CSE - 015: Homework 3

Jaime Rivera

February 24, 2019

1 Knights and Knaves:

Recall the Knights and Knaves puzzle we saw in class. In that fictional world there are two types of people. Knights - who always tell the truth, and Knaves - who always lie. It is impossible to distinguish them by appearance, but only by the truth of their statements.

• One day a traveller was wandering around the island of Knights and Knaves, when he encountered two local inhabitants, P and Q. The traveller asked: "Is any of you a knave?". P replied: "At least one of us is a knave".

Case	Р	Q
1	Knight	Knight
2	Knave	Knight
3	Knight	Knave
4	Knave	Knave

- Can you find out what P and Q are? If so, what are they? If not, explain why not, and what other information you would need to know.
 - * Knave: always tells lie
 - * Knight: always tells truth
 - * P's statement is false for the case 1 and True for the cases 2,3 and 4. If P is a Knight then what he says would be true, that means case 1 can't happen but case 3 can. If P is a Knave, whatever he would say must be False, meaning neither case 2 nor case 4 can happen as Knave always lie. Thus the only possible case is Row 3 and therefore P is a Knight and Q is a Knave.
- Later on, the traveller met two other locals, A and B. He asked whether either of them is a knight. A replied: "If B is a knave, then I am a knave too".

Case	P	Q
1	Knight	Knight
2	Knave	Knight
3	Knight	Knave
4	Knave	Knave

- What are A and B?
 - * Knave: always tells lie

- * Knight: always tells truth
- * A's statement is false for the case 1 and True for the cases 2,3 and 4. If P is a Knight then what he says would be true, that means case 1 and case 3 can't happen. If P is a knave then what he says would be False, this means case 4 can't happen. The only possibility is that A is a Knave and B is a Knight, i.e, case 2 is the only possible scenario.

2 Logical Identities:

Simplify the following propositions. Show all steps of your solutions.

- \bullet $-(p \to (q \to p))$
 - According to the Implication Law: $p \to q \equiv \neg q \lor p$. so, $\neg (p \to (\neg q \lor p)$
 - Again using Implication Law: $\neg(\neg p \lor (\neg q \lor p))$
 - According to De Morgans's Law: $\neg(a \lor b) \equiv \neg a \land \neg b, \neg p \equiv a \text{ and } (\neg q \lor p) \equiv b$

$$* \neg (\neg p) \land \neg (\neg q \lor p)$$

- Again using De Morgans's Law: $\neg(a \lor b) \equiv \neg a \land \neg b$,
 - * $\neg q$ is a
 - * p is b

$$* \neg (\neg p) \land \neg (\neg q) \land \neg p$$

- According to double negation law: $\neg(\neg p) \equiv p$
 - $* p \land q \land \neg p$
 - $* \ p \wedge \neg p \wedge q$
- $-p \wedge \neg p \equiv F$, thus
- $FALSE \land q \equiv q$
- $-p((p \land q) \rightarrow (q \lor p))$
 - Let $(p \wedge q)$ be a, $(q \vee p)$ be b
 - According to Implication Law, $p \to q \equiv \neg p \lor q$
 - $* \neg a \lor b$
 - Substituting the values of a and b we have,

$$* \neg (p \land q) \lor (q \lor p)$$

– According to De Morgan's Law: $\neg(p \land q) \equiv \neg p \lor \neg q$

$$* \neg p \lor \neg q \lor (q \lor p) \longrightarrow 1$$

- According to associative law: $(p \lor q) \lor r \equiv p \lor (q \lor r)$
- Rearranging 1,

$$* (\neg p \lor p) \lor (\neg q \lor q)$$

- According to negation laws, $p \vee \neg p \equiv T$
- $-TRUE \lor TRUE \equiv TRUE$

3 Logical Equivalences

Determine whether or not the following pairs of propositions are equivalent. Show all steps.

• $p \to (q \to r)$ and $(p \land q) \to r$

– Answer: $p \to (q \to r) \neq (p \land q) \to r$

q	r	p	$q \rightarrow r$	$p \to (q \to r)$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

and

p	q	r	$p \wedge q$	$(p \land q) \to r$
0	0	0	0	1
0	0	1	0	1
0	1	0	0	1
0	1	1	0	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

• $p \to (q \to r)$ and $(p \to q) \to r$

- Answer: $p \to (q \to r) \neq (p \to q) \to r$ $\boxed{a \mid r \mid p \mid q \to r \mid p \to (q \to r)}$

q	r	p	$q \rightarrow r$	$p \to (q \to r)$
0	0	0	1	1
0	0	1	1	1
0	1	0	1	1
0	1	1	1	1
1	0	0	0	1
1	0	1	0	0
1	1	0	1	1
1	1	1	1	1

and

p	q	r	$p \rightarrow q$	$(p \to q) \to r$
0	0	0	1	0
0	0	1	1	1
0	1	0	1	0
0	1	1	1	1
1	0	0	0	1
1	0	1	0	1
1	1	0	1	0
1	1	1	1	1

4 Logical Consequence

• 1.

Jimmy is smart

Smart People are rich

Jimmy is Rich

Answer: Valid: Jimmy is rich

Jimmy is smart

Jimmy then smart

 $Jimmy \rightarrow smart$

Smart People are rich

Smart then rich

 $Smart \to rich$

 $Jimmy \rightarrow rich \equiv Jimmy is rich$

• 2.

Islands are surrounded by water

Puerto Rico is surrounded by water

Puerto Rico is an island

Answer: Not Valid: We cannot say Puerto Rico is an island is always true.

Islands are surrounded by water

Islands \rightarrow surrounded by water

Puerto Rico is surrounded by water

Puerto Rico \rightarrow surrounded by water

Puerto Rico is not always an island