

Content

- 1. What is t-SNE (a small recap)
 - a. Motivation
 - b. Theory
- 2. Parameter Tuning
 - a. Theory
- 3. Pros and Cons of t-SNE
- 4. Code Example
- 5. Summary

What is t-SNE

T-distributed Stochastic Neighbor Embedding

Motivation

- The problem to be solved: Highdimensional data
 - Can mean high computational cost to perform learning
 - Often leads to over-fitting
 - Hard to interpret
- The solution?
 - Can use Dimension Reduction, to visualize high-dimensional data in a low-dimensional space

Example - MNIST handwritten numbers

t-SNE Explained

- Example from 2D to 1D
- (But in practice usually from highD to 2D or 3D)

The Data

Compute Pairwise Similarities in High-Dimensional Space

Compute Pairwise Similarities in Low-Dimensional Space

Minimize the KL-Divergence (Cost Function)

Optimization through Gradient Descent

The Parameters

- Cost function parameter:
 - O Perplexity: How many nearest neighbors are considered when calculating similarities
- Optimization parameters:
 - O Number of iterations: How long optimization process
 - Learning rate: How large steps when updating points' positions during gradient descent
 - Momentum: Used to accelerate the convergence
- And the dimensions you want to reduce to, of course

Parameter Tuning

parameter tuning (theory)

- Minimize the Kullback-Leibler divergences
- Run the algorithm with the same data, changing the perplexity
- Recommended perplexity between 5 and 50
- Number of iterations

Pros & Cons of t-SNE

Pros & Cons

Pros

- Creates very good two-dimensional "maps" of high-dimensional data
- Keeps local structures of data while revealing global structure as well
- Outperforms most of the visualization techniques (UMAP is comparable, faster tho)
- Do not suffer from "crowding problem"

Cons

- Behavior not clear for dimensionality reduction (i.e. where low-dimensional space d > 3)
- Non-convexity of cost function
- Does not perform well on data with high intrinsic dimensionality (i.e. number of relevant coordinates needed to describe the datagenerating process accurately)
- Fine tuning can be challenging & expensive
- Can be misleading

Example for misleading plots

distribution

(Hallucination of clusters)

Coding example

Example: MNIST datasett

t-SNE from scikit-learn

Number of iterations: 1000

Learning rate: 'auto'

Number of components: 2

Perplexity:

[5, 15, 25, 35, 45, 55]

Summary

Summary

- t-SNE
 - O Method to visualize high-dimensional data in a low-dimensional space
 - o CAN be used for dimension reduction as well
- Tunable Parameters
 - Cost function parameter
 - Optimization parameters
- Notes
 - O Just test a lot :,)
 - Non-deterministic
 - O Don't use the same parameters on similar datasets

Sources

- https://www.jmlr.org/papers/volume9/vandermaaten08a/vandermaaten08a.pdf
- https://scikit-learn.org/stable/modules/manifold.html#t-sne
- https://lvdmaaten.github.io/publications/papers/JMLR_2008.pdf
- Parameter Tuning interactive example
 - o https://distill.pub/2016/misread-tsne/
 - o https://github.com/karpathy/tsnejs
- Parameter Tuning
 - https://www.datacamp.com/tutorial/introduction-tsne?dc_referrer=https%3A%2F%2Fwww.google.com%2F