武汉大学 2016-2017 学年第二学期期末考试高等数学 A2 试题 (A)

- 1、 $(8 \, \oplus)$ 单位圆Q的圆周上有相异两点P,Q, $\angle POQ = \theta,a,b$ 为正的常数,求 $\lim_{\theta \to 0} \frac{1}{\theta^2} [a+b-(a\overline{OP}+b\overline{OQ}()]$ 。
- 2、(10 分) 讨论极限 $\lim_{\substack{x\to 0\\y\to 0}}\frac{x^4y^4}{(x^2+y^4)^3}$ 的存在性,若存在求出极限,若不存在说明理由。
- 3、(8 分)求过点 M(-4,-5,3),且与两条直线 $l_1: \frac{x+1}{3} = \frac{y+3}{-2} = \frac{z-2}{-1}$ 和 $l_2: \frac{x-2}{2} = \frac{y+1}{3} = \frac{z-1}{-5}$ 都相交的直线方程。
- 4、(10 分)设 z = f(u,v) 具有二阶连续偏导数,其中 $u = e^x \cos y, v = e^x \sin y$,试证明:若 $\frac{\partial^2 f}{\partial u^2} + \frac{\partial^2 f}{\partial v^2} = 0$,则 $\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$.
- 5、(8分) 设u = f(x, y, z), $y = \ln x$, $g(\sin x, e^y, z) = 0$, 且 $\frac{\partial g}{\partial z} \neq 0$, 求 du.
- 6、(10 分) 在椭球面 $2x^2 + 2y^2 + z^2 = 1$ 上求一点,使函数 $f(x, y, z) = x^2 + y^2 + z^2$ 在该点沿方向 $\vec{l} = \vec{i} \vec{j}$ 的方向导数最大。
- 7、(10 分)设 $y = \varphi(x)$ $x \in [1,3]$ 是具有连续导数的函数,点 A(1,2) 及点 B(3,4) 在曲线 $L: y = \varphi(x)$ 上,而 L 恒在弦 \overline{BA} 之上方,且弧 \widehat{AB} 与 \overline{BA} 所围成弓形 D 的面积为 S ,试计算曲 线积分 $\int_{\overline{AB}} \frac{y}{x^2} dx + (x \frac{1}{x}) dy$
- 8、 $(8\, \mathcal{G})$ 设 f(x) 是以 2π 为周期的可微周期函数,又设 f'(x) 连续, a_0 , a_n , b_n $(n=1,2,3,\cdots)$ 是 f(x) 的 Fourier 系数。求证: $\lim_{n\to\infty}a_n=0$, $\lim_{n\to\infty}b_n=0$.
- 9、(10分) 试将函数 $f(x) = \ln(1 + x + x^2)$ 展开成 x 的幂级数。
- 10、(10 分) 设有向量场 $\vec{F} = \{x^2yz^2, \frac{1}{z}\arctan\frac{y}{z} xy^2z^2, \frac{1}{v}\arctan\frac{y}{z} + z(1+xyz)\}$,
 - (1) 计算 $div\vec{F}$ | (11) 的值。
 - (2) 设空间区域 Ω 由锥面 $y^2 + z^2 = x^2$ 与球面 $x^2 + y^2 + z^2 = a^2, x^2 + y^2 + z^2 = 4a^2$ 所围成(x > 0), 其中a为正常数, 记 Ω 表面的外侧为 Σ , 计算积分

$$I = \iint_{\Sigma} \vec{F} d\vec{s} = \iint_{\Sigma} x^2 y z^2 dy dz + \left[\frac{1}{z} \arctan \frac{y}{z} + xy^2\right] dz dx + \left[\frac{1}{y} \arctan \frac{y}{z} + z(1 + xyz)\right] dx dy$$

11、(8分) 设
$$f(x)$$
在[0,1]上连续,证明: $\int_0^1 e^{f(x)} dx \int_0^1 e^{-f(y)} dy \ge 1$.