CALCULUS DEGREE IN SOFTWARE ENGINEERING WORKSHEET 7. DIFFERENTIATION

Partial Derivatives. Directional derivatives. 1

1. Find the gradient at each point for the following scalar fields:

a)
$$x^2 + y^2 \sin(xy)$$
 b) $e^x \cos y$ c) $x^2 y^3 z^4$

b)
$$e^x \cos y$$
 c) x^2

d)
$$\frac{xy}{x^2 + y^2 + 5}$$
 e) $x^3 e^{x^2 + y^2}$ f) $\ln(x^2 + 2y^2 - 3z^2)$

e)
$$x^3 e^{x^2 + y^2}$$

f)
$$\ln(x^2 + 2y^2 - 3z^2)$$

$$g) x^{(y^z)}$$

h)
$$\frac{x^2y^3}{x^2+y^4}$$

g)
$$x^{(y^z)}$$
 h) $\frac{x^2y^3}{x^2+y^4}$ i) $e^{x+y^2}\cos(x+y)$

$$j) x^{(y^{z^2})}$$

$$k) \frac{x^2y^5}{x+y^5}$$

j)
$$x^{(y^{z^2})}$$
 k) $\frac{x^2y^5}{x+y}$ l) $sin(x^3y^2z^4)$

2. Calculate the directional derivatives of the following scalar fields at the given points and in the indicated directions:

(a)
$$f(x,y,z) = x^2 + 2y^2 + 3z^2$$
 at $a = (1,0,0)$ in the direction of $\vec{v} = \vec{i} - \vec{j} + 2\vec{k}$

(b)
$$g(x,y,z) = \left(\frac{x}{y}\right)^z$$
 at $a = (1,1,1)$ in the direction of $\vec{v} = 2\vec{i} + \vec{j} - \vec{k}$

(c)
$$h(x,y) = \sin^{-1}(\frac{y}{x})$$
 at $a = (2,1)$ in the direction of $\vec{v} = \vec{i} + 3\vec{j}$

3. Captain Alexandra has problems near the sunlit side of Mercury. The temperature of the spacecraft, when she is at the position (x, y, z) is T(x, y, z) = $e^{-x^2-2y^2-3z^2}$

Currently, she is situated at (1, 1, 1). In which direction must she travel to produce the fastest decrease of temperature?

4. Let
$$\vec{r} = x\vec{i} + y\vec{j} + z\vec{k}$$
 y $r = |\vec{r}|$. Prove that:

$$\nabla\left(\frac{1}{r}\right) = \frac{-\vec{r}}{r^3}$$

5. Calculate the second-order partial derivatives and check that the mixed derivatives are equal:

a)
$$f(x, y) = \frac{2xy}{(x^2 + y^2)}$$
 b) $f(x, y, z) = e^z + xe^{-y} + \frac{1}{x}$

b)
$$f(x, y, z) = e^z + xe^{-y} + \frac{1}{x}$$

c)
$$f(x, y) = \cos(xy^2)$$

c)
$$f(x, y) = \cos(xy^2)$$
 d) $f(x, y) = e^{-xy^2} + x^4y^3$

e)
$$f(x, y) = (\cos^2 x + e^{-y})^{-1}$$
 f) $f(x, y, z) = ze^{xy} + yz^3x^2$

f)
$$f(x, y, z) = ze^{xy} + yz^3x$$