Il Premières notions en probabilités

Définition : À toute expérience aléatoire on associe un **espace probabilisable** (Ω, \mathcal{T}) constitué d' :

- ullet un ensemble Ω contenant toutes les issues de l'experience et appélé **univers** de l'expérience ;
- un autre ensemble \mathcal{T} dont les éléments sont appelés des **événements**. Si Ω est un ensemble fini ou dénombrable on peut toujours prendre $\mathcal{T} = \mathcal{P}(\Omega)$, l'ensemble des parties de Ω .

Définition : Une probabilité P sur un espace probabilisable (Ω, \mathcal{T}) est une application qui vérifie :

- $P: \mathcal{T} \longrightarrow [0;1]$
- $P(\Omega) = 1$
- Pour toute suite d'événements $(A_n) \subset \mathcal{T}$ disjoints deux à deux (si $i \neq j$, $A_i \cap A_i = \emptyset$) on a :

$$P\left(\bigcup_{n=0}^{+\infty} A_n\right) = P(A_0) + P(A_1) + \dots = \sum_{n=0}^{+\infty} P(A_n).$$

 (Ω, \mathcal{T}, P) est appelé un **espace probabilisé**.

Remarque : La suite (A_n) peut être finie et composée de N événements. Dans ce cas, on a :

$$P\left(\bigcup_{n=0}^{N} A_{n}\right) =$$
 $P(A_{0}) + P(A_{1}) + \dots + P(A_{N}) = \sum_{n=0}^{N} P(A_{n}).$

Propriété : Soit (Ω, \mathcal{T}, P) un espace probabilisé Alors on a :

- $P(\emptyset) = 0$
- $\forall A \in T$, $P(\bar{A}) = 1 P(A)$
- $\forall A, B \in \mathcal{T}$, $A \subset B \Rightarrow P(A) \leq P(B)$
- $\bullet \ \forall A, B \in \mathcal{T}$,

$$P(A \cup B) = P(A) + P(B) - P(A \cap B)$$

<u>Définition</u>: Soit (Ω, \mathcal{T}, P) un espace probabilisé tel que Ω est fini $(\Omega = \{\omega_1; \omega_2; ...; \omega_n\})$. On dit que P est **l'équiprobabilité** sur Ω si :

$$\forall k = 1, 2, 3, ..., n, P(\omega_k) = \frac{1}{n}$$

Propriété : Soit Ω , \mathcal{T} , P) un espace probabilisé où P est l'équiprobabilité sur l'univers Ω fini.

Alors:

$$\forall A \in \mathcal{T}, \ P(A) = \frac{\mathsf{Card}(A)}{\mathsf{Card}(\Omega)}.$$