Bioinformatics, 34(15), 2018, 2642–2648

doi: 10.1093/bioinformatics/bty178

Advance Access Publication Date: 23 March 2018

Original Paper

Data and text mining

Learned protein embeddings for machine learning

Kevin K. Yang¹, Zachary Wu¹, Claire N. Bedbrook² and Frances H. Arnold^{1,2,*}

¹Division of Chemistry and Chemical Engineering and ²Division of Biology and Biological Engineering, California Institute of Technology, Pasadena, CA 91125, USA

*To whom correspondence should be addressed.

Associate Editor: Jonathan Wren

Received on November 30, 2017; revised on March 20, 2018; editorial decision on March 21, 2018; accepted on March 22, 2018

Exemplary protein encoding methods

- Physicochemical properties of amino acids
- One-hot encoding
- String mismatch kernels

Modeling scheme

k = [1, 5] w = [1, 7]20-fold CV 25 epochs d = 64

Supervised learning

GP models were trained on:

- Embedded representations
- One-hot representation
- Mismatch string kernels (k = 5, m = 1)
- ProFET
- Subset of AAIndex (64 properties)
- One-hot representation with structural information

Table 1. Summary of tasks used to evaluate embedded representations

Task	n	Protein	Library	Property	Citation
Localization	248	Channelrhodopsin	Recombination	Plasma membrane localization	Bedbrook et al. (2017a)
T50	261	Cytochrome P450	Recombination	Thermostability	Li et al. (2007) and Romero et al. (2013)
Absorption	81	Bacterial rhodopsin	Site-saturation	Peak absorption wavelength	Engqvist et al. (2015)
Enantioselectivity	152	Epoxide hydrolase	Site-saturation	Enantioselectivity	Zaugg et al. (2017)

Table 2. Comparison of learned, dense, embedded representations, ProFET, AAIndex properties, mismatch string kernels and one-hot representations of sequence and structure for predicting protein properties using GP regression

Task	n_{train}	n_{test}	Representation	d	MAE	τ	$\log P$
Localization	215	33	Embedding	64	0.73	0.60	-43.5
			One-hot seq. and struct.	600 747	0.76	0.60	-43.2
			One-hot sequence	7161	0.76	0.59	-43.7
			Mismatch kernel	_	0.86	0.55	-54.6
			ProFET	1173	1.03	0.32	-54.9
			AAIndex properties	21 824	0.76	0.55	-44.3
T50	242	19	Embedding	64	2.91	0.61	-59.5
			One-hot seq. and struct.	994 980	2.98	0.53	-57.3
			One-hot sequence	9786	2.94	0.57	-57.2
			Mismatch kernel	_	4.03	0.38	-58.5
			ProFET	1173	4.93	0.43	-63.7
			AAIndex properties	29 824	2.95	0.51	-56.2
Absorption	62	19	Embedding	64	23.3	0.57	-109.2
			One-hot sequence	6258	22.1	0.63	-111.0
			Mismatch kernel	_	17.8	0.68	-103.9
			ProFET	1173	53.5	0.32	-174.7
			AAIndex properties	19 072	30.1	0.35	-116.4
Enantioselectivity	136	16	Embedding	64	9.14	0.64	-64.5
			One-hot sequence	8358	8.16	0.50	-63.3
			Mismatch kernel	_	7.50	0.46	-65.1
			ProFET	1173	27.9	0.27	-76.7
			AAIndex properties	25 472	12.5	0.25	-65.7

 Table 3. Negative controls

Task	Control	MAE	τ	$\log P$
Localization	_	0.73	0.60	-43.5
	Task sequences only	0.86	0.50	-50.0
	Shuffled task sequences	1.21	0.16	-57.4
	Shuffled training labels	1.16	-0.39	-58.3
T50	_	2.91	0.61	-59.5
	Task sequences only	5.02	0.45	-63.3
	Shuffled task sequences	4.49	0.31	-61.8
	Shuffled training labels	5.72	-0.35	-67.1
Absorption	_	23.3	0.57	-109.2
-	Task sequences only	61.4	0.34	-162.1
	Shuffled task sequences	61.4	-0.03	-162.0
	Shuffled training labels	61.4	-0.43	-162.0
Enantioselectivity	_	9.14	0.64	-64.5
•	Task sequences only	41.3	-0.06	-85.2
	Shuffled task sequences	42.7	0.27	-84.7
	Shuffled training labels	42.8	0.06	-84.8

Effect of embedding dimension on accuracy

Effect of number of unlabeled sequences on accuracy

Projection of embeddings for all tasks

Conclusions

- Embedding models can be applied to predict the functional properties of a small number of related proteins
- Embeddings generalize across protein families, library designs and protein properties
- 32 dimensions are sufficient to achieve competitive model performance
- The unsupervised embedding model incorporates information from the unlabeled sequences
- We are able to transfer information encoded in these unlabeled sequences to a specific task