EINFÜHRUNG IN DIE GEOMETRIE UND TOPOLOGIE Blatt 3

Jendrik Stelzner

6. Mai 2014

Aufgabe 3.1:

Es sei X ein quasikompakter Raum. Wir nehmen an, dass X nicht folgenkompakt ist. Dann gibt es eine Folge $(x_n)_{n\in\mathbb{N}}$ auf X, die keinen Häufungspunkt besitzt.

Es gibt also für jedes $x \in X$ eine Umgebung U_x von x, so dass nur endlich viele Folgeglieder in U_x sind. Da U_x eine offene Umgebung von x enthält, können wir o.B.d.A. davon ausgehen, dass alle U_x offen sind.

Es ist $\{U_x: x \in X\}$ eine offene Überdeckung von X. Da X quasikompakt ist gibt es daher $y_1, \ldots, y_n \in X$ mit $X = U_{y_1} \cup \ldots \cup U_{y_n}$. Da U_{y_1}, \ldots, U_{y_n} jeweils nur endlich viele Folgeglieder enthalten, enthält X nur endlich viele Folgeglieder — ein offensichtlicher Widerspruch.

Das zeigt, dass $(x_n)_{n\in\mathbb{N}}$ einen Häufungspunkt besitzt, und damit, dass X folgenkompakt ist. Also ist jeder quasikompakte Raum folgenkompakt.

Aufgabe 3.2:

Wir setzen $Y := X \times X$ und $\Delta := \Delta(X)$. Für $A, B \subseteq X$ ist

$$\begin{split} (A \times B) \cap \Delta \neq \emptyset \Leftrightarrow \exists x \in X : (x, x) \in A \times B \\ \Leftrightarrow \exists x \in X : x \in A \text{ und } x \in B \\ \Leftrightarrow A \cap B \neq \emptyset, \end{split}$$

und deshalb

$$A\times B\subseteq Y-\Delta\Leftrightarrow (A\times B)\cap \Delta=\emptyset\Leftrightarrow A\cap B=\emptyset.$$

Da die Mengen der Form $U \times V \subseteq Y$ mit offenen $U, V \subseteq X$ eine Basis der Produkttopologie auf Y bilden, gilt

$$\begin{split} W \subseteq Y \text{ ist offen} \\ \Leftrightarrow \forall (x,y) \in W \text{ gibt es } U, V \subseteq X \text{ offen mit } (x,y) \in U \times V \subseteq W \\ \Leftrightarrow \forall (x,y) \in W \text{ gibt es } U, V \subseteq X \text{ offen mit } x \in U, y \in V \text{ und } U \times V \subseteq W. \end{split}$$

Zusammengefasst gilt daher

 Δ ist abgeschlossen in Y

 $\Leftrightarrow Y - \Delta$ ist offen in Y

$$\Leftrightarrow \forall (x,y) \in (Y-\Delta) \exists U, V \subseteq X \text{ offen mit } x \in U, y \in V, U \times V \subseteq Y-\Delta$$

$$\Leftrightarrow \forall (x,y) \in (Y-\Delta) \exists U, V \subseteq X \text{ offen mit } x \in U, y \in V, U \cap V = \emptyset$$

$$\Leftrightarrow \forall x,y \in X \text{ mit } x \neq y \exists U,V \subseteq X \text{ offen mit } x \in U,y \in V,U \cap V = \emptyset$$

 $\Leftrightarrow X$ ist Hausdorff.

Fun fact: Ein alternativer, intuitiverer Beweis lässt sich mithilfe von Netzen formulieren: Es ist

$$\overline{\Delta} = \{ h \in X \times X : \text{ es gibt ein Netz } (h_{\alpha}) \text{ auf } \Delta \text{ mit } h_{\alpha} \to h \text{ in } X \times X.$$

Dass Δ abgeschlossen ist, ist daher äquivalent dazu, dass für jedes Netz (h_{α}) auf Δ , das gegen ein $h \in X \times X$ konvergiert, bereits $h \in \Delta$.

Wir bemerken, dass ein Netz (h_{α}) auf Δ von der Form

$$(h_{\alpha}) = (x_{\alpha}, x_{\alpha})$$

ist, wobei (x_{α}) ein Netz auf X ist, und dass h=(x,y) mit $x,y\in X$. Da ein Netz in einem Produktraum genau dann konvergiert, wenn es in jeder einzelnen Koordinate konvergiert, ist die obige Aussage äquivalent dazu, dass für jedes Netz (x_{α}) auf X und alle $x,y\in X$ mit $x_{\alpha}\to x$ und $x_{\alpha}\to y$ bereits x=y.

Es ist also Δ genau dann abgeschlossen in $X \times X$, wenn Grenzwerte von Netzen auf X eindeutig sind. Dies ist bekanntermaßen äquivalent dazu, dass X Hausdorff ist.

Aufgabe 3.3:

Es bezeichne \sim_n die Äquivalenzrelation auf $\mathbb{R}^{n+1} - \{0\}$ mit

$$x \sim_n y \Leftrightarrow \exists \lambda \in \mathbb{R}^\times \text{ mit } y = \lambda x.$$

Außerdem sei

$$S^n = \{ x \in \mathbb{R}^{n+1} : ||x|| = 1 \}$$

die n-Sphäre und

$$\tilde{D}^n := \{(x_1, \dots, x_{n+1}) \in S^n : x_{n+1} \ge 0\}.$$

die "nördliche" Hemisphäre von S^n . Man bemerke, dass \sim auf S^n genau die Antipodenpunkte miteinander identifiziert, also den Punkt $x \in S^n$ mit dem Punkt $-x \in S^n$. Es bezeichne außerdem \sim_n^* die Äquivalenzrelation auf D^n , die die Antipodenpunkte des Randes von D^n miteinander identifiziert, also jeden Punkt $x \in S^{n-1} \subseteq D^n$ mit dem Antipodenpunkt $-x \in S^{n-1} \subseteq D^n$. Es seien

$$\varphi_n: D^n \to \tilde{D}^n, (x_1, \dots, x_n) \mapsto \left(x_1, \dots, x_n, \sqrt{1 - \sum_{i=1}^n x_i^2}\right)$$

und

$$\psi_n: S^n/\sim_n \to \mathbb{R}P^n, [x]_{\sim_n} \mapsto [x]_{\sim_n}.$$

Wir haben bereits letze Woche gezeigt, dass

$$D^n/\sim_n^* \cong \tilde{D}^n/\sim_n \cong S^n/\sim_n \cong (\mathbb{R}^{n+1} - \{0\})/\sim_n \cong \mathbb{R}P^n$$

wobei der Homöomorphismus $D^n/\sim_n^*\cong \tilde{D}^n/\sim_n$ durch φ_n induziert wird, der Homöomorphismus $\tilde{D}^n/\sim_n\cong S^n/\sim_n$ durch die kanonische Inklusion $\tilde{D}^n\hookrightarrow S^n$ induziert wird, und der Homöomorphismus $S^n/\sim_n\cong (\mathbb{R}^{n+1}-\{0\})/\sim_n$ durch ψ gegeben ist, also durch die kanonische Inklusion $S^n\hookrightarrow \mathbb{R}^{n+1}-\{0\}$ induziert wird. Auch haben wir im Laufe des Nachweises dieser Homöomorphien gezeigt, dass S^n/\sim_n Hausdorff ist.

1.

Dies haben wir bereits letzte Woche gezeigt.

2.

Dies folgt direkt daraus, dass $S^n/\sim_n\cong \mathbb{R}P^n$, und dass S^n/\sim_n Hausdorff ist.

3.

Es ist offenbar \sim die Einschränkung von \sim_2 auf S^2 . Es bezeichne $\pi:S^2\to S^2/\sim$ die kanonische Projektion. Wir setzen

$$\begin{split} S := \left\{ (x,y,z) \in S^2 : z \geq \frac{1}{2} \text{ oder } z \leq -\frac{1}{2} \right\}, \\ T := \left\{ (x,y,z) \in S^2 : -\frac{1}{2} \leq z \leq \frac{1}{2} \right\} \text{ und} \\ R := S \cap T = \left\{ (x,y,z) \in S^2 : z = -\frac{1}{2} \text{ oder } z = \frac{1}{2} \right\}. \end{split}$$

Es ist klar, dass S,T und R abgeschlossen in S^2 sind, und dass sie saturiert bezüglich \sim sind, dass also $\pi^{-1}(\pi(X)) = X$ für alle $X \in \{S,T,R\}$. Insbesondere sind daher auch $\pi(S),\pi(T)$ und $\pi(R)$ abgeschlossen in S^2/\sim . (Denn die abgeschlossenen Mengen in S^2/\sim sind genau die Bilder von abgeschlossenen, saturierten Teilmengen von S^2 unter π .)

Bekanntermaßen ist $S^2/\sim\cong\mathbb{R}P^2$. Es sei $f:S^2/\sim\to\mathbb{R}P^2$ ein Homö
omorphismus (man kann etwa f als ψ_2 wählen). Wir setzen

$$A := f(\pi(S)), B := f(\pi(T)) \text{ und } C := A \cap B.$$

Wir bemerken dabei direkt, dass $C=f(\pi(R))$, da

$$C = A \cap B = f(\pi(S)) \cap f(\pi(T)) = f(\pi(S) \cap \pi(T))$$

= $f(\pi(\pi^{-1}(\pi(S) \cap \pi(T)))) = f(\pi(\pi^{-1}(\pi(S)) \cap \pi^{-1}(\pi(T))))$
= $f(\pi(S \cap T)) = f(\pi(R)).$

Da $\pi(X)$ für alle $X \in \{S, T, R\}$ abgeschlossen in S^2/\sim ist, und f ein Homöomorphismus ist, sind A, B und C abgeschlossen in $\mathbb{R}P^2$.

Da $f:S^2/\!\!\sim\to\mathbb{R}P^n$ ein Homö
omorphismus ist, ist klar, dass auch die Einschränkung

$$\pi(S) \to f(\pi(S)) = A, x \mapsto f(x)$$

Abbildung 1: Die Homöomorphie von S/\sim und $\pi(S)$.

ein Homö
omorphismus ist. Daher ist $\pi(S) \cong A$.

Wir bemerken, dass $S/\sim \cong \pi(S)$: Die stetige Abbildung $S\to \pi(S), x\mapsto \pi(x)$ faktorisiert offenbar als Bijektion $S/\sim \to \pi(S)$ (denn es ist $\pi(s)=\pi(s')\Leftrightarrow s\sim s'$), die nach der universellen Eigenschaft des Quotienten stetig ist (da π stetig ist). Da S kompakt ist (denn S^2 ist kompakt und $S\subseteq S^2$ abgeschlossen) und $\pi(S)$ Hausdorff ist (denn $\pi(S)\subseteq S^2/\sim$ mit S^2/\sim Hausdorff) ist g bereits ein Homöomorphismus. Dies lässt sich in dem kommutativen Diagram von Abbildung 1 zusammenfassen.

Das zeigt, dass

$$S/\sim \cong \pi(S) \cong A$$
.

Komplett analog ergibt sich, dass auch $T/\sim \cong B$ und $R/\sim \cong C$. Wir zeigen nun, dass $S/\sim \cong D^2, T/\sim \cong M$ und $R/\sim \cong S^1$. Dabei ist die Homöomorphie $T/\sim \cong M$ bereits aus Aufgabe 2.3 bekannt.

Für die Homö
omorphie $S/\sim\cong D^2$ betrachten wir die Abbildung

$$h:S\to D^2 \text{ mit } h(x,y,z) = \begin{cases} \frac{\sqrt{3}}{2}(x,y) & \text{ falls } z>0,\\ -\frac{\sqrt{3}}{2}(x,y) & \text{ falls } z<0. \end{cases}$$

Diese ist offenbar wohldefiniert und surjektiv. (Man beachte, dass für alle $(x,y,z)\in S$

$$\|(x,y)\| = \sqrt{x^2 + y^2} = \sqrt{1 - z^2} \le \sqrt{1 - \frac{1}{4}} = \frac{\sqrt{3}}{2}$$

und Gleichheit für $z=\pm 1/2$ gilt.) Es ist auch klar, dass h stetig ist (h ist auf den beiden Zusammenhangskomponenten, in die S zerfällt, offenbar stetig, und somit auch auf ganz S). Offenbar faktorisiert h als Bijektion $\tilde{h}:S/\sim \to D^2$, die nach der universellen Eigenschaft des Quotienten stetig ist. Da S/\sim als Quotient eines quasikompakten Raumes selbser quasi-kompakt ist, und D^2 Hausdorff ist, ist \tilde{h} bereits ein Homöomorphismus.

Wir haben gezeigt, dass

$$A \cong \pi(S) \cong S/\sim \cong D^2$$
.

Komplett analog zeigt man auch dass $R/\sim \cong S^1$, und damit, dass

$$C \cong \pi(R) \cong R/\sim \cong S^1$$
.

Aufgabe 3.4:

1.

Wir zeigen zunächst, dass jedes Element von $\mathrm{SO}(3)$ einen Eigenvektor zum Eigenwert 1 besitzt.

Sei zunächst $A \in SO(2)$. Wir behaupten, dass es ein $\varphi \in [-\pi, \pi]$ gibt, so dass

$$A = \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix}.$$

Es sei

$$A = \begin{pmatrix} a & b \\ c & d \end{pmatrix}.$$

Da

$$\begin{pmatrix} a & c \\ b & d \end{pmatrix} = A^T = A^{-1} = \begin{pmatrix} d & -b \\ -c & a \end{pmatrix}$$

muss a = d und b = -c, also

$$A = \begin{pmatrix} a & -c \\ c & a \end{pmatrix}.$$

Da

$$1 = \det A = a^2 + c^2$$

gibt es also ein $\varphi\in[-\pi,\pi]$ mit $a=\cos\varphi$ und $c=\sin\varphi$. Das zeigt die Behauptung. Für $B\in \mathrm{O}(2)$ mit $B\not\in\mathrm{SO}(2)$ ist

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} B \in SO(2),$$

also gibt es ein $\varphi \in [-\pi, \pi]$ mit

$$B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} B = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} \cos \varphi & -\sin \varphi \\ \sin \varphi & \cos \varphi \end{pmatrix} = \begin{pmatrix} \sin \varphi & \cos \varphi \\ \cos \varphi & -\sin \varphi \end{pmatrix}.$$

Für das charakteristische Polynom χ_B von B gilt daher

$$\chi_B = (-t + \sin \varphi)(-t - \sin \varphi) - \cos^2 \varphi$$
$$= t^2 - \sin^2 \varphi - \cos^2 \varphi = t^2 - 1$$
$$= (t+1)(t-1).$$

Also besitzt B einen Eigenvektor zum Eigenwert 1. Das zeigt, dass jedes Matrix $B \in O(2) - SO(2)$ einen Eigenvektor zum Eigenwert 1 besitzt. (Diese Aussage ist auch geometrisch klar.)

Sei nun $C\in SO(3)$. Da χ_C ein reelles Polynom ungeraden Grades ist, besitzt χ_C eine reelle Nullstelle, d.h. C besitzt einen reellen Eigenwert $\lambda\in\mathbb{R}$. Da für einen entsprechenden Eigenvektor v gilt, dass

$$||v|| = ||Cv|| = ||\lambda v|| = |\lambda| ||v||,$$

muss $|\lambda|=1$, also $\lambda=1$ oder $\lambda=-1$. Angenommen es ist $\lambda=-1$. Indem wir das orthogonale Komplement von $\langle v \rangle_{\mathbb{R}}$ in \mathbb{R}^3 betrachtent, also $\langle v \rangle_R^{\perp}$, können wir C durch einen passenden Basiswechsel eine Matrix der Form

$$\begin{pmatrix} -1 & \\ & A \end{pmatrix}$$

überführen, wobei $A\in \mathrm{O}(2)$. Da $1=\det C=-1\det A$ muss $\det A=-1$, also $A\in \mathrm{O}(2)-\mathrm{SO}(2)$. Nach der obigen Diskussion besitzt daher A einen Eigenvektor zum Eigenwert 1, also auch C.

Abbildung 2: p ist eine Quotientenabbildung.

Insbesondere lässt sich jede Matrix $A \in \mathrm{SO}(3)$ durch einen passenden Basiswechsel in die Form

$$\begin{pmatrix} 1 & 0 \\ 0 & A' \end{pmatrix}$$

mit $A' \in SO(2)$ überführen, also in die Form

$$\begin{pmatrix} 1 & 0 & 0 \\ 0 & \cos \varphi & -\sin \varphi \\ 0 & -\sin \varphi & \cos \varphi \end{pmatrix}$$

mit $\varphi \in [-\pi, \pi]$, wobei A auf $\langle v \rangle_{\mathbb{R}}^{\perp}$ durch Rotation um den Winkel φ operiert, wobei v ein Eigenvektor von A zum Eigenwert 1 ist.

Sei nun $f \in SO(3)$ mit Eigenvektor v zum Eigenwert 1, so dass f auf $\langle v \rangle_{\mathbb{R}}^{\perp}$ durch Rotation um den Winkel $\varphi \in [-\pi, \pi]$ wirkt. Wir können o.B.d.A. davon ausgehen, dass $v \in S^2 \subseteq D^3$. Es hat dann f unter p offensichtlich das Urbild $(\varphi/\pi)v$.

3.

Der Fall p(x)=p(y)=E ist trivial, es müssen dann x=y=0. Wir betrachten daher im Folgenden den Fall, dass $p(x)=p(y)\neq E$, also insbesonder $x,y\neq 0$.

Da p(x)=p(y), haben p(x) und p(y) die gleiche Rotationsachso, nämlich $\langle x\rangle_{\mathbb{R}}$, bzw. $\langle y\rangle_{\mathbb{R}}$. Daher müssen x und y linear abhängig sein.

Ist $y=\lambda x$ für ein $\lambda>0$, so rotieren p(x) und p(y) gleichorientiert, also um den Winkel $\pi\cdot\|x\|$ und $\pi\cdot\|y\|$. Es muss daher $\|x\|=\|y\|=\lambda\|x\|$, also $\lambda=1$ und somit x=y.

Ist $y=\lambda x$ für ein $\lambda<0$, so rotieren p(x) und p(y) unterschiedlich orientiert, also um die Winkel $\pi\cdot\|x\|$ und $\pi\cdot\|y\|$. Damit diese Rotationen gleich sind, muss $\|x\|=\|y\|=1$. Es ist dann $\lambda=-1$ und somit x=-y.

3.

Wir betrachten die Äquivalenzrelation \sim auf D^3 , die jeden Punkt $x \in S^2 \subseteq D^3$ mit seinem Antipodenpunkt -x identifiziert. Durch den vorherigen Aufgabenteil ergibt sich, dass $x \sim y \Leftrightarrow p(x) = p(y)$ für alle $x,y \in D^3$. Daher faktorisiert p als Bijektion $\tilde{p}: D^3/\sim \to \mathrm{SO}(3)$, die nach der universellen Eigenschaft des Quotienten stetig ist (denn p ist nach Annahme stetig). Da D^3/\sim als Quotient eines quasikompakten Raumes ebenfalls quasikompakt ist, und $\mathrm{SO}(3) \subseteq R^9$ Hausdorff ist, ist \tilde{p} bereits ein Homöomorphismus.

Wir betrachten das kommutative Diagramm in Abbildung 2. Da \tilde{p} und π offenbar Quotientenabbildungen sind, ist es offenbar auch $p = \tilde{p} \circ \pi$, denn für $U \subseteq SO(3)$ ist

$$U$$
 ist offen $\Leftrightarrow \tilde{p}^{-1}(U)$ ist offen $\Leftrightarrow \pi^{-1}(U) = \pi^{-1}(\tilde{p}^{-1}(U))$ ist offen.

Abbildung 3: q ist eine Quotientenabbildung.

Abbildung 4: Alles zusammen.

4.

Wir haben letzte Woche gezeigt, dass das Diagramm in Abbildung 3 kommutiert, und dass \tilde{q} ein Homöomorphismus ist. Da π eine Quotientenabbildung ist, ist damit analog zur obigen Argumentation auch q eine Quotientenabbildung. (\tilde{q} entspricht dem Homöomorphismus $D^n/\sim^*\cong \mathbb{R}P^n$).

5.

Es ist q(x)=q(y) genau dann, wenn $\pi(x)=\pi(y)$, also wenn $x\sim^* y$, also wenn x=y oder $x,y\in S^2\subseteq D^3$ mit x=-y.

6.

Wir haben das kommutative Diagramm wie in Abbildung 4. Da \tilde{p} und \tilde{q} Homöomorphismen sind ist auch $f: \tilde{p} \circ \tilde{q}^{-1}: \mathbb{R}P^3 \to \mathrm{SO}(3)$ ein Homöomorphismus, und da das Diagramm kommutiert ist

$$f \circ q = \tilde{p} \circ \tilde{q}^{-1} \circ q = \tilde{p} \circ \pi = p.$$

f ist auch durch die Eigenschaft, dass $f\circ q=p$ bereits eindeutig bestimmt: Ist nämlich $g:\mathbb{R}P^3\to \mathrm{SO}(3)$ eine stetige Abbildung mit $g\circ q=p$, so ist

$$g(q(x)) = p(x) = f(q(x))$$
 für alle $x \in D^3$,

da q surjektiv ist also bereits g(x)=f(x) für alle $x\in\mathbb{R}P^3$ und somit f=g.