Adaptive batch SOM for multiple dissimilarity data tables

Anderson Dantas

absd@cin.ufpe.br

Batch Self-Organizing Map Algorithm for dissimilarity data

Iterative two step algorithm:
Affectation and representation steps

Cost function

Extension of the k-means cost function

$$J = \sum_{i=1}^{n} \sum_{r=1}^{m} K^{T}(\delta(f(e_{i}), r)) d(e_{i}, g_{r})$$

$$\lim_{|x| \to \infty} K(x) = 0$$

Generalised distance

$$d^{T}(e_{i},g_{f(e_{i})}) = \sum_{r=1}^{m} K^{T}(\delta(f^{T}(e_{i}),r))d(e_{i},g_{r})$$

Affectation step

Function f associates e_i to the "closest" neuron

$$c = f^{T}(e_i) = arg \min_{1 \le r \le m} d^{T}(e_i, g_r)$$

Representation step

New prototypes are selected

$$g_r^* = arg \min_{e \in E} \sum_{i=1}^n K^T(\delta(f^T(e_i), r)) d^T(e_i, e_r)$$

Adaptive batch SOM for data based on multiple dissimilarity matrices

Also iterative, but three-step algorithm Representation, weighting and affectation

The B-SOM Algorithm

- Initialization
 - \checkmark Fix: m, δ , K^T , N_{iter} , T_{min} , T_{max} , $T \leftarrow T_{max}$, $t \leftarrow 0$
 - √ Randomly select m distinct prototypes
 - ✓ Set the map $L(m, G^0)$
 - \checkmark Assign each object e_i to the closest neuron (cluster)

The B-SOM Algorithm

