Recursive Methods Lecture 2: Analyzing the Bellman Equation

Julien Prat

CNRS, CREST

2015

Fixed point formulation

We have shown that (under some transversality conditions) the original (SP) objective has a recursive formulation.

Why is this progress?

- Breaks down original problem into series of 2-period problems whose optimality conditions are intuitive and economically meaningful.
- Fixed point analysis allows us to prove existence, uniqueness and to establish properties of optimal policy.
- Recursive problem is "easy" to solve with numerical methods.

Fixed point formulation

Think of the LHS of

$$(FE): V(x) = \max_{x' \in \Gamma(x)} \{ F(X, X') \text{ aontraction mapping } \}$$

as a functional $T: \mathcal{C}(X) \to \mathcal{C}(X)$ where $\mathcal{C}(X)$ is the space of bounded continuous function $f: X \to \mathbb{R}$.

Then (FE) is equivalent to

$$Tv(x) = \max_{x' \in \Gamma(x)} \left\{ F(x, x') + \beta v(x') \right\}.$$

Our problem therefore boils down to finding a fixed-point of T.

Example

Exercise 2.1: Consider the estate planning problem

$$\max_{\{c_t\}_{t=0}^{\infty}} \sum_{t=0}^{I} \beta^t U(c_t)$$

s.t. $a_{t+1}=(1+r)a_t-c_t$. Assume that U(c)=log(c). Write the associated-fixed point problem. Then show that the value function is of the form $V(a)=K+D\ log(a)$ with $D=1/(1-\beta)$.

We are now going to prove this result in a convoluted manner which outlines the general approach to problems that cannot be solved analytically.

Example

- 1. Contraction: Define the function $T(D)=1+\beta D$. Then use the fact that, $|T(D'')-T(D')|=\beta |D''-D'|$, to show that if T has a fixed-point, it is unique.
- 2. Convergence: Define the sequence $D_n = 1 + \beta D_{n-1}$. Show that D_n is a Cauchy sequence, so that $\lim_{n\to\infty} D_n$ exists.
- 3. Fixed-point: Show that if $D = \lim_{n \to \infty} D_n$, D is a fixed-point of T.

Steps 1 and 2 establish uniqueness and existence. Step 3 provides a way to compute the fixed-point.

We now generalize this approach.

Metric Spaces

A norm $||\cdot||$ is a real-valued function on $\mathcal C$ which captures the notion of distance between functions. It satisfies the following properties

- 1. Positive definite ||y|| > 0 if $y \neq 0$,
- 2. Homogeneous $||\lambda y|| = |\lambda| \cdot ||y||$ for all $\lambda \in \mathbb{R}, y \in V$,
- 3. Triangle Inequality $||y + z|| \le ||y|| + ||z||$.

The norm allows us to define a metric $d(y, z) \equiv ||y - z||$.

On the space C(X), the most common norm is

$$||y|| \equiv \max_{\{x \in X\}} |y(x)|,$$

where $|\cdot|$ is the standard Euclidean norm on \mathbb{R}^n .

Complete Metric Spaces

Definition 2.1: A sequence $\{x_n\}_{n=0}^{\infty}$ in a vector space S converges to $x \in S$, if for each $\varepsilon > 0$, there exists N_{ε} such that $||x_n - x|| < \varepsilon$ for all $n \ge N_{\varepsilon}$.

Definition 2.2: A sequence $\{x_n\}_{n=0}^{\infty}$ in S is a Cauchy sequence if for each $\varepsilon > 0$, there exists N_{ε} such that $||x_n - x_m|| < \varepsilon$ for all $n, m \ge N_{\varepsilon}$.

Definition 2.3: A metric space $(S, ||\cdot||)$ is complete if every Cauchy sequence in S converges to an element in S.

Exercise 2.2: Prove that the set C(X) of bounded continuous functions $f: X \to \mathbb{R}$ equipped with the sup norm $||y|| \equiv \max_{\{x \in X\}} |y(x)|$ is a complete normed vector space.

Definition 2.4: Let $(S, ||\cdot||)$ be a metric space and $T: S \to S$ be a function mapping S into itself. T is a contraction mapping if for some $\beta \in (0,1), ||Tx - Ty|| \le \beta ||x - y||$, for all $x, y \in S$.

Theorem 2.1. (Contraction Mapping Theorem)

If $(S, ||\cdot||)$ is a complete metric space and $T: S \to S$ is a contraction mapping, then T has exactly one fixed point v in S. Furthermore, for any $v_0 \in S$, $||T^n v_0 - v|| \le \beta^n ||v_0 - v||$ where $T^{n+1}(v) = T(T^n(v))$ and n = 0, 1, 2,

Proof of Contraction Mapping Theorem

PROOF of Theorem 2.1. (Contraction Mapping Theorem):

Step 1. Take any $v_0 \in S$ and let $v_{n+1} \equiv Tv_n$. Then

$$||v_{n+1} - v_n|| = ||Tv_n - Tv_{n-1}|| \le \beta ||v_n - v_{n-1}|| \le \beta^n ||v_1 - v_0||$$

and so, for m > n,

$$\begin{split} ||v_m - v_n|| & \leq ||v_m - v_{m-1}|| + ||v_{m-1} - v_{m-2}|| + \dots + ||v_{n+1} - v_n|| \\ & \leq (\beta^{m-1} + \beta^{m-2} + \dots + \beta^n)||v_1 - v_0|| \\ & \leq \beta^n (\beta^{m-n-1} + \beta^{m-n-2} + \dots + 1)||v_1 - v_0|| \leq \frac{\beta^n}{1 - \beta}||v_1 - v_0||. \end{split}$$

Thus $\{v_n\}$ is a Cauchy sequence and $v_n o v$.

Step 2. To show that v = Tv notice that

$$||\mathit{T} v - v|| \leq ||\mathit{T} v - v_n|| + ||v_n - v|| \leq \beta ||v - v_{n-1}|| + ||v_n - v|| \to 0.$$

Step 3. Finally, we proceed by contradiction to prove that v is unique. Assume that there are two fixed points v^1 and v^2 . Then

$$0 \le a = ||v^1 - v^2|| = ||Tv^1 - Tv^2|| \le \beta ||v^1 - v^2|| = \beta a,$$

which is only possible if a = 0, i.e., if $v^1 = v^2$.

Theorem 2.2. (Blackwell's Sufficient Condition)

Let $X \subseteq \mathbb{R}^n$, $T : \mathcal{C}(X) \to \mathbb{R}$ is a contraction mapping if it satisfies:

- 1. Monotonicity: $f(x) \le g(x)$ for all $x \in X$ and $f, g \in C(X)$, implies Tf(x) < Tg(x), for all $x \in X$.
- 2. Discounting: There exists some $\beta \in (0,1)$ such that $T(f+a)(x) \leq Tf(x) + \beta a$ for all $f \in \mathcal{C}(X)$, $a \geq 0$, $x \in X$.

PROOF: See theorem 3.3 in SLP. ■

We now apply the contraction mapping theorem to our functional equation

$$Tv(x) = \max_{x' \in \Gamma(x)} \left\{ F(x, x') + \beta v(x') \right\}.$$

We need to show that:

- T maps the set of continuous and bounded functions into itself.
- 2. T is a contraction.

We first prove 2 assuming 1, and then establish 1.

Theorem 2.3.

Let $Tv(x) = \max_{x' \in \Gamma(x)} \{F(x, x') + \beta v(x')\}$. T satisfies Balckwell's sufficient conditions. \Rightarrow T is a contraction mapping PROOF:

1. Monotonicity: For $f \ge v$

$$Tv(x) = \max_{x' \in \Gamma(x)} \left\{ F(x, x') + \beta v(x') \right\} \underset{x' \in \Gamma(x)}{\rightleftharpoons} , g(x)) + \beta v(x)$$

$$\leq F(x, g(x)) + \beta f(g(x)) \leq \max_{x' \in \Gamma(x)} \left\{ F(x, x') + \beta f(x') \right\} = Tf(x).$$

2. Discounting: For a > 0

$$T(v + a)(x) = \max_{x' \in \Gamma(x)} \left\{ F(x, x') + \beta(v(x') + a) \right\}$$
$$= \max_{x' \in \Gamma(x)} \left\{ F(x, x') + \beta v(x') \right\} + \beta a = Tv(x) + \beta a.$$

Theorem of the Maximum

We still have to identify the restrictions on the correspondence Γ and on the return function F under which T maps the set of continuous and bounded functions into itself.

Our optimization problem is of the form

$$h(x) = \max_{x' \in \Gamma(x)} f(x, x'). \tag{1}$$

The max is attained when $f(x,\cdot)$ is continuous in x' and $\Gamma(x)$ is nonempty and compact. Then the function h(x) is well defined as is the policy correspondence

$$G(x) = \{ x' \in \Gamma(x) : f(x, x') = h(x) \}.$$
 (2)

Theorem of the Maximum

Theorem 2.4. (Theorem of the Maximum)

Let $X \subseteq \mathbb{R}^n$ and $f: X \times X \to \mathbb{R}$ be a continuous function, and let $\Gamma: X \to X$ be a compact valued and continuous correspondence. Then the function h defined in (1) is continuous, and the correspondence G defined in (2) is nonempty, compact valued and upper hemi-continuous.

PROOF: See theorem 3.6 in SLP. ■

Corollary 2.1.: If Γ is convex-valued and f is strictly concave in y, then the policy correspondence G is single-valued and continuous.

Summary

We are now in a position to study our original problem. If we assume that:

Assumption 2.1. X is a convex subset of \mathbb{R}^n , and Γ is a non-empty, continuous and compact-valued correspondence.

Assumption 2.2. $F: X \times X \to \mathbb{R}$ is <u>continuous and bounded.</u>

Then we can combine the theorems above to study (FE) in a similar way as the basic estate planning problem:

- 1. Theorem of the maximum shows that T maps $\mathcal{C}(X)$ into itself;
- 2. Then Blackwell's Sufficient Conditions shows that *T* is a contraction;
- 3. Contraction Mapping Theorem shows that, for any initial guess v_0 , T generates a Cauchy sequence of functions v_n ;
- F
- 4. Since C(X) is a complete metric space, v_n converges to the unique value function v.

Additional Assumptions

To further characterize the value and policy functions, we have to impose more stringent assumptions on the fundamentals.

Assumption 2.3. F is strictly concave and, for each x', $F(\cdot, x')$ is strictly increasing in each of its first arguments.

Assumption 2.4. Γ is convex and monotone in the sense that $x \leq y$ implies $\Gamma(x) \subseteq \Gamma(y)$.

Concavity of Value Function

Theorem 2.5. When assumption v is strictly increasing.

PROOF: We prove a stronger version, namely Tf is increasing if f is non-decreasing. Pick $x_1, x_2 \in X$ with $x_2 > x_1$. The optimal policy $g(x_1) \in \Gamma(x_2)$ by monotonicity of Γ , so

$$Tf(x_2) = \max_{x' \in \Gamma(x_2)} \left\{ F(x_2, x') + \beta f(x') \right\} \ge F(x_2, g(x_1)) + \beta f(g(x_1)) > F(x_1, g(x_1)) + \beta f(g(x_1)) = Tf(x_1),$$

where the last inequality holds because F is increasing. Since v is the limit of $T^n f_0$, and the space of non-decreasing function is the closure of the space of increasing functions. v must be non-decreasing. Furthermore, since v = Tv, the equation above implies that V is actually increasing.

Exercise 2.3: Use an inductive argument similar to the one in the proof of Theorem 2.5. to establish that, when assumptions 2.1-2.4 hold, v is concave.

Differentiability of Value Function

it is often insightful to look at the FOC of the problem, in our case

$$F_{x'}(x,x') + \beta V'(x') = 0.$$

To do so, however, we first need to establish that the value function is indeed differentiable.

Example of non differentiable value function: Two period problem

$$v(x) = \max_{y \in [0,1]} y^2 - xy.$$

Then v(x) = 1 - min(x, 1) and the value function is not differentiable at 1.

This example suggests that non-differentiability is likely to originate from non-concavity.

Differentiability of Value Function

The approach used to prove concavity does not work because the space of differentiable functions is not closed.

We use instead the notion of subgradient:

1. If a function $f: X \to \mathbb{R}$ is concave, with X a convex subset of \mathbb{R}^n , it admits a subgradient $p \in \mathbb{R}^n$ so that

$$f(x) - f(x_0) \le p \cdot (x - x_0)$$
, for all $x \in X$.

- 2. If f is differentiable, then p is unique and is the gradient of f at x_0 .
- The converse of 2 holds, that is if f is concave with a unique subgradient, it is differentiable (See Rockafellar, 1970, Th.25.1 for a proof).

Differentiability of Value Function

Theorem 2.5. (Benveniste and Sheinkman)

Suppose that F is differentiable in x and that assumptions 2.1-2.4 hold. If $x_0 \in int \ X$ and $g(x_0) \in int \ \Gamma(x_0)$, then v is differentiable at x_0 and $\nabla v(x_0) = \nabla F_x(x_0, g(x_0))$.

PROOF: Consider the following lower approximation of v in the neighborhood of x_0

$$w(x) = F(x, g(x_0)) + \beta v(g(x_0)).$$

Since F is differentiable so is w. Given continuity of Γ and the fact that $g(x_0) \in int\Gamma(x_0)$, there exists a neighborhood D of x_0 such that $g(x_0) \in \Gamma(x)$ for all $x \in D$. By definition of v, we have

$$w(x) \le v(x)$$
 for all $x \in D$.

Since v is concave, it has a subgradient p and so

$$w(x) - w(x_0) \le v(x) - v(x_0) \le p \cdot (x - x_0)$$
 for all $x \in D$.

But remember that w is differentiable. Hence $p = \nabla w(x_0)$ and the subgradient is unique, which by point 3 in the previous slide, proves that v is differentiable.

Conclusion

To summarize, we have identified in this lecture the conditions under which

- 1. The Functional Equation is the unique solution of a fixed point problem;
- 2. The value function can be approximated by an iterative procedure;
- 3. The value function is concave and differentiable.