Sem8Synopsis

Александр Мишин, Б01-008а

Новое дз было закинуто в беседу, сделать!!

1 Интерполяция по кратным узлам

По набору точек мы можем провести полином той или иной степени. В полиноме Ньютона не совсем готовая формула, в полиноме Лагранжа - всё сразу готово. Подробнее - прошлый семинар. С точки зрения программирования, полином Лагранжа - не очень. А вот полином Ньютона - кайф чистый. Также мы говорили, что через две точки можно провести не только прямую (с точки зрения вычматов). Можно провести всё.

Кратный узел - узел, в котором задано кол-во значений производных при том, что задано значение функции. Задано только f - кратность ?. Задано ещё f' - кратность ?+1.

X	1	2	3
f(x)	-1	0	1
f'(x)		3	2
f"(x)		2	

Решаем методом Ньютона, значит строим табличку. Точку 2 повторяю 3 раза, точку 3 - 2 раза. Дальше точно так же нахожу b_0 , b_1 , b_2 . Разделённая разность обозначалась $f(x_i, x_{i-1})$. Когда мы ищем $f(x_i, x_i)$, то используем

$$f(x_i, \dots) = \frac{f^{(k)}}{k!}$$

X	b_0	b_1	b_2	b_3	b_4	b_5
-1	-1					
2	0	1				
2	0	3	2			
2	0	3	f''(2) / 2! = 1	-1		
3	1	1	-2	-3	-1	
3	1	2	1	3	6	3.5

Следовательно, строим полином пятой степени. Построим полином Эрмита Н.

$$H_5(x) = -f + 1 \cdot (x - 1) + 2 \cdot (x - 1)(x - 2) + (-1) \cdot (x - 1)(x - 2)^2 + (-1) \cdot (x - 1)(x - 2)^3 + 3 \cdot 5 \cdot (x - 1)(x - 2)^3 (x - 3)$$

Одним из способов уменьшения ошибки при решении является использование Чебышёвской интерполяции, делая сетку неравномерной.

2 Сплайн-интерполяция

В чём основная идея? На каждом отрезочке есть две идеи - локальная Сплайн интерполяции и глобальный.

Есть также глобальный сплайн, где задание интерполяции большой кривой S.

2.1 Пример

$$f'(0) = 0$$

$$f"(0) = 0$$

Требуется локальный кубический сплайн.

Решение.

$$S_1 = a_3 x^3 + a_2 x^2 + a_1 x + a_0$$

$$S_2 = b_3 x^3 + b_2 x^2 + b_1 x + b_0$$

Ищем уравнения.

$$S_{1}(0) = 1$$

$$S_{1}(1) = 0$$

$$S_{2}(1) = 0$$

$$S_{2}(2) = 2$$

$$S'_{1}(0) = 0$$

$$S''_{1}(0) = 0$$

$$S''_{1}(1) = S''_{2}(1)$$

$$S''_{1}(1) = S''_{2}(1)$$

Отсюда находим все a_i, b_i .

$$S_1 = -x^3 + 1$$
$$S_2 = 8x^3 - 27x^2 + 27x - 8$$

В сумме это и есть наш сплайн $S(x) = S_1(x) + S_2(x)$.

2.2 Теорема о построении, существовании и единственности естественного сплайна.

Пусть на неком [a, b] задана непрерывная f(x) и система узлов $x_k, k = \overline{0, m}; x_0 = a; x_n = b; h_i = x_i - x_{i-1}$

Пусть

- 1) $S_k(x) = f(x_k)$ условие интерполяции
- $2)S_k(x) \in C^2[a;b]$
- 3) Для каждого отрезка $[x_k, x_{k+1}]: S(x) = \sum_0^3 a_j x_j$
- 4) Краевые условия для S(x) представляются одним из следующих видов:
 - S'(a) = f'(a); S'(b) = f'(b)
 - S''(a) = f''(a); S''(b) = f''(b)
 - S(a) = S(b)
 - S'(a) = S'(b)

Тогда существует и единственный сплайн 3-го подрядко с дефектом 1.

Дефект = степень полиномов - кол-во произв. Естественный сплайн - такой, что S"(a)=0; S"(b)=0

$$S_k = a_k + b_k(x - x_k) + \frac{c_k}{2}(x - x_k)^2 + \frac{d_k}{6}(x - x_k)^3$$