DIGITAL LOGIC SYSTEMS: ASSIGNMENT 1

AAKASH JOG ID: 989323563

DUSTIN CHALCHINSKY

ID: 209741891

1.4.

1.

$$c(b_1, b_2, b_3) = 1 \iff b_1 + b_2 + b_3 \ge 2$$

Let

$$d = (b_1 \wedge b_2) \vee (b_2 \wedge b_3) \vee (b_1 \wedge b_3)$$

b_1	b_2	b_3	$(b_1 \wedge b_2)$	$(b_2 \wedge b_3)$	$(b_1 \wedge b_3)$	d
0	0	0	0	0	0	0
0	0	1	0	0	0	0
0	1	0	0	0	0	0
0	1	1	0	1	0	1
1	0	0	0	0	0	0
1	0	1	0	0	1	1
1	1	0	1	0	0	1
1	1	1	1	1	1	1

b_1	b_2	b_3	$c(b_1, b_2, b_3)$
0	0	0	0
0	0	1	0
0	1	0	0
0	1	1	1
1	0	0	0
1	0	1	1
1	1	0	1
1	1	1	1

The columns of truth values of $(b_1 \wedge b_2) \vee (b_2 \wedge b_3) \vee (b_1 \wedge b_3)$ and $c(b_1, b_2, b_3)$ are identical. Hence,

$$c(b_1,b_2,b_3) = (b_1 \wedge b_2) \vee (b_2 \wedge b_3) \vee (b_1 \wedge b_3)$$

Date: Tuesday 17th March, 2015.

2.

Let $b_1 = 1$. Therefore,

$$(b_{1} \wedge b_{2}) \vee (b_{2} \wedge b_{3}) \vee (b_{1} \wedge b_{3}) = (1 \wedge b_{2}) \vee (b_{2} \wedge b_{3}) \vee (1 \wedge b_{3})$$

$$= b_{2} \vee (b_{2} \wedge b_{3}) \vee b_{3}$$

$$= ((b_{2} \vee b_{2}) \wedge (b_{2} \vee b_{3})) \vee b_{3}$$

$$= (b_{2} \vee b_{2} \vee b_{3}) \wedge (b_{2} \vee b_{3} \vee b_{3})$$

$$= (b_{2} \vee b_{3}) \wedge (b_{2} \vee b_{3})$$

$$= b_{2} \vee b_{3}$$

3.

Let $b_1 = 0$. Therefore,

$$(b_1 \wedge b_2) \vee (b_2 \wedge b_3) \vee (b_1 \wedge b_3) = (0 \wedge b_2) \vee (b_2 \wedge b_3) \vee (0 \wedge b_3)$$
$$= 0 \vee (b_2 \wedge b_3) \vee 0$$
$$= (b_2 \wedge b_3)$$

1.6.

The addition operator is commutative, and the subtraction operator is not commutative.

+	0	1	2	
0	0	1	2	
1	1	2	3	
2	2	3	4	

-	0	1	2	
0	0	-1	-2	
1	1	0	-1	
2	2	1	0	

The multiplication table of a commutative operator is symmetric, while the one of a non-commutative operator is asymmetric. This property is sufficient to determine whether an operator is commutative.

1.8.

a	b	f_1	f_2	f_3	f_4	f_5	f_6	f_7	f_8
0	0	0	1	0	0	0	1	1	1
0	1	0	0	1	0	0	1	0	0
1	0	0	0	0	1	0	0	1	0
1	1	0	0	0	0	1	0	0	1

a	b	f_9	f_{10}	f_{11}	f_{12}	f_{13}	f_{14}	f_{15}	f_{16}
0	0	0	0	0	1	1	1	0	1
0	1	1	1	0	1	1	0	1	1
1	0	1	0	1	1	0	1	1	1
1	1	0	1	1	0	1	1	1	1

The following functions correspond to the following known functions.

 $\begin{array}{ccc} \text{AND} & f_5 \\ \text{OR} & f_{15} \\ \text{XOR} & f_9 \\ \text{implication} & f_{13} \\ \text{equivalence} & f_8 \\ \text{NAND} & f_{12} \\ \text{NOR} & f_2 \end{array}$

1.12.

Figure 1. $\overline{A \cap B}$

Figure 2. $\overline{A} \cup \overline{B}$

1.19.

2.

Let

$$f(x) = x^2$$
$$g(x) = 2x$$

Therefore,

$$f(g(x)) = (2x)^{2}$$

$$= 4x^{2}$$

$$g(f(x)) = 2x^{2}$$

$$\therefore f(g(x)) \neq g(f(x))$$

Hence, composition is not commutative.

2.5.

$$|\{0,1\}^k| = |\{0,1\} \times \{0,1\}^{k-1}|$$

For any finite sets A, B, $|A \times B| = |A| \cdot |B|$. Therefore,

$$|\{0,1\}^{k}| = |\{0,1\}| \cdot |\{0,1\}^{k-1}|$$

$$= |\{0,1\}| \cdot |\{0,1\}| \cdot |\{0,1\}^{k-2}|$$

$$\vdots$$

$$= \underbrace{|\{0,1\}| \cdot \cdots \cdot |\{0,1\}|}_{k \text{ times}}$$

$$= 2^{k}$$

2.6.

Let

$$|A| = n$$

The number of subsets of A is

$$\binom{n}{0} + \binom{n}{1} + \dots + \binom{n}{n-1} + \binom{n}{n}$$

$$= \sum_{r=0}^{n} \binom{n}{r}$$

$$= \sum_{r=0}^{n} \binom{n}{r} 1^r \cdot 1^{n-r}$$

$$= (1+1)^n \qquad \text{(by Binomial theorem)}$$

$$= 2^n$$

$$= 2^{|A|}$$

2.7.

Let

$$A = \{a_1, \dots, a_m\}$$
$$B = \{b_1, \dots, b_n\}$$

Therefore, $f(a_1)$ can be exactly one out of b_1, \ldots, b_n . Similarly for all a_2, \ldots, a_m .

Therefore, there are n possible combinations for every $a_i \in A$.

Therefore, the total number of possible combinations between A and

$$B \text{ are } \overbrace{n \cdot \cdots n}^{m \text{ times}}$$

Therefore,

$$|F| = n^m$$
$$\therefore |F| = |B|^{|A|}$$