Санкт-Петербургский национальный исследовательский университет информационных технологий, механики и оптики

Группа: <u>М32101</u>	_K работе допущен <u>:</u>
Студент: Косовец Роман	Работа выполнена:
Преподаватель: Хуснутдинова Наира	Отчет принят:

Рабочий протокол и отчет по лабораторной работе № 5.02 «Исследование характеристик фотоэлемента с внешним фотоэффектом»

1. Цель работы:

- 1) Проверить на опыте справедливость законов фотоэффекта.
- 2) По вольтамперной и спектральной характеристикам фотоэлемента определить порог фотоэффекта.

2. Задачи, решаемые при выполнении работы:

- 1) Получить ВАХ фотоэлемента для различных источников света
- 2) Получить зависимость фототока насыщения от интенсивности источника

1

3) Определение границы фотоэффекта

3. Объект исследования:

Фотоэлемент с внешним фотоэффектом

4. Метод экспериментального исследования:

Лабораторный эксперимент

5. Рабочие формулы и исходные данные:

1) Длина волны света: $\lambda = \frac{c}{v}$

2) Частота волны: $v = \frac{c}{\lambda}$

3) Второй закон фотоэффекта: $E_k^{max} = e U_3$

6. Схема установки:

Модульный учебный комплекс МУК-ОК

- 1. ИПС-1
- 2. AB-1
- 3. С3-ОК01 и источник питания.

Рис. 6. Схема рабочей установки

7. Результаты прямых измерений и их обработки:

Таблица 1.1						
$J/J_0 = 1,136$ Лямбда = 2						
U прямое, В	$I_{ m cset}$, мк ${ m A}$	$I_{\mathtt{темн}}$, мк A	$I_{ m \phi o au o}$, мк ${ m A}$			
0	1,80	0,02	1,78			
1	3,24	0,14	3,10			
2	3,70	0,21	3,49			
3	3,81	0,35	3,46			
4	4,05	0,38	3,67			
5	4,20	0,54	3,66			
6	4,31	0,62	3,69			
7	4,48	0,69	3,79			
8	4,57 0,78		3,79			
9	4,70	0,86	3,84			
10	4,80	0,96	3,84			
11	4,96	1,08	3,88			
12	5,06	1,20	3,86			
U обратное, В	$I_{\mathtt{cbet}}$, мк A	$I_{\mathtt{TEMH}}$, мк A	$I_{ m \phi o ext{to}}$, мк ${ m A}$			
0	2,01	-0,01	2,02			
0,5	0,05 -0,03		0,08			
1	-0,04	-0,05	0,01			
1,5	-0,06	-0,09	0,03			
2			0,05			
2,5	-0,10	-0,13	0,03			
3	-0,15	-0,17	0,02			

Таблица 1.2				
$J/J_0 = 1,136$		Лямбда = 3		
U прямое, В	$I_{\mathtt{cBeT}}$, мк A	$I_{\scriptscriptstyle ext{TEMH}}$, мк A	$I_{ m \phi o ext{ro}}$, мк ${ m A}$	
0	1,04	0,03	1,01	
1	1,66	0,13	1,53	
2	1,86	0,21	1,65	
3	2,03	0,35	1,68	
4	2,14	0,38	1,76	
5	2,28	0,57	1,71	
6	2,40	0,62	1,78	
7	2,52	0,68	1,84	
8	2,62	0,83	1,79	
9	2,75	0,86	1,89	
10	2,82	0,96	1,86	
11	2,96	1,10	1,86	
12			1,88	

U обратное, В	$I_{\mathtt{cBeT}}$, мк A	$I_{\mathtt{TEMH}}$, мк A	$I_{ m \phi o au o}$, мк ${ m A}$
0	1,15	-0,01	1,16
0,5	0,02	-0,03	0,05
1	-0,06	-0,05	-0,01
1,5	-0,08	-0,09	0,01
2	-0,08	-0,10	0,02
2,5	-0,10	-0,13	0,03
3	-0,15	-0,17	0,02

Таблица 1.3					
$J/J_0 = 1,136$ Лямбда = 4					
U прямое, В	$I_{ m cset}$, мк ${ m A}$	$I_{\mathtt{темн}}$, мк A	$I_{ m \phi o au o}$, мк $ m A$		
0	0,60	0,02	0,58		
1	0,94	0,14	0,80		
3	1,12	0,21	0,91		
3	1,18	0,33	0,85		
4	1,30	0,35	0,95		
5	1,49	0,52	0,97		
6	1,56	0,62	0,94		
7	1,65	0,70	0,95		
8	1,71	0,82	0,89		
9	1,86	0,90	0,96		
10	1,96	0,96	1,00		
11	2,08	1,08	1,00		
12	2,18	1,15	1,03		
U обратное, В	$I_{\mathtt{cBeT}}$, мк A	$I_{\mathtt{темн}}$, мк A	$I_{ m \phi o au o}$, мк ${ m A}$		
0	0,69	-0,01	0,70		
0,5	-0,03	-0,03	0,00		
1	-0,07	-0,05	-0,02		
1,5	-0,08	-0,09	0,01		
1,5 2	-0,09	-0,10	0,01		
2,5	-0,12	-0,13	0,01		
3	2,5 -0,12 3 -0,15		0,02		

Таблица 2.1				
U = 14 B	$I_{\text{темн}} = 1,57 \text{ мкA}$	Лямбда =2		
J/J_0	$I_{\mathtt{cbet}}$, мк A	$I_{ m \phi o au o}$, мк ${ m A}$		
0,1	1,57	0,00		
0,2	1,70	0,13		
0,3	2,25	0,68		
0,4	2,65	1,08		
0,5	2,90	1,33		

0,6	3,28	1,71
0,7	3,56	1,99
0,8	4,03	2,46
0,9	4,37	2,80
1	4,90	3,33
1,1	5,15	3,58
1,2	5,50	3,93

Таблица 2.2				
U = 14 B	$I_{\text{темн}} = 1,60 \text{ мкA}$	Лямбда =3		
J/J_0	$I_{\mathtt{cBeT}}$, мк A	$I_{ m \phi o au o}$, мк ${ m A}$		
0,1	1,6	0		
0,2	1,65	0,05		
0,3	1,76	0,16		
0,4	1,94	0,34		
0,5	2,14	0,54		
0,6	2,3	0,7		
0,7	2,3	0,7		
0,8	2,62	1,02		
0,9	2,78	1,18		
1	3,02	1,42		
1,1	3,13	1,53		
1,2	3,3	1,7		

Таблица 3								
лямбда	0	1	2	3	4	5	6	7
$I_{\mathtt{cBeT}}$, мк A	6,54	6,07	5,14	3,90	2,56	1,81	1,73	1,68
$I_{\mathtt{темн}}$, мк A	1,13	1,63	1,70	1,63	1,70	1,70	1,70	1,70
$I_{ m \phi o ext{to}}$, мк ${ m A}$	5,41	4,44	3,44	2,27	0,86	0,11	0,03	-0,02
$v*10^{14}$, Гц	6,97	6,38	5,76	5,31	5,08	4,55	4,29	3,49

8. Расчет результатов косвенных измерений:

• Посчитаем частоту волны для Таблицы 3:
1)
$$v = \frac{c}{\lambda} = \frac{3*10^8}{430*10^{-9}} = 6,97*10^{14} \Gamma ц$$

2)
$$v = \frac{c}{\lambda} = \frac{3*10^8}{470*10^{-9}} = 6.38 * 10^{14} \Gamma \text{ц}$$

3) $v = \frac{c}{\lambda} = \frac{3*10^8}{520*10^{-9}} = 5.77 * 10^{14} \Gamma \text{ц}$

3)
$$v = \frac{c}{\lambda} = \frac{3*10^8}{520*10^{-9}} = 5,77*10^{14} \Gamma$$
ц

4)
$$v = \frac{c}{\lambda} = \frac{3*10^8}{565*10^{-9}} = 5.31*10^{14} \Gamma \text{U}$$

4)
$$v = \frac{c}{\lambda} = \frac{3*10^8}{565*10^{-9}} = 5.31 * 10^{14} \Gamma \mu$$

5) $v = \frac{c}{\lambda} = \frac{3*10^8}{590*10^{-9}} = 5.08 * 10^{14} \Gamma \mu$

6)
$$v = \frac{c}{\lambda} = \frac{3*10^8}{660*10^{-9}} = 4.55*10^{14} \Gamma \text{ц}$$

7)
$$v = \frac{c}{\lambda} = \frac{3*10^8}{700*10^{-9}} = 4,29*10^{14} \Gamma \text{ц}$$

8)
$$v = \frac{c}{\lambda} = \frac{3*10^8}{860*10^{-9}} = 3.49*10^{14} \Gamma \mu$$

- Порог фотоэффекта = $3.49 * 10^{14}$ Гц
- Работа выхода:

$$A_{\rm B}=hv_0=6,626*10^{-34}*3,49*10^{14}=2,312*10^{-19}$$
 Дж $\approx 1,44$ Эв $\approx 1,89$ Эв (Цезий)

• Посчитаем максимальную энергию электронов, вырываемых из цезия светом:

1)
$$E_{k(max)} = e * (V_B - V_A) = 1.6 * 10^{-19} * (4 - (-0.5)) = 7.2 * 10^{-19}$$

2)
$$E_{k(max)} = e * (V_B - V_A) = 1.6 * 10^{-19} * (2 - (-0.5)) = 4 * 10^{-19}$$

3)
$$E_{k(max)} = e * (V_B - V_A) = 1.6 * 10^{-19} * (1 - (-0.5)) = 2.4 * 10^{-19}$$

9. Графики:

• Графики по первой таблице:

• График по второй таблице:

• График по третьей таблице:

10. Вывод:

В ходе лабораторной мы проверили справедливость законов фотоэффекта. Были проверены зависимости $I=F(U), I=F\left(\frac{J}{J_0}\right), I=F(\lambda)$. По зависимости $I=F\left(\frac{J}{J_0}\right)$ можно убедиться в том, что ток насыщения прямо пропорционален интенсивности падающего света, если его частота остается постоянной. Также была найдена граница фотоэффекта по BAX - 3,49 * 10^{14} Гц