Feuille 3.1 - Théorèmes d'inversion locale et des fonctions implicites

Exercice 1 – Exemples et contre-exemples.

- a) Soit U un ouvert de \mathbb{R}^n , $f: U \to \mathbb{R}^n$ de classe C^1 injective sur U telle que $\mathrm{d} f_x$ soit inversible pour tout $x \in U$. Montrer que f(U) est ouvert et que f est un C^1 difféomorphisme de U sur f(U).
- **b)** Soit $U = \{(r, \theta) \in \mathbb{R}^2, r > 0\}$ et soit $V = \mathbb{R}^2 \{(0, 0)\}$, montrer que $f : U \to V$ définie par $f(r, \theta) = (r \cos \theta, r \sin \theta)$ n'est pas un changement global de coordonnées.
- c) Soit $\Phi: \mathbb{R} \times]0, +\infty[\to \Omega \subset \mathbb{R}^2$ telle que $\Phi(x,y) = (e^x + \log y, e^x + 2\log y)$. Déterminer Ω pour que Φ définisse un C^1 difféomorphisme de $\mathbb{R} \times]0, +\infty[$ sur Ω
- d) Soit

$$f: x \to \begin{cases} x + x^2 \sin \frac{\pi}{x} & \text{si } x \neq 0 \\ 0 & \text{sinon} \end{cases}$$

Montrer que f est dérivable sur \mathbb{R} , de dérivée non nulle en 0 mais que f n'est inversible sur aucun voisinage de 0.

e) Montrer qu'il existe une fonction différentiable G définie sur un voisinage V de I_n dans $M_n(\mathbb{R})$ telle que pour tout $A \in V$, on a $G(A)^2 = A$.

Exercice 2 — Fonctions matricielles. Soit $n \in \mathbb{N}^*$. On note $S_n(\mathbb{R})$ l'ensemble des matrices symétriques de $M_n(\mathbb{R})$ et S_n^{++} celui des matrices symétriques définies positives.

- a) Soit $k \in \mathbb{N}^*$. Montrer qu'il existe un voisinage V de I_n tel que pour tout $B \in V$ il existe une matrice $A \in M_n(\mathbb{R})$ telle que $A^k = B$.
- **b)** Montrer qu'il existe un voisinage V de I_n tel que pour tout $B \in V$ il existe une matrice $A \in M_n(\mathbb{R})$ telle que $\exp A = B$.
- c) Montrer $S_n^{++}(\mathbb{R})$ est un ouvert de $S_n(\mathbb{R})$. Montrer que pour tout $A \in S_n^{++}(\mathbb{R})$ il existe une unique matrice symétrique positive B telle que $A = B^2$. Montrer que B est définie positive. On note $B = \sqrt{A}$.
- d) Montrer que l'application

$$\left\{ \begin{array}{c} S_n^{++}(\mathbb{R}) \to S_n^{++}(\mathbb{R}) \\ A \to \sqrt{A} \end{array} \right.$$

est de classe C^{∞} .

Exercice 3 – Fonction racine. Soient $P_0 \in \mathbb{R}_n[X]$ et $x_0 \in \mathbb{R}$ une racine simple de P_0 . Montrer qu'il existe une fonction "racine" de classe C^{∞} dans un voisinage de P_0 . De façon précise montrer qu'il existe un voisinage V de P_0 dans $\mathbb{R}_n[X]$ un voisinage W de x_0 et une fonction $rac: V \to W$ telle que rac(P) soit une racine de P pour tout $P \in V$.

Exercice 4 – Perturbation cubique. Soit P une fonction polynomiale de degré deux scindé sur \mathbb{R} , $\forall x \in \mathbb{R}$, $P(x) = (x - x_1)(x - x_2)$ avec $x_1 \neq x_2$. On considère $P_{\epsilon}(x) = P(x) + \epsilon x^3$.

- a) Montrer que $x_1(\cdot)$ définie par $x_1(\epsilon)$ est égal à la racine de P_{ϵ} la plus proche de x_1 est bien définie pour ϵ assez petit et constitue un \mathcal{C}^1 difféomorphisme entre deux ouverts à préciser. Même raisonnement pour $x_2(\cdot)$.
- **b)** Lorsque $x_1(\cdot)$ et $x_2(\cdot)$ sont bien définies on note $x_3(\cdot)$ la troisième racine de P_{ϵ} . Montrer que $x_3(\cdot)$ est réelle pour ϵ assez petit.
- c) Donner un développement limité/asymptotique à l'ordre un de chacune de ces fonctions.

Exercice 5 – Système non linéaire. On considère le système d'équations suivant sur $\mathbb{R}^{\mathbb{F}}$

(S)
$$\begin{cases} x^3 + y^3 + z^3 + t^2 = 0 \\ x^2 + y^2 + z^2 + t = 2 \\ x + y + z + t = 0 \end{cases}$$

- a) Montrer que le système admet une unique solution (x, y, z, t) pour t assez petit et (x, y, z) proche de (0, -1, 1) on note alors f(t) = (x, y, z).
- **b)** Calculer la dérivée de f en 0.