Numerical linear algebra course

Midterm, Fall 2023

Variant 1

Theoretical tasks

4	/-	
1. ($^{\prime}$	pts)

(a) What is the name of the transformation that is represented as the following matrix in the 2D case?

$$\begin{bmatrix} \cos \alpha & -\sin \alpha \\ \sin \alpha & \cos \alpha \end{bmatrix}$$

- ☐ Giver rotation
- ☐ Given rotation
- ☐ Givens rotation
- \square Gineve rotation
- \square No specific name for such transformation

(b) Construct such unitary transformation that zeros out the second coordinate of vector $\begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

2. (2 pts) What is the complexity of matrix by vector product in the general case, where a matrix is of size $m \times n$? Can it be improved? Why?

3. (4 pts) What is the invertible matrix? Assume matrix $I_n + AB$ is invertible, where $A \in \mathbb{R}^{n \times m}$, $B \in \mathbb{R}^{m \times n}$ and I_n denotes the identity matrix of size n. Is matrix $I_m + BA$ invertible or not? Provide proof of your claim.

- 4. (3 pts) Proof that $(XY)^{\dagger} = Y^{\dagger}X^{\dagger}$.
- 5. (2 pts) Show that for any k there exists matrix A: $\operatorname{rank}(A) = k$ such that $||A||_F = \sqrt{\operatorname{rank}(A)} ||A||_2$

Practical tasks

1. (3 pts) Assume matrix A has eigendecomposition $A = U\Lambda U^*$. Derive the eigendecomposition of a block matrix $\begin{bmatrix} 0 & A \\ A^* & 0 \end{bmatrix}$ and explain why does it exist?

2. (4 pts) Assume you are given a matrix $A = \begin{bmatrix} -4 & 6 \\ 9 & -1 \end{bmatrix}$ and you run the power method. Will the power method converge? If it will converge, comment on what is a convergence speed and what is the stationary point. If it will not converge, please explain why.

3. (2 pts) Does LU decomposition exist for matrix $\begin{bmatrix} 2 & 4 \\ 1 & 2 \end{bmatrix}$? If it exists, compute it. If it does not exist, compute PLU decomposition.

- 4. **(2 pts)** Calculate SVD of the matrix $A = \begin{pmatrix} 1 & 2 \\ 3 & 3 \\ 2 & 1 \end{pmatrix}$.
- 5. (4 pts) Find the matrix inverse to A:

$$A = \begin{pmatrix} 2 & 1 & 1 & 1 & 1 \\ 1 & 2 & 1 & 1 & 1 \\ 1 & 1 & 2 & 1 & 1 \\ 1 & 1 & 1 & 2 & 1 \\ 1 & 1 & 1 & 1 & 2 \end{pmatrix}$$