Capítulo 1 - Coordenadas e cálculo vectorial

- 1 Determine as coordenadas cartesianas do ponto de coordenadas cilíndricas: $(\rho, \phi, z) = (2, \pi/3, 1)$.
- **2** Determine as coordenadas cartesianas do ponto de coordenadas esféricas: $(r, \theta, \phi) = (2, \pi/3, \pi/2)$.
- **3** Determine as <u>coordenadas</u> cilíndricas do ponto de coordenadas cartesianas: $(x, y, z) = (\sqrt{2}, -\sqrt{2}, 2)$.
- **4** Determine as <u>coordenadas</u> esféricas do ponto de coordenadas cartesianas: $(x, y, z) = (\sqrt{2}, 0, -\sqrt{2}).$
- **5** Escreva as componentes cartesianas dos vectores unitários associados às coordenadas cilíndricas.
- **6** Escreva as componentes cartesianas dos vectores unitários associados às coordenadas esféricas.
- 7 Escreva o vector posição na base das coordenadas cilíndricas e esféricas.
- **8** Escreva o vector $\mathbf{v} = xz\mathbf{i} + yz\mathbf{j} + xy\mathbf{k}$ na base das coordenadas cilíndricas e esféricas.
- 9 Escreva o vector $\mathbf{v} = \mathbf{z}\,\mathbf{i} + 2\mathbf{x}\,\mathbf{j} + \mathbf{y}\,\mathbf{k}$ na base das coordenadas cilíndricas e esféricas.
- 10 Determine o ângulo entre duas diagonais de duas faces adjacentes dum cubo.
- 11 Determine o ângulo entre as diagonais de dois vértices opostos dum cubo.
- 12 Um vector A, cujo módulo é 10, faz ângulos iguais com os eixos das coordenadas cartesianas. Determine A_x , A_y , A_z e esse ângulo.
- 13 Os vértices de um triângulo A, B e C são dados pelos pontos (-1,0,2), (0,1,0) e (1,-1,0), respectivamente. Determine o ponto D tal que a figura ABCD seja um paralelogramo.
- 14 Determine o coseno do ângulo entre os vectores A = 3i + 4j + k e B = i j + k.
- 15 Dois vectores \mathbf{A} e \mathbf{B} são dados por $\mathbf{A} = 2\mathbf{i} + 4\mathbf{j} + 6\mathbf{k}$ e $\mathbf{B} = 3\mathbf{i} 3\mathbf{j} 5\mathbf{k}$. Determine os produtos escalar e vectorial $\mathbf{A} \cdot \mathbf{B}$ e $\mathbf{A} \times \mathbf{B}$.

- 16 Dados três vectores P = 3i + 2j k, Q = -6i 4j + 2k, R = i 2j k, ache dois vectores que são perpendiculares e dois que são paralelos ou antiparalelos.
- 17 Encontre um vector \mathbf{A} que é perpendicular aos vectores $\mathbf{U} = 2\mathbf{i} + \mathbf{j} \mathbf{k}$ e $\mathbf{V} = \mathbf{i} \mathbf{j} + \mathbf{k}$ e a sua norma.
- **18** Os vértices de um paralelogramo **ABCD** são (1,0,0), (2,-1,0), (0,-1,1), e (-1,0,1). Calcule as àreas do triângulo **ABC** e do triângulo **BCD**. Estas áreas são iguais?
- 19 Um vértice de um paralelipípedo está na origem. Os outros 3 vértices estão em (3,0,0),(0,0,2), e (0,3,1). Todos os comprimentos estão em centímetros. Calcule o volume do paralelipípedo usando o produto escalar triplo.
- 20 Dados 3 vectores A, B e C,

$$\begin{aligned} \mathbf{A} &=& \mathbf{i} + \mathbf{j}, \\ \mathbf{B} &=& \mathbf{j} + \mathbf{k}, \\ \mathbf{C} &=& \mathbf{i} - \mathbf{k}. \end{aligned}$$

- (a) Determine o produto escalar triplo, $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C})$. Reparando que $\mathbf{A} = \mathbf{B} + \mathbf{C}$, apresente uma interpretação geométrica para o resultado do produto escalar triplo.
- (b) Determine $A \times (B \times C)$.
- 21 Três vectores \mathbf{A} , \mathbf{B} e \mathbf{C} são dados por $\mathbf{A}=3\,\mathbf{i}-2\,\mathbf{j}+2\,\mathbf{k}$, $\mathbf{B}=6\,\mathbf{i}+4\,\mathbf{j}-2\,\mathbf{k}$ e $\mathbf{C}=-3\,\mathbf{i}-2\,\mathbf{j}-4\,\mathbf{k}$. Determine os valores de $(\mathbf{A}\times\mathbf{B})\times\mathbf{C}$ e $\mathbf{A}\times(\mathbf{B}\times\mathbf{C})$. O que pode concluir?
- 22 Dados 3 vectores A, B e C, mostre que se pode escrever:

$$\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = (\mathbf{A} \cdot \mathbf{C}) \mathbf{B} - (\mathbf{A} \cdot \mathbf{B}) \mathbf{C}$$
.

Soluções

1 -
$$(x, y, z) = (1, \sqrt{3}, 1)$$
.

2 -
$$(x, y, z) = (0, \sqrt{3}, 1)$$
.

3 -
$$(\rho, \phi, z) = (2, -\pi/4, 2)$$
.

4 -
$$(r, \theta, \phi) = (2, -\pi/4, 0)$$
.

5 -
$$\mathbf{i} = \cos \phi \, \mathbf{e}_{\rho} - \sin \phi \, \mathbf{e}_{\phi}, \, \mathbf{j} = \sin \phi \, \mathbf{e}_{\rho} + \cos \phi \, \mathbf{e}_{\phi}, \, \mathbf{k} = \mathbf{e}_{z}.$$

- 6 $\mathbf{i} = \sin \theta \cos \phi \, \mathbf{e}_r + \cos \theta \cos \phi \, \mathbf{e}_\theta \sin \phi \, \mathbf{e}_\phi$, $\mathbf{j} = \sin \theta \sin \phi \, \mathbf{e}_r + \cos \theta \sin \phi \, \mathbf{e}_\theta + \cos \phi \, \mathbf{e}_\phi$, $\mathbf{k} = \cos \theta \, \mathbf{e}_r - \sin \theta \, \mathbf{e}_\theta$.
- 7 cilíndricas: $\mathbf{r} = \rho \, \mathbf{e}_{\rho} + z \, \mathbf{e}_{z}$, esféricas: $\mathbf{r} = r \, \mathbf{e}_{r}$.
- 8 cilíndricas: $\mathbf{v} = \rho z \, \mathbf{e}_{\rho} + \rho^2 \sin \phi \cos \phi \, \mathbf{e}_z$, esféricas: $\mathbf{v} = r^2 \cos \theta \sin^2 \theta (1 + \sin \phi \cos \phi) \, \mathbf{e}_r + r^2 \sin \theta [1 - \sin^2 \theta (1 + \sin \phi \cos \phi)] \, \mathbf{e}_{\theta}$.
- 9 cilíndricas: $\mathbf{v} = (z + 2\rho\sin\phi)\cos\phi\,\mathbf{e}_{\rho} + (2\rho\cos^2\phi z\sin\phi)\,\mathbf{e}_{\phi} + \rho\sin\phi\,\mathbf{e}_{z}$, esféricas: $\mathbf{v} = r\sin\theta[\cos\theta(\sin\phi + \cos\phi) + \sin\theta\sin(2\phi)]\,\mathbf{e}_{r} + r[\cos^2\theta(\sin\phi + \cos\phi) + \sin(2\phi)\sin(2\phi)/2 \sin\phi]\,\mathbf{e}_{\theta} + r[2\sin\theta\cos^2\phi \cos\theta\sin\phi]\,\mathbf{e}_{\phi}$.
- 10 $\cos \varphi = 1/2 \Rightarrow \varphi = 60^{\circ}$.
- **11** $\cos \varphi = 1/3$.
- **12** $A_x = A_y = A_z = 10/\sqrt{3}$, $\cos \varphi = 1/\sqrt{3}$.
- **13** (2, 0, -2).
- 14 $\cos \varphi = 0 \Rightarrow \varphi = 90^{\circ}$.
- 15 $\mathbf{A} \cdot \mathbf{B} = -36$, $\mathbf{A} \times \mathbf{B} = -2\mathbf{i} + 28\mathbf{j} 18\mathbf{k}$.
- 16 antiparalelos: $\mathbf{Q} = -2\mathbf{P}$, perpendiculares: $\mathbf{P} \cdot \mathbf{R} = \mathbf{Q} \cdot \mathbf{R} = 0$.
- 17 $\mathbf{A} = -3(\mathbf{j} + \mathbf{k}), \|\mathbf{A}\| = 3\sqrt{2}.$
- **18** Área = $\frac{1}{2} \| -\mathbf{i} + \mathbf{j} 2\mathbf{k} \| = \sqrt{6}/2$.
- **19** 18 cm^3 .
- **20** (a) $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = 0$, porque \mathbf{A} está no mesmo plano de \mathbf{B} e \mathbf{C} , mas $\mathbf{B} \times \mathbf{C}$ é perpendicular a esse plano, (b) $\mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = -\mathbf{i} + \mathbf{j} + 2\mathbf{k}$.
- 21 $(\mathbf{A} \times \mathbf{B}) \times \mathbf{C} = -24 \mathbf{i} 88 \mathbf{j} + 62 \mathbf{k}, \mathbf{A} \times (\mathbf{B} \times \mathbf{C}) = -60 \mathbf{i} 40 \mathbf{j} + 50 \mathbf{k}$. O produto externo não é associativo.