

Gradient Descent: An Optimization Algorithm

Introduction

- ullet **Objective**: Minimize a cost function J(w,b) by systematically adjusting parameters w and b
- Gradient descent is widely used in machine learning for training models, including deep learning models.
- Applicable not only to linear regression but also to any function minimization problem.

Overview of Gradient Descent

- Starting Point:
 - \circ Begin with an initial guess for parameters w and b (often set to zero in linear regression).
- Iterative Process:
 - \circ Modify w and b step by step to reduce the cost function J(w,b).
 - \circ Continue updating parameters until reaching a minimum value of J.

Generalization to Multiple Parameters

- Gradient descent extends beyond two parameters:
 - \circ For a cost function $J(w_1, w_2, ..., w_n, b)$, the goal is to minimize J over all parameters.
 - \circ The method systematically updates each w_i and b to find the optimal values.

Intuition Behind Gradient Descent

- Visualizing the Cost Function:
 - \circ Imagine the cost function as a surface plot where different values of w and b correspond to different heights.
 - High points represent higher cost values, and valleys represent lower cost values.
- Descending to the Minimum:
 - Start at an initial point on the cost surface.
 - Look for the steepest downward direction and take a small step.
 - Repeat this process iteratively to reach a local minimum.

Properties of Gradient Descent

• Steepest Descent:

- o At each step, move in the direction where the function decreases the most.
- Ensures the fastest descent to a minimum.

• Local Minima:

- Some functions have multiple minima.
- The final minimum reached depends on the initial starting position.
- If started in a different location, gradient descent might settle in a different valley (local minimum).

Implementing Gradient Descent

• Update Rule:

 \circ Gradient descent updates parameters w and b using the formulas:

$$w:=w-lpharac{d}{dw}J(w,b)$$

$$b:=b-lpharac{d}{db}J(w,b)$$

- \circ Here, α (learning rate) determines the step size.
- o The derivative terms indicate the direction and magnitude of the adjustment.

Effect of Learning Rate lpha

- **Too Small** α : Very slow convergence.
- **Too Large** lpha: Can overshoot and diverge.
- At the Minimum: Gradient is zero, so updates stop.

Feature Scaling for Faster Convergence

- Features with large ranges slow convergence.
- Methods:
 - $\circ \;$ Min-Max Scaling: $x' = rac{x x_{min}}{x_{max} x_{min}}$
 - $\circ~$ Z-score Normalization: $x'=rac{x-\mu}{\sigma}$

Recognizing Gradient Descent Convergence

- **Learning Curve**: Plot cost vs. iterations.
- Flat Cost Function: Indicates convergence.

• **Threshold** ϵ : Stop if cost change is very small.

Feature Engineering and Polynomial Regression

Feature Engineering

- What is Feature Engineering?
 - Creating new features by transforming or combining existing ones.
 - Helps machine learning models make better predictions.
- Example: House Price Prediction
 - Given two features:
 - x_1 = width (frontage) of a land plot
 - x_2 = depth of a land plot
 - Basic model:

$$f(x) = w_1 x_1 + w_2 x_2 + b$$

• **Better Approach**: Create a new feature x_3 , where:

$$x_3 = x_1 \times x_2$$

o New model:

$$f(x) = w_1x_1 + w_2x_2 + w_3x_3 + b$$

 $\circ x_3$ represents the **area** of the land, which is more predictive.

Polynomial Regression

- Extends Linear Regression:
 - Instead of fitting straight lines, fits curves to the data.
- **Example**: Predicting house prices using **square footage** (x).
 - A linear model may not fit the data well.
 - Quadratic Model:

$$f(x) = w_1 x + w_2 x^2 + b$$

• Cubic Model:

$$f(x) = w_1 x + w_2 x^2 + w_3 x^3 + b$$

• Higher-degree polynomials allow more flexibility.

Feature Scaling in Polynomial Regression

• Why Important?

- o Squaring/cubing features creates vastly different ranges.
- Example:
 - *x* ranges from 1 to 1,000
 - x^2 ranges from 1 to 1,000,000
 - x^3 ranges from 1 to 1,000,000,000
- Without scaling, gradient descent struggles.

• Alternative Polynomial Features

- \circ Instead of x^2 or x^3 , use:
 - lacksquare Square Root: $w_1x+w_2\sqrt{x}+b$
 - Logarithm: $w_1x + w_2\log(x) + b$

Choosing Features

- Use cross-validation to test different feature sets.
- o More features ≠ better model (avoid overfitting).

Tools for Polynomial Regression

- Scikit-Learn:
 - Implements polynomial regression with **few lines of code**.
 - Helps avoid reimplementing algorithms manually.

• Why Learn Implementation?

- o Understanding fundamentals helps in debugging models.
- Avoid reliance on "black-box" libraries.

Conclusion

• Gradient Descent:

- Optimizes cost function iteratively.
- Choice of **learning rate** is critical.
- Feature scaling speeds up convergence.

• Feature Engineering:

- Creating new features improves model accuracy.
- Example: Using **area** in house price prediction.

• Polynomial Regression:

- o Extends linear regression to model **curved** data.
- Feature scaling is crucial for stability.

• Machine Learning Practice:

- Implement manually to understand the math.
- Use tools like **Scikit-Learn** for efficiency.

This version includes all the key points on **Feature Engineering and Polynomial Regression**. Let me know if you need any refinements! \mathscr{A}