Justificar cada respuesta. El examen esta pensado para que no haga falta usar una calculadora.

Ejercicio	1	2	3	Nota
Puntaje máximo	4	4	2	10
Puntaje obtenido				

Si se traban con algún ejercicio, pasen al siguiente y vuelvan a intentar mas tarde con el que dejaron.

1. (4 Puntos)Resolver:

a) $log(100) - log_{\frac{1}{2}}(1)$

Sabiendo que $log_2(5) \simeq 2,32$, calcular:

Profesor: Alexis Gomel

12/8/2015

- b) $3^2 . log_3(7)$
- $d) log_2(10)$ $e) log_5(2)$

c) $log_2(\frac{1}{32})$

 $f) log_2(25)$

2. (4 Puntos)Encontrar, si es posible, el valor de x :

- a) log(x) = 2.log(4)
- b) $log_5(3.x-1) = 1$
- c) $12 \cdot 4^x 9 \cdot 4^x = 48$

3. (2 Puntos) **Gráficos:** Cada ítem vale 1 punto.

a) Graficar $y = log_2(x-1)$. (Basta con completar la tabla, y unir los puntos.) Indicar en que valor de x esta la asíntota vertical.

\boldsymbol{x}	2	3	5	9	3/2	7/4
y						

b) Encontrar a y b , a partir del gráfico de $y = log_a(x-b)$.

Figura 1: Encontrar a y b, a partir del gráfico de $y = log_a(x - b)$. Los puntos marcados con asterisco, son los valores de y cuando x vale -2,000001;-1;0;1;2;3...

Pista: Analizar que pasa en (-1,0) y en (1,1). Que tienen que cumplir a y b para que sea posible que la función tome estos valores?

4. (bonus) Extra: Si ya terminaste los demás, este ejercicio sirve como un bonus para darte un empujón si estas cerca de aprobar, o para redondear la nota para arriba.

Sabiendo que, por definición, $x = a^{\log_a(x)}$; y $x = c^{\log_c(x)}$. Demostrar que $\log_a(x) = \frac{\log_c(x)}{\log_a(a)}$.