Stewart's Theorem

If a segment is drawn from the vertex of <u>any</u> triangle to <u>any</u> point on the opposite side (with lengths as indicated in the diagram below) then

$$a^2n+b^2m=t^2c+cmn$$
.

Using Law of Cosines on $\triangle BPC$, $a^2 = t^2 + m^2 - 2tm\cos(\angle BPC)$.

Using Law of Cosines on $\triangle CPA$, $b^2 = t^2 + n^2 - 2tn\cos(\angle CPA)$.

BUT $\angle BPC$ and $\angle CPA$ are supplementary and $\cos(\angle CPA) = \cos(180 - \angle BPC) = -\cos(\angle BPC)$

Therefore, the two equations become $\begin{cases} a^2 = t^2 + m^2 - 2tm\cos(\angle BPC) \\ b^2 = t^2 + n^2 + 2tn\cos(\angle BPC) \end{cases}$

The plan is to eliminate the last terms in each equation by multiplying the first equation by n, the second equation by m, and then adding the two equations.

$$(a^2n+b^2m) = n(t^2+m^2)+m(t^2+n^2)$$

$$\Rightarrow (a^{2}n + b^{2}m) = t^{2}(m+n) + (nm^{2} + mn^{2})$$

$$\Rightarrow (a^{2}n + b^{2}m) = t^{2}(m+n) + mn(m+n)$$

$$\Rightarrow a^{2}n + b^{2}m = t^{2}c + cmn$$

Q.E.D. – That's all folks!

Powerful medicine indeed – when the problem involves triangles and nothing else seems to apply, try Stewart's Theorem.