Numerical Methods I MATH-GA 2010.001/CSCI-GA 2420.001

Benjamin Peherstorfer Courant Institute, NYU

Based on slides by G. Stadler and A. Donev

Today

Last time

Interpolation

Today

- Solving systems of nonlinear equations
- Bisection method
- Newton method

Announcements

► Homework 6 posted and is due Mon, Dec 5 before class

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have $n < \infty$ equations in n unknowns with $f : \mathbb{R}^n \to \mathbb{R}^n$

$$f(x) = 0$$

In general, we will need an iterative approach that constructs x_1, x_2, x_3, \ldots such that

$$\lim_{k\to\infty}x_k=x^*\,,$$

with $f(x^*) = 0$.

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have $n < \infty$ equations in n unknowns with $f : \mathbb{R}^n \to \mathbb{R}^n$

$$f(x) = 0$$

In general, we will need an iterative approach that constructs x_1, x_2, x_3, \ldots such that

$$\lim_{k\to\infty}x_k=x^*\,,$$

with $f(x^*) = 0$.

What are important properties of a method for solving nonlinear equations?

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have $n < \infty$ equations in n unknowns with $f : \mathbb{R}^n \to \mathbb{R}^n$

$$f(x) = 0$$

In general, we will need an iterative approach that constructs x_1, x_2, x_3, \ldots such that

$$\lim_{k\to\infty}x_k=x^*\,,$$

with $f(x^*) = 0$.

What are important properties of a method for solving nonlinear equations?

▶ Does it converge? From which starting point x_0 ?

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have $n < \infty$ equations in n unknowns with $f : \mathbb{R}^n \to \mathbb{R}^n$

$$f(x) = 0$$

In general, we will need an iterative approach that constructs x_1, x_2, x_3, \ldots such that

$$\lim_{k\to\infty}x_k=x^*\,,$$

with $f(x^*) = 0$.

What are important properties of a method for solving nonlinear equations?

- \triangleright Does it converge? From which starting point x_0 ?
- How quickly does it converge?

We want to solve the nonlinear equation

$$f(x) = 0, \quad x \in \mathbb{R}.$$

We could also have $n < \infty$ equations in n unknowns with $f: \mathbb{R}^n \to \mathbb{R}^n$

$$f(x) = 0$$

In general, we will need an iterative approach that constructs x_1, x_2, x_3, \ldots such that

$$\lim_{k\to\infty}x_k=x^*\,,$$

with $f(x^*) = 0$.

What are important properties of a method for solving nonlinear equations?

- \triangleright Does it converge? From which starting point x_0 ?
- ► How quickly does it converge?
- How expensive is each step?

Bisection method

The bisection method exploits that given a continuous function $f:[a,b]\to\mathbb{R}$, such that f(a)f(b)<0, there exists $x^*\in(a,b)$ with $f(x^*)=0$

- ightharpoonup Assumption: f is continuous over [a, b] (very weak assumption!)
- We have chosen a reasonable interval [a, b] so that there exists a solution $x^* \in (a, b)$ with $f(x^*) = 0$

Convolgence:
$$\int_{R} = \left[\exists e_{1} \ b_{n} \right]$$

$$e_{q} = \times_{R} - \times^{*} \qquad \left[\int_{R} |e_{1}| = b_{n} - a_{q}| = \frac{b - a}{2^{q}} \right]$$

$$|e_{q}| = |x_{q} - x^{*}| \leq \frac{1}{2} |f_{q}| = \frac{b - a}{2^{q+1}}$$

$$\lim_{q \to \infty} |e_{q}| = 0$$

Bisection method

The bisection method exploits that given a continuous function $f:[a,b]\to\mathbb{R}$, such that f(a)f(b)<0, there exists $x^*\in(a,b)$ with $f(x^*)=0$

- ightharpoonup Assumption: f is continuous over [a, b] (very weak assumption!)
- We have chosen a reasonable interval [a, b] so that there exists a solution $x^* \in (a, b)$ with $f(x^*) = 0$

Set $a_0 = a, b_0 = b, x_0 = (a + b)/2$ and iterate for k = 0, 1, 2, 3, ... as follows:

- 1. Set $a_{k+1} = a_k$, $b_{k+1} = x_k$ if $f(x_k)f(a_k) < 0$
- 2. Set $a_{k+1} = x_k, b_{k+1} = b_k$ if $f(x_k)f(b_k) < 0$
- 3. Set $x_{k+1} = (a_{k+1} + b_{k+1})/2$
- 4. Terminate if $|b_{k+1} a_{k+1}| \le \epsilon$

Visualization → board

Numerical example

Experiment: Solve $f(x) = x^2 - c = 0$ over [0.5, 1.5] with c = 0.81 and $x_0 = 1$

```
1: a = 0.5; b = 1.5; c = 0.81; xStar = sqrt(c);
2: f = Q(x)x^2 - c:
3: x = (a + b)/2;
4:
5: res = [x, xStar];
6: for k=1:20
7: if(f(a)*f(x) < 0)
8: b = x;
9: else
10: a = x;
11: end
12: x = (a + b)/2;
13: res(end + 1, :) = [x, xStar]:
14: end
```

1:	1.0000e+00	9.0000e-01
2:	7.5000e-01	9.0000e-01
3:	8.7500e-01	9.0000e-01
4:	9.3750e-01	9.0000e-01
5:	9.0625e-01	9.0000e-01
6:	8.9062e-01	9.0000e-01
7:	8.9844e-01	9.0000e-01
8:	9.0234e-01	9.0000e-01
9:	9.0039e-01	9.0000e-01
10:	8.9941e-01	9.0000e-01
11:	8.9990e-01	9.0000e-01
12:	9.0015e-01	9.0000e-01
13:	9.0002e-01	9.0000e-01
14:	8.9996e-01	9.0000e-01
15:	8.9999e-01	9.0000e-01
16:	9.0001e-01	9.0000e-01
17:	9.0000e-01	9.0000e-01

- Bisection is a slow but sure method.
- ▶ It uses no information about the value of the function or its derivatives only the sign
- ► There are variants that achieve faster convergence \rightsquigarrow textbook by Quarterioni
- ► How can we achieve faster convergence in general?

- Bisection is a slow but sure method.
- ▶ It uses no information about the value of the function or its derivatives only the sign
- ► There are variants that achieve faster convergence \rightsquigarrow textbook by Quarterioni
- ► How can we achieve faster convergence in general?

 information, at least the function value instead of just the sign

More general formulation via fixed point iterations

Reformulation as fixed point method so that x^* is fixed point

$$x^* = \Phi(x^*)$$

Corresponding iteration: Choose x_0 (initialization) and compute $x_1, x_2, ...$ from

$$x_{k+1} = \Phi(x_k)$$

We now want to study when this iteration converges to x^* with $f(x^*) = 0$

Convergence of fixed point methods

A mapping $\Phi:[a,b]\to\mathbb{R}$ is called contractive on [a,b] if there is a $0\leq\Theta<1$ such that

$$|\Phi(x) - \Phi(y)| \le \Theta|x - y|$$
 for all $x, y \in [a, b]$.

If Φ is continuously differentiable on [a, b], then

$$\Theta = \sup_{x,y \in [a,b]} \frac{|\Phi(x) - \Phi(y)|}{|x - y|} = \sup_{z \in [a,b]} |\Phi'(z)|$$

Convergence of fixed point methods

Let $\Phi : [a, b] \rightarrow [a, b]$ be contractive with constant $\Theta < 1$. Then:

- ▶ There exists a unique fixed point \bar{x} with $\bar{x} = \Phi(\bar{x})$
- ightharpoonup For any starting guess x_0 in [a,b], the fixed point iteration converges to \bar{x} and

$$|x_{k+1} - x_k| \le \Theta |x_k - x_{k-1}|$$
 (linear convergence)

and

$$|\bar{x}-x_k|\leq \frac{\Theta^k}{1-\Theta}|x_1-x_0|.$$

The second expression allows to estimate the required number of iterations.

→ board

For
$$dl \times_0 \in I$$
, $\times_{0_1} \times_{1_1} \times_{2_1} \dots$

$$|\times_{Q_{+1}} - \times_{Q}| = |(\phi(x_q) - \phi(x_{q-1})| \le 0 |x_{Q} - x_{q-1}|)$$
By induction
$$|\times_{Q_{+1}} - \times_{Q}| \le 0^{Q_{-1}} |x_{1} - x_{0}|$$

$$|\times_{Q_{+1}} - \times_{Q}| \le |\times_{Q_{+1}} - \times_{Q_{+1}} + |x_{1} - x_{0}|$$

$$|\times_{Q_{+1}} - \times_{Q_{-1}}| \le (0^{Q_{+1}} + |x_{1} - x_{0}|)$$

$$|\times_{Q_{+1}} - \times_{Q_{-1}}| + |x_{1} - x_{0}|$$

$$|\times_{Q_{-1}} - \times_{Q_{-1}}| + |x_{1} - x_{0}|$$

$$|\times_{Q_{-1}} - \times_{Q_{-1}}| + |x_{1} - x_{0}|$$

$$|\times_{Q_{-1}} - \times_{Q_{-1}}| + |x_{1} - x_{1}|$$

$$|\times_{Q_{-1}} - \times_{Q_{-1}}| + |x_{1} - x_{2}|$$

$$|\times_{Q_{-1}} - \times_{Q_{-1}}| + |x_$$

Assume there are two fit points x^*, y^* $0 \le (x^* - y^*) = (\phi(x^*) - \phi(y^*)) \le \Theta(x^* - y^*)$ $(x^* - y^*) = 0$

Newton's method

What is the standard approach in numerics when we encounter a nonlinear problem?

Newton's method

What is the standard approach in numerics when we encounter a nonlinear problem?

→ we linearize

→ board

In one dimension, solve f(x) = 0:

Start with x_0 , and compute x_1, x_2, \ldots from

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$$

Requires $f(x_k) \neq 0$ to be well-defined (i.e., tangent has nonzero slope).

In one dimension, solve f(x) = 0:

Start with x_0 , and compute $x_1, x_2, ...$ from

$$x_{k+1} = x_k - \frac{f(x_k)}{f'(x_k)}, \quad k = 0, 1, \dots$$

Requires $f(x_k) \neq 0$ to be well-defined (i.e., tangent has nonzero slope).

Experiment: Solve $f(x) = x^2 - c = 0$ with c = 0.81 and $x_0 = 1$

$$\phi(x) = x - \frac{f(x)}{f'(x)} = x - \frac{x^2 - c}{2x} = x - \frac{x}{2} + \frac{c}{2x} = \frac{1}{2} \left(x + \frac{c}{x} \right)$$

Iterations

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{c}{x_k} \right)$$

```
1: format longE
2: c = 0.81;
3: xStar = sqrt(c);
4: x = 1;
5: res = [x, xStar];
6. for i = 1:4
       x = 0.5*(x + c/x);
       res(end + 1, :) = [x, xStar];
9: end
10: res
```

```
1: res =
2:
    1.000000000000000e+00
                                 9.00000000000000e-01
3:
       9.05000000000000e-01
                                 9.00000000000000000e-01
4:
       9.000138121546961e-01
                                 9.00000000000000e-01
5:
      9.00000001059849e-01
                                 9.00000000000000e-01
6:
       9.00000000000000e-01
                                 9.00000000000000e-01
```

→ very quick convergence; certainly faster than linear convergence.

Newton's method

Let $F: \mathbb{R}^n \to \mathbb{R}^n$, $n \ge 1$ and solve

$$F(\mathbf{x})=0.$$

Truncated Taylor expansion of F about starting point x^0 :

$$F(\mathbf{x}) \approx F(\mathbf{x}^0) + F'(\mathbf{x}^0)(\mathbf{x} - \mathbf{x}^0).$$

Hence:

$$x^1 = x^0 - F'(x^0)^{-1}F(x^0)$$

Newton iteration: Start with $\mathbf{x}^0 \in \mathbb{R}^n$, and for $k = 0, 1, \ldots$ compute

$$F'(\mathbf{x}^k)\Delta \mathbf{x}^k = -F(\mathbf{x}^k), \quad \mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k$$

Requires that $F'(\mathbf{x}^k) \in \mathbb{R}^{n \times n}$ is invertible.

Newton's method

Newton iteration: Start with $\mathbf{x}^0 \in \mathbb{R}^n$, and for $k = 0, 1, \ldots$ compute

$$F'(\mathbf{x}^k)\Delta\mathbf{x}^k = -F(\mathbf{x}^k), \quad \mathbf{x}^{k+1} = \mathbf{x}^k + \Delta\mathbf{x}^k$$

Equivalently:

$$\mathbf{x}^{k+1} = \mathbf{x}^k - F'(\mathbf{x}^k)^{-1}F(\mathbf{x}^k)$$

Newton's method is affine invariant, that is, the sequence is invariant to affine transformations → board

Solve F(x)=0 equivolent to solving $AF(x)=0 \qquad A \in \mathbb{N}^{n\times n}, \text{ regular}$

$$G(x) = AF(x)$$

$$7_{R+1} = Y_{R} - G'(Y_{R})^{-1}G(Y_{R})$$

$$= Y_{R} - (AF'(Y_{R}))^{-1}(AF(Y_{R}))$$

$$= Y_{R} - I^{-1}(Y_{R})^{-1}A^{-1}A^{-1}A^{-1}(Y_{R})$$

$$= Y_{R} - I^{-1}(Y_{R})^{-1}A$$

Convergence of Newton's method

Assumptions on $F: D \subset \mathbb{R}^n$ open and convex, $F: D \to \mathbb{R}^n$ continuously differentiable with F'(x) invertible for all x, and there exists $\omega \geq 0$ such that

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\| \leq s\omega \|\mathbf{v}\|^2$$

for all $s \in [0,1]$, $\boldsymbol{x} \in D$, $\boldsymbol{v} \in \mathbb{R}^n$ with $\boldsymbol{x} + \boldsymbol{v} \in D$.

Assumptions on x^* and x^0 : There exists a solution $x^* \in D$ and a starting point $x^0 \in D$ such that

$$ho:=\|oldsymbol{x}^*-oldsymbol{x}^0\|\leq rac{2}{\omega} ext{ and } B_
ho(oldsymbol{x}^*)\subset D$$

where

$$B_{\rho}(\mathbf{x}^*) = \{ \mathbf{y} \in \mathbb{R}^n \, | \, \|\mathbf{y} - \mathbf{x}^*\| < \rho \}$$

Q: Meaning of ω ?

Theorem: Under the assumptions of the previous slide, the Newton sequence \mathbf{x}^k stays in $B_{\rho}(\mathbf{x}^*)$ and $\lim_{k\to\infty}\mathbf{x}^k=\mathbf{x}^*$, and

$$\|\mathbf{x}^{k+1} - \mathbf{x}^*\| \le \frac{\omega}{2} \|\mathbf{x}^k - \mathbf{x}^*\|^2$$

Moreover, the solution x^* is unique in $B_{2/\omega}(x^*)$.

Proof: → board

•
$$\|F'(x)^{-1}(F'(x+Sv)-F'(x)))v\|_{2} \leq Sw\|\|v\|_{2}^{2}$$

 $\forall s \in [0,1]$ $(x+v \in D)$

$$\int_{0}^{1} \left[F'(x + s(y - x)) - F'(x) \right] (y - x) ds$$

$$= F(y) - F(x) - F'(x)(y - x)$$

$$\|F'(x)^{-1}[F(x)-F(x)-F'(x)(x-x)]\| =$$

$$=\|\int_{0}^{1} F'(x)^{-1}[F'(x)-F'(x)(x-x)] - F'(x)[(y-x)]ds\|$$

$$\leq \int_{0}^{1} \| ds - \int_{0}^{1} | ds - \int_{0$$

Convoigence;

Now show that {xx} remains in Bp(x*)

 $0 < \|x^{q} - x^{*}\| \leq \|x^{+} - x^{0}\| = p$

 $||x^{2+1}-x^{+}|| \leq \frac{|w||}{2}||x^{2}-x^{+}|| ||x^{2}-x^{-}||$ $\leq \frac{|w||}{2}$ Assumptions

 $\rho = \{|x^4 - x^0|\} < \frac{2}{\omega}$

() P= <1

 $\|x^{*} - x^{*+1}\| < \|x^{*} - x^{*}\| \leq \rho$ {xn} remains in Bp(x*) CD

Solution
$$x^{*}$$
 is unique in Be_w (x*)

Let $x^{**} \in B_{2w}(x^{*})$: $f(x^{**}) = 0$
 $||x^{*} - x^{*}|| \le ||x^{*}|| \le ||x$

(1 x - x 1 = 0

Theorem: Under the assumptions of the previous slide, the Newton sequence \mathbf{x}^k stays in $B_{\rho}(\mathbf{x}^*)$ and $\lim_{k\to\infty}\mathbf{x}^k=\mathbf{x}^*$, and

$$\|\mathbf{x}^{k+1} - \mathbf{x}^*\| \le \frac{\omega}{2} \|\mathbf{x}^k - \mathbf{x}^*\|^2$$

Moreover, the solution x^* is unique in $B_{2/\omega}(x^*)$.

Proof: → board

Summary: The Newton method converges locally and quadratically.

Role of initialization

Choice of initialization x^0 is critical. Depending on the initialization, the Newton iteration might

- not converge (it could "blow up" or "oscillate" between two points)
- converge to different solutions
- ► fail cause it hits a point where the Jacobian is not invertible (this cannot happen if the conditions of the convergence theorem are satisfied)

Sometimes, continuation ideas must be used to find good initializations: Solve simpler problems first and use solution as starting point for harder problems.

The "more nonlinear" a problem, the harder it is to solve.

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\| \leq s\omega \|\mathbf{v}\|^2$$

Very nonlinear $\rightsquigarrow F'(x)$ changes a lot $\rightsquigarrow \omega$ large (need x_0 closers to x^* required)

The "more nonlinear" a problem, the harder it is to solve.

$$||F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}|| \leq s\omega ||\mathbf{v}||^2$$

Very nonlinear $\rightsquigarrow F'(x)$ changes a lot $\rightsquigarrow \omega$ large (need x_0 closers to x^* required)

Computation of Jacobian can be costly/complicated \rightsquigarrow sometimes approximate $F'(x^k)$

The "more nonlinear" a problem, the harder it is to solve.

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\| \leq s\omega \|\mathbf{v}\|^2$$

Very nonlinear $\rightsquigarrow F'(x)$ changes a lot $\rightsquigarrow \omega$ large (need x_0 closers to x^* required)

Computation of Jacobian can be costly/complicated \rightarrow sometimes approximate $F'(x^k)$

There's no reliable black-box solver for nonlinear problems; at least for higher-dimensional problems, the structure of the problem must be taken into account.

The "more nonlinear" a problem, the harder it is to solve.

$$\|F'(\mathbf{x})^{-1}(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\| \leq s\omega \|\mathbf{v}\|^2$$

Very nonlinear $\rightsquigarrow F'(x)$ changes a lot $\rightsquigarrow \omega$ large (need x_0 closers to x^* required)

Computation of Jacobian can be costly/complicated \rightarrow sometimes approximate $F'(x^k)$

There's no reliable black-box solver for nonlinear problems; at least for higher-dimensional problems, the structure of the problem must be taken into account.

"Classification of mathematical problems as linear and nonlinear is like classification of the Universe as bananas and non-bananas."

Overview

Nonlinear least squares—Gauss-Newton

Nonlinear least-squares problems

Assume a least squares problem, where the parameters x do *not* enter linearly into the model.

Instead of

$$\min_{\boldsymbol{x}\in\mathbb{R}^n}\|A\boldsymbol{x}-\boldsymbol{b}\|^2,$$

we have with $F:D\to\mathbb{R}^n$, $D\subset\mathbb{R}^n$:

$$\min_{\mathbf{x} \in \mathbb{R}^n} g(\mathbf{x}) := \frac{1}{2} \|F(\mathbf{x})\|^2$$
, where $F(\mathbf{x})_i = \varphi(t_i, \mathbf{x}) - b_i, 1 \le i \le m$

The (local) minimum x^* of this optimization problem satisfies:

$$g'(x) = 0$$
, $g''(x)$ is positive definite.

Nonlinear least-squares problems

The derivative of $g(\cdot)$ is

$$G(\mathbf{x}) := g'(\mathbf{x}) = F'(\mathbf{x})F(\mathbf{x})$$

Setting $G(\mathbf{x}) = 0$ gives a nonlinear system in \mathbf{x} , $G: D \to \mathbb{R}^n$.

Let's try to solve it G(x) = 0 using Newton's method:

$$G'(\mathbf{x}^k)\Delta\mathbf{x}^k = -G(\mathbf{x}^k), \quad \mathbf{x}^{k+1} = \mathbf{x}^k + \Delta\mathbf{x}^k$$

where

$$G'(\mathbf{x}) = F'(\mathbf{x})^T F'(\mathbf{x}) + F''(\mathbf{x})^T F(\mathbf{x})$$
 Hessian of g (objective)

 \rightsquigarrow second-order information of F enters through $F''(X)^T$

Nonlinear least-squares problems

If the data is compatible with the model, which means that the model can perfectly fit the data with zero training error, then $F(x^*) = 0$

Then, term involving $F''(x^*)$ drops out in $G'(x^*)$ anyway as we move towards x^* .

If $||F(x^*)||$ is small, and thus data *almost* compatible with model, then neglecting that term might not make the convergence much slower.

Also, it's expensive to compute F''(x)

Nonlinear least-squares problems—Gauss-Newton

The resulting Newton method for the nonlinear least squares problem is called Gauss-Newton method: Initialize x^0 and for k = 0, 1, ... solve

$$F'(\mathbf{x}^k)^T F'(\mathbf{x}^k) \Delta \mathbf{x}^k = -F'(\mathbf{x}^k)^T F(\mathbf{x}^k) \quad \text{(solve)}$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k. \quad \text{(update step)}$$

Nonlinear least-squares problems—Gauss-Newton

The resulting Newton method for the nonlinear least squares problem is called Gauss-Newton method: Initialize x^0 and for k = 0, 1, ... solve

$$F'(\mathbf{x}^k)^T F'(\mathbf{x}^k) \Delta \mathbf{x}^k = -F'(\mathbf{x}^k)^T F(\mathbf{x}^k) \quad \text{(solve)}$$

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \Delta \mathbf{x}^k. \quad \text{(update step)}$$

The solve step is the normal equation for the linear least squares problem

$$\min_{\Delta x} \|F'(\mathbf{x}^k) \Delta \mathbf{x}^k + F(\mathbf{x}^k)\|. \tag{2}$$

so we better solve (2) rather than directly (1)

Convergence of Gauss-Newton method

Assumptions on $F: D \subset \mathbb{R}^n$ open and convex, $F: D \to \mathbb{R}^m$, $m \ge n$ continuously differentiable with $F'(\mathbf{x})$ has full rank for all \mathbf{x} , and let $\omega \ge 0, 0 \le \kappa^* < 1$ such that

$$\|F'(\mathbf{x})^+(F'(\mathbf{x}+s\mathbf{v})-F'(\mathbf{x}))\mathbf{v}\| \leq s\omega \|\mathbf{v}\|^2$$

for all $s \in [0,1]$, $x \in D$, $v \in \mathbb{R}^n$ with $x + v \in D$.

Assumptions on x^* and x^0 : Assume there exists a solution $x^* \in D$ of the least squares problem and a starting point $x^0 \in D$ such that

$$||F'(\mathbf{x})^+ F(\mathbf{x}^*)|| \le \kappa^* ||\mathbf{x} - \mathbf{x}^*||$$

$$\rho := ||\mathbf{x}^* - \mathbf{x}^0|| \le \frac{2(1 - \kappa^*)}{2} := \sigma$$

Theorem: Then, the sequence \mathbf{x}^k stays in $B_{\rho}(\mathbf{x}^*)$ and $\lim_{k\to\infty}\mathbf{x}^k=\mathbf{x}^*$, and

$$\|\mathbf{x}^{k+1} - \mathbf{x}^*\| \le \frac{\omega}{2} \|\mathbf{x}^k - \mathbf{x}^*\|^2 + \underbrace{\kappa^* \|\mathbf{x}^k - \mathbf{x}^*\|}_{\kappa^* \|\mathbf{x}^k - \mathbf{x}^*\|}$$

 \rightsquigarrow linear convergence if $\kappa^* > 0!$

 \rightsquigarrow we usually want to choose models that are "almost compatible" which means κ^* is often very small

Conclusions

- ► Solving nonlinear systems of equations ("root finding") is iterative in nature in general
- ► The order of convergence matters; quadratic is good enough but mind costs per step
- ▶ Newton's method is second order but requires derivatives/Jacobian evaluations.
- In higher dimensions, a good initial guess is critical for Newton's method
- ► There are many variants of Newton's method (e.g., Quasi-Newton methods) that avoid the computational costs of computing the Jacobian
- (Machine learning is using first-order methods only anyway...)