

태풍에 의한 피해

	7	재 산	
순위	발생일	태풍명	자산피해액(백만원)
1	'02.08.30~09.01	RUSA	5,832,922
2	'03.09.12.~09.13	MAEMI	4,680,546
3	'06.07.09~07.29	EWINIAR	1,834,428
4	'99.07.23~08.04	OLGA	1,203,187
5	'87.07.15~07.16	THELMA	670,557
6	'95.08.19~08.30	JANIS	616,378
7	'91.08.22~08.26	GLADYS	355,163
8	'98.09.29~10.01	YANNI	308,647
9	'00.08.23~09.01	PRAPIROON	283,304
10	'59.09.15~09.17	SARAH	276,027

태풍의 세기

1. 풍 속

2.강우량

풍속에 따른 세기

최대 풍속	세계기상기구 기준
17m/s미만	열대 저압부(TD: Tropical Depression)
17m/s~24m/s	열대폭풍(TS: Tropical Storm)
25m/s~32m/s	강한 열대 폭풍(STS: Sever Tropical Storm)
33m/s이상	태풍(TY : Typhoon)

중심기압과 최대풍속

the environment.

$$W_{\rm BL} = \varepsilon \Delta Q \tag{1}$$

$$\frac{\mathrm{d}\varepsilon}{\varepsilon} = \frac{1}{T_B - \bar{T}_{\text{out}}} \left[\frac{\bar{T}_{\text{out}}}{T_B} \, \mathrm{d}T_B - \mathrm{d}\bar{T}_{\text{out}} \right] \tag{5}$$

12일06Z 남북바람 연직분포

11일00Z 동서바람 연직분포

강한 태풍 부사의 원인

수증기

강수량

지 점	극값 순위 경신	종 전	비고
강릉	1위 <mark>870.5mm</mark> (8월 31일)	1위 305.5mm (1921. 9. 24)	전국 1위 경신
대관령	1위 712.5mm (8월 31일)	1위 349.0mm (1993. 8. 10)	전국 2위 경신
동 해	1위 319.5mm (8월 31일)	1위 214.7mm (1993. 8. 10)	
합 천	1위 288.0mm (8월 31일)	1위 223.5mm (1998. 9. 30)	
추풍령	1위 280.0mm (8월 31일)	1위 215.4mm (1996. 6. 17)	
순 천	1위 254.5mm (8월 31일)	1위 250.6mm (1989. 8. 21)	
장 수	1위 182.5mm (8월 31일)	1위 172.0mm (1993. 9. 17)	
고흥	2위 404.0mm (8월 31일)	2위 270.0mm (1998. 9. 30)	
태 백	2위 273.0mm (8월 31일)	2위 203.5mm (2002. 8. 6)	

강수량이 많은 이유

1.수증기 유입
2.찬공기 유입
3.지형적 요인

수증기의 유입(Moisture Flux)

수증기

포화 수증기압 곡선

http://blog.naver.com/kozillalyj

찬 공기의 유입

따뜻한 공기의 급격한 상승으로 많은 강수를 유발

지형적 요인

지형적 요인

지 점	극값 순위 경신	종 전	비고
강 릉	1위 <mark>870.5mm</mark> (8월 31일)	1위 305.5mm (1921. 9. 24)	전국 1위 경신
대관령	1위 712.5mm (8월 31일)	1위 349.0mm (1993. 8. 10)	전국 2위 경신
동 해	1위 319.5mm (8월 31일)	1위 214.7mm (1993. 8. 10)	
합 천	1위 288.0mm (8월 31일)	1위 223.5mm (1998. 9. 30)	
추풍령	1위 280.0mm (8월 31일)	1위 215.4mm (1996. 6. 17)	
순 천	1위 254.5mm (8월 31일)	1위 250.6mm (1989. 8. 21)	
장 수	1위 182.5mm (8월 31일)	1위 172.0mm (1993. 9. 17)	
고흥	2위 404.0mm (8월 31일)	2위 270.0mm (1998. 9. 30)	
태 백	2위 273.0mm (8월 31일)	2위 203.5mm (2002. 8. 6)	

지 형 적 요 인

결론

태풍빈도의 약화 But 강해지는 태풍

• 지구온난화로 금세기 말 바닷물 온도가 2~4 도 올라 한반도에 영향을 미치는 태풍이 숫자 는 21% 감소하지만 세기는 18% 강해지는 것으로 나타났다.

-국제태평양연구센터(IPRC) 권민호 박사

1. 지구온난화는 대류순환을 억제한다.

대양간의 온도 차 감소

2. 억제된 순환으로 수증기가 쌓인다

대기 안정성 증가

$$\Gamma_{s} = -\frac{dT}{dz} = \frac{g}{c_{p}} \frac{1 + l_{v}w_{sw}/RT}{1 + l_{v}^{2}w_{sw}/c_{p}R_{v}T^{2}}$$

대기의 안정도가 증가한다!!

많은 양의 수증기는 강한 특 등을 동반!

"태풍의 수가 줄어들 전망이지만 일단 발생하면 풍속이 초속 64m인 슈퍼태풍이 될 가능성이 높다" -국제 태평양 연구 센터(IPRC)

참고문헌

<'제 14호 태풍매미(MAEMI) 분석',2003. 12, 부산지방기상청>

<태풍 루사와 관련된 강릉지역 호우 특성 분석,2002, 김진원 이제규>