DEEP LEARNING CONVOLUTIONAL NEURAL NETWORK

Tôn Quang Toại

Khoa Công nghệ thông tin

Trường đại học Ngoại ngữ - Tin học TP.HCM (HUFLIT)

Nội dung

- Một số vấn đề của Multi Layer Perceptron
- Cấu trúc của Convolutional Neural Network
 - Tầng Convolution (và hàm Activation)
 - Tầng Pooling
 - Tầng Fully connected và Tầng output
- Huấn luyện Convolutional Neural Network
- Đánh giá hiệu năng

MỘT SỐ VẤN ĐỀ CỦA MULTI LAYER PERCEPTRON

Một bài toán thị giác máy tính

Image classification

Object detection

Image segmentation

Ba vấn đề của Multi Layer Perceptron

Vấn đề 1: MLP có kết nối đầy đủ

• Ví dụ data: $32 \times 32 \times 3 \rightarrow 1 \times 3072$

$$x \in \mathbb{R}^{1 \times 3072}$$
 $W \in \mathbb{R}^{3072 \times 10}$ $\hat{y} \in \mathbb{R}^{1 \times 2}$

$$3072$$

$$\lim_{N \to \infty} \hat{y} = \sigma(x.W)$$

Ba vấn đề của Multi Layer Perceptron

Vấn đề 1: MLP có kết nối đầy đủ

- Ví dụ: Nếu tầng ẩn thứ nhất có 1000 neuron
 - Ånh 255x255x3(RGB) = 195.075 thì sẽ có 195.075.000 tham số
 - Ånh 1000x1000x3(RGB) số tham số là ????
- Nhận xét: Hiệu suất "tổng quát hóa" của MLP bị ảnh hưởng nếu số lượng các weights (tham số tự do – free parameters) quá lớn

Ba vấn đề của Multi Layer Perceptron

- Vấn đề 2: MLP bỏ qua mối tương quan cục bộ
 - Các pixel lân cận có quan hệ với nhau
 - Các pixel ở gần có mối tương quan mạnh hơn các pixels ở xa

- Vấn đề 3: MLP không đáp ứng tốt khi dữ liệu bị biến đổi nhiều
 - Vị trí của đối tượng,
 - Xoay, biến dạng của đối tượng

Chiến lược thiết kế mạng neuron

- Hai thước đo thiết kế
 - Generalization
 - Learning speed
- Chiến lược thiết kế

"good generalization performance can be obtained if some prior knowledge about the task is built into the network"

Yann LeCun

"Generalization and Network Design Strategies", 1989

- Nhận xét: Cần trợ giúp, tạo điều kiện thuận lợi nhất cho mạng neuron học
 - Data: số lượng, chất lượng, dễ học
 - Neural Network Architectures: Tìm kiếm mẫu phù hợp bài toán, Đủ không gian lưu trữ mẫu
 - Loss function: Chọn mục tiêu học phù hợp
 - Optimizer: Phương pháp học nhanh

Chiến lược thiết kế mạng neuron

- Chú ý khi điều chỉnh kiến trúc mạng
 - Điều chỉnh kiến trúc mạng → ảnh hưởng độ phức tạp của mạng (network complexity, được phản ánh qua số lượng tham số của mạng)

- Mục tiêu
 - Giảm thiểu số lượng tham số để tăng tính tổng quát của mạng
 - Không làm suy giảm khả năng của mạng (network's capability)

CẤU TRÚC CỦA CONVOLUTIONAL NEURAL NETWORKS

Tầng Convolution

- Phép toán Convolution
- Vấn đề của phép toán convolution
- Padding
- Strided Convolution

Xác định các cạnh trong ảnh

Làm sao để xác định các cạnh (edges) trong ảnh

7	2	3	3	8	9
4	5	თ	8	4	10
3	3	2	8	4	6
2	8	7	2	7	5
5	4	4	5	4	9
3	1	2	3	1	2

7 ¹	2°	3 ¹	3	8	9
4 ¹	5 °	3 ¹	8	4	10
3 ¹	3°	2 ¹	8	4	6
2	8	7	2	7	5
5	4	4	5	4	9
3	1	2	3	1	2

7	2 ¹	3°	3 ¹	8	9
4	5 ¹	3°	8 ¹	4	10
3	3 ¹	2°	8 ¹	4	6
2	8	7	2	7	5
5	4	4	5	4	9
3	1	2	3	1	2

Xác định các cạnh trong ảnh

7	2	3 ¹	3°	8 ⁻¹	9
4	5	3 ¹	8°	4 ⁻¹	10
3	3	2 ¹	8°	4 ⁻¹	6
2	8	7	2	7	5
5	4	4	5	4	9
3	1	2	3	1	2

7	2	3	3 ¹	8°	9 ¹
4	5	3	81	4 ⁰	10
3	3	2	8 ¹	4 ⁰	6
2	8	7	2	7	5
5	4	4	5	4	9
3	1	2	3	1	2

7	2	3	3	8	9
4 ¹	5 °	3 ⁻¹	8	4	10
3 ¹	3°	2 ¹	8	4	6
2 ¹	8°	7 ¹	2	7	5
5	4	4	5	4	9
3	1	2	3	1	2

10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0
10	10	10	0	0	0

0	30	30	0
0	30	30	0
0	30	30	0
0	30	30	0

Một số filters

Vertical						
1	0	-1				
1	0	-1				
1	0	-1				

Horizontal					
1	1	1			
0	0	0			
-1	-1	-1			

Sobel							
1	0	-1	1	2	1		
2	0	-2	0	0	0		
1	0	-1	-1	-2	-1		

Scharr							
3	0	-3	3	10	3		
10	0	-10	0	0	0		
3	0	-3	-3	-10	-3		

• Tham số hóa filter

7	2	3	3	8	9
4	5	თ	8	4	10
3	3	2	8	4	6
2	8	7	2	7	5
5	4	4	5	4	9
3	1	2	3	1	2

• Nhận xét: learn các bộ lọc để phát hiện các loại cạnh khác nhau (đứng, ngang, nghiêng k độ)

Vấn đề với phép toán Convolution

7	2	3	3	8	9				
4	5	3	8	4	10				
3	3	2	8	4	6				
2	8	7	2	7	5				
5	4	4	5	4	9				
3	1	2	3	1	2				
6 × 6									
↓									
		n >	$\langle n \rangle$						

Nhận xét

- Ånh kết quả nhỏ lại
- Biên của ảnh bị mất

Padding: Cải tiến phép convolution

Đệm vào ảnh một đường biên xung quanh

7	2	3	3	8	9	
4	5	3	8	4	10	
3	3	2	8	4	6	*
2	8	7	2	7	5	
5	4	4	5	4	9	3 × 3
3	1	2	3	1	2	

Padding: Cải tiến phép convolution

Đệm vào ảnh một đường biên xung quanh

7	2	3	3	8	9	
4	5	3	8	4	10	
3	3	2	8	4	6	
 2	8	7	2	7	5	
5	4	4	5	4	9	
3	1	2	3	1	2	
		n >	$\langle n \rangle$)	

Padding: Cải tiến phép convolution

Valid và Same Convolution

Valid: no padding

• Same: Thêm padding để output size = input size

$$p = \frac{f-1}{2}$$

Ví dụ: stride = 2

1	1	2	1	0	1	2
3	2	0	2	0	0	1
3	1	1	2	0	2	3
1	2	1	2	2	0	3
1	3	4	3	2	2	1
0	3	4	3	1	3	2
0	3	4	1	1	1	1

	0	0	1
*	0	1	0
	1	0	0

=		

Strided convolution: Có chức năng là giảm kích thước của mẫu (downsampling)

10	10	2 ¹	1	0	1	2
30	2 ¹	O	2	0	0	1
3 ¹	10	10	2	0	2	3
1	2	1	2	2	0	3
1	3	4	3	2	2	1
0	3	4	3	1	3	2
0	3	4	1	1	1	1

	0	0	1
*	0	1	0
	1	0	0

1	1	2 ⁰	1 ⁰	01	1	2
3	2	o	2 ¹	00	0	1
3	1	11	2 ⁰	00	2	3
1	2	1	2	2	0	3
1	3	4	3	2	2	1
0	3	4	3	1	3	2
0	3	4	1	1	1	1

	0	0	1
*	0	1	0
	1	0	0

• Ví dụ: stride = 2

1	1	2	1	00	1°	2 ¹
3	2	0	2	00	01	1°
3	1	1	2	01	2 ⁰	3°
1	2	1	2	2	0	3
1	3	4	3	2	2	1
0	3	4	3	1	3	2
0	3	4	1	1	1	1

0	0	1
0	1	0
1	0	0

*

1	1	2	1	0	1	2
3	2	0	2	0	0	1
3°	1 ⁰	11	2	0	2	3
1°	2 ¹	1 ⁰	2	2	0	3
11	3°	4 ⁰	3	2	2	1
0	3	4	3	1	3	2
0	3	4	1	1	1	1

	0	0	1	
*	0	1	0	
	1	0	0	

1	1	2	1	0	1	2
3	2	0	2	0	0	1
3	1	10	2°	01	2	3
1	2	10	2 ¹	2°	0	3
1	3	41	3°	2 ⁰	2	1
0	3	4	3	1	3	2
0	3	4	1	1	1	1

	0	0	1
*	0	1	0
	1	0	0

1	1	2	1	0	1	2
3	2	0	2	0	0	1
3	1	1	2	Oo	2°	3 ¹
1	2	1	2	2°	01	3°
1	3	4	3	2 ¹	2 ⁰	1 ⁰
0	3	4	3	1	3	2
0	3	4	1	1	1	1

	0	0	1
*	0	1	0
	1	0	0

1	1	2	1	0	1	2
3	2	0	2	0	0	1
3	1	1	2	0	2	3
1	2	1	2	2	0	3
1°	3°	4 ¹	3	2	2	1
O°	3 ¹	4 ⁰	3	1	3	2
01	30	4 ⁰	1	1	1	1

	0	0	1	
*	0	1	0	
	1	0	0	

1	1	2	1	0	1	2
3	2	0	2	0	0	1
3	1	1	2	0	2	3
1	2	1	2	2	0	3
1	3	4 ⁰	3°	2 ¹	2	1
0	3	4 ⁰	3 ¹	1 ⁰	3	2
0	3	4 ¹	10	10	1	1

	0	0	1
*	0	1	0
	1	0	0

Ví dụ: stride = 2

1	1	2	1	0	1	2
3	2	0	2	0	0	1
3	1	1	2	0	2	3
1	2	1	2	2	0	3
1	3	4	3	2 ⁰	2°	11
0	3	4	3	1°	3 ¹	2°
0	3	4	1	1 ¹	1°	1 ⁰

*

0	0	1
0	1	0
1	0	0

filter: $f \times f$

=

Input: $n \times n$

output: $\frac{n+2p-p}{s}+1$

padding:p
stride:s

CONVOLUTION TRÊN ẢNH RGB

Data

- Data: $32 \times 32 \times 3$ image
 - Mỗi ảnh gồm 3 channels R, G, B độc lập cấu tạo nên hình

$$32 \times 32 \times 3$$

 $height \times width \times channel$

Nhiệu bộ lọc 3D

Toán học cho Convolution

Toán học cho Convolution

Số tham số của một tầng

- Ví dụ: Trong 1 tầng có
 - Số filter: 10 filter
 - Kích thước của filter: $3 \times 3 \times 4$
 - Tính số tham số
 - Số tham số 1 filter: $3 \times 3 \times 4 + 1(bias) = 36 + 1 = 37$
 - Số tham số 10 filter: $37 \times 10 = 370$

Toán học cho Convolution

ullet Xét tầng l

- $f^{[l]}$: kích thước filter
- $p^{[l]}$: kích thước padding
- $s^{[l]}$: kích thước stride
- $ullet n_c^{[l]}$: Số lượng filter

$$n_H^{[l]} = \frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1$$

$$m_H^{[l-1]} + 2p^{[l]} - f^{[l]}$$

$$n_W^{[l]} = \frac{n_W^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1$$

• Input:
$$n_H^{[l-1]} \times n_W^{[l-1]} \times n_c^{[l-1]}$$

• Output:
$$n_H^{[l]} \times n_W^{[l]} \times n_c^{[l]}$$

• Weights:
$$f^{[l]} \times f^{[l]} \times n_c^{[l-1]} \times n_c^{[l]}$$

• Bias:
$$n_c^{[l]}$$

 Phép toán pooling: Trượt filter hai chiều qua mỗi kênh của feature map và tóm tắt các feature nằm trong khu vực được bộ lọc bao phủ.

- Có hai loại pooling thông dụng
 - Max pooling
 - Average pooling
- Nhận xét: Tầng pooling không có tham số để học

 Max pooling: chọn giá trị lớn nhất từ vùng của feature map được filter bao phủ.

 Nhận xét: Kết quả là một feature map chứa các feature nổi bật nhất của feature map trước đó.

Max pooling

 Average pooling: tính giá trị trung bình từ vùng của feature map được filter bao phủ.

 Nhận xét: Kết quả là một feature map chứa các feature là mức trung bình của các feature trong feature map trước đó.

Tại sao phải dung pooling?

Hành vi	Chức năng
 Giảm kích thước feature map (representation) Giảm số lượng tham số học Giảm số lượng phép toán 	 Học nhanh hơn Tăng tốc độ tính toán
Tính giá trị max/averange	 Vẫn giữ thông tin quan trọng Bất biến với phép xoay, tịnh tiến (trong chừng mực nào đó)

- Tóm tắt
 - Hyperparameter
 - *f* : filter size
 - s: stride
 - Max pooling
 - Averange pooling
 - Kích thước đầu ra của tầng pooling
 - Input: n_H , n_W , n_C
 - Output: $\frac{n_H + 2p f}{s} + 1$, $\frac{n_W + 2p f}{s} + 1$, n_C

Tầng Fully connected

- Các tầng ở đầu của mạng dùng để trích chọn đặc trưng của data (Feature extractor)
- Sau khi có các features, chúng ta tiến hành tính toán: phân lớp dữ liệu (Classifier), Hồi quy (Regression), ...
 - Fully connected layer (MLP, FC)
 - SVM
 - ...

Tầng Fully connected

- Các bước kết nối với FC
 - Bước 1. Chuyển feature map tầng cuối thành 1 vector

 Bước 2. Mỗi feature trong tầng cuối cùng được kết nối với mỗi neuron trong tầng đầu tiên của tầng fully connected layer

 Nhận xét: Có thể dùng nhiều hơn một tầng fully connected layer để tăng khả năng của mạng

Các loại tầng trong CNN

- Một mạng CNN có 3 loại tầng
 - Convolution (CONV)
 - Pooling (POOL)
 - Fully connected (FC)

KIẾN TRÚC CHUNG CỦA CNN

Kiến trúc chung

Kiến trúc CNN thông thường

- Input: DATA + Preprocessing
- Feature extractor: CONV + RELU + POOL
- Classifier: FC + RELU

HÀM LOSS VÀ HÀM COST

Hàm Loss

• Hàm loss: Hàm loss là hàm dùng để đo lương sự khác biệt giữa giá trị dự đoán (\hat{y}) và giá trị thật sự (y)

- Nhận xét
 - Optimizer sử dụng hàm loss để tính lỗi của mô hình
 - Optimizer học các Weight thông qua đạo hàm của hàm loss
- Chọn hàm Loss
 - Phản ảnh mục tiêu của bài toán
 - · Hàm có đạo hàm

Hàm Loss

- Một số hàm Loss thông dụng
 - Mean Absolute Error
 - Mean Squared Error
 - Binary Cross Entropy
 - Categorical Cross Entropy

Mean Absolute Error (MAE/L1 Loss)

Chức năng: Dùng cho bài toán regression

Loss function cho từng data point

$$L^{(i)} = |y^{(i)} - \hat{y}^{(i)}|$$

Cost function cho m data points

$$Cost = \frac{1}{m} \sum_{i=1}^{m} L^{(i)} = \frac{1}{m} \sum_{i=1}^{m} |y^{(i)} - \hat{y}^{(i)}|$$

Mean Absolute Error (MAE/L1 Loss)

Sample ID	y	$\widehat{oldsymbol{y}}$	$L = y - \widehat{y} $
1	100	100	0
2	200	210	10
3	200	220	20
4	300	350	50
5	400	390	10
		Cost =	90

Mean Squared Error (MSE/L2 Loss)

Chức năng: Dùng cho bài toán regression

Loss function cho từng data point

$$L^{(i)} = (y^{(i)} - \hat{y}^{(i)})^2$$

Cost function cho m data points

$$Cost = \frac{1}{m} \sum_{i=1}^{m} L^{(i)} = \frac{1}{m} \sum_{i=1}^{m} (y^{(i)} - \hat{y}^{(i)})^{2}$$

MSE vs MEA

Sample ID	у	$\widehat{oldsymbol{y}}$	$L = y - \widehat{y} $	$L = (y - \hat{y})^2$
1	100	100	0	0
2	200	210	10	100
	200	220	20	400
3	300	350	50	2500
4	400	390	10	100
		Cost =	90	3100

Binary Cross Entropy cost function (BCE)

- Chức năng: Dùng cho phân lớp nhị phân (binary classification)
- Loss function cho từng data point

$$L^{(i)} = -[y^{(i)}log(\hat{y}^{(i)}) + (1 - y^{(i)})log(1 - \hat{y}^{(i)})]$$

Cost function cho m data points

$$Cost = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} log(\hat{y}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{y}^{(i)}) \right]$$

Binary Cross Entropy cost function (BCE)

Cost function cho m data points

$$Cost = -\frac{1}{m} \sum_{i=1}^{m} \left[y^{(i)} log(\hat{y}^{(i)}) + (1 - y^{(i)}) log(1 - \hat{y}^{(i)}) \right]$$

Đánh giá lỗi của loại 1

$y^{(i)}$	$\hat{y}^{(i)}$	$y^{(i)}log(\hat{y}^{(i)})$
0	A	0
1	0.99	~0
1	0.01	-∞

Đánh giá lỗi của loại 0

$y^{(i)}$	$\hat{y}^{(i)}$	$(1-y^{(i)})\log(1-\hat{y}^{(i)})$
1	A	0
0	0.01	~0
0	0.99	-∞

Categorical Cross Entroy cost function (CCE)

 Chức năng: Dùng cho phân lớp có nhiều lớp (Multi classification)

Loss function cho từng data point

$$s^{(i)} = f(x^{(i)}; W)$$

$$\hat{y}^{(i)} = softmax(s^{(i)}) = \left(\frac{e^{s_k^{(i)}}}{\sum_j e^{s_j^{(i)}}}\right), \forall k$$

$$L^{(i)} = -y^{(i)}.log(\hat{y}^{(i)})$$

Cost function cho m data points

$$Cost = \frac{1}{m} \sum_{i=1}^{m} L^{(i)} = -\frac{1}{m} \sum_{i=1}^{m} y^{(i)} \cdot log(\hat{y}^{(i)})$$

MỘT VÍ DỤ CNN

Bài toán phân lớp

Dataset: MNIST

Số lượng: 70.000 images

Kích thước ảnh: 28×28 ảnh mức xám

 Mong muốn: Xây dựng hệ thống có thể học từ các dữ liệu thu thập được.

LeNet

Import thư viện

```
import tensorflow as tf
from tensorflow import keras
import numpy as np
```

• Load data, tiền xử lý dữ liệu và chia dữ liệu

```
(train_x, train_y), (test_x, test_y) = keras.datasets.mnist.load_data()

train_x = train_x / 255.0

test_x = test_x / 255.0

train_x = tf.expand_dims(train_x, 3)
test_x = tf.expand_dims(test_x, 3)

val_x = train_x[:5000]
val_y = train_y[:5000]
```

Xây dựng mô hình

Huấn luyện mô hình

Đánh giá mô hình

```
lenet_5_model.evaluate(test_x, test_y)
```

Tóm tắt

- Tầng Convolution (CONV)
- Täng Pooling (Max pooling, Averange pooling) (POOL)
- Tâng Fully Connected (FC)
- Hàm Loss và Cost