

Institut für Solartechnik OST – Ostschweizer Fachhochschule Oberseestrasse 10, CH-8640 Rapperswil Tel. +41 55 222 48 21, Fax +41 55 222 48 44 www.solarenergy.ch

TRNSYS-Type 820 CO2 room concentration V0.1

Martin Neugebauer, 23.03.2022

1 Introduction

TBD

2 Parameters, Inputs and Outputs

2.1 Parameters

Nr.	short	explanation	unit	range
1	$V_{ m room}$	Volume of room	m^3	[0;+inf]
2	$C_{ m v}$	Outside CO2 concentration	ppm	$[0;10^6]$
3	$\mathcal{C}_{\mathrm{ini}}$	Initial CO2 concentration inside room	ppm	$[0;10^6]$

2.2 Inputs

Nr	. short	explanation	unit	range
	l met _{tot}	Total met inside room (sum of individual)	-	[0;+inf]
	$Q_{\rm inf}$	Infiltration rate	m³/h	[0;+inf]
	$Q_{ m vent}$	Ventilation rate	m³/h	[0;+inf]

2.3 Outputs

Nr.	short	explanation	unit	range
1	С	CO2 concentration inside room	ppm	$[0;10^6]$
2	$\dot{m}_{ m gen}$	CO2 generation rate inside room	kg/h	[0;+inf]

3 Calculation

The proportionality factor G between 1 met and the rate of CO_2 production is:

$$G = 0.25 \frac{l}{\min} \cdot \rho_{CO2} = 0.015 \frac{m^3}{h} \cdot 1.87 \frac{kg}{m^3} = 28050 \frac{mg}{h}$$

Like this the CO₂ generation rate in a room can be calculated as:

$$\dot{m}_{\rm gen} = G \cdot {\rm met}_{\rm tot}$$

Per timestep Δt this generation together with the air exchange through infiltration and ventilation leads to the following change in concentration:

$$\Delta C = 0.51 \frac{\text{ppm}}{\text{mg/m}^3} \cdot \frac{\dot{m}_{\text{gen}} \cdot \Delta t}{V_{\text{room}}} + (C_{\text{v}} - C) \cdot \frac{(Q_{\text{inf}} + Q_{\text{vent}}) \cdot \Delta t}{V_{\text{room}}}$$

This means that having started from \mathcal{C}_0 before the timestep the concentration after the timestep is:

$$C = C_0 + \Delta C$$