Recovery Team

Week 9

Tasks last week

- Avionics drone test
- 2. Completion of piston test cage design
- 3. Flight software development

Avionics Drone test

- -The test did not go as expected
- -Reason -> Issue with the flight computer board
- The ESP32 kept overheating
- It therefore could not supply enough power to the MPU6050 and BMP180 sensors
- We used the same power line for voltage and currents during this test

Avionics drone test

What worked

- Dashboard we were able to receive flight data but this was under battery power
- 2. Wifi Network Setup
- 3. Flight software We used N2 flight software because N3's flight software had not yet implemented the MQTT connection subsystem.

Avionics drone test

- Previous teams used a string to attach the avionics holder to the drone
- However, the drone pilots recommended we design a device that clicks onto the landing gear of the drone for the next round of tests
- Like the one they use to attach cameras on the drones

The avionics holder should be able to click onto the landing gear here

Trying to debug the flight computer

- We tested the flight computer when connected to the computer with a USB cable and it worked fine
- However, we did not test it under battery power prior to the drone test

- Recommendations: Adequate testing for the flight computer on standalone battery power
- Account for fluctuations of power on the flight computer
- We are redesigning the flight computer and the power distribution board to supply each sensor with its own power previous design had ESP32 supplying the sensors with power which over-drove the supply lines

N3 Flight Software Development

Done 60% Done

Data filtering

90% Done

Flash storage

Done

Data transmission over MQTT

Sensor Readings

Done

GPS Reading

60% done

State machine to detect different flight states - apogee detection algorithm

N3 flight software development

- For the flash memory, the code is there
- What is remaining is to solder the flash memory on the flight computer and test the code there
- The unit tests for the flash memory are done
- Parachute ejection algorithm unit test is done what is remaining is to integrate it into the main flight software

Piston test cage design completion

Side View

Front View

Purpose of test cage

1. Safety

- 2. Ascertain the amount of force we get from an ejection during tests
- -The cage uses a 50kg bar load cell mounted on one end
- -When the piston hits the load cell, we can register this amount of force

This week tasks

- 1. #37 Redesign of flight computer for drone testing
- 2. #33 Design avionics holder for mounting on DJI Matrice drone
- 3. #34 Design of avionics holder for drone testing This one will include screw holes for mounting the PCBs The previous one did not have enough clearance on the bottom layer
- 4. #41 N3 flight software Version 1 completion and testing
- 5. #40 Fabrication of piston test cage
- 6. #39 Design on aluminium pistons