State Of The Art (SoTA) analysis report

Synthetic Data

I- What are synthetic data?

Synthetics data are artificially generated datasets that replicate or have similarity with real-world data. They are produced by capturing the statistical properties of real data to create new data points with similar characteristics [1]. Several methods can be used to generate synthetic data, including statistic-based methods such as the multivariate normal distribution (MVND) and bootstrapping, probabilistic-based methods like Stochastic Block Models (SBMs), machine learning-based methods such as tree ensembles, the Gaussian Mixture Models (GMMs), and deep learning-based methods including Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs) [1]. But generating synthetic medical data is a challenge because of its inherent complexity and longitudinal nature [2].

Synthetic data offers the opportunity to protect and preserve the confidentiality of real data. They are used across various domains, with a particular emphasis on scientific research and applications in Artificial Intelligence (AI). In sensitive fields like healthcare, where patient data must remain confidential, synthetic data allow for anonymization while maintaining high fidelity to the original information. [3], [4], [5]

Not only do they protect patient privacy, but they also help researchers and medical professionals by increasing data availability, enabling broader experimentation and simulation without the risk of exposing personal data. However, a key challenge in generating synthetic data lies in maintaining a balance between realism and privacy. High-quality healthcare data is essential for high-quality research, better development initiatives, and outcomes, informed medical decisions, and better quality of life [6].

There exist different types of synthetic data:

- Full synthesis: Data entirely generated by models without using any actual records from the original dataset. It replaces all real data, ensuring maximum privacy but may risk some loss of statistical accuracy. [7]
- Partial synthesis: Only sensitive variables are replaced with synthetic values, while
 the rest of the dataset remains real. This strikes a balance between privacy
 protection and data utility. [7]

Depending on the original data type, synthetic data can also take specific forms [1]:

- Tabular Synthetic Data: Artificially generated data structured in a traditional table format, like spreadsheets or relational databases. Each row represents an individual sample, and each column corresponds to a variable or feature. [8]
- Radiomics Synthetic Data: Synthetic features derived from medical imaging (e.g., MRI, CT scans), representing quantitative attributes such as tumor shape, texture, and intensity. These are generated to simulate radiomic profiles without requiring real medical images. [9]
- Time-Series Synthetic Data: Data generated to mimic temporal sequences, preserving trends, seasonality, and time-dependent patterns found in real-world time series. [10]
- Omics Synthetic Data: Artificially generated data that replicates high-dimensional biological datasets from fields like genomics, transcriptomics, proteomics, and metabolomics. These datasets often include thousands of biological variables per sample. [11]
- Multimodal Synthetic Data: Synthetic datasets that integrate multiple data modalities, for example, combining text, images, and structured data to represent a single entity or scenario. [12]

II- Why do we need synthetic data (their value)?

Synthetic data has become increasingly essential with the rise of artificial intelligence (AI) and the implementation of regulations such as the General Data Protection Regulation (GDPR) in Europe [1]. Ethical concerns are now at the forefront of societal debates, making compliance with these norms and laws a necessity [13]. The use of data has become essential for decision making in public health at the local, national, and global level 14]. Unfortunately, data from healthcare has some challenges by their availability [14]. In the medical field in particular, data confidentiality is crucial to maintaining patient integrity. Health data has become an asset, with major tech companies like GAFAMs (Google, Apple, Facebook, Amazon, and Microsoft) seeking to exploit it [15]. As a result, synthetic data plays a critical role in preserving personal privacy. The value of medical, biological, and personal data has significantly increased in recent years. Their economic value is considerable, but it must be balanced with the need to protect privacy while supporting scientific research. These data also hold major strategic importance. This is why synthetic data have a primordial role.

Moreover, synthetic data can help reduce discrimination related to age, gender, race, and other biases that may be present in real datasets [1]. By eliminating such biases, it enables the development of fairer AI systems. Synthetic data also mitigates the risk of data leaks, thereby enhancing overall trust in AI systems [1]. Because synthetic datasets are not linked to real individuals, researchers can work with them freely without compromising privacy. This freedom allows researchers to bypass some of the constraints imposed by existing regulations. Synthetic data is especially necessary when real-world data is insufficient or of poor quality [16]. It offers a viable alternative that ensures the continuity and effectiveness of data-driven research and development.

III- What are the types of synthetic data generators?

There are several methods for generating synthetic data, with at least 77 different generators identified [1]. This reflects the wide variety of available tools, each tailored to specific needs and capable of producing optimal results depending on the type of medical data involved.

In the field of deep learning, the most used methods are Variational Autoencoders (VAEs) and Generative Adversarial Networks (GANs). These models have demonstrated strong capabilities in generating privacy-preserving data, supporting applications such as clinical decision-making and predictive modeling. Variants like CycleGANs are particularly effective in image synthesis. There is machine learning—based tools such as the Synthetic Data Vault (SDV), which is designed for generating tabular data [17].

Synthetic Data Generator	Usage	Problem to solve	Type of Data	Pros	Cons
		Generate		Adaptable to	GANs are difficult
		realistic		various data	to train due to
		synthetic			several factors
Generative	Deep	data from	Radiomics,		that include the
Adversarial	learning	random noise	tabular,		loss function,
Networks			images,		hyperparameters,
(GAN) [18]			multimodal		or a generator
					that can fool the
					discriminator.

		synthesize		CGAN is	Dating from 2014,
		images based		trained using	there are
Conditional	Deep	on a chosen	Images,	data instances	improvements
GAN (CGAN)	Learning	label, cannot	tabular	and their	possible
[18]		sample an		respective	
		image of the		labels	
		desired class			
		More		Use of	The features in
		precision to		convolutional	the latent space
		synthetize		layers, detect	had no semantic
		images		edges, blur	meaning. not
Deep	Deep			the images,	possible to
Convolutional	learning		Images	remove noise	change the values
GAN (DCGAN)					of a feature in
[18]					latent space and
					predict what that
					change would do
					to the image
		to give		Capable of	large number of
		semantic		more precise	hyperparameters
Information		meaning to		recognition	and a large
Maximizing	Deep	features in	Images	(handwritten	number of
GAN (InfoGAN)	learning	the latent		or background	training samples,
[18]		space		numbers,	training process
				glasses for	prohibitively
				example)	expensive
		Reduce the		Paired of GAN,	Training
		constraints of		sharing	intensive, large
		using a single		weights	datasets
Coupled GAN	Deep	GAN		requires fewer	
(CoGAN) [18]	learning		Images	parameters	
				than two	
				individual	
				GANs, less	

				memory consumption, less computational power, and fewer resources.	
Wasserstein GAN (WGAN) [18]	Deep learning	Improve the discriminator	images	avoids mode collapse and provides a meaningful loss metric that correlates with the generator's convergence and sample quality. Stable trainings and realistic samples	Require extensive computational resources
Cycle- Consistent GAN (CycleGAN)	Deep learning Deep	image-to- image translation without paired data	Multimodal	Excellent for image-to-image translation tasks without paired data	Poor at maintaining consistency of synthesized images when large variation between input modalities. High resource
growing GAN (ProGAN) [18]	learning	training by progressively increasing generated		and stabilizes training by producing images with	consumption and complex trainings dynamics

		images resolution		few pixels. Layers corresponding to higher resolutions are added in the training process,	
				allowing the creation of high-quality images.	
Style- Distribution GAN (SD-GAN) [19]	Deep learning	synthesize images of different styles based on several similar	Images	Transferring and blending diverse style features.	Challenge to manage different variations styles
Bayesian models [20]	Machine learning	images Synthetize tables from real data	Tabular	Flexible, non- linear data treated	Computationally intensive, needs substantial data.
multivariate normal distribution (MVND) [1]	Statistical	used for generating synthetic distributions that preserve statistical properties of the real data	Tabular, images	Robust and simple	Not usable with complex dependences in data
Vine Copula Models [21]	Statistical	Generate synthetic data with	Tabular	Excellent for modeling the dependencies	Complex to use and interpret

		complex		between	
		dependencies		variables	
Bayesian		Synthetic			Require extensive
(hierarchical)	Machine	generation	Tabular		computational
generalized	learning	with			resources
linear models		hierarchic			
(hGLM) [1]		structure			
		Data		Combine	Large Training so
		generation by		multiple	can be expensive,
Tree	Machine	learning of	Tabular	decision tree	high number of
Ensembles [1]	learning	complex		to make	trees can increase
		structures		realistic data	time of process
					and resources
					usage
		represent a		Fast, easy to	Data have to
Gaussian	Machine	dataset as a		train	follow a Gaussian
Mixture	Learning	mixture of	Tabular		distribution
Models (GMM)		Gaussian			
[22]		distributions.			
		describe the		Effective for	Complex
		evolution of		capturing	integration of
		observable		sequences	multiple
		events, which		and	modeling
Hidden Markov		themselves,		transitions in	techniques
Model (HMM)	Machine	are	Time-series,	time series	
and regression	Learning	dependent on	tabular	data.	
algorithm [1]		internal			
[23]		factors that			
		can't be			
		directly			
		observed			
Variational		compress		Good for	Less precise,
AutoEncoders	Deep	data into a	Time-series	modeling	quality not
(VAE) [24] [1]	learning	lower-		distribution of	

		dimensional		data for	perfect for
		latent space,		simulation.	samples
		a dre-			
		construct			
		data from this			
		space			
	Deep	Generate	Images,	Extremely	very
	learning	highly	Time-series,	high sample	computationally
Diffusion		realistic data	multimodal	quality, stable	expensive
Model [25]		by denoising		training, good	
		random noise		control over	
				output	

IV- References

- [1] Synthetic data generation methods in healthcare: A review on open-source tools and methods. Vasileios C Pezoulas, Dimitrios I Zaridi, Eugenia Mylona, Christos Androutsos, Kosmas Apostolidis, Nikolaos S Tachos, Dimitrios I Fotiadis (https://pmc.ncbi.nlm.nih.gov/articles/PMC11301073/)
- [2] Big Healthcare Data Analytics: Challenges and Applications. Chonho Lee, Zhaojing Luo, Kee Yuan Ngiam, Meihui Zhang, Kaiping Zheng, Gang Chen, Beng Chin Ooi & Wei Luen James Yip (https://link.springer.com/chapter/10.1007/978-3-319-58280-1 2)
- [3] Between Access and Privacy: Challenges in Sharing Health Data. Bradley Malin, Kenneth Goodman (<a href="https://www.thieme-connect.de/products/ejournals/pdf/10.1055/s-0038-1641216.pdf?utm_source=sciencedirect_contenthosting&getft_integrator=sciencedirect_contenthosting)
- [4] Privacy Law, Data Sharing Policies, and Medical Data: A Comparative Perspective. Edward S. Dove & Mark Phillips (https://link.springer.com/chapter/10.1007/978-3-319-23633-9-24?utm-source=getftr&utm-medium=getftr&utm-campaign=getftr-pilot&getft-integrator=sciencedirect_contenthosting)
- [5] Synthetic data generation: a privacy-preserving approach to accelerate rare disease research.

 Jorge M Mendes, Aziz Barbar, Marwa Refaie

 (https://pmc.ncbi.nlm.nih.gov/articles/PMC11958975/)

- [6] Electronic health records to facilitate clinical research. Martin R. Cowie, Juuso I. Blomster, Lesley H. Curtis, Sylvie Duclaux, Ian Ford, Fleur Fritz, Samantha Goldman, Salim Janmohamed, Jörg Kreuzer, Mark Leenay, Alexander Michel, Seleen Ong, Jill P. Pell, Mary Ross Southworth, Wendy Gattis Stough, Martin Thoenes, Faiez Zannad & Andrew Zalewski (https://link.springer.com/article/10.1007/s00392-016-1025-6#Sec15)
- [7] Synthetic Data. Trivellore E. Raghunathan (https://www.annualreviews.org/content/journals/10.1146/annurev-statistics-040720-031848)
- [8] Tabular and latent space synthetic data generation: a literature review. Joao Fonseca & Fernando Bacao (https://doi.org/10.1186/s40537-023-00792-7)
- [9] Overcoming data scarcity in radiomics/radiogenomics using synthetic radiomic features. Milad Ahmadian, Zuhir Bodalal, Hedda J. van der Hulst, Conchita Vens, Luc H.E. Karssemakers, Nino Bogveradze, Francesca Castagnoli, Federica Landolfi, Eun Kyoung Hong, Nicolo Gennaro, Andrea Delli Pizzi, Regina G.H. Beets-Tan, Michiel W.M. van den Brekel, Jonas A. Castelijns (https://doi.org/10.1016/j.compbiomed.2024.108389.)
- [10] Comparative assessment of synthetic time series generation approaches in healthcare: leveraging patient metadata for accurate data synthesis. Isasa, I., Hernandez, M., Epelde, G. et al. (https://doi.org/10.1186/s12911-024-02427-0)
- [11] Multi-omics data integration by generative adversarial network. Khandakar Tanvir Ahmed,
 Jiao Sun, Sze Cheng, Jeongsik Yong, Wei Zhang.

 (https://academic.oup.com/bioinformatics/article/38/1/179/6355579)
- [12] Generation of realistic synthetic data using Multimodal Neural Ordinary Differential Equations. Wendland, P., Birkenbihl, C., Gomez-Freixa, M. et al. (https://doi.org/10.1038/s41746-022-00666-x)
- [13] Synthetic Data in AI: Challenges, Applications, and Ethical Implications. Shuang Hao, Wenfeng Han, Tao Jiang, Yiping Li, Haonan Wu, Chunlin Zhong, Zhangjun Zhou, He Tang (https://arxiv.org/pdf/2401.01629)
- [14] A systematic review of barriers to data sharing in public health. Willem G van Panhuis, Proma Paul, Claudia Emerson, John Grefenstette, Richard Wilder, Abraham J Herbst, David Heymann & Donald S Burke (https://link.springer.com/article/10.1186/1471-2458-14-1144?utm_source=getftr&utm_medium=getftr&utm_campaign=getftr_pilot&getft_integrator=sc_iencedirect_contenthosting)

- [15] Votre Santé, Un Trésor Convoité : Arte Reportage. David Carr-Brown (https://www.youtube.com/watch?v=v9DfKROPV78&t=9s) (Studied at my university)
- [16] Survey on Synthetic Data Generation, Evaluation Methods and GANs (https://www.mdpi.com/2227-7390/10/15/2733)
- [17] GitHub Synthetic Data Vault (https://github.com/sdv-dev/SDV)
- [18] Survey on Synthetic Data Generation, Evaluation Methods and GANs. Figueira A, Vaz B. (https://doi.org/10.3390/math10152733)
- [19] SD-GAN: A Style Distribution Transfer Generative Adversarial Network for Covid-19 Detection Through X-Ray Images. T. Kausar, Y. Lu, A. Kausar, M. Ali and A. Yousaf (https://ieeexplore.ieee.org/document/10061161)
- [20] Synthetic data generation with probabilistic Bayesian Networks. Gogoshin G, Branciamore S, Rodin AS (https://pmc.ncbi.nlm.nih.gov/articles/PMC8848551/)
- [21] Learning Vine Copula Models For Synthetic Data Generation. Yi Sun, Alfredo Cuesta-Infante, Kalyan Veeramachaneni (https://arxiv.org/pdf/1812.01226)
- [22] Synthetic data generation with Gaussian Mixture Models. May 24, 2023 (https://ydata.ai/resources/synthetic-data-generation-with-gaussian-mixture-models)
- [23] Hidden Markov Models and their Applications in Biological Sequence Analysis. Curr Genomics. Yoon BJ. (https://pmc.ncbi.nlm.nih.gov/articles/PMC2766791/)
- [24] An Introduction to Variational Autoencoders. Diederik P. Kingma, Max Welling (https://arxiv.org/pdf/1906.02691)
- [25] An overview of diffusion models for generative artificial intelligence. Davide Gallon, Arnulf Jentzen, Philippe von Wurstemberger (https://arxiv.org/pdf/2412.01371)

ChatGPT (for reformulation and translation)