# V5b AES-GCM

#### **AUTHENTICATED ENCRYPTION**

CRYPTO 101: Building Blocks

©Alfred Menezes cryptography101.ca

#### Overview

NIST Special Publication 800-38D
November, 2007

Recommendation for Block
Cipher Modes of Operation:
Galois/Counter Mode (GCM)
and GMAC

National Institute of
Standards and Technology

Morris Dworkin

- \* AES-GCM is an authenticated encryption scheme designed by David McGrew and John Viega in 2004.
- \* Adopted as a NIST standard (SP 800-38D) in 2007.
- Uses the CTR mode of encryption and GMAC, a custom-designed MAC scheme.



# CTR: CounTeR mode of encryption

Let  $k \in_R \{0,1\}^{128}$  be the secret key shared by Alice and Bob. Let  $M = (M_1, M_2, ..., M_u)$  be a plaintext message, where each  $M_i$  is a 128-bit block and  $u \le 2^{32} - 2$ .

#### To encrypt *M*, Alice does the following:

- 1. Select a nonce  $IV \in \{0,1\}^{96}$ .
- 2. Let  $J_0 = IV || 0^{31} || 1$ .
- 3. For *i* from 1 to *u* do:  $J_i \leftarrow J_{i-1} + 1 \text{ and compute}$   $C_i = \text{AES}_k(J_i) \oplus M_i.$
- 4. Send  $(IV, C_1, C_2, ..., C_u)$  to Bob.

To decrypt, Bob does the following:

- 1. Let  $J_0 = IV || 0^{31} || 1$ .
- 2. For *i* from 1 to *u* do:  $J_i \leftarrow J_{i-1} + 1$  and compute  $M_i = AES_k(J_i) \oplus C_i$ .

### Notes on CTR mode

- 1. CTR mode of encryption can be viewed as a stream cipher.
- 2. As was the case with CBC encryption, identical plaintexts with different IVs result in different ciphertexts.
- 3. It is critical that the IV should not be repeated, but this can be difficult to achieve in practice.
- 4. Unlike CBC encryption, CTR encryption is parallelizable.
- 5. Note that AES<sup>-1</sup> is not used.
- 6. The secret key can have bitlength 128, 192 or 256.

# Multiplying blocks

- + Let  $a=a_0a_1a_2...a_{127}$  be a 128-bit block. We associate the binary polynomial  $a(x)=a_0+a_1x+a_2x^2+\cdots+a_{127}x^{127}\in\mathbb{Z}_2[x]$  with a.
- + Let  $f(x) = 1 + x + x^2 + x^7 + x^{128}$ .



Évariste Galois

- \* If a and b are 128-bit blocks, then define  $c = a \cdot b$  to be the block corresponding to the polynomial  $c(x) = a(x) \cdot b(x) \mod f(x)$ .
  - \* That is, c(x) is the remainder upon dividing  $a(x) \cdot b(x)$  by f(x) in  $\mathbb{Z}_2[x]$ .
  - \* This is multiplication in the Galois field  $GF(2^{128})$ .

## Galois Message Authentication Code (GMAC)

- \* Let  $A = (A_1, A_2, ..., A_v)$ , where each  $A_i$  is a 128-bit block.
- \* Let *L* be the bitlength of *A* (encoded as a 128-bit block).
- + Let  $k \in_R \{0,1\}^{128}$  be the secret key.
- 1. Let  $J_0 = IV || 0^{31} || 1$ , where  $IV \in \{0,1\}^{96}$  is a nonce.
- 2. Compute  $H = AES_k(0^{128})$ .
- 3. Let  $f_A(x) = A_1 x^{\nu+1} + A_2 x^{\nu} + \dots + A_{\nu-1} x^3 + A_{\nu} x^2 + Lx \in GF(2^{128})[x]$ .
- 4. Compute the authentication tag  $t = AES_k(J_0) \oplus f_A(H)$ .
- 5. Send (*IV*, *A*, *t*).

# Computing $f_A(H)$ using Horner's rule

- \* Example: Let  $A = (A_1, A_2, A_3)$ .
  - + Then  $f_A(x) = A_1 x^4 + A_2 x^3 + A_3 x^2 + Lx$ .
  - + Hence,  $f_A(H) = A_1H^4 + A_2H^3 + A_3H^2 + LH$ .
  - \*  $f_A(H)$  can be computed using Horner's rule:  $f_A(H) = ((((((A_1 \cdot H) + A_2) \cdot H) + A_3) \cdot H) + L) \cdot H.$
  - \* This requires three additions and four multiplications in  $GF(2^{128})$ .
- \* In general, if *A* has blocklength *v*, then computing  $f_A(H)$  using Horner's rule requires *v* additions and v + 1 multiplications in  $GF(2^{128})$ .

## Security argument

- + Consider the simplified tag:  $t' = f_A(H)$ .
  - \* An adversary can guess the tag t' of a message A with success probability  $\frac{1}{2^{128}}$ .
  - \* She can also guess the tag t' by making a guess H' for H and computing  $f_A(H')$ . Her success probability is at most  $\frac{v+1}{2^{128}}$ , where v is the blocklength of A.
  - \* However, if the adversary sees a single valid message-tag pair (A, t'), she can solve the polynomial equation  $f_A(H) = t'$  for H.
- \* To circumvent the aforementioned attack, a second secret  $AES_k(J_0)$  is used to hide t':  $t = AES_k(J_0) \oplus f_A(H)$ . The secret  $AES_k(J_0)$  serves as a one-time pad for t'.

## Authenticated encryption: AES-GCM

#### Input:

- \* AAD (Additional Authenticated Data), also called encryption context: Data to be authenticated (but not encrypted):  $A = (A_1, A_2, ..., A_v)$ .
- \* Data to be encrypted and authenticated:  $M = (M_1, M_2, ..., M_u)$ ,  $u \le 2^{32} 2$ .
- \* Secret key:  $k \in_R \{0,1\}^{128}$ , shared between Alice and Bob

#### Output: (IV, A, C, t), where

- \* *IV* is a 96-bit initialization vector.
- $+ A = (A_1, A_2, ..., A_v)$  is the additional authenticated data.
- +  $C = (C_1, C_2, ..., C_u)$  is the encrypted/authenticated data.
- \* *t* is a 128-bit authentication tag.

## AES-GCM encryption/authentication

#### Alice does the following:

- 1. Let  $L = L_A || L_M$ , where  $L_A, L_M$  are the bitlengths of A, M expressed as 64-bit integers. (L is the length block.)
- 2. Select a nonce  $IV \in \{0,1\}^{96}$  and let  $J_0 = IV || 0^{31} || 1$ .
- 3. Encryption: For i from 1 to u do: Compute  $J_i = J_{i-1} + 1$  and  $C_i = AES_k(J_i) \oplus M_i$ .
- 4. Authentication: Compute  $H = AES_k(0^{128})$ . Compute  $t = AES_k(J_0) \oplus f_{A,C}(H)$ .
- 5. Output: (*IV*, *A*, *C*, *t*).

Note: 
$$f_{A,C}(x) = A_1 x^{u+v+1} + A_2 x^{u+v} + \dots + A_{v-1} x^{u+3} + A_v x^{u+2} + C_1 x^{u+1} + C_2 x^u + \dots + C_{u-1} x^3 + C_u x^2 + Lx$$

## AES-GCM decryption/authentication

Upon receiving (IV, A, C, t), Bob does the following:

- 1. Let  $L = L_A || L_C$ , where  $L_A, L_C$  are the bitlengths of A, C expressed as 64-bit integers.
- 2. Authentication: Compute  $H = AES_k(0^{128})$ . Compute  $t' = AES_k(J_0) \oplus f_{A,C}(H)$ . If t' = t then proceed to decryption; if  $t' \neq t$  then reject.
- 3. Decryption: Let  $J_0 = IV || 0^{31} || 1$ . For i from 1 to u do: Compute  $J_i = J_{i-1} + 1$  and  $M_i = AES_k(J_i) \oplus C_i$ .
- 4. Output: (A, M).

### Some features of AES-GCM

- 1. Performs both authentication and encryption.
- 2. Supports authentication only (by using empty M).
- 3. Very fast implementations on Intel and AMD processors because of special AES-NI and PCLMUL instructions for the AES and operations.
- 4. Encryption and decryption can be parallelized.
- 5. AES-GCM can be used in streaming mode.
- 6. The secret key can have bitlength 128, 192 or 256.
- 7. Security is justified by a security proof:
  - \* The original McGrew-Viega security proof (2004) was wrong.
  - \* The proof was fixed in 2012 by Iwata-Ohashi-Minematsu.

#### Performance

Speed benchmarks<sup>†</sup> from 2018 on an Intel Xeon CPU (E3-1220 V2) at 3.10 GHz in 64-bit mode.

Relative speeds will likely be very different on other processors.

Source: www.bearssl.org/speed.html

| Algorithm       | block<br>length | key<br>length | digest<br>length (bits) | speed<br>(Mbytes/ |
|-----------------|-----------------|---------------|-------------------------|-------------------|
| ChaCha20        |                 | 256           |                         | 323               |
| Triple-DES      | 64              | 168           |                         | 21                |
| AES-128         | 128             | 128           |                         | 170               |
| AES-128-NI      | 128             | 128           |                         | 2426              |
| AES-256         | 128             | 256           |                         | 129               |
| AES-256-NI      | 128             | 256           |                         | 1830              |
| GMAC            | 128             | 128           | 128                     | 247               |
| GMAC-<br>PCLMUL | 128             | 128           | 128                     | 1741              |

## IV's should not be repeated

#### IV's should not be repeated (with the same key k).

- \* Suppose an IV is reused, and an eavesdropper captures two transmissions:  $(IV, A_1, C_1, t_1)$ ,  $(IV, A_2, C_2, t_2)$ . Suppose also that  $M_1$  and  $M_2$  have the same blocklengths, and that the eavesdropper knows  $M_1$ .
- \* Then  $t_1 = AES_k(J_0) \oplus f_{A_1,C_1}(H)$  and  $t_2 = AES_k(J_0) \oplus f_{A_2,C_2}(H)$ , so  $t_1 \oplus t_2 = f_{A_1,C_1}(H) \oplus f_{A_2,C_2}(H)$ .
- \* This polynomial equation can be quickly solved for H, and then  $AES_k(J_0) = t_1 \oplus f_{A_1,C_1}(H)$  can be computed.
- \* Thereafter, the adversary can properly encrypt/authenticate any plaintext (of blocklength at most that of  $M_1$ ).