

ESTEQUIOMETRÍA. TITULACIÓN ÁCIDO - BASE

1. Objetivos

- Ilustrar conceptos propios de la estequiometría.
- Fortalecer en el estudiante las habilidades necesarias para las valoraciones ácido
 base.

2. Aspectos teóricos

Análisis Volumétrico

Indicadores

Indicadores Propiedad física que cambia drásticamente

- a) Cambio de color
- b) Cambio de voltaje o corriente entre electrodos
- c) Absorbancia de la luz

Punto de equivalencia: Cantidad titulante = Cantidad estequiométrica

Punto final: Cantidad titulante necesaria para

observar el cambio del indicador

Diferencia entre punto de equivalencia y punto final genera un *error de titulación*

- > Escoger indicador adecuado
- > Hacer un blanco de titulación

• Titulante y estandarización

Estandarización

Titulación con un estándar primario

• Tipos de titulación

Titulación directa

Analito + Titulante → Producto

Titulación por retroceso

$$\mbox{Analito + Reactivo}_{\mbox{1 no consumido}} + \mbox{Reactivo}_{\mbox{1 no consumido}} + \mbox{Reactivo}_{\mbox{2}} \rightarrow \mbox{Producto}$$

Punto final más claro
 Exceso necesario para completar la reacción

Titulación gravimétrica

Se mide el titulante en masa. Aumenta la precisión No necesita bureta

■ Cálculos en las titulaciones

- a. Ecuación balanceada (estequiometría)
- b. Con el volumen del titulante calcular moles consumidos
- c. Con la estequiometría de la reacción calcular moles del analito desconocido
- d. Hallar la concentración del analito.

3. Materiales y reactivos

- Vaso de precipitado de 100 mL (2)
- Vidrio de reloj (1)
- Erlenmeyer de 100 mL (3)
- Bureta de 25 mL (1)
- Pipeta aforada de 10 mL (1)
- Frasco lavador (1)
- Ftalato ácido de potasio
- NaOH ~ 0.1 M
- HCl ~ 0.1 M
- Fenolftaleína

4. Parte experimental

4.1. Valoración del NaOH

• Establezca la cantidad de ftalato ácido de potasio necesario para reaccionar con 15 mL de una solución de NaOH 0.1 M sabiendo que el proceso se realiza de acuerdo a la siguiente ecuación química:

Ftalato ácido de potasio masa molar:204.22g/mol

- En un vidrio de reloj pese la cantidad de ftalato ácido de potasio, determinada en el numeral anterior, usando una balanza que tenga como mínimo una incertidumbre de 0.01 g.
- Transfiera el ftalato ácido de potasio a un erlenmeyer de 100 mL con agua (no importa la cantidad de agua) y agregue 3 gotas de fenolftaleína. La fenolftaleína funciona como indicador. Solicite ayuda al profesor sobre la forma correcta de transferir el sólido al erlenmeyer.
- Llene una bureta de 25 mL, previamente lavada y purgada, con solución de NaOH
 e inicie la valoración hasta que el indicador cambie a la primera tonalidad rosa que
 permanezca al menos por 20 segundos.
- Anote en su cuaderno el volumen de NaOH gastado para la valoración.
- Realice un duplicado de la valoración del NaOH.

4.2. Valoración del HCl

- Tome una alícuota, usando una pipeta aforada, de 10 mL de HCl de concentración desconocida y transfiérala a un erlenmeyer de 100 mL, agregue aproximadamente 20 mL de agua y 3 gotas de fenolftaleína.
- Inicie la valoración con el NaOH utilizado en el numeral anterior, hasta que cambie el indicador a rosado. Anote el volumen de NaOH gastado.
- Realice un duplicado de la valoración del HCl.

5. Cálculos

5.1. Estandarización del NaOH

- Con base en la masa de ftalato ácido de potasio, el volumen de NaOH gastado y la ecuación química anterior; calcule la cantidad de moles de NaOH consumidas y su molaridad.
- Reúna los resultados de concentración molar del NaOH de al menos cuatro grupos.
- Determine la concentración molar promedio del NaOH y la desviación estándar.

5.2. Cálculos para la determinación de la concentración del HCl

- Con el volumen y la concentración del NaOH, determinada en el primer experimento, determine la concentración molar del ácido clorhídrico valorado.
- Reúna los resultados de concentración molar del HCl de al menos cuatro grupos.
- Determine la concentración molar promedio del HCl y la desviación estándar.

6. Discusión

- 6.1. Identificar el patrón primario y justificar su uso. Así mismo establecer cuál es el patrón secundario.
- 6.2. Determine las fuentes de error que contribuyeron a la incertidumbre en la concentración.
- 6.3. Análice los resultados obtenidos para la estandarización del NaOH y la determinación de la concentración del analito HCl en términos de precisión, exactitud y error de titulación.

7. Cuestionario adicional

- 7.1. ¿Por qué es importante realizar una estandarización?
- 7.2. ¿De qué color a qué color cambia la fenolftaleína durante una titulación de HCl con NaOH?
- 7.3. ¿Por qué cambia de color la fenolftaleína cuando hay un cambio de pH? e indique su rango de viraje.

8. Ecuaciones de trabajo

$$molaridad \ (M) = \frac{moles \ del \ soluto}{litros \ de \ solución}$$

$$número \ de \ moles = \frac{masa \ en \ g}{masa \ molecular \ (\frac{g}{mol})}$$

$$\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$$
 $s = \sqrt{\frac{\sum_{i=1}^{n} (x_i - \bar{x})^2}{n-1}}$

Práctica: Estequiometría. Titulación ácido – base

F	echa:	Sección:		Vbo profesor				
	Integrantes:			Vbo profesor				
N	ombre			Código				
N	ombre			Código				
R	esultados							
	4.1. Valorac	ión del NaOH						
	Experimento	m C ₈ H ₅ O ₄ K (g)	V(NaOH) (L)	Moles NaOH	Molaridad del NaOH mol L ⁻¹			
	1							
	2		•					

Resultados de los grupos

Grupo	1	2	3	4	5	M Prom. mol L ⁻¹	σ mol L ⁻¹
Molaridad promedio de NaOH mol L ⁻¹							

Promedio

4.2. Valoración del HCl

Experimento	V(HCl) (mL)	V(NaOH) (L)	Moles HCl	Molaridad del HCl mol L ⁻¹
1				
2				

Resultados de los grupos

6.

7.

	Grupo	1	2	3	4	5	M Prom. mol L ⁻¹	σ mol L ⁻¹
pro	aridad omedio del HCl l L ⁻¹							

Discusión
6.1
6.2
6.3
Cuestionario adicional
7.1
7.2.

7.3.				
-				
-				
•				