DMM Assignment 2 Solutions

1. Computing the Loss Function 1.a

for the fact that
$$l_i^T r_j = \sum_{k=1}^r l_{ik} r_{kj}$$
, $||l_i||_2^2 = \sum_{k=1}^r l_{ik}^2$ and $l_i^T r_j = \sum_{k=1}^r l_{ik} r_{kj}$, function (2) = function (3)

But I don't understand why function (1)=function(2)

1.b

 the loss of factorization LR with L2 regularization (parameter lambda) are presented as below:

```
loss <- function(L, R, lambda) {
loss1<-0;
loss2<-0;
i<-1;
while(i<(nrow(summary(D))+1)){
loss1<-loss1+ (ds[i]-L[is[i],]%*%R[,js[i]])^2;
i<-i+1;
}
loss2<- (lambda/2) * (norm(L, 'F') ^2+norm(R, 'F') ^2)
loss<-loss1+loss2;
return(loss);
}</pre>
```

• verify the result

```
## loss of starting point with lambda=2 (should give 3865.816) loss(L0.r10, R0.r10, 2) [1] 3865.816
```

2. Computing the Local Gradients

2.a

$$\nabla_{l_{ik}} L_{ij}(l_i, r_j) = -2(d_{ij} - l_i^T r_j) r_{kj} + \frac{\lambda l_{ik}}{N_i}$$

$$\nabla_{r_{kj}} L_{ij}(l_i, r_j) = -2l_{ik}(d_{ij} - l_i^T r_j) + \frac{\lambda r_{kj}}{N_i}$$

2.b

$$\nabla_{l_i^T} L_{ij}(l_i, r_j) = -2(d_{ij} - l_i^T r_j) r_j^T + \frac{\lambda ||l_i||_2}{N_i} l_i$$

$$\nabla_{r_j^T} L_{ij}(l_i, r_j) = -2l_i^T (d_{ij} - l_i^T r_j) + \frac{\lambda ||r_j||_2}{N_i} r_j$$

2.c

dlossp function are presented as follow:

```
dlossp <- function(L, R, lambda, p) {</pre>
  i \leftarrow is[p]
  j \leftarrow js[p]
  d \leftarrow ds[p]
  ## create two length-r vectors dLi and dRi
dLi < -rep(0,r);
dRj < -rep(0,r)
pl<-1;
k<-1;
while (k < (r+1))
item1<-(-2)* (d-L[i,]%*%R[,i]);
dLi[pl]<-item1* R[k,j]+lambda* L[i,k]/ Nis[i];
dRj[pl]<-item1* L[i,k]+lambda* R[k,j]/ Njs[j];
k<-k+1:
pl<-pl+1;
  ## * dLi[k] contains the gradient of the local loss with respect to l_ik
  ## * dRi[k] contains the gradient of the local loss with respect to r_kj
  ## return the result as a list
  ## (elements can be accessed with x$Li or x$Ri, where x is the returned list)
list(Li=dLi, Rj=dRj)
x<- dlossp(L0.r10, R0.r10, 2, 10)
x$Li
x$Ri
```

verify the result

```
## test local gradient computation for 10th entry
## $Li
## [1] -0.022076386 0.055660021 0.016555157 0.068076690 0.025315001
## [6] 0.001815675 0.078699632 0.026119761 0.013711859 0.004034443
```

```
## $Rj
## [1] -0.03494084 0.07994425 0.05441889 0.05581750 0.01939717 -0.01477114
## [7] 0.04630433 0.02940866 -0.05088697 0.01276903
dlossp(L0.r10, R0.r10, 2, 10)
```

3. Implementing Gradient Descent

a gradient descent epoch

```
## updated factor matrices.
gdepoch <- function(L, R, lambda, eps) {</pre>
  ## create gradient matrices
  dL <- matrix(0, m, r)
  dR \leftarrow matrix(0, r, n)
  ## fill the gradient matrices using repeated calls to my dlossp function
p<-1;
while(p<(nrow(summary(D))+1)){
x<-dlossp(L, R, lambda,p);
dL[is[p],] <- dL[is[p],] + x Li;
dR[,js[p]] \leftarrow dR[,js[p]] + x Rj;
p<-p+1;
  ## perform a gradient step on L and R with step size eps by using the gradient matrices
L<-L-eps*dL
R<-R-eps*dR
  ## return result
  list(L=L, R=R)
}
```

 verify my implement successfully with the result of gdepoch(L0.r10, R0.r10, 2, 0.01)\$L[5,]

```
## [1] 0.07822179 0.29110406 0.67363404 -0.27527854 -0.36139164 0.20011846 ## [7] -0.35296692 0.08101832 -0.01417779 0.01627573
```

- Visualize the result after 5, 15, and 50 epochs as below.
- for 5 epochs

```
Epoch 1 , loss: 3865.816
Epoch 2 , loss: 2765.026
Epoch 3 , loss: 2293.826
Epoch 4 , loss: 2030.471
Epoch 5 , loss: 1858.877
```

• result for 5 epochs

 for 15 epochs (continue with the previous result for 10 more epoch)

```
Epoch 1 , loss: 1731.708
Epoch 2,
          loss: 1646.502
Epoch 3,
          loss: 1562.573
          loss: 1472.45
Epoch 4
          loss: 1369.19
Epoch 5
          loss: 1248.171
Epoch 6,
          loss: 1111.246
Epoch 7
Epoch 8,
          loss: 971.3808
Epoch 9, loss: 850.3848
Epoch 10 , loss: 764.233
```

result for 15 epochs

for 50 epochs (continue with the previous result for 35 more epoch)

```
Epoch 1,
          loss: 710.816
Epoch 2,
          loss: 689.5328
Epoch 3 ,
          loss: 672.4398
Epoch 4,
          loss: 658.2506
Epoch 5 ,
          loss: 646.011
Epoch 6,
          loss: 635.0533
Epoch 7
          loss: 624.922
Epoch 8,
          loss: 615.3069
        , loss: 605.9942
Epoch 9
Epoch 10 , loss: 596.834
Epoch 11 , loss: 587.7222
        , loss: 578.5907
Epoch 12
Epoch 13
           loss: 569.405
Epoch 14
           loss: 560.165
Epoch 15
           loss: 550.9066
Epoch 16 ,
           loss: 541.7009
Epoch 17
           loss: 532.6482
Epoch 18
           loss: 523.8656
Epoch 19
           loss: 515.4685
Epoch 20 ,
           loss: 507.5508
Epoch 21 ,
           loss: 500.1693
Epoch 22
           loss: 493.3377
Epoch 23
           loss: 487.0327
Epoch 24
           loss: 481.2066
Epoch 25
           loss: 475.8024
Epoch 26
           loss: 470.7661
           loss: 466.0527
Epoch 27
Epoch 28
           loss: 461.6285
           loss: 457.4695
Epoch 29
Epoch 30 , loss: 453.5593
Epoch 31 , loss: 449.8856
Epoch 32 , loss: 446.438
```

Epoch 33 , loss: 443.2064 Epoch 34 , loss: 440.1796 Epoch 35 , loss: 437.3454

result for 50 epochs

sub comment:

the image gets clear with the increase of the epoch times.

4. Implementing Stochastic Gradient Descent

• example run

```
Epoch 1 , loss: 3865.816

Epoch 2 , loss: 2898.93

Epoch 3 , loss: 2405.895

Epoch 4 , loss: 2112.695

Epoch 5 , loss: 1915.663

Epoch 6 , loss: 1766.437

Epoch 7 , loss: 1635.768

Epoch 8 , loss: 1502.574

Epoch 9 , loss: 1351.592
Epoch 9 , loss: 1351.592
Epoch 10 , loss: 1179.036
Epoch 11 , loss: 1004.16
Epoch 12 , loss: 861.1181
Epoch 13 , loss: 766.3913
Epoch 14 , loss: 710.1643
Epoch 15 , loss: 675.3782
Epoch 16 , loss: 651.2923
Epoch 17 , loss: 632.3622
Epoch 18 , loss: 615.8893
Epoch 19 , loss: 600.6271
Epoch 20 , loss: 585.9487
Epoch 21 , loss: 571.5641
Epoch 22 , loss: 557.4279
Epoch 23 , loss: 543.7156
Epoch 24 , loss: 530.6066
Epoch 25 loss: 518.5122
Epoch 25 , loss: 518.5132
Epoch 26 , loss: 507.5284
Epoch 27 , loss: 497.6622
Epoch 28 , loss: 488.9529
Epoch 29 , loss: 481.1627
Epoch 30 , loss: 474.237
Epoch 31 , loss: 467.8875
Epoch 32 , loss: 462.2237
Epoch 33 , loss: 457.1002
Epoch 34 , loss: 452.2036
Epoch 35 , loss: 448.0898
Epoch 36 , loss: 444.1507
Epoch 37 , loss: 440.6577
Epoch 38 , loss: 437.3141
Epoch 39 , loss: 434.5792
Epoch 40 , loss: 431.81
Epoch 41 , loss: 429.4726
Epoch 42 , loss: 427.5922
Epoch 43 , loss: 425.5747
Epoch 44 , loss: 424.1597
Epoch 45 , loss: 422.7861
Epoch 46 , loss: 421.9547
Epoch 47 , loss: 421.0838
Epoch 48 , loss: 420.2283
Epoch 49 , loss: 420.2222
Epoch 50 , loss: 419.0738
```

• show result

Compare the result with the result obtained after the example run.

compare the images

GD (with epoch = 50)	SGD (with epoch = 50)
(With epoch = 30)	(With epoch = 30)

• compare SGD and GD with more trials

	(r,λ)=	(1,2)	(r,λ)=	(10,2)	(r,λ)=	(20,2)
epoch	sgd	gd	sgd	gd	sgd	gd
1	17042	17042	3866	3866	2911	2911
2	2825	1793	2899	2765	2483	2452
3	1971	1683	2406	2294	2188	2155
4	1766	1637	2113	2030	1962	1938
5	1694	1613	1916	1859	1770	1761
6	1663	1598	1766	1732	1587	1600
7	1646	1587	1636	1647	1401	1437
8	1634	1579	1503	1563	1213	1267
9	1623	1572	1352	1472	1040	1094
10	1611	1565	1179	1369	905	941
11	1594	1555	1004	1248	813	829
12	1569	1540	861	1111	752	758
13	1529	1514	766	971	711	713
14	1460	1468	710	850	679	680
15	1347	1384	675	764	652	654
16	1178	1239	651	711	629	631
17	978	1025	632	690	609	610
18	807	802	616	672	589	591
19	705	673	601	658	572	574
20	658	635	586	646	555	557
21	640	628	572	635	540	542
22	633	627	557	625	526	528
23	630	627	544	615	513	515
24	629	626	531	606	501	503
25	628	626	519	597	491	493
26	628	626	508	588	481	483
27	628	626	498	579	472	475
28	628	626	489	569	465	467
29	628	626	481	560	458	460
30	627	626	474	551	452	454
31	627	626	468	542	446	448
32	627	626	462	533	441	443
33	627	626	457	524	437	439
34	627	626	452	515	433	434
35	627	626	448	508	430	431
36	627	626	444	500	427	427
37	627	626	441	493	424	425
38	627	626	437	487	421	422

39	626	626	435	481	419	420
40	626	626	432	476	418	418
41	626	626	429	471	416	416
42	626	626	428	466	415	414
43	626	626	426	462	414	413
44	626	626	424	457	413	411
45	626	626	423	454	412	410
46	626	626	422	450	412	409
47	626	626	421	446	411	409
48	626	626	420	443	411	408
49	626	626	420	440	410	407
50	626	626	419	437	410	406
local loss	489	489	126	151	94	98
reg. Term	137	137	293	286	316	308

• compare SGD and GD with more trials (cont.)

sub comment:

the sgd seems to be not has the speeding up effect as expected in these trials.

5. Impact of Parameter Choices

- i) For the simplicity of the operation, I will use the name of "L0.r10" and "R0.r10" for different rank value.
- ii) For the effectiveness of comparison, I will choose the stochastic gradient descent method as the approach; but the SGD method is easily to cause the stop in the local minimum, in this way, we cannot see the effect of r and lambda clearly. So I will use the gradient descent (GD) method.
- iii) Also for the comparing purpose, I will use the same value for "epochs" for each trial and the process will begin with the same "set.seed".
- iv) For comparing purpose, I will do 9 scenario for r = 1, 10, and 20 pairing with $\lambda = 0$, 2, 20.

Values for each loss function

epoch \ (r,λ)	(1,0)	(1,2)	(1,20)	(10,0)	(10,2)	(10,20)	(20,0)	(20,2)	(20,20)
1	16477	17042	22128	3282	3866	9117	2344	2911	8016
2	1731	1793	2854	2407	2765	4585	2009	2452	4854
3	1644	1683	2033	2018	2294	3129	1776	2155	3399
4	1605	1637	1833	1795	2030	2433	1593	1938	2617
5	1583	1613	1723	1644	1859	2060	1431	1761	2172
6	1569	1598	1659	1526	1732	1849	1270	1600	1911
7	1559	1587	1622	1420	1624	1727	1099	1437	1757
8	1550	1579	1600	1309	1518	1656	916	1267	1664
9	1542	1572	1588	1181	1399	1614	737	1094	1607
10	1532	1565	1581	1027	1257	1587	588	941	1570
11	1519	1555	1577	855	1093	1570	484	829	1543
12	1498	1540	1575	690	928	1557	418	758	1523
13	1461	1514	1574	564	800	1545	374	713	1505
14	1396	1468	1573	486	723	1532	342	680	1489
15	1283	1384	1573	440	680	1519	315	654	1476
16	1103	1239	1573	410	654	1504	292	631	1466
17	867	1025	1572	387	634	1489	270	610	1459
18	651	802	1572	368	618	1475	250	591	1455
19	533	673	1572	350	603	1464	232	574	1453
20	495	635	1572	334	588	1458	215	557	1453
21	486	628	1572	317	574	1454	199	542	1452
22	484	627	1572	301	561	1453	184	528	1452
23	484	627	1572	285	547	1452	170	515	1452
24	484	626	1571	269	534	1452	158	503	1452
25	484	626	1570	254	522	1452	146	493	1452
26	484	626	1568	240	511	1452	136	483	1452
27	484	626	1565	227	501	1452	126	475	1452
28	484	626	1559	216	492	1452	118	467	1452
29	484	626	1549	205	484	1452	110	460	1452
30	484	626	1531	195	476	1452	103	454	1452
31	484	626	1504	186	470	1452	96	448	1452
32	484	626	1475	177	464	1452	90	443	1452
33	484	626	1456	169	459	1452	85	439	1452
34	484	626	1452	162	454	1452	80	434	1452
35	484	626	1452	155	450	1452	75	431	1452
36	484	626	1452	149	446	1452	70	427	1452
37	484	626	1452	142	442	1452	66	425	1452
38	484	626	1452	137	438	1452	63	422	1452
39	484	626	1452	131	435	1452	59	420	1452
40	484	626	1452	126	432	1452	56	418	1452
41	484	626	1452	121	430	1452	53	416	1452
42	484	626	1452	117	427	1452	50	414	1452
43	484	626	1452	113	425	1452	47	413	1452

epoch \ (r,λ)	(1,0)	(1,2)	(1,20)	(10,0)	(10,2)	(10,20)	(20,0)	(20,2)	(20,20)
44	484	626	1452	109	423	1452	45	411	1452
45	484	626	1452	106	421	1452	43	410	1452
46	484	626	1452	119	419	1452	41	409	1452
47	484	626	1452	156	418	1452	39	409	1452
48	484	626	1452	100	420	1452	37	408	1452
49	484	626	1452	99	426	1452	35	407	1452
50	484	626	1452	98	417	1452	35	406	1452
local loss	484	489	976	98	130	976	35	98	976
reg. term	0	137	476	0	286	476	0	308	476

sub comment:

when the r is small (as r = 1, which means that the information is quite insufficient) or the λ is too hight (as λ = 20, which means that the punishment is too much), then the gradient descent (GD) process will easily be locked at the certain value (threshold, not sure if it's the local minimum).

Compare the cases under the same value of r or λ

<u>sub comment:</u> when there is no punishment, the loss will drop as much as it can, and it will increase if the rank is higher (the information is largely provided.)

<u>sub comment:</u> when the λ is not large (as λ =2), comparing with the result in λ =1, it's easy to see that the droping speed is not much been affected.

sub comment: when the λ is large enough (as λ =20), even when the inforamtion is much (as r=20), the dropping process will stop at certain point, where the loss can still be less (comparing to the value in λ =1 or2.)

for the 50th epoch:

	(4.0)	(4.2)	(1,20)
(r,λ)	(1,0)	(1,2)	(1,20)
local loss	484	489	976
reg. term	0	137	476

<u>sub comment:</u> when r is small (as r=1), the loss function is easily affected by λ .

<u>sub comment:</u> when the r reach to a certain value (as r=10, th drop is easily to see, comparing to the case as in r=1. But still, when λ is too large (as λ =20), the drop process will be locked.

<u>sub comment:</u> when the r reach to high value (as r=20, the loss can drop to a really samll amount. But still, when λ is too large (as λ =20), the drop process will be locked.

• result image:

The result images are presented below. It's easy to see that when punishment is weighted too much, though the local loss can go down as r increase, but it will shut at some point, causing the gradient process freeze. But while the punishment is much less weighted, then the reconstruction of the image can work better as we get more information.

