More Terminology

Definition (Directed Graph)

A sire in ordered pairs of elements of the Exact the left by

- In a directed graph each edge (u, v) has a direction
- Edges (u, v) and (v, u) can both exist, and have different weights
- An undirected graph can be seen as a special type of directed graph

Shortest Paths

With weighted edges a simple breadth-first search will not find the shortest

Assignment Project Exam Help

https://powgoder.com

• The shortest path from a to e is (a, powcoder

Questions

- What might a "brute force" algorithm do?
- How long would it take?

The Bellman-Ford algorithm solves the general problem where edges may Assergive Project Exam Help

- A distance array is used again
- distance[v] is the current estimate of the shortest path to v
- The algorithm proceeds by gradually reducing these estimates

Assignment Project Exam Help

https://powgoder.com

Add We Chat powcoder

- If distance[v] is greater than distance[u] + w(u, v) then:
 - distance[v] is distance[u] + w(u, v)
 - Parent of v is u

Bellman-Ford (Input: weighted graph G = (V, E) and vertex s) Assignment for Project Exam Help • Set distance[s] = 0

- Repeat |V| 1 times:
 - https://powcoder.com
- For each edge $(u, v) \in E$
 - If distance[v] is greater than distance[u] + w(u, v)

 Add powcoder
- Return TRUE

Question

Why does the loop run |V| - 1 times?

Bellman-Ford (Input: weighted graph G and vertex s) Assignment or Project Exam Help • Set distance[s] = 0

- Repeat |V| 1 times:
 - https://powcoder.com
- For each edge $(u, v) \in E$
 - If distance[v] is greater than distance[u] + w(u, v)After POWCOGET
- Return TRUE
- All edges are relaxed |V| 1 times so all paths are tried
- The algorithm returns FALSE if a negative weight cycle occurs

Relax (Input: weighted edge (u, v))

As f is incomplete the distance [u] + f is f incomplete. Help

• Parent of v is f• Parent of f• Parent

- ullet In iteration i all edges in paths containing i edges have been relaxed
- The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

As f distance f is distance f is distance f is f are f is f and f is f and f is f are f is f and f is f are f in f and f is f are f in f and f is f are f and f is f and f are f and f is f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f are f and f are f are f and f are f are f and f are f and f are f are f are f are f are f and f are f and f are f are f are f and f are f are f are f and f are f are f and f are f and f are f and f are f are f are f are f and f are f and f are f and f are f

- ullet In iteration i all edges in paths containing i edges have been relaxed
- The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

As f distance f is distance f is distance f is distance f is f are f and f are f and f are f are f and f are f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f are f and f are f and f are f and f are f are f and f are f and f are f and f are f are f and f are f and f are f and f are f and f are f are f and f are f and f are f are f and f are f are f and

- In iteration i all edges in paths containing i edges have been relaxed
- The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

As f distance f is f are f is f and f is f are f in f is f and f are f and f is f and f are f and f is f are f and f are f and f are f and f are f and f are f are f and f are f and f are f are f and f are f and f are f are f are f and f are f are f are f and f are f are f and f are f are f and f are f and f are f

- In iteration i all edges in paths containing i edges have been relaxed
- The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

As f is interpretable and f is f in the property of f in the property of f is f in the property of f in the property of f in the property of f is f in the property of f in the property of f in the property of f is f in the property of f in the pr

- ullet In iteration i all edges in paths containing i edges have been relaxed
- The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

As f distance f is f are f is f and f is f are f in f is f and f are f and f is f and f are f and f is f are f and f are f and f are f and f are f and f are f are f and f are f and f are f are f and f are f and f are f are f are f and f are f are f are f and f are f are f and f are f are f and f are f and f are f

- ullet In iteration i all edges in paths containing i edges have been relaxed
- The most edges in any (simple) path is |V|-1

Relax (Input: weighted edge (u, v))

As f distance f is distance f is distance f is f are f and f are f are f are f and f are f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f are f and f are f are f and f are f are f are f and f are f are f are f and f are f are f are f are f and f are f and f are f are f and f are f are f and f are f and f are f are f and f are f are f and f are

- In iteration i all edges in paths containing i edges have been relaxed
- The most edges in any (simple) path is |V|-1

Definition (Negative Weight Cycle)

A seth ig range my in Privacied graph Executive well edp

If a directed graph G contains a negative weight cycle $\langle v_1, v_2, \dots, v_n \rangle$ then:

- The shortest paths to all vertices reachable from v_1, \ldots, v_n are undefined
- In this case Bellman-Ford will return FALSE

Time

Question Assignment Project Exam Help

Bellman-Ford (Input: weighted graph G and vertex s)

- Set littly / poweroder.com
- Repeat |V| 1 times:
 - *Add eWeChat powcoder
- For each edge $(u, v) \in E$
 - If distance[v] is greater than distance[u] + w(u, v)
 - Return FALSE
- Return TRUE

Af G has non-negative edges the then we can use Dijkstra's Algorithm TEO LEXAM HEIP Bellian-Ford relaxes every edge of every path

- The running time of Bellman-Ford is O(VE)
- Dijkatra/stalgorithm/nstead uses a greetly strategy

Assic idea: Project Exam Help

- Will have then found shortest path to at least one other vertex
- Rephttps://powcoder.com

Dijkstra's algorithm maintains a set of vertices whose distance[v] is correct

Assignment a Project Exam Help

distance[v] = infinity for all vertices

distance[s] = 0

s https://powcoder.com

u is vertex in V - S with least distance[u]

Add (uWeChat powcoder

- The next vertex added to S is the one with the least distance[u]
- This value is now assumed to be minimal. Is this correct?

Correctness

An charful lowing the cumulation premose control (actual) targeth of the land shortest seeth from the source to a given vertex

- If there is no path $s \rightsquigarrow v$, then $p(v) = \infty$
- ~ https://powcoder.com

Theorem (Correctness of Dijkstra)

At the start of the while loop of Dijkstra's algorithm, run on weighted, directed graph G (V, Y) with not because V (V, Y) and vertex $v \in V$: if distance [v] = p(v) for all vertices $v \in S$, then distance [u] = p(u) for u, the next vertex added to S.

First we prove two useful properties

Assignment Project Exam Help

Lemma (https://powcoder.com

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Add WeChat powcoder

First we prove two useful properties

Assignment Project Exam Help

Lemma (https://powcoder.com

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Add WeChat powcoder

First we prove two useful properties

Assignment Project Exam Help

Lemma (https://powcoder.com

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Add WeChat powcoder

First we prove two useful properties

Assignment Project Exam Help

Lemma (https://powcoder.com

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Add WeChat powcoder

First we prove two useful properties

Assignment Project Exam Help

Lemma (https://powcoder.com

Let G = (V, E) be a weighted, directed graph with weight function w, and source vertex s. If (u, v) is an edge in E, then $p(v) \le p(u) + w(u, v)$.

Add WeChat powcoder

This lemma shows that distance[u] is always an upper bound for p(u)

Aesse (generate the project Exam Help Let $G = \{V, E\}$) be a weighted, directed graph with weight function w, and source vertex s. If distance[s] is initialised to 0 and distance[v], for all $v \in V$ where $v \neq s$, is initialised to ∞ , then distance[u] $\geq p(u)$, for all $u \in V$, all $v \in V$ where $v \neq s$ is initialised to $v \in V$.

Proof.

Firstly, conider dequivee Ordinated powcoder

- $distance[u] = \infty$, for $u \neq s$
- distance[s] = 0

If s is part of a negative weight cycle, then $p(s) = -\infty$, otherwise p(s) = 0. So, $distance[u] \ge p(u)$ for all $u \in V$ in this case.

Algorithms (580) Weighted Graphs February 2018 46 / 54

Proof (continued).

Assignment Projecthi ExameHelp

• Assume $distance[u] \ge p(u)$ for all $u \in V$, prior to relaxing (x, y)

When (x, y) it pased either (x, y) in the latter case:

- distance[y] = distance[x] + w(x, y), so
- distance of the distance of
- $distance[y] \ge p(y)$, by the Triangle Lemma

So after relaxing (x, y), $distance[u] \ge p(u)$ still holds for all vertices in G, and by the principle of induction $distance[u] \ge p(u)$ is always true for any sequence of edge relaxations.

Theorem (Correctness of Dijkstra) At SISTED IN GIPLOP of POISE CENTRAL POINT AND WE great P directed graph G = (V, E) with non-negative weight function W, and vertex $s \in V$: if distance[v] = p(v) for all vertices $v \in S$, then distance https://be.next.vertex.adled.to.Scom

Proof.

- If there is no path something then $p(u) = \infty$. Since:

 distance of p(u), by the Upper Bound Cemma, then $p(u) = \infty$.
 - $distance[u] = \infty$, so
 - distance[u] = p(u).

and the theorem is true.

Assignment Project Exam Help

Proof (cohitteps://powcoder.com

If there is a path $s \sim u$, then consider the shortest such path. Let this path be $s \sim^p x \rightarrow y \sim^q u$, where y is the first vertex on the path not in S. First, it is shown that f(t) tanked f(t) a following two constants f(t) as shortest path from f(t) to f(t) and f(t) there would be a shorter path to f(t). Then,

- distance[x] = p(x)
- distance[y] = distance[x] + w(x, y) = p(x) + w(x, y)

since x is in S and (x, y) was relaxed when x was added to S.

Algorithms (580) Weighted Graphs February 2018

49 / 54

Assignment Project Exam Help

Proof (cohttps://powcoder.com

And, since $s \rightsquigarrow^p x \to y$ is a shortest path from s to y, then:

- Next we show that distance in the power of t observations that
 - (1) $distance[u] \leq distance[y]$, since u is added next to S
 - (2) $p(y) \le p(u)$, since all edges are non-negative.

Assignment Project Exam Help

https://powcoder.com

- So, beginning with Observation (1):

 distance and distance and distance of the contract of t
 - $distance[u] \leq p(y)$, and
 - $distance[u] \leq p(u)$, by Observation (2).

But $distance[u] \ge p(u)$ by the Upper Bound Lemma, so distance[u] = p(u) and the theorem is true.

Algorithms (580) Weighted Graphs February 2018 51 / 54

Assignment, Project Exam Help

```
Dijkstra (Input: weighted graph G = (V, E) vertex s)
distance[s] = 0
distance[s] = 0
S = {}
white V - S - E Chat powcoder
for v in G.adj[u]
    relax (u, v)
S = S + {u}
```

Algorithms (580) Weighted Graphs February 2018 52 / 54

Assignment, Project Exam Help

```
Dijkstra (Input: weighted graph G = (V, E), vertex s)

distant D \subseteq InDOtyf G \cap G

distance [s] = 0

S = \{\}

white G \subseteq G

for v in G. adj [u]

relax (u,v) affects ordering of vertices

S = S + \{u\}
```

Algorithms (580) Weighted Graphs February 2018 53 / 54

Performance

Assignmenta Parojecto Examin Hielp ordering of the vertices is managed

- Implement V-S as a priority queue The left pration prought to the left is COM
- Each edge is relaxed once, giving an aggregate of |E|

With a binary-heap-based priority queue adding, removing and updating (changing key latter work) that powcoder

• Overall running time is then $O(E \log_2 V)$