python_Basic_Infrential_Analysys

June 12, 2021

1 Running Basic Inferential Analyses

```
# Statistical analysis can be done using Pandas, SciPy, and Numpy
#The following operations can be perfomed

#• Linear regression
#• Finding correlation
#• Measuring central tendency
#• Measuring variance
#• Normal distribution
#• Binomial distribution
#• Poisson distribution
#• Bernoulli distribution
#• Calculating p-value
#• Implementing a Chi-square test
```

1.1 linear regression

```
[4]: #Linear regression between two variables represents a straight line when_□

⇒plotted as a graph, where the exponent (power) of both of the variables is 1.

⇒ A nonlinear relationship where the exponent of any variable is not equal to□

⇒1 creates a curve shape.
```

```
[3]: #using tips inbuilt database of the Seaborn Python Library
import seaborn as sb
from matplotlib import pyplot as plt
df = sb.load_dataset('tips')
sb.regplot(x = "total_bill", y = "tip", data = df)
plt.xlabel('Total Bill')
plt.ylabel('Bill Tips')
plt.show()
```


1.2 Correlation

```
[]: #refers to some statistical relationship involving dependence between two data

⇒sets, such as the correlation between the price of a product and its sales

⇒volume.
```

```
[5]: #using the inbuilt iris dataset in Seaborn Python Library
import matplotlib.pyplot as plt
import seaborn as sns
df = sns.load_dataset('iris')
sns.pairplot(df, kind="scatter")
plt.show()
```


1.3 variance

[]: #is a measure of how dispersed the values are from the mean value. Standard \rightarrow deviation is the square root of variance. In other words, it is the average \rightarrow of the squared difference of values in a data set from the mean value.

```
[6]: import pandas as pd
d= {
    'Name': pd.Series(['Ahmed','Omar','Ali','Salwa','Majid',
    'Othman','Gameel','Ziad','Ahlam','Zahrah',
    'Ayman','Alaa']),
    'Age': pd.Series([34,26,25,27,30,54,23,43,40,30,28,46]),
    'Height':pd.Series([114.23,173.24,153.98,172.0,153.20,164.6,
```

```
183.8,163.78,172.0,164.8 ])}
    df = pd.DataFrame(d) #Create a DataFrame
    print (df.std()) # Calculate and print the standard deviation
              9.740574
    Age
             18.977090
    Height
    dtype: float64
[7]: print (df.describe())
                Age
                        Height
    count 12.000000
                      10.00000
          33.833333 161.56300
    mean
           9.740574
                    18.97709
    std
          23.000000 114.23000
    min
          26.750000 156.43000
    25%
    50%
          30.000000 164.70000
    75%
          40.750000 172.00000
          54.000000 183.80000
    max
    1.4 Central tendency
[]: #measures the distribution of the location of values of a data set. It gives
     \rightarrowyou an idea of the average value of the data in the data set and anu
     →indication of how widely the values are spread in the data set.
[8]: print ("Mean Values in the Distribution")
    print (df.mean())
    print ("**********************")
    print ("Median Values in the Distribution")
    print (df.median())
    print ("************************")
    print ("Mode Values in the Distribution")
    print (df['Height'].mode())
    Mean Values in the Distribution
    Age
              33.833333
    Height
             161.563000
    dtype: float64
    **********
    Median Values in the Distribution
    Age
              30.0
             164.7
    Height
    dtype: float64
    **********
    Mode Values in the Distribution
        172.0
    dtype: float64
```

[]: