Spring25 CS598YP

15.2: QueryFormer

Yongjoo Park

University of Illinois Urbana-Champaign

Cost estimation as ML problem

Previous approaches are less effective

Table 1: Summary of existing solutions to query plan representation.

Category	Danar	Task	Parent-Children	Long Path	Database Statistics	Training
	Paper		Dependency	Information Flow		Difficulty
Flattened	AVGDL [38]	View Selection	No	Yes	NA	Hard
Tree-RNN	RTOS [36]	Join Order Selection	Yes	Yes	NA	Hard
	E2E-Cost [30]	Cost, Cardinality	Yes	Yes	Sample	Hard
	Plan-Cost [19]	Cost Estimation	Yes	Yes	Estimated card, cost	Hard
Tree-CNN	NEO [17]	Optimization	Yes	No	Estimated card	Easy
	BAO [16]	Optimization	Yes	No	Estimated card, cost	Easy
	Prestroid [39]	Cost Estimation	Yes	No	NA	Easy
Feature	ReJOIN [18]	Join Order Selection	No	No	NA	Easy
Vectors	AIMeetsAI [9]	Index Selection	No	No	Estimated card, cost	Easy
	LQPP [5]	Cost Estimation	No	No	Estimated card, cost	Easy
Transformer	QueryFormer (Ours)	All	Yes	Yes	Sample, Histogram	Easy

Previous approaches are less effective

Table 1: Summary of existing solutions to query plan representation.

	Category	Paper		Task	Parent-Children	Long Path	Database Statistics	Training
			_		Dependency	information Flow		Difficulty
	Flattened	AVGDL [38] RTOS [36]		View Selection	No	Yes	NA	Hard
				Join Order Selection	Yes	Yes	NA	Hard
	Tree-RNN E2		Cost [30]	Cost, Cardinality	Yes	Yes	Sample	Hard
		Plan-0	Cost [19]	Cost Estimation	Yes	Yes	Estimated card, cost	Hard
			1				Estimated card	Easy
SELECT * FROM				Nested Loop)	Estimated card, cost	Easy	
title t,				200		NA	Easy	
movie_info mi,				(a)]	NA	Easy	
movie_companies mc,				Nested Loop	₹	Index Scan	Estimated card, cost	Easy
WHERE			Nested Loop		mc.c_id = 2	Estimated card, cost	Easy	
	t.id = mi.movie_id AND			(b)			Sample, Histogram	Easy
t.id = mc.movie_id AND					(c)			
m	mi.type_id = 113 AND		Index S	can)	Index Scan			

mi.type_id = 113

(e)

flattened:

mc.c_id = 2 AND t.year > 2000

(e)

t. year > 2000

(d)

(d)

(b)

(c)

(a)

cannot capture dependency

Previous approaches are less effective

Table 1: Summary of existing solutions to query plan representation.

Category	Paper	Task	Parent-Children	Long Path	Database Statistics	Training
			Dependency	Information Flow		Difficulty
Flattened	AVGDL [38]	View Selection	No	Yes	NA	Hard
Tree-RNN	RTOS [36]	Join Order Selection	Yes	Yes	NA	Hard
	E2E-Cost [30]	Cost, Cardinality	Yes	Yes	Sample	Hard
	Plan Cost [19]	Cost Estimation	Yes	Yes	Estimated card, cost	Haru
Tree-CNN	NEO [17]	Optimization	Yes	No	Estimated card	Easy
	BAO [16]	Optimization	Yes	No	Estimated card, cost	Easy
	Prestroid [39]	Cost Estimation	Yes	No	NA	Easy
	D-IOIN [10]	Join Order Selection	No	No	NA	Г
Feature Vectors	AIMeetsAI [9]	Index Selection	No	No	Estimated card, cost	Easy
	LQPP [5]	Cost Estimation	No	No	Estimated card, cost	Easy
Transformer	QueryFormer (Ours)	All	Yes	Yes	Sample, Histogram	Easy

cannot capture long distance

How can we adapt Transformer / Attention?

GPT's Attention models P(new token | all previous tokens)

We can manipulate this attention via masking

QueryFormer Architecture

Figure 2: System overview.

Encoder: Node -> Feature Vector

Learned embedding for

- operator: merge join, index scan
- predicate: *t.year* > 2000
- table
- join condition
- per-table statistics: histogram and samples

Similar to *learned embedding* inside the Transformer architecture

QueryFormer: Tree -> Vector

Tree-structured Transformer

- Height Encoding
- Tree-biased Attention

Aggregate nodes into a vector

Bert vs QueryFormer

Figure 3: QueryFormer architecture.

BERT

Self-Attention in Bert / Transformer

QueryFormer: Tree-biased Attention

QueryFormer attention:

Summary

- The QueryFormer paper adapts Transformer to cost estimation
- *Encoder*: An individual node -> a vector
- **QueryFormer**: A tree of vector -> final vector (-> cost estimation)
- Tree-biased attention controls information flow

Questions?