Nom:		DS4				
Prénom:	APP	ANA	REA	VAL	сом	RCO
Exercice 1 – Propagation du son						
1. Onde acoustique : onde de pression et de vitesse.						•
2. Propagation dans les milieux matériels. Onde de gravité, ondes sismiques.						••
3. Fréquences audibles entre $20\mathrm{Hz}$ et $20\mathrm{kHz}$. $f_{\mathrm{ultrasons}} > 20\mathrm{kHz}$.						••
4. Diffraction : avec $f \sim 300 \mathrm{Hz}$, $c = 340 \mathrm{m \cdot s^{-1}}$ et $a \sim 1 \mathrm{m}$, $\theta \sim \frac{\pi}{2}$.	•	•	•		•	•
5. Principe du sonar : mesure du temps d'aller-retour d'une impulsion sonore					••	
6. $L = \frac{c_{\text{mer}}\tau}{2} = 375 \text{m}.$			••			
7. $T = \frac{\Delta t^2}{2.5}$, d'où $f = 6.25 \text{kHz}$.			•			
8. $\Delta x = c_{\text{mer}} \Delta t = 60 \text{ cm}.$			••			
9. $x_{\text{front}} = c_{\text{mer}}t = 15 \text{m}$ et $x_{\text{fin}} = c_{\text{mer}}t - \Delta x = 14,4 \text{m} + \text{schéma}$.			•		•	
10. Schéma + décalage temporel : $\frac{L}{c_{\text{mer}}} = \frac{\tau}{2} = 250 \text{ms}.$			•		•	
11. $[R] = M \cdot L^2 \cdot T^{-2} \cdot N^{-1} \cdot \Theta^{-1}$, d'où $c = \sqrt{\frac{\gamma RT}{M}}$.		,	••			
11. $[R] = M + E + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1 + 1$						
· ·						
13. On a $\frac{\Delta T}{T_0} \ll 1$, d'où $\Delta c \approx c_0 \frac{\Delta T}{2T_0} = 0.59 \mathrm{m \cdot s^{-1}}$.		•	•			
EXERCICE 2 – Viseur de casque TopOwl						
1. Composante électrique de la force de Lorentz : $\overrightarrow{F_E} = -e\overrightarrow{E}$.						••
2. Schéma. $V_a - V_c = +U > 0$.	••					
3. $v_0 = \sqrt{\frac{2eU}{m_e}} = 26.5 \times 10^6 \mathrm{m \cdot s^{-1}} \sim 0.1c$: traitement classique ok.			••	•		
4. Repère $(\overrightarrow{e_x}, \overrightarrow{e_y}, \overrightarrow{e_z})$ orthonormé direct : règle de la main droite.						•
5. Composante magnétique de la force de Lorentz : $\overrightarrow{F_B} = -e \overrightarrow{v} \wedge \overrightarrow{B}$.						••
6. La composante magnétique ne travaille pas $+$ TEC, $ \vec{v} = \text{cste}$.						••
7. Schéma $\overrightarrow{v_0}$, \overrightarrow{B} et $\overrightarrow{F_B}$.			•			
8. $R = \frac{m_e v_0}{eB}$.			••			
9. $\ddot{x} = \frac{eB}{m_e} \dot{z}$ et $\ddot{z} = -\frac{eB}{m_e} \dot{x}$.			••			
10. Avec $\dot{x} \ll \dot{z}$, $\dot{z} \approx v_0$, d'où : $z_S = h$ et $\dot{z}_S = v_0$; $x_S = \frac{eBh^2}{2m_e v_0}$ et $\dot{x}_S = \frac{eBh}{m_e}$.		••				
11. Mouvement rectiligne et uniforme.					•	
12. Schéma de la trajectoire complète, cf. correction détaillée.					••	
13. $B = \frac{m_e v_0}{eh} \frac{2}{2L+h} X = 6 \mathrm{mT}.$		••				
14. $\ddot{v_z} + \omega_c^2 v_z = 0$, avec $\omega_c = \frac{eB}{m_e}$, d'où $v_z(t) = v_0 \cos \omega_c t$		••				
15. $\sin(\omega_c \Delta t) = \frac{\omega_c h}{v_0}$.		••				
16. $v_{z,S} = v_0 \sqrt{1 - (\frac{\omega_c h}{v_0})^2} = 0.98 v_0 \approx v_0 \text{ avec } B = 6 \text{ mT}.$		•		•		
EXERCICE 3 – Inversion de la molécule d'ammoniac						
1. Double puits de pot. symétrique, $x = \pm b$ (éq. stable) et $x = 0$ (éq. instable)						
2. État lié : oscillations périodiques entre x_1 et x_2 + schéma.					••	
3. $\mathcal{E}_{\mathrm{m}} > V_{\mathrm{0}}$.						
4. $\vec{F}(x) = -\frac{\mathrm{d}V}{\mathrm{d}x}\vec{e_x}$.						
5. Représentation de $\vec{F}(x)$, cf. correction détaillée.						
6. $\vec{F}(x) = -\frac{4V_0}{b^2} x \left(\frac{x^2}{b^2} - 1\right) \vec{e_x}$.						
			••			
7. En $x_{\text{éq}}$, $\frac{dV}{dx} = 0$ ($\pm b$, 0); $\frac{d^2V}{dx^2} > 0$: stable ($\pm b$), $\frac{d^2V}{dx^2} < 0$: instable (0).			•			•
8. L'énergie mécanique est constante, le mouvement est conservatif.	•				•	
9. Position $x = b$. Avec $\varepsilon = \frac{x-b}{b}$, petites oscillations si $ \varepsilon \ll 1$.	•			•		
10. $V(x) \approx \frac{4V_0}{b^2}(x-b)^2$.			••			
11. $\ddot{x} + \frac{8V_0}{mb^2}x = \frac{8V_0}{mb}$: oscillateur harmonique.			••			
12. $\omega_0 = \sqrt{\frac{8V_0}{mb^2}}$, $f_0 = \frac{\omega_0}{2\pi} = 15 \text{THz}$.			••			
13. À 300 K $k_BT \approx 26 \mathrm{meV} \approx \frac{V_0}{10}$: inversion impossible. $T_0 = \frac{V_0}{k_\mathrm{B}} = 2900 \mathrm{K}$.		••				
Présentation de la copie					••	
Total	APP	ANA	REA	VAL	сом	RCO
Nombre total de points	7	14	29	3	13	15
Nombre de points obtenus						