

$\omega_{2}^{\#1} + \alpha \beta = \frac{3k^{2}r_{3}}{2} = 0$ $f_{2}^{\#1} + \alpha \beta = 0 = 0$ $\omega_{2}^{\#1} + \alpha \beta = 0 = 0$ Lagrangian density $\frac{2 + k \cdot \alpha' \cdot k \cdot k \cdot 1 \cdot k}{2 \cdot k \cdot 3 \cdot k \cdot 1 \cdot k \cdot 2}$	$\frac{3k^2r_3}{2}$ 0 0 gian de	nsity 0	0 0
$f_{2+}^{#1} \dagger^{\alpha\beta}$	0		0
$\omega_{2^{-}}^{#1} \dagger^{\alpha\beta\chi}$	0	0	0
Lagranç	gian de	nsity	
$\frac{\frac{2}{3}t_3 \ \omega_{\lambda}^{\alpha l} \ \omega_{\kappa \alpha}^{\kappa} - \frac{1}{2}r_3 \partial_{l} \omega_{\kappa}^{\kappa \lambda} \partial^{l} \omega_{\lambda}^{\alpha} - r_5 \partial_{l} \omega_{\kappa}^{\kappa \lambda} \partial^{l} \omega_{\lambda}^{\alpha} +}{\frac{2}{3}r_2 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} - \frac{1}{3}r_2 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\alpha \beta \theta} - \frac{2}{3}r_2 \partial_{\theta} \omega_{\alpha \beta}^{\kappa} \partial_{\kappa} \omega^{\theta \alpha \beta} +}$	$^{\prime\prime}$ $\omega_{\kappa\alpha}^{}$ $\partial_{\theta}\omega$	$\frac{1}{2}$ $r_3 \partial_{r} c$ $\kappa - \frac{1}{3} r_3 \partial_{r} c$	$\omega^{\kappa\lambda}_{\kappa}\partial'\omega_{\kappa}$
$\frac{1}{2} r_3 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} - r_5 \partial_{\alpha} \omega_{\lambda}^{\ \alpha}_{\ \theta} \partial_{\kappa} \omega^{\theta \kappa \lambda} - \frac{1}{2} r_3 \partial_{\theta} \omega_{\lambda}^{\ \alpha}_{\ \alpha} \partial_{\kappa} \omega^{\theta \kappa \lambda} +$	$\int_{\lambda}^{\alpha}{}_{\theta}\partial_{\kappa}\omega$	$\theta \kappa \lambda - r_5$	$\partial_{\alpha}\omega_{\lambda}^{\alpha}{}_{\theta}$
$r_5\partial_ heta\omega_{\lambdalpha}^{lpha}\partial_\kappa\omega^{ heta\kappa\lambda}_{\lambda}{}^{-rac{1}{2}}r_3\partial_lpha\omega_{\lambda}^{lpha}\partial_\kappa\omega^{\kappa\lambda heta}_{\lambda}{}^{-}r_5\partial_lpha\omega_{\lambda}^{lpha}\partial_\kappa\omega^{\kappa\lambda heta}_{\lambda}{}^{+}+$	$\alpha_{\alpha} \partial_{\kappa} \omega^{\theta_{\kappa}}$	$-\frac{1}{2}r_3$	$\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}$
$r_3 \partial_{\theta} \omega_{\lambda \alpha}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} + 2 r_5 \partial_{\theta} \omega_{\lambda \alpha}^{\ \alpha} \partial_{\kappa} \omega^{\kappa \lambda \theta} - \frac{2}{3} t_3 \omega_{\kappa \alpha}^{\ \alpha} \partial^{\kappa} f'_{\ \prime} -$	$\alpha_{\alpha} \partial_{\kappa} \omega^{\kappa \lambda}$	$^{0} + 2r_{5}$	$\partial_{\theta}\omega_{\lambda}^{\alpha}_{\alpha}$
$\frac{2}{3}t_3 \omega_{\kappa\lambda}^{ \lambda} \partial^{\kappa} f'_{\ \prime} - \frac{4}{3}t_3 \partial^{\alpha} f_{\kappa\alpha} \partial^{\kappa} f'_{\ \prime} + \frac{2}{3}t_3 \partial_{\kappa} f^{\lambda}_{\ \lambda} \partial^{\kappa} f'_{\ \prime} +$	$\lambda^{\lambda} \partial^{\kappa} f'_{,}$	$\frac{4}{3}t_3\partial^{\alpha}$	$f_{\kappa\alpha}\partial^{\kappa}f'$
$\frac{2}{3}t_3 \omega_{\alpha}^{\alpha} \partial^{\kappa} f'_{\kappa} + \frac{2}{3}t_3 \omega_{\lambda}^{\lambda} \partial^{\kappa} f'_{\kappa} + \frac{2}{3}t_3 \partial^{\alpha} f^{\lambda}_{\alpha} \partial^{\kappa} f_{\lambda\kappa} +$	$\alpha \partial^{\kappa} f'_{\kappa}$	$+\frac{2}{3}t_3$	$\sigma_{i\lambda}^{\lambda} \partial^{\kappa} f'$
$\frac{1}{3} r_2 \partial_{\kappa} \omega^{\alpha\beta\theta} \partial^{\kappa} \omega_{\alpha\beta\theta} + \frac{2}{3} r_2 \partial_{\kappa} \omega^{\theta\alpha\beta} \partial^{\kappa} \omega_{\alpha\beta\theta} - \frac{2}{3} r_2 \partial^{\beta} \omega_{\mu}^{\alpha\lambda} \partial_{\lambda} \omega_{\alpha\beta}^{\mu} +$	$\omega^{\alpha\beta\theta}$	$\alpha\beta\theta + \frac{2}{3}$	$r_2 \partial_{\kappa} \omega^{\theta}$
$\frac{2}{3}r_2\partial^{\beta}\omega_{,}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-4r_3\partial^{\beta}\omega_{,}^{\lambda\alpha}\partial_{\lambda}\omega_{\alpha\beta}^{\prime}-\frac{1}{2}r_3\partial_{\alpha}\omega_{\lambda}^{\alpha}_{\theta}\partial^{\lambda}\omega^{\theta\kappa}_{\kappa}+$	$\rho_{\lambda}^{\lambda\alpha}\partial_{\lambda}\omega_{\lambda}$	$\alpha \beta' - 4 r_3$	$\partial^{\beta}\omega_{i}^{\lambda\alpha}$
$r_{\varepsilon} \partial_{\omega} \omega_{\varepsilon}^{\alpha} \partial_{\omega}^{\lambda} \omega^{\theta \kappa} + \frac{1}{2} r_{\varepsilon} \partial_{\sigma} \omega_{\varepsilon}^{\alpha} \partial_{\omega}^{\lambda} \omega^{\theta \kappa} - r_{\varepsilon} \partial_{\sigma} \omega_{\varepsilon}^{\alpha} \partial_{\omega}^{\lambda} \omega^{\theta \kappa}$	$\alpha \partial^{\lambda} \omega^{\theta \kappa}$	+ 12	$\partial_{\alpha}\omega^{\alpha}$

Total #:	$\tau_{2+}^{\#1}{}^{\alpha\beta} == 0$	$\sigma_2^{\#1}{}^{\alpha\beta\chi} == 0$	$\sigma_{1+}^{\#2\alpha\beta} == 0$	$\tau_{1+}^{\#1}{}^{\alpha\beta} == 0$	$\tau_{1}^{\#1\alpha} == 0$	$\tau_{1}^{\#2\alpha} + 2ik \sigma_{1}^{\#2\alpha} == 0$	$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	$\tau_{0+}^{\#2} == 0$	SO(3) irreps	Source constraints
24	5	5	3	3	3	3	1	Н	#	

	$\sigma_{0^+}^{\sharp 1}$	$ au_{0}^{\#1}$	$ au_{0}^{\#2}$	$\sigma_0^{\#1}$
$\sigma_{0}^{\#1}$ †	$\frac{1}{(1+2k^2)^2t_3}$	$-\frac{i\sqrt{2} k}{(1+2k^2)^2 t_3}$	0	0
$\tau_{0}^{\#1}$ †	$\frac{i \sqrt{2} k}{(1+2k^2)^2 t_3}$	$\frac{2k^2}{(1+2k^2)^2t_3}$	0	0
$ au_{0}^{\#2}$ †	0	0	0	0
$\sigma_{0}^{\#1}$ †	0	0	0	$\frac{1}{k^2 r_2}$

 $\omega_{2}^{\#1}{}_{\alpha\beta} f_{2}^{\#1}{}_{\alpha\beta} \omega_{2}^{\#1}{}_{\alpha\beta\chi}$

$f_{1}^{#2} + \alpha$	$f_{1}^{#1} + \alpha$	$\omega_{1}^{#2} + \alpha$	$\omega_{1^{-}}^{*1} \dagger^{\alpha}$	$f_{1+}^{#1} \dagger^{\alpha\beta}$	$\omega_{1^+}^{\#2} \dagger^{\alpha\beta}$	$\omega_{1^+}^{*1} \dagger^{lphaeta}$	
0	0	0	0	0	0	$+^{\alpha\beta} k^2 (2 r_3 + r_5)$	$\omega_{1^{+}lphaeta}^{\#1}$
0	0	0	0	0	0	0	$\omega_{1+\alpha\beta}^{\#2} f_1^{\dagger}$
0	0	0	0	0	0	0	$f_{1+\alpha\beta}^{\#1}$
3 3		$-\frac{\sqrt{2} t_3}{3}$	$k^2 \left(\frac{r_3}{2} + r_5\right) + \frac{2t_3}{3}$	0	0	0	$\omega_{1^-lpha}^{\#1}$
$-\frac{1}{3}i\sqrt{2}kt_3$	0	3 <u>t</u> 3	$-\frac{\sqrt{2} t_3}{3}$	0	0	0	$\omega_{1^- \; lpha}^{\# 2}$
0	0	0	0	0	0	0	$f_{1^-\alpha}^{\#1}$
2 k² t3 3	0	$\frac{1}{3}\bar{l}\sqrt{2}kt_3$	$-\frac{2}{3}\overline{l}kt_3$	0	0	0	$f_{1^-\alpha}^{\#2}$

	$\omega_{0}^{\sharp 1}$	$f_{0+}^{\#1}$	$f_{0}^{#2}$	$\omega_0^{\#1}$
$\omega_{0^+}^{\#1}\dagger$	t_3	$-i \sqrt{2} kt_3$	0	0
$f_{0^{+}}^{#1}\dagger$	$i \sqrt{2} kt_3$	$2k^2t_3$	0	0
$f_{0^{+}}^{#2}$ †	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2$

Unitarity conditions

 $r_3 < 0 \&\& (r_5 < -\frac{r_3}{2} || r_5 > -2 r_3) || r_3 > 0 \&\& -2 r_3 < r_5 < -\frac{r_3}{2}$

(No massive particles)