Lemma 1 n > 2, $2 \le k \le n$ $k \ne 3$. $30 \ne 2$, $4 \ne 3$. $20 \ne 3$

<u>Prof</u> N=6, k=4 を例に考える 左足を展開すると

ははしの

(起)=

1.						
2/+2	+21+3	+2/+4	+22+3	122+4	+23+4	<(1234)
+ 21+2	+21+3	+21+5	1 2 2+3	+22+5	-(23+5)	£ (1235)
+2/+2	+21+3	+21+6	+ 22+3	+22+6	723+6	← (1236)
+21+2	+21+4	+21+5	+22+4	12+5	+24+5	< (1245)
+2/+2	+21+4	+21+6	+22+4	+22+5	724+6	÷ (1246)
+21+2	+21+5	+21+6	12215	2+6	+ 25+6	÷(12+6)
+21+3	+21+4	+21+5	+23+4	23+5	+24+5	€ (1345)
+21+3	+21+4	+21+6	+23+4	12 3+6	124+6	← (13 46)
+21+3	+21+5	+21+6	(23+5)	+23+6	125+6	< (13+6)
+21+4	+21+5	+21+6	124+5	+24+6	+25+6	← (1456)
+22+3	+22+4	+22+5	+23+4	(23+5)	-124+5	€ (2345)
+ 22+3	+22+4	+22+6	+23+4	+23+6	+24+6	€ (2346)
+22+3	+22+5	+ 22+6	(+23+5)	+23+6	+25+6	← (2356)
+22+4	+ 2 2+5	+22+6	+24+5	+74+6	+25+6	£ (2456)
123+4		+23+6	+24+5	446	125+6	←(3456)
(,		. 0-	1 10	

となる。

次下,前掲。展別式下かいて," 2^{r+s} "($1\leq r < s \leq n$)という
項が何日現れるか考える。例として," 2^{3+5} "が何日現れるか

就る。 すると, 8=(1235),(12350)

$$(\Delta E) = \frac{1}{N-2} \left(\frac{1}{K-2} \right) = \frac{1}{1} \left(\frac{1}{K-2} \right) = \frac{1}{N-2} \left(\frac{1}{K-2}$$

が成り立ち、Lemmaが示せた。

M

proof 前のLemma の等がの面記を4で割ればよい、更に (n-2)! (n-2)! (k-2)!((n-2)-(k-2))! (k-2)!((n-k)!) $= \frac{k(k-1)}{n(n-1)} \cdot \frac{k!(k-1)}{k!(n-k)!} = \frac{k(k-1)}{n(n-1)} \cdot \frac{n!}{k!(n-k)!} = \frac{k(k-1)}{n(n-1)} \cdot \frac{n!}{n(n-1)}$

$$= \left[4^{\circ} + 4^{1} + 4^{2} + \dots + 4^{n-1}\right]$$

$$+ 2 \left[2^{1+2-2} + 2^{1+3-2} + \dots + 2^{1+n-2} + 2^{2+n-2} + 2^{2+n-2} + \dots + 2^{2+n-2}\right]$$

$$+ 2^{(n-1)+n-2}$$

$$+ 2^{(n-1)+n-2}$$

$$+ 2^{(n-1)+n-2}$$

$$+ 2^{(n-1)+n-2}$$

$$+ 2^{(n-1)+n-2}$$

$$= \frac{4^{3}-1}{3} + 2 \cdot 1 = 2^{r+s-2} \dots (1)$$

$$\frac{1}{n} = \left(\frac{n}{2^{n-1}}\right)^{2} = \left(2^{n-1} + \dots + 2^{n-1}\right)^{2}$$

$$= \left(\frac{1 \cdot (2^{n} - 1)}{2 - 1}\right)^{2}$$

$$= \left(2^{n} - 1\right)^{2} = 4^{n} - 2 \cdot 2^{n} + 1 \dots 2$$

$$=\frac{4^{n}-3\cdot 2^{n}+2}{3}$$

$$S_{n,k} = \frac{4^{n}-1}{3} \cdot \frac{k}{n} \cdot n \cdot c_k + \frac{2}{3} (4^{n}-3 \cdot 2^{n}+2) \cdot \frac{k(k-1)}{n(n-1)} \cdot n \cdot c_k$$

proof

$$N_{h,1} = (2^{\circ})^{2} + (2^{1})^{2} + \cdots + (2^{h-1})^{2}$$

$$= 4^{\circ} + 4^{2} + \cdots + 4^{h-1}$$

$$= \frac{1 \cdot (4^{h} - 1)}{4^{h-1}}$$

$$4-7$$
 $\frac{4^{n}-1}{3} \cdot \frac{1}{n} \cdot n \cdot d_{1}$

おのでとすでもまが成立。

$$S_{n,k} = \sum_{k=1}^{k} \left(\sum_{k=1}^{k} 2^{i_k-1}\right)^2$$

$$\sum_{k=1}^{k} \left(\sum_{k=1}^{k} 2^{i_k-1}\right)^2$$

$$\sum_{k=1}^{k} \left(\sum_{k=1}^{k} 2^{i_k-1}\right)^2$$

=
$$\mathbb{Z}$$
 $\left(2^{i_1-1}+2^{i_2-1}+\dots+2^{i_k-1}\right)^2$

$$\frac{1}{\sqrt{2}} \frac{1}{\sqrt{2}} \left[\left(4^{\frac{1}{2}-1} + 4^{\frac{1}{2}-1} + 4^{\frac{1}{2}-1} \right) + \frac{1}{\sqrt{2}} \left(2^{\frac{1}{2}-1} + 2^{\frac{1}{2}-1} + 2^{\frac{1}{2}-1} + 2^{\frac{1}{2}-1} + 2^{\frac{1}{2}-1} \right) + 2^{\frac{1}{2}-1} + 2^{\frac{1}{2}-$$

$$= \sum_{\text{Rende}} \left[\left(\frac{k}{\sum_{\alpha=1}^{k} 4^{\hat{c}_{\alpha}-1}} \right) + 2 \left(\sum_{1 \leq \alpha < \beta \leq k} 2^{\hat{c}_{\alpha}+\hat{c}_{\beta}-2} \right) \right]$$

$$= \left[\frac{\sum_{k=1}^{k} \frac{1}{4^{k}\alpha^{-1}}}{\sum_{k=1}^{k} \frac{1}{4^{k}\alpha^{-1}}} + 2 \right] \frac{\sum_{k=1}^{k} \frac{1}{2^{k}\alpha^{-1}}}{\sum_{k=1}^{k} \frac{1}{4^{k}\alpha^{-1}}} \frac{\sum_{k=1}^{k} \frac{1}{4^{k}\alpha^{-1}}}{\sum_{k=1}^{k} \frac{1$$

rta3.

②については、Cor.2らまびLenna3が使えて

$$Q = \frac{k(k-1)}{n(n-1)} \cdot nC_k \cdot \frac{4^{n}-3 \cdot 2^{n}+2}{3} \dots$$

①について、①=「nbi+中kbi+が1、残りはのであるような 四道数の総和」である、すると別紙1と同様の理屈で

$$= n \cdot \frac{k}{h} \cdot \frac{1 \cdot (4^{n} - 1)}{4 - 1} = \frac{4^{n} - 1}{3} \cdot \frac{k}{h} \cdot n \cdot c_{k}$$

273. 网2 XXX 在后世了,

$$S_{n,k} = \frac{4^{n-1}}{3} \cdot \frac{k}{n} \cdot n \cdot c_k + 2 \cdot \frac{k(k-1)}{n(n-1)} \cdot n \cdot c_k \cdot \frac{4^{n-3} \cdot 2^{n} + 2}{3}$$

$$= \frac{4^{n}-1}{3} \cdot \frac{k}{n} \cdot \frac{c_{k}+\frac{2}{3}(4^{n}-3\cdot 2^{n}+2)}{n(n-1)} \cdot \frac{k(k-1)}{n(n-1)} \cdot \frac{c_{k}}{n(n-1)}$$

$$= \frac{4^{n}-1}{3} \cdot \frac{k}{n} \cdot \frac{c_{k}+\frac{2}{3}(4^{n}-3\cdot 2^{n}+2)}{n(n-1)} \cdot \frac{k(k-1)}{n(n-1)} \cdot \frac{c_{k}}{n(n-1)}$$

Rmk.5 n=1 に対してる Thm.4 は成り立の、実際、 n=1 、 k=0 に対しては の , n=1 、 k=0 に 対しては 1 となり、これは $\int_{1,0} = 0$ 、 $\int_{1,1} = 1$ である ことに 符合 する .