For example, the counts of passengers on the *Titanic* are shown for each passenger class.

Class	Count
First	325
Second	285
Third	706
Crew	885
Total	2201

Relative frequency tables _ gives percentages

Class	%		
First	14.77		
Second	12.95		
Third	32.08		
Crew	40.21		

Contingency table __ Two categorical Variables

		Class						
		First	Second	Third	Crew	Total		
a	Alive	203	118	178	212	711		
Survival	Dead	122	167	528	673	1490		
7	Total	325	285	706	885	2201		

Question 1: Titanic Contingency table calculations activity

				Class			(a) 711 X100
		First	Second	Third	Crew	Total	220
a	Alive	203	118	178	212	711	= 32.303 %
Survival	Dead	122	167	528	673	1490	(b) 325 x100
Su	Total	325	285	706	885	2201	2201
							= 14.766%
tion o	f the pas	sengers	survived	?			
tion o	f the pas	sengers	were in f	irst class	?		(c) 203 711 ×100
tion o	f the sur	viving p	assengers	were in	first clas	ss?	711

- a) What proport
- b) What proportion of the passengers were in first class?
- c) What proportion of the surviving passengers were in first class?
- d) What proportion of the first class passengers survived?

(d) 203 X10 D = 62.461 %.

= 28.551 %

- Quantitative / Numerical data SUMMARIES NUMERICAL

MEASURE OF CENTRE MEASURE SPREAD

IE IOR SD - Standard deviation

Interquartile range

= Add all the observations

Number of observations

For example, for the children's ages 10, 7, 8, 7 and 4, the mean is

$$y = \frac{10+7+8+7+4}{5} = \frac{36}{5} = 7.2$$

MEDIAN - Middle value when data are ordered

Median is 7

MODE - most ammon value Mode is 7

Median example:

Median example:

E.g. for 4 4 8 9 11, Median is 8

E.g. for 4 4 6 8 9 11 Median is 7

MEAN

POSITIVELY SKEWED MEDIAN

NEGATIVELY SKEWED MEDIAN

MEASURE OF SPREAD

range =
$$max - min$$

= $10 - 4 = 6$

IQR - Interquable Range IQR = Q3 - Q1 Upper - Lower Quartile

Standard devision -

$$s = \sqrt{\frac{\sum (y - \overline{y})^2}{n - 1}}$$

4-7	(4-8)2
-3.2	10.24
-0.2	0.04
-0.2	0.04
0.8	0.64
2.8	7.84
	-0.2 -0.2 0.8

$$S = \sqrt{\frac{18.80}{5-1}} = 2.16$$

Question 2 : Summary statistics exercise

Upper fence

For the values: 6 7 8 8 9 10 10 11 18,

Mode = 8, 10

find the mean, median, mode, standard deviation, range and IQR.

Are there any outliers?

Using Descriptive Statistics calculator:

https://www.calculatorsoup.com/calculators/statistics/descriptivestatistics.php

Lower Fence = Q1-1.5×IQR = 7.5-(1.5×3) = 3

Upper Fence = Q3+1.5×IQR = 10.5 + (1.5×3) = 15

Using SPSS,

Type the value in "Data View"

Analyze - Descriptive statistics - Explore

			Statistic	Std. Error
VAR00001	Mean		9.6667	1.16667
	95% Confidence Interval for	Lower Bound	6.9763	
	Mean	Upper Bound	12.3570	
	5% Trimmed Mean	9.4074		
	Median	9.0000		
	Variance	12.250		
	Std. Deviation	3.50000		
	Minimum	6.00		
	Maximum	18.00		
	Range	12.00		
	Interquartile Range	3.00		
	Skewness	1.887	.717	
	Kurtosis	4.483	1.400	

Descriptives

Men > Median 9.6667 > 9.000 Skeved to the Right

			Percentiles		Percentiles	Q3		
		5	10	25	50	75	90	95
Weighted Average (Definition 1)	VAR00001	6.0000	6.0000	7.5000	9.0000	10,5000	€.	9
Tukey's Hinges	VAR00001			8.0000	9.0000	10.0000		

Charle for Quantitative Data: HISTOGRAM & BOXPLOTS

Does the histogram have a single, central hump or several separated peaks?

- Humps in a histogram are called modes.
- A histogram with one main peak is called unimodal;
- A histogram with two peaks are bimodal;
- A histogram with three or more peaks are called multimodal.

0 7500 22500 37500 Charges (\$)

Unimodal and skewed to the kight

Five number summaries and boxplots

IQR = Q3 - Q1 = 2.93 - 1.15 = 1.78

- The five-number summary of a distribution reports its median, quartiles, and extremes (maximum and minimum).
 - Example: The five-number summary for the daily wind speed is:

Max	8.67
Q3	2.93
Median	1.9
Q1	1.15 🤟
Min	0.2 🗸

Lower fince = Q1-1.5×IQR = 1.15-(1.5×1.78) = -1.52

(d) Left skewed

Uninedal and symmetric

(c) Right skewed