Satisfiability Checking Simplex as a Theory Module in SMT

Prof. Dr. Erika Ábrahám

RWTH Aachen University Informatik 2 LuFG Theory of Hybrid Systems

WS 16/17

Outline

1 Full lazy SMT-solving with Simplex

2 Less lazy SMT-solving with Simplex

Outline

1 Full lazy SMT-solving with Simplex

2 Less lazy SMT-solving with Simplex

The Xmas problem

There are three types of Xmas presents Santa Claus can make.

- Santa Claus wants to reduce the overhead by making only two types.
- He needs at least 100 presents.
- He needs at least 5 of either type 1 or type 2.
- He needs at least 10 of the third type.
- Each present of type 1, 2, and 3 need 1, 2, resp. 5 minutes to make.
- Santa Claus is late, and he has only 3 hours left.
- Each present of type 1, 2, and 3 costs 3, 2, resp. 1 EUR.
- He has 300 EUR for presents in total.

$$(p_1 = 0 \lor p_2 = 0 \lor p_3 = 0) \land p_1 + p_2 + p_3 \ge 100 \land$$

 $(p_1 \ge 5 \lor p_2 \ge 5) \land p_3 \ge 10 \land p_1 + 2p_2 + 5p_3 \le 180 \land$
 $3p_1 + 2p_2 + p_3 \le 300$

For the moment we relax the integrality constraints, i.e., we search for a real-valued solution.

Boolean abstraction

Arithmetic formula:

$$\underbrace{(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0)}_{\textbf{a}_{1}} \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{\textbf{a}_{2}} \land \underbrace{(p_{1} \ge 5 \lor p_{2} \ge 5)}_{\textbf{a}_{6}} \land \underbrace{p_{3} \ge 10}_{\textbf{a}_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{\textbf{a}_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{\textbf{a}_{9}}$$

Boolean abstraction:

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Boolean abstraction:

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9 Assignment to decision variables: false

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1

DL1: a_1: 0

DL2: a_2: 0, a_3: 1

DL3: a_5: 0, a_6: 1
```


Full lazy theory solving

Current assignment:

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, DL1: a_1: 0, DL2: a_2: 0, a_3: 1, DL3: a_5: 0, a_6: 1$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_3 , a_6

$$\underbrace{(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0)}_{a_{1}} \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{a_{2}} \land \underbrace{(p_{1} \ge 5 \lor p_{2} \ge 5)}_{a_{6}} \land \underbrace{p_{3} \ge 10}_{a_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{a_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{a_{9}}$$

Encoding:

$$p_1 + p_2 + p_3 \ge 100$$
, $p_3 \ge 10$, $p_1 + 2p_2 + 5p_3 \le 180$, $3p_1 + 2p_2 + p_3 \le 300$, $p_3 = 0$, $p_2 \ge 5$

Full lazy theory solving

Variable order: $s_1 < \ldots < s_6 < p_1 < p_2 < p_3$, the values of the variables are given in parentheses

	$p_1(0)$	p ₂ (0)	p ₃ (0)		s ₁ (100)	$p_2(0)$	$p_3(0)$		s ₁ (100)	$p_2(0)$	s ₂ (10)
$s_1(0)$	1	1	1	$p_1(100)$	1	-1	-1	$p_1(90)$	1	-1	-1
s ₂ (0)	0	0	1	$s_{2}(0)$	0	0	1	$p_3(10)$	0	0	1
s ₃ (0)	1	2	5	$s_3(100)$	1	1	4	s ₃ (140)	1	1	4
s ₄ (0)	3	2	1	s ₄ (300)	3	-1	-2	s ₄ (280)	3	-1	-2
$s_5(0)$	0	0	1	$s_5(0)$	0	0	1	$s_5(10)$	0	0	1
s ₆ (0)	0	1	0	s ₆ (0)	0	1	0	s ₆ (0)	0	1	0

Conflict: the constraints for the basic variable of the conflicting row and all non-basic variables with non-zero coefficients in the conflicting row together are unsatisfiable.

Thus
$$\underline{\rho_3=0} \land \underline{\rho_3 \geq 10}$$
 is not satisfiable.

Current assignment:

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1
DL1: a_1: 0
DL2: a_2: 0, a_3: 1
DL3: a_5: 0, a_6: 1
Learn new clause: (\neg a_3 \lor \neg a_7).
```

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$

No conflict resolution needed, since the new clause is already asserting. Backtrack to decision level *DL*0 and use the new clause for propagation.

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0

DL1: a_1: 0, a_2: 1

DL2: a_5: 0, a_6: 1
```


Full lazy theory solving

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0, DL1: a_1: 0, a_2: 1, DL2: a_5: 0, a_6: 1$$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_2 , a_6

$$(\underbrace{p_{1} = 0}_{a_{1}} \vee \underbrace{p_{2} = 0}_{a_{2}} \vee \underbrace{p_{3} = 0}_{a_{3}}) \wedge \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{a_{4}} \wedge \underbrace{(\underbrace{p_{1} \ge 5}_{a_{5}} \vee \underbrace{p_{2} \ge 5})}_{a_{6}} \wedge \underbrace{p_{3} \ge 10}_{a_{7}} \wedge \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{a_{8}} \wedge \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{a_{0}} \wedge (\neg a_{3} \vee \neg a_{7})$$

Encoding:

$$p_1 + p_2 + p_3 \ge 100, \ p_3 \ge 10,$$

 $p_1 + 2p_2 + 5p_3 \le 180, \ 3p_1 + 2p_2 + p_3 \le 300, \ p_2 = 0, \ p_2 \ge 5$

Full lazy theory solving

Variable order: $s_1 < \ldots < s_6 < p_1 < p_2 < p_3$, the values of the variables are given in parentheses

	$p_1(0)$	p ₂ (0)	p ₃ (0)		s ₁ (100)	$p_2(0)$	$p_3(0)$		s ₁ (100)	$p_2(0)$	s ₂ (10)		s ₁ (100)	s ₆ (5)	s ₂ (10)
$s_1(0)$	1	1	1	$p_1(100)$	1	-1	-1	p ₁ (90)	1	-1	-1	p ₁ (85)	1	-1	-1
s ₂ (0)	0	0	1	$s_2(0)$	0	0	1	p ₃ (10)	0	0	1	$p_3(10)$	0	0	1
s ₃ (0)	1	2	5	$s_3(100)$	1	1	4	s ₃ (140)	1	1	4	s ₃ (145)	1	1	4
s ₄ (0)	3	2	1	$s_4(300)$	3	-1	-2	s ₄ (280)	3	-1	-2	s ₄ (275)	3	-1	-2
$s_5(0)$	0	1	0	$s_5(0)$	0	1	0	s ₅ (0)	0	1	0	$s_5(5)$	0	1	0
s ₆ (0)	0	1	0	s ₆ (0)	0	1	0	s ₆ (0)	0	1	0	$p_2(5)$	0	1	0

Conflict: the constraints for the basic variable of the conflicting row and all non-basic variables with non-zero coefficients in the conflicting row together are unsatisfiable.

Thus
$$\underline{p_2=0} \wedge \underline{p_2 \geq 5}$$
 is not satisfiable.

Current assignment:

```
\begin{array}{l} DL0: a_{4}: 1, a_{7}: 1, a_{8}: 1, a_{9}: 1, a_{3}: 0 \\ DL1: a_{1}: 0, a_{2}: 1 \\ DL2: a_{5}: 0, a_{6}: 1 \\ \text{Learn new clause: } (\neg a_{2} \lor \neg a_{6}). \\ (a_{1} \lor a_{2} \lor a_{3}) \land a_{4} \land (a_{5} \lor a_{6}) \land a_{7} \land a_{8} \land a_{9} \land (\neg a_{3} \lor \neg a_{7}) \land \\ (\neg a_{2} \lor \neg a_{6}) \end{array}
```

No conflict resolution needed, since the new clause is already asserting. Backtrack to decision level DL1 and apply propagation.

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0

DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1
```


Full lazy theory solving

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0, \quad DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$$

True theory constraints: a_4 , a_7 , a_8 , a_9 , a_2 , a_5

$$\underbrace{(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0)}_{a_{1}} \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{a_{2}} \land \underbrace{(p_{1} \ge 5 \lor p_{2} \ge 5)}_{a_{6}} \land \underbrace{p_{3} \ge 10}_{a_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{a_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{a_{9}} \land (\neg a_{3} \lor \neg a_{7}) \land (\neg a_{2} \lor \neg a_{6})$$

Encoding:

$$p_1 + p_2 + p_3 \ge 100$$
, $p_3 \ge 10$, $p_1 + 2p_2 + 5p_3 \le 180$, $3p_1 + 2p_2 + p_3 \le 300$, $p_2 = 0$, $p_1 \ge 5$

Full lazy theory solving

Variable order: $s_1 < \ldots < s_6 < p_1 < p_2 < p_3$, the values of the variables are given in parentheses

	$p_1(0)$	$p_2(0)$	$p_3(0)$		$s_1(100)$	$p_2(0)$	$p_3(0)$		$s_1(100)$	$p_2(0)$	s ₂ (10)
$s_1(0)$	1	1	1	$p_1(100)$	1	-1	-1	$p_1(90)$	1	-1	-1
s ₂ (0)	0	0	1	$s_{2}(0)$	0	0	1	$p_3(10)$	0	0	1
s ₃ (0)	1	2	5	$s_3(100)$	1	1	4	s ₃ (140)	1	1	4
$s_4(0)$	3	2	1	$s_4(300)$	3	-1	-2	$s_4(280)$	3	-1	-2
$s_5(0)$	0	1	0	$s_5(0)$	0	1	0	$s_5(0)$	0	1	0
s ₆ (0)	1	0	0	$s_6(100)$	1	-1	-1	s ₆ (90)	1	-1	-1

Solution: $p_1 = 90$, $p_2 = 0$, $p_3 = 10$.

Outline

1 Full lazy SMT-solving with Simplex

2 Less lazy SMT-solving with Simplex

Less lazy SMT-solving

- In full lazy SMT-solving, the SAT solver asks the theory solver whether found complete satisfying assignments for the abstraction are consistent in the theory.
- In less lazy SMT-solving, the SAT solver asks for consistency checks in the theory more frequently, also for partial assignments.
- Usually, this happens after each completed decision level.

Less lazy SMT-solving

Requirements on the theory solver

- (Minimal) infeasible subsets (to explain infeasibility)
- Incrementality (to add constraints stepwise)
- Backtracking (to mimic backtracking in the SAT solver)

Minimal infeasible subsets in Simplex:

- As seen in full lazy SMT solving
- The constraints corresponding to the basic variable of the contradictory row and all non-basic variables with non-zero coefficients in this row are together unsatisfiable.

Incrementality in Simplex:

- Add all constraints but without bounds on non-active constraints.
- If a constraint becomes true, activate its bound.

Backtracking in Simplex:

■ Remove bounds of unassigned constraints

Less lazy SMT-solving

Boolean abstraction

Arithmetic formula:

$$\underbrace{(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0)}_{\textbf{a}_{1}} \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{\textbf{a}_{2}} \land \underbrace{(p_{1} \ge 5 \lor p_{2} \ge 5)}_{\textbf{a}_{6}} \land \underbrace{p_{3} \ge 10}_{\textbf{a}_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{\textbf{a}_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{\textbf{a}_{9}}$$

Boolean abstraction:

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Less lazy SMT-solving

Less lazy theory solving

Initialize the Simplex tableau with all equalities but without any bounds.

	$p_1(0)$	$p_2(0)$	$p_3(0)$
$s_1(0)$	1	0	0
$s_2(0)$	0	1	0
$s_3(0)$	0	0	1
$s_4(0)$	1	1	1
$s_5(0)$	1	0	0
$s_6(0)$	0	1	0
$s_7(0)$	0	0	1
s ₈ (0)	1	2	5
$s_9(0)$	3	2	1

Less lazy SMT-solving

Less lazy SAT-solving

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9 Assignment to decision variables: false

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$$

Less lazy SMT-solving

Less lazy theory solving

$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$$

New true theory constraints: a_4 , a_7 , a_8 , a_9

$$\underbrace{(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0)}_{a_{1}} \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{a_{2}} \land \underbrace{(p_{1} \ge 5 \lor p_{2} \ge 5)}_{a_{6}} \land \underbrace{p_{3} \ge 10}_{a_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{a_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{a_{9}}$$

Encoding:

$$s_4 \ge 100$$
, $s_7 \ge 10$, $s_8 \le 180$, $s_9 \le 300$

Less lazy theory solving

Variable order: $s_1 < \ldots < s_9 < p_1 < p_2 < p_3$, the values of the variables are given in parentheses

		$p_1(0)$	$p_2(0)$	$p_3(0)$		s ₄ (100)	$p_2(0)$	$p_3(0)$		$s_4(100)$	$p_2(0)$	$s_7(10)$
	s ₁ (0)	1	0	0	s ₁ (100)	1	-1	-1	s ₁ (90)	1	-1	-1
l	$s_2(0)$	0	1	0	$s_2(0)$	0	1	0	$s_2(0)$	0	1	0
	$s_3(0)$	0	0	1	s ₃ (0)	0	0	1	s ₃ (10)	0	0	1
	$s_4(0)$	1	1	1	$p_1(100)$	1	-1	-1	$p_1(90)$	1	-1	-1
l	$s_5(0)$	1	0	0	$s_5(100)$	1	-1	-1	s ₅ (90)	1	-1	-1
	$s_6(0)$	0	1	0	s ₆ (0)	0	1	0	$s_6(0)$	0	1	0
	$s_{7}(0)$	0	0	1	$s_7(0)$	0	0	1	$p_3(10)$	0	0	1
l	$s_8(0)$	1	2	5	s ₈ (100)	1	1	4	s ₈ (140)	1	1	4
	$s_9(0)$	3	2	1	s ₉ (300)	3	-1	-2	s ₉ (280)	3	-1	-2

Return partial SAT.

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9$$

Assume a fixed variable order: a_1, \ldots, a_9 Assignment to decision variables: false

 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1$

 $DL1: a_1: 0$

 $DL2: a_2: 0, a_3: 1$


```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, DL1: a_1: 0, DL2: a_2: 0, a_3: 1
```

Incrementality: add a₃

$$\underbrace{(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0)}_{a_{1}} \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{a_{2}} \land \underbrace{(p_{1} \ge 5 \lor p_{2} \ge 5)}_{a_{6}} \land \underbrace{p_{3} \ge 10}_{a_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{a_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{a_{9}}$$

Encoding:

$$s_3 = 0$$

	$s_4(100)$	$p_2(0)$	$s_7(10)$
$s_1(90)$	1	-1	-1
$s_2(0)$	0	1	0
$s_3(10)$	0	0	1
$p_1(90)$	1	-1	-1
s ₅ (90)	1	-1	-1
$s_6(0)$	0	1	0
$p_3(10)$	0	0	1
s ₈ (140)	1	1	4
$s_9(280)$	3	-1	-2

Conflict: $\underline{p_3 = 0} \land \underline{p_3 \ge 10}$ is not satisfiable.

Current assignment:

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1
DL1: a_1: 0
DL2: a_2: 0, a_3: 1
Add clause (\neg a_3 \lor \neg a_7):
(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)
```

No conflict resolution needed, since the new clause is already asserting. Backtracking removes *DL*1 and *DL*2 first, then propagation is applied.

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0

DL1: a_1: 0, a_2: 1
```


$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$$
 $DL1: a_1: 0, a_2: 1$

Backtracking: remove a_3 , Incrementality: add a_2

$$\underbrace{(p_{1} = 0 \lor p_{2} = 0 \lor p_{3} = 0)}_{a_{1}} \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{a_{2}} \land \underbrace{(p_{1} \ge 5 \lor p_{2} \ge 5)}_{a_{6}} \land \underbrace{p_{3} \ge 10}_{a_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{a_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{a_{9}}$$

Encoding:

remove $s_3 = 0$, add $s_2 = 0$

Backtracking: remove bound $s_3 = 0$, add bound $s_2 = 0$

$p_1 = 0$	\rightarrow	$s_1 =$	p_1			$s_1 = 0$
$p_2 = 0$	\rightarrow	$s_2 =$		p_2		$s_2 = 0$
$p_3 = 0$	\rightarrow	$s_3 =$			p_3	$s_3 = 0$
$p_1 + p_2 + p_3 \ge 100$	\rightarrow	$s_4 =$	$\rho_1 +$	p_2+	p_3	$s_4 \ge 100$
$p_1 \geq 5$	\rightarrow	$s_5 =$	p_1			$s_5 \ge 5$
$p_2 \geq 5$	\rightarrow	$s_6 =$		p_2		$s_6 \ge 5$
$p_3 \ge 10$	\rightarrow	$s_7 =$			p_3	$s_7 \geq 10$
$p_1 + 2p_2 + 5p_3 \le 180$	\rightarrow	$s_8 =$	p_1+	$2p_2 +$	5 <i>p</i> ₃	$s_8 \le 180$
$3p_1 + 2p_2 + p_3 \le 300$	\rightarrow	$s_9 =$	$3p_1 +$	$2p_2 +$	p_3	$s_9 \le 300$

	$s_4(100)$	$p_2(0)$	$s_7(10)$
$s_1(90)$	1	-1	-1
$s_2(0)$	0	1	0
$s_3(10)$	0	0	1
$p_1(90)$	1	-1	-1
$s_5(90)$	1	-1	-1
$s_6(0)$	0	1	0
$p_3(10)$	0	0	1
s ₈ (140)	1	1	4
$s_9(280)$	3	-1	-2

Return partial SAT.

$$(a_1 \lor a_2 \lor a_3) \land a_4 \land (a_5 \lor a_6) \land a_7 \land a_8 \land a_9 \land (\neg a_3 \lor \neg a_7)$$
 $DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0$
 $DL1: a_1: 0, a_2: 1$
 $DL2: a_5: 0, a_6: 1$


```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0, DL1: a_1: 0, a_2: 1, DL2: a_5: 0, a_6: 1
```

Incrementality: add a6

$$(\underbrace{p_{1} = 0}_{a_{1}} \lor \underbrace{p_{2} = 0}_{a_{2}} \lor \underbrace{p_{3} = 0}_{a_{3}}) \land \underbrace{p_{1} + p_{2} + p_{3} \ge 100}_{a_{4}} \land \underbrace{(\underbrace{p_{1} \ge 5}_{a_{5}} \lor \underbrace{p_{2} \ge 5})}_{a_{6}} \land \underbrace{p_{3} \ge 10}_{a_{7}} \land \underbrace{p_{1} + 2p_{2} + 5p_{3} \le 180}_{a_{8}} \land \underbrace{3p_{1} + 2p_{2} + p_{3} \le 300}_{a_{9}} \land (\neg a_{3} \lor \neg a_{7})$$

Encoding:

$$s_6 \ge 5$$

	s ₄ (100)	$p_2(0)$	s ₇ (10)		s ₄ (100)	s ₆ (5)	s ₇ (10)
s ₁ (90)	1	-1	-1	s ₁ (85)	1	-1	-1
$s_2(0)$	0	1	0	$s_2(5)$	0	1	0
$s_3(10)$	0	0	1	s ₃ (10)	0	0	1
$p_1(90)$	1	-1	-1	$p_1(85)$	1	-1	-1
$s_5(90)$	1	-1	-1	s ₅ (85)	1	-1	-1
$s_6(0)$	0	1	0	$p_2(5)$	0	1	0
$p_3(10)$	0	0	1	$p_3(10)$	0	0	1
$s_8(140)$	1	1	4	s ₈ (145)	1	1	4
$s_9(280)$	3	-1	-2	s ₉ (275)	3	-1	-2

Conflict: $\underbrace{p_2 = 0}_{a_2} \land \underbrace{p_2 \ge 5}_{a_6}$ is not satisfiable.

Current assignment:

```
\begin{array}{l} DL0: a_{4}: 1, a_{7}: 1, a_{8}: 1, a_{9}: 1, a_{3}: 0 \\ DL1: a_{1}: 0, a_{2}: 1 \\ DL2: a_{5}: 0, a_{6}: 1 \\ \\ \text{Add clause } (\neg a_{2} \lor \neg a_{6}). \\ (a_{1} \lor a_{2} \lor a_{3}) \land a_{4} \land (a_{5} \lor a_{6}) \land a_{7} \land a_{8} \land a_{9} \land (\neg a_{3} \lor \neg a_{7}) \\ & \land (\neg a_{2} \lor \neg a_{6}) \end{array}
```

No conflict resolution needed, since the new clause is already asserting. Backtracking removes *DL*2 first, then propagation is used to imply new assignments (first using the new learnt clause).

```
DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0

DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1
```


$$DL0: a_4: 1, a_7: 1, a_8: 1, a_9: 1, a_3: 0, DL1: a_1: 0, a_2: 1, a_6: 0, a_5: 1$$

Backtracking: remove a_6 , Incrementality: add a_5

$$\underbrace{ (p_1 = 0 \lor p_2 = 0 \lor p_3 = 0)}_{a_1} \land \underbrace{ p_1 + p_2 + p_3 \ge 100}_{a_2} \land \underbrace{ (p_1 \ge 5 \lor p_2 \ge 5)}_{a_6} \land \underbrace{ p_3 \ge 10}_{a_7} \land \underbrace{ p_1 + 2p_2 + 5p_3 \le 180}_{a_8} \land \underbrace{ 3p_1 + 2p_2 + p_3 \le 300}_{a_9} \land (\neg a_3 \lor \neg a_7) \land (\neg a_2 \lor \neg a_6)$$

Encoding: remove $s_6 \ge 5$, add $s_5 \ge 5$

Backtracking: remove $s_6 \ge 5$, Incrementality: add $s_5 \ge 5$

	s ₄ (100)	$s_6(5)$	s ₇ (10)		s ₄ (100)	s ₂ (0)	s ₇ (10)
s ₁ (85)	1	-1	-1	$s_1(90)$	1	-1	-1
$s_2(5)$	0	1	0	$s_6(0)$	0	1	0
s ₃ (10)	0	0	1	$s_3(10)$	0	0	1
$p_1(85)$	1	-1	-1	$p_1(90)$	1	-1	-1
$s_5(85)$	1	-1	-1	$s_5(90)$	1	-1	-1
$p_2(5)$	0	1	0	$p_2(0)$	0	1	0
$p_3(10)$	0	0	1	$p_3(10)$	0	0	1
s ₈ (145)	1	1	4	s ₈ (140)	1	1	4
$s_9(275)$	3	-1	-2	$s_9(280)$	3	-1	-2

Since the assignment is complete, return SAT for the original problem.

What could also happen...

- Problem: When working in the less lazy modus, in the Simplex theory solver a bound of a non-basic slack variable s could be activated. If the current value of this non-basic variable now violates its newly activated bound, our invariant (all non-basic variable values are within the corresponding bounds) would not hold!
- Solution: Since the result in the previous solver state was SAT, all the basic variables satisfy their bounds. Thus pivoting with an arbitrary basic variable s' whose row has a non-zero coefficient for s solves the problem. Note: there is always such a row.
- New problem: Now also the bounds of s' could be activated, leading to a similar problem. However, now it can happen that all basic variables are assigned values outside their bounds!
- Solution: After activating a bound, first check satisfiability and activate further bounds afterwards one by one.