Aryan Mishra

2027708896 • College Park, MD 20740 • amaryanmishra21@gmail.com • https://www.linkedin.com/in/aryanmishra21/

EDUCATION

University of MarylandCollege Park, MarylandMaster of Engineering - RoboticsExpected: May 2025Vellore Institute of TechnologyVellore, India

Bachelor of Technology - Electronics and Communication Engineering

RESEARCH AND WORK EXPERIENCE

National Institute of Standards and Technology - *Gaithersburg, MD* November 2024 - Present **Generative AI Engineer**

Professional Research and Experience Program student from UMD, part of Retrieval Group, Information Technology Laboratory

- Developing pipeline for testing of multi-modal inputs as authentic or fabricated and identifying sensitive contents.
- Generated robust datasets for evaluation using diffusion, Flux and styleGAN models, finetuned Flux models using LoRa.
- Deployed anti-spoof, transformer classifier, spatial based image for facial detection, recognition and verification on image and video inputs.

Department of Statistics, Uni of MD- *College Park, MD* **Machine Learning Researcher**

August 2024 - Present

June 2023

Worked as a volunteer on Geometric Deep learning, currently taking an independent study for Spring 2025 semester.

- Independent research on geometric deep learning for graphs, grids and data manifolds.
- Working on understanding and devising novel methods to harness the power of graph neural networks.
- Implemented regularization terms for approximation of high dimensional manifolds in smaller dimensions.

Department of Mechanical Eng., Uni of MD – *College Park, MD.* January 2024 – December 2024 **Machine Learning Research Volunteer**

Part of two projects: Development of a soft robotic gripper, Medical Image analysis

- Engineered 3D-printed soft robotic grippers and deployed ML to predict object size, shape, and material from pressure-volume curves
- Deployed VNET with Attention Mechanism on the Stanford Type B Aorta Dissection dataset, achieving a Dice Coefficient of 0.80, Jaccard Mean of 76.3, AsD Mean of 0.98.
- Developed a transformer-based encoder for the VNET architecture.

PROJECTS

Autonomous Scene Segmentation

September 2024 – December 2024

PyTorch, Swin Transformer, Trans-UNET, Python

- Devised and trained from scratch Trans-UNET, Swin-Trans-UNET and UNET. Performed pixel-wise segmentation of KITTI Images
- Achieved Dice coefficients of 0.88, 0.80, and 0.87 for three segmentation models, with the Swin Transformer-UNET architecture demonstrating superior performance and attained the lowest cross-entropy loss of 0.27 among the compared approaches.

Vision Language Model

August 2024 - December 2024

PyTorch, SigLip, Python, Google-Gemma, OpenCV

• Combined 400M SigLIP and 2B Gemma Models into a sub-3B VLM works for VQA, QA tasks and referring segmentation.

Multimodel Trajectory Prediction

July 2024 - August 2024

PyTorch, Python, OpenCV

Addressing the uncertainties faced by self-driving vehicles with a Multiple Trajectory
Prediction (MTP) model by predicting multiple possible paths and the likelihood of each
using probability adhering to geometric and angular meaning using the NuScenes Dataset.

Retrieval Augmented Generation

June 2024 - July 2024

PyTorch, RAG, Python

• Implemented a Retrieval Augmented Generation (RAG) pipeline using the Gemma-2-9b-it LLM model. Achieved high efficiency for real-time query answering, optimizing for scalable performance and reduced latency.

Generative Adversarial Networks

June 2024

PyTorch, OpenCV, PIL, Python

 Deployed multiple GAN models, including Deep Convolution GAN, Cycle GAN, and Progressive GAN, on diverse datasets such as MNIST, Celeb A, and the Summer to Winter Yosemite dataset.

Hippocampal volumetric quantification of Alzheimer's progression March 2024 – May 2024 *PyTorch, OpenCV, PIL, Python, UNET, Google-DeepLabV3+*

- Leveraged UNET and DeepLabV3+ architectures to diagnose and monitor Alzheimer's disease progression using 260 NIFTI images from the Medical Decathlon dataset.
- Achieved robust segmentation performance with Mean Dice Coefficient scores of 0.87 and 0.81 and mean Jaccard Index values of 0.77 and 0.785.

Segmentation of 3D and CT Stanford Type B Aortic ImagesJanuary 2024 – December 2024 *PyTorch, OpenCV, PIL, Python, VNET, VNET + Transformer*

• leveraging a VNET architecture with an attention mechanism to enhance the segmentation accuracy of 3D MRI and CT images, specifically targeting Type-B Aortic Dissection (TBAD)

• Achieved robust segmentation performance with Mean Dice Coefficient score of 0.88 and 0.81, and Mean Jaccard Index values of 0.76.

TECHNICAL SKILLS

- Languages: Python, C++, MATLAB, RUST
- **Frameworks:** TensorFlow, PyTorch, Keras, CUDA, OpenAI Gym, OpenCV, Jax, LORA, Hugging Face, Flux, Diffusion Models and Flow Matching.
- **Software/Tools:** AWS, ROS1/2, C-Make, Gazebo, Linux, Git/GitHub, Docker, Robot Perception, Localization, Deep Learning, Computer Vision, Artificial Intelligence, Microsoft Suite, Content Writing