1. Implement a four-input OR gate using two-input OR gates only?

2. Simplify the following

a)
$$(A.B + C.D).[(\bar{A} + \bar{B}).(\bar{C} + \bar{D})]$$

b)
$$(1 + L.M + L.\overline{M} + \overline{L}.M).[(L + \overline{M}).(\overline{L}.M) + (\overline{L}.\overline{M}).(L + M)]$$

Ans
$$2 \rightarrow a$$
 (A.B + C.O). $[(\overline{A}+\overline{B}).(\overline{C}+\overline{D})]$

Thus $(\overline{A}+\overline{B}).(\overline{C}+\overline{D})=\overline{X}$

Thus $(\overline{A}+\overline{B}).(\overline{C}+\overline{D})=\overline{X}$

The given expression reduced to $X.\overline{X}$

... $(A.B+CO).[(\overline{A}+\overline{B}).(\overline{C}+\overline{D})]=0$

b) $(1+Lm+L.\overline{m}+L.\overline{m}).[(L+\overline{m}).(L.\overline{m})+(\overline{L}.\overline{m})(L+\overline{m})]$

. $(1+Boolean Expression)=1$

. $(\overline{L}M \text{ is complement of }(L+\overline{m})+\overline{L}.\overline{m} \text{ is complement of }(L+\overline{m})$

. The given expression is $1.(0+0)=0$

3. Using Karnaugh maps, write the minimized Boolean expressions for the output functions of a two-output logic system whose outputs Y1 and Y2 are given by the following Boolean functions:

$$\begin{aligned} \mathbf{Y}_1 &= \overline{\mathbf{A}}.\,\mathbf{B}.\,\overline{\mathbf{C}} + \mathbf{A}.\,\overline{\mathbf{B}}.\,\overline{\mathbf{C}} + \mathbf{A}.\,\mathbf{B}.\,\mathbf{C} + \overline{\mathbf{A}}.\,\overline{\mathbf{B}}.\,\overline{\mathbf{C}} \\ \mathbf{Y}_2 &= \overline{\mathbf{A}}.\,\overline{\mathbf{B}}.\,\mathbf{C} + \mathbf{A}.\,\mathbf{B}.\,\overline{\mathbf{C}} + \mathbf{A}.\,\overline{\mathbf{B}}.\,\mathbf{C} + \mathbf{A}.\,\mathbf{B}.\,\mathbf{C} \end{aligned}$$

4. For the half-adder circuit of Fig. 4(a), the inputs applied at A and B are as shown in Fig.4(b). Plot the corresponding SUM and CARRY outputs on the same scale.

5. Write the simplified Boolean expressions for **DIFFERENCE** and **BORROW** outputs for the Fig. 5. (HA-Half adder; HS-Half Subtractor)

Fig.5

Let us assume that the two inputs to the half-subtractor circuit are X and Y, with X equal to the SUM output of the half-adder and Y equal to C. DIFFERENCE and BORROW outputs can then be expressed as follows:

DIFFERENCE output =
$$X \oplus Y = \overline{X}.Y + X.\overline{Y}$$
 and BORROW output = $\overline{X}.Y$

Also, $X = \overline{A}.B + A.\overline{B}$ and Y = C.

Substituting the values of X and Y, we obtain

DIFFERENCE output =
$$(\overline{A.B + A.\overline{B}}).C + (\overline{A.B + A.\overline{B}}).\overline{C} = (A.B + \overline{A.\overline{B}}).C + (\overline{A.B + A.\overline{B}}).\overline{C}$$

= $A.B.C + \overline{A.B.C} + \overline{A.B.C} + A.\overline{B.C}$
BORROW output = $\overline{X}.Y = (\overline{A.B + A.\overline{B}}).C = (A.B + \overline{A.\overline{B}}).C = A.B.C + \overline{A.\overline{B}}.C$

- **6.** a) Make a truth table for the Boolean function $F = \overline{x}$. \overline{y} . $\overline{z} + \overline{x}$. y. $\overline{z} + x$. y. \overline{z}
 - b) Simplify the above function to a minimum number of literals.
 - c) Now use Karnaugh map to simplify F.
 - d) Sow implementation of F using NOT, OR and AND gates. What is the total count of gates?

- 7. a) Minimize the following function using K-Map and write the minimized function in <u>sum-of products</u> form $F(A, B, C, D) = \sum (1, 2, 4, 5, 6, 9, 10, 14, 15)$
 - b) Using K-map simplify the above function and expression it in <u>product -of-sums form</u>.

8. Minimize the following function using K-Map and write the minimized function in sum-of products form $F(A, B, C, D) = \sum (1,3,5,9,13) + d(0,7,10)$

- **9.** The logic diagram of the Boolean function is given below.
 - i) Analyze the diagram and write its truth table
 - ii) Analyze the diagram and write the Boolean function id sum-of-product form.
 - iii) Implement the function using 4-to-1 line multiplexer.

10. Design an X-NOR gate (i.e. $F(x, y) = \bar{x}\bar{y} + xy$) using only 2-input NOR gates. You are given only x and y inputs. You are allowed to use only a maximum of FIVE 2-input NOR gates. Draw a clear circuit diagram.

