Формализация утверждений в логике предикатов

Математическая логика и теория алгоритмов

Алексей Романов

2 октября 2024 г.

ТЕИМ

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные —

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- *Переменные x*, *y*, *z*₃, Обозначают

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.
- Термы —

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.
- $\mathit{Термы} x$, $(y+2) \cdot z$, ... Выражения, значения которых объекты. Строятся из переменных и константных символов применением функциональных. Множество термов над Σ : Term_{Σ} .

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.
- Tермы x, $(y + 2) \cdot z$, ... Выражения, значения которых объекты. Строятся из переменных и константных символов применением функциональных. Множество термов над Σ : $Term_{\Sigma}$.
- Формулы —

- Сигнатура Σ конечные или счётные множества константных $Const_{\Sigma}$, функциональных Fun_{Σ} и предикатных $Pred_{\Sigma}$ символов. Для каждого символа из Fun_{Σ} и $Pred_{\Sigma}$ задано число аргументов (арность).
- Переменные x, y, z_3 , Обозначают какие-то объекты (не истину/ложь, как p, q, r). Множество Var не зависит от сигнатуры.
- Tермы x, $(y+2) \cdot z$, ... Выражения, значения которых объекты. Строятся из переменных и константных символов применением функциональных. Множество термов над Σ : $Term_{\Sigma}$.
- Формулы x = y + 1; $\forall x \ x \neq x^2 \dots$ Вот их значения истина и ложь. *Атомарные формулы* строятся из термов применением предикатных символов, а остальные применением связок $\land \land \lor \land \ldots$ и кванторов \forall и \exists к формулам. Множество формул над Σ : $Form_{\Sigma}$.

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат Loves(x,y) для «x любит y».
- Кто-то любит всех на свете \equiv

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете \equiv

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv$

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv \exists x \ \forall y \ Loves(x,y)$.

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv \exists x \ \forall y \ Loves(x,y)$.
- Ещё пример в той же сигнатуре: «Всякая любовь взаимна».
- Ответ:

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv \exists x \ \forall y \ Loves(x,y)$.
- Ещё пример в той же сигнатуре: «Всякая любовь взаимна».
- Ответ: $\forall x \ \forall y \ (Loves(x,y) \rightarrow Loves(y,x))$ или

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv \exists x \ \forall y \ Loves(x,y)$.
- Ещё пример в той же сигнатуре: «Всякая любовь взаимна».
- Ответ: $\forall x \ \forall y \ (Loves(x,y) \rightarrow Loves(y,x))$ или $\forall x \ \forall y \ (Loves(x,y) \leftrightarrow Loves(y,x)).$

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv \exists x \ \forall y \ Loves(x,y)$.
- Ещё пример в той же сигнатуре: «Всякая любовь взаимна».
- Ответ: $\forall x \ \forall y \ (Loves(x,y) \rightarrow Loves(y,x))$ или $\forall x \ \forall y \ (Loves(x,y) \leftrightarrow Loves(y,x)).$
- И ещё: «Кто-то не любит никого, кто любит его».
- Ответ:

- Часто возникает задача: дано утверждение (математическое или в терминах «реального мира»), нужно записать его в виде формулы данной сигнатуры.
- Пример: «Кто-то любит всех на свете». Универсум: люди, предикат *Loves*(*x*, *y*) для «*x* любит *y*».
- Кто-то любит всех на свете $\equiv \exists x \ x$ любит всех на свете $\equiv \exists x \ \forall y \ x$ любит $y \equiv \exists x \ \forall y \ Loves(x,y)$.
- Ещё пример в той же сигнатуре: «Всякая любовь взаимна».
- Ответ: $\forall x \ \forall y \ (Loves(x,y) \rightarrow Loves(y,x))$ или $\forall x \ \forall y \ (Loves(x,y) \leftrightarrow Loves(y,x)).$
- И ещё: «Кто-то не любит никого, кто любит его».
- Otbet: $\exists x \ \forall y \ (Loves(y,x) \rightarrow \neg Loves(x,y)).$

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный):

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.
- Можно ли то же самое записать без -?

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.
- Можно ли то же самое записать без \cdot ? Да! $\exists y \ x = y + y$.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): $\exists y \ x = 2 \cdot y$.
- Можно ли то же самое записать без ? Да! $\exists y \ x = y + y$.
- Вот «x делится на y» без \cdot записать уже не получится.

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): ∃у x = 2 · y.
- Можно ли то же самое записать без \cdot ? Да! $\exists y \ x = y + y$.
- Вот «x делится на y» без \cdot записать уже не получится.
- Задание сложнее: «х простое число».
- Ответ (возможный):

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): ∃у x = 2 · y.
- Можно ли то же самое записать без \cdot ? Да! $\exists y \ x = y + y$.
- Вот «x делится на y» без · записать уже не получится.
- Задание сложнее: «х простое число».
- Ответ (возможный): $\forall y \ \forall z \ x = y \cdot z \to y = 1 \lor z = 1.$

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): ∃у x = 2 · y.
- Можно ли то же самое записать без \cdot ? Да! $∃y \ x = y + y$.
- Вот «x делится на y» без \cdot записать уже не получится.
- Задание сложнее: «*x* простое число».
- Ответ (возможный): $\forall y \ \forall z \ x = y \cdot z \to y = 1 \lor z = 1.$
- Неправда! В чём ошибка?

- «х делится на 2». Универсум: натуральные числа.
- Если предположили что-то вроде $x/2 \in \mathbb{N}$: это не подойдёт. Почему?
- Например, $\mathbb N$ это не объект нашего универсума. А если $\in \mathbb N$ рассматривать как единый предикатный символ, он верен для всех объектов!
- Более того, если / функциональный символ, то он должен иметь значение в нашем универсуме для любых аргументов. Есть варианты логики, которые снимают это ограничение, но мы их не изучаем.
- Ответ (возможный): ∃у x = 2 · y.
- Можно ли то же самое записать без ? Да! ∃y x = y + y.
- Вот «x делится на y» без \cdot записать уже не получится.
- Задание сложнее: «*x* простое число».
- Ответ (возможный): $\forall y \ \forall z \ x = y \cdot z \to y = 1 \lor z = 1.$
- Неправда! В чём ошибка? $x \neq 1 \land \forall y \ \forall z \ x = y \cdot z \rightarrow y = 1 \lor z = 1.$

Формализация со свободными переменными

- У нас на предыдущих слайдах появлялись утверждения с переменными (например, «х любит всех на свете») в промежуточных результатах.
- Может и сразу быть дано такое утверждение.

Формализация со свободными переменными

- У нас на предыдущих слайдах появлялись утверждения с переменными (например, «х любит всех на свете») в промежуточных результатах.
- Может и сразу быть дано такое утверждение.
- В результате должна получиться формула с теми же свободными переменными (и какими угодно связанными).

Формализация со свободными переменными

- У нас на предыдущих слайдах появлялись утверждения с переменными (например, «х любит всех на свете») в промежуточных результатах.
- Может и сразу быть дано такое утверждение.
- В результате должна получиться формула с теми же **свободными** переменными (и какими угодно связанными).
- Если в формуле есть «лишние» свободные переменные или связана одна из тех, что есть в формализуемом утверждении, это заведомо неверный ответ.

• В математических текстах мы часто видим что-то вроде $\forall x>1$ $x^2>x$. Но по нашему определению это не формула! В чём дело?

- В математических текстах мы часто видим что-то вроде $\forall x>1$ $x^2>x$. Но по нашему определению это не формула! В чём дело?
- Это сокращённая запись формулы, но какой?
- $\forall x \ (x > 1 \ ? \ x^2 > x)$. Какую связку нужно поставить?

- В математических текстах мы часто видим что-то вроде $\forall x>1$ $x^2>x$. Но по нашему определению это не формула! В чём дело?
- Это сокращённая запись формулы, но какой?
- $\forall x \ (x > 1 \ ? \ x^2 > x)$. Какую связку нужно поставить?
- $\forall x \ (x > 1 \to x^2 > x)$.

- В математических текстах мы часто видим что-то вроде $\forall x>1$ $x^2>x$. Но по нашему определению это не формула! В чём дело?
- Это сокращённая запись формулы, но какой?
- $\forall x \ (x > 1 \ ? \ x^2 > x)$. Какую связку нужно поставить?
- $\forall x \ (x > 1 \to x^2 > x)$.
- А для случая $\exists x > 1 \ x^2 > x$?

- В математических текстах мы часто видим что-то вроде $\forall x>1$ $x^2>x$. Но по нашему определению это не формула! В чём дело?
- Это сокращённая запись формулы, но какой?
- $\forall x \ (x > 1 \ ? \ x^2 > x)$. Какую связку нужно поставить?
- $\forall x \ (x > 1 \to x^2 > x)$.
- А для случая $\exists x > 1 \ x^2 > x$?
- $\exists x \ (x > 1 \land x^2 > x).$

- В математических текстах мы часто видим что-то вроде $\forall x>1$ $x^2>x$. Но по нашему определению это не формула! В чём дело?
- Это сокращённая запись формулы, но какой?
- $\forall x \ (x > 1 ? x^2 > x)$. Какую связку нужно поставить?
- $\forall x \ (x > 1 \to x^2 > x)$.
- А для случая $\exists x > 1 \ x^2 > x$?
- $\exists x \ (x > 1 \land x^2 > x).$
- Убедитесь, что это работает, если заменить x>1 и $x^2>1$ на любые другие

- В математических текстах мы часто видим что-то вроде $\forall x>1$ $x^2>x$. Но по нашему определению это не формула! В чём дело?
- Это сокращённая запись формулы, но какой?
- $\forall x \ (x > 1 ? x^2 > x)$. Какую связку нужно поставить?
- $\forall x \ (x > 1 \to x^2 > x)$.
- А для случая $\exists x > 1 \ x^2 > x$?
- $\exists x \ (x > 1 \land x^2 > x).$
- Убедитесь, что это работает, если заменить x>1 и $x^2>1$ на любые другие формулы.

∃!

• $\exists ! x P(x)$ читается как

- $\exists ! x \ P(x)$ читается как «Существует единственное x такое, что...»
- P здесь формула со свободной переменной x.

- $\exists ! x \ P(x)$ читается как «Существует единственное x такое, что...»
- P здесь формула со свободной переменной x.
- Но в нашем языке такого символа нет.
- Может быть, ! предикатный символ (или функциональный, или константный)?

- $\exists ! x \ P(x)$ читается как «Существует единственное x такое, что...»
- P здесь формула со свободной переменной x.
- Но в нашем языке такого символа нет.
- Может быть, ! предикатный символ (или функциональный, или константный)? Тогда бы не получилась формула. После квантора может стоять только переменная.

- $\exists ! x \ P(x)$ читается как «Существует единственное x такое, что...»
- Р здесь формула со свободной переменной х.
- Но в нашем языке такого символа нет.
- Может быть, ! предикатный символ (или функциональный, или константный)? Тогда бы не получилась формула. После квантора может стоять только переменная.
- Это сокращение, как и ограниченные кванторы. Осталось его расшифровать.

- $\exists ! x \ P(x)$ читается как «Существует единственное x такое, что...»
- Р здесь формула со свободной переменной х.
- Но в нашем языке такого символа нет.
- Может быть, ! предикатный символ (или функциональный, или константный)? Тогда бы не получилась формула. После квантора может стоять только переменная.
- Это сокращение, как и ограниченные кванторы.
 Осталось его расшифровать.
- $\exists x (P(x) \land ???)$

- $\exists ! x \ P(x)$ читается как «Существует единственное x такое, что...»
- Р здесь формула со свободной переменной х.
- Но в нашем языке такого символа нет.
- Может быть, ! предикатный символ (или функциональный, или константный)? Тогда бы не получилась формула. После квантора может стоять только переменная.
- Это сокращение, как и ограниченные кванторы.
 Осталось его расшифровать.
- $\exists x (P(x) \land ???)$
- $\exists x \; (P(x) \land \forall y \; (P(y) \to x = y))$ или
- $(\exists x \ P(x)) \land \forall y, z \ (P(y) \land P(z) \rightarrow y = z)$

Многосортная логика предикатов

- Часто удобно одновременно говорить о нескольких разных типах объектов. Пример: числа, множества чисел и функции в мат. анализе. Тогда
- К сигнатуре добавляется набор *сортов*. Каждый сорт обозначает какое-то множество объектов.
- У функциональных и предикатных символов кроме числа аргументов задан сорт каждого, у функциональных ещё и сорт результата.
- Применение символов к аргументам не тех сортов считается бессмысленным (т.е. его результат не является термом/формулой).
- Каждая переменная имеет сорт: x : S. Сорт термов определяется по индукции.
- В моделях есть носитель для каждого сорта.
- Многосортную логику можно свести к односортной, добавив по предикату для каждого сорта, но формулы при этом усложняются.