Real Analysis

Carter Aitken

2025-05-05

Abstract

Real Analysis the study of approximation on the reals.

Contents

L	Car	dinality	5
	1.1	Brief Motivation	5
	1.2	Function Theory	5
		Definition: Injection	5
		Definition: Surjection	5
		Definition: Bijective	5
		Definition: Invertable	5
		Definition: Powerset	7
		Axiom: Choice	7
	1.3	Cardinality	8
		Definition: Ordering of Cardinality on Sets	8
		Theorem: Cantor-Schroeder-Berstien (CSB)	8
		Lemma: Phi has a Fixed Point	8
		Definition: Finite, Countably Infinite, Countable	11
		Proposition: Aleph Null is the Smallest Infinity	11
		Proposition: The Reals are Uncountable	12
		Definition: Continuum	12
		Axiom: Continuum Hypothesis	12
	1.4	Cardinality of Power Sets	12
		Definition: Cartesian Product	13
		Definition: Set Power	13
		Proposition: Cardinality of a Power Set	13
		Proposition: The Powerset is Larger than the Set	14
		Proposition: The Natural Powerset Cardinal is the Continuum Cardinal .	14

	1.5	Cardinal Arithmetic
		Proposition: Cardinal Exponent Laws
2	Top	\mathbf{ology}
	2.1	Metric Spaces
		Definition: Metric Space
		Definition: Normed Vector Space (NVS)
		Proposition: NVS have trivial Metrics
	2.2	Examples of Metric Spaces
		Example: Discrete Metric
		Example: Absolute Value Norm
		Example: Euclidean Norm
		<i>Example</i> : P-Norm
		Example: Infinity Norm
		Example: P-Norm on Sequences of Reals
		Example: Suprema Norm (Infinity Norm on Sequences of Reals)
		Example: P-Norm on Function
		Example: Infinity Norm on Functions
		Example: Bounded Functions and the Infinity Norm are a NVS
		Example: Sequence Metric
		Example: Cantor Space
		Example: Hamming Distance
		Example: Hausdorff Metric
		Example: P-adic Metric
		Definition: Subspace of a Metric Space
		Example: Product Metric
	2.3	Convergence
		Definition: Convergence of a Sequence
		Definition: Divergence
		Note: Convergence is Distance going to Zero
		Definition: Cauchy
		Proposition: Convergence implies Cauchyness
		Example: Cauchy doesn't imply Convergence
		Definition: Bounded
		Definition: Open and Closed Balls
		Proposition: Boundedness iff subset of a Closed Ball
		Proposition: Cauchy implies Bounded
		Example: Counter Example
	2.4	Convergence Examples

	Example: 2-Adic Norm	23
	Note: P-Adic Convergence Claims	23
	Example: Bounded Sequences and the Infinity Norm	24
	Example: Zero Tailed Sequences aren't Cauchy under Sup Norm	24
2.5	Completeness	24
	Definition: Complete, Complete Metric Space, Banach Space	24
	Proposition: Set of bounded Sequences on the P-Norm is Banach	26
2.6	Topological Spaces	28
	Definition: Topology	28
	Example: Discrete Topology	28
	Example: Indiscrete Topology	28
	Notation: Topological Space	28
2.7	Metric Topology	28
	Definition: Open	28
	Proposition: The Set of Open sets form a Topology	29
	Example: Counterexample for Infinte Intersections are Open	29
	Proposition: Metric Spaces are Haussdorff	29
2.8	Closed Sets	30
	Definition: Closed Sets	30
	Proposition: Properties of Closed Sets	30
	Definition: Limit Point	31
	Proposition: Limits Points in a Metric Topology are the Limit of a Sequence	31
	Proposition: Closed Sets Attain Limits	31
	Corollary: Closed Sets Attain Sequence Limits	32
	Definition: Subspace Topology	33
2.9	Closure and Interior	34
	Definition: Closure and Interior	34
	Proposition: The Closure is the Set of Limit Points	35
	Note: Norms	36
	Corollary: Closure is the Set of Reachable Points	36
	Definition: Interior Points	36
	Proposition: Interior Points of A build the Interior of A	37
	Example: Closures and Closed "Versions" of Sets are Inequal	37
	Definition: Subsequence	38
	Definition: Boundary	41
	Definition: Hausdorf	42

3	3 Continuity		43
	3.1	Continuity	43
		Definition: Topologic Continuity	43
		Proposition: Closedness and Continuity	43
		Proposition: Continuity preserves Convergence in Metric Spaces	44
	3.2	Bounded Linear Maps	45
		Definition: Operator Norm, Bounded Linear Map	45
		Proposition: Continuous Linear iff Bounded Linear	46
	3.3	More Continuity	47
		Definition: Uniform Continuity	47
		Definition: Lipschitz	47
		Proposition: Lipschitz implies Uniform Continuous	47

1 Cardinality

1.1 Brief Motivation

We want to build a metric space to measure the distance between objects.

We need

- 1. set X of objects.
- 2. need to measure closeness. func $d: X \times X \to [0, \infty)$ s/t
 - (a) $d(x,y) = 0 \iff x = y$
 - (b) d(x, y) = d(y, x)
 - (c) $d(x,z) \le d(x,y) + d(y,z)$

We call d a metric on X. (X, d) is a **metric space**.

 $(\mathbb{R}, +' \circ^{\circ} (\sqrt{-})-)$ is a metric space. Note the BQN notation.

1.2 Function Theory

Definition 1.1: Injection. Let A, B be non-empty sets. We say $f: A \to B$ is injective **iff** $\forall a, b \in A$ $f(a) = f(b) \implies a = b$

Definition 1.2: Surjection. $f: A \to B$ is a surjection if $\forall b \in B \ \exists a \in A \ s/t \ f(a) = b$.

Definition 1.3: Bijective. $f: A \to B$ is bijective **iff** its injective and surjective.

Definition 1.4: Invertable. $f:A\to B$ is invertable **iff** $\exists g:B\to A$ s/t g(f(a))=a and f(g(b))=b $\forall a\in A,\ b\in B.$

We write $g = f^{-1}$ and call it "the" inverse.

Proposition 1.1. $f: A \to B$ is invertable **iff** f is bijective.

Proof. (\Longrightarrow) f is invertable. Suppose f(a) = f(b). We'll show a = b.

$$f^{-1}f(a)) = f^{-1}f(b)$$

$$\implies a = b$$

Now we'll show $\forall b \in B \ \exists a \in A \ f(a) = b$.

$$a = f^{-1}(b) \implies$$
 there is way to get from b to a, and it's f^{-1}

(\iff) Assume f is (bijective). We'll construct f's inverse. For $b \in B$ let a_b be the unique element of A s/t $f(a_b) = b$. a_b exists b/c of surjectivity of f, and it's unique b/c of injectivity.

$$g := \{g : A \to B, g(b) = a_b\}$$

$$f(g(b)) = f(a_b) = b$$

$$g(f(a_b)) = g(b) = a_b$$

$$\implies g = f^{-1}$$

Proposition 1.2. $\exists (injection) \ f : A \to B \iff \exists (surjection) \ g : B \to A$

Proof. (\Longrightarrow) Suppose $f: A \to B$ is(injective). Let $b \in B$.

Case 1: $b \in f(A)$.

Let g(b) be the unique element of A s/t f(g(b)) = b, unique b/c f is (injective)

Case 2: $b \notin f(A)$.

Fix any $z \in A$. Let g(b) = z.

$$\implies g(b) = \begin{cases} f^{=}(b) & b \in f(A) \\ z & b \notin f(A) \end{cases}$$

We claim g is a surjection. So we have to show $\forall a \in A, \exists b \in B \text{ s/t } g(b) = a$ Let $a \in A \text{ s/t } f(a) \in B$.

$$g(f(a)) \implies f(g(f(a))) = f(a)$$

(injective) $\implies g(f(a)) = a$
 $\implies g$ is(surjective)

 \Leftarrow Suppose $(g: B \to A)$ is(surjective). $\forall a \in A$ choose $b_a \in B$ s/t $g(b_a) = a$. $f := \{f: A \to B \mid f(a) = b_a\}$. Suppose

$$f(x) = f(y)$$

$$\implies b_x = b_y$$

$$\implies g(b_x) = g(b_y)$$

$$\implies x = y$$

$$\implies fis(injective)$$

Definition 1.5: Powerset. Let X be a set. Then $\mathcal{P}(X) := \{A : A \subseteq X\}$, called the "**powerset** of X."

$$X = \{a, b\}$$

$$\mathcal{P}(X) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}$$

Axiom 1.1: Choice. Given $X \neq \emptyset \exists a \ choice \ func \ f : \mathcal{P}(X) \setminus \{\emptyset\} \rightarrow X \ s/t \ f(A) \in A \ \forall \neq A \subseteq A.$

1.3 Cardinality

$$A = \{a, b\}, B = \{c, d, e, f\}$$

$$Intuitively |A| < |B|$$

$$fis(inj) : A \to B, f(a) := c, f(b) := d$$

$$\implies fis(inj)(A) \subset B$$

$$\implies |A| \le |B|$$

Definition 1.6: Ordering of Cardinality on Sets. A, B sets.

1.
$$|A| \leq |B| \iff \exists f \text{is(inj)} : A \to B$$

2.
$$|A| = |B| \iff \exists f \text{is}(\text{bij}) : A \to B$$

$$|\mathbb{N}| \leq |\mathbb{Z}| \Longleftrightarrow f \text{is(inj)} : \mathbb{N} \to \mathbb{Z}, \ f(n) := n$$

$$f \text{is(bij)} : \mathbb{N} \to \mathbb{Z} : f(n) := \begin{cases} 2n+2 & : n \geq 0 \\ 2(-n)-1 & : n < 0 \end{cases} \Longrightarrow |\mathbb{N}| = |\mathbb{Z}|$$

$$h \text{is(bij)} : \mathbb{R} \to (0,1) : h(x) := \frac{\arctan(x) + \pi/2}{\pi} \implies |\mathbb{R}| = |(0,1)|$$

Theorem 1.1: Cantor-Schroeder-Berstien (CSB). $if |A| \le |B|$ and $|B| \le |A|$ then |A| = |B|.

Lemma 1.1: Phi has a Fixed Point. X set. Suppose $\exists \phi : \mathcal{P}(X) \rightarrow \mathcal{P}(X)$ s/t $\phi(A) \subseteq \phi(B)$ if $A \subseteq B \subseteq X$. Then

$$\exists F \subseteq X \ s/t \ \phi(F) = F$$

Let
$$F = \bigcup_{A \subseteq X: A \subseteq \phi(A)} A$$
.

Note: $\emptyset \subseteq X \& \emptyset \subseteq \phi(\emptyset)$

Claim: $F = \phi(F)$. Take $A \subseteq X$ with $A \subseteq \phi(A)$. Then $A \subseteq F$.

$$\implies \phi(A) \subseteq \phi(F)$$

$$\implies A \subseteq \phi(F)$$

$$\implies \bigcup_{A \subseteq X: A \subseteq \phi(A)} A \subseteq \phi(F) \text{ (by properties of unions)}$$

$$\implies F \subseteq \phi(F)$$

Further,

$$F \subseteq \phi(F) \implies \phi(F) \subseteq \phi(\phi(F))$$
$$\implies \phi(F) \in \{A \subseteq X : A \subseteq \phi(A)\}$$

For this step, let $\phi(F) = B$ and notice that $B \subseteq \phi(B)$. So its in the set above.

$$\implies \phi(F) \subseteq \bigcup_{A \subseteq X: A \subseteq \phi(A)} A = F$$

$$\implies F = \phi(F)$$

To motivate (CSB) theorem 1.1: prove that $|N| = |N \times N|$.

$$f$$
is(inj): $\mathbb{N} \to \mathbb{N} \times \mathbb{N}$, $f(n) := (n, 1)$

$$gis(inj): \mathbb{N} \times \mathbb{N} \to \mathbb{N}, \ g((n,m)) := 2^n 3^m$$

By (CSB) $|\mathbb{N}| = |\mathbb{N} \times \mathbb{N}|$.

Proof of (CSB) theorem 1.1. Let f, gis(inj) : A : B. For $X \subseteq Y \subseteq A$

$$f(X) \subseteq f(Y)$$

$$\implies B \backslash f(Y) \subseteq B \backslash f(X)$$

$$\implies g(B \backslash f(Y)) \subseteq g(B \backslash f(X))$$

$$\implies A \backslash g(B \backslash f(X)) \subseteq A \backslash g(B \backslash f(Y))$$

This letting $\phi: \mathcal{P}(A) \to \mathcal{P}(A): \phi(x):=A\backslash g(B\backslash f(x))$ insures it preserves \subseteq . So by the lemma 1.1, $\exists F\subseteq A \text{ s/t } F=\phi(F)=A\backslash g(B\backslash f(F))$. In particular, $A\backslash F=g(B\backslash f(F)) \implies g:B\backslash f(F)\to A\backslash F:\text{is(bij)}.$

Note. It's a surjection b/c everyone in $A \setminus F$ gets mapped to b/c it's the image if $g(B \setminus f(F))$.

Moreover, $g^{-1}: A \setminus F \to B \setminus f(F)$ is a bijection, and $f: F \to f(F)$ is a bijection (for the same reason as above; restriction of domain of an injective function is injective, and a function that maps to its image is automatically a surjection). Hence

$$h:A\to B:h(x):= egin{cases} g^{-1}(x) &:x\in Aackslash F \ f(x) &:x\in F \end{cases}$$

Show $|\mathbb{Q}| = |\mathbb{N}|$.

Proof.

$$f: \mathbb{N} \to \mathbb{Q}: f(x) := x \implies |\mathbb{N}| \le |\mathbb{Q}|$$

 $q \in \mathbb{Q}$ can be written in the form $q = \frac{m}{n}, m \in \mathbb{Z}, n \in \mathbb{N}$.

$$g: \mathbb{Q} \to \mathbb{Z} \times \mathbb{N} : g(q) := (m, n) : q = \frac{m}{n}$$

$$\implies |\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{N}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{N}|$$

So by (CSB) theorem 1.1, $|\mathbb{Q}| = |\mathbb{N}|$.

Definition 1.7: Finite, Countably Infinite, Countable.

- 1. a set A is **finite** iff $|A| = |\{1, 2, ..., n\}|$ for some $n \in \mathbb{N}$. In this case, |A| = n.
- 2. $|\emptyset| := 0$
- 3. A is countably infinite iff $|A| = |\mathbb{N}| := \aleph_0$.
- 4. A is countable iff A is finite or ctbly infinite.

$$|\mathbb{N}| = |\mathbb{Z}| = |\mathbb{N} \times \mathbb{N}| = |\mathbb{Q}| = \aleph_0$$

Proposition 1.3: Aleph Null is the Smallest Infinity. If A is infinite, then $|\mathbb{N}| \leq |A|$.

Proof. By (Choice) axiom 1.1, $\exists f : \mathcal{P}(A) \setminus \{\emptyset\} \to A \text{ s/t } f(X) \in X, \ \forall \emptyset \neq X \subseteq A.$

Let
$$a_1 = f(A) \in A$$

$$a_2 = f(A \setminus \{a_1\}) \in A \setminus \{a_1\}$$
:

$$\implies \aleph_0 = |\{a_1, \dots\}| \le |A|.$$

Proposition 1.4: The Reals are Uncountable. \mathbb{R} is uncountable. So $\exists f$ is $(bij) : \mathbb{N} \to \mathbb{R}$.

Proof. Cantor's Diagonal Element Proof. Since $|\mathbb{R}| = |(0,1)|$, we'll show that (0,1) is uncountable.

For contradiction, assume that there exists a bijection $f: \mathbb{N} \to (0, 1)$. So let's say

$$f(1) = 0.a_{11}a_{12}a_{13}\cdots$$

$$f(2) = 0.a_{21}a_{22}a_{23}\cdots$$

$$f(3) = 0.a_{31}a_{32}a_{33}\cdots$$

 $\dot{\cdot} = \dot{\cdot}$

Where we avoid repeated nines.

Choose $b_i \in \{1, \ldots, 8\}$ s/t $b_i \neq a_{ii}$.

$$\implies \not\exists n \in \mathbb{N}, \ f(n) = 0.b_1b_2b_3\cdots$$

Thats a contradiction.

Definition 1.8: Continuum. We write $|\mathbb{R}| = c$, where c stands for **continuum**.

So we have 3 cardinals: n, \aleph_0, c .

Axiom 1.2: Continuum Hypothesis. If A is a set with $\aleph_0 \leq |A| \leq c$, then $\aleph_0 = |A|$ or |A| = c.

1.4 Cardinality of Power Sets

Proposition 1.5. If |A| = n, then $|\mathcal{P}(A)| = 2^n$.

Proof.

$$|\mathcal{P}(A)| = \sum_{k=1}^{n} \binom{n}{k} = (1+1)^n = 2^n$$

Definition 1.9: Cartesian Product. Let I be a set. $\forall i \in I$ Let A_i is $(set) \implies \prod_{i \in I} A_i := \{f | f : I \rightarrow \bigcup A_i, \ f(i) \in A_i\}$

$$f(i) \in A_i$$

$$I = \mathbb{N} \implies f : \mathbb{N} \to \bigcup A_i : f(i) \in A_i \equiv (f(1), f(2), \dots)$$

Definition 1.10: Set Power. A, Bis(set) $\Longrightarrow A^B = \{f : B \to A\}$

$$|A|^{|B|} := |A^B| = |\{f : B \to A\}|$$

Proposition 1.6: Cardinality of a Power Set. if Xis(set), $\mathcal{P}(X) = 2^{|X|} = |\{f: X \to \{0,1\}\}|$.

Proof.

$$\phi: \mathcal{P}(X) \to \{f: X \to \{0, 1\}\} : \phi(A) := \chi_A$$
$$\chi_A: X \to \{0, 1\} : \chi_A(x) := \begin{cases} 1 & : x \in A \\ 0 & : x \notin A \end{cases}$$

Show ϕ is (bij). First show it's injective.

$$\phi(A) = \phi(B)$$

$$\implies \chi_A = \chi_B$$

$$\implies A = B \implies \phi \text{is(inj)}$$

Now show it's surjective. $\forall f \in \{f : X \to \{0,1\}\} \exists P \in \mathcal{P}(X) \text{ s/t } \phi(P) = f.$

Let
$$f^{-1}(\{0,1\}) = F^{-1}$$

 $\Rightarrow \chi_{F^{-1}} : F^{-1} \to \{0,1\}$
 $\Rightarrow \chi_{F^{-1}} = \phi(F^{-1}) \text{ w/ } \phi(F^{-1}) = f$
 $F^{-1} \subseteq X \implies F^{-1} \in \mathcal{P}(X) \implies \phi \text{is(surj)}$

Proposition 1.7: The Powerset is Larger than the Set. If X is (set), then $|X| < |\mathcal{P}(X)|$.

Proof. Show $|X| \leq |\mathcal{P}(X)|$. $f(x) = \{x\}$ is (inj) $\implies |X| \leq |\mathcal{P}(X)|$.

For the sake on contradiction, assume there is a surjection $g: X \to \mathcal{P}(X)$. Consider $B := \{x \in X : x \notin g(x)\}$. Hence there must be (by surjectivity of g) $z \in X$ s/t g(z) = B. Someone has to map to it.

$$z \in B \implies z \notin g(z) = B$$

$$z \notin B \implies z \in g(z) = B$$

This is a contradiction. So $|X| < |\mathcal{P}(X)|$.

Infinite Infinities. $|\mathbb{N}| < |\mathcal{P}(\mathbb{N})| < |\mathcal{P}(\mathcal{P}(\mathbb{N}))| < \dots$

Proposition 1.8: The Natural Powerset Cardinal is the Continuum Cardinal. $|\mathcal{P}(\mathbb{N})| = c \ (\equiv 2^{\aleph_0} = c \equiv |\{0,1\}|^{|\mathbb{N}|} = |\mathbb{R}|)$

Proof.

We'll use the continuum hypthesis, however there's an alternative proof in the course notes.

Consider $X = \{f : \mathbb{N} \to \{0, 1\}\}.$

$$\phi: X \to \mathbb{R}: \phi(f) := 0.f(1)f(2)f(3)\dots$$

We can see that ϕ is injective. So

$$2^{\aleph_0} = |X| \le |\mathbb{R}| = c$$

Also, $\aleph_0 < 2^{\aleph_0} \le c$. So by (CH), we know $2^{\aleph_0} = c$.

Proof (without (CH)). ...

1.5 Cardinal Arithmetic

Definition 1.11. A, Bis(sets)

1. $A \cap B = \emptyset \implies |A| + |B| := |A \cup B|$

- $2. |A| \cdot |B| := |A \times B|$
- 3. $|A|^{|B|} := |\{f : B \to A\}|$

Example. $\aleph_0 + \aleph_0 = \aleph_0$. Let $A = \{a_1, \dots\}, B = \{b_1, \dots\}, \text{ so that } |A| = |B| = \aleph_0,$ and $A \cap B = \emptyset$.

Then $\phi: A \cup B \to \mathbb{N}: \phi(a_i) := 2i, \ \phi(b_i) := 2i - 1$. This is a bijection. Hence $|A \cup B| = \aleph_0$.

Example. $\aleph_0 + c = c$.

 $\aleph_0 = |\mathbb{N}|, \ |(0,1)| = c.$

 $(0,1) \subseteq \mathbb{N} \cup (0,1) \subseteq \mathbb{R}$

 $\implies c \le \aleph_0 + c \le c$

 $\implies \aleph_0 + c = c$

Proposition 1.9: Cardinal Exponent Laws. A, B, Cis(sets).

1. $(|A|^{|B|})^{|C|} = |A|^{|B|\cdot|C|}$

2. $(|A|^{|B|})(|A|^{|C|}) = |A|^{|B|+|C|}$

Example. Show that $c \cdot c = c$.

$$c \cdot c = (2^{\aleph_0})(2^{\aleph_0}) = 2^{\aleph_0 + \aleph_0} = 2^{\aleph_0} = c$$

Proof of 2. We must show

$$|\{f|f:B\cup C\to A\}|=|\{f|f:B\cup A\}\times\{f|f:B\to A\}|$$
 Let $X:=\{f|f:B\to A\}$ Let $Y:=\{f|f:C\to A\}$ Let $Z:=\{f|f:B\cup C\to A\}$

So, equivically we need to show $|Z| = |X \times Y|$.

Consider
$$\varphi(f,g)(x) = \begin{cases} f(x) & x \in B \\ g(x) & y \in C \end{cases}$$

$$\varphi(f_1,g_1) = \varphi(f_2,g_2)$$

$$\implies \forall x \in B \cup C, \ \varphi(f_1,g_1)(x) = \varphi(f_2,g_2)(x)$$

$$\implies \forall x \in B, \ f_1(x) = f_2(x) \implies f_1 = f_2$$

$$\implies \forall x \in C, \ g_1(x) = g_2(x) \implies g_1 = g_2$$

Consider $h: B \cup C \to A$. Let $f = h|_B$, $g = h|_C$. Then $\varphi(f,g) = h$.

So φ is bijective, so proposition 2 holds.

Example: $c^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0} = c$.

2 Topology

2.1 Metric Spaces

Definition 2.1: Metric Space. X is (set). A metric on X is a function $d: X \times X \to [0, \infty)$ s/t

- 1. $d(x,y) = 0 \iff x = y$
- 2. **Abelian:** d(x,y) = d(y,x)
- 3. **Triangle:** $d(x,y) \leq d(x,z) + d(z,y)$

Definition 2.2: Normed Vector Space (NVS). Let Vis(Vector Space) over

 \mathbb{R} . A norm on V is a $fn \| \cdot \| : V \to [0, \infty)$ s/t

- 1. $||v|| = 0 \iff v = \vec{0}$
- $2. \|\alpha v\| = |\alpha| \cdot \|v\|$
- $||v + u|| \le ||v|| + ||u||$

BQN: $\| \times = = | \circ l \cdot \| \circ r \quad | + \leq \leq + \square |$

Proposition 2.1: NVS have trivial Metrics. Let $V, \| \cdot \| \operatorname{is}(\operatorname{NVS})$. $d(v, w) = \|v - w\|$ is a metric on V.

2.2 Examples of Metric Spaces

Example 2.1: Discrete Metric. Xis(set).

$$d(x,y) = \begin{cases} 0 & x = y \\ 1 & x \neq y \end{cases}$$

Example 2.2: Absolute Value Norm. $(\mathbb{R}, |\cdot|)$ is(NVS)

Example 2.3: Euclidean Norm. $(\mathbb{R}^n, \|\cdot\|_2)$ is (NVS) where $\|x\|_2 = \sqrt{\sum_{i=1}^n x_i^2}$.

Example 2.4: P-Norm. $p \ge 1$, $(\mathbb{R}^n, \|\cdot\|_p)$ is(NVS) where

$$||x||_p = \left(\sum_{i=1}^n |x_i|^p\right)^{\frac{1}{p}}$$

Note: see posted notes for the proof that this is a norm. OPTIONAL.

Example 2.5: Infinity Norm. $p = \infty$, $(\mathbb{R}^n, \|\cdot\|_{\infty})$ is (NVS) where

$$||x||_{\infty} = \max\{|x_1|,\ldots,|x_n|\}$$

Example 2.6: P-Norm on Sequences of Reals. $\mathbb{R}^{\mathbb{N}} := \{f|f: \mathbb{N} \to \mathbb{R}\} = \{(a_n)_{n=1}^{\infty}: a_n \in \mathbb{R}\}.$ For $p \geq 1$,

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}} \tag{1}$$

 $l^p := \{x \in \mathbb{R} : ||x||_p < \infty\} \implies (l^p, ||\cdot||_p) \text{is(NVS)}.$ This is the p-norm on sequences of reals. Notice how this solve the divergence issue (by ignoring it lol).

Example: $l^1 = \{x \in \mathbb{R} : \sum |x_i| < \infty\} \implies l^p \text{ is the set of absolutly convergent sequences.}$

Example 2.7: Suprema Norm (Infinity Norm on Sequences of Reals). $||x||_{\infty} = \sup\{|x_n| : n \in \mathbb{N}\}.$

if we let $l^{\infty} := \{x \in \mathbb{R}^{\mathbb{N}} : ||x||_{\infty} < \infty\}$, noting that l^{∞} is the set of all bounded sequences, then $(l^{\infty}, ||\cdot||_{\infty})$ is (NVS).

Example 2.8: P-Norm on Function. $C([a,b]) := \{f : [a,b] \to \mathbb{R} | f \text{is}(\text{cts})\}.$

$$||f||_p = \left(\int_a^b |f(x)| \, \mathrm{d}x\right)^{\frac{1}{p}}, \ p \ge 1$$

Example 2.9: Infinity Norm on Functions. $||f||_{\infty} = \sup\{|f(x)| : x \in [a,b]\}$

Example 2.10: Bounded Functions and the Infinity Norm are a NVS. $\mathbb{B}([a,b]) = \{f : [a,b] \to \mathbb{R} | fis(bd) \}, (\mathbb{B}([a,b]), \| \cdot \|_{\infty})is(NVS).$

Example 2.11: Sequence Metric. $X = \mathbb{R}^{\mathbb{N}} = \{f | f : \mathbb{N} \to \mathbb{R}\}.$

$$d(x,y) = \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$

Prove that d isn't induced by a metric. If d(x,y) = ||x - y|| for some norm, then $||\alpha x - \alpha y|| = |\alpha| ||x - y||$.

$$d(ax, ay) = \sum_{i=1}^{\infty} \frac{|ax_i - ay_i|}{2^i (1 + |ax_i - ay_i|)}$$

$$d(ax, ay) = \sum_{i=1}^{\infty} \frac{|a||x_i - y_i|}{2^i (1 + |a||x_i - y_i|)}$$

$$|a|d(x, y) = |a| \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$

$$|a|d(x, y) = \sum_{i=1}^{\infty} \frac{|a||x_i - y_i|}{2^i (1 + |x_i - y_i|)}$$

$$b/c |a||x_i - y_i| \neq |x_i - y_i|$$

$$\implies \text{not induced by a norm}$$

Example 2.12: Cantor Space. $X = 2^{\mathbb{N}} := \{f | f : \mathbb{N} \to \{0, 1\}\}.$

$$d(x,y) = \sum_{i=1}^{\infty} \frac{|x_i - y_i|}{2^i}$$

Example 2.13: Hamming Distance. X is (finite). $A, B \in \mathcal{P}(X)$.

$$d(A,B):=|A\triangle B|=|(A\cup B)\backslash (A\cap B)|$$

Example 2.14: Hausdorff Metric. $\mathcal{H} = \{K \subseteq \mathbb{R}^n : K \text{ compact}\}.$ Let $a \in A, b \in B, A, B \in \mathcal{H}.$

$$d(a, B) = \min\{\|a - b\| : b \in B\}$$

$$d(b, A) = \min\{\|a - b\| : a \in A\}$$

$$d(A, B) = \max\{\sup_{a \in A} d(a, B), \sup_{b \in B} d(b, A)\}$$

Note 2.1. $\sup_{a \in A} d(a, B)$ represents the biggest shortest path between A and B.

Note 2.2. Metrics give a sense of convergence on a space.

Example 2.15: P-adic Metric. Let p be prime, $X = \mathbb{Q}$.

Let
$$0 \neq q \in X = \mathbb{Q}$$
 $q = p^a \frac{n}{m}$
where $gcd(n, m) = gcd(p, n) = gcd(p, m) = 1$

$$|q|_p = \frac{1}{p^a}, \ |0|_p = 0$$

$$d(q_1, q_2 := |q_1 - q_2|_p)$$

Note 2.3. This notion of distance implies the more factors of p, the closer. This gives a sense of optimizing for a certain adjective.

These numbers aren't close using $\|\cdot\|_2$, but are using the p-adic norm.

Definition 2.3: Subspace of a Metric Space. $(X,d), Y \subseteq X \implies (Y,d).$ (Y,d) is called a **subspace** of (X,d).

Definition 2.4. $(X, d_1), (Y, d_2).$ Consider $(X \times Y, d)$ with

$$d((x_1, y_1), (x_2, y_2)) := d_1(x_1, x_2) + d_2(y_1, y_2) \ (1-norm)$$
 or
$$d((x_1, y_1), (x_2, y_2)) := \max\{d_1(x_1, x_2), d_2(y_1, y_2)\} \ (\infty-norm)$$

Example 2.16: Product Metric. $(X_i, d_i) \ i \in \mathbb{N}, \ X := \prod_{n=1}^{\infty} X_i$. Let $x = (x_1, x_2, \dots)$ and $y = (y_1, y_2, \dots)$.

$$d(x,y) = \sum_{i=1}^{\infty} \frac{d_i(x_i, y_i)}{2^i (1 + d_i(x_i, y_i))}$$

2.3 Convergence

Definition 2.5: Convergence of a Sequence. $(X,d), (x_n) \subseteq X, \text{ and } x \in X.$

Notation 2.1. $(x_n) \subseteq X$ means (x_n) is a sequence in X.

 (x_n) conv to $x, x_n \to x$ iff

 $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ s/t \ \forall n \geq N, \ d(x_n, x) < \epsilon$

Definition 2.6: Divergence. (x_n) diverges of $\exists x \in X \ s/t \ x_n \to x$.

Note 2.4: Convergence is Distance going to Zero. $(X, d), (x_n) \in X, x \in x$. Then $x_n \to x$ iff $d(x_n, x) \to 0$.

Definition 2.7: Cauchy. (X,d). $(x_n) \subseteq X$ is a cauchy seq iff

 $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \ s/t \ \forall n, m \geq N, \ d(x_n, x_m) < \epsilon$

Proposition 2.2: Convergence implies Cauchyness. (X, d). If $(x_n) \subseteq X$ converges, then (x_n) is cauchy.

Epsilon/2. Suppose
$$(x_n) \to x$$
. Let $\epsilon > 0$. So $\exists N \text{ s/t } \forall n \geq N$,

$$d(x_n, x) < \gamma$$

$$d(x_n, x_m) \le d(x_n, x) + d(x, x_m) \text{ by } \triangle$$

$$< \gamma + \gamma = 2\gamma$$

$$:= 2\frac{\epsilon}{2}$$

Example 2.17: Cauchy doesn't imply Convergence. X = (0, 1] with the std metric.

 $\frac{1}{n} \to 0 \implies \left(\frac{1}{n}\right) \subseteq X \text{ is cauchy}$

Note 2.5. I think this is trying to say that 1/n is cauchy in X, but $1/n \rightarrow 0$, which is not in X, so it diverges (in X).

Definition 2.8: Bounded.

- 1. $A \subseteq X$ is $bd \underline{iff} \sup\{d(x,y) : x,y \in A\} < \infty$
- 2. $(x_n) \subseteq X$ is(bd) $\iff \{x_1, x_2, \dots\}$ is(bd) $\iff \sup\{n, m \in \mathbb{N} : d(x_n, x_m)\} < \infty$

Definition 2.9: Open and Closed Balls.

- 1. **Open:** $B_r(a) := \{x \in X : d(x, a) < r\}$
- 2. Clsd: $B_r[a] := \{x \in X : d(x, a) \le r\}$

Proposition 2.3: Boundedness iff subset of a Closed Ball. $(X,d), A \subseteq X$. Then A is bd iff $\exists r > 0, \exists x \in X \ s/t \ A \subseteq B_r[x]$

Proof. Suppose $\sup\{d(x,y): x,y\in A\}=r<\infty$. Assume $A\neq\emptyset$, taking $a\in A$. For $b\in A, d(a,b)\leq r \implies A\subseteq B_r[a]$.

Assume
$$A \subseteq B_r[a] \implies \forall a, b \in A, \ d(a,b) \le d(a,x) + d(x,b) \le 2r$$

Proposition 2.4: Cauchy implies Bounded. (x_n) is(cauchy) $\implies (x_n)$ is(bd)

Example 2.18: Counter Example. (0, 1, 0, 1, 0, ...) is bounded but not cauchy.

Note 2.6. $CONVERGENCE \implies CAUCHY \implies BOUNDED$

Proof. Suppose (x_n) is cauchy. Let $\epsilon = 1$.

$$\exists N \in \mathbb{N} \text{ s/t } \forall n, m \geq N \ d(x_n, x_m) < 1$$

Let $r := \max\{d(x_1, x_N), \dots, d(x_{N-1}, x_N)\}$

Note 2.7. We did this because the web's edges are no longer than 1. So, we can look at the <u>finite</u> part left. Finite sets are bounded, and the "web" is bounded.

$$(x_n) \subseteq B_r[x_N]$$

2.4 Convergence Examples

Example 2.19: 2-Adic Norm. Consider $(\mathbb{Q}, |\cdot|_2)$. Let $x_n := \frac{1+2^n}{3}$.

Note 2.8: P-Adic Convergence Claims. Looking at $x_n = \frac{1}{3} + \frac{2^n}{3} = \frac{1}{3} + \frac{2^n}{3} = \frac{1}{3}$.

We claim $x_n \to \frac{1}{3}$.

Proof.

$$\left| x_n - \frac{1}{3} \right|_2 = \left| \frac{2^n}{3} \right|_2$$
$$= \frac{1}{2^n}$$
$$\to 0$$

So $x_n \to \frac{1}{3}$ under $|\cdot|_2$.

Example 2.20: Bounded Sequences and the Infinity Norm. $(l^{\infty}, \|\cdot\|_{\infty})$. Let $x_n := (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, 0, \dots)$ and $x := (1, \frac{1}{2}, \frac{1}{3}, \dots)$ We claim that $x_n \to x$.

Proof.

$$||x_n - x||_{\infty}$$

$$= \sup \left(0, 0, \dots, 0, \frac{1}{n+1}, \frac{1}{n+2}, \dots\right)$$

$$= \frac{1}{n+1} \to 0$$

Example 2.21: Zero Tailed Sequences aren't Cauchy under Sup Norm.

$$y_n := (\underbrace{1, 1, \dots, 1}_{n}, 0, 0, 0, \dots)$$

$$y := (1, 1, 1, 1, \dots)$$

$$n \neq m, \ \|y_n - y_m\|_{\infty} = 1$$

2.5 Completeness

Definition 2.10: Complete, Complete Metric Space, Banach Space. $(X,d),\ A\subseteq X.\ Then$

- 1. A is **complete** iff every cauchy seq in A converges to some $a \in A$.
- 2. if X is complete, we call it a Complete Metric Space.
- 3. A complete normed vector space is called a **Banach Space**

Example 2.22.

$$X=(0,1], \ \frac{1}{n} \to 0 \not \in X \implies (\mathrm{div}) \implies X \not \ \mathrm{is}(\mathrm{comp})$$

Example 2.23.

$$A = [1/2, 1] \subseteq X$$
is(comp)

Example 2.24.
$$(X, d := (\text{discrete})) \ Let (x_n) \in \mathbb{R}^{\mathbb{N}} \ be \ cauchy.$$

$$\exists N \in \mathbb{N} \ s/t \ \forall n, m \geq N \implies d(x_n, x_m) < 1$$

$$\implies d(x_n, x_m) = 0$$

$$\implies x_n = x_m$$

$$\implies x_n = (x_1, x_2, \dots, x_N, x_N, x_N, \dots) \to x_N$$

$$\implies X \text{is}(\text{complete})$$

Note 2.9. So nice sets or nice metrics can cause completeness.

Example 2.25. Show $(l^{\infty}, \|\cdot\|_{\infty})$ is a Banach Space.

Let $(x_n) \subseteq l^{\infty}$, example 2.7. We know already that $(l^{\infty}, \|\cdot\|_{\infty})$ is a (NVS), so we have to show it's complete. Let $\epsilon > 0$ be given. Then,

$$\exists N \in \mathbb{N} \ s/t \ n, m \ge N \implies \|x_n - x_m\|_{\infty} < \epsilon$$

$$x_k = (x_k[1], x_k[2], \dots)$$

$$for \ n, m \ge N, \ |x_n[i] - x_m[i]|$$

$$\leq \sup\{|x_n[i] - x_m[i]| : i \in \mathbb{N}\}$$

$$= \|x_n - x_m\|_{\infty} < \epsilon$$

$$\implies \forall i \in \mathbb{N}, \ the \ seq \ (x_n[i])_{n=1}^{\infty} \text{is}(\text{cauchy in } \mathbb{R})$$

$$\mathbb{R}\text{is}(\text{comp}) \implies x_n[i] \xrightarrow{n} b_i$$

$$Claim: \ x_n \to b := (b_1, b_2, \dots)$$

$$\forall n, m \ge N, \ |x_n[i] - x_m[i]| < \epsilon$$

$$\implies \lim_{m \to \infty} |x_n[i] - x_m[i]| \le \epsilon$$

$$\implies \forall n \ge N, \ |x_n[i] - b_i| \le \epsilon$$

$$Consider \ \|x_n - b\|_{\infty}$$

$$= \sup\{|x_n[i] - b_i| : i \in \mathbb{N}\}$$

$$\leq \epsilon < 2\epsilon$$

Hence $x_n \to b$.

Note: we have that $x_N - b \in l^{\infty}$, and $x_N \in l^{\infty}$. However l^{∞} is a (VS), so $b \in l^{\infty}$.

Proposition 2.5: Set of bounded Sequences on the P-Norm is Banach. $(\ell^p, \|\cdot\|_p)$ is (banach).

$$||x||_p = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$$

$$\ell^p := \{x \in \mathbb{R} : ||x||_p < \infty\} \implies (\ell^p, ||\cdot||_p) \text{is(NVS)}$$

Proof. Let $(a_k) \subseteq \ell^p$ be cauchy.

Say
$$a_k = (a_k[1], a_k[2], \dots)$$

Let
$$\epsilon > 0$$

$$\exists N \in \mathbb{N} \text{ s/t } ||a_k - a_m|| < \epsilon, \ \forall k, m \ge N$$

Fixing
$$i \in \mathbb{N}$$
, Since $|a_k[i] - a_m[i]| \le ||a_k - a_m||_p < \epsilon$

We see that $(a_k[i])_{k=1}^{\infty}$ is (cauchy in \mathbb{R})

$$\mathbb{R}$$
is(comp) $\Longrightarrow a_k[i] \to b_i$ for some $b_i \in \mathbb{R}$

Claim:
$$a_k \to b = (b_1, b_2, \dots)$$

 $\forall k, m \geq N$, we see that

$$\sum_{i=1}^{M} |a_k[i] - a_m[i]|^p$$

$$\leq \sum_{i=1}^{\infty} |a_k[i] - a_m[i]|^p$$

$$= \|a_k - a_m\|_p^p < \epsilon^p$$

$$\sum_{i=1}^{M} |a_k[i] - b_i|^p \le \epsilon^p, \ \forall M \in \mathbb{N}$$

$$M \to \infty : \sum_{i=1}^{\infty} |a_k[i] = b_i|^p \le \epsilon^p$$

$$\implies \|a_k - b\|_p \le \epsilon, \ \forall k \ge N$$

Noting that $a_N, a_N - b \in \ell^p \implies b \in \ell^p$.

Example 2.26.

$$C_{00} = \{(x_n) \in \ell^{\infty} : \exists N \in \mathbb{N} \ s/t \ \forall n \ge N, \ x_n = 0\}$$
$$is(NVS), \ via \ \|\cdot\|_{\infty}$$

Consider

$$x_n = (1, 1/2, \dots, 1/n, 0, 0, 0, \dots)$$

 x_n is (cauchy, divergence) b/c

$$x_n \to (1, 1/2, 1/3, \dots) \notin C_{00} \implies C_{00} \text{is}(\neg \text{comp})$$

2.6 Topological Spaces

Definition 2.11: Topology. X set. A topology on X is a set $\mathcal{T} \subseteq \mathcal{P}(X)$ s/t

- 1. $\emptyset, X \in \mathcal{T}$
- 2. $U, V \in \mathcal{T} \implies U \cap V \in \mathcal{T}$
- 3. $U_i \in \mathcal{T}, (i \in I) \implies \bigcup_{i \in I} U_i \in \mathcal{T}$

Example 2.27: Discrete Topology. X set. $\mathcal{T} := \mathcal{P}(X)$

Example 2.28: Indiscrete Topology. $\mathcal{T} := \{\emptyset, X\}$

Example 2.29. $X = \{a, b, c\}$

$$\mathcal{T}_1 = \{\emptyset, X, \{a\}, \{b, c\}\}$$

$$\mathcal{T}_2 = \{\emptyset, X, \{a\}, \{b\}, \{a, b\}\}\$$

Notation 2.2: Topological Space. If \mathcal{T} is a topology on X, then (X, \mathcal{T}) is called a **topological space**.

2.7 Metric Topology

Definition 2.12: Open. (X, \mathcal{T}) . $U \subseteq X$ is open $\underline{iff} \ \forall x \in U, \ \exists r > 0 \ s/t \ B_r(x) \subseteq U$.

Proposition 2.6: The Set of Open sets form a Topology. $\mathcal{T} = \{U \subseteq X : U \text{ open}\}$ is a topology.

Proof. $\emptyset, X \subseteq \mathcal{T}$ trivially.

Let $U, V \in \mathcal{T}$. Since U & V are open

$$\exists r_1, r_2 > 0 \text{ s/t}$$
 $B_{r_1}(x) \subseteq U$ $B_{r_2}(x) \subseteq V$

$$r := \min\{r_1, r_2\} \quad B_r(x) \subseteq U \cap V \implies U \cap V \in \mathcal{T}$$

Let $U_i \in \mathcal{T}$ for all $i \in I$. Let $x \in \bigcup_{i \in I} U_i$.

So
$$\exists i \in I \text{ s/t } x \in U_i$$

So
$$\exists r > 0 \text{ s/t } B_r(x) \subseteq U_i \subseteq \bigcup U_i$$

Example 2.30: Counterexample for Infinte Intersections are Open.

$$(\mathbb{R}, \mathcal{T}_{\text{open}})$$
 $U_n = \left(-\frac{1}{n}, \frac{1}{n}\right)$ $\bigcap U_n = \{0\} \notin \mathcal{T}$

Proposition 2.7: Metric Spaces are Haussdorff. (X,d) $\forall x \neq y \in X$, $\exists U, V \subseteq X$ open s/t $x \in U$, $y \in V$, $U \cap V = \emptyset$

Proof. Let
$$r = d(x, y) > 0$$
. Let $U = B_{r/2}(x)$ $V = B_{r/2}(y)$.

Open Balls are Open Proof. Let $x \in B_r(a)$ for some $a \in X$, r > 0. Then

d(x,a) < r by open ball def

$$y :\in B_{r-d(x,a)}(x)$$

$$\implies d(x,y) < r - d(x,a)$$

$$d(y,a) \overset{\text{(TI)}}{<} d(x,y) + d(x,a) < r$$

$$\implies y \in B_r(a) \implies B_{r-d(x,a)}(x) \subseteq B_r(a) \implies B_r(a) \text{ is open}$$

Assume for the sake of contradiction $\exists z \in B_{r/2}(x) \cap B_{r/2}(y)$.

$$\implies d(z,x) < r/2 \quad d(z,y) < r/2$$

$$r > d(x, z) + d(z, y) > d(x, y) = r$$

This is a contradiction.

Example 2.31. $X = \{a, b, c\}, \ \mathcal{T} = \{\emptyset, X, \{a, b\}\}.$ Since a cannot be "seperated" from b, then there is no possible metric on X, so \mathcal{T} isn't a metric topology. All metrics make a topology, not all topologies make a metric.

2.8 Closed Sets

Definition 2.13: Closed Sets. (X, \mathcal{T}) . $C \subseteq X$ is closed iff $X \setminus C \in \mathcal{T}$

Proposition 2.8: Properties of Closed Sets. (X, \mathcal{T}) .

- 1. \emptyset , X closed.
- 2. C, D closed then $C \cup D$ closed.
- 3. C_i , $i \in I$, $\bigcap_{i \in I} C_i$ is closed.

Proof by "Boolean Nonsense". $X \setminus C$, $X \setminus D \in \mathcal{T}$.

$$X \setminus (C \cup D) \in \mathcal{T}$$

$$X \setminus C \cap X \setminus D \in \mathcal{T}$$

Definition 2.14: Limit Point. $(X, \mathcal{T}), A \subseteq X$. We say $x \in X$ is a **limit point** of A iff

 $\forall U \in \mathcal{T} \text{ with } x \in U \quad A \cap U \neq \emptyset$

Note 2.10. $x \in A \implies x$ is(limit point)

Proposition 2.9: Limits Points in a Metric Topology are the Limit of a Sequence. $A \in X$. Then $x \in X$ is a limit point of A iff $\exists (a_n) \in A$ s/t $a_n \to x$.

(\Longrightarrow) *Proof.* Assume x is a limit a point of A. Then $\forall U \in \mathcal{T}, x \in U, A \cap U \neq \emptyset$. Then $\forall n \in \mathbb{N}, \exists a_n \in B_{\frac{1}{n}}(x) \cap A \ (\neq \emptyset)$. Then $d(x, a_n) < \frac{1}{n} \to 0 \Longrightarrow a_n \to x \square$

 (\Leftarrow) Proof. Assume $\exists a_n \to x$. Then $\forall \epsilon > 0 \ \exists N \in \mathbb{N} \ \text{s/t} \ d(a_n, x) < \epsilon$. Let $U \subseteq X$ be open with $x \in U$.

$$\implies \exists r > 0 \text{ s/t } B_r(x) \subseteq U$$

Then $\exists N \in \mathbb{N} \text{ s/t } d(a_N, x) < r$

So
$$a_N \in U \implies A \cap U \ni a_N$$

Proposition 2.10: Closed Sets Attain Limits. C is closed iff C attains its limits points.

 (\Longrightarrow) Proof. Suppose C is clsd. Let $x\in X$ be a limit point of C. Since $X\smallsetminus C$ is open and $(X\smallsetminus C)\cap C=\emptyset, \ x\not\in X\smallsetminus C\implies x\in C.$

$$(\longleftarrow)$$
 Proof. Suppose C attains its limit points. Show $X \setminus C \in \mathcal{T}$.

$$\mathrm{Let} x \in X \smallsetminus C$$

So x isn't a limit point of C

then
$$\exists U_x \in \mathcal{T}, \ x \in U_x \text{ s/t } U_x \cap C = \emptyset$$

$$then U_x \subseteq U_x \cap C$$
 (?)

$$then X \setminus C = \bigcup_{x \in X \setminus C} U_x \in \mathcal{T}$$

Corollary 2.1: Closed Sets Attain Sequence Limits. $(X,d),\ C\subseteq X.$ Then C is closed iff

$$\forall (c_n) \subseteq C, \ c_n \to x \in X \text{then} x \in C$$

Definition 2.15: Subspace Topology. $(X, \mathcal{T}), Y \subseteq X$.

Note that $\varphi, X \in \mathcal{T}$, \mathcal{T} closed under (\cup, \cap)

The subspace topology is

$$\mathcal{T}' = \{ Y \cap U : U \in \mathcal{T} \}$$

Prove subspace topologies are Topologies.

1. Show

$$\emptyset, Y \in \mathcal{T}'$$

So,

$$\emptyset \in \mathcal{T}, Y \cap \emptyset = \emptyset \implies \emptyset \in \mathcal{T}'$$

$$X \in \mathcal{T}, Y \cap X = Y \implies Y \in \mathcal{T}'$$

2. Show

$$U, V \in \mathcal{T}' \implies U \cap V \in \mathcal{T}'$$

So let $U, V \in \mathcal{T}'$.

$$\implies$$
 ∃open $U_X \in X$ s/t $U = U_X \cap Y$

$$\implies \exists \text{open } V_X \in X \text{ s/t } V = V_X \cap Y$$

$$\implies U \cap V = (U_X \cap Y) \cap (V_X \cap Y) = (U_X \cap V_X) \cap Y$$

$$U_X \cap V_X \in \mathcal{T} \implies U \cap V \in \mathcal{T}'$$

3. Show

$$U_i \in \mathcal{T}', \ (i \in I) \implies \bigcup_{i \in I} U_i \in \mathcal{T}'$$

So

$$U_i \in \mathcal{T}' \implies U_i = Y \cap U_i^X \text{ for some open } U_i^X \in \mathcal{T}$$

$$\bigcup U_i = Y \cap \bigcup U_i^X \implies U_i \in \mathcal{T}'$$

Note 2.11. $(X, \mathcal{T}), Y \subseteq X, \mathcal{T}'$ as above. $C \subseteq Y$ clsd.

$$\Rightarrow Y \setminus C \in \mathcal{T}'$$

$$\Rightarrow Y \setminus C = Y \cap U, \ U \in \mathcal{T}$$

$$\Rightarrow C = Y \cap \underbrace{(X \setminus U)}_{clsd}$$

Note 2.12. $(X,d), Y \subseteq X$. Define (Y,d) as a subspace metric space. Suppose $U \subseteq Y$ is open wrt Y.

$$\Rightarrow \forall x \in U \ \exists r_x > 0 \ s/t \underbrace{B_{r_x}(x)}_{in \ Y} \subseteq U$$

$$\Rightarrow \forall x \in U \ \exists r_x > 0 \ s/t \underbrace{B_{r_x}(x)}_{in \ X} \cap Y \subseteq U$$

$$U = \bigcup_{x \in U} (Y \cap B_{r_x}(x)) = Y \cap \underbrace{\left(\bigcup_x B_{r_x}(x)\right)}_{open \ in \ X}$$

2.9 Closure and Interior

Definition 2.16: Closure and Interior.

1. the **Closure** of A is defined as follows:

$$\overline{A} = \bigcup_{\substack{C \supseteq A, \\ C \ clsd}} C$$

2. the Interior of A is defined as follows:

$$\operatorname{Int}(A) = \bigcup_{\substack{U \subseteq A \\ U \in \mathcal{T}}} U$$

Note 2.13. 1.
$$\overline{A}$$
is $clsd$ Int $(A) \in \mathcal{T}$

2.
$$\operatorname{Int}(A) \subseteq A \subseteq \overline{A}$$

3.

$$A \ closed \iff A = \overline{A}$$

$$A \ open \iff A = \operatorname{Int}(A)$$

Note 2.14. $(X, \mathcal{T}), Y \subseteq X, A \subseteq Y. (Y, \mathcal{T}').$

$$(wrt \ Y) \longrightarrow \overline{A} = \bigcap \{C : A \subseteq C, \ C \text{ clsd in } Y\}$$

$$=\bigcap\{Y\cap C: A\subseteq C,\ C\ clsd\ in\ X\}$$

$$=Y\cap \left(\bigcap\{C:A\subseteq C,\ C\ clsd\ in\ X\}\right)$$

$$= Y \cap \overline{A} \longleftarrow (wrt \ X)$$

Similarly, Int(A) wrt $(Y) = Y \cap Int(A)$ wrt (X).

Proposition 2.11: The Closure is the Set of Limit Points. $A \subseteq X$.

 $\overline{A} = \{x \in X : x \text{ is a limit point of } A\}$

Proof. Let $L := \{x \in X : x \text{ is a limit point of } A\}$. Let $x \in \overline{A}$. Let $U \in \mathcal{T}$ s/t $x \in U$. Suppose $A \cap U = \emptyset$

$$\implies A \subseteq \underbrace{X \smallsetminus U}_{clsd} \implies x \in X \smallsetminus U$$

Contradiction, $x \in U$ and $x \in X \setminus U$.

Let $x \in L$, and let C be clsd, with $A \subseteq C$. Suppose

$$x \notin C \implies x \in X \setminus C := U$$

$$\implies (X \smallsetminus C) \cap A \neq \emptyset$$

Contradiction of $A \subseteq C$.

Note 2.15: Norms.

1. P-Norm, $x \in \mathbb{R}^n$.

$$\left(\sum_{i=1}^{n} |x_i|^p\right)^{\frac{1}{p}}$$

2. Inf-Norm, $x \in \mathbb{R}^n$.

$$\max\{|x_i|: 0 \le i \le n\}$$

3. P-Norm, $x \in \mathbb{R}^{\mathbb{N}}$

$$\left(\sum_{i=1}^{\infty} |x_i|^p\right)^{\frac{1}{p}}$$

4. Inf-Norm, $x \in \mathbb{R}^{\mathbb{N}}$.

$$\sup\{|x_i|:i\in\mathbb{N}\}$$

5. P-Norm, $x \in \mathbb{R}^{\mathbb{R}}$.

$$\left(\int_{-\infty}^{\infty} |f(x)|^p \, \mathrm{d}x\right)^{\frac{1}{p}}$$

6. Inf-Norm, $x \in \mathbb{R}^{\mathbb{R}}$.

$$\sup\{|f(x)|: x \in \mathbb{R}\}$$

7. $\ell^p = \{ x \in \mathbb{R}^{\mathbb{N}} : ||x||_p < \infty \}$

Corollary 2.2: Closure is the Set of Reachable Points. $\overline{A}=\{x\in X: \exists (a_n)\subseteq A,\ a_n\to x\}$

Definition 2.17: Interior Points. $(X, \mathcal{T}), A \subseteq X$. Then $x \in A$ is an *interior* point iff

$$\exists U \in \mathcal{T} \ s/t \ x \in U \subseteq A$$

Note 2.16. Notice that this is similar to how we define openness in a metric space.

Note 2.17. $(X,d), A \subseteq X$. Then $x \in A$ is an interior point of A iff

$$\exists r > 0 \ s/t \ x \in B_r(x) \subseteq A$$

Proposition 2.12: Interior Points of A build the Interior of A.

 $Int(A) = \{x \in A : xis an interior point of A\}$

Proof. Let $I := \{x : x \text{ isint pt}\}, x :\in \text{Int}(A)$.

$$\iff \exists U \in \mathcal{T}, \ x \in U \subseteq A \iff x \in I$$

Example 2.32: Closures and Closed "Versions" of Sets are Inequal. $(\mathbb{N},|\cdot|)$

$$B_1(1) = \{1\} \implies \overline{B_1(1)} = \{1\} = B_1(1)$$

 $B_1[1] = \{1, 2\}$

Proof. Prove $\overline{B_r(x)} = B_r[x]$, under a (NVS).

NVS: vectors, w/ buildin norm. Basically this is a ordinary norm, rather than a metric. So we have norm TI, norm zero uniqueness, AND a scalar property.

 (\subseteq) . Let $y \in \overline{B_r(x)}$. So

$$B_r[x] = \{ y \in \mathbb{R} : ||x - y|| \le r \}$$

$$\text{Show } ||x - y|| \le r$$

$$y \in \overline{B_r(x)} \implies \exists y_n \in \mathbb{R}^{\mathbb{N}} \text{ s/t } y_n \to y$$

$$\implies \exists N \in \mathbb{N} \text{ s/t } \forall n > 0, ||x - y_n|| < r$$

$$\implies ||x - y|| \le r$$

 (\supseteq) Let $y \in B_r[x]$.

$$||y - x|| \le r$$

$$\operatorname{Show} \exists (a_n) \in \mathbb{R}^{\mathbb{N}} \text{ s/t } a_n \to y$$

$$\operatorname{Let} a_i = y + \frac{x - y}{i}$$

$$||x - a_i|| = \left\| x - y - \frac{x - y}{i} \right\| = ||x - x/i - y + y/i||$$

$$||x - x/i + (y/i - y)|| \le ||x - x/i|| + ||y - y/i|| < 2r$$

Example 2.33. $(X,d), A \subseteq X$ complete. Prove A is closed.

$$(a_n) \subseteq A, \ a_n \to x \in X$$

 (a_n) cauchy, (a_n) conv to a pt in A.

$$\implies x \in A \implies closed$$

Definition 2.18: Subsequence.

$$(X,d), (X_n) \subseteq X$$

A subsequence of (X_n) is a sequence

$$(X_{n_k})_{k=1}^{\infty}$$
, where $n_1 < n_2 < n_3 < \cdots$

Note 2.18.

$$\mathbb{N} \to \mathbb{N} \to X : x(n(k)), \ n \ increasing$$

$$K \ge N, \ n_K \ge K \ge N$$

$$K \ge N, \ n(K) \ge K \ge N$$

Example 2.34.

$$(X,d), (X_n) \subseteq X. \ Prove \ x_n \to x \implies x_{n_k} \to x$$

Proof.

$$K \ge N, \ n_K \ge K \ge N$$

 $\implies d(x_{n_k}, x) < \epsilon$

Example 2.35.

$$Let(X,d)(x_n) \subseteq X \ cauchy$$

Show x_n conv \iff x_n has a conv subseq

Proof. The forward direction is trivial.

Backwards: Let (x_n) be cauchy, and let some subsequence $x_{n_k} \to x$.

Let
$$\epsilon > 0$$
, let $N \in \mathbb{N}$ s/t $\forall n, m \ge N \implies d(x_n, d_m) < \frac{\epsilon}{2}$

Let
$$k \in \mathbb{N}$$
 $k \ge K \implies d(x_{n_k}, x) < \frac{\epsilon}{2}$

Assume $K \ge N \implies n_K \ge N$

$$\forall n \ge N, \ d(x_n, x) \le d(x_n, x_{n_k}) + d(x_{n_k}, x)$$

$$< \frac{\epsilon}{2} + \frac{\epsilon}{2} = \epsilon$$

Example 2.36.

Let
$$(X, d), x_n \to x$$

Prove $C = \{x_n : n \in \mathbb{N}\} \cup \{x\}$ is closed

Proof.

if $\exists N$ inf many $y_n = x_N$

then $(x_N)_n$ is a subseq of y_n

$$y_n \to y, \ (x_N)_n \to x_N \implies y = x_N \in C \blacksquare$$

if $\forall n$, only finitly many $y_K = x_n$

then
$$\exists (y_{n_k})$$

which is also a subseq of (x_n) . Then y = x.

Example 2.37. Let V be a (NVS),
$$U \subseteq V$$
, $U \in \mathcal{T}$, $x \in V$. Show

$$x + U = \{x + u \colon u \in U\} \in \mathcal{T}$$

Proof.

Let
$$x + u \in x + U$$
, $u \in U \in \mathcal{T}$
$$u \in U \in \mathcal{T} \implies \exists r > 0 \text{ s/t } B_r(u) \subseteq U$$

$$B_r(x + u) = x + B_r(u) \subseteq x + U \implies x + U \in \mathcal{T}$$

Example 2.38. V is NVS, $T \ni U \subseteq V$, $A \subseteq V$.

Show
$$A + U = \{a + u : a \in A, u \in U\} \in \mathcal{T}$$

Proof.

$$A + U = \bigcup_{a \in A} a + U$$
$$a + U \in \mathcal{T} \implies A + U \in \mathcal{T}$$

Example 2.39.

$$V$$
 (NVS), $C \subseteq V$ clsd, $x \in V$

prove x + C is closed.

Proof.

$$V \setminus C \in \mathcal{T} \implies x + V \setminus C \in \mathcal{T}$$
 from above
$$V \setminus (x + V \setminus C) \text{ is closed by defn}$$

$$= x + C$$

$$-C \in \mathcal{T}. \ x + (-C). \ -(x + (-C)) = x + C$$

Example 2.40. Find $C, D \subseteq \mathbb{R}$ closed s/t C + D isn't closed.

Proof.
$$C := \mathbb{N}, \ D := \{-n + 1/n : n \ge 2\}.$$

$$\frac{1}{n} \in C + D, \ n \ge 2$$

$$0 \notin C + D \implies C + D \neq \overline{C + D}$$

Example 2.41.

$$(X,d), A \subseteq X. \text{ Show } X \setminus \text{Int}(A) = \overline{X \setminus A}$$

$$(\subseteq)$$
 Proof. Let $x \in X \setminus \text{Int}(A)$. Let $(x_n) \subseteq X \setminus A$ s/t $x_n \in B_{\frac{1}{n}}(x)$.

$$x_n \to x \implies X \setminus \operatorname{Int}(A) \subseteq \overline{X \setminus A}$$

$$(\supseteq)$$
 Proof. Let $x \in \overline{X \setminus A}$.

Then $\exists x_n \subseteq X \setminus A \text{ s/t } x_n \to x$.

Then $\forall \epsilon > 0, \ \exists N \in \mathbb{N} \text{ s/t } x_N \in B_{\epsilon}(x).$

Note that since $x_N \not\in A$ then $B_{\epsilon}(x) \not\subseteq A$.

Since $y \notin \text{Int}(A) \iff \forall \epsilon > 0, \ B_{\epsilon}(x) \not\subseteq A$, then $x \notin \text{Int}(A)$.

Example 2.42. Prove $X \setminus \overline{A} = \text{Int} X \setminus A$.

Proof. We know from above that $X \setminus \operatorname{Int}(X \setminus A) = \overline{X \setminus (X \setminus A)}$.

So $X \setminus \operatorname{Int}(X \setminus A) = \overline{A}$.

Then $X \setminus \overline{A} = \operatorname{Int}(X \setminus A)$.

Definition 2.19: Boundary. $(X, d), A \subseteq X$. The **boundary** of A is

$$\partial A = \overline{A} \setminus \operatorname{Int}(A)$$

Example 2.43. Prove ∂A is closed.

Proof.

$$\partial A = \overline{A} \setminus \operatorname{Int}(A)$$
$$= \overline{A} \cap (X \setminus \operatorname{Int}(A))$$
$$= \overline{A} \cap \overline{X} \setminus \overline{A}$$

So ∂A is closed, because intersections of closed sets are closed.

Example 2.44. Prove A is closed iff $\partial A \subseteq A$.

 (\Longrightarrow) Proof.

$$A ext{ is closed} \implies A = \overline{A}$$

$$\partial A = \overline{A} - A^0 = A - A^0 \subseteq A$$

 (\longleftarrow) Proof.

$$\partial A \subseteq A \implies \overline{A} \setminus A^0 \subseteq A$$

 $\implies \overline{A} \subseteq A \cup A^0 = A$

Definition 2.20: Hausdorf. (X, \mathcal{T}) is Hausdorf \underline{iff}

$$\forall x \neq y \in X$$

 $\exists \text{ disjoint } U,V \in \mathcal{T} \text{ } s/t \text{ } x \in U, \text{ } y \in V.$

Example 2.45. Let (X, \mathcal{T}) be Hausdorf. Show $\{x\}$ is closed.

Proof.

$$\forall y \neq x, \ U_y, V_y \in \mathcal{T}, \ U_y \cap V_y = \emptyset, \ y \in U_y, \ x \in V_y$$

$$X \setminus \{x\} = \bigcup_{y \neq x} U_y \in \mathcal{T}$$

Example 2.46. $(X, \mathcal{P}(X))$. Prove $\mathcal{T} = \mathcal{P}(X)$ is induced by a metric.

Proof. Let

$$d(x,y) = \delta(x,y) := \begin{cases} 1 & x = y \\ 0 & o/w \end{cases}$$

We need to show $\forall A \in \mathcal{T}$, A is open. Let $A \in \mathcal{T}$.

$$A = \bigcup_{a \in A} \{a\} = \bigcup_{a \in A} B_1(a)$$

Since $B_1(a)$ is open, and arbitrary unions of open sets wrt δ are open, then A is open.

3 Continuity

3.1 Continuity

Definition 3.1: Topologic Continuity. Let (X, \mathcal{T}) , (Y, \mathcal{T}') be topological spaces.

 $f: X \to Y$ is cts iff

$$f^{-1}(U) \in \mathcal{T}, \ \forall U \in \mathcal{T}'$$

Noting that $f^{-1}(U) = \{x \in X : f(x) \in U\}.$

Proposition 3.1: Closedness and Continuity. $(X, \mathcal{T}), (Y, \mathcal{T}'), f : X \to Y$. *TFAE:*

- 1. f cts
- 2. $\forall A \subseteq X, \ f(\overline{A}) \subseteq \overline{f(A)}$
- 3. \forall closed $C \subseteq Y$, $f^{-1}(C)$ is closed in X

(1)
$$\implies$$
 (2) Proof. Assume f is cts.

Let
$$y \in f(\overline{A})$$
.

Show
$$\forall U \in \mathcal{T}' \text{ s/t } y \in U, \ U \cap f(A) \neq \emptyset.$$

Let
$$y = f(x)$$
, for some $x \in \overline{A}$.

So
$$\forall V \in \mathcal{T} \text{ s/t } x \in V, \ V \cap A \neq \emptyset.$$

Let
$$U \in \mathcal{T}'$$
 s/t $y \in U$.

$$\implies f(x) \in U.$$

$$\implies x \in f^{-1}(U)$$
, and $f^{-1}(U) \in \mathcal{T}$ by continuity.

Since $f^{-1}(U) \in \mathcal{T}$, $x \in f^{-1}(U)$, $x \in \overline{A}$, then by the defin of the closure, $f^{-1}(U) \cap A \neq \emptyset$.

Let
$$a \in f^{-1}(U) \cap A \neq \emptyset$$

$$\implies f(a) \in U \cap f(A)$$

$$\implies y \in \overline{f(A)}$$

(2) \Longrightarrow (3) Proof. Let : $C \subseteq Y$ be closed and $A = f^{-1}(C)$.

Show A is closed. Show $\overline{A} \subseteq A$.

For
$$x \in \overline{A}$$
, $f(x) \in f(\overline{A}) \subseteq \overline{f(A)} \subseteq \overline{C} = C$

$$\implies x \in f^{-1}(C) = A$$

$$\implies A = \overline{A} \implies A \text{ is closed}$$

(3)
$$\implies$$
 (1) Proof. For $U\subseteq Y$ open, $Y\smallsetminus U$ clsd

$$\implies f^{-1}(Y \setminus U)$$
 clsd by hypothesis

$$=X\smallsetminus f^{-1}(U)$$

$$\implies f^{-1}(U)$$
 open

Proposition 3.2: Continuity preserves Convergence in Metric Spaces.

$$(X,d), (Y,d'), f: X \to Y.$$

$$f(x_n) \to f(x)$$
 whenever $(x_n) \subseteq X$, $x_n \to x \in X$.

```
(\Longrightarrow) \textit{Proof. Assume } f \text{ is cts.}
\text{Let} : (x_n) \subseteq X, \ x_n \to x \in X.
\text{Let} : \epsilon > 0.
\text{Consider} : U = B_{\epsilon}(f(x)).
\Longrightarrow x \in f^{-1}(U) \text{ is open by cts.}
\Longrightarrow \exists r > 0, \ B_r(x) \subseteq f^{-1}(U) \text{ by openess}
\text{Since } x_n \to x, \ \exists N \in \mathbb{N} \text{ s/t } n \geq N \implies f(x_n, x) < r
\text{Hence, } n \geq N \implies x_n \in f^{-1}(U)
\Longrightarrow \text{ if } n \geq N \text{ then } d'(f(x_n), f(x)) < \epsilon
\Longrightarrow f(x_n) \to f(x).
```

(
$$\iff$$
) Proof.

Assume: $f(z_n) \to f(z)$ if $z_n \to z$

Let: $A \subseteq X$ be open

Show: $f(\overline{A}) \subseteq \overline{f(A)}$

Let: $y \in f(\overline{A})$ s/t $y = f(x)$

Let: $(a_n) \subseteq A$ s/t $a_n \to x$
 $\implies f(a_n) \to f(x) = y$
 $\implies y \in \overline{f(A)}$

3.2 Bounded Linear Maps

Definition 3.2: Operator Norm, Bounded Linear Map. V, W, NVS, $T: V \to W$ is linear.

 $T \text{ is bd} \iff$

$$||T||_{\text{op}} := \sup\{||T(x)|| : ||x|| = 1\} < \infty$$

Proposition 3.3. $B(V,W) := \{T : V \to W \mid T \text{ linear and bd}\}$ is a vector space. $Prove \parallel \cdot \parallel_{op}$ is a norm on B(V,W).

Proof. Show

1.
$$||sT||_{\text{op}} = |s|||T||_{\text{op}}$$

2.
$$||T||_{\text{op}} = 0 \iff T = 0$$

3.
$$||T + S||_{\text{op}} \le ||T||_{\text{op}} + ||S||_{\text{op}}$$

1:
$$||sT||_{\text{op}} = \sup\{||sT(x)|| : ||x|| = 1\}$$

$$= \sup\{|s||T(x)|| : ||x|| = 1\}$$

$$= |s| ||T||_{\text{op}}$$

2 (
$$\Longrightarrow$$
): $||T||_{\text{op}} = \sup\{||T(x)|| : ||x|| = 1\} = 0$

$$\implies ||T(x)|| = 0, \text{ if } ||x|| = 1$$

$$\implies T(x) = 0$$
, if $||x|| = 1$

$$\implies T = 0_{\text{op}}$$

2 (
$$\iff$$
): $T = 0_{op}$

$$\implies T(x) = \vec{0} \implies ||T(x)|| = 0$$

$$\implies \sup\{\|T(x)\| : \|x\| = 1\} = 0$$

3:
$$||T + S||_{\text{op}} = \sup\{||(T + S)(x)|| : ||x|| = 1\}$$

$$= \sup\{||T(x) + S(x)|| : ||x|| = 1\}$$

$$\leq \sup\{||T(x)|| + ||S(x)|| : ||x|| = 1\}$$

$$= ||T||_{\text{op}} + ||S||_{\text{op}}$$

Note 3.1. $T \in B(V, W)$.

if
$$\vec{0} \neq x \in V$$
 then $\left\| T\left(\frac{x}{\|x\|}\right) \right\| \leq \|T\|_{\text{op}}$

$$\implies \frac{1}{\|x\|} \|T(x)\| \le \|T\|_{\text{op}}^{\times 1}$$

$$\implies ||T(x)|| \le ||x|| \cdot ||T||_{\text{op}}$$

Proposition 3.4: Continuous Linear iff Bounded Linear. V, W NVS, T:

 $V \to W$ linear.

then T is cts \iff T is bd

 $(\neg \longleftarrow \neg)$ Proof. Assume T isn't bd. So $\forall ||x_n|| = 1, ||T(x_n)|| \ge n$.

Consider: $\left\|\frac{1}{n}x_n\right\| = \frac{1}{n} \to 0$

$$||T(\frac{1}{n}x_n)|| = \frac{1}{n}||T(x_n)|| \ge \frac{1}{n}n \ge 1$$

So ${\cal T}$ doesn't preserve convergence, so ${\cal T}$ isn't cts.

 (\longleftarrow) Proof. Assume T is bd. Show T is cts.

$$||T||_{\text{op}} = \sup\{||T(x)|| : ||x|| = 1\} < \infty$$

Let
$$(x_n) \subseteq V$$
 s/t $x_n \to x \in V$.
 $||T(x_n) - T(x)|| = ||T(x_n - x)|| \le ||x_n - x|| ||T||_{\text{op}} < \frac{\epsilon}{||T||_{\text{op}}} ||T||_{\text{op}} = \epsilon$

3.3 More Continuity

Definition 3.3: Uniform Continuity. $(X, d), (Y, d'), f : X \to Y$. f is uniform continuous \underline{iff} $\forall \epsilon > 0 \ \exists \delta > 0 \ s/t \ d'(f(a), f(b)) < \epsilon \ \text{if} \ a, b \in X \ \text{w}/\ d(a, b) < \delta$

Note 3.2. f is unif cts iff

 $\forall \epsilon > 0 \ \exists \delta > 0 \ which \ works \ to \ establish \ continuity \ at \ every \ b \in X.$

Definition 3.4: Lipschitz. (X,d) (Y,d'), $f: X \to Y$. We say f is **Lipschitz** iff $\exists M > 0, \ d'(f(x), f(x)) \le Md(x, y), \ \forall x, y \in X$.

Kind of like uniform uniform cts.

Proposition 3.5: Lipschitz implies Uniform Continuous. $f: X \to Y$ Lipschitz then f is unif cts.

Proof. Let : $\epsilon > 0$, M > 0 be the Lipschitz constant for f.

Let: $\delta = \frac{\epsilon}{M}$

Assume : $d(a, b) < \delta$, $a, b \in X$.

 $\implies d'(f(a), f(b)) \le Md(a, b) < \epsilon$

Example 3.1. $f:[0,1] \to \mathbb{R}, \ f(x) = \sqrt{x}.$

Claim: f is unif cts

Note 3.3.

$$|\sqrt{x} - \sqrt{y}|^2 = |\sqrt{x} - \sqrt{y}||\sqrt{x} - \sqrt{y}|$$

$$\leq |\sqrt{x} + \sqrt{y}||\sqrt{x} - \sqrt{y}|$$

$$= |x - y|$$

Let: $\epsilon > 0$, $\delta = \epsilon^2$.

if $a,b \in [0,1]$ w/ $|a-b| < \delta = \epsilon^2$ then $|\sqrt{a} - \sqrt{b}| < \epsilon$

Example 3.2. Claim: f is not Lipschitz

Suppose : f is Lipschitz

WLOG, assume: M > 1

$$\tfrac{1}{M^4} \in [0,1]$$

$$\left| \frac{1}{\sqrt{M^4}} - 0 \right| \le M \left| \frac{1}{M^4} - 0 \right|$$

$$\begin{vmatrix} M^4 & \subset [0, 1] \\ \left| \frac{1}{\sqrt{M^4}} - 0 \right| \le M \left| \frac{1}{M^4} - 0 \right| \\ \implies \frac{1}{M^2} \le \frac{1}{M^3} \implies M^3 \le M^2$$

That's a contradiction.