

Actividad 2.2 Regresión Lineal Simple y Múltiple

Carlos Fonseca Olivares- A01734538 Emily Bueno Romero - A01736939 Juan José Zamorano Balderas - A01642396 Juan Sebastián Mejía De Gortari - A01722536

Limpieza de Nulos y Outliers

Data	columns (total 7	columns):	
#	Column	Non-Null Count	Dtype
0	Administrador	5865 non-null	object
1	Usuario	5865 non-null	object
2	mini juego	5709 non-null	object
3	color presionado	5103 non-null	object
4	dificultad	5865 non-null	object
5	fecha	5865 non-null	object
6	Juego	5865 non-null	object
dtyp	es: object(7)		

	Data	columns (total 6 colum	ns):	
ı	#	Column	Non-Null Count	Dtype
	0	botón correcto	5103 non-null	float64
(1	tiempo de interacción	5103 non-null	float64
	2	número de interacción	5103 non-null	float64
١	3	auto push	5103 non-null	float64
4	4	tiempo de lección	5688 non-null	float64
	5	tiempo de sesión	5259 non-null	float64
1	dtype	es: float64(6)		

Datos Nulos

```
cualis_bfill=data_cuali.fillna(method="bfill")
cualis_ffill=data_cuali.fillna(method="ffill")
cuantias_mean=data_cuanti.fillna(round(data_cuanti.mean(),1))

data_sin_nulos = pd.concat([cuantias_mean,cualis_ffill],axis=1)

data_sin_nulos
data_sin_nulos
```

ı		botón correcto	tiempo de interacción	número de interacción	auto push	tiempo de lección	tiempo de sesión	Administrador	Usuario	mini juego	color presionado	dificultad	fecha	Juego
ı	0	1.0	5.399169	1.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	blue	Episodio 1	25/01/2024 09:26:42 a. m.	Astro
	1	0.0	1.283400	2.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	violet	Episodio 1	25/01/2024 09:26:46 a. m.	Astro
	2	1.0	2.700226	3.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	green	Episodio 1	25/01/2024 09:26:48 a. m.	Astro
ı	3	0.0	3.050262	4.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	green	Episodio 1	25/01/2024 09:26:57 a. m.	Astro
	4	0.0	4.750256	5.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	green	Episodio 1	25/01/2024 09:26:58 a. m.	Astro
ı	5860	0.5	10.000000	13.3	0.0	6.300000	332.240000	ALEIDA	ESMERALDA	Restaurante	green	Episodio 1	28/05/2024 04:15:49 p. m.	Astro
	5861	0.0	2.135419	1.0	0.0	0.000000	0.000000	ALEIDA	JOSE JAVIER	Asteroides	green	Episodio 3	04/06/2024 11:09:54 a. m.	Astro
1	5862	0.5	10.000000	13.3	0.0	2.271806	12.400000	ALEIDA	JOSE JAVIER	Asteroides	green	Episodio 3	04/06/2024 11:09:58 a. m.	Astro
4	5863	0.5	10.000000	13.3	0.0	6.300000	6.478299	ALEIDA	JOSE JAVIER	Asteroides	green	Episodio 3	04/06/2024 11:09:58 a. m.	Astro
9	5864	0.5	10.000000	13.3	0.0	6.300000	12.400000	ALEIDA	JOSE JAVIER	MiniGame_0	green	Episodio 3	04/06/2024 11:09:59 a. m.	Astro

Outliers

```
cuantitativas=data_sucio.select_dtypes(include=["float64","int64","float","int"])
cualitativas=data_sucio.select_dtypes(include=["object","datetime","category"])
y=cuantitativas

percentile25=y.quantile(0.25)
percentile75=y.quantile(0.75)
iqr= percentile75-percentile25

Limite_Superior_iqr= percentile25-1.5*iqr
Limite_Inferior_iqr= percentile25-1.5*iqr
iqr=cuantitativas[(y<=Limite_Superior_iqr)&y>=(Limite_Inferior_iqr)]
iqr2=iqr.fillna(round(iqr.mean(),1))
rango_intercuartilico=pd.concat([cualitativas,iqr2],axis=1)
rango_intercuartilico
```

```
cualis_bfill=data_cuali.fillna(method="bfill")
cualis_ffill=data_cuali.fillna(method="ffill")
cuantias_mean=data_cuanti.fillna(round(data_cuanti.mean(),1))

data = pd.concat([cuantias_mean,cualis_ffill],axis=1)

data
data
```

	botón correcto	tiempo de interacción	número de interacción	auto push	tiempo de lección	tiempo de sesión	Administrador	Usuario	mini juego	color presionado	dificultad	fecha	Juego
0	1.0	5.399169	1.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	blue	Episodio 1	25/01/2024 09:26:42 a. m.	Astro
1	0.0	1.283400	2.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	violet	Episodio 1	25/01/2024 09:26:46 a. m.	Astro
2	1.0	2.700226	3.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	green	Episodio 1	25/01/2024 09:26:48 a. m.	Astro
3	0.0	3.050262	4.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	green	Episodio 1	25/01/2024 09:26:57 a. m.	Astro
4	0.0	4.750256	5.0	0.0	0.000000	0.000000	nicolas	nicolas	Despegue	green	Episodio 1	25/01/2024 09:26:58 a. m.	Astro
5860	0.5	10.000000	13.3	0.0	6.300000	332.240000	ALEIDA	ESMERALDA	Restaurante	green	Episodio 1	28/05/2024 04:15:49 p. m.	Astro
5861	0.0	2.135419	1.0	0.0	0.000000	0.000000	ALEIDA	JOSE JAVIER	Asteroides	green	Episodio 3	04/06/2024 11:09:54 a. m.	Astro
5862	0.5	10.000000	13.3	0.0	2.271806	12.400000	ALEIDA	JOSE JAVIER	Asteroides	green	Episodio 3	04/06/2024 11:09:58 a. m.	Astro
5863	0.5	10.000000	13.3	0.0	6.300000	6.478299	ALEIDA	JOSE JAVIER	Asteroides	green	Episodio 3	04/06/2024 11:09:58 a. m.	Astro
5864	0.5	10.000000	13.3	0.0	6.300000	12.400000	ALEIDA	JOSE JAVIER	MiniGame_0	green	Episodio 3	04/06/2024 11:09:59 a. m.	Astro

- 1 outliers_limpios=data.isnull().sum().sum()
- 2 print(outliers_limpios)

✓ 0.0s

Convertir las variables categóricas ordinales

- Administrador
- **Usuario**
- omini juego
- color presionado
- dificultad
- Juego

#Administrador frecuencia_ad = data["Administrador"].value_counts().reset_index() frecuencia_ad.columns = ["Administrador", "Frecuencia"] frecuencia_ad

	Administrador	Frecuencia
0	ALEIDA	3260
1	nicolas	440
2	LEONARDO	371
3	DENISSE	302
4	SERGIO ANGEL	243
5	CARLOS ENRIQUE	228
6	YAEL DAVID	224
7	AUSTIN	199
8	VALENTIN	163
9	erick	158
10	iker benjamin	128
11	KYTZIA	98
12	BENJAMIN	51

#Usuario #(ADRIAN, ALEIDA, ARLETT, ASHLEY, AUSTIN) frecuencia_us = data["Usuario"].value_counts().reset_index() frecuencia_us.columns = ["Usuario", "Frecuencia"] frecuencia_us

	Usuario	Frecuencia
0	LEONARDO	546
1	ALEIDA	487
2	nicolas	440
3	JOSE JAVIER	394
4	LEONARDO	371
5	JESUS ALEJANDRO	356
6	ramiro isai	332
7	ADRIAN	280
8	SERGIO ANGEL	243
9	DENISSE	228
10	CARLOS ENRIQUE	228
11	YAEL DAVID	224
12	VALENTIN	163
13	erick	158
14	IKER BENJAMIN	152
15	NICOLAS	128
16	ERICK OSVALDO	126
17	CONCEPCION	103
18	KYTZIA	98
19	AUSTIN	96
20	JOSE IGNACIO TADEO	94
21	JOSE IAN	86
22	ASHLEY	75
23	AUHZOL	74
24	YEREMI YAZMIN	71
25	MA DEL ROSARIO	64
26	BENJAMIN	51
27	INGRID	49
28	RENE	44
29	CARLOS ABEL	39
30	ARLETT	29
31	ESMERALDA	24
32	IRVING	10
33	jesus eduardo	2

#Color presionado frecuencia_co = data["color presionado"].value_counts().reset_index() frecuencia_co.columns = ["color presionado", "Frecuencia"] frecuencia_co

	color presionado	Frecuencia
0	violet	1609
1	green	1455
2	yellow	1425
3	blue	1342
4	red	34

#Mini juego frecuencia_mj = data["mini juego"].value_counts().reset_index()

frecuencia_mj.columns = ["mini juego", "Frecuencia"]

frecuencia_mj

	mini juego	Frecuencia
0	Asteroides	1088
1	Restaurante	888
2	Estrellas	837
3	Gusanos	768
4	sonidos y animales	765
5	animales y colores	563
6	figuras y colores	409
7	partes del cuerpo	329
8	Despegue	197
9	MiniGame_0	8
10	MiniGame_3	5
11	MiniGame_2	5
12	MiniGame_1	3

#Dificultad
frecuencia_di =
 data["dificultad"].value_counts().reset_index()
frecuencia_di.columns = ["dificultad", "Frecuencia"]
frecuencia_di

	dificultad	Frecuencia
0	Episodio 1	2357
1	Episodio 2	1493
2	Episodio 3	1292
3	Episodio 4	723

#Juego frecuencia_ju = data["Juego"].value_counts().reset_index() frecuencia_ju.columns = ["Juego", "Frecuencia"] frecuencia_ju

	Juego	Frecuencia
0	Astro	3799
1	Cadetes	2066

Analizar las correlaciones lineales simples ("Heatmap")

Entre "Usuario" y las demás

```
data=data.drop(["fecha"],axis=1)
    data=data.drop(["auto push"],axis=1)
✓ 0.0s
    aleida = 1
     adrian = 2
    austin = 3
    ashley = 4
    arlett = 5
    ALEIDA = data[data["Usuario"] == aleida]
     ADRIAN = data[data["Usuario"] == adrian]
    AUSTIN = data[data["Usuario"] == austin]
     ASHLEY = data[data["Usuario"] == ashley]
    ARLETT = data[data["Usuario"] == arlett]
11
✓ 0.0s
```


Corr_Factors=ALEIDA.corr()
Corr_Factors1=abs(Corr_Factors)
Heat_Map_ALEIDA=sns.heatmap(Corr_Factors1,cmap="coolwarm")
Heat_Map_ALEIDA

Las mayores correlaciones fueron: mini juego - Juego mini juego - dificulatad Las mayores correlaciones fueron: mini juego - Juego.

Seguido de cerca por: tiempo de interacción - dificulatad | tiempo de interacción - número de interacción.

Corr_Factors=ADRIAN.corr()
Corr_Factors1=abs(Corr_Factors)
Heat_Map_ADRIAN=sns.heatmap(Corr_Factors1,cmap="viridis")
Heat_Map_ADRIAN

Corr_Factors=AUSTIN.corr()
Corr_Factors1=abs(Corr_Factors)
Heat_Map_AUSTIN=sns.heatmap(Corr_Factors1,cmap="YlGnBu")
Heat_Map_AUSTIN

La mayor correlación fue: mini juego - color presionado.

Corr_Factors=ASHLEY.corr()
Corr_Factors1=abs(Corr_Factors)
Heat_Map_ASHLEY=sns.heatmap(Corr_F
actors1,cmap="magma")
Heat_Map_ASHLEY

La mayor correlación fue: mini juego - dificultad. Seguido de cerca por: mini juego - color presionado.

La mayor correlación fue: mini juego - Juego.

Corr_Factors=ARLETT.corr()
Corr_Factors1=abs(Corr_Factors)
plt.figure(figsize=(10, 8))
Heat_Map_ARLETT=sns.heatmap(Corr_Factors1,cmap="Greens")
Heat_Map_ARLETT

Encontrar un modelo lineal múltiple que supere la mejor correlación lineal simple encontrada

```
y_pred= model.predict(X=data[["Administrador","botón correcto","tiempo de interacción","mini juego","número de interacción","color presionado","dificultad","Juego","tiempo de lección","tiempo de sesión"]])
y_pred
```

```
array([0.19199212, 0.14727468, 0.18424371, ..., 0.33547098, 0.33686001, 0.14771464])
```

Corroboramos cual es el coeficiente de Determinación y Correlación

- 1 #Corroboramos cual es el coeficiente de Determinación de nuestro modelo
- coef_Deter=model.score(X=Vars_Indep, y=Var_Dep)
- 3 print("Coeficiente de Determinación",coef_Deter)
- 4 #Corroboramos cual es el coeficiente de Correlación de nuestro modelo
- 5 coef_Correl=np.sqrt(coef_Deter)
- print("Coeficiente de Correlación",coef_Correl)

✓ 0.0s

Coeficiente de Determinación 0.04013733821604415 Coeficiente de Correlación 0.20034305132957356

Proponer un modelo de regresión multiple que supere las correlaciones obtenidas en los heatmap de cada usuario.

```
print(f"Coeficiente de Determinación (R²): {coef_deter:.4f}")
print(f"Coeficiente de Correlación (R): {coef_correl:.4f}")

# Evaluar el error cuadrático medio (MSE)
mse = mean_squared_error(y_test, y_pred)
print(f"Error Cuadrático Medio (MSE): {mse:.2f}")

/ 0.0s
```

Coeficiente de Determinación (R²): 0.0452 Coeficiente de Correlación (R): 0.2126 Error Cuadrático Medio (MSE): 0.62

Gracias