Función de costo para TSP

Canek Peláez

13 de febrero de 2019

1. La gráfica

Nuestras ciudades y sus conexiones están determinadas por una gráfica $G(E,V), E \subset V \times V$ con una función de peso para las aristas $w: E \longrightarrow \mathbb{R}^+$. La gráfica, aunque muy densa, no es completa.

Sea $S \subset V$; S será una instancia de TSP con la que trabajaremos. Para facilitarle la vida a nuestros sistemas, los mismos van a trabajar sobre la gráfica completa $G_S(V_S, E_S)$, donde $V_S = S$ y $E_S = \{(u, v)|u, v \in S$ y $u \neq v\}$, con una función de peso aumentada $w_S : E_S \longrightarrow \mathbb{R}^+$ que definiremos más adelante.

Definición 1.1 (Normalizador) Para cada par no ordenado $u, v \in S$, $si(u, v) \in E$, agregamos la distancia w(u, v) a una lista L y ordenamos L de mayor a menor. Sea L' = L si la longitud de L es menor que |S| - 1; o la sublista de L con sus primeros |S| - 1 elementos en otro caso.

El normalizador de S (denotado por $\mathcal{N}(S)$) está definido como:

$$\mathcal{N}(S) = \sum_{d \in L'} d.$$

Toda permutación de ciudades en S tal que sea una solución factible de TSP tiene, por definición, longitud menor o igual a $\mathcal{N}(S)$. El normalizador nos permitirá, como su nombre indica, normalizar nuestra función de costo de tal manera que todas las soluciones factibles de TSP se evalúen entre 0 y 1; y que todas las soluciones no factibles se evalúen con un valor mayor a 1.

Para que esto funcione, dadas dos ciudades $u, v \in S$ tales que $(u, v) \notin E$, la función de costo aumentada w_S debe evaluar $w_S(u, v)$ con un valor muy grande para que exceda al del normalizador.

Para esto necesitaremos la distancia máxima de S:

Definición 1.2 (Distancia máxima de S) Definimos la distancia máxima de S, denotada por máx $_d(S)$, como sigue:

$$\max_{d}(S) = \max\{w(u, v) | u, v \in S \ y \ (u, v) \in E\}.$$

Y además vamos a necesitar la distancia natural entre u y v. Denotaremos con lat(c) y lon(c) a la latitud y longitud de una ciudad $c \in V$; las latitudes y longitudes estarán denotadas en radianes. Si las coordenadas están en grados, recordemos que para convertir de grados a radianes se utiliza la fórmula:

$$rad(g) = \frac{g\pi}{180}.$$

Definición 1.3 (Distancia natural) La distancia natural entre u y v, denotada por d(u,v), está definida por:

$$d(u,v) = R \times C.$$

Donde R es el radio del planeta Tierra en metros (aproximadamente 6,373,000); y C está dada por:

$$C = 2 \times \arctan(\sqrt{A}, \sqrt{1-A}).$$

A su vez, A está definida como:

$$A = \sin\left(\frac{lat(v) - lat(u)}{2}\right)^2 + \cos(lat(u)) \times \cos(lat(v)) \times \sin\left(\frac{lon(v) - lon(u)}{2}\right)^2.$$

La fórmula para calcular d(u,v) no es exacta; pero se aproxima lo suficiente para nuestras instancias de TSP; en casi todas las bibliotecas estándares de lenguajes de programación, la función o método para calcular el arcotangente de un ángulo x en radiantes $(\arctan(x))$ se llama $\mathtt{atan2}()$. En particular este es el caso de C y derivados, así como Java.

Con $\mathcal{N}(S)$, máx_d(S) y la distancia natural de dos ciudades podemos definir la función de peso aumentada w_S .

Definición 1.4 (Función de peso aumentada) Definimos $w_S: E_S \longrightarrow \mathbb{R}^+$ de la siguiente manera:

$$w_S(u,v) = \begin{cases} w(u,v) & si\ (u,v) \in E \\ d(u,v) \times \max(S) & en\ otro\ caso \end{cases}$$

Con esto ya podemos definir nuestra función de costo para TSP.

2. Función de costo

Sea $S \subset V$; la función de costo f de una permutación $P = \{v_1, \dots, v_k\}$ de los elementos de S se define como:

$$f(S) = \frac{\sum_{i=2}^{k} w_S(v_{i-1}, v_i)}{\mathscr{N}(S)}.$$