5. Графический и табличный способы задания структур на конечных универсах, примеры. Формула подсчета числа всех структур на конечных универсах. Понятие числа моделей и доли выполнимости предложений логического языка первого порядка, примеры ее вычисления

Одноместные предикаты и одноместные функции удобно задавать с помощью столбца таблицы и ориентированного графа соответствия. Пусть $U = \{a_1, ..., a_n\}$ – конечный универс, $\forall i \ P(a_i) \in \{0,1\}$

x	a_1	 a_n
P(x)	$P(a_1)$	 $P(a_n)$

Рассмотрим одноместную функцию f. $U = \{a_1, ..., a_n\}$. G_f – граф, задающий функцию f. $V(G_f) = U$ – множество вершин графа. Ребро $xy \in G_f \iff y = f(x)$.

Пример. $U = \overline{1,6}$, $f(x) = (x^2 + 1) mod 6$

Табличное представление:

x	1	2	3	4	5	6
f(x)	2	5	4	5	2	1

Графовое представление:

Двуместные предикаты удобно рассматривать в виде таблицы. Пусть $U = \{a_1, ..., a_n\}, R$ – двуместный предикат.

	$a_1 \dots a_n$
a_1	
:	$r_{i,j}$
a_n	

Представляется в виде матрицы размера $n \times n$, где элемент $r_{i,j} = \begin{cases} 1, & \text{если } a_i & \text{состоит в отношении с } a_j \\ 0, & \text{в противном случае} \end{cases}$

В случае предикатов большей арности стоит рассматривать гиперкубы

Рассмотрим сигнатуру $\sigma = \{P_1, ..., P_k; f_1, ..., f_s\}$ и определим её тип $\tau = \{v_1, ..., v_k; \mu_1, ..., \mu_s\}$

 $S_n(\sigma)$ — число структур сигнатуры σ над n элементным универсом (число способов проинтерпретировать формулу с такой сигнатурой и таким типом)

 $S_n(\sigma) = 2^{n^{\nu_1}} \times ... \times 2^{n^{\nu_k}} \times n^{n^{\mu_1}} \times ... \times n^{n^{\mu_s}}$, где $2^{n^{\nu_i}}$ – количество способов проинтерпретировать предикат P_i , $n^{n^{\mu_s}}$ – количество способов проинтерпретировать символ f_s ($S_n(\sigma)$) то же самое, что и $S_n(f)$).

 $M_n(f)$ – количество моделей формулы f над n-элементным универсом.

 $\gamma_n(f) \stackrel{\text{\tiny def}}{=} \frac{{\it M}_n(f)}{{\it S}_n(f)}$ – объем выполнимости.

 $\lim_{n\to\infty}\gamma_n(f)=\gamma(f)$ – если предел существует, то он называется долей выполнимости формулы f

Пример 1. $F_1 = \forall x P(x)$

$$S_n(F_1) = 2^n$$

 $M_n(F_1) = 1$ – выполняется только одном случае, если все $x_i = 1$

$$\gamma_n(F_1) = \frac{1}{2^n} \to \gamma(F_1) = 0$$

При подсчете числа моделей бывает полезно использовать то свойство векторов, матриц, гиперкубов, которое отображает данную формулу.

Еще одна идея состоит в том, что если формула начинается с квантора \exists , то полезно перейти к её отрицанию и найти количество моделей для её отрицания.

Пример 2. $F_2 = \exists x \forall y R(x, y) - \text{существует строка из единиц}$

 $\overline{F_2} = \forall x \exists y \overline{R}(x,y)$ – в каждой строке есть хотя бы одна единица. (есть всего один неподходящий вариант – строка из нулей)

$$M_n(F_2) + M_n(\bar{F}_2) = S_n(F_2) = S_n(\bar{F}_2) = 2^{n^2}$$

$$M_n(\bar{F}_2) = (2^n - 1)^n$$

$$M_n(F_2) = 2^{n^2} - (2^n - 1)^n$$

$$\gamma_n(F_2) = \frac{2^{n^2 - (2^n - 1)^n}}{2^{n^2}} = 1 - \frac{(2^n - 1)^n}{2^{n^2}} \to 0 = \gamma(F_2)$$