

Trabalho 3 - Simulador Dinero

22/10/2020

Grupo I

Gabriel Christo Lucas Guimarães Vinicius Lima

Visão geral

Com esse trabalho a ideia é realizar uma sequência de simulações de memória cache no simulador *DinerolV*. Queremos comparar o desempenho de diferentes configurações de cache variando diversos parâmetros do modelo para definir quais os parâmetros mais decisivos para a performance bem como quais são os parâmetros específicos que entregam o melhor desempenho.

Objetivos

- 1. Analisar desempenho de caches variando: capacidade total da cache de nível 1, a associatividade e o tamanho do bloco da cache.
- 2. Verificar qual a relação entre os parâmetros supracitados com taxa de falha e tempo médio de acesso
- 3. Definir qual a melhor configuração de cache que entrega o melhor desempenho.
- 4. Refazer os passos anteriores adicionando uma cache nível 2

Processo

A avaliação da influência dos 3 parâmetros (capacidade da cache L1, associatividade e tamanho de bloco) no desempenho da cache foi através de simulações variando cada um dos valores desses parâmetros 5 vezes. Para a capacidade total da cache, usou-se os valores de 1 Kbyte, 4 Kbytes, 16 Kbytes, 64 Kbytes e 128 Kbytes. Os valores de vias usadas para associatividade foram 1, 2, 4, 8 e 16 vias. Por último, o tamanho dos blocos da cache variou dentre os valores 8, 16, 32, 64 e 128 bytes. Com o intuito de automatizar o processo, fizemos um script para rodar todas as simulações sequencialmente e salvar os resultados gerados pelo *DineroIV* em um arquivo .txt. Criamos, então, um segundo script para pegar os dados relevantes armazenados no .txt e salvá-los em uma planilha .xls para podermos acessar e manipular esses dados de uma forma mais fácil. Com posse desses dados, fizemos cálculos para encontrar o tempo médio de acesso em cada uma das combinações de parâmetros e geramos visualizações convenientes para algumas grandezas relevantes para nossa análise de performance. Prezando pela praticidade e legibilidade do relatório, geramos gráficos que agrupam em um só plot todos os pontos gerados pela variação dos parâmetros anteriormente mencionados

Resultados

I. Somente com cache L1

Capacidade total da cache

Tamanho da linha

Associatividade

II. Cache L1 + Cache L2

Capacidade da cache L1

Tamanho da linha da cache L1

Associatividade da cache L1

Capacidade da cache L2

Tamanho da linha da cache L2

Associatividade da cache L2

Conclusões

Pudemos notar que a variação de capacidade, tamanho de linha e associatividade alterou drasticamente o desempenho da memória cache, comprovando que a performance está diretamente ligada a esses parâmetros.

Para uma cache exclusivamente de um nível (L1 somente) e no que diz respeito à sua capacidade total, vimos que o desempenho da memória tende a ser melhor quanto maior for a sua capacidade. Isso é indicado pela queda logarítmica tanto na taxa de falhas como no tempo de acesso conforme o tamanho da cache aumenta. Analisando o gráfico de tipos de falhas, notamos que ao aumentarmos o tamanho da cache, temos cada vez menos falhas compulsórias e por conflito. Podemos interpretar isso dizendo que, majoritariamente, a cache falha somente quando ela não tem mais capacidade de armazenamento. Com os gráficos de tamanho de bloco, existe uma certa constância na taxa de falhas e tempo de acesso com relação ao tamanho dos blocos da cache, mas percebemos que, naturalmente, ao aumentar o tamanho do bloco também se aumenta o tempo de acesso. Em relação às falhas podemos correlacionar o aumento do tamanho dos blocos com a diminuição das falhas por capacidade e aumento das falhas por conflito. No caso das variações de associatividade, notamos que a relação entre esse parâmetro e os tempos de acesso e taxa de falha resultantes se mostrou pouco relevante. O aumento da associatividade, por outro lado, se mostrou mais influente nos tipos de falhas, observando-se a diminuição das falhas por conflito conforme a associatividade aumenta.

Movemos adiante então para a análise em uma configuração de memória com L1 e L2 de 256 Kbytes. Comparando a taxa de falha e tempo médio de acesso entre as duas configurações (com e sem L2) ao variarmos o tamanho da cache L1 vemos um comportamento de falhas exatamente igual nas duas configurações. A diferença se dá exclusivamente no tempo médio de acesso. A diferença de tempo de acesso entre as configurações de um ou dois níveis é mais drástica nos casos em que a cache tem entre 2 e 16 Kbytes e ela vai ser tornando marginalmente menor conforme a capacidade aumenta. Esse comportamento se repete quando variamos tanto a associatividade como o tamanho de linha da cache de nível 1. Tanto a taxa de falha como a distribuição dos tipos de falha da memória cache com L2 se mostrou igual aos valores encontrados para uma cache exclusivamente de L1, com a diferença se dando no tempo de acesso. Esse valor era sempre menor na versão da simulação com L2 em comparação ao equivalente para a configuração sem L2.

Tendo essas análises em mente, podemos concluir então que a configuração com melhor desempenho seria uma que apresentasse, primeiramente, uma cache de nível 2, visto que sua adição melhorou o desempenho em todos os cenários. Com respeito à cache nível 1, a configuração ótima seria uma com a maior capacidade possível, um valor grande porém não excessivo de tamanho de linha, com o intuito de alcançar um balanço entre tempo de acesso e taxa de falhas, além de uma associatividade de nível médio também. Usando os valores que nós usamos como parâmetros de simulação, a nossa configuração de memória cache escolhida seria então:

- 1. Com L2 unificada de 256 Kbytes
- 2. Capacidade total da L1 de 129 Kbytes
- 3. Associatividade de 8 vias
- 4. Bloco de 64 bytes