

NAVY EXPERIMENTAL DIVING UNIT

19950322 081

DISTRIBUTION STATEMENT A

Approved for public release; Distribution Unlimited

DEPARTMENT OF THE NAVY NAVY EXPERIMENTAL DIVING UNIT

321 BULLFINCH ROAD PANAMA CITY, FLORIDA 32407-7015

IN REPLY REFER TO:

NAVSEA TASK 92-002 & 92-003

NAVY EXPERIMENTAL DIVING UNIT

REPORT NO 4-95

EVALUATION OF BAUER K-22.0 HIGH PRESSURE BREATHING AIR COMPRESSOR

GEORGE D. SULLIVAN April 1994

Approved for public release; distribution unlimited

Acc	esion	For			
DT Un	IC anno	CRA&I TAB ounced ation	and a subsection of the subsec	X	
B)	/ istrib	ution/			
H	A	vailabil	ity C	odes	
1	ist	Avail S	and pecia	or	
1	4-1	Λ			,

Submitted by:

G. D. SULLIVAN

GS-11

Test Director

Reviewed by:

R. I. JOHNSTON

GM-13

Hyperbaric Engineer

R.W. MAZZONE

LCDR, USN

Senior Projects

Officer

J. R. CLARKE

GM-15

Scientifie Director

J. C. NELSON

LCDR, USN

Executive Officer

Approved by:

BERT MARSH

CDR, USN

Commanding Officer

DTIC SELECTE MAY 1 1 1995 G

REPORT DOCL	JMENTATION PAGE					
1a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED	1b. RESTRICTIVE MARKINGS					
2a. SECURITY CLASSIFICATION AUTHORITY	3. DISTRIBUTION/AVAILABILITY OF REPORT					
2b. DECLASSIFICATION/DOWNGRADING SCHEDULE	DISTRIBUTION STATEMENT A: Approved for public release; distribution is unlimited					
4. PERFORMING ORGANIZATION REPORT NUMBER(S) NEDU Report #4-95	5. MONITORING ORGANIZATION REPORT NUMBER(S)					
6a. NAME OF PERFORMING ORGANIZ. 6b. OFFICE SYMBOL Navy Experimental Diving Unit (If applicable)	7a. NAME OF MONITORING ORGANIZATION					
6c. ADDRESS (City, State, and ZIP Code) Panama City, Florida 32407-5001	7b. ADDRESS (City, State, and ZIP Code)					
8a. NAME OF FUNDING/SPONSORING ORGANIZATION (If applicable) Naval Sea Systems Command OOC	9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER					
8c. ADDRESS (City, State, and ZIP Code) Washington, D.C. 20362-5101	10. SOURCE OF FUNDING NUMBERS PROGRAM PROJECT NO. TASK NO. WORK UNIT ELEMENT NO. 92-002 92-003					
11. TITLE (Include Security Classification) Evaluation of BAUER K-22.0 High Pressure Breathing	Air Compressor					
12. PERSONAL AUTHOR(S) Mr. David Sullivan						
13a. TYPE OF REPORT 13b. TIME COVERED FROM TO	14. DATE OF REPORT (Year, Month, Day) 15. PAGE COUNT April 1994 25					
16. SUPPLEMENTARY NOTATION						
17. COSATI CODES 18. SUBJECT TERMS FIELD GROUP SUB-GROUP by block number	S (Continue on reverse if necessary and identify per)					
BAUER K-22.0 High Pressure Breathing Air Compressor						
19. ABSTRACT (Continue on reverse if necessary and identify by block number)						
In response to NAVSEA tasking, Navy Experimental Depressure Breathing Air Compressor from 17 March to at 5000 PSI, met Navy diving community requirements Approved for Navy Use List published by NAVSEA OOC	iving Unit (NEDU) evaluated the BAUER K-22.0 High 30 March 1994. The BAUER K-22.0, when operating s making it suitable for recommendation for the					
20. DISTRIBUTION/AVAILABILITY OF ABSTRACT UNCLASSIFIED/UNLIMITED SAME AS RPT. D	21. ABSTRACT SECURITY CLASSIFICATION TIC USERS					
22a. NAME OF RESPONSIBLE INDIVIDUAL NEDU Library	22b. TELEPHONE (Include Area Code) 22c. OFFICE SYMBOL 904-230-3224					

CONTENTS

I. INTRODUCTION
II. EQUIPMENT DESCRIPTION
III. TEST PROCEDURE
IV. OBSERVATIONS/RECOMMENDATIONS
A. AIR DELIVERY 10
B. AIR SAMPLING
C. OIL LUBRICATION
D. MAINTENANCE
E. PRIME MOVER
F. CADMIUM FITTINGS
V. CONCLUSIONS
VI. REFERENCES
APPENDIX A - TEST LOG
APPENDIX B - SAMPLE RESULTS

ILLUSTRATIONS

Figure No.		Page No.
1	Model K22.0 High Pressure Air Compressor Front View (Flywheel Side)	2
2	Model K22.0 High Pressure Air Compressor Rear View (Fan Wheel Side)	3
3	Model K22.0 High Pressure Air Compressor Right Hand Side Viewed From Flywheel	4
4	Model K22.0 High Pressure Air Compressor Left Hand Side Viewed From Flywheel	5
5	Model K22.0 High Pressure Air Compressor Lubricating Oil Circuit	6
6	Model K22.0 High Pressure Air Compressor Air Flow Diagram	8
7	NEDU Test No.94-08 Equipment Configuration	11

I. INTRODUCTION

In response to NAVSEA tasking¹⁻², a BAUER HIGH PRESSURE AIR COMPRESSOR, MODEL K22.0, ELECTRIC DRIVE was re-tested³ by the Navy Experimental Diving Unit (NEDU). This compressor system was previously tested and recommended for approval at 211 bars (3000 psi), (see NEDU Report 6-90)⁴. The purpose of this 25 hour test³ was to evaluate the P-10 purification system, to upgrade the compressor pressure rating from 207 bars (3000 psi) to 344 bars (5000 psi) and to:

- a. Determine if the compressor and Purification System provides compressed air at the required pressures, flow rates, quality and cleanliness required by the U.S. Navy⁵.
- b. Determine the adequacy of the manufacturer's information, instructions and guidance for the safe operation and overall management of the compressor.
- c. Ensure that the compressor purification system discharged clean breathing air required by the $U.S.\ Navy^5.$

II. EQUIPMENT DESCRIPTION

A. GENERAL

The BAUER, MODEL K22.0 high pressure, breathing air compressor (Figure 1 thru 4) is a four stage, three cylinder, "W" configuration. The 1st and 2nd stages are housed in one common stepped cylinder. All first, second, and fourth stage cylinders are forced oil lubricated via an oil pump and oil pressure regulator. The third stage cylinder is splashed-lubricated (Figure 5). The compressor requires approximately 8 liters (8.5 quarts or 2.1 U.S. gal.) of lubricating oil.

The BAUER compressor unit consists of a compressor block, P-10 purification system, auto drain monitoring system, and a drive motor mounted in a compressor module. The drive unit for this test was a 460 Volt, 3 Phase, 25 Horsepower motor. It is equipped with a slide type motor plate and V-belt pulley. Rotational torque is transferred to the compressor by three V-belts. Electric motors purchased for use with this compressor shall comply with Navy standards for sealed insulation units⁶.

The interstage separators are installed after the 2nd and 3rd stages. A sintered filter element is provided in the interfilter after the 2nd stage to eliminate solid contaminants. Water and oil are separated after the 4th stage. Elimination of all liquid oil and water particles in the 3rd and 4th stages is performed by the centrifugal action of a helical insert. The internal operation of the 2nd stage interfilter separators is through a vortex plate. The interfilter and oil and water separator are automatic, draining through a muffler/reservoir system. The auto drain

- 1. Intake Filter
- 2. Intercooler (1st stage)
- 3. Intercooler (2nd stage)
- 4. Intercooler (3rd stage)
- 5. After Cooler
- 6. Condensate Block (2nd/3rd stage)
- 7. Interfilter (3rd/4th stage)

A Air Outlet

- 8. Interm. Pressure Safety Valve (1st stage)
- 9. Interm. Pressure Safety Valve (2nd stage)
- 10. Interm. Pressure Safety Valve (3rd stage)
- 11. Condensate Block (4th stage)
- 12. Final Pressure Relief
- 13. One-Way Valve
- 14. Filters
- 15. Bleed Off Valve
- 16. Pressure Maintaining Valve
- 17. Service Valve

B Condensate Outlet

Note: Condensate Blocks 6, 7, and 11 are actually mounted on a heated condensate drain manifold along with the final separator.

Figure 1 Model K22.0 High Pressure Air Compressor Front View (Flywheel Side)

- 1 Inter-cooler 1st/2nd stage
- 2 Inter-cooler 2nd/3rd stage
- 3 Inter-cooler 3rd/4th stage and after-cooler
- 4 Fan-wheel
- 5 Safety valve, 2nd/3rd stage
- ·6 Inter-filter 2nd/3rd stage
- 7 Oil filter

Figure 2 Model K22.0 High Pressure Air Compressor Rear View (Fan-Wheel Side)

- 1 Cylinder 3rd stage
- 2 Inter-filter 2nd/3rd stage
- 3 Safety valve, 2nd stage
- 4 Inter-filter 3rd/4th stage

- 5 Safety valve, 3rd stage
- 6 Cylinder 1st/2nd stage
- 7 Intake filter
- 8 Fan-wheel

Figure 3 Model K22.0 High Pressure Air Compressor Right Hand Side, Viewed from Flywheel

- 1 Fan-wheel
- 2 Intake filter
- 3 Flywheel
- 4 Cylinder 4th stage
- 5 Oil and water separator
- 6 Final pressure safety valve
- 7 3/2-way solenoid valve
- 8 Condensate drain valve, 4th stage

- 9 Condensate drain valve, 3rd stage
- 10 Condensate drain valve, 2nd stage
- 11 Manual condensate drain valve
- 12 Condensate manifold
- 13 Condensate outlet
- 14 Oil drain plug
- 15 Air outlet

Figure 4 Model K22.0 High Pressure Air Compressor Left Hand Side, Viewed from Flywheel

- 1 Oil pump with regulating valve
- 2 Oil filter
- 3 Injection pipe
- 4 Oil pressure switch

- 5 Oil pressure gauge
- 6 Oil sump
- 7 Pipe to 4th stage cylinder
- 8 Oil jet

Figure 5 Model K22.0 High Pressure Air Compressor Lubricating Oil Circuit

system blows down the separators at 15 minute intervals. This is accomplished by an electric timer which deactivates a solenoid valve that controls the pressure on a bank of piston type valves isolating the separators from the reservoir.

The P-10 purification system consists of a drainage separator (auto draining) and three central filter towers with replaceable cartridges. Residual oil and water vapors not drained by the auto-drain system are removed by two drying cartridges, PART No. 058825-410. The treated air is free of oil, taste and smell. Carbon monoxide is eliminated when a BAUER cartridge PART No. 058827-410 is used.

The BAUER K22.0 compressor has a capacity of 650 to 930 liters per minute (23 to 33 scfm) free air delivered at 345 bars (5,000 psi).

A pressure maintaining/non-return valve set at 150 bars (2,175 psi) is provided down-stream from the purification system. This ensures that pressure build-up occurs in the filters during start up and initial compressor air delivery. This achieves constant, optimum filtering, moisture separation, fourth stage piston ring expansion/cylinder sealing, and prevents compressed air return from the storage flasks to the compressor during unit shut down. All four stages of the compressor are protected by safety relief valves. Figure 6 provides a diagram of the compressor air flow system.

The BAUER, MODEL K22.0 comes with one BAUER Instruction Manual⁷ (High Pressure Compressor Four-Stage) and one Instruction Manual and spare Parts Catalogue⁸.

g. 1.5 AIR FLOW DIAGRAM

Intake filter

Cylinder 1st stage
Cylinder 2nd stage
Cylinder 3rd stage
Cylinder 4th stage
Inter-cooler 1st/2nd stage
Inter-cooler 2nd/3rd stage
Inter-cooler 3rd/4th stage
After-cooler
Inter-filter 2nd/3rd stage
Inter-filter 3rd/4th stage
Oil and water separator
Safety valve 1st stage
Safety valve 2nd stage
Safety valve 3rd stage
Safety valve 4th stage
Pressure gauge, intermediate
pressure lst/2nd stage
Pressure gauge, intermediate
nressure 2nd/3rd stane

- 21 Pressure maintaining valve
- 22 Non-return valve
- 23 Air outlet; connector for tube outer dia. 10 mm
- 24 Pressure switch, intermediate pressure 1st/2nd stage
- 25 Pressure switch, intermediate pressure 2nd/3rd stage
- 26 Pressure switch, intermediate pressure 3rd/4th stage
- 27 Temperature switch 4th stage
- 28 Final pressure switch.
- 29 3/2-way solenoid valve
- 30 Condensate drain valve 2nd stage
- 31 Condensate drain valve 3rd stage
- 32 Condensate drain valve 4th stage
- 33 Manual condensate drain valve
- 34 Condensate manifold
- 35 Oil pump
- 36 Oil filter

Figure 6 Model K22.0 High Pressure Air Compressor Air Flow Diagram

BAUER Instruction Manual (High Pressure Compressor Four-Stage)⁷ is divided into the following sections:

- 1. Applicability
- 2. High Pressure Engineering
- 3. Installation and Operation
- 4. Service and Daily Care
- 5. Drainage of the Condensate

Appendix

BAUER Instruction Manual and Spare Parts Catalogue⁸ is divided into the following sections:

- 1. General
- 2. Lubrication
- 3. Intake Filter
- 4. Inter-Filters
- 5. Oil and Water Separator
- 6. Pressure Maintaining And Non-Return Valve
- 7. Safety Valves
- 8. Pressure Gauges
- 9. Valve Heads And Valves
- 10. Automatic Condensate Drain
- 11. Electrical System
- 12. Compressor Drive System
- 13. Cooling
- 14. Safety Procedures
- 15. Installation, Operation
- 16. Maintenance Schedule
- 17. Storage
- 18. Repair
- 19. Trouble Shooting
- 20. Tables
- 21. Annex

III. TEST PROCEDURE

There are various methods of testing compressor capacities, stability, and reliability. For this compressor evaluation³, NEDU chose to continuously run the compressor for extended periods charging a 89.2 liter (3.15 cuft) cylinder from 0 to 345 bars (0 to 5,000 psig).

The compressor and all ancillary equipment was received and set up according to manufacturer's instructions. A Cole Palmer Model 8502-14 temperature monitor and Yellow Springs Instruments 700 Series thermistor probes were attached for measuring compressor discharge and ambient temperatures. An Analox carbon monoxide monitor was used to analyze

compressor discharge air both before and after the filter purification system with the sample flow rate set at 300 ml per minute. Nitrogen with 50.8 PPM carbon monoxide was used to calibrate the high range of the monitor, and ambient air was used to set the monitor's low range at 0.

A gas mixture of 24.4% carbon monoxide and 75.6% nitrogen was injected into the compressor intake by a Victor Equipment Company manual regulator through a Fisher/Porter flow meter. Figure 7 provides a diagram of the test equipment configuration.

The introduction of carbon monoxide was adjusted to maintain approximately 50 PPM of carbon monoxide at the inlet to the central purification system. Appendix A shows the recorded data from the Test Log. The unit was operated in an exterior work area, open to ambient temperature and humidity. The testing included subjective evaluation of the system operation but did not include detailed mechanical review of the individual components of the system.

A Veeder-Root Series 6611 hand-held tachometer was used to determine compressor speed (RPM). The compressor speed was 1229 RPM.

The compressor was operated using two purification/filter cartridges and one carbon monoxide removal cartridge. A total of 25 test hours were expended. The following parameters were recorded:

- 1. Date
- 2. Time
- 3. Meter Test Hours
- 4. Ambient Temperature
- 5. Compressor Air Discharge Temperature
- 6. Ambient Humidity
- 7. Carbon Monoxide PPM (Before/After Filtration)
- 8. Injected Carbon Monoxide Flow Rate and Percentage
- 9. Compressor Oil Pressure
- 10. Compressor Final Discharge Pressure
- 11. Cylinder Charging Time
- 12. Compressor Free Air Capacity Flow Rate

Appendix A is recorded data from the Test Log.

IV. OBSERVATIONS/RECOMMENDATIONS

A. AIR DELIVERY

Compressor capacity was determined to be 1194 liters per minute (42 cfm) by calculating the average time to charge a 89.2 liter (3.15 cuft) floodable volume cylinder from 0 to 345 bars (0 to 5,000 psig). Calculations are shown in Appendix A.

Figure 7 Test No. 94-08 Equipment Configuration

B. AIR SAMPLING

An air sample was taken from the compressor purification system discharge at 1 and 25 hours running time. The samples were sent to the Coastal System Station (CSS) Laboratory, Code 5130, for purity analysis. Analysis of air samples are listed in Appendix B.

C. OIL LUBRICATION

The oil used during the test was Navy Symbol 2190 TEP. At the beginning of the test, the compressor oil sump level indicated 3/4 full. 2190 TEP oil was added to the full mark. The oil level was checked at the beginning of each test day using the oil level dip stick. During the 25 hour testing³, a total of 0.23 liters (1/2 pint) of oil was added to the compressor. BAUER Technical Manual⁸ paragraph 2.2. states:

"Due to the thermal load on the compressor only high quality oil should be used. You are recommended restricting oils to those which have been approved by us and are listed in our lubricating oil list. The list is available through our technical service department."

D. MAINTENANCE

No factory maintenance was scheduled during the 25 hours of running time.

E. PRIME MOVER

To meet Navy specifications the prime mover, if electric, should be a sealed insulation system (service A use) in accordance with MIL-M-17060 E⁶, Amendment 1.

F. CADMIUM FITTINGS

General Specifications⁹ state that cadmium coated fittings cannot be used in systems that exceed 400 degrees Fahrenheit or if the cadmium could come in contact with petroleum products¹⁰. At this time the only authorized HP compressor lubricant by the Navy is the petroleum based 2190 TEP (a petroleum based product). Recommend cadmium coated fittings be replaced with a suitable substitute.

V. CONCLUSIONS

- A. The high pressure air compressor delivers air which meets U.S. Navy standards⁵ at an average rate of 1194 liters per minute (42 cfm) per Appendix A. This meets the manufacturer's specification.
- B. The unit is sturdy, reliable and readily maintained.
- C. Based on the results of testing, the BAUER K-22.0 high pressure air compressor system recommended for inclusion on the Authorized for Navy Use List¹⁰.
- D. The vendor and NAVSEA should be contacted prior to purchase to ensure the unit meets the user's needs.

VI. REFERENCES

- 1. NAVSEA Task 92-002; <u>Evaluation of Commercially Available Divers Air Compressors</u>. Naval Sea Systems Command, 1992.
- 2. NAVSEA Task 92-003; <u>Evaluation of Commercially Available Filters for H.P. and L.P. Breathing Air</u>. Naval Sea Systems Command, 1992.
- 3. <u>Bauer K-220 Electric Drive High Pressure Air Compressor and Purification System Evaluation At 5000 PSIG Test Plan 94-08 (Unmanned) (Limited Distrubution).</u> Navy Experimental Diving Unit, February 1994.
- 4. Sullivan, George, <u>Evaluation of BAUER K-220 High Pressure Breathing Air Compressor</u>, Navy Experimental Diving Unit, NEDU TR 6-90. March 1990.
- 5. Naval Sea Systems Command NAVSEA 0994-LP-001-9010 <u>U.S. Navy Diving Manual</u> Volume 1, Rev. 3, Para 5.3.2. Air purity standards, and 6.7.2.1. Air Compressors.
- 6. Department of Defense MIL-M-17060 E Amendment 1, <u>Sealed Insulated Systems</u>, (Service A Use). Navy specification for compressor power source.
- 7. <u>Bauer Instruction Manual</u> (High Pressure Compressor Four-stage). Bauer Compressors, Inc. 1328 Azalea Garden Road Norfolk, Virginia 23502.
- 8. <u>Bauer Instruction Manual And Spare Parts Catalogue</u> (High Pressure Compressor Block). Bauer Compressors, Inc. 1328 Azalea Garden Road Norfolk, Virginia 23502 K22.0.
- 9. Naval Sea Systems Command. S9AA-AA-SPN-010/GENSPEC of Jan 19, 1987. <u>General Specifications for Ships of the Navy</u>, <u>Cadmium Fittings</u>.
- 10. Naval Sea Systems Command NAVSEAINST 10560.2C <u>Diving Equipment Authorized for U. S. Navy Navy Use</u>.

E 17 M	DATE 17 March 1994																		
TIME	METER HOURS	TEM	TEMPS °F	AMBI	CO/PPM CONCENTRATION	PPM	COMP.	CO INJECTED INTO COMP. INTAKE	CHARGED CYLINDER SIZE	KGED VDER 7E	CHARGIN	CYLINDER CHARGING INFORMATION	VTION	CYL FILL TIME	-	CYLINDER STAGES PSI	ESSOR STAGES 1		OIL
		AMB! TEMP°F	COMP DSCHG*F	84	BEFORE FILTER	AFTER FILTER	FLOW	% %	RATED CUFT	RATED PSI	START	END	END PSI		IST	2ND	3RD	4TH	2
1000	60:12	09	89	57		_	1.0cc	24	3.15	9,000	1014	,	,	,	45	200	945	2.200	32
1030	60:62	19	69	55	47	-	2.0cc	24	,	(1041	5,000	:27	47	200	096	2,900	36
1100	61:09	59	7.5	54	95	00	1.6cc	24	,	,	,	٠	•		47	200	096	2,800	36
1130	61:61	63	08	53	95	5	1.9cc	24	3.15	2,000	1157		'	'	47	200	1,025	3,700	36
1200	62:09	63	52	53	49	9	1.7cc	24	•	-	,	1223	5,000	:26	47	200	950	2,500	36
1230	62:62	89	83	52	950	5	1.7cc	24	-	,		,		,	47	200	1,000	3,700	36
1300	63:09	28	80	51	90	7	1.9cc	24	3.15	5,000	1314		,	,	47	200	950	2,800	36
1330	63:62	70	98	52	49	-	2.0cc	24		,		1340	2,000	:26	47	200	1,050	4,300	36
1400	64:09	89	62	54	51		1.7cc	24	,	,		,		-	47	200	056	2,700	36
1430	64:58	89	85	54	48	,	1.7cc	24	•	,	,		•		47	200	1,050	2,000	36
1445	Secured	-	•	,	50	7	1.7cc	24		-	,	٠	•		٠,	•	•		٠
		:																	

Added one quart of oil to start test with full crankcase Started testing (hour meter reading 60.12) 1000 Started compressor 1445 Secured testing

The mean time for pressurizing an 89.2 liter (3.15 cuft) flask from 0 to 345 bars (0 to 5,000 psi) 341.5 ATA is: $\frac{27+26+26}{3}$ = 26,3 minutes. Therefore, the charging rate is: $\frac{89.2 \times 341.5}{26.3}$ = 1158.24 LPM (40.9 CFM)

DATE 24 March 1994

TIME	METER HOURS	TEM	TEMPS °F	AMBI	CO/PPM CONCENTRATION	PPM TRATION	C INJECTI COMP.	CO INJECTED INTO COMP. INTAKE	CHAI CYLII SIZ	CHARGED CYLINDER SIZE	CHARGIN	CYLINDER CHARGING INFORMATION	ATION	CYL FILL TIME		COMPRESSOR CYLINDER STAGES PSI	ESSOR R STAGES SI		OIL
		AMBI TEMP°F	COMP DSCHG*F	88	BEFORE FILTER	AFTER FILTER	FLOW	GAS %	RATED CUFT	RATED PSI	START	END TIME	END		IST	2ND	зкр	4TH	PSI
0800	64:92	0,2	61	100	47	·	2.0cc	24		t	r	٠	,		50	200	006	2,400	38
0830	65:34	71	78	100	49	,	1.75cc	24	3.5	5,000	0843		,	,	48	200	950	2,700	37
0060	65:88	72	87	100	20	7	1.75cc	24	3.5	5,000	6060	8060	5,000	:25	48	200	096	3,000	37
0830	66:39	73	92	26	46	5	1.9cc	24	,	,	,	9860	5,000	:25	48	210	1,050	4,400	38
1000	66:88	76	26	16	46	\$	1.9cc	24		,	,		,	,	48	210	1,060	4,600	38
1030	67:38	11	73	8	47	9	1.9cc	24	,	,		,	,	,	48	200	046	2,500	38
1100	67:89	78	69	86	49	7	2.0cc	24	,	,	,	-	,	,	48	200	056	2,500	38
1130	68:38	79	26	89	50	5	2.0cc	24	,	,	,			,	48	200	096	3,000	38
1200	68:89	81	70	80	48	5	2.0cc	24	3.5	5,000	1225	,	,	,	48	200	950	2,600	38
1230	69:36	80	71	88	47	9	2.0cc	24	,	'	٠	1252	2,000	:27	48	200	950	2,600	38
1300	69:85	78	72	88	49	5	2.0cc	24	,	•	,	,	,		48	200	950	2,600	38
1330	70:35	78	92	86	48	4	2.0cc	24	•	٠	•			٠	48	200	096	3,100	38
1400	70:84	77	82	92	50	5	2.0cc	24	3.5	5,000	1411		,		48	200	950	2,700	38
1430	71:35	78	91	8	50	4	2.0cc	24	,	,		1437	2,000	:26	48	200	1000	3,500	38
1445	Secured	•	,	-	•	•	1	•	,		,	•				•	,	,	,

Replaced air line between condensate inter-filter 2nd/3rd stage Checked oil level 0800 Started compressor testing 1445 Secured testing

The mean time for pressurizing an 89.2 liter (3.15cuft) flask from 0 to 345 bars (0 to 5,000 psi) 341.5 ATA is: $\frac{25+25+27+26}{4} = 25.75$ minutes. Therefore, the charging rate is: $\frac{89.2 \times 341.5}{25.75} = 1181.66 \text{ LPM}$ (41.7 CFM)

DATE 2

TE 29 March 1994	rch 1994												-	-				-	
TIME	METER	TEM	TEMPS °F	AMBI	CONCENTRATION	PM	CO INJECTED INTO COMP. INTAKE	D D INTO NTAKE	CHARGED CYLINDER SIZE	GED IDER E	CHARGING	CYLINDER CHARGING INFORMATION		CYL FILL TIME	J	COMPRESSOR CYLINDER STAGES PSI	SSOR STAGES		OIL PRESS
		AMBI TEMP°F	COMP DSCHG°F	P6	BEFORE	AFTER FILTER	FLOW	GAS %	RATED	RATED PSI	START	END	END PSI		1ST	2ND	3RD	4ТН	ē
0705	71:61	50	50	70	90	,	2.0cc	24			,		,		48	200	910	2,400	32
0730	71:97	54	57	69	48	ı	1.7cc	24	3.5	5,000	0220	·	,	,	50	210	1,050	3,100	34
0800	72:47	55	09	89	48	10	1.7cc	24	•	,	,	080	2,000	:25	90	210	1,100	5,000	35
0830	72:94	54	99	89	50	12	1.75cc	24	3.5	5,000	9826	,		,	950	210	950	2,600	36
0060	73:46	57	57	63	45	13	1.7500	24	,		,	0851	2,000	:25	48	210	056	2,700	36
0630	73:94	99	63	53	43	•	1.80cc	24	,	•	,	,	,		48	210	1,025	3,400	36
1000	74:40	8	8	56	49	í	2.0cc	24	-	•	,		-	,	90	210	1,080	4,500	36
1030	74:94	8	62	58	48	19	2.0cc	24	-	,	1		-		48	210	57.6	2,800	36
1100	75:41	2	90	59	48	71	2.0cc	24	,	-	,		-	-	48	210	950	2,600	36
1130	75:93	89	70	65	48	17	2.0cc	24	1		,	'	,		48	210	1,000	3,100	36
1200	76:43	89	71	59	50	15	2.0cc	24	3.5	5,000	1211				48	210	1,000	3,000	36
1230	76:89	9	74	59	49	16	2.0cc	24	4		'	1236	2,000	:25	48	210	1.000	3,200	36
1300	77:43	99	76	58	50	14	2.0cc	24	•	,		,	-		80	215	1,100	4,600	36
1330	77:92	69	76	57	48	13	2.0cc	24	,	,	٠		-		90	210	000,1	2,900	36
1400	78:48	89	55	99	47	14	1,9cc	24	'	'	,	•			48	210	950	2,600	36
1430	78:89	74	74	57	49	14	1.9cc	24	-	•	,	_			84	210	096	2,700	36
1435	Secured			,	•	,	•	1	,	-	1	,	,	•		•	,		

0700 Checked compressor oil level 0705 Started compressor testing 1435 Secured compressor testing

The mean time for pressurizing an 89.2 liter (3.15cuft) flask from 0 to 345 bars (0 to 5,000 psi) 341.5 ATA is: 25 + 25 + 25 = 25 minutes. Therefore, the charging rate is: 89.2 X 341.5 = 1218.47 LPM (43CFM)

DATE 30 March 1994

111 SO 1111 OF 1111	1777																		
TIME	METER	TEN	TEMPS °F	AMBI	CO/PPM CONCENTRATION	PPM FRATION	INJECT COMP.	CO INJECTED INTO COMP. INTAKE	CHAI CYLII SII	CHARGED CYLINDER SIZE	CHARGIN	CYLINDER CHARGING INFORMATION	ATION	CYL FILL TIME		COMPRESSOR CYLINDER STAGES PSI	ESSOR R STAGES SI		OIL
		AMBI TEMP°F	COMP DSCHG°F	88	BEFORE FILTER	AFTER FILTER	FLOW RATE	GAS %	RATED CUFT	RATED	START	END	END		ıst	2ND	3RD	4ТН	PSI
0642	78:99	55	50	69	50	,	2.0cc	24	•		٠	, .		٠	48	190	006	2,600	30
0020	79:28	55	99	69	20	14	2.0cc	24	-	,	-	,	ş		50	210	1,100	4,700	35
0730	75:42	55	70	69	20	13	2.0cc	24	,	,	,	,		,	90	210	1,050	3,300	36
0800	80:27	58	69	29	20	14	2.1cc	24	3.4	5,000	0810	,	٠	,	48	210	975	2,800	36
0830	80:76	59	74	65	95	15	2.4cc	24	,	٠)	0835	5,000	:25	50	210	1,050	3,400	36
0060	81:26	62	89	62	90	14	2.4cc	24	,	,					48	210	056	2,700	36
0830	71:12	63	59	62	99	15	2.4cc	24	,	,	,	,	,		50	210	950	2,600	36
1000	82:25	2	74	62	50	17	2.4cc	24	-	-	•		,	,	48	210	096	2,600	36
1030	82:76	99	79	62	50	12	2.4cc	24	-	•	,			,	50	210	1,100	4,800	36
1100	83:26	29	77	9	49	12	2.4cc	24	-	, .	ı		,	,	90	210	950	3,000	36
1130	83:75	29	19	58	48	13	2.4cc	24	•	•	•	ŧ	,	,	48	210	950	2,600	36
1200	84:26	70	84	57	48	14	2.4cc	24	•		•				50	210	1,100	4,700	36
1230	84:74	29	82	57	48	11	2.4cc	24	1	,	•	٠		,	90	210	1,000	3,100	36
1300	85:24	89	57	56	49	12	2.4cc	24		•	,	•	,	4	48	210	950	2,600	36
1330	85:74	69	83	58	49	16	2.4cc	24			,			·	48	210	096	2,700	36
1345	Secured	-	1	-	•	_	•	•	•	•	•	٠			,				

0630 Checked compressor oil level 0642 Started compressor testing 1345 Secured compressor testing

The mean time for pressurizing an 89.2 liter (3.15cuft) flask from 0 to 345 bars (0 to 5,000 psi) 341.5 ATA is: 25 minutes. Therefore, the charging rate is: 89.2 X 341.5 = 1218.47 LPM (43.CFM)

To: Dave Sullivan, NEDU

From: Glen Deason, Code 2530

Analysis of air sample from NEDU Test #94-08, Bauer K220 Evaluation. One hour sample.

1. In accordance with your request, the air sample delivered to the gas analysis lab was analyzed and found to contain:

Standard Components

Component	Level	Limit
Oxygen Nitrogen Argon Carbon Dioxide	21% 78.1% 0.9% 53 PPM	20-22% ² NONE ² NONE ² 1000 PPM ²
Total Hydrocarbons ¹ Carbon Monoxide Methane	1.5 PPM 5.4 PPM 1.5 PPM	25 PPM ² 20 PPM ² 1000 PPM ²
Acetone Benzene Chloroform Ethanol Freon 113 Freon 11 Freon 12 Freon 114 Isopropyl Alcohol Methanol Methyl Chloroform Methyl Ethyl Ketone Methyl Isobutyl Ketone Methylene Chloride Toluene Trimethyl Benzenes	<0.1 PPM	200 PPM ² 1 PPM ² 1 PPM ² 1 PPM ² 100 PPM ² 20 PPM ² 21 PPM ² 22 PPM ² 23 PPM ² 24 PPM ² 25 PPM ² 26 PPM ² 27 PPM ² 28 PPM ² 29 PPM ² 20 PPM ² 21 PPM ² 22 PPM ² 23 PPM ² 24 PPM ² 25 PPM ² 26 PPM ² 27 PPM ² 28 PPM ²
Xylenes er Components	<0.1 PPM	50 PPM ²

Othe:

Limit Component Level

NONE

C4+ <0.1 PPM NONE

1Expressed as methane equivalents.
2Limits taken from Navy Dive Manual; Vol. 2, Rev. 3.
3OSHA Final Rule limits published as of July 1992 (not specified in Navy Dive Manual).

2. The above sample showed no appreciable contamination; all components were within the acceptable range.

Glen Deason Chemist

To: Dave Sullivan, NEDU

From: Glen Deason, Code 2530

Subject: Analysis of air sample from NEDU Test #94-08, Bauer

K220 Evaluation. Twenty five hour sample.

1. In accordance with your request, the air sample delivered to the gas analysis lab was analyzed and found to contain:

Standard Components

	Component	Level	L	imit
	Oxygen Nitrogen	21% 78.1%		-22%2 NONE2
	Argon	0.9%		NONE ²
	Carbon Dioxide	368 PPM		PPM2
	Total Hydrocarbons ¹	1.6 PPM	25	PPM2
	Carbon Monoxide	19.9 PPM		PPM2
	Methane	1.6 PPM		PPM2
	Acetone	<0.1 PPM	200	PPM ²
	Benzene	<0.1 PPM		PPM2
	Chloroform	<0.1 PPM		PPM2
	Ethanol	<0.1 PPM		PPM ²
	Freon 113	<0.1 PPM	100	PPM ²
	Freon 11	<0.1 PPM		PPM ²
	Freon 12	<0.1 PPM	100	PPM ²
	Freon 114	<0.1 PPM	100	PPM ²
	Isopropyl Alcohol	<0.1 PPM	1	PPM ²
	Methanol	<0.1 PPM	10	PPM ²
	Methyl Chloroform	<0.1 PPM	30	PPM ²
	Methyl Ethyl Ketone	<0.1 PPM		PPM ²
	Methyl Isobutyl Ketone	<0.1 PPM		PPM ²
	Methylene Chloride	<0.1 PPM		PPM ²
	Toluene	<0.1 PPM		PPM ²
	Trimethyl Benzenes	<0.1 PPM		PPM ²
	Xylenes	<0.1 PPM	50	PPM ²
ıeı	Components			

Othe

Limit Level Component

NONE

<0.1 PPM C4+ NONE

1Expressed as methane equivalents.
2Limits taken from Navy Dive Manual; Vol. 2, Rev. 3.
3OSHA Final Rule limits published as of July 1992 (not specified in Navy Dive Manual).

The above sample showed no appreciable contamination; all components were within the acceptable range.

> Glen Deason Chemist