Staistical Mechanics of Polymeric Systems: Semiflexible Polymer Localization

G K Iliev

University of Georgia Department of Mathematics

February 6, 2022

BrakFest Melbourne, Australia

POLYMER

• Study the phase behaviour of various polymeric systems as the 'energy' varies

Adsorption

oil

Localization

STEPS
$$D(z) = 1 + z^2 D(z)^2$$

CONTACTS (2)
$$D_{H}(c,z) = 1 + cz D(z) D_{H}(c,z)$$

SMPF. (3)
$$D_{S}(s,z) = 1 + z^{2} D_{S}(s,z) + s^{2} z^{2} [D_{S}(s,z) - 1] \cdot D_{S}(s,z)$$

CONTACTS

+ (4)
$$D_{HS}(c,s,z) = 1 + cz^2D_S(s,z) + cs^2z^2[D_S(s,z) - 1]D_{HS}(c,s,z)$$

Shpf.

BILATERAL DYCK PATH FACTORIZATION

[NO STIPFINESS]

NO INTERFACE CONTACTS

BILAREA DYCK PATH FACTORIZATION

Localization Factorization [no stiffness]

(1)
$$B(a,b,c,z) = 1 + acz^2 D(az) B(a,b,c,z) + kcz^2 D(bz) B(a,b,c,z)$$

log [2c] NO INTERFACE CONTACTS
[WILK ENTIRELY IN 0/B]

3 SINGULARITIES IN B(a,b,c,2) > Z,(a), Z,(b), Z,(a,b,c)

SETTING Z== DETERMINES B(d, 8) [PHASE BOUNDARY]

Add "stiffness" by decorating pairs of collinear steps

Add "stiffness" by decorating pairs of collinear steps

SPLIT INTO BUP 4 BOWN TO TRACK

* STIFFNESS DECORATION @ "GLUE PIS" *

$$B_{up}(a,b,c,s,z) = 1 + acz^2 + ()z^4 + ...$$

$$B_{DOWN}(a,b,c,S,2) = bc z^{2} + () z^{4} + ...$$

$$Z_{1} = a(S+1)$$

$$Z_{3}(a,b,c,S) [QLARTIC IN z^{2}]$$

At fixed c = 1, setting $z_1(\alpha, s) = z_3(\alpha, \beta, s)$ (animated over 1 < s < 5)

At fixed c = 1, setting $z_1(\alpha, s) = z_3(\alpha, \beta, s)$ (animated over 0 < s < 1)

But that only happens if we "simplify/symbolic" in Maple! -1.5 -0.5 -1.5

But that only happens if we "simplify/symbolic" in Maple!

Otherwise...

Is it real? What to track?

Fix c=1 and s<1 and consider two β regimes.

Fix c = 1 and s < 1 and consider two β regimes.

Implicit plots of the free energy $(\kappa = -\log z_c)$ _____ k

 $\kappa(\alpha)$ vs α for $\beta^* < \beta < 0$

Fix c = 1 and s < 1 and consider two β regimes.

Implicit plots of the free energy $(\kappa = -\log z_c)$

 $\kappa(\alpha)$ vs α for $\beta < \beta^*$

FINIMATIONS IN MAPLE 1> Fix 5=1/2, VARY B 5 PLOT H(X) us X STIX B IN 2 REGINES [BHOB]
AND VARY OKSKI 4 PLOT K(X) US X

SPLIT INTO By & By TO BE ABLE
TO TEACK "STIFFNESS" DECORATION @ "GLUE"
PIS"

$$B_{d}(a,b,c,s,z) = bcz^{2} + ()z^{4} + ...$$
 $B_{d}(a,b,c,s,z) = bcz^{2} + ()z^{4} + ...$
 $B_{d}(a,b,c,s,z) = bcz^{2} + ()z^{4} + ...$

