平展上同调和反常层基础

温尊

2023年3月20日

目录

Ι	第一部分	3
1	平展上同调简介	3
2	平展基本群	4
3	景和层和层化	5
4	4.3 常值层和局部常值层	7 8 10 10 11 11
5	层的一些函子 5.1 直像	13
6	6.1 定义	15 16
7	7.1 Čech 上同调	16 16 16

8	高阶直像	16
9	曲线的上同调——基础结果	16
10	可构建层和挠层	16
11	曲线上挠层的上同调	16
12	上同调维数	16
II	第二部分	17
13	反常层简介	17
14	一些同调代数	17
索	31	18
参	考文献	18

Part I

平展上同调基础理论

1 平展上同调简介

何为平展上同调? 举一个简单的例子, 取 X 为 $\mathbb C$ 上的代数簇, 其解析化 X^{an} 可以对应奇异上同调 $H^i(X^{\mathrm{an}},\mathbb Z)$ 满足

- (i) 是有限生成 Z 模;
- (ii) 群 *Hⁱ*(*X*^{an}, ℂ) 有额外的结构;
- (iii) 和代数链有关系.

所以平展上同调的目标就是定义一个类似奇异上同调的上同调理论 (满足类似性质的上同调称为 Weil 上同调理论, 还有其他的 Weil 上同调理论, 例如经典的 de Rham 上同调, 代数 de Rham 上同调和晶体上同调) 使其适用于更加一般的概形上去.

在平展上同调中, 我们会发现挠系数的上同调, 例如 $\mathbb{Z}/n\mathbb{Z}$ 系数的上同调可以比较好的模拟 奇异上同调. 但会发现 $H^2_{\mathrm{et}}(\mathbb{P}^1_{\mathbb{C}},\mathbb{Z})=0$ 而 $H^2(\mathbb{P}^1(\mathbb{C}),\mathbb{Z})=\mathbb{Z}$ 并不能很好的模拟奇异上同调, 另一方面我们发现如下结果:

定理 1.1 (Serre). 不存在上同调理论 H^* 使得 (i) 具有函子性;(ii) 满足 Kunneth 公式;(iii) 对所有椭圆曲线 E 满足 $H^1(E) \cong \mathbb{Q}^2$.

基本思路. 取 E 为超奇异椭圆曲线, 有一个事实是 $\operatorname{End}(E)\otimes\mathbb{Q}$ 是不分裂四元数代数. 根据 (i)(ii) 不难得到 $\operatorname{End}(E)$ 作用在 E 上会诱导出 $\operatorname{End}(E)$ 在 $H^1(E)$, 进而诱导出代数同态 $\operatorname{End}(E)\otimes\mathbb{Q}\to \operatorname{Mat}_{2\times 2}(\mathbb{Q})$. 而根据基本的表示论, 这种同态一定不存在! 故而没有这种上同调理论.

为了模拟在非挠系数下也可以模仿奇异上同调,我们会定义类似的 ℓ -进上同调理论, 其中 ℓ 和特征 p 互素 (不满足这个情况的需要晶体上同调理论) $H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Z}_\ell) = \varprojlim H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Z}/\ell^n\mathbb{Z})$ 和 $H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Q}_\ell) = H^i_{\mathrm{\acute{e}t}}(X,\mathbb{Z}_\ell) \otimes_{\mathbb{Z}_\ell} \mathbb{Q}_\ell$. 这样也可以得到比较好的模拟.

顺便一提,类似代数拓扑一样,在概形情况下也可以模拟拓扑的基本群. 给定概形和固定的几何点 (X,\bar{x}) ,可以定义 $\pi_1^{\text{et}}(X,\bar{x})$ 为平展基本群,其定义事实上是从代数拓扑里偷的,运用了覆叠变换群和拓扑基本群的关系来定义,十分合理. 当然之后还有更多的类似不变量,例如高阶的平展同伦群等.

另一个发展平展上同调, 乃至 Grothendieck 发展代数几何的重要动机就是 Weil 猜想:

猜想 1 (Weil 猜想). 设 $X \in \mathbb{F}_q$ 上 n 维光滑紧合几何整的簇, 设

$$S_X(t) = \exp\left(\sum_{n>0} \frac{\#X(\mathbb{F}_{q^n})}{n} t^n\right),$$

则

- (i) 函数 $S_X(t)$ 是有理函数, 即 $S_X(t) = \prod_{i=0}^{2n} (-1)^{i+1} S_i(t)$, 其中 S_i 是满足一定条件的整系数多项式:
 - (ii) 满足函数方程 $S_X(q^{-n}t^{-1}) = \pm q^{nE/2}t^ES_X(t)$ 其中 $E \in X$ 欧拉示性数;
 - (iii) 所有零点和极点的绝对值为 $q^{j/2}$ 其中 $i \in \mathbb{Z}$;
- (iv) 若 X 提升为代数整数环 $R \subset \mathbb{C}$ 上的光滑射影簇 Y, 则对于 i=0,...,2n, 流形 $Y(\mathbb{C})$ 的 Betti 数为 $S_i(t)$ 的次数 b_i .

最后结果. (i) 由 Dwork 运用 H^1 的有限生成性得到结果:

- (ii) 由 Gorthendieck 运用 Poincaré 对偶得到;
- (iii)(iv) 由 Deligne 证明.

因此平展上同调是相当成功的上同调理论,而本笔记就是为了在介绍基础理论的同时来阐述这些和代数拓扑,复几何类似的结果和性质.正如题所言,这个笔记是作为几何人的笔者写的,所以有很多我认为就算不知道也无妨,或者自己就能推理的无聊细节(主要集中在交换代数和点集拓扑)就会被我略去.因此可能不适合其他方向的人观看,推荐[9]里的Tag 0BQ6和Tag 03N1,扶磊教授的书[4]和 Milne 的传世经典[5],我们也会多次引用里面的代数细节.

前置知识: 至少是经典代数几何教材 [3] 的前三章, 还有光滑, 无分歧和平展映射的基本性质, 还有基本的导出范畴, 最好懂一些下降理论. 而会一些基本的代数拓扑和复几何更好.

2 平展基本群

对于连通概形 X, 定义 Fét /X 为 X 上的有限平展态射构成的范畴, 而 Ét /X 为 X 上的平展态射构成的范畴. 给定概形和几何点 (X,\bar{x}) , 定义 (纤维) 函子

$$\mathfrak{F}_{\bar{x}}: \text{F\'et }/X \to \text{Sets}, (\pi:Y \to X) \mapsto \text{Hom}_X(\bar{x},Y).$$

我们寻求这个函子是否可表? 也就是说是否存在万有覆叠空间? 事实上不一定存在:

例 2.1. 考虑 \mathbb{C} 上射影直线 \mathbb{A}^1 , 存在有限平展映射 $\mathbb{A}^1\setminus\{0\}\to\mathbb{A}^1\setminus\{0\}$, $x\mapsto x^n$, 那么注定没有像拓扑里的 $\exp:\mathbb{C}\to\mathbb{C}\setminus\{0\}$ 来表示万有覆盖!

但是可以退而求其次, 考虑射可表性: 可以证明 (但我不证明, 事实上 [5] 也没证明. 而 [4] 里有很多证明, 想看的读者可以看看) 存在有限平展覆盖组成的定向逆系统

$$X' = ((X_i, f_i)_{i \in I}, \phi_{ij} : X_j \to X_i, f_i = \phi_{ij} \circ f_j, f_i \in \mathfrak{F}_{\bar{x}}(X_i))$$

使得

$$\operatorname{Hom}(X',Y) := \varinjlim \operatorname{Hom}_X(X_i,Y) \to \mathfrak{F}_{\bar{x}}(Y), \sigma \mapsto \sigma(f_i)$$

是同构. 事实上可以选取 X_i/X 为 Galois 覆盖, 也就是说 $\deg(X_i/X) = \#\mathrm{Aut}_X X_i$, 见 [5] 注 5.4. 选取好 Galois 覆盖, 对于 $\phi_{ij}: X_j \to X_i$ 可以诱导 $\mathrm{Aut}_X X_j \to \mathrm{Aut}_X X_i$ 如下: 注意到 $\mathrm{Aut}_X X_j \to \mathfrak{F}_{\bar{x}}(X_j), \sigma \mapsto \sigma(f_j)$ 是双射 (由于是 Galois 覆盖, 见 [4] 第三节), 则通过 $F(X_j) \to F(X_i), \alpha \mapsto \phi_{ij}(\alpha)$ 即得到映射.

定义 2.1. 对于连通概形 X 和几何点 \bar{x} , 考虑上述构造, 定义平展基本群为

$$\pi_1^{\text{\'et}}(X, \bar{x}) = \varprojlim \operatorname{Aut}_X X_i$$

赋予有限离散拓扑的射影极限拓扑.

定理 2.2. 考虑连通概形 X 和几何点 \bar{x} .

- (i) 函子 $\mathfrak{F}_{\bar{x}}$ 诱导出 Fét /X 到有限 $\pi_1^{\text{et}}(X,\bar{x})$ -集的等价;
- (ii) 取第二个几何点 \bar{x}' , 我们有 $\mathfrak{F}_{\bar{x}} \cong \mathfrak{F}_{\bar{x}'}$ 进而诱导 $\pi_1^{\text{\'et}}(X,\bar{x}) \cong \pi_1^{\text{\'et}}(X,\bar{x}')$, 并且和 (i) 契合; (iii) 平展基本群有函子性, 并且和 (i) 交换.
- 证明. 这些都比较复杂, 秉承几何人的优良品质, 我们直接默认它们吧! 参考Tag 0BND.

例 2.2. (i) 对一个点 $X = \operatorname{Spec}(k)$ 和几何点 Ω , 由定义知道 $\pi_1^{\text{\'et}}(X,\Omega) = \operatorname{Gal}(k^{\text{sep}}/k)$; (ii) 考虑 \mathbb{C} 上的 $X = \mathbb{A}^1 \setminus \{0\}$, 则考虑 $x \mapsto x^n$ 得到

$$\pi_1^{\text{\'et}}(X,\bar{x}) = \varprojlim \operatorname{Aut}_X X_i = \varprojlim \boldsymbol{\mu}_n(k) \cong \widehat{\mathbb{Z}} \cong \prod_{\ell} \mathbb{Z}_\ell;$$

- (iii) 考虑代数闭域上的 $X = \mathbb{P}^1$, 由 Riemann-Hurwitz 公式不难得到 X 只有平凡的平展覆叠, 故 $\pi_{+}^{\text{\'et}}(X,\bar{x}) = 1$. 归纳可以得到 $\pi_{+}^{\text{\'et}}(\mathbb{P}^n,\bar{x}) = 1$;
- (iv) 事实上我们对 $\pi_1^{\text{\'et}}(\mathbb{A}^1_k, \bar{x})$ 都一无所知, 其中 k 是正特征域 (根据 Artin-Scheier 列, 起码不是平凡的群);
 - (v) 对于正规簇 X, 考虑一般点上的几何点 \bar{x} , 假设

则 $\pi_1^{\text{\'et}}(X,\bar{x}) \cong \text{Gal}(L/K(X))$, 参考 [4] 命题 3.3.6.

自然的, 我们也会考虑平展基本群和拓扑基本群有何种联系? 我们有以下重要的比较定理:

定理 2.3 (Riemann 存在定理). 设 X 是 \mathbb{C} 上的有限型概形,则由范畴等价 (Fét /X) \rightarrow (FTopCov/X^{an}). 特别的有 $\pi_1^{\text{\'et}}(X, \bar{x}) \cong \pi_1(\widehat{X}^{\text{an}}, x)$, 为射有限完备化.

证明. 这个证明更加复杂, 我们也直接承认, 请参考 [2] 的定理 XII.5.1.

这样我们就可以通过拓扑基本群来计算许多 € 上的有限型概形的平展基本群了.

注 2.4 (算术和数论人的最爱). (i) 对于 X 为 k 上几何连通的簇, 我们有正合列 (参考 [4] 命题 3.3.7):

$$1 \to \pi_1^{\text{\'et}}(X_{k^{\text{sep}}}, \bar{x}) \to \pi_1^{\text{\'et}}(X, \bar{x}) \to \text{Gal}(k^{\text{sep}}/k) \to 1;$$

(ii) 对于 $X = \mathbb{P}^1_{\mathbb{Q}} \setminus \{0,1,\infty\}$, 运用正合列得到

$$1 \to \pi_1^{\text{\'et}}(X_{\mathbb{Q}^{\text{al}}}, \bar{x}) \to \pi_1^{\text{\'et}}(X, \bar{x}) \to \operatorname{Gal}(\mathbb{Q}^{\text{al}}/\mathbb{Q}) \to 1.$$

嵌入 $\mathbb{O}^{al} \hookrightarrow \mathbb{C}$ 可以得到

$$\pi_1^{\text{\'et}}(X_{\mathbb{O}^{\text{al}}}, \bar{x}) \cong \langle a, b, \widehat{c|abc} = 1 \rangle.$$

而群 $\operatorname{Gal}(\mathbb{Q}^{\operatorname{al}}/\mathbb{Q})$ 则十分复杂, 如果完全了解它就可以了解相当一部分的算术猜想和结果 (摘自 J. Milne 的讲义 [6]).

3 景和层和层化

本质就是推广拓扑空间的定义.

定义 3.1 (Grothendieck 拓扑和景). 设 \mathcal{C} 是范畴, 一个 \mathcal{C} 上的 Grothendieck 拓扑由集合 $\{\{U_i \to U\}_{i \in I}\} = \operatorname{Cov}(U)$ 组成, 其中 U 是任意对象, 满足

- (i) 若 $V \to X$ 是同构,则 $\{V \to X\} \in Cov(X)$;
- (ii) 若 $\{X_i \to X\}_{i \in I} \in Cov(X)$ 且 $Y \to X$ 是任意态射, 则纤维积 $X_i \times_X Y$ 存在且

$${X_i \times_X Y \to Y}_{i \in I} \in Cov(Y);$$

(iii) 若 $\{X_i \to X\}_{i \in I} \in Cov(X)$ 且对任意 $i \in I$ 都给定 $\{V_{ij} \to X_i\}_{j \in J_i}$, 则

$${V_{ij} \to X_i \to X}_{i \in I, j \in J_i} \in Cov(X).$$

范畴 C 和其上的 Grothendieck 拓扑称为景.

例 3.1 (小 Zariski 景). 假设 X 是一个概形. 考虑范畴 Op(X) 由开子概形构成, 态射是包含关系. 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U = \bigcup_i U_i$. 记这个景为 X_{Zar} .

例 3.2 (大 Zariski 景). 假设 X 是一个概形. 考虑范畴 Sch/X , 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 为开浸入且 $U = \bigcup_i U_i$. 记这个景为 X_{ZAR} .

例 3.3 (小平展景). 假设 X 是一个概形. 考虑范畴 $\operatorname{\acute{E}t}/X$, 不难证明里面的态射都是平展的, 所以我们不假设条件. $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $\prod_{i \in I} U_i \to U$ 是满射. 记这个景为 $X_{\operatorname{\acute{e}t}}$.

例 3.4 (大平展景). 假设 X 是一个概形. 考虑范畴 Sch/X , 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 平展且 $\coprod_{i \in I} U_i \to U$ 是满射. 记这个景为 $X_{\mathrm{\acute{E}t}}$.

例 3.5 (fppf 景). 假设 X 是一个概形. 考虑范畴 Sch/X , 则 $\{U_i \to U\}_{i \in I}$ 为覆盖如果 $U_i \to U$ 平坦和局部有限表现,且 $\coprod_{i \in I} U_i \to U$ 是满射. 记这个景为 X_{fppf} .

定义 3.2. 景 C 上的预层为函子 $F: C^{op} \to Sets$;

定义 3.3. 给定景 C 和其上的预层 F.

(i) 预层 F 称之为分离的, 如果对任意的 $U\in\mathcal{C}$ 和覆盖 $\{U_i\to U\}_{i\in I}\in\mathrm{Cov}(U)$, 诱导态射 $F(U)\to\prod_{i\in I}F(U_i)$ 是单射;

(ii) 预层 F 称为层, 如果对任意的 $U\in\mathcal{C}$ 和覆盖 $\{U_i\to U\}_{i\in I}\in\mathrm{Cov}(U)$, 我们有如下等化子:

$$F(U) \longrightarrow \prod_{i \in I} F(U_i) \Longrightarrow \prod_{i,j \in I} F(U_i \times_U U_j)$$

其中态射被 $U_i \times_U U_j \to U_i$ 和 $U_i \times_U U_j \to U_j$ 诱导.

定义 3.4. 一个范畴称为 Grothendieck 意象 (Topos) 如果其等价于某个景上的层范畴.

定义 3.5 (层化). 在某个景 \mathcal{C} 上, 取定 $\mathscr{D} \in \operatorname{PreSh}(\mathcal{C})$, 称 $\mathscr{D}^{\sharp} \in \operatorname{Sh}(\mathcal{C})$ 使得 $\mathscr{D} \to \mathscr{D}^{\sharp}$ 是 \mathscr{D} 的 层化, 如果任取 $\mathscr{G} \in \operatorname{Sh}(\mathcal{C})$ 和 $\mathscr{D} \to \mathscr{G}$, 都有交换图:

$$\begin{array}{ccc}
\mathscr{P} & \longrightarrow \mathscr{P}^{\sharp} \\
\downarrow & & \\
\mathscr{G} & & \\
\end{array}$$

定理 3.6. 在某个景 \mathcal{C} 上, 取定 $\mathscr{D} \in \operatorname{PreSh}(\mathcal{C})$. 对某个覆盖 $\mathfrak{U} = \{U_i \to U\} \in \operatorname{Cov}(U)$, 定义

$$\check{H}^0(\mathfrak{U},\mathscr{P}) := \ker \left(\prod_i \mathscr{P}(U_i) \rightrightarrows \prod_{i,j} \mathscr{P}(U_i \times_U U_j) \right).$$

$$\mathscr{P}^+: U \mapsto \varinjlim_{\mathfrak{U}} \check{H}^0(\mathfrak{U}, \mathscr{P}).$$

- (i) 函子 9+ 是分离预层:
- (ii) 若 \mathscr{P} 是分离预层,则 \mathscr{P}^+ 是层且 $\mathscr{P} \to \mathscr{P}^+$ 单射;
- (iii) 若 \mathcal{P} 是层, 则 $\mathcal{P} \to \mathcal{P}^+$ 是同构;
- (iv) 不论如何 \mathscr{D}^{++} 一定是层, 且 $\mathscr{D}^{++} \cong \mathscr{D}^{\sharp}$.

证明. 这是纯粹的层论推导,参考Tag 00WB.

注 3.7. 我们在景的定义3.1里规定 Cov(U) 是集合很大程度上就是为了保证这个极限存在.

推论 3.8. 在某个景 \mathcal{C} 上, 取定 $\mathscr{D} \in \operatorname{PreSh}(\mathcal{C})$. 则 $\sharp : \operatorname{PreSh}(\mathcal{C}) \to \operatorname{Sh}(\mathcal{C})$ 是个函子, 且若规定遗忘函子为 $i : \operatorname{Sh}(\mathcal{C}) \to \operatorname{PreSh}(\mathcal{C})$, 则有 (\sharp,i) 是伴随函子. 特别的, 函子 \sharp 是正合函子.

证明. 近乎平凡.

推论 3.9. 考虑图 $\mathscr{S}: \mathcal{I} \to \operatorname{Sh}(\mathcal{C})$, 则 $\varprojlim_{\mathcal{I}} \mathscr{S}$ 存在且和预层范畴内一样, 而 $\varinjlim_{\mathcal{I}} \mathscr{S}$ 存在且为预层范畴内的层化.

证明. 也是纯粹的层论验证, 见Tag 00W2和Tag 00WI.

4 平展拓扑上的层

我们一般考虑小平展景 $X_{\text{\'et}}$. 记 $Sh(X_{\text{\'et}})$ 是集合取值的平展层范畴, 而 $Ab(X_{\text{\'et}})$ 是 Abel 群取值的平展层. 类似的预层范畴也为 $PreSh(X_{\text{\'et}})$ 和 $PreAb(X_{\text{\'et}})$.

4.1 基本结果和例子

命题 4.1. 固定概形 X, 对于 $\mathscr{F} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$. 若 \mathscr{F} 在限制到 Zariski 开覆盖时满足层条件, 且对于仿射平展覆盖 $V \to U$ 满足层条件, 则 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$.

证明. 详细细节参考 [5] 命题 II.1.5. 简单来说就是运用 Zariski 开覆盖上的条件会给出: 对于概形 $V = \coprod_i V_i$,我们有 $\mathscr{F}(V) = \prod_i \mathscr{F}(V_i)$. 运用这个我们发现如果单个映射组成的平展覆盖 $\coprod_i U_i \to U$ 满足等化子条件,那么 $\{U_i \to U\}$ 也满足等化子条件(因为 $\coprod_i U_i \times_U \coprod_j U_j = \coprod_{i,j} U_i \times_U U_j$). 根据仿射平展覆盖满足等化子条件,我们轻易得到 $\{U_i \to U\}_{i \in I}$ 也满足等化子条件,其中 I 有限且 U_i 仿射. 对于一般情况,需要证明相互契合,追图细节略去.

例 4.1 (结构层). 给定概形 X. 定义 $\mathcal{O}_{X,\text{\'et}}$ 为 $\mathcal{O}_{X,\text{\'et}}(U) := \Gamma(U,\mathcal{O}_U)$. 我们断言 $\mathcal{O}_{X,\text{\'et}} \in \operatorname{Sh}(X_{\text{\'et}})$. 运用4.1, 这其实就是环的忠实平坦下降: 设环同态 $f:A \to B$ 忠实平坦, 则有正合列:

$$0 \longrightarrow A \stackrel{f}{\longrightarrow} B \xrightarrow{b \mapsto 1 \otimes b - b \otimes 1} B \otimes_A B$$

证明颇为经典, 分成三步:(a) 证明如果 f 有一个截面, 则命题成立;(b) 证明如果存在另一个忠实平坦同态 $A \to A'$ 使得命题对 $A' \to A' \otimes_A B$ 成立, 则也对 $A \to B$ 成立;(c) 发现 $B \to B \otimes_A B, b \mapsto b \otimes 1$ 存在截面 $b \otimes b' \mapsto bb'$.

例 4.2 (由概形表示的层). 给定概形 X. 取定 Z 为 X-概形, 定义其为 $h_Z := \operatorname{Hom}_X(-,Z)$. 事实上通过 (i) 的正合列也容易得到 $h_Z \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$. 下面有几个常用的例子:

- (a) 定义 $\mu_{n,X}(T) = \{\zeta \in \Gamma(T, \mathcal{O}_T) : \zeta^n = 1\}$, 即 $\mu_{n,X}$ 被 $\underline{\operatorname{Spec}}_X \mathcal{O}_X[t]/(t^n 1)$ 表示;
- (b) 定义 $\mathbb{G}_{a,X}(T) = \Gamma(T, \mathcal{O}_T)$, 即 $\mathbb{G}_{a,X}$ 是被 \mathbb{A}^1_X 表示的函子;

(c) 定义 $\mathbb{G}_{m,X}(T) = \Gamma(T, \mathcal{O}_T^*)$, 即 $\mathbb{G}_{m,X}$ 是被 $\underline{\operatorname{Spec}}_X \mathcal{O}_X[t, t^{-1}]$ 表示的函子;

$$(d)$$
 定义 $\mathrm{GL}_{n,X}(T) = \mathrm{GL}_n(\Gamma(T,\mathcal{O}_T))$, 即 $\mathrm{GL}_{n,X}$ 是被

$$\underline{\operatorname{Spec}}_{X} \mathscr{O}_{X}[\{x_{ij}\}_{1 \leq i,j \leq n}][1/\det(x_{ij})]$$

表示的函子.

例 4.3 (拟凝聚层). 给定概形 X. 考虑 $\mathcal{M} \in \operatorname{Sh}(X_{\operatorname{Zar}})$ 是拟凝聚的, 定义 $\mathcal{M}^{\operatorname{\acute{e}t}}(\phi:U \to X) := \Gamma(U,\phi^*\mathcal{M})$. 运用4.1和更一般的正合列: 环同态 $f:A \to B$ 忠实平坦且 M 为 A-模, 则有正合列

$$0 \longrightarrow M \longrightarrow B \otimes_A M \Longrightarrow B \otimes_A B \otimes_A M$$

即可得到 $\mathcal{M}^{\text{\'et}} \in \text{Sh}(X_{\text{\'et}})$.

命题 4.2 (点上的层范畴). 对于 $X = \operatorname{Spec} k$, 有范畴等价

$$\operatorname{Sh}(X_{\operatorname{\acute{e}t}}) o ($$
离散 $\operatorname{Gal}(k^{\operatorname{sep}}/k) -$ 模 $), \mathscr{F} \mapsto M_{\mathscr{F}} := \varinjlim_{k^{\operatorname{sep}} \supset k'/k \operatorname{\mathop{\operatorname{\pi}}\nolimits} \mathbb{F} \operatorname{Galois}} \mathscr{F}(\operatorname{Spec} k').$

证明. 定义逆为 $M \mapsto \mathscr{F}_M := (A \mapsto \operatorname{Hom}_G(\operatorname{Hom}_{k-\operatorname{alg}}(A, k^{\operatorname{sep}}), M)).$

4.2 平展预层/层的茎

定义 4.3 (平展邻域). 给定概形 X, 称几何点 \bar{x} 的一个平展邻域为如下图表:

$$\bar{x} \xrightarrow{\bar{x}} X$$
 U
 f
 $\bar{x} \xrightarrow{\bar{x}} X$

其中 f 平展. 我们记为 $(U, \bar{u}) \to (X, \bar{x})$.

引理 4.4. 给定概形 X 和几何点 \bar{x} , 则

- (i) 给定两个平展邻域 $(U_i, \bar{u}_i)_{i=1,2}$, 存在第三个平展邻域 (U, \bar{u}) 和态射 $(U, \bar{u}) \rightarrow (U_i, \bar{u}_i)$;
- (*ii*) 假设 $h_1, h_2: (U_1, \bar{u}_1) \to (U_2, \bar{u}_2)$ 是平展邻域的态射,则存在第三个平展邻域 (U, \bar{u}) 和 态射 $h: (U, \bar{u}) \to (U_1, \bar{u}_1)$ 使得 $h_1 \circ h = h_2 \circ h$.
- 证明. (i) 只需考虑 $U = U_1 \times_X U_2$, 而 $\bar{s} \to U$ 被 (\bar{u}_1, \bar{u}_2) 定义;
 - (ii) 定义 U 为纤维积

$$\begin{array}{ccc}
U & \longrightarrow & U_1 \\
\downarrow & & \downarrow_{(h_1, h_2)} \\
U_2 & \stackrel{\Delta}{\longrightarrow} & U_2 \times_X U_2
\end{array}$$

并定义 $\bar{u} = (\bar{u}_1, \bar{u}_2)$.

注 4.5. 在 (ii) 内, 通过一些假设, 我们可以使得态射 $h_1 = h_2$: 若我们有诺特分离概形的图标

$$X \xrightarrow{g} Y$$

$$\downarrow^{q}$$

$$X \xrightarrow{p} S$$

其中 Y 连通且 p,q 平展,则 g=g'. 这是因为 $\delta: X \to X \times_S X$ 平展且是闭浸入,则 $X \times_S X = \delta(X) \sqcup Z$ 为连通分支的无交并. 注意到 $g \times g': Y \to X \times_S X$ 有连通的像. 根据图知 $\delta(X) \cap \operatorname{Im}(g \times g') \neq \emptyset$, 故 $\operatorname{Im}(g \times g') \subset \delta(X)$, 故 g=g'.

定义 4.6. 给定概形 X 和 $\mathcal{P} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$. 给定几何点 \bar{x} , 定义 \mathcal{P} 在 \bar{x} 的茎为

$$\mathscr{P}_{\bar{x}} := \varinjlim_{(U,\bar{u})} \mathscr{P}(U)$$

其中余极限遍历所有平展邻域,根据引理4.4此为滤余极限.

注 4.7. 给定概形 X 和几何点 \bar{x} , 则不难看出 $\mathscr{F} \mapsto \mathscr{F}_{\bar{x}}$ 作为函子 $\operatorname{PreSh}(X_{\operatorname{\acute{e}t}}) \to \operatorname{Sets}$ 或者 $\operatorname{Sh}(X_{\operatorname{\acute{e}t}}) \to \operatorname{AbGrps}$ 或者 $\operatorname{Ab}(X_{\operatorname{\acute{e}t}}) \to \operatorname{AbGrps}$ 都是正合的. 如果你不放心,请参考 $\operatorname{Tag}\ 03PT$.

定义 4.8. 给定概形 X 和几何点 \bar{x} , 给定集合 E, 定义 $E^{\bar{x}} \in Sh(X_{\text{\'et}})$ 为:

$$E^{\bar{x}}(U) := \bigoplus_{\mathrm{Hom}_X(\bar{x},U)} E.$$

注 4.9. 有几个简单的性质:

- (i) 这个 $E^{\bar{x}}$ 在平展拓扑下一定是层, 其他景上面不一定;
- (ii) 我们有伴随函子 $((-)_{\bar{x}}, (-)^{\bar{x}})$, 在预层范畴上这个伴随对任何景都对, 在层范畴上需要一定条件 (而小平展景显然满足), 若对这个有兴趣, 参考 Taq~00Y3;
 - (iii) 对于几何点 \bar{y} , 除非 \bar{y} 也在 \bar{x} 对应的点上, 否则 $(E^{\bar{x}})_{\bar{y}}=0$.

命题 **4.10.** 给定概形 X 和几何点 \bar{x} , 对于 $\mathscr{P} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$ 有 $\mathscr{P}_{\bar{x}} = \mathscr{P}_{\bar{x}}^{\sharp}$.

证明. 因为有伴随性, 对于任何集合 E, 我们有

$$\operatorname{Mor}_{\operatorname{Sets}}(\mathscr{P}_{\bar{x}}, E) = \operatorname{Hom}_{\operatorname{PreSh}(X_{\operatorname{\acute{e}t}})}(\mathscr{P}, E^{\bar{x}}) = \operatorname{Hom}_{\operatorname{Sh}(X_{\operatorname{\acute{e}t}})}(\mathscr{P}^{\sharp}, E^{\bar{x}}) = \operatorname{Mor}_{\operatorname{Sets}}(\mathscr{P}^{\sharp}_{\bar{x}}, E),$$

因此成立. □

对于结构层 $\mathcal{O}_{X,\text{\'et}}$, 它的茎有特殊的代数性质.

命题 4.11. 给定概形 X 和在 $x\in X$ 上的几何点 \bar{x} . 设 $\kappa(x)\subset\kappa(x)^{\mathrm{sep}}\subset\kappa(\bar{x})$ 是可分代数闭包,则有

- (i) 有同构 $(\mathcal{O}_{X,x})^{\operatorname{sh}} \cong (\mathcal{O}_{X,\operatorname{\acute{e}t}})_{\bar{x}}$, 前者为 $\mathcal{O}_{X,x}$ 的严格 Hensel 化;
- (ii) 设 \mathfrak{m}_x 是 $\mathcal{O}_{X,x}$ 的极大理想,则 $\mathfrak{m}_x(\mathcal{O}_{X,\mathrm{\acute{e}t}})_{\bar{x}}$ 是 $(\mathcal{O}_{X,\mathrm{\acute{e}t}})_{\bar{x}}$ 的极大理想,且满足

$$(\mathscr{O}_{X,\text{\'et}})_{\bar{x}}/\mathfrak{m}_x(\mathscr{O}_{X,\text{\'et}})_{\bar{x}} \cong \kappa(x)^{\text{sep}};$$

(iii) 对任何首一多项式 $f \in (\mathcal{O}_{X,\text{\'et}})_{\bar{x}}[T]$ 和任意 $\bar{f} \in \kappa(x)^{\text{sep}}[T]$ 的根 $\alpha_0 \in \kappa(x)^{\text{sep}}$ 使得 $\bar{f}'(\alpha_0) \neq 0$,则存在 $\alpha \in (\mathcal{O}_{X,\text{\'et}})_{\bar{x}}$ 使得 $f(\alpha) = 0$ 且 $\alpha_0 = \bar{\alpha}$.

证明. 这些都是复杂的交换代数, 见Tag 04GE, Tag 04GP和04GW. 其中 (iii) 被称之为 Hensel 引理, 满足 (iii) 的环叫做 Hensel 局部环, 如果这个环的剩余类域可分代数闭, 则称之为严格 Hensel 局部环. 所以我们这里就是一个严格 Hensel 环.

注 4.12. 我们之后将记 $\mathscr{O}_{X,\bar{x}}^{\operatorname{sh}} := (\mathscr{O}_{X,\operatorname{\acute{e}t}})_{\bar{x}}$, 也不会有歧义.

4.3 常值层和局部常值层

定义 4.13. 给定概形 X.

- (i) 对于 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ (或者 $\in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$),则 \mathscr{F} 称为常值层如果存在集合 E(或者 Abel 群 G) 使得 $\mathscr{F} \cong (U \mapsto E)^{\sharp} =: \underline{E}_X$ (或者 $\cong (U \mapsto G)^{\sharp} =: \underline{G}_X$);
- (ii) 称 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ (或者 $\in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$) 是局部常值层, 如果存在覆盖 $\{U_i \to X\}$ 使得 $\mathscr{F}|_{U_i}$ 是常值层:
- (iii) 称 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$ (或者 $\in \operatorname{Ab}(X_{\operatorname{\acute{e}t}})$) 是有限局部常值层, 如果 \mathscr{F} 是局部常值层且取值的集合 (或 Abel 群) 是有限集合.
- 引理 4.14 (有限平展映射的平展局部分解). (i) 设 $f: X \to S$ 有限无分歧, 取 $s \in S$, 则存在平展邻域 $(U,u) \to (S,s)$ 和有限无交分解 $X_U = \coprod_i V_i$ 使得所有 $V_i \to U$ 均为闭浸入.
- (ii) 设 $f: X \to S$ 有限平展, 取 $s \in S$, 则存在平展邻域 $(U,u) \to (S,s)$ 和有限无交分解 $X_U = \coprod_i V_i$ 使得所有 $V_i \to U$ 均为同构.

证明. 首先, 有关各种映射的平展局部, 可参考Tag~024J. 二者究其本质都是拟有限态射的平展局部性质 (见Tag~02LM). 证明虽然不甚复杂, 但写于此意义也不大, 故这里我们略去证明, 证明参考Tag~04HJ和 Tag~04HN.

命题 4.15. 给定概形 X, 则有范畴等价

$$\{ \text{有限平展映射} U \to X \} \cong \{ \text{有限局部常值层} \}, (U \to X) \mapsto \mathscr{F} = h_U.$$

证明. 根据引理4.14(ii), 不难看出 h_U 确实是有限局部常值层. 另一方面, 任取 $\mathscr P$ 是有限局部常值层, 则存在平展覆盖 $\{U_i \to X\}$ 使得 $\mathscr P|_{U_i}$ 是常值层, 则可以被有限平展态射 $U_i \to X$ 表示(设取值集合的基数是 κ , 若是诺特分离概形, 考虑注4.5, 则令 $Z_i = \coprod_{i=1}^{\kappa} U_i$, 故 $\mathscr P|_{U_i} = h_{Z_i}$). 根据仿射态射满足有效的忠实平坦下降 (fpqc), 我们可以得到存在 $Z \to X$ 使得 $h_Z \cong \mathscr P$. 而由于有限性和平展性都是 fpqc 局部的, 故 $Z \to X$ 仍然是有限平展映射.

命题 4.16. 给定连通概形 X 和几何点 \bar{x} .

(i) 存在范畴等价

$$\{$$
有限局部常值层 \in $\mathrm{Sh}(X_{\mathrm{\acute{e}t}})\}$ \rightarrow $\{$ 有限 $\pi_1^{\mathrm{\acute{e}t}}(X,\bar{x})$ -集 $\};$

(ii) 存在范畴等价

$$\{$$
有限局部常值层 \in $Ab(X_{\text{\'et}})\} \rightarrow \{$ 有限 $\pi_1^{\text{\'et}}(X,\bar{x})$ -模 $\}$.

证明. (i) 根据定理2.2(i) 和命题4.15, 得到结论; (ii) 即为 (i) 赋予加法结构.

4.4 Abel 群预层和层构成的范畴

固定概形 X, 可以看出 $PreAb(X_{et})$ 一定是 Abel 范畴, 它里面的正合性, 核, 余核, 积, 极限和余极限等皆为正常的定义方法. 我们主要考虑的是满子范畴 $Ab(X_{et})$, 它是加性范畴, 我们将要证明它为 Abel 范畴 (其正合性, 核, 余核, 积, 极限和余极限等和一般拓扑空间上类似, 皆为层化).

命题 4.17. 给定概形 X 和范畴 $Ab(X_{tt})$ 内的列

$$0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0.$$

则下述命题等价:

- (i) 列 $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ 在 $Ab(X_{\mathrm{\acute{e}t}})$ 内 (函子性的) 正合;
- (ii) 列 $0 \to \mathscr{F}' \to \mathscr{F} \to \mathscr{F}'' \to 0$ 在 $\operatorname{PreAb}(X_{\operatorname{\acute{e}t}})$ 内正合且 $\mathscr{F} \to \mathscr{F}''$ 满足对任意的 $U \in X_{\operatorname{\acute{e}t}}$ 和 $s \in \mathscr{F}''(U)$, 存在 $\{U_i \to U\} \in \operatorname{Cov}(U)$ 使得 $s|_{U_i}$ 在 $\mathscr{F}(U_i) \to \mathscr{F}''(U_i)$ 的像内;
 - (iii) 对所有几何点 $\bar{x} \to X$, 都有 $0 \to \mathscr{F}'_{\bar{x}} \to \mathscr{F}_{\bar{x}} \to \mathscr{F}''_{\bar{x}} \to 0$ 正合.

证明. (ii) 推 (i), 平凡. (i) 推 (iii) 由于取茎是正合函子, 故也平凡.

(iii) 推 (ii), 先证明满射部分. 任取 $U \in X_{\text{et}}$ 和几何点 $\bar{u} \to U$. 设 $\bar{x} : \bar{u} \to U \to X$ 也为几何点. 根据定义有 $\mathscr{F}_{\bar{u}} = \mathscr{F}_{\bar{x}}$, 故 $\mathscr{F}_{\bar{u}} \to \mathscr{F}''_{\bar{u}}$ 也是满射. 再由定义知道成立. 对于其他部分, 注意到 $s \in \mathscr{F}(U)$ 为零当且仅当 $s_{\bar{u}} = 0$ 即可, 这也是定义.

推论 4.18. 给定概形 X, 则范畴 $Ab(X_{\text{\'et}})$ 是 Abel 范畴.

4.5 Kummer 理论和 Artin-Schreier 列

定理 **4.19** (Kummer 正合列). 给定概形 X 和正整数 n 使得 n 在 X 内可逆 (不被任何剩余类域的特征整除), 则有 $Ab(X_{\rm ft})$ 内的正合列

$$0 \to \boldsymbol{\mu}_{n,X} \to \mathbb{G}_{m,X} \xrightarrow{t \mapsto t^n} \mathbb{G}_{m,X} \to 0.$$

证明. 显然 $\mu_{n,X}$ 为 $\mathbb{G}_{m,X} \stackrel{t \mapsto t^n}{\longrightarrow} \mathbb{G}_{m,X}$ 的核. 故只需要证明满射. 取 $U = \operatorname{Spec} A$ 是仿射的平展 X-概形, 任取 $a \in \Gamma(U,\mathbb{G}_{m,X})$,根据假设知典范映射 $V = \operatorname{Spec} A[t]/(t^n - a) \to U$ 是平展映射. 注意到对应的环同态是有限自由的,故忠实平坦,于是是满射. 因此 $V \to U$ 是平展覆盖,根据4.17即可得到结论.

定理 **4.20** (Artin-Schreier 列). 给定概形 X 和素数 p 使得在 $\Gamma(X, \mathcal{O}_X)$ 内 p=0, 则有 $\mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 内的正合列

$$0 \to \underline{\mathbb{Z}/p}\underline{\mathbb{Z}}_X \to \mathbb{G}_{a,X} \xrightarrow{t \mapsto t^p - t} \mathbb{G}_{a,X} \to 0.$$

证明. 类似于 Kummer 正合列, 注意到此时 Spec $A[t]/(t^p-t-a) \to \operatorname{Spec} A$ 是平展覆盖即可. \square

4.6 拟凝聚层

定义 4.21. 考虑景 $X_{\text{\'et}}$ 上的 $\mathcal{O}_{X,\text{\'et}}$ -模 \mathscr{P} 称之为拟凝聚的如果任取 $U\in X_{\text{\'et}}$, 存在 $\{U_i\to U\}\in \mathrm{Cov}(U)$ 使得

$$\mathscr{F}|_{X_{\operatorname{\acute{e}t}}/U_i} \cong \operatorname{coker} \left(\bigoplus_{k \in K} \mathscr{O}_{X,\operatorname{\acute{e}t}/U_i} \to \bigoplus_{l \in L} \mathscr{O}_{X,\operatorname{\acute{e}t}/U_i} \right).$$

其中 $X_{\text{\'et}}/U_i$ 是局部景, 其中的对象皆为 $V \to U_i$, 覆盖皆为 U_i -映射.

注 4.22. 这个在所有景上面都可以定义.

作为下降理论的应用, 我们有如下令人震惊的结论:

定理 4.23. 如下拟凝聚层范畴是范畴等价:

$$\operatorname{Qcoh}(X_{\operatorname{Zar}}) \to \operatorname{Qcoh}(X_{\operatorname{\acute{e}t}}), \mathscr{F} \mapsto \mathscr{F}^{\operatorname{\acute{e}t}}.$$

证明. 这个是下降理论的直接应用, 需要用到纤维范畴 QCOH 然后可以证明其为有效的 fpqc 下降, 但这个的证明非常复杂 (参考 [1] 定理 4.23). 我们推荐感兴趣的读者阅读 [8] 命题 4.3.15. \Box **注 4.24.** 作为推广我们可以考虑一些特殊的景. 也满足类似结论. 见Tag 03OJ.

5 层的一些函子

5.1 直像

定义 5.1. 考虑概形映射 $f: X \to Y$, 设 $\mathscr{P} \in \operatorname{PreSh}(X_{\operatorname{\acute{e}t}})$, 定义直像为

$$f_* \mathscr{P}(U \to Y) = \mathscr{P}(U \times_Y X \to X).$$

命题 **5.2.** 概形映射 $f: X \to Y$, 设 $\mathscr{F} \in Sh(X_{\operatorname{\acute{e}t}})$.

- (i) 必然有 $f_* \mathcal{F} \in Sh(Y_{\text{\'et}})$;
- (ii) 对于 $g: Y \to Z$, 我们有 $(g \circ f)_* = g_* \circ f_*$;
- (iii) 若视作函子 $f_*: Ab(X_{\text{\'et}}) \to Ab(Y_{\text{\'et}})$, 则左正合.

证明. 此乃定义, 略去.

命题 5.3. 考虑概形映射 $f: X \to Y$ 和几何点 $\bar{y} = \operatorname{Spec} k \to Y$, 设 $\mathscr{F} \in \operatorname{Sh}(X_{\operatorname{\acute{e}t}})$.

(i) 若 f 是闭浸入. 则

$$(f_*\mathscr{F})_{\bar{y}} = \begin{cases} \{*\} & \exists \quad \bar{y} \notin X \\ \mathscr{F}_{\bar{y}} & \exists \quad \bar{y} \in X \end{cases}$$

其中 {*} 指单点集:

- (ii) 若 f 是开浸入, 若 $\bar{y} \in X$, 则 $(f_*\mathcal{F})_{\bar{y}} = \mathcal{F}_{\bar{y}}$;
- (iii) 如果 f 是有限态射, 则

$$(f_*\mathscr{F})_{\bar{y}} = \prod_{\bar{x}: \mathrm{Spec}\; k \to X, f(\bar{x}) = \bar{y}} \mathscr{F}_{\bar{x}}.$$

若 $\mathscr{F} \in Ab(X_{\operatorname{\acute{e}t}})$,则 $(f_*\mathscr{F})_{\bar{y}} = \bigoplus_{\bar{x}: \operatorname{Spec} k \to X, f(\bar{x}) = \bar{y}} \mathscr{F}_{\bar{x}}$.

- 证明. (ii) 是平凡的;(iii) 颇为麻烦,需要用到严格 Hensel 环的性质,我们略去,参考Tag 03QP.
 - (i) 当 $\bar{y} \notin X$, 这是显然的. 下面考虑 $\bar{y} \in X$ 的情况. 考虑两个事实:

事实 1. 对任意两个平展态射 $U,U'\to Y$, 设 $h:U_X\to U_X'$ 是 X-态射, 则存在 $a:W\to U,b:W\to U'$ 使得 $a_X:W_X\to U_X$ 是同构且 $h=b_X\circ(a_X)^{-1}$.

事实 1 的证明: 设 $M=U\times_Y U'$ 和图像 $\Gamma_h\subset M_X$. 注意到 Γ_h 是平展映射 $\mathrm{pr}_{1,X}:M_X\to U_X$ 一个截面的像, 故是开的. 则存在开子概形 $W\subset M$ 使得 $W\cap M_X=\Gamma_h$. 故取 $a=\mathrm{pr}_1|_W,b=\mathrm{pr}_2|_W$ 即可

事实 2. 对平展态射 $V \to X$, 存在一族平展态射 $U_i \to Y$ 和态射 $U_{i,X} \to V$ 使得 $\{U_{i,X} \to V\}$ 是 V 的是 Zariski 覆盖.

事实 2 的证明: 不妨设 Y,V 皆为仿射的, 则化为以下简单的交换代数: 假设环 R 和理想 $I \subset R$, 设 $R/I \to S'$ 平展, 则存在平展同态 $R \to S$ 使得 $S' \cong S/IS$ 是 R/I-代数同构. 这是因为平展同

态总可以写成 $S'=(R/I)[x_1,...,x_n]/(\bar{f}_1,...,\bar{f}_n)$ 其中 $\overline{\Delta}=\det\left(\frac{\partial \bar{f}_i}{\partial x_j}\right)$ 在 S' 里可逆. 只需要提升成某些 $f_1,...,f_n$ 且设 $S=R[x_1,...,x_n,x_{n+1}]/(f_1,...,f_n,x_{n+1}\Delta-1)$, 其中 $\Delta=\det\left(\frac{\partial f_i}{\partial x_j}\right)$ 即可. 回到原结论. 注意到 $(f_*\mathscr{F})_{\bar{y}}=\varinjlim_{(U,\bar{u})}\mathscr{F}(U_X)$ 且 $\mathscr{F}_{\bar{y}}=\varinjlim_{(V,\bar{v})}\mathscr{F}(V)$. 由这两个事实可以得到 $\{(U,\bar{u})\}$ 在 $\{(V,\bar{v})\}$ 内共尾, 则得证.

5.2 逆像

定义 5.4. 考虑概形映射 $f: X \to Y$, 设 $\mathscr{F} \in Sh(Y_{\operatorname{\acute{e}t}})$, 定义逆像为

$$f^{-1}\mathscr{F} = \left((U \to X) \mapsto \varinjlim_{U \to X \times_Y V} \mathscr{F}(V \to Y) \right)^{\sharp}.$$

命题 5.5. 考虑概形映射 $f: X \to Y$, 则

- (i) 有伴随函子 (f^{-1}, f_*) ;
- (ii) 函子 $f^{-1}: Sh(Y_{\text{\'et}}) \to Sh(X_{\text{\'et}})$ 和 $f^{-1}: Ab(Y_{\text{\'et}}) \to Ab(X_{\text{\'et}})$ 正合;
- (iii) 对几何点 $\bar{x} \to X$ 和 $\mathscr{F} \in Sh(Y_{\mathrm{\acute{e}t}})$, 设 $\bar{y} = \to X \to Y$, 则 $(f^{-1}\mathscr{F})_{\bar{x}} \cong \mathscr{F}_{\bar{y}}$;
- (iv) 对 $g: Y \to Z$, 有 $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$;
- (v) 对平展映射 $V \to Y$, 有 $f^{-1}h_V = h_{X \times_V V}$.

证明. (i)(ii) 略去.(iv) 和 (v) 由伴随性和 Yoneda 引理显然. 考虑 (iii), 注意到

$$\begin{split} (f^{-1}\mathscr{F})_{\bar{x}} &= \varinjlim_{(U,\bar{u})} (f^{-1}\mathscr{F})(U) \\ &= \varinjlim_{(U,\bar{u})} \varinjlim_{a:U \to X \times_Y V} \mathscr{F}(U) \\ &= \varinjlim_{(V,a \circ \bar{u})} \mathscr{F}(V) = \mathscr{F}_{\bar{y}} \end{split}$$

即可.

命题 5.6 (基变换). 考虑纤维积

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y$$

其中 f 有限, 则 $f'_* \circ (g')^{-1} = g^{-1} \circ f_*$.

证明. 只需验证茎即可. 注意到纤维积, 对 $\mathscr{F} \in Sh(X_{\operatorname{et}})$ 考虑几何点 $\overline{y}' : \operatorname{Spec} k \to Y'$, 我们有

$$(f'_*(g')^{-1}(\mathscr{F}))_{\bar{y}'} = \prod_{\bar{x}': \operatorname{Spec} k \to X', f' \circ \bar{x}' = \bar{y}'} ((g')^{-1}(\mathscr{F}))_{\bar{x}'}$$

$$= \prod_{\bar{x}': \operatorname{Spec} k \to X', f' \circ \bar{x}' = \bar{y}'} \mathscr{F}_{g' \circ \bar{x}'}$$

$$= \prod_{\bar{x}: \operatorname{Spec} k \to X, f \circ \bar{x} = g \circ \bar{y}'} \mathscr{F}_{\bar{x}} = (f_*\mathscr{F})_{g \circ \bar{y}'} = (g^{-1}f_*\mathscr{F})_{\bar{y}'}$$

得到结论.

5.3 零扩张函子(下叹号函子)

定义 5.7. 考虑平展映射 $j: U \to X$, 定义 $j_!: \mathrm{Ab}(U_{\mathrm{\acute{e}t}}) \to \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 为

$$j_! \mathscr{F} : \left((V \mapsto X) \mapsto \bigoplus_{V \to U} \mathscr{F}(V \to U) \right)^{\sharp}.$$

命题 5.8. 对平展映射 $j: U \to X$, 有

(i) 有伴随函子 $(j_!, j^{-1})$;

(ii) 对 $\mathscr{F} \in \mathrm{Ab}(U_{\mathrm{\acute{e}t}})$ 和几何点 $\bar{x}: \mathrm{Spec}\, k \to X$ 我们有

$$(j_!\mathscr{F})_{\bar{x}} = \bigoplus_{\bar{u}: \mathrm{Spec}\, k \to U, j(\bar{u}) = \bar{x}} \mathscr{F}_{\bar{u}},$$

特别的, 函子 j_1 正合;

(iii) 若 j 有限平展, 则存在 $j_! \rightarrow j_*$ 使得对任何 $Ab(U_{\mathrm{\acute{e}t}})$ 都同构;

(iv) 若 j 是开浸入,则对 $\mathscr{F} \in Ab(U_{\text{\'et}})$ 有 $j^{-1}j_*\mathscr{F} \to \mathscr{F}$ 和 $\mathscr{F} \to j^{-1}j_!\mathscr{F}$ 是同构. 事实上 $j_!\mathscr{F}$ 是唯一一个使得限制在 U 上是 \mathscr{F} , 且在其他地方的茎是 0 的 Abel 群层.

证明. (i)(iv) 平凡, 略去.(iii) 只需要考虑平展局部, 用引理4.14(ii) 即可验证. 考虑 (ii), 映射为

$$(j_{!}\mathscr{F})_{\bar{x}} = \varinjlim_{(V,\bar{v})} (j_{!}\mathscr{F})(V) = \varinjlim_{(V,\bar{v})} \bigoplus_{\phi:V \to U} \mathscr{F}(\phi)$$

$$\to \bigoplus_{\bar{u}: \operatorname{Spec} k \to U, j(\bar{u}) = \bar{x}} \mathscr{F}_{\bar{u}}.$$

同构参考Tag 03S5.

命题 5.9 (基变换). (i) 设 $f: Y \to X$ 是概形映射且 $j: V \to X$ 平展, 考虑纤维积

$$\begin{array}{ccc} Y \times_X V & \xrightarrow{f'} V \\ \downarrow j' & & \downarrow j \\ Y & \xrightarrow{f} & X \end{array}$$

则有 $j'_{1} \circ (f')^{-1} = f^{-1} \circ j_{!};$

(ii) 设 $f:X\to Y$ 是有限映射且 $j:V\to Y$ 开浸入, 且基变换之后 $g:U=X\times_YV\to V$ 平展, 设 $j':U\to X$, 则有 $f_*\circ j_*'=j_!\circ g_*$.

证明. (i) 考虑二者的右伴随函子, 然后因为直像和平展局部化交换即可得到结论:

(ii) 首先考虑 Y 的不在 U 内的几何点上的茎不难得知二者皆为零. 其次用命题5.8(iv) 和命题5.6, 得到同构

$$j^{-1}f_*j'_!\mathscr{F} = g_*(j')^{-1}j'_!\mathscr{F} = g_*\mathscr{F}.$$

再次用命题5.8(iv) 即可得到结论.

命题 5.10. 对于概形 X 和闭子概形 $i:Z\to X$ 及其补 $j:U\to X$, 则对任何 $\mathscr{F}\in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 有正合列

$$0 \to i_! i^{-1} \mathscr{F} \to \mathscr{F} \to i_* i^{-1} \mathscr{F} \to 0.$$

证明. 分情况不难根据定义得到取茎之后正合, 然后用命题4.17即可.

6 平展上同调的定义和基本性质

6.1 定义

引理 6.1. 对概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 存在内射对象 $\mathscr{I} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$ 使得有单射 $\mathscr{F} \hookrightarrow \mathscr{I}$.

证明. 任取 $x \in X$ 和在其上的几何点 $i_x : \bar{x} \to X$, 取内射 Abel 群满足 $\mathscr{F}_{\bar{x}} \hookrightarrow I(x)$. 则 $\mathscr{I}(x) := i_{x,*}I(x)$ 是内射的, 故取 $\mathscr{I} = \prod_{x \in X} \mathscr{I}(x)$ 即可得到 $\mathscr{F} \hookrightarrow \prod_{x \in X} \mathscr{F}_{\bar{x}} \hookrightarrow \mathscr{I}$.

定义 6.2. 对概形 X 和 $\mathscr{F} \in \mathrm{Ab}(X_{\mathrm{\acute{e}t}})$, 不难得知截面函子 $\Gamma(X_{\mathrm{\acute{e}t}},-)$ 左正合. 由引理6.1知有内射预解 $\mathscr{F} \hookrightarrow \mathscr{I}^*$, 则定义 X 上 \mathscr{F} 的平展上同调为

$$H^i_{\text{\'et}}(X,\mathscr{F}) := R^i \Gamma(X_{\text{\'et}},\mathscr{F}) = H^i \Gamma(X_{\text{\'et}},\mathscr{I}^*).$$

6.2 群上同调一瞥

几何人可以通过这里速成一下群的上同调理论.

定义 6.3. 设 G 是拓扑群.

- (i) 一个 Abel 群 M(赋予离散拓扑) 称为 G-模, 如果有连续作用 $G \times M \to M$;
- (ii) 设 Mod_G 是 G-模构成的范畴. 根据 $Tag\ 04JF$, 范畴 Mod_G 有足够内射对象. 考虑左正合函子

$$\Gamma_G: \mathrm{Mod}_G \to \mathrm{AbGrps}, M \mapsto M^G,$$

定义群 G 的 (连续) 上同调为 $H^i(G,M) = R^i\Gamma_G(M)$. 若 G 是 Galois 群则成为 Galois 上同调.

命题 6.4. 对于群 G, 考虑群环 $\mathbb{Z}[G]$, 那么有自然的范畴等价 $\mathrm{Mod}_G \to \mathrm{Mod}_{\mathbb{Z}[G]}$. 设 \mathbb{Z} 可以经过平凡 G 作用来作为 $\mathbb{Z}[G]$ 模, 则 $H^i(G,M) \cong \mathrm{Ext}^i_{\mathbb{Z}[G]}(\mathbb{Z},M)$.

定理 6.5 (Tate). 设 M 是拓扑群并且赋予连续 G-作用. 考虑复形

$$C^*_{\mathrm{cont}}(G, M) : M \to \mathrm{Maps}_{\mathrm{cont}}(G, M) \to \mathrm{Maps}_{\mathrm{cont}}(G \times G, M) \to \cdots$$

其中边界算子为当 n=0, 则 $m\mapsto (g\mapsto g(m)-m)$; 当 n>0 时定义为

$$d(f)(g_1, ..., g_{n+1}) = g_1(f(g_2, ..., g_{n+1}))$$

$$+ \sum_{j=1}^{n} (-1)^j f(g_1, ..., g_j g_{j+1}, ..., g_{n+1})$$

$$+ (-1)^{n+1} f(g_1, ..., g_n).$$

这样定义 Tate 连续上同调为 $H^i_{\mathrm{cont}}(G,M):=H^i(C^*_{\mathrm{cont}}(G,M))$. 则对于 $M\in\mathrm{Mod}_G$,存在典范映射 $H^i(G,M)\to H^i_{\mathrm{cont}}(G,M)$. 并且当 G 是离散群或者射有限群, 则为同构 $H^i(G,M)\cong H^i_{\mathrm{cont}}(G,M)$.

证明. 映射 $H^i(G,M) \to H^i_{cont}(G,M)$ 通过万有 δ -函子不难诱导. 证明见 [7] 第二章.

6.3 点的上同调

和代数拓扑里不同,一个点的平展上同调也是很复杂的.

引理 6.6. 设 $x = \operatorname{Spec} k$, 固定几何点 $\bar{x} = \operatorname{Spec} \Omega$. 取 $\mathscr{F} \in \operatorname{Ab}(x_{\operatorname{\acute{e}t}})$, 则

$$\Gamma(x,\mathscr{F}) \cong (\mathscr{F}_{\bar{x}})^{\operatorname{Gal}(k^{\operatorname{sep}}/k)}.$$

证明.

- 6.4 支撑在闭集的上同调及性质
- 7 Čech 上同调和挠子
- 7.1 Čech 上同调
- 7.2 Čech-导出的比较
- 7.3 几个应用
- 7.4 拟凝聚层的上同调
- 7.5 挠子理论一瞥和应用
- 8 高阶直像
- 9 曲线的上同调——基础结果
- 10 可构建层和挠层
- 11 曲线上挠层的上同调
- 12 上同调维数

Part II 反常层基础理论

- 13 反常层简介
- 14 一些同调代数

索引

G-模,15 $\mathrm{GL}_{n,X}$,8 $\mathbb{G}_{a,X}$,7 $\mathbb{G}_{m,X}$,8 $\boldsymbol{\mu}_{n,X}$,7 $\mathscr{O}_{X,\bar{x}}^{\mathrm{sh}}$,9

Galois 上同调, 15 Grothendieck 意象, 6 Grothendieck 拓扑, 5

Hensel 局部环, 9 Hensel 引理, 9

Riemann 存在定理, 5

Tate 连续上同调, 15

Weil 猜想, 3

严格 Hensel 化,9 严格 Hensel 局部环,9

分离预层,6

局部常值层, 10

层,6 层化,6 常值层,10 平展上同调,15 平展基本群,4

拟凝聚层, 8 摩天大厦层, 9

景, 5

有限局部常值层,10

直像, 12 纤维函子, 4 结构层, 7 群上同调, 15

茎, 9

逆像, 13 零扩张函子, 14 预层, 6

参考文献

- [1] Barbara Fantechi, Lothar Göttsche, Luc Illusie, Steven L. Kleiman, Nitin Nitsure, and Angelo Vistoli. Fundamental Algebraic Geometry, Grothendieck's FGA Explained. AMS, 2005.
- [2] Alexander Grothendieck and Michele Raynaud. Revêtements étales et groupe fondamental (SGA 1). Springer-Verlag, 1971.
- [3] Robin Hartshorne. Algebraic geometry, volume 52. Springer, 1977.
- [4] Fu Lei. Étale Cohomology Theory, Revised Version. World Scientific, 2015.
- [5] James S. Milne. Étale Cohomology. Princeton university press, 1980.
- [6] James S. Milne. Lectures on étale cohomology, 2013. Available at www.jmilne.org/math/.
- [7] James S. Milne. Class field theory, 2020. Available at www.jmilne.org/math/.
- [8] Martin Olsson. Algebraic Spaces and Stacks. AMS, 2016.
- [9] Stacks project collaborators. The stacks project, 2023. https://stacks.math.columbia.edu/.