1 Леммы

1.1 (b) $\varphi \vdash \neg \neg \varphi$ (и в интуиционистском, и в классическом, т. к. не используется схема аксиом 10)

1.
$$(\neg \varphi \rightarrow \varphi) \rightarrow (\neg \varphi \rightarrow \neg \varphi) \rightarrow \neg \neg \varphi$$
 (схема аксиом 9)

- 2. $\varphi \to \neg \varphi \to \varphi$ (схема аксиом 1)
- 3. $\neg \varphi \rightarrow \varphi$ (MP 1, 2)
- 4. $\neg \varphi \rightarrow \neg \varphi$
- 5. $\neg\neg\varphi$ (два раза MP)

1.2 $\neg\neg\neg\varphi \rightarrow \neg\varphi$

- 1. $\varphi \vdash \neg \neg \varphi$ (лемма 1)
- 2. $\neg\neg\neg\varphi \rightarrow \neg\varphi$ (лемма о контрапозиции)

1.3 $(\neg \neg \alpha \rightarrow \neg \neg \beta) \rightarrow \neg \neg (\alpha \rightarrow \beta)$

$$\neg\neg\alpha \to \neg\neg\beta, \neg(\alpha \to \beta) \vdash \neg\beta, \neg\neg\beta$$
:

- 1. $\beta \to \alpha \to \beta$ (схема аксиом 1)
- 2. $\neg(\alpha \to \beta) \to \neg\beta$ (лемма о контрапозиции)
- 3. $\neg(\alpha \to \beta)$ (допущение)
- 4. $\neg \beta$ (MP 2, 3)
- 5. $(\neg \alpha \to \alpha \to \beta) \to \neg(\alpha \to \beta) \to \neg\neg\alpha$ (лемма о контрапозиции)
- 6. $\alpha \to \neg \alpha \to \beta$ (схема аксиом 10)
- 7. $\neg \alpha \rightarrow \alpha \rightarrow \beta$ (очевидно по теореме о дедукции)
- 8. $\neg \neg \alpha$ (два раза MP)
- 9. $\neg\neg\alpha \to \neg\neg\beta$ (допущение)
- 10. $\neg \neg \beta$ (MP)

По теореме о дедукции $\neg\neg\alpha \to \neg\neg\beta \vdash \neg(\alpha \to \beta) \to \neg\beta, \neg(\alpha \to \beta) \to \neg\neg\beta.$

Докажем $\neg\neg\alpha \to \neg\neg\beta \vdash \neg\neg(\alpha \to \beta)$

- 1. $(\neg(\alpha \to \beta) \to \neg\beta) \to (\neg(\alpha \to \beta) \to \neg\neg\beta) \to \neg\neg(\alpha \to \beta)$ (cxema аксиом 9)
- 2. $\neg(\alpha \to \beta) \to \neg\beta$
- 3. $\neg(\alpha \to \beta) \to \neg\neg\beta$ (2, 3 доказаны выше)
- 4. $\neg\neg(\alpha \to \beta)$ (два раза MP)

По теореме о дедукции получаем $(\neg\neg\alpha \to \neg\neg\beta) \to \neg\neg(\alpha \to \beta)$.

1.4 (a) $\neg\neg(\neg\neg\varphi\rightarrow\varphi)$

1. $\neg\neg\neg\neg\varphi \rightarrow \neg\neg\varphi$ (лемма 2)

2. $(\neg\neg\neg\neg\varphi \rightarrow \neg\neg\varphi) \rightarrow \neg\neg(\neg\neg\varphi \rightarrow \varphi)$ (лемма 3)

3. $\neg\neg(\neg\neg\varphi\rightarrow\varphi)$ (MP 1, 2)

1.5 $\varphi \rightarrow \psi \vdash \neg \neg \varphi \rightarrow \neg \neg \psi$

1. $\varphi \to \psi$ (допущение)

2. $\neg\neg\varphi \to \neg\neg\psi$ (дважды применили лемму о контрапозиции к 1)

1.6 (c) $\neg\neg\varphi$, $\neg\neg(\varphi\to\psi)\vdash\neg\neg\psi$

1. $(\varphi \to \psi) \to \neg \neg \varphi \to \neg \neg \psi$ (лемма 5)

2. $\neg \neg \varphi \rightarrow (\varphi \rightarrow \psi) \rightarrow \neg \neg \psi$

3. $\neg \neg \varphi$ (допущение)

4. $(\varphi \to \psi) \to \neg \neg \psi \text{ (MP 2, 3)}$

5. $\neg \neg (\varphi \rightarrow \psi) \rightarrow \neg \neg \neg \neg \psi$ (лемма 5)

6. $\neg \neg (\varphi \rightarrow \psi)$ (допущение)

7. $\neg \neg \neg \neg \psi \text{ (MP 5, 6)}$

8. $\neg\neg\neg\neg\psi \rightarrow \neg\neg\psi$ (лемма 2)

9. $\neg \neg \psi$ (MP 7, 8)

1.7 $\vdash_C \varphi \to \neg \varphi \to \psi$

Покажем, что $\varphi, \neg \varphi \vdash \psi$

1. φ (допущение)

2. $\neg \varphi$ (допущение)

3. $\varphi \to \neg \psi \to \varphi$ (схема аксиом 1)

4. $\neg \varphi \rightarrow \neg \psi \rightarrow \neg \varphi$ (схема аксиом 1)

5. $\neg \psi \rightarrow \varphi \text{ (MP 1, 3)}$

6. $\neg \psi \rightarrow \neg \varphi \text{ (MP 2, 4)}$

7. $(\neg \psi \rightarrow \varphi) \rightarrow (\neg \psi \rightarrow \neg \varphi) \rightarrow \neg \neg \psi$ (схема аксиом 9)

8. $\neg \neg \psi$ (два раза MP)

9. $\neg \neg \psi \rightarrow \psi$ (схема аксиом 10)

10. ψ (MP 8, 9)

2 Теорема Гливенко

 $\vdash_C \varphi \Leftrightarrow \vdash_I \neg \neg \varphi$.

- \Rightarrow) Пусть доказано $\vdash_C \varphi$. Будем строить из доказательства φ в классической логике доказательство $\neg\neg\varphi$ в интуиционистской: вместо каждого пункта доказательства α_i вставим $\neg\neg\alpha_i$. Рассмотрим получившееся доказательство. Если в классической логике на i-ой строчке была не 10 схема аксиом, воспользуемся леммой 1 (b), если это была схема 10, вставим перед этой строкой доказательство леммы 4 (a), Если же строка была получена по правилу MP, то по лемме 6 в построенном доказательстве этот переход также будет верным.
- \Leftarrow) Пусть доказано $\vdash_I \neg \neg \varphi$. Построим из этого доказательство в классической логике. Рассмотрим все строчки доказательства. Все схемы аксиом, кроме 10, совпадают, оставляем как есть. Вместо 10 схемы ставим доказательство, как в лемме 7. Строки, полученные по MP тоже оставляем. В конец доказательства добавляем схему 10 из классической логики $\neg \neg \varphi \rightarrow \varphi$ и по MP получаем φ .