Chapitre02 - Méthodes physiques d'analyses-2024-2025 - Corrigé

QCM

1. A et C; 2. A et C; 3. B et C; 4. A et C; 5. A et C;

6. C; 7. B et C; 8. C; 9. C; 10. A.

Utiliser la loi de Beer-Lambert

1. Loi de Beer-Lambert : pour une longueur d'onde λ donnée, l'absorbance A d'une solution diluée est proportionnelle à la concentration C en espèce colorée :

$$\varepsilon_{\lambda}$$
 en L·mol⁻¹·cm⁻¹ ℓ en cm

A sans unité $A_{\lambda} = \varepsilon_{\lambda} \times \ell \times C$ ℓ C en mol·L⁻¹

- 2. Pour une concentration C inférieure à 3 mmol· L^{-1} , le graphe est une droite passant par l'origine ; il traduit donc la loi de Beer-Lambert.
- 3. On repère le point d'intersection entre le graphe et la droite parallèle à l'axe des abscisses d'ordonnée $A_s = 1,25$. La valeur de la concentration est l'abscisse de ce point : $C_s = 2,2$ mmol·L⁻¹.

Exploiter la loi de Kohlrausch

1. Tracé de la courbe d'étalonnage : $\sigma = f(C)$.

- 2. La courbe traduit la loi de Kohlrausch car le graphe est une droite qui passe par l'origine, donc $\sigma = k \times C$.
- **3.** On repère le point $\sigma_s = 2,25 \text{ mS} \cdot \text{cm}^{-1}$ sur l'axe des ordonnées. On détermine la valeur de la concentration C_s sur l'axe des abscisses : $C_s = 8.2 \text{ mmol} \cdot L^{-1}$.

Et donc $C_0 = 10 \times C_s$ soit $C_0 = 10 \times 8,2 \times 10^{-3} = 8,2 \times 10^{-1}$ mol·L⁻¹. **4.** Comme $C_0 > 10^{-2}$ mol·L⁻¹, il a fallu diluer la solution S_0 pour être dans le domaine de linéarité de la loi de Kohlrausch.

Écrire l'expression d'une conductivité

1.
$$\sigma = \lambda_{Ag^{+}} \times [Ag^{+}] + \lambda_{NO_{3}^{-}} \times [NO_{3}^{-}].$$

2. σ s'exprime en S·m⁻¹; λ_{Ag}^+ et $\lambda_{NO_3}^-$ s'expriment en S·m²·mol⁻¹.

Donc [Ag⁺] et [NO₃⁻] s'expriment en : $\frac{S \cdot m^{-1}}{S \cdot m^2 \cdot mol^{-1}} = mol \cdot m^{-3}$.

Exploiter la valeur d'une conductivité

1.
$$\sigma = \lambda_{K^+} \times [K^+] + \lambda_{C\ell^-} \times [C\ell^-] = \left(\lambda_{K^+} + \lambda_{C\ell^-}\right) \times C$$

2. a. $\sigma = 1.04 \text{ mS} \cdot \text{cm}^{-1} = 1.04 \times 10^{-3} \text{ S} \cdot \text{cm}^{-1}$ $= 1.04 \times 10^{-3} \times 10^{2} \,\mathrm{S \cdot m^{-1}} = 1.04 \times 10^{-1} \,\mathrm{S.m^{-1}}.$

$$C = \frac{\sigma}{(\lambda_{K^{+}} + \lambda_{C\ell^{-}})}$$
soit $C = \frac{1,04 \times 10^{-1}}{(7,35 \times 10^{-3} + 7,63 \times 10^{-3})} = 6,94 \text{ mol} \cdot \text{m}^{-3} = [\text{K}^{+}].$

b. $C = 6.94 \times 10^{-3} \text{ mol} \cdot \text{L}^{-1}$

Utiliser l'équation d'état du gaz parfait

- **1.** Équation d'état du gaz parfait : $P \times V = n \times R \times T$ avec P en Pa, V en m³, n en mol, T en K et $R = 8,314 \text{ Pa} \cdot \text{m}^3 \cdot \text{mol}^{-1} \cdot \text{K}^{-1}$.
- 2. La quantité de diazote N, formé est :

$$n(N_2) = \frac{P \times V}{R \times T}.$$

soit
$$n(N_2) = \frac{1.3 \times 10^5 \times 90 \times 10^{-3}}{8.314 \times (273 + 30)} = 4.6 \text{ mol.}$$

13 Identifier une espèce à partir d'un spectre

- 1. Ce spectre est appelé « UV-visible » car les absorbances sont mesurées pour des ondes appartenant aux domaines visibles et UV.
- 2. Cette solution est colorée car elle absorbe des radiations de longueurs d'onde comprises entre 600 nm et 700 nm qui appartiennent au domaine visible.
- 3. L'absorbance maximale est à environ 660 nm ; le colorant est donc le bleu de méthylène.
 - 26 1. L'ordonnée correspond à la transmittance en pourcentage. Cette grandeur traduit la capacité d'un échantillon à transmettre la lumière. On trouve en abscisse le nombre d'onde (exprimé en cm⁻¹), c'est l'inverse de la longueur d'onde.
 - 2. On repère une bande large et forte située vers $\widetilde{v} = 3\,350\,\text{cm}^{-1}$ qui permet d'identifier la liaison O—H d'un alcool.
 - 3. Il y a ici deux formules semi-développées possibles:

OH
$$H_3C$$
— CH — CH_3 propan-2-ol H_3C — CH_2 — CH_2 —OH propan-1-ol

20 L'eau oxygénée « 130 volumes »

1. La quantité de matière de dioxygène est :

$$n(O_2) = \frac{P \times V}{R \times T} = \frac{1,00 \times 10^5 \times 130 \times 10^{-3}}{8,314 \times 273} = 5,73 \text{ mol.}$$

2. $n(H_2O_2) = 2 \times n(O_2) = 2 \times 5,73 = 11,5 \text{ mol},$

donc $C_0 = 11.5 \text{ mol} \cdot L^{-1}$.

3. La masse de peroxyde d'hydrogène contenue dans un litre d'eau oxygénée 130 volumes est :

$$m(H_2O_2) = n(H_2O_2) \times M(H_2O_2) = 11.5 \times 34.0 = 391 \text{ g}.$$

(On obtient $m(H_2O_2) = 389 \text{ g si on réutilise les résultats des calculs}$ intermédiaires sans les arrondir.)

Or, un litre d'eau oxygénée 130 volumes a une masse $m_{\rm sol} = 1.13 \times 10^3 \, \text{g}.$

14 À chacun son rythme

Contrôle qualité d'un produit

- **1.** On repère le point $\sigma_s = 1.8 \text{ mS} \cdot \text{cm}^{-1}$ sur l'axe des ordonnées. On détermine la valeur de la concentration C_s sur l'axe des abscisses : $C_s = 14 \text{ mmol} \cdot L^{-1} = 1,4 \times 10^{-2} \text{ mol} \cdot L^{-1}.$
- **2.** La solution S_0 est diluée 10 fois, donc $C_0 = 10 \times C_5$. soit $C_0 = 10 \times 1.4 \times 10^{-2}$ mol·L⁻¹ = 1.4 × 10⁻¹ mol·L⁻¹.
- 3. Concentration en masse :

 $t_0 = C_0 \times M(NaC\ell)$ soit $t_0 = 1.4 \times 10^{-1} \times 58.5 = 8.2 \text{ g} \cdot L^{-1}$.

4. Le fabricant indique : « 0,85 g de chlorure de sodium pour 100 mL

de solution », ce qui correspond à $t_{\text{notice}} = \frac{0.85}{100 \times 10^{-3}} = 8.5 \text{ g} \cdot \text{L}^{-1}$.

5. Écart relatif:
$$\frac{\left|t_{\text{notice}} - t_0\right|}{t_{\text{notice}}} = \frac{\left|8.5 - 8.19\right|}{8.19} = 0.0378... \approx 4 \%.$$

6. La concentration en masse en chlorure de sodium de la solution So satisfait au critère de qualité car l'écart relatif est inférieur à 5 %.