- · Dota mua matrice A simmetrica e definita positiva si considerino, per A E C (nxn), b e 1Rm:
- 1) il sistema lineare Ax=b
- 2) il funzionale $\Phi(y) = \frac{1}{2}y^T Ay y^T b = \frac{1}{2}(Ay,y) (b,y)$ dove $x \in \mathbb{R}^m$, $y \in \mathbb{R}^m$
- · Problema di minimizzazione del funzionale:

Theorem
$$x^* \in \mathbb{R}^m$$
 tale one $\phi(x^*) = \min_{y \in \mathbb{R}^m} \phi(y)$

Teorema. x è soluzione di Ax=b (=> x=x*, cioè x è la soluzione del problema di minimizzazione del funzionale.

$$\frac{\phi(y) - \phi(x)}{\frac{1}{2}(Ay,y) - (b,y) - \frac{1}{2}(Ax,x) + (b,x)} = \frac{1}{2}(Ay,y) - (Ax,y) - \frac{1}{2}(Ax,x) + (Ax,x) = \frac{1}{2}(Ay - Ax,y) + \frac{1}{2}(Ax,x) - \frac{1}{2}(Ax,y) = \frac{1}{2}(Ax,y) = \frac{1}{2}(Ax,y) + \frac{1}{2}(Ax,y) = \frac{1}{$$

H.B. A summetter co (Ax,y) = (x, Ay) + x,y= $\frac{1}{2}(A(y-x),y) - \frac{1}{2}(Ax, y-x) = \frac{1}{2}(A(y-x),y) - \frac{1}{2}(A(y-x),x) = \frac{1}{2}(A(y-x),y-x)$

Essendo A definita positiva (A(y-x),y-x) > 0 $\forall y-x \Rightarrow \phi(y) > \phi(x)$ (A(y-x), y-x) =0 (=> y-x=0 (=> y=x $\phi(\lambda) > \phi(x) + \lambda$ Dunque φ(y) = φ(x) <=> y=x Dunque x è soluzione del probleme di minimo 中华 Esia y soluzione del problema di minimo, per oper de Allora y=x, cioè Ay=b (la polusione è unica, essendo det x70) Se x è solucione del probleme di minumo per 0, allora $\nabla \Phi(x) = 0$ (y)= 1 型 Z aik yiyk- Z biyi $\frac{\partial \phi(y)}{\partial yj} = \frac{1}{2} \left(\sum_{k=1}^{m} a_{jk} y_{k} + \sum_{i=1}^{m} y_{i} a_{ij} \right) - b_{j}$ Essendo A simmetrica: = $\sum_{k=1}^{10} a_{jk} y_k - b_j = 0$ (=> (Ay)_j-b_j=0

₩j=1,..,n

In forma vettoriale:

70=0 (=> Ay-b=0 (=> Ay=b

Il sisteme Ax = b ammette una ed una sola soluzione. Durque y = x [N.B. H(y) = A che è definita definita positiva positiva

• Se \times e' di minimo, $\nabla \Phi(x) = 0 \Rightarrow Ax = b$

Himimo _ dubana

• Se Ax=b, allow $\phi(y) \ge \phi(x)$ $\forall y \in \mathbb{R}^n$ $e \phi(y) = \phi(x) = 0$

Inoltre: Ay-b=-r (neviduo associato a y relativo al si stema Ax=b) Richiami: derivata directionale

·Dereivata durezionale:

Dato de Rm, IIdliz=1:

$$\lim_{\lambda \to 0} \frac{\Phi(x + \lambda d) - \Phi(x)}{\lambda} = \nabla \Phi(x) \cdot d$$

· Si dice che d'è direzione di aliscesa in x per o se d los t.c.

Teorema

(im x per o)

Oss. ní

- ·) \(\phi(\timex), d > 0 direzione di salita (o crescente)
- ·) \partial \phi(x) \cd =0 $\nabla \phi(x) \perp d=0$ octogonalità (φ costante sulle journé d'livello Superfici
- direzione di discesa (decrescente)

Pichiami: angolo tra due vettori

Dati x, y eR :

$$\cos\theta = 1$$
: $y = \alpha \times \alpha \times 0$

$$\cos\theta = -1$$
: $y = \infty \times \infty$

Applicazione:

$$d = -\nabla \phi(x) = \nabla \phi(x) \cdot d = -\nabla \phi(x) \cdot \phi(x)$$

$$= -\|\nabla \phi(x)\|_{2}^{2} < 0$$

$$d = -\nabla \phi(x)$$
 è una direzione di discesa
in x per ϕ , ove $d = -\nabla \phi(x) = r = b - Ax$

PICHIAMI:

Disuguaglianza di Cauchy- Schwanz $|(u,v)| \le ||u||_2 \cdot ||v||_2$ -||u||₂||v||₂ $\le (u,v) \le ||u||_2 ||v||_2$

Applicazione:

$$|(\nabla \phi(x), d)| = |\nabla \phi(x) \cdot d| \le ||\nabla \phi(x)||_2 \cdot ||d||_2$$

 $||\nabla \phi(x)||_2 ||d||_2 \le ||\nabla \phi(x) \cdot d| \le ||\nabla \phi(x)||_2 ||d||_2$

- 11/20(x)11/2 /20(x).9 < 11/20(x)11/2

Sceglien do
$$d = \frac{\nabla \phi(x)}{117\phi(x)|_2}$$
 avente norma

U

$$\nabla \phi(x) \cdot \frac{\nabla \phi(x)}{||\nabla \phi(x)||_2} = ||\nabla \phi(x)||_2$$

si dtière il marsimo valore di 70(x). d -> direzione di marsime di scesa Applicazione al problema della solusione apposizione di sistemi limeari com apposizione di sistemi limeari com metodi terativi (metodi di di scesa o del gradiente)

 $X_{K+1} = X_K + \alpha_K r_K$ con $r_K = b - AX_K$

Come determinare ax:

- 1) minimizzare $\phi(x_{k+1})$
- 2) minimizzare (rk+1, rk+1)

Thou are
$$\alpha_{K}$$
 tale the $\Phi(x_{K}+\alpha_{K}r_{K})=\min_{\alpha\in\mathbb{R}}\Phi(x_{K}+\alpha_{K}r_{K})=\min_{\alpha\in\mathbb{R}}\Phi(x_{K}+\alpha_{K}r_{K})=\frac{1}{2}\left(A(x_{K}+\alpha_{K}r_{K}),x_{K}+\alpha_{K}r_{K}\right)-(b,x_{K}+\alpha_{K}r_{K})=\frac{1}{2}\left[A(x_{K},x_{K})+\alpha(A(x_{K},x_{K})+\alpha(A(x_{K},x_{K})+\alpha^{2}(A(x_{K},x_{K}))+\alpha^{2}(A(x_{K},x_{K}))-(b,x_{K})-\alpha(b,x_{K})=\frac{1}{2}\left[A(x_{K},x_{K})+2\alpha(A(x_{K},x_{K})+\alpha^{2}(A(x_{K},x_{K}))-(b,x_{K})-\alpha(b,x_{K})=\frac{1}{2}(A(x_{K},x_{K})+\alpha(A(x_{K},x_{K})+\frac{1}{2}\alpha^{2}(A(x_{K},x_{K})-(b,x_{K})-\alpha(b,x_{K}))=\frac{1}{2}\alpha^{2}(A(x_{K},x_{K})+\alpha(b,x_{K},x_{K})+\frac{1}{2}\alpha^{2}(A(x_{K},x_{K})-(b,x_{K}))=\frac{1}{2}\alpha^{2}(A(x_{K},x_{K})-\alpha(b,x_{K}))=\frac{1}{2}\alpha^{2}(A(x_{K},x_{K})-(b,x_{K})-\alpha(b,x_{K}))=\frac{1}{2}\alpha^{2}(A(x_{K},x_{K})-(b,x$

X= (rk, rk)

2) Trovare
$$\alpha_{k}$$
 tale che

 $(b-A(x_{k}+\alpha_{k}r_{k}), b-A(x_{k}+\alpha_{k}r_{k})) = \frac{x_{k+1}}{min(b-A(x_{k}+\alpha_{k}r_{k}), b-A(x_{k}+\alpha_{k}r_{k}))}$
 $\alpha \in \mathbb{R}$

$$(r_k - \alpha A r_k, r_k - \alpha A r_k) =$$

 $(r_k, r_k) - \alpha (A r_k, r_k) - \alpha (r_k, A r_k) + \alpha^2 (A r_k, A r_k) =$

Minimo:
$$\frac{dF(\alpha)}{d\alpha} = 0$$

Algoritmo

Inizia alizzazione

$$\alpha_{k} = \frac{(r_{k}, r_{k})}{(z_{k}, r_{k})}$$
 oppure $\alpha_{k} = \frac{(z_{k}, r_{k})}{(z_{k}, z_{k})}$

Se
$$\alpha_{k} = \alpha$$
 $\forall k => \alpha = \frac{2}{\lambda_{max} + \lambda_{min}}$