CENG 415 Evrimsel Hesaplama

Bölüm 2: Evrimsel Hesaplamanın Kökleri

Şevket Umut Çakır

Pamukkale Üniversitesi

14 Ekim 2020

Evrimsel Hesaplamanın Kökleri

- Tarihsel Perspektif
- 2 Biyolojik Esinlenme
 - Darwin'in Evrim Teorisi
 - Genetik
- 3 Evrimsel Hesaplama Motivasyonu

Tarihsel Perspektif

- 1948: Turing Genetik veya Evrimsel Aramayı önerir
- 1962: Bremermann Evrim ve Birleştirme(çaprazlama) Yoluyla Optimizasyonu önerir
- 1964: Rechenberg Evrim Stratejisini önerir
- 1965: L.Fogel, Owens ve Walsh Evrimsel Programlamayı önerirler
- 1975: Hollland Genetik Algoritmaları önermiştir
- 1992: Koza Genetik Programlamayı önerir

Tarihsel Perspektif

- 1985: İlk uluslararası konferans (ICGA)
- 1990: Avrupa'daki ilk uluslararası konferans (PPSN)
- 1993: İlk bilimsel evrimsel hesaplama dergisi (MIT Press)
- 1997: Avrupa Evrimsel Hesaplama Araştırma Ağı'nın başlatılması (EvoNet)

Tarihsel Perspektif

21. Yüzyılın Başlarında Evrimsel Hesaplama

- 3 büyük ve ilişkili 10 küçük konferans
- 4 bilimsel büyük evrimsel hesaplama dergisi
- Geçtiğimiz yıl içinde 1000+ yayınlanmış evrimsel hesaplama makalesi(tahmini)
- Sayısız uygulama
- Sayısız danışmanlık ve ar-ge firması
- Birçok üniversite müfredatında yer alır

Darwin'in Evrim Teorisi

En Güçlünün Hayatta Kalması

- Survival of the fittest: En güçlünün hayatta kalması(doğal seleksiyon/seçilim)
- Bütün ortamlar sonlu kaynaklara sahiptir(örn: belirli sayıda canlının yaşamasına imkan sunar)
- Yaşam formlarının üremeye yönelik temel içgüdüleri / yaşam döngüleri vardır
- Böylelikle bir çeşit seçilim süreci kaçınılmazdır
- Kaynaklar için en iyi mücadele eden bireylerin üreme şansı daha yüksektir
- Doğal evrim sürecinde uyum gücü(fitness) nesilden nesile aktarılan bir özelliktir

Darwin'in Evrim Teorisi

Çeşitlilik Değişime Yol Açar

- Fenotipik özellikler
 - Çevreye tepkiyi etkileyen davranış / fiziksel farklılıklar
 - Kısmen kalıtımla, kısmen de gelişim sırasındaki faktörlerle
 - Kısmen rastgele değişikliklere bağlı olarak her bireye özgü eşsiz
- Eğer fenotipik özellikler
 - Daha yüksek üreme şansına sebep oluyorsa
 - Alt nesillere aktarılabilir

alt nesillerde artma eğilimi gösterecektir, bu da yeni özellik kombinasyonlarının ortaya çıkmasına yol açacaktır

Darwin'in Evrim Teorisi

Özet

- Popülasyon çeşitli bireylerden oluşur
- Daha iyi adapte olmuş özelliklerin kombinasyonu, popülasyondaki temsilini artırma eğilimindedir
 - Bireyler "seçim birimleridir"
- Varyasyonlar, sürekli bir çeşitlilik kaynağı oluşturan rastgele değişiklikler yoluyla meydana gelir ve seçimle birlikte şu anlama gelir:
 - Popülasyon, "evrimin birimidir"

Adaptif Yüzey Metaforu(Wright 1932)

- z ekseni(yükseklik) uygunluk değerini(fitness) gösterir
- xy düzlemi mümkün olan bütün özellik kombinasyonlarını temsil eder
- Yüksekliğin fazla olması uygunluk değerinin yüksek/iyi olduğunu gösterir
- Her bir birey yüzeydeki bir nokta ile ifade edilir
- Popülasyon bir nokta bulutudur ve evrildikçe yüzey üzerinde hareket eder

Adaptif Yüzey Metaforu(Wright 1932)

Adaptif Yüzey Metaforu

- Seçme işlemi popülasyonu yüzey üzerinde yukarı doğru iter
- Genetik kayma/sürüklenme(Genetic drift)
 - Popülasyondaki birey sayısı kısıtlıdır, seçme ve değişim operatörleri bireyleri yüzeyde başka noktalara taşır
 - Genetik kayma ile güçlü olan bireyler kaybolabilir ya da çeşitlilik azalabilir
 - Genetik kayma sonucunda bireyler aşağı da hareket edebilir, yukarı da
 - Yerel optimum noktalardan kaçarak global optimum noktalara erişilebilir

Doğal

- Canlı bir organizmayı inşa etmek için gerekli olan bilgi o organizmanın DNA'sında kodlanmıştır
- Genotip(iç kısımda DNA) fenotipi belirler
- ullet Genlerden o fenotipik özelliklere karmaşık bir izdüşüm söz konusudur
 - ► Bir gen birden çok özelliği etkileyebilir(pleiotropy)
 - Birden çok gen bir özelliği etkileyebilir(polygeny)
- Gendeki küçük değişiklikler organizmada küçük değişikliklere neden olur(boy, saç rengi gibi)

Genler ve Genomlar

- Genler, kromozom adı verilen DNA sarmallarında kodlanmıştır
- Birçok hücrede her bir kromozomun iki kopyası mevcuttur(diploid)
- Bir bireyin genotipindeki tüm genetik malzeme Genom olarak adlandırılır
- Türler içinde genetik malzemenin çoğu aynıdır

Örnek: Homo Sapiens

- İnsan DNA'sı kromozomlardan oluşur
- İnsanların vücut hücreleri bireylerin fiziksel özelliklerini belirleyen 23 çift kromozomdan oluşur

Üreme Hücreleri

- Gametler(sperm ve yumurta hücreleri) 23 tekil(çift değil) kromozom içerirler
- Her bir kromozomun yalnızca bir kopyasını içeren hücrelere haploid denir
- Gametler mayoz(meiosis) adı verilen bir bölünme gerçekleştirirler
- Mayoz bölünme esnasında kromozom çiftleri çaprazlama(crossing-over) adı verilen bir işlemden geçer

Mayoz Bölünme Esnasında Çaprazlama

- Kromozom çiftleri hizalanır ve birer kopyalarını oluştururlar
- İçte kalan çiftler bir sentromerden(centromere) bağlanır ve parçalarını değiştirirler

- İşlemin çıktısı anne/baba kromozomun yanında iki tane yeni kombinasyondur
- Çaprazlama sonunda her bir çift bir gamete gider

Genetik Döllenme

New person cell (zygote)

Döllenme Sonrası

- Yeni zigot, aynı genetik içeriğe sahip olacak şekilde hızlıca bölünür
- Bütün hücreler aynı genlere sahip olmasına rağmen, organizmadaki konumlarına göre farklı davranacaklardır
- Gelişim sürecindeki bu farklı davranışa ontogenesis adı verilir
- Bütün hepsi DNA içindeki genlerin kodlarının çözülmesi için aynı mekanizmayı kullanır

Genetik Kod

- Dünyadaki canlılarda bulunan bütün proteinler 20 farklı amino asitten inşa edilmiştir
- DNA çift sarmal spiral şeklinde 4 nüklotidden oluşur: pürin A,G; primidin T,C
- Üçlü nükleotidler kodonları oluştururur ve bunlar amino asitleri kodlar
- Ekstra bilgi
 - Pürinler, primidinleri tamamlar
 - DNA içinde çok fazla gereksiz kısım barındırır
 - $ightharpoonup 4^3 = 64$ kodon, 20 farklı amino asiti kodlar
 - $lackbox{ genetik kod} = \mathsf{kodonlardan} o \mathsf{amino} \mathsf{asitlere} \mathsf{bir} \mathsf{izdüşümdür}$
- Dünya üstündeki tüm doğal yaşam için genetik kod aynıdır

Transcription, Translation

- Transcription: DNA'daki bilginin RNA'ya yazılır
- Translation: RNA'dan protein dizilimine geçiş

- Moleküler genetikte genetikte merkezi bir iddia: tek yönlü geçiş Genotip \rightarrow Fenotip
 - Genotip ## Fenotip
- Lamarkizm'e göre sonradan elde edilen özellikler miras alınabilir ki yukarıdaki kabule göre bu yanlıştır.

Mutasyon

- Bazen, bu süreç sırasında organizmaların genetik materyali çok az değişime uğrar(çoğaltma hatası)
- Bu çocuk bireyin her iki ebeveynden de almadığı genetik materyal bilgisine sahip olduğunu gösterir
- Bu üç farklı şekilde sonuçlanabilir
 - Katastrofik: Yavru yaşayamaz(çoğunlukla)
 - Doğal: Yeni özellik uyumu/uygunluğu değiştirmez
 - Avantajlı: Güçlü yeni bir özellik ortaya çıkar

Evrimsel Hesaplama Motivasyonu

- Problem çözücüleri(algoritmalar) geliştirmek matematik ve bilgisayar bilimlerinin ana temalarından biridir
- Mühendisler çözüm üretmek için doğadan sıklıkla ilham almaktadır
- Doğadaki problem çözücülere baktığımızda iki aday göze çarpar
 - Insan beyni: nörohesaplama
 - Evrim süreci: evrimsel hesaplama

Evrimsel Hesaplama Motivasyonu

- 20. yüzyılın ikinci yarısı ile birlikte artan bilgisayarlı hesaplama, otomatik problem çözmeye olan gereksinimi artırmıştır
- Paralel hesaplama teknikleri ve problem analizleri ile problem çözümü için gereken süre azalmaktadır
- Kabul edilebilir sürede doğru sonuç veren(en iyisi olmasa da), geniş alana uygulanabilen ve mümkün olduğunca az ayarlama gerektiren algoritmalara gereksinim artmıştır

Uydu için anten tasarımı

Keane ve Brown uzay boşluğunda uyduların antenlerindeki titreşimi azaltmak için bir çalışma yapmıştır[2].

Şekil: Başlangıç tasarımı

Şekil: Genetik algoritma ile bulunan