Corrigé du devoir maison 2.

Exercice

1°) φ est dérivable sur \mathbb{R}_+^* et, pour tout a > 0, b > 0,

$$\varphi(ab) = ab \ln(ab)$$

$$= ab(\ln a + \ln b)$$

$$= ba \ln a + ab \ln b$$

$$= b\varphi(a) + a\varphi(b)$$

Donc, $\varphi \in \mathcal{E}$.

2°) Soit $\lambda \in \mathbb{R}$. $\lambda \varphi$ est dérivable sur \mathbb{R}_+^* . Soit a > 0, b > 0.

$$\lambda \varphi(ab) = \lambda (b\varphi(a) + a\varphi(b))$$
$$= b\lambda \varphi(a) + a\lambda \varphi(b)$$

Donc, $\lambda \varphi \in \mathcal{E}$.

- **3°) a)** On pose a = b = 1 dans (*). Alors, f(1) = f(1) + f(1) i.e. f(1) = 0.
 - **b)** Soit b > 0. $\forall a > 0, \ f(ab) = bf(a) + af(b)$.

Les fonctions $a \mapsto f(ab)$ et $a \mapsto bf(a) + af(b)$ sont dérivables sur \mathbb{R}_+^* et égales, donc leurs dérivées sont aussi égales :

$$\forall a > 0, \ bf'(ab) = bf'(a) + f(b).$$

- c) On a obtenu, par la question précédente : $\forall a > 0, \ \forall b > 0, \ bf'(ab) = bf'(a) + f(b)$. Soit x > 0. On pose a = 1 et b = x. Alors, xf'(x) = xf'(1) + f(x) donc $xf'(x) f(x) = \lambda x$ en posant $\lambda = f'(1)$.
- d) La fonction $g: x \mapsto \frac{f(x)}{x}$ est dérivable sur \mathbb{R}_+^* par quotient, et pour tout x > 0, $g'(x) = \frac{f'(x)x f(x)}{x^2} \text{ donc } g'(x) = \frac{\lambda x}{x^2} \text{ par la question précédente, soit } g'(x) = \frac{\lambda}{x}.$ Les dérivées de g et $x \mapsto \lambda \ln x$ sont égales sur \mathbb{R}_+^* .

Comme \mathbb{R}_+^* est un intervalle, on en déduit qu'il existe une constante réelle c telle que :

$$\forall x > 0, \ g(x) = \lambda \ln x + c.$$

Or $g(1) = \frac{f(1)}{1} = 0$ et $\ln 1 = 0$ donc c = 0, et $\boxed{\text{pour tout } x > 0, \ g(x) = \lambda \ln x}$

e) Ainsi, pour tout x > 0, $f(x) = \lambda x \ln x$ i.e. $f = \lambda \varphi$

- **4°)** Dans la question 2, on a montré que toute fonction de la forme $\lambda \varphi$, où $\lambda \in \mathbb{R}$, est élément de \mathcal{E} .
 - Dans la question 3, on a montré que si $f \in \mathcal{E}$ alors f s'écrit $\lambda \varphi$ où λ est un réel (c'est f'(1)).

Ainsi, l'ensemble \mathcal{E} est égal à l'ensemble des fonctions $\lambda \varphi$ où $\lambda \in \mathbb{R}$.

Ce qui s'écrit : $\mathcal{E} = \{\lambda \varphi / \lambda \in \mathbb{R}\}\$.