$OMA@kav@xadd.typearea.stypaperA4\\OMA@kav@xadd.typearea.stypapera4$

Práctica de PySpark

Análisis de datos de Bicimad

González Jorge, Lattes Adrián, Lobato Pablo

Práctica de PySpark 07 de Junio de 2021

Procesamiento de los datos

Obtención de los datos

1. Descargamos de los datos desde la web:

2. Descomprimimos de los datos en formato zip y rar (descomprimir_datos

```
ls ./*.zip | xargs -n 1 -P 8 unzip
ls ./*.rar | xargs -n 1 -P 8 unrar e
```

- 3. Renombramos los ficheros con el mismo formato, desde un navegador de ficheros.
- 4. Importamos los ficheros *json* a *hdfs*, ajustando los tamaños de los bloques según los tamaños de los ficheros, de modo que cada fichero se divide en al menos 20 bloques y de este modo se aprovecha el paralelismo del cluster. De esta parte hemos perdido el código (borramos el fichero .bash_history del cluster).

Cargando los datos en Spark: ./bicimad/data.py

Además hemos implementado en python dos clases, Movements y Stations, que heredan a la clase Data y encapsulan los *dataframes* de *Spark* de los correspondientes tipos de datos.

La clase DataLoader sirve para cargar los *jsons* e inicializar las clases hijas de Data. Si el código se ejecuta en una máquina donde está el binario de *hdfs* se cargarán los ficheros desde *hdfs* y en caso contrario desde la carpeta ./samples. Mediante los métodos get_files y get_data se pueden seleccionar los ficheros correspondientes a un rango de meses. La función get_files devuelve información de los ficheros y get_data devuelve objetos de tipo Movements o Stations.

Resúmenes: ./bicimad/sampler.py

La clase Sampler encapsula las funciones utilizadas para crear resúmenes (samples) de los datos originales. Hemos ejecutado estas funciones en el clúster y descargado los resúmenes a la carpeta samples.

Práctica de PySpark 07 de Junio de 2021

Análisis de componentes principales

Hemos intentado realizar una reducción de las variables mediante un análisis de componentes principales para visualizar mejor los datos e identificar posibles clústers.

Objetivo

Queríamos reproducir el análisis de un artículo que estudia el tráfico de las bicicletas en un puente de Seattle, esperando obtener una clusterización algo similar:

Referencias

- 1. Analís de componentes principales Wikipedia
- 2. Learning Seattle's Work Habits from Bicycle Counts
- 3. Análisis de componentes principales

Nuestro intento

Plaza Juan Pujol:

python -m bicimad pipeline stations_pca --start 202007 --end 202012
--args 63

Calle San Germán

python -m bicimad pipeline stations_pca --start 202007 --end 202012
--args 139

Análisis por días laborables / fines de semana

Plaza Juan Pujol:

python -m bicimad pipeline stations --start 202007 --end 202012 -- args 63

Calle San Germán

python -m bicimad pipeline stations --start 202007 --end 202012 -- args 139

