What Is Claimed Is:

l	1. A method for using a computer system to solve a global inequality		
2	constrained optimization problem specified by a function f and a set of inequality		
3	constraints $p_i(\mathbf{x}) \le 0$ ($i=1,,m$), wherein f and p_i are scalar functions of a vector		
4	$\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method comprising:		
5	receiving a representation of the function f and the set of inequality		
6	constraints at the computer system;		
7	storing the representation in a memory within the computer system;		
8	performing an interval inequality constrained global optimization process		
9	to compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$		
0	subject to the set of inequality constraints;		
1	wherein performing the interval global optimization process involves,		
12	applying term consistency to the set of inequality		
13	constraints over a subbox X , and		
4	excluding any portion of the subbox X that is proved to be		
15	in violation of at least one member of the set of inequality		
16	constraints.		
1	2. The method of claim 1, further comprising:		
2	linearizing the set of inequality constraints to produce a set of linear		
3	inequality constraints with interval coefficients that enclose the nonlinear		
4	constraints;		
5	preconditioning the set of linear inequality constraints through additive		
6	linear combinations to produce a preconditioned set of linear inequality		
7	constraints;		

8	applying term consistency to the set of preconditioned linear inequality		
9	constraints over the subbox X , and		
10	excluding any portion of the subbox X that violates any member of the se		
11	of preconditioned linear inequality constraints.		
1	3. The method of claim 2, further comprising:		
2	keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible		
3	point x wherein $p_i(\mathbf{x}) \leq 0$ ($i=1,,m$); and		
4	including $f(\mathbf{x}) \leq f_b ar$ in the set of inequality constraints prior to		
5	linearizing the set of inequality constraints.		
1	4. The method of claim 2, further comprising removing from		
2	consideration any inequality constraints that are not violated by more than a		
3	specified amount for purposes of applying term consistency prior to linearizing		
4	the set of inequality constraints.		
1	5. The method of claim 1, wherein performing the interval global		
2	optimization process involves:		
3	keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible		
4	point x;		
5	removing from consideration any subbox for which $f(\mathbf{x}) > f_bar$;		
6	applying term consistency to the f_bar inequality $f(\mathbf{x}) \leq f_bar$ over the		
7	subbox X; and		
8	excluding any portion of the subbox X that violates the f_bar inequality.		

1 6. The method of claim 1, wherein if the subbox X is strictly feasible 2 $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,...,n)$, performing the interval global optimization process 3 involves: 4 determining a gradient g(x) of the function f(x), wherein g(x) includes 5 components $g_i(\mathbf{x})$ (i=1,...,n); 6 removing from consideration any subbox for which g(x) is bounded away 7 from zero, thereby indicating that the subbox does not include an extremum of $f(\mathbf{x})$; and 8 9 applying term consistency to each component $g_i(\mathbf{x})=0$ (i=1,...,n) of $\mathbf{g}(\mathbf{x})=\mathbf{0}$ 10 over the subbox X; and excluding any portion of the subbox X that violates any component of 11 12 g(x)=0. 7. The method of claim 1, wherein if the subbox X is strictly feasible 1 2 $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,...,n)$, performing the interval global optimization process 3 involves: 4 determining diagonal elements $H_{ii}(\mathbf{x})$ (i=1,...,n) of the Hessian of the 5 function $f(\mathbf{x})$; 6 removing from consideration any subbox for which $H_n(\mathbf{x})$ a diagonal 7 element of the Hessian over the subbox X is always negative, indicating that the 8 function f is not convex over the subbox X and consequently does not contain a 9 global minimum within the subbox X; 10 applying term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ (i=1,...,n) over the 11 subbox X; and

excluding any portion of the subbox **X** that violates a Hessian inequality.

1	8. The method of claim 1, wherein if the subbox \mathbf{X} is strictly feasible		
2	$(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval global optimization process		
3	involves:		
4	performing the Newton method, wherein performing the Newton method		
5	involves,		
6	computing the Jacobian $J(x,X)$ of the gradient of the		
7	function f evaluated with respect to a point \mathbf{x} over the subbox \mathbf{X} ,		
8	computing an approximate inverse B of the center of		
9	J(x,X),		
10	using the approximate inverse B to analytically determine		
11	the system $Bg(x)$, wherein $g(x)$ is the gradient of the function $f(x)$,		
12	and wherein $\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ $(i=1,,n)$;		
13	applying term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for		
14	each variable x_i ($i=1,,n$) over the subbox \mathbf{X} ; and		
15	excluding any portion of the subbox X that violates a component.		
1	9. The method of claim 1, wherein applying term consistency		
2	involves:		
3	symbolically manipulating an equation within the computer system to		
4	solve for a term, $g(x'_j)$, thereby producing a modified equation $g(x'_j) = h(\mathbf{x})$,		
5	wherein the term $g(x')$ can be analytically inverted to produce an inverse function		
6	$g^{-l}(\mathbf{y});$		
7	substituting the subbox X into the modified equation to produce the		
8	equation $g(X'_j) = h(\mathbf{X});$		
9	solving for $X'_{J} = g^{-l}(h(\mathbf{X}))$; and		
10	intersecting X'_j with the j -th element of the subbox X to produce a new		
11	subbox X^+ ;		

12	wherein the new subbox \mathbf{X}^+ contains all solutions of the equation within		
13	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to		
14	the size of the subbox \mathbf{X} .		
1	10. The method of claim 1, further comprising performing the Newton		
2	method on the John conditions.		
1	11. A computer-readable storage medium storing instructions that		
2	when executed by a computer cause the computer to perform a method for using a		
3	computer system to solve a global inequality constrained optimization problem		
4	specified by a function f and a set of inequality constraints $p_i(\mathbf{x}) \le 0$ $(i=1,,m)$,		
5	wherein f is a scalar function of a vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the method		
6	comprising:		
7	receiving a representation of the function f and the set of inequality		
8	constraints at the computer system;		
9	storing the representation in a memory within the computer system;		
10	performing an interval inequality constrained global optimization process		
11	to compute guaranteed bounds on a globally minimum value of the function $f(\mathbf{x})$		
12	subject to the set of inequality constraints;		
13	wherein performing the interval global optimization process involves,		
14	applying term consistency to the set of inequality		
15	constraints over a subbox X, and		
16	excluding any portion of the subbox X that is proved to be		
17	in violation of at least one member of the set of inequality		
18	constraints.		

constraints.

1	12. The computer-readable storage medium of claim 11, wherein the		
2	method further comprises:		
3	linearizing the set of inequality constraints to produce a set of linear		
4	inequality constraints with interval coefficients that enclose the nonlinear		
5	constraints;		
6	preconditioning the set of linear inequality constraints through additive		
7	linear combinations to produce a preconditioned set of linear inequality		
8	constraints;		
9	applying term consistency to the set of preconditioned linear inequality		
10	constraints over the subbox X, and		
11	excluding any portion of the subbox X that violates any member of the set		
12	of preconditioned linear inequality constraints.		
1	13. The computer-readable storage medium of claim 12, wherein the		
2	method further comprises:		
3	keeping track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible		
4	point x wherein $p_i(\mathbf{x}) \leq 0$ ($i=1,,m$); and		
5	including $f(\mathbf{x}) \le f_bar$ in the set of inequality constraints prior to		
6	linearizing the set of inequality constraints.		
1	14. The computer-readable storage medium of claim 12, wherein the		
2	method further comprises removing from consideration any inequality constraints		
3	that are not violated by more than a specified amount for purposes of applying		

1 15. The computer-readable storage medium of claim 11, wherein 2 performing the interval global optimization process involves:

term consistency prior to linearizing the set of inequality constraints.

1	keeping track of a least upper bound f_bar of the function $f(x)$ at a feasible			
2	point x;			
3	removing from consideration any subbox for which $f(\mathbf{x}) > f_bar$;			
4	applying term consistency to the f_bar inequality $f(\mathbf{x}) \le f_bar$ over the			
5	subbox X ; and			
6	excluding any portion of the subbox \mathbf{X} that violates the f_bar inequality.			
1	16. The computer-readable storage medium of claim 11, wherein if the			
2	subbox X is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval			
3	global optimization process involves:			
4	determining a gradient $g(x)$ of the function $f(x)$, wherein $g(x)$ includes			
5	components $g_i(\mathbf{x})$ $(i=1,,n)$;			
6	removing from consideration any subbox for which $g(x)$ is bounded away			
7	from zero, thereby indicating that the subbox does not include an extremum of			
8	$f(\mathbf{x})$; and			
9	applying term consistency to each component $g_i(\mathbf{x})=0$ ($i=1,,n$) of $\mathbf{g}(\mathbf{x})=0$			
10	over the subbox X ; and			
11	excluding any portion of the subbox X that violates any component of			
12	$\mathbf{g}(\mathbf{x})=0$.			
1	17. The computer-readable storage medium of claim 11, wherein if the			
2	subbox X is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval			
3	global optimization process involves:			
4	determining diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the Hessian of the			
5	function $f(\mathbf{x})$;			
6	removing from consideration any subbox for which $H_n(\mathbf{x})$ a diagonal			

element of the Hessian over the subbox X is always negative, indicating that the

function f is not convex over the subbox X and consequently does not contain a		
global minimum within the subbox X ;		
applying term consistency to each inequality $H_{ii}(\mathbf{x}) \ge 0$ ($i=1,,n$) over the		
subbox X ; and		
excluding any portion of the subbox X that violates a Hessian inequality.		
18. The computer-readable storage medium of claim 11, wherein if the		
subbox X is strictly feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$, performing the interval		
global optimization process involves:		
performing the Newton method, wherein performing the Newton method		
involves,		
computing the Jacobian $J(x,X)$ of the gradient of the		
function f evaluated with respect to a point \mathbf{x} over the subbox \mathbf{X} ,		
computing an approximate inverse B of the center of		
J(x,X),		
using the approximate inverse $\bf B$ to analytically determine		
the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,		
and wherein $\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ $(i=1,,n)$;		
applying term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$ $(i=1,,n)$ for		
each variable x_i ($i=1,,n$) over the subbox X ; and		
excluding any portion of the subbox X that violates a component.		
excidenting any portion of the subbox A that violates a component.		
19. The computer-readable storage medium of claim 11, wherein		
applying term consistency involves:		
symbolically manipulating an equation within the computer system to		
solve for a term, $g(\mathbf{x}'_j)$, thereby producing a modified equation $g(\mathbf{x}'_j) = h(\mathbf{x})$,		

1

11

constraints;

the size of the subbox X.

21.

5 wherein the term g(x') can be analytically inverted to produce an inverse function $g^{-l}(\mathbf{y});$ 6 7 substituting the subbox X into the modified equation to produce the 8 equation $g(X'_{l}) = h(X)$; solving for $X'_{l} = g^{-l}(h(X))$; and 9 10 intersecting X', with the j-th element of the subbox \mathbf{X} to produce a new subbox **X**⁺; 11 wherein the new subbox X^+ contains all solutions of the equation within 12 the subbox X, and wherein the size of the new subbox X^+ is less than or equal to 13

1 20. The computer-readable storage medium of claim 11, wherein the method further comprises performing the Newton method on the John conditions.

An apparatus for using a computer system to solve a global

- 2 inequality constrained optimization problem specified by a function f and a set of 3 inequality constraints $p_i(\mathbf{x}) \leq 0$ (i=1,...,m), wherein f is a scalar function of a 4 vector $\mathbf{x} = (x_1, x_2, x_3, \dots x_n)$, the apparatus comprising: a receiving mechanism that is configured to receive a representation of the 5 6 function f and the set of inequality constraints at the computer system; 7 a memory within the computer system for storing the representation; 8 a global optimizer that is configured to perform an interval inequality 9 constrained global optimization process to compute guaranteed bounds on a 10 globally minimum value of the function $f(\mathbf{x})$ subject to the set of inequality
- 12 a term consistency mechanism within the global optimizer that is 13 configured to,

14	apply term consistency to the set of inequality constraints			
15	over a subbox X , and to			
16	exclude any portion of the subbox X that is proved to be in			
17	violation of at least one member of the set of inequality constraints			
1	22. The apparatus of claim 21, further comprising:			
2	a linearizing mechanism that is configured to linearize the set of inequality			
3	constraints to produce a set of linear inequality constraints with interval			
4	coefficients that enclose the nonlinear constraints; and			
5	a preconditioning mechanism that is configured to precondition the set of			
6	linear inequality constraints through additive linear combinations to produce a			
7	preconditioned set of linear inequality constraints;			
8	wherein the term consistency mechanism is configured to,			
9	apply term consistency to the set of preconditioned linear			
10	inequality constraints over the subbox X , and to			
11	exclude any portion of the subbox X that violates any			
12	member of the set of preconditioned linear inequality constraints.			
1	22 The annual of aloing 22 whomain the global antimizer is			
1	23. The apparatus of claim 22, wherein the global optimizer is			
2	configured to:			
3	keep track of a least upper bound f_bar of the function $f(\mathbf{x})$ at a feasible			
4	point x wherein $p_i(\mathbf{x}) \leq 0$ ($i=1,,m$); and to			
5	include $f(\mathbf{x}) \le f_bar$ in the set of inequality constraints prior to linearizing			
6	the set of inequality constraints.			
1	24. The apparatus of claim 22, wherein the term consistency			
2	mechanism is configured to remove from consideration any inequality constraints			

8

9

10

11

3	that are not violated by more than a specified amount for purposes of applying		
4	term consistency prior to linearizing the set of inequality constraints.		
1	25. The apparatus of claim 21,		
2	wherein the global optimizer is configured to,		
3	keep track of a least upper bound f_bar of the function $f(\mathbf{x})$		
4	at a feasible point \mathbf{x} , and to		
5	remove from consideration any subbox for which		
6	$f(\mathbf{x}) > f_bar;$		
7	wherein the term consistency mechanism is configured to,		
8	apply term consistency to the f_bar inequality $f(\mathbf{x}) \leq f_bar$		
9	over the subbox X , and to		
10	exclude any portion of the subbox \mathbf{X} that violates the f_bar		
11	inequality.		
1	26. The apparatus of claim 21, wherein if the subbox \mathbf{X} is strictly		
2	feasible $(p_i(\mathbf{X}) < 0 \text{ for all } i=1,,n)$:		
3	the global optimizer is configured to,		
4	determine a gradient $g(x)$ of the function $f(x)$, wherein $g(x)$		
5	includes components $g_i(\mathbf{x})$ ($i=1,,n$), and to		
6	remove from consideration any subbox for which $g(x)$ is		
7	bounded away from zero, thereby indicating that the subbox does		

(i=1,...,n) of $\mathbf{g}(\mathbf{x})=0$ over the subbox \mathbf{X} , and to

apply term consistency to each component $g_i(\mathbf{x}) = 0$

not include an extremum of $f(\mathbf{x})$; and

the term consistency mechanism is configured to,

12		exclude any portion of the subbox X that violates any		
13	component of $g(x)=0$.			
1	27.	The apparatus of claim 21, wherein if the subbox \mathbf{X} is strictly		
2	feasible $(p_i(\mathbf{X}))$	(i) < 0 for all i=1,,n):		
3	the gl	obal optimizer is configured to,		
4		determine diagonal elements $H_{ii}(\mathbf{x})$ ($i=1,,n$) of the		
5		Hessian of the function $f(\mathbf{x})$, and to		
6		remove from consideration any subbox for which $H_{II}(\mathbf{x})$ a		
7		diagonal element of the Hessian over the subbox \mathbf{X} is always		
8		negative, indicating that the function f is not convex over the		
9		subbox X and consequently does not contain a global minimum		
10		within the subbox X ; and		
11	the term consistency mechanism is configured to,			
12		apply term consistency to each inequality $H_{II}(\mathbf{x}) \geq 0$		
13		(i=1,,n) over the subbox X , and to		
14		exclude any portion of the subbox \mathbf{X} that violates a Hessian		
15		inequality.		
1	28.	The apparatus of claim 21, wherein if the subbox \mathbf{X} is strictly		
2	feasible $(p_i(\mathbf{X}))$	K(n) < 0 for all i=1,,n):		
3	the global optimizer is configured to perform the Newton method, wherein			
4	performing the Newton method involves,			
5		computing the Jacobian $J(x,X)$ of the gradient of the		
6		function f evaluated with respect to a point \mathbf{x} over the subbox \mathbf{X} ,		
7		computing an approximate inverse B of the center of		
8		J(x,X), and		

2

9	using the approximate inverse B to analytically determine		
10	the system $\mathbf{Bg}(\mathbf{x})$, wherein $\mathbf{g}(\mathbf{x})$ is the gradient of the function $f(\mathbf{x})$,		
11	and wherein $\mathbf{g}(\mathbf{x})$ includes components $g_i(\mathbf{x})$ ($i=1,,n$); and		
12	the term consistency mechanism is configured to,		
13	apply term consistency to each component $(\mathbf{Bg}(\mathbf{x}))_i = 0$		
14	$(i=1,,n)$ for each variable x_i $(i=1,,n)$ over the subbox X , and to		
15	exclude any portion of the subbox \mathbf{X} that violates a		
16	component.		
1	29. The apparatus of claim 21, wherein the term consistency		
2	mechanism is configured to:		
3	symbolically manipulate an equation within the computer system to solve		
4	for a term, $g(x'_j)$, thereby producing a modified equation $g(x'_j) = h(\mathbf{x})$, wherein		
5	the term $g(x'_j)$ can be analytically inverted to produce an inverse function $g^{-1}(y)$;		
6	substitute the subbox X into the modified equation to produce the equation		
7	$g(X'_{J}) = h(X);$		
8	solve for $X'_{J} = g^{-l}(h(\mathbf{X}))$; and		
9	intersect X'_j with the j-th element of the subbox X to produce a new		
10	subbox X ⁺ ;		
11	wherein the new subbox \mathbf{X}^+ contains all solutions of the equation within		
12	the subbox X , and wherein the size of the new subbox X^+ is less than or equal to		
13	the size of the subbox \mathbf{X} .		

30. The apparatus of claim 21, wherein the global optimizer is configured to apply the Newton method to the John conditions.