TALLER DE IMPLEMENTACIÓN – PARTE II Aprendizaje por refuerzo

Carlos Garavito.

Escuela ingenieria, ciencia y tecnologia, Universidad del Rosario.

0.1. Ejercicio 1

Realice un análisis de sensibilidad para los parámetros n=2,4,8 y $\alpha=0,2/8,0,4/8,0,8/8$ de un agente n-Step sobre el entorno del Mountain Car.

El análisis sobre los parámetros α y n se hace implementando el método load_agent_nStepCS y sweep_nStep en el módulo mountain_car. py. El primero crea el agente, el segundo hace el barrido de parámetros.

```
1 def load_agent_nStepCS() -> nStepCS:
      Creates a nStepCS agent with a set
      of parameters determined inset
      # Define parameters
6
      parameters = {"numDims":2,\
                     "nA":3,\
8
                     "gamma":1,\
                     "epsilon":0.1,\
                     "alpha":0.1,\
11
                     "n":8,\
                     "numTilings":8,\
                     "numTiles":[10, 10],\
14
                     "scaleFactors":[\
                       {"min":-1.2,\
                        "max":0.6},
17
                        {"min":-0.07,\
18
                          "max":0.07}]
19
21
      # Create approximating function
      Q = TilesQ(parameters=parameters)
      # Create agent
23
      return nStepCS(parameters, Q)
26 def sweep_nStep():
27
      Runs a sweep over alpha and n
28
      , , ,
29
      # Create agent
30
31
      print('Loading agent and environment...')
      agent = load_agent_SarsaCS()
32
      # Create train-and-run object
```

```
act = load_act(agent, 'Sarsa')

# Sweep alpha

print('Sweeping alpha...')

alphas = [0.2/8, 0.4/8, 0.8/8]

n = [2, 4, 8]

act.sweep2(parameter1='alpha', values1=alphas, parameter2='n', values2=n)

print('Done!')
```

Listing 1: Implementación nStep en el ambiente mointain_car.py

Imagen arrojada por el método TrainRun.sweep(2) La imagen obtenida al ejecutar el código se muestra en la figura 2.

Figura 1: Comparación de reward para las diferentes combinaciones de valores para α y n, en el ambiente mountaun car.

Comentario sobre los parámetros α **y** n Se observa que, como se espera, la recompensa se ve afectada por la elección de los parámetros α y n. En particular, se puede ver que para todos los casos evaluados en n, la mejor recompensa se encuentra cuando $\alpha=0.5$.

Parámetros con mejor desempeño Se observa que los parámetros con mejor desempeño son n=8 y $\alpha=0.1$ Se observa en la figura 2 que la combinación de valores para α y n que genera la mejor recompensa, corresponde a $\alpha=0.50$ y n=4.

0.2. Ejercicio 2

Entrene un agente sarsa sobre el entorno seleccionado. Para este propósito cree un nuevo módulo cart pole.py o lunar lander.py en la carpeta Examples.

La implementación del entorno lunar_lander.py se puede encontrar en el anexo y su documentación en [1].

Descripción del entorno El entorno lunar_lander.py consiste en optimizar la trayectoria de un cohete en proceso de aterrizaje, tal que la caida sea controlada por el encendido o apagado del motor.

Hay cuatro acciones posibles,

- No hacer nada
- Encender el motor que mueve el cohete hacia la izquierda,
- Encender el motor que mueve el cohete hacia arriba,
- Encender el motor que mueve el cohete hacia la derecha.

Los estados posibles son:

- Posición horizontal, limitado en el rango (-90,90);
- Posición vertical, limitado en el rango (-90, 90);
- Velocidad horizontal, limitado en el rango (-5,5);
- Velocidad vertical, limitado en el rango (-5,5);
- Ángulo de inclinación del cohete, limitado en el rango (-3.1415927, 3.1415927);
- Velocidad angular, limitado en el rango (-5,5);
- Indicador booleano de aterrizaje en la pata 1 del cohete, limitado en el rango (0,1);
- Indicador booleano de aterrizaje en la pata 2 del cohete, limitado en el rango (0,1).

Imágenes arrojadas por TrainRun.train() En la figura 2 se muestra la evolución de la recompensa para los 100 episodios de entrenamiento. Se puede observar que el ambiente es más complejo y que la recompensa no converge.

Imágenes arrojadas por TrainRun.test() En la figura 3 se muestra la evolución de la recompensa para los 100 episodios de entrenamiento. Se puede observar que el promedio es aproximadamente -87 puntos.

Figura 2: Evolución de la recompensa a lo largo de los episodios entrenados.

Figura 3: Histograma obtenido por el agente en el ambiente lunar lander, entrenado en 100 episodios.

Barrido de parámetros α Para realizar el barrido de parámetros alpha, se implementa el siguiente método, en el

```
1
2 def sweep_SARSA():
3
4 Runs a sweep over alpha
```

```
5
      # Create agent
      print('Loading agent and environment...')
7
      agent = load_agent_SarsaCS()
      # Create train-and-run object
9
      act = load_act(agent, 'Sarsa')
10
      # Sweep alpha
11
      print('Sweeping alpha...')
12
      alphas = [0.2/8, 0.4/8, 0.8/8]
13
      act.sweep(parameter='alpha', values=alphas, num_simulations=10)
14
      print('Done!')
```

Listing 2: Implementación sweep_SARSA en el ambiente lunar_lander.py

Imagen arrojada por TrainRun.sweep() La gráfica obtenida se muestra en a figura 4. Se puede dar cuenta que el mejor valor de $\alpha=0.025$, en el cual se alcanza una mejor recompensa. En particular, despues del episodio 150 la recompensa siempre es positiva para este valor de parámetro.

Figura 4: Comparación de reward para las diferentes combinaciones de valores para α , en el ambiente lunar lander.

0.3. Ejercicio 3

Repita el ejercicio 1 sobre el entorno seleccionado en el ejercicio 2.

El análisis sobre los parámetros α y n se hace implementando el método sweep_nStep en el módulo lunar_lander.py.

```
def load_agent_nStepCS() -> nStepCS:
      Creates a nStepCS agent with a set
3
      of parameters determined inset
      , , ,
5
      # Define parameters
      parameters = {"numDims":8,\
                     "nA":4,\
8
                     "gamma":1,\
9
                     "epsilon":0.1,\
10
                     "alpha":0.5,\
                     "numTilings":8,\
                     "numTiles":[10, 10,10, 10,10, 10,10, 10],\
1.3
                     "n":4,\
14
                     "scaleFactors":[\
                       {"min":-90., "max":90.}, # x coordiantes
16
                       {"min":-90., "max":90.}, # y coordiantes
17
                       {"min":-5., "max":5.}, # x velocity
18
                       {"min":-5., "max":5.}, # y velocity
                       {"min": -3.1415927, "max": 3.1415927}, # object angle
                       {"min":-5., "max":5.}, # angular velocity
21
                       {"min":0., "max":1.}, # boolean leg 1
                       {"min":-0., "max":1.}, # boolean leg 2
24
                       }
25
26
      # Create approximating function
      Q = TilesQ(parameters=parameters)
27
      # Create agent
28
      return nStepCS(parameters, Q)
29
30
31 def sweep_nStep():
32
      Runs a sweep over alpha
33
      ,,,
      # Create agent
35
      print('Loading agent and environment...')
      agent = load_agent_nStepCS()
37
      # Create train-and-run object
      act = load_act(agent, 'Sarsa')
39
      # Sweep alpha
      print('Sweeping alpha...')
41
      alphas = [0.2/8, 0.4/8, 0.8/8]
      n = [2, 4, 8]
43
      act.sweep2(parameter1='alpha', values1=alphas, parameter2='n', values2=n,
     num_simulations=5)
      print('Done!')
45
```

Listing 3: Implementación de sweep_nStep para el ambiente lunar lander.

Imagen arrojada por el método TrainRun.sweep(2) La imagen obtenida al ejecutar el código se muestra en la figura 5.

Comentario sobre los parámetros Se observa que el agente, cuando n=2,8, al incrementar el valor de α incrementa su rendimiento. En caso contario, con n=4, en

Figura 5: Comparación de reward para las diferentes combinaciones de valores para α y n_i en el ambiente mountaun car.

donde la recompensa disminuye al aumentar α .

Parámetros con mejor desempeño Se observa que los parámetros con mejor desempeño son n=8 y $\alpha=0,1$

0.4. Ejercicio 4

Compare el desempeño de los dos agentes, sarsa y n-step, cada uno inicializado con sus mejores parámetros, en el entorno seleccionado en el ejercicio 2.

Histograma Para generar el histograma que compara ambos agentes, se implemento el método

```
def train_and_compare():
      # Create agent
      agent_SARSA = load_agent_SarsaCS()
      # Create train-and-run object
      act = load_act(agent_SARSA, 'Sarsa')
      # Train the SARSA agent
6
      print('Training SARSA agent...')
      act.train()
8
      # Testing the agent
9
      print('Testing SARSA agent...')
10
      act.num_episodes = 100
11
      act.test(to_df=True)
12
      df_sarsa = act.data
13
      # Create agent
```


Figura 6: Histograma para la comparación de los dos métodos de entrenamiento.

```
agent_nSARSA = load_agent_nStepCS()
15
      # Create train-and-run object
16
      act = load_act(agent_nSARSA, 'nSarsa')
17
      # Train the agent
18
      print('Training nSARSA agent...')
19
      act.train()
      # Testing the agent
21
      print('Testing nSARSA agent...')
22
      act.num_episodes = 100
23
      act.test(to_df=True)
      df_nsarsa = act.data
25
      # Compare performances
26
      df = pd.concat([df_sarsa, df_nsarsa], ignore_index=True)
27
      p = Plot(df)
28
      p.plot_histogram_rewards(act.file_compare_hist)
29
      print(f'Plot saved to {act.file_compare_hist}')
30
      p.plot_rewards(act.file_compare_rew)
31
      print(f'Plot saved to {act.file_compare_rew}')
```

Listing 4: Implementación del método train_and_compare() para el entorno lunar lander.

El histograma obtenido, se muestra en la figura 6.

Promedios de recompensa total El promedio de recompensas para cada modelo es:

■ Sarsa: -51.197584

■ nSarsa: -63.451483

Comentario Se puede dar cuenta que, bajo los mejores parámetros encontrados, ambos métodos tienen rendimiento similar para el entorno de lunar lander. En particular, con -51 puntos promedio, el Sarsa tiene mejor rendimiento que el nSarsa que tiene -63 puntos en promedio. Sin embargo, en ambos casos, no se encuentra una buena solución ya que en promedio no se tienen recompensas superiores a cero.

Finalmente, la implementación del presente taller se puede encontrar en https://github.com/cgaravitoc/reinforcement_learning_projects.

Referencias

[1] OpenAl Gym. Lunar Lander. https://gym.openai.com/envs/LunarLander-v2/. Accessed on 28th May 2023.

Anexo

Implementación del ambiente lunar_lander.py

```
1 from Utils.train import TrainRun
2 from Agents.agentsCS import SarsaCS, nStepCS
3 from Agents.linearQ import TilesQ
4 from Utils.interpreters import gym_interpreter1
5 import matplotlib.pyplot as plt
6 import pandas as pd
7 from Utils.utils import Plot
11 def try_env():
      ,,,
12
      Loads an agent and runs it
13
      without learning on the
14
      Lunar lander environment
16
      print('Loading agent and environment...')
17
       # Create agent
18
      agent = load_agent_SarsaCS()
19
      # Create train-and-run object
20
21
      act = load_act(agent, 'Sarsa')
      # Show the untrained agent
22
      print('Showing the untrained agent...')
23
      act.run(visual=True)
24
      print('Done!')
25
27
28 def train_and_run_SARSA():
      , , ,
29
      Trains a SARSA agent on the Mountain Car
31
32
      # Create agent
      print('Loading agent and environment...')
33
      agent = load_agent_SarsaCS()
34
      # Create train-and-run object
35
      act = load_act(agent, 'Sarsa')
36
      # Train the agent
37
38
      print('Training the agent...')
      act.train()
39
      # Show the trained agent
40
      print('Showing the trained agent...')
      act.run()
42
      # Testing the agent
      print('Testing the agent...')
44
      act.test()
      print('Done!')
46
48 def sweep_SARSA():
      , , ,
      Runs a sweep over alpha
50
51
```

```
# Create agent
52
       print('Loading agent and environment...')
53
       agent = load_agent_SarsaCS()
54
       # Create train-and-run object
       act = load_act(agent, 'Sarsa')
56
       # Sweep alpha
57
       print('Sweeping alpha...')
58
       alphas = [0.2/8, 0.4/8, 0.8/8]
59
       act.sweep(parameter='alpha', values=alphas, num_simulations=50)
60
61
       print('Done!')
62
63
  def load_agent_SarsaCS() -> SarsaCS:
64
65
       Creates a SarsaCS agent with a set
66
       of parameters determined inset
67
       # Define parameters
69
       parameters = {"numDims":8,\
                      "nA":4,\
                      "gamma":1,\
72
                      "epsilon":0.1,\
                      "alpha":0.1,\
                      "numTilings":8,\
75
                      "numTiles":[10, 10,10, 10,10, 10,10, 10],\
76
                      "scaleFactors":[\
                        {"min":-90., "max":90.}, # x coordiantes
78
                        {"min":-90., "max":90.}, # y coordiantes
                        {"min":-5., "max":5.}, # x velocity
80
                        {"min":-5., "max":5.}, # y velocity
                        {"min": -3.1415927, "max": 3.1415927}, # object angle
82
                        {"min":-5., "max":5.}, # angular velocity
83
                        {"min":0., "max":1.}, # boolean leg 1
84
                        {"min":-0., "max":1.}, # boolean leg 2
86
                        }
87
       # Create approximating function
88
       Q = TilesQ(parameters=parameters)
       # Create agent
90
       return SarsaCS(parameters, Q)
91
92
93
  def load_agent_nStepCS() -> SarsaCS:
94
95
       Creates a SarsaCS agent with a set
96
       of parameters determined inset
97
       , , ,
98
       # Define parameters
99
       parameters = {"numDims":8,\
100
                      "nA":4,\
101
                      "gamma":1,\
102
                      "epsilon":0.1,\
103
                      "alpha":0.1,\
                      "numTilings":8,\
                      "numTiles":[10, 10,10, 10,10, 10,10, 10],\
```

```
"scaleFactors":[\
                         {"min":-90., "max":90.}, # x coordiantes
108
                         {"min":-90., "max":90.}, # y coordiantes
                         {"min":-5., "max":5.}, # x velocity
                         {"min":-5., "max":5.}, # y velocity
                         {"min": -3.1415927, "max": 3.1415927}, # object angle
                         {"min":-5., "max":5.}, # angular velocity
113
                         {"min":0., "max":1.}, # boolean leg 1
114
                         {"min":-0., "max":1.}, # boolean leg 2
115
116
                         }
117
       # Create approximating function
118
       Q = TilesQ(parameters=parameters)
119
       # Create agent
120
       return SarsaCS(parameters, Q)
121
122
123
124
   def load_act(agent, model_name:str) -> TrainRun:
125
       , , ,
126
       Creates a train-and-run object with
127
       parameters given inset
       , , ,
129
       act = TrainRun(\
130
            env_name = 'LunarLander-v2',\
131
            state_interpreter=gym_interpreter1,\
           agent=agent,\
           model_name=model_name,\
134
           num rounds=1000, # by default was in 1000
135
           num_episodes=200
136
137
138
       return act
139
140 def sweep_nStep():
       , , ,
141
       Runs a sweep over alpha
142
       , , ,
143
       # Create agent
       print('Loading agent and environment...')
145
       agent = load_agent_nStepCS()
146
       # Create train-and-run object
147
148
       act = load_act(agent, 'Sarsa')
       # Sweep alpha
149
       print('Sweeping alpha...')
       alphas = [0.2/8, 0.4/8, 0.8/8]
       n = [2, 4, 8]
152
       act.sweep2(parameter1='alpha', values1=alphas, parameter2='n', values2=n,
153
      num simulations=5)
       print('Done!')
154
155
157 def train_and_compare():
       # Create agent
       agent_SARSA = load_agent_SarsaCS()
159
       # Create train-and-run object
```

```
act = load_act(agent_SARSA, 'Sarsa')
161
162
       # Train the SARSA agent
       print('Training SARSA agent...')
163
       act.train()
164
       # Testing the agent
165
       print('Testing SARSA agent...')
166
       act.num_episodes = 100
167
       act.test(to_df=True)
168
       df_sarsa = act.data
169
       # Create agent
170
       agent_nSARSA = load_agent_nStepCS()
171
       # Create train-and-run object
172
       act = load_act(agent_nSARSA, 'nSarsa')
173
       # Train the agent
174
       print('Training nSARSA agent...')
175
       act.train()
176
       # Testing the agent
177
       print('Testing nSARSA agent...')
178
       act.num_episodes = 100
       act.test(to_df=True)
180
       df_nsarsa = act.data
181
       # Compare performances
182
       df = pd.concat([df_sarsa, df_nsarsa], ignore_index=True)
183
       p = Plot(df)
184
       p.plot_histogram_rewards(act.file_compare_hist)
185
       print(f'Plot saved to {act.file_compare_hist}')
186
       p.plot_rewards(act.file_compare_rew)
187
       print(f'Plot saved to {act.file_compare_rew}')
```

Listing 5: Implementación del ambiente lunar_lander.py