Úloha: Homework

Malá Helena nedávno dokončila první ročník základky. Je to vzorná studentka s ohromným zájmem o matematiku. Je na dovolené a nudí se. Naštěstí její bratr jí zadal následující úkol.

Validní výraz je definován následující rekurentní definicí:

- Řetězec? je validní výraz, který reprezentuje celé číslo.
- Když A a B jsou validní výrazy, tak také $\min(A,B)$ and $\max(A,B)$ jsou validní výrazy. První z nich reprezentuje funkci vracející minimum z jejich dvou argumentů, zatímco druhá maximum.

Například výrazy min(min(?,?),min(?,?)) a max(?,max(?,min(?,?))) jsou validní vzhledem k výše uvedené definici, zatímco ??, max(min(?)) and min(?,?,?) validní nejsou.

Helena dostane validní výraz obsahující celkem N otazníků. Každý z otazníků může být nahrazen za číslo z množiny $\{1, 2, \ldots, N\}$ tak, že každé číslo je použito právě jednou. Jinými slovy, otazníky budou nahrazeny permutací čísel 1 až N.

Výraz po nahrazení bude vyhodnocen. Výsledek bude očividně číslo mezi 1 a N.

Uvažme všechny možné permutace čísel (tedy dosazení formule). Musíte spočítat, kolik různých čísel může vzniknout jejich vyhodnocením.

Vstup

První a jediný řádek vstupu obsahuje jeden validní výraz.

Output

Vypište jediné číslo mezi 1 a N – počet různých výsledků, které je možno získat dosazením permutace do výrazu.

Bodování

Všude platí, že $2 \le N \le 1000000$.

Subtask	Bodů	Omezení
1	10	$N \leq 9$
2	13	$N \le 16$
3	13	Každá funkce na vstupu má jako alespoň jeden parametr otazník.
4	30	$N \le 1000$
5	34	Nic dalšího.

Examples

vstup	vstup	\mathbf{vstup}
min(min(?,?),min(?,?))	max(?,max(?,min(?,?)))	min(max(?,?),min(?,max(?,?)))
výstup	výstup	výstup
1	2	3

Jak funguje první příklad:

Bez ohledu na permutaci čísel, hodnota výsledku bude vždy minimum z množiny $\{1,2,3,4\}$, tedy 1. Proto existuje jen jedna možná hodnota.

A jak druhý:

Čísla 3 a 4 vyjdou následujícím dosazením: 4=max(4,max(3,min(2,1))) a 3=max(3,max(2,min(1,4))). Lze ukázat, že hodnoty 1 a 2 nejsou dosažitelné, takže odpověď je 2.