ABBREVIATION USED IN DEDUCTIVE GEOMETRY A. Properties of Plane Geometry

No.	Diagram	Given Condition	Conclusion	Abbreviation
1	a Ab	a and b are adjacent angles on a straight line	$a+b=180^{\circ}$	adj. ∠s on st. line
2	c b	a, b and c are angles at a point	$a+b+c=360^{\circ}$	∠s at a pt.
3	A d D D C C B	Two straight lines <i>AB</i> and <i>CD</i> interest at point <i>O</i>	a = b and $c = d$	vert. opp. ∠s
4(i)	$A \xrightarrow{A} B$ $C \xrightarrow{b} D$	AB // CD	a = b	corr. ∠s, <i>AB</i> // <i>CD</i>
4(ii)	$A \xrightarrow{a} B$ $C \xrightarrow{b} D$	a = b	AB // CD	corr. ∠s equal
5(i)	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	AB // CD	c = d	alt. ∠s, <i>AB</i> // <i>CD</i>
5(ii)	$A \xrightarrow{c} B$ $C \xrightarrow{d} D$	c = d	AB // CD	alt. ∠s equal
6(i)	$\begin{array}{ccc} A & & & \\ C & & & \\ \end{array} \begin{array}{c} G & & G & \\ \end{array} $	AB // CD	$e + f = 180^{\circ}$	int. ∠s, <i>AB</i> // <i>CD</i>
6(ii)	$\begin{array}{ccc} A & & & \\ C & & & \\ \end{array} \begin{array}{c} G & & G & \\ \end{array} $	$e + f = 180^{\circ}$	AB // CD	int. ∠s supp.
7	B C	ABC is a Δ	$a+b=c=180^{\circ}$	∠ sum of ∆
8	A C C	ABC is a Δ	$c_1 = a + b$	ext. ∠ of Δ

No.	Diagram	Given Condition	Conclusion	Abbreviation
9	B C	AB = AC	$\angle B = \angle C$	base ∠s, isos. Δ
10a	A C	AB = AC and $BD = DC$	$\angle BAD = \angle CAD$ and $AD \perp BC$	prop. of isos. Δ
10b	A C	$AB = AC$ and $AD \perp BC$	$BD = CD$ and $\angle BAD = \angle CAD$	prop. of isos. Δ
10c	B C	$AB = AC$ and $\angle BAD = \angle CAD$	$AD \perp BC$ and $BD = CD$	prop. of isos. Δ
11	B C	$\angle B = \angle C$	AB = AC	sides opp. equal ∠s
12	A C	AB = BC = AC	$\angle A = \angle B = \angle C = 60^{\circ}$	prop. of equil. Δ
13	A C	$\angle A = \angle B = \angle C$	BC = AC = AB	prop. of equil. Δ
14	a ₂ a ₃	$a_1, a_2, a_3, \dots a_n$ are the interior angles of a n -sided convex polygon	$a_1 + a_2 + a_3 + \dots + a_n$ = $(n-2) \times 180^\circ$	∠ sum of polygon
15	x ₁	The sides of an <i>n</i> -sided convex polygon are produced in order.	$x_1 + x_2 + x_3 + \dots + x_n = 360^{\circ}$	sum of ext. ∠s of polygon

No.	Diagram	Given Condition	Conclusion	Abbreviation
16	C B X Z	AB = XY and $AC = XZ$ and $BC = YZ$	$\Delta ABC \cong \Delta XYZ$	S.S.S.
17	B X Z Z	$AB = XY$ and $AC = XZ$ and $\angle A = \angle X$	$\Delta ABC \cong \Delta XYZ$	S.A.S.
18	B X Z	$AB = XY$ and $\angle A = \angle X$ and $\angle B = \angle Y$	$\Delta ABC \cong \Delta XYZ$	A.S.A.
19	B X Z	$AB = XY$ and $\angle A = \angle X$ and $\angle C = \angle Z$	$\Delta ABC \cong \Delta XYZ$	A.A.S.
20	A X X X X X X X X X X X X X X X X X X X	$AB = XY$ and $AC = XZ$ and $\angle C = \angle Z = 90^{\circ}$	$\Delta ABC \cong \Delta XYZ$	R.H.S.
21	B X Z	$\Delta ABC \cong \Delta XYZ$	AB = XY and $AC = XZ$ and $BC = YZ$	corr. sides, $\cong \Delta s$
22	B X C	$\Delta ABC \cong \Delta XYZ$	$\angle A = \angle X$ and $\angle B = \angle Y$ and $\angle C = \angle Z$	corr. $\angle s$, $\cong \Delta s$

No.	Diagram	Given Condition	Conclusion	Abbreviation
23	A C X X Z	$\angle A = \angle X$ and $\angle B = \angle Y$ and $\angle C = \angle Z$	$\Delta ABC \sim \Delta XYZ$	A.A.A.
24	A C Z	$\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX}$	$\Delta ABC \sim \Delta XYZ$	3 sides prop.
25	A X X Z	$\frac{AB}{XY} = \frac{AC}{XZ} \text{ and }$ $\angle A = \angle X$	$\Delta ABC \sim \Delta XYZ$	ratio of 2 sides, inc. ∠
26		$\Delta ABC \sim \Delta XYZ$	$\frac{AB}{XY} = \frac{BC}{YZ} = \frac{CA}{ZX}$	corr. sides, ~∆s
27		$\Delta ABC \sim \Delta XYZ$	$\angle A = \angle X$ and $\angle B = \angle Y$ and $\angle C = \angle Z$	corr. ∠s, ~Δs
28	B	ABC is a Δ	AB + BC > AC BC + AC > AB AB + AC > BC	
29	Z A C	I is the incentre of $\triangle ABC$	<i>I</i> is the intersection of the angle bisectors, i.e. $\angle BAX = \angle CAX$ $\angle ABY = \angle CBY$ $\angle BCZ = \angle ACZ$	incentre of Δ
30	Z X C	I is the centroid of $\triangle ABC$	I is the intersection of the medians, i.e. $AZ = ZB$ $BX = XC$ $AY = YC$ $\frac{AI}{IX} = \frac{BI}{IY} = \frac{CI}{IZ} = \frac{2}{1}$	centroid of Δ
31	Z A Y	I is the orthocentre of ΔABC	I is the intersection of the altitudes, i.e. $AX \perp BC$ $BY \perp AC$ $CZ \perp AB$	orthocentre of Δ

No.	Diagram	Given Condition	Conclusion	Abbreviation
32	Z Y Y	I is the circumcentre of $\triangle ABC$	I is the intersection of the perpendicular bisectors, i.e. $IX \perp BC$ and $BX = XC$ $IY \perp AC$ and $AY = YC$ $IZ \perp AB$ and $AZ = ZB$	circumcentre of Δ
33	B C	ABCD is a //gram	AB = DC and $AD = BC$	opp. sides of //gram
34	B	ABCD is a //gram	$\angle A = \angle C$ and $\angle B = \angle D$	opp. ∠s of //gram
35	A C D	ABCD is a //gram and O is the intersection of diagonals	AO = OC and $BO = OD$	diags. of //gram
36	B C	AB = DC and $AD = BC$	ABCD is a //gram	opp. sides equal
37	B	$\angle A = \angle C$ and $\angle B = \angle D$	ABCD is a //gram	opp. ∠s equal
38	B	AO = OC and $BO = OD$	ABCD is a //gram	diags. bisect each other
39	$\begin{array}{c} A \\ \\ \end{array}$	AD = BC and $AD // BC$	ABCD is a //gram	opp. sides equal and //
40	A D C	ABCD is a rectangle	All properties of a //gram	
41	A D C C	ABCD is a rectangle	All the interior angles are right angles	prop. of rectangle
42	A C	ABCD is a rectangle	Diagonals are equal $(AC = BD)$	

No.	Diagram	Given Condition	Conclusion	Abbreviation
43	B C	ABCD is a rectangle	Diagonals bisect each other into four equal parts	prop. of rectangle
44	A D C	ABCD is a square	All properties of a rectangle	
45	A D C	ABCD is a square	All sides are equal	prop of square
46	A D C	ABCD is a square	Diagonals are perpendicular to each other	prop. of square
47	A D C	ABCD is a square	Angles between each diagonal and a side is 45°	
48	$A \longrightarrow C$	ABCD is a rhombus	All properties of a //gram	
49	$A \longrightarrow C$	ABCD is a rhombus	All sides are equal	
50	$A \longrightarrow B$	ABCD is a rhombus	Diagonals are perpendicular to each other	prop. of rhombus
51	A B	ABCD is a rhombus	Interior angles are bisected by the diagonals	
52	M A C	AM = MB and $AN = NC$	$MN // BC$ and $MN = \frac{1}{2}BC$	mid-pt. thm.

No.	Diagram	Given Condition	Conclusion	Abbreviation
53	$ \begin{array}{c c} \hline A & D \\ \hline B & E \\ \hline C & F \\ \hline L_3 \end{array} $	$L_1/\!\!/ L_2/\!\!/ L_3$ and $AB=BC$	DE = EF	intercept thm.
54	M A C	AM = MB and $MN // BC$	AN = NC	intercept thm.
55	A C	<i>In ∆ABC</i> , ∠ <i>ABC</i> = 90°	$AB^2 + BC^2 = AC^2$	Pyth. thm.
56	A B	$ In \triangle ABC, AB^2 + BC^2 = AC^2 $	∠ABC = 90°	converse of Pyth. thm.