Optimal Online Multi-Instance Acquisition in IaaS Clouds

Wei Wang, Baochun Li, Ben Liang

USENIX ICAC'13 TPDS'14

Tradeoffs in Cloud Pricing Options

- On-demand Instances
- > No commitment
- Pay-as-you-go
- Reserved Instances
- > Reservation fee + discounted price
- > Suitable for long-term usage commitment

Instance Type	Pricing Option	Upfront	Hourly
Standard Small	On-Demand	\$0	\$0.08
	1-Year Reserved	\$69	\$0.039
Standard Medium	On-Demand	\$0	\$0.16
Standard Medium	1-Year Reserved	\$138	\$0.078

Multi-Instance Acquisition Problem

Workload (demand) is time-varying

- When should I reserve an instance?
- How many instances should I reserve?

Predict Future?

- Existing work relies on prediction of future demand
- However...
- Prediction is needed for long-term future
- Instance reservation period is typically months to years
- > Precise prediction is impossible
- Demand prediction is limited
- E.g., start-up companies, new services

How well can we make reservation decisions online, without any a *prior* information of the future demand?

Main Contributions

- Propose two online algorithms that offer the best provable cost guarantees
 - Deterministic: $(2-\alpha)$ -competitive
 - Randomized: $(e/(e-1+\alpha))$ -comepetitive
 - α is the hourly discount due to reservation ($0 \le \alpha \le 1$)
 - They only consider one instance type

Main Contributions

- Propose two online algorithms that offer the best provable cost guarantees
 - Deterministic: $(2-\alpha)$ -competitive
 - Randomized: $(e/(e-1+\alpha))$ -comepetitive
 - α is the hourly discount due to reservation ($0 \le \alpha \le 1$)
 - They only consider one instance type

Instance Type	Pricing Option	Upfront	Hourly
Standard Small	On-Demand	\$0	\$0.08
	1-Year Reserved	\$69	\$0.039
Standard Medium	On-Demand	\$0	\$0.16
Standard Medium	1-Year Reserved	\$138	\$0.078

Main Contributions

- Propose two online algorithms that offer the best provable cost guarantees
 - Deterministic: $(2-\alpha)$ -competitive
 - Randomized: $(e/(e-1+\alpha))$ -comepetitive
 - α is the hourly discount due to reservation ($0 \le \alpha \le 1$)
 - They only consider one instance type

 Study practical performance gains using Google workload traces

Problem Model

Pricing of On-demand Instances and Reserved Instances

- On-demand Instances
 - Fixed hourly price: p
 - Cost of running for h hours: ph
- Reserved Instances
 - > Upfront reservation fee + discounted hourly price
 - > Reservation fee is normalized to 1
 - > Reservation period: τ
 - \triangleright Cost of running for h hours: 1+ α ph
 - α is the hourly discount due to reservation ($0 \le \alpha \le 1$)

User demand and reservation

At t time slot, the user

- Has demand for d_t instances (time-varying)
- Newly reserves r_t instances $\sum_{i=t-\tau+1}^{t} r_i$
- Purchases o_t on-demand instances
 - Total # of instances the user could launch at t:

$$o_t + \sum_{i=t-\tau+1}^t r_i \ge d_t$$

Offline Problem Formulation

Cost of on-demand instances

Offline Problem Formulation

Cost of on-demand instances

s.t.
$$o_t + \sum_{i=t-\tau+1}^t r_i \ge d_t$$
, $o_t, r_t \in \{0, 1, 2, \dots\}, t = 1, \dots, T$.

Hourly fee of reserved instances is based on usage

$$t = 1$$
: $d_t = 7$, $r_t = 5$, $o_t = 2$, $d_t - o_t = 5$, $\tau = 2$

$$\min_{\{r_t, o_t\}} \quad C = \sum_{t=1}^{T} (o_t p) + r_t + \alpha p(d_t - o_t),$$
 $s.t. \quad o_t + \sum_{i=t-\tau+1}^{t} r_i \ge d_t,$
 $o_t, r_t \in \{0, 1, 2, \dots\}, t = 1, \dots, T.$

Hourly fee of reserved instances are based on usage

t = 1:
$$d_t = 7$$
, $r_t = 5$, $o_t = 2$, $d_t - o_t = 5$, $\tau = 2$

t = 2:
$$d_t = 4$$
, $r_1 = 5$, $r_2 = 0$, $o_t = 0$, $d_t - o_t = 4$

$$\min_{\{r_t, o_t\}} \quad C = \sum_{t=1}^{T} (o_t p) + r_t + \alpha p(d_t - o_t),$$
 $s.t. \quad o_t + \sum_{i=t-\tau+1}^{t} r_i \ge d_t,$
 $o_t, r_t \in \{0, 1, 2, \dots\}, t = 1, \dots, T.$

Hourly fee of reserved instances are based on usage

$$t = 1$$
: $d_t = 7$, $r_t = 5$, $o_t = 2$, $d_t - o_t = 5$, $\tau = 2$

t = 2:
$$d_t = 4$$
, $r_1 = 5$, $r_2 = 0$, $o_t = 0$, $d_t - o_t = 4$

$$\min_{\{r_t, o_t\}} \quad C = \sum_{t=1}^{I} (o_t p) + r_t + \alpha p(d_t - o_t),$$
 $s.t. \quad o_t + \sum_{i=t-\tau+1}^{t} r_i \ge d_t,$
 $o_t, r_t \in \{0, 1, 2, \dots\}, t = 1, \dots, T.$

Hourly fee of reserved instances are based on usage

Lower-bound of competitive ratio

• Lemma 1: The best competitive ratio of this problem is at least 2- α for deterministic online algorithms, and is at least e/(e-1+ α) for randomized algorithms.

R. Rleischer, "On the Bahncard Problem",
 2001

Demand and Reservation Curves

Break-Even Point

- Let c be the cost of running an on-demand instance that within a reservation period
- Using a reserved instance instead, the cost is $1+\alpha c$
- Break-even point: $\beta = 1 + \alpha \beta \rightarrow \beta = 1/(1-\alpha)$
 - If $c = \beta$, $c=1+\alpha c$, break even
 - If $c < \beta$, $c < 1 + \alpha c$, use an on-demand instance
 - If c> β , c>1+ α c, use a reserved instance

Regret and Compensation

- At time t, look back for a reservation period
- If the incurred on-demand cost > β, reserve a new

Update reservation curve

If a new instance is reserved, lift the reservation curve (mark the compensated demand) by 1, both backward and forward for τ time slots

Repeat until no regret

 Repeat to reserve more instances, until the incurred on-demand instances cost < β.

• Proposition 1: This deterministic algorithm is $(2-\alpha)$ -competitive, hence is the optimal among all the deterministic algorithms of this problem

Optimal Randomized Online Algorithm

Basic Idea

- Strike balance between reserving too aggressively or too conservatively
- Randomly pick a threshold z instead of the break-even point β according to the density function:

$$f(z) = \begin{cases} (1-\alpha)e^{(1-\alpha)z}/(e-1+\alpha), & z \in [0,\beta), \\ \delta(z-\beta) \cdot \alpha/(e-1+\alpha), & \text{o.w.,} \end{cases}$$

Basic Idea

- Strike balance between reserving too aggressively or too conservatively
- Randomly pick a threshold z instead of the break-even point β according to the density function:

$$f(z) = \begin{cases} (1-\alpha)e^{(1-\alpha)z}/(e-1+\alpha), & z \in [0,\beta), \\ \delta(z-\beta) \cdot \alpha/(e-1+\alpha), & \text{o.w.,} \end{cases}$$

• Pick $z = \beta$ with probability of 1

 Proposition 2: This randomized algorithm is (e/(e-1+))-competitive, and hence is an optimal among all the randomized algorithms of this problem

Trace Driven Simulation

Dataset and Preprocessing

- Google Cluster Traces
 - 900+ user's usage traces in a month
 - Users' computing demand data converted to laaS instance demands

Users are classified into 3 groups based on demand fluctuation level

Five Algorithms

- All-On-Demand
- All-Reserved
- Deterministic
- Randomized
- Separate (At each demand level, run a Bahncard Algorithm)

CDF of Cost Normalized to the All-On-Demand

(b) Cost CDF (high fluctuation)

CDF of Cost Normalized to the All-On-Demand

(c) Cost CDF (medium fluctuation)

CDF of Cost Normalized to the All-On-Demand

(d) Cost CDF (stable demands)

Thank you Q & A