Здесь будет титульник, листай ниже

СОДЕРЖАНИЕ

ВВЕДЕНИЕ	4
1 Постановка задачи	
2 Метод решения	
3 Описание алгоритма	
4 Блок-схема алгоритма	12
5 Код программы	
6 Тестирование	18
ЗАКЛЮЧЕНИЕ	20
СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ	21

1 ПОСТАНОВКА ЗАДАЧИ

Множественное наследование

Даны 8 классов, которые нумеруются от 1 до 8. Классы 2, 3, 4 и 5 наследованы от первого класса. Шестой класс от второго и третьего. Седьмой от четвертого и пятого. Восьмой от шестого и седьмого.

У каждого класса есть параметризированный конструктор с одним параметром строкового типа и закрытое свойство строкового типа для хранения наименования объекта класса. Значение данного свойства определяется в параметризированном конструкторе согласно шаблону:

«значение строкового параметра»_ «номер класса»

У каждого класса есть метод в открытом разделе с одинаковым наименованием, который возвращает наименование объекта класса.

В реализации конструкторов со второго по восьмой класс, вызвать конструктор или конструкторы родительских классов. При вызове передать в качестве параметра выражение:

«параметр производного класса + «_» + «номер производного класса» Например, для конструктора второго класса

- cl_2 :: cl_2 (string s_name) : cl_1 (s_name + "_2") В основной функции реализовать алгоритм:
 - Объявить один указатель на объект класса х.
 - Объявить переменную строкового типа.
 - Ввести значение строковой переменной. Вводимое значение является идентификатором.
 - Создать объект класса 8 посредством параметризированного конструктора, передав в качестве аргумента строковую переменную.
 - Адрес созданного объекта присвоить указателю на объект класса х.
 - Используя только указатель на объект класса х вывести имена всех объектов

в составе объекта класса 8 и имя самого объекта класса 8. Вывод выполнить построчно, упорядочивая согласно возрастанию номеров класса. Наименования объектов первого класса вывести последовательно для производных объектов 2,3.4 и 5 класса.

Наследственность реализовать так, чтобы всего объектов было 10 и обеспечить вывод по аналогии приведенному примеру вывода.

1.1 Описание входных данных

Первая строка:

«идентификатор»

Пример ввода

Object

1.2 Описание выходных данных

Построчно (одиннадцать строк):

«наименование объекта»

Пример вывода:

Object_8_6_2_1 Object_8_6_3_1 Object_8_1

Object_8_1

Object_8_6_2

Object_8_6_3

Object_8_7_4

Object_8_7_5

Object_8_6

Object_8_7

Object_8

2 МЕТОД РЕШЕНИЯ

Для решения задачи понадобится:

- объект потока ввода cin и объект потока вывода cout
- библиотека string
- указатель this
- 8 классов

Класс cl1 базовый класс

```
Поля:
скрытые элементы:
string s_name;
Методы:
открытые:
cl1(string s_name) - конструктор класса; void print() - вывод;
Класс cl2 наследует класс cl1
Поля:
скрытые элементы:
string s_name;
Методы:
открытые:
cl2(string s_name) - конструктор класса; void print() - вывод;
```

Класс cl3 наследует класс cl1

Поля:

скрытые элементы:

```
string s_name;
Методы:
открытые:
cl3(string s_name) - конструктор класса; void print() - вывод;
Класс cl4 виртуальный базовый класс cl1
Поля:
скрытые элементы:
string s_name;
Методы:
открытые:
cl4(string s_name) - конструктор класса; void print() - вывод;
Класс cl5 виртуальный базовый класс cl1
Поля:
скрытые элементы:
string s_name;
Методы:
открытые:
cl5(string s_name) - конструктор класса;void print() - вывод;
Класс cl6 наследует класс cl2, cl3
Поля:
скрытые элементы:
string s_name;
Методы:
открытые:
```

cl6(string s_name) - конструктор класса;void print() - вывод;

Класс cl7 наследует класс cl4, cl5, виртуальный базовый класс cl1
Поля:
скрытые элементы:
string s_name;
Методы:
открытые:
cl7(string s_name) - конструктор класса;void print() - вывод;
Класс cl8 наследует класс cl6, cl7, виртуальный базовый класс cl1
Поля:
скрытые элементы:
string s_name;
Методы:
открытые:
cl8(string s_name) - конструктор класса;void print() - вывод;

3 ОПИСАНИЕ АЛГОРИТМОВ

Согласно этапам разработки, после определения необходимого инструментария в разделе «Метод», составляются подробные описания алгоритмов для методов классов и функций.

3.1 Алгоритм функции main

Функционал: главный метод программы.

Параметры: нет.

Возвращаемое значение: int.

Алгоритм функции представлен в таблице 1.

Таблица 1 – Алгоритм функции таіп

No	Предикат	Действия	No
			перехода
1		объявление один указатель на объект класса 8	2
2		объявление переменную строкового типа	3
3		ввод значение	4
4		создание объекта класса 8	5
5		адрес созданного объекта присвоение указателю на объект класса 8	6
6		вывод построчно номеров класса	Ø

3.2 Алгоритм конструктора класса cl1

Функционал: присваивание строкового параметра.

Параметры: string s_name.

Алгоритм конструктора представлен в таблице 2.

Таблица 2 – Алгоритм конструктора класса cl1

[Nο	Предикат	Действия	No
				перехода
	1		this->s_name = s_name + "_1"	Ø

3.3 Алгоритм метода print класса cl1

Функционал: вывод строки.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 3.

Таблица 3 – Алгоритм метода print класса cl1

N₂	Предикат	Действия	N₂
			перехода
1		вывод s_name	Ø

3.4 Алгоритм конструктора класса cl2

Функционал: присваивание строкового параметра.

Параметры: string s_name.

Алгоритм конструктора представлен в таблице 4.

Таблица 4 – Алгоритм конструктора класса cl2

N	Предикат	Действия	No
			перехода
1		this->s_name = s_name + "_2"	Ø

3.5 Алгоритм метода print класса cl2

Функционал: вывод строки.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 5.

Таблица 5 – Алгоритм метода print класса cl2

-	No	Предикат	Действия	N₂
				перехода
	1		вывод s_name	Ø

3.6 Алгоритм конструктора класса cl3

Функционал: присваивание строкового параметра.

Параметры: string s_name.

Алгоритм конструктора представлен в таблице 6.

Таблица 6 – Алгоритм конструктора класса cl3

1	Nο	Предикат	Действия	No
				перехода
	1		this->s_name = s_name + "_3"	Ø

3.7 Алгоритм метода print класса cl3

Функционал: вывод строки.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 7.

Таблица 7 – Алгоритм метода print класса cl3

No	Предикат	Действия	N₂	
			перехода	l
1		вывод s_name	Ø	

3.8 Алгоритм конструктора класса cl4

Функционал: присваивание строкового параметра.

Параметры: string s_name.

Алгоритм конструктора представлен в таблице 8.

Таблица 8 – Алгоритм конструктора класса cl4

N	о Предикат	Действия	No
			перехода
1		this->s_name = s_name + "_4"	Ø

3.9 Алгоритм метода print класса cl4

Функционал: вывод строки.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 9.

Таблица 9 – Алгоритм метода print класса cl4

N	Предикат	Действия	No
			перехода
1		вывод s_name	Ø

3.10 Алгоритм конструктора класса cl5

Функционал: присваивание строкового параметра.

Параметры: string s_name.

Алгоритм конструктора представлен в таблице 10.

Таблица 10 – Алгоритм конструктора класса cl5

Nº	Предикат	Действия	N₂
			перехода
1		this->s_name = s_name + "_5"	Ø

3.11 Алгоритм метода print класса cl5

Функционал: вывод строки.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 11.

Таблица 11 – Алгоритм метода print класса cl5

-	No	Предикат	Действия	No
				перехода
	1		вывод s_name	Ø

3.12 Алгоритм конструктора класса cl6

Функционал: присваивание строкового параметра.

Параметры: string s_name.

Алгоритм конструктора представлен в таблице 12.

Таблица 12 – Алгоритм конструктора класса cl6

№ Предикат		Предикат	Действия	No
				перехода
	1		this->s_name = s_name + "_6"	Ø

3.13 Алгоритм метода print класса cl6

Функционал: вывод строки.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 13.

Таблица 13 – Алгоритм метода print класса cl6

N	ľΩ	Іредикат	Действия	No
				перехода
	1		вывод s_name	Ø

3.14 Алгоритм конструктора класса cl7

Функционал: присваивание строкового параметра.

Параметры: string s_name.

Алгоритм конструктора представлен в таблице 14.

Таблица 14 – Алгоритм конструктора класса cl7

No	Предикат	Действия	No
			перехода
1		this->s_name = s_name + "_7"	Ø

3.15 Алгоритм метода print класса cl7

Функционал: вывод строки.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 15.

Таблица 15 – Алгоритм метода print класса cl7

No	Предикат	Действия	N₂
			перехода
1		вывод s_name	Ø

3.16 Алгоритм конструктора класса cl8

Функционал: присваивание строкового параметра.

Параметры: string s_name.

Алгоритм конструктора представлен в таблице 16.

Таблица 16 – Алгоритм конструктора класса cl8

No	Предикат	Действия	No
			перехода
1		this->s_name = s_name + "_8"	Ø

3.17 Алгоритм метода print класса cl8

Функционал: вывод строки.

Параметры: нет.

Возвращаемое значение: нет.

Алгоритм метода представлен в таблице 17.

Таблица 17 – Алгоритм метода print класса cl8

N	Предикат	Действия	No
			перехода
1		вывод s_name	Ø

4 БЛОК-СХЕМЫ АЛГОРИТМОВ

Представим описание алгоритмов в графическом виде на рисунках 1-6.

Рисунок 1 – Блок-схема алгоритма

Рисунок 2 – Блок-схема алгоритма

Рисунок 3 – Блок-схема алгоритма

Рисунок 4 – Блок-схема алгоритма

Рисунок 5 – Блок-схема алгоритма

Рисунок 6 – Блок-схема алгоритма

5 КОД ПРОГРАММЫ

Программная реализация алгоритмов для решения задачи представлена ниже.

5.1 Файл cl1.cpp

Листинг 1 – cl1.cpp

```
#include <iostream>
#include <string>
#include "cl1.h"

using namespace std;

cl1::cl1(string s_name)
{
    this->s_name = s_name + "_1";
}

void cl1::print()
{
    cout << s_name;
}</pre>
```

5.2 Файл cl1.h

Листинг 2 – cl1.h

```
#ifndef __CL1_H
#define __CL1_H
#include <iostream>
#include <string>

using namespace std;

class cl1
{
  private:
    string s_name;
  public:
    cl1(string s_name);
    void print();
};
#endif
```

5.3 Файл cl2.cpp

Листинг 3 – cl2.cpp

```
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"

using namespace std;

cl2::cl2(string s_name) : cl1(s_name + "_2")
{
    this->s_name = s_name + "_2";
}

void cl2::print()
{
    cout << s_name;
}</pre>
```

5.4 Файл cl2.h

Листинг 4 - cl2.h

```
#ifndef __CL2__H
#define __CL2__H
#include <iostream>
#include "cl1.h"

using namespace std;

class cl2 : public cl1
{
  private:
        string s_name;
  public:
        cl2(string s_name);
        void print();
};
#endif
```

5.5 Файл cl3.cpp

Листинг 5 - cl3.cpp

```
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"

using namespace std;

cl3::cl3(string s_name) : cl1(s_name + "_3")
{
    this->s_name = s_name + "_3";
}

void cl3::print()
{
    cout << s_name;
}</pre>
```

5.6 Файл cl3.h

Листинг 6 - cl3.h

```
#ifndef __CL3__H
#define __CL3__H
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"

using namespace std;

class cl3 : public cl1
{
  private:
        string s_name;
  public:
        cl3(string s_name);
        void print();
};
#endif
```

5.7 Файл cl4.cpp

Листинг 7 – cl4.cpp

```
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"

using namespace std;

cl4::cl4(string s_name) : cl1(s_name + "_4")
{
         this->s_name = s_name + "_4";
}

void cl4::print()
{
        cout << s_name;
}</pre>
```

5.8 Файл cl4.h

Листинг 8 – cl4.h

```
#ifndef __CL4__H
#define ___CL4__H
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
using namespace std;
class cl4 : virtual public cl1
private:
      string s_name;
public:
      cl4(string s_name);
      void print();
};
#endif
```

5.9 Файл cl5.cpp

Листинг 9 – *cl*5.*cpp*

```
#include <iostream>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
#include "cl5.h"

using namespace std;

cl5::cl5(string s_name) : cl1(s_name + "_5")
{
    this->s_name = s_name + "_5";
}

void cl5::print()
{
    cout << s_name;
}</pre>
```

5.10 Файл cl5.h

Листинг 10 – cl5.h

```
#ifndef __CL5__H
#define ___CL5__H
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
using namespace std;
class cl5 : virtual public cl1
private:
      string s_name;
public:
      cl5(string s_name);
      void print();
};
#endif
```

5.11 Файл cl6.cpp

Листинг 11 – cl6.cpp

```
#include <iostream>
#include "c11.h"
#include "c12.h"
#include "c13.h"
#include "c14.h"
#include "c15.h"
#include "c16.h"

using namespace std;

cl6::cl6(string s_name) : cl2(s_name + "_6"), cl3(s_name + "_6")
{
    this->s_name = s_name + "_6";
}

void cl6::print()
{
    cout << s_name;
}</pre>
```

5.12 Файл cl6.h

Листинг 12 - cl6.h

```
#ifndef __CL6__H
#define ___CL6__H
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
#include "cl5.h"
using namespace std;
class cl6 : public cl2, public cl3
private:
      string s_name;
public:
      cl6(string s_name);
      void print();
};
#endif
```

5.13 Файл cl7.cpp

Листинг 13 – cl7.cpp

```
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
#include "cl5.h"
#include "cl6.h"
#include "cl7.h"
using namespace std;
cl7::cl7(string s_name) : cl4(s_name + "_7"), cl5(s_name + "_7"), cl1(s_name + "_7")
"_7")
{
                                           this->s_name = s_name + "_7";
}
void cl7::print()
                                           cout << s_name;</pre>
```

5.14 Файл cl7.h

Листинг 14 – cl7.h

```
#ifndef __CL7_H
#define __CL7_H
#include <iostream>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
#include "cl5.h"
#include "cl6.h"

using namespace std;

class cl7 : public cl4, public cl5, virtual public cl1
{
private:
    string s_name;
```

```
public:
    cl7(string s_name);
    void print();
};
#endif
```

5.15 Файл cl8.cpp

Листинг 15 – cl8.cpp

```
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
#include "cl5.h"
#include "cl6.h"
#include "cl7.h"
#include "cl8.h"
using namespace std;
cl8::cl8(string s_name) : cl6(s_name + "_8"), cl7(s_name + "_8"), cl1(s_name + "_8")
"_8")
{
      this->s_name = s_name + "_8";
}
void cl8::print()
{
      cout << s_name;</pre>
```

5.16 Файл cl8.h

Листинг 16 – cl8.h

```
#ifndef __CL8__H
#define __CL8__H
#include <iostream>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
#include "cl5.h"
#include "cl5.h"
#include "cl6.h"
```

```
#include "cl7.h"

using namespace std;

class cl8 : public cl6, public cl7, virtual public cl1
{
  private:
    string s_name;
  public:
    cl8(string s_name);
    void print();
};

#endif
```

5.17 Файл таіп.срр

Листинг 17 – таіп.срр

```
#include <stdlib.h>
#include <stdio.h>
#include <iostream>
#include <string>
#include "cl1.h"
#include "cl2.h"
#include "cl3.h"
#include "cl4.h"
#include "cl5.h"
#include "cl6.h"
#include "cl7.h"
#include "cl8.h"
using namespace std;
int main()
      cl8* x;
      string s;
      cin >> s;
      cl8 obj(s);
      x = \&obj;
      ((cl1*)(cl2*)x)->print();
      cout << endl;
      ((cl1*)(cl3*)x)->print();
      cout << endl;
      ((cl1*)(cl4*)x)->print();
      cout << endl;
      ((cl1*)(cl5*)x)->print();
      cout << endl;
      ((cl2*)x)->print();
      cout << endl;</pre>
      ((cl3*)x)->print();
      cout << endl;</pre>
```

```
((cl4*)x)->print();
cout << endl;
((cl5*)x)->print();
cout << endl;
((cl6*)x)->print();
cout << endl;
((cl7*)x)->print();
cout << endl;
x->print();
return(0);
}
```

6 ТЕСТИРОВАНИЕ

Результат тестирования программы представлен в таблице 18.

Таблица 18 – Результат тестирования программы

Входные данные	Ожидаемые выходные	Фактические выходные
	данные	данные
Object	Object_8_6_2_1	Object_8_6_2_1
	Object_8_6_3_1	Object_8_6_3_1
	Object_8_1	Object_8_1
	Object_8_1	Object_8_1
	Object_8_6_2	Object_8_6_2
	Object_8_6_3	Object_8_6_3
	Object_8_7_4	Object_8_7_4
	Object_8_7_5	Object_8_7_5
	Object_8_6	Object_8_6
	Object_8_7	Object_8_7
	Object_8	Object_8

СПИСОК ИСПОЛЬЗОВАННЫХ ИСТОЧНИКОВ

- 1. Васильев А.Н. Объектно-ориентированное программирование на С++. Издательство: Наука и Техника. Санкт-Петербург, 2016г. 543 стр.
- 2. Шилдт Г. С++: базовый курс. 3-е изд. Пер. с англ.. М.: Вильямс, 2017. 624 с.
- 3. Методическое пособие для проведения практических заданий, контрольных и курсовых работ по дисциплине «Объектно-ориентированное программирование» [Электронный ресурс] URL: https://mirea.aco-avrora.ru/student/files/methodichescoe_posobie_dlya_laboratorny h_rabot_3.pdf (дата обращения 05.05.2021).
- 4. Приложение к методическому пособию студента по выполнению заданий в рамках курса «Объектно-ориентированное программирование» [Электронный ресурс]. URL: https://mirea.aco-avrora.ru/student/files/Prilozheniye_k_methodichke.pdf (дата обращения 05.05.2021).
- 5. Видео лекции по курсу «Объектно-ориентированное программирование» [Электронный ресурс]. ACO «Аврора».
- 6. Антик М.И. Дискретная математика [Электронный ресурс]: Учебное пособие /Антик М.И., Казанцева Л.В. М.: МИРЭА Российский технологический университет, 2018 1 электрон. опт. диск (CD-ROM).