BE1M13VES

Manufacturing of Electrical Components

Michal Brejcha

CTU in Prague

Prague, 2017

Overview

1 Variable Resistors

2 Nonlinear Resistors

TOPIC

1 Variable Resistors

2 Nonlinear Resistors

Variable resistors

Types:

- potentiometers (for controls a lot of cycles),
- trimmers (for settings a few of cycles).
- Design of variable resistors is based on slider (wiper) moving or rotating above a resistive track.

Parameters

- Similar parameters to normal resistors
- Values from sets E6 or E12
- lacktriangle Resistivity of layer tracks can be between 100 Ω and 5 M Ω
- Resistivity of wired tracks can be between 1 Ω and 100 k Ω
- Common tolerance (accuracy) is 20 %, in case of special usage 0.3 %,
- Several constructions:

Disassembly

Technology

Track: wire, varnished ceramic, conductive plastic

(carbon), cermets (ceramics + metal)

Wiper: metal or with carbon layer, small transient re-

sistivity is required

Track Profile: linear, logarithmic, exponencial

360°

Design of Resistive Track

Nonlinear resistive track is made from several layers.

- The first layer is applied on an insulating pad, other layers are made on the previous one.
- Bottom layer has the highest resistivity, the top layer has the lowest resistivity.

Multiturn Potentiometers - ARIPOT and similars

- Collector moves along helix winding or resistive track.
- The track can be long in comparison to common flat design.
- Collector must be able of axial movement very precise construction, wiper in form of a roller.

Layers Overview

Varnished Track: layer is sprayed or print via screen from a mixture of varnish and carbon filler.

Cermets Track: resistive layer is made from burned paste on a ceramic basis. Layers are made by screen-printing technology (silk-screen printing). Only linear profile can be made.

Tracks from conductive plastics: tracks have a large cross-section area, they are abrasion-proof, also tracks with non-linear profile can be made.

Trimmers

- Basic principle is the same for potentiometers as for trimmers.
- Trimmers usually don't have shaft and knob, setting in done manually by some tool (e.g. screwdriver).
- Design is simplified without cover, trimmers used to be fixed by outlets (missing armature/chassis).
- Long-life operation is not expected, trimmers are used just for settings.

Comparison of different types of variable resistors

	carbon	cermets	wired	multiturn	plastic	cermets
accuracy of track	10%	1%	1%	0.1%	10%	1%
whisper signals	1 μV/V	10 μV/V	none	none	100 μV/V	100 μV/V
max. power	1 W	1 W	1 kW	1 W	1 W	2-3 W
life-time (cycles)	$10^4 - 10^5$	10 ⁴ - 10 ⁵	$10^4 - 10^5$	10 ⁷	10 ⁸	100
stability	10%	1%	1%	0.1%	0.5%	1%

TOPIC

1 Variable Resistors

2 Nonlinear Resistors

Nonlinear Resistors

- thermistors (NTC, PTC).
- voltage depended resistors (VDR) varistors.
- photoresistors.

NTC Thermistor

NTC = negative temperature coefficient

$$R = A \cdot e^{\frac{B}{T}}$$

- A... Resistivity for infinity temperature
- B... Material parameter
- T... Thermodynamic temperature

NTC Thermistor

Parameters A, B

$$ln(R) = ln(A) + \frac{B}{T}$$

This is a linear function of In(R) in dependency to $\frac{1}{T}$

VA - characteristic: affected by self heating.

Packages Examples

Design of NTC Thermistors

- shapes similar to: pales, tablets, small pearls,
- materials: polycrystalline semiconductors plus oxides of Mn, Ni, Cu, Co, Cr, Ti, W, (in the past often used UO₂, TiO₂, CuO). Minced mixture of oxides must be homogenous and well mixed.

Pales and tablets:

- pressed under big stress (600 kg/cm²) into required shapes,
- burning at temperature 1000 °C (up to 1400 °C) in oxidation atmosphere,
- soldering of *Cu* outlets by *Ag* paste.

Design of NTC Thermistors

Small pearls:

- between two wires of Pt-alloy (with diameter 25 100 μ m) is putted a drop of minced mixture,
- burning at temperature 1000 °C (up to 1400 °C),
- encapsulation into glass (thermometers) or vacuum capsule,
- important is artificial aging to stabilizing electric features.

PTC Thermistors

PTC = positive temperature coefficient, at cold-state low impedance, at hot-state high impedance. This effect is caused by ferroelectric material and changes of its permittivity.

- low temperature = ferroelectric domains exhibit high electrical strength - conductive low impedance state,
- high temperature = ferroelectric domains exhibit lower permittivity and lower electric strength high impedance state.
- PTC are both voltage and frequency dependent devices.

Design of PTC Thermistors

- used shapes: pales and tables again,
- materials: burned mixture of *BaCO*₃, *SrCO*₃, *La*₂*O*₃, *TiO*₂, *SiO*₂,
- processing: minced mixture is formed under a big stress; burning at the temperature 1100 °C starts calcinations process; than second mincing and final burning/annealing at 1400 °C for 2 hours; soldering of Cu outlets (wires).

Varistors

- B... Material parameter
- resistor made from polycrystalline semiconductor,
- fast increase of flowing current after achieving of breakdown voltage,
- decrease of impedance is caused by increase of electrical strength between domains of semiconductor.
- fast response in the order of 50 ns,
- at higher frequencies VDR behaves as capacitor with big power loss.

Design of Varistor

- shape: typically tablets, pressed from a mixture of polycrystalline semiconductor,
- material: SiC (old), now ZnO with MnO, Sb₂O, MgO, Bi₂O₃ and fixed with a glass fibers,
- outlets: burned AgPd pads and soldered Cu wires outlets,
- covering: synthetic or epoxy resin.

