数学笔记

BeBop

February 6, 2025

Contents

Ι	知识整理	5
1	代数拓扑 1.1 Brouwer 不动点定理与 Sperner 引理	. 9
	1.3 Poincaré Lemma	
II	[杂题集萃	17
II	II 易错知识	19
Ι	V 亟待整理	21

4 CONTENTS

Part I 知识整理

Chapter 1

代数拓扑

1.1 Brouwer 不动点定理与 Sperner 引理

我们首先叙述 Brouwer 不动点定理与 Sperner 引理:

定理 1.1.1 (Brouwer 不动点定理). 设 $f \in \mathbb{R}$ 作闭球 B^n 到自身的连续映射,则 f 必有不动点.

引理 1.1.2 (Sperner 引理). 设 $K = [v_0, \ldots, v_n]$ 是 n 维单纯形, 考虑其三角剖分 T, 将 T 的顶点 (n+1) 染色, 即定义 $\lambda: V(T) \to \{0, \ldots, n\}$, 且满足对任意指标子集 $\{i_0, \ldots, i_k\} \subseteq \{0, \ldots, n\}$, λ 在 $[v_{i_0}, \ldots, v_{i_k}]$ 上的限制的值域包含于 $\{i_0, \ldots, i_k\}$. 则一定存在 $u_0, \ldots, u_n \in V(T)$, 使得 $[u_0, \ldots, u_n]$ 是三角剖分 T 的单形, 且 $\lambda(u_i)$ 互不相同.

Figure 1.1: Sperner 引理示意图

它们一个是拓扑的定理,一个是组合的定理,看似没有联系,但实际上我们能证明它们是等价的: 由于 $B^n \cong K$,我们将 Brouwer 不动点定理的叙述改为 K 到自身的连续映射 f 必有不动点.

1°:Sperner 引理 ⇒ Brouwer 不动点定理

设 $K = [v_0, \ldots, v_n]$ 是 n 维单形,对 $\forall x \in K$, $x = \sum_i \alpha_i v_i$, $\alpha_i \geq 0$, $\sum_i \alpha_i = 1$. 设 $f(x) = \sum_i \beta_i v_i$, 定义染色映射 $\lambda(x)$ 为使得 $\alpha_i \geq \beta_i$ 且 $\alpha_i \neq 0$ 的最小下标 i. 我们首先观察到在任意集合 $\{i_0, \ldots, i_k\} \subseteq \{0, \ldots, n\}$ 中,对 $\forall x \in [v_{i_0}, \ldots, v_{i_k}]$,x 的坐标 α 满足 $\alpha_i = 0$, $i \notin \{i_0, \ldots, i_k\}$,因此 $\lambda(x)$ 只可能在 $\{i_0, \ldots, i_k\}$ 中取值.

固定染色 λ , 取重心重分 K^0,K^1,\ldots , 则在每一个 K^j 中 λ 均满足引理条件,于是存在异色单形 $\Delta^j = [u^j_0,\ldots,u^j_n]$,不妨设 $\lambda(u^j_i) = i$. 因为 K 是紧集,因此 $\{u^j_0\}_j$ 存在收敛子列,不妨设就为序列本身,由重心重分的性质知 Δ^j 的直径趋于零,因此对所有 i, $\{u^j_i\}_j$ 均收敛于同一点 u, 即 $u = \lim_{j \to \infty} u^j_i$, $\forall i = 0,\ldots,n$. 由染色的定义知 u^j_i 的 v_i 坐标不等于零且大于等于 $f(u^j_i)$ 的,根据极限的保号性知 u 的所有坐标 α_i 大于等于 f(u) 对应的坐标 β_i ,但因为 $\sum_i \alpha_i = \sum_i \beta_i = 1$,所以 $\alpha_i = \beta_i$,因此 u = f(u) 是 f 的不动点.

2°:Sperner 引理 ← Brouwer 不动点定理

设 $K = [v_0, ..., v_n]$ 是 n 维单形, λ 为满足引理要求的染色, T 是 K 的一个三角剖分, 则可以定义单纯映射 $f: K \to K$ 如下: 对 $\forall x \in V(T)$, 定义 $f(x) = v_{\lambda(x)}$, 若 $x = \sum_{i=0}^k \alpha_i x_i$, 其中 $[x_0, ..., x_k]$ 为 T 的 k 维单形, 定义 $f(x) = \sum_{i=0}^k \alpha_i v_{\lambda(x_i)}$.

若 T 中没有 n 维异色单形,则 f 的像集包含于 ∂K 中,且对于每个 (n-1) 维面 $[v_0,\ldots,\hat{v_i},\ldots,v_n]$ 均有 $f([v_0,\ldots,\hat{v_i},\ldots,v_n])\subset [v_0,\ldots,\hat{v_i},\ldots,v_n]$. 不妨设 $\sum_{i=0}^n v_i=0$,即 K 的重心是原点.定义 $g:\partial K\to\partial K, g(x)$ 为射线 xO 与 ∂K 的另一个交点,类比对径映射.则 $g([v_0,\ldots,\hat{v_i},\ldots,v_n])\cap [v_0,\ldots,\hat{v_i},\ldots,v_n]=\emptyset$ 则 $g\circ f$ 是 K 到自身的连续映射,但没有不动点,与Brouwer 不动点定理矛盾.

现在我们回到 Sperner 引理本身的证明

证明. 对维数 n 做归纳, 我们证明对任意维数异色单形的个数均为奇数. 当 n=1 时, $K=[v_0,v_1]$ 可看做闭区间 [0,1], 设 $v_0=x_0< x_1<\cdots< x_m=v_1$ 是剖分 T 中的点, 则 #异色单形 = # $\{i \mid \lambda(x_{i-1}) \neq \lambda(x_i)\}$. 而

$$1 = \lambda(v_1) - \lambda(v_0) = \sum_{i=1}^{m} \lambda(x_i) - \lambda(x_{i-1}) = \sum_{\lambda(x_{i-1}) \neq \lambda(x_i)} \lambda(x_i) - \lambda(x_{i-1})$$

因此 #异色单形 是奇数.

假设维数为 n-1 时命题成立, 我们称 T 中的 (n-1) 维单形 $[x_0, \ldots, x_{n-1}]$ 为一个好单形, 若 $\{\lambda(x_0), \ldots, \lambda(x_{n-1})\} = \{0, \ldots, n-1\}$. 对 T 中的 n

维单形 $\Delta_n = [u_0, \dots, u_n]$, 令 $c(\Delta_n)$ 为 Δ_n 中好单形的个数, 记 $S = \{\lambda(u_0), \dots, \lambda(u_n)\}$, 则

$$c(\Delta_n) = \begin{cases} 0, \{0, \dots, n-1\} \not\subseteq S \\ 2, \{0, \dots, n-1\} = S \\ 1, \{0, \dots, n\} = S \end{cases}$$

于是异色单形个数的奇偶性与 $\sum_{\Delta_n\subset T}c(\Delta_n)$ 的奇偶性相同. 而当好单形在 $\overset{\circ}{K}$ 内时, 它是两个 n 单形的公共面; 当好单形在 ∂K 上时, 它仅为一个 n 单形的面. 因此异色单形个数的奇偶性与 ∂K 上好单形的个数的奇偶性相同, 根据条件好单形仅在 $[v_0,\ldots,v_{n-1}]$ 中出现, 由归纳假设知 $[v_0,\ldots,v_{n-1}]$ 中好单形有奇数个, 命题成立.

1.2 区域不变性定理 (Invariance of domain)

该定理也是拓扑中的重要定理,有人说它是欧式空间的内蕴性质,用它可以 区分不同维数的欧式空间.

定理 1.2.1. 设 U 为 \mathbb{R}^n 中的开子集, $f: U \to \mathbb{R}^n$ 为连续单射, 则 f(U) 为 \mathbb{R}^n 的开子集且 f 为开映射, 即 f 为 U 到 f(U) 的同胚.

1.3 Poincaré Lemma 的另一种表述形式

引理 1.3.1 (d-Poincaré lemma). 若整体有 $d\omega = 0$, 则方程 $d\eta = \omega$ 局部有解, 即在每点处存在邻域使得方程有解.

引理 1.3.2 ($\overline{\partial}$ -Poincaré lemma). 若整体有 $\overline{\partial}\omega = 0$, 则方程 $\overline{\partial}\eta = \omega$ 局部有解, 即在每点处存在邻域使得方程有解.

注. 因此若整体有 $d\omega = 0$, 但方程 $d\eta = \omega$ 在整体上没有解, 这就表明空间本身限制的整体解的存在性, 也就是说我们检测到一个拓扑上的障碍.

1.4 切除定理 (Excision Theorem)

定理 1.4.1 (切除定理表述 1). 设 $Z \subset A \subset X$ 满足 $\overline{Z} \subset A^{\circ}$, 则空间偶的嵌入 $(X - Z, A - Z) \hookrightarrow (X, A)$ 诱导了相对同调群之间的同构:

$$H_n(X-Z,A-Z) \xrightarrow{\cong} H_n(X,A), \quad n \ge 0.$$

这个定理有一个等价的表述:

定理 1.4.2 (切除定理表述 2). 设 $A, B \subset X$ 且满足 $A^{\circ} \cup B^{\circ} = X$, 则空间偶的嵌入 $(B, A \cap B) \hookrightarrow (X, A)$ 诱导了相对同调群之间的同构:

$$H_n(B, A \cap B) \xrightarrow{\cong} H_n(X, A), \quad n \ge 0.$$

注. 两种表述靠 B = X - Z(Z = X - B) 相互转化.

为了证明这个定理, 我们需要先证明同调的"局部性"(locality principal).

设 X 是一个拓扑空间, 我们称 X 的子集族 $\mathfrak{U} = \{U_j\}_{j \in J}$ 是一个覆盖, 若 $\{U_i^\circ\}_{j \in J}$ 构成一个开覆盖 (注意 U_j 本身不必是开集).

定义 1.4.3 (U-small chains).

- 一个 n-单形 $\sigma: \Delta^n \to X$ 被称为 \mathfrak{U} -small 的, 若 $\operatorname{Im} \sigma$ 在某个 U_i 中.
- 一个 n-复形 $c = \sum_{i} n_{i}\sigma_{i}$ 被称为 \mathfrak{U} -small 的, 若每个 σ_{i} 都是 \mathfrak{U} -small 的.
- 所有 \mathfrak{U} -small 的 n-复形构成 $C_n(X)$ 的一个子群, 记为

$$C_n^{\mathfrak{U}}(X) := \{ c \in C_n(X) \mid c \text{ is } \mathfrak{U}\text{-small} \}.$$

$$C_n^{\mathfrak{U}}(X,A) := \frac{C_n^{\mathfrak{U}}(X)}{C_n^{\mathfrak{U}}(A)}.$$

若记 $\iota_j:U_j\hookrightarrow X$ 为 U_j 到 X 的嵌入, 那么 $C_n^{\mathfrak{U}}(X)$ 也可以被定义为

$$C_n^{\mathfrak{U}}(X) = \operatorname{Im}\left(\bigoplus_{j \in I} C_n(U_j) \xrightarrow{\oplus_j(\iota_j)_*} C_n(X)\right).$$

这一概念的关键在于我们可以仅用 ધ-small 的链来计算原空间的同调群,这体现了同调群的局部性.

定理 1.4.4 (Locality Principle/Small Chain Theorem). 设 $\mathfrak{U} \not = X$ 的一个覆盖, 则链复形的嵌入映射

$$C_n^{\mathfrak{U}}(X) \subset C_n(X)$$

诱导了同调群之间的同构.

这个定理的证明需要用到重心剖分, 其证明过程有些繁琐, 所以我们跳过该定理的证明, 先看如何用这个定理推导出切除定理.

Proof of the Excision Axiom using small chains:

我们证明切除定理的表述 2, 令 $\mathfrak{U} = \{A, B\}$. 链复形的嵌入映射 $C_n^{\mathfrak{U}}(X) \subset C_n(X)$ 诱导了链复形短正合列之间的一个态射:

$$0 \longrightarrow C_*(A) \longrightarrow C_*^{\mathfrak{U}}(X) \longrightarrow C_*^{\mathfrak{U}}(X)/C_*(A) \longrightarrow 0$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad .$$

$$0 \longrightarrow C_*(A) \longrightarrow C_*(X) \longrightarrow C_*(X)/C_*(A) \longrightarrow 0$$

因为中间竖直的映射诱导了同调群之间的同构映射 (定理1.4.4), 由根据短正合引长正合、同调群的自然性、五引理, 我们得到右侧竖直映射诱导了同调群的同构, 由此转化为比较 $C_*(B,A\cap B)$ 和 $C_*^{\mathfrak{u}}(X)/C_*(A)$.

注意到

$$C_*^{\mathfrak{U}}(X) = C_*(A) + C_*(B) \subset C_*(X),$$

 $C_*(A \cap B) = C_*(A) \cap C_*(B).$

因此

$$\frac{C_*(B)}{C_*(A \cap B)} = \frac{C_*(B)}{C_*(A) \cap C_*(B)} \cong \frac{C_*(A) + C_*(B)}{C_*(A)} = \frac{C_*^{\mathfrak{U}}(X)}{C_*(A)}.$$

中间的同构源自同态基本定理.

因此链映射

$$C_*(B, A \cap B) \to C_*^{\mathfrak{U}}(X)/C_*(A)$$

诱导了同调群之间的同构, 原命题成立.

Proof of Locality Principle. ¹ 我们需要引入重心重分 (或叫重心剖分) 这一操作, 需要分几步定义:

Step 1: 首先定义什么是 n-单形 Δ^n 的重心重分. 为了方便我们使用坐标描述, 我们将 Δ^n 嵌入底空间 \mathbb{R}^n , 可用顶点集表示为 $[v_0, \ldots, v_n]$, 其中的点可以表示为 $P = \sum_{i=0}^n t_i v_i$, $0 \le t_i \le 1$, $\sum_{t_0}^n t_i = 1$ 是点 P 的 n+1 个坐标.

我们知道从几何图形上看 Δ^n 重心重分后是一些更小块的 n-单形 (带符号), 但是为了规范叙述重心重分, 我们需要将重分后的对象视为 $LC_n(Y)$ 中的元素, 其中 Y 是某个欧氏空间中的凸集². 也即, 我们把原始的 Δ^n 视为 id : $\Delta^n \to \Delta^n$, 重分后得到 $S\Delta^n \in LC_n(Y)$.

1° 锥映射 (cone map): 设 $b \in \mathbb{R}^n$ 中的某一个点, 定义以 b 为顶点的锥映射, 写为

$$b: [v_0, \ldots, v_n] \mapsto [b, v_0, \ldots, v_n]$$

¹证明源自 Hacter 的 Algebraic Topology, 此处是我总结凝练的个人理解.

 $^{^2}$ 这里我很纠结到底用不用书上的记号, 我原本想把每个 Δ^n 视为 $C_n(\Delta^n)$ 中的元素, 但这样得不到一个链复形, S 和 T 无法定义在一个统一的 $C_*(?)$. 加上线性映射这一条件也是必要的, 否则映射的像就不是规则的图形了.

因此 $b([v_0,...,v_n])$ 中坐标为 $(t_0,...,t_{n+1})$ 的点是

$$t_0b + \sum_{t=1}^{n+1} t_i v_i = t_0b + (1 - t_0) \sum_{t=1}^{n+1} \frac{t_i}{1 - t_0} v_i.$$

2° 重心重分映射 $S: LC_n(\Delta^n) \to LC_n(\Delta^n)$. 设 λ 是一个 n-单形, 记 b_λ 为 λ 的重心, 即所有坐标都取 $\frac{1}{n+1}$ 的点. 我们归纳地定义

$$S\lambda = \begin{cases} [\varnothing] &, n = -1; \\ b_{\lambda}S(\partial\lambda) &, n \geq 0. \end{cases}$$

S 在小维数单形上的作用:

- $\mathfrak{L} = -1$, $\mathfrak{L} = [\varnothing]$ $\mathfrak{L} = [\varnothing]$;
- $\stackrel{\text{def}}{=} n = 0$, $\mathbb{H} \lambda = [w_0] \mathbb{H}$, $b_{\lambda} = w_0$, $S[w_0] = w_0 S \partial [w_0] = w_0 ([\varnothing]) = [w_0]$;
- $\stackrel{\text{def}}{=} n = 1$, $\mathbb{H} \lambda = [w_0, w_1]$ \mathbb{H} , $S[w_0, w_1] = b_{\lambda} S([w_1] [w_0]) = [b_{\lambda}, w_1] [b_{\lambda}, w_0]$.

下面归纳地证明 S 是链映射, 即 $S\partial = \partial S$.

- 当 *n* > 0 时,

$$\partial S\lambda = \partial b_{\lambda}(S\partial\lambda)$$

 $= S\partial\lambda - b_{\lambda}\partial(S\partial\lambda)$ 因为 $\partial b_{\lambda} = \mathbb{1} - b_{\lambda}\partial$
 $= S\partial\lambda - b_{\lambda}(S\partial\partial\lambda)$ 因为归纳假设 $\partial S(\partial\lambda) = S\partial(\partial\lambda)$
 $= S\partial\lambda$ 因为 $\partial\partial = 0$.

3° id 和 S 的链同伦 $T: C_n(Y) \to C_{n+1}(Y)$, 我们归纳地定义

$$T\lambda = \begin{cases} 0 &, n = -1; \\ b_{\lambda}(\lambda - T\partial\lambda) &, n \geq 0. \end{cases}$$

$$\cdots \longrightarrow LC_{2}(Y) \longrightarrow LC_{1}(Y) \longrightarrow LC_{0}(Y) \longrightarrow LC_{-1}(Y) \longrightarrow 0$$

$$\downarrow s \qquad \downarrow s$$

T 在小维数单形上的作用:

- $\stackrel{\text{def}}{=} n = -1$, $\mathbb{H} \lambda = [\varnothing]$ \mathbb{H} , $T[\varnothing] = 0$;
- 当 n = 0, 即 $\lambda = [w_0]$ 时, $b_{\lambda} = w_0$, $T[w_0] = w_0([w_0] T\partial[w_0]) = w_0([w_0]) = [w_0.w_0]$;
- $\stackrel{\text{def}}{=} n = 1$, $\bowtie \lambda = [w_0, w_1] \bowtie T[w_0, w_1] = b_{\lambda} \Big([w_0, w_1] T([w_1] [w_0]) \Big) = [b_{\lambda}, w_0, w_1] [w_1, w_1] + [w_0, w_0].$

T 的几何解释如下: 将 $\Delta^n \times I$ 分成若干个 Δ^n , 满足下底 $\Delta^n \times \{0\}$ 仍为一整个 Δ^n (代表 id), 上底则成为重心重分后的图形 (代表 $S\Delta^n$). T 作用在某个 λ 上可能会出现 $[w_0, w_0]$ 这样的元素, 对此我们可以将前一个 w_0 视作时间参数 t=1 的点, 后一个视作 t=0 的点, 通过人为增添一个时间维度 (即乘以 I), 我们能更好地想象 T 的几何动机, T 实际作用的像是前文描述的图形在投影 $\Delta^n \times I \to \Delta^n$ 下的像. 下面归纳地验证 T 是连接 id 和 S 的链

Figure 1.2: 重心重分与恒同的链同论

同论, 即 $\partial T + T\partial = \mathbb{1} - S$:

- 当 $n \ge 0$ 时,

$$\partial T\lambda = \partial b_{\lambda}(\lambda - T\partial\lambda)$$

 $= (\lambda - T\partial\lambda) - b_{\lambda}\partial(\lambda - T\partial\lambda)$ 因为 $\partial b_{\lambda} = \mathbb{1} - b_{\lambda}\partial$
 $= \lambda - T\partial\lambda - b_{\lambda}\partial\lambda + b_{\lambda}\partial T\partial\lambda$
 $= \lambda - T\partial\lambda - b_{\lambda}\partial\lambda + b_{\lambda}(\partial\lambda - S\partial\lambda - T\partial\partial\lambda)$ 因为归纳假设
 $= \lambda - T\partial\lambda - b_{\lambda}(S\partial\lambda)$
 $= \lambda - S\lambda - T\partial\lambda$.

Step 2: 对一般的链 $\sigma: \Delta^n \to X$ 定义重心重分. **1**° 定义 $S: C_n(X) \to C_n(X)$ 为

$$S\sigma = \sigma_{t}S\Delta^{n}$$

Figure 1.3: 重心重分与恒同的链同论

下面的示意图能帮助我们理解 S 的定义. 下面验证 S 是一个链映射, 即 $\partial S = S\partial$:

$$\partial S\sigma = \partial \sigma_{\sharp} S\Delta^{n} = \sigma_{\sharp} \partial S\Delta^{n} = \sigma_{\sharp} S\partial \Delta^{n}$$

$$= \sigma_{\sharp} S \sum_{i=0}^{n} (-1)^{i} \Delta_{i}^{n}$$

$$= \sum_{i=0}^{n} (-1)^{i} \sigma_{\sharp} S\Delta_{i}^{n}$$

$$= \sum_{i=0}^{n} (-1)^{i} S(\sigma|_{\Delta^{n}})$$

$$= S\left(\sum_{i=0}^{n} (-1)^{i} \sigma|_{\Delta^{n}}\right) = S(\partial \sigma).$$

 2° 类似地定义 $T: C_n(X) \to C_{n+1}(X)$ 为

$$T\sigma = \sigma_{\rm t} T\Delta^n$$

下面验证 T 是一个链同伦, 即 $\partial T + T\partial = 1 - S$:

$$\partial T\sigma = \partial \sigma_{\mathsf{H}} T\Delta^n = \sigma_{\mathsf{H}} \partial T\Delta^n$$

$$= \sigma_{\sharp} (\mathbb{1} - S - T\partial) \Delta^{n}$$

$$= \sigma - S\sigma - \sigma_{\sharp} T\partial \Delta^{n} \qquad \text{和上面的过程类似}$$

$$= \sigma - S\sigma - T\partial \sigma.$$

Step 3: 迭代重心重分操作.

1° 可以证明对 Δ^n 做一次重心重分得到 (n+1)! 个小的 n-复形, 这些 n-复形的最大直径不超过原复形的 $\frac{n}{n+1}$. 这个仅依赖于维数的严格小于 1 的常数是重心重分的一个关键性质. 它保证了只要重分足够多次, 每个 n-复形的直径可以任意小.

现设 $\mathfrak{U} = \{U_{\alpha}\}_{\alpha}$ 是 X 的一个覆盖,则对单形 $\sigma: \Delta^{n} \to X$, $\{\sigma^{-1}U_{\alpha}\}_{\alpha}$ 构成 Δ^{n} 的一个开覆盖,因为 Δ^{n} 是完备度量空间,设 δ_{σ} 是 $\{\sigma^{-1}U_{\alpha}\}_{\alpha}$ 的 Lebesuge 数. 则当 m 充分大时, $S^{m}\Delta^{n}$ 中的每个单形的直径都小于 δ_{σ} . 对一般的链 $\sigma \in C_{n}(X)$,记 $m(\sigma)$ 为最小的使得 $S^{m}\sigma \in C_{n}^{\mathfrak{U}}(X)$ 的迭代数 m.

连接 $\mathbb{1}$ 和 S^m 的链同论是 $D_m = \sum_{i=0}^{m-1} TS^i$, 其验证如下:

$$\partial D_m + D_m \partial = \sum_{i=0}^{m-1} \partial T S^i + \sum_{i=0}^{m-1} T S^i \partial$$

$$= \sum_{i=0}^{m-1} (\mathbb{1} - S - T \partial) S^i + \sum_{i=0}^{m-1} T S^i \partial$$

$$= \sum_{i=0}^{m-1} (\mathbb{1} - S) S^i - \sum_{i=0}^{m-1} T \partial S^i + \sum_{i=0}^{m-1} T S^i \partial$$

$$= \mathbb{1} - S^m.$$

对一般的链 σ , 若定义 $S\sigma = S^{m(\sigma)}\sigma$, 则不能良定义链同论 $D\sigma$, 因为如果定义 $D\sigma = D_{m(\sigma)}\sigma$, 公式 $\partial D\sigma + D\partial\sigma = \partial D_{m(\sigma)}\sigma + D_{m(\partial\sigma)}\partial\sigma$, 下指标不全是 $m(\sigma)$.

因此我们得先定义 $D\sigma := D_{m(\sigma)}\sigma$, 再形式地定义 $\rho: C_n(X) \to C_n^{\mathfrak{U}}(X)$,

$$\rho := \mathbb{1} - \partial D - D\partial$$

需要验证 ρ 是链映射, 即 $\partial \rho = \rho \partial$:

$$\partial \rho \sigma = \partial \sigma - \partial \partial D \sigma - \partial D \partial \sigma$$

$$= \partial \sigma - \partial D \partial \sigma$$

$$= \partial \sigma - \partial D \partial \sigma - D \partial \partial \sigma$$

$$= (1 - \partial D - D \partial) \partial \sigma = \rho \partial \sigma.$$

由 ρ 的定义易知 D 是 $\mathbb{1}$ 与 ρ 的链同论.

最后验证 ρ 确实将 $C_n(\Delta^n)$ 中的元素映到 $C_n^{\mathfrak{U}}(X)$ 中:

$$\rho\sigma = \sigma - \partial D_{m(\sigma)}\sigma - D_{m(\partial\sigma)}\partial\sigma$$

$$= S^{m(\sigma)}\sigma + D_{m(\sigma)}\partial\sigma - D_{m(\partial\sigma)}\partial\sigma$$

$$= S^{m(\sigma)}\sigma + \sum_{m(\partial\sigma) \le i < m(\sigma)} TS^i\partial\sigma$$

因为 $\partial \sigma \subset \sigma$, 所以 $m(\partial \sigma) \leq m(\sigma)$, 由 $m(\sigma)$ 的定义以及 T 保持 $C_n^{\mathfrak{U}}(X)$ 不

因为 $bb \in b$,所以 $m(bb) \leq m(b)$,由 m(b) 的定义以及 f 保持 $C_n(X)$ 不动,等号末项属于 $C_n^{\mathfrak{u}}(X)$,因此 ρ 就是我们想要的映射. **总结:** 我们有嵌入映射 $\iota: C_n^{\mathfrak{u}}(X) \hookrightarrow C_n(X)$,然后我们又定义了 $\rho: C_n(\Delta^n) \to C_n^{\mathfrak{u}}(X)$,以及 $D: C_n(X) \to C_{n+1}(X)$,使得 $\partial D + D\partial = \mathbb{1} - \rho$. 显然 $\rho\iota = \mathbb{1}$,因此 ρ 是 ι 的同伦逆,也即 $C_n^{\mathfrak{u}}(X) \hookrightarrow C_n(X)$ 诱导了同调群之间 的同构.

Part II 杂题集萃

Part III 易错知识

Part IV 亟待整理

1. 李群正合列的分裂问题

```
波 G为一个一般丽 Lie 群,Go为包含单位先e 丽莲遍效,则 Go为 G 丽正祝子群(证明之.),全币(G) = G/G,则有正含则 e \rightarrow G。 \rightarrow G。 \rightarrow T。CG) \rightarrow e 四面 这个正信列不一定分裂(例子?) 但若 G 为 复约化群,则该正信列分裂,因为对 e \rightarrow \mathcal{N} \rightarrow G \xrightarrow{g} Q \rightarrow e
  可以文义中(以 → Out(N) P(g(a)) = Ada (uell-clefined.)
  而分裂的正包列与QW--对友:
e \to N \xrightarrow{+} G \stackrel{3}{=} Q \to e
                                                                                 \varphi: Q \rightarrow AutW)
                                                                       e→N<sup>2</sup>NApK<sup>π</sup>>Q→e
                                \varphi: Q \longrightarrow Aut(N)
                                      g >> Adsap
                                                                       (n_1, q_1) \cdot (n_2, q_2) = (n_1 \varphi(q_1)(n_2), q_2, q_2)
 对复约化群G。我们有
                                         OutlG.)
                                                             πos=id 即存在一个从Out(Co)到Aut(Co)饷截面
                                        Autcao)
于是可以得到提升
                                                    → Out(Go)
                                                  π↑;s

- Autl Go)
           分裂, G=GoXTGCG)
```

Figure 1.4: 李群的正合列何时分裂

- 2. Why is it called a twisting sheaf
- 3. UV