Artificial Neural Networks

A Perceptron Learning Example

University of Kurdistan
Spring 2012

Perceptron Learning Rule

$$\Delta w_{ij} = \eta \left(targ_j - out_j \right) in_i$$

Example: NAND gate

- Inputs: x1, x2
 - An additional X0, always held 1
- Output: binary
- Patterns:
 - -(0,0) => 1
 - -(0,1) => 1
 - -(1,0) => 1
 - -(1,1) => 0
- Learning rate: 0.1

Example: NAND gate (cont.)

		Inpu	t				Output										
	Sens value		Desired output	Initial weights			Per sensor			Sum	Network	Error	Correction	Final weights			
x_0	$ x_1 $	x_2	z	w_0	w_1	w_2	c_0	c_1	c_2	s	n	e	d	w_0	w_1	w_2	
							$x_0 * w_0$	$x_1 * w_1$	$x_2 * w_2$	$c_0 + c_1 + c_2$	$\begin{array}{c} \text{if} \\ s > t \\ \text{then 1,} \\ \text{else 0} \end{array}$	z-n	r * e	$\Delta(x_0*d)$	$\Delta(x_1*d)$	$\Delta(x_2*d)$	
1	0	0	1	0.3	0.1	0.1	0.3	0	0	0.3	0	1	+0.1	0.4	0.1	0.1	
1	0	1	1	0.4	0.1	0.1	0.4	0	0.1	0.5	0	1	+0.1	0.5	0.1	0.2	
1	1	0	1	0.5	0.1	0.2	0.5	0.1	0	0.6	1	0	0	0.5	0.1	0.2	
1	1	1	0	0.5	0.1	0.2	0.5	0.1	0.2	0.8	1	-1	-0.1	0.4	0	0.1	

Example: NAND gate (cont.)

											$\mathbf{O}^{\mathbf{S}}$					
1	0	0	1	0.3	0.1	0.1	0.3	0	0	0.3	0	1	+0.1	0.4	0.1	0.1
1	0	1	1	0.4	0.1	0.1	0.4	0	0.1	0.5	0	1	+0.1	0.5	0.1	0.2
1	1	0	1	0.5	0.1	0.2	0.5	0.1	0	0.6	1	0	0	0.5	0.1	0.2
1	1	1	0	0.5	0.1	0.2	0.5	0.1	0.2	0.8	1	-1	-0.1	0.4	0	0.1
1	0	0	1	0.4	0	0.1	0.4	0	0	0.4	0	1	+0.1	0.5	0	0.1
1	0	1	1	0.5	0	0.1	0.5	0	0.1	0.6	1	0	0	0.5	0	0.1
1	1	0	1	0.5	0	0.1	0.5	0	0	0.5	0	1	+0.1	0.6	0.1	0.1
1	1	1	0	0.6	0.1	0.1	0.6	0.1	0.1	0.8	1	-1	-0.1	0.5	0	0
1	0	0	1	0.5	0	0	0.5	0	0	0.5	0	1	+0.1	0.6	0	0
1	0	1	1	0.6	0	0	0.6	0	0	0.6	1	0	0	0.6	0	0
1	1	0	1	0.6	0	0	0.6	0	0	0.6	1	0	0	0.6	0	0
1	1	1	0	0.6	0	0	0.6	0	0	0.6	1	-1	-0.1	0.5	-0.1	-0.1
1	0	0	1	0.5	-0.1	-0.1	0.5	0	0	0.5	0	1	+0.1	0.6	-0.1	-0.1
1	0	1	1	0.6	-0.1	-0.1	0.6	0	-0.1	0.5	0	1	+0.1	0.7	-0.1	0
1	1	0	1	0.7	-0.1	0	0.7	-0.1	0	0.6	1	0	0	0.7	-0.1	0
1	1	1	0	0.7	-0.1	0	0.7	-0.1	0	0.6	1	-1	-0.1	0.6	-0.2	-0.1
1	0	0	1	0.6	-0.2	-0.1	0.6	0	0	0.6	1	0	0	0.6	-0.2	-0.1
1	0	1	1	0.6	-0.2	-0.1	0.6	0	-0.1	0.5	0	1	+0.1	0.7	-0.2	0
1	1	0	1	0.7	-0.2	0	0.7	-0.2	0	0.5	0	1	+0.1	0.8	-0.1	0
1	1	1	0	8.0	-0.1	0	8.0	-0.1	0	0.7	1	-1	-0.1	0.7	-0.2	-0.1
1	0	0	1	0.7	-0.2	-0.1	0.7	0	0	0.7	1	0	0	0.7	-0.2	-0.1
1	0	1	1	0.7	-0.2	-0.1	0.7	0	-0.1	0.6	1	0	0	0.7	-0.2	-0.1
1	1	0	1	0.7	-0.2	-0.1	0.7	-0.2	0	0.5	0	1	+0.1	0.8	-0.1	-0.1
1	1	1	0	0.8	-0.1	-0.1	0.8	-0.1	-0.1	0.6	1	-1	-0.1	0.7	-0.2	-0.2
1	0	0	1	0.7	-0.2	-0.2	0.7	0	0	0.7	1	0	0	0.7	-0.2	-0.2
1	0	1	1	0.7	-0.2	-0.2	0.7	0	-0.2	0.5	0	1	+0.1	0.8	-0.2	-0.1
1	1	0	1	0.8	-0.2	-0.1	0.8	-0.2	0	0.6	1	0	0	0.8	-0.2	-0.1
1	1	1	0	0.8	-0.2	-0.1	0.8	-0.2	-0.1	0.5	0	0	0	0.8	-0.2	-0.1
1	0	0	1	0.8	-0.2	-0.1	8.0	0	0	0.8	1	0	0	0.8	-0.2	-0.1
1	0	1	1	0.8	-0.2	-0.1	8.0	0	-0.1	0.7	1	0	0	0.8	-0.2	-0.1