

Produktkatalog

Alarm Management

Fehlerklassifizierung

Leistungsumfang

- Alarm Management prozesstechnischer Anlagen
- Analyse von Alarmarchiven
- Alarm performance benchmarking
- Erkennung von Alarmketten
- Berechnung von KPIs

Leistungsumfang

- Daten-getriebene Fehlerklassifizierung von Conti- und Batch-Prozessen
- Ermittlung relevanter Messgrößen
- Metriken zur Bestimmung der Güte der Klassifizierung

Optimierung der Prozessfahrweise

Prädiktion / Softsensor

Leistungsumfang

- Daten-getriebene Optimierung eines Batch-Prozesses
- Festlegung von Optimierungskriterien
- Modellierung der Prozessvariablen in Abhängigkeit der Stör- und Stellgrößen

Leistungsumfang

- Prädiktion der Emissionen eines Kraftwerks
- Vergleich der Güte der Schätzung mit den gesetzlichen Anforderungen
- Ermittlung relevanter Messgrößen

Anomalieerkennung

Leistungsumfang

- (Evt.) Ermittlung relevanter Messgrößen
- Daten-getriebene Anomalieerkennung

Kundennutzen

- Frühzeitige Erkennung von möglichen Schäden und Betriebsausfällen der Anlagenteile
- Transparenz durch die Online-Erfassung von Betriebsparametern
- Minimierte Stillstandzeiten durch frühzeitige Warnungen bei kritischen Systemzuständen

SaaS

59.950 € einmalig

exklusive Supportkosten

5.985 € monatlich

- inklusive 24 Supportstunden / Jahr
- Mindestlaufzeit: 1 Jahr.

Kostenaufschlüsselung

Einmaliges Bezahlmodell	
Software-Erstellung	49.500 €
Einrichten der Software beim Kunde	4.450 €
Schulung	6.000 €
Supportkosten	450 € / Stunde

Hintergründe

Anomalie

Definition¹

 "Abweichung vom Normalen; Abnormität" (Definition nach Duden)

Arten²

Prozesstechnische Anlage

Definition Prozesstechnik³

 "Gebiet der Technik, das sich mit der Planung, Messung, Steuerung, Regelung und Kontrolle, allgemein mit dem Management und der Durchführung von technischen Prozessen befasst." (Definition nach Brockhaus)

P&ID

Beschreibung

- Four-Tank-Batch Prozess
- Forschungsanlage "Smart Automation" (SmA)
- Prozessanlage für Forschungsthemen aus diversen Bereichen
- Verfügt über vier Tanks
- Pumpt Wasser aus einem Vorratstank in drei Tanks
- Steuerung mittels sequentiellen Flussdiagramms

03.07.2022 YC14001 PL1200

Decision Tree

- Spezielle Form eines gerichteten Graphens
- Besteht aus Knoten und Kanten

Training

- Baumstruktur generieren, welche die beste Vorhersage auf den Trainingsdaten macht
- An der Wurzel und jedem inneren Knoten wird ein Feature evaluiert
- Je Ergebnis läuft die Evaluierung im linken oder rechten Teilbaum weiter
- Ende: Wenn ein Blattknoten erreicht wurde; Wert im Blattknoten entspricht der Vorhersage

Random Forest

Gehört zu den Ensemble-Modellen

Training

- Generieren von B Bootstrap Samples
- Trainieren von B Entscheidungsbäumen
- Beim Training der Bäume wird bei jedem Split nur zufällig ausgewählte Stichprobe von m Features in Betracht gezogen

Vorhersage

 Aggregierte Einzelvorhersage zu Gesamtvorhersage (Hier: Mehrheitsvotum für Klassifizierung)

Logistische Regression

- Hier: Binäre logistische Regression (betrachtet zwei Ausprägungen)
- Schätzung, wie wahrscheinlich es ist, dass der Messwert in die Kategorie "Anomalie" oder "Keine Anomalie" fällt

Decision Tree	
Accuracy	95,03%
Recall	97,1%

Random Forest	
Accuracy	96,5%
Recall	98,54%

Logistische Regression	
Accuracy	86,42%
Recall	99,63%

Decision Tree	
Accuracy	95,03%
Recall	97,1%

Random Forest	
Accuracy	96,5%
Recall	98,54%

Logistische Re	gression
Accuracy	86,42%
Recall	99,63%

Beispiel: Vorhersage für den 11.10.2018

nicht fehlerhaft

fehlerhaft

Decision Tree	
Accuracy	95,03%
Recall	97,1%

Random Forest	
Accuracy	96,5%
Recall	98,54%

Logistische Re	gression
Accuracy	86,42%
Recall	99,63%

Beispiel: Vorhersage für den 11.10.2018

- nicht fehlerhaft
- fehlerhaft

Zeit

Decision Tree	
Accuracy	95,03%
Recall	97,1%

Random Forest	
Accuracy	96,5%
Recall	98,54%

Logistische Regression							
Accuracy	86,42%						
Recall	99,63%						

Ab wann klassifizieren wir einen Batch als fehlerhaft?												
Längste Falschklassifizierung von Gutwerten	•	•	•	•	•	•	•	•	•	•	•	•
Fehlervorhersage ab 12 Fehlermessungen hintereinander	•	•	•	•	•	•	•	•	•	•	•	•

- nicht fehlerhaft
- fehlerhaft

Quellen

- https://www.duden.de/rechtschreibung/Anomalie (09.04.2022)
- https://leanbi.ch/blog/drei-arten-von-anomalien/ (09.04.2022)
- https://brockhaus.de/ecs/enzy/article/prozesstechnik (09.04.2022)

Vielen Dank!