Лабораторная работа №7

Анализ выборки. Критерий согласия Пирсона.

К.С. Пилипенко

2022

Критерий согласия Пирсона (Хи-квадрат) был придуман для проверки значимости расхождения эмпирических (наблюдаемых) и теоретических (ожидаемых) частот. Выражается следующей формулой:

$$\chi^2 = \sum_{i}^{n} \frac{(O_i - E_i)^2}{E_i},\tag{1}$$

где O_i — наблюдаемые частоты (Observed), E_i — ожидаемые частоты (Expected).

Полученное значение χ^2 сравнивают с теоретически рассчитанным критическим значением $\chi^2_{\rm kp.}$, которое зависит от значения доверительной вероятности (как правило принимается равным 95%) и числа степеней свободы k, которое на один меньше количества уникальных значений в выборке (k=N-1).

Для расчета критического значения критерия $\chi^2_{\rm kp.}$ можно воспользоваться специальной таблицей, но лучше и проще всего воспользоваться функцией XM2 . OBP . ΠX

Напомню, что в большинстве случаев распределение дискретной случайной величины (N) подчиняется формуле Пуассона:

$$P(N) = \frac{\bar{N}^N e^{-\bar{N}}}{N!},\tag{2}$$

где \bar{N} — среднее значение. Для расчета этой вероятности можно вос-

пользовать функцией ПУАССОН. РАСП (х; среднее; интегральная), где х — значение, для которого строится распределение, среднее — среднее арифметическое распределения, интегральная — логическое значение, определяющее форму функции. Если ИСТИНА функция возвращает вероятность того, что количество событий будет меньше, чем N то есть P(n < N), если ЛОЖЬ то, возвращается значение функции взвешенной вероятности, то есть вероятность того, что количество происходящих событий будет ровно N раз. Все аргументы являются обязательными.

Ход работы

	1 C	O_i
лению П уассона	. 2	2
• Выделите текст таблицы справа, скопируйте и вставьте в пу-	2	2
стое поле таблицы Excel;	3 4	1
eree noire raosingsi Exeer,	. 8	3
• Далее, кликнув по первому столбцу вставленного текста, пе- 5	1	2
реходим во вкладку «Данные». Там, в группе инструментов 6	2	2
«Работа с данными» кликаем по кнопке «Текст по столбцам»; 7	3	5
8	6	0
• В открывшемся окне нажимаем «Далее», в списке	7	5
«Символов-разделителей» кликаем на чекбокс «пробел», 10	0 7	7
далее нажимаем «Готово».	1 8	0
• Следующий шаг - получить частоты распределения Пуас- 12	2 6	5
сона (E_i) . Для этого необходимо воспользоваться функци- 15	3 5	3
ей ПУАССОН. РАСП. Нужно рассчитать вероятность (P_i) для 14	4 4	3
каждого N и получить столбец вероятностей. Остаётся от- 15	5 2	5
крытым вопрос, откуда брать среднее (\bar{N}) ? Его можно по-	6 2	3
добрать вручную построив два графика в одних координатах 17	7 1	6
$E_i(N)$ и $O_i(N)$, и добившись их наилучшего соответствия; 18	8 1	2

• Чтобы найти ожидаемые (теоретические) частоты E_i нужно умножить соответствующие вероятности (P_i) на объём выборки, то есть на $\sum_{i=1}^{18} O_i$. Ож. частоты E_i должны быть целыми ненулевыми числами, поэтому стоит использовать функцию ОКРУГЛ;

- Используя формулу 1 посчитать критерий Пирсона (увы, функции Excel для этой формулы нет);
- Используя функцию XИ2 . РАСП постройте график плотности распределения $\omega(\chi^2_{\rm кр.})$ (последний параметр должен быть ЛОЖЬ);
- В отдельном столбце посчитать критическое значение пользуясь функцией XИ2. ОБР. ПХ. Указать это значение на графике $\omega(\chi^2_{\rm kp.})$. Сравнить полученное значение с экспериментальным;
- Получить p-value используя функцию XИ2 . РАСП . ПХ для посчитанного χ^2

Контрольные вопросы

- 1. Сформулируйте нулевую гипотезу H_0 . Назовите условие, при котором можно отклонить нулевую гипотезу.
- 2. Вывести дисперсию распределение Пуассона (D[N]).
- 3. Что такое p-value (p-значение)? Чему численно равно это значение?
- 4. В каких случаях используется функция XM2.ОБР? Что она позволяет оценить