

www.sites.google.com/site/faresfergani

السنة الدراسية : 2015/2014

المحتوى المفاهيمي :

الدراسة العامة للحركة

شعاع التسارع و المعادلات الزمنية للحركة

• شعاع الموضع – الإحداثيات الكارتيزية:

- تجري دراسة الحركة في معالم ثابتة قد تكون هذه المعالم فضائية أو مستوية أو خطية ، و ذلك حسب ما تقتضيه نوع كل حركة .
 - إذا اعتبرنا الدراسة في معلم مستوي كما في (الشكل) التالي:

فإن موضع المتحرك (M) في اللحظة الزمنية (t) يتعين بشعاع يسمى شعاع الموضع ، يرمز له \dot{r} و هو يعطى بالعلاقة الشعاعية التالية :

$$\vec{r} = x\vec{i} + y\vec{j}$$

- \vec{r} بالإحداثيات الديكارتية لشعاع الموضع \vec{v} ، \vec{v}
- إذا كانت النقطة المادية (M) ثابتة تكون الإحداثيات الديكارتية v · x مستقلة عن الزمن (ثابتة).
- إذا كانت النقطة المادية (M) في حالة حركة تكون الإحداثيات الديكارتية y ، x دوالٌ في الزمن (ذات المتغير t). و تكتب في هذه الحالة الإحداثيات y ، x على شكل دوال ذات المتغير t كما يلي :

$$\begin{cases} x = f_1(t) \\ y = f_2(t) \end{cases}$$

تسمى هذه العلاقات الزمنية و التي تعبر عن الإحداثيات الكارتيزية بدلالة الزمن بالمعادلات الزمنية للحركة . - المسار هو مجموعة النقط التي يشغلها المتحرك في كل لحظة ، و عند إيجاد علاقة تربط بين الإحداثيات الديكارتية للمتحرك نحصل على ما يسمى معادلة المسار ، نذكر بما يلي :

- . y = ax + b : معادلة مستقيم من الشكل
 - . $y = ax^2 + b$: معادلة قطع مكافيء

• شعاع الانتقال:

الموضع M_1 عند الموضع \vec{r}_1 عند الموضع \vec{r}_1 عند اللحظة t_1 أين يكون شعاع موضعها \vec{r}_1 إلى الموضع $\vec{\Delta r}$ التغير في اللحظة t_2 أين يكون شعاع موضعها \vec{r}_2 فإنه يعبر عن هذا الانتقال بشعاع يدعى شعاع الانتقال $\vec{\Delta r}$ يساوي التغير في شعاع الموضع بين اللحظتين t_2 ، t_2 و يكون :

$$\overrightarrow{\Delta r} = \overrightarrow{r}_2 - \overrightarrow{r}_1 = \overrightarrow{M_1 M_2}$$

: يكون $\vec{r}_2=x_2\vec{i}+y_2\vec{j}$ ، $\vec{r}_1=x_1\vec{i}+y_1\vec{j}$: يكون

$$\overrightarrow{M_1M_2} = \overrightarrow{\Delta r} = \Delta x \, \vec{i} \, + \Delta y \vec{j}$$

- تكون جهة شعاع الإنتقال في نفس جهة الحركة كما موضح في (الشكل).
 - في حالة مسار مستقيم يكون شعاع الإنتقال محمو لا على المسار.

$M_1(t_1)$ Δr $M_2(t_2)$

• شعاء السرعة :

- شعاع السرعة المتوسطة الذي يرمز له بـ \overrightarrow{v}_m بين لحظتين t_2 ، t_1 هو النسبة بين شعاع الإنتقال $\overrightarrow{\Delta r}$ بين هاتين اللحظتين و المجال الزمني $\Delta t = t_2 - t_1$ أي :

$$\vec{v}_{\rm m} = \frac{\Delta \vec{r}}{\Delta t} = \frac{\vec{r}_2 - \vec{r}_1}{t_2 - t_1}$$

عندما يؤول Δt نحو الصفر ، ينتهي شعاع السرعة المتوسطة \vec{v}_m نحو شعاع يدعى شعاع السرعة اللحظية \vec{v} هو مشتق شعاع الموضع \vec{r} أي :

$$\vec{v} = \frac{d\vec{r}}{dt}$$

و إذا كان : $\vec{r} = x\vec{i} + y\vec{j}$ يكون :

$$\vec{v} = \frac{\mathrm{dx}}{\mathrm{dt}}\,\dot{\mathbf{i}} + \frac{\mathrm{dy}}{\mathrm{dt}}\,\dot{\mathbf{j}}$$

$$\vec{v} = \mathbf{v}_{x} \, \dot{\mathbf{i}} + \mathbf{v}_{y} \, \dot{\mathbf{j}}$$

$$v_x = \frac{dx}{dt}$$
 , $v_y = \frac{dy}{dt}$

- كما يكون :

$$v = \sqrt{v_x^2 + v_y^2}$$

- يكون شعاع السرعة اللحظية مماسي للمسار في كل موضع عند كل لحظة و دوما في جهة الحركة (الشكل) ، و لا يكون أبدا شعاع السرعة عكس جهة الحركة .
 - في حالة مسار مستقيم يكون شعاع السرعة محمول على المسار و يتميز بنفس الخصائص السابقة .

علوم فيزيائية – ثالثة ثانوي – الشعب : علوم تجريبية ، رياضيات ، تقنى رياضي .

● شعاء التسارع :

بين $\overline{\Delta v}$ بين شعاع النسبة بين شعاع تغير السرعة \overline{a}_{m} بين لحظتين t_{2} ، t_{1} هو النسبة بين شعاع تغير السرعة \overline{a}_{m} هاتين اللحظتين و المجال الزمني $\Delta t = t_2 - t_1$ أي :

$$\vec{a}_{m} = \frac{\Delta \vec{v}}{\Delta t} = \frac{\vec{v}_{2} - \vec{v}_{1}}{t_{2} - t_{1}}$$

عندما يؤول Δt نحو الصفر ، ينتهي شعاع التسارع المتوسط $\vec{a}_{
m m}$ نحو شعاع يدعى شعاع التسارع اللحظي \vec{a} هو مشتق شعاع السرعة $\overline{\mathbf{v}}$ أي :

$$\vec{a} = \frac{\vec{dv}}{dt}$$

. يكون $\vec{v} = v_x \vec{i} + v_y \vec{j}$ يكون

$$\vec{a} = \frac{dv_x}{dt} \vec{i} + \frac{dv_y}{dt} \vec{j}$$

$$\vec{a} = a_x \vec{i} + a_y \vec{j}$$

$$a_x = \frac{dv_x}{dt}$$
 , $a_y = \frac{dv_y}{dt}$

- يكون شعاع التسارع اللحظي متجه دوما نحو تقعر المسار في حالة مسار منحني و محمول على المسار في حالة مسار مستقيم ، و ليس بالضرورة يكون في جهة الحركة (الشكل) .

ملاحظة - 1: - وحدة السرعة هي m/s^2 ، و وحدة التسارع هي m/s^2 .

ملاحظة-1:

يمكن ابراز العلاقة بين الأشعة \vec{a} ، \vec{v} ، \vec{r} عما يلى :

$$\vec{r}(t) \xrightarrow{\vec{v}(t)} \vec{v}(t) \xrightarrow{\vec{v}(t)} \vec{a}(t)$$

$$\vec{v}(t) \xrightarrow{\vec{v}(t)} \vec{a}(t)$$

تذكير بالتكامل (الدالة الأصلية):

في درسنا هذا مطالبين بالدالة الأصلية (تكامل) للدالة من الشكل x^n فقط ، الجدول التالي يبن الدالة الأصلية لهذه الدالة مر فق بأمثلة .

الدالة	الدالة الاصلية
x ⁿ	$\frac{1}{n+\&}x^{n+1}+C$
x ²	$\frac{1}{3}x^3 + C$
X	$\frac{1}{2}x^2 + C$
ax	$\frac{a}{2}x^2 + C$
a	ax + C
0	C

التمرين (1):

ا- جسم نقطي (S_1) كتاته m يتحرك في معلم مستوي (c_1,i,j) ، شعاع موضعه في كل لحظة يعبر عنه بالعلاقة: $\vec{r}=(t^3+0.5)$. $\vec{i}+(2t^2)\vec{j}$

حيث يقدر الزمن بالثانية و المسافة بالمتر .

- عند اللحظة t = 1 s أوجد:
- . (o) عن مبدأ المعلم (S_1) عن مبدأ المعلم d
 - ب- سرعة الجسم النقطي (S_1) .
 - جـ- تسارع الجسم النقطي (\hat{S}_1) .
- 2- متحرك نقطي آخر (\hat{S}_2) كثلته \hat{S}_2 يتحرك في معلم مستوي ، شعاع تسار عه في كل لحظة يعبر عنه بالعلاقة :

$$\vec{a} = (2t)\vec{i} + \vec{j}$$

- أكتب العبارة اللحظية (الزمنية) لكل من شعاع السرعة \vec{v} و شعاع الموضع \vec{r} علما أنه في اللحظة t=0 يكون : $\vec{r}_0 = 2\vec{i} \cdot \vec{v}_0 = 10\vec{i} + 2\vec{i}$

الأحمية :

t=1 عند اللحظة t=1 عند اللحظة (S_1) عن المبدأ : (S_1) عن المبدأ : يمثل هذا البعد (d) طويلة شعاع الموضع عند اللحظة (d) أي :

$$d = ||\vec{r}||_{(t=1)}$$

$$t = 1 \text{ s} \rightarrow \vec{r} = ((1)^3 + 0.5) \vec{i} + (2(1)^2) \vec{j} = 1.5 \vec{i} + 2 \vec{j}$$

$$d = \sqrt{(1.5)^2 + (2)^2} = 2.5 \text{ m}$$

ب- سرعة الجسم النقطي (S_1) :

$$\vec{v} = \frac{d\vec{r}}{dt} = (3t^2) \, \vec{i} + (4t) \, \vec{j}$$

$$t = 1 \, s \rightarrow \vec{v} = (3(1)^2) \, \vec{i} + (4(1)) \, \vec{j} = 3 \, \vec{i} + 4 \, \vec{j}$$

$$||\vec{v}|| = \sqrt{(3)^2 + (4)^2} = 5 \, \text{m/s}$$

جـ تسارع الجسم النقطي (S_1) :

$$\vec{a} = \frac{d\vec{v}}{dt} = (6t)\vec{i} + (4)\vec{j}$$

$$t = 1 \text{ s} \rightarrow \vec{a} = (6.1)\vec{i} + (4)\vec{j} = 6\vec{i} + 4\vec{j}$$

$$||\vec{a}|| = \sqrt{(6)^2 + (4)^2} = 7.21 \text{ m/s}^2$$

2- العبارات اللحظية:

$$\vec{a} \begin{cases} a_x = 2 t \\ a_y = 1 \end{cases}$$

نكامل الطر فين بالنسبة للز من فنجد:

$$\vec{v} \begin{cases} v_x = t^2 + C_1 \\ v_y = t + C_2 \end{cases}$$

من الشروط الابتدائية:

$$t = 0 \rightarrow \vec{v} \begin{cases} v_x = 10 \\ v_y = 2 \end{cases}$$

بالتعويض:

$$\begin{cases} 10 = (0)^2 + C_1 \rightarrow C_1 = 10 \\ 2 = (0) + C_2 \rightarrow C_2 = 2 \end{cases}$$

ومنه يصبح:

الصفحة : 7

$$\vec{v} \begin{cases} v_x = t^2 + 10 \\ v_y = t + 2 \end{cases}$$

نكامل الطرفين بالنسبة للزمن فنجد:

$$\vec{r} \begin{cases} x = \frac{1}{3}t^3 + 10t + C_1' \\ y = \frac{1}{2}t^2 + 2t + C_2' \end{cases}$$

من الشروط الابتدائية:

$$t = 0 \rightarrow \vec{r} \begin{cases} x = 2 \\ y = 0 \end{cases}$$

بالتعويض :

$$\begin{cases} 2 = \frac{1}{3}(0)^3 + 10(0) + C_1' \rightarrow C_1' = 2 \\ 0 = \frac{1}{2}(0)^2 + 2(0) + C_2' \rightarrow C_2' = 0 \end{cases}$$

يصبح :

$$\vec{r} \begin{cases} x = \frac{1}{3}t^3 + 10t + 2 \\ y = \frac{1}{2}t^2 + 2t \end{cases}$$

<u>التمرين (2) :</u>

من نقطة M_0 تقع على ارتفاع h_0 من سطح الأرض نقذف عند اللحظة t=0 كرة t=0 كتاتها t=0 بسرعة ابتدائية t=0 يصنع شعاعها الزاوية t=0 مع الأفق، أثناء حركة الكرة تخضع إلى تأثير ثقلها فقط (الشكل) .

$$\vec{P} = m \vec{a}$$

- · a : شعاع التسارع اللحظي .
 - P : هي قوة الثقل .

نذكر أن : P = m g حيث g هي الجاذبية الأرضية و m هي كتلة الكرة .

oy ، ox و بين أن : $a_x=0$ و بين أن $a_x=0$ و بين أن $a_y=-g$

 $\vec{
m r}(t)$ و مركبتي شعاع السرعة $\vec{
m v}(t)$ و مركبتي شعاع الموضع -2

الأحوية :

$\vec{a}(t)$ عبارة التسارع $\vec{a}(t)$: عادة التسارع التسارع $\vec{a}(t)$

$$\vec{P} = m \vec{a}$$

$$\begin{cases} P_x = m a_x \\ P_y = m a_y \end{cases}$$

$$\begin{cases} 0 = m a_x \\ -P = m a_y \end{cases}$$

$$\begin{cases} 0 = m a_x \\ -m g = m a_y \end{cases}$$

$$\vec{a} \begin{cases} a_x = 0 \\ a_y = -g \end{cases}$$

$$\frac{\vec{r}(t)}{\vec{v}(t)}$$
 عبارتي $\frac{\vec{v}(t)}{\vec{v}(t)}$: لدينا سابقا

$$\vec{a} \begin{cases} a_x = 0 \\ a_y = -g \end{cases}$$

$$\vec{v} \begin{cases} v_x = C_1 \\ v_y = -g t + C_2 \end{cases}$$

$$t = 0 \rightarrow \vec{v} \left\{ \begin{array}{l} v_x = v_0 \cos \alpha \\ v_y = v_0 \sin \alpha \end{array} \right.$$

$$\begin{cases} v_0 \cos \alpha = C_1 \rightarrow C_1 = v_0 \cos \alpha \\ v_0 \sin \alpha = -g(0) + C_2 \rightarrow C_2 = v_0 \sin \alpha \end{cases}$$

$$\vec{v} \begin{cases} v_x = v_0 \cos \alpha \\ v_y = -g t + v_0 \sin \alpha \end{cases}$$

$$\vec{r} \begin{cases} x = v_0 \cos \alpha t + C_1' \\ y = -\frac{1}{2}g t^2 + v_0 \sin \alpha t + C_2' \end{cases}$$

من الشروط الابتدائبة:

الصفحة : | 9

$$t = 0 \rightarrow \vec{r} \begin{cases} x = 0 \\ y = h_0 \end{cases}$$

بالتعويض:

$$\begin{cases} 0 = v_0 \cos \alpha(0) + C_1' \rightarrow C_1 = 0 \\ h_0 = -\frac{1}{2}g(0)^2 + v_0 \sin \alpha(0) + C_2' \rightarrow C_2 = h_0 \end{cases}$$

يصبح:

$$\vec{r} \begin{cases} x = v_0 \cos \alpha t \\ y = -\frac{1}{2}g t^2 + v_0 \sin \alpha t + h_0 \end{cases}$$

• مركبتي شعاع التسارع في معلم فريني :

- معلم فريني هو معلم مبدأه موضع المتحرك M في لحظة ما يتكون من محورين متعامدين أحدهما (ot) يكون مماسي للمسار في الموضع M جهته هي جهة الحركة و الآخر (on) ناظمي ، يتجه نحو مركز المسار (llm)

- يمكن تحليل شعاع التسارع عند الموضع M في اللحظة t ، الى مركبتين : مماسية \vec{a}_t ، وناظمية \vec{a}_n وفق المحورين المماسي و الناظمي ، كما مبين في (الشكل) التالي : و نكتب :

$$a = \sqrt{(a_t)^2 + (a_n)^2}$$

حيث:

$$a_{t} = \frac{dv}{dt}$$

$$a_{n} = \frac{v^{2}}{r}$$

- v : طويلة شعاع السرعة عند اللحظة t .
- r : نصف قطر المسار المنحنى عند اللحظة t .

کما یکون :

$$a = \sqrt{{a_t}^2 + {a_n}^2}$$

التمرين (3):

جسم نقطی (S) یتحر $\stackrel{\longrightarrow}{R}$ علی مسار دائری خاضع إلی تأثیر القوی : الثقل $\stackrel{\longrightarrow}{P}$ ، قوة $\stackrel{\longrightarrow}{R}$ ، قوة الاحتكاك $\stackrel{\longrightarrow}{f}$.

نعتبر العلاقة الشعاعية التالية:

$$\vec{P} + \vec{R} + \vec{f} = m \, \vec{a}$$

- حيث à هو شعاع التسارع اللحظي .
- 1- حلل العلاقة الشعاعية وفق محوري معلم فريني المماسي (ot) ، و الناظمي (on) .
 - α ، f، g، m : بدلالة a_t بدلالة التسارع المماسى -2
 - 2- عبر عن السرعة اللّحظية للجسم (S) بدلالة r · R · α · g · m عبر عن السرعة اللّحظية للجسم

الأجوبة :

1- تحليل العلاقة الشعاعية في معلم فريني : لدينا :

$$\vec{P} + \vec{R} + \vec{f} = m \vec{a}$$

بتحليل العلاقة الشعاعية وفق محوري معلم فريني نجد:

$$\begin{cases} P.\sin\alpha - f = m.a_t &(1) \\ -P.\cos\alpha + R = m.a_n &(2) \end{cases}$$

 a_n عبارة التسارع المماسي a_n من العلاقة (1) لدينا :

m.g.sin
$$\alpha$$
 - f = m.a_t \rightarrow a_t = $\frac{\text{m.g.sin}\alpha - f}{\text{m}}$

<u>3 عبارة سرعة الجسم (S) :</u>

: و منه يمكن كتابة العلاقة (2) كما يلي
$$a_n = \frac{v^2}{R}$$
 ، $P = m.g$ لدينا

$$-m.g.cos\alpha + R = m.\frac{v^2}{r} \rightarrow v = \sqrt{\frac{r(-m.g.cos\alpha + R)}{m}}$$

الدراسة الشعاعية و البيانية في مختلف الحركات

• الدراسة الشعاعية و البيانية قى الحركة المستقيمة الهنتظمة

- الحركة المستقيمة المنتظمة هي حركة مسارها مستقيم و سرعتها ثابتة ، حيث يقطع فيها المتحرك مسافات متساوية d خلال أزمنة متساوية τ .
- في الحركة المستقيمة المنتظمة لا يخضع المتحرك إلى أي قوة (مبدأ العطالة) أو يخضع إلى قوى مجموعها الشعاعي معدوم.
- في الحركة المستقيمة المنتظمة يكون شعاع السرعة ثابت في المنحى و الجهة و الطويلة . و عليه يكون شعاع تغير السرعة $\overline{\Delta v}$ معدوم .

 $x=a\ t+b$: في الحركة المستقيمة المنتظمة عبارة عن مستقيم معادلته من الشكل x=f(t) في الحركة المستقيم) ، كما مبين في (الشكل) التالي : a

- تساوي سرعة المتحركة من مخطط المسافة ميل المستقيم أي :

$$v = \tan \alpha = \frac{x_2 - x_1}{t_2 - t_1}$$

- مخطط السرعة v=f(t) كما مبين في (الشكل) التالي :

- تساوي المسافة المقطوعة d ، من طرف متحرك بين لحظتين t_2 ، t_1 هندسيا من مخطط السرعة ، مساحة السطح (S) المحصور بين المنحنى v=f'(s) و محور الأزمنة و المستقيمين العموديين على المحور (ot) في اللحظتين t_2 ، t_1 (الشكل) أي :

$$d = S = v(t_2 - t_1)$$

- مخطط التسارع a=f(t) كما مبين في (الشكل) التالي :

● الدراسة الشعاعية و البيانية قى الحركة المستقيمة المتغيرة بانتظام

- عندما يخضع جسم متحرك إلى قوة \overline{f} ثابتة في المنحى و الجهة و الطويلة تكون حركة هذا الجسم مستقيمة متغيرة بانتظام ، فإذا كانت هذه القوة في جهة حركته تكون الحركة مستقيمة متسارعة بانتظام أما إذا كانت في الجهة المعاكسة لجهة حركته تكون الحركة مستقيمة متباطئة بانتظام .
- في الحركة المستقيمة المتغيرة بانتظام يحافظ شعاع السرعة \vec{v} على منحاه و جهته و طويلته تتغير بانتظام حيث تتزايد بانتظام في حالة الحركة المستقيمة المتباطئة بانتظام .

- في الحركة المستقيمة المتغيرة بانتظام يكون شعاع التسارع \vec{a} ثابت في المنحى و الجهة و الطويلة ، و يكون في جهة الحركة في حالة الحركة المستقيمة المتسارعة بانتظام و عكس جهة الحركة في حالة الحركة المستقيمة المتباطئة بانتظام .

- في الحركة المستقيمة المتغيرة بانتظام يكون مخطط المسافة $\mathbf{x}=\mathbf{f}(\mathbf{x})$ عبارة عن خط منحني ، ففي الحركة المستقيمة المتغيرة بانتظام يكون مخطط المسافة $\mathbf{x}=\mathbf{f}(\mathbf{t})$ كما في (الشكل) التالي :

- مخطط السرعة v=f(x) في الحركة المستقيمة المتغيرة بانتظام يكون عبارة عن مستقيم معادلته من الشكل : v=at+b ، و في الحركة المستقيمة المتسارعة بانتظام يكون مخطط السرعة كما مبين في (الشكل) التالي :

تساوي المسافة المقطوعة d من طرف متحرك بين لحظتين t_2 ، t_1 ، هندسيا من خلال مخطط السرعة ، مساحة السطح v_1 (v_2) (v_3) المحصور بين المنحنى v_4 (v_4) المحصور بين المنحنى v_5 (v_4) و محور الأزمنة (v_4) و المستقيمين المعموديين على محور الأزمنة في اللحظتين v_4 ، أي :

$$d = S = \frac{\ddot{b} + \ddot{b}}{2}! = \frac{(v_1 + v_2)(t_2 - t_1)}{2}$$

- في الحركة المستقيمة المتغيرة بانتظام يكون مخطط التسارع a=f(t) عبارة عن مستقيم يوازي محور الأزمة ، و في الحركة المستقيمة المتسارعة بانتظام يكون مخطط تغير السرعة كما مبين في (الشكل) التالي :

• الدراسة الشعاعية في الحركة الدائرية الهنظهة

- نقول عن حركة جسم أنها دائرية منتظمة إذا كان مسارها دائريا و سرعتها ثابتة .
- يحافظ شعاع السرعة \overline{v} في الحركة الدائرية المنتظمة على قيمته بينما منحاه يكون مماسي للمسار في كل لحظة (الشكل).
- في الحركة الدائرية المنتظمة يكون شعاع التسارع \bar{a} ثابت في القيمة و متجه دوما نحو مركز للمسار (عمودي على شعاع السرعة) (الشكل).

ملاحظة مهمة :

- يمكن تحديد طبيعة الحركة (مستقيمة منتظمة ، مستقيمة متغيرة بانتظام ، دائرية منتظمة ، بناءا على شعاع التسارع أو قيمته كما يلي :
 - إذا كان شعاع التسارع معدوم تكون الحركة مستقيمة منتظمة .
 - إذا كان شعاع التسارع a ثابت تكون الحركة مستقيمة متغيرة بانتظام .
 - إذا كانت قيمة التسارع a معدومة تكون الحركة مستقيمة منتظمة .
- إذا كانت قيمة التسارع a ثابتة ، تكون الحركة مستقيمة متغيرة بانتظام أو دائرية منتظمة ، فإذا كان المسار مستقيم أو السرعة من الشكل v = at + b تكون الحركة مستقيمة متغيرة بانتظام ، أما إذا كان المسار دائري و السرعة v = at + b ثابتة فالحركة دائرية منتظمة .

- تعتمد طبيعة الحركة (متسارعة أو متباطئة) على الجداء السلمي \vec{a} . \vec{v}
 - ا إذا كان $(\vec{a} \cdot \vec{v} > 0)$ تكون الحركة متسارعة -
 - إذا كان $(\vec{a} \cdot \vec{v} < 0)$ تكون الحركة متباطئة .
- إذا كان $(\vec{a} \cdot \vec{v} = 0)$ تكون الحركة منتظمة (مستقيمة منتظمة في الحركات المستقيمة أو دائرية منتظمة في الحركات المنحنية).

نذكر بأنه في معلم مستوي مثلا يكون:

$$\vec{a} \cdot \vec{v} = a_x v_x + a_y v_y$$

و في معلم خطي يكون:

$$\vec{a} \cdot \vec{v} = a_x v_x$$

<u>التمرين (4) :</u>

جسم صلب (S) يتحرك على محور موجه Ox ، المخطط البياني التالي يمثل تغيرات سرعة مركز عطالة هذا الجسم بدلالة الزمن

1- حدد في كل طور:

- طبيعة الحركة .
- قيمة التسارع .
- المسافة المقطوعة .
- $_{\rm C}$ المنحنى البياني الممثل لتغيرات تسارع مركز عطالة الجسم ($_{\rm C}$) بدلالة الزمن $_{\rm C}$

<u>الأجوبة :</u>

1- تحديد طبيعة الحركة ، قيمة التسارع ، المسافة المقطوعة ، في كل طور :

<u>الطور الأول :</u>

المنحنى v(t) عبارة عن مستقيم معادلته من الشكل v=at+b ، وحيث أن v=at+b (الميل سالب) يكون a<0 ، v>0 ، و منه الحركة في هذا الطور مستقيمة متباطئة بانتظام .

•
$$a_1 = \tan \alpha = -\frac{3 \cdot 1}{2 \cdot 1} = -1.5 \text{ m/s}^2$$

$$\mathbf{d}_1 = \mathbf{S}_1 = \frac{3.2}{2} = 3 \,\mathrm{m}$$

<u>الطور الثاني :</u>

المنحنى v(t) عبارة عن مستقيم معادلته من الشكل v=at+b ، وحيث أن v=at+b (الميل سالب) يكون a<0 ، v<0 ، و منه الحركة في هذا الطور مستقيمة متسارعة بانتظام .

•
$$a_2 = \tan \alpha = -\frac{3 \cdot 1}{2 \cdot 1} = -1.5 \text{ m/s}^2$$

•
$$d_2 = S_2 = \frac{3.2}{2} = 3 \text{ m}$$

الطور الثالث:

المنحنى $\overline{v(t)}$ عبارة عن مستقيم معادلته من الشكل v=at+b ، وحيث أن v=av+b (الميل موجب) يكون $\overline{v(t)}$ ، و منه الحركة في هذا الطور مستقيمة متباطئة بانتظام .

•
$$a_3 = \tan \alpha = +\frac{3 \cdot 1}{3 \cdot 1} = 1 \text{ m/s}^2$$

•
$$d_3 = S_3 = \frac{3.3}{2} = 4.5 \,\mathrm{m}$$

الطور الرابع:

المنحنى v(t) عبارة عن مستقيم معادلته من الشكل v=at+b ، وحيث أن v>0 ، v>0 (الميل موجب) يكون a>0 ، v>0 ، و منه الحركة في هذا الطور مستقيمة متسارعة بانتظام .

•
$$a_4 = \tan \alpha = -\frac{2 \cdot 1}{1 \cdot 1} = 2 \text{ m/s}^2$$

•
$$d_4 = S_4 = \frac{2 \cdot 1}{2} = 1 \text{ m}$$

الطور الخامس:

المنحنى v(t) عبارة عن مستقيم يوازي محور الأزمنة ، و منه الحركة في هذا الطور مستقيمة منتظمة .

- $a_5 = 0$
- $d_5 = S_5 = (2.2) = 4 \text{ m}$

2- المنحنى البياني (a(t):

قانون نبوتن الثاني

● تذكير بهفهوم الجهلة الهيكانيكية و القوى الخارجية :

- الجملة الميكانيكية هو الجسم أو جزء من الجسم أو مجموعة من الأجسام التي تكون محل الدراسة الفيزيائية .

- تكون قوة داخلية إذا كان الجسمين المؤثر و المتأثر بهذه القوة ينتميان إلى نفس الجملة ، أما أذا كان أحد الجسمين داخل الجملة و الآخر خارجها أو كلاهما خارج الجملة نقول عن القوة أنها خارجية .

<u>مثال :</u>

في الشكل المقابل يخضع الجسم (S) إلى تأثير قوتين الأولى قوة الثقل (\overrightarrow{P}) الناتجة عن تأثير (جذب) الأرض للجسم (S) و الثانية قوة توتر النابض (\overrightarrow{T}) الناتجة عن تأثير النابض على الجسم (S)

القوتين : الثقل \overrightarrow{P} و التوتر \overrightarrow{T} يمكن أن تكون داخلية أو خارجية حسب الجملة المختارة كما مبين في الجدول التالى :

الأستاذ: فرقاني فارس

→	→	9 9,
التوتر T	الثقل P	الجمله
خارجية	داخلية	(جسم + أرض)
خارجية	خارجية	(جسم)
داخلية	خارجية	(جسم + نابض)
داخلية	داخلية	(جسم + أرض + نابض)

• مفموم النقطة المادية و الجسم العلب:

- الجسم الصلب هو الجملة التي لا يتغير شكلها أثناء قيامها بحركة ، أي أن المسافة بين نقطتين كيفيتين من هذه الجملة تبقى ثابتة أثناء الحركة .
- النقطة المادية هي كل جسم ذو أبعاد مهملة أمام المرجع الذي يدرس بالنسبة إليه هذا الجسم ، و كتلة النقطة المادية هي كتلة هذا الجسم .

هفموم مركز العطالة :

- عندما يكون جسم صلب معزو لا أو شبه معزول في مرجع غاليلي ، ويتحرك بحركة كيفية (الشكل-2) فإنه توجد نقطة (G) وحيدة من هذا الجسم حركتها مستقيمة منتظمة ، ندعوها بمركز عطالة هذا الجسم الصلب.

- مركز عطالة جسم متناظر منطبق على مركز تناظره ، مثلاً مركز عطالة كرة منطبق على مركزها .

● قانون نيوتن الثاني :

بالإضافة إلى القانون الأول (مبدأ العطالة) ، و الثالث (مبدأ الأفعال المتبادلة) ينص القانون الذين الذي نحن بصدد در استه في هذه الوحدة على ما يلي :

ا في معلّم غاليلي ، المجموع الشّعاعي $\vec{F}_{\rm ext}$ للقوى الخارجية المطبقة على مركز عطالة جملة مادية يساوي في كل لحظة جداء كتلتها في شعاع تسارع مركز عطالتها "

- يكتب القانون الثاني لنيوتن كما يلي:

$$\sum \vec{F}_{ext} = m\vec{a}_G$$

- تعطى المركبات الثلاث للمعادلة الشعاعية في المعلم الكارتيزي:

$$\sum F_x = ma_x$$
, $\sum F_y = ma_y$, $\sum F_z = ma_z$