

PESQUISA OPERACIONAL

MAXIMINIZAÇÃO

Exercício 2 (ENADE)

Uma fábrica produz dois refrigerantes: A e B. Para produzí-los, utilizam-se vários recursos, entre os quais os extratos e a água são os mais limitantes, devido a problemas ecológicos.

Para produzir um litro do refrigerante A, o processo envolve a dissolução de um pacote do extrato (denominado Delta)em um litro de água, além de outros recursos que não são limitantes.

Já a produção de um litro do refrigerante B, além da dissolução de um pacote de extrato (denominado Gama) em um litro de água, exige mais um litro de outros recursos para o processo de arrefecimento, além de outros recursos não limitantes.

Sabe-se que:

- a) O lucro gerado por litro de A é R\$5, enquanto que o lucro por litro de B é R\$2.
- b) O fornecedor de extratos só consegue entregar 3.000 pacotes de extrato Delta e 4.000 pacotes de extrato Gama, semanalmente.
 - c) Há umf ator ambiental limitante de 9.000 litros de água por semana.

Denominando de X1 a quantidade de litros de refrigerante A e X2, a quantidade de refrigerante B a serem produzidos, qual deverá ser o plano de produção semanal viável para gerar o maior lucro a essa fábrica, dentro das condições apresentadas?

In []:

Solução pelo Método Gráfico:

Função Objetivo:

$$X_1 \le 3.000 \tag{1}$$

$$X_2 \le 4.000 \tag{2}$$

$$X_1 + 2X_2 \le 9.000 \tag{3}$$

$$X_1, X_2 \ge 0 \tag{4}$$

$$A(0,0)$$
 $Z_A=0$

$$B(3000,0)$$
 $Z_B = 5.3000 + 2.0 = 15.000$

$$C(3000, 3000)$$
 $Z_C = 5.3000 + 2.3000 = 21.000$

$$D(1000, 4000)$$
 $Z_D = 5.1000 + 2.4000 = 13.000$

$$E(0,4000)$$
 $Z_E = 5.0 + 2.4000 = 8.000$

In []:

Solução pelo Método Simplex

1. Inserir as variáveis de folga

$$Z - 5X_1 - 2X_2 = 0$$

$$X_1 + f_1 = 3000$$

$$X_2 + f_2 = 4000$$

$$X_1 + 2X_2 + f_3 = 9000$$

2. Construção do Tabela inicial

	Z	X_1	X_2	f_1	f_2	f_3	LD
L1	1	-5	-2	0	0	0	0
L2	0	1	0	1	0	0	3000
L3	0	0	1	0	1	0	4000
L4	0	1	2	0	0	1	9000

A linha L1 é referente a função objetivo (L). A linha L2 é a primeira variável de folga (f_1) e assim por diante.

3. Seleção da Coluna Pivô

A coluna pivô é coluna que tem o maior valor absoluta entre varáveis não básicas (X_1 e X_2).

Calcular a coluna Quociente dividindo os valores de LD pelos valores da colunas pivô.

	\boldsymbol{Z}	X_1	X_2	f_1	f_2	f_3	LD	Quociente
L1	1	-5	-2	0	0	0	0	-
L2	0	1	0	1	0	0	3000	3000
L3	0	0	1	0	1	0	4000	
L4	0	1	2	0	0	1	9000	9000

4. Seleção da Linha Pivô (LP)

A linha pivô é a que possui o menor valor de quociente.

	Z	X_1	X_2	f_1	f_2	f_3	LD	Quociente
L1	1	-5	-2	0	0	0	0	-
L2	0	1	0	1	0	0	3000	3000
L3	0	0	1	0	1	0	4000	
L4	0	1	2	0	0	1	9000	9000

A interseção entre a coluna pivô e a linha pivô, indica o elemento pivô, que no presente caso é 1.

5. Calcular a Nova Linha Pivô (NLP)

$$NLP=rac{1}{piv\hat{\mathsf{o}}}.\,LP$$

Onde: $piv\hat{0}$ = elemento piv $\hat{0}$

$$NLP = \frac{1}{1}.(0, 1, 0, 1, 0, 0, 3000)$$

$$NLP = (0, 1, 0, 1, 0, 0, 3000)$$

6. Primeira Iteração

Mantem-se a nova linha pivô na tabele e calcula-se a nova linha 1 (L1).

$$NL1 = L1 - coeficiente da linha1.NLP$$

$$NL1 = (1, -5, -2, 0, 0, 0, 0) - (-5).(0, 1, 0, 1, 0, 0, 3000)$$

$$NL1 = (1, -5, -2, 0, 0, 0, 0) + (0, 5, 0, 5, 0, 0, 15000)$$

$$NL1 = (1, 0, -2, 5, 0, 0, 15000)$$

Calcular as interações para a nova linha 3 (NL3) e a nova linha 4 (L4).

$$NL3 = L3 - coeficiente \, da \, linha 3 \, . \, NLP$$
 $NL3 = (0,0,1,0,1,0,4000) - 0. \, (0,1,0,1,0,0,3000)$

NL3 = (0, 0, 1, 0, 1, 0, 4000)

$$NL4 = L4 - coeficiente\,da\,linha4\,.\,NLP$$

$$NL4 = (0, 1, 2, 0, 0, 1, 9000) - 1 \cdot (0, 1, 0, 1, 0, 0, 3000)$$

$$NL4 = (0, 1, 2, 0, 0, 1, 9000) - (0, 1, 0, 1, 0, 0, 3000)$$

$$NL4 = (0, 0, 2, -1, 0, 1, 6000)$$

O valor negativo -2 na variável não básica X_2 indica que a iteração ainda não acabou.

7. Preparação para Segunda Interação

A coluna da variável não básica X_2 possui o maior valor absoluto entre as varíaveis não básicas, portanto é a nova coluna pivô.

	Z	X_1	X_2	f_1	f_2	f_3	LD	Quociente
L1	1	0	-2	5	0	0	15000	-
L2	0	1	0	1	0	0	3000	-
L3	0	0	1	0	1	0	4000	4000
L4	0	0	2	-1	0	1	6000	3000

A linha L4 é a linha pivô, pois possui o menor valor de quociente.

	Z	X_1	X_2	f_1	f_2	f_3	LD	Quociente
L1	1	0	-2	5	0	0	15000	-
L2	0	1	0	1	0	0	3000	-
L3	0	0	1	0	1	0	4000	4000
L4	0	0	2	-1	0	1	6000	3000

8. Calcular a nova linha Pivô

$$NLP = rac{1}{piv\^0}.\,LP$$
 $NLP = rac{1}{2}.\,(0,0,2,-1,0,1,6000)$ $NLP = (0,0,1,-0.5,0,0.5,3000)$

9. Calcular a Segunda Iteração

Mantem-se a nova linha pivô e calcula-se as novas linhas 1, 2 e 3.

A linha 3 não foi modificada, assim permanece associada a variável de folga 2 (f_2). A linha 1 indica a varível objetivo, a linha 2 representa a variável não básica X_1 , e a linha 4 representa a variável não básica X_2

	Z	X_1	X_2	f_1	f_2	f_3	LD
L1							
L2							
L1 L2 L3							
	0	0	1	0.5	0	0.5	3000

$$egin{aligned} NL1 &= L1-coeficiente\,da\,linha1\,.\,NLP \ \\ NL1 &= (1,0,-2,5,0,0,15000)-(-2).\,(0,0,1,-0.5,0,0.5,3000) \ \\ NL1 &= (1,0,-2,5,0,0,15000)+(0,0,2,-1,0,1,6000) \ \\ NL1 &= (1,0,0,4,0,1,21000) \end{aligned}$$

Em razão de todas as varíaveis não básicas serem iguaias a zero, indica que a iteração acabou. Outro indicativo de fim de iteração é quando estas variáveis são todas positivas. Assim, não é necessário calcular as linhas 2 e 3, porém, vamos calcular.

$$NL2 = L2 - coeficiente\,da\,linha2$$
 . NLP

$$NL2 = (0, 1, 0, 1, 0, 0, 3000)$$

$$NL3 = L3 - coeficiente\,da\,linha3$$
 . NLP

$$NL3 = (0, 0, 1, 0, 1, 0, 4000) - 1.(0, 0, 1, -0.5, 0, 0.5, 3000)$$

NL2 = (0, 1, 0, 1, 0, 0, 3000) - 0.(0, 0, 1, -0.5, 0, 0.5, 3000)

$$NL3 = (0, 0, 1, 0, 1, 0, 4000) - (0, 0, 1, -0.5, 0, 0.5, 3000)$$

$$NL3 = (0, 0, 0, 0.5, 1, -0.5, 1000)$$

	Z	X_1	X_2	f_1	f_2	f_3	LD
L1	1	0	0	4	0	1	LD 21000 3000 1000
L2	0	1	0	1	0	0	3000
L3	0	0	0	0.5	1	-0.5	1000
L4	0	0	1	0.5	0	0.5	3000

A linha 1 indica que o lucro máximo será de 21.000

As linhas 2 e 4 indicam que as quantidades dos refrigerantes X_1 e X_2 que devem ser produzidas para maximinizar o lucro são 3.000 litros de cada.

A linha 3, associada a variável de folga 2, indica que ao final do processo de produção sobrarão 1000 litros do extrato Gama.

Solução usando o Solver do Excel

In []: