Adversarially Robust Submodular Maximization under Knapsack Constraints

DMITRY AVDYUKHIN

SLOBODAN MITROVIĆ

GRIGORY YAROSLAVTSEV

Samson Zhou (1)

Submodular Functions

- Ground Set V (items, sets, vertices)

Oracle access to f. Given a subset $S \subseteq V$ returns f(S)

$$\forall A \subseteq B \subseteq V, e \notin B$$

$$f(A \cup \{e\}) - f(A) \geq f(B \cup \{e\}) - f(B)$$

Submodular Functions

Applications of Submodular Functions

- Viral marketing [Kempe et al., 2003]
- * Feature selection [Krause & Guestrin, 2005]
- Clustering [Narasimhan & Bilmes, 2005]
- Search result diversification [Agrawal et al., 2009]
- Recommender systems [El-Arini & Guestrin, 2011]
- Active learning [Golovin & Krause, 2011]
- Document summarization [Lin & Bilmes, 2011]
- ❖ Data subset selection [Wei, Iyer & Bilmes, 2015]
- etc

Clustering

Clustering

$$C(S) = \frac{1}{|V|} \sum_{e \in V} \min_{v \in S} d(e, v)$$

$$f(S) = C(\{e_0\}) - C(S \cup \{e_o\})$$

Coverage

$$★E = \{e_1, e_2, ..., e_n\}$$
 $S = \{s_{i_1}, s_{i_2}, ..., s_{i_k}\} ∈ V$
$$★V ⊆ 2^E$$
 $f(S) = | \bigcup_{s_i ∈ S} s_i |$

f is a submodular function

$$S^* = \arg \max_{|S| \le k} f(S)$$

Viral Marketing

$$\star E = \{p_1, p_2, ..., p_n\}$$

$$\star V \subseteq 2^E$$

amazon

$$S = \{s_{i_1}, s_{i_2}, \dots, s_{i_k}\} \in V$$
$$c(s_i) \ge 0$$

$$S^* = \arg \max_{c(S) \le K} f(S)$$

First Objective

Submodular maximization under cardinality constraint

f is submodular, monotone, and $f(\emptyset) = 0$

Extract *small* representative subset out of a big dataset

$$S^* = \arg \max_{|S| \le k} f(S)$$

Solving this problem exactly is NP-hard

Greedy [Nemhauser, Wolsey, Fisher, '78]

Marginal gain:

Goal: Find $S^* = \arg \max_{|S| \le k} f(S)$

Greedy [Nemhauser, Wolsey, Fisher, '78]

Goal: Find
$$S^* = \arg \max_{|S| \le k} f(S)$$

$$f()$$
 $\geq (1 - 1/e)OPT$

Traditional

Algorithms performed sequentially.

Modern

streaming

Traditional

Algorithms performed sequentially.

Modern

distributed

$$\geq \frac{?}{2k}$$

$$\geq \frac{?}{2k}$$

$$\geq \frac{?}{2k} \frac{OPT}{2k}$$

$$OPT \in \{(1+\epsilon)^i | i \in \mathbf{N}\}$$

$$\geq \frac{?}{2k}$$

$$f(||||) \ge \frac{1}{2} \text{ OPT}$$

Second Objective

Submodular maximization under knapsack constraint

f is submodular, monotone, and $f(\emptyset) = 0$

Extract *small* representative subset out of a big dataset

$$S^* = \arg \max_{c(S) \le K} f(S)$$

Solving this problem exactly is NP-hard

Thresholding in Review

- \clubsuit Key concept: marginal gain $f(e \mid S) = f(e \cup S) f(S)$
- \clubsuit If marginal gain exceeds threshold, add item to S.
- Else, discard item.
- $f(OPT \cup S) \ge f(OPT), |OPT \cup S| \le 2k$
- What about for knapsack constraints?
- Could have item with good marginal gain, but really large size

Knapsack Optimization

Knapsack Optimization

- * Key concept: marginal density $\rho(e \mid S) = \frac{f(e \cup S) f(S)}{c(e)}$
- \clubsuit If marginal density exceeds threshold, add item to S.
- Else, discard density. Does it work?

Knapsack Optimization

- **❖** ALG 1:
 - \clubsuit If marginal density exceeds threshold, add item to S.
 - Else, discard density.
- **❖** ALG 2:
 - ❖ Keep "best" element
- ❖ ALG: Return max(ALG 1, ALG 2)

$$V = \{e_1, e_2, ..., e_n\}$$

- \clubsuit Monotone submodular function f
- $c(e_i) \ge 0$
- \diamond See all the data and make summary Z.
- \clubsuit Given set E that is removed from V.

Results

- \diamond Streaming algorithm for single knapsack, robust to the removal of m items.
- \clubsuit Better streaming algorithm for single knapsack, robust to the removal of size M.
- Streaming algorithm for multiple knapsack, robust to the removal of m items.
- \diamond Distributed algorithm for multiple knapsack, robust to the removal of m items.
- Size of our summaries are almost optimal.

Approach

- ❖ Algorithm to produce summary S
- $*Z = S \setminus E$.
- ❖ Run Greedy on **Z**

Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher '17]

Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher '17]

Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher '17]

Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher '17]

Partitions and Buckets Data Structure [Bogunovic, Mitrovic, Scarlett, and Cevher '17]

- Items in high partitions are more valuable
- ❖ Bad approximation if they are deleted, so we need more buckets

- Items in low partitions are not as valuable
- Still have good approximation if many buckets are full
- ❖ If many items are deleted from high partitions, but buckets in low partitions are not full, must still have captured "good" items

Initial idea: replace marginal gain with marginal density

Partition 0

- Problem: big items can't fit
- Hotfix: double the size of each bucket

Problem: number of buckets is based on the threshold, not size

Partition 0

Remains good approximation

Partition 0

Bad approximation!

- Problem: number of buckets is based on the threshold, not size
- Main idea: Dynamic bucketing scheme
- Each time element is added, allocate space proportional to its size

Cap total number of items

- Items in high partitions are more valuable
- ❖ Bad approximation if they are deleted, so we need more buckets
- Items in low partitions are not as valuable unless they are large
- Large items allocate more buckets
- Still have good approximation if many buckets are full
- If many items are deleted from high partitions, but buckets in low partitions are not full, must still have captured "good" items

ARMSM: Multiple Knapsacks

$$V = \{e_1, e_2, ..., e_n\}$$

- \clubsuit Monotone submodular function f
- $c_1(e_i) \ge 0, c_2(e_i) \ge 0, ..., c_d(e_i) \ge 0$
- \diamond See all the data and make summary Z.
- \clubsuit Given set E that is removed from V.

Normalization

- Rescale each row i in cost matrix by b_1/b_i so that all knapsack constraints are $K := b_1$.
- Rescale all entries in cost matrix and constraint vector by minimum entry so that all costs are at least 1.

ARMSM: Multiple Knapsacks

- Recall algorithm: partitions and buckets, add item if marginal density exceeds threshold.
- What is the marginal density here?
- Marginal gain divided by the *largest* cost (across all knapsacks).
- \$\text{Lose a factor of } \sim \frac{1}{2d} \text{ in the approximation guarantee.}

Distributed Algorithm

- Send partition and buckets data structure and data across multiple machines
- With high probability, "bad" cases will be split across multiple machines

Results

First constant factor approximation algorithms for submodular maximization robust to a number of removals

Model	Removal	Approximation	Constraint	Remarks	
Streaming	<i>m</i> items	0(1)	Single knapsack	Nearly optimal summary size	
Streaming	M space	0(1)	Single knapsack	Better guarantees, nearly optimal summary size <i>and</i> algorithm space	
Streaming	<i>m</i> items	$O\left(\frac{1}{d}\right)$	d knapsacks	Nearly optimal summary size	
Distributed	<i>m</i> items	$O\left(\frac{1}{d}\right)$	d knapsacks	2 rounds of communication	

Empirical Evaluations

- Social network graphs from Facebook (4K vertices, 81K edges) and Twitter (88K vertices, 1.8M edges) collected by the Stanford Network Analysis Project (SNAP).
- Dominating set
- MovieLens (27K movies, 200K ratings)
- Coverage
- Baselines: Offline Greedy, "Robustified" versions of streaming algorithms

Empirical Evaluations

Empirical Evaluations

	ml-20, 1 knapsack	fb, 1 knapsack	twitter, 1 knapsack	ml-20, 2 knapsacks	fb, 2 knapsacks	twitter, 2 knapsacks
AlgMult	641	378	401	1350	2745	4208
MarginalRatio	641	377	402	1350	2745	4209
Multidimensional	87	18	435	72	22	4221
GREEDY	647	393	493	-	-	-

Table 1: Sizes of robust summaries produced by the algorithms (K = 10).

Related Questions?

- ❖ Non-monotone robust submodular maximization
- Other constraints
- Better approximation guarantee
- Streaming algorithms with less space

Questions?

