Electromagnetic Engineering (EC21006)

Tutorial III Flux, Divergence

- 1. Given $\vec{A} = 2xy \, \vec{a}_x + z \, \vec{a}_y + yz^2 \vec{a}_z$
 - a) Find $\int A \cdot ds$ along all the faces of the differential volume centered at (2,-1, 3)
 - b) $\vec{A} = (10/r^2) \vec{a}_r + 5e^{-2z} \vec{a}_z$ at $(2, \phi, 1)$
 - c) $\vec{A} = [10 \sin^2 \theta / r] \vec{a}_r$ at $(2, \pi/4, \pi/2)$
 - d) Find ∇ . A in the three cases by shrinking the differential volume.
- e) Find ∇ .A using the formula in the three cases and cross check with the results obtained in (d).
- 2. If the flux density \vec{D} in a region is given as $\vec{D} = (2 + 16 \, \rho^2) \, \vec{a}_z$, determine the total flux $\int \vec{D} \cdot \vec{ds}$ passing through a circular surface of radius ρ =2 in the xy plane.
- 3. Verify the divergence theorem for each of the following cases:

$$\oint_{S} A \cdot dS = \int_{V} \nabla \cdot A \, dV$$

- a) $A = xy^2a_x + y^3a_y + y^2z a_z$ and S is the surface of the cuboid defined by 0 < x < 1, 0 < y < 1, 0 < z < 1.
- b) $A = 2 \rho z a_{\rho} + 32 \sin \phi \ a_{\phi} 4\rho \cos \phi \ a_{z}$ and S is the surface of the wedge $0 < \rho < 2$, $0 < \phi < 45^{\circ}$, 0 < z < 5.
- c) $A = \gamma^2 a_r + \gamma \sin \theta \cos \phi \ a_\theta$ and S is the surface of a quarter of a sphere defined by $0 < \gamma < 3$, $0 < \phi < \pi/2$, $0 < \theta < \pi/2$.
- 4. In free space, let $D = 8xyz^4 a_x + 4x^2z^4 a_y + 16x^2yz^3 a_z pC/m^2$
 - a) Find the total electric flux passing through the rectangular surface z = 2.0 < x < 2.1 < y < 3, in the a_z direction.
 - b) Find **E** at P(2,-1,3).
 - c) Find an approximate value for the total charge contained in an incremental sphere located at P(2,-1,3) and having a volume of $10^{-12} m^3$.
- 5. Let $\mathbf{D} = 5.00 \, r^2 \mathbf{a}_r \, mC/m^2$ for $r \le 0.08 \, m$ and $D = 0.205 \, \mathbf{a}_r/r^2 \, \mu C/m^2$ for $r \ge 0.08 \, m$
 - a) Find ρ_v for r=0.06m.
 - b) Find ρ_v for r=0.1m

- c) What surface charge density could be located at r=0.08m to cause $\mathbf{D}=0$ for r>0.08m?
- 6. In the region of free space that includes the volume, 2 < x, y, z < 3, $\mathbf{D} = \frac{2}{z^2} (yz \, \mathbf{a}_x + xz \, \mathbf{a}_y 2xy \, \mathbf{a}_z) \, C/m^2$
 - a) Evaluate the volume integral side of the divergence theorem for the volume defined here.
 - b) Evaluate the surface integral side for the corresponding closed surface.
- 7. Let $\mathbf{D} = 20\rho^2 \, \mathbf{a}_{\rho} \, nC/m^2$
 - a) What is the volume charge density at the point $P(0.5, 60^0, 2)$?
 - b) Use two different methods to find the amount of charge lying within the closed surface bounded by $\rho = 3$, $0 \le z \le 2$.
- 8. Given the flux density $\mathbf{D} = \frac{16}{r}\cos(2\theta) \mathbf{a}_{\theta} C/m^2$, use two different methods to find the total charge within the region 1 < r < 2m, $1 < \theta < 2$ rad, $1 < \phi < 2$ rad.
- 9. Determine the net flux of the vector field $\mathbf{F}=2 \mathbf{a}_r + r \mathbf{a}_{\theta} \mathbf{a}_{\phi}$ out of a unit radius sphere that is centered on the origin of a spherical coordinate system.
- 10. Verify the Divergence theorem for the vector field $\mathbf{F} = \mathbf{r} \ \mathbf{a}_r$ over a closed surface that is a quadrant of a sphere defined by r = 1, $0 \le \theta \le \pi/2$.