Pondération : 4% de la note finale

1.

- a) À partir des équations de couche limite (Équations 18.1 à 18.3) ainsi que leurs conditions limites, retrouvez l'équation de Blasius (plaque plane) : ff' + 2f''' = 0
- b) À l'aide du programme Blasius fourni en Python, obtenez U/U_e en fonction de la hauteur adimensionnelle η sur le domaine $\eta = [0,10]$ avec un pas de 0.1. Déterminez
 - i. la hauteur de la couche limite δ ,
 - ii. l'épaisseur de déplacement $\delta^* = \int_{y=0}^{\infty} \left(1 \frac{u}{Ue}\right) dy$
 - iii. l'épaisseur de quantité de mouvement $\theta = \int_{y=0}^{\infty} \left(1 \frac{u}{Ue}\right) \frac{u}{Ue} \, dy$

Veuillez adimensionaliser ces grandeurs par la distance x en fonction du nombre de Reynolds : $\frac{\delta}{x}$, $\frac{\delta^*}{x}$, $\frac{\theta}{x}$ = $f(Re_x)$. Comparez vos résultats avec les valeurs publiées dans les livre.

c) Si vous assumez une distribution de vitesse linéaire entre y=0 et $y=\delta$, $u/u_e=y/\delta$ sur une plaque plane, alors déterminez i) la hauteur de la couche limite, ii) l'épaisseur de déplacement et iii) l'épaisseur de quantité de mouvement adimensionalisées par la distance x en fonction du nombre de Reynolds. Comparez vos résultats avec vos réponses en b).

Note : exprimez δ^* et θ en fonction de δ , puis utilisez l'équation de von Karman.

- 2. Utilisez la méthode de Thwaites pour trouver numériquement le point de séparation d'un écoulement : $U_e = U_{\infty}(1-x/c)$. Comparez les solutions analytique et numérique de la méthode. Prenez le critère de séparation $\lambda = -0.09$.
- 3. Utilisez la méthode de Thwaites pour trouver le point de séparation (θ) d'un écoulement laminaire autour d'un cylindre. Les vitesses Ue sur chaque panneaux peuvent être obtenues à l'aide du code HSPM utilisé au TD1.
- 4. Utilisez la méthode intégrale pour trouver le point de séparation (θ) d'un écoulement turbulent autour d'un cylindre. Démarrez vos calculs en régime laminaire sur une courte distance (5 ou 10 degrés), puis continuez les calculs en régime turbulents.

Note: Les questions 2 à 4 concernent la programmation en Python d'un code de couche limite laminaireturbulent qui vous sera utile pour le projet final. Pensez donc à bien concevoir le code et assurez-vous qu'il puisse prendre en entrée la solution du code HSPM sur un profil quelconque.