

Ultraprecision, 36 V, 2.8 nV/√Hz Dual Rail-to-Rail Output Op Amp

Data Sheet AD8676

FEATURES

Very low voltage noise 2.8 nV/ $\sqrt{\rm Hz}$ @ 1 kHz

Rail-to-rail output swing

Low input bias current: 2 nA maximum Very low offset voltage: 12 μV typical Low input offset drift: 0.6 μV/°C maximum

Very high gain: 120 dB

Wide bandwidth: 10 MHz typical

±5 V to ±18 V operation

APPLICATIONS

Precision instrumentation
PLL filters
Laser diode control loops
Strain gage amplifiers
Medical instrumentation
Thermocouple amplifiers

GENERAL DESCRIPTION

The AD8676 precision operational amplifier offers ultralow offset, drift, and voltage noise combined with very low input bias currents over the full operating temperature range. The AD8676 is a precision, wide bandwidth op amp featuring rail-to-rail output swings and very low noise. Operation is fully specified from ± 5 V to ± 15 V.

The AD8676 features a rail-to-rail output like that of the OP184, but with wide bandwidth and even lower voltage noise, combined with the precision and low power consumption like that of the industry-standard OP07 amplifier. Unlike other low noise, rail-to-rail op amps, the AD8676 has very low input bias current and low input current noise.

With typical offset voltage of only 12 μV , offset drift of 0.2 $\mu V/^{\circ} C$, and noise of only 0.10 μV p-p (0.1 Hz to 10 Hz), the AD8676 is perfectly suited for applications where large error sources cannot be tolerated. Precision instrumentation, PLL and other precision filter circuits, position and pressure sensors, medical instrumentation, and strain gage amplifiers benefit greatly from the very low noise, low input bias current, and wide bandwidth. Many systems can take advantage of the low noise, dc precision, and rail-to-rail output swing provided by the AD8676 to maximize SNR and dynamic range.

PIN CONFIGURATIONS

Figure 2. 8-Lead MSOP (RM-8)

The smaller packages and low power consumption afforded by the AD8676 allow maximum channel density or minimum board size for space-critical equipment.

The AD8676 is specified for the extended industrial temperature range (-40°C to +125°C). The AD8676 is available in the 8-lead MSOP, and the popular 8-lead, narrow SOIC; both of which are lead-free packages. MSOP packaged devices are only available in tape and reel format.

For the single version of this ultraprecision, rail-to-rail op amp, see the AD8675 data sheet.

The AD8675 and AD8676 are members of a growing series of low noise op amps offered by Analog Devices, Inc.

Table 1. Voltage Noise

Package	0.9 nV	1.1 nV	1.8 nV	2.8 nV	3.8 nV
Single	AD797	AD8597	ADA4004-1	AD8675	AD8671
Dual		AD8599	ADA4004-2	AD8676	AD8672
Quad			ADA4004-4		AD8674

AD8676* PRODUCT PAGE QUICK LINKS

Last Content Update: 06/09/2017

COMPARABLE PARTS 🖳

View a parametric search of comparable parts.

EVALUATION KITS

• EVAL-OPAMP-2 Evaluation Board

DOCUMENTATION

Data Sheet

 AD8676: Ultraprecision, 36 V, 2.8 nV/√Hz Dual Rail-to-Rail Output Op Amp Data Sheet

TOOLS AND SIMULATIONS \Box

- · Analog Filter Wizard
- · Analog Photodiode Wizard
- AD8676 SPICE Macro Model

REFERENCE DESIGNS 🖳

- CN0177
- CN0191
- CN0200
- · CN0209
- CN0257
- CN0318

DESIGN RESOURCES

- · AD8676 Material Declaration
- PCN-PDN Information
- · Quality And Reliability
- Symbols and Footprints

DISCUSSIONS

View all AD8676 EngineerZone Discussions.

SAMPLE AND BUY 🖵

Visit the product page to see pricing options.

TECHNICAL SUPPORT

Submit a technical question or find your regional support number.

DOCUMENT FEEDBACK 🖳

Submit feedback for this data sheet.

TABLE OF CONTENTS

Features	Absolute Maximum Ratings	5
Applications1	Thermal Resistance	5
Pin Configurations	Power Sequencing	5
General Description	ESD Caution	5
Revision History	Typical Performance Characteristics	6
Specifications	Outline Dimensions	11
Electrical Specifications	Ordering Guide	11
REVISION HISTORY		
8/11—Rev. B to Rev. C	4/08—Rev. 0 to Rev. A	
Change to Y-Axis Label, Figure 9	Changes to Table 1	
11/09—Rev. A to Rev. B	Changes to Table 2	
Changes to General Description Section	Changes to Figure 6, Figure 7, Figure 8	
Added Table 1; Renumbered Sequentially	Changes to Figure 9 through Figure 12	
	Changes to Figure 21, Figure 22, and Figure 25	
Updated Outline Dimensions	Added Figure 26, Renumbered Sequentially	
Changes to Ordering Guide11	Changes to Figure 27	
	Added Figure 28, Renumbered Sequentially	10

10/06—Revision 0: Initial Version

SPECIFICATIONS

ELECTRICAL SPECIFICATIONS

 V_{S} = ±5.0 V, V_{CM} = 0 V, V_{O} = 0 V, T_{A} = +25°C, unless otherwise specified.

Table 2.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos					
B Grade (SOIC)				12	50	μV
B Grade (MSOP)					60	μV
A Grade (SOIC, MSOP)					100	μV
Offset Voltage	Vos	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$				
B Grade (SOIC, MSOP)				15	160	μV
A Grade (SOIC, MSOP)					250	μV
Input Bias Current	I _B		-2		+2	nA
·		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	-5.5		+5.5	nA
Input Offset Current	los		-1		+1	nA
·		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	-2.8		+2.8	nA
Input Voltage Range			-3.0		+3.0	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -3.0 \text{ V to } +3.0 \text{ V}$	105	130		dB
,		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	105			dB
Open-Loop Gain	Avo	$R_L = 2 k\Omega$ to ground,	120	126		dB
		$V_0 = -3.5 \text{ V to } +3.5 \text{ V}$				
		-40 °C \leq T _A \leq $+125$ °C	117			dB
Offset Voltage Drift	ΔV _{OS} /ΔΤ	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$		0.2	0.6	μV/°C
OUTPUT CHARACTERISTICS						'
Output Voltage High	V _{OH}	$R_L = 10 \text{ k}\Omega$ to ground	+4.90	+4.95		V
, 3 3		-40 °C $\leq T_A \leq +125$ °C	+4.85			V
		$R_L = 2 k\Omega$ to ground	+4.80	+4.89		V
		-40°C ≤ T _A ≤ +125°C	+4.75			V
Output Voltage Low	Vol	$R_L = 10 \text{ k}\Omega$ to ground		-4.98	-4.90	V
		-40°C ≤ T _A ≤ +125°C			-4.85	V
		$R_L = 2 k\Omega$ to ground		-4.91	-4.86	V
		-40°C ≤ T _A ≤ +125°C			-4.82	V
Short-Circuit Limit	I _{SC}			+40		mA
Output Current	lo			±20		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_S = \pm 5.0 \text{ V to } \pm 15.0 \text{ V}$	106	120		dB
,,,,,		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$	106	120		dB
Supply Current/Amplifier	I _{SY}	$V_0 = 0 \text{ V}$		2.5	3.2	mA
,		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			3.8	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 2 k\Omega$		2.5		V/µs
Gain Bandwidth Product	GBP			10		MHz
NOISE PERFORMANCE	-5.			* *		
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.1		μV p-p
	- P P	J 12 to 10112	1			
Voltage Noise Density	e _n	f = 1 kHz		2.8		nV/√Hz

 $V_S = \pm 15$ V, $V_{CM} = 0$ V, $V_O = 0$ V, $T_A = +25$ °C, unless otherwise specified.

Table 3.

Parameter	Symbol	Conditions	Min	Тур	Max	Unit
INPUT CHARACTERISTICS						
Offset Voltage	Vos					
B Grade (SOIC)				12	50	μV
B Grade (MSOP)					60	μV
A Grade (SOIC, MSOP)					100	μV
Offset Voltage	Vos	-40°C ≤ T _A ≤ +125°C				
B Grade (SOIC, MSOP)				15	160	μV
A Grade (SOIC, MSOP)					250	μV
Input Bias Current	l I _B		-2		+2	nA
		$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$	-4.5		+4.5	nA
Input Offset Current	los		-1		+1	nA
input onset current	103	-40°C ≤ T _A ≤ +125°C	-2.8		+2.8	nA
Input Voltage Range		10 0 1 1 1 1 2 0	-12.5		+12.5	V
Common-Mode Rejection Ratio	CMRR	$V_{CM} = -12.5 \text{ V to } +12.5 \text{ V}$	111	130	112.5	dB
Common Mode Rejection natio	Civilli	$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	107	130		dB
Open-Loop Gain	Avo	$R_L = 2 \text{ k}\Omega \text{ to ground,}$	123	130		dB
Ореп-200р Саш	700	$V_0 = -13.5 \text{ V to } +13.5 \text{ V}$	123	132		UD
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$	117			dB
Officet Voltage Duift	AN /AT		'''	0.2	0.6	
Offset Voltage Drift	ΔV _{os} /ΔT	$-40^{\circ}\text{C} \le \text{T}_{\text{A}} \le +125^{\circ}\text{C}$		0.2	0.6	μV/°C
OUTPUT CHARACTERISTICS	.,	5 4010	1105	4400		.,
Output Voltage High	V _{OH}	$R_L = 10 \text{ k}\Omega \text{ to ground}$	+14.85	+14.92		V
		-40 °C $\leq T_A \leq +125$ °C	+14.80			V
		$R_L = 2 k\Omega$ to ground	+14.60	+14.75		V
		-40 °C \leq T _A \leq $+125$ °C	+14.40			V
Output Voltage Low	V _{OL}	$R_L = 10 \text{ k}\Omega \text{ to ground}$		-14.96	-14.94	V
		$-40^{\circ}\text{C} \le T_{A} \le +125^{\circ}\text{C}$			-14.90	V
		$R_L = 2 \text{ k}\Omega$ to ground		-14.85	-14.75	V
		-40 °C \leq T _A \leq $+125$ °C			-14.60	V
Short-Circuit Limit	Isc			+40		mA
Output Current	lo			±20		mA
POWER SUPPLY						
Power Supply Rejection Ratio	PSRR	$V_s = \pm 5.0 \text{ V to } \pm 15.0 \text{ V}$	106	120		dB
		-40 °C \leq T _A \leq $+125$ °C	106			dB
Supply Current/Amplifier	I _{SY}	$V_O = 0 V$		2.7	3.4	mA
		$-40^{\circ}\text{C} \le \text{T}_{A} \le +125^{\circ}\text{C}$			4.2	mA
DYNAMIC PERFORMANCE						
Slew Rate	SR	$R_L = 10 \text{ k}\Omega$		2.5		V/µs
Gain Bandwidth Product	GBP			10		MHz
NOISE PERFORMANCE						
Voltage Noise	e _n p-p	0.1 Hz to 10 Hz		0.1		μV p-p
Voltage Noise Density	e _n	f = 1 kHz		2.8		nV/√Hz
Current Noise Density	in	f = 10 Hz		0.3		pA/√Hz

ABSOLUTE MAXIMUM RATINGS

Table 4.

Parameter	Rating
Supply Voltage	±18 V
Input Voltage	±V supply
Differential Input Voltage	±0.7 V
Output Short-Circuit Duration to GND	Indefinite
Storage Temperature Range	
RM, R Packages	−65°C to +150°C
Operating Temperature Range	−40°C to +125°C
Junction Temperature Range	
RM, R Packages	−65°C to +150°C
Lead Temperature Range (Soldering, 10 sec)	300°C

Stresses above those listed under Absolute Maximum Ratings may cause permanent damage to the device. This is a stress rating only; functional operation of the device at these or any other conditions above those indicated in the operational section of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

THERMAL RESISTANCE

Table 5. Thermal Resistance

Package Type	θја	θις	Unit
8-Lead MSOP (RM)	210	45	°C/W
8-Lead SOIC_N (R)	158	43	°C/W

POWER SEQUENCING

The op amp supplies must be established simultaneously with, or before, any input signals are applied. If this is not possible, the input current must be limited to 10 mA.

ESD CAUTION

ESD (electrostatic discharge) sensitive device. Charged devices and circuit boards can discharge without detection. Although this product features patented or proprietary protection circuitry, damage may occur on devices subjected to high energy ESD. Therefore, proper ESD precautions should be taken to avoid performance degradation or loss of functionality.

TYPICAL PERFORMANCE CHARACTERISTICS

Figure 3. Voltage Noise Density vs. Frequency

Figure 4. Input Offset Voltage Distribution

Figure 5. T_cV_{OS} Distribution

Figure 6. Offset Voltage vs. Temperature

Figure 7. Input Bias Current, $V_{SY} = \pm 15 V$

Figure 8. Input Bias Current, $V_{SY} = \pm 5 V$

Figure 9. Input Bias Current vs. Temperature

Figure 10. Supply Current vs. Total Supply Voltage

Figure 11. Supply Current vs. Temperature

Figure 12. Gain and Phase vs. Frequency

Figure 13. Closed-Loop Gain vs. Frequency

Figure 14. Zouт vs. Frequency

Figure 15. Large Signal Transient Response, $V_{SY} = \pm 15 V$

Figure 16. Large Signal Transient Response, $V_{SY} = \pm 5 V$

Figure 17. Small Signal Overshoot vs. Load Capacitance

Figure 18. Positive Overvoltage Recovery

Figure 19. Negative Overvoltage Recovery

Figure 20. CMRR vs. Frequency

Figure 21. Power Supply Rejection Ratio vs. Frequency

Figure 22. Power Supply Rejection Ratio vs. Temperature

Figure 23. Voltage Noise (0.1 Hz to 10 Hz)

Figure 24. Output Saturation Voltage vs. Output Load Current

Figure 25. High Output Voltage, V_{OH} vs. Temperature, $V_S = \pm 15 \text{ V}$

Figure 26. High Output Voltage, V_{OH} vs. Temperature, $V_S = \pm 5~V$

Figure 27. Low Output Voltage, V_{OL} vs. Temperature, $V_S = \pm 15 \text{ V}$

Figure 28. Low Output Voltage, V_{OL} vs. Temperature, $V_S = \pm 5~V$

OUTLINE DIMENSIONS

COMPLIANT TO JEDEC STANDARDS MS-012-AA CONTROLLING DIMENSIONS ARE IN MILLIMETERS; INCH DIMENSIONS (IN PARENTHESES) ARE ROUNDED-OFF MILLIMETER EQUIVALENTS FOR REFERENCE ONLY AND ARE NOT APPROPRIATE FOR USE IN DESIGN.

Figure 29. 8-Lead Standard Small Outline Package [SOIC_N] Narrow Body (R-8)

Dimensions shown in millimeters and (inches)

Figure 30. 8-Lead Mini Small Outline Package [MSOP] (RM-8) Dimensions shown in millimeters

ORDERING GUIDE

Model ¹	Temperature Range	Package Description	Package Option	Branding
AD8676ARMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A13
AD8676ARMZ-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A13
AD8676ARZ	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8676ARZ-REEL	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8676ARZ-REEL7	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8676BRMZ	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A1L
AD8676BRMZ-REEL	-40°C to +125°C	8-Lead Mini Small Outline Package [MSOP]	RM-8	A1L
AD8676BRZ	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8676BRZ-REEL	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	
AD8676BRZ-REEL7	-40°C to +125°C	8-Lead Standard Small Outline Package [SOIC_N]	R-8	

¹ Z = RoHs Compliant Part.

NOTES