So far: matching model moments to data
Logic: if the model matches the data, then it is a reasonable model

So far: matching model moments to data

Logic: if the model matches the data, then it is a reasonable model

Another alternative: Indirect Inference

Uses an auxiliary model as a lens through which to view the world

The auxiliary model doesn't need to acc	urately describe the DGF)

The auxiliary model doesn't need to accurately describe the DGP

It simply acts as a lens through which to view the world

The auxiliary model doesn't need to accurately describe the DGP

It simply acts as a lens through which to view the world

Objective: choose parameters of structural model such that:

simulated data = real data through the lens of the auxiliary model

Revisit Rust (1987) bus engine model:

State: mileage X_t

Flow payoffs:

$$u(X_t, d_t, heta) = \left\{ egin{array}{ll} -c(X_t, heta) & ext{if } d_t = 0 ext{ (keep)} \ -RC & ext{if } d_t = 1 ext{ (replace)} \end{array}
ight.$$

Revisit Rust (1987) bus engine model:

State: mileage X_t

Flow payoffs:

$$u(X_t, d_t, heta) = \left\{ egin{array}{ll} -c(X_t, heta) & ext{if } d_t = 0 ext{ (keep)} \ -RC & ext{if } d_t = 1 ext{ (replace)} \end{array}
ight.$$

where $RC = \overline{P} - \underline{P} + c(0, \theta)$ is replacement cost

Revisit Rust (1987) bus engine model:

State: mileage X_t

Flow payoffs:

$$u(X_t, d_t, \theta) = \left\{ egin{array}{ll} -c(X_t, heta) & ext{if } d_t = 0 ext{ (keep)} \\ -RC & ext{if } d_t = 1 ext{ (replace)} \end{array}
ight.$$

where $RC = \overline{P} - \underline{P} + c(0, \theta)$ is replacement cost

Bellman equation:

$$V(X_t; \theta) = \max_{d_t} \left\{ u(X_t, d_t; \theta) + \beta \mathbb{E}[V(X_{t+1}; \theta) | X_t, d_t] \right\}$$

Challenge: Can't easily invert auxiliary statistics to get θ

• Auxiliary model may be simpler to estimate

Challenge: Can't easily invert auxiliary statistics to get θ

- Auxiliary model may be simpler to estimate
- Can use multiple auxiliary statistics simultaneously

Challenge: Can't easily invert auxiliary statistics to get θ

- Auxiliary model may be simpler to estimate
- Can use multiple auxiliary statistics simultaneously
- Robust to auxiliary model misspecification

Step 1: Choose auxiliary model

Step 1: Choose auxiliary model

Example: Logit for replacement probability

$$P(d_t = 1|X_t) = \frac{\exp(\alpha_0 + \alpha_1 X_t)}{1 + \exp(\alpha_0 + \alpha_1 X_t)}$$

Step 1: Choose auxiliary model

Example: Logit for replacement probability

$$P(d_t = 1|X_t) = \frac{\exp(\alpha_0 + \alpha_1 X_t)}{1 + \exp(\alpha_0 + \alpha_1 X_t)}$$

Estimate on real data: $\hat{\alpha} = (\hat{\alpha}_0, \hat{\alpha}_1)$

Step 2: For candidate θ , simulate the structural model

• Solve dynamic program to get $V(x; \theta)$ and policy $Pr(d^* = 1|x; \theta)$

Step 2: For candidate θ , simulate the structural model

- Solve dynamic program to get $V(x; \theta)$ and policy $\Pr(d^* = 1|x; \theta)$
- Simulate S bus histories using policy and transitions

Step 2: For candidate θ , simulate the structural model

- Solve dynamic program to get $V(x;\theta)$ and policy $\Pr(d^*=1|x;\theta)$
- Simulate S bus histories using policy and transitions
- Each simulation: $\{X_t^s, d_t^s\}_{t=1}^T$ for s = 1, ..., S

Step 3: Estimate auxiliary model on simulated data	

Step 3: Estimate auxiliary model on simulated data

,

Run same logit on simulated data: get $\tilde{\alpha}(\theta)$

Step 3: Estimate auxiliary model on simulated data

Run same logit on simulated data: get $\tilde{\alpha}(\theta)$

This is the binding function: $\theta \mapsto \tilde{\alpha}(\theta)$

Step 3: Estimate auxiliary model on simulated data

Run same logit on simulated data: get $\tilde{\alpha}(\theta)$

This is the binding function: $\theta \mapsto \tilde{\alpha}(\theta)$

No closed form! Must simulate for each candidate $\boldsymbol{\theta}$

Step 4: Minimize distance between auxiliary parameters in real and simulated data

Step 4: Minimize distance between auxiliary parameters in real and simulated data

 $\hat{ heta} = rg \min_{ heta} \left[\hat{lpha} - ilde{lpha}(heta)
ight]' W \left[\hat{lpha} - ilde{lpha}(heta)
ight]$

Step 4: Minimize distance between auxiliary parameters in real and simulated data

$$\hat{ heta} = rg \min_{ heta} \left[\hat{lpha} - ilde{lpha}(heta)
ight]' W \left[\hat{lpha} - ilde{lpha}(heta)
ight]$$

where W is a weighting matrix (often $\widehat{Var}(\hat{\alpha})^{-1}$)

Key insight: auxiliary model captures reduced-form patterns
f structural model is correct:

Key insight: auxiliary model captures reduced-form patterns

Key insight: auxiliary model captures reduced-form patterns

If structural model is correct:

- Real data generated by true θ_0
- Simulated data from θ_0 should have same auxiliary statistics

Key insight: auxiliary model captures reduced-form patterns

If structural model is correct:

- Real data generated by true θ_0
- \bullet Simulated data from θ_0 should have same auxiliary statistics
- $\hat{lpha} pprox ilde{lpha}(heta_0)$ when we find the right $heta_0$

Could use multiple auxiliary statistics:

1. Logit coefficients (α_0, α_1)

Could use multiple auxiliary statistics:

- 1. Logit coefficients (α_0, α_1)
- 2. Mean replacement mileage $\mathbb{E}[X_t|d_t=1]$

Could use multiple auxiliary statistics:

- 1. Logit coefficients (α_0, α_1)
- 2. Mean replacement mileage $\mathbb{E}[X_t|d_t=1]$
- 3. Replacement hazard rate at various mileages

Could use multiple auxiliary statistics:

- 1. Logit coefficients (α_0, α_1)
- 2. Mean replacement mileage $\mathbb{E}[X_t|d_t=1]$
- 3. Replacement hazard rate at various mileages
- 4. Mean time between replacements

Could use multiple auxiliary statistics:

- 1. Logit coefficients (α_0, α_1)
- 2. Mean replacement mileage $\mathbb{E}[X_t|d_t=1]$
- 3. Replacement hazard rate at various mileages
- 4. Mean time between replacements

Stack all into vector α , estimate $\hat{\alpha}$ and $\tilde{\alpha}(\theta)$

Simulation-based: handles complicated dynamics easily	

•	Simulation-based: handles complicated dynamics easily
•	Doesn't require specifying likelihood (contrast with MLE)

Simulation-based: handles complicated dynamics easily
Doesn't require specifying likelihood (contrast with MLE)

• Robust: auxiliary model need not be correctly specified

•	Simulation-based:	handles	complicated	dynamics	easily
-	ommanderon basea.	mamarcs	complicated	aymannes	casiiy

Doesn't require specifying likelihood (contrast with MLE)

Robust: auxiliary model need not be correctly specified

• Flexible: can use multiple auxiliary models

- Simulation-based: handles complicated dynamics easily
- Doesn't require specifying likelihood (contrast with MLE)
- Robust: auxiliary model need not be correctly specified

• Flexible: can use multiple auxiliary models

- Intuitive: match reduced-form patterns (2SLS, DiD, ...)
- intuitive. match reduced-form patterns (2525, Dib, ...)

For each	θ i	n	optimization:	

1. Solve dynamic program (NFXP or other method)

1. Solve dynamic program (NFXP or other method)

2. Simulate N buses for T periods, repeat S times

- 1. Solve dynamic program (NFXP or other method)
- 2. Simulate N buses for T periods, repeat S times
- 3. Estimate auxiliary model on each simulation, average: $\bar{\alpha}(\theta) = \frac{1}{5} \sum_{s=1}^{5} \tilde{\alpha}_{s}(\theta)$

- 1. Solve dynamic program (NFXP or other method)
- 2. Simulate N buses for T periods, repeat S times
- 3. Estimate auxiliary model on each simulation, average: $\bar{\tilde{\alpha}}(\theta) = \frac{1}{S} \sum_{s=1}^{S} \tilde{\alpha}_s(\theta)$
- 4. Compute distance $||\hat{\alpha} \bar{\tilde{\alpha}}(\theta)||$

- 1. Solve dynamic program (NFXP or other method)
- 2. Simulate N buses for T periods, repeat S times
- 3. Estimate auxiliary model on each simulation, average: $\bar{\tilde{\alpha}}(\theta) = \frac{1}{5} \sum_{s=1}^{5} \tilde{\alpha}_{s}(\theta)$
- 4. Compute distance $||\hat{\alpha} \bar{\tilde{\alpha}}(\theta)||$

Large S reduces simulation noise in $\bar{\alpha}(\theta)$; large N improves precision of each $\tilde{\alpha}_s(\theta)$