# **HPL**

```
      WITH

      測試环境

      参考

      理论

      初始

      参数考虑 (主要)

      測试

      改变P*Q

      改变NBs

      改变Ns

      打开电脑的野兽模式

      修改其他配置

      总结
```

## 测试环境

- 架高笔记本,增强散热。
- 网络连接、电源连接。
- 后台基本无其它应用。

# 参考

HPL测试 GUANYX~的博客-CSDN博客

linpack实验: MPI性能参数调优 linpack测试参数 Howsen Fisher 的博客-CSDN博客

以及一些其他的。

# 理论

- 本机cpu: 12th Gen Intel(R) Core(TM) i5-12500H 2.50 GHz
  - 官网上看 Instruction Set Extensions :Intel® SSE4.1, Intel® SSE4.2, Intel® AVX2
  - 。 每时钟周期浮点运算次数=16
- 虚拟机主频3.1GHz

```
yang@yang-virtual-machine:~/hpl-2.3/bin/test$ cat /proc/cpuinfo | grep
"processor" | wc -l
8
yang@yang-virtual-machine:~/hpl-2.3/bin/test$ cat /proc/cpuinfo | grep "cpu
cores" | uniq
cpu cores : 4
```

• 理论峰值: Gfloat=8\*3.1\*16=396.8

• 初始HPL.dat

```
#第一、二行: 说明文字
HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
#第三行:
          output file name (if any)
HPL.out
#第四行: "device out"为"6"时,测试结果输出至标准输出(stdout),"device out"为"7"时,测试
结果输出至标准错误输出(stderr),"device out"为其它值时,测试结果输出至第三行所指定的文件中.
          device out (6=stdout,7=stderr,file)
#第五行:矩阵的数量,如1即一个矩阵
          # of problems sizes (N)
#第六行:问题规模大小N值,要考虑内存容量的制约关系,有一个达到最佳性能的上限值。384倍数
29 30 34 35 Ns
#第七行:测试块的个数
          # of NBs
#第八行:系数矩阵被分成NBxNB的循环块被分配到各个进程当中去处理,NB不可能太大或太小,一般在256以
下,NBx8一定是Cache line的倍数等。一般选择128。
1 2 3 4 NBs
#第九行:选择处理器阵列是按列的排列方式还是按行的排列方式。(按列的排列方式适用于节点数较多、每个
节点内CPU数较少的系统;而按行的排列方式适用于节点数较少、每个节点内CPU数较多的大规模系统)
          PMAP process mapping (0=Row-,1=Column-major)
0
#第10~12行: 说明二维处理器网格(P \times Q),要求: P \times Q = 系统CPU数 = 进程数。P最好选择2的幂,
P的值尽量取得小一点
3
          # of process grids (P x Q)
2 1 4
          PS
2 4 1
          Qs
#第13行: 说明测试的精度。若误差在这个值以内就是正确,否则错误。
          threshold
#第14~21行:指明L分解的方式,L、R、C,分别代表Left、Right和Crout。测试经验,NDIVs选择2比较
理想, NBMINS 4或8都不错。(后续2、4好像优于4、8但是最好的结果是4、8)
3
         # of panel fact
         PFACTs (0=left, 1=Crout, 2=Right)
0 1 2
          # of recursive stopping criterium
2
          NBMINS (>= 1)
2 4
          # of panels in recursion
1
2
          NDTVs
3
          # of recursive panel fact.
0 1 2
          RFACTs (0=left, 1=Crout, 2=Right)
#第22~23行: L的横向广播方式, HPL中提供了6种广播方式。一般来说, 在小规模系统中, 选择0或1; 对于
大规模系统,选择3。(选择3比较好)
1
          # of broadcast
0
          BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
#第24~25行: 说明横向通信的通信深度。
          # of lookahead depth
1
0
          DEPTHS (>=0)
#第26~27行: U的广播算法, SWAP="0", 采用二元交换法; SWAP="1", 采用Long法; SWAP="2", 采用混
合法。
2
          SWAP (0=bin-exch, 1=long, 2=mix)
          swapping threshold
#第28~29行:说明L和U的数据存放格式。"transposed",按列存放,否则按行存放。
          L1 in (0=transposed, 1=no-transposed) form
0
          U in (0=transposed,1=no-transposed) form
```

#第30行: 主要在回代中使用,一般使用其默认值

Equilibration (0=no,1=yes)

#第31行: 值主要为内存地址对齐而设置,用于在内存分配中对齐地址。出于安全考虑,可以选择8。

memory alignment in double (> 0)

• 初始结果:

WR00R2R4 35 4 1 4 0.00 2.7444e-01

• 初始比值: 2.7444e-01/396.8=0.06916%

# 参数考虑 (主要)

#### 问题规模大小N

问题规模大小N值,要考虑内存容量的制约关系,有一个达到最佳性能的上限值。我们可以用物理内存的容量(单位: byte) 乘以80%~85%来进行HPL的运算,剩余内存用于保证系统中的其他程序正常运行。由于一个双精度数占8个字节,所以再处以8,将结果开平方,得到的值比较接近最佳N值。根据经验似乎为384倍数更佳。

每组的规模的最大取值根据公式 N\*N\*8=内存容量\*80% 计算得出。

yang@yang-virtual-machine:~/hpl-2.3/bin/test\$ free -h free shared buff/cache available total used 7.7Gi 1.7Gi 4.3Gi 69мі 1.7Gi 5.7Gi Mem: Swap: 3.8Gi 0в 3.8Gi yang@yang-virtual-machine:~/hpl-2.3/bin/test\$ free -b used free shared buff/cache total available 8299274240 1879293952 4646662144 72769536 1773318144 6080458752 Mem: 0 4087345152 Swap: 4087345152

由 N\*N\*8=4646662144\*80% 得N=21556, 考虑384的倍数, 应该为21504。

但是之后发现剩余内存量发生了改变。

### P\*Q

P × Q = 系统CPU数 = 进程数 = 8

一般P<Q,且P为的幂

后续 1\*8, 2\*4, 4\*2, 8\*1

#### 矩阵分块NB

系数矩阵被分成NBxNB的循环块被分配到各个进程当中去处理,NB不可能太大或太小,一般在256以下,NBx8一定是Cache line的倍数等。

取32, 64, 128, 192, 256等

## 测试

### 改变P\*Q

#### 修改推荐配置前:

| 序号 | Ns    | NBs | Р | Q | time  | Gflops     | 比值     |
|----|-------|-----|---|---|-------|------------|--------|
| 1  | 5760  | 128 | 1 | 8 | 1.15  | 1.1072e+02 | 27.90% |
| 2  | 5760  | 128 | 2 | 4 | 1.11  | 1.1471e+02 | 28.90% |
| 3  | 5760  | 128 | 4 | 2 | 1.13  | 1.1247e+02 | 28.34% |
| 4  | 5760  | 128 | 8 | 1 | 1.32  | 9.6597e+01 | 24.34% |
| 5  | 5760  | 128 | 1 | 4 | 1.78  | 7.1473e+01 |        |
| 6  | 5760  | 128 | 2 | 2 | 1.77  | 7.1817e+01 |        |
| 7  | 5760  | 128 | 4 | 1 | 1.84  | 6.9139e+01 |        |
| 8  | 9600  | 128 | 1 | 8 | 4.60  | 1.2826e+02 | 32.32% |
| 9  | 9600  | 128 | 2 | 4 | 4.61  | 1.2791e+02 | 32.24% |
| 10 | 9600  | 128 | 4 | 2 | 4.62  | 1.2765e+02 | 32.17% |
| 11 | 13440 | 128 | 1 | 8 | 11.99 | 1.3503e+02 | 34.03% |
| 12 | 13440 | 128 | 2 | 4 | 11.71 | 1.3819e+02 | 34.83% |
| 13 | 13440 | 128 | 4 | 2 | 12.49 | 1.2962e+02 | 32.67% |
| 14 | 19200 | 128 | 1 | 8 | 33.46 | 1.4103e+02 | 35.54% |
| 15 | 19200 | 128 | 2 | 4 | 32.49 | 1.4527e+02 | 36.61% |

- P\*Q=4时,命令从mpirun-np8./xhpl改为mpirun-np4./xhpl(-np8Gflops值反而更小)
- P\*Q为 8\*1 及 4\*2 的数据,以及 P\*Q=4 的数据是为了验证参考博客的内容。

### 修改推荐配置后:

```
HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out output file name (if any)
           device out (6=stdout,7=stderr,file)
6
1
           # of problems sizes (N)
19200 Ns
1
           # of NBs
128
           NBs
1
           PMAP process mapping (0=Row-,1=Column-major)
           # of process grids (P x Q)
1
2
4
            Qs
16.0
           threshold
1
            # of panel fact
1
           PFACTs (0=left, 1=Crout, 2=Right)
2
            # of recursive stopping criterium
```

```
4 8
             NBMINS (>= 1)
1
             # of panels in recursion
2
             NDIVs
1
             # of recursive panel fact.
2
             RFACTs (0=left, 1=Crout, 2=Right)
2
             # of broadcast
3
             BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
2
             # of lookahead depth
             DEPTHS (>=0)
0 1
2
             SWAP (0=bin-exch,1=long,2=mix)
             swapping threshold
64
             L1 in (0=transposed,1=no-transposed) form
0
0
             U in (0=transposed, 1=no-transposed) form
1
             Equilibration (0=no,1=yes)
8
             memory alignment in double (> 0)
```

| 序号 | Ns    | NBs | P | Q | time  | Gflops     | 比值     |
|----|-------|-----|---|---|-------|------------|--------|
| 1  | 5760  | 128 | 1 | 8 | 1.04  | 1.2261e+02 | 30.90% |
| 2  | 5760  | 128 | 2 | 4 | 1.01  | 1.2628e+02 | 31.82% |
| 3  | 9600  | 128 | 1 | 8 | 4.35  | 1.3554e+02 | 34.16% |
| 4  | 9600  | 128 | 2 | 4 | 4.24  | 1.3912e+02 | 35.06% |
| 5  | 13440 | 128 | 1 | 8 | 11.45 | 1.4132e+02 | 35.61% |
| 6  | 13440 | 128 | 2 | 4 | 11.57 | 1.3997e+02 | 35.27% |
| 7  | 19200 | 128 | 1 | 8 | 33.75 | 1.3983e+02 | 35.24% |
| 8  | 19200 | 128 | 2 | 4 | 37.04 | 1.4268e+02 | 35.96% |

#### 发现:

- 修改推荐配置后Ns为5760、9600、13440的Gflops有所提高,但Ns为19200的Gflops却降低了。
- 大部分情况下, P\*Q为 2\*4 是优于 1\*8 的。后续将只测试前者。
- 后续可能需要用修改推荐配置前 (即默认配置) 的进行测试。
- 目前最优的是 wR00L2L2 19200 128 2 4 32.49 1.4527e+02 (默认配置下), 比值36.61%

## 改变NBs

| 序号 | Ns    | NBs | P | Q | time  | Gflops     |
|----|-------|-----|---|---|-------|------------|
| 1  | 19200 | 32  | 2 | 4 | 40.46 | 1.1664e+02 |
| 2  | 19200 | 64  | 2 | 4 | 35.66 | 1.3235e+02 |
| 3  | 19200 | 96  | 2 | 4 | 33.44 | 1.4114e+02 |
| 4  | 19200 | 128 | 2 | 4 | 32.81 | 1.4382e+02 |
| 5  | 19200 | 160 | 2 | 4 | 33.74 | 1.3985e+02 |

| 序号 | Ns    | NBs | P | Q | time  | Gflops     |
|----|-------|-----|---|---|-------|------------|
| 6  | 19200 | 192 | 2 | 4 | 34.31 | 1.3756e+02 |
| 7  | 19200 | 224 | 2 | 4 | 34.83 | 1.3548e+02 |
| 8  | 19200 | 256 | 2 | 4 | 34.46 | 1.3694e+02 |

### Ns=19200, P=2, Q=4:

| 序号 | NBs | time  | Gflops     |
|----|-----|-------|------------|
| 1  | 80  | 32.86 | 1.4361e+02 |
| 2  | 96  | 32.95 | 1.4321e+02 |
| 3  | 112 | 32.20 | 1.4654e+02 |
| 4  | 128 | 33.36 | 1.4148e+02 |
| 5  | 144 | 31.89 | 1.4796e+02 |
| 6  | 160 | 32.96 | 1.4318e+02 |
| 7  | 176 | 32.40 | 1.4566e+02 |
| 8  | 192 | 33.21 | 1.4210e+02 |
| 9  | 208 | 32.72 | 1.4424e+02 |
| 10 | 224 | 33.12 | 1.4247e+02 |
| 11 | 240 | 33.64 | 1.4247e+02 |
| 12 | 256 | 34.95 | 1.3501e+02 |

### 整合 (Ns=19200, P=2, Q=4):

| 序号 | NBs | time  | Gflops     | 比值     |
|----|-----|-------|------------|--------|
| 1  | 32  | 40.46 | 1.1664e+02 | 29.40% |
| 2  | 64  | 35.66 | 1.3235e+02 | 33.35% |
| 3  | 80  | 32.86 | 1.4361e+02 | 36.19% |
| 4  | 96  | 32.95 | 1.4321e+02 | 36.09% |
| 5  | 112 | 32.20 | 1.4654e+02 | 36.93% |
| 6  | 128 | 32.81 | 1.4382e+02 | 36.24% |
| 7  | 144 | 31.89 | 1.4796e+02 | 37.29% |
| 8  | 160 | 32.96 | 1.4318e+02 | 36.08% |
| 9  | 176 | 32.40 | 1.4566e+02 | 36.71% |

| 序号 | NBs | time  | Gflops     | 比值     |
|----|-----|-------|------------|--------|
| 10 | 192 | 33.21 | 1.4210e+02 | 35.81% |
| 11 | 208 | 32.72 | 1.4424e+02 | 36.35% |
| 12 | 224 | 33.12 | 1.4247e+02 | 35.90% |
| 13 | 240 | 33.64 | 1.4028e+02 | 35.35% |
| 14 | 256 | 34.46 | 1.3694e+02 | 34.51% |

- 目前最优的是 wc10R2C8 19200 144 2 4 31.89 1.4796e+02,比值37.29%。
- 问题:不同时间测试的数据差距明显。
- 可能需要改变Ns的值,再进行测试,测试NBs值为80、96、112、128、144、160、176、192、208、 (224)

### P=2, Q=4:

| Ns    | NBs | time  | Gflops     |
|-------|-----|-------|------------|
| 13440 | 80  | 11.90 | 1.3601e+02 |
| 13440 | 96  | 11.80 | 1.3714e+02 |
| 13440 | 112 | 11.86 | 1.3651e+02 |
| 13440 | 128 | 11.84 | 1.3674e+02 |
| 13440 | 144 | 11.65 | 1.3893e+02 |
| 13440 | 160 | 11.90 | 1.3600e+02 |
| 13440 | 176 | 11.63 | 1.3924e+02 |
| 13440 | 192 | 12.20 | 1.3263e+02 |
| 13440 | 208 | 11.48 | 1.4100e+02 |
| 13440 | 224 | 12.07 | 1.3408e+02 |
| 9600  | 96  | 4.40  | 1.3399e+02 |
| 9600  | 112 | 4.48  | 1.3169e+02 |
| 9600  | 128 | 4.57  | 1.2898e+02 |
| 9600  | 144 | 4.48  | 1.3161e+02 |
| 9600  | 160 | 4.29  | 1.3764e+02 |
| 9600  | 176 | 4.48  | 1.3179e+02 |
| 9600  | 192 | 4.55  | 1.2968e+02 |
| 9600  | 208 | 4.63  | 1.2755e+02 |

| Ns   | NBs | time | Gflops     |
|------|-----|------|------------|
| 5760 | 96  | 1.06 | 1.1991e+02 |
| 5760 | 112 | 1.07 | 1.1924e+02 |
| 5760 | 128 | 1.06 | 1.2039e+02 |
| 5760 | 144 | 1.04 | 1.2223e+02 |
| 5760 | 160 | 1.06 | 1.2057e+02 |
| 5760 | 176 | 1.04 | 1.2224e+02 |
| 5760 | 192 | 1.12 | 1.1428e+02 |
| 5760 | 208 | 1.08 | 1.1827e+02 |

• 13440最好的是NBs值是144、176、208

9600: 96、160、1765760: 144、160、20819200: 112、144、176

### 改变Ns

### P=2, Q=4

| Gflops   | NBs=96     | NBs=112    | NBs=128    | NBs=144    | NBs=160    | NBs=176    | Ns=208     |
|----------|------------|------------|------------|------------|------------|------------|------------|
| Ns=9600  | 1.3572e+02 | 1.3466e+02 | 1.3144e+02 | 1.3140e+02 | 1.3377e+02 | 1.3346e+02 | 1.2844e+02 |
| Ns=10240 | 1.3226e+02 | 1.3196e+02 | 1.3078e+02 | 1.3213e+02 | 1.3047e+02 | 1.3226e+02 | 1.3148e+02 |
| Ns=11520 | 1.3498e+02 | 1.3381e+02 | 1.3237e+02 | 1.3526e+02 | 1.3519e+02 | 1.3559e+02 | 1.3299e+02 |
| Ns=13440 | 1.3499e+02 | 1.4110e+02 | 1.4013e+02 | 1.4283e+02 | 1.3909e+02 | 1.4047e+02 | 1.3519e+02 |
| Ns=15360 | 1.4118e+02 | 1.4189e+02 | 1.3854e+02 | 1.4053e+02 | 1.4462e+02 | 1.4399e+02 | 1.3862e+02 |
| Ns=17280 | 1.4049e+02 | 1.4109e+02 | 1.3978e+02 | 1.4205e+02 | 1.4345e+02 | 1.4181e+02 | 1.3738e+02 |
| Ns=19200 | 1.4415e+02 | 1.4227e+02 | 1.4060e+02 | 1.4284e+02 | 1.4663e+02 | 1.4419e+02 | 1.4243e+02 |
| Ns=21120 | 1.4085e+02 | 1.4245e+02 | 1.4250e+02 | 1.4346e+02 | 1.4434e+02 | 1.4469e+02 | 1.4235e+02 |
| Ns=23040 |            |            |            | 1.1883e+02 | 1.1841e+02 | 1.1942e+02 |            |

yang@yang-virtual-machine:~/hpl-2.3/bin/test\$ free -b

total used free shared buff/cache available

内存: 8299270144 1793114112 5403443200 51945472 1102712832 6197198848

交换: 4087345152 0 4087345152

### 由 N\*N\*8=5403443200\*80% 考虑384的倍数,应该为23040。

测试完21120之后,再次进行测试时,发现电脑cpu使用率只有在刚运行时能达到于之前测试时差不多的数值,然后就不断下降,维持在一个不高的值。然后发现了电脑中的野兽模式,N=23040,NB为96、112、128、208的就没有继续测试。

### 打开电脑的野兽模式

并将任务管理器中 VMware Workstation VMX 调到实时



#### 测试1:

| 序号 | Ns    | NBs | P | Q | time  | Gflops     | 比值     |
|----|-------|-----|---|---|-------|------------|--------|
| 1  | 19200 | 144 | 2 | 4 | 26.49 | 1.7818e+02 | 44.90% |
| 2  | 19200 | 160 | 2 | 4 | 24.48 | 1.9278e+02 | 48.58% |
| 3  | 19200 | 176 | 2 | 4 | 24.17 | 1.9523e+02 | 49.20% |
| 4  | 21120 | 144 | 2 | 4 | 33.03 | 1.9018e+02 | 47.93% |
| 5  | 21120 | 160 | 2 | 4 | 37.92 | 1.6566e+02 | 41.75% |
| 6  | 21120 | 176 | 2 | 4 | 32.83 | 1.9133e+02 | 48.22% |

• 比值终于达到了4开头,将近5,虽然离理想(6~7)还是差很多。

#### 测试2:

| 序号 | Ns    | NBs | P | Q | time  | Gflops     | 比值     |
|----|-------|-----|---|---|-------|------------|--------|
| 1  | 21504 | 112 | 2 | 4 | 40.79 | 1.6253e+02 | 40.96% |

| 序号 | Ns    | NBs | P | Q | time  | Gflops     | 比值     |
|----|-------|-----|---|---|-------|------------|--------|
| 2  | 21504 | 144 | 2 | 4 | 37.55 | 1.7655e+02 | 44.49% |
| 3  | 21504 | 160 | 2 | 4 | 39.67 | 1.6715e+02 | 42.12% |
| 4  | 21504 | 176 | 2 | 4 | 38.25 | 1.7331e+02 | 43.68% |

### 测试3 (两次):

| 序号 | Ns    | NBs | P | Q | time  | Gflops     | 比值     |  |
|----|-------|-----|---|---|-------|------------|--------|--|
| 1  | 23040 | 112 | 2 | 4 | 41.80 | 1.9509e+02 | 49.17% |  |
| 2  | 23040 | 144 | 2 | 4 | 40.61 | 2.0082e+02 | 50.61% |  |
| 3  | 23040 | 160 | 2 | 4 | 39.21 | 2.0799e+02 | 52.42% |  |
| 4  | 23040 | 176 | 2 | 4 | 40.21 | 2.0281e+02 | 51.11% |  |
| 5  | 23040 | 96  | 2 | 4 | 46.71 | 1.7457e+02 | 43.99% |  |
| 6  | 23040 | 128 | 2 | 4 | 44.02 | 1.8523e+02 | 46.68% |  |
| 7  | 23040 | 144 | 2 | 4 | 39.65 | 2.0564e+02 | 51.82% |  |

### • 比值达到5开头。

### 测试4:

| 序号 | Ns    | NBs | P | Q | time  | Gflops     | 比值\%  |
|----|-------|-----|---|---|-------|------------|-------|
| 1  | 23424 | 144 | 2 | 4 | 41.52 | 2.0639e+02 | 52.01 |
| 2  | 23424 | 160 | 2 | 4 | 46.13 | 1.8576e+02 | 46.81 |
| 3  | 23424 | 168 | 2 | 4 | 44.23 | 1.9372e+02 | 48.82 |
| 4  | 23424 | 176 | 2 | 4 | 42.39 | 2.0217e+02 | 50.95 |
| 5  | 23424 | 208 | 2 | 4 | 48.30 | 1.7741e+02 | 44.71 |
| 6  | 23424 | 256 | 2 | 4 | 49.54 | 1.7297e+02 | 43.59 |
| 7  | 23424 | 96  | 2 | 4 | 45.80 | 1.8711e+02 | 47.15 |
| 8  | 23424 | 128 | 2 | 4 | 43.47 | 1.9713e+02 | 49.68 |

### 测试5:

(由于刚开机,先跑了别的数据,再测试)

| 序号 | Ns    | NBs | P | Q | time  | Gflops     | 比值 %  |
|----|-------|-----|---|---|-------|------------|-------|
| 1  | 23040 | 144 | 2 | 4 | 45.61 | 1.7880e+02 | 45.06 |
| 2  | 23040 | 160 | 2 | 4 | 40.58 | 2.0097e+02 | 50.65 |

| 序号 | Ns    | NBs | P | Q | time  | Gflops     | 比值 %  |
|----|-------|-----|---|---|-------|------------|-------|
| 3  | 23040 | 176 | 2 | 4 | 42.09 | 1.9375e+02 | 48.83 |
| 4  | 23424 | 144 | 2 | 4 | 44.45 | 1.9277e+02 | 48.58 |
| 5  | 23424 | 160 | 2 | 4 | 44.97 | 1.9054e+02 | 48.02 |
| 6  | 23424 | 176 | 2 | 4 | 39.60 | 2.1636e+02 | 54.53 |
| 7  | 23808 | 144 | 2 | 4 | 50.48 | 1.7825e+02 | 44.92 |
| 8  | 23808 | 160 | 2 | 4 | 44.32 | 2.0303e+02 | 51.17 |
| 9  | 23808 | 176 | 2 | 4 | 46.73 | 1.9252e+02 | 48.52 |

• 其中6号数据最优,也是目前最好的结果,达到54.53%。

# 修改其他配置

### 全部改为初始配置

PMAP process mapping为0.

```
3
             # of panel fact
0 1 2
             PFACTs (0=left, 1=Crout, 2=Right)
             # of recursive stopping criterium
2 4
             NBMINS (>= 1)
1
             # of panels in recursion
2
             NDIVs
3
             # of recursive panel fact.
0 1 2
             RFACTs (0=left, 1=Crout, 2=Right)
             # of broadcast
1
0
             BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
             # of lookahead depth
1
0
             DEPTHS (>=0)
             SWAP (0=bin-exch,1=long,2=mix)
2
64
             swapping threshold
             L1 in (0=transposed,1=no-transposed) form
0
             U in (0=transposed,1=no-transposed) form
0
             Equilibration (0=no,1=yes)
1
8
             memory alignment in double (> 0)
```

| 序号 | Ns    | NBs | P | Q | time  | Gflops     |
|----|-------|-----|---|---|-------|------------|
| 1  | 23040 | 144 | 2 | 4 | 42.80 | 1.9051e+02 |
| 2  | 23040 | 160 | 2 | 4 | 45.55 | 1.7902e+02 |
| 3  | 23040 | 176 | 2 | 4 | 42.38 | 1.9240e+02 |
| 4  | 23424 | 144 | 2 | 4 | 45.74 | 1.8735e+02 |
| 5  | 23424 | 160 | 2 | 4 | 46.27 | 1.8518e+02 |
| 6  | 23424 | 176 | 2 | 4 | 43.25 | 1.9811e+02 |

| 序号 | Ns    | NBs | Р | Q | time  | Gflops     |
|----|-------|-----|---|---|-------|------------|
| 7  | 23808 | 144 | 2 | 4 | 48.04 | 1.8728e+02 |
| 8  | 23808 | 160 | 2 | 4 | 47.81 | 1.8820e+02 |
| 9  | 23808 | 176 | 2 | 4 | 46.56 | 1.9325e+02 |

- 全部修改并没有出现跟P\*Q测试中,默认配置>推荐配置的情况。
- 总体来说,比测试5差。

### 修改1 (NBMINs、PMAP process mapping)

```
HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
           output file name (if any)
HPL.out
            device out (6=stdout,7=stderr,file)
6
1
            # of problems sizes (N)
23424
             Ns
3
             # of NBs
144 160 176 NBs
             PMAP process mapping (0=Row-,1=Column-major)
1
             # of process grids (P x Q)
2
             Ps
4
16.0
            threshold
3
             # of panel fact
0 1 2
            PFACTs (0=left, 1=Crout, 2=Right)
2
             # of recursive stopping criterium
4 8
            NBMINS (>= 1)
             # of panels in recursion
2
             NDIVs
             # of recursive panel fact.
3
0 1 2
            RFACTs (0=left, 1=Crout, 2=Right)
             # of broadcast
             BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
0
             # of lookahead depth
1
0
             DEPTHS (>=0)
2
             SWAP (0=bin-exch,1=long,2=mix)
64
             swapping threshold
0
             L1 in (0=transposed,1=no-transposed) form
             U in (0=transposed,1=no-transposed) form
0
             Equilibration (0=no,1=yes)
1
8
             memory alignment in double (> 0)
```

| 序号 | Ns    | NBs | PMAP<br>process<br>mapping | NBMINs | P | Q | time  | Gflops     |
|----|-------|-----|----------------------------|--------|---|---|-------|------------|
| 1  | 23424 | 144 | 1                          | 4、8    | 2 | 4 | 46.31 | 1.8505e+02 |
| 2  | 23424 | 160 | 1                          | 4、8    | 2 | 4 | 46.40 | 1.8467e+02 |
| 3  | 23424 | 176 | 1                          | 4、8    | 2 | 4 | 44.76 | 1.9144e+02 |

| 序号 | Ns    | NBs | PMAP<br>process<br>mapping | NBMINs | P | Q | time  | Gflops     |
|----|-------|-----|----------------------------|--------|---|---|-------|------------|
| 4  | 23424 | 144 | 0                          | 4、8    | 2 | 4 | 48.51 | 1.7664e+02 |
| 5  | 23424 | 160 | 0                          | 4、8    | 2 | 4 | 46.92 | 1.8262e+02 |
| 6  | 23424 | 176 | 0                          | 4、8    | 2 | 4 | 45.22 | 1.8949e+02 |
| 7  | 23424 | 144 | 0                          | 2、4    | 2 | 4 | 46.88 | 1.8280e+02 |
| 8  | 23424 | 160 | 0                          | 2、4    | 2 | 4 | 45.48 | 1.8842e+02 |
| 9  | 23424 | 176 | 0                          | 2、4    | 2 | 4 | 43.97 | 1.9487e+02 |
| 10 | 23424 | 144 | 1                          | 2、4    | 2 | 4 | 44.29 | 1.9349e+02 |
| 11 | 23424 | 160 | 1                          | 2、4    | 2 | 4 | 43.28 | 1.9800e+02 |
| 12 | 23424 | 176 | 1                          | 2、4    | 2 | 4 | 42.22 | 2.0298e+02 |

• NBMINs为2、4, PMAP process mapping为1时较优。

### 修改2 (BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM))

```
HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
           output file name (if any)
HPL.out
            device out (6=stdout,7=stderr,file)
            # of problems sizes (N)
1
23424
            Ns
3
             # of NBs
144 160 176 NBs
            PMAP process mapping (0=Row-,1=Column-major)
1
            # of process grids (P x Q)
2
            Ps
4
            Qs
16.0
            threshold
3
            # of panel fact
           PFACTs (0=left, 1=Crout, 2=Right)
0 1 2
2
            # of recursive stopping criterium
            NBMINS (>= 1)
2 4
            # of panels in recursion
1
2
            NDIVS
            # of recursive panel fact.
3
0 1 2
            RFACTs (0=left, 1=Crout, 2=Right)
1
            # of broadcast
3
            BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
            # of lookahead depth
1
0
            DEPTHS (>=0)
2
            SWAP (0=bin-exch,1=long,2=mix)
            swapping threshold
64
0
            L1 in (0=transposed,1=no-transposed) form
0
             U in (0=transposed,1=no-transposed) form
             Equilibration (0=no,1=yes)
1
```

| 序号 | Ns    | NBs | BCASTs | Р | Q | time  | Gflops     |
|----|-------|-----|--------|---|---|-------|------------|
| 1  | 23424 | 144 | 3      | 2 | 4 | 44.51 | 1.9254e+02 |
| 2  | 23424 | 160 | 3      | 2 | 4 | 46.13 | 1.8577e+02 |
| 3  | 23424 | 176 | 3      | 2 | 4 | 44.52 | 1.9249e+02 |
| 4  | 23424 | 144 | 0      | 2 | 4 | 48.12 | 1.7806e+02 |
| 5  | 23424 | 160 | 0      | 2 | 4 | 47.57 | 1.8013e+02 |
| 6  | 23424 | 176 | 0      | 2 | 4 | 45.68 | 1.8759e+02 |
| 7  | 23424 | 144 | 1      | 2 | 4 | 47.49 | 1.8043e+02 |
| 8  | 23424 | 160 | 1      | 2 | 4 | 46.50 | 1.8429e+02 |
| 9  | 23424 | 176 | 1      | 2 | 4 | 45.29 | 1.8919e+02 |
| 10 | 23424 | 144 | 2      | 2 | 4 | 46.32 | 1.8501e+02 |
| 11 | 23424 | 160 | 2      | 2 | 4 | 45.67 | 1.8761e+02 |
| 12 | 23424 | 176 | 2      | 2 | 4 | 47.17 | 1.8166e+02 |
| 13 | 23424 | 144 | 4      | 2 | 4 | 51.52 | 1.6632e+02 |
| 14 | 23424 | 160 | 4      | 2 | 4 | 48.38 | 1.7712e+02 |
| 15 | 23424 | 176 | 4      | 2 | 4 | 47.93 | 1.7878e+02 |
| 16 | 23424 | 144 | 5      | 2 | 4 | 49.48 | 1.7318e+02 |
| 17 | 23424 | 160 | 5      | 2 | 4 | 47.74 | 1.7950e+02 |
| 18 | 23424 | 176 | 5      | 2 | 4 | 45.56 | 1.8809e+02 |

• 相对来说,推荐的3比较好。

# 总结

- 最优的比值 (2.1636e+02) /396.8=54.53%
- 配置如下 (跟修改其他配置的不一样诶):

```
HPLinpack benchmark input file
Innovative Computing Laboratory, University of Tennessee
HPL.out output file name (if any)
6 device out (6=stdout,7=stderr,file)
1 # of problems sizes (N)
23424 Ns
1 # of NBS
176 NBS
1 PMAP process mapping (0=Row-,1=Column-major)
```

```
\# of process grids (P x Q)
1
2
             Ps
4
             Qs
             threshold
16.0
             # of panel fact
1
             PFACTs (0=left, 1=Crout, 2=Right)
1
2
             # of recursive stopping criterium
4 8
             NBMINS (>= 1)
             # of panels in recursion
1
2
             NDIVs
             # of recursive panel fact.
1
2
             RFACTs (0=left, 1=Crout, 2=Right)
2
             # of broadcast
3
             BCASTs (0=1rg,1=1rM,2=2rg,3=2rM,4=Lng,5=LnM)
2
             # of lookahead depth
0 1
             DEPTHS (>=0)
2
             SWAP (0=bin-exch,1=long,2=mix)
64
             swapping threshold
             L1 in (0=transposed,1=no-transposed) form
0
             U in (0=transposed,1=no-transposed) form
0
             Equilibration (0=no,1=yes)
1
8
             memory alignment in double (> 0)
```