Progettazione di una base di dati relazionale - Dipendenze funzionali

Index

- Schema di relazione
- Tupla
- Istanza di relazione
- Dipendenze funzionali
 - Nota
 - Esempio
- Istanza legale
 - Osservazione
- Esempio
- Chiusura di un insieme di dipendenze funzionali
 - <u>\$\text{F}\$ ed \$\text{F}^+\$</u>
- Chiave
 - Esempio
 - Chiave primaria
- Dipendenze funzionali banali
 - <u>Dipendenze funzionali (proprietà)</u>

Schema di relazione

Uno **schema di relazione** R è un insieme di attributi $\{A_1, A_2, \dots, A_n\}$ Notazione:

- $R = A_1, A_2, \dots A_n$
- le prime lettere dell'alfabeto (A,B,C,...) denotano i singoli attributi
- le ultime lettere dell'alfabeto $(X,\,Y,\ldots)$ denotano insiemi di attributi
- Se X e Y sono insiemi di attributi XY denota $X \cup Y$

Tupla

Dato uno schema di relazione $R=A_1,A_2,\ldots A_n$ una **tupla** t su R è una funzione che associa ad ogni attributo A_i in R un valore $t[A_i]$ nel corrispondente dominio $dom(A_i)$

	NomeStud	CognomeStud	Es. sost.	Media	
t ₁	Paolo	Rossi	2	26,5	
t_2	Mario	Bianchi	10	28,7	

t₁[NomeStud]=Paolo	t ₂ [NomeStud]=Mario
t₁[CognomeStud]=Rossi	t ₂ [CognomeStud]=Bianchi
t₁[Es. sost]=2	t ₂ [Es. sost]=10
t₁[MEDIA]=26,5	t ₂ [MEDIA]=28,7

Se X è un sottoinsieme di R e t_1 e t_2 sono due tuple su R, t_1 e t_2 coincidono su X ($t_1[X]=t_2[X]$) se $orall A\in X$ ($t_1[A]=t_2[A]$)

	NomeStud	CognomeStud	Es. sost.	Media
t ₁	Paolo	Rossi	3	27
t_2	Mario	Rossi	5	27

t₁[CognomeStud Media]=t₂[CognomeStud Media]

 t_1 [CognomeStud Nomestud] $\neq t_2$ [CognomeStud Nomestud]

Istanza di relazione

Dato uno schema di relazione R una **istanza** di R è un insieme di tuple su R

(i) Info

Tutte le "tabelle" che abbiamo visto finora negli esempi sono istanze di qualche schema di relazione

Dipendenze funzionali

Dato uno schema di relazione R una dipendenza funzionale su R è una coppia ordinata di sottoinsiemi non vuoti X ed Y di R Notazione:

- $X \rightarrow$ parte sinistra della dipendenza o determinante
- Y → parte destra della dipendenza o dipendente

Dati uno schema R e una dipendenza funzionale $X \to Y$ su R un'istanza r di R soddisfa la dipendenza funzionale $X \to Y$ se:

$$orall t_1, t_2 \in r \left(t_1[X] = t_2[X] o t_1[Y] = t_2[Y]
ight)$$

i Le dipendenze funzionali non fanno altro che esprimere dei vincoli sui dati

Nota

Nella relazione che rappresenta gli esami, non abbiamo ${
m Voto}
ightarrow {
m Lode}$ perché se $t_1[{
m Voto}] = t_2[{
m Voto}] = 27$ allora sicuramente deve essere $t_1[{
m Lode}] = t_2[{
m Lode}] = {
m 'No'}$

Ma se $t_1[{\rm Voto}] = t_2[{\rm Voto}] = 30$ e $t_1[{\rm Lode}] = {\rm 'Si'}$ questo non determina il valore che deve avere $t_2[{\rm Lode}]$ (può essere 'Si' oppure 'No' senza compromettere la correttezza del dato)

E' possibile dire che $Lode \rightarrow Voto$?

Se $t_1[\mathrm{Lode}] = t_2[\mathrm{Lode}] =$ 'Si' allora sicuramente deve essere $t_1[\mathrm{Voto}] = t_2[\mathrm{Voto}] = 30$.

Ma se $t_1[\mathrm{Lode}] = t_2[\mathrm{Lode}] = \mathrm{'No'}$ e $t_1[\mathrm{Voto}] = 27$ questo non determina il valore che deve avere $t_2[\mathrm{Voto}]$ (può essere un qualsiasi voto tra 18 e 30)

Esempio

Soddisfa da dipendenza funzionale $AB \to C$

О.
$\mathbf{\kappa}$

A	В	С	D
a1	b1	c1	d1
a1	b1	c2	d2
a1	b2	c1	d3

Non soddisfa la dipendenza funzionale $AB \to C$

Istanza legale

Dati uno schema di relazione R e un insieme F di dipendenze funzionali, un'istanza di R è **legale** se soddisfa **tutte** le dipendenze in F

Osservazione

$$F=\{A \rightarrow B\}$$

P

Α	В	С	D
a1	b1	c1	d1
a1	b1	c1	d2
a2	b2	c1	d3

L'istanza soddisfa la dipendenza funzionale $A \to B$ (e quindi è un'istanza legale) e anche la dipendenza funzionale $A \to C$ ma $A \to C$ non è in F e non è detto che debba sempre essere soddisfatta

$$F=\{A \rightarrow B\}$$

R

Α	В	С	D
a1	b1 (c1	d1
a1	b1	c2	d2
a2	b2	c1	d3

La nuova istanza soddisfa la dipendenza funzionale $A \to B$ (e quindi è anch'essa un'istanza legale) ma non soddisfa la dipendenza funzionale $A \to C$, d'altra parte $A \to C$ non è in F quindi perché dovrebbe essere comunque sempre soddisfatta?

R

Α	В	С	D
a1	b1	c1	d1
a1	b1	c1	d2
a2	b2	c1	d3

Ogni istanza legale (cioè ogni istanza che soddisfa sia $A \to B$ che $B \to C$ soddisfa sempre anche la dipendenza funzionale $A \to C$). Possiamo considerarla allora "come se fosse in F"?

Dunque dato uno schema di relazione R e un insieme F di dipendenze funzionali su R ci sono delle dipendenze funzionali che non sono in F, ma che sono soddisfatte da ogni istanza legale di R

Esempio

$$Matricola \rightarrow CodiceFiscale \rightarrow DataNascita$$

devono essere sempre soddisfatte da ogni istanza legale ma allora sarà sempre soddisfatta anche Matricola o DataNascita

$$CodiceFiscale \rightarrow Nome, Cognome$$

deve essere soddisfatta da ogni istanza legale ma allora saranno sempre soddisfatte anche:

- CodiceFiscale \rightarrow Nome
- CodiceFiscale \rightarrow Cognome

Chiusura di un insieme di dipendenze funzionali

Dato uno schema di relazione R e un insieme F di dipendenze funzionali su R la $\mbox{\it chiusura di }F$ è l'insieme delle dipendenze funzionali che sono soddisfatte da ogni istanza legale di R

Notazione:

$$F$$
 ed F^+

Se F è un insieme di dipendenze funzionali su R ed r è un'istanza di R che soddisfa **tutte** le dipendenze in F, diciamo che r è un'**istanza legale** di R

La chiusura di F, denotata con $F^+,$ è l'insieme di dipendenze funzionali che sono soddisfatte $\mbox{da ogni}$ istanza legale di R

Banalmente si ha che $F \subseteq F^+$

Due insiemi di dipendenze funzionali che hanno la stessa chiusura avranno le stesse istanze legali

$$F\subseteq F^+=G^+\supseteq G$$

Chiave

Dati uno schema di relazione R e un insieme F di dipendenze funzionali, un sottoinsieme K di uno schema di relazione R è una **chiave** se $K \to R \in F^+$ e non esiste un sottoinsieme proprio K' di K tale che $K' \to R \in F^+$

Esempio

Consideriamo lo schema

Studente=Matr, Cognome, Nome, Data

Il numero di matricola viene assegnato allo studente per identificarlo

 \Downarrow

Quindi non i possono essere due studenti con lo stesso numero di matricola

 $\downarrow \downarrow$

Quindi un'istanza di Studente per rappresentare correttamente la realtà non può contenere due tuple con lo stesso numero di matricola

 $\downarrow \downarrow$

Quindi $\mathrm{Matr} \to \mathrm{Matr}, \mathrm{Cognome}, \mathrm{Nome}, \mathrm{Data}$ deve essere soddisfatta da ogni istanza legale

 \Downarrow

Quindi Matr è una chiave per Studente

Chiave primaria

Dati uno schema di relazione R e un insieme F di dipendenze funzionali, possono esistere più chiavi di R. In SQL una di esse verrà scelta come **chiave primaria** (non può assumere valore nullo)

ESEMPIO: Studente = Matr, CF, Cognome, Nome, Data Se prendiamo CF come chiave primaria Matr deve essere UNIQUE

Dipendenze funzionali banali

Dati uno schema di relazione R e due sottoinsiemi non vuoti X,Y di R tali che $Y\subseteq X$ si ha che ogni istanza r di R soddisfa la dipendenza funzionale $X\to Y$

Pertanto se $Y\subseteq X$ allora $X\to Y\in F^+$ Una tale dipendenza funzionale è detta banale

Dipendenze funzionali (proprietà)

Dati uno schema di relazione R e un insieme di dipendenze funzionali F, si ha:

$$\mathrm{X}
ightarrow \mathrm{Y} \in \mathrm{F}^+ \Leftrightarrow orall \mathrm{A} \in \mathrm{Y} \, (\mathrm{X}
ightarrow \mathrm{A} \in \mathrm{F}^+)$$

X o Y deve essere soddisfatta sa $\mbox{{\bf ogni}}$ istanza legale di R

- se $t_1[\mathrm{X}] = t_2[\mathrm{X}]$ allora deve essere $t_1[\mathrm{Y}] = t_2[\mathrm{Y}]$
- ullet ovviamente se $\mathrm{A} \in \mathrm{Y}$ e $t_1[\mathrm{A}]
 eq t_2[\mathrm{A}]$, non può essere $t_1[\mathrm{Y}] = t_2[\mathrm{Y}]$
- ovviamente se $orall \mathrm{A} \in \mathrm{Y}\,t_1[\mathrm{A}] = t_2[\mathrm{A}]$, avremo $t_1[\mathrm{Y}] = t_2[\mathrm{Y}]$

R	Α	В	C	D	A →BC ∈F+
	a ₁	61	c1	d1	Ų↑
	a2	b2	c1	d2	<i>A →B∈F</i> +
	(a1)	b1	c1)) d3	<i>A</i> → <i>C</i> ∈ <i>F</i> ⁺