Rocket Propulsion Analysis

Alexander Ponomarenko

+49 0157 82622049 contact@propulsion-analysis.com www.propulsion-analysis.com

Motivation

RPA is being developed to...

- Provide modern multi-platform tool for prediction of rocket engine performance at the conceptual and preliminary stages of design
- Capture impacts on engine performance due to variation of design parameters
- Assess the parameters of main engine components (thrust chamber, turbopump, gas generator/preburner) to provide better data for detailed analysis/design
- Assist in education of new generation of propulsion engineers

Main features of RPA (1)

- Gibbs free energy minimization approach is used to obtain the combustion composition
- Expandable thermodynamic data library based on NASA Glenn thermodynamic database (also used by CEA)
- Analysis of nozzle performance with shifting and frozen chemical equilibrium
- Optimization of propellant components mixture ratio
- Altitude performance analysis, over-expanded nozzle performance analysis
- Throttled engine performance analysis

Main features of RPA (2)

- Estimation of delivered (actual) nozzle performance
- Determination of combustion chamber size for given thrust, propellant mass flow rate, or throat diameter
- Designing parabolic nozzle contour or truncated ideal nozzle contour (TIC) using two-dimensional (axisymmetric) method of characteristics

Main features of RPA (3)

- Thrust chamber thermal analysis
 - Calculation of heat transfer rate distribution (convection and radiation)
 - Film cooling analysis
 - Radiation cooling analysis
 - Regenerative cooling analysis
 - Thermal analysis of thrust chambers with combined cooling: radiation + film + regenerative
 - Estimation of hydraulic losses in the cooling passages
 - Estimation of friction thrust loss

Main features of RPA (4)

- Multi-platform graphical user interface for Microsoft®
 Windows™, as well as for Apple® Mac OS X and Linux
- Parameters input and results output in SI or U.S. customary units
- Development tools and libraries are available:
 - Scripting Utility
 - C++ Wrapper
 - C++ SDK for development of commercial software

How RPA differs from other tools

- Own implementation of thermodynamics analysis, whereas many other tools use CEA
- Availability of development libraries
- Intended for conceptual and preliminary design
 - Steady-state analysis
 - Simplified model initialization with minimum of input parameters
 - Wide usage of semi-empirical relations and coefficients

Areas where RPA is usually used

- Conceptual and preliminary design of rocket engines and propulsion systems
- Education and academic research
- Library for development of commercial software

- Method of minimization of Gibbs free energy is used
 - to obtain the equilibrium product concentrations from combustion of two or more propellant components
 - to obtain the equilibrium product concentrations from decomposition of monopropellant
 - to calculate the isentropic quasi-one-dimensional nozzle flow for both shifting and frozen equilibrium flow models

- Expandable thermodynamic data library based on NASA Glenn thermodynamic database
- The library includes data for such propellant components as
 - liquid hydrogen H2(L), liquid methane CH4(L), RP-1, RG-1, Synthine, monomethyl hydrazine (MMH), unsymmetrical dimethyl hydrazine (UDMH)
 - Liquid oxygen O2(L), nitrogen tetra-oxide (N2O4), hydrogen peroxide (H2O2)
- User may define own propellant components with known chemical formula and enthalpy of formation

- Quasi-one-dimensional nozzle flow model
- Semi-empirical relations to obtain performance correction factors, including:
 - Performance loss due finite rate kinetics in combustion chamber and nozzle
 - Divergence loss
 - Performance loss due to finite-area combustion area
 - Multi-phase flow loss
 - Performance change due to nozzle flow separation
 - Performance change due to thrust throttling

Thrust chamber sizing

- Sizing for required thrust level at a specific ambient condition
- Sizing at a specific propellant mass flow rate
- Sizing for a specific throat diameter

Designing the nozzle contour

- Cone nozzle with a specific exit half-angle
- Parabolic nozzle
- Truncated ideal contour (TIC) with maximum thrust at fixed expansion ratio
- Two-dimensional (axisymmetric) method of characteristics
- Parametric specification of the nozzle inlet geometry
- Export of nozzle contour in DXF (drawing interchange file) format

Thrust chamber thermal analysis

- Gas-side heat transfer
 - Convective heat transfer
 - levlev method
 - Bartz method
 - Boundary layer and film cooling
 - Loss in specific impulse due to friction in boundary layer
 - Radiation heat transfer
- RPA library for thermodynamic analysis is used to obtain hot gas transport properties

Thrust chamber thermal analysis

- Thrust chamber outer cooling
 - Radiation cooling
 - Regenerative cooling
 - Coaxial-shell thrust chamber design
 - Channel-wall thrust chamber design
 - Tubular-wall thrust chamber Design
 - Pressure loss across cooling passages
 - Coolant properties are interpolated from 2D properties file (can be obtained from REFPROP)
 - Thermal barrier coating layer
 - Balanced heat flux approach

- Steady-state analysis
- Variety of cycles:
 - gas generator
 - staged combustion
 - full-flow staged combustion
 - expander
 - tap-off

- General input parameters:
 - Number and type of combustion devices (fuel-rich or oxidizer-rich)
 - Maximum turbine inlet temperature
 - Number and flow sequence of turbines
 - Inlet pressure of propellant components
 - Availability of booster pumps and their parameters
 - Type and parameters of turbine of booster pumps
 - Availability of kick pumps and their parameters
 - Availability of bypasses around turbines

- Design mode possible input parameters:
 - Thrust chamber pressure, mass flow rate and mixture ratio
 - Pressure drop at valves, junctions, cooling jackets etc
- Design mode possible results:
 - Operational parameters of combustion devices (pressure, mass flow rate and mixture ratio)
 - Operational parameters of turbomachinery (mass flow rate, inlet pressure, discharge pressure, shaft power)
 - Engine overall performance

- Off-design mode possible input parameters:
 - Operational parameters of combustion devices (pressure, mass flow rate and mixture ratio)
 - Operational parameters of turbomachinery (mass flow rate, inlet pressure, discharge pressure, shaft power)
 - Pressure drop at valves, junctions, cooling jackets etc
- Off-design mode possible results:
 - Thrust chamber pressure, mass flow rate and mixture ratio
 - Engine overall performance

Engine cycle analysis (to be released)

Example of flow diagram decomposition

SSME

Engine cycle analysis (to be released)

Example of flow diagram decomposition

Solving feed subsystem: find such pump power that the required pressure is achieved at exit port of each branch

Solving power subsystem: find such parameters of combustion device and/or turbine that produced power is equal to required total pump power of the feed subsystem

- RPA thermodynamics module is used to obtain
 - O/F ratio in combustion device to achieve required combustion temperature
 - Parameters of gas turbine working fluid in all cycles (GG, staged combustion and expander)
- RPA thermal analysis module can be used to obtain
 - Pressure drop in coolant jacket
 - Amount of energy absorbed by the coolant (one of controlling parameters in expander cycle)

Engine weight estimation (to be released)

- Based on the set of semi-empirical equations for each major type of engines: gas generator, staged combustion and expander cycles
- Initially developed at Moscow Aviation Institute
- RPA utilizes this method with slightly modified coefficients to better fit the available data on historic engines
- Results of chamber sizing and cycle analysis can be used as an input parameters of engine weight estimation

Chemical equilibrium properties

 Comparison with a NASA equilibrium program CEA has been performed for selected test cases:

Parameter	Case #1	Case #2	Case #3	Case #4	Case #5
Chamber pressure, MPa	10	10	5	1	1
Oxidizer	LOX	LOX	N ₂ O ₄	_	_
Fuel	LH ₂	RP-1	UDMH	N ₂ H ₄	H ₂ O ₂ (80%)
O/F	6.0	2.6	2.6	_	_

Chemical equilibrium properties

Comparison for Case #1 (LOX/LH2):

MACIA	\ tra	CTI	anc	۰
Mole	: 110	ւեւու	JHS	_

Thermodynamic properties:

Species	CEA2	RPA	δ, %	Parameter	CEA2	RPA	δ, %
Н	0.03107	0.03107(22)	0.0	Temperature, K	3523.79	3523.79(2)	0.0
H2	0.24803	0.24802(93)	0.0	Enthalpy, kJ/kg	-986.31	-986.30(8)	0.0
H2O	0.67294	0.67294(23)	0.0	Entropy, kJ/(kg K)	17.613(2)	17.613	0.0
H2O2	0.00001	0.00001(26)	0.0	M, 1/n	13.513	13.513	0.0
HO2	0.00003	0.00003(28)	0.0	Cp, kJ/(kg K)	8.2367	8.2367	0.0
0	0.00285	0.00285(11)	0.0	У	1.1425	1.1425	0.0
02	0.00297	0.00297(14)	0.0	Sonic velocity, m/s	1574.0	1573.9(50)	0.0
ОН	0.04209	0.04208(81)	0.0	ρ, kg/m ³	4.612	4.612	0.0

Chemical equilibrium properties

Comparison for Case #2 (LOX/RP-1):

MA	0	tra	~ T I	0.1	JC .
IVIU		frac	. U	UI	15.

Thermodynamic properties:

Species	CEA2	RPA	δ, %	Parameter	CEA2	RPA	δ, %
со	0.31521	0.31521(14)	0.0	Temperature, K	3723.63	3723.63(4)	0.0
CO2	0.15383	0.15383(04)	0.0	Enthalpy, kJ/kg	-784.21	-784.2(06)	0.0
соон	0.00003	0.00002(73)	0.0	Entropy, kJ/(kg K)	11.127(5)	11.127	0.0
Н	0.02686	0.02686(31)	0.0	M, 1/n	23.603	23.603	0.0
H2	0.07954	0.07953(53)	0.0	Cp, kJ/(kg K)	6.026(3)	6.026	0.0
H2O	0.33329	0.33329(25)	0.0	У	1.1392	1.1392	0.0
H2O2	0.00002	0.00001(88)	0.0	Sonic velocity, m/s	1222.4	1222.4(29)	0.0
НСНО	0.00000	0.00000(11)	0.0	ρ, kg/m ³	7.6236	7.6237	0.001
HCO	0.00004	0.00003(54)	0.0				
нсоон	0.0000	0.00000(4.1)	0.0				

Chemical equilibrium properties

Comparison for Case #3 (N2O4/UDMH):

Μо	tra	C T I	\sim	~~ :
IVILI	 114			15
1110	 1100			

l hormo	dun anala	nronortioc:
Hellio	uvnann.	properties:
111011110	~,	proportion.

Species	CEA2	RPA	δ, %	Parameter	CEA2	RPA	δ, %
со	0.12784	0.12783(55)	0.0	Temperature, K	3392.31	3392.31(3)	0.0
CO2	0.08961	0.08961(06)	0.0	Enthalpy, kJ/kg	88.271	88.271	0.0
соон	0.00001	0.00000(56)	0.0	Entropy, kJ/(kg K)	11.149(3)	11.149	0.0
Н	0.01602	0.01601(60)	0.0	M, 1/n	23.524	23.524	0.0
H2	0.06066	0.06066(30)	0.0	Cp, kJ/(kg K)	5.2960	5.296	0.0
H2O	0.34503	0.34502(96)	0.0	У	1.1385	1.1385	0.0
H2O2	0.00001	0.00000(83)	0.0	Sonic velocity, m/s	1168.4	1168.3(58)	0.0
НСНО	0.00000	0.00000(02)	0.0	ρ, kg/m ³	4.1701	4.1702	0.002
HCN	0.00000	0.00000(03)	0.0	1			
НСО	0.00001	0.00000(55)	0.0				
нсоон	0 00000	0 00000(08)	0.0				

Chemical equilibrium properties

Comparison for Case #4 (N2H4):

Mole fractions:

Species	CEA2	RPA	δ, %
H2	0.66274	0.66273(76)	0.0
N2	0.33255	0.33254(75)	0.0
NH3	0.00471	0.00471(49)	0.0

Thermodynamic properties:

Parameter	CEA2	RPA	δ, %
Temperature, K	873.49	873.49(3)	0.0
Enthalpy, kJ/kg	1572.16	1572.149	0.0007
Entropy, kJ/(kg K)	15.784(2)	15.784	0.0
M, 1/n	10.732	10.732	0.0
Cp, kJ/(kg K)	3.054(0)	3.054	0.0
У	1.3642	1.3642	0.0
Sonic velocity, m/s	960.8	960.8(21)	0.0
ρ, kg/m ³	1.4777	1.4777	0.0

Chemical equilibrium properties

Comparison for Case #5 (H2O2 80%):

Mole fractions:

Species	CEA2	RPA	δ, %
H2O	0.74645	0.74645(36)	0.0
02	0.25355	0.25354(64)	0.0

Thermodynamic properties:

Parameter	CEA2	RPA	δ, %
Temperature, K	784.47	784.46(7)	0.0
Enthalpy, kJ/kg	-7589.64	-7589.608	0.0004
Entropy, kJ/(kg K)	9.819(7)	9.820	0.0
M, 1/n	21.561	21.561	0.0
Cp, kJ/(kg K)	1.7296	1.7296	0.0
У	1.2869	1.2869	0.0
Sonic velocity, m/s	624.0	623.9(49)	0.0
ρ, kg/m ³	3.3056	3.3056	0.0

Chemical equilibrium properties

- A perfect agreement is obtained between the CEA and PRA programs
- Any percent differences in parameter values are in at least the third decimal place and are negligibles
- The maximum relative difference is 0.002% occurring for Case #3

Liquid propulsion performance analysis

- Comparison with a performance data of selected historic engines has been performed:
 - RD-170
 - RD-253
 - RL10A3-3A
 - SSME

Liquid propulsion performance analysis

• RD-170

		[11
Design	parameters	ſΤÌ

Parameter	Value	Unit
Oxidizer	Liquid Oxygen (LOX)	-
Fuel	Kerosine RG-1	-
Components mass ratio	2.63	O/F
Combustion chamber pressure	24.5	MPa
Nozzle inlet contraction area ratio	2.6	A _c /A _t
Nozzle exit area ratio	36.87	A _e /A _t
Frozen equilibrium flow at	1.3*	A _{fr} /A _t

Comparison of actual and calculated engine parameters

Parameter	Actual	RPA	Percent error
Specific impulse (vac), s	337	338	0.3 %
Specific impulse (SL), s	309	309	0.0 %

[1] http://www.rocket-propulsion.info/energomash/RD-170/index.htm

Liquid propulsion performance analysis

• RD-253

D:		[2]
Design	parameters	[-]

Parameter	Value	Unit
Oxidizer	N2O4(L)	-
Fuel	UDMH	-
Components mass ratio	2.67	O/F
Combustion chamber pressure	15.7	MPa
Nozzle inlet contraction area ratio	2.36	A _c /A _t
Nozzle exit area ratio	26.2	A _e /A _t
Frozen equilibrium flow at	6.0*	A _{fr} /A _t

Comparison of actual and calculated engine parameters

Parameter	Actual	RPA	Percent error
Specific impulse (vac), m/s	3160	3156	0.13 %
Specific impulse (SL), m/s	2890	2832	2.00 %

[2] http://www.rocket-propulsion.info/energomash/RD-253/index.htm

Liquid propulsion performance analysis

RL10A3-3A

D .		131
Design	parameters	[o]

Parameter	Value	Unit
Oxidizer	Liquid Oxygen (LOX)	
Fuel	Liquid Hydrogen (LH ₂)	-
Components mass ratio	5.5	O/F
Combustion chamber pressure	475	psia
Nozzle inlet contraction area ratio	4.6	A _c /A _t
Nozzle exit area ratio	61.0	A _e /A _t
Frozen equilibrium flow at	3*	A _{fr} /A _t

Comparison of actual and calculated engine parameters

Parameter	Actual	RPA	Percent error
Specific impulse (vac), s	444.4	441.3	0.7 %

[3] http://www.spaceandtech.com/spacedata/engines/rl10_specs.shtml

Liquid propulsion performance analysis

SSME

_	. [4]
Design	parameters [4]

Parameter	Value	Unit	
Oxidizer	Liquid Oxygen (LOX)	-	
Fuel	Liquid Hydrogen (LH ₂)		
Components mass ratio	6.0	O/F	
Combustion chamber pressure	3280	psia	
Nozzle inlet contraction area ratio	3.4	A _c /A _t	
Nozzle exit area ratio	77.5	A _e /A _t	
Frozen equilibrium flow at	3.0*	A _{fr} /A _t	

Comparison of actual and calculated engine parameters

Parameter	Actual	RPA	Percent error
Specific impulse (vac), s	454.4	451.95	0.53 %

[4] http://www.spaceandtech.com/spacedata/engines/ssme_specs.shtml

Liquid propulsion performance analysis

- An excellent agreement is obtained between the actual performance and performance predicted by RPA program
- The maximum relative difference occurring for RD-253
- Comparison of ideal performance calculated by RPA with ideal performance calculated by NASA CEA code (not shown in this presentation) provides an excellent agreement as well

Solid and hybrid propulsion performance analysis

- Comparison with a performance data of selected historic engines has been performed:
 - P80 first stage engine of VEGA Launcher
 - Hybrid rocket engine for Peregrine sounding rocket

Solid and hybrid propulsion performance analysis

P80 - first stage engine of VEGA Launcher

Design parameters				
Parameter	Value			Unit
Propellant	HTPB 1912		-	
	Component	Mass fraction		
	NH4CIO4	0.69		
	AI	0.19		
	нтрв	0.12		
Combustion chamber pressure	9.5			МРа
Nozzle exit area ratio	16.0			A _e /A _t

Comparison of actual and calculated engine parameters

Parameter	Actual	RPA	Percent error
Specific impulse (vac), s	279.5	274.71	1.7 %

Solid and hybrid propulsion performance analysis

Hybrid rocket engine for Peregrine sounding rocket

10 CLORD	in a raise at a re-
Design	parameters
	000000000000000000000000000000000000000

Parameter	Value Un	
Oxidizer	Nitrous oxide (Liquid)	-
Fuel	Wax paraffin	-
Components mass ratio	4.0654	O/F
Combustion chamber pressure	700	psi
Nozzle exit area ratio	8.4	A _e /A _t

Comparison of actual and calculated engine parameters

Parameter	Actual	RPA	Percent error
Specific impulse (vac), s	232	234.3	1.0 %

Solid and hybrid propulsion performance analysis

- RPA obtains the proper combustion composition from any type of solid/hybrid propellants, including metalized
- The obtained agreement between the RPA prediction and referenced data is sufficient for the tool used in conceptual and preliminary design

Thermal analysis

- To verify the accuracy of thermal analysis, the comparison between available reference data and RPA prediction has been performed:
 - SSME 40k [1]
 - Aestus [2]

- [1] Scaling Techniques for Design, Development, and Test. Carol E. Dexter, Mark F. Fisher, James R. Hulka, Konstantin P. Denisov, Alexander A. Shibanov, and Anatoliy F. Agarkov
- [2] Simulation and Analysis of Thrust Chamber Flowfields: Storable Propellant Rockets. Dieter Preclik, Oliver Knab, Denis Estublier, and Dag Wennerberg

Thermal analysis

• SSME 40k

Thermal analysis

Aestus

Thermal analysis

- The obtained agreement between the RPA prediction and referenced data is sufficient for the tool used in conceptual and preliminary design
- Quantitative and qualitative differences in results can be explained by the following:
 - RPA does not simulate fuel atomization and dispersion, as well as droplets burning
 - The hot gas properties for thermal analysis are retrieved from quasi one-dimensional flow model
 - The heat transfer is simulated in RPA using semiempirical relations

Cycle analysis and weight estimation

Validation to be performed

Architecture of RPA

Architecture of RPA

- Written in C++
- Can be compiled on MS Windows, Linux and Apple MacOS X
- Shared (Linux/MacOS X) and dynamic (Windows) libraries provide functionality
- Executable file provides GUI and is created with Qt

Architecture of RPA

Architecture of RPA

Available shared/dynamic libraries:

Libutils Utility classes (exceptions, logging, etc)

Libmath Classes for solving equations, linear

systems, etc.

Librpa Thermodynamics

Libnozzle Chamber and nozzle sizing and geometry

Libthermo Thermal analysis

- Libdesign Cycle analysis and weight estimation

Architecture of RPA

Architecture of RPA

Third-party libraries:

Qt Application and GUI framework

http://qt-project.org

Qwt GUI components for 2D plotting

http://qwt.sourceforge.net

Eigen C++ template library for linear algebra

http://eigen.tuxfamily.org

Libconfig C++ library for processing structured

configuration files

http://www.hyperrealm.com/libconfig

Future development

Future development

- Release of RPA 2.1 with cycle analysis and weight estimation
- Development of wrapper C++ classes to make the usage of cycle analysis easier and release of the next version RPA SDK
- Solid-propellant grain design
- Design of thrust-optimized nozzle contour (TOC)
- Implement better integration of available RPA libraries

References to RPA reports

- Ponomarenko A. RPA: Tool for Liquid Propellant Rocket Engine Analysis. 2010.
- Ponomarenko A. RPA: Tool for Liquid Propellant Rocket Engine Analysis. Thermal Analysis of Thrust Chambers. 2012.
- Ponomarenko A. RPA: Tool for Liquid Propellant Rocket Engine Analysis. Assessment of Delivered Performance of Thrust Chamber. 2013.
- Ponomarenko A. RPA: Tool for Liquid Propellant Rocket Engine Analysis. Power Balance Analysis and Weight Estimation of Liquid-Propellant Rocket Engine Cycles. 2013. DRAFT

Thank you!

Q & A