Welcome to your Jupyter Book

This is a small sample book to give you a feel for how book content is structured.

Check out the content pages bundled with this sample book to get started.

Content in Jupyter Book

There are many ways to write content in Jupyter Book. This short section covers a few tips for how to do so.

Topologie des espaces métriques

Les espaces vectoriels seront des $\(K\)$ -espaces vectoriels ou le corps $\(K\)$ est egal a $\(\mathbb{R}\)$ ou $\(\mathbb{R}\)$ ou $\(\mathbb{R}\)$ ou $\(\mathbb{R}\)$

Espaces vectoriels normés - Espaces métriques

Distances et espaces métriques

Soit $\(X\)$ un ensemble et $\(d: X \times X \times X \times R^+)$ une application

1 Définition

On dit que $\(d)$ est une distance sur $\(X)$. si :

i) (d(x,y) = 0) si, et seulement si, (x=y) (séparation));

ii) $\ (x, y \in X, d(x,y) = d(y,x)) \ (symétrie);$

iii) $(\int d(x,y) + d(y,z))$ (inégalité triangulaire)

L'ensemble \(E\) muni de cette distance est appelé espace métrique.

Si $(Y \subset X)$ est un sous-ensemble de (X), alors la restriction de (d) a (Y) est une distance. Donc (Y) muni de cette restriction est bel et bien un espace mtrique. On parlera alors de **metrique induite sur (Y)**.

1 Exemple

1- Soit \(X\) un ensemble non vide. On peut definir la distance suivante:

 $[\begin{array}{c} (x,y) = \begin{array}{c} 0 \end{array}$

2 - Sur \(\mathbb R\), on dispose de la distance usuelle suivante: (d(x,y)=0)

1 Définition

Soit $((X,d)\)$ un espace métrique. Pour tout $(x\in X\)$ et pour tout $(r>0\)$, on note:

 $[B(x,r) = \left\{ y \in X: d(x,y) < r \right\}]$

la boule ouverte de centre $(x\in X)$ et de rayon (r>0). et

 $[B_f(x,r) = \left(x,y \right) \ r \right]$

la boule fermée de centre $\(x\in X\)$ et de rayon $\(r>0\)$.

Norme et espace vectorial norme

Définition

Soit \(E\) un \(K\)-espace vectorial. Une application \(\mathcal N : E \to \mathcal R^+\) est dit une norme sur \ (E\) si les proprietes suivantes sont verifiees: (i)- \(\mathcal N(x) = 0\) si et seukement si \(x=0\); (ii)- \(\forall x \in E\) et \(\forall \lambda \in \mathcal K, \mathcal N(\lambda x) = |\lambda| \mathcal N(x)\); (iii)- \(\forall x, y \in E, N(x+y) \leq \mathcal N(x) + \mathcal N(y)\).

Dans le cas ou (i) n'est pas verifiee, on parlera de semi-norme sur \(E\).

Soit \((E, \mathcal N)\) un espace vectoriel norme, Si \(X=E\), on peut definir la distance suivante:

 $[d(x,y)=\mathbb N(x-y)\$

On dit que \(d\) est la distance associee a la norme \(\mathcal N\).

Exemples

1- Sur \(\mathcal K^N\), on peut definir les normes suivantes:

Pour demontrer que \(\|_2\) verifie l'inegalite triangulaire, on utilise l'inegalite de Cauchy-Sxwarz:

 $$$ \left(\left| \sum_{i=1}^N x_{iy_i} \right| \leq \left(\sum_{i=1}^N |x_i|^2 \right)^{\frac{1}{2}} \right) \left(\sum_{i=1}^N |y_i|^2 \right)^{\frac{1}{2}} \right) \$

Dans un meme espace, la courbe des boules (ouvertes ou fermees) change, de maniere considerable, en fonction de la distance choisie. Par exemple, dans \(\mathbb R^2\), les distances associees aux normes suivantes:

Voici les courbes des boules ouvertes associees a chaque distance (norme)

1 Définition

Soit (E) un espace vectoriel. On dit que deux normes (\mathbb{N}_1) et (\mathbb{N}_2) définies sur (E) sont équivalentes s'il existe deux constantes $(C_1, C_2 > 0)$ telles que :

Topologie des espaces metriques

Définition

Soit $\((X, d)\)$ un espace metrique. On dit qu'un sous-ensemble $\(U\)$ de $\(X\)$ est un ouvert de $\((X, d)\)$ si, pour tout $\(X\)$ de $\(U\)$, il existe $\(r\leq 0\)$ tel que $\(B(x,r)\)$, la boule ouverte centree en $\(x\)$ et de rayon $\(r>0\)$, est incluse dans $\(U\)$. On apelle topologie associee a la metrique $\(d\)$ et l'on note $\(mathcal T_d\)$.

Exemple

- On verifie que les ensembles $(\ensuremath{(X\)}\ et \(X\)\ sont toujours des ouverts de ((X, d)).$
- Soit

Denombrabilite

Compacite et completude

Theory de mesure

By The Jupyter Book Community © Copyright 2020.