기계학습 기초 및 응용

학습 문제

소프트웨어융합대학 소프트웨어학부

본 자료는 해당 수업의 교육 목적으로만 활용될 수 있음. 일부 내용은 다른 교재와 논문으로부터 인용되었으며, 모든 저작권은 원 교재와 논문에 있음.

인공지능과 기계학습

■ 인공지능 분류

learning

기계학습

- 기계학습Machine learning 정의
 - 인공지능의 파생 방법
 - 기기를 인간처럼 학습시켜 스스로 규칙을 형성
 - 명시적인 프로그래밍 없이 데이터를 학습
 - 학습: 특정 작업task의 성능performance을 점진적으로 개선
 - A computer program
 - improve their performance P (accuracy, error rate,...)
 - at some task T (classification, regression, detection,...)
 - with experience E (data)

→ well-defined learning task: <P, T, E>

Traditional programming

Machine learning

기계학습 문제

■ 기계학습 문제 분류 비교

교사 학습

given (x, y) x is data, y is its label

> Goal: learn a function to map x → y

Examples:
Classification
Regression
Object detection
Segmentation
Image captioning

준교사 학습

비교사 학습

given (x) just data, no label

Goal: learn some underlying hidden structure of the data

Examples:
Clustering
Dimensionality reduction
Feature learning
Density estimation

강화 학습

given
Problems involving an agent
interacting with an environment which
provides numeric reward signals

Goal:

Learn how to take actions in order to maximize reward

Examples: Robotics Self-driving

표현학습과 심층학습

- 표현학습 Representation learning
 - 기계학습의 파생 방법
 - 표현 문제 Representation matter
 - 표현의 차이 비교

- 심층학습 deep learning: 표현학습 representation learning의 주요 방법
 - : 표현에서 출력으로의 사상mapping뿐만 아니라 표현 자체를 학습하여 보다 좋은 성능을 가짐
 - 데이터에서 주어진 작업에 필요한 표현representation을 자동 추출
 - 데이터 중심 특징 data-driven feature의 계층적 학습

표현학습과 심층학습

■ 심층학습

■ 선형과 비선형 연산을 갖춘 깊은 인공신경망 deep artificial neural network

Machine Learning

심층학습

■ 심층학습의 성공 이유

■ |data|와 성능 비교

■ 기계학습 문제화

■ 사례: 신용 승인 credit approval

• given: 신청자 정보

value
23 years female \$30,000 1 year 1 year \$15,000

• task: 승인? 혹은 거절?

■ 표기 정리

component	symbol	credit approval metaphor
input output target function data hypothesis	$egin{array}{c} \mathbf{x} \ y \ f: \mathcal{X} ightarrow \mathcal{Y} \ (\mathbf{x}_1, y_1), \ldots, (\mathbf{x}_N, y_N) \ g: \mathcal{X} ightarrow \mathcal{Y} \end{array}$	customer application approve or deny ideal credit approval formula historical records formula to be used

- ► f: unknown target function
- X: input space (set of all possible inputs x)
- y: output space (set of all possible outputs)
- ▶ N: the number of input-output examples (i.e. training examples)
- $\triangleright \mathcal{D} \triangleq \{(\mathbf{x}_1, y_1), \dots, (\mathbf{x}_N, y_N)\}: \text{ data set where } y_n = f(\mathbf{x}_n)$

■ 문제 해결

$$\mathbf{x} = egin{bmatrix} x_1 \ x_2 \end{bmatrix}$$
 where x_1 : age and x_2 : annual salary in USD

$$N=11$$
, $d=2$, $\mathcal{X}=\mathbb{R}^2$, and $\mathcal{Y}=\{ ext{approve}, ext{deny}\}$

data set \mathcal{D} :

n	x_1	x_2	y
1	29	56k	approve
2	64	89k	approve
3	33	17k	deny
4	45	94k	approve
5	24	26k	deny
6	55	24k	deny
7	35	52k	approve
8	57	65k	approve
9	45	32k	deny
10	52	75k	approve
11	62	31k	deny

■ 기계학습 개요

Hypothesis set

- ullet we specify the hypothesis set ${\mathcal H}$ through a functional form $h({\mathbf x})$
 - lacktriangleright all the hypotheses $h \in \mathcal{H}$ share this form
- the functional form $h(\mathbf{x})$:
 - gives different weights to the different coordinates of x
 - reflects their relative importance in the credit decision
- our choice of $h(\mathbf{x})$ here: a linear model
 - \blacktriangleright \mathcal{H} : a set of lines
 - key question: linear in what?

Two-dimensional case

Figure : perceptron classification of linearly separable data in 2d space

- the plane is split by a line into two regions
 - \blacktriangleright +1 decision region (blue) and -1 decision region (red)

A simple hypothesis set - the 'perceptron'

For input $\mathbf{x}=(x_1,\cdots,x_d)$ 'attributes of a customer'

Approve credit if
$$\sum_{i=1}^d w_i x_i > \text{threshold},$$

Deny credit if
$$\sum_{i=1}^d w_i x_i < \text{threshold.}$$

This linear formula $h \in \mathcal{H}$ can be written as

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^{d} \mathbf{w_i} x_i\right) - \operatorname{threshold}\right)$$

$$h(\mathbf{x}) = \operatorname{sign}\left(\left(\sum_{i=1}^d \mathbf{w_i} \ x_i\right) + \mathbf{w_0}\right)$$

Introduce an artificial coordinate $x_0 = 1$:

$$h(\mathbf{x}) = \operatorname{sign}\left(\sum_{i=0}^{d} \mathbf{w}_{i} \ x_{i}\right)$$

In vector form, the perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

'linearly separable' data

The roles of the learning alorithm

$$\mathcal{H} = \{h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathrm{T}}\mathbf{x})\}$$

 \longleftarrow uncountably infinite ${\mathcal H}$

- search \mathcal{H}
 - by looking for weights and bias that perform well on data set
- produce the final hypothesis $g \in \mathcal{H}$
 - ightharpoonup g is defined by the optimal choices of weights and bias

Perceptron learning algorithm (PLA)

- objective
 - determine the optimal w based on the data to produce g
- assumption: the data set is linearly separable
 - there is a vector \mathbf{w} that makes $h(\mathbf{x})$ achieve the correct decision $h(\mathbf{x}_n) = y_n$ on all training examples (Figure)
- perceptron learning algorithm (PLA)
 - ▶ an incremental algorithm
 - guaranteed to converge for linearly separable data

A simple learning algorithm - PLA

The perceptron implements

$$h(\mathbf{x}) = \operatorname{sign}(\mathbf{w}^{\mathsf{T}}\mathbf{x})$$

Given the training set:

$$(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$$

pick a misclassified point:

$$sign(\mathbf{w}^{\mathsf{T}}\mathbf{x}_n) \neq y_n$$

and update the weight vector:

$$\mathbf{w} \leftarrow \mathbf{w} + y_n \mathbf{x}_n$$

Iterations of PLA

• One iteration of the PLA:

$$\mathbf{w} \leftarrow \mathbf{w} + y\mathbf{x}$$

where (\mathbf{x}, y) is a misclassified training point.

ullet At iteration $t=1,2,3,\cdots$, pick a misclassified point from $(\mathbf{x}_1,y_1),(\mathbf{x}_2,y_2),\cdots,(\mathbf{x}_N,y_N)$

and run a PLA iteration on it.

• That's it!

Example of PLA

Error and noise

- Error (=cost, objective, risk): quantifies how far we are from the target
 - What does " $h \approx f$ " mean?
 - choice of an error measure affects outcome of learning
 - measure E(h, f) from pointwise to overall
 - usually defined error on individual input points (pointwise definition): e(h(x), f(x))
 - examples $e(h(\mathbf{x}), f(\mathbf{x})) = (h(\mathbf{x}) f(\mathbf{x}))^2$ squared error: $e(h(\mathbf{x}), f(\mathbf{x})) = [h(\mathbf{x}) \neq f(\mathbf{x})]$ binary error:
 - (overall error) then average over pointwise errors e(h(x), f(x))
- Noise: about the nature of the target function
 - the part of y we cannot model
 - makes output of f target distribution determined by the input

Feasibility of learning

- Target f
 - Unknown
 - we cannot learn *f* deterministically
 - but we cam learn f in a probabilistic sense $E_{out} \approx E_{in}$ (generalization capability)
 - Probably, approximately correct learning

Ultimate goal of learning

- Learn g such that $g \approx f$
- which means making $E_{out} \approx 0$ (good learning)

■ Learning for $E_{out} \approx 0$ split into two questions

Q1. can we make sure that $E_{out} \approx E_{in}$?

Q2. can we make $E_{in} \approx 0$?

- answering yes to both $\Rightarrow E_{out} \approx E_{in} \approx 0$
- Answer to Q1
 - theoretical
 - better for simpler models
 - if fails ⇒ overfitting ⇒ need regularization
- Answer to Q2
 - more practical: run A on training data D
 - better for more complex models
 - if fails ⇒ underfitting ⇒ need better optimizer

- Trade-off
 - true for any machine learning system
 - approximation-generalization trade-off

- Strategies in modern machine learning
 - selecting large capacity models (e.g., deep neural networks)
 - then, applying regularizations (e.g., weight decay, ...)

기계학습 기초

■ 기계학습 절차: 훈련training 과 추론inference

기계학습 기초

■ 기계학습 도구

기계학습 기초

■ 심층학습 도구

참고

Google Colab

- 심층학습 또는 기계학습 모델을 실행할 수 있는 Google의 무료 클라우드 서비스 (12시간)
- https://colab.research.google.com/

기계학습과 통계

Statistics

- shares the basic premise of learning from data
 - use of observations to uncover an underlying process
 - the process: a probability distribution
 - the observations: sampled from that distribution
- emphasis is given to situations where
 - most questions can be answered within rigorous proofs

기계학습과 통계

comparison:

- statistics
 - focuses on idealized models and analyzes them in great detail
- machine learning
 - makes less restrictive assumptions
 - deals with more general models than in statistics
 - ends up with weaker results that are broadly applicable

기계학습과 데이터 마이닝

Data mining

- a practical field that focuses on
 - finding patterns, correlations, or anomalies
 - often in large relational databases
- examples
 - look at medical records to detect a long-term drug effect
 - look at credit card spending patterns to detect potential fraud
 - recommender systems

기계학습과 데이터 마이닝

comparison:

- data mining vs machine learning
 - technically, the same
 - ▶ DM: more emphasis on data analysis than on prediction
 - ightharpoonup DBs are usually huge \Rightarrow computational issues critical in DM

기계학습과 데이터 마이닝

Machine learning versus data mining (Wikipedia)

- two terms are commonly confused
 - often employ the same methods and overlap significantly
- they can be roughly defined as follows:
 - ML focuses on prediction, based on known properties learned from the training data
 - DM focuses on the discovery of (previously) unknown properties in the data; the analysis step of Knowledge Discovery in Databases (KDD)

