

2025년 미래 모빌리티를 위한 소프트웨어 정의형 인프라스트럭처 기술 개발

'25. 4. 15.(화)

AI융합시험연구소 AI인프라단

Ⅰ 1차년도 주요 실적Ⅰ 2차년도 계획

I 1차년도 주요 실적

연차별 SDI 기술 검증·실증 계획

미래 모빌리티 디바이스 요구사항 분석

SDV

하드웨어와 소프트웨어 플랫폼의 안정적 구현, 성능 및 신뢰도 확보, 유연한 서비스 추가/변경/삭제 지원

기존 아키텍처 문제점

- ECU 중심 아키텍처의 경우 하나의 기능 업데이트에도 다수의 ECU 업데이트가 필요하여 많은 소요시간이 요구됨
- ECU 중심의 전기·전자 아키텍처의 경우 기능 추가에 따른 복잡성이 기하급수 적으로 증가함

주요 기술 요구사항

- 기능/물리적 근접성 기반의 통합 제어 가능한 전기·전자 아키텍처 필요
- 차량 설계 시점 이후에도 **새로운 기능 탑재** 및 기존 기능 변경/삭제가 용이한 소프트웨어 플랫폼 필요

<스마트 기기 특성에 따른 SDV 이용 시 애플리케이션 관점에서 필요한 조건>

충전

화상회의

다양한 기능의

애플리케이션 제공

애플리케이션 기능의

최신성 유지

필요한 애플리케이션을

찾을 수 있음

새로운 기능이 나오면

해당 앱은 자동 업데이트

미래 모빌리티 디바이스 요구사항 분석

SDR

실제 로봇 하드웨어 없이 소프트웨어만을 활용한 로봇 응용 개발

로봇 디바이스 주요 특징

- 산업용, 서비스용, 의료용, 웨어러블 등 다양한 종류의 로봇 별로 기계식 구조가 상이함
 - * 같은 종류의 로봇일지라도 구조가 상이할 수 있음
- 로봇 응용에 따른 다양한 센서 사용
- 로봇 종류에 따른 부하 차이 발생
- 다양한 운영체제 및 미들웨어 사용 (개방형, 폐쇄형, 미사용)
- 센서/구동기 발전 및 인터페이스 변화에 따른 소프트웨어 모듈 변경 가능성

SDI 연계를 위한 기술 요구사항 분석

기능

- 다양한 모빌리티 디바이스 지원을 위해 SDV 표준 아키텍처를 기반의 개발 필요
 - * 예: Scalable Open Architecture for Embedded Edge, SOAFEE
- 모빌리티 디바이스 간 협업을 위한 표준화된 미들웨어가 필요
- 모빌리티 디바이스의 성능 한계를 극복하기 위한 **효율적인 오프로딩** 기술이 필요
- 다양한 모빌리티 디바이스에서 효율적으로 **AI서비스** 제공
- 모빌리티 디바이스에서 수행되는 태스크의 실시간성을 보장 * 컨테이너 스케줄링 기술 등
- 코드형 인프라 지원 기술(Infrastructure as a Code, IaC) 기술 필요

비기능

- 실시간 운영을 위한 초저지연
 - * 충돌 회피, 비상 제동 등의 미션 크리티컬 기능은 종단 간 극도로 짧은 지연시간이 요구됨
- 센서 데이터 처리를 위한 고대여폭 용량
 - * 디바이스에 탑재된 고해상도 카메라, LiDAR 등의 센서에서 대용량의 데이터를 지속적으로 생성
- 주요 기능에 대한 QoS 보장
 - * 우선순위에 따른 기능별 지연 및 데이터 손실 최소화 필요

<SDI 성능 요구사항 반영 예시>

사례	핵심 지표	기준(예시)
충돌 회피 경고	지연 시간	< 10~20 ms
원격 운전	지연 시간	< 50~100 ms
고해상도 센서 데이터 전송	대여폭	높음(Gbps 단위)
인포테인먼트 스트리밍	대여폭/지터	높음/낮음
OTA 소프트웨어 업데이트	대여폭/신뢰성	높음/높음

SDI 운영 및 연결성 지원 기술 검증 계획 수립

(미국) GENI+Internet2 사례

- 2006년에 착수된 미국의 GENI 프로젝트는 네트워크를 활용하는 응용과학 및 엔지니어링 분야의 다양한 실험들을 위한 미래인터넷 테스트베드를 추구
 - * GENI: Global Environment for Network Innovations
- 2013년에 접어들면서 GENI+Internet2 협력이 인프라 차원에서 SDN과 Cloud가 서서히 결합되는 초기의 SDI에 대응
- 2014년부터 미래 인프라를 위한 SDI 구도를 염두에 두면서 SDX(Software-Defined Exchange)을 활용하여 다중 SDN 도메인을 연동하는 모습을 단계별로 시험
- 2023년 이후 GENI 프로젝트는 **FABRIC 프로젝트로 전환**되어, 분산컴퓨팅, AI/ML 인프라를 위한 연구가 강화됨

<미국 GENI의 차기 SDI 대응을 위한 개념 설계>

(미국) CloudLab 사례

- SDN 기반 네트워크 기능 개발 및 테스트
 - → SDN 컨트롤러, 네트워크 프로토콜, 가상 네트워크 토폴로지 등 설계, 구현 및 평가
- NFV(Network Functions Virtualization) 실험
 - → 방화벽, 로드 밸런서 등 다양한 네트워크 기능을 소프트웨어 형태로 가상화하고, 이들의 성능, 확장성, 관리 용이성 등 연구
- SDI 기반 콘텐츠 전송 네트워크(CDN) 연구
 - → 소프트웨어 정의 방식으로 CDN을 구성하고, 비디오 스트리밍 등 애플리케이션 성능을 최적화 연구
- 클라우드 자원 관리 및 오케스트레이션 연구
 - → 컴퓨팅, 스토리지, 네트워크 자원의 효율적 관리 및 자동화 방안 연구

<CloudLab 프로젝트 개념>

4 SDI 기술검증 계획 수립

SDI 실증 계획 수립

- ETRI 내에 구축한 KT 5G 특화망/상용망 연계를 통한 실증 환경을 구축하고, 사전 테스트용 프로토타입을 기반으로 기본 테스트 수행
 - → SDI 운용 단계에서는 기존의 상용망과 특화망을 연계하여 대규모 및 이종 모빌리티 디바이스를 지원 할 수 있는 인프라 구축이 필요
 - → 기존 통신망을 통해 사용자가 요구하는 미션, 저지연, 긴급성 등을 고려하여 SDI 서버와 모빌리티 디바이스에 코드 형태로 자동 배포되며, 이를 통해 디바이스-SDI 인프라 구축과 관리의 효율성을 높이고, 변화하는 요구사항에 신속하게 대응할 수 있어야 함

<ETRI에서 개발중인 SDx-SDI 테스트베드 시스템 구조도 예>

국내외 SDI 기술 도입 사례

사례	(국내) SK 하이닉스	(국내) 국토연구원	(해외) Infosys	(해외) HCL
도입 배경	제조 라인 지원 유연성/안정성 확보, 자동화, 신규 팹 지원, 빅데이터/클라우드 네이티브 지원	신청사 이전, 효율/안정적 운영 (제한된 예산/인력), 중앙 관리, 보안 강화	M&A로 인한 분산/이기종 DC 통합, 인프라 현대화, 디지털 전환 지원	자동화 로드맵 실행, 레거시 교체, IT 운영/유지보수 /데이터 검색 비용 절감
적용 기술	VMware SDDC 스택 (VCF, vRA, vROps 등)	Cisco ACI (SDN)	HPE Composable Compute, Cisco ACI (SDN), SD-WAN, SD-LAN (Aruba)	VMware SDDC 스택 (vRA, vRO, NSX, vSAN), Cisco UCS, Flash Storage, ServiceNow
도전 과제	핵심 시스템 전환, 고가용성/성능 보장	신기술 도입 저항, 짧은 구축 기간, 벤더 종속 우려	이기종환경관리, 소유권부재 거버넌스취약, 중앙오케스트레이션부재	대규모 인스턴스, SDI 환경 배포
정량적 성과 (예시)	관리 시간 단축, IDC DX Award 수상	구축 기간 1주일 (vs 3개월), 초기 투자 비용 >30% 절감, 운영 비용 절감 기대	DC 공간 50% 감소, WAN TCO 30% 절감	TCO 최대 25% 절감, 랙/DC 공간 >90% 감소

고차년도 계획

2차년도 목표 및 추진전략

2차년도 목표

- 미래 모빌리티를 위한 소프트웨어 정의 인프라 **요소기술 테스트케이스 도출 및 검증**
- 미래 모빌리티를 위한 소프트웨어 정의 인프라 테스트 환경 구축
- 5G 및 특화망 연계형 SDI 실증을 위한 응용서비스 분석

SDI 요소기술 검증

2차년도 SDI 요소기술 검증 범위 (SDI 과제 정량적 목표)

평가 항목	단위	비중 (%)	세계최고수준보유국/ 보유기업(/)	연구개발전 국내수준	개발 목표치		유표치
(주요성능 Spec)			성능수준	성능수준	1차년도 (2024년)	2차년도 (2025년)	3차년 <u>左</u> (2026년)
1. 실시간 컨테이너 실행 성능 (x86컨테이너)	WCET overruns(건)	15	26 (이탈리아/University of Verona)	-	-	<100	<50
2. 혼합 중요도 태스크 분업 오케스트레이션 성능	Deadline missrate(%)	15	3.3 (미국/Rancher-Native K3S)	-	-	-	<6
3. 이종 SoC 지원 가상 모빌리티 플랫폼 참조 프로파일	종	15	3종 (미국/아마존)	1종	-	1	2
(<mark>자체 추가)</mark> 4. 국산 AI 반도체를 활용한 모빌 리티-SDI간 분업형 서비스의 동시 실행성	개	10	-	-	-	1	2
(<mark>자체 추가</mark>) 5. 스케줄링 알고리즘 기반 정책 반영최대 지연시간	ms	10		-	-	<220	<200
(자체 추가) 6. SDI 서버상에서 단일 AI 전용 가속기의 이미지 추론 건수	queries/sec (samples/sec)	10	6,050 (미국/NVidia T4)	-	-	2,600	-
(자체 추가) 7. 모빌리티 분업형 SW 개발 기술 의 지원 도메인/디바이스/환경 조합	개	15	-	-	2	4	6
(<mark>자체 추가)</mark> 8. 모빌리티 연계형 양방향 API 수	개	10	13 (유럽연합/ETSI)	-	6	12	25

정량목표1. 실시간 컨테이너 실행 성능

- 실시간 컨테이너들의 WCET deadline miss (단위: 건)
- 공인시험인증

연차	1	2	3	4
목표	-	<100	<50	<20

<20	공인시험인증서 (4차년도)
<3	공인시험인증서 (4차년도)

정량목표5. 스케줄링 알고리즘 기반 정책 반영 최 대 지연 시간

- 대규모 실시간 작업의 스케줄링 지연 시간 (단위: ms)
- 공인시헌인증

01100					
연차	1	2	3	4	
목표	ı	<220	<200	<180	

정량목표6. SDI 서버상에서 국산 서버용 AI 반도체 의 이미지 추론 건수

- SDI 서버의 AI 가속을 위한 국산 반도체의 초당 이미지 추론 건수
- 공인시험인증

연차	1	2	3	4
목표	-	2,600	-	35,000

TTA

Verified

SDI 요소기술 검증

SDI 요소기술 검증 절차

시험 목표 및 범위 설정

시험 범위 협의 및 시험 환경 구성

품질 시험 수행

1:1시험 전문가 현장 맞춤형 시험 수행

제품 품질 개선

결함 원인 분석 및 해결 방법 제시를 통한 제품 품질 개선

시험성적서 발행

시험 결과서 및 성적서 발행

상담 및 계약 시험·평가 및 결과서 작성 결과서 검토 및 송부 신청서 제출 결과서 송부 시험환경 재구축 (의뢰자) (TTA) 시험환경 구축 사전시험·평가 시험·평가 시험상담 결과서 작성 결과서 확정 계약 상호확인 • 시험환경 분석 • 시험결과서 • 시험 환경 합의 • 시험대상 완성도 상호 검토 • 스케쥴 배정 • 수수료 산정 사전 시험 • 평가 • 합의서 작성 상호 요구사항 확인

TTA Verified

- V&V 시험→ * AI 융합 제품 및 서비스
 - * 데이터 융합 제품 및 서비스
 - * 시스템 (HW/기반SW) 성능
 - * 디지털인프라 제품 및 서비스
 - * 정보보호 제품 및 서비스
- 블록체인 신뢰성 시험
- 무선통신망(PS-LTE, LTE-R, LTE-M) 보안성 시험

❖ TTA R&D 결과검증

- 정부 R&D 결과검증 등

SDI 응용서비스 분석

SDI 실증 시나리오 도출 계획 미래 모빌리티 디바이스 요구사항 SDI 응용서비스 미래 모빌리티-SDI 연계 기술 분석 요구사항 수집 데이터 유형 서비스 목적 및 기능 요건 수집 주기/빈도 SDI 실증 시나리오 데이터 처리 요구사항 시스템 구성 요소 센서/디바이스 구성 네트워크 인터페이스 운용 환경 및 조건 이동 경로 및 환경 배치/운용 규모

감사합니다