# Material Constants of Some Common Materials

**Table B-1** RELATIVE PERMITTIVITY  $\epsilon_{\rm r}$  OF COMMON MATERIALS<sup>a</sup>

 $\epsilon = \epsilon_r \epsilon_0$  and  $\epsilon_0 = 8.854 \times 10^{-12}$  F/m.

| Material                                                                 | Relative Permittivity, $\epsilon_{\rm r}$ | Material        | Relative Permittivity, $\epsilon_{\rm r}$ |
|--------------------------------------------------------------------------|-------------------------------------------|-----------------|-------------------------------------------|
| Vacuum                                                                   | 1                                         | Dry soil        | 2.5–3.5                                   |
| Air (at sea level)                                                       | 1.0006                                    | Plexiglass      | 3.4                                       |
| Styrofoam                                                                | 1.03                                      | Glass           | 4.5–10                                    |
| Teflon                                                                   | 2.1                                       | Quartz          | 3.8–5                                     |
| Petroleum oil                                                            | 2.1                                       | Bakelite        | 5                                         |
| Wood (dry)                                                               | 1.5–4                                     | Porcelain       | 5.7                                       |
| Paraffin                                                                 | 2.2                                       | Formica         | 6                                         |
| Polyethylene                                                             | 2.25                                      | Mica            | 5.4-6                                     |
| Polystyrene                                                              | 2.6                                       | Ammonia         | 22                                        |
| Paper                                                                    | 2–4                                       | Seawater        | 72–80                                     |
| Rubber                                                                   | 2.2–4.1                                   | Distilled water | 81                                        |
| <sup>a</sup> These are low-frequency values at room temperature (20° C). |                                           |                 |                                           |

Note: For most metals,  $\epsilon_r \simeq 1$ .

**Table B-2** CONDUCTIVITY  $\sigma$  OF SOME COMMON MATERIALS<sup>a</sup>

| Material                             | <b>Conductivity</b> , $\sigma$ (S/m) | Material        | <b>Conductivity</b> , $\sigma$ (S/m) |
|--------------------------------------|--------------------------------------|-----------------|--------------------------------------|
| Conductors                           |                                      | Semiconductors  |                                      |
| Silver                               | $6.2 \times 10^{7}$                  | Pure germanium  | 2.2                                  |
| Copper                               | $5.8 \times 10^{7}$                  | Pure silicon    | $4.4 \times 10^{-4}$                 |
| Gold                                 | $4.1 \times 10^{7}$                  | Insulators      |                                      |
| Aluminum                             | $3.5 \times 10^{7}$                  | Wet soil        | $\sim 10^{-2}$                       |
| Tungsten                             | $1.8 \times 10^{7}$                  | Fresh water     | $\sim 10^{-3}$                       |
| Zinc                                 | $1.7 \times 10^{7}$                  | Distilled water | $\sim 10^{-4}$                       |
| Brass                                | $1.5 \times 10^{7}$                  | Dry soil        | $\sim 10^{-4}$                       |
| Iron                                 | $10^{7}$                             | Glass           | $10^{-12}$                           |
| Bronze                               | $10^{7}$                             | Hard rubber     | $10^{-15}$                           |
| Tin                                  | $9 \times 10^{6}$                    | Paraffin        | $10^{-15}$                           |
| Lead                                 | $5 \times 10^{6}$                    | Mica            | $10^{-15}$                           |
| Mercury                              | $10^{6}$                             | Fused quartz    | $10^{-17}$                           |
| Carbon                               | $3 \times 10^4$                      | Wax             | $10^{-17}$                           |
| Seawater                             | 4                                    |                 |                                      |
| Animal body (average)                | 0.3 (poor cond.)                     |                 |                                      |
| <sup>a</sup> These are low-frequency | values at room temperature           | e (20° C).      |                                      |

Table B-3 RELATIVE PERMEABILITY  $\mu_{\rm r}$  OF SOME COMMON MATERIALS<sup>a</sup>

 $\mu = \mu_{\rm r} \mu_0$  and  $\mu_0 = 4\pi \times 10^{-7}$  H/m.

|                                                            | D 1 4                       |
|------------------------------------------------------------|-----------------------------|
|                                                            | Relative                    |
| Material                                                   | Permeability, $\mu_{\rm r}$ |
| Diamagnetic                                                |                             |
| Bismuth                                                    | $0.99983 \simeq 1$          |
| Gold                                                       | $0.99996 \simeq 1$          |
| Mercury                                                    | $0.99997 \simeq 1$          |
| Silver                                                     | $0.99998 \simeq 1$          |
| Copper                                                     | $0.99999 \simeq 1$          |
| Water                                                      | $0.99999 \simeq 1$          |
| Paramagnetic                                               |                             |
| Air                                                        | $1.000004 \simeq 1$         |
| Aluminum                                                   | $1.00002 \simeq 1$          |
| Tungsten                                                   | $1.00008 \simeq 1$          |
| Titanium                                                   | $1.0002 \simeq 1$           |
| Platinum                                                   | $1.0003 \simeq 1$           |
| Ferromagnetic (nonlinear)                                  |                             |
| Cobalt                                                     | 250                         |
| Nickel                                                     | 600                         |
| Mild steel                                                 | 2,000                       |
| Iron (pure)                                                | 4,000-5,000                 |
| Silicon iron                                               | 7,000                       |
| Mumetal                                                    | $\sim 100,000$              |
| Purified iron                                              | $\sim$ 200, 000             |
| <sup>a</sup> These are typical values; a material variety. | ctual values depend on      |

Note: Except for ferromagnetic materials,  $\mu_{\rm r} \simeq 1$  for all dielectrics and conductors.



# Trigonometric Relations

$$\sin(x \pm y) = \sin x \cos y \pm \cos x \sin y$$

$$\cos(x \pm y) = \cos x \cos y \mp \sin x \sin y$$

$$2 \sin x \sin y = \cos(x - y) - \cos(x + y)$$

$$2 \sin x \cos y = \sin(x + y) + \sin(x - y)$$

$$2 \cos x \cos y = \cos(x + y) + \cos(x - y)$$

$$\sin 2x = 2 \sin x \cos x$$

$$\cos 2x = 1 - 2 \sin^2 x$$

$$\sin x + \sin y = 2 \sin\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right)$$

$$\sin x - \sin y = 2 \cos\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right)$$

$$\cos x + \cos y = 2 \cos\left(\frac{x + y}{2}\right) \cos\left(\frac{x - y}{2}\right)$$

$$\cos x - \cos y = -2 \sin\left(\frac{x + y}{2}\right) \sin\left(\frac{x - y}{2}\right)$$

$$\cos(x \pm 90^\circ) = \mp \sin x$$

$$\cos(-x) = \cos x$$

$$\sin(x \pm 90^{\circ}) = \pm \cos x$$

$$\sin(-x) = -\sin x$$

$$e^{jx} = \cos x + j \sin x \qquad \text{(Euler's identity)}$$

$$\sin x = \frac{e^{jx} - e^{-jx}}{2j}$$

$$\cos x = \frac{e^{jx} + e^{-jx}}{2}$$

# Approximations for Small Quantities

For 
$$|x| \ll 1$$
,

$$(1 \pm x)^n \simeq 1 \pm nx$$

$$(1 \pm x)^2 \simeq 1 \pm 2x$$

$$\sqrt{1 \pm x} \simeq 1 \pm \frac{x}{2}$$

$$\frac{1}{\sqrt{1\pm x}} \simeq 1 \mp \frac{x}{2}$$

$$e^x = 1 + x + \frac{x^2}{2!} + \dots \simeq 1 + x$$

$$ln(1+x) \simeq x$$

$$\sin x = x - \frac{x^3}{3!} + \frac{x^5}{5!} + \dots \simeq x$$

$$\cos x = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} + \dots \simeq 1 - \frac{x^2}{2}$$

$$\lim_{x \to 0} \frac{\sin x}{x} = 1$$



- 1.1 5 cm
- 1.3  $p(x, t) = 51.04\cos(4\pi \times 10^3 t 12.12\pi x + 36^\circ)$ (N/m<sup>2</sup>)
- **1.6**  $u_p = 0.83$  (m/s);  $\lambda = 10.47$  m
- **1.8** (a)  $y_1(x, t)$  is traveling in positive x direction.  $y_2(x, t)$  is traveling in negative x direction.
- **1.10**  $y_2(t)$  lags  $y_1(t)$  by 54°.
- **1.12**  $T = 1.25 \text{ s}; \ u_p = 0.28 \text{ m/s}; \ \lambda = 0.35 \text{ m}$
- **1.14**  $\alpha = 2 \times 10^{-3} \text{ (Np/m)}$
- **1.16** (c)  $z_1 z_2 = 18e^{j109.4^{\circ}}$
- **1.17 (b)**  $z_2 = \sqrt{3} e^{j3\pi/4}$
- 1.19 (c)  $|z|^2$ ,

- **1.20** (d) t = 0;  $s = 6e^{j30^{\circ}}$
- **1.22**  $\ln(z) = 1.76 + j1.03$
- **1.25**  $v_c(t) = 15.57\cos(2\pi \times 10^3 t 81.5^\circ) \text{ V}$
- **1.26** (d)  $i(t) = 3.61\cos(\omega t + 146.31^{\circ})$  A
- **1.27** (d)  $\tilde{I} = 2e^{j\pi/4} A$

#### Chapter 2

- **2.2** (a)  $l/\lambda = 2 \times 10^{-5}$ ; transmission line may be ignored.
  - (c)  $l/\lambda = 0.6$ ; transmission line effects should be included.
- **2.4** R' = 0.69 ( $\Omega/m$ ),  $L' = 1.57 \times 10^{-7}$  (H/m), G' = 0,  $C' = 1.84 \times 10^{-10}$  (F/m)
- **2.7**  $\alpha = 0.109$  Np/m;  $\beta = 44.5$  rad/m;  $Z_0 = (19.6 + j0.030) \Omega$ ;  $u_p = 1.41 \times 10^8$  m/s
- **2.10**  $w = 0.613 \text{ mm}, \lambda = 0.044 \text{ m}$

- **2.14** R' = 0.5 ( $\Omega/m$ ); L' = 200 (nH/m); G' = 200 ( $\mu$ S/m); C' = 80 (pF/m);  $\lambda = 2.5$  m
- **2.16**  $R' = 0.4 \,\Omega/\text{m}, L' = 38.2 \,\text{nH/m}, G' = 0.25 \,\text{mS/m}, C' = 23.9 \,\text{pF/m}$
- **2.17** (a) b = 4.2 mm
  - **(b)**  $u_p = 2 \times 10^8 \text{ m/s}$
- **2.22**  $Z_{\rm L} = (120.5 j89.3) \Omega$
- **2.23**  $Z_0 = 70.7 \Omega$
- **2.29**  $Z_{\rm in} = (40 + j20) \Omega$
- **2.31 (b)**  $\Gamma = 0.16 e^{-j80.54^{\circ}}$
- **2.32** (a)  $\Gamma = 0.62e^{-j29.7^{\circ}}$
- **2.33** (a)  $Z_{\text{in}_1} = (35.20 j8.62) \Omega$
- **2.35**  $L = 8.3 \times 10^{-9} \text{ H}$
- **2.36**  $l = \lambda/4 + n\lambda/2$
- **2.39**  $Z_{\rm in} = \frac{100^2}{33.33} = 300 \ \Omega$
- **2.41** (b)  $i_L(t) = 3\cos(6\pi \times 10^8 t 135^\circ)$  (A)
- **2.42** (a)  $Z_{\text{in}} = (41.25 j16.35) \Omega$
- **2.44**  $P_{\text{av}}^{\text{i}} = 10.0 \text{ mW}; P_{\text{av}}^{\text{r}} = -1.1 \text{ mW}; P_{\text{av}}^{\text{t}} = 8.9 \text{ mW}$
- **2.45** (a)  $P_{\rm av} = 0.29 \,\rm W$
- **2.48** (b)  $\Gamma = 0.62 \exp -29.7^{\circ}$
- **2.50**  $Z_{\rm in} = (66 j125) \Omega$
- **2.52 (b)** S = 1.64
- **2.53**  $Z_{01} = 40 \ \Omega; \ Z_{02} = 250 \ \Omega$
- **2.55** (a)  $Z_{\rm in} = -j154 \ \Omega$ 
  - **(b)**  $0.074\lambda + (n\lambda/2), n = 0, 1, 2, ...$
- **2.57** The reciprocal of point Z is at point Y, which is at 0.55 + j0.26.
- **2.61**  $Z_{\rm L} = (41 j19.5) \Omega$
- **2.63**  $Z_{\rm in} = (95 j70) \ \Omega$

- **2.69** First solution: Stub at  $d = 0.199\lambda$  from antenna and stub length  $l = 0.125\lambda$ . Second solution:  $d = 0.375\lambda$  from antenna and stub length  $l = 0.375\lambda$ .
- **2.73**  $Z_{\rm in} = 100 \ \Omega$
- **2.78**  $V_g = 19.2 \text{ V}; R_g = 30 \Omega; l = 700 \text{ m}$
- **2.80** (a) l = 600 m
  - **(b)**  $Z_{\rm L} = 0$
  - (c)  $R_g = \left(\frac{1+\Gamma_g}{1-\Gamma_g}\right) Z_0 = \left(\frac{1+0.25}{1-0.25}\right) 50 = 83.3 \ \Omega$
  - (d)  $V_g = 32 \text{ V}$

- 3.2  $\hat{\mathbf{a}} = \hat{\mathbf{x}} 0.32 \hat{\mathbf{z}} 0.95$
- 3.3 Area = 36
- 3.5 (a)  $A = \sqrt{14}$ ;  $\hat{\mathbf{a}}_A = (\hat{\mathbf{x}} + \hat{\mathbf{v}}2 \hat{\mathbf{z}}3)/\sqrt{14}$ 
  - (e)  $\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = 20$
  - (h)  $(\mathbf{A} \times \hat{\mathbf{y}}) \cdot \hat{\mathbf{z}} = 1$
- 3.9  $\hat{\mathbf{a}} = \frac{\mathbf{A}}{|\mathbf{A}|} = \frac{-\hat{\mathbf{x}} \hat{\mathbf{y}}y \hat{\mathbf{z}}2}{\sqrt{5 + y^2}}$
- 3.10  $\hat{\mathbf{a}} = (\hat{\mathbf{x}} \, 3 \hat{\mathbf{z}} \, 6) / \sqrt{45}$
- 3.12  $\mathbf{A} = \hat{\mathbf{x}} \, 0.8 + \hat{\mathbf{y}} \, 1.6$
- 3.15  $\hat{\mathbf{c}} = \hat{\mathbf{x}} 0.37 + \hat{\mathbf{v}} 0.56 + \hat{\mathbf{z}} 0.74$
- 3.17  $G = \pm \left(-\hat{\mathbf{x}} \frac{8}{3} + \hat{\mathbf{y}} \frac{8}{3} + \hat{\mathbf{z}} \frac{4}{3}\right)$
- **3.23** (a)  $P_1 = (2.24, 63.4^{\circ}, 0)$  in cylindrical;  $P_1 = (2.24, 90^{\circ}, 63.4^{\circ})$  in spherical
  - (d)  $P_4 = (2.83, 135^\circ, -2)$  in cylindrical;  $P_4 = (3.46, 125.3^\circ, 135^\circ)$  in spherical
- **3.24** (a)  $P_1 = (0, 0, 5)$
- 3.25 (c) A = 12
- 3.27 (a)  $V = 21\pi/2$
- 3.30 (a)  $\theta_{AB} = 90^{\circ}$ 
  - **(b)**  $\pm (\hat{\mathbf{r}} 0.487 + \hat{\mathbf{\phi}} 0.228 + \hat{\mathbf{z}} 0.843)$

3.31 (a) 
$$d = \sqrt{3}$$

3.34 (c) 
$$\mathbf{C}(P_3) = \hat{\mathbf{r}}0.707 + \hat{\mathbf{z}}4$$

(e) 
$$E(P_5) = -\hat{r} + \hat{\phi}$$

3.35 (c) 
$$C(P_3) = \hat{R}0.854 + \hat{\theta}0.146 - \hat{\phi}0.707$$

3.36 (e) 
$$\nabla S = \hat{\mathbf{x}} 8x e^{-z} + \hat{\mathbf{v}} 3y^2 - \hat{\mathbf{z}} 4x^2 e^{-z}$$

**3.37 (b)** 
$$\nabla T = \hat{\mathbf{x}} 2x$$

(g) 
$$\nabla T = -\hat{\mathbf{x}} \frac{2\pi}{6} \sin\left(\frac{\pi x}{3}\right)$$

**3.38** 
$$T(z) = 10 + (1 - e^{-4z})/4$$

**3.39** 
$$\left(\frac{dV}{dl}\right)|_{(1,-1,2)} = 1.34$$

3.42 
$$dU/dl = -0.02$$

3.46 
$$E = \hat{R}2R$$

$$\mathbf{3.48} \quad \mathbf{(a)} \quad \oint \mathbf{D} \cdot d\mathbf{s} = 150\pi$$

**(b)** 
$$\iiint \nabla \cdot \mathbf{D} \, d\mathcal{V} = 150\pi$$

- **3.56** (a) A is solenoidal, but not conservative.
  - (d) **D** is conservative, but not solenoidal.
  - (h) H is conservative, but not solenoidal.

3.58 (c) 
$$\nabla^2 \left( \frac{3}{x^2 + y^2} \right) = \frac{12}{\left( x^2 + y^2 \right)^2}$$

**4.2** 
$$Q = 2.62 \text{ (mC)}$$

**4.3** 
$$Q = 260 \, (\text{mC})$$

**4.7** 
$$I = 314.2 \text{ A}$$

**4.8** (a) 
$$\rho_l = -\frac{\pi c a^4}{2}$$
 (C/m)

**4.11** 
$$\mathbf{E} = \hat{\mathbf{z}} \, 51.2 \, \text{kV/m}$$

**4.12** 
$$q_2 \approx -94.69 \, (\mu \text{C})$$

**4.15** (a) 
$$\mathbf{E} = -\hat{\mathbf{x}} \, 1.6 - \hat{\mathbf{y}} \, 0.66 \, (\text{MV/m})$$

**4.17** 
$$\mathbf{E} = \hat{\mathbf{z}} \left( \rho_{s0} h / 2\epsilon_0 \right) \left[ \sqrt{a^2 + h^2} + h^2 / \sqrt{a^2 + h^2} - 2h \right]$$

**4.20** 
$$\mathbf{E} = -\hat{\mathbf{y}} \frac{\rho_l}{\pi \epsilon_0 R_1} \frac{R_1}{R_2} + \hat{\mathbf{y}} \frac{\rho_l}{\pi \epsilon_0 R_2} = 0$$

**4.23** (a) 
$$\rho_{\rm v} = {\rm v}^3 z^3$$

**(b)** 
$$Q = 32$$
 **(C)**

(c) 
$$Q = 32$$
 (C)

**4.25** 
$$Q = 4\pi \rho_0 a^3$$
 (C)

**4.26** 
$$\mathbf{D} = \hat{\mathbf{r}} \frac{\rho_{v0}(r^2 - 1)}{2r}, \qquad 1 \le r \le 2 \text{ m}$$

$$\mathbf{D} = \hat{\mathbf{r}} D_r = \hat{\mathbf{r}} \frac{3\rho_{v0}}{2r}, \qquad r \ge 2 \text{ m}$$

**4.30** 
$$R_1 = \frac{a}{2}, R_3 = \frac{a\sqrt{5}}{2}, V = \frac{0.55Q}{\pi\epsilon_0 a}$$

**4.33** (b) 
$$\mathbf{E} = \hat{\mathbf{z}}(\rho_l a/2\epsilon_0)[z/(a^2 + z^2)^{3/2}]$$
 (V/m)

**4.34** 
$$V(b) = (\rho_l/4\pi\epsilon)$$
  
  $\times \ln \left[ \frac{l + \sqrt{l^2 + 4b^2}}{-l + \sqrt{l^2 + 4b^2}} \right] (V)$ 

4.37 
$$V = \frac{\rho_l}{2\pi\epsilon_0} \left[ \ln\left(\frac{a}{\sqrt{(x-a)^2 + y^2}}\right) - \ln\left(\frac{a}{\sqrt{(x+a)^2 + y^2}}\right) \right]$$

**4.40** 
$$V_{AB} = -234.18 \text{ V}$$

**4.41** (c) 
$$\mathbf{u}_{e} = -8.125\mathbf{E}/|\mathbf{E}| \text{ (m/s)}; \ \mathbf{u}_{h} = 3.125\mathbf{E}/|\mathbf{E}| \text{ (m/s)}$$

**4.45** 
$$R = 4.2 \, (\text{m}\Omega)$$

**4.48** 
$$\theta = 61^{\circ}$$

**4.50** 
$$O = 3\pi\epsilon_0$$
 (C)

**4.52** (a) |E| is maximum at r = a.

**4.56** 
$$W_e = 4.62 \times 10^{-9}$$
 (J)

**4.57** (a) 
$$C = 3.1 \text{ pF}$$

**4.60 (b)** 
$$C = 6.07 \text{ pF}$$

**4.63** 
$$C' = \frac{\pi \epsilon_0}{\ln[(2d/a) - 1]}$$
 (C/m)

**5.1** 
$$\mathbf{a} = -\hat{\mathbf{y}}8.44 \times 10^{18} \, (\text{m/s}^2)$$

**5.4** 
$$T = -\hat{z}1.66 \text{ (N} \cdot \text{m)}$$
; clockwise

5.5 (a) 
$$\mathbf{F} = 0$$

$$5.9 \mathbf{H} = \hat{\mathbf{z}} \frac{I\theta (b-a)}{4\pi ab}$$

**5.10 B** = 
$$-\hat{\mathbf{z}}$$
0.6 (mT)

**5.11** 
$$I_2 = \frac{2aI_1}{2\pi Nd} = \frac{1 \times 50}{\pi \times 20 \times 2} = 0.4 \text{ A}$$

**5.14** 
$$I = 100 \,\mathrm{A}$$

**5.16** 
$$\mathbf{F} = -\hat{\mathbf{x}}0.8$$
 (mN)

**5.18** (a) 
$$\mathbf{H}(0,0,h) = -\hat{\mathbf{x}} \frac{I}{\pi w} \tan^{-1} \left(\frac{w}{2h}\right) (A/m)$$

**5.20** 
$$\mathbf{F} = \hat{\mathbf{y}} \, 8 \times 10^{-5} \, \text{N}$$

**5.24** 
$$\mathbf{J} = \hat{\mathbf{z}} \, 9e^{-3r} \, \text{A/m}^2$$

5.26 (a) 
$$\mathbf{A} = \hat{\mathbf{z}} \frac{\mu_0 I}{4\pi} \ln \left( \frac{\ell + \sqrt{\ell^2 + 4r^2}}{-\ell + \sqrt{\ell^2 + 4r^2}} \right)$$

**5.28** (a) 
$$\mathbf{B} = \hat{\mathbf{z}} 5\pi \sin \pi y - \hat{\mathbf{y}}\pi \cos \pi x$$
 (T)

5.29 (a) 
$$\mathbf{A} = \hat{\mathbf{z}} \mu_0 I L / (4/piR)$$

**(b)** 
$$\mathbf{H} = (IL/4\pi)[(-\hat{\mathbf{x}}y + \hat{\mathbf{y}}x)/(x^2 + y^2 + z^2)^{3/2}]$$

**5.30**  $n_{\rm e} = 1.5$  electrons/atom

**5.33** 
$$\mathbf{H}_2 = \hat{\mathbf{z}} 7$$

**5.35** 
$$\vec{B}_2 = \hat{\mathbf{x}}20000 - \hat{\mathbf{y}}30000 + \hat{\mathbf{z}}12$$

5.37 
$$L' = (\mu/\pi) \ln[(d-a)/a]$$
 (H)

**5.40** 
$$\Phi = 1.66 \times 10^{-6}$$
 (Wb)

## Chapter 6

**6.1** At t = 0, current in top loop is momentarily clockwise. At  $t = t_1$ , current in top loop is momentarily counterclockwise.

**6.4** (a) 
$$V_{\text{emf}} = 750e^{-3t}$$
 (V)

**6.7** 
$$I_{\text{ind}} = 18.85 \sin(200\pi t) \text{ mA}$$

**6.9** 
$$B_0 = 0.4 \, (\text{nA/m})$$

**6.10** 
$$V_{12} = -236 \,(\mu \text{V})$$

**6.12** 
$$I = 0.3$$
 (A)

**6.14** 
$$I = 0.82 \cos(120\pi t) (\mu A)$$

**6.18** 
$$f = 5 \text{ MHz}$$

**6.20**  $\rho_{\rm v} = (8y/\omega) \sin \omega t + C_0$ , where  $C_0$  is a constant of integration.

**6.24** 
$$k = (4\pi/30) \text{ rad/m};$$
  

$$\mathbf{E} = -\hat{\mathbf{z}}941 \cos(2\pi \times 10^7 t + 4\pi y/30) \text{ (V/m)}$$

**6.26** 
$$\mathbf{H}(R, \theta; t) = \hat{\mathbf{\phi}} (53/R) \sin \theta \cos(6\pi \times 10^8 t - 2\pi R) (\mu \text{A/m})$$

**6.28** (a) 
$$k = 20$$
 (rad/m)

## Chapter 7

**7.2** (a) Positive y-direction

(c) 
$$\lambda = 12.6 \text{ m}$$

**7.3** (a) 
$$\lambda = 31.42 \text{ m}$$

**7.5** 
$$\epsilon_{\rm r} = 16$$

**7.6** (a) 
$$\lambda = 10 \text{ m}$$

**7.14** (a)  $\gamma = 73.5^{\circ}$  and  $\chi = -8.73^{\circ}$ 

(b) Right-hand elliptically polarized

7.17 (a) Low-loss dielectric.  $\alpha = 8.42 \times 10^{-11} \text{ Np/m},$  $\beta = 468.3 \text{ rad/m}, \lambda = 1.34 \text{ cm}, u_p = 1.34 \times 10^8 \text{ m/s}, \eta_c \approx 168.5 \Omega$ 

**7.19 H** lags **E** by 31.72°

**7.21** z = 287.82 m

**7.23**  $u_p = 6.28 \times 10^4 \text{ (m/s)}$ 

**7.25**  $\mathbf{H} = -\hat{\mathbf{y}}0.16 e^{-30x} \cos(2\pi \times 10^9 t - 40x - 36.85^\circ)$ 

**7.29**  $(R_{\rm ac}/R_{\rm dc}) = 287.1$ 

**7.34**  $\mathbf{S}_{av} = \hat{\mathbf{y}}0.48 \, (\text{W/m}^2)$ 

**7.35** (c) z = 23.03 m

**7.36**  $u_p = 1 \times 10^8 \text{ (m/s)}$ 

**7.39 (b)**  $P_{av} = 0$ 

**7.42** (a)  $(w_e)_{av} = \frac{\epsilon E_0^2}{4}$ 

## Chapter 8

**8.2** (a)  $\Gamma = -0.67$ ;  $\tau = 0.33$ 

**(b)** S = 5

(c)  $S_{av}^{i} = 0.52 \text{ (W/m}^{2}); S_{av}^{r} = 0.24 \text{ (W/m}^{2}); S_{av}^{t} = 0.28 \text{ (W/m}^{2})$ 

**8.3 (b)**  $\mathbf{S}_{av}^{i} = \hat{\mathbf{y}} 251.34, \ \mathbf{S}_{av}^{r} = \hat{\mathbf{y}} 10.05, \ \mathbf{S}_{av}^{t} = \hat{\mathbf{y}} 241.29$  (W/m<sup>2</sup>)

**8.6** (a)  $\Gamma = -0.71$ 

**8.8**  $|\widetilde{\mathbf{E}}_1|_{\text{max}} = 85.5 \text{ (V/m)}; \ l_{\text{max}} = 1.5 \text{ m}$ 

**8.9**  $\epsilon_{r_2} = \sqrt{\epsilon_{r_1} \epsilon_{r_3}}$ ;  $d = c/[4f(\epsilon_{r_1} \epsilon_{r_3})^{1/4}]$ 

**8.11**  $Z_{\text{in}}(-d) = 0.43 \eta_0 / -51.7^{\circ}$  $|\Gamma|^2 = 0.24$  **8.12** f = 50 MHz

**8.15**  $P' = (3.3 \times 10^{-3})^2 \frac{10^2}{2} \times 1.14 [1 - e^{-2 \times 44.43 \times 2 \times 10^{-3}}] = 1.01 \times 10^{-4}$  (W/m<sup>2</sup>)

**8.17**  $\theta_{\min} = 35.57^{\circ}$ 

8.20  $\frac{S^{t}}{S^{i}} = 0.85$ 

**8.22** d = 15 cm

**8.25** d = 68.42 cm

**8.26**  $f_p = 166.33$  (Mb/s)

**8.27 (b)**  $\theta_i = 36.87^{\circ}$ 

**8.29** (a)  $\theta_i = 33.7\circ$ 

**8.30**  $\theta_{\rm t} = 18.44^{\circ}$ 

**8.37** (a) 9.4%

**8.39** a = 2 cm; b = 1.6 cm

**8.41** Any one of the first four modes.

**8.43** 570  $\Omega$  (empty); 290  $\Omega$  (filled)

**8.45**  $\theta'_{20} = 43.16^{\circ}$ 

**8.46** (a) Q = 8367

#### Chapter 9

9.2  $S_{\text{max}} = 47.5 \; (\mu \text{W/m}^2)$ 

9.4 (a) Direction of maximum radiation is a circular cone  $120^{\circ}$  wide, centered around the +z axis.

**(b)** D = 4 = 6 dB

(c)  $\Omega_p = \pi \ (sr) = 3.14 \ (sr)$ 

(d)  $\beta = 120^{\circ}$ 

**9.6 (b)** G = -3.5 dB

**9.9**  $S_{\text{max}} = 6 \times 10^{-5} \, (\text{W/m}^2)$ 

**9.12** D = 40.11 dB

**9.14** S = 1.46

9.15 (a) 
$$\widetilde{\mathbf{E}}(R, \theta, \phi) = \hat{\mathbf{\theta}} \widetilde{E}_{\theta} = \hat{\mathbf{\theta}} j \frac{I_0 l k \eta_0}{8\pi} \left( \frac{e^{-jkR}}{R} \right) \sin \theta$$
(V/m)

**9.17** (a) 
$$\theta_{\text{max}_1} = 42.6^{\circ}$$
,  $\theta_{\text{max}_2} = 137.4^{\circ}$ 

**9.20** (a) 
$$\theta_{\text{max}_1} = 90^{\circ}$$
,  $\theta_{\text{max}_2} = 270^{\circ}$ 

**(b)** 
$$S_{\text{max}} = \frac{60I_0^2}{\pi R^2}$$

(c) 
$$F(\theta) = \frac{1}{4} \left[ \frac{\cos(\pi \cos \theta) + 1}{\sin \theta} \right]^2$$

**9.23** 
$$P_{\rm t} = 25.9 \, ({\rm mW})$$

**9.27** (a) 
$$P_{\text{rec}} = 3.6 \times 10^{-6} \,\text{W}$$

**9.31** 
$$\beta_{\text{null}} = 5.73^{\circ}$$

**9.32** 
$$D = 39.96 \text{ dB}$$

**9.34** (a) 
$$\beta_e = 1.8^\circ$$
;  $\beta_a = 0.18^\circ$ 

**(b)** 
$$\Delta y = \beta_a R = 0.96 \text{ m}$$

**9.37** (a) 
$$F_a(\theta) = 4\cos^2\left[\frac{\pi}{8} (4\cos\theta + 1)\right]$$

**9.39** 
$$d/\lambda = 1.414$$

**9.44** 
$$F_a(\theta) = [6 + 8\cos(\pi\cos\theta) + 2\cos(2\pi\cos\theta)]^2$$

**9.47** 
$$\delta = -2.72 \text{ (rad)} = -155.9^{\circ}$$

## Chapter 10

**10.1** T = 89.72 minutes

**10.3**  $133.3 \approx 133$  channels

**10.6** 
$$(f_p)_{\text{max}} = 150 \text{ kHz}$$

**10.7**  $R_{\text{max}} = 4.84 \text{ km}$ 



The following list of books, arranged alphabetically by the last name of the first author, provides references for further reading.

#### Electromagnetics

- Balanis, C.A., *Advanced Engineering Electromagnetics*, John Wiley & Sons, Hoboken, NJ, 1989.
- Cheng, D.K., Fundamentals of Engineering Electromagnetics, Addison Wesley, Reading, MA, 1993.
- Hayt, W.H., Jr. and J.A. Buck, *Engineering Electromagnetics*, 7th ed., McGraw-Hill, New York, 2005.
- Iskander, M.F., *Electromagnetic Fields & Waves*, Prentice Hall, Upper Saddle River, NJ, 2000.
- King, R.W.P. and S. Prasad, *Fundamental Electromagnetic Theory and Applications*, Prentice Hall, Englewood Cliffs, NJ, 1986.

- Ramo, S., J.R. Whinnery, and T. Van Duzer, *Fields and Waves in Communication Electronics*, 3rd ed., John Wiley & Sons, Hoboken, NJ, 1994.
- Rao, N.N., *Elements of Engineering Electromagnetics*, Prentice Hall, Upper Saddle River, NJ, 2004.
- Shen, L.C. and J.A. Kong, *Applied Electromagnetism*, 3rd ed., PWS Engineering, Boston, MA, 1995.

#### Antennas and Radiowave Propagation

- Balanis, C.A., *Antenna Theory: Analysis and Design*, John Wiley & Sons, Hoboken, NJ, 2005.
- Ishimaru, A., Electromagnetic Wave Propagation, Radiation, and Scattering, Prentice Hall, Upper Saddle River, NJ, 1991.
- Stutzman, W.L. and G.A. Thiele, *Antenna Theory and Design*, John Wiley & Sons, Hoboken, NJ, 1997.

#### Optical Engineering

- Bohren, C.F. and D.R. Huffman, *Absorption and Scattering of Light by Small Particles*, John Wiley & Sons, Hoboken, NJ, 1998.
- Born, M. and E. Wolf, *Principles of Optics*, 7th ed., Pergamon Press, New York, 1999.
- Hecht, E., Optics, Addison-Wesley, Reading, MA, 2001.
- Smith, W.J., *Modern Optical Engineering*, SPIE Press, Bellingham, WA, 2007.
- Walker, B.H., *Optical Engineering Fundamentals*, SPIE Press, Bellingham, WA, 2009.

#### Microwave Engineering

- Freeman, J.C., Fundamentals of Microwave Transmission Lines, John Wiley & Sons, Hoboken, NJ, 1996.
- Pozar, D.M., *Microwave Engineering*, Addison-Wesley, Reading, MA, 2004.
- Richharia, M., Satellite Communication Systems, McGraw-Hill, New York, 1999.
- Scott, A.W., *Understanding Microwaves*, John Wiley & Sons, Hoboken, NJ, 2005.
- Skolnik, M.I., *Introduction to Radar Systems*, 3rd ed., McGraw-Hill, New York, 2002.
- Stimson, G.W., *Introduction to Airborne Radar*, Hughes Aircraft Company, El Segundo, California, 2001.



#### 3-dB beamwidth, 436

## Α

Abacus, 30 Ablation, 32, 134 ac motor, 25, 27 ac resistance R, 363 Acceptance angle  $\theta_a$ , 387 Adding machine, 30 Admittance Y, 118 Alternating current (ac), 27 AM radio, 28 Ampère, André-Marie, 26 Ampère's law, 274-277, 295 Amplitude-comparison monopulse radar, 492 Amplitude modulation (AM), 28 Analog computer, 30 Angle error signal, 493 Angle of incidence  $\theta_i$ , 385 Angle of reflection  $\theta_r$ , 385 Angle of transmission  $\theta_t$ , 385 Angular frequency  $\omega$ , 47, 80 Angular velocity  $\omega$ , 47 Antennas, 426-471, 485-486 aperture, 451 rectangular, 454-456 scalar formulation, 452 vector formulation, 452

arrays, 457-464 linear phase, 468 pattern multiplication principle, 460 scanning, 466-471 uniform phase, 464-465 broadside direction, 431 directivity *D*, 436, 456 effective area, 456 far-field (far-zone) region, 427, 430-431 gain, 438-439 half-wave dipole, 439-444 input impedance, 426 isotropic, 426, 435 large aperture, 451-457 multiplication principle, 460 normalized radiation intensity, 431 pattern solid angle  $\Omega_p$ , 434 patterns, 426, 433 beam dimensions, 434 beamwidth  $\beta$ , 435–436 directivity *D*, 436–437 polarization, 426 receiving, 444-449 reciprocal, 426 types, 486 arrays, 486 dipoles, 486 helices, 486

| parabolic dishes, 486 Bush, Vannevar, 30                                             |     |
|--------------------------------------------------------------------------------------|-----|
|                                                                                      |     |
| Antenna radiation pattern, 426                                                       |     |
| Arithmometer, 30                                                                     |     |
| Armstrong, Edwin, 28, 29                                                             |     |
| ARPANET, 29 Capacitance <i>C</i> , 232–235                                           |     |
| Array factor $F_a(\theta)$ , 460 capacitor, 232                                      |     |
| array amplitude distribution, 460 of a coaxial line, 234                             |     |
| array phase distribution, 460 of a parallel-plate capacitor, 233–235                 |     |
| Atmospheric transmissivity $\Upsilon$ , 484 Capacitive sensors, 218, 240–244         |     |
| Attenuation constant $\alpha$ , 79, 353                                              |     |
| Average power $S_{av}$ , 365 as batteries, 236–238                                   |     |
| Average power density $\mathbf{S}_{av}$ , 365 electrochemical double-layer (EDLC), 2 | 236 |
| Auxiliary angle $\psi_0$ , 351 Cardullo, Mario, 344                                  |     |
| Axial ratio $R$ , 351 Carrier frequency $f$ , 487                                    |     |
| Azimuth angle $\phi$ , 429 Cartesian coordinate system $x$ , $y$ , $z$ , 163, 164    |     |
| Azimuth-difference channel, 493  CAT (CT) scan, 186                                  |     |
| Azimuth plane ( $\phi$ -plane), 434 Cathode ray tube (CRT), 28                       |     |
| Azimuth resolution $\Delta x$ , 488 Cavity resonators, 414–416, 418                  |     |
| Cell phone, 29                                                                       |     |
| Charge continuity equation, 323, 329                                                 |     |
| Charge dissipation, 324                                                              |     |
| bac-cab rule, 161 Charge distribution, 202–203, 206                                  |     |
| Backus, John, 30 surface distribution, 207                                           |     |
| Band gap energy, 61 Circular polarization, 346, 348–350                              |     |
| Bar-code readers, 404–405 Circulation, 184                                           |     |
| Bardeen, John, 29 Circulator, 482                                                    |     |
| Base vector, 156 Cladding, 387                                                       |     |
| BASIC, 30 Coaxial line, 73                                                           |     |
| Beam dimensions, 434 Complex conjugate, 56                                           |     |
| Beamwidth $\beta$ , 435, 436, 455–456 Complex feeding coefficient $A_i$ , 459        |     |
| Becquerel, Alexandre-Edmond, 60, 315 Complex numbers, 54–58                          |     |
| Bell, Alexander, 28 complex conjugate, 56                                            |     |
| Berliner, Emil, 28 Euler's identity, 54, 65                                          |     |
| Berners–Lee, Tim, 31 polar form, 54                                                  |     |
| Bhatia, Sabeer, 31 properties, 56                                                    |     |
| Bioelectrics, 135 rectangular form, 54                                               |     |
| Biot, Jean-Baptiste, 26, 38 rectangular-polar relations, 54, 65                      |     |
| Biot–Savart law, 26, 38, 266–273, 295 Complex permittivity $\epsilon_c$ , 337        |     |
| current distributions, 266–270 Compressive stress, 314                               |     |
| surface current density $J_s$ , 266 Conductance $G$ , 118                            |     |
| volume current density $J$ , 266 Conductivity $\sigma$ , 30, 40, 220, 499            |     |
| volume distributions, 266–270 Conductors, 217–223                                    |     |
| Bistatic radar, 489 conduction current, 217                                          |     |
| Bounce diagram, 140 conduction current density <b>J</b> , 217                        |     |
| Boundary conditions, 225–232 conductivity, 220, 499                                  |     |
| Brattain, Walter, 29 equipotential medium, 220                                       |     |
| Braun, Karl, 28 resistance, 221–222                                                  |     |
| Brewster (polarizing) angle, 397–398, 418 semiconductors, 217, 220                   |     |
| Broadside array, 464  Conservative (irrotational) field, 188, 213                    |     |

| Constitutive parameters, 217                                                       | isotropic, 224                                   |
|------------------------------------------------------------------------------------|--------------------------------------------------|
| Convection current, 204                                                            | linear, 224                                      |
| Conversion efficiency, 60                                                          | nonpolar, 223                                    |
| Coordinate systems, 162–176                                                        | perfect, 217, 220                                |
| Cartesian $x, y, z, 163, 164$                                                      | permanent dipole moments, 224                    |
| cylindrical $r, \phi, z, 162, 164-167$                                             | polar materials, 223                             |
| spherical $R, \theta, \phi, 162, 167-169$                                          | polarization, 223                                |
| Coplanar waveguide, 73                                                             | strength $E_{ds}$ , 225                          |
| Cormack, Allan, 186                                                                | tables, 226, 501                                 |
| Coulomb (C), 35                                                                    | Difference channel, 493                          |
| Coulomb, Charles-Augustin de, 25, 26, 35                                           | Digital computer, 30                             |
| Coulomb's law, 35, 204–209                                                         | Dimensions, 33                                   |
| charge distribution, 206                                                           | Dipole, 36, 104, 214, 270, 274                   |
| circular disk of charge, 208                                                       | electric, 36, 104, 214                           |
| infinite sheet of charge, 209                                                      | half-wave, 439–444, 473                          |
| line distribution, 207                                                             | Hertzian, 428–431                                |
| relative permittivity (dielectric constant) $\epsilon_r$ , 205                     | linear, 442–444                                  |
| ring of charge, 207                                                                | moment, 215                                      |
| surface distribution, 207                                                          | short, 449, 473                                  |
| two-point charges, 206                                                             | vertical, 457                                    |
| volume distribution, 207                                                           | Direct current (dc), 25                          |
| Critical angle $\theta_c$ , 386                                                    | Directional derivative $dT/dl$ , 177             |
| Cross (vector) product, 160–161                                                    | •                                                |
| CT (CAT) scan, 186                                                                 | Directivity D, 436, 456                          |
| Curie, Paul-Jacques, 314                                                           | Dispersive, 72                                   |
| Curie, Pierre, 314                                                                 | Displacement current $I_d$ , 319–321             |
| Curl operator, 184, 185                                                            | Displacement current density $J_d$ , 319         |
| Current density, 217, 266, 319                                                     | Distance vector, 158                             |
| Cutoff frequency $f_{mn}$ , 408                                                    | Divergence operator, 180–184                     |
| Cutoff wavenumber $k_c$ , 406                                                      | Divergence theorem, 181                          |
| Cylindrical coordinate system $r$ , $\phi$ , $z$ , 162, 164–167                    | Dominant mode, 408                               |
| D                                                                                  | Doppler frequency shift $f_d$ , 486, 491         |
| D                                                                                  | Doppler radar, 491–492                           |
| dc motor, 25                                                                       | Dot (scalar) product, 158–159                    |
| De Forest, Lee, 28                                                                 | Downlink, 482                                    |
| Deep Blue, 31                                                                      | Drift velocity $\mathbf{u}_{e}$ , 220            |
| Del (gradient operator) $\nabla$ , 177                                             | du Fay, Charles François, 25, 26                 |
| Detection, 489–491                                                                 | Duplexer (T/R switch), 482, 487                  |
| maximum detectable range $R_{\text{max}}$ , 490                                    |                                                  |
| threshold detection level $P_{\rm r_{min}}$ , 490                                  | E                                                |
| Diamagnetic, 282                                                                   | _                                                |
| Dielectric constant (relative permittivity) $\epsilon_{\rm r}$ , 37, 205, 224, 501 | e electron charge, 35                            |
| Dielectrics, 217, 223–225                                                          | Echo satellite, 29                               |
| anisotropic, 224                                                                   | Eckert, J. Presper, 30                           |
| breakdown, 225–225                                                                 | Edison, Thomas, 28, 42                           |
| breakdown voltage $V_{\rm br}$ , 225                                               | Effective aperture, 444, See also Effective area |
| electric polarization field <b>P</b> , 224                                         | Effective area $A_e$ , 444                       |
| electric susceptibility $\chi_e$ , 225                                             | Einstein, Albert, 25, 27, 60                     |
| homogeneous, 224                                                                   | Electric, 25, 26                                 |
|                                                                                    |                                                  |

| Electric charge, 25, 26, 35–36                             | X-rays, 52, 54                                         |
|------------------------------------------------------------|--------------------------------------------------------|
| law of conservation of electric charge, 36                 | Electromagnetic generator, 316–318                     |
| principle of linear superposition, 36                      | Electromagnetic induction, 305                         |
| Electric dipole, 36, 104, 214                              | Electromagnetic telegraph, 28                          |
| moment, 215                                                | Electromagnetic waves, 27, 104, 375-416                |
| Electric-field aperture distribution $E_a(x_a, y_a)$ , 452 | Electromagnets, 278–280                                |
| Electric field intensity E, 36, 201                        | ferromagnetic core, 278                                |
| Electric field phasor $\widetilde{\mathbf{E}}$ , 341       | horseshoe, 278                                         |
| Electric fields, 35–37, 201, 205–209                       | loudspeaker, 279–280                                   |
| dipole, 36, 214                                            | magnetic levitation, 280                               |
| e charge, 35                                               | magnetically levitated trains (maglevs), 280-280       |
| polarization, 36, 223                                      | reed relay, 278                                        |
| Electric flux density <b>D</b> , 37, 201                   | step-down transformer, 278                             |
| Electric generator, 25                                     | switch, 278                                            |
| Electric potential $V$ , 211                               | Electromotive force (emf) $V_{\text{emf}}$ , 27, 305   |
| Electric scalar potential, 211–216                         | Electron, 25, 27, 35                                   |
| as a function of electric field, 211–213                   | Electronic beeper, 29                                  |
| due to continuous distributions, 213                       | Electronic steering, 458                               |
| due to point charges, 213, 245                             | EM, 25                                                 |
| electric dipole, 214                                       | Electrostatics, 39, 201                                |
| Kirchhoff's voltage law, 212                               | Elevation angle ( $\theta$ -plane), 434                |
| Laplace's equation, 215                                    | Elevation-difference channel, 493                      |
| line distribution, 213                                     | Elevation plane ( $\theta$ -plane), 434                |
| Poisson's equation, 215                                    | Elliptical polarization, 346, 350–352                  |
| potential energy, 211                                      | Ellipticity angle $\chi$ , 350                         |
| Electric susceptibility $\chi_e$ , 225                     | Emf sensor, 218                                        |
| Electric typewriter, 28                                    | End-fire direction, 467                                |
| Electrical force $\mathbf{F}_{e}$ , 35                     | Engelbart, Douglas, 31                                 |
| Electrical permittivity $\epsilon$ , 35, 88, 205–206, 225  | ENIAC, 30                                              |
| of free space $\epsilon_0$ , 35                            | Equipotential, 220                                     |
| Electrical sensors, 218                                    | Euler's identity, 54, 65                               |
| capacitive, 218                                            | Evanescent wave, 407                                   |
| emf, 218                                                   | Explorer I satellite, 480                              |
| inductive, 218                                             | _                                                      |
| resistive, 218–219                                         | F                                                      |
| Electromagnetic (EM) force, 34, 259                        | Faraday Mishael 25 27 205                              |
| Electromagnetic (EM) spectrum, 52–54                       | Faraday, Michael, 25, 27, 305                          |
| gamma rays, 52, 54                                         | Faraday's law, 304–306, 329                            |
| infrared, 52, 54                                           | motional emf, 311, 329                                 |
| microwave band, 54, 54                                     | transformer emf, 306, 329                              |
| EHF, 54                                                    | Far-field (far-zone) region, 427                       |
| millimeter-wave band, 54                                   | approximation, 430–431                                 |
| SHF, 54                                                    | power density, 431 False alarm probability, 489        |
| UHF, 54                                                    | Feeding coefficient $A_i$ , 459                        |
| monochromatic, 52                                          |                                                        |
| properties, 52                                             | Felt, Dorr, 30                                         |
| radio spectrum, 52, 54, 54                                 | Ferromagnetic, 282, 284–286<br>Fessenden, Reginald, 28 |
| ultraviolet, 54, 54                                        | Fiber, 29, 73, 387                                     |
| visible, 54, 54                                            | Fiber optics, 387–389                                  |
| V101UIC, JT, JT                                            | 1 10c1 optics, 307-307                                 |

| Field lines, 180                               | Hertzian dipole, 428–431                             |
|------------------------------------------------|------------------------------------------------------|
| Floppy disk, 30                                | High-power amplifier, 483                            |
| Fluorescence, 42                               | Hoff, Ted, 31                                        |
| Fluorescent bulb, 42–45                        | Hole drift velocity $\mathbf{u}_{\rm h}$ , 220       |
| Flux density, 180                              | Hole mobility $\mu_h$ , 220                          |
| Flux sensor, 315                               | Homogeneous material, 217                            |
| FORTRAN, 30                                    | Homogeneous wave equation, 338                       |
| Franklin, Benjamin, 25, 26                     | Horn antenna, 427                                    |
| Free space, 35                                 | Hotmail, 31                                          |
| velocity of light $c$ , 38                     | Hounsfield, Godfrey, 186                             |
| magnetic permeability $\mu_0$ , 38             | Humidity sensor, 241                                 |
| electric permittivity $\epsilon$ , 35          |                                                      |
| Frequency, 47                                  |                                                      |
| Frequency-division multiple access (FDMA), 482 | •                                                    |
| Frequency modulation (FM), 29                  | Illumination $E_a(x_a, y_a)$ , 452                   |
| Frequency scanning, 467–471                    | Image method, 245–246                                |
| Friis transmission formula, 449–451, 484       | Imaginary part Im , 54                               |
| Fundamental forces                             | Impedance, 71, 80, 88, 90, 97, 98, 115               |
| electromagnetic, 34, 201                       | Impedance matching, 123–132                          |
| nuclear, 34                                    | lumped element matching, 124–130                     |
| weak-interaction, 34                           | matching points, 129                                 |
| gravitational, 34                              | network, 124                                         |
| 8-11-1111-1-111, 2                             | shunt stub, 130                                      |
| G                                              | single-stub matching, 130–133                        |
| <b>Ŭ</b>                                       | stub, 130                                            |
| Gamma rays, 52, 54                             | Impulse period $T_p$ , 487                           |
| Gauss, Carl Friedrich, 27                      | In-phase, 91                                         |
| Gauss's law, 27, 209–211                       | Incandescence, 42                                    |
| differential form, 209                         | Incandescent bulb, 42–45                             |
| of infinite line charge, 211                   | Inclination angle $\psi$ , 347                       |
| integral form, 209                             | Incremental phase delay $\delta$ , 468               |
| Gaussian surface, 209                          | Index of refraction, 385                             |
| Gauss's law for magnetism, 273, 274, 295       | Inductance, 27, 287–293, 295                         |
| Geostationary orbit, 480                       | of a coaxial line, 289                               |
| Gilbert, William, 25, 26                       | mutual, 288, 292–293                                 |
| Global Positioning System (GPS), 172–173       | self, 288, 289                                       |
| Grad (gradient) $\nabla T$ , 177               | solenoid, 287                                        |
| Gradient operator, 177–180                     | Inductive sensors, 218, 290–291                      |
| Gravitational force, 34                        | eddy-current proximity sensor, 290                   |
| gravitational field $\psi$ , 34                | ferromagnetic core, 290                              |
| Grazing incidence, 397                         | linear variable differential transformer (LVDT), 290 |
| Group velocity $u_g$ , 409                     | proximity detection, 290                             |
|                                                | Infrared rays, 52, 54                                |
| H                                              | In-phase, 91                                         |
| • •                                            | Input impedance $Z_{in}$ , 438                       |
| Half-power angle, 435                          | Integrated circuit (IC), 29                          |
| Half-power beamwidth, 435                      | Intercepted power $P_{\text{int}}$ , 444             |
| Half-wave dipole, 439–444                      | Internal (surface) impedance $Z_s$ , 363             |
| Henry, Joseph, 25, 27, 305                     | International System of Units (SI), 33               |
| Hertz, Heinrich, 25, 27, 28, 47                | Internet, 29, 31                                     |

| Intrinsic impedance $\eta$ , 340           | M                                                    |
|--------------------------------------------|------------------------------------------------------|
| Isotropic, 217                             | Macintosh, 31                                        |
| Isotropic antenna, 426, 435                | Maiman, Theodore, 390                                |
| Isotropic material, 217                    | Maglevs, 280–280                                     |
|                                            | Magnetic dipole, 270                                 |
| J                                          | Magnetic energy $W_{\rm m}$ , 293–294                |
|                                            | Magnetic field intensity <b>H</b> , 38, 258          |
| Java, 31                                   | Magnetic field phasor $\widetilde{\mathbf{H}}$ , 341 |
| Joule's law, 223                           | Magnetic field, 266–272                              |
|                                            | between two parallel conductors, 272–273             |
| K                                          | in a solenoid, 287                                   |
| IX.                                        | inside a toroidal coil, 276–277                      |
| Kapany, Narinder, 29                       | of a circular loop, 269–270, 295                     |
| Kemeny, John, 30                           | of a linear conductor, 266–269                       |
| Kilby, Jack, 29                            | of a long wire, 275–276, 295                         |
| Kirchhoff's laws, 71                       | of a magnetic dipole, 270                            |
| current, 71, 323, 324                      | of an infinite current sheet, 277                    |
| voltage, 71, 212                           | Magnetic flux Φ, 282                                 |
| Kurtz, Thomas, 30                          | Magnetic flux density <b>B</b> , 37, 258             |
| realiz, Thomas, 50                         | Magnetic flux linkage Λ, 289                         |
| 1                                          | Magnetic force <b>F</b> <sub>m</sub> , 38, 258–263   |
| L                                          | Magnetic hysteresis, 284                             |
| Lanlage's equation 215                     | Magnetic levitation, 280                             |
| Laplace's equation, 215                    | Magnetic moment <b>m</b> , 283–284                   |
| Laplacian operator, 189–191                | Magnetic monopole, 274                               |
| Lasers, 390–391                            | Magnetic permeability $\mu$ , 38, 284                |
| Law of conservation of electric charge, 36 | Magnetic potential A, 281–282                        |
| LED bulb, 42–45                            | Magnetic properties of materials, 282–286            |
| LED lighting, 42–45                        | Magnetic sound recorder, 28                          |
| Left-hand circular (LHC) polarization, 348 | Magnetic susceptibility $\chi_m$ , 283               |
| Leibniz, Gottfried von, 30                 | Magnetic torque, 263–266                             |
| Lenz's law, 307, 308–309                   | Magnetite, 25, 37                                    |
| Leyden Jar, 25                             | Magnetized domains, 284                              |
| Lidars, 486                                | Magnetron tube, 105                                  |
| Light emitting diode (LED), 44             | Magnus, 26                                           |
| Lightning rod, 26                          | Marconi, Guglielmo, 28                               |
| Line charge, 202                           | Mars Pathfinder, 29                                  |
| Line charge density $\rho_{\ell}$ , 202    | Maser, 390                                           |
| Linear phase distribution, 466             | Matched filter, 489                                  |
| Liquid crystal display (LCD), 24, 358–360  | Matched line, 93, 107                                |
| Liquid crystals, 24                        | Maximum detectable range $R_{\text{max}}$ , 490      |
| Logarithm, 30                              | Maxwell, James Clerk, 25, 27, 201                    |
| Lorentz force, 259, 295                    | Maxwell's equations, 273–277, 295, 304               |
| Loss resistance $R_{loss}$ , 438           | Mauchley, John, 30                                   |
| Lossless media, 380, 398–402               | Microprocessor, 31                                   |
| Lossy media, 50                            | Microstrip line, 73                                  |
| Loudspeaker, 279–280                       | Microwave band, 54, 54                               |
| Low-loss dielectric, 355                   | Mobility $\mu_e$ , 220                               |
| Luminous efficacy (LE), 45                 | Modal dispersion, 388                                |

| Mode, 387, 408                                           | Paramagnetic, 282                                 |
|----------------------------------------------------------|---------------------------------------------------|
| Modem, 30                                                | Pascal, Blaise, 30                                |
| Moment, 215, 224, 283–284                                | Pattern multiplication principle, 460             |
| Monochromatic, 52, 390                                   | Pattern solid angle $\Omega_p$ , 435              |
| Monopulse radar, 492–494, 495                            | Perfect conductor, 217, 220                       |
| amplitude-comparison monopulse, 492                      | Perfect dielectric, 217, 220                      |
| phase-comparison monopulse, 492                          | Permittivity $\epsilon$ , 205, 225, 499           |
| Monostatic radar, 489                                    | Perpendicular polarization, 392–396               |
| Morse, Samuel, 27, 28                                    | Phase, 46                                         |
| Motional emf $V_{\text{emf}}^{\text{m}}$ , 306, 311, 329 | Phase constant $\beta$ , 79, 353                  |
| MS-DOS, 31                                               | Phase constant (wavenumber) $k$ , 327             |
| Multiple-beam generation, 458                            | Phase lag, 48                                     |
| Multiple-PRF, 488                                        | Phase lead, 48                                    |
| Multiplexer, 483                                         | Phase-matching condition, 394                     |
| Trianglesier, 100                                        | Phase velocity (propagation velocity) $u_p$ , 340 |
| N                                                        | Phasor representation, 33                         |
| IN                                                       | Phasors 58–65                                     |
| n-type layer, 60                                         | Photoelectric effect, 25, 27, 60                  |
| Nakama, Yoshiro, 30                                      |                                                   |
| Nanocapacitor, 236                                       | Photovoltaic (PV), 60                             |
| Napier, John, 30                                         | Photovoltaic effect, 60                           |
| Negative electric charge, 25                             | Piezein, 218, 314                                 |
| Neutrons, 35                                             | Piezoelectric transducer, 314                     |
| Newton, Isaac, 26                                        | Piezoresistivity, 218–219                         |
| Noise power, 490, 495                                    | Planck, Max, 25                                   |
| Normal incidence, 378, 418                               | Plane-wave propagation, 335–368                   |
| Normalized load impedance z <sub>L</sub> , 90            | attenuation rate A, 368                           |
| Normalized load reactance $x_L$ , 112                    | circular polarization, 346, 348–350               |
| Normalized load resistance $r_L$ , 112                   | left-hand circular (LHC), 348                     |
| Notation, 33                                             | right-hand circular (RHC), 348–350                |
| Noyce, Robert, 29                                        | complex permittivity $\epsilon_c$ , 337           |
| Nuclear force, 34                                        | imaginary part $\epsilon''$ , 338                 |
| · · · · · · · · · · · · · · · · · · ·                    | real part $\epsilon'$ , 338                       |
| Null beamwidth, 436                                      | elliptical polarization, 346, 350–352             |
| 0                                                        | auxiliary angle $\psi_0$ , 351                    |
| O                                                        | axial ratio $R$ , 351                             |
| Oblique incidence, 384–386, 418                          | ellipticity angle $\chi$ , 350                    |
| Oersted, Hans Christian, 26, 37, 304                     | rotation angle $\gamma$ , 350                     |
| Ohm, Georg Simon, 27                                     | electromagnetic power density, 365                |
| Ohm's law, 27, 217                                       | linear polarization, 346, 347–348                 |
| Optical fiber, 29, 73, 387–389                           | lossy medium, 336, 353–361                        |
| Orbital magnetic moment, 283–284                         | attenuation constant $\alpha$ , 353               |
| Orbital magnetic moment, 203–204                         | skin depth $\delta_s$ , 355                       |
| P                                                        | low-loss dielectric, 355                          |
| Г                                                        | Pocket calculator, 31                             |
| p–n junction, 60                                         | Poisson's equation, 215                           |
| p-type layer, 60                                         | Polarization, 36, 346, 392                        |
| Pager, 29                                                | parallel polarization, 392, 396–398               |
| Parallel-plate transmission line, 73                     | perpendicular polarization, 392–396               |
| Parallel polarization, 396–398                           | transverse electric (TE) polarization, 392        |
| * /                                                      | , , , , , , , , , , , , , , , , , , ,             |

| transverse magnetic (TM) polarization, 392 unpolarized, 398     | Radio frequency identification (RFID) systems, 344–345<br>Radio telegraphy, 28 |
|-----------------------------------------------------------------|--------------------------------------------------------------------------------|
| Polarization diversity, 484                                     | Radio waves, 28, 54,                                                           |
| Polarization field <b>P</b> , 224                               | Radius of geostationary orbit, 481, 495                                        |
| Polarization state, 346                                         | Range $R$ , 167                                                                |
|                                                                 |                                                                                |
| Position vector, 158                                            | Range resolution $\Delta R$ , 488                                              |
| Potential energy W <sub>e</sub> , 235, 239                      | RC relation, 233, 248                                                          |
| Poulsen, Valdemar, 28                                           | Real part Me, 54                                                               |
| Power density $S(R, \theta, \phi)$ , 431                        | Received power, 485, 495                                                       |
| Power transfer ratio $P_{\text{rec}}/P_{\text{t}}$ , 450        | Receiving cross section, 444, <i>See also</i> Effective area                   |
| Poynting vector (power density) <b>S</b> , 365, 431             | Rectangular aperture, 454–456                                                  |
| Pressure sensor, 241                                            | Rectangular waveguide, 73                                                      |
| Principle of linear superposition, 36                           | Reeves, H. A., 29                                                              |
| Principal planes, 434                                           | Reflection coefficient, 88–90                                                  |
| Propagation constant $\gamma$ , 338                             | Reflectivity R, 399–402                                                        |
| Propagation velocity (phase velocity) $u_p$ , 47                | Refraction angle, 385                                                          |
| Pulse code modulation (PCM), 29                                 | Reinitzer, Friedrich, 358                                                      |
| Pulse length $\tau$ , 487                                       | Relaxation time constant $\tau_r$ , 324                                        |
| Pulse repetition frequency (PRF) $f_p$ , 487                    | Resistive sensor, 218–219                                                      |
|                                                                 | Resonant frequency $f_0$ , 414, 415–416                                        |
| Q                                                               | Retarded potentials, 325–326                                                   |
| Quality factor Q, 415                                           | Right-hand circular (RHC) polarization, 348–350                                |
| Quarter-wavelength transformer, 106                             | Röntgen, Wilhelm, 25, 27                                                       |
|                                                                 | Rotation angle $\gamma$ , 350                                                  |
| Quasi-conductor, 355                                            | 0                                                                              |
| R                                                               | S                                                                              |
| n                                                               | Satellite, 480–491                                                             |
| Radar (radio detection and ranging), 29, 489–491                | antennas, 485–486                                                              |
| azimuth resolution $\Delta x$ , 488                             | elliptical orbit, 481                                                          |
| cross-section, 489                                              | geostationary, 480                                                             |
| bistatic, 489                                                   | transponders, 482–484                                                          |
| detection, 489–491                                              | Savart, Félix, 26, 38                                                          |
| Doppler, 491–492                                                | Scalar (dot) product, 158–159                                                  |
| monopulse, 492–494, 495                                         | Scalar quantity, 33                                                            |
| monostatic, 489                                                 | Scan angle $\delta$ , 468                                                      |
| multiple-PRF, 488                                               | Score satellite, 480                                                           |
| operation, 486                                                  | Seebeck, Thomas, 315                                                           |
| pulse, 487                                                      | Seebeck potential $V_s$ , 315                                                  |
| range, 487                                                      | Semiconductor, 217, 220                                                        |
| range resolution $\Delta R$ , 488                               | Sensors, 218                                                                   |
| unambiguous range $R_{\rm u}$ , 488                             | capacitive, 218, 240–244                                                       |
| Radar cross-section, 489                                        | emf, 218, 314–315                                                              |
| Radar equation, 490                                             | inductive, 218, 290–291                                                        |
| Radial distance, 38, 164, 486                                   | resistive, 218–219                                                             |
| Radial velocity $u_r$ , 486                                     | Shockley, William, 29                                                          |
| Radiation efficiency $\xi$ , 438                                | Signal-to-noise ratio $S_n$ , 450, 490, 495                                    |
| Radiation intensity, 431                                        | Signal waveform, 487                                                           |
| Radiation intensity, 431 Radiation pattern, 426                 |                                                                                |
| NACHALIOH DAHEHI. 470                                           |                                                                                |
| Radiation pattern, 426 Radiation resistance $R_{\rm rad}$ , 438 | Skin depth $\delta_s$ , 355<br>Smith chart, 74, 110–123                        |

| admittance Y, 118                                       | Steradians (sr), 433                              |  |  |
|---------------------------------------------------------|---------------------------------------------------|--|--|
| admittance transformation, 118–122                      | Stimulated emission, 390                          |  |  |
| angle of reflected coefficient, 113                     | Stokes's theorem, 188–189                         |  |  |
| characteristic admittance $Y_0$ , 118                   | Strip line, 73                                    |  |  |
| conductance $G$ , 118                                   | Sturgeon, William, 28, 29, 278                    |  |  |
| constant-SWR (- $ \Gamma $ ) circle, 115                | Sum channel, 493                                  |  |  |
| matching points, 129                                    | Sun beam, 492                                     |  |  |
| normalized admittance y, 118                            | Supercapacitor, 236                               |  |  |
| normalized conductance g, 118                           | Superconductor, 220                               |  |  |
| normalized susceptance b, 118                           | Superheterodyne radio receiver, 28                |  |  |
| normalized load admittance y <sub>L</sub> , 118         | Surface charge density $\rho_s$ , 202             |  |  |
| normalized load impedance z <sub>L</sub> , 112          | Surface current density $J_s$ , 266               |  |  |
| normalized load reactance $x_L$ , 112                   | Surface (internal) impedance $Z_s$ , 363          |  |  |
| normalized load resistance $r_L$ , 112                  | Surface resistance $R_s$ , 363                    |  |  |
| normalized wave impedance $z(d)$ , 114                  | SWR (standing-wave ratio), 115–117                |  |  |
| parametric equations, 111–113                           | Synchronizer-modulator, 486                       |  |  |
| phase-shifted coefficient $\Gamma_d$ , 114              | System noise temperature $T_{\rm sys}$ , 450, 485 |  |  |
| standing-wave ratio (SWR), 115–117                      | 1                                                 |  |  |
| susceptance B, 118                                      | Т                                                 |  |  |
| unit circle, 112                                        | 1                                                 |  |  |
| voltage maxima $ \widetilde{V} _{\text{max}}$ , 115–118 | Tapered aperture distribution, 455                |  |  |
| voltage minima $ \widetilde{V} _{\min}$ , 115–118       | Telegraph, 27                                     |  |  |
| wavelengths toward generator (WTG), 115                 | Telephone, 28                                     |  |  |
| wavelengths toward load (WTL), 115                      | Television (TV), 29                               |  |  |
| Smith, Jack, 31                                         | TEM (transverse electromagnetic), 73-74           |  |  |
| Smith, P.H., 110                                        | Tensile stress, 314                               |  |  |
| Snell's laws, 384–386                                   | Tesla, Nikola, 25, 27, 38                         |  |  |
| of reflection, 385, 394, 418                            | Thales of Miletus, 25, 26                         |  |  |
| of refraction, 385, 394, 418                            | Thermocouple, 314, 315                            |  |  |
| Solar cell, 60                                          | Thomas de Colmar, Charles Xavier, 30              |  |  |
| Solenoid, 278                                           | Thompson, Joseph, 25, 27                          |  |  |
| Solid angle $d\Omega$ , 433                             | Threshold detection level $P_{\rm r_{min}}$ , 490 |  |  |
| Spherical propagation factor $(e^{-jkR}/R)$ , 429       | Tomography, 186                                   |  |  |
| Spherical wave, 336                                     | Toroidal coil, 276–277                            |  |  |
| Spin magnetic moment, 283                               | Torque, 263–266                                   |  |  |
| Spontaneous emission, 390                               | Total internal reflection, 386                    |  |  |
| Sputnik I satellite, 480                                | Townes, Charles, 390                              |  |  |
| Standing wave, 81, 92–97                                | Transformer emf $V_{\rm emf}^{\rm tr}$ , 305      |  |  |
| first voltage maximum, 94                               | Transient response, 133–137                       |  |  |
| first voltage minimum, 94                               | Transistor, 29                                    |  |  |
| in-phase, 91                                            | Transmission coefficients $\tau$ , 378            |  |  |
| interference, 93                                        | Transmission lines, 70–143                        |  |  |
| minimum value, 93                                       | admittance Y, 118                                 |  |  |
| maximum value, 93                                       | air line, 77, 81                                  |  |  |
| pattern, 93, 105                                        | bounce diagram, 140                               |  |  |
| phase-opposition, 93                                    | characteristic impedance $Z_0$ , 80               |  |  |
| properties, 107                                         | characteristic parameters, 89                     |  |  |
| voltage standing wave ratio [(VSWR) or (SWR)] S, 94     | coaxial line, 73, 75, 83                          |  |  |
| Static conditions, 201                                  | complex propagation constant $\gamma$ , 79        |  |  |
| • • •, •                                                | 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1           |  |  |

| Transverse electric (TE) polarization, 392             |
|--------------------------------------------------------|
| Transverse electromagnetic (TEM) wave, 340             |
| Transverse magnetic (TM), 392                          |
| Transverse magnetic (TM) polarization, 392             |
| Travelling waves, 40–54, See also Waves                |
| Triode tube, 28                                        |
| Two-wire line, 73                                      |
| The time, to                                           |
|                                                        |
| U                                                      |
|                                                        |
| Ultracapacitor, 236                                    |
| Ultraviolet rays, 53, 54                               |
| Unambiguous range $R_{\rm u}$ , 488                    |
| Uniform field, 184–185                                 |
| Uniform field distribution, 454                        |
| Units, 33                                              |
| Unit vectors, 33, 156                                  |
| Uplink, 482                                            |
| op, 102                                                |
|                                                        |
| V                                                      |
|                                                        |
| van Musschenbroek, Pieter, 26                          |
| Vector analysis, 155–191                               |
| transformations between coordinate systems, 169–176    |
| Vector magnetic potential, 281–282, 295                |
| Vector Poisson's equation, 281, 295                    |
| Vector (cross) product, 160–161                        |
| Vector quantities, 33                                  |
| Velocity of light in free space $c$ , 38               |
| Video processor/display, 486                           |
|                                                        |
| Visible light, 54, 54                                  |
| Volta, Alessandro, 25, 26                              |
| VSWR (voltage standing wave ratio) S, 94. See also SWR |
| Volume charge density $\rho_{\rm v}$ , 202             |
| Volume current density J, 266                          |
|                                                        |
| W                                                      |
| VV                                                     |
| Walton Charles 244                                     |
| Walton, Charles, 344                                   |
| Watson-Watt, Robert, 29                                |
| Wave polarization, 346                                 |
| circular, 346, 348–350                                 |
| elliptically, 346, 350–352                             |
| electric field phasor $\widetilde{\mathbf{E}}$ , 347   |
| inclination angle $\psi$ , 347                         |
| linear, 346, 347–348                                   |
|                                                        |

Wave polarizer, 359
Wavefront, 336
Waveguides 402–405, 418
Wavelength, 47, 53
Wavenumber (phase constant) *k*, 327, 338
Waves, 40–54
Weak-interaction force, 34
White light, 26
Wireless transmission, 28
World Wide Web (WWW), 31

# X

X-rays, 25, 27, 52, 54

# Z

Zenith angle  $\theta$ , 167, 429 Zuse, Konrad, 30 Zworykin, Vladimir, 29

ω-β diagram, 412

| FUNDAMENTAL                       | PHYSI            | CAL CONSTANTS                                                             |  |  |
|-----------------------------------|------------------|---------------------------------------------------------------------------|--|--|
| CONSTANT                          | SYMBOL           | VALUE                                                                     |  |  |
| speed of light in vacuum          | c                | $2.998\times10^8\approx3\times10^8~\text{m/s}$                            |  |  |
| gravitational constant            | G                | $6.67 \times 10^{-11} \text{ N} \cdot \text{m}^2/\text{kg}^2$             |  |  |
| Boltzmann's constant              | K                | $1.38 \times 10^{-23} \text{ J/K}$                                        |  |  |
| elementary charge                 | e                | $1.60 \times 10^{-19} \text{ C}$                                          |  |  |
| permittivity of free space        | $arepsilon_0$    | $8.85 \times 10^{-12} \approx \frac{1}{36\pi} \times 10^{-9} \text{ F/m}$ |  |  |
| permeability of free space        | $\mu_0$          | $4\pi \times 10^{-7} \mathrm{H/m}$                                        |  |  |
| electron mass                     | $m_{\mathrm{e}}$ | $9.11 \times 10^{-31} \text{ kg}$                                         |  |  |
| proton mass                       | $m_{ m p}$       | $1.67 \times 10^{-27} \text{ kg}$                                         |  |  |
| Planck's constant                 | h                | $6.63 \times 10^{-34} \text{ J} \cdot \text{s}$                           |  |  |
| intrinsic impedance of free space | $\eta_0$         | $376.7 \approx 120\pi \Omega$                                             |  |  |

| FUNDAME             | NTAL     | SI UNITS |  |
|---------------------|----------|----------|--|
| DIMENSION           | UNIT     | SYMBOL   |  |
| Length              | meter    | m        |  |
| Mass                | kilogram | kg       |  |
| Time                | second   | S        |  |
| Electric current    | ampere   | A        |  |
| Temperature         | kelvin   | K        |  |
| Amount of substance | mole     | mol      |  |
| Luminous Intensity  | candela  | cd       |  |

| MULTIPLE & SUBMULTIPLE PREFIXES |        |                 |        |        |            |
|---------------------------------|--------|-----------------|--------|--------|------------|
| PREFIX                          | SYMBOL | MAGNITUDE       | PREFIX | SYMBOL | MAGNITUDE  |
| exa                             | E      | $10^{18}$       | milli  | m      | $10^{-3}$  |
| peta                            | P      | $10^{15}$       | micro  | μ      | $10^{-6}$  |
| tera                            | T      | $10^{12}$       | nano   | n      | $10^{-9}$  |
| giga                            | G      | 10 <sup>9</sup> | pico   | p      | $10^{-12}$ |
| mega                            | M      | $10^{6}$        | femto  | f      | $10^{-15}$ |
| kilo                            | k      | 10 <sup>3</sup> | atto   | a      | $10^{-18}$ |

**Book Website:** www.pearsonglobaleditions.com/Ulaby

# GRADIENT, DIVERGENCE, CURL, & LAPLACIAN OPERATORS

CARTESIAN (RECTANGULAR) COORDINATES (x, y, z)

$$\nabla V = \hat{\mathbf{x}} \frac{\partial V}{\partial x} + \hat{\mathbf{y}} \frac{\partial V}{\partial y} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \begin{vmatrix} \hat{\mathbf{x}} & \hat{\mathbf{y}} & \hat{\mathbf{z}} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ A_x & A_y & A_z \end{vmatrix} = \hat{\mathbf{x}} \left( \frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z} \right) + \hat{\mathbf{y}} \left( \frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x} \right) + \hat{\mathbf{z}} \left( \frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y} \right)$$

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2}$$

# CYLINDRICAL COORDINATES $(r, \phi, z)$

$$\nabla V = \hat{\mathbf{r}} \frac{\partial V}{\partial r} + \hat{\boldsymbol{\phi}} \frac{1}{r} \frac{\partial V}{\partial \phi} + \hat{\mathbf{z}} \frac{\partial V}{\partial z}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{r} \frac{\partial}{\partial r} (rA_r) + \frac{1}{r} \frac{\partial A_{\phi}}{\partial \phi} + \frac{\partial A_z}{\partial z}$$

$$\nabla \times \mathbf{A} = \frac{1}{r} \begin{vmatrix} \hat{\mathbf{r}} & \hat{\boldsymbol{\phi}}r & \hat{\mathbf{z}} \\ \frac{\partial}{\partial r} & \frac{\partial}{\partial \phi} & \frac{\partial}{\partial z} \\ A_{r} & r & A_{r} & A_{r} \end{vmatrix} = \hat{\mathbf{r}} \left( \frac{1}{r} \frac{\partial A_{z}}{\partial \phi} - \frac{\partial A_{\phi}}{\partial z} \right) + \hat{\boldsymbol{\phi}} \left( \frac{\partial A_{r}}{\partial z} - \frac{\partial A_{z}}{\partial r} \right) + \hat{\mathbf{z}} \frac{1}{r} \left[ \frac{\partial}{\partial r} (r A_{\phi}) - \frac{\partial A_{r}}{\partial \phi} \right]$$

$$\nabla^2 V = \frac{1}{r} \frac{\partial}{\partial r} \left( r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2}$$

# SPHERICAL COORDINATES $(R, \theta, \phi)$

$$\nabla V = \hat{\mathbf{R}} \frac{\partial V}{\partial R} + \hat{\boldsymbol{\theta}} \frac{1}{R} \frac{\partial V}{\partial \theta} + \hat{\boldsymbol{\phi}} \frac{1}{R \sin \theta} \frac{\partial V}{\partial \phi}$$

$$\nabla \cdot \mathbf{A} = \frac{1}{R^2} \frac{\partial}{\partial R} (R^2 A_R) + \frac{1}{R \sin \theta} \frac{\partial}{\partial \theta} (A_\theta \sin \theta) + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi}$$

$$\nabla \times \mathbf{A} = \frac{1}{R^2 \sin \theta} \begin{vmatrix} \hat{\mathbf{R}} & \hat{\boldsymbol{\theta}} R & \hat{\boldsymbol{\phi}} R \sin \theta \\ \frac{\partial}{\partial R} & \frac{\partial}{\partial \theta} & \frac{\partial}{\partial \phi} \\ A_R & R A_{\theta} & (R \sin \theta) A_{\phi} \end{vmatrix}$$

$$= \hat{\mathbf{R}} \frac{1}{R \sin \theta} \left[ \frac{\partial}{\partial \theta} (A_{\phi} \sin \theta) - \frac{\partial A_{\theta}}{\partial \phi} \right] + \hat{\boldsymbol{\theta}} \frac{1}{R} \left[ \frac{1}{\sin \theta} \frac{\partial A_{R}}{\partial \phi} - \frac{\partial}{\partial R} (R A_{\phi}) \right] + \hat{\boldsymbol{\phi}} \frac{1}{R} \left[ \frac{\partial}{\partial R} (R A_{\theta}) - \frac{\partial A_{R}}{\partial \theta} \right]$$

$$\nabla^2 V = \frac{1}{R^2} \frac{\partial}{\partial R} \left( R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left( \sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$

# SOME USEFUL VECTOR IDENTITIES

$$\mathbf{A} \cdot \mathbf{B} = AB \cos \theta_{AB}$$

Scalar (or dot) product

$$\mathbf{A} \times \mathbf{B} = \hat{\mathbf{n}} A B \sin \theta_{AB}$$

Vector (or cross) product,  $\hat{\bf n}$  normal to plane containing **A** and **B** 

$$\mathbf{A} \cdot (\mathbf{B} \times \mathbf{C}) = \mathbf{B} \cdot (\mathbf{C} \times \mathbf{A}) = \mathbf{C} \cdot (\mathbf{A} \times \mathbf{B})$$

$$A\times (B\times C)=B(A\cdot C)-C(A\times B)$$

$$\nabla(U+V) = \nabla U + \nabla V$$

$$\nabla(UV) = U\nabla V + V\nabla U$$

$$\nabla \cdot (\mathbf{A} + \mathbf{B}) = \nabla \cdot \mathbf{A} + \nabla \cdot \mathbf{B}$$

$$\nabla \cdot (U\mathbf{A}) = U\nabla \cdot \mathbf{A} + \mathbf{A} \cdot \nabla U$$

$$\nabla \times (U\mathbf{A}) = U\nabla \times \mathbf{A} + \nabla U \times \mathbf{A}$$

$$\nabla \times (\mathbf{A} + \mathbf{B}) = \nabla \times \mathbf{A} + \nabla \times \mathbf{B}$$

$$\nabla \cdot (\mathbf{A} \times \mathbf{B}) = \mathbf{B} \cdot (\nabla \times \mathbf{A}) - \mathbf{A} \cdot (\nabla \times \mathbf{B})$$

$$\nabla \cdot (\nabla \times \mathbf{A}) = 0$$

$$\nabla \times \nabla V = 0$$

$$\nabla \cdot \nabla V = \nabla^2 V$$

$$\nabla \times \nabla \times \mathbf{A} = \nabla(\nabla \cdot \mathbf{A}) - \nabla^2 \mathbf{A}$$

$$\int\limits_{\mathcal{V}} (\nabla \cdot \mathbf{A}) \ d\mathcal{V} = \oint\limits_{S} \mathbf{A} \cdot d\mathbf{s}$$

Divergence theorem (S encloses V)

$$\int\limits_{S} (\nabla \times \mathbf{A}) \cdot d\mathbf{s} = \oint\limits_{C} \mathbf{A} \cdot d\mathbf{l}$$

Stokes's theorem (S bounded by C)