Liste der noch zu erledigenden Punkte

Inhaltsverzeichnis

List of Theorems

Kapitel 1

Arbeit im Gange - Grundlagen

Normierte Räume 1.1

Was macht man in der Funktionalanalysis? man definiert sich einen vernünfitgen Abstandsbegriff: z.B. den Begriff der Metrik auf (zunächst einmal) einer beliebigen Mengen E. Damit hat man einen metrischen Raum geschaffen.

Arsenal an Begriffen Der nötige Apparat für die Entwicklung der Funktionanalysis ist nicht groß, er besteht im wesentlichen aus den Begriffen Metrischer Raum, Topologie, Konvergenz, Cauchy-Folge und Stetigkeit.

Einige weitere Begriffe sind in ?? und ?? festgehalten.

Defintion 1.1: Halbnorm, Seminorm

Sei X ein $\mathbb{K} - Vektorraum$, wobei $\mathbb{K} = \mathbb{R}$ oder $\mathbb{K} = \mathbb{C}$. Für $x, y \in X$, $\lambda \in \mathbb{K}$ ist eine Halbnorm oder Seminorm eine Abbildung $\|\cdot\|: X \to \mathbb{R}$, die die folgenden Eigenschaften erfüllt:

- (i) $|||x||| \ge 0$
- (ii) $\|\|\lambda x\|\| = |\lambda| \cdot \|\|x\|\|$
- (iii) $|||x + y|| \le |||x||| + |||y||$

Eine Norm efüllt zusätzlich noch die Bedingung, dass sie nur dann verschwindet, wenn das Argument verschwindet.

Bemerkung 1.2

- (a) $N := \{x \in X : |||x||| = 0\}$ bildet einen Unterraum von X.
- (b) X/N ist ein normierter Raum über(?) ||x+N||:=|||x|||
- (c) X ist ein vollständiger seminormierter Raum $\Rightarrow X/N$ ist ein Banachraum

Beispiele 1.3: wichtige Vektorräume

Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum

(a) $p \in [1,\infty)$ $\mathcal{L}^p(\Omega,\mu) = \{f: \Omega \to \mathbb{C} \text{ messbar}, \int_{\Omega} |f|^p d\mu < \infty \}$ ist ein seminormierter Raum

 $L^p(\Omega,\mu)$ ist ein vollständiger normierter Raum (\nearrow Ana III).

(b) $\mathcal{L}^{\infty}(\Omega,\mu) := \{f : \Omega \to \mathbb{C} \text{ messbar und essentiell beschränkt ist ebenfalls seminormiert mit } |||f|||_{\infty} := \text{ess sup}|f(x)|.$

 $L^{\infty}(\Omega,\mu)$ ist ein vollständiger normierter Raum.

- (c) $p \in [1, \infty], |\cdot|$ sei das Zählmaß auf \mathbb{N} und der Maßraum sei gegeben durch $(\mathbb{N}, P(\mathbb{N}), |\cdot|)$. $\ell^p := \mathcal{L}^p(\mathbb{N}, |\cdot|)$ heißt Folgenraum und ist ein normierter unendlichdimensionaler Raum.
- (d) $\Omega \subseteq \mathbb{R}$ messbar, λ^n Lebesgue-Maß auf \mathbb{R}^n . $L^p(\Omega) := L^p(\Omega, \lambda^n)$ heißt Lebesgue-Raum.
- (e) Sei (Ω, \mathcal{T}) ein topologischer Raum. $BC(\Omega) := \{f : \Omega \to \mathbb{C} \mid f \text{ stetig und beschränkt}\}$ versehen mit der Suprenumsnorm ist ein Banachraum.

Bemerkung 1.4: diverse Fakten

Seien $p, q, r \in [1, \infty)$

- (a) $L^p(\Omega,\mu)$ ist ein Banachraum, $L^2(\Omega,\mu)$ ist ein Hilbertraum mit $(f,g)_2:=\int_{\Omega}f\overline{g}d\mu$
- (b) Falls $\mu(\Omega) < \infty$, $p \ge r \Rightarrow L^p(\Omega, \mu) \subseteq L^r(\Omega, \mu)$
- (c) Wenn $p \geq r \Rightarrow L^r(\Omega, \mu) \cap L^{\infty}(\Omega, \mu) \subseteq L^p(\Omega, \mu)$
- (d) $\frac{1}{p} + \frac{1}{q} = 1$, $f \in L^p(\Omega, \mu)$, $g \in L^q(\Omega, \mu) \Rightarrow fg \in L^1(\Omega, \mu)$ mit $||fg||_1 \leq ||f||_p ||g||_q$ (Hölder-Ungleichung). Dies gilt auch für $p = 1, q = \infty$ wobei $\underline{\text{hier }} \frac{1}{\infty} := 0$.
- (e) Sei $\Omega \subseteq \mathbb{R}^n$ ein Gebiet. $C_0^k := \{f : \Omega \to \mathbb{C} \mid \text{supp} f \text{ kompakt und } f \in C^k(\Omega, \mathbb{C})\}$ ist dicht in $L^p(\Omega) \ \forall p \in [1, \infty)$. Dies gilt nicht für $p = \infty$, da f = const oder f = sign sich nicht durch Funktionen aus C_0^k approximieren lassen.
- (f) $BC(\Omega)$ ist abgeschlossen in $L^{\infty}(\Omega)$, aber nicht in $L^{p}(\Omega)$ für $p < \infty$, dennoch ist $BC(\Omega)$ in beiden Fällen ein Unterraum.

1.2 Lineare Operatoren

1.2.1 Definitionen und grundlegende Eigenschaften

Defintion 1.5: linearer Operator

Seien $X, Y \mathbb{K}$ -Vektorräume. Eine Abbildung $T: X \to Y$ heißt linearer Operator wenn

$$T(\lambda x + \mu y) = \lambda T(x) + \mu T(y) \quad \forall \lambda, \mu \in \mathbb{K}, x, y \in X$$

wir schreiben auch Tx statt T(x).

Wenn $Y = \mathbb{K}$ dann heißt ein linearer Operator $T: X \to \mathbb{K}$ Funktional.

Wenn X, Y normierte \mathbb{K} -Vektorräume sind, heißt ein linearer Operator T beschränkt, wenn $T(U_1(0)) \subseteq Y$ beschränkt ist. In Quantoren lautet diese Aussage

$$\exists M \geq 0$$
, so dass $\forall x \in X : ||Tx||_Y \leq M$ mit $||x||_X < 1$

Bemerkung

Die Bilder beschränkter Mengen M unter einem beschränkten linearen Operator T sind

beschränkt. Denn existiert ein R > 0 mit $M \subseteq U_R(0)$, sodass

$$T(M) \subseteq T(U_R(0)) = T(R \cdot U_1(0)) = R \cdot T(U_1(0))$$

und dies ist beschränkt.

Beispiele 1.6: Lineare Operator

a) $X=\mathbb{K}^n,\ Y=\mathbb{K}^m,\ \{T:X\to Y:T\ \text{linearer Operator}\}=\mathbb{K}^{m\times n}.\ T\in\mathbb{K}^{n\times m}$ ist beschränkt. Denn:

$$||T||_{\infty} = \max_{1 \le i \le m} \sum_{j=1}^{n} |t_{ij}| < \infty, \ t_{ij} \text{ sind die Einträge der Matrix } T.$$

Da auf einem endlichdimensionalen Vektorraum alle Normen äquivalent sind, ist T beschränkt.

b) $T: \mathrm{L}^1(\Omega,\mu) \to \mathbb{K}, \ Tf:=\int_{\Omega} f d\mu.$ Es gilt $|Tf|=|\int_{\Omega} f d\mu| \leq \int_{\Omega} |f| d\mu=||f||_1$. Also ist $|Tf|<1 \ \forall f\in \mathrm{L}^1(\Omega,\mu):||f||_1<1$ und damit ist T beschränkt.

Satz 1.7: Charakterisierung der Stetigkeit

thm: Charakterisierung der Stetigkeit] Seien X,Y normierte Räume, $T:X\to Y$ ein linearer Operator. Dann sind äquivalent:

- (i) T beschränkt,
- (ii) T ist lipschitz stetig,
- (iii) T ist gleichmäßig stetig,
- (iv) T ist stetig,
- (v) T stetig in 0,
- (vi) $\exists x \in X : T \text{ stetig in } x.$

Beweis. "(i) \Rightarrow (ii)": Sei M > 0, so dass $||Tx||_Y \leq M \ \forall x \in U_1(0)$. Es gilt T0 = 0. Weiterhin gilt für $x \in X \setminus \{0\}$:

$$||Tx||_Y = \left|\left| \begin{array}{c} 2 \ ||x||_X \ T\left(\frac{x}{2 \, ||x||_X}\right) \right|\right| = 2 \ ||x||_X \\ \left|\left| T\underbrace{\left(\frac{x}{2 \, ||x||_X}\right)}_{\in U_1(0)} \right|\right|_Y \leq 2M \, ||x||_X \, .$$

Also gilt $||Tx||_Y \leq 2M \, ||x||_X \, \forall x \in ||x||_X$ und daraus folgt die Lipschitz Stetigkeit wegen

$$||Tx_1 - Tx_2|| = ||T(x_1 - x_2)|| \le 2M ||x_1 - x_2||_X \ \forall x_1, x_2 \in X$$

" $(ii) \Rightarrow (iii) \Rightarrow (iv) \Rightarrow (v) \Rightarrow (vi)$ ": Der Beweis dieser Implikationskette ist Gegenstand der Grundvorlesungen ¹.

 $^{^1\}mathrm{Damit}$ meinen wir stets Sätze, die in Analysis/LA I,II oder Höhere Analysis bewiesen wurden.

" $(vi) \Rightarrow (v)$ ": Sei $x \in X$, so dass T stetig in x ist. Sei (x_n) Nullfolge in X

$$\Rightarrow \lim_{n \to \infty} (x + x_n) = x \Rightarrow \lim_{n \to \infty} T(x + x_n) = Tx \xrightarrow{\text{stetig in 0}} \lim_{n \to \infty} Tx_n = 0 = T 0$$

"(v) \Rightarrow (i)": Beweis durch Widerspruch: Angenommen T ist unbeschränkt $\Rightarrow \forall n \in \mathbb{N} \exists x_n \in U_1(0)$, so dass $||Tx_n||_Y \geq n \ (\Rightarrow x_n \neq 0 \ \forall n \in \mathbb{N})$. Dann gilt $\frac{x_n}{n} \overset{n \to \infty}{\longrightarrow} 0$, aber $||T\frac{x_n}{n}||_Y = \frac{1}{n} ||Tx_n||_Y \geq \frac{1}{n} \cdot n = 1$ Das hieße aber T ist unstetig in 0.

An dieser Stelle werden einige Definition und Bemerkung festgehalten, die in späteren Kapitel beleuchtet und untersucht werden.

Bemerkung 1.8

- a) $\mathcal{B}(X,Y) := \{T : X \to Y : T \text{ beschränkt}\}$
- b) $\mathcal{B}(X) := \mathcal{B}(X, X)$ beides sind $\mathbb{K} VR$.
- c) $X' := \mathcal{B}(X, \mathbb{K})$ topologischer Dualraum von X.

Bemerkung 1.9

- d) Ker T, Im T sind UVR.
- e) (i) (vi) äquivalent zu (vii): Jede beschränkte Menge wird auf eine beschränkte Menge abgebildet.
- f) Es gibt beschränkte lineare Operatoren, so dass Im T nicht abgeschlossen \nearrow Übung
- g) $Ker\ T$ abgeschlossen $\forall\ T\in\mathcal{B}(X,Y)$, da T stetig und $Ker\ T=T^{-1}(\{0\})$, wobei $\{0\}$ abgeschlossen in Y.

Satz 1.10: Operatornormen

X, Y normierte Räume. $\mathcal{B}(X, Y)$ normierter Raum mit folgendener Norm

$$||T|| := \sup_{x \in U_1(0)} ||Tx||_Y \,.$$

Beweis. (Positivität:) ||0||=0. Sei $||T||=0 \Rightarrow Tx=0 \ \forall \ x \in U_1(0)$. Sei $x \in X$ beliebig. $\Rightarrow Tx=2\,||x||_X\,T\left(\frac{x}{2||x||_X}\right)=0 \Rightarrow T=0$.

(Homogenität:) Sei $\lambda \in \mathbb{K}$, $T \in \mathcal{B}(X,Y)$. Dann $||\lambda T|| = \sup_{x \in U_1(0)} ||(\lambda T)x||_Y = |\lambda| \sup_{x \in U_1(0)} ||Tx|| = |\lambda| ||T||$.

 $\begin{array}{ll} (\textit{Dreiecksungleichug:}) \ \ \text{Seien} \ \ T_1, T_2 \in \mathcal{B}(X,Y). \ \ \text{Dann} \ \ ||T_1 + T_2|| = \sup_{x \in U_1(0)} (||T_1x + T_2x||_Y) \leq \sup_{x \in U_1(0)} (||T_1x||_Y + ||T_2x||_Y) \leq \sup_{x \in U_1(0)} (||T_1x||_Y + ||T_2x||_Y) \leq \sup_{x_1 \in U_1(0)} ||T_1x_1||_Y + \sup_{x_2 \in U_1(0)} ||T_1x_2||_Y = ||T_1||_Y + ||T_2||_Y \\ ||T_1||_Y + ||T_2||_Y = ||T_1||_Y + ||T_2||_Y + ||$

Bemerkung 1.11

Es gilt
$$||T|| = \sup_{x \in \overline{U_1(0)}} ||Tx||_Y = \sup_{x \in \partial U_1(0)} ||Tx||_Y = \sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||_Y}{||x||_X} \ (\nearrow \ddot{U}1, A2).$$

Beweis. Wir zeigen

$$\sup_{\substack{x \in X \\ x \neq 0}} \frac{||Tx||_Y}{||x||_X} =: M_3 \ge ||T|| \ge M_1 := \sup_{x \in \overline{U_1(0)}} ||Tx||_Y$$

und

$$M_3 \ge M_1 \ge M_2 \ge M_3$$
 mit $M_2 := \sup_{x \in \partial U_1(0)} ||Tx||_Y$

Wobei $M_1 \geq M_2$ gilt, da wir das Supremum über eine größere Menge bilden.

"
$$M_3 \ge ||T|| \ge M_1$$
:" $\forall ||x|| = 1 \text{ und } U_1(0) \ni x_n = x - \frac{1}{n} \forall n \in \mathbb{N}, \text{ gilt}$

$$||Tx_n|| = \left| \left| T(x - \frac{1}{n}) \right| \right| = \left| \left| Tx - T\frac{1}{n} \right| \right| \rightarrow ||Tx - T0|| = ||Tx||$$

Damit hat man formal gezeigt, dass man für jeden Vektor in $\overline{U_1(0)}$ bezüglich den man ein Supremum bilden kann, auch Folgen in $U_1(0)$ findet. Kurz: $||T|| \ge M_1$. Weiterhin gilt $||Tx|| \le M_3 \cdot ||x|| \ \forall x \in X$, damit folgt

$$||T|| = \sup_{||x|| < 1} ||Tx|| \le \sup_{||x|| < 1} (M_3 \cdot ||x||) = M_3 \sup_{||x|| < 1} ||x|| = M_3$$

.

" $M_3 \ge M_1$: "Sei $||x|| \le 1$. Dann gilt $||Tx|| \le ||Tx|| / ||x||$. Also:

$$M_1 = \sup_{x \in \overline{U_1(0)}} ||Tx|| \le \sup_{x \in \overline{U_1(0)}} (||Tx|| / ||x||) \le M_3$$

" $M_2 \ge M_3$:" Einfaches Umformen ergibt:

$$M_3 = \sup_{x \neq 0} \frac{||Tx||}{||x||} = \sup_{x \neq 0} \left| \left| T \frac{x}{||x||} \right| \right| \le M_2$$

Satz 1.12

X normierter Raum, Y Banachraum. Dann ist $\mathcal{B}(X,Y)$ Banachraum.

Beweis. Sei (T_n) CF in $\mathcal{B}(X,Y)$, d.h. $\forall \varepsilon > 0 \exists N \in \mathbb{N} \ \forall n,m > N: ||T_n - T_m|| < \varepsilon$. Also $||T_n x - T_m x||_Y \le ||T_n - T_m|| \cdot ||x|| < \varepsilon \cdot ||x|| \ \forall x \in X$. Daraus folgt wegen der Vollständigkeit von Y, dass $(T_n x)$ in Y für alle $x \in X$ konvergiert. Wir setzen den Grenzwert auf $T: X \to Y$, $Tx := \lim_{n \to \infty} T_n x$. Die so definierte Abbildung, also dieser Grenzwert, erfüllt folgende Eigenschaften:

- a) T ist ein linearer Operator.
- b) T ist beschränkt.
- c) $\lim_{n\to\infty} ||T-T_n|| = 0$ (also Normkonvergenz bzw. gleichmäßige Konvergenz)

$$\underline{\operatorname{Zu} a}): T(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} T_n(\lambda x_1 + \mu x_2) = \lim_{n \to \infty} (\lambda T_n x_1 + \mu T_n x_2) = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to \infty} T_n x_1 + \mu \lim_{n \to \infty} T_n x_2 = \lambda \lim_{n \to$$

zu b): Wegen $||T_n - T_m|| \ge (||T_n|| - ||T_m||)$ gilt $||T_n||$ ist CF in \mathbb{R} , also beschränkt: $M := \overline{\sup_{n \in \mathbb{N}} ||T_n||} < \infty$. Für $x \in U_1(0)$ gilt $||Tx||_Y = \lim_{n \to \infty} ||T_nx||_Y \le \lim_{n \to \infty} ||T_n|| \cdot ||x||_X \le M \cdot ||x||_X \le M$. (vgl. Def 1.5, " \Leftrightarrow ")

<u>zu c):</u> Sei $\varepsilon > 0 \Rightarrow \exists N \in \mathbb{N} \ \forall m, n > N : ||T_n - T_m|| < \frac{\varepsilon}{2}$. Für $x \in U_1(0)$ gilt somit

$$||(T-T_n)x|| = \lim_{m \to \infty} ||(T_m - T_n)x|| \le \frac{\varepsilon}{2} \Rightarrow ||T-T_n|| = \sup_{x \in U_1(0)} ||(T-T_n)x|| \le \frac{\varepsilon}{2} < \varepsilon \ \forall n \ge N$$

Also ist $T \in \mathcal{B}(X,Y)$ und aufgrund der Beliebigkeit der CF, folgt die Vollständigkeit.

Kollar 1.13

X normierter Raum $\Rightarrow X'$ Banachraum.

Bemerkung 1.14

- a) $T \in \mathcal{B}(X,Y), S \in \mathcal{B}(Y,Z) \Rightarrow ST \in \mathcal{B}(X,Z)$ und $||ST|| \leq ||S|| \cdot ||T||$ (gilt wegen $||S(Tx)||_Z \leq ||S|| \cdot ||Tx||_Y \leq ||S|| \cdot ||T|| \cdot ||x||_X \leq M \, ||x||_X \, \forall x \in X$ und der Linearität von ST.)
- b) $id \in \mathcal{B}(X, X), ||id|| = 1.$
- c) Aus punktweiser Konvergenz $T_n x \to T x$ folgt i.A. $\underline{\text{nicht}} \lim_{n \to \infty} T_n = T \text{ (d.h. } \lim_{n \to \infty} ||T_n T||$ 0).

$$\begin{aligned} \mathbf{Bsp:} \ X &= \ell^p, p \in [1, \infty), \ T_n : \ell^p \to \ell^p, \ T_n(x_k) = (x_1, \dots, x_n, 0, 0, \dots) \ \text{wobei} \ (x_k) = \\ & (x_1, \dots, x_n, \dots). \ \text{Man kann zeigen, dass} \ T_n \in \mathcal{B}(x) \ \forall n \in \mathbb{N} \ (\nearrow \ddot{\mathsf{U}} \mathsf{bung}). \end{aligned}$$

$$\begin{aligned} & \mathrm{Sei} \ (x_k) \in \ell^p, \ \forall \epsilon > 0 \ \exists N \in \mathbb{N} : (\sum_{k=N+1}^{\infty} |x_k|^p)^{1/p} < \epsilon. \ ||T_n(x_k) - x_n||_X = \\ & (\sum_{k=N+1}^{\infty} |x_k|^p)^{1/p} \ \forall n \geq N. \ \text{Also} \ \forall x \in X \ ||T_n - x||_X \to 0 \ (n \to \infty). \end{aligned}$$
 Frage:
$$||T_n - T||_X \to 0 \ ? \ \text{Nein!} \ \text{Sei} \ (x_k^n) = (0, \dots, 0, 1, 0, \dots), \ ||T_n(x_k^n) - x||_X = \\ & ||(0, \dots, 0, -1, 0, \dots)||)_Y = 1 \ ||T_n - T|| \stackrel{Def}{=} \sup_{x \in U_1(0)} ||(T_n - T)x||_X \geq \left| \left| (T_n - T)(\frac{1}{2}(x_k^n) \right| \right| \\ & \frac{1}{2} \cdot 1 \ (T = idx) \ \forall n \in \mathbb{N} \Rightarrow ||T_n - T|| \not\rightarrow 0 \ (n \to \infty) \end{aligned}$$

d) $T \in \mathcal{B}(X,Y)$ und T bijektiv. Dann ist T^{-1} i.A. <u>nicht beschränkt</u>.

Bsp.
$$X \in C[0,1], Y = \{f \in C^1([0,1]) : f(0) = 0\}$$
 mit $||x||_X = \sup_{t \in [0,1]} |x(t)|$ und $||\cdot||_X = ||\cdot||_Y$ und $T: X \to Y$, $(Tx)(t) = \int_0^t x(s)ds$.

- $T^{-1} = S: Y \to X, Sy = y'$. (Zeige $ST = id_x$ und $TS = id_Y$)
- $T^{-1} \notin \mathcal{B}(Y,X)$ (Sei $y_n(t) = t^n \in Y$, $(T^{-1}y_n)(t) = n \cdot t^{n-1} \Rightarrow ||y_n||_Y = 1 \ \forall n \in \mathbb{N}$, $||T^{-1}y||_X = n \ \forall n \in \mathbb{N} \Rightarrow T^{-1}$ kann nicht beschränkt sein. $(||T^{-1}\frac{1}{2}y_n||_X = \frac{1}{2} \cdot n \text{ mit } ||\frac{1}{2}y_n|| = \frac{1}{2})$

Bem: Y ist nicht vollständig.

Satz 1.15

Sei X, Y normierte $\mathbb{K} - VR$, $T \in \mathcal{B}(X, Y)$. Dann sind äquivalent:

- (i) T ist injektiv und $T^{-1} \in \mathcal{B}(im(T), X)$ normierter UVR von Y.
- (ii) $\exists m > 0 : ||Tx||_{Y} \ge m ||x||_{X} \forall x \in X.$

 $\begin{array}{ll} \textit{Beweis.} & \text{``}(i) \Rightarrow (ii)\text{``}: \exists \; M > 0, \left|\left|T^{-1}y\right|\right| \leq M \left|\left|y\right|\right| \; \forall y \in imT. \; \text{Sei} \; x \in X \; \exists y \in imT: x = T^{-1}y \Rightarrow \left|\left|x\right|\right|_{Y} \leq M \left|\left|Tx\right|\right|_{Y} \Rightarrow \left|\left|Tx\right|\right|_{Y} \geq \frac{1}{M} \left|\left|x\right|\right|_{X} = m \left|\left|x\right|\right|_{X} \end{array}$

"(ii) \Rightarrow (i)": Sei $x \in X$: Tx = 0. Aus $||Tx|| \geq m \, ||x||$ folgt x = 0 und damit ist Tinjektiv. Sei $y \in imT \, \exists x \in X$: Tx = y und $T^{-1}y = x \stackrel{(ii)}{\Rightarrow} \left| \left| T^{-1}y \right| \right| = ||x|| \leq \frac{1}{m} \, ||Tx||_Y = \frac{1}{m} \, ||y||_Y$, also $\exists M = \frac{1}{m}, \, \left| \left| T^{-1}y \right| \right|_X \leq M \, ||y||_Y \, \forall v \in imT \Rightarrow T^{-1} \in \mathcal{B}(imT, X)$

Die Negation dieser Aussage halten wir explizit fest mit folgendem

Kollar 1.16

 $T \in \mathcal{B}(X,Y)$ (X,Y) normierte $\mathbb{K} - VR$. Dann sind äquivalent:

- (i) T besitzt <u>keine</u> stetige Inverser $T^{-1}: imT \to X$.
- (ii) \exists Folge (x_n) in X, so dass $||x_n|| = 1 \ \forall n \in \mathbb{N}$ und $\lim_{n \to \infty} ||Tx_n|| = 0$

Defintion 1.17

 $X - \mathbb{K} - VR$ mit Norm $\left|\left|\cdot\right|\right|_1, \left|\left|\cdot\right|\right|_2.$ Dann heißt $\left|\left|\cdot\right|\right|_1$

- (a) stärker als $||\cdot||_2$, falls gilt $\lim_{n\to\infty}||x_n-x||_1=0\Rightarrow\lim_{n\to\infty}||x_n-x||_2$
- (b) schwächer als $\left|\left|\cdot\right|\right|_2,$ falls $\left|\left|\cdot\right|\right|_2$ stärker ist als $\left|\left|\cdot\right|\right|_1.$
- (c) äquivalent falls $||\cdot||_1$ stärker und schwächer ist als $||\cdot||_2$

Satz 1.18

 $X \mathbb{K} - VR$ mit Norm $||\cdot||_1, ||\cdot||_2$. Dann gilt

- (a) $||\cdot||_1$ ist stärker als $||\cdot||_2 \Leftrightarrow \exists M > 0: ||x||_2 \leq M ||x||_1 \ \forall x \in X$
- (b) $||\cdot||_1$ ist schwächer als $||\cdot||_2 \Leftrightarrow \exists\, M>0: ||x||_1 \leq M\,||x||_2 \,\,\forall x \in X$
- (c) $||\cdot||_1$ ist äquivalent zu $||\cdot||_2 \Leftrightarrow \exists m, M > 0 : m ||x||_1 \leq ||x||_2 \leq M ||x||_1 \ \forall x \in X$

Beweis. zu (a): \Rightarrow $id: (X, ||\cdot||_1) \rightarrow (X, ||\cdot||_2)$ ist stetig wegen Vor. $\stackrel{S.1,15}{\Rightarrow}$ und weil id linear, id beschränkt, $id \in \mathcal{B}((X, ||\cdot||_1), (X, ||\cdot||_2)$ d.h. $\exists M > 0: ||id(X)||_2 \leq M ||x||_1 \ \forall x \in X$.

 $\Leftarrow \text{ Wissen } \exists M>0: ||x||_2 \leq M\,||x||_1 \ \forall x\in X. \text{ Sei } ||x_n-x||_1 \to 0 \Rightarrow ||x_n-x||_2 \leq M\,||x_n-x||_1 \to 0 \ (n\to\infty) \Rightarrow ||\cdot||_1 \text{ stärker als } ||\cdot||_2.$

Defintion 1.19

Zwei normierte K-VR X, Y heißen topologisch isomorph, falls es ein Isomorphismus $T: X \to Y$ mit $T \in \mathcal{B}(X,Y)$ und $T^{-1} \in \mathcal{B}(Y,X)$. Dann heißt T topologischer Isomorphismus.

Satz 1.20

X,Ytopologisch isomorph $\Leftrightarrow \exists m,M>0: T\in \mathcal{B}(X,Y)$ und injektiv : $m\,||x||_X\leq ||Tx||_Y\leq M\,||x||_X\,\,\forall x\in X$

Beweis. 'Klar' wegen Satz 1.17 und Satz 1.15.

Bemerkung 1.21

- 1. Falls, m = M = 1, dann nenn wir T Isometrie.
- 2. Falls $\dim X = \dim Y = n \in \mathbb{N}$: X,Y topologisch isomorph und topologischer Isomorphismus = lineare Bijektion.

Satz 1.22: Fortsetzung von stetigen Operatoren

X,Y normierte $\mathbb{K}-VR,Y$ ein Banachraum, $Z\subseteq X,Z$ dichter UVR. $T\in\mathcal{B}(Z,Y)$. Dann existiert ein eindeutiger Operator $\tilde{T}\in\mathcal{B}(X,Y)$, so dass $T|_{Z}=T$.

Beweis. a) Zeige: \tilde{T} ist wohldefiniert. Da T beschränkt ist, ist (Tz_n) Cauchyfolge in $Y \Rightarrow \lim_{n \to \infty} Tz_n$ existiert. Seien $(V_n), (Z_n)$ Folgen in Z mit $||V_n - x|| \to 0, ||Z_n - x|| \to 0$. Dann gilt:

$$||TV_n - TZ_n|| \stackrel{T \ beschr.}{\leq} ||T|| \cdots ||V_n - Z_n|| \to 0 \Rightarrow \lim_{n \to \infty} TV_n = \lim_{n \to \infty} TZ_n.$$

- b) Zeige: \tilde{T} ist linear und beschränkt. (Betrachte Summen von Limiten, Limes der Summen, etc.; insbesondere ist $T:X\to Y$ immer beschränkt, wenn $\dim(X)<\infty$)
- c) Zeige: $\tilde{T}|_Z = T$ und \tilde{T} ist eindeutig. Sei $\tilde{T} \in \mathcal{B}(X,Y)$ mit $\tilde{T}|_Z = T$ und $x \in X$. Dann $\exists (Z_n)$ in Z mit $Z_n \to x (\text{da } Z \text{ dicht in } X) \overset{T\ beschr.}{\Rightarrow} \tilde{T}x = \lim_{n \to \infty} \tilde{T}Z_n = \lim_{n \to \infty} TZ_n.$
- d) Zeige: $\left| \left| \tilde{T} \right| \right| = ||T||$.

em " \leq " Sei $x \in U_1(0) \subset X \Rightarrow \exists (Z_n)$ in Z mit $Z_n \to x$ und damit:

$$\begin{split} \left| \left| \tilde{T} \right| \right| &= \sup_{x \in U_1(0)} \left| \left| \tilde{T}x \right| \right| = \lim_{n \to \infty} \left| \left| \tilde{T}Z_n \right| \right| = \lim_{n \to \infty} ||TZ_n|| \leq \lim_{n \to \infty} ||T|| \, ||Z_n|| = ||T|| \lim_{n \to \infty} ||Z_n|| \leq ||T|| \, . \end{split}$$
 " \geq " Da $Z \subset X$ gilt auch $\sup_{z \in Z} ||Tz|| \leq \sup_{x \in X} ||Tx|| \, . \end{split}$

Satz 1.23

Ist T normerhaltend (in \mathbb{R}^n die unitären Matrizen ||Tx|| = ||x||), so ist \tilde{T} ebenfalls normerhaltend

Beispiele 1.24: Konstruktion eines unbeschränkten Funktionals

Sei $X = \ell^1$ (Raum der absolut konvergenten Folgen)

Betrachte: $x_0 = (1, \frac{1}{4}, \frac{1}{9}, \dots) \in \ell^1, ||x_0|| = \sum_{n=1}^{\infty} |\frac{1}{n^2}| = \frac{\pi^2}{6},$

Einheitsvektor $e_k = (\delta_{nk})_{n \in \mathbb{N}}$.

 \nearrow Erzeugnis: endliche linear Kombination der Einheitsvektoren \Rightarrow span $\{e_k\}_{k_{\mathbb{N}}} = \{(x_1, x_2, \dots, 0, \dots)\}$ (Folgen, die irgendwann zu 0 werden.)

Die Familie $B := (x_0, e_1, e_2, e_3, \dots)$ ist linear unabhängig. $\Rightarrow B_i$ lässt sich zu Basis $B = (b_i)_{i \in I}$ mit $\mathbb{N}_0 \subseteq I$ und $b_0 = x_0, b_i = e_i \ \forall i \in \mathbb{N}$ erweitern (überabzählbar).

Sei $x \in X = \ell^1 \Rightarrow \exists$ eindeutige Darstellung $x = \alpha_0 x_0 + \sum_{\substack{n \in \mathbb{N} \\ endlich}} \alpha_n e_n + \sum_{\substack{i \in I \setminus \mathbb{N}_0 \\ endlich}} \alpha_i b_i$.

Definiere das Funktional: $f : \ell^1 \to \mathbb{K}\mathbb{N}$? mit $x = \alpha_0 x_0 + \sum_{\substack{n \in \mathbb{N} \\ endlich}} \alpha_n e_n + \sum_{\substack{i \in I \setminus \mathbb{N}_0 \\ endlich}} \alpha_i b_i \mapsto \alpha_0$

Wir zeigen: Kerf nicht abeschlossen.

Betrachte Folge $(x_n)_{n\in\mathbb{N}}$ mit $x_n\sum_{k=1}^n\frac{1}{k^2}\Rightarrow x_n\in Kerf\ \forall n\in\mathbb{N},\ \mathrm{da}\ x_n\in span\{e_k\}_{k\in\mathbb{N}}.$ Es gilt jedoch $x_n\to x_0\not\in Kerf,\ \mathrm{da}\ f(x_0)=1.$

1.2.2 Neumannsche Reihe

Nun versuchen wir mit Erfolgt einer waghalsige Verallgemeinerung der geometrischen Reihe im Reellen für Operatoren und Banachräume. $\sum_{k=0}^{\infty}q^k=\frac{1}{1-q}\ \forall q\in\mathbb{C}$ mit ||q||<1

Satz 1.25: Neumanansche Reihe

X Banachraum. Sei $T \in \mathcal{B}(X)$. Dann sind äquivalent:

- i) Die Reihe $\sum_{i=0}^{\infty} T^k = I_X + T^1 + T^2 + \dots$ ist konvergent bzgl. der Operatornorm.
- ii) $\lim_{n\to\infty} ||T^n|| = 0$
- iii) $\exists N \in \mathbb{N} : \left| \left| T^N \right| \right| < 1$
- iv) $\lim_{n\to\infty} \sup \sqrt[n]{||T^n||} < 1.$

In diesem Fall besitzt (I-T) eine beschränkte Inverse. Diese erfüllt $(I-T)^{-1} = \sum_{k=0}^{\infty} T^k$

Beweis. "i) \Rightarrow ii) \Rightarrow iii)": klaro

"iii) \Rightarrow iv)": Sei $n \in \mathbb{N} \Rightarrow \exists \ell \in \mathbb{N}, k \in \{q_0, \dots, N-1\}$, so dass $n = \ell \cdot N + k$ Dann folgt

$$\ell \leq \frac{n}{N} \Rightarrow ||T^n|| = \left|\left|(T^n)^\ell T^k\right|\right| \leq \left|\left|T^N\right|\right|^\ell \cdot \left|\left|T^k\right|\right|.$$

Sei $M := \max\{1, ||T||, ||T^2||, \dots, ||T^{N-1}||\}$. Dann gilt $||T^n|| \le M ||T^N||^{\ell}$ und damit folgt

$$\sqrt[n]{||T^n||} = \sqrt[n]{||T^N||^\ell} \sqrt[n]{M} \leq \sqrt[n]{||T^N||} \frac{n}{N} \cdot \sqrt[n]{M} = \underbrace{\sqrt[n]{||T^N||}}_{\text{fined}} \cdot \sqrt[n]{\frac{1}{||T^N||}}_{\text{fined}} \cdot \sqrt[n]{\frac{1}{||T^N||}}_{\text{fined}}$$

 $\Rightarrow \lim_{n \to \infty} \sup \sqrt[n]{||T^n||} < 1 \ (\nearrow \text{Wurzelkriterium})$

" $iv) \Rightarrow i$ ": $\lim_{n \to \infty} \sup \sqrt[n]{||T^n||} < 1 \Rightarrow \exists q \in (0,1), N \in \mathbb{N}, \text{ sodass}$

$$\sqrt[n]{||T^n||} \le q \ \forall \ n \ge N \Rightarrow ||T^n|| \le q^n \ \forall \ n \ge N$$

Sei $\varepsilon > 0$, dann existiert ein $N_1 \ge N$, so dass $q^{n+1} + \cdots + q^m = q^{n+1} \frac{1-q^{m-1}}{1-q} < \varepsilon \ \forall n, m \ge N_1$.

Für
$$S_n := \sum_{k=0}^{\infty} T^k$$
 gilt also $: ||S_n - S_m|| = \left| \left| \sum_{k=m+1}^n T^k \right| \right| \le \sum_{k=m+1}^n \left| \left| T^k \right| \right| \le q^{m+1} + \dots + q^n < \varepsilon.$

Also ist (S_n) eine Cauchyfolge in $\mathcal{B}(X)$. Da X^* vollständig ist, ist auch $\mathcal{B}(X)$ vollständig, also konvergiert die Neumannsche Reihe.

Noch zu zeigen, wenn (i)-(iv) gilt $(I-T)\cdot\sum_{k=0}^{\infty}T^k=(\sum_{k=0}^{\infty}T^k)\cdot(I-T)=I.$ Es gilt:

$$(I-T)\cdot S_n = (I-T)\cdot (\sum_{k=0}^n T^k) = \sum_{k=0}^n T^k - \sum_{k=1}^{n+1} T^k = I - T^{n+1} \overset{n\to\infty}{\to} I_K$$

Analog andersherum (\nearrow linksinvers \neq rechtsinvers in unendlichdimensionalen Räumen, da inj. $\not\Leftrightarrow$ surj.)

Bemerkung 1.26

- 1. Wenn |T| < 1, dann konvergiert die Neumannsche Reihe.
- 2. $\lim_{n\to\infty} \sup \sqrt[n]{|T^n|} < 1$ ist nur hinreichend für Invertierbarkeit von I-T, wie das Gegenbeispiel T=2I zeigt.

Beispiele 1.27: Fredholmsche Integralgleichung

Sei $k \in C([a,b]^2)$. Der Fredholmsche Integraloperator

$$K: C([a,b]) \to C([a,b]), (Kx)(s) := \int_a^b K(s,t)x(t)dt$$

ist stetig, wenn x stetig ist. Die Fredholmsche Integralgleichung lautet:

$$(I - K)x = y, \quad y \in C([a, b]).$$

Und es gilt: $\|Kx\|_{\infty} \leq \max_{s \in [a,b]} \int_a^b |K(s,t)| dt \cdot \|x\|_{\infty}.$

Wenn nun $\max_{s \in [a,b]} \int_a^b |K(s,t)| dt < 1$, dann gilt für alle $y \in C([a,b])$: Die Fredholmsche Integralgleichung (I-K)x = y hat genau eine Lösung $x \in C([a,b])$. Diese hängt stetig von $y \in C[a,b]$ ab.

1.3 Metrische und topologische Räume, Satz von Baire

1.3.1 Grundbegriffe:metrischer Raum und Vervollständigung

Bemerkung 1.28: Erinnerung

- Kompaktheit, Satz von Bolzano-Weierstraß

Lemma 1.29

Sei (X, d) ein metrischer Raum. Dann gilt die Vierecksungleichung:

$$|d(x,y) - d(x_1,y_1)| \le d(x,x_1) + d(y,y_1) \quad \forall x, x_1, y, y_1 \in X$$

Beweis.
$$d(x_1, y_1) \le d(x_1, x) + d(x, y_1) \le d(x_1, x) + d(x, y) + d(y, y_1)$$

 $\Rightarrow d(x_1, y_1) - d(x, y) \le d(x, x_1) + d(y, y_1)$. Analog: $d(x, y) - d(x_1, y_1) \le d(x, x_1) + d(y, y_1)$
 $\Rightarrow |d(x, y) - d(x_1, y_1)| \le d(x, x_1) + d(y, y_1)$

Bemerkung 1.30

Rekapitulieren Sie folgende Begriffe: $U_r(x)$ Kugel mit Radius r, \overline{M} Abschluss, \mathring{M} Innere, ∂M Rand, Kompakt, offene Überdeckung.

Hinten noch definieren

Defintion 1.31

Seien $(X, d_X), (Y, d_Y)$ metrische Räume. Eine Abbildung $f: X \to Y$ heißt

- (a) abstandserhaltend falls $d_X(x,y) = d_Y(f(x), f(y))$
- (b) Isometrie falls abstandserhaltend und surjektiv.

Eine abstandserhaltende Abbildung heißt auch Einbettung. Eine Einbettung heißt dicht, falls f(X) dicht in Y ist.

Notation: Wir schreiben $X \subseteq Y$, falls X in Y eingebettet ist.

Satz 1.32

Jeder metrische Raum (X, d) lässt sich in einen bis auf Isometrie eindeutig bestimmten vollständigen metrischen Raum (\hat{X}, \hat{d}) dicht einbetten. (\hat{X}, \hat{d}) heißt Vervollständigung von (X, d).

Beweis. (1) Konstruktion von \hat{X}

Sei CF(X) die Menge aller Cauchyfolgen in X. Seien $\overline{x} := (x_n), \ \overline{y} := (y_n) \in CF(X)$. Wir betrachten den "Abstand"

$$d(\overline{x}, \overline{y}) := \lim_{n \to \infty} d_X(x_n, y_n),$$

der dank Lemma 1.29 wohldefiniert ist, und die Relation $\sim \subseteq CF(X) \times CF(X)$ mit

$$\overline{x} \sim \overline{y} : \Leftrightarrow d(\overline{x}, \overline{y}) = 0.$$

" ~ " ist tatsächlich eine Äquivalenz
relation und unterteilt CF(X) in Äquivalenzklassen. Sei
 [x] die Äquivalenzklasse des Repräsentanten \overline{x} und \hat{X} die Menge aller Äquivalenzklassen.

Für $\overline{x}, \overline{x}' \in [x] \in \hat{X}, \ \overline{y}, \overline{y}' \in [y] \in \hat{X}$ gilt:

$$0 = d(\overline{x}, \overline{x}') = \lim_{n \to \infty} d_X((x_n), (x'_n))$$
$$0 = d(\overline{y}, \overline{y}') = \lim_{n \to \infty} d_X((y_n), (y'_n)).$$

Wegen $d_x(x_n, y'_n) \le d_X(x'_n, x'_n) + d_X(x_n, y_n) + d_X(y_n, y'_n)$ $d_x(x_n, y_n) \le d_X(x_n, x'_n) + d_X(x'_n, y'_n) + d_X(y'_n, y_n)$ ist

$$\lim_{n\to\infty} d_X(x_n',y_n') \le \lim_{n\to\infty} d_X(x_n,y_n) \le \lim_{n\to\infty} d_X(x_n',y_n') \Rightarrow d(\overline{x},\overline{y}) = d(\overline{x}',\overline{y}')$$

und wir können wohldefinieren: $\hat{d}([x],[y]) := d(\overline{x},\overline{y}) \Rightarrow \hat{d}$ ist Metrik auf \hat{X} .

(2) Konstruktion einer dichten Einbettung $f: X \to \hat{X}$

Für $x \in X$ sei f(x) := [(x, x, x, ...)].

Es gilt für $x, y \in X$: $\hat{d}(f(x), f(y)) = \lim_{n \to \infty} d_X(x, y) = d_X(x, y)$.

Wir zeigen nun, dass f(X) dicht in \hat{X} liegt. Sei $[x] \in \hat{X}$, $\overline{x} = (x_n)$, da nun (x_n) eine Cauchyfolge in X ist, ist:

$$\forall \varepsilon > 0 \ \exists N \in \mathbb{N} : d(x_n, x_m) < \varepsilon \ \forall n, m \ge N$$

Wir betrachten nun $\overline{x}_N := (x_N, x_N, x_N, \dots)$

$$\Rightarrow \hat{d}(f(x_N), [x]) = \lim_{n \to \infty} d_X(x_N, x_n) \le \varepsilon$$

Damit ist $f(x_N) \to [x]$ für $\varepsilon \to 0$ (oder $N \to \infty$?).

(3) Vollständigkeit von \hat{X}

Sei $([x]_j)$ eine Cauchyfolge in \hat{X} . Zu jedem $[x]_j \in \hat{X} \exists y_j \in X$ so dass $\hat{d}([x]_j, f(y_j)) < \frac{1}{j}$, da f(X) dicht in \hat{X} ist.

$$\Rightarrow d_X(y_j, y_k) = \hat{d}(f(y_j), f(y_k)) \le \hat{d}(f(y_j), [x]_j) + \hat{d}([x]_j, [x]_k) + \hat{d}([x]_k, f(y_k)) < \frac{1}{j} + \hat{d}([x]_j, [x]_k) + \frac{1}{k} + \hat{d}([x]_j, [x]_k) + \hat{d}([x$$

 \Rightarrow (y_j) ist eine Cauchyfolge in $X, y := (y_j) \in CF(X) \Rightarrow [y] \in \hat{X}$ ist der Kandidat für den Grenzwert der Cauchyfolge:

$$\hat{d}([x]_j, [y]) \le \hat{d}([x]_j, f(y_j)) + \hat{d}(f(y_j), [y]) < \frac{1}{i} + \lim_{k \to \infty} d_X(y_j, y_k) \Rightarrow \lim_{j \to \infty} \hat{d}([x]_j, [y]) = 0$$

das heißt $[x]_j \to [y]$ für $j \to \infty$

(4) Eindeutigkeit von \hat{X} im folgenden Sinne: ist \tilde{X} eine weitere Vervollständigung von X, so sind \hat{X}, \tilde{X} isometrisch zueinander.

Sei also (H, d_H) ein vollständiger metrischer Raum mit $X \subseteq H, d_H(x, y) = d_X(x, y) \ \forall x, y \in X$ und $\overline{X} = H$.

Unser Ziel ist es, eine Isometrie $g: \hat{X} \to H$ zu bauen.

Sei $[x] \in \hat{X}$, $\overline{x} = (x_n) \in [x] \in \hat{X}$, da H vollständig ist $\exists h \in H$ so dass $\lim_{n \to \infty} d_H(x_n, h) = 0$

Wir betrachten $g: \hat{X} \to H$, $[x] \mapsto h$ wie oben.

g ist surjektiv, da für $h \in H \Rightarrow \exists \overline{x} = (x_n) \in CF(X)$ so dass $\lim_{n \to \infty} d_H(x_n, h) = 0$, also g([x]) = h

g ist abstandserhaltend, da für $[x], [y] \in \hat{X}$ gilt

$$\hat{d}([x], [y]) = \lim_{n \to \infty} d_X(x_n, y_n) = \lim_{n \to \infty} d_H(x_n, y_n) = d_H(g([x]), g([y])).$$

1.3.2 Der Bairesche Kategoriesatz und grundlegendes zu Vollständigkeit und Kompaktheit

Defintion 1.33

Sei (X,d) ein metrischer Raum, $M\subseteq X,\,M\neq\emptyset$. Wir definieren den Durchmesser von M durch

$$\delta(M) := \sup \left\{ d(x, y) : x, y \in M \right\}.$$

Der folgende Satz ist eine Verallgemeinerung des Intervallschachtelungsprinzips aus \mathbb{R} .

Satz 1.34: Cantorscher Durchschnittssatz

Sei (X, d) ein metrischer Raum, der vollständig ist. (F_n) eine Folge von abgeschlossen Teilmengen mit $F_n \neq \emptyset \ \forall n \in \mathbb{N}, F_1 \supseteq F_2 \supseteq \ldots$ und $\lim_{n \to \infty} \delta(F_n) = 0$

$$\Rightarrow \exists! x_0 \in X : \bigcap_{n \in \mathbb{N}} F_n = \{x_0\}$$

Beweis. Für jedes $n \in \mathbb{N}$ wählen wir ein $x_n \in F_n$. Sei $\varepsilon > 0$ vorgegeben. Da $\lim_{n \to \infty} \delta(F_n) = 0$ $\exists N \in \mathbb{N} : \delta(F_n) < \varepsilon \ \forall n \ge N$

$$\Rightarrow \forall n,m \geq N: d(x_n,x_m) < \varepsilon$$
 da $x_n,x_m \in F_N$ und $\delta(F_N) < \varepsilon$

$$\Rightarrow$$
 (x_n) ist eine Cauchyfolge $\stackrel{X \text{ vollst.}}{\Rightarrow} \exists x_0 \in X : \lim_{n \to \infty} d(x_n, x_0) = 0$

Weil $x_k \in F_n \ \forall k \geq n \ \text{und} \ F_n \ \text{abgeschlossen ist, ist}$

$$x_0 \in F_n \Rightarrow x_0 \in \cap_{n \in \mathbb{N}} F_n \Rightarrow \cap_{n \in \mathbb{N}} F_n \neq \emptyset$$

Angenommen $\exists y \in \cap_{n \in \mathbb{N}} F_n$, mit $x_0 \neq y$

$$\Rightarrow 0 < d(x_0, y) \le d(x_0, x_n) + d(x_n, y_0) \le 2\delta(F_n) \stackrel{n \to \infty}{\longrightarrow} 0$$
 Widerspruch!

Eigene Bemerkung. Der Heuser beschreibt den folgenden Satz folgendermaßen:

"Es gibt wohl keinen Satz in der Funktionalanalysis, der glanzloser und gleichzeitig kraftvoller wäre als der Bairesche Kategoriensatz. Von seiner Glanzlosigkeit wird sich der Leser *sofort* überzeugen können; für seine Kraft müssen wir ihn auf die folgenden Nummern vertrösten."

Satz 1.35: Bairescher Kategoriensatz

Sei (X,d) ein vollständiger metrischer Raum, $\bigcup_{n=1}^{\infty} F_n = X$, wobei $F_n \subseteq X$ abgeschlossen für alle $n \in \mathbb{N}$.

Dann gilt:

$$\exists n_0 \in \mathbb{N} : \mathring{F}_{n_0} \neq \emptyset.$$

Es gibt also ein F_{n_0} dessen Inneres nichtleer ist.

Beweis. Wir bemerken zuerst: $x \in \mathring{M} \Leftrightarrow \exists \varepsilon > 0 : \overline{U_{\varepsilon}(x)} \subseteq M$.

Angenommen es gelte für alle $n \in \mathbb{N}$ $\mathring{F}_n = \emptyset$, also kein F_n enthalte eine abgeschlossene Kugel. Sei $n \in \mathbb{N}$ beliebig, r > 0 und $x_0 \in X \Rightarrow \overline{U_{\frac{r}{2}}(x_0)} \setminus F_n \neq \emptyset$

Seien nun $x_n \in \overline{U_{\frac{r}{2}}(x_0)} \setminus F_n \neq \emptyset$. Da F_n kein Inneres hat (offiziell: abgeschlossen?!), existiert ein $r_n \in (0, \frac{r}{2})$ mit $\overline{U_{r_n}(x_0)} \cap F_n = \emptyset$, und für ein $y \in \overline{U_{r_n}(x_n)}$ gilt:

$$d(y, x_0) \le d(y, x_n) + d(x_n, x_0) \le r_n + \frac{r}{2} \le r$$

So erhalten wir $\overline{U_{r_n}(x_n)} \subseteq \overline{U_r(x_0)}$. Wir betrachten nun $\overline{U_1(x_0)}$ und nach obiger Überlegung

$$\exists r_1 > 0, x_1 \in X : \overline{U_{r_1}(x_1)} \subseteq \overline{U_1(x_0)} \text{ mit } r_1 \leq \frac{1}{2} \text{ und } \overline{U_{r_1}(x_1)} \cap F_1 = \emptyset$$

Ebenso

$$\exists r_2>0, x_2\in X: \overline{U_{r_2}(x_2)}\subseteq \overline{U_{r_1}(x_1)} \text{ mit } r_2\leq \frac{1}{4} \text{ und } \overline{U_{r_2}(x_2)}\cap F_2=\emptyset$$

Sukzessive erhalten wir so eine Folge $\left(\overline{U_{r_n}(x_n)}\right)_{n\in\mathbb{N}}$ mit folgenden Eigenschaften:

$$(1) \ \overline{U_{r_{n+1}}(x_{n+1})} \subseteq \overline{U_{r_n}(x_n)} \quad \forall n \in \mathbb{N}$$

$$(2) r_n \le \frac{1}{2^n} \quad \forall n \in \mathbb{N}$$

(3)
$$\overline{U_{r_n}(x_n)} \cap F_n = \emptyset \quad \forall n \in \mathbb{N}$$

Wegen (1) und

$$0 \leq \delta\left(\overline{U_{r_n}(x_n)}\right) = 2r_n \leq \frac{1}{2^{n-1}} \stackrel{n \to \infty}{\longrightarrow} 0$$

sind wir in der Situation des Cantorschen Durchschnittsatzes und es gibt ein eindeutiges $\hat{x} \in X$ mit $\hat{x} \in \bigcap_{n \in \mathbb{N}} U_{r_n}(x_n)$. Dann ist wegen (3) $\hat{x} \notin F_n \ \forall n \in \mathbb{N} \Rightarrow \hat{x} \in X \setminus \bigcup_{n \in \mathbb{N}} F_n = \emptyset$ Widerspruch!

Kollar

Hier kommt ziemlich fancy Zeug, von wegen der Polynomraum kann nicht vollständig sein, rein.

Behauptung und Beweis erstellen.

Beweis.

Beweisskizzen vorhanden

Defintion 1.36

Sei (X,d) ein metrischer Raum. $M\subseteq X$ heißt...

- (a) nirgends dicht, wenn $\dot{\overline{M}} = \emptyset$.
- (b) mager oder von 1.Kategorie, wenn M eine abzählbare Vereinigung von nirgends dichten Mengen ist, also $M = \bigcup_{n \in \mathbb{N}} A_n$, A_n nirgends dicht für alle $n \in \mathbb{N}$, gilt.
- (c) $von \ 2.Kategorie \ oder \ fett$, wenn M nicht von $1.Kategorie \ ist$.

Eigene Bemerkung (Trivia am Rande). Direkt aus der Definition folgt, das jede nirgends dichte Menge insbesondere von 1. Kategorie ist. Andersrum gilt dies nicht, was das Beispiel $\mathbb{Q} \subseteq \mathbb{R}$ zeigt. Ein Beispiel für eine nirgends dichte Menge ist die Cantor-Menge.

Anschaulich bedeutet $nirgends \ dicht$, wenn sie in keiner Teilmenge (mit nichtleeren Innerem) dicht liegt.

Mithilfe dieser Definition können wir den Baireschen Kategoriensatz Umformulieren zu

(X,d) ist ein vollständiger metrischer Raum $\Rightarrow X$ ist von 2. Kategorie

Kollar 1.37

(X,d) sei ein vollständiger metrischer Raum, $U\subseteq X$ offen und nichtleer. Dann ist U von 2. Kategorie.

(Eigener Beweis). Da U offen ist, gibt es ein $\varepsilon > 0$, so dass für $x \in U$, $\overline{U_{\varepsilon}(x)} \subseteq U$ ist. Nun können wir den Baireschen Kategoriensatz auf $\overline{U_{\varepsilon}(x)}$ anwenden.

Kollar 1.38

(X,d)sei ein vollständiger metrischer Raum. Dann gilt:

 $M \subseteq X$ mager $\Rightarrow X \setminus M$ ist dicht in X.

Beweis. Sei $M \subseteq X$ mager, angenommen $X \setminus M$ sei nicht dicht, also $X \setminus \overline{(X \setminus M)} \neq \emptyset$ $\Rightarrow O := X \setminus \overline{(X \setminus M)}$ ist (als Komplement einer abgeschlossenen Menge) offen und nichtleer. $\Rightarrow O \subseteq M$ ist von 1. Kategorie, Widerspruch zu Korollar 1.37.

Kollar 1.39

(X,d) sei ein vollständiger metrischer Raum. Für $n\in\mathbb{N}$ sei $B_n\subseteq X$ so dass $X\setminus B_n$ mager. $B:=\cap_{n\in\mathbb{N}}B_n$

$$\Rightarrow \overline{B} = X$$

Beweis. $X \setminus B = X \cap (\cap_{n \in \mathbb{N}} B_n)^c = X \cap (\cup_{n \in \mathbb{N}} B_n^c)$ ist wegen Korollar 1.38 dicht in X.

Defintion 1.40

Der metrische Raum (X, d) heißt ...

- (a) kompakt, wenn für alle offenen Überdeckungen $(U_i)_{i\in I}$ von X ein endliches $I'\subseteq I$ existiert, so dass $X=\cup_{i\in I'}U_i$
- (b) präkompakt, wenn $\forall \varepsilon > 0$ eine endliche Menge $M = \{x_1, \ldots, x_n\}$ existiert, so dass $X = \bigcup_{i=1}^n U_{\varepsilon}(x_i)$. M heißt auch ε -Netz von X.

Satz 1.41

Sei (X,d) ein metrischer Raum. Dann ist äquivalent:

- (1) X kompakt.
- (2) Jede abzählbare offene Überdeckung von X enthält eine endliche Teilüberdeckung.
- (3) Ist (A_n) eine Folge von abgeschlossenen Teilmengen von X mit $A_n \supseteq A_{n+1} \neq \emptyset \ \forall n \in \mathbb{N}$. Dann gilt: $\bigcap_{n \in \mathbb{N}} A_n \neq \emptyset$.
- (4) Jede Folge in X besitzt eine konvergente Teilfolge.
- (5) X ist vollständig und präkompakt.

Beweis. $(1) \Rightarrow (2)$: Man nimmt nur weniger mögliche Vereinigungen.

(2)
$$\Rightarrow$$
 (3): Angenommen $\cap_{n\in\mathbb{N}}A_n=\emptyset$, $A_n=\overline{A_n}$, $\emptyset\neq A_{n+1}\subseteq A_n\ \forall n\in\mathbb{N}$

$$\Rightarrow U_n := X \setminus A_n \text{ offen und } \cup_{n \in \mathbb{N}} U_n = X$$

$$\stackrel{?}{\Rightarrow} \exists n_1, \dots, n_m \in \mathbb{N} : X = \cup_{i=1}^m U_{n_i} = \cup_{i=1}^m (X \setminus A_{n_i})$$

$$= X \setminus (\cap_{i=1}^m A_{n_i})$$

$$= X \setminus A_k \qquad \text{für } k := \max\{n_1, \dots, n_m\}$$

$$\Rightarrow A_k = \emptyset \text{ Widerspruch!}$$

 $(3) \Rightarrow (4)$: Sei (x_n) eine Folge in X. Für $n \in \mathbb{N}$ sei

$$A_n := \overline{\{x_k : k \ge n\}}.$$

Es ist $A_n\supseteq A_{n+1}$ und $A_n\neq\emptyset$ abgeschlossen $\forall n\in\mathbb{N}\stackrel{(3)}{\Rightarrow}\exists x_0\in\cap_{n\in\mathbb{N}}A_n$. Deshalb ist

$$\forall \varepsilon > 0 \ \forall n \in \mathbb{N} : U_{\varepsilon}(x_0) \cap \{x_k : k \ge n\} \ne \emptyset$$

 $\Rightarrow x_0$ ist Häufungspunkt der Folge (x_n) und damit Grenzwert einer Teilfolge von (x_n) .

 $(4) \Rightarrow (5)$: Sei (x_n) eine Cauchyfolge. Wegen (4) hat (x_n) eine konvergente Teilfolge mit Grenzwert $x \in X$. Dann ist $x_n \stackrel{n \to \infty}{\longrightarrow} x \Rightarrow X$ vollständig.

Angenommen X sei nicht präkompakt

$$\Rightarrow \exists \varepsilon_0 > 0 : \forall \{x_1, \dots, x_n\} \subseteq X \ \exists x_{n+1} \in X \ \text{mit} \ x_{n+1} \notin \bigcup_{i=1}^n U_{\varepsilon_0}(x_i).$$

Konstruiere so eine Folge (x_n) in X. Dann gilt

$$\forall n \in \mathbb{N} : d(x_{n+1}, x_j) \ge \varepsilon_0 \quad \forall j \in \{1, \dots, n\}$$

 \Rightarrow (x_n) hat keine Cauchy-Teilfolge \Rightarrow (x_n) hat keine konvergente Teilfolge.

 $(5) \Rightarrow (1)$: Sei $(U_i)_{i \in I}$ eine offene Überdeckung von X. Angenommen es existiere keine endliche Teilüberdeckung. Wir definieren induktiv Kugeln K_n , $n \in \mathbb{N}$, wie folgt:

Da X präkompakt ist, gibt es zu $\varepsilon = 1$ endliche viele Kugeln $U_1(x_{0,j})$ mit

$$X \subseteq \bigcap_{j=0}^{m_1} U_1(x_{0,j}).$$

Dann ist mindestens eine dieser Kugeln nicht durch endlich viele Mengen aus $(U_i)_{i\in I}$ überdeckbar. OBdA sei $U_1(x_{0,0})$ und setze $x_0:=x_{0,0}$. Konstruiere so eine Folge (x_n) , so dass $U_{\frac{1}{2^n}}(x_1)$ nicht durch endlich viele Mengen aus $(U_i)_{i\in I}$ überdeckt werden kann. Sei

$$y \in U_{\frac{1}{2n-1}}(x_{n-1}) \cap U_{\frac{1}{2n}}(x_1) \neq \emptyset$$

Dann gilt

$$d(x_{n-1}, x_n) \le d(x_{n-1}, y) + d(y, x_1) \le \frac{1}{2^{n-1}} + \frac{1}{2^n} \le \frac{1}{2^{n-2}}.$$

Für $n \leq p \leq q$ gilt dann

$$d(x_p, x_q) \le d(x_p, x_{p+1}) + \dots + d(x_{q-1}, x_q) \le \frac{1}{2^{p-1}} + \dots + \frac{1}{2^{q-2}} < \frac{1}{2^{n-2}}$$

Daraus folgt, (x_n) ist eine Cauchyfolge in X und wegen der Vollständigkeit von X gibt es ein $\hat{x} \in X$, so dass $\lim_{n \to \infty} d(x_n, \hat{x}) = 0$. Wegen $X = \bigcup_{i \in I} U_i$ gilt $\exists i_0 \in I : \hat{x} \in U_{i_0}$. Weil U_{i_0} offen ist: $\exists r > 0$, so dass $U_r(\hat{x}) \subseteq U_{i_0}$. Sei nun $n \in \mathbb{N}$, so dass $\frac{1}{2^n} < \frac{r}{2}$ und $d(\hat{x}, x_n) < \frac{r}{2}$. $\Rightarrow U_{\frac{1}{2}}(x_n) \subseteq U_r(\hat{x}) \subseteq U_{i_0}$. Das ist ein Widerspruch dazu, dass $U_{\frac{1}{2^n}}(x_n)$ nicht durch endliche viele U_i überdeckt werden kann.

Kollar 1.42

(X, d) sei ein metrischer Raum. Dann gilt:

- a) (X,d)kompakt $\Rightarrow X$ vollständig
- b) $M\subseteq X$, so dass jede Folge in M eine in M konvergente Teilfolge hat (M folgenkompakt) $\Leftrightarrow M\subseteq X$ kompakt (M Überdeckungskompakt)
- c) $M\subseteq X$ kompakt $\Rightarrow M$ beschränkt und abgeschlossen.

d) X kompakt, $A \subseteq X$ abgeschlossen $\Rightarrow A$ kompakt.

Defintion 1.43

Sei (X,d) ein metrischer Raum. $M \subseteq X$ heißt relativ kompakt, wenn \overline{M} kompakt ist.

Defintion 1.44

(X,d) vollständiger metrischer Raum, $M \subseteq X$ relativ kompakt.

Was genau wird hier definiert?

 \Leftrightarrow jede Folge in M besitzt eine in X konvergente Teilfolge.

Satz 1.45

Sei (X,d)ein metrischer Raum. $M,N\subseteq X$ seien relativ kompakt (bzw. präkompakt). Dann gilt

- (a) $S \subseteq M \Rightarrow S$ relativ kompakt (bzw. präkompakt)
- (b) $M \cup N$ relativ kompakt (bzw präkompakt)
- (c) M relativ kompakt \Rightarrow M präkompakt
- (d) Ist (X, d) vollständig, so gilt M relativ kompakt $\Leftrightarrow M$ präkompakt
- Beweis. a) relativ kompakt: Sei (x_n) eine Folge aus S. Da (x_n) ein Folge in M ist, hat es eine konvergente Teilfolge, dessen Grenzwert in \overline{M} ist. Dann ist der Grenzwert auch in \overline{S} . Also ist S relativ kompakt. präkompakt: Sei $\varepsilon > 0$ gegeben. Dann gibt es eine endliche Menge $\{x_1, \ldots, x_n\} \subseteq M$, so dass $S \subseteq M = \bigcup_{i=0}^n U_{\varepsilon}(x_i)$. Also ist auch S präkompakt.
- b) relativ kompakt: Ist (x_n) eine Folge aus $M \cup N$, so gibt es eine Teilfolge, die nur in M oder N ist. Dann hat diese Teilfolge noch eine konvergente Teilfolge. präkompakt: M und N haben jeweils ein ε -Netz. Die Vereinigung ist dann auch ein ε -Netz.
- c) Angenommen M sei nicht präkompakt, dann gibt es ein $\varepsilon > 0$, so dass sich M nicht durch endlich viele ε -Kugeln überdecken lässt. Wählen wir aus jedem dieser (mindestens abzählbar vielen) Kugeln ein Element aus, entsteht eine Folge, dessen Folgenglieder alle Mindestabstand $\frac{\varepsilon}{2}$ zueinander haben. \Rightarrow Es gibt keine konvergente Teilfolge \Rightarrow M ist nicht relativ kompakt.
- $d) \Rightarrow \text{folgt aus } c)$

Bemerkung 1.46: Fakten

 $(X, ||\cdot||)$ normierter Raum.

- a) Aussagen über metrischer Räume übertragen sich
- b) Die Vervollständigung von X ist ein Banachraum.

- c) Wenn $\dim X < \infty$, dann
 - i) X Banachraum
 - ii) $M \subseteq X$ kompakt $\Leftrightarrow M$ beschränkt und abgeschlossen (Heine-Borel)
 - iii) $M\subseteq X$ relativ kompakt $\Leftrightarrow M$ präkompakt $\Leftrightarrow M$ beschränkt

Lemma 1.47: Lemma von Riesz

 $(X,||\cdot||)$ normierter Raum, $E\subset X$ abgeschlossener Unterraum mit $E\neq X,\,\eta\in(0,1)$. Dann existiert ein $x_\eta\in X$ mit $||x_\eta||=1$ und $||x_\eta-y||\geq\eta\;\forall y\in E.$

Beweis. Sei $x_0 \in X \setminus E$. Definiere $\delta := \inf_{y \in E} ||x_0 - y||$, da E abgeschlossen ist, ist $\delta > 0$. Sei (y_n) Folge in E mit $||x_0 - y_n|| \to \delta$. Sei $\eta \in (0,1) \Rightarrow \frac{\delta}{\eta} > \delta \Rightarrow \exists z \in E$ mit $||x_0 - z|| \le \frac{\delta}{\eta}$. Definiere $x_{\eta} := \frac{x_0 - z}{||x_0 - z||} \Rightarrow ||x_{\eta}|| = 1$. Für $y \in E$ gilt dann

$$||x_{\eta} - y|| = \left| \left| y - \frac{x_0 - z}{||x_0 - z||} \right| \right| = \left| \left| y + \frac{z}{||x_0 - z||} - \frac{x_0}{||x_0 - z||} \right| \right| = \frac{\left| \left| \underbrace{\left(\left| \left| x_0 - z \right| \left| y + z \right) - x_0}{\left| \left| \left| x_0 - z \right| \right|} \right|}{\left| \left| \left| \left| x_0 - z \right| \right|} \right|} \ge \delta \cdot \frac{1}{\left| \left| \left| \left| x_0 - z \right| \right|} \ge \frac{\eta}{\delta} \cdot \delta = \eta$$

Kollar 1.48

 $(X, ||\cdot||)$ normierter Raum.

- a) $\overline{U_1(0)}$ kompakt $\Leftrightarrow \dim X < \infty$
- b) Jede beschränkt Folge besitzt konvergente Teilfolge $\Leftrightarrow \dim X < \infty$

Beweis. a) " \Leftarrow " Folgt aus Heine-Borel

" \Rightarrow " Angenommen, $\dim X = \infty$ (Nicht endlichdimensional). Wir wählen ein $x_0 \in X$ mit $||x_0|| = 1$. Nach dem Lemma von Riesz gibt es ein $x_1 \in X$, so dass $||x_1 - y|| \ge \frac{1}{2} \ \forall y \in \operatorname{span}\{x_0\}$. Sukzessiv können wir so eine Folge (x_n) konstruieren für die gilt: $||x_n|| = 1$ und $||x_n - y|| \ge \frac{1}{2} \ \forall y \in \operatorname{span}\{x_0, \dots, x_{n-1}\} \ \forall n \in \mathbb{N}$.

 $\Rightarrow ||x_n - x_m|| \ge \frac{1}{2} \ \forall n, m \in \mathbb{N} \ \text{mit} \ n \ne m. \Rightarrow (x_n) \ \text{hat keine konvergente Teilfolge}.$

b) genauso.

1.4 Skalarprodukträume

Erinnerung:

Sei X ein K-VR. Ein Skalarprodukt ist eine Abb $(\cdot,\cdot)\to\mathbb{K}$ mit

(S1)
$$(\alpha x + \beta y, z) = \alpha(x, z) + \beta(y, z) \ \forall x, y, z \in X, \ \alpha, \beta \in \mathbb{K}$$

(S2)
$$(x,y) = \overline{(y,x)}$$

(S3) $(x, x) > 0 \ \forall x \in X \setminus \{0\}.$

Bemerkung 1.49

- 1) $||x|| := \sqrt{(x,x)}$ ist eine Norm.
- 2) ein vollständiger Skalarproduktraum heißt Hilbertraum.
- 3) $||x||\cdot||y||\geq |(x,y)| \ \forall x,y\in X$ (Cauchy-Schwarz-Ungleichung)
- 4) Für $x, y \in X$ mit (x, y) = 0 (x und y orthogonal, $x \perp y$) gilt $||x + y||^2 = ||x||^2 + ||y||^2$ (Satz des Pythagoras)
- 5) Für $x, y \in X$ gilt die Parallelogrammgleichung: $||x + y||^2 + ||x y||^2 = 2||x||^2 + 2||y||^2$
- 6) Für $(x_n), (y_n)$ mit $(x_n) \to x, (y_n) \to y$ gilt $(x_n, y_n) \to (x, y)$, da $|(x_n, y_n) (x, y)| \le ||x_n|| \cdot ||y_n y|| + ||x_n x|| ||y||$ (Stetigkeit des Skalarprodukts)

Satz 1.50

Sei $(X, ||\cdot||)$ ein normierter Raum mit $||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2 \ \forall x, y \in X$. Dann existiert ein Skalarprodukt auf X, welches $||\cdot||$ induziert.

Beweis. Skizze! a) $\mathbb{K} = \mathbb{R} (x, y) := \frac{1}{4} (||x + y||^2 - ||x - y||^2)$. b) $\mathbb{K} = \mathbb{C} (x, y) := \frac{1}{4} (||x + y||^2 - ||x - y||^2 + i(||x + iy||^2 + ||x - iy||^2)$ (\nearrow Übung, Blatt 6, Aufgabe 1)

Defintion 1.51

 $(X, (\cdot, \cdot))$ Skalarprodukt, $x, y \in X$. $M, N \subseteq X$, $(x_i)_{i \in I}$ Familie.

- 1. x orthogonal zu y (x \perp y), wenn (x, y) = 0.
- 2. x orthogonal zu N (x \perp M), wenn $x \perp y \quad \forall y \in N$
- 3. M orthogonal zu N (N \perp M), wenn $x \perp M \quad \forall x \in N$.
- 4. $M^{\perp} = \{x \in X : x \perp M\}$ Orthogonalraum zu M
- 5. $(x_i)_{i \in I}$ heißt Orthogonalsystem (OGS), wenn $x \perp y, \forall i, j \in I, i \neq j$
- 6. $(x_i)_{i \in I}$ heißt Orthonormalsystem (ONS), wenn es OGS mit $||x_i|| = 1 \ \forall i \in I$ ist.
- 7. $(x_i)_{i \in I}$ heißt Orthogonalbasis (OGB), wenn es ein linear unabhängiges OGS ist und $\overline{span((x_i)_{i \in I})} = X$.
- 8. $(x_i)_{i\in I}$ heißt *Orthonomalbais* (ONB), wenn es OGB und ONS ist.

Beispiele 1.52

a) $e_n = (\delta_{in})_{i \in I} \in \ell^2$ $(e_n)_{n \in \mathbb{N}}$ ist ONS Es ist auch ONB. Sei $x = (a_n)_{n \in \mathbb{N}}$, $\varepsilon > 0$. $\Rightarrow \exists N \in \mathbb{N}$. $\sum_{k=N+1}^{\infty} |a_k| < \varepsilon^2$. Für $v = a_1 e_1 + \dots + a_N e_N \in span(e_n)_{n \in \mathbb{N}}$ $||v - x||_2 = \left(\sum_{k=N+1}^{\infty} |a_k|^2\right)^{\frac{1}{2}} < \varepsilon$ b) $(u_k)_{k \in \mathbb{Z}}$ mit $u_k(x) = \frac{1}{\sqrt{2\pi}} e^{ikx}$

 $u_k \in L^2([0, 2\pi])$ ist ONS, da $\int_0^{2\pi} u_k(x) \overline{u_j(x)} dx = \delta_{kj}$ Auch ONB?

Beachte: V^{\perp} ist immer abgeschlossen, da für eine Folge (v_i) in V^{\perp} mit $v_i \to v$ gilt $(x, v) \leftarrow (x, v_i) = 0 \ \forall x \in V \Rightarrow v \in V^{\perp}$

Satz 1.53: Besselsche Ungleichung

Sei X ein Skalarproduktraum, $(u_i)_{i\in I}$ ein Orthonormalsystem, $x\in X,\,i_1,\ldots,i_n\in I.$ Dann ist

$$\sum_{k=1}^{n} |(x, u_{i_k})|^2 \le ||x||^2$$

Beweis. Sei $x_n := x - \sum_{k=1}^n (x, u_{ik}) u_{ik}$ und $j \in \{1, \dots, n\}$. Dann ist

$$(x_n, u_{ij}) = (x, u_{ij}) - \sum_{k=1}^{n} (x, u_{i_k}) \underbrace{(u_{i_k}, u_{i_j})}_{\delta_{k_j}} = (x, u_{i_j}) - (x, u_{i_j}) = 0$$

Also ist $\sum_{k=1}^n (x,u_{i_k})u_{i_k} \perp x_n$ und mit dem Satz des Pythagoras folgt nun

$$||x||^2 = ||x_n||^2 + ||\sum_{k=1}^n (x, u_{i_j})u_k||^2 = ||x_n||^2 + \sum_{k=1}^n |(x, u_{i_k})|^2 \ge \sum_{k=1}^n |(x, u_{i_k})|^2$$

Kollar 1.54

Voraussetzungen wie oben. Dann gilt

- (a) $(x, u_i) \neq 0$ für höchstens abzählbar viele $i \in I$.
- (b) $\sum_{i \in I} |(x, u_i)|^2 \le ||x||^2$ (Besselsche Ungleichung II)
- (c) Die Reihe $\sum_{i \in I} (x, u_i) u_i$ (Fourierreihe) ist eine Cauchyfolge in X.

Beweis. (a) Für $n \in \mathbb{N}$ gilt nach Bessel (I), dass für $S_{x,n} := \{i \in I : |(x,u_i)|^2 > \frac{1}{n}\}$ gilt $|S_{x,n}| \le n ||x||^2$, also endlich.

Dann ist $\{i \in I : (x, u_i) \neq 0\} = \bigcup_{n \in \mathbb{N}} S_{x,n}$ abzählbar, als abzählbare Vereinigung abzählbarer Mengen.

- (b) Seien $(i_n)_{n\in\mathbb{N}}$ paarweise disjunkt mit $\{i_n:n\in\mathbb{N}\}=\{i\in I:(x,u_i)\neq 0\}$. Dann gilt $\forall n\in\mathbb{N}:$ $||x||^2\geq\sum_{k=1}^n|(x,u_{i_k})|^2\overset{n\to\infty}{\Rightarrow}\sum_{k=1}^\infty|(x,u_{i_k})|^2=\sum_{i\in I}|(x,u_i)|^2$.
- (c) (i_n) wie oben, $\varepsilon > 0 \stackrel{b)}{\Rightarrow} \exists N \in \mathbb{N}$, so dass $\forall n \geq m \geq N$ gilt $\sum_{k=m+1}^{n} |(x, u_k)|^2 < \varepsilon^2$ $\Rightarrow ||\sum_{k=1}^{n} (x, u_{i_k}) u_{i_k} - \sum_{k=1}^{m} (x, u_{i_k}) u_{i_k}||^2 = ||\sum_{k=m+1}^{n} (x, u_{i_k} u_{i_k})|^2 \stackrel{Pyth}{=} \sum_{k=m+1}^{n} |(x, u_{i_k})|^2 < \varepsilon^2$ $\Rightarrow \sum_{k=1}^{\infty} (x, u_{i_k}) u_{i_k}$ ist eine Cauchyfolge.

Satz 1.55: Projektionssatz

X Skalarproduktraum, V vollständig UVR, $x \in X$. Dann existiert ein eindeutiges $v_0 \in V$, so dass $||x - v_0|| = \inf_{v \in U} ||x - v||$. Dieses v_0 erfüllt $x - v_0 \in V^{\perp}$

Beweis. Sei (v_n) eine Folge in V mit $d_n := ||x - v_n|| \to \inf_{v \in V} ||x - v|| =: d$. Wegen der Parallelogrammgleichung ist

$$\underbrace{\|x - \frac{v_n + v_m}{2}\|^2}_{>d^2} + \|\frac{v_n - v_m}{2}\|^2 = \frac{1}{2}\|x - v_n\|^2 + \frac{1}{2}\|x - v_m\|^2 = \frac{1}{2}d_n^2 + \frac{1}{2}d_m^2$$

$$\Rightarrow \|\frac{v_n-v_m}{2}\|^2 \leq \frac{1}{2}(d_n^2+d_m^2)-d^2 \to 0 \text{ für } n,m\to\infty$$

 \Rightarrow (v_n) ist eine Cauchyfolge und wegen der Vollständigkeit von V konvergiert sie gegen ein $v_0 \in V \Rightarrow ||x - v_0|| = \inf_{v \in V} ||x - v||$

Eindeutigkeit: Sei $v_1 \in V$ ein weiterer Vektor mit $||x - v_1|| = ||x - v_0|| = d = \inf_{v \in V} ||x - v||$. Wegen der Parallelogrammgleichung ist

$$||v_1 - v_0||^2 = 2(||x - v_0||^2 + ||x - v_1||^2 - 2d^2) = 0 \Rightarrow v_0 = v_1.$$

Es bleibt noch zu zeigen: $x - v_0 \in V^{\perp}$.

Für $\lambda \in \mathbb{K}$, $v \in V$ ist

$$\|x-v_0\|^2 \le \|x-(v_0+\lambda v)\|^2 = ((x-v_0)-\lambda v, (x-v_0)-\lambda v) = \|x-v_0\|^2 - \overline{\lambda}(x-v_0,v) - \lambda(v,x-v_0) + |\lambda|^2 \|v\|^2.$$

Sei also $\lambda := \frac{(x-v_0,v)}{\|v\|^2}$

$$\Rightarrow \|x - v_0\|^2 \le \|x - v_0\|^2 - \underbrace{\frac{|(x - v_0, v)|^2}{\|v\|^2}}_{<0} \le \|x - v_0\|^2 \Rightarrow |(x - v_0, v)|^2 = 0 \Rightarrow x - v_0 \perp v.$$

Kollar 1.56

Sei X ein Hilbertraum und V ein abgeschlossener Unterraum. Dann gilt

- 1. $X = V \perp V^{\perp}$, also $V \perp V^{\perp}$ und $X = V \oplus V^{\perp}$ Insbesondere gilt wegen $V \cap V^{\perp} = \{0\}$, dass $\forall x \in X$ die Zerlegung x = v + w mit $v \in V$, $w \in V^{\perp}$ eindeutig ist.
- 2. Sei $(u_i)_{i\in I}$ eine Orthonormalbasis von $V,x\in X$. Dann ist $v:=\sum_{i\in I}(x,u_i)u_i$ die Bestapproximation von x in V.

Beweis. 1. $x \in X$. Sei $v \in V$, so dass, $||x-v|| = \inf_{u \in V} ||x-u|| \Rightarrow x = v + (x-v)$ und $v \in V$, $x-v \in V^{\perp}$

2. Für $v := \sum_{i \in I} (x, u_i) u_i$ (konvergent) ist $x - v \in V^{\perp}$ (wie im Beweis der Besselschen Ungleichung) $\Rightarrow v$ ist Bestapproximation von x in V.

Lemma 1.57

Sei Xein Skalarproduktraum, Vein Unterraum. Dann ist $V^\perp = \overline{V}^\perp$

Beweis. "
$$\supseteq$$
" Da $V \subseteq \overline{V} \Rightarrow \overline{V}^{\perp} \subseteq V^{\perp}$ " \subseteq " Sei $x \in V^{\perp}, v \in V \Rightarrow \exists$ Folge (v_n) in V mit $v_n \to v \Rightarrow (x, v) \leftarrow (x, v_n) = 0$

Satz 1.58

X Skalarproduktraum. $(u_i)_{i \in I}$ ONS.

Betrachte folgende Aussagen

- (i) $(u_i)_{i \in I}$ ist eine Orthonormalbasis
- (ii) $x = \sum_{i \in I} (x, u_i) u \ \forall x \in X$ (Fourierreihe)
- (iii) $(x,y) = \sum_{i \in I} (x,u_i)(u_i,y) \ \forall x,y \in X$ (Parseval-Identität)
- (iv) $||x||^2 = \sum_{i \in I} |(x, u_i)|^2 \ \forall x \in X$ (Bessel-Gleichung)
- (v) $(span(u_i)_{i \in I})^{\perp} = \{0\}$

Dann gilt $i \Leftrightarrow ii \Leftrightarrow iii \Leftrightarrow iv \Rightarrow v$.

Wenn X zusätzlich noch ein Hilbertraum ist, dann gilt auch $v \Rightarrow iv$.

Beweis. "(i) \Rightarrow (ii)": Sei $\varepsilon > 0$ gegeben. Da $(u_i)_{i \in I}$ eine ONB ist, gibt es $i_1, \ldots, i_n \in I, \ \alpha_1, \ldots \alpha_n \in \mathbb{K}$ so dass $\|x - \sum_{k=1}^n \alpha_k u_{i_k}\| < \varepsilon$ wegen Korollar 1.56 ist

nochmal an schauen!

$$||x - \sum_{k=1}^{n} (x, u_{i_k})|| \le ||x - \sum_{k=1}^{n} \alpha_k u_{i_k}|| < \varepsilon$$

" $(ii) \Rightarrow (iii)$ ": Es ist:

$$x = \sum_{i \in I} (x, u_i) u \overset{(\cdot, y)}{\Rightarrow} (x, y) = \left(\sum_{i \in I} (x, u_i) u_i, y \right) = \sum_{i \in I} (x, u_i) (u_i, y) \quad \forall x, y \in X$$

- " $(iii) \Rightarrow (iv)$ ": Setze in die Formel y = x ein.
- " $(iv) \Rightarrow (i)$ ": Mit Pythagoras und Korollar 1.56 gilt:

$$||x||^2 = \sum_{i \in I} |(x_i, u_i)|^2 + ||x - \sum_{i \in I} (x, u_i)u_i||^2 \Rightarrow x - \sum_{i \in I} (x, u_i)u_i = 0 \Rightarrow x \in \overline{\operatorname{span}(u_i)_{i \in I}}.$$

"(i) \Rightarrow (v)": Wegen Lemma 1.57 ist $(\operatorname{span}(u_i)_{i \in I})^{\perp} = \overline{\operatorname{span}(u_i)_{i \in I}}^{\perp} = X^{\perp} = \{0\}.$

"(v) \Rightarrow (i)": Sei X ein Hilbertraum \Rightarrow $\overline{\operatorname{span}(u_i)_{i\in I}}$ ist vollständig. Sei $x\in X$ mit $x=x_1+x_2$, wobei $x_1\in\overline{\operatorname{span}(u_i)_{i\in I}},\ x_2\in\overline{\operatorname{span}(u_i)_{i\in I}}^\perp=\operatorname{span}(u_i)_{i\in I}^\perp=\{0\}\Rightarrow x=x_1.$

Nun zurück zu $L^2([0,2\pi])$. Wir erinnern uns vorerst:

- 1. Der Raum der stetigen Funktionen liegt dicht in $L^2([0,2\pi])$ $\Leftrightarrow \forall \varepsilon > 0, f \in L^2([0,2\pi]) \; \exists g \in C([0,2\pi]) \; \text{mit } g(0) = g(2\pi) = 0 \; \text{und } ||f-g||_2 < \varepsilon.$
- 2. Zu $g \in C([0, 2\pi])$ mit $g(0) = g(2\pi), \varepsilon > 0$ $\exists h \in \text{span}(u_i)_{i \in \mathbb{Z}} : ||g h||_{\infty}$

Satz 1.59

Die Familie $(u_k)_{k\in\mathbb{Z}}$ mit $u_k(x)=\frac{1}{2\pi}e^{ikx}$ ist eine Orthonormalbasis von $L^2([0,2\pi])$ Wir benutzen:

- $\text{a)} \ \forall \varepsilon>0, f\in L^2([0,2\pi]) \ \exists g\in C([0,2\pi]) \ \text{mit} \ g(0)=g(2\pi)=0 \ \text{und} \ ||f-g||_2<\varepsilon,$
- b) Zu $g \in C([0, 2\pi])$ mit $g(0) = g(2\pi), \varepsilon > 0$ $\exists h \in span(U_i)_{i \in \mathbb{Z}} : ||g h||_{\infty} < \varepsilon$.

Beweis. Sei $f\in L^2([0,2\pi]), \varepsilon>0$. Dann existiert $g\in C([0,2\pi])$ mit $g(0)=g(2\pi)=0$ und $||f-g||_2<\frac{\varepsilon}{2}$. Sei $h\in\overline{span(u_i)_{i\in I}}$, so dass $||g-h||<\frac{\varepsilon}{2\sqrt{2\pi}}$

$$\Rightarrow ||f-h||_2 \leq ||f-g||_2 + ||g-h||_2 \leq ||f-g||_2 + \sqrt{2\pi} \, ||g-h||_{\infty} < \frac{\varepsilon}{2} + \sqrt{2\pi} \cdot \frac{\varepsilon}{2\sqrt{2\pi}} = \varepsilon$$

wobei wir $||f||_2^2 = \int_I |f|^2 d\lambda \le \int_I \operatorname{ess\,sup}_{x \in I} |f(x)|^2 d\lambda = ||f||_\infty^2 \int_I d\lambda = ||f||_\infty^2 \lambda(I)$ für $f \in L^2(I)$ genutzt haben.

Kollar

Sei $f \in L^2([0, 2\pi])$

- 1. $f_n(x)=\sum_{k=-n}^n c_k e^{ikx}$ ist bestapprox. trig. Polynom vom Grad n für f (mit $c_k=(f,e^{ik\cdot})=\int_0^{2\pi}f(x)e^{-ikx}dx$)
- 2. $f = \sum_{k=-\infty}^{\infty} \sum_{n=0}^{\infty} c_k e^{ik}$
- 3. $(v_i)_{i\in\mathbb{Z}}$ mit $v_0=\frac{1}{\sqrt{2\pi}},v_k=\cos(k\cdot)\frac{1}{\sqrt{\pi}}$ für $k>0,v_k=\sin(k\cdot)\frac{1}{\sqrt{\pi}}$ für k<0

Defintion 1.60: Halbordnung, Totalordnung

Sei M eine Menge. Eine Relation $\leq \subseteq M \times M$, heißt Halbordnung, wenn folgende Eigenschaften erfüllt sind:

- (i) $a \leq b \land b \leq c \Rightarrow a \leq c \quad \forall a,b,c \in M$
- (ii) $a \le a \quad \forall a \in M$
- (iii) $a \le b \land b \le a \Rightarrow a = b \quad \forall a, b \in M$

 $d \in M$ heißt obere Schranke, wenn $a \leq d \ \forall a \in M$

Die Relation heißt *Totalordnung*, wenn sie eine Halbordnung ist und $\forall a,b \in M: a \leq b$ oder $b \leq a$ gilt.

Lemma 1.61: Lemma von Zorn

M sei eine halbgeordnete Menge. Besitzt jede totalgeordnete Teilmenge $Z\subseteq M$ eine obere Schranke in M, dann besitzt M eine obere Schranke.

Satz 1.62

 $(X, (\cdot, \cdot))$ sei ein Hilbertraum. Dann existiert eine Orthonormalbasis.

Beweis. Sei $M = \{(u_i)_{i \in I} : (u_i)_{i \in I} \text{ ist Orthonormal system}\}$

Wir definieren die Halbordnung $(u_i)_{i \in I} \subseteq (y_i)_{i \in J} : \Leftrightarrow I \subseteq J \text{ und } x_i = y_i \ \forall i \in I.$

Sei $Z := \{(x)_{i \in I_j} : j \in J\} \subseteq M$ eine totalgeordnete Teilmenge, $(x_i)_{i \in I}$ ist eine obere Schranke von Z. Nach dem Lemma von Zorn gibt es also eine obere Schranke $(\hat{x}_i)_{i \in J}$ von M.

Mit anderen Worten: $\not\equiv$ ONS $(\hat{y}_i)_{i\in\hat{J}}$ mit $J\subsetneq\hat{J}$ und $\hat{x}_i=\hat{y}_i \ \forall i\in\hat{J}$.

$$\Rightarrow \forall x \in X \text{ mit } x \perp \hat{x}_i \ \forall i \in I \text{ gilt } x = 0$$

$$\Rightarrow (span(\hat{x}_i)_{i \in I})^{\perp} = \{0\}$$

Übung. Blatt 5,6.

1. Gram-Schmidt-Orthonormalisierung

Sei $(X, (\cdot, \cdot))$ ein Skalarproduktraum, $(x_n)_{n \in \mathbb{N}}$ linear unabhängig. Dann existiert ein ONS $(y_n)_{y\in\mathbb{N}}$ mit $span(y_1,\ldots,y_k)=span(x_1,\ldots,x_k)$.

Mit (y_n) wie vorhin, gilt (y_n) ist ONB $\forall k \in \mathbb{N} \Leftrightarrow span(x_n)_{n \in \mathbb{N}} = X$.

2. $M \subset X$ ist UVR $\Rightarrow (M^{\perp})^{\perp} = \overline{M}$

Satz 1.63

Seien X ein Hilbertraum, $(x_i)_{i \in I}$, $(y_i)_{i \in J}$ Orthonormalbasen. Dann haben I und J die gleiche Mächtigkeit.

Beweis. Für endliches I ist die Aussage klar.

Seien also |I| und |J| unendlich.

Für $x \in X$, definiere $S_x = \{i \in I : (x, x_i) \neq 0\} \Rightarrow |S_X| \leq |\mathbb{N}|$ sowie $\bigcup_{i \in J} S_{y_i} = I$ und $S_{y_i} \neq \emptyset$.

Denn: Ist $S_{y_j} = \emptyset$, dann $y_j \perp x_i \forall i \in I \Rightarrow y_j = 0$ Lightning!

Ist $i \in I$ mit $i \notin \bigcup_{j \in J} S_{y_j}$, dann $x_i \perp y_j \forall j \in J \Rightarrow x_i = 0$ Lightning! Also $|I| = |\bigcup_{j \in J} S_{x_j}| \subseteq |J| \cdot |\mathbb{N}| = |J|$.

Also
$$|I| = |I| \int_{-1}^{1} S_{x,y} |C| J |\cdot| \mathbb{N} | = |J|$$
.

Analog $|J| \subseteq |I|$

Kapitel 2

Einige Hauptsätze aus der Funktionalanalysis

2.1 Satz von der offenen Abbildung, Satz vom abgeschlossenen Graphen, Satz von der stetigen Inversen

Defintion 2.1

Seien X,Y topologische Räume. $f:X\to Y$ heißt offen, falls für alle offenen $U\subseteq X,\,f(U)\subseteq Y$ offen ist.

Satz 2.2

Es seien X,Y topologische Räume und $f:X\to Y$ injektiv. Dann sind äquivalent

- (i) $f: X \to f(X)$ offen (Relativtopologie von Y auf f(x))
- (ii) $f^{-1}: f(X) \to X$ stetig.

Beweis. "(i) \Rightarrow (ii)": Sei $U \subseteq X$ offen, dann ist $(f^{-1})^{-1}(U) = f(U)$ offen, also ist f^{-1} stetig.

"(ii) \Rightarrow (i)": Sei $U \subseteq X$ offen, f^{-1} stetig $\Rightarrow f(U) = (f^{-1})^{-1}(U)$ offen $\Rightarrow f$ offen.

Lemma 2.3

Seien X, Y normierte Räume, $T: X \to Y$ ein linearer Operator. Dann sind äquivalent:

- (i) T ist offen.
- (ii) $\forall r > 0 : T(U_r(0))$ ist eine Nullumgebung.
- (iii) $\exists r > 0 : T(U_r(0))$ ist eine Nullumgebung.
- (iv) $\exists r > 0 : T(U_1(0))$ ist eine Nullumgebung.

Beweis. Vergleiche ÜA3, Blatt 2.

Satz 2.4: Satz von der offenen Abbildung, Satz von Banach-Schauder, openmapping theorem

Seien X, Y Banachräume und $T \in \mathcal{B}(X, Y)$ surjektiv. Dann ist T offen.

Beweis. Wir zeigen, dass (ii) aus Lemma 2.3 gilt.

- 1. Schritt Wir zeigen $\exists \varepsilon_0 > 0$, so dass $U_{\varepsilon_0}(0) \subseteq \overline{T(U_1(0))}$. Weil T surjektiv gilt $Y = \bigcup_{n \in \mathbb{N}} T(U_n(0))$. Da Y Banachraum, so gilt nach Baire $\exists N \in \mathbb{N} : \overline{T(U_N(0))} \neq \emptyset \ \exists y_0 \in \overline{T(U_N(0))}, \varepsilon > 0$, so dass $U_1(\varepsilon)0 \subseteq \overline{T(U_N(0))}$. Aus $U_1(\varepsilon)0 \subseteq \frac{1}{2}U_1(\varepsilon)y_0 + \frac{1}{2}U_1(\varepsilon) y_0$ und $\overline{T(U_N(0))} = \frac{1}{2}\overline{T(U_N(0))} + \frac{1}{2}\overline{T(U_N(0))}$ folgt $U_1(\varepsilon)0 \subseteq \overline{T(U_N(0))} \Rightarrow U_1(\frac{\varepsilon}{N})0 \subseteq \overline{T(U_1(0))}$. $\varepsilon_0 := \frac{\varepsilon}{N}$.
- 2. Schritt Wir zeigen $U_1(\varepsilon_0)0 \subseteq T(U_1(0))$ Sei $y \in U_1(\varepsilon_0)0$. Wähle $\varepsilon > 0$ mit $||y|| < \varepsilon < \varepsilon_0$, $\overline{y} := \frac{\varepsilon_0}{\varepsilon} y$ $\Rightarrow ||\overline{y}|| < \varepsilon_0 \Rightarrow \overline{y} \in \overline{T(U_1(0))} \Rightarrow \exists y_0 = Tx_0 \in T(U_1(0))$ mit $||\overline{y} y_0|| < \alpha \varepsilon_0$, wobei $0 < \alpha < 1$ mit $\frac{\varepsilon}{\varepsilon_0} \cdot \frac{1}{1-\alpha} < 1$ Betrachte nun $\frac{\overline{y} y_0}{\alpha} \in U_1(\varepsilon_0)0 \Rightarrow \exists y_1 = Tx_1 \in T(U_1(0))$ mit $\left|\left|\frac{\overline{y} y_0}{\alpha} y_1\right|\right| < \alpha \varepsilon_0 \Rightarrow ||\overline{y} (y_0 + \alpha y_1)|| < \alpha^2 \varepsilon_0$ Behandle $\frac{\overline{y} (y_0 + \alpha y_1)}{\alpha^2}$ mit derselben Methoden, erhalte, $y_2 = Tx_2 \in T(U_1(0))$ mit $\left|\left|\overline{y} (y_0 + \alpha y_1 + \alpha^2 y_2)\right|\right| < \alpha^3 \varepsilon_0$ Erhalte so induktiv eine Folge (x_n) in $U_1(0)$ mit $\left|\left|\overline{y} T(\sum_{k=0}^n \alpha^k x_k)\right|\right| < \alpha^{n+1} \cdot \varepsilon_0$. Weegen $\alpha < 1$ gilt $\overline{x} := \sum_{\alpha=0}^{\infty} \alpha^k x_k$ konver. The schrink $T\overline{x} = \overline{y}$ Für $x = \frac{\varepsilon}{\varepsilon_0} \overline{x}$ gilt Tx = y und $||x|| = \frac{\varepsilon}{\varepsilon_0} ||\overline{x}|| \le \frac{\varepsilon}{\varepsilon_0} \sum_{k=0}^{\infty} \alpha^k \underbrace{||x_k||}_{<1} < \frac{\varepsilon}{\varepsilon_0} \sum_{k=0}^{\infty} \alpha^k = \frac{\varepsilon}{\varepsilon_0} \cdot \frac{1}{1-\alpha} < 1 \Rightarrow y \in T(U_1(0))$. Also $U_1(\varepsilon)0 \subseteq T(U_1(0))$.

ÜA: X, Y Banachräume, $T \in \mathcal{B}(X, Y)$ ist offen (relativ in imT) $\Leftrightarrow imT$ abgeschlossen.

Idee. " \Leftarrow " gilt nach Satz 2.4. (imT abgeschlossen $\Rightarrow imT$ ist Banachraum) " \Rightarrow " betrachte injektive Abbildung $\hat{T}: X \setminus KerT \to imT, x + KerT \mapsto Tx$

Satz 2.5: Satz von der stetigen Inversen, inverse mapping theorem

X, Y Banachräume. $T \in \mathcal{B}(X, Y)$ bijektiv $\Rightarrow T^{-1} \in \mathcal{B}(Y, X)$

Beweis. Folgt aus open mapping thm und Satz 2.2 (wichtig Banachraum!)

Defintion 2.6: Graph

X,YMengen, $f:X\to Y$ Abbildung. Der Graph von fist $G(f):=\{(x,f(x)):x\in X\}\subseteq X\times Y$

Defintion 2.7

X,Y metrische Räume. Dann ist auf $X\times Y$ eine Metrik via $d((x_1,y_1),(x_2,y_2)):(d(x_1,x_2)^2+d(y_1,y_2)^2)^{\frac{1}{2}}$ definiert. (erhält Parallelogrammgleichung und damit Skalarproduktstruktur)

Beachte

- (i) $X \times Y$ vollständig $\Leftrightarrow X, Y$ vollständig
- (ii) $X \times Y$ normierter Raum $\Leftrightarrow X, Y$ nomierte Räume

- (iii) $X \times Y$ Skalarproduktraum $\Leftrightarrow X, Y$ Skalarproduktraum.
- (iv) abgeschlossene Metrik ist äquivalent zu $\max\{d(x_1, x_2), d(y_1, y_2)\}$ und $(d(x_1, x_2)^p + d(y_1, y_2)^p)^{\frac{1}{p}}$, $p \in (1, \infty)$

Defintion 2.8: Graphenabgeschlossenheit

X,Y metrische Räume, $f:X\to Y$ heißt graphenabgeschlossen, wenn $G(f)\subseteq X\times Y$ abgeschlossen ist.

Bemerkung 2.9

- 1. f graphenabgeschlossen $\Leftrightarrow (x_n)$ in X mit $x_n \to x$ und $f(x_1) \to y \Rightarrow f(x) = y$
- 2. $T: X \to Y$ lineare Operator $\Rightarrow G(T) \subseteq X \times Y$ UVR.
- 3. f stetig $\Rightarrow f$ graphenabgeschlossen.
- 4. Umkehrung von (iii) gilt i.A. nicht: Gegensbeispiel: $f: \mathbb{R} \to \mathbb{R} \ x \mapsto \begin{cases} 0 & x = 0 \\ \frac{1}{x} & sonst \end{cases}$

Satz 2.10: Satz vom abgeschlossem Graphen, closed graph theorem

- X, Y Banachräume, $T: X \to Y$, lineare Operatoren. Dann sind äquivalent:
 - (i) T graphenabgeschlossen
- (ii) $T \in \mathcal{B}(X,Y)$

TODO. • $ii \Rightarrow i \text{ Klar, weil } ...$

 $\begin{array}{l} \bullet \ \ \text{Definiere Abbildung}, S:G(T) \rightarrow X, (x,Tx) \mapsto X \Rightarrow S \ \text{bijektiv und linear. Wegen} \ ||S(x,Tx)||_X = \\ ||X|| \leq (||x||_X^2 + ||Tx||_Y^2)^{\frac{1}{2}}) \ \text{gilt} \ S \in \mathcal{B}(G(T),X) \ \text{mit} \ ||S|| \leq 1 \ . \ \text{Weil} \ G(T) \subseteq X \times Y \ \text{und} \\ X,Y \ \ \text{Banachräume, ist} \ G(T) \ \ \text{Banachraum.} \ \stackrel{S2,4}{\Rightarrow} S^{-1} \in \mathcal{B}(X,G(T)) \Rightarrow (||x||_X^2 + ||Tx||_Y^2)^{\frac{1}{2}} = \\ ||(x,Tx)||_{X\times Y} = \left|\left|S^{-1}(x)\right|\right| \leq \left|\left|S^{-1}\right|\right| \cdot ||x||_X \Rightarrow ||Tx||_Y \leq (||x||_X^2 + ||Tx||_Y^2)^{\frac{1}{2}} \leq \left|\left|S^{-1}\right|\right| \cdot ||x||_X \\ \Rightarrow T \in \mathcal{B}(X,Y) \end{array}$

Bemerkung 2.11

Ein paar Anwendungen

1. Aus Inverse mapping thm folgt: $(X, ||\cdot||_1, (X, ||\cdot||_2) \text{ BRe}, ||\cdot||_1 \text{ stärker als } ||\cdot||_2 \Rightarrow ||\cdot||_2 \text{ stärker } ||\cdot||_1.$

 $\begin{array}{lll} \textit{Beweis.} \text{ Sei } I_X: (X, ||\cdot||_1) \rightarrow (X, ||\cdot||_2) \overset{\textit{Vor.}}{\Rightarrow} I_x \text{ beschränkt} \overset{\textit{IMT}}{\Rightarrow} I_X^{-1}: (X, ||\cdot||_2) \rightarrow (X, ||\cdot||_1) \text{ beschränkt} \Rightarrow ||\cdot||_2 \text{ ist stärker als } ||\cdot||_1. \end{array}$

2. Betrachte $X = C([a,b]), Y = C^1([a,b])$ mit Normen $||x||_X = \max_{t \in [a,b]} |x(t)| = ||x||_{\infty}, ||x||_Y = ||x||_{\infty} + ||x'||_{\infty}, X, Y$ Banachräume.

Ist $T \in \mathcal{B}(C([a,b]))$ mit $imT \subset C^1([a,b])$. Dann ist $T \in \mathcal{B}(C([a,b]), C^1([a,b]))$

Beweis. $x, x_n \in Xy \in Y$ mit $||x_n - x||_X \to 0$, $||Tx_n - y||_Y \to 0 \Rightarrow ||x_n - x||_X \to 0$

und
$$||Tx_n - y||_X \to 0$$
, da $||z||_X \le ||z||_Y \ \forall z \in Y$. $\overset{T \in \mathcal{B}(X)}{\Rightarrow} \lim_{n \to \infty} ||Tx_n - Tx|| = 0 \Rightarrow y = Tx \Rightarrow T$ graphenabgeschlossen $\overset{X,YBRe}{\Rightarrow} T \in \mathcal{B}(X,Y)$.

Bemerkung 2.12

 $T: X \to Y$ lineare Operatoren. Dann sind äquivalent:

- (i) T graphenabgeschlossen
- (ii) $\forall (x_n)$ in X mit $x_n \to 0$, $y \in Y$ mit $(Tx_1) \to y$ folgt y = 0

 $Beweis. \ {\it Nutze Linearit\"{a}t}:$

" \Rightarrow " klar (Spezialisierung auf Nullfolgen)

"\(\epsilon\) angenommen $(x_n) \to x, T(x_n) \to y \Rightarrow (x_n - x)$ ist Nullfolge.

2.2 Das Prinzip der gleichmäßigen Beschränkheit, Satz von Banach-Steinhaus

Satz 2.13: Satz von Osgood

X normierte Raum, $E \subset X$ Teilmenge von 2. Kategorie. Sei $\mathcal{F} = \{f_\alpha : X \to \mathbb{R} \text{ stetig, } \alpha \in A\}$ eine Menge von FUnktionen. \mathcal{F} sei auf E punktweise beschränkt, d.h. $\forall x \in E \ \exists M_x > 0$, so dass $f_\alpha(x) \leq M_x \ \forall \alpha \in A$. Dann existiert abgeschlossene Kugel $K \subseteq X$, auf der \mathcal{F} glm nach oben beschränkt ist. D.h.

$$\exists M > 0 \text{ s.d } f_{\alpha}(x) \leq M \ \forall \alpha \in A, x \in K.$$

Beweis. Für $n \in \mathbb{N}$, def $E_n : \{x \in X : f_{\alpha}(x) \leq n \forall \alpha \in A\} = \bigcap_{\alpha \in A} \underbrace{\{x \in X : f_{\alpha}(x) \leq n\}}_{\text{abgeschlossen, da f stetig}} \Rightarrow E_n$

abgeschlossen. Ferne gilt $E \subset \bigcup_{n \in \mathbb{N}} E_n$ wegen Annahme (punktweise Beschränkt). $\overset{2.Kate}{\Rightarrow} \overset{1}{\cup}_{n \in \mathbb{N}} E_n$ von 2. Kategoriere $\Rightarrow \exists n_0 \in \mathbb{N}$ so, dass $\overset{\circ}{E}_{n_0} = \overset{\circ}{\overline{E}_{n_0}} \neq \emptyset$. \Rightarrow Für $U = \overset{\circ}{E}_{n_o} : \sup_{\alpha \in A, x \in U} f_{\alpha}(x) \leq n_0 =: M$ Insbesondere $\exists x_0 \in U, \delta > 0$, so dass $K := \overline{U_{\delta}(x_0)} \subseteq U$. Dann gilt $\forall \alpha \in A, x \in \overline{U_{\delta}(x_0)} : f_{\alpha}(x) \leq M$.

Kollar 2.14: Prinzip der glm Beschränkheit

X,Y normierter Räume, $E \subset X$ von 2. Kategorie, $\mathcal{F} \subseteq \mathcal{B}(X,Y)$ mit $\forall x \in \exists M_x > 0$ so dass $||Tx|| \leq M_x \forall T \in \mathcal{F}$. Dann gilt:

$$\exists M > 0 \text{ so dass } ||T|| \leq M \forall T \in \mathcal{F}$$

Beweis. Für $T \in \mathcal{F}$ definiere $f_T : X \to \mathbb{R}, x \mapsto ||Tx|| \Rightarrow f_T$ ist stetig $\forall T \in \mathcal{F}, \{f_T : T \in \mathcal{F}\}$ ist pw. beschränkt $\Rightarrow \exists M, r > 0, x_0 \in E : \sup_{\substack{x \in \overline{U_r(x_0)} \\ T \in \mathcal{F}}} ||Tx|| \in M$. Für $x \in U_1(0)$ gilt dann

$$||Tx|| = \left| \left| \frac{1}{r} T(rx + x_0) - \frac{1}{r} Tx_0 \right| \right| \le \frac{1}{r} \underbrace{||T(rx + x_0)||}_{\le M} + \frac{1}{r} \underbrace{||Tx_0||}_{\le M} \le \frac{2M}{r} \Rightarrow ||T|| \le \frac{2M}{r} \ \forall T \in \mathcal{F}.$$

Kollar 2.15

X Banachraum, Y normierter Raum. Sei $\mathcal{F} \subseteq \mathcal{B}(X,Y)$, so dass $\forall x \in X \exists M_x > 0 : ||T_x|| \le M_x \ \forall T \in \mathcal{F}$. Dann existiert ein M > 0, so dass $||T|| \le M \ \forall T \in \mathcal{F}$.

Beweis. X Banachraum $\stackrel{Baire}{\Rightarrow}$ X von 2. Kategorier. Resultat folgt aus Kor. 2.14.

Kollar 2.16

X Banachraum, Y normierter Raum, $\mathcal{F} \subseteq \mathcal{B}(X,Y)$, so dass

$$\sup_{T \in \mathcal{F}} ||T|| = \infty$$

- . Dann gilt
 - (i) $\exists x_0 \in X: \sup_{T \in \mathcal{F}} ||Tx_0|| = \infty$
- (ii) Die Menge $\{x_0 \in X : \sup_{T \in \mathcal{F}} ||Tx_0|| = \infty\}$ ist dicht.

Beweis. Angenommen $Z \subseteq X$ nicht dicht $\Rightarrow \exists r > 0, x \in X$:

$$\overline{U_r(x_0)} \subseteq X \setminus Z \Rightarrow \forall x \in \overline{U_r(x_0)} : \sup_{T \in \mathcal{F}} ||Tx|| < \infty$$

 $\stackrel{2.14}{\Rightarrow} \sup T \in \mathcal{F} ||T|| < \infty$ Widerspruch!

TODO: Ein Beispiel für starke Konvergenz aber keine Konvergenz von Operatoren oder sowas.

Satz 2.17

X Banachraum, Y normierter Raum. (T_n) Folge in $\mathcal{B}(X,Y)$, so dass

$$Tx = \lim_{n \to \infty} T_n x \ \forall x \in X.$$

Dann gilt $T \in \mathcal{B}(X,Y)$, $\{||T_n|| : n \in \mathbb{N}\}$ beschränkt und $||T|| \le \lim_{n \to \infty} \inf ||T_n||$.

Beweis. Linearität von T ist klar. Weiter gilt

$$\lim_{n\to\infty} ||T_n x|| - |T_n x|| - |T_n x|| \le \lim_{n\to\infty} ||T_n x - T_n x|| = 0 \ \forall x \in X \Rightarrow \forall x \in X \ \exists M_x > 0, \text{ sodass } \sup_{n\in\mathbb{N}} ||T_n x|| \le M_x$$

 $\Rightarrow \exists M > 0$, so dass $\sup_{n \in \mathbb{N}} ||T|| \leq M < \infty$. Für $x \in X$ und jede TF (X_{n_k}) , sodass $||T_{n_k}||$ konvergiert, gilt

$$||Tx|| = \lim_{k \to \infty} ||T_{n_k}x|| \leq \lim_{k \to \infty} ||T_{n_k}|| \, ||x|| \Rightarrow ||Tx|| \leq \liminf_{n \to \infty} ||Tn|| \, ||x|| \Rightarrow ||T|| \leq \liminf_{n \to \infty} ||T_n|| \, .$$

Satz 2.18: Satz von Banach-Steinhaus

X,Y Banachräume, (T_n) Folge in $\mathcal{B}(X,Y)$. Dann konvergiert (T_n) punktweise gegen ein $T \in \mathcal{B}(X,Y)$, genau dann wenn folgende beiden Bedingungen erfüllt sind:

(1) $\exists M > 0$, so dass $||T_n|| \leq M \ \forall n \in \mathbb{N}$

(2) $\exists D \subset X \text{ dicht, so dass } (T_n x) \text{ CF } \forall x \in D.$

Beweis. "⇒" 1. folgt aus Satz 2.17., 2. ist klar (nehme D=X) "\(\infty\) "Sei $x\in X, \varepsilon>0 \Rightarrow \exists y\in D: ||x-y||<\frac{\varepsilon}{3M}, \exists N\in\mathbb{N}: ||T_ny-T_my||<\frac{\varepsilon}{3} \ \forall n,m\leq N.$ Dann gilt

$$\forall n, m \leq N : ||T_m x - T_n x|| \leq ||T_m x - T_m y|| + ||T_m y - T_n y|| + ||T_n y - T_n x||$$

$$\leq ||T_m|| ||x - y|| + ||T_m y - T_n x|| + ||T_n|| ||x - y||$$

$$\leq M \frac{\varepsilon}{3M} + \frac{\varepsilon}{3} + \frac{\varepsilon}{3M} = \varepsilon.$$

$$\Rightarrow$$
 $(T_n x)$ ist Cauchyfolge in $Y \Rightarrow (T_n x)$ konvergiert in $Y \stackrel{2.17}{\Rightarrow} T \in B(X, Y)$.

Kapitel 3

Lineare Funktionale und duale Abbildungen

Thema dieses Kaptiels sind lineare Funktionale und duale Abbildung. Die linearen Funktionale sind eine besondere "Klasse" von Operatoren, nämlich solche die in die zugrundliegende Körper eines $\mathbb{K}\text{-VR }X$ abbilden. Dazu schreiben man kurz $X'=\mathcal{B}(X,\mathbb{K})$ und benutzen (gerne) kleine Buchstaben für Funktionale, also $x'\in X'$.

In diesem Kapitel kommt Bemerkung 3.11 besonders zum Tragen, daher hier noch einmal die Aussage

$$||x'|| = ||x'||_{\mathcal{B}(X,\mathbb{K})} = \sup_{x \in U_1(0) \subset X} |x'(x)| = \sup_{x \in X, ||x|| = 1} |x'(x)| = \sup_{x \in \overline{U_1(0)}} |x'(x)|.$$

Zur besseren Übersicht schreibt man die Auswertung eines Funktional wie folgt

$$x'(x) =: \langle x, x' \rangle_{X,X'}, \quad x' \in X', x \in X.$$

Wobei man die Räume häufig weglässt, wenn klar ist, welche gemeint sind. $E_{\mathbb{R}}: E$ aufgefasst als Vektorraum über \mathbb{R} .

3.1 Fortsetzungssätze von Hahn-Banach

Thema dieses Kapitels ist Fragen nach Fortsetzbarkeit eines Funktionals. Genauer, angenommen man hat einen normierter Raum X und ein lineares Funktional auf einem Untervektorraum $E\subseteq X$, $f:E\to \mathbb{K}$ gegeben. Kann man dann f auf X so fortsetzen, dass die Fortsetzung auf kann X linear ist? Die positive Beantwortung gibt der mächtige Satz von Hahn-Banach, der in zunächst in sehr allgemeiner topologischen Form dargestellt, dann aber auch konkreter formuliert wird.

Lemma 3.1

Sei X \mathbb{R} -Vektorraum und $p:X\to\mathbb{R}$ wie folgt

1)
$$p(\lambda x) = \lambda p(x) \ \forall \lambda \ge 0, x \in X$$

(Homogenität)

2)
$$p(x+y) \le p(x) + p(y) \quad \forall x, y \in X$$

(Subadditivität)

Weiter sei $E\subseteq X$ UVR und $f:E\to\mathbb{R}$ linear sowie

$$f(x) \le p(x) \quad \forall x \in E.$$

Dann existiert ein lineares Funktional $F:X\to\mathbb{R}$ für das gilt

$$F|_E = f \text{ und } F(x) \le p(x) \quad \forall x \in X$$

Beweisskizze. Falls $E = X \Rightarrow \text{klar.} (F = f)$. Angenommen $E \subsetneq X \Rightarrow x_0 \in X \setminus E, x_0 \neq 0$.

1 Schritt: Zunächst Forsetztung auf eindimensional größeren Raum.

2 Schritt: Definiere Menge von Abbildungen und Unterräume, definiere und zeige Halbordnung, und prüfe dann Voraussetzung vom Lemma von Zorn. Das liefert ein maximales Element, dass dann schon der ganze Raum sein muss. Sonst fände mein mit Schritt eins einen größeren Raum, was aber ein Widerspruch zur Annahme bereits das maximale Element benutzt zu haben.

Beweis. Falls E = X: klar(Wähle F = f). Sei also $E \subseteq X \Rightarrow \exists x_0 \in X \setminus E$.

Schritt 1

Setze f auf $E \oplus span\{x_0\}$ fort (Bezeichnung wieder mit f) mit $f(z+\alpha x_0) = f(z)+\alpha \gamma \ z \in E, \alpha \in \mathbb{R}$. Wähle $\gamma \in \mathbb{R}$ so, dass $f(z+\alpha x_0) \leq p(z+\alpha x_0)$. Dabei gilt:

$$\alpha > 0: \ \gamma \leq \frac{1}{\alpha}p(z + \alpha x_0) - f(z)) = p(\frac{z}{\alpha} + x_0) - f(\frac{z}{\alpha}) \Leftrightarrow \gamma \leq p(z_1 + x_0) - f(z_1) \ \forall z_1 \in E$$

$$\alpha < 0: \ \alpha \gamma \leq p(z + \alpha x_0) - f(z) \Leftrightarrow -\gamma \leq p(-\frac{z}{\alpha} - x_0) + f(\frac{z}{\alpha}) \Leftrightarrow \gamma \geq -p(-z_2 - x_0) - f(z_2) \ \forall z_2 \in E$$

Also existiert ein geeignetes $\gamma \in \mathbb{R}$, falls $\forall z_1, z_2 \in E$ gilt:

$$-p(-z_2-x_0)-f(z_2) \le p(z_1+x_0)-f(z_1) \Leftrightarrow f(z_1-z_2) \le p(-z_2-x_0)+p(z_1+x_0).$$

Dies gilt, da $f(z_1 - z_2) \stackrel{Vor.}{\leq} p(z_1 - z_2) \stackrel{2}{\leq} p(-z_2 - x_0) + p(z_1 + x_0)$. Also $\exists \gamma = \sup_{z \in E} -p(-z + x_0) - f(z) \Rightarrow f : E \oplus span\{x_0\}$ ist linear und $f(x) \leq p(x) \ \forall x \in E \oplus span\{x_0\}$.

Schritt 2:

Sei $\mathcal{F} := \{(H, g_H) : E \subset H \subset X \ UVR, g_H|_E = f, g_H(x) \le p(x) \ \forall x \in H\}.$

Sei $(H_1, g_{H_1}) \leq (H_2, g_{H_2})$: $\Leftrightarrow H_1 \leq H_2$ mit $g_{H_2}|_{H_1} = g_{H_1}$ eine Halbordnung (ÜA). Falls $\mathcal{G} \subset \mathcal{F}$ totalgeordnet ist, dann ist $H_0 = \bigcup_{(H, g_H) \in \mathcal{G}} H$ mit $g_{H_0}z = g_Hz \ \forall z \in H, (H, g_H) \in \mathcal{G}$ eine obere

Schranke von \mathcal{G} (Wohldefiniertheit folgt aus Totalordnung).

Mit dem Lemma von Zorn folgt nun: \mathcal{F} hat ein maximales Element (X_0, g_{x_0}) . Falls $X_0 \subseteq X_1$, so kann mit Schritt 1 auf $\tilde{X}_0 = X_0 \oplus span\{x_0\}$ $x_0 \in X \setminus X_0$ linear fortgesetzt werden. Also ist $(\tilde{X}_0, f_{\tilde{X}_0}) \succeq (X_0, g_{X_0})$ und dies ist ein Widerspruch zur Maximalität von (X_0, g_{X_0}) .

Satz 3.2: Satz von Hahn-Banach

X ein \mathbb{K} -VR, $p: X \to \mathbb{R}$ Halbnorm, E UVR, $f: E \to \mathbb{K}$ linear und

$$f(x) \le p(x) \ \forall x \in E$$

Dann existiert $F: X \to \mathbb{K}$, so dass

(i)
$$F|_E = f$$

(ii)
$$|F(x)| \le p(x) \ \forall x \in X$$

Beweisskizze. Fall 1 $\mathbb{K} = \mathbb{R}$: Nutze wesentliche Lemma 3.1, dann sind i), ii) Konsequenzen.

Fall 2 $\mathbb{K} = \mathbb{C}$: Setze $f(x) = f_1(x) + if_2(x)$ Etwas rechnen ergibt mit der \mathbb{R} -Linearität $f(x) = f_1(x) - if_1(ix)$. Damit ist auch dieser Fall wesentlich auf den reellen Fall zurückgeführt. Und Lemma 3.1 rechtfertig folgendes : Definiere dann $F(x) := F_1(x) - iF_1(ix)$. Prüfe daran alle Eigenschaften leicht nach.

П

Beweis. 1. $\mathbb{K} = \mathbb{R}$: Mit Lemma 3.1. $\exists F : X \to \mathbb{R}$ linear mit $F|_E = f$ und $F(x) \leq p(x) \ \forall x \in X$. Außerdem gilt

$$-F(x) = F(-x) \le p(-x) = p(x) \Rightarrow |F(x)| \le p(x).$$

2. $\mathbb{K} = \mathbb{C}$: $f(x) = f_1(x) + if_2(x)$ mit $f_1, f_2 : E \to \mathbb{R}$ sind \mathbb{R} -linear. Da f linear ist gilt:

$$f(ix) = if(x) = if_1(x) - f_2(x) \land f(ix) = f_1(ix) + if_2(ix) \Rightarrow f_2(x) = -f_1(ix) \Rightarrow f(x) = f_1(x) - if_1(ix).$$

Also ist $f_1: E_{\mathbb{R}} \to \mathbb{R}$ \mathbb{R} -linear und $|f_1(y)| \leq p(y) \ \forall y \in E_{\mathbb{R}}$. Mit Schritt 1 angewandt auf f_1 an $X_{\mathbb{R}}$ gilt:

$$\exists \mathcal{F}: X_{\mathbb{R}} \to \mathbb{R} \text{ sodass } F_1|_{E_{\mathbb{R}}} = f_1 \text{ und } |F_1(x)| \leq p(x) \ \forall x \in X_{\mathbb{R}}.$$

Sei $F(x) = f_1(x) - iF_1(ix)$. zZ.: $F: X \to \mathbb{C}$ ist linear mit $F|_E = f$ und $|F(x)| \le p(x) \ \forall x \in X$. Linearität: Für $x, y \in X$, $\alpha = \underbrace{\alpha_1}_{\in \mathbb{R}} + i \underbrace{\alpha_2}_{\in \mathbb{R}} \in \mathbb{C}$ gilt:

$$F(x+y) = F_1(x+y) - i(F_1((x+y)i)) \stackrel{F_1lin.}{=} F_1(x) + F_2(y) - i(F_1(ix) + F_1(iy)) = F(x) + F(y).$$

und

$$F(\alpha x) = F_1(\alpha x) - iF_1(\alpha ix) = F_1((\alpha_1 + i\alpha_2)x) - iF_1(\underbrace{(\alpha_1 + i\alpha_2)ix}_{=(\alpha_1 i - \alpha_2)x})$$

$$= \alpha_1 F_1(x) + \alpha_2 F_1(x) - \alpha_1 iF_1(ix) + \alpha_2 iF_1(x) = \alpha_1 F(x) + \alpha_2 i\underbrace{(-iF_1(ix) + F_1(x))}_{=F(x)}$$

$$= \alpha F(x).$$

 $F|_E = f$ folgt aus der Darstellung von F und f.

Für $z \in \mathbb{C}$ mit |z| = 1 und $x \in X$ fest $(F(x) \in \mathbb{C})$ gilt:

$$|F(x)| = zF(x) = F(zx) \stackrel{F(zx) \in \mathbb{R}}{=} F_1(zx) \le p(zx) = p(x).$$

Satz 3.3: topologische Verssion von Satz 5.2

X normierter $\mathbb{K}-VR$, E UVR, $f:E\to\mathbb{K}$ stetig und linear. Dann exisitiert $F:X\to\mathbb{K}$ linear stetig mit

- (i) ||F|| = ||f||
- (ii) $F|_E = f$

Beweisskizze. Betrache $p(x) := ||f|| \cdot ||x||$. Stetigkeit zeigt man über die Beschränktheit von F. Das liefert auch bereits $||F|| \le ||f||$. Die andere Ungleichung folgt, da f eine Einschränkung von F ist.

Beweis. Betrachte $p(x) = ||f|| \cdot ||x||$ ist Halbnorm und $|f(x)| \leq ||f|| \cdot ||x|| = p(x)$ (folgt aus Definition des beschränkten Operators, also Stetigkeit von f). Mit Satz 3.2. folgt:

$$\exists F: X \to \mathbb{K} \text{ mit } F|_E = f \text{ und } |F(x)| \le p(x) = ||f|| \cdot ||x|| \ \forall x \in X \Rightarrow \sup_{\substack{x \in X \\ x \neq 0}} \frac{|F(x)|}{||x||} \le ||f||$$

Damit ist F beschränkt, also stetig und $||F|| \le ||f||$. Außerdem gilt:

$$||F|| = \sup_{\substack{x \in X \\ x \neq 0}} \frac{|F(x)|}{||x||} \ge \sup_{\substack{x \in E \\ x \neq 0}} \frac{|F(x)|}{||x||} = \sup_{\substack{x \in E \setminus \{0\}}} \frac{|f(x)|}{||x||} = ||f||.$$

Kollar 3.4

X normierter $\mathbb{K} - VR$, $x_0 \in X$. Dann existiert $x' \in X'$, so dass ||x'|| = 1 und $\langle x_0, x' \rangle = ||x_0||$.

Beweis. Für $x_0 = 0$ is die Aussage klar. Sei also $x_0 \neq 0, E := span\{x_0\}, f : E \to \mathbb{K} : cx_0 \mapsto c||x_0|| \ c \in \mathbb{K}.$

Dann ist $f(x) = ||x_0||$ und $||f|| = \sup_{\substack{x \in E \\ x=1}} |f(x)| = 1$ (ÜA). Mit Satz 3.3. folgt:

$$\exists x': X \to \mathbb{K}, x'|_E = f \text{ und } ||x'|| = ||f|| = 1 \Rightarrow x'(x_0) = \langle x_0, x' \rangle = f(x_0) = ||x_0||.$$

Kollar 3.5

X normierter VR, $x_0 \in X$. Dann gilt, dass $||x_0|| = \sup_{x' \in X, ||x'|| < 1} |\langle x_0, x' \rangle| = \sup_{x' \in X, ||x'|| = 1} |\langle x_0, x' \rangle|$

Beweis. $\geq ... \geq$ ist klar. Sei $x' \in X'$ mit ||x'|| = 1 $\stackrel{Def. \ Op, Norm}{\Longrightarrow} |\langle x_0, x' \rangle| \leq ||x'|| \cdot ||x_0|| \leq ||x_0||$. Wähle x' wie in Korollar 3.4., dann ist $|\langle x_0, x' \rangle| = ||x_0||$.

Satz 3.6

X normierter $\mathbb{K} - VR$. X' separabel $\Rightarrow X$ separabel.

Beweisskizze. (i) X' seperabel $\Rightarrow S := \{x' \in X' : ||x'|| = 1\}$ ist separabel.

- (ii) Schreibe S als Abschluss einer abzählbaren Mengen. Alle Element haben Norm 1 und damit exisitieren Werte von den Operatoren die größer sind als $\frac{1}{2}$. Die Elemente aus S aufgespannt über eine abzählbare Menge von K ist abzählbare. Nun muss der Abschluss dieses Spannes schon X selber sein. Wäre dies nicht so, dann gäbe es ein Element das weder im Abschluss des Spannes noch X ist.
- (iii) ÜA: $\exists x' \in X'$ mit ||x'|| = 1, kerx' > E, $\langle x_0, x' \rangle \neq 0$ Dann null der Operatoren dieser Operator als Elemente in E. Wegen der Norm 1 ist dieser Operator in S und hat wegen einer Ungleichungskette echten Abstand von allen anderen Elementen in S. Dies ist ein Widerspruch zur Dichtheit von S.

Beweis. 1) X' separabel $\Rightarrow \{\underbrace{x' \in X' : ||x'|| = 1}\}$ ist separabel (Dreiecksungleichung).

- 2) $S = \overline{\{x'_n : n \in \mathbb{N}\}}, x'_n \in S$. Da $||x'_n|| = 1 \ \forall n \in \mathbb{N}$ existieren $x_n \in X : ||x_n|| = 1 \ \text{und} \ \langle x_n, x'_n \rangle \ge \frac{1}{2} \ \forall n$ (Definition der Operatornorm $\mathcal{B}(X, \mathbb{K}) = x'$. Sei $E := span\{x_n : n \in \mathbb{N}\} \subset X$. Angenommen $E = X \Rightarrow span_{\mathbb{Q}+i\mathbb{Q}}\{x_n : n \in \mathbb{N}\}$ ist Dicht in X. Falls $E \neq X$, so existiert $x_0 \in X \setminus E$.
- 3) $x' \in X'$ mit ||x'|| = 1, $Kerx' \supset E$ (ÜA), $\langle x_0, x' \rangle \neq 0 \stackrel{x_n \in E}{\Rightarrow} \langle x_n, x' \rangle = 0 \ \forall n \in \mathbb{N}$. Also ist

$$\frac{1}{2} \le \langle x_n, x_n' \rangle = \langle x_n, x_n' \rangle - \langle x_n, x_n' \rangle = \langle x_n, x_n' - x \rangle \le \underbrace{||x_n||}_{=1} \cdot ||x_n' - x'|| \ \forall n \in \mathbb{N}.$$

 $\begin{array}{l} \Rightarrow x' \in S = \{x_n' : n \in \mathbb{N}\} \ \underline{\text{aber}} \ ||x' - x_n'|| \geq \frac{1}{2} \ \forall n \in \mathbb{N} \\ \Rightarrow \text{Widerspruch zur Dichtheit von} \ \{x_n' : n \in \mathbb{N}\} \ \text{in} \ S. \end{array}$

П

3.2Dualraum und Reflexivität

Es wird de Dualraum genauer untersucht. Der Bidualraum wird als Dualraum des Dualraums eingeführt. Man findet eine kanonische Injektion von Raum in den Bidualraum (über das Funktional zu einem Funktional). Ist die Bidualraum immer gleich dem Raum? Diese Eigenschaft soll reflexiv heißen. Welchen Zusammenhang besteht zwischen reflexiv und vollständig?

Hat man mehr Struktur durch einen Hilbertraum findet man eine explizite Darstellung eines Funktionals über das Skalarprodukt. Wie stehen da reflexiv und vollständig in Beziehung?

Wir verallgemeiner den Orthogonalraum auf normierter Räume und seinen Dualraum. Welche topologische Eigenschaften haben solche Räume? Gibt es Normisomorphien?

Defintion 3.7

X'' = (X')' heißt Bidualraum.

Bemerkung: $X = \mathbb{R}^{n \times 1}$ und $X' = \mathbb{R}^{1 \times n}$

Frage: X'' = X

Bemerkung 3.8

Vorüberlegung: Sei $x_0 \in X$ betrachte $f_{x_0}: X' \to \mathbb{K}, y' \mapsto \langle x_0, y' \rangle$. $f_{x_0} \in (X')'$?, Ja, weil $||f_{x_0}|| = ||f_{x_0}||_{\mathcal{B}(X',\mathbb{K})} = \sup |\langle x_0, x' \rangle| = ||x_0||.$ f_0 linear klar. $\Rightarrow J_X : X \to X'' : x \mapsto f_X = \langle x, \cdot \rangle$ ist linear, isometrisch. $\Rightarrow J_X \subset X''$ auf diese Art kann X als Teilraum von X'' aufgefasst werden.

Defintion 3.9

X normierte Vr heißt reflexiv, falls $J_X(X)=X''$. In diesem Fall ist $J_X:X\to X''$ ein Isomorphismus.

Lemma 3.10

X normierter VK. Dann gilt : X reflexiv $\Rightarrow X$ vollständig.

Beweis. X" ist vollständig (weil $X'' = \mathcal{B}(X', \mathbb{K})$ und da \mathbb{K} vollständig ist).

da $J_X: X \to X''$ isometrisch isomorph ist, ist auch X vollständig.

Zunächst Charakterisierung des HR-Falls

Satz 3.11: Darstellungssatz Frächet-Riesz

Sei X Hilbertraum. Dann ist

$$R_X: X \to X', x \mapsto (\cdot, x) = (y \mapsto (y, x))$$

anti-linear, isometrische Bijektion. D.h.

(i) $R_X(x) = (y \mapsto (y, x)) \in X' \quad \forall x \in X$

(ii) $\forall x' \in X' \exists ! \ x \in X : \langle y, x' \rangle = (y, x) \quad \forall y \in X$

Beweisskizze. (i) R_x wohldefiniert, isometrisch, anti-linear: nachrechnen!

(ii) R_x surjektiv: Wenn wir nicht das Nullfunktional haben, denn finden wir ein $z \neq 0$ im orthogonalen Komplement des Kerns. Konstruiere für dieses z ein Funktional durch $x'=(\cdot,xz)$ mit $c\in\mathbb{C}$. Diese Konstruktion gilt dann auch für Elemente im Kern.

Beweis. 1) R_X ist wohldefiniert, semilinear und isometrisch.

Sei $x \in X$. Dann ist $y \mapsto (y, x)$ linear (folgt aus der Linearität des Skalarprodukts). Es gilt

$$|\langle y, R_X x \rangle| \stackrel{Def.R_X}{=} |\langle y, x \rangle| \stackrel{C.S.}{\leq} ||y|| \cdot ||x|| \stackrel{\forall y \in X}{\Rightarrow} R_X x \in X' \text{ mit } ||R_X x|| \leq ||x|| \,.$$

Setze
$$y = x$$
 ein: $|\langle x, R_X x \rangle| = |\langle x, x \rangle| = ||x||^2 \xrightarrow{Def.} \xrightarrow{Op, Norm} ||R_X x|| \ge ||x|| \Rightarrow ||R_X x|| = ||x||.$

 $R_X(x+y) = R_X x + R_X y$ klar. Sei $\alpha \in \mathbb{C}$. Dann gilt:

$$\langle y, R_X \alpha x \rangle = (y, \alpha x) = \overline{\alpha}(y, x) = \overline{\alpha}\langle y, R_X x \rangle \Rightarrow R_X \alpha x = \overline{\alpha}R_X x.$$

2) R_X ist surjektiv.

Sei $x' \in X'$. Falls x' = 0, dann wähle x = 0 und es gilt $R_X 0 = 0$. Angenommen $x' \neq 0 \Rightarrow Kerx' \neq X$. Weil X Hilbertraum ist, gilt:

$$X = Kerx' \oplus (Kerx')^{\perp} \Rightarrow \exists z \neq 0, z \in (Kerx')^{\perp}.$$

Ansatz: $x' = (\cdot, cz)$ mit $c \in \mathbb{C}$ (OBdA ist X ein $\mathbb{C} - HR$), also $\langle y, x' \rangle = (y, cz) \ \forall y \in X$.

Für
$$y = z : \langle z, x' \rangle = (z, zc) \Rightarrow \overline{c} = \frac{\langle z, x' \rangle}{(z, z)} \Rightarrow c = \frac{\overline{\langle z, x' \rangle}}{(z, z)}.$$

Beh.: $\forall y \in X : \langle y, x' \rangle \stackrel{!}{=} (y, cz)$

$$\langle y, x' \rangle = \overline{c}(y, z) = \frac{\langle z, x' \rangle}{(z, z)} (y, z) \Leftrightarrow \langle y, x' \rangle (z, z) = \langle z, x' \rangle (y, z)$$
$$\Leftrightarrow (\langle y, x' \rangle z - \langle z, x' \rangle y, z) = 0$$
$$\Leftrightarrow \langle y, x' \rangle z - \langle z, x' \rangle y \perp z$$

Da $z \in (Kerx')^{\perp}$ verbleibt zu Zeigen, dass $\langle y, x' \rangle z - \langle z, x' \rangle y \in Kerx'$:

$$0 = \langle y, x' \rangle \langle z, x' \rangle - \langle z, x' \rangle \langle y, x' \rangle = \langle \langle y, x' \rangle z - \langle z, x' \rangle y, x' \rangle.$$

Wir haben für $x' \in X'$ also ein $x \in Xx = cz$ konstruiert, sodass $x' = \underbrace{(\cdot, x)}_{R_X x}$. Daraus folgt die

Surjektivität.

Kollar

Beschränkte lineare Abbildung $L^2(\Omega, \mu) \to \mathbb{K}$). Dann wird diese beschrieben durch ein Element aus $L^2(\Omega, \mu) \to \mathbb{K}$).

Satz 3.12

X Hilbertraum $\Rightarrow X$ relfexiv $(J_X X = X'')$

Beweisskizze. Zu zeigen: J_x surjektiv.

(i) Z.z.: X' Hilbertraum. Nutze bijektivität von R_x und Isometrie.
 Wende dann als nächstes Satz 5.11 zweimal an das liefert einen K;

Wende dann als nächstes Satz 5.11 zweimal an, das liefert einen Kanditaten für x und x''. Dann bleibt zu zeigen, dass $J_x x = x''$ erfüllt. Dies sind zwei Funktionale und ihre Gleichheit zeigt man durch nachrechnen, dass sie punktweise gleich sind.

Beweis. z.Z.: J_X ist surjektiv.

- 1) X' ist Hilbertraum. Seien $x', y' \in X'$. Definiere $(x', y')'_X := (R_X^{-1} y', R_X^{-1} x')$. $(\cdot, \cdot)'_X$ ist Skalarprodukt (folgt aus den Eigenschaften von R_X) mit $(x', x')'_X = \left|\left|R_X^{-1} x'\right|\right|^2 = \left|\left|x\right|\right|^2$.
- 2) Sei $x'' \in X''$. Gesucht ist $x \in X: J_X x = x''$. Wende Satz 3.11. auf HR X' folgendermaßen an: Sei $x' := R_{X'}^{-1} x''$. Wende Satz 3.11. nun auf X an: $x := R_{X}^{-1} x' \in X$.

$$\forall y' \in X' : \langle y', x'' \rangle = (y', x')_X' \stackrel{Def.(\cdot, \cdot)_X'}{=} (R_X^{-1} x', R_X^{-1} y')_X$$
$$= \langle \underbrace{R_X^{-1} x'}_{=x}, y' \rangle \stackrel{Def.J_X}{=} \langle y', J_X x \rangle$$

 $\Rightarrow x'' = J_X x$

Defintion 3.13

X normierter $\mathbb{K} - VR$, $M \subset X$, $N \subset X'$. Dann heißt

$$M^{\perp} := \{ x' \in X' : \langle x, x' \rangle = 0 \ \forall x \in M \}$$

Orthogonalraum von M.

$$N_{\perp} := \{ x \in X : \langle x, x' \rangle = 0 \ \forall x' \in N \}$$

Orthogonalraum von N. Klar: $M^{\perp} \subset X', N_{\perp} \subset X$.

Lemma 3.14

X normierter Raum. $M \subset X$, $N \subset X'$. Dann

- (i) $M^{\perp} \subset X'$ abgeschlossen UVR.
- (ii) $N_{\perp} \subset X$ abgeschlossen UVR.
- (iii) $M \subset (M^{\perp})_{\perp}$
- (iv) $N_{\perp} \subset N^{\perp}$, wobei : $N_{\perp} \subset X, N^{\perp} \subset X''$ als UVRe von X'' aufgefasst werden.

Beweisskizze. (i) Folge nehmen und sehen das sie in der Menge bleibt.

- (ii) Schnitt über die Kerne, die als abgeschlossenen Mengen abgeschlossen bleiben.
- (iii) Mengeinklusion
- (iv) Mengeninklusion

Beweis. TODO

ÜA: X normierter Raum, $x_0 \notin \overline{E}$, $E \subset X$ UVR. Dann existiert $x' \in X'$ mit $Kernx' \subset \overline{E}$ und $\langle x_0, x' \rangle \neq 0$.

Satz 3.15

X normierter Raum, $M \subset X$ UVR. Dann gilt

$$\overline{E} = (E^{\perp})_{\perp}$$

Beweisskizze. Mengeninklusion in beide Richtung. Die eine mit Lemma 3.14 (iii), die andere braucht die ÜA.

Beweis. TODO

Kollar 3.16

X normierter Raum, $E \subset X$ UVR. Dann gilt E abgeschlossen $\Leftrightarrow E = (E^{\perp})_{\perp}$)

Satz 3.17: Übung

Xnormierter Raum. $M\subset X$ abgeschlossen UVR. Dann

- (i) X'/M^{\perp} ist normisomorph zu M'.
- (ii) (X/M)' ist normisomorph zu M^{\perp} .

Satz 3.18

X reflexiv normierter Raum. Dann

- (i) X Banachraum
- (ii) X' reflexiv.

Beweisskizze. (i) Folgt aus Satz 1.12.

(ii) Betrachte kanonische Injektion und zeige dann die Surjektivität.

Beweis. TODO

Satz 3.19

X Banachraum. Dann gilt

X reflexiv $\Leftrightarrow X'$ reflexiv.

 $Beweisskizze. \Rightarrow Satz 3.18$ $\Leftarrow nerviger Beweis.$

Beweis. TODO

3.3 Duale und adjungierte Abbildungen

In diesem Abschnitt wird die duale Abbildung definiert. Wann ist dieser stetig? Was wissen über sein Kern und sein Bild? Wie hängen Injektivität und Surjektivität vom Operator und seinem Dualen zusammen. Was ist mit dem Dualen des Dualen? Welche Rechenregeln gelten? Folgt aus der Bijektivität eines Operatoren die Bijektivität seines Dualen und umgekehrt?

Wenn wir sogar einen Hilbertraum haben, können wir (noch stärker) einen adjungiert Operator einführen und diesen mit Hilfe der Riesz-Einbettung eindeutig charakterisieren. Auch für den adjungierten Operatoren werden einige Rechenregel gezeigt. Welche Gleichheiten gelten für Bild und Kern von Operatoren und seinem Adjungierten?

Defintion 3.20

X,Ynormierte Räume, $T\in\mathcal{B}(X,Y).$ Die Abb $T':Y'\to X'$ mit

$$\langle x', T'y' \rangle = \langle Tx, y' \rangle \ \forall y' \in Y', x \in X.$$

heißt der zu T duale Operator.

Einfach zu sehen: T' ist eine linearer Operator, weil TODO.

Satz 3.21

X, Y normierter Räume, $T \in \mathcal{B}(X, Y)$. Dann gilt

- (i) $T' \in \mathcal{B}(Y', X')$ mit ||T'|| = ||T||
- (ii) $Ker T' = \{0\} \Leftrightarrow \overline{Im T} = Y$

Beweisskizze. (i) Abschätzung in beide Richtung.

(ii) Injektivität vom dualen Operatoren voraussetzen; ein Funktional das alle Elemente von x null, ist es das Nullfunktional. Angenommen das Bild ist nicht abgeschlossen, dass muss es ein Element geben, dass ungleich null ist. Widerspruch.

Andere Richtung, irgendetwas mit Stetigkeit und Dichtheit vom Bild.

Beweis. TODO

Kollar 3.22

X Banachraum, Y normierter Raum. $T \in \mathcal{B}(X,Y)$, so dass ein m > 0 existiert mit

$$m||x|| \le ||Tx|| \ \forall x \in X$$

- . (T injektiv und hat abgeschlossenes Bild) Dann sind äquivalent
 - (i) T surjekiv
 - (ii) T' injekity

Beweisskizze. T' injektiv gilt genau dann wenn der Abschluss vom Bild Y ist und dies gilt wegen der geforderten Ungleichung genau dann wenn, bereits nur das Bild gleich Y.

Beweis. TODO

Satz 3.23

X, Y normierter Räume, $T \in \mathcal{B}(X, Y)$. Dann

- (i) $T'' \in \mathcal{B}(X'', Y'')$ und $T = T''|_{imJ_X}$ (genauer: $T''J_X = J_YT$). Insbesondere T'' = T, wenn X reflexiv ist.
- (ii) $S \in \mathcal{B}(X,Y), \alpha, \beta \in \mathbb{K} \Rightarrow (\alpha S + \beta T)' = \alpha S' + \beta T'$
- (iii) $S \in \mathcal{B}(Y, Z) \Rightarrow (ST)' = T'S'$

Beweis.

Vollständiger Beweis

Notiz: hier Motivation für folgendes Korollar mündlich.

Kollar 3.24

X, Y Banachräume, $T \in \mathcal{B}(X, Y)$. Dann gilt

$$(T^{-1} \in \mathcal{B}(Y,X) \Leftrightarrow) T \text{ bijektiv} \quad \Leftrightarrow \quad T' \text{ bijektiv } (\Leftrightarrow (T')^{-1} \in \mathcal{B}(X',Y'))$$

Beweis. TODO

Jetzt Fokus auf den Hilbertraum. Grob ist der Hilbertraum sein eigener Dualraum.

Defintion 3.25

 $(X,(\cdot,\cdot)_X),(Y,(\cdot,\cdot)_Y)$ Skalarprodukträume. $T\in\mathcal{B}(X,Y)$. Ein Operator $T^*\in\mathcal{B}(Y,X)$ heißt zu T adjungierter Operator, wenn

$$(Tx, y)_Y = (x, T^*y)_X \quad \forall x \in X, y \in Y.$$

Beispiele 3.26

 $\mathbb{K}^n, \mathbb{K}^m$ mit euklidschem Skalarprodukt. $A \in \mathbb{K}^{n \times m} = \mathcal{B}(\mathbb{K}^m, \mathbb{K}^n) \Rightarrow A^* = \overline{A}^T$

Satz 3.27

 $(X,(\cdot,\cdot)_X)$ Hilbertraum, $(Y,(\cdot,\cdot))$ Skalarproduktraum. Dann existiert ein eindeutiges $T^*\in\mathcal{B}(Y,X)$. Für die Riesz-Einbettung $R_X:X\to X',\,R_Y:Y\to Y'$ gilt

$$T^* = R_x^{-1} T' R_Y.$$

Im folgenden Satz sind die Voraussetzungen zum Teil etwas stärker als sie seien müssten.

Satz 3.28

X, Y, Z Hilberträume, $S, T \in \mathcal{B}(X, Y, U) \in \mathcal{B}(Y, Z)$ und $\alpha \in \mathbb{K}$. Dann gilt

(i)
$$(S+T)^* = S^* + T^*$$
, da $(S+T)^* = R_X^{-1}(S+T)'R_Y = R_X^{-1}S'R_Y + R_X^{-1}T'R_Y = S^* + T^*$.

(ii)
$$(UT)^* = T^*U^*$$
, da $(UT)^* = R_Y^{-1}(UT)'R_Z = R_X^{-1}T'R_YR_Y^{-1}U'R_Z = T^*U^*$

(iii)
$$(\alpha T)^* = \overline{\alpha} T^*$$
, da $(\alpha T)^* = R_X^{-1} (\alpha T)' R_Y = R_X^{-1} \alpha T' R_Y = \overline{\alpha} R_X^{-1} T' R_Y = \alpha T^*$

(iv)
$$(id_X)^* = id_X$$
, da TODO

(v)
$$T^{**} = T$$
, da TODO

(vi)
$$||T^*|| = ||T||$$
, da TODO

(vii) Existiert T^{-1} , dann auch $(T^*)^{-1}$, und es gilt $(T^*)^{-1} = (T^{-1})^*$ (Folgt aus Kor. 3.24)

Satz 3.29

X, Y Hilberträume, $A \in \mathcal{B}(X, Y)$. Dann gilt

(i)
$$(imA)^{\perp} = KerA^*$$

(ii)
$$(imA^*)^{\perp} = KerA$$

- (iii) $\overline{imA} = (KerA^*)^{\perp}$
- (iv) $\overline{imA^*} = (KerA)^{\perp}$

3.4 Schwache Konvergenz

Defintion 3.30

X normierter Raum. Eine Folge (x_n) in X heißt

a) schwache Cauchy-Folge, wenn

$$\langle x_n, x' \rangle CF \text{ ist } \forall x' \in X$$

b) schwach konvergent gegen $x \in X$, wenn

$$\langle x_n, x' \rangle \to \langle x, x' \rangle \quad \forall x' \in X'$$
(schreibe $x_n \longrightarrow x$)

Eine Folge (x'_n) in X' heißt

a) $schwach^*$ Cauchy-Folge, wenn

$$\langle x, x'_n \rangle$$
 CF ist $\forall x \in X$

b) $schwach^* konvergent gege x' \in X'$, wenn

$$\langle x, x'_n \rangle \to \langle x, x' \rangle \quad \forall x \in X$$
(schreibe $x'_n \stackrel{*}{\longrightarrow} x'$)

Eine Menge $M \subset X$ $(M \subset X')$ heißt schwach $(schwach^*)$ Folgenkompakt, wenn jede Folge in M eine schwach (schwach*) konvergente Teilfolge besitzt, deren schwacher (schwacher *) Grenzwert in M liegt.

Bemerkung 3.31

- a) $x_n \longrightarrow x \Rightarrow J_x x_n \stackrel{*}{\longrightarrow} J_x x_n$, da $\langle x_n, x' \rangle = \langle x', J_x x_n \rangle$
- b) Wenn (x_n) schwach konvergiert, dann ist der schwache Limes eindeutig. $x_n \to x, x_n \longrightarrow y$ $\langle x, x' \rangle = \lim_{n \to \infty} \langle x_n, x' \rangle = \langle y, x' \rangle \ \forall x' \in X' \ \stackrel{Kor^{3.4}}{\Rightarrow} x y = 0 \Rightarrow x = y$
- c) $x'_n \stackrel{*}{\longrightarrow} x'$, dann (|| x'_n ||) beschränkt und ||x'|| $\liminf_{n \to \infty} ||x'_n||$ (Banach-Steinhaus)
- d) $x_n \to x$, dann (|| x_n ||) beschränkt und ||x|| $\leq \liminf_{n \to \infty} ||x_n||$ (gilt wegen a) und c))
- e) $x_n \to x \Rightarrow x_n \longrightarrow x$ $x'_n \to x' \Rightarrow x'_n \xrightarrow{*} x'$
- f) Umkehrung in e) gilt i.A nicht: z.B. betrachte $e_n = (\delta_{in})_{n \in \mathbb{N}} \in \ell^2$. Dann gilt für $x' \in \ell^{2'}$: $x = R_{\ell^2}^{-1} x' = (x_i)_{i \in \mathbb{N}} \in \ell^2$. $\lim_{n \to \infty} \langle e_n, x' \rangle = \lim_{n \to \infty} (e_n, x) = \lim_{n \to \infty} \overline{x} = 0 \Rightarrow e_n \to 0$

g)
$$x_n \to x, x'_n \xrightarrow{*} x' df \langle x_n, x'_n \rangle \to \langle x, x' \rangle$$
, weil $|\langle x_n, x'_n \rangle - \langle x, x' \rangle| \le |\langle x, x' - x'_n \rangle| + ||x_n|| \cdot ||x'_n|| \to 0$

- h) $x_n \longrightarrow x, x_n' \to x' \Rightarrow \langle x_n, x_n' \rangle \to \langle x, x' \rangle$ wie in g).
- i) Aus $x_n \longrightarrow x$, $x'_n \stackrel{*}{\longrightarrow} x'$ folgt i.A. $\underline{\text{nicht}} \ \langle x_n, x'_n \rangle \to \langle x, x' \rangle$. Bsp. $x_n = e_n \in \ell^2, x'_n = R_{\ell^2} e_n \Rightarrow x_n \longrightarrow 0, x'_n \stackrel{*}{\longrightarrow} 0$, aber $\langle x_n, x'_n \rangle = 1 \ \forall \in \mathbb{N}$.
- j) dim $X < \infty \Rightarrow (x_n \longrightarrow \Leftrightarrow x_n \to x) \& (x'_n \stackrel{*}{\longrightarrow} x \Leftrightarrow x'_n \longrightarrow x')$
- k) Xreflexiv, dann $x_n' \longrightarrow x \Leftrightarrow x_n' \stackrel{*}{\longrightarrow} x'$ (" \Rightarrow " gilt auch ohne Reflexivität)

GANZ viel zu Beispielen in lp Räumen.

Satz 3.32: Satz von Banach-Alaoglu

X separabler Banachraum. Dann gilt $\overline{U_1^{x'}(0)}=\{x'\in X':||x'||\leq 1\}$ ist schwach* folgenkompakt.

Beweis.

Vollständiger Beweis

Lemma 3.33

X normierter Raum. Dann

X reflexiv \Leftrightarrow Jeder abgeschlossen UVR von X ist reflexiv.

Beweisskizze.

Satz 3.34

X reflexiv. Dann ist $\overline{U_1(0)} \subset X$ schwach folgenkompakt.

Beweis.

Vollständiger Beweis

Kollar 3.35

X Hilbertraum. Dann ist $\overline{U_1(0)} \subset X$ schwach folgenkompakt.

Kollar 3.36

X reflexiv, (x_n) beschränkte Folge. Dann existiert schwach konvergente Teilfolge.

Kollar 3.37

X separabel, (x'_n) beschränkte Folge in X'. Dann existiert schwach* konvergente Teilfolge.

Nun: Charakterisierung schwacher Abgeschlossenheit.

Satz 3.38: Trennungssatz

X normierter Raum, $M \subset X$ nichtleer, abgeschlossen und konvex. Sei $x_0 \in X \backslash M$. Dann existiert $x' \in X'$, $\alpha \in \mathbb{R}$ mit

$$Re \langle x, x' \rangle \le \alpha < Re \langle x_0, x' \rangle \quad \forall x \in M$$

Beweis.

Vollständiger Beweis

Kollar 3.39

X normierter Raum, $M \subset X$. Konvex, abgeschlossen, dann ist M schwach folgenabgeschlossen, d.h. (x_n) Folge in M, $x_n \longrightarrow x \Rightarrow x \in M$.

Defintion 3.40

X Vektorraum, $M \subset X$. Die konvexe Menge von M ist.

$$conv(M) = \bigcap_{\substack{M \subset C \subset X \\ C \text{ konvex}}} C$$

Leicht zu zeigen:

Leicht zu zeigen

Klar: M konvex $\Rightarrow \overline{M}$ konvex.

Klar

Satz 3.41: Lemma von Maza

X normierter Raum. (x_n) Folge in X mit $x_n \longrightarrow x$. Dann gilt

$$x \in \overline{conv\{x_k : k \in \mathbb{N}\}} =: M$$

Beweis.

Vollständiger Beweis

Satz 3.42

Xreflexiv, $M\subset X$ nichtleere, konvex, abgeschlossen. $x_0\in X$ beliebig. Dann existiert ein $x\in M$ mit

$$||x - x_0|| = dist(x_0, M)$$

Beweis.

Vollständiger Beweis

Kapitel 4

Funktionenräume

4.1 Dualität in L^p

 $p\in[1,\infty],\ (\Omega,\mathcal{A},\mu)$ Maßraum. $q\in[1,\infty],$ so dass $\frac{1}{p}+\frac{1}{q}=1.$ Nach Hölder-Ungleichng gitl für $f\in L^p(\Omega,\mu), g\in L^q(\Omega,\mu).$

$$\left| \int_{\Omega} fg d\mu \right| \leq ||f||_p \, ||g||_q$$

Mit anderen Worten. Die Abbidung

$$J_p: L^q(\Omega,\mu) \to L^p(\Omega,\mu)'$$

$$g \mapsto (f \mapsto \int_{\Omega} f g d\mu)$$

definiere lineare Abbildung mit $||J_p g|| \le ||g||_q$.

Für p=2 gilt : $J_p=\overline{R_{L^2}}$, insbesondere ist J_p normerhaltend und surjektiv. (S.v. Frechet-Riesz). Sonst?

Satz 4.1

 $p \in [1, \infty), q \in [1, \infty],$ so dass $\frac{1}{p} + \frac{1}{q} = 1$. Dann ist die Abbildung

$$J_p:\ell^q\to(\ell^p)'$$

$$(y_n) \mapsto ((x_n) \mapsto \sum_{n=1}^{\infty} x_n y_n)$$

normerhaltend und surjektiv.

Gilt auch $imJ_{\infty} = (\ell^{\infty})'$?

Kollar 4.2

Die Abbildung

$$J_{\infty}:\ell^1\to (\ell^{\infty})_{\infty}'$$

$$(y_n) \mapsto ((x_n) \mapsto \sum_{n=1}^{\infty} x_n y_n)$$

ist normerhaltend, jedoch nicht surjektiv.

Defintion 4.3

 Ω Menge, $\mathcal{R} \subseteq \mathcal{P}(\Omega)$. Ring über Ω (d.h.

$$\emptyset \in \mathcal{R}, A, B \in \mathcal{R} \Rightarrow A \backslash B, A \cup B \in \mathcal{R}$$
).

Eine Abbildung:

$$\mu: \mathcal{R} \to \mathbb{K}$$
 heißt

- a) "additiv", wenn $\mu(\emptyset) = 0, \mu(A \cup B) = \mu(A) + \mu(B) \forall A, B \in \mathcal{R} \text{ mit } A \cap B = \emptyset.$
- b) " $\sigma\text{-additiv}$ "
- c) "signiertes Maß ", wenn $\mathcal R$ $\sigma\text{-Algebra}$ ist $\mathbb K=\mathbb R$ und μ $\sigma\text{-additiv}$
- d) "komplexes Maß"
- e) "Maß"
- f) " σ -endliches Maß"
- g) "endliches Maß"

Satz 4.4

 (Ω,\mathcal{A},μ) Maßraum. $p\in[1,\infty],\,q\in[1,\infty],$ so dass $\frac{1}{p}+\frac{1}{q}=1.$ Betrachte die Abbildung

$$J_p: L^q(\Omega, \mu) \to L^p(\Omega, \mu)',$$

$$g \mapsto (f \mapsto \int_{\Omega} fg d\mu)$$
(4.1)

Dann gilt

- 1. J_p normerhaltend
- 2. Falls $p \in (1, \infty)$, so ist J_p surjektiv
- 3. Falls p=1 und μ $\sigma\text{-endlich, dann ist }J_p$ surjektiv.

Beweis. Ohne Beweis. Siehe Alt.

Kollar 4.5

 $(\Omega, \mathcal{A}, \mu)$ Maßraum, $p \in (1, \infty)$. Dann ist $L^p(\Omega, \mu)$ reflexiv.

Beweis. Wir betrachten die Abbildungen

$$J_p: L^q(\Omega, \mu) \to L^p(\Omega, \mu)', \qquad J_q: L^p(\Omega, \mu) \to L^q(\Omega, \mu)'$$

gemäß (4.1) . Dann gilt:

$$\langle f, J_p g \rangle = \int_{\Omega} f g d\mu = \langle g, J_q f \rangle$$
 (4.2)

richtige Querverweise?

Sei $f'' \in L^p(\Omega, \mu)''$, da $L^q(\Omega, \mu) \to \mathbb{K}$, $g \mapsto \langle J_p g, f'' \rangle$ ein linearer Funktional aus $L^q(\Omega, \mu)'$ beschreibt, können wir auch schreiben:

$$\langle g, f' \rangle = \langle J_p g, f'' \rangle, \quad \forall g \in L^q(\Omega, \mu).$$
 (4.3)

Sei $f := J_q^{-1} f' \in L^p(\Omega, \mu)$. Dann gilt für alle $g' \in L^p(\Omega, \mu)'$

$$\langle g', f'' \rangle = \left\langle J_p J_p^{-1} g', f'' \right\rangle \stackrel{(4.3)}{=} \left\langle J_p^{-1} g', f' \right\rangle = \int_{\Omega} (J_p^{-1} g') f d\mu = \int_{\Omega} f(J_p^{-1} g' \stackrel{(4.2)}{=} \langle f, g' \rangle.$$

Kollar 4.6

Sei $\Omega \subseteq \mathbb{R}^n$ offen und nichtleer. Dann ist

$$J_{\infty}: L^1(\Omega) \to L^{\infty}(\Omega)'$$

nicht surjektiv.

Beweis. Sei $BC:=C(\Omega,\mathbb{K})\cap L^\infty(\Omega)=\{f:\Omega\to\mathbb{K}:f\text{ stetig und beschränkt }\}$ und für $x_0\in\Omega$ definieren wir

$$f:BC(\Omega)\to\mathbb{K},\quad \varphi\mapsto\varphi(x_0)$$

f ist offenbar linear und wegen $|\langle \varphi, f \rangle| = |\varphi(x_0)| \le ||\varphi||_{\infty}$ beschränkt, also $\in L^{\infty}(\Omega)'$. Da $\langle 1_{\Omega}, f \rangle = 1$, ist ||f|| = 1. Nach Hahn-Banach gibt es also ein $x' \in L^{\infty}(\Omega)'$, so dass ||x'|| = 1 und $x'|_{BC(\Omega)} = f$. Wir zeigen nun $x' \notin imJ_{\infty}$ per Widerspruch: Angenommen $x' \in imJ_{\infty} \Rightarrow \exists g \in L^1(\Omega) : J_{\infty}g = x'$

$$\Rightarrow \forall \varphi \in BC(\Omega) : \varphi(x_0) = \langle \varphi, x' \rangle = \int_{\Omega} \varphi g d\lambda^n$$

Sei (φ_k) eine Folge in $BC(\Omega)$ mit

$$\operatorname{supp} \varphi_k \subseteq U_{\frac{1}{h}}(x_0), \quad ||\varphi_k||_{\infty} = 1, \quad \varphi_k(x_0) = 1 \quad \forall k \in \mathbb{N}$$

Dann ist aber

$$1 = |\left\langle \varphi_k, x' \right\rangle| = \left| \int_{\Omega} \varphi_k g d\lambda^n \right| \leq \int_{\Omega} |\varphi_k| |g| d\lambda^n \leq \|\varphi_k\|_{\infty} \int_{U_{\frac{1}{k}}(x_0)} |g| d\lambda^n = \int_{U_{\frac{1}{k}}(x_0)} |g| d\lambda^n \xrightarrow{k \to \infty} 0 \ \mbox{$\rlap/$$!} ! = \left| \int_{\Omega} \varphi_k g d\lambda^n \right| \leq \int_{\Omega} |\varphi_k| |g| d\lambda^n \leq \|\varphi_k\|_{\infty} \int_{U_{\frac{1}{k}}(x_0)} |g| d\lambda^n = \int_{U_{\frac{1}{k}}(x_0)} |g| d\lambda^n \xrightarrow{k \to \infty} 0 \ \mbox{$\rlap/$$!} ! = \left| \int_{\Omega} \varphi_k g d\lambda^n \right| \leq \int_{\Omega} |\varphi_k| |g| d\lambda^n \leq \|\varphi_k\|_{\infty} \int_{U_{\frac{1}{k}}(x_0)} |g| d\lambda^n = \int_{U_{\frac{1}{k}}(x_0)} |g| d\lambda^n$$

Wobei sich die Konvergenz gegen 0 durch $\int_{U_{\frac{1}{k}}(x_0)}|g|d\lambda^n=\int_{\Omega}1_{U_{\frac{1}{k}}(x_0)}|g|d\lambda^n$ und dem Satz der monotonen Konvergenz erklärt.

4.2 Der Dualraum von $C(K, \mathbb{K})$

In diesem Abschnitt wollen wir den Dualraum von C(K) für eine kompakte, hausdorffsche Menge K mit der Topologie $\mathcal{T} \in P(K)$ näher untersuchen. Dafür benötigen wir einiges an Maßtheorie. Wir wissen bereits, dass $C(K) := C(K, \mathbb{K})$ mit der Supremumsnorm zu einem Banachraum wird. $\mathcal{B} = \sigma(\mathcal{T})$ ist die Borel σ -Algebra, also die kleinste σ -Algebra, die noch \mathcal{T} enthält. Entsprechend ist \mathcal{B}_0 der kleinste Ring, der \mathcal{T} enthält.

Defintion 4.7: inkl. Satz

Sei R ein Ring über Ω mit $\Omega \in R$ (also eine Algebra), $\mu R \to \mathbb{K}$ additiv. Für $E \in R$ definieren wir

$$|\mu|(E) := \sup \left\{ \sum_{i=1}^k |\mu(E_i)| : k \in \mathbb{N}, E_1, \dots, E_k \in R \text{ paarweise disjunkt}, E_i \subseteq E \right\}$$

das Variationsmaß $|\mu|:R\to[0,\infty]$ ist additiv.

$$\|\mu\|_{Var} := |\mu|(\Omega)$$

heißt Totalvariation zu μ . μ heißt beschränkt, falls $\|\mu\|_{Var} < \infty$.

der Additivität von $|\mu|$. Seien $B_1, B_2 \in R$ disjunkt. Es ist zu zeigen:

$$\Rightarrow |\mu|(B_1) + |\mu|(B_2) = |\mu|(B_1 \cup B_2)$$

Die Ungleichung " \leq "ist klar. Für die andere Ungleichheit sei $\varepsilon > 0$ beliebig. Seien $E_1, \ldots, E_k \in R$ paarweise disjunkte Mengen mit $E_i \subseteq B_1 \cup B_2$, so dass

$$|\mu|(B_1 \cup B_2) - \varepsilon \le \sum_{i=1}^k |\mu|(E_i)|$$

$$\Rightarrow \sum_{i=1}^{k} |\mu|(E_i)| \le \sum_{i=1}^{k} |\mu|(E_i \cap B_1) + \mu(E_i \cap B_2)| \le \sum_{i=1}^{k} |\mu|(E_i \cap B_1)| + \sum_{i=1}^{k} |\mu(E_i \cap B_2)| \le |\mu|(B_1) + |\mu|(B_2)$$

Insgesamt also $|\mu|(B_1 \cup B_2) - \varepsilon \le |\mu|(B_1) + |\mu|(B_2)$. Da $\varepsilon > 0$ beliebig war, folgt die Behauptung. \square

Defintion 4.8

K sei ein kompakter Hausdorffraum mit der Topologie \mathcal{T} . Wir definieren

$$ba(K) := \{ \mu : B_0 \to \mathbb{K} : \mu \text{ additiv und beschränkt} \}$$

 $ca(K) := \{ \mu : B \to \mathbb{K} : \mu \sigma - \text{additiv und beschränkt} \}$

 $M \in ba(K)$ heißt $regul\"{a}r$, wenn für alle $E \in \mathcal{T}$ gilt

$$\inf \{ |\mu|(U \setminus C) : C \subseteq E \subseteq U, C \text{ abgeschlossen}, U \text{ offen} \} = 0.$$

Zusätzlich definieren wir

$$rba := \{ \mu \in ba(K) : \mu \text{ regul\"ar} \}, \qquad rca := \{ \mu \in ca(K) : \mu \text{ regul\"ar} \}.$$

Offenbar definiert die Totalvariation $\|\mu\|_{Var}$ eine Norm auf ba(K), ca(K), rba, rca

Resultat: Für einen Ring $R, \mu \in ba(K)$ reellwertig ist

$$\mu^+ := \frac{1}{2}(|\mu| + \mu), \qquad \mu^- := \frac{1}{2}(|\mu| - \mu)$$

nicht negativ und beschränkt. Es ist $\mu = \mu^+ - \mu^-$, diese Zerlegung heißt *Jordan-Zerlegung*. Ist μ regulär, so sind μ^+ , μ^- regulär. Für komplexwertiges μ ist

$$\mu = Re(\mu)^+ - Re(\mu)^- + i(Im(\mu)^+ - Im(\mu)^-).$$

Wir betrachten nochmal das (Riemann-) Integral stetiger Funktionen: K sei kompakt, B_0 wie oben und $\mu: B_0 \to \mathbb{K}$ additiv mit $\|\mu\|_{Var} < \infty$. Für Treppenfunktionen

$$f = \sum_{i=1}^{k} 1_{E_i} a_i, \ k \in \mathbb{N}, \ a_i \in \mathbb{K}, \ E_i \in B_0$$

ist

$$\int_{K} f d\mu := \sum_{i=1}^{k} a_{i} \mu(E_{i})$$

unabhängig von der Darstellung von f und es ist offenbar $\left|\int_K f d\mu\right| \leq \|f\|_{\infty} \|\mu\|_{Var}$. Wir zeigen nun, dass sich jedes $f \in C(K)$ durch Treppenfunktionen approximieren lässt.

Satz 4.9: Satz von Riesz-Radon, Dualraum von C(K)

K kompakt, Hausdorffsch. Durch

$$J: rca(K) \to C(K)' \quad \mu \mapsto (f \mapsto \int_K f d\mu)$$

ist ein isometrischer Isomorphismus definiert

Beweis. Nicht hier!

Bemerkung

a) $x' \in C([0,1])', \ \langle f, x' \rangle = f(0) \Rightarrow ||x'|| = 1 \ \mu(E) = \{1 \ 0 \in E \ 0 \ sonst \ \forall E \in \sigma([0,1] \ (\text{Diracmaß}).$ Es gilt $\int_K f d\mu = f(0).$

Layouten

b) $g \in L^1([0,1]), x' \in C([0,1])', \langle f, x' \rangle = \int_{[0,1]} fg d\lambda, \ \mu := g d\lambda, \ \mu(A) := \int_A g d\lambda \Rightarrow \langle f, x' \rangle = \int_{[0,1]} f d\mu$

4.3 Kompaktheit in C(K) und L^p

Satz 4.10: Satz Arzela-Ascoli

 $K \subseteq \mathbb{R}^n$ kompakt, $M \subseteq C(K)$. Dann gilt

M präkompakt $\Leftrightarrow M$ beschränkt und gleichgeradig stetig

Dabei heißt eine Menge M gleichgeradig stetig, falls

$$\sup_{f \in M} |f(x) - f(y)| \to 0 \text{ für } x, y \in K \text{ mit } x - y \to 0$$

 $(d.h. \forall \epsilon \exists \delta > 0: \forall x,y \in K \text{ mit } |x-y| < \delta \text{ und } \forall f \in M: |f(x)-f(y)| < \epsilon$

Beweis. Vollständiger Beweis

Satz 4.11: Präkompaktheit in L^p

 $p \in [1, \infty), M \subseteq L^p(\mathbb{R}^n)$. Dann sind äquivalent

- (i) M präkompakt
- (ii) a) M beschränkt und b) $\sup_{f \in M} ||f(\cdot + h) f(\cdot)||_p \to 0$ bei $h \to 0$ c) $\sup_{f \in M} \left| \left| 1_{\mathbb{R}^n \backslash U_r(0)} f \right| \right| = 0$ für $r \to 0$

Beweis. hier nicht, siehe bspw. Alt

Bemerkung: Kompaktheit in $L^p(\Omega)$

Fasse $L^p(\Omega)$ als UVR von $L^p(\mathbb{R}^n)$ auf via

$$L^p(\Omega) \ni f \mapsto 1_{\Omega} f \in L^p(\mathbb{R}^n)$$

4.4 Sobolevräume

Lemma 4.12: partielle Integration

 $\Omega \subset \mathbb{R}^n$ offen, beschränkt und habe stückweise glatten Rand. Dann gilt für $u, v \in C^1(\overline{\Omega})$.

$$\int_{\Omega} v(x) \frac{\partial}{\partial x_i} u(x) dx = \int_{\partial \Omega} v(x) u(x) e_i^T n(x) ds(x) - \int_{\Omega} \frac{\partial}{\partial x_i} v(x) u(x) dx$$

wobei n der Einheitsnormalenvektor ist und das erste Integral das Hyperflächenintegral.

Beweis.

Vollständiger Beweis

Bemerkung 4.13: Notation

 $\alpha \in \mathbb{N}_0^n$: Multiindex, $D^{\alpha}f := \frac{\partial^{|\alpha|}}{\partial x^{\alpha}}f$ Ableitung

Bemerkung 4.14

 $f\in C^m(\Omega), \phi\in C_0^\infty(\Omega)=\{f\in C^\infty(\Omega): supp f\subset \circ\Omega\}.$ Anwendung von Lemma 4.12. liefert

$$\int_{\Omega} D^{\alpha} f(x) \phi(x) dx = (-1)^{|\alpha|} \int_{\Omega} f(x) D^{\alpha} \phi(x) dx$$

Defintion 4.15: schwache Ableitung

 $\Omega \subset \mathbb{R}^n$ offen, $f \in L^1_{loc}(\Omega), \alpha \in N_0^n$. Wenn ein $w \in L^1_{loc}(\Omega)$ existiert, so dass

$$\int_{\Omega} f D^{\alpha} \varphi d\lambda^{n} = (-1)^{|\alpha|} \int_{\Omega} w \varphi d\lambda^{n} \quad \forall \varphi \in C_{0}^{\infty}(\Omega)$$

dann heißt w schwache Ableitung von f. $f \in L^1_{loc}(\Omega)$ heißt m-mal schwach diffbar, wenn die $\alpha - ten$ schwache Ableitung exisiert $\forall |\alpha| \leq m$.

Bemerkung: Lemma (Übung)

Sei $f \in L^1_{loc}$, so dass

$$\int_{\Omega} f \phi d\lambda^n = 0 \ \forall \phi \in C_0^{\infty}(\Omega) \Leftrightarrow f = 0$$

Übungsbeweis

Beweisen?

Satz 4.16

Vor. wie in Def. 4.15. Dann gilt: Falls existent, so ist die $\alpha - te$ schwache Ableitung von f eindeutig bestimmt.

Beweis.

Vollständiger Beweis

Beispiele 4.17

- Beispiel vervollständigen
- b)
- c) Ist f α -mal stetig differenzierbar, so ist f α -mal schwach differenzierbar, und die konventionelle Ableitung stimmt mit der schwachen Ableitung überein. (Lemma 4.12)

Defintion 4.18: Sobolevräume

 $\Omega \subset \mathbb{R}^n$ offen, $K \in \mathbb{N}_0$

- 1. $p \in [1, \infty), W^{k,p}(\Omega) = \{ f \in L^p(\Omega) : D^{\alpha}f \in L^p(\Omega) \forall |\alpha| \leq k \} \text{ mit Norm } ||f||_{W^{k,p}} = (\sum_{|\alpha| \leq k} ||D^{\alpha}f||_{L^p(\Omega)}^p)^{\frac{1}{p}}$
- 2. $(p=\infty)$ $W^{k,\infty}(\Omega)=\{f\in L^\infty(\Omega): D^\alpha f\in L^\infty(\Omega)\; \forall |\alpha|\leq k\}$ mit Norm $||f||_{W^{k,\infty}}=\max_{|\alpha|\leq ||D^\alpha f||_{L^\infty(\Omega)}}$

Satz 4.19

Vor. wie in Definition 4.18. Dann gilt

- a) $W^{k,p}(\Omega)$ Banachraum $\forall p \in [1,\infty], k \in \mathbb{N}_0$
- b) $\forall k \in \mathbb{N}_0, p \in [1, \infty) : C^{\infty}(\Omega) \subset W^{k,p}(\Omega)$ ist dicht in $W^{k,p}(\Omega)$.
- c) p=2. Dann ist $W^{k,2}(\Omega)$ Hilbertraum mit $(f,g)_{W^{k,2}(\Omega)}=\sum_{|\alpha|\leq k}(D^{\alpha}f,D^{\infty}g)_{L^2(\Omega)}$

Beweis. siehe Alt.

Defintion 4.20: $W_0^{k,p}(\Omega)$

 $\Omega \subset \mathbb{R}^n$ offen, $k \in \mathbb{N}_0$, $p \in [1, \infty)$.

$$W_0^{k,p}(\Omega) := \overline{C_0^{\infty}(\Omega)} \subset W^{k,p}(\Omega)$$

Wobei Abschluss bezüglich $||\cdot||_{W^{k,p}(\Omega)}$

Anwendung an elliptischer Randwertprobleme

Komplette Herleitung zu Dirichlet Randwertproblem

hier vieles

Lemma 4.21: Poincare-Ungleichung

Ist $\Omega \subset \mathbb{R}^n$ offen und beschränkt, so existiert c > 0, so dass

$$\int_{\Omega}\left|u(x)\right|^{2}dx\leq\int_{\Omega}\left|\left|gradu(x)\right|\right|^{2}dx\quad\forall u\in W_{0}^{1,2}(\Omega)$$

Beweis.

Vollständiger Beweis

Satz 4.22

 Ω offen und beschränkt. Dann ist $a(\cdot,\cdot)$ ein Skalarprodukt auf $W^{1,2}_0(\Omega).$

Beweis.

Vollständiger Beweis

zu b)

Satz 4.23

 $\Omega\subset\mathbb{R}^n$ offen und beschränkt. Dann ist $W^{1,2}_0(\Omega)$ Hilbertraum mit $||\cdot||=a(\cdot,\cdot)$ mit

$$a(u,v) = \int_{\Omega} (gradu)^T \overline{gradv} d\lambda^n$$

Beweis.

Vollständiger Beweis

zu c)

Satz 4.24

 $\Omega\subset\mathbb{R}^n$ offen und beschränkt, $f\in L^2(\Omega).$ Dann ist

$$F: W_0^{1,2}(\Omega) \to \mathbb{K}, \varphi \mapsto \int_{\Omega} f(x)\varphi(x)dx$$

in $W_0^{1,2}(\Omega)'$.

Beweis.

Vollständiger Beweis

Kollar 4.25

Unter den gegebenen Voraussetzung existiert ein eindeutiges $u \in W_0^{1,2}(\Omega)$, so dass $a(\varphi, u) = F(\varphi) \ \forall \varphi \in C_0^{\infty}(\Omega)$.

Beweis.

Vollständiger Beweis

Bemerkung 4.26: Neumann-RWP

div(A(x)gradu(x))=f auf $\Omega.$ mit $n^TA(x)gradu(x)=g$ auf $\partial\Omega$ mit n^T ist Einheitsnormalenvektor. Kann mit ähnlichen Methoden behandelt werden.

$$\begin{split} \int_{\Omega} \varphi(x) div(A(x) gradu(x)) dx &= -\int_{\Omega} (grad\varphi(x))^T A(x) gradu(x) dx + \int_{\partial \Omega} \varphi(x) n^T(x) A(x) gradu(x) dx \\ &= -a(\varphi, u) + \int_{\Omega} \varphi g d\lambda^{n-1} = \int_{\Omega} \varphi(x) f(x) dx \end{split}$$

Kapitel 5

Kompakte Operatoren und Spektraltheorie

5.1 Kompakte Operatoren

Defintion 5.1

X,Ynormierte Räume. $T:X\to Y$ linearer Operatoren. Theißt kompakt,wenn $\overline{TU_1(0)}$ kompakt.

 $K(X,Y) := \{T : X \to Y, T \text{ kompakt } \}, \quad K(X) = K(X,X)$

Bemerkung 5.2

- a) $K(X,Y) \subset \mathcal{B}(X,Y)$
- b) Äquivalent sind für $T: X \to Y$
 - (i) $T \in K(X,Y)$
 - (ii) $M \subset X$ beschränkt $\Rightarrow T(M)$ präkompakt
 - (iii) $TU_1(0)$ präkompakt
 - (iv) (x_n) beschränkt Folge $\Rightarrow (Tx_n)$ hat konvergente Teilfolge.
- c) $id \in K(x) \Leftrightarrow \dim X < \infty$ (Lema von Riesz)

Beispiele 5.3

 $X: C([0,1]) \text{ mit } ||\cdot||_{\infty}.$

$$(Tf)(t) = \int_0^t f(\tau)d\tau \Rightarrow T \in \mathcal{B}(C([0,1]))$$

Für $f \in C([0,1]), \, ||f||_{\infty} \le 1, \, t_1, t_2 \in [0,1]$ gilt

$$|(Tf)(t_1) - (Tf)(t_2)| = |\int_{t_1}^{t_2} f(\tau)d\tau| \le |t_2 - t_1|$$

 $\Rightarrow \{Tf: ||f||_{\infty} \leq 1\}$ ist gleichgeradig stetig. $\overset{Arz.Arc}{\Rightarrow}$ präkompakt. \Rightarrow kompakt.

Satz 5.4

- a) K(X,Y) abgeschlossener UVR von $\mathcal{B}(X,Y)$.
- b) $T \in K(X,Y)$ ist vollstetig. D.h. $x_n \longrightarrow x \Rightarrow Tx_n \to Tx$
- c) X reflexiv, $T: X \to Y$ vollstetig $\Rightarrow T \in K(X, Y)$
- d) $T \in \mathcal{B}(X,Y)$ mit $rangT < \infty$, dann $T \in K(X,Y)$ (rangT = dim im T)
- e) Y Hilbertraum, $T \in \mathcal{B}(X,Y)$. Dann $T \in K(X,Y) \Leftrightarrow \exists (T_n)in\mathcal{B}(X,Y)$, so dass $rangT_n < \infty \ \forall n \in \mathbb{N} \ \text{und} \ ||T T_n|| \to 0$
- f) $p \in \mathcal{B}(X,Y)$. Projektor (d.h. $P^2 = P$). Dann $P \in K(X) \Leftrightarrow rangP < \infty$.
- g) $T \in K(X,Y), U \in \mathcal{B}(Y,Z), S \in \mathcal{B}(V,X) \Rightarrow UTS \in K(V,Z)$

Beweis. Vollständiger Beweis

Satz 5.5: Satz von Schauder

X, Y normierte Räume

- a) $T \in K(X,Y) \Rightarrow T' \in K(Y',X')$
- b) $T' \in K(Y', X'), Y$ vollständig $\Rightarrow T$ kompakt

Beweis. Vollständiger Beweis

Defintion 5.6: Fredholm-Operator

 $A \in \mathcal{B}(X,Y)$ heißt Fredholm-Operator, falls

- a) $\dim(kerA) < \infty$
- b) im(A) abgeschlossen
- c) $\operatorname{codim}(imA) < \infty \ (V \subset X \ \text{UVR}, \operatorname{codim} V := \dim X/V)$

Fredholmindex: ind $(A) := \dim KerA - \operatorname{codim} imA$

Satz 5.7

 $T \in K(X)$. Dann ist A := I - T ein Fredholm-Operator mit ind (A) = 0.

Beweis. Vollständiger Beweis

Bemerkung 5.8

X normierter Raum, dim $X = \infty$, $T \in K(X)$. Dann folgt T hat keine beschränkte Inverse.

Beweis Übung

Bemerkung

$$T: C([0,1]) \to C([0,1]), \ f \mapsto (t \mapsto \int_0^t f(\tau)d\tau)$$

$$(\lambda I - T)f = 0 \Rightarrow \lambda f(t) = \int_0^t f(\tau)d\tau, \ \lambda = 0 \Rightarrow f = 0; \ \{\lambda \neq 0, f(0) = 0 \text{ und } f'(t) = \frac{1}{\lambda}\}$$

\Rightarrow f = 0.

5.2 Das Spektrum von beschränkten Operatoren

Defintion 5.9

 $T \in \mathcal{B}(X)$

lange Definition, Resolventenmenge, etc

Satz 5.10

 $T \in \mathcal{B}(X), X$ Banachraum. Dann ist $\rho(T)$ offen und die "Resolventenfunktion" $R(\lambda, T) := (\lambda I - T)^{-1} : \rho(T) \to \mathcal{B}(X)$ ist komplex-analytisch (d.h. in Potenzreihe entwickelbar).

Beweis.

Vollständiger Beweis

Satz 5.11

 $X \neq \{0\}$ Banachraum, $T \in \mathcal{B}(X)$.

 $\sigma(T) \text{ ist kompakt und nichtleer mit "Spektralradius": } \sup |\sigma(T)| = \lim_{m \to \infty} ||T^m||^{\frac{1}{m}} \leq ||T||.$

Beweis.

Vollständiger Beweis

Bemerkung 5.12

- a) $T\in K(X),\,\lambda\in\sigma(T)\backslash\{0\}\Rightarrow\lambda\in\sigma_p(T).$ Folgt, da $\lambda I-T=\lambda(I-\frac{T}{\lambda}$
- b) $T \in K(X)$, dim $X = \infty \Rightarrow 0 \in \sigma(T)$ (Bem. 5.8)
- c) dim $X < \infty \Rightarrow \sigma(T) = \sigma_p(T)$
- d) Bsp.: Betrachte $T \in \mathcal{B}(\sigma([0,1))(Tf)(x) = xf(x), \ \sigma(T) = [0,1] = \sigma_r(T)$

So sinnvoll?

e) $T \in L^p([0,1]), (Tf)(x) = xf(x)$ f.ü. $p < \infty$. $\sigma(T) = [0,1] = \sigma_c(T)$

- f) $L \in \mathcal{B}(\ell^2)$ Linksshift. $\sigma(T) = \overline{U_1(0)} \ \sigma_p(T) = U_1(0); \ \sigma_c(T) = \partial U_1(0)$
- g) $R = L^* \in \mathcal{B}(\ell^2)$ Rechtsshift. $\sigma(T) = \overline{U_1(0)}, \ \sigma_r(T) = U_1(0), \ \sigma_c(T) = \partial U_1(0).$

Satz 5.13: Spektralsatz für kompakte Operatoren

- X Banachraum, $T \in K(X)$. Dann gilt
- a) $\sigma(T)\setminus\{0\}$ aus höchstens abzählbar vielen Eigenwerten mit 0 als einzig möglichen Häufungspunkt. Wenn $\sigma(T)$ unendlich, dann ist $0\in\sigma(T)$.
- b) Für $\lambda \in \sigma(T) \setminus \{0\}$ ist $1 \le n_{\lambda} := \max\{n \in \mathbb{N} : \ker(\lambda I T)^{n-1} \ne \ker(\lambda I T)^n\} < \infty$
- c) "Riesz-Zerlegung". Für $\lambda \in \sigma(T) \setminus \{0\}$ gilt $X = ker(\lambda I T)^{n_{\lambda}} \oplus im(\lambda I T)^{n_{\lambda}}$,

richtig mit n_{λ} ?

- d) $\lambda \in \sigma(T) \setminus \{0\} \Rightarrow \sigma(T|_{im(\lambda I T)^{n_{\lambda}}}) = \sigma(T) \setminus \{\lambda\}$
- e) Ist $E_{\lambda} \in \mathcal{B}(X)$ Projektor mit $ker E_{\lambda} = im(\lambda I T)^{n_{\lambda}}$, $im E_{\lambda} = ker(\lambda I T)^{n_{\lambda}}$, so gilt $E_{\lambda}E_{\mu} = \delta_{\lambda\mu}E_{\lambda}$

Was fehlt hier denn bloß????

Es fehlen 14-17

Kollar 5.18: Fredholm Alternative

 $T \in K(X), \lambda \neq 0$. Dann gilt:

Entweder ist die Gleichung $Tx - \lambda x = y$ nach x eindeutig lösbar $\forall y \in X$

oder $Tx - \lambda x = 0$ hat nicht-triviale Lösungen.

Bemerkung 5.19: Beispiel

Operatoren ohne Eigenwerte: $T \in K(C[0,1])$, wie in Bsp. 5.3.

$$(Tf)(t) = \int_0^t f(\tau)d\tau$$

5.3 Kompakte normale/selbstadjungierte Operatoren

Sei X von nun an ein Hilbertraum und meistens $\mathbb{K}=\mathbb{C}$

Defintion 5.20: selbstadjungiert, normal

 $A \in \mathcal{B}(X)$. Dann heißt A

- a) selbstadjungiert, wenn $A = A^*$
- b) normal, falls $A^*A = AA^* \stackrel{UE10}{\Leftrightarrow} ||Ax|| = ||A^*x|| \ \forall x \in X$

Lemma 5.21

 $X \neq \{0\}$ C-HR, $T \in \mathcal{B}(X)$ normal. Dann ist $\sup |\sigma(T)| = ||T||$.

Beweis.

Vollständiger Beweis

Satz 5.22: Spektralsatz für kompakte und normale Operatoren

X C-HR, $T \in K(X) \backslash \{0\}$ normal. Dann gilt:

a) $\exists N \subset \mathbb{N}$, ONS $(e_n)_{n \in \mathbb{N}} \in X$, $(\lambda_n)_{n \in \mathbb{N}} \in \mathbb{C} \setminus \{0\}$, s.d.

$$Te_k = \lambda_k e_k \quad \forall k \in \mathbb{N}, \quad \sigma(T) \setminus \{0\} = \{\lambda_k : k \in \mathbb{N}\}$$

Ist
$$N = \mathbb{N}$$
, so gilt $\lim_{n \to \infty} \lambda_n = 0$

- b) $n_{\lambda_k} = 1 \quad \forall k \in \mathbb{N}$
- c) $X = kerT \perp span\{e_n : n \in N\}$
- d) $Tx = \sum_{k \in N} \lambda_k(x, e_k) e_k \quad \forall x \in X$

Beweis.

Vollständiger Beweis

Bemerkung 5.23

 $X \ \mathbb{C}\text{-HR}, \ T \in \mathcal{B}(X)$

Bemerkung

Beweis.

Vollständiger Beweis

Anhang A
 Etwaige Begriffe

Anhang B

Uebungen

B.1 Blatt 1

B.1.1 Reihen und Vollständigkeit

Es sei $(X, \|\cdot\|)$ ein normierter Raum.

Behauptung. Es ist äquivalent:

- (a) $\sum_{n=0}^{\infty} \|u_n\| < \infty \Rightarrow$ Die Reihe $\sum_{n=0}^{\infty} u_n$ konvergiert in X.
- (b) X ist ein Banachraum.

Beweis. "a \Rightarrow b": Da X bereits ein normierter Raum ist, ist nur noch zu zeigen, dass X vollständig ist. Sei (u_n) eine Cauchyfolge in X, wobei o.B.d.A $u_0=0$, sonst betrachten wir (\tilde{u}_n) mit $\tilde{u}_{n+1}:=u_n,\,\tilde{u}_0:=0$ statt (u_n) . Es ist $u_n=\sum_{n=0}^ku_n-u_{n-1}$. Sei $x_n:=\frac{1}{n^2}$. Da u_n eine Cauchyfolge ist, gibt es für jedes x_n ein (kleinstes) $N_n:=N(x_n)\in\mathbb{N}$, so dass $\|u_{N(x_n)}-u_m\|\leq x_n\;\forall m\geq N_n$. Das Bemerkenswerte an (N_n) ist, dass diese Folge monoton steigt. Es ist nun für $n'\in\mathbb{N}$ mit der Dreiecksungleichung und der Eigenschaft der Teleskopsumme

$$\left\| \sum_{n=0}^{N(n'+1)} u_n - u_{n-1} \right\| \leq \underbrace{\|u_1 - u_0\| + \|u_2 - u_1\| + \dots}_{=:x_0} + \underbrace{\|u_{N_2} - u_{N_1}\|}_{\leq x_1} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_2} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \dots + \underbrace{\|u_{N(n'+1)} - u_{N(n')}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_2}\|}_{\leq x_{n'}} + \underbrace{\|u_{N_3} - u_{N_3}\|}_{\leq x_{n'}} + \underbrace$$

Bzw.

$$\left\| \sum_{n=N_2}^{N(n'+1)} u_{N_n} - u_{N_{n-1}} \right\| \le \sum_{n=N_2}^{N(n'+1)} \left| \left| u_{N_n} - u_{N_{n-1}} \right| \right| \le \sum_{n=1}^{n'} x_n$$

Damit erfüllt $\sum_{n=N_2}^{N(n'+1)} ||u_{N_n} - u_{N_{n-1}}||$ das Cauchykriterium für Reihen, und somit konvergiert sie. Es gilt also:

$$\sum_{n=N_2}^{\infty} \left| \left| u_{N_n} - u_{N_{n-1}} \right| \right| < \infty.$$

Mit der Eigenschaft a) ist nun: $u_{N_n} \stackrel{n \to \infty}{\longrightarrow} \alpha \in X$. Da (u_k) eine Cauchyfolge ist, und sie eine konvergente Teilfolge hat, bleibt ihr nichts anderes übrig, als selber auch gegen α zu konvergieren. Also konvergiert u_k in X, damit ist X ein Banachraum.

b \Rightarrow a: Sei X ein Banachraum und (u_n) eine Folge in X, so dass $s:=\sum_{n=0}^{\infty}\|u_n\|<\infty$. Insbesondere erfüllt s das Cauchykriterium für Reihen, und es ist dank der Dreiecksungleichung für $\varepsilon>0$

$$\left\| \sum_{n=k}^{m} u_n \right\| \le \sum_{n=k}^{m} \|u_n\| < \varepsilon \quad \forall m, k \ge N(\varepsilon).$$

ALso erfüllt auch $\sum_{n=k}^{m} u_n$ das Cauchykriterium für Reihen. Damit konvergiert sie in X, also ist (a) gezeigt.

B.1.2 Die Operatornorm

Es seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ normierte Räume und $T \in \mathcal{B}(X, Y)$.

Behauptung. Es gilt:

$$||T|| := \sup_{x \in U_1(0)} ||Tx||_Y = \sup_{x \in \overline{U_1(0)}} ||Tx||_Y = \sup_{x \in \partial U_1(0)} ||Tx||_Y = \sup_{x \in X \setminus \{0\}} \frac{||Tx||_y}{||x||_X}.$$

Beweis. 1. Variante: Wir beweisen jede Gleichheit einzeln. Das erste Gleichheitszeichen ist eine Definition und somit wahr.

" $\sup_{x\in U_1(0)}\|Tx\|_Y\leq \sup_{x\in \overline{U_1(0)}}\|Tx\|_Y$ ": Da $U_1(0)\subseteq \overline{U_1(0)}$ kann das Supremum nicht größer werden.

"sup_{$x \in U_1(0)$} $||Tx||_Y \ge \sup_{x \in \overline{U_1(0)}} ||Tx||_Y$ ": Es sei (x_n) eine Folge aus $U_1(0)$ mit $x_n \to x \in \overline{U_1(0)}$. Es ist erstmal $||Tx_n||_Y \le ||T|| \ \forall n \in \mathbb{N}$. Wegen der Stetigkeit von T (Satz 1.7) und $||\cdot||_Y$ ist $||Tx_n||_Y \to ||Tx||_Y \Rightarrow ||Tx||_Y \le ||T||$.

Für die restlichen Gleichheiten wird freundlich auf die 2. Variante verwiesen.

2. Variante: Aus Satz 1.7 folgt, dass T stetig ist.

Dank der Definition von sup und der Stetigkeit von T, $\|\cdot\|_Y$ folgt: $\|T\| = \sup_{x \in \overline{U_1(0)}} \|Tx\|_Y$

Nun ist:

$$\begin{split} \sup_{x \in \overline{U_1(0)}} \|Tx\|_Y &= \sup_{x \in \overline{U_1(0)} \backslash \{0\}} \|\|x\|_X T \left(\frac{x}{\|x\|_X}\right)\|_Y \\ &= \sup_{x \in \overline{U_1(0)} \backslash \{0\}} \|x\|_X \|T \left(\frac{x}{\|x\|_X}\right)\|_Y \\ &= \underbrace{\sup_{x \in \overline{U_1(0)} \backslash \{0\}} \|x\|_X \cdot \sup_{x \in \overline{U_1(0)} \backslash \{0\}} \|T \left(\frac{x}{\|x\|_X}\right)\|_Y}_{=1} \\ &= \sup_{x \in \partial U_1(0)} \|Tx\|_Y = \sup_{x \in X \backslash \{0\}} \|T \left(\frac{x}{\|x\|_X}\right)\|_Y = \sup_{x \in X \backslash \{0\}} \frac{\|Tx\|_Y}{\|x\|_X} \end{split}$$

Wobei wir genuzt haben, dass T0 = 0 (für das erste Gleichheitszeichen) und $||x||_X$, $||Tx||_Y \ge 0 \ \forall x \in X$ (für das dritte Gleichheitszeichen).

B.1.3 Eigenschaften in endlichdimensionalen Vektorräumen

Es seien $(X, \|\cdot\|_X)$ und $(Y, \|\cdot\|_Y)$ normierte Räume.

(a)

Behauptung.

$$m := dim(X) < \infty \text{ und } T : X \to Y \text{ linear } \Rightarrow T \in \mathcal{B}(X,Y)$$

Beweis. Vorweg eine Vorüberlegung: Es sei $B := (v_1, \ldots, v_m)$ eine Basis von X. Ist $x_n = \sum_{i=1}^m \alpha_i^n v_i$, $\alpha_i^n \in \mathbb{K}$ eine Folge aus X mit $x_n \to x = \sum_{i=1}^m \alpha_i v_i$, so muss gelten $(\alpha_1^n, \ldots, \alpha_m^n) \stackrel{n \to \infty}{\longrightarrow} (\alpha_1, \ldots, \alpha_m)$. Dies folgt, da im \mathbb{K}^m alle Normen äquivalent sind, und im \mathbb{K}^m komponentenweise Konvergenz äquivalent zur Normkonvergenz ist (\nearrow Folgerung 4.29 im Ana I/II Lindner Skript).

Falls einem dies nicht genügt, so bediene er sich der Seiten 102-103 im Buch Funktionalanalysis von H. Heuser 3.Auflage.

1. Variante: Für den eigentlichen Beweis nutzen wir Satz 1.7 und zeigen, dass T stetig in der Null ist. Dafür sei (x_n) eine Folge aus X mit $\lim_{n\to\infty} x_n = 0$ und $x_n = \sum_{i=1}^m \alpha_i^n v_i$, $\alpha_i^n \in \mathbb{K}$.

$$||Tx_n||_Y = \left| \left| T \sum_{i=1}^m \alpha_i^n v_i \right| \right|_Y = \left| \left| \sum_{i=1}^m \alpha_i^n T v_i \right| \right|_Y \le \sum_{i=1}^m |\alpha_i^n| \, ||Tv_i||_Y \le \max_{i=1}^m ||Tv_i|| \sum_{i=1}^m |\alpha_i^n|$$

Wegen der Vorüberlegung ist

$$\lim_{n \to \infty} \sum_{i=1}^{m} |\alpha_i^n| = 0 \Rightarrow \lim_{n \to \infty} Tx_n = 0$$

2. Variante: Da $dim(X) < \infty$ und T linear ist, ist der Bildraum ein endlich dimensionaler Vektorraum, und es gibt eine Basis C von im T. Es gibt nun, dank der linearen Algebra eine Matrix $M \in \mathbb{K}^{m \times \dim \operatorname{im} T}$, so dass $T = \phi_C^{-1} \circ M \circ \phi_B$, wir zeigen nun, dass eine Koordinaten abbildung ϕ ein Homöomorphismus ist, denn dann ist T eine Komposition aus stetigen Funktionen und somit selber stetig. Wegen der Vorüberlegung ist $\phi: X \mapsto \mathbb{K}^m$ stetig. Offenbar ist ϕ bijektiv. Da die Addition stetig ist, ist auch ϕ^{-1} stetig. M ist auch stetig denn

$$\forall x \in \mathbb{K}^m, ||x|| < 1 \text{ gilt } ||Mx|| \le a||Mx||_{\infty} \le a||M||_{\infty}||x|| \le a||M||_{\infty} < a\infty.$$

Wobei $a \in \mathbb{R}^+$ die geeignet gewählte nur von der Norm abhängige Konstante ist, die von der Äquivalenz zu jeder anderen Norm entsteht.

(b)

Behauptung.

$$dim(X) < \infty \text{ und } T \in \mathcal{B}(X,Y) \Rightarrow ||T|| = \max_{x \in \overline{U_1(0)}} ||Tx||_Y$$

Beweis. Wir greifen vor auf Blatt 4 Aufgabe 3. Es ist nämlich eine Teilmenge eines endlichdimensionalen Vektorraumes genau dann kompakt, wenn sie abgeschlossen und beschränkt ist. Deshalb ist schon mal $\overline{U_1(0)}$ kompakt. Aus Aufgabe 2 ist bekannt, dass $\sup_{x \in U_1(0)} |Tx||_Y =$

 $\sup_{x \in \overline{U_1(0)}} \|Tx\|_Y. \ T, \ \|\cdot\|_Y \text{ sind dank Satz 1.7 stetig, damit auch } \|T\cdot\|_Y. \ \text{Da} \ \overline{U_1(0)} \text{ kompakt ist}$

und stetige Funktionen, die auf $\mathbb R$ abbilden, auf kompakten Mengen ihr Maximum annehmen, ist die Behauptung bewiesen.

(c)

Behauptung. Im allgemeinen ist die Aussagen von b) falsch.

Beweis. Wir geben ein Beispiel für $T \in \mathcal{B}(X,Y)$ derart an, dass

$$||T|| \not\in \left\{ ||Tx||_Y | x \in \overline{U_1(0)} \right\}.$$

1. Variante: Es sei $X = \operatorname{span}(e_k)_{k \in \mathbb{N}} \subseteq \ell^1, Y = \mathbb{R}$, wobei $e_k = (\delta_{ik})_{i \in \mathbb{N}}$, und

$$T: X \to \mathbb{R}, \quad x \mapsto Tx := \sum_{k=1}^{\infty} \frac{1}{2^k} x_k$$

Tist offenbar linear und wegen $|Tx| = \left|\sum_{k=1}^{\infty} \frac{1}{2^k} x_k\right| \leq \sum_{k=1}^{\infty} |x_k| = ||x||_1$ auch beschränkt. Es ist

$$\overline{\{x \in \ell^1 : x \in X, ||x|| < 1\}} =$$

TODO

2. Variante: Sei

$$X = Y = \ell^p(\mathbb{K}) =: \ell^p \text{ (beschr. Folgenraum) und } T : \ell^p \to \ell^p, \ (x_n) \mapsto \left(\left(1 - \frac{1}{n}\right)x_n\right)$$

Mit der Norm
$$||(x_n)|| = \left(\sum_{n=1}^{\infty} |x_n|^p\right)^{\frac{1}{p}}$$

Dann ist $\overline{U_1(0)} = \{(x_n) \in \ell^p | \sum_{n=1}^{\infty} |x_n|^p \le 1\}$

T ist ein beschränkter linearer Operator, denn:

(i) Seien
$$(x_n), (y_n) \in \ell^p, \ \alpha \in \mathbb{K} \Rightarrow T(\alpha x_n + y_n) = \left(\left(1 - \frac{1}{n}\right)(\alpha x_n + y_n)\right) = \alpha T x_n + T y_n$$

(ii) Sei
$$x_n \in \overline{U_1(0)}$$

$$\Rightarrow ||T(x_n)||^p = ||\left(\left(1 - \frac{1}{n}\right)x_n\right)||^p = \sum_{n=1}^{\infty} \left(\left(1 - \frac{1}{n}\right)x_n\right)^p$$

$$= \sum_{n=1}^{\infty} |x_n - \frac{x_n}{n}|^p$$

$$\leq \sum_{n=1}^{\infty} |x_n|^p + |\frac{x_n}{n}|^p$$

$$\leq \sum_{n=1}^{\infty} 2|x_n|^p < \infty$$

Mit der Folge (von Folgen) i_n , die an der n. Stelle eine 1 hat, und sonst nur Nullen, ist dann: $T(i_n) \longrightarrow 1$ für $n \longrightarrow \infty$. Dies ist mit Elementen aus $\overline{U_1(0)}$ nicht möglich (Warum?).

Nachtrag:

Geschickter ist es den Folgenraum $M \subset \ell^p$ einzuschränken, so dass für jedes Element aus M gilt, dass nur endlich viele Folgenglieder ungleich null sind. Der Rest folgt flott.

3. Variante mit einem Integraloperator.

B.2 Blatt 2

B.2.1 Beispiele

a) $T_1 \in \mathcal{B}(X)$ injektiv mit $\overline{\text{im } T_1} = X$, aber im $T_1 \neq X$.

Die Eigenschaft bedeutet gerade, dass wir ein unter einem linearen injektiven Operator dichtes Bild haben wollen, dass nicht das ganze Bild umfasst.

1. Variante: Es sei $X := \ell^1$ und

$$T_1(x_1, x_2, x_3, \dots) := (x_1, \frac{1}{2}x_2, \frac{1}{3}x_3, \dots)$$

 T_1 ist offenbar linear und wegen $T_1x = 0 \Rightarrow x = 0$ injektiv. Es ist

$$T_1 n \cdot e_n = e_n \Rightarrow \operatorname{span}(e_k)_{k \in \mathbb{N}} \subseteq \operatorname{im} T_1.$$

Wegen Aufgabe 2 ist also $\overline{\operatorname{Im} T_1} = \ell^1$. Allerdings ist im $T_1 \neq \ell^1$, denn zum Beispiel $(x_n) = (\frac{1}{n^2}) \notin \operatorname{Im} T_1$. Es ist nämlich $T(\frac{1}{n}) = (\frac{1}{n^2})$, und wegen der Injektivität gibt es keine weiteren Elemente, die das erfüllen. Aber $(\frac{1}{n}) \notin \ell^1$.

2. Variante: Sei $X:=\{f\in C[0,1]: f(0)=0\}$ mit der Supremumsnorm und

$$T: X \to X, \quad \text{mit } f \in X, \, x \in [0, 1], \, T(f)(x) := \int_0^x f(t)dt.$$

Es ist im $T = \{ f \in C^1[0,1] : f(0) = 0 \}$, und dies liegt dank der höheren Analysis dicht in X, aber ist offenbar nicht ganz X.

b) $T_2 \in \mathcal{B}(X)$ injektiv mit $\overline{\text{im } T} \neq X$.

1. Variante: $X:=\ell^1,\,T_2(x_1,x_2,x_3,\dots):=(0,x_1,x_2,x_3,\dots).$ T erfüllt offenbar alle Bedingungen.

2. Variante: Wie in a) 2. Variante aber wir erweitern X auf die Menge aller Riemann-Integrierbaren Funktionen mit f(0)=0, und bilden geschickt Äquivalenzklassen wie im L^p . Dadurch wird die Injektivität gewährleistet, und das Bild ist dank dem Hauptsatz der Integral- und Differentialrechnung eine Teilmenge der stetigen Funktionen, welches mit der Supremumsnorm nicht dicht in X liegen kann.

c) $T_3 \in \mathcal{B}(X)$ surjektiv, aber nicht injektiv.

 $X := \ell^1, T_3(x_1, x_2, x_3, \dots) := (x_2, x_3, x_4 \dots)$. Wegen $T_3 \circ T_2 = id$ ist T_3 surjektiv. Alle anderen Bedingungen sind natürlich auch erfüllt.

B.2.2 ℓ^p und seine "Basis"

Wir definieren den k-ten kanonischen Einheitsvektor $e_k \in \ell^p$ durch $e_k := (\delta_{nk})_{n \in \mathbb{N}}$

Behauptung. Für $p \in [1, \infty)$ gilt

$$\overline{\operatorname{span}(e_k)_{k\in\mathbb{N}}} = \ell^p.$$

Für $p = \infty$ hingegen gilt

$$\overline{\operatorname{span}(e_k)_{k\in\mathbb{N}}} = c_0.$$

Beweis. Wir erinnern uns vorerst an die Definition von span:

$$\operatorname{span}(e_k)_{k \in \mathbb{N}} = \left\{ \sum_{k \in M} a_k e_k : a_k \in \mathbb{K}, \ k \in M, M \subseteq \mathbb{N}, \ |M| < \infty \right\}$$

 $\operatorname{span}(e_k)_{k\in\mathbb{N}}$ ist also die Menge aller *endlichen* Linearkombinationen von $(e_k)_{k\in\mathbb{N}}$. Nun zum eigentlichen Beweis:

Erstmal für $p \in [1, \infty)$

"⊆ ":

 $\operatorname{span}(e_k)_{k\in\mathbb{N}}\subseteq\ell^p$ und ℓ^p ist abgeschlossen.

.,⊃ ":

Sei $(x_k) \in \ell^p$ d.h

$$\sum_{k=1}^{\infty}|x_k|^p<\infty\Leftrightarrow\sum_{k=n}^{\infty}|x_k|^p\longrightarrow 0\text{ für }n\longrightarrow\infty\text{ (Cauchy-Kriterium)}$$

Wir definieren $(y_k^n) \in \text{span}(e_k)_{k \in \mathbb{N}}$ durch $y_k^n := x_k e_k$ für $k = 1, \dots, n$ und $y_k^n = 0$ für k > n.

$$\Rightarrow \|(x_k) - (y_k^n)\|_p^p = \sum_{k=1}^\infty |x_k - y_k^n|^p = \sum_{k=n}^\infty |x_k|^p \longrightarrow 0 \text{ für } n \longrightarrow \infty$$

Das bedeutet: $(y_k^n) \longrightarrow (x_k)$. Da $\overline{\operatorname{span}(e_k)_{k \in \mathbb{N}}}$ abgeschlossen ist, ist $(x_k) \in \overline{\operatorname{span}(e_k)_{k \in \mathbb{N}}}$. $p = \infty$ " \subseteq ":

Wir zeigen die Abgeschlossenheit von c_0 . Dafür sei $((x_k^{(n)})_{k\in\mathbb{N}})_{n\in\mathbb{N}}$ eine Folge (aus Folgen) aus c_0 , mit $\lim_{n\to\infty}(x_k^{(n)})=c$. Zu zeigen ist $c\in c_0$. Sei $\varepsilon>0$ beliebig

$$\Rightarrow \left| \left| x_k^{(n)} - c \right| \right|_{\infty} < \frac{1}{2}\varepsilon, \ \forall n \ge N \left(\frac{1}{2}\varepsilon \right) \in \mathbb{N} \Rightarrow \forall k \in \mathbb{N} : \left| x_k^{(n)} - c_k \right| < \frac{1}{2}\varepsilon,$$

$$\lim_{k \to \infty} x_k^{(n)} = 0 \Rightarrow \exists M \in \mathbb{N} : \forall k \ge M \ \left| x_k^{(n)} \right| < \frac{1}{2}\varepsilon$$

$$\Rightarrow |c_k| = \left| c_k - x_k^{(n)} + x_k^{(n)} \right| \le \left| x_k^{(n)} - c_k \right| + \left| x_k^{(n)} \right| < \varepsilon \Rightarrow \lim_{k \to \infty} c_k = 0 \Rightarrow c \in c_0.$$

" כ"

Analog zu $p < \infty$.

B.2.3 Offene Abbildung und seine Äquivalenzen

Es seien $(X, ||\cdot||_X), (Y, ||\cdot||_Y)$ zwei normierte Vektorräume und $T: X \to Y$ linear.

Behauptung. Es ist äquivalent:

- (a) $T(U) \subseteq Y$ ist offen für alle offenen $U \subseteq X$.
- (b) Für alle r > 0 existiert ein $\varepsilon > 0$, so dass $V_{\varepsilon}(0) \subseteq T(U_r(0))$.
- (c) Es gibt ein $\varepsilon > 0$, so dass $V_{\varepsilon}(0) \subseteq T(U_1(0))$.

Falls T bijektiv ist, dann sind die obigen Aussagen äquivalent dazu, dass die Inverse von T beschränkt ist.

Beweis. (a) \Rightarrow (b) \Rightarrow (c) trivial (Muahahaha).

"(c) \Rightarrow (a)": Es sei $U \subseteq X$ offen, und $y \in T(U)$. Es ist zu zeigen, dass es eine Umgebung um y gibt, die in T(U) enthalten ist. Es gibt ein $x \in U$ mit Tx = y. Da U offen ist, ist auch U - x offen und eine Nullumgebung. Es gibt also ein $\varepsilon > 0$, so dass $U_{\varepsilon} := U_{\varepsilon}(0) \subseteq U - x \Rightarrow T(U_{\varepsilon}) = T(\varepsilon U_1) = \varepsilon T(U_1) \supseteq \varepsilon V_{\delta}(0)$ für ein geeignetes $\delta > 0$. Nun ist

$$\varepsilon V_{\delta}(0) \subset T(U_{\varepsilon}) \subset T(U-x) = T(U) - y \Leftrightarrow T(U) \supset y + \varepsilon V_{\delta}(0) = \varepsilon V_{\delta}(y)$$

also haben wir eine Umgebung um y gefunden.

Sei nun T bijektiv, und $U \subseteq X$ offen:

T offen $\Leftrightarrow T(U) = T^{-1}(U)$ offen $\Leftrightarrow T^{-1}: Y \to X$ stetig $\Leftrightarrow T^{-1}$ beschränkt.

B.3 Blatt 3

B.3.1 Resolventenmenge, Spektrum

Es seien $(X, ||\cdot||_X)$, $(Y, ||\cdot||_Y)$ Banachräume über den Skalarkörper \mathbb{K} .

Behauptung. Es gelten die Aussagen

- (a) Die Menge $M := \{T \in \mathcal{B}(X,Y) : T \text{ bijektiv mit } T^{-1} \in \mathcal{B}(Y,X)\}$ ist offen in B(X,Y).
- (b) Für $T \in \mathcal{B}(X)$ ist die Resolventenmenge

$$\rho(T) := \{ \lambda \in \mathbb{K} : \lambda I - T \text{ bijektiv mit } (\lambda I - T)^{-1} \in \mathcal{B}(X) \}$$

offen in \mathbb{K} .

- (c) Für $n \in \mathbb{N}$ ist $\rho(T^n) = \rho(T)^n := \{\lambda^n : \lambda \in \rho(T)\}$
- (d) Für $T \in \mathcal{B}(X)$ gilt, dass $\{\lambda \in \mathbb{K} : |\lambda| > ||T||\} \subseteq \rho(T)$
- (e) $\sigma(T) := \rho(T)^c = \mathbb{K} \setminus \rho(T)$ heißt Spektrum von T. Der Spektralradius $r(T) := \sup\{|\lambda| : \lambda \in \sigma(T)\}$ ist endlich und $r(T) = \max\{|\lambda| : \lambda \in \sigma(T)\}$.
- (f) Es ist $r(T) \le \inf_{n \in \mathbb{N}} ||T^n||^{\frac{1}{n}}$

Beweis. (a) Es sei $T \in M$, $R := \frac{1}{\|T^{-1}\|}$ und $S \in U_R(T) \subseteq \mathcal{B}(X,Y)$

$$\Rightarrow ||T^{-1}(T-S)|| \le ||T^{-1}|| ||T-S|| < 1.$$

Nach Satz 1.25 (Neumannsche Reihe) ist $I-T^{-1}(T-S)$ invertierbar mit stetiger Inverse. Nun ist $S=T(I-T^{-1}(T-S))$ bijektiv als Verkettung bijektiver Funktionen und hat eine stetige Inverse, da auch die einzelnen Funktionen eine stetige Inverse haben $\Rightarrow S \in M$.

- (b) Es sei $\lambda \in \rho(T)$. Nach (a) gibt es ein r > 0, so dass für alle $S \in U_r(T)$, $\lambda I T + S$ bijektiv ist und eine stetige Inverse hat. Für $\mu \in \mathbb{R}$, $|\mu| < r$ ist $||\mu I|| = |\mu| < r$. Da $\lambda I + \mu I T = \lambda I T + \mu I$ bijektiv ist und eine stetige Inverse hat, ist $\lambda + \mu \in \rho(T) \Rightarrow (\lambda r, \lambda + r) \subseteq \rho(T)$.
- (c) TODO
- (d) Es sei $\lambda \in \mathbb{K}$, $|\lambda| > ||T|| \Rightarrow ||\frac{1}{\lambda}T|| = \frac{1}{|\lambda|}||T|| < 1$. Damit ist $\lambda I T = \lambda(I \frac{1}{\lambda}T)$ nach Satz 1.25 invertierbar und somit $\lambda \in \rho(T)$. Hieraus folgt insbesondere, dass die Resolventenmenge unbeschränkt ist.
- (e) $\sigma(T)$ lässt sich wegen (d) nach oben durch ||T|| beschränken. Damit ist auch r(T) endlich. Da $\rho(T)$ nach (b) offen ist, ist $\sigma(T)$ abgeschlossen. Damit wird auch das Maximum angenommen.
- (f) TODO

B.3.2 Fredholmoperator

Es seien a < b reelle Zahlen, $k \in C([a,b]^2)$ und der Fredholmoperator $K: C([a,b]) \to C([a,b])$ gegeben durch

$$(Kf)(s) = \int_{a}^{b} k(s,t)f(t)dt.$$

Behauptung. Es gelten die folgenden Aussagen:

(a) $K \in \mathcal{B}([a,b])$ und $||K|| \le \max_{s \in [a,b]} ||k(s,\cdot)||_{L^1(a,b)}$

(b) Es existiert $c_0 > 0$, so dass für $|\lambda| > c_0$ die Fredholm'sche Integralgleichung

$$(\lambda I - K)f = g$$

für jedes $g \in C([a, b])$ eine eindeutige Lösung $f \in C([a, b])$ hat. Weiterhin gilt, dass die Abbildung $f \mapsto g$ stetig ist.

Beweis. (a) Es sei $f \in C([a,b]), ||f||_{\infty} < 1$.

$$\begin{split} \Rightarrow \left| \int_a^b k(s,t) f(t) dt \right| &\leq \int_a^b \left| k(s,t) f(t) \right| dt \\ &\leq \int_a^b \max_{s \in [a,b]} \left| k(s,t) \right| \max_{x \in [a,b]} \left| f(x) \right| dt \\ &\leq \int_a^b \max_{s \in [a,b]} \left| k(s,t) \right| dt \\ &\stackrel{?}{\leq} \max_{s \in [a,b]} \int_a^b \left| k(s,t) \right| dt = \max_{s \in [a,b]} \|k(s,\cdot)\|_{L^1(a,b)} \end{split}$$

Wenn wir $\stackrel{?}{\leq}$ zeigen können, ist alles gezeigt. Aber das verschieben wir auf später . . .

(b) Wegen (a) ist K beschränkt. Wählen wir $c_0 := ||K||$ so ist wegen Aufgabe 1 (d) $(\lambda I - K)$ bijektiv. Damit gibt es insbesondere stets eine eindeutige Lösung. Die Abbildung ist linear, wegen der Beschränktheit also auch stetig.

B.3.3 Der "Links-Shift"

Es sei

$$S_l: \ell^p \to \ell^p, (x_1, x_2, \dots) \mapsto S_l(x_2, x_3, \dots)$$

der Links-Shift.

Behauptung. Es ist:

$$||S_l|| = 1$$
, $\rho(S_l) = \{z \in \mathbb{C} : |z| > 1\}$, $r(S_l) = 1$

Beweis. Für $x \in \ell^p$ ist

$$||S_l(x)||_p = \sqrt[p]{\sum_{n=2}^{\infty} |x_n|^p} \le \sqrt[p]{\sum_{n=1}^{\infty} |x_n|^p} = ||x||_p \Rightarrow ||S_l|| \le 1$$

und für $e_2 = (0, 1, 0, ...) \Rightarrow ||S_l(e_2)||_p = ||e_1||_p = 1 \Rightarrow ||S_l|| \geq 1$. Zusammen ist also $||S_l|| = 1$. Wegen Aufgabe 1 d) ist schon mal $\rho(S_l) \supseteq \{z \in \mathbb{C} : |z| > 1\}$. Für $\lambda \in \mathbb{C}$, $|\lambda| < 1$ zeigen wir, dass $\lambda I - S_l$ nicht injektiv sein kann. Es ist nämlich:

$$(\lambda I - S_l)x = 0 \Leftrightarrow \lambda x = S_l x \Leftrightarrow (\lambda x_1, \lambda x_2, \dots) = (x_2, x_3, \dots) \Leftrightarrow x = x_1(1, \lambda, \lambda^2, \dots) \in \ell^p \Leftrightarrow |\lambda| < 1$$

Das heißt $\ker(\lambda I - S_l) \neq \{0\}$ also nicht injektiv. Da $\rho(S_l)$ wegen Aufgabe 1 b) offen ist, ist $\rho(S_l) = \{z \in \mathbb{C} : |z| > 1\}$. Daraus folgt auch direkt:

$$r(S_l) = \max\{|\lambda| : \lambda \in \rho(T)^c\} = \max\{|\lambda| : |\lambda| < 1\} = 1$$

B.4 Blatt 4

B.4.1 Norm auf dem Quotientenraum

Es sei $(X, \|\cdot\|)$ ein normierter Raum und $E \subseteq X$ ein Unterraum.

Behauptung. (a) Die Abbildung

$$|||\cdot|||:X/E\to\mathbb{R},\quad x+E\mapsto \inf_{e\in E}||x+e||$$

definiert eine Halbnorm auf X/E.

(b) $\|\cdot\|$ definiert eine Norm auf X/E, wenn E abgeschlossen ist.

(Äquivalentes Kriterium ?!)

(c) $(X/E, |||\cdot|||)$ ist ein Banachraum, wenn E vollständig ist.

Beweis. (a) Wir müssen beweisen:

$$(i) \hspace{0.2cm} \parallel \hspace{0.05cm} 0 \parallel \hspace{0.05cm} = 0, \hspace{0.3cm} (ii) \hspace{0.2cm} \parallel \hspace{0.05cm} \alpha x \parallel \hspace{0.05cm} = \hspace{0.05cm} |\alpha| \hspace{0.05cm} \parallel x \parallel, \hspace{0.3cm} (iii) \hspace{0.2cm} \parallel \hspace{0.05cm} x + y \parallel \hspace{0.05cm} \leq \hspace{0.05cm} \parallel x \hspace{0.05cm} \parallel + \hspace{0.05cm} \parallel y \parallel$$

für $\alpha \in \mathbb{K}$, $x, y \in X/E$.

$$(i): \quad \|\|0\| = \inf_{e \in E} \|0 + e\| \le \|0\| = 0$$

$$(ii): \quad \alpha = 0 \Rightarrow (i), \ \alpha \neq 0: \|\|\alpha x\|\| = \inf_{e \in E} \|\alpha x + e\| = |\alpha| \inf_{e \in E} \|x + \frac{1}{\alpha} e\|^{\frac{1}{\alpha}} = |\alpha| \|\|x\|\|$$

$$(iii): \quad |||x+y||| = \inf_{e \in E} ||x+y+e|| \stackrel{e_1+e_2=e}{=} \inf_{e_1,e_2 \in E} ||x+y+e_1+e_2|| \le \inf_{e \in E} ||x+e|| + \inf_{e \in E} ||y+e|| = |||x||| + |||y|||$$

(b) Wir müssen nur noch $||x+E||=0 \Rightarrow x+E=0$ zeigen. Dafür erinnern wir uns erstmal, was $0 \in X/E$ bedeutet. Aus der Linearen Algebra ist bekannt, dass $x+E=y+E \Leftrightarrow x-y \in E$. Es sind also genau die Elemente aus E die Nullelemente, bzw. E ist das Nullelement. 2. Variante

Sei nun |||x + E||| = 0. Es gibt also eine Folge (x_n) aus E, mit $x_n \to -x$ für $n \to \infty$, da nur so das Infinum 0 annehmen kann. Da E abgeschlossen ist, ist $-x \in E$ also (nach oben) x = 0.

3. Variante

Wie 2. Variante, aber wir wählen eine Folge (x_n) aus x + E mit $x_n \to 0$. Da E abgeschlossen ist, ist auch x + E abgeschlossen, und $0 \in x + E$.

(c) X/E ist wegen der Linearen Algebra schon ein Vektorraum. Wegen b) ist X/E normiert. Die Vollständigkeit ist trivial.

B.4.2 Vektorräume mit abzählbaren Basen

Es sei $(X, ||\cdot||)$ ein normierter Vektorraum mit abzählbar unendlicher Basis $B := \{b_i : i \in \mathbb{N}\}.$

Behauptung. X ist nicht vollständig.

Beweis. Wir nehmen O.B.d.A an, dass $||b_i||=1, \ \forall i\in\mathbb{N}$ und definieren $U_n:=\mathrm{span}\{b_1,\ldots,b_n\}$. Es gilt für alle $n\in\mathbb{N}$:

1. U_n ist abgeschlossen

2.
$$\mathring{U}_n = \emptyset$$

3.
$$\bigcup_{n\in\mathbb{N}}U_n=X$$

1: U_n ist endlichdimensional also abgeschlossen.

2: Per Widerspruch: Angenommen, es gäbe ein $x \in U_n$ und ein $\varepsilon > 0$ so dass $U_{\varepsilon}(x) \subseteq U_n$. Dann ist aber

$$v := x - \frac{\varepsilon}{2} b_{n+1} \not\in U_n$$

wegen der linearen Unabhängigkeit der b_i , außerdem ist

$$||x-v|| = \left|\left|x-x+\frac{\varepsilon}{2}b_{n+1}\right|\right| = \left|\left|\frac{\varepsilon}{2}b_{n+1}\right|\right| < \varepsilon$$

Also $v \in U_{\varepsilon}(x) \Rightarrow U_{\varepsilon}(x) \not\subseteq U_n$.

3: Offenbar gilt "
$$\subseteq$$
 ". " \supseteq ": Für $x \in X$, ist $x = \sum_{i=1}^k \alpha_i b_i, \ \alpha_i \in \mathbb{K}$, also $x \in \bigcup_{n=1}^k U_n$

Nun folgt mit dem Baireschen Kategoriensatz 1.35 die Nicht-Vollständigkeit von X. Wäre nämlich X vollständig, müsste wegen 1. und 3. der Satz gelten, und ein U_n hätte kein leeres Inneres, was im Widerspruch zu 2. steht $\frac{1}{2}$

B.4.3 Kompaktheit in endlichdimensionalen Vektorräumen

 $(V,||\cdot||)$ sei ein endlichdimensionaler Vektorraum über den Körper $\mathbb K$ und $K\subseteq V.$ Und es gelten die Resultate:

- (1.) Je zwei Normen auf \mathbb{K}^n sind äquivalent.
- (2.) Eine Teilmenge von \mathbb{K}^n versehen mit der Euklidischen Norm ist genau dann kompakt, wenn sie beschränkt und abgeschlossen ist.

Behauptung.

K kompakt $\Leftrightarrow K$ abgeschlossen und beschränkt

Beweis. " \Rightarrow ": Kompakte Mengen sind beschränkt und abgeschlossen.

" \Leftarrow ": Da auf dem \mathbb{K}^n je zwei Normen äquivalent sind (1.) und bzgl. einer Normänderung die topologischen Eigeschaften Kompaktheit, Abgeschlossenheit und Beschränktheit nicht geändert werden 1 , gilt (2.) auch für alle anderen Normen. Sei $n := \dim V$, wegen der Linearen Algebra gibt es einen Isomorphismus $\varphi : V \to \mathbb{K}^n$, insbesondere ist φ^{-1} stetig. Da $\varphi(K) \subseteq \mathbb{K}^n$ abgeschlossen und beschränkt ist, ist es kompakt. Also auch $\varphi^{-1}(\varphi(K)) = K$.

¹Die Übertragung der Abgeschlossenheit und Beschränktheit ergibt sich direkt aus der Definition und Satz 1.18. Die Kompaktheit ergibt sich auch, denn eine beschränkte Folge hat bzgl. der Euklidischen Norm stets einen partiellen Grenzwert, dank der Übetragung der Konvergenz bleibt der partielle Grenzwert erhalten.

B.5 Blatt 5

B.5.1 Beispiel für einen Hilbertraum

Es sei J eine beliebige nichtleere Menge und

$$X:=\{f:J\to\mathbb{R}:f(j)\neq 0 \text{ für h\"ochstens abz\"{a}hlbar viele } j\in J, \ \sum_{j\in J}\left|f(j)\right|^2<\infty\}.$$

(a) Sei $f, g \in X$

$$(f,g) := \sum_{j \in J} f(j)g(j)$$

ist ein Skalarprodukt auf X, mit dem X zu einem Hilbertraum wird.

- (b) Die Familie $(e_j)_{j\in J}$ mit $e_j(k):=\delta_{jk}$ für $j,k\in J$ bildet eine Orthonormalbasis von X.
- (c) X ist separabel $\Leftrightarrow J$ ist höchstens abzählbar.

Beweis. (a) tüddellich ... TODO

- (b) TODO
- (c) TODO

B.5.2 separable Hilberträume und der ℓ^2

Jeder unendlich-dimensionale Hilbertraum ist isometrisch isomorph zu ℓ^2

Beweis. Mit einem geschicktem Isomorphismus, der Basis auf Basis abbildet. \Box

B.5.3 Gram-Schmidt-Orthonormalisierung

H sei ein Hilbertraum und $(x_n)_{n\in\mathbb{N}}$ eine Familie linear unabhängiger Vektoren in H. Dann existiert ein Orthonormalsystem $(y_n)_{n\in\mathbb{N}}$, so dass

1.
$$\operatorname{span}\{y_k : k = 1, \dots, n\} = \operatorname{span}\{x_k : k = 1, \dots, n\} \quad \forall n \in \mathbb{N}$$

2. $(y_n)_{n\in\mathbb{N}}$ ist eine Orthonormalbasis $\Leftrightarrow \overline{\operatorname{span}\{x_n:n\in\mathbb{N}\}}=X$

Beweis. trivial. \Box

B.6 Blatt 6

B.6.1 Parallelogrammgleichung und Skalarprodukt

 $(X, ||\cdot||)$ sei ein normierter Raum, in dem die Parallelogrammgleichung

$$||x+y||^2 + ||x-y||^2 = 2||x||^2 + 2||y||^2 \quad \forall x, y \in X$$

gilt. Dann wird durch

$$(x,y) := \frac{1}{4} \left(\left| \left| x + y \right| \right|^2 - \left| \left| x - y \right| \right|^2 + i \left| \left| x + iy \right| \right|^2 - \left| \left| x - iy \right| \right|^2 \right)$$

ein Skalarprodukt definiert, welches die Norm $||\cdot||$ induziert.

Beweis. Leicht zu zeigen.

B.6.2 Orthogonales Komplement

 $(X,(\cdot,\cdot))$ sei ein Skalarproduktraum

vollständig?!

und $M \subseteq X$ ein Unterraum. Dann gilt

$$(M^{\perp})^{\perp} = \overline{M}.$$

Beweis. ... \Box

B.6.3 Orthogonale Projektion

X sei ein normierter Raum und $P:X\to X$ ein linearer Operator mit $P^2=P,$ dann gelten die folgenden Eigenschaften:

- (a) $X = \operatorname{im} P \oplus \ker P$
- (b) Ist P beschränkt, dann sind im P, ker P abgeschlossen und $||P|| \ge 1$ oder ||P|| = 0.
- (c) Ist X vollständig, so folgt aus der Abgeschlossenheit von $\ker P$ und im P, dass P beschränkt ist.
- (d) Sei X ein Hilbertraum. Dann sind die folgenden Aussagen äquivalent:
 - (i) P ist eine orthogonale Projektion (d.h. im $P \perp \ker P$)
 - (ii) $||P|| \le 1$
 - (iii) $(Px, y) = (x, Py) \quad \forall x, y \in X$
- (e) Für jeden abgeschlossenen Unterraum U eines Hilbertraumes existiert eine eindeutige orthogonale Projektion P mit im P = U.

B.6.4 Unbeschränkter Projektor

Die Vollständigkeit in Aufgabe 3 c) ist notwendig. Denn:

- 1. Es gibt zwei abgeschlossene Teiläume eines Hilbertraumes, so dass $M \cap N = \{0\}$ und M + N ist nicht abgeschlossen.
- 2. Es gibt eine unstetige Projektion P auf einem Skalarproduktraum, so dass im P, ker P abgeschlossen sind.

Beweis. Nein. \Box

B.7 Blatt 7

B.7.1 Abgeschlossenes Bild eines beschränkten Operators

X, Y seien Banachräume und $T \in \mathcal{B}(X, Y)$. Es ist äquivalent:

- 1. im T ist abgeschlossen.
- 2. $\inf_{x \in X \backslash \ker T} \frac{||Tx||}{\delta(x, \ker T)} > 0,$ wobe
i $\delta(x, \ker T) = \inf_{z \in \ker T} ||x z||$

Beweis. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet. Lorem ipsum dolor sit amet, consetetur sadipscing elitr, sed diam nonumy eirmod tempor invidunt ut labore et dolore magna aliquyam erat, sed diam voluptua. At vero eos et accusam et justo duo dolores et ea rebum. Stet clita kasd gubergren, no sea takimata sanctus est Lorem ipsum dolor sit amet.

B.7.2 Beispiel eines graphenabgeschlossenen, nicht stetigen Operators

Der Operator

$$T: (C^1([0,1]), ||\cdot||_{\infty}) \to (C([0,1]), ||\cdot||_{\infty}), \quad f \mapsto f'$$

ist graphenabgeschlossen, aber nicht stetig.

Beweis. siehe Analysis $I, I \in \mathbb{N}$

B.7.3 Notwendigkeit der Vollständigkeit im Satz der offenen Abbildung

Im Satz der offenen Abbildung ist die Vollständigkeit notwendig.

Beweis. Trivial ... \Box

B.7.4 Sowas wie die verallgemeinerte Exponentialfunktion???????

X sei ein Banachraum und $T:[0,\infty)\to\mathcal{B}(X)$ eine Abbildung mit

- 1. $\forall t, s \ge 0 : T(t+s) = T(t)T(s)$
- 2. $\forall x \in X : \lim_{t \searrow 0} T(t)x = x$

Es gelten die Eigenschaften

- (a) $\forall x \in X : [0, \infty) \ni t \mapsto T(t)x$ ist stetig.
- (b) $T(0) = I_X$
- (c) $\exists M \ge 0 \ \exists \omega \in \mathbb{R} \ \forall t \ge 0 : ||T(t)|| \le M e^{\omega t}$

B.7.5 Symmetrische Operatoren im Hilbertraum

In einem Hilbertraum X ist ein selbstadjungierter Operator $T: X \to X$ beschränkt.

Beweis. Fast trivial \Box

B.8 Blatt 8

B.8.1 Funktional und Beschränktheit

X sei ein Vektorraum, $x': X \to \mathbb{K}$ ein lineares Funktional. Es gilt

x' beschränkt $\Leftrightarrow \ker x'$ abgeschlossen

Beweis. Betrachte $X/kerx' := \{\hat{x} := x + N : x \in X\}$ und die lineare Abbildung

$$\hat{H}: X/\ker x' \to \mathbb{R}, \ \hat{H}\hat{x} := x'(x).$$

Weil x' linear ist und \hat{H} injektiv und $\hat{H}(X/\ker x') = x'(X)$, folgt

$$X/\ker x$$
 und $x'(X)$ isomorph zueinander und $\dim(X \ker x') = \dim(\mathbb{R}) = 1$.

Nun ist ein linearer Operator von einem endlich dimensionalen Raum in einen beliebigen normierten Raum stetig. Und damit ist \hat{H} stetig. Nun wird gezeigt, dass daraus auch folgt, dass x' stetig sein muss.

Sei \hat{x} die Restklasse von x, dann gilt

$$||x'(x)|| = \left| \left| \hat{H}\hat{x} \right| \right| \le \left| \left| \hat{H} \right| \right| \cdot ||\hat{x}|| \le \left| \left| \hat{H} \right| \right| \cdot ||x|| \le M ||x||.$$

Mit der in Blatt 4 Aufgabe 1 eingeführt Norm auf Quotientenräume.

B.8.2 Hmm

X sei ein normierter Raum, $E\subseteq X$ ein Unterraum und $x\in X$ mit $\delta(x,E)>0$. Es existiert ein $x'\in X$ mit $\langle x,x'\rangle=1$ und $||x'||=\frac{1}{\delta(x,E)}$.

Beweis. \Box

B.8.3 Der Banach-Limes

 $S:\ell_\infty\to\ell_\infty$ sei der Links-Shift. Es existiert ein $x'\in\ell_\infty'$ mit

- 1. $\forall x \in \ell_{\infty} : \langle Sx, x' \rangle \langle x, x' \rangle$
- 2. $\forall \in \ell_{\infty} : \liminf_{n \to \infty} x_n \leq \langle x, x' \rangle \leq \limsup_{n \to \infty} x_n$

Es ist ||x'|| = 1

B.8.4 Orthogonalräume oder so

X sei ein normierter Raum und E ein abgeschlossener Unterraum von X.

- (a) E' und X'/E^{\perp} sind isometrisch isomorph.
- (b) E^{\perp} und (X/E)' sind isometrisch isomorph.

Beweis. easy peasy \Box

B.9 Blatt 9

B.9.1 ℓ^1 ist nicht reflexiv

 ℓ^1 ist nicht reflexiv.

Beweis. Kinderleicht. \Box

B.9.2 Schwache Cauchy-Folgen

Sei X ein normierter Raum.

- (a) Schwache Cauchy-Folgen in X sind beschränkt.
- (b) Ist X reflexiv, so ist eine schwache Cauchy-Folge in X schwach konvergent.

Beweis. Man nehme eine Portion Vollständigkeitssätze mit einer Prise Banach-Steinhaus, und fertig ist die Laube! \Box

B.9.3 Nicht-Existenz von T^*

Es gibt Skalarprodukträume X, Y, und einen Operator $T \in \mathcal{B}(X,Y)$, so dass $T^*: Y \to X$ nicht existiert.

Beweis. :P

B.9.4 Die Adjungierte des Rechts-Shifts

Die Adjungierte des Rechts-Shifts $R:\ell^2 \to \ell^2$ ist der Links-Shift.

Beweis. Nachrechnen!

B.9.5 Spektrum der Adjungierten und Dualen

X sei ein Banachraum und $T \in \mathcal{B}(X,Y)$. Die Spektren von T und T' stimmen überein. In einem Hilbertraum ist das Spektrum von T^* das komplex konjugierte Spektrum von T. (Wobei wir hier komplex konjugierte der Menge als komplex konjugierte der Elemente verstehen.)

B.10 Blatt 10

B.10.1 selbstadjungiert oder so

Xsei ein Skalarproduktraum (vollständig ?!) und $A \in \mathcal{B}(X).$

A selbstadjungiert
$$\Leftrightarrow \forall x \in X : \langle x, Ax \rangle \in \mathbb{R}$$

Beweis. \Box

B.10.2 Advanced Aufgabe 1

X sei ein komplexer Skalarproduktraum und $A_1, A_2 \in \mathcal{B}(X)$, so dass $\langle x, A_1 x \rangle = \langle x, A_2 x \rangle$ für alle $x \in X$.

- (a) $A_1 = A_2$
- (b) (a) gilt nicht bei reellen Skalarprodukträumen.
- (c) (a) gilt bei reellen Skalarprodukträumen, wenn A_1, A_2 selbstadjungiert sind.

B.10.3 Normale Operatoren

X sei ein Hilbertraum, $A \in \mathcal{B}(X)$

$$A \text{ normal} \Leftrightarrow ||Ax|| = ||A^*x|| \quad \forall x \in X.$$

Wobei A normal ist, wenn $AA^* = A^*A$.

Beweis. zu 78% trivial.

B.10.4 Hmm

Sei $(\Omega, \mathfrak{A}, \mu)$ ein Hilbertraum und $p, q \in [1, \infty]$, so dass 1/p + 1/q = 1. Für $f \in L^p(\Omega, \mu)$ gilt

$$||f||_p = \sup \{ \left| \int_{\Omega} fg \, d\mu \right| : g \in L^q(\Omega,\mu) \text{ mit } ||g||_q \leq 1 \}.$$

B.10.5 Der Dualraum von c_0

 c_0 sei versehen mit der Maximumsnorm. Der Dualraum von c_0 ist isometrisch isomorph zu $\ell^1.$

Beweis. Ähem... \Box

B.11 Blatt 11

B.11.1 Der Fredholm-Operator

Sei $k[a, b] \times [c, d] \to \mathbb{R}$ stetig und

$$T: L^p[c,d] \to L^p[a,b], \quad f \mapsto T(f), \; \mathrm{mit} \; T(f)(s) = \int_c^d k(s,t) f(t) dt$$

B.11.2 Spektrumseigenschaften

TODO

Beweis. Leicht zu zeigen.

B.11.3 Verallgemeinerter Hauptsatz der Differential- und Integralrechnung

Sei $I \subseteq \mathbb{R}$ ein offenes Intervall.

1. $f \in W^{1,1}(I)$ dann gilt für fast alle $x_1, x_2 \in I$

$$f(x_2) - f(x_1) = \int_{x_1}^{x_2} f'(t)dt$$

2. $f, g \in L^1(I)$ und gilt

$$f(x_2) - f(x_1) = \int_{x_1}^{x_2} g(s)ds$$

für fast alle $x_1, x_2 \in I$, so folgt, dass $f \in W^{1,1}(I)$ und f' = g.

B.12 Blatt 12

B.12.1 Satz von Lax-Milgram

Sei X ein Hilbertraum über \mathbb{K} und $a:X\times X\to\mathbb{K}$ sequilinear. D.h. für alle $x,y,z\in X$ und $\lambda,\mu\in\mathbb{K}$ gilt

(a)
$$a(\lambda x + \mu y, z) = \lambda \cdot a(x, z) + \mu \cdot a(y, z)$$
, (b) $a(z, \lambda x + \mu y) = \overline{\lambda} \cdot a(z, x) + \overline{\mu} \cdot a(z, y)$

Außerdem seien $c_1, c_2 \in \mathbb{R}$ mit $0 < c_1 \le c_2$ derart, dass für alle $x, y \in X$ gilt:

- (i) $|a(x,y)| \le c_2 ||x|| ||y||$
- (ii) $\Re a(x,x) \ge c_1 ||x||^2$.

Dann existiert genau eine Abbildung $A:X\to X$ mit

$$a(y,x) = \langle y, Ax \rangle \quad \forall x, y \in X$$

Des Weiteren ist $A \in \mathcal{B}(X)$ invertierbar mit

$$||A|| \le c_2 \text{ und } ||A^{-1}|| \le \frac{1}{c_1}.$$

B.12.2 Ein elliptisches Randwertproblem

Diese Aufgabe wird boykottiert.

B.12.3 Zeug für die Schwache Ableitung

Sei $\Omega \subseteq \mathbb{R}^n$ offen, $f \in L^{\infty}(\Omega)$, so dass für alle $\varphi \in C_0^{\infty}(\Omega)$ gilt, dass

$$\int_{\Omega} f\varphi d\lambda^n = 0.$$

Dann gilt f = 0 (fü).

B.12.4 Hmm

Sei $(\Omega, \mathfrak{A}, \mu)$ ein Maßraum. Wir betrachten die Abbildung

$$J_1: L^{\infty}(\Omega, \mu) \to L^1(\Omega, \mu)' \quad g \mapsto J_1(g), \quad J_1(g)(f) = \int_{\Omega} f g d\mu.$$

Die folgenden Aussagen sind äquivalent:

- 1. J_1 ist normerhaltend,
- 2. J_1 ist injektiv,
- 3. $(\Omega, \mathfrak{A}, \mu)$ ist semi-endlich.

B.13 Blatt 13

B.13.1 Kompakter Operator - Eigenschaften

Sei X ein Banachraum und $K \in K(X)$. Es gilt:

- 1. K bijektiv $\Rightarrow X$ ist endlichdimensional.
- 2. X unendlichdimensional $\Rightarrow d(I, K(X)) = \inf\{||I K|| : K \in K(X)\} = 1$

B.13.2 Abschätzung der Norm kompakter Operatoren

X,Y,Z seien Banachräume und $T\in K(X,Y)$. $J\in \mathcal{B}(Y,Z)$ sei injektiv. Für alle $\varepsilon>0$ existiert eine Konstante C_{ε} , so dass

$$||Tx|| \le \varepsilon ||x|| + C_{\varepsilon} ||JTx||, \quad x \in X.$$

B.13.3 Kompakter Operator - Eigenschaft

Sei $p \in [1, \infty], z \in \ell^{\infty}$ und $T_z : \ell^p \to \ell^p$ sei durch

$$(T_z x)(n) = z(n)x(n)$$

$z(n) = z_n$??

Dann gilt: T_z ist kompakt $\Leftrightarrow z \in c_0$

B.13.4 Beispiele kompakter Operatoren

1. $C_1([0,1])$ sei mit der Norm $||f||:=||f||_{\infty}+||f'||_{\infty}$ versehen. Die Einbettung

$$J: (C^1([0,1]), ||\cdot||) \to (C([0,1]), ||\cdot||_{\infty}), \quad f \mapsto f'$$

ist kompakt

2. $k:[0,1]^2\to\mathbb{R}$ sei stetig. Der Integraloperator $T_k:C([0,1])\to C([0,1]),$

$$(T_k x)(s) = \int_0^s k(s, t) x(t) dt$$

ist wohldefiniert und kompakt.