Nome: Dênes Vargon Terrina

Segunda Avaliação

- 1. Sejam $X_1 = (1, 2)$ e $X_2 = (2, 1)$ vetores do \mathbb{R}^2 .
- a) Mostre que $\mathcal{B} = \{X_1, X_2\}$ é um base do \mathbb{R}^2 .
- b) Use o processo de Gram-Schmidt para transformar a base $\mathcal B$ numa base ortonormal $\mathcal C$.
- c) Encontre o vetor coordenada de (3,4) na base C.
- d) Encontre a matriz de mudança de base da base B para a base C.
- Mostre que os vetores de R³ ortogonais ao vetor
 V = (1, 2, -1) formam um subespaço.
- Quais as condições que uma função T : ℝⁿ → ℝ^m deve satisfazer para ser uma transformação linear.
- 4. Dentre as funções de \mathbb{R}^2 em \mathbb{R}^3 dadas a seguir indique qual(quais) não é transformação linear? Justique sua resposta.
 - a) R(x,y) = (x + y, 2x, 3y)
 - b) $S(x,y) = (xy, x^2 + y^2, x y)$
 - c) T(x,y) = (x+1, y-1, x+y)
- 5. Determine a transformação linear $T: \mathbb{R}^2 \to \mathbb{R}^3$ tal que T(1,1)=(3,2,1) e T(1,-1)=(2,3,1). Encontre T(1,0) e T(0,1) e a matriz da transformação na base canônica.
- 6. Determine o núcleo da transformação linear $T: \mathbb{R}^3 \to \mathbb{R}^3$ dada por T(x, y, z) = (x, y z, 2x).
 - 7. Encontre os autovalores e os autovetores da ma-

 $\int \operatorname{triz} A = \begin{bmatrix} 4 & 3 \\ 5 & 2 \end{bmatrix}.$

Agora responda, existe uma matriz P e uma matriz diagonal D, tais que $D = P^{-1}AP$?