Tutorial 4 report EE5311 (Digital IC design)

- Amogh G. Okade (EP22B020)

Question 1

Part a)

• Plot of the transient of the output voltage for an input pulse for –

$$V$$
 W_p = 0.42 μ m

 $V_p = 0.84 \mu m$

 $V_p = 1.26 \mu m$

- The delay for
 - $ightharpoonup W_p = 0.42 \mu m$ is equal to 21.826ps. (thl = 12.77ps, tlh = 30.88ps)

 \triangleright W_p = 0.84µm is equal to 19.954ps. (thl = 18.23ps, tlh = 21.68ps)

 \triangleright W_p = 1.26µm is equal to 21.11 9ps. (thl = 23.27ps, tlh = 18.96ps)

Part b)

We know that

Req, n
$$\alpha \frac{1}{\mu n W n}$$
,
Req, p $\alpha \frac{1}{\mu p W p}$ and
Cint α (Wn + Wp)

We know that the delay (which can be written as R C ln2),

tp, inv
$$\alpha$$
 Req x Cint = $\left(\frac{\text{Req, n} + \text{Req, p}}{2}\right)$ Cint

tp, inv
$$\alpha \left(\frac{1}{\mu n W n} + \frac{1}{\mu p W p} \right) (Wn + Wp)$$

For the minimum delay,

$$\frac{\mathrm{dtp,inv}}{\mathrm{dWp}} = 0$$

$$-\frac{(\mathrm{Wn} + \mathrm{Wp})}{\mu p \, W p^2} + \left(\frac{1}{\mu n \, W n} + \frac{1}{\mu p \, W p}\right) = 0$$

$$-\frac{\mathrm{Wn}}{\mu p \, W p^2} + \frac{1}{\mu n \, W n} = 0$$

Or

$$Wp = \sqrt{\frac{\mu n}{\mu p}} \times Wn$$

Substituting $(\mu n/\mu p) = (25/9)$ and Wn = 0.42 μ m, we get

Wp = $0.7\mu m$ for minimum delay

• Plot of the measured and analytical delay as a function of V_{DD} for V_{DD} = 1V to 1.8V –

- ➤ We note that the delay decreases as V_{DD} increases.
- ➤ Although intuition dictates that the delay should be higher for a larger V_{DD}, (since the curve would take longer to come down from a larger V_{DD}), it is actually the increased current that is responsible for pulling the voltage down faster, at a higher V_{DD}.
- Comparison between measured and analytical values –

	Simulation			Estimated		
V _{DD} (volts)	thl (ps)	tlh (ps)	tp (ps)	thl (ps)	tlh (ps)	tp (ps)
1	53.53	93.67	73.60	79.94	134.87	107.40
1.1	37.69	66.32	52.00	53.38	89.87	71.63
1.2	29.80	51.10	40.45	40.14	67.23	53.62
1.3	25.20	41.65	33.42	32.16	53.95	43.05
1.4	22.20	35.32	28.76	27.08	45.35	36.21
1.5	21.10	30.86	25.48	23.55	39.39	31.47
1.6	18.57	27.60	23.08	20.98	35.04	28.01
1.7	17.38	25.14	21.26	19.02	31.75	25.38
1.8	16.44	23.26	19.85	17.50	29.17	23.33

Part c)

• Plot of the measured and analytical energy-delay product as a function of V_{DD} for $V_{DD} = 1V$ to 1.8V -

 The optimum VDD is observed to be 1.3V from the simulation, and 1.4V from the analytical estimate.

Question 2

Part a)

For VDD=1.8V, the oscillating frequency is 2.45 GHz.

```
Reference value : 2.49528e-09
No. of Data Rows : 3008
tp = 4.080253e-10 targ= 4.241690e-10 trig= 1.614375e-11
Oscillating freq for VDD=1.8V is 2.45083E+09 Hz
ngspice 8 ->
```

Part b)

Plot of the output voltage for V_{DD} = 1.8V –

Plot of the oscillating frequency as a function of V_{DD} for V_{DD} = 1V to 1.8V -

• Plot of the time period as a function of V_{DD} for V_{DD} = 1V to 1.8V -

Part c)

For VDD=1.8V, the oscillating frequency is 1.91 GHz.

```
Reference value : 1.63128e-09
No. of Data Rows : 3008
tp = 5.246637e-10 targ= 5.408074e-10 trig= 1.614374e-11
Oscillating freq for VDD=1.8V is 1.90598E+09 Hz
ngspice 8 ->
```

• Plot of the output voltage for V_{DD} = 1.8V -

• Plot of the oscillating frequency as a function of V_{DD} for V_{DD} = 1V to 1.8V –

• Plot of the time period as a function of V_{DD} for V_{DD} = 1V to 1.8V -

• We notice that the frequency of the oscillator with 7 inverters is higher, since there is lesser delay due to the reduced number of inveters.