Міністерство освіти і науки України Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Факультет інформатики та обчислювальної техніки

Кафедра інформатики та програмної інженерії

Звіт

з лабораторної роботи №3 з дисципліни «Ігрова фізика»

«Вивчення законів динаміки обертального руху за допомогою маятника Обербека»

Варіант 10

Виконав студент ІП-13, Замковий Дмитро Володимирович

(шифр, прізвище, ім'я, по батькові)

Перевірив Скирта Юрій Борисович

(прізвище, ім'я, по батькові)

Лабораторна робота 3

Вивчення законів динаміки обертального руху за допомогою маятника Обербека

Теорія:

Маятник Обербека являє собою циліндричну муфту, утворену згвинчуванням разом чотирьох жорстких стрижнів. Призначений для вивчення законів обертального руху. Чотири вантажі однакової маси можна переміщувати і закріплювати вздовж стрижня. При цьому змінюється момент інерції системи. До муфти кріпляться два шківи з різними радіусами. Навколо одного з них обмотана обважнена тонка нитка, рухаючись, маятник прискорюється й обертається. Поступовий рух цієї ваги можна описати за допомогою другого закону Ньютона.

$$mg - T = ma$$

Обертальний рух маятника Обербека можна описати так:

$$Tr - M_R = I \frac{a}{r}$$

об'єднавши ці формули отримати рівняння прискорення тягарця від радіусу шківа, маси тягарця, моменту інерції маятника та моменту сил тертя

$$a = \frac{e(mgr - M_r)}{I + mr^2},$$

яке можна спростити, якщо маса тягарця мала відносно маси маятника

$$a = \frac{r(mgr - M_r)}{I}$$

За сталого моменту сил тертя, рух тягарця відбувається рівноприскорено і його прикорення можна визначити експериментально

$$a = \frac{2h}{t^2}$$

Розрахунки:

r = r1 = 0.021 (м), момент ітерації - менший							r = r2 = 0.042 (м), момент ітерації - менший						
№	h, mm	т, г	tl,c	< t > , c	β, 1/c 2	М, Н∙м	№	h, _{MM}	т, г	t1, c	< t > , c	β, 1/c 2	М, Н·м
1	400	58.8	6.590	6.580	0.8798	0.012090	1	400	58.8	2.558	2.538	2.95704	0.02392
			6.468		71	6				2.514			01
			6.682							2.541			
2	400	83.8	4,584	4.574	1.8208	0.017196	2	400	83.8	2.061	2.052	4.52362	0.03385
			4,563		7	3				2.043			86
			4,563							2.052			
3		158. 8	2,939		064 4.3362 5	0.032410 7	3	400	158.8	1.416	1.418	9.47302	0.06277 52
			2,964							1.405			
			2,989							1.434			

r = r1 = 0.021 (м), момент ітерації - більший									
№	h, мм	т, г	t1, c	$\langle t \rangle, c$	β, 1/c 2	М, Н·м			
1	400	58.8	3.317	3.322	3.45201	0.0120181			
			3.286						
			3.362						
2	400	83.8	2.588	2.615	5.57092	0.0170578			
			2.672						
			2.585						
3	400	158.8	1.784	1.809	11.6410	0.0318992			
			1.829		9				
			1.815						

```
Для \mathbf{r}=\mathbf{r}1=0.021 (м), момент ітерації — менший M(\beta)\approx 0.0059*\beta+0.0067 Для \mathbf{r}=\mathbf{r}2=0.042 (м), момент ітерації — менший M(\beta)\approx 0.0059*\beta+0.0067 Для \mathbf{r}=\mathbf{r}1=0.021 (м), момент ітерації — більший M(\beta)\approx 0.0024*\beta+0.0036
```

Апроксимацію побудовано у MS EXCEL

Графік для r = r1 = 0.021 (м), момент ітерації — менший

 $I_B = 0.0059$, $M_t = 0.0067$

Графік для r = r2 = 0.042 (м), момент ітерації — менший

 $I_B = 0.0059, M_t = 0.0067$

Графік для r = r1 = 0.021 (м), момент ітерації — більший

 $I_B = 0.0024, M_t = 0.0036$

Побудуємо усі три апроксимації на одному графіку

Далі порахуємо похибку. За табличним значенням a=0.9

Для m = 58.8г, r = 0.021m, менший момент інерції:

$$\langle t \rangle = 6.580c$$

$$\Delta t1 = 6.580 - 6.590 = -0.01c$$

$$\Delta t2 = 6.580 - 6.468 = 0.112c$$

$$\Delta t3 = 6.580 - 6.682 = -0.102c$$

$$S_{(t)} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta t_i^2} = 0.062$$

$$t=\langle t\rangle\pm t_{\alpha,n}*S_{\langle t\rangle}=6.580\pm2.92*0.062=6.580\pm0.181(c)$$

Для m = 83.8г, r = 0.021m, менший момент інерції:

$$\langle t \rangle = 4.574c$$

$$\Delta t1 = 4.574 - 4.584 = -0.01c$$

$$\Delta t2 = 4.574 - 4.574 = 0c$$

$$\Delta t3 = 4.574 - 4.563 = 0.011c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta t_i^2} = 0.00577$$

$$t = \langle t \rangle \pm t_{\alpha,n} * S_{\langle t \rangle} = 4.574 \pm 2.92 * 0.00577 = 4.574 \pm 0.017 (c)$$

Для m = 158.8г, r = 0.021m, менший момент інерції:

$$\langle t \rangle = 2.964c$$

$$\Delta t1 = 2.964 - 2.939 = 0.025c$$

$$\Delta t2 = 2.964 - 2.964 = 0c$$

$$\Delta t3 = 2.964 - 2.989 = -0.025c$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{n(n-1)} \sum_{i=1}^{n} \Delta t_i^2} = 0.01443$$

$$t \!\!=\!\! \langle t \rangle \!\!\pm\! t_{\alpha,n} \!\!*\! S_{\langle t \rangle} \!\!=\!\! 2.964 \!\!\pm\! 2.92 \!\!*\! 0.01443 \!\!=\!\! 2.964 \!\!\pm\! 0.042 (c)$$

Висновок:

В ході даної роботи я дослідив закони динаміки обертального руху за допомогою маятника Обербека, а саме: провели експеримент у симуляторі, заповнили таблицю та порахували потрібні нам значення, побудували графіки залежності $M(\beta)$ для виконаного експерименту, зафіксували довільне значення кутового прискорення β за графіками визначили моменти сил натягу нитки M_{\circ} та M_{1} , які відповідають зафіксованому значенню β , використовуючи знайдені значення M_{\circ} , обчислили момент інерції I_{B} вантажів, які знаходяться на стрижнях маятника Обербека та оцінити похибку результатів вимірювання.

Відповіді на контрольні запитання:

1. Визначити момент сили та момент імпульсу відносно деякої точки та осі. Момент сили для точки дорівнює добутку радіальних векторів, проведених із неї. Точка застосування сили А від точки О до вектора сили F

$$M_o(\vec{F}) = \vec{r} \times \vec{F}$$

2. Записати основний закон динаміки обертального руху.

Момент інерції тіла, помножений на його кутове прискорення, дорівнює моменту зовнішньої сили

$$\frac{d\vec{L}}{dt} = I\vec{\beta} = \vec{M}$$

3. Сформулювати і записати закон збереження момента імпульсу для системи матеріальних точок.

У замкненій системі геометрична сума імпульсів (повний імпульс системи) залишається сталою за будь-яких взаємодій тіл цієї системи між собою(закон збереження імпульсу)

$$\frac{d\vec{L}}{dt} = I\vec{\beta} = \vec{M} \to L = const$$

4. .Розказати про призначення та конструкцію маятника Обербека.

Досліджуємо експериментальну залежність моменту натягу нитки від кутового прискорення $M(\beta)$. Тобто нам потрібно перевірити, чи наближається результат до лінійної залежності, що підтверджує цей закон.

8. Як експериментально обчислити момент інерції маятника Обербека? Проводяться експерименти, коли необхідно апроксимувати лінію залежності кутового прискорення $M(\beta)$ з моменту натягу нитки. Величина тангенса кута нахилу цієї прямої є момент інерції маятника. При β =0 M — момент сили тертя маятника Обербека.