Домашнее задание №1 по курсу «Математическая Статистика в Машинном Обучении»

Школа Анализа Данных 26.02.2023

Оценки и сходимость

Задача 1 [2 балла]

Пусть $\boldsymbol{X} = \{X_1, \dots, X_n\} \sim \text{Uniform}(0, \theta), \ \hat{\theta} = 2\overline{\boldsymbol{X}}.$ Найдите значения значения bias, se и MSE этой оценки. Является ли оценка несмещенной? Состоятельной?

Задача 2 [3 балла]

Пусть $\boldsymbol{X} = \{X_1, \dots, X_n\} \sim \text{Poisson}(\ln \lambda), \ \hat{\lambda} = e^{\overline{\boldsymbol{X}}}$. Найдите bias, se и MSE этой оценки. Является ли оценка несмещенной? Состоятельной?

Эмпирическая функция распределения

Задача 3 [2 балла]

Пусть $\hat{F}(x)$ — эмпирическая функция распределения, построенная по выборке $X = \{X_1, \dots, X_n\}$. Пусть $x, y \in \mathbb{R}$. Найдите ковариацию $\mathbb{C}\text{ov}(\hat{F}(x), \hat{F}(y))$.

Задача 4 [2 балла]

Пусть $X = \{X_1, \dots, X_n\} \sim F(x)$, и пусть $\hat{F}(x)$ — эмпирическая функция распределения. Для фиксированных числе $a, b \in \mathbb{R}$, таких что a < b определим статистический функционал T(F) = F(b) - F(a). Пусть $\hat{\theta} = \hat{F}(b) - \hat{F}(a)$. Найдите оценку se стандартного отклонения и $(1 - \alpha)$ -доверительный интервал.

Задача 5 [2 балла]

Скачайте данные о качестве красных вин. Постройте график для $\hat{F}(x; \mathbf{X})$ для уровня кислотности (pH). Для каждой точки x постройте:

- 95%-ый доверительный интервал на основе неравенства Дворецкого-Кифера-Вольфовица.
- Асимптотический нормальный 95%-ый доверительный интервал для значения F(x).

По значениям уровня кислотности X подсчитайте оценку T(X) для функционала T(F) = F(3.5) - F(3.4) и найдите оцените аналитически стандартное отклонение se оценки T(X). Постройте асимптотический нормальный 95%-ый доверительный интервал для T(F).

Задача 6 [2 балла]

В процессе очистки питьевой воды выпадает значительный осадок. Для его уменьшения можно воздействовать на разные факторы, в т.ч. на количество микроорганизмов в жидкости, способствующих окислению органики. В группу из 261 очистительных установок был добавлен реагент, подавляющих активность микроорганизмов, а состав остальных 119 остался без изменений. Пусть θ — разность в средних значениях количества твердых частиц в этих двух группах установок. Оценить по данным WaterTreatment величину θ , оценить стандартную ошибку оценки, построить 95% и 99% доверительные интервалы. Какие выводы можно сделать на основе полученных результатов?

Бутстреп

Задача 7 [2 балла]

Провести моделирование, чтобы сравнить различные типы доверительных интервалов, построенных с помощью бутстрепа. Пусть $n=50,\ T(F)=\int \left(x-\mu\right)^3 dF(x)/\sigma^3$ — коэффициент асимметрии, где F — распределение χ_k^2 с тремя степенями свободы (k=3). Постройте 95% доверительные интервалы для T(F) по выборке $\boldsymbol{X}=\{X_1,\ldots,X_n\}$, используя три подхода на основе бутстрепа.

Задача 8 [3 балла]

Пусть $X = \{X_1, \dots, X_n\} \sim \operatorname{Exp}(\lambda), \ \theta = e^{\frac{1}{\lambda}}$ и $\hat{\theta} = e^{\overline{X}}$. Найдите аналитически плотность распределения $p_{\hat{\theta}}(x)$ оценки $\hat{\theta} = e^{\overline{X}}$, математическое ожидание $\mathbb{E}(\hat{\theta})$, и дисперсию $\mathbb{V}(\hat{\theta})$, а также bias, se, MSE оценки $\hat{\theta}$. Является ли оценка $\hat{\theta}$ смещенной? Состоятельной?

Задача 9 [2 балла]

Пусть $\boldsymbol{X}=\{X_1,\dots,X_n\}\sim \operatorname{Exp}(\lambda),\ \theta=e^{\frac{1}{\lambda}}$ и $\hat{\theta}=e^{\overline{\boldsymbol{X}}}$. Сгенерируйте выборку \boldsymbol{X} из n=1000 наблюдений для $\lambda=0.25$. Нарисуйте гистограмму значений $\{\hat{\theta}_i^*\}_{i=1}^B$ бутстрепных оценок. Эта гистограмма является оценкой распределения $p_{\hat{\theta}}(x)$. Сравните ее с настоящим распределением $p_{\hat{\theta}}(x)$, вычисленным аналитически в предыдущем пункте. Используя бутстреп, подсчитайте величину se и постройте тремя способами 95%-ый доверительный интервал для θ .