1 Permutations

Définition 1.1.

Soit $n \in \mathbb{N}^*$, on note S_n l'ensemble des bijections de [1, n] dans lui-même. On appelle les éléments de S_n des **permutations**.

Théorème 1.1

Pour $n \geq 3$, le groupe (S_n, \circ) n'est pas commutatif.

Démonstration 1.1.

Soit n > 3, soit les permutations $\tau_1 = (\sigma_1|...)$ $\forall i > 3, \tau_1 \circ \tau_2(i) = \tau_1(i) = i = \tau_2 \circ \tau_1(i)$ $\forall i \geq 3, \tau_1 \circ \tau_2(i), \tau_2 \circ \tau_1 =$

Théorème 1.2

Soit $n \geq 2$, toute permutation $\sigma \in S_n$ peut s'écrire comme composition finir de transpositions $\tau_1 \circ \cdots \circ \tau_p$.

On dit que S_n est engendré par les transpositions $\langle \tau_1, \cdots, \tau_p \rangle$.

Démonstration 1.2.

Par récurrence

Remarque 1.1. soit $\sigma \in S_n$, décomposer en $\sigma = \tau_1 \circ \cdots \circ \tau_p$ où les τ_i sont des transpositions. Comme $(\tau_k)^{-1} = \tau_k$, pour tout k, on a $\sigma^{-1} = \tau_p \circ \cdots \circ \tau_1$.

Remarque 1.2. e_n l'identité de S_n s'écrit comme produit de n'importe quel transposition avec elle-même. $e_n = \tau_{ij} \circ \tau_{ij}$ avec $1 \le i < j \le n$.