

Algorithm Design and Analysis (H) cs216

Instructor: Shan CHEN (陈杉)

chens3@sustech.edu.cn

(slides edited from Prof. Shiqi Yu)

Randomized Algorithms

Randomization

- Algorithm design patterns.
 - Greedy
 - Divide and conquer
 - Dynamic programming
 - Duality (e.g., network flow)
 - Randomization _____ in practice, access to a pseudo-random number generator
- Randomization. Allow fair coin flip in unit time.
- Why randomize? Can lead to simplest, fastest, or only known algorithm for a particular problem.
- Ex. Symmetry breaking protocols, graph algorithms, quicksort, hashing, load balancing, Monte Carlo integration, cryptography, etc.

1. Content Resolution

Contention Resolution in a Distributed System

- Contention resolution. Given n processes P_1 , ..., P_n , each competing for access to a shared database. If 2 or more processes access the database simultaneously, all processes are locked out. Devise protocol to ensure all processes get through on a regular basis.
- Restriction. Processes can't communicate.

Challenge. Need symmetry-breaking paradigm.

Contention Resolution: Randomized Protocol

- Protocol. Each process requests access to the database at time t with probability p=1/n.
- Useful facts from calculus. As *n* increases from 2, the function:
 - $(1-1/n)^n$ converges monotonically from 1/4 up to 1/e
 - \rightarrow $(1-1/n)^{n-1}$ converges monotonically from 1/2 down to 1/e.
- Lemma 1. Let S[i, t] = event that process i succeeds in accessing the database at time t. Then $1/(e \cdot n) \le \Pr[S(i, t)] \le 1/(2n)$.
- Pf. By independence, $\Pr[S(i, t)] = p(1-p)^{n-1}$. process i requests access, none of remaining processes request access
 - Setting p = 1/n, we have $Pr[S(i, t)] = 1/n (1 1/n)^{n-1}$.

 value that maximizes Pr[S(i,t)] between 1/e and 1/2

Contention Resolution: Randomized Protocol

- Protocol. Each process requests access to the database at time t with probability p=1/n.
- Lemma 2. The probability that process *i* fails to access the database in $e \cdot n$ rounds is at most 1/e. After $e \cdot n$ (*c* ln *n*) rounds, the probability $\leq n^{-c}$.
- Pf. Let F[i, t] = event that process i fails to access database in rounds 1 through t. By independence and Lemma 1, $Pr[F(i, t)] \le (1 1/(en))^t$.
 - > Choose $t = [e \cdot n]$: $\Pr[F(i,t)] \le \left(1 \frac{1}{en}\right)^{[en]} \le \left(1 \frac{1}{en}\right)^{en} \le \frac{1}{e}$
 - Choose $t = [e \cdot n] [c \cdot \ln n]$: $\Pr[F(i, t)] \le \left(\frac{1}{e}\right)^{c \ln n} = n^{-c}$

Contention Resolution: Randomized Protocol

- Claim. The probability that all processes succeed within $2en \ln n$ rounds is $\geq 1 1/n$.
- Pf. Let F[t] = event that at least one of the n processes fails to access database in any of the rounds 1 through t.

$$\Pr[F[t]] = \Pr\left[\bigcup_{i=1}^{n} F[i,t]\right] \leq \sum_{i=1}^{n} \Pr[F[i,t]]$$
union bound
Lemma 2

➤ Choosing $t = [e \cdot n]$ [2 ln n] yields $Pr[F[t]] \le n \cdot n^{-2} = 1/n$.

Union bound. Given events
$$E_1, ..., E_n$$
, $\Pr\left[\bigcup_{i=1}^n E_i\right] \leq \sum_{i=1}^n \Pr[E_i]$

2. Global Min Cut

Global Minimum Cut

- Global min cut. Given a connected, undirected graph G = (V, E), find a cut (A, B) of minimum cardinality.
- Applications. Partitioning items in a database, identify clusters of related documents, network reliability, circuit design, TSP solvers, etc.

- Network flow solution.
 - \triangleright Replace every edge (u, v) with two antiparallel edges (u, v) and (v, u).
 - Pick some vertex $s \in V$ and compute min s-v cut separating s from each other node $v \in V$.
- False intuition. Global min-cut is harder than min s-t cut.

Global Min Cut: Contraction Algorithm

Contraction algorithm. [Karger 1995]

- \triangleright Pick an edge e = (u, v) uniformly at random. Contract edge e.
 - \checkmark replace u and v by single new super-node w
 - \checkmark preserve edges, updating endpoints of u and v to w
 - ✓ keep parallel edges, but delete self-loops
- \triangleright Repeat until graph has just two super-nodes v_1 and v_2 .
- Return the cut $(S(v_1), S(v_2))$ $(S(v_i))$: all nodes that were contracted to v_i).

Global Min Cut: Contraction Algorithm

- Contraction algorithm. [Karger 1995]
 - \triangleright Pick an edge e = (u, v) uniformly at random. Contract edge e.
 - \triangleright Repeat until graph has just two super-nodes v_1 and v_2 .
 - \triangleright Return the cut $(S(v_1), S(v_2))$ $(S(v_i))$: all nodes that were contracted to v_i).

Reference: Thore Husfeldt

Global Min Cut: Contraction Algorithm

- Contraction algorithm. [Karger 1995]
 - \triangleright Pick an edge e = (u, v) uniformly at random. Contract edge e.
 - \triangleright Repeat until graph has just two super-nodes v_1 and v_2 .
 - Return the cut $(S(v_1), S(v_2))$ $(S(v_i))$: all nodes that were contracted to v_i).

Reference: Thore Husfeldt

Contraction Algorithm: Analysis

- Theorem. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.
- Pf. Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^* . Let $k = |F^*| = \text{size of min cut}$.
 - \triangleright In first step, algorithm contracts an edge in F^* with probability k / |E|.
 - Every node has degree $\geq k$ since otherwise (A^*, B^*) would not be a min-cut $\Rightarrow |E| \geq 1/2 \ k \ n \Leftrightarrow k \ / \ |E| \leq 2 \ / \ n$.
 - \succ Thus, algorithm contracts an edge in F^* with probability $\leq 2/n$.

Contraction Algorithm: Analysis

- Theorem. The contraction algorithm returns a min cut with prob $\geq 2 / n^2$.
- Pf. Consider a global min-cut (A^*, B^*) of G. Let F^* be edges with one endpoint in A^* and the other in B^* . Let $k = |F^*| = \text{size}$ of min cut.
 - \triangleright Let G' be graph after j iterations. There are n' = n j super-nodes.
 - \triangleright Suppose no edge in F^* has been contracted. The min-cut in G' is still k.
 - \succ Thus, algorithm contracts an edge in F^* with probability $\leq 2 / n'$.
 - \triangleright Let E_i = event that no edge in F^* is contracted in iteration j.

$$\begin{array}{lll} \Pr[E_1 \cap E_2 \cdots \cap E_{n-2}] &=& \Pr[E_1] \times \Pr[E_2 \mid E_1] \times \cdots \times \Pr[E_{n-2} \mid E_1 \cap E_2 \cdots \cap E_{n-3}] \\ & \geq & \left(1 - \frac{2}{n}\right) \left(1 - \frac{2}{n-1}\right) \cdots \left(1 - \frac{2}{4}\right) \left(1 - \frac{2}{3}\right) \\ & = & \left(\frac{n-2}{n}\right) \left(\frac{n-3}{n-1}\right) \cdots \left(\frac{2}{4}\right) \left(\frac{1}{3}\right) \\ & = & \frac{2}{n(n-1)} \\ & \geq & \frac{2}{n^2} \end{array}$$

Contraction Algorithm: Amplification

• Amplification. To amplify the probability of success, run the contraction algorithm many times with independent randomness.

- Claim. If we repeat the contraction algorithm n^2 ln n times, then the probability of failing to find the global min-cut is $\leq 1 / n^2$.
- Pf. By independence, the probability of failure is at most

$$\left(1 - \frac{2}{n^2}\right)^{n^2 \ln n} = \left[\left(1 - \frac{2}{n^2}\right)^{\frac{1}{2}n^2}\right]^{2\ln n} \le \left(e^{-1}\right)^{2\ln n} = \frac{1}{n^2}$$

$$(1 - 1/x)^x \le 1/e$$

Contraction Algorithm: Demo

Reference: Thore Husfeldt

More on Global Minimum Cut

- Remark. Overall running time $\Theta(n^2 m \log n)$ is slow since we perform $\Theta(n^2 \log n)$ iterations and each takes $\Omega(m)$ time.
- Improvement. [Karger-Stein 1996] $O(n^2 \log^3 n)$.
 - \triangleright Early iterations are less risky than later ones: probability of contracting an edge in min cut hits 50% when n / $\sqrt{2}$ nodes remain.
 - \triangleright Run contraction algorithm until $n / \sqrt{2}$ nodes remain.
 - > Run contraction algorithm twice on resulting graph and return best of two cuts.

- Extensions. Naturally generalizes to handle positive weights.
- Best known. [Karger 2000] $O(m \log^3 n)$.

faster than best known max flow algorithm or deterministic global min cut algorithm

3. MAX 3-SAT

Maximum 3-Satisfiability

• MAX 3-SAT. Given a 3-SAT formula, find a truth assignment that satisfies as many clauses as possible.

$$C_{1} = x_{2} \vee \overline{x_{3}} \vee \overline{x_{4}}$$

$$C_{2} = x_{2} \vee x_{3} \vee \overline{x_{4}}$$

$$C_{3} = \overline{x_{1}} \vee x_{2} \vee x_{4}$$

$$C_{4} = \overline{x_{1}} \vee \overline{x_{2}} \vee x_{3}$$

$$C_{5} = x_{1} \vee \overline{x_{2}} \vee \overline{x_{4}}$$

- Remark. NP-hard optimization problem.
- Simple idea. Flip a coin, and set each variable true with probability ½, independently for each variable.

Maximum 3-Satisfiability: Analysis

- Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k / 8.
- Pf. Consider random variable $Z_j = \begin{cases} 1 & \text{if clause } C_j \text{ is satisfied} \\ 0 & \text{otherwise.} \end{cases}$
 - \triangleright Let Z = number of clauses satisfied by random assignment.

$$E[Z] = \sum_{j=1}^{k} E[Z_j]$$
 linearity of expectation
$$= \sum_{j=1}^{k} \Pr[\text{clause } C_j \text{ is satisfied}]$$

$$= \frac{7}{8}k$$
 disjunction of 3 literals each literal corresponds to a different variable

The Probabilistic Method

• Claim. Given a 3-SAT formula with k clauses, the expected number of clauses satisfied by a random assignment is 7k / 8.

- Corollary. For any instance of 3-SAT, there exists a truth assignment that satisfies at least a 7/8 fraction of all clauses.
- Pf. Random variable is at least its expectation some of the time.

 Probabilistic method. [Paul Erdös] Prove the existence of a nonobvious property by showing that a random construction produces it with positive probability!

Maximum 3-Satisfiability: Analysis

- Q. Can we turn this idea into a 7/8-approximation algorithm?
- A. Yes (but a random variable can almost always be below its mean).
- Lemma. The probability that a random assignment satisfies $\geq 7k / 8$ clauses is at least 1/(8k).
- Pf. Let p_j be probability that exactly j clauses are satisfied; let p be probability that $\geq 7k$ / 8 clauses are satisfied.

$$\begin{array}{rcl} \frac{7}{8}k &=& E[Z] &=& \sum\limits_{j\geq 0} j\,p_j &=& \sum\limits_{j<7k/8} j\,p_j \,+& \sum\limits_{j\geq 7k/8} j\,p_j \\ &\leq & \left(\frac{7k}{8}-\frac{1}{8}\right)\sum\limits_{j<7k/8} p_j \,+& k\sum\limits_{j\geq 7k/8} p_j \,\leq & \left(\frac{7}{8}k-\frac{1}{8}\right)\cdot 1 \,+& k\,p \end{array}$$

ightharpoonup Rearranging terms yields $p \ge 1 / (8k)$.

Maximum 3-Satisfiability: Analysis

• Johnson's algorithm. Repeatedly generate random truth assignments until one of them satisfies $\geq 7k/8$ clauses.

- Theorem. Johnson's algorithm is a 7/8-approximation algorithm.
- Pf.
 - \triangleright By previous Lemma, each iteration succeeds with probability at least p=1/(8k).
 - The expected number of trials to find the satisfying assignment is $\sum_{j=0}^{\infty} j \Pr[j \text{ trials}] \leq \sum_{j=0}^{\infty} (1-p)^{j-1} p = \frac{1}{p} \geq 8k \quad \blacksquare$
- Takeaway. NP-hard problems may have good approximation algorithms.

Maximum Satisfiability

- Extensions.
 - > Allow one, two, or more literals per clause.
 - Find max weighted set of satisfied clauses.
- Theorem. [Asano—Williamson 2000] There exists a 0.784-approximation algorithm for MAX-SAT.
- Theorem. [Karloff–Zwick 1997, Zwick+computer 2002] There exists a 7/8-approximation algorithm for version of MAX 3-SAT in which each clause has at most 3 literals.
- Theorem. [Håstad 1997] Unless P = NP, no ρ -approximation algorithm for MAX 3-SAT (and hence MAX SAT) for any $\rho > 7/8$.

very unlikely to improve over simple randomized algorithm for MAX 3-SAT

Monte Carlo vs Las Vegas Algorithms

- Monte Carlo. Guaranteed to run poly-time, likely to find correct answer.
- Ex: Contraction algorithm for global min cut.

- Las Vegas. Guaranteed to find correct answer, likely to run in poly-time.
- Ex: Randomized quicksort, Johnson's MAX 3-SAT algorithm.

stop algorithm after a certain point

• Remark. Can always convert a Las Vegas algorithm into Monte Carlo, but no known method (in general) to convert the other way.

RP and ZPP

- RP. [Monte Carlo] Decision problems solvable with one-sided error in poly-time.
- One-sided error.

- can decrease probability of false negative to 2-100 by 100 independent repetitions
- If the correct answer is *no*, always return *no*.
- \triangleright If the correct answer is *yes*, return *yes* with probability ≥ 1/2.
- ZPP. [Las Vegas] Decision problems solvable in expected poly-time.

running time can be unbounded, but fast on average

- Theorem. $P \subseteq ZPP \subseteq RP \subseteq NP$.
- Fundamental open questions. To what extent does randomization help?
 - Does P = ZPP? Does ZPP = RP? Does RP = NP?

4. Load Balancing

Load Balancing

• Load balancing. System in which *m* jobs arrive in a stream and need to be processed immediately on *n* identical processors. Find an assignment that balances the workload across processors.

• Centralized controller. Assign jobs in round-robin manner. Each processor receives at most $\lceil m / n \rceil$ jobs.

Decentralized controller. Assign jobs to processors uniformly at random.
 How likely is it that some processor is assigned "too many" jobs?

Chernoff Bounds

- Setting.
 - $\succ X_1, ..., X_n$: independent 0-1 random variables
 - $Y = X_1 + ... + X_n$
 - \triangleright E(X) = E(X₁) + ... + E(X_n)
- Theorem. (above mean) For any $\delta > 0$ and $\mu \ge \mathbf{E}(X)$, we have

$$\Pr[X > (1+\delta)\mu] < \left(\frac{e^{\delta}}{(1+\delta)^{1+\delta}}\right)^{\mu}$$
 usually we choose $\mu = E(X)$

• Theorem. (below mean) For any $\delta > 0$ and $\mu \leq \mathbf{E}(X)$, , we have

$$\Pr[X < (1 - \delta)\mu] < e^{-\delta^2 \mu/2}$$

Load Balancing: # Jobs = # Processors

- Analysis. (number of jobs m = number of processors n)
 - \triangleright Let X_i = number of jobs assigned to processor i.
 - \triangleright Let $Y_{ii} = 1$ if job j is assigned to processor i, and 0 otherwise.
 - ightharpoonup Thus, $X_i = \sum_i Y_{ii}$. We have $\mathbf{E}[Y_{ii}] = 1/n$ and $\mathbf{E}[X_i] = 1$.
 - ightharpoonup Chernoff bounds with $\delta = c \mu > 0$ and $\mu = \mathbf{E}[X_i] = 1 \Rightarrow \Pr[X_i > c] < e^{c-1} / c^c$.
 - ightharpoonup Let $\gamma(n)$ be number x such that $x^x = n$, and choose $c = e \gamma(n)$.

$$\Pr[X_i > c] < \frac{e^{c-1}}{c^c} < \left(\frac{e}{c}\right)^c = \left(\frac{1}{\gamma(n)}\right)^{e\gamma(n)} \le \left(\frac{1}{\gamma(n)}\right)^{2\gamma(n)} = \frac{1}{n^2}$$

Union bound \Rightarrow with probability $\geq 1 - 1/n$ no processor receives more than $c = e \gamma(n) = \Theta(\log n / \log \log n)$ jobs.

 $\checkmark x \log x = \log n \& \log x + \log \log x = \log \log n \Rightarrow \gamma(n) / 2 \le \log n / \log \log n \le \gamma(n)$

Load Balancing: # Jobs > # Processors

- Theorem. Suppose the number of jobs m = 16 n ln n. Then on average, each of the n processors handles 16 ln n jobs. With high probability, every processor will have between half and twice the average load.
- Pf.
 - \triangleright Let X_i = number of jobs assigned to processor i.
 - \triangleright Applying Chernoff bounds with $\delta = 1$ and $\mu = \mathbf{E}(X_i) = 16 \ln n$ yields

$$\Pr[X_i > 2\mu] < \left(\frac{e}{4}\right)^{16\ln n} < \left(\frac{1}{e}\right)^{2\ln n} = \frac{1}{n^2}$$

$$\Pr\left[X_i < \frac{1}{2}\mu\right] < e^{-\frac{1}{2}\left(\frac{1}{2}\right)^2 16\ln n} = \frac{1}{n^2}$$

Union bound ⇒ every processor has load between half and twice the average with probability $\ge 1 - 2/n$.

