Introdução à Robótica

Álgebra e Geometria Vetorial

Fernando Lizarralde PEE-COPPE/UFRJ

Fechar

Rio de Janeiro, 13 de junho de 2018

Movimento de Corpo Rígido

Enfoque

- Independente de sistemas de coordenadas
- Vetores são objetos geométricos abstratos
- Escolha do sistema de coordenadas somente quando seja necessário realizar os cálculos númericos

Cinemática de Corpos Rígidos é baseada em vetores e transformações lineares de vetores.

2/27

Revisão de Álgebra Linear

- ullet O Espaço Vetorial ${\cal V}$ é um conjunto fechado sob adição e multiplicação por um número real, cujos elementos são os vetores.
 - Outras propriedades:
 - 1. comutatividade,
 - 2. distributividade,
 - 3. elemento zero,
 - 4. associatividade (soma/produto).
- Espaço Vetorial Normado: espaço vetorial onde é definido uma norma (magnitude) dos vetores.
- Espaço Produto Interno: espaço vetorial normado onde é definido o produto interno (e.g. produto escalar, permite projeção e conceito de ortogonalidade)

3/27

Espaço Euclidiano 3D

Aqui consideraremos o Espaço Euclidiano 3D:

- 1. Espaço Produto Interno
- 2. definindo adicionalmente a operação produto vetorial.

Transformação Linear

Considere os espaços vetoriais \mathcal{V}, \mathcal{W} e os vetores $\vec{v_1}, \vec{v_2} \in \mathcal{V}$.

Dada a transformação

$$ar{L}: \mathcal{V} \mapsto \mathcal{W}$$

satisfazendo o princípio de superposição (homogeneidade e aditividade), i.e.

$$\bar{L}(\alpha_1 \ \vec{v}_1 + \alpha_2 \ \vec{v}_2) = \alpha_1 \ \bar{L}(\vec{v}_1) + \alpha_2 \ \bar{L}(\vec{v}_2)$$

Então $\bar{L}(\cdot)$ define uma transformação linear.

/27

Revisão de Geometria vetorial

p: pontos

 $ec{v}$: vetores $ec{v} \in \mathcal{V}$ (vetores livres)

 ${\mathcal V}$: espaço vetorial linear normado

Mais adiante consideraremos o operador (transformação) linear \bar{E} :

 $ar{E}: \mathbb{R}^3 \mapsto \mathcal{V}$ e.g. Sistema de coordenadas

5/27

Vetores pode ser somados, escalados e tem comprimento.

É válida a lei do paralelogramo

$$\|\vec{x} + \vec{y}\|^2 + \|\vec{x} - \vec{y}\|^2 = 2\|\vec{x}\|^2 + 2\|\vec{y}\|^2$$

Implica na existência do produto interno (funcional bilinear simétrico e positivo) associado com a norma $\|\cdot\|$.

5/27

Produto interno (escalar)

Definido como um funcional bilinear simétrico e positivo: $(\cdot): \mathcal{V} \times \mathcal{V} \mapsto \mathbb{R}$ e.g. $\vec{x} \cdot \vec{y} = a$ $\vec{x}, \vec{y} \in \mathcal{V}, a \in \mathbb{R}$

(positividade)

(bilinearidade)

(comutatividade, simetria)

Propriedades do produto interno

- 1. $\vec{x} \cdot \vec{x} > 0$ para $\vec{x} \neq 0$
- 2. $\vec{x} \cdot \vec{y} = \vec{y} \cdot \vec{x}$
 - 3. $\vec{x} \cdot (\alpha \vec{y} + \beta \vec{z}) = \alpha (\vec{x} \cdot \vec{y}) + \beta (\vec{x} \cdot \vec{z})$
- **4**. $\vec{x} \cdot \vec{x} = ||x||^2$

No espaço Euclidiano: $\vec{x} \cdot \vec{y} = ||\vec{x}|| ||\vec{y}|| \cos(\theta)$

Voltar **Fechar**

Definição: Os vetores \vec{x} e \vec{y} são ortogonais se $\vec{x} \cdot \vec{y} = 0$.

Produto vetorial

$$(\times): \mathcal{V} \times \mathcal{V} \mapsto \mathcal{V}$$

 $\vec{x} \times \vec{y} = \vec{z}$ onde \vec{z} é um vetor tal que:

 $\|\vec{z}\| = \|\vec{x}\| \|\vec{y}\| \sin(\theta)$

$$ec{z}\cdotec{x}=0$$
 e $ec{z}\cdotec{y}=0$

A direção do vetor \vec{z} é determinada pela regra da mão direita.

8/27

Transformações Lineares

Uma transformação linear pode ser representada por um operador \bar{L} de um espaço vetorial $\mathcal V$ para outro espaço vetorial $\mathcal W$;

$$\bar{L}: \mathcal{V} \mapsto \mathcal{W}$$

Para $\vec{v} \in \mathcal{V}$ e $\vec{w} \in \mathcal{W}$ tem-se que

$$\vec{w} = \bar{L} \ \vec{v}$$

Tipos particulares de transformações lineares no espaço euclidiano 3D são: projeções, reflexões e rotações.

9/27

Operador Adjunto

O Operador Adjunto de \bar{L} é uma generalização da Transposta Conjugada de matrizes.

Definição: Dado $\bar{L}: \mathcal{V} \mapsto \mathcal{W}$. O Operador Adjunto \bar{L}^* satisfaz a seguinte relação:

$$(\vec{w} \cdot \bar{L}\vec{v})_{\mathcal{W}} = (\bar{L}^*\vec{w} \cdot \vec{v})_{\mathcal{V}} \qquad \forall \vec{v} \in \mathcal{V}, \vec{w} \in \mathcal{W}$$

Exemplo: considere a Transformação linear $A \in \mathbb{R}^{n \times n}$.

Definindo o produto interno de $v,w\in\mathbb{R}^n$ como

$$(v \cdot w) = v^T w = w^T v,$$

tem-se, pela definição, que o operador adjunto A^{\ast} satisfaz

$$w^{T}Av = (A^{*}w)^{T}v$$
$$= w^{T}(A^{*})^{T}v \implies A^{*} = A^{T}$$

10/27

Exemplo de Transformações Lineares

1. Decomposição ortogonal

Considere as projeções do vetor \vec{v} no vetor unitário \vec{e} , i.e. $\|\vec{e}\| = 1$:

Projeção Paralela $(ar{P}_{\parallel})$: na direção de $ec{e}$

$$\vec{v}_{\parallel} = (\vec{e} \cdot \vec{v}) \ \vec{e} = (\vec{e} \ \vec{e} \cdot) \ \vec{v} = \bar{P}_{\parallel} \ \vec{v} \quad ; \qquad \bar{P}_{\parallel} = (\vec{e} \ \vec{e} \cdot)$$

Projeção Ortogonal (P_{\perp}): na direção ortogonal de $ec{e}$

$$ec{v}_\perp = ec{v} - ec{v}_\parallel = (\mathcal{I} - ec{e} \ ec{e} \cdot) \ ec{v} = ar{P}_\perp \ ec{v} \quad ; \qquad ar{P}_\perp = (\mathcal{I} - ec{e} \ ec{e} \cdot)$$

Tal que:

$$\vec{v} = \vec{v}_{\parallel} + \vec{v}_{\perp}$$
 ; $\bar{P}_{\parallel} \vec{e} = \vec{e}$; $\bar{P}_{\perp} \vec{e} = 0$

1/27

2. Projeção Ortonormal

Considere o operador P que realiza a projeção de um vetor \vec{v} num plano Π definido pelo vetor normal \vec{n} com $\|\vec{n}\| = 1$.

Propriedades: $\bar{P}^2 = \bar{P}$

$$\bar{P}$$
 $\bar{n} = 0$

A projeção $\vec{v}_1 = \bar{P} \; \vec{v}$ é dada por:

$$ec{v}_1 = ec{v} - (ec{n} \cdot ec{v}) \ ec{n} = (\mathcal{I} - ec{n} ec{n} \cdot) \ ec{v}$$

Então o operador projeção ortogonal é dado por:

$$\bar{P} = (\mathcal{I} - \vec{n}\vec{n}\cdot)$$

3. Reflexão

Considere o operador \bar{R} que realiza a reflexão de um vetor \vec{v} com respeito ao plano Π definido pelo vetor normal \vec{n} com $\|\vec{n}\| = 1$.

$$\bar{R}^2 = \mathcal{I} \qquad \qquad \bar{R}^{-1} = \bar{R}$$

Então a reflexão $\vec{v}_2 = \bar{R} \; \vec{v}$ é dada por:

$$\vec{v}_2 = \vec{v} - 2\vec{n} \ (\vec{n} \cdot \vec{v}) = (\mathcal{I} - 2\vec{n}\vec{n}\cdot) \ \vec{v}$$

e portanto o operador reflexão \bar{R} é dado por:

$$\bar{R} = (\mathcal{I} - 2\vec{n}\vec{n}\cdot)$$

13/27

- 4. Isomorfismo Linear: transformação linear um a um de $\mathcal{V} \mapsto \mathcal{V}$.
- 5. Isometria: é um Isomorfismo Linear que preserva a distância dos elementos de \mathcal{V} .

$$\|\vec{v}_1\| = \|\vec{v}\|$$

Tendo consequentemente, o operador \bar{Q} , a seguinte propriedade:

$$\bar{Q}^*\bar{Q}=\mathcal{I}$$

14/27

Sistema de coordenadas ortonormal

Definição: Um sistema de coordenadas ortonormal \bar{E} é o conjunto de 3 vetores, i.e. $\bar{E} = [\vec{e_1}, \ \vec{e_2}, \ \vec{e_3}] \ (\vec{e_i} \in \mathcal{V})$, satisfazendo as seguintes propriedades:

- 1. $\|\vec{e}_i\| = 1$ para i = 1, 2, 3 Normalidade
- 2. $\vec{e_i} \cdot \vec{e_j} = 0$ para $i \neq j$ Ortogonalidade
- 3. $\vec{e_3} = \vec{e_1} \times \vec{e_2}$ Regra da mão direita

Um sistema de coordenadas $\bar{E}=[\vec{e_1},\ \vec{e_2},\ \vec{e_3}]$ pode ser interpretado como uma transformação linear $\bar{E}\colon\mathbb{R}^3\mapsto\mathcal{V}$ tal que

$$\vec{v} = \vec{E} \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = [\vec{e_1} \ \vec{e_2} \ \vec{e_3}] \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} = v_1 \ \vec{e_1} + v_2 \ \vec{e_2} + v_3 \ \vec{e_3}; \qquad v_i \in \mathbb{R}$$

15/27

Operador Adjunto de \bar{E}

O operador adjunto de \bar{E} é dado por $\bar{E}^*=\begin{bmatrix} \vec{e_1} \\ \vec{e_2} \\ \vec{e_3} \end{bmatrix}$, e define o mapeamento $\bar{E}^*: \mathcal{V} \mapsto \mathbb{R}^3$.

Prova: Pela definição de operador adjunto tem-se que $\vec{x} \cdot \vec{E}y = \vec{E}^* \vec{x} \cdot y$. Dado que $\vec{E}^* \vec{x} \in \mathbb{R}^3$ e $y \in \mathbb{R}^3$ tem-se que $\vec{E}^* \vec{x} \cdot y = (\vec{E}^* \vec{x})^T y$, e

$$\vec{x} \cdot \bar{E} \ y = (\bar{E}^* \vec{x})^T y$$

Então por comparação tem-se $ec{x}\cdotar{E}=(ar{E}^*ec{x})^T$, ou equivalentemente

$$\bar{E}^*\vec{x} = (\vec{x} \cdot \bar{E})^T = (\vec{x} \cdot [\vec{e_1} \ \vec{e_2} \ \vec{e_3}])^T = [\vec{x} \cdot \vec{e_1} \ \vec{x} \cdot \vec{e_2} \ \vec{x} \cdot \vec{e_3}]^T \\
= \begin{bmatrix} \vec{x} \cdot \vec{e_1} \\ \vec{x} \cdot \vec{e_2} \\ \vec{x} \cdot \vec{e_3} \end{bmatrix} = \begin{bmatrix} \vec{e_1} \cdot \vec{x} \\ \vec{e_2} \cdot \vec{x} \\ \vec{e_3} \cdot \vec{x} \end{bmatrix} = \begin{bmatrix} \vec{e_1} \cdot \\ \vec{e_2} \cdot \\ \vec{e_3} \cdot \end{bmatrix} \vec{x} \quad CQD.$$

16/27

Tem-se também

- 1. $\bar{E}^*\bar{E} = I_{3\times 3} \quad [: \mathbb{R}^3 \mapsto \mathbb{R}^3]$
- 2. $ar{E}ar{E}^*=\mathcal{I}\quad [:\mathcal{V}\mapsto\mathcal{V}]$ (operador identidade)

17/27

Representação de vetores em sistemas de coordenadas

Considere o vetor \vec{v} representado como uma combinação linear dos elementeos do sistema de coordenadas $\vec{E} = [\vec{e_1}, \ \vec{e_2}, \ \vec{e_3}]$:

$$\vec{v} = v_1 \ \vec{e_1} + v_2 \ \vec{e_2} + v_3 \ \vec{e_3}$$

As coordenadas de $ec{v}$ em $ar{E}$ são definidas como $v_E = \left[egin{array}{c} v_1 \\ v_2 \\ v_3 \end{array}\right] \in \mathbb{R}^3$

$$\vec{v} = \bar{E} \ v_E = v_E^T \bar{E}^T$$
 \Longrightarrow $v_E = \bar{E}^* \ \vec{v}$

18/27

Representação de operadores em sistemas de coordenadas

Dado um operador $L: \mathcal{V} \mapsto \mathcal{W}$, tal que

$$\vec{w} = \vec{L} \vec{v}$$

com $\vec{v} \in \mathcal{V}, \vec{w} \in \mathcal{W}$.

Considere os sistemas de coordenadas $E_1 \in \mathcal{V}$ e $E_2 \in \mathcal{W}$; sendo

- ullet v_1 a representação de $ec{v}$ em $ar{E}_1$ (i.e. $ec{v}=ar{E}_1$ v_1) e;
- ullet w_2 a representação de \vec{w} em \bar{E}_2 (i.e. $\vec{w}=\bar{E}_2$ w_2).

Pode-se representar o operador L nos respectivos sistemas de coordenadas (E_1, E_2) .

A representação de L nestes sistemas de coordenadas é notada como

$$w_2 = \underline{L} \ v_1; \qquad \underline{L} : \bar{E}_1 \mapsto \bar{E}_2$$

- Voltar
- **Fechar**

Então considerando

$$\vec{w} = \bar{L} \vec{v}$$

$$\bar{E}_2 w_2 = \bar{L} \bar{E}_1 v_1$$

Multiplicando a ambos os lados por $ar{E}_2^*$, tem-se

$$\bar{E}_{2}^{*} \bar{E}_{2} w_{2} = \bar{E}_{2}^{*} \bar{L} \bar{E}_{1} v_{1}
w_{2} = \underbrace{\bar{E}_{2}^{*} \bar{L} \bar{E}_{1}}_{L} v_{1}$$

Tem-se então as seguintes relações:

$$ar{L}=ar{E}_2\;L\;ar{E}_1^*$$
 e $L=ar{E}_2^*\;ar{L}\;ar{E}_1$

20/27

Exemplo 1: $\bar{L} = \vec{v} \cdot : \underbrace{\mathcal{V}}_{\bar{v}} \mapsto \mathbb{R}$ (\vec{v} vetor fixo) $L = \vec{v} \cdot \bar{E} = \vec{v} \cdot [\vec{e_1} \quad \vec{e_2} \quad \vec{e_3}] = [\vec{v} \cdot \vec{e_1} \quad \vec{v} \cdot \vec{e_2} \quad \vec{v} \cdot \vec{e_3}]$ Então considerando que $\vec{v} = E \ v_E = v_1 \vec{e_1} + v_2 \vec{e_2} + v_3 \vec{e_3}$ e que $\vec{e_1} \cdot \vec{e_2} = 0$ etc tem-se $L = \begin{bmatrix} v_1 & v_2 & v_3 \end{bmatrix} = v_E^T$ Voltar

Exemplo 2: $L = \vec{v} \times : \underbrace{\mathcal{V}}_{\bar{E}} \mapsto \underbrace{\mathcal{V}}_{\bar{E}}$ (\vec{v} vetor fixo) $L = \bar{E}^* \vec{v} \times \bar{E} = \bar{E}^* [\vec{v} \times \vec{e_1} \ \vec{v} \times \vec{e_2} \ \vec{v} \times \vec{e_3}]$

como
$$\vec{v}=v_1$$
 $\vec{e_1}+v_2$ $\vec{e_2}+v_3$ $\vec{e_3}$ e os $\vec{e_i}$ são ortonormais, tem-se

$$L = \bar{E}^* \left[(v_3 \vec{e_2} - v_2 \vec{e_3}) \quad (-v_3 \vec{e_1} + v_1 \vec{e_3}) \quad (v_2 \vec{e_1} - v_1 \vec{e_2}) \right]$$

Levando em consideração que
$$\bar{E}^*\vec{e_1}=[1\ 0\ 0]^T$$
 (similarmente para $\vec{e_2},\vec{e_3}$)

$$L = \left[\left(\begin{bmatrix} 0 \\ v_2 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) \quad \left(\begin{bmatrix} v_3 \\ - \begin{bmatrix} 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \end{bmatrix} \right) \quad \left(\begin{bmatrix} v_2 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ v_1 \end{bmatrix} \right)$$

$$L = \left[\left(\begin{bmatrix} 0 \\ v_3 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ 0 \\ v_2 \end{bmatrix} \right) \quad \left(- \begin{bmatrix} v_3 \\ 0 \\ 0 \end{bmatrix} + \begin{bmatrix} 0 \\ 0 \\ v_1 \end{bmatrix} \right) \quad \left(\begin{bmatrix} v_2 \\ 0 \\ 0 \end{bmatrix} - \begin{bmatrix} 0 \\ v_1 \\ 0 \end{bmatrix} \right) \right]$$

$$L = \begin{vmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{vmatrix} = \hat{v} \quad ; \qquad L = -L^T!!$$

23/27

Conclui-se que $L=\hat{v}$ é uma MATRIZ ANTISIMÉTRICA.

Resumo: o produto interno e o produto vetorial quando representados num sistema de coordenadas equivalem a:

- O produto interno $\vec{v} \cdot \longrightarrow v^T$
- ullet O produto vetorial $ec{v} imes \longrightarrow \hat{v}$

Voltar

Definição:

$$v = \begin{bmatrix} v_1 \\ v_2 \\ v_3 \end{bmatrix} \implies \hat{v} = \begin{bmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{bmatrix}$$

 $V = \begin{bmatrix} 0 & -v_3 & v_2 \\ v_3 & 0 & -v_1 \\ -v_2 & v_1 & 0 \end{bmatrix} \implies V^{\vee} = \begin{bmatrix} v_1 \\ v_2 \\ v_2 \end{bmatrix}$

- 1. os autovalores de \hat{v} são $\lambda = 0, \pm j \|v\|$;
- 2. o polinômio característico é: $\lambda (\lambda^2 + ||v||^2) = 0$
- 3. de Cayley-Hamilton tem-se: $\hat{v}^3 + \|v\|^2 \hat{v} = 0 \Rightarrow \hat{v}^3 = -\|v\|^2 \hat{v}$

Voltar

Propiedades de \hat{v} $\bullet \hat{v}v = 0$ \bullet $\hat{v} = -\hat{v}^T$ (anti-simetria) $\bullet \hat{v}w = -\hat{w}v$ $\bullet \hat{v}^3 = \hat{v}\hat{v}\hat{v} = -\|v\|^2 \hat{v}$ (Cayley-Hamilton) $\bullet \hat{v}^4 = \hat{v}\hat{v}\hat{v}\hat{v} = -\|v\|^2 \hat{v}^2$ • Se $\|v\|=1$ então $\hat{v}^{4k-0} = -\hat{v}^2$

Relação de vetores em diferentes sistemas de coordenadas Considere 2 sistemas de coordenadas \bar{E}_1 e \bar{E}_2 em \mathcal{V} .

Considere
$$z$$
 sistemas de coordenadas E_1 e E_2 em ν .
$$\vec{v} = \bar{E}_1 \ v_1 = \bar{E}_2 \ v_2$$

 $v_1 = \bar{E}_1^* \bar{E}_2 \ v_2$

 $R_{12} = \bar{E}_1^* \bar{E}_2$

 $R_{21} = (R_{12})^{-1} = (R_{12})^T$

Voltar **Fechar**

Chamando

Tem-se também

$$\vec{v} = \bar{E}_1 \ v_1 = \bar{E}_2 \ v_2$$

$\vec{v} = E_1 \ v_1 = E_2 \ v_2$	26/27
Podemos concluir então que	

Relação de operadores em diferentes sistemas de coord.

Considere o operador $\bar{L}: \mathcal{V} \mapsto \mathcal{V}$. Ele pode ser representado nos sistemas de coordenadas \bar{E}_1 e \bar{E}_2

$$\bar{L} = \bar{E}_1 \ L_1 \ \bar{E}_1^* = \bar{E}_2 \ L_2 \ \bar{E}_2^*$$

onde L_1 e L_2 são as representações de \bar{L} em \bar{E}_1 e \bar{E}_2 . Podemos concluir então que

$$L_1 = \bar{E}_1^* \; \bar{E}_2 \; L_2 \; \bar{E}_2^* \; \bar{E}_1$$

ou considerando $R_{12}=ar{E}_1^*ar{E}_2$,

$$L_1 = R_{12} \, L_2 \, R_{12}^T$$

Exercicio: qual é a relação entre \hat{w}_1 e \hat{w}_2 considerando $w_1=R_{12}$ w_2 ?

21/21

