

EMI -- TEST REPORT

- FCC Part 15.247 -

Test Report No. : T32985-02-00AA 07. April 2009

Date of issue

Type / Model Name : Connection Unit IM 154-6 PN HF IWLAN

Product Description : Network WLAN Client

Applicant: Siemens AG

Address : Werner-von-Siemens-Str. 50

92224 Amberg

Manufacturer : Siemens AG, Industry Sector, I IA AS EWA

Address : Werner-von-Siemens-Str. 50

92224 Amberg

Licence holder : Siemens AG, Industry Sector, I IA AS RD ST TT

Address : Werner-von-Siemens-Str. 50

92224 Amberg

Test Result according to the standards listed in clause 1 test	Positive
standards:	

The test report merely corresponds to the test sample. It is not permitted to copy extracts of these test results without the written permission of the test laboratory.

Contents

1	TEST STANDARDS	3
2	SUMMARY	4
3	EQUIPMENT UNDER TEST	7
3.1	PHOTO DOCUMENTATION OF THE EUT – DETAILED PHOTOS SEE ATTACHMENT A	7
3.2	Power supply system utilised	7
3.3	TEST SETUP	7
3.4	SHORT DESCRIPTION OF THE EQUIPMENT UNDER TEST (EUT)	7
4	TEST ENVIRONMENT	9
4.1	Address of the test laboratory	9
4.2	ENVIRONMENTAL CONDITIONS	9
4.3	STATEMENT OF THE MEASUREMENT UNCERTAINTY	9
4.4	MEASUREMENT PROTOCOL FOR FCC, VCCI AND AUSTEL	10
5	TEST CONDITIONS AND RESULTS	11
5.1	CONDUCTED EMISSIONS	11
5.2	6 dB Bandwidth	15
5.3	MAXIMUM CONDUCTED OUTPUT POWER	22
5.4	Spurious emissions	25
5.5		49
5.6	` ,	54
5.7		57
5.8	RECEIVER SPURIOUS EMISSIONS	58
6	USED TEST EQUIPMENT AND ACCESSORIES	62

1 TEST STANDARDS

The tests were performed according to following standards:

FCC Rules and Regulations Part 15 Subpart C - Intentional Radiators (October, 2008)

Part 15, Subpart C, Section 15.35(c) Measurement detector functions and bandwidths

Part 15, Subpart C, Section 15.203 Antenna requirement

Part 15, Subpart C, Section 15.204 External radio frequency power amplifiers and antenna modifications

Part 15, Subpart C, Section 15.207(a) AC Line conducted emissions

Part 15, Subpart C, Section 15.209(a) Radiated emissions, general requirements

Part 15, Subpart C, Section 15.247 Operation within the bands 902-928 MHz, 2400-2483.5 MHz

and 5725-5850 MHz

FCC Rules and Regulations Part 15 Subpart B - Unintentional Radiators (October, 2008)

Part 15, Subpart B, Section 15.107(a) AC Line conducted emissions

Part 15, Subpart B, Section 15.109(a) Radiated emissions, general requirements

FCC Rules and Regulations Part 1 Subpart I - Procedures Implementing the National Environmental Policy Act of 1969

Part 1, Subpart I, Section 1.1310 Radiofrequency radiation exposure limits.

OET Bulletin 65, 65A, 65B, 65C Edition 97-01, August 1997 – Evaluating Compliance with FCC Guidelines for Human Exposure to Radio Frequency Electromagnetic Fields.

File No. T32985-02-00AA, page 3 of 63

2 SUMMARY

GENERAL REMARKS:

The EuT consists of 1 WLAN client module. It has no radar Interference Detection function Actual firmware of CM module: T 0.0.13 ART 16.11.2007 Actual firmware of IM module: R 10.10.0

Available Features:

The WLAN client module is compatible with 802.11a, 802.11b, 802.11g technology. It is able to operate in the 2.4 GHz and 5 GHz frequency band.

- 802.11a Mode 5.15 GHz – 5.25 GHz and 5.725 GHz – 5.850 GHz

- 802.11b/g Mode 2400 – 2483.5 MHz

The module uses DSSS or OFDM modulation and is cabable to provide following data rates:

- 802.11b Mode 11, 5.5, 2, 1 Mbps, auto-fallback

- 802.11g Mode 54, 48, 36, 24, 18, 12, 9, 6 Mbps, auto-fallback 54, 48, 36, 24, 18, 12, 9, 6 Mbps, auto-fallback

There are three different external antennas provided. The following table shows the WEB-power settings depending on the transmitting channel, antenna type and WLAN technology.

O1 11			WEB	ART
Channel/	Antenna	Antenna	Power settings	Power settings
Frequency	Туре	Gain		
	ANT IM154-6 IWLAN	2 dBi	0	19
802.11b	ANT792-4DN	4 dBi	0	19
	ANT792-6MN	6 dBi	0	19
902 11a	ANT IM154-6 IWLAN	2 dBi	-6	16
802.11g Ch 1/ Ch 11	ANT792-4DN	4 dBi	-6	16
Cit i/ Cit i i	ANT792-6MN	6 dBi	-6	16
902 11a	ANT IM154-6 IWLAN	2 dBi	0	20
802.11g Ch 2 to Ch 10	ANT792-4DN	4 dBi	0	20
CITZ to CIT TO	ANT792-6MN	6 dBi	0	20
	ANT IM154-6 IWLAN	2 dBi	0	19
802.11a	ANT793-4MN	5 dBi	0	19
	ANT793-6MN	5 dBi	0	19

Note: The WEB-power settings are related to the measured ART-power settings (worst case conditions).

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 Strasskirchen
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

File No. **T32985-02-00AA**, page **4** of **63**

Rev. No. 1.1

FCC ID: U9AIM154-6WLAN-V1

Note: The tests have been carried out in the following frequency bands:

2400 MHz to 2483.5 MHz and 5725 MHz to 5850 MHz.

Pre-scan has been performed to determine the worst-case mode from all possible combinations between available modulations, data rates and antenna ports. The maximum output power depends on used data rate.

As worst case the following data rates are used:

802.11b: 11 Mbits802.11g: 6 Mbits802.11a: 6 Mbits

The EuT has been adjusted to transmit data during the tests with a duty cycle (X) of about X=1.

Eleven channels are provided to this EuT in 802.11b/g mode:

802.11b/g mode:

Channel	Frequency
1	2412 MHz
2	2417 MHz
3	2422 MHz
4	2427 MHz
5	2432 MHz
6	2437 MHz
7	2442 MHz
8	2447 MHz
9	2452 MHz
10	2457 MHz
11	2462 MHz

Five channels are provided to this EuT in 802.11a mode:

802.11a mode:

Channel	Frequency
149	5745 MHz
153	5765 MHz
157	5785 MHz
161	5805 MHz
165	5825 MHz

Following channels were selected for the final test as listed below:

Technology	Available Channel	Tested Channel	Modulation	Modulation Type	Data Rate (MBps)
802.11b	1 to 11	1, 6, 11	DSSS	DBPSK	11
802.11g	1 to 11	1, 6, 11	OFDM	BPSK	6
802.11a	149 to 165	149, 157, 165	OFDM	BPSK	6

File No. **T32985-02-00AA**, page **5** of **63**

ECC ID:	U9AIM154-6W	/I

FINAL ASSESSMENT: The equipment under test fulfills the EMI requirements cited in clause 1 test standards. Date of receipt of test sample : acc. to storage records Testing commenced on 25. February 2009 Testing concluded on 17. March 2009 Checked by: Tested by: Anton Altmann Klaus Gegenfurtner

Dipl.-Ing.(FH)

Manager: Radio Group

Dipl.-Ing.(FH)

3 EQUIPMENT UNDER TEST

3.1 Photo documentation of the EuT – Detailed photos see Attachment A

3.2 Power supply system utilised

Power supply voltage : 10 V DC

3.3 Test setup

3.4 Short description of the Equipment under Test (EuT)

The new interface module is integrated in the communication network as an IWLAN client via an IWLAN access point, such as the Scalance W access point from Siemens. The module works according to the WLAN standards IEEE 802.11 a/b/g/h and therefore operates in the 2.4 and 5 GHz frequency bands. The interface module wirelessly integrates the distributed I/O system into the automation network. It is designed for harsh industrial environments with a high degree of protection (IP65/66/67) and conceived for use directly on the machine. For this purpose, the new 154-6 PN HF IWLAN interface module was developed for the Simatic ET 200pro system.

File No. T32985-02-00AA, page 7 of 63

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

		FCC ID: U9AIM154-6WLAN-V1
Number of tested samples: Serial number:	1 Prototype	
EuT operation mode:		
The equipment under test was	operated during the meas	surement under the following conditions:
- Continuous transmit mode		
EuT configuration: (The CDF filled by the applicant	nt can be viewed at the tes	t laboratory.)
The following peripheral dev	vices and interface cables	s were connected during the measurements:
- Test board (ART Interface)	Mo	del : RF-PCB, V1.0
- Network cable RJ45	Mo	del : Standard
- Power cable	Mo	del : AC/DC Power supply
	Mo	del :
-	Mo	del :
	Mo	del :

4 TEST ENVIRONMENT

4.1 Address of the test laboratory

mikes-testingpartners gmbh Ohmstrasse 2-4 94342 Strasskirchen Germany

4.2 Environmental conditions

During the measurement the env	rironmental conditions were within the listed ranges	3:
Temperature:	15-35 ° C	
Humidity:	30-60 %	
Atmospheric pressure:	86-106 kPa	

4.3 Statement of the measurement uncertainty

The data and results referenced in this document are true and accurate. The reader is cautioned that there may be errors within the calibration limits of the equipment and facilities. The measurement uncertainty was calculated for all measurements listed in this test report acc. to CISPR 16-4-2 /11.2003 "Uncertainties, statistics and limit modelling – Uncertainty in EMC measurements" and is documented in the quality system acc. to DIN EN ISO/IEC 17025. Furthermore, component and process variability of devices similar to that tested may result in additional deviation. The manufacturer has the sole responsibility of continued compliance of the device.

File No. **T32985-02-00AA**, page **9** of **63**

4.4 Measurement Protocol for FCC, VCCI and AUSTEL

4.4.1 GENERAL INFORMATION

4.4.1.1 Test Methodology

Conducted and radiated disturbance testing is performed according to the procedures in International Special Committee on Radio Interference (CISPR) Publication 22, European Standard EN 55022 as shown under section 1 of this report.

In compliance with 47 CFR Part 15 Subpart A Section 15.38 testing for FCC compliance may be done following the ANSI C63.4-2003 procedures and using the CISPR 22 Limits.

4.4.1.2 Measurement Error

The data and results referenced in this document are true and accurate. The reader is cautioned that there is some measurement variability due to the tolerances of the test equipment that can contribute to a nominal product measurement uncertainty. The measurement uncertainty was calculated for all measurements listed in this test report according to NIS 81/5.1994 "The treatment of uncertainty in EMC measurements" and is documented in the mikes-testingpartners gmbh quality system according to DIN EN ISO/IEC 17025. Furthermore, component differences and manufacturing process variability of production units similar to that tested may result in additional product uncertainty. If necessary, refer to the test lab for the actual measurement uncertainty for specific tests. The manufacturer has the sole responsibility of continued compliance of the device.

4.4.1.3 Justification

The Equipment Under Test (EUT) is configured in a typical user arrangement in accordance with the manufacturer's instructions. A cable is connected to each available port and either terminated with a peripheral using the appropriate impedance characteristic or left unterminated. Where appropriate, cables are manually manipulated with respect to each other thus obtaining maximum disturbances from the unit.

4.4.2 DETAILS OF TEST PROCEDURES

4.4.2.1 General Standard Information

The test methods used comply with CISPR Publication 22, EN 55022 - "Information technology equipment - Radio disturbance characteristics - Limits and methods of measurement" and with ANSI C63.4-2003 - "Methods of Measurement of Radio-Noise Emissions from Low-Voltage Electrical and Electronic Equipment in the Range of 9 kHz to 40 GHz."

File No. T32985-02-00AA, page 10 of 63

5 TEST CONDITIONS AND RESULTS

5.1 Conducted emissions

For test instruments and accessories used see section 6 Part A 4.

5.1.1 Description of the test location

Test location: Shielded Room S2

5.1.2 Photo documentation of the test set-up

5.1.3 Applicable standard

According to FCC Part 15 Subpart 15.207 (a): Except as shown in paragraphs (b) and (c) of this section, for an intentional radiator that is designed to be connected to the public utility (AC) power line, the radio frequency voltage that is conducted back onto the AC power line on any frequency or frequencies within the band 150 kHz to 30 MHz shall not exceed the limits in the following table.

The measurements are performed using a receiver, which has CISPR characteristic bandwidth and quasi-peak detection and a Line Impedance Stabilization Network (LISN) with $50\Omega/50~\mu H$ (CISPR 16) characteristics. Table top equipment is placed on a non-conducting table 80 centimeters above the floor and is positioned 40 centimeters from the vertical ground plane (wall) of the screen room. If the minimum limit margin appears to be less than 20 dB with a peak mode measurement, the emissions are remeasured using a tuned receiver with quasi-peak and average detection and recorded on the data sheets.

Frequency of Emission	Conducted Limit (dBµV)		
(MHz)	Quasi-peak	Average	
0.15-0.5	66 to 56 *	56 to 46 *	
0.5-5	56	46	
5-30	60	50	

^{*} Decreases with the logarithm of the frequency

5.1.4 Description of Measurement

The final level, expressed in $dB_{\mu}V$, is arrived at by taking the reading directly from the EMI receiver. This level is compared directly to the FCC Limit or to the CISPR limit.

To convert between dB μ V and μ V, the following conversions apply: dB μ V = 20(log μ V) μ V = Inverse log(dB μ V/20)

The requirements are **FULFILLED**.

Remarks:	For detailed results please refer to the following plots.

Conducted emissions at negative power line

Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(μV)	dB	dB	dB(μV)	dB	dB
0.17	34.5	-30.5	65.0	26.4	-28.6	55.0
0.26	39.0	-22.4	61.4	36.7	-14.8	51.4
0.305	23.9	-36.2	60.1	17.9	-32.2	50.1
0.425	5.1	-52.3	57.3	1.6	-45.7	47.3
0.595	4.8	-51.2	56.0	1.2	-44.8	46.0
0.625	4.5	-51.5	56.0	1.2	-44.8	46.0
0.745	4.8	-51.3	56.0	1.2	-44.8	46.0
0.88	4.3	-51.7	56.0	1.2	-44.8	46.0
0.945	4.5	-51.5	56.0	1.2	-44.8	46.0
1.955	10.3	-45.7	56.0	7.0	-39.0	46.0
2.25	12.7	-43.3	56.0	4.6	-41.4	46.0
4	15.8	-40.2	56.0	6.4	-39.5	46.0
4.005	12.5	-43.5	56.0	4.4	-41.6	46.0
5.755	11.4	-48.6	60.0	3.3	-46.7	50.0
6.495	4.9	-55.1	60.0	1.4	-48.7	50.0
8	14.6	-45.4	60.0	8.9	-41.1	50.0
8.195	4.7	-55.3	60.0	1.5	-48.5	50.0
9.53	5.1	-54.9	60.0	1.6	-48.4	50.0
16	22.6	-37.4	60.0	20.7	-29.3	50.0
28.85	6.9	-53.1	60.0	2.7	-47.3	50.0

Conducted emissions at positive power line

Frequency	QP Level	QP Margin	QP Limit	AV Level	AV Margin	AV Limit
MHz	dB(μV)	dB	dB	dB(μV)	dB	dB
					•	
0.165	34.7	-30.5	65.2	26.7	-28.5	55.2
0.26	38.9	-22.6	61.4	36.4	-15.1	51.4
0.305	24.2	-35.9	60.1	18.3	-31.8	50.1
0.44	4.9	-52.1	57.1	1.4	-45.6	47.1
0.52	4.7	-51.3	56.0	1.2	-44.8	46.0
0.645	4.7	-51.3	56.0	1.2	-44.8	46.0
0.73	4.6	-51.4	56.0	1.2	-44.8	46.0
0.85	4.9	-51.1	56.0	1.2	-44.8	46.0
0.99	5.0	-51.0	56.0	1.4	-44.6	46.0
1.95	10.0	-46.0	56.0	6.6	-39.4	46.0
2.25	13.8	-42.2	56.0	5.2	-40.8	46.0
4	16.7	-39.3	56.0	6.9	-39.1	46.0
4.005	13.2	-42.8	56.0	4.7	-41.3	46.0
5.755	11.5	-48.5	60.0	3.3	-46.7	50.0
6.23	5.2	-54.8	60.0	1.5	-48.5	50.0
8	14.1	-45.9	60.0	8.3	-41.7	50.0
8.615	5.3	-54.8	60.0	1.6	-48.4	50.0
9.045	5.1	-54.9	60.0	1.5	-48.5	50.0
16	20.4	-39.6	60.0	18.4	-31.6	50.0
22.85	5.9	-54.1	60.0	2.4	-47.6	50.0

5.2 6 dB Bandwidth

For test instruments and accessories used see section 6 Part MB.

5.2.1 Description of the test location

Test location: AREA4

5.2.2 Photo documentation of the test set-up

5.2.3 Applicable standard

According to FCC Part 15 Subpart 15.247 (a) (2): Systems using digital modulation techniques may operate in the 902 - 928 MHz, 2400 – 2483.5 MHz and 5725 – 5850 MHz bands. The minimum 6 dB band width shall be at least 500 kHz

5.2.4 Description of Measurement

The bandwidth was measured at an amplitude level reduced from the reference level by a specified ratio of -6 dB. The reference level is the level of the highest amplitude signal observed from the transmitter at either the fundamental frequency or the first-order modulation products in all typical modes of operation, including the unmodulated carrier, even if atypical. The measurement has been carried out using a spectrum analyzer with the following settings:

RBW=100 kHz

VBW=300 kHz

PEAK Detector

The table below shows the settings according to ANSI C63.4-2003.

Fundamental frequency	Minimum resolution bandwidth
9 kHz to 30 MHz	1kHz
30 to 1000 MHz	10 kHz
1000 MHz to 40 GHz	100 kHz

5.2.5 Test result

Technology 802.11b

Channel number	Fundamental Frequency (MHz)	6 dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)	
1	2412	11.6	0.5	
6	2437	11.0	0.5	
11	2462	12.4	0.5	

Technology 802.11g

Channel number	Fundamental Frequency (MHz)	6 dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)
1	2412	16.4	0.5
6	2437	16.4	0.5
11	2462	16.4	0.5

Technology 802.11a

Channel number	Fundamental Frequency (MHz)	6 dB BANDWIDTH (MHz)	MINIMUM LIMIT (MHz)		
149	5745	16.4	0.5		
157	5785	16.4	0.5		
165	5825	16.4	0.5		

Remarks:	For detailed t	test result n	lease refer to	following tes	t protocols

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 Strasskirchen
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

5.2.6 Test protocol

6dB Bandwidth Measurement plots

802.11b, Channel 1 (2412 MHz)

Date: 16.MAR.2009 09:42:27

802.11b, Channel 6 (2437 MHz)

Date: 16.MAR.2009 09:49:15

802.11b, Channel 11 (2462 MHz)

Date: 16.MAR.2009 09:51:14

802.11g, Channel 1 (2412 MHz)

Date: 16.MAR.2009 09:59:20

802.11g, Channel 6 (2437 MHz)

Date: 16.MAR.2009 09:56:14

802.11g, Channel 11 (2462 MHz)

Date: 16.MAR.2009 09:53:58

802.11a, Channel 149 (5745 MHz)

Date: 16.MAR.2009 08:54:00

802.11a, Channel 157 (5785 MHz)

Date: 16.MAR.2009 08:56:16

802.11a, Channel 165 (5825 MHz)

Date: 16.MAR.2009 08:58:11

5.3 Maximum Conducted Output Power

For test instruments and accessories used see section 6 Part CPC 3.

5.3.1 Description of the test location

Test location: AREA4

5.3.2 Photo documentation of the test set-up

5.3.3 Applicable standard

According to FCC Part 15 Subpart 15.247 (b): For systems using digital modulation in the 2400-2483.5 MHz and 5725 – 5850 MHz bands, the maximum peak output power of the transmitter shall not exceed 1 Watt. If transmitting antennas of directional gain greater than 6 dBi are used, the power shall be reduced by the amount in dB that the directional gain of the antenna exceeds 6 dBi.

5.3.4 Description of Measurement

The transmitter output was connected to the spectrum analyzer through an attenuator. The center frequency of the spectrum analyzer is set to the fundamental frequency using 1 MHz RBW and 300 kHz VBW. The span of the spectrum analyzer should be larger than the Emission Band Width (EBW). To get the total power of the occupied band width the function "Channel Power Measurement" of the analyzer has been used. The channel band width has been set to EBW. With AV detector and Power Mode Max Hold the result is the summed maximum output power of the EBW.

5.3.5 Test result

Technology 802.11b

Channel	Frequency (MHz)	ART settings (dBm)	Measured Power (dBm)	Correction (dB)	Corr. Peak Power Output (dBm)	Peak Power Limit (dBm)	Delta (dB)
1	2412	19	7.0	11.0	18.0	30	-12.0
6	2437	19	7.4	11.0	18.4	30	-11.6
11	2462	19	6.7	11.0	17.7	30	-12.3

Remarks: Where Correction means fixed attenuation of 10 dB and cable loss of 1.0 dB.

Technology 802.11g

Channel	Frequency	ART	Measured	Correction	Corr. Peak	Peak Power	Delta
	(MHz)	settings (dBm)	Power (dBm)	(dB)	Power Output (dBm)	Limit (dBm)	(dB)
1	2412	16	3.9	11.0	14.9	30	-15.1
6	2437	20	7.0	11.0	18.0	30	-12.0
11	2462	16	3.1	11.0	14.1	30	-15.9

Remarks: Where Correction means fixed attenuation of 10 dB and cable loss of 1.0 dB.

Technology 802.11a

Channel	Frequency (MHz)	ART settings (dBm)	Measured Power (dBm)	Correction (dB)	Corr. Peak Power Output (dBm)	Peak Power Limit (dBm)	Delta (dB)
149	5745	19	5.6	12.0	17.6	30	-12.4
157	5785	19	4.6	12.0	16.6	30	-13.4
165	5825	19	5.1	12.0	17.1	30	-12.9

Remarks: Where Correction means fixed attenuation of 10 dB and cable loss of 2.0 dB.

Peak Power Limit according to FCC Subpart 15.247(b) (3)

The requirements are **FULFILLED**.

Frequency	Peak Power Limit				
(MHz)	(dBm)	(Watt)			
902-928	30	1.0			
2400-2483.5	30	1.0			
5725-5850	30	1.0			

Remarks:	This test has be	en performed conduc	cted at antenna jack	on WLAN module.	

5.4 Spurious emissions

For test instruments and accessories used see section 6 Part SEC1-3, SER 1, SER 2 and SER 3.

5.4.1 Description of the test location

Test location: OATS1

Anechoic Chamber A2

Test distance: 3 metres

5.4.2 Photo documentation of the test set-up

Anechoic chamber

File No. **T32985-02-00AA**, page **25** of **63**

5.4.3 Applicable standard

According to FCC Part 15 Subpart 15.247 (d): In any 100 kHz bandwidth outside the frequency bands 2400 – 2483.50 MHz and 5725 – 5850 MHz, the digitally modulated radio frequency power that is produced by the intentional radiator shall be at least 20 dB below that in the 100 kHz bandwidth within the band that contains the highest level of the desired power, based on either an RF conducted or a radiated measurement. Attenuation below the general limits specified in §15.209(a) is not required.

In addition, radiated emissions which fall in the restricted bands, as defined in §15.205(a), must also comply with the radiated emission limit specified in §15.209(a) (see §15.205(c)).

5.4.4 Description of Measurement

Radiated spurious emissions from the EuT are measured in the frequency range of 9 kHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. The measurements are made with 120 kHz/6 dB bandwidth and quasi-peak detection. The EuT is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003.

The antenna was positioned 3 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

The final level, expressed in $dB\mu V/m$, is arrived by taking the reading from the EMI receiver (Level $dB\mu V$) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored.

The radiated emissions from the EuT are measured in the frequency range of 1 GHz to maximum frequency as specified in section 15.33, using a Spectrum Analyzer and appropriate linearly polarized antennas. The EuT is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. The set up of the EuT will be in accordance to ANSI C63.4-2003. The antenna was positioned 3 m horizontally from the EuT.

Measurement are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak, RBW 1 MHz and VBW set to 3 MHz for any spurious emission or modulation product that falls in **Restricted bands** as defined in Section 15.205. All tests are performed at a test-distance of 3 meters. During the tests the EUT measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

Average values were measured with spectrum analyzer by taking the following Settings

RBW: 1 MHz VBW: 10 Hz Sweep: Auto

File No. **T32985-02-00AA**, page **27** of **63**

5.4.5 Test result

5.4.5.1 RF antenna conducted test

Technology 802.11b

	Ch 1 (2412 MHz), 18.0 dBm		Ch 6 (2437 MHz), 18.4 dBm		Ch 11 (2462 MHz), 17.7 dBm		
Frequency (MHz)	Peak Power (dBm)	Limit (-20 dB) (dBm)	Peak Power (dBm)	Limit (-20 dB) (dBm)		Peak Power (dBm)	Limit (-20 dB) (dBm)
9 kHz-30	<-65	-2.0	<-65	-1.6		<-65	-2.3
30-1000	<-65	-2.0	<-65	-1.6		<-65	-2.3
1-30 GHz	<-30	-2.0	<-30	-1.6		<-30	-2.3

Technology 802.11g

	Ch 1 (2412 MH	z), 14.9 dBm	Ch 6 (2437 MHz), 18.0 dBm			Ch 11 (2462 MHz), 14.1 dBm		
Frequency (MHz)	Peak Power (dBm)	Limit (-20 dB) (dBm)	Peak Power (dBm)	Limit (-20 dB) (dBm)		Peak Power (dBm)	Limit (-20 dB) (dBm)	
9 kHz-30	<-65	-5.1	<-65	-2.0		<-65	-5.9	
30-1000	<-65	-5.1	<-65	-2.0		<-65	-5.9	
1-30 GHz	<-30	-5.1	<-30	-2.0		<-30	-5.9	

Technology 802.11a

	Ch 149 (5745 MF	lz), 17.6 dBm	Ch 157 (5785 MHz), 16.6 dBm				Ch 165 (5825 MHz), 17.1 dBm		
Frequency (MHz)	Peak Power (dBm)	Limit (-20 dB) (dBm)		Peak Power (dBm)	Limit (-20 dB) (dBm)	-	Peak Power (dBm)	Limit (-20 dB) (dBm)	
9 kHz-30	<-65	-2.4		<-65	-3.4		<-65	-2.9	
30-1000	<-65	-2.4		<-65	-3.4		<-65	-2.9	
1-30 GHz	<-30	-2.4		<-30	-3.4		<-30	-2.9	
				·					

Remarks: All spurious emissions falling in restricted bands have been measured radiated.

For detailed test results please refer to test protocols below.

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

5.4.5.2 Radiated emission test

Technology 802.11b

Worst case: Max power of 19 dBm with antenna ANT792-6MN (6 dBi) respectively ANT792-4DN (4 dBi). The maximum values resulted by ANT792-6MN have been used for declaration of compliance.

Channel 1 (2412 MHz)

Nearest restricted bands: 2200-2300 MHz and 2310-2390 MHz

Spurious	Antenna	WEB Power	ART	Peak		Ave	rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
2218	6	0	19	59.1	74	37.0	54
2387	6	0	19	73.1	74	51.2	54
2492	6	0	19	65.0	74	45.7	54

Channel 6 (2437 MHz)

Spurious	Antenna	WEB Power	ART	Pe	ak	Ave	rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
	6	0	19		74		54

Note: No radiated spurious emissions in restricted bands near band edges!

Channel 11 (2462 MHz)

Nearest restricted band: 2483.5-2500 MHz

Spurious	Antenna	WEB Power	ART	Pe	ak	Ave	rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
2378	6	0	19	67.0	74	45.5	54
2484	6	0	19	65.2	74	52.3	54
2486	6	0	19	70.7	74	53.1	54
2493	6	0	19	68.0	74	52.8	54

Remarks: All other emissions falling in restricted bands are at least 20 dB below the appropriate limit (see table below).

File No. **T32985-02-00AA**, page **29** of **63**

Technology 802.11g

Channel 1 (2412 MHz)

Nearest restricted bands: 2200-2300 MHz and 2310-2390 MHz

Spurious	Antenna	WEB Power	ART	Pe	Peak		rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
2390	6	-6	16	68.2	74	52.7	54
2492	6	-6	16	61.4	74	38.1	54
2504	6	-6	16	58.5	74	37.5	54

Channel 6 (2437 MHz)

Spurious	Antenna	WEB Power	ART	Pe	ak	Ave	rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
	6	0	20		74		54

Note: No radiated spurious emissions in restricted bands near band edges!

Channel 11 (2462 MHz)

Nearest restricted band: 2483.5-2500 MHz

Spurious	Antenna	WEB Power	ART	Pe	ak	Ave	rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
2299	6	-6	16	60.0	74	46.8	54
2484	6	-6	16	65.6	74	50.1	54
2854	6	-6	16	52.5	74	38.9	54

Remarks: All other emissions falling in restricted bands are at least 20 dB below the appropriate limit (see table below).

Technology 802.11a

Worst case: Max power of 19 dBm with antenna ANT793-6MN (5 dBi) respectively ANT793-4MN (5 dBi). The maximum values resulted by ANT793-6MN have been used for declaration of compliance.

Channel 149 (5745 MHz)

Nearest restricted band: 5350-5460 MHz

Spurious	Antenna	WEB Power	ART	Pe	ak	Ave	rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
	5	0	19		74		54

Note: No radiated spurious emissions in restricted bands near band edges!

Channel 157 (5785 MHz)

Spurious	Antenna	WEB Power	ART	Pe	ak	Ave	rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
	5	0	19		74		54

Note: No radiated spurious emissions in restricted bands near band edges!

Channel 165 (5825 MHz)

Nearest restricted band: 7250-7750 MHz

Spurious	Antenna	WEB Power	ART	Pe	ak	Ave	rage
Frequency	gain	Setting	setting	Value	Limit	Value	Limit
	(dBi)	(∆dB)	(dBm)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dBµV/m)
	5	0	19		74		54

Note: No radiated spurious emissions in restricted bands near band edges!

The power settings are controlled by firmware and are defined for each antenna type.

File No. **T32985-02-00AA**, page **31** of **63**

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

Radiated limits according to FCC Part 15 Subpart 15.209(a) for spurious emissions which fall in restricted bands:

Frequency (MHz)	Field strengtl emiss		Measurement distance (meters)
	(μV/m)	dB (μV/m)	
0,009-0,490	2400/F(kHz)		300
0,490-1,705	24000/F(kHz)		30
1,705-30	30	29,5	30
30-88	100	40	3
88-216	150	43.5	3
216-960	200	46	3
Above 960	500	54	3

Restricted bands of operation:

The field strength of emissions appearing within these frequency bands shall not exceed the limits shown in §15.209

MHz	MHz	GHz
25.5 – 25.67	960 – 1240	4.5 – 5.15
37.5 – 38.25	1300 – 1427	5.35 – 5.46
73 – 74.6	1435 – 1626.5	7.25 – 7.75
74.8 – 75.2	1645.5 – 1646.5	8.025 – 8.5
108 – 121.94	1660 – 1710	9.0 – 9.2
123 – 138	1718.8 – 1722.2	9.3 – 9.5
149.9 – 150.05	2200 – 2300	10.6 – 12.7
156.52475 – 156.52525	2310 – 2390	13.25 – 13.4
156.7 – 156.9	2483.5 – 2500	14.47 – 14.5
162.0125 – 167.17	2655 – 2900	15.35 – 16.2
167.72 – 173.2	3260 – 3267	17.7 – 21.4
240 – 285	3332 – 3339	22.01 – 23.12
322 – 335.4	3345.8 – 3358	23.6 – 24.0
399.9 – 410	3600 – 4400	31.2 – 31.8
608 – 614		36.43 – 36.5

The requirements are **FULFILLED**.

Remarks: Only spurious emissions falling not in restricted bands have been measured (assessed) conducted.

The measurement was performed up to the 10th harmonic.

For detailed test results please refer to following test protocols.

5.4.5.3 Test protocols

Plots of spurious emissions (conducted) out of operating frequency bands (-20 dBc)

Lower Channel 802.11b (2412 MHz)

Date: 16.MAR.2009 10:50:14

Higher Channel 802.11b (2462 MHz)

Date: 16.MAR.2009 10:48:57

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240 File No. T32985-02-00AA, page 33 of 63

Rev. No. 1.1

Lower Channel 802.11g (2412 MHz)

Date: 16.MAR.2009 10:41:11

Higher Channel 802.11g (2462 MHz)

Date: 16.MAR.2009 10:44:53

Lower Channel 802.11a (5745 MHz)

Date: 16.MAR.2009 10:35:12

Higher Channel 802.11a (5825 MHz)

Date: 16.MAR.2009 10:39:14

FCC ID: U9AIM154-6WLAN-V1 Conducted spurious emissions from 9 kHz to 1 GHz

Date: 1.APR.2009 11:36:11

Radiated spurious emissions from 30 MHz to 300 MHz

Date: 9.MAR.2009 11:52:37

Radiated spurious emissions from 300 MHz to 1000 MHz

Date: 9.MAR.2009 12:01:24

Notes: All peak emissions were below the limits of part 15.209.

FCC ID: U9AIM154-6WLAN-V1 Radiated spurious emissions from 1 GHz to 2.4 GHz

Date: 5.MAR.2009 14:51:07

Average-Plot

Date: 5.MAR.2009 14:40:17

FCC ID: U9AIM154-6WLAN-V1 Radiated spurious emissions from 2.4835 GHz to 4 GHz

Radiated spurious emissions from 2.4835 GHz to 4 GHz 802.11b Ch 11 (2462 MHz)

Date: 5.MAR.2009 15:15:50

Average-Plot

Date: 5.MAR.2009 15:26:40

FCC ID: U9AIM154-6WLAN-V1 Radiated spurious emissions from 1 GHz to 2.4 GHz 802.11g Ch 1 (2412 MHz)

Date: 6.MAR.2009 11:24:58

Average-Plot

Date: 9.MAR.2009 10:41:26

Radiated spurious emissions from 2.4835 GHz to 4 GHz 802.11g Ch 11 (2462 MHz)

Date: 5.MAR.2009 15:15:50

Average-Plot

Date: 9.MAR.2009 11:28:33

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

File No. **T32985-02-00AA**, page **41** of **63**

Rev. No. 1.1

Date: 5.MAR.2009 14:54:22

Date: 9.MAR.2009 11:03:29

Radiated spurious emissions out of band 5725-5850 MHz 802.11a Ch 149 (5745 MHz)

Date: 9.MAR.2009 16:12:05

mikes-testingpartners gmbh Ohmstrasse 2-4 \cdot 94342 Strasskirchen Tel.:+49(0)9424-94810 \cdot Fax:+49(0)9424-9481240

File No. T32985-02-00AA, page 43 of 63

Rev. No. 1.1

Date: 9.MAR.2009 15:40:15

Radiated spurious emissions out of band 5725-5850 MHz 802.11a Ch 165 (5825 MHz)

172.5 MHz/

Date: 9.MAR.2009 15:51:47

Start 4 GHz

Stop 5.725 GHz

9.MAR.2009 15:47:46

Date:

9.MAR.2009 15:49:02 Date:

Radiated spurious emissions from 20 GHz to 30 GHz (worstcase)

Notes: All peak emissions were below the limits of part 15.209.

Measurementdistance: 0.3 m

Limit is extrapolated by 20 dB/decade

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

Radiated spurious emissions from 30 GHz to 40 GHz (worstcase)

Notes: All peak emissions were below the limits of part 15.209.

Measurementdistance: 0.3 m

Limit is extrapolated by 20 dB/decade

The measurement range from 30 - 40 GHz has been transposed by a mixer of 20 GHz to the analyzer

range from 10 – 20 GHz.

5.5 Power Spectral Density

For test instruments and accessories used see section 6 Part CPC 3.

5.5.1 Description of the test location

Test location: Area 4

5.5.2 Photo documentation of the test set-up

5.5.3 Applicable standard

According to FCC Part 15 Subpart 15.247 (e): For digitally modulated systems, the power spectral density conducted from the intentional radiator to the antenna shall not be greater than 8 dBm in any 3 kHz band during any time interval of continuous transmission. This power spectral density shall be determined in accordance with the provisions of paragraph (b) of this section. The same method of determining the conducted output power shall be used to determine the power spectral density.

5.5.4 Description of Measurement

The EuT was connected to the spectrum analyzer with a suitable attenuator. The bandwidth of the fundamental frequency was measured with the spectrum analyzer using 3 kHz RBW and 30 kHz VBW, set sweep time equal to span/3 kHz. The power spectral density was measured using the analyzer function of measuring the power/Hz. The result is calculated by addition of 35 dB (10 log 3000 Hz/Hz) to the readings.

Settings on the spectrum analyzer: RBW: 3 kHz

VBW: 30 kHz Sweep: auto Detecter function: AV

5.5.5 Test result

Technology 802.11b

Channel	Fundamental Frequency	Reading	Correction to 3 kHz	PSD Result	Limit
	(MHz)	(dBm/Hz)	(dB)	(dBm)	(dBm)
1	2412	-55.4	35	-20.4	8
6	2437	-55.3	35	-20.3	8
11	2462	-55.4	35	-20.4	8

Technology 802.11g

Channel	Fundamental Frequency (MHz)	Reading (dBm/Hz)	Correction to 3 kHz (dB)	PSD Result (dBm)	Limit (dBm)
1	2412	-58.1	35	-23.1	8
6	2437	-55.2	35	-20.2	8
11	2462	-58.8	35	-23.8	8

Technology 802.11a

Channel	Fundamental Frequency (MHz)	Reading (dBm/Hz)	Correction to 3 kHz (dB)	PSD Result (dBm)	Limit (dBm)
149	5745	-55.6	35	-20.6	8
157	5785	-56.7	35	-21.7	8
165	5825	-56.1	35	-21.1	8

The requirements are **FULFILLED**.

Remarks: For detailed test results please refer to following test protocols.

File No. **T32985-02-00AA**, page **50** of **63**

mikes-testingpartners gmbh Ohmstrasse 2-4 · 94342 Strasskirchen Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

Power spectral density plots

Power

-55.44 dBm/Hz

802.11g Channel 1 (2412 MHz)

Power

-55.16 dBm/Hz

802.11a Channel 149 (5745 MHz)

802.11a Channel 157 (5785 MHz)

802.11a Channel 165 (5825 MHz)

Power

20 MHz

Bandwidth

-56.72 dBm/Hz

5.6 Maximum Permissible Exposure (MPE)

For test instruments and accessories used see section 6 Part CPC 3.

5.6.1 Description of the test location

Test location: OATS1

5.6.2 Applicable standard

According to FCC Part 15 Subpart 15.247 (i): Systems operating under the provisions of this section shall be operated in a manner that the public is not exposed to radio frequency energy levels in excess of the Commision's guidelines.

The test methods used comply with ANSI/IEEE C95.1-1992, "IEEE Standard for Safety Levels with respect to Human Exposure to Radio Frequency Electromagnetic Fields, 3 kHz to 300 GHz".

This test report shows the compliance with the limits for Maximum Permissible Exposure (MPE) specified in FCC 1.1310 and the criteria to evaluate the environmental impact of human exposure to radio-frequency (RF) radiation as specified in FCC 1.1307(b).

5.6.3 Description of Measurement

The maximum total power input to the antenna has been measured conducted as described in clause 5.3 of this document. Through the Friis transmission formula, which is a far field assumption and the known maximum gain of the antenna, the maximum MPE at a defined distance away from the product, can be calculated.

Friis transmission formula: $P_d = \frac{P_{out} * G}{4 * \Pi * r^2}$

where

P_d =power density in mW/cm²
P_{out} = output power to antenna in mW
G = gain of antenna (linear scale)
r = distance between antenna and observation point (cm)

5.6.4 Compliance regarding co-location and co-transmission

There is no co-location issue because the EuT consists of 1 module only.

File No. **T32985-02-00AA**, page **54** of **63**

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 Strasskirchen
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

5.6.5 Test result

Technology 802.11b

Worst case: Antenna ANT792-6MN with an antenna gain of 6 dBi

Channel No.	Frequency (MHz)	Max Power Output to Antenna		Antenna gain	Power Density (mW/cm²)	Limit of Power Density
		(dBm)	(mW)	(dBi)		(mW/cm ²)
1	2412	18.0	63.1	6	0.050	1.0
6	2437	18.4	69.2	6	0.055	1.0
11	2462	17.7	58.9	6	0.047	1.0

Technology 802.11g

Worst case: Antenna ANT792-6MN with an antenna gain of 6 dBi

Channel No.	Frequency (MHz)	Max Power Anter	•	Antenna gain	Power Density (mW/cm ²)	Limit of Power Density
		(dBm)	(mW)	(dBi)		(mW/cm ²)
1	2412	14.9	30.9	6	0.024	1.0
6	2437	18.0	63.1	6	0.050	1.0
11	2462	14.1	25.7	6	0.020	1.0

Technology 802.11a

Worst case: Antenna ANT793-6MN with an antenna gain of 5 dBi

Channel No.	Frequency (MHz)	Max Power Output to Antenna		Antenna gain	Power Density (mW/cm²)	Limit of Power Density
		(dBm)	(mW)	(dBi)		(mW/cm²)
149	5745	17.6	57.5	5	0.036	1.0
157	5785	16.6	45.7	5	0.029	1.0
165	5825	17.1	51.3	5	0.032	1.0

Limits for Maximum Permissible Exposure (MPE)

Frequency	Electric Field	Magnetic Field	Power Density	Averaging Time
Range	Strength	Strength	(mW/cm ²)	(minutes)
(MHz)	(V/m)	(A/m)		
	(A) Limits for C	Occupational / Controlle	ed Exposure	
0.3 - 3.0	614	1.63	100	6
3.0 – 30	1842/f	4.89/f	900/f ²	6
30 - 300	61.4	0.163	1.0	6
300-1500			f/300	6
1500-100000			5.0	6
	(B) Limits for Gene	ral Population / Uncon	rolled Exposure	
0.3 - 3.0	614	1.63	100	30
3.0 – 30	824/f	2.19/f	180/ f ²	30
30 - 300	27.5	0.073	0.2	30
300-1500			f/1500	30
1500-100000			1.0	30

f = Frequency in MHz

The requirem	ents are FULFILLED .		
Remarks:			

5.7 Antenna application

5.7.1 Applicable standard

According to FCC Part 15 Subpart 15.203: An intentional radiator shall be designed to ensure that no antenna other than that furnished by the responsible party shall be used with the device. The use of a permanently attached antenna or of an antenna that uses a unique coupling to the intentional radiator shall be considered sufficient to comply with the provisions of this section.

All supplied antennas meet the requirements of part 15.203 and 15.204.

The antennas can be connected only by a cable equiped with a reverse SMA plug supplied by the manufacturer.

5.7.2 Antenna requirements

FCC part 15C section 15.247 (b) (4) requirements:

The conducted output power limit specified in paragraph (b) of 15.247 is based on the use of antennas with directional gains that do not exceed 6 dBi. Except as shown in paragraph (c) of this section, if transmitting antennas of directional gain greater than 6 dBi are used, the conducted output power from intentional radiator shall be reduced below the stated values in paragraph (b)(1), (b)(2) and (b)(3) of this section, as appropriate, by the amount in dB that the directional gain of the antenna exceeds 6dBi.

The necessary reduction of the output power depends on the used type of antenna. The amount of the reduced output power is implemented in the firmware of the EuT and will be automaticly adjusted on the selected antenna.

File No. **T32985-02-00AA**, page **57** of **63**

mikes-testingpartners gmbh
Ohmstrasse 2-4 · 94342 Strasskirchen
Tel.:+49(0)9424-94810 · Fax:+49(0)9424-9481240

5.8 Receiver Spurious Emissions

For test instruments and accessories used see section 6 Part SER 2 and SER 3.

5.8.1 Description of the test location

Test location: OATS1

Anechoic Chamber A2

Test distance: 3 metres

5.8.2 Photo documentation of the test set-up

Anechoic chamber

File No. **T32985-02-00AA**, page **58** of **63**

5.8.3 Applicable standard

According to FCC Part 15 Subpart 15.109: Field strength of radiated emissions from unintentional radiators at 3 m.

5.8.4 Description of Measurement

Radiated spurious emissions from the EuT are measured in the frequency range of 30 MHz to 1000 MHz using a tuned receiver and appropriate broadband linearly polarized antennas. The measurements are made with 120 kHz/6 dB bandwidth and quasi-peak detection. The EuT is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. The set up of the Equipment under test will be in accordance to ANSI C63.4-2003.

The antenna was positioned 3 meters horizontally from the EuT. To locate maximum emissions from the test sample the antenna is varied in height from 1 to 4 meters, measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

The final level, expressed in $dB\mu V/m$, is arrived by taking the reading from the EMI receiver (Level $dB\mu V$) and adding the correction factors and cable loss factor (Factor dB) to it. This is done automatically in the EMI receiver, where the correction factors are stored.

The radiated emissions from the EuT are measured in the frequency range of 1 GHz to maximum frequency as specified in section 15.33, using a Spectrum Analyzer and appropriate linearly polarized antennas. The EuT is placed on a 1.0 X 1.5 meter non-conducting table 80 centimetres above the ground plane. The set up of the EuT will be in accordance to ANSI C63.4-2003. The antenna was positioned 3 m horizontally from the EuT.

Measurement are made in both the horizontal and vertical planes of polarization in a fully anechoic room using a spectrum analyzer with the detector function set to peak, RBW 1 MHz and VBW set to 3 MHz for any spurious emission or modulation product that falls in Restricted bands as defined in Section 15.205. All tests are performed at a test-distance of 3 meters. During the tests the EUT measurement scans are made with both horizontal and vertical antenna polarization's and the EuT are rotated 360 degrees.

Average values were measured with spectrum analyzer by taking the following Settings

RBW: 1 MHz VBW: 10 Hz Sweep: Auto

File No. **T32985-02-00AA**, page **60** of **63**

5.8.5 Test result

Frequency		Analyzer reading		Correction	Result		Limit	Delta
rrequericy	Detector	hor	vert	Correction	hor	vert	Lillit	Della
(MHz)		(dBµV/m)	(dBµV/m)	(dB)	(dBµV/m)	(dBµV/m)	(dBµV/m)	(dB)
30-1000	Pk	<30	<30					
30-1000	AV							
1000-	Pk	<54	<54				74	
18000	AV						54	

Limit according to FCC Subpart 15.109(a)

Frequency of emission (MHz)	Field strength Limits (µV/m)	Field strength Limits (dBµV/m)
0,009-0,490	2400/F(kHz)	
0,490-1,705	24000/F(kHz)	
1,705-30	30	
30-88	100	40
88-216	150	44
216-960	200	46
Above 960	500	54

The requirements are **FULFILLED**.

Remarks:	The measurement was performed up to the 5 th harmonic.				

6 USED TEST EQUIPMENT AND ACCESSORIES

All test instruments used, in addition to the test accessories, are calibrated and verified regularly.

Test ID	Model / Type	Kind of Equipment	Manufacturer	Equipment No.
A 4	ESHS 30 FSP 30 ESH 2 - Z 5 N-4000-BNC N-1500-N ESH 3 - Z 2 PE1540	EMI Test Receiver Spectrum Analyzer LISN RF Cable RF Cable Pulse Limiter Power Supply	Rohde & Schwarz München Rohde & Schwarz München Rohde & Schwarz München mikes-testingpartners gmbh mikes-testingpartners gmbh Rohde & Schwarz München Phillips Fluke GmbH	02-02/03-05-002 02-02/11-05-001 02-02/20-05-004 02-02/50-05-138 02-02/50-05-140 02-02/50-05-155 02-02/50-07-031
CPC 3	FSP 30	Spectrum Analyzer	Rohde & Schwarz München	02-02/11-05-001
	THS730A	Handheld Scope	Tektronix GmbH	02-02/13-05-001
	PE1540	Power Supply	Phillips Fluke GmbH	02-02/50-07-031
MB	FSP 30	Spectrum Analyzer	Rohde & Schwarz München	02-02/11-05-001
	THS730A	Handheld Scope	Tektronix GmbH	02-02/13-05-001
	PE1540	Power Supply	Phillips Fluke GmbH	02-02/50-07-031
SEC 1-3	FSP 30	Spectrum Analyzer	Rohde & Schwarz München	02-02/11-05-001
	THS730A	Handheld Scope	Tektronix GmbH	02-02/13-05-001
	PE1540	Power Supply	Phillips Fluke GmbH	02-02/50-07-031
SER 1	FMZB 1516	Magnetic Field Antenna	Schwarzbeck Mess-Elektronik	01-02/24-01-018
	ESCS 30	EMI Test Receiver	Rohde & Schwarz München	02-02/03-05-001
	PE1540	Power Supply	Phillips Fluke GmbH	02-02/50-07-031
SER 2	ESVS 30 FSP 30 VULB 9168 S10162-B KK-EF393-21N-16 NW-2000-NB PE1540	EMI Test Receiver Spectrum Analyzer Trilog Broad Band Antenna RF Cable 33 m RF Cable 20 m RF Cable Power Supply	Rohde & Schwarz München Rohde & Schwarz München Schwarzbeck Mess-Elektronik Huber + Suhner Huber + Suhner Huber + Suhner Phillips Fluke GmbH	02-02/03-05-006 02-02/11-05-001 02-02/24-05-005 02-02/50-05-031 02-02/50-05-113 02-02/50-07-031
SER 3	FSP 30 AFS4-01000400-10-10P-4 AMF-4F-04001200-15-10P AFS5-12001800-18-10P-6 3117 Sucoflex N-1600-SMA Sucoflex N-2000-SMA PE1540	Spectrum Analyzer RF Amplifier 1-4 GHz RF Amplifier 4-12 GHz RF Amplifier 12-18 GHz Horn Antenna 1-18 GHz RF Cable RF Cable Power Supply	Rohde & Schwarz München PARZICH GMBH PARZICH GMBH PARZICH GMBH EMCO Elektronik GmbH novotronik Signalverarbeitung novotronik Signalverarbeitung Phillips Fluke GmbH	02-02/11-05-001 02-02/17-05-003 02-02/17-05-004 02-02/17-06-002 02-02/24-05-009 02-02/50-05-073 02-02/50-05-075 02-02/50-07-031

	Equipment No.	Next Calib.	Last Calib.	Next Verif.	Last Verif.
A 4	02-02/03-05-002 02-02/11-05-001 02-02/20-05-004 02-02/50-05-138	04/30/2009 04/08/2009 03/13/2011	04/30/2008 04/08/2008 03/13/2008	04/08/2009	10/08/2008
	02-02/50-05-140 02-02/50-05-155 02-02/50-07-031	04/06/2009	10/06/2008		
CPC 3	02-02/11-05-001 02-02/13-05-001 02-02/50-07-031	04/08/2009 09/10/2009	04/08/2008 09/10/2008		
MB	02-02/11-05-001 02-02/13-05-001 02-02/50-07-031	04/08/2009 09/10/2009	04/08/2008 09/10/2008		
SEC 1-3	02-02/11-05-001 02-02/13-05-001 02-02/50-07-031	04/08/2009 09/10/2009	04/08/2008 09/10/2008		
SER 1	01-02/24-01-018 02-02/03-05-001 02-02/50-07-031	02/23/2010 12/10/2009	02/23/2009 12/10/2008		
SER 2	02-02/03-05-006 02-02/11-05-001 02-02/24-05-005 02-02/50-05-031 02-02/50-05-033 02-02/50-05-113 02-02/50-07-031	07/30/2009 04/08/2009 05/06/2011	07/30/2008 04/08/2008 05/06/2008	09/02/2009	03/02/2009
SER 3	02-02/11-05-001 02-02/17-05-003 02-02/17-05-004 02-02/17-06-002 02-02/24-05-009	04/08/2009	04/08/2008		
	02-02/50-05-073 02-02/50-05-075 02-02/50-07-031	<i>52</i> / 57/ 2 5/ 15	0210412007		