Luke Palmer MATH 5000 2006-10-01

(1) To define the transitive closure TC(x), define recursively g(0) = x, $g(n+1) = \bigcup g(n)$ and then take $TC(x) = \bigcup_{n \leq \omega} g(n)$.

Theorem. TC(x) is transitive.

Proof. Given $b \in a \in TC(x)$. Then there must be a least n where $a \in g(n)$. $b \in \bigcup g(n) = g(n+1)$, so $b \in \bigcup_{n < \omega} g(n) = TC(x)$.

Theorem. If Y is a transitive set and $X \subseteq Y$, then $TC(X) \subseteq Y$.

Proof. $g(0) = X \subseteq Y$. Suppose $g(n) \subseteq Y$. Let $x \in g(n+1)$. Since $g(n+1) = \bigcup g(n)$, there is a $x' \in g(n)$ such that $x \in x'$. However, $x' \in Y$, and since Y is transitive, $x \in Y$.

So all $g(n) \subseteq Y$, so their union $\subseteq Y$.

(2) For every ordinal α , $\alpha \in V_{\alpha+1} - V_{\alpha}$.

Proof. Suppose that for every ordinal $\gamma < \alpha, \gamma \in V_{\gamma+1} - V_{\gamma}$.

Case 0: $\alpha = 0$. Obvious.

Case 1: $\alpha = \beta + 1 = \beta \cup \{\beta\}$. $\beta \in V_{\beta+1} - V_{\beta}$. $\alpha \in V_{\alpha+1}$ because $\beta, \{\beta\} \in V_{\alpha} \cup \mathscr{P}(V_{\alpha}) = V_{\alpha+1}$. $\alpha \notin V_{\alpha}$ because $\beta \notin V_{\beta}$, so $\{\beta\} \notin V_{\beta+1} = V_{\alpha}$.

Case 2: α is a limit ordinal. $V_{\alpha} = \bigcup_{\gamma < \alpha} V_{\gamma}$, and and each γ is in $V_{\gamma+1}$, so $\alpha \subseteq V_{\alpha}$. Therefore, $\alpha \in V_{\alpha+1}$.

Suppose $\alpha \in V_{\alpha}$. Then there must be some $\gamma < \alpha$ such that $\alpha \in V_{\gamma}$. However, $\gamma \notin V_{\gamma}$, contradicting $\gamma \in \alpha$. So $\alpha \notin V_{\alpha}$.

(3)

Theorem. $AC \Leftrightarrow Given\ P\ a\ partition\ of\ A,\ there\ is\ a\ subset\ X\ of\ A$ such that each $x\cap X$ for $x\in P$ is a singleton.

- *Proof.* \Rightarrow Pick a choice function f on P. Then define $X = \operatorname{rng} f$. It is easy to see that this satisfies the conditions.
- \Leftarrow Given a collection of nonempty sets \mathscr{A} . Wlg assume they are disjoint. Then \mathscr{A} is a partition of $\cup \mathscr{A}$, so there is an $X \subseteq \cup \mathscr{A}$ such that each $x \cap X$ for $x \in \mathscr{A}$ is a singleton. Then $f(x) = \cup (x \cap X)$ is a choice function on \mathscr{A} .

Theorem. For any two sets A and B, the following are equivalent to the axiom of choice:

- (i) Either there is a function $A \xrightarrow{1-1} B$ or there is a function $B \xrightarrow{1-1} A$.
- (ii) Either there is a function $A \xrightarrow{onto} B$ or there is a function $B \xrightarrow{onto} A$.
- *Proof.* (i) \Rightarrow (ii): Assume wlg that there is an $f: A \xrightarrow{1-1} B$. Since f is 1-1, there is a function f^{-1} , which is obviously onto A, because A was f's domain.
- (ii) $\land AC \Rightarrow$ (i): Assume wlg that there is an $f: A \xrightarrow{onto} B$. Then f^{-1} is a relation with domain B. Pick a choice function c on $\mathscr{P}(A) \{0\}$. Define $g: B \mapsto A$ by $g(x) = c(f^{-1}[\{x\}])$. $g(b) = g(b') \Rightarrow f(g(b)) = f(g(b')) \Rightarrow b = b'$, so g is 1-1.
- $AC \Rightarrow$ (ii): Fix a well-ordering $<_A$ for A and $<_B$ for B. Let $a: A \mapsto \alpha$ be the isomorphism from $(A, <_A)$ to its unique ordinal α . Likewise $b: B \mapsto \beta$. Assume $wlg \ \alpha \leq \beta$. Define $f: B \mapsto A$ by $f(x) = a^{-1}(b(x))$ whenever $b(x) < \alpha$, and f(x) = a' otherwise, where a' some constant member of A. f is onto A.
- (ii) \Rightarrow AC: Given any set A, let α be its Hartog ordinal. So there is no map from A onto α , so there must (by (ii)) be a function $f: \alpha \xrightarrow{onto} A$. Now define $g: A \mapsto \alpha$ by g(x) = the least ordinal β such that $f(\beta) = x$. Then $(A, <_A)$ where $a <_A b$ iff f(a) < f(b) is a well-ordering of A.

Theorem. $AC \Leftrightarrow Every \ linearly \ ordered \ subset \ L \ of \ a \ poset \ P \ can \ be$ extended to a maximal $L' \supset L$ subset of P which is linearly ordered.

- *Proof.* \Rightarrow Let \mathscr{L} be the set of all linear orderings of P, and order the orderings by \subset . Every linearly-ordered (by \subset) $L \subseteq \mathscr{L}$ has an upper bound, namely $\cup L$ (which also must be linearly ordered, thus in \mathscr{L}). By Zorn's lemma, there is a maximal linear ordering L' in \mathscr{L} , i.e. $L' \supseteq L$ for all $L \in \mathscr{L}$.
- \Leftarrow (By showing \Rightarrow (i) above) Given A and B, let P be the set of all 1-1 function subsets of $A \times B$, with f < g iff $f \subset g$. Then, since the empty set is a linear ordering, there is a maximal linearly-ordered subset $L' \subset P$. $f = \cup L'$ is a 1-1 function either from A to B or vice versa. If its domain weren't (wlg) A, then we could pick $a \in A \text{dom } f$ and $b \in B \text{rng } f$ and add $\langle a, b \rangle$ to the ordering, contradicting L''s maximality.¹

Theorem. $AC \Leftrightarrow for \ any \ A, \ there is a function f with domain <math>\mathscr{P}(A)$ – $\{0\}$ such that $f(x) \in x$.

Proof. \Rightarrow Let f be a choice function on $\mathscr{P}(A) - \{0\}$

 \Leftarrow Given a collection of nonempty sets \mathscr{A} . Let $A = \cup \mathscr{A}$, so that $\mathscr{A} \subseteq \mathscr{P}(A)$. Then there is an f from above, so we can construct a choice function on \mathscr{A} by $f \upharpoonright \mathscr{A}$.

¹This one is very fuzzy, and I'm not sure if I have succeeded in proving this. I think the idea of what to do with the "maximal linear ordering" has me confused.