) \cdot Pr(E_2 | E_1) \cdot ... Pr(E_{n-2} | E_1 \land ... \land E_{n-3})$$

Lemma: Karger's contraction algorithm outputs a min-cut with probability at least 2/(n-1)n.

Proof:

$$\Pr(E_i \mid E_1 \land \dots \land E_{i-1}) = 1 - \Pr(\overline{E_i} \mid E_1 \land \dots \land E_{i-1}1) \ge (n-i-1)/(n-i+1)$$

$$\text{Pr}(\text{Karger returns cut } C) = \text{Pr}(E_1 \land E_2 \land E_3, ..., \land E_{n-2})$$

$$= \text{Pr}(E_1) \cdot \text{Pr}(E_2 | E_1) \cdot ... \text{Pr}(E_{n-2} | E_1 \land ... \land E_{n-3})$$

$$= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot ... \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \ge \frac{2}{n(n-1)}$$

Lemma: Karger's contraction algorithm outputs a min-cut with probability at least 2/(n-1)n.

Proof:

$$\Pr(E_i \mid E_1 \land \dots \land E_{i-1}) = 1 - \Pr(\overline{E_i} \mid E_1 \land \dots \land E_{i-1}1) \ge (n-i-1)/(n-i+1)$$

$$\begin{aligned} \Pr(\text{Karger returns cut } C) &= \Pr(E_1 \land E_2 \land E_3, ..., \land E_{n-2}) \\ &= \Pr(E_1) \cdot \Pr(E_2 | E_1) \cdot ... \ \Pr(E_{n-2} | E_1 \land ... \land E_{n-3}) \\ &= \frac{n-2}{n} \cdot \frac{n-3}{n-1} \cdot \frac{n-4}{n-2} \cdot ... \cdot \frac{3}{5} \cdot \frac{2}{4} \cdot \frac{1}{3} \ge \frac{2}{n(n-1)} \end{aligned}$$

end of proof

Theorem (Karger): $T = \frac{n(n-1)}{2} \cdot \log 1 / \delta$ repetitions of Karger's contraction algorithm and returning the smallest cut you see during the process computes a min-cut with probability at least $1 - \delta$.

```
min-cut=∞
Repeat for T times
    min-cut=min(min-cut, Karger-Contraction-Alg)
Return min-cut
```


Theorem (Karger): $T = \frac{n(n-1)}{2} \cdot \log 1 / \delta$ repetitions of Karger's contraction algorithm and returning the smallest cut you see during the process computes a min-cut with probability at least $1 - \delta$.

min-cut=∞
Repeat for T times
 min-cut=min(min-cut, Karger-Contraction-Alg)
Return min-cut

One iteration correct with prob.

$$p = \frac{2}{n(n-1)}$$

Theorem (Karger): $T = \frac{n(n-1)}{2} \cdot \log 1 / \delta$ repetitions of Karger's contraction algorithm and returning the smallest cut you see during the process computes a min-cut with probability at least $1 - \delta$.

min-cut=∞
Repeat for T times
 min-cut=min(min-cut, Karger-Contraction-Alg)
Return min-cut

One iteration correct with prob. $p = \frac{2}{n(n-1)}$

Pr(output is not a min – cut) $\leq (1-p)^T \stackrel{(\mathbb{C}^{\mathfrak{p}})}{\leq} e^{-T \cdot p} = \delta$.

Theorem (Karger): $T = \frac{n(n-1)}{2} \cdot \log 1 / \delta$ repetitions of Karger's contraction algorithm and returning the smallest cut you see during the process computes a min-cut with probability at least $1 - \delta$.

min-cut=∞
Repeat for T times
 min-cut=min(min-cut, Karger-Contraction-Alg)
Return min-cut

One iteration correct with prob. $p = \frac{2}{n(n-1)}$

Pr(output is not a min – cut) $\leq (1-p)^T \stackrel{(C^{r})}{\leq} e^{-T \cdot p} = \delta$.

Remark: This algorithm only outputs the value of a min-cut.

Of course we can also output a min-cut by remembering the best cut found.

Karger's algorithm: Implementation

There are many ways to actually implement Karger's algorithm with varying influence on the complexity.

(the implementation is not the focus of this lecture)

Karger's algorithm: Implementation

There are many ways to actually implement Karger's algorithm with varying influence on the complexity.

One Option: Interpret Karger's algorithm as running Kruskal's MST algorithm with random edge weights.

 Recall that Kruskal with a union-find data structure maintains connected components of nodes that have been merged by a spanning tree. These components form the role of a super node in Karger's algorithm.

(the implementation is not the focus of this lecture)

A small Toolbox

For analyzing randomized algorithms

Given: MC algorithm A, correct with probability p>0New MC algorithm B, correct with probability $\geq 1-\delta>0$

Algorithm B: Repeat algorithm A for $p^{-1}\log\left(\frac{1}{\delta}\right)$ iterations Return "best solution"

Probability that none of the iterations is correct: $(1-p)^i \le e^{-p \cdot i} = \delta$

$$1-x \leq e^{-x}, x \in \mathbb{R}$$

If you have an MC that is correct with probability 1%. Repeat it often enough and return the best solution, and you will have an MC algorithm that is correct with probability 99.9%.

If you have an MC that is correct with probability 1%. Repeat it often enough and return the best solution, and you will have an MC algorithm that is correct with probability 99.9%.

Caveat: How to decide which solution is best?

If you have an MC that is correct with probability 1%. Repeat it often enough and return the best solution, and you will have an MC algorithm that is correct with probability 99.9%.

Caveat: How to decide which solution is best?

In Karger's algorithm we saw an approach for probability boosting for maximization/minimization problems [return the largest/smallest solution].

From MC to LV

If you can check whether an output is correct, one can transfer an MC algorithm into an LV algorithm:

Repeat MC algorithm until correct solution is found

From MC to LV

If you can check whether an output is correct, one can transfer an MC algorithm into an LV algorithm:

Repeat MC algorithm until correct solution is found

This will always produces a correct solution (LV algorithm)

- Expected runtime depends on:
 - error probability of your MC (correct with probability p),
 - the runtime f(n) of the MC algorithm, and
 - the runtime h(n) of the checking procedure

From MC to LV

If you can check whether an output is correct, one can transfer an MC algorithm into an LV algorithm:

Repeat MC algorithm until correct solution is found

This will always produces a correct solution (LV algorithm)

- Expected runtime depends on:
 - error probability of your MC (correct with probability p),
 - the runtime f(n) of the MC algorithm, and
 - the runtime h(n) of the checking procedure

If the correctness check is deterministic, **expected runtime** = $x \cdot (f(n) + h(n))$, where x is the expected number of p-biased coin flips until you see heads (x = 1/p) (geometric random variable)

Linearity of Expectation

Linearity of expectation: Let $X_1, ..., X_n$ be random variables and $a_1, ..., a_n$ real values. Then we have:

$$E[\sum a_i X_i] = \sum a_i E[X_i]$$

(should be known from probability theory)

Linearity of Expectation

Linearity of expectation: Let $X_1, ..., X_n$ be random variables and $a_1, ..., a_n$ real values. Then we have:

$$E[\sum a_i X_i] = \sum a_i E[X_i]$$

- Extremely powerful and important tool
- It does not matter whether the random variables X_i are dependent or not

(should be known from probability theory)

Markov inequality

Markov inequality: If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a:

$$\Pr(X \ge a) \le \frac{E[X]}{a} \, .$$

Markov inequality

Markov inequality: If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a:

$$\Pr(X \ge a) \le \frac{E[X]}{a}$$
.

One prime application:

Consider an algorithm that should minimize some value X, and we have designed an algorithm that computes a small value for X, in expectation. Then, we obtain:

$$Pr(X \ge 3 E[X]) \le E[X]/(3E[X]) = 1/3$$

Markov inequality

Markov inequality: If X is a nonnegative random variable and a > 0, then the probability that X is at least a is at most the expectation of X divided by a:

$$\Pr(X \ge a) \le \frac{E[X]}{a} \, .$$

One prime application:

Consider an algorithm that should minimize some value X, and we have designed an algorithm that computes a small value for X, in expectation. Then, we obtain:

$$Pr(X \ge 3 E[X]) \le E[X]/(3E[X]) = 1/3$$

We obtain:
$$Pr(X < 3 E[X]) = 1 - Pr(X \ge 3E[X]) \ge 2/3$$

*of course this works with other values than 3 as well

With high probability

Definition (with high probability): An algorithm is correct with high probability if its output on an instance of size n is correct with probability $\geq 1 - \frac{1}{n}$.

(Typically, we want that algorithms that are correct w.h.p.)

With high probability

Definition (with high probability): An algorithm is correct with high probability if its output on an instance of size n is correct with probability $\geq 1 - \frac{1}{n}$.

(Typically, we want that algorithms that are correct w.h.p.)

In other words, the probability that the output is incorrect is at most 1/n. E.g., for an instance with 100 nodes we require that the input is false with probability at most 1%. On an input with 1000 nodes, we require that the input is false with probability at most 0.1%, etc.

Max-Cut

colors, but not a proper graph coloring

Max-cut

Definition: A maximum cut (max-cut) is a cut that maximizes the number of edges crossing the cut among all cuts.

Max-cut is NP-complete (in contrast to min-cut), not proven in this lecture

Size of the cut?

Max-cut

Definition: A maximum cut (max-cut) is a cut that maximizes the number of edges crossing the cut among all cuts.

Max-cut is NP-complete (in contrast to min-cut), not proven in this lecture

Size of the cut?

10 cut edges

Randomized Algorithm: Color each vertex randomly red/blue

Randomized Algorithm: Color each vertex randomly red/blue

How many cut-edges do we expect?

Randomized Algorithm: Color each vertex randomly red/blue

How many cut-edges do we expect?

What is the probability for an edge to be a cut-edge?

$$Pr(v = blue \land u = red) = Pr(v = blue) \cdot Pr(u = red) = 1/4$$

$$Pr(v = red \land u = blue) = Pr(v = red) \cdot Pr(u = blue) = 1/4$$

Randomized Algorithm: Color each vertex randomly red/blue

How many cut-edges do we expect?

What is the probability for an edge to be a cut-edge?

$$Pr(v = blue \land u = red) = Pr(v = blue) \cdot Pr(u = red) = 1/4$$

$$Pr(v = red \land u = blue) = Pr(v = red) \cdot Pr(u = blue) = 1/4$$

$$Pr(edge \{u, v\} is cut edge) = 1/4 + 1/4 = 1/2$$

Randomized Algorithm: Color each vertex randomly red/blue

Randomized Algorithm: Color each vertex randomly red/blue

$$E[X_e] = 1 \cdot \Pr(X_e = 1) + 0 \cdot \Pr(X_e = 0) = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

Randomized Algorithm: Color each vertex randomly red/blue

$$E[X_e] = 1 \cdot \Pr(X_e = 1) + 0 \cdot \Pr(X_e = 0) = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

$$X = \sum_{e \in E} X_e$$
 Total number of cut edges

Randomized Algorithm: Color each vertex randomly red/blue

$$E[X_e] = 1 \cdot \Pr(X_e = 1) + 0 \cdot \Pr(X_e = 0) = 1 \cdot \frac{1}{2} = \frac{1}{2}$$

$$X = \sum_{e \in E} X_e$$
 Total number of cut edges

$$E[X] = E[\sum X_e] = \sum E[X_e] = |E|/2$$

Lemma: Randomly assigning nodes to the partitions of a cut, in expectation produces |E|/2 cut edges.

Lemma: Randomly assigning nodes to the partitions of a cut, in expectation produces |E|/2 cut edges.

How to produce a Monte Carlo algorithm? (for which problem do we get a MC algorithm)

Lemma: Randomly assigning nodes to the partitions of a cut, in expectation produces |E|/2 cut edges.

How to produce a Monte Carlo algorithm?

(for which problem do we get a MC algorithm)

Lemma: Randomly assigning nodes to the partitions of a cut produces at **least** |E|/4 cut edges, with probability at least 1/3.

Lemma: Randomly assigning nodes to the partitions of a cut, in expectation produces |E|/2 cut edges.

How to produce a Monte Carlo algorithm?

(for which problem do we get a MC algorithm)

Lemma: Randomly assigning nodes to the partitions of a cut produces at least |E|/4 cut edges, with probability at least 1/3.

Proof:

Lemma: Randomly assigning nodes to the partitions of a cut, in expectation produces |E|/2 cut edges.

How to produce a Monte Carlo algorithm?

(for which problem do we get a MC algorithm)

Lemma: Randomly assigning nodes to the partitions of a cut produces at least |E|/4 cut edges, with probability at least 1/3.

Proof:

Let Y = |E| - X be the number of monochromatic (non-cut edges). E[Y] = |E| - E[X] = |E|/2.

Lemma: Randomly assigning nodes to the partitions of a cut, in expectation produces |E|/2 cut edges.

How to produce a Monte Carlo algorithm?

(for which problem do we get a MC algorithm)

Lemma: Randomly assigning nodes to the partitions of a cut produces at least |E|/4 cut edges, with probability at least 1/3.

Proof:

Let Y = |E| - X be the number of monochromatic (non-cut edges). E[Y] = |E| - E[X] = |E|/2.

$$Pr\left(X < \frac{|E|}{4}\right) = \Pr\left(Y \ge \frac{3|E|}{4}\right) \le \frac{E[Y]}{\frac{3|E|}{4}} = \frac{2}{3}$$
. (Markov inequality)

Probability boosting

Theorem: For $\delta > 0$, there is a randomized MC algorithm that outputs a cut with at least |E|/4 cut edges with probability at least $1 - \delta$ in $O((|V| + |E|) \cdot \log_3 1/\delta)$ time.

Probability boosting

Theorem: For $\delta > 0$, there is a randomized MC algorithm that outputs a cut with at least |E|/4 cut edges with probability at least $1 - \delta$ in $O((|V| + |E|) \cdot \log_3 1/\delta)$ time.

Proof:

We repeat the previous algorithm $T = \log_{\frac{3}{2}}(1/\delta)$ times and output the largest cut that we see throughout. We obtain

$$\Pr\left(output\ cut < \frac{|E|}{4}\right) = \left(\frac{2}{3}\right)^T \le \delta.$$

Probability boosting

Theorem: For $\delta > 0$, there is a randomized MC algorithm that outputs a cut with at least |E|/4 cut edges with probability at least $1 - \delta$ in $O((|V| + |E|) \cdot \log_3 1/\delta)$ time.

Proof:

We repeat the previous algorithm $T = \log_{\frac{3}{2}}(1/\delta)$ times and output the largest cut that we see throughout. We obtain

$$\Pr\left(output\ cut < \frac{|E|}{4}\right) = \left(\frac{2}{3}\right)^T \le \delta.$$

Runtime: The randomized flipping takes O(|V|) steps. Checking the size of the cut in one iteration takes O(|E|) steps.

W.h.p. algorithm for large cuts

Corollary: There is a randomized algorithm that w.h.p. outputs a cut with |E|/4 cut edges and has runtime $O((|V| + |E|) \cdot \log n)$.

Proof:

Use the previous theorem and set $\delta = 1/n$ to obtain that the error probability is at most 1/n.

Remark on the approximation guarantee

- Max-cut is NP-complete
- Our algorithm usually does not output an optimal solution
- Still, we get a constant approximation
- There is no PTAS for max-cut unless P=NP

Exercise: Show that the presented algorithm provides a 4-approximation.

Concluding remarks

Randomization is (a) great (tool)

- often simple algorithms
- often difficult analysis