UNIVERSIDAD MAYOR DE SAN SIMÓN FACULTAD DE CIENCIAS Y TECNOLOGÍA DEPARTAMENTO DE ELÉCTRICA-ELECTRÓNICA

LABORATORIO DE CIRCUITOS ELÉCTRICOS III INFORME No. 5

MEDIA DE LA POTENCIA ACTIVA Y REACTIVA TRIFÁSICA EN CIRCUITOS CON CARGA EQUILIBRADA

Estudiante:

Caballero Burgoa, Carlos Eduardo.

Carrera:

Ing. Electromecánica.

Docente:

Ing. Marco Antonio Vallejo Camacho.

Grupo: 2F (Martes).

Fecha de entrega: 23 de Octubre del 2024.

1. Cálculos teóricos

1.1. Carga en estrella

Considerando un circuito trifásico delta-estrella equilibrado (Figura 1):

Con voltajes de linea $U_L=220[{\rm V}]$ y con frecuencia de 50[Hz], se hallan las potencias activa y reactiva:

Figura 1: Circuito trifásico equilibrado delta-estrella.

Se calcula la frecuencia angular (ω):

$$\omega = 2\pi f$$

$$= 2\pi (50)$$

$$= 100\pi [rad/s]$$

Se halla la impedancia en el dominio de frecuencia:

$$Z = R_2 + j\omega L$$
$$= 500 + j50\pi[\Omega]$$

Y su representación fasorial:

$$|Z| = \sqrt{500^2 + (50\pi)^2}$$

$$= 524.09$$

$$\theta = \arctan\left(\frac{50\pi}{500}\right)$$

$$= 17.44^{\circ}$$

$$Z = 524.09/17.44^{\circ}[\Omega]$$

A partir del voltaje de linea, se calcula el voltaje de fase:

$$U_F = \frac{U_L}{\sqrt{3}}$$
$$= \frac{220}{\sqrt{3}}$$
$$= 127.02[V]$$

Y a partir del voltaje de fase, se halla la corriente de linea:

$$I_L = \frac{U_F}{|Z|}$$

$$= \frac{127.02}{\sqrt{(500)^2 + (50\pi)^2}}$$

$$= 0.24[A]$$

Por tanto las potencias activa y reactiva son:

$$P_T = \sqrt{3} U_L I_L \cos(\phi)$$
= 220 0.24 cos(17.44°)
= 88.104[W]

$$Q_T = \sqrt{3} U_L I_L \sin(\phi)$$
= 220 0.24 sen(17.44°)
= 27.679[VAR]

1.2. Carga en delta

Considerando un circuito trifásico delta-delta equilibrado (Figura 2):

Con voltajes de linea $U_L = 220[V]$ y con frecuencia de 50[Hz], se hallan las potencias activa y reactiva:

Figura 2: Circuito trifásico equilibrado delta-delta.

A partir del voltaje de linea, se calcula la corriente de fase:

$$I_F = \frac{U_L}{|Z|}$$

$$= \frac{220}{\sqrt{(500)^2 + (50\pi)^2}}$$

$$= 0.4198[A]$$

Y a partir de la corriente de linea se obtiene la corriente de fase:

$$I_L = \sqrt{3} I_F$$

= $\sqrt{3} (0.4198)$
= 0.7271[A]

Por tanto las potencias activa y reactiva son:

$$P_T = \sqrt{3} U_L I_L \cos(\phi)$$
= 220 0.7271 cos(17.44°)
= 264.31[W]
$$Q_T = \sqrt{3} U_L I_L \sin(\phi)$$
= 220 0.7271 sen(17.44°)
= 83.036[VAR]

1.3. Resumen de resultados

En la siguiente tabla se resumen los valores obtenidos teóricamente:

	Carga Estrella	Carga Delta
P_T	88.104[W]	264.31[W]
Q_T	27.679[VAR]	83.036[VAR]

2. Simulación

Se utilizó el software *Electronic Workbench v5.12*. para simular los circuitos calculados, la carga en estrella puede verse en la **Figura 3**, mientras que la carga en delta puede verse en la **Figura 4**:

Figura 3: Simulación del circuito delta-estrella.

Figura 4: Simulación del circuito delta-estrella.

2.1. Resumen de resultados

En la siguiente tabla se resumen los valores obtenidos de la simulación:

	Carga Estrella				Carga Delta	L
	Z_1	Z_2	Z_3	Z_1	Z_2	Z_3
I_Z	242.1[mA]	242.0[mA]	242.0[mA]	418.6[mA]	418.6[mA]	418.6[mA]
U_R	121.0[V]	120.9[V]	120.9[V]	209.3[V]	209.2[V]	209.3[V]
U_X	38.51[V]	38.52[V]	38.52[V]	66.59[V]	66.64[V]	66.59[V]
$P = U_R I_Z$	29.29[W]	29.26[W]	29.26[W]	87.61[W]	87.57[W]	87.61[W]
$Q = U_X I_Z$	9.32[VAR]	9.32[VAR]	9.32[VAR]	27.87[VAR]	27.90[VAR]	27.87[VAR]
P_T	87.81[W]				262.80[W]	
Q_T	27.967[VAR]			83.645[VAR]		

3. Tablas y mediciones

Se presentan los resultados obtenidos con las mediciones realizadas en laboratorio y el calculo de la potencia a partir del voltaje y corriente:

	Car	ga Estı	ella	Ca	arga Del	lta
	Z_1	Z_1 Z_2 Z_3		Z_1	Z_2	Z_3
$I_Z[A]$	0.22	0.23	0.23	0.40	0.41	0.40
$U_R[V]$	124	124 125		217	217	215
$U_X[V]$	37.6	37.9	37.5	66.4	66.9	65.4
$P = U_R I_Z[W]$	27.28 28.75 2		28.75	86.80	88.97	86.00
$Q = U_X I_Z[VAR]$	8.272 8.717 8.625		26.56	27.429	26.16	
P_T	84.78[W]				261.77[W]
Q_T	25.614[VAR]			80).149[VA]	R]

Se presentan los resultados obtenidos con las mediciones realizadas con el método de los dos vatímetros para el calculo de potencia:

	Carga Estrella	Carga Delta
W_1	39[W]	115[W]
W_2	55[W]	162[W]
Q_1	39[VAR]	122[VAR]
Q_2	-7[VAR]	-40[VAR]
P_T	94[W]	277[W]
Q_T	32[VAR]	82[VAR]

3.1. Resumen de resultados

En la siguiente tabla se resumen los valores obtenidos del calculo teórico, la simulación y los datos obtenidos de laboratorio:

	Carga	Estrella	Carga Delta	
	$P_T[W]$	$Q_T[VAR]$	$P_T[W]$	$Q_T[VAR]$
Teórico	88.104	27.679	264.31	83.036
Simulado	87.81	27.967	262.80	83.645
$\textbf{Laboratorio} (U{\times}I)$	84.78	25.614	261.77	80.149
Laboratorio (Dos vatímetros)	94	32	277	82

4. Cuestionario

1. Compare las potencias activa y reactiva trifásica obtenidas con carga en delta y carga en estrella, ¿Cual es la relación en ambos casos? ¿Dicha relación se verifica con lo aprendido teóricamente?

Las potencias activa y reactiva calculadas, y la relación entre una carga estrella y delta son:

		Y	Δ	Relación \triangle/Y
Teórico	Activa	88.104	264.31	2.9999
	Reactiva	27.679	83.036	2.9999
Simulado	Activa	87.81	262.80	2.9928
	Reactiva	27.967	83.645	2.9908
$\textbf{Laboratorio} (U{\times}I)$	Activa	84.78	261.77	3.0876
	Reactiva	25.614	80.149	3.1291
Laboratorio (Dos vatímetros)	Activa	94	227	2.4149
	Reactiva	32	82	2.5625

La relación teórica $P_{\triangle} = 3 P_{Y}$ se verifica en todos los casos con margenes aceptables de error.

2. La potencia medida en cada impedancia, ¿es la misma o no?. En caso de que sea diferente explique las posibles razones.

Las potencias obtenidas en cada impedancia son las siguientes:

	Car	ga Estı	rella	Ca	arga Del	lta
P[W]	27.28	28.75	28.75	86.80	88.97	86.00
Q[VAR]	8.272	8.717	8.625	26.56	27.429	26.16

Las variaciones son despreciables, y pueden deberse a los valores de las resistencias e inductores, a los conectores, a los instrumentos medición o a los voltajes de linea usados, que pueden generar pequeños desequilibrios en el circuito.

3. Comparar la potencia total obtenida por los dos métodos. ¿Existe diferencia en dichos valores? ¿En que caso se obtiene un valor mas cercano al teórico y por que?

Los valores comparados de la potencia son:

		Teórico	$U \times I$	Dos vatímetros	Error
Carga Estrella	P_T	88.104[W]	84.78[W]	94[W]	9.81 %
	Q_T	27.679[VAR]	25.614[VAR]	32[VAR]	19.96%
Carga Delta	P_T	246.31[W]	261.77[W]	277[W]	5.5 %
	Q_T	83.036[VAR]	80.149[VAR]	82[VAR]	2.26%

Existen diferencias pequeñas entre los valores obtenidos, los valores más cercanos a los valores teóricos con los calculados a partir del producto del voltaje y corriente, esto puede deberse a la escala en la que trabaja el vatímetro utilizado.

4. Demuestre que la potencia total en un circuito trifásico equilibrado independientemente de la forma de conexión de la carga esta dada por: $P_T = \sqrt{3} U_L I_L \cos(\phi)$ y a partir de esto, verifique la relación entre un sistema delta y estrella: $P_{\triangle} = 3 P_{\mathbf{Y}}$.

En un elemento de la carga, la tensión y corriente de fase son:

$$v_a(t) = \sqrt{2} v_{\rm rms} \cos(\omega t)$$
$$i_a(t) = \sqrt{2} i_{\rm rms} \cos(\omega t - \phi)$$

La potencia instantánea por fase esta dada por la siguiente expresión:

$$\begin{aligned} p_a(t) &= v_a(t) \, i_a(t) \\ &= \sqrt{2} \, U_f \, \cos(\omega t) \sqrt{2} \, I_f \, \cos(\omega t - \phi) \\ &= 2 \, U_f \, I_f \, \cos(\omega t) \cos(\omega t - \phi) \\ p_b(t) &= 2 \, U_f \, I_f \, \cos(\omega t - 120^\circ) \cos(\omega t - \phi - 120^\circ) \\ p_c(t) &= 2 \, U_f \, I_f \, \cos(\omega t + 120^\circ) \cos(\omega t - \phi + 120^\circ) \end{aligned}$$

La potencia total es la suma de las potencias en las tres fases:

$$p(t) = p_a(t) + p_b(t) + p_c(t)$$

$$= 2 U_f I_f \cos(\omega t) \cos(\omega t - \phi) +$$

$$2 U_f I_f \cos(\omega t - 120^\circ) \cos(\omega t - \phi - 120^\circ) +$$

$$2 U_f I_f \cos(\omega t + 120^\circ) \cos(\omega t - \phi + 120^\circ)$$

Considerando la siguiente identidad trigonométrica:

$$\cos(A) \cos(B) = \frac{1}{2} [\cos(A+B) + \cos(A-B)]$$

Se obtiene la siguiente expresión:

$$p(t) = 2 U_f I_f(\cos(\omega t) \cos(\omega t - \phi) + \cos(\omega t - 120^\circ) \cos(\omega t - \phi + 120^\circ) + \cos(\omega t + 120^\circ) \cos(\omega t - \phi + 120^\circ))$$

$$= 2 U_f I_f($$

$$\frac{1}{2} [\cos(2\omega t - \phi) + \cos(\phi)] +$$

$$\frac{1}{2} [\cos(2\omega t - \phi - 240^\circ) + \cos(\phi)] + \frac{1}{2} [\cos(2\omega t - \phi + 240^\circ) + \cos(\phi)])$$

$$= U_f I_f(\cos(2\omega t - \phi) + \cos(\phi) + \cos(2\omega t - \phi + 240^\circ) + \cos(\phi))$$

$$= U_f I_f(3\cos(\phi) + \cos(2\omega t - \phi) + \cos(2\omega t - \phi + 240^\circ) + \cos(2\omega t - \phi + 240^\circ))$$

Definiendo $\delta = 2\omega t - \phi$, se obtiene:

$$p(t) = U_f I_f (3\cos(\phi) + \cos(\delta) + \cos(\delta - 240^\circ) + \cos(\delta + 240^\circ))$$

Considerando la siguiente identidad trigonométrica:

$$cos(A \pm B) = cos(A) cos(B) \mp sen(A) sen(B)$$

Se obtiene la siguiente expresión:

$$\begin{split} p(t) &= U_f \, I_f(3\cos(\phi) + \cos(\delta) + \\ &\cos(\delta)\cos(240^\circ) + \sin(\delta)\sin(240^\circ) + \\ &\cos(\delta)\cos(240^\circ) - \sin(\delta)\sin(240^\circ) + \\ &= U_f \, I_f(3\cos(\phi) + \cos(\delta) + \\ &\cos(\delta)\cos(240^\circ) - \sin(\delta)\sin(240^\circ) + \\ &\cos(\delta)\cos(240^\circ) + \sin(\delta)\sin(240^\circ) + \\ &= U_f \, I_f(3\cos(\phi) + \cos(\delta) + 2\cos(\delta)\cos(240^\circ)) \\ &= U_f \, I_f(3\cos(\phi) + \cos(\delta) + 2\left(-\frac{1}{2}\right)\cos(\delta)) \\ &= 3 \, U_f \, I_f \, \cos(\phi) \end{split}$$

Considerando la relación entre lineas y fases siguiente:

En una carga conectada en estrella:

$$U_L = \sqrt{3} \, U_f$$
$$I_L = I_f$$

En una carga conectada en delta:

$$U_L = U_f$$
$$I_L = \sqrt{3} I_f$$

La potencia total en función de sus valores de linea es:

$$p(t) = \sqrt{3} U_L I_L \cos(\phi)$$

Si se comparan las potencias según el tipo de carga, se tiene:

En una carga conectada en estrella:

$$I_{L} = \frac{U_{f}}{|Z|} = \frac{U_{L}}{\sqrt{3}|Z|}$$

$$P_{Y} = \sqrt{3} U_{L} I_{L} \cos(\phi) = \sqrt{3} U_{L} \frac{U_{L}}{\sqrt{3}|Z|} \cos(\phi) = \frac{U_{L}^{2}}{|Z|} \cos(\phi)$$

En una carga conectada en delta:

$$\begin{split} I_f &= \frac{U_L}{|Z|} \\ I_L &= \sqrt{3} \, I_f = \, \frac{\sqrt{3} \, U_L}{|Z|} \\ P_\triangle &= \sqrt{3} \, U_L \, I_L \, \cos(\phi) = \, \sqrt{3} \, U_L \, \frac{\sqrt{3} \, U_L}{|Z|} \, \cos(\phi) = \, 3 \frac{U_L^2}{|Z|} \cos(\phi) \end{split}$$

Por tanto:

$$P_{\wedge} = 3 P_{Y}$$

5. Demuestre que el método de los dos vatímetros nos da la potencia trifásica total en un circuito equilibrado.

La potencia en los vatímetros será:

$$\begin{split} P_{W_1} &= \Re\{U_{AB} \, I_A^*\} \\ &= U_L \, I_L \, \cos(\theta + 30^\circ) \\ P_{W_2} &= \Re\{U_{CB} \, I_C^*\} \\ &= U_L \, I_L \, \cos(\theta - 30^\circ) \end{split}$$

Considerando la siguiente identidad trigonométrica:

$$cos(A\pm B) = cos(A)cos(B) \mp sen(A)sen(B)$$

La potencia total es:

$$P = P_{W_1} + P_{W_2}$$
= $U_L I_L \cos(\theta + 30^\circ) + U_L I_L \cos(\theta - 30^\circ)$
= $U_L I_L [\cos(\theta) \cos(30^\circ) - \sin(\theta) \sin(30^\circ) + \cos(\theta) \cos(30^\circ) + \sin(\theta) \sin(30^\circ)]$
= $U_L I_L [2 \cos(\theta) \cos(30^\circ)]$
= $U_L I_L \left[2 \cos(\theta) \frac{\sqrt{3}}{2} \right]$
= $\sqrt{3} U_L I_L \cos(\theta)$

La suma de las lecturas de los vatímetros da por resultado la potencia promedio total.

5. Conclusiones y Recomendaciones

Se calcularon, simularon y demostraron experimentalmente las medición de la potencia con dos vatímetros sobre una carga delta-estrella equilibrada, y fueron verificadas en todos los casos.

En la comparación entre la potencia de la carga estrella con la de la carga delta se verifica la relación: $P_{\triangle}=3\,P_{\rm Y}$.

Es recomendable al armar los circuitos en laboratorio revisar apropiadamente los multímetros para la medición de corriente y voltaje, ya que puede ser peligroso para los equipos cualquier descuido.