Hugounenq Cyril

All useful documents on Pari-GP can be found at https://pari.math.u-bordeaux.fr/doc.html

1 Getting familiar with Pari-GP: Generating primes

- 1. Start Pari-GP with the command **gp** and import file rsa.gp by entering read(rsa) or rsa.gp
- 2. Use *gen_prime* to generate a prime number on 512 bits. Using the User's guide, explain why the generation is so fast.
- 3. Is it secure to use such a function to generate a long term RSA key? Modify the existing code if necessary.
- 4. In practice, NIST recommends stronger assumptions on primes used for RSA
 - Strong prime: p is a strong prime iff $\frac{p-1}{2}$ is also prime
 - RSA prime: p is a RSA prime iff $\frac{p-1}{2}$ is a strong prime
 - Implement a function $gen_RSA_prime(b)$ which generates a RSA prime on exactly b bits
- 5. Bonus: Implement a function counting the number of primes lower than a bound m and check empirically that this number is close to $\frac{m}{\log(m)}$

2 Generating RSA parameters

- 1. Implement a function $gen_RSA_parameters(b)$ which generates a set of RSA parameters on b-bits and returns [N, e, d].
- 2. Implement a function $RSA_encrypt(M,N,e)$ which encrypts a message M using a public key [N,e]
- 3. Implement a function $RSA_decrypt(C,N,d)$ which decrypts a message C using a private key [N,d]
- 4. Bonus: Using the gp function chinese, implement a function $RSA_sign_CRT(M,N,d_p,d_q,p,q)$ which signs a message M using a private key $[N,d \mod p-1,d \mod q-1,p,q]$ (modify the function $RSA_gen_parameters$ accordingly). The signature value shall be $S=M^d[N]$.

3 Attacks on RSA

- 1. Implement a function $factor_from_phi(N,phi)$ which factors N given $\varphi(N)$.
- 2. Implement a function $factor_from_d(N,e,d)$ which factors N given e and d.
- 3. Implement a function $broacast_attack(M^3 \mod N_a, N_a, M^3 \mod N_b, N_b, M^3 \mod N_c, N_c)$ which recovers M.
- 4. Implement a function $wiener_attack(N,e)$ which recovers d assuming that $d < \frac{1}{3}N^{\frac{1}{4}}$.