

Machine Learning Systems Design

Lecture 15: ML Infrastructure & Platform

Dr. José Ramón Iglesias

DSP-ASIC BUILDER GROUP Director Semillero TRIAC Ingenieria Electronica Universidad Popular del Cesar

What does infrastructure mean?

ML systems are complex

- More components
 - A request might jump 20-30 hops before response
 - A problem occurs, but where?

ML App Logics

More complex systems, better infrastructure needed

- Infrastructure: the set of fundamental facilities and systems that support the sustainable functionality of households and firms.
- ML infrastructure: the set of fundamental facilities that support the development and maintenance of ML systems.

Infra / Investment Required

One simple ML apps Multiple common apps

Serving millions requests/hr

Production Scale

di

Infra Investment Required Highly specialized infra

One simple ML apps Multiple common apps

Serving millions requests/hr

Production Scale

Investment Highly specialized Required infra 63K requests/sec 234M requests/hr Generalized Vast majority of apps (reasonable scale) No infra needed Production Multiple One simple Serving millions Scale ML apps requests/hr common apps

Amount of data the largest ML model handles

Infrastructure Layers

More commoditized Development Environment e.g. IDE, git, CI/CD

ML Platform e.g. model store, monitoring

Resource management e.g. workflow orchestrator

Storage & Compute Layer e.g. AWS EC2/S3, GCP, Snowflake

More important to data scientists

Infrastructure Layers

Development Environment e.g. IDE, git, CI/CD ML Platform e.g. model store, monitoring More important to More data scientists commoditized Resource management e.g. workflow orchestrator Storage & Compute Layer e.g. AWS EC2/S3, GCP, Snowflake

Storage & Compute Layer

Storage

- Where data is collected and stored
- Simplest form: HDD, SSD
- More complex forms: data lake, data warehouse
- Examples: S3, Redshift, Snowflake, BigQuery

See Lecture 2

Part 2. Data Systems Fundamentals

Data Sources

Data Formats

JSON

Row-major vs. Column-major Format

Text vs. Binary Format

Data Models

Relational Model

NoSOL

Document Model

Graph Model

Structured vs. Unstructured Data

Data Storage Engines and Processing

Transactional and Analytical Processing ETL: Extract, Transform, Load

ETL: Extract, Transform, Load

ETL to ELT

Storage: heavily commoditized

- Most companies use storage provided by other companies (e.g. cloud)
- Storage has become so cheap that most companies just store everything

Compute layer: engine to execute your jobs

- Compute resources a company has access to
- Mechanism to determine how these resources can be used

Compute layer: engine to execute jobs

- Simplest form: a single CPU/GPU core
- Most common form: cloud compute

Compute unit

- Compute layer can be sliced into smaller compute units to be used concurrently
 - A CPU core might support 2 concurrent threads, each thread is used as a compute unit to execute its own job
 - Multiple CPUs can be joined to form a large compute unit to execute a large job

Compute unit

- Compute layer can be sliced into smaller compute units to be used concurrently
 - A CPU core might support 2 concurrent threads, each thread is used as a compute unit to execute its own job
 - Multiple CPUs can be joined to form a large compute unit to execute a large job

Unit: job

Unit: pod Wrapper around container

Compute layer: how to execute jobs

- 1. Load data into memory
- 2. Perform operations on that data
 - a. Operations: add, subtract, multiply, convolution, etc.

To add arrays A and B

- 1. Load A & B into memory
- 2. Perform addition on A and B

Compute layer: how to execute jobs

- 1. Load data into memory
- 2. Perform operations on that data
 - a. Operations: add, subtract, multiply, convolution, etc.

If A & B don't fit into memory, it'll be possible to do the ops without out-of-memory algorithms

To add arrays A and B

- 1. Load A & B into memory
- 2. Perform addition on A and B

Compute layer: how to execute jobs

- 1. Load data into memory
- 2. Perform operations on that data
 - a. Operations: add, subtract, multiply, convolution, etc.

To add arrays A and B

- 1. Load A & B into memory
- 2. Perform addition on A and B

Important metrics of compute layer:

- 1. Memory
- 2. Speed of computing ops

Compute layer: memory

- Amount of memory
 - Straightforward
 - An instance with 8GB of memory is more expensive than an instance with 2GB of memory

Compute layer: memory

- Amount of memory
- I/O bandwidth: speed at which data can be loaded into memory

Compute layer: speed of ops

- Most common metric: FLOPS
 - Floating Point Operations Per Second

"A Cloud TPU v2 can perform up to 180 teraflops, and the TPU v3 up to 420 teraflops."

- Google, 2021

Compute layer: speed of ops

- Most common metric: FLOPS
- Contentious
 - What exactly is an ops?
 - If 2 ops are fused together, is it 1 or 2 ops?
 - Peak perf at 1 teraFLOPS doesn't mean your app will run at 1 teraFLOPS

Compute layer: utilization

Utilization = actual FLOPS / peak FLOPS

If peak 1 trillion FLOPS but job runs 300 billion FLOPS
-> utilization = 0.3

Compute layer: utilization

Utilization = actual FLOPS / peak FLOPS

Dependent on how fast data can be loaded into memory

Tensor Cores are very fast. So fast ... that they are idle most of the time as **they** are waiting for memory to arrive from global memory.

For example, during BERT Large training, which uses huge matrices — the larger, the better for Tensor Cores — **we have utilization of about 30%**.

- Tim Dettmers, 2020

Compute layer: if not FLOPS, then what?

Compute layer: if not FLOPS, then what?

- How long it will take this compute unit to do common workloads
- MLPerf measure hardware on common ML tasks e.g.
 - Train a ResNet-50 model on the ImageNet dataset
 - Use a BERT-large model to generate predictions for the SQuAD dataset

MLPerf is also contentious

Google Sets Six Large Scale Training Performance Records in MLPerf v0.7

Higher is better; results are normalized to fastest non-Google submission

Compute layer: evaluation

- Memory
- Cores
- I/O bandwidth
- Cost

Some GPU instances on AWS

Instance	GPUs	vCPU	Mem (GiB)	GPU Mem (GiB)
p3.2xlarge	1	8	61	16
p3.8xlarge	4	32	244	64
p3.16xlarge	8	64	488	128
p3dn.24xlarge	8	96	768	256

Some TPU instances on GCP

TPU type (v2)	v2 cores	Total memory
v2-8	8	64 GiB
TPU type (v3)	v3 cores	Total memory
v3-8	8	128 GiB

Public Cloud vs. Private Data Centers

Like storage, compute is largely commoditized

Benefits of cloud

- Easy to get started
- Appealing to variable-sized workloads
 - o Private: would need 100 machines upfront, most will be idle most of the time
 - Cloud: pay for 100 machines only when needed

Benefits of cloud

- Easy to get started
- Appealing to variable-sized workloads
 - Private: would need 100 machines upfront, most will be idle most of the time
 - Cloud: pay for 100 machines only when needed

Drawbacks of cloud: cost

Cloud spending: ~50% cost of revenue

Estimated Annualized Committed Cloud Spend as % of Cost of Revenue

Drawbacks of cloud: cost

"Across 50 of the top public software companies currently utilizing cloud infrastructure, an **estimated \$100B** of market value is being lost ... due to cloud impact on margins — relative to running the infrastructure themselves."

The Cost of Cloud, a Trillion Dollar Paradox | Andreessen Horowitz (2021)

Cloud repatriation

Process of moving workloads from cloud to private data centers

Dropbox Infrastructure Optimization Initiative Impact

	2015	2016	2017		
Revenue	\$604	\$845	\$1,107		
Annual Growth Rate		40%	31%		
Infrastructure Optimization Cumulative Net Savings	N/A	40	75	4	A large ch
Cost of Revenue	407	391	369		due to clo
Gross Profit	\$196	\$454	\$738		repatriation
Gross Margin	33%	54%	67%		
Free Cash Flow	(\$64)	\$137	\$305		
Incremental Margin vs. 2015 (% Pt)		+21%	+34%		

Source: Dropbox S-1, a16z analysis

Multicloud strategy

- To optimize cost
- To avoid cloud vendor lock-in

"81% of respondents said they are working with two or more providers"

- Gartner (2019)

- Text editors & notebooks
 - Where you write code, e.g. VSCode, Vim

- Notebook: Jupyter notebooks, Colab
 - Also works with arbitrary artifacts that aren't code (e.g. images, plots, tabular data)
 - Stateful
 - Only need to run from the failed step instead from the beginning

Notebook at Netflix

- Text editors & notebooks
- Versioning
 - Git: code versioning
 - DVC: data versioning
 - WandB: experiment versioning

- Text editors & notebooks
- Versioning
- CI/CD test suite: test your code before pushing it to staging/prod

Dev env: underestimated

"if you have time to set up only one piece of infrastructure well, make it the development environment for data scientists."

Ville Tuulos, Effective Data Science Infrastructure (2022)

Standardize dev environments

Standardize dependencies with versions

```
-f https://download.pytorch.org/whl/torch_stable.html
    torch==1.10.0+cpu
    numpy==1.21.3
    pandas==1.3.5
    scikit-learn==1.0.2
    boto3 == 1.20.8
    clickhouse-driver==0.2.2
    clickhouse-sqlalchemy==0.1.7
    cloudpickle==2.0.0
    dataclasses-json==0.5.4
    dbt-clickhouse==0.21.0
11
    fastavro==1.4.7
12
    httpx==0.21.0
13
14
    matplotlib==3.4.3
    notebook==6.4.5
15
    confluent-kafka==1.7.0
16
    python-dotenv==0.19.2
17
18
     requests==2.26.0
```

Standardize dev environments

- Standardize dependencies with versions
- Standardize tools & versions

Standardize dev environments

- Standardize dependencies with versions
- Standardize tools & versions
- Standardize hardware: cloud dev env
 - Simplify IT support
 - Security: revoke access if laptop is stolen
 - Bring your dev env closer to prod env
 - Make debugging easier

Dev to prod

- Elastic compute: can stop/start instances at will
- How to recreate the required environment in a new instance?

Container

- Step-by-step instructions on how to recreate an environment in which your model can run:
 - install this package
 - download this pretrained model
 - set environment variables
 - navigate into a folder
 - o etc.

```
LABEL maintainer="Hugging Face"
                                               LABEL repository="transformers"
                                               RUN apt update && \
                                                   apt install -y bash \
                                                                build-essential \
                                                                git \
Transformers Dockerfile
                                                                curl \
                                                                ca-certificates \
                                                                python3 \
      CUDA/cuDNN
                                                                python3-pip && \
                                                   rm -rf /var/lib/apt/lists
      bash/git/python3
                                               RUN python3 -m pip install --no-cache-dir --upgrade pip && \
      Jupyter notebook
                                                   python3 -m pip install --no-cache-dir \
                                                   jupyter \
      TensorFlow/Pytorch
                                                   tensorflow \
                                                   torch
      transformers
                                               RUN git clone https://github.com/NVIDIA/apex
                                               RUN cd apex && \
                                                   python3 setup.py install && \
                                                   pip install -v --no-cache-dir --global-option="--cpp_ext" --global-option="--cuda_ext" ./
                                               WORKDIR /workspace
                                               COPY . transformers/
                                               RUN cd transformers/ && \
                                                   python3 -m pip install --no-cache-dir .
                                               CMD ["/bin/bash"]
```

FROM nvidia/cuda:10.2-cudnn7-devel-ubuntu18.04

Multiple containers: dependency management

Multiple containers: cost saving

def feature():

- More memory
- CPU ok

def train():

•••

- Less memory
- Need GPU

Container orchestration

- Help deploy and manage containerized applications to a serverless cluster
- Spinning up/down containers

Breakout exercise

Group of 4, 10 mins

- What has been the most difficult parts of working on the project?
- What else do you need to work on for the final demo?

Resource Management

Resource management

	Pre-cloud	Cloud
Resources	Finite	Practically infinite
Implication	More resources for an app = less resources for other apps	More resources for an app don't have to affect other apps
Goal	Utilization	Utilization + cost efficiency

Resource management

	Pre-cloud	Cloud
Resources	Finite	Practically infinite
Implication	More resources for an app = less resources for other apps	More resources for an app don't have to affect other apps
Goal	Utilization	Utilization + cost efficiency

Resource management

	Pre-cloud	Cloud
Resources	Finite	Practically infinite
Implication	More resources for an app = less resources for other apps	More resources for an app don't have to affect other apps
Goal	Utilization	Utilization + cost efficiency

OK to use more resources if help engineers to be more productive

ML workloads

- Repetitive
 - Batch prediction
 - Periodical retraining
 - Periodical analytics
- Dependencies
 - o E.g. train depends on featurize

ML workloads

- Repetitive
 - Batch prediction
 - Periodical retraining
 - Periodical analytics
- Dependencies
 - E.g. train depends on featurize

Cron: extremely simple

- Schedule jobs to run at fixed time intervals
- Report the results

Cron: extremely simple

- Schedule jobs to run at fixed time intervals
- Report the results

Scheduler

 Schedulers are cron programs that can handle dependencies

Scheduler

 Most schedulers require you to specify your workloads as DAGs

- Directed
- Acyclic
- Graph

Scheduler

- Can handle event-based & time based triggers
 - Run job A whenever X happens
- If a job fails, specify how many times to retry before giving up
- Jobs can be queued, prioritized, and allocated resources
 - If a job requires 8GB of memory and 2 CPUs, scheduler needs to find an instance with 8GB of memory and 2 CPUs

Scheduler: SLURM example

Scheduler: optimize utilization

- Schedulers aware of:
 - resources available
 - resources needed for each job
- Sophisticated schedulers (e.g. Google Borg) can reclaim unused resources
 - If I estimate that my job needs 8GB and it only uses 4GB, reclaim 4GB for other jobs

Scheduler challenge

- General purpose schedulers are extremely hard to design
- Need to handle any workload with any number of concurrent machines
- If scheduler is down, every workflow this scheduler touches will also be down

Scheduler to Orchestrator

- Scheduler: when to run jobs
- Orchestrator: where to run jobs

Scheduler to Orchestrator

- Scheduler: when to run jobs
 - Handle jobs, queues, user-level quotas, etc.
- Orchestrator: where to run jobs
 - Handle containers, instances, clusters, replication, etc.
 - Provision: allocate more instances to the instance pool as needed

Scheduler to Orchestrator

- Scheduler: when to run jobs
 - Handle jobs, queues, user-level quotas, etc.
 - Typically used for periodical jobs like batch jobs
- Orchestrator: where to run jobs
 - Handle containers, instances, clusters, replication, etc.
 - Provision: allocate more instances to the instance pool as needed
 - Typically used for long-running jobs like services

Scheduler & orchestrator

- Schedulers usually have some orchestrating capacity and vice versa
 - Schedulers like SLURM and Google's Borg have some orchestrating capacity
 - Orchestrators like HashiCorp Nomad and K8s come with some scheduling capacity
- Often, schedulers are run on top of orchestrators
 - Run Spark's job scheduler on top of K8s
 - Run AWS Batch scheduler on top of EKS

Data science workflow management

Data science workflow

- Can be defined using:
 - Code (Python)
 - Configuration files (YAML)
- Examples: Airflow, Argo, KubeFlow, Metaflow

Airflow

- 1st gen data science workflow management
- Champion of "configuration-ascode"
- Wide range of operators to expand capabilities

```
dag = DAG(
    'docker_sample',
    default_args={
        'owner': 'airflow',
        'depends_on_past': False,
        'email': ['airflow@example.com'],
        'email_on_failure': False,
        'email on retry': False,
        'retries': 1,
        'retry_delay': timedelta(minutes=5),
    schedule_interval=timedelta(minutes=10),
    start_date=days_ago(2),
t1 = BashOperator(task_id='print_date', bash_command='date', dag=dag)
t2 = BashOperator(task_id='sleep', bash_command='sleep 5', retries=3, dag=dag)
t3 = DockerOperator(
    api_version='1.19',
    docker_url='tcp://localhost:2375', # Set your docker URL
    command='/bin/sleep 30',
    image='centos:latest',
    network mode='bridge',
    task_id='docker_op_tester',
    dag=dag,
t4 = BashOperator(task id='print hello', bash command='echo "hello world!!!"', daq=daq)
t1 >> t2
t1 >> t3
t3 >> t4
```

Airflow: cons

- Monolithic
 - The entire workflow as a container
- Non-parameterized
 - E.g. need to define another workflow if you want to change learning rate
- Static DAG
 - Can't handle workloads with unknown number of records

```
dag = DAG(
    'docker_sample',
    default_args={
        'owner': 'airflow',
        'depends_on_past': False,
        'email': ['airflow@example.com'],
        'email_on_failure': False,
        'email on retry': False,
        'retries': 1
        'retry_delay': timedelta(minutes=5),
    schedule_interval=timedelta(minutes=10),
    start_date=days_ago(2),
t1 = BashOperator(task_id='print_date', bash_command='date', dag=dag)
t2 = BashOperator(task_id='sleep', bash_command='sleep 5', retries=3, dag=dag)
t3 = DockerOperator(
    api_version='1.19',
    docker_url='tcp://localhost:2375', # Set your docker URL
    command='/bin/sleep 30',
    image='centos:latest',
    network mode='bridge',
    task_id='docker_op_tester',
    dag=dag,
t4 = BashOperator(task id='print hello', bash command='echo "hello world!!!"', daq=daq)
t1 >> t2
t1 >> t3
t3 >> t4
```

Argo: next gen

- Created to address Airflow's problems
 - Containerized
 - Fully parameterized
 - Dynamic DAG

Argo: cons

- YAML-based configs
 - Can get very messy
- Only run on K8s clusters
 - Can't easily test in dev environment

```
apiVersion: argoproj.io/v1alpha1
kind: Workflow
metadata:
  generateName: coinflip-
  annotations:
    workflows.argoproj.io/description: |
      This is an example of coin flip defined as a sequence of conditional steps.
      You can also run it in Python: https://couler-proj.github.io/couler/examples/#coin-flip
spec:
  entrypoint: coinflip
  templates:
  - name: coinflip
    steps:
    - - name: flip-coin
        template: flip-coin
    - - name: heads
        template: heads
        when: "{{steps.flip-coin.outputs.result}} == heads"
      - name: tails
        template: tails
        when: "{{steps.flip-coin.outputs.result}} == tails"
  - name: flip-coin
    script:
      image: python:alpine3.6
      command: [python]
      source:
        import random
        result = "heads" if random.randint(0,1) == 0 else "tails"
        print(result)
  - name: heads
    container:
      image: alpine:3.6
      command: [sh, -c]
      args: ["echo \"it was heads\""]
  - name: tails
    container:
      image: alpine:3.6
      command: [sh, -c]
      args: ["echo \"it was tails\""]
```

Kubeflow & Metaflow: same code in dev & prod

 Allows data scientists to use the same code in both dev and prod environments

Kubeflow: more mature but more boilerplate

Dockerfile for the component train

```
ARG BASE_IMAGE_TAG=1.12.0-py3
FROM tensorflow/tensorflow:$BASE_IMAGE_TAG
RUN python3 -m pip install keras
COPY ./src /pipelines/component/src
```

Spec for the component train

```
name: train
description: Trains the NER Bi-LSTM.
inputs:
- {name: Input x URI, type: GCSPath}
 {name: Input y URI, type: GCSPath}
- {name: Input job dir URI, type: GCSPath}
- {name: Input tags, type: Integer}
 {name: Input words, type: Integer}
- {name: Input dropout }
- {name: Output model URI template, type: GCSPath}
outputs:
 - name: Output model URI
   type: GCSPath
implementation:
   image: gcr.io/<PROJECT-ID>/kubeflow/ner/train:latest
   command: [
     python3, /pipelines/component/src/train.py,
     --input-x-path,
                                  {inputValue: Input x URI},
                                 {inputValue: Input job dir URI},
     --input-job-dir,
     --input-y-path,
                                 {inputValue: Input y URI},
     --input-tags,
                                 {inputValue: Input tags},
                                 {inputValue: Input words},
     --input-words,
     --input-dropout,
                                  {inputValue: Input dropout},
                                 {inputValue: Output model URI template},
     --output-model-path,
     --output-model-path-file, {outputPath: Output model URI},
```

Load specs of different components

Create the workflow in Python

```
@dsl.pipeline(
 name='Named Entity Recognition Pipeline',
 description='Performs preprocessing, training and deployment,'
def pipeline():
   preprocess task = preprocess operation(
       input 1 uri='qs://kubeflow-examples-data/named entity recognition dataset/ner.csv,
       output y uri template="gs://{}/{{workflow.uid}}/preprocess/y/data".format(BUCKET),
       output x uri template="gs://{}/{{workflow.uid}}/preprocess/x/data".format(BUCKET),
       output preprocessing state uri template="gs://{}/{{workflow.uid}}/model".format(BUCKET)
   ).apply(kfp.gcp.use_gcp_secret('user-gcp-sa'))
   train task = train operation(
       input x uri=preprocess task.outputs['output-x-uri'],
       input y uri=preprocess task.outputs['output-y-uri'],
       input job dir uri="gs://{}/{{workflow.uid}}/job".format(BUCKET).
       input_tags=preprocess_task.outputs['output-tags'],
       input words=preprocess task.outputs['output-words'],
       input dropout=0.1.
       output model uri template="gs://{}/{{workflow.uid}}/model".format(BUCKET)
   ).apply(kfp.gcp.use_gcp_secret('user-gcp-sa'))
   deploy_task = ai_platform_deploy_operation(
       model path= train task.output,
       model name="named entity recognition kubeflow".
       model region="us-central1",
       model version="version1",
       model runtime version="1.13",
       model prediction class="model prediction.CustomModelPrediction".
       model python version="3.5",
       model package uris="qs://{}/routine/custom prediction routine-0.2.tar.gz".format(BUCKET)
   ).apply(kfp.gcp.use gcp secret('user-gcp-sa'))
```

Metaflow: less mature but cleaner API

- Run note code in cloud with a line of code (@batch)
 - Run experiments locally
 - Once ready, run code on AWS Batch
- Can run different steps of the same workflow in different envs

```
class RecSysFlow(FlowSpec):
    @step
    def start(self):
        self.data = load data()
        self.next(self.fitA, self.fitB)
    # fitA requires a different version of NumPy compared to fitB
    @conda(libraries={"scikit-learn":"0.21.1", "numpy":"1.13.0"})
    @step
    def fitA(self):
        self.model = fit(self.data, model="A")
        self.next(self.ensemble)
    @conda(libraries={"numpy":"0.9.8"})
    # Requires 2 GPU of 16GB memory
    @batch(gpu=2, memory=16000)
    @step
    def fitB(self):
        self.model = fit(self.data, model="B")
        self.next(self.ensemble)
    @step
    def ensemble(self, inputs):
        self.outputs = (
                   (inputs.fitA.model.predict(self.data) +
                    inputs.fitB.model.predict(self.data)) / 2
                   for input in inputs
        self.next(self.end)
    def end(self):
        print(self.outputs)
```

ML Platform

Model platform: story time

- 1. Anna started working on recsys at company X
- 2. To deploy recsys, Anna's team need to build tool like model deployment, model store, feature store, etc.
- 3. Other teams at X started deploying models and needed to build the same tools
- 4. X decided to have a centralized platform to serve multiple ML use cases

ML Platform

ML platform: key components

- Model deployment
- Model store
- Feature store

Deployment: online | batch prediction

See Lecture 8

- Deployment service:
 - Package your model & dependencies
 - Push the package to production
 - Expose an endpoint for prediction

Deployment: online | batch prediction

- Deployment service:
 - Package your model & dependencies
 - Push the package to production
 - Expose an endpoint for prediction
- The most common MLOps tool
 - Cloud providers: SageMaker (AWS), Vertex AI (GCP), AzureML (Azure), etc.
 - Independent: MLflow Models, Seldon, Cortex, Ray Serve, etc.

Deployment: online | batch prediction

- Deployment service:
 - Package your model & dependencies
 - Push the package to production
 - Expose an endpoint for prediction
- The most common MLOps tool
- Not all can do batch + online prediction well
 - e.g. some companies use Seldon for online prediction, but Databricks for batch

Deployment service: model quality challenge

- How to ensure a model's quality pre- and during deployment?
 - Traditional code: CI/CD, PR review
 - o ML: ???, ???

Model store

- Simplest form: store all models in blob storage like S3
- Problem:
 - When something happens, how to figure out:
 - Who/which team is responsible for this model?
 - If the correct model binary was deployed?
 - If the features used are correct?
 - If the code is up-to-date?
 - If something happened with the data pipeline?

Model store: artifact tracking

- Track all metadata necessary to debug a model later
- Severely underestimated

Model store: artifact tracking at Stitch Fix

1. Feature management

- a. Multiple models might share features, e.g. churn prediction & conversion prediction
- b. How to allow different teams to find & use high-value features discovered by other teams?

- 1. Feature management
- 2. Feature consistency
 - a. During training, features might be written in Python
 - b. During deployment, features might be written in Java
 - c. How to ensure consistency between different feature pipelines?

- 1. Feature management
- 2. Feature consistency
- 3. Feature computation
 - a. It might be expensive to compute the same feature multiple times for different models
 - b. How to store computed features so that other models can use?

- 1. Feature management Feat
- 2. Feature consistency
- 3. Feature computation

Feature catalog

Data warehouse

Other ML platform components

- Monitoring (ML & ops metrics)
- Experimentation platform
- Measurement (business metrics)

Evaluate MLOps tools

- 1. Does it work with your cloud provider?
- 2. Open-source or managed service?
- 3. Data security requirements

Machine Learning Systems Design

Next class: Final project workshops

