5.7. Exponential distributions

Definition 5.8

Let $\lambda>0$ be a real number. A continuous random variable X is said to have an exponential distribution with parameter λ , denoted

$$X \sim \mathcal{E}xp(\lambda),$$

if its probability density function is given by

$$f(x;\lambda)=\lambda e^{-\lambda x}$$

with support $(0, \infty)$.

An archetypical exponential scenario (email scenario continued)

Q: Let T_1,T_2,\ldots be the arrival times of the emails in your inbox, and suppose that they arrive at a mean rate λ (measured in reciprocal hours). We set $I_1=T_1$, the time of *first arrival*, and for each $k=2,3,\ldots$ the differences

$$I_k = T_k - T_{k-1}$$

are called interarrival times.

What are the distributions of the random variables I_1, I_2, \ldots ?

A: $I_k \sim \mathcal{E}xp(\lambda)$ for all $k=1,2,\ldots$

Theorem 5.9 (Expectations and variances of exponential variables)

If $X \sim \mathcal{E}xp(\lambda)$, then

$$E(X) = rac{1}{\lambda} \quad ext{and} \quad V(X) = rac{1}{\lambda^2}.$$

Problem Prompt

Do problem 14 on the worksheet.

5.8. Gamma distributions

Definition 5.9

Let $\alpha, \beta > 0$ be real numbers. A continuous random variable X is said to have a gamma distribution with parameters α and β , denoted

$$X \sim \mathcal{G}am(lpha,eta),$$

if its probability density function is given by

$$f(x; \alpha, \beta) = rac{eta^{lpha}}{\Gamma(lpha)} x^{lpha-1} e^{-eta x}.$$
 (5.13)

with support $(0, \infty)$.

Å

An archetypical gamma scenario (email scenario continued, again)

Q: Remember that T_k (for $k=1,2,\ldots$) denotes the (random) arrival time of the k-th email in your inbox, and that the mean rate at which they arrive is λ (measured in reciprocal hours). What are the distributions of the random variables T_k ?

A: We have $T_k \sim \mathcal{G}am(k,\lambda)$ for all $k=1,2,\ldots$

Theorem 5.10

If lpha>1, then $\Gamma(lpha)=(lpha-1)\Gamma(lpha-1).$

Theorem 5.11 (Expectations and variances of gamma variables)

If $X \sim \mathcal{G}am(lpha,eta)$, then

$$E(X) = rac{lpha}{eta} \quad ext{and} \quad V(X) = rac{lpha}{eta^2}.$$

Problem Prompt

Do problem 15 on the worksheet.

5.9. Beta distributions

Definition 5.10

Let $\alpha, \beta > 0$ be real numbers. A continuous random variable X is said to have a beta distribution with parameters α and β , denoted

$$X \sim \mathcal{B}eta(\alpha, \beta),$$

if its probability density function is given by

$$f(x;lpha,eta)=rac{\Gamma(lpha+eta)}{\Gamma(lpha)\Gamma(eta)}x^{lpha-1}(1-x)^{eta-1}.$$

with support (0,1).

PDF of a random variable $X \sim Beta(\alpha, \beta)$

Theorem 5.12 (Expectations and variances of beta variables)

If $X \sim \mathcal{B}eta(\alpha, \beta)$, then

$$E(X) = rac{lpha}{lpha + eta} \quad ext{and} \quad V(X) = rac{lpha eta}{(lpha + eta)^2 (lpha + eta + 1)}.$$

Problem Prompt

Do problem 16 on the worksheet.