Concavity and Convexity Properties of $\ln\left(\frac{x_1+x_2+\cdots+x_n}{x_0}\right)$ with Integer x_0 and $x_i\geq 1$

Evan Kniffen

ISEN 320

Abstract

We study the function

$$F(x_1, x_2, \dots, x_n, x_0) = \ln\left(\frac{x_1 + x_2 + \dots + x_n}{x_0}\right)$$

under the assumptions

$$x_0 \in \mathbb{Z}_{>0}$$
 and $x_i \ge 1$ for each $i = 1, 2, \dots, n$.

This document provides a thorough proof that in the full space (x_1, \ldots, x_n, x_0) (treating x_0 as real, however, still contains geometric implications for a mixed-integer valued F), the Hessian of F is indefinite, so F is neither globally convex nor globally concave.

Contents

6	Conclusion	5
5	Neither Globally Concave nor Globally Convex in All Variables5.1 Hessian Computation5.2 Implication	4 5
4	Convexity in x_0 for Fixed (x_1, \ldots, x_n)	3
3	Concavity in (x_1, \ldots, x_n) for Fixed x_0	9
2	Rewrite the Function and Gather Key Observations	2
1	Introduction and Statement of the Problem	2

1 Introduction and Statement of the Problem

Let n be a positive integer. We consider n+1 variables:

$$x_1, x_2, \ldots, x_n, \text{ and } x_0,$$

subject to the conditions

$$x_0 \in \mathbb{Z}_{>0}$$
 (strictly positive integer), $x_i \ge 1$ for all $i = 1, ..., n$.

Define

$$F(x_1,\ldots,x_n,x_0) = \ln\left(\frac{x_1+x_2+\cdots+x_n}{x_0}\right).$$

Because $x_1 + \cdots + x_n \ge n \ge 1$ and x_0 is at least 1 (strictly positive), the argument of the logarithm is strictly positive, so F is well-defined.

The purpose of this text is to prove:

• Concavity in the x_i 's (for fixed x_0): If we hold x_0 fixed, then the map

$$(x_1,\ldots,x_n) \mapsto F(x_1,\ldots,x_n,x_0)$$

is concave in (x_1, \ldots, x_n) over the domain $\{x_i \geq 1\}$.

• Convexity in x_0 (for fixed x_1, \ldots, x_n): If we hold (x_1, \ldots, x_n) fixed, then the function of x_0 alone

$$x_0 \mapsto F(x_1, \dots, x_n, x_0) = \ln\left(\frac{x_1 + \dots + x_n}{x_0}\right)$$

behaves like $-\ln(x_0)$ plus a constant, which is convex in real $x_0 > 0$. Since x_0 is actually integer, we interpret this as F being monotonically decreasing in x_0 and having discrete convexity properties for integer steps.

• Neither concave nor convex in all variables simultaneously: If we treat all $(x_1, \ldots, x_n, x_0) \in (0, \infty)^{n+1}$ as real variables, the Hessian of F is neither positive semidefinite nor negative semidefinite, i.e. indefinite.

We will prove each of these statements in detail below.

2 Rewrite the Function and Gather Key Observations

Observe that

$$F(x_1, \dots, x_n, x_0) = \ln(x_1 + \dots + x_n) - \ln(x_0).$$

This rewriting splits F into two simpler pieces:

$$F(x_1, \dots, x_n, x_0) = \underbrace{\ln(x_1 + \dots + x_n)}_{=:G(x_1, \dots, x_n)} - \underbrace{\ln(x_0)}_{=:H(x_0)}.$$
 (1)

Hence, when we fix x_0 , F differs from $G(x_1, \ldots, x_n)$ by a constant $-\ln(x_0)$. When we fix (x_1, \ldots, x_n) , F differs from $-\ln(x_0)$ by a constant $\ln(x_1 + \cdots + x_n)$.

Thus, the study of F reduces to understanding:

$$G(x_1, ..., x_n) = \ln(x_1 + \dots + x_n)$$
 and $H(x_0) = \ln(x_0)$.

3 Concavity in (x_1, \ldots, x_n) for Fixed x_0

In this section, assume x_0 is held fixed (some positive integer). Then

$$F(x_1, \ldots, x_n, x_0) = \ln(x_1 + \cdots + x_n) - \ln(x_0).$$

Since $ln(x_0)$ is a constant with respect to (x_1, \ldots, x_n) , we focus on

$$\ln(x_1+\cdots+x_n).$$

It is well known (and we repeat the argument for completeness) that

$$(x_1,\ldots,x_n) \mapsto x_1+\cdots+x_n$$

is an affine (linear) function. Meanwhile, the map

$$t \mapsto \ln(t) \quad (t > 0)$$

is concave and non-decreasing in the scalar variable t. By a standard composition rule for concave functions:

Theorem 3.1 (Composition with an affine map). If $\varphi(t)$ is concave and non-decreasing on some interval $(0,\infty)$ and $\phi(\mathbf{x})$ is a linear/affine map into $(0,\infty)$, then $\varphi(\phi(\mathbf{x}))$ is concave in \mathbf{x} .

Here, $\phi(x_1, \ldots, x_n) = x_1 + \cdots + x_n > 0$, and $\varphi(t) = \ln(t)$. Since $\ln(\cdot)$ is indeed concave+non-decreasing on $(0, \infty)$, it follows that

$$G(x_1, \dots, x_n) = \ln(x_1 + \dots + x_n)$$

is concave in (x_1, \ldots, x_n) over the region $x_i \ge 1$ (actually, it holds for $x_i > 0$ in general). Thus G is concave, and subtracting the constant $\ln(x_0)$ does not affect concavity. We conclude:

Proposition 3.2. For each fixed integer $x_0 > 0$, the function

$$(x_1,\ldots,x_n) \mapsto F(x_1,\ldots,x_n,x_0)$$

is concave over the domain $x_i \geq 1$.

4 Convexity in x_0 for Fixed (x_1, \ldots, x_n)

Now fix a point (x_1, \ldots, x_n) , each $x_i \ge 1$. We look at

$$F(x_0) = \ln(x_1 + \dots + x_n) - \ln(x_0).$$

As a function of the single scalar variable $x_0 > 0$ (if we temporarily allow x_0 to be real), this is a constant $\ln(x_1 + \cdots + x_n)$ minus $\ln(x_0)$. We know from single-variable calculus:

 $\ln(x_0)$ is concave in $x_0 > 0$, so $-\ln(x_0)$ is convex in $x_0 > 0$.

Hence

$$x_0 \mapsto -\ln(x_0)$$

is convex, and adding the constant $\ln(x_1 + \cdots + x_n)$ preserves convexity. Therefore:

Proposition 4.1. If $(x_1, ..., x_n)$ are held fixed, then $x_0 \mapsto F(x_1, ..., x_n, x_0)$ is convex in the real variable $x_0 > 0$.

Discrete Interpretation (Since $x_0 \in \mathbb{Z}_{>0}$)

Because in the actual problem statement x_0 is restricted to be a strictly positive integer, the usual derivative-based definition of convexity (i.e. $f''(x_0) \ge 0$) does not directly apply. Nevertheless, if one extends the function to real $x_0 > 0$ and checks convexity, that implies discrete convexity properties when restricting $x_0 \in \{1, 2, 3, ...\}$. In particular,

since $-\ln(x_0)$ is strictly decreasing in $x_0 > 0$, F is also strictly decreasing as an integer function of x_0 .

5 Neither Globally Concave nor Globally Convex in All Variables

Finally, consider F as a function of $(x_1, \ldots, x_n, x_0) \in (0, \infty)^{n+1}$. Although the original domain has x_0 integer and $x_i \geq 1$, for the sake of checking global convexity or concavity, one typically examines the Hessian in the continuous domain $(0, \infty)^{n+1}$. We do that here to see whether F could be globally concave/convex. The result is that the Hessian is *indefinite*, hence F cannot be globally one or the other.

5.1 Hessian Computation

Write

$$F(\mathbf{x}, x_0) = \ln(x_1 + \dots + x_n) - \ln(x_0).$$

Let us denote $S = x_1 + \cdots + x_n$ for shorthand. Then

$$\nabla F = \left(\frac{\partial F}{\partial x_1}, \dots, \frac{\partial F}{\partial x_n}, \frac{\partial F}{\partial x_0}\right).$$

First derivatives:

$$\frac{\partial}{\partial x_i} \ln(S) = \frac{1}{S}$$
, for each $i = 1, \dots, n$,

and

$$\frac{\partial}{\partial x_0} \left[-\ln(x_0) \right] = -\frac{1}{x_0}.$$

Hence

$$\nabla F(\mathbf{x}, x_0) = \left(\frac{1}{S}, \frac{1}{S}, \dots, \frac{1}{S}, -\frac{1}{x_0}\right).$$

Second derivatives:

$$\frac{\partial^2}{\partial x_i \partial x_j} \ln(S) = -\frac{1}{S^2}, \text{ for all } i, j = 1, \dots, n,$$

because $\frac{\partial}{\partial x_j} \left(\frac{1}{S} \right) = -\frac{1}{S^2}$. Also,

$$\frac{\partial^2}{\partial x_i \partial x_0} \ln(S) = 0, \qquad \frac{\partial^2}{\partial x_0^2} \left[-\ln(x_0) \right] = \frac{1}{x_0^2}.$$

Hence the Hessian matrix $\nabla^2 F$ takes the form:

$$\nabla^2 F = \begin{pmatrix} -\frac{1}{S^2} & -\frac{1}{S^2} & \cdots & -\frac{1}{S^2} & 0\\ -\frac{1}{S^2} & -\frac{1}{S^2} & \cdots & -\frac{1}{S^2} & 0\\ \vdots & \vdots & \ddots & \vdots & \vdots\\ -\frac{1}{S^2} & -\frac{1}{S^2} & \cdots & -\frac{1}{S^2} & 0\\ 0 & 0 & \cdots & 0 & \frac{1}{x_0^2} \end{pmatrix}_{(n+1)\times(n+1)}$$

The top-left $n \times n$ block is

$$-\frac{1}{S^2} \begin{pmatrix} 1 & 1 & \cdots & 1 \\ 1 & 1 & \cdots & 1 \\ \vdots & \vdots & \ddots & \vdots \\ 1 & 1 & \cdots & 1 \end{pmatrix},$$

which is negative semidefinite (it has one strictly negative eigenvalue and n-1 zeros). Meanwhile, the bottom-right element $\frac{1}{x_0^2}$ is strictly positive. Therefore the full Hessian has both negative and positive eigenvalues, i.e. it is *indefinite*.

5.2 Implication

An indefinite Hessian means the function cannot be globally concave or globally convex in (x_1, \ldots, x_n, x_0) if we treat all variables as real. In the stricter setting that $x_0 \in \mathbb{Z}$, one typically uses alternative definitions of concavity/convexity for "mixed" discrete-continuous variables, but the key point remains that F does not admit a unifying global concavity or convexity property across all variables simultaneously.

6 Conclusion

We have thoroughly demonstrated:

1. Concavity in the x_i 's (for fixed integer x_0):

$$(x_1,\ldots,x_n) \mapsto \ln\left(\frac{x_1+\cdots+x_n}{x_0}\right)$$

is concave in (x_1, \ldots, x_n) , thanks to the concavity of $\ln(x_1 + \cdots + x_n)$.

2. Convexity in x_0 (for fixed x_1, \ldots, x_n):

$$x_0 \mapsto \ln\left(\frac{x_1 + \dots + x_n}{x_0}\right) = \ln(x_1 + \dots + x_n) - \ln(x_0)$$

is " $-\ln(x_0)$ plus a constant," which is convex in real $x_0 > 0$. Restricted to $x_0 \in \mathbb{Z}_{>0}$, it is monotonically decreasing and satisfies a discrete version of convexity.

3. Neither globally convex nor concave in all variables: In the continuous extension $(0, \infty)^{n+1}$, F has an indefinite Hessian, so it is neither globally convex nor globally concave.

Hence we have completely characterized the basic convexity/concavity properties of

$$F(x_1,\ldots,x_n,x_0) = \ln\left(\frac{x_1+\cdots+x_n}{x_0}\right),\,$$

under the given domain assumptions $x_0 \in \mathbb{Z}_{>0}$, $x_i \ge 1$.

Remark. Should one need more advanced concepts like "integer-valued convexity" or "mixed-integer convexity," the negativity/positivity in the Hessian blocks still underlies the fundamental geometry: the function is concave in (x_1, \ldots, x_n) for each fixed integer x_0 and has a convex shape in x_0 for each fixed (x_1, \ldots, x_n) . These remain consistent no matter the details of the domain's integrality constraints.