

词语对齐的快速增量式训练方法研究

NLP&CC, 北京, 2012年11月4日

罗维

提纲

- ▶研究背景
- **)**研究现状
- **)**研究方法
- ▶论文的主要工作
 - > 基于初始化的增量式训练
 - ▶ Online EM算法的应用
- > 总结
- 主要参考文献

统计机器翻译

- 【学术界】模型朝句法、语义方向发展
 - > 基于词
 - > 基于短语
 - > 基于句法
 - > 基于语义

统计机器翻译模型

- ▶ 【产业界】正逐渐走向实用
 - > 百度翻译、有道翻译、谷歌翻译...

统计翻译模型

▶构建短语/规则翻译表的一般流程

▶ 注: "解码器"模块省略关于翻译特征的判别式训练的内容。

词语对齐

- > 词语对齐是翻译模型构建的瓶颈,这是因为
 - 主流的翻译模型均依赖大规模双语语料库的词语对齐结果
 - 间语对齐需要模型训练,在翻译模型构建中耗时最长
 - ▶ 词语对齐质量影响机器翻译质量

词语对齐

- > 词语对齐是翻译模型构建的瓶颈,这是因为
 - ▶ 主流的翻译模型均依赖大规模双语语料库的词语对齐结果
 - 司语对齐需要模型训练,在翻译模型构建中耗时最长
 - ▶ 词语对齐质量影响机器翻译质量
- > 当新增语科时,传统的模型训练方法是合并语料后重新进行词语对齐模型训练。

词语对齐

- > 词语对齐是翻译模型构建的瓶颈,这是因为
 - ▶ 主流的翻译模型均依赖大规模双语语料库的词语对齐结果
 - 司语对齐需要模型训练,在翻译模型构建中耗时最长
 - ▶ 词语对齐质量影响机器翻译质量
- > 当新增语科时,传统的模型训练方法是合并语料后重新进行词语对齐模型训练。其两大不足:
 - ▶ 时间和计算资源的开销较大
 - ▶ NIST评测提供的500w平行句对 | 曙光5000的计算节点机 | 单线程 | 4~5天
 - ▶ 当新数据是与原始数据所在领域不同的数据
 - 传统训练方法得到的模型会与新数据上的真实模型存在较大的偏差。

提纲

- **)**研究背景
- ▶研究现状
- **)**研究方法
- ▶论文的主要工作
 - > 基于初始化的增量式训练
 - ▶ Online EM算法的应用
- > 总结
- **▶主要参考文献**

词语对齐的增量式训练

- ▶ [Wu 2005]
 - >模型插值
 - ▶ 应用得到的模型在新数据上生成词语对齐结果

- ▶ [Duh 2011]
 - 对新数据应用贝叶斯估计生成词语对齐矩阵。

提纲

- ▶ 研究背景
- **)**研究现状
- ▶ 研究方法
- ▶论文的主要工作
 - > 基于初始化的增量式训练
 - ▶ Online EM算法的应用
- ▶ 总结
- **▶主要参考文献**

词语对齐模型

- ▶ 采用2个基于无监督学习的模型
 - ▶ IBM模型1

> 基于HMM模型的词语对齐模型

[Brown 93]

[Vogel 96]

- 模型的参数训练算法
 - ▶ EM算法

词语对齐模型的增量式训练

词语对齐模型的增量式训练

词语对齐的增量式训练

词语对齐的增量式训练

提纲

- ▶ 研究背景
- **)**研究现状
- **)**研究方法
- ▶论文的主要工作
 - > 基于初始化的增量式训练
 - ▶ Online EM算法的应用
- > 总结
- 主要参考文献

新语料 模型参数 识别

▶ 模型

- \blacktriangleright 参数:词汇化翻译概率t(f|e),扭曲概率 $d(a_{j}|a_{j-1},I)$
- ▶ 参数统计量: 频度统计值c(f,e), $c(a_j,a_{j-1},I)$

>模型

- \blacktriangleright 参数:词汇化翻译概率t(f|e),扭曲概率 $d(a_{j}|a_{j-1},I)$
- 》 参数统计量: 频度统计值c(f,e), $c(a_i,a_{i-1},I)$
- 为什么用原始模型的参数统计量来初始化,而不直接用原始模型的参数来初始化?
 - ightharpoonup 不增加计算复杂度。新语料中出现新的模型参数,如 $t(f_{new} \mid e)$;
 - 统一的系统架构。后文的online EM算法,在进行新一轮的迭代时,需要使用现有的统计量。

实验_传统中医

- > 平行语料
 - ▶ 原始数据:来自LDC语料(约125w句对)
 - ▶ 新数据: ctzy语料(约224w句对),选出70w做增量式实验
- ▶ 语言模型
 - ▶ 在ctzy语料英文端,用srilm工具训练英文端5元LM
- ▶ 开发集
 - ▶ ctzy领域数据(861句), 带4个参考译文
- ▶ 测试集
 - ▶ ctzy领域数据(1000句), 带4个参考译文
- ▶ 运行系统
 - ▶ 自己实现的词语对齐系统(Model 1:5轮, HMM: 3轮)
 - ▶ 基于层次短语模型的解码器

实验_传统中医

实验方案	开发集	测试集
Baseline	45.78	54.60
Com_old_new	44.18	53.50
Init_lex	44.80	54.03
Init_dist	46.93	56.52
Init_lex_dist	46.43	55.81

实验设置:

Baseline :直接在新语料上进行模型训练,并生成词语对齐结果。

Com_old_new: 合并原始语料和新语料,然后进行模型训练。

Init_lex :用原始语料上训出的词汇化翻译概率初始化。

Init_dist :用原始语料上训出的位置扭曲概率初始化。

跨领域不能简 单合并语料

实验_传统中医

实验方案	开发集	测试集
Baseline	45.78	54.60
Com_old_new	44.18	53.50
Init_lex	44.80	54.03
Init_dist	46.93	56.52
Init_lex_dist	46.43	55.81

实验设置:

Baseline :直接在新语料上进行模型训练,并生成词语对齐结果。

Com_old_new: 合并原始语料和新语料,然后进行模型训练。

Init_lex :用原始语料上训出的词汇化翻译概率初始化。

Init_dist :用原始语料上训出的位置扭曲概率初始化。

仅初始化词汇化翻 译概率方案不好

实验_传统中医

实验方案	开发集	测试集
Baseline	45.78	54.60
Com_old_new	44.18	53.50
Init_lex	44.80	54.03
Init_dist	46.93	56.52
Init_lex_dist	46.43	55.81

对齐改进,改良规则分数

实验设置:

Baseline :直接在新语料上进行模型训练,并生成词语对齐结果。

Com_old_new: 合并原始语料和新语料,然后进行模型训练。

Init_lex :用原始语料上训出的词汇化翻译概率初始化。

Init_dist :用原始语料上训出的位置扭曲概率初始化。

实验_医药

- > 平行语料
 - ▶ 原始语料:来自LDC语料(约125w句对)
 - 新语料:yiyao语料(约525w句对),选出70w做增量式实验
- ▶ 语言模型
 - ▶ 在yiyao语科英文端,用srilm工具训练英文端5元LM
- ▶ 开发集
 - ▶ yiyao领域数据(1024句), 带4个参考译文
- ▶ 测试集
 - ▶ yiyao领域数据(1000句), 带4个参考译文
- 运行系统
 - ▶ 自己实现的词语对齐系统(Model 1:5轮, HMM: 3轮)
 - ▶ 基于层次短语模型的解码器

实验_医药

实验方案	开发集	测试集
Baseline	18.73	38.72
Com_old_new	19.08	38.64
Init_lex	18.89	38.52
Init_dist	19.14	40.74
Init_lex_dist	19.27	40.80

实验设置:

Baseline :直接在新语料上进行模型训练,并生成词语对齐结果。

Com_old_new: 合并原始语料和新语料,然后进行模型训练。

Init_lex :用原始语料上训出的词汇化翻译概率初始化。

Init_dist :用原始语料上训出的位置扭曲概率初始化。

跨领域不能简 单合并语料

实验_医药

实验方案	开发集	测试集
Baseline	18.73	38.72
Com_old_new	19.08	38.64
Init_lex	18.89	38.52
Init_dist	19.14	40.74
Init_lex_dist	19.27	40.80

仅初始化词汇化翻 译概率方案不好

对齐改进,改良规则分数

实验设置:

Baseline :直接在新语料上进行模型训练,并生成词语对齐结果。

Com_old_new: 合并原始语料和新语料,然后进行模型训练。

Init_lex :用原始语料上训出的词汇化翻译概率初始化。

Init_dist :用原始语料上训出的位置扭曲概率初始化。

提纲

- **)**研究背景
- ▶ 研究现状
- **)**研究方法
- ▶论文的主要工作
 - > 基于初始化的增量式训练
 - ▶ Online EM算法的应用
- ▶ 总结
- **▶主要参考文献**

Online EM算法的应用

- ▶ EM算法家族
 - ▶ batch EM (属于batch learning)
 - ▶ online EM (属于online learning)

Batch learning

Online learning

	第1次遍历 全部样本	第2次遍历 全部样本	第k次遍历 全部样本	
/ 样本1				
样本2				
	第1次更新 模型参数	第[n/m]+2 更新模型参		Ĕ(k−1)[n/m]+k次 更新模型参数 ————
	第2次更新 模型参数	第[n/m]+3 更新模型参		(k−1) [n/m]+k+1次 更新模型参数
	第[n/m]+1次 更新模型参数			第k[n/m]+k次 更新模型参数

Online learning

- ▶ 与Batch learning方法, online算法的优点:
 - > 容易跳出差的局部最优解;
 - > 在大数据量的参数优化的效果较好;
 - 如果训练数据中存在冗余,能更快地到达(局部) 最优解。

- ▶ Online 算法缺点:
 - > 参数更新频繁, 增加了运算量
 - ▶ 并行程度不会有batch算法高

Online learning

- ▶与Batch learning方法, online算法的优点:
 - > 容易跳出差的局部最优解;
 - > 在大数据量的参数优化的效果较好;
 - 如果训练数据中存在冗余,能更快地到达(局部) 最优解。

- ▶ Online 算法缺点:
 - > 参数更新频繁,增加了运算量
 - ▶ 并行程度不会有batch算法高

这优缺点的对比分析自然也适用于batch EM和online EM的对比分析。

```
\begin{array}{l} \mu \ \leftarrow \ \mbox{initialization} \\ \mbox{for each iteration } t = 1, \dots, T \\ \mu' \ \leftarrow \ 0 \\ \mbox{for each example } i = 1, \dots, n : \\ s_i' \ \leftarrow \ \sum_z p(z \mid x^{(i)}; \ \Theta(\mu)) \Phi(x^{(i)}, \ z) \qquad [\mbox{inference}] \\ \mu' \ \leftarrow \ \mu' + s_i' \qquad \qquad [\mbox{accumulate new}] \\ \mu \ \leftarrow \ \mu' \qquad \qquad [\mbox{replace old with new}] \end{array}
```

z :与x对应的隐变量

μ :模型参数对应的充分统计量 s_i':从样本i得到的充分统计量

Θ(μ):给定统计量μ,依据最大似然估计计算模型参数

Φ(x,z):标注数据(x,z)下映射出的充分统计量

Batch EM

µ表示由所有充分统计 量组成的一个向量

```
for each iteration t = 1,...,T

\mu' \leftarrow 0

for each example i = 1,...,n:

s_i' \leftarrow \sum_z p(z \mid x^{(i)}; \Theta(\mu))\Phi(x^{(i)}, z) [inference]

\mu' \leftarrow \mu' + s_i' [accumulate new]

\mu \leftarrow \mu' [replace old with new]
```

z :与x对应的隐变量

μ :模型参数对应的充分统计量 s;':从样本i得到的充分统计量

Θ(μ):给定统计量μ,依据最大似然估计计算模型参数

Φ(x,z):标注数据(x,z)下映射出的充分统计量

Batch EM

```
\begin{array}{l} \mu \ \leftarrow \ \mbox{initialization} \\ \mbox{for each iteration } t = 1, \dots, T \\ \mu' \ \leftarrow \ 0 \\ \mbox{for each example } i = 1, \dots, n : \\ s_i' \ \leftarrow \ \sum_z p(z \mid x^{(i)}; \ \Theta(\mu)) \Phi(x^{(i)}, \ z) \qquad [\mbox{inference}] \\ \mu' \ \leftarrow \ \mu' + s_i' \qquad \qquad [\mbox{accumulate new}] \\ \mu \ \leftarrow \ \mu' \qquad \qquad [\mbox{replace old with new}] \end{array}
```

E步

z :与x对应的隐变量

µ :模型参数对应的充分统计量

s_i':从样本i得到的充分统计量

 $\Theta(\mu)$:给定统计量 μ ,依据最大似然估计计算模型参数

Batch EM

```
\begin{array}{l} \mu \ \leftarrow \ \mbox{initialization} \\ \mbox{for each iteration } t = 1, \dots, T \\ \mu' \ \leftarrow 0 \\ \mbox{for each example } i = 1, \dots, n : \\ s_i' \ \leftarrow \sum_z p(z \mid x^{(i)}; \Theta(\mu)) \Phi(x^{(i)}, z) \qquad [\mbox{inference}] \\ \mu' \ \leftarrow \mu' + s_i' \qquad [\mbox{accumulate new}] \\ \mu \ \leftarrow \mu' \qquad [\mbox{replace old with new}] \end{array}
```

M步

z :与x对应的隐变量

μ :模型参数对应的充分统计量

s_i':从样本i得到的充分统计量

 $\Theta(\mu)$:给定统计量 μ ,依据最大似然估计计算模型参数

[Liang 2009]

```
\begin{array}{l} \mu \ \leftarrow \ \text{initialization; } k=0 \\ \text{for each iteration } t=1,\ldots,T \\ \text{for each example } i=1,\ldots,n: \\ s_i' \leftarrow \sum_z p(z\mid x^{(i)};\,\Theta(\mu))\Phi(x^{(i)},\,z) \qquad \qquad [\text{inference}] \\ \mu \leftarrow (1-\eta_k)\mu + \eta_k s_i';\, k \leftarrow k+1 \qquad [\text{towards new}] \end{array}
```

z :与x对应的隐变量

μ :模型参数对应的充分统计量 s_i':从样本i得到的充分统计量

Θ(μ):给定统计量μ,依据最大似然估计计算模型参数

```
\begin{array}{l} \mu \ \leftarrow \ \text{initialization; k = 0} \\ \text{for each iteration t = 1,...,T} \\ \text{for each example i = 1,...,n:} \\ s_i' \leftarrow \sum_z p(z \mid x^{(i)}; \, \Theta(\mu)) \Phi(x^{(i)}, \, z) \qquad \qquad [\text{inference}] \\ \mu \leftarrow (1 - \eta_k) \mu + \eta_k s_i'; \, k \leftarrow k + 1 \qquad [\text{towards new}] \end{array}
```

E步

z :与x对应的隐变量

μ : 模型参数对应的充分统计量 s_i': 从样本i得到的充分统计量

Θ(μ):给定统计量μ,依据最大似然估计计算模型参数

```
\begin{array}{l} \mu \leftarrow \text{initialization; } k=0 \\ \text{for each iteration } t=1,\ldots,T \\ \text{for each example } i=1,\ldots,n; \\ s_i' \leftarrow \sum_z p(z\mid x^{(i)}; \Theta(\mu)) \Phi(x^{(i)},z) & [\text{inference}] \\ \mu \leftarrow (1-\eta_k)\mu + \eta_k s_i''; k \leftarrow k+1 & [\text{towards new}] \end{array}
```

M步

z :与x对应的隐变量

μ :模型参数对应的充分统计量 s_i':从样本i得到的充分统计量

Θ(μ):给定统计量μ,依据最大似然估计计算模型参数

```
\begin{array}{l} \mu \leftarrow \text{initialization; } k = 0 \\ \text{for each iteration } t = 1, \dots, T \\ \text{for each example } i = 1, \dots, n : \\ s_i' \leftarrow \sum_z p(z \mid x^{(i)}; \, \Theta(\mu)) \Phi(x^{(i)}, \, z) \qquad \qquad [\text{inference}] \\ \mu \leftarrow (1 - \eta_k) \mu + \eta_k s_i'; \, k \leftarrow k + 1 \qquad [\text{towards new}] \end{array}
```

与batch EM的这步一样

z :与x对应的隐变量

μ :模型参数对应的充分统计量 s_i':从样本i得到的充分统计量

Θ(μ):给定统计量μ,依据最大似然估计计算模型参数

```
\begin{array}{l} \mu \ \leftarrow \ \text{initialization; } k=0 \\ \text{for each iteration } t=1,\ldots,T \\ \text{for each example } i=1,\ldots,n: \\ s_i' \leftarrow \sum_z p(z \mid x^{(i)}; \, \Theta(\mu)) \Phi(x^{(i)}, \, z) \qquad \qquad [\text{inference}] \\ \mu \leftarrow (1-\eta_k) \mu + \eta_k s_i'; \, k \leftarrow k+1 \qquad [\text{towards new}] \end{array}
```

每轮迭代完后,不用清空充分统计量

z :与x对应的隐变量

μ :模型参数对应的充分统计量 s_i':从样本i得到的充分统计量

Θ(μ):给定统计量μ,依据最大似然估计计算模型参数

▶ηk的取值

► EM收敛要求
$$\sum_{k=0}^{\infty} \eta_k = \infty$$
 与 $\sum_{k=0}^{\infty} \eta_k^2 < \infty$
► $\eta_k = (k+2)^{-\alpha}$ (0.5 < α <= 1)

$$\eta_k = (k+2)^{-\alpha} \ (0.5 < \alpha <= 1)$$

- ▶ mini-batch 的取值
 - ▶ 每处理mini-batch个样本,更新模型参数

实验_Online EM算法

- ▶ ctzy 实验
 - ▶ 与之前ctzy实验配置一样
- ▶ yiyao 实验
 - > 与之前yiyao实验配置一样
- ▶ 运行系统
 - > 自己实现的词语对齐系统
 - ▶ model 1: online EM训练3轮
 - ▶ hmm : online EM训练3轮
 - ▶ 基于层次短语模型的解码器

实验_Online EM算法—传统中医

实验方案	batch EM		online EM	
	开发集	测试集	开发集	测试集
Baseline	45.78	54.60	X	X
Init_lex_dist	46.43	55.81	46.68	56.37

实验设置:

Baseline :直接在新语料上进行模型训练,并生成词语对齐结果。

Init_lex_dist: 用原始语料上训出的词汇化翻译概率和扭曲概率初始化。

实验_Online EM算法—医药

实验方案	batch EM		online EM	
	开发集	测试集	开发集	测试集
Baseline	18.73	38.72	X	X
Init_lex_dist	19.27	40.80	18.96	40.82

实验设置:

Baseline :直接在新语料上进行模型训练,并生成词语对齐结果。

Init_lex_dist: 用原始语料上训出的词汇化翻译概率和扭曲概率初始化。

提纲

- ▶ 研究背景
- ▶研究现状
- **)**研究方法
- ▶论文的主要工作
 - > 基于初始化的增量式训练
 - ▶ Online EM算法的应用
- > 总结
- **▶主要参考文献**

总结

传统训练方法在构建翻译模型肘存在不足,本文围绕翻译模型构建流程的瓶颈——词语对齐,研究既高效又保证词语对齐质量和机器翻译质量的增量式训练方法。

总结

- 传统训练方法在构建翻译模型肘存在不足,本文围绕翻译模型构建流程的瓶颈——词语对齐,研究既高效又保证词语对齐质量和机器翻译质量的增量式训练方法。
- 提出了基于初始化,同时应用迭代训练收敛速度更快的 online EM算法以替换通常所用的batch EM算法的增量式训 练方法。

总结

- 传统训练方法在构建翻译模型时存在不足,本文围绕翻译模型构建流程的瓶颈——词语对齐,研究既高效又保证词语对齐质量和机器翻译质量的增量式训练方法。
- 提出了基于初始化,同时应用迭代训练收敛速度更快的 online EM算法以替换通常所用的batch EM算法的增量式训 练方法。
- 所提出的增量式训练方法在实验中取得成效。

提纲

- ▶ 研究背景
- ▶研究现状
- **)**研究方法
- ▶论文的主要工作
 - > 基于初始化的增量式训练
 - ▶ Online EM算法的应用
- > 总结
- ▶主要参考文献

主要参考文献

- ▶ [Brown 1993] Brown, P.F. and Pietra, V.J.D. and Pietra, S.A.D. and Mercer, R.L. The mathematics of statistical machine translation: Parameter estimation. CL 1993.
- ▶ [Duh 2011] Duh, K. and Sudoh, K. and Iwata, T. and Tsukada, H. Alignment Inference and Bayesian Adaptation for Machine Translation. MTSummit 2011.
- ▶ [Liang 2009] Liang, P. and Klein, D. Online EM for unsupervised models. NAACL 2009.
- Vogel 1996] Vogel, S. and Ney, H. and Tillmann, C. HMM-based word alignment in statistical translation. ACL 1996.
- ▶ [Wu 2005] Hua, W. and Haifeng, W. and Zhanyi, L. Alignment model adaptation for domain-specific word alignment. ACL 2005.

谢谢!

IBM词语对齐模型1

▶优化目标:

$$\Pr(F \mid E) = \frac{\mathcal{E}}{(l+1)^m} \sum_{a_1=0}^{l} \dots \sum_{a_m=0}^{l} \prod_{j=1}^{m} t(f_j \mid e_{a_j})$$

- ▶ E: 目标端句子
- ▶1:目标端句子长度
- ▶ ei:目标端句子中位于i位置的词语
- ▶ F: 源端句子
- ▶ m: 源端句子长度
- ▶ f_i: 源端句子中位于j位置的词语
- ▶ a_i: 源端j位置对应到目标端的位置

▶优化目标:

$$\Pr(F \mid E) = \frac{\mathcal{E}}{(l+1)^m} \sum_{a_1=0}^{l} \dots \sum_{a_m=0}^{l} \prod_{j=1}^{m} t(f_j \mid e_{a_j})$$

▶ EM 算 法:

aj : 视为隐变量 t(fj | ei): 模型参数

▶ E步

$$c(f \mid e; F, E) = \sum_{A} \Pr(A \mid E, F) \sum_{j=1}^{m} \delta(f, f_j) \delta(e, e_{a_j})$$

▶ M步

$$t(f \mid e) = \lambda_e^{-1} c(f \mid e; F, E)$$

[Vogel 1996]

▶优化目标:

$$\Pr(F \mid E) = \sum_{a_1=0}^{l} \dots \sum_{a_m=0}^{l} \prod_{j=1}^{m} p(a_j \mid a_{j-1}, l) t(f_j \mid e_{a_j})$$

- ▶ EM 算 法:
 -) 前向后向算法

aj :视为隐变量

t(fj | ei) : 模型参数

p(aj | aj, I): 模型参数

- ▶ Sparse update 问题
 - 处理一个或几个样本时,能够影响到的统计量只 局限于某几个统计量上。
 - $\mu \leftarrow (1 \eta_k)\mu + \eta_k s_i'$

- ▶ Sparse update 问题
 - 处理一个或几个样本时,能够影响到的统计量只 局限于某几个统计量上。
 - $\mu \leftarrow (1 \eta_k)\mu + \eta_k s_i'$
 -)通过引入 $S = \frac{\mu}{\prod_{i < k} (1 \eta_i)}$
 - > 统计量的插值计算公式等价于

$$S \leftarrow S + \frac{\eta_k}{\prod_{j \le k} (1 - \eta_j)} s_i$$

