Exercise 1: Prepare dataset from Time-of-Flight (ToF) sensor

This exercise shows how to view, process and interpret the data acquired from the VL53L8CX senor from ST Microelectronics. You will use the logged sensor data in a tabular format and augmented with different rotations and flips.

Load logged sensor data

Load dataset as table that contain ToFReading, ZonalData and Gesture classifications.

```
load("dataTable_4Class.mat");
% Display selected rows in the table
disp(dataTable([1 3000 end], :));
```

ToFReading	ZonalData	Gesture
{8×8 double}	{8×8 double}	BreakTime
{8×8 double}	{8×8 double}	FlatHand
{8×8 double}	{8×8 double}	Love

```
% set up classes of interests
classNames = categories(dataTable{:,"Gesture"});
```

Display sample data

```
breaktime_1 = dataTable(1,:);
flathand_1 = dataTable(3000, :);
love_1 = dataTable(end, :);
imgT_tof = imtile({breaktime_1.ToFReading{1}, flathand_1.ToFReading{1}});
imshow(imgT_tof, [], InitialMagnification="fit");
```



```
imgT_zone = imtile({breaktime_1.ZonalData{1}, flathand_1.ZonalData{1}});
imshow(imgT_zone, [], InitialMagnification="fit");
```


Augment data with rotations and flips

An image data augmenter configures a set of preprocessing options for image augmentation, such as resizing, rotation, and reflection.

Perform the data augmentation on all the data

Bring out the training portion of the data and rotate with random angle.

```
imageSize = [8 8 1];
[xTrain, label_Train, ~, ~] = trainWithTabularData(dataTable);
% Use augmentedImageDatastore object for training
augimds = augmentedImageDatastore(imageSize,xTrain,label_Train,'DataAugmentation',imageAugmenter)
```

Save the original data and augmented data

```
% Save as new dataset
save("dataAugmented.mat"); %name the new variables
```