Fi de curs Millora de nota Nom i cognoms:	Física	2n Batxillerat Data: Qualificació:
espai, indiqueu-ho clarament en aque		ervir la cara posterior si necessiteu més es respostes i mostrar el procés per tal 8 en total a tota la prova).
al sostre per un dels seus ex	ktrems. Quan li pengem una massa	en inicial $l_0 = 15cm$ es troba fixada a $m = 0, 5kg$ observem que s'estira cm i es deixa oscil·lar lliurement. Es
$(Podeu\ considerar\ conegut\ g$	$= 9,81ms^{-2})$	
(a) Trobeu el valor de la co	onstant elàstica k de la molla i la fre	eqüència angular ω .
(b) Escriviu l'equació del m arriba a tenir la molla a	_	valor de la longitud mínima l_{min} que
	ental de vibració per les ones estac eqüència $f = 300 Hz$. Es demana:	cionàries d'una corda de guitarra de
(a) Representeu el primer i	tercer harmònics i calculeu la longi	tud d'ona de cadascun d'ells.
(b) Calculeu la velocitat de	l'ona estacionària.	

- 3. Un violí emet ones sonores amb una potència $P=5\cdot 10^{-3}\,W$ i freqüència 698 Hz. Es demana: (Podeu considerar coneguts els resultats: $I_0=10^{-12}\,Wm^{-2},\ v_{so}=340\,m/s$)
 - (a) Raoneu si es tracta d'una ona longitudinal o transversal i calculeu la seva longitud d'ona.
 - (b) Calculeu el nivell d'intensitat sonora que rep un espectador situat a $20\,m$ si hi ha 15 violins tocant al mateix temps.
- 4. Suposeu que tenim quatre càrregues elèctriques de valors $q_1 = 2,00\,nC,\,q_2 = -3,00\,nC,\,q_3 = 4,00\,nC$ i $q_4 = -5,00\,nC$ situades als vèrtexs d'un quadrat de costat $l = 2\,m$. Es demana: (Podeu considerar conegut $\frac{1}{4\pi\epsilon_0} = 9,00\cdot 10^9\,Nm^2C^{-2}$)
 - (a) Calculeu el camp elèctric al centre del quadrat.

(b) Calculeu l'energia de configuració d'aquest sistema.

5.	Suposem que uns astrònoms han descobert un nou sistema solar, format per una estrella de massa
	$M_e = 6,00 \cdot 10^{30} kg$ i un planeta que gira al voltant d'ella amb òrbita circular de període $T_p = 3$ anys
	terrestres. Es demana:

(Podeu considerar conegut $G = 6,67 \cdot 10^{-11} Nm^2kg^{-2}$)

(a) Determineu la distància a la que es troba aquest planeta de l'estrella.

(b) Suposant que a la superfície del planeta l'acceleració de la gravetat val $g_p=15\,m/s^2$ i la velocitat d'escapament val $v_e=11,2\,km/s$, quant valen la massa i radi d'aquest planeta?

6. Per un fil conductor rectilini situat al llarg de l'eix OX i que passa per l'origen de coordenades, circula un corrent elèctric d'intensitat I = 10 A en el sentit negatiu de l'eix. Es demana:

(Podeu considerar conegut $\mu_0 = 4\pi \cdot 10^{-7} NA^{-2}$)

(a) Trobeu el valor del vector camp magnètic degut al fil en el punt P = (0, 5, 0) (en metres).

(b) Si una càrrega de valor $q=3\,mC$ passa pel punt P=(0,5,0) amb velocitat $\vec{v}=4\hat{\imath}+4\hat{\jmath}$, quant val el vector força magnètica que actua sobre la càrrega?

7.	Sigui un camp magnètic variable en el temps de mòdul $B(t) = 2\cos\left(3\pi t - \frac{\pi}{4}\right)$, en unitats del SI.
	Aquest camp forma un angle de 30° amb la normal al pla d'una bobina de 10 espires de radi $r = 5 cm$.
	La resistència total de la bobina són $R = 100 \Omega$. Es demana:

- (a) Trobeu el flux del camp magnètic a través de a bobina en funció del temps.
- (b) La força electromotriu i la intensitat de corrent induïdes en la bobina per t = 2s.
- 8. Quan un feix de llum de longitud d'ona $\lambda = 150 \, nm$ incideix sobre una làmina d'or, s'emeten electrons que tenen una energia cinètica màxima de $3,17 \, eV$. Es demana:

(Podeu considerar coneguts els resultats
$$1\,eV=1,602\cdot 10^{-19}\,J,\ h=6,63\cdot 10^{-34}\,Js,\ m_e=9,11\cdot 10^{-31}\,kg,c=3,00\cdot 10^8\,m/s)$$

- (a) Calculeu el treball d'extracció i la longitud d'ona llindar per l'efecte fotoelèctric de l'or.
- (b) La longitud d'ona de de Broglie (λ_B) , pels electrons emesos amb energia cinètica màxima.
- 9. Per obtenir imatges del cor es fa servir l'isòtop ^{201}Tl del tal·li que es desintegra emetent raigs gamma, amb un període de semidesintegració $T_{1/2}=3,04$ dies. Per una correcta visualització dels teixits cardíacs es recomana injectar una dosi de $0,9\,MBqkg^{-1}$. Es demana:

 $(Podeu\ considerar\ conegut\ N_A=6,02\cdot 10^{23}\ mol^{-1},\ massa\ atòmica\ del\ tal·li\ m_{Tl}=201\ u)$

- (a) Determineu la quantitat en grams, de tal·li que cal injectar per diagnosticar a un pacient de $75\,kg$.
- (b) Calculeu el temps necessari per tal que el nivell d'activitat es redueixi a un $1\,\%$ respecte l'activitat inicial.