

Dowodzenie twierdzeń związanych z liczbami rzeczywistymi

- Wprowadzenie
- Przeczytaj
- Animacja
- Sprawdź się
- Dla nauczyciela

W tej lekcji skupimy się na dowodzeniu własności i twierdzeń związanych z liczbami rzeczywistymi. W dowodzeniu olbrzymią rolę odgrywa umiejętności argumentowania i uzasadniania poczynionych obserwacji – każdy krok powinien być opisany tak, aby czytający dowód mógł odtworzyć przewód myślowy autora dowodu i dokonać jego analizy. Ogólnie mówiąc dowód to rozumowanie, które prowadzi od założeń do tezy. Z założeń można korzystać dowolnie w dowolnym momencie dowodu, teza ma być wnioskiem, zwieńczeniem rozumowania.

Twoje cele

- Udowodnisz nierówności.
- Udowodnisz własności liczb całkowitych.
- Podasz kontrprzykład, który uzasadni fałszywość podanego stwierdzenia.

Przeczytaj

Przykład 1

Wykażemy, że dla dowolnych liczb rzeczywistych x,y,z spełniających warunek x>y>z zachodzi $x>\frac{y+z}{2}$.

Założenie

$$x>y>z; x,\ y,\ z\in\mathbb{R}$$

Teza

$$x>rac{y+z}{2}$$

Dowód

Zauważmy, że teza jest równoważna nierówności $x-\frac{y+z}{2}>0$.

Rozważmy wyrażenie $x - \frac{y+z}{2}$.

$$x - \frac{y+z}{2} = \frac{2x}{2} - \frac{y+z}{2} = \frac{2x-(y+z)}{2} = \frac{2x-y-z}{2} = \frac{x-y+x-z}{2}$$

Z założenia wiemy, że x>y i x>z, zatem x-y>0 i x-z>0.

Ponadto suma liczb dodatnich jest dodatnia, więc x - y + x - z > 0.

Stąd
$$\frac{x-y+x-z}{2} > 0$$
.

Na mocy przechodniości relacji równości mamy $x-\frac{y+z}{2}>0$, zatem teza została udowodniona.

Przykład 2

Wiadomo, że liczby p i p^3+21 są liczbami pierwszymi. Wykażemy, że istnieje dokładnie jedna liczba p spełniająca ten warunek.

Założenie

p i $p^3 + 21$ są liczbami pierwszymi.

Teza

Istnieje dokładnie jedna liczba p.

Dowód

Zauważmy, że jedyną liczbą pierwszą parzystą jest liczba 2.

Rozważmy p=2.

Wtedy $p^3 + 21 = 2^3 + 21 = 8 + 21 = 29$, co jest liczbą pierwszą.

Rozważmy teraz p większe od 2.

Oznacza to, że p jest liczbą nieparzystą.

Wówczas p^3 i 21 są liczbami nieparzystymi, a zatem p^3+21 jest liczbą parzystą większą niż 2, zatem nie jest liczbą pierwszą.

Jedyną liczbą p spełniająca warunki zadania jest p=2.

Przykład 3

Wykażemy, że dla dowolnych liczb naturalnych dodatnich x i y wyrażenie xy-x-y+1 przyjmuje wartość nieujemną.

Założenie

$$x,\ y\in\mathbb{N}_{+}$$

Teza

$$xy - x - y + 1 \ge 0$$

Dowód

Przekształcimy lewą stronę powyższej nierówności, korzystając z rozdzielności mnożenia względem dodawania i odejmowania.

$$xy - x - y + 1 = x(y - 1) - (y - 1) = (y - 1)(x - 1)$$

Zauważmy, że ponieważ x i y są liczbami naturalnymi dodatnimi, więc są nie mniejsze, niż 1, czyli $x \geq 1$ i $y \geq 1$.

Zatem liczby x-1 i y-1 są nieujemne.

Ponadto iloczyn liczb nieujemnych jest liczbą nieujemną, więc $(y-1)(x-1) \geq 0.$

Ponieważ relacja równości jest przechodnia, więc teza została udowodniona.

Przykład 4

Udowodnimy, że dla dowolnej liczby rzeczywistej x wyrażenie x^2-2x+1 przyjmuje wartości nieujemne.

Założenie

 $x\in\mathbb{R}$

Teza

$$x^2-2x+1\geq 0$$

Dowód

Rozważmy lewą stronę nierówności.

$$x^2 - 2x + 1 = x^2 - x - x + 1 = x(x - 1) - (x - 1) =$$

= $(x - 1)(x - 1) = (x - 1)^2$

Przypomnijmy, że kwadrat dowolnej liczby rzeczywistej jest nieujemny.

Stąd
$$(x-1)^2 \ge 0$$
.

Ponieważ relacja równości jest przechodnia, więc teza została udowodniona.

Przykład 5

Medianą ułamków $\frac{a}{b}$ i $\frac{c}{d}$ nazywamy ułamek $\frac{a+c}{b+d}$. Wykaż, że wartość mediany dwóch różnych ułamków dodatnich jest większa niż mniejszy z nich oraz mniejsza od większego z nich.

Założenie

 $\frac{a}{b} < \frac{c}{d}; a, b, c, d$ są liczbami naturalnymi dodatnimi.

Teza

$$\frac{a}{b} < \frac{a+c}{b+d} < \frac{c}{d}$$

Dowód

Korzystając z twierdzenia o własności relacji mniejszości, przekształcimy założenie.

Zauważmy, że nierówność $\frac{a}{b}<\frac{c}{d}$ jest równoważna z nierównością $\frac{a}{b}-\frac{c}{d}<0$, którą z kolei można przekształcić, sprowadzając ułamki do wspólnego mianownika $\frac{ad}{bd}-\frac{cb}{db}<0$.

Zatem założenie przekształca się do postaci $\frac{ad-cb}{bd} < 0$.

Ponieważ z założenia liczba bd jest dodatnia, więc liczba ad-bc jest ujemna.

Rozważmy najpierw nierówność $\frac{a}{b} < \frac{a+c}{b+d}$.

Z własności relacji mniejszości jest ona równoważna nierówności $\frac{a}{b}-\frac{a+c}{b+d}<0.$

Zbadajmy zatem wyrażenie $\frac{a}{b} - \frac{a+c}{b+d}$.

$$\frac{a}{b} - \frac{a+c}{b+d} = \frac{a(b+d)}{b(b+d)} - \frac{(a+c)b}{(b+d)b} = \frac{ab+ad-ab-bc}{b(b+d)} = \frac{ad-bc}{b(b+d)}$$

Wiemy już, że licznik powyższego ułamka jest liczbą ujemną.

Ponadto łatwo zauważyć, że mianownik jest liczbą dodatnią.

Ponieważ iloraz liczby ujemnej przez dodatnią jest ujemny, więc $\frac{ad-bc}{b(b+d)} < 0$.

Z przechodniości relacji równości mamy $\frac{a}{b}-\frac{a+c}{b+d}<0$, czyli $\frac{a}{b}<\frac{a+c}{b+d}$. Drugą część dowodu pozostawiamy jako ćwiczenie.

Ważne!

Mówimy, że relacja R jest:

- zwrotna na zbiorze A, gdy każdy element a zbioru A jest w relacji sam ze sobą, czyli aRa;
- przechodnia na zbiorze A, gdy dla dowolnych elementów a, b, c zbioru A zachodzi: jeśli a jest w relacji z b i b jest w relacji z c, to a jest w relacji z c, czyli jeśli aRb i bRc, to aRc;
- antysymetryczna na zbiorze A, gdy dla dowolnych elementów a, b zbioru A zachodzi: jeśli a jest w relacji z b i b jest w relacji z a, to a jest równe b, czyli jeśli aRb i bRa, to a=b.

Przykład 6

Udowodnimy, że relacja podzielności w zbiorze:

- a) liczb całkowitych bez zera jest zwrotna,
- b) liczb całkowitych jest przechodnia,
- ${f c}$) liczb naturalnych dodatnich jest antysymetryczna.

Dowody

a) Relacja podzielności jest zwrotna na zbiorze liczb całkowitych różnych od zera, ponieważ dla każdej liczby całkowitej k różnej od zera zachodzi $k=k\cdot 1$, co oznacza, że k|k.

b) Załóżmy teraz, że dla liczb całkowitych k, m, n zachodzi: k|m i m|n.

Oznacza to, że istnieją takie liczby całkowite x, y, dla których m = kx oraz n = my.

Wynika stąd, że n = kxy.

Ponieważ iloczyn liczb całkowitych jest liczbą całkowitą, więc k|n.

Zatem relacja podzielności jest przechodnia.

c) Niech teraz k|m i m|k zachodzi dla pewnych liczb naturalnych dodatnich k, m.

Z pierwszego warunku wynika, że istnieje liczba naturalna x, dla której m=kx, zaś z drugiego wynika, że istnieje liczba naturalna y, dla której k=my.

Stąd m = myx, zatem 1 = yx.

Ponieważ x i y są liczbami naturalnymi, więc x=1 i y=1, czyli k=m.

Zatem rozważana relacja jest antysymetryczna na zbiorze liczb naturalnych dodatnich.

Słownik

dowód twierdzenia

rozumowanie, które ma celu uzasadnić prawdziwość jakiegoś twierdzenia; dowód prowadzi od założeń do tezy wykorzystując przy tym inne fakty

twierdzenie

zdanie, które opisuje fakt, zależność lub równość, które potrafimy udowodnić, korzystając ze znanych, wcześniej uzasadnionych lub przyjętych za pewnik (aksjomatów) prawd;

twierdzenie najczęściej ma postać zdania:

"Jeżeli p, to q"; pierwsza część (p) takiego zdania to założenie, które opisuje warunki, przy których spełnione jest twierdzenie; druga część (q) to teza zawierająca własność, która zachodzi, gdy spełnione są warunki opisane w założeniu

Animacja

Polecenie 1

Przeanalizuj informacje zawarte w animacji.

Film dostępny pod adresem https://zpe.gov.pl/a/DnNYJde7i

Film nawiązujący do treści materiału dotyczącego dowodzenia twierdzeń związanych z liczbami rzeczywistymi.

Polecenie 2

Wzorując się na przykładzie z animacji, udowodnij, że istnieją dokładnie 4 liczby całkowite n, dla których liczba $\frac{n^2+2n+5}{n+2}$ jest całkowita.

Sprawdź się

Pokaż ćwiczenia: 🗘 🕕 🌘

Ćwiczenie 1	()
-------------	------------

Oceń poprawność poniższych zdań. Zaznacz Prawda lub Fałsz.

	Prawda	Fałsz
Jeżeli liczba całkowita dzieli się przez 3 i przez 4, to dzieli się przez 12.		
Jeżeli liczba całkowita dzieli się przez 2 i przez 6, to dzieli się przez 12.		
Jeżeli liczba nie jest mniejsza od 2, to jest większa od 2.		
Jeżeli liczba x jest większa od 2 , to liczba $-x$ jest mniejsza od 2 .		
Jeżeli liczba x jest większa od 2 , to liczba $-x$ jest mniejsza od -2 .		
Jeżeli x jest liczbą dodatnią, to x^2 jest większy od x .	0	0
Jeżeli liczba x jest większa od liczby y , to x^2 jest większa od y^2 .		0

Ćwiczenie 2

Ćwiczenie 3

\$

\$

\$

\$

Wykaż, że dla liczb rzeczywistych x,y nie mniejszych od 2 zachodzi nierówność $xy+4\geq 2x+2y.$

Uporządkuj poniższe wypowiedzi, aby otrzymać rozwiązanie powyższego zadania.

Rozważymy zatem wyrażenie xy+4-2x-2y, które przekształca się kolejno do:

Z przechodniości relacji równości wynika, że $xy+4-2x-2y\geq 0$.

$$xy + 4 - 2x - 2y = xy - 2x - 2y + 4$$

Zauważmy najpierw, że teza jest równoważna nierówności $xy+4-2x-2y\geq 0.$

Poniewaz iloczyn liczb nieujmenych jest nieujemny, więc $(y-2)(x-2) \geq 0$.

Korzystając z rozdzielności mnożenia względem dodawania i odejmowania otrzymujemy $x(y-2)-2\cdot (y-2)$.

Zauważmy, że skoro liczby x i y są nie mniejsze niż 2, więc liczby x-2 i y-2 są nieujemne. \clubsuit

Ponownie korzystając z rozdzielności mnożenia względem odejmowania otrzymujemy (y-2)(x-2).

Ponieważ powyższa nierówność równoważna jest tezie, dowód uznajemy za zakończony.

Ćwiczenie 4

Udowodnij, że dla dowolnej liczby całkowitej k prawdziwa jest nierówność $9k^2-9k+1>0$

Ćwiczenie 5

Ćwiczenie 6

Wykaż, że wartość mediany dwóch różnych ułamków dodatnich jest mniejsza od większego z nich.

Ćwiczenie 7

Wykaż, że istnieje dokładnie jedna liczba pierwsza p, dla której p+10 oraz p+14 są liczbami pierwszymi.

Uporządkuj poniższe wypowiedzi, aby otrzymać rozwiązanie powyższego zadania.

Zauważmy najpierw, że liczba p=3 spełnia warunki zadania.

\$

W związku z powyższym pozostałe liczby p są postaci: p=3k+1 lub p=3k+2 dla pewnej liczby naturalnej k.

Rzeczywiście: liczby p+10=13 oraz p+14=17 są pierwsze.

Z powyższego rozumowania wynika, że jedyną liczbą pierwszą p, dla której p+10 i p+14 są liczbami pierwszymi jest p=3.

\$

Pozostałe liczby pierwsze nie dzielą się przez 3.

\$

Dla p=3k+1 mamy $p+14=3k+1+14=3k+15=3\cdot(k+5)$, zatem liczba p+14 dzieli się przez 3, czyli nie jest pierwsza.

Dla p=3k+2 mamy $p+10=3k+2+10=3k+12=3\cdot(k+4)$, zatem liczba p+10 dzieli się przez 3, czyli nie jest pierwsza.

\$

Ćwiczenie 8

Uzasadnij, że poniższe stwierdzenia nie są prawdziwe. Podaj kontrprzykłady, tzn. liczby, dla których spełnione są założenia, ale teza nie zachodzi.

Stwierdzenie:

- a) Jeżeli liczba jest mniejsza niż 5, to jej kwadrat jest mniejszy niż 25.
- b) Jeżeli liczba jest dodatnia, to jej sześcian jest od niej większy.
- c) Jeżeli liczba całkowita dzieli się przez 3 i przez 6, to dzieli się przez 18.
- d) Kwadrat sumy dwóch liczb jest równy sumie ich kwadratów.
- e) Pierwiastek sumy dwóch liczb jest równy sumie ich pierwiastków.

Dla nauczyciela

Autor: Sebastian Guz

Przedmiot: Matematyka

Temat: Dowodzenie twierdzeń związanych z liczbami rzeczywistymi

Grupa docelowa:

Szkoła ponadpodstawowa, liceum ogólnokształcące, technikum, zakres rozszerzony

Podstawa programowa:

I. Liczby rzeczywiste. Zakres podstawowy. Uczeń:

5) stosuje własności monotoniczności potęgowania, w szczególności własności: jeśli x < y oraz a > 1, to $a^x < a^y$, zaś gdy x < y i 0 < a < 1, to $a^x > a^y$.

Kształtowane kompetencje kluczowe:

- kompetencje w zakresie rozumienia i tworzenia informacji
- kompetencje matematyczne oraz kompetencje w zakresie nauk przyrodniczych, technologii i inżynierii
- kompetencje cyfrowe
- kompetencje osobiste, społeczne i w zakresie umiejętności uczenia się

Cele operacyjne:

Uczeń:

- udowodnia nierówności;
- udowodnia własności liczb całkowitych;
- podaje kontrprzykład, uzasadniający fałszywość podanego stwierdzenia.

Strategie nauczania:

- konstruktywizm;
- konektywizm.

Metody i techniki nauczania:

- odwrócona klasa;
- mapa myśli;
- dyskusja.

Formy pracy:

- praca indywidualna;
- praca w parach;
- praca w grupach;
- praca całego zespołu klasowego.

Środki dydaktyczne:

- komputery z głośnikami, słuchawkami i dostępem do internetu;
- zasoby multimedialne zawarte w e-materiale;
- tablica interaktywna/tablica, pisak/kreda.

Przebieg lekcji

Faza wstępna:

- 1. Wskazanie przez nauczyciela tematu: "Dowodzenie twierdzeń związanych z liczbami rzeczywistymi" i celów zajęć, przejście do wspólnego ustalenia kryteriów sukcesu.
- 2. Nauczyciel prosi uczniów, aby zgłaszali swoje propozycje pytań do wspomnianego tematu. Jedna osoba może zapisywać je na tablicy. Gdy uczniowie wyczerpią pomysły, a pozostały jakieś ważne kwestie do poruszenia, nauczyciel je dopowiada.

Faza realizacyjna:

- 1. Nauczyciel prosi, aby wybrany uczeń przeczytał polecenie numer 1 z sekcji "Animacja"
 "Przeanalizuj informacje zawarte w animacji." Następnie prosi uczniów, aby zapoznali się z materiałem. Po ustalonym wcześniej czasie pyta czy były wątpliwości z jego zrozumieniem i tłumaczy je.
- 2. Uczniowie wykonują indywidualnie ćwiczenie nr 1-2, a następnie wybrany uczeń omawia ich wykonanie na forum krok po kroku.
- 3. Kolejne ćwiczenia (numer 3, 4 i 5) uczniowie wykonują w parach. Następnie konsultują swoje rozwiązania z inną parą uczniów i ustalają jedną wersję odpowiedzi.
- 4. Uczniowie rozwiązują indywidualnie ćwiczenia nr 6, 7 i 8. Nauczyciel sprawdza poprawność wykonanych, omawiając je wraz z uczniami.

Faza podsumowująca:

- 1. Omówienie ewentualnych problemów z rozwiązaniem ćwiczeń z sekcji "Sprawdź się".
- 2. Nauczyciel ponownie odczytuje temat lekcji: "Dowodzenie twierdzeń związanych z liczbami rzeczywistymi" i inicjuje krótką rozmowę na temat zrealizowanych celów (czego uczniowie się nauczyli). Na koniec prosi chętnego ucznia o podsumowanie i jeśli to potrzebne uzupełnia informacje.

Praca domowa:

1. Uczniowie opracowują FAQ (minimum 3 pytania i odpowiedzi prezentujące przykład i rozwiązanie) do tematu lekcji ("Dowodzenie twierdzeń związanych z liczbami rzeczywistymi").

Materialy pomocnicze:

Twierdzenia i ich rodzaje

Wskazówki metodyczne:

• Medium w sekcji "Animacja" można wykorzystać na lekcji jako podsumowanie i utrwalenie wiedzy w temacie "Dowodzenie twierdzeń związanych z liczbami rzeczywistymi".