ABELIAN CATEGORIES - SOME RESULTS

1. DIRECTED CLASSES AND FILTERED CATEGORIES

In this section we introduce the notion of directed class and then we generalize it to the categorical setting.

Definition 1.1. Let *I* be a class equipped with a reflexive and transitive relation \leq . We say that *I* is *a directed class* if for any $i, j \in I$ there exists $k \in I$ such that $i \leq k$ and $j \leq k$.

Let I be a class equipped with a reflexive and transitive relation \leq . It is standard [Mac Lane, 1998, page 11] to view I as a category with at most one arrow between any two objects.

Definition 1.2. Let *I* be a category. Suppose that the following conditions are satisfied.

(1) For any objects $i, j \in I$ there exists an object $k \in I$ and a diagram

(2) For any pair of parallel morphisms in I

$$i \Longrightarrow j$$

there exist an object $k \in I$ and a morphism $j \to k$ such that, the diagram

$$i \longrightarrow j \longrightarrow k$$

П

is commutative.

Then we say that *I* is a filtered category.

Fact 1.3. Let I be a class equipped with a reflexive and transitive relation. Then I is a directed class if and only if I viewed as a category is filtered.

Proof. Left to the reader.

Fact 1.4. Let I be a filtered category and J be a class equipped with a reflexive and transitive relation \leq . Suppose that $F: I \to J$ is a functor. Then the image of I under F is a directed subclass of J.

Proof. Left to the reader. \Box

Definition 1.5. Let C be a category and I be a filtered category (directed class). A colimit of an I-indexed some diagram $I \to C$ is called a *filtered* (*directed*) colimit.

2. Subobjects and objects of finite type

Definition 2.1. Let \mathcal{C} be a category and X be an object in \mathcal{C} . Monomorphisms $X_1 \hookrightarrow X$ and $X_2 \hookrightarrow X$ are *equivalent* if there exists a commutative triangle

in which horizontal arrow is an isomorphism. The collection Sub(X) of equivalence classes of monomorphisms having X as a target is called *the class of subobjects of* X.

Let X be an object of a category $\mathcal C$ and $X' \hookrightarrow X$ be a monomorphism. By abuse of notation we say that X' is an subobject of X and by this we understand the subobject of X represented by a monomorphism $X' \hookrightarrow X$. We also write $X' \subseteq X$. Next suppose that $X_1 \subseteq X$ and $X_2 \subseteq X$ are subobjects of X. We write $X_1 \subseteq X_2$ if there exists a commutative triangle

This defines a partial order on the class Sub(X).

Now we investigate important notion of well-powered categories. For this we introduce this it with a company of several other significant concepts.

Definition 2.2. A category \mathcal{C} is called *well-powered* if Sub(X) is a set for every object X in \mathcal{C} .

Definition 2.3. Let C be a category such that a morphism in C that is simultaneously a monomorphism and an epimorphism is an isomorphism. Then we say that C is *balanced*.

Definition 2.4. Let C be a category. A class G of objects of C is called *a class of generators for* C if for any pair of distinct and parallel arrows

$$X \xrightarrow{f} Y$$

there exists $G \in \mathcal{G}$ and a morphism $h : G \to X$ such that $f \cdot h \neq g \cdot h$.

Proposition 2.5. Let C be a balanced, locally small category that admits fiber products. Assume that G is a **set** of generators for C. Then C is well-powered.

Proof. Fix an object X of C. Then every subobject X' of X gives rise to a set

Factor(
$$X'$$
) = $\{f \in Mor(\mathcal{C}) \mid dom(f) \in \mathcal{G}, cod(f) = X \text{ and } f \text{ factors through } X'\} \subseteq \prod_{G \in \mathcal{G}} Mor_{\mathcal{C}}(G, X)$

It suffices to prove that

$$\operatorname{Sub}(X) \ni X' \mapsto \operatorname{Factor}(X') \in \mathcal{P}\left(\prod_{G \in \mathcal{G}} \operatorname{Mor}_{\mathcal{C}}(G, X)\right)$$

is injective (because a class bijective with a set is a set itself). For this assume that X_1 and X_2 are subobjects of X such that $Factor(X_1) = Factor(X_2)$. Since \mathcal{C} admits fiber products, we derive that there exists a fiber product of $X_1 \hookrightarrow X$ and $X_2 \hookrightarrow X$. We denote it by $X_1 \cap X_2$ and consider it as a subobject of X via the canonical map $X_1 \cap X_2 \hookrightarrow X$. By universal property of fiber product we deduce that $Factor(X_1) = Factor(X_1 \cap X_2) = Factor(X_2)$. This implies that for every object Y of \mathcal{C} maps

$$\operatorname{Mor}_{\mathcal{C}}(X_1, Y) \to \operatorname{Mor}_{\mathcal{C}}(X_1 \cap X_2, Y), \operatorname{Mor}_{\mathcal{C}}(X_2, Y) \to \operatorname{Mor}_{\mathcal{C}}(X_1 \cap X_2, Y)$$

induced by $X_1 \cap X_2 \hookrightarrow X_1$ and $X_1 \cap X_2 \hookrightarrow X_2$ are injective. Therefore, morphisms $X_1 \cap X_2 \hookrightarrow X_1$ and $X_1 \cap X_2 \hookrightarrow X_2$ are epimorphisms. Since they are also monomorphisms and \mathcal{C} is balanced, they are isomorphisms. Thus $X_1, X_1 \cap X_2, X_2$ represent the same subobject of X.

Definition 2.6. Let C be a category and X be an object in C. A filtered (directed) family of subobjects of X is a functor $I \to \operatorname{Sub}(X)$ from a small filtered category (directed set) I.

Suppose that \mathcal{C} is a category, X is an object of \mathcal{C} and I is a filtered category. Let $I \to \operatorname{Sub}(X)$ be a filtered family of subobjects of X. Then it can be described as a map $I \ni i \mapsto X_i \in \operatorname{Sub}(X)$ such that for every morphism $i \to j$ in I we have $X_i \subseteq X_j$. For pragmatical reasons we usually use this more explicit description and we view filtered families of subobjects as an indexed families of the form $\{X_i\}_{i \in I}$.

Definition 2.7. Let C be a category and X be an object in C. A filtered family of subobjects $\{X_i\}_{i \in I}$ of X is *complete* if $X = \text{colim}_{i \in I} X_i$

Definition 2.8. Let C be a category and X be an object in C. Suppose that for every complete filtered family $\{X_i\}_{i\in I}$ of subobjects of X there exists $i_0 \in I$ such that $X_{i_0} = X$ for every $i \in I$. Then we say that X is *of finite type*.

Definition 2.9. Let C be a category. We say that C is *locally finite* if for every object X there exists a complete filtered family $\{X_i\}_{i\in I}$ of subobjects of X such that X_i is of finite type for every $i \in I$.

3. ABELIAN CATEGORIES - DEFINITION AND STATEMENT OF THE EMBEDDING THEOREM

Definition 3.1. Let C be a locally small category. Suppose that the following conditions hold.

- (1) C has a zero object (i.e. an object that is both initial and terminal).
- (2) C has finite limits and colimits.
- (3) Each epimorphism in $\mathcal C$ is a cokernel of some arrow and each monomorphism in $\mathcal C$ is a kernel of some arrow.

Then C is called an abelian category.

The definition of an abelian category is taken from [Freyd, 1964]. This differs from the more popular definition [Mac Lane, 1998, page 198] - it does not assume the existence of **Ab**-enrichment (abelian group structure on sets of morphisms). The two notions are equivalent by [Freyd, 1964, Theorem 2.39].

The next result shows that all elementary properties of categories of modules over a ring hold for general abelian categories.

Theorem 3.2 (Freyd-Mitchell embedding). *Let* C *be a small abelian category. Then there exists a ring* R *and a full, faithful and exact functor* $E: C \to \mathbf{Mod}(R)$.

This is [Freyd, 1964, Theorem 7.34].

4. AB-CONDITIONS IN CATEGORIES

In this section we discuss Grothendieck's **Ab**-conditions in categories. The original source of the discussion below is the seminal work [Grothendieck, 1957]. First let us explain that Grothendieck introduces **Ab**0-categories as additive categories, **Ab**1-categories as preabelian categories and **Ab**2-categories as the usual abelian categories. Then he continues with more specific classes of abelian categories and recapitulation of parts of his work is our main task here.

Definition 4.1. A category C is an **Ab**3-category if it is an abelian category and small direct sums in C exists.

Let \mathcal{C} be an **Ab**3-category, $\{X_i\}_{i\in I}$ be a family of objects of \mathcal{C} and let $\{f_i: X_i \to Y\}_{i\in I}$ be a family of morphisms in \mathcal{C} . Then we denote by

$$\sum_{i \in I} f_i : \bigoplus_{i \in I} X_i \to Y$$

a unique morphism determined by requirement $(\sum_{i \in I} f_i) \cdot v_i = f_i$ for each $i \in I$, where $v_i : X_i \to \bigoplus_{i \in I} X_i$ is the canonical inclusion.

Theorem 4.2. Let C be an **Ab**3-category and let $(\{X_i\}_{i\in I}, \{u_\alpha\}_{\alpha\in Mor(I)})$ be a diagram indexed by a small category I. Consider a right exact sequence

$$\bigoplus_{\alpha \in \operatorname{Mor}(I)} X_{\operatorname{dom}(\alpha)} \xrightarrow{\sum_{\alpha \in \operatorname{Mor}(I)} \left(v_{\operatorname{cod}(\alpha)} \cdot u_{\alpha} - v_{\operatorname{dom}(\alpha)} \right)} \bigoplus_{i \in I} X_{i} \xrightarrow{q} X$$

where for each i morphism $v_i: X_i \to \bigoplus_{i \in I} X_i$ is canonical. Define $u_i = q \cdot v_i$ for every $i \in I$. Then $(X, \{u_i\}_{i \in I})$ is a colimiting cone of $(\{X_i\}_{i \in I}, \{u_\alpha\}_{\alpha \in \operatorname{Mor}(I)})$.

Proof. This is a reformulation of the dual statement to [Mac Lane, 1998, page 113, Theorem 1] and we left it to the reader.

Definition 4.3. A category C is an **Ab**4-category if it is **Ab**3-category and small direct sums in C are exact.

Fact 4.4. Let C be an **Ab**3-category and assume that small filtered colimits in C are exact. Then C is an **Ab**4-category.

Proof. Finite direct sums are exact in arbitrary abelian categories and a small direct sum is a filtered colimit of finite direct sums taken over finite subsets of the indexing set. Thus the result follows. \Box

Definition 4.5. Let \mathcal{C} be an **Ab**3-category. If for every object X of \mathcal{C} , every subobject $Y \subseteq X$ and every directed family $\{X_i\}_{i \in I}$ of subobjects of X the following formula holds

$$Y \cap \sum_{i \in I} X_i = \sum_{i \in I} Y \cap X_i$$

then we say that C is an **Ab**5-category.

The next result is very useful.

Theorem 4.6. Let C be an **Ab**5-category and let $(\{X_i\}_{i\in I}, \{u_{\alpha}\}_{{\alpha}\in Mor(I)})$ be a diagram indexed by a small filtered category I. Suppose that $(X, \{u_i\}_{i\in I})$ is a colimiting cone of $(\{X_i\}_{i\in I}, \{u_{\alpha}\}_{{\alpha}\in Mor(I)})$. Then

$$\ker(u_j) = \sum_{\alpha \in \operatorname{Mor}(I), \operatorname{dom}(\alpha) = j} \ker(u_\alpha)$$

for every $j \in I$.

The following result is a direct consequence of definition of Ab5-category.

Lemma 4.6.1. Let C be an **Ab**5-category, X be its object and $\{X_i\}_{i\in I}$ be a filtered family of subobjects of X. Assume also that $f: Y \to X$ is a monomorphism. Then

$$f^{-1}\left(\sum_{i\in I}X_i\right) = \sum_{i\in I}f^{-1}(X_i)$$

Proof of the lemma. It suffices to prove that

$$f(Y)\cap \sum_{i\in I} X_i = \sum_{i\in I} f(Y)\cap X_i$$

From Fact 1.4 and applying factorization of $I \to \operatorname{Sub}(X)$ through its image we can view $\{X_i\}_{i \in I}$ as a directed family of subobjects of X. Thus the result follows from the fact that C is Ab5.

Proof of the theorem. Obviously

$$\sum_{\alpha \in \operatorname{Mor}(I), \operatorname{dom}(\alpha) = j} \ker(u_{\alpha}) \subseteq \ker(u_{j})$$

It suffices to prove that the reverse inclusion holds. For every i in I denote by $v_i: X_i \to \bigoplus_{i \in I} X_i$ the canonical morphism. By Theorem 4.2 we have

$$\ker(u_j) = v_j^{-1} \left(\operatorname{im} \left(\sum_{\alpha \in \operatorname{Mor}(I)} v_{\operatorname{cod}(\alpha)} \cdot u_\alpha - v_{\operatorname{dom}(\alpha)} \right) \right) = v_j^{-1} \left(\operatorname{im} \left(\sum_{F \subseteq \operatorname{Mor}(I), |F| \in \mathbb{N}} \sum_{\alpha \in F} \left(v_{\operatorname{cod}(\alpha)} \cdot u_\alpha - v_{\operatorname{dom}(\alpha)} \right) \right) \right)$$

Since C is **Ab**5-category and by Lemma 4.6.1, we deduce that

$$\ker(u_j) = \sum_{F \subseteq \operatorname{Mor}(I), |F| \in \mathbb{N}} v_j^{-1} \left(\operatorname{im} \left(\sum_{\alpha \in F} v_{\operatorname{cod}(\alpha)} \cdot u_\alpha - v_{\operatorname{dom}(\alpha)} \right) \right)$$

Thus it suffices to verify that

$$v_j^{-1}\left(\operatorname{im}\left(\sum_{\alpha\in F}v_{\operatorname{cod}(\alpha)}\cdot u_\alpha-v_{\operatorname{dom}(\alpha)}\right)\right)\subseteq \sum_{\alpha\in\operatorname{Mor}(I),\operatorname{dom}(\alpha)=j}\ker(u_\alpha)$$

for every finite subset F of Mor(I). Fix such F and suppose that $\{i_1,...,i_n\}$ are all objects of I, which are either domains or codomains of arrows in F. If $j \notin \{i_1,...,i_n\}$, then

$$v_j^{-1} \left(\operatorname{im} \left(\sum_{\alpha \in F} v_{\operatorname{cod}(\alpha)} \cdot u_\alpha - v_{\operatorname{dom}(\alpha)} \right) \right) = 0$$

So we may assume that $j \in \{i_1, ..., i_n\}$. Consider a finite diagram in I that consists of $\{i_1, ..., i_n\}$ and all arrows in F. Since I is filtered, there exists a cocone over this diagram. Hence there exist i_0 in I and a family of morphisms $\beta_{i_k} : i_k \to i_0$ for $1 \le k \le n$ in I such that $\beta_{\text{dom}(\alpha)} = \beta_{\text{cod}(\alpha)} \cdot \alpha$ for every $\alpha \in F$. Define $f_i = 0$ for $i \in I \setminus \{i_1, ..., i_n\}$ and $f_i = u_{\beta_i}$ for $i \in \{i_1, ..., i_n\}$. Let $f = \sum_{i \in I} f_i$. We have a commutative square

$$X_{j} \xrightarrow{u_{\beta_{j}}} X_{i_{0}}$$

$$\downarrow^{v_{i_{0}}}$$

$$\bigoplus_{i \in I} X_{i} \xrightarrow{f} \bigoplus_{i \in I} X_{i}$$

and hence it follows that

$$u_{\beta_{j}}\left(v_{j}^{-1}\left(\operatorname{im}\left(\sum_{\alpha\in F}v_{\operatorname{cod}(\alpha)}\cdot u_{\alpha}-v_{\operatorname{dom}(\alpha)}\right)\right)\right)\subseteq v_{i_{0}}^{-1}\left(f\left(\operatorname{im}\left(\sum_{\alpha\in F}v_{\operatorname{cod}(\alpha)}\cdot u_{\alpha}-v_{\operatorname{dom}(\alpha)}\right)\right)\right)=0$$

$$=v_{i_{0}}^{-1}\left(\operatorname{im}\left(\sum_{\alpha\in F}v_{i_{0}}\cdot\left(u_{\beta_{\operatorname{cod}(\alpha)}}\cdot u_{\alpha}-u_{\beta_{\operatorname{dom}(\alpha)}}\right)\right)\right)=0$$

and thus

$$v_j^{-1}\left(\operatorname{im}\left(\sum_{\alpha\in F}v_{\operatorname{cod}(\alpha)}\cdot u_\alpha-v_{\operatorname{dom}(\alpha)}\right)\right)\subseteq\ker(u_{\beta_j})$$

This finishes the proof.

Theorem 4.7. Let C be an **Ab**3-category. Then the following are equivalent.

- (i) C is an Ab5-category.
- (ii) Small filtered colimits are exact in C.

Proof. The nontrivial part is (i) \Rightarrow (ii). Let *I* be a small filtered category and

$$\left\{0 \longrightarrow X_i' \stackrel{r_i}{\longrightarrow} X_i \stackrel{p_i}{\longrightarrow} X_i'' \longrightarrow 0\right\}_{i \in I}$$

be a diagram of exact sequences indexed by I. We denote by $(\{X_i\}_{i\in I}, \{u_\alpha\}_{\alpha\in Mor(I)})$ and $(\{X_i'\}_{i\in I}, \{v_\alpha\}_{\alpha\in Mor(I)})$ appropriate slices of this I-indexed diagram. Consider a complex

$$0 \longrightarrow X' \stackrel{r}{\longrightarrow} X \stackrel{p}{\longrightarrow} X'' \longrightarrow 0$$

where $X' = \operatorname{colim}_{i \in I} X_i'$, $X = \operatorname{colim}_{i \in I} X_i$, $X'' = \operatorname{colim}_{i \in I} X_i''$, $r = \operatorname{colim}_{i \in I} r_i$ and $p = \operatorname{colim}_{i \in I} p_i$. Clearly the complex is right exact. It suffices to prove that r is a monomorphism. For $i \in I$ denote by $v_i : X_i' \to X$, $u_i : X_i \to X$ structural morphisms. Fix $j \in I$ and consider $Z = v_j^{-1}(\ker(r))$. Then $r_j(Z) \subseteq \ker(u_j)$ and hence by Theorem 4.6 we derive that

$$r_j(Z) \subseteq \sum_{\alpha \in \text{Mor}(I), \text{dom}(\alpha) = j} \text{ker}(u_\alpha)$$

Note that for every $\alpha \in \operatorname{Mor}(I)$ with $\operatorname{dom}(\alpha) = j$ we have $r_j^{-1}(\ker(u_\alpha)) \subseteq \ker(v_\alpha)$. Indeed, this follows easily from the fact that $r_{\operatorname{cod}(\alpha)}$ is an monomorphism. Thus by Lemma 4.6.1, Theorem 4.6 and the fact that preimages preserve intersections we deduce that

$$Z = r_j^{-1}(r_j(Z)) = r_j^{-1}\left(\sum_{\alpha \in \text{Mor}(I), \text{dom}(\alpha) = j} r_j(Z) \cap \ker(u_\alpha)\right) = \sum_{\alpha \in \text{Mor}(I), \text{dom}(\alpha) = j} Z \cap r_j^{-1}(\ker(u_\alpha)) \subseteq \sum_{\alpha \in \text{Mor}(I), \text{dom}(\alpha) = j} Z \cap \ker(v_\alpha) = Z \cap \sum_{\alpha \in \text{Mor}(I), \text{dom}(\alpha) = j} \ker(v_\alpha) = Z \cap \ker(v_j)$$

and this implies that $Z \subseteq \ker(v_i)$. Since $Z = v_i^{-1}(\ker(r))$, we deduce that

$$0 = v_i(Z) = \ker(r) \cap \ker(v_i)$$

Now $\{im(v_i)\}_{i\in I}$ is a filtered complete family of subobjects of X'. Hence by Lemma 4.6.1 we deduce that

$$\ker(r) = \ker(r) \cap \sum_{i \in I} \operatorname{im}(v_i) = \sum_{i \in I} \ker(r) \cap \operatorname{im}(v_i) = 0$$

and thus r is a monomorphism.

Corollary 4.8. Every Ab5-category is Ab4-category.

Proof. This is a consequence of Fact 4.4 and Theorem 4.7.

5. Finite type and finite presentation objects in $\mathbf{Ab}5$ -categories

In this section we investigate properties of finite type objects and related notion of finitely presented objects in ${\bf Ab}5$ -categories.

Proposition 5.1. Let C be an **Ab**5-category and consider a short exact sequence

$$0 \longrightarrow X'' \longrightarrow X \xrightarrow{f} X' \longrightarrow 0$$

Then the following assertions hold.

- **(1)** If X is of finite type, then X' is of finite type.
- **(2)** If X'' and X' are of finite type, then X is of finite type.

Proof. For the proof of **(1)** consider a complete filtered family $\{X'_i\}_{i\in I}$ of subobjects of X'. Then $\{f^{-1}(X'_i)\}_{i\in I}$ is a complete filtered family of subobjects of X. Now X is of finite type. Thus there exists $i_0 \in I$ such that $f^{-1}(X'_{i_0}) = X$. Hence $X' = X'_{i_0}$. This shows that X' is of finite type. Now we prove **(2)**. Let $\{X_i\}_{i\in I}$ be a complete filtered family of subobjects of X. Since C is an **Ab**5-

Now we prove (2). Let $\{X_i\}_{i\in I}$ be a complete filtered family of subobjects of X. Since \mathcal{C} is an **Ab**5-category, we derive that $\{X'' \cap X_i\}_{i\in I}$ is a complete filtered family of subobjects of X''. Moreover,

 $\{f(X_i)\}_{i\in I}$ is a complete filtered family of subobjects of X'. Since both X' and X'' are of finite type, there exists i_0 and i_1 in I such that $X'' = X'' \cap X_{i_0}$ and $X' = f(X_{i_1})$. Suppose that there are morphisms $i_0 \to i_2$ and $i_1 \to i_2$ for some $i_2 \in I$. Then $X'' = X'' \cap X_{i_2}$ and $X' = f(X_{i_2})$. This implies that $X = X_{i_2}$ and hence X is of finite type.

Proposition 5.2. Let C be an Ab5-category and X be a finite type object of C. Then for every diagram $(\{X_i'\}_{i\in I}, \{u_{\alpha}\}_{{\alpha}\in Mor(I)})$ indexed by a small filtered category the canonical morphism

$$\operatorname{colim}_{i \in I} \operatorname{Mor}_{\mathcal{C}}(X, X'_{i}) \longrightarrow \operatorname{Mor}_{\mathcal{C}}(X, \operatorname{colim}_{i \in I} X'_{i})$$

is a monomorphism of abelian groups.

Proof. Denote $\operatorname{colim}_{i \in I} X_i'$ by X' and by $u_i : X_i' \to X'$ the canonical morphism for every $i \in I$. Fix morphisms $g : X \to X_i'$ for some $i \in I$. Assume that $u_i \cdot g = 0$. Then $g(X) \subseteq \ker(u_i)$ and in addition g(X) is of finite type as the image of X (Proposition 5.1). We have

$$\ker(u_i) = \sum_{\alpha \in \operatorname{Mor}(I), \operatorname{dom}(\alpha) = i} \ker(u_\alpha)$$

by Theorem 4.6. We use the fact that C is Ab5 to derive that

$$g(X) = g(X) \cap \ker(u_i) = \sum_{\alpha \in \operatorname{Mor}(I), \operatorname{dom}(\alpha) = i} g(X) \cap \ker(u_\alpha)$$

Since g(X) is of finite type and $\{g(X) \cap \ker(u_{\alpha})\}_{\alpha \in \operatorname{Mor}(I), \operatorname{dom}(\alpha) = i}$ is a complete filtered family of subobjects of finite type object g(X), we derive that there exists morphism $\alpha : i \to i_0$ such that

$$g(X) = g(X) \cap \ker(u_{\alpha}) \subseteq \ker(u_{\alpha})$$

Then $u_{\alpha} \cdot g = 0$ and his implies that g represents zero class in $\operatorname{colim}_{i \in I} \operatorname{Mor}_{\mathcal{C}}(X_i, X_i')$.

Definition 5.3. Let C be an abelian category and X be an object of C. Suppose that the following two conditions hold.

- **(1)** *X* is of finite type.
- (2) If $f: X' \to X$ is an epimorphism in C and X' is of finite type, then $\ker(f)$ is of finite type.

Then we say that *X* is *of finite presentation*.

Proposition 5.4. Let C be an Ab5-category and X be an object of C. Then the following assertions are equivalent.

- (i) X is of finite presentation.
- (ii) There exists an object of finite presentation X' in C and an epimorphism $f: X' \to X$ with kernel of finite type.

Proof. For the proof of (i) \Rightarrow (ii) it suffices to consider an epimorphism $1_X : X \to X$ with trivial kernel.

Assume that (ii) holds. Fix an epimorphism $f: X' \to X$ such that X' is of finite presentation and $\ker(f)$ is of finite type. By Proposition 5.1 object X is of finite type. Next suppose that $g: X'' \to X$ is an epimorphism with X'' of finite type. Consider a commutative diagram

in which bottom right square is cartesian. The fact that canonical morphisms between kernels in the diagram are isomorphisms follows because \mathcal{C} is an abelian category. Note also that every row and column of the diagram is a short exact sequence in \mathcal{C} . Since $\ker(f)$ is of finite type, we derive that $\ker(f')$ is of finite type and hence by Proposition 5.1 object Z is of finite type as an extension of finite type objects $\ker(f')$ and X''. Next according to the fact that X' is of finite presentation and $g': Z \to X'$ is an epimorphism with Z of finite type, we deduce that $\ker(g')$ is of finite type. But $\ker(g') \cong \ker(g)$ and hence $\ker(g)$ is of finite type. This implies that X is of finite presentation. Thus (ii) \Rightarrow (i).

Theorem 5.5. Let C be an **Ab**5-category and X be an object of C. Consider the following statements.

- (i) X is of finite presentation.
- (ii) For every diagram $(\{X_i'\}_{i\in I}, \{u_{\alpha}\}_{{\alpha}\in Mor(I)})$ indexed by a small filtered category the canonical morphism

$$\operatorname{colim}_{i \in I} \operatorname{Mor}_{\mathcal{C}}(X, X'_i) \longrightarrow \operatorname{Mor}_{\mathcal{C}}(X, \operatorname{colim}_{i \in I} X'_i)$$

is an isomorphism of abelian groups.

Proof. We prove that (i) \Rightarrow (ii). Denote $\operatorname{colim}_{i \in I} X_i'$ by X' and suppose that $u_i : X_i' \to X'$ is the canonical morphism for every $i \in I$. Fix a morphism $f : X \to X'$ in \mathcal{C} . Let $(\{X_i\}_{i \in I}, \{v_\alpha\}_{\alpha \in \operatorname{Mor}(I)})$ be a diagram obtained by pulling back diagram $(\{X_i'\}_{i \in I}, \{u_\alpha\}_{\alpha \in \operatorname{Mor}(I)})$ along f. This means that for every $i \in I$ we have a cartesian square

$$X_{i} \xrightarrow{f_{i}} X'_{i}$$

$$v_{i} \downarrow \qquad \downarrow u_{i}$$

$$X \xrightarrow{f} X'$$

and if $\alpha:i\to j$ is a morphism in I, then $f_j\cdot v_\alpha=u_\alpha\cdot f_i$. In ${\bf Ab}5$ -category filtered colimits commute with pullbacks (Theorem 4.7). Hence $X=\operatorname{colim}_{i\in I}X_i$. In particular, we have $X=\sum_{i\in I}v_i(X_i)$ and $\{v_i(X_i)\}_{i\in I}$ is a filtered family of subobjects of X. Next as X is of finite type, we deduce that there exists $i_0\in I$ such that $X=v_{i_0}(X_{i_0})$. Let $\{Z_k\}_{k\in K}$ be a complete filtered family of subobjects of X_i that consists of objects of finite type ($\mathcal C$ is locally finite). Then $\{v_{i_0}(Z_k)\}_{k\in K}$ is a complete filtered family of subobjects of X. Thus there exists $k_0\in K$ such that $v_{i_0}(Z_{k_0})=X$. This implies that there exists finite type subobject X'' of X_{i_0} such that $X=v_{i_0}(X'')$. Since X is of finite presentation, we derive that $X''\cap\ker(v_{i_0})$ is of finite type. On the other hand

$$\ker(v_{i_0}) = \sum_{\alpha \in \operatorname{Mor}(I), \operatorname{dom}(\alpha) = i_0} \ker(v_{\alpha})$$

by Theorem 4.6. Again we use the fact that C is Ab5 to derive that

$$X'' \cap \ker(v_{i_0}) = \sum_{\alpha \in \operatorname{Mor}(I), \operatorname{dom}(\alpha) = i_0} X'' \cap \ker(v_\alpha)$$

Since $X'' \cap \ker(v_{i_0})$ is of finite type and $\{X'' \cap \ker(v_{\alpha})\}_{\alpha \in \operatorname{Mor}(I), \operatorname{dom}(\alpha) = i_0}$ is a complete filtered family of subobjects of $X'' \cap \ker(v_{i_0})$, we derive that there exists morphism $\alpha : i_0 \to i_1$ such that

$$X'' \cap \ker(v_{i_0}) = X'' \cap \ker(v_{\alpha})$$

Let $X''' = v_{\alpha}(X'')$ be a subobject of X_{i_1} . Since $v_{i_0} = v_{i_1} \cdot v_{\alpha}$, we derive that v_{i_1} induces an isomorphism $X''' \cong X$. Therefore, $v_{i_1} : X_{i_1} \to X$ admits a section $s : X \to X_{i_1}$. Let $g = f_{i_1} \cdot s$. Then $g : X \to X'_{i_1}$ is a morphism such that $u_{i_1} \cdot g = f$ and this implies that the canonical morphism

$$\operatorname{colim}_{i \in I} \operatorname{Mor}_{\mathcal{C}}(X, X'_{i}) \longrightarrow \operatorname{Mor}_{\mathcal{C}}(X, X')$$

is surjective. The injectivity follows from Proposition 5.2.

Now let us prove that (ii) \Rightarrow (i). Since \mathcal{C} is locally finite, there exists a complete filtered family $\{X_i\}_{i\in I}$ of subobjects of X and these family consists of objects of finite type in \mathcal{C} . Applying (ii) to this particular filtered diagram we deduce that there exists i_0 in I and a morphism $g: X \to X_{i_0}$ such that g composed with $X_{i_0} \to X$ is 1_X . This implies that g is an isomorphism and $X = X_{i_0}$. Hence X is of finite type. Thus in order to prove that X is of finite presentation it suffices to check that an epimorphism $f: X' \to X$ with X' of finite type has the kernel of finite type. For this let $\{K_i\}_{i\in I}$ be a complete filtered family of subobjects of $\ker(f)$ that consists of objects of finite type in \mathcal{C} . We define $X_i = X'/K_i$ for every $i \in I$. Then $\{X_i\}_{i\in I}$ gives rise to a canonical I-indexed diagram such that we have an identification

$$X'/\ker(f) = \operatorname{colim}_{i \in I} X_i$$

We apply (ii) to this I-indexed diagram and obtain i_0 in I together with a morphism $s: X \to X_{i_0}$ such that s composed with the canonical epimorphism $X_{i_0} \to X'/\ker(f)$ yields and isomorphism $X \cong X'/\ker(f)$ induced by f. This implies that $X_{i_0} \cong X \oplus (\ker(f)/K_{i_0})$. Since both X_{i_0} and X are of finite type, we deduce that $\ker(f)/K_{i_0}$ is of finite type. Moreover, K_{i_0} is of finite type. This proves that $\ker(f)$ is of finite type.

6. APPLICATIONS TO MODULES OVER A RING

Let R be a ring. We denote by $\mathbf{Mod}(R)$ the category of left R-modules.

Fact 6.1. Let M be a left R-module and $\{M_i\}_{i\in I}$ be a filtered family of submodules of M. Then

$$\sum_{i \in I} M_i = \bigcup_{i \in I} M_i$$

Proof. Left to the reader.

Proposition 6.2. $\mathbf{Mod}(R)$ is a locally finite category and an object M of $\mathbf{Mod}(R)$ is of finite type if and only if M is finitely generated left R-module.

Proof. Suppose that M is a finitely generated left R-module and $\{M_i\}_{i\in I}$ is a complete filtered family of submodules of M. By Fact 6.1 we derive that

$$M=\bigcup_{i\in I}M_i$$

Let $m_1,...,m_n$ be generators of M. Then for every $1 \le j \le n$ there exists $i_j \in I$ such that $m_j \in M_{i_j}$. According to the fact that I is filtered there exists $i_0 \in I$ and morphisms $i_j \to i_0$ for every $1 \le j \le n$. This implies that $m_j \in M_{i_0}$ for every $1 \le j \le n$ and hence $M = M_{i_0}$. Therefore, M is an object of finite type in $\mathbf{Mod}(R)$.

Let M be an arbitrary left R-module and \mathcal{F} be a family of its finitely generated submodules. Since sum of two finitely generated submodules of a given module is finitely generated, we deduce that \mathcal{F} is directed. Moreover, M together with embeddings $N \hookrightarrow M$ for $N \in \mathcal{F}$ is the colimit of \mathcal{F} . Therefore, every object in $\mathbf{Mod}(R)$ admits a complete filtered family of subobjects of finite type. Now suppose that M itself is of finite type in $\mathbf{Mod}(R)$. Then M = N for some $N \in \mathcal{F}$ and hence M is finitely generated.

Proposition 6.3. Mod(R) *is an* Ab5-*category.*

Proof. Fix an *R*-module *M*. Let $\{M_i\}_{i\in I}$ be a directed family of its submodules and $N\subseteq M$ be a submodule. By Fact 6.1 we have

$$N \cap \sum_{i \in I} M_i = N \cap \bigcup_{i \in I} M_i = \bigcup_{i \in I} \left(N \cap M_i\right) = \sum_{i \in I} N \cap M_i$$

Corollary 6.4. Let M be a left R-module. Then the following statements are equivalent.

(i) There exist $n, m \in \mathbb{N}$ and a right exact sequence

$$R^{\oplus m} \longrightarrow R^{\oplus n} \longrightarrow M \longrightarrow 0$$

(ii) M is a finitely presented object of Mod(R).

Proof. Note that $\operatorname{Hom}_R(R^{\oplus n}, -) : \operatorname{Mod}(R) \to \operatorname{Ab}$ is naturally isomorphic with the functor $|-|^{\oplus n} : \operatorname{Mod}(R) \to \operatorname{Ab}$ that sends each left R-module to a direct sum of n-copies of its underlying abelian group. By Propositions 6.2 and 6.3, Theorem 5.5 and the fact that $|-|^{\oplus n}$ preserves all colimits, we derive that left R-module $R^{\oplus n}$ is finitely presented in $\operatorname{Mod}(R)$. Now according to Propositions 6.3 and 5.4 we deduce that (i) ⇔ (ii). The converse (ii) ⇒ (i) holds by Proposition 6.2 and definition of finitely presented object in abelian category.

Example 6.5 (Finitely generated module that is not finitely presented). Let A be a commutative ring and $R = A[x_0, x_1, ...]$ be a polynomial A-algebra with infinitely many free variables. Denote by \mathfrak{a} the ideal $\sum_{i \in \mathbb{N}} R \cdot x_i$ of R. Then $M = R/\mathfrak{a}$ is a finitely generated (even cyclic) R-module. On the other hand the kernel of the canonical epimorphism $R \to R/\mathfrak{a} = M$ is \mathfrak{a} and hence it is not a finitely generated R-module. Thus M is not finitely presented but finitely generated.

7. NOETHERIAN AND ARTINIAN OBJECTS

Definition 7.1. Let \mathcal{C} be an abelian category. An object X of \mathcal{C} is called *noetherian* (*artinian*) if for every ascending (descending) chain $\{X_n\}_{n\in\mathbb{N}}$ of its subobjects, there exists $n_0 \in \mathbb{N}$ such that $X_n = X_{n_0}$ for $n \ge n_0$.

First we note the following elementary result.

Fact 7.2. Let C be an abelian category. Then noetherian objects in C^{op} are artinian in C and vice versa.

The next result is useful for certain applications.

Proposition 7.3. Let C be an abelian category and let X be a noetherian (artinian) object of C. Then for every nonempty class F of subobjects of X there exists a maximal (minimal) element contained in this family.

Proof. We present the proof for noetherian case (the proof for artinian case can be obtained by passing to the opposite category). Let \mathcal{F} be a class of subobjects of a noetherian object X. We construct an ascending chain $\{X_n\}_{n\in\mathbb{N}}$ of subobjects of \mathcal{F} as follows. We pick $X_0 \in \mathcal{F}$. Suppose that $X_0 \subseteq ... \subseteq X_n$ are defined. If X_n is a maximal element of \mathcal{F} , then we set $X_{n+1} = X_n$. Otherwise

we pick $X_{n+1} \in \mathcal{F}$ such that $X_n \nsubseteq X_{n+1}$. Since X is noetherian, there exists $n_0 \in \mathbb{N}$ such that $X_n = X_{n_0}$ for $n \ge n_0$. This implies that X_{n_0} is maximal element in \mathcal{F} .

Definition 7.4. Let $\mathcal C$ be an abelian category and let $\mathcal S$ be its full subcategory. Suppose that for every exact sequence in $\mathcal C$

$$0 \longrightarrow X' \longrightarrow X \longrightarrow X'' \longrightarrow 0$$

we have $X \in \mathcal{S}$ if and only if $X', X'' \in \mathcal{S}$. Then \mathcal{S} is called a *thick subcategory of* \mathcal{C} .

Proposition 7.5. *Let* C *be an abelian category. Then subcategory of* C *consisting of noetherian (artinian) objects is thick.*

Proof. We present the proof for noetherian case (the proof for artinian case can be obtained by passing to the opposite category). Consider a short exact sequence

$$0 \longrightarrow X' \xrightarrow{i} X \xrightarrow{p} X'' \longrightarrow 0$$

Suppose first that X is noetherian. Consider an ascending chain $\{X_n'\}_{n\in\mathbb{N}}$ of subobjects of X'. Then it is also an ascending chain of subobjects of X. Hence there exists $n_0 \in \mathbb{N}$ such that $X_n' = X_{n_0}'$ for $n \ge n_0$. This implies that X' is noetherian. Now suppose that $\{X_n''\}_{n\in\mathbb{N}}$ is an ascending chain of subobjects of X''. Then $\{p^{-1}(X_n'')\}_{n\in\mathbb{N}}$ is an ascending chain of subobjects of X. Hence there exists $n_0 \in \mathbb{N}$ such that $p^{-1}(X_n'') = p^{-1}(X_{n_0}'')$ for $n \ge n_0$. This shows that $X_n'' = X_{n_0}''$ for $n \ge n_0$. Thus X'' is noetherian.

Next suppose that both X' and X'' are noetherian. Let $\{X_n\}_{n\in\mathbb{N}}$ be an ascending chain of subobjects of X. Then $\{i^{-1}(X_n)\}_{n\in\mathbb{N}}$ and $\{p(X_n)\}_{n\in\mathbb{N}}$ are ascending chains of subobjects of X' and X'', respectively. Since X' and X'' are noetherian, we derive that there exists $n_0 \in \mathbb{N}$ such that $i^{-1}(X_n) = i^{-1}(X_{n_0})$ and $p(X_n) = p(X_{n_0})$ for $n \ge n_0$. This implies that $X_n = X_{n_0}$ for $n \ge n_0$ and hence X is noetherian.

8. OBJECTS OF FINITE LENGTH

It is interesting to investigate the case when object is both noetherian and artinian. We need the following definition first.

Definition 8.1. Let C be an abelian category. An nonzero object X of C is *irreducible* if the only subobjects of X are zero and X itself.

Proposition 8.2. Let C be an abelian category and let X be an object of C. Then the following assertions are equivalent.

- (i) *X* is both noetherian and artinian.
- (ii) There exists a chain

$$0=X_0\subseteq X_1\subseteq X_2\subseteq ...\subseteq X_n=X$$

of subobjects of X such that for each $0 \le i \le n-1$ the quotient X_{i+1}/X_i is an irreducible object of C.

For the proof we will need the following.

Lemma 8.2.1. Let C be an abelian category and let X be an artinian object of C. Suppose that $X' \subseteq X$ is a subobject. Then there exists a minimal subobject X'' of X such that $X' \subseteq X''$.

Proof of the lemma. It suffices to apply Proposition 7.3 to a nonempty class

$$\mathcal{F} = \{Z \mid Z \text{ is a subobject of } X \text{ strictly containing } X'\}$$

Proof of the proposition. We prove (i) \Rightarrow (ii). Suppose that X is both noetherian and artinian. Since X is artinian, by Lemma 8.2.1 we construct a chain

$$0 = X_0 \subsetneq X_1 \subsetneq \dots$$

such that for each i the quotient X_{i+1}/X_i is irreducible object of \mathcal{C} . Indeed, starting from $X_0 = 0$ we apply the following procedure. If X_i was constructed and $X_i \subsetneq X$, then by Lemma 8.2.1 we pick X_{i+1} as a minimal subobject of X such that $X_i \subsetneq X_{i+1}$. Note that the construction of this ascending chain of subobjects of X cannot go indefinitely, because X is noetherian. Hence we deduce that

$$0 = X_0 \subsetneq X_1 \subsetneq \dots \subsetneq X_n = X$$

for some $n \in \mathbb{N}$.

Now we prove that (ii) \Rightarrow (i). Assume that there exists a chain

$$0=X_0\subseteq X_1\subseteq X_2\subseteq ...\subseteq X_n=X$$

of subobjects of X such that for each $0 \le i \le n-1$ the quotient X_{i+1}/X_i is an irreducible object of C. Then we prove by finite induction that each X_i is both noetherian and artinian. This clearly holds for X_0 . Suppose that it holds for X_i for some i < n. Then there exists a canonical short exact chain

$$0 \longrightarrow X_i \longrightarrow X_{i+1} \longrightarrow X_{i+1}/X_i \longrightarrow 0$$

Since X_i is both noetherian and artinian and moreover, X_{i+1}/X_i as an irreducible object is both noetherian and artinian, we derive by Proposition 7.5 that X_{i+1} is both noetherian and artinian.

Definition 8.3. Let C be an abelian category and let X be an object of C. A chain

$$0=X_0\subseteq X_1\subseteq \ldots \subseteq X_n=X$$

of subobjects such that X_{i+1}/X_i is an irreducible object for $0 \le i \le n-1$ is called *a composition series* of X. Irreducible objects

$$X_1/X_0, X_2/X_1, ..., X_n/X_{n-1}$$

are called factors of the composition series.

Let *X* be an object of a category \mathcal{C} . Then we denote by $[X]_{\cong}$ the isomorphism class of *X*.

Theorem 8.4 (Jordan-Hölder). Let C be an abelian category and let X be its object. Suppose that

$$0=X_0\subseteq X_1\subseteq \ldots \subseteq X_n=X$$

and

$$0=X_0'\subseteq X_1'\subseteq\ldots\subseteq X_m'=X$$

are composition series of X. Then multisets (sets which allow repetitions)

$$\{[X_1/X_0]_{\cong}, [X_2/X_1]_{\cong}, ..., [X_n/X_{n-1}]_{\cong}\}, \{[X_1'/X_0']_{\cong}, [X_2'/X_1']_{\cong}, ..., [X_m'/X_{m-1}']_{\cong}\}$$

are equal.

Proof. The proof goes by induction on n. If n = 1, then X is irreducible and the result holds. Suppose now $n \ge 1$. Consider object $Z = X/X_1$. Then $Z_i = X_{i+1}/X_1$ for $0 \le i \le n-1$. Clearly

$$0=Z_0\subseteq Z_1\subseteq ...\subseteq Z_{n-1}=Z$$

is a composition series of *Z* and we have

$$\{[Z_1/Z_0]_{\cong},[Z_2/Z_1]_{\cong},...,[Z_{n-1}/Z_{n-2}]_{\cong}\}=\{[X_2/X_1]_{\cong},[X_3/X_2]_{\cong},...,[X_n/X_{n-1}]_{\cong}\}$$

Consider now objects $W_i = X_i'/(X_i' \cap X_1)$ for $0 \le i \le m$. Then we have a chain of subobjects

$$0 = W_0 \subseteq W_1 \subseteq ... \subseteq W_m = Z$$

of Z. Pick i = 0, 1, ..., m - 1. We have a commutative diagram

П

$$0 \longrightarrow X'_{i} \longrightarrow X'_{i+1} \longrightarrow X'_{i+1}/X'_{i} \longrightarrow 0$$

$$\downarrow p_{i} \qquad \downarrow p_{i+1} \qquad \downarrow q_{i+1}$$

$$0 \longrightarrow W_{i} \longrightarrow W_{i+1} \longrightarrow W_{i+1}/W_{i} \longrightarrow 0$$

in \mathcal{C} with exact rows and canonical epimorphism as vertical arrows. By Snake Lemma ([Weibel, 1995, page 11]) we derive that there exists an exact sequence

$$0 \to \ker(p_i) \to \ker(p_{i+1}) \to \ker(q_{i+1}) \to \operatorname{coker}(p_i) \to \operatorname{coker}(p_{i+1}) \to \operatorname{coker}(q_{i+1}) \to 0$$

Since $\ker(p_i) = X_i' \cap X_1$, $\ker(p_{i+1}) = X_{i+1}' \cap X_1$ and p_i, p_{i+1}, q_{i+1} are epimorphism, we deduce that this exact sequence induces a short exact sequence

$$0 \longrightarrow X'_i \cap X_1 \longrightarrow X'_{i+1} \cap X_1 \longrightarrow \ker(q_{i+1}) \longrightarrow 0$$

Pick now k such that $X_i' \cap X_1 = 0$ for $i \le k$ and $X_i' \cap X_1 = X_1$ for k < i. Thus for $i \ne k$ we have $\ker(q_{i+1}) = 0$ and hence X_{i+1}'/X_i' is isomorphic to W_{i+1}/W_i . Moreover, for i = k we have $X_1 \cong \ker(q_{k+1})$. Hence $X_1 \cong X_{k+1}'/X_k'$ and $W_{k+1}/W_k = 0$. We define

$$Z_i' = \begin{cases} W_i & \text{for } i \le k \\ W_{i+1} & \text{for } k < i \end{cases}$$

for $0 \le i \le m - 1$. Then

$$0 = Z'_0 \subseteq Z'_1 \subseteq ... \subseteq Z'_{m-1} = Z$$

is a composition series and

$$\{[Z_1'/Z_0']_{\cong},[Z_2'/Z_1']_{\cong},...,[Z_m'/Z_{m-1}']_{\cong}\}=\{[X_2'/X_1']_{\cong},[X_3'/X_2']_{\cong},...,[X_m'/X_{m-1}']_{\cong}\}$$

Now by induction we have

$$\{[Z_1'/Z_0']_{\cong}, [Z_2'/Z_1']_{\cong}, ..., [Z_m'/Z_{m-1}']_{\cong}\} = \{[Z_1/Z_0]_{\cong}, [Z_2/Z_1]_{\cong}, ..., [Z_m/Z_{m-1}]_{\cong}\}$$

Since $X'_{k+1}/X'_k \cong X_1$, we deduce that

$$\{ [X'_1/X'_0]_{\cong}, [X'_2/X'_1]_{\cong}, ..., [X'_m/X'_{m-1}]_{\cong} \} = \{ [Z'_1/Z'_0]_{\cong}, [Z'_2/Z'_1]_{\cong}...., [Z'_m/Z'_{m-1}]_{\cong} \} \cup \{ [X'_{k+1}/X'_k]_{\cong} \} = \{ [Z_1/Z_0]_{\cong}, [Z_2/Z_1]_{\cong}...., [Z_m/Z_{m-1}]_{\cong} \} \cup \{ [X_1]_{\cong} \} = \{ [X_1/X_0]_{\cong}, [X_2/X_1]_{\cong}, ..., [X_n/X_{n-1}]_{\cong} \}$$

Definition 8.5. Let C be an abelian category and let X be an object of C that has a composition series (or equivalently that X is both noetherian and artinian). Then we say that X is an object of finite length.

Corollary 8.6. Let X be an object of finite length in an abelian category C and let λ be an isomorphism type of some irreducible object in C. Suppose that

$$0=X_0\subseteq X_1\subseteq ...\subseteq X_n=X$$

is a composition series. Let $l_{\lambda}(X)$ be the number of elements of the multiset

$$\{[X_1/X_0]_{\cong}, [X_2/X_1]_{\cong}, ..., [X_n/X_{n-1}]_{\cong}\}$$

equal to λ . Then $l_{\lambda}(X)$ does not depend on the composition series of X.

Proof. This is a consequence of the fact that multisets of isomorphism types of factors are equal for any two composition series of X (Theorem 8.4).

Definition 8.7. Let X be an object of finite length in an abelian category C. Suppose that Λ is a class of isomorphism types of irreducible objects in C. For a given $\lambda \in \Lambda$ we define $l_{\lambda}(X)$ as in Corollary 8.6 above. We call it *the multiplicity of* λ *in* X. Next we define

$$l(X) = \sum_{\lambda \in \Lambda} l_{\lambda}(X) \in \mathbb{N}$$

(note that the components of the sum on the right hand side are almost all equal to zero) and we call this number *the length of X*.

Proposition 8.8. Suppose that

$$0 \longrightarrow X' \xrightarrow{i} X \xrightarrow{p} X'' \longrightarrow 0$$

is a short exact sequence of finite length objects in an abelian category C. Then for every isomorphism type λ of some irreducible object X in C we have

$$l_{\lambda}(X) = l_{\lambda}(X') + l_{\lambda}(X'')$$

Proof. Since X' and X'' are of finite length, we fix composition series

$$0=X_0'\subseteq X_1'\subseteq\ldots\subseteq X_m'=X',\,0=X_0''\subseteq X_1''\subseteq\ldots\subseteq X_k''=X''$$

Then

$$0 = i(X'_0) \subseteq ... \subseteq i(X'_m) \subseteq p^{-1}(X''_1) \subseteq ... \subseteq p^{-1}(X''_k) = X$$

is a composition series for X. By Corollar 8.6 we can calculate $l_{\lambda}(X)$ by means of this compositon series. This implies that

$$l_{\lambda}(X) = l_{\lambda}(X') + l_{\lambda}(X'')$$

9. SEMISIMPLE OBJECTS

Proposition 9.1. Let C be a well-powered **Ab**3-category and let X be a nonzero object of C of finite type. Then there exists a subobject X' of X such that X/X' is irreducible.

Proof. Let \mathcal{F} be the class of proper subobjects of X. That is $\mathcal{F} = \operatorname{Sub}(X) \setminus \{X\}$. This class is nonempty, because X is nonzero. Since \mathcal{C} is well-powered, we derive that \mathcal{F} is a set. Consider a linearly ordered set I and a set $\{X_i\}_{i\in I}$ of elements of \mathcal{F} such that $X_{i_1} \subseteq X_{i_2}$ for $i_1 \leq i_2$ in I. If $X = \sum_{i \in I} X_i$, then there exists $i_0 \in I$ such that $X = X_{i_0}$. This is a contradiction with the fact that X_{i_0} in an element of \mathcal{F} . This implies that $\sum_{i \in I} X_i$ is an element of \mathcal{F} . Hence chains of elements of \mathcal{F} admit upper bounds. By Zorn's lemma we deduce that there exists a maximal element X' in \mathcal{F} . Then X' is a proper and maximal subobject of X. This is equivalent with X/X' being irreducible.

Definition 9.2. Let C be an abelian category and let X be an object of C. If every subobject X' of X is a direct summand of X, then we say that X is *completely reducible*.

Proposition 9.3. *Let* C *be an abelian category. Then the class of completely reducible objects of* C *is closed under subobjects.*

Proof. Let X be a completely reducible object of \mathcal{C} . Consider its subobject Y. Assume that Y' is a subobject of Y. Since X is completely reducible, we derive that there exists a subobject X' such that X = Y' + X' and $X' \cap Y' = 0$. Since subobject lattices in abelian categories are modular (it is a consequence of Theorem 3.2), we derive that

$$Y = Y \cap X = Y \cap (Y' + X') = Y' + Y \cap X'$$

Moreover, $Y' \cap (Y \cap X') = 0$. Thus Y' is a direct summand of Y. This proves that Y is completely reducible.

Definition 9.4. Let C be an abelian category and let X be an object of C. If X is the sum of its irreducible subobjects, then we say that X is *semisimple*.

Proposition 9.5. Let C be an abelian category. Then the class of semisimple objects of C is closed under quotient objects.

Proof. Let X be a semisimple object of \mathcal{C} . Consider an epimorphism $q: X \to X'$. Since q preserves sums of subobjects and an epimorphic image of irreducible subobject is either zero or irreducible, we derive that X' is semisimple.

Theorem 9.6. *Let* C *be an abelian category and let* X *be an object of* C. *Consider the following statements.*

- (i) X is semisimple.
- (ii) *X* is completely reducible.

If C is a well-powered **Ab**5-category, then (i) \Rightarrow (ii). If in addition X is locally finite, then (ii) \Rightarrow (i).

Proof. Assume that C is a well-powered **Ab**5-category. We prove (i) \Rightarrow (ii). Consider a subobject X' of X. Consider a class

$$\mathcal{F} = \{Y \mid Y \text{ is a subobject of } X \text{ and } Y \cap X' = 0\}$$

Since \mathcal{C} is well-powered, the class \mathcal{F} is a set. Since \mathcal{C} is an \mathbf{Ab} 5-category, Zorn's lemma implies that the set \mathcal{F} ordered by inclusion of subobjects has a maximal element X''. Now consider an irreducible subobject K of X. If $K \cap (X' + X'') = 0$, then Y = X'' + K is a subobject of X containing X'' and satisfying $Y \cap X' = 0$. In particular, Y is an element of \mathcal{F} . By maximality of X'' in \mathcal{F} , we derive that Y = X'' and hence K is a contained in X''. This is a contradiction because then $K = K \cap (X' + X'') = 0$ and irreducible objects are nonzero. Thus for every irreducible subobject K of X we have $K \cap (X' + X'') \neq 0$. This implies that $K = K \cap (X' + X'')$ and hence K is contained in X' + X''. Since X is a sum of its irreducible subobjects, we derive that X = X' + X''. Therefore, X' is a direct summand of X.

Suppose that in addition X is locally finite. Now we prove that (ii) \Rightarrow (i). Suppose that X' is a sum of all irreducible subobjects of X. Since X' is a direct summand of X, we derive that there exists a subobject X'' of X such that $X' \cap X'' = 0$ and X = X' + X''. Assume that X'' is nonzero. Since X is locally finite and X'' is isomorphic with X/X', we deduce that X'' is locally finite. Consider a nonzero subobject Y of X'' of finite type. By Proposition 9.1 we deduce that there exists a subobject Y' of Y such that Y/Y' is irreducible. According to Proposition 9.3 we deduce that Y is completely reducible as a subobject of X. Hence there exists a subobject Y'' of Y such that Y = Y' + Y'' and $Y' \cap Y'' = 0$. Clearly $Y'' \cong Y/Y'$ and hence Y'' is irreducible subobject of Y. Since Y is contained in X'', we deduce that X'' admits an irreducible subobject. This is contradiction with $X' \cap X'' = 0$. This proves that X'' must be zero and hence X is a sum of its irreducible subobjects.

REFERENCES

[Freyd, 1964] Freyd, P. J. (1964). Abelian categories, volume 1964. Harper & Row New York.

[Grothendieck, 1957] Grothendieck, A. (1957). Sur quelques points d'algèbre homologique, i. *Tohoku Math. J.* (2), 9(2):119–221.

[Mac Lane, 1998] Mac Lane, S. (1998). Categories for the working mathematician, volume 5 of Graduate Texts in Mathematics. Springer-Verlag, New York, second edition.

[Weibel, 1995] Weibel, C. (1995). An Introduction to Homological Algebra. Cambridge Studies in Advanced Mathematics. Cambridge University Press.