1 Define a sequence of real numbers (x_n) by

4 points

$$x_0 = 1,$$
 $x_{n+1} = \frac{1}{2 + x_n}$ for $n \ge 0$.

Show that (x_n) converges, and evaluate its limit.

Let (a_n) and (ϵ_n) be sequences of positive numbers. Assume that $\lim_{n\to\infty} \epsilon_n = 0$ and 6 points that there is a number k in (0,1) such that $a_{n+1} \le ka_n + \epsilon_n$ for every n. Prove that $\lim_{n\to\infty} a_n = 0$

(Hint: If you are stuck, start like this. Fix $\delta > 0$, and choose n_0 such that $\epsilon_n < \delta$ for all $n \ge n_0$. Then $a_{n_0+1} \le ka_{n_0} + \epsilon_{n_0} < ka_{n_0} + \delta$)