T2C.-DIAGRAMA DE FASES DE 💐 SUSTANCIAS PURAS

Con audio en el sig. enlace: https://www.youtube.com/watch?v=ETh9txc_GQs&t=559s

Cambios de estado de agregación o cambio de fase

Diagrama de fases de una sustancia pura en función de las variables presión y temperatura

DIAGRAMA DE FASES GENÉRICO

En los puntos sobte las curras coexisten los estados

PARA UNA SUSTANCIA PURA

Temperatura

EQUILIBRIO LÍQUIDO - VAPOR

Presión

Temperatura de ebullición normal es la temperatura a la cual la presión de vapor del líquido es igual a 1 atm

T° normal ebullición

EQUILIBRIO LÍQUIDO - VAPOR

A una misma P externa a > Fuerza Intermolecular > Punto de ebullición

a) Éter dietílico, b) benceno, c) agua, d) tolueno, e) anilina 500 -400-Temperatura/°C

Variación de los puntos de ebullición de algunos alcanos

Comparison	of butane isomer	boiling points
Common name	<i>n</i> -butane	isobutane
IUPAC name	butane	2-methylpropane
Molecular form	-3-3-3-	330
Boiling Point (°C)	-0.5	-11.7

Misma masa molecular

Comparison of pentane isomer boiling points				
Common name	<i>n</i> -pentane	isopentane	neopentane	
IUPAC name	pentane	2-methylbutane	2,2-dimethylpropane	
Molecular form	2°2°	¥.	333	
Boiling Point (°C)	36.0	27.7	9.5	

t buetza

A una misma masa molecular, cuanto más ramificado está el alcano menor es su temperatura de ebullición.

PUNTO CRÍTICO

Temperatura a partit de la Cual el gas Trítica Temperatura

PUNTO CRÍTICO

Sustancia	T crítica (K)	T crítica (°C)	P crítica (atm)
Argón	151.2	-121.95	48
Agua	647.4	374.25	218.3
Butano	425	151.85	37.34
Dióxido de Carbono	304.2	31.05	72.9
Hidrógeno	33.3	-239.85	12.8
Metano	190.7	-82.45	45.8
Nitrógeno	126.2	-146.95	33.5
Oxígeno	154.4	-118.75	49.7
Propano	369.7	96.55	41.84

FLUÍDO SUPERCRÍTICO

FALOPA

EQUILIBRIO SÓLIDO - VAPOR

Presión de vapor del sólido es la presión del vapor que está en equilibrio con el sólido a una dada temperatura.

La T_{fusión} en gral varía poco con la presión aplicada

¿Porqué la densidad del hielo es menor a la del agua líquida?

Hexagonal compacta

Sólido molecular

En el hielo, todas las moléculas de agua forman un número máximo de enlaces, los cuales son cuatro por molécula, y crean de esta manera una estructura hexagonal más espaciada y por lo tanto menos densa. En el agua líquida sólo algunas moléculas forman enlaces de hidrógeno por lo que las moléculas de agua se encuentran a menor distancia unas de otras y por lo tanto más densa

PUNTO TRIPLE

En el punto triple (O) coexisten las fases sólida, líquida y vapor.

Triple Point Data					
Substance	Pressure [kPa]	Temperature [K]			
Hydrogen	7.04	13.8			
Deuterium	17.1	18.6			
Neon	43.2	24.6			
Oxygen	0.152	54.4			
Nitrogen	12.5	63.2			
Ammonia	6.07	195.4			
Carbon dioxide	517	216.6			
Water	0.611	273.16			

DIAGRAMA DE FASES

OD tiene
una
pendiente
positiva;
entonces
la fase
s'lida
tiene
mayor
densidad
que la
fase
líquida.

Temperatura (no a escala)

O: punto triple

T : temperatura en el punto triple

T_f: punto de fusión normal

T_c: temperatura crítica

C: punto crítico

P : presión en el punto triple

T_{eb}: punto de ebullición normal

P_c: presión crítica

DIAGRAMA DE FASES DEL AGUA

Curva de fusión: pendiente negativa

 $\rho_{solido} < \rho_{liquido}$

 \overline{v} sólido > \overline{v} líquido

Diagrama de fases del agua

CURVA DE CALENTAMIENTO

CALENTAMIENTO DE UNA SUSTANCIA A **PRESIÓN CONSTANTE**

Cantidad de calor añadido

A - B = 1 - 2calentamiento del sólido hasta su T fusión

B - C = 2fusión del sólido a la T fusión correspondiente a P

C - D = 2 - 3calentamiento del líquido hasta su Tebullición

D - E = 3ebullición del líquido a la Tebullición correspondiente a P

E - F = 3 - 4calentamiento del vapor hasta T_F

Temperatura (°C)

CURVA DE ENFRIAMIENTO

ENFRIAMIENTO DE UNA SUSTANCIA A PRESIÓN CONSTANTE

A - B = 4 - 3

B - C =

COMPLETAR CADA ETAPA DESCRIBIENDO

C - D = ...

EL PROCESO EN CADA UNA

D - E = ...

E-F=..

Evolución desde el estado líquido a temperatura constante, disminuyendo la presión

Utilidad e importancia de los diagramas de fase

- Determinar el estado de agregación de una sustancia a una P y T dadas
- Predecir los cambios que tienen lugar cuando se varían dichas condiciones

Polimorfismo - Alotropía

Agua

Hielo II

Hielo IV

Hielo VI

Azufre

Carbono

DIAGRAMA PV y PT

DIAGRAMA PV

DIAGRAMA P vs V – ISOTERMAS DE ANDREWS

Transición líquido-gas

Coexistencia líquido-vapor

DIAGRAMA P V T

https://www.youtube.com/watch?v=8ERhUOTCevM