БАЗОВІ ПРИНЦИПИ СИНТЕТИЧНИХ процесів у КЛІТИНАХ ТА **ОРГАНІЗМАХ**

МЕТА: ознайомити з особливостями основних синтетичних процесів, базовими принципами синтетичних процесів у клітинах та організмах; пояснити значення функціональних змін у діяльності клітин та їх загибелі, у виникненні захворювань людини; поглибити знання про схожість процесів обміну речовин, що відбуваються в клітинах організмів різних царств живої природи; розвивати активне мислення, вміння порівнювати, аналізувати, робити висновки; формувати науковий світогляд.

ОБЛАДНАННЯ: зошити, підручник, мультимедійна презентація.

ТИП УРОКУ: комбінований

ОСНОВНІ ПОНЯТТЯ: Дихання, фотосинтез, хемосинтез, пластичний обмін, енергетичний обмін, дифузія, гліколіз.

ХІД УРОКУ

- І. Організація класу
- **II.** Актуалізація опорних знань

ФРАЗЕОЛОГІЧНИЙ ДИКТАНТ

Обмін речовин та енергії = МЕТАБОЛІЗМ

Зовнішній обмін

Поглинання речовин виділення речовин

Пластичний обмін = анаболізм Асиміляція

Сукупність процесів синтезу складних речовин із простих (супроводжується поглинанням енергії)

Внутрішній обмін

Енергетичний обмін = катаболізм Дисиміляція Сукупність процесів розщеплення складних речовин до простих (супроводжується виділенням енергії)

Дихання — сукупність процесів, які забезпечують надходження до організму кисню, використання його в процесах окиснення органічних речовин з отриманням енергії для життєдіяльності і видалення з організму назовні вуглекислого газу

Етапи дихання:

- √ зовнішнє дихання (вентиляція легенів) надходження повітря до організму і обмін повітря між середовищем та легенями;
- √дифузія газів із альвеол у кров;
- √транспортування газів кров'ю;
- **√**дифузія газів із крові у тканини і клітини;
- √внутрішнє дихання споживання кисню клітинами і виділення вуглекислого газу

Тканинне дихання - це складний багатоетапний процес споживання кисню клітинами і вивільнення вуглекислого газу

Кисень використовується клітинами для окиснення органічних сполук, процес відбувається у мітохондріях,

при цьому виділяється енергія, яка запасається у вигляді молекул $AT\Phi$

Енергетичний обмін

Безкисневий (анаеробний) етап відбувається і гіалоплазмі.

Гліколіз - сукупність ферментативних реакцій, які забезпечують безкисневе розщеплення молекул глюкози з утворенням молочної кислоти та A ТФ

Безкисневий (анаеробний) етап відбувається і гіалоплазмі (в рідкому середовищі клітини)

Енергетичний ефект гліколізу – 200 кДж (116 кДж – на тепло, 84 кДж – на $AT\Phi$)

При анаеробних умовах існування, при недостатньому вмісті кисню, як це буває в м'язах, які активно скорочуються, кінцевим продуктом гліколізу є молочна кислота (С3H6O3), яка утворилася з піровиноградної кислоти (С3H4O3).

 $C_6H_{12}O_6 + 2H_3PO_4 + 2AД\Phi \rightarrow 2C_3H_6O_3 + 2H_2O + 2AT\Phi + 200 кДж$

Енергетичний обмін

Перший етап підготовчий

Другий етап безкисневий

Третій етап кисневий

Кисневий етап відбувається у матриксі і на кристах мітохондрій за участі кисню.

На цьому етапі аеробне перетворення вуглеводів продовжується за рахунок розщеплення молочної кислоти до води і вуглекислого газу.

Енергетичний ефект: 2600 кДж 1088 кДж - на тепло, 1512 кДж - на *A*ТФ

 $2C_3H_6O_3 + O_2 + 36H_3PO_4 + 36AДФ \rightarrow CO_2 + 42H_2O + 36AТФ$

ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА ДИХАННЯ ТА ФОТОСИНТЕЗУ

A 120 (11121 121 4 0 1 0 0 0 1 1 1 1 1 0 0				
Дихання	Фотосинтез			
Мітохондрії	Хлоропласти			
Не потрібно	Потрібно для 1 фази			
Поглинається	Виділяється			
Розкладаються	Утворюються			
Виділяється	Поглинаються			
Забезпечення енергією	Накопичення поживних			
	речовин			
Майже у всіх живих	Рослин (фотоавтотрофів)			
організмів				
	Мітохондрії Не потрібно Поглинається Розкладаються Виділяється Забезпечення енергією Майже у всіх живих			

ПОРІВНЯЛЬНА ХАРАКТЕРИСТИКА ХЕМО- І ФОТОСИНТЕЗУ

Ознаки	Фотосинтез	Хемосинтез
Джерело енергії	Світло	Хімічні реакції
Місце в клітині, де	Хлоропласти	На поверхні клітин
відбувається		(на цитоплазматичній мембрані)
Пігменти	Хлорофіл	_
Що відбувається з	Виділяється	Використовується
киснем		
Для яких організмів	Рослин	Бактерій
характерний	(фотоавтотрофів)	(хемоавтотрофів)

КЛІТИНА (ВІД ЛАТ. CELLULA – КОМІРКА) – ЕЛЕМЕНТАРНА ВІДКРИТА БІОЛОГІЧНА СИСТЕМА ІЗ ВЛАСНИМ МЕТАБОЛІЗМОМ

ТА ПРОЦЕСАМИ ЖИТТЕДІЯЛЬНОСТІ, що здійснюються у ВЗАЄМОЗВ'ЯЗКУ ІЗ НАВКОЛИШНІМ СЕРЕДОВИЩЕМ. ОСНОВНИМИ ПРИНЦИПАМИ ЖИТТЕДІЯЛЬНОСТІ КЛІТИНИ Є ВІДКРИТІСТЬ, УПОРЯДКОВАНІСТЬ, ВЗАЄМОЗВ'ЯЗОК ІЗ ЗОВНІШНІМ СЕРЕДОВИЩЕМ, СТРУКТУРНО-ФУНКЦІОНАЛЬНА ЦІЛІСНІСТЬ

ОСНОВНІ СИНТЕТИЧНІ ПРОЦЕСИ В КЛІТИНАХ

- ПЛАСТИЧНИЙ ОБМІН ЦЕ УТВОРЕННЯ СКЛАДНИХ ОРГАНІЧНИХ РЕЧОВИН З БІЛЬШ ПРОСТИХ.
- CAME В ПРОЦЕСІ ПЛАСТИЧНОГО ОБМІНУ УТВОРЮЮТЬСЯ ВСІ БІОПОЛІМЕРИ І КЛІТИННІ СТРУКТУРИ ЖИВИХ ОРГАНІЗМІВ.
- РІЗНОВИДАМИ ПЛАСТИЧНОГО ОБМІНУ Є ПРОЦЕСИ ФОТОСИНТЕЗУ Й ХЕМОСИНТЕЗУ, ОСКІЛЬКИ ПІД ЧАС НИХ СКЛАДНІ ОРГАНІЧНІ РЕЧОВИНИ УТВОРЮЮТЬСЯ З НЕОРГАНІЧНИХ.
- ДЛЯ РЕАКЦІЙ ПЛАСТИЧНОГО ОБМІНУ СВОЇХ КЛІТИН ЯК ГЕТЕРОТРОФНІ, ТАК І АВТОТРОФНІ ОРГАНІЗМИ ВИКОРИСТОВУЮТЬ ЗОВНІШНІ ДЖЕРЕЛА ЕНЕРГІЇ ТА АТОМИ КАРБОНУ. РІЗНИЦЯ ПОЛЯГАЄ В ДЖЕРЕЛАХ, З ЯКИХ ВОНИ ЇХ ОТРИМУЮТЬ:
- АВТОТРОФИ ОТРИМУЮТЬ КАРБОН З НЕОРГАНІЧНИХ РЕЧОВИН (ВУГЛЕКИСЛОГО ГАЗУ) ЗА РАХУНОК ЕНЕРГІЇ СОНЯЧНОГО СВІТЛА.
- А ГЕТЕРОТРОФИ 3 ОРГАНІЧНИХ РЕЧОВИН ІНШИХ ЖИВИХ ОРГАНІЗМІВ ЗА РАХУНОК ОКИСНЕННЯ ЧАСТИНИ ЦИХ РЕЧОВИН.

ОСОБЛИВОСТІ ПЕРЕБІГУ ОКРЕМИХ ПРОЦЕСІВ АНАБОЛІЗМУ (ПЛАСТИЧНОГО ОБМІНУ)

Процес	Що відбувається	Де відбувається
Фотосинтез	Синтез проміжних сполук із неорганічних речовин	Хлоропласти
Утворення моносахаридів амінокислот, жирних кис- лот тощо	Синтез мономерів із про- міжних сполук	Хлоропласти, цитозоль
Утворення полімерів	Синтез білків, вуглеводів, ліпідів та нуклеїнових кис- лот із мономерів	Цитозоль, хлоропласти, мі- тохондрії, ендоплазматична сітка, ядро

ОКРЕМІ ПРОЦЕСИ ЖИТТЄДІЯЛЬНОСТІ КЛІТИНИ

Назва	Значення	Участь клітинних структур
1.	Надходження речовин, енергії та інфор	мації в клітину
Живлення	Надходження поживних речовин (ав- тотрофне, гетеротрофне й міксотрофне)	Клітинна мембрана, хлоропласти
Дихання	Надходження О, й видалення СО, (анаеробне й аеробне дихання)	Клітинна мембрана, гіалоплазма, мітохондрії
Травлення	Розщеплення шляхом гідролізу пожив- них речовин до малих біомолекул (поза- та внутрішньоклітинне)	Лізосоми, травні вакуолі
Транспортуван- ня речовин	Надходження й переміщення в клітині речовин, енергії (пасивне та активне транспортування)	
Подразливість	Сприйняття впливів середовища (цито- рецепція)	Рецептори плазматичної мембрани

ОКРЕМІ ПРОЦЕСИ ЖИТТЄДІЯЛЬНОСТІ КЛІТИНИ

II. Внутрішньоклітинні перетворення речовин, енергії та інформації, або метаболізм		
Катаболізм	Розщеплення складних речовин на про- сті з вивільненням енергії (гліколіз, ліпо- ліз, протеоліз, бродіння, кисневе окис- нення)	Цитозоль, мітохондрії
Анаболізм	Синтез складних речовин із простих з використанням енергії (фотосинтез, хе- мосинтез, біосинтез білків, ліпідів)	

СХОЖІСТЬ ПРОЦЕСІВ ОБМІНУ В РІЗНИХ ОРГАНІЗМІВ

- У КЛІТИНАХ РОСЛИН, ТВАРИН І ГРИБІВ ОСНОВНІ БІОХІМІЧНІ ПРОЦЕСИ ВІДБУВАЮТЬСЯ ОДНАКОВО.
- ОДНАКОВО ВІДБУВАЮТЬСЯ ПРОЦЕСИ КЛІТИННОГО ДИХАННЯ, У ТОМУ ЧИСЛІ РЕАКЦІЇ ГЛІКОЛІЗУ ТА ЦИКЛУ КРЕБСА.
- В УСІХ ОРГАНІЗМАХ НУКЛЕЇНОВІ КИСЛОТИ І БІЛКИ СИНТЕЗУЮТЬСЯ ЗА ОДНАКОВОЮ СХЕМОЮ.
- А В ПРОЦЕСАХ ЦЬОГО СИНТЕЗУ ЗАДІЯНІ ОДНАКОВІ КОМПЛЕКСИ ФЕРМЕНТІВ.
- ТА Й ПРОЦЕСИ РЕГУЛЯЦІЇ Є ДУЖЕ СХОЖИМИ.
- І ХОЧА ТАКІ БІОХІМІЧНІ ПРОЦЕСИ НЕ Є АБСОЛЮТНО ТОТОЖНИМИ, АЛЕ ПОСЛІДОВНІСТЬ ОСНОВНИХ РЕАКЦІЙ У ВСІХ ВИПАДКАХ Є ОДНАКОВОЮ.
- УЧЕНІ ВВАЖАЮТЬ ЦЕ НАСЛІДКОМ ТОГО, ЩО ВСІ ЕУКАРІОТИЧНІ КЛІТИНИ МАЮТЬ СПІЛЬНОГО ПРЕДКА, У КЛІТИНАХ ЯКОГО ВСІ ЦІ БІОХІМІЧНІ ПРОЦЕСИ ВЖЕ ВІДБУВАЛИСЯ.

ВЗАЄМОЗВ'ЯЗОК ПЛАСТИЧНОГО ТА ЕНЕРГЕТИЧНОГО ОБМІНУ НА ПРИКЛАДІ РОСЛИННОЇ КЛІТИНИ

НАСЛІДКИ ПОРУШЕННЯ ОБМІНУ РЕЧОВИН

0

- ПОРУШЕННЯ ОБМІНУ РЕЧОВИН МОЖУТЬ ВИНИКАТИ З РІЗНИХ ПРИЧИН.
- НАПРИКЛАД, НЕСТАЧА ВІТАМІНІВ У ЇЖІ ПРИЗВОДИТЬ ДО ГІПОВІТАМІНОЗІВ У ЛЮДИНИ, І ТОДІ РОЗВИВАЮТЬСЯ ТАКІ ЗАХВОРЮВАННЯ, ЯК РАХІТ, ЦИНГА АБО БЕРІ-БЕРІ.
- НЕСТАЧА АБО НАДЛИШОК ПЕВНИХ ХІМІЧНИХ ЕЛЕМЕНТІВ МОЖЕ ПРИЗВОДИТИ Й ДО ПОРУШЕННЯ ОБМІНУ РЕЧОВИН У РОСЛИН.
- НАЙЧАСТІШЕ ЦЕ ПРИЗВОДИТЬ ДО ЗНИЖЕННЯ ІНТЕНСИВНОСТІ РОСТУ АБО ПОШКОДЖЕННЯ ЛИСТКІВ РОСЛИН.
- ТАКОЖ ПОРУШЕННЯ МОЖУТЬ ВИНИКАТИ ВНАСЛІДОК ГЕНЕТИЧНИХ ЗМІН МУТАЦІЙ.

домашне завдання:

ПІДГОТУВАТИСЯ ДО КОНТРОЛЮ ЗНАНЬ,
ПОВТОРИТИ ПАРАГРАФИ 15-19
ПОВІДОМЛЕННЯ «НАСЛІДКИ ПОРУШЕННЯ ОБМІНУ РЕЧОВИН В
КЛІТИНАХ»

Ел адреса: school55lm@gmail.com

