Application Number Subt. Form PTO-1449 Docket Number HYZ-069CN 09/896,692 INFORMATION DISCLOSURE (47508.556)IN AN APPLICATION Applicant Agrawal Use several sheets if necessary) Filing Date Group Art Unit OF 2 June 29, 2001 1

U.S. Patent Documents							
EXAMINER INTIAL	DOCUMENT NUMBER	DATE	NAME	CLASS	SUBCLASS	FILING DATE IF APPROPRIATE	
73	4,309,404	01/05/82	DeNeale et al.	424	32		
77	4,309,406	01/05/82	Guley et al.	424	32		
	4,556,552	12/03/85	Porter et al.	424	32		
	4,704,295	11/03/87	Porter et al.	427	3		
	5,627,277	01/07/94	Cohen et al.	536	25.4		

		Fore	ign Patent Docur	nents			
EXAMINER	DOCUMENT NUMBER	DATE	COUNTRY	CLASS	SUBCLASS	TRANSLATION	
MITIAL						YES	NO
TA'A	WO 94/08004	04/14/94	PCT	C12N	15/11		
(19	WO 95/11813	07/13/95	PCT	C07H	1/06		
	WO 97/06662A	02/27/97	PCT				

	Other Documents (Including Author, Title, Date Pertinent Pages, Etc.)						
A1	Milner et al. (1977) "Selecting Effective Antisense Reagents On Combinatorial Oligonucleotide Arrays," Nature Biotech. 15:537-541						
A2	Wickstrom (1986) "Oligodeoxynucleotide Stability in Subcellular Extracts and Culture Media," J. Biochem. Biophys. Meth. 13:97-102						
АЗ	Zamecnik et al. (1986) "Inhibition of Replication and Expression of Human T-cell Lymphotropic Virus Type III in Cultured Cells by Exogenous Synthetic Oligonucleotides Complementary to Viral RNA," <i>Proc. Natl. Acad. Sci. USA</i> 83:4143-4147						
A4	Agrawal et al. (1987) "Oligodeoxynucleoside Methylphosphonates: Synthesis and Enzymic Degradation," Tetrahedron. Lett. 28 (31):3539-3542						
A5	Agrawal et al. (1988) "Oligodeoxynucleoside Phosphoroamidates and Phosporothioates As Inhibitors of Human Immunodeficiency Virus, <i>Proc. Natl. Acad. Sci. USA</i> 85:7079-7083						
A6	Goodchild et al. (1988) "Inhibition of Human Immunodeficiency Virus Replication by Antisense Oligodeoxynucleotides," <i>Proc. Natl. Acad. Sci. USA</i> 85:5507-5511						
A7	Matsukura et al. (1988) "Synthesis of Phosphorothioate Analogues of Oligodeoxyribonucleotides and Their Antiviral Activity Against Human Immunodeficiency Virus (HIV)," Gene 72:343-347						
A8	Sarin et al. (1988) "Inhibition of Acquired Immunodeficiency Syndrome Virus by Oligodeoxynucleoside Methylphosphonates," <i>Proc. Natl. Acad. Sci. USA</i> 85:7448-7451						
А9	7794 Matsukura et al. (1989) "Regulation of Viral Expression of Human Immunodeficiency Virus <i>In Vitro</i> by an Antisense						
A10							
A11	Gennaro (ed.) (1990) Remington's Pharmaceutical Sciences (18th Ed.) Mack Publishing Co., Easton, PA						
A12	Uhlmann et al. (1990) "Antisense Oligonucleotides: A New Therapeutic Principle," Chem. Rev. 90:543-583						
A/13	Agrawal (1991) in <i>Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS</i> , (Wickstron, ed.) Wiley-Liss, Inc., pp. 143-158						
A14	Harrison et al. (1991) in RNA Tumor Viruses (Coffin et al., eds.) Cold Spring Harbor Laboratory, Cold Spring Harson, NY, p. 235)						
EXAMINER	DATE CONSIDERED $9/25/03$						
	Initial if citation is considered, whether or not citation is in conformance with MPEP § 609: Draw Line through citation ance and not considered. Include copy with next communication to applicant.						

Subt. Form PTO-1449		-	Docket Number	Application Number			
			HYZ-069CN	09/896,692			
PINE ORMATION			(47508.556)				
/ ે ત્રીપુ AN APPL	ICATIC	N	Applicant				
SP 0 7 2001 2 (Use several shee			Agrawal				
(Use Several shee	its it nece	essary)	·				
3			Filing Date	Group Art Unit			
2 Sheeting 2	OF	2	June 29, 2001				
11/10/2	1						

	1 2									
1	5	A15	Vickers et al. (1991) "Inhibition of HIV-LTR Gene Expression by Oligonucleotides Targeted to the TAR Element," Nucleic Acids Res. 19:3359-3368							
171	r/	A16	Agrawal (1992) "Antisense Oligonucleotides as Antiviral Agents," Trends in Biotechnology 10:152-158							
\mathcal{V}	M	A17	Agrawal et al. (1992) "Cellular Uptake and Anti-HIV Activity in Oligonucleotides and Their Analogs," <i>Gene Regulation: Biology of Antisense RNA and DNA</i> (Erickson and Izant, eds.) Raven Press Ltr., New York, pp. 273-283							
F			Matsukura et al. (1992) "A New Concept in AIDS Treatment: An Antisense Approach and Its Current Status Towards							
		A18	Clinical Application," Prospects for Antisense Nucleic Acid Therapy of Cancer and AIDS, Wiley-Liss, Inc., pp. 159- 178							
		A19	Tang et al. (1993) "Self-Stabilized Antisense Oligodeoxynucleotide Phosphorothioates: Properties and Anti-HIV Activity," Nucleic Acids Res. 20:2729-2735							
		A20	Brown (1994) "A Brief History of Oligonucleotide Synthesis. Protocols for Oligonucleotides and Analogs," Methods in Molecular Biology 20: 1-8							
		A21_	Froehler (1994) "Oligodeoxynucleotide Synthesis," Methods in Molecular Biology 20:63-80							
		A22	Sonveaux (1994) "Protecting Groups in Oligonucleotide Synthesis," Methods in Molecular Biology 26:1-72							
		A23	Agrawal et al. (1995) "Tissue Distribution and <i>In Vivo</i> Stability in Rats of a Hybrid Antisense Oligonucleotide Following Oral Administration," <i>Biochem. Pharmacol.</i> 50(4):571-576							
		A24	Iyer et al. (1995) "A Novel Nucleoside Phosphoroamidite Synthon Derived From 1R, 2S-Ephedrine," Tetrahedron Asymmetry 6:1051-1054							
		A25	Krieg et al. (1995) "CpG Motifs in Bacterial DNA Trigger Direct B-Cell Activation," Nature 374:546-549							
		A26	Gewirtz et al. (1996) "Facilitating Oligonucleotide Delivery: Helping Antisense Deliver On Its Promise," Proc. Natl. Acad. Sci. USA 93:3161-3163							
		A27	Rojanasakul (1996) "Antisense Oligonucleotide Therapeutics," Adv. Drug Del. Rev. Vol. 18:115-131							
		A28	Zhao et al. (1996) "Effect of Different Chemically Modified Oligodeoxynucleotides on Immune Stimulation," Biochem. Pharmacol. 51(2):173-182							
•		A29	Zhang et al. (1996) "Pharmacokinetics and Tissue Disposition of a Chimeric Oligodeoxynucleoside Phosphorothioate in Rats After Intravenous Administration," <i>J. Pharmacol. Expt. Thera.</i> 278:1-5							
L										
			and the second s							
<u> </u>										
L										
<u></u>										
<u> </u>										
<u> </u>										
\vdash		-								
<u> </u>	_	<u> </u>								
\vdash		 								
	-	-								
<u> </u>		 								
\vdash										
		<u> </u>								
		t								

	_ `	`			
EXAMINE A		2	DATE CONSIDERED	125-1	103
•		- 1 1 1	· 1		

EXAMINER: Initial if citation is considered, whether or not citation is in conformance with MPEP § 609: Draw Line through citation if not conformance and not considered. Include copy with next communication to applicant.

BOSTON 1241597v1