Synthesis of Control Laws and State Observers Feedback Control Using measurements of the system's output (or state) to adjust the input in order to achieve the desired behavior - Helps stabilize the system - Reduces the effect of external disturbances - Ensures the system follows desired performance criteria - Can compensate for modeling uncertainties Different Types - Static State feedback control Uses full state vector to compute control input; $u(\mathcal{E}) = -K \times (\mathcal{E})$ K is state feedback gain matrix goal is to modify dynamics by shifting eigs of A-BK · Requires full state information - Output feed back control If only system output is available, the control law uses $u(\varepsilon) = -14y(t)$ Less powerfull since it uses limited information

- Dynamic output feed back control When fill state is not available, can use an observe to estimate the state. Control law $u(t) = -K\hat{x}(t)$ where $\hat{x}(E)$ is the estimated state from the observer Regulation Control Problem Focuses on keeping the system at a desired constant state or output despite disturbances, Tracking Control Problem Maling the output follow a time-varying reference trajectory Static Linear State Feedback Control Design Designing control law where control input is directly computal as a linear function of the system's state $\dot{x}(f) = Ax(e) + Bu(f)$ $u(f) = -15 \times (t)$ Goal is to modify closed loop system dynamics and obtain stability Putting control (aw u(t) in the state equation; $\chi(t) = (A-B|4) \times (t)$

The matrix A-BIK determines the behavior
Pole Allocation Theorem
Method for designing feedback natrix K
A system x(f)=Ax(f)+Ba(f)
is completely state controllable iff it is possible to place all
poles of the closed-loop system arbitrosily using K
The system must be controllable
R must he foll rank
Stabili Zability
A system is stabilizable if it is possible to place all unstable
poles in the left half-plane using a K.
A system may not be fully controllable but can still be
stabilizable if all unstable modes can be controlled
Stabilizability is a wealser condition than controllability
but still ensures that the system can be stabilized with
feed back
Use the PBH test;
If for every eig & with Re()>0
vank [xI-A B] =n

the system is Stabilizable. Dead-Beat Control (Only D.T.)
Drive the system to Zero in a finite number of stops (n steps for an n-dimensional system) The system must be completely controllable Static Output Feed back x(t) = Ax(t) + Bu(t) YG1= CxG1+ Da(+) u(4)= -14y(+) closed-loop X(f) = (A-BISC) X(f) Asymptotical Observers (huenberger) System designed to estimate the full state vector of a system using measurements of the output. Provides an asymptotically accurate estimate of the state as time progre 55es.

System in (f) = Ax(+) + Bu(t) (X (v) y(f) = (x(f) + Du(f) The huen berger observer estimates the state using the measured output and a correction term $\hat{X}(t) = A\hat{X}(t) + Bult + \lambda(y(t) - (\hat{X}(t)))$ 16 hore X(f) is the estimated state vector I is the observer gain matrix Error Dynamics Define the state estimation error as $e(\varepsilon) = \chi(\varepsilon) - \hat{\chi}(\varepsilon)$ => é(t) = (A-LC) e(t) The observer is asymptotically stable if all eigenvalues of A-2C lie in the left half-plane Observer Allocation Theorem (f the System is observable, then there exists a gair matrix L S.f. the eigenvalues of A-LC can be placed arbitrarily in the complex plane. Given the desired poles \ \ \delta_0 = \{\lambda_1, \lambda_2, ..., \lambda_3\} \eta there exists on h s.t.;

 $\det(\lambda \mathbf{I} - (A - LC)) = P_{d_{\alpha}}(\lambda) = (\lambda - \lambda^{\circ})(\lambda - \lambda^{\circ}) \cdots (\lambda - \lambda^{\circ})$ iff (A,C) is observable Detectability vecalier condition than observability, ensuring that only the unstable modes can be observed Def: A system is defectable if all unstable modes of the system can be observed from the output A system is defectable if \tels \tel run () I-AT C = n Detectability is sufficient for designing asymptotic observers because only unstable modes need correction The Achermann Formula I = [0,0,...,1] 9 Pac (AT) Where Poles (AT) is the desired characteristic polynomial evaluated at A O is the observability matrix

Dead-Beat Observer (D.t. Only) Goal in to entimate the state in finite number of steps A dead-beat observer drives the extination error to zero in exactly in steps for an in-dimensional system, Dynamic Regulator (Compensator) Use the estimated state X(t) together with the feedback controller instead of X(E). $\chi(f) = A\chi(f) + Bu(f)$, $\chi(0)$ y(t) = (x(t) + Du(t) $\hat{\chi}(t) = (A - LC)\hat{\chi}(t) + [(B - LD), L][u]$ (f) = (x(+) + Dalt) Control lawi $u(t) = |\langle \chi(t) \cdot v(t) \rangle$ $\hat{\chi}(\xi) = (A - LC) \hat{\chi}(\xi) + LC \chi(\xi) + Bu(\xi)$ Compensated Systemi

x(t)=4x(t)+B1(x(t)+Bv(t)

 $\widehat{\chi}(t) = L(x(t) + (A-L(t)R(t))\widehat{\chi}(t) + Bv(t)$

ONCHION	$C(S) = \frac{N(S)}{D(S)}$
Where	
	. D(s) are the numerator and denominator polynomials of
5 15	the Laplace variable
	can be represented as a transfer function:
	$\mathcal{O}(2)$
	$C(s) = \frac{Q(s)}{P(s)}$
Where	
	P(s) are polynomials chosen to shape the closed-loop respons
Closed -loc	pp transfer function:
	op transfer function: N(s) Q(s) $T(s) = D(s) P(s) + N(s) Q(s)$
	$T(s) = \frac{N(s)Q(s)}{D(s)P(s)+N(s)Q(s)}$
90a ts	$T(s) = \frac{N(s) Q(s)}{D(s) P(s) + N(s) Q(s)}$ +o design P(s), Q(s) s.+,'.
goal to	T(s) = D(s) P(s) + N(s) Q(s) $+o design P(s), Q(s) s.t.;$ $denominator roots must be stable$
goal to -Stability	$T(s) = \frac{N(s) Q(s)}{D(s) P(s) + N(s) Q(s)}$ +o design P(s), Q(s) s.+,'.
goal to -Stability - Performa	NG) Q(s) T(s) = D(s) P(s) + N(s) Q(s) to design P(s), Q(s) s.t.; denominator roots must be stable ince; response should meet the performance criteria
goal to -Stability - Performa	NG) Q(s) T(s) = D(s) P(s) + N(s) Q(s) to design P(s), Q(s) s.t.; denominator roots must be stable ince; response should meet the performance criteria (Diophantine Equations

Where AG, BG, CG are Known XG, YG are to be determined In compensatur design: Desired cl-polynomial: $\mathcal{D}_{c1}(s) = P(s) \mathcal{D}(s) + Q(s) \mathcal{M}(s)$