

Aug 02, 2024

.

Agrobacterium-mediated transformation of Diplodia sapinea

DOI

dx.doi.org/10.17504/protocols.io.5qpvok7ozl4o/v1

Anne Geertje Oostlander¹, Laura Brodde^{2,3}, Miriam von Bargen¹, Bernard Slippers⁴, Yvonne Becker⁵, Ulrike Brandt¹, Frank Klawonn⁶, Christiaan Grobler⁴, Lucas Well¹, Jan Stenlid³, Jonàs Oliva^{3,7}, Malin Elfstrand³, André Fleißner¹

Fungal genetics

Diplodia sapinea protocols

Anne Geertje Oostlander

Technische Universität Braunschweig

OPEN ACCESS

DOI: dx.doi.org/10.17504/protocols.io.5qpvok7ozl4o/v1

Protocol Citation: Anne Geertje Oostlander, Laura Brodde, Miriam von Bargen, Bernard Slippers, Yvonne Becker, Ulrike Brandt, Frank Klawonn, Christiaan Grobler, Lucas Well, Jan Stenlid, Jonàs Oliva, Malin Elfstrand, André Fleißner 2024. Agrobacterium-mediated transformation of Diplodia sapinea. **protocols.io** https://dx.doi.org/10.17504/protocols.io.5qpvok7ozl4o/v1

License: This is an open access protocol distributed under the terms of the <u>Creative Commons Attribution License</u>, which permits unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited

¹Institute of Genetics, Technische Universität Braunschweig, Braunschweig, Germany;

²SCA Skog, NorrPlant, Sundsvall, Sweden;

³Department of Forest Mycology and Plant Pathology, Swedish University of Agricultural Sciences, Uppsala, Sweden;

⁴Department of Biochemistry, Genetics and Microbiology, Forestry and Agricultural Biotechnology Institute (FABI), University of Pretoria, South Africa;

⁵Institute for Epidemiology and Pathogen Diagnostics, Julius Kühn Institute (JKI)—Federal Research Centre for Cultivated Plants, Braunschweig, Germany;

⁶Helmholtz Centre for Infection Research (HZI), Braunschweig, Germany;

⁷Department of Agricultural and Forest Sciences and Engineering, University of Lleida, Lleida, Spain

Protocol status: Working
We use this protocol and it's
working

Created: July 23, 2024

Last Modified: August 02, 2024

Protocol Integer ID: 103916

Keywords: Diplodia sapinea, Diplodia tip blight, Sphaeropsis sapinea, Agrobacterium-mediated-transformation, homologous integration,

genetic transformation, ATMT

Funders Acknowledgement: Marie Skłodowska-Curie grant

Grant ID: 101008129 Ellen and Tage Westins foundation

Grant ID: .

Abstract

This protocol details an *Agrobacterium*-mediated genetic transformation method for the fungal plant pathogen *Diplodia sapinea*. The technique results in high rates of homologous integration, enabling both targeted mutagenesis and heterologous gene expression.

Guidelines

Overview Workflow		
	Transform Agrobacterium sp. AGL-1 and make glycerin-stocks step 1	
3 weeks before step 5	Inoculate plates with D. sapinea for spore production	step 5
Day 1	Plate Agrobacterium sp. AGL-1 from glycerin-stock step 2 and incubate	
Day 4	Agrobacterium sp. AGL-1 Pre-culture	step 3
	Prepare liquid IM without AS and MES for step 4	see recipes
	Prepare IM-plates for step 6	see recipes
	Prepare fungal spore suspension	step 5
	Prepare selection plates for step 7	see recipes
Day 5	Agrobacterium sp. AGL-1 Main-culture	step 4
	Co-Cultivation	step 6
Day 8	Perform selection	step 7

Materials

Potassium Buffer

Reference: Michielse et al. 2008

Ingredients:

- 1.25 M K₂HPO₄: 217.7 g K₂HPO₄
- 1.25 M KH₂PO₄: 170.1 g KH₂PO₄

Instructions:

- Fill each component up to 1 liter with water and autoclave.
- Add K₂HPO₄ solution to KH₂PO₄ solution until pH 4.8 is reached.

Magnesium-Sodium Solution

Reference: Michielse et al. 2008

Ingredients:

- 0.12 M MgSO₄·7H₂O: 30 g MgSO₄·7H₂O
- 0.25 M NaCl: 15 g NaCl

Instructions:

• Fill up to 1 liter with water and autoclave.

Calcium Chloride Solution

Reference: Michielse et al. 2008

Ingredients:

1% CaCl₂ (wt/vol): 10 g CaCl₂·2H₂O

Instructions:

• Fill up to 1 liter with water and autoclave.

Glucose Solution

Reference: Michielse et al. 2008

Ingredients:

■ 20% (wt/vol) C₆H₁₂O₆: 200 g C₆H₁₂O₆·H₂O

Instructions:

• Fill up to 1 liter with water and autoclave.

Ferric Sulfate Solution

Reference: Michielse et al. 2008

Ingredients:

■ 0.01% FeSO₄: 0.1 g FeSO₄·7H₂O

Instructions:

• Fill up to 1 liter with water and sterile filtrate.

Trace Elements

Reference: Michielse et al. 2008

Ingredients:

■ 0.01% ZnSO₄·7H₂O: 0.1 g ZnSO₄·7H₂O

■ 0.01% CuSO₄·5H₂O: 0.1 g CuSO₄·5H₂O

■ 0.01% H₃BO₃: 0.1 g H₃BO₃

■ 0.01% MnSO₄·H₂O: 0.1 g MnSO₄·H₂O

■ 0.01% Na₂MoO₄·2H₂O: 0.1 g Na₂MoO₄·2H₂O

Instructions:

• Fill up to 1 liter with water and autoclave.

Ammonium Nitrate Solution

Reference: Michielse et al. 2008

Ingredients:

■ 2.5 M NH₄NO₃: 200 g NH₄NO₃

Instructions:

• Fill up to 1 liter with water and sterile filtrate.

Solid Lysogeny Broth Medium (LB)

Reference: Bertani 1951

Ingredients:

- 5 g Yeast Extract
- 10 g Peptone
- 10 g Sodium Chloride
- 15 g Agar

Instructions:

• Fill up to 1 liter with water and autoclave.

Liquid Lysogeny Broth Medium (LB)

Reference: Bertani 1951

Ingredients:

- 5 g Yeast Extract
- 10 g Peptone
- 10 g Sodium Chloride

Instructions:

• Fill up to 1 liter with water and autoclave.

MES Buffer

Reference: Michielse et al. 2008

Ingredients:

■ 1 M 2-(N-Morpholino) ethanesulfonic acid (MES): 195.24 g MES

Instructions:

- Adjust pH to 5.5 with NaOH.
- Fill up to 1 liter with water and sterile filtrate.
- Aliquot (10 ml) and store at -20°C in darkness.

Glycerol Solution

Reference: Michielse et al. 2008

Ingredients:

■ 50% Glycerol (v/v): 500 ml Glycerol

Instructions:

• Fill up to 1 liter with water and autoclave.

Acetosyringone (AS) Solution

Reference: Michielse et al. 2008

Ingredients:

• 0.2 M Acetosyringone: 785 mg Acetosyringone

Instructions:

- Fill up to 20 ml with DMSO and sterile filtrate.
- Aliquot and store at -20°C in darkness.
- Concentration of work: 200 μM.

Hygromycin B Stock Solution

Ingredients:

Hygromycin B (100 mg/ml): 1 g

Instructions:

- Fill up to 10 ml with dH₂O and sterile filtrate.
- Aliquot and store at -20°C in darkness.

Cefotaxime Stock Solution

Reference: Michielse et al. 2008

Ingredients:

• 0.2 M Cefotaxime: 955 mg Cefotaxime

Instructions:

- Fill up to 10 ml with dH₂O and sterile filtrate.
- Aliquot and store at -20°C in darkness.

Solid Induction Medium (IM)

Reference: Michielse et al. 2008

Ingredients:

- 15 g Agar
- 905.7 ml Water

Instructions:

- Autoclave.
- Directly before use, add for 1 l of medium:
- 800 µl Potassium buffer
- 20 ml Magnesium-sodium solution
- 1 ml Calcium chloride solution
- 5 ml Glucose solution
- 10 ml Ferric sulfate solution
- 5 ml Trace elements
- 2.5 ml Ammonium nitrate solution
- 10 ml Glycerol solution
- 200 μM Acetosyringone (AS) solution: 250 μl
- 40 ml MES buffer: 250 µl

Liquid Induction Medium (IM)

Reference: Michielse et al. 2008

Ingredients:

- 800 µl Potassium buffer
- 20 ml Magnesium-sodium solution
- 1 ml Calcium chloride solution
- 10 ml Glucose solution
- 10 ml Ferric sulfate solution
- 5 ml Trace elements
- 2.5 ml Ammonium nitrate solution
- 10 ml Glycerol solution
- 900.7 ml autoclaved water

Instructions:

- Directly before use, add for 1 I of medium:
- 200 μM Acetosyringone (AS): 1 ml AS
- 40 ml MES buffer

Vogels Trace Element Solution

Reference: Vogel 1956

Ingredients:

- 238 mM Citric acid (monohydrate): 5 g Citric acid (monohydrate)
- 174 mM ZnSO₄·7H₂O: 5 g ZnSO₄·7H₂O
- 25 mM (NH₄)₂Fe(SO₄)₂·6H₂O: 1 g (NH₄)₂Fe(SO₄)₂·6H₂O
- 10 mM CuSO₄·5H₂O: 0.25 g CuSO₄·5H₂O
- 3 mM MnSO₄·H₂O: 0.05 g MnSO₄·H₂O
- 8 mM H₃BO₃: 0.05 g H₃BO₃
- 2 mM Na₂MoO₄·2H₂O: 0.05 g Na₂MoO₄·2H₂O

Instructions:

Dissolve all components successively in 95 ml distilled water while stirring at room temperature.

Vogels Biotin Solution

Reference: Vogel 1956

Ingredients:

5 mg Biotin

Instructions:

Dissolve in 100 ml 50% ethanol.

Vogels Salts Solution

Reference: Vogel 1956

Ingredients:

- 125 g Na₃Citrate·2H₂O
- 250 g KH₂PO₄
- 100 g NH₄NO₃
- 10 g MgSO₄·7H₂O
- 5 g CaCl₂·2H₂O
- 5 ml Vogels Trace Element Solution
- 2.5 ml Vogels Biotin Solution

Instructions:

- Dissolve all components successively while stirring.
- Fill up to 1 liter with water.

Vogels Minimal Medium (VMM)

Reference: Vogel 1956

Ingredients:

- 20 ml Vogels Salts Solution
- 20 g Sucrose
- 15 g Agar

Instructions:

• Fill up to 1 liter with water and autoclave.

Transformation of electrocompetent *Agrobacterium* sp. AGL-1cells with plasmid DNA by electroporation

- 1 Thaw electrocompetent cells on ice.
- 2 Add 1 1.5 μl of plasmid DNA to 50 μl of cells.
- 3 Incubate on ice for 2 min.
- 4 Transfer the cell-DNA mixture to a chilled electroporation cuvette (2 mm) without introducing bubbles. Flick the cuvette downward quickly to distribute cells across the bottom of the well.
- 5 Electroporate the mixture with the following settings:

Voltage: 2500 V Capacitance: 25 μ F Resistance: 400 Ω

- Add 1 ml of LB medium to the cuvette immediately after pulsing and gently pipette up and down to resuspend the cells.
- 7 Transfer the cell suspension to a reagent tube and incubate the culture:

28 – 30°C 250 rpm 3 h

8 Spread the cells (10 µl, 100 µl, rest) onto selective plates with following selection markers:

50 μg/ml Kanamycin (10 μl stock / 10 ml medium) 25 μg/ml Rifampicin (5 μl stock / 10 ml medium) 100 μg/ml Carbenicillin (10 μl stock / 10 ml medium)

- 9 Incubate at 28 30°C. Transformed colonies are visible after 24-72 h.
- Prepare a glycerin stock from several colonies and check via colony-PCR or plasmid preparation and PCR if your strains contain the expected fragment.

Plate Agrobacterium sp. AGL-1

11 Inoculate LB plates (10 ml) containing the following selection markers with Agrobacterium sp. AGL-1 from the glycerin stock. Use the untransformed strain as a negative control. Incubate at 28°C for about 2 days.

AGL1 transformed: 50 µg/ml Kanamycin (10 µl stock / 10 ml medium), 25 µg/ml Rifampicin (5 μl stock / 10 ml medium), 100 μg/ml Carbenicillin (10 μl stock / 10 ml medium)

AGL1 untransformed: 25 μg/ml Rifampicin (5 μl stock / 10 ml medium), 100 μg/ml Carbenicillin (10 µl stock / 10 ml medium)

Pre-culture of Agrobacterium sp. AGL-1

12 Inoculate 25 ml of liquid LB with the following selection markers in a 250 ml flask with a colony from fresh plates:

AGL1 transformed: 50 µg/ml Kanamycin (25 µl stock / 25 ml medium)

AGL1 untransformed: 25 µg/ml Rifampicin (12,5 µl stock / 25 ml medium)

13 Incubate until the cultures reached an OD_{600nm} of 0.5 to 0.9:

200 rpm

28°C

~ 22 h

Main-culture Agrobacterium sp. AGL-1

14

Transfer 12-15 ml of the Agrobacterium sp. AGL-1 suspension to a 50 ml centrifuge tube and centrifuge at:

3500 rpm

10 min

15 Wash the pellet with 1 ml freshly made liquid IM (see table, 100 ml Medium + 100 µl AS + 4 ml MES buffer) and centrifuge at:

3500 rpm

10 min

16 Resuspend the pellet in liquid IM to an OD_{600nm} of about 0.3.

17 Incubate ca. 25 ml until the OD_{600} is doubled (about 0.6 – 0.8) in a 250 ml Erlenmeyer flask.

28°C

200 rpm

8 - 10 h

Preparation of fungal spore suspension

- 18 Harvest spores of D. sapinea by rinsing the plate with 0.01 % Tween (Incubated on VMM, 21 d, constant light, 5000 - 7000 Lux)
- 19 Centrifuge spores for 10 s at 5000 rpm, discard supernatant.
- 20 Wash spores twice with 1 - 2 ml liquid IM and centrifuge at:

5000 rpm

10 s

21 Resuspend cells in IM to a concentration of $2 \cdot 10^6$ spores/ml. 50 µl suspension is needed per transformation.

Co-Cultivation

- 22 Onto 5.5 cm IM plates (freshly made or made the day before, ca. 5 ml medium per plate; stored in darkness at 4°C) place a nitrocellulose filter (MF-Millipore™ HAWP03700) with sterile tweezers.
- 23 Mix 50 µl of the spore suspension and 50 µl of the Agrobacterium sp. AGL-1 culture and 20 µl IM per transformation.
- 24 Pipette 110 µl of the mixture onto the filter and spread by tilting the plate. Ensure that the suspension does not run off the filter.
- 25 Incubate at:

22°C

upside down

in darkness

3 days

Selection

26 Add ca. 5 ml selection medium per plate (freshly made or made a few days before). Selection medium:

VMM + 300 μ M Cefotaxim (150 μ l in 50 ml) +10 μ g/ml Hygromycin B (10 μ l in 100 ml)

27 Incubate at:

28°C

1 - 2 weeks

darkness

Harvest of Transformants

28 Pick fungal colonies that grow through the selection medium and transfer them onto new selection plates (VMM + 10 μg/ml Hygromycin B (10 μl in 100 ml)). Verify successful transformation by PCR.

Protocol references

Michielse CB, Hooykaas PJJ, van den Hondel CAMJJ, Ram AFJ. Agrobacterium-mediated transformation of the filamentous fungus Aspergillus awamori. Nat Protoc 2008; 3(10):1671-8.

Vogel HJ. A convenient growth medium for Neurospora crassa (Medium N). Microbial genetics bulletin 1956; (13):42-3.