Chapter 2 Supply and **Demand**

Professor Lakshmi K. Raut

Chapter Outline

- 2.1 Demand
 - The Demand Curve
 - The Demand Function
- Summing Demand Curves
- 2.2 Supply
 - The Supply Curve
 - The Supply Function
 - Summing Supply Curves
 - Effects of Government Import Policies on Supply Curves
- 2.3 Market Equilibrium
 - Using a Graph to Determine the Equilibrium

 - Using Math to Determine the Equilibrium
 Market Forces Drive the Market to Equilibrium
- 2.4 Shocking the Equilibrium
 - Effects of a Shift in the Demand Curve
 - Effects of a Shift in the Supply Curve
- 2.5 Effects of Government Interventions

 - Policies That Shift Supply Curves
 Policies That Cause Demand to Differ from Supply
 - Why Supply Need Not Equal Demand
- 2.6 When to Use the Supply-and-Demand Model

Chapter 2: Supply and Demand Key Concepts

- A demand curve shows the amount of a good or service that consumers want to buy at each possible price.
- A supply curve shows the amount of a good or service that firms want to sell at each possible price.
- When only price changes, there is a movement along a demand (or supply) curve.
- Changes in factors other than the good's price can cause its demand (or supply) curve to shift.
- Market equilibrium occurs at the price and quantity where the supply curve and the demand curve intersect.
- Price ceilings and floors do not shift demand or supply curves, but they can cause movements along these curves and block the market from reaching equilibrium.

The demand

- <u>Factors affecting demand for a good</u>: Taste, information, prices of other goods, incomes, government rules and regulations, other factors, and the price of the good.
- <u>Demand Curve</u>: The amount of a good that consumers are willing to buy at a given price, holding constant the other factors that influence purchases, is the *quantity demanded*. A *demand curve* shows the quantity at each possible price, holding all other factors constant.
- <u>Law of Demand:</u> Holding all other factors constant, when price increases the demand falls. This is true of all goods, and known as law of demand.

Demand Function

- Explain demand function Q=D(p,p_b,p_c,Y)
 - Example of the book
- Inverse Demand Function $p = P(Q,p_b,p_c,Y)$
 - Example of the book, draw the inverse demand function, and calculate the slope of the deamand function as rise over run.
- Change value of one of the factors from the above say price of beef to ____ and compute the new inverse demand function, and plot it. Show that it involves shifting the previous demand curve.

Demand function

• general function

$$Q = D(p, p_b, p_c, Y)$$

• specific (linear) pork demand function

$$Q = 171 - 20p + 20p_b + 3p_c + 2Y$$

Hold other factors constant

• D^1 (Figure 2.1) holds p_b , p_c , and Y at their typical values:

$$p_b = $4 \text{ per kg}$$

 $p_c = 3 1/3 per kg
 $Y = 12.5 thousand

•
$$Q = 171 - 20p + 20p_b + 3p_c + 2Y$$

= $171 - 20p + (20 \times 4) + (3 \times 3 \times 1/3) + (2 \times 12.5)$

$$= 286 - 20p$$

Plotting demand function: Intercept

- Q = 286 20p
- constant term, 286, is the quantity demanded if price is zero
 - $Q = 286 (20 \times 0) = 286$
 - D^1 hits quantity axis at 286 (price = 0)

Plotting demand function: Slope

- Q = 286 20p
- number on price, 20, is rate at which quantity changes as price changes

$$\begin{split} \Delta Q &= Q_2 - Q_1 = D(p_2) - D(p_1) \\ &= (286 - 20p_2) - (286 - 20p_1) \\ &= -20(p_2 - p_1) = -20\Delta p \end{split}$$

• $\Delta p = \$1 \Rightarrow$

 $\Delta Q = -20\Delta p = -20$ million kg per year

Slope of pork demand curve

- $\Delta p/\Delta Q = [\text{the "rise"}]/[\text{the "run"}]$
 - = [\$1 per kg]/[-20 million kg per year]
 - = -\$0.05 per million kg per year
- negative sign is consistent with Law of Demand

Practice in class example

- Do the above exercise with
- $Q = 200 10p + 30p_b + 6p_c + 4Y$
- Holding constant:
 - $p_b = 4 per kg
 - $p_c = \$3 \ 1/3 \text{ per kg}$
 - Y = \$12.5 thousand
- Derive demand function, Q=D(p), inverse demand function p=P(q). Plot the inverse demand function. The graph of the inverse demand function is known as demand curve. Change $p_b = \$6$, derive the new inverse demand function and plot it. Examine how the demand curve shifts

Aggregating Demand from various sources

- Q1=D1(p)
- Q2=D2(p)
- The aggregate demand of the above two is
- Q = Q1 + Q2 = D1(p) + D2(p)
- Analytical example:
 - D1(p)= 10-2p; D2(p)=20-3p what is the aggregate demand function Q=D(p)?
 - Q = D(p)=D1(p)+D2(p) = 10-2p+20-3p
 - Hence, D(p) = 30-5p
- Graphically in the next slide.

Market Equilibrium

- When all traders are able to buy and sell as much as they want, we say that the market is in **equilibrium**: a situation in which no participant wants to change its behavior.
- A price at which consumers can buy as much as they want and sellers can sell as much as they want is called equilibrium price.
- The quantity that is bought and sold at the equilibrium price is called the **equilibrium quantity.**
- We will both graphically and analytically determine the equilibrium price and quantity of pork market. Later we will also examine how government regulations affect the equilibrium price and quantity.

Using the math compute equilibrium price and quantity

- Read pages 27-32
- $Q_d(p) = 286-20p$
- $Q_s(p) = 88 + 40p$
- Market equilibrium: Find p such that demand = suppy at that price, i.e., $Q_d(p) = Q_s(p)$
- After you find p, substitute it in either the demand function or the supply function to obtain the equilibrium quantity.

Compute Market Equilibrium Analytically

- If demand for show tickets is described by the equation $Q_D = 100 - p$, and supply is $Q_S = 20 + p$, find the equilibrium price and quantity.
- How would your answer change if the supply curve shifted to $Q_{S}' = 10 + p$ due to increases in actor salaries?

Set
$$Q_D = Q_S$$
 and solve.
For $Q_S = 20 + p$
 $100 - p = 20 + p$
 $p^* = 40$
 $Q^* = 60$

For
$$Q' = 10 + p$$

 $100 - p = 10 + p$
 $p^* = 45$
 $Q^* = 55$

Figure 2.7 Effects of a Shift of the **Demand Curve**

(a) Effect of a 60 Increase in the Price of Beef

When to use supply and demand model

- many buyers and sellers
- firms sell identical goods
- firms are price takers
- no uncertainty: everyone has full information about price and quality of goods
- low transaction costs: buyers and sellers can trade easily

Supply and demand model inappropriate where

- only a few sellers (auto manufacturers)
- buyers and sellers are uncertain about the market equilibrium (concert music business)
- consumers know much less than sellers about quality or price (used cars)
- high transaction costs (art work)

Use supply and demand model in

- agricultural markets
- financial
- labor
- construction
- services
- wholesale
- retail