Đại học Khoa học Tự nhiên Khoa Vật lý Vật lý Kỹ thuật Bộ môn Vật lý Tin học

GIẢI TÍCH SỐ TÍCH PHÂN MONTE CARLO NHIỀU LỚP BẰNG GIEO ĐIỂM QUAN TRỌNG

CBHD: TS. Nguyễn Chí Linh

SVTH: Huỳnh Thị Hạ Vy

Nội dung báo cáo

Giới thiệu đề tài

Tích phân Monte Carlo

- Thuật toán Vegas
- Kết luận và hướng phát triển

Giới thiệu đề tài

Sử dụng phương pháp tính tích phân Monte-Carlo bằng thuật toán Vegas. Thuật toán này cho thấy được hiệu quả khi tính toán:

- Hàm tính tích phân không cần liên tục
- Tính tích phân nhiều chiều

Dựa trên thuật toán và ngôn ngữ C++ để viết chương trình tính tích phân nhiều chiều.

Tích phân Monte Carlo

Tích phân một chiều

$$I = \int_{a}^{b} f(x)dx \tag{1}$$

Ước tính giá trị của tích phân:

$$E(I) = (b-a)\langle f \rangle = \frac{b-a}{M} \sum_{i=0}^{M-1} f(x_i)$$
 (2)

Trong đó:

 x_i : các giá trị lấy ngẫu nhiên phân bố đều trong khoảng [a,b]

M: tổng số lần lấy mẫu x_i

Tích phân Monte Carlo

Tích phân một chiều

Phương sai:

$$\sigma^{2}(E(I)) = \frac{V}{M} \sum_{i=1}^{M} (f(x_{i}) - \langle f \rangle)^{2}$$
 (3)

Với số mẫu M thì phương sai giảm theo $\frac{1}{M}$. Suy ra $\sigma \sim \frac{1}{\sqrt{M}}$

Trong đó:

 $V = \int_a^b dx$: thể tích mở rộng của tích phân nhiều chiều

Tích phân Monte Carlo

Tích phân Monte Carlo với hàm phân bố xác suất bất kỳ

Ước tính tích phân:

$$\langle f \rangle = \frac{1}{M} \sum_{i=0}^{M-1} \frac{f(x_i)}{p(x_i)} \tag{4}$$

Trong đó: $p(x_i)$ là hàm phân bố của biến ngẫu nhiên x_i

Xét tích phân của một biến $\mathbf{x}(x1,...,xn)$ trên không gian mẫu Ω.

$$I = \int_{\Omega} dx f(x) \tag{5}$$

Chon ngẫu nhiên M biến ${\bf x}$ từ một phân bố trong không gian mẫu Ω với xác suất p(x). Cho thấy được tích phân xấp xĩ bằng:

$$S^{(1)} = \frac{1}{M} \sum_{\mathbf{x}} \frac{f(\mathbf{x})}{p(\mathbf{x})} \tag{6}$$

Trong đó hàm mật độ xác suất được chuẩn hóa thành

$$\int_{\Omega} d\mathbf{x} p(\mathbf{x}) = 1 \tag{7}$$

Đối với tập hợp điểm M lớn thì phương sai là

$$\sigma^2 \cong \frac{S^{(2)} - S^{(1)}}{M - 1} \tag{8}$$

tại:

$$S^{(2)} = \frac{1}{M} \sum_{\mathbf{x}} \frac{f^2(\mathbf{x})}{\rho^2(\mathbf{x})}$$
 (9)

Xét tích phân một chiều

$$I = \int_0^1 f(x) dx \tag{10}$$

Khởi tạo M điểm với mật độ xác suất p(x) để ước tính giá trị tích phân tại phương trình (6) và phương sai tại phương trình (8) Trong đó:

$$p(x) = \frac{1}{N\Delta x_i} \tag{11}$$

Xét tích phân một chiều

Thay đổi p(x) bằng cách thay đổi kích thước Δx_i :

$$m_i = K \frac{\overline{f_i} \Delta x_i}{\sum_j \overline{f_j} \Delta x_j} \tag{12}$$

Trong đó:

$$\overline{f_i} \equiv \sum_{x \in x_i - \Delta x_i}^{x_i} f(x) \tag{13}$$

Các giá trị ước tính của tích phân và phương sai của vòng lặp sẽ được sử dụng cho phần tính toán tích phân cuối cùng sau các vòng lặp.

$$I = \sigma_I^2 \sum_{i=1}^m \frac{I_i}{{\sigma_i}^2} \tag{14}$$

$$\sigma = \left(\sum_{i=1}^{m} \frac{1}{\sigma_i^2}\right)^{1/2} \tag{15}$$

Xét tích phân n chiều

Thuật toán mô tả bên dưới được tổng quát hóa với mục đích xử lý tích phân nhiều chiều. Minh họa cho sự thay đổi

$$\int_0^1 dx \int_0^1 dy f(x, y) \tag{16}$$

Lúc này, hàm mật độ xác suất được viết lại như sau:

$$p(x,y) = p_x(x)p_y(y)$$
(17)

Do đó thuật toán một chiều có thể áp dụng dọc theo mỗi trục. Phương trình 13 được viết lại

$$\overline{f_i} \equiv \sum_{x \in x_i - \Delta x_i}^{x_i} \sum_{y} \frac{f^2(x, y)}{P_y^2(y)}$$
 (18)

Hình: Sơ đồ thuật toán

Xét các hàm 1 chiều

$$I = \int_0^1 \frac{dx}{(x - 0.25)^2 + 10^{-6}} + \frac{dx}{(x - 0.5)^2 + 10^{-6}} + \frac{dx}{(x - 0.75)^2 + 10^{-6}}$$
(19)

Hình: Dạng đồ thị của f(x)

Xét các hàm 1 chiều

Số mẫu	Số vòng lặp	Kết quả I	Sai số σ	Kết quả giải tích số
10000	1	9370.37	29.30	9410.11
10000	10	9410.12	0.07	9410.11
10000	100	9410.12	0.02	9410.11

Bảng: Bảng kết quả tích phân 1 chiều

Xét các hàm 1 chiều

Xét hàm f(x) có đỉnh nhọn cao và hẹp, lấy tích phân trên miền xác định $[10^{-10},2]$

$$I = \int_{10^{-10}}^{1} \left(\frac{1}{x} + 20 \exp(-10^{-4} (x - 1)^2) \right) dx \tag{20}$$

Hình: Dạng đồ thị của f(x)

Xét các hàm 1 chiều

Số mẫu	Số vòng lặp	Kết quả I	Sai số σ	Kết quả giải tích số
10000	1	11.4698	0.6	$log(2.10^2) + 2.sqrt(\frac{\pi}{10})$
10000	10	24.0734	0.0002	$log(2.10^2) + 2.sqrt(\frac{\pi}{10})$
10000	100	24.0734	4.039e-05	$log(2.10^2) + 2.sqrt(\frac{\pi}{10})$

Bảng: Bảng kết quả tích phân 1 chiều

Xét các hàm hai chiều

$$I = \int_{-1}^{1} \int_{-1}^{1} \exp(-20(x^2 + y^2)) dx dy$$
 (21)

Số mẫu	Số vòng lặp	Kết quả I	Sai số σ	Kết quả giải tích số
10000	1	0.157403	0.0003	≈ 0.15708
10000	10	0.157029	0.0002	≈ 0.15708
10000	100	0.156698	0.0001	≈ 0.15708

Bảng: Bảng kết quả tích phân 2 chiều

Xét các hàm ba chiều

$$I = \int_0^1 \int_0^1 \int_0^1 \frac{1}{xyz + 10^{-6}} dx dy dt$$
 (22)

Số mẫu	Số vòng lặp	Kết quả I	Sai số σ	Kết quả giải tích số
10000	1	574.415	125.527	462.216
10000	10	461.803	0.425806	462.216
10000	100	462.31	0.0964302	462.216

Bảng: Bảng kết quả tích phân 3 chiều

Xét các hàm bốn chiều

$$I^{n} = \left(\frac{1}{a\pi^{\frac{1}{2}}}\right)^{n} \int_{0}^{1} d^{n}x \exp\left(-\sum_{i=1}^{n} \frac{(x_{i} - 0.5)^{2}}{a^{2}}\right)$$
(23)

Với n = 4, a = 0.1

Số mẫu	Số vòng lặp	Kết quả I	Sai số σ	Kết quả giải tích số
10000	1	1.18126	0.1271	1
10000	10	1.00069	0.00126	1
10000	100	0.999867	0.0004	1

Bảng: Bảng kết quả tích phân 4 chiều

Kết luận và hướng phát triển

Kết luận

- Kết quả ước tính tích phân so với kết quả chính xác từ phương pháp giải tích số gần như bằng nhau.
- Xử lý tốt các bài toán có hàm lấy tích phân có hành xử xấu và trong không gian nhiều chiều.

Kết luận và hướng phát triển

Hướng phát triển

- Tối ưu khả năng tính toán các tích phân lớn hơn 4 chiều.
- Tìm hiểu các thuật toán khác để so sánh kết quả và áp dụng để cải thiện kết quả.

Cảm ơn quý Thầy Cô và các bạn đã lắng nghe