—Assignment 7—

Yimin Zhao

October 31, 2019

1 Collision Resolution

(a) Separate Chaining

(b) Linear Probing

0	1979
1	5671
2	1999
3	133
4	173
5	444
6	
7	
8	
9	8899

(c) Quadratic Probing

0	1979
1	5671
2	
3	133
4	173
5	444
6	
7	
8	1999
9	8899
	•

(c) Double Hashing

0	
1	5671
2	1999
3	133
4	444
5	173
6	
7	1979
8	
9	8899
	•

2 Hash Table Size

Define numbers of comparision in an unsuccessful case as U(L)

Define numbers of comparision in an successful case as S(L)

Define hash table size as n

Define the number of elements as N

We have that:

$$U(L) = \frac{1}{2}[1 + \frac{1}{1 - L}^{2}] \le 13 \Rightarrow L \le \frac{4}{5}$$

$$S(L) = \frac{1}{2}[1 + \frac{1}{1 - L}] \le 10 \Rightarrow L \le \frac{18}{19}$$

So:

$$L \le \frac{4}{5}$$

Because $N \leq 1000$, we have:

$$L = \frac{N}{n} \le \frac{4}{5} \implies n \ge \frac{5}{4} \cdot 1000 = 1250$$

To avoid uneven distribution as much as possible, n should be a prime number:

$$n = 1259$$

3 Rehashing

(a) Rehasing for Separate Chaining

(b) Rehasing for Linear Probing

(c) Rehasing for Quadratic Probing

(d) Rehasing for Double Hashing

