Camera Pose Estimation from Lines using Plücker Coordinates

Bronislav Přibyl ipribyl@fit.vutbr.cz Pavel Zemčík zemcik@fit.vutbr.cz Martin Čadík

Graph@FIT, CPhoto@FIT Department of Computer Graphics and Multimedia Faculty of Information Technology Brno University of Technology Božetěchova 2 61266 Brno Czech Republic

Appendix A

cadik@fit.vutbr.cz

Algorithm 1 Camera pose estimation from line correspondences

Input: 3D lines L_i , image lines l_i and their correspondences $L_i \leftrightarrow l_i$ $(i = 1 ... n, n \ge 9)$

- 1. Construct **M** from \mathbf{L}_i and \mathbf{l}_i according to Appendix B.
- 2. $\mathbf{ODT}^{\top} \leftarrow \mathbf{SVD}(\mathbf{M})$
- 3. Solve $\mathbf{M}\hat{\mathbf{p}} = \boldsymbol{\varepsilon}$ for $\hat{\mathbf{p}}$ in the least squares sense by minimizing $||\boldsymbol{\varepsilon}||$.
- 4. Construct the 3×6 matrix $\hat{\mathbf{p}}$ from the 18-vector $\hat{\mathbf{p}}$ in column-major order.
- 5. $[\hat{\mathbf{P}}_1 \ \hat{\mathbf{P}}_2] \leftarrow \hat{\mathbf{P}}$
- 6. $s \leftarrow 1/\sqrt[3]{\det \hat{\mathbf{P}}_1}$
- 7. $\hat{\mathbf{P}}_{2s} \leftarrow s\hat{\mathbf{P}}_{2}$
- 8. $\mathbf{U} \mathbf{\Sigma} \mathbf{V}^{\top} \leftarrow \mathbf{SVD}(\mathbf{\hat{P}}_{2e})$

9.
$$\mathbf{Z} \leftarrow \begin{pmatrix} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
, $\mathbf{W} \leftarrow \begin{pmatrix} 0 & -1 & 0 \\ 1 & 0 & 0 \\ 0 & 0 & 1 \end{pmatrix}$, $\sigma \leftarrow (\Sigma_{1,1} + \Sigma_{2,2})/2$

10. Compute 2 candidate solutions (A), (B):

(A):
$$d_{\mathbf{A}} \leftarrow \det(\mathbf{U}\mathbf{W} \ \mathbf{V}^{\top})$$
, $\hat{\mathbf{R}}_{\mathbf{A}} \leftarrow \mathbf{U}\mathbf{W} \ \operatorname{diag}(1 \ 1 \ d_{\mathbf{A}})\mathbf{V}^{\top}$, $[\hat{\mathbf{t}}]_{\times \mathbf{A}} \leftarrow \sigma \mathbf{V} \mathbf{Z} \ \mathbf{V}^{\top}$

(B):
$$d_{\mathbf{B}} \leftarrow \det(\mathbf{U}\mathbf{W}^{\top}\mathbf{V}^{\top})$$
, $\hat{\mathbf{R}}_{\mathbf{B}} \leftarrow \mathbf{U}\mathbf{W}^{\top}\operatorname{diag}(1\ 1\ d_{\mathbf{B}})\mathbf{V}^{\top}$, $|\hat{\mathbf{t}}|_{\times \mathbf{B}} \leftarrow \sigma \mathbf{V}\mathbf{Z}^{\top}\mathbf{V}^{\top}$

- 11. Convert the antisymmetric matrices $[\hat{\mathbf{t}}]_{\times A}$, $[\hat{\mathbf{t}}]_{\times B}$ into vectors $\hat{\mathbf{t}}_A$, $\hat{\mathbf{t}}_B$.
- 12. Find out which solution is physically plausible, i.e. an arbitrary point \mathbf{x}^w in the visible part of the scene must lie in front of the camera.

$$\textit{test}_A \leftarrow \boldsymbol{\hat{R}}_A^{(3)} \cdot \frac{\boldsymbol{x}^{\scriptscriptstyle{W}} - \boldsymbol{\hat{t}}_A}{||\boldsymbol{x}^{\scriptscriptstyle{W}} - \boldsymbol{\hat{t}}_A||}, \quad \textit{test}_B \leftarrow \boldsymbol{\hat{R}}_B^{(3)} \cdot \frac{\boldsymbol{x}^{\scriptscriptstyle{W}} - \boldsymbol{\hat{t}}_B}{||\boldsymbol{x}^{\scriptscriptstyle{W}} - \boldsymbol{\hat{t}}_B||}$$

13. If $(\textit{test}_A \leq \textit{test}_B)$ then $\hat{\mathbf{R}} \leftarrow \hat{\mathbf{R}}_A$, $\hat{\mathbf{t}} \leftarrow \hat{\mathbf{t}}_A$ else $\hat{\mathbf{R}} \leftarrow \hat{\mathbf{R}}_B$, $\hat{\mathbf{t}} \leftarrow \hat{\mathbf{t}}_B$

Output: Estimated camera pose $(\hat{\mathbf{R}}, \hat{\mathbf{t}})$

^{© 2015.} The copyright of this document resides with its authors.

Appendix B

Construction of the measurement matrix M. Given n line correspondences $\mathbf{L}_i \leftrightarrow \mathbf{l}_i$, $(i = 1 ... n, n \ge 9)$, the $2n \times 18$ measurement matrix M is constructed as

where $\mathbf{m}^{(i)}$ denotes the *i*-th row of \mathbf{M} , $(l_{ix}\ l_{iy}\ l_{iw})^{\top}$ are the homogenous coordinates of a 2D line \mathbf{l}_i in the normalized image plane and $(L_{i1}\ L_{i2}\ L_{i3}\ L_{i4}\ L_{i5}\ L_{i6})^{\top}$ are the Plücker coordinates of a corresponding 3D line \mathbf{L}_i .