НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ ТОМСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ КАРШИНСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ РОССИЙСКИЙ УНИВЕРСИТЕТ ДРУЖБЫ НАРОДОВ

ИНСТИТУТ ПРОБЛЕМ УПРАВЛЕНИЯ им. В.А. ТРАПЕЗНИКОВА РАН

ИНСТИТУТ МАТЕМАТИКИ им. В.И. РОМАНОВСКОГО АН РУЗ

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ (ИТММ-2022)

МАТЕРИАЛЫ XXI Международной конференции имени А. Ф. Терпугова 25–29 октября 2022 г.

ТОМСК Издательство Томского государственного университета 2023 УДК 519 ББК 22.17

И74

Информационные технологии и математическое моделирование (ИТММ-2022): Материалы XXI Международной конференции имени А. Ф. Терпугова (25–29 октября 2022 г.). — Томск: Издательство Томского государственного университета, 2023. — 442 с.

ISBN 978-5-907572-98-0

Сборник содержит избранные материалы XXI Международной конференции имени А.Ф. Терпугова по следующим направлениям: теория массового обслуживания и ее приложения, интеллектуальный анализ данных и визуализация, информационные технологии и программная инженерия, математическое и компьютерное моделирование технологических процессов. Также в сборник вошли материалы международного симпозиума "Современные стохастические модели и проблемы актуарной математики" (МАМОНТ-2022).

Для специалистов в области информационных технологий и математического моделирования.

УДК 519 ББК 22.17

Редколлегия:

- А.А. Назаров, доктор технических наук, профессор
- С.П. Моисеева, доктор физико-математических наук, профессор
- А.Н. Моисеев, доктор физико-математических наук, доцент
- Д.В. Семенова, кандидат физико-математических наук, доцент

ISBN 978-5-907572-98-0

- С Авторы. Текст, 2023
- © Томский государственный университет. Оформление. Дизайн, 2023

Методы анализа и визуализации данных

ИСПОЛЬЗОВАНИЕ НЕЙРОСЕТЕВОГО ПОДХОДА В ЗАДАЧЕ РАСПОЗНАВАНИЯ КОРОНАВИРУСНОЙ ИНФЕКЦИИ ПО РЕНТГЕНОВСКИМ СНИМКАМ ПАЦИЕНТОВ

Д. Д. Бугакова, Е. Ю. Лисовская

Национальный исследовательский Томский государственный университет, г. Томск, Россия

В данной работе рассматриваются алгоритмы работы и архитектуры сверточных нейронных сетей, которые были использованы для решения задачи распознавания коронавирусной инфекции. Приведены результаты работы различных архитектур, сравнения их работы, а также визуализация работы нейронных сетей с помощью алгоритма Grad-CAM. В заключении представлены выводы, сделанные по анализу результатов работы.

Ключевые слова: python, pytorch, сверточные нейронные сети, глубокое обучение, классификация изображений.

Введение

Стремительное распространение инфекции COVID-19, оказало огромное влияние и принесло непоправимый ущерб жизни многих людей. Для диагностирования и обнаружения такого рода инфекций в настоящее время применяют компьютерную томографию и рентгенографию, но даже при условии обеспеченности нужными аппаратами и медикаментами не всегда можно точно и правильно поставить диагноз, ввиду большого потока пациентов. Решением этой проблемы могут являться быстроразвивающиеся нейронные сети, способные решать задачи, связанные с анализом и классификацией медицинских изображений.

1. Описание и обработка исследуемых данных

Для того, чтобы рассмотреть работу нейронных сетей в задаче распознавания коронавирусной инфекции был использован набор данных с сайта kaggle.com [1] о 18868 рентгеновских снимках пациентов, содержащий 4 класса (0 - covid, 1 - пневмония, 2 - помутнения в легких, 3 - чистые легкие), который был разделен на тренировочную, тестовую и валидационную выборки (таблица 1).

Таблица 1

Распределение данных в выборках

Тип выборки	Класс 0	Класс 1	Класс 2	Класс 3
Тренировочная	3315	1045	3416	9892
Валидационная	150	150	150	150
Тестовая	150	150	150	150

Исследуемый набор данных является несбалансированным, поэтому для корректного обучения был применен метод WeightedRandomSampler, который позволит рассматривать в каждом батче примерно одинаковое количество изображений каждого класса. Для его использования нужно:

- 1) получить значение количества изображений в каждом классе;
- 2) расчитать весовые коэффициенты для каждого класса $\frac{1}{n_i}$, где n_i количество изображений в классе i (весовые коэффициенты для классов: 0 0.0003, 1 0.0010, 2 0.0003, 3 0.0001);
- 3) присвоить каждому изображению из класса соответствующий весовой коэффициент.

Для обучения были выбраны следующие архитектуры нейронных сетей: ResNet-18, DenseNet-121, EfficientNet-B0.

2. Подбор гиперпараметров

Количество нейронов в скрытом слое. Количество нейронов в скрытом слое классификатора было выбрано одинаковым для всех моделей: 512.

Скорость обучения. Для оценки эффективной скорости обучения (CO), модели обучались со скоростью, которая изначально низкая, а затем экспоненциально повышалась с каждой итерацией:

$$lr_{max} = lr_{init}q^n, \ q = \left(\frac{lr_{max}}{lr_{init}}\right)^{\frac{1}{n}}, \ lr_i = lr_{init}q^i = lr_{init}\left(\frac{lr_{max}}{lr_{init}}\right)^{\frac{i}{n}},$$

где lr_{max} — конечная скорость обучения (верхняя граница), lr_{init} — начальная скорость обучения (нижняя граница), n — количество итераций, lr_i — скорость обучения на i-ом шаге.

После обучения модели выбирается интервал скорости обучения, на котором значение функционала ошибки уменьшается быстрее всего, такой интервал будет называться оптимальным. Дальнейшее обучение модели может проводится разными способами: а) с верхним значением

оптимального интервала, б) с нижним значением оптимального интервала, в) со значением в 10 раз меньше значения верхнего оптимального интервала (лучшая верхняя граница), г) с помощью циклического обучения [2].

Начальные интервалы скорости обучения были выбраны одинаковыми для всех архитектур: $lr_{max}=1\times 10^{-7},\ lr_{init}=1\times 10^{-1}.$ После обучения всех моделей со скоростью обучения из начального интервала (рисунок 1), для каждой модели были выбраны оптимальные интервалы, лучшие верхняя и нижняя границы (таблица 2).

Рис. 1. Оптимальные интервалы для выбранных архитектур

Таблица 2 Значения параметров скорости обучения для разных моделей

Архитектура	Вид скор. обуч.	Значение скор. обуч.
ResNet-18	постоянная	1×10^{-6}
	постоянная	3×10^{-4}
	постоянная	3×10^{-5}
	циклическая	$[5 \times 10^{-6}; 3 \times 10^{-5}]$
DenseNet-121	постоянная	1×10^{-6}
	постоянная	$9,5 \times 10^{-5}$
	постоянная	9.5×10^{-6}
	циклическая	$[1,5\times10^{-6};9,5\times10^{-5}]$
EfficientNet-B0	постоянная	1×10^{-5}
	постоянная	9×10^{-4}
	постоянная	9×10^{-5}
	циклическая	$[1,5 \times 10^{-5}; 9 \times 10^{-5}]$

3. Обучение моделей

Для обученных моделей были построены графики со значениями метрики ассuracy (правильности) для каждой из моделей (рисунки 2а-2в).

Рис. 2. Значение правильности: a) ResNet-18, б) DenseNet-121, в) EfficientNet-B0, г) моделей, которые показали лучшие значения метрик

Исходя из графиков, были опредены модели для разных архитектур, которые быстрее достигают максимальной правильности, такие модели в таблице 2 выделены курсивом.

4. Оценивание результатов

Оценка работы разных моделей сверточный нейронных сетей, была проведена с помощью метрик: accuracy, recall, precision, F_1 -мера.

Для каждой из моделей были вычислены значения метрик для каждого класса. В таблице 3 для каждого класса представлены модели, которые показывают лучшую метрику ассигасу. Черным в таблице 2 выделены модели, которые показали лучшую предсказательную способность.

Таблица 3 Значение метрики ассштасу лучшей модели для каждого класса

Класс	Архитектура	Модель	Accuracy
0	EfficientNet-B0	9×10^{-4}	1.000000
1	DenseNet-121	$9,5 \times 10^{-5}$	0,996540
2	EfficientNet-B0	9×10^{-4}	0,968067
3	DenseNet-121	$9,5 \times 10^{-5}$	0,961603

Для моделей, которые показали лучшую предсказательную способность, были построен графики значения метрики ассuracy (рисунок 2г).

5. Визуализация результатов с помощью Grad-CAM

Алгоритм визуализации Grad-CAM был применен к классам, для которых архитектура EfficientNet-B0 показала лучший результат (рисунок 3).

Рис. 3. Визуализация работы нейронной сети EfficientNet-B0: а) для класса «covid», б) для класса «помутнения в легких»

Заключение

По всем метрикам для всех архитектур и для всех классов изображений достигнута очень высокая точность предсказаний. При практическом использовании в медицинском учреждении при подозрении, что человек болен COVID, врачу следует полагаться на предсказание, которое выдает модель архитектуры EfficientNet-B0.

Можно предположить, что архитектура EfficientNet работает чуть лучше других, так как в ней меньше параметров, соответственно меньше весов, следовательно градиент меньше затухает или взрывается, поэтому сеть работает стабильно и точность предсказания выше. Остальные две сети работают не сильно хуже EfficientNet, так как их идея состоит в добавлении промежуточных связей между слоями. DenseNet по сравнению с ResNet работает более точно, так как в ней передаются не просто связи, а целые слои, и при чем к каждому последующему блоку, поэтому финальный блок получает все возможные варианты работы сверточных нейронных сетей и может эффективно отбросить часть ненужных фильтров и оставить только важные.

Также стоит отметить, что все архитектуры имеют высокую предсказательную способность для классов «covid» и «пневмония», чуть меньшую предсказательную способность для классов «помутнения в легких» и «чистые легкие». При практическом использовании данных архитектур медицинскому работнику следует быть более внимательным при постановке диагноза.

СПИСОК ЛИТЕРАТУРЫ

- www.kaggle.com/datasets/tawsifurrahman/covid19-radiography-database Kaggle. 2021.
- Leslie N. Smith. Cyclical Learning Rates for Training Neural Networks // arXiv. 2015.
- 3. Ramprasaath R. Selvaraju. Visual Explanations from Deep Networks via Gradient-Based Localization // International Journal of Computer Vision. 2019. T. 128. № 2. C. 336—359.

Бугакова Дарья Дмитриевна — студент института прикладной математики и компьютерных наук. E-mail: bugashka17@inbox.ru

Лисовская Екатерина Юрьевна — к.ф.-м.н., доцент кафедры теории вероятностей и математической статистики. E-mail: $ekaterina\ lisovs@mail.ru$

содержание

Моделирование телекоммуникационных сетей связи	5
Kindra G., Bogatyrev V. A., Bogatyrev S. V., Moshnikov A. Analysis	
of end-to-end request time for QUIC server in proxy mode	
comparing to HTTP	6
$T \acute{o} th \ \acute{A}., \ Sztrik \ J. \ Simulation of retrial queueing system with two-way$	
communication in different scenarios	12
Назаров А. А., Фёдорова Е. А, О. Д. Лизюра, Пауль С. В., Mouce-	
ев А. Н. Двухфазная СМО с неограниченным числом прибо-	
ров и деградацией обслуживания	18
Назаров А. А., Фунг-Дук Т., Пауль С. В., Морозова М. А. Иссле-	
дование тандемной системы массового обслуживания с двумя	
орбитами методом асимптотического анализа	24
Методы анализа и визуализации данных	33
Filianin I. V., Kapitonov A. A. Comparison of machine learning	
algorithms in the problems of predicting the number of users of	
multi-access edge computing systems	34
Гилин С.В. Задача автоматического распознавания зданий в во-	
доохранных зонах на спутниковых снимках	40
Бугакова Д. Д., Лисовская Е. Ю. Использование нейросетевого	
подхода в задаче распознавания коронавирусной инфекции по	
рентгеновским снимкам пациентов	47
Солопов В. Е., Кабанова Т. В., Петрова Е. Ю. Проблема оценки	
работы алгоритмов тематического моделирования	53
Математическая теория телетрафика и теория мас-	
сового обслуживания	59
Jijo Joy, Jose K. P. An (s,S) Inventory System with Perishable Items	
and Age-dependent Demands	60
Zorine A. V. A GoF test for shifted exponential distribution	66
Beena P., Jose K.P. A MAP/PH(1),PH(2)/2 Inventory Model with	
Vacation During Production	72
Thresiamma N. J., Jose K. P. A Retrial Inventory Model With N-Policy	78
Smija Skaria, Sajeev S Nair, Sandhya E. An Explicit solution for an	
Inventory Model with Positive Service Time and Catastrophes	85
Sandhya E, C. Sreenivasan, Smija Skaria, Sajeev S Nair An Explicit	
Solution for an Inventory Model with Retrial and Server Interruptions	92

Научное издание

ИНФОРМАЦИОННЫЕ ТЕХНОЛОГИИ И МАТЕМАТИЧЕСКОЕ МОДЕЛИРОВАНИЕ (ИТММ-2022)

МАТЕРИАЛЫ XXI Международной конференции имени А. Ф. Терпугова 25-29 октября 2022 г.

Редактор В.Г. Лихачева Компьютерная верстка О.Д. Лизюра Дизайн обложки Л.Д. Кривцовой

Отпечатано на оборудовании Издательства Томского государственного университета

634050, г. Томск, пр. Ленина, 36. Тел. 8+(382-2)-52-98-49 Сайт: http://publish.tsu.ru

Саит: http://publish.tsu.r E-mail: rio.tsu@mail.ru

Подписано к печати 17.05.2023 г. Формат $60 \times 84^{1}/_{16}$.

Бумага для офисной техники. Гарнитура Times.

Печ. л. 27,6. Усл. печ. л. 25,6. Тираж 500 экз. Заказ № 5292.

ISBN 978-5-907572-98-0

