Examen Parcial I. Optimización

Fecha:	2 de Abril del 2019	
Nombre	e:	

Nota Importante:

- Escriba su nombre y numere cada hoja usada para responder el examen.
- Por favor, no mezclar las respuestas de **diferentes preguntas** en la misma hoja.
- El examen esta formado por las preguntas 1 y 2
- No necesita comentar el código que se solicita en la pregunta 1, (recuerde subir el código)
- La pregunta 3 es opcional y podrá alcanzar hasta un punto adicional si resuelve esta pregunta.
- En caso de alcanzar más de 10 puntos, la puntuación adicional se considerará para el próximo examen.
- Favor de dejar el examen escrito en mi pichonera!

Preguntas:

1. **[6 puntos]** Sea

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{x}^T\mathbf{Q}\mathbf{x} - \mathbf{b}^T\mathbf{x}$$
 (1)

donde $\mathbf{Q} \in \mathbb{R}^{n \times n}$ es simétrica y postiva definida; $\mathbf{x}, \mathbf{b} \in \mathbb{R}^n$. Dado un punto inicial \mathbf{x}_0 y el siguiente esquema iterativo

$$\mathbf{x}_{k+1} = \mathbf{x}_k + \alpha_k \mathbf{d}_k$$

con tamaño de paso exacto, ie,

$$\alpha_k = \arg\min_{\alpha>0} f(\mathbf{x}_k + \alpha \mathbf{d}_k)$$

con $\mathbf{g}_{k+1} = \mathbf{Q}\mathbf{x}_{k+1} - \mathbf{b}$ y dirección \mathbf{d}_k definida como sigue

$$\mathbf{d}_{k+1} = -\gamma_{k+1}\mathbf{g}_{k+1} + \mathbf{d}_k$$

para
$$k = -1, 0, 1, \dots$$
; con $\mathbf{d}_{-1} = 0$, $\mathbf{d}_{k+1}^T \mathbf{Q} \mathbf{d}_k = 0$ y $\gamma_0 = 1$.

- a) Calcula γ_{k+1} en función de \mathbf{g}_{k+1} , \mathbf{d}_k y Q.
- **b)** Verifica que $\mathbf{g}_{k+1} = \mathbf{g}_k + \alpha_k \mathbf{Q} \mathbf{d}_k$
- c) Muestra que $\mathbf{g}_{k+1}^T \mathbf{d}_{k-1} = 0$ y $\mathbf{g}_{k+1}^T \mathbf{g}_k = 0$
- **d**) Muestre que d_{k+1} es una dirección de descenso, para k > -1.
- e) Implemente el algoritmo anterior en Python (Nota: subir código).
- f) Ejecute la implementacion anterior para n=100, $\mathbf{x}_0=0$, $\mathbf{b}=1$ un vector de unos y \mathbf{Q} una matriz diagonal con entradas $q_{ii}=i^2$, $i=1,2,\cdots,n$. Muestre las gráficas (k,f_k) y $(k,\|\mathbf{g}_k\|)$, $k=0,1,\ldots$ donde $f_k=f(\mathbf{x}_k)$ y $\mathbf{g}_k=\nabla f(\mathbf{x}_k)$.
- 2. [**4 puntos**] Definamos la función $f: \mathbb{R}^n \to \mathbb{R}$ para n > 1

$$f(\mathbf{x}) = \frac{1}{2}\mathbf{z}^T\mathbf{Q}\mathbf{z} \tag{2}$$

donde $\mathbf{x} = [x_1, \cdots, x_n]^T \in \mathbb{R}^n, \mathbf{z} = [\mathbf{x}^T, y]^T \in \mathbb{R}^{n+1}$ y

$$y \stackrel{def}{=} \frac{1}{\prod_{i=1}^{n} x_i} \in \mathbb{R} \tag{3}$$

$$\mathbf{Q} \stackrel{def}{=} \mathbf{1}\mathbf{1}^T - \mathbf{I} \in \mathbb{R}^{(n+1)\times(n+1)}$$
 (4)

con 1 denotamos un vector de unos, y con I la matriz identidad.

- a) Halla el punto crítico \mathbf{x}^* de $f(\mathbf{x})$ tal que $x_i > 0$, $i = 1, 2, \dots, n$.
- **b)** Verifica que el punto crítico anterior es un mínimo
- c) Calcula el valor $f(\mathbf{x}^*)$

3. [1 punto adicional] Se desea resolver la ecuación

$$x^2 - a = 0 ag{5}$$

donde $a,x\in\mathbb{R}$ y a>0. El método de Newton se puede escribir como sigue

$$x_{k+1} = \frac{1}{2} \left(x_k + \frac{a}{x_k} \right). \tag{6}$$

Suponga que el proceso iterativo anterior converge:

- a) A qué valor converge?
- b) Cuál es el orden de convergencia y verifíquelo?