Quantum Mechanics: Fall 2018 Final Exam: Brief Solutions

NOTE: Sentences in italic fonts are questions to be answered. Possibly useful facts:

- 1D harmonic oscillator: $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 = -\frac{\hbar^2}{2m}\frac{\partial^2}{\partial x^2} + \frac{m\omega^2}{2}x^2$. $[\hat{x},\hat{p}] = i\hbar$, and in position representation $\hat{p} = -i\hbar\frac{\partial}{\partial x}$. Define $\hat{a}_{\mp} = \sqrt{\frac{m\omega}{2\hbar}}(\hat{x} \pm i\frac{1}{m\omega}\hat{p}) = \sqrt{\frac{m\omega}{2\hbar}}(x \pm i\frac{\hbar}{m\omega}\frac{\partial}{\partial x})$. Then $[\hat{a}_{-},\hat{a}_{+}] = 1$ and $\hat{H} = \hbar\omega(\hat{a}_{+}\hat{a}_{-} + \frac{1}{2})$. It has a unique ground state $|\psi_0\rangle$ with $\hat{a}_{-}|\psi_0\rangle = 0$, and excited states $|\psi_n\rangle \equiv \frac{1}{\sqrt{n!}}(\hat{a}_{+})^n|\psi_0\rangle$ with energy $E_n = (n + \frac{1}{2})\hbar\omega$. The ground state wavefunction is $\psi_0(x) = (\frac{m\omega}{\pi\hbar})^{1/4}\exp(-\frac{m\omega}{2\hbar}x^2)$.
- $\int_{-\infty}^{\infty} x^{2n} e^{-x^2/(2a)} dx = (2n-1)!! \cdot a^n \cdot \sqrt{2\pi a}$, for a > 0 and non-negative integer n.
- Generic angular momentum: $[\hat{J}_x, \hat{J}_y] = i\hbar \hat{J}_z$, $[\hat{J}_y, \hat{J}_z] = i\hbar \hat{J}_x$, $[\hat{J}_z, \hat{J}_x] = i\hbar \hat{J}_y$. For eigenstate $|j, m\rangle$ of $\hat{\boldsymbol{J}}^2$ and \hat{J}_z , $\hat{\boldsymbol{J}}^2|j, m\rangle = j(j+1)\hbar^2|j, m\rangle$, $\hat{J}_z|j, m\rangle = m\hbar|j, m\rangle$, and $(\hat{J}_x \pm i\hat{J}_y)|j, m\rangle = \sqrt{(j \mp m)(j \pm m + 1)}\hbar|j, m \pm 1\rangle$. Here 2j is non-negative integer, $m = -j, -j + 1, \dots, j$.
 - Spin-1/2: basis states $|\uparrow\rangle$ and $|\downarrow\rangle$, namely $|S_z = +\frac{1}{2}\hbar\rangle$ and $|S_z = -\frac{1}{2}\hbar\rangle$. Under this basis, $\hat{S}_a = \frac{\hbar}{2}\sigma_a$ where $\sigma_{x,y,z}$ are Pauli matrices.
- (Degenerate) Time-independent perturbation theory: $\hat{H} = \hat{H}^{(0)} + \hat{H}^{(1)}$. Denote the (degenerate) orthonormal eigenstates of $\hat{H}^{(0)}$ by $|\psi_{n\alpha}^{(0)}\rangle$, $\hat{H}^{(0)}|\psi_{n\alpha}^{(0)}\rangle = E_n^{(0)}|\psi_{n\alpha}\rangle$. Suppose $\hat{H}|\psi_n\rangle = E_n|\psi_n\rangle$, with E_n close to $E_n^{(0)}$, then $(E_n E_n^{(0)})$ is the eigenvalue of "secular equation", $\langle \psi_{n\beta}^{(0)}|\hat{H}^{(1)}|\psi_{n\alpha}^{(0)}\rangle + \sum_{m,m\neq n} \frac{1}{E_n^{(0)}-E_m^{(0)}} \langle \psi_{n\beta}^{(0)}|\hat{H}^{(1)}|\psi_m^{(0)}\rangle \langle \psi_m^{(0)}|\hat{H}^{(1)}|\psi_{n\alpha}^{(0)}\rangle$ up to second order. Here β & α are row/column index, the sum is over all eigenstates of $\hat{H}^{(0)}$ with energy different from $E_n^{(0)}$. In non-degenerate case, this is a 1 × 1 matrix.
- Some Taylor expansions: $\sqrt{1+x} = 1 + \frac{x}{2} \frac{x^2}{8} + \dots$; $\frac{1}{\sqrt{1+x}} = 1 \frac{x}{2} + \frac{3x^2}{8} + \dots$; $\frac{x}{\sin(x)} = 1 + \frac{x^2}{6} + \frac{7x^4}{360} + \dots$; $\frac{1}{\cos(x)} = 1 + \frac{x^2}{2} + \frac{5x^4}{24} + \dots$
- Series inversion: from series $x = z + a_1 z^2 + a_2 z^3 + a_3 z^4 + O(z^5)$ for $|z| \ll 1$, solve z, then $z = x + (-a_1)x^2 + (2a_1^2 a_2)x^3 + (-5a_1^3 + 5a_1a_2 a_3)x^4 + O(x^5)$.
- Change of variables: if $x_i' = \sum_j A_{ij} x_j$, where A is a non-singular constant matrix. Then $\frac{\partial}{\partial x_i'} = \sum_j (A^{-1})_{ji} \frac{\partial}{\partial x_j}$, where A^{-1} is the inverse matrix of A.

Problem 1. (20 points) Consider a non-relativistic particle moving on a ring of radius R. Label the points on the ring by polar angle θ , the wavefunction as a function of θ must be periodic, $\psi(\theta + 2\pi) = \psi(\theta)$, with normalization $\int_{-\pi}^{\pi} |\psi(\theta)|^2 d\theta = 1$. The free particle Hamiltonian is $\hat{H}^{(0)} = \frac{\hat{p}^2}{2m} = -\frac{\hbar^2}{2mR^2} (\frac{\partial}{\partial \theta})^2$. Add a δ -function perturbation $\hat{H}^{(1)} = \alpha \cdot \delta(\theta)$, where α is a "small" parameter, $\alpha > 0$. The full Hamiltonian is $\hat{H} = \hat{H}^{(0)} + \hat{H}^{(1)}$.

- (a) (5pts) Write down the eigenvalues $E_n^{(0)}$ and normalized eigenstates $\psi_n^{(0)}(\theta)$ of $\hat{H}^{(0)}$.
- (b) (5pts) Compute the ground state energy of \hat{H} up to 2nd order of perturbation. [Note: leave the result as an infinite series, or use $\sum_{n=1}^{\infty} \frac{1}{x^2 n^2} = \frac{\pi x \cos(\pi x) \sin(\pi x)}{2x^2 \sin(\pi x)}$ (not required).]
- (c) (5pts) Draw qualitatively the ground state wavefunction of \hat{H} for $-2\pi \leq \theta \leq 2\pi$, and describe its properties. [Hint: be careful about the "boundary conditions"]
- (d) (5pts*) Denote the exact ground state energy of \hat{H} by $\frac{\hbar^2 k^2}{2mR^2}$. Derive the equation for k. Solve this equation approximately to get the ground state energy of \hat{H} to 2nd order of α . [Hint: assume k deviates from unperturbed case by a small number δk , expand the appropriate form of this equation with respect to δk , solve δk to appropriate order of α ; some facts on page 1 will be useful]

Solution

The perturbation should be understood as periodic "comb function", $\sum_{n\in\mathbb{Z}} \alpha \cdot \delta(\theta - 2\pi n)$. if we do not restrict ourselves in $-\pi \leq \theta \leq \pi$.

(a) $\hat{H}^{(0)} = \frac{\hat{p}^2}{2m}$ commutes with $\hat{p} = -i\frac{\hbar}{R}\partial_{\theta}$. Eigenstates of \hat{p} are eigenstates of $\hat{H}^{(0)}$.

Periodic eigenfunctions of $-i\partial_{\theta}$ are $e^{in\theta}$ with integer n.

So the eigenstates and eigenvalues of $\hat{H}^{(0)}$ can be chosen as

$$\psi_n^{(0)}(\theta) = \frac{1}{\sqrt{2\pi}} e^{in\theta}$$
, with $E_n^{(0)} = \frac{\hbar^2 n^2}{2mR^2}$, for integer n.

Note: n and -n complex basis states are degenerate (for $n \neq 0$).

We can also choose real basis,

$$\psi_0^{(0)} = \frac{1}{\sqrt{2\pi}}$$
 with $E_0^{(0)} = 0$, and $\psi_{nc}^{(0)}(\theta) = \frac{1}{\sqrt{\pi}}\cos(n\theta)$, and $\psi_{ns}^{(0)}(\theta) = \frac{1}{\sqrt{\pi}}\sin(n\theta)$, with $E_n^{(0)} = \frac{\hbar^2 n^2}{2mR^2}$, for $n = 1, 2, \dots$

(b) The original ground state has n=0, unperturbed ground state energy is $E_0^{(0)}=0$. First order correction to ground state energy is

$$E_0^{(1)} = \langle \psi_0^{(0)} | \hat{H}^{(1)} | \psi_0^{(0)} \rangle = \int_{-\pi}^{\pi} (\frac{1}{\sqrt{2\pi}})^* \cdot \alpha \cdot \delta(\theta) \cdot \frac{1}{\sqrt{2\pi}} d\theta = \frac{\alpha}{2\pi}.$$

Second order correction to ground state energy is $E_0^{(2)} = \sum_{n,n\neq 0} \frac{|\langle \psi_0^{(0)} | \hat{H}^{(1)} | \psi_n^{(0)} \rangle|^2}{E_0^{(0)} - E_n^{(0)}}$, the matrix element is $\langle \psi_0^{(0)} | \hat{H}^{(1)} | \psi_n^{(0)} \rangle = \int_{-\pi}^{\pi} (\frac{1}{\sqrt{2\pi}})^* \cdot \alpha \cdot \delta(\theta) \cdot \frac{e^{in\theta}}{\sqrt{2\pi}} d\theta = \frac{\alpha}{2\pi}$, so $E_0^{(2)} = -2 |\frac{\alpha}{2\pi}|^2 \frac{2mR^2}{\hbar^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = -\frac{\alpha^2 mR^2}{\pi^2 \hbar^2} \sum_{n=1}^{\infty} \frac{1}{n^2} = -\frac{\alpha^2 mR^2}{6\hbar^2}$.

Here we have used $\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6}$, which can be obtained by taking $x \to 0$ limit in the given formula $\sum_{n=1}^{\infty} \frac{1}{x^2 - n^2} = \frac{\pi x \cos(\pi x) - \sin(\pi x)}{2x^2 \sin(\pi x)}$

Finally, $E_0 \approx 0 + \frac{\alpha}{2\pi} - \frac{\alpha^2 m R^2}{6\hbar^2}$

- (c) The exact ground state wavefunction can be chosen real, and
- has no nodes (2pts);
- is continuous, but has discontinuous derivative (a "cusp" toward θ -axis) at $\theta = 0 \mod 2\pi$ (2pts);

- symmetric under inversion around $\theta = n\pi$ (1pts).
 - (d) As suggested by the picture in (c), $\psi_0(\theta) = \begin{cases} A \cdot \cos[k(\theta + \pi)], & -\pi \le \theta < 0; \\ A \cdot \cos[k(\theta \pi)], & 0 < \theta \le \pi. \end{cases}$ where

A is the normalization constant. The energy is $\frac{\hbar^2 k^2}{2mR^2}$, of the same form as free particle. The boundary condition at the δ -function is $-\frac{\hbar^2}{2mR^2}\partial_{\theta}\psi\Big|_{\theta=0-0}^{\theta=0+0} + \alpha\psi(0) = 0$, this leads to $\frac{\hbar^2}{mR^2}k\sin(k\pi) = \alpha\cos(k\pi), \text{ or, } (k\pi)\cdot\tan(k\pi) = \frac{\alpha\pi mR^2}{\hbar^2}$

Expand the left-hand-side of this equation into power series of $k\pi$, use $\frac{1}{\cos(x)} \approx 1 + \frac{x^2}{2}$ $O(x^4)$ from page 1, we have $(k\pi)^2 + \frac{(k\pi)^4}{3} + O((k\pi)^6) = \frac{\alpha\pi mR^2}{\hbar^2}$, use the "series inversion" formula on page 1, $(k\pi)^2 \approx (\frac{\alpha\pi mR^2}{\hbar^2}) - \frac{1}{3}(\frac{\alpha\pi mR^2}{\hbar^2})^2 + O(\alpha^3)$.

Finally the approximate ground state energy is $\frac{\hbar^2 k^2}{2mR^2} = \frac{\hbar^2}{2mR^2\pi^2} (k\pi)^2$

$$\approx \frac{\hbar^2}{2mR^2\pi^2} \cdot \left[\left(\frac{\alpha\pi mR^2}{\hbar^2} \right) - \frac{1}{3} \left(\frac{\alpha\pi mR^2}{\hbar^2} \right)^2 + O(\alpha^3) \right] = \frac{\alpha}{2\pi} - \frac{\alpha^2 mR^2}{6\hbar^2} + O(\alpha^3).$$

This matches the perturbation theory result in (b).

Problem 2. (30 points) Consider two identical particles in the ring defined in Problem 1. The free particle Hamiltonian is $\hat{H}^{(0)} = \frac{\hat{p}_1^2}{2m} + \frac{\hat{p}_2^2}{2m} = -\frac{\hbar^2}{2mR^2} [(\frac{\partial}{\partial \theta_1})^2 + (\frac{\partial}{\partial \theta_2})^2]$. Subscripts 1 and $_2$ label the two particles. If they are distinguishable, the orthonormal eigenstates of \hat{H}_0 can be chosen as $\psi_{n_1,n_2}^{(0)}(\theta_1;\theta_2) = \psi_{n_1}^{(0)}(\theta_1) \cdot \psi_{n_2}^{(0)}(\theta_2)$, with energy eigenvalue $E_{n_1,n_2}^{(0)} = E_{n_1}^{(0)} + E_{n_2}^{(0)}$ Here $E_n^{(0)}$ and $\psi_n^{(0)}(\theta)$ are defined in Problem 1(a). For identical particles, $\psi(\theta_1;\theta_2)$ must satisfy certain permutation symmetry. The normalization is $\int_{-\pi}^{\pi} \int_{-\pi}^{\pi} |\psi(\theta_1; \theta_2)|^2 d\theta_1 d\theta_2 = 1$.

- (a) (10pts) Write down the energies and ORTHONORMAL eigenstate wavefunctions for two BOSONS for the lowest THREE energy levels of $\hat{H}^{(0)}$. [Note: may have degeneracy]
- (b) (10pts) Write down the energies and ORTHONORMAL eigenstate wavefunctions for two FERMIONS for the lowest THREE energy levels of $\hat{H}^{(0)}$. [Note: may have degeneracy]
- (c) (5pts) In the ground state(s) of two FERMIONS in (b), compute the probability that the two particles are in the same quadrant, namely the probability of $\cos(\theta_1 \theta_2) > 0$.
- (d) (5pts) Add perturbation $\hat{H}^{(1)} = \alpha \cdot [\delta(\theta_1) + \delta(\theta_2)]$, where α is a "small" real parameter. Compute the ground state(s) energy of $\hat{H} = \hat{H}^{(0)} + \hat{H}^{(1)}$ for two FERMIONS under 1st order perturbation. [Hint: you might need degenerate perturbation theory]

Solution

(a) For two bosons, wavefunctions $\psi^{(B)}(\theta_1; \theta_2)$ are symmetric, $\psi^{(B)}(\theta_1; \theta_2) = \psi^{(B)}(\theta_2; \theta_1)$. The orthonormal basis can be chosen as

$$\psi_{i,i}^{(\mathrm{B},0)}(\theta_1;\theta_2) = \psi_i^{(0)}(\theta_1)\psi_i^{(0)}(\theta_2) \text{ with } E_{i,i}^{(0)} = E_i^{(0)} + E_i^{(0)}; \text{ and}$$

$$\psi_{i,j}^{(\mathrm{B},0)}(\theta_1;\theta_2) = \frac{1}{\sqrt{2}}[\psi_i^{(0)}(\theta_1)\psi_j^{(0)}(\theta_2) + \psi_i^{(0)}(\theta_1)\psi_j^{(0)}(\theta_2)] \text{ with } E_{i,j}^{(0)} = E_i^{(0)} + E_j^{(0)}, \text{ for } i \neq j.$$

We can use either the complex basis or the real basis for single particle states. The results are summarized in the following table.

energy	complex basis	real basis
0	$\psi_{0,0}^{(B,0)} = \frac{1}{2\pi}$	$\psi_{0,0}^{(B,0)} = \frac{1}{2\pi}$
$\frac{\hbar^2}{2mR^2}$	$\psi_{0,1}^{(B,0)} = \frac{1}{2\pi} \frac{1}{\sqrt{2}} (e^{i\theta_1} + e^{i\theta_2}),$	$\psi_{0,1c}^{(B,0)} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2}} (\cos \theta_1 + \cos \theta_2),$
	$\psi_{0,-1}^{(B,0)} = \frac{1}{2\pi} \frac{1}{\sqrt{2}} (e^{-i\theta_1} + e^{-i\theta_2}).$	$\psi_{0,1s}^{(B,0)} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2}} (\sin \theta_1 + \sin \theta_2).$
$\frac{\hbar^2}{2mR^2} \cdot 2$	$\psi_{1,1}^{(B,0)} = \frac{1}{2\pi} e^{i(\theta_1 + \theta_2)},$	$\psi_{1c,1c}^{(\mathrm{B},0)} = \frac{1}{\pi}\cos\theta_1\cos\theta_2,$
		$\psi_{1c,1s}^{(B,0)} = \frac{1}{\pi} \frac{1}{\sqrt{2}} (\cos \theta_1 \sin \theta_2 + \sin \theta_1 \cos \theta_2),$
	$\psi_{-1,-1}^{(B,0)} = \frac{1}{2\pi} e^{-i(\theta_1 + \theta_2)}.$	$\psi_{1s,1s}^{(\mathrm{B},0)} = \frac{1}{\pi} \sin \theta_1 \sin \theta_2,$

(b) For two fermions, wavefunctions $\psi^{(F)}(\theta_1; \theta_2) = \psi^{(F)}(\theta_2; \theta_1)$ are anti-symmetric. The orthonormal basis can be chosen as

 $\psi_{i,j}^{(\mathrm{F},0)}(\theta_1;\theta_2) = \frac{1}{\sqrt{2}} [\psi_i^{(0)}(\theta_1) \psi_j^{(0)}(\theta_2) - \psi_i^{(0)}(\theta_1) \psi_j^{(0)}(\theta_2)] \text{ with } E_{i,j}^{(0)} = E_i^{(0)} + E_j^{(0)}, \text{ for } i \neq j.$

The results are summarized in the following table.

The results are summarized in the remaining tweeter					
energy	complex basis	real basis			
$\frac{\hbar^2}{2mR^2}$	$\psi_{0,1}^{(F,0)} = \frac{1}{2\pi} \frac{1}{\sqrt{2}} (e^{i\theta_1} - e^{i\theta_2}),$	$\psi_{0,1c}^{(F,0)} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2}} (\cos \theta_1 - \cos \theta_2),$			
	$\psi_{0,-1}^{(F,0)} = \frac{1}{2\pi} \frac{1}{\sqrt{2}} (e^{-i\theta_1} - e^{-i\theta_2}).$	$\psi_{0,1s}^{(F,0)} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2}} (\sin \theta_1 - \sin \theta_2).$			
$\frac{\hbar^2}{2mR^2} \cdot 2$	$\psi_{1,-1}^{(F,0)} = \frac{1}{2\pi} \frac{1}{\sqrt{2}} \left(e^{i(\theta_1 - \theta_2)} - e^{i(\theta_2 - \theta_1)} \right)$	$\psi_{1c,1s}^{(F,0)} = \frac{1}{\pi} \frac{1}{\sqrt{2}} (\cos \theta_1 \sin \theta_2 - \sin \theta_1 \cos \theta_2)$			
	$\psi_{0,2}^{(F,0)} = \frac{1}{2\pi} \frac{1}{\sqrt{2}} (e^{2i\theta_1} - e^{2i\theta_2}),$	$\psi_{0,2c}^{(F,0)} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2}} (\cos(2\theta_1) - \cos(2\theta_2)),$			
	$\psi_{0,-2}^{(F,0)} = \frac{1}{2\pi} \frac{1}{\sqrt{2}} (e^{-2i\theta_1} - e^{-2i\theta_2}).$	$\psi_{0,2s}^{(F,0)} = \frac{1}{\sqrt{2\pi}} \frac{1}{\sqrt{2}} (\sin(2\theta_1) - \sin(2\theta_2)).$			

(c) The probability is $\int_{-\pi}^{\pi} d\theta_1 \int_{\theta_1-\pi/2}^{\theta_1+\pi/2} d\theta_2 |\psi^{(F)}(\theta_1;\theta_2)|^2$.

For two fermions, the two ground state wavefunctions $\psi_{0,1}^{(\mathrm{F},0)}$ and $\psi_{0,-1}^{(\mathrm{F},0)}$ are complex conjugate to each other, so produce the same result, $\int_{-\pi}^{\pi} \mathrm{d}\theta_1 \int_{\theta_1-\pi/2}^{\theta_1+\pi/2} \mathrm{d}\theta_2 \frac{1}{8\pi^2} [2-2\cos(\theta_2-\theta_1)]$ $= 2\pi \cdot \frac{1}{8\pi^2} (2\pi-4) = \frac{1}{2} - \frac{1}{\pi}.$

Note that the wavefunction is periodic with respect to both θ_1 and θ_2 , so we can use the integration region $\theta_1 - \frac{\pi}{2} < \theta_2 < \theta_1 + \frac{\pi}{2}$ (blue region in the figure).

The real basis $\psi_{0,1c}^{(\mathrm{F},0)}$ and $\psi_{0,1s}^{(\mathrm{F},0)}$ also produce the same result. In fact any linear combinations between them will produce the same result, because the two-fermion ground state wavefunction is always of the form, $\sin(\frac{\theta_1-\theta_2}{2})\cdot\psi(\frac{\theta_1+\theta_2}{2})$.

This probability is much smaller than distinguishable (un-entangled) particle case, with wavefunction $\psi_{n_1}(\theta_1)\psi_{n_2}(\theta_2)$, which will trivially give probability $\frac{1}{2}$ for $\theta_1 - \frac{\pi}{2} < \theta_2 < \theta_1 + \frac{\pi}{2}$.

(d) Use the $\psi_{0,1}^{(\mathrm{F},0)}$ and $\psi_{0,-1}^{(\mathrm{F},0)}$ ground state basis in (b), denote them by $|\phi_{0,1}^{(\mathrm{F},0)}\rangle$ and $|\phi_{0,2}^{(\mathrm{F},0)}\rangle$, the 1st order secular equation matrix is (i,j=1,2), $\langle\phi_{0;j}^{(\mathrm{F},0)}|\hat{H}^{(1)}|\phi_{0,i}^{(\mathrm{F},0)}\rangle = \begin{pmatrix} \frac{\alpha}{\pi} & \frac{\alpha}{2\pi} \\ \frac{\alpha}{2\pi} & \frac{\alpha}{\pi} \end{pmatrix}$.

Here
$$\langle \psi_{0,1}^{(F,0)} | \hat{H}^{(1)} | \psi_{0,1}^{(F,0)} \rangle = \langle \psi_{0,-1}^{(F,0)} | \hat{H}^{(1)} | \psi_{0,-1}^{(F,0)} \rangle$$

$$= \int_{-\pi}^{\pi} d\theta_1 \int_{-\pi}^{\pi} d\theta_2 \frac{1}{8\pi^2} [2 - 2\cos(\theta_2 - \theta_1)] \cdot \alpha \cdot [\delta(\theta_1) + \delta(\theta_2)]$$

$$= 2 \cdot \int_{-\pi}^{\pi} d\theta \, \frac{1}{8\pi^2} (2 - 2\cos\theta) \cdot \alpha = \frac{\alpha}{\pi}.$$

$$\text{And } \langle \psi_{0,1}^{(\mathrm{F},0)} | \hat{H}^{(1)} | \psi_{0,-1}^{(\mathrm{F},0)} \rangle^* = \langle \psi_{0,-1}^{(\mathrm{F},0)} | \hat{H}^{(1)} | \psi_{0,1}^{(\mathrm{F},0)} \rangle = \int_{-\pi}^{\pi} \mathrm{d}\theta_1 \int_{-\pi}^{\pi} \mathrm{d}\theta_2 \, \frac{1}{8\pi^2} (e^{\mathrm{i}\theta_1} - e^{\mathrm{i}\theta_2})^2 \cdot \alpha \cdot [\delta(\theta_1) + \delta(\theta_2)] = 2 \cdot \int_{-\pi}^{\pi} \mathrm{d}\theta \, \frac{1}{8\pi^2} (e^{\mathrm{i}\theta} - 1)^2 \cdot \alpha = \frac{\alpha}{2\pi}.$$

So the 1st order correction to ground state energy is $\frac{\alpha}{\pi} \pm \frac{\alpha}{2\pi} = \frac{\alpha}{2\pi}$ and $\frac{3\alpha}{2\pi}$.

In fact the $\psi_{0,1s}^{(F,0)}$ and $\psi_{0,1c}^{(F,0)}$ states are just the eigenstates of this 1st order secular equation.

Problem 3. (15 points) Consider a 1D harmonic oscillator $\hat{H}_0 = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2$, with a time-dependent perturbation, $\hat{V}(t) = -f \cdot [\cos(\Omega t) \cdot \hat{x} - \sin(\Omega t) \cdot \frac{\hat{p}}{m\omega}]$. Here m, ω, f, Ω are positive constants, f is a "small" parameter. The full Hamiltonian is $\hat{H} = \hat{H}_0 + \hat{V}(t)$.

- (a) (5pts) Suppose $\psi(x,t) = \sum_n c_n(t) \cdot e^{-iE_n t/\hbar} \cdot \psi_n(x)$ satisfy the Schrödinger equation $i\hbar \frac{\partial}{\partial t}\psi = \hat{H}\psi$. Here $E_n = \hbar\omega(n+\frac{1}{2})$ and $\psi_n(x)$ are eigenvalues and normalized eigenfunctions of \hat{H}_0 (see page 1). Derive the differential equations for the coefficients $c_n(t)$ in terms of given quantities. [Hint: use the ladder operators to compute the matrix elements.]
- (b) (5pts) Suppose the initial state is $\psi(x, t = 0) = \psi_0(x)$. Compute the transition probability $P_{0\to 1}(t) \equiv |c_1(t)|^2$ for the lowest non-trivial order of f.
- (c) (5pts) With the same initial conditions of (b), compute $P_{0\to 0}(t) \equiv |c_0(t)|^2$ to second order of f. [Hint: result of (b) will be useful, keep terms up to appropriate order in $c_0(t)$]

Solution

This is similar to Problem 2 of Final Exam of 2017. Use $\hat{x} = \sqrt{\frac{h}{2m\omega}}(\hat{a}_- + \hat{a}_+)$, $\hat{p} = -im\omega\sqrt{\frac{h}{2m\omega}}(\hat{a}_- - \hat{a}_+)$, then $\hat{V}(t) = -f\sqrt{\frac{h}{2m\omega}}(e^{i\Omega t}\hat{a}_- + e^{-i\Omega t}\hat{a}_+)$.

(a) This equation has been given in the Summary.

$$\frac{\mathrm{d}}{\mathrm{d}t}c_n(t) = -\frac{\mathrm{i}}{\hbar} \sum_m \langle \psi_n | \hat{V}(t) | \psi_m \rangle e^{\mathrm{i}(E_n - E_m) \cdot t/\hbar} c_m(t)$$

For the perturbation considered here, the matrix element is

$$\begin{split} \langle \psi_n | \hat{V}(t) | \psi_m \rangle &= -f \sqrt{\frac{h}{2m\omega}} (e^{\mathrm{i}\Omega t} \delta_{n+1,m} \sqrt{m} + e^{-\mathrm{i}\Omega t} \delta_{n,m+1} \sqrt{n}). \\ &\frac{\mathrm{d}}{\mathrm{d}t} c_n(t) = \frac{\mathrm{i}f}{\sqrt{2m\omega\hbar}} [e^{-\mathrm{i}(\omega-\Omega)t} \sqrt{n+1} c_{n+1}(t) + e^{\mathrm{i}(\omega-\Omega)t} \sqrt{n} c_{n-1}(t)]. \end{split}$$

For n=0 the right-hand-side has only one term, $\frac{\mathrm{d}}{\mathrm{d}t}c_n(t)=\frac{\mathrm{i}f}{\sqrt{2m\omega\hbar}}e^{-\mathrm{i}(\omega-\Omega)t}c_1(t)$.

(b) The initial condition is $c_0(t=0)=1$ and $c_{n>0}(t=0)=0$.

Use
$$\frac{\mathrm{d}}{\mathrm{d}t}c_1(t) = \frac{\mathrm{i}f}{\sqrt{2m\omega\hbar}} \cdot (e^{-\mathrm{i}(\omega-\Omega)t}\sqrt{2}c_2(t) + e^{\mathrm{i}(\omega-\Omega)t}c_0(t)),$$

approximate $c_2(t) \sim 0$ and $c_0(t) \sim 1$ on the right-hand-side.

$$c_1(t) \approx \int_0^t dt \, \frac{\mathrm{i}f}{\sqrt{2m\omega\hbar}} e^{\mathrm{i}(\omega-\Omega)t} = \frac{f}{(\omega-\Omega)\sqrt{2m\omega\hbar}} (e^{\mathrm{i}(\omega-\Omega)t} - 1),$$

$$P_{0\to 1}(t) = |c_1(t)|^2 \approx \frac{f^2}{2m\omega\hbar} \frac{4\sin^2(\frac{(\omega-\Omega)t}{2})}{(\omega-\Omega)^2}.$$

(c) Method #1: $c_0(t)$ contains O(1) term, so we need to keep up to $O(f^2)$ term in $c_0(t)$, in order to get accurate $O(f^2)$ terms in $|c_0(t)|^2$.

Use
$$\frac{\mathrm{d}}{\mathrm{d}t}c_n(t) = \frac{\mathrm{i}f}{\sqrt{2m\omega\hbar}}e^{-\mathrm{i}(\omega-\Omega)t}c_1(t)$$
. Plug in the solution of $c_1(t)$ from (b).
$$c_0(t) - c_0(0) \approx \int_0^t \mathrm{d}t \, \frac{\mathrm{i}f}{\sqrt{2m\omega\hbar}}e^{-\mathrm{i}(\omega-\Omega)t} \cdot \frac{f}{(\omega-\Omega)\sqrt{2m\omega\hbar}}(e^{\mathrm{i}(\omega-\Omega)t} - 1) = \frac{f^2}{2m\omega\hbar}(\frac{\mathrm{i}t}{\omega-\Omega} - \frac{e^{-\mathrm{i}(\omega-\Omega)t} - 1}{(\omega-\Omega)^2}).$$
 Then $c_0(t) \approx 1 + \frac{f^2}{2m\omega\hbar}(\frac{\mathrm{i}t}{\omega-\Omega} - \frac{e^{-\mathrm{i}(\omega-\Omega)t} - 1}{(\omega-\Omega)^2}).$

Note that the imaginary part of $c_0(t)$ has terms of $O(f^2)$ or higher, so to get $|c_0(t)|^2$ accurate to $O(f^2)$, we only need to compute the square of real part of $c_0(t)$ above.

$$P_{0\to 0}(t) = |c_0(t)|^2 \approx \left(1 + \frac{f^2}{2m\omega\hbar} \frac{\cos((\omega - \Omega)t) - 1}{(\omega - \Omega)^2}\right)^2 \approx 1 + 2 \cdot \frac{f^2}{2m\omega\hbar} \frac{\cos((\omega - \Omega)t) - 1}{(\omega - \Omega)^2}$$
$$= 1 - \frac{f^2}{2m\omega\hbar} \frac{4\sin^2(\frac{(\omega - \Omega)t}{2})}{(\omega - \Omega)^2}.$$

Method #2: use
$$\sum_{n=0}^{\infty} P_{0\to n}(t) = 1$$
, then $P_{0\to 0}(t) = 1 - P_{0\to 1}(t) - P_{0\to 2}(t) - \dots$

By mathematical induction, it is easy to see that under the initial condition in (b), $c_n(t)$ is of $O(f^n)$ or higher order, therefore $P_{0\to n}(t)$ is of $O(f^{2n})$ order.

So up to
$$O(f^2)$$
 order, $P_{0\to 0}(t) \approx 1 - P_{0\to 1}(t) = 1 - \frac{f^2}{2m\omega\hbar} \frac{4\sin^2(\frac{(\omega-\Omega)t}{2})}{(\omega-\Omega)^2}$.

Problem 4 (15 points) Consider a 1D anharmonic oscillator $\hat{H} = \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2 + \frac{U}{4}\hat{x}^4$, here m, ω, U are positive constants. U is a "small" parameter.

- (a) (5pts) Consider $\hat{H}_{\Omega}^{(0)} = \frac{\hat{p}^2}{2m} + \frac{m\Omega^2}{2}\hat{x}^2$, with normalized ground state $\psi_{0,\Omega}(x)$, parametrized by a positive "variational" parameter Ω . Compute $E(\Omega) \equiv \langle \psi_{0,\Omega} | \hat{H} | \psi_{0,\Omega} \rangle$. [Hint: $\hat{H} = \hat{H}_{\Omega}^{(0)} + \frac{m(\omega^2 \Omega^2)}{2}\hat{x}^2 + \frac{U}{4}\hat{x}^4$, use Gaussian integrals or ladder operators.]
- (b) (5pts*) You may not be able to solve $\frac{\partial}{\partial\Omega}E(\Omega) = 0$ exactly. Solve Ω approximately up to 2nd order of U, and therefore obtain the minimal $E(\Omega)$ to 2nd order of U. [Hint: assume $\Omega = \omega \cdot (1+z)$ with small z, some facts on page 1 will be useful]
- (c) (5pts*) Treat the $\frac{U}{4}\hat{x}^4$ term by perturbation theory. Compute the ground state energy of \hat{H} to 2nd order of U. [Hint: use ladder operators, this may not match the result in (b)]

Solution

(a) Use
$$\hat{H} = \hat{H}_{\Omega}^{(0)} + \frac{m(\omega^2 - \Omega^2)}{2} \hat{x}^2 + \frac{U}{4} \hat{x}^4$$
, and $\hat{H}_{\Omega}^{(0)} |\psi_{0,\Omega}\rangle = \frac{\hbar\Omega}{2} |\psi_{0,\Omega}\rangle$.

$$E(\Omega) = \langle \psi_{0,\Omega} | \hat{H} | \psi_{0,\Omega} \rangle = \frac{1}{2} \hbar \Omega + \frac{m(\omega^2 - \Omega^2)}{2} \cdot \langle \psi_{0,\Omega} | \hat{x}^2 | \psi_{0,\Omega} \rangle + \frac{U}{4} \cdot \langle \psi_{0,\Omega} | \hat{x}^4 | \psi_{0,\Omega} \rangle$$

$$= \frac{1}{2} \hbar \Omega + \frac{m(\omega^2 - \Omega^2)}{2} \cdot \frac{\hbar}{2m\Omega} + \frac{U}{4} \cdot 3(\frac{\hbar}{2m\Omega})^2 = \frac{1}{4} \hbar \Omega + \frac{1}{4} \hbar \frac{\omega^2}{\Omega} + \frac{U}{4} \cdot 3(\frac{\hbar}{2m\Omega})^2 .$$
Here $\langle \psi_{0,\Omega} | \hat{x}^{2n} | \psi_{0,\Omega} \rangle = \int_{-\infty}^{\infty} x^{2n} (\frac{m\omega}{\hbar \pi})^{-1/2} \exp[-x^2/(2 \cdot \frac{\hbar}{2m\omega})] dx$

$$= (\frac{m\omega}{\hbar \pi})^{-1/2} \cdot (2n)!! \cdot (\frac{\hbar}{2m\omega})^n \cdot \sqrt{2\pi \cdot \frac{\hbar}{2m\omega}} = (2n)!! \cdot (\frac{\hbar}{2m\omega})^n.$$

(b)
$$\frac{\partial}{\partial \Omega} E(\Omega) = 0$$
 is, $\frac{\hbar}{4} - \frac{\hbar \omega^2}{4\Omega^2} - \frac{3U}{8} \frac{\hbar^2}{m^2 \Omega^3} = 0$.

Define $\Omega = \omega \cdot (1+z)$, multiply both sides of this equation by $\frac{2}{\hbar}(\Omega/\omega)^3$, we have, $\frac{1}{2}[(1+z)^3 - (1+z)] = \frac{3U}{4}\frac{\hbar}{m^2\omega^3}$, or, $z + \frac{3}{2}z^2 + \frac{1}{2}z^3 = (\frac{3U}{4}\frac{\hbar}{m^2\omega^3})$.

The right-hand-side is a dimensionless small number. Use "series inversion" on page 1, $z \approx (\frac{3U}{4} \frac{\hbar}{m^2 \omega^3}) - \frac{3}{2} (\frac{3U}{4} \frac{\hbar}{m^2 \omega^3})^2 + O(U^3)$.

Plug this back into the formula of $E(\Omega)$, the minimal variational energy is

$$\begin{split} & \min[E(\Omega)] = \frac{\hbar\omega}{4}((1+z) + \frac{1}{1+z}) + \frac{3U}{16}\frac{\hbar^2}{m^2\omega^2}\frac{1}{(1+z)^2} \approx \frac{\hbar\omega}{4}(2+z^2) + \frac{3U}{16}\frac{\hbar^2}{m^2\omega^2}(1-2z) + O(U^3) \\ & \approx \hbar\omega \cdot [\frac{1}{2} + \frac{1}{4} \cdot (\frac{3U}{4}\frac{\hbar}{m^2\omega^3}) - \frac{1}{4} \cdot (\frac{3U}{4}\frac{\hbar}{m^2\omega^3})^2 + O(U^3) \ . \end{split}$$

(c) Denote the orthonormal eigenstates of "unperturbed" Hamiltonian $\hat{H}^{(0)} \equiv \frac{\hat{p}^2}{2m} + \frac{m\omega^2}{2}\hat{x}^2$ by $|\psi_n\rangle$, with energy $E_n^{(0)} = \hbar\omega \cdot (n + \frac{1}{2})$ (see page 1).

The original ground state is $|\psi_0\rangle$.

The perturbation is $\hat{H}^{(1)} \equiv \frac{U}{4}\hat{x}^4 = \frac{U}{4}(\frac{\hbar}{2m\omega})^2(\hat{a}_- + \hat{a}_+)^4$.

Then
$$\hat{H}^{(1)}|\psi_0\rangle = \frac{U}{4}(\frac{\hbar}{2m\omega})^2(\hat{a}_- + \hat{a}_+)^3|\psi_1\rangle = \frac{U}{4}(\frac{\hbar}{2m\omega})^2(\hat{a}_- + \hat{a}_+)^2(|\psi_0\rangle + \sqrt{2}|\psi_2\rangle)$$

$$= \frac{U}{4} (\frac{\hbar}{2m\omega})^2 (\hat{a}_- + \hat{a}_+) (3|\psi_1\rangle + \sqrt{6}|\psi_3\rangle) = \frac{U}{4} (\frac{\hbar}{2m\omega})^2 (3|\psi_0\rangle + 6\sqrt{2}|\psi_2\rangle + \sqrt{24}|\psi_4\rangle)$$

Therefore the first order correction is $\langle \psi_0 | \hat{H}^{(1)} | \psi_0 \rangle = \frac{U}{4} (\frac{\hbar}{2m\omega})^2 \cdot 3 = \frac{\hbar\omega}{4} \cdot (\frac{3U}{4} \frac{\hbar}{m^2\omega^3}).$

The second order correction is $\frac{|\langle \psi_2 | \hat{H}^{(1)} | \psi_0 \rangle|^2}{E_0^{(0)} - E_2^{(0)}} + \frac{|\langle \psi_4 | \hat{H}^{(1)} | \psi_0 \rangle|^2}{E_0^{(0)} - E_4^{(0)}} = (\frac{U}{4} (\frac{\hbar}{2m\omega})^2)^2 \cdot [\frac{(6\sqrt{2})^2}{-2\hbar\omega} + \frac{(\sqrt{24})^2}{-4\hbar\omega}]$

$$= -\hbar\omega \cdot \frac{7}{24} \cdot \left(\frac{3U}{4} \frac{\hbar}{m^2 \omega^3}\right)^2$$

Finally, the perturbative expansion result for the ground state energy is,

$$E_0 \approx \hbar\omega \cdot \left[\frac{1}{2} + \frac{1}{4} \cdot \left(\frac{3U}{4} \frac{\hbar}{m^2 \omega^3}\right) - \frac{7}{24} \cdot \left(\frac{3U}{4} \frac{\hbar}{m^2 \omega^3}\right)^2\right].$$

The first order term matches the variational result. But second order term does not match, and is slightly lower than the variational result as expected.

Problem 5 (10 points) Consider one spin-1/2 moment \hat{S} (see page 1), with the Hamiltonian $\hat{H} = -B \cdot \hat{S}_x$. Here B is a positive constant. Let the initial state be $|\psi(t=0)\rangle = |\uparrow\rangle$. Evolve this state under \hat{H} from t=0 to time t.

- (a) (5pts) Solve the state $|\psi(t)\rangle$ in terms of $|\uparrow\rangle, |\downarrow\rangle$. Measure \hat{S}_z under $|\psi(t)\rangle$. What are the possible measurement results λ and their corresponding probabilities P_{λ} ?
- (b) (5pts) (Quantum Zeno effect) During this time t, measure N times the observable \hat{S}_z , at time $t_n = \frac{n}{N}t$, for n = 1, 2, ..., N. After each measurement, we have a probability distribution $P_{\lambda}(n)$. Derive a recursion relation between $P_{\lambda}(n+1)$ and $P_{\lambda}(n)$, then solve $P_{\lambda}(N)$ exactly. [Hint: it may be helpful to write the recursion relation in matrix-vector form. The $N \to +\infty$ limit should produce the quantum Zeno effect.]

Solution

(a)
$$\hat{H}$$
 is $-\frac{B\hbar}{2} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$ under the $|\uparrow\rangle, |\downarrow\rangle$ basis.

It has eigenvalues $E_{1,2} = \mp \frac{B\hbar}{2}$ with eigenstates $|\psi_{1,2}\rangle = \frac{1}{\sqrt{2}}(|\uparrow\rangle \pm |\downarrow\rangle)$.

$$\begin{aligned} |\psi(t=0)\rangle &= |\uparrow\rangle = \tfrac{1}{\sqrt{2}}|\psi_1\rangle + \tfrac{1}{\sqrt{2}}|\psi_2\rangle, \text{ then } |\psi(t)\rangle = \tfrac{1}{\sqrt{2}}e^{-\mathrm{i}E_1t/\hbar}|\psi_1\rangle + \tfrac{1}{\sqrt{2}}e^{-\mathrm{i}E_2t/\hbar}|\psi_2\rangle \\ &= \tfrac{1}{\sqrt{2}}e^{\mathrm{i}Bt/2}|\psi_1\rangle + \tfrac{1}{\sqrt{2}}e^{-\mathrm{i}Bt/2}|\psi_2\rangle = \cos(Bt/2)|\uparrow\rangle + \mathrm{i}\sin(Bt/2)|\downarrow\rangle. \end{aligned}$$

Measurement of \hat{S}_z will produce:

$$\begin{split} \lambda &= + \frac{\hbar}{2}, \text{ with probability } P_{+\frac{\hbar}{2}} = \cos^2(Bt/2), \text{ collapsed state } |\uparrow\rangle; \text{ or } \\ \lambda &= -\frac{\hbar}{2}, \text{ with probability } P_{-\frac{\hbar}{2}} = \sin^2(Bt/2), \text{ collapsed state } |\downarrow\rangle. \end{split}$$

(b)

The evolution from probability distribution of n-th measurement to that of (n + 1)-th measurement is described by the following table.

) one reme with desire.			
<i>n</i> -th measurement	$\lambda = +\frac{\hbar}{2}$		$\lambda = -rac{\hbar}{2}$	
probabilities	$P_{+\frac{\hbar}{2}}(n)$		$P_{-\frac{\hbar}{2}}(n)$	
state at $t_n + 0$	collapsed to $ \uparrow\rangle$		collapsed to $ \downarrow\rangle$	
state at $t_{n+1} - 0$	$\cos(\frac{Bt}{2N}) \uparrow\rangle + i\sin(\frac{Bt}{2N}) \downarrow\rangle$		$i\sin(\frac{Bt}{2N}) \uparrow\rangle + \cos(\frac{Bt}{2N}) \downarrow\rangle$	
(n+1)-th measurement	$\lambda = +\frac{\hbar}{2},$	$\lambda = -\frac{\hbar}{2}$	$\lambda = +\frac{\hbar}{2}$	$\lambda = -\frac{\hbar}{2}$
probabilities	$P_{+\frac{\hbar}{2}}(n)\cos^2(\frac{Bt}{2N})$	$P_{+\frac{\hbar}{2}}(n)\sin^2(\frac{Bt}{2N})$	$P_{-\frac{\hbar}{2}}(n)\sin^2(\frac{Bt}{2N})$	$P_{-\frac{\hbar}{2}}(n)\cos^2(\frac{Bt}{2N})$

To get the time evolution result from $|\uparrow\rangle$ at $t_n + 0$ to $t_{n+1} - 0$, over time duration $\frac{t}{N}$, we can use the $|\psi(t)\rangle$ in (a) with t replaced by $\frac{t}{N}$.

The time evolution of $|\downarrow\rangle$ over time duration $\frac{t}{N}$ can be solved in similar way.

This produce the recursion relation

$$\begin{pmatrix} P_{+\frac{\hbar}{2}}(n+1) \\ P_{-\frac{\hbar}{2}}(n+1) \end{pmatrix} = \begin{pmatrix} \cos^2(\frac{Bt}{2N}), & \sin^2(\frac{Bt}{2N}) \\ \sin^2(\frac{Bt}{2N}), & \cos^2(\frac{Bt}{2N}) \end{pmatrix} \begin{pmatrix} P_{+\frac{\hbar}{2}}(n) \\ P_{-\frac{\hbar}{2}}(n) \end{pmatrix}$$

$$\text{Therefore } \begin{pmatrix} P_{+\frac{\hbar}{2}}(N) \\ P_{-\frac{\hbar}{2}}(N) \end{pmatrix} = W^N \cdot \begin{pmatrix} 1 \\ 0 \end{pmatrix}, \text{ where } \begin{pmatrix} 1 \\ 0 \end{pmatrix} \text{ is } \begin{pmatrix} P_{+\frac{\hbar}{2}}(0) \\ P_{-\frac{\hbar}{2}}(0) \end{pmatrix}, \text{ and } W = \begin{pmatrix} \cos^2(\frac{Bt}{2N}), & \sin^2(\frac{Bt}{2N}) \\ \sin^2(\frac{Bt}{2N}), & \cos^2(\frac{Bt}{2N}) \end{pmatrix}.$$
[Side remark: this is similar to a "Markov chain"]

Change to basis that diagonalize this 2×2 matrix, we have

$$\begin{split} &P_{+\frac{\hbar}{2}}(n+1) + P_{-\frac{\hbar}{2}}(n+1) = [\cos^2(\frac{Bt}{2N}) + \sin^2(\frac{Bt}{2N})] \cdot [P_{+\frac{\hbar}{2}}(n) + P_{-\frac{\hbar}{2}}(n)], \\ &\text{therefore } P_{+\frac{\hbar}{2}}(N) + P_{-\frac{\hbar}{2}}(N) = 1^N \cdot [P_{+\frac{\hbar}{2}}(0) + P_{-\frac{\hbar}{2}}(0)] = 1 \text{ (should be expected); and } \\ &P_{+\frac{\hbar}{2}}(n+1) - P_{-\frac{\hbar}{2}}(n+1) = [\cos^2(\frac{Bt}{2N}) - \sin^2(\frac{Bt}{2N})] \cdot [P_{+\frac{\hbar}{2}}(n) - P_{-\frac{\hbar}{2}}(n)], \\ &\text{therefore } P_{+\frac{\hbar}{2}}(N) - P_{-\frac{\hbar}{2}}(N) = [1 - 2\sin^2(\frac{Bt}{2N})]^N \cdot [P_{+\frac{\hbar}{2}}(0) - P_{-\frac{\hbar}{2}}(0)] = [1 - 2\sin^2(\frac{Bt}{2N})]^N. \\ &\text{Finally, } P_{+\frac{\hbar}{2}}(N) = \frac{1}{2} + \frac{1}{2}[1 - 2\sin^2(\frac{Bt}{2N})]^N, P_{-\frac{\hbar}{2}}(N) = \frac{1}{2} - \frac{1}{2}[1 - 2\sin^2(\frac{Bt}{2N})]^N. \\ &\text{In the limit } N \to \infty, \ [1 - 2\sin^2(\frac{Bt}{2N})]^N \to [1 - \frac{B^2t^2}{2N^2}]^N \to e^{-\frac{B^2t^2}{2N}} \to 1, \text{ then } P_{+\frac{\hbar}{2}}(N) \to 1. \end{split}$$

Problem 6 (10 points) Consider 2n spin-1/2 moments $\hat{\mathbf{S}}_i$, labeled by i = 1, 2, ..., 2n. Here n is a positive integer.

- (a) (5pts) What are the possible total spin angular momentum quantum number S, namely possible eigenvalues of $(\sum_{i} \hat{\mathbf{S}})^2 = \hbar^2 S(S+1)$?
- (b) (5pts**) How many linearly independent spin singlet (total-spin-0) states can these 2n spin-1/2 make? (for generic n) [Examples:

$$n = 1$$
, then $\frac{1}{2} \otimes \frac{1}{2} = \mathbf{0} \oplus \mathbf{1}$, the only singlet state is $\frac{1}{\sqrt{2}}(|\uparrow\downarrow\rangle - |\downarrow\uparrow\rangle)$; $n = 2$, then $\frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} \otimes \frac{1}{2} = (\mathbf{0} \oplus \mathbf{1}) \otimes (\mathbf{0} \oplus \mathbf{1}) = (\mathbf{0} \otimes \mathbf{0}) \oplus (\mathbf{0} \otimes \mathbf{1}) \oplus (\mathbf{1} \otimes \mathbf{0}) \oplus (\mathbf{1} \otimes \mathbf{1})$

 $= 0 \oplus 1 \oplus 1 \oplus (0 \oplus 1 \oplus 2)$, there are two linearly independent spin singlet states,

$$\frac{1}{2}(|\uparrow\downarrow\uparrow\downarrow\rangle - |\uparrow\downarrow\downarrow\uparrow\rangle - |\downarrow\uparrow\uparrow\downarrow\rangle + |\downarrow\uparrow\downarrow\uparrow\rangle)$$
, and

$$\frac{1}{2\sqrt{3}}(2|\uparrow\uparrow\downarrow\downarrow\downarrow\rangle - |\uparrow\downarrow\uparrow\downarrow\rangle - |\uparrow\downarrow\downarrow\uparrow\rangle - |\downarrow\uparrow\uparrow\downarrow\rangle - |\downarrow\uparrow\downarrow\uparrow\rangle + 2|\downarrow\downarrow\uparrow\uparrow\rangle).$$

[Hint: consider the dimensions of Hilbert spaces of fixed total $S_z = \sum_i \hat{S}_{i,z}$, total-spin-0 states $|\psi\rangle$ should satisfy $(\sum_i \hat{S}_{i,+})|\psi\rangle = 0$]

Solution

(a) By the Clebsch-Gordon theorem about "addition of angular momentum", from the examples in (b), use mathematical induction, we have: for 2n spin-1/2, the total spin

angular momentum quantum number S can be any integer between (including) 0 and n, S = 0 or 1 or ... or n.

(b) Method #1: count the dimensions of subspaces of certain total S_z .

Suppose the Hilbert space of 2n spin-1/2 is divided into m_0 sets of total-spin-0 states(singlets) plus m_1 sets of total-spin-1 states(triplets) (each set of spin triplet contains $3 = 2 \cdot 1 + 1$ states) plus ... plus m_n sets of total-spin-n states (each set of total-spin-n states contains 2n + 1 states),

$$\underbrace{\frac{1}{2} \otimes \cdots \otimes \frac{1}{2}}_{2n} = \underbrace{0 \oplus \cdots \oplus 0}_{m_0} \oplus \underbrace{1 \oplus \cdots \oplus 1}_{m_1} \oplus \cdots \oplus \underbrace{n \oplus \cdots \oplus n}_{m_n}$$
(*)

Compute the dimensions of subspaces with certain $S_z = \sum_{i=1}^{2n} S_{i,z}$ in two different ways.

• Consider the right-hand-side of the above (*) expression.

Each of the subspaces on the right-hand-side (spanned by states with certain total spin quantum number S and total $S_z = -S, ..., S$) will contribute a linearly independent total $S_z = 0$ state $|S, S_z = 0\rangle$, so the dimension of total $S_z = 0$ Hilbert space is $\dim[\mathcal{H}_{S_z=0}] = m_0 + m_1 + \cdots + m_n$.

But only the subspaces with total spin quantum number $S \geq 1$ will contribute a linearly independent $|S, S_z = \hbar\rangle$ state, so the dimension of total $S_z = \hbar$ subspace is $\dim[\mathcal{H}_{S_z=\hbar}] = m_1 + \cdots + m_n$.

• Consider the left-hand-side of the above (*) expression.

The 2^{2n} basis of the entire Hilbert space can be chosen as the S_z tensor product basis $|S_{1,z}, S_{2,z}, \dots, S_{2n,z}\rangle$.

For total $S_z = 0$, there must be n up-spin $(S_{i,z} = +\frac{\hbar}{2})$ and n down-spin $(S_{i,z} = -\frac{\hbar}{2})$, so $\dim[\mathcal{H}_{S_z=0}] = \binom{2n}{n} = \frac{(2n)!}{n!n!}$.

For total $S_z = \hbar$, there must be (n+1) up-spin and (n-1) down-spin, so $\dim[\mathcal{H}_{S_z=\hbar}] = \binom{2n}{n+1} = \frac{(2n)!}{(n+1)!(n-1)!}$.

Finally, the number of total-spin-0 states is

$$m_0 = \dim[\mathcal{H}_{S_z=0}] - \dim[\mathcal{H}_{S_z=\hbar}] = \binom{2n}{n} - \binom{2n}{n+1} = \frac{(2n)!}{(n+1)!n!}$$

[Side remark: this is related to the "hook length formula" in representation theory.]

Method #2: try to "solve" $\sum_{i} \hat{S}_{i,+} | \psi \rangle = 0$. Define the total ladder operators $\hat{S}_{\pm} = \sum_{i=1}^{2n} \hat{S}_{i,\pm}$. And $\hat{S}_{a} = \sum_{i=1}^{2n} \hat{S}_{i,a}$. Denote the basis $|S_{1,z}, \dots, S_{2n,z}\rangle$ with $\sum_{i} S_{i,z} = 0$ by $|\psi_{\alpha}\rangle$, $\alpha = 1, \dots, {2n \choose n}$. Denote the basis $|S_{1,z}, \dots, S_{2n,z}\rangle$ with $\sum_{i} S_{i,z} = \hbar$ by $|\phi_{\beta}\rangle$, $\beta = 1, \dots, {2n \choose n+1}$.

A non-vanishing state $|\psi\rangle$ is total-spin-0 if and only if $\hat{S}_{+}|\psi\rangle = 0$ and $(\sum_{i} \hat{S}_{i,z})|\psi\rangle = 0$. Expand $|\psi\rangle$ by S_z -basis. Then $|\psi\rangle = \sum_{\alpha} c_{\alpha}|\psi_{\alpha}\rangle$, contains only those $\sum_{i} S_{i,z} = 0$ states.

Note that $\hat{S}_{+}|\psi_{\alpha}\rangle$ is a linear combination of $|\phi_{\beta}\rangle$ states, $\hat{S}_{+}|\psi_{\alpha}\rangle = \sum_{\beta} |\phi_{\beta}\rangle \cdot (S_{+})_{\beta,\alpha}$. Here $(S_{+})_{\beta,\alpha} = \langle \phi_{\beta}|\hat{S}_{+}|\psi_{\alpha}\rangle$ is a $\binom{2n}{n+1} \times \binom{2n}{n}$ rectangular matrix. It is actually \hbar times a "(0-1)-matrix", each matrix element can be only 0 or \hbar .

For a total-spin-0 state $|\psi\rangle$, we have $\hat{S}_{+}|\psi\rangle = \sum_{\alpha} \sum_{\beta} |\phi_{\beta}\rangle (S_{+})_{\beta,\alpha} c_{\alpha} = 0$. Therefore $\sum_{\alpha} (S_{+})_{\beta,\alpha} c_{\alpha} = 0$ for each β . The number of linearly independent solutions to this set of linear equations is [number of variables, $\binom{2n}{n}$]-rank (S_{+}) , where rank (S_{+}) is the "rank" of the rectangular matrix $(S_{+})_{\beta,\alpha}$.

We still need to prove that $\operatorname{rank}(S_+)$ is the smaller dimension $\binom{2n}{n+1}$, namely there is no non-trivial solution to d_{β} from the linear equations $\sum_{\beta} d_{\beta}(S_+)_{\beta,\alpha} = 0$ for each α . We can prove this by contradiction: if there is a non-trivial solution d_{β} , then $\sum_{\beta} (S_-)_{\alpha,\beta} d_{\beta}^* = 0$ for every α , here $(S_-)_{\alpha,\beta} = \langle \psi_{\alpha} | \hat{S}_- | \phi_{\beta} \rangle = [(S_+)_{\beta,\alpha}]^*$, define $|\phi\rangle = \sum_{\beta} d_{\beta}^* |\phi_{\beta}\rangle$, then $\hat{S}_- |\phi\rangle = 0$ and $\hat{S}_z |\phi\rangle = \hbar |\phi\rangle$, therefore $\hat{S}^2 |\phi\rangle = [\hat{S}_z(\hat{S}_z - \hbar) + \hat{S}_+ \hat{S}_-] |\phi\rangle = 0$, however $\langle \phi | \hat{S}^2 | \phi \rangle = \langle \phi | [\hat{S}_z(\hat{S}_z + \hbar) + \hat{S}_- \hat{S}_+] |\phi\rangle \geq \langle \phi | [\hat{S}_z(\hat{S}_z + \hbar)] |\phi\rangle = 2\hbar^2 \langle \phi | \phi\rangle > 0$. This contradiction proves that there is no such state $|\phi\rangle$, so the rank of $(S_+)_{\beta,\alpha}$ is indeed $\binom{2n}{n+1}$.