

TERM END EXAMINATIONS (TEE) - August 2024

TERM END EXAMINAT		: Fall Semester 2024-2025
Programme : B.Tech. Course Name : Digital Logic Design	Course Code	: ECE2002 : A14+B14+C14+E14+F14
Course Name : Digital Logic Design Date/Session : 21 Aug 2024/Session I Time : 3 Hrs.	Slot Max. Marks	: 100

Answer ALL the Questions

		Answer ALL the Questions	
		Question Description	Marks
Q. No.		PART A – (60 Marks)	12
1	(a)	$A = (10)_{10}$ and $B = (12)_{10}$ Perform the binary operations: A+B, A-B, B-A and AxB (multiply). Verify the answers. Use 2's complement method for subtraction.	
		OR	
	(b)	Simplify and minimize the function O using Boolean algebra.	12
		$O = (\overline{A + BC}) (\overline{A}\overline{B} + \overline{C})$	
		Draw the reduced circuit using basic gates.	
2	(a)	Draw 4-bit binary adder-subtractor (combined). Explanation not required. Show the addition and subtraction of $A = 1001$ and $B = 1000$ using the adder-subtractor and verify the answers.	12
		OR	
			10

- Design a combinational circuit with 4 binary inputs such that the output is 1 only 12 (b) when the input number (converted from binary to decimal) is divisible by 3.
- Analyse the circuit given in Fig. 3 by writing its equations, state diagram and state 12 (a) 3 table. (Ignore the pin R connected to reset)

Fig. 3

	(b)	Derive the characteristic equations of D, JK and T flipflops.	12
4	(a)	Design a circuit that detects a sequence of three or more consecutive 0's in a string of bits coming through an input line. Use D-flipflops for the design. Is this Mealy machine or Moore machine?	12
		OR	
	(b)	Design a synchronous MOD-7 up counter. Explain the designing and draw the final state diagram and circuit.	12
5	(a)	Write the Verilog code for testbench of a full adder module. (You may combine this with your answer to Q.10)	12
		OR	
	(b)	Write the behavioural Verilog code for a positive edge triggered D flipflop. The input D is connected directly to an external input x. Testbench is not required.	12
		PART B – (40 Marks)	
		Convert (100) ₁₀ to binary, octal, hex and BCD.	8
		Implement the function $F(A,B,C,D) = ABD' + BC'D + CD$ using a multiplexer wit 3 select lines.	h 8
		Draw the output waveform (Q) for Fig. 8. JK flipflop is negative clock edge triggered.	8
		Clock Fig. 8	
	re	Oraw the block diagram of a 4-bit SIPO register. What will be output of the egister after 4 clock cycles if a serial input of 1011010 is provided (starting with most one)? Draw the waveforms.	8
		rite Verilog code for full adder using a. data flow modelling b. change only the circuit description to gate level modelling. estbench not required.	8

 $\Leftrightarrow \Leftrightarrow \Leftrightarrow$

8

9

10