Notes on Lesson 1

Measurements and Operators - Monday Sep 9

• 1. Derivation of momentum operator

Starting with the most basic measurable value: expectation value of position $\langle x \rangle$

$$\langle x \rangle = \int x \, \rho(x) \, dx = \int \psi^* \, x \, \psi \, dx$$

Then consider < x > change with time:

$$\frac{d}{dt} < x > = \frac{d}{dt} \int \Psi^* \, x \, \Psi \, dx \tag{1}$$

$$= \int x \frac{\partial}{\partial t} |\Psi|^2 dx \tag{2}$$

$$= \int x \left(\frac{\partial \Psi^*}{\partial t} \Psi + \frac{\partial \Psi}{\partial t} \Psi^* \right) dx \tag{3}$$

$$SchrdingerEq \Rightarrow i\overline{h} \frac{\partial}{\partial t} \Psi = -\frac{\overline{h}^2}{2m} \frac{\partial}{\partial x^2} \Psi + V \Psi$$
 (4)

$$-i\overline{h}\,\frac{\partial}{\partial t}\Psi^* = -\frac{\overline{h}^2}{2m}\,\frac{\partial}{\partial x^2}\Psi^* + V\Psi^* \tag{5}$$

Conclude to
$$\Rightarrow \frac{\partial \Psi}{\partial t} \cdot \Psi^* = +\frac{i\overline{h}}{2m} \frac{\partial}{\partial x^2} \Psi \cdot \Psi^* + \frac{V}{i\overline{h}} \Psi \cdot \Psi^*$$
 (6)

$$\frac{\partial \Psi^*}{\partial t} \cdot \Psi = -\frac{i\overline{h}}{2m} \frac{\partial}{\partial x^2} \Psi^* \cdot \Psi - \frac{V}{i\overline{h}} \Psi^* \cdot \Psi \tag{7}$$

$$= \frac{i\overline{h}}{2m} \int x \cdot \left(\Psi^* \frac{\partial^2}{\partial x^2} \Psi - \Psi \frac{\partial^2}{\partial x^2} \Psi^* \right) dx \tag{8}$$

$$Math\ tricks \Rightarrow (u\,\ddot{v} - v\,\ddot{u}) = \frac{d}{dx}\,(u\,\dot{v} - v\,\dot{u}) \tag{9}$$

$$=\frac{i\overline{h}}{2m}\int x\cdot\frac{\partial}{\partial x}\left(\Psi^*\frac{\partial}{\partial x}\Psi-\Psi\frac{\partial}{\partial x}\Psi^*\right)\,dx\tag{10}$$

Using integral by part $\Rightarrow u \cdot dv = uv - v \cdot du$ (11)

$$let \Rightarrow u = x \tag{12}$$

$$v = \Psi^* \frac{\partial}{\partial x} \Psi - \Psi \frac{\partial}{\partial x} \Psi^* \tag{13}$$

$$We \ get \Rightarrow$$
 (14)

$$x \cdot d\left(\Psi^* \frac{\partial}{\partial x} \Psi - \Psi \frac{\partial}{\partial x} \Psi^*\right) = u \cdot dv = wv - v \cdot du = -\left(\Psi^* \frac{\partial}{\partial x} \Psi - \Psi \frac{\partial}{\partial x} \Psi^*\right) dx \tag{15}$$

$$= -\frac{i\overline{h}}{2m} \int \left(\Psi^* \frac{\partial}{\partial x} \Psi - \Psi \frac{\partial}{\partial x} \Psi^* \right) dx \tag{16}$$

Using integral by part again $\Rightarrow u \cdot dv - v \cdot du = -uv + 2u \cdot dv$ (17)

$$let \Rightarrow u = \Psi^* \tag{18}$$

$$v = \Psi \tag{19}$$

$$We \ get \Rightarrow \Psi^*\partial\Psi - \Psi\partial\Psi^* = u \cdot dv - v \cdot du = \Psi^*\partial\Psi + 2v \cdot du = 2\Psi^*\partial\Psi = 2\Psi^*\frac{\partial}{\partial x}\Psi dx \tag{20}$$

$$= -\frac{i\overline{h}}{2m} \int \mathfrak{L} \cdot \Psi^* \frac{\partial}{\partial x} \Psi \, dx \tag{21}$$

$$= \int \Psi^* \left(-\frac{i\overline{h}}{m} \frac{\partial}{\partial x} \right) \Psi \, dx \tag{22}$$

Now we can find a new operator: momentum \hat{p}

$$= m \frac{d < x>}{dt} = \int \Psi^* \left(-i \overline{h} \frac{\partial}{\partial x} \right) \Psi \, dx = \int \Psi^* \left(\frac{\overline{h}}{i} \cdot \frac{\partial}{\partial x} \right) \Psi \, dx$$

Additional proof of $\frac{\partial}{\partial t} \int |\Psi|^2 dx = 0$

$$\frac{d}{dt} \int |\Psi|^2 dx = \int \frac{\partial}{\partial t} |\Psi|^2 dx \tag{23}$$

$$= \int \frac{\partial}{\partial t} \left(\Psi^* \Psi \right) \, dx \tag{24}$$

$$= \int \left(\Psi^* \frac{\partial}{\partial t} \Psi + \Psi \frac{\partial}{\partial t} \Psi^* \right) dx \tag{25}$$

$$SchrdingerEq \Rightarrow \frac{\partial}{\partial t}\Psi = \frac{i\overline{h}}{2m}\frac{\partial}{\partial x^2}\Psi - \frac{i}{\overline{h}}V\Psi$$
 (26)

$$\frac{\partial}{\partial t}\Psi^* = -\frac{i\overline{h}}{2m}\frac{\partial}{\partial x^2}\Psi^* + \frac{i}{\overline{h}}V\Psi^* \tag{27}$$

$$= \int \frac{i\overline{h}}{2m} \left(\Psi^* \frac{\partial^2 \Psi}{\partial x^2} - \Psi \frac{\partial^2 \Psi^*}{\partial x^2} \right) dx \tag{28}$$

$$= \frac{i\overline{h}}{2m} \int \frac{\partial}{\partial x} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \Psi \frac{\partial \Psi^*}{\partial x} \right) dx \tag{29}$$

$$= \frac{i\overline{h}}{2m} \left(\Psi^* \frac{\partial \Psi}{\partial x} - \Psi \frac{\partial \Psi^*}{\partial x} \right) \Big|_{-\infty}^{+\infty}$$
 (30)

Note that
$$\Psi$$
 is normalizable $\Rightarrow \lim_{x\to\infty} \Psi = 0$ (31)

$$\Rightarrow \lim_{x \to \infty} \frac{\partial \Psi}{\partial x} = 0 \tag{32}$$

$$=0 (33)$$

$$\Rightarrow Proved$$
 (34)