Министерство образования и науки Российской Федерации

ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ УЧРЕЖДЕНИЕ ВЫСШЕГО ПРОФЕССИОНАЛЬНОГО ОБРАЗОВАНИЯ

САНКТ-ПЕТЕРБУРГСКИЙ УНИВЕРСИТЕТ ИНФОРМАЦИОННЫХ ТЕХНОЛОГИЙ, МЕХАНИКИ И ОПТИКИ

Кафедра Систем Управления и Информатики Группа <u>Р3340</u>

Лабораторная работа №9 "Экспериментальное построение частотных характеристик типовых динамических звеньев" Вариант - 11

Выполнил				(подпись
			(фамилия, и.о.)	\
Проверил			(фамилия, и.о.)	(подпись)
IIII	20 г		Санкт-Петербург,	20г.
Работа выполнен		_	Cumin Herepoy pri,	
Дата защиты "	"	20	г.	

Задание

Цель работы - изучение частотных характеристик типовых динамических звеньев и способов их построения.

Если на вход устойчивого линейного звена с передаточной функцией W(s) подается гармонический сигнал $g(t)=g_m\sin\omega t$, то на его выходе в установившемся режиме будет гармонический сигнал $y(t)=y_m\sin(\omega t+\psi)$. Задача состоим в том, чтобы определить зависимость амплитуды $y_m(\omega)$ и разности фаз между выходым сигналом и входным $\psi(\omega)$ от частоты входного сигнала. Полученные графики получили название: амплитудночастотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ).

В данной реботе необходимо получить АЧХ и ФЧХ линейных динамических звеньев, представленных в таблице 1, подставив в них параметры, указанные в таблице 2. После чего, на основе двух предыдущих характеристик, построить амплитудно-фазовую характеристику (АФЧХ).

Таблица 1 – Исходные элементарные звенья

Тип звена	Передаточная функция
Идеальное интегрирующее	$\frac{k}{s}$
Изодромное	$\frac{k(Ts+1)}{s}$
Дифференцирующее с замедлением	$\frac{ks}{Ts+1}$

Таблица 2 – Параметры

K	Т	ξ
5	0.1	0.1

1 Исследование идеального интегрирующего звена

В таблице 3 представлены данные, снятые по графикам переходных процессов.

Таблица 3 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	5	13.98	-90
5	0.7	1	0	-90
15	1.18	0.3	-9.54	-90
25	1.4	0.2	-13.98	-90
35	1.54	0.14	-16.9	-90
45	1.65	0.11	-19.08	-90
55	1.74	$9.09 \cdot 10^{-2}$	-20.83	-90
65	1.81	$7.69 \cdot 10^{-2}$	-22.28	-90
75	1.88	$6.67 \cdot 10^{-2}$	-23.52	-90
85	1.93	$5.88 \cdot 10^{-2}$	-24.61	-90
100	2	$5 \cdot 10^{-2}$	-26.02	-90

Передаточная функия исследуемого звена представлена в таблице 1. Из нее можно построить частотную функцию и найти выражения для AYX и ΦYX .

$$W(j\omega) = W(s)\big|_{s=j\omega} = \frac{k}{j\omega} = \frac{jk\omega}{-\omega^2} = -j\frac{k}{\omega}$$
 (1)

$$U(\omega) = 0 \tag{2}$$

$$V(\omega) = \frac{k}{\omega} = \frac{5}{\omega} \tag{3}$$

$$A(\omega) = \frac{5}{\omega} \tag{4}$$

$$L(\omega) = 20 \lg A(\omega) = 20 \lg \frac{5}{\omega} = 20 \lg 5 - 20 \lg \omega$$
 (5)

$$\psi(\omega) = \operatorname{arctg} \frac{V(\omega)}{U(\omega)} = -\operatorname{arctg} \frac{5}{\omega} = -\operatorname{arctg} \infty = -\frac{\pi}{2}$$
 (6)

Экспериментально построенные характеристики данного звена представлены ниже.

Рисунок 1 – Частотные характеристики идеального интегрирующего звена

2 Исследование изодромного звена

В таблице 4 представлены данные, снятые по графикам переходных процессов.

Таблица 4 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	5.02	14.02	-84.3
5	0.7	1.12	0.97	-63.4
15	1.18	0.6	-4.42	-33.7
25	1.4	0.54	-5.38	-21.8
35	1.54	0.52	-5.68	-16
45	1.65	0.51	-5.81	-12.53
55	1.74	0.51	-5.88	-10.3
65	1.81	0.51	-5.92	-8.75
75	1.88	0.5	-5.94	-7.6
85	1.93	0.5	-5.96	-6.7
100	2	0.5	-5.98	-5.7

Передаточная функия исследуемого звена представлена в таблице 1. Из нее можно построить частотную функцию и найти выражения для AЧX и ФЧX.

$$W(j\omega) = W(s)\big|_{s=j\omega} = \frac{k(1+jT\omega)}{j\omega} = \frac{-kT\omega^2 + jk\omega}{-\omega^2} = \frac{kT\omega - jk}{\omega} = kT - j\frac{k}{\omega}$$
 (7)

$$U(\omega) = kT = 0.5 \tag{8}$$

$$V(\omega) = -\frac{k}{\omega} = -\frac{5}{\omega} \tag{9}$$

$$A(\omega) = \sqrt{0.25 + \frac{25}{\omega^2}} \tag{10}$$

$$L(\omega) = 20 \lg \sqrt{1 + \frac{4}{\omega^2}} \tag{11}$$

$$\psi(\omega) = -\arctan\frac{10}{\omega} \tag{12}$$

Рисунок 2 – Частотные характеристики изодромного звена

3 Исследование дифференцирующего звена с замедлением

В таблице 4 представлены данные, снятые по графикам переходных процессов.

Таблица 5 – Полученные данные

ω	$\lg \omega$	$A(\omega)$	$20\lg A(\omega)$	ψ
1	0	4.98	13.94	84.3
5	0.7	22.36	26.99	63.4
15	1.18	41.6	32.38	33.7
25	1.4	46.42	33.33	21.8
35	1.54	48.08	33.64	16
45	1.65	48.81	33.77	12.53
55	1.74	49.19	33.84	10.3
65	1.81	49.42	33.88	8.75
75	1.88	49.56	33.9	7.6
85	1.93	49.66	33.92	6.7
100	2	49.75	33.94	5.7

Ниже представлены выражения частотных характеристик.

$$W(jw) = \frac{5jw}{0.1jw + 1} = \frac{5jw(1 - 0.1jw)}{1 + 0.01w^2} = \frac{0.5w^2}{1 + 0.01w^2} + \frac{5w}{1 + 0.01w^2}j$$
 (13)

$$U(w) = \frac{0.5w^2}{1 + 0.01w^2} \tag{14}$$

$$V(w) = \frac{5w}{1 + 0.01w^2} \tag{15}$$

$$A(w) = \sqrt{U^2 + V^2} = \sqrt{\frac{0.25w^4}{(1 + 0.01w^2)^2} + \frac{25w^2}{(1 + 0.01w^2)^2}} = \frac{5w}{\sqrt{1 + 0.01w^2}}$$
(16)

$$\psi(w) = arctg \frac{V(w)}{U(w)} = arctg \frac{10}{w}$$
(17)

На рисунке 3 представлены графики по данным, которые были сняты графически и полученные аналитически из выражения (8). Как видно из графиков, чем меньше частота колебаний - тем меньше амплитуда собственных колебаний системы.

Рисунок 3 – Частотные характеристики дифференцирующего звена с замедлением

4 Асимптотические ЛАЧХ исследуемых звеньев

Рисунок 4 – График ЛАЧХ дифференцирующего звена с замедлением

Рисунок 5 – График ЛАЧХ идеального интегрирующего

Рисунок 6 – График ЛАЧХ изодромного звена

Выводы

В данной работе мы исследовали частотные характеристике трех звеньев: Идеального интегрирующего, изодромного, и дифференцирующего с замедлением. Получили экспериментально графики частотных характеристик и сравнили их с соответствующими выражениями.

Как видно из рисунка 4 и 6, при частоте $\omega_c=1/T=10$ ЛАЧХ изменяет наклон, что соответствует теории (наклон дифференцирующего звена с замедление изменяется с +20 Дб/дек до 0 Дб/дек, изодромного соответсвенно от -20 Дб/дек до 0 Дб/дек) и у идеального интегрирующего не изменяет