Τεχνητή Νοημοσύνη και Μηχανική Μάθηση

Κωνσταντίνος Καραμανής

The University of Texas at Austin & Archimedes/Athena RC

constantine@utexas.edu

https://caramanis.github.io/

ImageNet: Σημείο Καμπής στην Ιστορία της Μηχανικής Όρασης

ImageNet: Σημείο Καμπής στην Ιστορία της Μηχανικής Όρασης

15.000.000 έγχρωμες

Πόσες χρειάζονται;

Ένα πιο απλό παράδειγμα: πόσα δείγματα χρειάζονται;

Ένα πιο απλό παράδειγμα: πόσα δείγματα χρειάζονται;

Ένα πιο απλό παράδειγμα: πόσα δείγματα χρειάζονται;

Ένα πιο απλό παράδειγμα: 2 δείγματα δεν αρκούν...

Ένα πιο **δύσκολο** παράδειγμα: ένα μόνο δείγμα

(One shot learning)

Τι είναι αυτό;

Τι είναι αυτό;

Καρχαρίας Γκόμπλιν, ή Καρχαρίας Καλικάντζαρος

One shot learning: που είναι ο καλικάντζαρος

One shot learning: που είναι ο καλικάντζαρος

Πώς το κάνατε αυτό;

Πώς το κάνατε αυτό;

- Χρησιμοποιήσατε αυτό που λέγεται: Representation and Transfer Learning
- Έχουμε δεί μόνο ένα καρχαρία-γκόμπλιν, αλλά ήδη ξέρουμε από πολλά άλλα «δείγματα» ποια χαρακτηριστικά είναι σημαντικά

Ήδη γνωρίζουμε ποια χαρακτηριστικά είναι σημαντικά

Τα έχουμε μάθει από άλλες εικόνες με τις οποίες έχουμε έρθει σε επαφή

Ενώ εδώ: δεν ξέρουμε ποια χαρακτηριστικά είναι σημαντικά

1. Ένα μεγάλο (ΜΜ, η και ΒΒ παραμέτρους) εκπαιδεύεται σε ΜΜ, ΒΒ, ΤΤ δεδομένα

- 1. Ένα μεγάλο (ΜΜ, η και ΒΒ παραμέτρους) εκπαιδεύεται σε ΜΜ, ΒΒ, ΤΤ δεδομένα
- 2. Κατεβάζουμε το εκπαιδευμένο δίκτυο και αλλάζουμε μόνο το τελευταίο επίπεδο

- 1. Ένα μεγάλο (ΜΜ, η και ΒΒ παραμέτρους) εκπαιδεύεται σε ΜΜ, ΒΒ, ΤΤ δεδομένα
- 2. Κατεβάζουμε το εκπαιδευμένο δίκτυο και αλλάζουμε μόνο το τελευταίο επίπεδο
- 3. Εκπαιδεύουμε μόνο τις (λίγες) παραμέτρους του τελευταίου επιπέδου, με τα (λίγα) δεδομένα μας

- 1. Ένα μεγάλο (ΜΜ, η και ΒΒ παραμέτρους) εκπαιδεύεται σε ΜΜ, ΒΒ, ΤΤ δεδομένα
- 2. Κατεβάζουμε το εκπαιδευμένο δίκτυο και αλλάζουμε μόνο το τελευταίο επίπεδο
- 3. Εκπαιδεύουμε μόνο τις (λίγες) παραμέτρους του τελευταίου επιπέδου, με τα (λίγα) δεδομένα μας
- 4. Εκπαιδεύουμε (λίγο) όλες τις παραμέτρους του τελευταίου επιπέδου, με τα (λίγα) δεδομένα μας

Transfer Learning:

Μας δίνει την δυνατότητα να χρησιμοποιούμε δίκτυα πολύ μεγαλύτερα απ'ό,τι έχουμε την απαιτούμενη υπολογιστική δύναμη, ή τα απαιτούμενα δεδομένα, να εκπαιδεύσουμε από το μηδέν.

- 1. Κατεβάζουμε το εκπαιδευμένο δίκτυο: mymodel = models.resnet18(pretrained=True)
- 2. Αλλάζουμε μόνο το τελευταίο επίπεδο: mymodel.fc = nn.Linear(num_ftrs,num_classes)

3a. Εκπαιδεύουμε μόνο το τελευταίο επίπεδο με τα δικά μας δεδομένα,

train(mymodel,data,optimizer,epochs)

3b. Εκπαιδεύουμε όλα τα επίπεδα με τα δικά μας δεδομένα.

4. mymodel(x) – υπολογίζουμε προβλέψεις για τα x

Transfer Learning & CIFAR-10

50.000 έγχρωμες 32 x 32 εικόνες.

Ιατρική Απεικόνιση – Υπέρηχοι Διάγνωση μέσω Ταξινόμησης

- Θα χρησιμοποιήσουμε Transfer Learning
- Θα εκμεταλλευτούμε προεκπαιδευμένα δίκτυα, που έχουν εκπαιδευτεί με τις 15.000.000 εικόνες του ImageNet

Καμία εικόνα του ImageNet δεν είναι υπέρηχος.
 Θα δούμε εάν δουλεύει!

