Redes Perceptron de Uma ou Múltiplas Camadas

Computação Natural Gisele L. Pappa

Perceptron de uma Camada

- Primeiro modelo para aprendizagem supervisionada
- Padrões linearmente separáveis

Inputs		Output		
Xt	X ₂	X ₁ AND X ₂		
0.	0	0		
0	1	0		
1	0	0		
1	1	1		

1	3		
(0,1)	1	(1, 1)	
		1	
(0,0)	Ö.	(1,0)	•

Inputs		Output		
Xt	X ₂	X ₁ XOR X ₂		
0	0	0		
0	1	1		
1	0	1		
1	1	0		

Aprendizagem

• Seja w(t) um peso sináptico de um dado neurônio, no instante de tempo t. O ajuste $\Delta w(t)$ é aplicado ao peso sináptico w(t) no instante t, gerando o valor corrigido w(t+1), na forma:

$$w(t+1) = w(t) + \Delta w(t)$$

- Várias maneira de obter $\Delta w(t)$:
 - regra de Hebb, regra Delta, algoritmo de backpropagation, estratégias de competição, máquina de Boltzmann

Aprendizado no perceptron

- Pode seguir 2 abordagens:
 - Regra do Perceptron
 - Regra do Adeline (Adaptive Linear Neuron)

Intuição da Regra de Aprendizado

- Dada uma instância (x,y)
 - Se o erro é positivo (saída real é maior que desejada)
 - Quero aumentar w_kx_k
 - Se o erro é negativo (saída real é menor que desejada)
 - Quero diminuir w_kx_k
- Se não exite erro, não muda pesos

Regra do Perceptron

$$\mathbf{w}(t+1) = \mathbf{w}(t) + \alpha \ e_i \ \mathbf{x}$$
 (peso)
 $\mathbf{b}(t+1) = \mathbf{b}(t) + \alpha \ e_i$ (bias)
 α é a taxa de aprendizagem
 e_i é o erro entre a saída encontrada e a desejada

 No perceptron de uma camada, a taxa de aprendizagem têm pouco impacto e pode ser igual a 1

Treinamento Perceptron

Inicializa rede com pesos arbitrários [-0.5,0.5]

Repita (até convergência dos pesos)

Para cada instância (x,y)

Para cada peso w_k

$$\mathbf{w}_{\mathbf{k}}(t+1) = \mathbf{w}_{\mathbf{k}}(t) + \alpha e_i \mathbf{x}_{\mathbf{k}}$$

Epoch	Inp	puts Desired output		Initial weights		Actual output	Error	Final weights	
	x_1	x_2	Y_d	w_1	w_2	Y	e	w_1	w_2
1	0	0	0	0.3	-0.1	0	0	0.3	-0.1
	0	1	0	0.3	-0.1	0	0	0.3	-0.1
	1	0	0	0.3	-0.1	1	-1	0.2	-0.1
	1	1	1	0.2	-0.1	0	1	0.3	0.0
2	0	0	0	0.3	0.0	0	0	0.3	0.0
	0	1	0	0.3	0.0	0	0	0.3	0.0
	1	0	0	0.3	0.0	1	-1	0.2	0.0
	1	1	1	0.2	0.0	1	0	0.2	0.0
3	0	0	0	0.2	0.0	0	0	0.2	0.0
	0	1	0	0.2	0.0	0	0	0.2	0.0
	1	0	0	0.2	0.0	1	-1	0.1	0.0
	1	1	1	0.1	0.0	0	1	0.2	0.1
4	0	0	0	0.2	0.1	0	0	0.2	0.1
	0	1	0	0.2	0.1	0	0	0.2	0.1
	1	0	0	0.2	0.1	1	-1	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1
5	0	0	0	0.1	0.1	0	0	0.1	0.1
	0	1	0	0.1	0.1	0	0	0.1	0.1
	1	0	0	0.1	0.1	0	0	0.1	0.1
	1	1	1	0.1	0.1	1	0	0.1	0.1

Regra do Adeline

- Define uma função de erro
- Escolhe os pesos para minimizar essa função de erro
 - Através do método da descida do gradiente

Descida do gradiente

- Algoritmo de otimização pode ser usado para encontrar o mínimo local de uma função
- Dada uma função diferenciável definida na vizinhança de um ponto *a*, sabe-se que essa função cai mais rápido se ela for de *a* em direção a negativa do gradiente

Descida do gradiente

Gradiente: direção para onde a "função cresce"
 = ∇f(w)

$$= \left[\frac{\partial f}{\partial w_0}(\mathbf{w}), ..., \frac{\partial f}{\partial w_n}(\mathbf{w})\right]$$

- Gradiente negativo: para onde a função decresce
- Regra de atualização:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla f(\mathbf{w})$$

$$\mathbf{w}_{j} \leftarrow \mathbf{w}_{j} - \alpha \frac{\partial f}{\partial \mathbf{w}_{i}}$$

Descida do Gradiente

Descida do Gradiente

Escolha da função de erro

- Primeira escolha:
 - Soma dos quadrados dos erros
 - Não diferenciável
- Opção: usar a entrada para avaliar indiretamente a saída – entrada deve estar próxima da saída real

$$E(w) = \frac{1}{2} \sum_{d} (y^{d} - in^{d})^{2}$$

d é o número de exemplos no treinamento in é a entrada do neurônio

$$= \frac{1}{2} \sum_{d} \left(y^{d} - \sum_{j=0}^{n} w_{j} x_{j}^{d} \right)^{2}$$

Perceptron vs Adaline

• Perceptron:

- Garante convergência quando os pontos são linearmente separáveis (vantagem)
- Não garante convergência para mínimo local quando pontos não são linearmente separáveis (desvantagem)
- Pontos classificados corretamente não influenciam no treino (vantagem)
- Pontos classificados incorretamente têm a mesma influência no treino (desvantagem)

Perceptron vs Adaline

• Adeline:

- Não garante convergência quando os pontos são linearmente separáveis (desvantagem)
- Garante convergência para mínimo local quando pontos não são linearmente separáveis (vantagem)
- Pontos classificados corretamente influenciam no treino (desvantagem).
- Pontos classificados incorretamente não têm a mesma influência no treino (vantagem)

Treinamento do Perceptron

- Diferentes conjuntos iniciais de pesos para o perceptron podem levar a diferentes superfícies de decisão.
 - Na verdade, o problema de ajuste supervisionado de pesos pode ser visto como um processo de busca por um conjunto de pesos que otimizam uma determinada superfície de erro.
 - Uma escolha inadequada da condição inicial da rede pode levar o algoritmo a uma convergência para ótimos locais desta superfície de erro.

Treinamento do Perceptron

Parâmetros de treinamento

Taxa de aprendizagem α

• Treinamento versus aplicação da rede

- Diferenciar entre o processo de treinamento e aplicação da rede.
- O treinamento da rede corresponde ao processo de ajuste de pesos.
- Após treinada, verificar a qualidade do aprendizado para verificar sua capacidade de generalização.

Multi-layer Perceptron (MLP)

Multi-layer Perceptron (MLP)

Modelo de Neurônio

Modelo de Neurônio

• Sigmoide

$$\varphi(\mathbf{v}_{j}) = \frac{1}{1 + e^{-av_{j}}}$$

$$V_{j} = \sum_{i=0,\dots,m} w_{ji} y$$

- Função de ativação mais comum
- Diferenciável

Algoritmo back-propagation

- Algoritmo mais utilizado
- Com uma camada escondida e uma função sigmoide, é capaz de aproximar qualquer função contínua f : [-1,+1]^k -> [0,1]
- Porém, o número de neurônios na camada escondida pode ser muito grande

Algoritmo de Aprendizagem

• Back-propagation (generalização do LMS)

 Ajusta o peso da rede visando minimizar o erro médio quadrado.

Propagação para frente

Propagação para frente

Camada Escondida

Propagação para frente Camada de Saída

Propagação para frente

• z é a saída esperada

Aprendizado

Perceptron

- Erros ajustados de acordo com a saída real e a esperada
- Para a camada de saída, sabe-se o erro esperado
- Mas e para as camadas escondidas?
- Ajusta os pesos para reduzir esse erro

• Como: descida do gradiente

Usando o Gradiente

$$\nabla_{\boldsymbol{w}} f(\boldsymbol{w}) = \left[\frac{\partial}{\partial w_1} f(\boldsymbol{w}), \frac{\partial}{\partial w_2} f(\boldsymbol{w}), \cdots, \frac{\partial}{\partial w_K} f(\boldsymbol{w}) \right]^{\mathsf{T}}$$

- Mover os pesos em direção a descida mais rápida
- Regra de atualização:

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla \mathbf{f}(\mathbf{w})$$

$$\mathbf{w} \leftarrow \mathbf{w} - \alpha \nabla f(\mathbf{w})$$

$$\mathbf{w}_{j} \leftarrow \mathbf{w}_{j} - \alpha \frac{\partial f}{\partial \mathbf{w}_{i}}$$

Erro Médio Quadrado

- Sinal de erro de um neurônio *j* na camada de saída na iteração *n* (*i.e. apresentação do n-ésimo exemplo*)
- Erro na iteração *n*:

$$e_{j}(n) = d_{j}(n) - y_{j}(n)$$

• Erro quadrático médio:

$$E(n) = \frac{1}{2} \sum_{j \in C} e_j^2(n)$$

 Métrica de performance de aprendizagem:

$$E_{AV} = \frac{1}{N} \sum_{n=1}^{N} E(n)$$

C: conjunto de neurônios na camada de saída

N: tamanho do conjunto de treinamento

• Objetivo do Algoritmo de Aprendizagem: Atualizar os pesos da rede de forma a diminuir $E_{\scriptscriptstyle AV}$

Propagação para trás

Atualização dos Pesos

 Derivada da função de ativação do neurônio

O MLP resolve o problema do XOR?

Solução para o problema do XOR

$$\varphi(v) = \begin{cases} 1 & \text{if } v > 0 \\ -1 & \text{if } v \le 0 \end{cases}$$

$$\varphi \text{ é uma sigmoide}$$

Sumário do Backpropagation

- Backpropagation
 - Passo para frente
 - Pesos são fixos, e dados de entrada são fornecidos
 - Para cada nó, as saídas são calculadas
 - Para os nós da camada de saída, um erro e_j é calculado $e_i = d_i y_i$ (saída desejada saída esperada)
 - Passo para trás
 - Começando pelos nós de saída
 - Computa o erro local de cada neurônio recursivamente
 - A partir dos erros locais, calcula Dw(t)

Leitura Recomendada

- Neural and Adaptive Systems: Fundamentals Through Simulations, Jose C. Principe, Neil R. Euliano, W. Curt Lefebvre, John Wiley & Sons, Inc.
- http://galaxy.agh.edu.pl/~vlsi/AI/backp_t_en/ backprop.html