Regents review and practice

January 2020

1. In the diagram below, $\overline{FAD} \parallel \overline{EHC}$, and \overline{ABH} and \overline{BC} are drawn.

If $m \angle FAB = 48^{\circ}$ and $m \angle ECB = 18^{\circ}$, what is $m \angle ABC$?

(a) 18°

(c) 66°

(b) 48°

- (d) 114°
- 2. A cone has a volume of 108π and a base diameter of 12. What is the height of the cone?
- 3. The endpoints of directed line segment PQ have coordinates of P(-7, -5) and Q(5, 3). What are the coordinates of point A, on \overline{PQ} , that divide \overline{PQ} into a ratio of 1:3?
- 4. Kayla was cutting right triangles from wood to use for an art project. Two of the right triangles she cut are shown below.

If $\triangle ABC \sim \triangle DEF$, with right angles B and E, BC = 15 cm, and AC = 17 cm, what is the measure of $\angle F$, to the nearest degree?

5. Jaden is comparing two cones. The radius of the base of cone A is twice as large as the radius of the base of cone B. The height of cone B is twice the height of cone A. The volume of cone A is

6.

(a)	twice the volume of cone B
(b)	four times the volume of cone B
(c)	equal to the volume of cone B
(d)	equal to half the volume of cone B
A regular hexagon is rotated about its center. Which degree measure will carry the regular hexagon onto itself?	
(a)	45° (c) 120°
(b)	90° (d) 135°

7. In triangle MAH below, \overline{MT} is the perpendicular bisector of \overline{AH} .

Which statement is *not* always true?

- (a) $\triangle MAH$ is isosceles.
- (b) $\triangle MAT$ is isosceles.
- (c) \overline{MT} bisects $\angle AMH$.
- (d) $\angle A$ and $\angle TMH$ are complementary.

8. In circle B below, diameter \overline{RT} , radius \overline{BE} , and chord \overline{RE} are drawn.

It $m\angle TRE = 15^{\circ}$ and BE = 9, then the area of sector EBR is what in terms of π ?

- 9. Lou has a solid clay brick in the shape of a rectangular prism with a length of 8 inches, a width of 3.5 inches, and a height of 2.25 inches. If the clay weighs 1.055 oz/in³, how much does Lou's brick weigh, to the nearest ounce?
- 10. For the acute angles in a right triangle, $\sin(4x)^{\circ} = \cos(3x + 13)^{\circ}$. What is the number of degrees in the measure of the smaller angle?

- 11. A rectangular tabletop will be made of maple wood that weighs 43 pounds per cubic foot. The tabletop will have a length of eight feet, a width of three feet, and a thickness of one inch. Determine and state the weight of the tabletop, in pounds.
- 12. Determine and state an equation of the line perpendicular to the line 5x 4y = 10 and passing through the point (5, 12).

Regents review and practice

January 2019

- 13. After a dilation with center (0,0), the image of \overline{DB} is $\overline{D'B'}$. If DB=4.5 and D'B'=18, then what is the scale factor of this dilation?
- 14. In the diagram below of circle O, points K, A, T, I, and E are on the circle, $\triangle KAE$ and $\triangle ITE$ are drawn, $\widehat{KE} \cong \widehat{EI}$, and $\angle EKA \cong \angle EIT$.

Which statement about $\triangle KAE$ and $\triangle ITE$ is always true?

- (a) They are neither congruent nor similar.
- (b) They are similar but not congruent.
- (c) They are right triangles.
- (d) They are congruent.
- 15. From a point on the ground one-half mile from the base of a historic monument, the angle of elevation to its top is 11.87° . To the nearest foot, what is the height of the monument? (1 mile = 5280 feet)
- 16. The area of a sector of a circle with a radius measuring 15 cm is 75π cm². What is the measure of the central angle that forms the sector?
- 17. Point M divides \overline{AB} so that AM : MB = 1 : 2. If A has coordinates (-1, -3) and B has coordinates (8, 9), what are the coordinates of M?

- 18. In right triangle ABC, $m\angle C=90^\circ$ and $AC\neq BC$. Which trigonometric ratio is equivalent to $\sin B$?
 - (a) $\cos A$

(c) $\tan A$

(b) $\cos B$

- (d) $\tan B$
- 19. What is an equation of the image of the line $y = \frac{3}{2}x 4$ after a dilation of a scale factor of $\frac{3}{4}$ centered at the origin?
- 20. Which three-dimensional figure will result when a rectangle 6 inches long and 5 inches wide is continuously rotated about the longer side?
 - (a) a rectangular prism with a length of 6 inches, width of 6 inches, and height of 5 inches
 - (b) a rectangular prism with a length of 6 inches, width of 5 inches, and height of 5 inches
 - (c) a cylinder with a radius of 5 inches and a height of 6 inches
 - (d) a cylinder with a radius of 6 inches and a height of 5 inches
- 21. In the diagram below of triangle ABC, \overline{AC} is extended through point C to point D, and \overline{BE} is drawn to \overline{AC} .

Which equation is always true?

(a) $\angle 1 = m \angle 3 + m \angle 2$

(c) $\angle 6 = m \angle 3 - m \angle 2$

(b) $\angle 5 = m \angle 3 - m \angle 2$

(d) $\angle 7 = m \angle 3 + m \angle 2$

22. In the diagram below of right triangle ABC, AC = 8, and AB = 17.

Which equation would determine the value of angle A?

(a)
$$\sin A = \frac{8}{17}$$

(c)
$$\cos A = \frac{15}{17}$$

(d) $\tan A = \frac{15}{8}$

(b)
$$\tan A = \frac{8}{15}$$

(d)
$$\tan A = \frac{15}{8}$$

23. In diagram of quadrilateral NAVY below, $m\angle YNA = 30^{\circ}$, $m\angle YAN = 38^{\circ}$, $m \angle AVY = 94^{\circ}$, and $m \angle VAY = 46^{\circ}$.

Which segment has the shortest length?

(a)
$$\overline{AY}$$

(c)
$$\overline{VA}$$

(b)
$$\overline{NY}$$

(d)
$$\overline{VY}$$

24. In the diagram below, $\triangle ABC$, altitude \overline{CG} , and median \overline{CM} are drawn.

Which expression represents the area of $\triangle ABC$?

(a)
$$\frac{(BC)(AC)}{2}$$

(c)
$$\frac{(CM)(AB)}{2}$$

(b)
$$\frac{(GC)(BC)}{2}$$

(d)
$$\frac{(GC)(AB)}{2}$$

25. As shown in the diagram below, the radius of a cone is 2.5 cm and its slant height is 6.5 cm.

How many cubic centimeters are in the volume of the cone? Express your answer in terms of π .

Similarity January 2020

26. Triangle JGR is similar to triangle MST. Which statement is not always true?

(a) $\angle J \cong \angle M$

(c) $\angle R \cong \angle T$

(b) $\angle G \cong \angle T$

(d) $\angle G \cong \angle S$

27. In trapezoid ABCD below, $\overline{AB} \parallel \overline{CD}$.

If AE = 5.2, AC = 11.7, and CD = 10.5, what is the length of \overline{AB} , to the nearest tenth?

- 28. The line represented by 2y = x + 8 is dilated by a scale factor of k centered at the origin, such that the image of the line has an equation of $y \frac{1}{2}x = 2$. What is the scale factor?
- 29. In quadrilateral ABCD below, $\overline{AB} \parallel \overline{CD}$, and E, H, and F are the midpoints of \overline{AD} , \overline{AC} , and \overline{BC} , respectively.

If AB = 24, CD = 18, and AH = 10, then what is FH?

30. Given right triangle ABC with a right angle at C, $m \angle B = 61^{\circ}$. Given right triangle RST with a right angle at T, $m \angle R = 29^{\circ}$.

Which proportion in relation to $\triangle ABC$ and $\triangle RST$ is not correct?

(a)
$$\frac{AB}{RS} = \frac{RT}{AC}$$

(c)
$$\frac{BC}{ST} = \frac{AC}{RT}$$

(b)
$$\frac{BC}{ST} = \frac{AB}{RS}$$

(d)
$$\frac{AB}{AC} = \frac{RS}{RT}$$

31. In right triangle RST below, altitude \overline{SV} is drawn to hypotenuse \overline{RT} .

If RV = 4.1 and TV = 10.2, what is the length of \overline{ST} , to the nearest tenth?

32. In the diagram below of right triangle KMI, altitude \overline{IG} is drawn to hypotenuse \overline{KM} .

IF KG = 9 and IG = 12, what is the length of \overline{IM} ?

33. In diagram below of right triangle ABC, altitude \overline{BD} is drawn.

Which ratio is always equivalent to $\cos A$?

(a) $\frac{AB}{BC}$

(c) $\frac{BD}{AB}$

(b) $\frac{BD}{BC}$

- (d) $\frac{BC}{AC}$
- 34. In the diagram below of $\triangle RST$, L is a point on \overline{RS} , and M is a point on \overline{RT} , such that $\overline{LM} \parallel \overline{ST}$.

IF RL = 2, LS = 6, LM = 4, and ST = x + 2, what is the length of \overline{ST} ?

Name:

- 35. Points that are all located on the same plane are _____
- 36. Identify three points in the given plane.

37. Given \overline{ABC} , AB = 3x - 4, BC = x + 5, AC = 13. Find BC. Check your answer for full credit.

38. Given \overrightarrow{PQ} as shown on the number line, with P=-3 and Q=5.5.

What is the exact distance on the number line between the points P and Q?

39. Given \overline{WXYZ} , $WX=3\frac{1}{2}$, $XY=4\frac{3}{4}$, and $YZ=1\frac{1}{4}$. Find WZ.

40. Given the points V and W, draw \overrightarrow{WV} .

41. Use symbols to write the name of each geometric figure.

42. Given $\triangle ABC$ with $\overline{AB}\cong \overline{AC}$. On the diagram mark the congruent line segments with tick marks.

- 43. Find the measure of the angle in degrees and the given segment's length in centimeters.
 - (a) $m\angle GEF = \underline{\hspace{1cm}}$
 - (b) EG =_____
 - (c) Name a pair of opposite rays: _____

Name:

- 44. Use each term according to its geometric meaning: "sketch", "draw", "construct".
 - (a) ______ is to make a freehand diagram showing important features.
 - (b) ______ is to depict with accurate measures using ruler, protractor, and compass.
 - (c) ______ is a formal, logical process to create geometric figures using only a straightedge and compass.
- 45. Given the situation in the diagram, answer each question. Circle True or False.

- (a) True or False: \overrightarrow{PR} and \overrightarrow{PU} are opposite rays.
- (b) True or False: $\angle TPR$ is an obtuse angle.
- (c) True or False: $\angle RPS$ and $\angle TPU$ are adjacent angles.
- 46. Given the rectangle ABCD shown below, with AB=12 and BC=5. The diagonal \overline{AC} is drawn to create two triangles. Find the area of the lower triangle, $\triangle ABC$.

47. A student constructs a triangle with a given side, \overline{AB} as shown below. Is $\triangle ABC$ equilateral? Justify your answer by explaining what was done incorrectly and how it should have been done.

48. In the following two problems, solve for the value of x.

(a)
$$3(x-5) = -33$$

(b)
$$3 - \frac{1}{2}x = 2$$

49. In the following two problems, solve for the value of x by factoring.

(a)
$$x^2 + 6x = -5$$

(b)
$$x^2 = x + 12$$