

Samar Perwez
Electrical Engineering
Indian Institute of Technology Bombay

22B3913 B.Tech. Gender: Male

DOB: 11/08/2004

Examination	University	Institute	Year	CPI / %
Graduation	IIT Bombay	IIT Bombay	2026	
Intermediate	ISC	Lilavatibai Podar High School	2022	99.00%
Matriculation	ICSE	Lilavatibai Podar High School	2020	98.60%

Pursuing a Minor degree offered by Department of Computer Science & Engineering

SCHOLASTIC ACHIEVEMENTS

- Secured **Department Rank 1** in Electrical Engineering Department among **120**+ students in IIT Bombay ('24)
- Received 13 AP grades (awarded to the top 1%) in various courses including Microprocessors, Digital Design, Signal Processing – I, Power Engineering – II and Data Structures & Algorithms
- Conferred with **Institute Prize** for securing **Institute Rank 6** among **1400**+ students in IIT Bombay ('23)
- Scored an **All India Rank** of **572** among 260,000+ candidates in the **JEE Advanced** Examination ('22)
- Scored an **All India Rank** of **155** among 800,000+ candidates in the **JEE Main** Examination ('22)
- Awarded the **Kishore Vaigyanik Protsahan Yojana (KVPY)** fellowship award by IISc Bangalore ('21)

PROFESSIONAL EXPERIENCE

University Research Intern | Technische Universität Braunschweig, Germany

(May'24 - Jul'24)

('24)

A 3-month on-site internship under Prof. Dr.-Ing Vadim Issakov in the field of CMOS design

- Surveyed literature on design and analysis of **Voltage Controlled Oscillators** (VCOs) including the **Groszkowski Effect** and **Ali Hajimiri's** Linear Time Variant model using **Impulse Sensitivity Functions** (ISF).
- Streamlined and automated ISF extraction by leveraging PXF & PSS analysis in Cadence with a Python script.
- Contributed to the design and improvement of a Class F VCO in 22nm CMOS technology with a frequency range of 19GHz - 21GHz in Cadence, utilizing 3rd harmonic injection for waveform shaping and ISF analysis.
- Tuned the VCO for a low phase noise of -117dBc/Hz and a high Figure of Merit of -197dB at an offset of 1MHz.

KEY PROJECTS

Pipelined Processor Design

(Jan'24 - May'24)

Guide: Prof. Virendra Singh | Course Project | EE309

- Designed and simulated a 6-stage pipelined Reduced Instruction Set architecture for a set of 26 instructions.
- Implemented custom blocks such as **Register Files**, ALU, **Pipeline Registers**, memory along with **Data Forwarding** and **Hazard Detection** functional units to handle edge cases, in **VHDL** using **Intel Quartus Prime**.
- Employed a 1-bit Branch Predictor with a Least Recently Used replacement policy to improve performance.
- Verified designs by executing **assembly programs** and conducting **RTL simulations** in a **ModelSim** environment, and subsequently, implemented them on an **FPGA** Board by mapping ports using the Pin Planner.

DSP using the 8051 Microcontroller

(Jan'24 - May'24)

Guide: Prof. Nikhil Karamchandani | Course Project | EE337

- Designed and implemented a Low-Pass Digital FIR Filter, determining filter coefficients through SciPy, capturing input through an ADC and transmitting processed data through serial transmission using PySerial.
- Utilized 8051-Assembly and Embedded C with \(\mu\)Vision Kiel & Flip to program the Pt-51 development board.
- Configured hardware timers, interrupts, SPI & UART communication protocols and interfaced with peripherals such as keyboard, analog-to-digital converters, temperature sensors, LCD displays, keypads and speakers.

Multi-cycle CPU Design

(Aug'23 – Dec'23)

Guide: Prof. Virendra Singh | Course Project | EE224

- Designed a 16-bit reduced instruction set CPU as a Finite State Machine model having 19 states using VHDL.
- Developed combinational logic to execute 14 instructions including arithmetic, control flow and memory R/W.
- Created Hardware Flowcharts to achieve minimal number of states in the processor, enhancing efficiency.

Digital Logic Design

(Aug'23 - Dec'23)

Guide: Prof. Siddharth Tallur | Course Project | EE214

- Modeled a Sequence Detector circuit as a Mealy Type Finite State Machine accepting arbitrary length words.
- Developed 8-bit ALU, comparators, 4-bit adder-subtractors using behavioral & structural modeling in VHDL.
- Utilized UrJTAG, ScanChain, Intel Quartus to implement digital logic circuits on Intel Xen 10 FPGA Board.

Discrete Analog Circuit Design

Guide: Prof. Anil Kottanthrayanil | Course Project | EE230

(Jan'24 – May'24)

- Designed and realized **square root amplifier** using **log** and **anti-log** stages calibrated with **diode characteristics** after performing detailed **simulations** in **LTSpice** to optimize performance and validate circuit behavior.
- Designed an ECG amplifier circuit with a 50Hz notch filter and amplification stages, utilizing Low Noise Amplifiers with feedback to improve performance and captured real-time ECG signals on a DSO for analysis.
- Refined the ECG amplifier with a **right leg drive** and **advanced filtering sections**, reducing noise & interference.

Savitzky-Golay Digital Filter

(Aug'23 – Dec'23)

Guide: Prof. Vikram M. Gadre | Course Project | EE229

- Performed application-focused literature review on the Savitzky-Golay Filter using articles from IEEEXplore.
- Demonstrated how a **finite impulse response** system allows for **fast and easy filtering** at the source of the signal.
- Implemented and demonstrated the **smoothening** of **noisy spectroscopic data** in Python using the digital filter.

Combinatorial Computing

(May '23 – Jul '23)

Seasons of Code | Web and Coding Club, IIT Bombay

- Explored and applied concepts like backtrack programming, complexity theory and dynamic programming.
- Acquired knowledge about SAT solvers and developed a Sudoku solver using the z3-solver library in Python.
- Incorporated graph theory principles, including **Bipartite Matching**, the **Max Flow Min Cut Theorem**, and the **Ford-Fulkerson Algorithm**, to solve practical applications such as the optimization of worker-job assignments.

Image Recolorization

(Nov'23 - Dec'23)

Winter in Data Science | Analytics Club, IIT Bombay

- Leveraged Deep Learning techniques, such as Convolutional Neural Networks, to colorize grayscale images.
- Predicted a* and b* color channels from lightness channel using Lab color space to achieve high-quality images.
- Implemented a complex neural network architecture featuring an encoder-decoder framework augmented by a
 fusion layer, supplemented with the Inception ResNet v3 classifier to enhance object recognition capabilities.

Computer Vision Project

(Aug'22 - Nov'22)

Self - Project

- Created an **automated solution** for the measurement of **Contact Angle** of water drops from images to accurately determine surface tension aiding in **impurity estimation** and assessing the **quality of coating** on various surfaces.
- Utilized python library, skimage to perform morphological image processing, including image segmentation.
- Performed polynomial regression using numpy library on data points for curve-fitting and precise calculations.

POSITIONS OF RESPONSIBILITY

Teaching Assistant | CS101

(Jan'24 – May'24)

- Facilitated weekly lab sessions, offering individual support and resolving questions for a group of 24 students.
- Organized and conducted a **problem-solving lecture** for **350** students aimed to assist in examination preparation.
- Assisted the professor in administrative matters including paper grading, exam proctoring, and course logistics.

RELEVANT COURSES

Electrical Engineering Signal Processing Computer Science Computer Architecture Analog Circuits, Power Engineering, Electronic Devices, Control Systems, EM Waves*
Signal Processing – I, Probability & Random Processes, Communication Systems*
Data Structures & Algorithms, Operating Systems*, Logic for Computer Science
Microprocessors, Digital Systems

*Ongoing courses

TECHNICAL SKILLS

Programming Languages Python Libraries Software C, C++, Python, Java, VHDL, Embedded C, Assembly, MATLAB, Mathematica Numpy, Pandas, Matplotlib, SciPy, SciKit-Learn, z3-solver, skimage, PyTorch Cadence, Intel Quartus, µVision Kiel, LTSpice, VSCode, Git, Jupyter, AutoCAD

EXTRA CURRICULARS

Managerial

• Participated in the organizing committee of 'Zenith', an inter-school fest.

(Nov '20)

- Showcased leadership and project management skills by heading Tech Team.
- Managed the online digital transformation using automation to increase efficiency.
- Developed Python scripts to automate email dispatch and generation of certificates.

Sports

- Selected in **NSO Chess Team**, IIT Bombay and completed a (Oct'22 Mar'23) one academic year long chess training under an **International Master (IM)**.
- Avid chess player, participated in multiple tournaments representing my school.
- Enthusiastic tennis player, participated in multiple regional tournaments.