Result:

- Here we are showing the comparison of different supervised and unsupervised learning techniques on performance metric parameters and their respected graphs.
- The values of parameters associated with techniques or algorithms we gained by developing models of respected algorithms in python.

1. Table of Accuracy_Score:

	Supervised		UnSupervised	
	K-NN	Random Forest	Isolation Forest	Local Outlier Forest
Accuracy	0.999122345	0.999361634	0.997436888	0.996594221

2. Table of Specification_Score:

	Supervised		UnSupervised	
	K-NN	Random Forest	Isolation Forest	Local Outlier Forest
Specification	0.285714286	0.714285714	0.265306122	0.020408163

3. Table of Sensitivity_Score:

	Supervised		UnSupervised	
	K-NN	Random Forest	Isolation Forest	Local Outlier Forest
Sensitivity	0.999122037	0.999786894	0.998698649	0.998276589

Conclusion:

- Among all the above mentioned techniques or algorithms, according to performance parameters we found that the "Random Forest" technique of supervised learning is best for the unbalanced data and the "Local Outlier Factor" technique of unsupervised is not a best choice for unbalanced data.
- "Local Outlier Factor" can perform better for balanced data.