

ENU Y

ทล••••

Article P

Quan progi

Frank Arut

Nature 57

749k Acc

5G REVOLUTION

No, Google and Its Quantum Computer Aren't Killing Bitcoin Anytime Soon A computing breakthrough won't

break down cryptocurrency right away.

BY ERIC MACK, COLUMNIST, INC.COM @ERICCMACK

Polynomial-Time Algorithms for Prime Factorization and Discrete Logarithms on a Quantum Computer*

Peter W. Shor[†]

Schemes at risk:

- Protocols: HTTPS, TLS, X.509, ...
- PKIs: RSA, DH, ECDH, ECDSA, Ed25519, ...
- Blockchain cryptography: BLS, VRF, SNARKs, ...

- NSA announces plan to migrant to post-quantum cryptography²
- NIST first round submission: 87 candidate algorithms
- NIST second round evaluation: 26 survivors
- NIST third round result: 7 finalists

Public Key Encryption	Digital Signature	
NTRU, Kyber, Saber, McEliece	<u>Falcon, Dilithium, Rainbow</u>	

What are at risk

Digital signatures

- Ed25519 (Algorand)
- BLS signature (Eth2.0, Dfinity, etc)

Active Attack

- Require access to quantum computer
- Cannot travel back in time and forge authenticity

Cryptographic Sortition

- ECVRF (Algorand)
- BLS-VRF (Dfinity, Harmony, etc)

Passive Attack

- Require access to quantum computer
- Can travel back in time and create a fork

Digital signatures: Solution I

	Pre-quantum		Post-quantum			
	Ed25519	BLS	<u>Falcon</u>	<u>Dilithium</u>	Rainbow	Sphincs+
PK	32 B	96 B	900 B	1.2 KB	150 KB	48 B
Signature	64 B	48 B	700 B	2 KB	64 B	31 KB
Hardness Assumption	ECC	pairing	lattice	lattice	multivariate quadratic	hash

• None of post-quantum solutions scales well for Algorand's use case (1000+ TPS)

Digital signatures: Solution II

- Aggregatable signatures
 - State-of-the-art: one-time, post-quantum aggregatable signature
 - Research direction: making this signature scheme practical

Verifiable random functions

	Pre-quantum		Post-quantum		
	ECVRF	BLS-VRF	OT-LB-VRF	VRF (w. Falcon)	VRF (w. Rainbow)
PK	32 bytes	96 bytes	3.3 KB	900 B	150 KB
Proof	80 bytes	48 bytes	4.8 KB	8.8 KB	8.1 KB
Prove	0.15 ms	0.7 ms	1.4 ms	WIP	WIP
Verify	0.2 ms	2.0 ms	1.4 ms	WIP	WIP
Hardness Assumption	ECC	pairing	lattice	lattice	lattice + MQ

- Research direction:
 - complete the construction
 - benchmarking and evaluation

Q&A

• If you are interested in deploying any of the schemes over Algorand, please reach out :-)

When will quantum computers arrive?

If you really want to ask...

Optimistic view³

Pessimistic view⁴

^{3.} Superconducting Circuits for Quantum Information: An Outlook. M. H. Devoret and R. J. Schoelkopf

^{4.} Avengers: Endgame (2019)