14 – Projeto de Algoritmos: paradigmas SCC201/501 - Introdução à Ciência de Computação II

Prof. Moacir Ponti Jr. www.icmc.usp.br/~moacir

Instituto de Ciências Matemáticas e de Computação - USP

contém material extraído e adaptado das notas de aula dos Profs. Antonio Loureiro e Nivio Ziviani

2010/2

Sumário

- Indução
- Recursividade
- Tentativa e Erro
- Divisão e Conquista
- 6 Algoritmos Gulosos
- 6 Programação Dinâmica
- Algoritmos Aproximados

- Útil para provar asserções sobre a correção e a eficiência de algoritmos
- Consiste em inferir uma lei geral a partir de instâncias particulares

Princípio da indução matemática

- Seja P(n) uma afirmação acerca dos números inteiros n, e seja n_0 um inteiro fixo (escalar).
- A prova de P por indução supõe que sejam verdadeiras:
 - **1** $P(n_0) \in V$
 - 2 Para todo inteiro $k \geq n_0$, se P(k) é V, então P(k+1) é V.
- Logo, a afirmação P(n) é V para todos os inteiros $n \ge n_0$.

• A idéia da prova por indução é primeiramente verificar a proposição para um caso trivial, chamado de caso base.

ullet No passo indutivo, assumimos que a proposição é verdadeira para um dado k e tentamos provar para k+1

• Se for verdadeira para k+1, provamos por indução que se assumirmos que P(k) é verdadeiro, então P(k+1) também é verdadeiro.

Indução matemática: exemplo

ullet Prove que, para todos inteiros $n\geq 1$, a soma abaixo é verdadeira:

$$1+2+\cdots+n=\frac{n(n+1)}{2}$$

Prova por indução

- **1** Passo base: $P(n_0) = P(1)$: para $n_0 = 1$, $1 = \frac{1(1+1)}{2} = 1$, V.
- 2 Passo indutivo: se é V para n=k então deve ser para n=k+1, ou seja, $P(k) \to P(k+1)$.
 - Suponha que a fórmula é verdadeira para n = k para algum inteiro $k \ge 1$ (hipótese indutiva), ou seja:

$$P(k): 1+2+\cdots+k = \frac{k(k+1)}{2}$$

Indução matemática: exemplo

• Devemos mostrar que

$$P(k+1): 1+2+\cdots+(k+1)=\frac{(k+1)(k+2)}{2}$$

• Pela hipótese indutiva temos:

$$1+2+\cdots+k+(k+1) = \frac{k(k+1)}{2} + (k+1)$$

$$= \frac{k(k+1)}{2} + \frac{2(k+1)}{2}$$

$$= \frac{k^2+3k+2}{2}$$

$$= \frac{(k+1)(k+2)}{2}$$

(que era o que devia ser provado)

Indução matemática e algoritmos

• Seja T um teorema que tenha como parâmetro um número natural n. Para provar que o T é válido para todo n, provamos que:

- T é válido para n = 1; (passo base)
- Para todo n > 1, (passo indutivo) se T é válido para n, então T é válido para n + 1,
 - As condições 1 e 2 implicam T válido para n=2, o que, junto com a condição 2 implica que é válido também para n=3 e assim por diante.

Invariantes para laços

- A corretude de laços em um algoritmo ou programa pode ser provada por indução.
- Em geral essa prova envolve o conceito de invariante de laço.

Algoritmo (1): cálculo do quadrado de um número

```
int square(int n) {
   int S = 0, i = 0;
   while (i < n) {
      S = S + n;
      i++;
   }
   return S;
}</pre>
```

- Para provar a corretude desse algoritmo primeiro temos que garantir que ele termina.
 - Como i é incrementado de um em um, a partir de zero, eventualmente será igual a n e portanto o laço termina.
- Precisamos então provar que o algoritmo computa n^2

Invariantes para laços

Algoritmo (1): cálculo do quadrado de um número

```
int square(int n) {
   int S = 0, i = 0;
   while (i < n) {
      S = S + n;
      i++;
   }
   return S;
}</pre>
```

- Prova por indução: mostraremos que as seguintes proposições são invariantes, após o algoritmo executar o loop k vezes:
 - $S = k \cdot n$, e
 - \bullet i = k
- Passo base: k = 0. Ocorre quando o algoritmo ainda não entrou no laço de repetição, e portanto S = 0, i = 0. A invariante é verdadeira pois:
 - $S = 0 \cdot n = 0$, e
 - i = 0

Invariantes para laços

Algoritmo (1): cálculo do quadrado de um número

```
int square(int n) {
   int S = 0, i = 0;
   while (i < n) {
      S = S + n;
      i++;
   }
   return S;
}</pre>
```

- Passo indutivo: assuma que para um valor arbitrário m de k, $S = m \cdot n$ e i = m quando o laço for percorrido m vezes.
 - Provaremos que a invariante permanece para quando o loop for percorrido m+1 vezes. Dentro do laço teremos:
 - S = (m * n) + n, e • i = i + 1;
 - produzindo, conforme queriamos provar:
 - $S = (m+1) \cdot n$, e
 - i = m + 1;
- Observe que, quando o laço é terminado, i=n, e portanto o loop foi percorrido n vezes, e assim:

$$S = n \cdot n = n^2$$

e o algoritmo está correto

Limite superior de relações de recorrência

- A solução direta de uma recorrência pode ser difícil de obter
- Nesses casos tentar adivinhar a solução e depois verificá-la pode ser mais fácil
- Obter um limite superior para a ordem de complexidade também pode ser útil quando não estamos interessados na solução exata
 - ullet mostrar que um certo limite existe é mais fácil do que obter ullet limite
- Exemplo:

$$T(2n) \le 2T(n) + 2n - 1,$$

 $T(2) = 1,$

definida para valores de n que são potências de 2.

• O objetivo é encontrar um limite superior na notação O, onde o lado direito da desigualdade representa o pior caso.

Limite superior de relações de recorrência: exemplo

$$T(2n) \le 2T(n) + 2n - 1,$$

 $T(2) = 1,$

definida para valores de n que são potências de 2.

- Procuramos uma função f(n) tal que $T(n) \in O(f(n))$.
- considere o palpite $f(n) = n^2$.
- queremos provar que $T(n) \le f(n) \in O(f(n))$ utilizando indução matemática em n.

Limite superior de relações de recorrência: exemplo

Provar por indução que
$$T(n) \le f(n) \in O(f(n))$$
, para $f(n)=n^2$, sendo
$$T(2n) \le 2\,T(n)+2n-1,$$

$$T(2)=1,$$

definida para valores de n que são potências de 2.

Prova por indução:

- **1** Passo base: $T(n_0) = T(2)$: para $n_0 = 2$, $T(2) = 1 \le f(2) = 4$, **V**.
- Passo indutivo: se a recorrência é **V** para n então deve ser para 2n, ou seja, $T(n) \to T(2n)$ (n é potência de 2 e portanto o número depois de n é 2n). Reescrevendo o passo indutivo:

$$P(n) \to P(2n)$$
$$[T(n) \le f(n)] \to [T(2n) \le f(2n)]$$

$$T(2n) \leq 2T(n) + 2n - 1$$
 (definição da recorrência)
 $\leq 2n^2 + 2n - 1$ (pela hipótese indutiva, $T(n) = n^2$)
 $\leq 2n^2 + 2n - 1 < (2n)^2$ (a conclusão é verdadeira?)
 $\leq 2n^2 + 2n - 1 < 4n^2$ (sim e, logo, $T(n)$ é $O(n^2)$)

Indução matemática: comentários finais

- Técnica matemática muito útil para provar asserções sobre a correção e eficiência de algoritmos.
- Pode ser usada para identificar (e verificar) invariantes de laços.
- Pode ser usada para encontrar um limite superior para uma equação de recorrência.

Recursividade

- Um procedimento que possui uma chamada a si mesmo (direta ou indiretamente) é dito recursivo.
- A recursividade fornece uma descrição clara e natural para muitos algoritmos:
 - árvore binária de busca
 - heap
 - ordenação por quicksort
 - busca binária

Recursividade: implementação

Pilha

- Uma pilha é usada para armazenar os dados usados em <u>cada chamada</u> de um procedimento que ainda não terminou.
- Todos as variáveis locais são alocadas na pilha registrando o estado atual da computação dentro da instância do procedimento.
 - o algoritmo termina quando a primeira instância criada é desempilhada.

Caso base

- O problema da terminação deve ser considerado, sendo o caso base bem definido e estudado para não cair em recursão infinita.
- A chamada recursiva é, portanto, sujeita a uma determinada condição, que deve se tornar obrigatoriamente falsa eventualmente.

Recursividade: implementação

Memória

• É importante observar o comportamento da pilha (ou, de forma equivalente, a altura da árvore de recursão), evitando que muitos recursos de memória sejam utilizados.

Tentativa e erro (backtracking)

Explorando o espaço de soluções

- decompõe o processo em um número finito de sub-tarefas parciais a serem exploradas exaustivamente
- gradualmente constrói e percorre uma "árvore" de soluções

Não há uma regra fixa

- passos em direção à solução final são executados e registrados
- se os passos não levarem à solução final, podem ser retirados e apagados do espaço de soluções

Tentativa e erro

Tentativa e erro (backtracking)

- Uma abordagem é exaurir as possibilidades de solução
- Há ainda algoritmos que inserem componentes aleatórios para chegar à solução
 - Algoritmo de ordenação Bozo-sort (ou Bogo-sort ou Vai-na-sort)
 - Algoritmos genéticos
- Quando a pesquisa pela solução exata é inviável, o uso de algoritmos aproximados ou heurísticas é necessário para viabilizar a obtenção de uma solução mais rápida (porém, sem garantia de solução ótima)

Tentativa e erro: passeio do cavalo

- Num tabuleiro de tamanho $n \times n$, considere uma peça cavalo.
- <u>Problema</u>: partindo de uma posição (x₀, y₀), encontrar, se existir, um caminho pelo o qual o cavalo possa visitar todos as casas do tabuleiro uma única vez.


```
01. repita
02.
        seleciona próximo movimento candidato
03.
        se (aceitavel)
04.
           registra movimento
05.
           se (tabuleiro não está cheio)
06.
              tenta novo movimento [recursivamente]
07.
              se (movimento inválido)
08.
                 apaga registro anterior
09.
     enquanto ! ((movimento bem sucedido) ou
             (nao haja mais candidatos a movimento))
```

Tentativa e erro: passeio do cavalo

- O tabuleiro pode ser representado por uma matriz n x n
- A situação de cada posição pode ser um inteiro com o histórico das ocupações
 - T[x,y]=0 casa não visitada
 - T[x,y]=i casa visitada no *i*-ésimo movimento $(1 \le i \le n^2)$.

1	60	39	34	31	18	9	64
38	35	32	61	10	63	30	17
59	2	37	40	33	28	19	8
36	49	42	27	62	11	16	29
43	58	3	50	41	24	7	20
48	51	46	55	26	21	12	15
57	44	53	4	23	14	25	6
52	47	56	45	54	5	22	13

Tentativa e erro (backtracking): comentários finais

- Abordagem quando não se sabe exatamente qual caminho seguir para encontrar solução
- Em geral não garante solução ótima
- Pode ser vista como uma variante da recursividade (backtracking)
- Deve-se analisar o crescimento do espaço de soluções
- Quando a pesquisa pela solução exata é inviável, o uso de algoritmos aproximados ou heurísticas é necessário para viabilizar a obtenção de uma solução mais rápida (porém, sem garantia de solução ótima)

Divisão e Conquista

Procedimento básico

- Dividir o problema em partes menores
- Resolver o problema para essas partes (supostamente mais fácil, ou até trivial)
- 3 Combinar em uma solução global
 - Geralmente leva a soluções eficientes e elegantes, muitas vezes de natureza recursiva
 - Está normalmente relacionado a uma equação de recorrência que contém termos referentes ao próprio problema

Divisão e Conquista

Recorrência

$$T(n) = aT\left(\frac{n}{b}\right) + f(n),$$

onde:

- a indica o número de sub-problemas gerados
- b o tamanho de cada um dos problemas
- f(n) o custo de resolver cada sub-problema

Exemplos

- Ordenação: mergesort, quicksort
- Busca: busca binária

Divisão e Conquista

- Não é aplicado unicamente a problemas recursivos
- Em geral as estratégias de resolução de problemas envolvem um dos três cenários abaixo:
 - Processar independentemente partes do conjunto de dados
 - Ex: mergesort
 - 2 Eliminar partes do conjunto de dados a serem processados
 - Ex: pesquisa binária
 - Processar separadamente partes do conjunto, mas no qual a solução de uma parte influencia no resultado da outra
 - Ex: somador de bits

O problema da mochila

Quais caixas escolher de forma a maximizar o valor total, obedecendo a restrição de um máximo de 15 kg?

por: Dake (Creative Commons non-commercial 2.5 License)

O problema da mochila: 0-1 / binário

- Dado um conjunto de *n* itens dos quais queremos selecionar alguns para serem levados em uma mochila.
- Cada item possui um peso e um valor.
- O objetivo é escolher um subconjunto de itens que caibam na mochila, maximizando o valor total.

O problema da mochila: 0-1 / binário

Sejam

- w_i o peso do item i,
- p_i o valor do item i,
- $x_i = 1$ se o item i está na mochila e $x_i = 0$ se não está na mochila,
- C a capacidade máxima da mochila.

Objetivo

Maximizar

$$\sum_{i=1}^{n} p_i x_i$$

Sujeito à restrição

$$\sum_{i=1}^{n} w_i x_i \le C$$

O problema da mochila: 0-1 / binário

- É um problema de otimização, com natureza combinatória.
- Se tivermos n objetos possíveis, o número de possíveis soluções será
 2ⁿ (problema binário em x).
- É possível resolver esse problema por algum método já visto?
 - Tentativa e erro força bruta.
- Vamos explorar melhores paradigmas para problemas desse tipo.

Sumário

- Indução
- 2 Recursividade
- Tentativa e Erro
- 4 Divisão e Conquista
- 6 Algoritmos Gulosos
- 6 Programação Dinâmica
- Algoritmos Aproximados

Algoritmos Gulosos

- Resolve o problema a partir da idéia de escolher a estratégia ótima local supondo que esta leve à solução ótima global.
- Em outras palavras, realiza a escolha que parece ser a melhor no momento.
- A estratégia para a escolha do próximo passo pode ser uma heurística.
- Independente do que aconteça posteriormente, nunca reconsidera a decisão passada.
- Não necessita avaliar alternativas, ou usar procedimentos sofisticados para desfazer decisões prévias.
- Exemplo: caminho mais curto.

Algoritmos Gulosos

Bases

Em geral os algoritmos gulosos partem das seguintes bases:

- Um conjunto ou lista de candidatos a partir do qual uma solução pode ser criada.
- ② Uma função de <u>viabilidade</u>, determina se o candidato pode ser usado para compor a solução (sem considerar se esta é ótima),
- Uma função de seleção escolhe o melhor candidato num dado instante para ser adicionado à solução,
- Uma função <u>objetivo</u>, que atribui um valor à solução (ou a uma solução parcial),
- Uma função de solução, que indica se a solução completa foi alcançada.

Algoritmos Gulosos

- A função de seleção está em geral relacionada com a função objetivo.
- Se o objetivo é:
 - <u>Maximizar</u>: provavelmente escolherá o candidato restante que proporcione o maior ganho individual.
 - Minimizar: o escolhido é aquele que adicione o menor custo à solução.
- Um candidato escolhido e adicionado à solução se torna permanente.
- Um candidato excluído não é mais reconsiderado.
- Exemplo: problema da mochila.
 - greedy by profit: escolhe primeiro os itens de maior valor,
 - 2 greedy by weight: escolhe primeiro os itens de menor peso,
 - **3** greedy by profit density: escolhe primeiro os itens de maior densidade de valor, p_i/w_i , maximiza valor ao escolher itens com maior valor por unidade de peso.

Estratégia gulosa para o problema da mochila

Mochila				
	50			

item	Peso (w_i)	Valor (p_i)	$D(p_i/w_i)$
1	40	180	4.5
2	19	120	6.3
3	15	105	7
4	11	45	4.1
5	7	35	5

Soluções possíveis:

	, ,
Modo	Soma dos valores
Valor	(1) + (5) = 180 + 35 = 215
Peso	(5) + (4) + (3) = 35 + 45 + 105 = 185
Densid.	(3) + (2) + (5) = 105 + 120 + 35 = 260
Ótima	(2) + (3) + (4) = 120 + 105 + 45 = 270

Sumário

- Indução
- 2 Recursividade
- Tentativa e Erro
- 4 Divisão e Conquista
- 6 Algoritmos Gulosos
- 6 Programação Dinâmica
- Algoritmos Aproximados

- "Programação" nesse caso não está relacionado com programa de computador, mas com método de solução baseado em tabela.
- Programação dinâmica × Divisão e conquista
 - 1 Divisão e conquista particiona o problema em sub-problemas menores.
 - Programação dinâmica resolve os sub-problemas, partindo dos menores para os maiores, armazenando os resultados em uma tabela: a seguir, somente reusa as soluções ótimas.

Princípio da otimalidade

- Em uma sequência ótima de escolhas (ou decisões), cada subsequência deve também ser ótima.
- ullet Cada subsequência representa o custo mínimo assim como $m_{ij},\,j>i.$
- Assim, todos os valores da tabela representam escolhas ótimas

Exemplo de aplicação do princípio da otimalidade

- suponha que o caminho mais curto entre São Carlos e Curitiba passa por Campinas; logo,
- o caminho entre São Carlos e Campinas também é o mais curto possível, como tambem é o caminho entre Campinas e Curitiba.
- Assim, o princípio da otimalidade se aplica.

Exemplo de não aplicação do princípio da otimalidade

- Seja o problema encontrar o caminho simples mais longo entre duas cidades:
 - um caminho simples nunca visita uma mesma cidade duas vezes
 - se o caminho mais longo entre São Carlos e Curitiba passa por Campinas, isso não significa que a solução possa ser obtida tomando: o caminho simples mais longo de São Carlos a Campinas e depois o de Campinas a Curitiba.
- Quando os dois caminhos simples são agrupados não existe uma garantia de que o caminho resultante também seja simples
- Logo o princípio da otimalidade não se aplica.

Quando usar

- Problema deve ter formulação recursiva
- Não deve haver ciclos na formulação
- Número total de instâncias do problema (n) deve ser pequeno
- Subestrutura ótima
 - solução ótima para o problema contém soluções ótimas para os subproblemas
- Sobreposição de problemas
 - número total de subproblemas distintos é pequeno comparado com o tempo de execução recursivo

Programação Dinâmica: um exemplo de uso de tabela

```
unsigned long fibmemo(unsigned long n, unsigned long *memo){
  if (memo[n]==0) // se a resposta ainda nao foi calculada, calcular
    memo[n] = fibmemo(n-1, memo) + fibmemo(n-2, memo);
  return memo[n]:
unsigned long fibfast(unsigned long n){
  unsigned long *M, F;
  if (n <= 1) return n;
  M = (unsigned long *) calloc(n--, sizeof(unsigned long));
  M[0] = 1: M[1] = 1:
  if (M != NULL) \{ F = fibmemo(n,M); \}
  else {
    printf("Erro de alocação\n");
    exit(EXIT_FAILURE);
  free(M):
  return F:
```

- A implementação de Fibonacci anterior é apenas ilustrativa, visto que sua forma mais eficiente é a iterativa, obtendo o resultado de forma bottom-up, ou seja, do menor valor para o maior.
- No entanto, a implementação fornece uma idéia geral da solução de problemas utilizando memorização e armazenamento de soluções parciais em tabelas.

- Montar uma árvore de decisão baseada no problema
- Assuma o seguinte problema da mochila:
 - n = 3
 - $w = \{4, 3, 2\}$
 - $p = \{9, 7, 8\}$
 - C = 5

Operações possíveis

- Para cada item, decidiremos se iremos pegá-lo ou não.
- Por facilidade de implementação, começamos pelo último item da lista.
- Cada nó é uma tupla contendo: i) o índice do elemento observado, ii)
 a capacidade ainda disponível na mochila, e iii) o valor total atual na
 mochila.

Montagem da árvore de decisão com backtracking

- Será construída como em um percurso pré-ordem
- Cada nó da árvore é composto por:
 - índice do elemento sendo observado, capacidade disponível, e valor total

keep	1	2	3	4	5
0					
1					
2					
3					

- A tabela V armazena o valor máximo possível para diferentes instâncias do problema da mochila.
 - As linhas representam o problema da mochila considerando 0 a 3 itens.
 - As colunas representam o problema considerando uma mochila com capacidade de 1 a 5 unidades.
 - Cada célula (*lin*, *col*) representa o problema da mochila considerando os itens de 1 a *lin* numa mochila com capacidade *col*.
 - Por exemplo: a célula (2,4) representa o problema da mochila considerando os itens 1 e 2 numa mochila de capacidade 4.
- A tabela keep armazena 1 se desejamos manter o objeto lin ou 0 se não desejamos incluir o objeto.

- As tabelas serão preenchidas da esquerda para a direita e de cima para baixo.
- Após calcular uma instância do problema, esta é reutilizada para resolver instâncias mais complexas.

keep	1	2	3	4	5
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	1	1	0	1

 A combinação final dos elementos será obtida percorrendo a tabela keep.

keep	1	2	3	4	5
0	0	0	0	0	0
1	0	0	0	1	1
2	0	0	1	0	0
3	0	1	1	0	1

- A tabela keep é percorrida considerando do último elemento até o primeiro, e armazenando numa variável, C, a capacidade restante na mochila.
 - **1** item = 3, C = 5: se keep(3,5) = 1, incluir item 3.
 - como o item 3 foi incluído e tinha peso 2, agora a capacidade será 3.
 - ② item = 2, C = 3: se keep(2,3) = 1, incluir item 2.
 - como o item 2 foi incluído eesse tinha peso 3, agora a capacidade será 0 e o algoritmo termina.

Sumário

- Indução
- 2 Recursividade
- Tentativa e Erro
- 4 Divisão e Conquista
- 6 Algoritmos Gulosos
- 6 Programação Dinâmica
- Algoritmos Aproximados

Algoritmos Aproximados

- Existem problemas para os quais é improvável que haja um algoritmo exato que possa obter uma solução em tempo polinomial.
- Esses problemas são chamados de problemas NP-difícil (*NP-hard*) tempo polinomial não determinístico.
- Para esses problemas, algoritmos aproximados são desenvolvidos para:
 - obter soluções que se aproximem da solução ótima por um fator constante (por exemplo 5% da solução ótima), e
 - 2 garantir um tempo de execução viável para a obtenção da solução
- São utilizados em problemas para os quias algoritmos polinomiais exatos existem, mas são muito caros computacionalmente para instâncias grandes.

Algoritmos Aproximados

- Os algoritmos aproximados estão ligados à problemas de otimização.
 Por isso, não se aplicam, por exemplo, a problemas de decisão "puros".
- Assim, para um dado problema a ser resolvido, é preciso concebê-lo como um problema de otimização.
- Os algoritmos aproximados são <u>diferentes</u> daqueles que utilizam heurísticas.
- Os algoritmos que utilizam heurísticas podem produzir um bom resultado, ou até mesmo a solução ótima, mas também podem não encontrar uma solução ou obter resultado distante da solução ótima.

Humor nerd

MY HOBBY:
EMBEDDING NP-COMPLETE PROBLEMS IN RESTAURANT ORDERS

CHOTCHKIES	RESTAURANT)			
~ APPETIZ	ERS			
MIXED FRUIT	2.15			
FRENCH FRIES	2.75			
SIDE SALAD	3.35			
HOT WINGS	3.55			
MOZZARELLA STICK	s 4.20			
SAMPLER PLATE	5.80			
→ SANDWICHES →				
RAPRECUE	6 55			

por: xkcd (Creative Commons non-commercial 2.5 License)

Bibliografia I

N. ZIVIANI, N.

Projeto de Algoritmos. 3.ed. Cengage, 2004.

CORMEN, T. H.; LEISERSON, C. E.; RIVEST, R. L.; STEIN, C. Algoritmos: teoria e prática (Seção 2.3, Capítulo 15, Capítulo 16). Campus, 2002.

LOUREIRO, A.A.F.

Notas de aula: Paradigmas de projeto de algoritmos UFMG, 2007, http://www.dcc.ufmg.br/~loureiro.