Test, DG short course

One hour exam. Open book, open notes

1. For the conservation law

$$u_t + f(u)_x = 0, \quad 0 < x < 1$$

with periodic boundary condition, the discontinuous Galerkin method with an implicit time discretization is defined as follows. Find $u_h^{n+1} \in V_h$, such that

$$\int_{I_j} \frac{u_h^{n+1} - u_h^n}{\Delta t} v_h \, dx - \int_{I_j} f(u_h^{\theta})(v_h)_x \, dx + \hat{f}_{j+\frac{1}{2}}^{\theta}(v_h)_{j+\frac{1}{2}}^- - \hat{f}_{j-\frac{1}{2}}^{\theta}(v_h)_{j-\frac{1}{2}}^+ = 0 \tag{1}$$

for all $v_h \in V_h$ and all j. Here,

$$u_h^{\theta} \equiv \theta u_h^{n+1} + (1-\theta) u_h^n, \quad \hat{f}_{j+\frac{1}{2}}^{\theta} = \hat{f}\left((u_h^{\theta})_{j+\frac{1}{2}}^-, (u_h^{\theta})_{j+\frac{1}{2}}^+\right),$$

the numerical flux $\hat{f}(u^-, u^+)$ is a monotone flux (non-increasing in the second argument) which is consistent with the flux f (that is, $\hat{f}(u, u) = f(u)$), and

$$V_h = \{v_h : (v_h)|_{I_i} \in P^k(I_j), \forall j\},\tag{2}$$

 I_j is a partition of the computational domain [0,1], $P^k(J_j)$ denotes the collection of polynomials of degree up to k in the element I_j .

For $\theta \geq \frac{1}{2}$, prove the following cell entropy inequality for the convex entropy $U(u) = \frac{u^2}{2}$:

$$\int_{I_i} \frac{U(u_h^{n+1}) - U(u_h^n)}{\Delta t} \, dx + \hat{F}_{j+\frac{1}{2}}^{\theta} - \hat{F}_{j-\frac{1}{2}}^{\theta} \le 0$$

for some numerical entropy flux $\hat{F}_{j+\frac{1}{2}}^{\theta} = \hat{F}\left((u_h^{\theta})_{j+\frac{1}{2}}^-, (u_h^{\theta})_{j+\frac{1}{2}}^+\right)$ which is consistent with the entropy flux $F(u) = \int^u U'(u) f'(u) \, du$.

2. For the original DG scheme solving the one-dimensional steady hyperbolic equation

$$u_x = f(x), \quad 0 \le x < 1$$

with the boundary condition

$$u(0) = a$$
.

defined as: find $u_h \in V_h$, such that for all $v \in V_h$ and all j, we have

$$-\int_{I_j} u_h(x)v_x(x) dx + (u_h)_{j+\frac{1}{2}}^- v_{j+\frac{1}{2}}^- - (u_h)_{j-\frac{1}{2}}^- v_{j-\frac{1}{2}}^+ = \int_{I_j} f(x)v(x) dx,$$

prove $u_h = Pu$, where P is the Gauss-Radau projection that we introduced in class, i.e., $Pu \in V_h$ is defined as the unique function in V_h satisfying, for all j,

$$(u - Pu)_{j + \frac{1}{2}}^{-} = 0,$$

and

$$\int_{I_j} (u - Pu)v \, dx = 0, \quad \forall v \in P^{k-1}(I_j).$$

Hint: Look at the proof the optimal error estimates in class in which we decomposed the error $e = u - u_h$ into $e = \eta - \xi$, where $\eta = u - Pu$ and $\xi = Pu - u_h$. Try to prove $\xi = 0$.