Simulated Smart Car

with Reinforcement Learning

MAROOF H. KHAN

Motivation for using Reinforcement Learning

Italian Inst. Tech 2010

- ▶ Start from first principles
- ▶ Update algorithm to increase learning efficiency

What is Reinforcement Learning

100	0	20	0
0	0	0	0
-100	0	Agent	0

- Movements of the mouse are stochastic
- Aim is to find a policy [strategy] that maximizes reward of agent [mouse]

Two modes of Learning

Exploration

Exploitation

- Even if the optimal strategy is found we will have exploration available.
- After learning is done we have explored all avenues we have optimal strategy [get to cheese in shortest number of steps, avoiding the cat]

Static case after training

Dynamic Environment Update

Applications

- ▶ Apply updated algorithm to autonomous robots
- Use Inverse RL to train robot faster

References:

- R. Sutton, A. Barto, Reinforcement Learning: An Introduction
- S. Levine, Z. Popovic, V. Koltun, "Future Construction for Inverse Reinforcement Learning"
- L. Lin, "Programming Robots Using Reinforcement Learning and Teaching", AAAI Proceedings, vol 92, 781-786 (1991)

PhD, Applied Physics

Optical scanner systems

Contact

in/maroofhk

maroofhk.github.io

Technology used:

