Análise de circuitos seqüenciais

As técnicas para análise de circuitos seqüenciais que implementam uma certa máquina de estados finitos, em geral, dividem-se em duas etapas:

- 1. determinar as funções que determinam o próximo estado e as saídas
 - especificar as equações que representem a lógica do circuito e as saídas de cada flip-flop (estado corrente);
 - especificar as equações que determinem as transições entre dois pulsos de *clock*;
 - construir a *tabela de transições* para cada uma das combinações das entradas, indicando quais os próximos estados;
 - identificar todas as combinações que representem um mesmo estado e reescrevêlas em uma tabela de estados;
- construir as tabelas de estados/saídas que especifiquem o comportamento do circuito para todas as combinações das entradas e do estado corrente:
 - verificar as funções das saídas em relação às entradas e aos estados correntes;
 - após avaliar todas as combinações de entradas e estados, combinar a tabela de estados com essas informações e criar a tabela de estados/saídas, relacionando cada saída ao proximo estado.

Exemplo 1:

Considerar o circuito abaixo com um flip-flop tipo D.

Tabela de transições

$Q_t \ xy$	00	01	10	11		
0	0	1	0	1		
1	1	1	0	0		
Q _{1.1}						

Equações de transições

$$D = x' \cdot Q + y \cdot Q'$$

$$Q_{t+1} = x' \cdot Q_t + y \cdot Q'_t$$

Tabela de estados/saídas

Diagrama de estados

Considerar o circuito abaixo com dois flip-flops tipo JK.

Tabela de transições

S_1	S_2	Χ	s_1	S_2	saída
(t)	(t)		(t+1)	(t+1)	

0	0	0	0	0	0
0	0	1	0	1	0
0	1	0	1	0	0
0	1	1	0	1	0
1	0	0	1	1	0
1	0	1	0	1	0
1	1	0	0	0	0
1	1	1	0	1	1

Equações de transições

saída =
$$s_1 \cdot s_2 \cdot x$$

$$J_1 = s_2 \cdot x' e K_1 = s_2 + x$$

$$J_2 = s_1 + x e K_2 = x'$$

$$\begin{split} Q_{t+1} &= J_1 \; Q_t' + K_1' \; Q_t \\ s_1 &= s_2 \bullet x' \bullet s_1' + (s_2 + x)' \bullet s_1 \\ &= s_2 \bullet x' \bullet s_1' + s_2' \bullet x' \bullet s_1 \\ &= x' \bullet (s_2 \bullet s_1' + s_2' \bullet s_1) \\ &= x' \bullet (s_1 \quad \textbf{xor} \quad s_2) \end{split}$$

$$\begin{split} Q_{t+1} &= J_2 \ Q'_t + K_2' \ Q_t \\ S_2 &= (x+s_1) \bullet s_2' + (x')' \bullet s_2 \\ &= (x \bullet s_2') + (s_1 \bullet s_2') + (x \bullet s_2) \\ &= x \bullet (s_2' + s_2) + (s_1 \bullet s_2') \\ &= x \quad + \quad (s_1 \quad \bullet \quad s_2') \end{split}$$

Tabela de estados/saídas

S ₁	s ₂	x=0		x=1		saída
0	0	0	0	0	1	0
0	1	1	Ω	0	1	0

0

0 1

0/1

Diagrama de estados

