Learning to Rank for IR

Information Retrieval

Indian Statistical Institute

Outline

- 1 Introduction
- 2 Pointwise approaches
- 3 Pairwise approaches
 - Preliminaries: Boosting (AdaBoost)
 - RankBoost
- 4 Listwise approaches
- 5 Datasets

Where is learning involved in IR?

- Relevance feedback
- Parameter tuning (k_1, b, λ) , teleportation probability, etc.)
 - simple / brute-force approach: grid search
 - large number of features / parameters ⇒ ML techniques can help
- Data fusion: merging of ranked lists

Basic framework

Document representation

	Feature 1	Feature 2	• • •	Feature k
D	x_1	x_2		x_k

Features:

- Query-dependent
 - total BM25 score for document
 - total BM25 score for title of document
 - total Query Likelihood score for document using Dirichlet smoothing
 - ... for title of document using Dirichlet smoothing
 - ... anchor text
 - etc. — new / improved models may be incorporated as additional dimensions
- Query-independent
 - PageRank
 - document length
 - etc.

Basic framework

Document representation

	Feature 1	Feature 2	 Feature k
D	x_1	x_2	 x_k

Features:

- Query-dependent
 - total BM25 score for document
- NB: Model parameters assumed to be fixed; only optimal way of combining features is learned.
- total BM25 score for title of document
- total Query Likelihood score for document using Dirichlet smoothing
- ... for title of document using Dirichlet smoothing
- ... anchor text
- etc. — new / improved models may be incorporated as additional dimensions
- Query-independent
 - PageRank
 - document length
 - etc.

Basic framework

Learning framework

Hypothesis: function from input space to output space

Overview of approaches

Pointwise approach

- input space: individual feature vectors
- output space: relevance score

Pairwise approach

- input space: feature vector pairs
- output space: $\{+1, -1\}$

Listwise approach

- input space: set of feature vectors corresponding to documents to be ranked for a particular query
- output space: permutation / ordering of elements of input set

Outline

- 1 Introduction
- 2 Pointwise approaches
- 3 Pairwise approaches
 - Preliminaries: Boosting (AdaBoost)
 - RankBoost
- 4 Listwise approaches
- 5 Datasets

Logistic regression

Reference: GEY, SIGIR 94

- Input space: document feature vector x
- Output space: probability of relevance p
- Hypothesis:

$$p_{\theta}(\mathbf{x}) \text{ (or } h_{\theta}(\mathbf{x})) = \frac{1}{1 + \exp(-\theta^T \mathbf{x})}$$

Loss function:

$$J(\theta) = -\left[y \log p_{\theta}(\mathbf{x}) + (1 - y) \log(1 - p_{\theta}(\mathbf{x}))\right]$$

- **Training:** choose $\arg\min_{\theta} J(\theta)$ using gradient descent
- Ranking of test documents: using $p_{\theta}(\mathbf{x}_{test})$

Reference: VELOSO ET AL., SIGIR 2008

- Association rules: $\mathcal{X} \rightarrow r_i$
 - **antecedent** (\mathcal{X}): features
 - **consequent** (r_i) : relevance level e.g., strongly relevant (3), relevant (2), marginally relevant (1), non-relevant (0)
- Support $\sigma(\mathcal{X} \to r_i)$: fraction of training examples containing features \mathcal{X} and having relevance level r_i
- Confidence $\theta(X \to r_i)$: probability of observing relevance level r_i , given that X holds
- Thresholds
 - lacksquare σ_{\min} : consider only rules that are frequently useful
 - lacktriangledown $heta_{\min}$: consider only rules that suggest strong implication

Example

	Retrieved Query Documents			Relevance		
			PageRank	BM25	tf	
		1	[0.85 - 0.92]	[0.36-0.55]	[0.23-0.27]	1
	federal grant programs	2	[0.74 - 0.84]	[0.36 - 0.55]	[0.46 - 0.61]	1
		3	[0.51 - 0.64]	[0.56 - 0.70]	[0.23 - 0.27]	0
Training	ng	4	[0.74-0.84]	[0.36 - 0.55]	[0.28-0.45]	0
Data	scholarship programs	5	[0.65-0.73]	[0.56 - 0.70]	[0.46 - 0.61]	1
		6	[0.93-1.00]	[0.36 - 0.55]	[0.62 - 0.76]	0
		7	[0.74-0.84]	[0.22 - 0.35]	[0.12 - 0.22]	0
	international trade	8	[0.65-0.73]	[0.56 - 0.70]	[0.46 - 0.61]	0
		9	[0.85 - 0.92]	[0.71-0.80]	[0.46-0.61]	1
		10	[0.85 - 0.92]	[0.56 - 0.70]	[0.46 - 0.61]	1
Test Set	after-school programs	11	[0.51-0.64]	[0.36 - 0.55]	[0.28 - 0.45]	0
			[0.34-0.50]	[0.22 - 0.35]	[0.46 - 0.61]	1

Generated rules (\mathcal{R}): ($\sigma_{\min} = 0.2, \theta_{\min} = 0.67$)

- PageRank=[0.85,0.92] $\rightarrow r = 1 \ (\theta = 1.00)$
- PageRank=[0.74,0.84] $\rightarrow r = 0 \ (\theta = 0.67)$
- BM25=[0.56,0.70] $\rightarrow r = 0 \ (\theta = 0.67)$
- $tf = [0.46, 0.61] \rightarrow r = 1 \ (\theta = 0.75)$

Example

	Query			Retrieved ocuments		Relevance
	& act y		PageRank	Tecte value		
		1	[0.85 - 0.92]	[0.36-0.55]	[0.23-0.27]	1
	federal grant programs	2	[0.74-0.84]	[0.36 - 0.55]	[0.46 - 0.61]	1
		3	[0.51 - 0.64]	[0.56-0.70]	[0.23 - 0.27]	0
Training	S	4	[0.74-0.84]	[0.36 - 0.55]	[0.28 - 0.45]	0
Data		5	[0.65 - 0.73]	[0.56 - 0.70]	[0.46 - 0.61]	1
		6	[0.93-1.00]	[0.36 - 0.55]	[0.62 - 0.76]	0
	international trade	7	[0.74-0.84]	[0.22 - 0.35]	[0.12 - 0.22]	0
		8	[0.65-0.73]	[0.56 - 0.70]	[0.46 - 0.61]	0
		9	[0.85 - 0.92]	[0.71 - 0.80]	[0.46-0.61]	1
		10	[0.85 - 0.92]	[0.56 - 0.70]	[0.46 - 0.61]	1
Test Set	after-school programs	11	[0.51 - 0.64]	[0.36 - 0.55]	[0.28 - 0.45]	0
		12	[0.34-0.50]	[0.22 - 0.35]	[0.46 - 0.61]	1

Generated rules (\mathcal{R}): ($\sigma_{\min} = 0.2, \theta_{\min} = 0.67$)

■ PageRank=[0.85,0.92] $\rightarrow r = 1 \ (\theta = 1.00)$

■ PageRank=[0.74,0.84] $\rightarrow r = 0 \ (\theta = 0.67)$

■ BM25=[0.56,0.70] $\rightarrow r = 0 \ (\theta = 0.67)$

 $tf = [0.46, 0.61] \rightarrow r = 1 \ (\theta = 0.75)$

 \mathcal{R}_d : rules applicable to d (3 for d=10)

$$\begin{array}{rcl} \text{Vote for level } r_i: & s(r_i) & = & \displaystyle \frac{\displaystyle \sum_{\mathcal{X} \rightarrow r_i \, \in \, \mathcal{R}_d} \theta(\mathcal{X} \rightarrow r_i)}{|\mathcal{X} \rightarrow r_i \, \in \, \mathcal{R}_d|} \\ \\ & Score(d) & =_{\star} & \displaystyle \sum_{i=0}^k \frac{s(r_i)}{\sum_{j=0}^k s(r_j)} \end{array}$$

Example: document 10

$$\mathcal{R}_d = \text{rules 1, 3, 4}$$

$$r_i = 0$$
: only rule 3 applicable $\Rightarrow s(0) = 0.67$

$$r_i=1$$
 : rules 1 and 4 applicable $\Rightarrow s(1)=(1.00+0.75)/2=0.87$

Score =
$$0 \times \frac{0.67}{0.67 + 0.87} + 1 \times \frac{0.87}{0.67 + 0.87} = 0.56$$

$$\begin{array}{lcl} \text{Vote for level } r_i: & s(r_i) & = & \displaystyle \frac{\displaystyle \sum_{\mathcal{X} \rightarrow r_i \, \in \, \mathcal{R}_d} \theta(\mathcal{X} \rightarrow r_i)}{|\mathcal{X} \rightarrow r_i \, \in \, \mathcal{R}_d|} \\ \\ Score(d) & = & \displaystyle \sum_{i=0}^k \frac{s(r_i)}{\sum_{j=0}^k s(r_j)} \end{array}$$

Example: document 10

$$\mathcal{R}_d = \text{rules 1, 3, 4}$$

$$r_i = 0$$
 : only rule 3 applicable $\Rightarrow s(0) = 0.67$

$$r_i=1$$
 : rules 1 and 4 applicable $\Rightarrow s(1)=(1.00+0.75)/2=0.87$

Score =
$$0 \times \frac{0.67}{0.67 + 0.87} + 1 \times \frac{0.87}{0.67 + 0.87} = 0.56$$

What about document 11 ($\mathcal{R}_d = \varnothing$) ?

On-demand rule generation

- $m{\mathcal{D}}_d$: projected training data obtained after removing examples not applicable to d
- lacksquare \mathcal{R}_d : generated from \mathcal{D}_d using $\sigma_{\min}, heta_{\min}$ as before

On-demand rule generation

- \mathcal{D}_d : projected training data obtained after removing examples not applicable to d
- \blacksquare \mathcal{R}_d : generated from \mathcal{D}_d using σ_{\min} , θ_{\min} as before

Example: document 11

ſ					
		Relevance			
[id	PageRank	BM25	tf	
ſ	1	_	[0.36 - 0.55]	_	1
	2	_	[0.36 - 0.55]	_	1
	3	[0.51 - 0.64]	_	_	0
	4	_	[0.36 - 0.55]	[0.28 - 0.45]	0
	5	_	_	_	1
	6	_	[0.36 - 0.55]	_	0
	7	_	_	_	0
	8	_	_	_	0
l	9	_	_	-	1
[11	[0.51 - 0.64]	[0.36 - 0.55]	[0.28 - 0.45]	0

•
$$\mathcal{R}_d$$
 ($\sigma_{\min} = 0.2, \theta_{\min} = 0.67$):

BM25=[0.36,0.55]
$$\cap$$
 tf=[0.28,0.45] \rightarrow $r=0$ ($\theta=1.00$)

PageRank=[0.51,0.64]
$$\rightarrow r = 0 \ (\theta = 1.00)$$

■
$$s(0) = (1.00 + 1.00)/2 = 1.00, s(1) = 0$$

■ $Score = 0 \times \frac{1.00}{1.00} + 1 \times \frac{0.00}{1.00} = 0.00$

Score =
$$0 \times \frac{1.00}{1.00} + 1 \times \frac{0.00}{1.00} = 0.00$$

- Include query terms as attributes
- Possible interpretations: (??)

 - attributes like BM25, tf are specified on a per-term basis e.g.,

```
d_{12}: PageRank=[0.34-0.50], BM25(after)=[...], BM25(school)=[...], BM25(programs)=[...], tf(after)=[...], ...
```

Outline

- 1 Introduction
- 2 Pointwise approaches
- 3 Pairwise approaches
 - Preliminaries: Boosting (AdaBoost)
 - RankBoost
- 4 Listwise approaches
- 5 Datasets

AdaBoost

- Method for iteratively constructing *weak learning algorithms* h_1, h_2, \ldots, h_T (moderately accurate classifiers with accuracy > 50%) and combining them into highly accurate classifier
- Basic principle:
 - different input instances have differing difficulty levels
 - more importance should be attached to difficult input instances
 - during training, h_{t+1} attaches more importance to instances frequently misclassified by h_1, h_2, \ldots, h_t
 - importance modelled by probability distribution D over training instances

AdaBoost: example

Task: Document retrieval / classification

Input space: Documents d_1, d_2, \ldots, d_m

Output space: $Y = \{+1, -1\}$

Weak hypotheses:

- 1. If d_i contains "Spanish flu", output $\hat{y}_i = +1$.
- 2. If d_i contains "COVID-19", output $\hat{y}_i = -1$. \vdots
- T. Standard Naive Bayes text classifier trained to classify documents as relevant / non-relevant

AdaBoost: example

Task: Document retrieval / classification

Input space: Documents d_1, d_2, \ldots, d_m

Output space: $Y = \{+1, -1\}$

Weak hypotheses:

- 1. If d_i contains "Spanish flu", output $\hat{y}_i = +1$.
- 2. If d_i contains "COVID-19", output $\hat{y}_i = -1$. :

NB: For these weak classifiers, no training is required.

T. Standard Naive Bayes text classifier trained to classify documents as relevant / non-relevant

AdaBoost algorithm - slide I

Inputs:

- Labelled training instances: $(x_1, y_1), \ldots, (x_m, y_m)$
- Number of iterations / rounds: T

Algorithm:

- 1. Initialise distribution over training instances: $D_1(i) = \frac{1}{m}$, $(1 \le i \le m)$.
- **2**. Repeat for t = 1, 2, ..., T:
 - (a) Train a weak learner / construct a weak hypothesis h_t using D_t .
 - (b) Compute expected error of h_t , $\varepsilon_t = \sum_{i:h_t(x_i)\neq u_i} D_t(i)$.
 - (c) Compute weight of h_t : $\alpha_t \leftarrow \frac{1}{2} \ln \left(\frac{1 \varepsilon_t}{\varepsilon_t} \right)$.

AdaBoost algorithm - slide II

(d) Update distribution

$$\begin{array}{lcl} D_{t+1}(i) & = & \frac{D_t(i) \; \exp(-\alpha_t y_i h_t(x_i))}{\text{Sum-normalisation factor}} \\ & = & \frac{D_t(i)}{N_t} \times \left\{ \begin{array}{ll} e^{-\alpha_t} & \text{for correctly classified instances} \\ e^{\alpha_t} & \text{for incorrectly classified instances} \end{array} \right. \end{array}$$

Output:

$$H(x) = \operatorname{sign}\left(\sum_{t=1}^{T} \alpha_t h_t(x)\right)$$

RankBoost

Reference: FREUND ET AL., JMLR 2003

- Combines weak rankers into single highly accurate "final" / "combined" ranker
- Ranking feature / ranking function / scoring function f_i :

$$f_i : \mathcal{X} \to \mathbb{R} \cup \{\bot\}$$
 where $\mathcal{X} = \mathrm{input\ space}$

- $\qquad \qquad \mathbf{f}_i(x) > f_i(y) \ \Rightarrow \ x \ \mathrm{preferred \ to} \ y$
- ties allowed
- all instances may not be included in the ordering corresponding to a ranker
- \blacksquare Ranker $F: \mathcal{X} \to \mathbb{R}$

NB: Ranking feature vs. ranker: in ranker, ties are permitted, but no \bot

RankBoost: constructing the error / loss function

- lacksquare Ground truth specified by function $\Phi~:~\mathcal{X} imes\mathcal{X} o\mathbb{R}$
 - $lacktriangledown \Phi(x,y) > 0 \Rightarrow y$ should be ranked above x
 - \blacksquare $|\Phi(x,y)|$ specifies magnitude of preference
 - $\Phi(x,x) = 0 \qquad \forall x \in \mathcal{X}$
 - lacktriangledown Φ : anti-symmetric (but not required to be transitive)
- lacksquare $D\,:\,\mathcal{X} imes\mathcal{X} o\mathbb{R}$ constructed from Φ as follows

Ranking loss for ranker f

$$\sum_{(x,y)} D(x,y) I[f(y) \le f(x)]$$

I – indicator function

RankBoost algorithm

Algorithm RankBoost

Given: initial distribution D over $X \times X$.

Initialize:
$$D_1 = D$$
.
For $t = 1, ..., T$:

- Train weak learner using distribution D_t .
- Get weak ranking $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update: $D_{t+1}(x_0, x_1) = \frac{D_t(x_0, x_1) \exp(\alpha_t(h_t(x_0) h_t(x_1)))}{Z_t}$

where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final ranking:
$$H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

RankBoost algorithm

Algorithm RankBoost

Given: initial distribution D over $X \times X$.

Initialize:
$$D_1 = D$$
.
For $t = 1, ..., T$:

- Train weak learner using distribution D_t.
- Get weak ranking $h_t: X \to \mathbb{R}$.
- Choose $\alpha_t \in \mathbb{R}$.
- Update: $D_{t+1}(x_0, x_1) = \frac{D_t(x_0, x_1) \exp(\alpha_t(h_t(x_0) h_t(x_1)))}{Z_t}$ where Z_t is a normalization factor (chosen so that D_{t+1} will be a distribution).

Output the final ranking:
$$H(x) = \sum_{t=1}^{T} \alpha_t h_t(x)$$

Choosing α_t

Simplifying assumption: range of $h = \{0, 1\}$

Let
$$W_b = \sum_{(x,y)} D(x,y) \; I \big[h(x) - h(y) == b \big] \quad \text{where } b \in \{-1,0,+1\}$$

Choose
$$\alpha = \frac{1}{2} \ln \left(\frac{W_-}{W_+} \right)$$

Weak rankings

First attempt

$$h(x) = \begin{cases} f_i(x) & \text{if } f_i(x) \in \mathbb{R} \\ q_{\text{def}} & \text{if } f_i(x) = \bot \end{cases}$$

Drawbacks:

- \blacksquare h() depends on actual values assigned by ranking feature
- Problematic to combine ranking features with disparate scores

Weak rankings

Revised attempt

$$h(x) = \begin{cases} 1 & \text{if } f_i(x) > \theta \\ 0 & \text{if } f_i(x) \le \theta \\ q_{\text{def}} & \text{if } f_i(x) = \bot \end{cases}$$

Best $h_t()$ may be obtained by brute force search over

- \blacksquare ranking features f_i
 - \blacksquare threshold θ
 - $q_{def} \in \{0,1\}$

Outline

- 1 Introduction
- 2 Pointwise approaches
- 3 Pairwise approaches
 - Preliminaries: Boosting (AdaBoost)
 - RankBoost
- 4 Listwise approaches
- 5 Datasets

Listwise approaches: overview

- Input space: set of feature vectors corresponding to documents to be ranked for a particular query
 - Output space: permutation / ordering of elements of input set
- Optimise loss functions directly based on IR evaluation measures instead of indirectly related loss functions (e.g., classification accuracy)

AdaRank

Reference: XU AND LI, SIGIR 2007

Inputs: Training data $S = \{\langle q_i, \mathbf{d}_i, \mathbf{y}_i \rangle\}_{i=1}^m$, T, evaluation measure E

Algorithm:

- 1. Initialise distribution over training queries: $D_1(i) = \frac{1}{m}$, $(1 \le i \le m)$.
- **2**. Repeat for t = 1, 2, ..., T:
 - (a) Create *weak ranker* h_t using distribution D_t over training queries.
 - (b) Compute weight α_t of weak ranker h_t . \leftarrow depends on its "goodness"

$$\alpha_t = \frac{1}{2} \cdot \ln \frac{\sum_{i=1}^{m} D_t(i) \cdot \left[1 + E(\pi(q_i, \mathbf{d}_i, h_t), \mathbf{y}_i) \right]}{\sum_{i=1}^{m} D_t(i) \cdot \left[1 - E(\pi(q_i, \mathbf{d}_i, h_t), \mathbf{y}_i) \right]}$$

- (c) Create $ranker f_t() = \sum_{k=1}^t \alpha_k \cdot h_k()$. \leftarrow final output at t = T
- (d) Update distribution: ← emphasise hard-to-rank queries

$$D_{t+1}(i) = \frac{\exp(-E(\pi(q_i, \mathbf{d}_i, f_t), \mathbf{y}_i))}{\sum_{j=1}^{m} \exp(-E(\pi(q_i, \mathbf{d}_i, f_t), \mathbf{y}_i))}$$

AdaRank: features

- $\sum_{w \in q \cap d} \ln(1 + tf(w, d))$
- $\sum_{w \in q \cap d} \ln \left(1 + \frac{tf(w, d)}{|d|} \right)$

- $\sum_{w \in q \cap d} \ln \left(\frac{tf(w,d)}{|d|} \cdot idf(w) + 1 \right)$
- In(BM25 score)

AdaRank: weak rankers

At each round, choose feature that maximises weighted performance.

$$\max_{k} \sum_{i=1}^{m} D_t(i) \cdot E(\pi(q_i, \mathbf{d}_i, \mathbf{x}_k), \mathbf{y}_i)$$

AdaRank vs. RankBoost

- AdaRank can directly optimise any query-specific evaluation measure $\in [-1, +1]$.
- AdaRank focuses specially on top-ranked documents when used with MAP, NDCG, etc.
- AdaRank not biased against queries for which fewer documents retrieved.

Outline

- 1 Introduction
- 2 Pointwise approaches
- 3 Pairwise approaches
 - Preliminaries: Boosting (AdaBoost)
 - RankBoost
- 4 Listwise approaches
- 5 Datasets

Test collections

■ GOV2 / Terabyte

- 2004 crawl of .gov domain
- ~25 million documents (426 GB)
- queries from million query track: MQ2007 (1700 queries), MQ2008 (800 queries)

■ OHSUMED

- subset of MEDLINE (corpus of medical scholarly publications)
- 348,566 records from 270 medical journals (1987–1991)
- title, abstract, MeSH indexing terms, etc.
- 106 medical search gueries
- 16,140 relevance assessment pairs
- 3-level judgments
- each dataset partitioned into 5 parts with approx. equal number of queries

Test collections

Folds	Training set	Validation set	Test set
Fold1	{S1, S2, S3}	S4	S5
Fold2	{S2, S3, S4}	S5	S 1
Fold3	{S3, S4, S5}	S 1	S2
Fold4	{S4, S5, S1}	S2	S 3
Fold5	{S5, S1, S2}	S 3	S4

http://www.microsoft.com/en-us/research/project/ letor-learning-rank-information-retrieval/

References

- 1. Learning to rank for information retrieval, Tie-Yan Liu. FTIR, 3(3), pages 225–331, 2009.
- 2. Learning to Rank for Information Retrieval, Tie-Yan Liu. Springer, 2011.

35/35