7 OMM, OMΠ, OMC

Мальчики получают первый вариант, а девочки – второй.

Не забудьте, что правдоподобие удобнее логарифмировать перед максимизацией.

- 1. Построить график функции логарифмического правдоподобия (в пункте б) обычного) для следующих моделей при n = 1, 5, 20, 100, 1000:
 - (a) 1 вариант $X_1, ..., X_n \sim \mathcal{N}(0, \theta)$, 2 вариант $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$.
 - (b) $X_1, ..., X_n \sim R[0, \theta]$.
 - (c) * X_1, \ldots, X_n выборка из распределения, являющегося смесью $\mathcal{N}(\theta_1, \theta_2)$ и $\mathcal{N}(0, 1)$ с весами 1/2, 1/2; здесь требуется построить графики $L(\theta_2)$ при фиксированном значении первого параметра: а) θ_1 настоящее значение (с которым генерировалась выборка), б) $\theta_1 = X_1$, в) любое число, не равное настоящему значению и не совпадающее ни с одним из элементов выборки.
- 2. X_i имеют распределение Коши, где в варианте 1 неизвестный параметр сдвиг θ , а в варианте 2 масштаб. Построить ОМП по выборке размера n=5,10,20,50,100. Для каждого n генерировать k=500 выборок X_1,\ldots,X_n , для каждой найти значение ОМП и $\widehat{\theta}$, найти выборочное среднее и выборочную дисперсию ОМП и $\widehat{\theta}$ и сравнить их. Здесь $\widehat{\theta}$ для первого варианта это выборочная медиана, а для второго половина интерквартильного размаха, то есть полуразность верхнего и нижнего выборочного квартиля.
- 3. 1 вариант $X_1, ..., X_n \sim \mathcal{N}(\theta, 1)$, 2 вариант $X_1, ..., X_n \sim \mathcal{N}(0, \theta)$, $\widehat{\theta}_1$ ОММ, $\widehat{\theta}_2$ ОМС, $\widehat{\theta}_3$ ОМП.
 - (a) Построить по выборке $\hat{\theta}_i$, i=1,2,3 (найти численно или аналитически, как удобнее).
 - (b) Сравнить, какая из оценок чаще оказывается ближе к θ при разных n, смоделировав для этого по 1000 реализаций (для каждого n).
 - (c) Построить гистограммы для $\sqrt{n}(\widehat{\theta}_i \theta)$ на одном графике, сравнить разбросы.
 - (d) * Посчитать асимтотическую дисперсию этих оценок, построить график (по θ , сравнить с выборочной дисперсией (нормированной).
- 4. * 1-й вариант: $X_1, ..., X_n \sim Beta(a, b)$, 2-й вариант: $X_1, ..., X_n \sim Gamma(a, b)$, $\theta = (a, b), \widehat{\theta}_1 = (\widehat{a}_1, \widehat{b}_1) \text{OM}\Pi, \widehat{\theta}_2 = (\widehat{a}_2, \widehat{b}_2) \text{OMC}.$
 - (a) Построить по выборке оценки $\widehat{\theta}_1$ и $\widehat{\theta}_2$ (найти численно).
 - (b) Сравнить, какая из оценок чаще оказывается ближе к θ при разных n (отдельно по каждой координате и в смысле расстояния на плоскости), смоделировав для этого по 1000 реализаций (для каждого n).
 - (c) Построить гистограммы (одномерные) для $\sqrt{n}(\hat{\theta}_i \theta)$ на одном графике, сравнить разбросы.