COMENIUS UNIVERSITY IN BRATISLAVA FACULTY OF MATHEMATICS, PHYSICS AND INFORMATICS DEPARTMENT OF APPLIED INFORMATICS

Neural Networks Project 2c – Hopfield network

April 15, 2025

OVERVIEW

Task: Implement a deterministic synchronous Hopfield network (wiki), then examine its ability to store and recall the following 5x7 patterns¹ (letters X, H, O and Z, drawn here with . and # instead of -1 and +1 for legibility)

```
.#...#.
          .#...#.
                    ..###..
                               .#####.
..#.#.. .#...#.
                    .#...#.
                              . . . . # . .
                    .#...#.
. . .#...
          .#####.
..#.#.. .#...#.
                    .#...#.
                              ..#...
.#...#.
          .#...#.
                     ..###..
                               .#####.
```

Deadline: May 11, 23:59

Late submissions are penalized by -2 points each day. It is not possible to submit a project more than 5 days after the deadline.

REPORT

- test the noise-correcting recall ability of the network for every input pattern:
 - corrupt the input with different amounts of discrete noise $k \in \{0,7,14,21\}$
 - * select *k* random pixel positions and flip them $(-1 \leftrightarrow +1)$
 - let the network relax until reaching a fixed point or a limit cycle
 - for each step, plot:
 - * the amount of overlap² of the current configuration with each stored pattern
 - * the energy³ of the current configuration

$$E(\mathbf{x}) = -\frac{1}{2} \sum_{i} \sum_{j} (W_{i,j} \cdot x_i \cdot x_j)$$

¹do not remove the empty columns to form a 5x5 shape – the recall will not work

²the percentage of neurons sharing its value (± 1) with the corresponding one in a pattern

³ for some configuration x (activations of all the neurons at a specific time), the energy is:

- investigate the dynamics of the network for \geq 10000 random input patterns⁴:
 - count the number of inputs leading to:
 - * true attractors stable states identical to input patterns (or negatives)
 - * false attractors stable states not matching any input pattern
 - * *limit cycles* periodic trajectories
 - plot the 10 most frequent final states or cycles
 - * merge duplicates that differ only in the sign or in the phase of the cycle

EXAMPLES

These examples are from a network trained on a different dataset - letters A, B, X, O

```
...#...
            .####..
                       .#...#.
                                   ..###..
..#.#..
           .#...#.
                       ..#.#..
                                   .#...#.
..#.#..
           .####..
                       . . . # . . .
                                   .#...#.
.#####.
           .#...#.
                       ..#.#..
                                   .#...#.
           .####..
                       .#...#.
                                   ..###..
.#...#.
```

Noise-correcting recall ability:

Písmeno A

 $^{^4 {\}rm this}$ should not take very long, a few seconds at most

Correct recall - true attractor:

Incorrect recall - false attractor:

Incorrect recall - limit cycle:

Bonus

Examine the effect of storing more 5x7 patterns in the network (choose and draw some letters). Evaluate how the success rate of recall⁵ depends on the number of stored patterns and for different amounts of added noise.

⁵the percentage of attempts, where the network converged to the original pattern (without noise)