We introduce the models for zero inflated count data. Define the ZINB model for the response variable y assuming only non-negative values as follows:

$$f_{ZINB}(y) = \phi I(y = 0) + (1 - \phi) f_D(y)$$

where ϕ denotes the mixture proportion and I(.) is the indicator variable defined as

$$I(y) = \begin{cases} 1, & \text{if } y = 0 \\ 0, & \text{if } y \sim f_D(.) \end{cases},$$

and $f_D(\cdot)$ is the density for Negative Binomial/Poisson distribution given by

$$f_{NB}(y) = \frac{\Gamma(y+1/\alpha)}{y!\Gamma(1/\alpha)} \left(\frac{\alpha^{-1}}{\alpha^{-1}+\lambda}\right)^{\alpha^{-1}} \left(\frac{\lambda}{\alpha^{-1}+\lambda}\right)^{y}$$
$$f_{Pois}(y) = \frac{e^{-\lambda}\lambda^{y}}{y!}$$

where λ (> 0) is the mean of y and $Var(y) = \lambda$ for Poisson and $\lambda + a\lambda^2$ for negative Binomial, $a \ge 0$ being the dispersion parameter for negative Binomial distribution. It is easy to see that the mean and variance of y under the ZINB model is given by

$$E(y) = (1 - \phi) \lambda$$
, $Var(y) = [(1 - \phi) \lambda] [1 + \lambda (\phi + \alpha)]$

while those for the ZIP model is

$$E(y) = (1 - \phi) \lambda$$
, $Var(y) = [(1 - \phi) \lambda] [1 + \lambda \phi]$

The mean parameter λ is related to the covariates $x_i = (x_0, x_1, \ldots, x_p)_i$ by the log link function given by

$$\log (\lambda_i) = \sum_{j=0}^p x_j \beta_j = \boldsymbol{x}_i' \boldsymbol{\beta}$$

where $\boldsymbol{\beta} = (\beta_0, \ \beta_1, \dots, \ \beta_p)$ is the p+1 dimensional vector of unknown regression coefficients. Finally the mixture proportion ϕ is linked to the set of zero inflated covariates $\boldsymbol{z} = (z_0, \ z_1, \dots, \ z_q)$ and the q+1 vector of regression coefficients $\boldsymbol{\gamma} = (\gamma_0, \ \gamma_1, \dots, \ \gamma_q)$ by the logit link function as in the following

$$logit\left(\phi\right) = \sum_{k=0}^{q} z_k \gamma_k = z' \gamma.$$

The z_0 is assumed to be 1 corresponding to the intercept γ_0 .