

Лекция 5 Классификация и регрессия

Николай Анохин

21 октября 2015 г.

План занятия

Задачи классификации и регрессии

Некоторые полезные идеи

Оценка качетва классификации

Задачи классификации и регрессии

Классификация: интуиция

Задача

Разработать алгоритм, позволяющий определить класс произвольного объекта из некоторго множества

▶ Дана обучающая выборка, в которой для каждого объекта известен класс

Регрессия: интуиция

Задача

Разработать алгоритм, позволяющий предсказать числовую характеристику произвольного объекта из некоторого множества

► Дана *обучающая выборка*, в которой для каждого объекта известно значение числовой характеристики

Обучение с учителем / supervised learning

Дано. Признаковые описания N объектов $\mathbf{x}=(x_1,\ldots,x_m)\in\mathcal{X}$, образующие тренировочный набор данных X, и значения целевой переменной $y=f(\mathbf{x})\in\mathcal{Y}$ для каждого объекта из X.

Найти. Для семейства параметрических функций

$$H = \{h(\mathbf{x}, \theta) = y : \mathcal{X} \times \Theta \to \mathcal{Y}\},\$$

найти значение вектора параметров θ^* , такое что $h^*(\mathbf{x}) = h(\mathbf{x}, \theta^*)$ наилучшим образом приближает целевую функцию.

$$Y \in \{C_1, C_2, \dots, C_N\}$$
 — задача классификации $Y \in [a,b] \subset \mathcal{R}$ — задача регресии

$$L = R + E + O$$

R Выдвигаем гипотезу насчет **модели** - семейства параметрических функций вида

$$H = \{h(\mathbf{x}, \theta) = y : \mathcal{X} \times \Theta \to \mathcal{Y}\},\$$

которая могла бы решить нашу задачу (represenation)

- E Выбиаем критерий, на основании которого будем оценивать качество предсказания (evaluation)
- O Выбираем наилучшие параметры модели θ^* , используя алгоритм обучения

$$A(X,Y):(\mathcal{X},\mathcal{Y})^N\to\Theta$$

(optimization)

D Используя полученную модель $h^*(\mathbf{x}) = h(\mathbf{x}, \theta^*)$, решаем, как классифицировать неизвестные объекты (decision making)

Некоторые полезные идеи

Цены на недвижимость 1

¹California Housing data set

Преобразование данных

- ▶ Нормализуем широту, долготу
- ▶ Логарифм от целевой переменной

Метод ближайших соседей

K-Nearest Neighbours

Representation:

$$h(\mathbf{x}) = \frac{1}{K} \sum_{\mathbf{x}_k \in N_K(\mathbf{x})} f(\mathbf{x}_k)$$

Evaluation: любая

Optimization: не требуется

Классификация с помощью метода ближайших соседей

Representation: линейная модель

Идея: предположить, что искомая функция линейно зависит от признаков

$$y = h(\mathbf{x}, \mathbf{w}) = \sum_{d=1}^{D} x_d w_d + w_0 = \mathbf{x}^T \mathbf{w} + w_0$$

Добавим к x фиктивный компонент $x_0=1$

$$y = h(\mathbf{x}, \mathbf{w}) = \sum_{d=0}^{D} x_d w_d = \mathbf{x}^T \mathbf{w},$$

тогда для всего набора данных

$$Y = X\mathbf{w}$$

Evaluation: метод наименьших квадратов

Идея: выбрать веса так, чтобы сумма квадратов отклонений предсказаний от реальных значений была минимальной

$$RSS(\mathbf{w}) = \sum_{n=1}^{N} (y_n - h(\mathbf{x}_n, \mathbf{w}))^2 = \sum_{n=1}^{N} (y_n - \mathbf{x}_n^T \mathbf{w})^2 \to \min_{\mathbf{w}}$$

Optimization: аналитически

$$RSS(\mathbf{w}) = (Y - X^{T}\mathbf{w})^{T}(Y - X^{T}\mathbf{w})$$

$$\downarrow \downarrow$$

$$\mathbf{w} = (X^{T}X)^{-1}X^{T}Y$$

Нелинейные зависимости

Перейдем в новое пространство признаков

$$\mathbf{x} = (x_1, x_2, \dots, x_D)$$

$$\downarrow$$

$$\mathbf{z} = (x_1, x_2, \dots, x_D, x_1^2, x_1 x_2, x_1 x_3, \dots, x_{D-1} x_D, x_D^2, \dots)$$

и сможем приближать сложные нелинейные функции

Эмпирический риск

Функция потерь $\mathcal{L}(\mathbf{x},y,\theta)$ - ошибка, которую для данного \mathbf{x} дает модель $h(\mathbf{x},\theta)$ по сравнению с реальным значением y

Эмпирический риск – средняя ошибка на обучающей выборке

$$Q(X, Y, \theta) = \frac{1}{N} \sum_{n=1}^{N} \mathcal{L}(\mathbf{x}_n, y_n, \theta)$$

 ${f 3}$ адача — найти значение $heta^*$, минимизирующее эмпирический риск

$$\theta^* = \theta^*(X, Y) = \operatorname{argmin}_{\theta} Q(X, Y, \theta)$$

Некоторые функции потерь

▶ Индикатор ошибки

$$\mathcal{L}(\mathbf{x}, y, \theta) = 0$$
 if $h(\mathbf{x}, \theta) = y$ else 1

Функция Минковского

$$\mathcal{L}(\mathbf{x}, y, \theta) = |y - h(\mathbf{x}, \theta)|^q$$

Частные случаи: квадратичная q=2, абсолютная ошибка q=1

Hinge

$$\mathcal{L}(\mathbf{x}, y, \theta) = \max(0, 1 - y \times h(\mathbf{x}, \theta))$$

Информационная

$$\mathcal{L}(\mathbf{x}, y, \theta) = -\log_2 p(y|\mathbf{x}, \theta)$$

Классификация с помощью метода наименьших квадратов

Пусть
$$\mathcal{Y}=\{0,1\},\;$$
 тогда $\left\{$ классифицируем 1, если $h^*(\mathbf{x})\geq 0.5$ классифицируем 0, если $h*(\mathbf{x})<0.5$

Bias-Variance decomposition

Пусть
$$y = f(\mathbf{x}) + \varepsilon$$
, $E[\varepsilon] = 0$, модель $h(\mathbf{x})$

$$E[(f(\mathbf{x}) + \varepsilon - h(\mathbf{x}))^2] = E[\varepsilon^2] + (f(\mathbf{x}) - E[h(\mathbf{x})])^2 + E[(h(\mathbf{x}) - E[h(\mathbf{x})])^2]$$

$$= noise + bias^2 + variance$$

Замечание: соотношение сохраняется для других функций потерь

Проблема 1. Переобучение

Метод наименьших квадратов

Проблема 1. Переобучение

KNN

Проблема 2. Проклятие размерности

Оценка качетва классификации

Как оценить различные модели?

Идея

использовать долю неверно классифицированных объектов (error rate)

Важное замечание

error rate на обучающей выборке **HE** является хорошим показателем качества модели

Решение 1: разделение выборки

Делим обучающую выборку на тренировочную, валидационную и тестовую

Решение 2: скользящий контроль (n-times) (stratified) cross-validation

частный случай: leave-one-out

Решение 3: bootstrap

выбираем в тренировочную выбоку n объектов с возвращением

упражнение: найти математическое ожидание размера тестовой выборки.

Доверительный интервал для success rate

При тестировании на N=100 объектах было получено 25 ошибок. Таким образом измеренная вероятность успеха (success rate) составила f=0.75. Найти доверительный интервал для действительной вероятности успеха с уровнем доверия $\alpha=0.8$.

Решение

Пусть p – действительная вероятность успеха в испытаниях бернулли, тогда

$$f \sim \mathcal{N}(p, p(1-p)/N)$$
.

Воспользовавшись табличным значением $P(-z \leq \mathcal{N}(0,1) \leq z) = lpha$, имеем

$$P\left(-z \le \frac{f-p}{\sqrt{p(1-p)/N}} \le z\right) = \alpha,$$

откуда

$$p \in \left(f + \frac{z^2}{2N} \pm z\sqrt{\frac{f}{N} - \frac{f^2}{N} + \frac{z^2}{4N^2}}\right) / \left(1 + \frac{z^2}{N}\right) = [0.69, 0.80]$$

Метрики качества. Вероятностные модели.

Пусть y_i - действительный класс для объекта \mathbf{x}_i

► Information loss

$$-\frac{1}{N}\sum_{i}\log_{2}p(y_{i}|\mathbf{x}_{i})$$

Quadratic loss

$$\frac{1}{N}\sum_{i}(p(y_{j}|\mathbf{x}_{i})-a_{j}(\mathbf{x}_{i}))^{2},$$

где

$$a_j(\mathbf{x}_i) = egin{cases} 1, \; ext{если} \; C_j = y_i \ 0, \; ext{иначе} \end{cases}$$

Метрики качества. Функции решения.

		Предсказанный	
		true	false
Действительный	true	TP	FN
	false	FP	TN

$$success \ rate = accuracy = \frac{TP + TN}{TP + FP + FN + TN}$$

$$recall = TPR = \frac{TP}{TP + FN}; \quad precision = \frac{TP}{TP + FP}$$

$$FPR = \frac{FP}{FP + TN}$$

$$affinity = lift = \frac{precision}{p}$$

Receiver Operating Characteristic

Упражнение

Простые классификаторы

В генеральной совокупности существуют объекты 3 классов, вероятность появления которых $p_1 < p_2 < p_3$. Первый классификатор относит все объекты к классу с большей вероятностью (то есть к третьему). Второй классификатор случайно относит объект к одному из классов в соответствии с базовым распределением. Рассчитать precision и recall, которые эти классификаторы дают для каждого из 3 классов.

Метрики качества. Регрессия

$$MSE = \frac{1}{N} \sum (h(\mathbf{x}_i) - y_i)^2, \quad RMSE = \sqrt{MSE}$$

$$MAE = \frac{1}{N} \sum |h(\mathbf{x}_i) - y_i|, \quad RMAE = \sqrt{MAE}$$

$$RSE = \frac{\sum (h(\mathbf{x}_i) - y_i)^2}{\sum (y_i - \bar{y})^2}$$

$$correlation = \frac{S_{hy}}{\sqrt{S_h S_y}}; \quad S_{yh} = \frac{\sum (h(i) - \overline{h(i)})(y_i - \bar{y})}{N - 1}$$

$$S_h = \frac{\sum (h(i) - \overline{h(i)})^2}{N - 1}; \quad S_y = \frac{\sum (y_i - \bar{y})^2}{N - 1}$$

NFLT, MDL, AIC и все такое

No free lunch theorem

Не существует единственной лучшей модели, решающей все задачи

Minimum description length

Лучшая гипотеза о данных – та, которая ведет к самому краткому их описанию

Akaike information criterion (AIC)

$$model = arg \max ln p(\mathcal{D}|\theta_{ML}) - \|\theta\|$$

Вопросы

