Inhaltsverzeichnis

1	Einleitung	2
2	Einführende Definitionen	2

1 Einleitung

Hier kommen Motivation und Hintergrunderklärungen rein. TODO

2 Einführende Definitionen

Wir betrachten folgendes Problem:

Gegeben sei ein gerichteter Graph $\overrightarrow{G}=(V,A)$. Die Knoten des Graphen haben ein beliebig großes Intervall möglicher dort ein- oder ausgespeister Gasmengen $\in [-\infty,\infty]$. Die Kanten des Graphen haben ein Intervall zulässigen Flusses $f_a\in [\underline{c_a},\overline{c_a}]$ gegeben, das nicht verletzt werden darf.

Definition 2.1. Das Problem, in obigem Graphen für jede Kante die maximale und die minimale mögliche Flussmenge zu bestimmen, so dass die Ein- und Ausspeisemengen erfüllt werden, wird nachfolgend das Flussschrankenproblem genannt.

Mit der zusätzlichen Bedingung, dass es keinen Kreisfluss geben darf, nennen wir es azyklisches Flussschrankenproblem.