BUNDES PUBLIK DEUTSOLAND PCT/DE 03/00605

PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

REC'D 19 MAY 2003

Prioritätsbescheinigung über die Einreichung einer Patentanmeldung

Aktenzeichen:

102 08 877.2

Anmeldetag:

01. März 2002

Anmelder/Inhaber:

Professor Dr. Volker A. Erdmann und

Thorsten Lamla, Berlin/DE

Bezeichnung:

Streptavidin Bindungspeptid

IPC:

C 07 K, C 12 N

Die angehefteten Stücke sind eine richtige und genaue Wiedergabe der ursprünglichen Unterlagen dieser Patentanmeldung.

München, den 6. Mai 2003

Deutsches Patent- und Me

Deutsches Patent- und Markenamt

Der Präsident

Im Auftrag

19161 3/00 DV-L

Dzierzon

Gebiet der Erfindung

Die Erfindung betrifft ein Streptavidin-Bindungspeptid, sowie Verfahren zur Herstellung eines Streptavidin-Bindungspeptides in einem zellbasierten oder zellfreien Proteinbiosynthesesystem.

Weiterhin betrifft die Erfindung eine Verwendung eines Streptavidin-Bindungspeptides zur Aufreinigung eines in einem Proteinbiosynthesesystem hergestellten definierten Proteins, sowie die Verwendung eines Streptavidin-Bindungspeptides zur Markierung eines definierten Proteins.

Stand der Technik

- Verfahren zur effizienten Expression von definierten Proteinen in verschiedensten pro- und eukaryontischen Organismen sind bekannt und bedürfen keiner weiteren Erläuterung. Unter definierten Proteinen werden in diesem Zusammenhang Peptide und/oder Proteine verstanden, die in dem
 zur Expression verwendeten Organismus oder zellfreien Expressionssystem natürlicherweise oder nach Transformation
 bzw. Einsatz definierter RNA exprimiert und in Aufreinigungsschritten angereichert werden.
- Verfahren zur zellfreien Expression von definierten Proteinen sind beispielsweise aus den Literaturstellen EP 0312 617 B1, EP 0401 369 B1 und EP 0 593 757 B1 bekannt. Demgemäß werden die für eine Transkription und/oder Translation notwendigen Komponenten neben einem für ein definiertes Protein kodierenden Nukleinsäurestrang in einem Reaktionsgefäß inkubiert und nach der Expression die Polypeptide/Proteine aus der Reaktionslösung isoliert. Sowohl die für die Transkription, als auch die für die

Translation notwendigen Komponenten lassen sich aus den Überstanden pro- oder eukaryontischen Zelllysaten nach einer Zentrifugation gewinnen.

- 5 Ein wesentliches Problem bei der Expression von definierten Proteinen in pro- und eukaryontischen Organismen und bei der zellfreien Expression liegt in der Aufreinigung und/oder der Detektion der exprimierten definierten Proteine. Dies ist insbesondere bei definierten Proteinen
- 10 problematisch, für die es keine Antiseren oder monoklonale Antikörper gibt. Zur Vereinfachung der Aufreinigung und der Detektion solcher definierten Proteine werden diese als sogenannte Fusionsproteine exprimiert. Hierbei wird dem definierten Protein N- und/oder C-terminal eine Ami-
- 15 nosäuresequenz angefügt oder zwischen zwei Proteindomänen (intern) eingefügt, der Fusionspartner. Dies geschieht auf der Nukleinsäureebene, so daß sowohl das definierte Protein, als auch der zur Detektion und/oder Reinigung angefügte Fusionspartner während eines Transkriptions-/Translati-
- 20 onsvorganges zusammen als ein chimäres (Fusions-) Protein exprimiert werden, bestehend aus dem definierten Protein und dem Fusionspartner. Hierbei kann es sich bei dem angefügten Fusionspartner um einzelne Aminosäuren, aber auch um Peptide oder Proteine handeln. Für diese angefügten
- 25 Fusionspartner stehen zur Aufreinigung immobilisierte Bindungspartner zur Verfügung, mit denen die Fusionsproteine
 isoliert werden können. Neben der Möglichkeit der Reinigung der Proteine können diese auch mit für den Fusionspartner spezifischen Bindungspartner nachgewiesen werden.
- 30 Diese Bindungspartner können für den Fusionspartner spezifische Antikörper oder auch andere Proteine, Peptide oder chemische Verbindungen sein, die an den Fusionspartner spezifisch binden.

nern auf.

3

Beispiele für solche Fusionspartner sind der Myc-tag (Munro & Pelham (1986) Cell 46, 291-300; Ward et al. (1998) Nature 341, 544-546), das Flag Peptid (Hopp et al. 5 (1988)Bio/Technology 6 1204-1210), das KT3 Epitop Peptid (Martinet et al. (1990) Cell 63, 843-849; Martin et al.(1992) Science 255, 192-194) und das alpha-tubulin Epitop Peptid (Skinner et al. (1991) J. Biol. Chem. 266, 14163-14166), die alle erfolgreich für die Detektion und 10 teilweise auch für die Reinigung von Proteinen genutzt wurden. Es konnte für einen Teil der Fusionspartner, die normalerweise 3 bis 12 Aminosauren lang sind, gezeigt werden, daß sie nicht die biologische Funktion der definierten Proteine beeinflussen. Die biologische Funktion des 15 definierten Proteins wird dagegen mit zunehmender Länge des Fusionspartners beeinflußt, da die zusätzlich exprimierten Aminosauren z. B. die Ausbildung der Sekunder-, Tertiär und/oder Quartärstruktur beeinflussen können. Längere Fusionspartner sind daher zur Detektion der Pro-

25 Ein wesentlicher Nachteil der oben genannten Fusionspartner bei der Aufreinigung ist darin begründet, daß die Bindung an den Bindungspartner auf einer Antigen/Antikörperbindung beruht und die Herstellung und Reinigung der als
Bindungspartner genutzten Antikörper aufwendig und teuer
30 ist. Ein weitere Nachteil liegt darin begründet, daß die
Antigen/Antikörperbindung eine sehr starke Bindung zwi-

20 teine, aber weniger zur Reinigung der Proteine geeignet. Auf der anderen Seite weisen längere Fusionspartner oft eine höhere Affinität mit ihren spezifischen Bindungspart-

Antigen/Antikörperbindung eine sehr starke Bindung Zwischen dem Bindungspartner, z.B. an eine Matrix immobilisierten Antikörper, und dem Fusionspartner bedingt. Diese

hat zur Folge, daß bei der Elution der über den Fusionspartner gebundenen Fusionsproteine, teilweise extrem unphysiologische Bedingungen bezogen auf das definierte Protein geschaffen werden müssen. Unter unphysiologischen 5 Bedingungen sind in diesem Zusammenhang Bedingungen zu verstehen mit z. B. sehr hohe oder äußerst geringe Salzkonzentrationen, Einsatz von chaotrophen Salzen und pH-Werte, die weit von dem natürlichen pH-Wert des definierten Proteins abweichen. Diese kann u. U. die Struktur un-10 d/oder Funktionalität des definierten Proteins beeinflussen oder irreversibel zerstören. Dementsprechend sollte die Reinigung der definierten Proteine unter möglichst schonenden, physiologischen Bedingungen geschehen, um die Funktionalität der Proteine zu erhalten. Zwar konnte bei 15 drei der oben genannten Fusionspartnern (Hopp et al. (1988) (Martin et et al. (1990) (Skinner et al. (1991)) eine Elution auch unter schonenden Bedingungen mittels kompetetiver Peptide erzielt werden, doch bleibt das Problem der aufwendig und teuer herzustellenden und zu reini-20 genden (als Bindungspartner dienenden) Antikörper und deren Bindung an die Matrix.

Weitere Fusionspartner, bestehend aus 8 bis 9 Aminosauren, sind aus den Literaturstellen US 5,506,121 und Schmidt & 25 Skerra (Protein Engineering, vol. 6, no. 1, 109-122, 1993) bekannt. Die dort offenbarten Fusionspartner sind in der Lage an das Streptavidin oder an das "core" Streptavidin, ein proteolytisch gespaltenes Produkt des Streptavidin, zu binden (Bayer et al. (1989) Biochem. J. 259,369-376).

30

Alle bekannten Fusionspartner, die an das Streptavidin binden enthalten die Aminosäureabfolge HPQ, das sog. HPQ-Bindungsmotiv, welches mit der Biotin-Bindungstasche des Streptavidin in Wechselwirkung tritt. Zu den Bereits bekannten Peptiden gehören dem sog. Strep-tag I: AWRHPQFGG mit einer Dissoziationskonstanten Kd von 10-37 µM, der sog. Strep-tag II: WSHPQFEK mit einer Dissoziationskon-

- 5 stanten Kd von 18-72 µM und der sog. SBP-tag:

 MDEKTTGWRGGHVVEGLAGELEQLRARLEHHPQGQREP mit einer Dissoziationskonstanten Kd von 2,5 nM. Im Gegensatz zu den beiden
 kurzen Strep-tags I und II besitzt der längere SBP-tag
 eine wesentlich stärkere Bindung zum Streptavidin. Aller-
- 10 dings wird, wie oben ausgeführt, die Funktion des definierten Proteins insbesondere mit zunehmender Länge des
 Fusionspartners beeinflußt. Auch stören besonders lange
 Fusionspartner bei der Kristallisation der definierten
 Proteine.

15

Technisches Problem der Erfindung

- 20 Der Erfindung liegt das technische Problem zugrunde, ein möglichst kurzes Streptavidin-Bindungspeptid mit einer starken Bindung zum Streptavidin zur Verfügung zu stellen.
- 25 Grundzüge der Erfindung und bevorzugte Ausführungsformen.

Zur Lösung des technischen Problems lehrt die Erfindung ein Streptavidin-Bindungspeptid enthaltend eine Aminosäu30 resequenz gemäß Seq.-ID 1 - 6.

Mit dem erfindungsgemäßen Streptavidin-Bindungspeptid enthaltend eine Aminosäuresequenz gemäß Seq.-ID 1 - 6

wird, verglichen mit dem Stand der Technik, eine wesentlich stärkere Bindung zwischen dem Streptavidin-Bindungspeptid und dem Streptavidin erreicht, bzw. kann bei gleicher Bindungsstärke das Streptavidin-Bindungspeptid wesentlich 5 verkürzt werden.

Des Weiteren lehrt die Erfindung ein Nukleinsäure codierend für ein Streptavidin-Bindungspeptid gemäß Seq.-ID 1 -6, sowie ein Plasmid enthaltend eine erfindungsgemäße Nu-10 kleinsäure. Es versteht sich, daß die Nukleinsäure codierend für ein erfindungsgemäßes Streptavidin-Bindungspeptid und/oder das Plasmid dem jeweiligen Expressionssystem/ Proteinbiosynthesesystem angepaßt werden kann. Das Plasmid kann als ein Expressionsvektor, insbesondere für Bakteri-15 en, ausgelegt sein enthaltend einen Bereich mit mindestens einer Schnittstelle für ein Restriktionsenzym, in dem die Nukleinsäuresequenz codierend für ein definiertes Protein inseriert werden kann und somit das definierte Protein zusammen mit dem Streptavidin-Bindungspeptide gemäß 20 Seq.-ID 1 - 6 exprimiert wird. Es versteht sich, daß der für das definierte Protein und für das Streptavidin-Bindungspeptide gemäß Seq.-ID 1 - 6 codierende Bereich sich unter der Kontrolle eines geeigneten Promoters und/oder Operators und Terminators befinden. Der Bereich mit minde-25 stens einer Schnittstelle für mindestens ein Restriktionsenzym kann sowohl in 5', als auch in 3' Richtung vom Nukleinsäurebereich codierend für das Streptavidin-Bindungspeptide gemäß Seq.-ID 1 - 6 liegen. Der Nukleinsäurebereich codierend für das Streptavidin-Bindungspeptide gemäß 30 Seq.-ID 1 - 6 muß nicht unmittelbar an den Nukleinsäurebereich codierend für das definierte Protein anschließen,

vielmehr können zwischen den beiden Bereich noch

Nukleinsäuren liegen, die für 1 bis 20 Aminosäuren, insbesondere für 5 bis 10 Aminosäuren, codieren.

Die Erfindung betrifft auch ein Verfahren zur Herstellung 5 eines Streptavidin-Bindungspeptides gemäß Seq.-ID 1 - 6, wobei eine Nukleinsäure in einem zellbasierten oder zellfreien Proteinbiosynthesesystem exprimiert oder überexprimiert wird. Dieses so hergestellte Peptid läßt sich leicht über die Bindung an Streptavidin isolieren. Das erhaltene 10 Translationsprodukt, i. e. ein Streptavidin-Bindungspeptid gemäß Seq.-ID 1 - 6, wird mit immobilisiertem Streptavidin kontaktiert und daran gebunden. Nach Abtrennung der Lösung mit nicht an Streptavidin gebundenen Substanzen wird das Translationsprodukt eluiert. Als Elutionsmittel können 15 Puffer verwendet werden, die Biotin oder verwandte Substanzen und/oder Derivate, wie Iminobiotin, Desthiobiotin und/oder Diaminobiotin, enthalten. Das erhaltene Streptavidin-Bindungspeptid gemäß Seq.-ID l - 6 trägt im Falle der Fusion mit dem definierten Protein dieses Protein. Es 20 kann der auch unabhängig von einem definierten Protein zur Antikörperherstellung genutzt werden. Die erhaltenen Antikörper können z.B. zur Detektion oder zur Aufreinigung der Streptavidin-Bindungspeptide gemäß Seq.-ID 1 - 6, bzw. im Fall, daß das Streptavidin-Bindungspeptide gemäß 25 Seq.-ID 1 - 6 als Fusionspartner eingesetzt wird, des an diesen Fusionspartner gebundenen definierten Proteins ge-

Es versteht sich, daß die Herstellung eines solchen Strep30 tavidin-Bindungspeptides enthaltend eine Aminosäuresequenz
gemäß Seq.-ID 1 - 6 z. B. auch mittels chemischer Festphasensynthese, beispielseise mit einem Syntheseautomat der
Firma Abimed (Langenfeld, BRD) möglich ist. Diese Methode

nutzt werden.

basiert auf den Standardprotokollen der Fmoc-Chemie (Fmoc-9-fluorenylmethoxycarbonyl).

Die Erfindung betrifft auch die Verwendung eines Strepta-5 vidin-Bindungspeptides gemäß Seq.-ID 1 - 6 zur Aufreinigung eines in einem Proteinbiosynthesesystem hergestellten definierten Proteins, wobei eine für das definierte Protein und, hiermit verbunden, für das Streptavidin-Bindungspeptid codierende Nukleinsäure einer Transkription und/o-10 der Translation unterworfen wird, wobei eine Lösung enthaltend das so erhaltene Translationsprodukt mit immobilisiertem Streptavidin kontaktiert und daran gebunden wird und wobei nach Abtrennung der Lösung mit nicht an Streptavidin gebundenen Substanzen das Translationsprodukt elu-15 iert wird. Die Elution kann unter schonenden Bedingungen für das definierte Protein erfolgen. Als Elutionsmittel können Puffer verwendet werden, die Biotin oder verwandte Substanzen und/oder Derivate, wie Iminobiotin, Desthiobiotin und/oder Diaminobiotin, enthalten. Das hergestellte 20 definierte Protein kann das als Fusionspartner dienende Streptavidin-Bindungspeptid gemäß Seq.-ID 1 - 6 sowohl Nund/oder C-terminal enthalten.

Bei Verwendung einer Streptavidin-Sepharose-Säule kann das zu untersuchende definierten Protein mittels des als Fusionspartner dienenden Streptavidin-Bindungspeptides gemäß Seq.-ID 1 - 6 an der Matrix immobilisiert und aus einem Gemisch von Molekülen, z.B. einem Zelllysat, isoliert werden.

30

Die Erfindung betrifft auch die Verwendung eines Streptavidin-Bindungspeptides gemäß Seq.-ID 1 - 6 zur Markierung eines definierten Proteins, wobei eine für das definierte

Protein und, hiermit verbunden, für das Streptavidin-Bindungspeptid codierende Nukleinsäure einer Transkription und/oder Translation unterworfen wird, wobei das so erhaltene Translationsprodukt mit einem Streptavidin-Konjugat 5 enthaltend ein Reportermolekül kontaktiert und daran gebunden wird. Das markierte definierte Protein kann das zur Markierung dienende Streptavidin-Bindungspeptides gemäß Seq.-ID 1 - 6 N- und/oder C-terminal enthalten. Reportermoleküle können z. B. radioaktive und/oder radioaktiv mar-10 kierte Substanzen sein. Es versteht sich, daß das Streptavidin als solches auch radioaktiv markiert und/oder radioaktiv sein kann; in diesem Fall kann auf ein Reportermolekül verzichtet werden. Reportermoleküle können auch fluoreszierende Substanzen oder Enzyme, wie z.B. alkalische 15 Phosphatase oder Peroxidase, sein. Durch solche mit einem Reportermolekül gekoppelte Streptavidinverbindungen lassen sich beispielsweise Proteine, die das Streptavidin-Bindungspeptides gemäß Seq.-ID 1 - 6 als Fusionspartner besitzen, auf einem Western-Blot oder im ELISA (Enzyme lin-20 ked immunosorbent assay) nachweisen und/oder quantifizieren. Handelt es sich bei den definierten Proteinen um Bindungsproteine, können auf diese Weise auch an diese bindende andere Proteine nachgewiesen werden. Unter Bindungsproteine sind in diesem Zusammenhang Proteine zu verste-25 hen, die selbst andere Proteine binden und/oder selber an andere Proteine binden, wie z. B. bei einer Antigen/Antikörperbindung oder bei einer Bindung eines Proteins an einen Rezeptor.

30 Bevorzugt ist ein Streptavidin-Bindungspeptid enthaltend weniger als 30 Aminosäuren, vorzugsweise weniger als 20 Aminosäuren, höchstvorzugsweise weniger als 10 Aminosäuren.

Im Folgenden wird die Erfindung anhand von lediglich Ausführungsformen darstellenden Figuren sowie Beispielen näher erläutert.

5 Fig. 1: Reinigung von FABP mit Streptavidin-Bindungspeptides gemäß Motiv 3 als Fusionspartner nach zellfreier Proteinbiosynthese über eine Streptavidin-Affinitätssäule. Es wurden von jeder Fraktion eine vergleichbare Menge mittels. 10 SDS-Polyacrylamidgelelektrophorese analysiert. (A) Coomassie gefarbt und (B) Autoradiogramm. Die Proben in den numerierten Spuren sind (1) Molekulargewichtsmarker; (2) Reaktionsmischung; (3) Durchlauf Probenauftragung; der (4-6) Waschfraktionen; (7-9) Elutionsfraktionen; (10) ra-15 dioaktiver Molekulargewichtsmarker.

Fig. 2: Reinigung von FABP mit Streptavidin-Bindungspeptides gemäß Motiv 3 als Fusionspartner nach zellfreier Proteinbiosynthese über eine StrepTactin-Affinitätssäule. Es 20 wurden von jeder Fraktion eine vergleichbare Menge mittels SDS-Polyacrylamidgelelektrophorese analysiert. (A) Coomassie gefärbt und (B) Autoradiogramm. Die Proben in den numerierten Spuren sind (1) Molekulargewichtsmarker; (2) Durchlauf der Probenauftragung; (3-5)Waschfraktionen; 25 (6-10) Elutionsfraktionen; '(11) radioaktiver Molekulargewichtsmarker.

Beispiel 1 : erfindungsgemäße Bindungspeptide und Ver-30 gleichspeptide mit Dissoziationskonstanten

In fachublicher Weise wurde das FAB Protein (fatty acid binding protein) aus Rinderherzen in vitro in einem

zellfreien Proteinbiosynthese mittels eines gekoppelten Transkriptions-Translationssystemes exprimiert. Das exprimierte FAB Protein besaß am N-Terminus jeweils ein aus fünfzehn Aminosäuren bestehendes zusätzliches Streptavidin 5 Bindungspeptid mit unterschiedlichen Aminosäuresequenzen als Fusionspartner.

Zwei Bindungspeptide enthalten in ihrer Aminosäuresequenz das im Stand der Technik beschriebene HPQ-Motiv (Motiv 1 und 2) und zwei enthalten das erfindungsgemäße Streptavi
10 din-Bindungspeptid gemäß Seq.-ID 1 - 6 (Motiv 3 und 4).

Die Sequenzen der Peptide sind in der Tabelle 1 dargestellt. Zusätzlich wurden die exprimierten Proteine mit
einem am C-terminus befindlichen "His-tag", bestehend aus
6 Histidinen, versehen. Die Proteine wurden mittels Affi15 nitätschromatographie über Ni21-IDA-Agarose in fachüblicher
Weise aufgereinigt. Man erkennt, dass bei gleicher Länge
Bindungspeptide mit einer erfindungsgemäßen Sequenz eine
wesentlich niedrigere Dissoziationskonstante als ein Bindungspeptid mit HPQ-Motiv aufweist. Der Kd-Wert eines er20 findunggemäßen Bindungspeptids liegt in der Größenordnung

des SBP-Tags trotz des ca. 2,5-fachen Länge des SBP-Tags.

Tabelle 1

25	Sequenz														Dissoziations- konstante [kd]			
	Motiv	1.	D	Ľ	¥	.D	I	D	Ŗ	N	W	v	G	H	P	Q	G	8 hW
	Motiv	2	D	N	Y	D	A	D	L	A	W	D	T	Н	P	Q	D	70 µM
	Motiv	3	D	V	E	A.	W	IJ	D	E	R	٧	P	L	V	E	T	84 nM
30	Motiv	4	D	v	E	A	W	I	Α	ם	P	A	٧	Ĥ	F	Т	T ·	200 nM

Beispiel 2: Messungsweise der Dissoziationskonstanten aus Tabelle 1.

Die Messungen der Dissoziationskonstante wurden mit einem 5 BiacoreX-System und dem Sensor Chip NTA der Firma Biacore durchgeführt. Vermessen wurden die aus der im Beispiel 1 beschriebenen Expression hervorgegangenen Proteine, d.h. FAB Proteine, die am N-Terminus jeweils ein aus fünfzehn Aminosäuren bestehendes Peptid als Fusionspartner und am

- 10 C-Terminus 6 Histidine besaßen, die zur Immobilisierung auf dem Sensor Chip benötigt wurden. Die Bindungsaffinität der aus der im Beispiel 1 beschriebenen Expression hervorgegangenen Proteine zu Streptavidin wurde nach Herstellerangaben im Biacore-Gerät vermessen. Dabei befindet sich
- 15 das zu vermessende Protein auf dem Sensor-Chip und eine Streptavidinlösung mit definierter Konzentration wird eingespritzt. Die Wechselwirkung (Bindung) zwischen den beiden Molekülen wird vom Gerät gemessen und als sog. Resonanz Units (RU) angegeben. Zur Messung wurden die vom Herzo steller angegebenen Puffer verwendet.

Die Ergebnisse der Messungen sind in der Tabelle 2 dargestellt. Die erhaltenen Meßwerte wurden mit der zugehörigen Software ausgewertet und führten zu den in der Tabelle 1 25 angegebenen Dissoziationskonstanten.

30

Tabelle 2:

	Motiv	1	2.	3	4
•	Streptavidinkonz.	RU	RU ·	RU	RU .
	15 nM '			98	
5	30 nM			242	68
	60 nM			461	171
	125 nM			613	280
10	250 nM		,	704	384
	500 nM	62		786	478.
	1 µM	123		-	560
	, 2 рм	233	·	946	644
15	. З µМ	_	64	_	
	4 µM	407		983	
	б µМ	_	98		
	8 ДМ	621	-		
20	15 µM	-	201		-
	16 µМ	779	-		
	30 hW.	_	337		
•	32 µM	955	-		
	60 µМ		536		

Beispiel 3

In fachüblicher weise wurde das FAB Protein, das am N-ter30 minus ein aus fünfzehn Aminosäuren bestehendes zusätzliches Peptide mit der Aminosäuresequenz D V E A W L D E R V
P L V E T (Motiv 3) als Fusionspartner besaß, in vitro in

einem zellfreien Proteinbiosynthese mittels eines gekoppelten Transkriptions-Translationssystems exprimiert.

Zur Aufreinigung des überexprimierten definierten Proteins
wurde das Streptavidin an einer Festphase gekoppelt. Als

5 Festphase diente eine Sepharose. Das exprimierte FAB Protein wurde anschließend in fachüblicher weise affinitätschromatographisch über eine Säule enthaltend Streptavidin-Sepharose oder StrepTactin-Sepharose aufgereinigt.

Für die Aufreinigung wurden folgende Puffer verwendet:

10 Waschpuffer (100 mM Tris-HCl (pH 8.0), 150 mM NaCl, 1 mM

Für die Elution von Streptavidin enthielt der Waschpuffer 2 mM Biotin und für die Elution von StrepTactin enthielt 15 der Waschpuffer 2,5 mM Desthiobiotin.

Die prozentuale Verteilung des eingesetzten definierten Proteins auf die verschiedenen Fraktionen der Affinitätschromatographie ist in der Tabelle 3 zu entnehmen. In der 20 Tabelle 3 steht D für den Auftragung der Probe/Durchlauf, W für die Waschfraktion und E für die Elutionsfraktion.

Tabelle 3

EDTA) .

	Fraktion	D	W1	W2	WЗ	El	E2	E3	E4	Ē5	Summe
25	Strept- avidin	3,5%	6,8%	1,0%	0,3%	0,4%	76,9%	0,7%	- ·	- .	89,6%
	StrepT-	3,0%	7,48	1,8%	0,9%	.0,9%	45,9%	23,2%	1,0%	0,3%	84,48

30 Bei der Verwendung von Streptavidin-Sepharose konnten 90% des aufgetragenen Proteins von der Säule wiedergewonnen werden, wobei 78% auf das Eluat entfielen. Die Qualität der Aufreinigung ist in Fig. 1 dargestellt.

Bei der Verwendung von StrepTactin-Sepharose konnten 84% des aufgetragenen Proteins von der Säule wiedergewonnen werden, wobei 71% auf das Eluat entfielen. Die Qualität 5 der Aufreinigung ist in Fig. 2 dargestellt.

Seq.-ID 1: DVEAW

Seq.-ID 2: DVEA

Seq.-ID 3: VEAW

10 Seq.-ID 4: DVE

Seq.-ID 5: VEA

Seq.-ID 6: EAW

15

20

っち

30

Patentansprüche:

- Streptavidin-Bindungspeptid enthaltend eine Aminosauresequenz gemäß Seq.-ID 1 - 6.
 - 2. Nukleinsäure codierend für ein Streptavidin-Bindungspeptid nach Anspruch 1.

10

- 3. Plasmid enthaltend eine Nukleinsäure nach Anspruch 2.
- 15 4. Verfahren zur Herstellung eines Streptavidin-Bindungspeptides nach Anspruch 1, wobei eine Nukleinsäure nach Anspruch 2 in einem zellbasierten oder zellfreien Proteinbiosynthesesystem exprimiert oder überexprimiert wird.

20

5. Verwendung eines Streptavidin-Bindungspeptides nach
Anspruch 1 zur Aufreinigung eines in einem Proteinbiosynthesesystem hergestellten definierten Proteins, wobei eine für das definierte Protein und, hiermit verbunden, für das Streptavidin-Bindungspeptid codierende
Nukleinsäure einer Transkription und/oder Translation
unterworfen wird, wobei eine Lösung enthaltend das so
erhaltene Translationsprodukt mit immobilisiertem

Streptavidin kontaktiert und daran gebunden wird und
wobei nach Abtrennung der Lösung mit nicht an Streptavidin gebundenen Substanzen das Translationsprodukt
eluiert wird.

6. Verwendung eines Streptavidin-Bindungspeptides nach Anspruch 1 zur Markierung eines definierten Proteins, wobei eine für das definierte Protein und, hiermit verbunden, für das Streptavidin-Bindungspeptid codierende Nukleinsäure einer Transkription und/oder Translation unterworfen wird, wobei das so erhaltene Translationsprodukt mit einem Streptavidin-Konjugat enthaltend eine Reportermolekül kontaktiert und daran gebunden wird.

10

15

20

25

30

Zusammenfassung

Die Erfindung lehrt neue Streptavidin-Bindungspeptide.

1/2

Fig. 1

-- 30 kDa

-- 20,1 kDa

FABP+Motiv3 →

12,5 kDa

6,5 kDa

1/2

Fig. 1

--- 30 kDa

20,1 kDa

FABP+Motiv3 →

🗯 12,5 kDa

6,5 kDa

2/2

Fig. 2

B

- 30 kDa

^{*} 20,1 kDa

FABP+Motiv3

12,5 kDa

erd_de_0201.ST25.txt

SEQUENCE LISTING

```
<110> Erdmann, Volker A.
      Lamla, Thorsten
<120> Steptavidin-Bindungspeptid
<130> ERD/DE/0201
<160> '10
<170> PatentIn version 3.1
<210> 1
<211>
       5
<212>
       PRT
<213>
       artificial
<400> 1
Asp Val Glu Ala Trp
                5
```

<210> 2 <211> 4 <212> PRT <213> artificial

<400> 2

Asp Val Glu Ala

<210> 3 <211> 4 <212> PRT <213> artificial <400> 3

Val Glu Ala Trp

<210> 4
<211> 3
<212> PRT
<213> artificial
<400> 4

Asp Val Glu

Seite 1

<2115 15 <212> PRT

<4'00> 9

<213> artificial

5

```
erd_de_0201.$T25.txt
```

```
<210> 5
<211> 3
       PRT
 <212×
 <213> artificial
 <400> 5
 Val Glu Ala
 1
 <210>
 <211× 3
 <212> PRT
 <213> artificial
<400> 6 ·
 Glu Ala Trp
 <210>
 <211>
        15
 <212>
       PRT
 <213> artificial
 <400> 7
 Asp Leu Tyr Asp Ile Asp Arg Asn Trp Val Gly His Pro Gln Gly
                                    10
 <210>
       8
 <211>
       15
 <212> PRT
 <213> artificial
 <400> 8.
 Asp Asn Tyr Asp Ala Asp Leu Ala Trp Asp Thr His Pro Gln Asp
                                                       15
                                    10
 <210>
       9
 <211>
       15
```

Seite 2

10

Asp Val Glu Ala Trp Leu Asp Glu Arg Val Pro Leu Val Glu Thr

erd_de_0201.ST25.txt

<210> 10 '
<211> 15
<212> PRT
<213> artificial

. <400> 10

Asp Val Glu Ala Trp Ile Ala Asp Pro Ala Val His Phe Thr Thr 1 5 10 15

Seite 3

GESAMT SEITEN 29