Itow to derive these equations?

$$V_e = V_o + at$$

3
$$S = V_0 t + \frac{1}{2} a t^2$$

Variables and basic concepts

$$S \rightarrow displacement$$

 $V \rightarrow Velocity$

$$V_f \rightarrow final$$
 velocity

* In kinematic, acceleration is always Constant

1 Vç = V. + at

gradient =
$$\frac{\Delta V}{\Delta t}$$

$$a = \frac{\Delta V}{\Delta t}$$

$$a = \frac{V_{\xi} - V_{0}}{t}$$

$$at = V_{\xi} - V_{0}$$

$$V_{\xi} = V_{0} + at$$

area under =
$$\frac{1}{2}(v_0 + v_{\xi})t$$

 $S = (\frac{v_0 + v_{\xi}}{2})t$

area under area of trapezium
$$A = \frac{1}{2} (a+b)h$$

$$\bar{V} = \text{average velocity}, \frac{V_0 + V_F}{2}$$

$$\overline{V} = \frac{S}{t}$$

$$\frac{V_0 + V_5}{2} = \frac{S}{t}$$

$$S = \left(\frac{V_0 + V_5}{2}\right)t$$

3
$$S = V_0 t + \frac{1}{2} a t^2$$

from previous:
$$V_f = V_o + at - 0$$

equations: $S = (\frac{V_o + V_f}{2})t - 2$

from (2),

$$S = \left(\frac{V_0 + V_F}{2}\right) + V_F = V_F$$

$$\frac{2S}{t} = V_0 + V_F$$

$$V_{f} = \frac{2S}{t} - V_0 = V_0 + at$$

$$\frac{2S}{t} = 2V_0 + at$$

$$2S = 2V_0 + at^2$$

$$S = V_0 + \frac{1}{2}at^2$$

from previous:
$$V_f = V_o + at - 0$$

equations $S = (\frac{V_o + V_f}{2})t - 2$

from (1), from (3),

$$V_{f} = V_{0} + \Delta t \qquad S = \left(\frac{V_{0} + V_{f}}{2}\right)t$$

$$V_{f} - V_{0} = \Delta t \qquad t = \frac{2S}{V_{0} + V_{f}}$$

$$t = t$$

$$\frac{V_{f} - V_{0}}{\alpha} = \frac{2S}{V_{0} + V_{f}}$$

$$V_{f}^{2} - V_{0}^{2} = 2\Delta S$$

$$V_{f}^{2} = V_{0}^{2} + 2\Delta S$$