

Circum-Baltic object marking against a broader areal perspective

Daria Alfimova

Kiel University, Excellence Cluster ROOTS

Outline

- Object marking strategies
- Intuition
- CB area
- Claims
- Data and methods
- Results
- Conclusions

(1) English

The cat broke the vase

(2) English

The cat climbed into the box

(3) Russian

Kot uvlečjon korobk-**oj**

cat(M).NOM.SG be_passionate_about box(F)-**INS**.SG

(4) Russian

Kot zalez v korobk-u

cat(M).NOM.SG climb in box(F)-ACC.SG

Transitive marking strategies

- transitive verbs are defined cross-linguistically (Haspelmath 2015)
- transitive object = the argument marked like the 'broken thing' of the 'break' verb

Transitive marking strategies

- transitive verbs are defined cross-linguistically (Haspelmath 2015)
- transitive object = the argument marked like the 'broken thing' of the 'break' verb

Non-transitive marking strategies

language-specific

Intuition

 the closer languages are, the more correspondences in object marking they will have

Intuition

the closer languages are, the more correspondences in object marking they will have For example:

(5) Latvian

Pēter-is skatās **uz** jūr-**u**

PN-NOM look **on** sea(F)-**ACC**.SG

'Peteris looks at the sea'

(6) Russian

Pet-ja smotrit na mor-e

PN-NOM look on sea(N)-ACC.SG

'Petja looks at the sea.'

CB area

CB area

Claims

- What types of clusters do we see?
- genealogical AND areal
- genealogical
- areal
- formed by independent parallel changes

Claims

- What types of clusters do we see?
- genealogical AND areal
- genealogical
- areal
- formed by independent parallel changes
- Do we observe any clustering in the Circum-Baltic area?
- binary contacts (Do we need the notion of the CB at all?)

Claims

- What types of clusters do we see?
- genealogical AND areal
- genealogical
- areal
- formed by independent parallel changes
- Do we observe any clustering in the Circum-Baltic area?
- binary contacts (Do we need this notion of the CB at all?)

Recent studies on closely related topics: Bickel et al. 2014, Say 2014, 2018, Malchukov and Comrie (eds.) 2015, Journal of Language Contact 12 (1), Seržant et al. (in print)

Data

Main source: https://www.bivaltyp.info

Say, Sergey (ed.). 2020. BivalTyp: Typological database of bivalent verbs and their encoding frames.

St. Petersburg: Institute for Linguistic Studies, RAS.

(Say, Nikolaev. 2021. Maps. In: https://www.bivaltyp.info/)

Data

Main source: https://www.bivaltyp.info

Say, Sergey (ed.). 2020. BivalTyp: Typological database of bivalent verbs and their encoding frames.

St. Petersburg: Institute for Linguistic Studies, RAS.

'be afraid': (P. has to go out of the house, but there is a dog barking in the yard). P. is afraid of the dog.

(7) Russian:

Pet-ja bo-it-sja sobak-i → NOM_GEN

'Petja is afraid of the dog'

Comparative concepts (Haspelmath 2010)

(8) Russian:

Pet-ja ljub-it Maš-<u>u</u>

'Petja loves Masha'

OBJECT FORM

(9) Russian:

Pet-je nrav-it-sja Maš-<u>a</u>

SUBJECT FORM

'Petja likes Masha'

Comparative concepts (Haspelmath 2010)

The tags are assigned according to the least abstract meaning of the marker:

- SPATIAL
- COMITATIVE/CARITIVE
- POSSESSIVE

Latvian
$$uz + ACC/GEN \rightarrow ON/ONTO$$

Slavic $na + ACC/LOC$

Comparative concepts (Haspelmath 2010)

The tags assigned for the markers lacking of any non-abstract meaning:

RECIPIENT, INSTRUMENT, TOPIC, PURPOSE, COMPARISON¹, INTRANSITIVE¹

Method

- 99 verbs x 32 lgs
- comparative concepts (N = 22)
- agglomerative cluster analysis

Results

Clustering dendrogram based on 99 predicate meanings

Figure 1. Clustering dendrogram 1 (agglomerative clustering, average linkage method; coph. corr. coef. ≈ 0.82)

Figure 2. Clustering dendrogram 1, Fragment 1

Similarity dendogram of Slavic languages

(Seržant et al., in print)

Figure 2. Clustering dendrogram 1, Fragment 1

Figure 3. Clustering dendrogram 1, Fragment 2

Figure 3. Clustering dendrogram 1, Fragment 2

Figure 4. Clustering dendrogram 1, Fragment 3

Figure 4. Clustering dendrogram 1, Fragment 3

Figure 4. Clustering dendrogram 1, Fragment 3

Productivity of the transitive pattern

(Say, Nikolaev. 2021. Maps. In: https://www.bivaltyp.info/)

Productivity of the transitive pattern

(Say, Nikolaev. 2021. Maps. In: https://www.bivaltyp.info/)

Figure 5. Language of high transitivity and their clusters

(Say 2018)

Conclusion

Object marking strategies:

- 1. exhibit geographical clusters
- 2. cluster genealogically (or genealogically + geographically)
- 3. may be the result of parallel independent changes (productivity of the transitive pattern)
- 4. The CB languages (Finnish, Estonian, Latvian, Lithuanian, Russian, Belarusian, Ukrainian, Polish, German, Swedish) take part in different clusters
- 5. Binary contacts

References

Bickel, B., Zakharko, T., Bierkandt, L., & Witzlack-Makarevich, A. (2014). Semantic role clustering: An empirical assessment of semantic role types in non-default case assignment. Studies in Language. International Journal sponsored by the Foundation "Foundations of Language", 38(3), 485-511. Haspelmath, M. (2010). Comparative concepts and descriptive categories in crosslinguistic studies. Language, 86(3), 663-687.

Haspelmath, M. (2015). 5. Transitivity prominence. In Volume 1 Introducing the Framework, and Case Studies from Africa and Eurasia (pp. 131-148). Journal of Language Contact 12 (1)

Koptjevskaja-Tamm, M., & Wälchli, B. (2001). The Circum-Baltic languages. An areal-typological approach. Circum-Baltic languages, 2, 615-750.

Malchukov, A., & Comrie, B. (Eds.). (2015). Introducing the Framework, and Case Studies from Africa and Eurasia (Vol. 1).

Say, S. (2014). Bivalent verb classes in the languages of Europe: A quantitative typological study. Language dynamics and change, 4(1), 116-166.

Say, S. (ed.). 2020. BivalTyp: Typological database of bivalent verbs and their encoding frames. St. Petersburg: Institute for Linguistic Studies, RAS. (Available online: https://www.bivaltyp.info/)

Seržant, Ilja A., Björn Wiemer, Eleni Bužarovska, Martina Ivanová, Maxim Makartsev, Stefan Savić, Dmitri Sitchinava, Karolína Skwarska, Mladen Uhlik, Areal and diachronic trends in argument flagging across Slavic. (In print). In: Eystein Dahl (ed.), Alignment and Alignment Change in the Indo-European Family.

Seržant, Ilja A. (To appear). The Circum-Baltic Area. An Overview. In: Jan Fellerer & Neil Bermel (eds.), Oxford Guides to the World's Languages The Slavonic Languages.

Сай, С. (2018). Маркирование актантов двухместных предикатов: предварительные итоги типологического исследования. Валентностные классы двухместных предикатов в разноструктурных языках (с. 557-616).

Thank you for your attention!

Welcome to Slack! #alfimova

Appendix 1. Comparative concepts (tags)

ARG1 (SUBJECT FORM) FROM

ARG2 (OBJECT FORM) IN_INTO

ABOUT (TOPIC) INFRONT

ACROSS INSTRUMENT)

AGAINST INTR (INTRANSITIVE VERB) 1 occurrence

ALONG ON_ONTO

AS (ESSIVE) ^{1 occurence} OVER

AT_TO POS (POSSESSIVE)

BEHIND UNDER

DAT (RECIPIENT) WITH (COMITATIVE)

FOR (PURPOSE) WITHOUT (CARITIVE)

Appendix 2. Research subsample (32 lgs x 99 verbs)

	Albanian	Arabic (Standard)	Bashkir	Basque	Belarusian	•••
be afraid	FROM	FROM	FROM	AT_TO	POS	
throw	ARG2	ARG2	ARG2	ARG2	ARG2	
believe	AT_TO	ARG2	AT_TO	AT_TO	DAT	
take	ARG2	ARG2	ARG2	ARG2	ARG2	

Appendix 3. Method

To compute the differences between the languages in the sample, I dummified the dataset (*dummy.data.frame*), measured binary distances between the languages (*dist*, method = "binary") and applied a cluster analysis (*hclust*, method = "average") using R (R Core Team 2021).

	be_afraidARG2	be_afraidAT_TO	be_afraidFOR	be_afraidFROM	be_afraidINFRONT	be_afraidPOS	throwARG2
Albanian	0	0	0	1	0	0	1
Arabic_Standard	0	0	0	1	0	0	1
Bashkir	0	0	0	1	0	0	1
Basque	0	1	0	0	0	0	1
Belarusian	0	0	0	0	0	1	1
Bulgarian	0	0	0	1	0	0	1