1

QUIC-FL: A Report

Gautam Singh CS21BTECH11018

2

2

2

2

CONTENTS

Proble	em Statement
Goals	of the Paper
_	ninaries
3.2	Randomized Hadamard
	Transform
Bound	led Support Quantization (BSQ)
Distri n	bution-Aware Unbiased Quanti-
The C	QUIC-FL Algorithm
Result	ts
7.1	Complexity Analysis
7.2	Accuracy
Futur	e Works
	Goals Prelin 3.1 3.2 Bound Distrib The Q Result 7.1 7.2

References 2

Abstract—This document is a report of the paper [1]. It summarizes the main contributions of the authors and analyzes the results obtained. This report also lists out possible future research in the area of Federated Learning (FL).

1 PROBLEM STATEMENT

The authors of [1] consider the **Distributed** Mean Estimation problem, illustrated in Figure 1. Specifically, each client C_i sends data \mathbf{x}_i , quantized as $\mathbf{Y}_i \in \{0,1\}^b$, for $1 \le i \le n$. Here, b represents the number of bits used for quantization per client.

The server computes the estimates $\hat{\mathbf{X}}_i$ using the obtained \mathbf{Y}_i as

$$\hat{\boldsymbol{\mu}} \triangleq \frac{1}{n} \sum_{i=1}^{n} \hat{\mathbf{X}}_{i}. \tag{1}$$

Fig. 1. An Illustration of the DME Problem.

The aim of the DME problem is to estimate the true mean $\mu \triangleq \frac{1}{n} \sum_{i=1}^{n} \mathbf{X}_{i}$ using $\hat{\mu}$ as defined in (1) with *minimal error* (see section 3.1).

2 Goals of the Paper

The goals of [1] are to develop a quantization scheme that, compared to other state-of-the-art methods (see section 7.1 for a list of such methods).

- 1) Less computational complexity compared to other methods, at *both* client and server.
- 2) Same (asymptotic) NMSE of $\mathcal{O}\left(\frac{1}{n}\right)$.
- 3) Same convergence rate.
- 4) Better compression ratio.

3 PRELIMINARIES

3.1 vNMSE and NMSE

The main performance metric used to assess a quantization scheme is the *squared error* of the estimated mean from the actual mean. To perform such an assessment, the authors define two quantities that will be useful.

Definition 1 (vNMSE). *The* vector Normalized Mean Square Error of x is defined as

$$vNMSE \triangleq \frac{\mathbb{E}\left[\|\hat{\mathbf{x}} - \mathbf{x}\|_{2}^{2}\right]}{\|\mathbf{x}\|_{2}^{2}}.$$
 (2)

Definition 2 (NMSE). *The* Normalized Mean Square Error *in the case of the DME problem is defined as*

$$NMSE \triangleq \frac{\mathbb{E}\left[\|\hat{\boldsymbol{\mu}} - \boldsymbol{\mu}\|_{2}^{2}\right]}{\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}\|_{2}^{2}} = \frac{\mathbb{E}\left[\|\hat{\boldsymbol{\mu}} - \frac{1}{n}\sum_{i=1}^{n}\mathbf{x}_{i}\|_{2}^{2}\right]}{\frac{1}{n}\sum_{i=1}^{n}\|\mathbf{x}_{i}\|_{2}^{2}}.$$
(3)

From 1 and 2, we can perform simple algebraic manipulations to obtain the following result.

Lemma 3.1.

Proof. \Box

- 3.2 Randomized Hadamard Transform
 - 4 BOUNDED SUPPORT QUANTIZATION (BSQ)
 - 5 DISTRIBUTION-AWARE UNBIASED QUANTIZATION
 - 6 THE QUIC-FL ALGORITHM

7 RESULTS

- 7.1 Complexity Analysis
- 7.2 Accuracy

8 FUTURE WORKS

REFERENCES

[1] R. B. Basat, S. Vargaftik, A. Portnoy, G. Einziger, Y. Ben-Itzhak, and M. Mitzenmacher, "QUIC-FL: Quick unbiased compression for federated learning," 2023.