Plane VisionMilestone Report 1

Overview

The military has multiple uses for satellites. The most common missions are intelligence gathering, navigation, and military communications. When it comes to target recognition, enhancing the accuracy during combat environments would be ideal. These techniques will allow defense forces to understand potential operation areas by analyzing reports,

documents, news feeds, and other forms of unstructured information. Additionally, AI in target recognition systems improves these systems' ability to identify the position of their targets. Being able to track and identify potential threats would be beneficial to the military. The goal of this project is to detect an aircraft given a satellite image.

Problem Statement

How well can the model detect an aircraft given a satellite image?

Dataset

The image dataset will be from Kaggle. The data contains two classes, plane or no-plane. The plane class consists of 8,000 satellite images with planes. The No-plane class consists of 24,000 satellite images. A third of these are a random sampling of different landcover features - water, vegetation, bare earth, buildings, etc. - that do not include any portion of an airplane. The next third is "partial planes" containing a portion of an airplane, but not enough to meet the full definition of the "plane" class. The last third is "confusers" - chips with bright objects or strong linear features that resemble a plane.

Dataset: https://www.kaggle.com/rhammell/planesnet

Data Wrangling

The data contained all 32000 images in one folder. I wanted to be able to used ImageDataGenerator, and in order to do that, the directory has to be set up a certain way. I created a train directory, test directory, and a validation directory where each folder contained a folder for plane and a folder for no plane.

I loaded the images and created a dataframe. The dataframe contains only two columns, labels (0, 1) and image_path. The label 0 represents no-plane, and label 1 represents plane. I separated the dataframes into a no-plane dataframe and a plane dataframe. Then I dropped the labels columns in each dataframe to where only image_path was left. Then I created two filename lists from the dataframes, no-plane list, and plane list.

Next, it was time to copy the images into the three directories. Initially, I tried shutil.copy but it was taking too long to copy the images. Google collab would log out before finishing the images. I then discovered pyfastcopy. Pyfastcopy is a simple Python module that monkey patches the shutil.copyfile function of Python standard library to internally use the sendfile system call. It can provide important performance improvements for large file copy (typically 30-40%). Even with shutil.copyfile it took a long time trying to copy the files, so I settled with doing 1000 images each class.

Exploratory Data Analysis (EDA)

Now it's time to create the model. I initialized VGG16 with imagenet as the weights. In Keras, each layer has a parameter called "trainable". For freezing the weights of a particular layer, this sets the parameter to False, indicating that this layer should not be trained. So I created a new layer and added the layers I want to train.

```
# Freeze all the layers
for layer in vgg conv.layers[:]:
    layer.trainable = False
# Check the trainable status of the individual layers
for layer in vgg conv.layers:
    print(layer, layer.trainable)
<tensorflow.python.keras.engine.input_layer.InputLayer object at 0x7fdb65799e80> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb32cde2b0> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb32cde5c0> False
<tensorflow.python.keras.layers.pooling.MaxPooling2D object at 0x7fdb32cde9e8> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb324436d8> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb3245d1d0> False
<tensorflow.python.keras.layers.pooling.MaxPooling2D object at 0x7fdb3245d9b0> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb20180160> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb20180f98> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb2018a438> False
<tensorflow.python.keras.layers.pooling.MaxPooling2D object at 0x7fdb2018ac88> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb201927b8> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb2019d630> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb2019d6d8> False
<tensorflow.python.keras.layers.pooling.MaxPooling2D object at 0x7fdb201a2630> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb201a2e10> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb201acc88> False
<tensorflow.python.keras.layers.convolutional.Conv2D object at 0x7fdb201acbe0> False
<tensorflow.python.keras.layers.pooling.MaxPooling2D object at 0x7fdb201b5978> False
```

Next, I loaded the images using ImageDataGenerator. We already have the directory set up to be able to use ImageDataGenerator. This makes it easier for the machine to load the images and identify the two classes. After that, I train the model and check out the performance. The model performed well with 90% accuracy. The model made 198 out of 2000 errors.

Here are the Training and Validation loss and accuracy curves:

Conclusion

The overall purpose of this project was to be able to help the military with image recognition. The military could use the model to recognize targets when given a satellite image. There are already plans for a project that aims to modernize military satellites through software so they can be reprogrammed quickly -- for example, to take advantage of new artificial intelligence (Al) algorithms for threat detection.

Code