STAT 134: Section 15

Adam Lucas

November 30, 2020

Conceptual Review

- a. If you know the conditional distribution of Y given X, how do you find $\mathbb{E}[Y]$?
- b. For each of the following, indicate whether it is a random variable or a constant. For instance, $\mathbb{E}[X]$ is a constant.
 - (a) $\mathbb{E}[Y|X]$
 - (b) $\mathbb{E}[Y|X=x]$
 - (c) $\mathbb{E}[\mathbb{E}[Y|X]]$
 - (d) $\mathbb{E}[X|X]$
 - (e) $\mathbb{E}[Y|X=Y]$
- c. If you know $f_X(x)$ and $f_{X,Y}(x,y)$, how do you find $f_{Y|X}(y|x)$?

Problem 1

Let *Y* have exponential distribution with mean $\frac{1}{2}$. Let *X* be such that, conditionally on Y = y, *X* has exponential distribution with a mean of *y*.

- a. Write $f_{X|Y}(x|y)$.
- b. Write an integral which, if you computed it, would give $\mathbb{E}[X]$ (but you don't need to compute it).
- c. Find $\mathbb{E}[X]$ using the properties of expectation instead.

Suppose that *Y* and *Z* have the following joint density:

$$f(y,z) = \begin{cases} k(z-y) & \text{for } 0 \le y \le z \le 2\\ 0 & \text{otherwise} \end{cases}$$

for some positive constant k (its value is irrelevant). Find:

- a. the marginal distribution of Y and
- b. $\mathbb{P}(Z < \frac{2}{3} \mid Y = \frac{1}{2})$.