中山大学本科生期末考试

考试科目:《线性代数》

学年学期: 2019 学年第 1 学期 学院/系: 数学学院

考试方式: 闭卷 考试时长: 120分钟

题号	1	 11	四	五	六	七	八	九	总分
分数									
签名									

警示《中山大学授予学士学位工作细则》第八条:"考试作弊者,不授予学士学位。"

------ 以下为试题区域,共九道大题,总分100分。学生请在试卷上作答。 ------

得分_

一、填空题(共 5 小题,每小题 4 分,共 20 分)

1. 设A是3阶方阵, $|A| = \frac{1}{2}$,则 $(3A)^{-1} - 2A^* | = ______$ 。

2.设方阵A满足 $A^2 + A - 6E = 0$,则 $(A + 4E)^{-1} =$ ______

(填"线性相关"或"线性无关")。

4.设3阶矩阵A与B相似,且A的特征值为1,2,3,则行列式 $\left|B^{2}+B-E\right|=$ _____。

5.设
$$A$$
为3阶矩阵,且秩 $R(A)=2$,矩阵 $B=\begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 0 \\ -7 & 8 & 3 \end{pmatrix}$,则 $R(AB)=$ ______。

(共 1 小题,每小题 8 分,共 8 分)

设
$$A = \begin{pmatrix} 2 & 1 & -3 \\ 1 & 2 & -2 \\ -1 & 3 & 2 \end{pmatrix}$$
,求 A^{-1} 。

得分

三、(共1 小题,每小题 10 分,共10 分)

设向量组A:

$$a_1 = \begin{pmatrix} -1 \\ -1 \\ 0 \\ 0 \end{pmatrix}$$
, $a_2 = \begin{pmatrix} 1 \\ 2 \\ 1 \\ -1 \end{pmatrix}$, $a_3 = \begin{pmatrix} 0 \\ 1 \\ 1 \\ -1 \end{pmatrix}$, $a_4 = \begin{pmatrix} 1 \\ 3 \\ 2 \\ 1 \end{pmatrix}$, $a_5 = \begin{pmatrix} 2 \\ 6 \\ 4 \\ -1 \end{pmatrix}$, 求向量组 A 的秩和一个最

大无关组,并将其余向量用这个最大无关组表示。

得分

四、(共1小题,每小题12分,共12分)

己知线性方程组:

$$\begin{cases} x_1 + x_2 + 2x_3 + 3x_4 = 1 \\ x_1 + 3x_2 + 6x_3 + x_4 = 3 \\ 3x_1 - x_2 - sx_3 + 15x_4 = 3 \\ x_1 - 5x_2 - 10x_3 + 12x_4 = t \end{cases}$$
,问 s 和 t 为何值时,方程组无解?有唯一解?有无穷

多个解?并在有无穷多解的情况下求解。

得分

五、(共1小题,每小题8分,共8分)

设矩阵
$$A = \begin{pmatrix} 0 & 0 & 1 \\ 2 & 1 & x \\ 1 & 0 & 0 \end{pmatrix}$$
, 问 x 为何值时,矩阵 A 可对角化。

六、(共1小题,每小题8分,共8分)

设向量组 a_1 , a_2 , a_3 线性无关,且 $b_1=a_1$, $b_2=a_1+a_2$, $b_3=a_1+a_2+a_3$, 证明向量组 b_1 , b_2 , b_3 线性无关。

得分

七、(共1小题,每小题8分,共8分)

设 a_1 , a_2 , a_3 为4元非齐次线性方程组Ax = b的3个解向量,且R(A) = 3,

$$a_1 + a_2 = \begin{pmatrix} 2 \\ 3 \\ 4 \\ 5 \end{pmatrix}$$
, $a_2 + a_3 = \begin{pmatrix} 1 \\ 2 \\ 3 \\ 4 \end{pmatrix}$, 求该方程组的通解。

得分

八、(共1小题,每小题13分,共13分)

设矩阵
$$A = \begin{pmatrix} 3 & 8 \\ 1 & 1 \end{pmatrix}$$
,

- (1)求可逆矩阵P,使得 $P^{-1}AP$ 为对角阵;
- (2)计算Aⁿ。

得分

九、(共1小题,每小题13分,共13分)

设矩阵
$$A = \begin{pmatrix} 3 & 2 & 2 \\ 2 & 3 & 2 \\ 2 & 2 & 3 \end{pmatrix}$$
,求正交矩阵 P 和对角阵 Λ ,使得 $P^{-1}AP = \Lambda$ 。