Vertiefung Analysis (Analysis 3)

Jun Wei Tan*

Julius-Maximilians-Universität Würzburg

(Dated: October 20, 2023)

I. 18/10/23

In dieser Vorlesung ist $0 \in \mathbb{N}$.

II. 20/10/23

Theorem 1. Seien $a, b \in \mathbb{Z}$ mit $a \neq 0$ oder $b \neq 0$ und $z \in \mathbb{Z}$ sei ein gemeinsamen Teiler von a und b. Dann gilt $d \cdot ggT\left(\frac{a}{d}, \frac{b}{d}\right) = ggT(a, b)$. Insbesondere gilt d|ggT(a, b) und $\frac{a}{ggT(a, b)}$ und $\frac{b}{ggT(a, b)}$ sind Teiler von d.

Proof. $ggT\left(\frac{a}{d},\frac{b}{d}\right)$ teilt $\frac{a}{d}$ und $\frac{b}{d}$ und daher ist $d \cdot ggT\left(\frac{a}{d},\frac{b}{d}\right)$ ein Teiler von a und b. Deswegen ist $d \cdot ggT\left(\frac{a}{d},\frac{b}{d}\right) \leq ggT(a,b)$

Nach den Satz von Bezout gibt es $s,t\in\mathbb{Z}$ mit ggT(a,b)=sa+tb. Aus d|a und d|b folgt d|ggT(a,b). Aus

$$\frac{a}{d} = \frac{ggT(a,b)}{d} \frac{a}{ggT(a,b)}$$

 $\text{folgt } \tfrac{ggT(a,b)}{d}\big|\tfrac{a}{d} \text{ und ähnlich auch } \tfrac{ggT(a,b)}{d}\big|\tfrac{b}{d} \implies \tfrac{ggT(a,b)}{d} \leq ggT\big(\tfrac{a}{d},\tfrac{b}{d}\big)$

Theorem 2. Seien $a, b, c \in \mathbb{Z}$ und a, b teilerfremd. Dann gilt

- (a) Aus a|bc folgt a|c.
- (b) Aus a|c und b|c folgt ab|c.
- (c) ggT(a,bc) = ggT(a,c)

Proof. Es gibt $s, t \in \mathbb{Z}$ mit sa + tb = 1, also sac + tbc = c.

(a) $a|sac, a|tbc \implies a|c$

 $^{^{\}ast}$ jun-wei.tan@stud-mail.uni-wuerzburg.de

(b) Aus a|c folgt ab|bc, und aus b|c folgt ab|ac. Aus ab|sac und ab|tbc folgt ab|c.

(c)

Definition 3. kleinstes gemeinsames Vielfaches = LCM

Lemma 4. Für $a, b \in \mathbb{N}*$ gilt ggT(a, b)ksV(a, b) = ab.

Proof. Wegen $\frac{ab}{ggT(a,b)} = \frac{a}{ggT(a,b)}b = a\frac{b}{ggT(a,b)}$ ist $\frac{ab}{ggT(a,b)}$ ein Vielfaches von a und b, also $\frac{ab}{ggT(a,b)} \ge ksV(a,b)$

Da $\frac{a}{ggT(a,b)}$ und $\frac{b}{ggT(a,b)}$ teilerfremd sind und Teiler von $\frac{kgV(a,b)}{ggT(a,b)}$ sind, gilt

$$\frac{a}{ggT(a,b)}\frac{b}{ggT(a,b)}|\frac{kgV(a,b)}{ggT(a,b)} \implies ab \leq kgV(a,b) \cdot ggT(a,b).$$

Definition 5. Sei $a, b, m \in \mathbb{Z}$ mit $m \neq 0$. Man sagt, dass a kongruent b modulo m ist, falls m|a-b.

Lemma 6. Sei $k, m \in \mathbb{N}*$ und $a, a', b, b' \in \mathbb{Z}$ mit $a \equiv a'$ und $b \equiv b' \pmod{m}$. Dann gilt

- (a) $a \pm b \equiv a' \pm b' \pmod{m}$
- (b) $ab = a'b' \pmod{m}$
- (c) $a^k \equiv (a')^k \pmod{m}$

Theorem 7. Sei $a,b\in\mathbb{Z},\ p\in\mathbb{P}$ und p|ab. Dann gilt p|a oder p|b

Proof. Sei d = ggT(a, p). Wegen d|p und $p \in \mathbb{P}$ gilt d = 1 oder d = p. Falls d = p, sind wir fertig. Falls d = 1, sind a und p teilerfremd. Dann $p|ab \implies p|b$