

MISCELLANEOUS / CALCULATION DCS Manual				
Document Title				
Department	Production Revision No. Document No. Page			
Section	Process AB	01	TNU 200 402 (42)	1 of 14
Area	Common	01	TNH-200-103 (12)	1 01 14

	HISTORY of REVISION						
Rev. No.	Effective Date	Revised Page (s)	Description	Prepared by	Checked by	Noted by	Approved by
01			New	DJN	НМ	ON	НО

Prepared by	Checked by	Noted by	Approved by
Dexter J. Navales	Hiroyuki Mitsui	Osamu Nakai	Hirohisa Oda
Date:	Date:	Date:	Date:

IMPORTANT:

THIS COVER SHEET FORM IS PART OF THE FOLLOWING DOC SHEETS AND IS NOT TO BE DISCARDED UNLESS SUPERCEDE BY A REVISED ISSUE. UNAUTHORIZED REPRODUCTION IS STRICTLY PROHIBITED.

Document Title				
Rev No. Doc No. Page				
01	TNH-200-103 (12)	2 of 14		

CONTENTS

I.		Description	
II.		nt Monitoring Items	
		llers' Description	
		nents' Description	
	1)	101FI008: Ore Thickener Total Flocculant Flowrate	
	2)	101/201XI001: 101TH01 Density	
	3)	102LI001B: 102TK01 and 202TK01 Total Volume	
	4)	102/202FI002: Feed Slurry Flowrate to 102HX02	
	5)	102/202FI038: Water Feed Flowrate to 102SR01	
	6)	102/202FI041: Total Acid Flowrate	
	7)	102/202FI070: 102/202PU07A Calculated Flowrate	5
	8)	102/202FI071: 102/202PU07B Calculated Flowrate	5
	9)	102/202PDI051: LT Heater Differential Pressure	5
	10)	102/202PDI052: MT Heater Differential Pressure	
	11)	102/202PDI055: HT Heater Differential Pressure	
	12)	102/202PDI090: LT Heater – LP Flash Differential Pressure	
		102/202PDI091: MT Heater – MP Flash Differential Pressure	
		102/202PDI092: HT Heater – HP Flash Differential Pressure	
	15)	102/202PDI057A: 102/202PT010/023 (AC COMP. 1A) Differential Pressure	
	16)	102/202PDI057B: 102/202PT010/037 (AC COMP. 1B) Differential Pressure	7
	17)	102/202PDI078: HP Air Injection Differential Pressure	
	18)	102/202PDIC056: 102/202PY007/PT010 Differential Pressure	
	19)	102/202TY030: 102/202TI006 – 102 Autoclave Average Temperature	
	20)	102/202TDY006: 102/202AC01 COMP. #1 Heating Rate	
	20)	102/202TDY007: 102/202AC01 COMP. #1 Fleating Rate	/
		102/202TDY000: 102/202AC01 COMP. #2 Heating Rate	٥
	22)	102/202TDY008: 102/202AC01 COMP. #3 Heating Rate	
	23)	102/202TDY009: 102/202AC01 COMP. #4 Heating Rate	8
	24)	102/202TDY010: 102/202AC01 COMP. #5 Heating Rate	
	25)	102/202TDY011: 102/202AC01 COMP. #6 Heating Rate	8
	26)	102/202TDY012: 102/202AC01 COMP. #7 Heating Rate	9
	27)	102/202TDI026: 102/202AC01 Skin Temperature Difference	9
	28)	102/202TDI027: LT Heater Approach Temperature	
	29)	102/202TDI028: MT Heater Approach Temperature	9
	30)	102/202TDI029: HT Heater Approach Temperature	
	31)	103FI500: CCD Input Total Flowrate	
	32)	103FI501: CCD Output Total Flowrate	
	33)	104FI002: Coagulant Flowrate to 104TK02	
	34)	104FIC006: Pregnant Liquor Flowrate to 105TK01	
	35)	104Fl201: 104VP01AB- Coagulant Flowrate	
	36)		
	37)	106FQ033: Fresh H2S Gas Volume to MS	11
	38)	106PDI100: 106VE01-106VE02 Differential Pressure	11
	39)	106PDI101: 106VE02-106VE03 Differential Pressure	11
	40)	106PDI102: 106VE03-106VE04 Differential Pressure	11
	41)	108FI202: 108PU02/03/04/05AB Total Flowrate	11
	42)	112FI004: Slaked Lime Flowrate to FNTRL	12
	43)	114FI004: Total Flocculant Flowrate	12
	44)	103FI068: CCD Total Flocculant Flowrate	
	3. Motors	S	
		ed Valves	
		es	
III.		s/Controls	
IV.		Sequences	
V.		00qu011000	
••			. •

Document Title				
Rev No.	Doc No.	Page		
01	TNH-200-103 (12)	3 of 14		

VI.	DCS Emergency Shutdown	13
VII.	Trend Graphs Grouping	13
	nex 1: MISCELLANEOUS CALCULATION DCS Graphics	

Document Title					
Rev No. Doc No. Page					
01	TNH-200-103 (12)	4 of 14			

I. General Description

This graphics screen shows tabulations of calculated values which are used as monitoring items for the operation of the Plant. Calculated values involve in the operations are mostly flow totalizers, differential pressure (PDI), average temperature and differential temperature (TDI) and others such as calculated density and heating rate. Refer to **Annex 1** for MISCELLANEOUS CALCULATION screen.

For the purpose and availability of calculated values, refer to the items corresponding manuals.

This screen has a shortcut link button to Graphics Overview for easy access to other screens.

II. Important Monitoring Items

1. Controllers' Description None

2. Instruments' Description

1) 101Fl008: Ore Thickener Total Flocculant Flowrate

This volumetric flow indicator monitors the total flocculant consumption of the Ore Preparation 101 and 201. This indicator is a totalizer for the flocculant consumption of 101TH01 and 201TH01.

 $101FI008 [m^3/h] = 101FIC007 + 201FIC007 [m^3/h]$

(Operating Range: TBD m³/h; Normal: TBD m³/h)

2) 101/201XI001: 101TH01 Density

This density indicator monitors the calculated density of 101/201TH01 slurry which is based on manually measured height of water phase (Hw). This indicator is calculated using the following equation:

$$(101/201PIC001 [kPag] \times 1000) - (Dw [kg/m3] \times g [m/s^2] \times Hw [m])$$

$$(g [m/s^2] \times Hs [m])$$

Refer to *TNH-201-103* (2) *ORE SLURRY THICKENING DCS Manual* for the discussion of the complex loop calculation for 101/201XI001.

(Operating Range: TBD kg/m³; Normal: TBD kg/m³)

3) 102LI001B: 102TK01 and 202TK01 Total Volume

This indicator is a totalizer of the individual volume of 102TK01 and 202TK01. This indicator is calculated using the following equation:

 $102LI001B [m^3] = 102LI001A + 202LI001A [m^3]$

(Operating Range: TBD m³; Normal: TBD m³)

Document Title					
Rev No. Doc No. Page					
01	TNH-200-103 (12)	5 of 14			

4) 102/202FI002: Feed Slurry Flowrate to 102HX02

This flow indicator is an electromagnetic type that monitors the flow rate of ore slurry to 102/202HX02.

(Operating Range: TBD m³/h; Normal: TBD m³/h)

5) 102/202FI038: Water Feed Flowrate to 102SR01

This flow indicator is an electromagnetic type that monitors the flow rate of clarified water to 102/202SR01.

(Operating Range: TBD m³/h; Normal: TBD m³/h)

6) 102/202FI041: Total Acid Flowrate

This volumetric flow indicator monitors the sulfuric acid feed going to HPAL 102/202. This indicator is a totalizer for the sulfuric acid feed to 102/202AC01 Comp.1A and 102/202AC01 Comp.1B.

 $102/202FI041 [m^3/h] = 102/202FI007 + 102/202FI039 [m^3/h]$

(Operating Range: TBD m³/h; Normal: 51.9 m³/h)

7) 102/202FI070: 102/202PU07A Calculated Flowrate

This calculated flow indicator monitors the HPAL feed slurry flow rate from 102/202PU07A to 102/202AC01. This indicator is calculated using the following equation:

102/202FI070 [m 3 /h] = 102/202SI001 [rpm] x K [m 3 /h-rpm] where, K = 6.642 m 3 /h-rpm

(Operating Range: TBD m³/h; Normal: TBD m³/h)

8) 102/202FI071: 102/202PU07B Calculated Flowrate

This calculated flow indicator monitors the HPAL feed slurry flow rate from 102/202PU07B to 102/202AC01. This indicator is calculated using the following equation:

102/202FI071 [m 3 /h] = 102/202SI002 [rpm] x K [m 3 /h-rpm] where, K = 6.642 m 3 /h-rpm

(Operating Range: TBD m³/h; Normal: TBD m³/h)

9) 102/202PDI051: LT Heater Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202PU32AB discharge pressure and 102/202HX01 pressure or 102/202VE03 pressure (whichever is selected in 102/202HX01 Selector Switch). This indicator is calculated using the following equation:

102/202PDI051 [kPa] = 102/202PI001 [kPag] – 102/202PI002 [kPag]

102/202PDI051 [kPa] = 102/202PI001 [kPag] - 102/202PI021 [kPag]

(Operating Range: H = 50kPa; HH = 500 kPa; Normal: TBD kPa)

Document Title				
Rev No. Doc No. Page				
01	TNH-200-103 (12)	6 of 14		

10) 102/202PDI052: MT Heater Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202PU03AB discharge pressure and 102/202HX02 pressure or 102/202VE02 pressure (whichever is selected in 102/202HX02 Vent Control Selector Switch). This indicator is calculated using the following equation:

102PDI052 [kPa] = 102/202PI003 [kPag] – 102/202PIC004 [kPag] or 102/202PDI052 [kPa] = 102/202PI003 [kPag] – 102/202PIC019 [kPag]

(Operating Range: H = 90kPa; HH = 500 kPa; Normal: TBD kPa)

11) 102/202PDI055: HT Heater Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202PU06AB discharge pressure and 102/202HX03 pressure or 102/202VE01 pressure (whichever is selected in 102/202HX03 Vent Control Selector Switch). This indicator is calculated using the following equation:

102/202PDI055 [kPa] = 102/202PI005 [kPag] – 102/202PIC006 [kPag] or 102/202PDI055 [kPa] = 102/202PI005 [kPag] – 102/202PIC017 [kPag]

(Operating Range: H = 50 kPa; HH = 500 kPa; Normal: TBD kPa)

12) 102/202PDI090: LT Heater - LP Flash Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202VE03 pressure and 102/202HX01 pressure. This indicator is calculated using the following equation:

102/202PDI090 [kPa] = 102/202PI021 [kPag] - 102/202PI002 [kPag]

(Operating Range: H = 100 kPa; Normal: TBD kPa)

13) 102/202PDI091: MT Heater - MP Flash Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202VE02 pressure and 102/202HX02 pressure. This indicator is calculated using the following equation:

102/202PDI091 [kPa] = 102/202PIC019 [kPag] - 102/202PIC004 [kPag]

(Operating Range: H = 100 kPa; Normal: TBD kPa)

14) 102/202PDI092: HT Heater - HP Flash Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202VE01 pressure and 102/202HX03 pressure. This indicator is calculated using the following equation:

102/202PDI092 [kPa] = 102/202PIC017 [kPag] - 102/202PIC006 [kPag]

(Operating Range: H = 100 kPa; Normal: TBD kPa)

Document Title				
Rev No. Doc No. Page				
01	TNH-200-103 (12)	7 of 14		

15) 102/202PDI057A: 102/202PT010/023 (AC COMP. 1A) Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202PI023 (102PU10AB discharge pressure to 102AC01 COMP. 1A) and 102/202PI010 (102/202AC01 vent pressure). This indicator is calculated using the following equation:

102/202PDI057A [kPa] = 102/202PI023 [kPag] - 102/202PI010 [kPag]

(Operating Range: L = 80 kPa; Normal: TBD kPa)

16) 102/202PDI057B: 102/202PT010/037 (AC COMP. 1B) Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202PI037 (102PU10AB discharge pressure to 102AC01 COMP. 1B) and 102/202PI010 (102/202AC01 vent pressure). This indicator is calculated using the following equation:

102/202PDI057B [kPa] = 102/202PI037 [kPag] - 102/202PI010 [kPag]

(Operating Range: L = 80 kPa; Normal: TBD kPa)

17) 102/202PDI078: HP Air Injection Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202Pl033 (HP Air pressure to 102AC01) and 102/202Pl010 (102/202AC01 vent pressure). This indicator is calculated using the following equation:

102/202PDI078 [kPa] = 102/202PI033 [kPag] - 102/202PI010 [kPag]

(Operating Range: TBD kPa; Normal: TBD kPa)

18) 102/202PDIC056: 102/202PY007/PT010 Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 102/202PI010 (102/202AC01 vent pressure) and 102/202PY007 (saturated steam pressure in 102AC01). This indicator is calculated using the following equation:

102/202PDIC056 = 102/202PI010 - 102/202PY007 (Operating Range: -100 - 700 kPa; Normal: TBD kPa)

19) 102/202TY030: 102/202TI006 - 102 Autoclave Average Temperature

This calculated temperature indicator measures the average temperature inside 102/202AC01. This indicator is calculated using the following equation:

102/202TY030 [°C] = (102/202TI006 [°C] + 102/202TI007 [°C] + 102/202TI008 [°C] + 102/202TI010 [°C] + 102/202TI011 [°C] + 102/202TI012 [°C]) / 7

(Operating Range: TBD °C; Normal: TBD °C)

20) 102/202TDY006: 102/202AC01 COMP. #1 Heating Rate

This calculated heating rate indicator measures the change in temperature per unit time inside 102/202AC01 Comp. #1. This indicator is calculated using the following equation:

Document Title		
Rev No.	Doc No.	Page
01	TNH-200-103 (12)	8 of 14

(Operating Range: TBD °C/h; Normal: TBD °C/h)

21) 102/202TDY007: 102/202AC01 COMP. #2 Heating Rate

This calculated heating rate indicator measures the change in temperature per unit time inside 102/202AC01 Comp. #2. This indicator is calculated using the following equation:

(Operating Range: TBD °C/h; Normal: TBD °C/h)

22) 102/202TDY008: 102/202AC01 COMP. #3 Heating Rate

This calculated heating rate indicator measures the change in temperature per unit time inside 102/202AC01 Comp. #3. This indicator is calculated using the following equation:

$$(102/202TI008_{Newest} [^{\circ}C] - 102/202TI008_{Oldest} [^{\circ}C])$$

$$102/202TDY008 [^{\circ}C/h] = -----x 60 [min /h]$$

$$X [min]$$

(Operating Range: TBD °C/h; Normal: TBD °C/h)

23) 102/202TDY009: 102/202AC01 COMP. #4 Heating Rate

This calculated heating rate indicator measures the change in temperature per unit time inside 102/202AC01 Comp. #4. This indicator is calculated using the following equation:

$$(102/202TI009_{Newest} \ [^{\circ}C\] - 102/202TI009_{Oldest} \ [^{\circ}C\])$$

$$102/202TDY009 \ [^{\circ}C/h\] = ----- x \ 60 \ [min/h]$$

$$X \ [min]$$

(Operating Range: TBD °C/h; Normal: TBD °C/h)

24) 102/202TDY010: 102/202AC01 COMP. #5 Heating Rate

This calculated heating rate indicator measures the change in temperature per unit time inside 102/202AC01 Comp. #5. This indicator is calculated using the following equation:

$$(102/202TI010_{Newest} \ [^{\circ}C\] - 102/202TI010_{Oldest} \ [^{\circ}C\])$$

$$102/202TDY010 \ [^{\circ}C\ /h] = ----- x \ 60 \ [min/h]$$

$$X \ [min]$$

(Operating Range: -400 – 400 °C/h; Normal: TBD °C/h)

25) 102/202TDY011: 102/202AC01 COMP. #6 Heating Rate

This calculated heating rate indicator measures the change in temperature per unit time inside 102/202AC01 Comp. #6. This indicator is calculated using the following equation:

Document Title			
Rev No.	Doc No.	Page	
01	TNH-200-103 (12)	9 of 14	

(Operating Range: TBD °C/h; Normal: TBD °C/h)

26) 102/202TDY012: 102/202AC01 COMP. #7 Heating Rate

This calculated heating rate indicator measures the change in temperature per unit time inside 102/202AC01 Comp. #7. This indicator is calculated using the following equation:

(Operating Range: TBD °C/h; Normal: TBD °C/h)

27) 102/202TDI026: 102/202AC01 Skin Temperature Difference

This calculated temperature difference indicator measures the skin temperature difference at 102/202AC01 Comp. #1 and 102/202AC01 Comp. #2. This indicator is calculated using the following equation:

 $102/202TDI026 [^{\circ}C] = 102/202TI013 [^{\circ}C] - 102/202TI014 [^{\circ}C]$

(Operating Range: TBD °C; Normal: TBD °C)

28) 102/202TDI027: LT Heater Approach Temperature

This calculated temperature difference indicator measures the temperature difference of steam going in 102/202HX01 and heated slurry going out of 102/202HX01. This indicator is calculated using the following equation:

(Operating Range: TBD °C; Normal: 6 °C)

29) 102/202TDI028: MT Heater Approach Temperature

This calculated temperature difference indicator measures the temperature difference of steam going in 102/202HX02 and heated slurry going out of 102/202HX02. This indicator is calculated using the following equation:

$$102/202TDI027 [^{\circ}C] = 102/202TI104 [^{\circ}C] - 102/202TI103 [^{\circ}C]$$

(Operating Range: TBD °C; Normal: 8 °C)

30) 102/202TDI029: HT Heater Approach Temperature

This calculated temperature difference indicator measures the temperature difference of steam going in 102/202HX03 and heated slurry going out of 102/202HX03. This indicator is calculated using the following equation:

102/202TDI027 [°C] = 102/202TI106 [°C] - 102/202TI105 [°C]

Document Title		
Rev No.	Doc No.	Page
01	TNH-200-103 (12)	10 of 14

(Operating Range: TBD °C; Normal: 8 °C)

31) 103FI500: CCD Input Total Flowrate

This volumetric flow indicator monitors the total flow input of materials into the CCD circuit. This indicator is a totalizer of the pregnant liquor flow from PNTRL, barren liquor flow from MS, total flocculant flow and NTRL underflow slurry. This indicator is calculated using the following equation:

103FI500 [
$$m^3/h$$
] = 103FIC001 [m^3/h] + 103FIC020 [m^3/h] + 103FI068 [m^3/h] + 104FIC004 [m^3/h]

(Operating Range: TBD m³/h; Normal: 2214.3 m³/h)

32) 103FI501: CCD Output Total Flowrate

This volumetric flow indicator monitors the total flow output of materials from the CCD circuit. This indicator is a totalizer of the pregnant liquor flow from CCD-4, CCD-9 underflow slurry to FNTRL and CCD-5 underflow seed slurry to NTRL. This indicator is calculated using the following equation:

$$103FI501 \text{ [m}^3\text{/h]} = 103FIC003 \text{ [m}^3\text{/h]} + 103FIC021 \text{ [m}^3\text{/h]} + 103FIC009 \text{ [m}^3\text{/h]}$$

(Operating Range: TBD m³/h; Normal: 2342.5 m³/h)

33) 104FI002: Coagulant Flowrate to 104TK02

This flow indicator is an electromagnetic type that monitors the flow rate of coagulant to 104TK02.

(Operating Range: L = 0.55 m³/h; Normal: TBD m³/h)

34) 104FIC006: Pregnant Liquor Flowrate to 105TK01

This flow indicator is an electromagnetic type that monitors the flow rate of pregnant liquor to 105TK01.

(Operating Range: $L = 873 \text{ m}^3/\text{h}$; $H = 1662 \text{ m}^3/\text{h}$; Normal: TBD m^3/h)

35) 104FI201: 104VP01AB- Coagulant Flowrate

This volumetric flow indicator monitors the flow of coagulant form 104VP01AB less the dilution water. This indicator is calculated using the following equation:

$$104FI201 [m^3/h] = 104FI002 [m^3/h] - 104FI001 [m^3/h]$$

(Operating Range: TBD m³/h; Normal: TBD m³/h)

36) 106FI043: Fresh H2S Gas Flowrate to MS

This volumetric flow indicator monitors the total fresh H2S gas flow to the MS reactors. This indicator is a totalizer of H2S gas flow to 106VE01, 106VE02, 106VE03 and 106VE04.

Document Title			
Rev No.	Doc No.	Page	
01	TNH-200-103 (12)	11 of 14	

 $106FI043 [Nm^3/h] = 106FIC001 [Nm^3/h] + 106FIC231 [Nm^3/h] + 106FIC097 [Nm^3/h] + 106FIC911 [Nm^3/h]$

(Operating Range: TBD Nm³/h; Normal: 2138 Nm³/h)

37) 106FQ033: Fresh H2S Gas Volume to MS

This indicator monitors the total amount/volume of fresh H2S gas to the MS reactors. This indicator is a totalizer of H2S gas volume to 106VE01, 106VE02, 106VE03 and 106VE04.

 $106FQ033 [Nm^3] = 106FQ001 [Nm^3] + 106FQ231 [Nm^3] + 106FQ097 [Nm^3] + 106FQ911 [Nm^3]$

(Operating Range: TBD Nm³; Normal: TBD Nm³)

38) 106PDI100: 106VE01-106VE02 Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 106VE01 pressure and 106VE02 pressure. This indicator is calculated using the following equation:

106PDI100 [kPa] = 106PI002 [kPag] - 106PI003 [kPag]

(Operating Range: TBD kPa; Normal: 15 kPa)

39) 106PDI101: 106VE02-106VE03 Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 106VE02 pressure and 106VE03 pressure. This indicator is calculated using the following equation:

106PDI101 [kPa] = 106PI003 [kPag] - 106PI004 [kPag]

(Operating Range: TBD kPa; Normal: 15 kPa)

40) 106PDI102: 106VE03-106VE04 Differential Pressure

This calculated differential pressure indicator measures the pressure difference of 106VE03 pressure and 106VE04 pressure. This indicator is calculated using the following equation:

106PDI101 [kPa] = 106PI004 [kPag] - 106PIC005 [kPag]

(Operating Range: TBD kPa; Normal: 15 kPa)

41) 108FI202: 108PU02/03/04/05AB Total Flowrate

This calculated flow indicator measures the total flow rate of effluent slurry from FNTRL to Tailings Dam and 106TK14. This indicator is calculated using the following equation:

 $108FI202 [m^3/h] = 524FI008 [m^3/h] + 108FI007 [m^3/h]$

(Operating Range: TBD m³/h; Normal: 901 m³/h)

Document Title			
Rev No.	Doc No.	Page	
01	TNH-200-103 (12)	12 of 14	

42) 112FI004: Slaked Lime Flowrate to FNTRL

This calculated flow indicator measures the flow rate of slaked lime to FNTRL. This indicator is calculated using the following equation:

 $112FI004 [m^3/h] = 112FI012 [m^3/h] - 112FI013 [m^3/h]$

(Operating Range: TBD m³/h; Normal: 51.4 m³/h)

43) 114FI004: Total Flocculant Flowrate

This calculated flow indicator measures the total flow rate of flocculant to the Plant. This indicator is a totalizer of the total flocculant flow to Ore Prep. 101/201, total flocculant flow to CCD circuit, flocculant flow to NTRL and flocculant flow to MS. This indicator is calculated using the following equation:

$$114FI004 [m^3/h] = 101FI008 [m^3/h] + 103FI068 [m^3/h] + 104FIC007 [m^3/h] + 106FIC007 [m^3/h]$$

(Operating Range: TBD m³/h; Normal: 80.1 m³/h)

44) 103FI068: CCD Total Flocculant Flowrate

This calculated flow indicator measures the total flow rate of flocculant to the CCD thickeners. This indicator is a totalizer for the flocculant consumption of 103TH04/05/06/07/08/09. This indicator is calculated using the following equation:

103Fl068 [
$$m^3/h$$
] = 103FlC014 [m^3/h] + 103FlC015 [m^3/h] + 103FlC016 [m^3/h] + 103FlC017 [m^3/h] + 103FlC018 [m^3/h] + 103FlC019 [m^3/h]

(Operating Range: TBD m³/h; Normal: 40.5 m³/h)

3. Motors

None

4. Actuated Valves

None

5. Switches

None

III. Interlocks/Controls

None

IV. Control Sequences

None

MISCELLANEOUS	/ CALCIII	ATION DOS Man	ııəl
MISCELLANEOUS	/ CALCUI	LATION DUS MAII	uai

Document Title			
Rev No.	Doc No.	Page	
01	TNH-200-103 (12)	13 of 14	

V. Alarms

None

VI. DCS Emergency Shutdown

None

VII. Trend Graphs Grouping

None

Document Title		
Rev No.	Doc No.	Page No.
01	TNH-200-103 (12)	14 of 14

Annex 1: MISCELLANEOUS CALCULATION DCS Graphics

