Notazione: $\sqrt{x} := \frac{1}{\sqrt{x}}$ Basi generalizzate $|x\rangle = \xi_x(x) = \delta(x - x_0) \qquad \langle x_0 | x_0' \rangle = \delta(x_0 - x_0')$ $|p\rangle = v_p(x) = \sqrt[3]{2\pi\hbar} e^{\frac{ipx}{\hbar}} \qquad \langle p_0 | p_0' \rangle = \delta(p_0 - p_0')$ Principio 6 $|\psi\rangle \rightarrow |\psi'\rangle = \frac{P_{a_k} |\psi\rangle}{\sqrt{\langle \psi|P_{a_k} |\psi\rangle}}$ Esiti misure e probabilità (Principio 4) $w(a_k) = \frac{|\langle a_k | \psi\rangle|^2}{||\psi||^2} \qquad w(a_k) = \sum_{i=1}^{d_k} \frac{|\langle a_{k,i} | \psi\rangle|^2}{||\psi||^2} \qquad dw(a) = \rho(a) da = \frac{|\langle a | \psi\rangle|^2}{||\psi||^2}$ $|\chi, f(X, P)| = i\hbar \frac{\partial f}{\partial P}$ $|\psi\rangle = \sum_{k=1}^{N} c_k |a_k\rangle \qquad |\psi\rangle = \sum_{k=1}^{N} \sum_{i=1}^{d_k} c_k^i |a_k\rangle \qquad |\psi\rangle = \int da \, c(a) |a\rangle$ $|\psi\rangle = \sum_{k=1}^{N} c_k |a_k\rangle \qquad |\psi\rangle = \sum_{k=1}^{N} \sum_{i=1}^{d_k} |c_k^i|^2 \qquad \rho(a) = \frac{|c(a)|^2}{||\psi||^2}$ $|\psi\rangle = \sum_{k=1}^{N} |a_k\rangle \langle a_k^{(k)} \rangle \langle a_k^{(k)}$

Matrici di Pauli

 $\vec{S} = \frac{\hbar}{2} \vec{\sigma}$

Trasformazione unitaria

 $A' = UAU^{\dagger}$

Per trovare una base di autovettori comuni (sapendo già che gli operatori commutano, e se entrambi hanno degenerazioni):

- 1. Trovo autovalori e autovettori di $A \in B$;
- 2. Autovettori associati ad autovalori non degeneri sono automaticamente autovettori comuni;
- 3. Per autovettori associati ad autovalori degeneri, faccio la prova (applico B a un autovettore degenere di A);
- 4. Se è anche autovettore di B, sono a posto (è autovettore comune);
- 5. Se non lo è:
 - (a) Definisco un nuovo vettore come combinazione lineare degli autovettori della base dell'autospazio degenere in questione;
 - (b) Impongo che questo nuovo vettore sia autovettore di B;
 - (c) Risolvo il sistema di equazioni trovando i coefficienti della combinazione lineare;
 - (d) Per come è stato definito, questo vettore è autovettore sia di A che di B.

Per capire se un insieme di osservabili compatibili costituisce un ICOC:

- 1. Se gli osservabili sono compatibili, esiste una base comune di autovettori;
- 2. A ogni autovettore, associo una label costituita da una lista dei corrispondenti autovalori per ogni osservabile;

3. Se **ogni** label è unica, l'insieme è un ICOC.
zione di Schrödinger Visuale di Schrödinger Equazione di Heisenberg Visuale di Heisenberg Sistem

Equazione di Schrödinger	Visuale di Schrödinger	Equazione di Heisenberg	Visuale	di Heisenberg	Sistema conservativo
$-i\hbar \frac{\mathrm{d}}{\mathrm{d}t} \psi(t)\rangle = H(t) \psi(t)\rangle$	$\begin{cases} \psi(t)\rangle_S = U(\Delta t) \psi(t_0)\rangle_S \\ A_S(t) = A_S(0) \end{cases}$	$i\hbar \frac{\mathrm{d}}{\mathrm{d}t} A_H(t) = [A_H, H]$		$(\Delta t)A_H(t_0)U(\Delta t)$	$U(t,t_0) = e^{-\frac{i}{\hbar}H(t-t_0)}$
Matrice densità	Stato puro	Stato misto	Propr	ietà generali	$N n\rangle = n n\rangle$
$ \rho(t) = \psi(t)\rangle \langle \psi(t) $	$\rho^2(t) = \rho(t)$	$\rho(t) = \sum_{k} p_k \rho_k(t)$	$\rho^{\dagger}(t) = \rho(t)$	$\langle A \rangle_{\psi}(t) = Tr(\rho(t)A)$	$a n\rangle = \sqrt{n} n-1\rangle$
$ \rho_{pn}(t) = \langle u_p \rho(t) u_n \rangle = \bar{c}_n(t) c_p(t) $		Oscillatore armonico	$Tr(\rho(t)) = 1$	$i\hbar \frac{\mathrm{d}\rho(t)}{\mathrm{d}t} = [H(t), \rho(t)]$	$a^{\dagger} n\rangle = \sqrt{n+1} n+1\rangle$
Condizioni al conto	rno buche di potenziale	$H = \hbar\omega \left(N + \frac{1}{2} \right)$	$\hat{X} := \sqrt{\frac{m\omega}{\hbar}} X$	$a = \sqrt[7]{2}(\hat{X} + i\hat{P})$	$[a, a^{\dagger}] = 1$
Continuità di ψ nelle	Continuità di ψ' nelle	$N = a^{\dagger}a$	$\hat{P} := \sqrt[7]{m\hbar\omega}P$	$a^{\dagger} = \sqrt[7]{2}(\hat{X} - i\hat{P})$	$[N,a^{\dagger}]=a^{\dagger}$
discontinuità di V	discontinuità finite di V	$u_n(x) = \left\lceil \frac{1}{n!2^n} \right. \left($	$\left(\frac{\hbar}{m\omega}\right)^n$	$\frac{m\omega}{\hbar}x - \frac{\mathrm{d}}{\mathrm{d}x}\bigg]^n e^{-\frac{m\omega}{\hbar}\frac{x^2}{2}}$	[N,a] = -a
Soluzioni buche di potenziale $(A, B \in \mathbb{C})$		Metodo perturbativo		<u>-</u>	$/_{h}(0) _{\widehat{W}_{m}}(0)$
E > V:	E = V	E < V	$E_n^{(1)} = \langle n^{(0)} \hat{W} \rangle$	$\left n^{(0)} \right\rangle; \left n^{(1)} \right\rangle = -\sum_{k \neq j} \left n^{(1)} \right\rangle$	$\frac{\sqrt{\kappa \cdot \sqrt{W/n}}}{\sqrt{(0)}} k^{(0)}\rangle$
$\psi(x) = Ae^{ikx} + Be^{-ikx}$	$\psi(x) = A + Bx$	$\psi(x) = Ae^{\rho x} + Be^{-\rho x}$			n.
$k := \sqrt{rac{2m(E-V)}{\hbar^2}}$	$E_n = \frac{\hbar^2 \pi^2 n^2}{2ma^2}$	$\rho := \sqrt{\frac{2m(V-E)}{\hbar^2}}$	$E_n^{(2)} = \langle$	$n^{(0)} \hat{W} n^{(1)} \rangle = -\sum_{k \neq i} n^{(0)} \hat{W} n^{(1)} \rangle$	$n \frac{\left \left\langle k^{(0)} \middle \hat{W} \middle n^{(0)} \right\rangle \right ^2}{E_k^{(0)} - E_n^{(0)}}$
Momento angolare I k a	$ im\rangle = N + k im + 1\rangle \cdot N + (i, m)$	$- h \cdot / i(i + 1) - m(m + 1)$			

Roba matematica

Error function	Integrale di Seno		Commutatori cancri	Prodotto misto
$erf(x) = \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} dt$	$\left(\frac{(n-1)!!}{2}\sqrt{\frac{\pi}{1+1}}\right)$	n pari	[A, BC] = [A, B]C + B[A, C]	$\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$
Polinomi di Hermite	$I_n(a) = \int_0^\infty x^n e^{-ax^2} dx = \begin{cases} \frac{2^{\frac{n}{2}}}{n-1} & \sqrt{a^{n+1}} \\ \frac{2^{\frac{n}{2}}}{n-1} & \sqrt{a^{n+1}} \end{cases}$	F	[AB, C] = A[B, C] + [A, C]B	$ec{a} imes(ec{b} imesec{c})=ec{b}(ec{a}\cdotec{c})-ec{c}(ec{a}\cdotec{b})$
$H_n(z) = (-)^n e^{z^2} \frac{d^n}{dz^n} e^{-z^2}$	$I_n(a) = \int_0^\infty x^n e^{-ax^2} dx = \begin{cases} \frac{(n-1)!!}{2^{\frac{n}{2}}} \sqrt{\frac{\pi}{a^{n+1}}} \\ (\frac{n-1}{2})!} \sqrt{\frac{\pi}{a^{n+1}}} \\ \frac{n+1}{2} \end{cases}$	n dispari	[AB, CD] = A[B, C]D + AC[B, D] +	$(\vec{a} \times \vec{b}) \times \vec{c} = \vec{b}(\vec{c} \cdot \vec{a}) - \vec{a}(\vec{b} \cdot \vec{c})$
$= \left(2z - \frac{d}{dz}\right) H_{n-1}(z)$	\ 2u 2		+[A,C]DB+C[A,D]B	Goniometria marastoniana
Formule Eulero				$\sin^2 \theta = \frac{1-\cos 2\theta}{2}$
$\sin\theta = \frac{e^{i\theta} - e^{-i\theta}}{i\theta + i\theta}$				$\cos^2\theta = \frac{1+\cos 2\theta}{2}$