Seminar 2

- (Ratio test) Let (x_n) be a sequence with positive terms s.t. $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\ell\in\overline{\mathbb{R}}$.
- If $\ell < 1$, then $\lim_{n \to \infty} x_n = 0$. If $\ell > 1$, then $\lim_{n \to \infty} x_n = \infty$.

 (Stolz-Cesàro) Let $(a_n), (b_n)$ be s.t. (i) $a_n \to 0$ and $b_n \to 0$ with (b_n) decreasing; or (ii) $b_n \to \infty$ with (b_n) increasing. If $\lim_{n \to \infty} \frac{a_{n+1} a_n}{b_{n+1} b_n} = \ell$ then $\lim_{n \to \infty} \frac{a_n}{b_n} = \ell$.
- 1. Prove using the ε -definition that $\lim_{n\to\infty}\frac{1}{\sqrt{n}}=0$.
- 2. Study if the sequence (x_n) is bounded, monotone, and convergent, for each of the following:

(a)
$$x_n = \sqrt{n+1} - \sqrt{n}$$
.

(a)
$$x_n = \sqrt{n+1} - \sqrt{n}$$
. (b) $x_n = \frac{1}{1 \cdot 2} + \dots + \frac{1}{n(n+1)}$. (c) $x_n = \frac{2^n}{n!}$.

- 3. Find the limit for each of the following sequences:

(a)
$$\sqrt{n} \left(\sqrt{n+1} - \sqrt{n} \right)$$
.

(c)
$$\sqrt[n]{n}$$
.

(a)
$$\sqrt{n}(\sqrt{n+1} - \sqrt{n})$$
. (c) $\sqrt[n]{n}$. (e) $(a_1^n + a_2^n + \dots + a_k^n)^{\frac{1}{n}}$. (b) $\frac{2^n + (-1)^n}{3^n}$. (c) $\sqrt[n]{n}$. (d) $\frac{(a_1 + 1)^2}{4n^2 - 2n + 1}$, $a \in \mathbb{R}$. with $a_i > 0$.

(b)
$$\frac{2^n + (-1)^n}{3^n}$$

(d)
$$\frac{(an+1)^2}{4n^2-2n+1}$$
, $a \in \mathbb{R}$

- 4. Consider the sequence (e_n) given by $e_n = \left(1 + \frac{1}{n}\right)^n$. Prove that (e_n) is increasing and bounded, hence convergent. Its limit is denoted by e.
- 5. Find the limit for each of the following sequences: (a) $\left(\frac{2n+1}{2n-1}\right)^n$. (b) $n\left(\ln(n+2)-\ln(n+1)\right)$.
- (a) Let (x_n) be convergent. What can you say about the sequence (a_n) of averages,

$$a_n = \frac{x_1 + x_2 + \ldots + x_n}{n}$$
?

Can the averages converge, but the sequence not?

- (b) Compare $1 + \frac{1}{2} + \ldots + \frac{1}{n}$ with n and $\ln n$ by taking the ratio, respectively.
- 7. Let (x_n) be a sequence such that $\lim_{n\to\infty}\frac{x_{n+1}}{x_n}=\ell$. Prove that $\lim_{n\to\infty}\sqrt[n]{x_n}=\ell$.
- 8. Find the limit for each of the following sequences: (a) $\frac{n}{\sqrt[n]{n}}$. (b) $\frac{1^p+2^p+3^p+\ldots+n^p}{n^{p+1}}$, $p \in \mathbb{N}$.