Persistent Homology: Intro

Tao Hou, University of Oregon

Outline for studying persistent homology

- 1. Intro to persistent homology
 - Build intuitions of persistent homology: what it does, what it produces
- 2. Formalizing persistent homology
 - Introduce its input (filtration) and study an algorithm for computation
- 3. Different ways for building filtrations
 - Vietoris-Rips filtration, sub-levelset filtration
 - Cubical complexes (for images)
- 4. Interpretation and stability of persistence diagram

Outline for studying persistent homology

- 1. Intro to persistent homology
 - Build intuitions of persistent homology: what it does, what it produces
- 2. Formalizing persistent homology
 - Introduce its input (filtration) and study an algorithm for computation
- 3. Different ways for building filtrations
 - Vietoris-Rips filtration, sub-levelset filtration
 - Cubical complexes (for images)
- 4. Interpretation and stability of persistence diagram

 We know now that, given a topological space (e.g., a simplicial complex), we can use homology (e.g., Betti number or homology basis) to infer the shape of the data in different dimensions

- We know now that, given a topological space (e.g., a simplicial complex), we can use homology (e.g., Betti number or homology basis) to infer the shape of the data in different dimensions
- Ex: There is a 0-dimensional hole of the following complex because of the gap between the two connected components

- We know now that, given a topological space (e.g., a simplicial complex), we can use homology (e.g., Betti number or homology basis) to infer the shape of the data in different dimensions
- Ex: The homology basis for the 1-cycles in the below simplicial complex contains the single red 1-cycle.
 - So that we can use the red cycle to represent the 1-dimensional "homological features" of the space

Image source: Yan et al. Persistence Landscape based Topological Data Analysis for Personalized Arrhythmia Classification

- We know now that, given a topological space (e.g., a simplicial complex), we can use homology (e.g., *Betti number* or *homology basis*) to infer the shape of the data in different dimensions
- Ex: The 1-dimensional homological features of a torus can be characterized by two cycles:
 - a (longitude) and b (meridian)

- Homology theory was invented by Poincaré about 100 years ago
- So far, the inference of the shape of topological spaces using homology theory seems perfect
- But is there any problem?

- Homology theory was invented by Poincaré about 100 years ago
- So far, the inference of the shape of topological spaces using homology theory seems perfect
- But is there any problem?
- We shall look at at least two problems with it

• Homology inference relies on given a simplicial complex as input

- Homology inference relies on given a simplicial complex as input
- Simplicial complex is "highly structured" data, while in practice we don't have the luxury of always having data rich structure

- Homology inference relies on given a simplicial complex as input
- Simplicial complex is "highly structured" data, while in practice we don't have the luxury of always having data rich structure
- Typically, data come in as "unstructured" (e.g., point clouds)

- Homology inference relies on given a simplicial complex as input
- Simplicial complex is "highly structured" data, while in practice we don't have the luxury of always having data rich structure
- Typically, data come in as "unstructured" (e.g., point clouds)
- For the right point cloud (which is unstructured), everyone could see that it consists of two rings (1-cycles)
- But we have to construct a simplicial complex from the point cloud first to infer this information

- There are mature methods on reconstruction from point clouds.
- In 2D:

- There are mature methods on reconstruction from point clouds.
- In 2D:

- There are mature methods on reconstruction from point clouds.
- In 3D:

- There are mature methods on reconstruction from point clouds.
- In 3D:

- There are mature methods on reconstruction from point clouds.
- But there still are problems:
 - 1. The reconstructions process can be costly

- There are mature methods on reconstruction from point clouds.
- But there still are problems:
 - 1. The reconstructions process can be costly
 - 2. There are probably more information in the original unstructured data than is reconstructed

- There are mature methods on reconstruction from point clouds.
- But there still are problems:
 - 1. The reconstructions process can be costly
 - 2. There are probably more information in the original unstructured data than is reconstructed
 - 3. Reconstruction from point clouds which are not nicely shaped is very hard if at all possible

• In the following space, there are seven 1-dimensional holes (i.e., homology basis contains seven non-trivial 1-cycles)

- In the following space, there are seven 1-dimensional holes (i.e., homology basis contains seven non-trivial 1-cycles)
- We all could see that the three circled ones are more "significant features", while the remaining ones could be well due to some "artifacts" or "noise"

- In the following space, there are seven 1-dimensional holes (i.e., homology basis contains seven non-trivial 1-cycles)
- We all could see that the three circled ones are more "significant features", while the remaining ones could be well due to some "artifacts" or "noise"
- i.e., with some "perturbation" on the data, the four small holes could simply disappear

- In the following space, there are seven 1-dimensional holes (i.e., homology basis contains seven non-trivial 1-cycles)
- We all could see that the three circled ones are more "significant features", while the remaining ones could be well due to some "artifacts" or "noise"
- i.e., with some "perturbation" on the data, the four small holes could simply disappear
- But using homology basis we could not differentiate the "more significant holes" from the "less significant ones"

- Similarly, in the following space, there are three 1-dimensional holes, but there is clearly a "more significant" one and two "less significant" ones which also be some artifacts
- Again, using just homology basis we could not differentiate them

• Solving problem 1:

- For the point cloud, persistent homology produces a "topological signature" called persistence diagram
- In the diagram, the **blue dots** represents the two rings, thus correctly inferring the topological structure of the point cloud

• Solving problem 1:

- For the point cloud, persistent homology produces a "topological signature" called persistence diagram
- In the diagram, the blue dots represents the two rings, thus correctly inferring the topological structure of the point cloud

• Solving problem 2:

• For the above shape, its **persistence diagram** provides a measure of the "size" (i.e., "significance") of the 1-dimensional holes so that we can differentiate the three more significant ones from the remaining

• The input to persistent homology is a growing topological space

- The input to persistent homology is a growing topological space
- Given this, it produces a persistence diagram, which is a robust (i.e., stable) "topological signature" that captures the multi-scale topological features (aka. holes) of the data in arbitrary dimensions

Idea:

• The growing space can be more formally defined as follows:

- The growing space can be more formally defined as follows:
 - We let a value α ranges, say, from 0 to ∞

α:______

- The growing space can be more formally defined as follows:
 - We let a value α ranges, say, from 0 to ∞

- The growing space can be more formally defined as follows:
 - We let a value α ranges, say, from 0 to ∞
 - Let each value α corresponds to a topological space so that
 - The topological space grows as α increases from 0 to ∞

- The growing space can be more formally defined as follows:
 - We let a value α ranges, say, from 0 to ∞
 - Let each value α corresponds to a topological space so that
 - The topological space grows as α increases from 0 to ∞
- Then, as α increase, we track the changes of the homology features of the corresponding spaces

Examples:

- https://gjkoplik.github.io/pers-hom-examples/0d_pers_2d_data_widget.html
- https://gjkoplik.github.io/pers-hom-examples/1d_pers_2d_data_widget.html

• **Definition**: A *persistence diagram (PD)* is a set of points on the 2D plane above the diagonal such that:

- **Definition**: A *persistence diagram (PD)* is a set of points on the 2D plane above the diagonal such that:
 - Each point in the PD represents the birth and death a homological feature (aka. cycle / hole) of the data in a certain dimension.

- **Definition**: A *persistence diagram (PD)* is a set of points on the 2D plane above the diagonal such that:
 - Each point in the PD represents the birth and death a homological feature (aka. cycle / hole) of the data in a certain dimension.
 - A point (*b*, *d*):
 - b indicates birth value (the α value in which the feature is born)
 - d indicates death value (the α value in which the feature is dies)

- **Definition**: A *persistence diagram (PD)* is a set of points on the 2D plane above the diagonal such that:
 - Each point in the PD represents the birth and death a homological feature (aka. cycle / hole) of the data in a certain dimension.
 - A point (*b*, *d*):
 - b indicates birth value (the α value in which the feature is born)
 - d indicates death value (the α value in which the feature is dies)

- **Definition**: A *persistence diagram (PD)* is a set of points on the 2D plane above the diagonal such that:
 - Each point in the PD represents the birth and death a homological feature (aka. cycle / hole) of the data in a certain dimension.
 - A point (*b*, *d*):
 - b indicates birth value (the α value in which the feature is born)
 - d indicates death value (the α value in which the feature is dies)

- Notice that homology features / holes are in different dimensions
- The PD where points corresponding to d-dimensional holes is also called the d-dimensional / d-th PD which is typically denoted as PD_d
- And of course, we could also have the PD in all dimensions (this is the PD by default)

Persistent homology: History

- Persistent homology is proposed roughly around 2000 (or earlier) by several works
- The following is by no means a comprehensive list of works:
 - Edelsbrunner, Letscher and Zomorodian, 2002. Topological persistence and simplification.
 - Zomorodian, A. and Carlsson, G., 2004, June. Computing persistent homology.
 - Carlsson, G., 2009. Topology and data.
 - Ghrist, R., 2008. Barcodes: the persistent topology of data.
 - Singh, G., Mémoli, F. and Carlsson, G.E., 2007. Topological methods for the analysis of high dimensional data sets and 3d object recognition.

• We try to infer the homology for the following point cloud data

- We try to infer the homology for the following point cloud data
- For this, we need to build a meaningful topological space

- We try to infer the homology for the following point cloud data
- For this, we need to build a meaningful topological space
- Our strategy is to connect the dots by increasing their size, as before

- We try to infer the homology for the following point cloud data
- For this, we need to build a meaningful topological space
- Our strategy is to connect the dots by increasing their size, as before
- Notice that there are different choices of the size

• Technically, a point does not have "size", so what we are actually doing here is that we put a 2-dimensional ball around each point, where all such balls have the **same** radius.

- Technically, a point does not have "size", so what we are actually doing here is that we put a 2-dimensional ball around each point, where all such balls have the same radius.
- For each different radius, the homology can be **vastly different**, with different cycles in the homology basis corresponding to the different radii
 - We focus on the 1-cycles (1-dimensional holes) in the example
 - For each radius, the colored cycles form the homology basis

• Question: What is a correct radius to infer the shape of the point cloud?

- Question: What is a correct radius to infer the shape of the point cloud?
- Answer: It's really hard to know, and there probably is no such "correct" radius

• Solution: Consider all radius, and track the changes of the 1-cycles in the homology basis as we increase the radius

- **Solution**: Consider all radius, and track the changes of the 1-cycles in the homology basis as we increase the radius
- As the radius increases, different cycles in the basis could appear (getting born) or becomes trivial (dies).

- **Solution**: Consider all radius, and track the changes of the 1-cycles in the homology basis as we increase the radius
- As the radius increases, different cycles in the basis could appear (getting born) or becomes trivial (dies).
- We pair the births and deaths, which are the points in the PD

• α_0 : nothing happens.

- α_0 : nothing happens.
- α_1 : purple cycle born

- α_0 : nothing happens.
- α_1 : purple cycle born
- α_2 : purple cycle dies

- α_0 : nothing happens.
- α_1 : purple cycle born
- α_2 : purple cycle dies

$$\Rightarrow (\alpha_1, \alpha_2)$$

- α_0 : nothing happens. α_3 : red cycle born
- α_1 : purple cycle born
- α_2 : purple cycle dies

$$\Rightarrow (\alpha_1, \alpha_2)$$

- α_0 : nothing happens.
- α_3 : red cycle born
- α_1 : purple cycle born
- α_4 : blue cycle born
- α_2 : purple cycle dies

$$\Rightarrow (\alpha_1, \alpha_2)$$

- α_0 : nothing happens.
- α_1 : purple cycle born
- α_2 : purple cycle dies
 - $\Rightarrow (\alpha_1, \alpha_2)$

- α_3 : red cycle born
- α_4 : blue cycle born
- α_5 : green cycle born

- α_0 : nothing happens.
- α_3 : red cycle born
- α_6 : red cycle dies

- α_1 : purple cycle born
- α_4 : blue cycle born
- α_2 : purple cycle dies
- α_5 : green cycle born

 $\Rightarrow (\alpha_1, \alpha_2)$

• α_0 : nothing happens.

• α_3 : red cycle born

• α_6 : red cycle dies $\Rightarrow (\alpha_3, \alpha_6)$

• α_1 : purple cycle born

• α_4 : blue cycle born

• α_2 : purple cycle dies

• α_5 : green cycle born

 $\Rightarrow (\alpha_1, \alpha_2)$

- α_0 : nothing happens.
- α_1 : purple cycle born
- α_2 : purple cycle dies

 $\Rightarrow (\alpha_1, \alpha_2)$

- α_3 : red cycle born
- α_4 : blue cycle born
- α_5 : green cycle born
- α_6 : red cycle dies $\Rightarrow (\alpha_3, \alpha_6)$
- α_7 : blue cycle dies

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

• α_0 : nothing happens.

• α_3 : red cycle born

• α_6 : red cycle dies $\Rightarrow (\alpha_3, \alpha_6)$

• α_1 : purple cycle born

• α_4 : blue cycle born

• α_7 : blue cycle dies $\Rightarrow (\alpha_4, \alpha_7)$

• α_2 : purple cycle dies

 $\Rightarrow (\alpha_1, \alpha_2)$

• α_5 : green cycle born

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

- α_0 : nothing happens.
- α_1 : purple cycle born
- α_2 : purple cycle dies
 - $\Rightarrow (\alpha_1, \alpha_2)$

- α_3 : red cycle born
- α_4 : blue cycle born
- α_5 : green cycle born
- α_6 : red cycle dies $\Rightarrow (\alpha_3, \alpha_6)$
- α_7 : blue cycle dies $\Rightarrow (\alpha_4, \alpha_7)$
- α_8 : green cycle dies

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

- α_0 : nothing happens.
- α_1 : purple cycle born
- α_2 : purple cycle dies $\Rightarrow (\alpha_1, \alpha_2)$

- α_3 : red cycle born
- α_4 : blue cycle born
- α_5 : green cycle born
- α_6 : red cycle dies $\Rightarrow (\alpha_3, \alpha_6)$
- α_7 : blue cycle dies $\Rightarrow (\alpha_4, \alpha_7)$
- α_8 : green cycle dies $\Rightarrow (\alpha_5, \alpha_8)$

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

• So we have a 1-dimensional PD on the left with the four points corresponding to the different cycles born and died in the growing spaces with different α value, matching the colors

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

• So we have a 1-dimensional PD on the left with the four points corresponding to the different cycles born and died in the growing spaces with different α value, matching the colors

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

• Furthermore, we have that distances of the points to diagonal indicate the difference of birth and death (how long a cycle persist), which in turn indicate the significance of the feature

Image: Bobrowski, Skraba. A universal null-distribution for topological data analysis

Persistent homology: Brief Summary

- Given a growing topological space, produce a set of points on the 2D plane (above the diagonal) called persistence diagram (PD) such that:
 - each point in the PD represents a homological feature (aka. cycle / hole) of the data in a certain dimension.

Online resources

• A webpage for visualizing 1–dim PD: https://gjkoplik.github.io/pers-hom-examples/1d_pers_2d_data_widget.html

- For another example of persistent homology, we look at the left curve y=f(x)
- Again, we consider a growing space
- Each space in the growing sequence is part of the curve below a certain horizontal line

- For another example of persistent homology, we look at the left curve y = f(x)
- Again, we consider a growing space
- Each space in the growing sequence is part of the curve below a certain horizontal line
- Left is an example for horizontal line y = 2.5

- For another example of persistent homology, we look at the left curve y = f(x)
- Again, we consider a growing space
- Each space in the growing sequence is part of the curve below a certain horizontal line
- Left is an example for horizontal line y = 2.5
- As the space grows, we track the changes of O-dimensional homology

- For another example of persistent homology, we look at the left curve y = f(x)
- Again, we consider a growing space
- Each space in the growing sequence is part of the curve below a certain horizontal line
- Left is an example for horizontal line y=2.5
- As the space grows, we track the changes of O-dimensional homology
- i.e., we track the changes of the connected components and the gaps in between

- For another example of persistent homology, we look at the left curve y = f(x)
- Again, we consider a growing space
- Each space in the growing sequence is part of the curve below a certain horizontal line
- Left is an example for horizontal line y = 2.5
- As the space grows, we track the changes of O-dimensional homology
- i.e., we track the changes of the connected components and the gaps in between
- On the left, there are three connected components with two gaps in between

• We have that there is a single connected component (red) below the line y=0.5

- We have that there is a single connected component (red) below the line y=0.5
- In general, suppose that f(x) approaches - ∞ as x approaches 0, we have that there is a single connected component below the line $y=\alpha$ for any $\alpha \leq 0.5$

- We have that there is a single connected component (red) below the line y=0.5
- In general, suppose that f(x) approaches - ∞ as x approaches 0, we have that there is a single connected component below the line $y=\alpha$ for any $\alpha \leq 0.5$
- So we can assume the red connected component is born at the value -∞

- We have that there is a single connected component (red) below the line y=0.5
- In general, suppose that f(x) approaches - ∞ as x approaches 0, we have that there is a single connected component below the line $y=\alpha$ for any $\alpha \leq 0.5$
- So we can assume the red connected component is born at the value -∞

• Red: born at -∞

- Red component continues
- A new purple component is born

Red: born at -∞

- Red component continues
- A new purple component is born

- Red: born at -∞
- Purple: born at 1.0

Red and purple components continue

- Red: born at -∞
- Purple: born at 1.0

y = 2.0 4

- Red and purple components continue
- A new blue component is born

- Red: born at -∞
- Purple: born at 1.0

y = 2.0

- Red and purple components continue
- A new blue component is born

- Red: born at -∞
- Purple: born at 1.0
- Blue: born at 2.0

$$y = 2.5$$

• Three components continue

- Red: born at -∞
- Purple: born at 1.0
- Blue: born at 2.0

 The purple and blue components merge into one (gaps between them disappear)

- Red: born at -∞
- Purple: born at 1.0
- Blue: born at 2.0

y = 3.0f(x)

 \boldsymbol{x}

- The purple and blue components merge into one (gaps between them disappear)
- The means that a 0-dimensional homology hole disappears (dies)

- Red: born at -∞
- Purple: born at 1.0
- Blue: born at 2.0

y = 3.0

 \mathcal{X}

- The purple and blue components merge into one (gaps between them disappear)
- The means that a 0-dimensional homology hole disappears (dies)
- The gap between purple and blue components appears because of birth of the blue component

- Red: born at -∞
- Purple: born at 1.0
- Blue: born at 2.0

y = 3.0

 \mathcal{X}

- The purple and blue components merge into one (gaps between them disappear)
- The means that a 0-dimensional homology hole disappears (dies)
- The gap between purple and blue components appears because of birth of the blue component
- So we consider the gap to be born when the blue component is born, i.e., at 2.0

- Red: born at -∞
- Purple: born at 1.0
- Blue: born at 2.0

- The purple and blue components merge into one (gaps between them disappear)
- The means that a 0-dimensional homology hole disappears (dies)
- The gap between purple and blue components appears because of birth of the blue component
- So we consider the gap to be born when the blue component is born, i.e., at 2.0
- So we have a 0-dimensional hole born at 2.0 and dies at 3.0

- Red: born at -∞
- Purple: born at 1.0
- Blue: born at 2.0

- The purple and blue components merge into one (gaps between them disappear)
- The means that a 0-dimensional homology hole disappears (dies)
- The gap between purple and blue components appears because of birth of the blue component
- So we consider the gap to be born when the blue component is born, i.e., at 2.0
- So we have a 0-dimensional hole born at 2.0 and dies at 3.0

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

 For the merged component, we keep the one born earlier (purple), and kill the one born later (blue)

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

y = 3.0f(x)

 \boldsymbol{x}

- For the merged component, we keep the one born earlier (purple), and kill the one born later (blue)
- So we have a larger purple component born at 1.0

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

$$y = 3.5$$

• Two components continue

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

 The red and purple components merge into one (gaps between them disappear)

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

- The red and purple components merge into one (gaps between them disappear)
- A 0-dimensional homology hole disappears (dies)

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

- The red and purple components merge into one (gaps between them disappear)
- A 0-dimensional homology hole disappears (dies)
- The gap between red and purple components appears because of birth of the purple component

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

- The red and purple components merge into one (gaps between them disappear)
- A 0-dimensional homology hole disappears (dies)
- The gap between red and purple components appears because of birth of the purple component
- So the gap is born at 1.0

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

- The red and purple components merge into one (gaps between them disappear)
- A 0-dimensional homology hole disappears (dies)
- The gap between red and purple components appears because of birth of the purple component
- So the gap is born at 1.0
- So we have a 0-dimensional hole born at 1.0 and dies at 4.0

- Red: born at -∞
- Purple: born at 1.0
- PD: (2.0, 3.0)

- The red and purple components merge into one (gaps between them disappear)
- A 0-dimensional homology hole disappears (dies)
- The gap between red and purple components appears because of birth of the purple component
- So the gap is born at 1.0
- So we have a 0-dimensional hole born at 1.0 and dies at 4.0

- Red: born at -∞
- PD: (1.0, 4.0)

 For the merged component, we keep the one born earlier (red), and kill the one born later (purple)

- Red: born at -∞
- PD: (1.0, 4.0)

- For the merged component, we keep the one born earlier (red), and kill the one born later (purple)
- So we have a single red component born at

- Red: born at -∞
- PD: (1.0, 4.0)

α arbitrary large

- As the value for the line keeps on increasing to +∞, the single red component will keep on persisting
- So we have the red component born at -∞ and dies at +∞

- Red: born at -∞
- PD: (1.0, 4.0)

α arbitrary large

- As the value for the line keeps on increasing to +∞, the single red component will keep on persisting
- So we have the red component born at -∞ and dies at +∞

- PD: $(-\infty, +\infty)$
- PD: (1.0, 4.0)

Summary:

- We have three points in the 0-dimension PD
- Each point is tracking the birth and death of a connect component (or gap in between)

- PD: $(-\infty, +\infty)$
- PD: (1.0, 4.0)

Summary:

- We have three points in the 0-dimension PD
- Each point is tracking the birth and death of a connect component (or gap in between)

- PD: $(-\infty, +\infty)$
- PD: (1.0, 4.0)

• PD: (2.0, 3.0)

Summary:

- We have three points in the 0-dimension PD
- Each point is tracking the birth and death of a connect component (or gap in between)

• PD: $(-\infty, +\infty)$

• PD: (1.0, 4.0)

• PD: (2.0, 3.0)

Online resources

• A webpage for visualizing 0–th PD: https://gjkoplik.github.io/pers-hom-examples/0d_pers_2d_data_widget.html

A similar but more involved example

A similar but more involved example

• Let's visualize another example on a 2D function

$$f: \mathbb{R}^2 \to \mathbb{R}$$

Let's visualize another example on a 2D function

$$f: \mathbb{R}^2 \to \mathbb{R}$$

 Right is an example where the value is indicated by color (red for high and blue for low)

• Let's visualize another example on a 2D function

$$f: \mathbb{R}^2 \to \mathbb{R}$$

- Right is an example where the value is indicated by color (red for high and blue for low)
- You can also treat the value on each point of \mathbb{R}^2 as a "height", and plot the function like the bottom one

• Let's visualize another example on a 2D function

$$f: \mathbb{R}^2 \to \mathbb{R}$$

- Right is an example where the value is indicated by color (red for high and blue for low)
- You can also treat the value on each point of \mathbb{R}^2 as a "height", and plot the function like the bottom one
- Similar to the previous 1D function, as we increase the value α , we consider the part (subset) of the domain \mathbb{R}^2 whose values are below α

- Similar to the previous 1D function, as we increase the value α , we consider the part (subset) of the domain \mathbb{R}^2 whose values are below α
- Now let's track the birth and death of 0D/1D holes

- Four connected components are born at different values
- (Will not display the birth of each component though)

• C1 and C4 merged into the same connected component, thus the gap between them is filled

- C1 and C4 merged into the same connected component, thus the gap between them is filled
- Since C1 is born earlier, we keep C1 and kill C4 (the rule adopted by persistent homology)

- C1 and C4 merged into the same connected component, thus the gap between them is filled
- Since C1 is born earlier, we keep C1 and kill C4 (the rule adopted by persistent homology)
- We then add a point (b,d) to the 0-d PD where b is the value in which C4 is born and d is current values where C4 dies (merges with other)

 As the value keep increasing, C1, C2 and C3 merged into the same connected component, producing two additional points in 0-d PD

- As the value keep increasing, C1, C2 and C3 merged into the same connected component, producing two additional points in 0-d PD
- Three additional components C5, C6 and C7 are born

- As the value keep increasing, C1, C2 and C3 merged into the same connected component, producing two additional points in 0-d PD
- Three additional components C5, C6 and C7 are born
- Also, a 1-dimensional hole H1 is born

• H1 dies, producing a point in the 1-d PD

- H1 dies, producing a point in the 1-d PD
- A 1-dimensional hole H2 is born

A 1-dimensional hole H3 is born

 H2 and H3 die, producing two additional points in the 1-d PD

- We can also extend the prev. idea and define persistence on 3D function: $f: \mathbb{R}^3 \to \mathbb{R}$
- Similarly, as we increase the value α , we consider the part (subset) of the domain \mathbb{R}^3 (or a cube) whose values are below α

Adler, Robert J., Omer Bobrowski, Matthew S. Borman, Eliran Subag, and Shmuel Weinberger. "Persistent homology for random fields and complexes."

(c) 2000 points on a 3D torus.

(d) Corresponding diagram.

(e) Stanford bunny with 1889 points.

(f) Corresponding diagram.

(a) 2000 points on a 3D sphere.

(b) Corresponding diagram.

Image source: Wang et al. Stability for Inference with Persistent Homology Rank Functions

points.

(c) 2000 points on a 3D torus.

(d) Corresponding diagram.

(f) Corresponding diagram.

Corresponding to meridian and longitude

Image source: Wang et al. Stability for Inference with Persistent Homology Rank Functions

(c) 2000 points on a 3D torus.

(d) Corresponding diagram.

(e) Stanford bunny with 1889 points.

(f) Corresponding diagram.

(a) 2000 points on a 3D sphere.

(b) Corresponding diagram.

Corresponds to the "crust" of the bunny which is a 2D hole

Image source: Wang et al. Stability for Inference with Persistent Homology Rank Functions

(d) Corresponding diagram.

(e) Stanford bunny with 1889 points.

(f) Corresponding diagram.

This is a solid ball which has no interesting holes

(a) 2000 points on a 3D sphere.

(b) Corresponding diagram.

- **Definition**: A **persistence diagram** (PD) is a set of points on the 2D plane above the diagonal such that for each point (b, d):
 - b indicates birth value (the α value in which the feature is born)
 - d indicates death value (the α value in which the feature is dies)

- **Definition**: A **persistence diagram** (PD) is a set of points on the 2D plane above the diagonal such that for each point (b, d):
 - b indicates birth value (the α value in which the feature is born)
 - d indicates death value (the α value in which the feature is dies)
- **Definition**: If we draw each point (b, d) as a (left-closed, right open) interval [b, d) on the real line, then what we get is a **persistence barcode** (so it's just persistence diagram interpreted differently)

- **Definition**: A **persistence diagram** (PD) is a set of points on the 2D plane above the diagonal such that for each point (b, d):
 - b indicates birth value (the α value in which the feature is born)
 - d indicates death value (the α value in which the feature is dies)
- **Definition**: If we draw each point (b, d) as a (left-closed, right open) interval [b, d) on the real line, then what we get is a **persistence barcode** (so it's just persistence diagram interpreted differently)
- Sometimes drawing points in PD as interval is a very helpful for visualizing the change of homological features in your data

- **Definition**: A **persistence diagram** (PD) is a set of points on the 2D plane above the diagonal such that for each point (b, d):
 - b indicates birth value (the α value in which the feature is born)
 - d indicates death value (the α value in which the feature is dies)
- **Definition**: If we draw each point (b,d) as a (left-closed, right open) interval [b,d) on the real line, then what we get is a **persistence barcode** (so it's just persistence diagram interpreted differently)
- Sometimes drawing points in PD as interval is a very helpful for visualizing the change of homological features in your data
- Notice that we sometimes use the terms "persistence diagram" and "persistence barcode" interchangeable, i.e., we may call a point in a PD also an interval.

Example

• Corresponding barcode:

Example

• Corresponding barcode:

Another example

