

Definition of Fluid Viscosity

- The resistance of a fluid which is being deformed by either shear stress or tensile stress
- **Dynamic viscosity** (μ)
- Kinematic viscosity (v=µ/p) ratio of viscous and inertial forces
- Dynamic viscosity (µ) Units

 $\frac{kg}{m \times s}$, $Pa \times s$, P (Poise), mP, etc.

Definition of Fluid Density The total mass per unit volume (Mass of Liquid + Mass of Solids)/volume Units \frac{kg}{m^3}, \frac{lb}{ft^3}, \text{ etc.}

Density, Viscosity, and Hydraulic Conductivity

Fluid density and viscosity have a direct effect on hydraulic conductivity

$$K = \frac{k\rho g}{\mu}$$

A General Form of Fluid Viscosity

$$\mu = \mu_o \left(T^{\circ C} \right) + \mathop{\rm a}\limits_{k=1}^N \frac{\P \mu}{\P C_k} (C_k - C_{o,k}), \text{ Hughes and Sanford (2004)}$$

$$\mu_o \left(T^{\circ C} \right) = \left(239.4 \right) 10^{\frac{2}{5}} 10^{\frac{2}{5}} 10^{\frac{1}{5}}$$

$$TDS = \mathop{\rm a}\limits_{k=1}^N C_k$$

Fluid Viscosity in SEAWAT

$$\mu = \mu(T^{\circ C}) + \mathring{\mathbf{a}}_{k=1}^{n} \frac{\P \mu}{\P C_{k}} (C_{k} - C_{o,k})$$

$$\mu(T^{\circ C}) = A_{1} \times \mathring{\mathbf{A}}_{2}^{\frac{\mathcal{E}A_{3} \ddot{\mathbf{b}}}{\frac{\mathcal{E}}{A_{4} \ddot{\mathbf{b}}}}}$$

$$\mu(T^{\circ C}) = A_{1} \times \mathring{\mathbf{E}}A_{2} + A_{3} (T + A_{4}) \mathring{\mathbf{b}}_{1}^{A_{5}}$$

$$\mu(T^{\circ C}) = A_{1} \times T^{A_{2}}$$

A ₁	A ₂	A ₃	A ₄	A ₅	Equation (in report)	Reference
2.394 x 10 ⁻⁵	10	248.37	133.15		18	Voss (1984)
1 x 10 ⁻³	1	1.5512 x 10 ⁻²	-20	-1.572	19	Pawlowski (1991)
0.168	-1.0868				20	Guo and Zhao (2005)*

Fluid Density

In general, fluid density is a function of temperature, pressure and solute concentrations:

$$\rho = f(T, P, C)$$

Fluid Density - isothermal

Under isothermal conditions, and assuming the fluid is incompressible, fluid density is a function of solute concentrations:

$$\rho = f(C)$$

Fluid density – General linear form

$$\rho = \rho_o + \mathring{a}_{k=1}^n \frac{\P \rho}{\P C_k} (C_k - C_{o,k}) + \frac{\P \rho}{\P T} (T - T_o) + \frac{\P \rho}{\P P} (P - P_o)$$

$$TDS = \mathring{a}_{k=1}^n C_k$$

Assuming $C_{o,k} = 0$

$$\rho = \rho_o + \overset{\circ}{\mathbf{a}}_{k=1}^n \frac{\P \rho}{\P C_k} C_k$$

	Data					
₹II L	Data					
	Molecular			Danaitu		
Salts	weight	# samples	Regression Equation	Density Slope		
LiCI	42.4	12	y = 0.5406x + 997.54	0.5406		
NaCl	58.46	8	y = 0.6601x + 997.57	0.6601		
KCI	74.56	22	y = 0.5899x + 998.2	0.5899		
LiBr	86.86	18	y = 0.6972x + 997.56	0.6972		
NaBr	102.92	13	y = 0.7278x + 998.48	0.7278		
KBr	119.02	16	y = 0.6941x + 997.5	0.6941		
Lil	133.86	9	y = 0.725x + 997.01	0.725		
Nal	149.92	9	y = 0.7495x + 997.39	0.7495		
KI	166.02	8	y = 0.7134x + 997.32	0.7134		
Average		115		0.677511		
All Data			y = 0.7015x + 995.77	0.7015		

Density Calculation in SEAWAT

$$\rho = \rho_f + E \cdot C$$
 where
$$E = \frac{\Delta \rho}{\Delta C} = \frac{\rho_{\text{max}} - \rho_{\text{min}}}{C_{\text{max}} - C_{\text{min}}}$$

A Special Case of Density Slope

$$E = \frac{\Delta \rho}{\Delta C} = \frac{\rho_{seawater} - \rho_f}{C_{TDS} - 0}$$
e.g.
$$E = \frac{1025 - 1000}{35} = 25/35 = 0.7143$$

INPUT of C	CONCENT	RATIONS
VERSION	TDS	Chloride
SEAWAT 1.2	Yes	No
SEAWAT 2.1	Yes	No
SEAWAT 2000 SEAWAT v. 4	Yes	Yes

Using Chloride Concentration

- SEAWAT 2000 or version 4
- Chloride/TDS ratio is constant
- Appropriate Density Slope

Chloride vs. TDS

- TDS is preferred to be used for density calculation
- Chloride concentration may be used for density calculation if the ratio of chloride concentration to TDS is relatively uniform (55%)

Composition of "typical" seawater

Major Solutes	Concentration (mg/Kg)	Percentage (%)
Chloride	19350	55.06
Sodium	10760	30.62
Sulfate	2710	7.71
Magnesium	1290	3.67
Calcium	411	1.17
Potassium	399	1.13
Bicarbonate	142	0.4
Bromide	67	0.19
Others	20	0.04

Field Measurements of Chloride and TDS Concentration (Brevard, FL)

Well Name	Sample ID	CI (mg/l)	TDS (mg/l)	CI/TDS (%)
UF-1D	S-12	59	532	11.09
	S-13	64	536	11.94
	S-14	71	536	13.25
	S-15	70	524	13.36
	S-16	65	580	11.21
	S-17	70	568	12.32
	S-18	56	518	10.81
	S-40	672	1372	48.98
	S-25	882	2078	42.44
	S-33	2717	5446	49.89

Data Source: BFA, 2001

Well Name	Sample ID	CI (mg/l)	TDS (mg/l)	CI/TDS (%)
UF-2S	S-1	124	556	22.30
	S-2	183	668	27.40
	S-3	390	1136	34.33
	S-4	691	1772	39.00
	S-5	833	2044	40.75
	S-6	845	1984	42.59
UF-3D	S-32	49	412	11.89
	S-33	52	384	13.54
	S-34	64	388	16.49
	S-35	55	400	13.75
	S-36	55	388	14.18
	S-37	52	376	13.83
	S-27	74	896	8.26
	S-25	134	694	19.31
	S-23	2010	4372	45.97

How to estimate TDS

- Specific conductance
- Regression Analysis of Chloride data

How to Predict Chloride Concentrations

- Multi-species Solute Transport
- Proportional Calculation
- Standard MODFLOW/MT3D Approach