if (cond)
Block
<u> </u>
8tmt - Control flow
31114
Premise: Given: Control flow reaches to
8tmt
We cannot conclude anything about cond!
Premise: Given: Control flow reaches to 18100K.
Conclusion: Condif = True.
if (a>b) [Control flow reaches to block
€ Block → a>b] = True.
<u> </u>
if (a>b && c <d)< td=""></d)<>
Block,
Control flow reaches to block - (a>b n cxd)
30,11,101, 1012003 10 010010 2 (01,10)

(f (cond) Block if else Block else. Control flow reaches to. Cond = True. Block ; f

Control flow reaches to ____ Cond = False

Block
else ___ Cond = True

CoF. @ Bif -)

Rif

(a > b) = True

CoF. @ Belse -)

CoF. @ Belse -)

Selse

(a > b) = Falle

a > b = False

$$\neg (a > b) = \neg \text{ False} = \text{True}.$$

 $\neg (a > b) = \text{True}$
 $a \le b = \text{True}.$
 $a \le b =$

C.F. (a) Bif
$$\rightarrow$$
 (a>, b) \wedge (c

$$\neg ((a>b) \land (cb) \lor \\ \neg (c$$

C.F. reaches to Bif -) $a \le b \lor C \ne d$. C.F. reaches to Belse -) $\neg (a \le b \lor c \ne d)$ $= \neg (a \le b) \land \neg (c \ne d)$ $= (a > b) \land (c = d)$

ALG: find maximum of two numbers a & b. int max (int a, int b) \mathbb{D} . \mathbb{M} . a int m; if (a > 5)M = aelse m = b; return (m); Control flow reaches two 1sis \rightarrow $\alpha > b$. Execute m = a. a>b-) a is max among 8+ a leb State of var m = state y ver a-. State of var m = State of max. of a bb. C.F. reacho to Belse -> a > b = F. a > h = False

```
00 - (a>b) = True.
    a < b = True.
 a \leq b \equiv a \leq b
                       or a = b
 In both cases b is max of a & b.
e. Execute (m=5)
    - State of var m = 8tate n varb
     : Stale your mij max of als
Void search (int *pa, int N, int Sd)
     for (i=0; i < N; ++i)
        if (pa [i] == sd)
             break;
     if ( i < N)
        point ("Data Jound")
     else
        found ("Data not found")
```

Algorithm terminates)
Control flow has come out of
for loop.
<u> </u>
Coto out for losp -)
loop cond False on break executed.
Possibility #10
loop condition false.
2 < N = False.
- (i <n) =="" td="" time.<=""></n)>
i > N = True.
1)== N = True Conclusion-1
loop- condition = False.
for values of i from o to N-1
for values of i from 0 to N-1 (paci) == sd) = Falce
() How)

for 0 < i < H, pa(i) == Sd is False =) Search data not found.

Exited from loop be cause closp cond is falle

1) i = N just after exit from

loop

Sparch data not present!

Possibility #2: break statement executed.
break statement executed—) paci) == sd is true. —) 0 < i < N
break strut executed -
0 < i < H A data found in away
Void insert_at_sorting_pos(int *pag int N) L /* Precondition: N> 2.
pa[o] to pa[N-2] is sorred in ascending order
int tmp = $pa(N-i)$; int k ; k=N-2;
while (ky, o de pa[k] >tmp)

Control flow out of while losp. losp condition = False.

$$R > 0$$
 A pack] $> tmp = F$
 $\neg (R > 0)$ A Pack] $> tmp) = \neg (R > 0)$ A $\neg (pack) > tmp)$
 $R < 0$ A Pack) $\leq tmp$

Case # 18 R < 0.
As we do monting the frame
As we are decrementing & from N-2 by value of 1, [R=-1]
14-2 by value of 1, [k=-1]
the loop terminated for $k=-1$
the loop body executed for
values of k from N-2 to O.
K= N-2, N-3, N-4,, 0.

· · · · · · · · · · · · · · · · · · ·
pack) > tmp is true for
<u> </u>
Pa[k] > tmp is true for k= N-2, N-3,, 0.
<u> </u>
R=N-2, N-3,, 0.
R=N-2, N-3,, O. Execution of Stmt. pa[k+1] = pa[k]
k= N-2, N-3,, 0. Execution of Stmt. pa[k+1] = pa[k] for values k= N-2, N-3,, 0
R=N-2, N-3,, O. Execution of Stmt. pa[k+1] = pa[k]

Numbers in away from index = 0 to index = N-2 at the Start of ALG have been shifted to index = 1 to index = N-1 without changing internal order. Precondition = pa[d] to pa[H2] Sorted. We just proved above that these elements are Shifted to pali) to palN-1) without changing relative order. ¿. cet the end of loop pa(1) to pa(N-1) are Sorted] and pa[1] to pa[N-1] > tmp. After loop pa (kH) = fmp. pa[-1+1): +mp pa(1) = +mp

= Pa(N-1)
Start
Pa[d] to pa[N7] is sorted. Baloo
Case # 26
R>C and pack) > +mp
E Tru False,
Ang: 12 0 < R < N-2.
Ang 2: let ko be a number between 0 to Al-2 (0 < ko < N-2
for which pa [ks] > tmp
is False.
the cloop terminated for Ro
loop executed for R=N-2 downto
$R = R_0 + 1$
-) Array elements from k= ks+1 to

K= N-2 > +mp. losp body executes for R= N-2 downto k= kst1 at the end of loop pa [koti] to pa (H-2) are Shiffed to pa ('ko+2) to Pa[N-1') without chaming internal order. As palo) to paln-2) were surred pa[ko+2] to pa[N-1] are sorted. pa[ko+2: N-1] > +mp. packs) < tmp. As palo] to palN-2) were softent pa (d) to pa (ks) are also sorted

pa[ks] < try. palo : ks) < trup. palo: ko) < +mp & pa [kof2: N-1] > +mp. Execution palksti) = +mD pald) to pa(N1) is sorted. Systemanic consid hidden