Database System

Relational Data Model

2nd Week

Goal

1. Understanding the relational model

History

Introduced by <u>Dr. Edgar Frank "Ted" Codd</u> in 1970

A <u>declarative</u> method for specifying data and queries
Set theory

1st order logic (predicate logic)

"Database is a collection of relations"

Definition

Data model that adopted the *relation* concepts

Data Structure
Relation

Data Integrity

Key & Constraints

Data Manipulation
Relational Algebra
Relational Calculus

Data Structure

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

Relation
Intension

Head
(Fixed)

Relation
Relation
Instance
Relation
Extension

Relation

⟨Instructor⟩

Relation Name

Data Structure **Attribute** Degree IDdept_name salary name Tuple 10101 Srinivasan Comp. Sci. 65000 Finance 90000 12121 Wu 15151 Mozart Music 40000 Physics 22222 Einstein 95000 32343 El Said History 60000 Physics 33456 Gold 87000 45565 Katz Comp. Sci. 75000 History 58583 Califieri 62000 Singh 76543 Finance 80000 76766 Crick 72000 **Biology** Comp. Sci. 83821 Brandt 92000 Kim Elec. Eng. 98345 80000 Cardinality

Data Structure

Primary Key			
ID	пате	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	-80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000
			Domain

Data Structure

Domain

A set of values that has a name, data type and format Every domain has the special value *null*

Relation Schema (a.k.a. Relational Intension) $R(A_1, A_2, ..., A_d)$: A relation name R and a <u>set</u> of attributes $\{A_d\}$

Relation (a.k.a. Relation Extension or Relation Instance) r(R) of relation schema $R(A_1, A_2, ..., A_d)$: An <u>set</u> of tuples $\{t_c\}$ A tuple is an <u>ordered list</u> of values from domains of corresponding attributes $t_1 = \{20211234, \text{ "Anderson"}, \text{ "DB Design"}\}$

Data Structure

```
Relation (cont.) r(R) \text{ of relation schema } R(A_1,A_2,\ldots,A_d) \text{: An } \underline{\text{set}} \text{ of tuples } \{t_c\} A tuple is a \underline{\text{set}} of (attribute, value) pairs \text{then } t_c \text{: } R \to D, D = \left(domain(A_1) \times domain(A_2) \times \cdots \times domain(A_d)\right) t_1 = \{20211234, \text{ "Anderson", "DB Design"}\} t_1 = \{(\text{"ID", 20211234}), (\text{"Name", "Anderson"}), (\text{"Class", "DB Design"})\}
```

 $r(R) \subseteq (domain(A_1) \times domain(A_2) \times \cdots \times domain(A_d))$

Data Structure

Properties

- 1. Uniqueness of tuples
- 2. Uniqueness of attributes
- 3. No ordering of tuples
- 4. No ordering of attributes
- 5. Homogeneous data type in an attribute
 - Domain Integrity
- 6. Atomicity of attribute values
 - Normalization (1st Normal Form Relation)

ID	name	dept_name	salary
22222	Einstein	Physics	95000
12121	Wu	Finance	90000
32343	El Said	History	60000
45565	Katz	Comp. Sci.	75000
98345	Kim	Elec. Eng.	80000
76766	Crick	Biology	72000
10101	Srinivasan	Comp. Sci.	65000
58583	Califieri	History	62000
83821	Brandt	Comp. Sci.	92000
15151	Mozart	Music	40000
33456	Gold	Physics	87000
76543	Singh	Finance	80000

Data Structure

Name	Order
Anderson	Coffee, Cake
Andrew	Coffee
Mary	Coffee, Cookie
Kim	Cake, Cookie, Bread
Dona	Cake

Repeating 1-D Group

Name	Order
Anderson	Coffee
Anderson	Cake
Andrew	Coffee
Mary	Coffee
Mary	Cookie
Kim	Cake
Kim	Cookie
Kim	Bread
Dona	Cake

1NF Relation

Data Structure

Name	Spendings
Anderson	{('Meal', \$6), ('Movie', \$11)}
Andrew	{('Meal', \$5)}
Mary	{('Meal', \$7), ('Book', \$15)}
Kim	{('Game', \$40)}
Dona	{('Meal', \$4), ('Game', \$11)}

Repeating 2-D Group

Name	Category	Price
Anderson	Meal	\$6
Anderson	Movie	\$11
Andrew	Meal	\$5
Mary	Meal	\$7
Mary	Book	\$15
Kim	Game	\$40
Dona	Meal	\$4
Dona	Game	\$11

1NF Relation

Data Structure

Key (a.k.a. Candidate Key)

Attribute (or attributes combination) that can uniquely identify every single tuples in a relation schema Key is a minimal superkey for given attributes combination Minimum

Superkey (SK) is a <u>subset of attributes</u> of relation schema that satisfies $t_i[SK] \neq t_j[SK], \forall t_i, t_j, i \neq j$ Uniqueness Every relation has at least one default superkey

Primary Key (PK)

Chosen key from candidate keys

Alternate Key

The remaining candidate keys

Foreign Key (FK)

An attribute that is referencing the PK of other relation schema.

