RELATIONAL DATA MODEL

Corresponding Reading: Chapter 5.1

Relational Model

- First introduced by Ted Codd (IBM Research 1970)
 - Model uses the concept of a mathematical relation as its basic building block
 - Looks similar to a table of values
 - ■Theoretical basis is set theory and predicate logic
- Simple model with high level query language.
- First commercial implementation in 1980's
- Today: Oracle DBMS, MySQL, PostgreSQL

Basic Construct

- Relation (also referred to as table).
- Each relation has a name.
- Each relation has a set of named attributes (or columns).
- Each **tuple** (or **row**) has a value for each attribute.
- Each attribute has a type (or domain).

University Database

Database is a set of named relations (or tables).

STUDENT

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21

COURSE

COURSE

Course_name	Course_number	Credit_hours	Department
Intro to Computer Science	CS1310	4	CS
Data Structures	CS3320	4	CS
Discrete Mathematics	MATH2410	3	MATH
Database	CS3380	3	CS

Relation Schema

- Schema is a structural description of relations in the database: name, attributes, types of these attributes.
- Instance actual contents of a table at any given time.
- Schema: constant; Instance: varies.

Domains

- Each attribute has a domain (attribute type).
- Name the domain.
 - **■**Examples:
 - USA_phone_numbers: The set of 10 digit phone numbers valid in USA.
 - Social_security_numbers: The set of valid 9 digit SSN
 - Names: The set of character strings that represent names of persons
 - Academic_dept_codes: Department codes, such as 'CS', 'ECON', 'ENG'
- A domain is given a name, data type, and format.
 - Additional information can be given to help interpret values
 - Example: Weight in pounds or kilograms, etc.
 - \blacksquare age: integer x; 0 < x < 100.

Ordering of Tuples

- Tuples in a relation do not have a particular order.
- The relation is not sensitive to the ordering of tuples.
- The order of attributes/values in a tuple is important.

STUDENT

Name	Ssn	Home_phone	Address	Office_phone	Age	Gpa
Dick Davidson	422-11-2320	NULL	3452 Elgin Road	(817)749-1253	25	3.53
Barbara Benson	533-69-1238	(817)839-8461	7384 Fontana Lane	NULL	19	3.25
Rohan Panchal	489-22-1100	(817)376-9821	265 Lark Lane	(817)749-6492	28	3.93
Chung-cha Kim	381-62-1245	(817)375-4409	125 Kirby Road	NULL	18	2.89
Benjamin Bayer	305-61-2435	(817)373-1616	2918 Bluebonnet Lane	NULL	19	3.21

Formal definition of a Tuple

- A tuple can be considered as a set of (<attribute>, <value>) pairs, where each pair gives the value of the mapping from an attribute A_i to a value v_i from $dom(A_i)$.
- The ordering of attributes is not important since the attribute name appears with its value.
 - Example: These two tuples are identical.

```
t = < (Name, Dick Davidson),(Ssn, 422-11-2320),(Home_phone, NULL),(Address, 3452 Elgin Road), (Office_phone, (817)749-1253),(Age, 25),(Gpa, 3.53)>
```

```
t = < (Address, 3452 Elgin Road), (Name, Dick Davidson), (Ssn, 422-11-2320), (Age, 25), (Office_phone, (817)749-1253), (Gpa, 3.53), (Home_phone, NULL)>
```

Null Value

- NULL: unknown or undefined
 - query: students with phone area code (817)
 - query: students whose phone area code not (817)

Key

- All tuples in a relation must be distinct (set definition).
- relation key: attribute whose value is unique in each tuple OR set of attributes that together can uniquely identify each tuple in a relation.
 - Example: SSN is a key of the STUDENT relation
 - Example: Course #, Dept #

Key

- A relation may have more than one key. Each of the keys is called a candidate key.
- Designate one of the candidate keys as the primary key of the relation. (Often arbitrary choice)
 - Attributes that form the primary key are underlined, however the other candidate keys are not.

Example

CAR relation

 Candidate Keys are: License_number and Engine_serial_number

CAR

<u>License_number</u>	Engine_serial_number	Make	Model	Year	
Texas ABC-739	A69352	Ford	Mustang	02	
Florida TVP-347	B43696	Oldsmobile	Cutlass	05	
New York MPO-22	X83554	Oldsmobile	Delta	01	
California 432-TFY	C43742	Mercedes	190-D	99	
California RSK-629	Y82935	Toyota	Camry	04	
Texas RSK-629	U028365	Jaguar	XJS	04	

Relational Database Schema

Example: COMPANY relational DB schema

Summary

- Examined the relational model of data
- Relational data model is used in most DBMS systems today including MySQL, which we will use
- These concepts will directly relate to real operations that can be performed with SQL (Structured Query Language) on real databases.