Gli isomorfismi.

- \bullet Un'applicazione lineare $f:V\to V'$ bi
iettiva si dice anche isomorfismo tra lo spazio Ve lo spazio
 V'.
- \bullet Proprieta' degli isomorfismi. Sia $f:V\to V'$ un isomorfismo. Allora valgono le seguenti proprieta':
- 1) l'applicazione inversa $f^{-1}: V' \to V$ e' anch'essa lineare e quindi e' un isomorfismo tra V' a V;
- 2) un sistema di vettori $\mathbf{b}_1, \dots, \mathbf{b}_n$ e' una base di V se e solo se il sistema di vettori $f(\mathbf{b}_1), \dots, f(\mathbf{b}_n)$ e' una base di V' (cioe' un isomorfismo trasforma basi in basi);
 - 3) $\dim(V) = \dim(V');$
- 4) se \mathcal{B} e' una base di V e \mathcal{B}' e' una base di V' allora la matrice rappresentativa $M_{\mathcal{B}'}^{\mathcal{B}}(f)$ e' invertibile e

$$M_{\mathcal{B}'}^{\mathcal{B}}(f)^{-1} = M_{\mathcal{B}}^{\mathcal{B}'}(f^{-1}).$$

- Due spazi vettoriali V e V' si dicono isomorfi se esiste un isomorfismo $f:V\to V'$ tra lo spazio V e lo spazio V'. Possiamo riguardare la nozione di isomorfismo come una relazione nell'insieme di tutti gli spazi vettoriali. Tale relazione e' una relazione di equivalenza. Infatti ogni spazio vettoriale V e' isomorfo a se stesso in virtu' dell'applicazione identica $id_V:V\to V$, che e' un isomorfismo. Poi la proprieta' 1) precedente ci dice che tale relazione e' anche simmetrica. Infine se $f:V\to V'$ e $g:V'\to V$ " sono isomorfismi allora tale e' anche l'applicazione composta $g\circ f:V\to V$ ". Quindi la relazione di isomorfismo e' anche una relazione transitiva.
- Un esempio importante di isomorfismo e' l'applicazione delle coordinate $[\]_{\mathcal{B}}$. Assegnata una base \mathcal{B} in uno spazio vettoriale V di dimensione n, tale applicazione e' quella che associa al vettore \mathbf{v} di V il vettore numerico $\mathbf{x} \in \mathbf{R}^n$ delle coordinate di \mathbf{v} rispetto alla base \mathcal{B} :

$$[\quad]_{\mathcal{B}}: \mathbf{v} \in V \to \mathbf{x} = [\mathbf{v}]_{\mathcal{B}} \in \mathbf{R}^n.$$

L'esistenza di tale isomorfismo consente di dedurre il seguente

Teorema. Ogni spazio vettoriale di dimensione n e' isomorfo ad \mathbb{R}^n .

Per transitivita' otteniamo il corollario

Corollario. Due spazi vettoriali sono isomorfi se e solo se hanno la stessa dimensione.

ullet Sia $\mathcal V$ l'insieme di tutti gli spazi vettoriali di dimensione finita, e sia $\widetilde{\mathcal V}$ l'insieme di tutte le classi di equivalenza rispetto alla relazione di isomorfismo in $\mathcal V$. Per ogni

spazio $V\in\mathcal{V}$ denotiamo con $[V]\in\widetilde{\mathcal{V}}$ la sua classe di equivalenza. In base al corollario precedente la seguente applicazione

$$[V] \in \widetilde{\mathcal{V}} \to \dim(V) \in \mathbf{N}_0$$

e' ben definita ed e' biiettiva. In altre parole, a meno di isomorfismi, ci sono tanti spazi vettoriali di dimensione finita quanti sono i numeri naturali.