Simulation and Timeline

July 15, 2021

1 Robust TFBoost: Simulation

1.1 Data generation

• We generated data sets $D = \{(x_i, y_i), i = 1, ..., N\}$, consisting of a predictor $x_i \in \mathcal{L}_2$ and a scalar response y_i that follow the model:

$$y_i = r(x_i) + \rho \epsilon_i, \tag{1}$$

where the errors ϵ_i are i.i.d, r is the regression function, and $\rho > 0$ is a constant that controls the signal-to-noise ratio (SNR):

$$SNR = \frac{Var(r(X))}{Var(\rho\epsilon)}.$$

• To sample the functional predictors x_i , we considered the model:

$$x_i(t) = \mu(t) + \sum_{p=1}^4 \sqrt{\lambda_j} \xi_{ij} \phi_j(t), \qquad (2)$$

where $\mu(t) = 2\sin(t\pi)\exp(1-t)$, $\lambda_1 = 0.8$, $\lambda_2 = 0.3$, $\lambda_3 = 0.2$, and $\lambda_4 = 0.1$, $\xi_{ij} \sim N(0,1)$, and ϕ_j are the first four eigenfunctions of the "Mattern" covariance function $\gamma(s,t)$ with parameters $\rho = 3$, $\sigma = 1$, $\nu = 1/3$:

$$\gamma(s,t) = C\left(\frac{\sqrt{2\nu}|s-t|}{\rho}\right), \ C(u) = \frac{\sigma^2 2^{1-\nu}}{\Gamma(\nu)} u^{\nu} K_{\nu}(u),$$

where $\Gamma(.)$ is the Gamma function and K_{ν} is the modified Bessel function of the second kind. For each subject i, we evaluate x_i on a dense and regular grid $t_1, ..., t_{100}$ equally spaced in $\mathcal{I} = [0, 1]$.

• We considered five regression functions:

-
$$r_1(X) = \int_{\mathcal{I}} \left(\sin\left(\frac{3}{2}\pi t\right) + \sin\left(\frac{1}{2}\pi t\right) \right) X(t) dt$$

- $r_2(X) = (\xi_1 + \xi_2)^{1/3}$, where $\xi_1 = \int_{\mathcal{I}} (X(t) \mu(t)) \psi_1(t) dt$ and $\xi_2 = \int_{\mathcal{I}} (X(t) \mu(t)) \psi_2(t) dt$ are projections onto the first two FPCs (ψ_1 and ψ_2) of X with mean $\mu(t) = E(X(t))$,
- $r_3(X) = 5\exp\left(-\frac{1}{2}\left|\int_{\mathcal{T}} x(t)\log(|x(t)|)dt\right|\right)$,
- $r_4(X) = 5$ sigmoid $(\int_{\mathcal{I}} X(t)^2 \sin(2\pi t) dt)$, where sigmoid $(u) = 1/(1 + \exp(-u))$, and
- $r_5(X) = 5\left(\sqrt{\left|\int_{\mathcal{I}_1}\cos(2\pi t^2)X(t)dt\right|} + \sqrt{\left|\int_{\mathcal{I}_2}\sin(X(t))dt\right|}\right)$, where $\mathcal{I}_1 = [0, 0.5]$ and $\mathcal{I}_2 = (0.5, 1]$.
- For clean data (C_0) , we generated ϵ_i in (1) from N(0,1) and selected ρ that corresponds to SNR = 5.

For contaminated data, we sampled 10% training samples as outliers and let the set of their indices be I_o . The outliers belong to one of the five types introduced below. For $j \in I_o$,

- C_1 : Shape outliers
 - In (1), $\epsilon_i \sim N(-10, 0.25)$

In (2), $\xi_{j,2} \sim N(10, 0.25)$ and the other parameters stay the same.

- C_2 : Magnitude outliers

 $x_i = 2\tilde{x}_i, y_i = 4\tilde{y}_i$, where $(\tilde{x}_i, \tilde{y}_i)$ were generated as clean data.

- C_3 : Point-type measurement error outliers

Randomly sample 10 points form $t_1, ..., t_{100}$ and denote them as $t_{j,o_1}, ..., t_{j,o_{10}}$. For k = 1, ..., 10,

$$x_j(t_{j,o_k}) = \tilde{x}_j(t_{j,o_k}) + \eta_{j,o_k},$$

where $\eta_{j,o_k} \sim 0.5N(10,0.25) + 0.5N(-10,0.25)$, $y_j = \tilde{y}_j$, and $(\tilde{x}_j,\tilde{y}_j)$ were generated as clean data.

- C_4 : Interval-type measurement error outliers

Randomly sample one interval from intervals $[t_1, ..., t_{10}], ..., [t_{91}, ..., t_{100}],$ and denote the interval as $t_{j,o}, ..., t_{j,o+9}$ For k = 0, ..., 9,

$$x_j(t_{j,o+k}) = \tilde{x}_j(t_{j,o+k}) + \eta_{j,o+k},$$

where $\eta_{j,o+k} \sim N(10, 0.25)$, $y_j = \tilde{y}_j$, and $(\tilde{x}_j, \tilde{y}_j)$ were generated as clean data.

- C₅: Pure vertical outliers

$$\epsilon_j \sim N(10, 0.25)$$

1.2 Visualize the outliers

1.3 Model comparison

For each setting, we used 100 independently generated datasets and compared the performance of the following methods:

- TFBoost(L2): tree-based functional boosting with L2 loss
- TFBoost(LAD): tree-based functional boosting with LAD loss
- TFBoost (RR): tree-based functional boosting modified to follow the framework of RRBoost

- FPPR: functional projection pursuit regression (Ferraty et al., 2013),
- FGAM: functional generalized additive models (McLean et al., 2014),
- MFLM: Sieve M-estimator for a semi-functional linear model Huang et al. (2015)
- RFSIR: robust functional sliced inverse regression (Wang et al., 2017)
- RFPLM: robust estimation for semi-functional linear regression models (Boente et al., 2020)

1.4 Results

	C_0	C_1	C_2	C_3	C_4	C_5
TFBoost(L2)	0.144 (0.006)	0.151 (0.009)	0.206 (0.030)	0.144 (0.006)	0.146 (0.006)	1.690 (0.271)
$\mathrm{TFBoost}(\mathrm{LAD})$	0.151 (0.010)	$0.202\ (0.027)$	$0.205\ (0.030)$	0.150 (0.008)	0.151 (0.008)	0.158 (0.012)
$\mathrm{TFBoost}(\mathrm{RR})$	$0.162\ (0.017)$	$0.193\ (0.136)$	$0.215\ (0.110)$	$0.158 \; (0.014)$	$0.157 \ (0.012)$	$0.159\ (0.015)$
FPPR	$0.137 \ (0.007)$	$0.202\ (0.076)$	$0.164\ (0.050)$	$0.137\ (0.007)$	0.149 (0.013)	$1.845 \ (0.517)$
FGAM	0.130 (0.005)	0.143 (0.008)	0.153 (0.016)	0.130 (0.005)	0.133 (0.005)	$1.205\ (0.080)$
RFPLM	0.130 (0.006)	0.130 (0.006)	0.130 (0.006)	0.130 (0.006)	0.131 (0.006)	0.130 (0.006)
MFLM	0.129 (0.006)	$0.761\ (0.054)$	$0.269\ (0.033)$	0.130 (0.006)	0.138 (0.006)	0.166 (0.014)
RFSIR	$0.137\ (0.008)$	$0.145 \ (0.014)$	$0.157 \ (0.025)$	$0.138\ (0.007)$	$0.142\ (0.006)$	$1.727 \ (0.587)$

Table 1: Summary statistics of test errors for data generated from r_1 ; displayed in the form of mean (sd).

	C_0	C_1	C_2	C_3	C_4	C_5
TFBoost(L2)	0.181 (0.008)	0.193 (0.010)	0.223 (0.023)	0.183 (0.009)	0.184 (0.010)	1.789 (0.347)
$\mathrm{TFBoost}(\mathrm{LAD})$	$0.186\ (0.010)$	$0.257 \ (0.056)$	$0.208\ (0.020)$	0.188 (0.011)	0.188 (0.011)	0.195 (0.011)
$\mathrm{TFBoost}(\mathrm{RR})$	$0.196\ (0.014)$	$0.225\ (0.063)$	0.198 (0.019)	$0.202\ (0.021)$	0.198 (0.023)	0.203 (0.020)
FPPR	0.181 (0.009)	$0.347 \ (0.133)$	$0.288\ (0.058)$	0.183 (0.011)	$0.196\ (0.024)$	$1.886 \ (0.545)$
FGAM	$0.226\ (0.012)$	$0.243\ (0.015)$	$0.276\ (0.027)$	$0.233\ (0.013)$	$0.233\ (0.012)$	$1.343\ (0.094)$
RFPLM	$0.286\ (0.014)$	$0.286\ (0.014)$	$0.290\ (0.016)$	$0.287\ (0.014)$	$0.288 \; (0.017)$	$0.286\ (0.014)$
MFLM	$0.285\ (0.014)$	$2.032\ (0.099)$	$0.325 \ (0.028)$	$0.389\ (0.023)$	$0.626\ (0.032)$	$0.344\ (0.024)$
RFSIR	0.183 (0.009)	0.218 (0.061)	0.202 (0.015)	0.185 (0.010)	0.193 (0.013)	$1.551 \ (0.569)$

Table 2: Summary statistics of test errors for data generated from r_2 ; displayed in the form of mean (sd).

	C_0	C_1	C_2	C_3	C_4	C_5
TFBoost(L2)	0.305 (0.016)	0.314 (0.020)	0.518 (0.090)	0.306 (0.015)	0.308 (0.016)	1.968 (0.360)
$\mathrm{TFBoost}(\mathrm{LAD})$	$0.319\ (0.019)$	$0.382\ (0.036)$	$0.383\ (0.049)$	0.317 (0.018)	0.318 (0.016)	0.326 (0.021)
$\mathrm{TFBoost}(\mathrm{RR})$	$0.333 \ (0.032)$	$0.370\ (0.059)$	0.337 (0.041)	$0.337 \ (0.040)$	0.328 (0.028)	0.335 (0.027)
FPPR	0.303 (0.018)	$0.446 \ (0.105)$	$0.606\ (0.360)$	$0.313\ (0.022)$	0.318 (0.022)	$1.845 \ (0.453)$
FGAM	$0.319\ (0.017)$	$0.331\ (0.017)$	$0.442\ (0.061)$	0.321 (0.016)	0.319 (0.017)	$1.445 \ (0.112)$
RFPLM	$0.380\ (0.018)$	$0.379\ (0.019)$	$0.381\ (0.018)$	$0.379\ (0.019)$	0.382 (0.019)	$0.379\ (0.019)$
MFLM	$0.377 \ (0.018)$	$1.365\ (0.080)$	$0.485\ (0.046)$	$0.886\ (0.063)$	$2.165 \ (0.129)$	$0.445 \ (0.028)$
RFSIR	$0.310\ (0.019)$	0.310 (0.019)	0.337 (0.030)	0.311 (0.020)	0.311 (0.017)	$1.825\ (0.677)$

Table 3: Summary statistics of test errors for data generated from r_3 ; displayed in the form of mean (sd).

	C_0	C_1	C_2	C_3	C_4	C_5
TFBoost(L2)	0.321 (0.015)	0.333 (0.015)	0.681 (0.322)	0.324 (0.014)	0.328 (0.014)	2.037 (0.267)
TFBoost(LAD)	0.338 (0.017)	$0.404\ (0.026)$	$0.552\ (0.161)$	0.340 (0.014)	$0.345\ (0.017)$	0.361 (0.026)
$\mathrm{TFBoost}(\mathrm{RR})$	$0.347 \ (0.036)$	$0.490\ (0.273)$	$0.591\ (0.667)$	$0.365 \ (0.036)$	$0.374\ (0.048)$	0.360 (0.040)
FPPR	$0.362\ (0.029)$	$0.417\ (0.045)$	$0.538 \ (0.271)$	$0.384\ (0.040)$	$0.415 \ (0.043)$	$1.960 \ (0.386)$
FGAM	$0.408 \; (0.019)$	$0.417\ (0.018)$	0.491 (0.054)	$0.415\ (0.017)$	$0.411\ (0.019)$	$1.659 \ (0.151)$
RFPLM	$0.544\ (0.032)$	$0.544\ (0.031)$	$0.544\ (0.032)$	$0.555 \ (0.040)$	$0.561\ (0.039)$	$0.543 \ (0.032)$
MFLM	$0.538 \ (0.030)$	$0.544\ (0.032)$	$0.826\ (0.104)$	$0.645\ (0.037)$	$0.827\ (0.048)$	$0.630\ (0.048)$
RFSIR	$0.341\ (0.020)$	0.363 (0.021)	0.421 (0.154)	$0.348\ (0.018)$	$0.354\ (0.024)$	$2.415 \ (0.512)$

Table 4: Summary statistics of test errors for data generated from r_4 ; displayed in the form of mean (sd).

	C_0	C_1	C_2	C_3	C_4	C_5
TFBoost(L2)	0.583 (0.032)	0.628 (0.045)	1.725 (0.678)	0.593 (0.033)	0.590 (0.036)	2.322 (0.278)
$\mathrm{TFBoost}(\mathrm{LAD})$	$0.622\ (0.034)$	$0.694\ (0.055)$	$1.292\ (0.315)$	0.633 (0.039)	0.634 (0.030)	0.677 (0.066)
$\mathrm{TFBoost}(\mathrm{RR})$	$0.694\ (0.092)$	$0.869 \ (0.307)$	$1.280\ (1.596)$	$0.703\ (0.083)$	$0.723\ (0.084)$	0.686 (0.077)
FPPR	$0.608\ (0.057)$	$0.718\ (0.175)$	$0.967\ (0.911)$	$0.638\ (0.049)$	$0.673 \ (0.073)$	$2.364 \ (0.482)$
FGAM	$0.610\ (0.041)$	0.670 (0.070)	0.776 (0.100)	$0.643\ (0.046)$	0.641 (0.048)	$1.909 \ (0.127)$
RFPLM	$0.891\ (0.045)$	$1.045\ (0.078)$	$0.890\ (0.045)$	$0.889\ (0.046)$	$0.895 \ (0.047)$	$0.888 \; (0.045)$
MFLM	$0.881\ (0.039)$	$1.125\ (0.067)$	$1.698 \ (0.189)$	$1.421\ (0.080)$	$2.527 \ (0.118)$	$0.998 \; (0.052)$
RFSIR	$0.677 \ (0.052)$	0.690 (0.063)	0.821 (0.183)	$0.672\ (0.052)$	0.650 (0.053)	2.379 (0.518)

Table 5: Summary statistics of test errors for data generated from r_5 ; displayed in the form of mean (sd).

1.5 Timeline

- 2021/07:
 - TFBoost: revise paper (submit?)
 - Robust TFBoost: simulation
 - thesis: draft the background chapter
- 2021/08:
 - TFBoost: submit paper and package
 - thesis: draft the background, RRBoost and TFBoost chapters
 - Robust TFBoost: simulation and real example
 - record JSM presentation
- 2021/09:
 - thesis: draft Robust TFBoost chapter
 - Sparse TFBoost: simulation
- 2021/09:
 - thesis: draft robust TFBoost, Sparse TFBoost chapters
 - Sparse TFBoost: simulation and real example
- 2021/10:
 - thesis: draft Sparse TFBoost chapter, conclusion and future work
- 2021/11:
 - thesis: first draft complete, start revising
- 2021/12 (end of year):
 - thesis: second draft
- Before 2022/04:
 - thesis defence

References

Boente, G., Salibian-Barrera, M., and Vena, P. (2020). Robust estimation for semi-functional linear regression models. *Computational Statistics & Data Analysis*, 152:107041.

Ferraty, F., Goia, A., Salinelli, E., and Vieu, P. (2013). Functional projection pursuit regression. *Test*, 22(2):293–320.

- Huang, L., Wang, H., Cui, H., and Wang, S. (2015). Sieve m-estimator for a semi-functional linear model. *Science China Mathematics*, 58(11):2421–2434.
- McLean, M. W., Hooker, G., Staicu, A.-M., Scheipl, F., and Ruppert, D. (2014). Functional generalized additive models. *Journal of Computational and Graphical Statistics*, 23(1):249–269.
- Wang, G., Zhou, J., Wu, W., and Chen, M. (2017). Robust functional sliced inverse regression. *Statistical papers*, 58(1):227–245.