

STM32 Microcontrollers Course

ADC and LCD

Winter&Summer 2016

Liquid Crystal Display

Liquid Crystal Display

Pin No	Function	Name
1	Ground (0V)	Ground
2	Supply voltage; 5V (4.7V – 5.3V)	Vcc
3	Contrast adjustment; through a variable resistor	V _{EE}
4	Selects command register when low; and data register when high	Register Select
5	Low to write to the register; High to read from the register	Read/write
6	Sends data to data pins when a high to low pulse is given	Enable
7		DB0
8		DB1
9		DB2
10	9 hit data nina	DB3
11	8-bit data pins	DB4
12		DB5
13		DB6
14		DB7
15	Backlight V _{CC} (5V)	Led+
16	Backlight Ground (0V)	Led-

Liquid Crystal Display

Liquid Crystal Display Library

- void LCD_Init(void);
 - Initialize LCD
- void LCD_PutChar(unsigned char c);
 - Printing a character on LCD
- void LCD_GotoXY(unsigned char x, unsigned char y);
 - Changing Cursor position to a specific location
- void LCD_PutStr(char *str);
 - Printing a sequence of characters on LCD
- void LCD_ClrScr(void);
 - Clearing the LCD data

Project

Write your name on your LCDs

Analog vs Digital

Digital signal

Analog and Digital Transmissions

- In digital data transmitted using a sequence of 0/1
- In analog data transmitted using change of amplitudes

Analog VS Digital

Analog to Digital Converter

STM32F10xx Devices

- Up to 16 Conversation Channels
- 0 to 3.3v measurements (0-4096)
- 12-bit ADC conversion
- Analog Watchdog
 - Check the programmed boundary of voltage and makes interrupt if voltage get outside of boundary
- Up to 14Mhz ADC Clock
- 1us to 1.55us conversion time
- External trigger option for both regular and injected conversion

STM32F10xx Devices

Table 65. ADC pins

Name	Signal type	Remarks
V _{REF+}	Input, analog reference positive	The higher/positive reference voltage for the ADC, 2.4 V ≤V _{REF+} ≤V _{DDA}
V _{DDA} ⁽¹⁾	Input, analog supply	Analog power supply equal to V _{DD} and 2.4 V ≤V _{DDA} ≤3.6 V
V _{REF-}	Input, analog reference negative	The lower/negative reference voltage for the ADC, V _{REF-} = V _{SSA}
V _{SSA} ⁽¹⁾	Input, analog supply ground	Ground for analog power supply equal to V _{SS}
ADCx_IN[15:0]	Analog signals	Up to 21 analog channels ⁽²⁾

- 1. V_{DDA} and V_{SSA} have to be connected to V_{DD} and V_{SS} , respectively.
- For full details about the ADC I/O pins, please refer to the "Pinouts and pin descriptions" section of the corresponding device datasheet.

STM32F10xx Devices

$$\frac{Resolution\ of\ the\ ADC}{System\ Voltage} = \frac{ADC\ Reading}{Analog\ Voltage\ Measured}$$

$$\frac{4096}{3.3v} = \frac{x}{3.3v}$$

$$ADC\ Reading = \frac{4096\ * Analog\ Volteage}{System\ Voltage}$$

Reading Voltage	ADC Value
4096	3.3v
0	0
1.8	2234
2.9	3599

Conversion Modes

- Single Conversion Mode
 - ADC conversion may start by external trigger or ADON register
 - The converted data stored in ADC 16 Bit registers
 - EOC(End of Conversion) Flag set and Interrupt generated if EOCIE bit is set
 - After One Conversion ADC will stop
- Continues Conversion mode
 - ADC Conversion may start by external trigger or ADON Register
 - The converted data stored in ADC 16 bit registers
 - EOC(End of Conversion) Flag set and interrupt generated if EOCIE bit is set
 - Next conversion will start right after the previous one finished

Conversion Modes

- Regular Mode (Scanning)
 - Conversion of a sequence of ADC channels in a sequential loop order
- Injected Mode
 - Injecting a high priority conversion in middle of sequential loop

Conversion Modes

- Dual Mode
 - Simultaneous conversion of two channels, one in ADC 1 and the other one in ADC2

Poll ADC Conversions

Polling

Poll ADC Conversions

• DMA

Poll ADC Conversions

Interrupt

ADC Schematics

LM35 Temperature Sensor

Features

- Calibrated directly in ° Celsius (Centigrade)
- Linear + 10.0 mV/°C scale factor
- 0.5°C accuracy guaranteeable (at +25°C)
- Rated for full -55° to +150°C range
- Suitable for remote applications
- Low cost due to wafer-level trimming
- Operates from 4 to 30 volts
- Less than 60 µA current drain
- Low self-heating, 0.08°C in still air
- Nonlinearity only ±½°C typical
- Low impedance output, 0.1 Ω for 1 mA load

Project

 Get the room temperature in Celsius and Fahrenheit

