Листок №22 23.08.2019

Комплексная алгебра

Большая часть задач этого листка решается с помощью формулы Муавра.

Задача 22.1. Решите уравнение и отметьте его корни на комплексной плоскости:

a.
$$z^5 = 1;$$
 6. $z^4 = 1 - \sqrt{3}i.$

Задача 22.2. (a) Сколько решений в зависимости от n имеет уравнение $z^n = 1$ в действительных числах? (б) Тот же вопрос в комплексных числах.

Определение. Корнем n-ой степени из комплексного числа w называется любое комплексное число z, т.ч. $z^n = w$.

Задача 22.3. Укажите все корни степени 6 из -4, отметьте их на комплексной плоскости.

Задача 22.4. Сколько существует корней степени n из числа w? Выразите их через |w| и $\arg w$.

Задача 22.5. Докажите, что при любом комплексном $w \neq 0$ все корни степени n из w являются вершинами правильного многоугольника на комплексной плоскости. Сколько вершин у данного многоугольника, где находится его центр и чему равен радиус описанной около него окружности?

Задача 22.6. Докажите, что для любого числа* z_0 многочлен P(z) можно и притом единственным образом представить в виде $P(z)=(z-z_0)Q(z)+w$, где Q(z) также некоторый многочлен, а w — некоторое число.

Определение. В условиях предыдущей задачи многочлен Q(z) называется частным, а число w — остатком от деления многочлена P(z) на многочлен $z-z_0$.

Задача 22.7. Что называется корнем многочлена? Пусть число z_0 является корнем многочлена P(z). Докажите, что этот многочлен можно представить в виде $P(z) = (z-z_0)Q(z)$, где Q(z) — также некоторый многочлен.

Задача 22.8. Докажите, что любой многочлен n-ой степени имеет не более n корней.

Задача 22.9. Представьте каждый из многочленов в виде произведения многочленов первой и второй степени с действительными коэффициентами:

a.
$$x^5 - 1$$
; **6.** $x^4 + x^3 + x^2 + x + 1$; **8.** $x^4 + 8$.

Задача 22.10. (а) Пользуясь пунктом а. предыдущей задачи, найдите $\cos\frac{2\pi}{5}$. (б) Найдите $\cos\frac{\pi}{5}$ и $\sin\frac{\pi}{5}$, а также получите разложение многочлена x^5-1 в произведение многочленов первой и второй степени с действительными коэффициентами, не использующее тригонометрические функции. (в) Попробуйте найти указанные в данной задаче значения тригонометрических функций из геометрических соображений[†].

Задача 22.11. а. Вычислите сумму и произведение всех корней степени n из числа w.

б. Упростите выражение

$$\cos\alpha + \cos\left(\alpha + \frac{2\pi}{7}\right) + \cos\left(\alpha + \frac{4\pi}{7}\right) + \cos\left(\alpha + \frac{6\pi}{7}\right) + \cos\left(\alpha - \frac{2\pi}{7}\right) + \cos\left(\alpha - \frac{4\pi}{7}\right) + \cos\left(\alpha - \frac{6\pi}{7}\right).$$

Задача 22.12. Найдите общую формулу n-ого члена последовательности, заданной рекуррентно, если

^{*}Еще раз напомним, что речь везде идет про комплексные числа (которые могут оказаться и действительными), а многочлены могут иметь комплексные коэффициенты.

[†]нам известен способ их нахождения из равнобедренного треугольника с углом $\frac{\pi}{5}$ при вершине

Листок №22 23.08.2019

a.
$$a_1 = a_2 = 1, a_n = 5a_{n-1} - 6a_{n-2};$$

6.
$$b_1 = b_2 = 1, b_n = 2b_{n-1} - 3b_{n-2}.$$

Задача 22.13. Найдите остаток от деления многочлена $x^{100} + 3x + 2$ на

a.
$$x^2 - 3x + 2$$
;

6.
$$x^2 - 2x + 2$$
.

Задача 22.14. Докажите, что многочлен $x^{3k} + x^{3l+1} + x^{3m+2}$ делится на $1 + x + x^2$ при любых натуральных k, l, m.

Задача 22.15. При каких значениях m многочлен $(x+1)^m + x^m + 1$ делится на $1 + x + x^2$?

Задача 22.16. Найдите суммы $C_n^0 - C_n^2 + C_n^4 - \dots$ и $C_n^1 - C_n^3 + C_n^5 - \dots$

Задача 22.17. Найдите суммы

a.
$$\sin \alpha + 2\sin 2\alpha + \ldots + 2^{n-1}\sin n\alpha$$
;

6.
$$\cos \alpha + \cos (x + \alpha) + \ldots + \cos (nx + \alpha)$$
.

Задача 22.18. Докажите, что многочлен $x^{44} + x^{33} + x^{22} + x^{11} + 1$ делится на $x^4 + x^3 + x^2 + x + 1$. **Задача 22.19.** Докажите, что если $f_1(x^3) + x f_2(x^3)$ делится на $1 + x + x^2$, то $f_1(x)$ и $f_2(x)$ делятся на x - 1.

Задача 22.20. Найдите суммы

a.
$$C_n^0 + C_n^4 + C_n^8 + C_n^{12} + \dots;$$

6.
$$C_n^i + C_n^{i+3} + C_n^{i+6} + \dots, i = 0, 1, 2.$$

Задача 22.21. Найдите суммы

a.
$$1 + 2\cos\alpha + 3\cos2\alpha + ... + n\cos(n-1)\alpha$$
; **6.** $\cos^2\alpha + \cos^22\alpha + ... + \cos^2n\alpha$.

Задача 22.22. (а) Разложите на множители первой и второй степени с действительными коэффициентами многочлен $x^{2n}-1$. Пользуясь полученным разложением, найдите $\sin\frac{\pi}{2n}\sin\frac{2\pi}{2n}\ldots\sin\frac{(n-1)\pi}{2n}$ и $\cos\frac{\pi}{2n}\cos\frac{2\pi}{2n}\ldots\cos\frac{(n-1)\pi}{2n}$. (б) Найдите $\sin\frac{\pi}{2n+1}\sin\frac{2\pi}{2n+1}\ldots\sin\frac{n\pi}{2n+1}$. Задача 22.23. (а) Докажите, что число $z=\frac{3}{5}+\frac{4}{5}i$ не является корнем n-ой степени из

Задача 22.23. (а) Докажите, что число $z = \frac{3}{5} + \frac{4}{5}i$ не является корнем n-ой степени из 1 ни при каком n. (б) Докажите, что градусная мера любого острого угла треугольника со сторонами 3, 4, 5 есть число иррациональное. (в) Докажите, что острый угол любого прямоугольного треугольника с целочисленными сторонами выражается иррациональным числом градусов.

Задача 22.24. Найдите сумму и произведение s-тых степеней всех корней уравнения $z^n-1=0$ в зависимости от s и n.