a)

u_k	\mathbf{u}_{k-1}	U _{k-2}	S	X ₁	Х2
0	0	0	S0	0	0
1	0	0	S0	1	1
0	1	0	S1	1	0
1	1	0	S1	0	1
0	0	1	S2	1	1
1	0	1	S2	0	0
0	1	1	S3	0	1
1	1	1	S 3	1	0

Für x₁:

Suche a_k , a_{k-1} und a_{k-2} , so dass $a_k \cdot u_k + a_{k-1} \cdot u_{k-1} + a_{k-2} \cdot u_{k-2}$ in der Modulo-2 Arithmetik für alle Zeilen der Tabelle das korrekte Ergebnis liefert. Betrachte alle Zeilen der Tabelle. Nur für $a_k = 1$, $a_{k-1} = 1$ und $a_{k-2} = 1$ ist dies gegeben. D.h., $x_1 = u_k + u_{k-1} + u_{k-2}$

Für x₂:

Suche a_k , a_{k-1} und a_{k-2} , so dass $a_k \cdot u_k + a_{k-1} \cdot u_{k-1} + a_{k-2} \cdot u_{k-2}$ in der Modulo-2 Arithmetik für alle Zeilen der Tabelle das korrekte Ergebnis liefert. Betrachte alle Zeilen der Tabelle. Nur für $a_k = 1$, $a_{k-1} = 0$ und $a_{k-2} = 1$ ist dies gegeben. D.h., $x_2 = u_k + u_{k-2}$

b) Die Eingangssymbolfolge ist nicht in unveränderter Form in der Ausgangssymbolfolge enthalten, daher handelt es sich nicht um einen systematischen Code.

$$R = K/N = 1/2$$
 $L = 2$

Jedes Eingangsbit beeinflusst genau 6 Ausgangsbits.

- d) Die Decodierung erfolgt mit dem Viterbi-Algorithmus. Es wird hierbei der Pfad bestimmt, der laut einer Maximum-Likelihood Decodierung die geringste Hamming-Distanz (Pfad-Metrik) zur empfangenen Symbolfolge hat.
- e) Die empfangene Symbolfolge lautet \vec{y} = (10 10 11 01 10 01).

