(12)

EUROPEAN PATENT SPECIFICATION

- (45) Date of publication and mention of the grant of the patent:07.08.2002 Bulletin 2002/32
- (21) Application number: 92907369.0
- (22) Date of filing: 20.02.1992

- (51) Int CI.7: **C12N 15/12**, C07K 14/00, C12N 1/21, C12N 5/10, C12P 21/02
- (86) International application number: PCT/US92/01300

(11)

- (87) International publication number: WO 92/14748 (03.09.1992 Gazette 1992/23)
- (54) IDENTIFICATION OF A NOVEL HUMAN RECEPTOR TYROSINE KINASE GENE
 IDENTIFIZIERUNG EINES MENSCHLICHEN REZEPTOR-TYROSINKINASEGENS
 IDENTIFICATION D'UN NOUVEAU GENE HUMAIN RECEPTEUR DE TYROSINE KINASE
- (84) Designated Contracting States: AT BE CH DE DK ES FR GB GR IT LI LU NL SE
- (30) Priority: 22.02.1991 US 657236
- (43) Date of publication of application: 14.04.1993 Bulletin 1993/15
- (73) Proprietor: AMERICAN CYANAMID COMPANY Madison, New Jersey 07940 (US)
- (72) Inventors:
 - TERMAN, Bruce, Israel Monroe, NY 10950 (US)
 - CARRION, Miguel, Eduardo Spring Valley, NY 10977 (US)
- (74) Representative:
 Wächtershäuser, Günter, Prof. Dr.
 Patentanwalt,
 Tal 29
 80331 München (DE)
- (56) References cited:
 - JOURNAL OF BIOLOGICAL CHEMISTRY. vol. 265, no. 32, 15 November 1990, BALTIMORE US pages 19461 - 19466 VAISMAN N;GOSPODAROWICZ D;NEUFELD G; 'Characterization of the receptors for vascular endothelial growth factor.'

- JOURNAL OF BIOLOGICAL CHEMISTRY. vol. 265, no. 36, 25 December 1990, BALTIMORE US pages 22071 - 22074 PLOUET, J. ET AL.; 'Characterization of the receptor to vasculotropin on bovine adrenal cortex-derived capillary endothelial cells.'
- CELL vol. 61, 20 April 1990, CAMBRIDGE, NA US pages 203 - 212 ULLRICH, A. ET AL.; 'Signal transduction by receptors with tyrosine kinase activity'
- Proc. Natl. Acad. Sci., Volume 88, issued 1991,
 W. MATHEWES et al., "A receptor tyrosine kinase cDNA isolated from a population of enriched primitive hematopoietic cells and exhibiting close genetic linkage to c-kit", pages 9026-9030, see entire document.
- Proc. Natl. Acad. Sci., Volume 86, issued March 1989, A.F. WILKS, "Two putative protein-tyrosine kinases identified by applicatin of the polymerase chain reaction", pages 1603-1607, see entire document.
- Oncogene, Volume 6, issued 1991, B.I. TERMAN et al., "Identification of a new endothelial cell growth factor receptor tyrosine kinase", pages 1677-1683, see entire document.
- Oncogene, Volume 3, issued 1988, M. RUTA et al., "A novel protein tyrosine kinase gene whose expression is modulated during endothelial cell differentiation", pages 9-15, see entire document.
- Oncogene, Volume 5, issued 1990, M. SHIBUYA et al., "Nucleotide sequence and expression of a novel human receptor-type tyrosine kinase gene (flt) closely related to the fms family", pages 519-524, see entire document.

Note: Within nine months from the publication of the mention of the grant of the European patent, any person may give notice to the European Patent Office of opposition to the European patent granted. Notice of opposition shall be filed in a written reasoned statement. It shall not be deemed to have been filed until the opposition fee has been paid. (Art. 99(1) European Patent Convention).

- Proc. Natl. Acad. Sci., Volume 86, issued November 1989, M. STREULI et al., "A family of receptor-linked protein tyrosine phosphatases in humans and Drosophila", pages 8698-8702, see entire document.
- Proc. Natl. Acad. Sci., Volume 85, issued May 1988, R.G.K. GRONWALD et al., "Cloning and expression of a cDNA coding for the human platelet-derived growth factor receptor: Evidence for more than one receptor class", pages 3435-3439, see entire document.
- M.A. INNES et al., "Pcr Protocols, a guide to methods and applications", published 1990 by Academic Press (N.Y.), see page 10.
- J. Éxp. Med. (1993) 178: 2077-2088
- Cell (1993) 72: 835-846
- P.N.A.S. USA (1993) 90: 7533-7537

Description

FIELD OF THE INVENTION

[0001] This invention relates to the DNA sequence encoding a novel human growth factor receptor which is a type III receptor tyrosine kinase. The receptor is referred to as Kinase insert Domain containing Receptor (KDR) and binds specifically to the growth factor vascular endothelial cell growth factor (VEGF). This invention also relates to the amino acid sequence of the receptor, an expression vector comprising the DNA sequence, a lambda gt11 phage, primers, a method for the expression of the protein encoded by the DNA sequence, and the use of a biologically active human type III receptor tyrasine kinase in a screening of pharmaceuticals for antagonist or agonist VEGF action on the human type III receptor tyrosine kinase

BACKGROUND OF THE INVENTION

[0002] Growth factors are small molecules which regulate normal cell growth and development through interaction with cell surface receptors. The receptors for a number of growth factors are referred to as tyrosine kinases; that is, binding of growth factor to the receptor stimulates an increased phosphorylation of tyrosine amino acids within the receptor; this is turn leads to cellular activation (Bibliography 1).

[0003] There is increasing evidence that genetic alterations affecting the expression of receptor tyrosine kinases (RTK) can contribute to the altered cell growth associated with cancer. This conclusion is supported by the frequent identification of RTK as products of the oncogenes for many of the acutely transforming retroviruses (e.g., 2,3,4) and the overexpression of RTK in certain cancers (5). The identification of a novel RTK may lead to a better understanding of cell growth under both normal and transforming circumstances.

[0004] The amino acid sequence in the catalytic domain of all tyrosine kinases has been conserved (6). Detailed analysis of the amino acid sequences within the catalytic and noncatalytic domains of RTK indicates the existence of distinct structural subtypes. One group of RTK (designated type III) includes the <u>ckit</u> proto-oncogene and the receptors for platelet derived growth factor (PDGF) and colony stimulating factor-1 (CSF-1).

[0005] The most unusual feature of this subtype is that its catalytic (kinase) domain is interrupted by a long insertion sequence of 12-102 amino acids (the kinase insert domain) The two peptides constituting the kinase domain are conserved between the receptors, while the sequence of the kinase insert domain is unique for each receptor.

[0006] Several approaches have been tried in order to identify novel RTK, including low-stringency screening of cDNA libraries with previously characterized DNA probes (7). More recently, a technique has been developed that is capable of greatly facilitating the identification of novel genes for which some sequence data are known. The polymerase chain reaction (PCR) has been used to identify novel members of several gene families including those of guanine nucleotide regulatory proteins (8) and protein phosphatases (9). PCR has been used to identify novel tyrosine kinase genes (10), though the primers used in that study were designed from DNA segments contained in all tyrosine kinases, rather than being specifically directed against RTK. It is a continuing goal to identify receptors for growth factors.

[0007] The elucidation of the growth factors, as well as their receptors, involved in regulating endothelial cell function is critical for the understanding of how new blood vessels are formed (angiogenesis). Angiogenesis plays a significant role in both normal and pathological events such as embryogenesis, progression of ocular diseases, and wound healing (11). In particular, angiogenesis is an important process for the growth of tumors (11). Angiogenesis is a complex process involving endothelial cell proliferation, migration, and tissue infiltration. These events are stimulated by growth factors which either (i) act directly on endothelial cells (12,13), or (ii) act indirectly by inducing host cells to release specific endothelial cell growth factors (11). One member of the first group is vascular endothelial cell growth factor (VEGF), also known as vascular permeability factor (14-16). Besides its angiogenic activity, VEGF displays the physiological function of increasing the permeability of capillary vessels to different macromolecules (14).

SUMMARY OF THE INVENTION

45

[0008] The present invention relates to novel DNA segments which together comprise a gene which encodes type III RTK. The type III RTK encoded by the gene is designated the <u>KDR</u> protein (which stands for Kinase insert Domain containing Receptor). The <u>KDR</u> protein binds specifically to the growth factor VEGF (vascular endothelial cell growth factor).

[0009] The DNA segments are identified and isolated through the use of PCR technology. The overall strategy is summarized as follows:

[0010] PCR is used to amplify the DNA segments corresponding to the kinase insert domains of type III receptor tyrosine kinase genes in an endothelial cell library designated HL10246 (Clontech Laboratories, Inc., Palo Alto, CA). Degenerate oligonucleotide primers are designed which are complementary to conserved tyrosine kinase domains

flanking the kinase insert domains of known type III receptor tyrosine kinases. These primers are used in the PCR procedure. DNA probes, designed from the DNA sequence of the PCR product, are then used to identify cDNA clones of the receptor gene from the original cDNA library.

[0011] In particular, the present invention relates to specific oligonucleotides which, when used as primers for PCR, allow for the amplification of DNA segments corresponding to the kinase insert domains of type III RTK genes.

[0012] In a principal embodiment, the present invention is directed to two of three overlapping DNA segments (designated BTIII081.8, BTIII129.5 and BTIV169) according to claim 1 which comprise the entire coding region of this novel gene, namely, 4,068 nucleotides extending to the 3' end.

[0013] These DNA segments are isolated from a human endothelial cell cDNA library and together comprise the gene coding for a novel type III receptor tyrosine kinase. The human gene containing these DNA segments is referred to hereinafter as <u>KDR</u> (which stands for Kinase insert Domain containing Receptor) or, alternatively, as kdp (which stands for Kinase insert Domain containing Protein). The use of the term <u>KDR</u> is intended to include any DNA segments which form the human gene which encodes the novel type III RTK of this application.

[0014] The DNA segments embodied in this invention are isolated from human sources. The present invention comprises DNA segments, and methods for using these DNA segments, which allow for the identification of a closely related gene in mouse DNA. The methods developed in this invention can be readily used by those skilled in the art for the identification and isolation of closely-related homologues in other species. Therefore, the present invention also embodies all DNA segments from species other than human which encode proteins having substantially the same amino acid sequence as that encoded by the kdp gene.

[0015] The present invention further relates to methods developed for the detection of mRNA's produced as a result of transcription of the sense strands of the DNA segments of this invention. Messenger RNA prepared from bovine endothelial cells are used in developing these methods. The ability to detect mRNA for a novel RTK may ultimately have medical benefit, especially in light of recent observations that the mRNA for certain RTKs are overexpressed in some cancers (5).

[0016] The methods developed in the present invention for detecting mRNA expressed by the kdp gene can be readily used by those of ordinary skill in the art for the detection of mRNA species related to the kdp gene in any cell type and from any species. For this reason, the present invention embodies all mRNA segments which are the result of transcription of the kdp gene.

[0017] The present invention relates to methods for expression of the receptor protein, for example, in CMT-3 cells of monkey kidney origin. The receptor protein, portions thereof, and mutated forms of the receptor protein may be expressed in many other cells by those skilled in the art using methods similar to those described in this application. For this reason, the present invention embodies all proteins encoded by the human KDR gene and proteins encoded by related genes found in other species.

[0018] The present invention further relates to methods for studying the interaction of VEGF to the expressed KDR protein. Recent work in the literature (17) indicates that VEGF is one member of a family of related proteins, and the interaction of growth factors similar to VEGF with the KDR protein can readily be studied by those skilled in the art using methods similar to those described in this application. These methods can readily be modified to study the interaction of candidate pharmaceuticals with the KDR protein towards the goal of developing an antagonist or agonist of VEGF action. For this reason, the present invention embodies methods for studying the interaction of VEGF and VEGF-related growth factors with the KDR protein.

BRIEF DESCRIPTION OF THE DRAWINGS

35

40

45

[0019] Figure 1 depicts a schematic representation of three receptor tyrosine kinase subclasses (6). KI is kinase insert domain; PTK is kinase domain; cys is cysteine rich region.

[0020] Figure 2 depicts the two sets of primers used for PCR (SEQ ID NO: 1 and 2). The nucleotide sequences in appropriate regions of the four known type III receptor tyrosine kinase cDNAs are aligned and degenerate oligonucleotide primers are designed based upon the consensus sequences.

[0021] Figure 3 depicts the amplification of the kinase insert domains using PCR. DNA segments encoding the kinase insert domains of type III receptor tyrosine kinases are amplified by PCR. A sample (5 μ I) is run on a 1.0% agarose gel which is stained with ethidium bromide. DNA size standards (123 bp ladder, Bethesda Research Laboratories, Bethesda, MD) are run as well.

[0022] Figure 4 depicts the DNA sequence of the two PCR products (Panel A: 363 bp segment derived from the 420 bp product (SEQ ID NO: 3); Panel B: 251 bp product (SEQ ID NO: 4)). The two products are purified by agarose get electrophoresis, digested with <u>Sal</u>1 and <u>EcoRI</u>, and cloned into the plasmid vector pBlueScribe(+)TM (Strategene; San Diego, CA). The 420 bp PCR product is digested to 363 bp during this procedure. The DNA sequences for the primers used in the amplification are underlined.

[0023] Figure 5A depicts a computer assisted comparison of the DNA sequence for the 363 bp DNA segment derived

from the 420 bp PCR product with the sequence of a DNA segment of the PDGF receptor (SEQ ID NO: 5) (18). A region of strong homology between the 363 bp segment derived from the 420 bp PCR product and the PDGF receptor is contained in a box. Figure 5B depicts a computer assisted comparison of the DNA sequence for the 251 bp PCR product with the sequence of a DNA segment of the FGF receptor (SEQ ID NO: 6) (7).

[0024] Figure 6 depicts the strategy used for sequencing the insert portions of clones BTIII081.8 and BTIII129.5 and BTIV169. The sequencing reaction uses either synthetic oligonucleotides (represented by boxes at the start of an arrow), or the M13 universal primer (no box) to initiate the reaction. In some cases, portions of these DNA segments are isolated using the restriction enzymes indicated in the figure, and subcloned back into the plasmid vector pUC118, so that the M13 universal primer can be used. The position of the stop codon in BTIII129.5 is indicated. The coding portions of these DNA segments are shown at the bottom of the figure. The relative positions of the 1) membrane spanning portion, 2) kinase domains, and 3) kinase insert domain are indicated. The position of these structural features within the KDR derived DNA segments is compared in relation to their position in the PDGF-receptor ("PDGF-R").

[0025] Figure 7 depicts the DNA and predicted amino acid sequence of <u>KDR</u>, plus the stop codon (nucleotides 1-4071 of SEQ ID NO. 7). The sequence of the DNA segment amplified by PCR is underlined (nucleotides 2749-3105 of SEQ ID NO. 7). Cysteine residues in the putative extracellular domain are circled. Potential N-linked glycosylation sites are indicated by an asterisk. The putative membrane spanning region is enclosed in a box (nucleotides 2293-2367 of SEQ ID NO. 7).

[0026] Figure 8 depicts a hydropathy plot of the predicted amino acid sequence for the KDR protein.

[0027] Figure 9 depicts a comparison of the predicted amino acid sequence in the putative intracellular portion of the KDR protein to the ckit proto-oncogene (SEQ ID No: 8) (3), the CSF-1 receptor (SEQ ID NO: 9) (4), and the PDGF receptor (SEQ ID NO: 10) (18). Exact matches are indicated by an asterisk. Gaps are introduced to achieve maximum alignment. The putative ATP recognition site is indicated by three asterisks.

[0028] Figure 10 depicts the identification of kdp receptor mRNA by Northern blot analysis. Five micrograms of bovine aortic endothelial cell polyA+ RNA are used. A nick-translated [32P] CTP-labelled Eco RI/BamHI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe. Autoradiography is for 36 hours.

[0029] Figure 11 depicts the kdp gene in human and mouse DNA by Southern blot analysis. A nick translated [32P] CTP-labelled EcoRI/BamHI DNA segment (nucleotides 1510-2417 of SEQ ID NO. 7) is used as the probe. The probe is hybridized to Southern blots containing EcoRI digested DNA from human (lane 1), mouse (lane 2), and human-mouse hybrid cells (19) (lanes 3 and 4). The DNA used in lane 3 lacks the kdp locus, while DNA used in lane 4 contains the kdp locus.

[0030] Figure 12 depicts a Western blot analysis of CMT-3 cells which express the <u>KDR</u> protein. Cells are transfected with either the pcDNAltkpASP vector alone (lane 1) or with that vector modified to contain the <u>KDR</u> gene (lane 2). 2 x 10⁵ cells and 1 microgram of DNA are used for each transfection. Forty-eight hours later, Western blot analysis is performed on the samples using the anti-<u>KDR</u>.PS23 polyclonal antibody at a dilution of 1:1000. Detection of reacting proteins is performed using an ECL system (Amersham, Chicago, IL).

[0031] Figure 13 depicts the results of [125I] VEGF binding to CMT-3 cells which express the KDR protein. Cells are transfected with either the vector alone (bars 1 and 2) or with the vector containing the KDR gene (bars 3 and 4). Forty-eight hours later, the samples are washed with phosphate buffered saline (PBS), and incubated with serum-free media containing 50 pM [125I] VEGF (specific activity equal to 4,000 cpm per fmol), for 90 minutes. Nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define specific binding sites. The samples are washed with ice cold PBS, and the cells are transferred to gamma-counting tubes using 0.1% lubrol.

[0032] Figure 14 depicts the results of affinity cross-linking of [1251] VEGF to CMT-3 cells which express the KDR protein. CMT-3 cells are transfected with either the vector alone (lane 1) or with the vector containing the KDR gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free media containing 200 pM [1251] VEGF is added. After 90 minutes at room temperature, an affinity cross-linker disuccinimidyl suberate, 0.5 mM, is added for 15 minutes. The samples are then prepared for SDS-PAGE autoradiography.

DETAILED DESCRIPTION OF THE INVENTION

10

30

35

45

[0033] The strategy used to discover the DNA segments for the novel type III RTK gene begins with the design of two degenerate oligonucleotide primers based upon their homology to specific regions of the kinase domains of known RTK genes (Fig. 2) (3,4,7,18). In one embodiment, the polymerase chain reaction is then used to amplify DNA segments from a human endothelial cell cDNA library (designated HL 10246). The cDNA products from this step are each cloned into a plasmid vector designated pBlueScribe(+)TM (Strategene, San Diego, CA) and sequenced. Oligonucleotide probes are designed from potentially interesting sequences in order to screen the cDNA library for more full length clones of the novel cDNA.

[0034] The strategy just described provides several novel elements: 1) the DNA sequences of the oligonucleotide primers used during PCR; 2) the DNA sequence of the products generated by the polymerase chain reaction; and 3)

the DNA sequence of the final cloned DNA segments. Each of these elements of the invention described in this application will now be discussed in detail.

[0035] Figure 2 shows the rationale for choosing the oligonucleotide primers used in the PCR. The primers are designed to allow for the PCR amplification of the kinase insert domain of type III RTK genes. In order to design the primers, the DNA sequences of known type III RTK genes are aligned in specific regions of their catalytic domains, and a consensus sequence is chosen. The regions of the catalytic domains chosen in designing the primers flank the kinase insert domains of the receptor genes.

[0036] Primer 1 (SEQ ID No: 1) is designed from a region of the kinase domain 5' to the kinase insert domain, and consists of a mixture of four different 21mers. Primer 2 (SEQ ID NO: 2) is designed from a region of the kinase domain 3' to the kinase insert domain, and consists of a mixture of sixteen different 29mers with one inosine, indicated in SEQ ID NO: 2 by "N".

[0037] Sall and EcoRI restriction sites are included at the 5' end of primers 1 and 2, respectively, to facilitate the subcloning of the amplified PCR products into plasmid vectors. Those skilled in the art may use other restriction sites; other minor modifications in the protocol above permits the design of primers without the inclusion of restriction sites.

[0038] The selection of these specific primers constitutes a novel approach towards identifying novel type III RTK genes. It had previously been shown (10) that primers designed from DNA sequences common to all tyrosine kinases allows for the identification of novel proteins. The present invention is the first to contemplate the use of PCR to specifically target type III RTK.

[0039] The protocol used for PCR is as follows: Human endothelial cell cDNA (designated HL10246) is denatured by boiling and submitted to 30 cycles of PCR using 1 nmol of both primers in a final volume of 100 µl. The timing is 1.5 minutes at 92°C, 2 minutes at 50°C, and 2 minutes at 74°C. DNA from 5µl of sample is separated on a 1% agarose gel and stained with ethidium bromide.

[0040] Figure 3 shows the results of the PCR amplification. Two DNA products, with sizes 251 bp (SEQ ID NO: 4) and 420 bp, are visible when a sample of the reaction is electrophoresed on a 1.0% agarose gel and stained with ethidium bromide. The sizes of the two products are within the range expected for type III RTK genes (products derived from the FGF and PDGF receptor genes, which have the smallest and largest known kinase insert domains, would be 230 and 510 bp, respectively (20, 21).

[0041] The DNA from four contiguous lanes with sizes ranging from 200 to 600 bp is electrophoresed onto DEAE filter paper, eluted from the paper with salt, and ethanol precipitated. The samples are incubated with 5 units of EcoRI and Sall. The restriction enzymes digest the 420 bp DNA segment to a 363 bp DNA segment (SEQ ID NO: 3), due to the presence of an EcoRI site within the 420 bp DNA segment (nucleotide 2749, SEQ ID NO: 7). The restriction enzyme digested PCR products are then subcloned into the plasmid vector pBlueScribe(+)TM. The recombinant clones are analyzed by sequencing using the dideoxy-method (22) using a United States Biochemical (Cleveland, Ohio) Sequenase Version 2.0 sequencing kit. Figure 4 shows the DNA sequences for the 251 bp PCR product and the 363 bp DNA segment derived from the 420 bp PCR product.

[0042] Computer assisted comparison of the DNA sequence for the 363 bp segment of the 420 bp PCR product to databases of known DNA sequences reveals that the sequence is novel, because it shares strong sequence identity with the flanking catalytic domain of known type III RTK genes, but not their kinase insert domains. Figure 5A compares the DNA sequence for the 363 DNA segment with that for the PDGF receptor gene (SEQ ID No: 5). Similar results are obtained using other type III RTK genes.

[0043] DNA sequencing of the 251 bp PCR product reveals a novel sequence containing both primers used for the amplification, but the sequence shows little homology to known tyrosine kinases. This is depicted in Figure 5B, which compares the DNA sequence for the 251 bp DNA segment with that for the FGF receptor (SEQ ID NO: 6). For this reason, further analysis of Product 1 is not pursued.

[0044] The protocols used during the PCR do not allow for amplification of the kinase insert domains of known receptor tyrosine kinases in the endothelial cell library used because of the low copy number of the message present in the library. There have been many studies on the effect of FGF on endothelial cell function (23,24) although there is evidence that the expression of the FGF receptor is developmentally regulated (7) and it is likely that the library used contains little or no cDNA for the FGF receptor.

[0045] An oligonucleotide probe, designed from the DNA sequence of the 363 bp segment, is synthesized (using an ABI 380 DNA Synthesizer) in order to screen the human endothelial cell cDNA library (HL10246) for the isolation of more full length clones containing the 363 bp DNA segment. The probe sequence is chosen from the region of the 363 bp DNA segment which shares little sequence homology with known RTK.

[0046] The screening of the endothelial cell cDNA library is conducted as follows: Lambda gt11 phage, 10⁶, are adsorbed to E. coli LE392 for 15 minutes at 37°C prior to plating onto agar plates at a density of 5 x 10⁵ phage per plate. After allowing the phage plaques to develop at 37°C, plaque lifts are made using nitrocellulose filters, denatured in 0.4 N NaCl for 1 minute, and neutralized in 0.5 M Tris.HCl, pH 7.3, plus 1.5 M NaCl. The filters are washed with 2 x standard saline citrate (SSC) and then baked for 1.5 hour in a vacuum oven at 80°C. The filters are probed with an

[³²P] ATP end labeled synthetic oligonucleotide, 5'-TTTCCCTTGACGGAATCGTGCCCCTTTGGT-3', which is the reverse complement of a DNA sequence contained in the PCR amplified product (Fig. 3). Hybridization is performed at 50°C in 5 x SSPE (167 mM NaCl, 10 mM sodium phosphate, pH 7.4, 1 mM EDTA), 2.5 x Denhardts, 0.5% sodium dodecyl sulfate (SDS), 100 μg/ml salmon sperm DNA. The filters are washed twice, 20 minutes per wash, with 2 x SSC plus 0.1% SDS at room temperature, followed by washing twice at 50°C with 0.1 X SSC plus 0.1% SDS; 20 minutes per wash. Positive clones are identified, picked and plaque purified.

[0047] Forty-five positive clones are obtained. Three of these positive clones are plaque purified and their phage DNA isolated. Digestion of the DNA with <u>EcoRI</u> and electrophoresis in agarose indicates that one clone, designated BTIII081.8, contains the largest insert, and subsequent analysis indicates that the DNA insert of this clone overlaps that of the inserts contained in other two purified clones (designated BTIII079.11 and BTIII079.47A).

[0048] Digestion of the purified phage DNA of the clone designated BTIII081.8 with EcoRI results in DNA segments of 250 bp, 600 bp, and 1000 bp. Each of these three products is subcloned into the plasmid vector pUC118 and sequenced (Figure 6 shows the strategy used for sequencing). The orientation of the three fragments is determined by subcloning from the insert a BgIII/BgIII fragment into pUC118 and sequencing across the EcoRI junctions using a synthetic oligonucleotide to prime the sequencing reaction.

[0049] A restriction map is determined for each fragment (Figure 6). Various restriction site pieces are removed from the plasmids and recloned into pUC118 so that sequencing the resulting plasmids with the universal primer allows for sequencing most of the entire original fragments in both directions. Three oligonucleotide primers are required to sequence the entire cDNA in both directions. For the purposes of this application, this insert contains nucleotides numbered 1510-3406 (SEQ ID NO. 7).

[0050] A [32P]CTP-labelled, nick-translated <u>EcoRI-BamHI</u> DNA segment derived from clone BTIII081.8 (nucleotides 1510-2417 of SEQ ID NO. 7) is used as a probe to rescreen the original endothelial cell cDNA library for more 5' full length DNA segments of the gene from which the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8.

[0051] A synthetic oligonucleotide probe is designed with 29 nucleotides corresponding to part of the DNA sequence of the insert portion of the clone BTIII081.8 (nucleotides 3297-3325 of SEQ ID NO. 7) in order to rescreen the original endothelial cell cDNA library for more full 3' length DNA segments of the gene from which the insert portion of BTIII081.8 is derived. The protocols used to isolate the overlapping clones are identical to that used to isolate BTIII081.8. Several positive clones for each of the 5' and 3' ends are identified and plaque purified.

[0052] One of the clones is designated BTIII200.2. The DNA from BTIII200.2 contains a 3.4 kb insert as determined by EcoRI digestion of the isolated phage DNA. EcoRI digestion of BTIII200.2 results in three DNA fragments. One of thise fragments (2.5 kb) is cloned into pUC119 and is designated BTIV006. The clone BTIV006 contains nucleotides numbered 7-2482. As described below, BTIV006 plus nucleotides 1-6 is designated BTIV169. DNA sequencing of the 2.5 kb DNA insert (BTIV169) indicates that it overlaps over one thousand nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6) at the 5' end.

35

45

[0053] A second clone isolated from the cDNA library is designated BTIII129.5. The DNA from BTIII129.5 contains a 2.2 kb insert as determined by EcoRI digestion of the isolated phage DNA. DNA sequencing of the 2.2 kb DNA insert indicates that it overlaps over five hundred nucleotides of the DNA sequence of the insert portion of the clone BTIII081.8 (Figure 6). The clone BTIII129.5 contains nucleotides numbered 2848-4236 (SEQ ID NO. 7). The DNA sequence for BTIII129.5 contains the stop codon TAA, defining the position of the 3' end of an open reading frame for the novel gene. Except for the first six nucleotides of the gene which are discussed below, these three clones define a gene encoding a growth factor receptor. These three clones define a 4,062 nucleotide sequence of the open reading frame of the gene extending to the 3' end, followed by a 168 nucleotide non-coding region (SEQ ID NO: 7). A sample of a lambda gt11 phage harboring the clone BTIIZ081.8 has been deposited with the American Type Culture Collection, 12301 Parklawn Drive, Rockville, Maryland 20852, U.S.A., and has been assigned ATCC accession number 40,931. A sample of a lambda gt11 phage harboring the clone BTIII129.5 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 40,975. For reasons discussed below, a sample of the clone BTIV006 was not deposited.

[0054] The aforementioned DNA segments (BTIII081.8, BTIII129.5, and BTIII200.2 (or BTIV006) encode 4062 nucleotides of the coding portion of a novel gene. The cDNA clones are incomplete in that a transcription initiation coding for methionine is missing. After the isolation of these clones, Matthews et al. (25) reported the cloning of a gene homologue of KDR in mouse, which was referred to as Flk-1. Analysis of the nucleic acid and amino acid sequence of Flk-1 indicated that the addition of six nucleotides to the 5' end of the isolated KDR clones would provide for a complete coding region.

[0055] To achieve this, an <u>EcoRI-BamHI</u> restriction fragment of BTIV200.2 is cloned into the plasmid pBlueScript KSTM (Strategene, La Jolla, CA). The 5' end of the inserted DNA is blunt ended with Kienow polymerase and Mung Bean nuclease. Next, the synthetic oligonucleotide TCGACGCGCG ATG GAG (SEQ ID NO. 11) is cloned into this vector. The oligonucleotide contains the sequence ATG GAG in frame with the downstream DNA insert. These nucle-

otides (ATG GAG) encode the amino acids methionine and glutamic acid, the first two amino acids encoded by the KDR gene. The resulting plasmid vector is designated BTIV140. This plasmid is purified on a CsCl gradient.

[0056] The purified plasmid is designated BTIV169. The insert of BTIV169 contains nucleotides 1-2400 (SEQ ID NO. 7) of the KDR gene. A sample of the plasmid pBlueScript KSTM which contains the clone BTIV169 has been deposited with the American Type Culture Collection and has been assigned ATCC accession number 75200.

[0057] Thus, together the clones BTIII081.8, BTIII129.5 and BTIV169 comprise the entire open reading frame of 4,068 nucleotides for the novel <u>KDR</u> gene. As will be discussed below, the <u>KDR</u> gene expresses the novel <u>KDR</u> receptor which binds specifically to the growth factor VEGF.

[0058] DNA sequencing of BTIII081.8, BTIII129.5 and BTIV169 (SEQ ID NO. 7) shows that the newly isolated gene is similar to, but distinct from, previously identified type III RTK. The predicted amino acid sequence (SEQ ID NO. 7) contains several structural features which demonstrate that the novel gene is a type III RTK. These structural features are summarized as follows:

1) A hydropathy plot of the predicted amino acid sequence indicates a single membrane spanning region (see Figure 8). This is characteristic of a type III RTK (Figure 7).

15

20

25

- 2) The putative amino-terminal 762 amino acid portion of the receptor has structural features of extracellular receptor ligand binding domains (1), including regularly spaced cysteines and 18 potential N-linked glycosylation sites (Figure 7).
- 3) The predicted amino acid sequence of the carboxy-terminal 530 amino acid portion contains an ATP-binding site at lysine 868, 22 amino acids downstream from the consensus ATP recognition sequence Gly-X-Gly-X-X-Gly (26) (Figure 8).
- 4) Within the kinase domain there is a 55-60% identical match in amino acid sequence to three other type III receptor tyrosine kinases: ckit proto-oncogene (SEQ ID NO: 8), CSF-1 (SEQ ID NO: 9) and PDGF (SEQ ID NO: 10) (Figure 9).
- 5) The predicted kinase domain contains a kinase insert domain of approximately 71 amino acids. As indicated in Figure 9, this portion of the amino acid sequence shares little sequence homology with other type III RTK.

[0059] The endothelial cell library can be further screened to isolate the 5' untranslated region and genomic clones can be generated so as to isolate the promoter region for the KDR gene.

[0060] In addition to the DNA sequence described for the <u>KDR</u> gene (SEQ ID NO. 7), the present invention further comprises DNA sequences which, by virtue of the redundancy of the genetic code, are biologically equivalent to the sequences which encode for the receptor, that is, these other DNA sequences are characterized by nucleotide sequences which differ from those set forth herein, but which encode a receptor having the same amino acid sequences as those encoded by the DNA sequences set forth herein.

[0061] In particular, the invention contemplates those DNA sequences according to claim 1 which are sufficiently duplicative of the sequence of SEQ ID NO. 7 so as to permit hybridization therewith under standard high stringency Southern hybridization conditions, such as those described in Sambrook et al. (27), as well as the biologically active proteins produced thereby.

[0062] This invention also comprises DNA sequences according to claim 1 which encode amino acid sequences which differ from those of the novel receptor, but which are the biological equivalent to those described for the receptor. Such amino acid sequences may be said to be biologically equivalent to those of the receptor if their sequences differ only by minor deletions from or conservative substitutions to the receptor sequence, such that the tertiary configurations of the sequences are essentially unchanged from those of the receptor.

[0063] For example, a codon for the amino acid alanine, a hydrophobic amino acid, may be substituted by a codon encoding another less hydrophobic residue, such as glycine, or a more hydrophobic residue, such as valine, leucine, or isoleucine. Similarly, changes which result in substitution of one negatively charged residue for another, such as aspartic acid for glutamic acid, or one positively charged residue for another, such as lysine for arginine, as well as changes based on similarities of residues in their hydropathic index, can also be expected to produce a biologically equivalent product. Nucleotide changes which result in alteration of the N-terminal or C-terminal portions of the protein molecule would also not be expected to alter the activity of the protein. It may also be desirable to eliminate one or more of the cysteines present in the sequence, as the presence of cysteines may result in the undesirable formation of multimers when the protein is produced recombinantly, thereby complicating the purification and crystallization processes. Each of the proposed modifications is well within the routine skill in the art, as is determination of retention of biological activity of the encoded products. Therefore, where the terms "KDR gene" or "KDR-protein" are used in either the specification or the claims, each will be understood to encompass all such modifications and variations which result in the production of a biologically equivalent protein.

[0064] To determine the size of the mRNA transcribed from the kdp gene, Northern blot hybridization experiments are carried out using an <u>EcoRI/BamHI</u> DNA segment (nucleotides 1510-2417, SEQ ID NO. 7) as a hybridization probe.

The DNA used for the probe does not contain any portion of the putative kinase domain, and shares little sequence homology to other tyrosine kinases. The Northern blot analysis (Figure 10) shows that a 7 kb band is visualized in cytoplasmic poly(A)+ RNA of ABAE bovine aortic endothelial cells. This transcript differs in size from previously reported transcripts for known type III RTK (7,18).

[0065] The isolated cDNA is significant for several reasons. The cDNA encodes a novel type III receptor tyrosine kinase. The homology between the sequence of this cDNA and that of other receptors, as well as structural properties implied by the predicted amino acid sequence confirm the relationship. Receptors for growth factors should have tremendous utility in drug development as they face the outside of the cell and thus are among the best targets for drugs. In addition, the cellular levels of some receptors, in particular the neu proto-oncogene, increase during some cancers. This has been taken advantage of in designing diagnostic tests for these cancers.

[0066] Southern analysis demonstrates that the kdp gene is present in mouse as well as human DNA. Mouse and human (Hela cell) DNA, 15 µg of each, are digested with 10 units of EcoRI and electrophoresed on a 0.7% agarose gel. The DNA is transferred onto nitrocellulose. The filter is hybridized to a [32P]CTP-labelled cDNA probe made by nick translating an EcoRI/BamHI fragment from the 5' end of the kdp cDNA (nucleotides 1510-2417, SEQ ID NO. 7). Hybridization is conducted at 30°C in 5 X SSPE, 50% formamide, 0.1% SDS, plus 150 µg/ml salmon sperm DNA. The DNA probe hybridizes to Southern blots containing EcoRI digested DNA. After 48 hours, the filter is washed at room temperature in 2 X SSC plus 0.1% SDS for 20 minutes, followed by two 20 minute washes at 40°C with 0.1 X SSC plus 0.1% SDS. Autoradiography is then performed for 48 hours. As shown in Figure 11, radioactively labelled DNA is present in both human and mouse samples. This indicates that the kdp gene is present in both species.

[0067] An experiment is conducted to ascertain the genetic locus of kdp on human chromosomes. Thirty-eight cell hybrids from 18 unrelated human cell lines and four mouse cell lines are examined (19). A DNA probe hybridizes to Southern blots which contain <u>EcoRl</u> digested DNA from the human-mouse hybrids (using the procedure and DNA probe for human and mouse tissue described in relation to Figure 11). Table I sets forth the results of the segregation of kdp with human chromosomes in <u>EcoRl</u> digested human-mouse somatic cell hybrid DNA:

Table I

25

30

35

40

45

50

55

Chromosome	Concordant # of	Hybrids (+/+) (-/-)	Discordant # of I	Hybrids (+/-) (-/+)	% Discordancy
1	4	19	8	4	34
2	8	18	5	6	30
3	11	12	. 3	9	34
4	14	24	0	0	0
5	7	14	7	10	45
6	7	19	7	5	32
7	11	14	3	8	31
8	8	11	· 6	13	50
9	3	20	10	4	38
10	12	9	2	14	43
11	9	13	4	11	41
12	9	10	5	14	50
13	7	18	7	6	34
14	11	8	3	16	50
15	9	15	5	8	35
16	7	19	7	5	32
17	12	7	2	16	49
18	11	14	3	10	34
19	7	18	7	6	34
20	9	10	5	14	50
21	11	9	3	15	47
22	3	16	10	7	47
x	8	10	3	8	38

[0068] The scoring is determined by the presence(+) or absence (-) of human bands in the hybrids on Southern blots prepared in a similar to those shown in Figure 11. The scoring is compared to the presence or absence of human chromosomes in each hybrid. A 0% discordancy indicates a matched segregation of the DNA probe with a chromosome.

Three fragments, approximately 6.5 kb, 3.1 kb, and 0.7 kb in size are detected in digests of human DNA (Figure 11), and in all hybrids which had retained human chromosome 4 (Table I). All other chromosomes are excluded in at least 11 discordant hybrids (Table I). The results of Figure 11 and Table I demonstrate that the genetic locus of kdp is on human chromosome 4.

[0069] It is noteworthy that both the <u>ckit</u> (3) and the type A PDGF (28) receptor genes map to human chromosome 4. The finding that the genetic locus of kdp is on human chromosome 4 provides further evidence that the novel receptor of this invention is a type III receptor tyrosine kinase.

[0070] The next step after identifying the entire coding portion of the kdp gene is to express the receptor protein encoded by that gene. The receptor protein is then utilized so as to identify the growth factor which binds specifically to the receptor.

[0071] The receptor protein is expressed using established recombinant DNA methods. Suitable host organisms include bacteria, viruses, yeast, insect or mammalian cell lines, as well as other conventional organisms. For example, CMT-3 monkey kidney cells are transected with a vector containing the complete coding region of the KDR gene.

[0072] The complete coding portion of the KDR gene is assembled by sequentially cloning into pUC119 three DNA fragments derived from BTIII081.8, BTIII129.5, and BTIV169. First, a Small-EcoRI fragment of clone BTIII129.5 (nucleotides 3152-4236, SEQ ID NO: 7) is blunt ended with Klenow polymerase and introduced into a Small site in pUC119. Next, a BamHI-Small fragment of clone BTIII081.8 (nucleotides 2418-3151, SEQ ID NO: 7) is introduced at a BamHI-Small site. Finally, a Sall-BamHI fragment of clone BTIV169 (nucleotides 1-2417, SEQ ID NO: 7) is introduced at a Sall-BamHI site. Part of the cloning site of pUC119 is contained in the Sall-BamHI fragment, 5' to the KDR gene. In order to clone the complete coding portion into an expression vector, the assembled DNA (in pUC119) is digested with Sall and Asp118 and recloned into the eukaryotic expression vector pcDNAltkpASP.

[0073] This vector is a modification of the vector pcDNAI (Invitrogen; San Diego, CA). Specifically, the ampicillin resistance gene is cloned from pBR322 into pcDNAI. A small SV40 T splice and the SV40 polyadenylation signal are then removed and are replaced with a Herpes Simplex Virus-1 polyadenylation signal. Finally, a cytomegalovirus intermediate early splice is inserted 5' to the cloning site to yield pcDNAltkpASP.

[0074] Transfection of CMT-3 cells is done using DEAE-dextran. Forty-eight hours after transfection, expression of the novel receptor is monitored using Western blot analysis as follows.

[0075] An antibody is used to assay the expressed receptor protein. The predicted amino acid sequence of the receptor is used to generate peptide-derived antibodies to the receptor by conventional techniques. The presence of the novel receptor protein is confirmed by Western blot hybridization.

[0076] Specifically, a synthetic peptide with 13 residues is synthesized based on the 12 residues corresponding to amino acids 986-997 of the putative amino acid sequence of the <u>KDR</u> protein (SEQ ID NO: 7), with a cysteine residue linked to the lysine (amino acid 997). The cysteine facilitates coupling of the peptide to a macromolecule which functions as a carrier for the peptide. For example, the peptide is coupled to keyhole limpet haemocyanin (KLH) using m-male-imidobenzoyl-N-hydroxysuccinimide ester. Other conventional carriers may be used such as human and bovine serum albumins, myoglobins, β-galactosidase, penicillinase and bacterial toxoids, as well as synthetic molecules such as multi-poly-DL-alanyl-poly-L-lysine and poly-L-lysine.

35

40

45

[0077] Rabbits are immunized with the peptide-KLH conjugate to raise polyclonal antibodies. After different periods of time, serum is collected from the rabbits. The IgG fraction of the serum is then purified using a protein A Sepharose column (Pharmacia LKB, Uppsala, Sweden) to obtain the antibody which is designated anti-KDR.PS23.

[0078] A sample of the expressed <u>KDR</u> protein is subjected to SDS-PAGE using a 7% acrylamide gel under standard conditions. The protein band is then transferred onto nitrocellulose paper for Western blot analysis and the anti-KDR. PS23 antibody is added at a dilution of 1:1,000 to allow the antibody to react with the protein present. A second antibody, goat anti-rabbit antibody to rabbit IgG, which binds to anti-KDR.PS23, is then added. The detection of proteins which react with the antibodies is performed by autoradiography of bands using an ECL system (Amersham, Chicago, IL). The results are depicted in Figure 12.

[0079] Figure 12 shows that a 190 kD protein is present in the cells transfected with the vector containing the <u>KDR</u> gene, but is absent in cells transfected with vector alone. The size of this protein is consistent with it being encoded by the <u>KDR</u> gene, in that the predicted amino acid sequence for the unglycosylated <u>KDR</u> protein is 156 kD, and that sequence contains 18 putative extracellular glycosylation sites which would account for the balance of the size seen in the 190 kD band.

[0080] The expressed receptor is then used to identify the growth factor which interacts with the receptor. In order to test the hypothesis that the <u>KDR</u> protein is a receptor for VEGF, radioligand binding studies are performed. VEGF (provided by D. Gospodarowicz) is radiolabelled with ¹²⁵I. Cells are transfected with either the vector pcDNAltkpASP alone (bars 1 and 2 of Figure 13) or with the vector containing the <u>KDR</u> gene (bars 3 and 4). Forty-eight hours later, the transfected cell samples are washed with PBS and then incubated for 90 minutes with serum-free media containing 50 pM [¹²⁵I]VEGF (specific activity equal to 4,000 cpm per fmol). Excess nonradioactive VEGF, 5 nM, is added to some samples (bars 2 and 4) to define specific binding sites. The samples are washed with ice cold PBS, and the cells are

transferred to gamma-counting tubes using a detergent, 0.1% lubrol.

[0081] The results of the radioligand binding studies are depicted in Figure 13. Figure 13 shows that CMT-3 cells transfected with vector containing the <u>KDR</u> gene contain specific binding sites for [1251]VEGF (compare bars 3 and 4), while cells transfected with vector alone do not (compare bars 1 and 2).

[0082] Further evidence that the KDR gene encodes a receptor for VEGF is demonstrated by affinity cross-linking studies (Figure 14). Figure 14 depicts the results of affinity cross-linking of [125]VEGF to CMT-3 cells which express the KDR protein. CMT-3 cells are transfected with either the pcDNAltkpASP vector alone (lane 1 of Figure 14) or with the vector containing the KDR gene (lane 2). Forty-eight hours later, the cells are washed in PBS, and serum free media containing 200 pM [125]VEGF is added. After 90 minutes at room temperature, an affinity cross-linker disuccinimidyl suberate (Pierce Biochemicals, Rockford, IL), 0.5mM, is added for 15 minutes. The samples are then subjected to SDS-PAGE autoradiography.

[0083] Three protein bands are seen in SDS-PAGE autoradiograms from samples of CMT-3 cells transfected with the KDR gene and cross-linked to [125]VEGF (lane 1). The size of band 1 (235 kD) is consistent with it being the 190 kD protein seen by Western blot analysis (Figure 12), because a 45 kD [125] VEGF dimer plus 190 kD would migrate in a manner identical to band 1. The origin of band 2 is not clear, but may represent an altered glycosylation form of band 1. Band 3 (22.5 kD) is most likely VEGF itself, and can be seen faintly in cells transfected with vector alone (lane 2). [0084] The novel KDR gene of this invention is significant for several reasons. Studies of the cellular mechanisms by which receptors function in signal transduction have led in the past to a better understanding of how cells grow in both normal and diseased states. Receptor tyrosine kinases, in particular, have received a great deal of attention because of the observation that a number of RTK are the cellular counterparts for viral oncogenes, implying a direct correlation between changes in the expression of RTK and cancer. In view of this, it is likely that pharmaceuticals targeted at RTK will inhibit the changes in cell growth associated with cancer. In additon, it is likely that monitoring the levels of expression of RTK will prove valuable in diagnosing the onset of cancer.

[0085] The described cDNA is isolated from a human endothelial cell library. Endothelial cells participate in angiogenesis, the formation of new blood capillaries. Previous work directed towards identifying the growth factors which regulate angiogenesis have primarily focused upon FGF (13), although recent evidence has indicated that other growth factors may be involved as well (12,15,29). This evidence consists of the observations that: 1) FGF does not contain a signal sequence (24) and thus may not be secreted from cells in a manner consistent with the tight regulation of angiogenesis, and 2) endothelial cells synthesize FGF and yet are normally resting (15). Our discovery, then, of a novel growth factor receptor may ultimately clarify these inconsistencies and lead to a better understanding of endothelial cell function.

[0086] The teachings of this invention can be readily used by those skilled the art for the purpose of testing pharmaceuticals targeted at the <u>KDR</u> protein. Two examples of approaches which can be used for this purpose are now given. [0087] First, the methods described in this invention for studying the interaction of VEGF with <u>KDR</u> protein can be used to test for pharmaceuticals which will antagonize that interaction. For these studies, cells expressing the <u>KDR</u> protein are incubated with [1251]VEGF, together with a candidate pharmaceutical. Inhibition of radioligand binding is tested for; significant inhibition indicates the candidate is an antagonist. Permanent expression of the <u>KDR</u> protein in a cell type such as NIH3T3 cells would make these studies less laborious. This can be easily achieved by those skilled in the art using the described methods.

[0088] Second, using the teachings of this invention, those skilled in the art can study structural properties of the KDR protein involved in receptor function. This structural information can then be used to more rationally design pharmaceuticals which inhibit that function. Mutagenesis of the KDR gene by well established protocols is one approach, crystallization of the receptor binding site is another.

45 Bibliography

35

50

55

[0089]

- 1. Yarden Y., and A. Ullrich, Ann. Rev. Biochem., 57, 433-478 (1988).
- 2. Bargmann, C., et al., Nature, 319, 226-230 (1986).
- 3. Yarden, Y., et al., EMBO J., 6, 3341-3351 (1987).
- 4. Coussens, L., et al., Nature, 320, 277-280 (1986).
- 5. Slamon, D., et al., Science, 244, 707-712 (1989).
- 6. Ullrich, A. and Schlessinger, J., Cell, 61, 203-212 (1990).
- 7. Ruta, M., et al., Oncogene, 3, 9-15 (1988).
 - 8. Strathmann, M., et al., Proc. Natl. Acad. Sci., 86, 8698-8702 (1989).
 - 9. Streuli, M., et al., Proc. Natl. Acad. Sci., 86, 8698-8702 (1989).
 - 10. Wilkes, A.F., Proc. Natl. Acad. Sci., 86, 1603-1607 (1989).

11. Folkman, J., and Klagsbrun, M., Science, 235, 442-445 (1987). 12. Ishikawa, F., et al., Nature, 338, 557-562 (1989). 13. Baird, A., and Bohlen, P., in Peptide Growth Factors and Their Receptors, pages 369-418 (Spron, M.B., and Roberts, A.B., eds. 1990). 5 14. Senger, D.R., et al., Science, 219, 983-985 (1983). 15. Gospodarowicz, D., et al., Proc. Natl, Acad. Sci., 86, 7311-7315 (1989). 16. Leung, D.W., et al., Science, 246, 1306-1309 (1989). 17. Maglione, D., et al., Proc. Natl. Acad. Sci., 88, 9267-9271 (1991). 18. Gronwald, R., et al., Proc. Natl. Acad. Sci., 85, 3435-3439 (1988). 10 19. Shows, T., et al., Somat. Del. Mol. Gen., 10, 315-318 (1984). 20. Rainer, G., et al., Proc. Natl. Acad. Sci., 85, 3435-3439 (1988). 21. Lee, P. L., et al., Science, 245, 57-60 (1989). 22. Sanger, F., et al., Proc. Natl. Acad. Sci., 74, 5463-5467 (1977). 23. Folkman, J., Cancer Res., 46, 467-473 (1986). 15 24. Burgess, W. and Maciag, T., Ann. Rev. Biochem., 58, 575-606 (1989). 25. Matthews, W., et al., Proc. Natl. Acad. Sci., 88, 9026-9030 (1991). 26. Hannink, M. and Donoghue, D., Proc. Natl. Acad. Sci., 82, 7894-7898 (1985). 27. Sambrook, J., et al., Molecule Cloning: A Laboratory Manual, 2nd ed., Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. (1989). 20 28. Matsui, T., et al., Science. 243, 800-804 (1989). 29. Conn, G., et al., Proc. Natl. Acad. Sci., 87, 2628-2632 (1990). SEQUENCE LISTING 25 [0090] (1) GENERAL INFORMATION: (i) APPLICANT: Terman, Bruce I 30 Carrion, Miguel E (ii) TITLE OF INVENTION: Identification of a Novel Human Growth Factor Receptor (iii) NUMBER OF SEQUENCES: 14 35 (iv) CORRESPONDENCE ADDRESS: (A) ADDRESSEE: Alan M. Gordon American Cyanamid Company 40 (B) STREET: 1937 West Main Street, P.O. Box 60 (C) CITY: Stamford 45 (D) STATE: Connecticut (E) COUNTRY: USA (F) ZIP: 06904 50 (v) COMPUTER READABLE FORM: (A) MEDIUM TYPE: Floppy disk 55 (B) COMPUTER: IBM PC AT (C) OPERATING SYSTEM: MS-DOS

	(D) SOFTWARE: ASCII from IBM DW 4	
	(vi) CURRENT APPLICATION DATA:	
5	(A) APPLICATION NUMBER:	
	(B) FILING DATE:	
	(C) CLASSIFICATION:	
	(vii) PRIOR APPLICATION DATA:	
10		
	(A) APPLICATION NUMBER: 07/657,236	
	(B) FILING DATE: February 22, 1991	
	(viii) ATTORNEY/AGENT INFORMATION:	
15	(A) NAME: Gordon, Alan M.	
	(B) REGISTRATION NUMBER: 30,637	
	(C) REFERENCE/DOCKET NUMBER: 31,298-01	
20	(ix) TELECOMMUNICATION INFORMATION:	
	(A) TELEPHONE: 203 321 2719	
	(A) TELEFTIONE: 203 321 2719 (B) TELEFAX: 203 321 2971	
	(C) TELEX:	
25	• ,	
	(2) INFORMATION FOR SEQ ID NO: 1:	
	(i) SEQUENCE CHARACTERISTICS:	
30	(A) LENGTH: 27 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESSS: single	
	(D) TOPOLOGY: linear	
35	(ii) MOLECULE TYPE: DNA (genomic)	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 1:	
	GTCGAC AAY CTG TTG GGR GCC TGC AAC 27	
10	GTCGAC AAY CTG TTG GGR GCC TGC AAC 27	
	(2) INFORMATION FOR SEQ ID NO: 2:	
	•	
15	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 35 base pairs	
	(B) TYPE: nucleic acid	
	(C) STRANDEDNESSS: single	
	(D) TOPOLOGY: linear	
50	(ii) MOLECULE TYPE: DNA (manamia)	
	(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 2:	
	(A) SEQUENCE DESCRIPTION. SEQ ID NO. 2.	
55		
	GAATTC AG CAC KTT NCT RGC YGC CAG GTC TGY GTC	35

(2) INFORMATION FOR SEQ ID NO: 3:

	(i) SEQ	UENCE	CHAR	ACTER	ISTICS	:							
5	(B) (C)	LENGT TYPE: STRAN TOPOL	nucleic IDEDNI	acid ESSS: s									
10	(ii) MOL (xi) SEC						D: 3:						
15	GAA	TTC	TGC	AAA	TTT	GGA	AAC	CTG	TCC	ACT	TAC	CTG	36
	AGG	ACG	AAG	AGA	AAT	GAA	TTT	GTC	ccc	TAC	AAG	ACC	72
20	AAA	GGG	GCA	CGA	TTC	CGT	CAA	GGG	AAA	GAC	TAC	GTT	108
25	GGA	GCA	ATC	CCT	GTG	GAT	CTG	AAA	CGG	CGC	TTG	GAC	144
	ACG	CAT	CAC	CAG	TAG	CCA	GAG	CTC	AGC	CAG	CTC	TGG	180
30	ATT	TGT	GGA	GGA	GAA	GTC	ССТ	CAG	TGA	TGT	AGA	AGA	216
	AGA	GGA	AGC	TCC	TGA	AGA	TCT	GTA	TAA	GGA	CTT	CCT	252
35	GAC	CTT	GGA	GCA	TCT	CAT	CTG	TTA	CAG	TTT	CCA	AGT	288
40	GGC	TAA	GGG	CAT	GGA	GTT	CTT	GGC	ATC	GCG	AAA	GTG	324
	TAT	CCA	CAG	AGA	CCT	GGC	AGC	CAG	GAA	CGT	GCT	GAA	360
45	TT	C											363
	(2) INFORM	IATION	FOR S	EQ ID N	NO: 4 :								
50	(i) SEQ	UENCE	CHAR.	ACTER	ISTICS	:							
55	(B) (C)	LENGT TYPE: STRAN	nucleic IDEDNI	acid ESSS: s									
,,,	(D)	TOPOL	.UGY: II	mear									

(ii) MOLECULE TYPE: DNA (genomic) (xi) SEQUENCE DESCRIPTION: SEQ ID NO: 4:

	GTC	GAC	AAT	CTG	TTG	GGG	GCC	TGC	ACC	ATC	CCA	ACA	36
5	TCC	TGC	TGC	TCT	ACA	ACT	ATT	TTT	ATG	ACC	GGA	GGA	72
10	GGA	TCT	ACT	TGA	TTC	TAG	AGT	ATG	ccc	ccc	GCG	GAG	108
	CTC	TAC	AAG	GAG	CTG	CAG	AAG	AGC	TGC	ACA	TTT	GAC	144
15	GAG	CAG	CGA	ACA	GCC	ACG	ATC	ATG	GAG	GAG	TTG	GCA	180
	GAT	GCT	CTA	ATG	TAC	TGC	CGT	GGG	AAG	AAG	GTG	ATT	216
20	CAC	AGA	GAC	CTG	GCA	GCC	AGC	AAC	GTG	CTG	AAT	TC	251
25	(2) INFORM	MATION	FOR SI	EQ ID N	IO: 5:								
	(i) SEQ	UENCE	CHAR	ACTER	ISTICS	:							
30	(B) (C)	LENGT TYPE: I STRAN TOPOL	nucleic IDEDNE	acid ESSS: s									
35		NAME/I	KEY: P[OGF Re	ceptor	DNA							
40	(x) PUB	LOCAT			•								
	(B)	AUTHO JOURN VOLUM	IAL: Pro										
45		PAGES DATE:		3439									
	(xi) SEC	QUENCE	E DESC	RIPTIC	N: SEC	O ID NC): 5:						
50))	ia me	o cc	a ac	m ee							_	
	AAC CT	G TG	G GG	G CC	ı GC	A CC	A AA	G GA	G GA	C CA	T CT	Ά	36

	TAT	CAT	CTA	TAT	CAT	CAC	TGA	L GTA	L CTG	CCG	CT	A CGG	72
5	AGA	CCT	GGT	GGA	CTA	CCT	GCA	CCG	CAA	CAA	ACA	CAC	108.
	CTT	CCT	GCA	GCA	CCA	CTC	CGA	CAA	. GCG	CCG	ccc	GCC	144
10	CAG	CGC	GGA	GCT	CTA	CAG	CAA	TGC	TCT	GCC	CGT	TGG	180
15	GCT	ccc	CCT	GCC	CAG	CCA	TGT	GTC	CTT	GAC	CGG	GGG	216
	AGA	GCG	ACG	GTG	GCT	ACA	TGG	ACA	TGA	GCA	AGG	ACG	252
20	AGT	CGG	TGG	ACT	ATG	TGC	CCA	TGC	TGG	ACA	TGA	AAG	288
25	GAG	ACG	TCA	AAT	AGC	AGA	CAT	CGA	GTC	CTC	CAA	CTA	324
	CAT	GGC	ccc	TTA	CGA	TAA	CTA	CGT	TCC	CTC	TGC	ccc	360
30	TGA	GAG	GAC	CTG	CCG	AGC	AAC	TTT	GAT	CAA	CGA	GTC	396
	TCC	AGT	GCT	AAG	CTA	CAT	GGA	CCT	CGT	GGG	CTT	CAG	432
35	CTA	CCA	GGT	GGC	CAA	TGG	CAT	GGA	GTT	CTG	GCC	TCC	468
10	AAG	AAC	TGC	GTC	CAC	AGA	GAC	CTG	GCG	GCT	AGG	AAC	504
	GTC	CTT											510

45

50

55

(2) INFORMATION FOR SEQ ID NO: 6:

(i) SEQUENCE CHARACTERISTICS:

- (A) LENGTH: 255 base pairs
- (B) TYPE: nucleic acid
- (C) STRANDEDNESSS: single
- (D) TOPOLOGY: linear
- (ii) MOLECULE TYPE: DNA (genonic)
- (ix) FEATURE:
 - (A) NAME/KEY: FGF Receptor DNA

	(B) LOC	CATION	l: Intern	al sequ	ence								
	(x) PU	BLIC	ATION	INFORI	OITAN	1:								
5	(B (C (D) JOU) VOU) PAG		15		ıl.								
10	(xi) SE	QUE	NCE D	ESCRIF	PTION:	SEQ IE) NO: 6	:						
15	A	AC	CTG	CTG	GGG	GCC	TGC	ACG	CAG	GAT	GGT	ccc	TTG	36
	I	'AT	GTC	ATC	GTG	GAG	TAT	GCC	TCC	AAG	GGC	AAC	CTG	72
20	c	GG	GAG	TAC	CTG	CAG	ACC	CGG	AGG	ccc	CCA	GGG	CTG	108
25	G	AA	TAC	TGC	TAT	AAC	CCC	AGC	CAC	AAC	CCA	GAG	GAG	144
	c	AG	CTC	TCC	TCC	AAG	GAC	CTG	GTG	TCC	TGC	GCC	TAC	180
30	C	AG	GAG	GCC	CGA	GGC	ATG	GAG	TAT	CTG	GCC	TCC	AAG	216
35	A	AG	TGC	ATA	CAC	CGA	GAC	CTG	GCA	GCC	AGG	AAT	GTC	252
	С	TG										,		255
40	(2) INFORI	MATI	ON FOI	R SEQ	ID NO:	7:								
	(i) SEC	QUEN	CE CH	IARACT	FERIST	ICS:								
45	(B (C	TYF) STF	PE: nucl	1236 ba leic acid DNESS Y: linea	t 5: single									
50				PE: DN ESCRIF) NO: 7:	:						

5		AGC Ser					CTG Leu	33
10	CTC Leu							69
15	CCT Pro 25						AGC Ser 35	105
. 20								
25								
30								
35								
40				,				
45								

	ATA	CAA	AAA	GAC	ATA	CTT	ACA	. ATI	' AAG	GC	r aat	r aca	143
	Ile	Gln	Lys	Asp	Ile	Leu	Thr	Ile	Lys	Ala	a Asr	n Thr	
5					40)				45	5		
	ACT	CTT	CAA	ATT	ACT	TGC	AGG	GGA	CAG	AGG	GAC	TTG	177
10	Thr	Leu	Gln	Ile	Thr	Cys	Arg	Gly	Gln	Arg	, Asp	Leu	
			50				•	55					
15	GAC	TGG	CTT	TGG	ccc	AAT	AAT	CAG	AGT	GGC	AGT	GAG	213
	Asp	Trp	Leu	Trp	Pro	Asn	Asn	Gln	Ser	Gly	Ser	Glu	
	60					65					70		
20	CAA	AGG	GTG	GAG	GTG	ACT	GAG	TGC	AGC	GAT	GGC	CTC	249
	Gln	Arg	Val	Glu	Val	Thr	Glu	Cys	Ser	qaA	Gly	Leu	
				75					80				
25	mm^	mem		202	OTT C	3.03	» mm	003		cmc	3 mc	663	225
				ACA Thr									285
	73.0	85	Lyo	****	204		90		2,70	,	110	95	
30													
				GGA									321
35	Asn	Asp	Thr	Gly		Tyr	Lys	Cys	Phe	_	Arg	Glu	
					100					105			
	ACT	GAC	TTG	GCC	TCG	GTC	ATT	TAT	GTC	TAT	GTT	CAA	357
40	Thr	Asp	Leu	Ala	Ser	Val	Ile	Tyr	Val	Tyr	Val	Gln	
			110					115					
45	GAT	TAC	AGA	TCT	CCA	TTT	TTA	GCT	TCT	GTT	AGT	GAC	393
	Asp	Tyr	Arg	Ser	Pro	Phe	Ile	Ala	Ser	Val	Ser	Asp	
	120					125					130		
50													
				GTC									429
	GIN	nlS	СŢЙ	Val 135	vaI	TYT	TTE		GIU . 140	NSN	тЛ2	ASN	
55									- 70				

	AA	A ACI	GTG	GTG	TTA	CCA	TGI	CTC	GGG	TCC	ATT	TCA	465
	Lye	Thr	. Val	Val	Ile	Pro	Cys	Lev	Gly	Ser	Ile	Ser	
5		145					150	1				155	
	AAT	CTC	AAC	GTG	TCA	CTT	TGT	GCA	AGA	TAC	CCA	GAA	501
10	Asn	Leu	Asn	Val	Ser 160		Cys	Ala	Arg	Tyr 165		Glu	
15	AAG	AGA	TTT	GTT	CCT	GAT	GGT	AAC	AGA	ATT	TCC	TGG	537
15	Lys	Arg	Phe 170	Val	Pro	Asp	Gly	Asn 175	Arg	Ile	Ser	Trp	
			1,0					1,5					
20	GAC	AGC	AAG	AAG	GGC	TTT	ACT	ATT	ccc	AGC	TAC	ATG	573
•	Asp	Ser	Lys	Lys	Gly	Phe	Thr	Ile	Pro	Ser	Tyr	Met	
	180					185					190		
25													
		AGC Ser											609
	116	Ser	ışı	195	GIY	Met	vaı	Pne	200	GIU	Ala	ràe	
30						•							
	ATT	TAA	GAT	GAA	AGT	TAC	CAG	TCT	ATT	ATG	TAC	ATA	645
,	Ile	Asn	Asp	Glu	Ser	Tyr	Gln	Ser	Ile	Met	Tyr	Ile	
35		205					210					215	
	GTT	GTC	GTT	GTA	GGG	TAT	AGG	ATT	TAT	GAT	GTG	GTT	681
40	Val	Val	Val	Val	Gly	Tyr	Arg	Ile	Tyr .	Asp	Val	Val	
					220		•			225			
45	CTG	AGT	CCG	TCT	CAT	GGA .	ATT	GAA	CTA '	TCT ·	GTT	GGA	717
	Leu	Ser	Pro	Ser :	His (Gly	Ile	Glu	Leu :	Ser '	Val	Gly	
			230					235	,				
50	GAA .	AAG (CTT (GTC :	TTA 2	AAT !	TGT 2	ACA (GCA A	AGA Z	ACT (GAA	753
	Glu												-
	240				2	245				:	250		
55													

	CTA	. AAT	GTG	GGG	AT1	GAC	TTC	AAC	TGG	GAA	TAC	CCT	789
	Leu	Asn	Val	Gly	Ile	a Asp	Phe	a Asn	Trp	Glu	Туг	Pro	
5				255	;				260	1			
	TCT	TCG	AAG	CAT	CAG	CAT	AAG	AAA	CTT	GTA	AAC	CGA	825
10.	Ser	Ser	Lys	His	Gln	His	Lys	Lys	Leu	Val	Asn	Arg	
		265					270	•				275	
				•									
15										`		AAA	861
	Asp	Leu	Lys	Thr			Gly	Ser	Glu		Lys	Lys	
					280					285			
20	արդուր	ጥጥር	AGC	ACC	ጥጥል	ልርጥ	ልሞል	GAT	GGT	СTA	ACC	CGG	897
								Asp					037
	11.0	204	290		200			295	027	,		•••	
25													
	AGT	GAC	CAA	GGA	TTG	TAC	ACC	TGT	GCA	GCA	TCC	AGT	933
	Ser	Asp	Gln	Gly	Leu	Tyr	Thr	Cys	Ala	Ala	Ser	Ser	
30	300					305					310		
										-			
								AGC					969
35	Gly	Leu	Met		Lys	Lys	Asn	Ser		Phe	Val	Arg	
				315					320				
	GTC	CAT	GAA	444	CCT	ىلىشىل	CTT	GCT	ւնսնա	CCA	ልርጥ	GGC	1005
40								Ala					1005
		325		, -			330			1		335	
45	ATG	GAA	TCT	CTG	GTG	GAA	GCC	ACG	GTG	GGG	GAG	CGT	1041
	Met	Glu	Ser	Leu	Val	Glu	Ala	Thr	Val	Gly	Glu	Arg	
					340					345			
50													
	GTC	AGA	ATC	CCT	GCG	AAG	TAC	CTT	GGT	TAC	CCA	ccc	1077
	Val	Arg	Ile	Pro	Ala	Lys	Tyr	Leu	Gly	Tyr	Pro	Pro	•
55			350	٠				355					

	CC	A GA	A AT	A AA	A TGO	G TA	I AA	A AA	T GG	A AT	A CC	C CTI	1113
	Pr	o Gli	u Ile	e Ly	s Trp	р Ту	r Lys	s As:	n Gl	y Il	e Pr	o Leu	1
5	36	D				365	5				37	0	
	GA	G TC	C AAT	CAC	ACA	AT?	KAA 1	A GC	G GG	G CA	r GT	A CTG	1149
10	Gli	ı Sei	r Ası	n Hie	Thr	: Ile	Lys	Ala	a Gly	7 His	s Vai	l Leu	
		•		375	5				380)			
15												AAT	1185
	Thi			Glu	. Val	Ser			y Asp	The	Gly	Asn	
		385	5				390					395	
20	ጥልር	י ארית	י כייי	እጥ <i>ር</i>	Cum	a C C	יי ממי		ን አጠብ	י ייי	220	GAG	1201
												Glu	1221
	-1-	****	val		400		non		, 116	405	-	GIU	
25					400					405			
	AAG	CAG	AGC	CAT	GTG	GTC	TCT	CTG	GTT	GTG	TAT	GTC	1257
	Lys	Gln	Ser	His	Val	Val	Ser	Leu	Val	Val	Tyr	Val	
30 ·			410					415					
												CCT	1293
35	Pro	Pro	Gln	Ile	Gly	Glu	Lys	Ser	Leu	lle	Ser	Pro	
,	420					425					430		
	CTIC	Cam	mcc.	ma c	C3.C	m» a	~~~	100	1 cm	~	100	07.5	
40					Gln							CTG	1329
	V 0.1	nsp	DEL	435	0111	+ y -	GIY	1111	440	GIII	1111	Ten	
									440				
45	ACA	TGT	ACG	GTC	TAT	GCC	ATT	CCT	ccc	CCG	CAT	CAC	1365
					Tyr								
		445					450					455	•
50													
	ATC	CAC	TGG	TAT	TGG	CAG	TTG	GAG	GAA	GAG	TGC	GCC	1401
	Ile	His	Trp	Tyr	Trp	Gln	Leu	Glu	Glu	Glu	Cys	Ala	
55					460					465			
JJ													

	AAC	GAG	3 CC	C AGC	: CA	A GCI	GTC	TCA	GTO	3 AC	AA A	CCA	143
•	Ası	ı Glı	ı Pro	Ser	Glr	Ala	Val	Ser	val	Th	r Ası	n Pro	
5			470)				475	;				
	TAC	CCI	r TGI	GAA	GAA	TGG	AGA	AGT	GTG	GAC	GAC	TTC	1473
10	Tyr	Pro	Сув	Glu	Glu	Trp	Arg	Ser	Val	. Gli	a Ası	Phe	
	480)				485					490)	
	63.6					3 mm	<i>-</i>	o EDM					
15												CAA	1509
	GIN	GIY	GIY		_	116	GIU	vai		_	ASI	Gln	
				495					500				
20	TTT	GCT	CTA	ATT	GAA	GGA	AAA	AAC	AAA	ACT	GTA	AGT	1545
				Ile									
		505					510		-			515	
25	٠												
	ACC	CTT	GTT	ATC	CAA	GCG	GCA	AAT	GTG	TCA	GCT	TTG	1581
	Thr	Leu	Val	Ile	Gln	Ala	Ala	Asn	Val	Ser	Ala	Leu	
30					520					525			
												GGA	1617
35	Tyr	Lys	_	Glu	Ala	Val	Asn	_	Val	Gly	Arg	Gly	
			530					535					
	GAG	AGG	GTG	ልጥሮ	ייירר	ጥጥር	CAC	GTG	ACC.	»GG	CCT	CCT	1653
40				Ile									1033
	540	5				545			••••	3	550		
45	GAA	ATT	ACT	TTG	CAA	CCT	GAC	ATG	CAG	ccc	ACT	GAG	1689
	Glu	Ile	Thr	Leu	Gln	Pro	Asp	Met	Gln	Pro	Thr	Glu	
•				555					560				
50													
	CAG	GAG	AGC	GTG	TCT	TTG	TGG	TGC	ACT	GCA	GAC	AGA	1725
	Gln		Ser	Val	Ser			Cys	Thr	Ala	Asp	Arg	
55		565					570					575	

	TCI	ACC	TTI	GAG	AAC	CTO	AC.	A TG	G TA	CAA	G CT	T GGC	1761
	Ser	Thi	Phe	Glu	. Asn	Let	ı Thi	Tr	y Ty	r Ly	s Le	u Gly	•
5					580	}				58	5		
	221	G) 6				1 mc							
10												CCC	
70	Pro	GIN			Pro	TTE	. HIS		_	GI	ı re/	1 Pro	
			590					595	•				
15	ACA	CCT	GTT	TGC	AAG	AAC	TTG	GAI	ACI	CTI	TGG	AAA :	1833
	Thr	Pro	Val	Cys	Lys	Asn	Leu	Asp	Thr	Lev	Trp	Lys	
	600					605					610	•	
20	mm.c	1 3 M	-	3.00	3.000	mmo	mam						2040
												GAC	1869
	Deu	ARU	Ala	615	Mec	Me	ser	ABII			ABI	Asp	
25				913					620				
	ATT	TTG	ATC	ATG	GAG	CTT	AAG	AAT	GCA	TCC	TTG	CAG	1905
	Ile	Leu	Ile	Met	Glu	Leu	Lys	Asn	Ala	Ser	Leu	Gln	
30		625					630					635	
	GAC	CAA	GGA	GAC	TAT	GTC	TGC	CTT	GCT	CAA	GAC	AGG	1941
35	Asp	Gln	Gly	Asp	Tyr	Val	Cys	Leu	Ala	Gln	Asp	Arg	
					640					645			
	AAG	ACC	AAG	AAA	AGA	САТ	ጥርር	GT.G	GTC.	AGG	CAG	CTC	1977
40	•			Lys								_	1911
	-3 -		650		5		-3-	655		••			
45	ACA	GTC	CTA	GAG	CGT	GTG	GCA	ccc	ACG	ATC	ACA	GGA	2013
	Thr	Val	Leu	Glu	Arg	Val	Ala	Pro	Thr	Ile	Thr	Gly	
	660					665					670	-	
50													
	AAC	CTG	GAG	AAT	CAG 2	ACG	ACA .	AGT	ATT	GGG	GAA	AGC	2049
	Asn :	Leu	Glu .	Asn (Gln 1	Thr	Thr	Ser	Ile	Gly	Glu	Ser	
55				675					680				

	ATC	GAA	GTC	TCA	TGC	: ACC	i GCA	I TC:	r. GG(AA e	r cc	C CCT	208
5	Ile	Glu	Val	Ser	Cys	Thi	: Ala	Sei	r Gly	Ası	n Pro	o Pro	
		685	i				690)				695	
10	CCA	CAG	ATC	ATG	TGG	TTI	' AAA	GAI	r aa 1	GAC	ACC	C CTT	2121
10	Pro	Gln	Ile	Met	Trp	Phe	Lys	Asp) Asi	Gli	Th	Leu	
					700					705	5		
15	GTA	GAA	GAC	TCA	GGC	ATT	GTA	TTG	AAG	GAT	' GGG	AAC	2157
	Val	Glu	Asp	Ser	Gly	Ile	Val	Leu	Lys	Asp	Gly	Asn	
	•		710					715	,				
20													
	CGG	AAC	CTC	ACT	ATC	CGC	AGA	GTG	AGG	AAG	GAG	GAC	2193
	Arg	Asn	Leu	Thr	Ile	Arg	Arg	Val	Arg	Lys	Glu	Asp	
25	720					725					730	,	
	GAA	GGC	CTC	TAC	ACC	TGC	CAG	GCA	TGC	AGT	GTT	CTT	2229
30	Glu	Gly	Leu	Tyr	Thr	Cys	Gln	Ala	Cys	Ser	Val	Leu	
30				735					740				
	GGC	TGT	GCA	AAA	GTG	GAG	GCA	TTT	TTC	ATA	ATA	GAA	2265
35	Gly	Сув	Ala	Lys	Val	Glu	Ala	Phe	Phe	Ile	Ile	Glu	
		745					750					755	
40	GGT	GCC	CAG	GAA	AAG	ACG	AAC	TTG	GAA	ATC	ATT	ATT	2301
	Gly	Ala	Gln	Glu	Lys	Thr	Asn	Leu	Glu	Ile	Ile	Ile	
					760					765	•		
45													
				ACG									2337
	Leu	vaı	_	Thr	Thr	vaı	TIE		Met	Pne	Pne	Trp	•
50			770					775					
	CTA	CTT	CTT	GTC	ATC	ATC	CTA	GGG	ACC	GTT	AAG	CGG	2373
	Leu	Leu	Leu	Val	Ile	Ile	Leu	Gly	Thr	Val	Lys	Arg	
55	780					785					790		

	GCC	CAA C	r GG?	4 GGG	GAA	L CTG	AAG	ACA	GGC	TAC	TTC	TCC	2409
5	Ala	a Asr	Gly	g Gly	Glu	Leu	Lys	Thr	Gly	Туг	Lev	1 Ser	
				795	i				800				
10													2445
	Ile	· Val	Met	Asp	Pro	Asp	Glu	Leu	Pro	Leu	Asp	Glu	
		805	,				810	•				815	
15	CAT	тст	GAA	CGA	CTG	ССТ	тат	GAT	GCC	AGC	AAA	TGG	2481
				Arg									2401
		9,0			820		-,-			825	-10		
20													
	GAA	TTC	ccc	AGA	GAC	CGG	CTG	AAC	CTA	GGT	AAG	CCT	2517
	Glu	Phe	Pro	Arg	Asp	Arg	Leu	Asn	Leu	Gly	Lys	Pro	
or.			830	_		-		835			_		
	CTT	GGC	CGT	GGT	GCC	TTT	GGC	CAA	GAG	ATT	GAA	GCA	2553
	Leu	Gly	Arg	Gly	Ala	Phe	Gly	Gln	Glu	Ile	Glu	Ala	
30	840					845					850		
	GAT	GCC	TTT	GGA	ATT	GAC	AAG	ACA	GCA	ACT	TGC	AGG	2589
35	Asp	Ala	Phe	Gly	Ile	Asp	Lys	Thr	Ala	Thr	Сув	Arg	
				855					860				
40													2625
	Thr		Ala	Val	Lys	Met		Lys	Glu	Gly	Ala	Thr	
		865		•			870					875	
45					001				-				
				CAT									2661
	His	Ser	GIU	His	_	Ala	Leu	Met			Leu	Lys	
50					880					885			
	3.000	OMO	Z Mirror :	03 m	s mm	~~m	a. a	~ 3~	omo i	3 3 M	cmc	ama	• • • •
				CAT .									2697
55	TIE			His	TTE	сту.			ren 1	ASN	val	val	
วอ			890					895					

	AAC	CT	r cti	A GGI	' GC	TG1	ACC	AAG	CCA	GG	A GG	G CCA	2733
5	Asr	ı Leı	ı Let	ı Gly	Ala	з Сув	Thr	Lys	Pro	G13	y Gly	y Pro	
3	900)				905	5				910		
10	CTC	ATG	GTG	ATT	GTG	GAA	TTC	TGC	AAA	TTI	GG?	AAC	2769
10	Leu	Met	: Val	. Ile	Val	. Glu	Phe	Cys	Lys	Phe	e Gly	Asn	
				915					920)			
15	CTG	TCC	ACT	TAC	CTG	AGG	AGC	AAG	AGA	AAT	GAA	TTT	2805
												Phe	
		925		•			930	•				935	
20													
	GTC	ccc	TAC	AAG	ACC	AAA	GGG	GCA	CGA	TTC	CGT	CAA	2841
	Val	Pro	Tyr	Lys	Thr	Lys	Gly	Ala	Arg	Phe	Arg	Gln	
					940	_			-	945	_		
25													
	GGG	AAA	GAC	TAC	GTT	GGA	GCA	ATC	CCT	GTG	GAT	CTG	2877
	Gly	Lys	Asp	Tyr	Val	Gly	Ala	Ile	Pro	Val	Asp	Leu	
30			950					955					
	AAA	CGG	CGC	TTG	GAC	AGC	ATC	ACC	AGT	AGC	CAG	AGC	2913
35	Lys	Arg	Arg	Leu	qaA	Ser	Ile	Thr	Ser	Ser	Gln	Ser	
	960					965					970		
40				TCT									2949
	Ser	Ala	Ser	Ser	Gly	Phe	Val	Glu	Glu	Lys	Ser	Leu	
				975					980				
45													
				GAA									2985
			Val	Glu	Glu			Ala	Pro	Glu	Asp		
		985					990					995	
50	~ > ~		010	mm^	om =		mm~	~ · ·	~ ~				
				TTC								_	3021
	ıyr	тÀг	ASP	Phe			ren	GIU .				Cys	
55					1000					1005			

	TAC	CAGO	TTC	CAA	GTG	GCI	' AAG	GGC	ATG	GAG	TTC	TTG	3057
5	Ty	. Ser	Phe	Gln	Val	Ala	Lys	Gly	Met	Glu	Phe	Leu	
J			101	.0				101	.5				
10	GC#	TCG	CGA	AAG	TGT	ATC	CAC	AGG	GAC	CTG	GCG	GCA	3093
70	Ala	Ser	Arg	Lys	Cys	Ile	His	Arg	Asp	Leu	Ala	Ala	
	102	0				102	5				103	0	
15	<i></i>		3.000	om o	mm s	moc	C) C	330	220	cmc	com.		2222
,,,													3129
	Arg	ABN	TIE	103		Sel	GIU	гåе	104		Val	Lys	
				103	•				104	U			
20	ልጥር	ጥርጥ	GAC	արդույ	GGC	ጥጥር	GCC	CGG	ሮኔጥ	ጆ ሲነሲነ	ጥልጥ	AAA	3165
		Cys											3103
		104	_				105	_			-1-	1055	
. 25		104.	_				105	•				1055	
	GAT	CCA	GAT	TAT	GTC	AGA	AAA	GGA	GAT	GCT	CGC	CTC	3201
	Asp	Pro	Asp	Tyr	Val	Arg	Lys	Gly	qaA	Ala	Arg	Leu	
30					1060	0				1065	5		
	CCT	TTG	AAA	TGG	ATG	GCC	CCA	GAA	ACA	ATT	TTT	GAC	3237
35	Pro	Leu	Lys	Trp	Met	Ala	Pro	Glu	Thr	Ile	Phe	qaA	
			1070)				1075	5				
	3.03	cma.	ma c		3 ma	03.6	.	~~~	ama	maa	m.c.m	m mm	
40		GTG										_	3273
		Val	TYE	THE	116			Asp	vai	Trp			
	1080	J				1085	•				1090	,	
45	CCT	GTT	ጥጥር	ርጥር	TGG	GAA	ልጥል	יניתים	ጥඋඋ	מיזיים	CCT	CCT	3309
•		Val											3309
	OLJ			1095	_	01			1100		<u>.</u>	nta	
50				1095					1100				
	<i>ጥር</i> ጥ	CCA	ጥልጥ	CCT	GGG	GTA	AAG	ል ጥጥ .	GAT (GAA 4	GAA	شلىك	3345
		Pro											
		1105	_		3		2,3 1110		p	u '		1115	
55													

	TG	r Ago	CGA	TTG	AAA	GAA	GGA	ACT	AGA	ATG	AGG	GCC	3381
5	Суя	Arg	Arg	Leu	Lys	Glu	Gly	Thr	Arg	Met	Arg	Ala	
					112	0				112	5		
10	CCI	GAT	TAT	ACT	ACA	CCA	GAA	ATG	TAC	CAG	ACC	ATG	3417
70	Pro	Asp	Tyr	Thr	Thr	Pro	Glu	Met	Tyr	Gln	Thr	Met	
			113	0				113	5				-
15	CTG	GAC	TGC	TGG	CAC	GGG	GAG	ccc	AGT	CAG	AGA	CCC	3453
	Leu	Asp	Cys	Trp	His	Gly	Glu	Pro	Ser	Gln	Arg	Pro	
	114	0				114	5				115	0	
20													
	ACG	TTT	TCA	GAG	TTG	GTG	GAA	CAT	TTG	GGA	AAT	CTC	3489
	Thr	Phe	Ser	Glu	Leu	Val	Glu	His	Leu	Gly	Asn	Leu	
25				1155	5				1160)			
	TTG	CAA	GCT	AAT	GCT	CAG	CAG	GAT	GGC	AAA	GAC	TAC	3525
30	Leu	Gln	Ala	Asn	Ala	Gln	Gln	Asp	Gly	Lys	Asp	Tyr	
30		116	5				1170)				1175	
				CCG									3561
35	Ile	Val	Leu	Pro	Ile	Ser	Glu	Thr	Leu	Ser	Met	Glu	
					1180)				1185	;		
40	GAG	GAT	TCT	GGA	CTC	TCT	CTG	CCT	ACC	TCA	CCT	GTT	3597
	Glu	qaƙ		Gly	Leu	Ser	Leu	Pro	Thr	Ser	Pro	Val	
			1190)				1195					
45													
				GAG									3633
	Ser	Сув	Met	Glu	Glu	Glu	Glu	Val	Cys .	Asp	Pro	Lys	
50	1200)				1205					1210		
50													
			-	GAC .			_		_			_	3669
	Phe	His	Tyr	Asp .	Asn	Thr .	Ala	Gly :	Ile :	Ser	Gln	Tyr	
55				1215					1220				

	CT	3 CAG	AAC	: AGI	' AAG	CG	A AA	G AG	C CG	G CC	T GT	G AGT	370!
	Let	ı Glr	naA r	Ser	Lys	Arg	J Ly	s Se	r Ar	g Pr	o Va	l Ser	
5		122	:5				12:	30				123	5
	GTA	AAA A	ACA	TTI	GAA	GA'	TA 1	ccc	G TT	A GA	A GA	A CCA	374]
10	Va]	Lys	Thr	Phe	Glu	Asp) Ile	Pro	o Lei	ı Glı	ı Glı	a Pro	
					124	0				124	15		
					,								
15	GAA	GTA	AAA	GTA	ATC	CCA	GAT	GAC	AAC	CAC	ACC	GAC	3777
	Glu	Val	Lys	Val	Ile	Pro	Asp) Asr) Ası	Gli	Thi	c Asp	
			125	0				125	55				
20 ·													
												ACT	3813
		-	Met	Val	Leu			Glu	Glu	Leu		Thr	
25	126	0				126	5				127	0	
	, mme	~~~	~~				-						
•									•			GGT	3849
30	neu	Glu	Asp	1275		тув	Leu	ser	128		Pne	GIĀ	
				12/,	•				126	O			
	GGA	ATG	GTG	CCC	AGC	AAA	AGC	AGG	GAG	тст	GTG	GCA	3885
35		Met											
33		1285				_	129	-				1295	
	TCT	GAA	GGC	TCA	AAC	CAG	ACA	AGC	GGC	TAC	CAG	TCC	3921
40	Ser	Glu	Gly	Ser	naA	Gln	Thr	Ser	Gly	Tyr	Gln	Ser	
				,	1300					130	5		
45		TAT											3957
	Gly	Tyr	His	Ser	Asp 1	Asp	Thr	qaƙ	Thr	Thr	Val	Tyr	
			1310					1315	5				
50		-				•	•						
		AGT											3993
		Ser	Glu (Glu .				Leu	Lys	Leu			
55	1320				:	1325					1330)	

	ATT GGA GTG CAA ACC GGT AGC ACA GCC CAG ATT CTC	4029
5	Ile Gly Val Gln Thr Gly Ser Thr Ala Gln Ile Leu	
	1335 1340	
10	CAG CCT GAC ACG GGG ACC ACA CTG AGC TCT CCT	4065
	Gln Pro Asp Thr Gly Thr Thr Leu Ser Ser Pro Pro	
	1345 1350 1355	
15		
15	GTT TAAAAGGAAG CATCCACACC CCAACTCCCG GACATCACAT	4108
	Val /	
	1356	
20		
	GAGAGGTCTG CTCAGATTTT GAAGTGTTGT TCTTTCCACC	4148
25	AGCAGGAAGT AGCCGCATTT GATTTTCATT TCGACAACAG	4188
	AAAAAGGACC TCGGACTGCA GGGAGCCAGC TCTTCTAGGC	228
30		
	TTGTGACC 4236	
0.5	(2) INFORMATION FOR SEQ ID NO: 8:	
35	(i) SEQUENCE CHARACTERISTICS:	
	(A) LENGTH: 433 amino acids (B) TYPE: amino acid	-
40	(C) STRANDEDNESSS:	
	(D) TOPOLOGY: linear	
	(ii) MOLECULE TYPE: peptide	
45	(ix) FEATURE:	
	(A) NAME/KEY: ckit proto-oncogene receptor	
	(B) LOCATION: Amino acids 543-975	
50	(x) PUBLICATION INFORMATION:	
30	(A) AUTHORS: Yarden, Y., et al.	
	(B) JOURNAL: EMBO J.	
	(C) VOLUME: 6	
55	(D) PAGES: 3341-3351 (E) DATE: 1987	

5	Leu 543		Tyr 545		Tyr	Leu	Gln	Lys 550		Met	Tyr	Glu	Val 555	
10	Trp	Lys	Val	Val 560		Glu	Ile	Asn	Gly 565	Asn	Asn	Tyr	Val	Tyr 570
	Ile	Asp	Pro	Thr	Gln 575	Leu	Pro	Tyr	Asp	His 580	Lys	Trp	Glu	Phe
15	Pro 585	Arg	Asn	Arg	Leu	Ser 590	Phe	Gly	Lys	Thr	Leu 595	Gly	Ala	Gly
20	Ala	Phe 600	Gly	Lys	Val	Val	Ala 605	Glu	Thr	Ala	Tyr	Gly 610	Leu	Ile
25	Lys	Ser	Asp	Ala	Ala	Met	Thr	Val	Ala	Val	Lys	Met	Leu	Lys
30												•		
35														
40														
45														
50														

			61	5				62	0				62	5
5	Pro	o Se	r Ala	a His		ı Thi	Glu	ı Arç	g Gli 635		a Lei	ı Met	: Sei	r Glu
10	Let	ı Lyı	s Val	l Leu	645		Lev	ı Gly	y Asn	His 650		. Asn	ılle	e Val
15	Asr 655		ı Lev	a Gly	' Ala	Cys 660		lle	Gly	Gly	Pro 665	Thr	Leu	Val
20	Ile	670		Tyr	Сув	Сув	Tyr 675		Asp	Leu	Leu	Asn 680	Phe	Leu
25	Arg	Arg	Lys 685		Asp	Ser	Phe	Ile 690	Cys	Ser	Lys	Gln	Glu 695	-
30	His	Ala	Glu	Ala 700	Ala	Leu	Tyr	Lys	Asn 705	Leu	Leu	His	Ser	Lys 710
35	Glu	Ser	Ser	Суб	Ser 715	Asp	Ser	Thr	Asn	Glu 720	Tyr	Met	Asp	Met
40	Lys 725	Pro	Gly	Val	Ser	Tyr 730	Val	Val	Pro	Thr	Lys 735	Ala	Asp	Lys
45	Arg	Arg 740	Ser	Val	Arg	Ile	Gly 745	Ser	Tyr	Ile	Glu	Arg 750	Asp	Val
50	Thr	Pro	Ala 755	Ile	Met	Glu	Asp	Asp 760	Glu	Leu	Ala	Leu	Asp 765	Leu
	Glu	Asp	Leu	Leu 770	Ser	Phe	Ser		Gln 775	Val :	Lys	Gly :		Ala 780

	Ph	e Le	u Ala	a Ser	_		сув	s Ile	e Hia	_	-) Le	u Ala	a Ala
5					785)				790	,			
			n Ile	e Leu	Lev			Gly	y Arc	, Ile		_	3 Ile	e Cys
10	795	5				800	1				805	5		
	Asp			, Leu	Ala	Arg	-		e Lys	. Asn	Asp			Tyr
15		810)				815	•				820)	
	Val	. Val	_	_	Asn	Ala	Arg	Leu	Pro	Val	Lys	Val	Met	Ala
			825	•				830)				835	
20	Pro	Glu	Ser	Ile	Phe	Asn	Сув	Val	Tyr	Thr	Glu	Glu	Ser	Asp
				840					845					850
25	Val	Trp	Ser	Tyr	Gly	Ile	Phe	Leu	Trp	Glu	Leu	Phe	Ser	Leu
					855				_	860				
30			Ser	Pro	Tyr		Gly	Met	Pro	Val	Lys	Ser	Lys	Phe
	865					870					875			
35	Tyr	-	Met	Ile	Lys	Glu		Phe	Arg	Met	Leu		Pro	Glu
		880					885					890		
40	His	Ala		Ala	Glu	Met	Tyr		Ile	Met	Lys	Thr	_	Trp
			895					900					905	
45	Asp	Ala	Asp	Pro	Leu	Lys	Arg	Pro		Phe	Lys	Gln	Ile	Val
-				910					915					920
	Gln	Leu	Ile	Glju		Gln	Ile	Ser	Glu	Ser	Thr	Asn	His	Ile
50				92	5				93	0				
	Tyr	Ser	Asn	Leu	Ala	Àsn	Cys	Ser	Pro	Asn .	Arg	Gln	Lys	Pro
55	935					940					945			

5	Val	Val 950	Asp	His	Ser	Val	Arg 955	Ile	Asn	Ser	Val	Gly 960	Ser	Thr
	Ala	Ser		Ser	Gln	Pro	Leu		Val	His	Asp	Asp		
10			965					970					975	
	(2) INFORM	ation f	OR SE	Q ID NO	D: 9:									
15	(i) SEQU	JENCE (CHARA	CTERIS	TICS:									
-	(B) 1	ENGTH	mino ac	id	ids									
20		TOPOLO												
	(ii) MOLE (ix) FEAT		ΓΥΡΕ: p	eptide										
25	` ,	NAME/K LOCATIO			•	72								
	(x) PUBL	LICATIO	N INFO	RMATIC	ON:									
30	(B) J (C) \ (D) F	AUTHOF JOURNA VOLUME PAGES: DATE: 19	NL: Natu E: 320 277-286	ire	L., et al									
35	(xi) SEQ	UENCE	DESCF	RIPTION	I: SEQ	ID NO:	9:				,		,	
40														

5	Lev 536		Tyr	Lys	Tyr 540		Gln	Lys	Pro	Lys 545	_	Gln	Val	. Arg
10	Trp 550	_	Ile	Ile	Glu	Ser 555	_	Glu	Gly	Asn	Ser 560	_	Thr	Phe
15	Ile	Asp 565		Thr	Gln	Leu	Pro 570	Tyr	Asn	Glu	Lys	Trp 575		Phe
15	Pro	Arg	Asn 580	Asn	Leu	Gln	Phe	Gly 585	_	Thr	Leu	Gly	Ala 590	Gly
20	Ala	Phe	Gly	Lys 595	Val	Val	Glu	Ala	Thr 600	Ala	Phe	Gly	Leu	Gly 605
25	Lys	Glu	Asp	Ala	Val 610	Leu	Lys	Val	Ala	Val 615	Lys	Met	Leu	Lys
30	Ser 620	Thr	Ala	His	Ala	Asp 625	Glu	Lys	Glu	Ala	Leu 630	Met	Ser	Glu
35	Leu	Lys 635	Ile	Met	Ser	His	Leu 640	Gly	Gln	His	Glu	Asn 645	Ile	Val
40	Asn	Leu	Leu 650	Gly	Ala	Cys	Thr	His 655	Gly	Gly	Pro	Val	Leu 660	Val
45	Ile	Thr	Glu	Tyr 665	Cys	Cys	Tyr	_	Asp 670	Leu	Leu	Asn		Leu 675

5	Ar	g Ar	g Lys	s Ala	680		Met	Leu	Gly	Pro 685		: Le	ı Se	r Pro
	G1;		n Asp) Pro	Glu	Gly 695		Val	Asp	Tyr	700		ı Ile	e His
10	Lei	1 Glu 705	ı Lys	Lys	Tyr	Val	Arg 710	Arg	Asp	Ser	Gly	Phe		s Ser
15	Glr	n Gly	Val		Thr	Tyr	Val	Glu 725	Met	Arg	Pro	Val	Ser 730	
20	Ser	Ser	· Asn	Asp 735	Ser	Phe	Ser	Glu	Gln 740	Asp	Leu	Asp	Lys	Glu 745
25	Asp	Gly	Arg	Pro	Leu 750	Glu	Leu	Arg	Asp	Leu 755	Leu	His	Phe	Ser
30	Ser 760		Va1	Ala	Gln	Gly 765	Met	Ala	Phe	Leu	Ala 770	Ser	Lys	Asn
35	Cys	Ile 775	His	Arg	Asp	Val	Ala 780	Ala	Arg	Asn	Val	Leu 785	Leu	Thr
40	Asn	Gly	His 790	Val	Ala	Lys	Ile	Gly 795	Asp	Phe	Gly	Leu	Ala 800	Arg
45	Asp	Ile	Met	Asn 805	Asp	Ser	Asn		Ile 810	Val	Lys	Gly	Asn	Ala 815
50	Arg	Leu	Pro		Lys 820	Trp	Met .	Ala		Glu 825	Ser	Ile	Phe	Asp
55	Cys 830	Val	Tyr	Thr '		Gln 835	ser :	Asp '	Val (-	ser 840	Tyr	Gly	Ile

5	Let	2 Leu 845		Glu	Ile	Phe	Ser 850		Gly	Leu	. Asn	855	_	Pro
	Gly	/ Ile	Leu 860		Asn	Ser	Lys	Phe		Lys	Leu	Val	Lys 870	Asp
10	Gly	Tyr	Gln	Met 875	Ala	Gln	Pro	Ala	Phe	Ala	Pro	Lys	Asn	Ile 885
15	Tyr	Ser	Ile	Met	Gln 890	Ala	Cys	Trp	Ala	Leu 895	Glu	Pro	Thr	His
20	Arg		Thr	Phe	Gln	Gln 905	Ile	Сув	Ser	Phe	Leu 910	Gln	Glu	Gln
25	Ala	Gln 915	Glu	Asp	Arg	Arg	Glu 920	Arg	Asp	Tyr	Thr	Asn 925	Leu	Pro
30	Ser	Ser	Ser 930	Arg	Ser	Gly	Gly	Ser 935	Gly	Ser	Ser		Ser 940	Glu
35	Leu	Glu	Glu	Glu 945	Ser	Ser	Ser		His 950	Leu	Thr	Cys	-	Glu 955
40	Gln	Gly	Asp		Ala 960	Gln	Pro	Leu		Gln 965	Pro .	Asn .	Asn '	Tyr
45	Gln 970	Phe	Cys											
	(2) INFOR	MATION	N FOR S	SEQ ID	NO: 10:	:								
50	(i) SE	QUENC	E CHAF	RACTER	RISTICS	S:								
55	(E) TYPE) STRA	TH: 566 : amino .NDEDN DLOGY:	acid IESSS:	acids									
	(ii) MC		E TYPE		le									

		AME/KI OCATIO				087								
5	(x) PUBL	ICATIO	N INFO	RMATIC	ON:									
10	(B) J((C) V (D) P	UTHOF OURNA OLUME AGES:	L: Proc E: 85 3435-34	. Natl. A										
	(xi) SEQL			RIPTION	N: SEQ	ID NO:	10:							
15														
	Met 522	Leu	Trp	Gln 525	Lys	Lys	Pro	Arg	Tyr 530	Glu	Ile	Arg	Trp	Lys 535
20	Val	Ile	Glu	Ser	Val 540	Ser	Ser	Asp	Gly	His 545	Glu	Tyr	Ile	Tyr
25														
30							·							
35														
40														
<i>45</i>														
50														

	Val	Asp	Pro	Val	Gln	Leu	Pro	туг	ası	Ser	Thi	Tr	Glu	Leu
	550)				555	,				560)		
5														
	Pro	Arg	Asp	Gln	Leu	Val	Leu	Gly	Arc	Thr	Let	ı Gly	Ser	Gly
		ر 565					570		-			575		
10														
	λla	Pho	Gly	Gln	t/a 1	1 7= 1	Glu	בוג	יי עייי	ב 1 ג	Hic	G I v	Ton	Ser
	AIU	FILE	580	G111	741	Val	GIU	585		AIG	1112	GIY		
			260					262					590	
15	•						_				_			
	His	Ser	Gln		Thr	Met	Lys	Val		Val	Lys	Met	Leu	Lys
				595					600					605
20														
	Ser	Thr	Ala	Arg	Ser	Ser	Glu	Lys	Gln	Ser	Leu	Met	Ser	Glu
					610					615		•		
		`												
25	Leu	Lys	Ile	Met	Ser	His	Leu	Gly	Pro	His	Leu	Asn	Val	Val
	620					625					630			
														\
30	Asn	Leu	Leu	Gly	Ala	Cys	Thr	Lys	Gly	Gly	Pro	Ile	Tyr	Ile
		635		_		_	640	_	_	_		645		
								•						
	Tle	Thr	Glu	Tvr	Cvs	Ara	ጥ ህ ጉ	Glv	Asn	T e m	Val	Asn	ጥህጕ	T.011
35			650	-3-	-1-	5	-,-	655		204	,,,,	a.op	660	Deu
			050					000					000	
	นาร	Arg	A en	Tue	uie	ω» ~	Pho	Ton	~1 m	3 ~~~	n1 =	507	X = =	T
40	1120	ALY		_	HILD	1111	FIIC	Leu		MIG	UID	ser	ASII	-
				665				·	670					675
		_	_	_	_			_	_	_	_			
	His	Cys	Pro			Ala	Glu	Leu	Tyr	Ser	Asn	Ala	Leu	Pro
45					680					685				
	Val	Gly	Phe	Ser :	Leu	Pro	Ser	His	Leu	Asn	Leu	Thr	Gly	Glu
50	690				1	695					700		\	
•														
	Ser	Asp (Gly (Gly (ryr 1	Met i	Asp 1	Met	Ser	Lys .	Asp	Glu	Ser	Ile
EE		705	-				710				-	715	•	
55		- -												

	Asp	туз	r Val	Pro	Met	Leu	Asp	Met	Lys	Gly	As	p Il	e Ly	в Ту
5			720	1			`	725	5				73	0
	Ala	Asp	Ile	Glu 735	Ser	Pro	Ser	Туг	740		Pro	ту:	(As	745
15	Tyr	Val	. Pro	Ser	Ala 750		Glu	Arg	Thr	Tyr 755	-	g Ala	Thi	c Lev
73	Ile 760) Asp	Ser	Pro	Val 765	Leu	Ser	Tyr	Thr	770		Val	. Gly
20	Phe	Ser 775	Tyr	Gln	Val	Ala	Asn 780	Gly	Met	Asp	Phe	Leu 785		Ser
25	Lys	Asn	Cys 790	Val	His	Arg	Asp	Leu 795	Ala	Ala	Arg	Asn	Val 800	
30	Ile	Cys	Glu	Gly 805	Lys	Leu	Val	Lys	Ile 810	Cys	Asp	Phe	Gly	Phe 815
35	Ala	Arg	Asp	Ile	Met 820	Arg	Asp	Ser	Asn	Tyr 825	Ile	Ser	Lys	Gly
40	Ser 830	Thr	Tyr	Leu	Pro	Leu 835	Lys	Trp	Met	Ala	Pro 840	Glu	Ser	Ile
4 5	Phe	Asn 845	Ser	Leu '	Tyr		Thr 850	Leu	Ser	Asp	Val	Trp 855	Ser	Phe
50	Gly	Ile	Leu 860	Leu !	ľrp	Glu		Phe 865	Thr	Leu	Gly	Gly	Thr 870	Pro
55	Tyr	Pro	Glu	Leu 1 875	Pro :	Met i	Asn .	_	Gln :	Phe	Tyr	Asn	Ala	Ile 885

	Lys	s Arq	g Gly	Tyr	Arg 890		Ala	Gln	Pro	Ala 895		Ala	Ser	Asp
5														
	Glu	ı Ile	yr Tyr	Glu	Ile	Met	Gln	Lys	Cys	Trp	Glu	Glu	Lys	Phe
10	900)				905					910			
10	61.	. m.		Desa	D	DL -	C	61 -	T	**- 3	T	T	-	
	GIU	915	-	PIO	Pro	Pne	920	GIN	rea	Val	Leu	925		Glu
15					٠							,,,,		
	Arg	Leu	Leu	Gly	Glu	Gly	Tyr	Lys	Lys	Lys	Tyr	Gln	Gln	Val
			930					935					940	
20	3	61. .	63	7)h a	*		S	3	***	5		-1 -	•	•
	Asp	GIU	GIU	Phe 945	ren	Arg	Ser	АБР	950	PTO	BIA	TIE	Leu	Arg 955
														333
25	Ser	Gln	Ala	Arg	Phe	Pro	Gly	Ile	His	Ser	Leu	Arg	Ser	Pro
					960					965				
30	Ten	Asn	ምክም	Ser	Sor	Val	Ten	ጥኒያው	ጥኮሎ	פוג	T/2 7	Gln	Dwa	200
,	970					975	200	-3-			980	GIII	PLO	VOII
							,							
35	Glu		Asp	Asn	Asp			Ile	Pro	Leu	Pro	Asp	Pro	Lys
		985					990					995		
	Pro	asa	Val	Ala .	Asp	Glu :	Glv	Leu	Pro	Glu	Glv	Ser	Pro	Ser
40		•	1000					1005			3		1010	
45	Leu	Ala		Ser '	Thr	Leu i	Asn				Thr	Ser	Ser	Thr
				1015				,	1020				1	025
	Ile	Ser	Cys .	Asp S	Ser 1	Pro 1	Leu (Glu 1	Leu (Gln (Slu (Glu i	Pro (מוב
50					1030					1035				 -
	Gln		Glu :	Pro (3ln 1	Leu (3lu (Gln /	Asp S	Ser
55	1040				1	1045				1	.050			

Gly Cys Pro Gly Pro Leu Ala Glu Ala Glu Asp Ser Phe Leu 1055 1060 1065

Glu Gln Pro Gln Asp Ser Gly Cys Pro Gly Pro Leu Ala Glu 1070 1075 1080

Ala Glu Asp Ser Phe Leu 1085

(2) INFORMATION FOR SEQ ID NO: 11:

(i) SEQUENCE CHARACTERISTICS:

(A) LENGTH: 16 base pairs

(B) TYPE: nucleic acid

(C) STRANDEDNESS: single

(D) TOPOLOGY: linear

(ii) MOLECULE TYPE: DNA (genomic)

(xi) SEQUENCE DESCRIPTION: SEQ ID NO: 11:

TCGACGCGCG ATG GAG

16

35 Claims

5

10

15

20

25

30

40

45

- A recombinant human DNA sequence encoding a human type III receptor tyrosine kinase, said DNA comprising
 the nucleotide sequence of the inserts of clones BTIII081.8 (ATCC accession number 40,931) and BTIII129.5
 (ATCC accession number 40,975) or a corresponding nucleotide sequence by virtue of the redundancy of the
 genetic code.
- 2. A 363 base pair nucleic acid having the sequence of SEQ ID NO: 3
- 3. An expression vector comprising the recombinant human DNA sequence of claim 1.
- A lambda gt11 phage harboring the clone BTIII081.8 (ATCC accession number 40,931) or the clone BTIII129.5 (ATCC accession number 40,975).
- 5. A protein encoded by the sequence of claim 1.
- 6. An oligonucleotide primer consisting of 27 bases and having the sequence of SEQ ID NO: 1.
- 7. An oligonucleotide primer consisting of 35 bases and having the sequence of SEQ ID NO: 2.
- 8. A method for the expression of a protein defined by claim 5 which comprises transforming a host cell with the expression vector of claim 3 or 4 and culturing the transformed host cell under conditions which result in expression of the protein by the expression vector.

- 9. The method of claim 8, wherein the host cell is a bacteria, virus, yeast, insect or mammalian cell line.
- 10. The method of claim 9 wherein the host cell is a COS-1 cell, NIH3T3 fibroblast or CMT-3 monkey kidney cell.
- 11: Use of a biologically active human type III receptor tyrosine kinase comprising the sequence of the protein according to claim 5 in a screening of pharmaceuticals for antagonist or agonist vascular endothelial cell growth factor (VEGF) action on the human type III receptor tyrosine kinase.
 - 12. Use according to claim 11 wherein the screening is a method comprising the steps of:
 - (a) incubating cells expressing the human type III receptor tyrosine kinase with [1251] VEGF and a compound; (b) measuring the emitted radioactive to determine the amount of inhibition of binding of VEGF to the human type III receptor tyrosine kinase by the compound.

Patentansprüche

10

15

20

35

45

- Rekombinante humane DNA Sequenz, die für eine humane Typ-III Rezeptor-Tyrosin-Kinase kodiert, wobei die DNA Sequenz die Nukleotidsequenz der Inserts der Klone BTIII081.8 (ATCC Zugriffsnummer 40,931) und BTIII129.5 (ATCC Zugriffsnummer 40,975) oder eine entsprechende Nukleotidsequenz gemäß der Redundanz des genetischen Codes umfasst.
- 2. Nukleinsäure von 363 Basenpaaren mit der Sequenz von SEQ ID No:3.
- Expressionsvektor, der die rekombinante humane DNA Sequenz von Anspruch 1 umfasst.
 - Lambda gt11 Phage, der den Klon BTIII081.8 (ATCC Zugriffsnummer 40,931) oder den Klon BTIII129.5 (ATCC Zugriffsnummer 40,975) enthält.
- 30 5. Protein, das von der Sequenz von Anspruch 1 kodiert wird.
 - 6. Oligonukleotid-Primer bestehend aus 27 Basen der Sequenz von SEQ ID No: 1.
 - 7. Oligonukleotid-Primer bestehend aus 35 Basen der Sequenz von SEQ ID No: 2.
 - 8. Verfahren zur Expression eines Proteins wie in Anspruch 5 definiert, umfassend das Transformieren einer Wirtszelle mit dem Expressionsvektor von Anspruch 3 oder 4 und Kultivieren der transformierten Wirtszelle unter Bedingungen, die zur Expression des Proteins durch den Expressionsvektor führen.
- Verfahren nach Anspruch 8, wobei die Wirtszelle zur Zelllinie eines Bakterium, eines Virus, einer Hefe, eines Insekts oder eines Säugers gehört.
 - 10. Verfahren nach Anspruch 9, wobei die Wirtszelle eine COS-1 Zelle, ein NIH3T3 Fibroblast oder eine CMT-3 Nierenzelle eines Affen ist.
 - 11. Verwendung einer biologisch aktiven humanen Typ-III Rezeptor-Tyrosin-Kinase, die die Sequenz des Proteins gemäß Anspruch 5 umfasst, in einem pharmazeutischen Screening nach Antagonisten oder Agonisten der Wirkung des Gefäß-Endothelzellen-Wachstumsfaktors (vascular endothelial cell growth factor, VEGF) auf die humane Typ-III Rezeptor-Tyrosin-Kinase.
 - 12. Verwendung nach Anspruch 11, wobei das Screening ein Verfahren umfassend die folgenden Schritte ist:
 - (a) Inkubation von Zellen, die die humane Typ-III Rezeptor-Tyrosin-Kinase exprimieren, mit [125I]-VEGF und einer Verbindung,
- (b) Messen der emitierten Radioaktivität zur Bestimmung des Ausmaßes der Inhibition der Bindung von VEGF an die humane Typ-III Rezeptor-Tyrosin-Kinase durch die Verbindung.

Revendications

5

20

30

45

50

- 1. Séquence d'ADN humain recombinant codant pour le récepteur de la tyrosine kinase humain de type III, ledit ADN comprenant la séquence nucléotidique des inserts des clones BTIII081.8 (déposé auprès de l'ATCC sous le numéro 40 931) et BTIII129.5 (déposé auprès de l'ATCC sous le numéro 40 975) ou une séquence nucléotidique correspondante en vertu de la redondance du code génétique.
- 2. Acide nucléique de 363 paires de bases possédant la séquence de SEQ ID N°3.
- 3. Vecteur d'expression comprenant la séquence d'ADN humain recombinant de la revendication 1.
 - Phage lambda gt11 contenant le clone BT111081.8 (déposé auprès de l'ATCC sous le numéro 40 931) ou le clone BTII129.5 (déposé auprès de l'ATCC sous le numéro 40 975).
- 5. Protéine codée par la séquence de la revendication 1.
 - 6. Amorce oligonucléotidique constituée de 27 bases et possédant la séquence de SEQ ID Nº1.
 - 7. Amorce oligonucléotidique constituée de 35 bases et possédant la séquence de SEQ ID N°2.
 - 8. Procédé pour l'expression d'une protéine définie à la revendication 5 qui comprend la transformation d'une cellule hôte avec le vecteur d'expression de la revendication 3 ou 4 et la culture de la cellule hôte transformée dans des conditions qui aboutissent à l'expression de la protéine par le vecteur d'expression.
- Procédé de la revendication 8, dans lequel la cellule hôte est une bactérie, un virus, une levure, ou une lignée cellulaire d'insecte ou de mammifère.
 - 10. Procédé selon la revendication 9 dans lequel la cellule hôte est une cellule COS-1, un fibroblaste NIH3T3 ou une cellule de rein de singe CMT-3.
 - 11. Utilisation d'un récepteur de la tyrosine kinase humain de type III comprenant la séquence de la protéine selon la revendication 5 pour cribler des produits pharmaceutiques pour leur activité antagoniste ou agoniste du facteur de croissance des cellules endothéliales vasculaires sur le récepteur de la tyrosine kinase humain de type III.
- 12. Utilisation selon la revendication 11 où le procédé de criblage comprend les étapes consistant à :
 - (a) incuber des cellules exprimant le récepteur de la tyrosine kinase humain de type III avec le VEGF marqué à 1' [125] et un composé ; et à
- (b) mesurer la radioactivité émise afin de déterminer la quantité d'inhibition de la liaison du VEGF au récepteur de la tyrosine kinase humain de type III par le composé.

FIG. 1

AAC CTG TTG GGG GCC TGC ACC T A T A T A C A	GTCGAC AAC CTG TTG GGG GCC TGC AAC		CAC AGA GAC CTG GCG GCT AGG AAC GTG C1	CAC AGA GAC CTG GCC GCT AGI AAC GTG CT	GAATTC AG CAC GTT 1CT AGC CGC CAG GTC TCT GTE
RECEPTOR PDGF CK! t CSF FGF	PRIMER 1	PRIMER 2 RECEPTOR	PDGF ck!t CSF FGF	CONSENSUS	PRIMER 2

FIG. 3

000F0F540FF CUPDAHADAUD しょしりょうしゅじょし 0 T O O T A D A T F A --004046000 ロトトンしじトートタタ しゅしょりょうりょうりょう CARACOPPEC ACCHCHCHCARA ACCICACIPCIPA じょじじじょくてじてら ト々じてしひしないなけい **□UU⊢U∀U∀U∀UU TAAGじじじじはTTF ♥♥♥∪∪⊢∪⊢∪∪∪**□ **A P D C C C C C C C P** OACCCAHHAA **-000044000400 DEAPPICAPPD** トークターひひひしひしく **₽₽400₽₽00₽₽0₽ A ひーむーじ A ひーひ A**

FIG.4A

AIC I C C I I I マーことのひょうてん 4 P U U U D L Q F こうすりひゅし 0 - C C C - C 4DDBBCU−ID O 4 F B O O B B じ ト な ら ら な と し - U A A A D A A 0 0 0 0 0 0 0 0 A G A G C C A G ひて 女 T T ひ ら ひ **ロローローロロ 5** → **4** ← **5** ⊢ | □ 々 □ ∪ ∪ ∪ ∪ 0 U - D 0 0 - O 0 4 C C C C C F C \vdash \cup \cup \cup \cup \cup 4 4 D C C A F 4 OPODAAAOO

FIG. 4B

100v GCAA A GCAA A GCAA A 40° JV CCC CCC CCC TCCATGCT SCCCATGCT SCCCATGCT SCCCATGCT AGAAGAAGA CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC CTGCCAAGAAC	Ą
(전	
90v ACTACCTGCACCC TACCTG 30, 30, 170v AGCAAT 110, 270v 566CAT 110, 270v 56ATGTATGCCC ATGT ATGT CAGTGATGTAGA 200, 370v 210, 370v 210, 370v 210, 310, 310, 310, 310, 310, 310, 310, 3	FIG.5A
80v CTGGTGGACTAC CTGTCCACTTAC 20v TAC———AGCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC——ACCA TAC———ACCA TAC——————————	I-I-
70v 80v 100v 1GCCGCTACGGAGCCTGGTGGACTACCTGCACCGCAACA TGC T GGA ACCTG TACCTG GCAA A TGCAAATTTGGAAACCTGTCCACTTACCTGAGGAGCAAGA 10° 20° 30° 40° 150v 160v 150v 170v CCAGCGCGGAGCT-CTAC——AGCAATGCTCTGCCGTGGAACATGCTCTGCCGTGAATGCTCTGCCGTGAATGCTCTGCCGTGAATGCTCCTGCCGTGAATGCTCCTGCCGTGAATGCTCCTGCCGTGAATGCTCCTGCTGAATGCTCCTGCTGAATGCAATGCCCATGCTAATGTGCCAATGCCCATGCTAATGTGCCAATGCCCATGCTGAATGCCCTGAGGAAGAACTGCTGAAGGAACTGCCTGAGGAACTGCCTGAGGAACTGCCTGAGGAACTGCCTGC	
10	
ATCACTGAG 140v AGCCCCGCC AG AG 230v GTGCTACA GCT GCT 170° 330v ATGCCCCT TGGCTTCA TGGCTTCA TGGCTTCA TGGCTTCA	
ATCTATATC 130v ACTCCGACA A TCC CA ATCCGACA ATCCGTCA BO 220v AGAGC G AGAGC G AGAGC AGAGC AGAGC AGAGC AGAGC AGAGC AGAGC AGAGC AGAGCTCA AGAGCTCA AGAGCTCA AGAGCTCA AGAGCTCA AGAGCTCA AGCATCTCA ACCACTCA ACCACTCA AGCATCTCA	
400 1200 1200 100 100 100 100 100	CGTGCT
10v 20v 50v 50v 50v 50v 50v 50v 6CCTGGGGGGCCTGCAAAGGAGGACCATCTATATCATCTTCTCTGGGGGCCTGTATCTTTTCTTCTTGGGGGGCCTGCAAAGGAGGACCATCTGCAAGGGACCACTCGGAAAGGAAGG	ICCACAGAGACCTGGC GC AGGAACGTGCT GTGTATCCACAGAGCTGGCAGCCAGGAACGTGCT 320^ 330^ 340^
20v CTGCACCAAAG ACA / TCCCTACAAG 60° GCCCAGCCATG 6 C 60° GCCCAGCCATG 30° 300° AGAT———————————————————————————————————	AGACCTGGC AGACCTGGC 330^
10v 2 A————————————————————————————————————	ICCACAGA IATCCACAGA IZO^
_	
360 bp PDGF 360 bp PDGF 360 bp PDGF 360 bp	360 bp

	10	స్ట	304	40	20	60	70^	80^		
造	AACCTGCTGGGGGCCTGCACGCAGGATGGTCCCTTGTATGTCATCGTGGAGTATGCCTCCAAGGGCAACCTGCGGGAGTACCTGC	CTGCACGCA	SGATGGTCCCT	TGTATGTCA	TCGTGGAGTA	ICCCTCCAAG	3GCAACCTGC	GGGAGTACCTGC		!
	AA CTG TGGGGGCCTGCAC	CCTGCAC	133		CGT	CTC A CAAC	CAAC	A ACC G		
230 bp	AATCTI	CTGCACCAT	CCCAACATCCT	İ		-CTCTA-	CAACTATT	TTTATGACCGGA	CICIACAACIAITITTAIGACCGGAGGAGGAICIACTIGAT	TGAT
•		Ś	30			40	50	√09	707	
		100	110	120	130	140	150	160	170v 180v	<u></u>
FGF1	AGACCCGGAGGCCCCCAGGGCTGGAATACTGCTATAACCCCAGCCACAACCCAGAGGAGCAGCTCTCCTCCAAGGACCTGGTGTCCTGCGCCTACCA	GCCCCCAGG	GCTGGAATACI	IGCTATAACC	CCAGCCACAAI	CCAGAGGAG	CAGCTCTCCT	CCAAGGACCTGG	TGTCCTGCGCC	ACCA
	AGA G	9 3 333	GCT A A	∢	AGC CA	GA GAG	CAGC C	AGA G CCC C G GCT A A A AGC CA GA GAGCAGC C CCA G C TGG		⋖
230 pb	TCTAGAGTATGCCCCCCCCCGCGGAGCTCTACAAGGAGCTGCAGAAGAGCTGCACATTTGACGAGCAGCGAACAGCCACGATCATGG-	CCCCCCCGGA	GCTCTACAAG	SAGCTGCAGA	AGAGCTGCAC	ATTTGACGAG	CAGCGAACAG	CCACGATCATG		₩
•	√06 √	100~		120	130~	140	150	160~		
	190	2007			2304	240				
造	GGAGGCCCGAGGCATGGAGTATCTGGCCTCCAAGAAGTGCATACACCGAGGACCTGGCAGCCAGGAATGTCCTG	AGGCATGGAG	TATCTGGCCT(CAAGAAGTG	CATACACCGA	SACCTGGCAG	CCAGGAATGT	CCTG		
	56A 55C 6	G T GTA	TA	AAGAAG	AAGAAG AT CAC GAGACCTGGCAGCCAG AA GT CT	GACCTGGCAG	CCAG AA GT	בו		
230 bp	GGAGTTGGCAGATGCTCTAATGTACTGCCGTGGGAAGGAGGTGATTCACAGAGACCTGGCAGCCAGC	TGCTCTAATG	TACTGCCGTG	GAAGAAGGI	GATTCACAGA	GACCTGGCAG	CCAGCAACGT	130		
•		180	,06I	500 ~	200^ 210^ 220^ 230^	220	230^			

FIG. 5E

Cys Phe Tyr Arg Glu Thr> TAC AAG IGC TIC TAC CGG GAA ACT CCA AAA GTG ATC GGA AAT GAC ACT GGA GCC FIG. 7A Pro Lys Val Ile Glv Asn Ann ...

54

Phe

55

				^	^
GCC Ala>	1080 * CCA	AAA Lys>	TAC Tyr>	0 * TCT Ser)	GTG Val
GAA GCC Glu Ala>	1080 * CCC CCA Pro Pro>		* AAT Asn	1240 * GTC TCT Val Ser>	CCT
	1080 * CCA CCC CCA Pro Pro Pro	111 ACA Thr		GTG Val	1290 * TCT Ser
10 7TG (70 * CAC (1130 CAC ACA ATT His Thr Ile	1180 * ACA GGA Thr Gly	CAT GTG His Val	1 ATC Ile
icr c	1070 * 3GT TA(1230 * AGC Ser	1290 * CTA ATC TCT CCT GTG Leu lle Ser Pro Val>
1010 * GGC ATG GAA TCT CTG GTG Gly Met Glu Ser Leu Val	GTC AGA ATC CCT GCG AAG TAC CTT GGT TAC Val Arg lle Pro Ala Lys Tyr Leu Gly Tyr	1100 1110 1120 * TAT AAA AAT GGA ATA CCC CTT GAG TCC AAT Tyr Lys Asn Gly Ile Pro Leu Glu Ser Asn	1150 1160 1170 * CTG ACG ATT ATG GAA GTG AGT GAA AGA GAC Leu Thr lle Met Glu Val Ser Glu Arg Asp	1230 * AAG CAG AGC Lys Gln Ser	80 * rcr Ser
1010 * VTG GAV	rac (SAG 3	1170 ¢ GAA 7	AAG (Lys (1280 * GAG AAA TCT Glu Lys Ser
36C A	1060 * \AG T/	CTT (11 AGT (3AG 1
\GT (SCG A	1110 * CCC (srg /	1210 1220 * ACC AAT CCC ATT TCA AAG GAG Thr Asn Pro Ile Ser Lys Glu	5 5GT (
1000 * GGA AGT Gly Ser	CT (11 VTA (Ile 1	50 * 3AA (rca z	1270 CAG ATT GGT Gln Ile Gly
rrr (1050 * ATC (3GA /	1160 * ATG GAJ	ATT 7	chG 7 31n
GCT TTT Ala Phe	1(NGA A)0 * 4AT (ATT 2	1210 * CCC A' Pro I	ozc (
990 * GTT (5TC /	1100 * AAA AA: Gys Asi	ACG 7	AAT (Asn 1	1260 * TAT GTC CCA CCC Tyr Val Pro Pro
TTT (10 * 3GT (rat /	1150 2TG A(ACC /	1; 3TC (
AA CCT TTT (1040 4 GGG GAG CGT Gly Glu Arg		GTA (rat (
980 * AAA (Lys 1	366 (31y (1090 * GAA ATA AAA TGG Glu Ile Lys Trp	CAT (1200 * GTC ATC CTT Val ile Leu	50 * 3TG :
980 * GAA AAA Glu Lys) 5TG (7al (VIA /	1140 * GGG (STC /	1250 * GTT GTG Val Val
CAT (His (1030 * ACG GTG (Thr Val (saa 1	1140 * GCG GGG Ala Gly	E. 11	CTG (
0.1	~ -		O R	1190 * ACT Thi	
					7
1					F16.7D
					ليا

56

F16. 7F

GCA TGC AGT GTT CTT GGC TGT GCA AAA GTG GAG GCA TTT TTC ATA ATA GAA GGT Ala Cys Ser Val Leu Gly Cys Ala Lys Val Glu Ala Phe Phe Ile Ile Glu Gly> F16. 76

2320	GCC CAG GAA AAG ACG AAC TTG GAA ATC ATT ATT CTA GTA GGC ACG ACG GTG ATT Ala Gln Glu Lys Thr Asn Leu Glu Ile Ile Leu Val Gly Thr Thr Val Ile>		CGG GCC Arg Ala>	1	CCA GAT GAA Pro Asp Glu>	2480	AAA TGG GAA Lys Trp Glu>		TTT GGC Phe Gly>	2590
	ACG ACG Thr Thr	2370	GCC ATG TIC TTC TGG CTA CTT CTT GTC ATC CTA GGG ACC GTT AAG Ala Met Phe Phe Trp Leu Leu Leu Val Ile Ile Leu Gly Thr Val Lys	2420		2	AGC Ser	2530	GGT GCC	
2310	STA GGC	09	3GG ACC	24	GTC ATG	2470	TAT GAT GCC Tyr Asp Ala		GGC CGT Gly Arg	2580
0 +	TT CTA (2360	TC CTA (2410	TCC ATC GTC ATG GAT Ser Ile Val Met Asp		CCT TAT (Pro Tyr A	2520	CCT CTT (Ω*
2300	IC ATT A	2350	C ATC A		C TTG T	2460	CTG		AAG Lys	2570
2290	G GAA AT	.,	r crr g	2400	AAG ACA GGC TAC TTG Lys Thr Gly Tyr Leu		r GAA CGA s Glu Arg	2510	CTA GGT	2560
2	AAC TT Asn Le	2340	CTA CT Leu Le		AAG ACI Lys Thi	2450	CAT TGT	00*	CGG CTG AAC Arg Leu Asn	56
2280	AAG ACG Lys Thr	· ;	TTC TGG Phe Trp	2390	GAA CTG Glu Leu	D *	rg gar gaa eu Asp Glu	2500	GAC CGG Asp Arg	2550
	ag gaa sin giu	2330	rG TTC let Phe		AAT GGA GGG GAA CTG Asn Gly Gly Glu Leu	2440	CTC CCA TTG Leu Pro Leu	2490	TTC CCC AGA GAC Phe Pro Arg Asp	
2270	GCC C	·	GCC A	2380	AAT G Asn G		CTC C	24	TTC C	2540
					·					

CAA GAG ATT GAA GCA GAT GCC TTT GGA ATT GAC AAG ACA GCA ACT TGC AGG ACA GIN Glu Ile Glu Ala Asp Ala Phe Gly Ile Asp Lys Thr Ala Thr Cys Arg Thr>

2600 2610 2620 2630 2640 CA GTC AAA ATG TTG AAA GAA GGA GCA ACA CAC AGT GAG CAT CGA GCT CTC la Val Lys Met Leu Lys Glu Gly Ala Thr His Ser Glu His Arg Ala Leu>	2650 2660 2670 2680 2690 2700 *	2710 2750 2730 2740 2750 TA GGT GCC TGT ACC AAG CCA GGA GGG CCA CTC ATG GTG ATT GTG GAA TTC acu Gly Ala Cys Thr Lys Pro Gly Gly Pro Leu Met Val Ile Val Glu Phe>	2760 2770 2780 2790 2800 * * * * * * * * * * * * * * * * * *	10 2820 2830 2840 2850 2860 CCC TAC AAG ACC AAA GGG GCA CGA TTC CGT CAA GGG AAA GAC TAC GTT GGA GCA Pro Tyr Lys Thr Lys Gly Ala Arg Phe Arg Gln Gly Lys Asp Tyr Val Gly Ala>	2870 2880 2890 2900 2910 ATC CCT GTG GAT CTG AAA CGG CGC TTG GAC AGC ATC ACC AGT AGC CAG AGC TCA Lie Pro Val Asp Leu Lys Arg Arg Leu Asp Ser Ile Thr Ser Ser Gin Ser Ser>
O =	2650 26 * ATG TCT GAA CTC Met Ser Glu Leu	ည္ စ	2760 TGC AAA TTT GGA Cys Lys Phe Gly	2810 2820 CCC TAC AAG ACC Pro Tyr Lys Thr	2870 * ATC CCT GTG GAT ILE Pro Val Asp

61

2930 2940 2950 2960 2970 GGA TTT GTG GAG GAG TCC CTC AGT GAT GTA GAA GAA GAA Gly Phe Val Glu Glu Lys Ser Leu Ser Asp Val Glu Glu Glu>	0 3020 3010 3020 * * * * * * * * * * * * * * * * * * *	3040 3050 3060 3070 * * * * GTG GCT AAG GGC ATG GAG TTC TTG GCA TCG CGA AAG TGT ATC CAC Val Ala Lys Gly Met Glu Phe Leu Ala Ser Arg Lys Cys Ile His>	3120 * AAC GTG GTT AAA ATC ASn Val Val Lys Ile>	3170 3180 * * AAA GAT CCA GAT TAT GTC AGA AAA Lys Asp Pro Asp Tyr Val Arg Lys>	3230 3240 * * A ACA ATT TTT GAC AGA I Thr Ile Phe Asp Arg>
2950 4 G TCC CTC AGT GAT s Ser Leu Ser Asp	3000 30 * C CTG ACC TTG GAG	3060 * * * * * * * * * * * * *	3100 3120		3200 3230 3230
T GTG GAG GAG AA	2990 * C TAT AAG GAC TI U Tyr Lys Asp Ph	3040 3050 * CT AAG GGC ATG GAG La Lys Gly Met Gl	GCG GCA CGA AAT ATC CTC TTA Ala Ala Arg Asn ile Leu Leu	3150 * GGC TTG GCC CGG GAT ATT TAT Gly Leu Ala Arg Asp Ile Tyr	3210 * IC CCT TTG AAA TGG EU Pro Leu Lys Trp
2920 2930 GCC AGC TCT GGA TT Ala Ser Ser Gly Pho	2980 AGCT CCT GAA GAT CT Ala Pro Glu Asp Le	3030 3 * AGC TTC CAA GTG GC Ser Phe Gln Val Al	3 GAC CTG g Asp Leu	3140 * TGT GAC TTT GGC TT Cys Asp Phe Gly Le	3190 3200 * GGA GAT GCT CGC CTC Gly Asp Ala Arg Leu
ŏl ∢	Ölα	₹ ₩	3080 * * AG	HO	F16.7J ⁶

			3250	0+		32	3260		E,	3270			3280	<u>o</u> •		32	3290	
	GTG Val	TAC	ACA ATC Thr Ile	ATC	CAG Gln	CAG AGT Gln Ser	GAC	GTC Val	TGG Trp	AGT GAC GTC TGG TCT TTT GGT Ser Asp Val Trp Ser Phe Gly	TTT Phe	GGT Gly	GTT TTG Vəl Leu		CTG	TGG Trp	TGG GAA ATA Trp Glu Ile	ATA Ile>
	1.7	3300			3310	<u>o</u> *		33	3320)	3330			3340	₽.*		
	TTT Phe	TTT TCC Phe Ser		TTA GGT Leu Gly	GCT	TTA GGT GCT TCT Leu Gly Ala Ser	CCA Pro	TAT Tyr	CCT Pro	GGG Gly	GTA Val	AAG Lys	ATT I1e	GCT TCT CCA TAT CCT GGG GTA AAG ATT GAT GAA GAA Ala Ser Pro Tyr Pro Gly Val Lys Ile Asp Glu Glu	GAA G1u	GAA Glu	TTT Phe	GAA GAA TTT TGT Glu Glu Phe Cys>
E.	3350		• •	3360			3370	04 *		3.	3380		(*)	3390			3400	00 *
	AGG Arg	AGG CGA Arg Arg		AAA Lys	GAA Glu	GGA G1y	ACT	aga Arg	ATG Met	AGG Arg	GCC Ala	CCT	GAT Asp	TTG AAA GAA GGA ACT AGA ATG AGG GCC CCT GAT TAT ACT ACA CCA GAA Leu Lys Glu Gly Thr Arg Met Arg Ala Pro Asp Tyr Thr Thr Pro Glu	ACT	ACA	CCA	CCA GAA Pro Glu>
		34	410		•	3420			3430	30		36	3440		.,	3450		
	ATG	ATG TAC Met Tyr	CAG Gln		ATG Met	CTG	GAC	TGC Cys	TGG Trp	CAC	GGG Gly	GAG G1u	CCC	AGT	CAG Gln	aga Arg	CCC	ACC ATG CTG GAC TGC TGG CAC GGG GAG CCC AGT CAG AGA CCC ACG Thr Met Leu Asp Cys Trp His Gly Glu Pro Ser Gln Arg Pro Thr>
	34	3460		ώ.	3470			3480			3490	06 *		ř	3500			3510
	TTT Phe	TTT TCA Phe Ser		TTG	GTG	GAA Glu	CAT	TTG	GGA G1v	GAG TTG GTG GAA CAT 1TG GGA AAT CTC TTG Glu Leu Val Glu His Leu Gly Asn Leu Leu	CTC	TTG	CAA	CAA GCT AAT GCT CAG CAG Gln Ala Asn Ala Gln Gln	AAT Asn	GCT	CAG	CAG Gln>
			3520	20 *		m	3530		-	3540			3550	* *		Ċ.	3560	
GAT GGC 7	GAT	GGC G1y	AAA Lys	GAC	TAC	ATT	GTT	CTT	CCG	ATA Ile	TCA	GAG G1u	ACT	AAA GAC TAC ATT GTT CTT CCG ATA TCA GAG ACT TTG AGC ATG GAA Lys Asp Tyr Ile Val Leu Pro Ile Ser Glu Thr Leu Ser Met Glu	AGC	ATG Met	GAA Glu	GAG G1u>

FIG. 7K ASP GIY LYS

F16. 71

Ser Pro Ser Phe

Gly Gly Met Val Pro Ser Lys Ser Arg Glu Ser Val Ala Ser>

0	* ACA Thr>		GAG ATT Glu Ile>	4050	GGG ACC ACA Gly Thr Thr>		
3940	GAC		GAG Glu	•	ACC		
	GAT (3990	ATA Ile				
	TCC Ser	(*)	CTG	4040	ACG Thr		~
3930	GGA TAT CAC TCC GAT Gly Tyr His Ser Asp		AAG CTG Lys Leu	4(GAC ACG Asp Thr		
m	TAT Tyr	3980	TAC TCC AGT GAG GAA GCA GAA CTT TTA Tyr Ser Ser Glu Glu Ala Glu Leu Leu		CAA ACC GGT AGC ACA GCC CAG ATT CTC CAG CCT Gln Thr Gly Ser Thr Ala Gln Ile Leu Gln Pro		
	GGA G1y	33	CTT	30	CAG Gln		
3920	AGC GGC TAC CAG TCC Ser Gly Tyr Gln Ser		GAA	4030	CTC		
χ.	CAG Gln	0/	GCA		ATT Ile		
	TAC Tyr	3970	GAA Glu		CAG Gln		
0 *	GGC Gly		GAG Glu	4020	GCC Ala		
3910	AGC		AGT		ACA	4070	TAA
	CAG ACA 1 Gln Thr	3960	TCC		AGC	4	GTT
	CAG Gln	`,	TAC	4010	GGT G1y		CCT
3900	TCA AAC Ser Asn		GTG Val	4	ACC	4060	CCT
. ,	TCA	3950	ACC		CAA	40	TCT
	66C ;	E.	GAC ACC ASP Thr	4000	GTG Val		CTG AGC TCT CCT CCT GTT TAA
3890	GAA		GAC	40	GGA G1y		CTG

65

KDR 1013 AKGMEFLASRKCIHRDLAARNILLSEKNVVKICDFGLARDIYKDPDYVRKGD F16.9A

KDR 1065 ARLPLKWMAPETIFDRVYTIQSDVWSFGVLLWEIFSLGASPYPGVKIDEEFC ckit 828 ****V******************************	1065 t 828	GF 779	SEI 762 *Q**A*********************************
---	---------------	--------	--

F16. 9B KOR 1325 ELLKLIEIGVQTGSTAQILQPDTGTTLSSPPV

KDR 1273 EDRTKLSPSFGGMVPSKSRESVASEGSNQTSGYQSGYHSDDTDTTVYSSEEA PDGF1039 QQAEPEAQLEQPQDSGCPGPLAEA*DSFLEQPQD**CPGPLAEAEDSFL

IDENTIFICATION OF kdp mRNA

FIG. 10

IDENTIFICATION OF kdp GENE BY SOUTHERN ANALYSIS

1 2 3 4

FIG. 11

FIG. 12

FIG. 14