Séries de fonctions numériques

Je me souviens			
Cours			
1	Modes de convergence d'une série de fonctions		
	1.1	Convergence simple	
	1.2	Convergence uniforme	
	1.3	Convergence normale	
	1.4	Lien entre les différents modes de convergence	
2	Régu	larité de la somme d'une série de fonctions	
	2.1	Transfert de continuité	
	2.2	Théorème de la double limite	
	2.3	Somme d'une série de fonctions de classe \mathcal{C}^1	
	2.4	Extension aux fonctions de classes \mathcal{C}^k	
Exerci	ces		
Exe	ercices e	et résultats classiques à connaître	
		onction ζ de Riemann	
		apparaître une équation différentielle	
	_	ier les limites aux bornes de l'ensemble de définition	
		ier la dérivabilité au bord de l'ensemble de définition	
Exe		du CCINP	
	ercices		
	101000	blèmes d'entrainement	

Je me souviens

- 1. Qu'est-ce qu'une série numérique? Quel est le lien entre suite et série?
- 2. Quelles sont les principales techniques d'étude d'une série numérique à termes positifs? alternées? de signe quelconque?
- $3. \ \ Qu'est-ce \ que \ la \ convergence \ simple \ d'une \ suite \ de \ fonctions \ ? \ la \ convergence \ uniforme \ ?$
- 4. Comment assurer la continuité de la limite simple d'une suite de fonctions ? et la dérivabilité ?

Dans ce chapitre, les fonctions considérées sont définies sur un intervalle I de \mathbb{R} et à valeurs réelles ou complexes $(\mathbb{K} = \mathbb{R} \text{ ou } \mathbb{C})$.

1 Modes de convergence d'une série de fonctions

Dans ce chapitre, on considère des applications $f_n: I \to \mathbb{R}$ et on étudie la série de fonctions $\sum f_n$.

1.1 Convergence simple

<u>Définition</u>. Soit $\sum f_n$ une série de fonctions $I \to \mathbb{K}$. On dit que $\sum f_n$ converge simplement si et seulement si, pour tout $x \in I$ fixé, la série numérique $\sum f_n(x)$ converge. Dans ce cas, on définit :

$$S: I \to \mathbb{K}$$

$$x \mapsto \sum_{n=0}^{+\infty} f_n(x)$$

appelée somme de la série de fonctions $\sum f_n$.

Remarque.

- La convergence simple est la convergence point à point. On rédige toujours l'étude de la convergence simple en travaillant « à x fixé ».
- Pour $n \in \mathbb{N}$, on peut noter :

$$S_n: x \mapsto \sum_{k=0}^n f_k(x)$$

Alors $(S_n)_n$ la suite de fonctions des sommes partielles de $\sum f_n$, et la convergence simple de $\sum f_n$ est équivalente à la convergence simple de $(S_n)_n$.

• En cas de convergence simple sur I, on note :

$$R_n : x \mapsto \sum_{k=n+1}^{+\infty} f_k(x) = S(x) - S_n(x)$$

Alors la suite de fonctions $(R_n)_n$ converge simplement vers la fonction constante nulle sur I.

• On peut rencontrer des séries de fonctions qui sont indexées par $n \ge n_0$.

Il arrive que la convergence simple n'ait pas lieu sur I tout entier, mais sur une partie J de I. Dans ce cas, la somme de la série de fonction n'est définie que sur J, appelé **domaine de convergence simple** :

Proposition. La somme d'une série de fonction est définie là où la série de fonction converge simplement.

Remarque. L'étude de la convergence, à x fixé, de $\sum f_n(x)$, se fait en utilisant les outils du chapitre 52 : on travaille en général sur le terme général $f_n(x)$, que l'on essaye de comparer au terme général d'unes série numérique connue (Riemann, géométrique, etc.). Dans ce cas, x joue le rôle d'un paramètre sur lequel on peut être amené à discuter.

Exemple. Étudier la convergence simple de la série de fonctions $\sum f_n$ dans le cas où :

$$1. \ f_n(x) = x^n$$

4.
$$f_n(x) = (-1)^n \frac{e^{-nx^2}}{n}$$

2.
$$f_n(x) = \frac{1}{n^x}$$

5.
$$f_n(x) = \frac{e^{-nx^2}}{n^2}$$

$$3. f_n(x) = \frac{e^{-nx^2}}{n}$$

6.
$$f_n(x) = \frac{x^n}{1 + x^{2n}}$$

1.2 Convergence uniforme

<u>Définition</u>. Soit $\sum f_n$ une série de fonctions : $I \to \mathbb{K}$. On dit que $\sum f_n$ converge uniformément sur I si et seulement si la suite de fonctions $(S_n)_n$ de ses sommes partielles converge uniformément sur I.

Remarque. On peut quantifier la définition par :

$$\forall \varepsilon > 0, \exists N \ t.q. \ \forall n \geqslant N, \ \forall x \in I, \ \left| \sum_{k=n+1}^{+\infty} f_k(x) \right| \leqslant \varepsilon$$

Proposition. La convergence uniforme d'une série de fonctions implique sa convergence simple.

Théorème.

 $\sum f_n$ converge uniformément sur I si et seulement si :

 $\begin{cases} \sum f_n \text{ converge simplement sur } I \\ (R_n)_n \text{ converge uniformément sur } I \text{ vers } 0 \end{cases}$

Exemple. Étudier la convergence uniforme de $\sum f_n$ sur l'intervalle précisé.

1.
$$f_n(x) = (-1)^n \frac{x^n}{n}$$
, $I = [0, 1]$.

3.
$$f_n(x) = \frac{(-1)^{n-1}}{n+x^2}, I = \mathbb{R}.$$

2. $f_n(x) = xe^{-nx^2}, I = \mathbb{R}.$

<u>Proposition.</u> Si $\sum f_n$ et $\sum g_n$ convergent uniformément sur I, et $\lambda, \mu \in \mathbb{K}$, alors $\sum (\lambda f_n + \mu g_n)$ converge uniformément sur I.

<u>Proposition.</u> Si la série de fonctions $\sum f_n$ converge uniformément sur I, alors la suite de fonctions $(f_n)_n$ converge uniformément vers 0 sur I.

Remarque. Il est difficile de démontrer la convergence uniforme sans calculer explicitement la somme S(x), sauf à avoir recours dans certains cas au TSSA.

1.3 Convergence normale

On introduit dans ce paragraphe un autre mode de convergence des séries de fonctions, plus « fort » que les précédents.

<u>Définition.</u> Soit $\sum f_n$ une série de fonctions : $I \to \mathbb{K}$. On dit que $\sum f_n$ converge normalement sur I si et seulement si :

$$\begin{cases} f_n \text{ est born\'ee sur } I \text{ pour tout } n \\ \sum ||f_n||_{\infty} \text{ converge} \end{cases}$$

Remarque.

- On peut donner une définition moins forte, en ne travaillant que pour $n \ge n_0$.
- Le premier point permet de garantir l'existence de $||f_n||_{\infty} = \sup\{|f_n(x)|, x \in I\}$
- Le second point est la convergence d'une série numérique.
- La convergence normale de $\sum f_n$, c'est la convergence de $\sum ||f_n||_{\infty}$.

Théorème.

Soit $\sum f_n$ une série de fonctions : $I \to \mathbb{K}$.

S'il existe une série numérique $\sum \alpha_n$ convergente et majorante, c'est-à-dire telle que :

$$\forall n, \forall x, |f_n(x)| \leqslant \alpha_n$$

où α_n est positive, indépendante de x et t.g. d'une série convergente, alors $\sum f_n$ converge normalement.

Exemple. Étudier la convergence normale sur tout segment de $\sum \frac{x^n}{n!}$.

Exemple. Étudier la convergence normale sur [0,1] de $\sum f_n$ où $f_n(x)=(-1)^n\frac{x^n}{n}$.

1.4 Lien entre les différents modes de convergence

Proposition. La convergence uniforme implique la convergence simple.

Proposition. La convergence normale implique la convergence uniforme.

2 Régularité de la somme d'une série de fonctions

2.1 Transfert de continuité

Théorème.

Soit $\sum f_n$ une série de fonctions définies sur I.

Si:

- $\sum f_n$ converge uniformément sur I (on note S sa somme),
- pour tout n, f_n est continue sur I,

alors:

 \circ S est continue sur I.

Raisonnement classique. Si $\sum f_n$ converge uniformément sur tout segment $[a,b] \subset I$, et si les f_n sont continues sur I, alors S est continue sur tout $[a,b] \subset I$ donc sur I.

Remarque. Ce résultat, qui exploite le caractère local de la continuité, s'adapte aussi lorsque la convergence uniforme est vérifiée sur une famille d'intervalles adaptés à la situation.

Exemple. On note $\exp(x) = \sum_{n=0}^{+\infty} \frac{x^n}{n!}$. Montrer que exp est continue sur \mathbb{R} .

2.2 Théorème de la double limite

Théorème de la double limite.

Soit $\sum f_n$ une série de fonctions définies sur I et a une extrémité de I (éventuellement infinie).

- $\sum f_n$ converge uniformément sur I (on note S sa somme),
- pour tout n, f_n admet une limite finie ℓ_n en a,

alors:

- la série $\sum \ell_n$ converge (on note ℓ sa somme),
- \circ la fonction S admet une limite en a,
- cette limite est égale à ℓ .

Preuve. La démonstration est hors programme.

Remarque. On peut symboliser la conclusion de ce théorème par :

$$\lim_{x \to a} \left(\sum_{n=0}^{+\infty} f_n(x) \right) = \sum_{n=0}^{+\infty} \left(\lim_{x \to a} f_n(x) \right)$$

mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes de convergence des séries et d'existence des limites envisagées.

Exemple. Pour x > 0, on note $f(x) = \sum_{n=0}^{+\infty} \frac{(-1)^n}{x+n}$. Déterminer la limite pour $x \to +\infty$ de f(x).

Exemple. On s'intéresse à la série $\sum x^n$, qui converge simplement sur]-1,1[. Utiliser le théorème de la double limite pour montrer que la convergence n'est pas uniforme sur]-1,1[.

2.3 Somme d'une série de fonctions de classe C^1

Théorème de dérivation terme à terme d'une série de fonctions.

Soit $\sum f_n$ une série de fonctions définies sur I.

Si

- $\sum f_n$ converge simplement sur I (on note S sa somme),
- pour tout n, f_n est de classe C^1 sur I,
- la série des dérivées $\sum f_n'$ converge uniformément sur I,

alors:

- \circ S est de classe \mathcal{C}^1 sur I,
- pour tout $x: S'(x) = \sum_{n=0}^{+\infty} f'_n(x)$.

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\frac{\mathrm{d}}{\mathrm{d}x} \sum_{n=0}^{+\infty} f_n(x) = \sum_{n=0}^{+\infty} \frac{\mathrm{d}f_n}{\mathrm{d}x}(x)$$

qui explique le nom du théorème. Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes de convergence des séries et d'existence des dérivées envisagées.

- La convergence uniforme de $\sum f_n$ n'entraı̂ne pas la dérivabilité de la somme.
- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I
 de ∑ f'_n par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles
 adaptés à la situation.

Remarque. Étudier les variations de la somme f d'une série de fonction, c'est d'abord comparer f(x) et f(y) pour x < y, ce qui peut souvent se faire en comparant les « sommandes », sans faire appel au théorème de classe C^1 , lourd à mettre en œuvre.

Exemple. Étudier la dérivabilité de la somme de la série $\sum \frac{1}{x^2 - n^2}$.

Exemple. Montrer que $x \mapsto \sum_{n=1}^{+\infty} \frac{\mathrm{e}^{-nx^2}}{n^2}$ est dérivable sur \mathbb{R} .

2.4 Extension aux fonctions de classes C^k

Théorème.

Soit $\sum f_n$ une série de fonctions définie sur I, et $k \in \mathbb{N}^*$.

Si :

- pour tout n, f_n est de classe C^k sur I,
- pour tout $0 \le j \le k-1$, $\sum f_n^{(j)}$ converge simplement sur I,
- la série $\sum f_n^{(k)}$ converge uniformément sur I,

alors:

• la somme
$$S = \sum_{n=0}^{+\infty} f_n$$
 est de classe C^k sur I

$$\quad \text{o pour tout } 1 \leqslant j \leqslant k, \, S^{(j)} = \sum_{n=0}^{+\infty} f_n^{(j)}.$$

Remarque.

• On peut symboliser la conclusion de ce théorème par :

$$\left(\sum_{n=0}^{+\infty} f_n\right)^{(j)}(x) = \sum_{n=0}^{+\infty} f_n^{(j)}(x)$$

Mais cette « formule » ne présente pas les hypothèses d'application de ce théorème, et masque les problèmes d'existence des limites et dérivées envisagées.

- Comme la dérivabilité est une propriété locale, on peut remplacer l'hypothèse de convergence uniforme sur I des $\sum f_n^{(k)}$ par l'hypothèse moins forte de convergence uniforme sur tout segment de I, ou d'autres intervalles adaptés à la situation.
- Pour montrer que S est de classe C^{∞} , on montre la convergence simple de $\sum f_n$ et la convergence uniforme de toutes les $\sum f_n^{(j)}$, pour $j \ge 1$.

Exemple. Montrer que $x \mapsto \sum_{n=1}^{+\infty} \frac{\sin(nx)}{n^4}$ est de classe \mathcal{C}^2 sur \mathbb{R} .

Exercices et résultats classiques à connaître

La fonction ζ de Riemann

540.1

On définit, lorsque c'est possible : $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$

Montrer que ζ est une application définie et de classe \mathcal{C}^{∞} sur $]1, +\infty[$.

Faire apparaître une équation différentielle

540.2

(a) Déterminer le domaine de définition de la fonction f définie par :

$$f(x) = \sum_{n=0}^{+\infty} (-1)^n \frac{e^{-nx}}{n+1}$$

- (b) Montrer que f est continue sur $[0, \infty[$ et de classe \mathcal{C}^1 sur $]0, +\infty[$.
- (c) Déterminer une équation différentielle simple dont f est solution et en déduire que f est de classe \mathcal{C}^1 sur $[0, +\infty[$.

Étudier les limites aux bornes de l'ensemble de définition

540.3

On considère :

$$f: x \mapsto \sum_{n=1}^{+\infty} \frac{1}{n(n+x)}$$

- (a) Montrer que f est définie sur $]-1,+\infty[$.
- (b) Déterminer la limite de f en $+\infty$, puis un équivalent de f en $+\infty$.
- (c) Déterminer la limite de f en -1 à droite.

Étudier la dérivabilité au bord de l'ensemble de définition

540.4

Pour $x \in [-1, 1]$, on pose :

$$g(x) = \sum_{n=1}^{+\infty} \frac{x^n}{n^2}$$

- (a) Montrer que g est continue sur [-1,1], de classe \mathcal{C}^1 sur]-1,1[.
- (b) Est-ce que g est dérivable en 1?

GNP 16

540.5

- **GNP** 8.2
- 2. On pose : $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, f_n(x) = \frac{(-1)^n e^{-nx}}{n}$.
 - (a) Étudier la convergence simple sur \mathbb{R} de la série de fonctions $\sum_{n\geqslant 1}f_n$.
 - (b) Étudier la convergence uniforme sur $[0, +\infty]$ de la série de fonctions

540.6

- **GNP** 14
- 1. Soit a et b deux réels donnés avec a < b. Soit (f_n) une suite de fonctions continues sur [a,b], à valeurs réelles. Démontrer que si la suite (f_n) converge uniformément sur [a,b] vers f, alors la suite $\left(\int_{a}^{b} f_{n}(x) dx\right)$ converge vers $\int_{a}^{b} f(x) dx$.
- 2. Justifier comment ce résultat peut être utilisé dans le cas des séries de fonctions.
- 3. Démontrer que $\int_0^{\frac{1}{2}} \left(\sum_{n=1}^{+\infty} x^n\right) dx = \sum_{n=1}^{+\infty} \frac{1}{n2^n}$.

540.7

GNP 15.12

Soit X une partie de \mathbb{R} ou \mathbb{C} .

- 1. Soit $\sum f_n$ une série de fonctions définies sur X à valeurs dans \mathbb{R} ou \mathbb{C} . Rappeler la définition de la convergence normale de $\sum f_n$ sur X, puis celle de la convergence uniforme de $\sum f_n$ sur X.
- 2. Démontrer que toute série de fonctions, à valeurs dans \mathbb{R} ou \mathbb{C} , normalement convergente sur X est uniformément convergente sur X.

On considère la série de fonctions de terme général u_n définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0,1], \ u_n(x) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n}.$$

On pose, lorsque la série converge, $S(x) = \sum_{n=0}^{+\infty} \left[\ln \left(1 + \frac{x}{n} \right) - \frac{x}{n} \right].$

- 1. Démontrer que S est définie sur [0,1]
- 2. On définit une suite $(u_n)_{n\geqslant 1}$ par $u_n = \ln(n+1) \sum_{i=1}^n \frac{1}{k}$. En utilisant S(1), démontrer que la suite $(u_n)_{n\geqslant 1}$ est convergente. En déduire un équivalent simple de $\sum_{k=1}^{\infty} \frac{1}{k}$ lorsque $n \to +\infty$.
- 3. Démontrer que S est de classe \mathcal{C}^1 sur [0,1] et calculer S'(1).

540.9

540.8

GNP 17

Soit $A \subset \mathbb{C}$ et (f_n) une suite de fonctions de A dans \mathbb{C} .

1. Démontrer l'implication :

(la série de fonctions $\sum f_n$ converge uniformément sur A)

(la suite de fonctions (f_n) converge uniformément vers 0 sur A)

2. On pose: $\forall n \in \mathbb{N}, \forall x \in [0; +\infty[, f_n(x) = nx^2 e^{-x\sqrt{n}}]$ Prouver que $\sum f_n$ converge simplement sur $[0; +\infty[$. $\sum f_n$ converge-t-elle uniformément sur $[0; +\infty[$? Justifier.

540.10

GNP 18

540. Séries de fonctions numériques

On pose: $\forall n \in \mathbb{N}^*, \forall x \in \mathbb{R}, u_n(x) = \frac{(-1)^n x^n}{n}.$

On considère la série de fonctions $\sum u_n$.

540. Séries de fonctions numériques

On note D l'ensemble des x où cette série converge et S(x) la somme de cette série pour $x \in D$.

- 2. (a) La fonction S est-elle continue sur D?
 - (b) Étudier la convergence normale, puis la convergence uniforme de cette série sur D.
 - (c) Étudier la convergence uniforme de cette série sur [0, 1].

540.11

On considère, pour tout entier naturel n non nul, la fonction f_n définie sur \mathbb{R} par $f_n(x) = \frac{x}{1 + n^4 x^4}$.

1. (a) Prouver que $\sum_{n\geqslant 1} f_n$ converge simplement sur \mathbb{R} .

On pose alors :
$$\forall x \in \mathbb{R}, f(x) = \sum_{n=1}^{+\infty} f_n(x).$$

(b) Soit $(a, b) \in \mathbb{R}^2$ avec 0 < a < b.

$$\sum_{n\geqslant 1} f_n \text{ converge-t-elle normalement sur } [a,b] ? \text{ sur } [a,+\infty[?]]$$

- (c) $\sum_{n\geqslant 1} f_n$ converge-t-elle normalement sur $[0,+\infty[\,?\,]$
- 2. Prouver que f est continue sur \mathbb{R}^* .
- 3. Déterminer $\lim_{x \to +\infty} f(x)$.

Exercices

540.12

On définit, lorsque c'est possible :

$$\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$$

- (a) Justifier que le domaine de définition de ζ est $]1, +\infty[$.
- (b) En utilisant le théorème de la double limite en 1, montrer que la série de fonctions ne converge pas uniformément sur $]1, +\infty[$.
- (c) En utilisant une comparaison série-intégrale, trouver un équivalent simple de $\zeta(x)$ quand $x\to 1$.
- (d) Montrer que ζ a une limite en $+\infty$, et la calculer.

540.13

Étude des différents mode de convergence (simple, normale, uniforme) de $\sum nx^2 e^{-x\sqrt{n}}$.

540.14

Étudier les convergences simple, normale, uniforme pour les séries de fonctions :

(a)
$$f_n : [0, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \frac{xe^{-nx}}{\ln n}$

(b)
$$f_n: [0, +\infty[\rightarrow \mathbb{R}$$

 $x \mapsto \frac{(-1)^n x}{x^2 + n}$

(c)
$$f_n: [0, +\infty[\rightarrow \mathbb{R} \\ x \mapsto \frac{nx}{1+n^3x^2}]$$

540.15

Pour $x \ge 0$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = (-1)^n \ln \left(1 + \frac{x}{n(1+x)}\right)$.

- (a) Montrer que $\sum_{n\geqslant 1} u_n$ converge simplement sur $[0,+\infty[$.
- (b) Montrer que la convergence est uniforme sur $[0, +\infty[$
- (c) La convergence est-elle normale sur $[0, +\infty[$?

(b) Montrer que la convergence est uniforme sur tout $[0, A] \subset [0, +\infty[$

(c) Vérifier que, pour tout $n \in \mathbb{N}^*$:

$$\sum_{k=n+1}^{2n}\frac{n}{n^2+k^2}\geqslant\frac{1}{5}$$

(d) En déduire que la série $\sum_{n\geqslant 1}u_n$ ne converge pas uniformément sur $[0,+\infty[$.

540.17

Étudier les convergences simple, normale, uniforme pour les séries de fonctions :

(a) $f_n : \mathbb{R} \to \mathbb{R}$ $x \mapsto \frac{\sin(nx)}{n^2 + x^2}$

(b) $f_n: [0,1] \rightarrow \mathbb{R}$ $x \mapsto n^2 x^n (1-x)^n$

(c) $f_n: [0, +\infty[\rightarrow \mathbb{R}$ $x \mapsto \frac{nx^2}{n^3 + x^2}$

540.18

On note, pour $x \in \mathbb{R}$ et $n \in \mathbb{N}$, $f_n(x) = ne^{-nx}$.

(a) Étudier la convergence simple de $\sum f_n$.

(b) Montrer que $\forall a > 0, \sum f_n$ converge uniformément sur $[a, +\infty[$.

540.19

Montrer que $x \mapsto \sum_{n=0}^{+\infty} \frac{x^2}{e^{-2nx} + e^{3nx}}$ est définie et continue sur \mathbb{R} .

540.20

Pour x > 0, on pose $f(x) = \sum_{n=1}^{+\infty} \frac{1}{n + n^2 x}$.

(a) Montrer que f est ainsi correctement définie et continue sur \mathbb{R}_+^* .

(b) Montrer que f est de classe C^1 sur \mathbb{R}_+^* .

(c) En admettant que $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, déterminer un équivalent de f(x) en $+\infty$ et en 0.

540.21

On note $f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$.

(a) Déterminer le domaine de définition de f, puis la continuité de f sur ce domaine.

(b) Montrer que f admet une limite en $+\infty$ et déterminer cette limite.

(c) Déterminer un équivalent de f(x) lorsque $x \to 0$.

540.22

Pour $x \in \mathbb{R}$ et sous réserve de convergence, on pose $f(x) = \sum_{n=0}^{+\infty} e^{-x\sqrt{n}}$.

(a) Déterminer le domaine de définition de f.

(b) Montrer que f est de classe \mathcal{C}^{∞} sur son domaine définition.

(c) Donner un équivalent de f(x) au voisinage de 0.

540.23

On considère la série de fonctions de t.g. u_n définie par :

$$\forall n \in \mathbb{N}^*, \ \forall x \in [0, 1], \ u_n(x) = \ln\left(1 + \frac{x}{n}\right) - \frac{x}{n}$$

On pose, lorsque la série converge, $S(x) = \sum_{n=1}^{+\infty} u_n(x)$.

- (a) Démontrer que S est dérivable sur [0,1].
- (b) Calculer S'(1).

Indication : penser à décomposer une fraction rationnelle en éléments simples.

Petits problèmes d'entrainement

540.24

On définit, pour $x \in \mathbb{R}$, $\zeta(x) = \sum_{n=1}^{+\infty} \frac{1}{n^x}$.

- (a) Déterminer le domaine de définition de ζ .
- (b) Montrer que ζ est \mathcal{C}^{∞} sur $]1,+\infty[$ et exprimer $\zeta^{(k)}(x)$ sous la forme de somme d'une série.
- (c) Étudier les variations de ζ .
- (d) Montrer que $\zeta(x) \xrightarrow[x \to +\infty]{} 1$ et $\zeta(x) 1 \underset{x \to +\infty}{\sim} \frac{1}{2^x}$.
- (e) Montrer, pour x > 1:

$$\frac{1}{x-1} \leqslant \zeta(x) \leqslant 1 + \frac{1}{x-1}$$

En déduire le comportement de $\zeta(x)$ pour $x \stackrel{>}{\to} 1$.

(f) Dresser le tableau des variations de ζ et tracer sa courbe représentative.

540.25

Pour tout $t \in \mathbb{R}$ et $n \in \mathbb{N}^*$, on pose $u_n(t) = \frac{\operatorname{Arctan}(nt)}{n^2}$.

- (a) Justifier que la série $\sum_{n\geqslant 1}u_n$ converge simplement sur $\mathbb R.$ On note S sa somme.
- (b) Montrer que S est continue sur \mathbb{R} , impaire.
- (c) Déterminer la limite de S en $+\infty$ (on donne $\sum_{n=1}^{+\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$).
- (d) Préciser les variations de S.
- (e) Soit $N \in \mathbb{N}^*$. Montrer qu'il existe $t_0 > 0$ tel que, pour tout $t \in [-t_0, t_0[\setminus \{0\}, \text{ on a :}$

$$\sum_{n=1}^{N} \frac{u_n(t)}{t} \geqslant \frac{1}{2} \sum_{n=1}^{N} \frac{1}{n}$$

- (f) Étudier la dérivabilité de S en 0.
- (g) Tracer la courbe représentative de S.

540.26

Soit $S(x) = \sum_{n=1}^{+\infty} \frac{1}{n^2 + x^2}$ (quand cela a un sens).

Montrer que $S(x) \xrightarrow[x \to +\infty]{} 0$.

En utilisant la décroissance, à x>0 fixé, de $g:t\mapsto \frac{1}{t^2+x^2}$, montrer que $S(x)\underset{x\to+\infty}{\sim}\frac{\pi}{2x}$.

540.27

Pour tout $x \in \mathbb{R} \setminus \{-1\}$ et $n \in \mathbb{N}^*$, on pose $u_n(x) = \frac{(-1)^{n-1}}{n} \frac{x^n}{1+x^n}$. Sous réserve de convergence, on pose $f(x) = \sum_{n=1}^{+\infty} u_n(x)$.

(b) Montrer que pour tout x non nul de D_f :

$$f(x) = \sum_{n=1}^{+\infty} \frac{(-1)^{n-1}}{n} - f\left(\frac{1}{x}\right)$$

- (c) Pour tout $a \in [0,1[$, montrer que $\sum_{n\geqslant 1} u_n$ converge normalement sur [-a,a]. En déduire que f est continue sur $\mathbb{R} \setminus \{-1,1\}$.
- (d) Montrer que f est continue en 1.

540.28

On note, pour $n \in \mathbb{N}^*$:

$$\begin{array}{cccc} f_n : [0,+\infty[& \to & \mathbb{R} \\ & x & \mapsto & \frac{\ln(n+x)}{n^2} \end{array}$$

(a) Étudier la convergence simple de $\sum f_n$. On note S la somme.

- (b) Monter que S est de classe C^2 sur $[0, +\infty[$ et exprimer S'(x) et S''(x) sous la forme de sommes de séries.
- (c) En déduire que S est strictement croissante et concave sur $[0, +\infty[$.
- (d) Montrer, d'une façon plus simple, que S est strictement croissante sur $[0,+\infty[.$

540.29

Soit $(a_n)_n$ une suite réelle positive et décroissante. On note, pour $n \in \mathbb{N}^*$:

$$f_n: [0,1] \rightarrow \mathbb{R}$$

 $x \mapsto a_n x^n (1-x)$

- (a) Monter que $\sum f_n$ converge simplement sur [0,1].
- (b) Montrer que $\sum f_n$ converge normalement sur [0,1] si et seulement si $\sum \frac{a_n}{n}$ converge.
- (c) Montrer que $\sum f_n$ converge uniformément sur [0,1] si et seulement si $a_n \xrightarrow[n \to +\infty]{} 0$.