Lecture 21

Lecture Outline

- Global flow analysis
- · Global constant propagation
- Liveness analysis

Local Optimization

Recall the simple basic-block optimizations

- Constant propagation
- Dead code elimination

$$X := 3$$
 $Y := Z * W$ $Y := Z * W$ $Q := 3 + Y$ $Q := 3 + Y$

These optimizations can be extended to an entire control-flow graph

These optimizations can be extended to an entire control-flow graph

These optimizations can be extended to an entire control-flow graph

Correctness

- How do we know it is OK to globally propagate constants?
- There are situations where it is incorrect:

Correctness (Cont.)

To replace a use of x by a constant k we must know that:

On every path to the use of x, the last assignment to x is x := k (Invariant #1)

Example 1 Revisited

Example 2 Revisited

Discussion

 The correctness condition is not trivial to check

- "All paths" includes paths around loops and through branches of conditionals
- Checking the condition requires global analysis
 - An analysis of the entire control-flow graph

Global Analysis

Global optimization tasks share several traits:

- The optimization depends on knowing a property X at a particular point in program execution
- Proving X at any point requires knowledge of the entire program
- It is OK to be conservative. If the optimization requires X to be true, then want to know either
 - X is definitely true
 - Don't know if X is true
- It is always safe to say "don't know"

Global Analysis (Cont.)

 Global dataflow analysis is a standard technique for solving problems with these characteristics

 Global constant propagation is one example of an optimization that requires global dataflow analysis

Global Constant Propagation

- Global constant propagation can be performed at any point where Invariant #1 holds
- Consider the case of computing Invariant #1 for a single variable X at all program points

Global Constant Propagation (Cont.)

 To make the problem precise, we associate one of the following values with X at every program point

value	interpretation
Z	X=z means that analysis hasn't determined if control reaches that point
С	X = constant c
top	X is definitely not a constant

Using the Information

- Given global constant information, it is easy to perform the optimization
 - Simply inspect the x = ? associated with a statement using x
 - If x is constant at that point replace that use of x by the constant
- But how do we compute the properties x = ?

The Idea

The analysis of a complicated program can be expressed as a combination of simple rules relating the change in information between adjacent statements

Explanation

 The idea is to "push" or "transfer" information from one statement to the next

 For each statement s, we compute information about the value of x immediately before and after s

$$C(x,s,in)$$
 = value of x before s
 $C(x,s,out)$ = value of x after s

Transfer Functions

 Define a transfer function that transfers information one statement to another

• In the following rules, let statement s have immediate predecessor statements $p_1,...,p_n$

if $C(p_i, x, out) = top for any i, then <math>C(s, x, in) = top$

$$C(p_i, x, out) = c & C(p_j, x, out) = d & d \Leftrightarrow c then$$

 $C(s, x, in) = top$

if $C(p_i, x, out) = c$ or z for all i, then C(s, x, in) = c

if $C(p_i, x, out) = z$ for all i, then C(s, x, in) = z

The Other Half

 Rules 1-4 relate the out of one statement to the in of the next statement

 Now we need rules relating the in of a statement to the out of the same statement

$$C(s, x, out) = z \text{ if } C(s, x, in) = z$$

$$C(x := c, x, out) = c$$
 if c is a constant

$$C(x := f(...), x, out) = top$$

$$Y := \dots$$

$$X = a$$

$$X = a$$

$$C(y := ..., x, out) = C(y := ..., x, in) if x <> y$$

An Algorithm

- 1. For every entry s to the program, set C(s, x, in) = top
- 2. Set C(s, x, in) = C(s, x, out) = z everywhere else

3. Repeat until all points satisfy 1-8:
Pick s not satisfying 1-8 and update using the appropriate rule

The Value **Z**

To understand why we need z, look at a loop

31

Discussion

- Consider the statement Y := 0
- To compute whether X is constant after this statement, we need to know whether X is constant at the two predecessors
 - X := 3
 - A := 2 * X
- But info for A := 2 * X depends on its predecessors, including Y := 0!

The Value Z (Cont.)

 Because of cycles, all points must have values at all times

- Intuitively, assigning some initial value allows the analysis to break cycles
- The initial value z means "So far as we know, control never reaches this point"

Example

Orderings

 We can simplify the presentation of the analysis by ordering the values

Drawing a picture with "lower" values drawn lower, we get top

Prof. Alex Aiken Lecture (Modified by Prof. Vijay Ganesh)

Orderings (Cont.)

- top is the greatest value, z is the least
 - All constants are in between and incomparable
- Let *lub* be the least-upper bound in this ordering
- Rules 1-4 can be written using lub: $C(s, x, in) = \text{lub} \{ C(p, x, out) \mid p \text{ is a predecessor of } s \}$

How do we argue that this algo terminates?

- Simply saying "repeat until nothing changes" doesn't guarantee that eventually nothing changes
- The use of lub explains why the algorithm terminates
 - Values start as z and only increase
 z can change to a constant, and a constant to top
 - Thus, $C(s, x, _)$ can change at most twice

Termination (Cont.)

Thus the algorithm is linear in program size

```
Number of steps = Number of C(....) value computed * 2 = Number of program statements * 4
```

Liveness Analysis

Once constants have been globally propagated, we would like to eliminate dead code

After constant propagation, X := 3 is dead (assuming X not used elsewhere)

New Example: Live and Dead

- The first value of x is dead (never used)
- The second value of x is live (may be used)
- Liveness is an important concept

Liveness

A variable x is live at statement s if

- There exists a statement s' that uses x such that
 - There is a path from s to s'
 - That path has no intervening assignment to x

Global Dead Code Elimination

- A statement x := ... is dead code if x is dead after the assignment
- Dead statements can be deleted from the program
- But we need liveness information first . . .

Computing Liveness

- We can express liveness in terms of information transferred between adjacent statements, just as in copy propagation
- · Liveness is simpler than constant propagation, since it is a boolean property (true or false)

$$L(p, x, out) = v \{ L(s, x, in) \mid s \text{ a successor of } p \}$$

L(s, x, in) = true if s refers to x on the rhs

$$X := e$$

$$X = false$$

$$X := e$$

$$X = ?$$

L(x := e, x, in) = false if e does not refer to x

L(s, x, in) = L(s, x, out) if s does not refer to x

Algorithm

- 1. Let all L(...) = false initially
- 2. Repeat until all statements s satisfy rules 1-4 Pick s where one of 1-4 does not hold and update using the appropriate rule

Termination

- A value can change from false to true, but not the other way around
- Each value can change only once, so termination is guaranteed
- Once the analysis is computed, it is simple to eliminate dead code

Forward vs. Backward Analysis

We've seen two kinds of analysis:

Constant propagation is a *forwards* analysis: information is pushed from inputs to outputs

Liveness is a backwards analysis: information is pushed from outputs back towards inputs

Analysis

- There are many other global flow analyses
- Most can be classified as either forward or backward

 Most also follow the methodology of local rules relating information between adjacent program points