Ebb-and-Flow Protocols

Chaitanya Agarwal Yajur Ahuja Swapnil Sharma

Introduction

- Blockchain consensus protocls can require dynamic availability and finality both.
- But can't guarantee both due to CAP theorem.

Snap-and-Chat [1]

 Maintain 2 ledgers: Final ledger LOG_{da}, Available ledger LOG_{fin}.

Protocol Guarantees

- Available ledger is safe if
 50% network is adversarial.
- Final ledger is safe if < 33% network is adversarial.

On network partitions, or when majority is not awake, Final ledger stalls, but Dynamic ledger grows.

Figure 1: Dynamic Participation

Experiments

Intermittent Network Paritions

- Network paritioned intermittently into groups.
- Intra-group communication delayed until after partition.

Dynamic Participation

 Number of awake/asleep nodes follow Brownian motion.

Our Work

- Re-implemented protocol in Elixir.
- Learnt about Longest-Chain and Byzantine-Fault-Tolerant Protocols in depth.

References

[1] Joachim Neu, Ertem Nusret Tas, and David Tse. Ebband-flow proto-cols: A resolution of the availability-finality dilemma. Cryptology ePrint Archive, Paper 2020.