Informe de Análisis de la Concentración de PM2.5

Análisis de los Gráficos y Datos

1. Gráfico de Dispersión

El gráfico de dispersión muestra la concentración diaria de PM2.5 (μ g/m3) en función del tiempo (días). A simple vista, la distribución de los puntos no sigue una línea clara, sino que forma una nube dispersa, lo que indica una **ausencia de correlación lineal**. Aunque se ha trazado una línea de regresión, su pendiente es casi plana, lo que visualmente confirma la falta de relación.

2. Resultados de la Regresión Lineal

La aplicación de un modelo de regresión lineal sobre los datos produjo los siguientes resultados:

- Ecuación de la recta de regresión: y=0.0005×Tiempo+7.9152
 - Pendiente (0.0005): Este valor, es muy cercano a cero, indica que por cada día que pasa, la concentración de PM2.5 solo aumenta en 0.0005 μg/m3. Este aumento es tan insignificante que se considera estadísticamente irrelevante.
 - Intercepto (7.9152): Representa la concentración de PM2.5 estimada en el día 0 del conjunto de datos.
- Valor de *R*² (R cuadrado): 0.0002
 - El valor de R2 mide la proporción de la varianza en la variable dependiente (concentración de PM2.5) que puede ser predicha por la variable independiente (tiempo). Un valor de R² de 0.0002 es demasiado bajo. Esto significa que el tiempo explica solo el 0.02% de la variabilidad total en la concentración de PM2.5. El 99.98% restante es explicado por otros factores.

Conclusiones

Basado en el análisis de los gráficos y los datos, se concluye que:

- No existe una relación lineal significativa entre el tiempo y la concentración de PM2.5.
- El modelo de regresión lineal utilizado es un predictor ineficaz de la concentración de PM2.5.
- La variabilidad observada en los niveles de PM2.5 se debe principalmente a **factores externos** que no se incluyeron en este análisis, como las condiciones climáticas (viento, lluvia, temperatura) o las emisiones de fuentes locales (tráfico, industria).

Recomendaciones

Para futuros análisis, se sugiere la inclusión de otras variables explicativas. Un **modelo de regresión múltiple** que incorpore datos meteorológicos, información sobre días festivos, o registros de actividad industrial podría ofrecer una comprensión más completa de los factores que impulsan la contaminación por PM2.5. Esto permitiría crear un modelo predictivo más preciso y útil.