Lenstra Elliptic Curve Factorization

Miles Benton and Skip Moses

MATH 317

2021

• Hendrik Lenstra Jr. recieved his doctorate from the University of Amsterdam in 1977.

- Hendrik Lenstra Jr. recieved his doctorate from the University of Amsterdam in 1977.
- Discovered Elliptic Curve Factorization (ECM) in 1987.

- Hendrik Lenstra Jr. recieved his doctorate from the University of Amsterdam in 1977.
- Discovered Elliptic Curve Factorization (ECM) in 1987.
- ECM is third-fastest known factoring algorithm and the best algorithm for finding divisors not exceeding 50-60 digits.

- Hendrik Lenstra Jr. recieved his doctorate from the University of Amsterdam in 1977.
- Discovered Elliptic Curve Factorization (ECM) in 1987.
- ECM is third-fastest known factoring algorithm and the best algorithm for finding divisors not exceeding 50-60 digits.
- The largest factor found using ECM has 83 digits.

Definition Let (G, +) be a group. If $H \subset G$ is also a group under +, then we call H a subgroup of G.

Definition Let (G, +) be a group. If $H \subset G$ is also a group under +, then we call H a subgroup of G.

Lagrange's Theorem If $H \subset G$ with $|G| < \infty$, then |H| divides |G|.

Definition Let (G, +) be a group. If $H \subset G$ is also a group under +, then we call H a subgroup of G.

Lagrange's Theorem If $H \subset G$ with $|G| < \infty$, then |H| divides |G|.

• Define the relation $a \sim b$ whenever a = bh for some $h \in H$.

Definition Let (G, +) be a group. If $H \subset G$ is also a group under +, then we call H a subgroup of G.

Lagrange's Theorem If $H \subset G$ with $|G| < \infty$, then |H| divides |G|.

- Define the relation $a \sim b$ whenever a = bh for some $h \in H$.
- Let S be an equivalence class of \sim and pick an arbitrary $a \in S$.

Definition Let (G, +) be a group. If $H \subset G$ is also a group under +, then we call H a subgroup of G.

Lagrange's Theorem If $H \subset G$ with $|G| < \infty$, then |H| divides |G|.

- Define the relation $a \sim b$ whenever a = bh for some $h \in H$.
- Let S be an equivalence class of \sim and pick an arbitrary $a \in S$.
- Define $f: S \to H$, where $f(b) = b^{-1}a$ and $g: H \to S$ by $g(h) = ah^{-1}$

Definition Let (G, +) be a group. If $H \subset G$ is also a group under +, then we call H a subgroup of G.

Lagrange's Theorem If $H \subset G$ with $|G| < \infty$, then |H| divides |G|.

- Define the relation $a \sim b$ whenever a = bh for some $h \in H$.
- Let S be an equivalence class of \sim and pick an arbitrary $a \in S$.
- Define $f: S \to H$, where $f(b) = b^{-1}a$ and $g: H \to S$ by $g(h) = ah^{-1}$
- Observe f and g are inverses.

$$f(g(h)) = f(ah^{-1}) = (ah^{-1})^{-1}a = h$$

 $g(f(b)) = g(b^{-1}a) = a(b^{-1}a)^{-1} = b$

• Thus, |S| = |H| for all equivalence classes S.

Definition Let (G, +) be a group. If $H \subset G$ is also a group under +, then we call H a subgroup of G.

Lagrange's Theorem If $H \subset G$ with $|G| < \infty$, then |H| divides |G|.

- Define the relation $a \sim b$ whenever a = bh for some $h \in H$.
- Let S be an equivalence class of \sim and pick an arbitrary $a \in S$.
- Define $f: S \to H$, where $f(b) = b^{-1}a$ and $g: H \to S$ by $g(h) = ah^{-1}$
- Observe f and g are inverses.

$$f(g(h)) = f(ah^{-1}) = (ah^{-1})^{-1}a = h$$

 $g(f(b)) = g(b^{-1}a) = a(b^{-1}a)^{-1} = b$

- Thus, |S| = |H| for all equivalence classes S.
- Therefore, |G| = n|H|.

A different perspective

Lemma 2.2.5 Suppose that $m, n \in \mathbb{N}$ and gcd(m, n) = 1. Then the map

$$\psi: (\mathbb{Z}/\mathsf{mn}\mathbb{Z})^* \to (\mathbb{Z}/\mathsf{m}\mathbb{Z})^* \times (\mathbb{Z}/\mathsf{n}\mathbb{Z})^*$$

defined by

$$\psi(c) = (c \pmod{m}, c \pmod{n})$$

is a bijection.

• Let
$$B_i = \operatorname{lcm}(1, \ldots, i)$$
.

• Let $B_i = \operatorname{lcm}(1, \ldots, i)$.

B_i	2 ^{B_i} (mod 1763)	$(2^i \pmod{41}, 2^i \pmod{43})$
1	2	(2, 2)

• Let $B_i = \operatorname{lcm}(1, \ldots, i)$.

B_i	2 ^{B_i} (mod 1763)	$(2^i \pmod{41}, 2^i \pmod{43})$
1	2	(2, 2)
2	4	(4, 4)

• Let $B_i = \operatorname{lcm}(1, \ldots, i)$.

B_i	2 ^{B_i} (mod 1763)	$(2^i \pmod{41}, 2^i \pmod{43})$
1	2	(2, 2)
2	4	(4, 4)
6	570	(37, 11)

• Let $B_i = \operatorname{lcm}(1, \dots, i)$.

B_i	2 ^{B_i} (mod 1763)	$(2^i \pmod{41}, 2^i \pmod{43})$
1	2	(2, 2)
2	4	(4, 4)
6	570	(37, 11)
60	575	(1, 16)

• We compute gcd(574, 1763) = 41

• Let *E* be an elliptic curve over $\mathbb{Z}/N\mathbb{Z}$ of the form

$$y^2 = x^3 + ax + 1$$

such that $4a^3 + 27 \in (\mathbb{Z}/N\mathbb{Z})^*$. This forces non singularity and ensures P = (0, 1) is on the curve.

• Let *E* be an elliptic curve over $\mathbb{Z}/N\mathbb{Z}$ of the form

$$y^2 = x^3 + ax + 1$$

such that $4a^3 + 27 \in (\mathbb{Z}/N\mathbb{Z})^*$. This forces non singularity and ensures P = (0, 1) is on the curve.

• Definition 6.3.1 (Power Smooth). Let B be a positive integer. If n is a positive integer with prime factorization

$$n=\prod p_i^{e_i},$$

then *n* is *B*-power smooth if $p_i^{e_i} \leq B$ for all *i*.

• Let *E* be an elliptic curve over $\mathbb{Z}/N\mathbb{Z}$ of the form

$$y^2 = x^3 + ax + 1$$

such that $4a^3 + 27 \in (\mathbb{Z}/N\mathbb{Z})^*$. This forces non singularity and ensures P = (0, 1) is on the curve.

• Definition 6.3.1 (Power Smooth). Let B be a positive integer. If n is a positive integer with prime factorization

$$n=\prod p_i^{e_i},$$

then *n* is *B*-power smooth if $p_i^{e_i} \leq B$ for all *i*.

• Example $30 = 2 \cdot 3 \cdot 5$ is B power smooth for $B \ge 5$, but $150 = 2 \cdot 3 \cdot 5^2$ is not 5-power smooth.

• Fix $B \in \mathbb{N}$. Let $p \in \mathbb{N}$ such that p-1 is not B- power smooth.

- Fix $B \in \mathbb{N}$. Let $p \in \mathbb{N}$ such that p-1 is not B- power smooth.
- Recall, in Pollard p-1, this would be equivalent to not having $p-1 \not| m = \text{lcm}(1,2,\ldots,B)$; i.e. $a^m \not\equiv 1 \pmod{p}$.

- Fix $B \in \mathbb{N}$. Let $p \in \mathbb{N}$ such that p-1 is not B- power smooth.
- Recall, in Pollard p-1, this would be equivalent to not having $p-1 \not| m = \text{lcm}(1,2,\ldots,B)$; i.e. $a^m \not\equiv 1 \pmod{p}$.
- On the interval $[10^{15}, 10^{15} + 10000]$ 15 percent of the primes p are such that p-1 is not 10^6 -power smooth.

- Fix $B \in \mathbb{N}$. Let $p \in \mathbb{N}$ such that p-1 is not B- power smooth.
- Recall, in Pollard p-1, this would be equivalent to not having $p-1 \not| m = \text{lcm}(1,2,\ldots,B)$; i.e. $a^m \not\equiv 1 \pmod{p}$.
- On the interval $[10^{15}, 10^{15} + 10000]$ 15 percent of the primes p are such that p-1 is not 10^6 -power smooth.
- The idea of ECM is to replace modular exponentiation on $(\mathbb{Z}/N\mathbb{Z})^*$ by repeated addition of points on $E((\mathbb{Z}/N\mathbb{Z})^*)$

- Fix $B \in \mathbb{N}$. Let $p \in \mathbb{N}$ such that p-1 is not B- power smooth.
- Recall, in Pollard p-1, this would be equivalent to not having $p-1 \not| m = \text{lcm}(1,2,\ldots,B)$; i.e. $a^m \not\equiv 1 \pmod{p}$.
- On the interval $[10^{15}, 10^{15} + 10000]$ 15 percent of the primes p are such that p-1 is not 10^6 -power smooth.
- The idea of ECM is to replace modular exponentiation on $(\mathbb{Z}/N\mathbb{Z})^*$ by repeated addition of points on $E((\mathbb{Z}/N\mathbb{Z})^*)$
- Recall, by the Hasse-Weil bound we can reduce the size of our group by $2 \cdot \sqrt{p}$.

Algorithm 6.3.10 (Elliptic Curve Factorization Method). Let N and B be positive integers.

Algorithm 6.3.10 (Elliptic Curve Factorization Method). Let N and B be positive integers.

1. Compute m = lcm(1, 2, ..., B).

Algorithm 6.3.10 (Elliptic Curve Factorization Method). Let N and B be positive integers.

- 1. Compute m = lcm(1, 2, ..., B).
- 2. Choose $a \in \mathbb{Z}/N\mathbb{Z}$ such that $4a^3 + 27 \in (\mathbb{Z}/N\mathbb{Z})^*$. This forces P = (0,1) to be a point on $y^2 = x^3 + ax + 1$ over $\mathbb{Z}/N\mathbb{Z}$.

Algorithm 6.3.10 (Elliptic Curve Factorization Method). Let $\it N$ and $\it B$ be positive integers.

- 1. Compute m = lcm(1, 2, ..., B).
- 2. Choose $a \in \mathbb{Z}/N\mathbb{Z}$ such that $4a^3 + 27 \in (\mathbb{Z}/N\mathbb{Z})^*$. This forces P = (0,1) to be a point on $y^2 = x^3 + ax + 1$ over $\mathbb{Z}/N\mathbb{Z}$.
- 3. Try to compute mP. If at some point we cannot compute a sum of points, then some denominator g is not coprime to N, then gcd(g, N) is a nontrivial divisor of N.

Analogy to Pollard p-1

ECM

Pollard $p-1$	ECM
$\mathbb{Z}/N\mathbb{Z}$	$E(\mathbb{Z}/N\mathbb{Z})$
	1

Pollard $p-1$	ECM
$\mathbb{Z}/N\mathbb{Z}$	$E(\mathbb{Z}/N\mathbb{Z})$
$g\in (\mathbb{Z}/N\mathbb{Z})^*$	(0,1)

Pollard $p-1$	ECM
$\mathbb{Z}/ extit{ extit{N}}\mathbb{Z}$	$E(\mathbb{Z}/N\mathbb{Z})$
$g \in (\mathbb{Z}/ extsf{N}\mathbb{Z})^*$	(0,1)
$g^m \equiv 1 \pmod{N}$	$mP \notin E(\mathbb{Z}/N\mathbb{Z})$

Table: Let E be an elliptic curve, and m = lcm(1, 2, ..., B) for some B

Pollard $p-1$	ECM
$\mathbb{Z}/ extit{ extit{N}}\mathbb{Z}$	$E(\mathbb{Z}/N\mathbb{Z})$
$g \in (\mathbb{Z}/N\mathbb{Z})^*$	(0,1)
$g^m \equiv 1 \pmod{N}$	$mP \notin E(\mathbb{Z}/N\mathbb{Z})$
$gcd(g^m-1,N)$	gcd(m, N)

• If Pollard p-1 fails, we have no choice but to increase B.

Pollard $p-1$	ECM
$\mathbb{Z}/ extit{ extit{N}}\mathbb{Z}$	$E(\mathbb{Z}/N\mathbb{Z})$
$g \in (\mathbb{Z}/\mathit{N}\mathbb{Z})^*$	(0,1)
$g^m \equiv 1 \pmod{N}$	$mP \notin E(\mathbb{Z}/N\mathbb{Z})$
$gcd(g^m-1,N)$	gcd(m, N)

- If Pollard p-1 fails, we have no choice but to increase B.
- However, ECM has a second option. We can choose another random elliptic curve.

Why ECM "Works"

We can consider an analogous mapping

"
$$g: E(\mathbb{Z}/N\mathbb{Z}) \to \prod_{\rho \mid N} E(\mathbb{Z}/\rho\mathbb{Z})$$
"

where p are prime divisors of N.

Why ECM "Works"

We can consider an analogous mapping

"
$$g: E(\mathbb{Z}/N\mathbb{Z}) \to \prod_{\rho \mid N} E(\mathbb{Z}/\rho\mathbb{Z})$$
"

where p are prime divisors of N.

• Note the quotations. There is a subtly in the difference between $E(\mathbb{Z}/N\mathbb{Z})$ and $\mathbb{Z}/N\mathbb{Z}$.

Implementation

- Generate a random elliptic curve $E \pmod{N}$ and let P = (0,1).
- Compute m = lcm(1, 2, ..., B).
- Compute mP (don't be naive!).
- If the calculation fails, you have found a non-trivial factor of N.
- Otherwise, just generate a new Elliptic curve and try again.

Computing lcm(1,2,...,B)

Recall,

$$\mathit{lcm}(1,2,...B) = \prod_{p \in P} p^r$$

where $r = \max\{r \in \mathbb{Z} \mid p^r \leq B\}$.

$$p^{r} \leq B$$

$$r\log(p) \leq \log(B)$$

$$r \leq \log_{p}(B)$$

$$r = \lfloor \log_{p}(B) \rfloor$$

Computing mP

$$mP = P + P + P \dots P$$

A very bad way to compute mP.

There are many algorithms for computing general elliptic curve point multiplication efficiently, and given the known make-up of m, we can save time by being thoughtful here. Consider.

$$m_n = q_1^{r_1} \cdot q_2^{r_2} \dots q_n^{r_n}$$

then

$$m_n P = q_n^{r_n} \cdot m_{n-1} P$$

Coded Example

```
1 def ecm(n, B=10^4, trials=100):
      R = 7 \mod (n)
2
      primes = list(prime_range(B+1))
3
4
      for _ in range(trials):
5
           while True:
6
               a = R.random_element()
7
               if gcd(4 * Integer(a)^3 + 27, n) == 1:
8
                    break
9
10
          E = EllipticCurve([a, 1])
           P = E([0,1])
12
13
14
           try:
               for p in primes:
15
                    P = P * p^floor(math.log(B,p))
16
17
           except ZeroDivisionError as e:
18
               return gcd(Integer(str(e).split()[2]), n)
19
20
21
      return -1
```


• Sieve all primes less than $B \implies O(B \log \log B)$

- Sieve all primes less than $B \implies O(B \log \log B)$
- Elliptic curve point multiplication is O(k) where k is the number of bits (double-and-add).

- Sieve all primes less than $B \Longrightarrow O(B \log \log B)$
- Elliptic curve point multiplication is O(k) where k is the number of bits (double-and-add).
- $LCM(1, 2, 3, ..., B) \approx e^{B}$.

- Sieve all primes less than $B \implies O(B \log \log B)$
- Elliptic curve point multiplication is O(k) where k is the number of bits (double-and-add).
- $LCM(1, 2, 3, ..., B) \approx e^{B}$.
- This implies computing mP given m is $O\left(\frac{B}{\log 2}\right)$.

- Sieve all primes less than $B \implies O(B \log \log B)$
- Elliptic curve point multiplication is O(k) where k is the number of bits (double-and-add).
- $LCM(1, 2, 3, ..., B) \approx e^{B}$.
- This implies computing mP given m is $O\left(\frac{B}{\log 2}\right)$.
- Therefore, computing mP should take roughly $O(B \log \log B)$

Ok, but what are the odds we find a curve that works in the first place?

Ok, but what are the odds we find a curve that works in the first place?

 Canfield-Erdös-Pomerance theorem tells us about the probability that a random number x < B is B smooth.

Ok, but what are the odds we find a curve that works in the first place?

- Canfield-Erdös-Pomerance theorem tells us about the probability that a random number x < B is B smooth.
- Recall Hasse-Weil bound lets us limit the group by $2 \cdot \sqrt{p}$

Ok, but what are the odds we find a curve that works in the first place?

- Canfield-Erdös-Pomerance theorem tells us about the probability that a random number x < B is B smooth.
- Recall Hasse-Weil bound lets us limit the group by $2 \cdot \sqrt{p}$
- $O\left(e^{\sqrt{2\log(p)\log(\log(p))}}\right)$