1. Linear algebra refresher.

- (a) Let \mathbf{Q} be a real orthogonal matrix.
 - i. If \mathbf{Q} is orthogonal, then $\mathbf{Q}\mathbf{Q^T} = \mathbf{Q^T}\mathbf{Q} = \mathbf{I}$. Consider $\mathbf{Q^T}$. We want to show

$$\mathbf{Q^T} \left(\mathbf{Q^T} \right)^{\mathbf{T}} = \mathbf{I}$$

Recall that $(\mathbf{Q^T})^{\mathbf{T}} = \mathbf{Q}$. Then substituting $(\mathbf{Q^T})^{\mathbf{T}}$ with \mathbf{Q} , we get

$$\mathbf{Q^TQ} = \mathbf{QQ^T} = \mathbf{I}$$

Note that if \mathbf{Q} is orthogonal, then $\mathbf{Q^T} = \mathbf{Q^{-1}}$. Then, since $\mathbf{Q^T}$ is orthogonal, $\mathbf{Q^{-1}}$ is orthogonal.

ii.

$$\mathbf{Q}\mathbf{x} = \lambda \mathbf{x}$$

$$\mathbf{Q}^{\mathbf{T}}\mathbf{Q}\mathbf{x} = \mathbf{Q}^{\mathbf{T}}\lambda \mathbf{x}$$

$$\mathbf{I}\mathbf{x} = \mathbf{Q}^{\mathbf{T}}\lambda \mathbf{x}$$

$$\mathbf{x} = \mathbf{Q}^{\mathbf{T}}\lambda \mathbf{x}$$

$$\mathbf{x}^{*}\mathbf{Q}\mathbf{x} = \mathbf{x}^{*}\lambda \mathbf{x}$$

$$= \lambda \mathbf{x}^{*}\mathbf{x}$$

$$= \lambda \|\mathbf{x}\|^{2}$$