III Data types

Many ways to characterize data types

- structured or unstructured
- dependency-oriented or nondependency-oriented
- numerical, categorical or mixed
- static ↔ temporal; spatial; spatiotemporal

Structured vs. Unstructured

Structured

- has a predefined structure (e.g., rows and features)
- e.g., multidimensional, graph-formed, time series

Unstructured

- no pre-defined format, just a string
- e.g., text, audio, video, signal data

Semistructured

- contains internal tags that identify separate data elements
- e.g., XML documents, emails

Dependency-orientation

- Nondependency-oriented: no specified dependencies between objects or attributes
- Dependency-oriented: data objects or values related temporally, spatially or through network links
 - 1. explicit dependencies
 - relationships in graph or network data
 - 2. implicit dependencies
 - known to typically occur
 - e.g., consecutive temperature readings likely similar

Difference: dependencies in data type vs. patterns in data instances

DATA TYPE

DATA INSTANCES

graph

Dependencies in data structure: edges present relationships

Discovered dependency: clique of A, B and C occurs frequently

Implicit dependencies harder to separate from patterns!

Basic data type: Multidimensional data

- a set of records, whose fields are features
- notate $\mathcal{D} = {\overline{X_1}, \dots, \overline{X_n}}$, where $\overline{X_i} = (x_i^1, \dots, x_i^d)$
 - n rows (records, data points, instances, objects)
 and d features (fields, attributes, dimensions)
- suitable for a relational database, e.g., cow data:

name	race	weight	parity	milk/d	activity
Rose	Holstein	640	2	35	4800
Daisy	Ayrshire	675	3	37	5100
Strawberry	Finncattle	615	4	28	7200
Molly	Ayrshire	650	1	32	6300

Numerical, categorical or mixed?

Depending on the type of variables, data may be called numerical (quantitative), categorical or mixed (both).

Variables can be classified by measurement scales:

- 1 Categorical
 - 1.1 Nominal: values are only labels, no order
 - e.g., gender (binary), colour, home city, occupation
 - mode (most common value) is defined
 - 1.2 Ordinal: values have an order
 - e.g., satisfaction with services: very unsatisfied, unsatisfied, neutral, satisfied, very satisfied
 - mode and median (the middle value) defined

Measurement scales (cont'd)

2 Numerical

- 2.1 Interval scale: difference between values is defined, but not ratio
 - no true zero point
 - temperature 20°C is not twice as warm as 10°C!
 - mean and standard deviation defined
- 2.2 Ratio scale: also ratio is defined
 - absolute zero = absence of the measured property
 - temperature in Kelvins, length, weight, duration
 - mean, standard deviation, geometric mean $((\prod x_i)^{1/n})$, coefficient of variation (σ/μ) defined

Circular variables

Idea: Values are ordered categories, where the last category precedes the first

- 1. Interval circular
 - e.g., compass direction (angles), time of day, day of year
 - zero on the measurement scale not meaningful!
- 2. Ordinal circular
 - e.g., days of the week (Mon, Tue,...), compass aspect (N, NE, E,...)

Be careful! E.g, cannot calculate arithmetic mean or normal correlation.

Example: What is the mean angle??

NO! Real mean angle 5 degr!

- present angles α_i by $(cos(\alpha_i), sin(\alpha_i))$
- $S = \sum_{i} sin(\alpha_i), C = \sum_{i} cos(\alpha_i)$
- $\theta = arctan\left(\frac{S}{C}\right)$, if $S \ge 0$, C > 0
- $\theta = arctan\left(\frac{S}{C}\right) + \pi$, if C < 0
- $\theta = \arctan\left(\frac{S}{C}\right) + 2\pi$, if S < 0, $C \le 0$
- $\theta = \pi/2$, if S > 0, C = 0
- undefined, if S = 0, C = 0

Present other circular variables first as angles (e.g., $\alpha = \frac{h*2\pi}{24}$)

Warning: Number codes # numerical variables

Categorical values have often arbitrary numerical codes that can't be interpreted as numbers!

Gender: 1 = Female, 2 = Male

Cow's race: 0 = Holstein, 1 = Ayrshire, 2 = Finncattle

- cannot measure distance or ratio or calculate mean or Pearson correlation
- you can get numerical presentation by creating dummy (binary indicator) variables for each value
 - e.g., $I_{Holstein}$ =1, if race=Holstein, and 0 otherwise

Warning (cont'd)

The same holds for ordinal variables:

Opinion: 1 = fully disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = fully agree

- if fully ordinal and distances between categories equal, variable may be treated as numerical (but not always optimal)
- more typical when many categories (≥ 7)
- Be careful!

Opinion: 0 = Don't know, 1 = fully disagree, 2 = disagree, 3 = neutral, 4 = agree, 5 = fully agree

Other data types

- time series
- discrete sequences
- spatial data
- network and graph data
- text

Time series

- continuous measurements over time
- e.g., from environmental sensors, health monitoring devices, ECG
- at time stamps t_1, \ldots, t_n measurements (Y_1, \ldots, Y_n)
- may also be multivariate time series $(\overline{Y_1}, \dots, \overline{Y_n})$, where $\overline{Y_i} = (y_i^1, \dots, y_i^d)$
- e.g., heart rate, oxygen saturation, diastolic and systolic blood pressure at every minute
- often temporal correlations (like dependencies between consecutive values or periodic patterns)

Discrete sequences

- like time series, but sequences of categorical variables
- special case: strings (no time stamps, but positions)
- e.g., event logs, strings of nucleotides (DNA, genes)

Event ID	Class	Type	Severity	Date/Time	Description				
958	Audit	Log	minor	Fri Apr 23 15:03:30 2010	root : Open Session : object = /session/type : value = www : success				
957	Fault	Fault	critical	Fri Apr 23 13 02 41 2010	ault detected at time = Fri Apr 23 13:02:41 2010. The suspect component: SYS/BL3/NET1 has fault to polex fabric fatal with probability=50. Refer to http://www.sun.com/msg/SPX86-8001-95 for details.				
956	Fault	Fault	critical	Fri Apr 23 13:02:41 2010	Fault detected at time = Fri Apr 23 13:02:41 2010. The suspect component: /SYS/BL3/NETO has fault to pciex fabric fatal with probability=50. Refer to http://www.sun.com/msg/SPX86-8001-95 for details.				
955	IPMI	Log	critical	Fri Apr 23 13:02:38 2010	ID = 1d1 : 04/23/2010 : 13:02:38 : Critical Interrupt : BIO5 : PCI SERR: IOH 3 ESI				
954	PMI	Log	critical	Fri Apr 23 13:02:38 2010	ID = 1dD : 04/23/2010 : 13:02:38 : Critical Interrupt : BIOS : PCI SERR: IOH 2 ESI				
953	IPMI	Log	critical	Fri Apr 23 13:02:38 2010	ID = 1cf : 04/23/2010 : 13:02:38 : Critical Interrupt : BIOS : PCI SERR: IOH 1 ESI				

Figure from https://docs.oracle.com/cd/E19140-01/html/821-0796/gjfwa.html

Difficulty: how to combine temporal data when the measuring frequency varies?

Example from a cow-house:

- body temperature and rumen acidity are measured every minute
- activity device records average activity every 15 min
- milk production (amount, protein and fat contents etc.) is measured daily
- feeding automaton event log contains time stamp, automaton id, cow id, feed type, amount and duration for every visit
- drinking automaton event log contains time stamp, cow id, amount of water and duration

Spatial and spatiotemporal data

- spatial: measurements of non-spatial attributes in spatial locations (typically 2D)
 - e.g. sea surface temperature
- spatiotemporal data
 - e.g., temperature over time or ship trajectories

Figure from http://www.elane.com/EN/Detail106.html

Spatiotemporal data: contextual and behavioural attributes

Contextual attributes define the context

Behavioural attributes are measured in this context

Two main types of spatiotemporal data:

- Both spatial and temporal attributes define the context where some behavioural attribute (like temperature) is measured
- 2. Temporal attribute is contextual and spatial attributes are behavioural (e.g., trajectory analysis)

Network and graph data

- nodes correspond objects and edges relationships
 + attributes may be associated with nodes or edges
- directed (web structure) or undirected (social network)

Example: wikipedia hyperlink structure

Figure from https://wiki.digitalmethods.net/Dmi/WikipediaAnalysis

Example: social network structure

- Nodes: Individuals in the network
- Edges: Links/relationships between individuals
- Edge weight on (i, j): Influence weight W_{i,j}

Source: Lu and Lakshmanan ICDM 2012

https://www.slideshare.net/WeiLu12/

profit-maximization-over-social-networks

Text data

- raw text is a string, i.e., dependency-oriented
- often represented as a bag-of-words or document-term matrix (nondependency-oriented)
- which can be presented in vector space (as multidimensional data)
 - how often terms occur in document? ⇒ numerical features for term frequencies
 - ⇒ often transformed to tf-idf values (contains weighting + log scaling)

More on the text mining lecture!

Example: tf-idf presentation of sentences

d0: Simple example with cats and mouse

d1: Another simple example with dogs and cats

d2: Another simple example with mouse and cheese

	and	another	cats	cheese	dogs	example	mouse	simple	with
0	1	0	1	0	0	1	1	1	1
1	1	1	1	0	1	1	0	1	1
2	1	1	0	1	0	1	1	1	1

	and	another	cats	cheese	dogs	example	mouse	simple	with
0	0.0	0.000000	0.067578	0.000000	0.000000	0.0	0.067578	0.0	0.0
1	0.0	0.057924	0.057924	0.000000	0.156945	0.0	0.000000	0.0	0.0
2	0.0	0.057924	0.000000	0.156945	0.000000	0.0	0.057924	0.0	0.0

Example from https://medium.com/@MSalnikov/text-clustering-with-k-means-and-tf-idf-f099bcf95183