	Parameter Estimation
⊗ \	(x, x, x
3	- (n-u)
	$(x_1, x_2, \dots, x_n) \rightarrow \text{mandom somple}.$ $\frac{-(n-\mu)^2}{26^2}$ $\sqrt{2\pi}6^2$
	7(*)
	√'2116 ²
	5
	MLE of 2 parameters
	$L(x_1, \ldots, x_n) : L(x_1) \times L(x_2) \ldots L(x_n)$
	· · · · · · · · · · · · · · · · · · ·
	= 1 e (- 3/1201) x - (m-s)12
	= 1 e (- m-m)/20, x 1 = - (m-m) ² \[\sqrt{2\pi 0^2} e^{-\left(m-m)^2} \]
	1 The - (n-n)2
	13002 C: C
	V 240
	Ton a los alos
	Taking log on both sides
	$\ln \left(L(M_1, M_2, \dots, M_m) \right) = \ln \left(\frac{1}{\sqrt{2\eta} \Theta_2} e^{-\frac{(M_1 - \Theta_1)^2}{2\eta \Theta_2}} \times \dots \right)$
	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\
	· ··· \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \
	V2710-2
	•
	-("1-01)2
	F) $\ln \left(\frac{1}{\sqrt{2\pi\Theta_2}} e^{-\frac{(2\pi_1-\Theta_1)^2}{2\pi\Theta_2}} \right) + \ln \left(\frac{1}{\sqrt{2\pi_1}\Theta_2} e^{-\frac{(2\pi_1-\Theta_1)^2}{2\Theta_2}} \right)^2$
	2102
	<u> </u>
	$-(m-\Theta_1)^2$
	$\frac{1}{\sqrt{2n\theta_2}} e^{-\frac{(2m-\theta_1)^2}{2\theta_2}}$
	() 2110 /
	- (a) - 0. 12. A 1
	$\therefore \ln \left(\frac{1}{\sqrt{2\pi}\theta_L} \right) + \ln \left(e^{-(n_1 - \theta_1)^L/2\theta_Z} \right) \text{ (on be written es}$
	Janol /

$$= \ln \left(\frac{1}{2\pi \Theta_2} \right) + \ln \left(e^{-(\pi_1 - \Theta_1)^2/2\Theta_2} \right) \rightarrow \mathfrak{D}$$

$$= \ln \left(\frac{1}{\sqrt{2\pi \Theta_2}} \right) = \ln \left((2\pi \Theta_2)^{-1/2} \right)$$

Sumplying 2 and Substituting $\theta_2 = \varepsilon^2$ $-\frac{1}{2} \ln (2\pi \varepsilon^2) - (\pi_1 - \theta_1)^2 \ln (\epsilon)$

=)
$$\frac{-1}{2}$$
 en (2π) - $\frac{1}{2}$ en (02) - $\frac{(29)}{202}$ => $\frac{1}{202}$

=>
$$-\frac{1}{2}$$
 ln 2π $-\frac{1}{2}$ en 92 $-\frac{1}{292}$

Sumlarly two can get this expansion for n-1 round

Taking & on both sides.

$$= \frac{1}{\Theta_2} \left(x_1 - \Theta_1 \cdot \dots \times x_n - \Theta_n \right)$$

For MLE over
$$\Theta_2$$
 put $\frac{g}{g\Theta_2}$

$$\frac{g}{g\Theta_2}$$

$$\frac{g}{g}{g\Theta_2}$$

$$\frac{$$

	2 = (x1 - 0,12 + + (xn-0,)
	$\Theta_2 = (x_1 - \Theta_1)^2 + \dots + (x_N - \Theta_1)^2$
	La Vasuance for measuremen?
92	$X_1 \ldots X_n \in B(m, o)$
	Φ
	O & (O, 1)
	=) This is a binomial distribution
	=> m is the unleger
•	MLE to B parameters
	•
	b(x,0)= mcb0x(1-0)m-y
	Ϋ́
	L(x,xn) = MP(xio)
	ا شا
	Taking log on both soides
	1/2(x1··· x4) = € 2/2 (mcxi) + xi2/0 + (m-xi)cog(1-0)
	Now do 8 (en (x, xn))
	89
	8 ln L(x1 xh) - 2 0 + 21 m-21.
	$\frac{8\ln L(x_1x_n)}{80} \Rightarrow \frac{2}{5} + \frac{\pi \cdot 1}{0} - \frac{1-0}{1-0}$

$$= \underbrace{\sum_{i=1}^{m} X_{i} (1-\theta) - (m+X_{i}) \theta}_{i=1}$$

$$= \underbrace{\sum_{i=1}^{m} \frac{M_{i} - m\theta}{\Theta(1-\theta)}}_{C_{i}} - \underbrace{0}$$

$$= \underbrace{\sum_{i=1}^{m} \frac{M_{i} - m\theta}{\Theta(1-\theta)}}_{C_{i}} - \underbrace{0}$$

$$= \underbrace{\sum_{i=1}^{m} X_{i} - m\theta}_{C_{i}} - \underbrace{0}_{C_{i}}$$

.. MLE for
$$O: \overline{2}$$