ER-Model (Cont) Chapter 2

Database Queries

- Data Definition Language
 - CREATE DATABASE bankdb;
 - DROP DATABASE bankdb;
 - 3. BACKUP DATABASE bankdb;
 - 4. BACKUP DATABASE bankdb TO DISK = 'D:\xyz\bankdb.bak';
 - 5. BACKUP DATABASE bankdb TO DISK = 'D:\xyz\bankdb.bak' WITH DIFFERENTIAL;

Note:- do not run these queries on your machine. It is only for specialized persons in industry

Database Queries

- DDL (Design structure or schema)
 - CREATE TABLE cust(cust_id number(5), cust_nm varchar2(10) cust_city varchar2(10));

Column Name	Data Type	Size
Cust_id	number	5
Cust_nm	varchar2	10
cust_city	varchar2	10

Database Queries

- INSERT INTO cust(cust_id, cust_nm, cust_city)
 VALUES(101, 'abc', 'abc street');
- SELECT * FROM cust;

Cust_id	Cust_nm	Cust_city
101	abc	abc street

- INSERT INTO cust(cust_id, cust_nm, cust_city)
 VALUES(102, 'def', 'def street');
- 4. SELECT * FROM cust;

Cust_	id	Cust_nm	Cust_city
101		abc	abc street
102		def	def street

Reduction of an E-R Schema to Tables

Cust_id	Cust_nm	Cust_st	Cust_ct
101	abc	Abc street	amd
102	def	Def street	srt
103	pqr	Pqr street	brd

Loan_no	amt
L1	10000
L2	20000
L3	30000

Cust_id	Loan_no
101	L1
102	L2
103	L3

customer

loan

Borrower

Reduction of an E-R Schema to Tables

- Primary keys allow entity sets and relationship sets to be expressed uniformly as tables which represent the contents of the database.
- A database which conforms to an E-R diagram can be represented by a collection of tables.
- For each entity set and relationship set there is a unique table which is assigned the name of the corresponding entity set or relationship set.
- Each table has a number of columns (generally corresponding to attributes), which have unique names.
- Converting an E-R diagram to a table format is the basis for deriving a relational database design from an E-R diagram.

Representing Entity Sets as Tables

 A strong entity set reduces to a table with the same attributes.

customer-id	customer-name	customer-street	customer-city
019-28-3746	Smith	North	Rye
182-73-6091	Turner	Putnam	Stamford
192-83-7465	Johnson	Alma	Palo Alto
244-66-8800	Curry	North	Rye
321-12-3123	Jones	Main	Harrison
335-57-7991	Adams	Spring	Pittsfield
336-66-9999	Lindsay	Park	Pittsfield
677-89-9011	Hayes	Main	Harrison
963-96-3963	Williams	Nassau	Princeton

Composite and Multivalued Attributes

- Composite attributes are flattened out by creating a separate attribute for each component attribute
 - E.g. given entity set customer with composite attribute name with component attributes first-name and last-name the table corresponding to the entity set has two

name.first-name and name.last-name

Cust_id	Cust_nm.fnm	Cust_nm.lnm	Cust_st	Cust_ct
101	abc	Lmn	Abc street	amd
102	def	Xyz	Def street	srt
103	pqr	xyz	Pqr street	brd

Composite and Multivalued Attributes

- A multivalued attribute M of an entity E is represented by a separate table EM
 - Table EM has attributes corresponding to the primary key of E and an attribute corresponding to multivalued attribute M
 - E.g. Multivalued attribute dependent-names of employee is represented by a table employee-dependent-names(employee-id, dname)
 - Each value of the multivalued attribute maps to a separate row of the table EM

emp_id	dname
101	abc
101	def
102	pqr

Employee dependent table

Representing Weak Entity

Sets

 A weak entity set becomes a table that includes a column for the primary key of the identifying strong entity set

loan-number	payment-number	payment-date	payment-amount
L-11	53	7 June 2001	125
L-14	69	28 May 2001	500
L-15	22	23 May 2001	300
L-16	58	18 June 2001	135
L-17	5	10 May 2001	50
L-17	6	7 June 2001	50
L-17	7	17 June 2001	100
L-23	11	17 May 2001	<i>7</i> 5
L-93	103	3 June 2001	900
L-93	104	13 June 2001	200

Relationship Sets as Tables

- A many-to-many relationship set is represented as a table with columns for the primary keys of the two participating entity sets, and any descriptive attributes of the relationship set.
- E.g.: table for relationship set borrower

customer-id	loan-number
019-28-3746	L-11
019-28-3746	L-23
244-66-8800	L-93
321-12-3123	L-17
335-57-7991	L-16
555-55-5555	L-14
677-89-9011	L-15
963-96-3963	L-17

Redundancy of Tables

- Many-to-one and one-to-many relationship sets that are total on the many-side can be represented by adding an extra attribute to the many side, containing the primary key of the one side
- E.g.: Instead of creating a table for relationship account-branch, add an attribute branch to the entity set account

Redundancy of Tables

- For one-to-one relationship sets, either side can be chosen to act as the "many" side
 - That is, extra attribute can be added to either of the tables corresponding to the two entity sets
- If participation is partial on the many side, replacing a table by an extra attribute in the relation corresponding to the "many" side could result in null values
- The table corresponding to a relationship set linking a weak entity set to its identifying strong entity set is redundant.
 - E.g. The payment table already contains the information that would appear in the loan-payment table (i.e., the columns loan-number and payment-number).

Representing Specialization as Tables

Representing Specialization as Tables

- Method 1:
 - Form a table for the higher level entity
 - Form a table for each lower level entity set, include primary key of higher level entity set and local attributes

```
table table attributes

person name, street, city

customer name, credit-rating

employee name, salary
```

 Drawback: getting information about, e.g., employee requires accessing two tables

Representing Specialization as Tables

- Method 2:
 - Form a table for each entity set with all local and inherited attributes

```
table table attributes
person name, street, city
customer name, street, city, credit-rating
employee name, street, city, salary
```

- If specialization is total, table for generalized entity (person) not required to store information
 - Can be defined as a "view" relation containing union of specialization tables
 - But explicit table may still be needed for foreign key constraints
- Drawback: street and city may be stored redundantly for persons who are both customers and employees

Relations Corresponding to Aggregation

- To represent aggregation, create a table containing
 - primary key of the aggregated relationship,
 - the primary key of the associated entity set
 - Any descriptive attributes

Relations Corresponding to Aggregation

- E.g. to represent aggregation manages between relationship works-on and entity set manager, create a table manages(employee-id, branch-name, title, manager-name)
- Table works-on is redundant provided we are willing to store null values for attribute manager-name in table manages

