Lecture: Energy Systems - 2

Instructor

Prof. B. G. Fernandes

Rotating Machines

<u>Electro Mechanical Energy Conversion (EMEC)</u>

- Transformer converts electrical power from one 'V' level to another
- EMEC equipment convert electrical energy into mechanical energy & vice versa

- In both the systems, there is an electrical system & a mechanical system
- Coupled by a magnetic field

Elementary Concepts

- A conductor of length 'l' is moving with a uniform velocity of 'v'
- If 'B' is the magnetic field, voltage induced, e = Blv
- If external 'R' is connected, current 'i' will flow

• This 'F' opposes the movement of conductor

- In order to sustain the movement, external force F_a is applied such that $F_a > F$
- 'i'will continue to flow
- i^2R = power is available at the o/p
- This power is generated from mechanical input
- → Generator action

- In order to sustain the movement, external force F_a is applied such that $F_a > F$
- 'i' will continue to flow
- i^2R = power is available at the o/p
- This power is generated from mechanical input
- → Generator action
- Instead if V > E is applied to the conductor, no external force is required to maintain the motion of the conductor
- Input is electrical energy and output is mechanical energy
- → Motor action

Basic requirements of EMEC devices

- For motoring /generating action, there has to be magnetic flux field produced by a set of coils → field coil
- This flux induces V' or I' in another coil which is rotating in the magnetic field \rightarrow armature coil
- Do we need to have conductor carrying 'I' to experience a force ?

- In rotating machine W' induced in the conductor is sinusoidal, irrespective of nature of field flux
- If dc is required, some arrangement must be made to convert ac to dc

Basic structure

- Stator → stationary, does not move
 - → normally outer frame
- Rotor → which rotates inside the stator
 - \rightarrow separated by small air gap (0.5 1 mm)
- Generally stator and rotor are made up of high permeability ferromagnetic material
- Length of the air gap is kept as small as possible so that AT required to establish φ in the air gap is small
- Air gap is uniform :. uniform reluctance
- Some machines have non uniform air gap → salient pole structure

Torque Production in Rotating Machines

- Consider two bar magnets pivoted at their center on the same axis
- Torque ∞ angular displacement

Stator \rightarrow coil both of them are carrying 'l'

- Two MMF sources, $F_s \& F_r$
- Create magnetic flux in the air gap between stator and rotor
- Similar to magnetic poles on both stator and rotor centered on their respective magnetic axis

Torque Production in Rotating Machines

Torque is produced by the tendency of two magnetic fields to align

$$T \propto F_S F_r \sin\left(\angle_{F_S}^{F_r}\right)$$
$$\propto F_S F_r \sin(\delta)$$

$$F_{ST} \sin \delta_1 = F_T \sin \delta$$
 $\therefore T \propto F_S F_{ST} \sin \delta_1$

$$T \propto F_s F_{sr} \sin \delta_1$$

$$F_{sr} \sin \delta_2 = F_s \sin \delta$$
 $\therefore T \propto F_r F_{sr} \sin \delta_2$

$$T \propto F_r F_{sr} \sin \delta_2$$

For steady torque $F_s \& F_r$ should be stationary with respect to each other

Classification of Machines

DC machine $\xrightarrow{}$ stator \rightarrow DC $\xrightarrow{}$ rotor \rightarrow 'I' flowing in the load OR in from external source is DC

DC Machine

Stator:

- Field coils are mounted on the projected part & connected to dc source
- Coil is stationary and 'l' is dc (can be replaced by PM)
- Time invariant field \rightarrow angular speed of $F_{s}=0$

Rotor:

- Rotor having slots at the outer periphery
- In addition there is a commutator → it has large number of copper segments & these segments are insulated by mica
- Coils having desired number of turns are placed in these slots and two ends of the coil are connected to the copper strips
- Two carbon brushes are placed as shown on the copper commutator
- These carbon brushes are mounted on the commutator but fixed to the stator

- Carbon brushes are stationary
- Direction of 'l' reverses when the coil crosses the brush
- Conductors under one pole carry 'I' in one direction
- Armature mmf axis is fixed and it is along brush (q) axis
- Angle between F_s and F_r is 90° and is fixed, this angle is independent of load
- If F_S is held constant, F_T will change with load
- 'I' flowing into/out of the carbon brush is dc
- mmf w.r.t. carbon brush is stationary

Equivalent circuit of dc machine

- dc current (If) is flowing in the field coil $R_F \to {\rm field\ winding\ resistance}$ $L_F \to {\rm field\ winding\ inductance}$
- At steady state $V_F = RFI_F$
- Armature is rotating in the magnetic field Voltage induced is $E \propto \phi \omega$, where ϕ flux setup by field, and ω is angular speed
- E can be represented by $E=K\phi\omega$

In motoring mode, terminal voltage, V is given as

$$V = E + I_a R_a$$

and in generating mode

$$V = E - I_a R_a$$

Induction machine

- Consider 3 coils of 'N' turns, displaced in space by 120° 😺
- Let i_a , $i_b \& i_c$ are given as

$$i_a = I_m \sin(\omega_s t)$$

 $i_b = I_m \sin(\omega_s t - \frac{2\pi}{3}),$
 $i_c = I_m \sin(\omega_s t - \frac{4\pi}{3}), \text{ where } \omega_s = 2\pi f$

- Current in each coil produces a pulsating magnetic field
- Amplitude & direction depend on the instantaneous value of 'I' flowing through it
- Each phase winding produces a similar magnetic field displaced by 120° in space from each other

Induction machine

Magnitude and position of the resultant field can be determined as follows

- Resolve the field produced by individual coil along x & y axes
- Determine $\sum x \& \sum y$ components

• Resultant,
$$R = \sqrt{(\sum x)^2 + (\sum y)^2}$$

$$\theta = \tan^{-1} \frac{\sum y}{\sum x}, \text{ w.r.t axis of coil 'A'}$$

$$\sum x = Ni_a + Ni_b \cos(-120)$$

$$+ Ni_c \cos(-240)$$

$$= Ni_a - \frac{1}{2}Ni_b - \frac{1}{2}Ni_c$$

$$\because i_a + i_b + i_c = 0, \Rightarrow \sum x = \frac{3}{2}Ni_a$$

$$\sum y = 0 + Ni_b \sin(-120) + Ni_c \sin(-240)$$

$$= -\frac{\sqrt{3}}{2} Ni_b + \frac{\sqrt{3}}{2} Ni_c$$

$$\Rightarrow \sum y = \frac{\sqrt{3}}{2} N(i_c - i_b)$$

i_a , i_b & i_c are sinusoidal varying quantities

$\omega_{s}t$	i a	i _b	i _c	Σχ	Σγ	R	θ
\mathbf{O}_{O}	O	$\frac{-\sqrt{3}}{2}I_{\rm m}$	$\frac{\sqrt{3}}{2}I_{\rm m}$	O	$\frac{3}{2}NI_{m}$	$\frac{3}{2}NI_{m}$	$\frac{\pi}{2}$
30°	$\frac{I_m}{2}$	— I _m	$\frac{I_{m}}{2}$	$\frac{3}{4}NI_{m}$	$\left \frac{3\sqrt{3}}{4} NI_{m} \right $	$\frac{3}{2}NI_{m}$	$\frac{\pi}{3}$
90°	I _m	$\frac{-I_{\rm m}}{2}$	$\frac{-I_{\rm m}}{2}$	$\frac{3}{2}NI_{m}$	О	$\left \frac{3}{2} NI_{m} \right $	О
180°	O	$\frac{\sqrt{3}}{2}I_{\rm m}$	$\frac{-\sqrt{3}}{2}I_{\rm m}$	O	$\frac{3}{2}NI_{m}$	$\frac{3}{2}NI_{m}$	$\frac{-\pi}{2}$

Observations:

- Magnitude of 'R' is constant and equal to $\frac{3}{2}NI_m$ where I_m is the peak
- Input 'l' completes 1/4 cycle, 'R' rotates by 90°
- Input 'l' completes 1/2 cycle, 'R' rotates by 180°

Conclusion:

- The result of displacing 3 windings by 120° in space and displacing the winding 'I' by 120° in time phase is a single revolving field of constant magnitude
- For a given winding arrangements speed of rotation is determined by f' of input alone

Rotor construction

squirrel cage → aluminum/ copper bars are embedded in the rotor slots and permanently shorted at both ends by Al/Cu end rings

- ⇒ electrically closed circuit
- ⇒ no additional 'R' can be connected

