

What Are "Bad" Sequences?

Gene Godbold, Signature Science

Encoded biological threats are primarily from microbes that cause infectious diseases and secondarily from metazoan and plant venom components/toxins

"Bad Bugs" Are Parasites

Parasite = A smaller organism that lives on or in a larger host organism and causes harm (*disease* = *loss of homeostasis*) to the host

Virus
Obligate
intracellular
pathogen
e.g. Influenza
(20–800 nm)

Bacterium
Prokaryote – no nucleus
Multiple life styles
e.g. Staphylococcus
(0.2–20 μm)

Fungus
Eukaryote – has nucleus
e.g. Candida
(2 µm–cm)

Protozoal parasite
Usually two or more hosts
e.g. Malaria
(10–200 µm)

Multicellular parasite Multiple life cycles e.g. Tapeworm (1 cm-3 m)

How many bad bugs are there?

How Do Hosts Resist Parasites?

- Barriers
 - Physical barriers: skin
 - Chemical barriers: stomach acid, mucus, antimicrobial peptides
 - Biological barriers: microbiomes (skin, gut, etc.)
- Immune system
 - Innate (constant, invariant)
 - Adaptive (develops, specific)
- To be a parasite requires a "susceptible host," but what makes a host susceptible?

The outcome of any host-parasite encounter is chiefly governed by the immune defense of the host and the virulence factors of the parasite

- What would happen if we lacked an immune system?
- **Hypothesis**: Sequences that subvert immunity *make* hosts susceptible.

Immune Subversion: Direct

- 1. Suppress Host Cell Immune Signaling
- 2. Subverting antigen presentation
- 3. Countering immune effectors

Sequences Streptococci Use to Directly Subvert Immunity

http://journals.asm.org/doi/10.1128/IAI.00334-21

How We Curate - Evaluating Sequences for Biothreat

- 1. Where does it act? **Parasite** or **Host**?
- 2. Host **Extracellular** or **Intracellular**?
- 3. How does it get to where it acts?Secretion? Adherence+ invasion?)
- 4. What is the targeted molecule?
- 5. Which host activity or pathway does it affect?
- 6. What is the effect on the host?

Typhoid toxin targets host epithelial cells and leukocytes where it (1) degrades DNA and (2) ADP-ribosylates unknown host proteins

Effects of Sequences of Concern on the Host

- 1. Adherence
- 2. Invasion
- 3. Dissemination
- 4. Niche-creation
- 5. Damage

Types of Host Damage Inflicted by SoCs

- Cytotoxicity
- Cell membrane disruption
- Tissue permeabilization
- ECM destruction
- Release cell from substrate
- Disable organ
- Induce inflammation

Functions of Sequences of Concern (FunSoCs)

OPERATING DIRECTLY

Damaging SoCs

- Cytotoxic
- Degrade Tissue
- Disable Organ
- Induce Inflammation

Other Direct-Acting SoCs

- Adherence to host cell
- Dissemination in host
- Host cell invasion
- Movement in host cell
- Niche-creation in host cell

Immune-Subverting SoCs

- Suppress host immune signaling
- Resist host phagocytosis
- Resist host complementkilling (serum resistance)
- Resist host antimicrobial peptide
- Resist host oxidative killing
- Counter host immunoglobulin
- Defeat host chemokine or cytokine
- Inhibit host antigen presentation
- Immunomodulation

OPERATING INDIRECTLY

- Bacterial capsule biosynthetic enzymes
- Passive immune evasion enzymes (modify parasite structures)
- Secretion system components and chaperones that transport parasite effectors
- Toxin biosynthetic enzymes (e.g. mycotoxin synthases)
- Transcription factors influencing SoCs

Godbold et al., 2022: https://www.ncbi.nlm.nih.gov/pmc/articles/PMC9119117/

32 Machine Learning-Predicted FunSoCs in SeqScreen

https://gitlab.com/treangenlab/seqscreen/-/wikis/08.-Identifying-Functions-of-Sequences-of-Concern

FunSoCs Reported in SeqScreen

Appears in output as "0" for absence or "1" for presence

Pathogenesis Gene Ontology (PathGO)

PathGO: the Pathogenesis Gene Ontology

Authors	Ron Jacak (rjacak)
	Jody Proescher (jproesch)
	Gene Godbold
	Amanda Ernlund (awe220)
Tina Zudock (kzudock)	

Description

This ontology contains terms to describe the function of genes and gene products involved in pathogenesis. Genes that encode toxins, virulence factors, and antimicrobial resistance have functions that are not represented well by the terms contained within the Gene Ontology or any of the other OBO Foundry ontologies. This ontology will collect and maintain common terms and descriptions of concepts related to pathogenesis, and could help provide more intuitive descriptions of function for these types of sequences.

https://github.com/jhuapl-bio/pathogenesis-gene-ontology

Format of PathGO Terms Reported by SeqScreen

Example of PathGO term assignment:

PATHGO:0000326 (modulates transcription in another organism)[PMID30832682]

_synthase _adhesion		ence_regulator	ence_regulator								
toxin	viral	virul	size	organism	gene_name	uniprot	uniprot evalue	PathGO			
0	0	0	501	Salmonella enterica subsp. enterica serovar Typhimurium str. LT2	Secreted effector protein SptP	P74873	2.86E-108	PATHGO:(0000278 (s	timulates sr	mall GTPa
0	0	0	315	Salmonella enterica subsp. enterica serovar Typhimurium str. LT2	Guanine nucleotide exchange factor sopE2	Q7CQD4	1.04E-66	PATHGO:0	0000255 (n	nediates gua	anine nuc
0	0	0	1011	Escherichia coli	Hygromycin-B 4-O-kinase	P00557	1.85E-216	-			
0	0	0	1008	Acinetobacter baumannii	Beta-lactamase (Fragment)	A0A1P8N0	1.45E-204	-			
0	0	0	630	Human herpesvirus 4 strain B95-8	Epstein-Barr nuclear antigen 1	P03211	2.90E-118	PATHGO:0	0000326 (n	nodulates tr	anscripti

seqscreen_output_directory\report_generation\case_study_3_seqscreen_report_pathgo.tsv

