Real Time Gender and Age Detection with OpenCV

JUNWEN WANG NOC 30 2023

Problem Description

► The problem we aim to address is the estimation of gender and age from a single image or video of a person's face using Deep Learning. This has significant implications in various domains, such as marketing, content personalization, and security.

Approaches

▶ Computer Vision

Computer Vision is the field of study that enables computers to see and identify digital images and videos as a human would. The challenges it faces largely follow from the limited understanding of biological vision. Computer Vision involves acquiring, processing, analyzing, and understanding digital images to extract high-dimensional data from the real world in order to generate symbolic or numerical information which can then be used to make decisions.

OpenCV

OpenCV is short for Open Source Computer Vision. It is an open-source Computer Vision and Machine Learning library. This library is capable of processing real-time image and video while also boasting analytical capabilities.

► CNN

▶ A Convolutional Neural Network is a deep neural network (DNN) widely used for the purposes of image recognition. Also known as a ConvNet, a CNN has input and output layers, and multiple hidden layers, many of which are convolutional.

Procedure

▶ In the first part of this project, I will use the models by <u>Tal Hassner and Gil Levi</u> [1]to identify the gender and age of a person from a single image of a face at first. The predicted gender may be one of 'Male' and 'Female', and the predicted age may be one of the following ranges- (0 – 2), (4 – 6), (8 – 12), (15 – 20), (25 – 32), (38 – 43), (48 – 53), (over 60) (8 nodes in the final softmax layer). (26580 photos in eight age ranges)

Then I will combine it with capturing real time video, thus it will make real time analysis of age and gender based on our webcam


```
def take_photo(filename='photo.jpg', quality=0.8):
  js = Javascript('''
    async function takePhoto(quality) {
      const div = document.createElement('div');
      const capture = document.createElement('button');
      capture.textContent = 'Capture';
      div.appendChild(capture);
      const video = document.createElement('video');
      video.style.display = 'block';
      const stream = await navigator.mediaDevices.getUserMedia({video: true});
      document.body.appendChild(div);
      div.appendChild(video);
      video.srcObject = stream;
      await video.play();
      // Resize the output to fit the video element.
      google.colab.output.setIframeHeight(document.documentElement.scrollHeight, true);
      // Wait for Capture to be clicked.
      await new Promise((resolve) => capture.onclick = resolve);
      const canvas = document.createElement('canvas');
      canvas.width = video.videoWidth;
      canvas.height = video.videoHeight;
      canvas.getContext('2d').drawImage(video, 0, 0);
      stream.getVideoTracks()[0].stop();
      div.remove();
      return canvas.toDataURL('image/jpeg', quality);
  display(js)
  data = eval_js('takePhoto({})'.format(quality))
  binary = b64decode(data.split(',')[1])
  with open(filename, 'wb') as f:
    f.write(binary)
  return filename
```

```
image_file = take_photo()

image = cv2.imread(image_file)

# resize it to have a maximum width of 400 pixels
image = imutils.resize(image, width=400)
(h, w) = image.shape[:2]
print(w,h)
cv2_imshow(image)
```



```
# function to convert the JavaScript object into an OpenCV image
def js_to_image(js_reply):
  Params:
          js_reply: JavaScript object containing image from webcam
  Returns:
          img: OpenCV BGR image
  # decode base64 image
  image_bytes = b64decode(js_reply.split(',')[1])
  # convert bytes to numpy array
  jpg_as_np = np.frombuffer(image_bytes, dtype=np.uint8)
  # decode numpy array into OpenCV BGR image
  img = cv2.imdecode(jpg_as_np, flags=1)
  return img
# function to convert OpenCV Rectangle bounding box image into base64 byte string to be overlayed on video stream
def bbox to bytes(bbox array):
  Params:
          bbox array: Numpy array (pixels) containing rectangle to overlay on video stream.
  Returns:
        bytes: Base64 image byte string
  # convert array into PIL image
  bbox PIL = PIL.Image.fromarray(bbox array, 'RGBA')
  iobuf = io.BytesIO()
  # format bbox into png for return
  bbox PIL.save(iobuf, format='png')
  # format return string
  bbox bytes = 'data:image/png;base64,{}'.format((str(b64encode(iobuf.getvalue()), 'utf-8')))
  return bbox_bytes
```


Lesson Learned

- ▶ In this project I'm trying to recognize gender and age with real time webcam. My results shows promising for this problems in some extent.
- ► However, we still can't recongnize the exact age of people, the age range is still too large, due to many reasons.

Reference:

- ► Tal Hassner, Shai Harel*, Eran Paz* and Roee Enbar, *Effective Face Frontalization in Unconstrained Images*, IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, June 2015
- ► Gil Levi and Tal Hassner, *Age and Gender Classification Using Convolutional Neural Networks*, IEEE Workshop on Analysis and Modeling of Faces and Gestures (AMFG), at the IEEE Conf. on Computer Vision and Pattern Recognition (CVPR), Boston, June 2015
- ► DATASET: https://www.kaggle.com/datasets/ttungl/adience-benchmark-gender-and-age-classification
- https://data.vision.ee.ethz.ch/cvl/rrothe/imdb-wiki/

Thank You