M482 Homework 2

Joshua Larkin

January 2019

1 Practice with definitions.

 (G_1) [image here]

Formally, G_1 is the pairing of the set of states $S = \{a, b, c, d\}$ with the relation $R = \{(a, a), (b, b), (c, c), (d, d), (b, a), (b, c), (c, d)\}.$

reflexive True, all nodes a, b, c, d bear R to themselves.

symmetric False, counter-example: bRc but cRb does not exist.

anti-symmetric Yes, since there is no symmetry, the only time aRb and bRa holds is when a=b. We know the graph is reflexive, so a=b holds for all nodes.

transitive False, counter-example: bRc and cRd but bRd does not exist.

euclidean False, in the case of b when bRa and bRb, aRb does not exist.

equivalence relation False, only reflexive, i.e. not symmetric and not transitive.

partial function False, counter-example: bRa and bRc but $a \neq c$.

 (G_2) [image here]

Formally, G_2 is the pairing of the set of states $S = \{a, b, c\}$ with the relation $R = \{(a, b), (a, c), (b, c)\}.$

reflexive False, there is no node $s \in S$ such that sRs.

symmetric False, counter-example: aRb but bRa does not exist.

anti-symmetric True, vacuously because $xRy \wedge yRx$ is false since no such nodes x,y exist.

transitive True, aRb and bRc and aRc, and $bRc \wedge cRb$ is false so vacuously true, and similar case for c.

euclidean $\forall a, b, c. \ aRb \land aRc \Rightarrow bRc.$

x	$\mid y \mid$	z	xRy	xRz	$xRy \wedge xRz : (P)$	yRz:(Q)	$P \Rightarrow Q$
a	b	c	T	T	T	T	T
a	c	b	T	T	T	T	T
b	a	c	F	T	F	T	T
b	c	a	T	F	F	T	T
c	a	b	F	F	F	T	T
c	b	a	F	F	F	F	T

equivalence relation

partial function

 (G_3) [image here]

Formally, G_3 is the pairing of the set of states $S = \{a, b\}$ with the relation $R = \{(a, a), (a, b), (b, a)\}.$

reflexive

symmetric

anti-symmetric

transitive

euclidean

euclidean $\forall a, b, c. \ aRb \land aRc \Rightarrow bRc.$

x	y	z	xRy	xRz	$xRy \wedge xRz : (P)$	yRz:(Q)	$P \Rightarrow Q$
a	b	c	T	T	T	T	T
$\mid a \mid$	c	b	T	T	T	T	T
b	a	c	F	T	F	T	T
b	c	a	T	F	F	T	T
c	a	b	F	F	F	T	T
c	b	a	F	F	F	F	T

equivalence relation

partial function

 (G_4) [image here]

Formally, G_4 is the pairing of the set of states $S = \{a\}$ with the relation $R = \{(a, a)\}.$

reflexive

symmetric

anti-symmetric

transitive

euclidean

euclidean $\forall a, b, c. \ aRb \land aRc \Rightarrow bRc.$

\boldsymbol{x}	y	z	xRy	xRz	$xRy \wedge xRz : (P)$	yRz:(Q)	$P \Rightarrow Q$
a	b	c	T	T	T	T	T
a	c	b	T	T	T	T	T
b	a	c	F	T	F	T	T
b	c	a	T	F	F	T	T
c	a	b	F	F	F	T	T
c	b	a	F	F	F	F	T

equivalence relation

partial function

 (G_5) [image here] Formally, G_5 is the pairing of the set of states $S = \{a, b, c\}$ with the relation $R = \{(a, b), (b, a), (b, c), (c, b)\}.$

reflexive

 $\operatorname{symmetric}$

anti-symmetric

transitive

euclidean

euclidean $\forall a, b, c. \ aRb \land aRc \Rightarrow bRc.$

x	$\mid y \mid$	z	xRy	xRz	$xRy \wedge xRz : (P)$	yRz:(Q)	$P \Rightarrow Q$
a	b	c	T	T	T	T	T
$\mid a \mid$	c	b	T	T	T	T	T
b	a	c	F	T	F	T	T
b	c	a	T	F	F	T	T
c	a	b	F	F	F	T	T
c	b	a	F	F	F	F	T

equivalence relation

partial function

 (G_6) [image here]

Formally, G_6 is the pairing of the set of states $S = \{a, b, c\}$ with the relation $R = \{(a, a), (b, b), (c, c), (a, b), (b, a), (b, c), (c, b)\}.$

reflexive

symmetric

anti-symmetric

transitive

euclidean $\forall a, b, c. \ aRb \land aRc \Rightarrow bRc.$

\boldsymbol{x}	y	z	xRy	xRz	$xRy \wedge xRz : (P)$	yRz:(Q)	$P \Rightarrow Q$
a	b	c	T	T	T	T	T
a	c	b	T	T	T	T	T
b	a	c	F	T	F	T	T
b	c	a	T	F	F	T	T
c	a	b	F	F	F	T	T
c	b	a	F	F	F	F	T

equivalence relation

partial function

(G_7) [image here]

Formally, G_7 is the pairing of the set of states $S = \{a, b, c\}$ with the relation $R = \{(a, a), (b, b), (c, c), (b, a), (b, c)\}.$

reflexive

symmetric

anti-symmetric

transitive

euclidean $\forall a, b, c. \ aRb \land aRc \Rightarrow bRc.$

	\boldsymbol{x}	y	z	xRy	xRz	$xRy \wedge xRz : (P)$	yRz:(Q)	$P \Rightarrow Q$
ſ	a	b	c	T	T	T	T	T
	a	c	b	T	T	T	T	T
	b	a	c	F	T	F	T	T
	b	c	a	T	F	F	T	T
	c	a	b	F	F	F	T	T
	c	b	a	F	F	F	F	T

equivalence relation

partial function

(G_8) [image here]

Formally, G_8 is the pairing of the set of states $S = \{a, b, c\}$ with the relation $R = \{(a, b), (a, c), (b, b), (b, c), (c, c), (c, b)\}.$

reflexive

symmetric

anti-symmetric

transitive

euclidean $\forall a, b, c. \ aRb \land aRc \Rightarrow bRc.$

\boldsymbol{x}	y	z	xRy	xRz	$xRy \wedge xRz : (P)$	yRz:(Q)	$P \Rightarrow Q$
a	b	c	T	T	T	T	T
a	c	b	T	T	T	T	T
b	a	c	F	T	F	T	T
b	c	a	T	F	F	T	T
c	a	b	F	F	F	T	T
c	b	a	F	F	F	F	T

equivalence relation

partial function

2 True or false, and why?

The statements below are about relations on a fixed set X. For each statement below, say whether it is true or false. If it is true, give a short proof. If it is false, give a counter-example.

- 1. Every reflexive relation on X is serial.
- 2. Every reflexive relation on X which is reflexive and transitive is also symmetric.
- 3. Every reflexive relation on X which is Euclidean, symmetric and transitive is reflexive.
- 4. Every reflexive relation on X which is Euclidean and reflexive is symmetric.

3 Multiply two graphs

4 True or false, and why?

For each of the following assertions, tell whether it is true or false. (As always in a problem like this, "true" means *true for all graphs*. So "false" means *false for some graphs*.) Give a short proof of the true ones, and a counter-example for the false ones.

- 1. The product of two reflexive graphs is reflexive.
- 2. The product of two euclidean graphs is reflexive.
- 3. If the product of two graphs is reflexive, then both of the given graphs are reflexive.

- $4.\$ If the product of two graphs is transitive, then both of the given graphs are transitive.
- 5. Let G be a one-point graph with no arrows. Then for all $H,G\times H$ looks like H.

5 Modal semantics with boxes and diamonds rather than K-operators

Attached.