pumps demean vs ctrl demean

Statistics: p-values adjusted for search volume

set-level cluster-level			peak-level					mm mm mm			
р с	ρ_{FWE-cc}	<i>g</i> orrFDR-corr E	p _{uncorr}	p_{FWE-c}	g orrFDR-co	<i>T</i> orr	$(Z_{_{\equiv}})$	$p_{ m uncorr}$			
	1.000	0.504 26	0.095	1.000 1.000	0.962 0.387	2.42 3.70	2.42 3.68	0.008	-10 44	4 -62	36 6
		0.597 22 0.332 43	0.121 0.037	1.000 1.000	0.427 0.433 0.962	3.66 3.64 2.54	3.64 3.62 2.53	0.000 0.000 0.006	-36 34 40	40 12 6	24 10 8
		0.446 30 0.012 147	0.075 0.001	1.000 1.000	0.433 0.433	3.63 3.62	3.61 3.60	0.000	46 38	-44 12	18 32
	1.000	0.501 27	0.089	1.000 1.000 1.000	0.491 0.859 0.433	3.52 2.95 3.61	3.50 2.94 3.59	0.000 0.002 0.000	46 30 -16	20 14 -78	46 30 4
	1.000	0.446 30 0.715 16	0.075 0.182	1.000	0.433 0.491	3.61 3.52	3.59 3.51	0.000	8 18	-28 18	-12 10
		0.332 42 0.313 46	0.039 0.032	1.000 1.000	0.491 0.491 0.952	3.50 3.49 2.56	3.49 3.48 2.56	0.000 0.000 0.005	40 30 18	32 -74 -86	34 24 26
	0.925	0.715 16 0.128 70	0.182 0.010	1.000 1.000	0.518 0.518	3.45 3.45	3.44 3.43	0.000 0.000 0.000	-54 -42	0 -16	-12 60
	1.000 1.000 1.000	0.633 20 0.446 31 0.764 9 0.709 17 0.715 16	0.138 0.071 0.313 0.169 0.182	1.000 1.000 1.000 1.000	0.526 0.554 0.554 0.578 0.578	3.43 3.39 3.37 3.33 3.32	3.42 3.38 3.35 3.32 3.30	0.000 0.000 0.000 0.000	-6 -38 10 -24	-62 -56 -20 -18 58	-54 -26 -18 -2 -2

table shows 3 local maxima more than 8.0mm apart

Height threshold: T = 2.33, p = 0.010 (1.00 Ω) egrees of freedom = [1.0, 798.0]

Extent threshold: k = 0 voxels

FWHM = 6.4 6.3 6.5 mm mm mm; 3.2 3.2 3.3 {voxels}

Expected voxels per cluster, $\langle k \rangle = 9.544$ Volume: 1698664 = 212333 voxels = 5939.8 resels

Expected number of clusters, $\langle c \rangle = 249.21$ Voxel size: 2.0 2.0 2.0 mm mm mm; (resel = 33.06 voxels)

FWEp: 5.080, FDRp: 5.426, FWEc: 184, FDRage192