第五章 半导体器件基础与二极管电路

• 传感器:将非电信号转换为电信号

5.1.1 PN结及其单向导电性

- 半导体: 导电能力介于导体和绝缘体之间的物质
 - 。 例如*硅、锗、砷化镓*等材料
 - 具有独特的光敏、热敏和掺杂特性

一、本征半导体

- 定义: 纯净、不含杂质、晶体结构完整的半导体称为本征半导体。
 - 。 硅/锗原子结构的简化模型:

。 硅/锗的共价键结构:

特性

- 。 本征激发: 在光和热的作用下, 本征半导体中产生电子-空穴对的现象。
- 。 自由电子: 脱离出共价键的电子。
- 。 价电子: 处于共价键中的电子。
 - 价电子移动形成电子电流。
- 。 空穴: 共价键中电子脱离后留下的空位。
 - 空穴移动形成空穴电流。
 - 空穴移动产生的电流实际上是价电子移动产生的电流。
- 。 **载流子**: 能够导电的带电粒子, 在半导体中有自由电子和空穴。
- 。 复合: 自由电子与空穴相遇,填补了空位,视为电子和空穴都消失

二、杂质半导体

- 多数载流子, 简称多子
- 少数载流子,简称少子

1. N型半导体

- 杂质: +5价元素, 如磷
 - 电子为多子
 - *空*穴为少子
 - 载流子数≈电子数
- 。 简化模型

2. **P型半导体**

- 杂质: +3价元素, 如硼
 - *空*穴为多子
 - *电子*为少子
 - 载流子数≈空穴数
- 。 简化模型

三、PN结

• 扩散运动:由于浓度差异而形成的定向移动,主要是多子扩散

• 漂移运动:由于电场作用而形成的定向移动,主要是少子漂移

1. 形成

- 。 载流子的*浓度差* 引起多子的*扩散*,两种载流子在交界面*复合* ,使得交界面处只剩下杂质离子,形成了空间电荷区,即PN结,又称耗尽区
- 在空间电荷区中,由杂质离子产生的内电场的场强方向由N区指向P区,该场强会抑制扩散作用,加强漂移作用,最终扩散和漂移达到动态平衡

2. 单向导电性

- 正向偏置,简称正偏
 - P区接正极,N区接负极
 - 内外电场反向
 - 外电场使多子向PN结移动中和部分离子, 使空间电荷区变窄
 - 扩散运动加强形成正向电流 | = |_{多子} |_{少子} ≈ |_{多子}
 - 内电场减弱→空间电荷区变窄→扩散电流 | 变大→导通
- 反向偏置,简称反偏
 - N区接正极,p区接负极
 - 内外电场同向
 - 外电场使多子背离PN结移动,空间电荷区变宽

- 漂移运动加强形成反向电流 I_R = I_{少子} ≈ 0
- 内电场加强→空间电荷区变宽→ 少子漂移电流 I_R ≈ 0→ 截止
- 。 总结
 - 正偏导通,呈小电阻,电流较大
 - 反向截止, 电阻很大, 电流近似为零

5.1.2 二极管的结构、伏安特性及参数

• 电路符号

一、结构

• 点接触型

- 。 多为锗管, PN结面积小, 不能通过大电流
- 。 PN结两侧积累的正负电荷少,相当于C比较小的电容,即结电容小,能通过高频交流电
- 面接触型

- 。 多为硅管, PN结面积大, 能通过大电流, 一般用于整流
- 。 PN结两侧积累的正负电荷少,相当于C比较的大的电容,即结电容大,只能通过低频的交流电

二、伏安特性

- 二极管是非线性元件。
 - 图例

硅二极管2CP10的伏安特性

1. 正向特性

• 死区: 当外加正向电压很低时,由于外电场还不能克服PN结内电场对多数载流子扩散运动的阻力,故正向电流很小几乎为零。

材料	死区电压U _{th}
硅	约0.5V
 锗	约0.2V

• 正向电压/导通电压/管压降: 当外加正向电压超过死区电压时正向电流迅速增长, 二极管进入**正向导通 区**, 电压再继续增加时, 电流迅速增大, 而二极管端电压却几乎不变, 此时二极管端电压称为**正向电 压**。

材料	正向电压
硅	0.6~0.7V (0.7V)
 锗	0.1~0.3V (0.3V)

。 硅稳定性好,受温度影响小

2. 反向特性

• 反向饱和电流:在二极管两端加反向电压时,将有很小的、由少子漂移运动形成的反向饱和电流 (I_{SS})通过二极管。

- 。 随温度的上升增长很快
- 。 在反向电压不超过某一范围时,反向电流的大小基本恒定

材料 反向饱和电流

	1μA一下
锗	Л +μA

3. 电流方程

- $i_D = I_{SS}(e^{u_D/U_T-1})$
- 温度电压当量U_T = kT/q
 - 。 常温t=27℃,U_T=26mV
- 正向偏置: i_D≈I_{SS}e^{u_D/U_T}
- 反向偏置: i_D≈-I_{SS}
- 温度上升→电压不变时电流增大→正向特性曲线左移
- 温度上升→反向饱和电流增加→反向特性曲线下移
- 温度影响电流的实质是加快了载流子的运动,反向特性受温度影响更大

4. 击穿特性

- 反向击穿:外加反向电压超过**反向击穿电压**U_{BR}时,反向电流突然增大,二极管失去单向导电性,进入**反 向击穿区。**
 - 。 电击穿(可逆)
 - 雪崩击穿:掺杂浓度低,空间电荷区宽;反向电压大时,载流子获得大动能撞击价电子,产生了更多的自由电子-空穴对
 - 齐纳击穿: 掺杂浓度高,空间电荷区窄,不大的反向电压就能拉出价电子形成载流子
 - 。 热击穿
 - 电流过大或温度过高,性能不能恢复

三、二极管的主要参数

- 最大整流电流I_{FM}
 - 。 二极管长期使用时,允许流过的最大正向平均电流。
- 反向峰值电压U_{RWM}
 - 是保证二极管不被击穿而规定的最大反向工作电压,一般是UBR的一半或三分之二。
- 反向电流I_R
 - 。 指二极管外加规定工作电压时的反向电流。
- 最高工作频率f_M
 - 。 决定于PN结结电容的大小, 超过时单向导电性能变得较差。

5.1.3二极管电路模型及电路分析

一、二极管的电路模型

• 将指数模型in = Iss(e^{up/U}T-1)分段线性化,得到二极管伏安特性的等效模型。

1. 理想模型

正向:管压降为0,电阻为0反向:电阻为无穷大,电流为0

2. 恒压降模型

。 u_D>U_D: 二极管导通,电阻为0

∘ u_D<U_D: 二极管截止,电流为0

3. **折线模型**

二、二极管的电路分析

- 先定性后定量
- 定性分析; 判断二极管的工作状态 (导通/截止)
- 一般分析方法和步骤
 - 。 定性分析
 - 1. 将二极管断开
 - 2. 分析二极管阴阳两极接入点的点位大小或表达式
 - 3. 根据所选择的电路模型确定二极管的状态
 - 。 定量分析
 - 由二极管的状态求解输出电压或电流

5.1.4 稳压二极管

一、特性和符号

- 稳压二极管一般为硅材料面接触型
- 符号

• 伏安特性

二、主要参数

1. 稳定电压U7: 稳压管正常工作(反向击穿)时, 稳压管两端的电压。

2. 稳定电流IZ(IZmin~IZmax): 稳压管正常工作时的参考电流。

3. 最大允许耗散功率P_{7M}: 稳压管不发生热击穿的最大功率损耗

4. 动态电阻 r_Z : $r_Z = \Delta U_Z/\Delta I_Z$, 越小稳压效果越好。

5. 温度系数α2: 反应稳压电压值受温度影响的参数。

三、应用电路分析

• 稳压管的动态稳压分析

- 若U_I波动, R_L不变:
 - U₁升高,于是U_O(U_Z)升高,导致I_Z增大,I_R也增大,U_R就会升高,导致了U_O下降
- 若R_L减小, U_I不变:
 - R_L减小造成U_O(U_Z)降低,于是I_Z减小,I_R也减小,U_R就会降低,导致了U_O升高
- 多个稳压管的串并联分析
 - 。 两稳压管同向串联且都截止时,输出电压为两稳压值之和
 - 。 两稳压管异向串联且一个导通一个截止时, 输出电压为两稳压值之差
 - 。 两稳压管同向并联截止时,输出电压为两稳压值中较小的一个
 - 。 两稳压管异向异向并联且一个导通一个截止时,输出电压为导通电压0.7V

5.2~5.4 常见的二极管应用电路

1. 半波整流电路

• 电路图

• 输出波形

• 输出电压平均值

$$U_O = \frac{1}{2\pi} \int_0^{\pi} \sqrt{2} U_2 \sin(\omega t) d(\omega t) = \frac{\sqrt{2}}{\pi} U_2 \approx 0.45 U_2$$

2. 桥式整流

• 电路图

• 输出波形

• 输出电压平均值

$$U_O = \frac{1}{\pi} \int_0^{\pi} \sqrt{2} U_2 \sin(\omega t) d(\omega t) \approx 0.9 U_2$$

• 二极管的整流电流

$$I_{D1} = \frac{1}{2}I_O \approx \frac{0.45U_2}{R_L}$$

• 二极管承受的最高反向电压

$$\sqrt{2}U_2$$

3. 二极管峰值采样电路

• 电路图

• 输出波形

• 原理解释

每当输入电压出现新的峰值,二极管正向导通,输入电压通过导通的二极管向电容器充电,使之 捕捉到输入电压的峰值,将峰值电压储存在电容器中输出。

4. 二极管检波电路

• 不做要求

第六章 晶体管放大电路基础

• 在本章中使用的I和U多为相量

6.1 放大电路的基本概念

一、放大的概念

- 放大电路实际上是一种功能模块电路,通过输入端口接收需要放大的信号,通过输出端口将放大后的信号送往负载
 - 。 把微弱的电信号放大到负载需要的值
- 放大的对象: 变化量
- 放大的基本要求: 不失真
- 放大的本质:将直流电源能量转换为信号能量输出,实现*能量的控制和转换*。

二、放大电路的主要性能指标

• 电路图

1. 放大倍数/增益 A

- 用于衡量放大电路的放大能力
- 电压增益

$$A_{u} = \dot{U}_{o} / \dot{U}_{i}$$
 or $A_{u} = 20 |g| \dot{U}_{o} / \dot{U}_{i}|$ (dB)

• 电流增益

$$A_i = \dot{I}_0 / \dot{I}_i$$

• 互阻增益

$$A_r = \dot{U}_0 / \dot{I}_i$$

• 互导增益

,
$$A_g$$
= $\dot{I_0}/\dot{U_{
m i}}$

2. 输入电阻Ri

- 衡量放大电路从信号源获取信号的能力
- 信号拾取能力
- 一般来说, 电压放大时, R;越大越好
 - 。 R;越大,I;就越小,从信号源索取的电流就越小
 - 。 当信号源有内阻时, Ri越大, Ui就越接近Us

3. 输出电阻R。

$$R_{\rm o} = \frac{\dot{U}_{\rm T}}{\dot{I}_{\rm T}}\bigg|_{\dot{U}_{s}=0}$$

- 通常使用戴维南加压法求得Ro
- 衡量放大电路带负载的能力
- 带负载能力
- 一般来说, 电压放大时, Ro越小越好
 - 。 Ro越小,输出电压Uo越大,负载获取信号的比值越高

1. 通带频f_{BW}

● 通带频f_{BW}=f_H-f_L