Greedy Algorithms

Abhiram Ranade

February 1, 2016

Input: S[1..n], F[1..n]

Input: S[1..n], F[1..n]

S[i], F[i]: start and finish time of job i

Input: S[1..n], F[1..n]

S[i], F[i]: start and finish time of job i

Output: Largest subset of jobs no two of which overlap.

Input: S[1..n], F[1..n]

S[i], F[i]: start and finish time of job i

Output: Largest subset of jobs no two of which overlap.

Only one job can execute at a time, execute as many as possible.

Input: S[1..n], F[1..n]

S[i], F[i]: start and finish time of job i

Output: Largest subset of jobs no two of which overlap.

Only one job can execute at a time, execute as many as possible.

Guaranteed correct algorithm: Try all possible subsets, and pick largest.

Input: S[1..n], F[1..n]

S[i], F[i]: start and finish time of job i

Output: Largest subset of jobs no two of which overlap.

Only one job can execute at a time, execute as many as possible.

Guaranteed correct algorithm: Try all possible subsets, and pick largest.

Can we try discovering a greedy strategy using the exchange argument?

Input: S[1..n], F[1..n]

S[i], F[i]: start and finish time of job i

Output: Largest subset of jobs no two of which overlap.

Only one job can execute at a time, execute as many as possible.

Guaranteed correct algorithm: Try all possible subsets, and pick largest.

Can we try discovering a greedy strategy using the exchange argument?

Seems difficult.

Input: S[1..n], F[1..n]

S[i], F[i]: start and finish time of job i

Output: Largest subset of jobs no two of which overlap.
Only one job can execute at a time, execute as many as possible.

Guaranteed correct algorithm: Try all possible subsets, and pick largest.

Can we try discovering a greedy strategy using the exchange argument?

Seems difficult.

Another attempt: can we (greedily) identify one job which we feel must be in the optimum solution?

Different ways of being greedy! Benefit of picking a job:

Benefit of picking a job: intrinsically good!

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

Pick the job with least duration.

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

▶ Pick the job with least duration.

Show this does not work.

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

Pick the job with least duration.

Show this does not work.

Pick the job which conflicts with fewest other jobs.

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

▶ Pick the job with least duration.

Show this does not work.

▶ Pick the job which conflicts with fewest other jobs.

This also does not work!

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

▶ Pick the job with least duration.

Show this does not work.

▶ Pick the job which conflicts with fewest other jobs.

This also does not work!

Pick the job with the earliest starting time.

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

▶ Pick the job with least duration.

Show this does not work.

Pick the job which conflicts with fewest other jobs.

This also does not work!

▶ Pick the job with the earliest starting time.

Running out of imagination..

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

▶ Pick the job with least duration.

Show this does not work.

Pick the job which conflicts with fewest other jobs.

This also does not work!

▶ Pick the job with the earliest starting time.

Running out of imagination..

Pick the job with the earliest finishing time..

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

▶ Pick the job with least duration.

Show this does not work.

Pick the job which conflicts with fewest other jobs.

This also does not work!

▶ Pick the job with the earliest starting time.

Running out of imagination..

Pick the job with the earliest finishing time..

More so...

Benefit of picking a job: intrinsically good!

(Potential) cost of picking a job: conflicting jobs cannot be picked.

Two jobs conflict if the intervals overlap.

Some (greedy) ideas

▶ Pick the job with least duration.

Show this does not work.

Pick the job which conflicts with fewest other jobs.

This also does not work!

▶ Pick the job with the earliest starting time.

Running out of imagination..

Pick the job with the earliest finishing time..

More so...

Earliest finishing time works!

Proof: Consider an optimal solution T.

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Proof: Consider an optimal solution T. Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

If no job in \mathcal{T} conflicts with j, we will get better solution than optimal.

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

If no job in \mathcal{T} conflicts with j, we will get better solution than optimal.

Thus some jobs in T must conflict with job j. Say jobs k, l,

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

If no job in \mathcal{T} conflicts with j, we will get better solution than optimal.

Thus some jobs in T must conflict with job j. Say jobs $k, 1, \ldots$

Job j has earliest finishing time. So jobs k, l, \ldots finish after f_j .

Proof: Consider an optimal solution T. Suppose earliest finishing job (job j) is not in it.

Suppose earnest misning job (job)) is not in it

Let us try to add j to T.

If no job in \mathcal{T} conflicts with j, we will get better solution than optimal.

Thus some jobs in T must conflict with job j. Say jobs $k, 1, \ldots$

Job j has earliest finishing time. So jobs k, l, \ldots finish after f_j . So they must start before f_j .

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

If no job in \mathcal{T} conflicts with j, we will get better solution than optimal.

Thus some jobs in T must conflict with job j. Say jobs k, l, \ldots

Job j has earliest finishing time. So jobs k, l, \ldots finish after f_j . So they must start before f_i .

Thus k, l, \ldots overlap with each other at f_j

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

If no job in \mathcal{T} conflicts with j, we will get better solution than optimal.

Thus some jobs in T must conflict with job j. Say jobs $k, 1, \ldots$

Job j has earliest finishing time. So jobs k, l, \ldots finish after f_j . So they must start before f_j .

Thus k, l, \ldots overlap with each other at f_j

Jobs in T cannot overlap with each other, so there cannot be many jobs k, l, \ldots

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

If no job in \mathcal{T} conflicts with j, we will get better solution than optimal.

Thus some jobs in T must conflict with job j. Say jobs k, l, \ldots

Job j has earliest finishing time. So jobs k, l, \ldots finish after f_j . So they must start before f_j .

Thus k, l, \ldots overlap with each other at f_j

Jobs in T cannot overlap with each other, so there cannot be many jobs k, l, \ldots

At most one job k conflicts with j.

Earliest finishing job must be in some optimal solution

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

If no job in \mathcal{T} conflicts with j, we will get better solution than optimal.

Thus some jobs in T must conflict with job j. Say jobs k, l, \ldots

Job j has earliest finishing time. So jobs k, l, \ldots finish after f_j . So they must start before f_j .

Thus k, l, \ldots overlap with each other at f_j

Jobs in T cannot overlap with each other, so there cannot be many jobs k, l, \ldots

At most one job k conflicts with j.

$$T' = T - \{k\} \cup \{j\}$$
 is a valid solution, $|T'| = |T|$

Earliest finishing job must be in some optimal solution

Proof: Consider an optimal solution T.

Suppose earliest finishing job (job j) is not in it.

Let us try to add j to T.

If no job in T conflicts with j, we will get better solution than optimal.

Thus some jobs in T must conflict with job j. Say jobs $k, 1, \ldots$

Job j has earliest finishing time. So jobs k, l, \ldots finish after f_j . So they must start before f_i .

Thus k, l, \ldots overlap with each other at f_j

Jobs in T cannot overlap with each other, so there cannot be many jobs k, l, \ldots

At most one job k conflicts with j.

 $T'=T-\{k\}\cup\{j\}$ is a valid solution, |T'|=|T|Thus we have found an optimal solution which has j.

S[1..n], F[1..n]: original instance

```
S[1..n], F[1..n]: original instance j = \text{job} with least F[j] must be in some optimal solution
```

S[1..n], F[1..n]: original instance j = job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be.

S[1..n], F[1..n]: original instance j = job with least F[j] must be in some optimal solution. If job j is in solution, jobs that conflict with it cannot be. Let S', F' = starting,finishing times of jobs except for j and those that conflict with j.

S[1..n], F[1..n]: original instance j = job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F' = starting,finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

S[1..n], F[1..n]: original instance j = job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F' = starting,finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F.

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof:

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof:

Suppose an optimal solution O for S, F has more jobs than T.

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof:

Suppose an optimal solution O for S, F has more jobs than T. Since j is guaranteed to be in some optimal solution for S, F, wlog j is present in O.

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof:

Suppose an optimal solution O for S, F has more jobs than T. Since j is guaranteed to be in some optimal solution for S, F, wlog j is present in O. O does not have jobs that conflict with j.

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof: Suppose an optimal solution O for S, F has more jobs than T.

Since j is guaranteed to be in some optimal solution for S, F, wlog j is present in O.

O does not have jobs that conflict with j.

Let $O' = O - \{j\}$.

S[1..n], F[1..n]: original instance i = job with least F[i] must be in some optimal solution If job *j* is in solution, jobs that conflict with it cannot be. Let S', F' = starting, finishing times of jobs except for j and those S', F' define another instance. that conflict with j.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{i\} \cup T'$ is an optimal solution for S, F. Proof: Suppose an optimal solution O for S, F has more jobs than T. Since j is guaranteed to be in some optimal solution for S, F, wlog

j is present in O. O does not have jobs that conflict with j. Let $O' = O - \{i\}$. O' also does not have jobs conflicting with i.

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof:

Suppose an optimal solution O for S,F has more jobs than T. Since j is guaranteed to be in some optimal solution for S,F, wlog j is present in O. O does not have jobs that conflict with j. Let $O' = O - \{j\}$. O' also does not have jobs conflicting with j. O' only contains jobs in S',F'.

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof:

Suppose an optimal solution O for S,F has more jobs than T. Since j is guaranteed to be in some optimal solution for S,F, wlog j is present in O. O does not have jobs that conflict with j. Let $O' = O - \{j\}$. O' also does not have jobs conflicting with j. O' only contains jobs in S',F'. O' is a solution for S',F'

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof:

Suppose an optimal solution O for S,F has more jobs than T. Since j is guaranteed to be in some optimal solution for S,F, wlog j is present in O. O does not have jobs that conflict with j. Let $O' = O - \{j\}$. O' also does not have jobs conflicting with j. O' only contains jobs in S',F'. O' is a solution for S',F' $|O'| \leq |T'|$ because T' is optimal for S',F'.

|O| = 1 + |O'|

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the

 $T=\{j\}\cup T'$ is an optimal solution for S,F. Proof: Suppose an optimal solution O for S,F has more jobs than T. Since j is guaranteed to be in some optimal solution for S,F, wlog j is present in O. O does not have jobs that conflict with j. Let $O'=O-\{j\}$. O' also does not have jobs conflicting with j. O' only contains jobs in S',F'. O' is a solution for S',F' $|O'|\leq |T'|$ because T' is optimal for S',F'.

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the

 $T=\{j\}\cup T'$ is an optimal solution for S,F. Proof: Suppose an optimal solution O for S,F has more jobs than T. Since j is guaranteed to be in some optimal solution for S,F, wlog j is present in O. O does not have jobs that conflict with j. Let $O'=O-\{j\}$. O' also does not have jobs conflicting with j. O' only contains jobs in S',F'. O' is a solution for S',F'

|O'| < |T'| because T' is optimal for S', F'.

|O| = 1 + |O'| < 1 + |T'|

|O| = 1 + |O'| < 1 + |T'| < |T|

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the

 $T=\{j\}\cup T'$ is an optimal solution for S,F. Proof: Suppose an optimal solution O for S,F has more jobs than T. Since j is guaranteed to be in some optimal solution for S,F, wlog j is present in O. O does not have jobs that conflict with j. Let $O'=O-\{j\}$. O' also does not have jobs conflicting with j. O' only contains jobs in S',F'. O' is a solution for S',F' $|O'|\leq |T'|$ because T' is optimal for S',F'.

S[1..n], F[1..n]: original instance j= job with least F[j] must be in some optimal solution If job j is in solution, jobs that conflict with it cannot be. Let S', F'= starting, finishing times of jobs except for j and those that conflict with j. S', F' define another instance.

Claim: Let T' denote the optimal solution for S', F'. Then the $T = \{j\} \cup T'$ is an optimal solution for S, F. Proof:

Suppose an optimal solution O for S, F has more jobs than T. Since j is guaranteed to be in some optimal solution for S, F, wlog j is present in O. O does not have jobs that conflict with j. Let $O' = O - \{j\}$. O' also does not have jobs conflicting with j. O' only contains jobs in S', F'. O' is a solution for S', F'. $|O'| \leq |T'|$ because T' is optimal for S', F'. |O| = 1 + |O'| < 1 + |T'| < |T| Contradiction!

For convenience we will determine the number of jobs in the optimal solution.

 $\mathsf{Greedy}(\mathsf{S}[1..\mathsf{n}],\!\mathsf{F}[1..\mathsf{n}])\{$

$$\mathsf{Greedy}(\mathsf{S}[1..\mathsf{n}],\mathsf{F}[1..\mathsf{n}])\{$$

1. If
$$n = 1$$
 return 1

```
\mathsf{Greedy}(\mathsf{S}[1..n],\!\mathsf{F}[1..n])\{
```

- 1. If n = 1 return 1
- 2. j = integer s.t. F[j] smallest in F[1..n]

```
\mathsf{Greedy}(\mathsf{S}[1..\mathsf{n}],\!\mathsf{F}[1..\mathsf{n}])\{
```

- 1. If n = 1 return 1
- 2. j = integer s.t. F[j] smallest in F[1..n]
- 3. Remove j and all jobs that conflict with j from S,F.

```
Greedy(S[1..n],F[1..n]){
  1. If n = 1 return 1
  2. j = integer s.t. F[j] smallest in F[1..n]
  3. Remove j and all jobs that conflict with j from S,F.
  4. Return 1 + Greedy(S,F after removals)
}
```

For convenience we will determine the number of jobs in the optimal solution.

```
\begin{split} & \text{Greedy}(S[1..n],F[1..n]) \{ \\ & 1. \text{ If } n=1 \text{ return } 1 \\ & 2. \text{ } j=\text{integer s.t. } F[j] \text{ smallest in } F[1..n] \\ & 3. \text{ Remove } j \text{ and all jobs that conflict with } j \text{ from } S,F. \\ & 4. \text{ Return } 1+\text{Greedy}(S,F \text{ after removals}) \\ \} \end{split}
```

Running time: T(n) =

```
Greedy(S[1..n],F[1..n]){

1. If n = 1 return 1

2. j = \text{integer s.t. } F[j] smallest in F[1..n]

3. Remove j and all jobs that conflict with j from S,F.

4. Return 1 + \text{Greedy}(S,F \text{ after removals})

}

Running time: T(n) = O(n) + T(n-1)
```

```
\label{eq:Greedy} \begin{split} &\text{Greedy}(S[1..n],F[1..n])\{\\ &1. \text{ If } n=1 \text{ return } 1\\ &2. \text{ } j=\text{integer s.t. } F[j] \text{ smallest in } F[1..n]\\ &3. \text{ Remove } j \text{ and all jobs that conflict with } j \text{ from } S,F.\\ &4. \text{ Return } 1+\text{Greedy}(S,F \text{ after removals})\\ &\} \end{split}
```

Running time:
$$T(n) = O(n) + T(n-1) = O(n^2)$$

Preprocess: Sort S, F by F. Time = $O(n \log n)$.

Preprocess: Sort S, F by F. Time = $O(n \log n)$.

 $\mathsf{Greedy}(\mathsf{S}[1..\mathsf{n}],\!\mathsf{F}[1..\mathsf{n}])\{$

Preprocess: Sort S, F by F. Time = $O(n \log n)$. Greedy(S[1..n],F[1..n]){

 $1. \ \ \text{If } n=1 \ \text{return} \ 1$

Preprocess: Sort S, F by F. Time = $O(n \log n)$.

 $\mathsf{Greedy}(\mathsf{S}[1..\mathsf{n}],\mathsf{F}[1..\mathsf{n}])\{$

- 1. If n = 1 return 1
- 2. k = smallest integer s.t. S[j] > F[1]Job 1 conflicts with Jobs 2..j-1

```
Preprocess: Sort S, F by F. Time = O(n \log n).

Greedy(S[1..n],F[1..n]){

1. If n = 1 return 1

2. k = smallest integer s.t. S[j] > F[1]

Job 1 conflicts with Jobs 2..j-1

3. Return 1 + Greedy(S[j..n],F[j..n])

}
```

```
Preprocess: Sort S, F by F. Time = O(n \log n).
Greedy(S[1..n],F[1..n])
 1. If n = 1 return 1
 2. k = \text{smallest integer s.t. } S[i] > F[1]
                                     Job 1 conflicts with Jobs 2..j-1
 3. Return 1 + Greedy(S[i..n],F[i..n])
T(n) = O(k) + T(n-k) = O(n)
```

```
Preprocess: Sort S, F by F. Time = O(n \log n).
Greedy(S[1..n],F[1..n])
 1. If n = 1 return 1
 2. k = \text{smallest integer s.t. } S[i] > F[1]
                                     Job 1 conflicts with Jobs 2..j-1
 3. Return 1 + Greedy(S[i..n],F[i..n])
T(n) = O(k) + T(n-k) = O(n)
                                            Total time = O(n \log n)
```

Preprocess: Sort S, F by F. Time = $O(n \log n)$.

$$\mathsf{Greedy}(\mathsf{S}[1..\mathsf{n}],\mathsf{F}[1..\mathsf{n}])\{$$

- 1. If n = 1 return 1
- 2. k = smallest integer s.t. S[j] > F[1]Job 1 conflicts with Jobs 2..j-1
- 3. Return 1 + Greedy(S[j..n],F[j..n])
 }

$$T(n) = O(k) + T(n-k) = O(n)$$
 Total time = $O(n \log n)$

Subtle point: Some job k > j may conflict with job 1. But it will also conflict with job j.

Preprocess: Sort S, F by F. Time = $O(n \log n)$.

$$\mathsf{Greedy}(\mathsf{S}[1..\mathsf{n}],\mathsf{F}[1..\mathsf{n}])\{$$

- 1. If n = 1 return 1
- 2. k = smallest integer s.t. S[j] > F[1]Job 1 conflicts with Jobs 2..j-1
- 3. Return 1 + Greedy(S[j..n],F[j..n])
 }

$$T(n) = O(k) + T(n-k) = O(n)$$
 Total time = $O(n \log n)$

Subtle point: Some job k>j may conflict with job 1. But it will also conflict with job j.

Job j will be selected in the next recursion and so k will not be selected.

▶ In problems involving intervals, it is often difficult to decide what is the right greedy strategy. Try all possible orders, e.g. earliest/latest start/finish, and also biggest interval, interval with least conflicts etc. Hope something works!

- ▶ In problems involving intervals, it is often difficult to decide what is the right greedy strategy. Try all possible orders, e.g. earliest/latest start/finish, and also biggest interval, interval with least conflicts etc. Hope something works!
- Earliest finishing job may not be in every optimal solution. We only proved that there exists an optimal solution which contains an earliest finishing job.

- ▶ In problems involving intervals, it is often difficult to decide what is the right greedy strategy. Try all possible orders, e.g. earliest/latest start/finish, and also biggest interval, interval with least conflicts etc. Hope something works!
- Earliest finishing job may not be in every optimal solution. We only proved that there exists an optimal solution which contains an earliest finishing job.
- ► The rest of the solution is found by doing more work: luckily this work turns out to be an instance of the same kind, so recursion works.

- ▶ In problems involving intervals, it is often difficult to decide what is the right greedy strategy. Try all possible orders, e.g. earliest/latest start/finish, and also biggest interval, interval with least conflicts etc. Hope something works!
- Earliest finishing job may not be in every optimal solution. We only proved that there exists an optimal solution which contains an earliest finishing job.
- ► The rest of the solution is found by doing more work: luckily this work turns out to be an instance of the same kind, so recursion works.
- As always, some sorting helps reduce the time from $O(n^2)$ to $O(n \log n)$.

▶ Propose a way to take the first decision: "Imagine the optimal solution, make a small change, ..."

► Propose a way to take the first decision: "Imagine the optimal solution, make a small change, ..." Greedy choice

- ► Propose a way to take the first decision: "Imagine the optimal solution, make a small change, ..." Greedy choice
- Prove a greedy choice theorem: "There exists an optimal solution in which the first decision can be made in the proposed manner."

- ► Propose a way to take the first decision: "Imagine the optimal solution, make a small change, ..." Greedy choice
- Prove a greedy choice theorem: "There exists an optimal solution in which the first decision can be made in the proposed manner."
- ► Show that the task of taking the remaining decisions = solving another instance of the same type. (residual instance)

- ► Propose a way to take the first decision: "Imagine the optimal solution, make a small change, ..." Greedy choice
- Prove a greedy choice theorem: "There exists an optimal solution in which the first decision can be made in the proposed manner."
- Show that the task of taking the remaining decisions = solving another instance of the same type. (residual instance)
- ▶ Prove an Optimal substructure theorem: "Given an optimal solution to the residual instance, we can use that to build a solution to the original instance."

- ► Propose a way to take the first decision: "Imagine the optimal solution, make a small change, ..." Greedy choice
- Prove a greedy choice theorem: "There exists an optimal solution in which the first decision can be made in the proposed manner."
- Show that the task of taking the remaining decisions = solving another instance of the same type. (residual instance)
- ▶ Prove an Optimal substructure theorem: "Given an optimal solution to the residual instance, we can use that to build a solution to the original instance."
- ▶ Other ways also possible, soon.

Interval graph colouring Input: S[1..n], F[1..n]

 $\label{eq:continuous} \mbox{Input: } S[1..n], \ F[1..n] \qquad \mbox{Guest i arrives on date } S[i], \ \mbox{leaves on } F[i]$

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed.

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed. Proof: Suppose you build R rooms.

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed. Proof: Suppose you build R rooms.

At the time of building Rth room, R-1 rooms were occupied, and a guest was waiting.

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed. Proof: Suppose you build R rooms.

At the time of building Rth room, R-1 rooms were occupied, and a guest was waiting.

Thus R rooms are necessary.

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed. Proof: Suppose you build R rooms.

At the time of building Rth room, R-1 rooms were occupied, and a guest was waiting.

Thus R rooms are necessary.

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed.

Proof: Suppose you build *R* rooms.

At the time of building Rth room, R-1 rooms were occupied, and a guest was waiting.

Thus *R* rooms are necessary.

Algorithm: Replace S[i] by triple (s,i,S[i]), and R[i] by (f,i,F[i]).

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed.

Proof: Suppose you build *R* rooms.

At the time of building Rth room, R-1 rooms were occupied, and a guest was waiting.

Thus *R* rooms are necessary.

Algorithm: Replace S[i] by triple (s,i,S[i]), and R[i] by (f,i,F[i]). Sort the triples by 3rd value (time).

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed.

Proof: Suppose you build *R* rooms.

At the time of building Rth room, R-1 rooms were occupied, and a guest was waiting.

Thus R rooms are necessary.

Algorithm: Replace S[i] by triple (s,i,S[i]), and R[i] by (f,i,F[i]). Sort the triples by 3rd value (time).

Process the triples in time order, keeping track of guests as they arrive and leave, placing them in available or new rooms.

Input: S[1..n], F[1..n] Guest i arrives on date S[i], leaves on F[i] Output: Minimum number of rooms needed to accommodate all guests.

"Lazy" algorithm: Serve guests in arrival order. If there is an empty room (vacated by some guest), give it. If there is no empty room, build a room.

Claim: Total number of rooms built = minimum number needed.

Proof: Suppose you build *R* rooms.

At the time of building Rth room, R-1 rooms were occupied, and a guest was waiting.

Thus R rooms are necessary.

Algorithm: Replace S[i] by triple (s,i,S[i]), and R[i] by (f,i,F[i]). Sort the triples by 3rd value (time).

Process the triples in time order, keeping track of guests as they arrive and leave, placing them in available or new rooms.

Time = $O(n \log n)$ for sorting.

▶ Assigned room = "colour". Each guest is being coloured so that conflicting guests get different colours.

- ▶ Assigned room = "colour". Each guest is being coloured so that conflicting guests get different colours.
- ▶ Optimality proof is very simple. We do not bother to compare with the optimal algorithm: we directly show that the number of rooms cannot be too small.