EJEMPLO 8.3.2 Una matriz semejante a una matriz diagonal

Sea
$$D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$$
, $A = \begin{pmatrix} -6 & -3 & -25 \\ 2 & 1 & 8 \\ 2 & 2 & 7 \end{pmatrix}$ y $C = \begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & -1 \\ 3 & 5 & 7 \end{pmatrix}$. C es no singular porque

det $C = 3 \neq 0$. Después calculamos.

$$CA = \begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & -1 \\ 3 & 5 & 7 \end{pmatrix} \begin{pmatrix} -6 & -3 & -25 \\ 2 & 1 & 8 \\ 2 & 2 & 7 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \\ 0 & -1 & 1 \\ 6 & 10 & 14 \end{pmatrix}$$

$$DC = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix} \begin{pmatrix} 2 & 4 & 3 \\ 0 & 1 & -1 \\ 3 & 5 & 7 \end{pmatrix} = \begin{pmatrix} 2 & 4 & 3 \\ 0 & -1 & 1 \\ 6 & 10 & 14 \end{pmatrix}$$

Entonces, CA = DC y $A = C^{-1}DC$; por lo tanto, A y D son semejantes.

Nota. En los ejemplos 8.3.1 y 8.3.2 no fue necesario calcular C^{-1} . Sólo fue necesario saber que C era no singular.

Teorema 8.3.1

Si A y B son matrices semejantes de $n \times n$, entonces A y B tienen el mismo polinomio característico y, por consiguiente, tienen los mismos valores característicos.

Demostración

Como A y B son semejantes, $B = C^{-1}AC$ y

$$\det(B - \lambda I) = \det(C^{-1}AC - \lambda I) = \det[C^{-1}AC - C^{-1}(\lambda I)C]$$

$$= \det[C^{-1}(AC - \lambda I)C] = \det(C^{-1})\det(A - \lambda I)\det(C)$$

$$= \det(C^{-1})\det(C)\det(A - \lambda I) = \det(C^{-1}C)\det(A - \lambda I)$$

$$= \det I \det(A - \lambda I) = -\lambda I$$

Esto significa que A y B tienen la misma ecuación característica, y como los valores característicos son raíces de la ecuación característica, tienen los mismos valores característicos.

EJEMPLO 8.3.3 Los valores característicos de matrices semejantes son los mismos

Es obvio que en el ejemplo 8.3.2 los valores característicos de $D = \begin{pmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$ son 1, -1 y 2.

Entonces éstos son los valores característicos de $A = \begin{pmatrix} -6 & -3 & -25 \\ 2 & 1 & 8 \\ 2 & 2 & 7 \end{pmatrix}$. Verifique esto viendo

si se cumple que det (A - I) = det (A + I) = det (A - 2I) = 0.