Task - airer 10 integers in random order, [3 1 8 2] sort them in ascerding order. [1 2 3 8]

Execution time depends on multiple factors it is not a good parameter to compare algorithms.

for
$$i \rightarrow 1$$
 to N

print (i)

iterations = N (do not depend on any factor)

Task → airer N integers in reandom order, sort them in ascerding order.

100 Algorithms to compare Thack

Take random large inputs & compare algorithms to see which is performing better.

core of large input.

iterations
$$\longrightarrow 100 \log(N) \rightarrow 0(\log(N)) \sim$$

$$N/10 \longrightarrow 0(N) \sim$$

- 1) Colculate # iterations based on input size. 2N2+3N-100.
- 2) Take higher order terms & ignore it's constant coefficient. -> constants do not impact rate of growth.

Neglect lower order terms? N2+10N

Input Size Total iterations % of lower order contribution in total.

$$N = 10$$
 $10^{2} + 10 + 10 = 200$
 $100 + 100 = 50\%$
 200
 $100^{2} + 10 + 100 = 10\% + 10^{3}$
 $10^{3} + 100 = 9\%$
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000
 1000

. For larger inputs we can ignore lower order terms. V

Issues with Bigo

Ashvari

Algo I

Whushboo

Algo 2

iterations
$$\rightarrow 1000 \text{ N}$$

Rigo $\rightarrow 0(\text{N})$
 $0(\text{N}^2)$

Algo I is always better than Algo 2. X

Algo 1 is better than Algo 2 for large inputs. N > 1000

Sourabh

Regal

iterations
$$\rightarrow 2N^2 + N$$

Bigo $\rightarrow 0(N^2)$
 $2N^2 + N < 5N^2$
 $2N^2 + N < 3N^2$

N $< 3N^2$

10:35 PM

A -> Search for on element in array.

TLE -> Time Limited Exceeded

iterations -> 107 to 108 in I sec

iterations

$$1 <= N <= 10^5$$
 $10^5 * 10^5 = 10^{10}$
 $1 <= N <= 10^3$
 $10^3 * 10^3 = 10^6$
 $10^4 * 10^4 = 10^8$

where $10^4 = 10^8$ is the second se

 $TC = O(N^2)$

for
$$(i = N; i > 0; i /= 2)$$

for $(j = 0; j < i; j ++)$

i j #iterations

N [0 N-1] N

N/2 [0 N-1]
$$\approx N/2$$

N/4 [0 N-1] $\approx N/4$

:

1 [0 0] 1

N+N+N --+1

2 4