Contributeurs

Variables aléatoires

Notions aléatoires

Notion d'expérience aléatoire

Cadre dans lequel on observe différentes actions dues au hasard.

- ω Le *résultat* d'une expérience aléatoire, alias *épreuve* ou *issue*.
- Ω L'ensemble des résultats possibles.
- \rightarrow Il s'ensuit que $\omega \in \Omega$.
- > Par exemple, pour le lancer d'un dé où l'on désire savoir le résultat $\Omega = \{\text{pile, face}\}.$
- \rightarrow On dénote par $\mathcal{P}(\Omega)$ l'ensemble de toutes les parties de Ω .

Notion d'événement aléatoire

Événement lié à une certain expérience aléatoire.

Un événement est tout sous-ensemble de Ω . Par exemple, pour l'expérience aléatoire de jeter un dé on a que l'ensemble des résultats possibles $\Omega = \{1, 2, 3, 4, 5, 6\}$. L'événement A « obtenir un nombre pair » s'écrit $A = \{2,4,6\}$. De ceci on déduit qu'à toute propriété définie sur Ω , on associe un sous-ensemble de Ω composé de tous les ω qui vérifient la propriété.

Algèbre de Boole des événements

Algèbre de Boole (« boolean algebra ») des événements

La classe \mathcal{E} des événements est l'algèbre de Boole de parties de Ω , si elle contient Ω et est stable par intersection, réunion et complémentation.

Note On dit habituellement algèbre plutôt qu'algèbre de Boole.

Opérations logiques

Les opérations logiques que l'on peut effectuer sur les événements sont :

- 1. Soit les événements $A \subset \Omega$ et $B \subset \Omega$, alors :
 - $A \cup B$ est un événement réalisé ssi **au moins un** des deux est réalisé.
 - $A \cap B$ est un événement réalisé ssi **les deux** sont réalisés simultanément.
- 2. Ø est un événement qui ne peut être réalisé appelé l'événement impossible. À chaque expérience, Ω est toujours réalisé et appelé l'événement certain.
- 3. $A \subset \Omega$ est un événement.
 - \rightarrow Le complément A^c ou \overline{A} est appelé événement contraire de A et se réalise si $\omega \notin A$.
- 4. La **différence de deux événements** A et B est $A \setminus B = A \cap B^c$ se réalise si *A* est réalisé mais pas *B*.
- 5. La **différence symétrique** de *A* et *B* est $A\Delta B = (A \setminus B) \cup (B \setminus A)$ se réalise si l'un des deux événements est réalisé mais pas l'autre.
- 6. Si, $\forall n \in \mathbb{N}$, l'événement A_n représente « **gagner** n **matchs** », alors
 - $\rightarrow \bigcup_{n=1}^{\infty} A_n$ représente « gagner au moins un match ».
 - $\rightarrow \bigcap_{n=1}^{\infty} A_n^c$ représente « ne pas gagner de matchs ».
- 7. Deux événements sont **incompatibles** si $A_1 \cap A_2 = \emptyset$
 - \rightarrow On peut aussi dire que les parties de Ω représentées par A_1 et A_2 sont disjointes.
 - > Si deux événements sont incompatibles, on a une somme au lieu d'une réunion avec $A_1 \cup A_2 = A_1 + A_2$ si $A_1 \cap A_2 = \emptyset$.
- 8. Si les événements de la suite $(A_i)_{i\in\mathbb{I}}$ forment une **partition** de Ω , on dit que ses événements $(A_i)_{i\in\mathbb{I}}$ forment un système exhaustif de Ω .
- 9. La suite d'événements $(A_n)_{n\in\mathbb{N}^*}$ est :

croissante ssi $A_1 \subset A_2 \subset \dots$

décroissante ssi $A_1 \supset A_2 \supset \dots$

10. Si la suite $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements d'un ensemble Ω , on représente que :

une infinité de A_n est réalisé en écrivant que, quel que soit le rang $k \in$ \mathbb{N}^* , il existe des événements de rang supérieur (à k) qui sont réalisés :

$$\cap_{k=1}^{\infty} \cup_{n=k}^{\infty} A_n$$

un nombre fini de A_n est réalisé en écrivant qu'il existe un rang tel qu'à partir de ce rang, tous les événements réalisés sont les contraires des événements $A_n: \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n^c$

≡ Limites de suite d'événements

Soit $(A_n)_{n\in\mathbb{N}^+}$ une suite d'événements de Ω . On défini les limites inf et sup d'événements par :

$$A_* = \lim\inf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$$

$$A^* = \limsup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$$

 $A_* = \lim\inf A_n = \bigcup_{k=1}^{\infty} \bigcap_{n=k}^{\infty} A_n$ $A^* = \lim\sup A_n = \bigcap_{k=1}^{\infty} \bigcup_{n=k}^{\infty} A_n$ De plus, si les ensembles A_* et A^* coïncident, alors on écrit $A = A_* = A^* = A^*$ $\lim_{n\to\infty} A_n$.

Propositions

Soit $(A_n)_{n\in\mathbb{N}^+}$ une suite d'événements de Ω .

i) Si
$$A_1 \subset A_2 \subset \dots$$
 alors $\lim_{n \to \infty} A_n = \bigcup_{n=1}^{\infty} A_n$

ii) Si
$$A_1 \supset A_2 \supset \dots$$
 alors $\lim_{n \to \infty} A_n = \bigcap_{n \to \infty} A_n$

$$\lim_{n\to\infty} A_n = \bigcap_{n=1}^{\infty} A_n$$

Espaces probabilisables

\square Power set \mathcal{P}

Le « power set » \mathcal{P} est l'ensemble de tous les sous-ensembles d'un ensemble Ω ; il est plus facile de donner un exemple que d'expliquer en mots.

Exemple de « power set »

Soit l'ensemble $\Omega = \{a, b, c\}$, alors

$$\mathcal{P}(\Omega) = \left\{ \begin{array}{c} \{\}\\ \{a\}, \{b\}, \{c\}\\ \{a,b\}, \{a,c\}, \{b,c\} \} \\ \{a,b,c\} \end{array} \right\}$$

Pour un ensemble de n éléments, il y aura 2^n sous-ensembles possibles. Ceci découle du binaire! Voir cette page pour plus d'information.

Note En anglais, on appelle la tribu \mathcal{A} composée des « *events* » le « *event space* » et l'ensemble Ω composé des « *outcomes* » le « *sample space* ».

Tribu d'événements

La tribu (ou σ -algèbre) sur un ensemble Ω est un ensemble \mathcal{A} de parties de Ω tel que :

- i) $\Omega \in \mathcal{A}$.
- ii) Si $A \in \mathcal{A}$, alors $A^c \in \mathcal{A}$.
- iii) $\forall (A_n)_{n \in \mathbb{N}^*}$ une suite d'éléments de \mathcal{A} , alors l'événement $\bigcup A_n \in \mathcal{A}$.

Espace probabilisable (ou mesurable)

Le couple (Ω, \mathcal{A}) composé d'un ensemble Ω et une tribu \mathcal{A} sur Ω .

Les éléments de Ω sont appelés *éventualités* (« *outcomes* ») et les éléments de A événements (« events »).

> En anglais, on dit « measurable space ».

Visualisation

Voici une visualisation de ce que représente l'espace mesurable :

On peut donc visualiser les 3 conditions dans la définition de la tribu. L'ensemble Ω est contenu, tous les événements possibles (alias toutes les combinaisons de $\{a,b,c\}$ possibles) sont contenus et tous leurs compléments sont contenus. Finalement, toute union d'événements sera contenue dans la tribu!

✓ Propriétés de la tribu

Soit \mathcal{A} une tribu sur Ω . Alors :

- a) $\emptyset \in \mathcal{A}$.
- b) $\forall A_1, \dots, A_k \in \mathcal{A}$, alors $\bigcup_{i=1}^k A_i \in \mathcal{A}$ et $\bigcap_{i=1}^k A_i \in \mathcal{A}$.

- c) $\forall (A_n)_{n \in \mathbb{N}^*}$ suite d'événements de \mathcal{A} , alors $\bigcap_{n \in \mathbb{N}^*} A_n \in \mathcal{A}$.
- d) $\forall (A_n)_{n \in \mathbb{N}^*}$ suite d'événements de \mathcal{A} , alors $\liminf A_n \in \mathcal{A}$.
- e) $\forall (A_n)_{n \in \mathbb{N}^*}$ suite d'événements de \mathcal{A} , alors $\limsup A_n \in \mathcal{A}$

Note Voir la page 19 des notes de cours du chapitre 1 pour les preuves.

Variables aléatoires

Variable aléatoire

On définit une **variable aléatoire** comme une *fonction mesurable*. Pour ce faire, on défini 2 espaces mesurables :

- 1. On pose que le premier est (Ω, A) .
- 2. On pose que le deuxième est tout ensemble E et sa tribu $\mathcal{E}:(E,\mathcal{E})$.
 - \rightarrow Habituellement, on pose que $E = \mathbb{R}$ et que $\mathcal{E} = \mathcal{B}(\mathbb{R})$.

Une fonction mesurable est une fonction qui associe les éléments de Ω aux éléments de E avec quelques propriétés additionnelles. On note qu'en associant les éléments de Ω , la fonction associe les *éventualités* et non les *événements* aux éléments de E.

On désire avoir une correspondance entre les événements réalisés de $\mathcal A$ et l'ensemble transformé d'événements $\mathcal E.$ Pour ce faire, on impose que la variable aléatoire (alias, la fonction mesurable) $X:\Omega\to E$ est définie telle que l'image réciproque $X^{-1}(B)$ sur Ω de tout ensemble $B\in\mathcal E$ sur E:

$$X^{-1}(B) = \{\omega \in \Omega : X(\omega) \in B\} \in \mathcal{A}, \forall B \in \mathcal{E}$$

Donc, une **variable aléatoire réelle** est toute application à valeurs réelles $X: \Omega \to \mathbb{R}$ telle que, \forall intervalle B de \mathbb{R} , $\{X \in B\} = X^{-1}(B)$ soit un événement de la tribu \mathcal{A} .

Visualisation

On peut visualiser que l'événement B, où $B\in\mathcal{E}$, a un réciproque $X^{-1}(B)$ où $X^{-1}(B)\in\mathcal{A}$.

En posant $E = \mathbb{R}$ et $\mathcal{E} = \mathcal{B}(\mathbb{R})$, on obtient la *tribu borélienne*.

≡ Tribu borélienne

La tribu borélienne $\mathcal{B}_{\mathbb{R}}$ est la plus petite tribu de \mathbb{R} qui contient tous ses intervalles. Les éléments de $\mathcal{B}_{\mathbb{R}}$ sont appelés les *boréliens* de \mathbb{R} .

Pour une v.a. réelle X, $\forall B \in \mathcal{B}_{\mathbb{R}}$ on a $X^{-1}(B) \in \mathcal{A}$.

Bref, $(\Omega, \mathcal{A}) \stackrel{X}{\to} (\mathbb{R}, \mathcal{B}_{\mathbb{R}})$. On dit que la tribu $X^{-1}(\mathcal{B}_{\mathbb{R}})$ sur Ω est la *tribu des événements engendrés par* X.

Probabilités

Mesure

Pour un espace mesurable (Ω, \mathcal{A}) , une fonction $\mathbb{P} : \mathcal{A} \to [0, \infty]$ s'appelle une **mesure** sur (Ω, \mathcal{A}) si :

- 1. Elle attribue une masse de zéro à l'ensemble vide : $\mathbb{P}(\emptyset) = 0$
- 2. Elle est « countably additive » : $P\left(\bigcup_{i} A_{i}\right) = \sum_{i} P(A_{i}), \forall A_{i} \in \mathcal{A}$

■ Mesure de probabilité

Pour un espace probabilisable (Ω, \mathcal{A}) , on appelle *probabilité* sur (Ω, \mathcal{A}) toute application $P: \mathcal{A} \to [0,1]$ telle que :

- i) $P(\Omega) = 1$.
- ii) $\forall (A_n)_{n \in \mathbb{N}^*}$ d'événements deux à deux disjoints, $P\left(\bigcup_{n \in \mathbb{N}^*} A_n\right) = \sum_{n \in \mathbb{N}^*} P(A_n)$.

La mesure de probabilité est donc une mesure qui est **restreint** sur [0,1].

Espace probabilisé

Le triplet (Ω, \mathcal{A}, P) s'appelle un **espace probabilisé** et est composé de :

- Ω Le « sample space ».
- \mathcal{A} Le « event space ».
- P La mesure de probabilité.
- > En anglais, on dit « *probability space* ».

Visualisation

Voici une visualisation de ce que représente l'application P :

On peut donc visualiser les 2 conditions dans la définition de l'espace probabilisé. La probabilité d'observer l'ensemble Ω est de 1 car il contient tous les événements possibles. La probabilité d'un événement sera contenu entre 0 et 1 ce qui veut dire que la probabilité de quelques événements *disjoints* correspond à la somme des probabilités.

On complète la notion précédente sur l'espace borélien avec $(\Omega, \mathcal{A}, P) \xrightarrow{X} (\mathbb{R}, \mathcal{B}_{\mathbb{R}}, P_X)$ où P_X est appelée loi de probabilité de X. On définit $P_X(B) = P(X \in B) = P(X^{-1}(B))$.

Propriétés des probabilités

Soit (Ω, \mathcal{A}, P) un espace probabilisé. Alors :

- a) $P(\emptyset) = 0$.
- b) Si A et B sont des événements disjoints, alors $P(A \cup B) = P(A) + P(B)$.
- c) Si A et B sont des événements quelconques, alors $P(A \cup B) = P(A) + P(B) P(A \cap B)$.
- d) Si A et B sont des événements tels que A \subset B, alors $P(B \setminus A) = P(B) P(A)$ et $P(A) \leq P(B)$.
- e) $\forall A \in \mathcal{A}, P(A^c) = 1 P(A)$.
- f) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements quelconques, alors $P\left(\bigcup_{n\in\mathbb{N}^*}A_n\right)\leq\sum_{n\in\mathbb{N}^*}P(A_n)$.
- g) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements tels que $A_n\downarrow\emptyset$, alors $P(A_n)\downarrow 0$.
- h) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements tels que $A_n\downarrow A$, alors $P(A_n)\downarrow P(A)$.
- i) Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements tels que $A_n\uparrow A$, alors $P(A_n)\uparrow P(A)$.

Lemmes de Borel-Cantelli

Lemme de Borel-Cantelli (1ère partie)

Si $(A_n)_{n\in\mathbb{N}^*}$ est une suite d'événements telle que :

$$\sum_{n=1}^{\infty} P(A_n) < \infty \text{ , alors}$$

$$P\left(\limsup_{n\to\infty}A_n\right)=0.$$

Probabilité conditionnelle

☐ Formule de Bayes (2 événements)

Soit un espace probabilisé (Ω, \mathcal{A}, P) , A et B deux événements de \mathcal{A} tels que $\Pr(A) \neq 0$, $\Pr(A^C) \neq 0$ et $\Pr(B) \neq 0$. Alors :

$$\Pr(A \setminus B) = \frac{\Pr(B|A)\Pr(A)}{\Pr(B|A)\Pr(A) + \Pr(B|A^C)\Pr(A^C)}$$

Soit un espace probabilisé (Ω, \mathcal{A}, P) et $(A_i)_{i \in \mathbb{N}}$ une partition de Ω telle que $\forall i, \Pr(A_i) \neq 0$. Alors, $\forall B \in \mathcal{A}, \Pr(B) = \sum_{i \in \mathbb{N}} \Pr(B|A_i) \Pr(A_i)$.

Soit un espace probabilisé (Ω, \mathcal{A}, P) et $(A_i)_{i=1,2,\dots,n}$ une partition **finie** de Ω telle que $\forall i$, $\Pr(A_i) \neq 0$. Alors, $\forall B \in \mathcal{A}$ tel que $\Pr(B) \neq 0$,

$$Pr(A_i|B) = \frac{Pr(B|A_i) Pr(A_i)}{\sum_{j=1}^{n} Pr(B|A_j) Pr(A_j)}$$

Indépendance

Indépendance (2 événements)

Soit un espace probabilisé (Ω, \mathcal{A}, P) , A et B deux événements de \mathcal{A} . Alors A et B sont indépendants pour la probabilité P si et seulement si

$$Pr(A \cap B) = Pr(A) Pr(B)$$
.

Il est important de bien saisir que le notion d'indépendance n'est pas intrinsèque aux événements, mais *dépend* de la probabilité P choisie sur (Ω, \mathcal{A}) . Deux événements peuvent êtres indépendants pour une probabilité, mais être dépendants pour une autre.

✓ Propriétés (2 événements)

- 1 A^C et B sont indépendants.
- 2 A et B^C sont indépendants.
- 3 A^C et B^C sont indépendants.

Indépendance (n événements)

Soient (A_1,\ldots,A_n) un n-uple d'événements. On dit qu'ils sont **indépendants**, ou *mutuellement indépendants*, $\underline{\mathbf{si}}$ et seulement $\underline{\mathbf{si}}$ $\forall k=1,\ldots,n$, $\underline{\mathbf{si}}$ \forall sous-ensemble (A_{i_1},\ldots,A_{i_k}) de k événements choisis parmi les (A_1,\ldots,A_n) , on a $\Pr(A_{i_1}\cap\cdots\cap A_{i_k})=\Pr(A_{i_1})\times\cdots\times\Pr(A_{i_k})$.

Indépendance (suite d'événements)

Soit un espace probabilisé (Ω, \mathcal{A}, P) , et une suite d'événements indépen-

dants
$$(A_n)_{n\in\mathbb{N}^*}$$
 de \mathcal{A} . Alors on a $\Pr\left(\bigcap_{n\in\mathbb{N}^*}A_n\right)=\lim_{k\to\infty}\prod_{n=1}^k\Pr(A_n)$.

Lemme de Borel-Cantelli (2ème partie)

Soit (Ω, \mathcal{A}, P) un espace probabilisé, et une suite d'événements $(A_n)_{n \in \mathbb{N}^*}$ indépendants de \mathcal{A} telle que $\sum_{n=1}^{\infty} \Pr(A_n) = \infty$, alors $\Pr(\limsup_n A_n) = 1$

Fonction de répartition

Mesure image

La mesure image, ou « *pushforward measure* » en anglais, est obtenue « *by pushing* » une mesure d'un espace mesurable à un autre avec une fonction mesurable.

Loi de probabilité

La mesure image de P par X, notée P_X , s'appelle la loi de probabilité de X.

■ Fonction de répartition

Pour une mesure de probabilité P_X , on a que $\forall x \in \mathbb{R}$ la fonction F est définie comme $F(x) = P_X(] - \infty, x]$. Cette fonction a les propriétés suivantes :

- 1) *F* est croissante au sens large.
- 2) *F* est continue à droite.
- 3 $\lim_{x\to\infty} F(x) = 1$ et $\lim_{x\to-\infty} F(x) = 0$.

Note Il y a une relation biunivoque entre les mesures de probabilités sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ et les fonctions de répartition.

Classification des lois de probabilité sur la tribu borélienne

Pour une probabilité P sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$, on classifie les lois de probabilités en 2 groupes :

1 Diffuse

On dit que P est diffuse si $\forall x \in \mathbb{R}$, P(x) = 0.

2 Discrète

On dit que P est discrète s'il existe un ensemble au plus dénombrable S tel que P(S)=1 .

Cependant, si P désigne une probabilité sur $(\mathbb{R}, \mathcal{B}_{\mathbb{R}})$ ni diffuse ni discrète, alors $\exists \alpha \in]0,1[$, P_1 une loi discrète et P_2 une loi diffuse tel que $P = \alpha P_1 + (1-\alpha)P_2$.

Variable aléatoire discrète

Toute variable aléatoire X telle qu'il existe un sous-ensemble fini ou dénombrable S_X (ou tout simplement S) de $\mathbb R$ vérifiant $P(\{X \in S\} = 1$. On peut donc définir $S = \{x \in \mathbb R : P_X(\{x\}) = P((\{X = x\}) > 0\}$. Donc, on note $p_x = P((\{X = x\}) = P_X(\{x\})$

Loi continue

Une mesure de probabilité absolument continue est une mesure de probabilité de la forme $P(B) = \int_B f(x) dx \quad \forall B \in \mathcal{B}_{\mathbb{R}}$ où f est une densité de probabilité. C'est-à-dire, une fonction définie sur \mathbb{R} satisfaisant aux conditions :

- $1 \quad f(x) \ge 0 \ \forall x \in \mathbb{R},$

Toute variable aléatoire X telle qu'il existe un sous-ensemble fini ou dénombrable S_X (ou tout simplement S) de $\mathbb R$ vérifiant $P(\{X \in S\} = 1$. On peut donc définir $S = \{x \in \mathbb R : P_X(\{x\}) = P((\{X = x\}) > 0\}$. Donc, on note $p_x = P((\{X = x\}) = P_X(\{x\})$