Revision Class 01 - Basic Plots and Random Variables *DigitalLab@LaPlataforme*_ What is Data Science?

Data science is a discipline that aims to develop a product based on data.

Uses approaches from the data analysis and machine learning.

Visualization plays an important role on steps: **02**, **04** and **05**.

Data visualization is relevant in the data science process as it helps to:

Identify relevant information and properties in our dataset.

- Identify relevant information and properties in our dataset.
- Detect patterns and correlations between variables.

- Identify relevant information and properties in our dataset.
- Detect patterns and correlations between variables.
- Experiment and provide answers to hypothesis during our research process.

- Identify relevant information and properties in our dataset.
- Detect patterns and correlations between variables.
- Experiment and provide answers to hypothesis during our research process.
- Recognize machine learning model relevant features.

- Identify relevant information and properties in our dataset.
- Detect patterns and correlations between variables.
- Experiment and provide answers to hypothesis during our research process.
- Recognize machine learning model relevant features.
- Communicate results to team members.

A random variable (r.v.) X is a function X: $\Omega \to \mathbb{R}$ where Ω is the state space and \mathbb{R} is the set of values that the variable can take called Range.

A random variable (r.v.) X is a function X: $\Omega \rightarrow R$ where Ω is the state space and R is the set of values that the variable can take called Range.

Intuitively, a r.v. is **equivalent to a column** of your dataset after applying 0 or more filters.

A random variable (r.v.) X is a function X: $\Omega \rightarrow \mathbb{R}$ where Ω is the state space and \mathbb{R} is the set of values that the variable can take called Range.

Intuitively, a r.v. is **equivalent to a column** of your dataset after applying 0 or more filters.

The random variables can be of different types:

- Numerical
 - Continuous
 - Discrete (Infinite or finite set of numerable values)
- Categorical
- Ordinal

A random variable (r.v.) X is a function X: $\Omega \rightarrow R$ where Ω is the state space and R is the set of values that the variable can take called Range.

A r.v. is **equivalent to a column** of your dataset after applying 0 or more filters.

profile_gender	profile_age	profile_studies_level	
Female	26	University	
Male	29	University	
Female	22	Secondary	
Male	39	Postgraduate	
Male	32	University	
Male	25	Terciary	
Male	33	University	
Male	23	Terciary	

A random variable (r.v.) X is a function X: $\Omega \rightarrow R$ where Ω is the state space and R is the set of values that the variable can take called Range.

A r.v. is **equivalent to a column** of your dataset after applying 0 or more filters.

Columns (Random Variables)

profile_gender	profile_age	profile_studies_level	
Female	26	University	
Male	29	University	
Female	22	Secondary	
Male	39	Postgraduate	
Male	32	University	
Male	25	Terciary	
Male	33	University	
Male	23	Terciary	

A random variable (r.v.) X is a function X: $\Omega \rightarrow R$ where Ω is the state space and R is the set of values that the variable can take called Range.

A r.v. is **equivalent to a column** of your dataset after applying 0 or more filters.

Columns			
(Random	profile_gender	profile_age	profile_studies_level
Variables)	Female	26	University
	Male	29	University
	Female	22	Secondary
Rows	Male	39	Postgraduate
(Elements of Ω)	Male	32	University
	Male	25	Terciary
	Male	33	University
	Male	23	Terciary

A random variable (r.v.) X is a function X: $\Omega \rightarrow R$ where Ω is the state space and R is the set of values that the variable can take called Range.

A r.v. is **equivalent to a column** of your dataset after applying 0 or more filters.

It represents an **estimate of central tendency for a numeric variable** with the height of each rectangle and provides some indication of the **uncertainty around that estimate** using error bars.

It represents an **estimate of central tendency for a numeric variable** with the height of each rectangle and provides some indication of the **uncertainty around that estimate** using error bars.

It represents an **estimate of central tendency for a numeric variable** with the height of each rectangle and provides some indication of the **uncertainty around that estimate** using error bars.

```
seaborn.barplot(
    data=df,
    x="has_experience",
    y="salary_monthly_NET")
```


It represents an **estimate of central tendency for a numeric variable** with the height of each rectangle and provides some indication of the **uncertainty around that estimate** using error bars.

```
seaborn.barplot(
    data=df,
    x="has_experience",
    y="salary_monthly_NET")
```

IMPORTANT! We can only use this plot with numerical r.v. in combination with a categorical one.

It is useful when you want to understand changes in one variable as a function of time, or a similarly continuous variable.

The plot aggregates over multiple y values at each value of x and shows an estimate of the central tendency and a confidence interval for that estimate.

It is useful when you want to understand changes in one variable as a function of time, or a similarly continuous variable.

The plot aggregates over multiple y values at each value of x and shows an estimate of the central tendency and a confidence interval for that estimate.

It is useful when you want to understand changes in one variable as a function of time, or a similarly continuous variable.

The plot aggregates over multiple y values at each value of x and shows an estimate of the central tendency and a confidence interval for that estimate.

seaborn.lineplot(data=df, x="profile_age", y="salary_monthly_NET")

It is useful when you want to understand changes in one variable as a function of time, or a similarly continuous variable.

The plot aggregates over multiple y values at each value of x and shows an estimate of the central tendency and a confidence interval for that estimate.

IMPORTANT! Don't use a categorical r.v. on the x axis.

Probabilities

A probability **P** is a function takes an state space Ω and returns a real number between 0 and 1. At the same time, it has to hold some properties. Basically, for each subset A of Ω , P(A) is a number such as:

Probabilities

A probability P is a function takes an state space Ω and returns a real number between 0 and 1. At the same time, it has to hold some properties. Basically, for each subset A of Ω , P(A) is a number such as:

- $\mathbf{0} \leq \mathbf{P}(A) \leq 1$
- $P(\Omega) = 1$
- $P(A \cup B) = P(A) + P(B)$, for A and B disjoints
- $P(U_i A_i) = \sum_i P(A_i)$ for $A_1, A_2, ...$ disjoints

Probabilities

A probability P is a function takes an state space Ω and returns a real number between 0 and 1. At the same time, it has to hold some properties. Basically, for each subset A of Ω , P(A) is a number such as:

- $\mathbf{0} \leq \mathbf{P}(\mathbf{A}) \leq 1$
- $P(\Omega) = 1$
- $P(A \cup B) = P(A) + P(B)$, for A and B disjoints
- $P(U_i A_i) = \sum_i P(A_i)$ for $A_1, A_2, ...$ disjoints

Events can be thought as **restrictions applied to one or several r.v.** Conditional probability between the two events is defined as:

$$\mathbf{P}(A \mid B) = \mathbf{P}(A \text{ and } B) / P(B)$$

$$P(A|B) = |A \text{ and } B| / |B|$$

Common Operations on Dataframes

We can apply certain operations on a dataframe. The simplest ones are **projections** and **filterings**.

Common Operations on Dataframes

We can apply certain operations on a dataframe. The simplest ones are **projections** and **filterings**.

Projections: Put in brackets the name of the column we want to project.

```
df["profile gender"], df["profile age"], df[["profile gender", "profile age"]]
```

Common Operations on Dataframes

We can apply certain operations on a dataframe. The simplest ones are **projections** and **filterings**.

Projections: Put in brackets the name of the column we want to project.

```
df["profile_gender"], df["profile_age"], df[["profile_gender", "profile_age"]]
```

Filterings: Create a Pandas Series of booleans and give it as input to a dataframe of the same shape.

```
df[
    (df["profile_gender"] == "Male") &
    (df["profile_age"] < 30)</pre>
Condition to filter
```