مقدمه

: B دو مجموعه غير تهي f^2 باشند، تابع A از A به فرض کنيد A و A دو مجموعه غير تهي f : A \Rightarrow B

B از $a\in Dom(f)$ مقدار $a\in Dom(f)$ مقدار 3 مقدار است که به ازای هر باشد:

$$\{(a, f(a)) \mid a \in dom(f)\}$$

 $a\in A$ توابع را نگاشت 5 و یا تبدیل نیز می گویند. چون هر عضو $a\in A$ را فقط به یک عضو a منسوب می کنند. عضو a را آرگومان و a را مقدارa تابع a برای آرگومان a می نامند. a را تصویر a تحت a نیز می گویند.

 $oldsymbol{\alpha}$ فقط یک فلش خارج شده است. مثال: در شکل زیر از هر عضو

یس رابطه f به صورت:

$$f = \{(1,a), (2,a), (3,d), (4,c)\}$$

یک تابع است.

¹ non-null

² function

³ relation

⁴ element

⁵ mapping

⁶ assign

⁷ argument

⁸ returned value

مثال: برای B = {x, y, z} و A = {1, 2, 3} رابطه:

$$s = \{(1,x), (2,x), (1,y)\}$$

تابع نیست زیرا:

$$s(1) = \{x, y\}$$

یعنی از عنصر 1 دو تا (بیش از یکی) فلش خارج شده است.

مثال: توابع در کامپیوتر اگر بیش از یک مقدار *return* کنند، آن ها را به صورت یک لیست بر می گردانند.

توابع را می توان به صورت فهرستی از ورودی-خروجی⁹ در نظر گرفت. بین آن هاروابطی پیدا کرده و مدل(فرمول)¹¹ بدست آوریم. این روند به استقرا¹¹ی ریاضیموسوم است.

مثال: تابع همانی 12 در A به صورت I_A نمایش می دهند:

$$I_A(a) = a$$

است. A imes A که معرف عناصر قطر اصلی A imes A است.

اگر g و g هرکدام تابع باشند. آنگاه تابع ترکیبیg نیز تابع محسوب می شود:

$$gOf(a) = g(f(a))$$

مثال: فرض کنید:

$$f(a) = a + 1$$

$$g(b) = 2b$$

تابع *gOf* را بدست آورید.

حل:

$$gOf(a) = g(f(a)) = g(a+1) = 2(a+1) = 2a + 2$$

^{9 (}key-value) pairs

¹⁰ model (formula)

¹¹ induction

¹² identity function

¹³ main diagonal

¹⁴ function compositional

ویژگی های تابع¹⁵

فرض کنید f تابعی از A به B باشد.

تابع f همه جا تعریف شده 16 است اگر:

Domain(f) = A

تابع f يوشا 17 است اگر:

Range(f) = B

تابع f یک به یک 18 است اگر:

a = b آنگاه f(a) = f(b) هرگاه

تابع f وارون پذیر 19 است، هرگاه:

رابطه f^{-1} نیز یک تابع باشد.

مثال: فرض کنید:

$$A = \{a_1, a_2, a_3\}$$

$$B = \{b_1, b_2, b_3\}$$

$$C = \{c_1, c_2\}$$

$$D = \{d_1, d_2, d_3, d_4\}$$

سه ویژگی تابع (همه جا تعریف شده – پوشا – یک به یک) را در مورد روابط زیر بررسی کنید.

$$f1 = \{(a_1,b_2), (a_2,b_3), (a_3,b_1)\}\$$

$$f2 = \{(a_1,d_2), (a_2,d_1), (a_3,d_4)\}\$$

$$f3 = \{(b_1,c_2), (b_2,c_2), (b_3,c_1)\}\$$

$$f4 = \{(d_1,b_1), (d_2,b_2), (d_3,b_1)\}\$$

¹⁵ function's properties

¹⁶ everywhere-defined function

¹⁷ onto function

¹⁸ one-to-one function

¹⁹ invertible function

حل:

	همه جا		
	تعریف		
تابع	شده	پوشا	یک به یک
$A = \{a_1, a_2, a_3\}$	بله	بله	بله
$B = \{b_1, b_2, b_3\}$	بله	خیر	بله
$C = \{c_1, c_2\}$	بله	بله	خير
$D = \{d_1, d_2, d_3, d_4\}$	خیر	خیر	خير

مثال: فرض کنید:

$$A = \{1, 2, 3, 4\}$$

 $B = \{a, b, c, d\}$
 $f = \{(1,a), (2,a), (3,d), (4,c)\}$

مشخص کنید آیا f وارون پذیر است. در این صورت، وارون آن را بنویسید.

حل: چون

$$f^{-1}(a) = \{1, 2\}$$

f یعنی a تا (بیش از یکی) فلش از a خارج شده، پس f^{-1} تابع نیست. بنابراین وارون پذیر هم نیست.

تابع A o B را یک تناظر یک به یک 20 (1–1) بین A و B خواهیم گفت، اگر : f

- همه جا تعریف شده
 - پوشا
 - یک به یک

باشد.

²⁰ one-to-one correspondence

مثال: فرض کنید:

$$A = \{a1, a2, a3\}$$

 $B = \{b1, b2, b3\}$

نشان دهید f خاصیت تناظر یک به یک دارد.

حل:

$$f = \{(a_1, a_2), (a_2, b_3), (a_3, b_1)\}$$

هر سه خاصیت را دارد. بنابراین، تناظر یک به یک دارد.

اصل لانه کبوتری²¹

فرض کنید $f: A \rightarrow B$ تابعی با دامنه و برد متناهی باشد و

$$Dom(f) = |n|$$

 $Ran(f) = |n|$

در این صورت:

- m = n اگر f یک به یک باشد، آنگاه: •
- m < n اگر f یک به یک نباشد، آنگاه: •

طبق قسمت دوم قضیه بالا، اصل لانه کبوتر را بدین گونه بیان می کنیم:

اگر n کبوتر به m لانه منسوب شوند و m < n آنگاه دست کم یک لانه شامل m کبوتر n و یا بیشتر است.

مثال: نشان دهید از 8 نفر دست کم روز تولد 2 نفر از آن ها در یک روز هفته است.

حل: هر هفته 7 روز است. همچنین: 8>7 . طبق اصل لانه کبوتر، دست کم روز تولد 2 نفر از آن ها در یک روز هفته است.

تعمیم اصل لانه کبوتر: اگر n کبوتر به m لانه منسوب شد. یکی از لانه ها دست کم، باید شامل $\lceil \frac{n}{m}
ceil$ کبوتر باشد.

مثال: از 30 نفر $\frac{30}{7}$ نفر را می توان انتخاب نمود که روز تولد همه ی آن ها در یک روز هفته باشد.

²¹ pigeonhole principle