7SENG010W Data Structres & Algorithms

Week 5 Lecture

Trees

Overview of Week 5 Lecture: Trees

- ► Tree Data Structures
 - Definition & properties
 - Binary Trees & non-Binary Trees
- ► Binary Search Trees (BST)
 - Definition & properties
 - Creation & Insertion of a new Value
 - Deletion of a Value
- ► Binary Tree Traversal
 - In-order
 - Pre-Order
 - Post-order

Acknowledgements: these notes are partially based on those of K. Draeger & P. Brennan.

7SFNG010W Week 5: Trees

PART I Introduction to Tree Data Structures

Tree Data Structures (1/2)

An empty tree & a non-empty binary tree.

Tree Data Structures (2/2)

A *non-empty n-ary tree*, i.e each node can have up to *n children* nodes, & hence up to n sub-trees.

All of the *child* nodes under the same *parent* node are referred to as *siblings*, e.g. the children of *A* the nodes *B1*, *B2*, ..., *Bn-1*, *Bn* are siblings. Similarly for the *C1*, *C2*, ..., *Cn-1*, *Cn*; *D1*, *D2*, ..., *Dn-1*, *Dn*; etc

Properties of Tree Data Structures (1/2)

Trees are *collection* data structures & are more complex that the *linear* data structures we have seen so far, e.g. lists.

Trees are very important in computing & software engineering as they are one of the most flexible & widely used data structures.

- Non-Linear data structures: not organised as a sequence of data items, but as a hierarchical "tree" structure.
 - In other words they are not *linear* but *non-linear*.
- Dynamic data structures:
 - ▶ a "tree" structure of data items that does not have a fixed sized.
 - new data items can be inserted into a tree & existing data items in a tree can be deleted from it.
- ► Linked tree shaped structure of data nodes.
 - Tree's data nodes are connected by "branches", i.e. links (references/pointers), to form a tree shape. (Similar to lists.)

Properties of Tree Data Structures (2/2)

- ► Tree nodes: each node has at most one "parent" node that links to it.
- Data nodes are accessed by following the branches (links) between the nodes.
- ► Data items (nodes) in a tree are *identified* or *found* by being in a "significant" or "relative" position within a tree.
- Significant tree position is the unique "root" node of the tree.
 The root node of the tree does not have a "parent" node, i.e. it is null.
 If the tree is "empty" then the root is equal to null.
- Relative tree positions are relative to the current node: its parent node, its "left child" & "right child" nodes.
 In some types of trees its "sibling" nodes are also important.
- Representations: there are many different types of tree structures used, but the vast majority are represented by a tree structure of tree nodes. Some types of trees with restricted structures, e.g. a heap, can be implemented using arrays.

Traversing a tree

- This involves finding a path (sequence of branches) from the root to a particular node in the tree.
- Any node X on the unique path from a node Y to the root node is called an ancestor of Y, and Y is called a descendent of X.
- E.g. 41's *ancestors* are 23, 42 & 37; 23's *descendents* are 42, 37 & 41.
- If, in addition, X and Y are adjacent nodes, then X is said to be the parent of Y, and Y the child of X. E.g. 42 is the parent of 37 (& 60).
- In the tree below the path from the root 23 to the leaf 41 is via the branches connecting the nodes 23, 42, 37, 41, i.e. X1 → X2 → X3 → Y.
- So a root node has no parent & a leaf node has no children.

Tree Node Representations (1/2)

Standard Tree nodes with a data item, left child & right child links have the following structure after creation & after insertion into a tree:

TreeNode tNode = new TreeNode();

left	item	right
null	null	null
•		~

TreeNode tNode = new TreeNode(); tNode .item = 99; tNode .left = left tree; tNode .right = right tree;

Tree nodes with the added parent link have the following structure after creation & after insertion into a tree:

TreePNode ptNode = new TreePNode();

TreePNode ptNode = new TreePNode(); ptNode .item = 99; etc ptNode .parent = p node;

Tree Node Representations (2/2)

Non-binary tree nodes with a parent link & n-children links have the following structure after creation & after insertion into a tree:

NaryTreeNode ntNode = new NaryTreeNode();

NaryTreeNode ntNode = new NaryTreeNode();

ntNode .item = 99; ntNode .child-1 = c1 tree; etc

Note: for simplicity node's parent, left child & right child, etc, fields are not included in diagrams.

Binary Trees

- Binary trees, i.e. each node has at most 2 children nodes, are the most commonly used type of tree.
- For this reason we will focus on binary trees in this lecture & most of the next lecture on trees.
- In a Binary tree each item/node in the tree may have at most two successors, i.e. two sub-trees, the left & right sub-trees. See the tree diagrams given at the start of the lecture.
- ► Definition: Binary Tree

A binary tree is either:

Empty – it contains no nodes.

Non-Empty – it contains at least one node, so it is either:

- iust one node, which is the *root* of the tree; or
- the root & one disjoint binary sub-tree, either a left or right sub-tree: or
- the root & two disjoint binary sub-trees, a left and right sub-tree.

Binary Tree Algorithms

- Usually tree algorithms use "recursion" starting from the root, as it most closely follows the "recursive" nature of the tree data structure.
 - Each recursive call checks that the *current* node is not null, then "processes" its data,
 - Then based on the node's data either the recursion ends or it is called again on one or both of its left & right sub-trees.
 - Terminating when either a specific node is found & processed, e.g. a search, deletion, etc, or if the *current* node is null.
- Some tree algorithms can also use while-loops to traverse a tree moving down it following either the left or right branches (links).
- The meta data is usually references (pointers) to the nodes linked to the current node: leftChild, rightChild & parent.
 Other data about the properties of a tree or a record of the path taken can also be used.
- ► The Big-O worst-case complexity, for most operations on a tree of N nodes, e.g. searching, insertion, deletion, is Linear O(N).
- ► The Big- Θ average-case complexity, for the above operations is Logarithmic $-\Theta(\log_2(N))$, & Big- Ω best-case is Constant $-\Omega(1)$.

Week 5

PART II Binary Search Trees (BST)

Binary Search Trees (BST)

- A BST is a binary tree that represents a set of keys & their associated values⁸.
- ► There is an additional constraint the characteristic BST property that all node keys in the tree must satisfy:
 - 1. all keys in each node's left sub-tree are "less than" the key in the node;
 - 2. all keys in each node's right sub-tree are "greater than" the key in the node;
 - 3. then we always get the keys in sorted order.
- BST Operations: insert an item into the tree, delete an item from the tree, search for an item in the tree.
- ► The *insert* & *delete* operations **must** maintain the BST property.
- There are many different BSTs that represent the same set of keys.
- BSTs are useful when storing ordered data that is dynamically changing, & its insert & search operations are very efficient.

7SFNG010W Week 5: Trees

 $^{^8}$ For simplicity we usually treat the key & its value as the same entity, but in real examples this is usually not the case, values can be a large data structure.

BSTs

Example BST, where all the node values satisfy the BST property:

- 1. Root: $\{7, 10, 17\} < 23 < \{37, 41, 42, 60\}$
- 2. Left sub-tree: $\{7\} < 10 < \{17\}, \{\} < 7 < \{\}, \{\} < 17 < \{\}$
- 3. Right sub-tree: $\{37,41\} < 42 < \{60\}, \{\} < 37 < \{41\}, \{\} < 41 < \{\}, \{\} < 60 < \{\}$

BST Operations

- ▶ The operations we shall focus on are:
 - Searching for a value in a BST,
 - Inserting a value into a BST,
 - Deleting a value from a BST.
- Remember that for any operation that modifies a BST it MUST ensure that the BST property is maintained, e.g. the Insertion & Deletion operations.
- ▶ Searching is also required for the *deletion* of an item.
- In PART III we shall look at general tree traversal.

BST Operation: Searching for a Value

- Searching for a particular value in a BST, is relatively straightforward because all BSTs satisfy the BST property.
- So since the node values in a BST are in ascending sorted order, we can apply an adapted version of the Binary Search algorithm for an ascending sorted array we used in the lecture on Arrays.
- Array Algorithm: repeatedly comparing the value with the middle array element of a segment, then searching the left array segment if less than it, or searching the right array segment if greater than it.
- For the BST version of the algorithm we use a node's value, its left child sub-tree & its right child sub-tree, instead.
- ▶ So the BST *Binary Search* algorithm is:
 - 1. If the tree is empty then value not found & finish.
 - 2. Compare the value with the tree's *root* value.
 - 3. If equal then found value & finished.
 - 4. If value is less than root value then search in the left sub-tree.
 - 5. If value is greater than root value then search in the right sub-tree.

BST Search: Pseudo code

```
Search (TREE root, VALUE valueToFind ) // (NON-RECURSIVE Version)
REGIN
  // define a node to use to traverse the BST, starting at the root
   currentNode <-- root
   WHILE ( currentNode is not an empty tree )
   BEGIN
        // search the tree, check root's value
        IF ( valueToFind == currentNode value )
             RETURN currentNode
                                          // Found value
        ELSE
            IF( valueToFind < currentNode.value )</pre>
                // move to the left sub-tree & search it
                currentNode <-- currentNode.leftChild
            ELSE
                IF ( currentNode.value < valueToFind )</pre>
                   //move to the right sub-tree & search it
                   currentNode <-- currentNode.rightChild
                ENDIF
            ENDIF
        ENDIF
   ENDWHILE
   RETURN NOT FOUND : // value Not found
END
```

Example: Search of BST

Search BST for 41 using algorithm's pseudo code:

- 1. set currentNode to the root,
- 2. currentNode is not an empty tree, i.e. null,
- valueToFind (41) is greater than currentNode.value (23) so search currentNode.rightChild sub-tree.
- valueToFind (41) is less than currentNode.value (42) so search currentNode.leftChild sub-tree.
- valueToFind (41) is greater then currentNode.value (37) so search currentNode.rightChild sub-tree.
- 6. valueToFind (41) equals currentNode.value (41) so found.

BST Operation: Insert a Value

- Suppose we want to insert new data in to a BST.
- First decide whether duplicate values are allowed or only unique values are allowed in the BST.
- BSTs are often used to implement a container that implements a set of values, & sets do not have duplicate values.
- So we will adopt this approach & not have duplicate values in our BST.
- ▶ If duplicates were allowed then simply add an *occurrences counter* to each BST node, this would then not represent a *set* container, but a "bag" (or "multi-set") container.
- ▶ BST *Insert* algorithm (assuming no duplicates) is:
 - If the tree is empty (root is null) then replace root with a new node containing the new value & finished.
 - 2. Otherwise, compare the new value with the tree's *root* value.
 - If new value is less than root value then recursively insert it in the left sub-tree.
 - If new value greater than root value then recursively insert it in the right sub-tree.

BST Insertion: Pseudo code (1/2)

The *insertion* operation is defined using two methods:

- Insert (VALUE newValue) initially called to deal with a possibly empty BST & creating a new root node.
 - If the BST is not empty then call the recursive method to insert the value into a non-empty BST.
- InsertInTree(TREE root, VALUE newValue) called to insert the new node into a non-empty BST at the "bottom" of the BST, ensuring it maintains the BST-property.

It uses recursion to traverse the BST from its root to the correct location to insert the new node as a *leaf* node.

BST Insertion: Pseudo code (2/2)

```
// Use recursion for non-empty trees
InsertInTree( TREE root, VALUE newValue )
REGIN
     TF ( newValue < root.value )
          // insert the new node in the left sub-tree
          IF ( root.leftChild is an empty tree )
               // insert the new node here
               root.leftChild <-- Node ( newValue )
          ELSE
               // recursively call this method on the leftChild
               InsertInTree( root.leftChild, newValue )
          ENDIF
     ELSE
          IF ( root.value < newValue )
              // insert the new node in the right sub-tree
              IF ( root.rightChild is an empty tree )
                   // insert the new node here
                   root.rightChild <-- Node ( newValue )
              ELSE
                   // recursively call this method on the rightChild
                   InsertInTree( root.rightChild, newValue )
               ENDIF
          ELSE
               SKIP // newValue equals root.value(), already in BST
          ENDIF
     ENDIF
END
```

Example: Insertion into a BST

Insert **15** into our BST using the pseudo code algorithm:

- 1. root is not an empty tree, so call recursive method to do insertion.
- 2. newValue (15) is less than root.value (23) so insert into root.leftChild sub-tree (10).
- 3. newValue (15) is greater then root.value (10) so insert into root.rightChild sub-tree (17).
- 4. newValue (15) is less than root.value (17) & root.leftChild sub-tree is an empty tree (null) so insert (15) as new root.leftChild sub-tree.

BST Operation: Delete a Value

- Deletion is the most complex of the BST operations as there are 4 cases to consider.
- Start by searching the BST for the value to be deleted.
 There are 4 possible outcomes in relation to the "location/type" of node the delete value is in:
 - 1. not in the BST, or
 - 2. a *leaf* node, (i.e. both left & the right sub-trees are null), or
 - 3. a non-leaf node with just 1 non-null sub-tree, either the left or the right, or
 - 4. a non-leaf node with both the left sub-tree & the right sub-tree being non-null.
- Remember that if we alter the structure of a BST by deleting a value (node) then we have to make sure that the resultant BST satisfies the BST-property, i.e. maintains the key ordering.
 - This sometimes means that we have to *restructure* the BST by moving parts of the tree around.
- ▶ We shall now consider the above 4 cases of deleting a node form a BST.

BST Deletion: Cases 1 - 3 Pseudo Code Steps

Steps for *deleting* a value – deleteValue from a BST are:

- 1. Find the node containing deleteValue:
 - ▶ If there is no node with node.value equal to deleteValue, then deleteValue is not in the BST, so finished.
- 2. If there is a node with node.value equal to deleteValue & the node is a *leaf node*, then delete it.

Achieved by setting its parent node's leftChild or rightChild to null depending on which one the node was, & finished.

- 3. If the node is a *non-leaf node* with *just one non-null child* then:
 - Restructure the BST by: attaching the node's child (left or right) to the node's parent instead.
 - Delete the node.

BST Deletion: Case 4 Pseudo Code Steps

- 4. If the node containing deleteValue is a *non-leaf node* and *both* its leftChild & rightChild are non-null then:
 - The BST has to be restructured to maintain the BST property by replacing deleteValue by the maximum value in the node's left sub-tree & then deleting the maximum value's node.
 - Find the maxLeftSubTreeNode containing the node's left sub-tree's maximum value by:
 - Starting from node.leftChild sub-tree, going down to the right as far as possible.
 - Use maxLeftSubTreeNode's maximum value –
 maxLeftSubTreeNode.value to replace the value in node.value.
 - Attach maxLeftSubTreeNode.leftChild sub-tree (if non-null) to maxLeftSubTreeNode's parent.
 - Note there is **no rightChild sub-tree** because have traversed as far right as possible, i.e. it must be null.
 - ► Finally delete maxLeftSubTreeNode.

For the full details see the example code given in the tutorial exercises.

Example: Deletion of a BST Leaf Node

Deleting the *leaf node* **15** from our BST using the pseudo code algorithm:

- root is not an empty tree, so search for the node containing the deleteValue 15.
- 2. deleteValueNode (15) is the leftChild of its parentNode (17).
- 3. deleteValueNode (15) is a *leaf* node, i.e. both left & right children are null, so can be simply deleted.
- Delete by setting deleteValueNode's (15) parentNode.leftChild to null.

Example: Deletion of a BST Non-Leaf Node (1 Child)

Deleting the *non-leaf node* **17** that has just one non-null child **15** from our BST using the pseudo code algorithm:

Example: Deletion Steps

- root is not an empty tree, so search for the node containing the deleteValue 17.
- deleteValueNode (17) is the rightChild (a) of its parentNode (10).
- deleteValueNode (17) is a non-leaf node as its left child is non-null, i.e. branch b to node 15.
- So must restructure the BST by: replacing 17's parentNode 10's rightChild with 17's leftChild 15.
- That is by setting deleteValueNode.parentNode.rightChild to deleteValueNode.leftChild, i.e. branch b replaces branch a in node 10.
- 6. Delete node deleteValueNode 17.

Example: Deletion of a BST Non-Leaf Node (2 Children)

Deleting the *non-leaf node* **42** that has 2 non-null child nodes *37* & *60* from our BST using the pseudo code algorithm:

Example: Deletion Steps

- root (23) is not an empty tree, so search for the node containing the deleteValue (42).
- 2. deleteValueNode (42) is the rightChild of its parentNode (23).
- deleteValueNode (42) is a non-leaf node, with both its left child (37) & right child (60) being non-null.
- So to maintain the BST-property, must find the maximum value in 42's left sub-tree.
- Starting from deleteValueNode.leftChild sub-tree (37), going down to the right as far as possible, which is maxLeftSubTreeNode.value (41).
- Use maxLeftSubTreeNode.value (41) to replace the deleteValueNode.value (42), thus deleting it.
- 7. The maxLeftSubTreeNode.leftChild sub-tree is null, so nothing needs to be attached to maxLeftSubTreeNode.parent (37) rightChild. (If there was see previous Case steps 3 6.)
- Finally delete maxLeftSubTreeNode (41), by setting (37) rightChild to null, i.e. replace branch a with null.

Lecture 5

PART I Tree Traversal

Tree Traversal

Tree traversal is the act of visiting all the nodes of a tree in a certain order to process the data contained in the tree.

For example, if you want to print all the numbers stored in a BST in *ascending* or *descending* order, or count them, etc.

There are 3 common methods for traversing a tree:

- In-order
- Pre-order
- Post-order

In-Order Tree Traversal

The **in-order** traversal method can be defined using the following pseudo code *recursive* algorithm:

```
InOrderTraverse( Node node ):
    IF ( node equals NULL)
    THEN
        return
    ELSE
        InOrderTraverse( node.leftSubTree )
        ProcessNode( node )
        InOrderTraverse( node.rightSubTree )
    END
```

Visit the **node** (root of this tree) in between visiting the left & right sub-trees.

The **left sub-tree** is always visited first, then the **node**, then the **right** sub-tree.

NOTE: Traversing a standard **ordered binary tree** using the in-order algorithm means that all the nodes will be visited in **sorted order**, i.e. ascending key order.

So if "processing the node" was just printing and its values were just numbers then the output would be the numbers in the nodes in ascending order.

Traversing a Tree using In-Order

The numbers 1 to 6 indicate the order in which the nodes are processed.

In-order traversal: 1, 2, 3, 4, 6, 8.

Pre-Order Tree Traversal

The **pre-order** traversal method can be defined using the following pseudo code *recursive* algorithm:

So, in pre-order traversal:

- we visit the **node** before traversing the **left sub-tree**,
- and then finally traverse the right sub-tree.

Traversing a Tree using Pre-Order

The numbers 1 to 6 indicate the order in which the nodes are processed.

Pre-order traversal: 6, 2, 1, 4, 3, 8.

Post-Order Tree Traversal

The **post-order** traversal method can be defined using the following pseudo code *recursive* algorithm:

So, in post-order traversal:

- ► first traversing the **left sub-tree**,
- then traverse the right sub-tree.
- ▶ and then finally visit the **node**.

Traversing a Tree using Post-Order

The numbers 1 to 6 indicate the order in which the nodes are processed.

Post-order traversal: 1, 3, 4, 2, 8, 6.