

Introdução à Inteligência Artificial

Licenciatura em Engenharia Informática, Engenharia Informática – Pós-Laboral e Engenharia Informática – Curso Europeu

2° Ano – 1° semestre 2025/2026

Trabalho Prático nº 1 - Agentes Racionais

1. Introdução

O objetivo deste trabalho, com 2 valores de cotação, consiste em conceber, implementar e analisar comportamentos racionais para agentes reativos. O trabalho deve ser realizado na ferramenta NetLogo, que irá simular uma operação de resgate num edificio em chamas, com a ajuda de um conjunto de agentes do tipo bombeiro.

O trabalho divide-se num modelo base, cuja implementação deverá seguir a descrição feita nas secções 2 e 3 e de um modelo melhorado com a implementação de novas funcionalidades, onde os estudantes poderão sugerir estratégias para melhorar os resultados das simulações feitas com o modelo base. Ambos os modelos devem ser estudados com registo de métricas e análise das mesmas.

A descrição detalhada do ambiente é feita na secção 2. As características dos agentes, incluindo as regras de interação e gestão de energia, serão detalhadas na secção 3. O objetivo principal da simulação é garantir o resgate eficiente das vítimas presentes no edificio, maximizando o número de pessoas salvas e minimizando a perda de energia dos agentes bombeiros para evitar que morram antes de completar a missão.

2. O Ambiente

O ambiente deve ser definido através de uma grelha bidimensional não toroidal ou fechada (os agentes não podem passar de imediato do lado direito do ambiente para o lado esquerdo, nem do lado de cima para o de baixo e vice-versa). Nesse espaço existirão diversas células que representam diferentes elementos que simulam um edificio em chamas. As células pretas correspondem a zonas transitáveis e seguras dentro do edifício. As células azuis representam tanques de oxigénio que os bombeiros poderão utilizar para recarregar a sua energia. As células brancas representam obstáculos fixos que são parte integrante do edifício ou partes do mesmo que poderão ter colapsado devido ao incêndio, e as quais os agentes apenas podem contornar.

O edifício terá uma zona segura, com células verdes (com o tamanho de 4 células), para onde os bombeiros deverão transportar as vítimas. Durante a simulação, o ambiente pode apresentar a propagação gradual de fumo representado por células cinzentas, cujo objetivo

é <u>reduzir a visibilidade dos agentes</u>. <u>Também podem ser gerados dinamicamente novos obstáculos que simulam colapsos estruturais do edifício.</u>

As quantidades de células iniciais de obstáculos, tanques de oxigénio e zonas de fumo deverão ser configuráveis pelo utilizador.

3. Os Agentes

Os <u>agentes da simulação</u> dividem-se em dois tipos principais: <u>bombeiros e vítimas</u>. Cada tipo de agente apresenta características e regras de interação com o ambiente específicas, alinhadas às suas respetivas funções dentro da simulação.

O número de vítimas, bombeiros, assim como a energia inicial dos agentes e a energia de ganho com os tanques deverá ser configurável pelo utilizador.

3.1. Agentes Bombeiros

Os agentes bombeiros são responsáveis pelo resgate das vítimas dentro do edifício em chamas. Todos os bombeiros deverão ser criados com a mesma quantidade inicial de energia (que representa o seu oxigénio) e a mesma capacidade de transporte de vítimas, sendo ambos os valores configuráveis pelo utilizador.

Estes agentes têm como <u>missão recolher vítimas</u>, que são agentes distintos, até <u>atingirem a sua capacidade</u> e depois dirigir-se à zona segura para as depositar. A energia <u>dos bombeiros diminui uma unidade a cada tick</u> à medida que se deslocam pelo edifício, sendo que <u>podem reabastecer esta energia ao passar por tanques de oxigénio</u> ou <u>permanecendo na zona segura</u>. O valor do ganho de energia pelos <u>tanques de oxigénio</u> <u>deve ser configurável pelo utilizador</u>. <u>Caso a energia se esgote antes do resgate, o bombeiro é removido da simulação</u>.

3.2. Agentes Vítimas

As vítimas representam pessoas presas no edifício que precisam ser resgatadas pelos bombeiros. <u>Cada vítima possui níveis de energia que simulam a sua resistência às condições adversas do edifício em chamas, energia essa que é decrementada de uma unidade a cada *tick* passado sem resgate.</u>

As vítimas permanecem estáticas (modelo base) ou podem apresentar movimentos limitados para simular pânico (modelo melhorado). Caso a energia de uma vítima se esgote, esta é considerada perdida e removida da simulação. A sobrevivência das vítimas depende diretamente das ações e da eficiência dos bombeiros.

3.3. Perceções

Ambos os tipos de agentes percecionam o conteúdo das células adjacentes, que correspondem às <u>oito posições ao redor do agente</u>. Para <u>os bombeiros</u>, estas perceções incluem a identificação de obstáculos, tanques de oxigénio, vítimas, outros bombeiros, zonas de fumo e a posição da saída segura. As vítimas percebem a presença de

bombeiros próximos e obstáculos, sendo que estas perceções podem ser usadas no modelo melhorado para atribuir movimentação âs vítimas.

Os agentes bombeiros percebem o conteúdo das células adjacentes numa visão que cobre até duas células de distância em cada direção, exceto quando a célula imediatamente adjacente contém fumo. Nesse caso, a visibilidade fica limitada àquela única célula — ou seja, o bombeiro só consegue perceber até à célula com fumo e não consegue ver o conteúdo da célula seguinte nessa direção.

3.4. Ações

Os agentes <u>bombeiros podem mover-se para células adjacentes livres</u>, <u>recolher vítimas se ainda tiverem capacidade livre e se estiverem presentes na mesma célula</u> e <u>transportar estas até à saída segura</u>. Também <u>podem recarregar a sua energia</u> usando os <u>tanques de oxigénio ou na zona segura</u>. Podem <u>comunicar entre si a localização de tanques ou vítimas para otimizar a operação</u>. No modelo base as vítimas devem permanecer imóveis.

3.5. Características

Os bombeiros são agentes reativos com memória (capacidade de transporte) que gerem a sua energia de forma a maximizar a eficiência dos resgates, obedecendo a uma estratégia de procura, recolha e depósito. Não perdem energia enquanto estão parados na zona segura ou durante a recarga.

As vítimas são agentes reativos e passivos em termos de objetivos, com capacidade limitada de movimentação. A sua energia diminui automaticamente com o passar do tempo na simulação, refletindo o desgaste pela presença no ambiente adverso.

4. Tarefas a executar

O trabalho a executar divide-se na componente de implementação e na componente de experimentação/análise de resultados.

4.1. Implementação

Deverá ser feita a implementação de um:

a) Modelo Base

Nesta fase, deverá ser implementado um modelo inicial que incorpore todas as funcionalidades essenciais descritas nas secções anteriores. O modelo base deverá contemplar:

- A criação e posicionamento inicial dos agentes bombeiros e vítimas com as respetivas configurações de energia, capacidade de transporte e número inicial de agentes, todas ajustáveis pelo utilizador.
- A definição do ambiente conforme especificado, incluindo a grelha com células representando obstáculos, tanques de oxigénio, zonas de fumo, a zona segura.

- O comportamento reativo dos agentes bombeiros, que deverão procurar vítimas, recolhê-las até à sua capacidade máxima e conduzir os resgates até à saída do edificio, gerindo a sua energia durante todo o processo.
- A gestão da energia dos agentes, incluindo consumos nas movimentações, recargas nos tanques e na zona segura, e o procedimento quando a energia atingir níveis críticos ou se esgotar.
- O comportamento das vítimas, incluindo a redução gradual da energia e remoção da simulação em caso de falecimento por falta de energia.
- A comunicação entre agentes bombeiros, com troca de informação sobre localizações importantes para otimizar a busca e resgate.

Em caso de dúvidas ou omissões no enunciado, deverá ser tomada uma decisão fundamentada e devidamente justificada no relatório.

b) Modelo melhorado

Esta etapa permite explorar melhorias e alterações ao modelo base, visando aumentar o realismo ou a eficiência da simulação. Algumas sugestões que podem ser consideradas:

- Implementação de estratégias inteligentes para a gestão da energia pelos bombeiros, como avaliar antecipadamente se têm energia suficiente para regressar antes de se aventurarem mais profundamente no edifício.
- Introdução de prioridades na recolha das vítimas, por exemplo, resgatar primeiro as que estejam em estado mais crítico.
- Mecanismos de cooperação avançados entre agentes bombeiros, como divisão de tarefas ou formação de equipas para otimizar a busca e resgate.
- Inclusão de eventos dinâmicos, como novos obstáculos decorrentes de colapsos ou falhas temporárias nos tanques de oxigénio, aumentando a imprevisibilidade e desafio.
- Simulação de comportamento mais complexo das vítimas, como movimentação aleatória para simular pânico e desorientação.

Todas as alterações deverão ser claramente descritas, justificadas e fundamentadas no relatório entregue.

4.2. Experimentação/análise de resultados

Esta componente consiste na realização de experiências de simuração para testar os modelos implementados, tanto o base como o melhorado. A análise deverá contemplar:

- Definição de um número máximo de iterações (*ticks*) para cada experiência, assegurando que a simulação atinja um ponto de conclusão ou limite temporal.
- Registo do número de agentes bombeiros e vítimas que sobreviveram ao fim de cada experiência, bem como o tempo de surgimento de falhas ou extinção de vítimas, caso ocorram.

- Repetição de cada experiência pelo menos 10 vezes para assegurar a validade estatística dos dados recolhidos, considerando médias e desvios padrão.
- Formulação e teste de pelo menos três hipóteses que possam influenciar o desempenho dos agentes e o sucesso da operação de resgate. Exemplos destas hipóteses incluem:
 - A influência da quantidade inicial de bombeiros na taxa de vítimas resgatadas;
 - O impacto do número e distribuição dos tanques de oxigénio na sobrevivência dos agentes;
 - A relação entre a capacidade de transporte dos bombeiros e o tempo total de resgate.
- Análise comparativa dos resultados obtidos entre o modelo base e o modelo melhorado, incluindo a discussão dos efeitos das alterações implementadas, identificando ganhos ou perdas em eficiência, realismo ou robustez.

Todas as experiências, parâmetros utilizados, métricas obtidas e interpretações deverão ser devidamente documentados e apresentados no relatório final.

5. Critérios de avaliação

- Implementação modelo base (30%);
- Implementação modelo melhorado, correção, originalidade (30%);
- Estudo experimental análise de pelo menos três (3) hipóteses por modelo (30%);
- Documentação, apresentação e defesa (10%).

IMPORTANTE:

A nota do trabalho é individual, podendo os alunos do mesmo grupo ter classificações distintas.

A nota do trabalho depende da prestação dos estudantes durante a defesa na explicação do código implementado e nos resultados obtidos. Trabalhos que os alunos não consigam explicar a sua implementação ou funcionamento serão fortemente penalizados.

6. Relatório

- No relatório a entregar, com o **máximo de 10 páginas**, devem ser descritas e fundamentadas todas as alterações implementadas.
- Devem ser apresentadas as hipóteses formuladas, as configurações testadas (valores
 dos parâmetros usados), as métricas obtidas para os testes feitos e as justificações
 relativas ao desempenho dos agentes resultante das alterações aplicadas.

7. Normas de realização do trabalho prático

 O trabalho deve ser realizado em grupos de dois alunos. Em casos excecionais, com a permissão do docente da turma prática a que assiste, o trabalho poderá ser realizado individualmente.

- O trabalho deve ser entregue via *Moodle* até às 23:59 do dia 19/10/2025. Esta submissão deve conter os ficheiros implementados, o relatório, os resultados dos testes e os slides da apresentação (caso existam). Todos os ficheiros devem ser compactados num ficheiro .ZIP cujo nome deve identificar o nome e o número de aluno dos elementos do grupo, por exemplo: *NomeEstudante1_NºEstudante1_NºEstudante1_NºEstudante2_NºEstudante2_ZIP*. Em grupos onde os alunos frequentam turmas diferentes devem entregar e defender o trabalho apenas numa das turmas, informando os respetivos docentes.
- A apresentação do trabalho será feita nas aulas da turma prática em que pelo menos um dos estudantes frequenta e está inscrito. As defesas decorrerão nas aulas práticas da semana 20 a 24 de Outubro, sendo marcados dias adicionais em caso de necessidade. Os estudantes devem confirmar com o docente da sua aula prática o dia para a apresentação e defesa do trabalho. Cada grupo tem 10 minutos para apresentar o trabalho usando o projetor vídeo, mostrar os principais resultados e justificar as principais opções tomadas. Nesta apresentação podem recorrer aos materiais que considerarem mais adequados (Netlogo, Powerpoint, etc).