Równania różniczkowe zwyczajne z laboratorium

Lista 1, 28.02.2018 r.

Zad. 1

Rozwiązać równanie swobodnego spadku ciała (wersja bez oporu: c=0)

$$m\ddot{x} = -mg - c\dot{x}.\tag{1}$$

Czy równanie (1) dla c=0 jest przypadkiem granicznym dla $c\neq 0$, gdy $c\to 0$? Warunek początkowy: $\dot{x}(0)=v_0,\,x(0)=x_0$.

Zad. 2 Rozwiązać równanie logistyczne

$$\dot{x} = x(a - bx), \qquad x(0) = x_0.$$
 (2)

Zad. 3

Sprawdzić, czy funkcja $x(t) = \cos 4t$ jest rozwiązaniem równania $\ddot{x} + 16x = 0$.

Zad. 4

Sprawdzić, czy funkcja $2x^2+y^2-2xy+5x=0$ jest rozwiązaniem równania $\frac{dy}{dx}=\frac{2y-4x-5}{2y-2x}$.

Zad. 5

Sprawdzić, czy funkcja $x(t) = c_1 \sin t + c_2 \cos t$ jest rozwiązaniem równania $\ddot{x} + x = 0$.

Zad. 6

Sprawdzić, czy funkcja $x(t)=\frac{t^2}{3}+\frac{1}{t}$ jest rozwiązaniem równania $t\dot{x}+x=t^2$ na zbiorze $(-\infty,0)\cup(0,\infty)$.

Zad. 7 Sprowadzić równanie $\ddot{x} = \dot{x} + t$ do układu równań 1. rzędu.

Zad. 8

Sprowadzić równanie $2\ddot{x}-5\dot{x}+x=0, x(3)=6, \dot{x}(3)=-1$ do układu równań 1. rzędu.

Zad. 9

Sprawdzić, czy funkcja $x(t)=2+c\sqrt{1-t^2}$ jest rozwiązaniem równania $(1-t^2)\dot{x}+tx=2t$ dla $t\neq 1.$