Chapter D-IV

ASYMPTOTICS OF POSITIVE

SEMIGROUPS ON C*-AND W*-ALGEBRAS

1. STABILITY OF POSITIVE SEMIGROUPS

As explained in A-III, Section 1 , it is possible to deduce uniform exponential stability of strongly continuous semigroups from the location of the spectrum of its generator if the spectral bound s(A) and the growth bound ω coincide. In this section we prove 's(A) = ω ' for positive semigroups on C*-algebras and preduals of W*-algebras. A more general discussion of the "s(A) = ω " problem can be found in [Greiner-Voigt-Wolff (1981)]. For the results of this section the existence of a unit is essential.

Theorem 1.1. Let M be a C*-algebra with unit and $T = (T(t))_{t \ge 0}$ a positive semigroup on M . Then

$$-\infty < s(A) = \omega \in \sigma(A)$$
.

 $\underline{Proof}.$ For every $t\geqq 0$ there exists $\phi_{\mbox{$t$}}$ in the state space S(M) of M such that

$$T(t)'\phi_{t} = r(T(t))\phi_{t} = \exp(\omega t)\phi_{t}$$

(see, e.g., [Groh (1981), 2.1]). Let $n \in \mathbb{N}$ and

$$E_n := \{ \phi \in S(M) : T(2^{-n}) | \phi = \exp(\omega 2^{-n}) | \phi \}$$
.

Then $\emptyset \neq E_{n+1} \subseteq E_n$ (n(N)). Since S(M) is $\sigma(M,M')$ -compact there exists $\phi \in \cap_{n \in N} E_n$ and $T(t)' \phi = \exp(\omega t) \phi$ follows because the adjoint semigroup $(T(t)')_{t \geq 0}$ is a weak*-semigroup on M'. Suppose $-\infty = \omega$. Then for t > 0 r(T(t)) = 0 (A-III, Prop.1.1) or $T(t)' \phi = 0$, in particular $\phi(T(t)1) = 0$. From this we obtain the contra-