

ATTACHMENT A

Claims 1 - 11: (Cancelled)

12. (New) A transition metal compound of formula (I)

$$R^{1}$$
 R^{7}
 $M^{1}R^{8}R^{9}$
 $R^{1'}$
 $R^{2'}$

wherein

is a divalent group selected from

and

wherein

M¹ is titanium, zirconium, or hafnium;

 R^1, R^2 are identical or different, and are each a $C_1 - C_{20}$ group;

 $R^{1'}, R^{2'}$ are identical or different, and are identical to or different from R^1 or R^2 , and are each hydrogen or a C_1 - C_{20} group;

is a C_6-C_{18} -aryl group, a C_4-C_{18} -heteroaryl, a fluorinated C_6-C_{20} -aryl or C_7-C_{20} -alkylaryl, wherein the aryl part of any of the preceding groups may bear at least one linear or branched C_1-C_{18} -alkyl, C_1-C_{18} -alkoxy, C_2-C_{10} -alkenyl or C_3-C_{15} -alkylalkenyl groups as substituents, or R^3 together with R^4 forms a monocyclic or polycyclic ring system which may be substituted;

 $R^{3'}$ is hydrogen or a C_1 - C_{40} group, or $R^{3'}$ together with $R^{4'}$ forms a monocyclic or polycyclic ring system which may be substituted;

 $R^4, R^{4'}$ are identical or different, and are each hydrogen or a $C_1 - C_{20}$ group;

 $R^5, R^{5'}, R^6, R^{6'}$ are identical or different, and are each hydrogen or a $C_1\text{-}C_{20}$ group;

 R^7 is a bridging structural element between the two indenyl radicals of formula (I), and is $M^2R^{10}R^{11}$, wherein M^2 is silicon, germanium, tin or carbon;

and R^{10} and R^{11} are identical or different, and are each hydrogen or a $C_1\text{-}C_{20}\text{-hydrocarbon-containing}$ group; and

- R^8, R^9 are identical or different, and are each a halogen, a linear or branched $C_1\text{-}C_{20}\text{-}alkyl$, or a substituted or unsubstituted phenoxide, or R^8 and R^9 are joined to form a monocyclic or polycyclic ring system which may be substituted.
- 13. (New) The transition metal compound as claimed in claim
- 12, wherein

is

and

is

wherein

- R^3 is a C_6 - C_{18} -aryl group, a C_4 - C_{18} -heteroaryl, a fluorinated C_6 - C_{20} -aryl or C_7 - C_{20} -alkylaryl, wherein the aryl part of any of the preceding groups may bear at least one linear or branched C_1 - C_{18} -alkyl, C_1 - C_{18} -alkoxy, C_2 - C_{10} -alkenyl or C_3 - C_{15} -alkylalkenyl groups as substituents, or R^3 together with R^4 forms a monocyclic or polycyclic ring system which may be substituted;
- $R^{3'}$ is hydrogen or a C_1 - C_{40} group, or $R^{3'}$ together with $R^{4'}$ forms a monocyclic or polycyclic ring system which may be substituted;
- R^4 , $R^{4'}$ are identical or different, and are each hydrogen or a C_1 - C_{20} group; and
- $R^5, R^{5'}, R^6, R^{6'}$ are identical or different, and are each hydrogen or a $C_1\text{-}C_{20}$ group.
- 14. (New) The transition metal compound as claimed in claim 12, wherein
 - M¹ is zirconium;
 - R^1, R^2 are identical or different, and are each a $C_1 C_{12}$ -alkyl group;
 - R¹',R²' are identical or different, and are each
 hydrogen, methyl, ethyl, n-propyl, isopropyl, n butyl, isobutyl, tert-butyl, cyclopentyl or
 cyclohexyl;
 - R^3 , $R^{3'}$ are identical or different, and are each a C_6 C_{18} -aryl group, or R^3 together with R^4 and/or $R^{3'}$ together with $R^{4'}$ may form a monocyclic or

polycyclic ring system which may be substituted, and $R^{3'}$ may be hydrogen;

- R^4 , $R^{4'}$ are identical or different, and are either hydrogen or R^4 together with R^3 and/or $R^{4'}$ together with R^3' form a monocyclic or polycyclic ring system;
- R^5 , R^6 , R^6 are identical or different, and are each hydrogen, a linear or branched C_1 - C_{18} -alkyl, C_2 - C_{10} -alkenyl or C_3 - C_{15} -alkylalkenyl; a C_6 - C_{20} -aryl, a C_4 - C_{18} -heteroaryl, a C_7 - C_{20} -arylalkyl; or a fluorinated C_1 - C_{12} -alkyl, C_2 - C_{10} -alkenyl, C_6 - C_{20} -arylalkyl;
- R^7 is a bridging structural element $SiR^{10}R^{11}$, wherein R^{10} and R^{11} are identical or different, and are a C_1 - C_{20} -hydrocarbon-containing group; and R^8 , R^9 are each chlorine or methyl.
- 15. (New) A ligand system of formula (II), or its double

wherein

bond isomers,

and

is a divalent group selected from

wherein

 R^1, R^2 are identical or different, and are each a $C_1 \text{-} C_{20}$ group;

 $R^{1'},R^{2'}$ are identical or different, and are identical to or different from R^1 or R^2 , and are each hydrogen or a C_1 - C_{20} group;

 R^3 is a C_6 - C_{18} -aryl group, a C_4 - C_{18} -heteroaryl, a fluorinated C_6 - C_{20} -aryl or C_7 - C_{20} -alkylaryl, wherein the aryl part of any of the preceding groups may bear at least one linear or branched C_1 - C_{18} -alkyl, C_1 - C_{18} -alkoxy, C_2 - C_{10} -alkenyl or C_3 - C_{15} -alkylalkenyl groups as substituents, or R^3 together with R^4

forms a monocyclic or polycyclic ring system which may be substituted;

- $R^{3'}$ is hydrogen or a C_1 - C_{40} group, or $R^{3'}$ together with $R^{4'}$ forms a monocyclic or polycyclic ring system which may be substituted;
- R^4 , $R^{4'}$ are identical or different, and are each hydrogen or a C_1 - C_{20} group;
- $R^5, R^{5'}, R^6, R^{6'}$ are identical or different, and are each hydrogen or a $C_1\text{-}C_{20}$ group; and
- R^7 is a bridging structural element between the two indenyl radicals of formula (I), and is $M^2R^{10}R^{11}$, wherein M^2 is silicon, germanium, tin or carbon; and R^{10} and R^{11} are identical or different, and are each hydrogen or a C_1 - C_{20} -hydrocarbon-containing group.
- 16. (New) A process for preparing a transition metal compound of formula (I)

$$R^1$$
 R^7
 $M^1R^8R^9$
 $R^{1'}$
 $R^{2'}$

wherein

$$R^3$$
 R^4
 R^5
 R^5
 R^5

and

is a divalent group selected from

wherein

M¹ is titanium, zirconium, or hafnium;

 R^1, R^2 are identical or different, and are each a C_1 - C_{20} group;

 $R^{1'}, R^{2'}$ are identical or different, and are identical to or different from R^1 or R^2 , and are each hydrogen or a C_1 - C_{20} group;

 R^3 is a C_6 - C_{18} -aryl group, a C_4 - C_{18} -heteroaryl, a fluorinated C_6 - C_{20} -aryl or C_7 - C_{20} -alkylaryl, wherein the aryl part of any of the preceding groups may bear at least one linear or branched C_1 - C_{18} -alkyl, C_1 - C_{18} -alkoxy, C_2 - C_{10} -alkenyl or C_3 - C_{15} -alkylalkenyl

groups as substituents, or R^3 together with R^4 forms a monocyclic or polycyclic ring system which may be substituted;

- $R^{3'}$ is hydrogen or a C_1 - C_{40} group, or $R^{3'}$ together with $R^{4'}$ forms a monocyclic or polycyclic ring system which may be substituted;
- R^4 , $R^{4'}$ are identical or different, and are each hydrogen or a C_1 - C_{20} group;
- $R^5, R^{5'}, R^6, R^{6'}$ are identical or different, and are each hydrogen or a $C_1\text{-}C_{20}$ group;
- R^7 is a bridging structural element between the two indenyl radicals of formula (I), and is $M^2R^{10}R^{11}$, wherein M^2 is silicon, germanium, tin or carbon; and R^{10} and R^{11} are identical or different, and are each hydrogen or a C_1 - C_{20} -hydrocarbon-containing group; and
- R^8, R^9 are identical or different, and are each a halogen, a linear or branched C_1 - C_{20} -alkyl, or a substituted or unsubstituted phenoxide, or R^8 and R^9 are joined to form a monocyclic or polycyclic ring system which may be substituted;

the process comprising:

reacting a 1-indanone of formula (III) or (III') with an organometallic compound $(M^3R^2_mHal_n)$ or $(M^3R^2'_mHal_n)$ with subsequent elimination to form a substituted indene of formula (IV) or (IV'),

$$\mathbb{R}^{1}$$
 \mathbb{R}^{3} \mathbb{R}^{4} (III) \mathbb{R}^{1} \mathbb{R}^{5}

wherein

 R^1, R^2 are identical or different, and are each a C_1 - C_{20} group;

 $R^{1'}, R^{2'}$ are identical or different, and are identical to or different from R^1 or R^2 , and are each hydrogen or a C_1 - C_{20} group;

 R^3 is a C_6-C_{18} -aryl group, a C_4-C_{18} -heteroaryl, a fluorinated C_6-C_{20} -aryl or C_7-C_{20} -alkylaryl, wherein the aryl part of any of the preceding groups may bear at least one linear or branched C_1-C_{18} -alkyl, C_1-C_{18} -alkoxy, C_2-C_{10} -alkenyl or C_3-C_{15} -alkylalkenyl groups as substituents, or R^3 together with R^4 forms a monocyclic or polycyclic ring system which may be substituted;

 $R^{3'}$ is hydrogen or a C_1 - C_{40} group, or $R^{3'}$ together with $R^{4'}$ forms a monocyclic or polycyclic ring system which may be substituted;

 $R^4, R^{4'}$ are identical or different, and are each hydrogen or a $C_1\text{-}C_{20}$ group;

 $R^5, R^{5'}, R^6, R^{6'}$ are identical or different, and are each hydrogen or a C_1 - C_{20} group;

M³ is an alkali metal, an alkaline earth metal, aluminum, or titanium;

Hal is a halogen; and

m is an integer equal to or greater than 1, and m+n corresponds to a valence of M^3 ;

deprotonating the substituted indene of formula (IV) or (IV') to form a deprotanated substituted indene, and subsequently reacting the deprotonated substituted indene with at least one compound (R^7X_2) to form at least one compound of formula (V), (V'), the double bond isomers of formula (V) and/or (V'), and mixtures thereof,

wherein

X is Cl, Br, I or O-tosyl; and

 R^7 is a bridging structural element between the two indenyl radicals of formula (I), and is $M^2R^{10}R^{11}$, wherein M^2 is silicon, germanium, tin or carbon; and R^{10} and R^{11} are identical or different, and are each hydrogen or a C_1 - C_{20} -hydrocarbon-containing group;

reacting at least one compound of formula (V), (V'), the double bond isomers of formula (V) and/or (V'), and mixtures thereof, with a second deprotonated indene obtained by deprotonating at least one compound of formula (IV) or (IV') to form a ligand system of formula (IIa), or its double bond isomers; and

$$R^{5}$$
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{6}
 R^{7}
 R^{7}
 R^{7}
 R^{7}
 R^{7}

deprotonating the ligand system of formula (IIa), double bond form isomers, to or its deprotonated ligand system, and reacting the deprotonated liqund system with at least one compound $(X_2M^1R^8R^9)$ to obtain a transition metal compound of formula (I), wherein X is Cl, Br, I or O-tosyl; and \mbox{M}^{1} is titanium, zirconium, or hafnium; R⁸ and R⁹ are identical or different, and are each a halogen, a linear or branched C1-C20or a substituted or unsubstituted alkyl, phenoxide, or R⁸ and R⁹ are joined to form a monocyclic or polycyclic ring system which may be substituted.

17. (New) An indene of formula (IV), or its double bond isomer,

$$R^{1}$$
 R^{5}
 R^{6}
 R^{1}
 R^{5}

wherein

 R^1 , R^2 are identical or different, and are each a C_1 - C_{20} group;

R³ is a C_6-C_{18} -aryl group, a C_4-C_{18} -heteroaryl, a fluorinated C_6-C_{20} -aryl or C_7-C_{20} - alkylaryl, wherein the aryl part of any of the preceding groups may bear at least one linear or branched C_1-C_{18} -alkyl, C_1-C_{18} -alkoxy, C_2-C_{10} -alkenyl or C_3-C_{15} -alkylalkenyl groups as substitutents;

 R^4 is hydrogen or a C_1 - C_{20} group; and

 R^5, R^6 are identical or different, and are each hydrogen or a $C_1\text{-}C_{20}$ group.

18. (New) A catalyst system comprising at least one cocatalyst and/or support, and at least one transition metal compound of formula (I)

$$R^{1}$$
 R^{7}
 $M^{1}R^{8}R^{9}$
 $R^{1'}$
 $R^{2'}$

wherein

and

is a divalent group selected from

wherein

M¹ is titanium, zirconium, or hafnium;

 R^1, R^2 are identical or different, and are each a $C_1 - C_{20}$ group;

 $R^{1'}, R^{2'}$ are identical or different, and are identical to or different from R^1 or R^2 , and are each hydrogen or a $C_1\text{-}C_{20}$ group;

 R^3 is a C_6 - C_{18} -aryl group, a C_4 - C_{18} -heteroaryl, a fluorinated C_6 - C_{20} -aryl or C_7 - C_{20} -alkylaryl, wherein the aryl part of any of the preceding groups may

- bear at least one linear or branched C_1 - C_{18} -alkyl, C_1 - C_{18} -alkoxy, C_2 - C_{10} -alkenyl or C_3 - C_{15} -alkylalkenyl groups as substituents, or R^3 together with R^4 forms a monocyclic or polycyclic ring system which may be substituted;
- $R^{3'}$ is hydrogen or a C_1 - C_{40} group, or $R^{3'}$ together with $R^{4'}$ forms a monocyclic or polycyclic ring system which may be substituted;
- R^4 , $R^{4'}$ are identical or different, and are each hydrogen or a C_1 - C_{20} group;
- $R^5, R^{5'}, R^6, R^{6'}$ are identical or different, and are each hydrogen or a $C_1\text{-}C_{20}$ group;
- R^7 is a bridging structural element between the two indenyl radicals of formula (I), and is $M^2R^{10}R^{11}$, wherein M^2 is silicon, germanium, tin or carbon; and R^{10} and R^{11} are identical or different, and are each hydrogen or a C_1 - C_{20} -hydrocarbon-containing group; and
- R^8, R^9 are identical or different, and are each a halogen, a linear or branched C_1 - C_{20} -alkyl, or a substituted or unsubstituted phenoxide, or R^8 and R^9 are joined to form a monocyclic or polycyclic ring system which may be substituted.
- 19. (New) A process for preparing a polyolefin by polymerizing at least one olefin in presence of the catalyst system as claimed in claim 18.
- 20. (New) The process as claimed in claim 19, wherein the polyolefin is an ethylene-propylene copolymer.

21. (New) A process for preparing a polyolefin by polymerizing at least one olefin in presence of at least one transition metal compound of formula (I) as claimed in claim 12.