Department of Information and Communication Engineering Pabna University of Science and Technology

B.Sc. (Engineering) 4th Year 1st Semester Examination 2021 Session: 2019-2020

Course Code: ICE-4104 Course Title: Cellular and Mobile Communication Sessional

- 1. If a total of 33 MHz of bandwidth is allocated to a particular FDD cellular telephone system which uses two 25 kHz simplex channels to provide full duplex voice and control channels, compute the number of channels available per cell if a system uses (a) 4-cell reuse, (b) 7-cell reuse (c) 12-cell reuse. If 1 MHz of the allocated spectrum is dedicated to control channels, determine an equitable distribution of control channels and voice channels in each cell for each of the three systems.
 - 3.2 2. If a signal to interference ratio of 15 dB is required for satisfactory forward channel performance of a cellular system, what is the frequency reuse factor and cluster size that should be used for maximum capacity if the path loss exponent is (a) n=4, (b) n=3? Assume that there are 6 co-channels cells in the first tier and all of them are at the same distance from the mobile. Use suitable approximations.
 - How many users can be supported for 0.5% blocking probability for the following number of trunked channels in a blocked calls cleared system? (a) 1, (b) 5, (c) 10, (d) 20, (e) 100. Assume each user generates 0.1 Erlangs of traffic.
- 4. An urban area has a population of 2 million residents. Three competing trunked mobile networks (systems A, B, and C) provide cellular service in this area. System A has 394 cells with 19 channels each, system B has 98 cells with 57 channels each, and system C has 49 cells, each with 100 channels. Find the number of users that can be supported at 2% blocking if each user averages 2 calls per hour at an average call duration of 3 minutes. Assuming that all three trunked systems are operated at maximum capacity, compute the percentage market penetration of each cellular provider.
 - 5. A certain city has an area of 1,300 square miles and is covered by a cellular system using a 7-cell reuse pattern. Each cell has a radius of 4 miles and the city is allocated 40 MHz of spectrum with a full duplex channel bandwidth of 60 kHz. Assume a GOS of 2% for an Erlang B system is specified. If the offered traffic per user is 0.03 Erlangs, compute (a) the number of cells in the service area, (b) the number of channels per cell, (c) traffic intensity of each cell, (d) the maximum carried traffic; (e) the total number of users that can be served for 2% GOS, (f') the number of mobiles per channel, and (g) the theoretical maximum number of users that could be served at one time by the system.
 - 6. If a transmitter produces 50 watts of power, express the transmit power in units of (a) dBm, and (b) dBW. If 50 watts is applied to a unity gain antenna with a 900 MHz carrier frequency, find the received power in dBm at a free space distance of 100 m from the antenna, what is P (10 km)? Assume unity gain for the receiver antenna.

- 7. Determine the path loss of a 900MHz cellular system in a large city from a base station with the height of 100m and mobile station installed in a vehicle with antenna height of 2m. The distance between mobile and base station is 4Km.
- 8. Determine the path loss between base station (BS) and mobile station (MS) of a 1.8GHz PCS system operating in a high-rise urban area. The MS is located in a perpendicular street to the location of the BS. The distances of the BS and MS to the corner of the street are 20 and 30 meters, respectively. The base station height is 20m.
- 9. A mobile is located 5 km away from a base station and uses a vertical λ /4 monopole antenna with a gain of 2.55 dB to receive cellular 3 radio signals. The E-field at 1 km from the transmitter is measured to be V/rn. The carrier frequency used for this system is 900 MHz.
 - (a) Find the length and the gain of the receiving antenna.
 - (b) Find the received power at the mobile using the 2-ray ground reflection model assuming the height of the transmitting antenna is 50 m and the receiving antenna is 1.5m above ground.
- 10. A hexagonal cell within a 4-cell system has a radius of 1.387 km. A total of 60 channels are used within the entire system. If the load per user is 0.029 Erlangs, and λ = call/hour, compute the following for an Erlang C system that has a 5% probability of a delayed call:
 - (a) How many users per square kilometer will this system support?
 - (b) What is the probability that a delayed call will have to wait for more than 10s?
 - (c) What is the probability that a call will be delayed for more than 10 seconds?