Лабораторная работа №2 по дисциплине «Физика»

Выполнил: студент 1 курса Величко А. А.

Цель работы

Изучить три способа измерения сопротивлений:

- 1. методом амперметра и вольтметра;
- 2. с помощью омметра;
- 3. компенсационным методом.

Приборы и инструменты

- Измеряемые резисторы;
- источник тока;
- вольтметр;
- амперметр;
- ключ;
- **реостат**;
- магазины сопротивлений;
- реохорд;
- гальванометр;
- омметр;
- мост постоянного тока.

Используемые формулы

$$R = \frac{U}{I} \qquad (1)$$

$$R_x = \frac{U_x}{I - U_x / R_V}, R_V = U_V / I_V \qquad (2)$$

$$R_x = R_2 \times \frac{l_3}{l_4} \qquad (3)$$

Часть 1. Метод амперметра и вольтметра, омметра

Задание 1. Метод амперметра и вольтметра

Ход работы

- 1. Выбрать приборы и инструменты;
- 2. Собрать цепь в соответствии с рис. 1;
- 3. Дополнить схему реостатом и источником питания;
- 4. С разрешения прподавателя провести эксперимент, записать результаты в таблицу;
- 5. Рассчитать сопротивление нагрузки и погрешность;
- 6. Проанализировать результаты эксперимента.

Рисунок 1

Ход эксперимента

В ходе эксперимента была собрана цепь (рис. 1) и дополнена реостатом и источником питания. После проверки схемы преподавателем были произведены измерения тока и напряжения в цепи, значения были записаны в таблицу 1. Далее по формуле 2 были вычислены значения R_x (сопротивление нагрзки). Для R_x была рассчитана погрешность ΔR_x и ΔR_x среднее.

Результаты эксперимента

Таблица 1

N₂	I _v (мА)	U _v (B)	R _v (Ом)	U _x (B)	I (мА)	R _x (Ом)	ΔR_x (OM)
1	0,3	7,5	25000	4,9	1,14	5 190,68	67,86
2	0,3	7,5	25000	5,6	1,28	5 303,03	44,49
3	0,3	7,5	25000	6,6	1,52	5 254,78	3,76
4	0,3	7,5	25000	8,2	1,88	5 283,51	24,97
5	0,3	7,5	25000	11,3	2,6	5 260,71	2,17
					Среднее	5 258,54	28,65

Анализ результатов эксперимента

В ходе эксперимента была определено сопротивление нагрузки методом вольтметра и амперметра. Анализ полученных результатов позволяет утверждать, что сопротивление нагрузки приблизительно равно 5259 Ом \pm 29 Ом.

Задание 2. Измерение сопротивления омметром

Ход работы

- 1. Выбрать приборы и инструменты;
- 2. Собрать цепь;
- 3. С разрешения прподавателя провести эксперимент, записать результаты;
- 4. Оценить сопротивление нагрузки и погрешность;
- 5. Проанализировать результаты эксперимента.

Ход эксперимента

В ходе эксперимента был выбран омметр и нагрузка номинальным сопротивлением 5000 Ом. Показания омметра и погрешность были записаны:

$$R_X = 4500 \text{ OM},$$

$$\Delta R_X = 500 \text{ Om}.$$

Анализ результатов эксперимента

Полученные с помощью омметра значения сопротивления нагрузки и погрешности позволяют утверждать, что погрешность данного метода измерения значительно выше, чем погрешность метода вольтметра и амперметра, однако производить измерения таким способом значительно проще и быстрее.

Часть 2. Компенсационные методы измерения сопротвления. Линейный мост

Ход работы

- 1. Выбрать приборы и инструменты;
- 2. Собрать мостовую схему с реохордом (рис. 2);
- 3. С разрешения прподавателя провести эксперимент, записать результаты;
- 4. Оценить сопротивление нагрузки и погрешность;
- 5. Проанализировать результаты эксперимента.

Ход эксперимента

В ходе эксперимента была выбрана нагрузка с номинальным сопротивлением 5000 Ом. По схеме на рис. 2 был собран линейный мост. Для шести разных значений R_2 путем перемещения ползунка D было найдено соотношение l_3 и l_4 , при котором гальванометр Γ показвал 0, т. е. мост был уравновешен. Значения были записаны в таблицу 2.

Таблица 2

R ₂ (Ом)	l ₄ (см)	l ₃ (см)	R _x (Ом)	ΔR_x (OM)
3000	19,3	30,7	4 772,02	117,54
4000	22,9	27,1	4 733,62	79,14
5000	25,9	24,1	4 652,51	1,97
6000	28,3	21,7	4 600,71	53,77
7000	30,2	19,8	4 589,40	65,08
8000	31,8	18,2	4 578,62	75,86
		Среднее	4 654,48	65,56

Результаты эксперимента

По формуле 3 для каждого случая были вычислены значения $R_{\rm x}$, рассчитана погрешность и средние значения:

среднее R_X = 4654,48 Ом \pm 65,56 Ом.

Анализ результатов эксперимента

В ходе эксперимента была определено сопротивление нагрузки методом линейного моста. Анализ полученных результатов позволяет утверждать, что сопротивление нагрузки приблизительно равно $4654,48~\mathrm{Om}\pm65,56~\mathrm{Om}$.

Вывод

В ходе лабораторной работы были изучены три способа эксперементального измерения сопротивлений: метод амперметра и вольтметра; с помощью омметра; компенсационный метод с использованием линейного моста. Было эксперементально подтверждено номинальное значение сопротивления нагрузки.

Сравним рассмотренные методы. Для этого расмотрим интервалы значений этих методов (таблица 3):

Таблица 3

Метод	R _{x min} (Ом)	$R_{x max}$ (OM)	
Метод вольтметра и амперметра	5 190,68	5 303,03	
Метод омметра	4000	5000	
Метод линейного моста	4 578,62	4 772,02	
Пересечение	-	-	

По данным таблицы 3 можно сделать вывод о том, что интервалы полученных значений не имеют пересечения. Причина этого в том, что не все эти методы одинаково точны. Зная номинальное сопротивление нагрузки, и сравнив его с полученными значениями, можно утверждать, что ближайшее к нему значение дал метод вольтметра и амперметра, несмотря на то, что метод линейного моста принято считать более точным. Таким образом, наибольшую точность измерений показал метод вольтметра и амперметра.