CS 336/436 – Algorithms for Sensor-based Robotics Lecture II – Bug Path-Planning Algorithms (Part 1)

Erion Plaku

Department of Computer Science Laboratory for Computational Sensing and Robotics Johns Hopkins University

January 28, 2010

Outline

- General Properties of Bug Path-Planning Algorithms
- Bug Algorithms with Tactile (Contact) Sensors
 - 1 Bug0
 - 2 Bug1
 - 3 Bug2
- Bug Algorithms with Range Sensors (next lecture)
 - TangentBug
 - VisBug
 - DistBug
- Bug Algorithms with Intensity Sensors (next lecture)
 - I-Bug

Basic Motion Planning

Problem: Compute a collision-free path from an initial to a goal position

- \blacksquare No global model of the world, i.e., obstacles are unknown
- Only local information acquired through sensing
- Inspired by insects

- \blacksquare No global model of the world, i.e., obstacles are unknown
- Only local information acquired through sensing
- Inspired by insects

Properties

- Complete algorithms, i.e., find solution if it exists, report no when there is no solution
- Theoretical lower and upper bounds on path length; optimal paths in certain cases

- No global model of the world, i.e., obstacles are unknown
- Only local information acquired through sensing
- Inspired by insects

Properties

- Complete algorithms, i.e., find solution if it exists, report no when there is no solution
- Theoretical lower and upper bounds on path length; optimal paths in certain cases

Environment

- Two-dimensional scene filled with unknown obstacles
- Each obstacle is a simple closed curve of finite length and non-zero thickness
- A straight line crosses an obstacle finitely many times
- Obstacles do not touch each other
- Locally finite number of obstacles, i.e., any disc of finite radius intersects a finite set of obstacles
- Initial and goal positions are known

- No global model of the world, i.e., obstacles are unknown
- Only local information acquired through sensing
- Inspired by insects

Properties

- Complete algorithms, i.e., find solution if it exists, report no when there is no solution
- Theoretical lower and upper bounds on path length; optimal paths in certain cases

Environment

- Two-dimensional scene filled with unknown obstacles
- Each obstacle is a simple closed curve of finite length and non-zero thickness
- A straight line crosses an obstacle finitely many times
- Obstacles do not touch each other
- Locally finite number of obstacles, i.e., any disc of finite radius intersects a finite set of obstacles
- Initial and goal positions are known

Point Robot, Simple Motions

- Move straight toward goal
- Move along obstacle boundary
- Stop

- No global model of the world, i.e., obstacles are unknown
- Only local information acquired through sensing
- Inspired by insects

Properties

- Complete algorithms, i.e., find solution if it exists, report no when there is no solution
- Theoretical lower and upper bounds on path length; optimal paths in certain cases

Environment

- Two-dimensional scene filled with unknown obstacles
- Each obstacle is a simple closed curve of finite length and non-zero thickness
- A straight line crosses an obstacle finitely many times
- Obstacles do not touch each other
- Locally finite number of obstacles, i.e., any disc of finite radius intersects a finite set of obstacles
- Initial and goal positions are known

Simple Sensing

- Bug1, Bug2 assume essentially tactile (contact) sensing
- TangentBug, VisBug, DistBug deal with finite distance sensing
- I-Bug uses only signal strength emanating from goal

Point Robot, Simple Motions

- Move straight toward goal
- Move along obstacle boundary
- Stop

Bug with Tactile (Contact) Sensor

Tactile Sensor

- Provides current position
- Detects when a contact with an obstacle occurs

Bug with Tactile (Contact) Sensor

Tactile Sensor

- Provides current position
- Detects when a contact with an obstacle occurs

Bug0, Bug1, Bug2 Algorithms - General Idea

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow obstacle boundary
 - at some point, leave the obstacle and head again toward goal

Bug with Tactile (Contact) Sensor

Tactile Sensor

- Provides current position
- Detects when a contact with an obstacle occurs

Bug0, Bug1, Bug2 Algorithms - General Idea

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow obstacle boundary
 - at some point, leave the obstacle and head again toward goal

Path consists of a sequence of hit (H_i) and leave (L_i) points Algorithms differ on how leave points are computed

repeat until goal is reached

- head toward goal
- $\hfill\blacksquare$ if sensor reports contact with an obstacle then
 - follow obstacle boundary until can head toward goal again

repeat until goal is reached

- head toward goal
- $\hfill\blacksquare$ if sensor reports contact with an obstacle then
 - follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

repeat until goal is reached

- head toward goal
- $\hfill\blacksquare$ if sensor reports contact with an obstacle then
 - follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

Bug0 fails to find a solution even though a solution exists

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

Bug0 fails to find a solution even though a solution exists Bug0 has no memory

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow obstacle boundary until can head toward goal again

Is Bug0 a complete algorithm?

BugO fails to find a solution even though a solution exists BugO has no memory

can we obtain a complete algorithm if Bug has some memory?

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - circumnavigate the obstacle and *remember* how close you get to the goal
 - return to that closest point (by wall following) and continue toward goal

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - circumnavigate the obstacle and remember how close you get to the goal
 - return to that closest point (by wall following) and continue toward goal

Bug1 Pseudocode

1: $L_0 \leftarrow \texttt{init}; i \leftarrow 1$

2: **loop**

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - circumnavigate the obstacle and *remember* how close you get to the goal
 - return to that closest point (by wall following) and continue toward goal

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: **loop**
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - circumnavigate the obstacle and *remember* how close you get to the goal
 - return to that closest point (by wall following) and continue toward goal

- 1: $L_0 \leftarrow \texttt{init}; i \leftarrow 1$
- 2: **loop**
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - circumnavigate the obstacle and *remember* how close you get to the goal
 - return to that closest point (by wall following) and continue toward goal

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: **loop**
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary recording point L_i with shortest distance to goal
- 7: **until** goal is reached or H_i is re-encountered

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - circumnavigate the obstacle and remember how close you get to the goal
 - return to that closest point (by wall following) and continue toward goal

1: $L_0 \leftarrow \text{init}: i \leftarrow 1$ H₁ 2: loop 3: **repeat** move on a straight line from L_{i-1} to goal init **until** goal is reached or obstacle is encountered at H_i 4:

- if goal is reached then exit with success 5.
- **repeat** follow boundary recording point L_i with shortest distance to goal 6.
- until goal is reached or H_i is re-encountered 7.
- 8: if goal is reached then exit with success

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - circumnavigate the obstacle and *remember* how close you get to the goal
 - return to that closest point (by wall following) and continue toward goal

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: **loop**
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary recording point L_i with shortest distance to goal
- 7: **until** goal is reached or H_i is re-encountered
- 8: if goal is reached then exit with success
- 9: follow boundary from H_i to L_i along shortest route

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430 repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - circumnavigate the obstacle and *remember* how close you get to the goal
 - return to that closest point (by wall following) and continue toward goal

- 1: $L_0 \leftarrow \texttt{init}; i \leftarrow 1$
- 2: **loop**
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary recording point L_i with shortest distance to goal
- 7: **until** goal is reached or H_i is re-encountered
- 8: **if** goal is reached **then** exit with success
- 9: follow boundary from H_i to L_i along shortest route
- 10: if move on straight line from L_i toward goal moves into obstacle then exit with failure
- 11: else $i \leftarrow i + 1$

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch:

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

 $lack d(H_i, { t goal}) \geq d(L_i, { t goal})$ since

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

ullet $d(H_i, goal) \geq d(L_i, goal)$ since L_i closest point on obstacle boundary to goal

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $lack d(L_i, goal) > d(H_{i+1}, goal)$ since

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

Therefore,

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- \blacksquare $d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

Therefore, $d(\text{init}, \text{goal}) \geq d(H_1, \text{goal}) > d(L_1, \text{goal}) > d(H_2, \text{goal}) > d(L_2, \text{goal}) > \dots$ Thus,

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $= d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

Therefore, $d(\texttt{init}, \texttt{goal}) \geq d(H_1, \texttt{goal}) > d(L_1, \texttt{goal}) > d(H_2, \texttt{goal}) > d(L_2, \texttt{goal}) > \dots$

Thus, since $d(L_i, \text{goal})$ is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

 $\text{Therefore, } d(\texttt{init}, \texttt{goal}) \geq d(H_1, \texttt{goal}) > d(L_1, \texttt{goal}) > d(H_2, \texttt{goal}) > d(L_2, \texttt{goal}) > \dots$

Thus, since $d(L_i, \text{goal})$ is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles

Proof Sketch:

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- ullet $d(H_i, goal) \geq d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

 $\mathsf{Therefore}, \ d(\mathtt{init}, \mathtt{goal}) \geq d(H_1, \mathtt{goal}) > d(L_1, \mathtt{goal}) > d(H_2, \mathtt{goal}) > d(L_2, \mathtt{goal}) > \dots$

Thus, since $d(L_i, \text{goal})$ is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles

Proof Sketch: Straight-line segments from L_i to H_{i+1} (i=0,1,...) are within the same circle of radius d(init, goal) centered at goal since

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

Therefore, $d(\texttt{init}, \texttt{goal}) \geq d(H_1, \texttt{goal}) > d(L_1, \texttt{goal}) > d(H_2, \texttt{goal}) > d(L_2, \texttt{goal}) > \dots$

Thus, since $d(L_i, goal)$ is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles

Proof Sketch: Straight-line segments from L_i to H_{i+1} ($i=0,1,\ldots$) are within the same circle of radius d(init,goal) centered at goal since

each hit point is closer than the last leave point

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

 $\text{Therefore, } d(\texttt{init}, \texttt{goal}) \geq d(H_1, \texttt{goal}) > d(L_1, \texttt{goal}) > d(H_2, \texttt{goal}) > d(L_2, \texttt{goal}) > \dots$

Thus, since $d(L_i, goal)$ is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles

Proof Sketch: Straight-line segments from L_i to H_{i+1} ($i=0,1,\ldots$) are within the same circle of radius d(init,goal) centered at goal since

- each hit point is closer than the last leave point
- assumption that any finite disc can intersect only a finite number of obstacles

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

 $\text{Therefore, } d(\texttt{init}, \texttt{goal}) \geq d(H_1, \texttt{goal}) > d(L_1, \texttt{goal}) > d(H_2, \texttt{goal}) > d(L_2, \texttt{goal}) > \dots$

Thus, since $d(L_i, goal)$ is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles

Proof Sketch: Straight-line segments from L_i to H_{i+1} ($i=0,1,\ldots$) are within the same circle of radius d(init,goal) centered at goal since

- each hit point is closer than the last leave point
- assumption that any finite disc can intersect only a finite number of obstacles

Corollary: Bug1 algorithm always terminates in finite time

Lemma 1: When the bug leaves a leave point of an obstacle to continue its way toward goal, the bug never returns to this obstacle again

Proof Sketch: Consider the sequence of points visited by bug: init, H_1 , L_1 , H_2 , L_2 , ...

- $d(H_i, goal) \ge d(L_i, goal)$ since L_i closest point on obstacle boundary to goal
- $d(H_i, goal) > d(L_i, goal)$ since $H_i \neq L_i$. Why?
 - if straight line is tangent to obstacle, then no circumnavigation
 - otherwise, straight line crosses obstacle at two distinct points (since obstacle has finite thickness)
- $d(L_i, goal) > d(H_{i+1}, goal)$ since different obstacles do not touch

 $\mathsf{Therefore}, \ d(\mathtt{init}, \mathtt{goal}) \geq d(H_1, \mathtt{goal}) > d(L_1, \mathtt{goal}) > d(H_2, \mathtt{goal}) > d(L_2, \mathtt{goal}) > \dots$

Thus, since $d(L_i, goal)$ is the shortest distance from the i-th obstacle to goal and since each each new hit point is closer than the last leave point, then bug cannot encounter the i-th obstacle again

Lemma 2: Bug meets only a finite number of obstacles

Proof Sketch: Straight-line segments from L_i to H_{i+1} ($i=0,1,\ldots$) are within the same circle of radius d(init,goal) centered at goal since

- each hit point is closer than the last leave point
- assumption that any finite disc can intersect only a finite number of obstacles

Corollary: Bug1 algorithm always terminates in finite time

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch:

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

Proof Sketch: Assume to the contrary that Bug1 is incomplete. Then

1 Bug1 does not terminate in finite time, or

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- 1 Bug1 does not terminate in finite time, or
- There is no path to goal, but Bug1

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- 1 Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- 1 Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
- There is at least a path to goal, but Bug1 incorrectly reports finding no path But...

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- 1 Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
- There is at least a path to goal, but Bug1 incorrectly reports finding no path But...
 - Lemma 1 and 2 imply that Bug1 always terminates in finite time

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
- There is at least a path to goal, but Bug1 incorrectly reports finding no path But...
 - Lemma 1 and 2 imply that Bug1 always terminates in finite time
 - Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
- There is at least a path to goal, but Bug1 incorrectly reports finding no path But...
- 1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
 - Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal
 - 3 Then, move from last leave point toward goal crosses into obstacle

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
- There is at least a path to goal, but Bug1 incorrectly reports finding no path But...
- 1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
 - Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal
 - 3 Then, move from last leave point toward goal crosses into obstacle
 - But, line must cross obstacle even number of times (Jordan curve theorem)

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
- There is at least a path to goal, but Bug1 incorrectly reports finding no path But...
 - Lemma 1 and 2 imply that Bug1 always terminates in finite time
 - Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal
 - 3 Then, move from last leave point toward goal crosses into obstacle
 - But, line must cross obstacle even number of times (Jordan curve theorem)
 - lacktriangle Then, there is another intersection point on boundary closer to goal

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
- There is at least a path to goal, but Bug1 incorrectly reports finding no path But...
 - Lemma 1 and 2 imply that Bug1 always terminates in finite time
 - Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal
 - 3 Then, move from last leave point toward goal crosses into obstacle
 - But, line must cross obstacle even number of times (Jordan curve theorem)
 - Then, there is another intersection point on boundary closer to goal
 - Since, we assumed there is a path to goal, then goal cannot be encircled by obstacle

Theorem: Bug1 is a complete path-planning algorithm, i.e., in finite time, Bug1

- finds a path to goal when a path exists or
- terminates with failure when there is no path to goal

- 1 Bug1 does not terminate in finite time, or
- 2 There is no path to goal, but Bug1 incorrectly reports finding a path, or
- There is at least a path to goal, but Bug1 incorrectly reports finding no path But...
 - 1 Lemma 1 and 2 imply that Bug1 always terminates in finite time
 - Bug1 never goes through an obstacle, so it only computes valid paths. So, if Bug1 reports finding a path to goal, then there is a path to goal
 - 3 Then, move from last leave point toward goal crosses into obstacle
 - But, line must cross obstacle even number of times (Jordan curve theorem)
 - Then, there is another intersection point on boundary closer to goal
 - Since, we assumed there is a path to goal, then goal cannot be encircled by obstacle
 - Thus, bug must have encountered this other intersection point (which is supposedly closer to the goal) when circumnavigating obstacle boundary, which contradicts definition of leave point

Lower Bound: What is the shortest distance that Bug1 might travel?

Lower Bound: What is the shortest distance that Bug1 might travel?

■ d(init, goal) (straight-line to goal, no obstacles encountered)

Lower Bound: What is the shortest distance that Bug1 might travel?

■ d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

 \blacksquare any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles

Lower Bound: What is the shortest distance that Bug1 might travel?

 \bullet d(init, goal) (straight-line to goal, no obstacles encountered)

- \blacksquare any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles
- sum of straight-line segments ≤

Lower Bound: What is the shortest distance that Bug1 might travel?

■ d(init, goal) (straight-line to goal, no obstacles encountered)

- \blacksquare any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles
- sum of straight-line segments $\leq d(\text{init}, \text{goal})$. Why?

Lower Bound: What is the shortest distance that Bug1 might travel?

 \bullet d(init, goal) (straight-line to goal, no obstacles encountered)

- \blacksquare any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles
- sum of straight-line segments $\leq d(\texttt{init}, \texttt{goal})$. Why? (leave point is closest to obstacle)

Lower Bound: What is the shortest distance that Bug1 might travel?

■ d(init, goal) (straight-line to goal, no obstacles encountered)

- \blacksquare any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles
- \blacksquare sum of straight-line segments $\leq d(\texttt{init}, \texttt{goal})$. Why? (leave point is closest to obstacle)
- when going from H_i to L_i , Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_i , selects the shorter route to go to L_i . Thus, $1.5p_i$, where p_i is the perimeter of the i-th obstacle

Lower Bound: What is the shortest distance that Bug1 might travel?

■ d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- lacksquare any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles
- \blacksquare sum of straight-line segments $\leq d(\texttt{init}, \texttt{goal})$. Why? (leave point is closest to obstacle)
- when going from H_i to L_i , Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_i , selects the shorter route to go to L_i . Thus, $1.5p_i$, where p_i is the perimeter of the i-th obstacle

Therefore, upper bound

$$d(\text{init}, \text{goal}) + 1.5 \sum_{i=1}^{n} p_i$$

What is n?

Lower Bound: What is the shortest distance that Bug1 might travel?

■ d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- lacktriangle any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles
- sum of straight-line segments $\leq d(init, goal)$. Why? (leave point is closest to obstacle)
- when going from H_i to L_i , Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_i , selects the shorter route to go to L_i . Thus, $1.5p_i$, where p_i is the perimeter of the i-th obstacle

Therefore, upper bound

$$d(\text{init}, \text{goal}) + 1.5 \sum_{i=1}^{n} p_i$$

What is n?

 \blacksquare number of obstacles intersecting the disc of radius d(init, goal) centered at goal

Lower Bound: What is the shortest distance that Bug1 might travel?

■ d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- lacktriangle any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles
- \blacksquare sum of straight-line segments $\leq d(\texttt{init}, \texttt{goal})$. Why? (leave point is closest to obstacle)
- when going from H_i to L_i , Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_i , selects the shorter route to go to L_i . Thus, $1.5p_i$, where p_i is the perimeter of the i-th obstacle

Therefore, upper bound

$$d(\text{init}, \text{goal}) + 1.5 \sum_{i=1}^{n} p_i$$

What is n?

 \blacksquare number of obstacles intersecting the disc of radius d(init, goal) centered at goal Remind me again why it is not necessary to consider obstacles outside this disk?

Lower Bound: What is the shortest distance that Bug1 might travel?

 \bullet d(init, goal) (straight-line to goal, no obstacles encountered)

Upper Bound: What is an upper bound on the longest distance that Bug1 might travel?

- any path can be looked as consisting of straight-line segments (from L_{i_1} to H_i) and walking around the obstacles
- sum of straight-line segments $\leq d(init, goal)$. Why? (leave point is closest to obstacle)
- when going from H_i to L_i , Bug1 first circumnavigates the i-th obstacle and then, after coming back to H_i , selects the shorter route to go to L_i . Thus, $1.5p_i$, where p_i is the perimeter of the i-th obstacle

Therefore, upper bound

$$d(\text{init}, \text{goal}) + 1.5 \sum_{i=1}^{n} p_i$$

What is n?

- \blacksquare number of obstacles intersecting the disc of radius d(init, goal) centered at goal Remind me again why it is not necessary to consider obstacles outside this disk?
 - see proof of Lemma 2, distances from $H_1, L_1, H_2, L_2, \ldots$ to goal become smaller and smaller and are never more than d(init, goal). So, bug never encounters obstacles outside this disk

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403-430 call the line from init to goal the m-line

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow the obstacle until it encounters the *m*-line again
 - leave the obstacle and continue straight toward goal

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

call the line from init to goal the m-line

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow the obstacle until it encounters the *m*-line again
 - leave the obstacle and continue straight toward goal

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: loop
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: **if** goal is reached **then** exit with success

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

call the line from init to goal the m-line

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow the obstacle until it encounters the *m*-line again
 - leave the obstacle and continue straight toward goal

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: loop
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary
- 7: until
 - (a) goal is reached or

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430 call the line from init to goal the m-line

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow the obstacle until it encounters the *m*-line again
 - leave the obstacle and continue straight toward goal

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: loop
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary
- 7: until
 - (a) goal is reached or
 - (b) *m*-line is re-encountered at Q such that $Q \neq H_i$, $d(Q, \text{goal}) < d(H_i, \text{goal})$, and line (Q, goal) does not cross the current obstacle at Q or

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

call the line from init to goal the m-line

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow the obstacle until it encounters the *m*-line again
 - leave the obstacle and continue straight toward goal

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: loop
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary
- 7: until
 - (a) goal is reached or
 - (b) *m*-line is re-encountered at Q such that $Q \neq H_i$, $d(Q, \text{goal}) < d(H_i, \text{goal})$, and line (Q, goal) does not cross the current obstacle at Q or
 - (c) H_i is re-encountered

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

call the line from init to goal the m-line

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow the obstacle until it encounters the *m*-line again
 - leave the obstacle and continue straight toward goal

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: loop
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary
- 7: until
 - (a) goal is reached or
 - (b) *m*-line is re-encountered at Q such that $Q \neq H_i$, $d(Q, \text{goal}) < d(H_i, \text{goal})$, and line (Q, goal) does not cross the current obstacle at Q or
 - (c) Hi is re-encountered
- 8: if goal is reached then exit with success

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

call the line from init to goal the m-line

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow the obstacle until it encounters the *m*-line again
 - leave the obstacle and continue straight toward goal

Bug2 Pseudocode

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: loop
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary
- 7: until
 - (a) goal is reached or
 - (b) *m*-line is re-encountered at Q such that $Q \neq H_i$, $d(Q, goal) < d(H_i, goal)$, and line (Q, goal) does not cross the current obstacle at Q or
 - (c) H_i is re-encountered
- 8: if goal is reached then exit with success
- 9: **else if** H_i is re-encountered **then** exit with failure

Bug2 Algorithm

Vladimir J. Lumelsky and Alexander A. Stepanov: Algorithmica (1987) 2:403–430

call the line from init to goal the m-line

repeat until goal is reached

- head toward goal
- if sensor reports contact with an obstacle then
 - follow the obstacle until it encounters the *m*-line again
 - leave the obstacle and continue straight toward goal

Bug2 Pseudocode

- 1: $L_0 \leftarrow \text{init}; i \leftarrow 1$
- 2: loop
- 3: **repeat** move on a straight line from L_{i-1} to goal
- 4: **until** goal is reached or obstacle is encountered at H_i
- 5: if goal is reached then exit with success
- 6: repeat follow boundary
- 7: until
 - (a) goal is reached or
 - (b) *m*-line is re-encountered at Q such that $Q \neq H_i$, $d(Q, \text{goal}) < d(H_i, \text{goal})$, and line (Q, goal) does not cross the current obstacle at Q or
 - (c) H_i is re-encountered
- 8: if goal is reached then exit with success
- 9: **else if** H_i is re-encountered **then** exit with failure
- 10: else $L_i \leftarrow Q$; $i \leftarrow i+1$

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Lemma 4: Bug2 will pass any point of the i-th obstacle boundary at most $n_i/2$ times, where n_i is the number of intersections between the straight line (init, goal) and the i-th obstacle

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Lemma 4: Bug2 will pass any point of the i-th obstacle boundary at most $n_i/2$ times, where n_i is the number of intersections between the straight line (init, goal) and the i-th obstacle

Theorem: Bug2 is a complete path-planning algorithm. Moreover, the length of a path generated by Bug2 never exceeds the limit

$$d(init, goal) + \sum_{i} \frac{n_i p_i}{2},$$

where p_i 's refer to the perimeters of the obstacles intersecting the straight-line segment (init, goal)

Lemma 3: Bug2 meets only a finite number of obstacles. Moreover, the only obstacles that can be met are those that intersect the straight-line segment (init, goal)

Lemma 4: Bug2 will pass any point of the i-th obstacle boundary at most $n_i/2$ times, where n_i is the number of intersections between the straight line (init, goal) and the i-th obstacle

Theorem: Bug2 is a complete path-planning algorithm. Moreover, the length of a path generated by Bug2 never exceeds the limit

$$d(init, goal) + \sum_{i} \frac{n_i p_i}{2},$$

where p_i 's refer to the perimeters of the obstacles intersecting the straight-line segment (init, goal)

Proof Sketch: Similar to proofs for Bug1. Proof of Lemma 4 is slightly different. Maybe an upcoming homework exercise?

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm

– takes first choice that looks better
Bug2 often outperforms Bug1, but not always

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm — takes first choice that looks better Bug2 often outperforms Bug1, but not always

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm — takes first choice that looks better Bug2 often outperforms Bug1, but not always

Bug2 beats Bug1

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm
– takes first choice that looks better
Bug2 often outperforms Bug1, but not always

Bug2 beats Bug1

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm
– takes first choice that looks better
Bug2 often outperforms Bug1, but not always

Bug2 beats Bug1

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm — takes first choice that looks better Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug2 beats Bug1

Bug1 beats Bug2 in this scene ... but only if Bug2 always turns counterclock-wise or always turns clockwise when following boundary

what happens if Bug2 decides at random whether to turn counterclock-wise or clockwise each time it has follow an obstacle boundary?

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm — takes first choice that looks better Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug2 beats Bug1

Bug1 beats Bug2 in this scene ... but only if Bug2 always turns counterclock-wise or always turns clockwise when following boundary

what happens if Bug2 decides at random whether to turn counterclock-wise or clockwise each time it has follow an obstacle boundary?

can you draw a scene then where Bug1 beats Bug2 no matter how Bug2 decides to turn each time it has follow, an obstacle boundary?

Bug1 is an exhaustive search algorithm
– looks at all choices before commiting
Bug1 has a more stable performance

Bug2 is a greedy search algorithm — takes first choice that looks better Bug2 often outperforms Bug1, but not always

Draw scenes in which Bug2 beats Bug1 and vice-versa

Bug2 beats Bug1

next lecture... other and better bugs with range or intensity sensors

Bug1 beats Bug2 in this scene ... but only if Bug2 always turns counterclock-wise or always turns clockwise when following boundary what happens if Bug2 decides at random whether to turn counterclock-wise or clockwise each time it has follow an obstacle boundary? can you draw a scene then where Bug1 beats Bug2 no matter how Bug2 decides to turn each time it has follow an obstacle boundary?