

Kobrock, K., Ohmer, X., Bruni, E., and Gotzner, N. (2023)

Pragmatics in referential communication

An investigation of concept communication and the role of pragmatics with an emergent communication game

Levels of abstraction shaped by context

Paradigm and set-up

1) Emergent communication

e.g., Lazaridou et al. (2017), Ohmer et al. (2022)

2) Reference game

e.g., Franke & Degen (2016)

Mu & Goodman (2021)

Symbolic dataset: Objects consist of *n* attributes which each can take *k* values.

Dataset manipulates concept level and context

- → The more attributes are **fixed**, the more **specific** the concept.
- → The more fixed attributes are **shared** between targets and distractors, the *finer* the context.

Concept x context conditions

A) specific concept, fine context:


```
Set notation:
Colors = {blue, green, orange}
Shapes = {circle, square, triangle}
```

```
target concept: "blue circle"
{(blue, circle)}
```

distractor concept: "blue shapes which are no
circles and circles which are not blue"
{(blue, square), (blue, triangle),
 (orange, circle),

Concept x context conditions

B) specific concept, coarse context:

target concept: "blue circle"
{(blue, circle)}

distractor concept: "all that is not blue or a circle"
{(green, square), (orange, square),
(green, triangle), (orange, triangle)}

Concept x context conditions

C) generic concept, coarse context:


```
target concept: "circle"
{(blue, circle), (green, circle),
(orange, circle)}
```

```
distractor concept: "all that is not a circle"
{(blue, square), (green, square), (orange,
square), (blue, triangle), (green, triangle),
(orange, triangle)}
```

Training

Hypotheses

Baseline: Context-unaware literal agents (L) have to communicate all relevant attributes to be successful, thus may be overinformative (non-pragmatic baseline).

- H1: Context-aware literal agents (L-aware) can communicate fewer than all attributes and let uncertainty be resolved by context (context-based pragmatics).
- **H2: L-aware + utterance cost** will further reduce overinformation because communicating fewer attributes becomes beneficial (context-based pragmatics + implicit abstraction).
- **H3:** L + **RSA** will increase the agents' performance through additional recursive reasoning of the speaker (reasoning about intentions).

Context-unaware

Context-aware

Do the agents learn to successfully communicate?

Accuracies over time

Context-unaware

Context-aware

Final accuracies

 \rightarrow trained five runs on six datasets: D(3,4), D(3,8), D(3,16), D(4,4), D(4,8), D(5,4)

Do agents learn to **efficiently** communicate?

Brighton & Kirby (2006)

Compositionality: Topographic similarity

Context-unaware

Informativity: Normalized mutual information (NMI)

Do agents learn to **reason about the context** when deciding on the referring expression's appropriate level of abstraction?

Qualitative analysis of the messages - context-unaware

object	fixed indices	context condition	message
[0, 2, 1]	[1, 1, 1]	0	[2, 2, 2]
[0, 2, 1]	[1, 1, 1]	0	[2, 2, 2]
[0, 2, 1]	[1, 1, 1]	0	[2, 2, 2]
[0, 2, 1]	[1, 1, 1]	1	[2, 2, 2]
[0, 2, 1]	[1, 1, 1]	1	[2, 2, 2]
[0, 2, 1]	[1, 1, 1]	1	[2, 2, 2]
[0, 2, 1]	[1, 1, 1]	2	[2, 2, 2]
[0, 2, 1]	[1, 1, 1]	2	[2, 2, 2]
[0, 2, 1]	[1, 1, 1]	2	[2, 2, 2]

object	fixed indices	context condition	message
[3, 1, 2]	[1, 1, 1]	0	[13, 13, 13]
[3, 1, 2]	[1, 1, 1]	0	[13, 13, 13]
[3, 1, 2]	[1, 1, 1]	0	[13, 13, 13]
[3, 1, 2]	[1, 1, 1]	1	[13, 13, 13]
[3, 1, 2]	[1, 1, 1]	1	[13, 13, 13]
[3, 1, 2]	[1, 1, 1]	1	[13, 13, 13]
[3, 1, 2]	[1, 1, 1]	2	[13, 13, 13]
[3, 1, 2]	[1, 1, 1]	2	[13, 13, 13]
[3, 1, 2]	[1, 1, 1]	2	[13, 13, 13]

Qualitative analysis of the messages - context-aware

object	fixed indices	context condition	message
[0, 3, 2]	[1, 1, 1]	0	[11, 1, 9]
[0, 3, 2]	[1, 1, 1]	0	[11, 1, 14]
[0, 3, 2]	[1, 1, 1]	0	[11, 1, 1]
[0, 3, 2]	[1, 1, 1]	1	[1, 1, 1]
[0, 3, 2]	[1, 1, 1]	1	[11, 1, 1]
[0, 3, 2]	[1, 1, 1]	1	[1, 1, 9]
[0, 3, 2]	[1, 1, 1]	2	[1, 1, 1]
[0, 3, 2]	[1, 1, 1]	2	[1, 1, 1]
[0, 3, 2]	[1, 1, 1]	2	[1, 1, 1]

object	fixed indices	context condition	message
[2, 3, 1]	[1, 1, 1]	0	[6, 13, 10]
[2, 3, 1]	[1, 1, 1]	0	[6, 13, 10]
[2, 3, 1]	[1, 1, 1]	0	[6, 13, 10]
[2, 3, 1]	[1, 1, 1]	1	[13, 6, 3]
[2, 3, 1]	[1, 1, 1]	1	[6, 13, 10]
[2, 3, 1]	[1, 1, 1]	1	[6, 13, 10]
[2, 3, 1]	[1, 1, 1]	2	[13, 10, 13]
[2, 3, 1]	[1, 1, 1]	2	[13, 10, 13]
[2, 3, 1]	[1, 1, 1]	2	[13, 10, 13]

Informativity: NMI per context condition

Context-aware: The *finer* the context, the **more** one-to-one mappings and the *coarser* the context, the **fewer** one-to-one mappings (similar to Hawkins et al., 2018).

Thank you!

Any questions?

Short summary

Agents learn to successfully (and somewhat efficiently) communicate in a concept-level reference game.

The mere presence of context drives its use in communication (without further incentives).

Contact: kristina.kobrock@uos.de

List of references

- Brighton, H., & Kirby, S. (2006). Understanding linguistic evolution by visualizing the emergence of topographic mappings. *Artificial Life*, 12(2):229242.
- Franke, M., & Degen, J. (2016). Reasoning in Reference Games: Individual- vs. Population-Level Probabilistic Modeling. *PLOS ONE*, 11(5), e0154854. https://doi.org/10.1371/journal.pone.0154854
- Hawkins, R. X. D., Franke, M., Smith, K., & Goodman, N. D. (2018). Emerging abstractions: Lexical conventions are shaped by communicative context. *Proceedings of the 40th annual conference of the cognitive science society (CogSci)*, 463–468. http://cocolab.stanford.edu/papers/HawkinsEtAl2018-Cogsci.pdf
- Kharitonov, E., Chaabouni, R., Bouchacourt, D., & Baroni, M. (2019). EGG: a toolkit for research on Emergence of lanGuage in Games. *Proceedings of the 2019 Conference on Empirical Methods in Natural Language Processing and the 9th International Joint Conference on Natural Language Processing (EMNLP-IJCNLP): System Demonstrations*, pages 55–60, Hong Kong, China. Association for Computational Linguistics. https://aclanthology.org/D19-3010
- Lazaridou, A., Peysakhovich, A., & Baroni, M. (2017). Multi-agent cooperation and the emergence of (natural) language. *International Conference on Learning Representations*. https://openreview.net/forum?id=Hk8N3Sclg
- Mu, J., & Goodman, N. (2021). Emergent Communication of Generalizations. *Advances in Neural Information Processing Systems*, 34, 17994–18007. https://proceedings.neurips.cc/paper_files/paper/2021/file/9597353e41e6957b5e7aa79214fcb256-Paper.pdf
- Ohmer, X., Duda, M., & Bruni, E. (2022). Emergence of Hierarchical Reference Systems in Multi-agent Communication. *Proceedings of the 29th International Conference on Computational Linguistics*, 5689–5706. https://aclanthology.org/2022.coling-1.501