Verified Semidefinite Programming

Ramon Fernández Mir

University of Edinburgh ramon.fernandezmir@ed.ac.uk

October 2021

What is convex optimisation?

Convex function

We say that $f: \mathbb{R}^n \to \mathbb{R}$ is convex if for $\theta \in [0,1]$ and $x,y \in \mathbb{R}^n$ we have that $f(\theta x + (1-\theta)y) \le \theta f(x) + (1-\theta)f(y)$.

Convex optimisation problem

Let $f:D\subseteq \mathbb{R}^n\to \mathbb{R}$ and $g_i:\mathbb{R}^n\to \mathbb{R}$ be convex functions and $h_i:\mathbb{R}^n\to \mathbb{R}$ affine functions. A convex optimisation problem is:

minimise
$$f(x)$$

subject to $g_i(x) \le 0$ and $h_i(x) = 0$.

What is convex optimisation?

Applications: control syntehsis, electronic circuit design, signal processing, finance, etc.

Positive semidefinite matrix

A matrix $M \in \mathbb{R}^{n \times n}$ is positive semidefinite if for all $x \in \mathbb{R}^n$ we have that $x^T M x \geq 0$. We write $X \succeq 0$. Equivalently, it has a *Cholesky decomposition* $X = L^T L$.

Semidefinite program

A semidefinite program has the form:

minimise
$$Tr(C^TX)$$

subject to $Tr(A_i^TX) = b_i, i = 1,..., k$
 $X \succeq 0,$

where $b_1, \ldots, b_k \in {}^n$ and $C, A_1, \ldots, A_k \in \mathbb{S}^n$, i.e. they are real symmetric matrices.

How are they solved? There are several ways but interior point methods are widely used. The idea is roughly the following:

- Consider the dual problem.
- By strong duality, the primal and dual problems attain the same value.
- We follow the so-called central path in the direction here the distance between the primal and dual problem decreases.
- We specify a tolerance and when the values of the two problems are close enough, return a solution.

Checking whether a polynomial $p = x^{2d} + p_{2d-1}x^{2d-1} + \cdots + p_1x + p_0$ is nonnegative is an NP-hard problem. However, checking whether it is a sum of squares can be solved efficiently by encoding it as a SDP. If we solve:

find
$$Q$$
 subject to $p_k = \sum_{i+j=k} Q_{ij}$ $Q \succeq 0$,

we can conclude that p is SOS. Note that the affine constrains are set up so that $p = [\vec{x}]_d^T Q[\vec{x}]_d$ where $[\vec{x}]$ are the monomials of degree $\leq d$.

Issues:

- Many steps skipped when encoding a problem into a SDP.
- Result is only approximate, how can we make sure it actually solves our problem?

Solution to both issues: Use a theorem prover!

Solution to issue 1: Formalise the problems and the allowed translations.

Solution to issue 2: Try to find the Cholesky decomposition of the result matrix. Two ways:

- Brute-force search of rational nearby solutions.
- Use knowledge about how rounding errors are introduced by the Cholesky factorisation algorithm.

Cholesky decompositon

If we're lucky, we only have that $A \simeq L^T L$, which is not good enough for a theorem prover. What do we do??

- Apply Cholesky on $A' = A \alpha I$ and obtain L.
- Let $E = A' L^T L$ and check that $E + \alpha I$ is diagonally dominant (which implies positive definiteness).
- We have that $A = L^T L + (E + \alpha I)$ and the sum of two PSD matrices is PSD so we are done.

All we need to do is find the appropriate α , which is possible if A is strictly positive definite and we work with arbitrary precision.

Brief history:

- The project began in 2013 in Microsoft Research led by Leonardo de Moura.
- Major refactor in 2017. Lean 3 and mathlib released.¹
- Another major refactor in 2021. Lean 4 released.
- Lots of interesting maths formalised: schemes, perfectoid spaces, liquid tensors, etc.

¹https://leanprover-community.github.io/mathlib_stats.html - > > > > > 0 < 0

Notable features:

- Based on a powerful dependent type theory.
- Small trusted kernel written in C++ (most of Lean is written in Lean).
- Supports constructive reasoning, quotients (natively) and classical reasoning.
- Powerful metaprogramming framework.
- (L4) Hygienic macros system.
- (L4) Built for extensibility.
- (L4) Efficient code generation.
- (L4) Tabled typeclass resolution.

The Lean mathematical library:

- Smaller than the standard libraries of other systems but exponentially growing.
- We have smooth manifolds, p-adics, lots of category theory, set theory, main results in linear algebra and analysis, etc.
- Backward compatibility issues are being solved by tools like mathport, which allows to use Lean 3 objects in Lean 4.
- A \$20 million donation was recently announced to create the Hoskinson Centre for Formal Mathematics, which will focus largely on extending mathlib.

```
/-- A Lie group is a group and a smooth manifold at the same time in which
           the multiplication and inverse operations are smooth. -/
           -- See note [Design choices about smooth algebraic structures]
           @[ancestor has smooth mul, to additive]
           class lie_group {k : Type*} [nondiscrete_normed_field k]
             {H : Type*} [topological space H]
             {E : Type*} [normed group E] [normed space k E] (I : model with corners k E H)
             (G: Type*) [group G] [topological space G] [charted space H G]
             extends has_smooth_mul I G : Prop :=
           (smooth inv : smooth I I (λ a:G. a-1))
/-- The unit circle in `C` is a Lie group. -/
instance : lie group ($2 1) circle :=
{ smooth mul := begin
    let c : circle → C := coe.
    have h1 : times_cont_mdiff _ _ _ (prod.map c c) :=
      times cont mdiff coe sphere.prod map times cont mdiff coe sphere,
    have h_2: times cont mdiff (\mathcal{F}(\mathbb{R}, \mathbb{C}).\text{prod }\mathcal{F}(\mathbb{R}, \mathbb{C})) \mathcal{F}(\mathbb{R}, \mathbb{C}) \propto (\lambda \ (z : \mathbb{C} \times \mathbb{C}), z.\text{fst} * z.\text{snd}),
    { rw times_cont_mdiff_iff,
      exact (continuous_mul, λ x y, (times_cont_diff_mul.restrict_scalars R).times_cont_diff_on) },
    exact (h2.comp h1).cod_restrict_sphere _,
  end.
  smooth inv := (complex.coni cle.times cont diff.times cont mdiff.comp
    times cont mdiff coe sphere).cod restrict sphere ,
  .. metric.sphere.smooth manifold with corners }
```

LeanSDP

Goals of the project:

- Link Lean with a convex optimiser.
- Formalise the theory of convex optimisation focusing on problem transformations.
- Check in Lean that the output satisfies the constraints.
- Use this framework to verify real-world systems.

Neural Network Verification

Consider a trained deep and feed-forward neural network used for classification. The network computes a function $f: \mathbb{R}^n \to \mathbb{R}^m$. We want to certify adversarial robustness. The network is δ -locally-robust at $x \in \mathbb{R}^n$ if for any $y \in \mathbb{R}^n$ with $\|x-y\| < \delta$ we have that $\|f(x)-f(y)\| < \epsilon$ for some small ϵ .

Neural Network Verification

This can be stated as an optimisation problem!

maximise
$$\|f(x) - f(y)\|$$

subject to $x^i = \text{ReLU}(W^{i-1}x^{i-1})$
 $\|x - y\| < \delta$

Solving it in this form is computationally expensive. The next step is to relax this problem to a semidefinite program that we can solve efficiently. The key observation is that a ReLU $z=\max(x,0)$ can be expressed as the quadratically constrained quadratic program

$$z(z-x)=0 \land z \geq x \land z \geq 0.$$

Thank you