From the equations presented below, express the probability of a tweet being positive given that it contains the word happy in terms of the probability of a tweet containing the word happy given that it is positive

$$P(\text{Positive}|\,\text{``happy''}) = \frac{P(\text{Positive} \cap \,\text{``happy''})}{P(\,\text{``happy''})} \qquad P(\,\text{``happy''}|\,\text{Positive}) = \frac{P(\,\text{``happy''} \cap \,\text{Positive})}{P(\text{Positive})}$$

$$P(\text{Positive}|\text{``happy''}) = P(\text{``happy''}|\text{Positive}) \times \frac{P(\text{``happy''})}{P(\text{Positive})}$$

$$P(\text{Positive}|\,\text{``happy''}) = P(\,\text{``happy''} \cap \text{Positive}) \times \frac{P(\text{Positive})}{P(\,\text{``happy''})}$$

$$P(\text{Positive}|\,\text{``happy''}) = P(\,\text{``happy''} \cap \text{Positive}) \times \frac{P(\,\text{``happy''})}{P(\text{Positive})}$$

® 
$$P(\text{Positive}|\text{"happy"}) = P(\text{"happy"}|\text{Positive}) \times \frac{P(\text{Positive})}{P(\text{"happy"})}$$

✓ Correct

That's right. You just derived Bayes' rule.

## Question

Here, again, is Bayes' rule:

$$P(X|Y) = P(Y|X) \times \frac{P(X)}{P(Y)}$$

Suppose that in your dataset, 25% of the positive tweets contain the word 'happy'. You also know that a total of 13% of the tweets in your dataset contain the word 'happy', and that 40% of the total number of tweets are positive. You observe the tweet: 'happy to learn NLP'. What is the probability that this tweet is positive?

- P(Positive | "happy") = 0.77
- O P(Positive | "happy") = 0.08
- O P(Positive | "happy" ) = 0.10
- P(Positive | "happy" ) = 1.92



That's right. You just applied Bayes' rule.







1/1 point

$$P(\text{Positive} \mid \text{"happy"}) = \frac{P(\text{Positive} \cap \text{"happy"})}{P(\text{"happy"})}$$

$$P("happy" Positive) = \frac{P("happy" \cap Positive)}{P(Positive)}$$

**(a)** 
$$P(\text{Positive} \mid \text{happy}) = P(\text{happy} \mid \text{Positive}) \times \frac{P(\text{Positive})}{P(\text{happy})}$$

O 
$$P(\text{Positive} \mid \text{happy}) = P(\text{"happy"} \mid \text{Positive}) \times \frac{P(\text{happy})}{P(\text{Positive})}$$

O 
$$P(\text{Positive} \cap \text{happy}) = P(\text{happy} \mid \text{Positive}) \times \frac{P(\text{Positive})}{P(\text{happy})}$$

O 
$$P(\text{Positive } \cap \text{happy}) = P(\text{"happy"} \mid \text{Positive}) \times \frac{P(\text{happy})}{P(\text{Positive})}$$

## 

Yes, that is the correct answer.

$$P(X \mid Y) = P(Y \mid X) \times \frac{P(X)}{P(Y)}$$

$$\bigcirc P(X \mid Y) = P(Y \mid X) \times \frac{P(Y)}{P(X)}$$

$$\bigcirc P(X \mid Y) = P(X \mid Y) \times \frac{P(X)}{P(Y)}$$

$$\bigcirc P(X \mid Y) = P(Y \mid X) \times \frac{P(X)}{P(Y \mid X)}$$

Yes.

5. Suppose that in your dataset, 25% of the positive tweets contain the word 'happy'. You also know that a total of 13% of the tweets in your dataset contain the word 'happy', and that 40% of the total number of tweets are positive. You observe the tweet: "happy to learn NLP". What is the probability that this tweet is positive?
0.77
Correct
That's right. You just applied Bayes' rule.

1 / 1 point

| 6. | The log likelihood for a certain word $w_i$ is defined as: $\log(\frac{P(w_i pos)}{P(w_i neg)}).$ | 1 / 1 point |
|----|---------------------------------------------------------------------------------------------------|-------------|
|    | Positive numbers imply that the word is positive.                                                 |             |
|    | <b>⊘</b> Correct                                                                                  |             |
|    | Positive numbers imply that the word is negative.                                                 |             |
|    | ✓ Negative numbers imply that the word is negative.                                               |             |
|    | <b>⊘</b> Correct                                                                                  |             |
|    | ☐ Negative numbers imply that the word is positive.                                               |             |

| 7. | The log likelihood mentioned in lecture, which is the log of the ratio between two probabilities is bounded between | 1 / 1 point |
|----|---------------------------------------------------------------------------------------------------------------------|-------------|
|    | O -1 and 1                                                                                                          |             |
|    | $left( left) = -\infty$ and $\infty$                                                                                |             |
|    | $\bigcirc$ 0 and $\infty$                                                                                           |             |
|    | O and 1                                                                                                             |             |
|    |                                                                                                                     |             |
|    |                                                                                                                     |             |
|    |                                                                                                                     |             |

| (1) | Set or annotate a detaset with positive and negative tweets  |
|-----|--------------------------------------------------------------|
|     | 2. Preprocess the tweets: process_tweet(tweet)               |
|     | 5. Compute freq(x), class)                                   |
|     | 4. Get P(w.: pas), P(w.: neg)                                |
|     | 5. GetA[m]                                                   |
|     | 5. Compute logorior = log(P(poe) / P(neg))                   |
| 0   | Get or annotable a detaset with positive and negative tweets |
|     | 2. Preprocess the tweets: process_tweet(tweet)               |
|     | s. Compute Peq(n, class)                                     |
|     | 4. G=£ \(\lambda(\pi)\)                                      |
|     | s. Get P(w ) post, P(w ) negl                                |
|     | 6. Compute logarior = log(P(pos) / P(neg))                   |
| 0   | Get or annotate a detaset with positive and negative tweets  |
|     | 2. Compute freig(vi, class)                                  |
|     | 5. Preprocess the bweets process_tweet/bweet/                |
|     | 4. Get P(w   pox), P(w   neg)                                |
|     | s. GetA[w]                                                   |
|     | e. Compute logorior = log(P(pos) / P(neg))                   |
| 0   | Get or annotate a detaset with positive and negative tweets  |
|     | 2. Compute freq(in, class)                                   |
|     | 5. Preprocess the tweets: process_tweet(tweet)               |
|     | 4. Compute logorior = log(P(poe) / P(neg)                    |
|     | 5. GetP(w pos),P(w neg)                                      |
|     | e. GetA[m]                                                   |
| 6   | ) Corpact                                                    |
|     | Yes that is cornect                                          |

- 9. To test naive bayes model, which of the following are required?
  - $\bigcirc$   $X_{val}, Y_{val}, \lambda, logprior$
  - $\bigcirc X_{val}, Y_{val}, logprior$
  - $\bigcirc X_{val}, \lambda, logprior$
  - $\bigcirc Y_{val}, \lambda, logprior$ 
    - **⊘** Correct

This is correct.

| 10. Which of the following is NOT an application of naive Bayes? | 1 / 1 point |
|------------------------------------------------------------------|-------------|
| O Sentiment Analysis                                             |             |
| O Author identification                                          |             |
| O Information retrieval                                          |             |
| O Word disambiguation                                            |             |
| Numerical predictions                                            |             |
|                                                                  |             |
|                                                                  |             |