

Outline

Generalization

Model selection

- two models, A and B, are learned on the same training dataset.
- ▶ model A has an error of 0.1 on the training set and model B has an error of 1.0.
- which model is better?

Model selection

- two models, A and B, are learned on the same training dataset.
- ▶ model A has an error of 0.1 on the training set and model B has an error of 1.0.
- which model is better?
- answer: unknown.
- training error is not a good metric for comparing and selecting models

Test error

- to compare models, we need to evaluate them on a test set
- the error on the test set is called the test error
- measures whether the model generalizes to well to unseen data
- the ultimate goal of machine learning is to minimize the test error, not the training error.
- minimizing the training error is merely an approach towards the goal.
- reducing the training error does not necessarily always reduce the test error
- can be decomposed into three components: bias, variance, and irreducible error

Underfits and overfits

underfits

- when both the training and test errors are high
- cannot make accurate predictions on the training set
- model being too simple to capture the underlying structure of the data

overfits

- when the training error is much lower than the test error
- make accurate predictions on the training set but not on the test set
- model being too flexible and captures noise in the training data
- ▶ both are related to the bias-variance decomposition of the test error

Bias-variance tradeoff

- an example of regression from https://cs229.stanford.edu/main_notes.pdf
- $\qquad \qquad \textbf{ the ground true: } y^{(i)} = h^*(x^{(i)}) + \xi^{(i)}$
- ▶ h^* is a quadratic function and $\xi^{(i)} \sim N(0, \sigma^2)$ is the noise.

ightharpoonup goal: learn a model h(x) to approximate h^* using training data

Underfits

▶ fit a linear model with limited noisy data

both training and test errors are large

Underfits

▶ fit a linear model with more or noiseless data

- using more training data does not help reduce either error
- the bias of a model is the test error when the model is trained on a very (infinitely) large training set
- models that underfit the data have high bias

Overfits

▶ fit a 5-th degree polynomial with noisy data

- very small (zero) training error but large test error
- the model is so flexible that it even fits the patterns in training data that is due to noise

Overfits

▶ fit a 5-th degree polynomial on different training sets

- ▶ the model fits the noise in the training set, but the noise could be different in different training sets
- ▶ the **variance** of a model is the amount of variations across models trained on different training sets

Overfits

▶ fit a 5-th degree polynomial with more data

fitting 5-th degree model on large dataset

▶ large training set helps reduce the variance of the model

Bias-variance tradeoff

The bias-variance decomposition for regression

- \blacktriangleright Draw a training dataset $S=\{(x^{(i)},y^{(i)})\}_{i=1}^n$ such that $y^{(i)}=h^\star(x^{(i)})+\xi^{(i)}$ where $\xi^{(i)}\in N(0,\sigma^2)$
- ightharpoonup Train a model on the dataset S, denoted by \hat{h}_S .
- ▶ Take a test example (x,y) such that $y=h^\star(x)+\xi$ where $\xi \sim N(0,\sigma^2)$,
- ▶ the expected test error (averaged over the random draw of the training set S and the randomness of ξ):

$$\mathsf{MSE}(x) = \mathbb{E}_{S,\xi} \left[(y - h_S(x))^2 \right]$$

The bias-variance decomposition

 conceptually useful for understanding what contributes to the test error

$$\begin{split} \mathsf{MSE}(x) &= \mathbb{E}\left[(y - h_S(x))^2 \right] \\ &= \mathbb{E}\left[(\xi + (h^\star(x) - h_S(x)))^2 \right] \\ &= \mathbb{E}\left[\xi^2 \right] + \mathbb{E}\left[(h^\star(x) - h_S(x))^2 \right] \\ &= \sigma^2 + \mathbb{E}\left[(h^\star(x) - h_S(x))^2 \right] \\ &= \sigma^2 + (h^\star(x) - h_{\mathsf{avg}}(x))^2 + \mathbb{E}\left[(h_{\mathsf{avg}}(x) - h_S(x))^2 \right] \\ &= \underbrace{\sigma^2 + (h^\star(x) - h_{\mathsf{avg}}(x))^2 + \mathbb{E}\left[(h_{\mathsf{avg}}(x) - h_S(x))^2 \right]}_{\triangleq \mathsf{bias}^2} + \underbrace{\underbrace{\mathrm{var}(h_S(x))}_{\triangleq \mathsf{variance}}}_{\triangleq \mathsf{variance}} \end{split}$$

in practice, the bias and variance are not directly computable

Model selection in practice

- lacktriangle in practice, we do not have access to the true underlying function h^\star
- when training data is limited, we cannot estimate $h_{\text{avg}}(x)$ or $\text{var}(h_S(x))$ accurately
- the bias-variance decomposition is a conceptual tool for understanding the test error
- there are more practical ways to estimate the test error and select models

Model selection in practice

the most common approach is to split the dataset into training, validation, and test sets

- the training set is used to train models
- the validation set is used to estimate the test error and select models
- ► the test set is used to evaluate the final model; should be kept in a "vault" and be brought out only at the end of evaluating the model
- ▶ if the test set is used repeatedly to select models with smallest test error, the test error of the final chosen model will underestimate the true test error