STA 314: Statistical Methods for Machine Learning I

Lecture - Support Vector Machine

Xin Bing

Department of Statistical Sciences University of Toronto

Linear decision boundaries

In binary classification problems, we have seen examples of classifiers that use **linear decision** boundaries.

Logistic regression:

$$\log \frac{\mathbb{P}(Y=1 \mid X=\mathbf{x})}{\mathbb{P}(Y=0 \mid X=\mathbf{x})} = \beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x}.$$

Hence, $\mathbb{P}(Y = 1 \mid X = \mathbf{x}) \ge \mathbb{P}(Y = 0 \mid X = \mathbf{x})$ if and only if

$$\beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x} \ge 0.$$

The decision boundary is

$$\left\{ \mathbf{x} \in \mathbb{R}^p : \beta_0 + \boldsymbol{\beta}^{\mathsf{T}} \mathbf{x} = 0 \right\}.$$

Linear decision boundaries

LDA:

$$\delta_k(\mathbf{x}) = \mathbf{x}^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k - \frac{1}{2} \boldsymbol{\mu}_k^\top \boldsymbol{\Sigma}^{-1} \boldsymbol{\mu}_k + \log \pi_k, \quad \forall k \in \{0, 1\}.$$

Hence, $\delta_1(\mathbf{x}) \geq \delta_0(\mathbf{x})$ if and only if

$$\left(\mathbf{x} - \frac{u_0 + u_1}{2}\right)^{\top} \Sigma^{-1} (u_1 - u_0) + \log \frac{\pi_1}{\pi_0} \ge 0.$$

The decision boundary is

$$\left\{\mathbf{x} \in \mathbb{R}^p : \alpha_0 + \boldsymbol{\alpha}^\top \mathbf{x} = 0\right\}$$

for some α_0 and α .

A general formulation of linear classifiers

Binary classification: predicting a target with two values, $y \in \{-1, +1\}$, (notational change from the past).

Consider the linear decision boundary

$$\mathbf{w}^{\top} x + b = 0$$

for some weights $\mathbf{w} \in \mathbb{R}^p$ and $b \in \mathbb{R}$.

• A good decision boundary should satisfy: for a given point (x, y),

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b > 0$$
, if $y = 1$
 $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b < 0$, if $y = -1$.

Separating Hyperplanes

Suppose we are given these data points from two different classes and want to find a linear classifier that separates them.

Separating Hyperplanes

- ullet The decision boundary is a line in \mathbb{R}^2
- $\{\mathbf{x} \in \mathbb{R}^p : \mathbf{w}^\top \mathbf{x} + b = 0\}$ is a (p-1) dimensional space , a.k.a. hyperplane.

Simple Intuition and Potential Issues

To correctly classify all points we require that

$$sign(\mathbf{w}^{\top}\mathbf{x}_i + b) = y_i$$
 for all $i \in [n]$.

- We should find **w** and *b* to meet the above goal.
- However:
 - ▶ When the data is separable, there exists multiple solutions of **w** and *b*. Which to choose?
 - ▶ When the data is not separable, it is infeasible.

Separable Cases

• There are multiple separating hyperplanes, determined by different parameters (\mathbf{w}, b) .

Separable Cases

Optimal Separating Hyperplane

Optimal Separating Hyperplane: A hyperplane that separates two classes and maximizes the distance to the closest point from either class, i.e., maximize the **margin** of the classifier.

Intuitively, ensuring that a classifier is not too close to any data points leads to better generalization on the test data.

Geometry of Points and Planes

• Recall that the decision hyperplane is orthogonal (perpendicular) to \mathbf{w} . I.e., for any two points \mathbf{x}_1 and \mathbf{x}_2 on the decision hyperplane we have that $\mathbf{w}^{\top}(\mathbf{x}_1 - \mathbf{x}_2) = 0$.

Geometry of Points and Planes

- The vector $\mathbf{w}^* = \frac{\mathbf{w}}{\|\mathbf{w}\|_2}$ is a unit vector pointing in the same direction as \mathbf{w} .
- ullet The same hyperplane could equivalently be defined in terms of $ullet^*$.

Geometry of Points and Planes

• Question: how to compute the distance from a point \mathbf{x}' to the hyperplane $\{\mathbf{x}: b + \mathbf{w}^{\mathsf{T}}\mathbf{x} = 0\}.$

Distance to a Given Hyperplane

Fix the point \mathbf{x}' as well as \mathbf{w} and b which determine the hyperplane.

 \bullet Take the closest point \mathbf{x}_{proj} on the hyperplane, which satisfies

$$\mathbf{w}^{\mathsf{T}}\mathbf{x}_{\mathrm{proj}} + b = 0.$$

- We know that $\mathbf{x}' \mathbf{x}_{\text{proj}}$ is parallel to $\mathbf{w}^* = \mathbf{w}/||\mathbf{w}||_2$
- The distance is

$$||\mathbf{x}' - \mathbf{x}_{\text{proj}}||_{2} = \left| (\mathbf{x}' - \mathbf{x}_{\text{proj}})^{\top} \frac{\mathbf{w}}{||\mathbf{w}||_{2}} \right|$$
$$= \frac{\left| \mathbf{w}^{\top} \mathbf{x}' - \mathbf{w}^{\top} \mathbf{x}_{\text{proj}} \right|}{||\mathbf{w}||_{2}} = \frac{\left| \mathbf{w}^{\top} \mathbf{x}' + b \right|}{||\mathbf{w}||_{2}}$$

• Now consider the two parallel hyperplanes

$$\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = 1$$
 $\mathbf{w}^{\mathsf{T}}\mathbf{x} + b = -1$

• Using the distance formula, can see that **the margin** is $2/\|\mathbf{w}\|_2$.

Recall: to correctly classify all points we require that

$$sign(\mathbf{w}^{\top}\mathbf{x}_i + b) = y_i$$
 for all $i \in [n]$

• Let's impose a stronger requirement: correctly classify all points and prevent them from falling in the margin. For some M > 0,

$$\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b \ge M$$
 if $y_i = 1$ $\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b \le -M$ if $y_i = -1$

• This is equivalent to

$$y_i(\mathbf{w}^{\top}\mathbf{x}_i + b) \ge M$$
 for all $i \in [n]$

which we call the margin constraints.

• There might exist multiple (\mathbf{w}, b) satisfy the margin constraints. We want to pick the one that maximizes the width of the margin,

$$\frac{\left|\mathbf{x}^{\top}\mathbf{w} + b\right|}{\left|\left|\mathbf{w}\right|\right|_{2}} = \frac{M}{\left|\left|\mathbf{w}\right|\right|_{2}}.$$

• This leads to the max-margin objective:

$$\min_{\mathbf{w},b} \frac{\|\mathbf{w}\|_2^2}{M^2}$$
s.t. $y_i(\mathbf{w}^{\mathsf{T}}\mathbf{x}_i + b) \ge M$, for all $i = 1, ..., n$

W.l.o.g. we can set M = 1. (Why?)

Max-margin objective:

$$\min_{\mathbf{w},b} \|\mathbf{w}\|_{2}^{2}$$
s.t. $y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i} + b) \ge 1 \quad i = 1,...,n$

- Intuitively, if the margin constraint is not tight for x_i , we could remove x_i from the training set and the optimal hyperplane would be the same.¹
- The important training points are those with equality constraints, and are called **support vectors**.
- Hence, this algorithm is called the (hard-margin) Support Vector Machine (SVM). SVM-like algorithms are often called max-margin or large-margin.

¹This can be rigorously shown via the K.K.T. conditions.

Computation of the hard-margin SVM

Primal-formulation:

$$\min_{\mathbf{w},b} \|\mathbf{w}\|_{2}^{2}$$
s.t. $y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i} + b) \ge 1$ $i = 1, ..., n$

- Convex, in fact, a quadratic program. (Stochastic) Gradient descent can be directly used.
- In practice, it is more common to solve the optimization problem based on its dual formulation.²

²See the suggested reading.

Extension to Non-Separable Data Points

How can we apply the max-margin principle if the data are ${f not}$ linearly separable?

Soft-margin SVM

We introduce slack variables $\zeta = (\zeta_1, \dots, \zeta_n)$ and consider

$$\min_{\mathbf{w},b,\zeta} \|\mathbf{w}\|_{2}^{2}$$
s.t. $y_{i}(\mathbf{w}^{\top}\mathbf{x}_{i}+b) \geq 1-\zeta_{i}, \quad \zeta_{i} \geq 0, \text{ for all } i=1,\ldots,n$

$$\sum_{i=1}^{n} \zeta_{i} \leq K.$$

- Misclassification occurs if $\zeta_i > 1$.
- $\sum_{i=1}^{n} \zeta_i \le K$ restricts the total number of misclassified points less than K.
- $K \ge 0$ is a tuning parameter. K = 0 reduces to the hard-margin SVM.

Another interpretation of the soft-margin SVM

• Soft-margin SVM is equivalent to, for some C = C(K),

$$\min_{\mathbf{w},b,\zeta} \|\mathbf{w}\|_2^2 + C \sum_{i=1}^n \zeta_i$$

s.t. $y_i(\mathbf{w}^\top \mathbf{x}_i + b) \ge 1 - \zeta_i, \quad \zeta_i \ge 0, \quad i = 1, \dots, n.$

• This is further equivalent to

$$\min_{\mathbf{w},b,\zeta} \frac{1}{n} \sum_{i=1}^{n} \underbrace{\max \left\{0, 1 - y_i \left(\mathbf{w}^{\mathsf{T}} \mathbf{x}_i + b\right)\right\}}_{\text{hinge loss}} + \lambda \left\|\mathbf{w}\right\|_2^2$$

with $\lambda = 1/(nC)$. Hence, the soft-margin SVM can be seen as a linear classifier with the **hinge loss** and the ridge penalty.

Limitations of SVM

The classifier based on SVM is

$$sign(\hat{\mathbf{w}}^{\top}\mathbf{x} + \hat{b}).$$

Hence, SVM does not estimate the posterior probability.

- For multi-class classification problems,
 - It is non-trivial to generalize the notion of a margin to multiclass setting.
 - ▶ Many different proposals for multi-class SVMs. We discuss two commonly used ad-hoc approaches in the suggested reading material.

LDA vs SVM vs Logistic Regression (LR)

- In essence, SVM is more similar as LR than LDA. (LDA makes additional Gaussianity assumptions.)
- SVM does not estimate the conditional probabilities, such as $\mathbb{P}(Y = 1 \mid X)$, but LDA and LR do.
- When classes are (nearly) separable, SVM and LDA perform better than LR.
- When classes are non-separable, LR (with ridge penalty) and SVM are very similar.
- When Gaussianity can be justified, LDA has the best performance.
- SVM and LR are less used for multi-class classification problems.