-22-

I CLAIM:

- 1. A Nuclear Myosin I β protein comprising a 16 amino acid N-terminal extension added to a cytoplasmic Myosin I β protein amino acid sequence.
 - 2. The Nuclear Myosin I β protein of claim 1 wherein the amino acid
- 5 sequence comprises:

	mryrasalgs	dgvrvtmesa	ltardrvgvq	dfvllenfts
	eaafienlrr	rfrenliyty	igpvlvsvnp	yrdlqiysrq
	hmeryrgvsf	yevpphlfav	adtvyralrt	errdqavmis
	gesgagktea	tkrllqfyae	tcpapergga	vrdrllqsnp
10	vleafgnakt	lrndnssrfg	kymdvqfdfk	gapvgghils
	ylleksrvvh	qnhgernfhv	fyqlleggee	etlrrlgler
	npqsylylvk	gqcakvssin	dksdwkvmrk	alsvidfted
	evedllsiva	svlhlgnihf	aadedsnaqv	ttenqlkylt
	rllgvegttl	realthrkii	akgeellspl	nleqaayard
15	alakavysrt	ftwlvrkinr	slaskdaesp	swrsttvlgl
	ldiygfevfq	hnsfeqfcin	ycneklqqlf	ieltlkseqe
	eyeaegiawe	pvqyfnnkii	cdlveekfkg	iisildeecl
	rpgeatdltf	lekledtvkp	hphflthkla	dqktrksldr
	gefrllhyag	evtysvtgfl	dknndllfrn	lketmcssmn
20	pimaqcfdks	elsdkkrpet	vatqfkmsll	qlveilrske
	payircikpn	dakqpgrfde	vlirhqvkyl	glmenlrvrr
	agfayrrkye	aflqrykslc	petwpmwagr	pqdgvavlvr
	hlgykpeeyk	mgrtkifirf	pktlfateds	levrrqslat
	kiqaawrgfh	wrqkflrvkr	saiciqswwr	gtlgrrkaak
25	rkwaaqtirr	lirgfilrhs	prcpenaffl	dhvrasflln
	lrrqlprnvl	dtswptpppa	lreasellre	lcmknmvwky
	crsispewkq	qlqqkavase	ifkgkkdnyp	qsvprlfist
	rlgteeispr	vlqslgsepi	qyavpvvkyd	rkgykprprq
	llltpsavvi	vedakvkqri	dyanltgisv	sslsdslfvl
30	hvqrednkqk	gdvvlqsdhv	ietltktals	adrvnninin
	qgsitfaggp	grdgiidfts	gsellitkak	nghlavvapr
	lnsr.			

-23-

3. An oligonucleotide sequence encoding the Nuclear Myosin I β of claim 1.

4. A cDNA molecue with the following nucleotide sequence:

	1	ggagcggggc	gccgggtccg	gcaggatgcg	ctaccgggca	teggeeetgg
5		gcagtgacgg				
	61	ggttcgagtg	accatggaga	gcgccttgac	tgcccgagac	cgggtagggg
		tgcaggactt				
	121	tgtcctgctg	gagaatttca	ccagtgaggc	tgccttcatt	gagaacctcc
		ggcggcggtt				
10	181	ccgggagaac	ctcatttata	cctacatcgg	tcctgtccta	gtctctgtca
		atccctaccg				
	241	agacctacag	atctacagcc	ggcagcatat	ggaacgctac	cgtggtgtca
		gtttctatga				
	301	agtaccacct	catttgtttg	cagtggctga	cactgtatac	cgggcacttc
15		gtactgagcg				
	361	tcgggaccag	gcagtgatga	tttctggaga	gagtggggca	ggcaagacag
		aggccaccaa				
	421	gagactgctc	cagttctatg	cagagacctg	cccagcccct	gaacggggtg
		gcgcagtgcg				
20	481	agaccgcctg	ttgcagagca	accccgtgtt	agaggccttt	gggaatgcca
		agactctccg				
	541	caacgataac	tccagccggt	ttggaaagta	catggatgtg	cagtttgact
		tcaagggtgc				
	601	ccccgtggga	ggccacattc	tcagttacct	cctggaaaag	tcccgggtgg
25		tgcaccaaaa				
	661	tcacggagag	cggaacttcc	acgtctttta	ccagctactg	gaggggggcg
		aggaggagac				
	721	tctccgtcgg	ctgggcttgg	aacggaaccc	ccagagctac	ttgtacctgg
		tgaagggcca				
30	781	gtgtgccaag	gtctcctcca	tcaacgacaa	gagtgactgg	aaggttatga
		ggaaggcgct				
	841	gtccgtcatt	gacttcactg	aggatgaagt	ggaggacttg	ctcagcatcg

-24-

		tggccagcgt				
	901	cctacatctg	ggcaacatcc	actttgctgc	tgacgaggac	agcaatgccc
		aggttactac				
	961	tgagaaccag	ctcaaatatc	tgaccaggct	ccttggtgtg	gaaggtacaa
5		cacttaggga				
	1021	agccctgacc	cacaggaaga	tcatcgccaa	gggggaagag	ctcctgagcc
		cactgaacct				
	1081	tgaacaggcg	gcatatgcaa	gggatgcgct	tgccaaggct	gtgtacagcc
		ggacattcac				
10	1141	ctggctggtc	agaaagatca	ataggtcact	ggcctctaag	gacgctgaga
		gccccagctg				
	1201	gcgaagcacc	acggttcttg	ggctcctgga	catttacggc	tttgaagtgt
		ttcagcataa				
	1261	cagcttcgag	cagttctgca	tcaactactg	caatgagaag	ctgcagcagc
15		tcttcatcga				
	1321	gctgactctc	aagtcggagc	aggaggaata	cgaggctgag	ggcatcgcgt
		gggaacctgt				
	1381	ccagtacttc	aacaacaaga	tcatctgtga	cctggtagag	gagaagttca
		agggcatcat				
20	1441	ctccatcttg	gatgaagagt	gcctgcgtcc	tggggaggcc	acggacctga
		cctttctgga				
	1501	gaagttggag	gacactgtca	agccccaccc	tcacttcctg	acgcacaagc
		tcgctgacca				
	1561	gaagaccagg	aaatccctag	accgagggga	gttccgcctt	ctgcattatg
25		ctggagaggt				
	1621	gacctacagt	gtgactgggt	ttctggataa	aaacaatgac	ctcctcttcc
		ggaacctgaa				
	1681	ggagaccatg	tgcagctcaa	tgaaccccat	catggcccag	tgctttgaca
		agagtgagct				
30	1741	cagtgacaag	aagcggccag	gacggtggc	cacccagttc	aagatgagcc
		teetgeaget				
	1801	cgtggagatc	ctgaggtcta	aggagcctgc	ctatatccgg	tgcatcaagc

-25-

		caaacgacgc				
	1861	caagcagccg	ggtcgctttg	atgaggtgct	catccgacat	caggtgaagt
		acctgggact				
	1921	gatggagaat	ctgcgcgtgc	gcagagctgg	ctttgcctat	cgtcgcaaat
5		atgaggcttt				
	1981	cctgcagagg	tacaagtcac	tgtgcccaga	gacatggccc	atgtgggcag
		gacggcccca				
	2041	ggatggtgtg	gccgtgttgg	tcagacacct	cggctacaag	ccagaagagt
		acaaaatggg				
10	2101	caggactaag	atcttcatcc	gattccccaa	gaccttattt	gccacagagg
		actccctgga				
	2161	agtccggcgg	cagagtctag	ccaccaagat	ccaggcggcc	tggaggggct
		ttcattggcg				
	2221	acagaaattt	ctccgggtga	agcgatcagc	catctgtatc	cagtcatggt
15		ggcgtggcac				
	2281	actgggccgg	aggaaggcag	ccaagaggaa	gtgggcagcc	cagaccatcc
		gtcgactcat				
	2341	ccgtggcttc	attttgcgcc	attcaccccg	gtgccctgag	aatgccttct
		tcttggacca				
20	2401	cgtgcgcgcc	tcatttttgc	ttaacctgag	gcggcaactg	ccccggaatg
		ttctggacac				
	2461	ctcctggccc	acaccccac	ctgccctgag	agaggcctca	gaactgctac
		gggaactgtg				
	2521	catgaagaac	atggtgtgga	agtactgccg	gagcatcagc	cctgagtgga
25		agcagcagct				
	2581	gcagcaaaag	gcggtggcta	gtgaaatttt	caagggcaag	aaggacaact
		accccagag				
	2641	tgtccccaga	ctcttcatta	gcacacggct	tggcacagag	gagatcagcc
30		ccagagtgct				
	2701	tcaatccttg	ggctctgaac	ccatccagta	tgccgtgccc	gtggtaaaat
		acgaccgtaa				
	2761	gggttacaag	cctcgccccc	ggcagctgct	gctcacgccc	agtgctgtgg

-26-

		tcattgtgga				
	2821	ggatgctaaa	gtcaagcaga	gaattgatta	tgccaaccta	accggaatct
		ctgtcagtag				
	2881	cctgagtgat	agcctatttg	tgcttcacgt	gcagcgtgaa	gacaacaagc
5		agaagggaga				
	2941	tgtggtgctg	cagagtgatc	atgtgatcga	gacactaacc	aagacggccc
		tcagtgctga				
	3001	ccgcgtgaac	aatatcaaca	tcaaccaggg	cagcataacg	tttgcagggg
		gtccaggcag				
10	3061	ggacggcatc	attgacttca	catcgggctc	agagettete	atcaccaagg
		ctaagaatgg				
	3121	ccacctggct	gtggtggccc	cacggctgaa	ttctcggtga	tgaaggctgc
		ggtggaccgc				
	3181	tectgaetee	tgatgcttcc	cttagtcccc	tectecete	cgacttacca
15		aaaactcaag				
	3241	cttccaaaca	gggatccatg	gacaccctca	aaacccacgc	tgcaaactcc
		tgccttctgc				
	3301	tegececte	ttgaggtgat	caggagccag	ggagctaccc	catgagtggg
		ccaggccggg				
20	3361	ccacaccaat	agaaaagcag	aggcctgagc	aggccaggcc	agccctctgc
		tgatgccaaa				
	3421	tatctaagac	aagggaattt	taactgaggt	tttctctgag	attttttgat
		gctttatagg				
	3481	aaactatttt	tttaagaaag	ccattttcct	accetaaaca	cactggatgt
25		gtttttccct				
	3541	gcctcgaaca	gggcaaggaa	tgtaactgaa	agactgactg	ggctgggctg
		gaaggtcctc				
	3601	ttcttggcca	accetteett	attcccttgt	ctgcctgtcc	atccacctgc
		accttttag				
30	3661	cca.				

5. A peptide comprising an amino acid sequence MRYRASALGSDGVRVT.

-27-

- 6. A cDNA molecule encoding the peptide of claim 4.
- 7. The peptide of claim 5 comprising an epitope with the amino acid sequence FLAG.
 - 8. An antibody directed to the Nuclear Myosin I β protein of claim 2.
- 5 9. An antibody directed to the peptide of claim 4.
 - 10. The antibody of claim 7, wherein the antibody is a monoclonal antibody.
 - 11. An antibody directed to the peptide of claim 7.
 - 12. A functional complex formed between one RNA polymerase II.
- 10 13. A method for inhibiting cell proliferation, said method comprising:
 - (a) obtaining at least one antibody to the peptide of claim 5; and
 - (b) administering the antibody to an organism so that the antibody contacts cells.
 - 14. The method of claim 13 wherein the antibody is a monoclonal
- 15 antibody.

20

- 15. The method of claim 13 wherein the antibody is a synthetic compound.
- 16. A method for inhibiting cell proliferation, said method comprising
 - a) obtaining an antisense oligonucleotide to the cDNA of claim 3;
 - (b) contacting the cDNA with the antisense oligonucleotide to prevent expression of the cDNA and reduce cell proliferation.
- 17. A method for screening a candidate agent that inhibits transcription, said screening method comprising the antibodies in claim 9.
 - (a) providing proliferating cells;
 - (b) contacting the cells with the candidate agent;
- 25 (c) determining whether nuclear myosin I β (MNI β) is translocated to the nucleus of the cells; and
 - (d) inferring that the candidate agent is an inhibitor of cell proliferation if NMI β is not detected in the cells nucleus.