If It Ain't Broke, Fix It?

Predictive Maintenance for BP's Gas and Oil Wells

By Ben Doremus

GOAL

Predict the likelihood of a part failing on any of BP's ~8,000 land-based wells in the lower 48 states.

DATA

I received data on Friday, Sept 1. There are three different data sets I have looked at:

- Surface Failures: ~23,000 entries with 37 features Failures with specific part models, geographic location of well, and date of failure
- Surface Failure Actions: ~30,000 entries with 47 features
 Actions taken, includes those with no component failures. Part category, failure reason, and text fields
- Work Management: ~69,000 entries with 179 features
 Field technician notes for all issues that they responded to

Additional data I would like to have:

- Weather at each well around the time of each part failure (temp and precipitation in particular)
- Cost to replace each part
- Well information at each location find some proxy for how intensely the part gets used
- How many of each part exist in the field find the failure rate, not just the number of failures

PROJECT PROGRESSION

Minimum Viable Product:

- 1. Combine Surface Failure, Surface Failure Action, and Weather data sets together. Ignore Work Management for now. Do some small amounts of feature engineering.
- 2. Find one part category that fails often, and focus only on it. (Compressors look promising)
- 3. Cluster to find groups of failures to see what may be causing that part to fail
- 4. Create a very simple predictive model

Improvement 1: Look deeper into the selected part

- 1. Engineer new features: part age, recent failures at the same well, usage intensity for the part, etc.
- 2. See how the new features change the clustering of part failures.
- 3. Create a more advanced model for the selected part type.

Improvement 2: Expected Profit

1. Using the cost of replacing the part and the number of parts in the field, find a threshold predictive value that warrants preventative maintenance.

Improvement 3: Increase the amount of data used

- 1. Incorporate the Work Management data set
- 2. Engineer new features: length of time since part was serviced, severity of prior service, etc.
- 3. See how the new features change the clustering of part failures.
- 4. Update the model for the selected part.

Improvement 4: Draw deeper conclusions

1. Find wells or part manufacturers that are outliers (good or bad). Explore reasons why they may be outliers, and make suggestions based on findings.

Improvement 5: Extend the scope of the project

1. Predict the probability of failure for other parts