Analisis Hasil Dataset KlasifikasiUTS dengan Model PyTorch

A. MLP Regressor

1. Output Evaluasi

MSE: 980,764,772.36
 RMSE: 31,317.16
 R² (R-squared): 0.5651

2. Interpretasi

- MSE yang besar menunjukkan selisih kuadrat prediksi dan nilai aktual yang tinggi.
- RMSE setara dengan rata-rata kesalahan prediksi sebesar 31 ribu satuan, tergantung pada skala target.
- $R^2 = 0.5651$ berarti model menjelaskan sekitar 56.5% variasi data target, sisanya tidak terjelaskan.

3. Catatan

- Meskipun model cukup baik ($R^2 > 0.5$), masih bisa ditingkatkan.
- Bisa dicoba: tuning arsitektur MLP, normalisasi fitur, atau memakai CNN untuk regresi jika data punya struktur spasial.

B. MLP Classifier

1. Output Evaluasi

Accuracy: 0.9994
Precision: 0.9993
Recall: 0.9994
F1-Score: 0.9994
AUC: 0.9838

2. Interpretasi

- Akurasi dan metrik lainnya mendekati sempurna (99.94%).
- Precision dan Recall tinggi → Model sangat baik membedakan kelas tanpa banyak false positive/false negative.
- AUC 0.9838 → Kurva ROC menunjukkan kemampuan sangat tinggi untuk memisahkan antar kelas (mendekati nilai maksimum 1).

3. Catatan

- Bisa dianggap sangat baik untuk klasifikasi tabular.

- MLP cocok jika data tidak punya struktur spasial (misalnya gambar atau sinyal).

C. CNN Classifier

1. Output Evaluasi

Accuracy: 0.9995Precision: 0.9994Recall: 0.9995F1-Score: 0.9994

- AUC: nan

2. Interpretasi

- Akurasi sedikit lebih tinggi dari MLP Classifier (0.9995 vs 0.9994).
- Precision, Recall, F1 sangat tinggi.
- AUC = nan → Biasanya terjadi karena masalah saat evaluasi, seperti jumlah kelas tidak cocok atau tidak ada probabilitas yang valid.

3. Catatan

- CNN biasanya unggul untuk data spasial seperti gambar. Jika input Anda berbentuk vektor (1D), CNN bisa jadi overkill atau bahkan underperform karena tidak memanfaatkan kekuatannya.
- AUC nan berarti evaluasi tidak lengkap, jadi metrik tidak bisa dibandingkan 100%.

D. Kesimpulan

Model	Cocok Untuk	Kelebihan Utama	Kelemahan
MLP Regressor	Regresi	Cukup akurat (R ² =	Masih cukup besar
		0.56)	error (RMSE tinggi)
MLP Classifier	Klasifikasi	Akurasi dan AUC	Tidak bisa tangani
		tinggi (stabil)	spasial
CNN Classifier	Klasifikasi	Akurasi tertinggi	AUC error,
			kemungkinan
			overfitting

Model terbaik adalah MLP Classifier, karena:

- AUC valid dan tinggi (0.9838)
- Performa semua metrik sangat baik (semua > 99%)
- Tidak ada error dalam evaluasi
- Lebih stabil dan cocok untuk data tabular

Rekomendasi Tambahan:

- Perbaiki AUC CNN agar bisa dibandingkan lebih adil.
- Lakukan k-fold cross-validation untuk menghindari bias evaluasi satu kali.
- Evaluasi waktu komputasi dan efisiensi model jika akan diterapkan di dunia nyata.