

Capstone Project Seoul Bike Sharing Demand Prediction

By

NIDHI PANDEY

Problem Statement

Currently Rental bikes are introduced in many urban cities for the enhancement of mobility comfort. It is important to make the rental bike available and accessible to the public at the right time as it lessens the waiting time. Eventually, providing the city with a stable supply of rental bikes becomes a major concern. The crucial part is the prediction of bike count required at each hour for the stable supply of rental bikes.

Content

- Data Pipeline
- Data Description
- Exploratory Data Analysis
- Models performed
- Model Validation & Selection
- Evaluation Matrix of All the models
- Model Explainability SHAP
- Challenges
- Conclusion

Data Pipeline

- Exploratory Data Analysis (EDA): In this part we have done some EDA on the features to see the trend.
- Data Processing: In this part we went through each attributes and encoded the categorical features.
- Model Creation: Finally in this part we created the various models.
 These various models are being analysed and we tried to study various models so as to get the best performing model for our project.

Data Description

Dependent variable:

Rented Bike count - Count of bikes rented at each hour

Independent variables:

- Date: year-month-day
- Hour Hour of the day
- Temperature-Temperature in Celsius
- Humidity %
- Windspeed m/s
- Visibility 10 m
- Dew point temperature Celsius

- Solar radiation MJ/m2
- Rainfall mm
- Snowfall cm
- Seasons Winter, Spring, Summer, Autumn
- Holiday Holiday/No holiday
- Functional Day NoFunc(Non Functional Hours), Fun(Functional hours)

Exploratory Data Analysis

Distribution of rented bike count

Square root transformation of rented bike count

Line plot for the total interception of data

Plot for the demand of bikes in different season

Count Plot

- Less demand on winter seasons
- Slightly Higher demand during Non holidays
- Almost no demand on non functioning day

Regression Plot

EDA - Feature Correlation

- 0.2

Rented Bike Count	1	0.41	0.54	-0.2	0.12	0.2	0.38	0.26	-0.12	-0.14	0.071	-0.032
Hour	0.41	1	0.12		0.29	0.099	0.0031	0.15	0.0087	-0.022	1e-15	-2.3e-17
Temperature(°C)	0.54	0.12	1	0.16	-0.036	0.035	0.91	0.35	0.05		0.05	-0.013
Humidity(%)		-0.24	0.16	1	-0.34	-0.54	0.54	-0.46	0.24	0.11	0.048	-0.037
Wind speed (m/s)	0.12	0.29	-0.036	-0.34	1	0.17	-0.18	0.33	-0.02	-0.0036	-0.082	-0.022
Visibility (10m)	0.2	0.099	0.035	-0.54	0.17	1	-0.18	0.15	-0.17	-0.12	0.078	0.031
Dew point temperature(°C)	0.38	0.0031	0.91	0.54	-0.18	-0.18	1	0.094	0.13	-0.15	0.065	-0.029
Solar Radiation (MJ/m2)	0.26	0.15	0.35	-0.46	0.33	0.15	0.094	1	-0.074	-0.072	-0.03	0.0083
Rainfall(mm)	-0.12	0.0087	0.05	0.24	-0.02	-0.17	0.13	-0.074	1	0.0085	-0.023	-0.014
Snowfall (cm)	-0.14	-0.022	-0.22	0.11	-0.0036	-0.12	-0.15	-0.072	0.0085	1	0.055	-0.023
month	0.071	1e-15	0.05	0.048	-0.082	0.078	0.065	-0.03	-0.023	0.055	1	0.0092
weekdays_weekend	-0.032	-2.3e-17	-0.013	-0.037	-0.022	0.031	-0.029	0.0083	-0.014	-0.023	0.0092	1
	Rented Bike Count	Hour	Temperature(°C)	Humidity(%)	Wind speed (m/s)	Visibility (10m)	w point temperature(°C)	Solar Radiation (MJ/m2)	Rainfall(mm)	Snowfall (cm)	month	weekdays_weekend

Handling outliers

Outlier Analysis of Numerical Feature

Checking for distribution for new outliers

10

-0.5

0.5

0.0 Snowfall (cm)

Data Distibution of Numerical Features

Feature manipulation and selection

Correlation Graph

Feature selection bar graph

Model's Performed

- Linear Regression with regularizations
- Lasso Regression
- Ridge Regression
- Decision tree
- Random forest
- Gradient Boosting
- Catboosting
- Bagging
- lightGBM Regressor
- K nearest neighbours

----Evalution Matrix-----

MSE : 175590.55287332062 RMSE : 419.035264474627 R2 : 0.5729108337712393

Adjusted R2: 0.5697661367350404

=======Evalution Matrix============

Decision Tree Regression

-----Evalution Matrix-----

MSE : 88288.61232876712 RMSE : 297.13399726178613 R2 : 0.7842414462456377

Adjusted R2 : 0.7826527960569264

CatBoost

=======Evalution Matrix===========

MSE : 36706.5353729677 RMSE : 191.58949703198164 R2 : 0.910297049908164

Adjusted R2 : 0.9096365587892181

======Evalution Matrix============

=======Evalution Matrix==========

MSE: 35410.75375394222 RMSE: 188.17745283094416 R2: 0.9134636640470446

Adjusted R2: 0.9128264890009115

Cross validation and Hyperparameter tunning

Model Validation & Selection(continued)

- Observation 1: As seen in the Model Evaluation Matrices table, Linear Regression, KNN is not giving great results.
- Observation 2: Random forest & GBR have performed equally good in terms of adjusted r2.
- Observation 3: We are getting the best results from lightGBM and CatBoost.

Feature Importance

Catboost

Lightgbm

Model Explainability - SHAP

lightgbm

Model's Evaluation Matrices

	model_type	model_name	rmse	mae	R2	adjusted R2
13	Ensemble Method	STACKING Regressor	3.103857	1.915789	0.937108	0.936645
10	Ensemble Method	TUNED CatBoost Model	3.126705	1.946292	0.936179	0.935709
12	Ensemble Method	TUNED LGBM	3.341796	2.106997	0.927096	0.926560
6	Ensemble Method	Cat Boosting Regressor	3.445109	2.198265	0.922519	0.921949
8	Ensemble Method	LightGBM Regressor	3.536183	2.279485	0.918368	0.917767
11	Ensemble Method	TUNED Random Forest Model	3.608341	2.340785	0.915003	0.914377
4	Ensemble Method	RandomForest Regressor	3.653117	2.330923	0.912880	0.912239
7	Ensemble Method	Bagging Regressor	3.820242	2.450598	0.904727	0.904025
5	Ensemble Method	GradientBoosting Regressor	4.301828	3.066305	0.879192	0.878303
3	CART	DecisionTree Regressor	4.981970	3.144459	0.837972	0.836778
9	Neighbours	K Neighbors Regressor	5.196705	3.656671	0.823703	0.822405
2	Regularized Linear (Ridge)	Ridge Regression	7.253217	5.564770	0.656560	0.654032
0	Linear	Linear Regression	7.253736	5.564918	0.656511	0.653982
1	Regularized Linear (Lasso)	Lasso Regression	7.330763	5.661869	0.649177	0.646594

Al

R2 of Model's Performed

Challenges

- A huge amount of data needed to be dealt while doing the project which is quite an important task and also even small inferences need to be kept in mind.
- Required lot of graph to analyze
- Carefully handled feature selection part as it affects the R2 score.
- As dataset was quite big enough which led more computation time.

Conclusion

- Upon Exploratory Data Analysis, we found that the bike rentals follow an hourly trend where it hits the first peak in the morning and the highest peak later in the evening.
- We also found that these trends are prominent only during weekdays and working days, leading us to make a safe assumption that office-goers make a notable contribution to bike sharing demand.
- In addition, seasons were observed to have a notable effect on bike rentals with high traffic during summer and a significantly lower demand in winter.
- It is quite evident from the results that lightGBM and Catboost is the best model that can be used for the Bike Sharing Demand Prediction since the performance metrics (mse,rmse) shows lower and (r2,adjusted_r2) show a higher value for the lightGBM and Catboost models!
- So, we can use either lightGBM or catboost model for the above problem
- Also it can be concluded that the lightGBM and CatBoost models are the best performing models for our project.

THANK YOU