CS722/822: Machine Learning

Instructor: Jiangwen Sun Computer Science Department

Model Evaluation

- Metrics for Performance Evaluation
 - How to evaluate the performance of a model?

- Methods for Performance Evaluation
 - How to obtain reliable estimates?

- Methods for Model Comparison
 - How to compare the relative performance among competing models?

ROC (Receiver Operating Characteristic)

- Developed in 1950s for signal detection theory to analyze noisy signals
 - Characterize the trade-off between positive hits and false alarms
- ROC curve plots TPR (on the y-axis) against FPR (on the x-axis)
- A pair of (TPR, FPR) is represented as a point on the ROC curve
- Adjusting certain parameter of a detector can generate a series of (TPR, FPR) pairs, which lead to a curve
- A classifier has similar behavior to a signal detector, when it returns a real-valued prediction
 - Also need to balance the TPR and FPR
 - Changing the classification threshold changes the location of the point

ROC Curve

	PREDICTED CLASS				
ACTUAL CLASS		Class =Yes	Class= No		
	Class =Yes	a (TP)	b (FN)		
	Class =No	c (FP)	d (TN)		

TPR = TP/(TP+FN) FPR = FP/(FP+TN)

At threshold t:

TP=50, FN=50, FP=12, TN=88

ROC Curve

	PREDICTED CLASS						
ACTUAL CLASS		Class= Yes	Class= No				
	Class=Yes	a (TP)	b (FN)				
	Class=No	c (FP)	d (TN)				

TPR = TP/(TP+FN); FPR = FP/(FP+TN)

(TPR,FPR):

- (0,0): declare everything to be negative class
 - TP=0, FP = 0
- (1,1): declare everything to be positive class

$$- FN = 0, TN = 0$$

- (1,0): ideal
 - FN = 0, FP = 0

ROC Curve

(TPR,FPR):

- (0,0): declare everything to be negative class
- (1,1): declare everything to be positive class
- (1,0): ideal
- Diagonal line:
 - Random guessing
 - Below diagonal line:
 - prediction is opposite of the true class

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Apply threshold at each unique value of P(+|A)
- Count the number of TP, FP, TN, FN at each threshold
- TP rate, TPR = TP/(TP+FN)
- FP rate, FPR = FP/(FP + TN)

How to Construct an ROC curve

Instance	P(+ A)	True Class
1	0.95	+
2	0.93	+
3	0.87	-
4	0.85	-
5	0.85	-
6	0.85	+
7	0.76	-
8	0.53	+
9	0.43	-
10	0.25	+

- Use classifier that produces posterior probability for each test instance P(+|A)
- Sort the instances according to P(+|A) in decreasing order
- Pick a threshold 0.85
- p>= 0.85, predicted to P
 - p< 0.85, predicted to N
 - TP = 3, FP = 3, TN = 2, FN = 2
 - TP rate, TPR = 3/5=60%
 - FP rate, FPR = 3/5=60%

How to construct an ROC curve

	Class	+	-	+	-	-	-	+	-	+	+	
Thresho	ld >=	0.25	0.43	0.53	0.76	0.85	0.85	0.85	0.87	0.93	0.95	1.00
	TP	5	4	4	3	3	3	3	2	2	1	0
	FP	5	5	4	4	3	2	1	1	0	0	0
	TN	0	0	1	1	2	3	4	4	5	5	5
	FN	0	1	1	2	2	2	2	3	3	4	5
\rightarrow	TPR	1	0.8	0.8	0.6	0.6	0.6	0.6	0.4	0.4	0.2	0
\rightarrow	FPR	1	1	0.8	0.8	0.6	0.4	0.2	0.2	0	0	0

Using ROC for Model Comparison

- No model consistently outperforms the other
 - M₁ is better for small FPR
 - M₂ is better for large FPR
- Area Under the ROC curve (AUC)
 - Ideal:
 - Area = 1
 - Random guess:
 - Area = 0.5

Data normalization

- Example-wise normalization
 - Each example i is normalized and mapped to unit sphere

$$\mathbf{x}^{(i)}/\|\mathbf{x}^{(i)}\|$$

- Feature-wise normalization
 - [0,1]-normalization: normalize each feature
 i into a unit space

$$(\mathbf{x}_i - \min(\mathbf{x}_i)) / (\max(\mathbf{x}_i) - \min(\mathbf{x}_i))$$

 \mathbf{x}_i is the data vector of feature i, $\min(\mathbf{x}_i)$ is the minimum value in the vector, $\max(\mathbf{x}_i)$ is the maximum value

 Standard normalization: normalize each feature i to have mean 0 and standard deviation 1

$$(\mathbf{x}_i - \mu_i) / \sigma_i$$

 μ_i and σ_i is the sample mean and variance of feature i

