Lenguajes Formales Recuperatorio Primer Parcial TM 2024

Pràcticos:

- 1) Escriba una expresión regular para representar los comentarios de cierto lenguaje de programación. Estos comentarios comienzan con \$/ y finalizan con /\$ y dentro pueden contener letras, números y @ .
- 2) Dados los lenguajes $L_1 = \{x / x \in \{0, 1\}^* \ y \ x = 0^i 1^i 0^i 1^i \ para \ 2 <= i <= 3\} \ y \ L_2 = \{x \ son \ las \ cadenas \ que \ contienen \ 101 \ o \ 010 \ como \ subcadenas\}, \ ambos \ con \ alfabeto=\{0,1\}, \ genere:$
 - A) La ER de L₁. L₂.
 - B) La ER de L2*
- 3) Sea $G = \langle \{S,A,B\}, \{0,1,2\}, P, S \rangle$, donde P es :

A -> 1S | 1

B -> 2B | 2S | 2

Se pide:

- a) Hacer derivación horizontal de la cadena x = 0122012.
- b) Hacer el árbol de derivación para la cadena y = 01012.
- 4) Dada la siguiente Expresión Regular: 12 2 2* 3+ | 12+3 (333)*
- a) Diseñar el AF que reconoce las cadenas del lenguaje representado por la ER, con alfabeto {1,2,3}.
- b) ¿El AF que definió es determinístico? Explique por qué.

Teòricos:

- 1) Responder:
- a. Demostrar que el lenguaje infinito $\{a^{2n+1}b^{3j}$ para n,j>=0 $\}$ es regular, con alfabeto $\{a,b\}$. Utilice el dispositivo de prueba que considere conveniente.
- b. Es posible construir una gramática regular para el siguiente lenguaje?
- $L = \{ (()), ((())), (), (()), ((()), (())) \}$ Responda SI o NO justificando su respuesta.
- c. Considere el lenguaje $\{\lambda\}$. ¿Es posible encontrar un autómata finito para este lenguaje? Si la respuesta es afirmativa, diseñe tal autómata, caso contrario indique por qué no puede hacerlo.
- d. Explique cuando un autómata finito es determinístico y mínimo y cuáles son sus ventajas.
- 2) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:
- a. Dados dos lenguajes L y M tal que L = $\{10,1\}$ y M = $\{011,11\}$ entonces L . M = $\{\lambda,10011,1011,1011,111\}$.
- b. Todo subconjunto de un lenguaje regular es regular.
- c. λ es la cadena de longitud mínima en $\{0,1\}^*$ que no está en el lenguaje representado por la ER: 0^* (10)* 1*.
- d. Si L es cualquier lenguaje en un alfabeto de un solo símbolo, entonces L* es regular.

3) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:

- a. Las cadenas del lenguaje L = $\{x / x \in \{1,2,3,4\}^* \ y \ x=1^i 2^i 3^i 4^i \ para \ 1 <= i <= 3\}$ pueden ser aceptadas por un Autómata Finito
- b. La expresión regular a (aa)*b* corresponde al lenguaje $L=\{x/x=a^{2i+1}b^i \text{ para } i>=0\}$ con alfabeto $\{a,b\}$.
- c. Dado { a^{2i} b^n / n, $i \ge 0$ } = ({a}. {a})*. ({a}. {a})* . {b}*
- d. Si puedo construir un AF que reconozca un lenguaje L, puedo construir un AF que reconozca el reverso del lenguaje L.

4) Marcar si las siguientes afirmaciones son Verdaderas o Falsas:

- a) Un Autómata Finito es un modelo que solamente reconoce lenguajes finitos.
- b) La ER: $(((ab)^*)^* | \lambda)$ es equivalente a la ER: $(a^* | b^*)^*$
- c) Dado el lenguaje L = $\{c^t a^{j+1} b^{2j} / t \ge 2 \ y \ j \ge 0 \}$. ¿Sus cadenas pueden ser reconocidas por un AF?
- d) Un Autómata Finito siempre puede reconocer lenguajes del tipo 3 de la Clasificación de Chomsky.