1 规格说明

全向三轮电动小车平台(下称"平台")的规格说明如下。

平台尺寸: 350mm*350mm*210mm

车轮数量: 3

车轮类型: 全方向 (omni wheel)

车轮直径: 100mm (4 英寸)

车轮分布: 120 度,轮毂中心距自转中心轴线 130mm

平台负载: 15Kg

行走方式: 360 度全方向行走, 360 度自转

标准走行速度: 1m/s (3.6Km/h)

最大走行速度: 2.2m/s (8Km/h)

电源: DC24V(6S)/10000mAh 锂离子电池

充电时间:约6小时

行走时间:标准速度下大于3_小时

电源输出: DC12V/5A, DC5V/2A

照明: LED, 亮度可控

上位机控制与通信接口: RS232/CAN

遥控: 2.4GHz 发射机/接收机

2 原理及定义

2.1 运动单元定义

如图一。对于在水平面上以 120 度间隔平均分布的 3 个全向轮,分别施以不同或相同的转速和转动方向,平台即可全方向移动或自转。定义 3 轮的编号分别为轮 1、轮 2、轮 3。将车轮圆周运动的角速度转换为水平面上的线速度。以轮 1 为例,向左运动的线速度定义为正,向右运动的线速度定义为负。轮 2 和轮 3 同轮 1。

2.2 运动方向定义

如图二。将轮 1、轮 2 和轮 3 的水平面上的速度定义为 V_1 、 V_2 和 V_3 。平台的运动速度 V_0 即为 V_1 、 V_2 和 V_3 的矢量合成。定义 θ 为 V_0 以逆时针方向旋转与 X轴的夹角,取值从 0 度到 360 度。

2.3 控制原理

该平台为极坐标控制,如图二。上位机输入 V_0 和 θ 两个参数,即可控制平台以该速度全方向移动。如果要控制平台自转,则需输入相同的 V_1 、 V_2 和 V_3 的值(紫色箭头方向为正),平台即以该速度的绝对值逆时针或顺时针自转。

图一:运动单元定义(俯视图)

图二:运动方向定义(俯视图)

3 测试

可使用遥控器测试平台的动作。遥控器如图三所示。

3.1 进入遥控测试模式

按以下步骤进入遥控测试模式:

- A. 关闭平台电源开关。
- B. 如果遥控器[电源]开关(POWER SWITCH)处于关闭状态,则打开遥控器电源开关。如果 LCD 显示 SWITCH ERROR!并报警,则将可拨动的开关全部置于关闭的位置上,再打开 POWER SWITCH。
- C. 打开[模式] (THRO CUT) 开关。(即把开关拨到接近操作员的一侧)
- D. 打开平台电源开关。

此时,平台进入遥控测试模式。在此模式下,平台脱离上位机控制。

3.2 遥控测试方法

- 拨动[方向]杆 (AIL/THR STICK) 可令平台按指定方向移动,拨动幅度大,则移动速度快,拨动幅度小,则移动速度慢。
- 向左拨动[自转]杆,平台逆时针自转。向右拨动自转杆,平台顺时针自转。(俯视时)
- 拨动幅度大,则自转速度快,拨动幅度小,则自转速度慢。
- 旋转[LED 调节]旋钮(PIT TRIM),调节 LED 头灯的开关及亮度。

图三: 遥控器(2.4GHz 无线电发射机)按钮定义

4 硬件接口

平台提供多种接口供上位机使用。上位机与平台连接时,需要注意电源电压和极性,并正确设置通信参数。接口布置见7.1节。

4.1 通信接口

• RS232

1路 RS232 串行接口。通信参数为:

波特率: 115200

数据位: 8

校验位:无

停止位: 1

流控制:无

CAN

1路 CAN 网络接口。通信参数为:

波特率: 1M

数据帧

标准帧

数据长度8字节

4.2 电源接口

- 直流 12V 1 路 DC12V/5A 电源输出
- 直流 5V 2 路 DC5V/2A 电源输出

4.3 接口定义

4. 3. 1 RS232

标准 RS232 接口 (母)。

4. 3. 2 CAN

采用9针航空插座。定义如表一(CAN及预留接口)。

4.3.3 DC5V 输出

标准 USB-A 插座。

4.3.4 DC12V 输出

采用9针航空插座。定义如表二(DC12V 航空插座)。

表一: CAN 及预留接口

针编号	定义	内线颜色	外线颜色	
1	LED 电源	橙	橙	
2	LED 阳极	红	黄	
3	LED 阴极	棕	绿	
4	GND	黑	哲	
5	预 留	白	/	
6	预 留	黄	/	
7	预 留	绿	/	
8	CANL	红	红	
9	CANH	白		

表二: DC12V 航空插座

针编号	定义	内线颜色	外线颜色	
8	GND	黑	黑	
9	+12V	红	红	

5 软件接口

上位机可通过 RS232 串口和 CAN 网络接口来控制平台的运动并获得反馈。所有能驱动电机的 RS232 串行指令都会翻译为 CAN 网络指令,在平台内部 CAN 网络中传输。

RS232 串行指令已覆盖平台的所有控制动作。为简化上位机程序,建议上位机使用 RS232 串行指令控制平台。同时,上位机可利用 CAN 网络接收数据反馈。

如果用户认为确有必要,也可用 CAN 网络指令控制各轮运动及平台动作。

5.1 进入串行指令模式

在平台上电或复位时,如果遥控器的电源开关(POWER SWITCH)位于关闭状态,或者遥控器的 THRO CUT 开关位于关闭状态,则平台进入 RS232 串行指令模式。

进入串行指令模式后,除非发送"切换到遥控器控制"的指令(以下详述),否则平台不受遥控器控制。

5.2 串行指令交互界面

进入串行指令模式后,平台为用户提供了串行指令交互界面。用户在编写上位机程序之前,应该使用串口通信软件(Tera Term 或 XCOM 等)进入串行指令交互界面,学习各指令。串口通信软件的参数请参考 4.1 节设置。

在交互界面中,用户在下述"zkhf>"提示符下输入指令(ASCII字符),并以回车结束。

zkhf>

平台读取用户输入的指令,执行对应的动作。出错时,平台输出出错信息(ASCII 字符)。指令执行完毕,平台返回上述提示符,准备接收用户输入的下一指令。例:

zkhf>ga 5 45 zkhf>

在上述例子中,用户输入"[字母 g][字母 a][空格键][数字 5][空格键][数字 4][数字 5][回车键]",平台执行用户输入的该项指令,即令平台以速度 5

向右前方45度移动。随后平台返回提示符,准备接收下一指令。

在交互界面,用户可输入"help"指令,获取指令清单。

zkhf>help

对于有参数的指令,用户可先输入不带参数的指令,通过出错信息,学习参数的用法。例如:

zkhf>ga ga speed(0~1000) angle(0-360) zkhf>

在上述例子中,用户输入"ga",平台提示 ga 指令的参数包括速度和角度。

5.3 重要指令一览

指令	描述	用例		
res	重置电机。在设置电机和执行运动 指令之前,必须首先执行该指令。 执行结果:平台停止运动,电机设 置清空。	res(无参数)		
mo	设置电机。在执行运动指令之前, 必须首先执行该指令。该指令有三 个参数,分别是电机编号(0代表 所有电机)、电机模式和反馈间隔 (10ms 的倍数)。	mo 0 speed 5 上述指令设置所有电机为 速度模式,每 50ms 在 CAN 网络中反馈电机状态信息		
ga	移动平台。该指令有两个参数,分别为 V ₀ 和 θ (见图二)。该指令只在电机模式设置为 speed 后有效。	ga 5 45 上述指令使平台以 V ₀ =5, θ =45°移动		
SS	平台停止移动。该指令只在电机模 式设置为 speed 后有效。	ss(无参数)		

tls trs	逆时针自转 顺时针自转 只在电机模式设置为 speed 后有 效。	tls 2 trs 3 上述指令,第一个以速度 2 逆时针自转,第二个以 速度 3 顺时针自转		
指令	描述	用例		
br	设置 LED 灯亮度 该指令有一个参数,调节 LED 灯亮 度。参数为 0 时 LED 灯熄灭,参数 为 899 时 LED 灯最亮。	br 0 上述指令熄灭 LED 灯。		
th9x	进入遥控模式。执行该指令后,平 台不再接受新的 RS232 串行指令。 该指令有一个参数,一般为 speed, 进入速度遥控模式。	th9x speed 上述指令使平台进入速度 遥控模式。		

用户可输入"help"指令,获取完整的指令清单。

5.4 在上位机程序中使用串行指令

与交互界面一样,上位机程序向串口写入 5.3 节中的指令,控制平台动作。 需要注意的是:

- 每条指令以"\r\n" 符(即 0x0D、0x0A 两个字节)结束。
- 程序从串口读到"zkhf>"提示符(即 0x7A、0x6B、0x68、0x66、0x3E 五个字节)后,再发送指令。

5.5 CAN 反馈

在执行串行总线命令 mo 时,如果第三个参数为非零值,则 CAN 网络中,将按设定好的时间间隔,存在电机状态的反馈数据帧。如有必要,上位机可通过 CAN 网络接收该数据帧。

CAN 网络参数设置见 4.1 节。

反馈数据包括 1、2、3 号电机(如图一,分别对应轮 1、轮 2、轮 3)的电流、转速及旋转位置。

以下是 1、2、3 号电机电流、转速、旋转位置等信息的 CAN 消息的格式。

CAN_ID	DATA[0]	DATA[1]	DATA[2]	DATA[3]	DATA[4]	DATA[5]	DATA[6]	DATA[7]
待接收	СН	CL	SH	SL	LH	LMH	LML	LL

注释:

1号电机反馈的CAN_ID: 0x17 2号电机反馈的CAN_ID: 0x27 3号电机反馈的CAN_ID: 0x37

CH: 电流高字节CL: 电流低字节SH: 速度高字节SL: 速度低字节

LH: 位置第一字节(高字节) LMH: 位置第二字节(中高字节) LML: 位置第三字节(中低字节) LL: 位置第四字节(低字节)

5.6 CAN 控制指令

CAN 控制指令另纸描述。

6 操作流程

遥控器测试模式已在第3节阐述。此处简述上位机控制下的操作流程。

- A. 充电完毕。
- B. 保持遥控器电源开关(POWER SWITCH)关闭或模式开关(THRO CUT)关闭。
- C. 保持平台电源开关关闭。
- D. 从平台引出电源电缆、RS232 电缆、CAN 网络电缆接入上位机。
- E. 打开平台电源开关。
- F. 设置上位机 RS232、CAN 通信参数。
- G. 上位机通过 RS232 发送 0x0D、0x0A 两个字节。
- H. 上位机通过 RS232 接收 0x7A、0x6B、0x68、0x66、0x3E 五个字节。如未接受到上述字节,则平台出错或上位机出错或 RS232 通信出错。
- I. 上位机依次输入 res 及 mo 指令,清除并设置电机模式。
- J. 上位机输入 ga、ss、tls、trs、br 等指令控制平台动作。
- K. 如需切换至遥控,上位机输入th9x指令。

如遇蜂鸣器报警。

- L. 操作中,如遇蜂鸣器报警,则可能是电机报警或电池报警。此时,请先 关闭平台电源,如果蜂鸣器报警消失,则为电机报警,有可能为程序错 误造成,如果经过一段操作后反复发生,则需检查上位机程序。
- M. 如果蜂鸣器报警在关闭平台电源后并未消失,则指示电池电压已下降至 必须充电的水平。请用锂电池平衡充电器连接至充电专用航空插座。照 片见7.2节。

7 附录

7.1 平台顶部照片

7.2 充电照片

7.3 附件照片

7.4 RS232 串口通信软件下载地址

- Tera Term http://logmett.com/index.php?/products/teraterm.html
- ◆ XCOM http://www.openedv.com/posts/list/22994.htm