MOSFET POLARIZADO CON SEÑAL EN DC

Transistores en DC (modelo de gran señal) y en AC (modelo de pequeña señal).

La función principal de un MOSFET es controlar la corriente de Drenado Id a través de Vgs.

La impedancia de entrada del MOSFET es teóricamente infinita entonces I_G = **0** A
Por lo que se considera que I**s** = I_D

Is = Ig + Id para NMOS y PMOS Vds = Vdg + Vgs Para NMOS Vsd = Vgd + Vsg Para PMOS

ZONA	CONDICIÓN		ECS DE CORRIENTE	
CORTE	$v_{\rm GS} < V_{\rm TR}$		$i_D = 0$	
TRÍODO	$v_{\rm GS} > V_{ m TR}$	$v_{\rm DS}$ < $v_{\rm GS}$ – $V_{\rm TR}$	$Id = K[(Vgs - Vtr)*Vds - \frac{Vds^2}{2}]$ $Rds = \frac{1}{k(Vgs-Vtr)}$	
CORREINTE CONSTANTE	v _{GS} > V _{TR}	$v_{\rm DS} \ge v_{\rm GS} - V_{\rm TR.}$	Id = <u>K(Vgs - Vtr)²</u> 2	
LIMITE ON - OFF		id = 0 Vgs = Vtr		
LIMITE CC - TRIODO		id = <u>K*Vds</u> ² Vds = Vgs - Vtr		

Las ecuaciones son las mismas para el canal P, solo cambia dirección corriente id.

CONFIGURACIONES BÁSICAS

MOSFET INVERSOR O FUENTE COMÚN

El estado del MOSFET depende del voltaje entre la puerta y la fuente Vgs

Vgs < Vt Se encuentra en estado de Corte; Id = Is = 0

Vgs ≥ Vt Se encuentra en estado de Conducción

Si esta en Conducción encontramos dos estados

Vds ≤ Vgs – Vt Se encuentra en estado de Conducción Óhmica o Triodo Rds = 1/k(Vgs-Vt)

Vds ≥ Vgs – Vt Se encuentra en estado de Conducción en Saturación o corriente constante Rds = $0 \text{ Id} = k(\text{Vgs} - \text{Vt})^2/2$

MOSFET INVERSOR O FUENTE COMÚN

Para el circuito se realiza el mismo paso a paso que se hizo con el BJT.

1. Se identifican las corrientes y voltajes propios del transistor y luego se le hacen las trayectorias y extracción de corrientes.

T1
- Vgg + Vgs = 0

T2
- Vds - id*Rd + Vdd = 0

- Vo - id*Rd + Vdd = 0

Vo = Vdd - id*Rd

2. Buscamos los limites de encendido apagado y tríodo-corriente constante.

Limite encendido apagado Según la tabla en esta zona se tiene: id= 0 Vgs = Vtr Asumiremos Vtr =3 v, Rd=1,5 k, Vgg = 10 v

$$-Vgg + Vgs = 0$$

$$Vgg = Vgs$$

Como Vgs=Vtr=3v

$$Vgg = 3 v$$

Este será el voltaje mínimo necesario en Vgg para que el transistor se encienda.

$$- Vds - id*Rd + Vdd = 0$$

$$- Vds - 0*Rd + Vdd = 0$$

$$Vds = Vdd = 10 v$$

$$Vo = Vdd - id*Rd$$

$$Vo = Vdd - 0*Rd$$

$$Vo = 10 v$$

$$PQ = Vds*id = 10*0 = 0 W$$

$$Av = Vo/Vi = 10/3 = 3,33$$

Limite tríodo corriente constante.

Según la tabla en esta zona se tiene:

$$Id = K*Vds^2/2$$
, $Vds = Vgs - Vtr$

Asumiremos Vtr = 3 v, Rd=1.5 k, Vgg = 10 v k=2 mA/V

Se inicia al igual que el BJT con la trayectoria 2.

T2

$$- Vds - id*Rd + Vdd = 0$$

$$- Vds - (k*Vds^2/2)*1,5 + 10 = 0$$

$$- Vds - (2*Vds^{2}/2)*1,5 + 10 = 0$$

$$- Vds - Vds^{2}*1,5 + 10 = 0$$

Solucionando la ecs cuadrática resultante se tiene

**Vds =
$$2.270$$** Vds = -2.9367 . Se deja el positivo.

Con esta variable obtenemos id.

$$Id = K*Vds^{2}/2 = 2*(2,27)^{2}/2 = 5,15 \text{ mA}$$

$$Vds = Vgs - Vtr$$

$$Vgs = Vds + Vtr = 2,27 + 3$$

Vgs = 5,27 v

T1

$$- Vgg + Vgs = 0$$

$$Vgg = Vgs$$

Vgg = 5,27 v este es el limite para que no pase el transistor a la zona tríodo.

$$Vo = Vdd - id*Rd$$

$$Vo = 10 - 5,15*1,5$$

$$Vo = 2,27 v$$

$$Av = Vo/Vi = 2,27/5,27 = 0,40$$

Vgg	3	5.27		
corte		corriente constante	triódo	
Vo	10		2.27	
Vds	10		2.27	
PQ	0		22.7	
id	0		5.15	
Av	3.3	3	0.4	

COMPROBACIÓN POR ZONA

ZONA CORTE

Según la tabla en esta zona se tiene:

Asumiremos Vgg = 2 v

$$Vtr = 3 v, Rd = 1,5 k, Vgg = 10 v$$

T1

$$-Vgg + Vgs = 0$$

$$Vgg = Vgs$$

$$Vgs = 2 v$$

Aplico condición

2<3 si cumple y se encuentra en la zona escogida.

T2

$$- Vds - id*Rd + Vdd = 0$$

$$-Vds - 0*Rd + Vdd = 0$$

$$Vds = Vdd = 10 v$$

Vo = Vdd - id*Rd

Vo = Vdd - 0*Rd

Vo = 10 v

$$PQ = Vds*id = 10*0 = 0 W$$

$$Av = Vo/Vi = 0$$
 ya que Q off

ZONA CORRIENTE CONSTANTE.

Según la tabla en esta zona se tiene:

$$Id = K*(Vgs - Vtr)^2/2,$$

Asumiremos Vgg = 5 v

Vtr = 3 v, Rd = 1.5 k, Vgg = 10 v k = 2 mA/V

T1

$$-Vgg + Vgs = 0$$

$$-5 + Vgs = 0$$

$$Vgs = 5 v$$

Como id = $k*(Vgs-Vtr)^2/2$)

$$Id = 2*(5-3)^2/2) = 4 mA$$

T2

$$- Vds - id*Rd + Vdd = 0$$

- Vds
$$-4*1.5 + 10 = 0$$

Vds = **4 v**

Comprobamos zona

$$4 > 5-3$$

4 > 2 si cumple zona

$$Vo = Vdd - id*Rd$$

$$Vo = 10 - 4*1,5$$

$$Vo = 4 v$$

$$PQ = Vds*id = 4*4 = 16 mW$$

$$Av = Vo/Vi = 4/5 = 0.8$$

ZONA TRÍODO

Según la tabla en esta zona se tiene:

$$Id = K[(Vgs - Vtr)*Vds - Vds^{2}/2]$$

Asumiremos Vgg = 7 v

$$Vtr = 3 v$$
, $Rd = 1.5 k$, $Vgg = 10 v k = 2 mA/V$

Obtenido Vds se utiliza la ecs T2

$$-Vgg + Vgs = 0$$

$$Vgs = 7$$

T2

$$- Vds - id*Rd + Vdd = 0$$

$$- Vds -= K[(Vgs - Vtr)*Vds - Vds^{2}/2]*1,5 + 10 = 0$$

$$- Vds -= 2[(7-3)*Vds - Vds^{2}/2]*1,5 + 10 = 0$$

$$- Vds - = 2[4*Vds - Vds^{2}/2]*1.5 + 10 = 0$$

$$- Vds - [8Vds - Vds^2]*1,5 + 10 = 0$$

$$- Vds - [12Vds - 1,5Vds^{2}] + 10 = 0$$

$$-13*Vds - 1,5Vds^2 + 10 = 0$$

Solucionando la ecuación cuadrática se tiene:

Vds = 0.71
$$Vds = -9,37$$

$$- Vds - id*Rd + Vdd = 0$$

$$-0.39 - id*1.5 + 10 = 0$$

$$Id = 6,19 mA$$

$$Vo = Vdd - id*Rd$$

$$Vo = 10 - 6.19*1.5$$

$$Vo = 0,71 v$$

$$PQ = Vds*id = 0,71*6,19 = 4,4 \text{ mW}$$

$$Av = Vo/Vi = 0.4/7 = 0.1$$

Comprobamos zona Vds < Vgs - Vtr0,71 > 7 - 3 si cumple zona

	corte		corriente constante		1	triódo	
Vgg	2	3	5	5.2	7	7	V
Vo	10	10	4	2.	27	0.4	V
Vds	10	10	4	2.	27	0.4	V
PQ	0	0	16	2	2.7	2.5	mW
id	0	0	4	5	.15	6.4	mA
Av		3.3	0.8	0.	.4	0.05	

Se nuede determinar una expresión matemática para la porción de la región de corriente constante de la característica de transferencia, que se extiende del punto a hasta d

$$v_{\text{OUT}} = V_{\text{Th}} - K(v_{\text{IN}} - V_{\text{TR}})^2 R_D$$

$$\frac{dv_{\text{OUT}}}{dv_{\text{IN}}} = -2K(v_{\text{IN}} - V_{\text{TR}})R_D$$

Este factor constituye la ganancia del circuito y es negativo en razón de que el circuito es un inversor.

para encontrar una expresión para el cambio en $v_{\rm OUT}$ causado por un cambio en $v_{\rm IN}$:

$$\Delta v_{\rm OUT} = \frac{dv_{\rm OUT}}{dv_{\rm IN}} \Delta v_{\rm IN} = [-2K(v_{\rm IN} - V_{\rm TR})R_D] \Delta v_{\rm IN}$$

EJEMPLO 2

-
$$Ve + 2ig + Vgs + 1*is = 0 como ig=0$$

- Ve + Vgs +
$$1*is = 0$$

$$-1*is - Vds - 2*id + 20 = 0$$
 como id=is

$$- Vds - 3*id + 20 = 0$$

$$-Vo1 - 2id + 20 = 0$$

$$Vo1 = 20 - 2id$$

$$-1*is + Vo2 = 0$$

$$Vo2 = 1*is$$

ZONA LIMITE ON OFF DEL Q

Según la tabla en esta zona se tiene: id= 0 Vgs = Vtr

T1

- Ve + Vgs +
$$1*is = 0$$

- Ve + Vgs +
$$1*0 = 0$$

Ve = 2 v voltaje necesario en la entrada G para que Q se encienda.

T2

$$- Vds - 3*id + 20 = 0$$

$$- Vds - 3*0 + 20 = 0$$

Vds = 20 v

$$Vo1 = 20 - 2id$$

$$Vo1 = 20 - 2*0$$

$$Vo1 = 20 v$$

$$Vo2 = 1*is$$

$$Vo2 = 1*0$$

$$Vo2 = 0 v$$

ZONA LIMITE TRIODO CORRIENTE CONSTANTE DEL Q

Según la tabla en esta zona se tiene: $Id = K*Vds^2/2$, Vds = Vgs - Vtr

$$- Vds - 3*id + 20 = 0$$

$$-Vds - 3*K*Vds^{2}/2 + 20 = 0$$

$$-Vds - 3* 1*Vds^{2}/2 + 20 = 0$$

$$- Vds - 1,5*Vds^2 + 20 = 0$$
 solucionando la ecs diferencial se tendrá.

$$Vds = 3,33 v$$
, $Vds = -4 v$

$$Id = K*Vds^{2}/2 = Id = 1*3,33^{2}/2 = 5,55 \text{ mA}$$

$$Vds = Vgs - Vtr$$

$$Vgs = Vds + Vtr = 3,33+2 = 5,33 v$$

- Ve + Vgs +
$$1*is = 0$$

- Ve
$$+5,33 + 1*5,55 = 0$$

$$Vo1 = 20 - 2id$$

$$Vo1 = 20 - 2*5,55$$

$$Vo1 = 8,9 v$$

$$Vo2 = 1*is$$

$$Vo2 = 1*5,55$$

$$Vo2 = 5,55 v$$

COMPROBACIÓN POR ZONA

corte	corriente constante		triódo
2		1	.0.88

ZONA CORTE

Según la tabla en esta zona se tiene: id= 0 Vgs < Vtr

Asumiremos Ve = 1 v

T1

- Ve + Vgs +
$$1*is = 0$$

-
$$1 + Vgs + 1*0 = 0$$

 $Vgs = 1 v$

Aplico condición

1 < 2 si cumple zona

$$- Vds - 3*id + 20 = 0$$

$$- Vds - 3*0 + 20 = 0$$

$$Vds = 20 v$$

$$Vo1 = 20 - 2id$$

$$Vo1 = 20 - 2*2$$

$$Vo1 = 20 v$$

$$Vo2 = 1*is$$

$$Vo2 = 1*0$$

$$Vo2 = 0 v$$

$$PQ = Vds*id = 0$$

ZONA CORRIENTE CONSTANTE

Según la tabla en esta zona se tiene: $Id = K*(Vgs - Vtr)^2/2$

corte constante triódo 2 10.88

Asumiremos Ve = 5 v

T1

- Ve + Vgs +
$$1*is = 0$$

$$-5 + Vgs + 1*K*(Vgs - Vtr)^{2}/2 = 0$$

$$-5 + Vgs + 1*1*(Vgs - 2)^{2}/2 = 0$$

$$-5 + Vgs + 0.5*(Vgs^2-2*Vgs*2 + 2^2) = 0$$

$$-5 + Vgs + 0.5Vgs^2 - 2*Vgs + 2 = 0$$

$$-3 + 0.5 \text{Vgs}^2 - \text{Vgs} = 0$$

$$Vgs = 3,64 v Vgs = -1,64 v$$

Id =
$$K^*(Vgs - Vtr)^2/2$$

Id = $1^*(3.64 - 2)^2/2 = 1.34$ mA

T2
$$- Vds - 3*id + 20 = 0$$

$$- Vds - 3*1,34 + 20 = 0$$

$$Vds = 15,98 v$$

Compruebo zona Vds > Vgs — Vtr 15,98>3,64-2 sii cumple zona

ZONA TRIODO

corte	corriente constante
-------	---------------------

triódo

2

10.88

Según la tabla en esta zona se tiene:

$$Id = K[(Vgs - Vtr)*Vds - Vds^{2}/2]$$

Asumiremos Ve = 12 v

$$Id = 1[(Vgs - 2)*Vds - Vds^{2}/2]$$

$$Id = [(Vgs - 2)*Vds - 0,5Vds^2]$$

$$Id = [Vgs*Vds - 2*Vds - 0,5Vds^2]$$

EN ESTA ZONA SE DEBE REEMPLAZAR ID EN LAS DOS ECS Y DESPEJAR DE CADA UNA VGS

T1

- Ve + Vgs +
$$1*is = 0$$

$$-12 + Vgs + 1*[Vgs*Vds - 2Vds- 0,5Vds^2] = 0$$

$$-12 + Vgs + Vgs*Vds - 2Vds-0,5Vds^2 = 0$$

$$-12 + Vgs(1 + Vds) - 2Vds - 0,5Vds^2 = 0$$

 $Vgs(1 + Vds) = 12 + 2Vds + 0,5Vds^2$

$$Vgs = 12 + 2Vds + 0.5Vds^2 / (1 + Vds)$$

$$- Vds - 3*id + 20 = 0$$

$$-Vds-3*[Vgs*Vds-2*Vds-0,5Vds^2]+20=0$$

$$-Vds-[3Vgs*Vds-6*Vds-1,5Vds^2]+20=0$$

$$-Vds - 3Vgs*Vds + 6Vds + 1,5Vds^2 + 20 = 0$$

$$3Vgs*Vds = 5*Vds +1,5Vds^2 + 20$$

$$Vgs = 5Vds + 1,5Vds^2 + 20 / 3Vds$$

ZONA TRIODO

corte corriente constante

triódo

2

10.88

Igualamos Vgs de las dos ecuaciones

$$Vgs = (12 + 2Vds + 0.5Vds^2) / (1 + Vds)$$

$$Vgs = (5Vds + 1,5Vds^2 + 20) / 3Vds$$

$$(12 + 2Vds + 0.5Vds^{2}) / (1 + Vds) = (5Vds + 1.5Vds^{2} + 20) / 3Vds$$

 $(12 + 2Vds + 0.5Vds^{2}) *3Vds = (5Vds + 1.5Vds^{2} + 20) * (1 + Vds)$
 $(36Vds + 6Vds^{2} + 1.5Vds^{3}) = (5Vds + 1.5Vds^{2} + 20 + 5Vds^{2} + 1.5Vds^{3} + 20Vds)$
 $(36Vds + 6Vds^{2} + 1.5Vds^{3}) = (20 + 6.5Vds^{2} + 1.5Vds^{3} + 25Vds)$
 $(11Vds - 0.5Vds^{2} - 20) = 0$

$$21Vds + 0.5Vds^2 - 20 = 0$$

La solución de la ecs cuadrática nos da:

$$Vds = 2v \quad Vds = 20 v$$

Con Vgs utilizamos la ecs del circuito en T2

- Vds -
$$3*id + 20 = 0$$

- $2 - 3*id + 20 = 0$
Id = **6 mA**

ZONA TRIODO

Comprobamos zona

Vo1 =
$$20 - 2id = 20 - 2*6 = 8 v$$

Vo2 = $1*is = 1*is = 6 v$

	corte	co	orriente constante	triódo	
Vgg	1	2	5	10.88	12
Vo1	20		17.32	8.9	8
Vo2	0		1.34	5.5	6
Vds	20		15.98	3.3	2
id	0		1.34	5.5	6
	1		3.64	5.33	6
Vgs PQ	0		11.57	18.48	12

https://www.youtube.com/watch?v=jTAiVbBGsss

https://www.youtube.com/watch?v=h8VcISK7y3w

PROYECTO INTEGRADOR CON EL MOSFET: