GMM, SMM, and Indirect Inference

Constantino Hevia UTDT

Introduction

- Estimating DSGE models is difficult:
 - Rational expectations: mathematical expectations of future state and control variables.
 - Nonlinear policy functions.
- To do maximum likelihood, we need to:
 - Find the equilibrium allocation and policy functions.
 - Impose distributional assumptions about shocks.
 - Evaluate the likelihood function.
- Difficult issues...

Introduction

- We showed how to linearize a model and estimate its parameters using full information maximum likelihood and the Kalman filter.
- But linearization could be problematic:
 - We could be dropping important information (e.g. certainty equivalence).
 - With non-linear methods cannot use the Kalman filter to evaluate the likelihood function (e.g. particle filter).
- You may trust some aspects of the model more than others. May want to use only some information contained in the model ⇒ Limited information estimation procedures.
- **GMM** is one such limited information estimation method that does not *necessarily* requires linearizing the model.
- Often, GMM allows us to estimate structural parameters without the need to actually solve the model (i.e. without finding the policy functions).

Introduction

- **Generalized method of moments (GMM)**: *minimum distance estimator* that can be used to estimate parameters using only moment conditions.
- Need to write the relevant equations as:

$$E(\text{something}) = 0.$$

- If we cannot evaluate the expectation because, for example, there are unobserved variables, we may use simulation:
 - **Simulated method of moments (SMM)**: approximates the expectation by simulating the model and using a Law of Large Numbers.
 - Indirect inference, matching impulse responses, etc.: generalizations of GMM.

The sample average of a vector process

- Key idea is estimating population means by sample means.
- We have a sample of size T of an n-dimensional stationary vector process $\{x_t\}$

$$E[x_t] = \mu$$

$$E[(x_t - \mu) (x_{t-j} - \mu)'] = \Gamma_j.$$

- Assume that autocovariances are absolutely summable:

$$\sum_{j=-\infty}^{\infty} |\Gamma_j| < \infty.$$

The sample average of a vector process

- Consider the sample mean

$$\bar{x}_T = \frac{1}{T} \sum_{t=1}^T x_t.$$

Clearly, $E[\bar{x}_T] = \mu$.

- The covariance matrix of \bar{x}_T satisfies

$$T E\left[\left(\bar{\mathbf{x}}_T - \mu\right)\left(\bar{\mathbf{x}}_T - \mu\right)'\right] = \sum_{j=-(T-1)}^{T-1} \left(1 - \frac{|j|}{T}\right) \Gamma_j.$$

Key result used in GMM asymptotics (see Hamilton, p. 279 or my first set of notes)

- The asymptotic covariance matrix of the sample mean \bar{x}_T satisfies

$$\lim_{T\to\infty} T E\left[\left(\bar{x}_T - \mu\right)\left(\bar{x}_T - \mu\right)'\right] = \sum_{j=-\infty}^{\infty} \Gamma_j.$$

- x_t : $n \times 1$ vector of variables observed at time t.
- θ : $k \times 1$ vector of parameters, where $\theta \in \Theta \subseteq R^k$.
 - θ_0 is the true parameter that we want to estimate.
- $g(x_t, \theta) : m \times 1$ vector valued function.
- When evaluated at the true value θ_0 , $g(x_t, \theta_0)$ satisfies the orthogonality condition

$$E[g(x_t,\theta_0)] = 0_{m \times 1}. \tag{1}$$

- GMM: choose $\hat{\theta}$ so that the sample analog of equation (1) is as close to zero as possible.
- The sample analog of equation (1) is

$$g_T(\theta) \equiv \frac{1}{T} \sum_{t=1}^T g(x_t, \theta)$$

where $g_T: \Theta \Rightarrow R^m$

Suppose that there are k parameters and m moment conditions. Then

- If k > m the model is not identified. More parameters than moment conditions. There could be multiple values of $\hat{\theta}$ that yield $g_T(\hat{\theta}) = 0$.
- If k=m the model is just-identified. $g_T(\hat{\theta})=0$ is a system of m equations with m unknowns. In principle, we may find a unique $\hat{\theta}$ such that $g_T(\hat{\theta})=0$.
- If k < m the model is overidentified. More moment conditions than parameters.
 - Choose $\hat{\theta}$ to make $g_T(\hat{\theta})$ as close to zero as possible using some criterion.
 - Overidentified case enables formal tests of the null hypothesis that the orthogonality conditions (1) are satisfied.

Minimize the distance to zero of the sample moments using the criterion

$$\hat{ heta} = \arg\min_{ heta \in \Theta} g_T(heta)' W_T g_T(heta)$$

- W_T is an $m \times m$ positive-definite weighting matrix that determines the relative importance of each component of $g_T(\theta)$.
- One first order condition for each parameter: system of k equations with k unknowns.
- Hansen (1982): the optimal weighting matrix satisties $W_T \stackrel{p}{\to} S^{-1}$, where S is the asymptotic variance of $\sqrt{T}g_T(\theta_0)$ evaluated at the true parameter θ_0 :

$$S = \lim_{T \to \infty} T E \left[\left(\frac{1}{T} \sum_{t=1}^{T} g(x_t, \theta_0) \right) \left(\frac{1}{T} \sum_{t=1}^{T} g(x_{t-j}, \theta_0) \right)' \right] = \sum_{j=-\infty}^{+\infty} \Gamma_j$$

where $\Gamma_j = E\left[g(x_t, \theta_0)g(x_{t-j}, \theta_0)'\right]$ is the j^{th} autocovariance of $g(x_t, \theta_0)$.

- Let $\hat{\theta}$ be a consistent estimator of θ_0 .
- Newey and West (1987): a consistent estimator of S is given by

$$\hat{S} = \sum_{j=-L}^{L} \left(1 - \frac{|j|}{L+1} \right) \hat{\Gamma}_j = \hat{\Gamma}_0 + \sum_{j=1}^{L} \left(1 - \frac{|j|}{L+1} \right) \left[\hat{\Gamma}_j + \hat{\Gamma}'_j \right]$$

where $\hat{\Gamma}_i = \frac{1}{T} \sum_{t=i+1}^T g(x_t, \hat{\theta}) g(x_{t-i}, \hat{\theta})'$ is the sample autocovariance matrix.

- Criteria to choose the lag-length L (Andrews, 1991; Newey and West, 1994). One that is sometimes used is $L = 0.75T^{1/3}$ [integer part].
- The continuous mapping theorem implies $\hat{S}^{-1} \stackrel{p}{\to} S^{-1}$.
- Circular argument?
 - To estimate θ_0 using optimal GMM we need an estimate of \hat{S}^{-1} which, in turn, requires an estimate of θ_0 .

Two ways to proceed:

- 1. Iterative procedure:
 - 1.1 Choose an arbitrary initial (positive definite) weighting matrix W_T , usually the identity matrix. Perform inefficient GMM to obtain a consistent initial estimate $\hat{\theta}_1$.
 - 1.2 Estimate of the covariance matrix $\hat{S}(\hat{\theta}_1)$ and use it to perform a new GMM estimation to obtain $\hat{\theta}_2$. The estimate $\hat{\theta}_2$ is asymptotically efficient.
 - 1.3 Iterating between (a) and (b) until convergence may have better small sample properties.
- 2. Continuously updating GMM (simultaneous estimation):

$$\min_{\theta} g_{\mathcal{T}}(\theta)' \hat{\mathcal{S}}^{-1}(\theta) g_{\mathcal{T}}(\theta).$$

Asymptotic distribution of GMM: general formulas

- **General GMM estimate**: choose $\hat{\theta}$ so that a linear combination of sample means is zero

$$\underbrace{a_T(\hat{\theta})g_T(\hat{\theta})}_{k\times m}\underbrace{m\times 1}=0.$$

 $a_T(\hat{\theta})$ is a $k \times m$ matrix of "weights".

- The minimization discussed above is a special case: For a weighting matrix W_T ,

$$a_{T}(\hat{\theta}) = \underbrace{\frac{\partial g_{T}'(\hat{\theta})}{\partial \theta}}_{k \times m} \underbrace{W_{T}}_{m \times m} \xrightarrow{p} \underbrace{a}_{k \times m}$$

- Let the Jacobian of the moment conditions be

$$d_{\mathcal{T}}(\hat{\theta}) = \frac{\partial g_{\mathcal{T}}(\hat{\theta})}{\partial \theta'} \stackrel{p}{\to} E\left[\frac{\partial g(x_t, \theta)}{\partial \theta'}\right] = \underbrace{d}_{\bullet}$$

where the entry (i,j) is the derivative of the ith component of $g_T(\theta)$ with respect to the jth parameter: d is an $m \times k$ matrix.

Asymptotic distribution of GMM

- $g_T(\theta_0)$ is a sample mean: under regularity conditions a Central Limit Theorem applies:

$$\sqrt{T}g_{T}(\theta_{0})\overset{d}{
ightarrow}N\left(0,\mathcal{S}
ight)$$

- The mean-value theorem and the continuous mapping theorem implies

$$\sqrt{T} \left(\hat{\theta} - \theta_0 \right) \stackrel{d}{\rightarrow} N \left(0, (ad)^{-1} a Sa'(ad)^{-1}' \right)$$

- In practical terms, we use

$$\operatorname{var}(\hat{\theta}) = \frac{1}{T} (ad)^{-1} aSa'(ad)^{-1}'$$

Details

The mean value theorem implies

$$g_{\mathcal{T}}(\hat{\theta}) = g_{\mathcal{T}}(\theta_0) + d_{\mathcal{T}}(\tilde{\theta})(\hat{\theta} - \theta_0)$$

where
$$\tilde{\theta} = \lambda \hat{\theta} + (1 - \lambda)\theta_0$$
 for $\lambda \in [0, 1]$. Multiplying both sides by $a_T(\hat{\theta})$ gives $a_T(\hat{\theta})a_T(\hat{\theta}) = a_T(\hat{\theta})a_T(\theta_0) + a_T(\hat{\theta})d_T(\tilde{\theta})(\hat{\theta} - \theta_0)$.

But the GMM estimate solves $a_T(\hat{\theta})g_T(\hat{\theta})=0$, hence

$$0 = a_{\tau}(\hat{\theta}) a_{\tau}(\theta_0) + a_{\tau}(\hat{\theta}) d_{\tau}(\tilde{\theta}) (\hat{\theta} - \theta_0).$$

 $0=a_T(heta)g_T(heta_0)$ Multiplying by \sqrt{T} and rearranging gives

$$a_{\tau}(\hat{\theta})d_{\tau}(\tilde{\theta})\sqrt{T}(\hat{\theta}-\theta_0) = -a_{\tau}(\hat{\theta})\sqrt{T}a_{\tau}(\theta_0) \text{ or } .$$

$$\sqrt{T}(\hat{\theta} - \theta_0) = -\left(a_T(\hat{\theta})d_T(\tilde{\theta})\right)^{-1}a_T(\hat{\theta})\sqrt{T}g_T(\theta_0)$$

Now, we know that

$$\sqrt{T}g_{T}(\theta_{0}) \stackrel{d}{\rightarrow} N(0, S)$$

$$a_{T}(\hat{\theta}) \stackrel{p}{\rightarrow} a$$

$$d_{T}(\tilde{\theta}) \stackrel{p}{\rightarrow} d$$

Therefore, using the Central Limit Theorem and the Continuous Mapping Theorem it follows that

$$\sqrt{\mathcal{T}}(\hat{ heta}- heta_0)\overset{d}{
ightarrow} N\left(0,(ad)^{-1}\ a\mathcal{S}a'(ad)^{-1\prime}
ight).$$

Asymptotic distribution of GMM: Efficient GMM

- Hansen (1982) showed that $W = S^{-1}$ is optimal.
- In this case, $a=rac{\partial g_T'}{\partial heta}S^{-1}$ and

$$\sqrt{T}(\hat{\theta} - \theta_0) \stackrel{d}{\to} N\left(0, \left(d'S^{-1}d\right)^{-1}\right)$$

or

$$\operatorname{var}(\hat{\theta}) = \frac{1}{T} \left(d' S^{-1} d \right)^{-1}.$$

- In practice, one inserts $\hat{\theta}$ for θ_0 in the expressions above to form estimates \hat{d} and \hat{S} .
- This gives the asymptotic standard errors of the estimated parameters.
- This also allows the construction of various tests.

Test of overidentifying restrictions

- When k < m, the model is overidentified: more orthogonality conditions than parameters and we can test the model.
- Hansen's test of the null hypothesis that the orthogonality conditions (1) are satisfied.
 - This is a **test of misspecification**. If the model is correctly specified, $g_T(\theta)$ would be different from zero only due to sampling uncertainty.
- Under the null that the model is correctly specified, $\sqrt{T}g_T(\theta_0) \sim N(0, S)$.
- Replacing (θ_0, S) by their estimated values $(\hat{\theta}, \hat{S})$, under the null, the test statistic

$$TJ_T = \left[\sqrt{T}g_T(\hat{\theta})\right]'\hat{S}^{-1}\left[\sqrt{T}g_T(\hat{\theta})\right] = Tg_T(\hat{\theta})'\hat{S}^{-1}g_T(\hat{\theta}) \sim \chi^2(m-k).$$

- Degrees of freedom: number of moment conditions minus number of parameters.

Test of overidentifying restrictions and a t-test

- J_T is a measure of "how far the sample is from satisfying the overidentifying restrictions". If the J_T statistic is too large, the model is misspecified.
- **Remark**: this is a joint test of all the restrictions. If we reject the null, the test doesn't tell us which moment condition is wrong.

<u>A standard t-test:</u> Suppose that you want to test $\theta_j = \bar{\theta}_j$ for some j. You may compute a t statistic

$$t_j = rac{\hat{ heta}_j - ar{ heta}_j}{\hat{\sigma}_{ heta_i}}$$

where $\hat{\sigma}_{\theta_j}$ is the standard error of $\hat{\theta}_j$ -the square root of the j^{th} diagonal element of $\frac{1}{T} \left(\hat{d}' \hat{S}^{-1} \hat{d} \right)^{-1}$. Under the null, t_j has a t distribution with T-1 degrees of freedom.

Example 1: Model of consumption and saving

$$\max_{c_t, s_{t+1}} E_0 \sum_{t=0}^{\infty} \beta^t \frac{c_t^{1-\gamma}}{1-\gamma} \text{ subject to}$$

$$c_t + a_{t+1} = w_t + (1+r_{t+1})a_t$$

where w_t is labor income, a_{t+1} is assets, and r_t is a stochastic interest rate.

- Euler equation

$$c_t^{-\gamma} = E_t \left[\beta c_{t+1}^{-\gamma} (1 + r_{t+1}) \right].$$

- The Euler equation is a (conditional) orthogonality condition of the form:

$$E_t \left[\beta \left(\frac{c_{t+1}}{c_t} \right)^{-\gamma} (1 + r_{t+1}) - 1 \right] = 0.$$
 (2)

- Two parameters to estimate, (β, γ) , and one *conditional* orthogonality condition: **At** first sight, model is underidentified.

Example 1: Model of consumption and saving

- How can we estimate this model with GMM?
- FOC is a conditional moment restriction. The law of iterated expectations implies

$$E\left[E_{t}\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\left(1+r_{t+1}\right)-1\right]\right]=E\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\left(1+r_{t+1}\right)-1\right]=0.$$

- Standard approach to "create" more orthogonality conditions in rational expectations models.
 - Let \mathcal{F}_t denote the "information set" of the investor at time t: this typically includes previous observations of economic variables like lagged consumption, returns, etc.
 - Then, any variable z_t in \mathcal{F}_t , is a valid instrument in the sense that

$$E\left[E_t\left[\beta\left(\frac{c_{t+1}}{c_t}\right)^{-\gamma}(1+r_{t+1})-1\right]z_t\right]=E\left[\left(\beta\left(\frac{c_{t+1}}{c_t}\right)^{-\gamma}(1+r_{t+1})-1\right)z_t\right]=0.$$

Example 2: Model with Two Assets

Agents choose consumption and two assets: a risky asset which pays a return r_{t+1}^e and a riskless asset with a known return at time t of r_{t+1}^f .

- The Euler equations of the consumer's problem can be written as

$$c_t^{-\gamma} = E_t \left[\beta c_{t+1}^{-\gamma} (1 + r_{t+1}^{\theta}) \right]$$
$$c_t^{-\gamma} = E_t \left[\beta c_{t+1}^{-\gamma} (1 + r_{t+1}^{f}) \right]$$

This gives two (conditional) orthogonality conditions which can be written as

$$E_{t}\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\left(r_{t+1}^{\theta}-r_{t+1}^{f}\right)\right]=0$$

$$E_{t}\left[\beta\left(\frac{c_{t+1}}{c_{t}}\right)^{-\gamma}\left(1+r_{t+1}^{f}\right)-1\right]=0.$$

- We have two parameters (β, γ) and two orthogonality conditions: **just identified case**.
- But if we assume, say, $\beta=0.95$, we have one parameter and two orthogonality conditions: overidentified case.

Consider the RBC model

$$\max E_0 \sum_{t=0}^\infty eta^t U(c_t, n_t)$$
 subject to $c_t + k_{t+1} = A_t F(k_t, n_t) + (1-\delta)k_t$

The Euler equation for capital accumulation is

$$E_t \left[\beta \frac{U_{c,t+1}}{U_{c,t}} \left(A_{t+1} F_{k,t+1} + 1 - \delta \right) - 1 \right] = 0.$$

- One conditional orthogonality condition and *at least* two parameters to estimate: β and δ (probably more from the utility and production functions).
- How do we add orthogonality conditions to estimate the model?

- We can use the law of iterated expectations in the Euler equation and add variables that belong in the agent's information set to create orthogonality conditions.
- For example

$$E\left[E_{t}\left[\beta \frac{U_{c,t+1}}{U_{c,t}}\left(A_{t+1}F_{k,t+1}+1-\delta\right)-1\right]\frac{c_{t}}{c_{t-1}}\right]=0$$

$$E\left[E_{t}\left[\beta \frac{U_{c,t+1}}{U_{c,t}}\left(A_{t+1}F_{k,t+1}+1-\delta\right)-1\right]\frac{c_{t-1}}{c_{t-2}}\right]=0$$

$$E\left[E_{t}\left[\beta \frac{U_{c,t+1}}{U_{c,t}}\left(A_{t+1}F_{k,t+1}+1-\delta\right)-1\right]A_{t}F_{k,t}\right]=0$$

$$E\left[E_{t}\left[\beta \frac{U_{c,t+1}}{U_{c,t}}\left(A_{t+1}F_{k,t+1}+1-\delta\right)-1\right]A_{t-1}F_{k,t-1}\right]=0$$

etc.

- GMM can also be applied to static optimality conditions, for example, MRS=MPL

$$\frac{U_{Nt}}{U_{ct}} = A_t F_{N,t}$$

- Since this holds for any t, it trivially holds on average, so

$$E\left[\frac{U_{Nt}}{U_{ct}}-A_tF_{N,t}\right]=0.$$

- GMM can also be applied to identities. For example, the feasibility constraint:

$$E[c_t + k_{t+1} - (1 - \delta)k_t - F(k_t, n_t)] = 0.$$

Conclusion: Dynamic rational expectation models produce orthogonality conditions as the result of optimization and equilibrium conditions. Parameters entering these conditions can be estimated by GMM.

- It is also possible to match unconditional moments derived from the model with those based on actual data:
- We observe x_t and construct a function of the data $\mathbf{m}_t = h(x_t)$, where $h(\bullet)$ is a $p \times 1$ vector of empirical observations on variables whose moments are of interest. (to construct variances, correlations, etc).
 - Let $\mathbf{m}_t^M(\theta) = h^M(y_t, \theta)$ be the model-based counterpart of \mathbf{m}_t whose elements are computed based on the solution of the log-linearized model. In that case, there may be analytical expressions for the unconditional moments $E(\mathbf{m}_t^M(\theta))$.
 - GMM can be applied using the orthogonality condition

$$g_T(\theta) = \left[\frac{1}{T}\sum_{t=1}^T \mathbf{m}_t - E(\mathbf{m}_t^M(\theta))\right] = 0.$$

- Stochastic singularity can also be an issue with GMM. E.g. covariances of different variables could be linearly dependent.

- The model is

$$E_t\left[\left(\frac{c_{t+1}}{c_t}\right)^{-\gamma}R_{t+1}^e\right]=0$$

where R_{t+1}^e is an excess return and $\gamma > 0$ is the coefficient of risk aversion.

- Excess returns are
 - rmrf: market portfolio
 - hml: high minus low (value growth portfolio)
 - *smb*: small minus big portfolio
- Objective is to estimate the coefficient of risk aversion γ using GMM.

- Sample moments using the rmrf, hml, and smb excess returns as a function of γ

- GMM using only one excess return (unconditional)
- Model exactly identified: cannot do test of overidentifying restrictions

Return/parameter	$\hat{\gamma}$	Std Err
RMRF	52.52	26.87
HML	71.03	31.42
SMB	59.95	3.9E+7

- GMM using two and three excess returns (unconditional).
- Model overidentified: 1 parameter, 2 or 3 moments.

Return/parameter	$\hat{\gamma}$	Std Err	J-stat	p-val
RMRF and HML ($W = I$)	56.33	26.5	-	-
RMRF and HML (2-stage)	63.57	24.6	0.67	0.41
HML and SMB ($W = I$)	52.77	26.8		
HML and SMB (2-stage)	61.16	24.8	0.82	0.36
RMRF, HML, and SMB ($W = I$)	56.43	26.5		
RMRF, HML, and SMB (2-stage)	70.72	22.5	1.66	0.43

$$d_t = a_0 + a_1 d_{t-1} + a_2 DD_t gap_t + a_3 (1 - DD_t) gap_t + a_4 debt_t + e_t$$

 $i_t = b_0 + b_1 \pi_t + b_2 gap_t + b_3 i_{t-1} + u_t$

- DD_t : dummy variable equal to one if output gap is positive (expansion) and zero if gap is negative (contraction). d_t : deficit (% of GDP). i_t : nominal interest rate
- Treat e_t and u_t as expectational errors: $E(e_t|\mathcal{F}_t) = E(u_t|\mathcal{F}_t) = 0$. Issues of interest:
 - Is monetary policy active? $\Rightarrow b_1 > 1$.
 - Is fiscal policy active? $\Rightarrow a_4 < 0$.
 - Does fiscal policy react to output symmetrically over the cycle? \Rightarrow $a_2 = a_3$.

Use US data over 1967:Q1-2004:Q2. Output gap is actual output minus potential output as reported by FRED-II dataset: series GDPPOT.

- Orthogonality conditions (using unconditional moments)

$$E[d_t - a_0 - a_1 d_{t-1} - a_2 DD_t gap_t - a_3 (1 - DD_t) gap_t - a_4 debt_t] = 0$$

 $E[i_t - b_0 - b_1 \pi_t - b_2 gap_t - b_3 i_{t-1}] = 0$

Sample counterparts

$$\frac{1}{T} \sum_{t=1}^{T} \left[d_t - a_0 - a_1 d_{t-1} - a_2 D D_t gap_t - a_3 (1 - D D_t) gap_t - a_4 debt_t \right] = 0$$

$$\frac{1}{T} \sum_{t=1}^{T} \left[i_t - b_0 - b_1 \pi_t - b_2 gap_t - b_3 i_{t-1} \right] = 0$$

- Parameters to estimate: $\{a_0, a_1, a_2, a_3, a_4, b_0, b_1, b_2, b_3\}$
- 2 equations, 9 unknowns. Need to use instrumental variables (GIV)

- Case 1. Instruments are:

- For fiscal equation: a constant, 1 lag of deficit, inflation, debt, and the interacted variables $DD_t gap_t$ and $(1 DD_t) gap_t$.
- For monetary equation: a constant, one lag of output gap, inflation, and the interest rate.

Coef.	Value	Std. Err	t-stat
a ₀	0.550	0.224	2.447
a_1	0.855	0.042	20.344
a_2	-0.080	0.036	-2.208
a 3	-0.175	0.076	-2.285
a_4	-0.0047	0.0034	-1.376
b_0	-0.093	0.283	-0.329
b_1	1.364	0.537	2.540
b_2	0.015	0.069	0.230
b_3	0.782	0.086	9.015

Test	J-test	equality test ($a_2 = a_3$)
statistic	1.112	1.206
p-value	0.292	0.272
	'	

Equality test is test of symmetric reaction of deficit to the cycle.

- Case 2. Instruments are:

- For fiscal equation: same as Case 1.
- For monetary equation: two lags of each instrument.

Coef.	Value	Std. Err	t-stat
a_0	0.494	0.207	2.386
a_1	0.865	0.0397	21.778
a_2	-0.086	0.0346	-2.496
a_3	-0.157	0.0741	-2.126
a_4	-0.0044	0.0032	-1.372
b_0	-0.141	0.187	-0.755
b_1	0.740	0.227	3.249
b_2	0.0674	0.0418	1.613
b_3	0.9005	0.0248	36.214

J-test	equality test ($a_2 = a_3$)
4.031	0.710
0.401	0.399
ı	
	J-test 4.031 0.401

- Case 3. As Case 1 but starting sample in 1983.
- Estimates unstable. It likely comes from the interest rate equation.

Coef.	Value	Std. Err	t-stat
$\overline{a_0}$	1.291	0.434	2.970
a_1	0.794	0.0564	14.093
a_2	-0.0424	0.0424	-0.999
a_3	-0.509	0.146	-3.479
a_4	-0.012	0.0057	-2.111
b_0	2.426	2.031	1.194
b_1	-4.907	4.390	-1.117
b_2	0.0267	0.124	0.215
b_3	1.214	0.257	4.714

		equality test ($a_2 = a_3$)
statistic	0.304	9.248
statistic p-value	0.581	0.0024
	'	

Problems with GMM

- How do we choose the instruments z_t ? How many? How many lags?
- Choice of orthogonality conditions? Which one do we select? Sometimes if we rewrite the same condition in a different form, we obtain different estimates.
- Too many instruments: while OK asymptotically, causes problems in small samples.
- What if there are unobservable variables in the orthogonality conditions?

Simulated Method of Moments (SMM)

- Often we cannot compute the orthogonality conditions of the model analytically.
 - There may be unobservable variables in the orthogonality conditions, like preference shocks.
- One solution is using simulation methods.
 - Replace analytical expectations by Monte Carlo expectations simulating the model.
- This applies to moment conditions of the form

$$E_t[g(x_t, \theta, \nu_t)] = 0,$$

where v_t is unobservable.

- In this case g_T cannot be evaluated and GMM cannot be applied.

Example: model with unobserved preference shocks

- Social planner maximizes

$$\max_{c_t, n_t, k_{t+1}} E_0 \left[\sum_{t=0}^{\infty} \beta^t \nu_t U(c_t, n_t) \right] \text{ subject to}$$

$$c_t + k_{t+1} = A_t F(k_t, n_t) + (1 - \delta) k_t.$$

- Euler equation

$$E_{t} \left[\beta \frac{U_{c,t+1}}{U_{c,t}} \frac{v_{t+1}}{v_{t}} \left(A_{t+1} F_{k,t+1} + 1 - \delta \right) - 1 \right] = 0.$$

- Here,

$$g(x_t, \theta, \nu_t) = \beta \frac{U_{c,t+1}}{U_{c,t}} \frac{\nu_{t+1}}{\nu_{t+1}} (A_{t+1} F_{k,t+1} + 1 - \delta) - 1.$$

- Problem: Can't construct g_T because v_t is unobservable.

Models with unobservable variables

- This problem could also be present in standard RBC models:
 - Technology shocks may be unobservable (may use Solow residuals as a proxy)
 - Stock of capital may be unobservable (may construct capital using the perpetual inventory method).
- General result: if there are unobserved shocks (such as v_t) or unobserved variables (such as the stock of capital) that enter the orthogonality conditions, GMM cannot be used to estimate the parameters.
- What to do then?
 - Simulated method of moments.

Models with unobservable variables

- Orthogonality condition is $E_t[g_t(x_t, \theta, \nu_t)] = 0$.
- Shocks v_t are unobservable, but with a known distribution.
- Draw shocks $\{v_t^I\}$ for I=1,2,...,L, where L is "large".
- Construct $g_t^l(x_t, \theta, v_t^l)$ for each draw l.
- Under regularity conditions, a Law of Large number applies and

$$\frac{1}{L}\sum_{l=1}^{L}g_{t}^{l}\stackrel{p}{\rightarrow}E\left[g_{t}(x_{t},\theta,\nu_{t})\right].$$

- If there are unobserved variables but with a known distribution, simulate the model, construct g_t using simulated data, and apply GMM to the "simulated" orthogonality conditions.

Simulated method of moments

- We observe x_t and construct moments $\mathbf{m}_t = h(x_t)$, where $h(\bullet)$ is a $p \times 1$ vector of empirical observations on variables whose moments are of interest. (e.g. variances, correlations, etc).
- Let $m_i(\theta)$ be the synthetic counterpart of m_t whose elements are computed based on simulated data generated by a model given some parameter values $\theta \in R^k$ and shocks v_t . Let the number of observations in artificial time series be $i=1,2,...,\tau T$.
- The SMM estimator, $\tilde{\theta}_{SMM}$ is the value of θ that solves

$$\tilde{\theta}_{SMM} = \arg\min_{\boldsymbol{\theta}} \left[\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{m}_{t} - \frac{1}{\tau T} \sum_{i=1}^{\tau T} \boldsymbol{m}_{i}(\boldsymbol{\theta}) \right]' S^{-1} \left[\frac{1}{T} \sum_{t=1}^{T} \boldsymbol{m}_{t} - \frac{1}{\tau T} \sum_{i=1}^{\tau T} \boldsymbol{m}_{i}(\boldsymbol{\theta}) \right],$$

- S determines the optimal weighting matrix and is given by

$$S = \lim_{T \to \infty} Var\left(\frac{1}{\sqrt{T}} \sum_{t=1}^{T} \boldsymbol{m}_{t}\right).$$

Simulated method of moments

- Under regularity conditions (Duffie and Singleton, 1993), if θ_0 is the true value,

$$\sqrt{T}(\tilde{\theta}_{SMM} - \theta_0) \overset{d}{ o} N\left(0, \left(1 + \frac{1}{ au}\right) \left(dS^{-1}d'\right)^{-1}\right)$$

where $d = E \left[\frac{\partial m_i(\theta)}{\partial \theta} \right]$ is a $k \times p$ matrix assumed to be finite and of full rank.

- A specification test of overidentifying restrictions when p > k is given by

$$T(1+rac{1}{ au})\left[G(ilde{ heta}_{SMM})' ilde{S}^{-1}G(ilde{ heta}_{SMM})
ight]\overset{d}{
ightarrow}\chi^2(p-k).$$

where

$$G(\theta) = \left[\frac{1}{T} \sum_{t=1}^{T} \mathbf{m}_t - \frac{1}{\tau T} \sum_{i=1}^{\tau T} \mathbf{m}_i(\theta) \right].$$

- Implementation detail: use the same sequence of shocks $\{\nu_t\}$ during the minimization iterations. Otherwise, we don't know if the objective function changes because parameters change or because shocks change.

Indirect Inference (or Extended Method of Simulated Moments)

- SMM constructs an estimate of θ by minimizing the distance between the unconditional moments of the data and those of an artificial series simulated using parameter values.
- **Indirect Inference** is more general: it constructs an estimate of θ by minimizing the distance between some continuous function of the data and the equivalent function estimated from an artificial time series simulated for some parameter values:
 - The functions need not be moments.
- Proposed by Smith (1993). Can be interpreted as a generalization of the simulated method of moments.
- Use of an auxiliary model to capture aspects of data upon which to base estimation.
- Auxiliary model is a continuous function of the data.
- **Indirect Inference:** choose parameters of the model so that the actual and simulated data look the same through the lens of the auxiliary model.

Indirect Inference

Examples:

- Matching VAR Coefficients (Smith, 1993): Run a VAR using actual data and run the same VAR in the model. Indirect Inference chooses θ to minimize the distance between the estimated VAR coefficients using actual data and those using simulated data.
 - In this case the auxiliary model is a VAR.
- Matching Impulse Responses (Christiano, Eichenbaum, and Evans, 2005): estimate impulse responses in the data (using appropriate identifying assumptions) and in the model. Choose θ to minimize the distance between the IRs.
 - In this case, the auxiliary model are the impulse responses of a structural VAR.

Indirect Inference

- Let $\eta \equiv \eta(\{x_t\})$ denote a $p \times 1$ vector with the parameters of the auxiliary model. For example, the estimates of the VAR representation of the data.
- Let $\eta(\theta)$ denote the synthetic counterpart of η . For example, with the estimates of a VAR representation of the artificial data generated by the model.
- Let T denote the sample size of the actual data and τT the sample size of the simulated data
- The indirect inference estimator, $\tilde{\theta}_{II}$, solves

$$\tilde{\theta}_{\mathit{II}} = \arg\min_{\boldsymbol{\theta}} \left[\boldsymbol{\eta} - \boldsymbol{\eta}(\boldsymbol{\theta}) \right]' \boldsymbol{V} \left[\boldsymbol{\eta} - \boldsymbol{\eta}(\boldsymbol{\theta}) \right]$$

where *V* is the $p \times p$ optimal weighing matrix.

- Smith suggests using the inverse of the variance covariance matrix of the estimate η as an estimator of V.

Indirect Inference

- Under regularity conditions (Smith, 1993),

$$\sqrt{T}(\tilde{\theta}_{II}-\theta_0)\stackrel{d}{\to} N\left(0,\left(1+\frac{1}{\tau}\right)(J'VJ)^{-1}\right)$$

where $J = E \left[\frac{\partial \eta(\theta)}{\partial \theta} \right]$ is a $k \times p$ matrix assumed to be finite and of full rank.

- A test of overidentifying restrictions can be constructed using

$$T(1+\frac{1}{\tau})\left[\left(\eta-\eta(\tilde{\theta}_{II})\right)'V\left(\eta-\eta(\tilde{\theta}_{II})\right)\right]\stackrel{d}{\rightarrow}\chi^{2}(p-k).$$

Putting it all together: Ruge-Murcia (2007)

- Ruge-Murcia (2007) compares the estimation of a standard RBC model using four different methods:
 - Maximum likelihood, with and without measurement errors and incorporating priors.
 - Generalized Method of Moments.
 - Simulated Method of Moments.
 - Indirect Inference.
- The idea of the paper is to study the small sample properties of the different estimation techniques using a controlled Monte Carlo experiment.
- In the process, he discusses issues of identification, stochastic singularity, small sample properties, etc.
- Nice and pedagogical paper. Read it.

Ruge-Murcia: The artificial economy

- The artificial economy is a one-shock RBC model:

$$\max E_0 \sum_{t=0}^{\infty} \beta^t \left(\ln c_t + \psi(1 - n_t) \right) \text{ subject to}$$

$$c_t + k_{t+1} = y_t + (1 - \delta)k_t; \ y_t = z_t k_t^{\alpha} n_t^{1 - \alpha}$$

$$\ln z_{t+1} = \rho \ln z_t + \varepsilon_{t+1}$$

where $\varepsilon_t \sim N(0, \sigma^2)$.

- The model is stochastically singular: a single productivity shock drives the evolution of several endogenous variables, like output y_t , consumption c_t , and employment, n_t .
- The model is solved using a log-linearization around the steady state.
- Artificial data is constructed using known parameter values. Experiment consists of estimating the parameters $\theta = (\beta, \rho, \sigma)$.
- Data used for estimation is output, consumption, and labor: y_t , c_t , n_t .

Ruge-Murcia: maximum likelihood

- Two approaches to deal with stochastic singularity (one shock and three observable variables)
 - 1. Estimate the model using just one observable at a time: y_t , n_t , or c_t .
 - 2. Add measurement errors (see paper).
- Incorporating priors centered around true values.

Ruge-Murcia: method of moments (GMM and SMM)

- Using second moments between pair of variables to avoid stochastic singularity

$$m_{t} = \left\{ \hat{y}_{t}^{2}, \hat{c}_{t}^{2}, \hat{y}_{t} \hat{c}_{t}, \hat{c}_{t} \hat{c}_{t-1}, \hat{y}_{t} \hat{y}_{t-1} \right\}$$

$$m_{t} = \left\{ \hat{y}_{t}^{2}, \hat{n}_{t}^{2}, \hat{y}_{t} \hat{n}_{t}, \hat{n}_{t} \hat{n}_{t-1}, \hat{y}_{t} \hat{y}_{t-1} \right\}$$

$$m_{t} = \left\{ \hat{n}_{t}^{2}, \hat{c}_{t}^{2}, \hat{c}_{t} \hat{n}_{t}, \hat{n}_{t} \hat{n}_{t-1}, \hat{c}_{t} \hat{c}_{t-1} \right\}$$

- Note: we are not using first order conditions or Euler equations, but second moments of the data to do GMM and SMM.
- In SMM, use different sample sizes for simulation $\tau = 5$, 10, 20.

Ruge-Murcia: indirect inference

- Auxiliary model is a bivariate VAR(1) (cannot have more variables due to stochastic singularity).
- Matching VAR coefficients using data with the equivalent coefficients estimated using simulated data.
- Use pair of variables: (\hat{y}_t, \hat{c}_t) ; (\hat{y}_t, \hat{n}_t) ; (\hat{c}_t, \hat{n}_t) .
- Use different sample sizes for simulation: $\tau =$ 5, 10, 20.

ASE Size **ASE** Size Size Mean Mean Mean ASE (median) (SD) (SE) (median) (SD) (SE) (median) (SD) (SE) A. Using as many variables as shocks

.8080

.8206

.0900

.0128

.2205

.1721

 ρ

 σ

.0495

.0505

.0173

.0104

.2300

.0188

.0620

.0108

.0600

.0583

Table 1

Experiment no.

Maximum likelihood under the null hypothesis

.7896

.8202

Var.

 \hat{y}_t

		.0202		.0.2	.0200	.0000	.0100	.0000	.0.0.	.0100		
2	\hat{c}_t	.9156	.0847	.1660	.8127	.1201	.0980	.0534	.0375	.1040		
		.9489	.1359	.0166	.8585	.1370	.0133	.0376	.0371	.0137		
3	\hat{n}_t	.9403	.0623	.1280	.8406	.0890	.0580	.0433	.0225	.1440		
		.9425	.0477	.0149	.8575	.0609	.0105	.0441	.0157	.0157		
B. Incorporating priors												
4	$\hat{\mathcal{Y}}_t$.9501	.0250	.0000	.8434	.0334	.0280	.0398	.0037	.0000		
		.9502	.0010	.0000	.8464	.0295	.0074	.0397	.0023	.0000		
5	\hat{c}_t	.9494	.0230	.0020	.8482	.0522	.0060	.0397	.0088	.0000		
		.9499	.0067	.0020	.8500	.0286	.0035	.0396	.0027	.0000		
6	\hat{n}_t	.9498	.0225	.0000	.8450	.0440	.0020	.0397	.0082	.0000		
		.9495	.0068	.0000	.8473	.0257	.0020	.0399	.0026	.0000		

OL(SE) Experiment no. Var ρ σ Mean ASE Size Mean ASE Size Mean ASE Size (median) (SD) (SE) (median) (SD) (SE) (median) (SD) (SE) A. $\tau = 5$ \hat{y}_t, \hat{c}_t .9514 .3360 .8182 .3580 .0399 .0004 .7360 0800 .0249.0795 .0325 0211 .8521 .1425 .0214 .0399 .0022 .0197 0121 .9506 \hat{n}_t, \hat{y}_t .9489 .0250 .2300 8119 .0920 .2380 .0402 .0002 .8520 .1740 .9502 .0298.0188.8508 .1466 .0190 .0401 .0023 .0159 .0170 \hat{n}_t , \hat{c}_t .9492 .0267 .0020 .8428 .0982 .0020 .0398 .0006 .6240 .0020 .9489 .0111 .0020 .8458 .0425 .0020 .0399 .0023 .0217 .0020 B. $\tau = 10$.0708 .3740 .0401 \hat{y}_{t}, \hat{c}_{t} .9535 .0235 .3240 .8266 .0003 .7180 .0820 .0209 .8548 .0020 .0201 .0123 .9513 .0329.1333 .0216 .0401 .0251 .2100 .2120 .0401 .0002 .8260 .1760 \hat{n}_{t}, \hat{v}_{t} .9463 .7995 .0955 .9472 .0302 .0182 .8393 .1543 .0182 .0020 .0170 .0170 .0401 .9488 .0256 .0060 .8414 .0944 .0000 .0005 .6380 .0000 \hat{n}_i , \hat{c}_i .0401 .0111 .0035 .8452 .0423 .0000 .0401 .0021 .0215 .0000 .9487 C. $\tau = 20$ \hat{y}_t, \hat{c}_t .9566 .0246 .2920 .8377 .0691 3700 .0399 .0003 .7460 .1040 .9558 .0334 .0203 8704 .1308 .0216 .0397 .0020 .0195 .0137 \hat{n}_t , \hat{v}_t .9399 .0237 .2800 .7672 .0982 .2480 .0398 .0002 .8520 .2180 .0019 .0159 .0185 .9416 .0307 .0201 .8167 .1726 .0193 .0398 \hat{n}_t, \hat{c}_t .9480 .0928 .0005 .5940 .0000 .0248.0040 .8391 .0020 .0400 .0020 .0220 .0000 .9475 .0101 .0028 .8406 .0396 .0020 .0400 Notes: For Experiments 1, 4, and 7, the VAR consists of \hat{v}_i and \hat{c}_i ; for Experiments 2, 5, and 8, the VAR consists of \hat{v}_r and \hat{n}_t ; and for Experiments 3, 6, and 9, the VAR consists of \hat{n}_t , and \hat{c}_t . In all cases a VAR of order one is used. See the notes to Table 1.

Table 3

3

5

6

8

Q

Indirect inference under the null hypothesis

Plot of objective functions: identification issues

Empirical distributions of estimated parameters

Fig. 2. Empirical distributions under the null.

References

- Andrews, D. W. K. (1991), "Heteroskedasticity and Autocorrelation Consistent Covariance Matrix Estimation", Econometrica, 59, 817-858.
- 2. Canova, Fabio. (2007), "Methods for Applied Macroeconomic Research", Chapter 5
- 3. Cochrane, John. (2005). Asset Pricing, 2nd Edition, Chapters 10 and 11.
- 4. Dejong, D. and C. Dave. (2011), "Structural Macroeconometrics", Chapter 12.
- 5. Duffie, D. and K. J. Singleton. (1993), "Simulated Moments Estimation of Markov Models of Asset Prices", Econometrica, 61, 929=952.
- 6. Hamilton, J. (1994). "Time Series Analysis". Chapter 14.
- Hansen, L. P. (1982). "Large Sample Properties of Generalized Method of Moments Estimators", Econometrica, 50, 1029-1054.
- 8. Newey, W. K. and West, L. D. (1987), "A Simple, Positive Semi-Definite, Heteroskedasticity and Autocorrelation Consistent Covariance matrix", Econometrica, 55, 703-708.
- Newey, W. K. and West, L. D. (1994), "Automatic Lag Selection in Covariance Matrix Estimation", Review of Economic Studies, 61, 631-653.
- Ruge-Murcia, Francisco J. (2007), "Methods to Estimate Dynamic Stochastic General Equilibrium Models", Journal of Economic Dynamics and Control, 31, 2599-2636
- Smith, A. (1993), "Estimating Nonlinear Time-Series Models using Simulated Vector Autoregressions", Journal of Applied Econometrics 8, 63-84.