

Recap

- Research Question: Which factors affect the easiness of taking a leave from work due to mental health conditions?
- **Why Important**: With growing attention to mental health issues in every industry, both employer and employee should start exploring their options and responsibilities.
- Type of Problem: Classification
- Target Variable: Easiness of Taking A Leave ([leave] in the data set)
- Data Source: Mental Health in Tech Survey, Kaggle, https://www.kaggle.com/datasets/osmi/mental-health-in-tech-survey
- EDA Recap/Update:
 - Cleaned gender feature, categorized non-binary and unanswered as other
 - o Target variable is imbalanced: 455: 218: 176: 98: 78
- Preprocessing Recap:
 - Standardscaler for age as it is skewed
 - Mostly onehotencoder

Splitting

Train_Test_Split

- Implicit Group: Company
- o Distributed through website
- Assume i.i.d

StratifiedKFold

o Imbalanced Data: 455: 218: 176: 98: 78

Figure: from class notes week3

CV Pipeline

XGBClassifer:

- Parameter grid
- Hyperparameter tuned: max_depth
- Subsample = 0.5: overfitting
- Evaluation metrics: accuracy_score

Random forest, SVC, KNN, Logistic Regression:

- GridSearchCV
- Hyperparameter tuned:
 - Random Forest: max_depth, max_features

- o SVC: gamma, C
- KNN: n_neighbors, weights
- Logistic Regression: penalty
- Evaluation metrics: accuracy_score

Result

Baseline Accuracy: 0.444

Assuming all predicted as 'Don't know'

Model	XGBoost Classifier	K-Nearest- Neighbors	Random Forest	Logistic Regression	Support Vector Classifier
Test Score Mean	0.490	0.493	0.493	0.473	0.509
Test Score Standard dev.	0.020	0.022	0.013	0.024	0.025

Confusion Matrix

SVC

Random Forest

Findings:

- Highest number of correctly predicted don't know class
- Most correctly predicted points are from don't know and very easy class

Global Feature Importance

permutation

Local Feature Importance

Index = 37, class = 'Don't know'

Index = 37, class = 'Very Difficult'

Index = 37, class = 'Very Easy'

Outlook

Potential Improvement on Predictive Power

- Try different model: Catboost (mostly categorical features)
- Drop some negative importance feature: Wellness Program

Potential Improvement on Interpretability

- Reduce classes into 2: Easy and Hard
- Use LinearSVM: faster implementation, can be visualized

ABD