# Rozdział 2 Ciągi 2.2

### 1 Własności ciągów liczbowych

#### 1.1 Granica iloczynu ciągów jest równa iloczynowi granic tych ciągów

Twierdzenie 1 Jeżeli  $\lim_{n\to\infty} x_n = x$  i  $\lim_{n\to\infty} y_n = y$  to  $\lim_{n\to\infty} (x_n y_n) = xy$ .

#### 1.2 Dowód, że $\lim_{n\to\infty}(x_n+y_n)=x+y$

Niech  $x_n$  oraz  $y_n$  będą ciągami o wyrazach rzeczywistych lub zespolonych.

Twierdzenie 2 Jeżeli  $\lim_{n\to\infty} x_n = x$  i  $\lim_{n\to\infty} y_n = y$  to  $\lim_{n\to\infty} (x_n + y_n) = x + y$ .

Chcemy okazać, że dla dowolnej liczby rzeczywistej większej niż zero, istnieje jakaś liczba naturalna, taka, że dla n równego bądź większego niż ta liczba, spełniona jest nierówność:

$$|(x_n + y_n) - (x + y)| < Dowolna liczba rzeczywista większa od zera$$

Niech  $\epsilon > 0$  będzie ustaloną liczbą rzeczywistą. Przyjmijmy, że  $\delta = \frac{\epsilon}{2}$ . Wiemy, że  $\delta > 0$ . Z założeń wiemy, że oba ciągi są zbieżne, więc dla każdego z tych dwóch ciągów istnieją liczby naturalne  $l, m \in \mathbb{N}$  takie że:

$$\bigwedge_{n \ge l} |x_n - x| < \delta$$

$$\bigwedge_{n \ge m} |y_n - y| < \delta$$

Oznaczmy  $n_0 = \max\{l, m\}$ .  $n_0$  jest liczbą, która gwarantuje nam, że gdy  $n \ge n_0$ , od tego miejsca te dwie nierówności są jednocześnie spełnione. Mamy wtedy:

$$\bigwedge_{n \ge n_0} (|x_n - x| < \delta \land |y_n - y| < \delta) \tag{1.1}$$

Z 1.1 uzyskujemy:

$$\bigwedge_{n > n_0} |x_n - x| + |y_n - y| < 2\delta \tag{1.2}$$

Skorzystamy z nierówności trójkąta i rozwiniemy wyrażenie  $|(x_n + y_n) - (x + y)|$ :

$$|(x_n + y_n) - (x + y)| = |(x_n - x) + (y_n - y)| \le |x_n - x| + |y_n - y|$$

Widzimy, że dla dowolnego  $n \ge n_0$ :

$$|(x_n + y_n) - (x + y)| < 2\delta = 2 \cdot \frac{\epsilon}{2} = \epsilon$$

Dla dowolnego  $\epsilon > 0$  istnieje takie  $n_0$ , że  $\bigwedge_{n \geq n_0} |(x_n + y_n) - (x + y)| < \epsilon$ . Zatem x + y jest granicą  $(x_n + y_n)$ .

## 2 Ciągi liczb rzeczywistych

W tym rozdziale każdy rozważany ciąg jest o wyrazach rzeczywistych.

Twierdzenie 3 Ciąg monotoniczny jest zbieżny wtedy i tylko wtedy, gdy jest ograniczony.

Każdy ciąg zbieżny jest ograniczony (np. Rudnicki Twierdzenie 3 Punkt 2.1.3). W jedną stronę dowód jest w takim razie gotowy. Pokażemy zatem, że ciąg który jest monotoniczny i ograniczony jest zbieżny.

Załóżmy, że ciąg  $(x_n)$  jest nierosnący (ciąg nazywamy monotonicznym gdy jest niemalejący lub nierosnący) oraz, że jest ograniczony. Niech:

$$A = \{x_n : n \in \mathbb{N}\}.$$

Zauważmy, że A jest zbiorem ograniczonym. Co to znaczy, że zbiór jest ograniczony? Mówimy, że zbiór A jest ograniczony jeśli jest ograniczony z góry i z dołu.

Zbiór A jest ograniczony z góry gdy:

$$\bigvee_{M \in \mathbb{R}} \bigwedge_{x \in A} x \le M$$

Zbiór A jest ograniczony z dołu gdy:

$$\bigvee_{m \in \mathbb{R}} \bigwedge_{x \in A} x \ge m$$

Wcześniej założyliśmy, że ciąg  $(x_n)$  jest ograniczony. Wtedy istnieje liczba dodatnia ograniczająca wszystkie wyrazy tego ciągu. Niech M>0 będzie taką liczbą, która dla dowolnego n spełnia nierówność  $M\geq |x_n|$ . Na mocy pewnej znanej własności dotyczącej wartości bezwzględnej (patrz Wikipedia angielska) mamy:

$$M \ge |x_n| \iff -M \le x_n \le M$$

Ciekawe spostrzeżenie jest takie, że przez założenie o ograniczoności ciągu, widzimy powyżej, że jeśli wrzucimy wyrazy tego ciągu do jakiegoś zbioru to ten zbiór będzie ograniczony. Jest nam to niezbędne do posłużenia się aksjomatem ciągłości. Wiemy wtedy, że zbiór A ma kres dolny. Niech zatem  $x=\inf A$ . Z definicji kresu dolnego mamy wtedy:

$$\bigwedge_{n\in\mathbb{N}} x \le x_n$$

oraz

$$\bigwedge_{\epsilon > 0} \bigvee_{x_{n_0} \in A} x_{n_0} < x + \epsilon$$

Teraz ważny krok, przypomnijmy, że założyliśmy, że nasz ciąg jest nierosnący. Czyli dla każdego  $n \in \mathbb{N}$   $x_{n+1} \leq x_n$ . Na pierwszy rzut oka może się to nie wydawać oczywiste, ale

wykorzystamy tę informację do obsadzenia "własnych" wskaźników. Prawdziwym jest, że dla  $n \ge n_0$  mamy  $x_n \le x_{n_0}$ . Dlaczego? Wyrazy ciągu wyglądają jakoś tak:

$$x_1, x_2, x_3, x_4, x_5, x_6...$$

Każdy kolejny wyraz ciągu, jest większy niż poprzedni, jeśli wiemy zatem z aksjomatu ciągłości o istnieniu liczby  $x_{n_0}$  to jest gdzieś ona w tym zbiorze wyrazów ciągu:

$$x_1, x_2, x_3, x_4, x_5, x_6, x_{n_0}, x_8, x_9, x_{10}...$$