

Universidade Federal do Espírito Santo Centro Tecnológico Departamento de Engenharia Elétrica Prof. Hélio Marcos André Antunes

Unidade 3: Condutores Elétricos -Dimensionamento e Instalação — Aula 07

Instalações Elétricas I Engenharia Elétrica

3.4- Eletrodutos para Instalações Elétricas

- Os eletrodutos podem ser tubos de metal (magnéticos ou não magnéticos) ou de PVC (rígidos ou flexíveis).
- Tem como principal função:
 - Proteção dos condutores contra ações mecânicas e contra corrosão;
 - Proteção do meio contra perigos de incêndio, resultantes do superaquecimento dos condutores ou arcos.
- É vedado o uso como eletroduto de produtos que não sejam expressamente apresentados e comercializados como tal (como mangueiras e tubos para água);
- Só são admitidos eletrodutos não-propagadores de chama, quando não envolvidos por materiais não-combustíveis.

Tipos de Eletrodutos

Eletroduto flexível (corrugado)

- •Aplicações: Instalações elétricas embutidas executadas na alvenaria com recobrimento de argamassa;
- Fabricado em PVC Antichama;
- Cor amarela (leve esforço mecânico de até 320N/5cm de compressão);
- Cor azul, cinza e laranja (médio esforço mecânico, de até 750N/5cm).

Eletroduto rígido

- •Aplicações: Entradas de padrões residenciais e instalações embutidas em obras prediais, comerciais e industriais, onde a solicitação dos esforços mecânicos durante a concretagem é elevado;
- Fabricados em PVC Antichama e na cor preta.

Especificações dos Eletrodutos

Eletroduto flexível

		DIMENSÕES		
Cotas	16	20	25	32
DE	16	20	25	32
Di	11,7	15,4	19	25
е	2,1	2,3	3	3,5

Eletroduto rígido

Referência de Rosca	Diâmetro Externo Nominal (mm)	Diâmetro Interno (mm)	Espessura Parede (mm)		
"1/2"""	20	16	2,2		
"3/4"""	25	21	2,6		
"1"""	32	26,8	3,2		
"1.1/4""	40	35,0	3,6		
"1.1/2""	50	39,8	4,0		
"2"""	60	50,2	4,6		
"2.1/2"""	75	64,1	5,5		
"3"""	85	75,6	6,2		

Instalação de Eletrodutos e Acessórios

Instalação de Condutores em Eletrodutos

- A NBR 5410/2004 define os seguintes critérios quanto a instalação de condutores nos eletrodutos:
 - Em condutos fechados, admite-se a possibilidade de condutores de mais de um circuito, nos seguintes casos:
 - 1. Desde que sejam atendidas simultaneamente as três condições:
 - Os circuitos devem pertencer a mesma instalação, isto é, originarem do mesmo dispositivo geral de proteção;
 - As seções nominais dos condutores de fase devem pertencer a um intervalo de três valores normalizados;
 - Todos os condutores devem ser isolados para a mais alta tensão nominal presente.
 - 2. No caso dos circuitos de força, de comando e/ou sinalização de um mesmo equipamento;

Obs: Nos eletrodutos só devem ser instalados condutores isolados, salvo quando o eletroduto for utilizado exclusivamente para o sistema de aterramento elétrico.

Taxa Máxima de Ocupação

- A área útil dos eletrodutos deve possibilitar a instalação e retirada com facilidade dos condutores, bem com deixar uma área livre para permitir a dissipação de calor.
- A NBR 5410/2004 define as seguintes prescrições com relação a taxa máxima de ocupação:
 - A taxa máxima de ocupação do eletroduto, dado pelo quociente entre a soma das áreas da seções transversais dos condutores previstos e a área útil da seção transversal do eletroduto, não deve ser superior a :
 - 53% no caso de um condutor (fio ou cabo);
 - 31% no caso de dois condutores;
 - 40% no caso de três ou mais condutores.

Instalação de Eletrodutos

- A NBR 5410/2004 determina as condições para instalação de caixas de derivação ou de passagem, para interligar trechos de eletrodutos.
- Trechos contínuos de eletrodutos:
 - Os trechos contínuos de tubulação, não devem exceder 15m de comprimento para linhas internas a edificação e 30m para linhas externas a edificação;
 - Se os trechos incluírem curvas, o limite de 15m e 30m deve ser reduzido em 3m para cada curva de 90°;
 - Quando o eletroduto passar por um local que não seja possível a instalação de caixa de passagem, o comprimento do trecho pode ser aumentado, desde que seja utilizado um eletroduto de tamanho nominal imediatamente superior para cada 6m, ou fração, de aumento da distância calculada.
- Em cada trecho da tubulação, entre duas caixas de passagem, podem ser previstas no máximo três curvas de 90°. Não pode haver curva com deflexão superior a 90°.

Roteiro para Dimensionamento de Eletrodutos

- Para o dimensionamento de eletrodutos, deve-se proceder da seguinte forma:
 - a) Para condutores de seções diferentes, determinar a seção total ocupada pelos condutores conforme a tabela abaixo, utilizando a seguinte equação:

$$S_T = \sum_{n=1}^{N} \left(\frac{\pi \times D_n^2}{4} \right)$$

Tabela 11.4 - Dimensões totais dos condutores isolados, para 750 V e 1000 V.

Seção Nominal				750 V	1000 V					
		Pirastic	Antifla	n	Pirastic-flex	Antiflan	Energibrás			
do Condutor (mm²)	Diâmetro Externo (mm)		Area Total		Diâmetro Área Externo Total (mm) (mm²)		Diâmetro Condutor	Diâmetro Externo	Área Total	
(111111-)	Fios	Cabos	Fios	Cabos	Fios	Cabos	Nu (mm)	(mm²)	(mm²)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
1,5	2,8	3,0	6,2	7,1	3,0	7,1	1,57	5,17	21,0	
2,5	3,4	3,7	9,1	10,7	3,6	10,2	2,02	5,62	24,8	
4	3,9	4,2	11,9	13,8	4,2	13,8	2,56	6,56	33,8	

Roteiro para Dimensionamento de Eletrodutos

b) Determinar o diâmetro externo do eletroduto (mm), com o valor de S_T obtido no item a, por meio da tabela abaixo.

D_i – Diâmetro interno do eletroduto (mm).

S_T – Área ocupada pelos condutores elétricos

 T_x – Taxa de ocupação (0,53; 0,31; 0,4);

S_e= Área interna do eletroduto;

$$S_T = \frac{\pi D_i^2 T_X}{4}$$

Eletrodutos de PVC rígido

-											
Referência de Rosca	Diâmetro Externo Nominal (mm)	Diâmetro Interno (mm)	Espessura Parede (mm)	Área Total Aprox. (mm²)	Área Útil (mm²) 1 cabo(53%)	Área Útil (mm²) 2 cabos (31%)	Área Útil (mm²)³ 3 cabos (40%)				
"1/2"""	20	16	2,2	201,1	106,6	62,3	80,4				
"3/4"""	25	21	2,6	346,4	183,6	107,4	138,6				
"1""	32	26,8	3,2	564,1	299,0	174,9	225,6				
"1.1/4"""	40	35,0	3,6	962,1	509,9	298,3	384,8				

Roteiro para Dimensionamento de Eletrodutos

c) Para determinar o comprimento máximo dos eletrodutos para interligação de caixa de passagem, utiliza-se a equação:

L_{max}- Comprimento máximo entre duas caixas (m).

N- Número máximo de curvas de 90° no trecho (0-3).

d) Quando não for possível a utilização de caixa de passagem dentro dos limites definidos por norma, utiliza-se um eletroduto de seção nominal imediatamente superior para cada 6m, ou fração, de aumento dessa distância. Deve-se utilizar esta equação:

A- Aumento do eletroduto

L_{real}- Comprimento real do trecho (m)

L_{rmax}- Comprimento máximo por Norma (m)

$$A = \frac{L_{real} - L_{max}}{6}$$

Exemplo 3.4) Dimensione o trecho do eletroduto de PVC rígido, conforme desenho apresentado a seguir. Considere os condutores como cabos (750V – Pirastic Antiflam) e o trecho da instalação como sendo interno a residência.

Inicialmente deve ser calculada a área total ocupada pelos condutores. Da <u>Tabela 11.4</u> temos:

$$S_T = 2 \times \left(\frac{\pi \times 3.7^2}{4}\right) + 5 \times \left(\frac{\pi \times 4.2^2}{4}\right) = 90.78 \text{ mm}^2$$

$$D_i = 2\sqrt{\frac{S_T}{\pi \times T_X}} = 2\sqrt{\frac{90,78}{\pi \times 0,4}} = 17 \text{ mm}$$

Da <u>Tabela 11.3</u> encontramos um D_i =21mm, e assim o eletroduto de PVC rígido deve ser de 25mm ou $\frac{3}{4}$ ".

Obs: Não é necessário aumentar o diâmetro do eletroduto, pois $L_{real} < L_{max}$ (12,5 < 15m) considerando o trecho sem curvas.

Tabelas

Tabela 11.3 - Eletrodutos de PVC rígido com rosca.

Referência de Rosca	Diâmetro Externo Nominal (mm)	Diâmetro Interno (mm)	Espessura Parede (mm)	Área Total Aprox. (mm²)	Área Útil (mm²) 1 cabo(53%)	Área Útil (mm²) 2 cabos (31%)	Área Útil (mm²)³ 3 cabos (40%)
"1/2"""	20	16	2,2	201,1	106,6	62.3	80,4
"3/4"""	25	21	2,6	346,4	183,6	107,4	138,6
*1****	32	26,8	3,2	564,1	299,0	174,9	225,6
"1.1/4"""	40	35,0	3,6	962,1	509,9	298,3	384,8
"1.1/2""	50	39,8	4,0	1244,1	659,4	385,7	497,6
"2"""	60	50,2	4,6	1979,2	1049,0	613,6	791,7
"2.1/2"""	75	64,1	5,5	3227,0	1710,3	1000,4	1290,8
"3"""	85	75,6	6,2	4488,8	2379,1	1391,5	1795,5

Tabela 11.4 - Dimensões totais dos condutores isolados, para 750 V e 1000 V.

Seção Nominal do Condutor (mm²)				750 V	1000 V					
		Pirastic	Antifla	n	Pirastic-flex	Antiflan	Energibrás			
	Diâmetro Externo (mm)		Seção ou Área Total (mm²)		Diâmetro Externo (mm)	Área Total (mm²)	Diâmetro Condutor Nu (mm)	Diâmetro Externo	Área Total	
(,	Fios	Cabos	Fios	Cabos	Fios	Cabos	Nu (IIIII)	(mm²)	(mm²)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
1.5	28	3.0	6,2	7,1	3,0	7,1	1,57	5,17	21,0	
2,5	3,4	3,7	9,1	10,7	3,6	10,2	2,02	5,62	24,8	
4	3,9	4,2	11,9	13,8	4,2	13,8	2,56	6,56	33,8	
6	4,4	4,8	15,2	18,1	4,7	17,3	3,14	7,14	40,0	
10	5,6	5,9	24,3	27,3	6,1	29,2	4,05	8,25	53,4	
16	6,5	6,9	33,2	37,4	7,8	47,8	5,13	9,33	68,3	
25		8,5	5	6,7	9,6	72,4	6,4	11,2	98,5	

Exemplo 3.5) Dimensione o trecho do eletroduto de PVC rígido, conforme desenho apresentado a seguir. Considere os condutores como cabos (750V – Pirastic Antiflam) e o trecho da instalação como sendo interno a residência.

Inicialmente deve ser calculada a área total ocupada pelos condutores. Da <u>Tabela 11.4</u> temos:

$$S_T = 5 \times \left(\frac{\pi \times 6.9^2}{4}\right) + 4 \times \left(\frac{\pi \times 8.5^2}{4}\right) = 358,51 \text{ mm}^2$$

$$D_i = 2\sqrt{\frac{S_T}{\pi \times T_X}} = 2\sqrt{\frac{358.51}{\pi \times 0.4}} = 33,78 \text{ mm}$$

Da <u>Tabela 11.3</u> encontramos um D_i =35mm, e assim o eletroduto de PVC rígido deve ser de 40 mm ou 1 $\frac{1}{4}$ ".

Porém, devido ao comprimento e o número de curvas temos:

- Lreal=18m, curvas de 90°=3
- Distância máxima entre CPs: Lmax=15-3*N=15-3*3=6m

Podemos verificar que a distância real (L_{real}) é superior a distância máxima (L_{max}). Assim, devemos calcular o número de aumentos do diâmetro do eletroduto.

$$A = \frac{L_{real} - L_{\max}}{6}$$

$$A = \frac{18 - 6}{6} = 2$$

Dessa forma devemos aumentar o eletroduto em duas vezes o valor nominal. Da <u>Tabela</u> <u>11.3</u> encontramos 60mm ou 2"

Tabelas

Tabela 11.3 - Eletrodutos de PVC rígido com rosca.

Referência de Rosca	Diâmetro Externo Nominal (mm)	Diâmetro Interno (mm)	Espessura Parede (mm)	Área Total Aprox. (mm²)	Área Útil (mm²) 1 cabo(53%)	Área Útil (mm²) 2 cabos (31%)	Área Útil (mm²)³ 3 cabos (40%)
"1/2"""	20	16	2,2	201,1	106,6	62,3	80,4
"3/4"""	25	21	2,6	346,4	183,6	107,4	138,6
"1"""	32	26,8	3,2	564,1	299,0	174.9	225,6
"1.1/4""	40	35,0	3,6	962,1	509,9	298,3	384,8
"1.1/2"""	50	39,8	4,0	1244,1	659,4	385,7	497,6
"2"""	60	50,2	4,6	1979,2	1049,0	613,6	791,7
"2.1/2"""	75	64,1	5,5	3227,0	1710,3	1000,4	1290,8
"3"""	85	75,6	6,2	4488,8	2379,1	1391,5	1795,5

Tabela 11.4 - Dimensões totais dos condutores isolados, para 750 V e 1000 V.

Seção Nominal do Condutor (mm²)				750 V	1000 V					
		Pirastic	Antifla	n	Pirastic-flex	Antiflan	Energibrás			
	Diâmetro Externo (mm)		Seção ou Área Total (mm²)		Diâmetro Externo (mm)	Área Total (mm²)	Diâmetro Condutor Nu (mm)	Diâmetro Externo (mm²)	Área Total	
(Fios	Cabos	Fios	Cabos	Fios	Cabos	Nu (IIIII)	(11111-)	(mm²)	
(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)	(9)	(10)	
1,5	2,8	3,0	6,2	7,1	3,0	7,1	1,57	5,17	21,0	
2,5	3,4	3,7	9,1	10,7	3,6	10,2	2,02	5,62	24,8	
4	3,9	4,2	11,9	13,8	4,2	13,8	2,56	6,56	33,8	
6	4,4	4,8	15,2	18,1	4,7	17,3	3,14	7,14	40,0	
10	5.6	5.9	24,3	27,3	6,1	29,2	4,05	8,25	53,4	
16	6,5	6,9	33,2	37,4	7,8	47,8	5,13	9,33	68,3	
25		8,5	5	6,7	9,6	72,4	6,4	11,2	98,5	