数学模型与数学软件

第7次作业

1907402030

熊 雄*

2022 年 4 月 29 日

^{*}mrxiongx@foxmail.com 苏州大学数学科学学院本科生

Problem 1

(Page 196 Ex.5.)

某市有甲、乙、丙、丁四个居民区, 自来水有 A, B, C 三个水库供应. 四个区每天必须得到保证的基本用水量分别是 30kt, 70kt, 10kt, 10kt, 由于水源紧张, 三个水库每天最多只能分别供应 50kt, 60kt, 50kt 自来水. 由于地理位置的差别, 自来水公司从各水库向各区送水所需付出的引水管理费不同 (见表 8.4, 其中 C 水库与丁区之间没有输水管道), 其他管理费用都是 450 元/kt. 根据公司规定, 各区用户按照统一标准 900 元/kt 收费. 此外, 四个区都向公司申请了额外用水量, 分别为 50kt, 70kt, 20kt, 40kt. 该公司应如何分配供水量, 才能获利最多? 为了增加供水量,自来水公司正在考虑进行水库改造,使三个水库每天的最大供水量都提高一倍,问那时供水方案应如何改变?公司利润可增加到多少?

表 8.4

引水管理费/(元/kt)	甲	Z	丙	丁
A	160	130	220	170
В	140	130	190	150
$\overline{}$	190	200	230	_

Solution.

a) 对于问题 (1)

• 模型建立

设 A 水库分别向甲、乙、丙、丁四个居民区输送 x_1, x_2, x_3, x_4kt 的自来水. 设 B 水库分别向甲、乙、丙、丁四个居民区输送 y_1, y_2, y_3, y_4kt 的自来水. 设 C 水库分别向甲、乙、丙三个居民区输送 z_1, z_2, z_3kt 的自来水. 由题目条件知,自来水公司需满足各个居民区的基本用水量需求,同时不超出基本用水量和额外供水量需求,则有如下约束条件:

$$\begin{cases} 30 \le x_1 + y_1 + z_1 \le 30 + 50, \\ 70 \le x_2 + y_2 + z_2 \le 70 + 70, \\ 10 \le x_3 + y_3 + z_3 \le 10 + 20, \\ 10 \le x_4 + y_4 \le 10 + 40, \\ \sum_{i=1}^{4} x_i \le 50, \\ \sum_{j=1}^{4} y_j \le 60, \\ \sum_{k=1}^{3} z_k \le 50. \end{cases}$$

设自来水公司的总利润为 T 元. 则由题目条件知

$$T = (900 - 450) \left(\sum_{i=1}^{4} x_i + \sum_{j=1}^{4} y_j + \sum_{k=1}^{3} z_k \right) - (160x_1 + 140y_1 + 190z_1)$$

$$- (130x_2 + 130y_2 + 200z_2) - (220x_3 + 190y_3 + 230z_3)$$

$$- (170x_4 + 150y_4)$$

$$= 290x_1 + 320x_2 + 230x_3 + 280x_4 + 310y_1 + 320y_2 + 260y_3$$

$$+ 300y_4 + 260z_1 + 250z_2 + 220z_3.$$

故只需在约束条件下求出目标函数 T 的最大值即可.

• 代码实现

编写 lingo 程序如下:

```
max = 290 * x1 + 320 * x2 + 230 * x3 + 280 * x4 + 310 * y1 + 320 * y2 + 260 * y3 + 300 * y4 + 260 * z1 + 250 * z2 + 220 * z3;

x1 + y1 + z1 >= 30;

x1 + y1 + z1 <= 80;

x2 + y2 + z2 >= 70;

x2 + y2 + z2 <= 140;

x3 + y3 + z3 >= 10;

x3 + y3 + z3 <= 30;

x4 + y4 >= 10;

x4 + y4 <= 50;

x1 + x2 + x3 + x4 <= 50;

x1 + x2 + x3 + y4 <= 60;

x1 + x2 + x3 <= 50;
```

得到输出如下:

```
Global optimal solution found.
     Objective value:
                                                     47600.00
      Infeasibilities:
                                                     0.000000
     Total solver iterations:
     Elapsed runtime seconds:
                                                         0.17
                                                           _{
m LP}
     Model Class:
     Total variables:
                                            11
     Nonlinear variables:
                                            0
                                             0
     Integer variables:
11
     Total constraints:
                                            12
13
     Nonlinear constraints:
                                             0
     Total nonzeros:
                                            44
16
     Nonlinear nonzeros:
                                             0
```


18				
19				
20				
21	Variable	Value	Reduced Cost	
22	X1	0.000000	30.00000	
23	X2	50.00000	0.000000	
24	X3	0.000000	50.00000	
25	X4	0.000000	20.00000	
26	Y1	0.000000	10.00000	
27	Y2	50.00000	0.000000	
28	Y3	0.000000	20.00000	
29	Y4	10.00000	0.000000	
30	Z1	40.00000	0.000000	
31	Z2	0.000000	10.00000	
32	Z3	10.00000	0.000000	
33				
34	Row	Slack or Surplus	Dual Price	
35	1	47600.00	1.000000	
36	2	10.00000	0.000000	
37	3	40.00000	0.000000	
38	4	30.00000	0.000000	
39	5	40.00000	0.000000	
40	6	0.000000	-40.00000	
41	7	20.00000	0.000000	
42	8	0.000000	-20.00000	
43	9	40.00000	0.000000	
44	10	0.000000	320.0000	
45	11	0.000000	320.0000	
46	12	0.000000	260.0000	

• 结果分析

自来水公司这样分配:

- A 水库向乙社区分配 50kt;
- B 水库向乙社区分配 50kt, 向丁社区分配 10kt;
- C 水库向甲社区分配 40kt, 向丙社区分配 10kt.

此时公司可以获得最大利润,最大利润为 47600 元.

b) 对于问题 (2)

• 模型建立

因为自来水公司正在考虑进行水库改造, 使三个水库每天的最大供水量都提高

一倍, 故约束条件应变为

$$\begin{cases} 30 \le x_1 + y_1 + z_1 \le 30 + 50, \\ 70 \le x_2 + y_2 + z_2 \le 70 + 70, \\ 10 \le x_3 + y_3 + z_3 \le 10 + 20, \\ 10 \le x_4 + y_4 \le 10 + 40, \\ \sum_{i=1}^{4} x_i \le 100, \\ \sum_{j=1}^{4} y_j \le 120, \\ \sum_{k=1}^{3} z_k \le 100. \end{cases}$$

• 代码实现

在 a) 中相应的 lingo 程序代码的第 $10,\,11,\,12$ 行应更改为:

得到输出如下:

1	Global optimal	solution found.	
2	Objective value:		88700.00
3	Infeasibilities:		0.000000
4	Total solver it	terations:	7
5	Elapsed runtin	ne seconds:	0.09
6			
7	Model Class:		LP
8			
9	Total variables		11
10	Nonlinear vari		0
11	Integer variab	les:	0
12			
13	Total constraints:		12
14	Nonlinear cons	straints:	0
15			
16	Total nonzeros:		44
17	Nonlinear nonzeros:		0
18			
19			
20	Variable	Value	Reduced Cost
21	variable X1	0.000000	20.00000
22 23	X1 X2	100.0000	0.00000
23	X3	0.00000	40.00000
25	X4	0.000000	20.00000
26	Y1	30.00000	0.000000
27	Y2	40.00000	0.000000
28	Y3	0.000000	10.00000
29	Y4	50.00000	0.000000

30	Z1	50.00000	0.000000	
31	Z2	0.000000	20.00000	
32	Z3	30.00000	0.000000	
33				
34	Row	Slack or Surplus	Dual Price	
35	1	88700.00	1.000000	
36	2	50.00000	0.000000	
37	3	0.000000	260.0000	
38	4	70.00000	0.000000	
39	5	0.000000	270.0000	
40	6	20.00000	0.000000	
41	7	0.000000	220.0000	
42	8	40.00000	0.000000	
43	9	0.000000	250.0000	
44	10	0.000000	50.00000	
45	11	0.000000	50.00000	
46	12	20.00000	0.000000	

• 结果分析

自来水公司这样分配:

- A 水库向乙社区分配 100kt;
- B 水库向甲社区分配 30kt, 向乙社区分配 40kt, 向丁社区分配 50kt;
- C 水库向甲社区分配 50kt, 向丙社区分配 30kt.

此时自来水公司可以获得最大利润,最大利润为88700元.

Problem 2

(Page 196 Ex.6.) 某银行经理计划用一笔资金进行有价证券的投资, 可供购进的证券以及其信用等级、到期年限、收益如表 8.5 所示. 按照规定, 市政证券的收益可以免税, 其它证券的收益需按 50% 的税率纳税. 此外, 还有以下限制

- a) 政府及代办机构的证券总共至少要购进 400 万元;
- b) 所购证券的平均信用等级不超过 1.4(信用等级越小, 信用程度越高);
- c) 所购证券的平均到期年限不超过 5 年.

问

- a) 若该经理有 1000 万元资金, 应如何投资?
- b) 如果能够以 2.75% 的利率借到不超过 100 万元资金, 该经理应如何操作.
- c) 在 1000 万元资金的情况下, 若证券 A 的税前收益增加为 4.5%, 投资应否改变, 若证券 C 的税前收益减少为 4.8%, 投资应否改变?

表8.	5
-----	---

证券名称	证券种类	信用等级	到期年限/年	到期税前收益/%
\overline{A}	市政	2	9	4.3
\overline{B}	代办机构	2	15	5.4
\overline{C}	政府	1	4	5.0
\overline{D}	政府	1	3	4.4
E	市政	5	2	4.5

Solution.

• 模型建立

设证券 A,B,C,D,E 的投资金额分别为 a,b,c,d,e 万元,则由题可得约束条件为

$$\begin{cases} b+c+d \ge 400, \\ \frac{2a+2b+c+d+5e}{a+b+c+d+e} \le 1.4, \\ \frac{9a+15b+4c+3d+2e}{a+b+c+d+e} \le 5, \\ a,b,c,d,e \ge 0. \end{cases}$$

设总收益 (目标函数) 为 T, 则

$$T = 4.3\% \cdot a + 50\% \cdot (5.4\% \cdot b + 5.0\% \cdot c + 4.4\% \cdot d) + 4.5\% \cdot e$$
$$= 4.3\% \cdot a + 2.7\% \cdot b + 2.5\% \cdot c + 2.2\% \cdot d + 4.5\% \cdot e.$$

• 问题 1 的求解

若该经理有 1000 万元资金, 则约束条件变为

$$\begin{cases} a+b+c+d+e \leq 1000, \\ b+c+d \geq 400, \\ \frac{2a+2b+c+d+5e}{1000} \leq 1.4, \\ \frac{9a+15b+4c+3d+2e}{1000} \leq 5, \\ a,b,c,d,e \geq 0. \end{cases}$$

在 Lingo 中输入以下代码:

```
 \begin{aligned} & \max = 0.043 * a + 0.027 * b + 0.025 * c + 0.022 * d + 0.045 * e; \\ & a + b + c + d + e <= 1000; \\ & b + c + d >= 400; \\ & 2 * a + 2 * b + c + d + 5 * e <= 1.4 * 1000; \\ & 9 * a + 15 * b + 4 * c + 3 * d + 2 * e <= 5 * 1000; \end{aligned}
```

运行得到:

Global optimal	solution found.		
Objective val	ue:	29.83636	
Infeasibilitie	s :	0.000000	
Total solver	iterations:	5	
Elapsed runti	me seconds:	0.11	
Variable	Value	Reduced Cost	
A	218.1818	0.000000	
В	0.000000	$0.3018182\mathrm{E}{-01}$	
$^{\mathrm{C}}$	736.3636	0.000000	
D	0.000000	$0.6363636E{-}03$	
\mathbf{E}	45.45455	0.000000	
Row	Slack or Surplus	Dual Price	
1	29.83636	1.000000	
2	0.000000	$0.9363636E{-}02$	
3	336.3636	0.000000	
4	0.000000	$0.6181818E{-02}$	
5	0.000000	$0.2363636E{-}02$	

故若该经理有 1000 万元资金, 投资经理应**分别投资** *A*, *C*, *E* 资产 **218.2 万元, 736.4** 万元, **45.4** 万元, **不投资** *B*, *D* 资产, 投资总收益为 **29.8364** 万元.

• 问题 2 的求解

如果能够以 2.75% 的利率借到不超过 100 万元资金, 设借款 s 万元, 则 $0 \le s \le 100$. 此时的目标函数为

$$T = 4.3\% \cdot a + 2.7\% \cdot b + 2.5\% \cdot c + 2.2\% \cdot d + 4.5\% \cdot e - 2.75\% \cdot s.$$

约束条件为

$$\begin{cases} s \le 100 \\ a+b+c+d+e \le 1000+s \\ b+c+d \ge 400 \\ \\ \frac{2a+2b+c+d+5e}{a+b+c+d+e} \le 1.4 \\ \frac{9a+15b+4c+3d+2e}{a+b+c+d+e} \le 5 \\ a,b,c,d,e,s \ge 0. \end{cases}$$

编写 Lingo 程序如下:

```
 \begin{array}{c} \mathbf{max} = 0.043* a + 0.027* b + 0.025* c + 0.022* d + 0.045* e - 0.0275* s; \\ a + b + c + d + e <= 1000 + s; \\ b + c + d >= 400; \\ a + b + c + d + e >= 400; \\ 2* a + 2* b + c + d + 5* e <= 1.4* (a + b + c + d + e); \\ 9* a + 15* b + 4* c + 3* d + 2* e <= 5* (a + b + c + d + e); \\ s <= 100; \end{array}
```

运行得到:

г				
1	Global optima	al solution found.		
2	Objective value:		30.07000	
3	Infeasibilitie	s:	0.000000	
4	Total solver	iterations:	3	
5	Elapsed runt	ime seconds:	0.09	
6				
7	Variable	Value	Reduced Cost	
8	A	240.0000	0.000000	
9	В	0.000000	$0.3018182\mathrm{E}{-01}$	
10	$^{\mathrm{C}}$	810.0000	0.000000	
11	D	0.000000	0.6363636E - 03	
12	E	50.00000	0.000000	
13	S	100.0000	0.000000	
14				
15	Row	Slack or Surplus	Dual Price	
16	1	30.07000	1.000000	
17	2	0.000000	$0.2983636E{-01}$	
18	3	410.0000	0.000000	
19	4	700.0000	0.000000	
20	5	0.000000	$0.6181818E{-02}$	
21	6	0.000000	$0.2363636E{-}02$	
22	7	0.000000	$0.2336364E{-}02$	
L				

因此, 投资经理应**借入 100 万元资金**, 分别**投资** A 资产 240 万元, B 资产 100 万元, C 资产 810 万元, E 资产 50 万元, 不投资 D 资产, 这样可以获得最大的投资收益, 最大的投资收益为 30.07 万元.

• 问题 3 的求解

- 若证券 A 的税前收益增加为 4.5%

则此时的目标函数为

$$T = 4.5\% \cdot a + 2.7\% \cdot b + 2.5\% \cdot c + 2.2\% \cdot d + 4.5\% \cdot e$$
.

约束条件为

$$\begin{cases} a+b+c+d+e \leq 1000, \\ b+c+d \geq 400, \\ \frac{2a+2b+c+d+5e}{a+b+c+d+e} \leq 1.4, \\ \frac{9a+15b+4c+3d+2e}{a+b+c+d+e} \leq 5. \\ a,b,c,d,e \geq 0. \end{cases}$$

Lingo 程序与前面类似, 可以得到运行结果与第 a) 问一致, 最大收益为: 29.83636, 故**不需要改变投资方案**.

- 若证券 C 的税前收益减少为 4.8%

则此时的目标函数为

$$T = 4.5\% \cdot a + 2.7\% \cdot b + 2.4\% \cdot c + 2.2\% \cdot d + 4.5\% \cdot e.$$

约束条件为

$$\begin{cases} a+b+c+d+e \le 1000, \\ b+c+d \ge 400, \\ \frac{2a+2b+c+d+5e}{a+b+c+d+e} \le 1.4, \\ \frac{9a+15b+4c+3d+2e}{a+b+c+d+e} \le 5, \\ a,b,c,d,e \ge 0. \end{cases}$$

Lingo 程序与前面类似,可以得到运行得到的最大收益为: 29.42400 > 29.83636, 故需要改变投资方案为: 分别投资 A 资产 336 万元, D 资产 648 万元, E 资产 16 万元, 不投资 B, C 资产. ■