

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification ⁶ :		(11) International Publication Number:	WO 98/18926
C12N 15/18, C07K 14/505, 14/52, A61K 38/18, C12N 5/10, 5/08	A1	(43) International Publication Date:	7 May 1998 (07.05.98)
(21) International Application Number:	PCT/US97/18703	(81) Designated States:	AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CU, CZ, DE, DK, EE, ES, FI, GB, GE, GH, HU, ID, IL, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, UA, UG, US, UZ, VN, YU, ZW, ARIPO patent (GH, KE, LS, MW, SD, SZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, ML, MR, NE, SN, TD, TG).
(22) International Filing Date:	23 October 1997 (23.10.97)	(30) Priority Data:	60/034,044 25 October 1996 (25.10.96) US
(71) Applicant (<i>for all designated States except US</i>): G.D. SEARLE & CO. [US/US]; Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).	(72) Inventors; and (75) Inventors/Applicants (<i>for US only</i>): MCWHERTER, Charles, A. [US/US]; 16564 Thunderhead Canyon Court, Ellisville, MO 63011 (US). FENG, Yiqing [US/US]; 423 Mission Court, St. Louis, MO 63130 (US). SUMMERS, Neena [US/US]; 1203 Saddlemaker, St. Charles, MO 63304 (US).	(74) Agents:	BENNETT, Dennis, A. et al.; G.D. Searle & Co., Corporate Patent Dept., P.O. Box 5110, Chicago, IL 60680-5110 (US).

(54) Title: CIRCULARLY PERMUTED ERYTHROPOIETIN RECEPTOR AGONISTS

(57) Abstract

Disclosed are novel Erythropoietin receptor agonist proteins, DNAs which encode the Erythropoietin receptor agonist proteins, methods of making the Erythropoietin receptor agonist proteins and methods of using the Erythropoietin receptor agonist proteins.

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
AT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
AZ	Azerbaijan	GB	United Kingdom	MC	Monaco	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav Republic of Macedonia	TM	Turkmenistan
BF	Burkina Faso	GR	Greece	ML	Mali	TR	Turkey
BG	Bulgaria	HU	Hungary	MN	Mongolia	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MR	Mauritania	UA	Ukraine
BR	Brazil	IL	Israel	MW	Malawi	UG	Uganda
BY	Belarus	IS	Iceland	MX	Mexico	US	United States of America
CA	Canada	IT	Italy	NE	Niger	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NL	Netherlands	VN	Viet Nam
CG	Congo	KE	Kenya	NO	Norway	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NZ	New Zealand	ZW	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's Republic of Korea	PL	Poland		
CM	Cameroon	KR	Republic of Korea	PT	Portugal		
CN	China	KZ	Kazakhstan	RO	Romania		
CU	Cuba	LC	Saint Lucia	RU	Russian Federation		
CZ	Czech Republic	LI	Liechtenstein	SD	Sudan		
DE	Germany	LK	Sri Lanka	SE	Sweden		
DK	Denmark	LR	Liberia	SG	Singapore		
EE	Estonia						

CIRCULARLY PERMUTED ERYTHROPOIETIN RECEPTOR AGONISTS

The present application claims priority under Title 35, United States Code, §119 of United States Provisional 5 application Serial No. 60/034,044, filed October 25, 1996.

FIELD OF THE INVENTION

The present invention relates to human 10 Erythropoietin (EPO) receptor agonists. These EPO receptor agonists retain one or more activities of native EPO and may also show improved hematopoietic cell-stimulating activity and/or an improved activity profile which may include reduction of undesirable 15 biological activities associated with native EPO and/or have improved physical properties which may include increased solubility, stability and refold efficiency.

BACKGROUND OF THE INVENTION

20 Colony stimulating factors which stimulate the differentiation and/or proliferation of bone marrow cells have generated much interest because of their therapeutic potential for restoring depressed levels of hematopoietic stem cell-derived cells.

25 Erythropoietin is a naturally-occurring glycoprotein hormone with a molecular weight that was first reported to be approximately 39,000 daltons (T. Miyaki *et al.*, *J. Biol. Chem.* **252**:5558-5564 (1977)).
30 The mature hormone is 166 amino acids long and the "prepro" form of the hormone, with its leader peptide, is 193 amino acids long (F. Lin, U.S. Patent No. 4,703,008). The mature hormone has a molecular weight, calculated from its amino acid sequence, of 18,399
35 daltons (K. Jacobs *et al.*, *Nature* **313**:806-810 (1985); J. K. Browne *et al.*, *Cold Spring Harbor Symp. Quant. Biol.* **5**:1693-702 (1986).

2

The first mutant erythropoietins (i.e., erythropoietin analogs), prepared by making amino acid substitutions and deletions, have demonstrated reduced or unimproved activity. As described in U.S. Patent NO. 4,703,008, replacement of the tyrosine residues at positions 15, 40 and 145 with phenylalanine residues, replacement of the cysteine residue at position 7 with an histidine, substitution of the proline at position 2 with an asparagine, deletion of residues 2-6, deletion of residues 163-166, and deletion of residues 27-55 does not result in an apparent increase in biological activity. The Cys'-to-His' mutation eliminates biological activity. A series of mutant erythropoietins with a single amino acid substitution at asparagine residues 24, 38 or 83 show severely reduced activity (substitution at position 24) or exhibit rapid intracellular degradation and apparent lack of secretion (substitution at residue 38 or 183). Elimination of the O-linked glycosylation site at serine126 results in rapid degradation or lack of secretion of the erythropoietin analog (S. Dube et al., *J. Biol. Chem.* **33**:17516-17521 (1988)). These authors conclude that glycosylation sites at residues 38, 83 and 126 are required for proper secretion and that glycosylation sites located at residues 24 and 38 may be involved in the biological activity of mature erythropoietin.

Deglycosylated erythropoietin is fully active in *in vitro* bioassays (M. S. Dorsdal et al., *Endocrinology* **116**:2293-2299 (1985); U.S. Patent No. 4,703,008; E. Tsuda et al., *Eur J. Biochem.* **266**:20434-20439 (1991)). However, glycosylation of erythropoietin is widely accepted to play a critical role in the *in vivo* activity of the hormone (P. H. Lowy et al., *Nature* **185**:102-105 (1960); E. Goldwasser and C. K. H. Kung, *Ann. N.Y. Acad. Science* **149**:49-53 (1968); W. A. Lukowsky and R.

3

H.. Painter, *Can. J. Biochem.* :909-917 (1972); D.W. Briggs *et al.*, *Amer. J. Phys.* **201**:1385-1388 (1974); J.C. Schooley, *Exp. Hematol.* **13**:994-998; N. Imai *et al.*, *Eur. J. Biochem.* **194**:457-462 (1990); M.S. Dordal *et al.*, *Endocrinology* **116**:2293-2299 (1985); E. Tsuda *et al.*, *Eur. J. Biochem.* **188**:405-411 (1990); U.S. Patent No. 4,703,008; J.K. Brown *et al.*, *Cold Spring Harbor Symposia on Quant. Biol.* **51**:693-702 (1986); and K. Yamaguchi *et al.*, *J. Biol. Chem.* **266**:20434-20439 (1991).

10 The lack if *in vivo* biological activity of deglycosylated analogs of erythropoietin is attributed to a rapid clearance of the deglycosylated hormone from the circulation of treated animals. This view is supported by direct comparison of the plasma half-life

15 of glycosylated and deglycosylated erythropoietin (J.C. Spivak and B.B. Hoyans, *Blood* **73**:90-99 (1989), and M.N. Fukuda, *et al.*, *Blood* **73**:84-89 (1989)).

Oligonucleotide-directed mutagenesis of

20 erythropoietin glycosylation sites has effectively probed the function of glycosylation but has failed, as yet, to provide insight into an effective strategy for significantly improving the characteristics of the hormone for therapeutic applications.

25

A series of single amino acid substitution or deletion mutants have been constructed, involving amino acid residues 15, 24, 49, 76, 78, 83, 143, 145, 160, 162, 163, 164, 165 and 166. In these mutants are altered 30 the carboxy terminus, the glycosylation sites, and the tyrosine residues of erythropoietin. The mutants have been administered to animals while monitoring hemoglobin, hematocrit and reticulocyte levels (EP No. 0 409 113). While many of these mutants retain *in vivo* 35 biological activity, none show a significant increase in their ability to raise hemoglobin, hematocrit or

4

reticulocyte (the immediate precursor of an erythrocyte) levels when compared to native erythropoietin.

Another set of mutants has been constructed to
5 probe the function of residues 99-119 (domain 1) and residues 111-129 (domain 2) (Y. Chern et al., *Eur. J. Biochem.* **202**:225-230 (1991)). The domain 1 mutants are rapidly degraded and inactive in an *in vitro* bioassay while the domain 2 mutants, at best, retain *in vitro*
10 activity. These mutants also show no enhanced *in vivo* biological activity as compared to wild-type, human erythropoietin. These authors conclude that residues 99-119 play a critical role in the structure of erythropoietin.

15

The human erythropoietin molecule contains two disulfide bridges, one linking the cysteine residues at positions 7 and 161, and a second connecting cysteines at positions 29 and 33 (P.H. Lai et al., *J. Biol. Chem.* **261**:3116-3121 (1986)). Oligonucleotide-directed mutagenesis has been used to probe the function of the disulfide bridge linking cysteines 29 and 33 in human erythropoietin. The cysteine at position 33 has been converted to a proline residue, which, mimics the structure of murine erythropoietin at this residue. The resulting mutant has greatly reduced *in vitro* activity. The loss of activity is so severe that the authors conclude that the disulfide bridge between residues 29 and 33 is essential for erythropoietin function (F.K.
25 Lin, *Molecular and Cellular Aspects of Erythropoietin and Erythropoiesis*, pp. 23-36, ed. I.N. Rich, Springer-
30 Verlag, Berlin (1987)).

U.S. Patent No. 4,703,008 by Lin, F-K. (hereinafter referred to as "the '008 patent") speculates about a wide variety of modifications of EPO, including addition, deletion, and substitution analogs of EPO.

5

The '008 patent does not indicate that any of the suggested modifications would increase biological activity *per se*, although it is stated that deletion of glycosylation sites might increase the activity of EPO produced in yeast (See the '008 patent at column 37, lines 25-28). Also, the '008 patent speculates that EPO analogs which have one or more tyrosine residues replaced with phenylalanine may exhibit an increased or decreased receptor binding affinity.

10

Australian Patent Application No. AU-A-59145/90 by Fibi, M et al. also discusses a number of modified EPO proteins (EPO muteins). It is generally speculated that the alteration of amino acids 10-55, 70-85, and 130-166 of EPO. In particular, additions of positively charged basic amino acids in the carboxyl terminal region are purported to increase the biological activity of EPO.

20

U.S. Patent No. 4,835,260 by Shoemaker, C.B. discusses modified EPO proteins with amino acid substitutions of the methionine at position 54 and asparagine at position 38. Such EPO muteins are thought to have improved stability but are not proposed to exhibit any increase in biological activity relative to wild type EPO.

30

WO 91/05867 discloses analogs of human erythropoietin having a greater number of sites for carbohydrate attachment than human erythropoietin, such as EPO (Asn⁶⁹), EPO (Asn¹²⁵, Ser¹²⁷), EPO (Thr¹²⁵), and EPO (Pro¹²⁴, Thr¹²⁵).

35

WO 94 /24160 discloses erythropoietin muteins which have enhanced activity, specifically amino acid substitutions at positions 20, 49, 73, 140, 143, 146, 147 and 154.

6
WO 94/25055 discloses erythropoietin analogs,
including EPO (X¹¹, Cys¹³⁹, des-Arg¹⁶⁶) and EPO (Cys¹³⁹, des-
Arg¹⁶⁶).

5

Rearrangement of Protein Sequences

In evolution, rearrangements of DNA sequences serve
an important role in generating a diversity of protein
10 structure and function. Gene duplication and exon
shuffling provide an important mechanism to rapidly
generate diversity and thereby provide organisms with a
competitive advantage, especially since the basal
mutation rate is low (Doolittle, *Protein Science* 1:191-
15 200, 1992).

The development of recombinant DNA methods has made
it possible to study the effects of sequence
transposition on protein folding, structure and
function. The approach used in creating new sequences
20 resembles that of naturally occurring pairs of proteins
that are related by linear reorganization of their amino
acid sequences (Cunningham, et al., *Proc. Natl. Acad.*
Sci. U.S.A. 76:3218-3222, 1979; Teather & Erfle, *J.*
Bacteriol. 172: 3837-3841, 1990; Schimming et al., *Eur.*
25 *J. Biochem.* 204: 13-19, 1992; Yamiuchi and Minamikawa,
FEBS Lett. 260:127-130, 1991; MacGregor et al., *FEBS*
Lett. 378:263-266, 1996). The first in vitro
application of this type of rearrangement to proteins
was described by Goldenberg and Creighton (*J. Mol. Biol.*
30 165:407-413, 1983). A new N-terminus is selected at an
internal site (breakpoint) of the original sequence, the
new sequence having the same order of amino acids as the
original from the breakpoint until it reaches an amino
acid that is at or near the original C-terminus. At this
35 point the new sequence is joined, either directly or
through an additional portion of sequence (linker), to
an amino acid that is at or near the original N-

7

terminus, and the new sequence continues with the same sequence as the original until it reaches a point that is at or near the amino acid that was N-terminal to the breakpoint site of the original sequence, this residue 5 forming the new C-terminus of the chain.

This approach has been applied to proteins which range in size from 58 to 462 amino acids (Goldenberg & Creighton, *J. Mol. Biol.* **165**:407-413, 1983; Li & Coffino, *Mol. Cell. Biol.* **13**:2377-2383, 1993). The 10 proteins examined have represented a broad range of structural classes, including proteins that contain predominantly α -helix (interleukin-4; Kreitman et al., *Cytokine* **7**:311-318, 1995), β -sheet (interleukin-1; Horlick et al., *Protein Eng.* **5**:427-431, 1992), or 15 mixtures of the two (yeast phosphoribosyl anthranilate isomerase; Luger et al., *Science* **243**:206-210, 1989). Broad categories of protein function are represented in these sequence reorganization studies:

20 **Enzymes**

T4 lysozyme	Zhang et al., <i>Biochemistry</i> 32 :12311-12318 (1993); Zhang et al., <i>Nature Struct. Biol.</i> 1 :434-438 (1995)
dihydrofolate reductase	Buchwalder et al., <i>Biochemistry</i> 31 :1621-1630 (1994); Protasova et al., <i>Prot. Eng.</i> 7 :1373-1377 (1995)
ribonuclease T1	Mullins et al., <i>J. Am. Chem. Soc.</i> 116 :5529-5533 (1994); Garrett et al., <i>Protein Science</i> 5 :204-211 (1996)
35 <i>Bacillus</i> β -glucanase	Hahn et al., <i>Proc. Natl. Acad. Sci. U.S.A.</i> 91 :10417-10421 (1994)

8

aspartate Yang & Schachman, *Proc. Natl. Acad.
transcarbamoylase Sci. U.S.A.* **90**:11980-11984 (1993)

5 phosphoribosyl Luger et al., *Science* **243**:206-210
anthranilate (1989); Luger et al., *Prot. Eng.*
isomerase **3**:249-258 (1990)

10 pepsin/pepsinogen Lin et al., *Protein Science* **4**:159-
166 (1995)

glyceraldehyde-3- Vignais et al., *Protein Science*
phosphate dehydro- **4**:994-1000 (1995)
genase

15 ornithine Li & Coffino, *Mol. Cell. Biol.*
decarboxylase **13**:2377-2383 (1993)

yeast Ritco-Vonsovici et al., *Biochemistry*
phosphoglycerate **34**:16543-16551 (1995)
20 dehydrogenase

Enzyme Inhibitor

basic pancreatic Goldenberg & Creighton, *J. Mol.*
25 trypsin inhibitor *Biol.* **165**:407-413 (1983)

Cytokines

interleukin-1 β Horlick et al., *Protein Eng.* **5**:427-
30 431 (1992)

interleukin-4 Kreitman et al., *Cytokine* **7**:311-
318 (1995)

35 **Tyrosine Kinase
Recognition Domain**

g

α -spectrin SH3 domain Viguera, et al., J. Mol. Biol. 247:670-681 (1995)

Transmembrane**5 Protein**

omp A Koebnik & Krämer, J. Mol. Biol. 250:617-626 (1995)

10 Chimeric Protein

interleukin-4-
Pseudomonas
exotoxin fusion
15 molecule Kreitman et al., Proc. Natl. Acad. Sci. U.S.A. 91:6889-6893 (1994).

The results of these studies have been highly variable. In many cases substantially lower activity, solubility or thermodynamic stability were observed (E. coli dihydrofolate reductase, aspartate transcarbamoylase, phosphoribosyl anthranilate isomerase, glyceraldehyde-3-phosphate dehydrogenase, ornithine decarboxylase, omp A, yeast phosphoglycerate dehydrogenase). In other cases, the sequence rearranged protein appeared to have many nearly identical properties as its natural counterpart (basic pancreatic trypsin inhibitor, T4 lysozyme, ribonuclease T1, Bacillus β -glucanase, interleukin-1 β , α -spectrin SH3 domain, pepsinogen, interleukin-4). In exceptional cases, an unexpected improvement over some properties of the natural sequence was observed, e.g., the solubility and refolding rate for rearranged α -spectrin SH3 domain sequences, and the receptor affinity and anti-tumor activity of transposed interleukin-4-Pseudomonas exotoxin fusion molecule (Kreitman et al., Proc. Natl. Acad. Sci. U.S.A. 91:6889-6893, 1994; Kreitman et al., Cancer Res. 55:3357-3363, 1995).

The primary motivation for these types of studies has been to study the role of short-range and long-range

10

interactions in protein folding and stability. Sequence rearrangements of this type convert a subset of interactions that are long-range in the original sequence into short-range interactions in the new sequence, and vice versa. The fact that many of these sequence rearrangements are able to attain a conformation with at least some activity is persuasive evidence that protein folding occurs by multiple folding pathways (Viguera, et al., *J. Mol. Biol.* **247**:670-681, 1995). In the case of the SH3 domain of α -spectrin, choosing new termini at locations that corresponded to β -hairpin turns resulted in proteins with slightly less stability, but which were nevertheless able to fold.

The positions of the internal breakpoints used in the studies cited here are found exclusively on the surface of proteins, and are distributed throughout the linear sequence without any obvious bias towards the ends or the middle (the variation in the relative distance from the original N-terminus to the breakpoint is ca. 10 to 80% of the total sequence length). The linkers connecting the original N- and C-termini in these studies have ranged from 0 to 9 residues. In one case (Yang & Schachman, *Proc. Natl. Acad. Sci. U.S.A.* **90**:11980-11984, 1993), a portion of sequence has been deleted from the original C-terminal segment, and the connection made from the truncated C-terminus to the original N-terminus. Flexible hydrophilic residues such as Gly and Ser are frequently used in the linkers. Viguera, et al. (*J. Mol. Biol.* **247**:670-681, 1995) compared joining the original N- and C- termini with 3- or 4-residue linkers; the 3-residue linker was less thermodynamically stable. Protasova et al. (*Protein Eng.* **7**:1373-1377, 1994) used 3- or 5-residue linkers in connecting the original N-termini of *E. coli* dihydrofolate reductase; only the 3-residue linker produced protein in good yield.

11

The modified human EPO receptor agonists of the present invention can be represented by the Formula:

wherein;

10 a is 0 or 1;
 X¹ is a peptide comprising an amino acid
sequence corresponding to the sequence of residues n+1
through J;
 X² is a peptide comprising an amino acid
sequence corresponding to the sequence of residues 1
through n;
 n is an integer ranging from 1 to J-1; and
 L is a linker.

20 In the formula above the constituent amino acids
residues of human EPO are numbered sequentially 1
through J from the amino to the carboxyl terminus. A
pair of adjacent amino acids within this protein may be
numbered n and n+1 respectively where n is an integer
25 ranging from 1 to J-1. The residue n+1 becomes the new
N-terminus of the new EPO receptor agonist and the
residue n becomes the new C-terminus of the new EPO
receptor agonist.

30 The present invention relates to novel EPO receptor agonists polypeptides comprising a modified EPO amino acid sequence of the following formula:

```

35      AlaProProArgLeuIleCysAspSerArgValLeuGluArgTyrLeuLeuGluAlaLys
                  10                                20

          GluAlaGluAsnIleThrThrGlyCysAlaGluHisCysSerLeuAsnGluAsnIleThr
                  30                                40

40      ValProAspThrLysValAsnPheTyrAlaTrpLysArgMetGluValGlyGlnGlnAla

```

12

	50		60
	ValGluValTrpGlnGlyLeuAlaLeuLeuSerGluAlaValLeuArgGlyGlnAlaLeu		
	70		80
5	LeuValAsnSerSerGlnProTrpGluProLeuGlnLeuHisValAspLysAlaValSer		
	90		100
10	GlyLeuArgSerLeuThrThrLeuLeuArgAlaLeuGlyAlaGlnLysGluAlaIleSer		
	110		120
	ProProAspAlaAlaSerAlaAlaProLeuArgThrIleThrAlaAspThrPheArgLys		
	130		140
15	LeuPheArgValTyrSerAsnPheLeuArgGlyLysLeuLysLeuTyrThrGlyGluAla		
	150		160
	CysArgThrGlyAspArg		
	166		

20

wherein optionally 1-6 amino acids from the N-terminus and 1-5 from the C-terminus can be deleted from said EPO receptor agonists polypeptide;

25

wherein the N-terminus is joined to the C-terminus directly or through a linker capable of joining the N-terminus to the C-terminus and having new C- and N-termini at amino acids;

23-24	48-49	111-112
24-25	50-51	112-113
25-26	51-52	113-114
26-27	52-53	114-115
27-28	53-54	115-116
28-29	54-55	116-117
29-30	55-56	117-118
30-31	56-57	118-119
31-32	57-58	119-120
32-33	77-78	120-121
33-34	78-79	121-122
34-35	79-80	122-123
35-36	80-81	123-124
36-37	81-82	124-125
37-38	82-83	125-126
38-39	84-85	126-127
40-41	85-86	127-128
41-42	86-87	128-129
43-44	87-88	129-130
44-45	88-89	131-132
45-46	108-109	respectively; and
46-47	109-110	
47-48	110-111	

13

said EPO receptor agonist polypeptide may optionally be immediately preceded by (methionine⁻¹), (alanine⁻¹) or (methionine⁻², alanine⁻¹).

5

The more preferred breakpoints at which new C-terminus and N-terminus can be made are; 23-24, 24-25, 25-26, 27-28, 28-29, 29-30, 30-31, 31-32, 32-33, 33-34, 34-35, 35-36, 36-37, 37-38, 38-39, 40-41, 41-42, 42-43, 10 52-53, 53-54, 54-55, 55-56, 77-78, 78-79, 79-80, 80-81, 81-82, 82-83, 83-84, 84-85, 85-86, 86-87, 87-88, 88-89, 115-116, 116-117, 117-118, 118-119, 119-120, 120-121, 121-122, 122-123, 123-124, 124-125, 125-126, 126-127, 15 127-128, 128-129, 129-130, 130-131, and 131-132.

The most preferred breakpoints at which new C-terminus and N-terminus can be made are; 23-24, 24-25, 31-32, 32-33, 37-38, 38-39, 82-83, 83-84, 85-86, 86-87, 20 87-88, 125-126, 126-127, and 131-132.

The most preferred breakpoints include glycosylation sites, non-neutralizing antibodies, proteolytic cleavage sites.

25

The EPO receptor agonists of the present invention may contain amino acid substitutions, such as those disclosed in WO 94/24160 or one or more of the glycosylation sites at Asn²⁴, Asn⁸³, and Asn¹²⁶ are changed to other amino acids such as but not limited to Asp or Glu, deletions and/or insertions. It is also intended that the EPO receptor agonists of the present invention may also have amino acid deletions at either/or both the N- and C- termini of the original protein and/or deletions from the new N- and/or C- termini of the sequence rearranged proteins in the formulas shown above.

14

A preferred embodiment of the present invention the linker (L) joining the N-terminus to the C-terminus is a polypeptide selected from the group consisting of:

GlyGlyGlySer SEQ ID NO:123;
5 GlyGlyGlySerGlyGlyGlySer SEQ ID NO:124;
GlyGlyGlySerGlyGlyGlySerGlyGlySer SEQ ID NO:
125;
SerGlyGlySerGlyGlySer SEQ ID NO:126;
GluPheGlyAsnMet SEQ ID NO:127;
10 GluPheGlyGlyAsnMet SEQ ID NO:128;
GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:129; and
GlyGlySerAspMetAlaGly SEQ ID NO:130.

The present invention also encompasses recombinant
15 human EPO receptor agonists co-administered or sequentially with one or more additional colony stimulating factors (CSF) including, cytokines, lymphokines, interleukins, hematopoietic growth factors which include but are not limited to GM-CSF, G-CSF, c-
20 mpl ligand (also known as TPO or MGDF), M-CSF, IL-1, IL-4, IL-2, IL-3, IL-5, IL 6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor
25 (SCF) also known as steel factor or c-kit ligand (herein collectively referred to as "factors"). These co-administered mixtures may be characterized by having the usual activity of both of the peptides or the mixture may be further characterized by having a biological or
30 physiological activity greater than simply the additive function of the presence of the EPO receptor agonists or the second colony stimulating factor alone. The co-administration may also provide an enhanced effect on the activity or an activity different from that expected
35 by the presence of the EPO or the second colony stimulating factor. The co-administration may also have an improved activity profile which may include reduction

15

of undesirable biological activities associated with native human EPO. In addition to the list above, IL-3 variants taught in WO 94/12639 and WO 94/12638 fusion protein taught in WO 95/21197, and WO 95/21254 G-CSF receptor agonists disclosed in WO 97/12977, c-mpl receptor agonists disclosed in WO 97/12978, IL-3 receptor agonists disclosed in WO 97/12979 and multi-functional receptor agonists taught in WO 97/12985 can be co-administered with the polypeptides of the present invention. As used herein "IL-3 variants" refer to IL-3 variants taught in WO 94/12639 and WO 94/12638. As used herein "fusion proteins" refer to fusion protein taught in WO 95/21197, and WO 95/21254. As used herein "G-CSF receptor agonists" refer to G-CSF receptor agonists disclosed in WO 97/12978. As used herein "c-mpl receptor agonists" refer to c-mpl receptor agonists disclosed in WO 97/12978. As used herein "IL-3 receptor agonists" refer to IL-3 receptor agonists disclosed in WO 97/12979. As used herein "multi-functional receptor agonists" refer to multi-functional receptor agonists taught in WO 97/12985.

In addition, it is envisioned that in vitro uses would include the ability to stimulate bone marrow and blood cell activation and growth before the expanded cells are infused into patients.

It is also envisioned that uses of EPO receptor agonists of the present invention would include blood banking applications, where the EPO receptor agonists are given to a patient to increase the number of red blood cells and blood products removed from the patient, prior to some medical procedure, and the blood products stored and transfused back into the patient after the medical procedure. Additionally, it is envisioned that uses of EPO receptor agonists would include giving the EPO receptor agonists to a blood donor prior to blood

¹⁶
donation to increase the number of red blood cells,
thereby allowing the donor to safely give more blood.

Brief Description of the Figures

- Figure 1 schematically illustrates the sequence rearrangement of a protein. The N-terminus (N) and the C-terminus (C) of the native protein are joined through a linker, or joined directly. The protein is opened at a breakpoint creating a new N-terminus (new N) and a new C-terminus (new-C) resulting in a protein with a new linear amino acid sequence. A rearranged molecule may be synthesized *de novo* as linear molecule and not go through the steps of joining the original N-terminus and the C-terminus and opening of the protein at the breakpoint.
- Figure 2 shows a schematic of Method I, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the amino acid 11 (a.a. 1- 10 are deleted) through a linker region and a new C-terminus created at amino acid 96 of the original sequence.
- Figure 3 shows a schematic of Method II, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined without a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to the original N-terminus and a new C-terminus created at amino acid 96 of the original sequence.

Figure 4 shows a schematic of Method III, for creating new proteins in which the original N-terminus and C-terminus of the native protein are joined with a linker and different N-terminus and C-terminus of the protein are created. In the example shown the sequence rearrangement results in a new gene encoding a protein with a new N-terminus created at amino acid 97 of the original protein, the original C-terminus (a.a. 174) joined to amino acid 1 through a linker region and a new C-terminus created at amino acid 96 of the original sequence.

Figure 5 shows a DNA sequence encoding human mature EPO based on the sequence of Lin et al. (*PNAS* 82:7580-7584, 1985).

Detailed Description of the Invention

Receptor agonists of the present invention may be useful in the treatment of diseases characterized by 5 decreased levels of red blood cells of the hematopoietic system.

A EPO receptor agonist may be useful in the treatment or prevention of anemia. Many drugs may cause bone marrow suppression or hematopoietic deficiencies. 10 Examples of such drugs are AZT, DDI, alkylating agents and anti-metabolites used in chemotherapy, antibiotics such as chloramphenicol, penicillin, gancyclovir, daunomycin and sulfa drugs, phenothiazones, tranquilizers such as meprobamate, analgesics such as 15 aminopyrine and dipyrone, anti-convulsants such as phenytoin or carbamazepine, antithyroids such as propylthiouracil and methimazole and diuretics. EPO receptor agonists may be useful in preventing or treating the bone marrow suppression or hematopoietic 20 deficiencies which often occur in patients treated with these drugs.

Hematopoietic deficiencies may also occur as a result of viral, microbial or parasitic infections and as a result of treatment for renal disease or renal 25 failure, e.g., dialysis. The present peptide may be useful in treating such hematopoietic deficiency.

Another aspect of the present invention provides plasmid DNA vectors for use in the method of expression of these novel EPO receptor agonists. These vectors 30 contain the novel DNA sequences described above which code for the novel polypeptides of the invention. Appropriate vectors which can transform host cells capable of expressing the EPO receptor agonists include expression vectors comprising nucleotide sequences 35 coding for the EPO receptor agonists joined to transcriptional and translational regulatory sequences which are selected according to the host cells used.

20

Vectors incorporating modified sequences as described above are included in the present invention and are useful in the production of the modified EPO receptor agonist polypeptides. The vector employed in the method 5 also contains selected regulatory sequences in operative association with the DNA coding sequences of the invention and capable of directing the replication and expression thereof in selected host cells.

As another aspect of the present invention, there 10 is provided a method for producing the novel family of human EPO receptor agonists. The method of the present invention involves culturing suitable cells or cell line, which has been transformed with a vector containing a DNA sequence coding for expression of the 15 novel EPO receptor agonist polypeptide. Suitable cells or cell lines may include various strains of bacteria such as *E. coli*, yeast, mammalian cells, or insect cells may be utilized as host cells in the method of the present invention.

20

Other aspects of the present invention are methods and therapeutic compositions for treating the conditions referred to above. Such compositions comprise a therapeutically effective amount of one or more of the 25 EPO receptor agonists of the present invention in a mixture with a pharmaceutically acceptable carrier. This composition can be administered either parenterally, intravenously or subcutaneously. When administered, the therapeutic composition for use in 30 this invention is preferably in the form of a pyrogen-free, parenterally acceptable aqueous solution. The preparation of such a parenterally acceptable protein solution, having due regard to pH, isotonicity, stability and the like, is within the skill of the art.

35

Administration will be in accordance with a dosage regimen that will be readily ascertained by the skilled,

21

based on *in vivo* specific activity of the analog in comparison with human erythropoietin and based on what is now known in the art concerning the administration of human erythropoietin for inducing erythropoiesis and
5 treating various conditions, such as anemia, in humans, including anemia in patients suffering from renal failure. Dosage of an analog of the invention may vary somewhat from individual to individual, depending on the particular analog and its specific *in vivo* activity,
10 the route of administration, the medical condition, age, weight or sex of the patient, the patient's sensitivities to the analog or components of vehicle, and other factors which the attending physician will be capable of readily taking into account. With regard to
15 therapeutic uses of analogs of the invention, reference is made to U.S. Patent Nos. 4,703,008 and 4,835,260; see also the chapter on (recombinant) [des-Arg¹⁶]human erythropoietin at pages 591-595 of the Physicians' Desk Commercially available preparations of recombinant [des-
20 Arg¹⁶] human erythropoietin have 2,000, 3,000, 4,000 or 10,000 units of the glycohormone per mL in preservative-free aqueous solution with 2.5 mg/mL human serum albumin, 5.8 mg/mL sodium citrate, 5.8 mg/mL NaCl, and 0.06 mg/mL citric acid, pH 6.9 (+/-0.3).
25

Recombinantly produced EPO has proven especially useful for the treatment of patients suffering from impaired red blood cell production (Physicians Desk Reference (PDR). 1993 edition, pp 602-605). Recombinant
30 EPO has proven effective in treating anemia associated with chronic renal failure and HIV-Infected individuals suffering from lowered endogenous EPO levels related to therapy with Zidovudine (AZT) (See PDR, 1993 edition, at page 6002).

35 Modifications of the EPO protein which would improve its utility as a tool for diagnosis or treatment

22

of blood disorders are certainly desirable. In particular, modified forms of EPO exhibiting enhanced biological activity would be more effective and efficient than native EPO in the therapy setting when it is necessary to administer EPO to the patient, enabling administration less frequently and/or at a lower dose. Administration of reduced amounts of EPO would also presumably reduce the risk of adverse effects associated with EPO treatment, such as hypertension, seizures, headaches, etc. (See PDR, 1993 edition, at pp. 603-604). The EPO receptor agonists of the present invention may also have improved stability and hence increased half-life which would allow for the production of a non-glycosylated form of EPO in a bacterial expression system at a much lower cost. Due to its increased half-life this non-glycosylated form of EPO would have an increased in vivo activity compared de-glycosylated EPO.

The therapeutic method and compositions may also include co-administration with other hematopoietic factors. A non-exclusive list of other appropriate hematopoietins, colony stimulating factors (CSFs) and interleukins for simultaneous or serial co-administration with the polypeptides of the present invention includes GM-CSF, G-CSF, c-mpl ligand (also known as TPO or MGDF), M-CSF, IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor (SCF) also known as steel factor or c-kit ligand (herein collectively referred to as "factors"), or combinations thereof. In addition to the list above, IL-3 variants taught in WO 94/12639 and WO 94/12638 fusion protein taught in WO 95/21197, and WO 95/21254 G-CSF receptor agonists disclosed in WO 97/12977, c-mpl receptor agonists disclosed in WO 97/12978, IL-3 receptor

23

agonists disclosed in WO 97/12979 and multi-functional receptor agonists taught in WO 97/12985 can be co-administered with the polypeptides of the present invention.

5

The EPO receptor agonists of the present invention may be useful in the mobilization of hematopoietic progenitors and stem cells in peripheral blood.

10 Peripheral blood derived progenitors have been shown to be effective in reconstituting patients in the setting of autologous marrow transplantation.

15 The EPO receptor agonists of the present invention may also be useful in the ex vivo expansion of hematopoietic progenitors. Colony stimulating factors (CSFs), such as G-CSF, have been administered alone, co-administered with other CSFs, or in combination with bone marrow transplants subsequent to high dose chemotherapy to treat the anemia, neutropenia and 20 thrombocytopenia which are often the result of such treatment.

25 Another aspect of the invention provides methods of sustaining and/or expanding hematopoietic precursor cells which includes inoculating the cells into a culture vessel which contains a culture medium that has been conditioned by exposure to a stromal cell line such as HS-5 (WO 96/02662, Roecklein and Torok-Strob, *Blood* 85:997-1105, 1995) that has been supplemented with a EPO receptor agonist of the present invention.

30

Determination of the Linker

35 The length of the amino acid sequence of the linker can be selected empirically or with guidance from structural information, or by using a combination of the two approaches.

24

When no structural information is available, a small series of linkers can be prepared for testing using a design whose length is varied in order to span a range from 0 to 50 Å and whose sequence is chosen in order to be consistent with surface exposure (hydrophilicity, Hopp & Woods, *Mol. Immunol.* **20**: 483-489, 1983; Kyte & Doolittle, *J. Mol. Biol.* **157**:105-132, 1982; solvent exposed surface area, Lee & Richards, *J. Mol. Biol.* **55**:379-400, 1971) and the ability to adopt the necessary conformation without deranging the configuration of the EPO receptor agonist (conformationally flexible; Karplus & Schulz, *Naturwissenschaften* **72**:212-213, (1985)). Assuming an average of translation of 2.0 to 3.8 Å per residue, this would mean the length to test would be between 0 to 30 residues, with 0 to 15 residues being the preferred range. Exemplary of such an empirical series would be to construct linkers using a cassette sequence such as Gly-Gly-Gly-Ser repeated n times, where n is 1, 2, 3 or 4. Those skilled in the art will recognize that there are many such sequences that vary in length or composition that can serve as linkers with the primary consideration being that they be neither excessively long nor short (cf., Sandhu, *Critical Rev. Biotech.* **12**: 437-462, 1992); if they are too long, entropy effects will likely destabilize the three-dimensional fold, and may also make folding kinetically impractical, and if they are too short, they will likely destabilize the molecule because of torsional or steric strain.

Those skilled in the analysis of protein structural information will recognize that using the distance between the chain ends, defined as the distance between the c-alpha carbons, can be used to define the length of the sequence to be used, or at least to limit the number of possibilities that must be tested in an empirical selection of linkers. They will also recognize that it

25

is sometimes the case that the positions of the ends of the polypeptide chain are ill-defined in structural models derived from x-ray diffraction or nuclear magnetic resonance spectroscopy data, and that when

- 5 true, this situation will therefore need to be taken into account in order to properly estimate the length of the linker required. From those residues whose positions are well defined are selected two residues that are close in sequence to the chain ends, and the
- 10 distance between their c-alpha carbons is used to calculate an approximate length for a linker between them. Using the calculated length as a guide, linkers with a range of number of residues (calculated using 2 to 3.8 Å per residue) are then selected. These linkers
- 15 may be composed of the original sequence, shortened or lengthened as necessary, and when lengthened the additional residues may be chosen to be flexible and hydrophilic as described above; or optionally the original sequence may be substituted for using a series
- 20 of linkers, one example being the "Gly-Gly-Gly-Ser" cassette approach mentioned above; or optionally a combination of the original sequence and new sequence having the appropriate total length may be used.

25

Determination of the Amino and Carboxyl Termini of EPO Receptor Agonists

- Sequences of EPO receptor agonists capable of
- 30 folding to biologically active states can be prepared by appropriate selection of the beginning (amino terminus) and ending (carboxyl terminus) positions from within the original polypeptide chain while using the linker sequence as described above. Amino and carboxyl termini
- 35 are selected from within a common stretch of sequence, referred to as a breakpoint region, using the guidelines described below. A novel amino acid sequence is thus generated by selecting amino and carboxyl termini from

26

within the same breakpoint region. In many cases the selection of the new termini will be such that the original position of the carboxyl terminus immediately preceded that of the amino terminus. However, those skilled in the art will recognize that selections of termini anywhere within the region may function, and that these will effectively lead to either deletions or additions to the amino or carboxyl portions of the new sequence.

It is a central tenet of molecular biology that the primary amino acid sequence of a protein dictates folding to the three-dimensional structure necessary for expression of its biological function. Methods are known to those skilled in the art to obtain and interpret three-dimensional structural information using x-ray diffraction of single protein crystals or nuclear magnetic resonance spectroscopy of protein solutions. Examples of structural information that are relevant to the identification of breakpoint regions include the location and type of protein secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets, chain reversals and turns, and loops; Kabsch & Sander, *Biopolymers* **22**: 2577-2637, 1983; the degree of solvent exposure of amino acid residues, the extent and type of interactions of residues with one another (Chothia, *Ann. Rev. Biochem.* **53**:537-572; 1984) and the static and dynamic distribution of conformations along the polypeptide chain (Alber & Mathews, *Methods Enzymol.* **154**: 511-533, 1987). In some cases additional information is known about solvent exposure of residues; one example is a site of post-translational attachment of carbohydrate which is necessarily on the surface of the protein. When experimental structural information is not available, or is not feasible to obtain, methods are also available to analyze the primary amino acid sequence in order to make predictions of protein tertiary and secondary structure, solvent accessibility

27

and the occurrence of turns and loops. Biochemical methods are also sometimes applicable for empirically determining surface exposure when direct structural methods are not feasible; for example, using the

5 identification of sites of chain scission following limited proteolysis in order to infer surface exposure (Gentile & Salvatore, *Eur. J. Biochem.* **218**:603-621, 1993)

Thus using either the experimentally derived structural

10 information or predictive methods (e.g., Srinivasan & Rose *Proteins: Struct., Funct. & Genetics*, **22**: 81-99, 1995) the parental amino acid sequence is inspected to classify regions according to whether or not they are integral to the maintenance of secondary and tertiary

15 structure. The occurrence of sequences within regions that are known to be involved in periodic secondary structure (alpha and 3-10 helices, parallel and anti-parallel beta sheets) are regions that should be avoided. Similarly, regions of amino acid sequence that

20 are observed or predicted to have a low degree of solvent exposure are more likely to be part of the so-called hydrophobic core of the protein and should also be avoided for selection of amino and carboxyl termini. In contrast, those regions that are known or predicted

25 to be in surface turns or loops, and especially those regions that are known not to be required for biological activity, are the preferred sites for location of the extremes of the polypeptide chain. Continuous stretches of amino acid sequence that are preferred based on the

30 above criteria are referred to as a breakpoint region.

Materials and Methods

Recombinant DNA methods

35 Unless noted otherwise, all specialty chemicals were obtained from Sigma Co., (St. Louis, MO). Restriction endonucleases and T4 DNA ligase were

28

obtained from New England Biolabs (Beverly, MA) or Boehringer Mannheim (Indianapolis, IN).

Transformation of *E. coli* strains

5

E. coli strains, such as DH5 α TM (Life Technologies, Gaithersburg, MD) and TG1 (Amersham Corp., Arlington Heights, IL) are used for transformation of ligation reactions and are the source of plasmid DNA for transfecting mammalian cells. *E. coli* strains, such as MON105 and JM101, can be used for expressing the EPO receptor agonist of the present invention in the cytoplasm or periplasmic space.

10 15 MON105 ATCC#55204: F-, lamda-, IN(rrnD, rrE)1, rpoD+, rpoH358

DH5 α TM: F-, phi80dlacZdeltaM15, delta(lacZYA-argF)U169, deoR, recA1, endA1, hsdR17(rk-,mk+), phoA, supE44lamda-, 20 thi-1, gyrA96, relA1

TG1: delta(lac-pro), supE, thi-1, hsdD5/F' (traD36, proA+B+, lacIq, lacZdeltaM15)

25 DH5 α TM Subcloning efficiency cells are purchased as competent cells and are ready for transformation using the manufacturer's protocol, while both *E. coli* strains TG1 and MON105 are rendered competent to take up DNA using a CaCl₂ method. Typically, 20 to 50 mL of cells 30 are grown in LB medium (1% Bacto-tryptone, 0.5% Bacto-yeast extract, 150 mM NaCl) to a density of approximately 1.0 optical density unit at 600 nanometers (OD600) as measured by a Baush & Lomb Spectronic spectrophotometer (Rochester, NY). The cells are 35 collected by centrifugation and resuspended in one-fifth culture volume of CaCl₂ solution (50 mM CaCl₂, 10 mM Tris-Cl, pH7.4) and are held at 4°C for 30 minutes. The

24

cells are again collected by centrifugation and resuspended in one-tenth culture volume of CaCl₂ solution. Ligated DNA is added to 0.2mL of these cells, and the samples are held at 4°C for 1 hour. The samples
5 are shifted to 42°C for two minutes and 1mL of LB is added prior to shaking the samples at 37°C for one hour. Cells from these samples are spread on plates (LB medium plus 1.5% Bacto-agar) containing either ampicillin (100 micrograms/mL, ug/mL) when selecting for ampicillin-
10 resistant transformants, or spectinomycin (75 ug/mL) when selecting for spectinomycin-resistant transformants. The plates are incubated overnight at 37°C. Single colonies are picked, grown in LB supplemented with appropriate antibiotic for 6-16 hours
15 at 37°C with shaking. Colonies are picked and inoculated into LB plus appropriate antibiotic (100 ug/mL ampicillin or 75 ug/mL spectinomycin) and are grown at 37°C while shaking. Before harvesting the cultures, 1 ul of cells are analyzed by PCR for the
20 presence of a EPO receptor agonist gene. The PCR is carried out using a combination of primers that anneal to the EPO receptor agonist gene and/or vector. After the PCR is complete, loading dye is added to the sample followed by electrophoresis as described earlier. A
25 gene has been ligated to the vector when a PCR product of the expected size is observed.

Methods for creation of genes with new N-terminus/C-terminus

30 Method I. Creation of genes with new N-terminus/C-terminus which contain a linker region.

Genes with new N-terminus/C-terminus which contain
35 a linker region separating the original C-terminus and N-terminus can be made essentially following the method described in L. S. Mullins, et al *J. Am. Chem. Soc.* **116**,

30
5529-5533 (1994). Multiple steps of polymerase chain reaction (PCR) amplifications are used to rearrange the DNA sequence encoding the primary amino acid sequence of the protein. The steps are illustrated in Figure 2.

5

In the first step, the primer set ("new start" and "linker start") is used to create and amplify, from the original gene sequence, the DNA fragment ("Fragment Start") that contains the sequence encoding the new N-terminal portion of the new protein followed by the linker that connects the C-terminal and N-terminal ends of the original protein. In the second step, the primer set ("new stop" and "linker stop") is used to create and amplify, from the original gene sequence, the DNA fragment ("Fragment Stop") that encodes the same linker as used above, followed by the new C-terminal portion of the new protein. The "new start" and "new stop" primers are designed to include the appropriate restriction enzyme recognition sites which allow cloning of the new gene into expression plasmids. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit is used. A 100 uL reaction contains 100 pmole of each primer and one ug of template DNA; and 1x PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl₂. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT).

"Fragment Start" and "Fragment Stop", which have complementary sequence in the linker region and the coding sequence for the two amino acids on both sides of the linker, are joined together in a third PCR step to make the full-length gene encoding the new protein. The

31

DNA fragments "Fragment Start" and "Fragment Stop" are resolved on a 1% TAE gel, stained with ethidium bromide and isolated using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined in equimolar quantities.

- 5 heated at 70°C for ten minutes and slow cooled to allow annealing through their shared sequence in "linker start" and "linker stop". In the third PCR step, primers "new start" and "new stop" are added to the annealed fragments to create and amplify the full-length
10 new N-terminus/C-terminus gene. Typical PCR conditions are one cycle 95°C melting for two minutes; 25 cycles 94°C denaturation for one minute, 60°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer
15 GeneAmp PCR Core Reagents kit is used. A 100 ul reaction contains 100 pmole of each primer and approximately 0.5 ug of DNA; and 1x PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl₂. PCR reactions
20 are purified using a Wizard PCR Preps kit (Promega).

Method II. Creation of genes with new N-terminus/C-terminus without a linker region.

- 25 New N-terminus/C-terminus genes without a linker joining the original N-terminus and C-terminus can be made using two steps of PCR amplification and a blunt end ligation. The steps are illustrated in Figure 3. In the first step, the primer set ("new start" and "P-bl start") is used to create and amplify, from the original gene sequence, the DNA fragment ("Fragment Start") that contains the sequence encoding the new N-terminal portion of the new protein. In the second step, the primer set ("new stop" and "P-bl stop") is used to
30 create and amplify, from the original gene sequence, the DNA fragment ("Fragment Stop") that contains the sequence encoding the new C-terminal portion of the new
35 protein.

32

protein. The "new start" and "new stop" primers are designed to include appropriate restriction sites which allow cloning of the new gene into expression vectors.

Typical PCR conditions are one cycle 95°C melting for

- 5 two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for 45 seconds and 72°C extension for 45 seconds. Deep Vent polymerase (New England Biolabs) is used to reduce the occurrence of overhangs in conditions recommended by the manufacturer. The "P-bl start" and
10 "P-bl stop" primers are phosphorylated at the 5' end to aid in the subsequent blunt end ligation of "Fragment Start" and "Fragment Stop" to each other. A 100 ul reaction contained 150 pmole of each primer and one ug of template DNA; and 1x Vent buffer (New England
15 Biolabs), 300 uM dGTP, 300 uM dATP, 300 uM dTTP, 300 uM dCTP, and 1 unit Deep Vent polymerase. PCR reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT). PCR reaction products are purified using a Wizard PCR Preps kit (Promega).

20

The primers are designed to include appropriate restriction enzyme recognition sites which allow for the cloning of the new gene into expression vectors.

- Typically "Fragment Start" is designed to create a NcoI
25 restriction site , and "Fragment Stop" is designed to create a HindIII restriction site. Restriction digest reactions are purified using a Magic DNA Clean-up System kit (Promega). Fragments Start and Stop are resolved on a 1% TAE gel, stained with ethidium bromide and isolated
30 using a Qiaex Gel Extraction kit (Qiagen). These fragments are combined with and annealed to the ends of the ~ 3800 base pair NcoI/HindIII vector fragment of pMON3934 by heating at 50°C for ten minutes and allowed to slow cool. The three fragments are ligated together
35 using T4 DNA ligase (Boehringer Mannheim). The result is a plasmid containing the full-length new N-terminus/C-terminus gene. A portion of the ligation reaction is

33

used to transform *E. coli* strain DH5 α cells (Life Technologies, Gaithersburg, MD). Plasmid DNA is purified and sequence confirmed as below.

5 Method III. Creation of new N-terminus/C-terminus genes by tandem-duplication method

10 New N-terminus/C-terminus genes can be made based on the method described in R. A. Horlick, et al *Protein Eng.* 5:427-431 (1992). Polymerase chain reaction (PCR) amplification of the new N-terminus/C-terminus genes is performed using a tandemly duplicated template DNA. The steps are illustrated in Figure 4.

15 The tandemly-duplicated template DNA is created by cloning and contains two copies of the gene separated by DNA sequence encoding a linker connecting the original C- and N-terminal ends of the two copies of the gene. Specific primer sets are used to create and amplify a
20 full-length new N terminus/C-terminus gene from the tandemly-duplicated template DNA. These primers are designed to include appropriate restriction sites which allow for the cloning of the new gene into expression vectors. Typical PCR conditions are one cycle 95°C
25 melting for two minutes; 25 cycles 94°C denaturation for one minute, 50°C annealing for one minute and 72°C extension for one minute; plus one cycle 72°C extension for seven minutes. A Perkin Elmer GeneAmp PCR Core Reagents kit (Perkin Elmer Corporation, Norwalk, CT) is
30 used. A 100 ul reaction contains 100 pmole of each primer and one ug of template DNA; and 1x PCR buffer, 200 uM dGTP, 200 uM dATP, 200 uM dTTP, 200 uM dCTP, 2.5 units AmpliTaq DNA polymerase and 2 mM MgCl₂. PCR reactions are performed in a Model 480 DNA thermal
35 cycler (Perkin Elmer Corporation, Norwalk, CT). PCR reactions are purified using a Wizard PCR Preps kit (Promega).

DNA isolation and characterization

Plasmid DNA can be isolated by a number of different methods and using commercially available kits known to those skilled in the art. A few such methods are shown herein. Plasmid DNA is isolated using the Promega Wizard™ Miniprep kit (Madison, WI), the Qiagen QIAwell Plasmid isolation kits (Chatsworth, CA) or 10 Qiagen Plasmid Midi kit. These kits follow the same general procedure for plasmid DNA isolation. Briefly, cells are pelleted by centrifugation (5000 x g), plasmid DNA released with sequential NaOH/acid treatment, and cellular debris is removed by centrifugation (10000 x 15 g). The supernatant (containing the plasmid DNA) is loaded onto a column containing a DNA-binding resin, the column is washed, and plasmid DNA eluted with TE. After screening for the colonies with the plasmid of interest, the *E. coli* cells are inoculated into 50-100 mLs of LB 20 plus appropriate antibiotic for overnight growth at 37°C in an air incubator while shaking. The purified plasmid DNA is used for DNA sequencing, further restriction enzyme digestion, additional subcloning of DNA fragments and transfection into mammalian, *E. coli* or other cells.

25 Sequence confirmation.

Purified plasmid DNA is resuspended in dH₂O and quantitated by measuring the absorbance at 260/280 nm in 30 a Bausch and Lomb Spectronic 601 UV spectrometer. DNA samples are sequenced using ABI PRISM™ DyeDeoxy™ terminator sequencing chemistry (Applied Biosystems Division of Perkin Elmer Corporation, Lincoln City, CA) kits (Part Number 401388 or 402078) according to the 35 manufacturers suggested protocol usually modified by the addition of 5% DMSO to the sequencing mixture. Sequencing reactions are performed in a Model 480 DNA thermal cycler (Perkin Elmer Corporation, Norwalk, CT)

following the recommended amplification conditions. Samples are purified to remove excess dye terminators with Centri-Sep™ spin columns (Princeton Separations, Adelphia, NJ) and lyophilized. Fluorescent dye labeled sequencing reactions are resuspended in deionized formamide, and sequenced on denaturing 4.75% polyacrylamide-8M urea gels using an ABI Model 373A automated DNA sequencer. Overlapping DNA sequence fragments are analyzed and assembled into master DNA contigs using Sequencher v2.1 DNA analysis software (Gene Codes Corporation, Ann Arbor, MI).

Expression of EPO receptor agonists in mammalian cells

15 Mammalian Cell Transfection/Production of Conditioned Media

The BHK-21 cell line can be obtained from the ATCC (Rockville, MD). The cells are cultured in Dulbecco's modified Eagle media (DMEM/high-glucose), supplemented to 2mM (mM) L-glutamine and 10% fetal bovine serum (FBS). This formulation is designated BHK growth media. Selective media is BHK growth media supplemented with 453 units/mL hygromycin B (Calbiochem, San Diego, CA).
20
25 The BHK-21 cell line was previously stably transfected with the HSV transactivating protein VP16, which transactivates the IE110 promoter found on the plasmid pMON3359 (See Hippenmeyer et al., *Bio/Technology*, pp.1037-1041, 1993). The VP16 protein drives expression of genes inserted behind the IE110 promoter. BHK-21
30 cells expressing the transactivating protein VP16 are designated BHK-VP16. The plasmid pMON1118 (See Highkin et al., *Poultry Sci.*, 70: 970-981, 1991) expresses the hygromycin resistance gene from the SV40 promoter. A
35 similar plasmid is available from ATCC, pSV2-hph.

BHK-VP16 cells are seeded into a 60 millimeter (mm) tissue culture dish at 3 X 10³ cells per dish 24 hours

36

prior to transfection. Cells are transfected for 16 hours in 3 mL of "OPTIMEM"™ (Gibco-BRL, Gaithersburg, MD) containing 10 ug of plasmid DNA containing the gene of interest, 3 ug hygromycin resistance plasmid, 5 pMON1118, and 80 ug of Gibco-BRL "LIPOFECTAMINE"™ per dish. The media is subsequently aspirated and replaced with 3 mL of growth media. At 48 hours post-transfection, media from each dish is collected and assayed for activity (transient conditioned media). The 10 cells are removed from the dish by trypsin-EDTA, diluted 1:10 and transferred to 100 mm tissue culture dishes containing 10 mL of selective media. After approximately 7 days in selective media, resistant cells grow into colonies several millimeters in diameter. The colonies 15 are removed from the dish with filter paper (cut to approximately the same size as the colonies and soaked in trypsin/EDTA) and transferred to individual wells of a 24 well plate containing 1 mL of selective media. After the clones are grown to confluence, the 20 conditioned media is re-assayed, and positive clones are expanded into growth media.

Expression of EPO receptor agonists in *E. coli*

25 *E. coli* strain MON105 or JM101 harboring the plasmid of interest are grown at 37°C in M9 plus casamino acids medium with shaking in a air incubator Model G25 from New Brunswick Scientific (Edison, New Jersey). Growth is monitored at OD600 until it reaches 30 a value of 1, at which time nalidixic acid (10 milligrams/mL) in 0.1 N NaOH is added to a final concentration of 50 µg/mL. The cultures are then shaken at 37°C for three to four additional hours. A high degree of aeration is maintained throughout culture 35 period in order to achieve maximal production of the desired gene product. The cells are examined under a light microscope for the presence of inclusion bodies

37

(IB). One mL aliquots of the culture are removed for analysis of protein content by boiling the pelleted cells, treating them with reducing buffer and electrophoresis via SDS-PAGE (see Maniatis et al.

- 5 Molecular Cloning: A Laboratory Manual, 1982). The culture is centrifuged (5000 x g) to pellet the cells.

Additional strategies for achieving high-level expression of genes in *E. coli* can be found in Savvas,

- 10 C.M. (*Microbiological Reviews* **60**;512-538, 1996).

Inclusion Body preparation, Extraction, Refolding, Dialysis, DEAE Chromatography, and Characterization of the EPO receptor agonists which accumulate as inclusion bodies in *E. coli*.

Isolation of Inclusion Bodies:

- 20 The cell pellet from a 330 mL *E. coli* culture is resuspended in 15 mL of sonication buffer (10 mM 2-amino-2-(hydroxymethyl) 1,3-propanediol hydrochloride (Tris-HCl), pH 8.0 + 1 mM ethylenediaminetetraacetic acid (EDTA)). These resuspended cells are sonicated
25 using the microtip probe of a Sonicator Cell Disruptor (Model W-375, Heat Systems-Ultrasonics, Inc., Farmingdale, New York). Three rounds of sonication in sonication buffer followed by centrifugation are employed to disrupt the cells and wash the inclusion
30 bodies (IB). The first round of sonication is a 3 minute burst followed by a 1 minute burst, and the final two rounds of sonication are for 1 minute each.

- 35 Extraction and refolding of proteins from inclusion body pellets:

38

Following the final centrifugation step, the IB pellet is resuspended in 10 mL of 50 mM Tris-HCl, pH 9.5, 8 M urea and 5 mM dithiothreitol (DTT) and stirred at room temperature for approximately 45 minutes to 5 allow for denaturation of the expressed protein.

The extraction solution is transferred to a beaker containing 70 mL of 5mM Tris-HCl, pH 9.5 and 2.3 M urea and gently stirred while exposed to air at 4°C for 18 to 48 hours to allow the proteins to refold. Refolding is 10 monitored by analysis on a Vydac (Hesperia, Ca.) C18 reversed phase high pressure liquid chromatography (RP-HPLC) column (0.46x25 cm). A linear gradient of 40% to 15 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed to monitor the refold. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Denatured proteins generally elute later in the gradient than the refolded proteins.

Purification:

20

Following the refold, contaminating *E. coli* proteins are removed by acid precipitation. The pH of the refold solution is titrated to between pH 5.0 and pH 5.2 using 15% (v/v) acetic acid (HOAc). This solution 25 is stirred at 4°C for 2 hours and then centrifuged for 20 minutes at 12,000 × g to pellet any insoluble protein.

The supernatant from the acid precipitation step is dialyzed using a Spectra/Por 3 membrane with a molecular 30 weight cut off (MWCO) of 3,500 daltons. The dialysis is against 2 changes of 4 liters (a 50-fold excess) of 10mM Tris-HCl, pH 8.0 for a total of 18 hours. Dialysis lowers the sample conductivity and removes urea prior to DEAE chromatography. The sample is then centrifuged (20 35 minutes at 12,000 × g) to pellet any insoluble protein following dialysis.

39

A Bio-Rad Bio-Scale DEAE2 column (7 x 52 mm) is used for ion exchange chromatography. The column is equilibrated in a buffer containing 10mM Tris-HCl, pH 8.0. The protein is eluted using a 0-to-500 mM sodium chloride (NaCl) gradient, in equilibration buffer, over 45 column volumes. A flow rate of 1 mL per minute is used throughout the run. Column fractions (2 mL per fraction) are collected across the gradient and analyzed by RP HPLC on a Vydac (Hesperia, Ca.) C18 column (0.46 x 25 cm). A linear gradient of 40% to 65% acetonitrile, containing 0.1% trifluoroacetic acid (TFA), is employed. This gradient is developed over 30 minutes at a flow rate of 1.5 mL per minute. Pooled fractions are then dialyzed against 2 changes of 4 liters (50-to-500-fold excess) of 10 mM ammonium acetate (NH_4Ac), pH 4.0 for a total of 18 hours. Dialysis is performed using a Spectra/Por 3 membrane with a MWCO of 3,500 daltons. Finally, the sample is sterile filtered using a 0.22 μm syringe filter ($\mu\text{Star LB}$ syringe filter, Costar, Cambridge, Ma.), and stored at 4°C.

In some cases the folded proteins can be affinity purified using affinity reagents such as mAbs or receptor subunits attached to a suitable matrix. Alternatively, (or in addition) purification can be accomplished using any of a variety of chromatographic methods such as: ion exchange, gel filtration or hydrophobic chromatography or reversed phase HPLC.

These and other protein purification methods are described in detail in Methods in Enzymology, Volume 182 'Guide to Protein Purification' edited by Murray Deutscher, Academic Press, San Diego, CA (1990).

Protein Characterization:

35

The purified protein is analyzed by RP-HPLC, electrospray mass spectrometry, and SDS-PAGE. The

40

protein quantitation is done by amino acid composition,
RP-HPLC, and Bradford protein determination. In some
cases tryptic peptide mapping is performed in
conjunction with electrospray mass spectrometry to
5 confirm the identity of the protein.

Methylcellulose Assay

This assay reflects the ability of colony stimulating
10 factors to stimulate normal bone marrow cells to produce
different types of hematopoietic colonies *in vitro*
(Bradley et al., *Aust. Exp Biol. Sci.* **44**:287-300,
1966), Pluznik et al., *J. Cell Comp. Physio* **66**:319-324,
1965).

15

Methods

Approximately 30 mL of fresh, normal, healthy bone
marrow aspirate are obtained from individuals following
informed consent. Under sterile conditions samples are
20 diluted 1:5 with a 1X PBS (#14040.059 Life Technologies,
Gaithersburg, MD.) solution in a 50 mL conical tube
(#25339-50 Corning, Corning MD). Ficoll (Histopaque
1077 Sigma H-8889) is layered under the diluted sample
and centrifuged, 300 x g for 30 min. The mononuclear
25 cell band is removed and washed two times in 1X PBS and
once with 1% BSA PBS (CellPro Co., Bothel, WA).
Mononuclear cells are counted and CD34+ cells are
selected using the Ceprate LC (CD34) Kit (CellPro Co.,
Bothel, WA) column. This fractionation is performed
30 since all stem and progenitor cells within the bone
marrow display CD34 surface antigen.

Cultures are set up in triplicate with a final volume of
1.0 mL in a 35 X 10 mm petri dish (Nunc#174926).
35 Culture medium is purchased from Terry Fox Labs. (HCC-
4230 medium (Terry Fox Labs, Vancouver, B.C., Canada)
and erythropoietin (Amgen, Thousand Oaks, CA.) is added

41

to the culture media. 3,000-10,000 CD34+ cells are added per dish. EPO receptor agonist proteins, in conditioned media from transfected mammalian cells or purified from conditioned media from transfected mammalian cells or *E. coli*, are added to give final concentrations ranging from .001 nM to 10 nM. Cultures are resuspended using a 3cc syringe and 1.0 mL is dispensed per dish. Control (baseline response) cultures received no colony stimulating factors.

10 Positive control cultures received conditioned media (PHA stimulated human cells: Terry Fox Lab. H2400). Cultures are incubated at 37°C, 5% CO₂ in humidified air.

Hematopoietic colonies which are defined as greater than 15 50 cells are counted on the day of peak response (days 10-11) using a Nikon inverted phase microscope with a 40x objective combination. Groups of cells containing fewer than 50 cells are referred to as clusters. Alternatively colonies can be identified by spreading 20 the colonies on a slide and stained or they can be picked, resuspended and spun onto cytocentrifuge slides for staining.

Human Cord Blood Hematopoietic Growth Factor Assays

25 Bone marrow cells are traditionally used for in vitro assays of hematopoietic colony stimulating factor (CSF) activity. However, human bone marrow is not always available, and there is considerable variability between 30 donors. Umbilical cord blood is comparable to bone marrow as a source of hematopoietic stem cells and progenitors (Broxmeyer et al., *PNAS USA* **89**:4109-113, 1992; Mayani et al., *Blood* **81**:3252-3258, 1993). In contrast to bone marrow, cord blood is more readily 35 available on a regular basis. There is also a potential to reduce assay variability by pooling cells obtained fresh from several donors, or to create a bank of

H2

cryopreserved cells for this purpose. By modifying the culture conditions, and/or analyzing for lineage specific markers, it is possible to assay specifically for burst forming colonies (BFU-E) 5 activity.

Methods

Mononuclear cells (MNC) are isolated from cord blood within 24 hr. of collection, using a standard density 10 gradient (1.077 g/mL Histopaque). Cord blood MNC have been further enriched for stem cells and progenitors by several procedures, including immunomagnetic selection for CD14-, CD34+ cells; panning for SBA-, CD34+ fraction using coated flasks from Applied Immune Science 15 (Santa Clara, CA); and CD34+ selection using a CellPro (Bothell, WA) avidin column. Either freshly isolated or cryopreserved CD34+ cell enriched fractions are used for the assay. Duplicate cultures for each serial dilution of sample (concentration range from 1 pM to 1204 pM) are 20 prepared with 1x10⁴ cells in 1ml of 0.9% methylcellulose containing medium without additional growth factors (Methocult H4230 from Stem Cell Technologies, Vancouver, BC.). After culturing for 7-9 days, colonies containing >30 cells are counted.

25

Transfected cell lines:

Cell lines, such as BHK or the murine pro B cell line Baf/3, can be transfected with a colony stimulating factor receptor, such as the human EPO receptor which 30 the cell line does not have. These transfected cell lines can be used to determine the cell proliferative activity and/or receptor binding.

35

EXAMPLE 1

Genes encoding the sequence rearranged EPO ligands can be constructed by any one of the methods described herein or by other recombinant methods known to those

43

skilled in the art. For the purpose of this example, the site of permutation is between residues 131(Arg) and 132(Thr) of EPO. This is a site which is susceptible to proteolytic cleavage, thereby indicating surface 5 exposure with a relatively high degree of flexibility.

In this example a new N-terminus and a new C-terminus is created without a linker joining the original termini. This is done, as described in Method II, in 2 steps of 10 PCR and a blunt end ligation.

In the first PCR step, using a vector containing the DNA sequence of SEQ ID NO:120 as the template, and the primers "new start" and "blunt start", a DNA fragment is 15 created which encodes the new N-terminus. This fragment is termed "fragment start". The sequence underlined in the new start primer is the NcoI restriction site.

New start primer = ggcgcCCATGGACAATCACTGCTGAC SEQ ID
20 NO:131

Blunt start primer = TCTGTCCCCTGTCCT SEQ ID NO:132

In the second PCR step, using a vector containing the DNA sequence of SEQ ID NO:120 as the template, and the 25 primers "new stop" and "blunt stop" create a DNA fragment which encodes the new C-terminus. This fragment is termed "fragment stop". The sequence underlined in the new stop primer is the HindIII restriction site.

30

New stop primer =
ggcgcAAGCTTATTATCGGAGTGGAGCAGCTGAGGCCGCATC SEQ ID
NO:133

35 Blunt end primer = GCCCCACCACGCCATCTGT SEQ ID NO:134

44

In the ligation step, the two fragments created in the two PCR reactions are ligated together, digested with NcoI and HindIII and cloned into an expression vector. The clones are screened by restriction analysis and DNA 5 sequenced to confirm the proper sequence. The primers can be designed to create restriction sites other than NcoI and HindIII to clone into other expression vectors.

10

EXAMPLE 2

The sequence rearranged EPO receptor agonists of the present invention can be assayed for bioactivity by the methods described herein or by other assays known to 15 those skilled in the art.

Additional techniques for the construction of the variant genes, recombinant protein expression, protein purification, protein characterization, biological 20 activity determination can be found in WO 94/12639, WO 94/12638, WO 95/20976, WO 95/21197, WO 95/20977, WO 95/21254 which are hereby incorporated by reference in their entirety.

25 All references, patents or applications cited herein are incorporated by reference in their entirety as if written herein.

Various other examples will be apparent to the 30 person skilled in the art after reading the present disclosure without departing from the spirit and scope of the invention. It is intended that all such other examples be included within the scope of the appended claims.

35

45
SEQUENCE LISTING

(1) GENERAL INFORMATION

- (i) APPLICANT: G. D. Searle and Company
- (ii) TITLE OF THE INVENTION: Novel Erythropoietin Receptor Agonists
- (iii) NUMBER OF SEQUENCES: 134
- (iv) CORRESPONDENCE ADDRESS:
 - (A) ADDRESSEE: G. D. Searle & Co..
 - (B) STREET: P.O. Box 5110
 - (C) CITY: Chicago
 - (D) STATE: IL
 - (E) COUNTRY: U. S. A.
 - (F) ZIP: 60680
- (v) COMPUTER READABLE FORM:
 - (A) MEDIUM TYPE: Diskette
 - (B) COMPUTER: IBM Compatible
 - (C) OPERATING SYSTEM: DOS
 - (D) SOFTWARE: FastSEQ for Windows Version 2.0
- (vi) CURRENT APPLICATION DATA:
 - (A) APPLICATION NUMBER:
 - (B) FILING DATE: 21-OCT-1997
 - (C) CLASSIFICATION:
- (vii) PRIOR APPLICATION DATA:
 - (A) APPLICATION NUMBER: 60/034,044
 - (B) FILING DATE: 25-OCT-1996

- (viii) ATTORNEY/AGENT INFORMATION:
 - (A) NAME: Bennett, Dennis A
 - (B) REGISTRATION NUMBER: 34,547
 - (C) REFERENCE/DOCKET NUMBER: 2991/1
- (ix) TELECOMMUNICATION INFORMATION:
 - (A) TELEPHONE: 314-737-6986
 - (B) TELEFAX: 314-737-6972
 - (C) TELEX:

(2) INFORMATION FOR SEQ ID NO:1:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: None
- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:

```

Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile
 1           5          10          15
Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu
 20          25          30
Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser
 35          40          45
Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro
 50          55          60
Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg
 65          70          75          80
Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile
 85          90          95
Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala
100         105         110
Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly
115         120         125

```

Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly
 130 135 140
 Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu
 145 150 155 160
 Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu
 165 170

(2) INFORMATION FOR SEQ ID NO:2:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:

Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr
 1 5 10 15
 Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val
 20 25 30
 Gly Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu
 35 40 45
 Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp
 50 55 60
 Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser
 65 70 75 80
 Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser
 85 90 95
 Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp
 100 105 110
 Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys
 115 120 125
 Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly
 130 135 140
 Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg
 145 150 155 160
 Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn
 165 170

(2) INFORMATION FOR SEQ ID NO:3:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:

Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val
 1 5 10 15
 Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly
 20 25 30
 Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala
 35 40 45
 Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu
 50 55 60
 Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu
 65 70 75 80
 Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro
 85 90 95
 Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr
 100 105 110
 Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu
 115 120 125
 Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly
 130 135 140
 Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr
 145 150 155 160
 Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile
 165 170

47

(2) INFORMATION FOR SEQ ID NO:4:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:

```

Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro
 1           5          10          15
Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln
 20          25          30
Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val
 35          40          45
Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro
 50          55          60
Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr
 65          70          75          80
Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro
 85          90          95
Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe
100         105         110
Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys
115         120         125
Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser
130         135         140
Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
145         150         155         160
Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr
165         170

```

(2) INFORMATION FOR SEQ ID NO:5:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:

```

Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp
 1           5          10          15
Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln
 20          25          30
Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu
 35          40          45
Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu
 50          55          60
Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr
 65          70          75          80
Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp
 85          90          95
Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg
100         105         110
Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu
115         120         125
Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala
130         135         140
Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu
145         150         155         160
Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr
165         170

```

(2) INFORMATION FOR SEQ ID NO:6:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

48

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:

Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr
 1 5 10 15
 Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala
 20 25 30
 Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg
 35 40 45
 Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln
 50 55 60
 Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu
 65 70 75 80
 Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala
 85 90 95
 Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys
 100 105 110
 Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr
 115 120 125
 Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro
 130 135 140
 Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu
 145 150 155 160
 Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly
 165 170

(2) INFORMATION FOR SEQ ID NO:7:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:

Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys
 1 5 10 15
 Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val
 20 25 30
 Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly
 35 40 45
 Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu
 50 55 60
 His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu
 65 70 75 80
 Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala
 85 90 95
 Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu
 100 105 110
 Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr
 115 120 125
 Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro
 130 135 140
 Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala
 145 150 155 160
 Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys
 165 170

(2) INFORMATION FOR SEQ ID NO:8:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:

Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val
 1 5 10 15

Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu
 20 25 30
 Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln
 35 40 45
 Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His
 50 55 60
 Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg
 65 70 75 80
 Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser
 85 90 95
 Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe
 100 105 110
 Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly
 115 120 125
 Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg
 130 135 140
 Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys
 145 150 155 160
 Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala
 165 170

(2) INFORMATION FOR SEQ ID NO:9:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:

His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn
 1 5 10 15
 Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val
 20 25 30
 Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala
 35 40 45
 Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val
 50 55 60
 Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Leu Leu Arg Ala
 65 70 75 80
 Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala
 85 90 95
 Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg
 100 105 110
 Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu
 115 120 125
 Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu
 130 135 140
 Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu
 145 150 155 160
 Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu
 165 170

(2) INFORMATION FOR SEQ ID NO:10:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:

Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
 1 5 10 15
 Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
 20 25 30
 Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
 35 40 45
 Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp
 50 55 60
 Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Leu Leu Arg Ala Leu

65	70	75	80
Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala			
85	90	95	
Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val			
100	105	110	
Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala			
115	120	125	
Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile			
130	135	140	
Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala			
145	150	155	160
Glu Asn Ile Thr Thr Gly Cys Ala Glu His			
165	170		

(2) INFORMATION FOR SEQ ID NO:11:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:

Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr			
1	5	10	15
Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln			
20	25	30	
Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu			
35	40	45	
Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys			
50	55	60	
Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly			
65	70	75	80
Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro			
85	90	95	
Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr			
100	105	110	
Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys			
115	120	125	
Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys			
130	135	140	
Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu			
145	150	155	160
Asn Ile Thr Thr Gly Cys Ala Glu His Cys			
165	170		

(2) INFORMATION FOR SEQ ID NO:12:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:12:

Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala			
1	5	10	15
Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly			
20	25	30	
Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val			
35	40	45	
Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala			
50	55	60	
Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala			
65	70	75	80
Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu			
85	90	95	
Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser			
100	105	110	
Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg			
115	120	125	

51

Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp
 130 135 140
 Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn
 145 150 155 160
 Ile Thr Thr Gly Cys Ala Glu His Cys Ser
 165 170

(2) INFORMATION FOR SEQ ID NO:13:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:

Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp
 1 5 10 15
 Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu
 20 25 30
 Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn
 35 40 45
 Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val
 50 55 60
 Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln
 65 70 75 80
 Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg
 85 90 95
 Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn
 100 105 110
 Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr
 115 120 125
 Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser
 130 135 140
 Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile
 145 150 155 160
 Thr Thr Gly Cys Ala Glu His Cys Ser Leu
 165 170

(2) INFORMATION FOR SEQ ID NO:14:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:

Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys
 1 5 10 15
 Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala
 20 25 30
 Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser
 35 40 45
 Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser
 50 55 60
 Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys
 65 70 75 80
 Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr
 85 90 95
 Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe
 100 105 110
 Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly
 115 120 125
 Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg
 130 135 140
 Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr
 145 150 155 160
 Thr Gly Cys Ala Glu His Cys Ser Leu Asn
 165 170

(2) INFORMATION FOR SEQ ID NO:15:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:

```

Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg
 1           5           10          15
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
 20          25          30
Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser
 35          40          45
Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
 50          55          60
Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu
 65          70          75          80
Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile
 85          90          95
Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu
100         105         110
Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp
115         120         125
Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val
130         135         140
Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr
145         150         155         160
Gly Cys Ala Glu His Cys Ser Leu Asn Glu
165         170

```

(2) INFORMATION FOR SEQ ID NO:16:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:

```

Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met
 1           5           10          15
Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu
 20          25          30
Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln
 35          40          45
Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu
 50          55          60
Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala
 65          70          75          80
Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr
 85          90          95
Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg
100         105         110
Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg
115         120         125
Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu
130         135         140
Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly
145         150         155         160
Cys Ala Glu His Cys Ser Leu Asn Glu Asn
165         170

```

(2) INFORMATION FOR SEQ ID NO:17:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

53

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:17:

Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu	Val
1					5				10				15		
Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Leu	Leu	Ser	Glu
					20			25					30		
Ala	Val	Leu	Arg	Gly	Gln	Ala	Leu	Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp
					35			40				45			
Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val	Ser	Gly	Leu	Arg	Ser
					50			55				60			
Leu	Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser
					65			70			75			80	
Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu	Arg	Thr	Ile	Thr	Ala	Asp
					85			90				95			
Thr	Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly	Lys
					100			105				110			
Leu	Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys	Arg	Thr	Gly	Asp	Arg	Gly	Gly
					115			120				125			
Gly	Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	Asp	Ser	Arg	Val	Leu	Glu	Arg
					130			135				140			
Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu	Asn	Ile	Thr	Gly	Cys	Ala	
					145			150			155			160	
Glu	His	Cys	Ser	Leu	Asn	Glu	Asn	Ile	Thr						
					165			170							

(2) INFORMATION FOR SEQ ID NO:18:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:

Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu	Val	Gly
1					5				10			15			
Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Leu	Leu	Ser	Glu	Ala
					20			25				30			
Val	Leu	Arg	Gly	Gln	Ala	Leu	Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu
					35			40			45				
Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val	Ser	Gly	Leu	Arg	Ser	Leu
					50			55			60				
Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser	Pro
					65			70			75			80	
Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu	Arg	Thr	Ile	Thr	Ala	Asp	Thr
					85			90			95				
Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu
					100			105			110				
Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys	Arg	Thr	Gly	Asp	Arg	Gly	Gly	Gly
					115			120			125				
Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr
					130			135			140				
Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu
					145			150			155			160	
His	Cys	Ser	Leu	Asn	Glu	Asn	Ile	Thr	Val						
					165			170							

(2) INFORMATION FOR SEQ ID NO:19:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:

Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu	Val	Gly	Gln
1					5			10			15				

54

Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val
 20 25 30
 Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro
 35 40 45
 Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr
 50 55 60
 Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro
 65 70 75 80
 Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe
 85 90 95
 Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys
 100 105 110
 Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser
 115 120 125
 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
 130 135 140
 Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His
 145 150 155 160
 Cys Ser Leu Asn Glu Asn Ile Thr Val Pro
 165 170

(2) INFORMATION FOR SEQ ID NO:20:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:

Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala
 1 5 10 15
 Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser
 20 25 30
 Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser
 35 40 45
 Gly Leu Arg Ser Leu Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys
 50 55 60
 Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr
 65 70 75 80
 Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe
 85 90 95
 Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly
 100 105 110
 Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg
 115 120 125
 Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr
 130 135 140
 Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro
 145 150 155 160
 Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys
 165 170

(2) INFORMATION FOR SEQ ID NO:21:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:

Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
 1 5 10 15
 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser
 20 25 30
 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
 35 40 45
 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu
 50 55 60
 Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile

55

65	70	75	80
Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu			
85	90	95	
Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp			
100	105	110	
Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val			
115	120	125	
Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr			
130	135	140	
Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp			
145	150	155	160
Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg			
165	170		

(2) INFORMATION FOR SEQ ID NO:22:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:

Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu			
1	5	10	15
Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln			
20	25	30	
Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu			
35	40	45	
Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala			
50	55	60	
Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr			
65	70	75	80
Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg			
85	90	95	
Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg			
100	105	110	
Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu			
115	120	125	
Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly			
130	135	140	
Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr			
145	150	155	160
Lys Val Asn Phe Tyr Ala Trp Lys Arg Met			
165	170		

(2) INFORMATION FOR SEQ ID NO:23:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:

Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser			
1	5	10	15
Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro			
20	25	30	
Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg			
35	40	45	
Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile			
50	55	60	
Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala			
65	70	75	80
Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly			
85	90	95	
Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly			
100	105	110	
Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu			
115	120	125	

56

Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys
130				135					140						
Ala	Glu	His	Cys	Ser	Leu	Asn	Glu	Asn	Ile	Thr	Val	Pro	Asp	Thr	Lys
145				150					155						160
Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu						
				165					170						

(2) INFORMATION FOR SEQ ID NO:24:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:24:

Gln	Ala	Leu	Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu
1				5				10					15		
His	Val	Asp	Lys	Ala	Val	Ser	Gly	Leu	Arg	Ser	Leu	Thr	Thr	Leu	Leu
				20				25				30			
Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser	Pro	Pro	Asp	Ala	Ala
				35				40			45				
Ser	Ala	Ala	Pro	Leu	Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu
				50				55			60				
Phe	Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr
				65				70		75			80		
Gly	Glu	Ala	Cys	Arg	Thr	Gly	Asp	Arg	Gly	Gly	Gly	Ser	Ala	Pro	Pro
				85				90			95				
Arg	Leu	Ile	Cys	Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Glu	Ala	
				100				105			110				
Lys	Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu
				115				120			125				
Asn	Glu	Asn	Ile	Thr	Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp
				130				135			140				
Lys	Arg	Met	Glu	Val	Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu
				145				150			155			160	
Ala	Leu	Leu	Ser	Glu	Ala	Val	Leu	Arg	Gly						
				165				170							

(2) INFORMATION FOR SEQ ID NO:25:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:25:

Ala	Leu	Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu	His
1				5			10					15			
Val	Asp	Lys	Ala	Val	Ser	Gly	Leu	Arg	Ser	Leu	Thr	Thr	Leu	Arg	
				20			25			30					
Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser	Pro	Pro	Asp	Ala	Ala	Ser
				35			40			45					
Ala	Ala	Pro	Leu	Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu	Phe
				50			55			60					
Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr	Gly
				65			70			75			80		
Glu	Ala	Cys	Arg	Thr	Gly	Asp	Arg	Gly	Gly	Gly	Ser	Ala	Pro	Pro	Arg
				85			90			95					
Leu	Ile	Cys	Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Glu	Ala	Lys	
				100			105			110					
Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu	Asn
				115			120			125					
Glu	Asn	Ile	Thr	Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys
				130			135			140					
Arg	Met	Glu	Val	Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala
				145			150			155			160		
Leu	Leu	Ser	Glu	Ala	Val	Leu	Arg	Gly	Gln						
				165			170								

57

(2) INFORMATION FOR SEQ ID NO:26:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:26:

```

Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val
 1           5          10          15
Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala
 20          25          30
Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala
 35          40          45
Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg
 50          55          60
Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu
 65          70          75          80
Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu
 85          90          95
Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu
100         105         110
Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu
115         120         125
Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg
130         135         140
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
145         150         155         160
Leu Ser Glu Ala Val Leu Arg Gly Gln Ala
165         170

```

(2) INFORMATION FOR SEQ ID NO:27:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:27:

```

Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp
 1           5          10          15
Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu
 20          25          30
Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
 35          40          45
Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val
 50          55          60
Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
 65          70          75          80
Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile
 85          90          95
Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala
100         105         110
Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn
115         120         125
Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met
130         135         140
Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu
145         150         155         160
Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
165         170

```

(2) INFORMATION FOR SEQ ID NO:28:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

58

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:28:

Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys
1				5				10				15			
Ala	Val	Ser	Gly	Leu	Arg	Ser	Leu	Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly
	20				25							30			
Ala	Gln	Lys	Glu	Ala	Ile	Ser	Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro
	35				40							45			
Leu	Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr
	50				55					60					
Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys
	65				70			75			80				
Arg	Thr	Gly	Asp	Arg	Gly	Gly	Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	
	85				90			95							
Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu
	100				105			110							
Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu	Asn	Glu	Asn	Ile
	115				120				125						
Thr	Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu
	130				135				140						
Val	Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Leu	Leu	Ser
	145				150				155			160			
Glu	Ala	Val	Leu	Arg	Gly	Gln	Ala	Leu	Leu						
	165				170										

(2) INFORMATION FOR SEQ ID NO:29:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:29:

Asn	Ser	Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala
1				5				10			15				
Val	Ser	Gly	Leu	Arg	Ser	Leu	Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala
	20			25				30							
Gln	Lys	Glu	Ala	Ile	Ser	Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu
	35			40				45							
Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr	Ser
	50			55				60							
Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys	Arg
	65			70			75			80					
Thr	Gly	Asp	Arg	Gly	Gly	Gly	Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	Asp
	85			90			95								
Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu	Asn
	100			105			110								
Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu	Asn	Glu	Asn	Ile	Thr
	115			120			125				130				
Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu	Val
	130			135			140								
Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Leu	Leu	Ser	Glu
	145			150			155			160					
Ala	Val	Leu	Arg	Gly	Gln	Ala	Leu	Leu	Val						
	165			170											

(2) INFORMATION FOR SEQ ID NO:30:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:30:

Ser	Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val
1				5				10		15					

59

Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln
 20 25 30
 Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg
 35 40 45
 Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn
 50 55 60
 Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr
 65 70 75 80
 Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser
 85 90 95
 Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile
 100 105 110
 Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val
 115 120 125
 Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly
 130 135 140
 Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala
 145 150 155 160
 Val Leu Arg Gly Gln Ala Leu Leu Val Asn
 165 170

(2) INFORMATION FOR SEQ ID NO:31:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:31:

Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser
 1 5 10 15
 Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys
 20 25 30
 Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr
 35 40 45
 Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe
 50 55 60
 Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly
 65 70 75 80
 Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg
 85 90 95
 Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr
 100 105 110
 Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro
 115 120 125
 Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln
 130 135 140
 Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val
 145 150 155 160
 Leu Arg Gly Gln Ala Leu Leu Val Asn Ser
 165 170

(2) INFORMATION FOR SEQ ID NO:32:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:32:

Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
 1 5 10 15
 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu
 20 25 30
 Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile
 35 40 45
 Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu
 50 55 60
 Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp

60

65 Arg Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val	70	75	80
85	90	95	
Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr			
100	105	110	
Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp			
115	120	125	
Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln			
130	135	140	
Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu			
145	150	155	160
Arg Gly Gln Ala Leu Leu Val Asn Ser Ser			
165	170		

(2) INFORMATION FOR SEQ ID NO:33:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 170 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:33:

```

Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu
1 5 10 15
Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala
20 25 30
Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr
35 40 45
Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg
50 55 60
Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg
65 70 75 80
Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu
85 90 95
Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly
100 105 110
Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr
115 120 125
Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala
130 135 140
Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg
145 150 155 160
Gly Gln Ala Leu Leu Val Asn Ser Ser Gln
165 170

```

(2) INFORMATION FOR SEQ ID NO:34:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 170 amino acids
(B) TYPE: amino acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:34:

Trp	Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val	Ser	Gly	Leu	Arg
1				5					10					15	
Ser	Leu	Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile
			20					25					30		
Ser	Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu	Arg	Thr	Ile	Thr	Ala
			35				40					45			
Asp	Thr	Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly
				50			55				60				
Lys	Leu	Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys	Arg	Thr	Gly	Asp	Arg	Gly
				65			70		75				80		
Gly	Gly	Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	Asp	Ser	Arg	Val	Leu	Glu
				85				90				95			
Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys
				100				105				110			
Ala	Glu	His	Cys	Ser	Leu	Asn	Glu	Asn	Ile	Thr	Val	Pro	Asp	Thr	Lys
				115			120					125			

61

Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val
 130 135 140
 Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly
 145 150 155 160
 Gln Ala Leu Leu Val Asn Ser Ser Gln Pro
 165 170

(2) INFORMATION FOR SEQ ID NO:35:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:35:

Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser
 1 5 10 15
 Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser
 20 25 30
 Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp
 35 40 45
 Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys
 50 55 60
 Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly
 65 70 75 80
 Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg
 85 90 95
 Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala
 100 105 110
 Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val
 115 120 125
 Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu
 130 135 140
 Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln
 145 150 155 160
 Ala Leu Leu Val Asn Ser Ser Gln Pro Trp
 165 170

(2) INFORMATION FOR SEQ ID NO:36:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:36:

Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala
 1 5 10 15
 Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys
 20 25 30
 Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr
 35 40 45
 Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro
 50 55 60
 Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu
 65 70 75 80
 Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser
 85 90 95
 Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala
 100 105 110
 Trp Lys Arg Met Glu Val Gly Gln Ala Val Glu Val Trp Gln Gly
 115 120 125
 Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val
 130 135 140
 Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala
 145 150 155 160
 Val Ser Gly Leu Arg Ser Leu Thr Thr Leu
 165 170

62

(2) INFORMATION FOR SEQ ID NO:37:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:37:

Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser	Pro	Pro	Asp	Ala	Ala
1		5				10					15				
Ser	Ala	Ala	Pro	Leu	Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu
						20		25					30		
Phe	Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr
						35		40			45				
Gly	Glu	Ala	Cys	Arg	Thr	Gly	Asp	Arg	Gly	Gly	Ser	Ala	Pro	Pro	
						50		55		60					
Arg	Leu	Ile	Cys	Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala
65						70			75			80			
Lys	Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu
						85		90			95				
Asn	Glu	Asn	Ile	Thr	Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp
						100		105			110				
Lys	Arg	Met	Glu	Val	Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu
						115		120			125				
Ala	Leu	Leu	Ser	Glu	Ala	Val	Leu	Arg	Gly	Gln	Ala	Leu	Leu	Val	Asn
						130		135			140				
Ser	Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val
145						150			155			160			
Ser	Gly	Leu	Arg	Ser	Leu	Thr	Thr	Leu	Leu						
						165			170						

(2) INFORMATION FOR SEQ ID NO:38:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:38:

Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser	Pro	Pro	Asp	Ala	Ala	Ser
1		5			10					15					
Ala	Ala	Pro	Leu	Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu	Phe
						20		25			30				
Arg	Val	Tyr	Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr	Gly
						35		40			45				
Glu	Ala	Cys	Arg	Thr	Gly	Asp	Arg	Gly	Gly	Ser	Ala	Pro	Pro	Arg	
						50		55		60					
Leu	Ile	Cys	Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala	Lys
65						70			75			80			
Glu	Ala	Glu	Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu	Asn
						85		90			95				
Glu	Asn	Ile	Thr	Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys
						100		105			110				
Arg	Met	Glu	Val	Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala
						115		120			125				
Leu	Leu	Ser	Glu	Ala	Val	Leu	Arg	Gly	Gln	Ala	Leu	Leu	Val	Asn	Ser
						130		135			140				
Ser	Gln	Pro	Trp	Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val	Ser
145						150			155			160			
Gly	Leu	Arg	Ser	Leu	Thr	Thr	Leu	Leu	Arg						
						165			170						

(2) INFORMATION FOR SEQ ID NO:39:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

6.3

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:39:

Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala
 1 5 10 15
 Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg
 20 25 30
 Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu
 35 40 45
 Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu
 50 55 60
 Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu
 65 70 75 80
 Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu
 85 90 95
 Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg
 100 105 110
 Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu
 115 120 125
 Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser
 130 135 140
 Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly
 145 150 155 160
 Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala
 165 170

(2) INFORMATION FOR SEQ ID NO:40:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:40:

Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
 1 5 10 15
 Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val
 20 25 30
 Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
 35 40 45
 Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile
 50 55 60
 Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala
 65 70 75 80
 Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn
 85 90 95
 Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met
 100 105 110
 Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu
 115 120 125
 Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln
 130 135 140
 Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu
 145 150 155 160
 Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu
 165 170

(2) INFORMATION FOR SEQ ID NO:41:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:41:

Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro
 1 5 10 15

64

Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr
 20 25 30
 Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys
 35 40 45
 Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys
 50 55 60
 Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Ala Lys Glu Ala Glu
 65 70 75 80
 Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile
 85 90 95
 Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu
 100 105 110
 Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser
 115 120 125
 Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro
 130 135 140
 Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg
 145 150 155 160
 Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly
 165 170

(2) INFORMATION FOR SEQ ID NO:42:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:42:

Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu
 1 5 10 15
 Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser
 20 25 30
 Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg
 35 40 45
 Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp
 50 55 60
 Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn
 65 70 75 80
 Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr
 85 90 95
 Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val
 100 105 110
 Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu
 115 120 125
 Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp
 130 135 140
 Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser
 145 150 155 160
 Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala
 165 170

(2) INFORMATION FOR SEQ ID NO:43:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

- (ii) MOLECULE TYPE: None

- (xi) SEQUENCE DESCRIPTION: SEQ ID NO:43:

Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg
 1 5 10 15
 Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn
 20 25 30
 Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr
 35 40 45
 Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser
 50 55 60
 Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile

65

65	70	75	80
Thr	Thr	Gly	Cys
Ala	Glu	His	Cys
Ser	Leu	Asn	Glu
Asn	Ile	Thr	Val
85	90	95	.
Pro	Asp	Thr	Lys
Val	Asn	Phe	Tyr
Trp	Lys	Arg	Met
Gly	100	105	110
Gln	Gln	Ala	Val
Glu	Val	Trp	Gln
Gly	Leu	Ala	Leu
Leu	115	120	125
Val	Leu	Arg	Gly
Gln	Ala	Leu	Leu
Leu	130	135	140
Asn	Val	Asp	Lys
Ala	145	150	155
Ser	Ser	Gly	Leu
Gln	Pro	Leu	Arg
165	170	160	.
Thr	Thr	Leu	Leu
Arg	Ala	Leu	Gly
Ala	Gln	160	.

(2) INFORMATION FOR SEQ ID NO:44:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:44:

Glu	Ala	Ile	Ser	Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu	Arg	Thr
1	5	10	15												
Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr	Ser	Asn	Phe
20	25	30													
Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys	Arg	Thr	Gly
35	40	45													
Asp	Arg	Gly	Gly	Gly	Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	Asp	Ser	Arg
50	55	60													
Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu	Asn	Ile	Thr
65	70	75	80												
Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu	Asn	Glu	Asn	Ile	Thr	Val	Pro
85	90	95													
Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu	Val	Gly	Gln
100	105	110													
Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Leu	Leu	Ser	Glu	Ala	Val
115	120	125													
Leu	Arg	Gly	Gln	Ala	Leu	Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp	Glu	Pro
130	135	140													
Leu	Gln	Leu	His	Val	Asp	Ala	Val	Ser	Gly	Leu	Arg	Ser	Leu	Thr	
145	150	155	160												
Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Gln	Lys	165	170				

(2) INFORMATION FOR SEQ ID NO:45:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:45:

Ala	Ile	Ser	Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu	Arg	Thr	Ile
1	5	10	15												
Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr	Ser	Asn	Phe	Leu
20	25	30													
Arg	Gly	Lys	Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys	Arg	Thr	Gly	Asp	
35	40	45													
Arg	Gly	Gly	Gly	Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	Asp	Ser	Arg	Val
50	55	60													
Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu	Asn	Ile	Thr	Thr
65	70	75	80												
Gly	Cys	Ala	Glu	His	Cys	Ser	Leu	Asn	Glu	Asn	Ile	Thr	Val	Pro	Asp
85	90	95													
Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu	Val	Gly	Gln	Gln
100	105	110													
Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Leu	Leu	Ser	Glu	Ala	Val	Leu
115	120	125													

66

Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu
 130 135 140
 Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr
 145 150 155 160
 Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu
 165 170

(2) INFORMATION FOR SEQ ID NO:46:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:46:

Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr
 1 5 10 15
 Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg
 20 25 30
 Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg
 35 40 45
 Gly Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu
 50 55 60
 Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly
 65 70 75 80
 Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr
 85 90 95
 Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala
 100 105 110
 Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg
 115 120 125
 Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln
 130 135 140
 Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu
 145 150 155 160
 Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala
 165 170

(2) INFORMATION FOR SEQ ID NO:47:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:47:

Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala
 1 5 10 15
 Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly
 20 25 30
 Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly
 35 40 45
 Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu
 50 55 60
 Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys
 65 70 75 80
 Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys
 85 90 95
 Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val
 100 105 110
 Glu Val Trp Gln Gly Leu Ala Leu Ser Glu Ala Val Leu Arg Gly
 115 120 125
 Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu
 130 135 140
 His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu
 145 150 155 160
 Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile
 165 170

67

(2) INFORMATION FOR SEQ ID NO:48:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:48:

```

Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp
 1           5           10          15
Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys
 20          25          30
Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly
 35          40          45
Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg
 50          55          60
Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala
 65          70          75          80
Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val
 85          90          95
Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu
100         105         110
Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln
115         120         125
Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His
130         135         140
Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg
145         150         155         160
Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser
165         170

```

(2) INFORMATION FOR SEQ ID NO:49:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:49:

```

Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr
 1           5           10          15
Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu
 20          25          30
Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Gly
 35          40          45
Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr
 50          55          60
Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu
 65          70          75          80
His Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn
 85          90          95
Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val
100         105         110
Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala
115         120         125
Leu Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val
130         135         140
Asp Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala
145         150         155         160
Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro
165         170

```

(2) INFORMATION FOR SEQ ID NO:50:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

68

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:50:

Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe
 1 5 10 15
 Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys
 20 25 30
 Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser
 35 40 45
 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
 50 55 60
 Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His
 65 70 75 80
 Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
 85 90 95
 Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
 100 105 110
 Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gin Ala Leu
 115 120 125
 Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp
 130 135 140
 Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu
 145 150 155 160
 Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro
 165 170

(2) INFORMATION FOR SEQ ID NO:51:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:51:

Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg
 1 5 10 15
 Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu
 20 25 30
 Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala
 35 40 45
 Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu
 50 55 60
 Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys
 65 70 75 80
 Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr
 85 90 95
 Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln
 100 105 110
 Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gin Ala Leu Leu
 115 120 125
 Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys
 130 135 140
 Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly
 145 150 155 160
 Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp
 165 170

(2) INFORMATION FOR SEQ ID NO:52:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:52:

Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys
 1 5 10 15

69

Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr
 20 25 30
 Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro
 35 40 45
 Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu
 50 55 60
 Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser
 65 70 75 80
 Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala
 85 90 95
 Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly
 100 105 110
 Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val
 115 120 125
 Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala
 130 135 140
 Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala
 145 150 155 160
 Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala
 165 170

(2) INFORMATION FOR SEQ ID NO:53:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:53:

Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu
 1 5 10 15
 Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr
 20 25 30
 Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro
 35 40 45
 Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala
 50 55 60
 Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu
 65 70 75 80
 Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp
 85 90 95
 Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu
 100 105 110
 Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn
 115 120 125
 Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val
 130 135 140
 Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln
 145 150 155 160
 Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala
 165 170

(2) INFORMATION FOR SEQ ID NO:54:

- (i) SEQUENCE CHARACTERISTICS:
 - (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:54:

Ala Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe
 1 5 10 15
 Arg Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly
 20 25 30
 Glu Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg
 35 40 45
 Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys
 50 55 60
 Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn

65	70	75	80
Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys			
85	90	95	
Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala			
100	105	110	
Leu Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser			
115	120	125	
Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser			
130	135	140	
Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys			
145	150	155	160
Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser			
165	170		

(2) INFORMATION FOR SEQ ID NO:55:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:55:

Ala Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg			
1	5	10	15
Val Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu			
20	25	30	
Ala Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu			
35	40	45	
Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu			
50	55	60	
Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu			
65	70	75	80
Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg			
85	90	95	
Met Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu			
100	105	110	
Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser			
115	120	125	
Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly			
130	135	140	
Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu			
145	150	155	160
Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala			
165	170		

(2) INFORMATION FOR SEQ ID NO:56:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:56:

Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val			
1	5	10	15
Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala			
20	25	30	
Cys Arg Thr Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile			
35	40	45	
Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala			
50	55	60	
Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn			
65	70	75	80
Ile Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met			
85	90	95	
Glu Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu			
100	105	110	
Ser Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln			
115	120	125	

71

Pro	Trp	Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val	Ser	Gly	Leu
130					135				140						
Arg	Ser	Leu	Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala
145					150				155						160
Ile	Ser	Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala						
					165				170						

(2) INFORMATION FOR SEQ ID NO:57:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 171 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:57:

Leu	Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr
1						5			10						15
Ser	Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys
						20			25						30
Arg	Thr	Gly	Asp	Arg	Gly	Gly	Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	
						35			40						45
Asp	Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu
						50			55						60
Asn	Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu	Asn	Glu	Ile	
						65			70						80
Thr	Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu
						85			90						95
Val	Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Lys	Leu	Ser
						100			105						110
Glu	Ala	Val	Leu	Arg	Gly	Gln	Ala	Leu	Leu	Val	Asn	Ser	Ser	Gln	Pro
						115			120						125
Trp	Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val	Ser	Gly	Leu	Arg
						130			135						140
Ser	Leu	Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Gln	Ala	Lys	Glu	Ala
						145			150						160
Ile	Ser	Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro					
					165			170							

(2) INFORMATION FOR SEQ ID NO:58:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 170 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:58:

Arg	Thr	Ile	Thr	Ala	Asp	Thr	Phe	Arg	Lys	Leu	Phe	Arg	Val	Tyr	Ser	
1						5			10						15	
Asn	Phe	Leu	Arg	Gly	Lys	Leu	Lys	Leu	Tyr	Thr	Gly	Glu	Ala	Cys	Arg	
						20			25						30	
Thr	Gly	Asp	Arg	Gly	Gly	Ser	Ala	Pro	Pro	Arg	Leu	Ile	Cys	Asp		
						35			40						45	
Ser	Arg	Val	Leu	Glu	Arg	Tyr	Leu	Leu	Glu	Ala	Lys	Glu	Ala	Glu	Asn	
						50			55						60	
Ile	Thr	Thr	Gly	Cys	Ala	Glu	His	Cys	Ser	Leu	Asn	Glu	Asn	Ile	Thr	
						65			70						80	
Val	Pro	Asp	Thr	Lys	Val	Asn	Phe	Tyr	Ala	Trp	Lys	Arg	Met	Glu	Val	
						85			90						95	
Gly	Gln	Gln	Ala	Val	Glu	Val	Trp	Gln	Gly	Leu	Ala	Lys	Leu	Ser	Glu	
						100			105						110	
Ala	Val	Leu	Arg	Gly	Gln	Ala	Leu	Leu	Val	Asn	Ser	Ser	Gln	Pro	Trp	
						115			120						125	
Glu	Pro	Leu	Gln	Leu	His	Val	Asp	Lys	Ala	Val	Ser	Ser	Gly	Leu	Arg	Ser
						130			135						140	
Leu	Thr	Thr	Leu	Leu	Arg	Ala	Leu	Gly	Ala	Gln	Lys	Glu	Ala	Ile	Ser	
						145			150						160	
Pro	Pro	Asp	Ala	Ala	Ser	Ala	Ala	Pro	Leu							
					165			170								

72
 (2) INFORMATION FOR SEQ ID NO:59:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 170 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:59:

```

Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn
 1           5           10          15
Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr
 20          25          30
Gly Asp Arg Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser
 35          40          45
Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile
 50          55          60
Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr Val
 65          70          75          80
Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly
 85          90          95
Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala
100         105         110
Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro Trp Glu
115         120         125
Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg Ser Leu
130         135         140
Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile Ser Pro
145         150         155         160
Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg
165         170

```

(2) INFORMATION FOR SEQ ID NO:60:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 512 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:60:

AATATCACGA	CGGGCTGTGC	TGAACACTGC	AGCTTGAATG	AGAATATCAC	TGTCCAGAC	60
ACCAAAGTTA	ATTCTCTATGC	CTGGAAGAGG	ATGGAGGTCC	GGCAGCAGGC	CGTAGAACTC	120
TGGCAGGGCC	TGGCCCTGTG	GTCGGAAGCT	GTCCTGCCGG	GCCAGGCCCT	GTTGGTCAAC	180
TCTTCCCAGC	CCTGGGAGCC	CCTGCAGCTG	CATGTGGATA	AAGCCGTCAG	TGGCCTTCGC	240
AGCCTCACCA	CTCTGCTTCG	GGCTCTGGGA	GCCCCAGAAGG	AAGCCATCTC	CCCTCCAGAT	300
GCGGCTCTCAG	CTGCTCCTACT	CGGAACAATC	ACTGCTGACA	CTTTCCGCAA	ACTCTTCCGA	360
GTCTACTCCA	ATTTCCTCCG	GGGAAAGCTG	AAGCTGTACA	CAGGGGAGGC	CTGCAGGACA	420
GGGGACAGAT	GAGGGGGCGG	CTCCCCCCAC	CACGCCTCAT	CTGTGACAGC	CGAGTCCTGG	480
AGAGGTACCT	CTTGGAGGCC	AAAGAGGCCG	AG			512

(2) INFORMATION FOR SEQ ID NO:61:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 512 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:61:

ATCACGACGG	GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	ATATCACTGT	CCCAGACACC	60
AAAGTTAATT	TCTATGCCCTG	GAAGAGGATG	GAGGTGGGCG	AGCAGGCCGT	AGAAGTCTGG	120
CAGGGCCTGG	CCCTGCTGTC	GGAAAGCTGTC	CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	180
TCCCAGCCGT	GGGAGCCCT	GCAGCTGCAT	GTGGATAAAG	CCGTCACTGG	CCTTCGCAGC	240
CTCACCACTC	TGCTTGGGCC	TCTGGGAGCC	CAGAAGGAAG	CCATCTCCCC	TCCAGATGCC	300
GCTCTAGCTG	CTCCACTCCG	AACATCACT	GCTGACACT	TCCGCAAAC	CTTCCGAGTC	360
TACTCCAATT	TCCCTCCGGGG	AAAGCTGAAG	CTGTACACAG	GGGAGGCCCTG	CAGGACAGGG	420
GACAGATGAG	GGGGCGGCTC	CCCCCACAC	GCCTCATCTG	TGACAGCCGA	GTCCTGGAGA	480
GGTACCTCTT	GGAGGCCAAG	GAGGCCGAGA	AT			512

(2) INFORMATION FOR SEQ ID NO:62:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 512 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:62:

ACGACGGGGCT	GTGCTGAACA	CTGCAGCTTG	AATGAGAATA	TCACTGTCCC	AGACACCAAA	60
GTTAATTCT	ATGCCCTGGAA	GAGGATGGG	GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	120
GGCTGGCCC	TGCTGTCGGA	AGCTGTCCTG	CGGGGCCAGG	CCCTGTTGGT	CAACTCTTCC	180
CAGCCGTGGG	AGCCCCCTGCA	GCTGCATGTG	GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	240
ACCAACTCTGC	TTCGGGCTCT	GGGAGCCCAG	AAGGAAGCCA	TCTCCCTTCC	AGATGGGCC	300
TCAGCTGTC	CACTCCGAAC	AATCACTGCT	GACACTTTCC	GCAAACCTTT	CCGAGTCTAC	360
TCCAATTCTC	TCCGGGAAA	GCTGAAGCTG	TACACAGGGG	AGGCCCTGAG	GACAGGGGAC	420
AGATGAGGCG	GGCGCTCCCC	CCACCACGCC	TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	480
ACCTCTTGGG	GGCCAAGGAG	GCCGAGAATA	TC			512

(2) INFORMATION FOR SEQ ID NO:63:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 512 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:63:

ACGGGCTGTG	CTGAACACTG	CAGCTTGAAT	GAGAATATCA	CTGTCCCAGA	CACCAAAGTT	60
AATTCTATG	CCTGGAAAGAG	GATGGAGTC	GGGCAGCAGG	CCGTAGAAGT	CTGGCAGGGC	120
CTGGCCCTGC	TGTCGGAAGC	TGTCCTGCGG	GGCCAGGCC	TGTTGGTCAA	CTCTTCCAG	180
CCGTGGGAGC	CCCTGCAGCT	GCATGTGGAT	AAAGCCCTCA	GTGGCCTTCG	CAGCCTCAC	240
ACTCTGCTTC	GGGCTCTGGG	AGCCAGAAG	GAAGCCATCT	CCCCCTCCAGA	TGGGGCTCA	300
GCTGCTCCAC	TCCGAACAAAT	CACTGTGAC	ACTTTCCCGA	AACACTTCCG	AGTCTACTCC	360
AATTCTCTCC	GGGGAAAGCT	GAAGCTGTAC	ACAGGGGAGG	CCTGCAGGAC	AGGGGACAGA	420
TGAGGGGGCG	GCTCCCCCA	CCACGCTCA	TCTGTGACAG	CCGAGTCTG	GAGAGGTACC	480
TCTTGGAGGC	CAAGGAGGCC	GAGAATATCA	CG			512

(2) INFORMATION FOR SEQ ID NO:64:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 512 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:64:

GGCTGTGCTG	AACACTGCGAG	CTTGAATGAG	AATATCACTG	TCCCAGACAC	CAAAGTTAAT	60
TTCTATGCC	GGAAAGAGGAT	GGAGGTCGGG	CAGCAGGCC	TAGAAGTCTG	GCAGGGCCTG	120
GCCCTGCTGT	CGGAAGCTGT	CCTGCGGGG	CAGGCCCTGT	TGGTCAACTC	TTCCCAGCCG	180
TGGGAGCCCC	TTCAGCTGCA	TGTGGATAAA	GGCGTCACTG	GCCTTCGAG	CCTCACCACT	240
CTGCTTCGGG	CTCTGGGAGC	CCAGAACGGG	GCCATCTCCC	CTCCAGATGC	GGCCTCAGCT	300
GCTCCACTCC	GAACAAATCAC	TGCTGACACT	TTCCGAAAC	TCTTCCGAGT	CTACTCCAAT	360
TTCCCTCCGGG	GAAGAGCTGAA	GCTGTACACA	GGGGAGGCCT	GCAGGACAGG	GGACAGATGA	420
GGCGGGCGCT	CCCCCCACCA	CGCCTCATCT	GTGACAGCCG	AGTCTGGAG	AGGTACCTCT	480
TGGAGGCCAA	GGAGGCCAG	AATATCACCA	CG			512

(2) INFORMATION FOR SEQ ID NO:65:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 512 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:65:

TGTGCTGAAC	ACTGCAGCTT	GAATGAGAAT	ATCACTGTCC	CAGACACCAA	AGTTAATTTC	60
TATGCCCTGGA	AGAGGATGGA	GGTCGGGCAG	CAGGCCGTAG	ARGTCTGGCA	GGGCCTGGCC	120
CTGCTGTCGG	AAGCTGTCTC	GGGGGGCCAG	CCCCTGTTGG	TCAACTCTTC	CCAGCCGTGG	180

74						
GAGCCCCCTGC	AGCTGCATGT	GGATAAAAGCC	CTCAGTGGCC	TTCGCAGCCT	CACCACTCTG	240
CTTCGGGCTC	TGGGAGGCCA	GAAGGAAGCC	ATCTCCCTC	CAGATGCGGC	CTCAGCTGCT	300
CCACTCCGAA	CAATCACTGC	TGACACTTTC	CGCAAACCTCT	TCCGAGTCTA	CTCCAATTTC	360
CTCCGGGAA	AGCTGAAGCT	CTACACAGGG	GAGGCCCTGCA	GGACAGGGGA	CAGATGAGGC	420
GGCGGCTCCC	CCCACCAACGC	CTCATCTGTG	ACAGCCGAGT	CCTGGAGAGG	TACCTCTTGG	480
AGGCCAAGGA	GGCCGAGAAAT	ATCACGACGG	GC			512

(2) INFORMATION FOR SEQ ID NO:66:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:66:

GCTGAACACT	GCAGCTTGAA	TGAGAATATC	ACTGTCCCG	ACACCAAAGT	TAATTCTAT	60
GCCTGGAAGA	GGATGGAGGT	CGGGCAGCAC	GGCGTAGAAC	TCTGGCAGGG	CCTGGCCCTG	120
CTGTGGAAG	CTGTCCCTGCG	GGGCCAGGCC	CTGTTGGTCA	ACTCTTCCC	GCCGTGGGAG	180
CCCCTGCAGC	TGCAATGTGGA	TAAAGCCGTC	AGTGGCCTTC	GCAGCCTCAC	CACTCTGCTT	240
CGGGCTCTGG	GAGGCCAGAA	CGAAGGCCATC	TCCCCCTCCAG	ATGCGGCCTC	AGCTGCTCCA	300
CTCCGAACAA	TCACTGCTGA	CACTTCCCG	AAACTCTTCC	GAGTCTACTC	CAATTCTCCTC	360
CGGGGAAAGC	TGAAGCTGTA	CACAGGGGAG	GCCTGCAGGA	CAGGGGACAG	ATGAGGCGGC	420
GGCTCCCCCC	ACCACGCCTC	ATCTGTGACA	GCCGAGTCCT	GGAGAGGTAC	CTCTTGGAGG	480
CCAAGGAGGC	CGAGAATATC	ACGACGGGCT	GT			512

(2) INFORMATION FOR SEQ ID NO:67:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:67:

GAACACTGCA	GCTTGAATGA	GAATATCACT	GTCCCAGACA	CCAAAGTTAA	TTTCTATGCC	60
TGGAAGAGGA	TGGAGGTGCG	CGAGCAGGCC	CTAGAAGTCT	GGCAGGGCCT	GGCCCTGCTG	120
TCGGAAGCTG	TCCTGCGGGG	CCAGGCCCTG	TTGGTCAACT	CTTCCCAGCC	GTGGGAGGCC	180
CTGCAGCTG	ATGTGGATAA	AGCCGTCAGT	GGCCTTCGCA	GCCTCACCC	TCTGCTTCGG	240
GCTCTGGGAG	CCAGAAAGGA	AGGCATCTCC	CCTCCAGATG	CGGCCTCAGC	TGCTCCACTC	300
CGAACAACTA	CTGCTGACAC	TTTCCGCAA	CTCTTCCGAG	TCTACTCCAA	TTTCTCCGG	360
GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	TGCAGGACAG	GGGACAGATG	AGGGGGCGGC	420
TCCCCCCCACC	ACGCCTCATC	TGTGACAGCC	GAGTCCTGGA	GAGGTACCTC	TTGGAGGCCA	480
AGGAGGCCGA	GAATATCACG	ACGGGCTGTG	CT			512

(2) INFORMATION FOR SEQ ID NO:68:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:68:

CACTGCAGCT	TGAATGAGAA	TATCACTGTC	CCAGACACCA	AAGTTAATT	CTATGCCTGG	60
AAGAGGATGG	AGTCGGGCA	GCAGGCGTA	GAAGTCTGGC	AGGGCCTGGC	CCTGCTGTCG	120
GAAGCTGTCC	TGGGGGGCCA	GGCCCTGTG	GTCAACTCTT	CCCAGCCGTG	GGAGCCCCCTG	180
CAGCTGCTATG	TGGATAAACG	CGTCAGTGGC	CTTCGCAGCC	TCACCACTCT	GCTTCGGGCT	240
CTGGGAGCCC	AGAAGGAAGC	CATCTCCCT	CCAGATGCGG	CCTCAGCTGC	TCCACTCCGA	300
ACAATCACTG	CTGACACTTT	CCCGAAACTC	TTCCGAGTCT	ACTCCAATT	CCTCCGGGGA	360
AAGCTGAAGC	TGTACACAGG	GGAGGCCTGC	AGGACAGGG	ACAGATGAGG	CGGGGGCTCC	420
CCCCACCAACG	CCTCATCTGT	GACAGCCGAG	TCTGGAGAG	GTACCTCTTG	GAGGCCAAGG	480
AGGCGAGAA	TATCACGACG	GGCTGTGCTG	AA			512

(2) INFORMATION FOR SEQ ID NO:69:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

75

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:69:

TGCAGCTTGA	ATGAGAATAT	CACTGTCCA	GACACCAAAG	TTAATTCTA	TGCCCTGGAAG	60
AGGATGGAGG	TCGGGCAGCA	GGCCGTAGAA	GTCTGGCAGG	GCCCTGGCCCT	GCTGTGGAA	120
GCTGTCTCTGC	GGGGCCAGGC	CCTGTTGGTC	AACTCTTCCC	AGCCGTGGGA	GCCCCCTGAG	180
CTGCATGTGG	ATAAAAGCCGT	CACTGGCCTT	TTCTTCTTCA	CCACTCTGCT	GGGGCTCTG	240
GGAGCCCGAGA	AGGAAGCCAT	CTCCCTCTCA	GATGCGGCCT	CAGCTGCTCC	ACTCCGAACA	300
ATCACTGCTG	ATCTTTCG	CAAACCTTTC	CGAGTCTACT	CCAATTTCT	CGGGGGAAAG	360
CTGA>CTGT	ACACAGGGGA	GGCCTGCAGG	ACAGGGGACA	GATGAGGCAG	GGGCTCCCCC	420
CAACCACGCC	CATCTGTGAC	AGCCGAGTCC	TGGAGAGGT	CCTCTGGAG	GCCAAGGAGG	480
CCGAGAATAT	CACGACGGGC	TGTGCTGAAC	AC			512

(2) INFORMATION FOR SEQ ID NO:70:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:70:

AGCTTGAAATG	AGAATATCAC	TGTCAGAAC	ACCAAAAGTTA	ATTTCTATGC	CTGGAAGAGG	60
ATGGAGGTGCG	GGCACGAGGC	CGTAGAAGTC	TGGCAGGGCC	TGGCCCTGCT	GTCGGAAGCT	120
GTCCTGCGGG	GCCAGGCCCC	GTGGGTCAAC	TCTTCCCAGC	CGTGGGAGCC	CCTGCAGCTG	180
CATGTGGATA	AAGCCGTCA	TGGCCTTCGC	AGCCTCACCA	CTCTGCTTCG	GGCTCTGGGA	240
GCCCAGAAGG	AAGCCATCTC	CCCTCCAGAT	GCGGCCTCAG	CTGCTCCACT	CCGAACAATC	300
ACTGCTGACA	CTTTCGCAA	ACTCTTCCGA	GTCTACTCCA	ATTTCTCCG	GGGAAAGCTG	360
AAGCTGTACA	CAGGGGAGGC	CTGCAGGACA	GGGGACAGAT	GAGGCGGGCG	CTCCCCCAC	420
CACGCCCTCAT	CTGTGACAGC	CGACTCCTGG	AGAGTACCT	CTTGGAGGCC	AAGGAGGCCG	480
AGAATATCAC	GACGGGCTGT	GCTGAACACT	GC			512

(2) INFORMATION FOR SEQ ID NO:71:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:71:

TTGAATGAGA	ATATCACTGT	CCCAGACACC	AAAGTTAATT	TCTATGCTG	GAAGAGGATG	60
GAGGTCGGGC	AGCAGGGCGT	AGAAGTCGG	CAGGGCTTGG	CCCTGCTGTC	GGAGCTGTC	120
CTGCGGGGCC	AGGGCCCTGTT	GGTCAACTCT	TCCCAGCCGT	GGGAGCCCT	GCAGCTGCAT	180
GTGGATAAAG	CCGTCACTGG	CTTCAGCAGC	CTCACCACTC	TGCTTCGGGC	TCTGGGAGCC	240
CAGAAAGGAAG	CCATCTCCCC	TCCAGATCG	GCCTCAGCTG	CTCCTACTCCG	AACAATCACT	300
GCTGACACTT	TCCGCAAACT	CTTCCGGACT	TACTCCAATT	TCCCTCCGGGG	AAAGCTGAAG	360
CTGTACACAG	GGGAGGGCTG	GAGCAGGAGG	GACAGATGAG	GGGGCGGCTC	CCCCCACAC	420
GCCTCATCTG	TGACAGCCGA	GTCCTGGAGA	GGTACCTCTT	GGAGGCCAAG	GAGGCCGAGA	480
ATATCACGAC	GGGCTGTGCT	GAACACTGCA	GC			512

(2) INFORMATION FOR SEQ ID NO:72:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 512 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:72:

AATGAGAATA	TCACTGTCCC	AGACACCAAA	GTAAATTCT	ATGCCCTGAA	GAGGATGGAG	60
GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	GGCCTGGCC	TGCTGTGGA	AGCTGTCTG	120
CGGGGCCAGG	CCCTGTTGGT	CAACTCTTC	CAGCCGTGG	AGCCCCCTGCA	GTCGATCTG	180
GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	ACCACTCTGC	TTCGGGCTCT	GGGAGCCAG	240
AAGGAAGCCA	TCTCCCTCTC	AGATGCGCC	TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	300
GACACTTCC	GCAAACTCTT	CCGAGTCTAC	TCCAATTCTC	TCCGGGAAA	GCTGAAGCTG	360
TACACAGGG	AGGCCTGAG	GACAGGGGAC	AGATGAGGG	GGGGCTCCCC	CCACCAAGCC	420
TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	ACCTCTTGA	GGCCAAGGAG	GCCGAGAATA	480
TCACGACGGG	CTGTGCTGAA	CACTGCAGCT	TG			512

(2) INFORMATION FOR SEQ ID NO:73:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 512 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

ATGAGT	TCCCAGA	AAGATT	AATTTCTATG	CCTGGAAGAG	GAT	TTC
GGGCA	TGCGT	AGGGC	CTGGCCCTGC	TGTCGGAGC	TGTCTG	...
GGCC	TGCTG	CCCGAG	CCGTGGAGC	CCCTGCAGCT	GCATGTGGAT	...
ACAGGG	CCCC	ACTCTG	GGGCTCTGG	AGCCAGAAAG	240	
ACAGGGAGG	CCCGACAG	GGGGAAAGCT	GAAGCTGTAC	300		
ACAGGGAGG	CCCGACAG	GGGGAAAGCT	GAAGCTGTAC	360		
ACAGGGAGG	CCCGACAG	GGGGAAAGCT	GAAGCTGTAC	420		
ACAGGGAGG	CCCGACAG	GGGGAAAGCT	GAAGATATCA	480		
ACAGGGAGG	CCCGACAG	GGGGAAAGCT	GAAGATATCA	512		

(2) INFORMATION FOR SEQ ID NO:74:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 512 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:74:

AATATCACTG	TCCCAGACAC	CAAAGTTAAT	TTCTATGCC	GGAAGAGGAT	GGAGGTGGG	60
CAGCAGGCG	TAGAAGTCTG	GCAGGGCTTG	GCCCTGCTGT	CGGAAGCTGT	CCTGCGGGC	120
CAGGCCCTGT	TGGTCAACTC	TCCCAGCCG	TGGGAGCCCC	TGCAGTGCA	TGTGGATAAA	180
GCCGTCAGTG	GCCTTCGAG	CCTCACCACT	CTGCTTCGGG	CTCTGGAGC	CCAGAACGAA	240
GCCATCTCCC	CTCCAGATGC	GGCCTCAGCT	GCTCCACTCC	GAACAATCAC	TGCTGACACT	300
TTCCGCAAAC	TCTCCGAGT	CTACTCCAAT	TTCCCTCCGGG	GAAAGCTGAA	GCTGTACACA	360
GGGGAGGCGCT	GCAGGACAGG	GGCAGATGGA	GGGGCGGCT	CCCCCACCA	CGCCTCATCT	420
GTGACAGCCC	AGTCCCTGGAG	AGGTACCTCT	TGGAGGCCA	GGAGGCCAG	AATATCACGA	480
CGGGCTGTGC	TGAACACTGC	AGCTTGAATG	AG			512

(2) INFORMATION FOR SEQ ID NO:75:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 512 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:75:

ATCACTGTCC	CAGACACCAA	AGTTAATTTC	TATGCCCTGGA	AGAGGATGGA	GGTCGGGCAG	60
CAGGCCGTAG	AAGTCTGGCA	GGGCTGGCC	CTGCTGTCGG	AAGCTGTCT	CGGGGGCCAG	120
GCCCTGTTGG	TCAACTCTTC	CCAGCCGTGG	GAGCCCCCTGC	AGCTGCATGT	GGATAAAAGCC	180
GTCAGTGGCC	TTCGCAGCCT	CACCACTCTG	CTTCGGGCTC	TGGGAGCCCA	GAAGGAAGCC	240
ATCTCCCTC	CAGATGCGC	CTCAGCTGCT	CCACTCCGAA	CAATCACTG	TGACACTTTC	300
CGCAAACCT	TCCGAGTCTA	CTCCAATTTC	CTCCGGGAA	AGCTGAAGCT	GTACACAGGG	360
GAGGCCGTCA	GGACAGGGGA	CAGATGAGGC	GGCGGCTCCC	CCCACACGC	CTCATCTGTG	420
ACAGCCGAGT	CCTGGAGAGG	TACCTCTTG	AGGCAAGGA	GGCCGAGAAT	ATCACGACGG	480
GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	AT			512

(2) INFORMATION FOR SEQ ID NO:76:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 513 base pairs
 (B) TYPE: nucleic acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:76:

ACTGTCCCAG	ACACCAAAGT	TAATTCTAT	GCCTGGAAGA	GGATGGAGGT	CGGGCAGCAG	60
GCCGTAGAAG	TCTGGCAGGG	CCTGCCCTG	CTGTCGGAG	CTGTCTGCG	GGGCCAGGCC	120
CTGTTGGTCA	ACTCTCCCA	GGCGTGGAG	CCCCTGCAGC	TGCATGTGGA	TAAAGCCGTC	180

77

AGTGGCCTTC	GCAGCCTCAC	CACTCTGCTT	CGGGCTCTGG	GAGCCCAGAA	GGAAGCCATC	240
TCCCCCTCCAG	ATGCGGCCCTC	AGCTGCTCCA	CTCCGAACAA	TCACTGCTGA	CACTTTCCGC	300
AAACTCTTCC	GACTCTACTC	CAATTTCCTC	CGGGGAAGC	TGAAGCTGTA	CACAGGGGAG	360
GCCTGCAGGA	CAGGGGACAG	ATGAGGCGGC	GGCTCCCCC	ACCACGCCCTC	ATCTGTGACA	420
GCCGAGTCCT	GGAGAGGTAC	CTCTTGGAGG	CCAAGGAGGC	CGAGAATATC	ACGACGGGCT	480
GTGCTGAACA	CTGCAGCTTG	AATGAGAATA	ATC			513

(2) INFORMATION FOR SEQ ID NO:77:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:77:

GTCCCAGACA	CCAAAGTTAA	TTTCTATGCC	TGGAAGAGGA	TGGAGGTCGG	GCAGCAGGCC	60
GTAGAAGTCT	GGCAGGGCCT	GGCCCTGCTG	TGGAAGCTG	TCCCTGCGGGG	CCAGGCCCTG	120
TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	CTGCAGCTGC	ATGTGGATAA	AGCCGTCAGT	180
GGCCTTCGCA	GCCTCACCA	TCTGCTTCGG	GCTCTGGAG	CCCAGAAGGA	AGCCATCTCC	240
CCTCCAGATG	CGGCCTCAGC	TGCTCCACTC	CGAACAAATCA	CTGCTGACAC	TTTCCGCAA	300
CTCTTCCGAG	TCTACTCCAA	TTCTTCCGG	GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	360
TGCAGGACAG	GGGACAGATG	AGGCGGCCGG	TCCCCCACC	ACGCCCTCATC	TGTGACAGCC	420
GAGTCTGGA	GAGGTACCTC	TTGGAGGCA	AGGAGGCCGA	GAATATCAGC	ACGGGCTGTG	480
CTGAACACTG	CAGC-TGAAT	GAGAATAATC	ACT			513

(2) INFORMATION FOR SEQ ID NO:78:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:78:

CCAGACACCA	AAGTTAATTT	CTATGCTGG	AAGAGGATG	AGGTCGGGCA	GCAGGCCGTA	60
GAAGCTCTGC	AGGGCCTGGC	CCTGCTGTG	GAACCTGTC	TGCGGGGCCA	GGCCCTGTTG	120
GTCAACTCTT	CCCAAGCCGTG	GGAGCCCCCTC	CAGCTGCATG	TGGATAAACG	CGTCAGTGGC	180
CTTCGCAGCC	TCACCAACTCT	GCTTCGGGCT	CTGGGAGCCC	AGAAGGAAGC	CATCTCCCCT	240
CCAGATGCGG	CCTCAGCTGC	TCCACTCCGA	ACAATCACTG	CTGACACTTT	CCGCAAACCTC	300
TTCCGAGTCT	ACTCCAAATTT	CCTCCGGGGA	AAGCTGAAGC	TGTACACAGG	GGAGGCCCTGC	360
AGGACAGGGG	ACAGATGAGG	CGGCGGCTCC	CCCCACCAAG	CCTCATCTGT	GACAGCCGAG	420
TCCTGGAGAG	GTACCTCTTG	GAGGCCAAGG	AGGCGAGAA	TATCACGACG	GGCTGTGCTG	480
AACACTGCAG	CTTGAATGAG	AATAATCACT	GTC			513

(2) INFORMATION FOR SEQ ID NO:79:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:79:

GACACCAAAG	TTAATTCTA	TGCCTGGAAG	AGGATGGAGG	TCGGGCAGCA	GGCCGTAGAA	60
GTCTGGCAGG	GCCTGGCCCT	GCTGTGGAA	GCTGTCTGC	GGGGCCAGGC	CCTGTTGGTC	120
AACTCTTCCC	AGCCGTGGGA	CCCCCTGCA	CTGCATGTG	ATAAAGCCGT	CAGTGGCCTT	180
CGCAGGCTCC	CCACTCTGCT	TGCGGCTCTG	GGAGCCCAGA	AGGAAGCCAT	CTCCCCCTCCA	240
GATGCGGCC	CAGCTGCTCC	TCCCGGAACA	ATCACTGCTG	ACACTTCCG	CAAACCTTTC	300
CGAGTCTACT	CCAATTCTCT	CCGGGGAAAG	CTGAAGCTGT	ACACAGGGGA	GGCCCTGCAGG	360
ACAGGGGACA	GATGAGGCGG	CGGCTCCCCC	CACCAACGCT	CATCTGTGAC	AGCCGAGTCC	420
TGGAGAGGTA	CCTCTTGGAG	GCCAAGGAGG	CCGAGAATAT	CACGACGGGC	TGTGCTGAAC	480
ACTGCAGCTT	GAATGAGAAT	AATCACTGTC	CCA			513

(2) INFORMATION FOR SEQ ID NO:80:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

78

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:80:

AGGATGGAGG	TCGGGCAGCA	GGCCGTAGAA	GTCTGGCAGG	GCCTGGCCCT	GCTGTGGAA	60
GCTGTCCG	GGGGCCAGGC	CCTGTTGGTC	AACTCTTCCC	AGCCGTGGGA	GCCCCCTGCAG	120
CTGCATGTGG	ATAAAGCCGT	CAGTGGCCTT	CGCAGCCTCA	CCACTCTGCT	TGGGGCTCTG	180
GGAGCCCCAGA	AGGAAGCCAT	CTCCCCCTCCA	GATGCGGCC	CAGCTGCTCC	ACTCCGAACA	240
ATCACTGCTG	ACACTTTCCG	CAAACCTTTC	CGAGTCTACT	CCAATTCTCT	CCGGGGAAAG	300
CTGAAGCTGT	ACACAGGGGA	GGCCTGCAGG	ACAGGGGACA	GATGAGGCCG	CGGCTCCCCC	360
CACCA CGCCT	CATCTGTGAC	AGCCGAGTCC	TGGAGAGGTA	CCTCTTGAG	GCCAAGGAGG	420
CCGAGAAATAT	CACGACGGGC	TGTGCTGAAC	ACTGCAGCTT	GAATGAGAA	AATCACTGTC	480
CCAGACACCA	AAGTTAATT	CTATGCCTGG	AAG			513

(2) INFORMATION FOR SEQ ID NO:81:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:81:

ATGGAGGTGCG	GGCAGCAGGC	CGTAGAACGTC	TGGCAGGGCC	TGGCCCTGCT	GTCGGAAGCT	60
GTCTGC	GGG	GCCAGGCCCT	GTTGGTCAAC	TCTTCCCAGC	CGTGGAGGCC	120
CATGTGGATA	AAAGCGTCA	TGGCCTTCGC	AGCCTCA	CTCTGCTTCC	GGCTCTGGGA	180
GCCCAGAAGG	AAGCCATCTC	CCCTCCAGAT	GCGGCC	CTGCTCCACT	CCGAACAATC	240
ACTGCTGACA	CTTTCCGCAA	ACTCTTCCGA	GTCTACTCCA	ATTTCTCCG	GGAAAGCTG	300
AAGCTGTACA	CAGGGGAGGC	CTGCAGGACA	GGGGACAGAT	GAGGGGGCGG	CTCCCCCAC	360
CACGCC	TAT	CTGTGACAGC	CGAGTCTGG	AGAGGTACCT	CTTGAGGCC	420
AGAATATCAC	GACGGGCTGT	GCTGAACACT	GCAGCTGAA	TGAGAATAAT	CACTGTCCCA	480
GACACCAAAG	TTAATTCTA	TGCCTGGAAAG	AGG			513

(2) INFORMATION FOR SEQ ID NO:82:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:82:

GAGGTGGGGC	AGCAGGGCGT	AGAAGTCTGG	CAGGGCCTGG	CCCTGCTGTC	GGAAGCTGTC	60
CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	TCCCAGCGT	GGGAGCCCC	GCAGCTGCAT	120
GTGGATAAAAG	CCGTCA	CCTTCG	AGC	CTCACC	TGCTCGGGC	180
CAGAAGGAG	CCATCTCCC	TCCAGATGCG	GCCTCAGCTG	CTCCACTCCG	AAACATCACT	240
GCTGACACTT	TCCGCAA	ACTTCCGAGTC	TACTCCAATT	TCCTCCGGGG	AAAGCTGAAG	300
CTGTACACAG	GGGAGGCGT	CAGGAGCAGG	GCAGATGAG	CGGGCGGCTC	CCCCCAC	360
GCCTCATCTG	TGACAGCCGA	GTCCTGGAGA	GGTACCTCTT	GGAGGCCAAG	GAGGCCGAGA	420
ATATCACGAC	GGGCTGTGCT	GAACACTGCA	GCTTGAATGA	GAATAATCAC	TGTCCCAGAC	480
ACCAAAGTTA	ATTCTATGC	CTGGAAGAGG	ATG			513

(2) INFORMATION FOR SEQ ID NO:83:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:83:

GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	GGCCTGGCCC	TGCTGTGCGA	AGCTGTCTG	60
CGGGGCCAGG	CCCTGTTGGT	CAACTCTTCC	CAGCCGTGGG	AGCCCTGCA	GCTGCATGTG	120
GATAAAGCCG	TCA	AGTGGCCT	TCGCAGCCTC	ACCACTCTG	TTGGGGCTCT	180
AAGGAAGCCA	TCTCC	AGATGCGGG	TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	240
GACACTTCC	GC	AAACTCTT	CCGAGTCTAC	TCCAATTCTC	TCCGGGGAAA	300
TACACAGGGG	AGGC	TGAG	GACAGGGGAC	AGATGAGGCG	CGGGCTCCC	360
TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	ACCTCTTGG	GGCCAAGGAG	GCCGAGAATA	420
TCACGACGGG	CTGTGCTGAA	CACTGCAGCT	TGAATGAGAA	TAATCACTGT	CCCAGACACC	480
AAAGTTAATT	TCTATGCCTG	GAAGAGGATG	GAG			513

79

(2) INFORMATION FOR SEQ ID NO:84:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:84:

CAGGCCCTGT	TGGCAACTC	TTCCCAGCCG	TGGGAGCCCC	TACAGCTGCA	TGTGGATAAA	60
GCCGTCAGTG	ACCTTCGGAG	CCTCACCACT	CTGCTTCCCG	CTCTGGGAGC	CCAGAAGGAA	120
GCCATCTCG	CTCCAGATGC	GCCCTCACT	GCTCTCTCC	GAACAAATCAC	TGCTGACACT	180
TTCCGCAAC	TCTTCCGAGT	CTACTCCAAT	TCTCTCCGGG	GAAAGCTGAA	GCTGTACACA	240
GGGGAGCCG	GCAGGAGCAGG	GGACAGCTGA	GGCGGGGGCT	CCCCCCACCA	CGCCCTCATCT	300
GTGACACCCG	AGTCTGGAG	AGCTCTCT	TGGAGGCAA	GGAGGCGAG	AATATCACGA	360
CGGGCTGTGC	TGAACACTCG	AGCTTGAATG	AGAATAATCA	CTGTCCTCAGA	CACCAAAGTT	420
AATTCTATG	CCTCGAGAG	GATGGAGGTC	GGGCAGCAGG	CCGTAGAAGT	CTGGCAGGGC	480
CTGGCCCTGC	ATGCGGAAGC	TGTCTCGCGG	GGC			513

(2) INFORMATION FOR SEQ ID NO:85:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:85:

GCCCTGTTGG	TCAACTCTTC	CCAGCCGTGG	GAGCCCTGC	AGCTGCATGT	GGATAAACGCC	60
GTCAGTGGCC	TTCCGAGCCT	CACCACTCTG	CTTCGGGCTC	TGGGAGCCCA	GAAGGAAGCC	120
ATCTCCCTC	CAGATGCGGC	CTCAGCTGCT	CCACTCCGAA	CAATCACTGC	TGACACTTTC	180
CGCAAACCT	TCCGAGCTCA	CTCCAACTTC	CTCCGGGAA	AGCTGAAGCT	GTACACAGGG	240
GAGGCCGTCA	GGACAGGGGA	CAGATGAGGC	GGCGGCTCCC	CCCACCCAGC	CTCATCTGTG	300
ACAGCCGAGT	CCTGGAGAGG	TACCTCTTGG	AGGCAAGGA	GGCCGAGAAT	ATCACGACGG	360
GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	ATAATCACTG	TCCCAGACAC	CAAAGTTAAT	420
TTCTATGCC	GGAAAGAGGAT	GGAGGTGGGG	CAGCAGGCCG	TAGAAGTCTG	GCAGGGCTG	480
GCCCTGCTGT	CGGAAGCTGT	CCTGCGGGGC	CAG			513

(2) INFORMATION FOR SEQ ID NO:86:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:86:

CTGTTGGTCA	ACTCTTCCCA	GCCGTGGGAG	CCCCCTGCAGC	TGCATGTGGA	TAAAGCCGTC	60
AGTGGCCCTTC	GCAGCCTCAC	CACTCTGCTT	CGGGCTCTGG	GAGCCAGAA	GAAGGCATC	120
TCCCCCTCCAG	ATGCGGCCCTC	AGCTGCTCA	CTCCGAACAA	TCACTGCTGA	CACTTTCCGC	180
AAACTCTTCC	GAGCTACTC	CAATTTCTC	CGGGGAAAGC	TGAAGCTGTA	CACAGGGAG	240
GCCGTGAGGA	CAGGGGACAG	ATGAGGCCG	GGCTCCCCCC	ACCACCCCTC	ATCTGTGACA	300
GCCGAGTCCT	GGAGAGGTAC	CTCTTGGAGG	CCAAGGAGGC	CGAGAAATAC	ACGACGGCT	360
GTGCTGAACA	CTGCAGCTTG	AATGAGAATA	ATCACTGTCC	CAGACACAA	AGTTAATTTC	420
TATGCTCGA	AGAGGATGGA	GGTCGGGCAG	CAGGCCGTAG	AAGTCTGGCA	GGGCCTGGCC	480
CTGCTGTCGG	AAGCTGTCTT	CGGGGGCCAG	GCC			513

(2) INFORMATION FOR SEQ ID NO:87:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:87:

TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	CTGCAGCTGC	ATGTGGATAAA	AGCCGTCACT	60
GGCCTTCGCA	GCCTCACCA	TCTGCTTCCG	GCTCTGGAG	CCCAGAAGGA	AGCCATCTCC	120
CCTCCAGATG	CGGCCTCAGC	TGCTCCACTC	CGAACAAATCA	CTGCTGACAC	TTTCCGCAA	180

80

GCTT	TGAG	TCTACTCCAA	TTTCCTCCGG	GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	240
CTTCGAGCG	GGGACAGATG	AGGCAGGCGG	TCCCCCCCAC	ACGCCCTCATC	TGTGACAGCC	300	
GAGTC	TGCA	GAGCTTA	CTC	TTGGAGGCCA	AGGAGGCCGA	GAATATCACG	360
CTGAAACACTG	TACCT	AT	GAGATAATC	ACTGTCCCG	ACACCAAAGT	TAATTCTAT	420
GCCTGGAAGA	...TGAGG	GGCAGCAG	GGCGTAGAAG	TCTGGCAGGG	CCTGGCCCTG	480	
CTGTCGGAAAG	CTGTCC	...GG	CACGCC	CTG		513	

(2) INFORMATION

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 513 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:88:

GTCAACTCTT	CTAGCCGTG	GGAGCCCCCTG	CA	ATG	ATGATTAAGC	CGTCAGTGGC	60
CTTCGAGGCC	TCACCACTCT	CTTTCGGCC	CC	CC	AGA	AGU	120
CCAGATGCGG	CCTCAGCTGC	TCCACT	CTG	CTG	CTC	CTC	180
TTCCGAGTCT	ACTCCAATTT	CTCTCGGGGA	AA	GG	TTT	AAA	240
AGGACAGGGG	ACAGATGAGG	GGCGGCTCC	CCC	CCC	ACAC	AG	300
TCCCTGGAGAG	GTACCTCTTG	GAGGCCAAGG	AGG	CC	GGAGAA	TATGACAGG	360
AACACTGCG	CTTGAATGAG	AATAATCACT	GT	CCC	AGACA	CCAAAGTTAA	420
TGGAAAGAGGA	TGGAGGTGCG	GCAGCAGGCC	GT	AGAAGTCT	GGCAGGGCCT	GGCCCTGCTG	480
TCGGAAGCTG	TCCTGGGGGG	CCAGGCCCTG	TTG				513

(2) INFORMATION FOR SEQ ID NO:89:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 513 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:89:

AACTCTTCCC	AGCCGTGGGA	GCCCTGCA	CTGCATGTGG	ATAAAGCCGT	CAGTGGCCTT	60
CGCAGCCTCA	CCACTCTGCT	TCGGGCTCTG	GGAGCCAGA	AGGAAGCCAT	CTCCCCTCCA	120
GATGCGGCCT	CAGCTGCTCC	ACTCCGAACA	ATCACTGCTG	ACACTTCCG	CAAACCTCTC	180
CGACTCTACT	CCAATTCCTC	CCGGGGAAAG	CTGAAGCTGT	ACACAGGGGA	GGCCTGCAGG	240
ACAGGGGACA	GATGAGGC	GGCGTCCCCC	CACCACGCC	CATCTGTGAC	AGCCGAGTCC	300
TGGAGAGGTA	CCTCTGGAG	GCCAAGGAGG	CCCGAAATAT	CACGACGGGC	TGTGCTGAAC	360
ACTGCAGCTT	GAATGAGAAT	AATCACTGTC	CCAGACACCA	AAAGTAAATT	CTATGCCCTGG	420
AAGAGGATGG	AGGTGGGGCA	GCAGGCGTA	GAAGTCTGGC	AGGGCCTGGC	CCTGCTGTG	480
GAAGCTGTCC	TGGGGGGCCA	GGCCCTGTG	GTC			513

(2) INFORMATION FOR SEQ ID NO:90:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 513 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:90:

TCTTCCCAGC	CGTGGGAGCC	CCTGCAGCTG	CATGTGGATA	AAGCCGTAG	TGGCCTTCG	60
AGCCTCACCA	CTCTGCTTCG	GGCTCTGGGA	GCCCAGAAGG	AAGCCATCTC	CCCTCCAGAT	120
GCGGCCCTAG	CTGCTCCACT	CGGAACAATC	ACTGCTGACA	CTTTCCGAA	ACTCTTCCGA	180
GTCTACTCCA	ATTCCTCCG	GGGAAGCTG	AAGCTGTACA	CAGGGGAGGC	CTGCAGGACA	240
GGGGACAGAT	GAGGGCGCG	CTCCCCCAC	CACGCCCTCAT	CTGTGACAGC	CGAGTCCCTGG	300
AGAGGTACCT	CTTGGAGGCC	AAGGAGGCC	AGAATATCAC	GACGGGCTGT	GCTAACACT	360
GCAGCTTGAA	TGAGAATAAT	CACTGCTCCA	GACACCAAAG	TTAATTCTA	TGCCCTGGAAAG	420
AGGATGGAGG	TGGGGCAGCA	GGCCGTAGAA	GTCTGGCAGG	GCCTGGCCCT	GCTGTGGAA	480
GCTGTCCCTGC	GGGGCCAGGC	CCTGTTGGTC	AAC			513

(2) INFORMATION FOR SEQ ID NO:91:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 513 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

81

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:91:

TCCCAGCCGT	GGGAGCCCC	GTGAGCTGCAT	GTGGATAAAG	CCGTCAGTGG	CCTTCGCAGC	60
CTCACCACTC	TGCTTCGGGC	TCTGGGAGCC	CAGAAGGAAG	CCATCTCCCC	TCCAGATGCG	120
GCCTCAGCTG	CTCCACTCCG	AACAATCACT	GCTGACACT	TCCGAAACT	CTTCCGAGTC	180
TACTCCAATT	TCTCCGGGG	AAAGCTGAAG	CTGTACACAG	GGGAGGCC	CAGGACAGGG	240
GACAGATGAG	GCGGCGGCTC	CCCCCACCAC	GCCTCATCTG	TGACAGCCG	GTCCTGGAGA	300
GGTACACTCTT	GGAGGCCAAG	GAGGCCGAGA	ATATCAGAC	GGGCTGTGCT	GAACACTGCA	360
GCTTGAAATGA	GAATAATCAC	TGTCCCAGAC	ACCAAAGTTA	ATTTCTATGC	CTCGAAGAGG	420
ATGGAGGTCTG	GGCAGCAGGC	CTTAGAAGTC	TGGCAGGCC	TGGCCCTGCT	GTCGGAAGCT	480
GTCCTCGGGG	GCCAGGCC	GTTGGTCAAC	TCT			513

(2) INFORMATION FOR SEQ ID NO:92:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:92:

CAGCCGTGGG	AGCCCCCTGCA	CCTGCATGTG	GATAAAGCCG	TCAGTGGCCT	TCGCAGCCTC	60
ACCACTCTGC	TTCGGGCTCT	GGGAGGCCAG	AAGGAAGCCA	TCTCCCTCTC	AGATGCGGCC	120
TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	GACACTTCC	GCAAACCTCTT	CCGAGTCTAC	180
TCCAATTCTC	TCCGGGGAAA	GCTGAAGCTG	TACACAGGG	AGGCCCTGCAG	GACAGGGGAC	240
AGATGAGGCG	GCGGCTCCCC	CCACCAACGCC	TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	300
ACCTCTTGAA	GGCCAAGGAG	GAGGAGAATA	TCACGACGGG	CTGTGCTGAA	CACTGCAGCT	360
TGAATGAGAA	TAATCACTGT	CCCAGACACC	AAAGTTAATT	TCTATGCC	GAAGAGGATG	420
GAGGTCGGGC	AGCAGGCCGT	AGAAGTCTGG	CAGGGCCTGG	CCCTGCTGTC	GGAAGCTGTC	480
CTGCGGGGCC	AGGCCCTGTT	GGTCAACTCT	TCC			513

(2) INFORMATION FOR SEQ ID NO:93:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:93:

CCGTGGGAGC	CCCTGCAGCT	GCATGTGGAT	AAAGCCGTC	GTGGCCTTC	CAGCCTCACC	60
ACTCTGCTTC	GGGCTCTGGG	AGCCCAGAAC	GAAGCCATCT	CCCCTCCAGA	TGCGGCCTCA	120
GCTGCTCCAC	TCCGAACAAT	CACTGCTGAC	ACTTCCGCA	AACTCTCCG	ACTCTACTCC	180
AATTCTCTCC	GGGGAAAGCT	CAAGCTGTAC	ACAGGGGAGG	CTGCAAGGAC	AGGGGACAGA	240
TGAGGCGGGC	GCTCCCCC	CCACGCTCA	TCTGTGACAG	CCGAGTCC	GAGAGGTACC	300
TCTTGAGGCG	CAAGGAGGCC	GAGAATATCA	CGACGGGCT	TGCTGAACAC	TGAGCTTGA	360
ATGAGAATAA	TCACTGTCCC	AGACACAAA	CTTAAATTCT	ATGCC	GACGGATGGAG	420
GTCGGGCAGC	AGGCCGTAGA	AGTCTGGCAG	GGCCTGGCC	TGCTGTCGA	AGCTGCTCG	480
CGGGGCCAGG	CCCTGTTGGT	CAACTCTTCC	CAG			513

(2) INFORMATION FOR SEQ ID NO:94:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:94:

TGGGAGCCCC	TGCA	GCTGCA	TGTGGATAAA	GGCGTCAGTG	GCCTTCGAG	CCTCACCACT	60
CTGCTTCGGG	CTCTGGGAGC	CCAGAAGGAA	GGCATCTCCC	CTCCAGATGC	GGCCCTCAGCT	120	
GCTCCACTCC	GAACAATCAC	TGCTGACACT	TTCCGAAAC	TCTTCCGAGT	CTACTCCAAT	180	
TTCCTCCGGG	GAAAGCTGAA	CCTGTACACA	GGGGAGGCC	GCAGGACAGG	GGACAGATGA	240	
GGCGCCGGCT	CCCCCACCAC	CGCCTCATCT	GTGACAGCCG	AGTCTGGAG	AGTACCTCT	300	
TGGAGGCCAA	GGAGGCCAGG	AATATCACGA	CGGGCTGTG	TGAACACTGC	AGCTTGAATG	360	
AGAATAATCA	CTGTCCCAGA	CACCAAAGTT	AATTCTATG	CCTGGAAGAG	GATGGAGGTC	420	
GGGCAGCAGG	CCGTAGAAGT	CTGGCAGGCC	CTGGCCCTGC	TGCTGGAAGC	TGCTCTGC	480	
GGCCAGGCC	TGTTGGTCAA	CTCTTCCCAG	CCG			513	

82

(2) INFORMATION FOR SEQ ID NO:95:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:95:

GAGCCCTGC	AGCTGCATGT	GGATAAAGCC	GTCAGTGGCC	TTCGCAGCCT	CACCAACTCTG	60
CTTCGGGCTC	TGGGAGGCCA	GAAGGAAGCC	ATCTCCCCTC	CAGATGCGGC	CTCAGCTGCT	120
CCACTCCGAA	CAATCACTGC	TGACACTTC	CGCAAACCT	TCCGAGTCTA	CTCCAATTTC	180
CTCCGGGAA	AGCTGAAGCT	GTACACAGGG	GAGGCCCTGCA	GGACAGGGGA	CAGATGAGGC	240
GGCGGCTCCC	CCCACCACGC	CTCATCTGTG	ACAGCCGAGT	CCTGGAGAGG	TACCTTTGG	300
AGGCCAAGGA	GGCCGAGAA	ATCACGACGG	GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	360
ATAATCACTG	TCCAGACAC	CAAAGTTAAT	TTCTATGCCT	GGAAAGAGGAT	GGAGGTGCGG	420
CAGCAGGCCG	TAGAAGTCTG	GCAGGGCCTG	GCCCTGCTGT	CGGAAGCTGT	CCTGCGGGGC	480
CAGGCCCTGT	TGGTCAACTC	TTCCCAGCCG	TGGGAGCCCC	TGCAGCTGCA	TGTGGATAAA	513

(2) INFORMATION FOR SEQ ID NO:96:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:96:

CTTCGGGCTC	TGGGAGGCCA	GAAGGAAGCC	ATCTCCCCTC	CAGATGCGGC	CTCAGCTGCT	60
CCACTCCGAA	CAATCACTGC	TGACACTTC	CGCAAACCT	TCCGAGTCTA	CTCCAATTTC	120
CTCCGGGAA	AGCTGAAGCT	GTACACAGGG	GAGGCCCTGCA	GGACAGGGGA	CAGATGAGGC	180
GGCGGCTCCC	CCCACCACGC	CTCATCTGTG	ACAGCCGAGT	CCTGGAGAGG	TACCTTTGG	240
AGGCCAAGGA	GGCCGAGAA	ATCACGACGG	GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	300
ATAATCACTG	TCCAGACAC	CAAAGTTAAT	TTCTATGCCT	GGAAAGAGGAT	GGAGGTGCGG	360
CAGCAGGCCG	TAGAAGTCTG	GCAGGGCCTG	GCCCTGCTGT	CGGAAGCTGT	CCTGCGGGGC	420
CAGGCCCTGT	TGGTCAACTC	TTCCCAGCCG	TGGGAGCCCC	TGCAGCTGCA	TGTGGATAAA	480
GCCGTAGT	GCCTTCGAG	CCTCACCAC	CTG			513

(2) INFORMATION FOR SEQ ID NO:97:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:97:

CGGGCTCTGG	GAGCCAGAA	GGAAGCCATC	TCCCCTCCAG	ATCGGGCCTC	AGCTGCTCCA	60
CTCCGAACAA	TCACTGCTGA	CACTTTCCGC	AAACTCTCC	GAGTCTACTC	CAATTCCCTC	120
CGGGGAAAGC	TGAAGCTGT	CACAGGGGAG	GCCTGCAGGA	CAGGGGACAG	ATGAGGCAGC	180
GGCTCCCCCC	ACCAAGCCCTC	ATCTGTGACA	GCCGAGTCTC	GGAGAGGTAC	CTCTTGGAGG	240
CCAAGGAGGC	CGAGAATATC	ACGACAGGGCT	GTCGTAACCA	CTGCAGCTTG	AATGAGAATA	300
ATCACTGTCC	CACAGACACAA	AGTTAATTTC	TATGCCCTGGA	AGAGGATGGA	GTCGGGGCAG	360
CAGGCCGTAG	AAGTCTGGCA	GGGCCTGGCC	CTGCTGTGCG	AGCTGTCCT	CGGGGGCCAG	420
GCCCTGTTGG	TCAACTCTTC	CCAGCCGTGG	GAGCCCTGTC	AGCTGCATGT	GGATAAAGCC	480
GTCAGTGGCC	TTCCGAGCCT	CACCAACTCTG	CTT			513

(2) INFORMATION FOR SEQ ID NO:98:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:98:

GCTCTGGGAG	CCCAGAAGGA	AGCCATCTCC	CCTCCAGATG	CGGCCTCAGC	TGCTCCACTC	60
CGAACAACTCA	CTGCTGACAC	TTTCCGCAA	CTCTTCCGAG	TCTACTCCAA	TTTCCTCCGG	120
GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	TGCAGGACAG	GGGACAGATG	AGGCGGGCGGC	180

73

TCCCCCCCACC	ACGCCTCATC	TGTGACAGCC	GAGTCCTGGA	GAGGTACCTC	TTGGAGGCCA	240
AGGAGGCCGA	GAATATCACG	ACGGGCTGTG	CTGAAACACT	CAGCTGAAAT	GAGAATAATC	300
ACTGTCAG	ACACCAAAGT	TAATTCTAT	GCCTGGAAAGA	GGATGGAGGT	CGGGCAGCAG	360
GCGTAGAAG	TCTGGCAGGG	CCTGGCCCTG	CTGTCGGAAG	CTGTCCTGCG	GGGCCAGGCC	420
CTGTTGGTCA	ACTCTTCCA	GCCGTGGAG	CCCCTCGAGC	TGCATGTGGA	TAAAGCCGTC	480
AGTGGCCTTC	GCAGCCTCAC	CACTCTGCTT	CGG			513

(2) INFORMATION FOR SEQ ID NO:99:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:99:

CTGGGAGCCC	AGAAGGAAGC	CATCTCCCT	CCAGATGCCG	CCTCAGCTGC	TCCACTCCGA	60
ACAATCACTG	CTGACACTTT	CCGAAACTC	TTCCGAGTCT	ACTCCAATT	CCTCCGGGGA	120
AAGCTGAAGC	TGTACACAGG	GGAGGCCCTG	AGGACAGGGG	ACAGATGAGG	CGCCGGCTCC	180
CCCCAACCCG	CCTCATCTGT	GACAGCCGAG	TCCCTGGAGAG	CTACCTCTTG	GAGGCCAAGG	240
AGGCGGAGAA	TATCACGACG	GGCTGTGCTG	AAACACTGCAG	CTTGAATGAG	AATAATCACT	300
GTCCCAGACA	CCAAAGTTAA	TTTCTATGCG	TGGAAGAGGA	TGGAGGTGCG	CGACGAGGCC	360
GTAGAAAGTCT	GGCAGGGCCT	GGCCCTGCTG	TCGGAAGCTG	TCCTGCGGGG	CCAGGCCCTG	420
TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	CTGCAGCTGC	ATGTGGATAA	AGCCGTCAGT	480
GGCCTCGCA	GCCTCACAC	TCTGCTTCGG	GTC			513

(2) INFORMATION FOR SEQ ID NO:100:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:100:

GGAGCCCAGA	AGGAAGCCAT	CTCCCCCTCA	GATCGGGCCT	CAGCTGCTCC	ACTCCGAACA	60
ATCACTGCTG	ACACTTCCG	CAAACCTCTC	CGAGTCTACT	CCAATTCTCT	CCGGGGAAAG	120
CTGAAAGCTGT	ACACAGGGGA	GGCCCTGCAGG	ACAGGGGACA	GATGAGGCAG	CGGCTCCCCC	180
CACCAAGCCT	CATCTGTGAC	AGCCGAGTCC	TGGAGAGGTA	CCTCTTGAG	GCCAAGGAGG	240
CCGAGAAATAT	CACGACGGGC	TGTGCTGAAC	ACTGCAGCTT	GAATGAGAAAT	AATCACTGTC	300
CCAGACACCA	AAGTTAATT	CTATGCCCTG	AAGAGGATGG	AGGTGGGGCA	GCAGGCCGTA	360
GAAGTCTGGC	AGGGCCTGGC	CCTGCTGTGCG	GAAGCTGTCC	TCCGGGGCCA	GGCCCTGTTG	420
GTCAACTCTT	CCCAGCCGTG	GGAGCCCCCTG	CAGCTGCAATG	TGGATAAACG	CGTCAGTGGC	480
CTTCGAGCC	TCACCACTCT	CTTCGGGCT	CTG			513

(2) INFORMATION FOR SEQ ID NO:101:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:101:

GCCCCAGAAGG	AAGCCATCTC	CCCTCCAGAT	GGGGCCTCAG	CTGCTCCACT	CCGAACAATC	60
ACTGCTGACA	CTTTCGCAA	ACTCTTCCG	GTCTACTCCA	ATTTCTCCG	GGGAAAGCTG	120
AAGCTGTACA	CAGGGGAGGC	CTGCAGGACA	GGGGACAGAT	GAGGGGGCGG	CTCCCCCCCAC	180
CACGCCTCAT	CTGTGACAGC	CGAGTCTCTG	AGAGGTACCT	CTTGGAGGCC	AAGGAGGCCG	240
AGAATATCAC	GACGGGCTGT	GCTAACACT	CGAGCTTGA	TGAGATAAT	CACTGTCCA	300
GACACCAAAG	TTAATTCTA	TGCCCTGGAAG	AGGATGGAGG	TCGGGCAGCA	GGCCGTAGAA	360
GTCTGGCAGG	GCCTGGCCCT	GCTGTCGGAA	GCTGTCCTGC	GGGGCAGGC	CCTGTTGGTC	420
AACTCTTCCC	AGCCGTGGGA	CCCCCTGCAG	CTGCATGTGG	ATAAAGCCGT	CAGTGGCCTT	480
CGCAGCCTCA	CCACTCTGCT	TCGGGCTCTG	CGA			513

(2) INFORMATION FOR SEQ ID NO:102:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

84

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:102:

CAGAAGGAAG	CCATCTCCCC	TCCAGATGCG	GCCTCAGCTG	CTCCACTCCG	AACAATCACT	60
GCTGACACTT	TCCCCTAAACT	CTTCGGAGTC	TACTCCAATT	TCCTCCGGGG	AAAGCTGAAG	120
CTGTACACAG	GGGAGGCCCTG	CAGGACAGGG	GACAGATGAG	GCGCGGCTC	CCCCCACAC	180
GCCCATCTG	TGACAGCCGA	GTCTGGAGA	GGTACCTCTT	GGAGGCCAAG	GAGGCCGAGA	240
ATATCACGAC	GGGCTGTGCT	GAACACTGCA	GCTTGAATGA	GAATAATCAC	TGTCCCAGAC	300
ACCAAAGTTA	ATTTCTATGC	CTGGAAGAGG	ATGGAGGTCG	GGCAGCAGGC	CGTAGAACGTC	360
TGGCAGGGCC	TGGCCTGCT	GTCCGAAGCT	GTCTGCGGG	GCCAGGCCCT	CTTGGTCAAC	420
TCTTCCCAGC	CGTGGGAGCC	CCTGCAGCTG	CATGTGGATA	AAGCCGTAG	TGGCCTTCGC	480
AGCCTCACCA	CTCTGCTTCG	GGCTCTGGGA	GCC			513

(2) INFORMATION FOR SEQ ID NO:103:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:103:

AAGGAAGCCA	TCTCCCTCC	AGATGCGGCC	TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	60
GACACTTTC	GCAAACCTTT	CCGACTCTAC	TCCAATTTC	TCCCCGGAAA	GCTGAAGCTG	120
TACACAGGG	AGGCCTGCAG	GACAGGGGAC	AGATGAGGCG	GCGGCTCCCC	CCACCACGCC	180
TCATCTGTG	CAGCGGAGTC	CTGGAGGAGT	ACCTCTGGA	GGCCAAGGAG	GCCGAGAATA	240
TCACGAGGG	CTGTGCTGAA	CACTCGAGCT	TGATGAGAA	TAATCACTGT	CCCAGACACC	300
AAAGTTAATT	TCTATGCTG	AAAGAGGATG	GAGGTCGGC	AGCAGGCCGT	AGAAGTCTGG	360
CAGGGCCTGG	CCCTGCTGTC	GGAAAGCTGTC	CTGCGGGGCC	AGGGCCTGTT	GGTCAACTCT	420
TCCCAGCCGT	GGGACCCCT	GCAGCTGCAT	GTGGATAAAG	CCGTAGTGG	CCTTCGCAGC	480
CTCACCACTC	TGCTCGGGC	TCTGGGAGCC	CAG			513

(2) INFORMATION FOR SEQ ID NO:104:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:104:

GAAGCCATCT	CCCCCTCAGA	TGCGGCCTCA	GCTGCTCCAC	TCCGAACAAT	CACTGCTGAC	60
ACTTTCCCA	AACTCTCCG	AGTCTACTCC	AATTTCCTCC	GGGGAAAGCT	GAAGCTGTAC	120
ACAGGGGAGG	CTCTGCAGGAC	AGGGGACAGA	TGAGGGCGC	GCTCCCCCCTCA	CCACGCCCTCA	180
TCTGTGACAG	CCGAGTCCTG	GAGGGTACC	TCTTGAGGC	CAAGGAGGCC	GAGAATATCA	240
CGACGGCTG	TGCTAACAC	TGAGCTTGA	ATGAGAATAA	TACTGTCCC	AGACACCAA	300
GTAAATTCT	ATGCTCGAA	GAGGATGAG	GTCGGGCAGC	AGGGCGTAGA	AGTCTGGCAG	360
GGCTGCTGCC	TGCTGCTGGA	AGCTGTCTG	CGGGGCCAGG	CCCTGTTGGT	CAACTCTTCC	420
CAGCCGTGGG	AGCCCCCTGCA	GCTGCATGTG	GATAAACCCG	TCAGTGGCCT	TCGCAGCCTC	480
ACCACTCTGC	TTCGGGTCT	GGGAGCCAG	AAG			513

(2) INFORMATION FOR SEQ ID NO:105:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:105:

GCCATCTCCC	CTCCAGATGC	GGCCTCAGCT	GCTCCACTCC	GAACAATCAC	TGCTGACACT	60
TTCCGCAAC	TCTTCCGAGT	CTACTCCAAT	TTCCCTCCGGG	GAAAGCTGAA	GCTGTACACA	120
GGGGAGGCC	GCAGGACAGG	GGACAGATGA	GCGCGGCGCT	CCCCCCACCA	CGCCTCATCT	180
GTGACAGCCC	AGTCTCTGGAG	AGGTACCTCT	TGGAGGCCA	GGAGGCCAG	AATATCACGA	240
CGGGCTGTGC	TGAACACTGC	AGCTTGAATG	AGAATAATCA	CTGCCCAGA	CACCAAAGTT	300
AATTCTATTG	CTCTGGAAGAG	GATGGAGTC	GGGCAAGCAGG	CCGTAGAAGT	CTGGCAGGGC	360
CTGGCCCTG	TGTCGGAAAGC	TGTCCTGCGG	GGCCAGGCC	TGTGGTCAA	CTCTTCCCAG	420
CCGTGGGAGC	CCCTGCAGCT	GCATGTGGAT	AAAGCCGTCA	GTGGCCTTCG	CAGCCTCAC	480
ACTCTGCTTC	GGGCTCTGGG	AGCCCAGAAAG	GAA			513

85

(2) INFORMATION FOR SEQ ID NO:106:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:106:

ATCTCCCTC	CAGATGCGGC	CTCAGCTGCT	CCACTCCGAA	CAATCACTGC	TGACACTTTC	60
CGCAAACCTCT	TCCGAGTCTA	CTCCAATTTC	CTCCGGGAA	AGCTGAAGCT	GTACACAGGG	120
GAGGCCCTGCA	GGACAGGGGA	CAGATGAGGC	GGCGGCTCCC	CCCACCCACGC	CTCATCTGTG	180
ACAGCCGAGT	CCTGGAGGAGC	TACCTCTTGG	AGGCCAAGGA	GGCCGAGAAAT	ATCACGACGG	240
GCTGTGCTGA	ACACTGCGAC	TTGAATGAGA	ATAATCACTG	TCCCAGACAC	CAAAGTTAAT	300
TTCTATGCCT	GGAAAGAGGAT	GGAGGTGGGG	CAGCAGGGCC	TAGAAGTCTG	GCAGGGCTG	360
GCCCTGCTGT	CGGAAGCTGT	CCTGCGGGGC	CAGGCCCTGT	TGGTCAACTC	TTCCCAGCCG	420
TGGGAGCCCC	TGCAGCTGCA	TGTGATAAA	GCCGTCAGTG	GCCTTCGCG	CCTCACCACT	480
CTGCTTCGGG	CTCTGGGAGC	CCAGAAGGAA	GCC			513

(2) INFORMATION FOR SEQ ID NO:107:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:107:

TCCCCCTCCAG	ATGCGGCCTC	AGCTGCTCCA	CTCCGAACAA	TCACTGCTGA	CACTTTCCGC	60
AAACTCTTCCC	GAGTCTACTC	CAATTTCCTC	CGGGGAAAGC	TGAAGCTGTA	CACAGGGGAG	120
GCCTGCGAGA	CAGGGGACAG	ATGAGGGCGC	GGCTCCCCC	ACCACGCCTC	ATCTGTGACA	180
GCCGAGTCTCT	GGAGGAGGTAC	CTCTTGGAGG	CCAAGGAGGC	CGAGAATATC	ACGACGGGCT	240
GTGCTGAACA	CTGCAGCTTG	ATGAGAATA	ATCACTGTCC	CAGACACCAA	AGTTAATTTC	300
TATGCCCTGGA	AGAGGGATGGA	GGTCGGGGCAG	CAGGCCGTAG	AAGTCTGGCA	GGGCCTGGCC	360
CTGCTGTGCG	AAGCTGTCT	GGGGGGCCAG	GCCCTGTGAG	TCAACTCTTC	CCAGCCGTGG	420
GAGCCCTGTC	AGCTGCTATG	GGATAAAAGGC	GTCAGTGCCC	TTCGCAGCCT	CACCACTCTG	480
CTTCGGGCTC	TGGGAGCCCA	GAAGGAAGCC	ATC			513

(2) INFORMATION FOR SEQ ID NO:108:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:108:

CCTCCAGATG	CGGCCCTCAGC	TGCTCCACTC	CGAACAACTCA	CTGCTGACAC	TTTCCGCAAA	60
CTCTTCCGAG	TCTACTCCA	TTTCTCCCG	GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	120
TGCAGGACAG	GGGACAGATG	AGGCGGCCGC	TCCCCCACC	ACGCCCTCATC	TGTGACAGCC	180
GAGTCTCTGA	GAGGTACCTC	TTGGAGGCCA	AGGAGGCCG	GAATATCAGC	ACGGGCTGTG	240
CTGAACACTG	CAGCTTGAAT	GAGAATAATC	ACTGTCCAG	ACACCAAAGT	TAATTCTAT	300
GCCTTGGAAAGA	GGATGGAGGT	CGGGCAGCAG	GGCGTAGAG	TCTGGCAGGG	CCTGGCCCTG	360
CTGTCGGAAAG	CTGTCCTGCG	GGGCCAGGCC	CTGTTGGTCA	ACTCTTCCA	GGCGTGGGAG	420
CCCCTGCAGC	TGCAATGTGGA	TAAAGCCGTC	AGTGGCCTTC	GCAGCCTCAC	CACTCTGCTT	480
CGGGCTCTGG	GAGCCCAGAA	GGAAAGCCATC	TCC			513

(2) INFORMATION FOR SEQ ID NO:109:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:109:

CCAGATGCGG	CCTCAGCTGC	TCCACTCCGA	ACAATCACTG	CTGACACTTT	CCGCACAACTC	60
TTCCGAGTCT	ACTCCAATTTC	CCTCCGGGGA	AAGCTGAAGC	TGTACACAGG	GGAGGCCTGC	120
AGGACAGGGG	ACAGATGAGG	CGGCGGGCTCC	CCCCACCAAGC	CCTCATCTGT	GACAGCCGAG	180

86

TCCTGGAGAG	GTACCTCTTG	GAGGCCAAGG	AGGCCGAGAA	TATCACGACG	GGCTGTGCTG	240
AACACTGCAG	CTTGAATGAG	ATAATCACT	GTCCCAGACA	CCAAAGTTAA	TTTCTATGCC	300
TGGAAGAGGA	TGGAGGTGG	GCAGCAGGCC	GTAGAAGTCT	GGCAGGGCT	GGCCCTGCTG	360
TCGGAAGCTG	TCCTGCGGGG	CCAGGCCCTG	TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	420
CTGCAGCTGC	ATGTGGATAA	AGCCGTCACT	GGCCTTCGCA	GCCTCACAC	TCTGCTTCGG	480
GCTCTGGGAG	CCAGAGGA	AGCCATCTCC	CCT			513

(2) INFORMATION FOR SEQ ID NO:110:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:110:

GATGCGGCCT	CAGCTGCTCC	ACTCCGAACA	ATCACTGCTG	ACACTTCCG	CAAACCTCTC	60
CGAGTCTACT	CCAATTTCCT	CCGGGGAAAG	CTGAAGCTGT	ACACAGGGGA	GGCCTGCAGG	120
ACAGGGGACA	GATGAGGGCGG	CGGCTCCCCC	CACCACGCC	CATCTGTGAC	AGCCGAGTCC	180
TGGAGAGGTA	CCTCTGGAG	GCCAAGGAGG	CCGAGAATAT	CACGACGGGC	TGTGCTGAAC	240
ACTGCAGCTT	GAATGAGAAAT	ATCACTGTC	CCAGACACCA	AAAGTTAATT	CTATGCTTGG	300
AAGAGGATGG	AGGTGGGCA	GCAGGCCGTA	GAAGTCTGGC	AGGGCCTGGC	CCTGCTGTGCG	360
GAAGCTGTCC	TGCGGGGCCA	GGCCCTGTGTC	GTCAACTCTT	CCCAGCCGTG	GGAGCCCCCTG	420
CAGCTGCATG	TGGATAAACG	CGTCAGTGGC	CTTCGCGAGC	TCACCACTCT	GCTTCGGGCT	480
CTGGGAGCCC	AGAAGGAAGC	CATCTCCCCCT	CCA			513

(2) INFORMATION FOR SEQ ID NO:111:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:111:

GCGGCCCTAG	CTGCTCCACT	CCGAACAATC	ACTGCTGACA	CTTCCGCAA	ACTCTTCCGA	60
GTCTACTCCA	ATTTCCTCGG	GGGAAAGCTG	AAGCTGTACA	CAGGGGAGGC	CTGCAGGACA	120
GGGGACAGAT	GAGGGCGGCGG	CCCCCCCCAC	CACGCCCTCAT	CTGTGACAGC	CGAGTCCTGG	180
AGAGGTACCT	CTTGGAGGCC	AAGGAGGCCG	AGAATATCAC	GACGGGCTGT	GCTGAACACT	240
GCAGCTTGA	TGAGAATAAT	CACTGTCCCA	GACACCAAAG	TTAATTCTCA	TGCCCTGGAAG	300
AGGATGGAGG	TCCGGCAGCA	GGCCGTAGAA	GTCTGGCAGG	GCCTGCCCT	GCTGTCGGAA	360
GCTGCTCTGC	GGGGCCAGGC	CCTGTTGGTC	AACTCTCCC	AGCCGTGGGA	GCCCTGCGAG	420
CTGCATGTGG	ATAAAGCCGT	CAGTGGCCTT	CGCAGCCTCA	CCACTCTGCT	TGGGGCTCTG	480
GGAGCCCAGA	AGGAAGCCAT	CTCCCCCTCCA	GAT			513

(2) INFORMATION FOR SEQ ID NO:112:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:112:

GCCTCAGCTG	CTCCACTCCG	AAAATCACT	GCTGACACTT	TCCGCAAAC	CTTCCGAGTC	60
TACTCCAATT	TCCTCCGGGG	AAAGCTGAAG	CTGTACACAG	GGGAGGCC	CAGGACAGGG	120
GACAGATGAG	GGGGCGGCTC	CCCCCACCAC	GCCTCATCTG	TGACAGCCGA	GTCCCTGGAGA	180
GGTACCTCTT	GGAGGCCAAG	GAGGCCGAGA	ATATCACGAC	GGGCTGTGCT	GAACACTGCA	240
GCTTGATGAA	GAATAATCAC	TGTCCCAGAC	ACCCAAAGTTA	ATTTCATGCA	CTGGAAGAGG	300
ATGGAGGTGCG	GGCACGAGGC	CGTAGAAGTC	TGGCAGGGCC	TGGCCCTGCT	GTGGAAGACT	360
GTCCCTGCGGG	GCCAGCCCT	GTGGGTCAAC	TCTTCCCAGC	CGTGGGAGCC	CCTGCAAGCTG	420
CATGTGGATA	AAGCCGTAG	TGGCTTCGCA	AGCCTCACCA	CTCTGCTTCG	GGCTCTGGGA	480
GCCCCAGAAGG	AAGCCATCTC	CCCTCCAGAT	GCG			513

(2) INFORMATION FOR SEQ ID NO:113:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

87

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:113:

TCAGCTGCTC	CACTCCGAAC	AATCACTGCT	GACACTTCC	GCAAACCTTT	CCGAGTCTAC	60
TCCAATTTCC	TCCGGGGAAA	GCTGAAGCTG	TACACAGGG	AGGCCCTGCAG	GACAGGGGAC	120
AGATGAGGGC	GCGGCTCCCC	CCACCACGCC	TCATCTGTGA	CAGCCGAGTC	CTGGAGAGGT	180
ACCTCTTGGA	GGCCAAGGAG	GCCGAGAATA	TCACGACGG	CTGTGCTGAA	CACTGCAGCT	240
TGAATGAGAA	TAATCACTGT	CCCAGACACC	AAAGTTAATT	TCTATGCCTG	GAAGAGGATG	300
GAGGTGCGGC	AGCAGGCGCT	AGAAGTCTGG	CAGGGCTCTG	CCCTGCTGTC	GGAAGCTGTC	360
CTGCGGGGGC	AGGGCCCTGT	GGTCAACTCT	TCCCAGCCGT	GGGAGCCCT	GCAGCTGCAT	420
GTGGATAAAAG	CCGTCACTG	CCTTCGCAAGC	CTCACCACTC	TGCTTCGGGC	TCTGGGAGCC	480
CAGAAGGAAG	CCATCTCCCC	TCCAGATGCG	GCC			513

(2) INFORMATION FOR SEQ ID NO:114:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:114:

GCTGCTCCAC	TCCGAACAAT	CACTGCTGAC	ACTTTCCGCA	AACTCTTCCG	AGTCTACTCC	60
AATTTCTCC	GGGAAAGCT	GAAGCTGTAC	ACAGGGGAGG	CCTGCAGGAC	AGGGGACAGA	120
TGAGGGGGG	GCTCCCCCCC	CCACGCCCTCA	TCTGTGACAG	CCGAGTCCTG	GAGAGGTACC	180
TCTTGGAGGC	CAAGGAGGCC	GAGAATATCA	CGACGGCTG	TGCTGAACAC	TGCACTTGA	240
ATGAGAAATA	TCACTGTCCTC	AGACACAAAA	GTAAATTCT	ATGCCCTGAA	GAGGATGGAG	300
GTCGGGCAGC	AGGGCGTAGA	ATCTGGCAG	GGCTGGGCC	TGCTGTCGGA	AGCTGTCTG	360
CGGGGGCAGG	CCCTGTTGTT	CAACTCTTCC	CAGCGTGGG	AGCCCCCTGCA	GCTGCATGTG	420
GATAAAGCCG	TCAGTGGCCT	TGCGAGCCTC	ACCACTCTG	TTCGGGCTCT	GGGAGCCAG	480
AAGGAAGCCA	TCTCCCTCC	AGATGCGGCC	TCA			513

(2) INFORMATION FOR SEQ ID NO:115:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:115:

GCTCCACTCC	GAACAATCAC	TGCTGACACT	TTCCGAAAC	TCTTCCGAGT	CTACTCCAAT	60
TTCCCTCCGG	AAAAGCTGAA	GCTGTACACA	GGGGAGGCT	GCAGGACAGG	GGACAGATGA	120
GGCGCCGGCT	CCCCCCACCA	CGCCTCATCT	GTGACAGCCG	AGTCCTGGAG	AGGTACCTCT	180
TGGAGGCCAA	GGAGGCGGAG	ATATACACGA	CGGGCTGTG	TGAACACTGC	AGCTTGAATG	240
AGAATAATCA	CTGTCCCAGA	CACCAAAAGT	AATTCTATG	CCTGGAAGAG	GATGGAGGTC	300
GGGCACGAGG	CCGTAGAACT	CTGGCAGGGC	CTGGCCCTG	TGTCGGAAGC	TGTCCTGCGG	360
GGCCAGGCCC	TGTGGTCAA	CTCTTCCAG	CCGTGGGAGC	CCCTGCAGCT	GCATGTGGAT	420
AAAGCCGCTA	GTGCCCTTCG	CAGCCTCACCC	ACTCTGCTTC	GGGCTCTGGG	AGCCCAGAAC	480
GAAGCCATCT	CCCCCTCCAGA	TGCGGCTCTCA	GCT			513

(2) INFORMATION FOR SEQ ID NO:116:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 513 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:116:

CCACTCCGAA	CAATCACTGC	TGACACTTT	CGCAAACCT	TCCGAGTCTA	CTCCAATTTC	60
CTCCGGGGAA	AGCTGAAGCT	GTACACAGGG	GAGGCCCTCA	GGACAGGGGA	CAGATGAGGC	120
GGCGGCTCCC	CCCAACCACCC	CTCATCTGTG	ACAGCCGAGT	CCTGGAGAGG	TACCTCTTGG	180
AGGCCAAGGA	GGCCGAGAAT	ATCACGACGG	GCTGTGCTGA	ACACTGCAGC	TTGAATGAGA	240
ATAATCACTG	TCCCAGACAC	CAAAGTTAAT	TTCTATGCT	GGAAAGGGAT	GGAGGTCGGG	300
CAGCAGGCGG	TAGAAGCTG	GCAGGGCTG	GCCCTGCTGT	CGGAAGCTGT	CCTGCGGGGC	360
CAGGCCCTGT	TGGTCAACTC	TTCCCAGCCG	TGGGAGCCCC	TGCAGCTGCA	TGTGGATAAA	420
GCCGTCAGTG	GCCTTCGAG	CCTCACCACT	CTGCTTCGGG	CTCTGGGAGC	CCAGAAGGAA	480
GCCATCTCCC	CTCCAGATGC	GGCCCTCAGCT	GCT			513

88

(2) INFORMATION FOR SEQ ID NO:117:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:117:

CTCCGAAACAA	TCACTGCTGA	CACTTTCCGC	AAACTCTTCC	GAGTCTACTC	CAATTTCCCTC	60
CGGGGAAAGC	TGAAGCTGA	GGAGGGGAG	GCCTGAGGA	CAGGGGACAG	ATGAGGCAGC	120
GGCTCCCCCC	ACCAAGCCTC	ATCTGTGACA	GCCGAGTCCT	GGAGAGGTAC	CTCTTGGAGG	180
CCAAGGAGGC	CGAGAAATTC	ACGACGGCT	GTGCTAACAA	CTGACGTTG	AATGAGAATA	240
ATCACTGTCC	CAGACACCAA	AGTTAATTTC	TATGCCGGA	AGAGGATGGA	GGTCGGGCAG	300
CAGGCCGTAG	AAGTCTGGCA	GGGCCTGGCC	CTGCTGTCGG	AAGCTGTCT	GCGGGGCCAG	360
GCCCTGTTG	TCAACTCTTC	CCAGCGTGTG	GAGCCCCTGC	AGCTGCATGT	GGATAAAAGCC	420
GTCAGTGCCC	TTCGCAGCCT	CACCACTCTG	CTTCGGCCTC	TGGGAGCCCA	GAAGGAAAGCC	480
ATCTCCCCCTC	CAGATGCCGC	CTCAGCTGCT	CCA			513

(2) INFORMATION FOR SEQ ID NO:118:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:118:

CGAACAAATCA	CTGCTGACAC	TTTCCGCAA	CTCTTCCGAG	TCTACTCCAA	TTTCCCTCCGG	60
GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	TGCAGGACAG	GGGACAGATG	AGGCAGGCC	120
TCCCCCCCAC	ACCGCCTCATC	TGTGACAGCC	GAGTCCCTGGA	GAGGTACCTC	TTGGAGGCCA	180
AGGAGGCCGA	GAATATCACG	ACGGGCTGTG	CTGAACACTG	CAGCTTGAAT	GAGAATAATC	240
ACTGTCCCCAG	ACACCAAAGT	TAATTTCTAT	GCCTGAAAGA	GGATGGAGGT	CGGGCAGCAG	300
GCCGTAGAAG	TCTGGCAGGG	CCTGGCCCTG	CTGCTGGAAG	CTGCTCTGCG	GGGCCAGGCC	360
CTGTTGGTCA	ACTCTTCCA	GCCGTGGGAG	CCCCCTGCAGC	TGCATGTTG	AAAAGCCGTC	420
AGTGGCCTTC	GCAGCCTCAC	CACTCTGCTT	CGGGCTCTGG	GAGCCAGAA	GGAAAGCCATC	480
TCCCCCTCCAG	ATGCGGCCCTC	AGCTGCTCCA	CTC			513

(2) INFORMATION FOR SEQ ID NO:119:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 513 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:119:

ACAATCACTG	CTGACACTTT	CCGAAACACTC	TTCCGAGTCT	ACTCCAATT	CCTCCGGGGA	60
AAGCTGAAGC	TGTACACAGG	GGAGGCCTGC	AGGACAGGGG	ACAGATGAGG	CGGCAGCCTC	120
CCCCACCACG	CCTCATCTGT	GACAGCCGAG	TCCTGGAGAG	GTACCTCTTG	GAGGCCAAGG	180
AGGCCGAGAA	TATCACGACC	GGCTGTGCTG	AAACACTGCAG	CTTGAATGAG	AATAATCACT	240
GTCCCAGACA	CCAAAGTTAA	TTTCTATGCC	TGGAAGAGGA	TGGAGGTGCG	GCAGCAGGCC	300
GTAGAAAGTCT	GGCAGGGCCT	GGCCCTGCTG	TCGGAAGCTG	TCCTGCGGGG	CCAGGCCCTG	360
TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	CTGCAGCTGC	ATGTGGATAA	AGCCGTCACT	420
GGCCTCTCGA	GCCTCACCC	CTGTCTTCGG	GCTCTGGAG	CCCAGAAGGA	AGCCATCTCC	480
CCTCCAGATG	CGGCCTCAGC	TGCTCCACTC	CGA			513

(2) INFORMATION FOR SEQ ID NO:120:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 501 base pairs
 - (B) TYPE: nucleic acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:120:

GCCCCACCAAC	GCCTCATCTG	TGACAGCCGA	GTCCTGGAGA	GGTACCTCTT	GGAGGCCAAG	60
GAGGCCGAGA	ATATCACGAC	GGGCTGTGCT	GAACACTGCA	GCTTGAATGA	GAATATCACT	120
GTCCCAGACA	CCAAAGTTAA	TTTCTATGCC	TGGAAGAGGA	TGGAGGTGCG	GCAGCAGGCC	180

89

GTAGAAGTCT	GGCAGGGCCT	GGCCCTGCTG	TCGGAAGCTG	TCCTGCAGGGG	CCAGGCCCTG	240
TTGGTCAACT	CTTCCCAGCC	GTGGGAGCCC	CTGCAGCTGC	ATGTGGATAA	AGCCGTCAGT	300
GGCCTTCGCA	GCCCTCACAC	TCTGCTTCGG	GCTCTGGAG	CCCAGAAGGA	AGCCATCTCC	360
CCTCCAGATG	CGGCTCAGC	TGCTCCACTC	CGAACAAATCA	CTGCTGACAC	TTTCGGAAA	420
CTCTTCCGAG	TCTACTCCAA	TTTCTCCGG	GGAAAGCTGA	AGCTGTACAC	AGGGGAGGCC	480
TGCAAGACAG	GGGACAGATG	A				501

(2) INFORMATION FOR SEQ ID NO:121:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 166 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:121:

```

Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu
 1           5          10          15
Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His
 20          25          30
Cys Ser Leu Asn Glu Asn Ile Thr Val Pro Asp Thr Lys Val Asn Phe
 35          40          45
Tyr Ala Trp Lys Arg Met Glu Val Gly Gln Gln Ala Val Glu Val Trp
 50          55          60
Gln Gly Leu Ala Leu Ser Glu Ala Val Leu Arg Gly Gln Ala Leu
 65          70          75          80
Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu Gln Leu His Val Asp
 85          90          95
Lys Ala Val Ser Gly Leu Arg Ser Leu Thr Thr Leu Leu Arg Ala Leu
100         105         110
Gly Ala Gln Lys Glu Ala Ile Ser Pro Pro Asp Ala Ala Ser Ala Ala
115         120         125
Pro Leu Arg Thr Ile Thr Ala Asp Thr Phe Arg Lys Leu Phe Arg Val
130         135         140
Tyr Ser Asn Phe Leu Arg Gly Lys Leu Lys Leu Tyr Thr Gly Glu Ala
145         150         155         160
Cys Arg Thr Gly Asp Arg
 165

```

(2) INFORMATION FOR SEQ ID NO:122:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 170 amino acids
 - (B) TYPE: amino acid
 - (C) STRANDEDNESS: single
 - (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:122:

```

Thr Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu
 1           5          10          15
Val Gly Gln Gln Ala Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser
 20          25          30
Glu Ala Val Leu Arg Gly Gln Ala Leu Leu Val Asn Ser Ser Gln Pro
 35          40          45
Trp Glu Pro Leu Gln Leu His Val Asp Lys Ala Val Ser Gly Leu Arg
 50          55          60
Ser Leu Thr Thr Leu Leu Arg Ala Leu Gly Ala Gln Lys Glu Ala Ile
 65          70          75          80
Ser Pro Pro Asp Ala Ala Ser Ala Ala Pro Leu Arg Thr Ile Thr Ala
 85          90          95
Asp Thr Phe Arg Lys Leu Phe Arg Val Tyr Ser Asn Phe Leu Arg Gly
100         105         110
Lys Leu Lys Leu Tyr Thr Gly Glu Ala Cys Arg Thr Gly Asp Arg Gly
115         120         125
Gly Gly Ser Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu
130         135         140
Arg Tyr Leu Leu Glu Ala Lys Glu Ala Glu Asn Ile Thr Thr Gly Cys
145         150         155         160
Ala Glu His Cys Ser Leu Asn Glu Asn Ile
 165         170

```

(2) INFORMATION FOR SEQ ID NO:123:

90

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 4 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:123:

Gly Gly Gly Ser
1

(2) INFORMATION FOR SEQ ID NO:124:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 8 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:124:

Gly Gly Gly Ser Gly Gly Gly Ser
1 5

(2) INFORMATION FOR SEQ ID NO:125:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 12 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:125:

Gly Gly Gly Ser Gly Gly Gly Ser Gly Gly Gly Ser
1 5 10

(2) INFORMATION FOR SEQ ID NO:126:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 7 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:126:

Ser Gly Gly Ser Gly Gly Ser
1 5

(2) INFORMATION FOR SEQ ID NO:127:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 5 amino acids
 (B) TYPE: amino acid
 (C) STRANDEDNESS: single
 (D) TOPOLOGY: linear

(ii) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:127:

Glu Phe Gly Asn Met
1 5

(2) INFORMATION FOR SEQ ID NO:128:

- (i) SEQUENCE CHARACTERISTICS:
 (A) LENGTH: 6 amino acids

91

- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:128:

Glu Phe Gly Gly Asn Met
 1 5

(2) INFORMATION FOR SEQ ID NO:129:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 9 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:129:

Glu Phe Gly Gly Asn Gly Gly Asn Met
 1 5

(2) INFORMATION FOR SEQ ID NO:130:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 7 amino acids
- (B) TYPE: amino acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) MOLECULE TYPE: None

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:130:

Gly Gly Ser Asp Met Ala Gly
 1 5

(2) INFORMATION FOR SEQ ID NO:131:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 27 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:131:

GCGCGCCCAT GGACAATCAC TGCTGAC

27

(2) INFORMATION FOR SEQ ID NO:132:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 15 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:132:

TCTGTCCCCCT GTCCT

15

(2) INFORMATION FOR SEQ ID NO:133:

- (i) SEQUENCE CHARACTERISTICS:
- (A) LENGTH: 43 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESS: single
- (D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:133:

92
GCGCGCAAGC TTATTATCGG AGTGGAGCAG CTGAGGCCGC ATC

43

(2) INFORMATION FOR SEQ ID NO:134:

- (i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 21 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: linear

(xi) SEQUENCE DESCRIPTION: SEQ ID NO:134:

GCCCCACCAC GCCTCATCTG T

21

WHAT IS CLAIMED IS:

93

1. A human EPO receptor agonist polypeptide,
 comprising a modified EPO amino acid sequence of the
 5 Formula:

	AlaProProArgLeuIleCysAspSerArgValLeuGluArgTyrLeuLeuGluAlaLys	
	10	20
10	GluAlaGluAsnIleThrThrGlyCysAlaGluHisCysSerLeuAsnGluAsnIleThr	
	30	40
15	ValProAspThrLysValAsnPheTyrAlaTrpLysArgMetGluValGlyGlnGlnAla	
	50	60
15	ValGluValTrpGlnGlyLeuAlaLeuLeuSerGluAlaValLeuArgGlyGlnAlaLeu	
	70	80
20	LeuValAsnSerSerGlnProTrpGluProLeuGlnLeuHisValAspLysAlaValSer	
	90	100
	GlyLeuArgSerLeuThrThrLeuLeuArgAlaLeuGlyAlaGlnLysGluAlaIleSer	
	110	120
25	ProProAspAlaAlaSerAlaAlaProLeuArgThrIleThrAlaAspThrPheArgLys	
	130	140
	LeuPheArgValTyrSerAsnPheLeuArgGlyLysLeuLysLeuTyrThrGlyGluAla	
30	150	160
	CysArgThrGlyAspArg SEQ ID NO:121	
	166	

wherein optionally 1-6 amino acids from the N-
 35 terminus and 1-5 from the C-terminus can be deleted
 from said EPO receptor agonist polypeptide;

wherein the N-terminus is joined to the C-terminus
 directly or through a linker capable of joining the
 40 N-terminus to the C-terminus and having new C- and N-
 termini at amino acids;

23-24	48-49	111-112
24-25	50-51	112-113
25-26	51-52	113-114
26-27	52-53	114-115
27-28	53-54	115-116
28-29	54-55	116-117
29-30	55-56	117-118
30-31	56-57	118-119

	⁹⁴	
31-32	57-58	119-120
32-33	77-78	120-121
33-34	78-79	121-122
34-35	79-80	122-123
35-36	80-81	123-124
36-37	81-82	124-125
37-38	82-83	125-126
38-39	84-85	126-127
40-41	85-86	127-128
41-42	86-87	128-129
43-44	87-88	129-130
44-45	88-89	130-131
45-46	108-109	131-132
46-47	109-110	respectively; and
47-48	110-111	

said EPO receptor agonist polypeptide may optionally be immediately preceded by (methionine⁻¹), (alanine⁻¹) or (methionine⁻², alanine⁻¹).

5

2. The EPO receptor agonist polypeptide, as recited in claim 1, wherein said linker is selected from the group consisting of;

10 GlyGlyGlySer SEQ ID NO:123;
 GlyGlyGlySerGlyGlyGlySer SEQ ID NO:124;
 GlyGlyGlySerGlyGlyGlySerGlyGlyGlySer SEQ ID
 NO:125;
 SerGlyGlySerGlyGlySer SEQ ID NO:126;
 15 GluPheGlyAsnMet SEQ ID NO:127;
 GluPheGlyGlyAsnMet SEQ ID NO:128;
 GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:129; and
 GlyGlySerAspMetAlaGly SEQ ID NO:130.

20 3. The EPO receptor agonist polypeptide of
 claim 1 selected from the group consisting of;
 SEQ ID NO:1; SEQ ID NO:2; SEQ ID NO:3; SEQ ID
 NO:4; SEQ ID NO:5; SEQ ID NO:6; SEQ ID NO:7;
 SEQ ID NO:8; SEQ ID NO:9; SEQ ID NO:10; SEQ ID
 25 NO:11; SEQ ID NO:12; SEQ ID NO:13; SEQ ID
 NO:14; SEQ ID NO:15; SEQ ID NO:16; SEQ ID
 NO:17; SEQ ID NO:18; SEQ ID NO:19; SEQ ID
 NO:20; SEQ ID NO:21; SEQ ID NO:22; SEQ ID
 NO:23; SEQ ID NO:24; SEQ ID NO:25; SEQ ID

95

NO:26; SEQ ID NO:27; SEQ ID NO:28; SEQ ID
NO:29; SEQ ID NO:30; SEQ ID NO:31; SEQ ID
NO:32; SEQ ID NO:33; SEQ ID NO:34; SEQ ID
NO:35; SEQ ID NO:36; SEQ ID NO:37; SEQ ID
5 NO:38; SEQ ID NO:39; SEQ ID NO:40; SEQ ID
NO:41; SEQ ID NO:42; SEQ ID NO:43; SEQ ID
NO:44; SEQ ID NO:45; SEQ ID NO:46; SEQ ID
NO:47; SEQ ID NO:48; SEQ ID NO:49; SEQ ID
NO:50; SEQ ID NO:51; SEQ ID NO:52; SEQ ID
10 NO:53; SEQ ID NO:54; SEQ ID NO:55; SEQ ID
NO:56; SEQ ID NO:57; SEQ ID NO:58; SEQ ID
NO:59 and SEQ ID NO:122.

4. The EPO receptor agonist polypeptide of
15 claim 3 wherein the linker sequence (GlyGlyGlyGlySer
SEQ ID NO:123) is replaced by a linker sequence
selected from the group consisting of;

GlyGlyGlySerGlyGlyGlySer SEQ ID NO:124;
20 GlyGlyGlySerGlyGlySerGlyGlySer SEQ ID
NO:125;
SerGlyGlySerGlyGlySer SEQ ID NO:126;
GluPheGlyAsnMet SEQ ID NO:127;
GluPheGlyGlyAsnMet SEQ ID NO:128;
25 GluPheGlyGlyAsnGlyGlyAsnMet SEQ ID NO:129; and
GlyGlySerAspMetAlaGly SEQ ID NO:130.

5. A nucleic acid molecule comprising a DNA
sequence encoding the EPO receptor agonist
30 polypeptide of claim 1.

6. A nucleic acid molecule comprising a DNA
sequence encoding the EPO receptor agonist
polypeptide of claim 2.

96

7. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 3.

5 8. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 3 selected from the group consisting of;

10 SEQ ID NO:60; SEQ ID NO:61; SEQ ID NO:62; SEQ ID NO:63; SEQ ID NO:64; SEQ ID NO:65; SEQ ID NO:66; SEQ ID NO:67; SEQ ID NO:68; SEQ ID NO:69; SEQ ID NO:70; SEQ ID NO:71; SEQ ID NO:72; SEQ ID NO:73; SEQ ID NO:74; SEQ ID NO:75; SEQ ID NO:76; SEQ ID NO:77; SEQ ID NO:78; SEQ ID NO:79; SEQ ID NO:80; SEQ ID NO:81; SEQ ID NO:82; SEQ ID NO:83; SEQ ID NO:84; SEQ ID NO:85; SEQ ID NO:86; SEQ ID NO:87; SEQ ID NO:88; SEQ ID NO:89; SEQ ID NO:90; SEQ ID NO:91; SEQ ID NO:92; SEQ ID NO:93; SEQ ID NO:94; SEQ ID NO:95; SEQ ID NO:96; SEQ ID NO:97; SEQ ID NO:98; SEQ ID NO:99; SEQ ID NO:100; SEQ ID NO:101; SEQ ID NO:102; SEQ ID NO:103; SEQ ID NO:104; SEQ ID NO:105; SEQ ID NO:106; SEQ ID NO:107; SEQ ID NO:108; SEQ ID NO:109; SEQ ID NO:110; SEQ ID NO:111; SEQ ID NO:112; SEQ ID NO:113; SEQ ID NO:114; SEQ ID NO:115; SEQ ID NO:116; SEQ ID NO:117; SEQ ID NO:118 and SEQ ID NO:119.

30 9. A nucleic acid molecule comprising a DNA sequence encoding the EPO receptor agonist polypeptide of claim 4.

35 10. A method of producing a EPO receptor agonist polypeptide comprising: growing under suitable nutrient conditions, a host cell transformed or transfected with a replicable vector comprising said nucleic acid molecule of claim 5, 6, 7, 8 or 9

97

in a manner allowing expression of said EPO receptor agonist polypeptide and recovering said EPO receptor agonist polypeptide.

5 11. A composition comprising; a EPO receptor agonist polypeptide according to claim 1, 2, 3 or 4; and a pharmaceutically acceptable carrier.

10 12. A composition comprising; a EPO receptor agonist polypeptide according to claim 1, 2, 3 or 4; a factor; and a pharmaceutically acceptable carrier.

15 13. The composition of claim 12 wherein said factor is selected from the group consisting of: GM-CSF, G-CSF, c-mpl ligand, M-CSF, IL-1, IL-4, IL-2, IL-3, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-11, IL-12, IL-13, IL-15, LIF, flt3/flk2 ligand, human growth hormone, B-cell growth factor, B-cell differentiation factor, eosinophil differentiation factor and stem cell factor, IL-3 variants, fusion proteins, G-CSF receptor agonists, c-mpl receptor agonists, IL-3 receptor agonists, multi-functional receptor agonists.

25 14. A method of stimulating the production of hematopoietic cells in a patient comprising the step of; administering a EPO receptor agonist polypeptide of claim 1, 2, 3 or 4, to said patient.

30 15. A method for selective ex vivo expansion of erythroid progenitors, comprising the steps of;
 (a) culturing erythroid progenitor cells in a culture medium, comprising; a polypeptide of claim 1, 2, 3 or 4; and

35 (b) harvesting said cultured cells.

98

16. A method for selective ex vivo expansion of erythroid progenitors, comprising the steps of;

(a) separating erythroid progenitor cells from other cells;

5 (b) culturing said separated erythroid progenitor cells with a selected culture medium comprising a polypeptide of claim 1, 2, 3 or 4; and

(c) harvesting said cultured cells.

10 17. A method for treatment of a patient having a hematopoietic disorder, comprising the steps of;

(a) removing erythroid progenitor cells;

(b) culturing said erythroid progenitor cells in a culture medium, comprising; a polypeptide of claim

15 1, 2, 3 or 4;

(c) harvesting said cultured cells; and

(d) transplanting said cultured cells into said patient.

20 18. A method for treatment of a patient having a hematopoietic disorder, comprising the steps of;

(a) removing erythroid progenitor cells;

(b) separating erythroid progenitor cells from other cells;

25 (c) culturing said separated erythroid progenitor cells with a selected culture medium comprising a polypeptide of claim 1, 2, 3 or 4;

(d) harvesting said cultured cells; and

(e) transplanting said cultured cells into said patient.

30 19. A method of claim 15 wherein said erythroid progenitor cells are isolated from peripheral blood.

35 20. A method of claim 16 wherein said erythroid progenitor cells are isolated from peripheral blood.

99

21. A method of claim 17 wherein said erythroid progenitor cells are isolated from peripheral blood.

22. A method of claim 18 wherein said erythroid progenitor cells are isolated from peripheral blood.
5

1 / 6

FIG. 1

SUBSTITUTE SHEET (RULE 26)

2 / 6

FIG.2**first step PCR amplification**

Linker start

generates "Fragment Start"

second step PCR amplification

new stop

generates "Fragment Stop"

Fragment Start

Fragment Stop

97

174 linker

linker 11

96

third step PCR amplification

anneal fragments

97

174 linker

linker 11

96

add oligos new start
and new stop

97

174

linker

11

96

3 / 6

FIG.3**SUBSTITUTE SHEET (rule 26)**

4 / 6

FIG.4

I. Construct tandemly-duplicated template

II. PCR-amplify tandemly-duplicated template

SUBSTITUTE SHEET (rule 26)

5 / 6

FIG. 5A

1 GCCCCACACCAGGCTCATCTGTGACAGGCCAGTCCTGGAGAGGTACCTCTGGAGGCCAAG
 60 CGGGGTGGTGGGAGTAGACACTGTGGCTCAGGACCTCTCCATGGAGAACCTCCGGTTC
 Ala Pro Pro Arg Leu Ile Cys Asp Ser Arg Val Leu Glu Arg Tyr Leu Leu Glu Ala Lys

61 GAGGCCGAGAATAATCACGACGGCTGTGCTGAACACTGCAGCTTGAAATGAGAAATATCACT
 120 CTCCGGCTCTTATACTGCTGCCCGACACGACTTGACGTGACGTTACTCTTATAGTGA
 Glu Ala Glu Asn Ile Thr Thr Gly Cys Ala Glu His Cys Ser Leu Asn Glu Asn Ile Thr

121 GTCCCCAGACACAAAGTTAAATTCTATGCCCTGGAAAGAGGGATGGAGGTCTGGCAGGCCAGGGCC
 180 CAGGGTCTGTGTTCAATTAAAGATAACGGACCTTACCTCCAGCCCCGTCTGGTCCGG
 Val Pro Asp Thr Lys Val Asn Phe Tyr Ala Trp Lys Arg Met Glu Val Gly Glu Glu Ala

181 GTAGAAGTCTGGCAGGGCTTGGCCCTGCTGCTGGAAAGCTGTCCTGGGGCCAGGCCCTG
 240 CATCTTCAGACCGTCCCCGGACAGGGGACAGGACAGGACAGGGACGGGGCTGGTCCGG
 Val Glu Val Trp Gln Gly Leu Ala Leu Leu Ser Glu Ala Val Leu Arg Gly Glu Ala Leu

241 TTTGGTCAACTCTTCCCAGCCGTGGAGCCCCCTGCAAGCTGCATGTGGATAAAAGCCGTCAGT
 300 AACCCAGTTGAGAAGGGTGGCACCCCTCGACAGGGACGGTACACCTATTTCGGCAGTCA
 Leu Val Asn Ser Ser Gln Pro Trp Glu Pro Leu His Val Asp Lys Ala Val Ser

6 / 6

FIG. 5B

INTERNATIONAL SEARCH REPORT

Internat Application No
PCT/US 97/18703

A. CLASSIFICATION OF SUBJECT MATTER

IPC 6	C12N15/18	C07K14/505	C07K14/52	A61K38/18	C12N5/10
					C12N5/08

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

Minimum documentation searched (classification system followed by classification symbols)

IPC 6 C07K

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

C. DOCUMENTS CONSIDERED TO BE RELEVANT

Category *	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
Y	WO 95 27732 A (US HEALTH ;PASTAN IRA (US); KREITMAN ROBERT J (US)) 19 October 1995 see abstract; claims 1-51; figures SEQ.54-57 ---	1-13,15, 16,19-22
Y	WO 92 06116 A (ORTHO PHARMA CORP) 16 April 1992 see page 2, paragraph 3; claims 1-26; figure SEQ.3 ---	1-13,15, 16,19-22
A	VIGUERA AR ET AL: "The order of secondary structure elements does not determine the structure of a protein but does affect its folding kinetics." J MOL BIOL, APR 7 1995, 247 (4) P670-81, ENGLAND, XP002056595 cited in the application see the whole document ---	1-11
	-/--	

Further documents are listed in the continuation of box C.

Patent family members are listed in annex.

* Special categories of cited documents :

- *A* document defining the general state of the art which is not considered to be of particular relevance
- *E* earlier document but published on or after the international filing date
- *L* document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified)
- *O* document referring to an oral disclosure, use, exhibition or other means
- *P* document published prior to the international filing date but later than the priority date claimed

T later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention

X document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone

Y document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art.

& document member of the same patent family

2

Date of the actual completion of the international search

23 February 1998

Date of mailing of the international search report

11.03.98

Name and mailing address of the ISA

European Patent Office, P.O. 5818 Patentlaan 2
NL - 2280 HV Rijswijk
Tel. (+31-70) 340-2040, Tx. 31 651 epo nl,
Fax: (+31-70) 340-3016

Authorized officer

Gurdjian, D

INTERNATIONAL SEARCH REPORT

Internal Application No	PCT/US 97/18703
-------------------------	-----------------

C.(Continuation) DOCUMENTS CONSIDERED TO BE RELEVANT		
Category	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	HORLICK R A ET AL: "PERMUTEINS OF INTERLEUKIN 1 BETA-A SIMPLIFIED APPROACH FOR THE CONSTRUCTION OF PERMUTATED PROTEINS HAVING NEW TERMINI" PROTEIN ENGINEERING, vol. 5, no. 5, 1992, pages 427-431, XP002022097 see the whole document ---	1-13
A	KREITMAN R J ET AL: "A CIRCULARLY PERMUTED RECOMBINANT INTERLEUKIN 4 TOXIN WITH INCREASED ACTIVITY" PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, no. 15, July 1994, pages 6889-6893, XP002022099 see the whole document ---	1-13
A	WO 95 21197 A (SEARLE & CO ;BAUER CHRISTOPHER S (US); ABRAMS MARK ALLEN (US); BRA) 10 August 1995 see page 1 - page 33 -----	1-13,15, 16,19-22

2

INTERNATIONAL SEARCH REPORT

Inte. n.ional application No.
PCT/US 97/18703

Box I Observations where certain claims were found unsearchable (Continuation of Item 1 of first sheet)

This International Search Report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:

1. Claims Nos.:
because they relate to subject matter not required to be searched by this Authority, namely:
see FURTHER INFORMATION sheet PCT/ISA/210
2. Claims Nos.:
because they relate to parts of the International Application that do not comply with the prescribed requirements to such an extent that no meaningful International Search can be carried out, specifically:
3. Claims Nos.:
because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).

Box II Observations where unity of invention is lacking (Continuation of Item 2 of first sheet)

This International Searching Authority found multiple inventions in this international application, as follows:

1. As all required additional search fees were timely paid by the applicant, this International Search Report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this International Search Report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this International Search Report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:

Remark on Protest

- The additional search fees were accompanied by the applicant's protest.
 No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International Application No. PCT/US 97/18703

FURTHER INFORMATION CONTINUED FROM PCT/ISA/ 210

Remark : Although claims 14 17 18 are directed to a method of treatment of the human/animal body , the search has been carried out and based on the alleged effects of the compound/composition.

INTERNATIONAL SEARCH REPORT

Information on patent family members

Internal ref.	Application No.
PCT/US 97/18703	

Patent document cited in search report	Publication date	Patent family member(s)		Publication date
WO 9527732 A	19-10-95	US 5635599 A		03-06-97
		AU 2285795 A		30-10-95
		CA 2187283 A		19-10-95
		EP 0754192 A		22-01-97
-----	-----	-----	-----	-----
WO 9206116 A	16-04-92	AU 1157695 A		13-04-95
		AU 8735991 A		28-04-92
		CA 2069746 A		29-03-92
		EP 0503050 A		16-09-92
		JP 5502463 T		28-04-93
		ZA 9107766 A		29-03-93
-----	-----	-----	-----	-----
WO 9521197 A	10-08-95	AU 1680595 A		21-08-95
		EP 0742796 A		20-11-96
		JP 9508524 T		02-09-97
-----	-----	-----	-----	-----