04 Settembre 2024 – Architetture dei Sistemi di Elaborazione Nome, MATRICOLA

Domanda 1

Considerando il processore MIPS64 e l'architettura descritta in seguito:

- FP multiplier unit: pipelined 6 stages
- Integer ALU: 1 clock cycle FP arithmetic unit: pipelined 3 stages forwarding enabled
- Data memory: 1 clock cycle FP divider unit: not pipelined unit that requires 6 it is possible to complete clock cycles
 - branch delay slot: 1 clock cycle, and the branch delay slot disabled
- instruction EXE stage in an out-of-order fashion.

Usando il frammento di codice riportato, si calcoli il tempo di esecuzione dell'intero programma in colpi di clock e si completi la seguente tabella.

```
for (i = 0; i < 100; i++) {
v4[i] = (v1[i] / v2[i]) + v3[i];
v5[i] = v4[i] * v3[i];
```

																																				Clock cycles
	data																																			
V1:	.double "100 values"																																			
V2:	.double "100 values"																																			
V3:	.double "100 values"																																			
 V5:	.double "100 zeros"																																			
. te	ext																																			
main:	daddui r1,r0,0	F	D	E	М	M																														5
	daddui r2,r0,100		F	D	E	М	M																													1
loop:	l.d f1,v1(r1)			F	D	Е	М	M																												1
	l.d f2,v2(r1)				F	D	E	М	M																											1
	div.d f4,f1,f2					F	D	S	d	d	d	d	d	d	М	W																				7
	I.d f3,v3(r1)						F	S	D	E	М	W																								0
	dadd.d f4,f4,f3								F	D	s	s	s	s	А	а	А	М	M																	3
	s.d f4,v4(r1)									F	S	S	S	S	D	E	S	S	М	M																1
	mul.d f5,f4,f3														F	D	s	Х	Х	Х	Х	Х	Х	М	W											5
	s.d f5,v5(r1)															F	S	D	Ε	S	S	S	s	S	М	M										1
	daddui r1,r1,8																	F	D	s	s	S	s	s	Ε	М	W									1
	daddi r2,r2,-1																		F	S					D	E	М	W								1
	bnez r2,loop																								F	s	D	E	М	W						2
	Halt																										F	-	-	-	-	-	-			1

04 Settembre 2024 – Architetture dei Sistemi di Elaborazione Nome, MATRICOLA

TOTAL = 6 + 100*(2+10+6+6) =																		2406

04 Settembre 2024 – Architetture dei Sistemi di Elaborazione
Nome, MATRICOLA

Domanda 2

Considerando il programma precedente, cosa succede se i salti vengono svolti durante la fase di EXE e non durante la fase di DECODE? Motivare la risposta.

Verrebbe fatta anche la DECODE Della Halt finale, e in generale si sprecherebbe un ciclo di clock aggiuntivo prima di saltare e caricare la l.d, per ogni salto.

04 Settembre 2024 – Architetture dei Sistemi di Elaborazione	
Nome, MATRICOLA	

Domanda 3

Considerando il programma precedente e l'architettura del processore superscalare descritto in seguito; completare la tabella relativa alle prime 3 iterazioni.

Processor architecture:

- Issue 2 instructions per clock cycle
- jump instructions require 1 issue
- handle 2 instructions commit per clock cycle
- timing facts for the following separate functional units:
 - i. 1 Memory address 1 clock cycle
 - ii. 1 Integer ALU 1 clock cycle
 - iii. 1 Jump unit 1 clock cycle
 - iv. 1 FP multiplier unit, which is pipelined: 6 stages
 - v. 1 FP divider unit, which is not pipelined: 6 clock cycles
 - vi. 1 FP Arithmetic unit, which is pipelined: 3 stages
- Branch prediction is always correct
- There are no cache misses
- There are 2 CDB (Common Data Bus).

04 Settembre 2024 – Architetture dei Sistemi di Elaborazione Nome, MATRICOLA

# iteration		Issue	EXE	MEM	CDB x2	COMMIT x2
1	l.d f1,v1(r1)	1	2m	3	4	5
1	l.d f2,v2(r1)	1	3m	4	5	6
1	div.d f4,f1,f2	2	6d	-	12	13
1	l.d f3,v3(r1)	2	4m	5	6	13
1	dadd.d f4,f4,f3	3	13 a	-	16	17
1	s.d f4,v4(r1)	3	5m	-	-	17
1	mul.d f5,f4,f3	4	17x	-	23	24
1	s.d f5,v5(r1)	4	6m	-	-	24
1	daddui r1,r1,8	5	6i	-	7	25
1	daddi r2,r2,-1	5	7i	-	8	25
1	bnez r2,loop	6	9j	-	-	26
2	l.d f1,v1(r1)	7	8m	9	10	26
2	l.d f2,v2(r1)	7	9m	10	11	27
2	div.d f4,f1,f2	8	12d	-	18	27
2	l.d f3,v3(r1)	8	10m	11	12	28
2	dadd.d f4,f4,f3	9	19a	-	22	28
2	s.d f4,v4(r1)	9	11m	-	-	29
2	mul.d f5,f4,f3	10	23x	-	29	30
2	s.d f5,v5(r1)	10	12m	-	-	30
2	daddui r1,r1,8	11	12i	-	13	31
2	daddi r2,r2,-1	11	13i	-	14	31
2	bnez r2,loop	12	15j	-	-	32
3	l.d f1,v1(r1)	13	14m	15	16	32
3	l.d f2,v2(r1)	13	15m	16	17	33
3	div.d f4,f1,f2	14	18d	-	24	33
3	l.d f3,v3(r1)	14	16m	17	18	34
3	dadd.d f4,f4,f3	15	25 a	-	28	34
3	s.d f4,v4(r1)	15	17m	-	-	35
3	mul.d f5,f4,f3	16	29x	-	35	36
3	s.d f5,v5(r1)	16	18m	-	-	36
3	daddui r1,r1,8	17	18i	-	19	37
3	daddi r2,r2,-1	17	19i	-	20	37
3	bnez r2,loop	18	21j	-	-	38

	anda 4	(100 <u>D</u> (11111111111111111111111111111111111					
วทร	siderando il s	segmento di codice presen	tato nella tabella precedente, se a	assumiamo che ci si	a un unico Cor	nmon Data Bus,	, qual è la prima
ruz	zione che do	vrebbe stallare durante l'e	secuzione del programma? motiva	are la risposta.			
e è	disponibile ι	un solo CDB, la prima istru:	zione a stallare sarà				
è	disponibile ι 2	un solo CDB, la prima istru: l.d f3,v3(r1)	zione a stallare sarà 8	10m	11	12	28
èè	disponibile ι 2		1	10m	11	12	28
	2	l.d f3,v3(r1)	1			1	
	2	l.d f3,v3(r1)	8			1	