Probabilistic Time Series Analysis: Lab 11

Tim Kunisky

December 5, 2018

Let's look at X_t a *discrete* centered stationary gaussian process, over $t \in \mathbb{Z}$, with covariance $\gamma(k)$. Let's write the covariance matrix of $X_{[-N,N]} = (X_t)_{t=-N}^N$:

$$\Sigma_{N} = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(2N) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(2N-1) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(2N) & \gamma(2N-1) & \cdots & \gamma(0) \end{bmatrix}.$$

How would you find the eigenvectors and eigenvalues of this matrix?

Let's look at X_t a *discrete* centered stationary gaussian process, over $t \in \mathbb{Z}$, with covariance $\gamma(k)$. Let's write the covariance matrix of $X_{[-N,N]} = (X_t)_{t=-N}^N$:

$$\Sigma_{N} = \begin{bmatrix} \gamma(0) & \gamma(1) & \cdots & \gamma(2N) \\ \gamma(1) & \gamma(0) & \cdots & \gamma(2N-1) \\ \vdots & \vdots & \ddots & \vdots \\ \gamma(2N) & \gamma(2N-1) & \cdots & \gamma(0) \end{bmatrix}.$$

How would you find the eigenvectors and eigenvalues of this matrix?

$$\lambda_j(\Sigma_N) = \sum_{k=-N}^N \gamma(k) e^{-2\pi i \frac{jk}{2N+1}} \approx \sum_{k=-N}^N \gamma(k) e^{-\pi i \frac{jk}{N}}.$$

Let's look at a frequency scaling with N, $j=\omega N$ (as opposed to, say, j=5 fixed as $N\to\infty$). Then,

$$\lim_{N\to\infty}\lambda_{\omega N}(\Sigma_N)=\sum_{k=-\infty}^\infty \gamma(k)e^{-\pi i\omega k}=\hat{\gamma}(\omega),$$

nothing but the *discrete-time Fourier transform* of γ (not to be confused with the discrete Fourier transform!).

What is the range we should think of ω as taking?

Let's look at a frequency scaling with N, $j=\omega N$ (as opposed to, say, j=5 fixed as $N\to\infty$). Then,

$$\lim_{N\to\infty}\lambda_{\omega N}(\Sigma_N)=\sum_{k=-\infty}^\infty \gamma(k)e^{-\pi i\omega k}=\hat{\gamma}(\omega),$$

nothing but the *discrete-time Fourier transform* of γ (not to be confused with the discrete Fourier transform!).

What is the range we should think of ω as taking?

So, by specifying $\hat{y}(\omega)$, we directly specify how the limiting spectrum (eigenvalues) of Σ_N will look.

What property of X ensures that we don't need to worry about specifying the eigenvectors?

What Makes \hat{y} a "Density"?

What can we say about the eigenvalues of Σ_N ?

- 1. They are real.
- 2. They are non-negative.
- 3. Their sum is roughly $2N\gamma(0)$.

What do these facts translate to for properties of \hat{y} ? Can you draw a picture of this function?

What Makes \hat{y} a "Density"?

What can we say about the eigenvalues of Σ_N ?

- 1. They are real.
- 2. They are non-negative.
- 3. Their sum is roughly $2N\gamma(0)$.

What do these facts translate to for properties of \hat{y} ? Can you draw a picture of this function?

A nice property: if $\gamma(0) = 1$, then $\hat{\gamma}$ just looks like a probability distribution on [-1,1]!

How Things Change for Continuous Processes

The key ideas are the same; the main difference is that \hat{y} may extend to the entire real line instead of just an interval.

The idea of the original paper [Adams, Wilson] was to model \hat{y} with a *mixture of gaussians*. What do you think were the motivations for this choice?

How Things Change for Continuous Processes

The key ideas are the same; the main difference is that \hat{y} may extend to the entire real line instead of just an interval.

The idea of the original paper [Adams, Wilson] was to model \hat{y} with a *mixture of gaussians*. What do you think were the motivations for this choice?

- 1. Recovering y with an inverse Fourier transform is tractable. (If you don't believe me, what's the inverse Fourier transform of a gaussian?)
- 2. Any distribution can be approximated as a mixture of gaussians. When do you think such a representation can be especially accurate with just a few gaussians? What does such a covariance look like?