

LINEAR ALGEBRA AND ITS APPLICATIONS UE19MA251

Unit 3. Linear Transformations and Orthogonality

Transformations Represented by Matrices

Rotation Matrices Q:

The matrix that rotates (left) every point in R^2 about origin through θ is given by

$$Q_{\theta} = \begin{bmatrix} \cos\theta & -\sin\theta \\ \sin\theta & \cos\theta \end{bmatrix}$$

This transformation is invertible since the matrix has an inverse.

A rotation through $-\theta$ brings back the original.

Unit 3. Linear Transformations and Orthogonality

Transformations Represented by Matrices

Unit 3. Linear Transformations and Orthogonality

Transformations Represented by Matrices

Projection Matrices P

The matrix that projects every vector in R^2 onto any θ line is given by

$$P = \begin{bmatrix} \cos^2 \theta & \cos \theta \sin \theta \\ \cos \theta \sin \theta & \sin^2 \theta \end{bmatrix}$$

This matrix has no inverse, because the transformation has no inverse.

Projecting twice is the same as projecting once.

A projection matrix equals its own square.

THANK YOU