



# Hadron PID tutorial $D^* \rightarrow D^0 (\rightarrow K\pi)\pi$

Sam Cunliffe<sup>1</sup>, Jake Bennett<sup>2</sup> ← this guy wrote the original scripts

<sup>1</sup>Pacific Northwest National Laboratory, <sup>2</sup>Carnegie Mellon University Pre-B2GM physics performance tutorials.

17 June 2017



Proudly Operated by Battelle Since 1965

- Everything you need is in a **git repo** and also a **tarball on kekcc**. <a href="https://stash.desy.de/users/scunliff/repos/b2gm-hadronpid-tutorial-jun2017/browse">https://stash.desy.de/users/scunliff/repos/b2gm-hadronpid-tutorial-jun2017/browse</a>
- Whilst I'm talking please open up a terminal either KEK (preferred) or somewhere with /cvmfs mounted and do the following:
- If you like git:

```
$ git clone \
ssh://git@stash.desy.de:7999/~scunliff/b2gm-hadronpid-tutorial-jun2017.git
$ cd b2gm-hadronpid-tutorial-jun2017/
```

If you dislike git / are already working at kekcc / like tab completion:

```
$ cp -r ~scunliffe/public/b2gm-hardronpid-tutorial-jun2017.tar.gz
$ tar -zxvf b2gm-hadronpid-tutorial-jun2017.tar.gz
$ cd b2gm-hadronpid-tutorial-jun2017/
```

Then normal basf2 setup steps (we're working in release-00-08-00)

```
$ . /cvmfs/belle.cern.ch/sl6/tools/setup_belle2
$ setuprel release-00-08-00
```



#### **Preamble**

Once you've sourced the Belle II setup script, and setup a release you should have the environment variable \$BELLE2\_RELEASE\_DIR

```
$ echo $BELLE2_RELEASE_DIR
$ 1s $BELLE2_RELEASE_DIR
```

https://stash.desy.de/projects/B2/repos/software/browse

- All of these scripts for this tutorial were copied and adapted from \$BELLE2\_RELEASE\_DIR/analysis/validation
  - This place is a good source of example scripts in general.

# Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

# Particle identification performance

- ► For physics performance, we care about maintaining a large **efficiency** for a low **fake rate**. Here are some very verbose definitions:
  - **Efficiency** = number of correctly identified particles under their own hypothesis for some cut on a figure of merit divided by the total true number of particles that really were whatever hypothesis.
  - Fake rate = number of incorrectly identified particles under the alternate hypothesis for the same cut divided by the total number of particles that really were the alternate hypothesis.
  - **Separation'** an imprecise jargony term (in this context) means how far apart the efficiency and fake rate are for two hypotheses. i.e. K/π separation'
- The physics performance group also provides you, the user, with ability to ask the reverse e.g.:
  - "I'm prepared to accept 95% efficiency what is the corresponding fake rate and where are the figure of merit cuts?"



# Particle identification performance

- ► For physics performance, we care about maintaining a large **efficiency** for a low **fake rate**. Here are some maths definitions:
  - Efficiency

$$\varepsilon_{\pi id} = n_{\text{true }\pi, \text{ selected}} / N_{\text{true }\pi \text{ total}}$$

$$\varepsilon_{\text{Kid}} = n_{\text{true }K, \text{ selected}} / N_{\text{true }K \text{ total}}$$

Fake rate

$$R_{K \to \pi} = n_{\text{true K selected as } \pi} / N_{\text{true K total}}$$
  
 $R_{\pi \to K} = n_{\text{true } \pi \text{ selected as } K} / N_{\text{true } \pi \text{ total}}$ 

■ 'Separation'

loosely: 
$$\epsilon_{\pi id} - R_{K \to \pi}$$
 and  $\epsilon_{K id} - R_{\pi \to K}$ 

► The physics performance group also provides you, the user, with ability to ask the reverse e.g.:

"I'm prepared to accept 95% efficiency what is the corresponding fake rate and where are the figure of merit cuts?"



# Particle identification performance

- ► For physics performance, we care about maintaining a large **efficiency** for a low **fake rate**. Here are some maths definitions:
  - Efficiency

$$\epsilon_{\text{mid}} = n_{\text{true } \pi, \text{ selected}} / N_{\text{true } \pi \text{ total}}$$

$$\epsilon_{\text{Kid}} = n_{\text{true } K, \text{ selected}} / N_{\text{true } K \text{ total}}$$

Fake rate

$$R_{K \to \pi} = n_{\text{true K selected as } \pi} / N_{\text{true K total}}$$
  
 $R_{\pi \to K} = n_{\text{true } \pi \text{ selected as } K} / N_{\text{true } \pi \text{ total}}$ 

'Separation'

loosely: 
$$\epsilon_{\pi id} - R_{K \to \pi}$$
 and  $\epsilon_{K id} - R_{\pi \to K}$ 

The physics performance group also provides you, the user, with ability to ask the reverse e.g.:

"I'm prepared to accept 95% efficiency what is the corresponding fake rate and where are the figure of merit cuts?"



# Particle identification performance

► For physics performance, we care about maintaining a large **efficiency** for a low **fake rate**. Here are some maths definitions:



The physics performance group also provides you, the user, with ability to ask the reverse e.g.:

"I'm prepared to accept 95% efficiency what is the corresponding fake rate and where are the figure of merit cuts?"

# Pacific Northwest NATIONAL LABORATORY

Proudly Operated by Battelle Since 1965

$$D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}$$
$$D^{*-} \rightarrow \overline{D}^{0}(\rightarrow K^{+}\pi^{-})\pi^{-}$$



$$D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}_{slow}$$

$$D^{*-} \rightarrow \overline{D}^{0}(\rightarrow K^{+}\pi^{-})\pi^{-}_{slow}$$

- Reconstruct the 'slow pion' and determine its charge...
- ...therefore you determine the charge of the D\*
- ightharpoonup ...and therefore the **flavour** of the D<sup>0</sup> ( $\overline{D}^0$ )
- ▶ ...and therefore **which is which** in the  $K^{\dagger}\pi^{\pm}$  pair, solely from charge information (because D<sup>0</sup> →  $K^{-}\pi^{+}$  and  $\overline{D}^{0}$  →  $K^{+}\pi^{-}$ )



$$D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}_{slow}$$

$$D^{*-} \rightarrow \overline{D}^{0}(\rightarrow K^{+}\pi^{-})\pi^{-}_{slow}$$

- Reconstruct the 'slow pion' and determine its charge...
- …therefore you determine the charge of the D\*
- ightharpoonup ...and therefore the **flavour** of the D<sup>0</sup> ( $\overline{D}^0$ )
- ▶ ...and therefore **which is which** in the  $K^{\dagger}\pi^{\pm}$  pair, solely from charge information (because D<sup>0</sup> →  $K^{-}\pi^{+}$  and  $\overline{D}^{0}$  →  $K^{+}\pi^{-}$ )



$$D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}_{slow}$$

$$D^{*-} \rightarrow \overline{D}^{0}(\rightarrow K^{+}\pi^{-})\pi^{-}_{slow}$$

- Reconstruct the 'slow pion' and determine its charge...
- ...therefore you determine the charge of the D\*
- ightharpoonup ...and therefore the flavour of the  $D^0$  ( $\overline{D}^0$ )
- ▶ ...and therefore **which is which** in the  $K^{+}\pi^{\pm}$  pair, solely from charge information (because D<sup>0</sup> →  $K^{-}\pi^{+}$  and  $\overline{D}^{0}$  →  $K^{+}\pi^{-}$ )



$$D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}_{slow}$$

$$D^{*-} \rightarrow \overline{D}^{0}(\rightarrow K^{+}\pi^{-})\pi^{-}_{slow}$$

- Reconstruct the 'slow pion' and determine its charge...
- ...therefore you determine the charge of the D\*
- ightharpoonup ...and therefore the flavour of the  $D^0$  ( $\overline{D}^0$ )
- ▶ ...and therefore **which is which** in the  $K^{\dagger}\pi^{\pm}$  pair, solely from charge information (because D<sup>0</sup> →  $K^{-}\pi^{+}$  and  $\overline{D}^{0}$  →  $K^{+}\pi^{-}$ )



# Physics description of the method

$$D^{*+} \rightarrow D^{0}(\rightarrow K^{-}\pi^{+})\pi^{+}_{slow}$$

$$D^{*-} \rightarrow \overline{D}^{0}(\rightarrow K^{+}\pi^{-})\pi^{-}_{slow}$$

- Reconstruct the 'slow pion' and determine its charge...
- ...therefore you determine the charge of the D\*
- ightharpoonup ...and therefore the flavour of the  $D^0$  ( $\overline{D}^0$ )
- ▶ ...and therefore which is which in the  $K^{\dagger}\pi^{\pm}$  pair, solely from charge information (because D<sup>0</sup> →  $K^{-}\pi^{+}$  and  $\overline{D}^{0}$  →  $K^{+}\pi^{-}$ )

"Mother Nature's MC truth"

#### **Scripts in the directory**





#### Scripts in the directory





#### Scripts in the directory



Proudly Operated by Battelle Since 1965



#### Input

# EvtGen decay file



Proudly Operated by Baffelle Since 1965

- Belle II uses EvtGen to take cc continuum generated by PYTHIA into specific final-state hadrons
  - User defined 'decfile'
  - Falls back on 'DECAY\_BELLE2.dec' containing all the SM processes, measured branching fractions etc
- Look at ccbar-to-dstar.dec
  - Note that the relevant stuff is line 41 onwards.
  - Jet-Set parameters beyond the scope of this
    - Only tweak if you're an expert.

```
41 # ---- define D* decays for K/pi samples -
42
43 Alias MyD0 D0
44 Alias MyAntiD0 anti-D0
45 ChargeConj MyD0 MyAntiD0
46
47 Decay D*-
48 1.000 MyAntiD0 pi-
                             VSS;
49 Enddecay
50
51 Decay D*+
52 1.000 MyD0 pi+
                             VSS:
53 Enddecay
54
55 Decay MyD0
56 1.000 K- pi+
                             PHSP;
57 Enddecay
58 CDecay MyAntiD0
59
60 End
ccbar-to-dstar.dec
```

#### First basf2 procedural step



# Generate and reconstruct decays

- Look at generate-and-reconstruct.py
- Adds standard reconstruction and simulation modules (in the correct order) add\_simulation() add\_reconstruction()
- **Exercise**: find these functions in the software...
  - Hints: \$BELLE2\_RELEASE\_DIR or stash.desy.de
- When you're happy, run it:

```
$ basf2 generate-and-reconstruct.py -n 10 # if this works then try 1k
$ basf2 generate-and-reconstruct.py -n 1000
```

#### Scripts in the directory



Proudly Operated by Battelle Since 1965



#### Scripts in the directory



Proudly Operated by Battelle Since 1965



#### Second basf2 procedural step

### Get candidates from the mdst



- Do an 1s in the local directory... see mdst-dstars.root?
- ► This file format is mDST = mini Data Summary Table
  - Nicer to have a flattened TTree to easily make plots.
  - https://confluence.desy.de/display/BI/Main+Glossary
- In basf2 we need to get candidates from the mDST
- Look at build-candidates.py
- When you're happy, run it:
  - \$ basf2 build-candidates.py --input mdst-dstars.root
- Then look at the output:

```
$ root candidates.root
root [0] TBrowser browser
```



#### Run over a skim

- Now, we've only generated 1k events. Which is not enough statistics.
- ► I've run a job with 100k events.

```
$ basf2 build-candidates.py --input ~scunliff/public/mdst-dstars.root
```

So please run over that.

- (At time of writing) skims prepared by Racha are not quite ready.
- If they are, we should run over those instead/ as well

\$ basf2 build-candidates.py --input ~rachac/skim/outputFiles/\*.root

#### Scripts in the directory



Proudly Operated by Battelle Since 1965



#### **Scripts in the directory**





#### The final step

# Run the plotting script to analyse



Proudly Operated by Battelle Since 1965

- Look at analyse.py
- When we're happy, run it:

```
$ python3 analyse.py
```

Then look at the output:

# Pacific Northwest NATIONAL LABORATORY Proudly Operated by Battelle Since 1965

#### Extra credit

- Can you modify analyse.py to also check the efficiency as a function of inclination (cosθ)? And azimuthal/radial angle φ?
  - Look at the plot. Does the shape make sense?
- How about code to make a ROC curve?
  - Hint: the validation scripts are a good place to look for example code