Day 2: Data Visualization in R

FSU Summer Methods School

Therese Anders 5/7/2019

Contents

1	Why data wrangling in a visualization workshop?	J			
2	Introduction to dplyr 2.1 Using select() and introducing the Piping Operator %>% 2.2 Introducting filter() 2.3 Introducting mutate() 2.4 Introducting summarise() and arrange() 2.5 Joins	(
	3 Heatmaps 4 Alluvial diagrams				
	Primer on tidyr 5.1 Wide versus long data 5.2 gather() 5.3 spread()	19			
6	Advanced bar plots and lubridate	26			

1 Why data wrangling in a visualization workshop?

This workshop focuses on data visualization. However, in practice, data visualization is only the last part in a long stream of data gathering, cleaning, wrangling, and analysis.

Figure 1: https://d33 wubrfki0l68.cloudfront.net/571b056757d68e6df81a3e3853f54d3c76ad6efc/32d37/diagrams/data-science.png

ggplot2 is the most powerful when we have "tidy" data. There are three rules for tidy data, based on Hadley Wickham's R for Data Science.

- 1. "Each variable must have its own column."
- 2. "Each observation must have its own row."
- 3. "Each value must have its own cell."

If the data are in a tidy format, we can pass separate variables to separate geometric objects (geoms) and create layered displays of multiple variables. Thus an important component of creating interesting data visualizations is to get the data to be in the right format. We will also learn a number of new data visualization tools as part of the data wrangling section, including

- Bar charts
- Error bars on plots

RStudio offers a great Data wrangling cheat sheet you should take a look at.

2 Introduction to dplyr

dplyr does not accept tables or vectors, just data frames (similar to ggplot2)! dplyr uses a strategy called "Split - Apply - Combine". Some of the key functions include:

- select(): Subset columns.
- filter(): Subset rows.
- arrange(): Reorders rows.
- mutate(): Add columns to existing data.
- summarise(): Summarizing data set.
- joins: Combine two data frames together

First, lets dowload the package and call it using the library() function.

```
# install.packages("dplyr")
library(dplyr)
```

Today, we will be working with a data set from the hflights package. The data set contains all flights from the Houston IAH and HOU airports in 2011. Install the package hflights, load it into the library, extract the data frame into a new object called raw and inspect the data frame.

NOTE: The :: operator specifies that we want to use the *object* hflights from the *package* hflights. In the case below, this explicit programming is not necessary. However, it is useful when functions or objects are contained in multiple packages to avoid confusion. A classic example is the select() function that is contained in a number of packages besides dplyr.

```
# install.packages("hflights")
library(hflights)
raw <- hflights::hflights
str(raw)</pre>
```

```
'data.frame':
                227496 obs. of 21 variables:
##
   $ Year
                        ##
   $ Month
                        1 1 1 1 1 1 1 1 1 1 ...
  $ DayofMonth
                        1 2 3 4 5 6 7 8 9 10 ...
                  : int
   $ DayOfWeek
                        6 7 1 2 3 4 5 6 7 1 ...
##
                  : int
##
   $ DepTime
                  : int
                        1400 1401 1352 1403 1405 1359 1359 1355 1443 1443 ...
##
  $ ArrTime
                        1500 1501 1502 1513 1507 1503 1509 1454 1554 1553 ...
                  : int
  $ UniqueCarrier
                        "AA" "AA" "AA" "AA" ...
                  : chr
## $ FlightNum
                        : int
```

```
$ TailNum
                        : chr
                               "N576AA" "N557AA" "N541AA" "N403AA" ...
##
##
    $ ActualElapsedTime: int
                               60 60 70 70 62 64 70 59 71 70 ...
##
    $ AirTime
                        : int
                               40 45 48 39 44 45 43 40 41 45 ...
    $ ArrDelay
                               -10 -9 -8 3 -3 -7 -1 -16 44 43 ...
##
                        : int
##
    $ DepDelay
                        : int
                               0 1 -8 3 5 -1 -1 -5 43 43 ...
                               "IAH" "IAH" "IAH" "IAH" ...
##
    $ Origin
                        : chr
                               "DFW" "DFW" "DFW" "DFW" ...
##
    $ Dest
                        : chr
                               224 224 224 224 224 224 224 224 224 2...
##
    $ Distance
                        : int
##
    $ TaxiIn
                        : int
                               7 6 5 9 9 6 12 7 8 6 ...
    $ TaxiOut
##
                        : int
                               13 9 17 22 9 13 15 12 22 19 ...
    $ Cancelled
                        : int
                               0 0 0 0 0 0 0 0 0 0 ...
                               ... ... ... ...
    $ CancellationCode : chr
##
    $ Diverted
                        : int
                               0 0 0 0 0 0 0 0 0 0 ...
```

2.1 Using select() and introducing the Piping Operator %>%

Using the so-called **piping operator** will make the R code faster and more legible, because we are not saving every output in a separate data frame, but passing it on to a new function. First, let's use only a subsample of variables in the data frame, specifically the year of the flight, the airline, as well as the origin airport, the destination, and the distance between the airports.

Notice a couple of things in the code below:

- We can assign the output to a new data set.
- We use the piping operator to connect commands and create a single flow of operations.
- We can use the select function to rename variables.
- Instead of typing each variable, we can select sequences of variables.
- Note that the everything() command inside select() will select all variables.

```
## [1] "Month" "DayOfWeek" "DepTime" "ArrTime" "ArrDelay"
## [6] "TailNum" "Airline" "Time" "Origin" "Dest"
## [11] "Distance" "TaxiIn" "TaxiOut" "Cancelled"
```

Suppose, we didn't really want to select the Cancelled variable. We can use select() to drop variables.

```
data <- data %>%
  dplyr::select(-Cancelled)
```

2.2 Introducting filter()

There are a number of key operations when manipulating observations (rows).

```
• x < y
```

```
x <= y</li>
x == y
x != y
x >= y
x > y
x %in% c(a,b,c) is TRUE if x is in the vector c(a, b, c).
```

Suppose, we wanted to filter all the flights that have their destination in the greater Los Angeles area, specifically Los Angeles (LAX), Ontario (ONT), and John Wayne (SNA) airports. Note that based on the hflights dataset, there are no flights from the Houston area to Bob Hope (BUR) or Long Beach (LGB) airports.

```
airports <- c("LAX", "ONT", "SNA")

la_flights <- data %>%
  filter(Dest %in% airports)
```

Caution: The following command does not return the flights to LAX or ONT!

```
head(la_flights)
```

```
##
     Month DayOfWeek DepTime ArrTime ArrDelay TailNum Airline Time Origin
## 1
                          1916
                                   2103
                                                 2
                                                    N76522
                                                                 CO
                                                                      227
          1
                     1
                                                                              IAH
## 2
                           747
                                                 5
                                                    N67134
                                                                      229
          1
                     1
                                    936
                                                                 CO
                                                                              IAH
                           1433
                                   1629
                                                14
                                                    N73283
                                                                      236
## 3
          1
                     1
                                                                 CO
                                                                              IAH
## 4
          1
                     1
                           1750
                                   1921
                                                 6
                                                    N34282
                                                                 CO
                                                                      211
                                                                              IAH
## 5
          1
                     1
                           917
                                   1120
                                                15
                                                    N76515
                                                                 CO
                                                                      243
                                                                              IAH
## 6
          1
                     1
                          1550
                                   1736
                                                 8
                                                    N76502
                                                                 CO
                                                                      226
                                                                              IAH
##
     Dest Distance TaxiIn TaxiOut
## 1
      LAX
               1379
                          8
                                  20
## 2
      LAX
               1379
                         11
                                  17
## 3
                         10
                                  27
      LAX
               1379
## 4
      ONT
               1334
                          5
                                  17
## 5
      SNA
               1347
                          6
                                  35
## 6
      LAX
               1379
                                  15
                         13
la_flights_alt <- data %>%
  filter(Dest == c("LAX", "ONT"))
head(la_flights_alt)
```

```
Month DayOfWeek DepTime ArrTime ArrDelay TailNum Airline Time Origin
##
## 1
                           1916
                                    2103
                                                  2
                                                     N76522
                                                                  CO
                                                                       227
                                                                               IAH
                     1
## 2
          1
                     1
                           1433
                                    1629
                                                 14
                                                     N73283
                                                                  CO
                                                                       236
                                                                               IAH
## 3
          1
                           2107
                                    2247
                                                 7
                                                     N73270
                                                                  CO
                                                                       220
                     1
                                                                               IAH
## 4
          1
                     1
                            920
                                    1116
                                                  5
                                                     N77867
                                                                  CO
                                                                       236
                                                                               IAH
## 5
          1
                     1
                           1325
                                    1538
                                                32
                                                     N26210
                                                                  CO
                                                                       253
                                                                               IAH
## 6
          1
                     1
                           1749
                                    1938
                                                  6
                                                     N73860
                                                                  CO
                                                                       229
                                                                               IAH
     Dest Distance TaxiIn TaxiOut
##
## 1
      LAX
               1379
                           8
                                   20
                                   27
## 2
      LAX
               1379
                          10
## 3
      LAX
               1379
                           7
                                   12
## 4
                           8
      LAX
               1379
                                   33
## 5
                                   30
      LAX
               1379
                          11
## 6
      LAX
               1379
                          15
                                   14
```

Why? We are basically returning all values for which the following is TRUE (using the correct output of the la_flights data frame:

```
Dest[1] == LAX
Dest[2] == ONT
Dest[3] == LAX
Dest[4] == ONT ...
```

2.3 Introducting mutate()

Currently, we have two taxi time variables in our data set: TaxiIn and TaxiOut. I care about total taxi time, and want to add the two together. Also, people hate sitting in planes while it is not in the air. To see how much time is spent taxiing versus flying, we create a variable which measures the proportion of taxi time of total time of flight.

We can the graph the average proportion of taxi time per airline.

There is only three airlines flying to LA out of Houston. Lets create a new variable with the airline name using the case_when() function to make the graph more informative.

```
table(la_flights$Airline)
```

```
##
##
     CO
          MQ
               WN
## 6471
        810 1396
la_flights <- data %>%
  filter(Dest %in% airports) %>%
  mutate(TaxiTotal = TaxiIn + TaxiOut,
         TaxiProp = TaxiTotal/Time,
         AirlineName = case_when(
           Airline == "CO" ~ "Continental Airlines",
           Airline == "MQ" ~ "American Eagle",
           Airline == "WN" ~ "Southwest Airlines"
         ))
```

Time spent taxiing

2.4 Introducting summarise() and arrange()

One of the most powerful dplyr features is the summarise() function, especially in combination with group_by().

First, in a simple example, lets compute the average delay from Houston to Los Angeles by each day of the week. Note that the arrival delay variable is given in minutes. Also, I want to know what standard deviation of the delay is for each day of the weak. Note, that because there are missing values, we need to tell R what to do with them.

We can use error bars to show the standard deviation of the delay time for each day of the weak. I add a line to denote no delay using the <code>geom_hline()</code> geometric object.

```
ggplot(la_flights_delay,
    aes(x = DayOfWeek,
        y = av_delay,
        ymin = av_delay - sd_delay,
        ymax = av_delay + sd_delay)) +
geom_point() +
geom_errorbar() +
geom_hline(yintercept = 0,
        linetype = "dashed") +
```

Arrival delay

Suppose, I wanted to know whether some airlines have on average shorter arrival delays than others. We can add the airline to the <code>group_by()</code> function to compute the mean and standard deviation of arrival delay per day and airline.

```
la_flights_delay_airline <- la_flights %>%
  group_by(DayOfWeek, AirlineName) %>%
  summarise(av_delay = mean(ArrDelay, na.rm = T),
            sd_delay = sd(ArrDelay, na.rm = T))
# Plotting it
ggplot(la_flights_delay_airline,
       aes(x = DayOfWeek,
           y = av_delay,
           ymin = av_delay - sd_delay,
           ymax = av_delay + sd_delay,
           color = AirlineName)) +
  geom_point() +
  geom_errorbar() +
  geom_hline(yintercept = 0,
             linetype = "dashed") +
  # Making graph prettier
  theme_light() +
  coord_flip() +
  scale_x_continuous(breaks = seq(1,7))
```


To de-clutter the graph, below, I use the <code>geom_linerange()</code> geometric object rather than <code>geom_errorbar()</code>. I can use the <code>position = dodge</code> command within the <code>geom_point()</code> and <code>geom_linerange()</code> geometric object to display the values for each airline next to each other, instead on top of each other. Note that I could have used <code>position = dodge</code> with <code>geom_errorbar()</code> as well; the functionality is essentially the same.

```
ggplot(la_flights_delay_airline,
       aes(x = DayOfWeek,
           y = av_delay,
           ymin = av_delay - sd_delay,
           ymax = av_delay + sd_delay,
           color = AirlineName)) +
  geom_point(position = position_dodge(width = 0.5)) +
  geom_linerange(position = position_dodge(width = 0.5),
                 alpha = 0.5) +
  geom_hline(yintercept = 0,
             linetype = "dashed") +
  # Making graph prettier
  theme light() +
  coord_flip() +
  scale_x_continuous(breaks = seq(1,7)) +
  # Matching order of legend and graph
  guides(color = guide_legend(reverse = T))
```


2.5 Joins

4

##

LAX ONT SNA ## 6064 952 1661

BUR

Burbank

dplyr has powerful tools to merge data frames together. Because we want to focus on data visualization here, I will not go over all possible joints in depth. Please see the Data Wrangling Cheat Sheet and the dplyr documentation for more details.

Suppose, we have two data frames: x and y. The basic syntax for data merging with dplyr is the following: output <- join(A, B, by = "variable")

We will focus on the following three join functions:

- $left_join()$: Join only those rows from y that appear in x, retaining all data in x. Here, x is the "master."
- right_join(): Join only those rows from x that appear in y, retaining all data in y. Here, y is the "master."
- full_join(): Join data from x and y upon retaining all rows and values. This is the maximum join possible. Neither x nor y is the "master."

For demonstration purposes, lets create a new data frame that contains the name of the city for each of the Greater Los Angeles Area airports.

First, we treat the la_flights data frame as the master and join it with the data frame containing the airport locations using left_join(). If the variable names in both data frames were the same, dplyr would automatically join the correct columns. Here, we manually match the column names.

Finally, for demonstration, we create a third data frame using full_join(). Because all observations are retained, this join creates one observation with empty values for the Burbank value in loc_airport. For most applications, this would be an undesirable outcome. However, below, we use the fact that all possible values are retained to set up the data for visualization.

```
la_flights_new3 <- full_join(la_flights, loc_airport,</pre>
                             by = c("Dest" = "code"))
## Warning: Column `Dest'/'code' joining character vector and factor, coercing
## into character vector
table(la_flights_new3$Dest)
##
##
    BUR LAX ONT SNA
      1 6064
              952 1661
la_flights_new3[la_flights_new3$Dest == "BUR",]
##
        Month DayOfWeek DepTime ArrTime ArrDelay TailNum Airline Time Origin
## 8678
                             NA
                                      NA
                                               NA
                                                      <NA>
                                                              <NA>
##
        Dest Distance TaxiIn TaxiOut TaxiTotal TaxiProp AirlineName location
## 8678 BUR
                   NA
                          NΑ
                                   NΑ
                                             NΑ
                                                       NΑ
                                                                 <NA>
                                                                      Burbank
```

3 Heatmaps

For this example, we will go back to our original data tibble that contains the complete set of flight data for the Houston airports in 2011. Suppose we wanted to know, what are the busiest times at each of the two Houston airports, George Bush Intercontinental/Houston Airport (IAH) and William P. Hobby Airport (HOU). We create a new summary data frame that counts the number of departures per hour and day for each of the airports. We display these data using heatmaps.

To do so, we need to create a new variable that codes the hour of departure, using information from the DepTime variable. There are more advanced workflows available using the stringr and/or lubridate packages (both are part of the tidyverse). However, because we want to focus on data visualization, I simply divide the departure time by 100 and then use the floor() function to extract the hour of departure.

There are a number of ways to improve the plot. We will go through them step by step. Their is a weird observation in hour 24 that should not be there. The hour has to be either 23 or 0. Lets re-code this observation to an hour value of 0 using the replace() function from dplyr.

```
test <- data %>%
  filter(!is.na(DepTime)) %>%
  mutate(hour = floor(DepTime/100)) %>%
  filter(hour >= 24)
test
##
     Month DayOfWeek DepTime ArrTime ArrDelay TailNum Airline Time Origin
## 1
         5
                    2
                         2400
                                   144
                                            310 N14940
                                                              ΧE
                                                                 104
                                                                          IAH
##
     Dest Distance TaxiIn TaxiOut hour
## 1 DFW
                224
                         8
                                 17
# Recoding
departures <- data %>%
  filter(!is.na(DepTime)) %>%
  mutate(hour = floor(DepTime/100)) %>%
  mutate(hour = replace(hour, hour >= 24, 0)) %>%
  group_by(Origin,
           DayOfWeek,
           hour) %>%
  summarise(count = n())
ggplot(departures,
       aes(x = hour,
           y = DayOfWeek,
           fill = count)) +
  geom_tile()
                                                                           count
DayOfWeek
                                                                                2000
                                                                                1500
                                                                                1000
                                                                                500
                                 10
        0
                     5
                                              15
                                                           20
                                    hour
```

There are a number of possible observations that do not have value in the data frame, in particular in the

early morning ours. For this application, we can assume that that these observations are not actually missing, but that there are no flights during these time slots.

Therefore, we create a data frame with all possible combinations of the variable values for day of the week and hour using expand.grid(), and use the full_join() function to create a new data frame. Similar to the application above, this procedure will result in missing values. We again use the replace function to re-code these missing values to zero.

```
# Empty data frame
combo <- expand.grid(DayOfWeek = seq(1, 7),</pre>
                      hour = seq(0,23),
                      Origin = c("IAH", "HOU"))
# Merging
departures <- data %>%
  filter(!is.na(DepTime)) %>%
  mutate(hour = floor(DepTime/100)) %>%
  mutate(hour = replace(hour, hour >= 24, 0)) %>%
  group_by(Origin,
            DayOfWeek,
            hour) %>%
  summarise(count = n()) %>%
  # joining empty data frame
  full_join(combo) %>%
  # replacing missing values with zero
  mutate(count = replace(count, is.na(count), 0))
# visualizing it
ggplot(departures,
        aes(x = hour,
            y = DayOfWeek,
            fill = count)) +
  geom_tile()
                                                                           count
DayOfWeek
                                                                                2000
                                                                                1500
                                                                                1000
                                                                                500
                                  10
                     5
                                              15
         ò
                                                           20
                                    hour
```

Now, lets change the appearance of the graph. Below, we use color scales from the viridis package.

```
# install.packages("viridis")
library(viridis)

# visualizing it
ggplot(departures,
```

```
aes(x = hour,
         y = DayOfWeek,
         fill = count)) +
geom_tile(color = "white") +
scale_fill_viridis(name = "Flights") +
scale_x_continuous(breaks = seq(0,23)) +
scale_y_continuous(breaks = seq(1,7),
                   labels = c("Sun", "Mon", "Tue", "Wed", "Thu", "Fri", "Sat")) +
coord_flip() +
labs(x = "Hour",
    y = "",
    title = "Departures from Houston airports") +
# Changing appearance of the plot
theme_light() +
theme(panel.grid = element_blank(),
     legend.position = "bottom",
     legend.key.width = unit(1.5, "cm"),
     panel.border=element_blank()) +
# Making the space equal by fixing aspect ratio
# Reducing space
coord_fixed(expand = c(0,0))
```

Departures from Houston airports

table(departures\$DayOfWeek)

4 Alluvial diagrams

What are the flows between the two Houston airports and the ten most common destinations? We can visualize the combination of origin airport (IAH versus HOU) and the destination airport using alluvial diagrams. Below, we use the ggalluvial package, which contains the geom_alluvium() geometric object.

First, we create a frequency table for all observed combinations of origin and destination airport for the ten most common destinations using group_by() and slice().

```
dest_top10 <- data %>%
  group_by(Dest) %>%
  summarise(count = n()) %>%
  arrange(desc(count)) %>%
  slice(1:10)
flows <- data %>%
  filter(Dest %in% dest_top10$Dest) %>%
  group_by(Origin,
           Dest,
           Airline) %>%
  summarise(count = n())
# install.packages("qqalluvial")
library(ggalluvial)
ggplot(flows,
       aes(y = count,
           axis1 = Origin,
           axis2 = Dest)) +
  geom alluvium()
```


We can use fill to make the graph more interesting.

```
ggplot(flows,
    aes(y = count,
        axis1 = Origin,
        axis2 = Dest)) +
geom_alluvium(aes(fill = Origin))
```


We can add labels to illustrate the destination airport. We also add the <code>geom_stratum()</code> geometric object to clarify the grouping.

```
ggplot(flows,
    aes(y = count,
        axis1 = Origin,
        axis2 = Dest)) +
geom_alluvium(aes(fill = Origin)) +
geom_stratum(width = 1/12, fill = "black", color = "grey") +
geom_label(stat = "stratum", label.strata = TRUE)
```


The plot above looks nice, but the distinction by fill is not necessarily needed. We could instead display an additional variable, for example the airline.

```
ggplot(flows,
    aes(y = count,
        axis1 = Origin,
        axis2 = Dest)) +
geom_alluvium(aes(fill = Airline)) +
geom_stratum(width = 1/12, fill = "black", color = "grey") +
geom_label(stat = "stratum", label.strata = TRUE)
```


The plot above is hardly legible because there are too many airlines displayed. Lets only label the most common ones. First, we create a quick barplot to check who are the most common carriers on the top ten routes. Then, create a new variable coding only the most common, i.e. "Continental" (CO), "Southwest" (WN), and "Other" using case_when().

```
ggplot(flows,
    aes(x = Airline,
        y = count)) +
geom_bar(stat = "identity")
```



```
# Creating new indicator
flows <- flows %>%
  mutate(Airline_reduced = case_when(
    Airline == "CO" ~ "Continental",
    Airline == "WN" ~ "Southwest",
    T ~ "Other"
    ) %>% factor(levels = c('Continental', 'Southwest', 'Other')))
table(flows$Airline_reduced)
```

```
## Continental Southwest Other ## 9 7 30
```

Now, we can re-plot the alluvial diagram.

```
ggplot(flows,
       aes(y = count,
           axis1 = Origin,
           axis2 = Dest)) +
  geom_alluvium(aes(fill = Airline_reduced)) +
  geom_stratum(width = 1/12, fill = "black", color = "grey") +
  geom_label(stat = "stratum", label.strata = TRUE) +
  scale_fill_manual(name = "Airline",
                    values = c("Continental" = "blue",
                                "Southwest" = "darkorange",
                               "Other" = "grey")) +
  theme_light() +
  labs(title = "Flights from Houston 2011",
       x = "",
       y = "Number of flights") +
  theme(axis.text.x = element_blank())
```

Flights from Houston 2011

5 Primer on tidyr

Another important task in data management is data re-shaping. Often, data does not come in the format that we need for data merging, data visualization, statistical analysis, or vectorized programming.

The tidyr package offers two main functions for data re-shaping:

- gather(): Shaping data from wide to long.
- spread(): Shaping data from long to wide.

5.1 Wide versus long data

For wide data formats, each unit's responses are in a single row. For example:

Country	Area	Pop1990	Pop1991
A	300	56	58
В	150	40	45

For long data formats, each row denotes the observation of a unit at a given point in time. For example:

Country	Year	Area	Pop
A	1990	300	56
A	1991	300	58
В	1990	150	40
В	1991	150	45

5.2 gather()

We use the gather() function to reshape data from wide to long. In general, the syntax of the data is as follows:

```
new_df <- gather(old_df, key, value, columns to gather),</pre>
```

where key specifies the column name of the variable capturing variable labels (i.e. the original names of the columns to be re-shaped) and value the column values to be stored.

Below, we use the murder_2015_final data set from the fivethirtyeight package. The data contains number of murders in 83 U.S. cities. The dataset contains a column murder_2014 and a column murder_2015. For tidy data, we want one observation per row and one variable per column. The data is untidy because the two columns confuse the variables murder and 'year.

Below, we use gather() to tidy the data. For illustration we drop the variable change to show how to re-create it.

```
# install.packages("tidyr")
library(tidyr)
# install.packages("fivethirtyeight")
library(fivethirtyeight)
murder <- fivethirtyeight::murder_2015_final</pre>
head(murder)
## # A tibble: 6 x 5
##
                           murders_2014 murders_2015 change
     city
                 state
##
                 <chr>
                                   <int>
                                                 <int>
                                                        <int>
     <chr>>
## 1 Baltimore Maryland
                                     211
                                                   344
                                                          133
## 2 Chicago
                 Illinois
                                     411
                                                   478
                                                           67
## 3 Houston
                 Texas
                                     242
                                                   303
                                                           61
                                                   120
                                                           57
## 4 Cleveland Ohio
                                      63
## 5 Washington D.C.
                                     105
                                                   162
                                                           57
## 6 Milwaukee Wisconsin
                                      90
                                                   145
                                                           55
# using gather to re-shape
murder_tidy <- murder %>%
```

```
dplyr::select(-change) %>%
  gather(murders_year, value, murders_2014:murders_2015)
head(murder_tidy)
## # A tibble: 6 x 4
##
     city
               state
                          murders_year value
##
     <chr>>
               <chr>
                          <chr>
                                       <int>
## 1 Baltimore Maryland murders_2014
                                         211
## 2 Chicago
               Illinois murders_2014
                                         411
## 3 Houston
               Texas
                          murders 2014
                                         242
## 4 Cleveland Ohio
                          murders_2014
                                          63
## 5 Washington D.C.
                          murders 2014
                                         105
## 6 Milwaukee Wisconsin murders_2014
                                          90
```

We can use the separate() function from the tidyr package to turn the column murders_year into two separate columns and then drop the murder column.

NOTE: An alternative way would be to use regular expressions and the stringr package to extract the year from the murders_year column.

```
murder_tidier <- murder %>%
  dplyr::select(-change) %>%
  gather(murders_year, murders, murders_2014:murders_2015) %>%
  separate(murders_year, c("trash", "year"), sep = "_") %>%
  dplyr::select(-trash)
head(murder_tidier)
## # A tibble: 6 x 4
##
     city
                state
                          year murders
##
     <chr>
                <chr>
                          <chr>
                                  <int>
## 1 Baltimore Maryland 2014
                                    211
## 2 Chicago
               Illinois 2014
                                    411
## 3 Houston
                Texas
                          2014
                                    242
## 4 Cleveland Ohio
                          2014
                                     63
## 5 Washington D.C.
                          2014
                                    105
```

5.2.1 Dataviz: Barplots

6 Milwaukee Wisconsin 2014

Suppose we wanted to know what was the city in Florida with the overall highest number of murders. Now that the data is tidy, we can create a grouped bar plot, showing the 2014 and 2015 values with different fill colors.

90

Question Is the plot above showing what we want? How would you improve it?

The plot above is confusing! It is adding together the murders for 2014 and 2015, and differences are hard to gauge

We can use position = "dodge" within thegeom_bar()' statement place the bars for 2014 and 2015 next to each other and group them by city.

5.2.2 Creating the first difference

Below, we create a variable that captures the first difference of murders between 2014 and 2015 for each city using the lag() function. in combination with group_by(). Make sure your data is ordered in the right way using arrange() before taking the lagged value t-1 and subtracting it from the value at t.

Note, that we need to change the year variable from character to numeric to make the code work.

```
## Classes 'tbl_df', 'tbl' and 'data.frame': 166 obs. of 4 variables:
## $ city : chr "Baltimore" "Chicago" "Houston" "Cleveland" ...
## $ state : chr "Maryland" "Illinois" "Texas" "Ohio" ...
## $ year : chr "2014" "2014" "2014" "2014" ...
## $ murders: int 211 411 242 63 105 90 248 78 41 159 ...

murder_change <- murder_tidier %>%
    mutate(year = as.numeric(year)) %>%
    group_by(city) %>%
    arrange(year) %>%

# Creating variable for first difference
mutate(diff = murders - lag(murders),

# Creating indicator for negative differences
    diff_neg = ifelse(diff < 0, 1, 0))</pre>
```

We can visualize this difference for cities in Florida using a bar plot.

```
summary(murder_change$diff)
```


The plot can be improved by ordering the bars based on the difference in murder rate.

Suppose, I wanted to know whether murders appear to increase in cities that already had a large number of murders (i.e. above average in 2014), or whether it is "low murder rate" cities experiencing more homicides. We could plot the change in the number of murders for all cities in the data frame. This will create a very large bar plot that is hard to read without appropriately grouping the data.

Below, create a new data frame from murder_change, called murder_change_av, that adds a dummy variable coded 1 for observations that had above average murder rates in 2014 (taking into account only the year 2014), and 0 otherwise. Note that in the code below, we are not taking the population size of the cities into account, and plot just the absolute values.

```
murder_change_av <- murder_change %>%
  ungroup() %>%
  mutate(aboveav2014 = ifelse(murders >= mean(murders[year == 2014]), 1, 0)) %>%
  ungroup()
ggplot(subset(murder_change_av, !is.na(diff)),
       aes(x = reorder(city, diff),
           y = diff,
           fill = factor(aboveav2014))) +
  geom_bar(stat = 'identity') +
  coord_flip() +
  theme(axis.text.x = element_text(size = 1),
        legend.position = "none") +
  theme_light() +
  labs(title = "Drivers of increase in murder rates",
       y = "Change from 2014 to 2015",
       x = "") +
  scale_fill_manual(name = "Above average\nin 2014",
                    values = c("0" = "grey",
                               "1" = "orange"),
                    labels = c("No", "Yes"))
```


5.3 spread()

Suppose we wanted to revert our operation (or generall shape data from a long to a wide format), we can use tidyr's spread() function. The syntax is similar to gather().

```
new_df <- spread(old_df, key, value),</pre>
```

where key refers to the colum which contains the values that are to be converted to column names and value specifies the column that contains the value which is to be stored in the newly created columns.

For illustration purposes, we first remove the diff column below, because it leads to NA values when performing the spread() operation.

```
murders_untidy <- murder_change %>%
  dplyr::select(-diff) %>%
  spread(year, murders)
head(murders_untidy)
## # A tibble: 6 x 5
## # Groups:
               city [3]
##
     city
                 state
                             diff_neg `2014` `2015`
##
     <chr>
                                 <dbl>
                  <chr>>
                                        <int>
                                               <int>
## 1 Albuquerque New Mexico
                                    0
                                           NA
                                                  43
## 2 Albuquerque New Mexico
                                    NA
                                           30
                                                  NA
## 3 Anaheim
                 California
                                    0
                                           NA
                                                  18
## 4 Anaheim
                 California
                                    NA
                                           14
                                                  NA
## 5 Anchorage
                                           NA
                                                  26
                 Alaska
                                    0
## 6 Anchorage
                 Alaska
                                    NA
                                           12
                                                  NA
```

5.3.1 An additional note on barplots

Lets go back to the hflights data. Suppose we wanted to know which airline operates the most flights out of either Houston airport. Here, we will be using the operator n() to tell dplyr to count all the observations for the groups specified in group_by(). After computing the result, I would like to arrange the output from highest number of flights to lowest number.

```
carriers <- data %>%
  group_by(Airline) %>%
  summarise(NoFlights = n()) %>%
  arrange(desc(NoFlights))
```

We can display the result graphically using the <code>geom_bar()</code> geometric object. Note the following details on the usage of <code>geom_bar()</code> from the <code>ggplot2</code> package documentation below.

"The heights of the bars commonly represent one of two things: either a count of cases in each group, or the values in a column of the data frame. By default, geom_bar uses stat="bin". This makes the height of each bar equal to the number of cases in each group, and it is incompatible with mapping values to the y aesthetic. If you want the heights of the bars to represent values in the data, use stat="identity" and map a value to the y aesthetic. (https://www.rdocumentation.org/packages/ggplot2/versions/1.0.1/topics/geom_bar)

Thus, the creating the count variables using <code>group_by()</code> and <code>summarise()</code> is not absolutely necessary. However, for more complicated groupings of data, I highly recommend creating a separate data frame and "hard code" groupings of interest before graphing.

6 Advanced bar plots and lubridate

lubridate is another package in the tidyverse family that makes working with dates easier. Please refer to https://cran.r-project.org/web/packages/lubridate/vignettes/lubridate.html for more details on the package.

Below, we use conflict event data from the Armed Conflict Location & Event Data (ACLED) project. Please retrieve the ACLED event data from https://www.acleddata.com/data/ (Pakistan, selecting Battles and Violence against civilians). We use the readr package to read the .csv file downloaded from ACLED into R.

```
library(lubridate)

# loading the ACLED data
library(readr)
acled <- read_csv("1900-01-01-2019-05-03-Pakistan.csv")
acled_new <- acled %>%
    mutate(date = dmy(event_date)) %>%
    group_by(date, event_type) %>%
    summarise(count = n()) %>%
    ungroup() %>%

# Using lubridate functions below
mutate(year = year(date),
```


Does Ramadan have an effect on violence in Pakistan? We retrieve Ramadan dates from http://www.ichild.co.uk/p/when-is-ramadan-2013-2014-2015-2016-2017-2018-2019-2020-2021-2022 and add a layer showing the month of Ramadan in the plot below.

```
# Intervals
ram \leftarrow c(interval(ymd("2013-07-09"), ymd("2013-08-07")),
         interval(ymd("2014-06-28"), ymd("2014-07-27")),
         interval(ymd("2015-06-18"), ymd("2015-07-17")),
         interval(ymd("2016-06-07"), ymd("2016-07-06")),
         interval(ymd("2017-05-27"), ymd("2017-06-25")),
         interval(ymd("2018-05-16"), ymd("2018-06-14")))
int_start(ram)
## [1] "2013-07-09 UTC" "2014-06-28 UTC" "2015-06-18 UTC" "2016-06-07 UTC"
## [5] "2017-05-27 UTC" "2018-05-16 UTC"
df_ramadan <- data.frame(start = int_start(ram),</pre>
                         end = int_end(ram)) %>%
 mutate(year = year(start))
ggplot() +
  geom_bar(data = subset(acled_new, year %in% seq(2013, 2018)),
           aes(x = date,
               y = count,
              fill = event_type),
           stat = "identity") +
 facet_wrap(~ year, scales = "free_x", ncol = 1) +
  geom_rect(data = df_ramadan,
            aes(xmin = as.Date(start),
                xmax = as.Date(end),
                ymin = -Inf,
               ymax = Inf),
            alpha = 0.1,
            fill = "#BF8830") +
 theme_light() +
  scale_fill_manual(values = c("Battles" = "#071D70",
                               "Violence against civilians" = "#FF9E00")) +
  labs(title = "Violence in Pakistan",
       x = "",
       y = "Number of events")
```

Violence in Pakistan

