

CSE 473/573-A L16: SEGMENTATION

Chen Wang
Spatial AI & Robotics Lab
Department of Computer Science and Engineering

University at Buffalo The State University of New York

Image Segmentation

- Partition the pixels of an image into groups that strongly correlate with the objects in an image
- Typically, the first step in any automated computer vision application.

Why & What?

- Useful mid-level representation of an image
 - Can facilitate better downstream tasks
- Segmentation should be homogeneous with some characteristic (gray level, texture, color, motion)
- The desired type segmentation depends on the task
 - Broad theory is absent at present
- Variety of approaches, algorithms, and applications
 - Finding people, summarizing video, annotation figures, background subtraction, finding buildings/rivers in satellite images.

Thought Exercise....

- Based on what you already know about CVIP
 - How would you do segmentation?
- Did you come up with
 - Feature Detection?
 - Edge Detection?
 - Texture Grouping?
 - Hough Transform?
 - Let's assume types of objects are unknown.

Segmentation

Segmentation algorithms generally are based on one of two basis properties of intensity values.

- **Discontinuity:** to partition an image based on abrupt changes in intensity (such as edges).
- Similarity: to partition an image into regions that are similar according to a set of predefined criteria.

Segmentation needs Grouping/Clustering

- Grouping (or clustering)
 - Collect pixels that "belong together"

Boundaries or Regions are equally good

Boundaries or Regions are equally good

Occlusion cues are important

• What do you see?

Occlusion cues are important

Aren't they?

Regions and Edges

- Regions are bounded by closed contours
 - We could "fill" closed contours to obtain regions
 - We could "trace" regions to obtain edges
- Unfortunately, these procedures rarely produce satisfactory results.

Regions and Edges

- Edges are found based on DIFFERENCES between values of adjacent pixels.
- Regions are found based on SIMILARITIES between values of adjacent pixels.
- We want group higher level units shared within regions of the image.

Machine Learning

Supervised Learning **Unsupervised Learning** Discrete classification or clustering categorization Continuous dimensionality regression reduction

Clustering example: image segmentation

 Break up the image into meaningful or perceptually similar regions

Clustering example: image segmentation

Foreground/Background

Types of segmentations

Oversegmentation

Major processes for segmentation

- Bottom-up
 - Group pixels with similar features
- Top-down
 - Group pixels that likely belong to the same object

Clustering

 Group together similar points and represent them with a single category.

- Key Challenges:
 - What makes two points/images/patches similar?
 - How do we compute an overall grouping from pairwise similarities?

How do we cluster?

- K-means
 - Iteratively re-assign points to nearest cluster center
- Single-link clustering
 - Start with each point as its own cluster and iteratively merge the closest clusters
- Mean-shift clustering
 - Estimate modes of PDF

Clustering for Summarization

- A cluster: a "center" (in feature space) and a list of data points it contains.
- Goal:
 - Minimize variance in data given clusters
 - Preserve information

Cluster Center Data
$$\mathbf{c}^*, \boldsymbol{\delta}^* = \underset{\mathbf{c}, \boldsymbol{\delta}}{\operatorname{argmin}} \ \frac{1}{N} \sum_{j}^{N} \sum_{i}^{K} \mathcal{S}_{ij} \left(\mathbf{c}_i - \mathbf{x}_j \right)^2$$
Whether \mathbf{x}_i is assigned to \mathbf{c}_i

Slide: Derek Hojem 20

1. Randomly select K centers (means)

2. Assign each point to nearest center (mean)

3. Compute new center (mean) for each cluster

1. Randomly select K centers

2. Assign each point to nearest center

Back to 2

3. Compute new center (mean) for each cluster

- 1. Initialize cluster centers: \mathbf{c}^0 ; $\mathbf{t}=0$
- 2. Assign each point to the closest center

$$\boldsymbol{\delta}^{t} = \underset{\boldsymbol{\delta}}{\operatorname{argmin}} \; \frac{1}{N} \sum_{i}^{N} \sum_{i}^{K} \delta_{ij} \left(\mathbf{c}_{i}^{t-1} - \mathbf{x}_{j} \right)^{2}$$

3. Update cluster centers as the mean of the points

$$\mathbf{c}^{t} = \underset{\mathbf{c}}{\operatorname{argmin}} \ \frac{1}{N} \sum_{i}^{N} \sum_{j}^{K} \delta_{ij}^{t} \left(\mathbf{c}_{i} - \mathbf{x}_{j} \right)^{2}$$

4. Repeat 2-3 until no points are re-assigned (t=t+1)

K-means may converge to local minimum

K-means: design choices

- Initialization
 - Randomly select K points as initial cluster center
 - Or greedily choose K points to minimize residual
- Distance measures
 - Traditionally Euclidean, could be others
- Optimization
 - May converge to a local minimum
 - May want to perform multiple restarts

K-Means pros and cons

- Pros
 - Finds cluster centers that minimize conditional variance
 - good representation of data
 - Simple and fast*
 - Easy to implement
- Cons
 - Need to choose K
 - Sensitive to outliers
 - Prone to local minima
 - All clusters have the same parameters (e.g., distance measure is non-adaptive)
 - *Can be slow: each iteration is O(KNd) for N d-dimensional points
- Usage
 - Rarely used for pixel segmentation

How to choose the number of clusters?

On validation set

- Try different numbers of clusters and look at performance
 - When building dictionaries, more clusters typically work better

Building Visual Dictionaries

- Sample patches from a database
 - E.g., 128 dim SIFT
- 2. Cluster the patches
 - Cluster centers are the dictionary
- 3. Assign a codeword (number) to each new patch, according to the nearest cluster

Codewords dictionary

Examples of learned codewords

How do we cluster?

- K-means
 - —Iteratively re-assign points to the nearest cluster center
- Single-link clustering
 - Start with each point as its own cluster and iteratively merge the closest clusters
- Mean-shift clustering
 - -Estimate modes of PDF
- Spectral clustering
 - Split the nodes in a graph-based on assigned links with similarity weights

1. Say "Every point is its own cluster"

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster

- Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- 4. Repeat

- 1. Say "Every point is its own cluster"
- Find "most similar" pair of clusters
- Merge it into a parent cluster
- 4. Repeat

Single Link Clustering

- How many clusters?
 - Threshold based on max number of clusters or based on distance between merges

3

Single Link Clustering

- How to define cluster similarity?
 - Average/maximum/minimum distance of points
 - Distance between means.

$$L(r,s) = \max(D(x_{ri}, x_{sj}))$$

$$L(r,s) = \min(D(x_{ri}, x_{sj}))$$

$$L(r,s) = \frac{1}{n_r n_s} \sum_{i=1}^{n_r} \sum_{j=1}^{n_s} D(x_{ri}, x_{sj})$$

Summary: Single Link Clustering

Good

- Simple to implement, widespread application
- Clusters have adaptive shapes
- Provides a hierarchy of clusters

Bad

- May have imbalanced clusters
- Still have to choose number of clusters or threshold
- Need to use an "ultrametric" to get a meaningful hierarchy

How do we cluster?

- K-means
 - Iteratively re-assign points to the nearest cluster center
- Single-link clustering
 - Start with each point as its own cluster and iteratively merge the closest clusters
- Mean-shift clustering
 - -Estimate modes of PDF
- Spectral clustering
 - Split the nodes in a graph based on assigned links with similarity weights

Mean shift algorithm

- Non-parametric feature-space analysis for locating the maxima of a density function.
- Versatile technique for clustering-based segmentation.

Slide by Y. Ukrainitz & B. Sarel

Computing the Mean Shift

- Compute mean shift vector.
- Translate mean by m(x), weighted by kernel function.

$$\mathfrak{Z}(x_i-x)=e^{-c||x_i-x||^2}$$

Mean shift segmentation results

Mean shift segmentation results

Mean shift pros and cons

Pros

- Good general-practice segmentation
- Flexible in number and shape of regions
- Robust to outliers

Cons

- Have to choose kernel size in advance
 - Use kNN to determine window sizes adaptively
- Not suitable for high-dimensional features
- When to use it
 - Oversegmentation, Multiple segmentations
 - Tracking, clustering, filtering applications

Which algorithm to use?

- Quantization/Summarization: K-means
 - Aims to preserve variance of original data
 - Can easily assign new point to a cluster

Quantization for computing histograms

Summary of 20,000 photos of Rome using "greedy k-means"

Which algorithm to use?

- Image segmentation: Single Link
 - More flexible with distance measures
 - e.g., can be based on boundary prediction
 - Adapts better to specific data
 - Hierarchy can be useful

Things to remember

 K-means useful for summarization, building dictionaries of patches, general clustering

 Single link clustering useful for segmentation, general clustering

 Mean-shift is useful for determining relevance, summarization, segmentation

Application: Motion Segmentation

