

/TYO YHUBEPCUTET UTMO

«Моделирование»

АЛИЕВ Тауфик Измайлович, д.т.н., профессор Лектор:

> комн. 1334 tialiev@itmo.ru

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники

Рекомендуемая литература

- 1. Электронные учебно-методические материалы по дисциплине «Моделирование» в ИСУ ИТМО
- 2. Алиев Т.И. Моделирование дискретных систем. СПб: СПбГУ ИТМО, 2009. 363 с. https://books.ifmo.ru/book/445/osnovy modelirovaniya diskretnyh sistem.htm
- 3. Алиев Т.И., Муравьева-Витковская Л.А., Соснин В.В. Моделирование: задачи, задания, тесты. Учебное пособие. СПб.: НИУ ИТМО, 2011. 197 c. https://books.ifmo.ru/book/686/modelirovanie: zadachi, zadaniya, testy.htm
- 4. Алиев Т.И. Основы проектирования систем. СПб: Университет ИТМО, 2015. 120 с.
- https://books.ifmo.ru/book/1638/osnovy_proektirovaniya_sistem:_uchebnoe_posobie.. htm
- 5. Кельтон В., Лоу А. Имитационное моделирование. Классика СS. 3-е изд. СПб.: Питер; Киев: Издательская группа ВНV, 2004. 847 с.: ил.
- 6. Советов, Б. Я. Моделирование систем: учебник для академического бакалавриата / Б. Я. Советов, С. А. Яковлев. 7-е изд. М.: Изд-во Юрайт, 2017. 343 с.

Вместо ПРЕДИСЛОВИЯ

Понятия модели и их многообразие

Модель — это:

- объект, обладающий существенными свойствами другого (реального) объекта (системы) и используемый для описания протекающих в реальном объекте процессов и/или для изучения его свойств;
- упрощенное представление реального объекта (устройства) и/или протекающих в нем процессов, явлений;

•

Виды моделей (объектов моделирования):

- образец изделия: модель одежды, обуви,...;
- материальный объект (макет) в уменьшенном виде: модель здания, самолета, автомобиля, корабля, ...;
- натурщик или натурщица, позирующие перед фотографом или художником;
- человек, демонстрирующий на подиуме образцы одежды;
- художественное произведение (картина, фотография), отображающее реальность;
- *математическое описание* физического объекта, <u>системы</u> или процесса (модель атома, химического элемента, управления объектом, компьютерной сети, ...);
- компьютерная программа, ...

Вместо ПРЕДИСЛОВИЯ

Примеры систем для моделирования

Работая над решением задачи, всегда полезно знать ответ. (Закон Мэрфи)

1. Перекресток со светофорами, зеленый сигнал которых в каждом направлении может гореть:

а) 10 секунд; б) 30 секунд; в) 60 с; г) 120 с; ...

2. В высотном доме:

- а) 1 лифт вместимостью 40 человек;
- б) 2 лифта вместимостью по 20 человек;
- в) 4 лифта вместимостью по 10 человек;
- г) ...

3. Сервер локальной сети:

1 сервер с производительностью 1000 запросов/с;

2 сервера с производительностью каждого сервера <u>500</u> запросов/с.

4. Канал связи сервера локальной сети с маршрутизатором:

- а) с пропускной способностью 100 Мбит/с или 1 Гбит/с;
- б) с пропускной способностью 100 Мбит/с или 1 Гбит/с при условии 10-ти кратного увеличения числа пользователей ЛВС.

Вместо ПРЕДИСЛОВИЯ

Система – как объект моделирования

Система – объект, обладающий определенными особенностями (свойствами).

Модель — математический или физический объект такой же или другой природы, обладающий такими же (адекватными) свойствами, что и моделируемый объект (система).

Виды моделирования систем

1. По классу моделей

- Математическое моделирование
 - ▶Статистическое моделирование
 - ➤Имитационное моделирование
 - ✓ Экономико-математическое моделирование
 - ✓ Математико-картографическое моделирование
 - ✓ Логическое моделирование
- Физическое моделирование
 - ➤ Натурное моделирование
- Компьютерное моделирование

2. По задачам

- ▶Структурное моделирование
- >Функциональное моделирование
- ≻Нагрузочное моделирование
- >Информационное моделирование
- Графическое и геометрическое моделирование
- Эволюционное моделирование
- •

Разделы дисциплины

«Даже если ваше объяснение настолько ясно, что исключает всякое ложное толкование, все равно найдется человек, который поймет вас неправильно» (Законы Мэрфи)

Часть 1:

1. Общие	вопросы моделирования	(см. [2]]: Раздел 1)
т. Осщио	Ben pe est megeninge summi	(•) —	1. 1 000 001 1

Часть 2: дополнительные материалы.

^{2.} Алиев Т.И. Основы моделирования дискретных систем. – СПб: СПбГУ ИТМО, 2009. – 363 с. https://books.ifmo.ru/book/445/osnovy modelirovaniya diskretnyh sistem.htm

^{4.} Алиев Т.И. Основы проектирования систем. – СПб: Университет ИТМО, 2015. – 120 с. https://books.ifmo.ru/book/1638/osnovy proektirovaniya sistem: uchebnoe posobie..htm

1. ОБЩИЕ ВОПРОСЫ МОДЕЛИРОВАНИЯ

- 1.1. Система
- 1.2. Модель
- 1.3. Задачи, методы и средства моделирования
- 1.4. Этапы моделирования

<u>Литература</u>

для самостоятельной подготовки

2. Алиев Т.И. Основы моделирования дискретных систем. — СПб: СПбГУ ИТМО, 2009. — 363 с. (Введение / Раздел 1 «Общие вопросы моделирования»)

https://books.ifmo.ru/book/445/osnovy_modelirovaniya_diskretnyh_sistem.htm

1. ОБЩИЕ ВОПРОСЫ МОДЕЛИРОВАНИЯ Введение

<u>Модель</u> — физический или абстрактный объект, адекватно отображающий некоторую *систему* и предназначенный для её **исследования** путем решения задач *анализа* и *синтеза*.

Два подхода к исследованию систем:

- 1) измерения на реальных системах (экспериментальное исследование);
- 2) моделирование, когда измерения:
 - •трудно выполнимы;
 - •экономически невыгодны;
 - •вообще невозможны

(исследование на моделях).

Моделирование — основа для *исследования* систем, а именно:

- о изучения *свойств* систем;
- о анализа поведения систем;
- о проектирования сложных систем;
- о предсказания поведения системы (предиктивная или предсказательная аналитика).

Основные типы моделей:

- •физические / математические;
- •качественные / *количественные* или конструктивные;
- •аналитические / имитационные.

1. ОБЩИЕ ВОПРОСЫ МОДЕЛИРОВАНИЯ

Введение

Основные понятия

Система (от греч. *systema* — целое, составленное из частей; соединение) — совокупность взаимосвязанных элементов, объединенных в одно целое для достижения некоторой **цели**, определяемой **назначением** системы.

«Всё в мире относительно» (Закон относительности)

Структурная организация определяется функцией, возлагаемой на систему

Способы описания структуры и функции

Фундаментальные свойства систем

«Большая система, образованная увеличением размеров меньшей, ведет себя совсем не так, как ее предшественница» (Теорема о неаддитивности поведения систем)

Общие (фундаментальные) свойства систем

Целостность

система рассматривается как единое целое, состоящее из взаимодействующих элементов, возможно неоднородных, но одновременно совместимых

Связность

наличие *существенных* связей между элементами, которые определяют *интегративные* свойства системы

Организованность

наличие определенной структурной и функциональной организации

Интегративность

наличие качеств, присущих системе в целом, но не свойственных ни одному из ее элементов в отдельности

Выводы:

- система не есть простая совокупность элементов;
- расчленяя систему на отдельные части и изучая каждую из них в отдельности, нельзя познать все свойства системы в целом.

Задачи исследования и эффективность системы

«Оптимист верит, что мы живем в лучшем из миров. Пессимист боится, что так оно и есть» (Главный парадокс)

Параметры и характеристики

«В любом наборе исходных данных самая надежная величина, не требующая никакой проверки, является ошибочной» (Третий закон Финэйгла)

Взаимосвязь параметров и характеристик

$$H = f_c(P)$$

Процессы в системе

Процесс (от лат. processus – продвижение) – смена состояний системы во времени.

Состояние системы задается совокупностью значений переменных, описывающих это состояние.

<u>Переход</u> из одного состояния в другое, если изменяются переменные, описывающие ее состояние.

<u>Событие</u> – причина, вызывающая переход из состояния в состояние.

Классификация систем и процессов

1.2. МОДЕЛЬ

Требования к моделям и типы моделей

«Усложнять - просто, упрощать – сложно» (Закон Мейера)

1.2. МОДЕЛЬ

Классификация моделей

1.2. МОДЕЛЬ

Укрупненная схема моделирования

- $\{P\}$ множество системных параметров (структурных, функциональных, нагрузочных, ...);
- {H} множество *системных характеристик* (показателей качества) системы;

- {Р_м} множество модельных параметров;
- $\{H_{_{M}}\}$ множество модельных характеристик.
- $\{P\} \longrightarrow \{P_{_{M}}\}$ преобразование системных параметров в модельные (параметризация)
- $\{P_{_{M}}\}\longrightarrow \{H_{_{M}}\}$ определение (расчет) модельных характеристик
- {H} **←----** {H_м} интерпретация модельных характеристик в терминах системных

Задачи исследования систем и процессов:

- •анализ свойств системы;
- •синтез (оптимальный).

Методы исследования систем (процессов):

- •экспериментальные (измерение);
- •моделирование (математическое).

1.3. Задачи, методы и средства моделирования Задачи моделирования

«Нет невыполнимой работы для человека, который не обязан делать ее сам» (Закон Вейлера)

1.3. Задачи, методы и средства моделирования <u>Параметризация</u>

«Если кажется, что работу сделать легко, это непременно будет трудно» (**Теорема Стакмайера**)

Методы и средства моделирования

«Все не так легко, как кажется» (Следствие закона Мэрфи)

Достоинство имитационного (статистического) моделирования – *универсальность* – возможность проведения анализа систем любой степени сложности с любой степенью детализации.

Сравнительный анализ методов моделирования

Метод моделирования	Сложность метода	Общность рез-тов	Точность рез-тов	Затраты времени	Матер. затраты	Задачи синтеза
Аналитический	{+}	{++++}	+	{+}	{+}	{+}
Имитационный	+++	+	{++++}	++++	++++	++++
Комбинированный	++++	++	+++	+++	+++	+++

Проблемы (недостатки) имитационного моделирования:

- экспоненциальной рост сложности модели при увеличении количества параметров системы;
- большие временные затраты на разработку модели и проведение многочисленных экспериментов;
- высокие требования к техническим средствам моделирования (компьютеру);
- наличие методической (и не только) погрешности;
- необходимость грамотного *планирования экспериментов из-за необходимости* выполнения большого числа экспериментов для решения задач анализа свойств исследуемой системы;
- значительные проблемы при попытке решения задач *оптимального синтеза* (проектирования) больших систем (процессов с большим числом состояний);
- проблемы моделирования и высоконагруженных систем (а также малонагруженных).

Системы имитационного моделирования

<u>GPSS World</u> — среда имитационного моделирования общего назначения, охватывает области дискретного и непрерывного моделирования. Включает язык *PLUS* — язык программирования нижнего уровня. Система *GPSS World* допускает многозадачность, позволяя нескольким имитационным моделям выполняться одновременно.

Разработчик: компания Minuteman Software Corp., США. Сайт: www.minutemansoftware.com.

GPSS/H — моделирование дискретных и непрерывных систем.

Разработчик: компания Wolverine Software Corp., США. Сайт: www.wolverinesoftware.com.

<u>Расширенный редактор GPSS World</u> — универсальная система имитационного моделирования, охватывающая весь цикл имитационных исследований, от постановки задачи до документирования результатов. Основные особенности системы:

- высокий уровень интерактивности при проведении исследования;
- упрощение разработки моделей и проведения исследований;
- большой объем текстовой документации и оперативных подсказок.

Возможна организация облачного моделирования в сети Интернет. Имеется бесплатная студенческая версия системы.

Разработчик: компания ООО «Элина-компьютер», Казань, Россия. Сайт: www.elina-computer.ru.

Системы имитационного моделирования

<u>Arena</u> — система дискретного моделирования производственных технологических процессов и операций, складской учет, банковская деятельность, оптимизация обслуживания клиентов в сфере услуг, транспортные задачи. Имеет удобный объектно-ориентированный интерфейс и может адаптироваться к различным предметным областям, не требует написания программного кода, проста в использовании, но для ее освоения требуются значительное время и достаточно глубокие знания теории вероятностей, математической статистики, теории массового обслуживания, сетей Петри и др.

Разработчик: Rockwell Automation Inc., Wexford, PA, США. Сайт: www.arenasimulation.com.

<u>АпуLogic</u> поддерживает три подхода к созданию имитационных моделей: дискретно-событийный (процессно-ориентированный), системно-динамический и агентный, а также любую их комбинацию. *Графический интерфейс, инструменты* и библиотеки позволяют создавать модели для широкого круга задач в различных областях. *AnyLogic* широко применяется для бизнес-моделирования во многих международных компаниях, используется в образовании.

Разработчик: The AnyLogic Company, Россия. Сайт: www.anylogic.ru.

Система имитационного моделирования AnyLogic

1.4. Этапы моделирования

1. Разработка модели

- Разработка *концептуальной* модели (определение состава параметров и характеристик и выявление степени влияния параметров на характеристики).
- Разработка (выбор) математической модели.
- Параметризация модели.
- Обоснование адекватности модели.

2. Анализ свойств

- ▶ Выбор метода моделирования (аналитический, имитационный, комбинированный).
- Выбор *средств* моделирования (GPSS, Any Logic, Arena, NS3, ...).
- Р Проведение множества модельных экспериментов.
- Обработка и формирование результатов моделирования.
- Оценка погрешности (точности) результатов моделирования.
- Перенос результатов моделирования на реальную систему (анализ свойств реальной системы).
- Формулирование рекомендаций для проектирования.

3. Синтез (проектирование) системы с заданными свойствами

- Формулирование требований и формирование критерия эффективности.
- > Определение состава и структуры проектируемой системы (структурный синтез)
- Выбор, разработка и реализация принципов и методов функциональной организации (функциональный синтез)
- Оценка допустимой нагрузки в системе с заданной структурно-функциональной организацией

4. Детальный анализ спроектированной системы

/TYO YHUBEPCUTET UTMO

«Моделирование»

Лектор: АЛИЕВ Тауфик Измайлович, д.т.н., профессор

> tialiev@itmo.ru (комн. 1334)

Национальный исследовательский университет ИТМО (НИУ ИТМО)

Факультет программной инженерии и компьютерной техники