

<u>Course</u> > <u>Unit 1:</u> ... > <u>Lec. 1:</u> ... > 19. Exe...

19. Exercise: Uniform probabilities on the integers

Exercises due Feb 5, 2020 05:29 IST Completed

Exercise: Uniform probabilities on the integers

1/1 point (graded)

Let the sample space be the set of all positive integers. Is it possible to have a "uniform" probability law, that is, a probability law that assigns the same probability c to each positive integer?

✓ Answer: No

Solution:

Suppose that c=0. Then, by countable additivity,

$$1=\mathbf{P}\left(\Omega\right)=\mathbf{P}\big(\{1\}\cup\{2\}\cup\{3\}\cdots\big)=\mathbf{P}\left(\{1\}\right)+\mathbf{P}\left(\{2\}\right)+\mathbf{P}\left(\{3\}\right)+\cdots=0+0+0+\cdots=0,$$

which is a contradiction.

Suppose that c>0. Then, there exists an integer k such that kc>1. By additivity,

$$\mathbf{P}(\{1,2,\ldots,k\})=kc>1,$$

which contradicts the normalization axiom.

Submit

You have used 1 of 1 attempt

1 Answers are displayed within the problem

Discussion

Hide Discussion

Topic: Unit 1: Probability models and axioms:Lec. 1: Probability models and axioms / 19. Exercise: Uniform probabilities on the integers

Show all posts

?	Regarding the question if the number of items in the set is k which is the last term of the set, the probability of any item would ordinarily be 1/k and 1/k	2
?	Resources on understanding this better? Hi all - I don't think I grasp this as well as I should. Does anyone have pointers on where I can read up / watch to learn more on	3
2	how this question is different from example with a coin? Guys, please help me understand how this question is different from the example at the beginning of last video - coin tossing! t	7
Q	Second contradiction was tricky Until you notice that P({1, 2, 3,,k} equals c + c + c + + c, k times. which of course is the definition of multiplication: kc	5
?	Just to know if I understand this	1
2	How is this different from a Standard Probability Distribution? <u>I know perhaps this is going over what hasn't been covered but in a Standard Uniform Distribution, f(X) = 1/(theta) where theta</u>	5
2	c is a const but not a equation, lol	1
?	Neither 0 is positive nor the negative Quiz says: Let the sample space be the set of all positive integers, that is, a probability law that assigns the same probability c to † Following	4
2	A non math major interpretation I finally interpreted this question to be asking "Can you assign a probability to any SINGLE integer, or do you need a SEQUENC	2
2	additivity the lecture says 'additivity holds only for 'countable' sequence of events. this case is not countable, why should we use this equ	1 new_
Q	<u>panos</u> <u>Any countable sequence of disjoint sets .</u>	1
4)

© All Rights Reserved

