Al Agent Architecture Document

1) System Overview

An end-to-end **Summarization + RAG** agent that:

- Summarizes paragraphs and PDFs.
- Answers user questions grounded in an on-disk knowledge base.
- Runs locally (Hugging Face Transformers + PyTorch), optionally loading LoRA adapters for style/domain adaptation.
- Exposes a Streamlit UI.

2) Components

A. Presentation Layer (UI)

- Streamlit app (src/app.py)
 - o Tabs: Paragraph, PDF, Ask (RAG).
 - Sidebar toggle: Use LoRA (models/lora-distilbart).
 - o Handles file uploads and progress messaging.

B. Agent Layer

- SummarizationAgent (src/agent.py)
 - \circ plan(text) \rightarrow chooses **single** vs **hierarchical** strategy based on length.
 - \circ execute(text, plan) \rightarrow runs summarization (one-pass or chunk-then-combine).
- RAGAgent (src/rag_agent.py)

- ingest(path) → builds/updates KB.
- o query(question, k) \rightarrow retrieves top-K chunks, formats a concise Context \rightarrow Question \rightarrow Answer prompt, calls the summarizer.

C. Model Layer

- Summarizer (src/summarizer.py)
 - o Base: sshleifer/distilbart-cnn-12-6 (DistilBART).
 - Optional: LoRA adapters from models/lora-distilbart/ (PEFT).
 - o Generates summaries/answers with fixed safe caps.

D. Retrieval Layer

- Retriever (src/retriever.py)
 - Embeddings: sentence-transformers/all-MiniLM-L6-v2.
 - Index: FAISS (CPU) stored under knowledge_base/.
 - **Metadata:** meta.json1 one line per chunk with text + source.
 - ingest_path(path) → extract text (via pypdf for PDFs), chunk, embed, upsert to FAISS.
 - \circ search(query, k) \rightarrow return top-K chunks + scores.

E. Utilities

- src/utils.py
 - pdf_to_text(path) → robust text extraction.
 - o chunk_text(text) \rightarrow ~1.2k char chunks with overlap.
 - o Small helpers (length, compression).

F. Data/Evals/Training

- **Training**: training/finetune_lora.py (LoRA adapters).
- **Evaluation**: evaluation/eval_metrics.py (ROUGE & compression).
- Sample data: data/sample_dataset.jsonl.

3) Interaction Flow

A. Summarization (Paragraph/PDF)

- 1. **User input** (text or PDF) \rightarrow UI.
- 2. Preprocess:
 - PDF → text (pdf_to_text).
 - \circ If long → chunk_text.
- 3. Agent planning:
 - \circ SummarizationAgent.plan \rightarrow {strategy: single | hierarchical}.
- 4. Execution:
 - o **single**: one pass through Summarizer.
 - o **hierarchical**: summarize chunks \rightarrow join \rightarrow summarize combined.
- 5. **Output** rendered in UI (with strategy & chunk count).

B. RAG Question Answering

- 1. Ingest:
 - \circ User provides folder / uploads files \rightarrow RAGAgent.ingest.
 - Text is chunked, embedded (MiniLM), and stored in FAISS with metadata.
- 2. Query:
 - \circ User enters question \rightarrow RAGAgent.query(question, k).

- Retriever returns top-K chunks.
- Prompt template:

Answer the question using only the context.

•

- Context:
- {top-K chunks}

•

- Question:
- {user question}

•

• Answer:

0

- o Summarizer generates concise answer.
- 3. **UI** shows answer + expandable **retrieved chunks** for transparency.

4) Models Used

Layer	Choice	Why
Summa rizer	DistilBART (sshleifer/distilbart-cnn-12-6)	Lightweight, summarization-tuned, runs on CPU.
Fine-tun ing	LoRA (PEFT) on attention proj. layers (q_proj, k_proj, v_proj, out_proj)	Parameter-efficient; small adapters; easy on/off toggle.
Embed ding s	all-MiniLM-L6-v2 (Sentence Transformers)	Strong semantic similarity with small footprint, fast CPU.

Vector Stor e	FAISS (CPU)	Reliable, simple, local similarity search.
UI	Streamlit	Rapid prototyping; no frontend heavy lifting.

5) Reasons for Choices

Local LLM (DistilBART)

- No API keys, privacy-preserving, cost-free.
- \circ Already summarization-oriented \rightarrow better starting point than generic LLMs.

LoRA Fine-tuning

- Need to adapt to academic/student style and improve reliability on your domain.
- LoRA keeps compute/storage tiny (adapters are a few MB) and is easily switchable.

RAG

- Instantly incorporates new documents without retraining.
- Strong grounding reduces hallucinations; transparent retrieval evidence.

• FAISS + MiniLM

o Good quality-speed tradeoff on CPU; simple to deploy.

Agent Abstraction

 SummarizationAgent and RAGAgent encapsulate planning, retrieval, prompt construction, and generation → clean UI, easy testing, and future extensibility.

6) Non-Functional Considerations

- **Reproducibility:** deterministic chunking & capped generation; saved adapters in models/lora-distilbart.
- Transparency: "View retrieved chunks" exposes evidence used for an answer.
- Extensibility: swap models, add OCR, caching, guardrails, or larger vector DB without changing the UI contract.
- **Performance:** all CPU-friendly defaults; optional GPU speeds up training/inference.

7) Future Enhancements

- OCR for scanned PDFs (Tesseract).
- Better factuality checks (QAFactEval) for sensitive domains.
- Caching of embeddings and generations.
- Multi-agent planning (Planner
 ← Executor) with error recovery and tool usage.
- Larger local models (e.g., Llama-3-Instruct) if hardware allows.

8) Minimal Sequence Diagram (Text)

```
• User -> UI(Streamlit): text/PDF/question
```

```
• UI -> SummarizationAgent: plan(text)
```

- SummarizationAgent -> Summarizer: generate(summary) [or]
- UI -> RAGAgent: ingest(path) / query(question, k)
- RAGAgent -> Retriever(FAISS): search(question, k)
- RAGAgent -> Summarizer: generate(answer using context)
- Summarizer -> UI: summary/answer

```
UI -> User: display + retrieved chunks (RAG)
```