Análise de Circuitos Elétricos

Circuitos elétricos podem ser analisados no domínio da transformada de Laplace

Análise de Circuitos Elétricos

Circuitos elétricos podem ser analisados no domínio da transformada de Laplace

 Determinar a equação diferencial e aplicar a transformada de Laplace (já estudado)

Análise de Circuitos Elétricos

Circuitos elétricos podem ser analisados no domínio da transformada de Laplace

- Determinar a equação diferencial e aplicar a transformada de Laplace (já estudado)
- ► Analisar um circuito equivalente no domínio transformado
 - Substituir todas as variáveis de circuito por suas transformadas
 - Substituir todas as fontes por fontes "transformadas"
 - Substituir os elementos de circuito por seus equivalentes "transformados"

Transformação dos Elementos de Circuito

Resistores
$$v(t) = R i(t)$$
 $v(t) = R i(t)$

Transformação dos Elementos de Circuito

Resistores
$$v(t) = R i(t)$$
 $v(t) = R i(t)$

Aplicando a transformada de Laplace "unilateral" ou "bilateral"

$$V(s)=R\ I(s)$$

$$Z_R(s)=\frac{V(s)}{I(s)}=R \quad \to {\sf impedância}$$

$$Y_R(s)=\frac{I(s)}{V(s)}=\frac{1}{R} \quad \to {\sf admitância}$$

$$i(t) = C \frac{dv(t)}{dt}$$

Aplicando a transformada de Laplace unilateral

$$I(s) = C \left[sV(s) - v(0^{-}) \right]$$

$$V(s) = \frac{1}{sC}I(s) + \frac{v(0^-)}{s}$$

$$I(s) \quad Z_C(s) \quad + \quad V(s) \quad - \quad Z_C(s)$$

$$I(s) = sC V(s) - C v(0^{-})$$

V(s)

$$Z_C(s) = \frac{V(s)}{I(s)}\Big|_{v(0^-)=0} = \frac{1}{sC} \longrightarrow \text{impedância}$$

$$Y_C(s) = rac{I(s)}{V(s)}\Big|_{v(0^-)=0} = sC \quad o ext{ admitância}$$

Aplicando a transformada de Laplace bilateral

$$I(s) = sC V(s) = Y_C(s)V(s)$$

$$V(s) = \frac{1}{sC}I(s) = Z_C(s)I(s)$$

$$I(s)$$
 $Z_C(s)$
 \downarrow
 $V(s)$ -

$$v(t) = L \frac{di(t)}{dt}$$

Aplicando a transformada de Laplace unilateral

$$V(s) = L \left[s I(s) - i(0^{-}) \right]$$

$$V(s) = sL I(s) - L i(0^{-})$$

$$V(s) = sL I(s) - L i(0^{-})$$

$$V(s) = sL I(s) - L i(0^{-})$$

$$I(s) = \frac{1}{sL} V(s) + \frac{i(0^{-})}{s}$$

V(s)

$$Z_L(s) = \frac{V(s)}{I(s)} \Big|_{i(0^-)=0} = sL \quad \to \mathsf{imped\^{a}ncia}$$

$$Y_L(s) = \frac{I(s)}{V(s)} \Big|_{i(0^-)=0} = \frac{1}{sL} \quad \to \text{admitância}$$

Aplicando a transformada de Laplace bilateral

$$V(s) = sL I(s) = Z_L(s)I(s)$$

$$I(s) = \frac{1}{sL}V(s) = Y_L(s)V(s)$$

Exemplo:

Determine i(t) para $t\geqslant 0$ no circuito abaixo sabendo que $v_C(0^-)=V_0=10$ V, $i_L(0^-)=I_0=2$ A, $C=\frac{1}{5}$ F, L=1 H, $R=2\Omega$, e que $v_s(t)=5e^{-2t}\cos(3t)u(t)$

Circuito Equivalente no Domínio \boldsymbol{s}

Análise

$$[Z_R + Z_C(s) + Z_L(s)]I(s) = V_s(s) + L i_L(0^-) - \frac{v_C(0^-)}{s}$$

Análise

$$[Z_R + Z_C(s) + Z_L(s)]I(s) = V_s(s) + Li_L(0^-) - \frac{v_C(0^-)}{s}$$

$$Z_R + Z_C(s) + Z_L(s) = R + \frac{1}{sC} + sL = \frac{s^2LC + sRC + 1}{sC}$$

Análise

$$[Z_R + Z_C(s) + Z_L(s)]I(s) = V_s(s) + Li_L(0^-) - \frac{v_C(0^-)}{s}$$

$$Z_R + Z_C(s) + Z_L(s) = R + \frac{1}{sC} + sL = \frac{s^2LC + sRC + 1}{sC}$$

$$V_s(s) = \frac{5(s+2)}{(s+2)^2 + 9}$$

$$I(s) = \overbrace{\frac{sC}{s^2LC + sRC + 1}}^{H(s)} V_s(s) + \frac{(sLI_0 - V_0) \not sC}{\not s(s^2LC + sRC + 1)}$$

$$I(s) = \overbrace{\frac{sC}{s^2LC + sRC + 1}}^{H(s)} V_s(s) + \frac{(sLI_0 - V_0) \not sC}{\not s(s^2LC + sRC + 1)}$$

Substituindo valores numéricos e $V_s(s)$

$$I(s) = \frac{5s(s+2)}{(s^2+2s+5)[(s+2)^2+9]} + \frac{2s-10}{s^2+2s+5}$$

$$I(s) = \overbrace{\frac{sC}{s^2LC + sRC + 1}}^{H(s)} V_s(s) + \frac{(sLI_0 - V_0) \not sC}{\not s(s^2LC + sRC + 1)}$$

Substituindo valores numéricos e $V_s(s)$

$$I(s) = \frac{5s(s+2)}{(s^2+2s+5)[(s+2)^2+9]} + \frac{2s-10}{s^2+2s+5}$$

$$I(s) = \underbrace{\frac{5s(s+2)}{\left[(s+1)^2+4\right]\left[(s+2)^2+9\right]}}_{\text{modos naturais}} + \underbrace{\frac{2s-10}{(s+1)^2+4}}_{\text{modos naturais}} + \underbrace{\frac{2s-10}{(s+1)^2+4}}_{\text{modos naturais}}$$

Resposta ao Estado Zero

$$I_1(s) = \frac{5s(s+2)}{[(s+1)^2+4][(s+2)^2+9]} = \frac{K_1s + K_2}{(s+1)^2+4} + \frac{K_3s + K_4}{(s+2)^2+9}$$

$$K_1 = 0,962$$

$$K_2 = 1,923$$

$$K_3 = -0,962$$

$$K_4 = 5$$

$$I_1(s) = \frac{0,962 s + 1,923}{(s+1)^2 + 4} - \frac{0,962 s - 5}{(s+2)^2 + 9}$$
$$= \frac{0,962 (s+1)}{(s+1)^2 + 4} + 0,4805 \frac{2}{(s+1)^2 + 4}$$
$$- \frac{0,962 (s+2)}{(s+2)^2 + 9} + 2,308 \frac{3}{(s+2)^2 + 9}$$

$$I_1(s) = \frac{0,962 s + 1,923}{(s+1)^2 + 4} - \frac{0,962 s - 5}{(s+2)^2 + 9}$$

$$= \frac{0,962 (s+1)}{(s+1)^2 + 4} + 0,4805 \frac{2}{(s+1)^2 + 4}$$

$$- \frac{0,962 (s+2)}{(s+2)^2 + 9} + 2,308 \frac{3}{(s+2)^2 + 9}$$

Como o sistema é causal e $v_s(t) = 0$ para t < 0,

$$i_1(t) = 0,962 e^{-t} \cos(2t) u(t) + 0,4805 e^{-t} \sin(2t) u(t)$$
$$-0,962 e^{-2t} \cos(3t) u(t) + 2,308 e^{-2t} \sin(3t) u(t)$$

Resposta à entrada zero

$$I_2(s) = \frac{2s - 10}{(s+1)^2 + 4} = \frac{2(s+1)}{(s+1)^2 + 4} - 6\frac{2}{(s+1)^2 + 4}$$
$$i_2(t) = 2e^{-t}\cos(2t)u(t) - 6e^{-t}\sin(2t)u(t)$$

Resposta completa

$$\begin{split} i(t) = & 2,962 \, e^{-t} \, \cos(2t) \, u(t) - 7,4425 \, e^{-t} \, \mathrm{sen}(2t) \, u(t) \leftarrow \mathsf{R. \ natural} \\ & -0,962 \, e^{-2t} \, \cos(3t) \, u(t) + 2,308 \, e^{-2t} \, \mathrm{sen}(3t) \, u(t) \leftarrow \mathsf{R. \ forçada} \end{split}$$

Representação de Sistemas por Diagramas de Blocos

- ▶ Decomposição de sistemas grandes em interconexão de sistemas menores
- Os subsistemas menores podem ser mais facilmente projetados e testados

Conexão série

$$\left. \begin{array}{l} W(s) = H_1(s)X(s) \\ Y(s) = H_2(s)W(s) \end{array} \right\} \Rightarrow Y(s) = H_1(s)H_2(s)X(s)$$

$$\Rightarrow H(s) = H_1(s)H_2(s)$$

Conexão paralela

$$Y_1(s) = H_1(s)X(s)$$

 $Y_2(s) = H_2(s)X(s)$ $\Rightarrow Y(s) = [H_1(s) + H_2(s)]X(s)$

$$\Rightarrow H(s) = H_1(s) + H_2(s)$$

Conexão retroalimentada

Obs: Este tipo de conexão permite mover polos de $H_1(s)$

Realizações de Sistemas

- ► Blocos diferenciadores são problemáticos
- ► Implementações usam preferencialmente blocos integradores

Forma Direta I

$$H(s) = \frac{Y(s)}{X(s)} = \frac{s+3}{s^3 + 4s^2 + 9s + 10}$$

dividindo por s^3

$$H(s) = \frac{\frac{1}{s^2} + 3\frac{1}{s^3}}{1 + 4\frac{1}{s} + 9\frac{1}{s^2} + 10\frac{1}{s^3}}$$
$$= \left[\frac{1}{s^2} + 3\frac{1}{s^3}\right] \left[\frac{1}{1 + 4\frac{1}{s} + 9\frac{1}{s^2} + 10\frac{1}{s^3}}\right] = H_1(s)H_2(s)$$

$$H_1(s) = \frac{W(s)}{X(s)} = \frac{1}{s^2} + 3\frac{1}{s^3}$$

$$H_2(s) = \frac{Y(s)}{W(s)} = \frac{1}{1 + 4\frac{1}{s} + 9\frac{1}{s^2} + 10\frac{1}{s^3}}$$

$$W(s) = \frac{X(s)}{s^2} + 3\frac{X(s)}{s^3} \quad Y(s) = W(s) - 4\frac{Y(s)}{s} - 9\frac{Y(s)}{s^2} - 10\frac{Y(s)}{s^3}$$

(ロト 4回 トイヨト イヨト ヨー めなべ

Forma Direta II

como
$$H(s) = H_1(s) H_2(s) = H_2(s) H_1(s)$$

Realização Transposta

Mostra-se que a função de transferência de uma estrutura fica inalterada se o seguinte conjunto de modificações for realizado (transposição):

- a) Inverta a direção de todos os ramos, mantendo os valores dos multiplicadores
- b) Transforme nós de partida de sinais em nós de soma de sinais, e vice-versa
- c) Troque X(s) (entrada) por Y(s) (saída)

No exemplo: $H(s) = \frac{s+3}{s^3 + 4s^2 + 9s + 10}$

 Sistemas LIT podem ser interpretados como filtros no domínio da frequência

- Sistemas LIT podem ser interpretados como filtros no domínio da frequência
- ► Filtros modificam diferentemente sinais senoidais de diferentes frequências

- Sistemas LIT podem ser interpretados como filtros no domínio da frequência
- ► Filtros modificam diferentemente sinais senoidais de diferentes frequências
- ► Sabemos que

$$x(t) = e^{st} \rightarrow y(t) = H(s) e^{st} \quad [e^{st} \text{ para } (-\infty < t < \infty)]$$

- Sistemas LIT podem ser interpretados como filtros no domínio da frequência
- ► Filtros modificam diferentemente sinais senoidais de diferentes frequências
- ▶ Sabemos que

$$x(t) = e^{st} \rightarrow y(t) = H(s) e^{st} \quad [e^{st} \text{ para } (-\infty < t < \infty)]$$

► Caso particularmente importante (sistemas estáveis)

$$s=j\omega$$

$$x(t)=e^{j\omega t} o y(t)=H(j\omega)\,e^{j\omega t} \quad \hbox{[regime permanente senoidal]}$$

► Como

$$e^{j\omega t}=\cos(\omega t)+j\mathrm{sen}(\omega t)$$

$$x(t)=\cos(\omega t)\to y(t)=\mathrm{Re}\Big\{H(j\omega)\,e^{j\omega t}\Big\}$$

Escrevendo
$$H(j\omega)=|H(j\omega)|\,e^{j\theta_H(\omega)}$$

$$x(t)=\cos(\omega t)\to y(t)=|H(j\omega)|\cos[\omega t+\theta_H(\omega)]$$

Da mesma forma

$$x(t) = \cos(\omega t + \theta_x) \rightarrow y(t) = |H(j\omega)| \cos[\omega t + \theta_x + \theta_H(\omega)]$$

Observações:

- $H(j\omega) = |H(j\omega)| e^{j\theta_H(\omega)}$ é denominada resposta em frequência do sistema
- $ightharpoonup |H(j\omega)|$ é o ganho introduzido pelo sistema sobre um sinal senoidal de frequência ω
- $mleagtharpoonup heta_H(\omega)$ é a defasagem adicionada pelo sistema a um sinal senoidal de frequência ω
- ► A resposta em frequência do sistema determina seu comportamento como filtro

Respostas a Sinais Senoidais Causais

► A resposta terá uma parte transitória (resposta natural) e uma parte correspondente ao regime permanente (resposta forçada)

Respostas a Sinais Senoidais Causais

- ► A resposta terá uma parte transitória (resposta natural) e uma parte correspondente ao regime permanente (resposta forçada)
- \blacktriangleright A resposta em regime permanente senoidal será determinada por $H(j\omega)$

$$H(s) = \frac{N(s)}{(s - p_1)(s - p_2)\dots(s - p_N)}$$
$$x(t) = e^{j\omega t}u(t) \to X(s) = \frac{1}{s - j\omega}$$
$$Y(s) = \frac{N(s)}{(s - p_1)(s - p_2)\dots(s - p_N)(s - j\omega)}$$

$$Y(s) = \frac{N(s)}{(s - p_1)(s - p_2) \dots (s - p_N)(s - j\omega)}$$

Expandindo em frações parciais

$$\begin{split} Y(s) &= \sum_{i=1}^{N} \frac{k_i}{s-p_i} + \frac{k_0}{s-j\omega} = \sum_{i=1}^{N} \frac{k_i}{s-p_i} + \frac{H(j\omega)}{s-j\omega} \\ \Rightarrow y(t) &= \sum_{i=1}^{N} k_i e^{p_i t} &+ \underbrace{|H(j\omega)| e^{j[\omega t + \theta_H(\omega)]}}_{\text{Resp. em Reg. Perm. Senoidal}} \end{split}$$

Resposta transitória

Diagramas de Bode e Aproximações por Assíntotas

 Diagrama de Bode Gráficos de

$$|H(j\omega)| e^{j\theta_H(\omega)}$$

▶ Gráficos de $|H(j\omega)|$ traçados em dB (decibel)

$$|H(j\omega)|_{\mathsf{dB}} = 20\log_{10}|H(j\omega)|$$

lacktriangle Escalas das frequências ightarrow Logarítimicas

Obs: Gráfico em dB se

$$H(j\omega) = H_1(j\omega)H_2(j\omega)$$

$$|H(j\omega)|_{\mathsf{dB}} = |H_1(j\omega)|_{\mathsf{dB}} + |H_2(j\omega)|_{\mathsf{dB}}$$

se

$$H(j\omega) = \frac{H_1(j\omega)}{H_2(j\omega)}$$

$$|H(j\omega)|_{\mathsf{dB}} = |H_1(j\omega)|_{\mathsf{dB}} - |H_2(j\omega)|_{\mathsf{dB}}$$

⇒ Facilita traçado e visualização

Exemplo:
$$H(s) = \frac{1}{s+1} = \frac{1}{1+\sigma+j\omega}$$
 $|H(s)|_{\text{dB}} = 20 \log_{10} \frac{1}{\sqrt{(1+\sigma)^2+\omega^2}}$

Mesmo gráfico mostrando o polo da função em $\sigma=-1$ e $\omega=0$

Mesmo gráfico mostrando o plano $\sigma=0$

A linha de interseção do plano $\sigma=0$ com a superfície é o gráfico de $|H(j\omega)|$

A linha de interseção do plano $\sigma=0$ com a superfície é o gráfico de $|H(j\omega)|$

$$|H(j\omega)| = \frac{1}{\sqrt{1+\omega^2}}$$

► Aproximação por Assíntotas

- Permite traçado aproximado de forma simples
- ► Facilita a interpretação da resposta em frequência associada a uma função de transferência
- Facilita o projeto de sistemas com respostas em frequência desejadas
- Não se torna dispensável mesmo com acesso a infraestrutura computacional

► Aproximação por Assíntotas

- Permite traçado aproximado de forma simples
- ► Facilita a interpretação da resposta em frequência associada a uma função de transferência
- Facilita o projeto de sistemas com respostas em frequência desejadas
- Não se torna dispensável mesmo com acesso a infraestrutura computacional
- Expressão genérica de H(s) contém os seguintes fatores (no numerador ou no denominador)
 - ▶ a) Constante K
 - ▶ b) Polo ou zero na origem [fator s]
 - c) Polo ou zero de primeira ordem

$$(s+a)$$

▶ d) polo ou zero de segunda ordem (complexo conjugados)

$$(s^2 + b_1 s + b_0)$$

Estudo para $\omega \geq 0$

1) Função constante

$$\begin{split} H(s) &= K \to H(j\omega) = K \to |H(j\omega)| = |K| \\ |H(j\omega)|_{\mathsf{dB}} &= 20 \log_{10} |K| \\ \\ \theta_H(j\omega) &= \begin{cases} 0, & K > 0 \\ \pi, & K < 0 \end{cases} \end{split}$$

Polo:
$$H(s) = \frac{1}{s}$$

Polo:
$$H(s) = \frac{1}{s} \rightarrow \text{N\~{a}o podemos usar } s = j\omega$$

Polo:
$$H(s) = \frac{1}{s} \rightarrow \text{N\~ao} \text{ podemos usar } s = j\omega$$

$${\sf Zero} \colon\thinspace H(s) = s \to H(j\omega) = j\omega$$

Polo:
$$H(s) = \frac{1}{s} \rightarrow \text{N}$$
ão podemos usar $s = j\omega$

$${\sf Zero} \colon \, H(s) = s \to H(j\omega) = j\omega$$

$$|H(j\omega)| = \omega \to |H(j\omega)|_{\mathsf{dB}} = 20 \log_{10} \omega$$

$$+20 \text{ dB/(dec)}$$
 ou $+6,02 \text{ dB/}$ oitava

Polo:
$$H(s) = \frac{1}{s} \rightarrow \text{N}$$
ão podemos usar $s = j\omega$

$${\sf Zero} \colon\thinspace H(s) = s \to H(j\omega) = j\omega$$

$$|H(j\omega)| = \omega \to |H(j\omega)|_{\mathsf{dB}} = 20 \log_{10} \omega$$

+20 dB/(dec) ou +6.02 dB/ oitava

$$\theta_H(j\omega) = \tan^{-1}\left(\frac{\omega}{0}\right) = \frac{\pi}{2}$$

Obs:

Número de décadas entre ω_1 e ω_2 $(\omega_2>\omega_1) o \log_{10}\left(rac{\omega_2}{\omega_1}
ight)$

Polo:
$$H(s) = \frac{1}{s} \rightarrow \text{N}$$
ão podemos usar $s = j\omega$

$${\sf Zero} \colon\thinspace H(s) = s \to H(j\omega) = j\omega$$

$$|H(j\omega)| = \omega \to |H(j\omega)|_{\mathsf{dB}} = 20 \log_{10} \omega$$

+20 dB/(dec) ou +6.02 dB/oitava

$$\theta_H(j\omega) = \tan^{-1}\left(\frac{\omega}{0}\right) = \frac{\pi}{2}$$

Obs:

Número de décadas entre ω_1 e ω_2 $(\omega_2>\omega_1) o \log_{10}\left(rac{\omega_2}{\omega_1}
ight)$

Número de oitavas entre ω_1 e ω_2 $(\omega_2 > \omega_1)$

$$\log_2 \frac{\omega_2}{\omega_1} = \frac{\log_{10} \frac{\omega_2}{\omega_1}}{\log_{10} 2} \approx 3,32 \log_{10} \frac{\omega_2}{\omega_1}$$

3) Polo ou zero real (primeira ordem) Polo em s=-a com normalização para H(0)=1

$$H(s) = \frac{1}{1 + \frac{s}{a}}$$

3) Polo ou zero real (primeira ordem) Polo em s=-a com normalização para H(0)=1

$$\begin{split} H(s) &= \frac{1}{1+\frac{s}{a}} \\ H(j\omega) &= \frac{1}{1+j\left(\frac{\omega}{a}\right)} \rightarrow |H(j\omega)| = \frac{1}{\sqrt{1+\left(\frac{\omega}{a}\right)^2}} \end{split}$$

3) Polo ou zero real (primeira ordem) Polo em s=-a com normalização para H(0)=1

$$H(s) = \frac{1}{1 + \frac{s}{a}}$$

$$H(j\omega) = \frac{1}{1 + j\left(\frac{\omega}{a}\right)} \to |H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{a}\right)^2}}$$

Magnitude

$$|H(j\omega)|_{\mathsf{dB}} = -10\log_{10}\left[1 + \left(\frac{\omega}{a}\right)^{2}\right]$$

3) Polo ou zero real (primeira ordem) Polo em s=-a com normalização para H(0)=1

$$H(s) = \frac{1}{1 + \frac{s}{a}}$$

$$H(j\omega) = \frac{1}{1 + j\left(\frac{\omega}{a}\right)} \to |H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{a}\right)^2}}$$

Magnitude

$$|H(j\omega)|_{\mathsf{dB}} = -10\log_{10}\left[1 + \left(\frac{\omega}{a}\right)^2\right]$$

a) $\omega \ll a$

$$|H(j\omega)|_{\mathsf{dB}} \approx -10\log_{10}1 = 0\,\mathsf{dB}$$

3) Polo ou zero real (primeira ordem)

Polo em s=-a com normalização para H(0)=1

$$H(s) = \frac{1}{1 + \frac{s}{a}}$$

$$H(j\omega) = \frac{1}{1 + j\left(\frac{\omega}{a}\right)} \to |H(j\omega)| = \frac{1}{\sqrt{1 + \left(\frac{\omega}{a}\right)^2}}$$

Magnitude

$$|H(j\omega)|_{\mathsf{dB}} = -10\log_{10}\left[1 + \left(\frac{\omega}{a}\right)^2\right]$$

a) $\omega \ll a$

$$|H(j\omega)|_{\mathsf{dB}} \approx -10\log_{10}1 = 0\,\mathsf{dB}$$

b) $\omega \gg a$

$$|H(j\omega)|_{\mathsf{dB}} \approx -10\log_{10}\left(\frac{\omega}{a}\right)^2 = -20\log_{10}\left(\frac{\omega}{a}\right) \leftarrow -20\,\mathsf{dB/d\acute{e}cada}$$

$$\begin{array}{l} \text{Gráfico + assíntotas: } H(s) = \frac{1}{1+\frac{s}{10}} \\ |H(j\omega)|_{\text{dB}} = -10\log_{10}\left[1+\left(\frac{\omega}{10}\right)^2\right] \end{array}$$

Fase:

$$\theta_H(\omega) = -\tan^{-1}\left(\frac{\omega}{a}\right)$$

Fase:

$$\theta_H(\omega) = -\tan^{-1}\left(\frac{\omega}{a}\right)$$

a) $\omega \ll a$

$$\theta_H(\omega) \approx 0 \, \mathrm{rad}.$$

Fase:

$$\theta_H(\omega) = -\tan^{-1}\left(\frac{\omega}{a}\right)$$

a) $\omega \ll a$

$$\theta_H(\omega) \approx 0 \, \text{rad}.$$

b) $\omega \gg a$

$$\theta_H(\omega) \to \lim_{\omega \to \infty} -\tan^{-1}\left(\frac{\omega}{a}\right) = -\frac{\pi}{2}$$

$\mathsf{Gr\'{a}fico} + \mathsf{ass\'{i}ntotas}$:

$$\theta_H(\omega) = -\tan^{-1}\left(\frac{\omega}{10}\right)$$

3) Zero real (primeira ordem) Zero em s=-a com normalização para H(0)=1

$$H(s) = 1 + \frac{s}{a}$$

Zero em s=-a com normalização para H(0)=1

$$H(s) = 1 + \frac{s}{a}$$

$$H(j\omega) = 1 + j\left(\frac{\omega}{a}\right) \to |H(j\omega)| = \sqrt{1 + \left(\frac{\omega}{a}\right)^2}$$

Zero em s=-a com normalização para H(0)=1

$$H(s) = 1 + \frac{s}{a}$$

$$H(j\omega) = 1 + j\left(\frac{\omega}{a}\right) \to |H(j\omega)| = \sqrt{1 + \left(\frac{\omega}{a}\right)^2}$$

Magnitude

$$|H(j\omega)|_{\mathsf{dB}} = 10 \log_{10} \left[1 + \left(\frac{\omega}{a}\right)^2 \right]$$

Zero em s=-a com normalização para H(0)=1

$$H(s) = 1 + \frac{s}{a}$$

$$H(j\omega) = 1 + j\left(\frac{\omega}{a}\right) \to |H(j\omega)| = \sqrt{1 + \left(\frac{\omega}{a}\right)^2}$$

Magnitude

$$|H(j\omega)|_{\mathsf{dB}} = 10 \log_{10} \left[1 + \left(\frac{\omega}{a}\right)^2 \right]$$

a) $\omega \ll a$

$$|H(j\omega)|_{\mathsf{dB}} \approx 10 \log_{10} 1 = 0 \, \mathsf{dB}$$

Zero em s=-a com normalização para H(0)=1

$$H(s) = 1 + \frac{s}{a}$$

$$H(j\omega) = 1 + j\left(\frac{\omega}{a}\right) \to |H(j\omega)| = \sqrt{1 + \left(\frac{\omega}{a}\right)^2}$$

Magnitude

$$|H(j\omega)|_{\mathsf{dB}} = 10 \log_{10} \left[1 + \left(\frac{\omega}{a}\right)^2 \right]$$

a) $\omega \ll a$

$$|H(j\omega)|_{\mathsf{dB}} \approx 10 \log_{10} 1 = 0 \, \mathsf{dB}$$

b) $\omega \gg a$

$$|H(j\omega)|_{\mathsf{dB}} \approx 10 \log_{10} \left(\frac{\omega}{a}\right)^2 = 20 \log_{10} \left(\frac{\omega}{a}\right) \leftarrow +20 \, \mathsf{dB/d\acute{e}cada}$$

$\begin{array}{l} \text{Gráfico + assíntotas: } H(s) = 1 + \frac{s}{10} \\ |H(j\omega)|_{\text{dB}} = 10 \log_{10} \left[1 + \left(\frac{\omega}{10} \right)^2 \right] \end{array}$

Gráfico + assíntotas:

$$\theta_H(\omega) = \tan^{-1}\left(\frac{\omega}{10}\right)$$

Observação - Polos complexo-conjugados

$$H(s) = \frac{K_0}{s^2 + b_1 s + b_0} = \frac{\omega_n^2}{s^2 + 2 \xi \omega_n s + \omega_n^2} = \frac{\omega_n^2}{D(s)}$$
$$D(s) = 0 \to s = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

Observação - Polos complexo-conjugados

$$H(s) = \frac{K_0}{s^2 + b_1 s + b_0} = \frac{\omega_n^2}{s^2 + 2 \xi \omega_n s + \omega_n^2} = \frac{\omega_n^2}{D(s)}$$
$$D(s) = 0 \to s = -\xi \omega_n \pm \omega_n \sqrt{\xi^2 - 1}$$

Polos em

$$s = -\xi \,\omega_n \, \pm j \,\omega_n \, \sqrt{1 - \xi^2}$$

O que corresponde a escrever D(s) como

$$D(s) = (s + \xi \omega_n)^2 + \omega_n^2 (1 - \xi^2)$$

Assim

$$H(s) = \frac{\omega_n^2}{(s+\xi\,\omega_n)^2 + \omega_n^2\,(1-\xi^2)} = \frac{\omega_n}{\sqrt{1-\xi^2}} \frac{\omega_n\,(1-\xi^2)^{\frac{1}{2}}}{(s+\xi\,\omega_n)^2 + \omega_n^2\,(1-\xi^2)}$$

Logo

$$h(t) = \frac{\omega_n}{\sqrt{1-\xi^2}} \, e^{-\xi \, \omega_n \, t} \mathrm{sen} \left[\left(\omega_n \, \sqrt{1-\xi^2} \right) t \right] u(t)$$

 ξ : fator de amortecimento ω_n : freg natural ou freg ressonância

4) Polo ou zero de $2^{\underline{a}}$ ordem (complexos)

Polos:

$$H(s) = \frac{K_0}{s^2 + b_1 \, s + b_0}$$

Normalizando para |H(0)|=1 e usando os parâmetros ξ e ω_n

$$H(s) = \frac{\omega_n^2}{s^2 + 2\xi \,\omega_n \,s + \omega_n^2} = \frac{1}{1 + \frac{2\xi}{\omega_n} \,s + \frac{1}{\omega_n^2} \,s^2}$$

$$H(j\omega) = \frac{1}{1 + j \, 2 \, \xi \, \frac{\omega}{\omega_n} + \left(\frac{j\omega}{\omega_n}\right)^2} = \frac{1}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + j \, 2 \, \xi \, \left(\frac{\omega}{\omega_n}\right)}$$

Magnitude:

$$|H(j\omega)| = \frac{1}{\sqrt{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\xi^2 \left(\frac{\omega}{\omega_n}\right)^2}}$$

$$|H(j\omega)|_{\mathsf{dB}} = -10\log_{10}\left\{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\,\xi^2\left(\frac{\omega}{\omega_n}\right)^2\right\}$$

$$|H(j\omega)|_{\mathsf{dB}} = -10\log_{10}\left\{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right]^2 + 4\,\xi^2\left(\frac{\omega}{\omega_n}\right)^2\right\}$$

a)
$$\omega \ll \omega_n$$

$$|H(j\omega)|_{dB} \approx -10 \log_{10} 1 = 0 \, dB$$

b)
$$\omega \gg \omega_n$$

$$|H(j\omega)|_{\mathsf{dB}} pprox -10\log_{10}\left(rac{\omega}{\omega_n}
ight)^4 = -40\log_{10}\left(rac{\omega}{\omega_n}
ight) \quad egin{dcases} -40\,\mathsf{dB/d\acute{e}cada} \\ -12\,\mathsf{dB/oitava} \end{cases}$$

c)
$$\omega = \omega_n$$

$$\begin{split} |H(j\omega)|_{\mathsf{dB}} &= -10 \log_{10}(2\,\xi)^2 = -20 \log_{10}(2\,\xi) \\ &\approx -6\,\mathsf{dB} - 20 \log_{10}(\xi) = -6\,\mathsf{dB} + 20 \log_{10}\left(\frac{1}{\xi}\right) \end{split}$$

- ▶ $|H(j\omega)|_{dB}$ depende do valor de ξ , $(0 < \xi < 1)$
- Quanto menor o amortecimento ξ , maior será $|H(j\omega)|$
- ► Por ex:

$$\xi = 0.1 \rightarrow |H(j\omega_n)|_{\mathsf{dB}} = 14\,\mathsf{dB} \quad \Rightarrow |H(j\omega_n)| \approx 5$$

Exemplo: $H(s)=\dfrac{\omega_n^2}{s^2+2\,\xi\,\omega_n\,s+\omega_n^2}$, $\omega_n=10~{\rm rad/s},~\xi=0.1$

Gráfico + assíntotas:

Fase:

$$H(j\omega) = \frac{1}{\left[1 - \left(\frac{\omega}{\omega_n}\right)^2\right] + j2\xi\left(\frac{\omega}{\omega_n}\right)}$$

$$\theta_H(\omega) = -\tan^{-1}\left[\frac{2\xi\left(\frac{\omega}{\omega_n}\right)}{1-\left(\frac{\omega}{\omega_n}\right)^2}\right]$$

a) $\omega \ll \omega_n$

$$\theta_H(\omega) pprox 0$$
 rad

b) $\omega \gg \omega_n$

$$\theta_H(\omega) = -\tan^{-1} \left[\frac{-2 \xi \omega_n}{\omega} \right], \quad \omega \to \infty$$

Como

$$\frac{2 \xi \omega_n}{\omega} > 0 \Rightarrow \lim_{\omega \to \infty} \theta_H(\omega) = -\tan^{-1}(\phi)$$

em que ϕ é um valor que tende a zero "vindo de $\phi < 0$ "

$$\Rightarrow \lim_{\omega \to \infty} \theta_H(\omega) = -\pi \operatorname{rad}$$

c) Em
$$\omega = \omega_n$$

$$\theta_H(\omega) = -\frac{\pi}{2}$$

d) Comportamento de $\theta_H(\omega)$ no entorno de $\omega=\omega_n$

$$\frac{d\theta_{H}(\omega)}{d\omega} = -\frac{\frac{2\xi}{\omega_{n}} \left[1 + \left(\frac{\omega}{\omega_{n}} \right)^{2} \right]}{\left[1 - \left(\frac{\omega}{\omega_{n}} \right)^{2} \right]^{2} + 4\xi^{2} \left(\frac{\omega}{\omega_{n}} \right)^{2}}$$

Fazendo $\omega = \omega_n$

$$\left. \frac{d\theta_H(\omega)}{d\omega} \right|_{\omega = \omega_n} = \frac{-1}{\xi \omega_n}$$

$$\left. \frac{d\theta_H(\omega)}{d\omega} \right|_{\omega = \omega_n} = \frac{-1}{\xi \omega_n}$$

Quanto menor a magnitude da parte real dos polos $(\xi\omega_n)$, maior será a magnitude da derivada de $\theta_H(\omega)$ em $\omega=\omega_n$

$$\theta_H(\omega) = -\tan^{-1}\left\{ \left[2\xi \left(\frac{\omega}{\omega_n} \right) \right] / \left[1 - \left(\frac{\omega}{\omega_n} \right)^2 \right] \right\}$$

Gráfico + assíntotas:

