time series feature extraction with tsfresh

GET RICH OR DIE OVERFITTING

you will not learn how to get rich during this talk

1. MOTIVATION

What you will learn instead

how to apply machine learning?

map the structured input into a lower dimensional space

LET'S AUTOMATE FEATURE EXTRACTION!

- automated data analytics plays a crucial role in many future applications of data science
 - live data analysis & streamed data
 - o efficient reduction of sample size
 - o "data analysis as a service"
- faster and easier feature engineering
- otherwise: knowledge of signal processing and feature extraction in multifarious domains needed

WHY FEATURE SELECTION?

2. INTRODUCING TSFRESH

Time Series
FeatuRe
Extraction based
on
Scalable
Hypothesis test

RAW TIME SERIES

FEATURE EXTRACTION

global maximum

augmented dickey fuller

stddev

cwt coefficients

quantile

fft

autocorrelation

...

P VALUE CALCULATION

p value calculation based on statistical hypothesis tests Benjamini-Yekutieli procedure respecting a global false discovery rate

WORKFLOW OF TSFRESH

FEATURE SELECTION

quantile

cwt coefficients

autocorrelation

...

- feature extraction and selection in parallel
- feature extractors use external binary libraries
- framework optimized for speed

- more than 60 feature extractors with parameters
- selection ready for regression and classification
- utilities for data preprocessing

IT'S FAST - IT'S LARGE - IT'S TSFRESH

- easy to use
- interface to scikit learn

3. USING TSFRESH

How can you use tsfresh?

In [1]: from tsfresh import extract_features

In [2]: df.head()

Out [2]:

	id	time	temp	pres
0	dev1	0.1	3.14	42
1	dev1	0.2	7.41	47

In [1]: from tsfresh import select_features

In [2]: X.head()

Out [2]:

id	tempm ean	tempm ax	presme an	presma
dev1	3.24	4.2	47	66
dev2	4.67	11.34	44	60

4. TSFRESH AND FINANCE DATA

How to (still) get rich with tsfresh


```
In [1]: from pandas_datareader import data
            symbols = ["AAPL", "GOOG", "MSFT", "FB", "TSM", "ORCL",
    [2]:
                        "INTC", "IBM", "SAP", "NVDA", "AVGO", "TXN",
                        "DCM", "QCOM", "ADBE", "BIDU", "CRM",
                        "AABA", "AMAT"]
            stock_data = {symbol: data.get_data_yahoo(symbol) for symbol in symbols}
                           GOOG
                           AAPL
                  rmalized Adj. Close
```

```
In [1]:
           from pandas as pd
           melted = pd.melt(df)
In [2]:
           melted.rename(columns={"variable": "kind", "value": "price"},
                          inplace=True)
            melted["time"] = list(df.index)*len(df.columns)
           melted["id"] = 1
            from tsfresh.utilities.dataframe_functions import roll_time_series
In [3]:
            use_data_of = 100
            rolled = roll_time_series(melted.copy(), column_id="id", column_sort="time",
                                      column_kind="kind".
                                      rolling_direction=1,
                                      max_timeshift=use_data_of - 1).reset_index(drop=True)
            rolled = rolled.groupby("id")\
                           .filter(lambda x: len(set(x["time"])) == use_data_of)\
                           .reset_index(drop=True)
```

In [1]: from tsfresh import extract_features
from tsfresh.feature_extraction.settings import EfficientFCParameters

variable	abs_energy	absolute_sum_of_changes	$agg_autocorrelation__f_agg_"mean"$	 value_countvalue_nan	variance	symbol
2010-05-25 00:00:00AABA	26766.161079	24.269979	-0.015184	 0.0	0.764041	AABA
2010-05-26 00:00:00AABA	26723.295145	24.089980	-0.019028	 0.0	0.769769	AABA
2010-05-27 00:00:00AABA	26677.061245	24.199980	-0.016888	 0.0	0.767560	AABA
2010-05-28 00:00:00AABA	26615.503945	24.489980	-0.015479	 0.0	0.768132	AABA
2010-06-01 00:00:00AABA	26546.295445	24.339981	-0.016363	 0.0	0.776085	AABA

5.

SOME DESIGN
DECISIONS

What we have learned during the development

PANDAS IS GREAT, BUT SLOW

- especially the creation of Series and Dataframes should not happen often
 - for example: in the groupby.apply function: never return a Series! Go with a list of tuples instead
- we all know, but sometimes forget: do not append to Dataframes

SPEEDING UP TSFRESH

- start with a good profiling of the software (as always!), e.g. using line_profiler
- reduce the amount of pandas objects
 - especially when using random access, masking, basic arithmetics
 - try not to copy them around or recreate them every time
- always have a consistent speed test ready

HOW TO HANDLE SETTINGS?

- our top level functions (extract_features, select_features) have a large amount of parameters
- especially the information, which feature should be extracted, must be easily accessible by the user

A SETTINGS OBJECT, A GOOD IDEA!?

- many questions on gitter/issues on github about this
- object and function development needed to be synced
- we started to invent our own dictionary class

HAVING TOO MANY TIME SERIES?

NO PROBLEM.

6.

BRINGING
TSFRESH TO THE
CLOUD

USING TSFRESH WITH DASK

from tsfresh import extract_features

extract_features(df

from tsfresh.utilities.distribution import ClusterDaskDistributor
from tsfresh import extract_features

distributor = ClusterDaskDistributor("192.168.178.111:8000")
extract_features(df, distributor=distributor)

HOW FAR ARE WE?

- dask (distributed) support built into tsfresh
 - o can run on Amazon EC2
- first tested test instance running on AWS Lambda
 - with the help of zappa and flask
- more information:
 - https://content.pivotal.io/blog/automated-mac hine-learning-deploying-automl-to-the-cloud
 - https://nils-braun.github.io/amazon-lambda-a nd-map-2/

INHOMOGENEOUS SOURCES

several time series and meta-information simultaneously

DECENTRAL PROCESSING

process close to source, faster feedback (no latency), no memory problems

BIG DATA

scale with number of time series, number of devices and length of time series

ROBUSTNESS

labeled samples are expensive, overfitting bad

FIELD TESTED

tsfresh was developed for a consulting project on Industrie 4.0, more than 2k stars on github

TSFRESH ON ONE SLIDE

ADDITIONAL RESOURCES

tsfresh.readthedocs.io/en/latest/github.com/blue-yonder/tsfresh/

@_nilsbraun nils-braun.github.io

Michael Feindt, Max Christ, Julius Neuffer, Andreas Kempa-Liehr

tsfresh is powered with Python

THANK YOU!