

Logical conjunction

In <u>logic</u>, <u>mathematics</u> and <u>linguistics</u>, *and* (\wedge) is the <u>truth-functional</u> operator of **conjunction** or **logical conjunction**. The <u>logical connective</u> of this operator is typically represented as $\wedge^{[1]}$ or & or K (prefix) or \times or $\cdot^{[2]}$ in which \wedge is the most modern and widely used.

The *and* of a set of operands is true if and only if *all* of its operands are true, i.e., $A \wedge B$ is true if and only if A is true and B is true.

An operand of a conjunction is a **conjunct**. [3]

Beyond logic, the term "conjunction" also refers to similar concepts in other fields:

- In <u>natural language</u>, the <u>denotation</u> of expressions such as <u>English</u> "<u>and</u>";
- In programming languages, the short-circuit and control structure;
- In set theory, intersection.
- In <u>lattice theory</u>, logical conjunction (<u>greatest</u> lower bound).

Notation

And is usually denoted by an infix operator: in mathematics and logic, it is denoted by a "wedge" \wedge

(Unicode U+2227 Λ LOGICAL AND), (1] & or \times ; in electronics, \cdot ; and in programming languages &, &&, or and. In $\underline{\text{Jan}}$ $\underline{\text{Łukasiewicz's prefix notation for logic}}$, the operator is K, for Polish koniunkcia. (1)

In mathematics, the conjunction of an arbitrary number of elements a_1,\ldots,a_n can be denoted as an <u>iterated binary operation</u> using a "big wedge" \bigwedge (Unicode U+22C0 \bigwedge N-ARY LOGICAL AND): [5]

$$\bigwedge_{i=1}^n a_i = a_1 \wedge a_2 \wedge \ldots a_{n-1} \wedge a_n$$

Venn diagram of $A \wedge B \wedge C$

Definition

In <u>classical logic</u>, **logical conjunction** is an <u>operation</u> on two <u>logical values</u>, typically the values of two <u>propositions</u>, that produces a value of *true* <u>if and only if</u> (also known as iff) both of its operands are true. [2][1]

The conjunctive <u>identity</u> is true, which is to say that AND-ing an expression with true will never change the value of the expression. In keeping with the concept of <u>vacuous truth</u>, when conjunction is defined as an operator or function of arbitrary <u>arity</u>, the empty conjunction (AND-ing over an empty set of operands) is often defined as having the result true.

Truth table

The truth table of $\mathbf{A} \wedge \mathbf{B}$: [1][2]

A	В	$A \wedge B$
F	F	F
F	Т	F
Т	F	F
Т	Т	Т

()	10	1	1	4	ĉ	Ł	Ţ		Û	1	н	1	â	2	
(A)	^	7	1	4		ŧ		Т		1		1		ŝ	
(B)	^	•	i.	4	Å.	1	1		۸	1		1	ŝ	1	
(AB)	^		1		÷.	1	1		À	8.	1	1	â	î.	1
(c)	- 1	1	1	4	â	à	į.		0	8	1		â	å	ž.
(A C)	Α.	1	1	4		à			-	1		1		ä	
(BC)	^		i	0	â	ŧ	ž					-	ŝ	8	1
(ABC)	A		I	4	ô	ŧ	ŧ		À	8.	1	1	ŝ	į.	ŧ
(D)	^		ī		0	Т	1	,	0	0		i	à	à	Į.
(A D)	-		1	4	å	8	1							â	
(B D)	^	-	i	4		t	1		À	1		į.	ŝ	1	
(AB D)	^		i	4	Å	ž.	1		À	8.			ŝ	8.0	1
(CD)	- 1^		1		ê	è	į		0		1	1	ŝ	ŝ	į.
(A CD)		1	1		â	ı	1	,	à	0		1		ŝ	
(BCD)			i	4		ž	ŧ					i	ĝ	8	
(ABCD)	٨		I	¢	â	8	į	į.	À	1	1	i	ŝ	ŝ	1

Conjunctions of the arguments on the left — The <u>true</u> <u>bits</u> form a Sierpinski triangle.

Defined by other operators

In systems where logical conjunction is not a primitive, it may be defined as [6]

$$A \wedge B = \neg (A \to \neg B)$$

It can be checked by the following truth table (compare the last two columns):

A	В	$\neg B$	A ightarrow eg B	$\neg (A o \neg B)$	$A \wedge B$	
F	F	Т	Т	F	F	
F	Т	F	Т	F	F	
Т	F	Т	Т	F	F	
Т	Т	F	F	Т	Т	

or

$$A \wedge B = \neg(\neg A \vee \neg B).$$

It can be checked by the following truth table (compare the last two columns):

A	В	$\neg A$	$\neg B$	$\neg A \lor \neg B$	$\neg(\neg A \lor \neg B)$	$A \wedge B$	
F	F	Т	Т	Т	F	F	
F	Т	Т	F	Т	F	F	
Т	F	F	Т	Т	F	F	
Т	Т	F	F	F	Т	Т	

Introduction and elimination rules

As a rule of inference, <u>conjunction</u> introduction is a classically <u>valid</u>, simple <u>argument form</u>. The argument form has two premises, \boldsymbol{A} and \boldsymbol{B} . Intuitively, it permits the inference of their conjunction.

A, B.

Therefore, A and B.

or in logical operator notation, where \vdash expresses provability:

 $\vdash A$, $\vdash B$ $\vdash A \land B$

Here is an example of an argument that fits the form *conjunction introduction*:

Bob likes apples.

Bob likes oranges.

Therefore, Bob likes apples and Bob likes oranges.

<u>Conjunction elimination</u> is another classically <u>valid</u>, simple <u>argument form</u>. Intuitively, it permits the inference from any conjunction of either element of that conjunction.

 \boldsymbol{A} and \boldsymbol{B} . Therefore, \boldsymbol{A} .

...or alternatively,

 \boldsymbol{A} and \boldsymbol{B} . Therefore, \boldsymbol{B} .

In logical operator notation:

$$\vdash A \land B$$

 $\vdash A$

...or alternatively,

 $\vdash A \land B$

Negation

Definition

A conjunction $A \wedge B$ is proven false by establishing either $\neg A$ or $\neg B$. In terms of the object language, this reads

$$\neg A \rightarrow \neg (A \land B)$$

This formula can be seen as a special case of

$$(A \rightarrow C) \rightarrow ((A \land B) \rightarrow C)$$

when \boldsymbol{C} is a false proposition.

Other proof strategies

If *A* implies $\neg B$, then both $\neg A$ as well as *A* prove the conjunction false:

$$(A
ightarrow
eg B)
ightarrow
eg (A \wedge B)$$

In other words, a conjunction can actually be proven false just by knowing about the relation of its conjuncts, and not necessary about their truth values.

This formula can be seen as a special case of

$$(A o (B o C)) o ((A \wedge B) o C)$$

when \boldsymbol{C} is a false proposition.

Either of the above are constructively valid proofs by contradiction.

Properties

commutativity: yes

associativity: yes^[7]

distributivity: with various operations, especially with *or*

others

with exclusive or:

with material nonimplication:

with itself:

idempotency: yes

monotonicity: yes

truth-preserving: yes

When all inputs are true, the output is true.

$$A \wedge B \Rightarrow A \wedge B$$

$$\Rightarrow (to be tested)$$

falsehood-preserving: yes

When all inputs are false, the output is false.

Walsh spectrum: (1,-1,-1,1)

Nonlinearity: 1 (the function is bent)

If using <u>binary</u> values for true (1) and false (0), then *logical conjunction* works exactly like normal arithmetic multiplication.

Applications in computer engineering

In high-level computer programming and <u>digital electronics</u>, logical conjunction is commonly represented by an infix operator, usually as a keyword such as "AND", an algebraic multiplication, or the ampersand symbol & (sometimes doubled as in &&). Many languages also provide <u>short-circuit</u> control structures corresponding to logical conjunction.

Logical conjunction is often used for bitwise operations, where **0** corresponds to false and **1** to true:

- \bullet 0 AND 0 = 0,
- \bullet 0 AND 1 = 0.
- \blacksquare 1 AND 0 = 0,
- 1 AND 1 = 1.

The operation can also be applied to two binary <u>words</u> viewed as <u>bitstrings</u> of equal length, by taking the bitwise AND of each pair of bits at corresponding positions. For example:

■ 11000110 AND 10100011 = 10000010.

This can be used to select part of a bitstring using a <u>bit mask</u>. For example, 10011101 AND 00001000 = 00001000 extracts the fourth bit of an 8-bit bitstring.

In <u>computer networking</u>, bit masks are used to derive the network address of a <u>subnet</u> within an existing network from a given <u>IP address</u>, by ANDing the IP address and the <u>subnet mask</u>.

Logical conjunction "AND" is also used in <u>SQL</u> operations to form <u>database</u> queries.

The Curry–Howard correspondence relates logical conjunction to product types.

Set-theoretic correspondence

The membership of an element of an <u>intersection set</u> in <u>set theory</u> is defined in terms of a logical conjunction: $x \in A \cap B$ if and only if $(x \in A) \land (x \in B)$. Through this correspondence, set-theoretic intersection shares several properties with logical conjunction, such as <u>associativity</u>, <u>commutativity</u> and idempotence.

Natural language

As with other notions formalized in mathematical logic, the logical conjunction *and* is related to, but not the same as, the grammatical conjunction *and* in natural languages.

English "and" has properties not captured by logical conjunction. For example, "and" sometimes implies order having the sense of "then". For example, "They got married and had a child" in common discourse means that the marriage came before the child.

The word "and" can also imply a partition of a thing into parts, as "The American flag is red, white, and blue." Here, it is not meant that the flag is *at once* red, white, and blue, but rather that it has a part of each color.

See also

- And-inverter graph
- AND gate
- Bitwise AND
- Boolean algebra
- Boolean conjunctive guery
- Boolean domain
- Boolean function
- Boolean-valued function
- Conjunction/disjunction duality
- Conjunction elimination
- Conjunction (grammar)

- De Morgan's laws
- First-order logic
- Fréchet inequalities
- Homogeneity (linguistics)
- List of Boolean algebra topics
- Logical disjunction
- Logical graph
- Negation
- Operation
- Peano—Russell notation
- Propositional calculus

References

- 1. "2.2: Conjunctions and Disjunctions" (https://math.libretexts.org/Courses/Monroe_Communit y_College/MTH_220_Discrete_Math/2%3A_Logic/2.2%3A_Conjunctions_and_Disjunction s). *Mathematics LibreTexts*. 2019-08-13. Retrieved 2020-09-02.
- "Conjunction, Negation, and Disjunction" (https://philosophy.lander.edu/logic/conjunct.html). philosophy.lander.edu. Retrieved 2020-09-02.
- 3. Beall, Jeffrey C. (2010). *Logic: the basics* (1. publ ed.). London: Routledge. p. 17. <u>ISBN</u> <u>978-</u>0-203-85155-5.
- 4. <u>Józef Maria Bocheński</u> (1959), *A Précis of Mathematical Logic*, translated by Otto Bird from the French and German editions, Dordrecht, South Holland: D. Reidel, passim.
- 5. Weisstein, Eric W. "Conjunction" (https://mathworld.wolfram.com/Conjunction.html). MathWorld--A Wolfram Web Resource. Retrieved 24 September 2024.

- 6. Smith, Peter. "Types of proof system" (http://www.logicmatters.net/resources/pdfs/ProofSystems.pdf) (PDF). p. 4.
- 7. Howson, Colin (1997). *Logic with trees: an introduction to symbolic logic*. London; New York: Routledge. p. 38. ISBN 978-0-415-13342-5.

External links

- "Conjunction" (https://www.encyclopediaofmath.org/index.php?title=Conjunction),
 Encyclopedia of Mathematics, EMS Press, 2001 [1994]
- Wolfram MathWorld: Conjunction (http://mathworld.wolfram.com/Conjunction.html)
- "Property and truth table of AND propositions" (https://web.archive.org/web/2017050617382 1/http://www.math.hawaii.edu/~ramsey/Logic/And.html). Archived from the original (http://www.math.hawaii.edu/~ramsey/Logic/And.html) on May 6, 2017.

Lua error in Module:Navbox at line 535: attempt to get length of local 'arg' (a number value).

Lua error in Module: Navbox at line 535: attempt to get length of local 'arg' (a number value).

Retrieved from "https://en.wikipedia.org/w/index.php?title=Logical conjunction&oldid=1271090881"