

May 2006

KA78XXE/KA78XXAE 3-Terminal 1A Positive Voltage Regulator

Features

- Output Current up to 1A
- Output Voltages of 5, 6, 8, 9, 10, 12, 15, 18, 24V
- Thermal Overload Protection
- Short Circuit Protection
- Output Transistor Safe Operating Area Protection

Description

The KA78XXE/KA78XXAE series of three-terminal positive regulator are available in the TO-220/D-PAK package and with several fixed output voltages, making them useful in a wide range of applications. Each type employs internal current limiting, thermal shut down and safe operating area protection, making it essentially indestructible. If adequate heat sinking is provided, they can deliver over 1A output current. Although designed primarily as fixed voltage regulators, these devices can be used with external components to obtain adjustable voltages and currents.

Ordering Information

Part Number	Output Voltage Tolerance	Package	Operating Temperature
KA7805E / KA7806E	±4%	TO-220	0 to +125°C
KA7808E / KA7809E			
KA7810E			
KA7812E / KA7815E			
KA7818E / KA7824E			
KA7805AE / KA7806AE	±2%		
KA7808AE / KA7809AE			
KA7810AE			
KA7812AE/KA7815AE			
KA7818AE/KA7824AE			
KA7805ER / KA7806ER	±4%	D-PAK	
KA7808ER / KA7809ER			
KA7812ER			

Block Diagram

Figure 1.

Pin Assignment

Figure 2.

Absolute Maximum Ratings

Symbol		Parameter	Value	Unit
VI	Input Voltage	V _O = 5V to 18V	35	V
		V _O = 24V	40	
$R_{ heta JC}$	Thermal Resista	ance Junction-Cases (TO-220)	5	°C/W
$R_{\theta JA}$	Thermal Resista	ance Junction-Air (TO-220)	65	°C/W
T _{OPR}	Operating Temp	perating Temperature Range (KA78XXE/AE/ER) 0 to +125		°C
T _{STG}	Storage Temper	ature Range	-65 to +150	°C

Electrical Characteristics (KA7805E/KA7805ER)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 10\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				KA	7805E/	ER	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		4.8	5.0	5.2	V
		$5.0 \text{mA} \le I_{O} \le V_{I} = 7V \text{ to } 20$	1.0A, P _O ≤ 15W V	4.75	5.0	5.25	
Regline	Line Regulation ⁽¹⁾	T _J = +25°C	V _O = 7V to 25V	_	4.0	100	mV
			V _I = 8V to 12V	_	1.6	50	
Regload	Load Regulation ⁽¹⁾	T _J = +25°C	I _O = 5.0mA to1.5A	_	9	100	mV
			I _O = 250mA to 750mA	_	4	50	
IQ	Quiescent Current	T _J = +25°C		_	5.0	8.0	mA
ΔI_Q	Quiescent Current Change	$I_O = 5mA \text{ to}$	1.0A	_	0.03	0.5	mA
		$V_{I} = 7V \text{ to } 25$	V	_	0.3	1.3	
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽²⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	42	_	μV/V _O
RR	Ripple Rejection ⁽²⁾	f = 120Hz, V ₀	_O = 8V to 18V	62	73	_	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2	_	V
r _O	Output Resistance ⁽²⁾	f = 1kHz		_	15	-	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	V _I = 35V, T _A = +25°C		230	-	mA
I _{PK}	Peak Current ⁽²⁾	T _J = +25°C		_	2.2	_	Α

- 1. Load and line regulation are specified at constant junction temperature. Changes in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 2. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7806E/KA7806ER) (Continued)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 11\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				KA	7806E	/ER	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	T _J = +25°C		5.75	6.0	6.25	V
		$5.0 \text{mA} \le I_0 \le V_1 = 8.0 \text{V to } 2$	1.0A, P _O ≤ 15W 21V	5.7	6.0	6.3	
Regline	Line Regulation ⁽³⁾	$T_J = +25^{\circ}C$	V _I = 8V to 25V	_	5	120	mV
			V _I = 9V to 13V	_	1.5	60	
Regload	Load Regulation ⁽³⁾	$T_J = +25^{\circ}C$	I _O = 5mA to 1.5A	_	9	120	mV
			I _O = 250mA to 750mA	_	3	60	
IQ	Quiescent Current	T _J = +25°C		_	5.0	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA \text{ to}$	1A	_	_	0.5	mA
		V _I = 8V to 25	V	_	_	1.3	
ΔV _O /ΔΤ	Output Voltage Drift ⁽⁴⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	45	_	μV/Vo
RR	Ripple Rejection ⁽⁴⁾	f = 120Hz V _I = 9V to 19	V	59	75	_	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2	_	V
r _O	Output Resistance ⁽⁴⁾	f = 1kHz		_	19	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	250	_	mA
I _{PK}	Peak Current ⁽⁴⁾	T _J = +25°C		_	2.2	_	Α

- 3. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 4. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7808E/KA7808ER) (Continued)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 14\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				KA	7808E	/ER	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	$T_J = +25^{\circ}C$		7.7	8.0	8.3	V
			$5.0 \text{mA} \le I_{\text{O}} \le 1.0 \text{A}, P_{\text{O}} \le 15 \text{W}$ V _I = 10.5V to 23V		8.0	8.4	
Regline	Line Regulation ⁽⁵⁾	$T_J = +25^{\circ}C$	V _I = 10.5V to 25V	_	5.0	160	mV
			V _I = 11.5V to 17V	_	2.0	80	
Regload	Load Regulation ⁽⁵⁾	$T_J = +25^{\circ}C$	I _O = 5.0mA to 1.5A	_	10	160	mV
			I _O = 250mA to 750mA	_	5.0	80	
IQ	Quiescent Current	$T_J = +25^{\circ}C$	•	_	5.0	8.0	mA
ΔI_{Q}	Quiescent Current	$I_O = 5$ mA to 1	.0A	_	0.05	0.5	mA
	Change	$V_{I} = 10.5A \text{ to } 3$	V _I = 10.5A to 25V		0.5	1.0	
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽⁶⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 10	00kHz, T _A = +25°C	_	52	_	μV/Vo
RR	Ripple Rejection ⁽⁶⁾	f = 120Hz, V _I =	= 11.5V to 21.5V	56	73	_	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2	_	V
r _O	Output Resistance ⁽⁶⁾	f = 1kHz		_	17	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A} =$	V _I = 35V, T _A = +25°C		230	_	mA
I _{PK}	Peak Current ⁽⁶⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

- 5. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 6. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7809E/KA7809ER) (Continued)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 15\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				KA	7809E	/ER	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		8.65	9	9.35	V
		$5.0 \text{mA} \le I_{O} \le V_{I} = 11.5 \text{V to}$	1.0A, P _O ≤ 15W 24V	8.6	9	9.4	
Regline	Line Regulation ⁽⁷⁾	T _J = +25°C	V _I = 11.5V to 25V	_	6	180	mV
			V _I = 12V to 17V	_	2	90	
Regload	Load Regulation ⁽⁷⁾	T _J = +25°C	I _O = 5mA to 1.5A	_	12	180	mV
			I _O = 250mA to 750mA	_	4	90	
IQ	Quiescent Current	T _J = +25°C	1	_	5.0	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5$ mA to 1	1.0A	_	_	0.5	mA
		V _I = 11.5V to	26V	_	_	1.3	
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽⁸⁾	$I_O = 5mA$		_	-1	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	58	_	μV/Vo
RR	Ripple Rejection ⁽⁸⁾	f = 120Hz V _I = 13V to 2	3V	56	71	_	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J =	I _O = 1A, T _J = +25°C		2	_	V
r _O	Output Resistance ⁽⁸⁾	f = 1kHz		_	17	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A} =$	V _I = 35V, T _A = +25°C		250	_	mA
I _{PK}	Peak Current ⁽⁸⁾	T _J = +25°C		_	2.2	_	Α

- 7. Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.
- 8. These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7810E) (Continued)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 16\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	(A7810	E	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	T _J = +25°C		9.6	10.0	10.4	V
		$5mA \le I_O \le 1.0$ V _I = 12.5V to		9.5	10.0	10.5	
Regline	Line Regulation ⁽⁹⁾	T _J = +25°C	V _I = 12.5V to 25V	_	10.0	200	mV
			V _I = 13V to 25V	_	3.0	100	
Regload	Load Regulation ⁽⁹⁾	T _J = +25°C	I _O = 5mA to 1.5A	_	12.0	200	mV
			I _O = 250mA to 750mA	_	4.0	400	
IQ	Quiescent Current	T _J = +25°C		_	5.1	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to 1	ΙΑ	_	_	0.5	mA
		V _I = 12.5V to	29V	_	_	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁰⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	58.0	_	μV/Vo
RR	Ripple Rejection ⁽¹⁰⁾	f = 120Hz V _O = 13V to 2	23V	56.0	71.0	_	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J =	I _O = 1A, T _J = +25°C		2.0	_	V
r _O	Output Resistance ⁽¹⁰⁾	f = 1kHz		_	17.0	_	mΩ
I _{SC}	Short Circuit Current	$V_{I} = 35V, T_{A} =$	V _I = 35V, T _A = +25°C		250	_	mA
I _{PK}	Peak Current ⁽¹⁰⁾	T _J = +25°C		_	2.2	_	Α

^{9.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{10.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7812E/KA7812ER) (Continued)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 19\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	47812E	/ER	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	T _J = +25°C		11.5	12	12.5	V
		$5.0 \text{mA} \le I_{O} \le V_{I} = 14.5 \text{V to}$	1.0A, P _O ≤ 15W 27V	11.4	12	12.6	
Regline	Line Regulation ⁽¹¹⁾	T _J = +25°C	V _I = 14.5V to 30V	_	10	240	mV
			V _I = 16V to 22V	_	3.0	120	
Regload	Load Regulation ⁽¹¹⁾	T _J = +25°C	I _O = 5mA to 1.5A	_	11	240	mV
			I _O = 250mA to 750mA	_	5.0	120	
IQ	Quiescent Current	T _J = +25°C		_	5.1	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA \text{ to } 1$	I.0A	_	0.1	0.5	mA
		V _I = 14.5V to	30V	-	0.5	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹²⁾	I _O = 5mA		_	-1	-	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	-	76	_	μV/Vo
RR	Ripple Rejection ⁽¹²⁾	f = 120Hz V _I = 15V to 2	5V	55	71	-	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J =	+25°C	_	2	_	V
r _O	Output Resistance ⁽¹²⁾	f = 1kHz		_	18	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	V _I = 35V, T _A = +25°C		230	_	mA
I _{PK}	Peak Current ⁽¹²⁾	T _J = +25°C		_	2.2	-	Α

^{11.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{12.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7815E) (Continued)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 23\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7815	E	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		14.4	15	15.6	V
		$5.0 \text{mA} \le I_{O} \le 1$ $V_{I} = 17.5 \text{V to } 3$.0A, P _O ≤ 15W 80V	14.25	15	15.75	
Regline	Line Regulation ⁽¹³⁾	T _J = +25°C	V _I = 17.5V to 30V	_	11	300	mV
			V _I = 20V to 26V	_	3	150	
Regload	Load Regulation ⁽¹³⁾	T _J = +25°C	I _O = 5mA to 1.5A	_	12	300	mV
		Ī	I _O = 250mA to 750mA	_	4	150	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.2	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5$ mA to 1.	0A	_	_	0.5	mA
		$V_{I} = 17.5V \text{ to } 3$	80V	_	_	1.0	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁴⁾	$I_O = 5mA$		_	-1	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 10	0kHz, T _A = +25°C	_	90	_	μV/Vo
RR	Ripple Rejection ⁽¹⁴⁾	f = 120Hz V _I = 18.5V to 2	28.5V	54	70	_	dB
V_{Drop}	Dropout Voltage	$I_{O} = 1A, T_{J} = +$	I _O = 1A, T _J = +25°C		2	_	V
r _O	Output Resistance ⁽¹⁴⁾	f = 1kHz		_	19	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	250	_	mA
I _{PK}	Peak Current ⁽¹⁴⁾	$T_J = +25^{\circ}C$		_	2.2	_	Α

^{13.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{14.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7818E) (Continued)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 27\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7818	E	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	T _J = +25°C		17.3	18	18.7	V
		$5.0 \text{mA} \le I_0 \le V_1 = 21 \text{V to } 3$	1.0A, P _O ≤ 15W 3V	17.1	18	18.9	
Regline	Line Regulation ⁽¹⁵⁾	T _J = +25°C	V _I = 21V to 33V	_	15	360	mV
			V _I = 24V to 30V	_	5	180	
Regload	Load Regulation ⁽¹⁵⁾	T _J = +25°C	I _O = 5mA to 1.5A	_	15	360	mV
			I _O = 250mA to 750mA	_	5.0	180	
IQ	Quiescent Current	T _J = +25°C		_	5.2	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to	1.0A	_	_	0.5	mA
		V _I = 21V to 3	3V	_	_	1	
$\Delta V_O/\Delta T$	Output Voltage Drift ⁽¹⁶⁾	$I_O = 5mA$		_	-1	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	110	_	μV/Vo
RR	Ripple Rejection ⁽¹⁶⁾	f = 120Hz V _I = 22V to 3	2V	53	69	_	dB
V_{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2	_	V
r _O	Output Resistance ⁽¹⁶⁾	f = 1kHz		_	22	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	250	-	mA
I _{PK}	Peak Current ⁽¹⁶⁾	T _J = +25°C		_	2.2	-	Α

^{15.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{16.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7824E) (Continued)

Refer to test circuit, $0^{\circ}\text{C} < \text{T}_{\text{J}} < 125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 500\text{mA}$, $\text{V}_{\text{I}} = 33\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7824	E	
Symbol	Parameter		Conditions	Min.	Тур.	Max.	Unit
V _O	Output Voltage	$T_{J} = +25^{\circ}C$		23	24	25	V
		$5.0 \text{mA} \le I_0 \le 1$ $V_1 = 27 \text{V to } 38$		22.8	24	25.25	
Regline	Line Regulation ⁽¹⁷⁾	$T_J = +25^{\circ}C$	V _I = 27V to 38V	_	17	480	mV
			V _I = 30V to 36V	-	6	240	
Regload	Load Regulation ⁽¹⁷⁾	T _J = +25°C	I _O = 5mA to 1.5A	-	15	480	mV
			I _O = 250mA to 750mA	_	5.0	240	
IQ	Quiescent Current	T _J = +25°C		_	5.2	8.0	mA
ΔI_{Q}	Quiescent Current Change	$I_{O} = 5 \text{mA to } 1.$	0A	_	0.1	0.5	mA
		$V_{I} = 27V \text{ to } 38$	V	_	0.5	1	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽¹⁸⁾	$I_O = 5mA$		-	-1.5	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 10	0 kHz, $T_A = +25$ $^{\circ}$ C	_	60	_	μV/Vo
RR	Ripple Rejection ⁽¹⁸⁾	f = 120Hz V _I = 28V to 38	V	50	67	_	dB
V_{Drop}	Dropout Voltage	$I_{O} = 1A, T_{J} = +$	25°C	_	2	_	V
r _O	Output Resistance ⁽¹⁸⁾	f = 1kHz		_	28	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C		_	230	-	mA
I _{PK}	Peak Current ⁽¹⁸⁾	T _J = +25°C		-	2.2	-	Α

^{17.} Load and line regulation are specified at constant junction temperature. Changes in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{18.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7805AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 10\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				k	(A7805 <i>A</i>	Λ Ε	
Symbol	Parameter	Co	nditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		4.9	5	5.1	V
		$I_O = 5mA$ to $V_I = 7.5V$ to	1A, P _O ≤ 15W 20V	4.8	5	5.2	
Regline	Line Regulation ⁽¹⁹⁾	$V_{I} = 7.5V \text{ to}$ $I_{O} = 500\text{mA}$	25V	-	5	50	mV
		$V_1 = 8V \text{ to } 12$	V _I = 8V to 12V		3	50	
		T _J = +25°C	V _I = 7.3V to 20V	_	5	50	
			V _I = 8V to 12V	-	1.5	25	
Regload	Load Regulation ⁽¹⁹⁾	$T_J = +25^{\circ}C$ $I_O = 5mA$ to	1.5A	-	9	100	mV
		$I_O = 5mA$ to	1A	_	9	100	
		I _O = 250mA	to 750mA	_	4	50	
IQ	Quiescent Current	T _J = +25°C		_	5.0	6.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5mA$ to	1A	_	_	0.5	mA
		V _I = 8 V to 2	5V, I _O = 500mA	_	_	0.8	
		$V_{I} = 7.5V \text{ to}$	20V, T _J = +25°C	_	_	0.8	
ΔV/ΔΤ	Output Voltage Drift ⁽²⁰⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	$f = 10$ Hz to $T_A = +25$ °C	100kHz	_	10	_	μV/Vo
RR	Ripple Rejection ⁽²⁰⁾	f = 120Hz, I _O = 500mA V _I = 8V to 18V		_	68	_	dB
V_{Drop}	Dropout Voltage	I _O = 1A, T _J =	I _O = 1A, T _J = +25°C		2	-	V
r _O	Output Resistance ⁽²⁰⁾	f = 1kHz		-	17	-	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A	= +25°C	-	250	_	mA
I _{PK}	Peak Current ⁽²⁰⁾	T _J = +25°C		_	2.2	_	А

^{19.} Load and line regulation are specified at constant junction temperature. Change in V_0 due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{20.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7806AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 11\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7806	ΑE	
Symbol	Parameter	Co	Conditions		Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		5.58	6	6.12	V
		$I_O = 5mA \text{ to } 1$ $V_I = 8.6V \text{ to } 2$		5.76	6	6.24	
Regline	Line Regulation ⁽²¹⁾	V _I = 8.6V to 2	5V, I _O = 500mA	_	5	60	mV
		V _I = 9V to 13	J	_	3	60	
		T _J = +25°C	V _I = 8.3V to 21V	_	5	60	
			V _I = 9V to 13V	_	1.5	30	
Regload	Load Regulation ⁽²¹⁾	$T_{J} = +25^{\circ}C, I_{0}$	_O = 5mA to 1.5A	_	9	100	mV
		$I_O = 5mA \text{ to } 1$	A	_	9	100	
		I _O = 250mA to 750mA		_	5.0	50	
IQ	Quiescent Current	T _J = +25°C		_	4.3	6.0	mA
ΔI_Q	Quiescent Current Change	$I_O = 5mA \text{ to } 1$	A	_	_	0.5	mA
		$V_{I} = 9V \text{ to } 25^{\circ}$	V, I _O = 500mA	_	_	0.8	
		$V_{I} = 8.5V \text{ to } 2$	1V, T _J = +25°C	_	_	0.8	
ΔV/ΔΤ	Output Voltage Drift ⁽²²⁾	$I_O = 5mA$		_	-0.8	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 10	00kHz, T _A = +25°C	_	10	-	μV/Vo
RR	Ripple Rejection ⁽²²⁾	f = 120Hz, I _O = 500mA V _I = 9V to 19V		-	65	-	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2	_	V
r _O	Output Resistance ⁽²²⁾	f = 1kHz		_	17	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	: +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽²²⁾	$T_J = +25^{\circ}C$		_	2.2		А

^{21.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{22.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7808AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 14\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

			ŀ	(A7808)	ΑE	
Symbol	Parameter	Conditions	Min.	Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C	7.84	8	8.16	V
		$I_O = 5mA \text{ to } 1A, P_O \le 15W$ $V_I = 10.6V \text{ to } 23V$	7.7	8	8.3	
Regline	Line Regulation ⁽²³⁾	$V_I = 10.6V \text{ to } 25V, I_O = 500$	OmA –	6	80	mV
		V _I = 11V to 17V	_	3	80	
		$T_J = +25^{\circ}C$ $V_I = 10.4V t$	o 23V –	6	80	
		V _I = 11V to	17V –	2	40	
Regload	Load Regulation ⁽²³⁾	$T_J = +25^{\circ}C$, $I_O = 5mA$ to 1	.5A –	12	100	mV
		$I_O = 5$ mA to 1A	_	12	100	
		I _O = 250mA to 750mA	_	5	50	
IQ	Quiescent Current	T _J = +25°C	_	5.0	6.0	mA
ΔI_Q	Quiescent Current Change	I _O = 5mA to 1A	_	-	0.5	mA
		$V_I = 11V \text{ to } 25V, I_O = 500m$	nA –	_	0.8	
		$V_I = 10.6V$ to 23V, $T_J = +25$	5°C –	_	0.8	
ΔV/ΔΤ	Output Voltage Drift ⁽²⁴⁾	I _O = 5mA	_	-0.8	-	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 100kHz, T _A = +	-25°C –	10	_	μV/Vo
RR	Ripple Rejection ⁽²⁴⁾	f = 120Hz, I _O = 500mA V _I = 11.5V to 21.5V	_	62	_	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		2	_	V
r _O	Output Resistance ⁽²⁴⁾	f = 1kHz		18	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A = +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽²⁴⁾	T _J = +25°C	_	2.2	_	Α

^{23.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{24.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7809AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 15\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

			K	A7809	AE		
Symbol	Parameter	Co	Conditions		Тур.	Max.	Unit
V _O	Output Voltage	T _J = +25°C		8.82	9.0	9.18	V
		$I_{O} = 5mA \text{ to } 1$ $V_{I} = 11.2V \text{ to}$		8.65	9.0	9.35	
Regline	Line Regulation ⁽²⁵⁾	V _I = 11.7V to	25V, I _O = 500mA	_	6	90	mV
		$V_{I} = 12.5V \text{ to}$	19V	_	4	45	
		T _J = +25°C	V _I = 11.5V to 24V	_	6	90	
			V _I = 12.5V to 19V	_	2	45	
Regload	Load Regulation ⁽²⁵⁾	$T_{J} = +25^{\circ}C, I_{0}$	O = 5mA to 1.0A	_	12	100	mV
		$I_O = 5$ mA to 1	I _O = 5mA to 1.0A		12	100	
		I _O = 250mA to 750mA		_	5	50	
IQ	Quiescent Current	T _J = +25°C		_	5.0	6.0	mA
ΔI_{Q}	Quiescent Current Change	V _I = 11.7V to	25V, T _J = +25°C	_	-	0.8	mA
		$V_{I} = 12V \text{ to } 25$	5V, I _O = 500mA	_	_	0.8	
		$I_O = 5$ mA to 1	.0A	_	_	0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽²⁶⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 10	00kHz, T _A = +25°C	_	10	_	μV/Vo
RR	Ripple Rejection ⁽²⁶⁾		f = 120Hz, I _O = 500mA V _I = 12V to 22V		62	_	dB
V_{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽²⁶⁾	f = 1kHz	f = 1kHz		17	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽²⁶⁾	T _J = +25°C		_	2.2	_	Α

^{25.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{26.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7810AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 16\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7810	ΑE	
Symbol	Parameter	Co	Conditions		Тур.	Max.	Unit
V _O	Output Voltage	T _J = +25°C		9.8	10.0	10.2	V
		$I_{O} = 5mA \text{ to } 1$ $V_{I} = 12.8V \text{ to } 1$		9.6	10.0	10.4	
Regline	Line Regulation ⁽²⁷⁾	V _I = 12.8V to	26V, I _O = 500mA	_	8.0	100	mV
		V _I = 13V to 2	0V	_	4.0	50.0	
		T _J = +25°C	V _I = 12.5V to 25V	_	8.0	100	
			V _I = 13V to 20V	_	3.0	50.0	
Regload	Load Regulation ⁽²⁷⁾	T _J = +25°C, I	O = 5mA to 1.5A	_	12.0	100	mV
		$I_O = 5$ mA to 1	ImA	_	12.0	100	
		I _O = 250mA t	I _O = 250mA to 750mA		5.0	50.0	
IQ	Quiescent Current	T _J = +25°C		_	5.0	6.0	mA
ΔI_{Q}	Quiescent Current Change	$I_O = 5$ mA to 1	IA	_	_	0.5	mA
		$V_{I} = 12.8V \text{ to}$	25V, I _O = 500mA	_	_	0.8	
		V _I = 13V to 2	6V, T _J = +25°C	_	_	0.5	
$\Delta V_{O}/\Delta T$	Output Voltage Drift ⁽²⁸⁾	$I_O = 5mA$		_	-1.0	-	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	10.0	-	μV/Vo
RR	Ripple Rejection ⁽²⁸⁾	f = 120Hz, I _O = 500mA V _I = 14V to 24V		_	62.0	-	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		-	2.0	-	V
r _O	Output Resistance ⁽²⁸⁾	f = 1kHz		_	17.0	-	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	= +25°C	_	250	-	mA
I _{PK}	Peak Current ⁽²⁸⁾	T _J = +25°C		_	2.2	-	А

Notes:

16

^{27.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{28.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7812AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 19\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7812	ΑE	
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = +25^{\circ}C$		11.75	12	12.25	V
		$I_{O} = 5mA \text{ to } 1$ $V_{I} = 14.8V \text{ to}$		11.5	12	12.5	
Regline	Line Regulation ⁽²⁹⁾	$V_{I} = 14.8V \text{ to}$	30V, I _O = 500mA	-	10	120	mV
		V _I = 16V to 2	2V	_	4	120	
		T _J = +25°C	V _I = 14.5V to 27V	_	10	120	
			V _I = 16V to 22V	-	3	60	
Regload	Load Regulation ⁽²⁹⁾	$T_{J} = +25^{\circ}C, I$	O = 5mA to 1.5A	_	12	100	mV
		$I_O = 5mA \text{ to } 1$.0A	_	12	100	
		I _O = 250mA to 750mA		_	5	50	
IQ	Quiescent Current	T _J = +25°C		_	5.1	6.0	mA
ΔI_Q	Quiescent Current Change	V _I = 15V to 3	0V, T _J = +25°C	_	_	0.8	mA
		V _I = 14V to 2	7V, I _O = 500mA	_	_	0.8	
		$I_O = 5$ mA to 1	.0A	_	_	0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽³⁰⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	10	_	μV/Vo
RR	Ripple Rejection ⁽³⁰⁾	f = 120Hz, I _O = 500mA V _I = 14V to 24V		_	60	-	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		-	2.0	_	V
r _O	Output Resistance ⁽³⁰⁾	f = 1kHz		_	18	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽³⁰⁾	T _J = +25°C		_	2.2	_	Α

^{29.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{30.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7815AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 23\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7815A	λE	
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
Vo	Output Voltage	$T_J = +25^{\circ}C$		14.7	15	15.3	V
		$I_{O} = 5mA \text{ to } 1$ $V_{I} = 17.7V \text{ to } 1$		14.4	15	15.6	
Regline	Line Regulation ⁽³¹⁾	$V_{I} = 17.9V \text{ to}$	30V, I _O = 500mA	_	10	150	mV
		V _I = 20V to 2	6V	_	5	150	
		T _J = +25°C	V _I = 17.5V to 30V	_	11	150	
			V _I = 20V to 26V	_	3	75	
Regload	Load Regulation ⁽³¹⁾	T _J = +25°C, I	O = 5mA to 1.5A	_	12	100	mV
		$I_O = 5$ mA to 1	.0A	_	12	100	
		I _O = 250mA to 750mA		_	5	50	
IQ	Quiescent Current	$T_J = +25^{\circ}C$		_	5.2	6.0	mA
ΔI_{Q}	Quiescent Current Change	$V_{I} = 17.5V \text{ to}$	30V, T _J = +25°C	_	_	0.8	mA
		$V_{I} = 17.5V \text{ to}$	30V, I _O = 500mA	_	_	0.8	
		$I_O = 5$ mA to 1	.0A	_	_	0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽³²⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	10	_	μV/Vo
RR	Ripple Rejection ⁽³²⁾	f = 120Hz, I _O V _I = 18.5V to		_	58	_	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽³²⁾	f = 1kHz		_	19	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽³²⁾	T _J = +25°C		_	2.2	_	Α

^{31.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{32.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7818AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 27\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7818	ΑE	
Symbol	Parameter	Conditions		Min.	Тур.	Max.	Unit
V _O	Output Voltage	$T_{J} = +25^{\circ}C$		17.64	18	18.36	V
		$I_{O} = 5mA \text{ to } 1$ $V_{I} = 21V \text{ to } 3$		17.3	18	18.7	
Regline	Line Regulation ⁽³³⁾	V _I = 21V to 3	3V, I _O = 500mA	_	15	180	mV
		$V_{I} = 21V \text{ to } 33$	3V	_	5	180	
		$T_J = +25^{\circ}C$	$V_1 = 20.6V \text{ to } 33V$	_	15	180	
			V _I = 24V to 30V	_	5	90	
Regload	Load Regulation ⁽³³⁾	$T_{J} = +25^{\circ}C, I$	O = 5mA to 1.5A	_	15	100	mV
		I _O = 5mA to 1.0A		_	15	100	
		I _O = 250mA t	o 750mA	_	7	50	
IQ	Quiescent Current	$T_{J} = +25^{\circ}C$		_	5.2	6.0	mA
ΔI_{Q}	Quiescent Current Change	V _I = 21V to 3	3V, T _J = +25°C	_	_	0.8	mA
		$V_1 = 21V \text{ to } 3$	3V, I _O = 500mA	_	_	0.8	
		$I_O = 5$ mA to 1	.0A	_	-	0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽³⁴⁾	$I_O = 5mA$		_	-1.0	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 1	00kHz, T _A = +25°C	_	10	_	μV/Vo
RR	Ripple Rejection ⁽³⁴⁾	f = 120Hz, I _O = 500mA V _I = 22V to 32V		_	57	_	dB
V _{Drop}	Dropout Voltage	I _O = 1A, T _J = +25°C		_	2.0	_	V
r _O	Output Resistance ⁽³⁴⁾	f = 1kHz		_	19	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽³⁴⁾	T _J = +25°C		_	2.2	_	Α

^{33.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{34.} These parameters, although guaranteed, are not 100% tested in production.

Electrical Characteristics (KA7824AE) (Continued)

Refer to the test circuits. $0^{\circ}\text{C} < \text{T}_{\text{J}} < +125^{\circ}\text{C}$, $\text{I}_{\text{O}} = 1\text{A}$, $\text{V}_{\text{I}} = 33\text{V}$, $\text{C}_{\text{I}} = 0.33\mu\text{F}$, $\text{C}_{\text{O}} = 0.1\mu\text{F}$, unless otherwise specified.

				K	A7824	ΑE	
Symbol	Parameter	Co	Conditions		Тур.	Max.	Unit
Vo	Output Voltage	T _J = +25°C		23.5	24	24.5	V
		$I_{O} = 5mA \text{ to } 1$ $V_{I} = 27.3V \text{ to}$		23	24	25	
Regline	Line Regulation ⁽³⁵⁾	V _I = 27V to 38	8V, I _O = 500mA	-	18	240	mV
		V _I = 21V to 3	3V	_	6	240	
		T _J = +25°C	$V_1 = 26.7V \text{ to } 38V$	_	18	240	
			V _I = 30V to 36V	_	6	120	
Regload	Load Regulation ⁽³⁵⁾	$T_{J} = +25^{\circ}C, I_{0}$	O = 5mA to 1.5A	_	15	100	mV
		$I_O = 5$ mA to 1	I _O = 5mA to 1.0A		15	100	
		I _O = 250mA to	I _O = 250mA to 750mA		7	50	
IQ	Quiescent Current	T _J = +25°C		_	5.2	6.0	mA
ΔI_Q	Quiescent Current Change	$V_{I} = 27.3V$ to	38V, T _J = +25°C	-	_	0.8	mA
		$V_1 = 27.3V$ to	38V, I _O = 500mA	_	_	0.8	
		$I_O = 5$ mA to 1	.0A	_	_	0.5	
ΔV/ΔΤ	Output Voltage Drift ⁽³⁶⁾	$I_O = 5mA$		_	-1.5	_	mV/°C
V _N	Output Noise Voltage	f = 10Hz to 10	00kHz, T _A = 25°C	_	10	_	μV/Vo
RR	Ripple Rejection ⁽³⁶⁾	f = 120Hz, I _O = 500mA V _I = 28V to 38V		_	54	-	dB
V _{Drop}	Dropout Voltage	$I_{O} = 1A, T_{J} = +25^{\circ}C$		_	2.0	_	V
r _O	Output Resistance ⁽³⁶⁾	f = 1kHz		_	20	_	mΩ
I _{SC}	Short Circuit Current	V _I = 35V, T _A =	= +25°C	_	250	_	mA
I _{PK}	Peak Current ⁽³⁶⁾	T _J = +25°C		-	2.2	_	А

^{35.} Load and line regulation are specified at constant junction temperature. Change in V_O due to heating effects must be taken into account separately. Pulse testing with low duty is used.

^{36.} These parameters, although guaranteed, are not 100% tested in production.

Typical Performance Characteristics

Figure 3. Quiescent Current

Figure 4. Output Voltage

Figure 5. Peak Output Current

Figure 6. Quiescent Current

Typical Applications

Figure 7. DC Parameters

Figure 8. Load Regulation

Figure 9. Ripple Rejection

Figure 10. Fixed Output Regulator

Figure 11. Constant Current Regulator

- 1. To specify an output voltage. substitute voltage value for "XX." A common ground is required between the input and the Output voltage. The input voltage must remain typically 2.0V above the output voltage even during the low point on the input ripple voltage.
- 2. C_l is required if regulator is located an appreciable distance from power Supply filter.
- 3. C_O improves stability and transient response.

Figure 12. Circuit for Increasing Output Voltage

Figure 13. Adjustable Output Regulator (7 to 30V)

Figure 14. High Current Voltage Regulator

Figure 15. High Output Current with Short Circuit Protection

Figure 16. Tracking Voltage Regulator

Figure 17. Split Power Supply (±15V-1A)

25

Figure 18. Negative Output Voltage Circuit

Figure 19. Switching Regulator

Mechanical Dimensions

Dimensions in millimeters

TO-220

Mechanical Dimensions (Continued)

Dimensions in millimeters

D-PAK

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx™	FAST [®]	ISOPLANAR™	PowerEdge™	SuperFET™
ActiveArray™	FASTr™	LittleFET™	PowerSaver™	SuperSOT™-3
Bottomless™	FPS™	MICROCOUPLER™	PowerTrench [®]	SuperSOT™-6
Build it Now™	FRFET™	MicroFET™	QFET [®]	SuperSOT™-8
CoolFET™	GlobalOptoisolator™	MicroPak™	QS™	SyncFET™
CROSSVOLT™	GTO™	MICROWIRE™	QT Optoelectronics™	TCM™
DOME™	HiSeC™	MSX™	Quiet Series™	TinyLogic [®]
EcoSPARK™	I ² C™	MSXPro™	RapidConfigure™	TINYOPTO™
E ² CMOS™	i-Lo™	OCX™	RapidConnect™	TruTranslation™
EnSigna™	ImpliedDisconnect™	OCXPro™	μSerDes™	UHC™
FACT™	IntelliMAX™	OPTOLOGIC [®]	ScalarPump™	UniFET™
FACT Quiet Series ^T	M	OPTOPLANAR™	SILENT SWITCHER®	UltraFET [®]
Across the board. A	round the world.™	PACMAN™	SMART START™	VCX™
The Power Franchis	se [®]	POP™	SPM™	Wire™
Programmable Activ	ve Droop™	Power247™	Stealth™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILDÍS WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILDÍS PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- 1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

PRODUCT STATUS DEFINITIONS Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

Rev. I19