Geometria Computacional Fecho Convexo

Claudio Esperança Paulo Roma Cavalcanti

Motivação

- O fecho convexo de um conjunto de pontos é uma aproximação simples
- Necessariamente, não ocupa mais espaço do que o próprio conjunto de pontos
 - No pior caso, polígono tem o mesmo número de vértices do próprio conjunto
- Computar o fecho convexo muitas vezes é um passo que precede outros algoritmos sobre conjuntos de pontos

Convexidade

- Um conjunto S é convexo se para quaisquer pontos $p,q \in S$ qualquer combinação convexa $r \in S$
 - Isto é, o segmento de reta $pq \in S$
- O fecho convexo (convex hull) de um conjunto de pontos S é
 - A interseção de todos os conjuntos convexos que contêm S
 - O "menor" de todos os conjuntos convexos que contêm *S*
 - O conjunto de todos os pontos que podem ser expressos como combinações convexas de pontos em S

Conjuntos Convexos

- Podem ter fronteiras retas ou curvas
- Podem ser fechados ou abertos
 - Isto é podem ou não conter suas fronteiras (conceito de topologia)
- Podem ser limitados ou ilimitados
 - Um semi-espaço plano ou um cone infinito são ilimitados
- O fecho convexo de um conjunto finito de pontos é limitado, fechado e cuja fronteira é linear por partes
 - Em 2D, um polígono convexo
 - Em 3D, um poliedro convexo

Problema do Fecho Convexo

- Dado um conjunto de pontos, computar seu fecho convexo
 - Polígono é definido normalmente por uma circulação de vértices
 - Vértices são pontos extremos
 - Ângulos internos estritamente convexos ($< \pi$)
 - Se 3 pontos na fronteira do polígono são colineares, o ponto do meio não é considerado
- Algoritmo "força bruta"
 - Considere todos os pares de pontos $p, q \in S$
 - Se todos os demais pontos estão do mesmo lado do semiespaço plano correspondente à reta que passa por p e q, então o segmento de reta pq pertence ao fecho convexo de S
 - (Usar o operador *orientação*)
 - Complexidade: $O(n^3)$

- Considerado o primeiro algoritmo de Geometria Computacional (1972)
- Algoritmo incremental (2D)
 - Pontos são pré-ordenados de forma conveniente
 - Cada ponto é adicionado ao fecho convexo e testado
- Precisamos de um ponto inicial p_0 que garantidamente faz parte do fecho convexo
 - Solução: Tomar o ponto com menor coordenada
 x (ou y)
 - Na verdade, um ponto extremo em qualquer direção serve

- Pontos restantes são ordenados de forma cíclica com respeito aos ângulos formados pelas retas p_0p_i
- Pontos colineares são removidos nesse processo

- Cada ponto considerado tem que estar à esquerda da aresta anteriormente computada do fecho convexo (teste de orientação)
 - Ou o ponto anterior faz uma curva para esquerda

- O fecho convexo é mantido como uma pilha de pontos.
- Enquanto o ponto no topo da pilha não fizer uma curva para à esquerda, quando se considera o novo ponto, ele é desempilhado
- Em seguida estende-se a cadeia empilhando-se o novo ponto

Complexidade da Varredura de Graham

- Achar o ponto mínimo: *O* (*n*)
- Ordenar pontos restantes: *O* (*n* log *n*)
- Colocar e remover cada ponto
 - Cada ponto entra no fecho convexo 1 vez
 - Cada ponto pode sair do fecho convexo no máximo 1 vez
 - Teste de orientação é *O* (1)
 - Logo, testar todos os pontos é *O* (*n*)
- Conclusão: Varredura é *O* (*n* log *n*)
 - Solução de pior caso <u>ótima</u>

Ordenando Via Fecho Convexo

- Crie um conjunto 2D de pontos (x_i, x_i^2) sobre uma parábola e compute o seu fecho convexo
- Identifique o ponto inferior a do fecho em O(n), ou seja, o ponto de menor x_i
- A ordem em que os pontos aparecem no fecho convexo no sentido anti-horário, a partir de a, é a ordem crescente dos x_i
- Logo, o fecho convexo pode ser usado para ordenar um conjunto de valores onde, sabidamente, trata-se de um problema Ω ($n \log n$)

- Técnica tradicional de projeto de algoritmos
- Semelhante ao "MergeSort"
- Idéia:
 - Dividir o problema em 2 subproblemas de tamanho aproximadamente igual
 - Achar (recursivamente) a solução dos subproblemas
 - Combinar as soluções dos subproblemas para obter a solução do problema

- Caso básico
 - S tem 3 pontos ou menos → resolver trivialmente
- Dividir
 - Ordenar pontos por x e dividir S em dois subconjuntos, cada um com aproximadamente a metade dos pontos de S (usar a mediana em x): A tem os pontos com menores valores de x e B os com maiores valores
 - Achar recursivamente H_A = Hull (A) e H_B = Hull (B)

- Conquistar:
 - Computar as tangentes inferior e superior e remover os pontos entre elas

- Para computar a tangente inferior:
 - Seja *a* o ponto mais à direita (maior *x*) de *A*
 - Seja *b* o ponto mais à esquerda (menor *x*) de *B*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - *a* -1 ou *a* +1 à direita de *ab*
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - a -1 ou a +1 à direita de ab
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - *a* -1 ou *a* +1 à direita de *ab*
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - a -1 ou a +1 à direita de ab
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - *a* -1 ou *a* +1 à direita de *ab*
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - a -1 ou a +1 à direita de ab
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - *a* -1 ou *a* +1 à direita de *ab*
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - *a* -1 ou *a* +1 à direita de *ab*
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Enquanto <u>ab</u> não for a tangente inferior
 - Se *orientação* (a, a-1, b) = anti-horária, então $a \leftarrow a$ -1
 - *a* -1 ou *a* +1 à direita de *ab*
 - Se *orientação* (a, b, b+1) = horária, então $b \leftarrow b+1$
 - *b* 1 ou *b* + 1 à direita de *ab*

- Observações
 - Polígono representado por lista circular de vértices com circulação anti-horária
 - " $a \leftarrow a 1$ " deve ser interpretado como "vértice seguinte a a no sentido horário"
 - Cálculo da tangente superior é feito de forma análoga ao da tangente inferior
 - A remoção dos pontos entre as tangentes é feita de forma trivial uma vez calculadas as tangentes

"Dividir para Conquistar" - Complexidade

- Algoritmo consiste de uma etapa de ordenação mais uma chamada a uma rotina recursiva
- Etapa de ordenação = $O(n \log n)$
- Rotina recursiva:
 - O trabalho feito localmente (sem contar as chamadas recursivas) consiste de
 - Dividir S em 2 subconjuntos: O (n)
 - Achar as 2 tangentes: O (n)
 - Cada vértice é analisado no máximo 2 vezes
 - Remover vértices entre as tangentes: O (n)
 - Complexidade da rotina é dada então pela recorrência

$$T(n) = \begin{cases} 1 & \text{para } n \le 3 \\ n + 2T(n/2) & \text{para } n > 3 \end{cases}$$

■ A solução desta recorrência (mesma que a do MergeSort) resulta em $T(n) \in O(n \log n)$

- Está para o *QuickSort* assim como o método "dividir para conquistar" está para o *MergeSort*
- Como o *QuickSort*, tem complexidade $O(n \log n)$ para entradas favoráveis. Porém, no pior caso, tem complexidade $O(n^2)$
 - Diferentemente do *QuickSort*, não se conhece um algoritmo randomizado que tenha complexidade esperada *O* (*n* log *n*)
 - Na prática, entretanto, o desempenho é muito bom na maioria dos casos
- A idéia principal do QuickHull é descartar rapidamente pontos que obviamente estão no interior do fecho
 - Por exemplo, se os pontos são distribuídos uniformemente num quadrado, prova-se que o número de vértices do fecho é O (log n)

• Inicialmente, o algoritmo acha 4 pontos extremos (máximo e mínimo em x e y) que garantidamente fazem parte do fecho convexo e descarta os pontos no interior do quadrilátero

- Vemos que os pontos não descartados podem ser divididos em 4 grupos, cada um associado a uma aresta
 - Diz-se que esses pontos são "testemunhas" de que o segmento não é uma aresta do fecho convexo
 - Se não há "testemunhas", então o segmento <u>é</u> aresta do fecho
 - Em geral, sempre temos os pontos não descartados em grupos associados a segmentos de reta

 Para cada segmento *ab*, o algoritmo prossegue elegendo um ponto *c* do grupo que se sabe ser um vértice do fecho convexo

 O método mais usado consiste em escolher o ponto mais distante da reta de suporte do segmento

- Uma vez escolhido o ponto *c*, os demais pontos precisam ser classificados
 - Se orient (a,c,p) ou orient (c,b,p) = colinear
 - p sobre aresta \rightarrow descartar
 - Se orient (a,c,p) = orient (c,b,p)
 - p dentro do triângulo \rightarrow descartar
 - Senão,
 - Se *orient* (a,c,p) = anti-horário
 - p "fora" da aresta ac
 - Se orient(c,b,p) = anti-horário
 - p "fora" da aresta *cb*
- O algoritmo é aplicado recursivamente aos grupos das novas arestas assim formadas

Complexidade do QuickHull

- Operações feitas localmente em cada chamada da rotina recursiva
 - Determinar um ponto c no fecho convexo: O(n)
 - Classificar os demais pontos: O (n)
- Tempo total do algoritmo é dado então pela recorrência

$$T(n) = \begin{cases} 1 & \text{para } n = 1, \text{ ou} \\ n + T(n_1) + T(n_2) & \text{onde } n_1 + n_2 \le n \end{cases}$$

• n_1 e n_2 correspondem ao número de pontos "fora" em cada grupo

Complexidade do QuickHull

- Vemos portanto que a complexidade depende da distribuição de n_1 e n_2
 - Se a partição é bem balanceada
 - max $(n_1, n_2) \le \alpha n$ para algum $\alpha < 1$
 - Ou se uma fração fixa de pontos é descartada em cada passo
 - $n_1 + n_2 \le \alpha n$ para algum $\alpha < 1$,
 - Então a solução da recorrência é *O* (*n* log *n*)
 - Caso contrário, temos um algoritmo que tem complexidade $O(n^2)$
- O algoritmo é bastante rápido quando os pontos seguem uma distribuição aproximadamente uniforme
 - Nesses casos, a convergência é rápida e o algoritmo bate a varredura de Graham

