

UYGULAMALI ÇOK DEĞİŞKENLİ İSTATİSTİKSEL ANALİZ

Prof. Dr. Hüseyin TATLIDİL Hacettepe Üniversitesi Fen Fakültesi İstatistik Bölümü Öğretim Üyesi

İÇİNDEKİLER

				<u>Sayfa</u>
GÖ	STER	ім		IX
1.	GİRİ	Ş		1
	1.1.	Çok De	ğişkenli İstatistiksel Analiz ve Kullanım	
		Alanlar	1	1
	1.2.		ğişkenli İstatistiksel Analizde Kullanılan Matris	
		Kuram	1	3
		1.2.1.	Gösterim ve Tanımlar	3
		1.2.2.	Örüntü ya da Model Matrisleri	4
		1.2.3.	Determinantlar	7
		1.2.4.	Matris Tersi	9
		1.2.5.	Genelleştirilmiş Matris Tersi	11
		1.2.6.	Matris Parçalanması	11
		1.2.7.	Matris Rankı	
		1.2.8.	Özdeğerler ve Özvektörler	14
		1.2.9.	Bir Matrisin İzi	15
		1.2.10.	Doğrudan Çarpım	
			Karesel Formlar ve Tanımlılık	
			Matris Faktörleştirmesi	
			İdempotent Matrisler	
			Türev ve İntegral	
		1.2.15.	Matris Dönüşümlerinin Jakobiyenleri	
			Çözülmüş Örnekler	24
			Sorular	
2.	SÜR		OK DEĞİŞKENLİ DAĞILIMLAR	31
	2.1.	Çok De	ğişkenli İstatistiksel Analizde Kullanılan	
		Matrie	ve Vektörler	31

			Sayra
	2.2.	Çok Değişkenli İstatistiksel Analizde Kullanılan	
	2.2.	Özetleyici Bilgiler	32
	2.3.	Çok Değişkenli Dağılımlar	37
	2.0.	Çözülmüş Örnekler	44
		Sorular	
3.	COK	DEĞİŞKENLİ NORMAL DAĞILIM (Ç.D.N.D.)	53
ο.	3.1.	Karakteristik Fonksiyonlar ve Momentler	57
	3.2.	Ç.D.N.D.'ın Moment Türeten Fonksiyonu ve	
	0.2.	Parametreleri	60
	3.3.	Kitle Parametrelerinin En Çok Olabilirlik Kestiricileri	63
	3.4.	Marjinal Normal Dağılım	
	3.5.	Koşullu Normal Dağılım	70
	3.6.	Çoklu Korelasyon	
	3.7.	Normal Dağılıma Sahip Değişkenlerin Doğrusal	
	0.7.	Bağıntılarının Dağılımı	79
	3.8.	Alt Rastlantı Vektör Değişkenlerinin Bağımsızlığı	83
	3.9.	Yoğunluk Fonksiyonu Verilmiş İken Parametrelerin	
		Bulunması	85
	3.10.	Karesel Formların Dağılımı	
		Çözülmüş Örnekler	90
		Sorular	
4.	ÇOK	DEĞİŞKENLİ HİPOTEZ TESTLERİ	
	4.1.	Giriş	
	4.2.	Çok Değişkenli Test Yöntemleri	
	4.3.	Tek Örnekleme İlişkin Testler	
	4.4.	İki Örnekleme İlişkin Testler	
	4.5.	Çok Örnekleme İlişkin Testler	
	4.6.	Behrens-Fisher Problemi	

		<u>Sayfa</u>
		Çözülmüş Örnekler128
		Sorular
5.	TEM	EL BİLEŞENLER ANALİZİ138
	5.1.	Temel Bileşenlerin Elde Edilmesi139
	5.2.	Temel Bileşenlerin Özellikleri ve Sağladığı Yararlar144
	5.3.	Temel Bileşenler Analizinin Gerekliliği145
	5.4.	Temel Bileşen Sayısının Belirlenmesi146
		Çözülmüş Örnekler155
		Sorular162
6.	FAK	TÖR ANALİZİ 167
	6.1.	Faktör Analizinin Amacı
		6.1.1. Faktör Analizi ile Temel Bileşenler Analizi
		Arasındaki Benzerlikler171
		6.1.2. Faktör Döndürmesi ve Kavramsal Anlamlılık 173
	6.2.	Döndürme Türleri
		6.2.1. Dik Döndürme Türleri179
		6.2.2. Eğik Döndürme Türleri
	6.3.	Faktör Bulma Yöntemleri
		6.3.1. Çoklu Gruplandırma Yöntemi
		6.3.2. Ardışık Çoklu Gruplandırma Yöntemi
		Çözülmüş Örnekler201
		Sorular213
7.	KAN	ONİK KORELASYON ANALİZİ216
	7.1.	Iliski Kavramı ve Kanonik Korelasyon Analizinin Amacı
	7.2.	Kanonik Değiskenler, Kanonik Korelasyonların
		Tanımı ve Elde Edilmesi218
	7.3.	Kanonik Değişkenlerle Orijinal Değişkenler
		Arasındaki Korelasyonlar ve Yorumları

			<u>S</u>	Sayfa
	7.4.	Kanonik F	Korelasyon Katsayılarının Önem Kontrolleri	. 225
		7.4.1. Ba	artlett Testi	. 225
		7.4.2. Ro	y'un En Büyük Özdeğer Yaklaşımı	. 227
	7.5.	Kısmi Kar	nonik Korelasyonlar ve Yorumları	. 228
		Çözülmüş	Örnekler	. 234
		Sorular		. 252
8.	DİSK	RİMİNAN	T (AYIRMA) ANALİZİ	.256
-	8.1.			
	8.2.		Olması Durumunda Diskriminant Analizi	
		_	atalı Sınıflandırma Olasılıklarının Bulunması	
•			iskriminant Fonksiyonunun Önem Kontrolü	
			ireylerin Sınıflara Ayrılmasına İlişkin	
		O	lasılıkların Tahmini	. 262
	8.3.	İkiden Ço	k Grup Olması Halinde Diskriminant Analizi	. 265
		8.3.1. D	iskriminant Fonksiyonunun Önem Kontrolü	. 268
		8.3.2. N	formal Dağılımlı Kitlelerde Diskriminant	
		, , , , , , , , , , , , , , , , , , ,	nalizi	. 269
	8.4.	Özel Dur	umlarda Kullanılan Diskriminant	
		Fonksiyo	nları	. 273
		Çözülmüş	örnekler	. 279
			••••••	
9.	LOJ	İSTİK RE	GRESYON ANALİZİ	.289
	9.1.	Giriş		. 289
	9.2.	Doğrusal	Olasılık Modeli	. 289
	9.3.	İki Grup	Lojistik Modeller	. 291
		9.3.1. I	ojistik Ayrımsama	. 294
		9.3.2. İ	ki Grup Lojistik Modelde Kestirim Yöntemleri	. 295
		9.3.3. _U	Jyum İviliği ve Sanma Ölcütleri	297

				<u>Sayfa</u>
	9.4.	Çoklu G	rup Lojistik Modeller	304
		9.4.1.	Çoklu Grup Lojistik Modellerde Kestirim	
			Yöntemleri	307
		9.4.2.	Uyum İyiliği Testleri, Değişken Seçimi ve	
			Temel Sınıfın Belirlenmesi	311
	9.5.	Lojistik	Regresyon ile Diskriminant Analizinin	
		Karşılaş	tırılması	313
		Çözülmi	iş Örnekler	315
		Sorular		324
10.	KÜM	ELEME	ANALİZİ	329
	10.1.	Giriş		329
	10.2.	Kümele	mede Kullanılan Benzerlik ve Uzaklık Ölçütleri	330
	10.3.	Kümele	me Yöntemleri	334
			Hiyerarşik Kümeleme Yöntemleri	
		10.3.2.	Hiyerarşik Olmayan Kümeleme Yöntemleri	338
		10.3.3.	Hacim İlişkisine Dayalı Kümeleme Yöntemi	339
	10.4.		ayısının Belirlenmesi	
	<i>į.</i>		iş Örnekler	
			2 Dela Na Silven Stabilion	
11.	ÇOK	BOYUT	LU ÖLÇEKLEME (Ç.B.Ö.)	353
	11.1.	Giriş		353
	11.2.	Ç.B.Ö. Y	Töntemleri	354
		11.2.1.	Metrik Ölçekleme Yöntemi	355
		11.2.2.	Metrik Olmayan Ölçekleme Yöntemi	361
	11.3.	Ç.B.Ö. Y	Töntemlerinin Karşılaştırılması	366
	11.4.	Ç.B.Ö. i	le Temel Bileşenlerin Karşılaştırılması	367
		Çözülmi	üş Örnekler	368
		Sorular		378

			Sayfa			
12.	ÇOK	DEĞİŞKENLİ REGRESYON ANALİZİ	381			
	12.1.	Giriş	381			
	12.2.	Parametrelerin En Çok Olabilirlik Kestiricileri	382			
	12.3.	Hipotez Testleri	386			
	12.4.	Korelasyon Katsayıları	393			
		12.4.1. Çoklu Korelasyon Katsayısı	394			
		12.4.2. Kısmi Korelasyon Katsayısı	395			
		12.4.3. Vektörler Arası Korelasyon	396			
	12.5.	Model Uygunluğunun Testi	396			
		Çözülmüş Örnekler	399			
		Sorular	403			
EK	-A İST	TATISTIK TABLOLARI	408			
	Table	o 1. Standart Normal Dağılım Tablosu	409			
	Table	lo 2. t Dağılımı Tablosu	410			
	Table	lo 3. χ^2 Dağılımı Tablosu	411			
	Tabl	lo 4. F Dağılımı Tablosu	412			
	Tabl	lo 5. Heck Grafikleri	413			
	Tabl	lo 6. Beta Dağılımı Tablosu	417			
EK	EK-B İNGİLİZCE-TÜRKÇE İSTATİSTİK TERİMLERİ LİSTESİ 419					
KA	AYNAI	KÇA	421			
Di	ZİN	***************************************	423			

GÖSTERİM

Diğer bilim dallarında olduğu gibi, istatistik konusunda yayınlanan kitapların bir çoğunda da farklı gösterim biçimleriyle karşılaşılmaktadır.

Gösterim yönünden genel bir kuralın benimsenmesi, kaynağın izlenmesini kolaylaştıracağı gibi, yanış anlamayı da ortadan kaldıracaktır. Bu nedenle, kitapta özel olarak tanımlanmamışsa küçük harfler (karakter) gözlemleri ya da değerleri, koyu (bold) büyük harfler ise matrisleri göstermede kullanılmıştır. Bazı bölümlerde θ, Λ, α, γ gibi sembollerin teknik olanaksızlıklar nedeniyle bold basılamaması dışında vektörler için (gerekli açıklamalar yapılarak) indisli büyük ya da küçük harfler koyu olarak kullanılmıştır. Kitapta özellikle belirtilmemişse vektör denince sütun vektöründen söz edilmektedir ve ~ sembolü dağılım anlamında kullanılmaktadır.

Diğer istatistik kitaplarında olduğu gibi, μ , Σ gibi semboller kitle parametreleri \mathbf{x} , \mathbf{S} gibi semboller ise örneklem değerleri için kullanılmıştır.