

F3

Faculty of Electrical Engineering Department of Computer Science

Master's Thesis

FIDO2 USB Security Key

Martin Endler
Open Informatics – Cybersecurity

May 2025

https://github.com/pokusew/fel-masters-thesis

Supervisor: Ing. Jan Sobotka, Ph.D.

MASTER'S THESIS ASSIGNMENT

I. Personal and study details

Student's name: Endler Martin Personal ID number: 483764

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: **Department of Computer Science**

Study program: Open Informatics
Specialisation: Cyber Security

II. Master's thesis details

Master's thesis title in English:	
FIDO2 USB Security Key	
Master's thesis title in Czech:	
FIDO2 USB bezpečnostní klíč	
Name and workplace of master's thesis supervisor:	
Ing. Jan Sobotka, Ph.D. Department of Measu	rement FEE
Name and workplace of second master's thesis supe	ervisor or consultant:
Date of master's thesis assignment: 02.09.2024 Assignment valid until: 15.02.2026	Deadline for master's thesis submission: 23.05.2025
Head of department's signature	prof. Mgr. Petr Páta, Ph.D. Vice-dean's signature on behalf of the Dean
I. Assignment receipt	
The student acknowledges that the master's thesis is an individual the student must produce his thesis without the assistance of oth Within the master's thesis, the author must state the names of contract the student must be student must	ners, with the exception of provided consultations.
Date of assignment receipt	Student's signature

MASTER'S THESIS ASSIGNMENT

I. Personal and study details

Student's name: Endler Martin Personal ID number: 483764

Faculty / Institute: Faculty of Electrical Engineering

Department / Institute: Department of Computer Science

Study program: Open Informatics
Specialisation: Cyber Security

II. Master's thesis details

Master's thesis title in English:

FIDO2 USB Security Key

Master's thesis title in Czech:

FIDO2 USB bezpečnostní klíč

Guidelines:

FIDO2 is a set of standards based on asymmetric cryptography that enables easy, secure, and phishing-resistant authentication.

The goal of this work is to create a new open-source implementation of a FIDO2 USB hardware external authenticator that is well-documented and thoroughly tested and offers a detailed yet accessible insight into the inner workings of FIDO2, which is something that existing implementations currently lack.

- 1. Make yourself familiar with the FIDO2 set of standards.
- 2. Review suitable technologies and existing similar projects.
- 3. Implement a working FIDO2 USB hardware external authenticator ("security key") from scratch. External libraries can be used for some low-level generic components.
- 4. Follow software development best practices and use applicable software quality assurance methodologies.
- 5. Demonstrate the working of the implementation with authentication flows on real WebAuthn-enabled websites.
- 6. Document the work and make it publicly available on GitHub.

Bibliography / sources:

[1] W3C (April 8, 2021). Web Authentication: An API for accessing Public Key Credentials – Level 2. W3C Recommendation. https://www.w3.org/TR/webauthn-2/

[2] FIDO Alliance (June 21, 2022). Client to Authenticator Protocol (CTAP). CTAP 2.1 Proposed Standard. https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html [3] USB Implementers Forum (April 27, 2000). USB 2.0 Specification.

https://usb.org/document-library/usb-20-specification

FAKULTA ELEKTROTECHNICKÁ

FACULTY OF ELECTRICAL ENGINEERING

Technická 2 166 27 Praha 6

DECLARATION

I, the undersigned

Student's surname, given name(s): Endler Martin Personal number: 483764

Programme name: Open Informatics

declare that I have elaborated the master's thesis entitled

FIDO2 USB Security Key

independently, and have cited all information sources used in accordance with the Methodological Instruction on the Observance of Ethical Principles in the Preparation of University Theses and with the Framework Rules for the Use of Artificial Intelligence at CTU for Academic and Pedagogical Purposes in Bachelor's and Continuing Master's Programmes.

I declare that I used artificial intelligence tools during the preparation and writing of this thesis. I verified the generated content. I hereby confirm that I am aware of the fact that I am fully responsible for the contents of the thesis.

In Prague on 21.05.2025

Bc. Martin Endler

student's signature

Errata

Version of this text: **2025-05-23 18:29 CEST**

The latest version of this text can be found at the following URL:

https://github.com/pokusew/fel-masters-thesis

Acknowledgement

First, I would like to thank my supervisor Ing. Jan Sobotka, Ph.D. for his guidance, support, and patience. Second, I would like to thank my family and close friends for always supporting me throughout my studies.

Abstract / Abstrakt

FIDO2 is a set of standards based on asymmetric cryptography that enables easy, secure, and phishing-resistant authentication. The strong support from Google, Microsoft, Apple, and other major technology companies in the FIDO Alliance is driving the adoption of FIDO2 across the industry.

This thesis focuses on creating a new open-source FIDO2 USB hardware external authenticator. We provide an overview of the relevant technologies and standards, specifically Web Authentication and CTAP2. We also review existing similar projects. Then, we proceed to the actual implementation. We document our decisions and the most important parts. resulting fully functional CTAP 2.1 compliant implementation is publicly available on GitHub. It utilizes hardware-accelerated cryptography on the STM32H533 MCU, passes FIDO2 conformance tests, and is usable for authentication on real WebAuthn-enabled websites.

We hope our work will contribute to the popularization and better understanding of the FIDO2 technology.

Keywords: FIDO2, WebAuthn, CTAP, CTAP2, USB, CTAPHID, security key, passkeys, authenticator, passwordless authentication, multi-factor authentication, MFA, second-factor authentication, 2FA, asymmetric cryptography, public key cryptography, Elliptic-curve cryptography, ECC

FIDO2 je sada standardů založených na asymetrické kryptografii, která umožňuje snadnou, bezpečnou a proti phishingu odolnou autentizaci. Silná podpora ze strany společností Google, Microsoft, Apple a dalších významných technologických firem v rámci FIDO Alliance podporuje adopci FIDO2 v celém odvětví.

Tato práce se zaměřuje na vytvoření nového open-source FIDO2 USB hardwarového externího autentizátoru. Nejdříve popisuje relevantní technologie a standardy, zejména Web Authentication a CTAP2. Také zmiňuje existující podobné projekty. Poté přistupuje k samotné implementaci. Dokumentuje rozhodnutí a nejdůležitější části. Výsledná plně funkční implementace splňující CTAP 2.1 specifikaci je veřejně dostupná na GitHubu. Využívá hardwarově akcelerovanou kryptografii na STM32H533, prochází testy shody FIDO2 a je použitelná pro autentizaci na skutečných webových stránkách s podporou WebAuthn.

Doufáme, že naše práce přispěje k popularizaci a lepšímu porozumění technologii FIDO2.

Klíčová slova: FIDO2, WebAuthn, CTAP, CTAP2, USB, CTAPHID, bezpečnostní klíč, passkeys, autentizátor, přihlášení bez hesla, vícefaktorová autentizace, MFA, dvoufaktorová autentizace, 2FA, asymetrická kryptografie, kryptografie s veřejným klíčem, kryptografie nad eliptickými křivkami, ECC

Překlad titulu:

FIDO2 USB bezpečnostní klíč

Contents /

1 Introduction 1	
1.1 Structure	
1.2 Thesis Objective 2	
2 FIDO2 3	
2.1 Public Key Cryptography 4	
2.2 Functional Description 4	
2.3 Key Benefits 5	
2.4 Terminology 5	
2.4.1 Relying party (RP) 6	
2.4.1 Relying party (Rf.)	
2.4.2 Client	
2.4.4 Client Platform 6	
2.4.5 Authenticator 6	
2.4.6 AAGUID 6	
2.4.7 Credential	
2.4.8 User Verification	
2.4.9 User Presence	
2.4.10 Credential Storage Modality . 7	
2.5 Ceremonies 8	
2.5.1 Registration 8	
2.5.2 Authentication 10	
2.6 CTAP2 10	
2.6.1 Authenticator API 10	
2.6.2 PIN/UV Auth Protocol $$. $$. 12	
2.6.3 Message Encoding 12	
2.6.4 CTAPHID 13	
3 Existing Work 14	
3.1 Open-Source Software and	
Hardware 14	
3.1.1 SoloKeys 14	
3.1.2 OpenSK by Google 14	
3.1.3 Nitrokey 14	
3.2 Other Relevant Projects $\ .\ .\ .\ .\ 14$	
4 Implementation 15	
4.1 Goals	
4.2 Maintaining Quality 15	
4.3 Choosing Hardware 15	
4.4 USB	
4.5 CTAPHID	
4.6 CBOR Parsing	
4.7 Arbitrary-length Strings 15	
4.8 PIN/UV Auth Protocol 16	
4 9 Cryntagranny	
71	
4.10 CTAP2	

4.10.2 Stateful Commands	16
4.11 State Persistence	16
4.12 Debugging Interface via UART	16
4.13 Trust Zone	16
4.14 Architecture	16
4.14.1 CTAP2	16
4.14.2 CTAPHID	16
4.14.3 USB	17
4.14.4 Persistent Storage	17
5 Results Evaluation	19
5.1 FIDO Conformance Tools	19
5.1.1 Authenticator Metada-	
ta Statement	19
5.2 Use on Real WebAuthn-	
enabled websites	19
5.3 LionKey	19
6 Conclusion	20
6.1 Future Work	20
References	21
A Glossary	23

/ Figures

1.1	Security Key NFC by Yubico2
1.2	GoTrust Idem Key
2.1	Simplified WebAuthn au-
	thentication flow4
2.2	WebAuthn Registration Flow8
2.3	WebAuthn Authnentication
	Flow 10

Chapter 1 Introduction

Passwords as a means of authentication suffer from many problems. More than 80% of confirmed breaches are related to stolen, **weak**, **or reused passwords** [1]. Password-based credentials are the target of **phishing attacks**, which are becoming more sophisticated every day. This poses a major threat since 84% of users reuse the same passwords across multiple sites [2]. To limit this threat and to increase the overall security of authentication, two-factor (2FA) or multi-factor (MFA) authentication flows are being increasingly used [2].

However, the standard MFA mechanisms, including one-time codes delivered via insecure channels (such as SMS, voice call, or email), TOTPs (e.g., Google Authenticator), and proprietary push notification-based systems, do not provide sufficient security. Not only are they all still susceptible to phishing attacks, but they also greatly hinder the user experience.

To solve this problem, the FIDO Alliance was launched in 2013. It develops and promotes strong authentication standards that "help reduce the world's over-reliance on passwords" [3].

Its latest set of standards, jointly developed with the W3C (World Wide Web Consortium), is called FIDO2. It is based on asymmetric cryptography, and it enables easy, secure, and phishing-resistant authentication for online services (primarily on the web, but it can be used in native applications as well). It supports passwordless, second-factor, and multi-factor user experiences with platform authenticators (such as Apple ID with Face ID or Touch ID, Windows Hello, and Google Password Manager on Android) or external (roaming) authenticators (such as FIDO2 security keys). All major OSs, browsers, and a growing number of websites and applications support FIDO2 [4–6].

Among the FIDO Alliance's 250 members are all the major technological companies [7]. Google (one of the FIDO founding members), Microsoft, and Apple have become vocal advocates for passwordless authentication based on passkeys (the enduser-centric term for FIDO2 credentials) since 2022 when they announced their public commitment to expand support of FIDO2 [8].

With the ever-increasing adoption of FIDO2 across the industry [1], it is useful to understand how this technology works and what its benefits are. In order to do that, we decided to create a new open-source implementation of an external (roaming) FIDO2 authenticator from scratch.

1.1 Structure

This thesis is structured as follows:

First, in Section 1.2, we define **the objective** of the thesis.

Second, in Chapter 2, we establish the necessary theoretical foundation by **describing** FIDO2 in detail. We also review existing projects related to our goal in Chapter 3.

Next, in Chapter 4, we describe **the actual implementation**, which represents the main contribution of this thesis. Then, we **test and evaluate** our implementation in Chapter 5. Finally, in Chapter 6, we conclude the thesis by summarizing **the achieved results**.

1.2 Thesis Objective

The objective of this work is to create a new **open-source implementation of a FIDO2 USB hardware-based security key** that is fully functional, well-documented and thoroughly tested and offers a detailed yet accessible insight into the inner workings of FIDO2, which is something that existing open-source implementations currently lack.

In terms of WebAuthn (which we explain in 2), we aim to create a roaming authenticator with cross-platform attachment using CTAP 2.1 over USB 2.0 (CTAPHID) as the communication protocol, that supports user verification using PIN (CTAP2 ClientPIN), and is capable of storing passkeys (client-side discoverable credentials).

The end result should be similar to proprietary commercial products such as those from Yubico 1.1 or GoTrust 1.2. Nevertheless, our work focuses on the software implementation (optimized for use on resource-constrained hardware platforms), not on the physical product or the hardware design. As a part of our work, we will select a suitable MCU-based hardware platform for our implementation.

We want to create an implementation that is self-contained, with a minimum number of dependencies. By implementing all the key parts from scratch, we can develop a deep understanding of FIDO2/WebAuthn.

Finally, by focusing on the quality and the documentation, this implementation could help others understand the FIDO2 standards, and, in general, contribute to the popularization of FIDO2 technology.

Figure 1.1. Security Key NFC by Yubico, one of the most typical FIDO2 USB/NFC security keys (or more precisely, cross-platform roaming authenticators).

Figure 1.2. GoTrust Idem Key, a FIDO2 USB/NFC security key with FIDO Authenticator Certification Level 2 (L2) [9].

Chapter 2 FIDO2

In this chapter, we provide a more detailed description of **FIDO2**.

FIDO2 is a set of related specifications, jointly developed by the FIDO Alliance and the W3C (World Wide Web Consortium), that together enable **easy, secure, and phishing-resistant authentication** for online services (primarily on the web, but they can be used in native applications as well).

The specifications are:

- Web Authentication (WebAuthn) API by World Wide Web Consortium (W3C)
 - This is the core specification that **defines and describes all the key concepts**, some of which we cover in the following sections.
 - More specifically, it "defines an API enabling the creation and use of strong, attested, scoped, public key-based credentials by web applications, for the purpose of strongly authenticating users" [10].
 - Level 2 [10] (W3C Recommendation from April 8, 2021) is the latest stable version.
 - Level 3 [10] is being actively developed and some of its new features (hybrid transport, conditional mediation, hints, credentials backup) are already supported by browsers and authenticators.
- Client to Authenticator Protocol (CTAP) by FIDO Alliance
 - "This specification describes an application layer protocol for communication between a roaming authenticator and another client/platform, as well as bindings of this application protocol to different transport protocols" [11].
 - CTAP 2.1 [11] (Proposed Standard from June 21, 2022) is the previous version.
 - CTAP 2.2 [12] (Proposed Standard from February 28, 2025) is the latest stable version. The main difference compared to CTAP 2.1 is the addition of hybrid transports. Apart from that and a few new extensions, it is completely same as CTAP 2.1 (There is no new version identifier for CTAP 2.2, authenticators still use FIDO_2_1). Because none of those changes are relevant for our work, we will refer to CTAP 2.1 for the rest of our text.
- There is also FIDO U2F (now referred to as CTAP1 or CTAP1/U2F), which is a predecessor of FIDO2 that can be used only for two-factor authentication (as a second factor). FIDO2 authenticators can be backwards-compatible with CTAP1 (FIDO U2F). To avoid unnecessary complexity, we will not add support for CTAP1/U2F to our implementation. Therefore, we will not describe it.

P. FIDO2

2.1 Public Key Cryptography

FIDO2 relies on public key cryptography (also called asymmetric cryptography) [10]. Public key cryptography uses the concept of a key pair. Each key pair consists of a private key (which must be kept secret) and a corresponding public key (which can be openly distributed without compromising security). The public and private keys are mathematically related. They are generated with cryptographic algorithms based on mathematical problems termed one-way functions [13]. It is not possible to calculate the private key from the public key. One of the most common public key cryptosystems is RSA that relies on the difficulty of factoring the product of two large prime numbers [14]. Another widely used public key cryptosystem is Elliptic Curve Cryptography (ECC), which is based the algebraic structure of elliptic curves over finite fields, specifically the difficulty of the Elliptic Curve Discrete Logarithm Problem (ECDLP) [15].

2.2 Functional Description

The core idea is that FIDO2/WebAuthn allows servers (i.e., websites, referred to as **Relying Parties**, **RP**) to register and authenticate users using public key cryptography.

Figure 2.1. Simplified WebAuthn authentication flow. The credentials belong to the user and are managed by an authenticator, with which the Relying Party interacts through the client platform.

Instead of a password, a private-public keypair (known as a **credential**) is created for a website during registration. While the **private key** is stored securely on the user's device (inside the **authenticator**) and it never leaves it, the **public key** and an authenticator-generated credential ID are sent to the server where they are stored.

Then, during **authentication**, the RP's server then uses that **public key** to verify the user's identity by verifying the user's possession of the corresponding private key. More specifically, the server sends the credential ID and a random data called a challenge to the client (the user's browser). The client bounds the challenge to the RP ID by hashing the challenge together with the RP ID and producing clientDataHash. The client passes RP ID, credential ID, and clientDataHash to the user's authenticator. The authenticator looks up the **private key** by the RP ID and credential ID and it signs the concatenation of authenticatorData (which contains info about the authenticator) and clientDataHash using the **private key**. It passes this signature back to the server via the client. The server checks that all values in the clientDataJSON and in the authenticatorData have the expected values (especially RP ID). Then it computes the

expected hash using the clientDataJSON and authenticatorData. Finally, it uses the **public key** to verify the signature.

The exact signature algorithm depends on the supported algorithms by the RP and by the authenticator. WebAuthn does not list the specific algorithms, instead it refers to the IANA CBOR Object Signing and Encryption (COSE) Algorithms Registry¹. One of the common algorithm identifiers is -7, which stands for Elliptic Curve Digital Signature Algorithm (ECDSA) on the P-256 curve (also called secp256r1 or prime256v1) with SHA-256 as the hashing function.

2.3 Key Benefits

Based on the description in the previous section, we can clearly see some of the security and privacy benefits of FIDO2 authentication.

Security

- A new unique public-private key pair (credential) is created for every relying party (and every authenticator the user uses).
- All credentials are scoped to the relying party (website).
- The private key never leaves the authenticator.
- The RP's server does not store any secrets.
- The possession of the private key is proved by signing a random challenge generated by the RP.
- This security model eliminates all risks of phishing, all forms of password theft (there is no shared secret to steal) and replay attacks (thanks to the random challenge).

Privacy

- The whole FIDO2 is designed with privacy in mind. All credentials are unique and they are scoped to the relying party (website). They cannot be used to track users in any way.
- Plus, biometric data, when used for user verification, never leaves the user's device (authenticator).

User Experience

- Users interact with the authenticator by (typically) simply touching it to provide consent with registration and authentication.
- Credentials can be further protected and their use might require local user verification, which, based on the authenticator capabilities, might utilize PIN or biometric methods.
- Users can use cross-platform roaming authenticators such as FIDO2 security keys (which communicate via USB, NFC, Bluetooth) or they might rely on their-device built-in platform authenticators (such as Apple ID with Face ID or Touch ID, Windows Hello, and Google Password Manager on Android) that are part of the client device.

2.4 Terminology

In the previous sections, we briefly introduced the key parties involved in FIDO2 – the relying party (RP), the client, and the authenticator. In this section, we provide more detailed information about them and their behavior. We also define additional related terms to aid in our explanations.

¹ https://www.iana.org/assignments/cose/cose.xhtml#algorithms

2. FIDO2

2.4.1 Relying party (RP)

"An entity whose application utilizes the WebAuthn API to register and authenticate users, and which stores the public key." [10] Typically, such an application has both client-side code to invoke the WebAuthn API on the client (typically in the browser) and server-side code to validate responses and store details about registered credentials (their IDs and public keys) in some sort of database.

2.4.2 Client

An entity (typically a web browser or a similar application) that acts as an intermediary between the relying party and the authenticator [10].

2.4.3 Client Device

"The hardware device on which the client runs, for example a smartphone, a laptop computer or a desktop computer, and the operating system running on that hardware." [10]

2.4.4 Client Platform

"A client device and a client together make up a client platform. A single hardware device may be part of multiple distinct client platforms at different times by running different operating systems and/or clients." [10]

2.4.5 Authenticator

"A cryptographic entity, existing in hardware or software, that can register a user with a given Relying Party" (i.e., generate and store a public-private key pair with appropriate metadata) and "later assert possession of the private key during authentication". [10] The private keys never leave the authenticator.

The authenticators that are part of the client device are referred to as *platform authenticators* (such as Apple ID with Face ID or Touch ID, Windows Hello, and Google Password Manager on Android), while those that are reachable via cross-platform transport protocols (USB, NFC, Bluetooth) are referred to as *roaming authenticators* (such as **FIDO2 USB security keys**).

2.4.6 AAGUID

Authenticator Attestation Globally Unique Identifier. A 128-bit identifier indicating the type (e.g. make and model) of the authenticator, chosen (randomly generated) by its manufacturer.

2.4.7 Credential

A public-private key pair that is used for authentication. It is bound to an RP ID. A credential is identified by a **Credential ID**, which is an opaque probabilistically-unique byte string generated by authenticator that can be up to 1023 bytes long. It is associated with a user account, which is identified by a **user handle** (user.id). A user handle is an opaque byte sequence with a maximum size of 64 bytes, generated by the RP and stored together with the credential by the authenticator. Optionally, the user account information within the credential can also contain name and displayName, which are both arbitrary-length strings. Every credential is either discoverable (also called client-side discoverable) or non-discoverable. RP controls which type of credential will be created during registration by passing an appropriate option to the WebAuthn API.

Discoverable credentials are also called "passkeys" [16]. RP pass credential IDs during registration (in the excludeList) to prevent users from creating multiple credentials for the same user account on a single authenticator. RP can also pass credential IDs during authentication (in the allowList) to explicitly allow authentication (i.e., generating an assertion, resp. a signature) only using those credentials. When a credential is non-discoverable, its Credential ID must be passed to authenticator during each authentication call.

2.4.8 User Verification

"The process by which an authenticator locally authorizes the invocation of an operation. Various authorization gesture modalities are possible, for example, a touch plus pin code, password entry, or biometric recognition (e.g., presenting a fingerprint). The intent is to distinguish individual users." [10].

The "user verification does not give the RP a concrete identification of the user, but when two or more ceremonies with user verification have been done, it expresses that it was the same user that performed all of them. The same user might not always be the same natural person, however, if multiple natural persons share access to the same authenticator." [10].

2.4.9 User Presence

"A test of user presence is a simple form of authorization gesture and technical process where a user interacts with an authenticator by (typically) simply touching it." [10].

2.4.10 Credential Storage Modality

Authenticators (such as FIDO2 hardware security keys) might have a limited storage capacity. Until now, we have assumed that **the private keys** must be stored in the authenticator. In fact, the WebAuthn allows **two different storage strategies**:

- 1. The private key is stored in persistent storage embedded in the authenticator. This strategy is necessary for discoverable credentials (also called clisent-side discoverable credentials or passkeys) that can be used as a first factor.
- 2. The private key is **stored within the credential ID**. Specifically, the private key is encrypted **(wrapped)** such that only the authenticator can decrypt (i.e., unwrap) it. The resulting ciphertext is **the credential ID**.

Typically, the authenticator uses symmetric AES encryption, where the symmetric encrypt/decrypt key (sometimes called master key) is securely stored in the authenticator and never leaves it. Therefore, this strategy, if correctly implemented, is as secure as the first one.

Note that this strategy is possible because **the RP passes the credential ID** to the authenticator **during authentication**. This is the case for the non-discoverable credentials. Therefore, the authenticator does not need to store any information about such a credential in its persistent storage. This way it can support virtually an unlimited number of credentials. However, this strategy **cannot** be used for discoverable credentials, where the RP does **not** pass the credential ID to the authenticator and instead the authenticator must be able to list all existing credentials for that RP.

Note that the authenticators **might support both strategies** and use different storage strategies for different credentials (typically only use the persistent storage when it is strictly necessary, i.e., for *discoverable* credentials).

For more information, see 6.2.2. Credential Storage Modality in [10].

2. FIDO2

2.5 Ceremonies

In this section, we build on the information provided in the Functional Description section, and we cover the **registration** and **authentication** flows in more detail. These flows are referred to as "ceremonies" by the WebAuthn specification because they extend the concept of a computer *communication protocol* with human-computer interactions.

In the following descriptions, we assume a standard web application that runs client-side code to invoke the WebAuthn JavaScript APIs in the browser and to communicate with its server, which validates responses and stores/retrieves details about registered credentials (their IDs and public keys). In this case, the browser represents the WebAuthn client. Note that WebAuthn can also be used in native applications where platform-specific vendor-provided APIs are used in place of the WebAuthn JavaScript APIs. On Android, these are FIDO2 API for Android² and/or Credential Manager API³. iOS provides similar APIs⁴.

2.5.1 Registration

During registration, a new credential is created on an authenticator and registered with a Relying Party server. Registration must happen before a user can use their authenticator to authenticate.

The following diagram 2.2 from depicts the registration flow:

Figure 2.2. The WebAuthn registration flow.

The user visits a website, for example, example.com, which serves up a script. At this point, the user may already be logged in using a legacy username and password, or

² https://developers.google.com/identity/fido/android/native-apps

https://developers.google.com/identity/android-credential-manager

 $^{^4}$ https://developer.apple.com/documentation/authenticationservices/public-private-key-authentication

additional authenticator, or other means acceptable to the Relying Party. Or the user may be in the process of creating a new account.

- 0. The user initiates the registration process by interacting with the application in the browser. The application sends a request to the server to start the registration.
- 1. The server responds with PublicKeyCredentialCreationOptions that contains information about the user (the opaque user handle, also called user.id), preferred authenticators (roaming vs. platform) and supported algorithms. It also includes a random data called challenge. This is to prevent replay attacks.
- 2. The client-side code in the browser invokes the WebAuthn API method navigator.credentials.create() and passes the options from the server. The browser appends the RPID (the website origin, i.e., example.com). This is necessary for the correct scoping of the credentials to the RP (every credential is bound to an RPID). Also, the browser appends clientDataHash, which is a hash over the operation type (webauthn.create or webauthn.get), the challenge, and the origin. Then, the browser locates a suitable authenticator, establishes a connection to it, and sends the authenticatorMakeCredential request. The communication between the browser (the client) and the authenticator uses CTAP2 in case of roaming authenticators (e.g., a FIDO USB security key) or some platform-specific communication channel in case of platform authenticators (e.g. Windows Hello).
- 3. The authenticator asks the user for some sort of authorization gesture to provide consent. It may involve user verification (PIN entry or biometric check) or it may only be a simple test of user presence. If the user authorizes the registration, the authenticator **generates a new credential** (a public-private key pair and a credential ID). The private key is securely stored in the authenticator and never leaves it.
- 4. The authenticator takes **the generated public key** and **the credential ID**, appends the clientDataHash and information about itself and signs all this data with either its attestation private key or with the credential private key (so called self-attestation).
- 5. The client-side code in the browser obtains the response from the authenticator (as the result of the navigator.credentials.create() call) and sends it to the server.
- 6. The server verifies the data. Specifically, it checks the attestation signature. This way, the server ensures that all the credential creation options are respected and that the response is indeed related to the initial request challenge. If everything matches, the server saves the public key and the credential ID to the database and associates them with the user.

2. FIDO2

Figure 2.3. The WebAuthn authentication flow.

2.5.2 Authentication

This is the ceremony when a user with an already registered credential visits a website and wants to authenticate using the credential (authenticatorGetAssertion request). During authentication, the server then uses that **public key** to verify the user's identity by verifying the user's possession of the private key by verifying the authenticator-generated signature (called assertion).

Since we have already described the authentication in sufficient detail in the Functional Description section, we omit the detailed description here and ask the reader to refer to the corresponding description there.

2.6 CTAP2

WebAuthn defines the key concepts and principles of the whole FIDO2 functionality. However, it does not define the communication protocol between the client and the authenticator. It introduces an abstract functional model for a WebAuthn Authenticator. This model defines the necessary observable behavior. Specifically, it defines the authenticator data structure, signature formats (attestations and assertions), and the authenticatorMakeCredential, authenticatorGetAssertion, and authenticatorCancel operations using an abstract notion of connection and session between the client and the authenticator.

CTAP2 represents a concrete instantiation of this model. It defines the actual communication protocol and its bindings to various transport protocols. The specification defines multiple abstraction levels.

2.6.1 Authenticator API

At the highest level of abstraction, CTAP2 defines a conceptual API consisting of operations (also called commands or requests). Each command accepts input parameters

2.6 CTAP2

and returns either a response with data on success or an error code. The returned response depends on the parameters and the authenticator's internal state. However, there are also special commands called stateful commands, which do not accept any parameters but require an additional command state to be maintained. "Each such command uses and updates a state that is initialized by a corresponding state initializing command." [11]

Here is a list of all mandatory CTAP 2.1 commands with their command codes. Note that some of the commands have also subcommands (technically, the subcommand code and the subcommand parameters are parameters if the parent command).

- authenticatorGetInfo (0x04) "Using this method, clients can request that the authenticator report a list of its supported protocol versions and extensions, its AAGUID, and other aspects of its overall capabilities. Clients should use this information to tailor their command parameters choices." [11]
- authenticatorClientPIN (0x06) See PIN/UV Auth Protocol
- authenticatorMakeCredential (0x01) "request generation of a new credential in the authenticator" [11]
- authenticatorGetAssertion (0x02) "request cryptographic proof of user authentication as well as user consent to a given transaction, using a previously generated credential that is bound to the authenticator and RP ID" [11]
- authenticatorGetNextAssertion (0x08) (stateful command) "The client calls this method when the authenticatorGetAssertion response contains the numberOfCredentials member and the number of credentials exceeds 1." [11]
- authenticatorCredentialManagement (OxOA) "This command is used by clients to manage discoverable credentials on the authenticator." [11]
- authenticatorSelection (0x0B) "This command allows the client to let a user select a certain authenticator by asking for user presence." [11]
- authenticatorReset (0x07) "Invalidates all generated credentials, erases all discoverable credentials, resets PIN" [11]

2. FIDO2

2.6.2 PIN/UV Auth Protocol

CTAP2 offers two different ways to perform user verification:

■ ClientPIN – The entry of the PIN is mediated by the client. The user enters the PIN into the client's UI (e.g., a browser dialog), and the client sends it encrypted to the authenticator. ClientPIN is useful when the authenticator does not have its input UI (e.g., it is a security key without any display or keypad).

■ Built-in User Verification – User verification is performed entirely within the authentication boundary, e.g., the authenticator has a fingerprint sensor or a secure built-in input UI (e.g., built-in keypad).

The PIN/UV auth protocol (aka pinUvAuthProtocol) handles both ways of user verification. The ClientPINs are encrypted when sent to an authenticator and exchanged for a pinUvAuthToken to authenticate subsequent commands. "Authenticators supporting built-in user verification methods can provide a pinUvAuthToken (again, to authenticate subsequent commands) upon performing the built-in user verification. The pinUvAuthToken ris a randomly-generated, opaque bytestring that is large enough to be effectively unguessable." [11] Both PIN and pinUvAuthToken are never sent in plaintext. Instead, they are encrypted using a shared secret that is obtained by performing an ECDH key agreement. However, the plain ECDH key agreement (as is any unauthenticated DH key agreement) is vulnerable to MitM attacks (e.g., an active attacker with the ability to modify USB packets). Those weaknesses are studied in TODO.

The authenticatorClientPIN (0x06) command, resp. its eight subcommands, implement the necessary operations to get the number of remaining PIN/UV retries, obtain a shared secret (using ECDH), set a PIN, change existing PIN, exchange PIN for a pin-UvAuthToken, and perform built-in user-verification to get a pin-UvAuthToken.

Furthermore, PIN/UV Auth Protocol provides an internal API, which is used by the rest of the Authenticator API commands to validate the pinUvAuthParam. The pin-UvAuthParam is used to convey the user verification status while also authenticating the parameters of commands such as authenticatorMakeCredential, authenticatorGetAssertion, and authenticatorCredentialManagement. The client uses the previously obtained pinUvAuthToken to compute an HMAC over all or some of the command parameters. The authenticator verifies the HMAC by computing it from the relevant received parameters and the current pinUvAuthToken (if in use). A successful verification indicates that a user verification performed in the recent authneticatorClient-PIN command can now be used to perform the requested operation (makeCredential, getAssertion, or credentialManagement).

2.6.3 Message Encoding

CTAP2 encodes all command parameters and response data using Concise Binary Object Representation (CBOR). This encoding was chosen because many transports (for example, NFC) "are bandwidth-constrained, and serialization formats such as JSON are too heavy-weight for such environments" [11]. Furthermore, CTAP2 introduces the CTAP2 canonical CBOR encoding form, which further restricts the CBOR format with additional encoding rules (such as NO indefinite-length arrays and maps, integers MUST be encoded as small as possible, etc.).

Each operation in the conceptual Authenticator API has a command code (1 byte) assigned. The request message is constructed by prepending the command code to the CBOR-encoded parameters. Analogically, the response message is constructed by

2.6 CTAP2

prepending the error code (0 for success) to the CBOR-encoded response data. Since error responses do not have any data, they are only one byte (the error code).

2.6.4 CTAPHID

One of the defined transport protocols for CTAP2 is USB, resp. USB HID. The protocol is called CTAPHID, and it implements logical channel multiplexing so that multiple clients (browsers, apps, OS) on the same client device can communicate with the authenticator concurrently. Next, it introduced the concept of a transaction. The CTAPHID transaction consists of a CTAPHID request followed by a CTAPHID response message. The transactions are always initiated by clients. Request and response messages are divided into individual fragments, known as packets. Packets are directly mapped onto USB HID reports. The fragmentation and channel multiplexing add some overhead to the raw CTAP2 messages (11% - 8% based on the payload length when the HID report size is 64 bytes).

The USB HID report descriptor plays a key role in the automatic *device discovery*. The CTAPHID protocol is designed with the objective of driver-less installation on all major host platforms. Browsers and other clients use the standard USB HID driver included within the OS. The HID *Usage Page* field within the authenticator's HID report descriptor is set to the value 0xF1D0, which is registered to the FIDO Alliance (see HID Usage Tables 1.6).

Chapter 3 Existing Work

Before we started working on our own implementation, we did an extensive search to see what open-source implementations of FIDO2 authenticators were available. The most relevant projects are SoloKeys and OpenSK.

- 3.1 Open-Source Software and Hardware
- 3.1.1 SoloKeys
- x [??]
- 3.1.2 OpenSK by Google
- X
- 3.1.3 Nitrokey
- X
 - 3.2 Other Relevant Projects

2 bachelor theses kolarik_fido2_keepass_2020,,,[] at CTU in Prague (both from CTU FIT):

- **X**
 - 2 open-silicon designs:
- **X**

Chapter 4 Implementation

This chapter describes the main parts of our FIDO2 authenticator implementation. **Main points:**

- Written in **C**.
- Runs on the STM3240G-EVAL board with the STM32F407IGH6 MCU.
- Uses STM32CubeF4 (HAL, LL, and USB Device Library) via STM32CubeMX generator.
- The complete source code is available on GitHub here: https://github.com/pokusew/fel-krp-project
- FIDO2 (specifically CTAP2) implementation in fido2 dir is based on the SoloKeys Solo 1 project. However, some parts of the original implementation have been rewritten / refactored / modified / fixed, so it could be used with the STM32F4 MCU (which has, for example, a different flash memory organization).
- 4.1 Goals
- 4.2 Maintaining Quality

unit tests, xxxx

- 4.3 Choosing Hardware
- 4.4 USB

TinyUSB, its queue

- 4.5 CTAPHID
- 4.6 CBOR Parsing

TinyCBOR

4.7 Arbitrary-length Strings

XXX

4.8 PIN/UV Auth Protocol

v1, v2 token state authenticating commands

4.9 Cryptography

software hardware RNG, PKA, SHA, AES HMAC KKDF

- 4.10 CTAP2
- 4.10.1 AAGUID

state

- 4.10.2 Stateful Commands
- 4.11 State Persistence
- 4.12 Debugging Interface via UART
- 4.13 Trust Zone

4.14 Architecture

In this section I describe individual layers (protocol stack) of the firmware that together implement the necessary FIDO2 functionality. The diagram on the right depicts these layers.

4.14.1 CTAP2

The core part is the implementation of the CTAP2 protocol. CTAP2 protocol is a high-level transaction-oriented protocol. A CTAP2 transaction consists of a request, followed by a response message. CTAP2 transactions are always initiated by the client. Messages are encoded using the concise binary encoding CBOR.

There are two essential transactions – authenticatorMakeCredential, which is implemented in ctap_make_credential, and authenticatorGetAssertion, which is implemented in ctap_get_assertion. They facilitate the register and authenticate flows as described in the Relying party (RP) section.

4.14.2 **CTAPHID**

Mapping of messages to the underlying USB transport is facilitated by the CTAPHID layer. Request and response messages are divided into individual fragments, known as packets. Packets are the smallest form of protocol data units, which in the case of CTAPHID are mapped into USB HID reports. CTAPHID also implements logical channel multiplexing so that multiple clients (browsers, apps, OS) on the same client device (device) can communicate with the authenticator concurrently.

4.14.3 USB

The USB HID and USB layers are implemented using the STM32Cube USB device library and its Custom HID class. It uses the USB_OTG_FS (USB 2.0 Full Speed) MCU peripheral. There are two endpoints (IN, OUT) with interrupt transfer (64-byte packet max, poll every 5 millisecond). The descriptors (device, config, interface, endpoints, HID report) are set up according to the CTAPHID specification (11.2.8. HID device implementation). The USB HID report descriptor plays a key role in the automatic device discovery. The CTAPHID protocol is designed with the objective of driver-less installation on all major host platforms. Browsers and other clients use the standard USB HID driver included within the OS. The HID Usage Page field within the authenticator's HID report descriptor is set to the value 0xF1D0, which is registered to the FIDO Alliance (see HID Usage Tables 1.5). The following screenshot shows the authenticator in the USB Device Tree Explorer in System Information on macOS 11.

The chosen Vendor ID (VID) and Product ID (VID) come from the pid.codes project. pid.codes is a registry of USB PID codes for open source hardware projects. They assign PIDs on any VID they own to any open-source hardware project needing one. For the initial version of this project, I used their testing VID/PID 0x1209/0x0001. In the future, when I have a more-production-ready authenticator, I might eventually ask for my own PID.

4.14.4 Persistent Storage

The most complex part is the implementation of state persistence. There are multiple pieces of data that need to be persisted. Namely, it is:

- the master key (used for storing non-discoverable credentials, see more info in Credential Storage Modality),
- the PIN (or the information that it is not has not been set yet) for user verification (UV) and invalid PIN attempts counter (note that the PIN is not stored in plaintext, instead it is stored as a salted hash),
- the global signature counter,
- and client-side discoverable credentials (formerly called resident credentials, the abbreviation rk, which is used in the code, stands for resident key).

Note: This document uses the following notation: 1 KB (kilobyte) = 1024 B (bytes). As a persistent storage, we used **a part of the 1024 KB of Flash memory** that is built into the STM32F407IGH6 MCU. By default, it is used for storing the program code (firmware). Because our firmware takes only about the first 104540 B (102 KB), i.e.,

However, flash memory comes with **an important limitation** – one can only program (write) flash bits from 1 to 0. In order to write 1 in place of the already written 0 bits, one must **erase the whole memory sector** (the size of which can be in the range of

around 10% of the total capacity, we can use the rest for our application data.

In case of STM32F407IGH6, its flash memory organization is as follows (also documented in Inc/flash.h):

KBs). This is generic to flash memory technology and is not specific to the STM32.

A main memory block divided into 12 sectors (with different sizes, numbered 0-11):

- 4 sectors of 16 KB: sectors 0-3
- 1 sector of 64 KB: sector 4
- 7 sectors of 128 KB: sectors 5-11

4. Implementation

Our program occupies the sectors 0-4 (102 KB fits into the first 128 KB). So, we are only left with the big 128KB sectors for the application data. Their erasure takes a significant amount of time (seconds). Also, the total possible number of erasures is limited (flash memory wear). Thus, it is not possible to naively rewrite the whole sector when only a few bytes need to be changed (for example, when the global signature counter needs to be incremented).

There are special file systems designed to allow efficient use of such memories. However, for our use case, we implemented a simple custom solution, adapted from the Solo 1 project (where they faced the same challenge, but their MCU's sectors were only 1 KB big which still allowed for relatively fast erasures).

The implemented algorithms are conceptually types of **simple wear-leveling algorithms**. With our solution, the need for erasures is greatly reduced. Most of the time, all the changes in the authenticator state can be done without any erasure at all (so it takes no extra time).

Here are the relevant parts of the code that implement the persistence:

- flash memory utils in Inc/flash.h and Src/flash.c
- Inc/memory_layout.h that defines the used sector numbers
- ensure_flash_initialized() in Src/app.c for initialization of the memory layout upon the very first startup and after memory reset (using the app_delete_data debug command)
- persistence of the AuthenticatorState struct (contains the master key + PIN data)
 - authenticator_read_state()
 - authenticator_write_state()
- persistence of the global signature counter
 - ctap_atomic_count() in Src/device.c
 - Note: A special effort has been made to make the counter atomic. In case the flash write is interrupted (e.g., the authenticator is disconnected from the USB and the power is interrupted), the counter should keep its previous value. This is critical for the correct FIDO2 implementation because the counter must never be decremented.
- persistence of the client-discoverable credentials (resident credentials, resident keys)
 - ctap_reset_rk()
- ctap_rk_size()
- tap store rk()
- ctap_delete_rk()
- ctap_load_rk()
- ctap overwrite rk()

This is the only part where the wear-leveling algorithm is not implemented yet. Fortunately, it has only a negligible impact, since the ctap_overwrite_rk is only called once when a new client-discoverable credential is being created. This is in contrast with ctap_atomic_count() and authenticator_read_state() that can be invoked even multiple times during a single transaction.

Chapter **5**Results Evaluation

5.1 FIDO Conformance Tools

our automation server

5.1.1 Authenticator Metadata Statement

gggg

5.2 Use on Real WebAuthn-enabled websites

Google Accounts GitHub CTU FEE

5.3 LionKey

name, logo, domain (secure emails), website with planned documentation

Chapter 6 Conclusion

In this project, we successfully implemented a working FIDO2 USB hardware external authenticator (also called FIDO2 USB security key).

First, we outlined the goal of the project and its motivation. Then, we established the necessary theoretical foundation by describing the Web Authentication and CTAP2 standards, which are together known as FIDO2. We also reviewed existing projects related to our goal.

Then, we proceeded to the actual implementation, which represents the main contribution of this project. We documented our decisions and the most important parts of the implementation. All code is versioned using Git and is publicly **available online on GitHub**¹. The repository includes build and run instructions. There is also a CI/CD pipeline to ensure software quality. Our authenticator supports both client-discoverable credentials and an unlimited number of non-discoverable credentials. Thanks to the full support of client-discoverable credentials and user verification (UV) using PIN, it can be used as a first factor (passkey).

Finally, we tested our authenticator with real websites with different configurations (1st factor vs 2nd factor). In all cases, it worked great, including with Google Account and GitHub.

However, the authenticator is not production-ready. Even though we were able to make it work (with the help of the Solo 1 codebase), there are a lot of details and edge cases that are not correctly handled. The whole FIDO2/WebAuthn specification is very complex and a proper implementation would take much more time.

6.1 Future Work

trust zone NFC

https://github.com/pokusew/lionkey

References

[1] Verizon. Data Breach Investigations Report. 2020.

https://www.verizon.com/business/en-gb/resources/reports/2020-data-breach-investigations-report.pdf.

Additional information at

https://www.verizon.com/business/resources/reports/dbir/.

- [2] Bitwarden. Bitwarden World Password Day Survey. 2024. https://bitwarden.com/resources/world-password-day/#2024-world-password-day-results.
- [3] FIDO Alliance. Overview. https://fidoalliance.org/overview/.
- [4] MDN Web Docs. Web Authentication API Browser compatibility. https://developer.mozilla.org/en-US/docs/Web/API/Web_Authentication_API#browser_compatibility.
- [5] Can I use... . Web Authentication API. https://caniuse.com/webauthn.
- [6] passkeys.dev . Device Support. https://passkeys.dev/device-support/.
- [7] FIDO Alliance. Member Companies & Organizations. https://fidoalliance.org/members/.
- [8] FIDO Alliance. Apple, Google and Microsoft Commit to Expanded Support for FIDO Standard to Accelerate Availability of Passwordless Sign-Ins. May 5, 2022. https://fidoalliance.org/apple-google-and-microsoft-commit-to-expanded-support-for-fido-standard-to-accelerate-availability-of-passwordless-sign-ins/.
- [9] FIDO Alliance. Authenticator Certification Levels. https://fidoalliance.org/certification/authenticator-certification-levels/.
- [10] W3C. Web Authentication: An API for accessing Public Key Credentials Level 2. W3C Recommendation. April 8, 2021. https://www.w3.org/TR/webauthn-2/.
- [11] FIDO Alliance. Client to Authenticator Protocol (CTAP). CTAP 2.1. Proposed Standard. June 21, 2022. https://fidoalliance.org/specs/fido-v2.1-ps-20210615/fido-client-to-authenticator-protocol-v2.1-ps-errata-20220621.html.
- [12] FIDO Alliance. Client to Authenticator Protocol (CTAP). CTAP 2.2. Proposed Standard. February 28, 2025. https://fidoalliance.org/specs/fido-v2.2-ps-20250228/fido-client-to-authenticator-protocol-v2.2-ps-20250228.html.

References

[13] Wikipedia. Public-key cryptography. https://en.wikipedia.org/wiki/Public-key_cryptography.

- [14] Wikipedia. RSA (cryptosystem). https://en.wikipedia.org/wiki/RSA_(cryptosystem).
- [15] Wikipedia. *Elliptic-curve cryptography*. https://en.wikipedia.org/wiki/RSA_(cryptosystem).
- [16] W3C (May 22, 2025). Web Authentication: An API for accessing Public Key Credentials Level 3. Editor's Draft. W3C Recommendation. April 8, 2021. https://www.w3.org/TR/webauthn-3/.

Appendix \mathbf{A}

Glossary

AES Advanced Encryption Standard
ASN.1 Abstract Syntax Notation One

CBOR Concise Binary Object Representation

CTAP Client to Authenticator Protocol

DH Diffie-Hellman

DLP Discrete Logarithm Problem
 DSA Digital Signature Algorithm
 ECC Elliptic Curve Cryptography
 ECDH Elliptic Curve Diffie-Hellman

ECDLP • Elliptic Curve Discrete Logarithm Problem ECDSA • Elliptic Curve Digital Signature Algorithm

FIDO Fast IDentity Online Alliance
HID USB Human Interface Devices

HKDF • HMAC-based Extract-and-Expand Key Derivation Function

HMAC • Hash-based Message Authentication Code

HTTP • Hypertext Transfer Protocol

IDE Integrated Development Environment

JSON JavaScript Object Notation
KDF Key Derivation Function
MCU microcontroller unit
MFA multi-factor authentication

OS • Operating System

RSA The RSA (Rivest-Shamir-Adleman) cryptosystem SHA-2 Secure Hash Algorithm 2 (includes SHA-256)

USB Universal Serial Bus

2FA second-factor authentication