ECEn 671: Mathematics of Signals and Systems

Randal W. Beard

Brigham Young University

September 1, 2023

Section 1

Linear Operators

Linear Operators

Recall from Chapter 3 the definition of a Linear operator:

Definition

Let $\mathbb X$ and $\mathbb Y$ be vector spaces, then $\mathcal A:\mathbb X\to\mathbb Y$ is a linear operator if

$$\mathcal{A}[\alpha_1 x_1 + \alpha_2 x_2] = \alpha_1 \mathcal{A}[x_1] + \alpha_2 \mathcal{A}[x_2]$$

 $\forall x_1, x_2 \in \mathbb{X} \text{ and } \forall \alpha_1, \alpha_2 \in \mathbb{F}$

See chapter 2 notes (slides 79-83) for examples of linear operators.

Norm of a Linear Operator

An important concept is the <u>norm</u> of an operator. There are several ways to define norms for operators. The most important is the "induced" or "subordinate" norm.

Definition

Let $\mathcal{A}: \mathbb{X} \to \mathbb{Y}$ then

$$\|\mathcal{A}\| = \sup_{x \neq 0} \frac{\|\mathcal{A}[x]\|_{\mathbb{Y}}}{\|x\|_{\mathbb{X}}}$$
$$= \sup_{\|x\|_{\mathbb{X}} = 1} \|\mathcal{A}[x]\|_{\mathbb{Y}}$$

Different norms on $\mathcal A$ are defined by taking different norms in $\mathbb X$ and $\mathbb Y$.

Norm of a Linear Operator, Examples

Example

Let $\mathcal{A}:L_2 o L_2$ then

$$\begin{split} \|\mathcal{A}\|_{2} &= \sup_{x \neq 0} \frac{\|\mathcal{A}[x]\|_{L_{2}}}{\|x\|_{L_{2}}} \\ &= \sup_{\|x\|_{L_{2}} = 1} \|\mathcal{A}[x]\|_{L_{2}} \end{split}$$

Example

Let $\mathcal{A}: L_{\infty} \to L_{\infty}$ then

$$\begin{split} \|\mathcal{A}\|_{\infty} &= \sup_{\mathbf{x} \neq \mathbf{0}} \frac{\|\mathcal{A}[\mathbf{x}]\|_{L_{\infty}}}{\|\mathbf{x}\|_{L_{\infty}}} \\ &= \sup_{\|\mathbf{x}\|_{L_{\infty}} = 1} \|\mathcal{A}[\mathbf{x}]\|_{L_{\infty}} \end{split}$$

Norm of a Linear Operator, Examples

Example

Let $\mathcal{A}: \mathcal{L}_{p}
ightarrow \mathcal{L}_{p}$ then

$$\|A\|_{p} = \sup_{x \neq 0} \frac{\|A[x]\|_{L_{p}}}{\|x\|_{L_{p}}}$$
$$= \sup_{\|x\|_{L_{p}}} \|A[x]\|_{L_{p}}$$

Why is it called the induced or subordinate norm? The norm on the operator is induced by the vector norm.

Norm of a Linear Operator, Geometric Interpretation

$$||A|| = \sup_{||x||=1} ||Ax||$$

Norm of a Linear Operator, System Interpretation

Given a linear system

$$u(t)$$
 $H(s)$ $y(t)$

The norm of the system H(s) is the maximum gain of the system.

Norm of BIBO System

Let $\mathcal{A}: L_{\infty} \to L_{\infty}$ be an LTI system that is BIBO stable with impulse response h(t), then

$$y(t) = \int_0^t h(t - \tau)u(\tau)d\tau$$

 $\stackrel{\triangle}{=} \mathcal{A}[u]$

Find $\|A\|_{\infty}$.

Norm of BIBO System, cont

Lemma

$$\|\mathcal{A}\|_{\infty} = \|h\|_{L_1[0,\infty]}$$

$$\stackrel{\triangle}{=} \int_0^{\infty} |h(t)| dt$$

Proof.

We need to prove two things

1.
$$\|\mathcal{A}\|_{\infty} \leq \int_{0}^{\infty} |h(t)| dt$$

$$2. \int_0^\infty |h(t)| dt \le ||\mathcal{A}||_\infty$$

Norm of BIBO System, Proof

Proof of 1.

$$\begin{split} \sup_{\|x\|_{\infty}=1} \|\mathcal{A}[u]\|_{\infty} &= \sup_{\|u\|_{\infty}=1} \left\| \int_{0}^{t} h(t-\tau)u(\tau)d\tau \right\|_{\infty} \\ &= \sup_{\|u\|_{\infty}=1} \left[\sup_{t>0} \left| \int_{0}^{t} h(t-\tau)u(\tau)d\tau \right| \right] \\ &\leq \sup_{\|u\|_{\infty}=1} \left[\sup_{t>0} \int_{0}^{t} |h(t-\tau)u(\tau)|d\tau \right] \\ &\leq \sup_{\|u\|_{\infty}=1} \left[\|u\|_{\infty} \sup_{t>0} \int_{0}^{t} |h(t-\tau)|d\tau \right] \\ &\leq \int_{0}^{\infty} |h(\tau)|d\tau = \|h\|_{L_{1}[0,\infty]} \end{split}$$

Norm of BIBO System, Proof

Proof of 2.

Let
$$\hat{u}_t(\tau) = \begin{cases} 1 & \text{if } h(t-\tau) \geq 0 \\ -1 & \text{otherwise} \end{cases}$$
.

Note that $\|\hat{u}_t\|_{\infty}=1 \ \forall t>0$, we have that

$$\int_0^t h(t- au)\hat{u}_t(au)d au = \int_0^t |h(t- au)|\,d au.$$

Therefore for this particular choice of \hat{u}_t we have that

$$\sup_{t>0} \left[\int_0^t |h(t-\tau)| \, d\tau \right] = \left\| A \hat{u}_{\infty} \right\|_{\infty} = \int_0^\infty |h(\tau)| \, d\tau.$$

By definition of sup

$$\int_0^\infty |h(\tau)| d\tau = \|A\hat{u}_\infty\|_\infty \le \sup_{\|u\|=1} \|Au\|_\infty.$$

Operator Norm: Proof Technique

The proof technique shown here is the general approach to show that the norm of an operator is some value.

Suppose that you would like to prove that

$$\|\mathcal{A}\| = M$$
.

You need to show two things

- 1. $\|A\| \leq M$
- 2. $M \le ||A||$.

Operator Norm: Proof Technique

To show (1) use triangle and other inequalities to show that

$$\|Ax\| \leq M \|x\|$$

which implies that

$$\sup_{\|x\|=1} \|\mathcal{A}x\| \leq \sup_{\|x\|=1} M \|x\| = M$$

To show (2), construct a specific \hat{x} such that

$$\|\hat{x}\| = 1$$
 and $\|\mathcal{A}\hat{x}\| = M$.

This implies that

$$M \leq \sup_{\|x\|=1} \|\mathcal{A}x\| = \|\mathcal{A}\|.$$

Lemma

For any induced operator norm,

$$\|\mathcal{A}x\| \leq \|\mathcal{A}\| \|x\|.$$

Proof.

$$\|\mathcal{A}\| = \sup_{x \neq 0} \frac{\|\mathcal{A}x\|}{\|x\|}.$$

Therefore for any $x \neq 0$ we must have that

$$\|A\| \ge \frac{\|Ax\|}{\|x\|}$$

$$\Rightarrow \|Ax\| \le \|A\| \|x\|.$$

Lemma

All induced operator norms satisfy the "submultiplicative property," i.e.,

$$\|\mathcal{A}\mathcal{B}\| \le \|\mathcal{A}\| \|\mathcal{B}\|$$

Proof.

$$\begin{split} \|\mathcal{A}\mathcal{B}\| &= \sup_{\|x\|=1} \|\mathcal{A}\mathcal{B}x\| \\ &\leq \sup_{\|x\|=1} \|\mathcal{A}\| \|\mathcal{B}x\| \\ &\leq \sup_{\|x\|=1} \|\mathcal{A}\| \|\mathcal{B}\| \|x\| \\ &= \|\mathcal{A}\| \|\mathcal{B}\| \end{split}$$

Definition

An operator $\mathcal{A}: \mathbb{X} \to \mathbb{Y}$ is bounded if $\|\mathcal{A}\| < \infty$

Definition

The following three statements are equivalent

- 1. $\mathcal{A}: \mathbb{X} \to \mathbb{Y}$ is continuous
- 2. $x_n \to x^* \Rightarrow \mathcal{A}[x_n] \to \mathcal{A}[x^*]$ for all convergent sequences in $\mathbb X$
- 3. $\forall \epsilon > 0$, $\exists \delta > 0$ such that

$$||x - y|| \le \delta \quad \Rightarrow \quad ||A[x] - A[y]|| < \epsilon \quad \forall x, y \in X$$

Theorem (Moon Theorem 4.1)

A linear operator is bounded iff it is continuous.

Proof.

(⇒) Suppose $\|A\| = M < \infty$, let $\{x_n\}$ be any convergent sequence with limit $x^* \in \mathbb{X}$, then

$$\|Ax_{n} - Ax^{*}\| = \|A(x_{n} - x^{*})\| \le \|A\| \|x_{n} - x^{*}\|$$
$$= M \|x_{n} - x^{*}\| \to 0 \Rightarrow \|Ax_{n} - Ax^{*}\| \to 0.$$

Therefore A is continuous.

Proof, cont

(\Leftarrow) Assume $\mathcal A$ is continuous and let $\epsilon=1$ and y=0 then $\exists \delta$ such that $\|x\| \leq \delta \Rightarrow \|\mathcal Ax\| < 1$

Now let $0 \neq x \in \mathbb{X}$ be arbitrary, then

$$\left\| \frac{\delta x}{\|x\|} \right\| = \frac{\delta}{\|x\|} \|x\| = \delta \le \delta$$

implies that

$$\left\| \mathcal{A}\left(\frac{\delta x}{\|x\|}\right) \right\| = \frac{\delta}{\|x\|} \left\| \mathcal{A}x \right\| < 1$$

which implies that

$$\|\mathcal{A}x\| \le \frac{1}{\delta} \|x\|$$

Therefore A is bounded.

Theorem (Moon Theorem 4.2)

Let $\mathcal{A}: \mathbb{X} \to \mathbb{Y}$ be a linear operator. If \mathbb{X} is a finite dimensional Hilbert space, then \mathcal{A} is bounded.

Proof.

Let $\dim(\mathbb{X}) = n$ and let $\{p_1, \dots p_n\}$ be an orthonormal basis for \mathbb{X} , then

$$x = \sum_{k=1}^{n} \langle x, p_k \rangle p_k$$

Proof, cont.

Define $D = \max\{\|\mathcal{A}p_1\|, \|\mathcal{A}p_2\|, \dots, \|\mathcal{A}p_n\|\}$ then

$$\|\mathcal{A}x\| = \left\| \mathcal{A} \left(\sum_{k=1}^{n} \langle x, p_{k} \rangle p_{k} \right) \right\|$$

$$\leq \sum_{k=1}^{n} |\langle x, p_{k} \rangle| \|\mathcal{A}p_{k}\|$$

$$\leq D \sum_{k=1}^{n} |\langle x, p_{k} \rangle|$$

$$\leq D \sum_{k=1}^{n} \|x\| \|p_{k}\| \qquad (Caucy - Schwartz)$$

$$= Dn \|x\|$$

Therefore A is bounded.