F17T2A5

Sei $U := \mathbb{R}^2 \setminus \{0\}$ und $f : U \to \mathbb{R}^2$ stetig differenzierbar mit folgenden Eigenschaften:

- 1. $\frac{\partial f_1}{\partial x_1} = \frac{\partial f_2}{\partial x_2}$, $\frac{\partial f_1}{\partial x_2} = -\frac{\partial f_2}{\partial x_1}$ auf U
- 2. f ist auf $\{x \in U | x_1^2 + x_2^2 \le 1\}$ unbeschränkt, und auf $\{x \in U | |x_1| \le 1, x_2 = 0\}$ beschränkt.

Zeige, dass es eine Folge $(x_n)_{n\in\mathbb{N}}$ in U gibt mit $\lim_{n\to\infty}x_n=0=\lim_{n\to\infty}f(x_n)$.

Lösung:

Identifiziere \mathbb{R}^2 mit \mathbb{C} . Betrachte also

$$\tilde{U} := \mathbb{C} \setminus \{0\}, \quad \tilde{f} : \tilde{U} \to \mathbb{C} \text{ mit}$$

$$\tilde{f}(x_1 + ix_2) := f_1(x_1, x_2) + if_2(x_1, x_2)$$
 für alle $(x_1, x_2) \in U$

Aufgrund der 1. Bedingung sind die Cauchy-Riemannschen-Differentialgleichungen für f erfüllt. Außerdem ist $\tilde{U} \subseteq \mathbb{C}$ offen. Damit ist \tilde{f} holomorph.

 \tilde{f} hat also eine isolierte Singularität bei 0.

1. Fall: 0 ist eine hebbare Singularität von \tilde{f} .

Dann gäbe es eine holomoprhe Fortsetzung $g: \mathbb{C} \to \mathbb{C}$ von \tilde{f} .

Als holomorphe Funktion wäre g insbesondere stetig und daher auf der kompakten Menge $\{x_1 + ix_2 | (x_1, x_2) \in \mathbb{R}^2, x_1^2 + x_2^2 \leq 1\}$ beschränkt. Damit müsste auch die Einschränkung \tilde{f} von g auf der Menge $\{x_1 + ix_2 | (x_1, x_2) \in U, x_1^2 + x_2^2 \leq 1\}$ beschränkt sein.

Das wäre ein Widerspruch dazu, dass f auf der Menge $\{(x_1, x_2) \in U, x_1^2 + x_2^2 \le 1\}$ beschränkt sein soll.

Dieser Fall tritt also nicht ein.

2. Fall: 0 ist eine Polstelle von \tilde{f} .

Dann wäre $\lim_{z\to 0} |f(z)| = \infty$ und damit $\lim_{x\to (0,0)} ||f(x)||_2 = \infty$. Dies wäre ein Widerspruch dazu, dass f auf der Menge $\{(x_1,x_2)\in U|\ x_1\le 1,\ x_2=0\}$ beschränkt sein soll und man die Folge $\left(\left(\frac{1}{n},0\right)\right)_{n\in\mathbb{N}}$ in U mit Grenzwert (0,0) für $n\to\infty$ findet. Dieser Fall tritt also nicht ein.

3. Fall: 0 ist eine wesentliche Singularität von \tilde{f} .

Nach dem Satz von Casorati-Weierstraß gibt es zu jeder Umgebung $V \subseteq \mathbb{C}$ von 0 das Bild $\tilde{f}(V\setminus\{0\})$, das dicht in \mathbb{C} liegt.

Für beliebiges $n \in \mathbb{N}$ betrachte die Umgebung

$$V_n := B_{\frac{1}{n}}(0) := \{ z \in \mathbb{C} \mid |z| < \frac{1}{n} \} \subseteq \mathbb{C}$$

um 0. Da $\tilde{f}(V\setminus\{0\})$ dicht in \mathbb{C} liegt, ist zur Umgebung $V_n\subseteq\mathbb{C}$ um $0\in\mathbb{C}$ die Menge $\tilde{f}(V\setminus\{0\})\cap V_n$ nicht leer. Demnach kann man ein $z_n\in V_n\setminus\{0\}$ mit $\tilde{f}(z_n)\in V_n$ wählen. So erhält man eine Folge $(z_n)_{n\in\mathbb{N}}$.

Da jeweils $z_n \in V_n$ ist, ist

$$|z_n| < \frac{1}{n} \xrightarrow{n \to \infty} 0$$

also $\lim_{n\to\infty} z_n = 0$.

Da jeweils $\tilde{f}(z_n) \in V_n$ ist, ist

$$|\tilde{f}(z_n)| < \frac{1}{n} \xrightarrow{n \to \infty} 0$$

also $\lim_{n\to\infty} \tilde{f}(z_n) = 0.$

Des Weiteren ist jeweils $V_n \setminus \{0\} \subseteq \mathbb{C} \setminus \{0\} = U$ und daher $z_n \in \tilde{U}$. Durch Identifikation von \mathbb{C} mit \mathbb{R}^2 , also durch

$$x_n := (\Re e(z_n), \Im m(z_n))$$

erhält man schließlich eine Folge $(x_n)_{n\in\mathbb{N}}$ in U mit

$$\lim_{n \to \infty} x_n = \lim_{n \to \infty} (\Re e \underbrace{(z_n)}_{\to 0}, \Im m \underbrace{(z_n)}_{\to 0}) = (0, 0)$$

und

$$\lim_{n \to \infty} f(x_n) = \lim_{n \to \infty} f(\Re e(z_n), \Im m(z_n)) =$$

$$= \lim_{n \to \infty} (f_1(\Re e(z_n), \Im m(z_n)), f_2(\Re e(z_n), \Im m(z_n))) =$$

$$= \lim_{n \to \infty} \left(\Re e(\underbrace{\tilde{f}(z_n)}_{\to 0}), \Im m(\underbrace{\tilde{f}(z_n)}_{\to 0})\right) = (0, 0)$$