

MICROCOPY RESOLUTION TEST CHART

Third Uncerta Report no. : 3 84,126 Order no. : 18706 Late 1954-78-9

BIDAGGIMULATION OF RELAY PETALS OND ORGANIC CONTAN NAMES

> Dr: J.M. Marquenie (Principal investigator)

> > APPROVED FOR PUBLIC RELEASE: ENSIPTETIMES. UNLIMITED

AD-A144

84 08 21 019

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM
REPORT NUMBER 2. GOVT ACCESSION NO.	ACCIPIENT'S CATALOG NUMBER
A TH'-E Family Sublition Bioaccumulation of Heavy Metals and Organic	TYPE OF REPORT & PERIOD COVERED 3rd Interim
Contaminants	Mar - Jul 84 E PERFORMING ORG. PEPORT NUMBER
7. AUTHOR(s)	B. CONTRACT OR GRANT NUMBER(A)
J.M. Marquenie	DAJA45-84-C-0015
9 PERFORMING ORGANIZATION NAME AND ADDRESS Netherlands Organization for Scientific Research Schoemakerstraat 97	10 PROGRAM ELEMENT PROJECT, TASK AREA & WORK UNIT NUMBERS
2600 AE Delft, The Netherlands.	61102A-IT161102-BH57-01
11. CONTROLLING OFFICE NAME AND ADDRESS USARDSG-UK	12. REPORT DATE 1 AUG 84
PO Box 65, FPO NY, 09510	13 NUMBER OF PAGE
14 MONITORING AGENCY NAME & ADDRESS/II different from Controlling Office.	15 SEC HRITY CLASS I thie report Unclassified
	150 DECLASS - CATION JOWNGRADING SCHEDULE
17. DISTRIBUTION STATEMENT (of the ebetract entered in Block 20, If different from	π. Report)
18. SUPPLEMENTARY NOTES	4
9. KEY WORDS (Continue on reverse side if necessary and identify by block number) Bioaccumulation; heavy metals; organic chemica metal concentrations; PCA; PCB	1
State of the art chemical analysis technique the contamination of dredged material, animal timeport provides tabular summaries of all analytic including concentrations of heavy metals and PCA contaminated sediments and earthworm populations sediments.	ssue, and water samples. This cal work carried out to date, and PCB in selected grown in the contaminated

division of technology for society

netherlands organization for applied scientific research

Third Interim Report no.: R 84/126

Order no. : 10706

Date : 1984-08-01

BIOACCUMULATION OF HEAVY METALS AND ORGANIC CONTAMINANTS

Drs J.M. Marquenie (Principal Investigator)

572

p.o. box 217 2600 AE delft

address schoemakerstraat 97

telex 38071 zptno phone 015 - 56 93 30

Sponsor:

Department of the Army United States Army Research, Development and Standardization Group 223-231 Old Marylebone Road LONDON NW1 England

Contract no. DAJA45-84-C-0015

100 2 0 604 14.4

"No part of this report shall be multiplied and/or published by way of print, photostat copy, microfilm or otherwise, without TNO's prior consent."

If this report has been made according to instructions, the rights and obligations of the principal and TNO are as laid down in the "Standard conditions for research and development instructions to TNO, 1979", or in the relevant agreement reached between the parties.

© 1984, TNO, The Hague.

BIOACCUMULATION OF HEAVY METALS AND ORGANIC CONTAMINANTS

All analyses were carried out according to the contract no. DAJA45-84-C-0015. The complete analytical results were reported to the Waterways Experiment Station (WES) (Dr J.W. Simmers) to their full satisfation.

The draft final report is almost finished; a large portion was handed to and discussed with Dr J.W. Simmers to his agreement and will be typed in week 32.

The results already led to over five international joint WES-TNO publications. The complete set of analytical results is added as Appendix I.

#1

Delft, 1984-08-01 JM/adw

Table 1 Metal concentrations (µg.g⁻¹ dry weight) in Times Beach surface disposed materials and a control (manure)

A8 A7	2.10 1.79 0.76	116 85.9	2.10	25.0
		85.9	1.62	
	0.76		_	15.3
A6		60	1.52	20.0
A5	1.52	69.1	1.42	19.3
A4	1.87	94.2	1.55	24.1
A3	6.00	223	4.14	43.0
A2	2.73	148	4.22	38.5
A1 B1	7.22	238	4.50	37.7
B2	9.61	334	8.50	72.4
В3	10.8	288	5.42	53.4
B4	10.4	308	5.18	47.8
B5	2.01	88.5	1.18	12.1
В6	5.33	228	4.78	58.8
В7	6.63	224	3.94	36.4
В8	7.74	269	7.45	53.0
Man 1	0.39	16.5	0.74	3.40
Man 2	0.32	21.0	0.069	2.1

 $\frac{Table\ 2}{worms\ exposed\ to\ sediments\ described\ in\ Table\ 1}$ Metal concentrations (µg.g $^{-1}$ ash-free dry weight) in experimental worms exposed to sediments described in Table 1

station	Cd	Cu	Hg	As
A8	8.86	27.7	0.482	21.1
A7	11.8	-	1.64	25.2
A6	6.54	17.3	0.981	17.5
A5	9.30	19.1	0.63	14.9
A4	13.3	20.8	0.75	17.2
A3	15.0	33.6	1.13	23.3
A2	11.7	32.1	1.39	24.0
A1 B1	9.01	44.8	0.80	32.2
B2	10.8	57.6	0.805	23.9
В3	11.4	56.2	1.22	24.6
B4	12.3	52.7	1.04	15.9
B5	7.99	28.3	1.28	10.4
В6	17.6	36.2	1.14	35.3
В7	16.0	35.2	1.13	33.0
B8	16.0	46.7	1.77	53.8
Man	3.04	10.1	0.059	8.72

 $\frac{\text{Table 3}}{\text{at Times Beach and a reference area}} \quad \text{Metal concentrations } (\mu g.g^{-1} \text{ ash-free dry weight) in native worms}$

area	species	Cd	Cu	Hg	As
Times Beach	Lumbricus rubellus	113.0	59.7	1.33	30.8
	11 11	84.4	58.3	1.95	52.9
Reference	L. rubellus	17.6	20.2	0.469	8.84
	" "	22.4	30.2	0.549	11.8
	Allolobophora chlorotica	24.3	11.4	1.76	10.8
	" "	22.5	10.4	2.00	10.4
	Octolasium lacteum	36.5	12.5	1.77	6.47
	11	50.7	14.8	2.34	9.59

 $\frac{\text{Table 4}}{\text{Times Beach and the adjacent mouth of Buffalo River}} \ \, \text{Metal concentrations ($\mu g.g^{-1}$ ash-free dry weight) in fishes at } \, \, \text{Times Beach and the adjacent mouth of Buffalo River}$

area	species	organ.	Cd	Cu	Hg	As
Times Beach	Yellow Perch	muscle	<0.013	2.44	1.16	0.214
		liver	0.042	1.32	0.102	0.936
	Pumpkin Seed	muscle	<0.019	3.30	0.717	0.579
		liver	0.316	8.00	0.355	1.89
	Rock Bass	muscle	<0.04	1.07	2.80	0.541
		liver	1.29	12.8	1.25	1.83
	Carp	muscle	<0.025	2.73	0.767	0.801
		liver	-	-	-	-
Buffalo River	Yellow Perch	muscle	<0.020	1.92	0.428	0.161
		liver	0.280	3.96	0.053	0.575
	Pumpkin Seed	muscle	<0.028	1.99	0.730	0.534
		liver	1.26	10.9	0.363	1.82

^{- =} no data available

Table 5 PCB concentrations (µg.kg⁻¹ dry weight) in Times Beach surface disposed materials and a control (manure)

	· · · · · · · · · · · · · · · · · · ·		PCI	3 comp	nent					
station	28	52	49	70	101	87	153	138	180	нсв
A8	43	93	64	78	58	40	34	32	20	57
A7	33	110	76	120	44	27	15	20	7.7	95
A6	110	160	120	160	70	55	15	18	4	50
A5	140	180	140	220	60	39	17	37	7.1	94
A4	94	230	170	220	89	59	26	40	12	160
A3	84	290	190	230	130	89	48	79	21	320
A2	130	220	160	210	110	76	42	41	15	110
A1 B1	54	180	110	150	71	48	23	51	7.7	130
B2	55	220	150	120	140	100	71	71	34	110
В3	64	340	220	290	190	120	79	110	37	330
B4	40	170	97	210	140	72	69	99	33	290
B5	15	36	22	47	26	13	21	28	12	190
В6	50	170	110	120	110	70	46	45	22	130
B7	35	140	87	150	95	49	53	76	28	510
B8	22	93	55	42	83	50	53	52	30	79
Man 1	<10	<15	<14	<16	<17	<15	<12	<13	<16	13
Man 2	4.8	3 -	4.9	4.4	4 3.	ı -	9.0	5 2.3	3 6.5	6

Table 6 PCB concentrations (µg.kg⁻¹ ash-free dry weight) in experimental worms exposed to disposed materials mentioned in Table 5

						_				
			PC	B comp	onent					
station	28	52	49	70	101	87	153	138	180	НСВ
A8	230	800	460	600	680	310	420	330	120	190
A7	160	740	510	950	420	220	180	230	64	1200
A6	530	1000	760	990	520	310	140	130	<46	350
A5	270	590	440	830	290	140	120	150	42	560
A4	200	680	480	860	360	180	130	210	43	890
A3	190	1400	910	1600	800	430	300	400	81	2000
A2	400	1000	690	830	630	360	280	230	100	510
A1 B1	240	1000	660	1200	590	340	280	360	81	890
B2	260	1700	1100	870	1100	680	470	430	150	620
В3	190	1500	970	1900	960	520	390	540	120	2100
B4	110	1000	570	1500	810	400	410	570	120	1800
B5	37	220	120	500	240	98	200	240	78	920
В6	150	870	540	430	630	360	290	250	100	560
В7	57	460	280	830	430	200	270	340	94	2500
В8	60	680	340	<45	730	350	420	350	150	460
Man	<32	<48	<45	<51	<54	<48	<39	<42	<51	19

 $\frac{Table\ 7}{at\ Times\ Beach\ and\ a\ reference\ area} \ PCB\ concentrations\ (\mu g.kg^{-1}\ ash\ free\ dry\ weight)\ in\ native\ worms$

				PCB	compo	nent					
area	species	28	52	49	70	101	87	153	138	180	нсв
T.B.	L. rubellus	126	460	220	330	320	160	130	130	50	260
		207	900	460	590	560	280	200	210	160	370
Ref.	L. rub.	all	values	helow	detec	tion	limite	- < 0.	40		13
	A. chl.	"	"	"	"	cron	"		40		12
	0. lac.	н	11	"	**		**				8

 $\frac{\text{Table 8}}{\text{Times Beach and the adjacent mouth of Buffalo River}} PCB \ \text{concentrations} \ (\mu g. kg^{-1} \ \text{ash-free dry weight) in fishes at}$

					PC	B comp	onent					
area	spec.	org.	28	52	49	70	101	87	153	138	180	нсв
Т.В.	Y.P.	m	100	180	130	160	130	59	68	56	<22	38
		1	1800	3400	2500	2900	2300	840	750	580	330	580
	P.S.	m	150	290	210	290	210	110	120	100	50	46
	1.5.	1	420	750	590	780	600	360	370	330	190	100
	R.B.	m	160	370	280	400	310	150	190	210	83	35
		1	200	5200	4000	5800	5200	2500	3300	3700	1500	360
	С.	m	630	1100	830	1400	570	280	260	310	110	190
		1	2100	3200	2500	4100	1800	920	800	870	220	600
B.R.	Y.P.	m	26	38	26	27	4.1	<23	63	50	33	4.4
		1	530	900	650	600	920	87	900	580	230	110
	P.S.	m	<18	<26	<25	<28	33	<26	47	34	<28	6.5
	- · - ·	1	42	70	50	64	90	<25	130	93	73	15
		_		. •		- '						

Tible 9.—PGA concentrations type g day weight) in times Beach surface stage sed materials and a control convent.

station				PCA component	penent					
	-	Si	~	4	i.	٤	~	×		2
АВ	3C	7.	3.4	6.5	75.0	⊽	9.58	8.	3.0	x :
47	1.5	0.26	1.2	0.86	70	7 3	0 091	77.0	77 0	97.0
Αρ	95.0	0.18	65.0	0.53	0.068	÷	0.075	0.37	0.33	0. 52
A5	0.41	0.10	0.19	₹	Ð	1.3	7	0.22	61.0	0.22
A 4	0.55	0.15	0.26	7	70	2.0	Ŧ	0.24	0.21	0.36
A3	2.5	96.0	2.1	1.9	•	71	9.93	2.2	1.9	1.6
A2	2.0	79.0	2.0	2.7	0.41	P	6.1	2.5	2.2	2.1
Al Bı	æ: -7	1.5	8.8	4.1	7	2.3	96.0	3.2	2.8	-
82	3.2	96.0	2.8	2.5	0.12	7	1.1		. 2	0.4
83	6.2	86.0	2.6	2.5	P	91	0.72	5.0	7.1	2.1
B 4	3.0	=	2.4	2.8	7	26	0.72	7.0	7.0	2.8
3	3.5	99.0	7.5	6.1	70	8.0	0.85	4.5	4.6	7.1
Ré	5 . –	0.81	1.9	1.5	0.38	5	57.0	\$		7 7
18.7	2.3	1.2	3.8	3.7	7	16	16.0	5.5	3.3	7.7
88	2.3	0.92	2.3	2.1	15.0	7	65.0	1.1	1.9	2.1
Man 1	6.43	0.021	÷	τ	τ	₹	₹	=	₹	₹
Man 2	0.75	70	v	77	=	7	5	-	Ŧ	ਚ
-			9	:	:	:	ć	3	3	•

control of Prayson control constructions and the second control of the control of

Pr.A. components

Med 14 Lod

Ab 3 1 1 1 4 4 6 6 1 1 4 4 6 6 1 1 4 4 6 6 1 1 4 4 6 6 6 6		4	5	0 0 0 0 0 13	0.29	ž 7	5 0 5	20 0 81	5
				0 13 0 13 0 14	0.29	7 -	0	0 81	
 		0 0 0 0 1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	95 0 0 5 6 5 6 5 6 6 6 6 6 6 6 6 6 6 6 6	0 13	0.29				<u>-</u>
7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7		61 0 0 14 41 0 0 20	3 4 1 4 5	71 0		<u>-</u>	0.47	70	0.15
g , a a a a a a a a a a a a a a a a a a		0 14 0 16 1.4	2 5 5 5 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6 6		·	67 0	0.47	5	0.13
		0.20	\$ \$ \$ 15 0	97 0	0 41	5 4	0.53	₽	0.092
g , a a a a a a	2. 5. 3.5. 8.5.	4	\$; \$;	0 15	95.0	× :	0.17	₽	0.16
	5.5 8.5	:	•	0 8 5	1.3	6.0	6 7	v	1.4
.	9	<u>-</u>	36	1.4	1.7	4.5	3.1	Ð	1.2
	-	1.1	4.1	97.0	1.4	6.3	4.5	P	1.2
ם יי יי	9.6	2.9	8.6	1.9	2.6	7.6	6.1	T	2.5
0 % 0	2.6	1.5	4.1	86.0	4.	7.5	6.4	p	7.1
~ ~	3.0	1.1	4.5	1.0	1.5	7.9	5.4	ਚ	5.1
Ð	4.4	2.1	4.3	0.87	0.17	£. 2	9.9	₽	96.0
	2.3	1.2	3.6	16.0	8.1	3.7	2.9	₹	1.1
B7 d 1.6	6.0	2.2	5.3		1.7	7.8	5.6	ਦ	1.6
B8 d 1.4	2.4	1.4	9 4		1.6	8.9	3.1	P	7
Man 1 d d	₽	0.032	ਚ	P	70	0.80	₽	v	7
Man 2 d d	Ð	•	p	7	ф	₽	~	9	Ð
1.0 0.01 b	0.025		0.02	0.1	60.0		0.1	0.025	0.02

Table 10. PGA concentrations (pg.g. ash-free dry weight) in experimental worms exposed to lines Beach disposed materials. Approximate defection limits are indicated (d)

PCA component

station

0 cb4 0.2c 1.9 0.222 4 0.49 1.2 0.28 0.028 0.35 0.40 0.051 3.5 d 0.22 0.091 0.028 0.14 0.018 0.074 d 0.099 0.18 0.011 0.070 0.11 d 0.06 d 0.099 0.20 0.011 0.070 0.11 d 0.03 d 0.099 0.20 0.011 0.070 0.11 d 0.03 d 0.099 0.20 0.011 0.071 0.12 0.23 0.18 1.0 d 0.098 0.20 0.047 0.12 0.23 0.11 1.6 0.17 1.7 0.31 2.4 4.5 0.13 1.2 0.17 1.7 0.51 0.066 0.19 d 0.51 3.6 0.68 0.35 0.32 0.010 0.11 0.24 4.5 0.11 0.25 </th <th></th> <th>_</th> <th>~</th> <th>-</th> <th>J</th> <th>-</th> <th>3</th> <th></th> <th>c</th> <th>-</th> <th>2</th>		_	~	-	J	-	3		c	-	2
0.28 0.028 0.40 0.051 3.5 d 0.22 0.091 0.0076 0.099 0.14 0.018 0.074 d 0.099 0.18 0.011 0.070 0.11 d 0.16 d 0.096 0.20 0.011 0.071 0.14 0.032 0.23 d 0.086 0.36 0.047 0.12 0.23 0.18 1.0 d 0.098 0.28 0.062 0.41 0.53 0.11 1.6 0.17 0.17 0.28 0.062 0.41 0.53 0.11 1.6 0.17 0.17 0.51 0.062 0.41 0.53 0.11 1.6 0.17 0.17 0.57 0.066 0.19 4 0.51 3.6 0.68 0.35 0.36 0.010 0.11 0.28 4.5 0.72 0.88 0.10 0.048 0.20 0.093 0.10 0.57	AR	84.0	0.26	0.85	6.1	0.22	7	67.0	1.2	0.1	5.1
0.091 0.0076 0.099 0.14 0.018 0.074 d 0.099 0.18 0.011 0.070 0.11 d 0.16 d 0.086 0.20 0.011 0.071 0.14 0.032 0.23 d 0.098 0.36 0.062 0.41 0.53 0.18 1.0 d 0.25 0.28 0.062 0.41 0.53 0.11 1.6 0.17 0.17 81 1.4 0.37 2.4 4.5 0.13 d 0.25 0.57 0.066 0.19 d 0.51 3.6 0.68 0.35 0.36 0.063 0.20 0.27 0.18 2.3 0.11 0.25 0.10 0.014 0.053 0.045 0.72 0.18 0.32 0.88 0.10 0.014 0.20 0.23 0.083 0.10 0.05 0.093 0.14 0.024 0.20 0.23	Α/	0.28	0.028	0.35	07.0	0.051	3.5	P	0.22	0.24	0.24
0.18 0.011 0.070 0.11 d 0.16 d 0.086 0.20 0.011 0.071 0.14 0.032 0.23 d 0.098 0.36 0.047 0.12 0.23 0.18 1.0 d 0.055 0.28 0.062 0.41 0.53 0.11 1.6 0.17 0.17 81 1.4 0.37 2.4 4.5 0.13 12 0.17 0.17 0.57 0.066 0.19 4 0.51 3.6 0.68 0.35 0.36 0.063 0.20 0.27 0.18 2.3 0.11 0.25 0.36 0.071 0.38 1.1 0.28 4.5 0.32 0.88 0.25 0.010 d d 0.045 0.045 0.72 d 0.08 0.10 0.048 0.20 0.093 0.10 0.57 d 0.48 0.043 0.046 0.12<	A6	0.091	0.0076	660.0	0.14	0.018	0.074	7	660.0	0.17	0.099
0.20 0.011 0.071 0.14 0.032 0.23 d 0.098 0.36 0.047 0.12 0.23 0.18 1.0 d 0.25 0.28 0.062 0.41 0.53 0.11 1.6 0.17 0.17 81 1.4 0.052 0.41 0.53 0.11 1.6 0.17 0.17 0.57 0.066 0.19 d 0.51 3.6 0.77 1.7 0.36 0.063 0.20 0.27 0.18 2.3 0.11 0.25 0.36 0.071 0.38 1.1 0.28 4.5 0.32 0.88 0.25 0.010 d d d 0.045 0.72 d 0.093 0.10 0.01 d d 0.045 0.72 d 0.093 0.14 0.02 0.023 0.083 0.87 d 0.25 0.043 0.012 d d	Š	0.18	0.011	0.010	0.11	p	0.16	p	980.0	91.0	0.21
0.36 0.047 0.12 0.23 0.18 1.0 d 0.25 0.28 0.062 0.41 0.53 0.11 1.6 0.17 0.17 81 1.4 0.37 2.4 4.5 0.13 12 0.77 1.7 0.57 0.066 0.19 4 0.51 3.6 0.68 0.35 0.36 0.063 0.20 0.27 0.18 2.3 0.11 0.25 0.36 0.071 0.20 0.27 0.18 2.3 0.11 0.25 0.25 0.011 0.28 4.5 0.32 0.88 0.10 d d d 0.045 0.72 d 0.093 0.10 0.048 0.20 0.093 0.10 0.57 d 0.48 0.14 0.026 0.023 0.083 0.87 d 0.25 0.14 0.024 0.15 0.090 0.69 0.059 0.16 <td>A 4.</td> <td>0.20</td> <td>0.011</td> <td>0.071</td> <td>91.0</td> <td>0.032</td> <td>0.23</td> <td>p</td> <td>0.098</td> <td>0.17</td> <td>0.20</td>	A 4.	0.20	0.011	0.071	91.0	0.032	0.23	p	0.098	0.17	0.20
B1 1.4 0.062 0.41 0.53 0.11 1.6 0.17 0.17 B1 1.4 0.37 2.4 4.5 0.13 12 0.77 1.7 0.57 0.066 0.19 d 0.51 3.6 0.68 0.35 0.36 0.063 0.20 0.27 0.18 2.3 0.11 0.25 0.36 0.071 0.38 1.1 0.28 4.5 0.32 0.88 0.25 0.010 d d d 0.045 0.72 d 0.093 0.10 0.014 0.065 0.093 0.10 0.57 d 0.093 0.12 0.048 0.20 0.23 0.083 0.87 d 0.25 0.043 0.012 0.090 0.15 d 0.05 0.05 0.090 0.69 0.058 0.10 0.043 0.040 0.050 0.058 0.058 0.10 0.16	A 3	0.36	0.047	0.12	0.23	0.18	1.0	P	0.25	67.0	1.9
0.37 2.4 4.5 0.13 12 0.77 1.7 0.066 0.19 d 0.51 3.6 0.68 0.35 0.063 0.20 0.27 0.18 2.3 0.11 0.25 0.071 0.38 1.1 0.28 4.5 0.32 0.88 0.010 d d d 0.045 0.72 d 0.093 0.014 0.065 0.093 0.10 0.57 d 0.093 0.048 0.20 0.23 0.083 0.87 d 0.25 0.024 0.090 0.15 0.090 0.69 0.058 0.10	A2	0.28	0.062	17.0	0.53	0.11	1.6	0.17	0.17	0.41	0.75
0.57 0.066 0.19 d 0.51 3.6 0.68 0.35 0.36 0.063 0.20 0.27 0.18 2.3 0.11 0.25 0.36 0.071 0.38 1.1 0.28 4.5 0.32 0.88 0.25 0.010 d d d 0.045 0.72 d 0.08 0.10 0.014 0.065 0.093 0.10 0.57 d 0.48 0.26 0.048 0.20 0.23 0.083 0.87 d 0.25 0.14 0.024 0.090 0.15 0.090 0.69 0.058 0.10 0.043 0.043 0.12 d d 0.051 d 0.16	11 B1	1.4	0.37	2.4	4.5	0.13	12	0.77	1.7	1.1	3.1
0.36 0.063 0.20 0.27 0.18 2.3 0.11 0.25 0.36 0.071 0.38 1.1 0.28 4.5 0.32 0.88 0.25 0.010 d d d 0.045 0.72 d 0.093 0.10 0.014 0.065 0.093 0.10 0.57 d 0.48 0.26 0.048 0.20 0.23 0.083 0.87 d 0.25 0.14 0.024 0.090 0.15 0.090 0.69 0.058 0.10 0.043 0.0043 0.12 d d 0.058 0.16	73	0.57	990.0	0.19	P	0.51	3.6	99.0	0.35	14.0	4.2
0.36 0.071 0.38 1.1 0.28 4.5 0.32 0.88 0.25 0.010 d d 0.045 0.72 d 0.093 0.10 0.014 0.065 0.093 0.10 0.57 d 0.48 0.26 0.048 0.20 0.23 0.083 0.87 d 0.25 0.14 0.024 0.090 0.15 0.090 0.69 0.058 0.10 0.043 0.0043 0.12 d d 0.050 0.16	ä	0.36	0.063	0.20	0.27	0.18	2.3	0.11	0.25	0.53	2.5
0.25 0.010 d d 0.045 0.055 0.093 0.10 0.57 d 0.093 0.10 0.014 0.065 0.093 0.10 0.57 d 0.48 0.26 0.048 0.20 0.23 0.083 0.87 d 0.25 0.14 0.024 0.090 0.15 0.090 0.69 0.058 0.10 0.043 0.0016 0.12 d d 0.021 d 0.16	3	0.36	0.071	0.38	1.1	0.28	4.5	0.32	0.88	0.84	3.8
0.10 0.014 0.065 0.093 0.10 0.57 d 0.48 0.26 0.048 0.20 0.23 0.083 0.87 d 0.25 0.14 0.024 0.090 0.15 0.090 0.69 0.058 0.10 0.043 0.0016 0.12 d d 0.021 d 0.16	νo	0.25	0.010	P	P	0.045	0.72	P	0.093	0.18	0.91
0.26 0.048 0.20 0.23 0.083 0.87 d 0.25 0.14 0.024 0.090 0.15 0.090 0.69 0.058 0.10 0.043 0.0016 0.12 d d 0.021 d 0.16	9	0.10	0.014	0.065	0.093	0.10	0.57	ъ	87.0	0.15	0.65
0.14 0.024 0.090 0.15 0.090 0.69 0.058 0.10 0.043 0.0016 0.12 d d 0.021 d 0.16	<i>!</i>	0.26	0.048	0.20	0.23	0.083	0.87	P	0.25	0.35	0.81
0.043 0.0016 0.12 d d 0.021 d 0.16	œ	91.0	0.024	060.0	0.15	060.0	69.0	0.058	0.10	0.15	1.1
0.015 0.0040 0.015 0.050	an	0.043	9100.0	0.12	P	P	0.021	P	0.16	P	9
				 	0.015	0,0040	0.015	0.050	: !	0.0085	0.02

Table III. PLA concentrations to $g^{-1}_{\rm c}$ is tree division to experimental worms exposed to limes Beach dispersel materials. Approximate detection limits are individed (d) (conf.d)

station				Pt A compositent	ttent						
	=	12	<u>:</u>	7	51	2	13	8 1	61	70	17
A8	=	0.41	2.1	<u> </u>	2.8	0.71	0.58	1.5	. =	T	91.0
Α7	7	0.071	0.25	0.16	0.25	0.080	0.12	09.0	0.48	7	q
9V	7	0.043	0.15	0.11	0.16	0.050	970.0	0.19	0.21	7	0.0084
A 5	Þ	0.036	0.16	0.10	91.0	0.061	0.11	09.0	0.30	₽	P
A4	P	0.055	0.22	0.12	0.25	0.11	0.15	0.50	97.0	0.013	0.011
Α3	P	97.0	1.5	0.62	2.1	0.36	89.0	1.5	2.2	0.017	0.13
A2	P	0.37	1.3	0.65	1.8	0.32	0.43	1.1	1.1	v	0.11
Al Bl	P	0.93	5.2	2.7	5.8	09.0	16.0	1.8	4.4	₽	0.28
B 2	P	1.8	5.4	2.6	7.4	0.73	1.4	3.2	5.0	P	09.0
B 3	Ð	0.61	2.3	1.0	5.9	0.42	67.0	1.7	3.1	Ð	0.13
78	Ð	0.92	8.4	2.4	9.6	19.0	1.0	3.5	4.7	P	0.27
82	₽	0.27	99.0	0.30	0.75	0.24	0.36	0.89	1.3	Ð	0.032
98	P	0.18	0.54	0.24	0.93	0.24	0.37	0.93	1.6	P	0.057
19	Ð	0.30	0.83	0.38	1.1	0.36	97.0	1.1	1.3	P	0.11
88	Ð	0.26	0.67	0.37	1.3	0.32	0.45	1.5	0.83	P	0.090
Man	Ð	P	P	0.0047	•	9	₽	0.160	0.029	Ð	P
ъ	0.1	0.0008	0.002		0.002	0.01	0.009			0.003	0.0025
-			1	i .	1		1	1	1.1	. !!!	

.

Fable 11 PCA concentrations (µg.g⁻¹ ush-free dry weight) in native worms at Times Beach and a reference area. Approximate detection limits are indicated (d).

area	species				PCA con	iponent					
		1	2	3	4	5	6	7	8	9	10
г.в.	L. rubellus	0.36	0.13	0.62	0.37	0.013	0.94	0.13	0.53	0.48	0.32
		0.20	0.059	0.24	0.17	0.014	0.56	0.038	0.22	0.23	0.23
Ref.	L. rubellus	0.11	0.0048	0.051	d	d	į	d	0.012	0.020	i
		0.17	0.0090	0.086	đ	d	4	4	0.022	0.040	đ
	A. chlorotica	0.20	0.0064	0.090	d	0.0071	0.045	d	0.012	d	đ
		0.13	0.0042	0.066	d	d	0.023	đ	0.0070	0.014	đ
	O. lacteum	0.088	0.0040	0.039	d	0.0040	0.013	d	0.0074	d	đ
		0.11	0.0051	0.057	d	d	0.020	d	0.0072	0.027	d
d					0.002	0.0055	0.02	0.01		0.01	0.003

PCA concentrations (µg.g⁻¹ ash-free dry weight) in native worms at Times Beach and a reference area. Approximate detection limits are indicated (d) (cont'd).

area	species				PCA com	ponent						
		11	12	13	14	15	16	17	18	19	20	21
T.B.	L. rubellus	d	0.19	0.45	0.27	0.59	0.16	0.15	0.76	0. 48	-1	0.14
		đ	0.13	0.27	0.14	0.31	0.086	0.13	0.64	0.30	i	0.086
Ref.	L. rubellus	d	0.0048	0.024	0.010	0.011	d	d	0.10	d	d	đ
		đ	0.0027	0.034	0.015	0.018	d	d	0.14	đ	đ	4
	A. chlorotica	d	d	0.0083	0.0051	d	d	đ	0.17	d	ď	d
		đ	đ	0.0085	0.0049	0.0028	d	đ	0.18	d .	đ	d
	O. lacteum	d	d	0.0074	0.0047	d	d	đ	0.14	d	đ	ď
		đ	0.0015	0.019	0.0080	0.0065	đ	đ	0.13	d	d	đ
d		0.15	0.0015			0.003	0.015	0.015		0.015	0.004	0.003

Eable 12—PGA concentrations (pg g ash-free dry weight) in lishes at Times Beach and the adjacent mouth of Buffalo River. Approximate detection funits are indicated (d).

								ï	:	:
	-	7	<u></u>	7	٠	9	,	œ	5	01
muscle	0.071	0.021	0.024	77	0.0051	0.056	P	۳	Ð	P
liver	0.11	0.26	0.25	0.19	0.042	0.58	9	0.015	P	9
muscle	0.11	0.044	0.065	0.025	p	0.16	P	Ð	P	P
liver	0.53	0.16	0.33	0.11	0.017	0.95	٥	70	P	Þ
Buscle	0.12	0.018	0.031	₽	ъ	₹	Ð	P	Þ	Þ
liver	0.45	0.17	0.20	90.0	Þ	Ð	₽	₹	7	Þ
muscle liver	0.39	0.095	0.095	0.16	0 0	9 9	99	99	ਹ ਹ	99
muscle	0.036	0.0025	9900.0	•	P	Ð	P	P	P	P
liver	0.11	0.022	0.045	690.0	0.013	0.026	ъ	Ð	Ð	P
muscle	0.031	0.0022	0.0012	Ð	70	70		70	Ð	P
liver	0.059	0.0070	0.037	0.051	0.0070	٦	P	₽	p	Ð
ausc]e				0.02	0.003	0.01	0.008	0.007	0.01	0.03
liver						0.05	0.02	0.01	0.03	0.08

PGA concentrations (DR g ash-free dry weight) in fishes at Times Beach and the adjacent mouth of Baffalo Biver Approximate detection limits are indicated (d) (conf.d). Lable 12

ي

T.B. Y.F. muscle d d d d 0.0041 d d d d 0.055 d d 0.15 d d d 0.15 d d d 0.15 d d d d 0.055 d d d d d 0.0041 d d d d 0.015 d d d 0.015 d d d 0.015 d d d d 0.011 d d d d 0.015 d d d d 0.015 d d d d d 0.015 d d d d d d d 0.005 d d d d d d d d d d d d d d d d d d	4164	samads	of Kan			PCA component	wnent						•	
F.S. muscie d d d d 0.0041 d d d 0.15 d d d d d d d d d d d d d d d d d d d				Ξ	12	13	14	15	16	11	æ		20	21
P.S. muscle d	±. 20.	Y.P.	muscle	70	· •	, '	0.0041	7	. •		0.15		Ð	Ð
F.S. muscle d d 6.0027 d d 6.0027 d			liver	P	0.070	Ð	0.011	P	Đ	ਚ	0.55	Ð	P	P
R.B. muscile d		P.S.	muscle	ъ	₽	q	0.0027	P	9	Đ	0.13	P	ъ	₽
R.B. muscie d d 0.0055 d			liver	Ð	70	0.0095	0.014	Ð	P	₽	0.63	0.13	ø	v
C. muscle d d d d d. 0.0067 d d d d d d d d d d d d d d d Tiver liver d d d d 0.012 0.036 d d d d d d d d d d d d d Y.P. muscle d d d d 0.0015 d d d 0.0030 d d d d d d 0.014 d d d P.S. muscle d d d d 0.0037 d d d d d d d d d d d d d d d d d d d		æ: æ:	muscle	ט	ø	ø	0.0055	q	Ð	ъ	p	Đ	9	v
C. muscle d 0.012 0.036 d			liver	v	Ð	₽	0.0067	₽	P	v	Ð	P	P	Ð
Y.P. muscle d		Ċ.	muscle	٩	0.012	0.036	79	Ф	P	P	P	P	₽	Ð
Y.P. muscle d d 0.0030 d			liver	77	P	P	0.0059	P	۳	Ð	•	٥	Þ	Ð
liver d <td>B. R.</td> <td>Y . P .</td> <td>muscle</td> <td>v</td> <td>Ð</td> <td>Ð</td> <td>0.0030</td> <td>Ð</td> <td>v</td> <td>70</td> <td>0.14</td> <td>Ð</td> <td>Ð</td> <td>P</td>	B. R.	Y . P .	muscle	v	Ð	Ð	0.0030	Ð	v	70	0.14	Ð	Ð	P
muscle d <td></td> <td></td> <td>liver</td> <td>Ð</td> <td>0.0075</td> <td>P</td> <td>0.0015</td> <td>₽</td> <td>ъ</td> <td>Ð</td> <td>0.047</td> <td>0.0084</td> <td>Ð</td> <td>Đ</td>			liver	Ð	0.0075	P	0.0015	₽	ъ	Ð	0.047	0.0084	Ð	Đ
d d d 0.0048 d d d d d 0.1 0.0015 0.003 0.0025 0.01 0.01 0.01 0.003 0.35 0.0035 0.0009 0.000 0.040 0.03 0.0015 0.0005		e.s.	muscle	Ð	P	Ð	0.0033	P	9	v	0.15	P	v	Ð
0.1 0.0015 0.003 0.0025 0.01 0.01 0.0035 0.35 0.0035 0.0009 0.007 0.040 0.03 0.0015 0.0095			liver	ਦ	Ð	P	0.0048	v	P	P	0.22	p	P	P
0.35 0.0035 0.0009 0.007 0.040 0.03 0.0015 0.0095	P		muscle	0.1	0.0015	0.003		0.0025	0.01	0.01	ı	10.0	0.0035	0.003
	70		liver	0.35	0.0035	0.0009		0.007	0.040	0.03		0.0015	0.0095	0.008

 $\frac{Table\ 13}{worms\ exposed\ at\ the\ Bridgeport\ FVP\ site\ under\ field\ conditions}$ and in native worms collected at transect A

	station	Cd	Cu	Hg	As
experimenta	al A4	9.83	73.5	1.79	14.4
	C2	6.51	36.9	0.524	34.6
	D2	9.97	32.7	1.10	13.8
native	L. rubellus	35.4	69.9	0.818	8.14
		39.9	55.7	0.708	6.69

Table 14

Metal concentrations (μg.g ash-free dry weight) in Modiolus demissus collected at the Bridgeport FVP site and the adjacent canal

area	Cd	Cu	Нg	As
FVP site	20.3	28.2	0.092	9.63
	19.3	27.0	0.103	9.78
Canal	29.0	37.1	0.152	11.7

Table 15 Metal concentrations in sediments (µg.g⁻¹ dry weight), and organisms (µg.g⁻¹ ash-free dry weight) exposed for 32 days in a tidal flow through system

			Cd	Cu	Нg	As
sediment						
sa	and	(S)	0.21	0.19	0.14	0.16
F\	/P site	(F)	0.73	43	0.24	2.8
B1	lack Rock Control	(C)	3.6	380	0.81	8.4
В	lack Rock	(BR)	22	2590	3.5	12
Nereis vire	<u>18</u>	S	0.841	16.5	0.420	21.3
		F	0.874	36.0	0.335	23.7
		С	0.822	20.4	0.363	22.5
		BR	1.02	16.7	0.206	18.8
Nassarius ol	osoletus	S	8.59	2913	0.255	13.7
		F	11.2	3762	0.219	18.1
		С	13.4	4823	0.240	19.9
		BR	18.2	5920	0.264	24.6

Table 16 PCB concentrations (µg.kg⁻¹ ash-free dry weight) in experimental worms exposed at the Bridgeport FVP site under field conditions and in native worms collected at transect A.

Approximate detection limits (d) are indicated.

				PCB	comp	nent				
	station	28	52	49	70	101	87	153	138	180
experimental	. A4	d	d	d	d	47	đ	100	90	59
	C2	đ	d	d	d	d	d	d	d	d
	C5	d	d	đ	d	đ	d	70	88	76
	D2	d	63	54	đ	130	d	180	160	180
native <u>L.</u>	ubellus	d	55	d	d	68	d	56	67	ċ
		d	80	d	đ	83	41	69	89	d
	d	40	60	40	50	70	50	50	60	40

 $\frac{\text{Table 17}}{\text{collected at the Bridgeport FVP site and the adjacent canal.}} \\ \text{Approximate detection limits (d) are indicated.}$

			PCI	3 comp	onent				
area	28	52	49	70	101	87	153	138	180
FVP site	77	120	90	110	130	45	120	74	d
	74	120	90	110	130	45	130	75	d
Canal	107	140	110	140	140	56	120	83	d

			PCB	comp	onent				
	28	52	49	70	101	87	153	138	180
ediment									
S	ď	d	d	d	d	đ	d	d	d
F	d	d	d	d	d	đ	d	d	d
С	25	27	21	36	43	26	38	37	14
BR	250	340	230	390	430	270	300	310	110
. virens									
S	d	ď	d	d	ď	đ	79	44	39
F	d	d	d	d	63	d	107	83	44
С	59	101	46	d	140	d	180	140	54
BR	280	620	283	d	770	120	640	620	170
. obsolet	<u>us</u>								
S									
F	not y	yet ava	ailable	•					
С									
BR									

d organisms

PCA concentrations (µg,g⁻¹ ash-free dry weight) in experimental worms exposed at the Bridgeport FVP site under field conditions and in native worms collected at transect A. Approximate detection limits are indicated (d).

			PCA comp	ponent							
station		1	2	3	4	5	o	7	ಕ	9	10
experimental	A4	0.11	0.0071	0.040	0.057	d	d	d	0.031	0.058	4
	Č2	0.20	0.016	0.12	0.12	0.0094	d	0.026	0.10	0.24	ე. ა94
	D2	0.11	0.333	0.029	0.034	đ	d	d	0.021	0.037	đ
native <u>L. ru</u>	ibellus	0.22	ა. 032	0.23	0.16	1	0.034	0.013	0.11	0.12	0.059
		J. 10	0.011	0.10	0.079	1	-1	1	0.063	0.095	đ
1						0.005	0.02	0.009			0.03

PCA concentrations (µg,g⁻¹ ash-free dry weight) in experimental worms exposed at the Bridgeport FVP site under field conditions and in native worms collected at transect A. Approximate detection limits are indicated (d) (cont'd).

			PCA comp	ponent								
station		11	12	13	14	15	16	17	18	19	20	21
experimental	Αŭ	t	0.0035	0.022	0.015	0.014	d	0.013	0.19	d	d	d
	č2	4	0.023	0.073	0.060	0.076	0.031	0.027	0.21	0.13	đ	t
	92	d	0.0017	0.015	0.012	0.0077	ď	d	0.17	ż	i	d
native <u>L. r</u> u	ibellus	d	0.018	0.083	0.048	0.080	0.026	Ŀ	0.19	0.376	d	0.009
		d	0.0095	0.060	0.032	0.033	đ	d	0.042	į	đ	ď
1		0.2		•			0.015	0.02		0.02	0.006	0.005

PCA concentrations (µg,g⁻¹ asn-tree try weight) in <u>M. demissus</u> collected at the Bridgeport FVP site and the adjacent canal. Approximate detection limits are indicated d).

irea		PCA com	ponent							
	:	2	ڼ	•	5	0	7	8	9	10
FVP site	J. o.1	J. J19	J. → 9	3,43	0. lo	0.24	0.046	0.20	0.21	0.090
	3.50	ე.ე1⊶	0.36	0.33	0.12	0.18	0.045	0.16	0.13	0.079
Janai	0.47	0.025	ა. 96	1.3	0.73	0.80	. 0.21	1.2).79	J. 56

PCA concentrations [µg,g⁻¹] ash-free dry weight) in M. demissus collected at the Bridgeport FVP site and the adjacent canal. Approximate detection limits are indicated (d) [cont'd].

area		PCA comm	ponent								
	:1	12	13	14	15	16	17	18	19	20	21
FVP site	-1	0.3082	0.075	0.029	0.015	d	d	d	đ	d	d
	i	0.0079	0.071	0.026	0.011	0.016	d	q	đ	đ	t
Canal	d	0.033	0.53	0.23	0.10	0.042	0.357	0.20	0.065	Ŀ	į
.i	9.1					0.01	0.01	0.02	0.01	0.003	0.302

PCA concentrations in sediments (μg.g⁻¹ dry weight) and organisms (μg.g⁻¹ ash-free dry weight) exposed for 32 days in a tidal flow through system.

Approximate detection limits are indicated (d).

area		PCA comp	ponent							
	1	2	3	4	5	b	7	8	9	10
sediment										
S	J. 050	0.0025	1	4	ď	वं	đ	đ	d	ત
F	0.10	0.0099	0.10	0.094	4	4	0.017	0.072	0.067	0.053
٥	0. →8	0.081	0.77	0.92	0.383	1	9.088	0 52	0.50	0. →0
ЗR	0.9	2.3	8.1	9.2	1.2	d	1.4	6.3	5.5	3.2
i. virens										
S	0.039	0.0018	0.0089	4	t	ď	d	d	d	d
F	J. 058	0.0035	0.044	0.031	J.	0.024	d	0.0070	d	d
c	J. 055	0.0027	0.055	0.058	i	0.030	d	0 0063	i	d
3R	0.11	0.016	0.14	J. 18	0.020	J.18	0.017	0.080	0.085	d
. obsoletus										
š	0.390	0.0075	0.334	-1	i	0.033	-1	0.019	4	1
F	0.15	0.018	J. 35	0.24	i	0.20	ť	i	0.072	1
e e	0.14	0.026	J. 84	d	0.030	d	0.033	0.25	0.12	d
BR	0.67	0.25	4 .2	67	0.19	đ	0.52	0.95	1.7	0.26
i sediments			0.035	0.065	ს. ა2	0.2	0.03	0.0025	0.040	0.10
i organisms				0.015	0.0045	0.01	0.007	0.005	0.01	0.025

PCA concentrations in sediments (µg.g⁻¹ dry weight) and organisms (µg.g⁻¹ ash-free dry weight) exposed for 32 days in a tidal flow through system.

Approximate detection limits are indicated (d) (cont'd).

area		PCA comp	ponent								
	11	12	13	14	15	16	17	18	19	20	21
sediment											
S	d	d	đ	4	d	d	d	0.82	đ	đ	d
F	Ĺ	0.016	0.068	0.046	0.067	0.041	ď	ď	J.045	đ	0.014
٥	4	0.16	0.69	0.36	0.88	d	0.21	1.5	0.63	đ	0.13
BR	đ	1.1	4.0	2.2	4.9	1.4	1.6	5.5	4. 3	4	0.92
N. virens											
S	d	d	d	0.0035	d	d	d	0.21	đ	d	ď
F	ď	0.0017	0.010	0.0096	0.0087	đ	d	0.17	d	đ	d
С	d	d	0.0072	0.0098	0.0063	d	d	0.17	d	đ	ď
BR	d.	0.0026	0.12	0.15	0.23	d	đ	0.17	đ	đ	d.
N. obsoletus											
S	đ	ď	ď	0.0067	d	d	d	0.24	ત	d	đ
F	đ	0.0052	0.032	0.029	0.013	d	d	0.27	d	d	d
С	đ	d	d	0.13	0.077	d	d	0.34	đ	d	d
BR	d	0.060	0.81	0.55	0.98	0.29	d	0.47	0.31	0.034	0.021
d sediments	0.5	0.005	0.01	0.005	0.008	0.045	0.04	0.04	0.045	0.01	0.01
d organisms	0.11	0.001	0.003		0.002	0.01	0.01		0.01	0.003	0.003

 $\frac{\text{Table 22}}{\text{experimental worms exposed at the field site Ottawa (III.)}.$

PCBs	(µg.kg ⁻¹)	PCAs (µg.g ⁻¹)
component	concentration	component	concentration
28	<23	1	0.12
52	53	2	0.0065
49	<31	3	0.033
70	<35	4	0.11
101	89	5	0.025
87	<33	6	0.11
153	270	7	0.031
138	300	8	0.083
180	210	9	0.10
		10	0.46
		11	<0.083
		12	0.14
		13	0.18
		14	0.14
		15	0.39
		16	0.71
		17	0.77
		18	1.9
		19	<0.0083
		20	<0.0024
		21	0.10

APPENDIX NOMENCLATURE OF PCB AND PCA COMPONENTS

PCB components

28	2,4,4'	-	trichlorobiphenyl
52	2,5,2',5',	-	tetrachlorobiphenyl
49	2,4,2',5'	~	**
70	2,5,3',4'	~	11
101	2,4,5,2',5'	-	pentachlorobiphenyl
87	2,3,4,2',5'	-	11
153	2,4,5,2',4',5'	-	hexachlorobiphenyl
138	2,3,4,2',4',5'	-	**
180	2,3,4,5,2',4',5'	-	heptachlorobiphenyl

PCA components

- 1 phenanthrene
- 2 anthracene
- 3 fluoranthene
- 4 pyrene
- 5 3,6-dimethylphenanthrene
- 6 triphenylene
- 7 benzo(b)fluorene
- 8 benzo(a)anthracene
- 9 chrysene
- 10 benzo(e)pyrene
- 11 benzo(j)fluoranthene
- 12 perylene
- 13 benzo(b)fluoranthene
- 14 benzo(k)fluoranthene
- 15 benzo(a)pyrene
- 16 dibenzo(a,j)anthracene
- 17 dibenzo(a,i)pyrene
- 18 benzo(g,h,i)perylene
- 19 indeno(1,2,3-c,d)pyrene
- 20 3-methylcholanthrene
- 21 anthanthrene

Table 24. Time dependent accumulation of heavy metals, PCBs and PCAs in Medicalisa, exposed to Black Kock sediments.

	Ξ,	2	70	7	P	P	0.021
	ą	7	7	ט	Ð	P	0.034
	€	=	₽	P	P	Ð	0.29 d 0.47 0.31
	ž	-	₹	7	P	₽	0.47
	-	7	Ŧ	v	P	₹	P
	2	÷	-	р Р	Ð	ਚ	0.29
	£	4 4 4 4	7	0.14	0.26	0.36	0.98
	71	910.0	0.016	0.095	0.15	0.21	
	Ξ		₹	0.14	0.25	0.33	0.81
7		9 9 9 9	7	910.0 P	d 0.028	d 0.031	d 0.060 0.81 0.55
X	Ξ	7	-	P	P	7	P
hirmo	10 11 12	7	7)	7	P	Ð	0.26
P.A. component (4g.g.)	3"	7	=	0.81 d	1.5	1.7	1.7
Ξ	×	670.0	0.057 d	0,30 0.81	1.3	1.1	0.52 0.95
	1	₹	=		0.59 1.3	0.51 1.1	0.52
	÷	-	-	0.71	1.3	1.8	٩
	٠	0.15 0.029	0.031	0.28	0.47	0.43	0.19
	-7		6. 16	5.0	8.0	8.7	6.7
	-	0.17	0.20	4.5	7.3	7.6	4.2
	7	910.0	0.018	0.95	1.5	6.0	0.25
	-	0.25	0.27	6.5	4.4	2.1	0.67
		t=0		7=1	t=8	91=1	t=32

				PCB c	PCB component (µg.kg ⁻¹)	t (µg.	kg -1)			
	78	52	67	70	101		87 153	138	180	нсв
0=1	09	99	4.7	96	65	'	09	99	54	1.6
7=1	280	+	+	300	150	57	88	110	30	9.8
ε=8	067	+	+	520	230	100	120	150	37	16.4
t=16	700	+	+	760	350	150	180	230	52	18
t=32	1300	1300	+	2600	1500	095	006	1200	130	:

+ = disturbed

1	g -1)	As	1	23.2	22.4	27.2	28.1	74 b
	Heavy metals (µg.g ⁻¹)	H,		0.227 23.2	0.253 22.4	0.250 27.2	0.296	0.264 24 6
	vy meta	Cu		13.5 3870	01 77 1910	16.6 4590	18.9 5740	18.2 5920
	Hea	PO		13.5	16.7	16.6	18.9	18.2
1				0=1	t =1	t :: 38	t = 16	t = 32

