The Thesis and Slides

You can find my thesis and the slides under this link:

Comparing Algorithms Approximating the Maximum Travelling Salesman Problem

Bachelor Thesis Defence

Feliks

October 24, 2025

 c_1

• C₂

*C*₃ •

 ${\color{red}c_5} \\ \bullet \\ \\ c_4$

Travelling Salesman Problem

Different instances of TSP

- directed/undirected Graphs
- in metric space
- under different distances
- maximizing/minimizing tour

We focus on TSP maximizing tour length under euclidean distance in metric space

We know is NP-hard:

- ullet Minimum TSP under any dimension d and any L_p norm
- Maximum TSP under Euclidean distance is NP-hard for $d \ge 3$

Solvable in polynomial time:

- Maximum TSP under any dimension d for some L_p norms
- specifically Manhattan and Supremum norm
- $L_p: ||x||_p = (\sum_i x_i^p)^{1/p}$
- L_p : $dist_{L_p}(x, y) = (\sum_i (x_i y_i)^p)^{1/p}$
- well known norms L_1, L_2, L_{max}
- Manhattan, Euclidean, Supremum norm respectively

We know is NP-hard:

- ullet Minimum TSP under any dimension d and any L_p norm
- \bullet Maximum TSP under Euclidean distance is NP-hard for $d \geq 3$

Solvable in polynomial time:

- Maximum TSP under any dimension d for some L_p norms
- specifically Manhattan and Supremum norm
- $L_p: ||x||_p = (\sum_i x_i^p)^{1/p}$
- L_p : $dist_{L_p}(x, y) = (\sum_i (x_i y_i)^p)^{1/p}$
- well known norms L_1, L_2, L_{max}
- Manhattan, Euclidean, Supremum norm respectively

Conclusion: max TSP is difficult, how do we approximate?

Approximation Algorithms

- find a good but not necessarily optimal solution
- $Approx = \rho(n) \times OPT$ (when maximizing)
- Approximation ratio $\rho(\mathbf{n}) \geq 1$
- should provide "good" solution
- in "good" runtime

Structure

- Greedy Patch Heuristic[3]
- ② Tunnelling Algorithm[1][2]
 - Approximate Euclidean norm
 - Tunnelling Max TSP
 - Tunnelling Algorithm
- Ompare Results of GPH and TA

The Greedy Patching Heuristic[3]

The idea:

- o create maximum-weight cycle cover
- patch two cycles together with least loss
- lacktriangledown repeat step 2 till there's only 1 cycle $(\mathcal{O}(n))$

Maximum-Weight Cycle Cover

Maximum-Weight Cycle Cover

Patching step

Patching step

Maximum-weight Cycle Cover

- solve through maximum-weight bipartite matching
- solvable with Simplex Algorithm, Hungarian Algorithm
- Hungarian Algorithm can be implemented in $\mathcal{O}(n^3)$

Maximum-weight Cycle Cover

Maximum-Weight Bipartite Matching

- $c_1 \bullet$
- **c**₂ •
- **C**3 •
- $c_4 \bullet$
- C₅ •
- *c*₆ •
- C7 •

Maximum-Weight Bipartite Matching

<i>c</i> ₁ •	• <i>c</i> ₁ '
<i>c</i> ₂ •	• <i>c</i> ₂ ′
<i>c</i> ₃ •	• <i>c</i> ₃
<i>c</i> ₄ •	• <i>c</i> ₄ ′
<i>C</i> ₅ •	• <i>c</i> ′ ₅
<i>c</i> ₆ •	• <i>c</i> ′ ₆
C7 •	• <i>c</i> ′ ₇

Maximum-Weight Bipartite Matching

Maximum-weight Cycle Cover

Patching Step

Patching Step

Patching Step

 $\mathcal{O}(\textit{n})$ patches with $\mathcal{O}(\textit{n}^2)$ for each step

Greedy Patching Heuristic

Results

- Runtime: $\mathcal{O}(\mathit{n}^3) + \mathcal{O}(\mathit{n} \times \mathit{n}^2) = \mathcal{O}(\mathit{n}^3)$
- $\rho({\it n})_{\it GPH} \le e^{1/3} \approx 1.3956$
- $\rho(n)_{GPH} \le (1 \frac{7/3}{n^{1/2dim+1}})^{-1}$
- (simplified $dim \in \theta(d)$)

• Remember: $Approx = \rho(n) \times OPT$

Tunnelling Algorithm[1][2]

- Goal: Approximate Max TSP under Euclidean distance
- Idea: Approximate the Euclidean distance
- Euclidean norm/distance: $||x y||_2 = \sqrt{\sum_{i=1}^{n} (x_i y_i)^2}$

Euclidean Distance as Unit Ball

Polyhedral Norm

We want to approximate the shape of the Euclidean Metric

Tunnels $egin{array}{cccc} \bullet & & \bullet & & \bullet \\ h_1 & & h_2 & & h_3 \end{array}$

Why?

Tunnelling Algorithm

- find a way to enumerate over outlines
- for each guessed outline find optimal assignment
- solution is best solution across all outlines

Tunnelling TSP

Tunnels $\begin{array}{cccc} \bullet & \bullet & \bullet \\ h_1 & h_2 & h_3 \end{array}$

Tunnelling TSP

How to solve?

Idea: Guess the city order and solve for tunnels

 \Rightarrow $n! \in \mathcal{O}(n^n)$ number of outlines

How to solve?

Idea: Guess the city order and solve for tunnels

 \Rightarrow $n! \in \mathcal{O}(n^n)$ number of outlines

Instead: Guess tunnel structure and solve for cities!

Guess Outline

- $k \times k$ setting the tunnels
- 4 different colour options (red-red, blue-blue, red-blue, blue-red)
- n transitions
- ullet together $\mathcal{O}(\mathit{n}^{4\mathit{k}^2})$ guessed outlines
- now assign the cities for each guess!

 h_1h_2 , $rb \bullet$

 h_2h_2 , $bb \bullet$

 h_1h_2 , $br \bullet$

 $h_2h_2, rr \bullet$

h_1h_2 ,	rb •
------------	------

• **c**1

$$h_2h_2$$
, $bb \bullet$

• **c**₂

$$h_1h_2$$
, $br \bullet$

• **c**3

$$h_2h_2, rr \bullet$$

• *C*₄

 \Rightarrow Hungarian Algorithm in $\mathcal{O}(\textit{n}^3)$

Resulting Tour

Tunnelling Algorithm Results

- k number of tunnels/half the facets of polytope
- Runtime: Number outlines × bipartite matching effort
- Runtime: $\mathcal{O}(n^{4k^2} \times n^3) = \mathcal{O}(n^{4k^2+3})$ [1]
- ullet better runtime Barvinok et al.'s Algorithm $\mathcal{O}(n^{2k-2}log(n))$ [2]
- Approximation ratio depending on k
- $\rho(n) = ?$

Comparing the Algorithms

Idea:

- fixing the dimension to 2 dimensional space
- find exact $\rho(n)$ for Tunnelling Algorithm
- simplifying GPH
- ullet find a way to compare runtime and $ho(\it{n})$ together

Simplify TA Results

Finally we get

- assuming regular polygon with 2k sides
- assuming we're in the plane (d=2)
- Runtime $O(n^{2k-2}log(n))$

Simplify GPH Results

- Assume we're looking at 2 dimensional space
- $\rho(n)_{GPH} \le e^{1/3}$
- (because dim = 2.8 for d = 2)
- Runtime $\mathcal{O}(n^3)$

Simplify GPH Results

•
$$e^{1/3} = (1 - \frac{7/3}{n^{1/6.6}})^{-1}$$

• $n \approx 10^6$

- $\rho(n)_{GPH} \le e^{1/3}$ (for $n < 10^6$)
- $\rho(\textit{n})_{\textit{GPH}} \leq (1 \frac{7/3}{\textit{n}^{1/6.6}})^{-1} \; (\text{for } \textit{n} \geq 10^6)$

Compare the Algorithms

Greedy Patch Heuristic[3]

- Runtime $\mathcal{O}(n^3)$
- $\rho(n)_{GPH} \le e^{1/3}$ (for $n < 10^6$)
- $\rho(\textit{n})_{\textit{GPH}} \leq (1 \frac{7/3}{\textit{n}^{1/6.6}})^{-1} (\text{for } \textit{n} \geq 10^6)$

Tunnelling Algorithm[1][2]

- Runtime $\mathcal{O}(n^{2k-2}\log(n))$
- $\rho(n) \le \frac{1}{\cos_D(90/k)}$
- Idea: set k=2

Compare the Algorithms

Greedy Patch Heuristic[3]

- Runtime $\mathcal{O}(n^3)$
- $\rho(n)_{GPH} \le e^{1/3} \approx 1.39$ (for $n < 10^6$)
- $\rho(\textit{n})_{\textit{GPH}} \leq (1 \frac{7/3}{\textit{n}^{1/6.6}})^{-1} (\text{for } n \geq 10^6)$

Tunnelling Algorithm[1][2]

- Runtime $\mathcal{O}(n^2 \log(n))$
- $\rho(\mathbf{n}) \le \frac{1}{\cos_D(45)} \approx 1.41$

Conclusion

- ullet for roughly the same ho(n) Tunnelling Algorithm will perform better
- eventually GPH have a better $\rho(n)$ with $n \ge 10^6$
- we always have the option to increase k for TA

The Thesis and Slides

Thank you for your attention!

You can find my thesis and the slides under this link:

- [1] G.J. Woeginger(2018). Some Easy and Some Not so Easy Geometric Optimization Problems. In: Epstein, L., Erlebach, T. (eds) Approximation and Online Algorithms. WAOA 2018. Lecture Notes in Computer Science(), vol 11312. Springer, Cham. DOI: 10.1007/978-3-030-04693-4_1.
- [2] A.I. Barvinok, S.P. Fekete, D.S. Johnson, A. Tamir, G.J. Woeginger, R. Woodroofe(2003). The geometric maximum travelling salesman problem. J. ACM, Volume 50, Issue 5, 641-664. DOI: 10.1145/876638.876640. arXiv: cs/0204024.
- [3] V.V. Shenmaier(2022). Asymptotic Optimality of the Greedy Patching Heuristic for Max TSP in Doubling Metrics. arXiv: 2201.03813.

Questions for the Listeners

- Why does the Tunnelling Algorithm not work for Min TSP?
- How did we get the $\rho(n)$ of the Tunnelling Algorithm?
- How can we represent the polyhedral norm?
- Can't we just chose a better higher k in the comparison?
- What is dim in the GPH?

Extra: Polyhedral norm

Figure: Left: two halfspaces created by the vector (1,1), Right: two halfspaces created by the vector (-1,1)

Extra: Polyhedral norm

- represent polytope with 2k sides through k vectors
- polyhedral distance: $max_i\{|h_i(x-y)|\}$

Extra: Why?

Extra: Simplify TA Results

- \mathcal{B}_1 Euclidean unit ball
- ullet \mathcal{B}_2 unit ball of polyhedral norm
- $(1 \epsilon)\mathcal{B}_2 \subseteq \mathcal{B}_1 \subseteq (1 + \epsilon)\mathcal{B}_2$
- then $\rho(\mathbf{n}) \leq (1+\epsilon)/(1-\epsilon)$

Extra: Simplifying TA

Extra: Simplifying TA

Figure: Triangle within the polygon

Extra: Conclusion

• set
$$(1 - \frac{7/3}{n'^{1/6.6}})^{-1} = \frac{1}{\cos_D(90/k)}$$

- ullet \Rightarrow $n' \in \mathcal{O}(k^{14})$
- n' grow polynomially in k where GPH > TA in case $n \ge n'$
- Runtime of TA grows exponentially in k

Extra: Conclusion

- TA is good for small n
- TA can get arbitrarily close independent of input size
- GPH eventually out scales TA with high input size
- GPH point of out scaling grows better to runtime of TA

Extra: Doubling Dimension

Figure: Covering a ball with 7 balls of half it's radius in the plane. Thus $7=2^{\emph{dim}}$

Doubling dimension \dim : Number of balls we need to cover a ball double their radius = 2^{\dim}