EDET Chipset Upgrades

Kennedy Caisley

University of Bonn

27 March, 2024

Application Basics [Epp 2016 VERTEX]

- ▶ Time resolution 10^{-3} 10^{-6} , i.e. structural changes in biology
- ▶ $60\mu m$ pitch, $50\mu m$ thickness, signal mostly in-pixel
- ▶ 300 kEV e^- source $\rightarrow \approx$ 8000 e-h pairs in $50\mu m$ Si
- ▶ 100+ primaries in most pixels (> 1000ke⁻ signal); only a couple under target

Detector Characteristics [Predikaka 2022 Thesis/NIMA]

- ► Transfer Gains: $g_q^{IG} = 300pA/e^-$; $g_q^{OF} = 70pA/e^-$?
- ▶ $\approx 14e^-$ ENC? [Chap 5.3] \rightarrow 5 nA RMS noise @ drain?

Column Parallel ADC Specs

- ightharpoonup P power consumption (μW)
- $ightharpoonup T_c$ conversion time (ns), $T_c = \frac{1}{f_s}$
- ► A silicon area (μm^2)
- DR dynamic range: ratio of max signal to noise floor

Figure: Kwon 2018 ISCAS

DCD Specs [Peric 2017]

- ▶ $P \approx 5000 \mu W$ consumption per channel
- $ightharpoonup T_c pprox 100$ ns, no CDS, not fully reserved for ADC
- $A = 180 \mu m \times 200 \mu m = 36000 \mu m^2$ silicon area
- ▶ $1000ke^-$ signal $\rightarrow \Delta 90\mu A$ [Prinker 2022 Chap 6]
- ▶ 8-bit across DR $\approx 40LSB$ for first $100ke^-$ signal, $LSB = 2500e^-$
- ▶ $\frac{LSB}{\sqrt{12}} \approx 720e^-$ quantization error (QE)
- ► $DR = 20 \log \left(\frac{1000 ke^-}{2500 e^-}\right) \approx 48 dB$ best case
- ADC non-linearity/skipped codes degrade this even further
- Dispersion, leakage, etc not suffciently corrected by 2-bit pedestal DAC

Column Parallel ADC Specs [Kwon 2018 ISCAS]

- $FOM = \frac{P \times T_c \times A}{10^{\left(\frac{DR-1.76}{10}\right)}} \left[\frac{fJ \cdot \mu m^2}{conv.step}\right]$
- ► $FOM_{DCD} \approx 40000 fJ \cdot \mu m^2$
- ightharpoonup Rate_{DCD} = 10Mpixels/sec

Data Conversion Summary

- ▶ Pixel Rate (10 Mpixels/sec) and Area $(36000 \mu m^2)$ are typical, and sufficient for application
- Nominal resolution (8-bit) nowhere near noise limit (QE limited), but acceptable for application (LSB = 2500e⁻)
- Nonlinearity + offset significantly degrade beyond nominal resolution
- ▶ Power consumption of $\approx 5mW$ seems to offer room for improvement
- Need equivalent circuit for drain current signal dynamics

Memory Buffer, PLL, Wireline PHY

- ▶ PLL frequency upgrade to 3+ Gbps
- ► SRAM 65nm $0.680 \mu m^2 \rightarrow 28$ nm $0.127 \mu m^2$
- ► SP/DP SRAM vs FIFO?
- What speeds are supported by MGT in FPGA?

Potential architectures

