

Ruken Zilan
January 20, 2024

Project

of a Combined Cycle Power Plant, which uses a combination of gas turbines, steam turbines, and heat recovery steam generators to generate power. We have a set of 9568 hourly average ambient environmental readings from sensors at the power plant which we will use in our model.

Data

The columns in the data consist of hourly average ambient variables:

- **Temperature** (T) in the range 1.81°C to 37.11°C,
- Ambient Pressure (AP) in the range 992.89-1033.30 milibar,
- Relative Humidity (RH) in the range 25.56% to 100.16%
- Exhaust Vacuum (V) in the range 25.36-81.56 cm Hg
- Net hourly electrical energy output (PE) 420.26-495.76 MW (Target we are trying to predict)

AT	V	AP	RH	PE
1496	4176	102407	7317	46326
2518	6296	102004	5908	44437
511	394	101216	9214	48856
2086	5732	101024	7664	44648
1082	375	100923	9662	4739
1002	3,0	100020	0002	4700
1799	4372	100864	7504	45302
2014	4693	101466	6422	45399

Goals

Priorities

- Based on the project topic, we are trying to predict a continuous output variable (PE) from a set of input variables (AT, AP, RH, V).
- This is a typical regression problem, which requires a machine learning approach that can learn the relationship between the input and output variables and minimize the prediction error.

Followed Steps

- Identify the Machine Learning Approach and Output Metric
- Feature Selection and Algorithm Identification
- Data Splitting
- Validation Strategy
- Model Building
- Model Evaluation
- Final Model Evaluation

Identify the Machine Learning Approach and Output Metric

- This is a **regression problem** since we're predicting the electrical energy output, which is a **continuous variable**.
- The **output metric** for regression tasks could be Mean Absolute Error (MAE), Mean Squared Error (MSE), or **Root Mean Squared Error (RMSE)**. I will use **RMSE**.

Feature Selection and Algorithm Identification

- Identified potential features: Ambient Pressure (AP), Relative Humidity, Temperature (T), Exhaust Vacuum (V).
- Considered Algorithm: Supervised Learning & Multiple Linear Regression.

Data Splitting

- I splited the dataset into training and test sets.
- I used 80-20 split considering the size of the data dataset as training and test data sets.

Validation Strategy

I compared the R2 and RMSE values of these data sets for both Models.

R2 indicates how well the independent variables explain the variability of the dependent variable. The R-squared value ranges from 0 to 1, where:

- **0 indicates** that the model does not explain any of the variability in the dependent variable.
- 1 indicates that the model explains all of the variability in the dependent variable

RMSE shows the average difference between predicted value by the model and the real value.

Model Building

Trained two different models using my training set via Excel Data Analysis Pack.

This involves trying **different features** for the same algorithm.

- Model 1 uses two features: Used Temperature (AT) & Exhaust Vacuum (V).
- Model 2 uses four features: Ambient Pressure (AP), Relative Humidity,
 Temperature (T), Exhaust Vacuum (V)

Model Evaluation

- Evaluated the models on the **training and test** sets using the chosen metric.
- Selected the model that performs best on the validation set. This could be the model with the lowest MAE, MSE, or RMSE. I choose **RMSE**.

Model 1: Regression Results for Training Data (%80) for using Temperature and Vacume Data

AT	V	AP	RH	PE	Predicted PE				,			1		
14,96	41,76	1024,07	73,17			Model 1								
25,18	62,96	1020,04	59,08	3 444,37	442,1307838	SUMMARY OUTPUT								
5,11	39,4	1012,16	92,14	488,56	484,0774479									
20,86	57,32	1010,24	76,64	446,48	451,342037	Regression	Statistics							
10,82	37,5	1009,23	96,62	473,9	474,9018588	Multiple R	0,957222917							
26,27	59,44	1012,23	58,77	443,67	441,3915747	R Square	0,916275713	1	RMSE	4,942825				
15,89	43,96	1014,02	75,24	467,35	464,1424644	Adjusted R Square	0,916253827							
9,48	44,71	1019,12	66,43	478,42	474,8863236	Standard Error	4,944116676							
14,64	45	1021,78	41,25	475,98	465,9510333	Observations	7654							
11,74	43,56	1015,14	70,72	477,5	471,3822634									
17,99	43,72	1008,64	75,04	453,02	460,6208045	ANOVA								
20,14	46,93	1014,66	64,22	453,99	455,9072657		df	SS	MS	F	Significance F			
24,34	73,5	1011,31	. 84,15	440,29	440,1907148	Regression	2	2046776,128	1023388,064	41866,14	. 0			
25,71	58,59	1012,77	61,83	451,28	442,6237462	Residual	7651	187023,2605	24,44428971					
26,19	69,34	1009,48	87,59	433,99	438,3543583	Total	7653	2233799,389				1		
21,42	43,79	1015,76	43,08	462,19	454,7206257									
18,21	45	1022,86	48,84	467,54	459,8333916		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95,09	%pper 95,0%
11,04	41,74	1022,6	77,51	477,2	473,1653603	Intercept	505,4671705	0,267615825	1888,779073	0	504,9425702	505,9917709	504,9426	505,9918
14,45	52,75	1023,97	63,59	459,85	463,7916852	AT	-1,713625117	0,014114884	-121,4055362	0	-1,74129416	-1,685956075	-1,74129	9 -1,68596
13,97	38,47	1015,15	55,28	464,3	469,1929218	V	-0,320637013	0,008273164	-38,75627638	3,5E-300	-0,336854681	-0,304419345	-0,33685	5 -0,30442
17,76	42,42	1009,09	66,26	468,27	461,4317664									

Model 1: Regression Results for Test Data (%20) for using Temperature and Vacume Data

AP	RH	P	E	Predicted PE									
1016,88	3	71,44	444,38	440,2782844	Model 1								
1009,17	,	45,79	442,85	444,1329145	SUMMARY OUTPUT								
1008,98	3	44,32	432,33	424,3300137									
1017,47	,	90,47	477,91	474,6268421	Regressio	n Statistics							
1011,68	3	70,33	434,99	439,4178367	Multiple R	0,95575982							
1018	3	68,99	469,8	473,8837199	R Square	0,913476834		RMSE	4,994591				
1006,26	5	59,15	426,66	434,7603379	Adjusted R Square	0,913386233							
1012,65	5	80,25	448,71	449,2233013	Standard Error	4,999829368							
1013,65	5	41,54	463,35	458,529571	Observations	1913							
1016,6	i !	97,09	435,58	479,6042135									
1011,56	6	48,03	432,72	434,3689768	ANOVA								
1012,2	2	47,06	441,32	442,5686895		df	SS	MS	F	Significance F			
1017,62	2	44,31	442,12	435,1457382	Regression	2	504090,9	252045,4556	10082,51	0			
1014,13	3	69,67	445,16	449,1099711	Residual	1910	47746,74	24,99829371					
1020,68	3	72,07	462,22	460,7773453	Total	1912	551837,7						
1010,86	5	54,03	445,03	434,0920428									
1016,42	2	67,42	469,69	466,890761		Coefficients	andard Err	t Stat	P-value	Lower 95%	Upper 95%	ower 95,0%	lpper 95,0%
1024,34		79,61	465,14	464,7438044	Intercept	505,5214059	0,548522	921,6065985	0	504,4456411	506,5971708	504,4456	506,5972
1011,63	3	65,97	435,98	431,2486454	AT	-1,666290399	0,028849	-57,75951224	0	-1,72286879	-1,609712012	-1,72287	-1,60971
1013,11		61,97	437,11	439,0786507	V	-0,340123217	0,016953	-20,06258653	2,13E-81	-0,37337177	-0,306874665	-0,37337	-0,30687

Model 2: Regression Results for Training Data (%80) for using all four parameters

AT	V	AP	RH	PE	Predicted PE									
14,96	41,76					Model 2								
25,18	62,96	1020,04	59,08	444,37	444,0988612	SUMMARY OUTPUT								
5,11	39,4	1012,16	92,14	488,56	483,6359385									
20,86	57,32	1010,24	76,64	446,48	450,5600592	Regression	Statistics							
10,82	37,5	1009,23	96,62	473,9	471,792436	Multiple R	0,964198326							
26,27	59,44	1012,23	58,77	443,67	442,2937569	R Square	0,929678412			RMSE	4,530659			
15,89	43,96	1014,02	75,24	467,35	463,9542681	Adjusted R Square	0,929641642		'					
9,48	44,71	1019,12	66,43	478,42	478,2829264	Standard Error	4,532268542							
14,64	45	1021,78	41,25	475,98	472,1454924	Observations	7655							
11,74	43,56	1015,14	70,72	477,5	473,1071284									
17,99	43,72	1008,64	75,04	453,02	459,5247427	ANOVA								
20,14	46,93	1014,66	64,22	453,99	456,6222959		df	SS	MS	F	gnificance	F		
24,34	73,5	1011,31	84,15	440,29	438,8124293	Regression	4	2077479,659	519369,9	25283,98	0			
25,71	58,59	1012,77	61,83	451,28	443,1445106	Residual	7650	157142,1548	20,54146					
26,19	69,34	1009,48	87,59	433,99	435,4066726	Total	7654	2234621,813						
21,42	43,79	1015,76	43,08	462,19	458,2480421									
18,21	45	1022,86	48,84	467,54	463,8820978		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95,0%	pper 95,0%
11,04	41,74	1022,6	77,51	477,2	474,2864076	Intercept	454,9357467	10,81009621	42,08434	0	433,745	476,1265	433,745	476,1265
14,45	52,75	1023,97	63,59	459,85	467,3120176	AT	-1,992042842	0,016966154	-117,413	0	-2,0253	-1,95878	-2,0253	-1,95878
13,97	38,47	1015,15	55,28	464,3	472,30082	V	-0,227178302	0,008086631	-28,0931	2,4E-165	-0,24303	-0,21133	-0,24303	-0,21133
17,76	42,42	1009,09	66,26	468,27	461,7157718	AP	0,061871663	0,010487818	5,899384	3,8E-09	0,041313	0,082431	0,041313	0,082431
5,41	40,07	1019,16	64,77	495,24	487,7136466	RH	-0,160556401	0,004622445	-34,7341	1,3E-245	-0,16962	-0,1515	-0,16962	-0,1515
5,41	40,07	1019,16	64,77	495,24		RH	-0,160556401	0,004622445	-34,7341	1,3E-245	-0,16962	-0,1515	-0,16962	

Model 2: Regression Results for Test Data (%20) for using all four parameters

AT	٧	-	AP R	H P	E	Predicted PE									
23,86		74,93	1016,88	71,44	444,38	441,3758904	Model 2								
27,16		47,43	1009,17	45,79	442,85	445,5304381	SUMMARY OUTPUT	Γ							
33,97		72,29	1008,98	44,32	432,33	426,1833569									
10,37		40,03	1017,47	90,47	477,91	473,5865489	Regression S	Statistics							
25,15		71,14	1011,68	70,33	434,99	439,7273777	Multiple R	0,96169601							
10,52		41,48	1018	68,99	469,8	476,1308656	R Square	0,924859216		RMSE	4,6549092				
28,88		66,56	1006,26	59,15	426,66	435,0794615	Adjusted R Square	0,924701688							
19,89		68,08	1012,65	80,25	448,71	449,2110455	Standard Error	4,661807552							
19,31		43,56	1013,65	41,54	463,35	462,5110054	Observations	1913							
7,14		41,22	1016,6	97,09	435,58	478,4390046									
28,18		71,14	1011,56	48,03	432,72	437,205147	ANOVA								
26,08		57,32	1012,2	47,06	441,32	445,0241777		df	SS	MS	F	Significance F			
29,01		64,79	1017,62	44,31	442,12	438,2009395	Regression	4	510372,1383	127593	5871,083869	0			
21,84		58,86	1014,13	69,67	445,16	449,5338625	Residual	1908	41465,51393	21,73245					
16,82		49,15	1020,68	72,07	462,22	461,7554454	Total	1912	551837,6523						
29,03		67,79	1010,86	54,03	445,03	435,5171259									
14,78		41,17	1016,42	67,42	469,69	468,1717398		Coefficients	Standard Error	t Stat	P-value	Lower 95%	Upper 95%	ower 95,0%	lpper 95,0%
15,55		43,71	1024,34	79,61	465,14	464,7263451	Intercept	453,3625423	22,5194027	20,13209	6,80893E-82	409,1973076	497,5277771	409,1973	497,5278
30,22		70,32	1011,63	65,97	435,98	430,8561656	AT	-1,918531534	0,035213803	-54,4824	0	-1,987593129	-1,849469938	,	-1,84947
25,97		68,12	1013,11	61,97		440,2686972	V	-0,26095625	0,0167297	-	1,01462E-51	,	-0,228145827		-0,22815
19,21		53,16	1013,18	81,64	454,01		AP	0,062848982		,	0,004066167	0,019997871	0,105700093	,	0,1057
18,94		48,7	1007,82	92,88	453,36	453,9192798	RH	-0,147913081	0,009631665	-15,357	2,84476E-50	-0,166802781	-0,129023382	-0,1668	-0,12902

Final Model Evaluation

Used Set	R2 Value	RMSE Value
Model 1 Training	0,916	4,94
Model 1 Test	0,913	4,99
Model 2 Training	0,929	4,53
Model 2 Test	0,925	4,65

1.R2 Value:

- Model 2 performs slightly better than Model 1 on both the training and test sets based on R2 values.
- This suggests that Model 2 explains a larger proportion of the variance in the data compared to Model 1.

2. RMSE Value:

- Model 2 also has a lower RMSE value on both the training and test sets, indicating better predictive accuracy compared to Model 1.
- Lower RMSE values generally signify better model performance.

Summary

Results

Model 1: R2 value: 0,916, RMSE value: 4,94

Model 2: R2 value: 0,929, RMSE value: 4,53

Insights Gained

Based on the provided metrics, **Model 2 appears to be a better-performing model** compared to Model 1.

It exhibits **higher R2 values and lower RMSE values on both the training and test sets**, suggesting **better overall predictive performance** and a better fit to the data.

Furher Improvements

Enhancing the model's robustness can be achieved through additional data cleaning and testing.