KDS 47 10 05 : 2021

# 철도설계기준

2021년 4월 12일 개정 http://www.kcsc.re.kr







# 건설기준 제정 또는 개정에 따른 경과 조치

이 기준은 발간 시점부터 사용하며, 이미 시행 중에 있는 설계용역이나 건설 공사는 발주기관의 장이 필요하다고 인정하는 경우 종전에 적용하고 있는 기준을 그대로 사용할 수 있습니다.

# 건설기준 연혁

- 이 기준은 건설기준 코드체계 전환에 따라 기존 건설기준(설계기준, 표준시방서) 간 중복· 상충을 비교 검토하여 코드로 통합 정비하였다.
- 이 기준은 기존의 철도에 해당되는 부분을 통합 정비하여 기준으로 제정한 것으로 제·개 정 연혁은 다음과 같다.

| 건설기준         | 주요내용                                                                                                   | 제정 또는 개정<br>(년.월) |
|--------------|--------------------------------------------------------------------------------------------------------|-------------------|
| 철도설계기준(철도교편) | • 철도설계기준(철도교편)을 제정                                                                                     | 제정<br>(1999.7)    |
| 철도설계기준(철도교편) | • 국제흐름에 부응하기 위해 단위체계를 국제단위<br>계인 SI단위로 통일하여 반영, 미비사항을 보완하여<br>안전한 구조물이 되도록 함                           | 개정<br>(2004.12)   |
| 철도설계기준(노반편)  | • 철도노반공사의 총괄적인 시행기준과 총 6편으로 구성되어 설계에 필요한 일반적인 기준을 가급적 쉽게 이해하도록 서술                                      | 제정<br>(2001.12)   |
| 철도설계기준(노반편)  | • 철도건설을 위한 기본계획 수립방법과 각 편에<br>공통으로 포함된 환경입지조사, 지반조사, 선로측량<br>을 추가                                      | 개정<br>(2004.12)   |
| 철도설계기준(노반편)  | • 건설기술관리법, 건설산업기본법, 철도건설규칙 등 관련 법령의 개정 사항을 검토 후 반영                                                     | 개정<br>(2011.5)    |
| 철도설계기준(노반편)  | • 신기술·신공법 기준 마련 등 기술적 환경변화에 대응하기 위하여 관련 법규 및 규정의 폐지, 신설 및 개정내용 과 설계기준 개정 내용 반영, 기술적 환경변화 대응을 위한 기준을 마련 | 개정<br>(2011.12)   |

| 건설기준                | 주요내용                                                                                                                                                                                   | 제정 또는 개정<br>(년.월) |
|---------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------|
| 철도설계기준(노반편)         | 기존철도 등 일반철도의 열차속도를 시속 200km 이상으로 속도향상 시키는데 필요한 기준들을 중심으로 검토 철도건설 경쟁력 확보를 위한 제반 연구 결과 및 철도관련 상위 법령, 설계기준 및 시방서 등의 개정된 내용을 반영 제도, 전기 분야와의 인터페이스를 고려하였으며 향후 철도관련 기술발전 등의 변화에 대응할 수 있도록 개정 | 개정<br>(2013.11)   |
| 철도설계기준(노반편)         | • 건설기술관리법에서 건설기술진흥법, 소음·진동규<br>제법에서 소음·진동관리법, 콘크리트구조설계기준에<br>서 콘크리트구조기준으로 관계법령 및 기준 명칭을<br>변경 및 철도시설의 기술기준 추가<br>• 국토해양부에서 국토교통부로 기관명칭 변경                                              | 개정<br>(2015.12)   |
| KDS 47 10 05 : 2016 | • 건설기준 코드체계 전환에 따라 코드화로 통합<br>정비함                                                                                                                                                      | 제정<br>(2016.6)    |
| KDS 47 10 05 : 2019 | • 철도 건설기준 적합성평가에 의해 코드를 정비함                                                                                                                                                            | 개정<br>(2019.04.)  |
| KDS 47 10 05 : 2021 | • "철도물류산업법" 제정에 따른 관련법규 반영                                                                                                                                                             | 개정<br>(2021.4.)   |

제 정: 2016년 6월 30일 개 정: 2021년 4월 12일

심 의 : 중앙건설기술심의위원회 자문검토 : 국가건설기준센터 건설기준위원회

소관부서 : 국토교통부 철도건설과

관련단체 : 국가철도공단 작성기관 : 한국철도기술연구원



# 목 차

| 1. | 일반사항       | 1 |
|----|------------|---|
|    | 1.1 목적     | 1 |
|    | 1.2 적용 범위  | 1 |
|    | 1.3 참고 기준  | 1 |
|    | 1.4 용어의 정의 | Ć |
|    | 1.5 기호의 정의 | 7 |
| 2. | 조사 및 계획    | 7 |
| 3. | 재료         | 7 |
| 4. | 설계         | 7 |

노반설계 일반사항 KDS 47 10 05: 2021

#### 1. 일반사항

#### 1.1 목적

(1) KDS 47 10 00은 철도 노반구조물의 설계, 시공 및 유지관리 단계에서 필요한 기술적 사항을 기술하여 철도 노반구조물의 안정성, 사용성 및 내구성을 확보하는 것을 목적 으로 한다.

#### 1.2 적용 범위

- (1) 이 설계기준은 철도건설법 제2조에서 정의한 철도건설사업 시행에 따른 철도노반(토 공, 교량, 터널, 지하구조물, 본선부속, 정거장 등)을 설계 하는데 적용한다. 다만, 특별한 조사, 연구설계에 대하여는 이 기준을 적용하지 않을 수 있다. 이 경우에는 설계 기준에 대한 근거를 명시해야 한다.
- (2) 이 설계기준에서 규정하지 않는 사항은 KDS 10 10 00 설계총칙에 따른다.

#### 1.3 참고 기준

#### 1.3.1 관련 법규

- (1) 이 설계기준을 적용하는데 있어 관련되는 법규는 다음과 같다.
  - 건설기술진홍법과 그의 시행령, 시행규칙(국토교통부)
  - 건설산업기본법과 그의 시행령, 시행규칙(국토교통부)
  - 공간정보의 구축 및 관리 등에 관한 법률
  - 교통약자의 이동편의 증진법과 그의 시행령, 시행규칙
  - 도시교통정비 촉진법
  - 문화재보호법과 그의 시행령·시행규칙
  - 산업안전보건법
  - 소음·진동규제법
  - 시설물의 안전 및 유지관리에 관한 특별법
  - 신에너지 및 재생에너지개발·이용·보급 촉진법과 그의 시행령. 시행규칙
  - 저탄소 녹색성장 기본법
  - 자연재해대책법
  - 자연환경보전법
  - 철도의 건설 및 철도시설 유지관리에 관한 법률과 그의 시행령, 시행규칙(국토교통부)
  - 철도안전법과 그의 시행령, 시행규칙(국토교통부)
  - 환경영향평가법
  - 철도물류산업의 육성 및 지원에 관한 법률과 그의 시행령, 시행규칙(국토교통부)
  - 철도노선간 연계운행을 위한 기술기준(국토교통부)

#### 1.3.2 관련 기준

(1) 이 설계기준을 적용하는 데 있어 이 기준에 정하여 있지 않거나 특별하게 외국 등의 기준을 적용할 필요가 있을 경우는 적용상 기술성을 충분히 검토하고, 적용기준에 대한 근거를 명시해야 한다.

- KDS 10 00 00 공통 설계기준
- KDS 11 00 00 지반 설계기준
- KDS 14 00 00 구조 설계기준
- KDS 24 00 00 교량 설계기준
- KDS 27 00 00 터널 설계기준
- KDS 44 00 00 도로 설계기준
- KDS 51 00 00 하천 설계기준
- KCS 10 00 00 공통공사
- KCS 11 00 00 지반공사
- KDS 14 00 00 구조재료공사
- KDS 24 00 00 교량공사
- KDS 27 00 00 터널공사
- KDS 44 00 00 도로공사
- KDS 51 00 00 하천공사
- 철도건설규칙
- 철도의 건설기준에 관한 규정
- 건설공사의 설계도서 작성기준
- 설계공모, 기본설계 등의 시행 및 설계의 경제성 등 검토에 관한 지침
- 도로포장설계·시공지침
- 암반구간 포장설계 지침
- 도로안전시설 설치 및 관리지침
- 도로공사 노천 발파설계 시공지침
- 환경친화적 철도건설지침
- 도시철도 정거장 및 환승·편의시설 설계 지침
- 철도시설의 기술기준
- 내진설계기준 연구(Ⅰ, Ⅱ편)(국토교통부)
- 철도차량 안전기준에 관한 규칙
- 철도차량 안전기준에 관한 지침
- UIC(International Union of Railways)와 CEN(Comité Européen de Normalisation) 기준 및 EURO Code
- 鐵道構造物等 設計標準·同解說 (日本鐵道總合技術研究所)
- Manual for Railway Engineering, (AREMA: American Railway Engineering and Maintenance-of-Way Association)
- Standard Specifications for Highway Bridges, (AASHTO: American Association of State Highway and Transportation Officials)

#### 1.4 용어의 정의

(1) 이 설계기준에서 사용하는 용어의 의미는 다음과 같으며 각 장 별로 관련용어를 별도 로 정의 한다.

- 강화노반 : 상부노반의 일부를 입도 조정 부순 골재. 슬래그 등의 재료로 조성한 것을 말한다.
- 건축한계: 차량이 안전하게 운행될 수 있도록 궤도상에 설정한 일정한 공간을 말한다.
- 고속철도: 열차가 주요구간을 매시 200 km 이상의 속도로 주행하는 철도로서 국토교통부 장관이 그 노선을 지정·고시하는 철도를 말한다.
- 교행선단선운전구간에서 열차를 교행하기 위하여 설치하는 상하본선
- 구교(溝橋): 일반적으로 경간이 1 m 이상이고 5 m 미만이며 거더 및 슬래브와 기둥이 일체로 강결된 박스형, 문형라멘 및 아치형 등의 구조
- 구축한계: 전기동차전용선에서 전기·신호·통신·통로·대피장소 및 기타 시설의 설치를 위하여 구조물과 건축하계와의 사이에 설치하는 여유공간을 말한다.
- 궤도: 레일·침목 및 도상(道床)과 이들의 부속품으로 구성된 시설을 말한다.
- 궤도-구조물간 종방향 상호작용 : 장대레일과 교량 구조물과의 결합과 그 상호작용에 의한 장 대레일의 파단, 좌굴과 관련된 궤도 종방향력 문제와 변형문제를 야기시키는 작용
- 기준점측량: 설계, 시공, 유지관리 등에 위치의 기준을 제공하는 기준점을 현지에 설치하기 위하여 실시하는 측량
- 기지: 화물취급 또는 차량의 정비 및 유치를 목적으로 시설한 장소로서 다음의 시설을 말한다.
- 1) 기지: 선로보수에 필요한 자재를 비치하거나 보수용 장비의 유치 및 검수하기 위하여 시설한 장소
- 2) 전동차기지: 전동차의 청소, 검수, 정비, 유치를 위하여 시설한 장소
- 3) 조차장 : 열차의 조성 또는 차량의 입환을 위하여 설치한 장소
- 4) 주박기지: 전동차, 여객차의 주박, 착발대기를 위하여 시설한 장소
- 5) 차량기지: 차량의 유치와 차량의 검수 및 정비를 위하여 시설한 장소로서 기관차, 전동차, 여객차, 화물기지로 구분하며 열차를 운전하는 승무원의 거점
- 6) 화물기지: 화물취급을 위주로 하여 화차의 유치와 화차 입환 및 조성과 검수를 위하여 시설한 장소
- 노반(路盤: road bed): 궤도를 지지하기 위하여 선로 평면선형과 종단선형을 따라 토공사, 교량 터널 등 구축물을 구축하거나 원지반 그대로 궤도를 지지하는 토대를 총칭하여 노반이라 한다.
- 부각변위 : 실제 열차하중에 의한 동적 안정성 검토에서 교량 바닥판의 단부와 단부사이의 상대가변위 또는 교량 바닥판 단부와 교대 사이의 상대각변위
- 답사: 도상계획에서 선정된 비교노선을 따라 노선 및 정거장입지 등이 실현가능하고 철도건설 목적에 부합되는지에 대한 현장상황을 확인하는 작업
- 대향, 배향: 열차가 분기기 전단으로부터 후단으로 진입할 경우를 대향이라 하며 분기기 후단 으로부터 전단으로 진입할 때를 배향이라 한다.
- 도상(道床): 레일 및 침목으로부터 전달되는 차량하중을 노반에 넓게 분산시키고 침목을 일정한 위치에 고정시키는 기능을 하는 자갈 또는 콘크리트 등의 재료로 구성된 구조부분을 말한다.

- 동류하중 : 동력차의 구동차류 하중
- 미기압파(Micro Pressure Wave): 열차의 터널 진입으로 인하여 발생된 압축파가 터널을 따라 열 차진행 방향으로 전파되어 출구에서 급격히 방출 팽창됨으로써 생성되는 큰 음압레벨의 충격 파(Impulsive Wave)를 말한다.
- 배수시설: 노반의 분니를 방지하고, 노반강도를 확보함과 동시에 열화방지 및 호우시 쌓기부의 붕괴방지, 깎기 비탈면의 붕괴방지, 철도횡단 수로의 확보 등을 위한 모든 배수공
- 본바닥: 쌓기 및 깎기를 하지 않고 원지반이 그대로 상부노반이 되는 상태를 말한다.
- 본선 : 열차우전에 상용할 목적으로 설치한 선로를 말하며, "측선"이란 본선이 아닌 선로를 말한다.
- 부가 궤도 종방향응력: 교량의 존재에 의해 부가적으로 발생하는 온도, 시동, 제동하중, 교량 바닥판의 휨 등에 의한 부가적인 응력
- 부본선 : 주본선 다음으로 중요한 선로로서 평상시에는 차량의 유치를 제한하며, 정차 열차의 취급과 열차의 착발, 교행, 대피, 통과열차의 취급을 주기능으로 하는 선로
- 분기기: 차량 또는 열차의 운행선로를 변경시키기 위한 궤도시설로서 포인트, 리드, 크로싱의 3개부로 구성되어 있다.
- 사용하중(service load) : 고정하중 및 표준열차하중으로서 하중계수를 곱하지 않은 것이며, 작용하중이라고도 함
- 상부노반: 시공기면에서 일반철도 1.5 m, 고속철도 3.0 m 깊이 범위 내에 있는 지반을 말한다.
- 선로: 열차 또는 차량을 운행하기 위한 통로로서 궤도와 이것을 지지하기 위한 노반 및 전기시설을 총칭한다.
- 선로용량: 일정구간의 선로상에서 운행할 수 있는 1일 최대 열차 횟수를 말한다.
- 선로전환기: 차량 또는 열차의 운행선로를 변경시키기 위하여 포인트 및 노스 가동크로싱부에 전기식 또는 기계식 가동장치를 설치하여 진로를 변화시키기 위한 신호설비를 말한다.
- 선로중심 : 임의의 위치에서 철도노선의 중심위치이며 시공기면폭의 중심위치를 말한다.
- 설계속도: 해당선로를 설계할 때 기준이 되는 상한속도를 말한다.
- 슬랙(Slack) : 곡선선로에서 차량의 원활한 운행을 위하여 외측레일을 기준으로 내측레일을 넓혀준 것
- 승강장: 여객이 열차를 타고 내리기 위해 설치한 장소를 말하며, 전동차용, 일반여객 열차용으로 나눈다.
- 승차감 : 차량 이용 승객의 안락감을 말하며 열차 주행 시 열차 내부의 진동가속도를 기준으로 평가한다.
- 시공기면: 철도노반 마무리면상 철도중심선의 연직방향 위치로, 일반적으로 설계도면에서 높이 기준면을 말한다.
- 신호기 : 운행 중인 차량이나 열차에 통행의 우선권 등 포괄적인 지시를 하는 장치를 말한다.
- 실제 열차하중 : 동적해석에 사용되는 실제 열차의 차축하중을 모델로 만든 하중
- 실측: 예측결과로 선정된 노선을 따라 선로중심선을 지상에 설치하고 설계에 필요한 자료와 정확한 공사비 및 공사량 등을 얻기 위한 측량을 말한다.
- 여객통로 : 역사와 승강장 또는 승강장 상호간에 여객이 통행하기 위한 통로를 말하며 평면통

로와 지하도, 구름다리(과선교)와 같은 입체통로가 있다.

- 역: 열차를 착발하고 여객, 화물을 취급하기 위하여 설치한 장소를 말하며 보통역, 여객역, 화물 역으로 구분한다.
- 1) 보통역: 여객과 화물을 같이 취급하는 역
- 2) 신호장: 여객이나 화물취급 등 영업활동은 하지 않고 열차의 교행, 대피를 위하여 설치한 장소
- 3) 여객역: 여객을 취급하는 역
- 4) 화물역 : 화물을 취급하는 역
- 역사: 여객이 열차이용을 위한 수속과 화주가 소화물이나 화물을 탁송하며 철도가 이에 필요한 여객업무나 화물 수송업무를 하기 위하여 설치한 건물을 말한다.
- 열차풍 : 열차의 통과시 발생하는 풍압에 의한 기류의 변화현상
- 실측: 답사한 결과를 토대로 선정된 최적노선과 2~3개의 비교노선을 따라 8중심선을 설정하고 개략공사비를 산출하여 노선을 선정하기 위하여 실시하는 측량을 말한다.
- 용지측량: 지적공부상의 자료를 기초로 하여 철도건설을 위하여 필요한 토지 등의 경계를 구분하고자 실시하는 측량
- 유효장: 인접 선로의 열차 및 차량 출입에 지장을 주지 아니하고 열차를 유치할 수 있는 당해 선로의 최대길이
- 적하장: 화물을 화차에 적재 및 하화함과 동시에 트럭과 같은 타 수송차량에 화물을 옮겨 싣고 내리는 장소
- 정거장: 여객 또는 화물의 취급을 하기 위하여 시설한 장소로서, 조차장, 신호장, 객차기지, 화물기지, 고속철도 차량기지, 전동차기지, 기관차기지를 포함한다.
- 정위, 반위: 분기기가 상시 개통하고 있는 방향을 정위라 하고 반대방향을 반위라 한다.
- 종단측량: 표고가 결정된 기준점 등을 기준으로 노선의 중심선을 따라 설치된 중심점의 표고 를 측정하는 작업
- 주본선 : 열차의 착발 또는 통과열차를 운전하는데 사용하는 선로
- 주행안전성 검토: 고속열차의 동적 안정성 등을 포함하는 열차의 안전확보를 위한 최소 요구조 건에 대한 검토
- 중간점(TP): 측량작업의 신속성 및 편의성을 제공하기 위하여 철도기준점사이 구간에 설치하는 측량지점으로 측량의 목적에 따라 기준점으로 활용가능
- 중심선측량:계획, 답사, 예측, 설계 등의 과정에서 결정된 노선의 중심선을 현지에 설치하는 측량
- 지장물측량: 철도용지 및 인접용지의 지하, 지표, 공중에 있는 건물, 공작물, 시설, 죽목, 농작물, 기타 물건 중 철도건설사업에 지장이 되는 물건의 위치, 크기, 수량 및 속성을 조사하는 측량
- 지축 : 정거장내에 제반 시설물을 설치하기 위하여 조성하는 부지를 말한다.
- 지축수로 : 지축내의 표면수를 처리하기 위하여 설치하는 배수로를 말한다.
- 지축폭: 정거장내에 제반시설물을 설치하기 위하여 조성한 부지의 양어깨간의 거리를 말한다.
- 차량: 선로를 운행할 목적으로 제작된 동력차객차화차 및 특수차를 말하며 "열차"란 정거장 외 본선을 운전할 목적으로 조성한 차량을 말한다.

• 차량한계: 철도차량의 안전을 확보하기 위하여 궤도위에 정지된 상태에서 측정한 철도차량의 길이와 너비 및 높이의 하계를 말하다.

- 차축하중 : 차량의 좌우측 바퀴의 하중을 합한 하중
- 착발선 : 열차의 착발을 취급하는 전용선로로서 시종착역의 경우 출발선과 도착선을 별도로 설치할 경우도 있다.
- 철도기준점: 철도의 설계, 시공, 유지관리 등에 있어 평면위치 및 표고의 기준을 제공하는 측량 기준점
- 충격계수: 정적설계시 동적 충격효과를 고려할 수 있도록 표준열차하중에 곱해지는 계수. 열차 또는 차량의 주행에 의해 구조물에 발생되는 정적응답에 대한 동적응답의 증가비율을 나타냄.
- 측선 : 열차의 운전에 상용하는 선로 이외의 선로로서 유치선, 조성선, 인상선, 적하선, 예비차선, 검사선, 분별선, 기회선 등 본선 외의 선로
- 1) 검수선: 기관차, 전동차 또는 객화차의 검사, 수선을 하는 선으로 검사와 수선을 구분하기는 곤란하나 검사를 주체로 하는 선을 검사선, 수선을 주체로 하는 선을 수선선이라 한다. 검수의 종류에 따라 일상검사선, 월상검사선, 임시검사선으로 구분한다.
- 2) 계중대선: 화물의 적재중량이 허용하중을 초과하였는지 여부를 검사하기 위한 선으로 대규모 화물역, 화물기지에 필요시 배치한다.
- 3) 공차유치선 : 유치선의 일부로 공차를 일시 유치하여 두는 선. 일반적으로 조차장에서는 분별선 중에서 1~2개선을 공차유치선으로 지정해 두고 있다.
- 4) 기관차 대기선 : 기관차가 객차 또는 화차를 연결하여 열차를 조정하기 이전에 일시 대기 시킬 목적으로 설치하는 선
- 5) 기회선: 기관차가 열차 출발선 또는 도착선과 기관차고와의 사이를 출입할 때 역구내 입환 작업에 지장을 주지 않고 왕복할 수 있도록 기관차만 주행시킬 목적으로 설치하는 선
- 6) 반복선(회차선) : 열차를 반복운전하기 위하여 설치하는 선
- 7) 분별선: 차량을 행선별 또는 역 순위별로 조성하기 위한 선로이며, 큰 조차장에서는 방향별과 역별 분별선을 따로 설치할 수도 있다.
- 8) 세척선: 차량을 세척할 목적으로 설치하는 선으로 급수설비, 세척대가 병설되어 있고 오물 수거 시설을 병행하는 경우도 있다.
- 9) 수수선 : 어떤 선 또는 선군(線群)에서 다른 선 또는 다른 선군에 차량을 이동할 때 그 차량을 일시 유치하여 두는 선으로 수도선이라고도 한다.
- 10) 안전측선 : 정거장내에서 2개 이상의 열차 또는 차량이 동시에 진입 또는 진출할 때에 과주로 인한 충돌의 사고를 방지하기 위하여 설치하는 선로
- 11) 예비차선 : 부속편성에 필요한 차량이나 수선하기 위하여 운휴차 대신에 사용할 예비차를 유치하는 선
- 12) 유치선: 수용선이라고도 하며, 전동차나 객차, 화차를 유치하는 선으로 운용차를 유치하는 선로, 도착선, 출발선, 세척선, 검사선, 기회선을 제외한 선을 말한다.
- 13) 인상선 : 열차의 조성 작업시 차량을 다른 선로로 이동시키기 위하여 인상하는 선로
- 14) 장비유치선 : 선로 유지보수 장비를 유치하는 선으로 선로차단 시간 내 유지보수 작업을

노반설계 일반사항 KDS 47 10 05: 2021

효율적으로 해야 하므로 가능한 측선이 계획된 정거장에 설치가 요망된다.

15) 적재정규선: 화물의 적재상태가 차량한계 초과여부를 검사하기 위한 선으로 대규모 화물역, 화차조차장, 화물기지에 필요시 배치한다.

- 가. 조성선: 열차를 조성하기 위하여 사용하는 선으로 유치선을 그대로 사용하는 경우도 있고 조성차의 유치선 및 해방차의 유치선 외에 1개선만 길게(열차길이에 여유를 봄) 따로 설치하는 경우도 있다.
- 나. 출입고선 : 차량이 기지를 출입하기 위한 전용의 통로선
- 다. 통로선 : 어떤 선군에서 다른 선군으로 차량 또는 차량열을 이동할 때 그 사이에 통로로 사용되는 선
- 라. 화물적하선 : 화물의 적하작업을 목적으로 하여 설치하는 선으로 화물적하장에 연하여 설치한다.
- 캔트 : 곡선 선로에서 열차의 원심력에 대항하여 차량의 안전을 도모하기 위해 내측레일을 기 준으로 외측레일을 높게 하는데 이 때의 고저 차
- 통과선 : 통과열차의 운전에 사용할 목적으로 설치하는 선로
- 하부노반: 시공기면으로부터 상부노반을 제외한 아래 부분을 말한다.
- 항공레이저측량: 항공기 탑재 레이저측량시스템에서 주사한 레이저의 반사파를 수신, 처리하여 측점의 3차원 위치와 속성을 취득하는 측량
- B(함): 철도노반하부에 설치되는 경간장 5.0 m 이상의 박스형 암거
- 화물적입장:소규모의 화물을 컨테이너안에 적입하기 위하여 필요한 공간

#### 1.5 기호의 정의

내용 없음

#### 2. 조사 및 계획

내용 없음

#### 3. 재료

내용 없음

#### 4. 설계

내용 없음

#### 집필위원

| 성 명 | 소 속       | 성 명 | 소 속       |
|-----|-----------|-----|-----------|
| 황선근 | 한국철도기술연구원 | 신지훈 | 한국철도기술연구원 |

# 집필위원(2021)

| 성 명 | 소 속    | 성 명 | 소 속 |
|-----|--------|-----|-----|
| 송종성 | 한국종합기술 |     |     |

#### 자문위원

| 성 명 | 소 속      | 성 명 | 소 속   |
|-----|----------|-----|-------|
| 구웅회 | ㈜서영엔지니어링 | 정혁상 | 동양대학교 |
| 안태봉 | 우송대학교    | 조성호 | 중앙대학교 |

# 자문위원(2021)

| 성 명 | 소 속     | 성 명 | 소 속       |
|-----|---------|-----|-----------|
| 이덕영 | ㈜유신     | 최성균 | 삼안        |
| 박치면 | 에스코컨설턴트 | 황선근 | 한국철도기술연구원 |

# 국가건설기준센터 및 건설기준위원회

| 성 명 | 소 속       | 성 명 | 소 속       |
|-----|-----------|-----|-----------|
| 이용수 | 한국건설기술연구원 | 정혁상 | 동양대학교     |
| 구재동 | 한국건설기술연구원 | 구자안 | 한국철도공사    |
| 김기현 | 한국건설기술연구원 | 김석수 | ㈜수성엔지니어링  |
| 김태송 | 한국건설기술연구원 | 김재복 | ㈜태조엔지니어링  |
| 김희석 | 한국건설기술연구원 | 소민섭 | 회명정보통신㈜   |
| 류상훈 | 한국건설기술연구원 | 여인호 | 한국철도기술연구원 |
| 원훈일 | 한국건설기술연구원 | 이성혁 | 한국철도기술연구원 |
| 주영경 | 한국건설기술연구원 | 이승찬 | ㈜평화엔지니어링  |
| 최봉혁 | 한국건설기술연구원 | 이진욱 | 한국철도기술연구원 |
| 허원호 | 한국건설기술연구원 | 이찬우 | 한국철도기술연구원 |
|     |           | 최상철 | ㈜한국건설관리공사 |
|     |           | 최찬용 | 한국철도기술연구원 |

노반설계 일반사항 KDS 47 10 05 : 2021

# 국가건설기준센터 및 건설기준위원회(2021)

| 성 명 | 소 속       | 성 명 | 소 속       |
|-----|-----------|-----|-----------|
| 이영호 | 한국건설기술연구원 | 구자안 | 한국철도공사    |
| 구재동 | 한국건설기술연구원 | 김명철 | 동부엔지니어링   |
| 김기현 | 한국건설기술연구원 | 김병석 | 한국건설기술연구원 |
| 김나은 | 한국건설기술연구원 | 김재복 | 태조엔지니어링   |
| 김태송 | 한국건설기술연구원 | 김충언 | 삼현 피에프    |
| 김희석 | 한국건설기술연구원 | 김행배 | ㈜동명       |
| 류상훈 | 한국건설기술연구원 | 박찬민 | 코비코리아     |
| 소병진 | 한국건설기술연구원 | 배두병 | 국민대학교     |
| 원훈일 | 한국건설기술연구원 | 송종걸 | 강원대학교     |
| 이승환 | 한국건설기술연구원 | 엄종욱 | 케이에스엠기술   |
| 이용수 | 한국건설기술연구원 | 오명석 | 서영엔지니어링   |
| 이용준 | 한국건설기술연구원 | 이동호 | 케이알티씨     |
| 주영경 | 한국건설기술연구원 | 이승찬 | 경남도청      |
| 최봉혁 | 한국건설기술연구원 | 이진욱 | 한국철도기술연구원 |
| 허원호 | 한국건설기술연구원 | 이찬우 | 한국철도기술연구원 |
|     |           | 이호용 | 이레이앤씨     |
|     |           | 정지영 | 우리이엔지     |
|     |           | 정혁상 | 동양대학교     |
|     |           | 최상철 | 한국건설관리공사  |

# 중앙건설기술심의위원회

| 성 명 | 소 속       | 성 명 | 소 속        |
|-----|-----------|-----|------------|
| 김현기 | 한국철도기술연구원 | 최상현 | 한국교통대학교    |
| 이광명 | 성균관대학교    | 정광섭 | 포스코건설      |
| 신수봉 | 인하대학교     | 손성연 | 씨앤씨종합건설(주) |
| 이용재 | 삼부토건(주)   |     |            |

# 중앙건설기술심의위원회(2021)

| 성 명 | 소 속       | 성 명 | 소 속      |
|-----|-----------|-----|----------|
| 권혁기 | 국토안전관리원   | 김연규 | ㈜도화엔지니어링 |
| 김대상 | 한국철도기술연구원 | 김효승 | 한국철도시설공단 |
| 김성보 | 충북대학교     | 류은영 | ㈜태암엔지니어링 |

# 국토교통부

| 성 명 | 소 속   | 성 명 | 소 속   |
|-----|-------|-----|-------|
| 임종일 | 철도건설과 | 홍석표 | 철도건설과 |
| 문재웅 | 철도건설과 |     |       |

# 국토교통부(2021)

| 성 명 | 소 속         | 성 명 | 소 속         |
|-----|-------------|-----|-------------|
| 김민태 | 국토교통부 철도건설과 | 문재웅 | 국토교통부 철도건설과 |
| 이상욱 | 국토교통부 철도건설과 |     |             |



KDS 47 10 05 : 2021

# 노반설계 일반사항

2021년 4월 12일 개정

소관부서 국토교통부 철도건설과

관련단체 국가철도공단

34618 대전광역시 동구 중앙로 242 국가철도공단

Tel: 1588-7270 http://www.kr.or.kr

작성기관 한국철도기술연구원

16105 경기도 의왕시 철도박물관로 176 한국철도기술연구원

Tel: 031-460-5000 http://www.krri.re.kr

국가건설기준센터

10223 경기도 고양시 일산서구 고양대로 283(대화동)

Tel: 031-910-0444 E-mail: kcsc@kict.re.kr

http://www.kcsc.re.kr