For office use only	Ieam Control Number	For office use only
T1	91397	F1
T2		F2
T3	Problem Chosen	F3
T4	\boldsymbol{C}	F4

2018 MCM/ICM Summary Sheet

Summary

abstract

Keywords: keyword1; keyword2

Team # 91397 i

Contents

1	Intr	oduction	1
	1.1	Statement of the problem	1
	1.2	Overview of Our Work	1
2	Not	ations and Assumptions	2
	2.1	Notations	2
	2.2	Assumptions	2
3	Data	a Processing	2
4	Ene	rgy Profile	2
	4.1	Overview	2
	4.2	title	2
		4.2.1 Arizona	2
		4.2.2 California	3
		4.2.3 New Mexico	4
		4.2.4 Texas	5
Aj	ppen	dices	2
Aj	ppen	dix A First appendix	4
Αį	ppen	dix B Second appendix	4

Team # 91397 Page 1 of 5

1 Introduction

1.1 Statement of the problem

Energy production and energy consumption, which can be regarded as an important economic index, not only reflect the industrial development of a country but also relate to the lifehood of a country. But on the other hand, with the continuous advancement and deepening of the industrialization of human civilization, the consumption of non-renewable energy sources such as coal, petroleum is also accelerating. Hence, the development of cleaner renewable energy is particularly important. After all, if humans depend too much on non-renewable energy sources, the day when fossil fuels are depleted is also a day for humankind to return to agrarian society.

As the world's superpower, many of America's energy policy decentralizes to the state level. to ensure cooperative action between the states [?], many compacts are formed between states. In this context, along the border with Mexico four states, California, Arizona, new Mexico, Texas hope to form a new energy compact focused on more and more widely used, cleaner renewable energy sources.

- Create an energy profile for each of the four states.
- Make governors easier to understand the four statesâÂŹ usage of cleaner, renewable energy sources and the similarities and difference between the four states.
- Determine a state that is appeared to have the "best" profile for use of cleaner, renewable energy in 2009.
- Predict the energy profile of each state in 2025 and 2050.
- Determine renewable energy usage targets for 2025 and 2050 which are also for the new four-state energy compact.
- Provide at least three suggestions about how to meet the energy compact goals.

1.2 Overview of Our Work

•

Team # 91397 Page 2 of 5

2 Notations and Assumptions

- 2.1 Notations
- 2.2 Assumptions
- 3 Data Processing
- 4 Energy Profile
- 4.1 Overview

[1]

4.2 title

4.2.1 Arizona

Figure 1: AZPRB

Figure 2: AZTCB

Team # 91397 Page 3 of 5

Figure 3: AZTCD

Figure 4: AZTCV

4.2.2 California

Figure 5: CAPRB

Figure 6: CATCB

Team # 91397 Page 4 of 5

Figure 7: CATCD

Figure 8: CATCV

4.2.3 New Mexico

Figure 9: NMPRB

Figure 10: NMTCB

Team # 91397 Page 5 of 5

Figure 11: NMTCD

Figure 12: NMTCV

4.2.4 Texas

Figure 13: TXPRB

Figure 14: TXTCB

Team # 91397 Page 6 of 5

Figure 15: TXTCD

Figure 16: TXTCV

Team # 91397 ii

References

[1] https://www.eia.gov/state/seds/sep_prices/notes/pr_guide.pdf.

Appendices

	Table 1: txCO2
date	million metric tons of CO2
1980	496.5
1981	483.4
1982	461.1
1983	467.1
1984	492.7
1985	498.7
1986	496.2
1987	502.1
1988	534.9
1989	554.9
1990	565.1
1991	560.2
1992	559.9
1993	577.8
1994	576.9
1995	581.5
1996	624.9
1997	651.4
1998	656.6
1999	633.3
2000	657.6
2001	651.5
2002	661.6
2003	655.5
2004	649.6
2005	612.2
2006	623.4
2007	620
2008	585
2009	550.1
2010	582.5
2011	601.5
2012	596.3
2013	623
2014	625.3
2015	625.8

Table 2: nmCO2

1980 44.9 1981 44 1982 45.1 1983 48.6 1984 46.2 1985 46.5 1986 43 1987 46.2 1988 47.9 1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6 1997 56	
1982 45.1 1983 48.6 1984 46.2 1985 46.5 1986 43 1987 46.2 1988 47.9 1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1983 48.6 1984 46.2 1985 46.5 1986 43 1987 46.2 1988 47.9 1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1984 46.2 1985 46.5 1986 43 1987 46.2 1988 47.9 1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1985 46.5 1986 43 1987 46.2 1988 47.9 1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1986 43 1987 46.2 1988 47.9 1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1987 46.2 1988 47.9 1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1988 47.9 1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1989 50.4 1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1990 53.3 1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1991 49.2 1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1992 51.7 1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1993 52.6 1994 52.5 1995 51.1 1996 52.6	
1994 52.5 1995 51.1 1996 52.6	
1995 51.1 1996 52.6	
1996 52.6	
1997 56	
ı	
1998 55.5	
1999 56.4	
2000 58.2	
2001 58.3	
2002 55.3	
2003 57.6	
2004 58.7	
2005 59.3	
2006 59.8	
2007 59	
2008 56.4	
2009 57.3	
2010 53.3	
2011 55.7	
2012 53.6	
2013 53.2	
2014 50.1	
2015 50.2	

Team # 91397 iii

Table 3: caCO2

Table 3: caCO2		
date	million metric tons of CO2	
1980	348.4	
1981	337	
1982	299.9	
1983	293	
1984	319.5	
1985	324.2	
1986	309.5	
1987	340.1	
1988	348.2	
1989	363.5	
1990	363.9	
1991	351.7	
1992	356.1	
1993	345.5	
1994	362.4	
1995	351.4	
1996	350.5	
1997	353	
1998	363.4	
1999	367	
2000	382.4	
2001	386.9	
2002	386.1	
2003	373.8	
2004	392.3	
2005	389.3	
2006	397.5	
2007	402.5	
2008	385.7	
2009	372	
2010	365.9	
2011	352.2	
2012	357.1	
2013	359.8	
2014	356.7	
2015	363.5	

Table 4: azCO2

date	million metric tons of CO2
1980	52.7
1981	59.6
1982	58.2
1983	53.9
1984	58.2
1985	60.7
1986	55.9
1987	56.1
1988	59.3
1989	65.2
1990	62.8
1991	63.7
1992	66.5
1993	69
1994	71.7
1995	66.7
1996	68.4
1997	71.6
1998	76.5
1999	80.4
2000	86.1
2001	88.4
2002	87.8
2003	89.6
2004	96.6
2005	96.7
2006	99.9
2007	101.9
2008	102.3
2009	93.4
2010	95.2
2011	93.3
2012	91.3
2013	95.1
2014	93.1
2015	90.9

Proof. x □

Lemma 1. If $f \in C^{1,1}_L(\mathbb{R}^n)$, then $\forall x,y \in \mathbb{R}^n$ we have

$$\left| f(\mathbf{y}) - f(\mathbf{x}) - \nabla f(\mathbf{x})^T (\mathbf{y} - \mathbf{x}) \right| \le \frac{L}{2} \left\| \mathbf{y} - \mathbf{x} \right\|^2. \tag{1}$$

Team # 91397 iv

Appendix A First appendix

Aliquam lectus. Vivamus leo. Quisque ornare tellus ullamcorper nulla. Mauris porttitor pharetra tortor. Sed fringilla justo sed mauris. Mauris tellus. Sed non leo. Nullam elementum, magna in cursus sodales, augue est scelerisque sapien, venenatis congue nulla arcu et pede. Ut suscipit enim vel sapien. Donec congue. Maecenas urna mi, suscipit in, placerat ut, vestibulum ut, massa. Fusce ultrices nulla et nisl.

Here are simulation programmes we used in our model as follow.

Input matlab source:

```
function [t,seat,aisle]=OI6Sim(n,target,seated)
pab=rand(1,n);
for i=1:n
   if pab(i) < 0.4
       aisleTime(i) = 0;
   else
       aisleTime(i) = trirnd(3.2,7.1,38.7);
   end
end</pre>
```

Appendix B Second appendix

some more text **Input C++ source**:

```
_____
// Name : Sudoku.cpp
// Author : wzlf11
// Version : a.0
// Copyright : Your copyright notice
// Description : Sudoku in C++.
//-----
#include <iostream>
#include <cstdlib>
#include <ctime>
using namespace std;
int table[9][9];
int main() {
   for(int i = 0; i < 9; i++) {</pre>
      table[0][i] = i + 1;
   srand((unsigned int)time(NULL));
   shuffle((int *)&table[0], 9);
   while(!put_line(1))
      shuffle((int *)&table[0], 9);
```

Team # 91397

```
for(int x = 0; x < 9; x++) {
    for(int y = 0; y < 9; y++) {
        cout << table[x][y] << " ";
    }
    cout << endl;
}
return 0;
}</pre>
```