Lecture 3: Registers and FSMs

By: Emad Samuel Malki Ebeid

Summary of lecture 2

Look to the blackboard notes

· Latches & Flip flops · Parallel & shift registers FSMS - debouncer

FSM

Moore State Machine

The outputs of a Moore state machine depend **only on the present state**. The <u>outputs</u> are written **only** when the state changes (on the clock edge).

Mealy State Machine

The outputs of a Mealy state machine depend on **both the inputs and the current state**. When the <u>inputs</u> change, the outputs are updated **without** waiting for a clock edge.

Because modern designs are generally synchronous, the **Moore** option tends to be preferred – Finite State Machine in Hardware book by Volnei A. Pedroni

FSM in hardware

Moore Mealy

FSM examples: debouncer

BEGIN

Lab3: FPGA configuration

- Design a circuit in VHDL to display a pressed key from the provided 4x4 keypad.
 - Use FPGA LEDs to display the pressed key.
 - Simulate the overall circuit when number 3 is pressed (0011).
 - Configure the final design on the FPGA.

Journal I - delivery 27/09/2020 23:59

- Implement the keypad circuit in FPGA to display a constant pressed key (0011)
 - Use 7-segment display to display the pressed key. You can get one from the component lab (remember to add current limiting resistors (220Ω) as shown in the figure))
 - Use debouncer to avoid the bouncing effect of the contact (push button) before reaching the stable state.
 - The report should include the overall design (Vivado snapshoot), simulation results and a pnoto of the final implementation. Comment on the results.

