RaspberryPi

GPIO and Calling APIs

김용석 교수

Introduction – What is Raspberry Pi

- Credit-card sized computer
- Latest version: Raspberry Pi 4 B
- Used in many projects:
 - Media Centers
 - File Servers
 - Game Consoles
 - Smart Mirrors
 - Etc.

- Download the Windows Installer:
 - https://downloads.raspberrypi.org/imager/imager.exe
- Install and Run

Choose Raspbian as OS

- Insert the SD card (use the USB adapter)
- Select the Correct SD card on the Imager Software

Click "Write" to Install (Takes around 15 minutes)

Introduction - Back to Raspberry Pi

Raspberry Pi 4 B Specs:

- 1.5GHz 64-bit quad-core ARM Cortex-A72 CPU
- 4GB RAM
- On-board wireless LAN dual-band 802.11 b/g/n/ac
- On-board Bluetooth 5.0
- 2x USB 3.0 ports, 2x USB 2.0 ports
- Gigabit ethernet
- 40-pin GPIO header
- 2 micro-HDMI ports (up to 4Kp60 supported)
- DSI display port, CSI camera port
- Combined 3.5mm analog audio and composite video jack
- Micro-SD card slot
- USB-C power

Introduction – Starting Up

Put the Raspberry Pi into the Case

Introduction – Starting Up

After Downloading and Installing the OS in

to the SD card:

- Insert the SD card (underneath the board)
- Connect USB mouse and keyboard
- · Connect monitor using the mini-HDMI cable
- Finally, connect the USB-C cable
- The Raspberry Pi should boot up

Introduction – Finishing the Setup

- After starting up for the first time, the Welcome application starts up.
- Select the country and language
- For a password, choose ONE SPACE (press space bar once)

Introduction – Finishing the Setup

- Connect to a WiFi (might need to use a phone hotspot)
- The OS will update
- After finishing click 'Restart'

Introduction – Raspbian OS

- Official Raspberry Pi OS
- Linux based distribution

Introduction – Needed libraries

- Open the terminal and run the following commands:
 - · sudo apt-get install wiringpi
 - sudo apt-get install libcurl4-openssl-dev

Part 1 - GPIO

LED and Button

GPIO – Pin Header

Raspberry Pi 4 B J8 GPIO Header

Pin#	NAME		NAME	Pin#
01	3.3v DC Power		DC Power 5v	02
03	GPIO02 (SDA1, I ² C)	00	DC Power 5v	04
05	GPIO03 (SCL1, I ² C)	00	Ground	06
07	GPIO04 (GPCLK0)	00	(TXD0, UART) GPIO14	08
09	Ground	00	(RXD0, UART) GPIO15	10
11	GPIO17	00	(PWM0) GPIO18	12
13	GPIO27	00	Ground	14
15	GPIO22	00	GPIO23	16
17	3.3v DC Power	00	GPIO24	18
19	GPIO10 (SPIO_MOSI)	00	Ground	20
21	GPIO09 (SPI0_MISO)	00	GPIO25	22
23	GPIO11 (SPIO_CLK)		(SPIO_CEO_N) GPIO08	24
25	Ground		(SPIO_CE1_N) GPIO07	26
27	GPIO00 (SDA0, I ² C)	000	(SCL0, I2C) GPIO01	28
29	GPIO05	00	Ground	30
31	GPIO06	00	(PWM0) GPIO12	32
33	GPIO13 (PWM1)	00	Ground	34
35	GPIO19	00	GPIO16	36
37	GPIO26	00	GPIO20	38
39	Ground	00	GPIO21	40

Raspberry Pi 4 B J14 PoE Header

01	TR01	00	TR00 02
03	TR03	00	TR02 04

Pinout Grouping Legend

Inter-Integrated Circuit Serial Bus O O Serial Peripheral Interface Bus Ungrouped/Un-Allocated GPIO O

Universal Asynchronous

Receiver-Transmitter Reserved for EEPROM ()

9/06/2019 CGS

www.element14.com/RaspberryPi

Hardware Pin number

GPIO – Blink LED Schematic

Hardware:

- 1 LED
- 1 560Ω resistor
- 1 Breadboard
- 2 cables

Connections:

- Connect the hardware pin 7 to the resistor
- Connect the other side of the resistor to the LED anode
- · Connect the LED cathode to GND

GPIO – Blink LED Code

Software Pin number

Hardware Pin number

```
1 #include <wiringPi.h>
 2 #include <stdio.h>
 3
   #define LedPin 7
 6 \int main(void) {
      if(wiringPiSetup() == -1) {
      printf("setup wiringPi failed !\n");
      → return -1;
 9
10
11
      pinMode(LedPin, OUTPUT);
12 →
      while(1) {
13 ∨→
      → digitalWrite(LedPin, LOW); --//led off
      → printf("led off\n");
15
   → delay(1000); .....// wait 1 sec
16
17 by digitalWrite(LedPin, HIGH); //led on
         printf("led on\n");
18 → →
          delay(1000); ....// wait 1 sec
19 →
20
      return 0;
21 →
22 }
```

wiringPi Pin	BCM GPIO	Name	Header	Name	BCM GPIO	wiringPi Pin
	-	3.3v	1 2	5v	_	
8	R1:0/R2:2	SDA	3 4	5v	_	
9	R1:1/R2:3	SCL	5 6	0v	_	
7	4	GPI07	7 8	TxD	14	15
	_	0v	9 10	RxD	15	16
0	17	GPIO0	11 12	GPIO1	18	1
2	R1:21/R2:27	GPIO2	13 14	0v	_	
3	22	GPIO3	15 16	GPIO4	23	4
	_	3.3v	17 18	GPIO5	24	5
12	10	MOSI	19 20	0v	_	
13	9	MISO	21 22	GPIO6	25	6
14	11	SCLK	23 24	CE0	8	10
	_	0v	25 26	CE1	7	11
wiringPi Pin	BCM GPIO	Name	Header	Name	BCM GPIO	wiringPi Pin

GPIO – Blink LED

Compile:

• gcc -Wall blink.c -o blink –lwiringPi

Run:

./blink

(Type on terminal)

GPIO – Blink LED

GPIO – Button Schematic

Hardware:

- 1 button
- 1 Breadboard
- 2 cables

Connections:

- Connect the hardware pin 7 to one of the sides of the button
- Connect the matching side to GND

GPIO – Button Code

Software Pin number

Hardware Pin number

```
1 #include<wiringPi.h>
 2 #include<stdio.h>
   #define ButtonPin 7
 6 int main(void) {
       if (wiringPiSetup() == -1) {
           printf("Setup wiringPi failed.\n");
       → return -1;
10 →
       pinMode(ButtonPin, INPUT);
11 →
      int buttonPressed = 0;
12 →
13 →
       while(1) {
           int buttonInput = digitalRead(ButtonPin);
14 →
15 →
       if(buttonInput == LOW) {
               buttonPressed = 1;
16 →
17 →
       if(buttonPressed && buttonInput == HIGH) {
18
               printf("Button Pressed!\n");
19
               buttonPressed = 0;
20 →
21 →
22 →
           delay(10);
23 →
24 →
       return 0;
25 }
```

wiringPi Pin	BCM GPIO	Name	Header	Name	BCM GPIO	wiringPi Pin
	Grio				0110	
	_	3.3v	1 2	5v		
8	R1:0/R2:2	SDA	3 4	5v	_	
9	R1:1/R2:3	SCL	5 6	0v	_	
7	4	GPI07	7 8	TxD	14	15
	_	0v	9 10	RxD	15	16
0	17	GPIO0	11 12	GPIO1	18	1
2	R1:21/R2:27	GPIO2	13 14	0v	_	
3	22	GPIO3	15 16	GPIO4	23	4
	_	3.3v	17 18	GPIO5	24	5
12	10	MOSI	19 20	0v	_	
13	9	MISO	21 22	GPIO6	25	6
14	11	SCLK	23 24	CE0	8	10
	_	0v	25 26	CE1	7	11
wiringPi Pin	BCM GPIO	Name	Header	Name	BCM GPIO	wiringPi Pin

GPIO – Button

On terminal:

Compile:

• gcc -Wall button.c -o button –lwiringPi

Run:

• ./button

GPIO – Button

Part 2 – Calling APIs

Get Current Weather

Login to Open Weather Map

Open Weather Map - Sign Up: https://openweathermap.org

Login to Open Weather Map

After Login copy the API key

Login to Open Weather Map

The API key will be used on the code

Weather Information Vocabulary

```
{"coord":{"lon":126.98,"lat":37.57},
    "weather":[{"id":803,"main":"Clouds","description":"broken clouds","icon":"04d"}],
    "base":"stations",
    "main":{"temp":275.74,"pressure":1026,"humidity":40,"temp_min":274.15,"temp_max":277.15},
    "visibility":10000,
    "wind":{"speed":1.5,"deg":340},
    "clouds":{"all":75},
    "dt":1543984200,
    "sys":{"type":1,"id":5509,"message":0.0046,"country":"KR","sunrise":1543962690,"sunset":1543997613},
    "id":1835848,
    "name":"Seoul",
    "cod":200}
```

Coord(좌표) Ion : 경도, lat : 위도

Weather

Base

Main(main정보) temp : 온도, pressure : 기압

Wind(바람 speed : 바람 세기, deg : 바람 방향

Clouds(구름)

Dt(시간)

Name(도시 이름)

Calling the API

- Copy and paste your api key
- Use internet maps to find the latitude and longitude of your desired location
- Update the code and compile

```
curl = curl easy init();
109
        if(curl) {
110
            curl_easy_setopt(curl, CURLOPT_URL, "api.openweathermap.org/data/2.5/weather?lat={lat}&lon={lon}&appid={your api key
111
            //In case of redirection, follow it
112
113
        curl easy setopt(curl, CURLOPT FOLLOWLOCATION, 1L);

> curl_easy_setopt(curl, CURLOPT_USERAGENT, "libcurl-agent/1.0");
114
           //register callback
115
           curl easy setopt(curl, CURLOPT WRITEFUNCTION, WriteCallback);
116
            curl easy setopt(curl, CURLOPT WRITEDATA, (void*)&chunk);
```

- On terminal:
- **Compile:**
 - gcc -Wall callApi.c -o callApi -lcurl
- Run:
 - ./callApi

Parsing the response data

Parsing?

IT용어사전

파싱

[parsing • ,文章-分析]

컴퓨터에서 컴파일러 또는 번역기가 원시 부호를 기계어로 번역하는 과정의 한 단계로, 각 문장의 문법적인 구성 또는 구문을 분석하는 과정, 즉 원시 프로그램에서 나타난 토큰(token)의 열을 받아들여 이를 그 언어의 문법에 맞게 구문 분석 트리(parse tree)로 구성해 내는 일이다. 파싱은 크게 하향식 파싱과 상향식 파싱으로 나눌 수 있다.

[출처] https://terms.naver.com/entry.nhn?docId=2454969&cid=42346&categoryId=42346

여러 개의 데이터 중 필요한 데이터만 골라 내는 것 현재기온, 최고기온, 최저기온, 습도 데이터만 파싱

Parsing

Parsing algorithm

```
temp_offset = strstr(str, "temp") + strlen("temp") + DATA_OFFSET;
 for (int i = 0; i < TEMP LEN - 1; ++i) {
        if(*(temp_offset + i) == ',') break;
        temp_str[i] = *(temp_offset + i);
                                     DATA_OFFSET = 2 이므로
                  temp 길이만큼 포인터 이동
                                   "와: 문자열을 무시(포인터 이동)
있는 위치의 포인터 반환
                   You: 127.01, "lat":37
                      71.31,"pressure":1
     "id":1835553,"name":"Suigen
```


Parsing

Parsing algorithm

```
temp_offset = strstr(str, "temp") + strlen("temp") + DATA_OFFSET;
  for (int i = 0; i < TEMP_LEN - 1; ++i) {
        iv(*(temp_offset + i) == ',') break;
         temp_str[i] = *(temp_offset + i);
  결국, temp_offset은 temp
                            다음,를 만나기 전까지
데이터의 첫 값인 2를 가리키는 포인터
                              배열에 값 저장
   coord":{"
                   <del>2n" 127</del>.01," lat":37
                            ,"pressure":1
```


Calling the API

Part 3 - Project

Small Project

Create a small project integrating GPIO and API calling

Example APIs:

- https://openweathermap.org (Weather Information)
- https://sunrise-sunset.org/api (Sunset and Sunrise times in UTC, need to convert after receiving)
- https://ip-api.com/docs/api:json (Get IP location)
- https://www.boredapi.com/ (Get random activity suggestion)

감사합니다.

Q&A

