02/02

Análise II

Monitor: Marcelo Gelati Programa:

- Álgebra linear;
- Teoria dos espaços métricos;
- Otimização
- Análise convexa.

Álgebra linear

Corpo comutativo

Seja um conjunto K munido de uma adição $+: K \times K \to K$ e uma multiplicação $\cdot: K \times K \to K$. É muito conveniente usar a seguinte notação: a+b=+(a,b) e $ab=\cdot(a,b)$. Às vezes por ênfase escrevemos $a\cdot b$ no lugar de ab. Então K é um corpo (comutativo) se as seguintes condições estiverem satisfeitas:

- I. a+b=b+a para todos a,b em K (comutatividade da adição)
- II. a + (b + c) = (a + b) + c para todos a, b, c em K (associatividade da adição)
- III. Existe $0 \in K$ tal que a+0=a para todo a em K (elemento neutro da adição)
- IV. Para todo $a \in K$ existe $-a \in K$ tal que a + (-a) = 0. (elemento inverso aditivo)
- **V.** ab = ba para todos a, b em K (comutatividade da multiplicação¹)
- **VI.** $a \cdot (b \cdot c) = (a \cdot b) \cdot c$ (associatividade do produto)
- **VII.** Existe $1 \in K$ tal que $a \cdot 1 = a$ para todo $a \in K$ (elemento neutro da multiplicação)
- **VIII.** Para todo $a \in K$, $a \neq 0$ existe $a^{-1} \in K$ tal que $a \cdot a^{-1} = 1$. (elemento inverso da multiplicação)

 $^{^{1}\}mathrm{Essa}$ propriedade do produto é que define um corpo comutativo.

IX. a(b+c) = ab + ac (distributividade da multiplicação com respeito à adição) X. $1 \neq 0$.

Exemplo 1 $K = \mathbb{R}$ é o exemplo mais importante. Depois temos $K = \mathbb{C}$ e $K = \mathbb{Q}$.

Exemplo 2 (corpo finito) $\mathbb{Z}_2 = \{\bar{0}, \bar{1}\}\ com\ \bar{1} + \bar{1} = \bar{0}\ e\ \bar{1} \cdot \bar{1} = \bar{1}\ \acute{e}\ um\ corpo\ com\ dois\ elementos.$

Comentário 1 Para todo primo p existe um corpo com p elementos. O número de elementos de um corpo finito é primo.

Proposição 1 Os elementos neutros da adição e da multiplicação são únicos.

Por exemplo se O' também for elemento neutro da adição: 0' = 0' + 0 = 0 + 0' = 0.

Proposição 2 Para todo $a \in K$, $a \cdot 0 = 0$.

Demonstração: Seja $b = a \cdot 0$. Então

$$b + b = a \cdot 0 + a \cdot 0 = a \cdot (0 + 0) = a \cdot 0 = b.$$

Portanto somando -b:

$$0 = b + -b = (b + b) + -b = b + (b + -b) = b + 0 = b.$$

Espaço vetorial

Um espaço vetorial sob o corpo K é uma tripla, $(V, +, \cdot)$ tal que: V é um conjunto, $+: V \times V \to V$ e $\cdot: K \times V \to V$ com as seguintes propriedades:

- I. Comutatividade da adição: v + w = w + v para todo v, w elementos de V;
- II. Elemento neutro da adição: existe $0 \in V$ tal que $v + 0 = v, \forall v \in V$;
- III. Inverso da adição: para todo $v \in V$, existe $-v \in V$ tal que v + (-v) = 0;
- IV. Associatividade: v + (w + u) = (v + w) + u;
- **V.** para $\lambda, \mu \in K$ e $v \in V$, $\lambda \cdot (\mu \cdot v) = (\lambda \cdot \mu) \cdot v$;
- **VI.** $1 \cdot v = v$:

VII.
$$\alpha \cdot (v+w) = \alpha \cdot v + \alpha \cdot w$$
;

VIII.
$$(\alpha + \beta) \cdot v = \alpha \cdot v + \beta \cdot v$$
.

Notação 1 Frequentemente vamos omitir o ponto. Assim $\lambda v = \lambda \cdot v$. E vamos passar a escrever os escalares preferencialmente com letras gregas.

O corpo associado a um espaço vetorial é denominado de corpo de escalares.

Exemplo 3 O espaço vetorial mais simples é $V = \{0\}$. Se K é um corpo, V = K é um espaço vetorial se $\lambda \cdot v = \lambda v$ (a multiplicação em K).

Exemplo 4 K^n é um espaço vetorial: Se $x = (x_1, \ldots, x_n), y = (y_1, \ldots, y_n) \in K^n, \lambda \in K$,

$$x + y = (x_1 + y_1, \dots, x_n + y_n);$$

 $\lambda x = (\lambda x_1, \dots, \lambda x_n);$
 $0 = (0, \dots, 0), -x = (-x_1, \dots, -x_n).$

sendo $x_i + y_i$ a soma dos escalares x_i e y_i e λx_i o produto dos escalares λ e x_i . Assim \mathbb{Q}^n , \mathbb{R}^n e \mathbb{C}^n são espaços vetorias sobre, respectivamente, \mathbb{Q} , \mathbb{R} , \mathbb{C} .

Exemplo 5 O espaço das funções contínuas de [a,b] em \mathbb{R} , denotado \mathscr{C} é um espaço vetorial sob $K = \mathbb{R}$. A soma de $f,g \in \mathscr{C}$ é (f+g)(t) = f(t) + g(t), $a \le t \le b$. $E(\lambda f)(t) = \lambda \cdot f(t)$.

Dependência linear

Definição 1 Seja V um espaço vetorial sob o corpo K. Os vetores, v_1, v_2, \ldots, v_m são linearmente dependentes se existirem escalares, $\lambda_1, \lambda_2, \ldots, \lambda_m$ nem todos nulos tais que $\sum_{i=1}^m \lambda_i v_i = 0$.

Exemplo 6 Toda família finita, v_1, v_2, \ldots, v_m , que contém a origem é linearmente dependente. Pois se, digamos, $v_1 = 0$ então

$$1 \cdot v_1 + 0 \cdot v_2 + \ldots + 0 \cdot v_m = 0,$$

$$(1, 0, \ldots, 0) \neq 0.$$

Comentário 2 Naturalmente se os vetores não forem linearmente dependentes dizemos que são linearmente independentes. Assim

$$\sum_{i=1}^{m} \lambda_i v_i = 0 \implies \lambda_i = 0, 1 \le i \le m.$$

Definição 2 Um vetor x é uma combinação linear dos vetores v_1, v_2, \ldots, v_m se existirem escalares $(\lambda_i)_{i=1}^m$ tais que $x = \sum_{i=1}^m \lambda_i v_i$.

Lema 1 Suponhamos y uma combinação linear de x_1, \ldots, x_p e que por sua vez cada x_i seja combinação linear de v_1, \ldots, v_m . Então y é combinação linear de v_1, \ldots, v_m .

A demonstração é imediata. Se $y=\sum_{j=1}^p\mu_jx_j$ e $x_j=\sum_{i=1}^m\lambda_{ji}v_i$ temos para $\gamma_i=\sum_{j=1}^p\mu_j\lambda_{ij}$

$$y = \sum_{j=1}^{p} \mu_j \left(\sum_{i=1}^{m} \lambda_{ji} v_i \right) = \sum_{i=1}^{m} \left(\sum_{j=1}^{p} \mu_j \lambda_{ij} \right) v_i = \sum_{i=1}^{m} \gamma_i v_i.$$

Teorema 1 Suponhamos que $v_i \neq 0$ para $1 \leq i \leq n$ e v_1, v_2, \ldots, v_n são linearmente dependentes. Existe então $k \geq 2$ tal que v_k seja combinação linear de v_1, \ldots, v_{k-1} .

Demonstração: Seja $k \leq n$ o primeiro natural tal que v_1, v_2, \ldots, v_k são linearmente dependentes. Então $k \neq 1$ pois $v_1 \neq 0$ é linearmente independente. Portanto $k \geq 2$. Então

$$\alpha_1 v_1 + \ldots + \alpha_k v_k = 0$$

nem todos α_i nulos. Mas então $\alpha_k \neq 0$ pela escolha de k. Portanto

$$v_k = (-\alpha_1) \alpha_k^{-1} v_1 + \ldots + (-\alpha_{k-1}) \alpha_k^{-1} v_{k-1}.$$

Comentário 3 É claro que se v_k for combinação linear de v_1, \ldots, v_{k-1} então $v_1, \ldots, v_{k-1}, v_k$ e v_1, \ldots, v_n são linearmente dependentes. Pois se $v_k = \mu_1 v_1 + \ldots + \mu_{k-1} v_{k-1}$ escolhemos $\mu_k = -1, \mu_j = 0$ para j > k e obtemos $\sum_i \mu_i v_i = 0$.

Definição 3 Um conjunto $\mathcal{G} \subset V$ é gerador se todo vetor de V for uma combinação linear de elementos de \mathcal{G} .

Bases

Definição 4 (base) Uma base do espaço vetorial V é um conjunto $\mathfrak{X} \subset V$ gerador e linearmente independente.

Definição 5 O espaço vetorial tem dimensão finita se existir uma base finita.

Exemplo 7 K^n tem dimensão n. Se $e_i = (0, ..., 0, 1, 0, ..., 0), i = 1, ..., n$,

$$\mathfrak{X} = \{e_1, \dots, e_n\}$$

 \acute{e} uma base: para $x \in \mathbb{R}^n$ temos

$$x = (x_1, x_2, \dots, x_n) = (x_1, 0, \dots, 0) + (0, x_2, 0, \dots, 0) + \dots + (0, \dots, 0, x_n) = x_1 e_1 + x_2 e_2 + \dots + x_n e_n.$$

$$E \ se \ x_1e_1 + x_2e_2 + \ldots + x_ne_n = 0 \ ent\tilde{ao} \ (x_1, x_2, \ldots, x_n) = 0 \Rightarrow x_i \equiv 0.$$

Teorema 2 Todo espaço vetorial possui uma base.

Comentário 4 A demonstração será omitida pois envolve o lema de Zorn que não temos tempo para estudar.

Exemplo 8 Uma base de \mathbb{R} considerado como espaço vetorial sob $K = \mathbb{Q}$ é denominada base de Hamel. Toda base de Hamel é infinita. Pois se b_1, b_2, \ldots, b_p são reais, o conjunto das combinações lineares

$$r_1b_1 + r_2b_2 + \ldots + r_pb_p, r_i \in \mathbb{Q}, 1 \le i \le p$$

 \acute{e} enumerável e portanto $\neq \mathbb{R}$.

Teorema 3 Duas bases finitas de V tem o mesmo número de elementos.

Demonstração: Seja $\mathcal{G} = \{x_1, \dots, x_n\}$ gerador e $\mathfrak{X} = \{y_1, \dots, y_m\}$ linearmente independente. Então

$$y_m, x_1, \ldots, x_n$$

é gerador e linearmente dependente pois y_m é combinação linear de x_1, \ldots, x_n . Pelo teorema 1 existe x_i combinação linear de $y_m, x_1, \ldots, x_{i-1}$. Podemos então eliminar x_i da lista. Então

$$y_m, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$$

é gerador. Se m=1 então $n\geq 1$. Se m>1 repetimos o processo:

$$y_{m-1}, y_m, x_1, \ldots, x_{i-1}, x_{i+1}, \ldots, x_n$$

é gerador e linearmente dependente. Portanto podemos remover um $x_j, j \neq i$. Se m > n o conjunto dos "xs" vai acabar antes dos "ys", uma contradição com a independencia linear dos ys. Então $m \leq n$. Sejam agora \mathcal{G} e \mathfrak{X} bases. Revertendo os papéis podemos considerar \mathfrak{X} gerador e \mathcal{G} linearmente independente. Então $m \geq n$ e finalmente m = n.

Corolário 1 $Se\ V\ tem\ um\ conjunto\ gerador\ finito\ então\ V\ tem\ dimensão\ finita.$

Corolário 2 Se V tem dimensão n então $v_1, \ldots, v_n, v_{n+1}$ são linearmente dependentes.

Definição 6 Um subconjunto não-vazio de V, W, é um subespaço vetorial se

$$W + W \subset W,$$

$$K \cdot W \subset W.$$

05/02

Subespaços

Definição 7 Um subconjunto W do espaço vetorial V é um subespaço de V se for um espaço vetorial com a soma e multiplicação herdadas de V. Ou seja: $0 \in W$ e

$$v, w \in W \implies v + w \in W;$$

 $\lambda \in K, w \in W \implies \lambda w \in W.$

Por exemplo $-w=(-1)\cdot w\in W$. Em geral W não—vazio é um subespaço se e somente se para todo $x,y\in W$ e $\lambda\in K,\ \lambda x+y\in W$. Os subespaços $\{0\}$ e V são subespaços triviais. O núcleo e a imagem de uma transformação linear são subespaços.

Lema 2 Se W_i é subespaço de V para cada $i \in I$ então $\cap_{i \in I} W_i$ também é um subespaço de V.

A verificação é imediata: se $x, y \in \cap_{i \in I} W_i$ e $\lambda \in K$ então para todo $i \in I$, $x, y \in W_i \implies \lambda x + y \in W_i$ e logo $\lambda x + y \in \cap_{i \in I} W_i$.

Definição 8 Seja $S \subset V$. Definimos o espaço vetorial gerado por S:

$$[S] = \bigcap \{ W \subset V : W \text{ \'e subespaço e cont\'em } S \}.$$

Lema 3 [S] coincide com o conjunto de combinações lineares $\sum_{i=1}^{n} \lambda_i v_i$ com $n \ge 1, \lambda_i \in K$ e $v_i \in S$, $1 \le i \le n$.

Demonstração: Seja $A = \{\sum_{i=1}^n \lambda_i v_i : \lambda_i \in K, v_i \in S, 1 \le i \le n, n \ge 1.\}$. É imediato que $S \subset A \subset [S]$. Sejam agora $w_1, w_2 \in A$ e $\mu \in K$. Para cada i = 1, 2 existem $v_{ij} \in S, \theta_{ij} \in K$ e $n_i \ge 1$ tais que $w_i = \sum_{j=1}^{n_i} \theta_{ij} v_{ij}$. Então

$$\sum_{i} \mu_{i} w_{i} = \sum_{i} \mu_{i} \sum_{j=1}^{n_{i}} \theta_{ij} v_{ij} = \sum_{i} \sum_{j=1}^{n_{i}} \mu_{i} \theta_{ij} v_{ij} \in A.$$

Portanto A sendo espaço vetorial, $A \supset [S]$ e logo A = [S].

Exemplo 9 Se U e W são subespaços de V, $U+W=\{u+w:u\in U,w\in W\}$ é um subespaço. $E[U\cup W]=U+W$.

Para verificarmos notemos que $x, y \in U + W \ \alpha, \beta \in K$, então

$$x = u + w, y = u' + w', \alpha x + \beta y =$$

 $\alpha (u + w) + \beta (u' + w') = (\alpha u + \beta u') + (\alpha w + \beta w') \in U + W.$

Portanto U+W é um subespaço e contém $[U\cup W]$. $E[U\cup W]\supset U+W$

Definição 9 U e W são subespaços complementares de V se

$$U + W = V;$$

$$U \cap W = \{0\}.$$

Nesse caso dizemos que V é soma direta de U e W.

Lema 4 Se v_1, \ldots, v_p são linearmente independentes do espaço de dimensão finita V, existem v_{p+1}, \ldots, v_n em V tais que v_1, \ldots, v_n é uma base de V.

Demonstração: Se v_1, \ldots, v_p for gerador já temos uma base e não temos nada a fazer. Se não for gerador existe $v_{p+1} \in V \setminus [v_1, \ldots, v_p]$. Então $v_1, \ldots, v_p, v_{p+1}$ é linearmente independente. Se a familia for geradora terminamos. Caso não seja existe $v_{p+2} \in V$ que não é combinação linear de v_1, \ldots, v_{p+1} . E portanto $v_1, \ldots, v_{p+1}, v_{p+2}$ é l.i. Prosseguindo indutivamente obtemos uma seqüência v_1, \ldots, v_{p+k} l.i. sempre que v_1, \ldots, v_{p+k-1} não for gerador. Esse processo termina quando $p+k=\dim V$. E então obtemos uma base de V.

Teorema 4 Todo subespaço de V possui um subespaço complementar.

Demonstração: Seja W subespaço de V. Seja w_1, \ldots, w_k base de W. Prolonguemos essa base a uma base de V: w_1, \ldots, w_n . Seja $H = [w_{k+1}, \ldots, w_n]$. Então W + H = V e $W \cap H = \{0\}$. Pois se $x \in V$ temos $x = \lambda_1 w_1 + \ldots + \lambda_k w_k + (\lambda_{k+1} w_{k+1} + \ldots + \lambda_n w_n) \in W + H$. Se $z \in W \cap H$ então

$$z = \lambda_1 w_1 + \ldots + \lambda_k w_k = \lambda_{k+1} w_{k+1} + \ldots + \lambda_n w_n$$
$$\lambda_{k+1} w_{k+1} + \ldots + \lambda_n w_n - \lambda_1 w_1 - \ldots - \lambda_k w_k = 0 \implies \lambda_i = 0, \forall i.$$

Teorema 5 dim (U + W) + dim $(U \cap W)$ = dim U + dim W.

Demonstração: Seja $\{v_1, v_2, \ldots, v_p\}$ base de $U \cap W$. Podemos, aplicando o teorema 2, completar $\{v_1, v_2, \ldots, v_p\}$ para obter uma base de U: existem $u_1, \ldots, u_k \in U$ tais que

$$v_1, v_2, \ldots, v_p, u_1, \ldots, u_k$$

seja uma base de U. Aplicando o teorema 2 novamente existem w_1, \ldots, w_t tais que

$$v_1,\ldots,v_p,w_1,\ldots,w_t$$

é uma base de W. Note que $p + k = \dim U$ e $p + t = \dim W$. Verifiquemos que

$$v_1, \ldots, v_p, u_1, \ldots, u_k, w_1, \ldots, w_t$$

é base de U + W:

gerador Seja $x \in U + W$. Então x = u + w sendo $u \in U$ e $w \in W$. Existem escalares $\lambda_1, \ldots, \lambda_p, \mu_1, \ldots, \mu_k$ tais que

$$u = \sum_{i=1}^{p} \lambda_i v_i + \sum_{j=1}^{k} \mu_j u_j.$$

Existem $\lambda_1', \ldots, \lambda_p', \theta_1, \ldots, \theta_t$ escalares tais que

$$w = \sum_{i=1}^{p} \lambda_i' v_i + \sum_{j=1}^{t} \theta_j w_j$$

e então

$$x = \sum_{i=1}^{p} \lambda_i v_i + \sum_{j=1}^{k} \mu_j u_j + \sum_{i=1}^{p} \lambda'_i v_i + \sum_{j=1}^{t} \theta_j w_j$$
$$= \sum_{i=1}^{p} (\lambda_i + \lambda'_i) v_i + \sum_{j=1}^{k} \mu_j u_j + \sum_{j=1}^{t} \theta_j w_j.$$

l.i. Suponhamos que

$$\sum_{i=1}^{p} \lambda_i v_i + \sum_{j=1}^{k} \mu_j u_j + \sum_{j=1}^{t} \theta_j w_j = 0.$$

Então $\sum_{j=1}^t \theta_j w_j = -\sum_{i=1}^p \lambda_i v_i - \sum_{j=1}^k \mu_j u_j \in U \cap W$. Existe então $\gamma_i, i \leq p$ tais que

$$\sum_{j=1}^{t} \theta_{j} w_{j} = \sum_{i=1}^{p} \gamma_{i} v_{i} \implies \sum_{i=1}^{p} \gamma_{i} v_{i} + \sum_{j=1}^{t} (-\theta_{j}) w_{j} = 0.$$

Pela independência linear de $v_1, \ldots, v_p, w_1, \ldots, w_t$ obtemos $\theta_j = 0, 1 \le j \le t$. Considerando agora

$$\sum_{i=1}^{p} \lambda_i v_i + \sum_{j=1}^{k} \mu_j u_j = 0$$

vem $\lambda_i=0$ e $\mu_j=0$ pela independência linear de $v_1,v_2,\ldots,v_p,u_1,\ldots,u_k$. Finalmente temos

$$\dim (U+W) + \dim (U\cap W) = p+k+t+p = \dim U + \dim W.$$

Transformações lineares

Se V e W são espaços vetoriais sob o corpo K. Uma função $T:V\to W$ é linear se for aditiva e homogênea:

$$T(a + b) = T(a) + T(b), a, b \in V$$

 $T(\lambda a) = \lambda T(a), \lambda \in K, a \in V.$

Note que $T(0) = T(0 \cdot 0) = 0 \cdot T(0) = 0$. E T(-v) = (-1)T(v) = -T(v). Podemos juntar as condições numa só:

$$T(\lambda a + b) = \lambda T(a) + T(b), \lambda \in K$$
 ou ainda $T(\lambda a + \mu b) = \lambda T(a) + \mu T(b), \lambda, \mu \in K$.

Notação 2 O conjunto dos zeros de T \acute{e} o núcleo (ou o kernel) de T. \acute{E} denotado ker T. A imagem de T \acute{e} T(V):

$$\ker T = \{v \in V : T(v) = 0\};$$

$$T(V) = \operatorname{ran} T = \{T(v) : v \in V\}.$$

Ambos são subespaços vetoriais.

Lema 5 $T: V \to W$ linear é injetiva se e somente se T(v) = 0 implica v = 0.

Demonstração: Se T for injetiva, T(v) = 0 = T(0) e então v = 0. Recíprocamente suponhamos $\ker T = \{0\}$. Se T(v) = T(w) então T(v - w) = T(v) - T(w) = 0 e então $v - w = 0 \implies v = w$.

Lema 6 Se T é injetiva e $\{v_1, \ldots, v_n\}$ é l.i. então $T(v_1), \ldots, T(v_n)$ é l.i.

Demonstração: Pois se $\sum_{i} \lambda_{i} T(v_{i}) = 0$ pela linearidade $T(\sum_{i} \lambda_{i} v_{i}) = 0 \implies \sum_{i} \lambda_{i} v_{i} = 0 \implies \lambda_{i} = 0, \forall i.$

A família das transformações lineares entre V e W, $\mathscr{L}(V,W)$, é um espaço² vetorial. Se $S,T\in\mathscr{L}(V,W)$ e $\lambda\in K,\,v\in V$,

$$(S+T)(v) := S(v) + T(v);$$
$$(\lambda S)(v) = \lambda S(v).$$

Definição 10 Os funcionais lineares de V são as transformações lineares entre V e K.

²Verificação: exercício.

Escrevemos V' ou às vezes V^* para denotar $\mathcal{L}(V,K)$. Dizemos que V' é o espaço dual de V. O espaço V'', bi–dual.

Teorema 6 Seja $\{v_1, \ldots, v_n\}$ uma base do espaço vetorial V. Sejam $\alpha_i, 1 \le i \le n$ escalares. Existe um e único $y' \in V'$ tal que $\langle v_i, y' \rangle := y'(v_i) = \alpha_i, i = 1, 2, \ldots, n$.

Demonstração: Existência. Para $x = \sum_i \lambda_i v_i$ seja $y'(x) = y'(\sum_{i=1}^n \lambda_i v_i) = \sum_{i=1}^n \lambda_i \alpha_i$. Temos y' bem definida pois λ_i é univocamente determinado por x (lema 2) Vamos verificar a linearidade: Se $y = \sum_{i=1}^n \mu_i v_i$ e $r \in K$ temos $rx + y = \sum_i (r\lambda_i + \mu_i) v_i$. Logo

$$y'(rx + y) = \sum_{i} (r\lambda_{i} + \mu_{i}) \alpha_{i} = r \sum_{i} \lambda_{i} \alpha_{i} + \sum_{i} \mu_{i} \alpha_{i} = ry'(x) + y'(y)$$

É imediato que $y'(v_i) = \sum_{j \neq i} 0\alpha_j + 1\alpha_i = \alpha_i$. Unicidade: óbvio. Seja³ $\delta_{ij} = 1$ se i = j e $\delta_{ij} = 0$ se $i \neq j$.

Teorema 7 Se $\{v_1, \ldots, v_n\}$ é uma base de V existe $\{y^1, \ldots, y^n\}$ base⁴ de V' tal que $\langle v_j, y^i \rangle = \delta_{ij}, i, j \leq n$.

Demonstração: Seja para $j \leq n, y^j \in V'$ tal que $\langle v_i, y^j \rangle = \delta_{ij}$. Verifiquemos que $\{y^1, \ldots, y^n\}$ é base de V'. Seja $y' \in V'$. Seja $\alpha_i = y'(v_i)$. Então $y' = \sum_j \alpha_j y^j$ pois

$$\left\langle \sum_{i} \lambda_{i} v_{i}, y' \right\rangle = \sum_{i} \lambda_{i} \left\langle v_{i}, y' \right\rangle = \sum_{i} \lambda_{i} \alpha_{i}.$$

Agora

$$\left\langle \sum_{i} \lambda_{i} v_{i}, y^{j} \right\rangle = \sum_{i} \lambda_{i} \delta_{ij} = \lambda_{j}$$

$$\left\langle \sum_{i} \lambda_{i} v_{i}, \sum_{j} \alpha_{j} y^{j} \right\rangle = \sum_{j} \alpha_{j} \left\langle \sum_{i} \lambda_{i} v_{i}, y^{j} \right\rangle = \sum_{j} \alpha_{j} \lambda_{j} = \left\langle \sum_{i} \lambda_{i} v_{i}, y' \right\rangle.$$

Falta a independência linear: Se $\sum_{j} \alpha_{j} y^{j} = 0$ então $\sum_{j} \alpha_{j} y^{j} (v_{i}) = \alpha_{i} = 0$.

Corolário 3 dim $V' = \dim V$.

³ "Delta de Kronecker"

⁴chamada de base dual

07/02.

Reflexividade do bidual

Dado $x \in V$ podemos definir um funcional $\Phi_x : V' \to K$ do bidual V'' da seguinte maneira:

$$\Phi_x(y') := \langle x, y' \rangle := y'(x).$$

É imediato de se verificar que Φ_x é linear.

Teorema 8 (reflexividade) Para todo $z'' \in V''$ existe um único $x \in V$ tal que

$$\langle z'', y' \rangle = \Phi_x(y') = \langle x, y' \rangle, \forall y' \in V'.$$

Demonstração: Seja $\Theta: V \to V''$, $\Theta(x) = \Phi_x$ para $x \in V$. Verifiquemos que Θ é linear: para $v, w \in V$ e r real, para todo $y' \in V'$,

$$\Theta(rv + w)(y') = y'(rv + w) = ry'(v) + y'(w) = r\Theta(v)(y') + \Theta(w)(y') = (r\Theta(v) + \Theta(w))(y').$$

Portanto $\Theta(rv+w)=r\Theta(v)+\Theta(w)$. Injetividade: Se $\Theta(v)=0$ então y'(v)=0 para todo $y'\in V'$. Se $v\neq 0$ seja $v=v_1,v_2,\ldots,v_n$ base de V. Então pelo teorema 6, para $\alpha=(1,0,\ldots,0)$ existe $y'\in V'$ tal que $y'(v)=y'(v_1)=1\neq 0$. Logo v=0. Agora dim $V=\dim V''$ e Θ sendo linear injetiva, temos Θ sobrejetora.

Isomorfismo entre espaços vetoriais

Definição 11 Os espaços V e W sob o corpo K são isomorfos se existir $T:V\to W$ linear, injetiva e sobrejetora.

Comentário 6 É imediato de se verificar que $T^{-1}: W \to V$ é linear, injetiva e sobrejetora.

 $\acute{\rm E}$ imediato que espaços isomorfos tem a mesma dimensão. O próximo resultado é mais preciso.

Teorema 9 Se V tem dimensão n sob o corpo K então V é isomorfo a K^n .

Demonstração: Seja $\mathcal{B} = \{x_1, \dots, x_n\}$ base de V. Para cada $x \in V$ existem únicos $\lambda_1, \dots, \lambda_n$ tais que $x = \sum_{i=1}^n \lambda_i x_i$. Então

$$T\left(x\right)=\left(\lambda_{1},\ldots,\lambda_{n}\right)$$

está bem definida. É imediato que $T(x) = 0 \iff x = 0$. Sejam $x, y \in V$ e $\lambda \in K$. Então se $x = \sum_{i=1}^{n} \lambda_i x_i$ e $y = \sum_i \mu_i x_i$ temos $x + y = \sum_i (\lambda_i + \mu_i) x_i$ e então $T(x + y) = (\lambda_i + \mu_i)_{i=1}^n = (\lambda_1, \dots, \lambda_n) + (\mu_1, \dots, \mu_n) = T(x) + T(y)$. E de $\theta x = \sum_i \theta \lambda_i x_i$ vem $T(\theta x) = \theta T(x)$.

Comentário 7 Esse isomorfismo depende da escolha de uma base e isso limita (um pouco) a sua utilidade.

Espaço quociente

Definição 12 Uma relação de equivalência no conjunto X é uma relação binária, \sim , tal que para todos $x, y, z \in X$:

- 1. $x \sim x$;
- 2. $x \sim y \implies y \sim x$;
- 3. $x \sim y \ e \ y \sim z \ então \ x \sim z$.

Para $x \in X$ seja $\bar{x} = \{y \in X : y \sim x\}$. É imediato de se verificar que se $\bar{x} \neq \bar{y}$ então $\bar{x} \cap \bar{y} = \emptyset$. Definimos $X/\sim = \{\bar{x} : x \in X\}$.

Definição 13 Seja W um subespaço de V. Para $x,y \in V$ defina⁵ $x \sim y$ se $x-y \in W$. Temos que $\sim \acute{e}$ uma relação de equivalência em V:

- 1. $x \sim x$ pois $x x = 0 \in W$
- 2. $x \sim y \implies y \sim x \text{ pois se } x y \in W \text{ ent} \tilde{ao} \ y x = -(x y) = (-1) \cdot (x y) \in W$
- 3. $x \sim y \ e \ y \sim z \implies x \sim z \ pois \ x z = (x y) + (y z) \in W + W \subset W$.

Os elementos equivalentes a x,

$$\bar{x} = \{y \in V : y - x \in W\} = \{y : y \in x + W\} = x + W.$$

Para \bar{x} e \bar{y} e $\lambda \in K$ definimos

$$\bar{x} + \bar{y} = \overline{x + y}$$
$$\lambda \bar{x} = \overline{\lambda x}.$$

Fica como exercício verificar que o quociente V/W com essa soma e produto por escalar é um espaço vetorial. É o espaço quociente de V por W. (corresponde a L no exemplo acima) Casos extremos: V/V é isomorfo à $\{0\}$ e $V/\{0\}$ é isomorfo à V.

Teorema 10 Sejam W e U espaços complementares de V. Então V/W é isomorfo a U.

 $^{^{5}}x$ é equivalente a y

Demonstração: Seja $T: U \to V/W$, T(u) = u + W. Notemos que T é linear pois

$$T(\alpha u + \beta u') = (\alpha u + \beta u') + W = \alpha (u + W) + \beta (u' + W) = \alpha T(u) + \beta T(u').$$

Se $T(u) = \overline{0} = W$ temos que u + W = W e logo $u \in W \cap U = \{0\} \implies u = 0$. T é sobrejetora pois se $x \in V$ temos x = u + w e x + W = u + W portanto T(u) = x + W.

Corolário 4 Se V tem dimensão finita e W é subespaço de V, $\dim V/W = \dim V - \dim W$.

Anulador

Seja $S \subset V$. O anulador de S, denotado S^0 , é o conjuntos dos funcionais lineares $y' \in V'$ tais que y'(s) = 0 para todo $s \in S$. É imediato que se $y'(S) = \{0\}$ então y'(x) = 0 para $x \in [S]$.

Teorema 11 Seja \mathcal{M} subespaço m dimensional de V. Então $\dim \mathcal{M}^0 = n - m$.

Demonstração: É fácil de se verificar que o anulador de \mathcal{M} é um subespaço vetorial de V'. Seja $\mathfrak{X} = \{x_1, \ldots, x_m, \ldots, x_n\}$ sendo $\{x_1, \ldots, x_m\}$ base de \mathcal{M} . Seja $\mathfrak{X}' = \{y^1, \ldots, y^n\}$ base dual. Seja \mathfrak{N} o subsespaço gerado por $\{y_{m+1}, \ldots, y_n\}$. Temos dim $\mathfrak{N} = n - m$. Quero demonstrar que $\mathcal{M}^0 = \mathfrak{N}$. Para $x = \lambda_1 x_1 + \ldots + \lambda_m x_m$,

$$\langle x, y^j \rangle = \sum_{i=1}^m \langle x_i, y^j \rangle = 0.$$

Logo $\mathfrak{N} \subset \mathcal{M}^0$. Seja agora $y' \in \mathcal{M}^0$. Existem $\mu_j, j \leq n, y' = \sum_{l=1}^n \mu_l y^l$. Mas se $i \leq m$,

$$0 = \langle x_i, y' \rangle = \left\langle x_i, \sum_{l=1}^n \mu_l y^l \right\rangle = \sum_l \mu_l \left\langle x_i, y^l \right\rangle = \mu_i$$

Assim $y' \in \mathfrak{N}$ e $\mathcal{M}^0 \subset \mathfrak{N}$ demonstrando a igualdade.

Comentário 8 O anulador do anulador, \mathcal{M}^{00} , é formalmente um subconjunto de V''. Mas a reflexividade do bidual permite considerá-lo em V. No próximo teorema uso a identificação de V'' com V na definição do anulador de \mathcal{M}^{0} .

Teorema 12 Se V tem dimensão finita e \mathcal{M} é subespaço de V, $\mathcal{M}^{00} := (\mathcal{M}^0)^0 = \mathcal{M}$.

Demonstração: Seja $m \in \mathcal{M}$. Seja $z^m \in V''$ elemento correspondente dado pelo teorema da reflexividade (teorema 7):

$$\langle m, y' \rangle = \langle y', z^m \rangle, \forall y' \in V'.$$

. Então para $y' \in \mathcal{M}^0$,

$$0 = \langle m, y' \rangle = \langle y', z^m \rangle \implies m \in \mathcal{M}^{00}.$$

Assim $\mathcal{M} \subset \mathcal{M}^{00}$. Mas dim $\mathcal{M}^{00} = n - \dim \mathcal{M}^0 = n - (n - m) = m$. Portanto $\mathcal{M} = \mathcal{M}^{00}$.

Dem. alternativa. Seja $\mathfrak{X} = \{x_1, \dots, x_m, \dots, x_n\}$ base de V sendo $\{x_1, \dots, x_m\}$ base de \mathcal{M} . Seja $\mathfrak{X}' = \{y^1, \dots, y^n\}$ base dual. Para $m \in \mathcal{M}$ temos $\langle m, y' \rangle = 0$ para todo $y' \in \mathcal{M}^0$. Logo $m \in \mathcal{M}^{00}$. Agora se $x \in V \setminus \mathcal{M}$. Então $x = \sum_{i=1}^n \lambda_i x_i$ e $(\lambda_{m+1}, \dots, \lambda_n) \neq 0$ pois $x \notin \mathcal{M}$. Seja $j \geq m+1$ tal que $\lambda_j \neq 0$. Então $y^j \in \mathcal{M}^0$ e $\langle x, y^j \rangle = \lambda_j \neq 0$. Logo $x \notin \mathcal{M}^{00}$.

Espaços com produto interno

(A partir de agora $K = \mathbb{R}$.)

Definição 14 Seja V um espaço vetorial real. Um produto interno é uma função $\langle \cdot, \cdot \rangle : V \times V \to \mathbb{R}$ tal que

- 1. linearidade na primeira variável: $\langle rx + y, z \rangle = r \langle x, z \rangle + \langle y, z \rangle$;
- 2. Simétrica: $\langle x, y \rangle = \langle y, x \rangle$
- 3. Positiva definida: $\langle x, x \rangle \ge 0$ e $\langle x, x \rangle = 0$ somente se x = 0.

Definição 15 Um espaço vetorial de dimensão finita com um produto interno é um espaço euclidiano.

Definição 16 A função $|x| = \sqrt{(x,x)}$ é a norma euclidiana. Os vetores de norma 1 são vetores unitários.

Exemplo 10 Para $x, y \in \mathbb{R}^n$ definitions o produte interno usual: $\langle x, y \rangle = \sum_{i=1}^n x_i y_i$.

Exemplo 11 Se f, $g:[a,b] \to \mathbb{R}$ são funções contínuas, $\langle f,g \rangle = \int_a^b f(s) \, g(s) \, ds$ é um produto interno.

Suponha que $f \neq 0$. Então existe $x \in [a,b]$ tal que $f(x) \neq 0$ e logo $f^2(x) > 0$. Sem perda de generalidade a < x < b. Seja $0 < \epsilon < f^2(x)$. Pela continuidade de f existe $\delta > 0$ tal que se $s \in (x - \delta, x + \delta) \subset [a,b]$ então $f^2(s) > \epsilon$. Logo

$$\langle f, f \rangle = \int_{a}^{b} f^{2}(s) ds \ge \int_{x-\delta}^{x+\delta} f^{2}(s) ds > \epsilon \cdot 2\delta > 0.$$

Exemplo 12 Para $x, y \in l^2$, $\langle x, y \rangle = \sum_{i=1}^{\infty} x_i y_i$ é um produto interno em l^2 .

09/02

Definição 17 Os vetores x, y são ortogonais se $\langle x, y \rangle = 0$.

O vetor nulo é ortogonal a qualquer vetor. E é o único vetor que é ortogonal a si mesmo.

Teorema 13 (Cauchy-Schwarz) Para x, y no espaço euclidiano E,

$$|\langle x, y \rangle| \le |x| |y| \tag{*}$$

E vale a igualdade se e somente se x, y são linearmente dependentes.

Demonstração: Seja $f(\lambda) = |x + \lambda y|^2 = \langle x + \lambda y, x + \lambda y \rangle$. É imediato que $f(\lambda) \ge 0$. Expandindo o produto interno,

$$f(\lambda) = \langle x, x \rangle + 2\lambda \langle x, y \rangle + \lambda^2 \langle y, y \rangle.$$

Esse polinômio do segundo grau se tiver duas raízes distintas assumirá também valores negativos, uma impossibilidade. Portanto o discriminante

$$4\langle x, y \rangle^2 - 4\langle x, x \rangle \langle y, y \rangle \le 0.$$

E obtemos (*). Suponhamos que vale a igualdade $\langle x,y\rangle^2-\langle x,x\rangle\,\langle y,y\rangle=0$. Se y=0 temos igualdade e x,y são linearmente dependentes. Se $y\neq 0$. Então $\lambda_0=-\frac{2\langle x,y\rangle}{2\langle y,y\rangle}=-\frac{\langle x,y\rangle}{\langle y,y\rangle}$ é tal que $f(\lambda_0)=0$. Mas então $|x+\lambda_0y|^2=0$ e $x=-\lambda_0y$.

Corolário 5 (desigualdade triangular) a) $|x+y| \le |x| + |y|$

b) com igualdade se xy = 0 ou se $y \neq 0$, $x = \lambda y$ e $\lambda \geq 0$.

Demonstração: Temos elevando ao quadrado e usando f(1):

$$|x + y|^2 = \langle x, x \rangle + 2 \langle x, y \rangle + \langle y, y \rangle \le |x|^2 + 2 |x| |y| + |y|^2 = (|x| + |y|)^2$$

 $\iff (x, y) \le |x| |y|.$

No caso de igualdade obtemos $\langle x,y\rangle=|x|\,|y|$ e se $y\neq 0$ vem de $x=\lambda y$ vem $\lambda\,\langle y,y\rangle=|\lambda|\,|y|\,|y|$ o que implica $\lambda\geq 0$.

Ortogonalização de Gram-Schmidt

Uma base do espaço euclidiano $E, \{x_1, \ldots, x_n\}$ é ortonormal se os vetores forem ortogonais entre si e cada um unitário. Ou seja $(x_i, x_j) = \delta_{ij}$. Dada uma base $\{a_1, \ldots, a_n\}$ podemos pelo método de Gram–Schmidt transformala numa base ortonormal de uma forma natural. Primeiramente notemos que se $\{b_1, \ldots, b_n\}$ é ortogonal então $\left\{\frac{b_i}{|b_i|}: i \leq n\right\}$ é uma base ortonormal. Basta então obter uma base ortogonal. Seja $b_1 = a_1 \neq 0$. Para $b_2 = a_2 + \lambda b_1$ vamos escolher λ para $(b_2, b_1) = 0$:

$$(a_2 + \lambda b_1, b_1) = (a_2 + \lambda b_1, a_1) = (a_2, a_1) + \lambda (a_1, a_1) = 0 \iff \lambda = -\frac{(a_2, a_1)}{|a_1|^2}.$$

Temos $b_2 \neq 0$ e ortogonal a b_1 . Agora seja $b_3 = a_3 + \mu b_1 + \nu b_2$. Agora

$$\begin{cases} (b_3, b_1) = 0 \\ (b_3, b_2) = 0 \end{cases} \iff \begin{cases} (a_3 + \mu b_1 + \nu b_2, b_1) = 0 \\ (a_3 + \mu b_1 + \nu b_2, b_2) = 0 \end{cases} \iff \begin{cases} (a_3, b_1) + \mu (b_1, b_1) = 0 \\ (a_3, b_2) + \nu (b_2, b_2) = 0 \end{cases}$$

Ou seja $\mu = -\frac{(a_3,b_1)}{(b_1,b_1)}$ e $\nu = -\frac{(a_3,b_2)}{(b_2,b_2)}$. Prosseguindo indutivamente obtemos a base procurada.

Dualidade para espaços euclidianos

A dualidade nos espaços euclidianos é mais simples. Temos E' = E.

Teorema 14 (Riesz) Seja E espaço euclidiano de dimensão n. Seja E' o espaço dos funcionais lineares. Para cada $f \in E'$ existe um e único $x \in E$ tal que $f(z) = (x, z), z \in E$.

Demonstração: Para $x \in E$ seja $f_x(y) = (x, y), y \in E$. Temos que f_x é linear. Se $f_x = 0$ temos $f_x(x) = (x, x) = 0$ e logo x = 0. Portanto $\Theta(x) = f_x$ é linear, injetiva. Portanto $\Theta(E) = E'$ pois dim $E = \dim E'$.

Adjunto

SejamEe Fespaços euclidianos. E $T:E\to F$ linear. A adjunta de $T\not\in T^*:F\to E$ tal que

$$(Tx, y) = (x, T^*y).$$

E $T^{**}=T!$ Vamos particularizar para E=F. Então $T:E\to E$ é auto-adjunta⁶ se $T^*=T$: $(Tx,y)=(x,Ty)\,, \forall x,y\in E$.

⁶Se analisarmos a representação matricial, a matriz será simétrica.

Exemplo 13 Definamos $T: V \to V$ linear tal que

$$T\left(e_{i}\right) = \sum_{j=1}^{n} a_{ji}e_{j}.$$

 $Ent\~ao$

$$(T(e_i), e_k) = a_{ki}.$$

Agora

$$(e_i, T(e_k)) = \left(e_i, \sum_j a_{jk}e_j\right) = a_{ik}.$$

Se os dois são iguais então $a_{ik} = a_{ki}$.

Definição 18 Um autovalor de T é um escalar λ tal que existe um vetor $v \neq 0$ tal que $T(v) = \lambda v$. (o vetor é então um autovetor)

Comentário 9 No caso o espaço [v] é invariante: $T([v]) \subseteq [v]$. É possível dois autovetores terem o mesmo autovalor associado.

Teorema 15 Seja $T: \mathbb{R}^n \to \mathbb{R}^n$ autoadjunto. Então T tem n autovetores, mutualmente ortogonais.

Demonstração: Seja $F(x) = \frac{(x,T(x))}{(x,x)}, x \neq 0$. Temos que F é contínua para $x \neq 0$. Note que $F(rx) = \frac{(rx,T(rx))}{(rx,rx)} = F(x)$ sempre que $r \neq 0$. O conjunto $S = \{y \in \mathbb{R}^n : |y| = 1\}$ é compacto e portanto existe $\min F(S)$. Seja e_1 um vetor unitário que alcança o mínimo: $F(e_1) = \min F(S) = \inf \{F(x) : |x| = 1\} = \inf \{F(x) : x \neq 0\}$. Vou demonstrar que e_1 é um autovetor. Para x = |x| e,

$$F(x) = F(e) \ge F(e_1).$$

Seja $y \in \mathbb{R}^n$. Então $f(t) = F(e_1 + ty)$ e f'(0) = 0. Mas

$$f(t) = \frac{(e_1 + ty, Te_1 + tTy)}{(e_1 + ty, e_1 + ty)},$$

$$f'(0) = (e_1, Ty) + (y, Te_1) - 2(e_1, Te_1)(e_1, y)$$

$$f'(0) = 2(Te_1, y) - 2(e_1, Te_1)(e_1, y) = 0$$

$$\implies Te_1 = (e_1, Te_1)e_1.$$

Continuando para obter uma representação na forma diagonal.

Lema 7 Seja T auto-adjunto. Se $J \subset E$ é invariante, J^{\perp} é invariante.

Demonstração: Seja y ortogonal a J. Então (Ty, x) = (y, Tx) = 0 se $x \in J$. Logo $T(J^{\perp}) \subset J^{\perp}$. Prosseguimos indutivamente e pronto.