Example

The purpose of this example is to compare adoc-math and asciidoctor-mathematical, and to show example of its usage.

adoc-math vs asciidoctor-mathematical

adoc-math

We are about to discuss the famous Cauchy-Schwarz Inequality.

Theorem 1 (Cauchy-Schwarz Inequality) Let n be a non-negative integer, and let $a_0, a_1, ..., a_n, b_0, b_1, ..., b_n \in \mathbb{R}$ where \mathbb{R} is the set of real numbers. It follows that:

$$\left(a_0^2+a_1^2+...+a_n^2\right)\left(b_0^2+b_1^2+...+b_n^2\right) \geq \left(a_0b_0+a_1b_1+...+a_nb_n\right)^2$$

Figure 1. Cauchy-Schwarz Inequality

asciidoctor-mathematical

Theorem 1 (Cauchy-Schwarz Inequality) Let n be a non-negative integer, and let a_0 , a_1 , ellipsis, a_n , b_0 , b_1 , ellipsis, $b_n \in R$ where R is the set of real numbers. It follows that

Cauchy-Schwarz Inequality

 $\left(a_0^2 + a_1^2 + \text{ellipsis} + a_n^2\right) \left(b_0^2 + b_1^2 + \text{ellipsis} + b_n^2\right) \geq \left(a_0 b_0 + a_1 b_1 + \text{ellipsis} + a_n b_n\right)^2$

Examples

input	output	notes
\$a/b\$	$\frac{a}{b}$	 The default language is AsciiMath. Inline cells start with a \$, and end with a \$.
\$a/b\$ amath	$\frac{a}{b}$	 Options come after the last \$ in inline cells. You can override the default language with amath (AsciiMath), or
<pre>\$\dfrac{a}{b}\$ tex</pre>	$\frac{a}{b}$	• tex (LaTeX) options
\$a/b\$ scale = 150%	$\frac{a}{b}$	• You can scale your math.
<pre>\$a/b\$ vertical_align_offset = 1ex</pre>	$\frac{a}{b}$	You can move your math up or down.
<pre>\$\$ amath sum_(i=1)^n i^3=((n(n+1))/2)^2 \$\$</pre>	$\sum_{i=1}^n i^3 = \left(rac{n(n+1)}{2} ight)^2$	• Block cells are written between lines of \$\$ the options will be on the first line.
<pre>\$\$ amath, right a^2 + b^2 = c^2 \$\$</pre>	$a^2 + b^2 = c^2$	You can horizontally align block cells.
<pre>\$\$ amath, max_lines = 8 1 + 2 + 3 + 4 + 5 + 6 = 21 \$\$\$</pre>	1+2+3+4+5+6=21	 If you forget to close a cell, it can be difficult to find the culprit. To prevent this, block cells have a max_lines parameter (by default 6). You can override this with max_lines=X.