Dérivation

Rappels. Toute droite du plan d non verticale admet une équation de la forme "y = mx + p" où m et psont des constantes réelles. Dans ce cas l'expression " y = mx + p " est l'équation réduite de la droite d**Exemple.** y = 3x + 6 et y = -17x - 30 sont des équations réduites de droites.

Définitions. La pente (ou coefficient directeur) d'une droite non verticale, est <u>le nombre</u> m qui indique de combien d'unités la droite monte (ou descend si m < 0) lorsqu'on avance d'une unité vers la droite. La pente d'une droite d'équation " y = mx + p " est m. p s'appelle **l'ordonnée à l'origine** de d.

Exemple. La droite y = 5x + 3 a pour pente 5 et pour ordonnée à l'origine 3.

Exemple. La droite y = -2x a pour pente -2 et pour ordonnée à l'origine 0.

Exemple. La droite y = x - 1 a pour pente 1 et pour ordonnée à l'origine -1.

Propriété. Etant donnés $A = (x_A; y_A)$ et $B = (x_B; y_B)$ deux points du plan d'abscisses distinctes $(x_A \neq x_B)$, alors la pente de la droite (AB) est $m = \frac{y_B - y_A}{x_B - x_A}$

 $pente = \frac{d\acute{e}placement \ vertical}{d\acute{e}placement \ horizontal}$ **Exemple**. Donner la pente de la droite passant par A = (1; 1) et B = (2; 4).

La pente de cette droite est $m = \frac{4-1}{2-1} = \frac{3}{1} = 3$.

Idée principale. La dérivée d'une fonction en un point (de sa courbe) est la pente de la fonction en ce point.

C'est un nombre qui mesure la « vitesse de variation » de la fonction au point étudié. La notion de dérivée généralise la notion de pente à une fonction. Contrairement aux droites : Elle dépend du point choisi. Elle n'existe pas toujours.

Exemple. Sur le graphe de f ci-contre, la dérivée de la fonction f en x = 1 est 3 car la droite T_1 tangente à C_f au point de C_f d'abscisse 1, a pour pente m=3.

On écrit f'(1) = 3. La fonction « monte à une vitesse de 3 carreaux/unité » en 1.

Exemple. La dérivée de f en x = 0 est -2 car la tangente T_0 a pour pente -2.

On écrit f'(0) = -2. La fonction « descend à une vitesse de 2 carreaux/unité » en 0

Intuitions. On se place en un point d'abscisse α de la courbe d'une fonction f.

Si en faisant un zoom infini sur le point, la courbe se déforme et devient une droite (non verticale), alors :

- Cette droite est appelée tangente à la courbe représentative de f en a.
- La dérivée de la fonction f en a, notée f'(a) est la pente de la tangente à f en a.
- On dit que la fonction f est **dérivable en** a, (elle admet une dérivée en a).

Exemple. Dans l'exemple précédent, si on zoome sur la courbe en (1; 1), la courbe se déforme progressivement jusqu'à se confondre avec T_1 .

 T_1 est donc la tangente à f en 1, et sa pente 3 est la dérivée de f en 1.

De même, T_0 est ce que l'on voit si on zoome très près de (0;3). T_0 est la tangente à f en 0.

Contre exemples. Il y a des fonctions qui ne sont pas dérivables en certains points.

La valeur absolue $x \mapsto |x|$ n'est pas dérivable en 0, car si on zoome sur l'origine, la fonction forme un pic infiniment pointu, et non une droite. Il n'y a pas de tangente en 0. (Elle est cependant dérivable partout ailleurs)

La racine carrée $x \mapsto \sqrt{x}$ n'est pas dérivable en 0, car si on zoome sur l'origine, la tangente est verticale donc la dérivée en 0 n'est pas un nombre fini.

Remarque. Pour obtenir la tangente et la dérivée, en un point A fixé sur la courbe d'une fonction f, la définition rigoureuse suivante exprime l'idée que :

- On commence par tracer la droite (AB) où B est un point qui bouge librement <u>le long de la courbe</u>, et situé à une distance horizontale h de A.
- On rapproche le point B du point A, en faisant tendre la distance h vers 0.
- Quand *B* et *A* sont confondus, la droite limite obtenue est la tangente, et la pente limite obtenue est la dérivée. La dérivée est la pente de la tangente.

Définition. Soit I un intervalle. Soit $f: I \to \mathbb{R}$.

Soit a et b des réels de l'intervalle I. On note h = b - a.

f est dérivable en a si $\lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$ existe et est un nombre réel. Dans ce cas on note $f'(a) = \lim_{h\to 0} \frac{f(a+h)-f(a)}{h}$. f'(a) est la dérivée de f en a.

$$\frac{f(a+h)-f(a)}{h} = \frac{f(b)-f(a)}{b-a}$$
 est appelé **taux d'accroissement de** f entre a et b .

Remarque. Dans la définition, $f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$ peut être écrit sous la

forme $\lim_{b\to a} \frac{f(b)-f(a)}{b-a}$ ou sous la forme $\lim_{\Delta x\to 0} \frac{\Delta f}{\Delta x}$ ce qui s'écrit aussi $\frac{df}{dx}$ en physique.

Exemple. Soit la fonction définie par $f(x) = x^2$

$$\frac{f(3+h)-f(3)}{h} = \frac{(3+h)^2-3^2}{h} = \frac{h^2+6h}{h} = h+6 \text{ si } h \neq 0. \text{ Donc quand } h \to 0, \frac{f(3+h)-f(3)}{h} \to 6 \text{ donc } f'(3) = 6.$$

Définition (Tangente). Si f est dérivable en a, la tangente à C_f en a est la droite passant par A = (a; f(a)) et de coefficient directeur f'(a).

Propriété. L'équation de la tangente à C_f en a est " y = f'(a)(x - a) + f(a) "

Définition. f est dérivable sur un intervalle I si elle est dérivable en tout nombre réel x de I. Dans ce cas, on appelle fonction dérivée de la fonction f, la fonction f': $\underset{x \mapsto f'(x)}{I \to \mathbb{R}}$

Remarque. La courbe d'une fonction dérivable sur tout un intervalle, a généralement un aspect lisse. Les pics et changements abrupts de direction correspondent à des points de non-dérivabilité.

Dérivées usuelles. A chaque ligne, f est définie et vaut l'expression de la colonne à gauche <u>sur tout</u> D_f . On déduit que f est dérivable sur $D_{f'}$, et f'(x) vaut l'expression dans la dernière colonne sur tout $D_{f'}$.

Opérations sur les dérivées. A chaque ligne : I est un intervalle de \mathbb{R} .

u et v sont dérivables sur I et à valeurs dans \mathbb{R} . On déduit que f est définie et dérivable sur I.

rexpression dans la dernière colonne sur tout $D_{f'}$.					on acadit que y cot demine et demade cui m		
f(x)	Conditions	D_f	$D_{f'}$	f'(x)	f	Conditions	f'
С	$c \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	0	u + v		(u+v)'=u'+v'
x		\mathbb{R}	\mathbb{R}	1	u-v		(u-v)'=u'-v'
ax	$a \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$a \times u$	$a \in \mathbb{R}$	$(a \times u)' = a \times u'$
ax + b	$a,b \in \mathbb{R}$	\mathbb{R}	\mathbb{R}	а	$u \times v$		(uv)' = u'v + v'u
χ^2		\mathbb{R}	\mathbb{R}	2 <i>x</i>	1	$v:I\to\mathbb{R}^*$	(1)' - v'
<i>x</i> ³		\mathbb{R}	\mathbb{R}	$3x^2$	\overline{v}	<u>v ne s'annule</u>	$\left(\frac{1}{v}\right) = \frac{1}{v^2}$
x^n	$n \in \mathbb{N}, n > 0$	\mathbb{R}	\mathbb{R}	nx^{n-1}		pas sur I.	
x^n	$n \in \mathbb{Z}, n < 0$	\mathbb{R}^*	\mathbb{R}^*	nx^{n-1}	$\frac{u}{\underline{}}$	$v:I\to\mathbb{R}^*$	$\left(\frac{u}{v}\right)' = \frac{u'v - v'u}{v^2}$
1		\mathbb{R}^*	\mathbb{R}^*	1	v	v ne s'annule	$\left(\frac{-}{v}\right) = \frac{-}{v^2}$
$\frac{-}{x}$				$-{x^2}$		pas sur I.	
\sqrt{x}		\mathbb{R}_+	\mathbb{R}_+^*	1	e^u		$(e^u)' = u'e^u$
		'	'	$\frac{1}{2\sqrt{x}}$	$x \mapsto v(ax + b)$	$v: \mathbb{R} \to \mathbb{R}$	$x \mapsto a \times v'(ax + b)$
e^x		\mathbb{R}	\mathbb{R}	$\frac{\overline{2\sqrt{x}}}{e^x}$			

