

CMOS INTEGRATED CIRCUITS FABRICATION PROCESSES

Outline

- Fundamental processes
 - Wafer manufacture
 - Thermal oxidation
 - Doping processes
 - Ion implantation
 - Solid-state diffusion
 - Photolithography
 - Thin-film removal
 - Thin-film deposition

Fundamental processes: Wafer manufacture

- Wafer production requires three processes:
 - Silicon refinement: Several processes are necessary in order to obtain polycrystalline chunks of silicon with the enough purity.
 - Silica in a furnace at 2000°C with carbon source SiO₂(solid)+2C(solid)→Si(liquid)+2CO(gas)
 - Chemical reduction processes
 - Crystal growth: Czochralski method
 - Wafer formation: 1 mm thick (thickness increases with wafer diameter)

Fundamental processes: Wafer manufacture

Process of monocrystalline silicon ingot creation

Fig. 1 Cutting of silicon wafer

Fundamental processes: Photolithography

- Process used to select the parts in a wafer that must be affected by a given fabrication process
- A light-sensitive polymer called photoresist serve as ion implantation masks and etch masks
- Photoresist can be negative (insoluble (hardened) after exposure to UV) or positive (soluble after exposure to UV light). Positive photoresists present a higher resolution
- Resolution: diffraction of light limits the minimum printable feature size
 - Electron beam

Fundamental processes: Photolithography

Fundamental processes: Thermal oxidation

- Silicon within an oxidant at elevated temperatures will form a thin layer of oxide (SiO₂) on all exposed surfaces.
- SiO₂ is an essential element in CMOS technology:
 - High quality dielectric such as gate oxides
 - Used for implantation, diffusion and etch masks
 - Near ideal silicon-oxide interface
- The silicon wafer is exposed at high temperatures (900-1200°C) to a gaseous oxidant:

 - water vapor: wet oxidation

Fundamental processes: Doping processes

- Controlled introduction of dopant impurities into silicon
 - N-type dopants: P, As, Sb (Phosphorus, Arsenide, Antimony)
 - P-type dopant is B (Boron)
- Solid state diffusion has been the traditional doping process. Diffusion is directly proportional to the concentration gradient and thermal energy

Lateral diffusion

Doping process: Ion implantation

- Ion implantation is the most used method in modern CMOS fabrication
- Dopant atoms are ionized, then accelerated through a large electric potential (few kilovolts to megavolts) toward a wafer. The highly energetic ions bombard and implant into its surface.

Doping process: Ion implantation

- High degree of lattice damage. It is repaired with annealing at high temperatures agitating dopant impurities into lattice sites.
- Compared with solid-state diffusion, ion implantation has the advantages of being a low-temperature and a highly controlled process.

Nowadays, diffusion is used to redistributing dopants after the ion implantation

gate area (where the oxide is thin).

Fundamental processes: Thin-film removal

- Processes to remove thin films
 - Wet etching. A chemical solution is used to remove material. Highly selective compared with the dry-etch processes
 - Dry etching.
 - The wafer is bombarded by charged ions that cause material to be ejected off the surface

Fundamental processes: Thin-film deposition

- Methods of depositing thin films of insulators, conductors and semiconductors on the wafer
 - Film thickness uniformity <±5nm
- Physical vapor deposition (PVD). Atoms or molecules pass through a lowpressure gas phase and then condense on the surface of the substrate:
 - Evaporation
 - Sputter deposition (similar to dry etching)

Fundamental processes: Thin-film deposition

- Chemical vapor deposition (CVD). Reactant gases are introduced into a chamber where chemical reactions between the gases at the surface of the substrate produce the desired film.
- At atmospheric pressure at relatively low temperatures CVD can be applied in a reactor similar to an oxidation tube furnace
- At low pressure the process can yield better films but at the expense of a higher deposition temperature.

Polisilicon → Thin-film deposition of silicon on SiO₂

Metallization → AlCu/Ti

CMOS process sequence

Several hundred steps are required to manufacture ICs on a silicon wafer.

CMOS process sequence

Bibliography

- W.K. Chen, "The VLSI Handbook" (second edition). CRC Press
- J. Rabaey "Circuitos integrados digitales" (second edition) Pearson Preantice Hall
- Wikipedia