Mathematical Neuroscience; Tutorial 4

H.G.E. Meijer

February 26, 2025

These are adaptations of exercises 2, 9 and 5 from Chapter 4 (in that order).

1. In this exercise, we explore the T-type current in more detail. The goal is to compute the orbits to obtain the sketches drawn in the lecture. The equations are given below, condensed for use in pplane9. A separate driver PlanarRebound is also provided.

```
Equations for V & h: V'=-.05*(V-EL)-minf^2*h*cfedrive+I0; h'=(hinf-h)/tauh; Parameters & Expressions: I0=0.0; EL=-60; cfedrive=2.2557*V*(1e-4-2*exp(-.0779*V))/(1-exp(-.0779*V)); minf=1/(1+exp(-(V+59)/6.2)); hinf=1/(1+exp((V+83)/4)); tauh=22.7+.27/(exp((V+48)/4)+exp(-(V+407)/50));
```

- For $I_0=0$, decrease E_L from -60 mV to -85 mV in small steps and simulate. The goal is to observe oscillations for some values and to get a feeling for the phase plane. Also, check the position of the fixed point on the nullclines. Is it on the left branch of the V-nullcline or somewhere else?
- Simulate rebound behaviour by starting from $I_0=0.0$, next inhibit the neuron during some time with $I_0=-1.0$, and then release it setting $I_0=0.0$ again. Explain the orbit you observe by describing which nullcline the orbit is following or whether the orbit jumps to another part.
- ullet For $I_0=0$, Compute a one-parameter bifurcation diagram varying E_L . Identify two Hopf bifurcations and determine their criticality. Next, determine the range of E_L for which you find stable oscillations. Conclude that changing E_L may induce subthreshold oscillations, i.e., the potential hardly reaches the right branch of the V-nullcline.
- (Extra) We may observe the same behaviour by changing I_0 . In fact, as an extra, create a two-parameter diagram in the (E_L,I_0) -plane showing two disconnected Hopf bifurcation curves. These two curves are straight lines, which should be no surprise considering the differential equations.
- 2. Consider the following reduced neuronal model with an applied current I, an inward potassium current $I_{\rm Kir}$ and a chloride leak current I_L ,

$$C\dot{V} = -g_{\text{Kir}}h_{\infty}(V)(V - E_K) - g_L(V - E_L) + I,$$

with instantaneous sigmoidal gate $h_\infty(V)=\left(1+\exp\left((V_{1/2}-V)/k\right)\right)^{-1}$. The parameter values are: $C=1,\,g_L=0.1,\,E_L=-60,\,g_{\rm Kir}=0.1,\,E_K=-85,\,V_{1/2}=-71$ and k=-0.8. The first goal is to draw a bifurcation diagram for this nonlinear one-dimensional model with I as a parameter.

- You cannot simply solve for steady-state values of V given I, but the other way round works, i.e., compute I(V) and plot I(V) on the horizontal axis, and V on the vertical axis.
- Determine the stability of the equilibria.

• Conclude that this model shows bistability.

Next, we add passive uptake of potassium

$$\tau \dot{K}_{\rm out} = \alpha I_{\rm Kir} + K_0 - K_{\rm out},$$

with $\alpha=0.2$, $K_0=0.1$ and $\tau=600$ ms.

- Decrease $I_0=0$ to $I_0=-0.4$ to observe oscillations. Characterize the corresponding bifurcations and cycles.
- ullet The variation in $K_{
 m out}$ effectively modulates the applied current I_0 over time. Compute this modulation $I_{
 m eff}(t)$ from the simulation, and plot the orbit in the (I,V)-plane you obtained above. Explain how the orbit follows the branch of equilibria.
- (Adaptation of Exc 5) Consider the reduced Connor-Stevens model; the code is given online (ConnorSteves_Red.m).
 - Fix $g_A=4$, and then increase the applied current I_{app} . Explain that the neuron is of Class II for $g_A=4$ by looking at the (instantaneous) frequency for values of I_{app} near the switch from rest to spiking.
 - ullet The neuron is still Class II for $g_A=40$, but the onset of spiking involves a different mechanism.
 - Compute a bifurcation diagram for $g_A=4$ and $g_A=40$. Use this diagram to corroborate the findings above.
 - ullet (Extra) Determine the phase plane for both values of g_A . This case is more involved as there are isolated branches of the V-nullcline.
 - (Extra) Modify the code by uncommenting and adding variables to compare the reduced and the full model.