DEHB-WS: Joint Architecture and Hyperparameter Search with Weight Sharing

Zahra Padar¹, Sharat Patil¹, Sai Prasanna¹ {padarz, patilsh, ramans}@cs.uni-freiburg.de ¹University of Freiburg

1. Motivation

- Joint architecture (NAS) and hyperparameter (HPO) search has been shown to be essential for obtaining strong performance in deep neural networks.
- Weight sharing allows for faster search in NAS.
- Idea
 - Multi-fidelity optimization over joint architecture and hyperparameter space.
 - Using the Differential Evolution HyperBand algorithm.
 - Sampling architectural blocks from a shared supernet.

2.Approach

Supernet

- Once for All Supernet based CNN weight sharing.
- Subnet architectures inherit weights and get trained independently.
- Supernet is updated by averaging subnet weights.

DEHB - WS

- Differential Evolution (DE) component is not modified.
- Cumulative budgets are used in the Successive Halving (SH) brackets.
- Supernet update happens at the end of every SH rung using the DE selected configurations subnets.

Inherit and Finetune

- Incumbent architecture inherits the supernet weights.
- The model is finetuned using the incumbent hyperparameters.

3.Search Space

JAHS-Bench-201 Search Space Space Description **Property** Cell Search NAS-Bench-201 Architecture Space ReLU/Hardswish/Mish Activation **Hyperparameter** 10^{-3} - 10^{0} Learning Rate 10⁻⁵-10⁻² Weight Decay On/Off Trivial Augment **Fidelity Epoch** 0-200

- Fidelities for width and depth are set to maximum.
- NAS-Bench-201: 1x1 and 3x3 kernels do not share weights.

4.Experiments

Baselines

- Fixed CNN without Auto ML
- Vanilla **DEHB**
- SMAC4MF
- **JAHS-Bench-201** is queried for DEHB, SMAC4MF baselines and the final evaluations (Retrain 50)
- JAHS-Bench-201 training and evaluation pipeline are duplicated and used in DEHB-WS.
- **Dataset**: Upscaled 32x32 Fashion-MNIST used in JAHS-Bench-201.
- Function evaluations are used as the stopping criterion.

5. Results & Key Insights

Search performance:

DEHB-WS has the lowest validation regret (score) during search.

Effect of Inheriting weights + Finetuning:

• DEHB-WS incumbents achieve the best test accuracy, with inheritance + finetuning vs. trained from scratch.

Approach	Test Acc. (3 seeds)
Fixed CNN Baseline	90.45 ± 0.47
DEHB (Retrain 50)	92.62 ± 0.80
SMAC4MF (Retrain 50)	91.01 ± 1.46
DEHB-WS (Retrain 50)	92.11 ± 0.73
DEHB-WS (Inherit+Finetune 10)	92.43 ± 1.52
DEHB-WS (Inherit+Finetune 15)	93.37 ± 1.16

Approach	Val. Regret (3 seeds)
DEHB	0.0762±0.0048
SMAC4MF	0.0746±0.01
DEHB-WS	0.0675±.0086

Faster Search:

DEHB-WS reaches lower validation regret in fewer epochs vs DEHB.

Better-performing Incumbents overall:

 DEHB-WS incumbents -with or without weight inheritance- reach lower validation regret vs. DEHB's.

