Lecture 9: Generative Models

Supervised vs Unsupervised Learning Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Classification

Cat

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Object Detection

DOG, DOG, CAT

Supervised vs Unsupervised Learning

Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Semantic Segmentation

GRASS, CAT, TREE, SKY

Learning Supervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Image captioning

A cat sitting on a suitcase on the floor

Learning Supervised Learning

Unsupervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Data: x

Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Learning
Clustering
(e.g. K-Means)

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

This image is CCO public doma

Supervised vs Unsupervised Learning

Dimensionality Reduction (e.g. Principal Components Analysis)

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Examples: Clustering, dimensionality reduction, feature learning, density estimation, etc.

This image from Matthias Scholz is CCO public domain

Supervised vs Unsupervised Learning

Feature Learning (e.g. autoencoders)

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Supervised vs Unsupervised Learning ...

Density Estimation

Unsupervised Learning

Data: x

Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Learning Supervised Learning

Unsupervised Learning

Data: (x, y)

x is data, y is label

Goal: Learn a *function* to map x -> y

Examples: Classification, regression, object detection, semantic segmentation, image captioning, etc.

Data: x

Just data, no labels!

Goal: Learn some underlying hidden *structure* of the data

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative

Model: Learn p(x|y)

Data: x

Label: y

Cat

Probability Recap:

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Data: x

Density Function

p(x) assigns a positive number to each possible x; higher numbers mean x is more likely

Density functions are **normalized**:

Conditional Generative Model: Learn p(x|y)

Label: y

Cat

$$\int_X p(x)dx = 1$$

Different values of x **compete** for density

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative

Model: Learn p(x|y)

Data: x

P(cat|) P(dog|)

Density Function

p(x) assigns a positive number to each possible x; higher numbers mean x is more likely Density functions are **normalized**:

$$\int_X p(x)dx = 1$$

Different values of x compete for density

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Discriminative model: the possible labels for each input "compete" for probability mass. But no competition between **images**

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Discriminative model: No way for the model to handle unreasonable inputs; it must give label distributions for all images

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Discriminative model: No way for the model to handle unreasonable inputs; it must give label distributions for all images

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative

Model: Learn p(x|y)

Generative model: All possible images compete with each other for probability mass

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative

Model: Learn p(x|y)

Generative model: All possible images compete with each other for probability mass

Requires deep image understanding! Is a dog more likely to sit or stand? How about 3-legged dog vs 3-armed monkey?

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative

Model: Learn p(x|y)

Generative model: All possible images compete with each other for probability mass

Model can "reject" unreasonable inputs by assigning them small values

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative

Model: Learn p(x|y)

Conditional Generative Model: Each possible label induces a competition among all images

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative

Model: Learn p(x|y)

Recall Bayes' Rule:

$$P(x \mid y) = \frac{P(y \mid x)}{P(y)} P(x)$$

Discriminative Model:

Learn a probability distribution p(y|x)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative Model: Learn p(x|y)

Recall Bayes' Rule:

$$P(x \mid y) = \frac{P(y \mid x)}{P(y)} P(x)$$
Conditional
Generative Model

Conditional
Generative Model

Prior over labels

Conditional

Prior over labels

We can build a conditional generative model from other components!

What can we do with a discriminative model?

Discriminative Model:

Learn a probability distribution p(y|x)

Assign labels to data Feature learning (with labels)

Generative Model:

Learn a probability distribution p(x)

Conditional Generative
 Model: Learn p(x|y)

What can we do with a generative model?

Discriminative Model:

Learn a probability distribution p(y|x)

Assign labels to data Feature learning (with labels)

• **Generative Model**: Learn a probability distribution p(x) Detect outliers
Feature learning (without labels)
Sample to generate new data

Conditional Generative
 Model: Learn p(x|y)

What can we do with a generative model?

• Discriminative Model:

Learn a probability distribution p(y|x)

Assign labels to data Feature learning (supervised)

• Generative Model: Learn a probability

distribution p(x)

Detect outliers

Feature learning (unsupervised)

Sample to **generate** new data

Conditional Generative

Model: Learn p(x|y)

Assign labels, while rejecting outliers!

Generate new data conditioned on input labels

Generative models

Model can compute p(x)

Generative models

Model does not explicitly compute p(x), but can sample from p(x)

Explicit density

Implicit density

NADE / MADE

Glow

Ffjord

NICE / RealNVP

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Figure adapted from Ian Goodfellow, Tutorial on Generative Adversarial Networks, 2017.

Variational Autoencoders

Variational

Autoencoders

Typical density models explicitly parameterize density function with a neural network, so we can train to maximize likelihood of training data:

$$p_{\theta}(x) = \prod_{i=1}^{n} p_{\theta}(x_i|x_1, ..., x_{i-1})$$

Variational Autoencoders (VAE) define an **intractable density** that we cannot explicitly compute or optimize

But we will be able to directly optimize a lower bound on the density

Variational <u>Autoencoders</u>

(Regular, non-variational) Autoencoders

Unsupervised method for learning feature vectors from raw data x, without any labels

Features should extract useful information (maybe object identities, properties, scene type, etc) that we can use for downstream tasks

Originally: Linear + nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

(Regular, non-variational) Autoencoders

Problem: How can we learn this feature transform from raw data?

Features should extract useful information (maybe object identities, properties, scene type, etc) that we can use for downstream tasks
But we can't observe features!

Originally: Linear + nonlinearity (sigmoid)

Later: Deep, fully-connected

Later: ReLU CNN

Input Data

(Regular, non-variational) Autoencoders

• **Problem**: How can we learn this feature transform from raw data?

Idea: Use the features to <u>reconstruct</u> the input data with a **decoder** "Autoencoding" = encoding itself

Input Data

Autoencoders

Loss: L2 distance between input and reconstructed data.

Input Data

Autoencoders

Loss: L2 distance between input and reconstructed data.

Reconstructed data

Decoder:

4 tconv layers

Encoder:

4 conv layers

Input Data

Autoencoders

Loss: L2 distance between input and reconstructed data.

Reconstructed data

Decoder:

4 tconv layers

Encoder:

4 conv layers

Input Data

Autoencoders

After training, throw away decoder and use encoder for a downstream task

Autoencoders

After training, throw away decoder and use encoder for a downstream task

Autoencoders

Autoencoders learn latent features for data without any labels!

Can use features to initialize a **supervised** model

Not probabilistic: No way to sample new data from learned model

<u>Variational</u> Autoencoders

Probabilistic spin on autoencoders:

- 1. Learn latent features z from raw data
- 2. Sample from the model to generate new data

Probabilistic spin on autoencoders:

- 1. Learn latent features z from raw data
- 2. Sample from the model to generate new data

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation \mathbf{z}

Intuition: x is an image, **z** is latent factors used to generate **x**: attributes, orientation, etc.

Probabilistic spin on autoencoders:

- 1. Learn latent features z from raw data
- 2. Sample from the model to generate new data

After training, sample new data like this:

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation \mathbf{z}

Intuition: x is an image, **z** is latent factors used to generate **x**: attributes, orientation, etc.

Probabilistic spin on autoencoders:

- 1. Learn latent features z from raw data
- 2. Sample from the model to generate new data

After training, sample new data like this:

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation \mathbf{z}

Intuition: x is an image, **z** is latent factors used to generate **x**: attributes, orientation, etc.

Assume simple prior p(z), e.g. Gaussian

Probabilistic spin on autoencoders:

- 1. Learn latent features z from raw data
- 2. Sample from the model to generate new data

After training, sample new data like this:

- Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation ${\bf z}$
- Intuition: x is an image, z is latent factors used to generate x: attributes, orientation, etc.
- Assume simple prior p(z), e.g.
 Gaussian
- Represent p(x|z) with a neural network (Similar to decoder from autencoder)

Decoder must be **probabilistic**: Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

- Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation ${\bf z}$
- Intuition: x is an image, z is latent factors used to generate x: attributes, orientation, etc.
- Assume simple prior p(z), e.g.
 Gaussian
- Represent p(x|z) with a neural network (Similar to decoder from autencoder)

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample from conditional $p_{\theta^*}(x \mid z^{(i)})$ Sample z from prior $p_{\theta^*}(z)$

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation \mathbf{z}

How to train this model?

Basic idea: maximize likelihood of data

If we could observe the z for each x, then could train a conditional generative model p(x|z)

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample from conditional $p_{\theta^*}(x \mid z^{(i)})$ Sample z from prior $p_{\theta^*}(z)$ Z

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation \mathbf{z}

How to train this model?

Basic idea: maximize likelihood of data

We don't observe z, so need to marginalize:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz = \int p_{\theta}(x|z) p_{\theta}(z) dz$$

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample from conditional $p_{\theta^*}(x \mid z^{(i)})$ Sample z from prior $p_{\theta^*}(z)$ Z

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation \mathbf{z}

How to train this model?

Basic idea: maximize likelihood of data

We don't observe z, so need to marginalize:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz = \int p_{\theta}(x|z) p_{\theta}(z) dz$$

Ok, can compute this with decoder network

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample from conditional $p_{\theta^*}(x \mid z^{(i)})$ Sample z from prior $p_{\theta^*}(z)$ Z

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation ${\bf z}$

How to train this model?

Basic idea: maximize likelihood of data

We don't observe z, so need to marginalize:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz = \int p_{\theta}(x|z) p_{\theta}(z) dz$$

Ok, we assumed Gaussian prior for z

Autoencoders

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample from conditional $p_{\theta^*}(x \mid z^{(i)})$ Sample z from prior $p_{\theta^*}(z)$ Z

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation ${\bf z}$

How to train this model?

Basic idea: maximize likelihood of data

We don't observe z, so need to marginalize:

$$p_{\theta}(x) = \int p_{\theta}(x, z) dz = \iint p_{\theta}(x|z) p_{\theta}(z) dz$$

Problem: Impossible to integrate over all z!

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation **z**

How to train this model?

Basic idea: maximize likelihood of data

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$

Variational Autoencoders

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation ${\bf z}$

How to train this model?

Basic idea: maximize likelihood of data

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$
 Ok, compute with decoder network

Variational Autoencoders

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation **z**

How to train this model?

Basic idea: maximize likelihood of data

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$
 Ok, we assumed Gaussian prior

Variational Autoencoders

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation ${\bf z}$

How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes' Rule:

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$

Problem: No way to compute this!

Variational Autoencoders

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation ${\bf z}$

How to train this model?

Basic idea: maximize likelihood of data

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)}$$
Solution: Train another network (encoder) that learns
$$q_{\phi}(z \mid x) \approx p_{\theta}(z \mid x)$$

Variational Autoencoders

Decoder must be **probabilistic**:

Decoder inputs z, outputs mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Sample x from Gaussian with mean $\mu_{x|z}$ and (diagonal) covariance $\sum_{x|z}$

Assume training data $\{x^{(i)}\}_{i=1}^N$ is generated from unobserved (latent) representation ${\bf z}$

How to train this model?

Basic idea: maximize likelihood of data

Another idea: Try Bayes' Rule:

$$p_{\theta}(x) = \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{p_{\theta}(z \mid x)} \approx \frac{p_{\theta}(x \mid z)p_{\theta}(z)}{q_{\phi}(z \mid x)}$$

Use **encoder** to compute $q_{\Phi}(z \mid x) \approx p_{\theta}(z \mid x)$

Decoder network inputs latent code z, gives distribution over data x

Encoder network inputs data x, gives distribution over latent codes z

If we can ensure that
$$q_{\phi}(z \mid x) \approx p_{\theta}(z \mid x)$$
,

$$p_{\theta}(x \mid z) = N(\mu_{x|z}, \Sigma_{x|z})$$

$$q_{N}(z \mid x) = N(\mu_{z|x}, \Sigma_{z|x})$$

then we can approximate

Idea: Jointly train both encoder and decoder

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)}$$

Bayes' Rule

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

Multiply top and bottom by $q_{\Phi}(z|x)$

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= \log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

Split up using rules for logarithms

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= \log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

Split up using rules for logarithms

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= \log p_{\theta}(x|z) - \log \frac{q_{\phi}(z|x)}{p(z)} + \log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}$$

$$\log p_{\theta}(x) = E_{z \sim q^{\theta}(z|x)} \left[\log p_{\theta}(x) \right]$$

We can wrap in an expectation since it doesn't depend on z

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= E_{\mathbf{z}}[\log p_{\theta}(x|z)] - E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$\log p_{\theta}(x) = E_{z \sim q^{\theta}(z|x)} \left[\log p_{\theta}(x) \right]$$

We can wrap in an expectation since it doesn't depend on z

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= E_{\mathbf{z}}[\log p_{\theta}(x|z)] - E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= E_{z \sim q^{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z)) + D_{KL}(q_{\phi}(z|x), p_{\theta}(z|x))$$

Data reconstruction

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= E_{\mathbf{z}}[\log p_{\theta}(x|z)] - E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= E_{z \sim q \cdot (z|x)} [\log p_{\theta}(x|z)] - D_{KL} (q_{\phi}(z|x), p(z)) + D_{KL} (q_{\phi}(z|x), p_{\theta}(z|x))$$

KL divergence between prior, and samples from the encoder network

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= E_{\mathbf{z}}[\log p_{\theta}(x|z)] - E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= E_{z \sim q^{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z)) + D_{KL}(q_{\phi}(z|x), p_{\theta}(z|x))$$

KL divergence between encoder and posterior of decoder

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= E_{\mathbf{z}}[\log p_{\theta}(x|z)] - E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= E_{z \sim q^{\theta}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z)) + D_{KL}(q_{\phi}(z|x), p_{\theta}(z|x))$$

KL is >= 0, so dropping this term gives a **lower bound** on the data likelihood:

Autoencoders

$$\log p_{\theta}(x) = \log \frac{p_{\theta}(x \mid z)p(z)}{p_{\theta}(z \mid x)} = \log \frac{p_{\theta}(x \mid z)p(z)q_{\phi}(z \mid x)}{p_{\theta}(z \mid x)q_{\phi}(z \mid x)}$$

$$= E_{\mathbf{z}}[\log p_{\theta}(x|z)] - E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p(z)}\right] + E_{\mathbf{z}}\left[\log \frac{q_{\phi}(z|x)}{p_{\theta}(z|x)}\right]$$

$$= E_{z \sim q^{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z)) + D_{KL}(q_{\phi}(z|x), p_{\theta}(z|x))$$

$$\log p_{\theta}(x) \ge E_{z \sim q^{\theta}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}\left(q_{\phi}(z|x), p(z)\right)$$

Autoencoders

Jointly train **encoder** q and **decoder** p to maximize the **variational lower bound** on the data likelihood

$$\log p_{\theta}(x) \ge E_{z \sim q^{\phi}(z|x)}[\log p_{\theta}(x|z)] - D_{KL}(q_{\phi}(z|x), p(z))$$

Encoder Network

$$q_{\Phi}(z \mid x) = N(\mu_{z|x}, \Sigma_{z|x})$$

Decoder Network

$$p_{\theta}(x \mid z) = N(\mu_{x\mid z}, \Sigma_{x\mid z})$$

Generative Adversarial Nets

Review of the GAN:

$$\min_{G} \max_{D} E_{x \sim p_{data}(x)} [\log D(x)] + E_{z \sim q(z)} [\log 1 - D(z)]$$

• A two-player game: G wants to fool D by creating an approximant distribution q close to the true distribution p_{data} , and D wants to be smart so that it can distinguish between p_{data} and q induced by G.

