

NPTEL ONLINE CERTIFICATION COURSES

Course Name: Deep Learning

Faculty Name: Prof. P. K. Biswas

Department: E & ECE, IIT Kharagpur

Topic

Lecture 30: Autoencoder vs. PCA

CONCEPTS COVERED

Concepts Covered:

- □ Autoencoder
 - ☐ Undercomplete Autoencoder
 - ☐ Autoencoder vs. PCA
 - ☐ Deep Autoencoder Training
 - ☐ Sparse Autoencoder
 - ☐ Denoising Autoencoder
 - ☐ Contractive Autoencoder
 - ☐ Convolution Autoencoder

Autoencoder vs. PCA

What is PCA?

$$X = \left\{ \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ 5 \end{bmatrix} \right\}$$

$$\mu_X = \begin{bmatrix} 4.5 \\ 4.5 \end{bmatrix}$$

$$X = \left\{ \begin{bmatrix} 3 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 3 \end{bmatrix}, \begin{bmatrix} 4 \\ 4 \end{bmatrix}, \begin{bmatrix} 4 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ 4 \end{bmatrix}, \begin{bmatrix} 5 \\ 5 \end{bmatrix}, \begin{bmatrix} 5 \\ 6 \end{bmatrix}, \begin{bmatrix} 6 \\ 5 \end{bmatrix} \right\} \qquad \mu_X = \begin{bmatrix} 4.5 \\ 4.5 \end{bmatrix}$$

$$(X_1 - \mu_X)(X_1 - \mu_X)^t = \begin{bmatrix} -1.5 \\ -0.5 \end{bmatrix} [-1.5 \quad -0.5] = \begin{bmatrix} 2.25 & 0.75 \\ 0.75 & 0.25 \end{bmatrix}$$

$$(X_2 - \mu_X)(X_2 - \mu_X)^t = \begin{bmatrix} 0.25 & 0.75 \\ 0.75 & 2.25 \end{bmatrix}$$

$$C_X = \begin{bmatrix} 0.75 & 0.375 \\ 0.375 & 0.75 \end{bmatrix}$$

$$\begin{vmatrix} 0.75 - \lambda & 0.375 \\ 0.375 & 0.75 - \lambda \end{vmatrix} = 0 \Rightarrow \lambda_1 = 1.125 \& \lambda_2 = 0.375$$

$$\lambda_1 \Rightarrow e_1 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ 1 \end{bmatrix}$$
 $\lambda_2 \Rightarrow e_2 = \frac{1}{\sqrt{2}} \begin{bmatrix} 1 \\ -1 \end{bmatrix}$

ORIGINAL

5

1

25

What does PCA do?

Deep

Autoencoder

$$L(X, \hat{X}) = \frac{1}{2} \sum_{N} ||X - \hat{X}||^{2}$$

 \hat{X}

Autoencoder vs. PCA

Experimental Setup for Dimensionality Reduction

- Dataset used: MNIST (a large database of handwritten digits)
 - Total train Images: 60,000
 - Total test Images: 10,000
 - Image dimension: 28×28 (784)
 - Dimensionality reduction: $784 \rightarrow 2$
 - Reconstruction: $784 \rightarrow 30$
- Optimizer used: Adam (Learning rate- 10^{-4})
- Loss Function: Mean Squared Error
- Trained for 100 iterations

MNIST Data set:

Example

000000000000000 3 **3** 3 3 3 3 3 3 3 3 3 3 3 3 448444444444 5555555555555555 6666666666666 8 8 8 8 8 8 8 8 8 8 99999999

Autoencoder converges to PCA

PCA

784

784

2-Layer Autoencoder

Deep vs. Shallow autoencoder

2-Layered AE with Sigmoid Non-Linearity

Deep AE without any Non-Linear Activations

Deep Autoencoder with Non-Linear Activations

Principal component analysis (PCA)

Deep Autoencoder with Non-Linear Activations

Autoencoder for Dimensionality Reduction Articles from Reuter corpus were mapped to a 2 dimensional vector

Reconstruction from Latent Space

Reconstruction from Latent Space

(a) Original

(b) 30-D AE

(c) 30-D PC

NPTEL ONLINE CERTIFICATION COURSES

Thank you