

 $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

And can be drawn by: $x = a \cos(t) \qquad y = b \sin(t) \qquad 0 \le t \le 2x$

 $\tan\theta = \frac{b \sin t}{a \cos t}$

$$\tan \theta = \frac{b}{a} \tan t$$

So how to find r at $\theta ?$ Substitute x and y coordinates in terms of r into (1): $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$

 $\frac{(r\cos\theta)^2}{a^2} + \frac{(r\sin\theta)^2}{b^2} = 1$

 $r^2b^2\cos^2\theta+r^2a^2\sin^2\theta=a^2b^2$ $r(\theta) = \frac{a^2b^2}{\sqrt{(b\cos\theta)^2 + (a\sin\theta)^2}}$

Substituting (6) into (2)

$$\theta = \arctan\left(\frac{b}{a} \tan t\right)$$

$$\theta \, = \arctan \left(-\frac{b}{a} \frac{b}{a \, \tan \phi} \right)$$

1. Find θ from a with (7) 2. Find a from θ with (4) 3. Find a from $\sigma = \phi + \theta - x$ 4. x offset: $r \cos \sigma$ 5. y offset: $r \sin \sigma$