TCSS543 Final Project

Elliptic Curve Cryptography

Wenjun Yang Tianyi Li Student ID: 1872178 Student ID: 1827924

Implementation

Detailed implementation of the five algorithms below can be found in our submission.

- 1. <u>Calculate multiplications</u>: given points a¹ and a² and values of d and p, computes a³ as the product of a¹ and a².
- 2. <u>Calculate exponentiations</u>: given a point a, an exponent m and values of d and p, computes the exponentiation of $b = a^m$.
- 3. <u>Pollard's Rho Algorithm</u>: given input point a and b, where b = a^m, and values of d, p and n, calculate the discrete exponent m modulo n, and count the number of steps required for such iterations.
- 4. <u>Calculate Avg Rho Steps:</u> given a point a and values of d, p and n, generate a random exponent m modulo n by 2). Then, find the discrete exponent m modulo n using 3) and return the average number of steps required over N random discrete logarithms.

Parameters:
$$p = 2^{16}-17$$
, $d = 154$, $n = 16339$, $a = (12, 61833)$

5. (Bonus) Calculations: finding average steps required for the following parameters.

a).
$$p = 2^{18}-5$$
, $d = 294$, $n = 65717$, $a = (5, 261901)$

b).
$$p = 2^{20}-5$$
, $d = 47$, $n = 262643$, $a = (3, 111745)$

c).
$$p = 2^{22}-17$$
, $d = 314$, $n = 1049497$, $a = (4, 85081)$

Results

Different random exponent would yield slightly varied outcomes. Following results are the medians in the series of outputs.

- 4). <u>Parameters</u>: $p = 2^{16}-17$, d = 154, n = 16339, a = (12, 61833)Output: **~163 steps**.
- 5a). Parameters: $p = 2^{18}-5$, d = 294, n = 65717, a = (5, 261901)Output: **~335 steps**.
- 5b). Parameters: $p = 2^{20}-5$, d = 47, n = 262643, a = (3, 111745)Output: **~645 steps**.
- 5c). Parameters: $p = 2^{22}-17$, d = 314, n = 1049497, a = (4, 85081)Output: **~1322 steps**.