- Tau neutrinos $u_{ au}$
 - only 19 $\nu\tau CC$ interactions are directly observed
 - DONuT: only direct DIS cross-section measurement.
 - OPERA, Super-K, IceCube: oscillated ντ, but no constraints on energy-independent part.
 - No measurements for E > 250 GeV

- Muon neutrinos $\,
 u_{\mu}$
 - Most studied thanks to easy production/ detection.

Accelerator data: up to 360 GeV.

- IceCube: above 6.3 TeV (large)
- IceCube: above 6.3 TeV (large uncertainties).
- Gap between 360 GeV 6.3 TeV remains unexplored

- Several measurements exist, but
 - mostly at low energies.
- Gargamelle: up to 12 GeV.
 F53 & DONuT: lepton universality
 - E53 & DONuT: lepton universality confirmed.
 - No direct data above 250 GeV

Cool, but Why?

Neutrino detection at LHC

Cool, but Why?

Neutrino detection at LHC

- Electron neutrinos ν_e
 - Several measurements exist, but mostly at low energies.
 - Gargamelle: up to 12 GeV.
 - E53 & DONuT: lepton universality confirmed.
 - No direct data above 250 GeV

• Muon neutrinos $\, u_{\mu}\,$

- Most studied thanks to easy production/ detection.
- Accelerator data: up to 360 GeV.
- IceCube: above 6.3 TeV (large uncertainties).
- Gap between 360 GeV 6.3 TeV remains unexplored

• Tau neutrinos ν_{τ}

- only 19 $\nu\tau CC$ interactions are directly observed
- DONuT: only direct DIS cross-section measurement.
- OPERA, Super-K, IceCube: oscillated ντ, but no constraints on energy-independent part.
- No measurements for E > 250 GeV

The Model