Supplementary Appendix To:

On Shakeouts and Staggered Exit: An R&D Race with Moral Hazard and Multiple Prizes.

Samuel Häfner*

August 30, 2021

Contents

C Proofs for Section 4

1

D More on Vanishing Moral Hazard

17

C Proofs for Section 4

The proofs make repeated use of the following auxiliary lemma.

Lemma C.1. Fix a state $s = (\sigma, N, \xi)$ and, if $|N| \geq 2$, constants $\mathbf{V} = \{\mathbf{V}_k\}_{k \in \{1, \dots, |N|-1\}}$ and $\mathbf{U} = \{\mathbf{U}_k\}_{k \in \{1, \dots, |N|-1\}}$ such that the continuation payoffs in s are anonymous in the sense of Definition 4. Suppose the elements of the corresponding sequence $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ are distinct and that it is U-shaped with lowest element $G_{\overline{k}}$. Further, let \underline{k} be the lowest index $\kappa \leq \overline{k}$ of the elements satisfying $G_{\kappa} < G_{|N|}$ (setting $\underline{k} = |N|$ if there is no such element). Then, an index set $\{\kappa_1, \kappa_2, \dots, \kappa_\ell\}$ with $\kappa_\ell = |N|$ is an element of \mathcal{G}_s if and only if: (a) $\kappa_q = q$ for all $q < \ell$ and (b) $\ell \in \{\underline{k}, \underline{k}+1, \dots, \overline{k}\}$.

^{*}Web3 Foundation, Zug, and University of St. Gallen, School of Economics and Political Science, samuel@web3.foundation.

Proof of Lemma C.1. The claim follows from the following four observations:

1. Whenever some index κ satisfying $2 < \kappa < \overline{k}$ is part of an index set in \mathcal{G}_s then so must be $\kappa - 1$.

(Proof: By assumption, the sequence $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ is strictly decreasing until $\kappa = \overline{k}$. The observation then follows from (a) in Definition 6.)

2. For any index set $\{\kappa_1, \kappa_2, ..., \kappa_\ell\} \in \mathcal{G}_s$ with $\ell \geq 2$ it must hold that $\kappa_{\ell-1} < \overline{k}$.

(Proof: Suppose to the contrary that $\kappa_{\ell-1} \geq \overline{k}$. Then, $\overline{k} < |N|$ because $\kappa_{\ell-1} < \kappa_{\ell} = |N|$. Point (b) in Definition 6 implies $G_{\kappa_{\ell-1}} > G_{\kappa_{\ell-1}+1}$, which contradicts the fact that G_{κ} is increasing for $\kappa \in \{\overline{k}, \overline{k}+1, ..., |N|\}$.)

- 3. For any index set $\{\kappa_1, \kappa_2, ..., \kappa_\ell\} \in \mathcal{G}_s$ with $\ell \geq 2$ it must hold that $\kappa_{\ell-1} \geq \underline{k} 1$.
 - (Proof: If $\underline{k} = 1$, then the claim is evidentially true. As regards $\underline{k} \geq 2$, suppose to the contrary that $\kappa_{\ell-1} < \underline{k} 1$. Then (a) in Definition 6 implies $G_{\kappa_{\ell-1}+1} \leq G_{|N|}$. But the definition of \underline{k} gives $G_{\kappa_{\ell-1}+1} > G_{|N|}$, a contradiction.)
- 4. For every $\kappa \in \{\underline{k}, ..., \overline{k}\}$ there is an index set $\{1, 2, ..., \kappa 1, |N|\} \in \mathcal{G}_s$ (which is taken to be $\{|N|\}$ if $\kappa = 1$).

(Proof: This is a straightforward consequence of the facts that $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ is strictly decreasing until $\kappa = \overline{k}$ and that for all $\kappa \in \{\underline{k}, ..., \overline{k}\}$ we have $G_{\kappa} < G_{|N|}$. Consequently, any index set $\{1, 2, ..., \kappa - 1, |N|\}$ satisfies conditions (a) and (b) in Definition 6.)

Observation 1 gives that any element in $\{\kappa_1, \kappa_2, ..., \kappa_\ell\} \in \mathcal{G}_s$ has $\kappa_1 = 1$ and – up to the $(\ell-1)$ -th element — consists of consecutive elements only. Observation 2 provides an upper bound on the length of any element in \mathcal{G}_s and Observation 3 provides a lower bound. Finally, Observation 4 establishes that these bounds are tight.

Proof of Proposition 3. From (16), the sign of $G_{\kappa} - G_{\kappa+1}$ is equal to the sign of

$$\left[\Pi_{\sigma} - \frac{c+\theta}{\lambda}\right] \left[\kappa \mathbf{U}_{\kappa} - (\kappa - 1)\mathbf{U}_{\kappa-1}\right] + (\kappa - 1)\left[\mathbf{V}_{\kappa-1} + \mathbf{U}_{\kappa-1}\right] \left[\frac{\phi}{\lambda} + \kappa \mathbf{U}_{\kappa}\right] - \kappa\left[\mathbf{V}_{\kappa} + \mathbf{U}_{\kappa}\right] \left[\frac{\phi}{\lambda} + (\kappa - 1)\mathbf{U}_{\kappa-1}\right]. \quad (C.1)$$

In the following I seek to characterize the behavior of the continuation payoffs \mathbf{U}_{κ} , $\mathbf{U}_{\kappa-1}$, \mathbf{V}_{κ} , and $\mathbf{V}_{\kappa-1}$ in equilibrium as ρ diverges to infinity. In view of Definition 4, I thus determine the limits of the expected firm and investor payoffs in equilibrium for any state s.

First, I show that, from Lemma A.1, it follows for any payoff-anonymous equilibrium profile C^* in full-R&D contracts and any state s that (i) $\lim_{\rho\to\infty} E[U_{is}(0; a_i, C^*)] = 0$, and (ii) $\lim_{\rho\to\infty} \rho E[U_{is}(0; a_i, C^*)] = \phi$.

- To establish (i), I observe that the claim for any state $s = (\sigma, N, \xi)$ with $\sigma = m$ follows directly from equation (A.2), because for $\sigma = m$ the continuation utility is always zero by construction; i.e., $\mathbf{U}_{\kappa} = 0$, for all $\kappa < |N|$. This gives $\lim_{\rho \to \infty} E[U_{is}(0; a_i, C^*)] = 0$ for all states s with $\sigma = m$, which in turn implies that the continuation payoffs vanish for any state s with $\sigma = m 1$. But then, also $\lim_{\rho \to \infty} E[U_{is}(0; a_i, C^*)] = 0$ for all such states. Repeating the argument by moving backwards through the spots σ until the states s with $\sigma = 1$, then gives the claim for all s.
- Multiplying the right side of (A.2) with ρ and in view of (i) above, it becomes clear that to establish (ii), it is sufficient to show that in any payoff-anonymous equilibrium and for any optimal deadline T_{is}^* it must hold $\lim_{\rho\to\infty}T_{is}^*>0$. So, suppose T_{is}^* is the shortest deadline among all |N| deadlines. If T_{is}^* is optimal, then it does not pay investor i to marginally increase the deadline. Specifically, suppose there are $0 \le \kappa < |N| 1$ dyads choosing a strictly higher deadline than T_{is}^* ; then Lemma 4 gives

$$[\lambda \Pi_{\sigma} - (c + \theta) + \lambda \kappa \left[\mathbf{V}_{\kappa} + \mathbf{U}_{\kappa} \right]] e^{-\lambda T_{is}^*} \le \phi + \lambda \kappa \mathbf{U}_{\kappa}.$$

Because the above inequality must hold for all $0 \le \kappa < |N| - 1$, we have for any state $s = (\sigma, N, \xi)$ and any player $i \in N$,

$$T_{is}^* \ge \min_{\kappa \in \{1, \dots, |N|\}} \frac{1}{\lambda} \ln \left(G_{\kappa} \right). \tag{C.2}$$

Now, from claim (i) above we know that $\lim_{\rho\to\infty} E[U_{is}(0; a_i, C^*)] = 0$ for any state s. Because $E[V_{is}(0; C^*)] \geq 0$ for all $\rho \geq 0$, we see from (16) that $\lim_{\rho\to\infty} G_{\kappa} \geq G_1 > 0$ for all κ , where the strict inequality follows from Assumption (A). But this gives $\lim_{\rho\to\infty} T_{is}^* > 0$, as desired. Hence, $\lim_{\rho\to\infty} \rho U_{is}(0; a_i, C^*) = \phi$ for any s, giving us the claim.

To continue, I show that Lemma A.2 implies for any payoff-anonymous equilibrium profile C^* in full-R&D contracts and any state s that (iii) $\lim_{\rho\to\infty} E[V_{is}(0;C^*)] = 0$, and (iv) $\lim_{\rho\to\infty} \rho E[V_{is}(0;C^*)] = \lambda \Pi_{\sigma} - (c + \theta + \phi)$.

• To establish (iii) observe first that from the arguments establishing (i) above it also follows $\lim_{\rho\to\infty} U_{is}(\tau; a_i, C^*) = 0$ for all $\tau > 0$. Moreover, limited liability implies that the continuation utility of any investor is bounded, $E[V_{is}(0; C^*)] \leq \max_{\hat{\sigma} \geq \sigma} \Pi_{\hat{\sigma}}$. And last, observe that the optimal deadlines are bounded when $\rho \to \infty$: Suppose T_{is}^* is the longest deadline among all |N| deadlines. If T_{is}^* is optimal, then it does not pay investor i to marginally decrease the deadline. Specifically, suppose there are $0 \leq \kappa < |N| - 1$ dyads choosing a strictly lower deadline than T_{is}^* ; then Lemma 4 gives

$$[\lambda \Pi_{\sigma} - (c + \theta) + \lambda \kappa \left[\mathbf{V}_{\kappa} + \mathbf{U}_{\kappa} \right]] e^{-\lambda T_{is}^*} \ge \phi + \lambda \kappa \mathbf{U}_{\kappa}.$$

Because the above inequality must hold for all $0 \le \kappa < |N| - 1$, we have for any state $s = (\sigma, N, \xi)$ and any player $i \in N$,

$$T_{is}^* \le \max_{\kappa \in \{1, \dots, |N|\}} \frac{1}{\lambda} \ln \left(G_{\kappa} \right). \tag{C.3}$$

Now, from (16) together with (i) above and the fact that $E[V_{is}(0; C^*)] \leq \max_{\hat{\sigma} \geq \sigma} \Pi_{\hat{\sigma}}$, we see that, in equilibrium, the numerator of any G_{κ} is strictly bounded away

from infinity when $\rho \to \infty$ and the denominator is strictly bounded away from zero when $\rho \to \infty$. This gives that $\lim_{\rho \to \infty} T_{is}^* < \infty$, as desired.

With these preliminary observations, it is now possible to show that all integrals appearing in (A.5) - (A.8) converge to zero, thus establishing claim (iii). Consider the integral in (A.7) (the argument for (A.8) is analogous). Observe that it is bounded above by

$$\frac{\lambda}{(\lambda \ell + \rho)} \left[\Pi_{\sigma} - \frac{c + \theta + \phi}{\lambda} + (\ell - 1) \max_{\hat{\sigma} \ge \sigma} \Pi_{\hat{\sigma}} \right] \left[e^{-(\lambda \ell + \rho)T_{\ell}} - e^{-(\lambda \ell + \rho)T_{\ell-1}} \right],$$

which vanishes as $\rho \to \infty$. Next, consider the integral in (A.5) (the argument for (A.6) is analogous), which is bounded above by

$$\frac{\lambda}{(\lambda|N|+\rho)} \left[\Pi_{\sigma} - \frac{c+\theta+\phi}{\lambda} + (|N|-1) \max_{\hat{\sigma} \geq \sigma} \Pi_{\hat{\sigma}} \right] \left[1 - e^{-(\lambda|N|+\rho)T_{is}} \right].$$

Again, this bound approaches zero when $\rho \to \infty$, thus yielding the claim.

• To establish (iv) I begin by showing that both the product of ρ with the integral in (A.7) and the product of ρ with the integral in (A.8) vanish as $\rho \to \infty$. Consider the integral in (A.7), multiplied by ρ (the argument for (A.8) is analogous). Observe that it is bounded above by

$$\frac{\rho\lambda}{(\lambda\ell+\rho)} \left[\Pi_{\sigma} - \frac{c+\theta+\phi}{\lambda} + (\ell-1) \max_{\hat{\sigma} \geq \sigma} \Pi_{\hat{\sigma}} \right] \left[e^{-(\lambda\ell+\rho)T_{\ell}} - e^{-(\lambda\ell+\rho)T_{\ell-1}} \right].$$

Again, this bound approaches zero when $\rho \to \infty$. It remains to show that both the product of ρ with the integral in (A.5) and the product of ρ with the integral in (A.6) approach $\lambda \Pi_{\sigma} - (c + \theta + \phi)$ as $\rho \to \infty$. Consider the integral in (A.5), multiplied by ρ (the argument for (A.6) is analogous), which we can rewrite as

$$\frac{\lambda \rho}{(\lambda \ell + \rho)} \left[\Pi_{\sigma} - \frac{c + \theta + \phi}{\lambda} + (|N| - 1) \mathbf{V}_{|N| - 1} \right] \left[1 - e^{-(\lambda |N| + \rho)T_{is}} \right]
- \int_{0}^{T_{is}} U_{is}(\tau; a_i, C^*) \rho e^{-(\lambda |N| + \rho)\tau} d\tau.$$

From the facts that, in equilibrium, $T_{is} > 0$ for any $\rho \ge 0$ as observed above and that $\mathbf{V}_{|N|-1} \to 0$ when $\rho \to \infty$ from (iii), the first term in the above expression approaches $\lambda \Pi_{\sigma} - (c + \theta + \phi)$ as $\rho \to \infty$. As regards the second term, observe that

$$\int_{0}^{T_{is}} U_{is}(\tau; a_i, C^*) \rho e^{-(\lambda|N|+\rho)\tau} d\tau \le \left[\max_{\hat{\tau} \in [0, T_{is}]} U_{is}(\hat{\tau}; a_{is}, C^*) \right] \cdot \frac{\rho}{\lambda|N|+\rho} \left[1 - e^{-(\lambda|N|+\rho)T_{is}} \right],$$

where the above observations give us that the first term in the product on the right side goes to zero as $\rho \to \infty$ while the other one remains bounded, thus yielding the claim.

To finish the proof, we may multiply (C.1) with ρ and use the observations (i)—(iv) above together with the definition of \mathbf{V}_{κ} and \mathbf{U}_{κ} in Definition 4 to obtain that, as $\rho \to \infty$, we have $\operatorname{sgn}(G_{\kappa} - G_{\kappa+1}) = 1$ if and only if $\Pi_{\sigma} - \Pi_{\sigma+1} > 0$ as well as $\operatorname{sgn}(G_{\kappa} - G_{\kappa+1}) = -1$ if and only if $\Pi_{\sigma} - \Pi_{\sigma+1} < 0$. This, together with points (b) and (c) of Corollary 1 then gives us the claim.

Proof of Proposition 4. First observe that when the current prize has value Π_{σ} then $\max_{\hat{\sigma} \geq \sigma} \Pi_{\hat{\sigma}}$ is an upper bound on the dyad continuation payoff. Hence, it follows from (C.3) in the proof of Proposition 3 that in any state s the mutually optimal deadlines are bounded above by

$$\overline{T}^* = \max_{\kappa \in \{1, \dots, |N|\}} \frac{1}{\lambda} \ln \left(\frac{\lambda \Pi_{\sigma} - (c+\theta) + \lambda(\kappa - 1) \max_{\hat{\sigma} \ge \sigma} \Pi_{\hat{\sigma}}}{\phi} \right), \tag{C.4}$$

which, using l'Hopital's rule, is readily confirmed to converge to zero as λ diverges to infinity. Moreover, it is clear that $\lim_{\lambda\to\infty}\lambda\overline{T}^*=\infty$. Consequently, we have $\lim_{\lambda\to\infty}e^{-\overline{T}^*}=1$ and $\lim_{\lambda\to\infty}e^{-\lambda\overline{T}^*}=0$.

In order to determine the limit of the sign of $G_{\kappa} - G_{\kappa'}$, I first make some preliminary observations on the limits both of expected investor and expected firm payoffs in equilibrium. Throughout the following, I fix a state $s = (\sigma, N, \xi)$ and suppose C^* is an payoff-anonymous equilibrium profile.

First, we consider the limit $\lim_{\lambda\to\infty} U_{is}(0; a_i, C^*)$. When |N|=1, then (A.2) gives $U_{is}(0; a_i, C^*) = \frac{\phi}{\rho}[1 - e^{-\rho T_{is}^*}]$. From the facts that $[1 - e^{-\rho T_{is}^*}] \leq [1 - e^{-\rho \overline{T}^*}]$ and

 $\lim_{\lambda\to\infty} \overline{T}^* = 0$ we obtain that $\lim_{\lambda\to\infty} U_{is}(0; a_i, C^*) = 0$. Consequently,

$$|N| = 1 \implies \lim_{\lambda \to \infty} E[U_{is}(0; a_i, C^*)] = 0. \tag{C.5}$$

On the other hand, if $|N| \ge 2$ but $\sigma = m$, then, because $\mathbf{U}_{\kappa} = 0$ for all $\kappa \le |N| - 1$ in such a state, (A.2) gives $\lim_{\lambda \to \infty} U_{is}(0; a_i, C^*) = 0$ directly. Consequently,

$$\sigma = m \implies \lim_{\lambda \to \infty} E[U_{is}(0; a_i, C^*)] = 0.$$
 (C.6)

Finally, when $\sigma \leq m-1$ and $|N| \geq 2$, then the first case in (A.2) gives that for any $T_{is} \in [T_{\kappa}, T_{\kappa-1})$ it holds

$$0 \le \lim_{\lambda \to \infty} U_{is}(T_{\kappa}; a_i, C^*) \le \lim_{\lambda \to \infty} \mathbf{U}_{\kappa - 1}.$$

Then, from the second case in (A.2) we obtain

$$0 \le \lim_{\lambda \to \infty} U_{is}(T_{\kappa+1}; a_i, C^*) \le \lim_{\lambda \to \infty} \mathbf{U}_{\kappa-1} + \lim_{\lambda \to \infty} \mathbf{U}_{\kappa}.$$

More generally, using the second case in (A.2) repeatedly, we get

$$0 \le \lim_{\lambda \to \infty} U_{is}(0; a_i, C^*) \le \sum_{j=\kappa-1}^{|N|-1} \lim_{\lambda \to \infty} \mathbf{U}_j.$$

Consequently, firm utility is invariant in permutations of the deadline profile, and we have

$$0 \le \lim_{\lambda \to \infty} E[U_{is}(0; a_i, C^*)] \le \sum_{j=\kappa-1}^{|N|-1} \lim_{\lambda \to \infty} \mathbf{U}_j.$$
 (C.7)

Because the inequalities in (C.7) must hold for every state s, we can use them recursively together with Definition 4 and the boundary conditions (C.5) and (C.6) to conclude

$$\lim_{\lambda \to \infty} E[U_{is}(0; a_i, C^*)] = 0 \text{ for any state } s.$$
 (C.8)

Next, recall from (C.2) in the proof to Proposition 3 that all mutually optimal

deadlines are bounded below by \underline{T}^* where

$$\underline{T}^* \equiv \min_{\kappa} \frac{1}{\lambda} \ln (G_{\kappa}).$$

Because $E[U_{is}(0; a_i, C^*)]$ vanishes by (C.8), applying l'Hopital's rule gives that \underline{T}^* converges to zero as λ diverges to infinity. Moreover, it is clear that $\lim_{\lambda \to \infty} \lambda \underline{T}^* = \infty$. Because both \underline{T}^* and \overline{T}^* converge to zero, it must hold that any equilibrium deadline converges to zero as $\lambda \to \infty$. Further, because both $\lambda \underline{T}^*$ and $\lambda \overline{T}^*$ diverge to infinity, the same must hold for the product of λ and any equilibrium deadline. For any equilibrium deadline T_{is}^* it thus holds

$$\lim_{\lambda \to \infty} e^{-\lambda T_{is}^*} = 0 \text{ and } \lim_{\lambda \to \infty} e^{-T_{is}^*} = 1.$$
 (C.9)

Next, I consider the limit $\lim_{\lambda\to\infty} \frac{\lambda}{\phi} E[U_{is}(0; a_i, C^*)]$. To this end define $\hat{U}_{is}(0; a_i, C^*) \equiv \frac{\lambda}{\phi} U_{is}(0; a_i, C^*)$ and, accordingly, $\hat{\mathbf{U}}_{\kappa} = \frac{\lambda}{\phi} \mathbf{U}_{\kappa}$. Let \tilde{T} be lowest of all opponent deadlines. Then, from (A.2), $\hat{U}_{is}(0; a_i, C^*)$ is given by

$$\hat{U}_{is}(0; a_i, C^*) = \begin{cases}
\frac{1 + (|N| - 1)\hat{\mathbf{U}}_{|N| - 1}}{|N| - 1 + \rho/\lambda} \times \left[1 - e^{-(\lambda(|N| - 1) + \rho)T_{is}^*}\right] & \text{if } T_{is}^* \leq \tilde{T} \\
\hat{U}_{is}(\tilde{T}; a_{is}, C^*)e^{-((|N| - 1)\lambda + \rho)\tilde{T}} \\
+ \frac{1 + (|N| - 1)\hat{\mathbf{U}}_{|N| - 1}}{|N| - 1 + \rho/\lambda} \times \left[1 - e^{-(\lambda(|N| - 1) + \rho)\tilde{T}}\right] & \text{if } T_{is}^* > \tilde{T}.
\end{cases}$$
(C.10)

To determine the value of $\lim_{\lambda\to\infty} \hat{U}_{is}(0; a_i, C^*)$ we need to distinguish three cases. First, if |N|=1, then only the first case above applies — as $\tilde{T}=\infty$ in that case — and we obtain $\lim_{\lambda\to\infty} \hat{U}_{is}(0; a_i, C^*)=\infty$. To see this, observe that $\overline{T}^*=\underline{T}^*=\frac{1}{\lambda}\ln\left(\frac{\lambda\Pi_{\sigma}-(c+\theta)}{\phi}\right)$ when |N|=1. Consequently, it holds

$$\hat{U}_{is}(0; a_i, C^*) = \frac{\lambda}{\rho} \left[1 - \exp\left(-\frac{\rho}{\lambda} \ln\left(\frac{\lambda \Pi_{\sigma} - (c + \theta)}{\phi}\right)\right) \right].$$

Applying L'Hôpital's rule, we have

$$\begin{split} &\lim_{\lambda \to \infty} \hat{U}_{is}(0; a_i, C^*) \\ &= \lim_{\lambda \to \infty} \frac{\exp\left(-\frac{\rho}{\lambda} \ln\left(\frac{\lambda \Pi_{\sigma} - (c + \theta)}{\phi}\right)\right) \left[\frac{\rho}{\lambda^2} \ln\left(\frac{\lambda \Pi_{\sigma} - (c + \theta)}{\phi}\right) - \frac{\rho}{\lambda} \frac{\phi \Pi_{\sigma}}{\lambda \Pi_{\sigma} - (c + \theta)}\right]}{\rho \lambda^{-2}} \\ &= \lim_{\lambda \to \infty} \exp\left(-\frac{\rho}{\lambda} \ln\left(\frac{\lambda \Pi_{\sigma} - (c + \theta)}{\phi}\right)\right) \left[\ln\left(\frac{\lambda \Pi_{\sigma} - (c + \theta)}{\phi}\right) - \frac{\phi \lambda \Pi_{\sigma}}{\lambda \Pi_{\sigma} - (c + \theta)}\right]. \end{split}$$

From (C.9), the limit of the term before the square brackets is one. The difference in the square brackets diverges to infinity.

The second case is when $\sigma=m$ yet $|N|\geq 2$. Because in that case it holds $\hat{\mathbf{U}}_{\kappa}=0$ for all $\kappa\leq |N|-1$ it follows from (C.9) that $\lim_{\lambda\to\infty}\hat{U}_{is}(0;a_i,C^*)=\frac{1}{|N|-1}$ (irrespective of which case we look at in (C.10)). Last, if $\sigma\leq m-1$ and $|N|\geq 2$, then we obtain for either case in (C.10) that $\lim_{\lambda\to\infty}\hat{U}_{is}(0;a_i,C^*)=\frac{1}{|N|-1}+\lim_{\lambda\to\infty}\hat{\mathbf{U}}_{|N|-1}$.

Together with Definition 4, the observations in above paragraphs allow us to conclude that, for any state s,

$$\lim_{\lambda \to \infty} E[\hat{U}_{is}(0; a_i, C^*)] = \begin{cases} \infty & \text{if } |N| - 1 \le m - \sigma \\ \sum_{j=1}^{m-\sigma+1} \frac{1}{|N| - j} & \text{if } |N| - 1 > m - \sigma. \end{cases}$$

From this it follows for any state $s = (\sigma, N, \xi)$ with $\sigma < m$ that, for $\kappa < |N|$,

$$\lim_{\lambda \to \infty} \hat{\mathbf{U}}_{\kappa} = \begin{cases} \infty & \text{if } \kappa \le m - \sigma \\ \sum_{j=1}^{m-\sigma} \frac{1}{\kappa - j} & \text{if } \kappa > m - \sigma. \end{cases}$$
 (C.11)

Further, I want to argue that from Lemma A.2 and the fact that $\lim_{\lambda \to \infty} U_{is}(t; a_i, C^*) = 0$ for all $t \geq 0$ (which follows from an analogous argument as the one used to derive (C.8) above) we obtain, for all $s = (\sigma, N, \xi)$ with $\sigma < m$, that for any $\kappa \leq |N| - 1$ it holds

$$\lim_{\lambda \to \infty} \kappa \mathbf{V}_{\kappa} = \sum_{j=0}^{\min\{\kappa-1, \\ m-\sigma-1\}} \Pi_{\sigma+1+j}.$$
 (C.12)

To see this, we first establish that the intervals appearing in (A.7)–(A.8) vanish as $\lambda \to \infty$. Consider the integral in (A.7), which (with the relevant $\ell \geq 1$) is bounded above by

$$\begin{split} \left[\Pi_{\sigma} - \frac{c + \theta + \phi}{\lambda} + (\ell - 1) \max_{\hat{\sigma} \ge \sigma} \Pi_{\hat{\sigma}}\right] \int_{T_{\ell}}^{T_{\ell-1}} \lambda e^{-(\lambda \ell + \rho)\tau} d\tau \\ &= \frac{\lambda}{\lambda \ell + \rho} \left[\Pi_{\sigma} - \frac{c + \theta + \phi}{\lambda} + (\ell - 1) \max_{\hat{\sigma} \ge \sigma} \Pi_{\hat{\sigma}}\right] \left[e^{-(\lambda \ell + \rho)T_{\ell}} - e^{-(\lambda \ell + \rho)T_{\ell-1}}\right]. \end{split}$$

This bound vanishes because, in equilibrium, λT_{ℓ} , $\lambda T_{\ell-1} \to \infty$, as observed above. The argument for the integral in (A.8) is analogous.

Next, I show that the intervals appearing in (A.5)–(A.6) approach $|N|^{-1}[\Pi_{\sigma}+(|N|-1)\lim_{\lambda\to\infty}\mathbf{V}_{|N|-1}]$ as $\lambda\to\infty$. Consider the integral appearing in (A.5), which can be rewritten as

$$\frac{\lambda}{\lambda|N|+\rho} \left[\Pi_{\sigma} - \frac{c+\theta+\phi}{\lambda} + (|N|-1)\mathbf{V}_{|N|-1} \right] \left[1 - e^{-(\lambda|N|+\rho)T_{is}} \right] - \int_{0}^{T_{is}} U_{is}(\tau; a_i, C^*) \lambda e^{-(\lambda|N|+\rho)\tau} d\tau.$$

Because $\lambda T_{is} \to \infty$ for any equilibrium deadline, the first term above approaches

$$\frac{1}{|N|} \left[\Pi_{\sigma} + (|N| - 1) \lim_{\lambda \to \infty} \mathbf{V}_{|N| - 1} \right].$$

As regards the second term, observe that

$$\int_{0}^{T_{is}} U_{is}(\tau; a_i, C^*) \lambda e^{-(\lambda|N|+\rho)\tau} d\tau \le \left[\max_{\hat{\tau} \in [0, T_{is}]} U_{is}(\hat{\tau}; a_i, C^*) \right] \cdot \int_{0}^{T_{is}} \lambda e^{-(\lambda|N|+\rho)\tau} d\tau,$$

where both terms in the product on the right side go to zero as $\lambda \to \infty$. The same argument can be applied to the integral in (A.6).

Together with above observations this gives us $\lim_{\lambda\to\infty} V_{is}(0;C^*) = |N|^{-1}[\Pi_{\sigma} + I_{is}]$

 $(|N|-1)\lim_{\lambda\to\infty} \mathbf{V}_{|N|-1}$. But this implies that for any state $s=(\sigma,N,\xi)$ we have

$$|N|\lim_{\lambda\to\infty} E[V_{is}(0;C^*)] = \Pi_{\sigma} + (|N|-1)\lim_{\lambda\to\infty} \mathbf{V}_{|N|-1}.$$

Using Definition 4 together with the boundary conditions for states s with |N| = 1, $\mathbf{V}_0 = 0$, and for state s with $\sigma = m$, $\mathbf{V}_{|N|-1} = 0$, this can be written

$$|N| \cdot \lim_{\lambda \to \infty} E[V_{is}(0; C^*)] = \sum_{j=0}^{\min\{|N|-1, m-\sigma\}} \Pi_{\sigma+j}.$$

Using Definition 4 again, this then finally yields (C.12).

Now, multiplying the right side of (16) with λ/ϕ we obtain that the sign of $G_{\kappa} - G_{\kappa'}$ for $\kappa' > \kappa$ is equal to the sign of

$$\left[\Pi_{\sigma} - \frac{c+\theta}{\lambda}\right] \left[(\kappa'-1)\hat{\mathbf{U}}_{\kappa'-1} - (\kappa-1)\hat{\mathbf{U}}_{\kappa-1} \right]
+ (\kappa-1)\left[\mathbf{V}_{\kappa-1} + \mathbf{U}_{\kappa-1}\right] \left[1 + (\kappa'-1)\hat{\mathbf{U}}_{\kappa'-1} \right]
- (\kappa'-1)\left[\mathbf{V}_{\kappa'-1} + \mathbf{U}_{\kappa'-1}\right] \left[1 + (\kappa-1)\hat{\mathbf{U}}_{\kappa-1} \right]. \quad (C.13)$$

To determine the sign of above expression when $\lambda \to \infty$, we need to distinguish three cases:

1. $\kappa = 1$. In this case, (C.13) boils down to

$$\left[\Pi_{\sigma} - \frac{c+\theta}{\lambda}\right] (\kappa'-1)\hat{\mathbf{U}}_{\kappa'-1} - (\kappa'-1)\left[\mathbf{V}_{\kappa'-1} + \mathbf{U}_{\kappa'-1}\right].$$

We have to further distinguish:

- (a) $\kappa'-1 \leq m-\sigma$. From (C.11) we obtain that the first term in above difference diverges to infinity, while (C.8) and (C.12) give that the second term remains bounded. Hence, $G_1 > G_{\kappa'}$ in this case.
- (b) $\kappa' 1 > m \sigma$. In this case, (C.11) gives that the first term remains bounded, too, and we obtain from (C.11) and (C.12) that, in the limit

 $\lambda \to \infty$, $G_1 > G_{\kappa'}$ if and only if

$$\Pi_{\sigma}(\kappa'-1)\sum_{j=1}^{m-\sigma}\frac{1}{\kappa'-1-j}-\sum_{j=0}^{m-\sigma-1}\Pi_{\sigma+1+j}>0.$$

Observe that

$$(\kappa' - 1) \sum_{j=1}^{m-\sigma} \frac{1}{\kappa' - 1 - j} > (\kappa' - 1) \frac{m - \sigma}{\kappa' - 1} = m - \sigma,$$

implying that a sufficient condition for $G_1 > G_{\kappa'}$ to hold for $\kappa' > m - \sigma + 1$ is

$$\Pi_{\sigma}(m-\sigma) - \sum_{i=1}^{m-\sigma} \Pi_{\sigma+j} > 0,$$

which holds because the values of the spots, Π_{σ} , strictly decrease in σ . This gives us $G_1 > G_{\kappa'}$ in this case, too.

- 2. $0 < \kappa 1 \le m \sigma$. In this case, too, the limit of (C.13) depends on which of the following two cases holds:
 - (a) $\kappa' 1 \leq m \sigma$. In this case, the terms involving $\hat{\mathbf{U}}_{\kappa-1}$ and $\hat{\mathbf{U}}_{\kappa'-1}$ diverge to infinity by (C.11). They all do so at the same rate, so that from (C.11) and (C.12) we have $G_{\kappa} > G_{\kappa'}$ if and only if

$$\Pi_{\sigma}(\kappa' - \kappa) + (\kappa' - 1) \sum_{j=0}^{\kappa - 2} \Pi_{\sigma + 1 + j} - (\kappa - 1) \sum_{j=0}^{\kappa' - 2} \Pi_{\sigma + 1 + j} > 0.$$

For $\kappa' = \kappa + 1$, this condition becomes

$$\Pi_{\sigma} + \kappa \sum_{j=0}^{\kappa-2} \Pi_{\sigma+1+j} - (\kappa - 1) \sum_{j=0}^{\kappa-1} \Pi_{\sigma+1+j} > 0.$$

This is equivalent to

$$\Pi_{\sigma} + \sum_{j=1}^{\kappa} \Pi_{\sigma+j} - \kappa \Pi_{\sigma+\kappa} > 0,$$

which holds because the values of the spots are decreasing. This gives $G_{\kappa} > G_{\kappa'}$ for all $1 < \kappa < \kappa' \le m - \sigma + 1$.

- (b) $\kappa'-1 > m-\sigma$. In this case, the terms involving $\hat{\mathbf{U}}_{\kappa-1}$ diverge to infinity (cf. (C.11)) while the other terms remain bounded, such that (C.13) diverges to minus infinity. Consequently, $G_{\kappa} < G_{\kappa'}$ in this case.
- 3. $m-\sigma < \kappa 1$. In this case, we obtain from (C.8), (C.11), and (C.12) that (C.13) converges to

$$\Pi_{\sigma} \left[(\kappa' - 1) \sum_{j=1}^{m-\sigma} \frac{1}{\kappa' - 1 - j} - (\kappa - 1) \sum_{j=1}^{m-\sigma} \frac{1}{\kappa - 1 - j} \right] \\
+ \sum_{j=0}^{m-\sigma-1} \Pi_{\sigma+1+j} \left[1 + (\kappa' - 1) \sum_{j=1}^{m-\sigma} \frac{1}{\kappa' - 1 - j} \right] \\
- \sum_{j=0}^{m-\sigma-1} \Pi_{\sigma+1+j} \left[1 + (\kappa - 1) \sum_{j=1}^{m-\sigma} \frac{1}{\kappa - 1 - j} \right].$$

Now, for $\kappa' = \kappa + 1$, we can rewrite these terms as

$$\sum_{j=0}^{m-\sigma} \Pi_{\sigma+j} \left[\kappa \sum_{j=1}^{m-\sigma} \frac{1}{\kappa - j} - (\kappa - 1) \sum_{j=1}^{m-\sigma} \frac{1}{\kappa - 1 - j} \right]$$

which is equal to

$$\sum_{j=0}^{m-\sigma} \Pi_{\sigma+j} \left[\kappa \left[\frac{1}{\kappa-1} - \frac{1}{\kappa-1 - (m-\sigma)} \right] + \sum_{j=2}^{m-\sigma+1} \frac{1}{\kappa-j} \right],$$

Observe that the sign of the expression in the outer brackets above is equal to that of

$$\frac{1}{\kappa} \sum_{j=2}^{m-\sigma+1} \frac{1}{\kappa - j} - \frac{1}{\kappa - 1} \frac{m - \sigma}{\kappa - 1 - (m - \sigma)}$$

$$< \frac{1}{\kappa} \frac{m - \sigma}{\kappa - 1 - (m - \sigma)} - \frac{1}{\kappa - 1} \frac{m - \sigma}{\kappa - 1 - (m - \sigma)}$$

$$= \frac{m - \sigma}{\kappa - 1 - (m - \sigma)} \left[\frac{1}{\kappa} - \frac{1}{\kappa - 1} \right] < 0.$$

Consequently, we have $G_{\kappa} < G_{\kappa'}$ whenever $m - \sigma + 1 < \kappa < \kappa'$.

Letting $\underline{k} = 2$ and $\overline{k} = \min\{|N|, m - \sigma + 1\}$ above observations give us that $G_1 > G_{\kappa}$ for all $\kappa \geq 2$ (points 1.a and 1.b above), $G_{\kappa} < G_{|N|}$ for all $\kappa \geq \underline{k}$ (points 2.b and 3) and that $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ is U-shaped with $G_{\overline{k}}$ the lowest of all elements (points 2.a, 2.b, and 3). Moreover, it is then a consequence of ponts 1 and 2.b) that all elements in the sequence $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ are distinct (i.e., $G_{\kappa} > G_{\kappa+1}$ for all $\kappa < \min\{|N|, m - \sigma + 1\}$, and, if $|N| > m - \sigma + 1$, then $G_{\kappa} < G_{\kappa+1}$ for all $\kappa \geq m - \sigma + 1$ where, crucially, $G_2 < G_{\kappa} < G_1$ for all $\kappa > m - \sigma + 1$). Consequently, the claim follows from Lemma C.1 and Proposition 1.

Proof of Proposition 5. To begin, observe that for $\sigma = m - 1$ we have

$$\lim_{\phi \to 0} \phi \cdot G_{\kappa} = \frac{\lambda \Pi_{m-1} - (c+\theta) + \frac{\lambda(\kappa - 1)}{\lambda(\kappa - 1) + \rho} \left[\lambda \Pi_m - (c+\theta)\right]}{1 + \frac{\lambda(\kappa - 1)}{\lambda(\kappa - 2) + \rho}} \equiv \bar{G}_{\kappa}. \tag{C.14}$$

This follows from expanding the fraction in (16) by λ and appreciating

$$\lim_{\phi \to 0} \left[\mathbf{V}_{\kappa - 1} + \mathbf{U}_{\kappa - 1} \right] = \frac{\left[\lambda \Pi_m - (c + \theta) \right]}{\lambda (\kappa - 1) + \rho}$$

and

$$\lim_{\phi \to 0} \frac{\mathbf{U}_{\kappa - 1}}{\phi} = \frac{1}{\lambda(\kappa - 2) + \rho}.$$

The first limit corresponds to expected total dyad welfare when there are $\kappa - 1$ players racing for the last spot. The second limit can be derived from Part (b) in Lemma A.1, appreciating that the continuation payoff in any state s with $\sigma = m$ is zero.

By construction, we have $\operatorname{sgn}(G_{\kappa} - G_{\kappa'}) = \operatorname{sgn}(\bar{G}_{\kappa} - \bar{G}_{\kappa'})$ for all sufficiently low ϕ whenever $\operatorname{sgn}(\bar{G}_{\kappa} - \bar{G}_{\kappa'}) \in \{-1, 1\}$. This allows me to use $\{\bar{G}_{\kappa}\}_{\kappa=1}^{|N|}$ rather than $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ to construct \mathcal{G}_s in order to draw conclusions on the properties of the profile of mutually optimal deadlines when ϕ becomes small.

Fix κ, κ' satisfying $\kappa' > \kappa \geq 2$. Then we have from (C.14) that $\bar{G}_2^{\kappa} > \bar{G}_2^{\kappa'}$ is

equivalent to

$$\Phi\left[\frac{\lambda(\kappa'-1)}{\lambda(\kappa'-2)+\rho} - \frac{\lambda(\kappa-1)}{\lambda(\kappa-2)+\rho}\right] > \frac{\lambda(\kappa'-1)}{\lambda(\kappa'-1)+\rho}\left[1 + \frac{\lambda(\kappa-1)}{\lambda(\kappa-2)+\rho}\right] - \frac{\lambda(\kappa-1)}{\lambda(\kappa-1)+\rho}\left[1 + \frac{\lambda(\kappa'-1)}{\lambda(\kappa'-2)+\rho}\right],$$

where Φ is defined in (22). Straightforward yet tedious calculations reveal that this is equivalent to

$$\Phi\lambda(\rho-\lambda)[\lambda(\kappa-1)+\rho][\lambda(\kappa'-1)+\rho]$$

$$> \lambda(\rho-\lambda)\left[[\lambda(\kappa-1)+\rho][\lambda(\kappa'-1)+\rho]-\rho\lambda\right]+2\lambda^4(\kappa-1)(\kappa'-1).$$

From this we get that $\bar{G}_{\kappa} > \bar{G}_{\kappa'}$ for $\kappa' > \kappa \geq 2$ is equivalent to $f(\kappa, \kappa') > 0$, where $f(\kappa, \kappa')$ is given by

$$f(\kappa, \kappa') = \lambda^2 (\kappa - 1)(\kappa' - 1) \left[(\Phi - 1)(\rho - \lambda) - 2\lambda \right]$$

$$+ \rho(\rho - \lambda) \left[(\Phi - 1) \left[\lambda(\kappa + \kappa' - 2) + \rho \right] + \lambda \right]. \quad (C.15)$$

To continue, treat κ as a real number where necessary, define the binomial $g(\kappa) \equiv f(\kappa, \kappa+1)$ and observe that $g''(k) \geq 0$ with $\lim_{k\to\infty} g(k) = \infty$ when $\Phi \geq (\rho+\lambda)/(\rho-\lambda)$ and that $g''(\kappa) < 0$ with $\lim_{k\to\infty} g(k) = -\infty$ when $\Phi < (\rho+\lambda)/(\rho-\lambda)$. Moreover, for $\kappa = 2$ we have

$$g(2) = 2\lambda^2 \left[(\Phi - 1)(\rho - \lambda) - 2\lambda \right] + \rho(\rho - \lambda) \left[(\Phi - 1)(3\lambda + \rho) + \lambda \right],$$

which is increasing in Φ , $\partial g(2)/\partial \Phi > 0$.

Claim (a). If $\Phi < \rho/(\lambda + \rho)$, then $\Phi < (\rho + \lambda)/(\rho - \lambda)$, in which case we know that the binomial $g(\kappa)$ is strictly convex, and that $g(\kappa)$ diverges to minus infinity when κ grows large. Moreover, plugging in $\Phi = \rho/(\lambda + \rho)$ in the expression for g(2) above, we obtain g(2) < 0, which together with the fact that g(2) decreases in Φ implies that g(2) < 0 for all $\Phi \le \rho/(\lambda + \rho)$. That is, we have $g(\kappa) < 0$ for all $\kappa \ge 2$, implying that \bar{G}_{κ} is strictly increasing for all $\kappa \ge 2$. Finally, because $\Phi < \rho/(\lambda + \rho)$ implies

 $\bar{G}_1 < \bar{G}_2$ we obtain that \bar{G}_{κ} (and, hence, G_{κ} for all sufficiently small $\phi > 0$) is also strictly increasing for all $\kappa \geq 1$, together with Corollary 1 giving the claim.

Claim (b). Observe that for $\Phi = (\rho + \lambda)/(\rho - \lambda)$ it holds g(2) > 0. By an analogous argument as above, this implies that $\bar{G}_{\kappa} > \bar{G}_{\kappa+1}$ for all $\kappa \geq 2$ when $\Phi > (\rho + \lambda)/(\rho - \lambda)$. Moreover, recall that $\bar{G}_1 > \bar{G}_2$ iff $\Phi > \rho/(\rho + \lambda)$. Appreciating that $(\rho + \lambda)/(\rho - \lambda) \geq \rho/(\rho + \lambda)$ then yields that \bar{G}_{κ} (and, hence, G_{κ} for all sufficiently small $\phi > 0$) is strictly decreasing for all $\kappa \geq 1$, together with Corollary 1 giving the claim.

Claim (c). It remains to analyze the case $\Phi \in (\rho/(\lambda + \rho), (\rho + \lambda)/(\rho - \lambda))$. Doing so, I suppose Π_{m-1} and Π_m are such that no two elements in the sequence $\{\bar{G}_{\kappa}\}_{\kappa=1}^{|N|}$ are equal, which holds for generic values of Π_{m-1} and Π_m , as is readily verified from (C.14).

I first argue for the existence of \underline{k} and \overline{k} . We know from above that $\Phi > \rho/(\lambda + \rho)$ implies $\overline{G}_1 > \overline{G}_2$. Also, we know that, as a consequence of $\Phi < (\rho + \lambda)/(\rho - \lambda)$, the binomial $g(\kappa)$ is strictly convex and that $g(\kappa)$ diverges to minus infinity when κ grows large. Together with the assumption that all elements in $\{\overline{G}_{\kappa}\}_{\kappa=1}^{|N|}$ are distinct, the following cutoff is well defined:

$$\overline{k} = \min\{\kappa \in \{2, 3, ..., |N|\} : g(\kappa) < 0\},\$$

with the usual convention that $\min\{\emptyset\} = |N|$. Because $g(\kappa) > 0$ for all natural $\kappa < \overline{k}$ and $g(\kappa) < 0$ for all natural $\kappa \ge \overline{k}$, together with $\overline{G}_1 > \overline{G}_2$, it thus holds $\overline{G}_{\kappa} > \overline{G}_{\kappa+1}$ for all $\kappa \in \{1, ..., \overline{k} - 1\}$ and $\overline{G}_{\kappa} \le \overline{G}_{\kappa+1}$ for all $\kappa \in \{\overline{k}, ..., |N|\}$. That is, the cutoff index \overline{k} refers to the lowest element in the sequence $\{\overline{G}_{\kappa}\}_{\kappa=1}^{|N|}$.

Moreover, because the sequence $\{\bar{G}_{\kappa}\}_{\kappa=1}^{|N|}$ is first decreasing, up to \bar{k} , and then increasing, the following cutoff is also well defined:

$$\underline{k} = \begin{cases} 1 & \text{if } \bar{G}_1 < \bar{G}_{|N|} \\ \min\{\kappa \in \{2, 3, ..., \overline{k}\} : f(\kappa, |N|) < 0\} & \text{if } \bar{G}_1 > \bar{G}_{|N|}, \end{cases}$$

again with the convention that $\min\{\emptyset\} = \overline{k}$. By construction, the index \underline{k} refers to the earliest element in $\{\bar{G}_{\kappa}\}_{\kappa=1}^{|N|}$ that is below $\bar{G}_{m-1}^{|N|}$. Recalling that we have $\operatorname{sgn}(G_{\kappa}-G_{\kappa'}) = \operatorname{sgn}(\bar{G}_{\kappa}-\bar{G}_{\kappa'})$ for all sufficiently low ϕ whenever $\operatorname{sgn}(\bar{G}_{\kappa}-\bar{G}_{\kappa'}) \in \{-1,1\}$, the first

claim in (c) then follows from Lemma C.1 together with Proposition 1.

Next, I argue that both \underline{k} and \overline{k} are increasing ceteris paribus in Φ , which gives the claim w.r.t. Π_{m-1} and Π_m . Observe that both $f(\kappa, \kappa')$ and $g(\kappa)$ are increasing in Φ . It follows from above that $g(\kappa)$ is decreasing at $\kappa = \kappa^*$ solving $g(\kappa^*) = 0$. Consequently, κ^* is increasing in Φ , implying that the same holds true for \overline{k} . Moreover, by construction of \underline{k} it hold $f(\underline{k} - 1, |N|) > 0$ and $f(\underline{k}, |N|) < 0$. Together with the observation that f(.,.) increases in Φ we get that \underline{k} cannot be decreasing.

Finally, I claim that for every sufficiently high ρ , there is a number of players, |N|, together with values for Φ such that $\underline{k} < \overline{k}$. I show this by example. Note that if Φ is close to 1 then $f(\kappa, \kappa')$ is approximately

$$f(\kappa, \kappa') \approx -2\lambda^2(\kappa - 1)(\kappa' - 1)\lambda + \rho(\rho - \lambda)\lambda.$$
 (C.16)

The cutoff \overline{k} satisfies $f(\overline{k}, \overline{k}+1) < 0$ and $f(\overline{k}-1, \overline{k}) > 0$ while the cutoff \underline{k} satisfies $f(\underline{k}, |N|) < 0$ and $f(\underline{k}-1, |N|) > 0$. From (C.16) we see that \overline{k} is independent of |N|, while \underline{k} decreases in |N|, because $f(\kappa, \kappa')$ decreases both in κ and κ' . Last, $f(\kappa, \kappa')$ increases in ρ . Hence, whenever ρ is sufficiently large but finite, then \overline{k} is greater than three, and |N| can be chosen such that $2 \le \underline{k} < \overline{k}$.

D More on Vanishing Moral Hazard

This appendix treats the case $\rho \leq \lambda$. We have the following result:

Proposition D.1. Take any state $s = (\sigma, N, \xi)$ with $\sigma = m - 1$ and $|N| \ge 2$ and suppose $\rho \le \lambda$. For any equilibrium and every $\phi > 0$ sufficiently close to zero:

- (a) If $\Phi < \rho/(\lambda + \rho)$, then $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ is strictly increasing and, hence, any profile $\{T_{\kappa}^*\}_{\kappa=1}^{|N|} \in \mathcal{T}_s$ is completely symmetric.
- **(b)** If $\Phi > (\lambda(|N|-2)+\rho)/(\lambda(|N|-1)+\rho)$, then all $\{T_{\kappa}^*\}_{\kappa=1}^{|N|} \in \mathcal{T}_s$ have |N|-1 investors choosing the same deadline and one investor choosing a strictly longer deadline.
- (c) For a.e. $\Phi \in (\rho/(\lambda + \rho), (\lambda(|N| 2) + \rho)/(\lambda(|N| 1) + \rho))$, both kind of profiles described in (a) and (b) above are mutually optimal.

Proof of Proposition D.1. Consider \bar{G}_{κ} defined in (C.14) from the proof of Proposition 5. While the numerator of \bar{G}_{κ} strictly increases in κ , the denominator weakly decreases in $\kappa \geq 2$ if an only if $\rho \leq \lambda$. As a consequence, \bar{G}_{κ} strictly increases in $\kappa \geq 2$ if $\rho \leq \lambda$. Further, note that $\bar{G}_1 < \bar{G}_{\kappa}$ holds if and only if $\frac{\lambda(\kappa-2)+\rho}{\lambda(\kappa-1)+\rho} < \Phi$, where Φ is defined in (22).

Consequently, in case (a) we have $\bar{G}_1 < \bar{G}_2$, giving that $\{\bar{G}_{\kappa}\}_{\kappa=1}^{|N|}$ is strictly increasing. But then, recalling from the proof of Proposition 5 that we have $\operatorname{sgn}(G_{\kappa} - G_{\kappa'}) = \operatorname{sgn}(\bar{G}_{\kappa} - \bar{G}_{\kappa'})$ for all sufficiently low ϕ whenever $\operatorname{sgn}(\bar{G}_{\kappa} - \bar{G}_{\kappa'}) \in \{-1, 1\}$, the sequence $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ is strictly increasing for all $\phi > 0$ sufficiently small. The claim thus follows from Corollary 1.

In case (b) we have $\bar{G}_1 > \bar{G}_k$. Consequently, the elements of $\{G_\kappa\}_{\kappa=1}^{|N|}$ are distinct for all $\phi > 0$ sufficiently small. Letting $\underline{k} = \overline{k} = 2$, the claim then follows from Lemma C.1 together with Proposition 1.

Last, in case (c), we have $\bar{G}_{|N|} > \bar{G}_1 > \bar{G}_2$. Since $\{\bar{G}_{\kappa}\}_{\kappa=1}^{|N|}$ strictly increases in $\kappa \geq 2$, it might be that \bar{G}_1 is equal to some \bar{G}_{κ} , $\kappa \geq 3$. As can easily be verified from (C.14), this only happens for non-generic values of Π_{m-1} and Π_m . Consequently, for generic values of Φ , all elements of $\{G_{\kappa}\}_{\kappa=1}^{|N|}$ are distinct for all $\phi > 0$ sufficiently small. Letting $\underline{k} = 1$ and $\overline{k} = 2$, the claim then follows again from Lemma C.1 together with Proposition 1.