Multivariable Function, Sketching & Domain

Sunday, 6 October 2024 1:40 am

14.1 Functions of Several Variables

Equation y=c in 1D vs 2D vs 3D

In this section we study functions of two or more variables from four points of view:

verbally (by a description in words)

numerically (by a table of values)

algebraically (by an explicit formula)

visually (by a graph or level curves)

Functions of Two Variables

The temperature T at a point on the surface of the earth at any given time depends on the longitude x and latitude y of the point. We can think of T as being a function of the two variables x and y, or as a function of the pair (x, y). We indicate this functional dependence by writing T = f(x, y).

The volume V of a circular cylinder depends on its radius r and its height h. In fact, we know that $V = \pi r^2 h$. We say that V is a function of r and h, and we write $V(r, h) = \pi r^2 h$.

Definition A **function** f **of two variables** is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the **domain** of f and its **range** is the set of values that f takes on, that is, $\{f(x, y) \mid (x, y) \in D\}$.

FIGURE 1

Numerical Example: Beef Consumption

 Table 12.1
 Quantity of beef bought (pounds/household/week)

Drigo	of bo	ef (\$/II	- 1
PHOE	OI DO	ei (. / 11	"

Household income per year, I (\$1000)

	(4.1.)				
	3.00	3.50	4.00	4.50	
20	2.65	2.59	2.51	2.43	
40	4.14	4.05	3.94	3.88	
60	5.11	5.00	4.97	4.84	
80	5.35	5.29	5.19	5.07	
100	5.79	5.77	5.60	5.53	

Algebraic Examples: Formulas

Example 2 Give a formula for the function M = f(B, t) where M is the amount of money in a bank account t years after an initial investment of B dollars, if interest is accrued at a rate of 1.2% per year

compounded annually.

Solution Annual compounding means that M increases by a factor of 1.012 every year, so

 $M = f(B, t) = B(1.012)^t$.

Example 3 A cylinder with closed ends has radius r and height h. If its volume is V and its surface area is A,

find formulas for the functions V = f(r, h) and A = g(r, h).

Solution Since the area of the circular base is πr^2 , we have

 $V = f(r, h) = \text{Area of base} \cdot \text{Height} = \pi r^2 h.$

The surface area of the side is the circumference of the bottom, $2\pi r$, times the height h, giving $2\pi rh$. Thus,

 $A = g(r, h) = 2 \cdot \text{Area of base} + \text{Area of side} = 2\pi r^2 + 2\pi r h.$

A Tour of 3-Space

Figure 12.2: Coordinate axes in three-dimensional space

Figure 12.3: The point (1, 2, 3) in 3-space

Figure 12.4: The point (0,0,-1) in 3-space

Graphing Equations in 3-Space

Example 6 What do the graphs of the equations z = 0, z = 3, and z = -1 look like?

Figure 12.7: The three coordinate planes

Figure 12.6: The planes z = -1, z = 0, and z = 3

Figure 12.13: Graph of $f(x,y) = x^2 + y^2$ for $-3 \le x \le 3, -3 \le y \le 3$

Let $f(x,y)=x^2+y^2$. Describe in words the graphs of the following functions: (a) $g(x,y)=x^2+y^2+3$, (b) $h(x,y)=5-x^2-y^2$, (c) $k(x,y)=x^2+(y-1)^2$. Example 1

(a)
$$g(x,y) = x^2 + y^2 + 3$$
,

(b)
$$h(x,y) = 5 - x^2 - y^2$$
,

(c)
$$k(x,y) = x^2 + (y-1)^2$$

Figure 12.14: Graph of $g(x, y) = x^2 + y^2 + 3$

Figure 12.15: Graph of $h(x, y) = 5 - x^2 - y^2$

Figure 12.16: Graph of $k(x, y) = x^2 + (y - 1)^2$

EXAMPLE 5 Sketch the graph of the function f(x, y) = 6 - 3x - 2y.

FIGURE 6

EXAMPLE 6 Sketch the graph of $g(x, y) = \sqrt{9 - x^2 - y^2}$.

FIGURE 7

Graph of
$$g(x, y) = \sqrt{9 - x^2 - y^2}$$

EXAMPLE 1 For each of the following functions, evaluate f(3, 2) and find and sketch the domain.

(a)
$$f(x, y) = \frac{\sqrt{x + y + 1}}{x - 1}$$

(b)
$$f(x, y) = x \ln(y^2 - x)$$

$$x + y + 1 = 0$$

FIGURE 2

Domain of
$$f(x, y) = \frac{\sqrt{x+y+1}}{x-1}$$

FIGURE 3

Domain of $f(x, y) = x \ln(y^2 - x)$

EXAMPLE 4 Find the domain and range of $g(x, y) = \sqrt{9 - x^2 - y^2}$.

Graphs

Another way of visualizing the behavior of a function of two variables is to consider its graph.

Definition If f is a function of two variables with domain D, then the **graph** of f is the set of all points (x, y, z) in \mathbb{R}^3 such that z = f(x, y) and (x, y) is in D.

FIGURE 5

Figure 12.25: A parabolic cylinder $z = x^2$

Figure 12.26: Circular cylinder $x^2 + y^2 = 1$

FIGURE 9 Graph of $h(x, y) = 4x^2 + y^2$

(a) $f(x,y) = (x^2 + 3y^2)e^{-x^2-y^2}$

(c) $f(x, y) = \sin x + \sin y$

(d) $f(x, y) = \frac{\sin x \sin y}{xy}$

<u>Desmos</u> | 3D Graphing Calculator

<u>Desmos | Graphing Calculator</u>