

Recitations 16

[Definitions used today]

• Best correspondence, Nash Equilibrium, Minimax Theorem

Question 1

1/2	L	R
T	3,1	0,0
В	0,0	1,3

- Define: pure actions, mixed actions, best correspondences
- Find all Nash Equilibria

Solution 1

pure strategies: $A^1 = \{T, B\}, A^2 = \{L, R\}$ mixed strategies:

$$S = \{((p, 1 - p), (q, 1 - q)) \mid p, q \in [0, 1]\}$$

We can solve for the best responses as follows:

$$BR^{2}\left(\left(p,1-p\right)\right):\left\{\begin{array}{cc}L&R\\p+0\left(1-p\right)&0\left(p\right)+3\left(1-p\right)\end{array}\right\}$$

Equality only holds when $p = \frac{3}{4}$. $L > R \iff p > \frac{3}{4}$, $L < R \iff p < \frac{3}{4}$

$$BR^{1}\left(\left(q,1-q\right)\right):\left\{\begin{array}{cc}T&B\\3\left(q\right)+0\left(1-q\right)&0\left(q\right)+1\left(1-q\right)\end{array}\right\}$$

Equality only holds when $q=\frac{1}{4}.$ $T>B\iff p>\frac{1}{4}$. $T<B\iff p<\frac{1}{4}$ Therefore, player 1 sets p=1 if $q\geq\frac{1}{4}$ and sets p=0 otherwise. Similarly, player 2 sets q=1 if $p>\frac{3}{4}$ and sets q = 0 otherwise.

These best responses can be graphed:

Figure 1: Best Responses

The points of interesection

$$\left(\frac{3}{4}, \frac{1}{4}\right), (1, 1), (0, 0)$$

yield the set of Nash equilibria

NE =
$$\{((1,0),(1,0)),((0,1),(0,1)),((3/4,1/4),(1/4,3/4))\}$$
.

- Recitations 16 2

Question 2 [153 III.1 Spring 2013 majors]

A two players finite action normal form game is zero sum if the sum of the utilities of the two players is equal to 0 for any action profile, so $u^1 = -u^2$. The Minimax Theorem states that in this case

$$\min_{\alpha^2 \in \Delta(A^2)} \max_{\alpha^1 \in \Delta(A^1)} u\left(\alpha^1, \alpha^2\right) = \max_{\alpha^1 \in \Delta(A^1)} \min_{\alpha^2 \in \Delta(A^2)} u\left(\alpha^1, \alpha^2\right) \equiv v$$

Prove the minimax theorem. You can use Nash equilibrium existence theorem.

Solution 2

We will do it in three two: First we will prove that \geq holds. Secondly that \leq holds.

 \geq . Note that for any $\bar{s}^1 \in \Delta(A^1)$ and $\bar{s}^2 \in \Delta(A^2)$ it holds that:

$$u\left(\bar{s}^{1}, \bar{s}^{2}\right) \geq \min_{s^{2} \in \Delta(A^{2})} u\left(\bar{s}^{1}, s^{2}\right)$$

Then by taking maximum at both sides with respect to s^1 :

$$\max_{s^1 \in \Delta(A^1)} u\left(s^1, \bar{s}^2\right) \geq \max_{s^1 \in \Delta(A^1) s^2 \in \Delta(A^2)} \min_{x} u\left(s^1, s^2\right)$$

Note that the RHS is now constant, and a lower bound to the LHS across s^2 , then:

$$\min_{s^2 \in \Delta(A^2)} \max_{s^1 \in \Delta(A^1)} u\left(s^1, s^2\right) \ge \max_{s^1 \in \Delta(A^1)} \min_{s^2 \in \Delta(A^2)} u\left(s^1, s^2\right) \tag{0.1}$$

 \leq . Note that for any $\bar{s}^1 \in \Delta(A^1)$ it holds that:

$$\max_{s^1 \in \Delta(A^1)} \min_{s^2 \in \Delta(A^2)} u\left(s^1, s^2\right) \geq \min_{s^2 \in \Delta(A^2)} u\left(\bar{s}^1, s^2\right)$$

In particular for \hat{s}^1 a NE of the game the inequality must hold. We assume that such NE exists in mixed strategies. Note that if (\hat{s}^1, \hat{s}^2) it is defined as an strategy profile such that:

$$u\left(\hat{s}^{1}, \hat{s}^{2}\right) = \max_{s^{1} \in \Delta(A^{1})} u\left(s^{1}, \hat{s}^{2}\right) - u\left(\hat{s}^{1}, \hat{s}^{2}\right) = \max_{s^{2} \in \Delta(A^{2})} - u\left(\hat{s}^{1}, s^{2}\right)$$

The second condition implies:

$$u\left(\hat{s}^{1}, \hat{s}^{2}\right) = \min_{s^{2} \in \Delta(A^{2})} u\left(\hat{s}^{1}, s^{2}\right) = \max_{s^{1} \in \Delta(A^{1})} u\left(s^{1}, \hat{s}^{2}\right)$$

thus

$$\min_{s^{2} \in \Delta(A^{2})} u^{1} \left(\hat{s}^{1}, s^{2} \right) = u^{1} \left(\hat{s}^{1}, \underset{s^{2} \in \Delta(A^{2})}{\operatorname{argmin}} u^{1} \left(\hat{s}^{1}, s^{2} \right) \right)$$

$$= u^{1} \left(\hat{s}^{1}, \underset{s^{2} \in \Delta(A^{2})}{\operatorname{argmax}} u^{2} \left(\hat{s}^{1}, s^{2} \right) \right)$$

$$= u^{1} \left(\hat{s}^{1}, \hat{s}^{2} \right)$$

$$= \underset{s^{1} \in \Delta(A^{1})}{\operatorname{max}} u^{1} \left(s^{1}, \hat{s}^{2} \right)$$

$$\geq \underset{s^{2} \in \Delta(A^{2})}{\operatorname{min}} \underset{s^{1} \Delta(A^{1})}{\operatorname{max}} u^{1} \left(s^{1}, s^{2} \right)$$

Then by taking max over $\Delta(A^1)$:

$$\max_{s^{1} \in \Delta(A^{1})} \min_{s^{2} \in \Delta(A^{2})} u\left(s^{1}, s^{2}\right) \ge \min_{s^{1} \in \Delta(A^{1})} u\left(s^{1}, \hat{s}^{2}\right) \ge \min_{s^{2} \in \Delta(A^{2})} \max_{s^{1} \in \Delta(A^{1})} u\left(s^{1}, s^{2}\right) \tag{0.2}$$

Inequalities (0.1) and (0.2) gives us thesis of minimax theorem.

- Recitations 16

Question 3

For a zero sum game of two players define the value of the game as $V: \mathbb{R}^{nm} \to \mathbb{R}$ (where $n = \#A^1$ and $m = \#A^2$):

$$V(u) = \max_{s^1 \in \Delta(A^1)} \min_{s^2 \in \Delta(A^2)} U\left(s^1, s^2 \mid u\right)$$

where for a given strategy profile $s^1 = (p_1, \ldots, p_n)$, $s^2 = (q_1, \ldots, q_n)$ and payoffs $u \in \mathbb{R}^{nm}$ we define

$$U(s^{1}, s^{2} \mid u) = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{i}q_{j}u_{ij}$$

Show that The value of a game is

- a) continuous
- b) non-decreasing
- c) homogenous of degree one in payoffs.

Solution 3

• Consider the problem:

$$v\left(s^{1}, u\right) = \min_{s^{2} \in \Delta(A^{2})} U\left(s^{1}, s^{2} \mid u\right)$$

note that U is continuous in s_1, s_2 and u and that the minimum is being taken over s^2 in a compact set that does not vary with s^1 or u. By the theorem of the maximum the value of this problem, as a function of s^1 and u is a continuous function. Now consider:

$$V(u) = \max_{s^1 \in \Delta(A^1)} \min_{s^2 \in \Delta(A^2)} U\left(s^1, s^2 \mid u\right) = \max_{s^1 \in \Delta(A^1)} v\left(s^1, u\right)$$

again since v is continuous and s^1 varies in a compact set independent of u by the theorem of the maximum V is a continuous function of u.

• Let $u_1 \leq u_2$. Clearly for all s^1, s^2 :

$$U(s^{1}, s^{2} \mid u_{1}) = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{i}q_{j}u_{ij}^{1} \le U(s^{1}, s^{2} \mid u_{1}) = \sum_{i=1}^{n} \sum_{j=1}^{m} p_{i}q_{j}u_{ij}^{2}$$

so $U\left(s^{1}, s^{2} \mid u_{1}\right) \leq U\left(s^{1}, s^{2} \mid u_{2}\right)$. Then:

$$\min_{s^{2} \in \Delta(A^{2})} U\left(s^{1}, s^{2} \mid u_{1}\right) \leq \min_{s^{2} \in \Delta(A^{2})} U\left(s^{1}, s^{2} \mid u_{2}\right)$$

$$V\left(u_{1}\right) = \max_{s^{1} \in \Delta(A^{1})} \min_{s^{2} \in \Delta(A^{2})} U\left(s^{1}, s^{2} \mid u_{1}\right) \leq \max_{s^{1} \in \Delta(A^{1})} \min_{s^{2} \in \Delta(A^{2})} U\left(s^{1}, s^{2} \mid u_{2}\right) = V\left(u_{2}\right)$$

• Let $\lambda \in \mathbb{R}$, note that $U\left(s^1, s^2 \mid \lambda u\right) = \sum_{i=1}^n \sum_{j=1}^m p_i q_j \lambda u_{ij} = \lambda U\left(s^1, s^2 \mid u\right)$ and $\max_x \lambda f(x) = \lambda \max_x f(x)$. Thus $V(\lambda u) = \lambda V(u)$

- Recitations 16 4

Question 4

Under standard assumptions, prove the following properties of best response in mixed $BR_i(s)$:

- a) non-empty valued,
- b) compact valued,
- c) upper hemi continuous.
- d) convex-valued

Solution 4

- a) Take any $s \in S$. Then $BR^i(s) = \arg\max_{r^i \in S^i} u^i \left(r^i, s^{-i}\right)$. Since $u^i \left(\cdot, s^{-i}\right)$ is continuous and $S^i = \Delta \left(A^i\right)$ is compact, by the Weierstrass Theorem u^i achieves a maximum on S^i . Hence, $BR^i(s)$ is nonempty. Since s has been arbitrary, $BR^i(\cdot)$ is nonempty-valued.
- b) that converges in S^i , i.e. $r_m^i \to r^i \in S^i$. By definition we have $u^i\left(r_m^i, s^{-i}\right) \ge u^i\left(t^i, s^{-i}\right) \forall t^i \in S^i, m \in \mathbb{N}$. Then since $u^i\left(\cdot, s^{-i}\right)$ is continuous,

$$u^{i}\left(r^{i}, s^{-i}\right) = u^{i}\left(\lim_{m \to \infty} r_{m}^{i}, s^{-i}\right) = \lim_{m \to \infty} u^{i}\left(r_{m}^{i}, s^{-i}\right) \geq u^{i}\left(t^{i}, s^{-i}\right) \quad \forall t^{i} \in S^{i}$$

Hence, $r^i \in BR^i(s)$. Since s has been arbitrary, $BR^i(\cdot)$ is closed-valued.

c) Since S^i (the range of $BR^i(\cdot)$) is compact, it is sufficient to establish that $BR^i(\cdot)$ has a closed graph. Fix $s \in S$ arbitrarily and take any sequences $(s_m) \in S^{\infty}$ and $(r_m^i) \in S^{i\infty}$ with $s_m \to s \in S, r_m^i \to r^i \in S^i$ and $r_m^i \in BR^i(s_m) \, \forall m \in \mathbb{N}$. Then $u^i(r_m^i, s_m^{-i}) \geq u^i(t^i, s_m^{-i}), \forall t^i \in S^i$. Since $u^i(\cdot, \cdot)$ is continuous it follows that $\forall t^i \in S^i$

$$\begin{split} u^{i}\left(r^{i}, s^{-i}\right) &= u^{i}\left(\lim_{m \to \infty} r_{m}^{i}, \lim_{m \to \infty} s_{m}^{-i}\right) = \lim_{m \to \infty} u^{i}\left(r_{m}^{i}, s_{m}^{-i}\right) \\ &\geq \lim_{m \to \infty} u^{i}\left(t^{i}, s_{m}^{-i}\right) \\ &= u^{i}\left(t^{i}, \lim_{m \to \infty} s_{m}^{-i}\right) \\ &= u^{i}\left(t^{i}, s^{-i}\right) \end{split}$$

Hence, $r^i \in BR^i(s)$ and $BR^i(\cdot)$ is closed at s. Since s has been arbitrary, $BR^i(\cdot)$ has a closed graph.

d) Fix $s \in S$ arbitrarily and take any $r_a^i, r_b^i \in BR^i(s)$ and $\lambda \in (0,1)$. Then it must be that $u^i\left(r_a^i, s^{-i}\right) = u^i\left(r_b^i, s^{-i}\right) \ge u^i\left(r^i, s^{-i}\right) \forall r^i \in S^i$. Or, equivalently,

$$\sum_{a^{i}\in A^{i}}r_{a}^{i}\left(a^{i}\right)u^{i}\left(a^{i},s^{-i}\right)=\sum_{a^{i}\in A^{i}}r_{b}^{i}\left(a^{i}\right)u^{i}\left(a^{i},s^{-i}\right)\geq\sum_{a^{i}\in A^{i}}r^{i}\left(a^{i}\right)u^{i}\left(a^{i},s^{-i}\right)\quad\forall r^{i}\in S^{i}$$

Now consider the mixed strategy $\lambda r_a^i + (1-\lambda)r_b^i$. The utility of this strategy profile is

$$\begin{split} u^i \left[\lambda r_a^i + (1 - \lambda) r_b^i, s^{-i} \right] &= \sum_{a^i \in A^i} \left[\lambda r_a^i \left(a^i \right) + (1 - \lambda) r_b^i \left(a^i \right) \right] u^i \left(a^i, s^{-i} \right) \\ &= \lambda \sum_{a^i \in A^i} r_a^i \left(a^i \right) u^i \left(a^i, s^{-i} \right) + (1 - \lambda) \sum_{a^i \in A^i} r_b^i \left(a^i \right) u^i \left(a^i, s^{-i} \right) \\ &= \sum_{a^i \in A^i} r_a^i \left(a^i \right) u^i \left(a^i, s^{-i} \right) \\ &\geq u^i \left(r^i, s^{-i} \right) \quad \forall r^i \in S^i, \end{split}$$

where the third line follows from (2) and the inequality holds since $r_a^i \in BR^i(s)$. Hence, $\lambda r_a^i + (1-\lambda)r_b^i \in BR^i(s)$ and, since s has been arbitrary, $BR^i(\cdot)$ is convex-valued.

- Recitations 16 5

Question 5

Show that $BR_i(s) = co(\{\delta_{b^i} : b^i \in BR_{A^i}^i(s)\})$

Solution 5

• $BR_i(s) \subset co(\{\delta_{b^i}: b^i \in BR_{A^i}^i(s)\})$

Lemma 0.1.

$$\forall b^i \notin BR_{A^i}(s), b^i \in A^i \Rightarrow s^i(b^i) = 0$$

Suppose not. if the strategy $s^i \in BR_{A^i}(s)$ uses some pure action $b^i \in A^i$ which $\notin BR_{A^i}(s)$, i.e. $s^i(b^i) > 0$ then

$$\forall c^{i} BR_{A^{i}}(s) : u^{i}(c^{i}, s^{-i}) > u^{i}(b^{i}, s^{-i})$$

Consider another mixed strategy r^i , defined as follows:

$$r^{i}(a^{i}) = s^{i}(a^{i}) \quad \forall a^{i} \in A^{i}/\{b^{i}, c^{i}\}$$
$$r^{i}(b^{i}) = 0$$
$$r^{i}(c^{i}) = s^{i}(b^{i}) + s^{i}(c^{i})$$

then

$$\begin{split} u^i(r^i,s) &= \sum_{a^i \in A^i} r^i(a^i) u(a^i,s^{-i}) + r^i(b^i) u^i(b^i,s^{-i}) + r^i(c^i) u^i(c^i,s^{-i}) = \\ &= \sum_{a^i \in A^i} s^i(a^i) u^i(a^i,s) + [s^i(b^i) + s^i(c^i)] u^i(c^i,s^{-i}) > \\ &\sum_{a^i \in A^i} s^i(a^i) u^i(a^i,s^{-i}) + s^i(b^i) u^i(b^i,s^{-i}) + s^i(c^i) u^i(c^i,^{-i}s) = u^i(s^i,s^{-i}) \end{split}$$

contradiction with $s^i \in BR^i(s)$.

 $BR_i(s) \subset co(\{\delta_{b^i}: b^i \in BR_{A^i}(s)\})$ comes straight from lemma.

•
$$BR_i(s) \supset co(\{\delta_{b^i}: b^i \in BR_{A^i}^i(s)\})$$

BR is convex valued. We need to show that $(\{\delta_{b^i}: b^i \in BR_{A^i}^i(s)\}) \subset BR^i(s)$ Suppose not Let $b^i \in BR^i(s)$ and suppose $\delta_{b^i} \notin BR^i(s)$ then

$$\exists s^{i} \in \Delta(A^{i}) \quad u^{i}(s^{i}, s^{-i}) > u^{i}(b^{i}, s^{-i})$$

$$\sum_{a^{i} \in A^{i}} s^{i}(a)u^{i}(a^{i}, s^{-i}) > u^{i}(b^{i}, s^{-i}) = \sum_{a^{i} \in A^{i}} s^{i}(a^{i})u^{i}(b^{i}, s^{-i})$$

for at least one a^i $u^i(a^i,s^{-i}) > u^i(b^i,s^{-i})$ contradicts $b^i \in \mathrm{BR}^i_{A^i}(s)$