MATH 239

TUTORIAL 3

Question 1:

Let S be a set of configurations, and w be a weight function on S. Let S_e be the subset of S such that its elements have even weight, and S_o be the subset of S such that its elements have odd weight. Show that

a)
$$\Phi_{S_e}(x) = \frac{\Phi_S(x) + \Phi_S(-x)}{2}$$

a)
$$\Phi_{S_e}(x) = \frac{\Phi_S(x) + \Phi_S(-x)}{2}$$

b) $\Phi_{S_o}(x) = \frac{\Phi_S(x) - \Phi_S(-x)}{2}$

a) Let $\Phi_S(x) = \sum_{i \geq 0} s_i x^i$. Since S_e is the set of all even weighed elements of S, we have

$$[x^n] \Phi_{S_e}(x) = \begin{cases} s_n & \text{if } n \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

Now, notice that

$$[x^n] \frac{\Phi_S(x) + \Phi_S(-x)}{2} = \frac{1}{2} ([x^n] \Phi_S(x) + [x^n] \Phi_S(-x))$$
$$= \frac{1}{2} (s_n + (-1)^n s_n)$$
$$= \begin{cases} s_n & \text{if } n \text{ is even} \\ 0 & \text{otherwise} \end{cases}$$

This gives us that $[x^n] \Phi_{S_e}(x) = [x^n] \frac{\Phi_S(x) + \Phi_S(-x)}{2}$ for all n, so we have $\Phi_{S_e}(x) = \frac{\Phi_S(x) + \Phi_S(-x)}{2}$ as

b) Since $S = S_e \cup S_o$, by the sum lemma we have

$$\Phi_{S}(x) = \Phi_{S_{e}}(x) + \Phi_{S_{o}}(x)
\Phi_{S_{o}}(x) = \Phi_{S}(x) - \Phi_{S_{e}}(x)
= \Phi_{S}(x) - \frac{\Phi_{S}(x) + \Phi_{S}(-x)}{2}
= \frac{\Phi_{S}(x) - \Phi_{S}(-x)}{2}$$

as desired.

Question 2:

Show that for n > 1, the number of composition of n with all parts odd is the same as the number of compositions of n+1 such that each part is at least 2.

Date: 09/28/12.

MATH 239 2

Answer 2:

Let $O = \{1, 3, 5, 7, \dots\}$. Then,

$$\Phi_O(x) = x + x^3 + x^5 + x^7 + \dots = \frac{x}{1 - x^2}$$

Next, let O_k be the set of k odd tuples. Then by the product lemma,

$$\Phi_{O_k}(x) = (\Phi_O(x))^k$$
$$= \left(\frac{x}{1-x^2}\right)^k$$

Finally, let S_O be the set odd tuples of arbitrary length. Then $S_O = \bigcup_{k \geq 0} O_k$. By the sum lemma, its generating function is given by

$$\Phi_{SO}(x) = \sum_{k \ge 0} \Phi_{O_k}(x)
= \sum_{k \ge 0} \left(\frac{x}{1 - x^2}\right)^k
= \frac{1}{1 - \frac{x}{1 - x^2}}
= \frac{1 - x^2}{1 - x - x^2}
= 1 + \frac{x}{1 - x - x^2}$$

We do the same thing to get the generating function for compositions with each part at least 2. Let $N_{\geq 2} = \{2, 3, 4, 5, \dots\}$. Then,

$$\Phi_{N_{\geq 2}}(x) = x^2 + x^3 + x^4 + x^5 + \dots = \frac{x^2}{1 - x}$$

Next, let N_k be the set of k tuples with each part at least 2. Then by the product lemma,

$$\Phi_{N_k}(x) = (\Phi_{N_{\geq 2}}(x))^k$$
$$= \left(\frac{x^2}{1-x}\right)^k$$

Finally, let $S_{\geq 2}$ be the set of tuples with each part at least 2. Then $S_{\geq 2} = \bigcup_{k \geq 0} N_k$. By the sum lemma, its generating function is given by

$$\begin{split} \Phi_{S_{\geq 2}}\left(x\right) &=& \sum_{k\geq 0} \Phi_{N_k}\left(x\right) \\ &=& \sum_{k\geq 0} \left(\frac{x^2}{1-x}\right)^k \\ &=& \frac{1}{1-\frac{x^2}{1-x}} \\ &=& \frac{1-x}{1-x-x^2} \\ &=& 1+\frac{x^2}{1-x-x^2} \end{split}$$

MATH 239 3

Finally, notice that $\Phi_{S_{\geq 2}}(x) - 1 = x (\Phi_{S_O}(x) - 1)$. Taking coefficients of x^{n+1} on both sides for $n \geq 1$, we get

$$[x^{n+1}] \Phi_{S_{\geq 2}}(x) - 1 = [x^{n+1}] x (\Phi_{S_O}(x) - 1)$$

$$[x^{n+1}] \Phi_{S_{\geq 2}}(x) - 1 = [x^n] \Phi_{S_O}(x) - 1$$

$$[x^{n+1}] \Phi_{S_{\geq 2}}(x) = [x^n] \Phi_{S_O}(x)$$

as $n \ge 1$ means that the constant terms do not matter. Finally, notice that $[x^{n+1}] \Phi_{S_{\ge 2}}(x)$ gives the number of compositions of n+1 with each part at least 2, while $[x^n] \Phi_{S_O}(x)$ gives the number of compositions of n with each part odd. This proves that the two numbers are equal.

Question 3:

In this question, we will consider an alternative decomposition of $\{0,1\}^*$. Let $A = \{0,10,11\}$ and $B = \{\epsilon,1\}$.

- a) Prove that A^*B is unambiguous.
- b) Determine the generating series for A^*B , where the weight of a string s is its length.
- c) Conclude that A^*B generates all binary strings.

Answer 3:

a) We prove this by induction on the length of the string.

Let s be a string of length n generated by A^*B . If n=0, then $s=\epsilon$, and the only way to write the string is to take ϵ from A^* and ϵ from B. If n=1, then either s=0 or s=1. If s=0, the only way to write the string is to take 0 from A^* and ϵ from B. If s=1, the only way to write the string is to take ϵ from A^* and 1 from B.

Finally, suppose $n \geq 2$. As the strings of B have length at most 1, s must start with one or more copies of A. Therefore, either s = 0s', s = 10s', or s = 11s' must hold true, where s' is a (possibly empty) string of shorter length. In any of these three cases, s cannot be written starting with another element of A. Furthermore, by inductive hypothesis, s' is unambiguous. Therefore, s must also be unambiguous.

We will note here that a small modification of this proof can also show that A^*B generates all binary strings, but we will defer this later to show another way to prove this.

b) First, note that

$$\Phi_A(x) = x + 2x^2$$

$$\Phi_B(x) = 1 + x$$

Using product lemma, we have

$$\Phi_{A^{\star}B}(x) = \frac{1}{1 - \Phi_A(x)} \cdot \Phi_B(x)$$

$$= \frac{1}{1 - (x + 2x^2)} \cdot (1 + x)$$

$$= \frac{1}{1 - 2x}$$

c) We can see that

$$[x^n] \Phi_{A^*B}(x) = [x^n] \sum_{i \ge 0} (2x)^i$$
$$- 2^n$$

As there are only 2^n distinct binary strings of length n, and A^*B generates that many distinct binary strings of length n, it must have in fact generated all of them.