CODICI DI HUFFMAN

- CONSTNITOND FATTORI DI COMPRESSIONE TRA
- PROBLEMA: TROVARE UNA CODIFICA DI UN FILE DI CARATTERI IN MODO DA MINIMIZZARNE LA DIMENSIONE

Eseni	<u> 10:</u>	E DI 100	(ARATTERI		
CAQ.	FREQ.	CODI (8 BIT)	COD2 (3 bit)	003	
a	45	00000000	600	0	45
6	13	00000001	00/	101	39
С	12	00000010	OIO	100	36
d	16	0000011	011	111	48
l	9	00000100	100	1101	36
f	5	00000101	101	1100	20
	100	800 bit Ristory	sy 300 ht	25.3%	224 ht
ES.		LUNGHEZ?	A PISSA 72%	LUNGH. V	ARIABILE
TONGHEZZA FISSA LONGHEZZA FISSA LONGH, VARIABILE LONGH, VARIABILE					

ALBERI DI DECODIFICA

CAR.	FREQ.	COD2	COD 2'	
Q	45	000	000	135
Ь	13	001	001	39
C	12	010	010	36
d	16	110	011	48
e	9	100	10	18
f	5	101	1.1	10
		300	286	286

ALBERI DI	DECODIFICA
-----------	------------

CAQ.	FREQ.	COD2 (3 hit)	003
a	45	600	0
6	13	00/	101
C	12	010	100
d	16	011	111
l	9	100	1101
f	5	101	1100

ES.	ac					
COO 2	001		010	رع ق ا	3	00
a	b	a	C	a	6 a	С

- CODICI <u>PREFISSI</u>: SONO CODICI IN CUI NESSUNA CODIFICA E' PREFISSO DI UN'ALTRA CODIFICA

ESEMPIO DI CODICE NON PREFISSO

a 0 b 01

ESEMPIO DI CODICE NON PREFISSO AMBIGUO

0 1 0

اه ا

ALBERI	DI	DECODIFICA

CAQ.	FREQ.	COD2 (3 hit)	003
a	45	600	0
6	13	00/	101
С	12	OIO	100
d	16	011	111
l	9	100	1101
f	5	101	1100

$$B(cod) = \sum_{c \in C} f(c) |cod(c)|$$

Tood: ALBERD DI DECODIFICA f: C-N

C : ALFABETO

B(cols)=45.1 + 13.3 + 12.3 + 16.5 + 9.4 + 5.4 = 45+41.9 + 14.4 = 45+123+56 =224

COSTO DEGLI ALBERI DI DECODIFICA

C : ALFABETO

f: C-N : FUNZIONE FREQUENZA

cod: C -> {0,13+ : CODIFICA DEI CARATTERI DI C

Tod : ALBERO DI DECODIFICA

B(cod): COSTO DELLA CODIFICA DI UN TESTO

NELL'ALFABETO C CON FREQUENZA F

|cod(c)| (ce(): LUNGHEZZA tr cod(c)

d_ (c) (ce(): PROFONDITA' DELLA FOGLIA DI Tood

CONTENENTE IL CARATTERE C

SI HA:

$$B(cod) := \sum_{c \in C} f(c) \cdot |cod(c)| = \sum_{c \in C} f(c) \cdot d_{cod}(c)$$

PONI AMO

DUNQUE

PROBLEMA: TRA TUTTI GLI ALBERI DI DECODIFICA
RELATIVI AD UN SISTEMA (C,f) (DOVE
f: C -N) DETERMINARE QUELLO DI
COSTO MINIMO, CIDE L'ALBERD
BINARIO DI DECODIFICA T TALE CHE

CHIMM AIR

NOTA: CIO' CORRISPONDE A CERCARE UNA CODIFICA

DI COSTO MINIMO RELATIVA AL SISTEMA (C,f)

DSSEQUAZIONE; POSSIAMO LITTITARE LA NOSTAA RICERCA
AGLI ALBERI BINARI PIENI, QUELLI CIDE PRIVI
DI NODI INTERNI CON UN SOLO PIGLIO.

OSSERVAZIONE: IL NUMERO DI NODI INTERNI
IN UN ALBERO BINARIO PIENO CON

M FOGLIE E' M-1.

PER COSTRUIRE UN ALBERD BINARIO PIEND CON M FOGLIE SI POSSOND EFFETTUARE (M-1) OPERARIONI DI MERGING (O FUSIONE)

COSTO DI UN'OPERAZIONE DI MERGING

DATIO UN SISTEMA (C,f), SIANO $C_1,C_2 \subseteq C$ TALI CHE $C_1 \cap C_2 = \emptyset$ E SIANO T_1 E T_2 ALBERI DI DECODIFICA DI C_1 E C_2 , RISPETT.

- · L'ALBERO DI DECODIFICA T E'
 OTTENUTO DALLA FUSIONE DI
 T, E T2 CON LA RADICE X
- INDICHIAMO L'OPERAZIONE DI MERGINGIDI TI E T_2 CON merging (T_1,T_2) oppure merging (x)

COSTO DECL' OPERAZIONE DI MERGING DI T. E
$$T_2$$

$$B(merging(T_1,T_2)) := \sum_{ceC_1} f(c) + \sum_{ceC_2} f(c)$$

$$B(T) = \sum_{c \in C_1 \cup C_2} f(c) \cdot d_T(c)$$

=
$$\sum_{c \in C_1} f(c) \cdot d_T(c) + \sum_{c \in C_2} f(c) \cdot d_T(c)$$

$$= \sum_{c \in C_1} f(c) \cdot (d_{T_1}(c) + i) + \sum_{c \in C_2} f(c) \cdot (d_{T_2}(c) + i)$$

$$= \sum_{c \in C_1} f(c) \cdot d_{T_1}(c) + \sum_{c \in C_2} f(c) \cdot d_{T_2}(c) + \sum_{c \in C_1} f(c) + \sum_{c \in C_2} f(c) + \sum_$$

LEMMA IL COSTO B(T) DI UN ALBERO DI DECODIFICA T EI UGUALE ALLA SOMMA DEI COSTI DELLE OPERAZIONI DI MERGING NECESSARIE A COSTRUIRE T.

DIM. PER INDUZIONE SUL NUMERO M DI NODI

PONIAMO: int (T) := INSIEME DEI NODI INTERNI DI T

CASO BASE: m = 1

$$B(T) = f(a) + f(b) = B(merging(root(T)))$$

$$= Z B(merging(v))$$

$$v \in int(T)$$

PASSO INDUTTIVO:

$$B(T) = B(T_1) + B(T_2) + B(merging(root(T)))$$

$$= \sum_{v \in int(T_1)} B(merging(v)) + \sum_{v \in int(T_2)} B(merging(v))$$

$$+ B(merging(root(T)))$$

$$= \sum_{v \in int(T)} B(merging(v))$$

• UNA POSSIBILE STRATEGIA "GREEPY" PER COSTRUIRE
UN ALBERD DI COSTO MINIMO CONSISTE NEUL'EFFETTUARE
LE OPERAZIONI DI MERGING DI COSTO MINIMO

```
HUFFMAN (C,f)
m := |C|
Q:= mske_queul (C,f)
for i:= 1 to m-1 do
   - SI ALLOCHI UN NUOVO NODO INTERNO Z
    lift[]:= x := EXTRACT_MIN(Q)
    right [] := y := EXTRACT-MIN (Q) (2n-1) EXTRACTMIN O(n lpn)
                                     (M-1) INSERT O(NY)
BUILDHEAP O(N)
    f[z] := f[x] + f[y]
    INSERT (Q, 2, f)
 return EXTRACT_HIN(Q)
```

ESEMMO **(1)** (1)(2) (2) (3) (3) C:12 (4) (4)

CORRETTEZZA DELL'ALGORITMO DI HUFFMAN

LEMMA

(PROPRIETA' DI SCELTA GREEDY)

SIA C UN ALFABETO ED f : C -N UNA FUNZIONE FREQUENZA.

SIAND & ED Y I DUE CARATTERI IN C TO FREQUENZA MINIMA.

ALLORA ESISTE UN COOICE OTTIMO PREFISSO PER (
IN CUI LE CODIFICHE BI X ED Y DIFFERISCONO SOLO
PER L'ULTIMO BITI

Scambio $x \leftrightarrow a$ $y \leftrightarrow b$ $f(x) \leq f(y)$

$$\int (a) \leq f(b)$$

foplie a profondite mossione

DIM, SIANO a E b DUE CARATTERI RESIDENTI SU FOGLIE SQUELLE DI PROFONDITA' MASSIMA IN UN MEBERO OTTIMO T. SUPPONIANO CHE $f(a) \leq f(b)$ $\in f(x) \leq f(y)$. ALLORA: $f(x) \leq f(a) \in f(y) \leq f(b)$, SIA T'L'ALBERO OTTENUTO DA T SCATIBIANDO I CARATTERI a ED X, SI HA:

$$B(T) = \sum_{c \in C} f(c) d_{T}(c)$$

$$= \sum_{c \in C \setminus \{a_{1}k\}} f(c) d_{T}(a) + f(a) d_{T}(a) + f(x) d_{T}(x)$$

$$+ f(a) d_{T}(a) + f(x) d_{T}(x)$$

$$- f(a) d_{T}(a) - f(x) d_{T}(x)$$

$$= \sum_{c \in C \setminus \{a_{1}k\}} f(c) d_{T}(c) + f(a) d_{T}(a) + f(x) d_{T}(x)$$

$$- f(a) d_{T}(a) + f(x) d_{T}(x)$$

$$- f(a) d_{T}(a) - f(x) d_{T}(x)$$

$$= \sum_{c \in C} f(c) d_{T}(c) + f(a) d_{T}(a) + f(x) d_{T}(x)$$

$$- f(a) d_{T}(x) - f(x) d_{T}(a)$$

$$= B(T') + f(a) (d_{T}(a) - d_{T}(x))$$

$$- f(x) (d_{T}(a) - d_{T}(x))$$

$$= B(T') + (f(a) - f(x)) \cdot (d_{T}(a) - d_{T}(x))$$

CIOE'

$$B(T) = B(T') + (f(a) - f(x)) \cdot (d_T(a) - d_T(x))$$

E PERTANTO:

$$B(T) - B(T') = \left(f(a) - f(x)\right) \cdot \left(d_T(a) - d_T(x)\right) \geq 0$$

(IN QUANTO
$$f(\alpha) \ge f(x) \in d_{\tau}(\alpha) \ge d_{\tau}(x)$$
)

DA CUI

$$B(T) \geqslant B(T')$$
.

- SIA T" L'ALBERO OTTENUTO DA T'SCATIBIANDO I CARATTERI 6 ED Y,
- ANALOGAMENTE A QUANTO UISTO PRIMA, SI HA:

 $B(T') \ge B(T'')$ (IN QUANTO $f(b) \ge f(y) \in d_{T'}(y)$)

- PERTANTO: B(T) > B(T")
- POICHE' T E' OTTIMO, $B(T') \gg B(T)$, E QUINDI B(T'') E' ANCH'ESSO OTTIMO
- INOLTRE IN T" I CARATTERI & E Y RISIEDONO SU FOGLIE SOLELLE E QUINDI I LORO COMOI DIFFERISCOND SOLO PER L'ULTIMO BIT.

LEMMA (PROPRIETA) DELLA SOTTOSTRUTTURA OTTIMA)

- -SIA C UN ALFABETO ED f : C -N UNA FUNZIONE FREQUENZA.
- -SIANO X ED Y I DUE CARATTERI IN C DI FREQUENZA MINIMA.
- -SIA $C'=(C \cdot \{x_iy\}) \cup \{z\}$, CON $z \notin C$, $\{f(c)\}$ SE $c \notin z$ -SIA $f':C' \rightarrow N$ TALE CHE: $f'(c)=\{f(x)+f(y)\}$ SE $c \in z$ -SIA T' UN ALBERD OTTIMO PER (C',f').

 - SIA T L'AIBERD OTTENUTO DA T' SOSTITUENDO LA FOGUA 2 CON UN NODO INTERNO AVENTE COME FIGH DUE FOGLIE ETICHETTATE CON X ED y, RISPETTIVAMENTE.

ALLORA T E' OTTIMO PER (C,f).

DIMOSTRAZIONE

$$B(T) = \sum_{c \in C} f(c) \cdot d_T(c)$$

$$= \sum_{c \in C \setminus \{x,y\}} f(c) + f(x) \cdot d_f(x) + f(y) \cdot d_f(y)$$

$$= \sum_{c \in C \setminus \{x,y\}} f(c) \cdot d_{T_{i}}(c) + f(x) \cdot (d_{T_{i}}(a) + i) + f(y) \cdot (d_{T_{i}}(a) + i)$$

$$= \sum_{c \in C \setminus \{x,y\}} f(c) \cdot d_{T}(c) + (f(x) + f(y)) \cdot d_{T}(a) + (f(x) + f(y))$$

$$= \sum_{c \in C \setminus \{x,y\}} f(c) \cdot d_{T_i}(c) + f'(z) \cdot d_{T_i}(a) + (f(x) + f(y))$$

$$= \sum_{c \in C'} f(c) \cdot d_{T}(c) + (f(x) + f(y))$$

$$= B(T') + (f(x) + f(y))$$

PERTANTO: B(T') = B(T) - (f(x) + f(y))

- SE T NON FOSSE OTTIMO PER (C,f), ESISTEREBBE UN ALBERO T'' OTTIMO PER (C,f) TALE CHE: B(T'') < B(T).
- GRAZIE AL LEMMA PRECEDENTE, POSSIAMO SUPPORRE CHE X E y SI TROVINO SU FOULLE SORELLE IN T".
- SIA T" OTTENUTO DA T", SOSTITUENDO IL PADRE DI X E Y CON UNA FOGLIA Z CON FREQUENZA f(x)+f(y).
- ALLORA: $B(T'') = B(T'') f(\alpha) f(y)$ $< B(T) - f(\alpha) - f(y)$ = B(T')

CONTRADDICENDO L'OTTIMALITA DI T' PER (C',f').

- PERTANTO T E' OTTIMO PER (C,f).

$$6 \times 6 = 36$$
 $6 \times 5 = 30$
 $4 \times 4 = 6$
 $11 \times 3 = 33$
 $31 \times 2 = 62$
 177 bit

$$\frac{232}{177}$$
=55 bit rispormieti su 232
 $\frac{55}{232} \cdot 100 \approx 23.71 \%$

RIASSUMENDO:

LUNGHEZZA FISSA A 4 BIT	232 bit
CODICE PREFISSO	177 bit
	55 bit
RISPARTIO	~ 23,71%
RISPARMIO RISPARMO PERCENTURUE	~ 23,7'