

Macroeconomic Theory I

Section 5 - Fluctuations (II): New-Keynesian theory

Daniele Girardi University of Massachusetts Amherst

Spring 2021

New-Keynesian theory

- micro-founded rational-expectations framework (like RBC);
- nominal rigidities (stickly prices/wages) and market imperfections;
- real effects of monetary policy;
- also the effects of other shocks (technology and fiscal policy) are altered.

The plan

- Assume nominal rigidity (fixed prices/wages) and assess its effects in simple models;
- 2. Make nominal rigidity endogenous: how can it emerge from microfoundations?
- Embed nominal rigidity into a micro-founded rational-expectations model of the economy (a DSGE).

The 'old-school' IS-LM model

goods' market equilibrium:

$$Y = A - ar$$
 (IS curve)

(see IS-LM-PC lecture notes for details)

The 'old-school' IS-LM model

money-market equilibrium:

$$\frac{M}{P} = \alpha Y - \beta r \implies r = bY - c \frac{M}{P}$$
 (LM curve)

► Higher $Y \rightarrow$ higher demand for (fixed) $M \rightarrow$ higher equilibrium r

The 'old-school' IS-LM model

The New-Keynesian IS-LM model

- ▶ Production function: Y = C = F(L); F'(L) > 0; $F''(L) \le 0$
- Representative household's lifetime utility:

$$U = \sum_{t=0}^{\infty} \beta^{t} \left[U(C_{t}) + \Gamma\left(\frac{M_{t}}{P_{t}}\right) - V(L_{t}) \right], \quad 0 < \beta < 1$$

- U'(.) > 0 and U''(.) < 0;
- $\Gamma'(.) > 0$ and $\Gamma''(.) < 0$;
- V' > 0 and V''(.) > 0.
- ► Choice variables: C and M;
- ► L exogenous (for now);

Evolution of household's wealth

$$A_{t+1} = M_t + B_t(1+i_t) = M_t + (A_t + W_tL_t - P_tC_t - M_t)(1+i_t)$$

- $ightharpoonup A_{t+1}$ is wealth at the start of period t+1;
- $ightharpoonup M_t$ and B_t are money and bonds held during period t;

Household's behavior: Euler equation

► The infinite-horizon utility function implies

$$\ln C_t = \ln C_{t+1} - \frac{1}{\theta} \ln[(1+r_t)\beta]$$

$$\Downarrow$$

$$\ln Y_t = a + \ln Y_{t+1} - \frac{1}{\theta} r_t$$

(because Y = C and $\ln(1+r) \approx r$, and with $a = -(\frac{1}{\theta}) \ln \beta$)

The New-Keynesian IS curve

$$\ln Y_t = a + \ln Y_{t+1} - \frac{1}{\theta} r_t$$

- ▶ negative relation between Y_t and r_t ;
- differences with old-school IS curve:
 - conceptual: driven by intertemporal substitution, not income effect;
 - o practical: $ln Y_{t+1}$ term
 - o here, IS interpretation requires assuming fixed Y_{t+1} .

The New-Keynesian IS curve

▶ John Cochrane on the NK IS curve:

This new-Keynesian model is an utterly and completely different mechanism and story [relative to the old-keynesian model]. (...)

The marginal propensity to consume is exactly and precisely zero in the new-Keynesian model. There is no income at all on the right hand side [of the Euler equation]. (...)

The New-Keynesian IS curve

▶ John Cochrane on the NK IS curve (continued):

The old-Keynesian model is driven completely by an income effect with no substitution effect. Consumers don't think about today vs. the future at all. The new-Keynesian model is based on the intertemporal substitution effect with no income effect at all. (...)

[a lower r_t] induces consumers to spend their money today rather than in the future (...). Now, lowering consumption growth is normally a bad thing. But new-Keynesian modelers assume that the economy reverts to trend, so lowering growth rates is good, and raises the level of consumption today with no ill effects tomorrow.

[from John Cochrane's 'New vs. Old Keynesian Stimulus' (on Moodle)]

Household's money demand

- ▶ Optimization requires that marginal increase in M_t/P_t (given total wealth) has no effect on utility;
- ▶ To leave wealth unchanged, $\Delta C_t = -\left(\frac{i}{1+i}\right)\Delta m$
- ► So in equilibrium:

$$\Gamma'\left(\frac{M_t}{P_t}\right)\Delta m = U'(C_t)\left(\frac{i_t}{1+i_t}\right)\Delta m$$

$$\downarrow t$$

$$\frac{M_t}{P_t} = Y_t^{\theta/\chi}\left(\frac{1+i_t}{i_t}\right)^{1/\chi}$$

New-Keynesian IS-LM

Price of consumption good is assumed fixed:

$$P_t = \bar{P} \implies i_t = r$$

- ▶ So both IS and money-demand are in terms of *r* and *Y*;
- M is also fixed (by CB), so money-demand implies r increasing in Y.

$$Y_t = f(r_t)$$
 with $f' < 0$ (IS curve)

$$r_t = g(Y_t)$$
 with $g' > 0$ (LM curve)

New-Keynesian IS-LM

but remember this is based on the assumption of unchanged (expectation of) Y_{t+1} !

New-Keynesian IS-LM

Figure: Effect of a temporary increase in money supply

Rigidities & imperfections

- Simple IS-LM story would not hold under perfect competition;
- Need nominal rigidity (fixed P) and imperfect competition to deliver the 'Keynesian' message
 - ▶ in the labor market and/or product market
- Different combinations of rigidites & imperfections -> different implications for unemployment, prices and wages;
- 4 stylized cases within the NK IS-LM framework.

Case 1: Fixed W but perfectly-competitive goods market

Nominal wage fixed above market-clearing level

$$W = \bar{W} > W^{eq}$$

► Competitive goods market

$$F'(L) = \frac{\bar{W}}{P}$$

Case 1: Fixed W but perfectly-competitive goods market

Nominal wage fixed above market-clearing level

$$W = \bar{W} > W^{eq}$$

► Competitive goods market

$$F'(L) = \frac{\bar{W}}{P}$$

- ► Effect of a positive demand shock:
 - 1. Initially: only *P* increases (firms don't expand given initial W/P);
 - 2. Then: increase in *P* brings $\frac{\bar{W}}{P}$ down, thus firms increase *L* and *Y*.

Case 1: Fixed W but perfectly-competitive goods market

Figure: Effect of a positive demand shock

- Involuntary unemployment (EA distance);
- AD shock moves economy from E to E';
- countercyclical real wage in response to AD shocks;
- fluctuations are movements along a decreasing L^D curve;
- demand determines how much firms want to sell;

Case 2: Perfectly-competitive labor market but fixed P

Product price fixed and above marginal cost (market power);

$$P_t = \bar{P} > MC$$

Increasing labor supply function:

$$L = L^{S}\left(\frac{W}{P}\right), \qquad L^{S'}(.) > 0$$

- Firms are demand-constrained (as long as F'(L) > W/P);
- Effective labor demand: labor demand just depends on aggregate demand for goods;

Case 2: Perfectly-competitive labor market but fixed P

Figure: Effect of a positive demand shock

- As long as W/P < MPL, L^D inelastic: just depends on aggregate demand (Y);
- Labor supply elastic;
- No involuntary employment;
- Pro-cyclical real wage;
- ► Fluctuations are movements along increasing *L*^S curve;
- Counter-cyclical mark-up (increasing W & decreasing MPL);
- Demand determines how much firms are able to sell.

Case 3: Non-Walrasian labor market and fixed P

Product price fixed above marginal cost:

$$P_t = \bar{P} > MC$$

► Wage curve:

$$\frac{W}{P} = w(L) > \left(\frac{W}{P}\right)^{eq}, \qquad w'(.) \ge 0$$

Case 3: Non-Walrasian labor market and fixed P

Product price fixed above marginal cost:

$$P_t = \bar{P} > MC$$

► Wage curve:

$$\frac{W}{P} = w(L) > \left(\frac{W}{P}\right)^{eq}, \qquad w'(.) \ge 0$$

- ▶ Unlike case 2, rigidity here is real (real wage) not only nominal.
- ► As long as *P* > *MC*, firms are demand-constrained;
- ▶ Effective labor demand determines employment and unemployment.

Case 3: Non-Walrasian labor market and fixed P

Figure: Effect of a positive demand shock

- Workers paid more than their reservation wage;
- fluctuations as movements along the wage curve;
- unemployment: horizontal distance EA;
- unemployment falls when demand raises (as long as w(L) flatter than L^S);
- pro-cyclical real wage and counter-cyclical mark-up;

Case 4: Fixed W, imperfectly-competitive goods market

Nominal wage fixed above market-clearing level;

$$W = \bar{W} > W^{eq}$$

▶ Imperfect competition in the goods market:

$$P = \mu(L) \frac{W}{F'(L)}$$
 \Rightarrow $\frac{W}{P} = \frac{F'(L)}{\mu(L)}$

Case 4: Fixed W, imperfectly-competitive goods market

Nominal wage fixed above market-clearing level;

$$W = \bar{W} > W^{eq}$$

► Imperfect competition in the goods market:

$$P = \mu(L) \frac{W}{F'(L)}$$
 \Rightarrow $\frac{W}{P} = \frac{F'(L)}{\mu(L)}$

- ▶ If μ constant or pro-cyclical, $\frac{W}{P}$ countercyclical (diminishing MPL);
- ightharpoonup If μ sufficiently counter-cyclical, real wage acyclical or slightly pro-cyclical

Case 4: Fixed W, imperfectly-competitive goods market

- Demand determines Y & L [vertical dotted L^D curve];
- equilibrium = intersection between (vertical) demand level and W/P curve;
- unemployment=horizontal difference between L^S and $\frac{W}{P}$ curve;
- Fluctuations are movements along the W/P curve, which can be increasing, decreasing or horizontal;

The cyclical behavior of the real wage

▶ On aggregate: average real wage acyclical or moderately procyclical.

The cyclical behavior of the real wage

▶ On aggregate: average real wage acyclical or moderately procyclical.

- mix of wage-effects & skill-composition effects;
- employment more cyclical for low-wage workers;
- % of low-skill jobs up in booms, down in downturns
 - → wage cyclicality is underestimated;

The cyclical behavior of the real wage

► Solon, Barsky and Parker (1994, QJE):

$$\Delta \ln w_{it} = \beta_1 + \beta_2 \Delta u_t + \beta_3 X_{it} + \epsilon_{it}$$

- ▶ includes only people employed both in t-1 and t;
- after netting-out skill-composition, real wages are twice as pro-cyclical as in the aggregate;
- ► Fluctuations as movements along a labor supply curve (Walrasian labor market) or a wage-curve (efficiency wages)?
- Implausibly high labor supply elasticity required to explain SBP results, so non-Walrasian explanations may be more appropriate.

The Phillips Curve and its mutations

- ▶ Phillips Curve: low unemployment associated with high inflation.
- ▶ 1958: A.W. Phillips uncovers negative correlation between inflation and unemployment in UK 1861-1957 data;
- ▶ 1960: Samuelson & Solow replicate it on 1900-1960 US data;

1948-1969: the 'original' Phillips Curve

1970-2010: the disappearance of the 'original' PC

1970-2010: Accelerationist PC

The PC and its mutations

- Theoretical explanations of the PC focus on labor market dynamics;
- ▶ labor market models imply relations between π , $E(\pi)$ and u;
- ▶ specific form of the PC depends on how people form $E(\pi)$
 - 1. fixed expectations -> original PC
 - adaptive expectations -> accelerationist PC
 - 3. rational expectations -> New-Keynesian PC

- ► Central idea: lower $u_t \Rightarrow$ higher $W_t \Rightarrow$ increase in $P_t \& \pi_t$.
- ▶ if it stops here, we have the 'original' PC

- ► Central idea: lower $u_t \Rightarrow$ higher $W_t \Rightarrow$ increase in $P_t \& \pi_t$.
- ▶ if it stops here, we have the 'original' PC
- ▶ BUT with adaptive expectations, inflationary spiral: lower $u_t \Rightarrow$ higher $W_t \Rightarrow$ increase in $P_t \& \pi_t \Rightarrow$ increase in $E(\pi_{t+1}) \Rightarrow$ increase in $W_{t+1} \Rightarrow ...$
- 'accelerationist' PC

► Basic model:

$$P_t = (1+m)W_t$$

 $Y_t = N_t$

$$\frac{W_t}{E(P_t)} = 1 - \beta u_t \quad \Rightarrow \quad W_t = E(P_t)(1 - \beta u_t)$$

- Y = output;
- N = employment;
- W = nominal wage;
- P = price of the good;
- ightharpoonup m = mark-up;
- $ightharpoonup u = 1 \frac{L}{N}$ = unemployment rate;
- details in lecture notes 'a (very) simplified new-synthesis model'

► Combine price-setting & wage-setting:

$$P_t = E(P_t)(1+m)(1-\beta u_t)$$

rewrite (approximately) in terms of π :

$$\pi_t = E(\pi_t) + m_t - \beta u_t$$

▶ What determines $E(\pi_t)$?

► 'Generic' Phillips Curve:

$$\pi_t = E(\pi_t) + m_t - \beta u_t$$

Assume fixed expectations

$$E(\pi) = \bar{\pi}$$

► Then we have

$$\pi_t = \alpha - \beta u_t$$
 (with $\alpha = \bar{\pi} + m$)

'original' Phillips curve

'Generic' Phillips Curve:

$$\pi_t = E(\pi_t) + m_t - \beta u_t$$

Assume adaptive expectations

$$E(\pi) = \pi_{t-1}$$

'Accelerationist' PC:

$$\pi_t - \pi_{t-1} = \alpha - \beta u_t$$

► Lower unemployment leads to higher *change* in the inflation rate (like in the 1970s).

An interpretation of the history of inflation in the US

1948-1969

- ▶ inflation not persistent;
- wage-setters assumed inflation would revert to mean $\bar{\pi}$;
- ► $E(\pi) \approx \bar{\pi} \Rightarrow$ Original PC.

after 1970

- inflation became persistent (oil shocks);
- wage-setters started taking persistence into account;
- ► $E(\pi_t) \approx \pi_{t-1} \Rightarrow$ accelerationist PC.

The PC & the NAIRU

- under 'accelerationist' PC, there is a unique sustainable unemployment rate (NAIRU);
 - see lecture notes 'a (very) simplified new-synthesis model';
 - ▶ any level of π can be sustained, but for π to fall you need $u > u^N$ for some time;

A model of monopolistic competition

- ► Imperfect competition + nominal rigidities can produce real effects of nominal (monetary) shocks;
- Menu-costs as sources of nominal rigidity
 - ▶ an alternative: imperfect information (Lucas model).
- ► Plan:
 - 1. A model of monopolistic competition;
 - 2. then add menu costs;

Assumptions (1): product & labor markets:

- ► Continuum of differentiated goods $i \in [0, 1]$;
- monopolistic producers;
- production function:

$$Y_i = L_i$$

- goods are imperfect substitutes;
- Walrasian labor market;

Assumptions (2): households & preferences:

- ► Continuum of identical households $i \in [0, 1]$;
- ► Each household owns a (monopolistic) firm, gets $w \& \pi$;

Assumptions (2): households & preferences:

- ► Continuum of identical households $i \in [0, 1]$;
- ► Each household owns a (monopolistic) firm, gets $w \& \pi$;
- ► Utility:

$$U = C - \frac{1}{\gamma} L^{\gamma}$$
 with $C = \left[\int_{i=0}^{1} C_{i}^{\frac{\eta-1}{\eta}} di \right]^{\frac{\gamma}{\eta-1}}$;

- o $\gamma > 1$ and $\eta > 1$;
- o Constant MU in overall C, but diminishing in individual C_i ;
- o $C_i = \bar{C}$ for all $i \Rightarrow C = C_i = \bar{C}$;

Assumptions (3): Macroeconomy

► Closed economy without *K* and *G*

$$Y \equiv C$$

► Output equals aggregate demand

$$Y = \frac{M}{P}$$

- o $\frac{M}{P}$ = real money holdings = real expenditure (no savings and no utility from holding cash);
- o M = exogenous money supply = nominal expenditure.

Demand function for goods:

▶ Demand function for an individual good *i*:

$$C_i = \left(\frac{P_i}{P}\right)^{-\eta} C$$

 (derived from the utility function assuming a given budget, but don't worry about the technicalities of this derivation);

Labor supply curve L^S

► Households consume their income

$$CP = WL + R \implies C = \frac{WL + R}{P}$$

▶ So the maximization problem for choosing *L* is

$$\max_{L} \frac{WL + R}{P} - \frac{1}{\gamma} L^{\gamma}$$

► FOC:

$$\frac{W}{P} - L^{\gamma - 1} = 0 \quad \Rightarrow \quad L = \left(\frac{W}{P}\right)^{\frac{1}{\gamma - 1}}$$

Firm pricing behavior:

► Monopolistic mark-up pricing:

$$\frac{P_i}{P} = \frac{\eta}{\eta - 1} \frac{W}{P}$$

- ▶ Mark-up depends on the elasticity of demand η ;
- ▶ P = average price level in the economy (CPI index);
- ▶ (simply derived from profit-maximization).

Equilibrium (1)

▶ By symmetry (w/ households/producers normalized to 1),

$$P = P_i$$
; $L_i = L$; $C_i = C = Y = L$;

► From labor supply curve

$$L = \left(\frac{W}{P}\right)^{\frac{1}{\gamma - 1}} \Rightarrow \frac{W}{P} = Y^{\gamma - 1}$$

- Higher W/P needed to elicit higher L, which is necessary to increase Y;
- Pro-cyclical real wage.

Equilibrium (2)

Combining labor supply curve & pricing

$$\frac{P_i}{P} = \frac{\eta}{\eta - 1} Y^{\gamma - 1}$$

o higher Y makes each producer want higher P_i/P , to compensate higher W/P;

Equilibrium (2)

Combining labor supply curve & pricing

$$\frac{P_i}{P} = \frac{\eta}{\eta - 1} Y^{\gamma - 1}$$

- higher Y makes each producer want higher P_i/P, to compensate higher W/P;
- Equilibrium output (by symmetry)

$$P = P_i \implies Y = \left(\frac{\eta - 1}{\eta}\right)^{\frac{1}{\gamma - 1}}$$

o increasing in η (EoS) and decreasing in γ (disutility of labor);

Equilibrium (2)

Combining labor supply curve & pricing

$$\frac{P_i}{P} = \frac{\eta}{\eta - 1} Y^{\gamma - 1}$$

- higher Y makes each producer want higher P_i/P, to compensate higher W/P;
- Equilibrium output (by symmetry)

$$P = P_i \implies Y = \left(\frac{\eta - 1}{\eta}\right)^{\frac{1}{\gamma - 1}}$$

- o increasing in η (EoS) and decreasing in γ (disutility of labor);
- ► Equilibrium price level

$$Y = \frac{M}{P}$$
 \Rightarrow $P = \frac{M}{Y} = \frac{M}{\left(\frac{\eta - 1}{\eta}\right)^{\frac{1}{\gamma - 1}}}$

Takeaway 1: Inefficiency

- 1. Equilibrium output is below the socially-optimal level
 - Social efficiency

$$\max_{ar{L}} ar{L} - (1/\gamma) ar{L}^{\gamma} \quad \Rightarrow \quad ar{L}^{opt} = 1 > \frac{\eta - 1}{\eta}^{\frac{1}{\gamma - 1}}$$

- ightharpoonup Market power causes inefficiency (gap decreasing in η);
- $ightharpoonup Y > Y^*$ good for welfare, recession very costly;

Takeaway 2: Aggregate demand externality

- 2. Pricing decisions have (negative) externalities
 - ▶ Everyone would be better-off with $P < P^*$...
 - Demand for goods would increase with lower P
 - ▶ ...but individually no one has an incentive to set $P_i < P^*$
 - Coordination failure

Takeaway 3: Money is neutral

- 3. Real output depends only on η and γ
 - change in M affects only nominal prices and wages;
 - imperfect competition in goods' market alone not sufficient to get non-neutrality of money.

Adding frictions: menu costs & real rigidities

- Menu costs
 - Printing new catalogs/menus;
 - marketing costs;
 - cost of disseminating information;
 - risk of alienating customers;
 - ▶ ...
- Consider a flex-price imperfect-competition equilibrium;
- a demand shock changes the equilibrium price;
- under what conditions is the gain from adjusting lower than a plausible (ie small) menu cost, conditional on other firms not adjusting either?
- Real rigidities help make the cost of non-adjustment small. '

Representative firm's price-setting problem

- ► A=initial equilibrium;
- Negative demand shock;
- ▶ No adjustment -> B;
- ► Adjustment -> C;
- Shaded triangle=profit loss;
- What can make this triangle small enough to be outweighted by modest menu costs?

- Assume Walrasian labor market
- and plausible (low) L^S elasticity;
- large fall in W/P would occur, to restore full employment;
- MC curve would shift down substantially;
- this would make the triangle large;
- 'don't adjust' unlikely to be a Nash Equilibrium.
- see textbook (pp.277-278) for a 'quantitative example';

What may make $(\pi_{ADJ} - \pi_{FIXED})$ small?

Representative firm's profit function

- $ightharpoonup \pi = \pi(P)$;
- ► $AB = \pi_{ADJ} \pi_{FIXED}$
- ► *AB* depends on *CD* and the slope of $\pi(p)$;
- real rigidity
 - o small CD
 - o small ϕ in

$$p^{\star}-p=c+\phi y;$$

- ightharpoonup insensitivity of $\pi(P)$
 - o smaller π loss for a given CD;
 - o flat $\pi(P)$ curve;

What may make $(\pi_{ADJ} - \pi_{FIXED})$ small?

Representative firm's price-setting

- Little response of MC to Y
 - real rigidity: downward shift in MC curve would move C to the right;
- ► Flat MC curve
 - o real rigidity: moves C left;
 - o insensitivity: reduces shaded area for given C.
- Large effect of Y on MR
 - o real rigidity: moves C left
- Steep MR curve [for a given leftward shift]
 - o real rigidity

Possible sources of real rigidity and/or insensitivity of $\pi(P)$

- Sticky wages: MC curve both less steep and less responsive to fall in demand;
- Countercyclical mark-up: MR curve both more steep and more responsive to fall in demand;
- ▶ (see quantitative example in the textbook (pp.285-286).

Dynamic models of price adjustment

- Time-dependent vs state-dependent;
- ► Baseline time-dependent models
 - o Prices reviewed on a multi-period basis;
 - o Fischer: prices pre-determined but not fixed;
 - o Taylor: prices pre-determined & fixed;
 - o Calvo: random opportunities to change (fixed) prices;

Dynamic models of price adjustment

- Time-dependent vs state-dependent;
- ► Baseline time-dependent models
 - o Prices reviewed on a multi-period basis;
 - o Fischer: prices pre-determined but not fixed;
 - o Taylor: prices pre-determined & fixed;
 - o Calvo: random opportunities to change (fixed) prices;
- ▶ Simplification: in the original models it is wages that are sticky, here directly the p_i 's.
- Takeaway: gradual adjustment of P -> temporary real effects of M shocks.

General framework (1/3)

- ► A dynamic version of the monopolistic competition model
- Production function

$$Y_t = L_t$$

Closed economy without government

$$C_t = Y_t = L_t$$

Exogenous nominal expenditure (aggregate demand)

$$M_t = Y_t P_t$$

► Labor supply curve

$$\frac{W_t}{P_t} = BY_t^{\theta + \gamma - 1}$$

Monopolistic pricing

$$\frac{P_t^{\star}}{P_t} = \frac{\eta}{\eta - 1} \frac{W_t}{P_t}$$

General framework (2/3)

Time-dependent price-adjustment:

- Prices set on a multi-period basis;
- p_i set at time 0 has probability q_t ≥ 0 of remaining in effect at time t > 0;
- ▶ firm sets p_i as a weighted average of expected future p_t^* 's:

$$p_i = \sum_{t=0}^{\infty} \tilde{\omega}_t E[p_t^*]$$
 with $\tilde{\omega}_t \equiv \frac{\beta^t q_t}{\sum_{\tau=0}^{\infty} \beta^\tau q_\tau}$

General framework (3/3)

Profit-maximizing price is a mark-up over the wage

$$\frac{P_t^{\star}}{P_t} = \frac{\eta}{\eta - 1} \frac{W_t}{P_t} \quad \Rightarrow \quad p_t^{\star} = \ln\left[\frac{\eta}{\eta - 1}\right] + w_t$$

Substitute in the (log of the) labor supply curve

$$w_t = p_t + \ln B + (\theta + \gamma - 1)y_t \quad \Rightarrow \quad p^* = p + \ln \frac{\eta}{\eta + 1} + \ln B + (\theta + \gamma - 1)y_t$$

▶ Given that m = y + p, and assuming for simplicity $\ln \frac{\eta}{\eta - 1} + \ln B = 0$,

$$p_t^{\star} = \phi m_t + (1 - \phi) p_t$$
 with $\phi = (\theta + \gamma - 1)$

optimal 'sticky' price to set at time 0:

$$p_i = \sum_{t=0}^{\infty} \tilde{\omega}_t E_0[\phi m_t + (1 - \phi)p_t]$$

Fischer model

- ▶ Pre-determined: Each firm sets p_i every other period for the next two periods
 - o in period 0 set prices for 1 & 2;
- o in period 2 set prices for 3 & 4.
- ► Flexible: you can set two different prices for the two periods.
- ► *Staggered*: In any period, 1/2 of the firms are setting prices.

Fischer model

- Pre-determined: Each firm sets p_i every other period for the next two periods
 - o in period 0 set prices for 1 & 2;
 - o in period 2 set prices for 3 & 4.
- ► Flexible: you can set two different prices for the two periods.
- ► Staggered: In any period, 1/2 of the firms are setting prices.
- Average price level at any t:

$$p_t = \frac{1}{2}(p_t^1 + p_t^2)$$
 $[p_t^i = \text{ price for period } t \text{ set in } t - i]$

- ► Takeaways:
 - o Prices cannot (fully) react to m_t shocks not known yet in t-2;
 - o m_t shocks not known at t-2 affect real output;
 - o m_t changes already known at m_{t-2} have no effect on real output;

Fischer model

$$ightharpoonup p_t = \frac{1}{2}(p_t^1 + p_t^2)$$

Firms set prices equal to expected optimal prices:

$$\begin{aligned} \rho_t^1 &= E_{t-1}(\rho_t^*) = E_{t-1}[\phi m_t + (1 - \phi)\rho_t] \\ &= \phi E_{t-1}(m_t) + (1 - \phi)\frac{1}{2}(\rho_t^1 + \rho_t^2); \end{aligned}$$

..and

$$\begin{aligned} p_t^2 &= E_{t-2}(p_t^*) = E_{t-2}[\phi m_t + (1 - \phi)p_t] \\ &= \phi E_{t-2}(m_t) + (1 - \phi)\frac{1}{2}(E_{t-2}(p_t^1) + p_t^2); \end{aligned}$$

Solving the system:

$$\begin{aligned} p_t^1 &= E_{t-2} m_t + \frac{2\phi}{1+\phi} [E_{t-1}(m_t) - E_{t-2}(m_t)]; \\ p_t^2 &= E_{t-2}(m_t). \end{aligned}$$

Fischer model

► Equilibrium price level

$$p = \frac{p^1 + p^2}{2} \rightarrow p_t = E_{t-2}(m_t) + \frac{\phi}{1 + \phi} [E_{t-1}(m_t) - E_{t-2}(m_t)]$$

► Equilibrium output:

$$y = m - p \rightarrow y_t = \frac{1}{1 + \phi} \underbrace{[E_{t-1}(m_t) - E_{t-2}(m_t)]}_{\checkmark} + \underbrace{[m_t - E_{t-1}(m_t)]}_{\downarrow}$$

$$surprise \ about \ m_t$$

$$revealed \ in \ t - 1$$

$$surprise \ about \ m_t$$

$$revealed \ in \ t$$

▶ lower ϕ (greater real rigidity) → higher importance of m_t surprise revealed in t-1.

Taylor model – Assumptions

- Prices predetermined & fixed;
- price set in t holds in t and t + 1;
- staggered: in any period, 1/2 of firms set prices.
- money supply is a random walk:

$$m_t = m_{t-1} + u_t \quad \Rightarrow \quad E_{t-1}(m_t) = m_{t-1}$$

Aggregate price level:

$$p_t = \frac{1}{2}(x_t + x_{t-1})$$

 $(x_i = \text{price set by firms which set price in time } i);$

► Recall

$$p_i = \sum_{t=0}^{\infty} \omega_t E[P_t^{\star}]$$
 & $p_t^{\star} = \phi m_t + (1 - \phi)p_t$

Recall

$$p_i = \sum_{t=0}^{\infty} \omega_t E[P_t^{\star}]$$
 & $p_t^{\star} = \phi m_t + (1 - \phi)p_t$

► So

$$\begin{aligned} x_t &= \frac{1}{2} [p_t^{\star} + E_t(p_{t+1}^{\star})] = \\ &= \frac{1}{2} \{ [\phi m_t + (1 - \phi)p_t] + [\phi E_t(m_{t+1}) + (1 - \phi)E_t(p_{t+1})] \} \end{aligned}$$

Recall

$$p_i = \sum_{t=0}^{\infty} \omega_t E[P_t^{\star}]$$
 & $p_t^{\star} = \phi m_t + (1 - \phi)p_t$

► So

$$egin{aligned} x_t &= rac{1}{2}[p_t^\star + E_t(p_{t+1}^\star)] = \ &= rac{1}{2}\{[\phi m_t + (1-\phi)p_t] + [\phi E_t(m_{t+1}) + (1-\phi)E_t(p_{t+1})]\} \end{aligned}$$

Use $p_t = \frac{1}{2}(x_t + x_{t-1})$ and $E_t(m_{t+1}) = m_t$ and solve for x_t :

$$x_t = A[x_{t-1} + E_t(x_{t+1})] + (1 - 2A)m_t$$
 with $A = \frac{1}{2} \frac{1 - \phi}{1 + \phi}$

$$x_t = A[x_{t-1} + E_t(x_{t+1})] + (1 - 2A)m_t$$
 with $A = \frac{1}{2} \frac{1 - \phi}{1 + \phi}$

Firms adjusting at t set x_t as a function of:

- 1. money supply (m_t) ;
- 2. current prices of other firms (x_{t-1}) ;
- 3. expectation of what prices other firms will set next period ($E_t(x_{t+1})$)

$$x_t = A[x_{t-1} + E_t(x_{t+1})] + (1 - 2A)m_t$$
 with $A = \frac{1}{2} \frac{1 - \phi}{1 + \phi}$

Firms adjusting at t set x_t as a function of:

- 1. money supply (m_t) ;
- 2. current prices of other firms (x_{t-1}) ;
- 3. expectation of what prices other firms will set next period $(E_t(x_{t+1}))$

To pin down x_t , we need to get rid of $E_t(x_{t+1})$:

- ► $E_t(x_{t+1})$ must be based on stuff known at time t: m_t and x_{t-1} ;
- ▶ so x_t ultimately a function of m_t and x_{t-1} only;

- use method of undetermined coefficients;
- educated guess:

$$x_t = \mu + \lambda x_{t-1} + \nu m_t$$

- use method of undetermined coefficients;
- educated guess:

$$x_t = \mu + \lambda x_{t-1} + \nu m_t$$

- ► flex-price equilibrium: $p_t^* = m_t$;
- ▶ so a situation in which $x_t = x_{t-1} = m_t$ must be an equilibrium;
- and so the following must hold

$$\mu + \lambda m_t + \nu m_t = m_t \implies \lambda + \nu = 1 \& \mu = 0$$

These restrictions on the parameters imply

$$x_t = \lambda x_{t-1} + (1 - \lambda)m_t \tag{1}$$

▶ Now we need another restriction from the model, to determine λ .

► The needed additional restriction comes from the model equation

$$x_t = A[x_{t-1} + E_t(x_{t+1})] + (1 - 2A)m_t$$

(derived earlier)

Combining it with

$$x_t = \lambda x_{t-1} + (1-\lambda)m_t \tag{2}$$

we get two possible solutions:

$$\lambda_1 = \frac{1 - \sqrt{\phi}}{1 + \sqrt{\phi}}$$
 & $\lambda_2 = \frac{1 + \sqrt{\phi}}{1 - \sqrt{\phi}}$ (3)

- ▶ But the second $\lambda_2 > 1$ would imply instability ($|\lambda| > 1$);
- ightharpoonup assume stability and focus on λ_1 only.

Taylor model: implications for output dynamics

► Real output:

$$y_t = m_t - p_t$$

$$= m_t - \frac{x_{t-1} + x_t}{2}$$

$$= m_t - \frac{1}{2} \{ \lambda x_{t-2} + (1 - \lambda) m_{t-1} \} + [\lambda x_{t-1} + (1 - \lambda) m_t] \}$$

► Use $m_t = m_{t-1} + u_t \& (x_{t-1} + x_{t-2})/2 = p_{t-1}$ to rewrite as:

$$y_t = \lambda y_{t-1} + \frac{1-\lambda}{2} u_t$$

Taylor model: takeaways

$$y_t = \lambda y_{t-1} + \frac{1-\lambda}{2} u_t$$

- Persistent (if $\lambda > 0$) but temporary ($\lambda < 1$) real effects of m shocks;
- ▶ λ > 0 is necessary for persistence and requires ϕ < 1, which implies that p^* is increasing in p;
- Incomplete nominal adjustment produces real effects of monetary shocks.
- ▶ Effect can last more than two periods because real rigidity (low ϕ) produces persistence (as in the Fischer model).

Calvo model - overview

- Prices predetermined & fixed;
- opportunities to change prices arrive stochastically;
 - n. of periods a price will be in effect is random;
- Poisson process: same probability of price adjustment in every period;

Calvo model - overview

- Prices predetermined & fixed;
- opportunities to change prices arrive stochastically;
 - n. of periods a price will be in effect is random;
- Poisson process: same probability of price adjustment in every period;

Takeaways:

- As in Taylor & Fischer, gradual adjustment of the price level;
- ▶ it implies the *NK Phillips curve*.

lacktriangle Each period share lpha of firms, randomly chosen, adjusts prices

aggregate price level:
$$p_t = \alpha x_t + (1 - \alpha)p_{t-1}$$

inflation:
$$\pi_t = p_t - p_{t-1} = \alpha(x_t - p_{t-1})$$

ightharpoonup Each period share lpha of firms, randomly chosen, adjusts prices

aggregate price level:
$$p_t = \alpha x_t + (1 - \alpha)p_{t-1}$$

inflation: $\pi_t = p_t - p_{t-1} = \alpha(x_t - p_{t-1})$

optimal 'sticky' prices with discounting:

$$x_t = \sum_{j=0}^{\infty} \tilde{\omega}_j E(p_{t+j}^{\star})$$
 with $\tilde{\omega}_j = \frac{\beta^j q_j}{\sum_{k=0}^{\infty} \beta^k q_k}$

Poisson process implies $q_j = (1 - \alpha)^j$

$$ightharpoonup
ightarrow \sum_{k=0}^{\infty} eta^{\kappa} q_k = \sum_{k=0}^{\infty} eta^k (1-lpha)^k = rac{1}{1-eta(1-lpha)}$$

...plugging in:

$$x_t = [1-eta(1-lpha)]\sum_{j=0}^{\infty}eta^j(1-lpha)^jE_t p_{t+j}^\star$$

Rewrite as:

$$\begin{aligned} x_t &= [1 - \beta(1 - \alpha)]E_t(p_t^{\star}) + \beta(1 - \alpha)[1 - \beta(1 - \alpha)]\left[\sum_{j=0}^{\infty} \beta^j (1 - \alpha)^j E_t p_{t+1+j}^{\star}\right] \\ &= [1 - \beta(1 - \alpha)]p_t^{\star} + \beta(1 - \alpha)E_t x_{t+1} \end{aligned}$$

[took p_t^* out of the summation, and used the fact that the subsequent terms are equal to discounted value of x_{t+1} .]

$$x_t = [1 - \beta(1 - \alpha)]\rho_t^* + \beta(1 - \alpha)E_t x_{t+1}$$

► Express in terms of π_t , using $\pi_t = \alpha(x_t - p_{t-1})$ and $p^* = \phi m_t + (1 - \phi)p_t$

$$\pi_t = ky_t + \beta E_t \pi_{t+1}$$
 with $k = \frac{\alpha[1 - (1 - \alpha)\beta]\phi}{1 - \alpha}$

- ► New-Keynesian Phillips Curve
- Inflation depends on expected inflation & output (as in all PCs);
- ▶ Difference: it is $E_t \pi_{t+1}$ that matters here: expectation of future inflation.

4 Phillips Curves and their implications

- 1. Old-Keynesian PC: $\pi_t = \alpha + \lambda y_t$
- output-inflation trade-off: disinflation requires permanently lower y;
- 2 Accelerationist PC: $\pi_t = \pi_{t-1} + \lambda(y_t y_t^{\star})$
- ▶ painful disinflation: requires $y < y^*$ for some time (inflation inertia);
- 3 Lucas 'supply curve': $\pi_t = E_{t-1}\pi_t + \lambda(y_t y_t^\star)$
- ightharpoonup costless disinflation: just alter $E_{t-1}\pi_t$ with no output implications;
- 4 New-Keynesian PC: $\pi_t = ky_t + \beta E_t \pi_{t+1}$
- ▶ expansionary disinflation: $E_t(\pi_{t+1})$ down → y_t up.

State-dependent pricing

- Fixed cost of adjusting prices;
- ▶ share of firms that adjust depends on $\pi_{ADJ} \pi_{FIX}$;
- \blacktriangleright $\pi_{ADJ} \pi_{FIX}$ depends on economic conditions;
- ► faster adjustment of $p \rightarrow$ shorter-lived real effects of m shocks (relative to time-dependent models);

State-dependent pricing

- Fixed cost of adjusting prices;
- ▶ share of firms that adjust depends on $\pi_{ADJ} \pi_{FIX}$;
- \blacktriangleright $\pi_{ADJ} \pi_{FIX}$ depends on economic conditions;
- ► faster adjustment of $p \rightarrow$ shorter-lived real effects of m shocks (relative to time-dependent models);
- frequency effect: the larger the m shock, the higher the number of firms which adjust (Caplin-Spulber model)
- ► Selection effect: 'adjusters' have higher $(\pi_{ADJ} \pi_{FIX})$, so they make larger price changes (Danziger-Golosov-Lucas: firm-specific shocks, heterogeneity)
- ▶ (Will not do the models: just know they exist and the general ideas.)

The canonical New Keynesian 3-equations model

NK IS curve:
$$y_t = E_t[y_{t+1}] - \frac{1}{\theta}r_t + u_t^{lS}$$
 with $\theta > 0$

NK PC:
$$\pi_t = \beta E_t[\pi_{t+1}] + ky_t + u_t^{\pi}$$
 with $0 < \beta < 1, k > 0$

MP rule:
$$r_t = \phi_{\pi} E_t[\pi_{t+1}] + \phi_y E_t[y_{t+1}] + u_t^{MP}$$
 with $\phi_{\pi} > 0, \phi_y \ge 0$

The canonical New Keynesian 3-equations model

NK IS curve:
$$y_t = E_t[y_{t+1}] - \frac{1}{\theta}r_t + u_t^{IS}$$
 with $\theta > 0$

NK PC:
$$\pi_t = \beta E_t[\pi_{t+1}] + ky_t + u_t^{\pi}$$
 with $0 < \beta < 1, k > 0$

MP rule:
$$r_t = \phi_{\pi} E_t[\pi_{t+1}] + \phi_y E_t[y_{t+1}] + u_t^{MP}$$
 with $\phi_{\pi} > 0, \phi_y \ge 0$

▶ no constants: deviations from steady-state, normalized to 0

The canonical New Keynesian 3-equations model

NK IS curve:
$$y_t = E_t[y_{t+1}] - \frac{1}{\theta}r_t + u_t^{IS}$$
 with $\theta > 0$

NK PC:
$$\pi_t = \beta E_t[\pi_{t+1}] + ky_t + u_t^{\pi}$$
 with $0 < \beta < 1, k > 0$

MP rule:
$$r_t = \phi_{\pi} E_t[\pi_{t+1}] + \phi_y E_t[y_{t+1}] + u_t^{MP}$$
 with $\phi_{\pi} > 0, \phi_y \ge 0$

- no constants: deviations from steady-state, normalized to 0
- shocks structure:

$$egin{aligned} u_t^{IS} &=
ho_{IS} u_{t-1}^{IS} + e_t^{IS}, & -1 <
ho_{IS} < 1 \ u_t^{\pi} &=
ho_{\pi} u_{t-1}^{\pi} + e_t^{\pi}, & -1 <
ho_{\pi} < 1 \ u_t^{MP} &=
ho_{MP} u_{t-1}^{MP} + e_t^{MP}, & -1 <
ho_{MP} < 1 \end{aligned}$$

Solving the 3-equations model

- Express the model in terms only of shocks and expectations;
- plug the MP rule into the IS curve:

$$y_t = -\frac{\phi_{\pi}}{\theta} E_t[\pi_{t+1}] + \left(1 - \frac{\phi_{y}}{\theta}\right) E_t[y_{t+1}] + u_t^{IS} - \frac{1}{\theta} u_t^{MP}$$

plug the equation above into the NK PC:

$$\pi_t = \left(\beta - \frac{\phi_{\pi}k}{\theta}\right) E_t[\pi_{t+1}] + \left(1 - \frac{\phi_y}{\theta}\right) k E_t[y_{t+1}] + k u_t^{IS} + u_t^{\pi} - \frac{k}{\theta} u_t^{MP}$$

Special case: no serial correlation in shocks

- Assume $\rho_{IS} = \rho_{\pi} = \rho_{MP} = 0$;
- ▶ this implies $E_t[y_{t+1}] = E_t[\pi_{t+1}] = 0$;
- So we have:

$$y_t = u_t^{IS} - \frac{1}{\theta} u_t^{MP}$$

$$\pi_t = k u_t^{IS} + u_t^{\pi} - \frac{k}{\theta} u_t^{MP}$$

$$r_t = u_t^{MP}$$

Special case: no serial correlation in shocks

- Assume $\rho_{IS} = \rho_{\pi} = \rho_{MP} = 0$;
- ▶ this implies $E_t[y_{t+1}] = E_t[\pi_{t+1}] = 0$;
- ► So we have:

$$y_t = u_t^{IS} - \frac{1}{\theta} u_t^{MP}$$

$$\pi_t = k u_t^{IS} + u_t^{\pi} - \frac{k}{\theta} u_t^{MP}$$

$$r_t = u_t^{MP}$$

- shows effect of demand, monetary policy and inflation shocks;
- no internal propagation mechanisms: without assuming serial correlation in shocks, we don't get any persistence (just like RBC).

The general case

- Method of undetermined coefficients;
- ► Educated guess:

$$y_t = a_{IS}u_t^{IS} + a_\pi u_t^\pi + a_{MP}u_t^{MP}$$

$$\pi_t = b_{IS}u_t^{IS} + b_\pi u_t^\pi + b_{MP}u_t^{MP}$$

- ▶ Plug these into the y_t and π_t functions derived earlier;
- solve the resulting system of equations to get the a's and b's;
- we will skip the algebra and directly discuss implications for the effects of shocks;

Implications of the general case

- Assumptions:
 - o A period is a quarter;
 - o $\theta = 1$ in utility function;
 - o $k = 0.172 \& \beta = 0.99$ in PC;
 - o $\phi_{\pi}=$ 0.5 & $\phi_{y}=$ 0.125 in MP;
 - o $\rho = 0.5$ for all shocks.
- ► Effect of MP shock:
 - o $y_t = -1.54u_t^{MP}$;
 - o $\pi_t = -0.53 u_t^{MP}$;
 - o $r_t = 0.77 u_t^{MP}$

- ► Effect of IS shock:
 - o $y_t = 1.54u_t^{IS}$;
 - o $\pi_t = 0.53 u_t^{IS}$;
 - o $r_t = 0.23 u_t^{IS}$.
- ▶ Effect of π shock:
 - o $y_t = -0.76u_t^{\pi}$;
 - o $\pi_t = 1.72u_t^{\pi}$;
 - o $r_t = 0.38u_t^{\pi}$.

Application:

Monetary policy rules and macroeconomic stability: Evidence and some theory

by Clarida, Gali and Gertler (2000)

Open issues & extensions

- Standard NK DSGE model produces very weird predictions about the effect of 'forward guidance';
- the implications of the NK PC for the effect of disinflation are also quite embarrassing;

Open issues & extensions

- Standard NK DSGE model produces very weird predictions about the effect of 'forward guidance';
- the implications of the NK PC for the effect of disinflation are also quite embarrassing;
- **P** popular extension: some source of π inertia (like indexation);
- include (exogenous) government spending and taxes;
- open economy extensions;
- ▶ introduce (a share of) hand-to-mouth consumers
- include investment, possibly with adjustment costs;
- credit market imperfections: financial sector intermediates between saving and investment, with possible frictions;

DSGE models: optimistic vs pessimistic views

The optimistic view:

- ▶ DSGE describe reasonably well the behavior of macro aggregates...
- ... and are micro-founded so their parameters are plausibly policy-invariant;
- Extensions are making them more realistic, and technology allows analysis of ever more sophisticated versions (including HANK);
- we should all be working on further improving DSGE models.

Pessimistic view:

- ▶ The baseline model actually produces embarrassing predictions...
- ...and only large ad-hoc modifications just designed to make the models' implications more reasonable attenuate that;
- we should all be working on seeking radically different alternatives (back to old-school Keynesian? agent-based models? no all-encompassing model at all? a type of model that has not been conceived yet?).