M8. Transformer

Motivation

- GRU, LSTM 등의 등장에도 불구하고, RNN은 여전히 long-term dependency를 해결하기 위해 attention 이용해야 한다 → 먼 거리에 있는 hidden state과의 shortcut 필요
- 하지만 RNN에는 sequential한 입력 값이 주어지기 때문에 병렬 처리가 불가능하며, 모든 타임 스텝에서 hidden이 계산된 후에야 attention 진행 가능하다 > 느림
- Seq2Seq 모덷에 RNN이 필요 없다면...? → "Attention Mechanism"으로 연결하자!

Transformer: RNN이나 CNN 없이 attention만으로 인풋은 연결한 구조

- Transformer 구조를 제안한 "Attention is All you Need"는 2017년에 받표된 가장 흥미로운 논문 중 하나!
- Transformer에서는 Self attention은 사용해 Recurrent Unit 없이도 문장은 모델링 할 수 있다.

Paper: Attention is All You Need

Transformer: RNN이나 CNN 없이 attention만으로 인풋은 연결한 구조

• 핵심은 multi-head self-attention에서 사용하는 scaled dot-product attention

 $Attention(Q, K, V) = softmax(\frac{QK^T}{\sqrt{d_k}})V$

STEP 1.

Attention 대상이 되는 토큰들을 key와 value, attention하는 토큰을 query로 변환 (행뎔 곱)

STEP 2.

Query에 대해 각 key들과의 내적을 통해 attention 가중치 계산.
이 때 scale된 벡터 내적에 softmax를 취하

이 때 scale된 벡터 내석에 softmax들 쥐호 는 방식으로 '확률 분포'와 같이 만듦.

STEP 3.

Attention 분포에 따라

value를 가중 합하여

가중치를 이용해 value를 가중 합 하여 query의 representation을 업데이트

Self attention의 의미

- Self attention은 인풋 시권스 전체에 대해 attention은 계산해 각 토큰의 representation은 만들어가는 과정으로, 업데이트된 representation은 <mark>문맥 정보</mark>를 가지고 있다.
- 예를 들어 "아이유는 1993년에 태어났다. 그녀는 최근에 드라마 호덷 델루나에 출연했다" 라는 인풋에 대해 self-attention은 적용하면 "그녀"에 해당하는 representation은 "아이유"에 대한 정보를 담게 된다.

Multi head attention

- Scaled dot-product attention을 한 번에 계산하는 것이 아니라 여러 개의 head를 이용해 계산함.
- 즉, attention 계산 과정을 여러 weight를 사용해 반복하고 그 결과를 concat하여 최종 attention output 계산
- 이는 CNN filter을 여러 장 사용함으로써 이미지에 있는 다양한 득성을 포착하는 것처럼,
 토큰 사이의 다양한 관계를 포착하기 위함임.

Transformer Self-attention 예시

- "The animal didn't cross the street because it was too tired"
- 라는 문장에 Transformer 구조를 이용해 self attention 적용

"it" 이라는 대명사에 대해 selfattention을 계산한 결과 it이 지칭 하는 'the animal' 도큰에 대한 score이 높게 나타남.

Positional Encoding

쿼리 토큰에 대해 key 토큰과의 attention score을 구해 attention value를 만드는 과정, 이상한 점이 보이시나요?

Positional Encoding

• 도큰 임베딩에 위치 정보를 나타내는 positional encoding은 만들어 더해준다

Transformer 인코더 구조 summary

Seq2Seq른 Transformer도 모델딩하기

- 인코더에서는 인풋 문장 안에 있는 토큰들간의 관계를 고려하는 Self-attention 사용
- 디코더에서는 디코더 히든과 인코더 히든들간의 attention을 고려해 도큰은 예측함
- 애니메이션으로 이해하기 >>
- https://ai.googleblog.com/2017/08/transformer-novel-neural-network.html

Seq2Seq른 Transformer도 모델딩하기

• 인코딩 단계에서는 [Self-attention + Feed Forward] 레이어를 여러 층 쌓아 인풋 토큰들에 대한 representation 생성

Seq2Seq른 Transformer도 모델딩하기

Transformer 득징 & 장점 summary

- RNN을 통해 각 타임스텝의 hidden state이 계산되기를 기다리지 않아도 된다.
- 즉, 문장에 있는 모든 단어의 representation들을 병렬적으로 한번에 만들 수 있다 > 빠르다!
- 기존의 RNN, CNN 방식을 과감히 포기하고 FNN과 Skip connection만을 이용했다는 점에서 획기적
- GRU, LSTM 같은 아키텍처 없이도 Long-term dependency를 해결한 새로운 방식
- 병렬화와 학습 시간 단축에 기여
- 각종 기계번역 대회에서 세계 최고의 기록 보유!!(WMT 2014 등)

Transformer Self Attention 이해하기

실습 6_Transformer.ipynb

• **데이터**: 대화체 데이터 100,000건

번역문	원문
How is the market's reaction to the newly rele	이번 신제품 출시에 대한 시장의 반응은 어떤가요?
The sales increase is faster than the previous	판매량이 지난번 제품보다 빠르게 늘고 있습니다.
Then, we'll have to call the manufacturer and	그렇다면 공장에 연락해서 주문량을 더 늘려야겠네요.
Sure, I'll make a call and double the volume o	네, 제가 연락해서 주문량을 2배로 늘리겠습니다.
Shall we take a look at the issues we discusse	지난 회의 마지막에 논의했던 안건을 다시 볼까요?

✓ (모두 선택)
 ✓ 비즈니스
 ✓ 스포츠
 ✓ 여행/쇼핑
 ✓ 의학
 ✓ 일상대화

• 학습 목표 :

- Transformer을 이용한 Seq2Seq 모델 구조를 이해한다.
- TF Keras를 이용해 Transformer 인코더-디코더 구조로 번역 모델을 학습/ 추론한다.