Gov 51: Confidence Intervals

Matthew Blackwell

Harvard University

Confidence intervals

- · Awesome: sample proportion is correct on average.
- · Awesomer: get an range of plausible values.
- **Confidence interval**: way to construct an interval that will contain the true value in some fixed proportion of repeated samples.

CLT

$$\overline{Y} - p = \text{chance error}$$

- · How can we figure out a range of plausible chance errors?
 - Find a range of plausible chance errors and add them to \overline{Y}
- · Central limit theorem:

$$\overline{Y} \overset{\mathsf{approx}}{\sim} \mathcal{N}\left(\mathbb{E}(Y_i), \frac{\mathbb{V}(Y_i)}{n}\right)$$

· In this case:

$$\overline{Y} \overset{\mathsf{approx}}{\sim} \mathcal{N}\left(p, \frac{p(1-p)}{n}\right)$$

- Chance error: $\overline{Y}-p$ is approximately normal with mean 0 and SE equal to $\sqrt{p(1-p)/n}$

Chance errors

- We know 95% of chance errors will be within $\approx 2 \times SE$
 - (actually it's $1.96 \times SE$)
- \leadsto range of plausible chance errors is $\pm 1.96 \times SE$

Confidence interval

- First, choose a confidence level.
 - · What percent of chance errors do you want to count as "plausible"?
 - Convention is 95%.
- $100 \times (1-\alpha)\%$ confidence interval:

$$CI = \overline{Y} \pm z_{\alpha/2} \times SE$$

- In polling, $\pm z_{\alpha/2} imes SE$ is called the **margin of error**
- $z_{\alpha/2}$ is the N(0,1) z-score that would put $\alpha/2$ of the probability density above it.
 - $\mathbb{P}(-z_{\alpha/2} < Z < z_{\alpha/2}) = \alpha$
 - 90% CI $\rightsquigarrow \alpha = 0.1 \rightsquigarrow z_{\alpha/2} = 1.64$
 - 95% CI $\leftrightarrow \alpha = 0.05 \leftrightarrow z_{\alpha/2} = 1.96$
 - 99% CI $\leadsto \alpha = 0.01 \leadsto z_{\alpha/2} = 2.58$

Standard normal z-scores in R

• qnorm(x, lower.tail = FALSE) will find the value of z so that
 P(Z < z) is equal to x, where Z is N(0,1):

qnorm(0.05, lower.tail = FALSE)

[1] 1.64

qnorm(0.025, lower.tail = FALSE)

[1] 1.96

qnorm(0.005, lower.tail = FALSE)</pre>
[1] 2.58

Z-values

$$\textit{CI}_{90} = \overline{Y} \pm 1.64 \times \textit{SE}$$

Z-values

$$\textit{CI}_{95} = \overline{Y} \pm 1.96 \times \textit{SE}$$

Z-values

$$\textit{CI}_{99} = \overline{Y} \pm 2.58 \times \textit{SE}$$

CIs for the Gallup poll

- Gallup poll: $\overline{Y} = 0.37$ with an SE of 0.012.
- 90% CI:

$$[0.37-1.64\times0.012,\ 0.37+1.64\times0.012]=[0.350,0.389]$$

• 95% CI:

$$[0.37-1.96\times0.012,\ 0.37+1.96\times0.012]=[0.346,0.394]$$

• 99% CI:

$$[0.37 - 2.58 \times 0.012, \ 0.37 + 2.58 \times 0.012] = [0.339, 0.401]$$

Interpretation and simulation

- · Be careful about interpretation:
 - A 95% confidence interval will contain the true value in 95% of repeated samples.
 - For a particular calculated confidence interval, truth is either in it or not.
- · A simulation can help our understanding:
 - Draw samples of size 1500 assuming population approval for Trump of p = 0.4.
 - Calculate 95% confidence intervals in each sample.
 - See how many overlap with the true population approval.

Trial