

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Prof. Adriano Barbosa

Álgebra Linear e Geometria Analítica — Avaliação P1

Eng. Civil	05 de Julho de 2017

1	
2	
3	
4	
5	
Total	

(1) Mostre que se o sistema

$$\begin{cases} x + y + 2z = a \\ 2x + y + 3z = b \\ x + z = c \end{cases}$$

tem solução, então as constantes $a, b \in c$ devem satisfazer c = b - a.

(2) Determine $a, b, c \in d$ tais que

$$\begin{bmatrix} a-b & b+c \\ 3d+c & 2a-4d \end{bmatrix} = \begin{bmatrix} 8 & 1 \\ 7 & 6 \end{bmatrix}$$

- (3) Encontre os valores de λ para os quais $\det(A)=0$, com $A=\begin{bmatrix}\lambda-2&1\\-5&\lambda+4\end{bmatrix}$.

(4) Determine o valor de
$$n$$
 para que o ângulo entre as retas seja $\frac{\pi}{6}$:
$$r_1: \frac{x-6}{4} = \frac{y-5}{5} = \frac{z-3}{3} \qquad \text{e} \qquad r_2: \left\{ \begin{array}{l} y=nx+5\\ \frac{z}{2}=x-1 \end{array} \right.$$

- (5) Dados os planos $\pi_1 : y = 3 x$ e $\pi_2 : \begin{cases} x = 2 + 2t 2s \\ y = 1 t s \\ z = 2 2t + 2s \end{cases}$
 - (a) Escreva a equação implícita de π_2 .
 - (b) Calcule a interseção entre π_1 e π_2 .

Boa Prova!