

WHAT IS CLAIMED IS:

1 1. A method of reducing food consumption in a mammal, said method
2 comprising administering to said mammal a first compound which is a PPAR α agonist and a
3 second compound which is an antagonist of the CB1 cannabinoid receptor, whereby the
4 consumption of food by the animal is reduced.

1 2. The method according to claim 1, wherein the PPAR α agonist is an
2 OEA-like agonist.

1 3. The method of claim 1, wherein the PPAR α agonist is
2 oleoylethanolamide, palmitoylethanolamide or elaidoylethanolamide.

1 4. The method of claim 1, wherein the antagonist is a pharmaceutically
2 acceptable salt or solvate of a compound of the formula:

4 wherein R₁ is hydrogen, a fluorine, a hydroxyl, a (C₁-C₅)alkoxy, a (C₁-
5 C₅)alkylthio, a hydroxy(C₁-C₅)alkoxy, a group -NR₁₀R₁₁, a cyano, a (C₁-C₅)alkylsulfonyl or
6 a (C₁-C₅)alkylsulfinyl;

7 R₂ and R₃ are a (C₁-C₄)alkyl or, together with the nitrogen atom to which they
8 are bonded, form a saturated or unsaturated 5- to 10-membered heterocyclic radical which is
9 unsubstituted or monosubstituted or polysubstituted by a (C₁-C₃)alkyl or by a (C₁-C₃)alkoxy;

10 R₄, R₅, R₆, R₇, R₈ and R₉ are each independently hydrogen, a halogen or a
11 trifluoromethyl, and if R₁ is a fluorine, R₄, R₅, R₆, R₇, R₈ and/or R₉ can also be a
12 fluoromethyl, with the proviso that at least one of the substituents R₄ or R₇ is other than
13 hydrogen; and

14 R₁₀ and R₁₁ are each independently hydrogen or a (C₁-C₅)alkyl, or R₁₀ and R₁₁,
15 together with the nitrogen atom to which they are bonded, form a heterocyclic radical
16 selected from pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl and piperazin-1-yl, which is
17 unsubstituted or substituted by a (C₁-C₄)alkyl.

1 5. The method of claim 4, wherein said antagonist is of the formula:

2 or a pharmaceutically acceptable salt thereof.

1 6. A method according to claim 1, wherein the mammal is human.

1 7. A method according to claim 6, wherein said human is overweight or
2 obese.

1 8. A method according to claim 1, wherein the PPAR α agonist is a
2 compound of the following formula:

3

wherein n is any number from 0 to 5;
the sum of a and b can be any number from 0 to 4;
Z is a member selected from $-\text{C}(\text{O})\text{N}(\text{R}^{\circ})-$; $-(\text{R}^{\circ})\text{NC}(\text{O})-$; $-\text{OC}(\text{O})-$; $-(\text{O})\text{CO}-$;
 O ; NR° ; and S , in which R° and R^2 are independently selected from the group consisting of
substituted or unsubstituted alkyl, hydrogen, substituted or unsubstituted C_1-C_6 alkyl,
substituted or unsubstituted lower (C_1-C_6) acyl, homoalkyl, and aryl;
up to eight hydrogen atoms of the compound may also be substituted by
methyl group or a double bond; and
the molecular bond between carbons c and d may be unsaturated or saturated,
or a pharmaceutically acceptable salt thereof.

9. A method according to claim 1, wherein said PPAR α agonist is administered with a pharmaceutically acceptable carrier by an oral, rectal, topical, or parenteral route.

10. A method according to claim 1, wherein said antagonist is administered with a pharmaceutically acceptable carrier by an oral, rectal, topical, or parenteral route.

11. A method according to claim 1, wherein said antagonist and said PPAR α agonist are administered together.

12. A method according to claim 1, wherein said antagonist and said PPAR α agonist are each administered in an amount below their individual ED₅₀.

13. A method according to claim 1, wherein said antagonist and said PPAR α agonist are each administered in an amount below their individual ED₁₀.

14. A method according to claim 1, wherein at least one of said antagonist and said PPAR α agonist is administered in an amount below its ED₁₀.

15. A method according to claim 1, wherein at least one of said antagonist and said PPAR α agonist is administered in an amount below its ED₅₀.

16. A pharmaceutical composition for reducing food consumption in a mammal, said composition comprising a PPAR α agonist and a cannabinoid CB1 receptor.

1 17. The composition according to claim 16, wherein the PPAR α agonist is
2 oleoylethanolamide.

1 18. The composition according to claim 17, wherein the antagonist is a
2 pharmaceutically acceptable salt or solvate of a compound of the formula:

3
4 wherein R₁ is hydrogen, a fluorine, a hydroxyl, a (C₁-C₅)alkoxy, a (C₁-
5 C₅)alkylthio, a hydroxy(C₁-C₅)alkoxy, a group -NR₁₀R₁₁, a cyano, a (C₁-C₅)alkylsulfonyl or
6 a (C₁-C₅)alkylsulfinyl;

7 R₂ and R₃ are a (C₁-C₄)alkyl or, together with the nitrogen atom to which they
8 are bonded, form a saturated or unsaturated 5- to 10-membered heterocyclic radical which is
9 unsubstituted or monosubstituted or polysubstituted by a (C₁-C₃)alkyl or by a (C₁-C₃)alkoxy;

10 R₄, R₅, R₆, R₇, R₈ and R₉ are each independently hydrogen, a halogen or a
11 trifluoromethyl, and if R₁ is a fluorine, R₄, R₅, R₆, R₇, R₈ and/or R₉ can also be a
12 fluoromethyl, with the proviso that at least one of the substituents R₄ or R₇ is other than
13 hydrogen; and

14 R₁₀ and R₁₁ are each independently hydrogen or a (C₁-C₅)alkyl, or R₁₀ and R₁₁,
15 together with the nitrogen atom to which they are bonded, form a heterocyclic radical
16 selected from pyrrolidin-1-yl, piperidin-1-yl, morpholin-4-yl and piperazin-1-yl, which is
17 unsubstituted or substituted by a (C₁-C₄)alkyl.

1 19. The composition according to claim 17, wherein said antagonist is of the
2 formula:

3
4 or a pharmaceutically acceptable salt thereof.

1 20. The composition according to claim 17, wherein the PPAR α agonist is
2 a fatty acid alkanolamide of the formula:

3
4 wherein n is any number from 0 to 5;
5 the sum of a and b can be any number from 0 to 4;
6 Z is a member selected from $-C(O)N(R^o)$ -; $-(R^o)NC(O)$ -; $-OC(O)$ -; $-(O)CO$ -;
7 O; NR^o ; and S, in which R^o and R^2 are independently selected from the group consisting of
8 substituted or unsubstituted alkyl, hydrogen, substituted or unsubstituted C_1-C_6 alkyl,
9 substituted or unsubstituted lower (C_1-C_6) acyl, homoalkyl, and aryl;
10 up to eight hydrogen atoms of the compound may also be substituted by
11 methyl group or a double bond; and
12 the molecular bond between carbons c and d may be unsaturated or saturated.

1 21. The composition according to claim 17, wherein said composition is in
2 a formulation suitable for administration by an oral, rectal, topical, or parenteral route of
3 administration.

1 22. The composition according to claim 17, wherein said composition is in
2 unit dosage format.

1 23. The composition according to claim 22, wherein at least one of said
2 antagonist and said agonist is in an amount below its ED₁₀.

1 24. The composition according to claim 22, wherein at least one of said
2 antagonist and said alkanolamide is in an amount below its ED₅₀.

1 25. The composition according to claim 16, wherein the antagonist has an
2 IC₅₀ for the CB1 cannabinoid receptor which is less than one-fourth its IC₅₀ for the CB2
3 cannabinoid receptor.

1 26. The composition according to claim 20, wherein R⁰ and R² are
2 members independently selected from the group comprising hydrogen, C₁–C₃ alkyl, and
3 lower (C₁–C₃) acyl.

1 27. The composition according to claim 20, wherein a = 1 and b = 1.

1 28. The composition according to claim 20, wherein n = 1.

1 29. The composition according to claim 20, wherein R¹ and R² are each H.

1 30. The composition according to claim 20, wherein the bond between
2 carbon c and carbon d is a double bond.

1 31. The composition according to claim 20, wherein the alkanolamide or
2 its homologue is according to one of the following formulae:

3

4

5

6 Me , and

7

8 Me

9

10 wherein n is from 1-5 and the sum of a and b is from 0 to 4; R² is selected
11 from the group consisting of hydrogen, C₁-C₆ alkyl, and lower (C₁-C₆) acyl; and up to four
12 hydrogen atoms of the fatty acid portion and alkanol portion thereof may also be substituted
13 by methyl or a double bond.

34. A method of treating an appetency disorder in a human by
administering a composition according to claim 17.