Semantics of Functional Programming

Lecture IV: Computational Adequacy and Further Topics

Chen, Liang-Ting lxc@iis.sinica.edu.tw

Formosan Summer School on Logic, Language, and Computation 2014

So far we have given two kinds of semantics for **PCF**. For a program M of type σ ,

- one gives how the program M is evaluated to a closed value V via the reduction relation $M \Downarrow V$;
- \bullet the other defines what the denotation $[\![M]\!]$ of M is

In this lecture, we will compare these two approaches and discuss some issues arising from them:

Correctness

Completeness

Computational adequacy

Full abstraction

1 Computational Adequacy

Closed values of nat do not diverge

The bottom element \perp in a domain models the divergence of computation, and a closed value V of **nat** is meant to be some natural number. Let's justify this idea.

Lemma 1. For every closed value V of type nat, the denotation $\llbracket V \rrbracket$ is an element of \mathbb{N} . In particular, $\llbracket V \rrbracket \neq \bot$.

 ${\it Proof.}$ By structural induction on closed values. For the following cases

zero val

M val

suc M val

$$\lambda x$$
. M val

it is easy to see that $[\![\![\mathbf{zero}]\!]\!]$ and $[\![\![\mathbf{suc} \ M]\!]\!]$, if $[\![\![M]\!]\!]$ $\in \mathbb{N}$, are elements of \mathbb{N} by the definition of $[\![\![-]\!]\!]$. On the other hand, λx . M cannot be of type \mathtt{nat} , so this case holds vacuously.

By inspection of the above proof, we conclude that $[\![\underline{n}]\!] = n$ — what a numeral \underline{n} of n should mean.

Correctness

Now we show that denotational semantics is correct with respect to denotational semantics:

Theorem 2. For every two programs M and V, $M \Downarrow V$ implies $\llbracket M \rrbracket = \llbracket V \rrbracket$.

A sanity check: By Preservation Theorem, it is known that $\llbracket \vdash \mathsf{M} : \tau \rrbracket$ and $\llbracket \vdash \mathsf{V} : \sigma \rrbracket$ are of the same type if $\mathsf{M} \Downarrow \mathsf{V}$, so their range $\llbracket \tau \rrbracket$ and $\llbracket \sigma \rrbracket$ are the same.

Proof Sketch. Prove $\llbracket M \rrbracket = \llbracket V \rrbracket \in \llbracket \tau \rrbracket$ by structural induction on the derivation of $M \Downarrow V$.

Proof of correctness

We show the case (\Downarrow -suc) first and the cases (\Downarrow -zero) and (\Downarrow -lam) are similar and easy.

For (↓-suc), we show that [suc M] = [suc V] if [M] = [V]. By definition, we simply calculate its denotation directly:

$$[\![\operatorname{suc}\,\mathsf{M}]\!] = S([\![\mathsf{M}]\!]) = S([\![\mathsf{V}]\!]) = [\![\operatorname{suc}\,\mathsf{V}]\!]$$

where the middle equality follows from the induction hypothesis.

Try to do the cases (\Downarrow -zero), (\Downarrow -lam), and (\Downarrow -ifz₀).

The case (\Downarrow -app) is slightly complicated, as we have to address the binding structure using Substitution Lemma.

• For (\$\psi\$-app), we show that \$\$ \$[M N] = \$\$ \$[V]\$ if \$\$ \$[M] = \$\$ \$[\lambda x. E]\$ and \$\$ \$[E[N/x]] = \$\$ \$[V]\$. We calculate the denotation as follows

$$\begin{split} \llbracket \mathsf{M} \ \mathsf{N} \rrbracket &= ev(\llbracket \mathsf{M} \rrbracket, \llbracket \mathsf{N} \rrbracket) \\ &= ev(\llbracket \lambda x. \ \mathsf{E} \rrbracket, \llbracket \mathsf{N} \rrbracket) \\ &= ev(\llbracket x: \sigma \vdash \mathsf{E} : \tau \rrbracket, \llbracket \mathsf{N} \rrbracket) \\ &= \llbracket x: \sigma \vdash \mathsf{E} : \tau \rrbracket (\llbracket \mathsf{N} \rrbracket) = \llbracket \mathsf{E} \llbracket \mathsf{N}/x \rrbracket \rrbracket = \llbracket \mathsf{V} \rrbracket \end{split}$$

where the last but one equation follows from Substitution Lemma.

• Complete the remaining two (interesting) cases (\Downarrow -ifz₁) and (\Downarrow -fix). *Hint*. Consider Substitution Lemma and the properties of the fixpoint operator μ .