

#### **CE001 - BIOESTATÍSTICA**

## **TESTE DO QUI-QUADRADO**

Ana Paula Araujo Correa

Eder Queiroz

Newton Trevisan

# **DEFINIÇÃO**

- É um teste de hipóteses que se destina a encontrar um valor da dispersão para duas variáveis categóricas nominais e avaliar a associação existente entre variáveis qualitativas.
- TESTE NÃO PARAMÉTRICO: não depende de parâmetros populacionais (média e variância).
- O princípio básico deste teste é <u>comparar proporções</u>, ou seja, possíveis divergências entre as frequências observadas e esperadas para um certo evento.

# **APLICAÇÕES DO TESTE**

O teste é utilizado para:

Verificar se a frequência com que um determinado acontecimento observado em uma amostra se desvia significativamente ou não da frequência com que ele é esperado.

Comparar a distribuição de diversos acontecimentos em diferentes amostras, a fim de avaliar se as proporções observadas destes eventos mostram ou não diferenças significativas ou se as amostras diferem significativamente quanto às proporções desses acontecimentos.

# **CONDIÇÕES**

- Os grupos devem ser independentes,
- Os itens de cada grupo são selecionados aleatoriamente,
- As observações devem ser frequências ou contagens,
- Cada observação pertence a uma e somente uma categoria
- A amostra deve ser relativamente grande (pelo menos 5 observações em cada célula e, no caso de poucos grupos, pelo menos 10. Exemplo: em tabelas 2x 2).

# **COMO CALCULAR**

• Para avaliar as possíveis discrepâncias entre proporções observadas e esperadas:

$$\frac{(o-e)^2}{e}$$
 em que,  
o = frequência observada para cada classe  
e = frequência esperada para aquela classe

- A media dos desvios e nula, porem a elevacao ao quadrado transforma todos os desvios em valores positivos, tornando possível a soma dos desvios sem haver cancelamento.
- O desvio (o e) entre cada proporção observada e esperada pode ser expressa por d, e portanto a fórmula também pode ser escrita como  $\frac{d^2}{e}$
- O teste χ2 é, essencialmente, um mecanismo pelo qual os desvios de uma proporção hipotética são reduzidos a um único valor, que permite determinar uma probabilidade a respeito da casualidade ou não dos desvios entre as proporções observadas e esperadas.
- Neste sentido, o X² será o somatório destes desvios, ou seja,  $\chi^2 = \sum \frac{d^2}{e}$
- Assim, quando as frequências observadas são muito próximas às esperadas, o valor de  $X^2$  é pequeno, e quando as divergências são grandes, consequentemente assume valores altos.

## DISTRIBUIÇÃO DO QUI-QUADRADO

Número de repetições de um dado experimento

as distribuições dos valores pequenos de X<sup>2</sup> <u>são mais</u> <u>frequentes</u> do que os grandes

pequenos desvios casuais entre as proporções esperadas e observadas <u>serão mais</u> <u>frequentes</u> do que os grandes desvios.



Valores de X<sup>2</sup> menores que 3,841têm 95% de probabilidade de ocorrência Valores de X<sup>2</sup> menores que 6,635 têm 99% de probabilidade de ocorrência

# TESTE DE HIPÓTESES

- Hipótese nula (H<sub>0</sub>) –frequências observadas = frequências esperadas. Não há associação entre os grupos (casualidade).
- Hipótese alternativa (H<sub>1</sub>) as frequências observadas ≠ frequências esperadas. Os grupos estão associados.
- Nível de significância ( $\alpha$ ): significa o risco de se rejeitar uma hipótese verdadeira. Deverá ser estabelecido antes da analise de dados e é usualmente fixado em 5% (P=0,05).
- O valor de  $X^2$  ao nível de significância  $\alpha$  é denominado quiquadrado crítico ou tabelado ( $\chi^2$ c).
- Graus de Liberdade (G.L.) : é a diferença entre o numero de classes de resultados e o número de informações da amostra que são necessários ao cálculo dos valores esperados nessas classes.

# VALORES PARA QUI-QUADRADO CRÍTICO (TABELADO)

- X2(gl,  $\alpha$ ): valor crítico da distribuição qui-quadrado com G.L. e  $\alpha$  área para a direita.
- Distribuição assimétrica: valores críticos associados com caudas à direita, e independentes com cauda à esquerda.

$$\chi^2(16, 0.05) = 26.3$$



| P   |      | Área à direita | l    |
|-----|------|----------------|------|
| gl  | 0,99 |                | 0,05 |
| ••• |      |                |      |
| 10  | 2,56 |                |      |
| 16  |      |                | 26,3 |





## REGRAS DE DECISÃO

• É necessário obter duas estatísticas :

X<sup>2</sup> calculado: obtido diretamente dos dados das amostras.

X<sup>2</sup> tabelado: depende do número de graus de liberdade e do nível

de significância adotado.

- Se X² calculado ≥ X² tabelado: Rejeita-se Ho.
   Se X² calculado < X² tabelado: Aceita-se Ho.</li>
- Quando se consulta a tabela de X² observa-se que é determinada uma probabilidade (P) de ocorrência de um determinado acontecimento.
- Rejeita-se uma hipótese quando a máxima probabilidade de erro ao rejeitar aquela hipótese for baixa OU quando a probabilidade dos desvios terem ocorrido pelo simples acaso é baixa.

| G.L. | 0,99               | 0,98   | 0,95   | 0,90   | 0,80   | 0,70   | 0,50   | 0,30   | 0,20   | 0,10   | 0,05   | 0,02   | 0,01   | 0,001 - |
|------|--------------------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|--------|---------|
| 1    | 0,0 <sup>3</sup> 2 | 0,036  | 0,004  | 0,016  | 0,064  | 0,148  | 0,455  | 1,074  | 1,642  | 2,706  | 3,841  | 5,412  | 6,635  | 10,827  |
| 2    | 0,020              | 0,040  | 0,103  | 0,211  | 0,446  | 0,713  | 1,386  | 2,408  | 3,219  | 4,605  | 5,991  | 7,824  | 9,210  | 13,815  |
| 3    | 0,115              | 0,185  | 0,352  | 0,584  | 1,005  | 1,424  | 2,366  | 3,665  | 4,642  | 6,251  | 7,815  | 9,837  | 11,345 | 16,266  |
| 4    | 0,297              | 0,429  | 0,711  | 1,064  | 1,649  | 2,195  | 3,357  | 4,878  | 5,989  | 7,779  | 9,488  | 11,668 | 13,277 | 18,467  |
| 5    | 0,554              | 0,752  | 1,145  | 1,610  | 2,343  | 3,000  | 4,351  | 6,064  | 7,289  | 9,236  | 11,070 | 13,388 | 15,080 | 20,515  |
| 6    | 0,872              | 1,134  | 1,635  | 2,204  | 3,070  | 3,828  | 5,348  | 7,231  | 8,558  | 10,645 | 12,592 | 15,033 | 16,812 | 22,457  |
| 7    | 1,239              | 1,564  | 2,167  | 2,833  | 3,822  | 4,671  | 6,346  | 8,383  | 9,803  | 12,017 | 14,067 | 16,622 | 18,475 | 24,322  |
| 8    | 1,646              | 2,032  | 2,733  | 3,490  | 4,594  | 5,527  | 7,344  | 9,524  | 11,030 | 13,362 | 15,507 | 18,168 | 20,090 | 26,125  |
| 9    | 2,088              | 2,532  | 3,325  | 4,168  | 5,380  | 6,393  | 8,343  | 10,656 | 12,242 | 14,684 | 16,919 | 19,679 | 21,666 | 27,877  |
| 10   | 2,558              | 3,059  | 3,940  | 4,865  | 6,179  | 7,267  | 9,342  | 11,781 | 13,442 | 15,987 | 18,307 | 21,161 | 23,209 | 29,588  |
| 11   | 3,053              | 3,609  | 4,575  | 5,578  | 6,989  | 8,148  | 10,341 | 12,899 | 14,631 | 17,275 | 19,675 | 22,618 | 24,725 | 31,264  |
| 12   | 3,571              | 4,178  | 5,226  | 6,304  | 7,807  | 9,034  | 11,340 | 14,011 | 15,812 | 18,549 | 21,026 | 24,054 | 26,217 | 32,909  |
| 13   | 4,107              | 4,765  | 5,892  | 7,042  | 8,634  | 9,926  | 12,340 | 15,119 | 16,985 | 19,812 | 22,362 | 25,472 | 27,688 | 34,528  |
| 14   | 4,660              | 5,368  | 6,571  | 7,790  | 9,467  | 10,821 | 13,339 | 16,222 | 18,151 | 21,064 | 23,685 | 26,873 | 29,141 | 36,123  |
| 15   | 5,229              | 5,985  | 7,261  | 8,547  | 10,307 | 11,721 | 14,339 | 17,322 | 19,311 | 22,307 | 24,996 | 28,259 | 30,578 | 37,697  |
| 16   | 5,812              | 6,614  | 7,962  | 9,312  | 11,152 | 12,624 | 15,338 | 18,418 | 20,465 | 23,542 | 26,296 | 29,633 | 32,000 | 39,252  |
| 17   | 6,408              | 7,255  | 8,672  | 10,085 | 12,002 | 13,531 | 16,338 | 19,511 | 21,615 | 24,769 | 27,587 | 30,995 | 33,409 | 40,790  |
| 18   | 7,015              | 7,906  | 9,390  | 10,865 | 12,857 | 14,440 | 17,338 | 20,601 | 22,760 | 25,989 | 28,869 | 32,346 | 34,805 | 42,312  |
| 19   | 7,633              | 8,567  | 10,117 | 11,651 | 13,716 | 15,352 | 18,338 | 21,689 | 23,900 | 27,204 | 30,144 | 33,687 | 36,191 | 43,820  |
| 20   | 8,260              | 9,237  | 10,851 | 12,443 | 14,578 | 16,266 | 19,337 | 22,775 | 25,038 | 28,412 | 31,410 | 35,020 | 37,566 | 45,315  |
| 21   | 8,897              | 9,915  | 11,591 | 13,240 | 15,445 | 17,182 | 20,337 | 23,858 | 26,171 | 29,615 | 32,671 | 36,343 | 38,932 | 46,797  |
| 22   | 9,542              | 10,600 | 12,338 | 14,041 | 16,314 | 18,101 | 21,337 | 24,939 | 27,301 | 30,813 | 33,924 | 37,659 | 40,289 | 48,268  |
| 23   | 10,196             | 11,293 | 13,091 | 14,848 | 17,187 | 19,021 | 22,337 | 26,018 | 28,429 | 32,007 | 35,172 | 38,968 | 41,638 | 49,728  |
| 24   | 10,856             | 11,992 | 13,848 | 15,659 | 18,062 | 19,943 | 23,337 | 27,096 | 29,553 | 33,196 | 36,415 | 40,270 | 42,980 | 51,179  |
| 25   | 11,524             | 12,697 | 14,611 | 16,473 | 18,940 | 20,867 | 24,337 | 28,172 | 30,675 | 34,382 | 37,652 | 41,566 | 44,314 | 52,620  |

# TESTE DE ADERÊNCIA/ CONCORDÂNCIA

 Testar a adequabilidade de um modelo probabilístico a um conjunto de dados observados.

### TESTE DE ADERÊNCIA/ CONCORDÂNCIA

#### Exemplo

Um engenheiro de computação tem desenvolvido um algoritmo para gerar números aleatórios inteiros no intervalo 0-9. Ao executar o algoritmo e gerar 1000 valores, ele obtém observações com as seguintes frequências:

Frequência esperada = 1/10

H0 = Aleatório

H1 = Não aleatório

$$\frac{(o-e)^2}{e}$$

| C | Observado | esperado     | d²/esperado |
|---|-----------|--------------|-------------|
| 0 | 94        | 100          | 0,36        |
| 1 | 93        | 100          | 0,49        |
| 2 | 112       | 100          | 1,44        |
| 3 | 101       | 100          | 0,01        |
| 4 | 101       | 100          | 0,01        |
| 5 | 104       | 100          | 0,16        |
| 6 | 95        | 100          | 0,25        |
| 7 | 100       | 100          | 0           |
| 8 | 99        | 100          | 0,01        |
| 9 | 101       | 100          | 0,01        |
|   |           |              |             |
|   |           |              |             |
|   |           | x² calculado | 2,74        |
|   |           | x² tabelado  | 16,92       |

#### CORREÇÃO DE CONTINUIDADE OU CORREÇÃO DE YATES

- Ao aplicar o teste do X<sup>2</sup>, supõe-se que o tamanho amostral será relativamente grande,.
- Quando a amostra é pequena e/ou que a frequência esperada em uma das classes é pequena (tipicamente, quando for menor que 5) a fórmula de obtenção de X² poderá produzir um valor significativo (> do que o X² crítico), e portanto maior do que o valor real.
- Nestes casos, Fisher recomenda o uso de um fator de correção de continuidade para cada classe, a fim de evitar eventuais conclusões erradas.

$$\chi^2 = \frac{(|o_1 - e_1| - 0.5)^2}{e_1} + \frac{(|o_2 - e_2| - 0.5)^2}{e_2}$$

- De modo geral, usa-se a correção de Yates quando:
- 1) o valor de Qui Quadrado obtido é **maior** que o crítico e o valor de N é menor que 40 ou
- 2) o valor de Qui Quadrado obtido é **maior** que o crítico e há pelo menos uma classe com frequência esperada menor que 5.

# TESTE DE INDEPENDENCIA/ CONTINGÊNCIA

- Verificar se existe independência entre duas variáveis medidas nas mesmas unidades experimentais.
- É aplicável em casos em que não se dispões de uma teoria ou modelo para informar a respeito das probabilidade de ocorrência esperadas nas diferentes classes.

## TABELA DE CONTINGÊNCIA

#### **Exemplo:**

Um inspetor de qualidade toma uma amostra de 220 artigos num centro de distribuição. Se sabe que cada produto pode vir de uma de três fábricas e pode ou não estar defeituoso. O inspetor avalia todos os produtos e obtém os seguintes resultados

H0: A proporção de produtos defeituosos é a mesma para todas as fábricas (são independentes)

|    | $F_1$ | $F_2$ | $F_3$ |     |
|----|-------|-------|-------|-----|
| О  | 8     | 15    | 11    | 34  |
| ND | 62    | 67    | 57    | 186 |
|    | 70    | 82    | 68    | 220 |
|    | ,     |       |       |     |

$$E_{11} = \frac{70 \times 34}{220} = 10.810$$
  $E_{21} = \frac{70 \times 186}{220} = 59.180$   $E_{12} = \frac{82 \times 34}{220} = 12.673$   $E_{22} = \frac{82 \times 186}{220} = 69.327$   $E_{13} = \frac{68 \times 34}{220} = 10.509$   $E_{23} = \frac{68 \times 186}{220} = 57.490$ 

|    | $F_1$ | $F_2$ | $F_3$ |     |
|----|-------|-------|-------|-----|
| D  | 10.81 | 12.67 | 10.51 | 34  |
| ND | 59.18 | 59.33 | 57.49 | 186 |
|    | 70    | 82    | 68    | 220 |

$$\chi^2 = \sum \frac{d^2}{e} : \frac{(8 - 10.81)^2}{10.81} + \dots + \frac{(57 - 57.49)^2}{57.49} = 1.398$$

Note que no teste de independência, temos (r-1)(s-1) graus de liberdade, onde r e s são o número de linhas e de colunas. Então temos 2 graus de liberdade, e o p-value do teste é 0.497, ou seja, não rejeitamos a hipótese de independência entre o eventos "peça defeituosa" e "peça da fábrica i".

# TABELAS 2 X 2

• Tendo apenas <u>um</u> G.L., não é necessário calcular valores esperados.

$$\chi^2 = \frac{(ad - bc)^2 x N}{n1xn2xn3xn4}$$

#### **EXEMPLO:**

**H0** 

| Sexo  | Maligna | Benigna | Total   |
|-------|---------|---------|---------|
| M     | 15 (a)  | 35 (b)  | 50 (n1) |
| F     | 6 (c)   | 24 (d)  | 30 (n2) |
| Total | 21 (n3) | 59 (n4) | 80 (N)  |

$$X^2$$
 calculado = 0,968

$$X^2$$
 tabelado = 3,841

$$X^{2}$$
 (1,0.05) = 0,968; 0,30

# TABELAS 2 X 2

• Correção de Yates / Continuidade

$$\chi^{2} = \frac{(|ad - bc| - 0.5.N)^{2}xN}{n1xn2xn3xn4}$$

#### REGRAS DE APLICAÇÃO:

- 1) o valor de X<sup>2</sup> obtido é **maior** que o crítico e o valor de N é menor que 40 ou
- o valor de X² obtido é maior que o crítico e há pelo menos uma classe com frequência esperada menor que 5.

#### TESTE DE HETEROGENEIDADE

- Pode-se testar se amostras diferentes em uma série de experimentos semelhantes são homogêneas ou não.
- Nesse caso, calcula-se o X<sup>2</sup> de cada amostra e o X<sup>2</sup> do total (X<sup>2</sup>t)
- Depois, soma-se os  $X^2$  obtidos para cada amostra ( $\Sigma X^2$ ) e da soma se subtrai o valor obtido para o total de qui quadrados ( $X^2$ t).
- O valor final obtido é o X<sup>2</sup> de heterogeneidade.

#### TESTE DE HETEROGENEIDADE

Exemplo: amostras de filhos de casais MN X MN

| Amostras             | MM  | MN  | NN  | Total |
|----------------------|-----|-----|-----|-------|
| Belém - PA           | 19  | 38  | 23  | 80    |
| Maceió - AL          | 18  | 25  | 17  | 60    |
| São Carlos - SP      | 8   | 23  | 9   | 40    |
| Total                | 45  | 86  | 49  | 180   |
| Proporções esperadas | 1/4 | 1/2 | 1/4 |       |

| Amostras        |                                                    | χ <sup>2</sup> | GL |
|-----------------|----------------------------------------------------|----------------|----|
| Belém - PA      | $(19-20)^2 / 20 + (38-40)^2 / 40 + (23-20)^2 / 20$ | 0,600          | 2  |
| Maceió - AL     | $(18-15)^2/15 + (25-30)^2/30 + (17-15)^2/15$       | 1,700          | 2  |
| São Carlos - SP | $(8-10)^2/10 + (23-20)^2/20 + (9-10)^2/10$         | 0,950          | 2  |
| Total X2t       | $(45-45)^2/45 + (86-90)^2/90 + (49-45)^2/45$       | 0,534          | 2  |

$$\Sigma X^2 = 3,250; \ \Sigma G.L. = 6$$

$$X^{2}t - \Sigma X^{2} = 2,716$$
; G.L. = 6-2 = 4

$$X^{2}(4)$$
 calculado = 2,716

$$X^{2}(4)$$
 crítico = 9,488

$$X^{2}$$
 (4, 0.05) = 2,716; 0,70

NÃO SÃO HETEROGÊNEAS

# **REFERÊNCIAS**

BEIGUELMAN, B. 1996.Curso de Bioestatística Básica. 4ed. Ribeirão Preto:
 Sociedade Brasileira de Genética.