- Variability, heritability, selection coefficient
- Evolution is not goal oriented
- Phylogenies, binomial nomenclature, hierarchies, phylogenetic trees and classification, sister groups
- How phylogenies are constructed: morphology and molecular data, homologies vs. analogies, DNA alignments, outgroups, using them for predictions
- Organisms' evolutionary history is documented in their genomes
- Plasmids and HGT

Mutation Events captured by genome sequencing

Genetic code is almost universal

				un	Secon	d Letter				•	
1st letter	i i	U		С		A		G			
	U	UUU UUC UUA UUG	Phe Leu	UCU UCC UCA UCG	Ser	UAU UAC UAA UAG	Stop Stop	UGU UGC UGA UGG	Cys Stop Trp	UCAG	
	С	CUU Leu CUA CUG	CCU CCC CCA CCG	Pro	CAU CAC CAA CAG	His Gin	CGU CGC CGA CGG	Arg	UCAG	3rd	
	A	AUU AUC AUA AUG	lle Met	ACU ACC ACA ACG	Thr	AAU AAC AAA AAG	Asn Lys	AGU AGC AGA AGG	Ser Arg	UCAG	letter
	G	GUU GUC GUA GUG	Val	GCU GCC GCA GCG	Ala	GAU GAC GAA GAG	Asp Glu	GGU GGC GGA GGG	Gly	UCAG	

Synonymous mutation = results in same amino acid

DNA mutation: ATT -> ATA

Is this synonymous???

("silent" mutations)

DNA Transcription RNA

Translation

Protein

Where are mutations happening? Where are selection events?

Random, heritable mutations are selected by the environment. natural selection.

Superbugs and the post-antibiotic world

How penicillin works

Figure 4. PBP (penicillin-binding protein) active site is a groove allowing formation of cross-links in the bacterial cell wall.

Protein Peptidoglycan

Phospholipid Cytoplasmic Membrane

Cytoplasm

Figure 3. The β -lactam ring common to the penicillin family of antibiotics.

Antibiotic resistance

Figure 4. PBP (penicillin-binding protein) active site is a groove allowing formation of cross-links in the bacterial cell wall.

Figure 3. The β -lactam ring common to the penicillin family of antibiotics.

This no longer fits easily in the PBP active site!

Strain	Changes in amino acids of conserved PBP sites making up active penicillin-binding site of PBP:											
		la			2x		2ь					
	370-373ª	428-430	557-559	337-340	394-397	546-549	385-388	442-445	614-616			
R6	STMK [≜]	SRN	KTG	STMK	HSSN	LKSG	SVVK	SSNT	KTG			
1	2.	(#)	101	198	12	Vas	8	\$6	্ব			
2	0.60	9.00	(2)	(4)	2	VKSG	26	£	36			
3		*	*	*		200	*	SSNA	36			
4	0.70	100	75	17.0		975		20	3			
5	2.0	120	2	752	YSSN	-2	59	SSNA	Ş			
6		132	-	SPMK	747	•	SŞ.	SSNA	25			
7	000			(96)	YSSN		4	SSNA	38			
8	7.0	7.88	*	SPMK	25		27	SSNA	*			
9	356	.53	8	SAMK	15	3	8	SSNA	85			
10	320	10211	0	SAMK	4	1127	2	SSNA	2			
11	140			SAMK	9	VKSG	(4)	SSNA				
12	1.65		*	SAMK	55	VKSG	9	SSNA	3.5			
13	SAMK [₫]		â	SAMK	45	VKSG	45	SSNA	8			
14	SAMK			SAMK		VKSG		SSNA				
15	SAMK	760	2	SAMK	:	VKSG	7	SSNA	4			
16	SAMK		*	SAMK	23	VKSG	8	SSNA	24			
17	SSMK			SAFK		VKSG	4	SSNA				
18	SSMK	0.50		SAFK	/3	VKSG	17.	SSNA	12			

Antimicrob Agents Chemother. 2002 May; 46(5): 1273–1280. doi: 10.1128/AAC.46.5.1273-1280.2002

MRSA history

S. aureus was described in the 1880's

MRSA Discovered in 1961

Term used to describe <u>all</u> *S. aureus* strains resistant to penicillin-like antibiotics

Methicillin was an artificial penicillin compound invented since *S. aureus* was becoming resistant to natural penicillin

"Today, penicillin-susceptible *S. aureus* is a microbiological dinosaur, and a source of amusement when identified."

- N. Lindsey, 1991

A case study:

- Say there is an outbreak of MRSA in a hospital in Thailand
- It's a particularly nasty strain, resistant even to last-resort antibiotics
- We need to know where it came from and what is different about it if we have any hope of finding a treatment
- What can we do???

We can look at its phylogeny to see which other strains it's related to.

A phylogeny of candy

How to determine phylogeny:

- Morphological traits
- Molecular traits

What else are phylogenies good for?

 They are <u>hypotheses</u> and the best hypothesis is the one that best fits all the available data

They generate predictions! All valid hypotheses

do this.

Predictions can be tested

Copyright © 2008 Pearson Education, Inc., publishing as Pearson Benjamin Cummings

terial diversity in operating rooms. a Bacterial taxa plot at the genus-level. Major phylotypes (>1 % of relative abundance at least one sample) ated by each color. The relative abundances of Staphylococcus and Conynebacterium were represented by heat map (Bottom). b PCoA plot of ommunities of OR samples with HIMP database. Unweighted UniFrac distances were used to evaluate diversities between samples. c Box tengroup distances of bacterial communities between OR samples and HMP database. ***Non-parametric p < 0.001

DNA Alignment

Science 22 Jan 2010: Vol. 327, Issue 5964, pp. 469-474 DOI: 10.1126/science.1182395

MRSA Phylogeny, colored by location

Look familiar???

Organisms' evolutionary histories are documented in their genomes

What if we re-wound the clock?

The Burgess Shale

Fossils all around the world follow the same pattern: More "primitive" organisms in older rocks, more complex organisms in newer rocks.

Okay, but what to do about antibiotic resistant pathogens?

Evolution in bacteria is very rapid: fast generation times and plasmids (HGT)

Antibiotics are expensive to develop

Newly developed antibiotics are shelved for emergencies

Where is MRSA found?

Remember: Mutations are not generated because they are "needed!"

Where is variation coming from?

Is it heritable?

What are the selective forces at work?

Evolution from the gene's-eye perspective

Analogous genes: similar because of convergent evolution

Homologous genes: similar because of shared descent

- Orthologs: Speciation
- Paralogs: Gene duplication (in same species)