In [32]:

```
#Import All the required libraries
import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
%matplotlib inline
from wordcloud import WordCloud
```

In [33]:

```
#Load the data in the data set
dataSet = pd.read_csv('patient.csv')
```

In [34]:

dataSet.head()

Out[34]:

	id	sex	birth_year	country	region	group	infection_reason	infection_order	infected_by
0	1	female	1984.0	China	filtered at airport	NaN	visit to Wuhan	1.0	NaN
1	2	male	1964.0	Korea	filtered at airport	NaN	visit to Wuhan	1.0	NaN
2	3	male	1966.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN
3	4	male	1964.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN
4	5	male	1987.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN

In [35]:

```
dataSet.info()
```

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 5328 entries, 0 to 5327
Data columns (total 14 columns):
id
                    5328 non-null int64
                    383 non-null object
sex
                    370 non-null float64
birth year
country
                    5328 non-null object
                    371 non-null object
region
group
                    81 non-null object
                    140 non-null object
infection reason
infection order
                    35 non-null float64
                    70 non-null float64
infected by
contact number
                    47 non-null float64
confirmed date
                    5328 non-null object
released date
                    32 non-null object
                    20 non-null object
deceased date
                    5328 non-null object
state
dtypes: float64(4), int64(1), object(9)
memory usage: 582.8+ KB
```

In [36]:

dataSet.describe()

Out[36]:

	id	birth_year	infection_order	infected_by	contact_number
count	5328.000000	370.000000	35.000000	70.000000	47.000000
mean	2664.500000	1973.589189	2.285714	379.000000	72.978723
std	1538.205448	17.560546	1.405272	540.247528	188.155288
min	1.000000	1932.000000	1.000000	3.000000	0.000000
25%	1332.750000	1960.000000	1.000000	29.250000	2.500000
50%	2664.500000	1974.000000	2.000000	126.000000	16.000000
75%	3996.250000	1987.750000	3.000000	563.250000	46.000000
max	5328.000000	2018.000000	6.000000	2621.000000	1160.000000

In [37]:

```
#Cleaning the dataSets like removal of the duplicates
dataSet.duplicated().sum()
dataSet.drop_duplicates(inplace=True)
```

In [38]:

dataSet.head()

Out[38]:

	id sex birth_year		birth_year	country	region group		infection_reason	infection_order	infected_by	
0	1	female	1984.0	China	filtered at airport	NaN	visit to Wuhan	1.0	NaN	
1	2	male	1964.0	Korea	filtered at airport	NaN	visit to Wuhan	1.0	NaN	
2	3	male	1966.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN	
3	4	male	1964.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN	
4	5	male	1987.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN	

In [39]:

#There coluld be many Null values in the data and that could be the reason of slowned dataSet.isnull().sum()

Out[39]:

id	0
sex	4945
birth_year	4958
country	0
region	4957
group	5247
infection_reason	5188
infection_order	5293
infected_by	5258
contact_number	5281
confirmed_date	0
released_date	5296
deceased_date	5308
state	0
dtype: int64	

In [40]:

```
#Now check the shape of the data print(dataSet.shape)
```

(5328, 14)

In [41]:

```
#Read the info of the colums
dataSet.columns
```

Out[41]:

In [42]:

```
#Check how many Male & Female does exists dataSet['sex'].value_counts()
```

Out[42]:

female 194
male 189
Name: sex, dtype: int64

In [43]:

```
#Sex column is a Categorical & here we need to apply encoding technique, female =1
dataSet.sex = dataSet.sex.apply(lambda X : 0 if X == 'female' else 1)
```

In [44]:

```
dataSet.head()
```

Out[44]:

	id	sex	birth_year	country	region	group	infection_reason	infection_order	infected_by	COI
0	1	0	1984.0	China	filtered at airport	NaN	visit to Wuhan	1.0	NaN	
1	2	1	1964.0	Korea	filtered at airport	NaN	visit to Wuhan	1.0	NaN	
2	3	1	1966.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN	
3	4	1	1964.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN	
4	5	1	1987.0	Korea	capital area	NaN	visit to Wuhan	1.0	NaN	

In [45]:

#Check the statstics summary of the numerical data
dataSet.describe().T

Out[45]:

	count	mean	std	min	25%	50%	75%	max
id	5328.0	2664.500000	1538.205448	1.0	1332.75	2664.5	3996.25	5328.0
sex	5328.0	0.963589	0.187329	0.0	1.00	1.0	1.00	1.0
birth_year	370.0	1973.589189	17.560546	1932.0	1960.00	1974.0	1987.75	2018.0
infection_order	35.0	2.285714	1.405272	1.0	1.00	2.0	3.00	6.0
infected_by	70.0	379.000000	540.247528	3.0	29.25	126.0	563.25	2621.0
contact_number	47.0	72.978723	188.155288	0.0	2.50	16.0	46.00	1160.0

In [46]:

#Plot rectangular data as a color-encoded matrix to find out the null values, where
sns.heatmap(dataSet.isnull(), yticklabels='False')

Out[46]:

<matplotlib.axes. subplots.AxesSubplot at 0x1a1b37dac8>

In [47]:

```
#Plot the graph to know the over all affected people within the region.
plt.figure(figsize=(10,8))
sns.set_style("ticks", {"xtick.major.size":8, "ytick.major.size": 8})
sns.countplot(y=dataSet['region'],).set_title('Regions afftected overall')
```

Out[47]:

Text(0.5, 1.0, 'Regions afftected overall')

In [48]:

```
#Check the count of male and female affected by the virous
sns.countplot(x='sex',data=dataSet, hue='sex');
```


In [49]:

#Also check the country which has highest affected people sns.countplot(x='country', data=dataSet, hue = 'country').set_title('Country name when the country name when the count

In [50]:

#Calculate the area within the country which has affected people
sns.countplot(y='group', data=dataSet, hue = 'country').set_title('Area within the orange)

Out[50]:

Text(0.5, 1.0, 'Area within the country')

In [51]:

plt.figure(figsize=(10,8))
sns.countplot(y='group',data=dataSet, hue='confirmed_date').set_title('Confirmed_date')

In [52]:

```
plt.figure(figsize=(15,10))
sns.countplot(y='country',data=dataSet, hue='confirmed_date');
```


In [53]:

```
# plot the graph with confirmed date of the human infected or not in the Korea Count
plt.figure(figsize=(10,8))
sns.countplot(y=dataSet['confirmed_date'].loc[(dataSet['country']=="Korea")],).set_t
```

Out[53]:

Text(0.5, 1.0, 'Confirmed dates in Korea')

In [54]:

plot the graph with confirmed date of the human infected or not in the China Count
plt.figure(figsize=(10,8))
sns.countplot(y=dataSet['confirmed_date'].loc[(dataSet['country']=="China")],).set_t

In [55]:

plot the graph with confirmed date of the human infected or not in the Mongloia Co
plt.figure(figsize=(10,8))
sns.countplot(y=dataSet['confirmed_date'].loc[(dataSet['country']=="Mongolia")],).se

In [56]:

```
plt.figure(figsize=(10,6))
sns.stripplot(x=dataSet.country, y=dataSet.sex, hue=dataSet.sex)
plt.title("Age of patients from different countries")
plt.show()
```


In [57]:

```
plt.figure(figsize=(15,10))
sns.countplot(y='region',data=dataSet, hue='confirmed_date');
```


In [58]:

```
confirmed_patients = dataSet['confirmed_date'].value_counts().sort_index()
confirmed_patients.cumsum().plot(legend='accumulated')
confirmed_patients.plot(kind='bar', color='orange', legend='daily', figsize=(16, 5))
```

Out[58]:

<matplotlib.axes. subplots.AxesSubplot at 0x1a1d05a390>

In [61]:

```
# before no.31 patient confirmed
limit_series = confirmed_patients[:dataSet[dataSet['id'] == 31]['confirmed_date'].value
limit_series.cumsum().plot(legend='accumulated')
limit_series.plot(kind='bar', color='orange', legend='daily', figsize=(16, 5), grid=
```

Out[61]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1b73a128>

In [62]:

```
# after no.31 patient confirmed
limit_series = confirmed_patients[dataSet[dataSet['id'] == 31]['confirmed_date'].val
limit_series.cumsum().plot(legend='accumulated')
limit_series.plot(kind='bar', color='orange', legend='daily', figsize=(16, 5), grid=
```

Out[62]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1d0c6c50>

In [63]:

sns.countplot(x=dataSet['state'].loc[(dataSet['infection_reason']=='contact with patents)

Out[63]:

<matplotlib.axes._subplots.AxesSubplot at 0x1a1ac5cba8>

In [65]:

Korea Mongolia China

In []: