Aula 5 - Algoritmo Adaptive-DSD

Wednesday, March 16, 2016 13:46

Descrição intuitiva

Ì		
	1	180.15.155.12
	0	200.17.212.176

Algoritmo Adaptive-DSD executado pelo nodo i

TESTED_ UPa[1] = C

1501 1600

TESTED UP

0	1	2	3	4	5	6
*	*	*	*	*	*	*

a considera que b testou c sem-falha

•						
1	2	3	6	*	*	0

Mostre, para intervalos de testes consecutivos, a partir do início, os vetores $TESTED_UP_{0,2}$ 2,5

Intervalo de testes 1

0->2 obtém info sobre 2, 3, 4, 5

2->5 obtém info sobre 5, 0, 1

5->0 obtém info sobre 0, 1, 2, 3, 4

	0	1	2	3	4	5
$TESTED_UP_0$	2	*	*	*	*	*
$TESTED_UP_2$	*	*	5	*	*	*
$TESTED_UP_5$	*	*	*	*	*	0

Intervalo de testes 2

	0	1	2	3	4	5	
$TESTED_UP_0$	2	*	5	*	*	*	
TESTED_UP ₂	*	*	5	*	*	0	
TESTED_UP ₅	2	*	*	*	*	0	

Intervalo de testes 3

	0	1	2	3	4	5
$TESTED_UP_0$	2	*	5	*	*	0
$TESTED_UP_2$	2	*	5	*	*	0
TESTED_UP ₅	2	*	5	*	*	0

O algoritmo diagnose usa o vetor TESTED_UP para descobrir quais nodos estão {falhos, sen 1-falha} O algoritmo diagnose executado pelo nodo i:

Diagnose(i) Para k<-0 até N-1 faça STATEi[k] <- FALHO

211∨ /_ i

```
Repita
STATEi[aux] <- SEM-FALHA
aux <- TESTE_UPi[aux]
Até aux = i</pre>
```

```
\begin{split} STATE_0 &= [F, F, F, F, F, F] \\ \text{aux=0} \\ STATE_0 &= [S, F, F, F, F, F] \\ \text{aux=2} \\ STATE_0 &= [S, F, S, F, F, F] \\ \text{aux=5} \\ STATE_0 &= [S, F, S, F, F, S] \\ \text{aux=0} \end{split}
```

Prova

Provas de correção do algoritmo são baseados na latência.

Rodada de testes é o intervalo de tempo até que <u>todos</u> os nodos sem-falha executaram tes stes em <u>pelo</u> menos 1 nodo sem-falha.

Premissa: diagnóstico estático: o estado dos nodos não muda durante o diagnóstico.

Teorema 1

Considere o sistema S executando o algoritmo Adaptive DSD por uma rodada de testes. O g testes T(S), cujos vértices correspondem aos nodos do sistema e cujas arestas direcionadas correspondem aos testes executados, contém um ciclo - um cainho direcionado de qualque rodo semfalha para qualquer nodo sem-falha.

Prova por contradição

Escolha 2 nodos sem-falha x e z tais que **não** existe um caminho direcionado entre eles **e** (z-z-x) é o mínimo para todos os pares sem caminho direcionado.

Identifique o maior y, y < z, tal que y é um nodo sem-falha e existe um caminho de y para z. Após uma rodada de testes, z deve ter testado algum nodo sem-falha, digamos z. Como z0 deve ter testado algum nodo sem-falha, digamos z0 deve ter testado algum nodo sem

Entretanto, pela definição do algoritmo, y deve ter testado z falho antes de testar o a!

Contradição: z é um nodo sem-falha!

Corolário

Após uma rodada de testes do algoritmo AdaptiveDSD, todos os nodos sem-falha formam u um ciclo no grafo de testes T(S).

Pelo Teorema 1, existe um caminho direcionado de qualquer nodo sem-falha de T(S) para c nodo sem-falha de T(S). Além disso, há apenas uma aresta direcionada de cada nodo sem-f alha para um outro nodo sem-falha.

O ciclo direcionado é a única estrutura que satisfaz a estas duas condições.

Latência de um algoritmo de diagnóstico distribuído é o número de <u>rodadas de testes</u> neces ssários para completar o diagnóstico do sistema.

AdaptiveDSD com N nodos tem latência de N rodadas de teste, no pior caso, e 1 rodada, nc melhor caso.