# ETHIO NATIONAL SCHOOL

# MATHEMATICS NATIONAL EXAM (EUEE) QUESTIONS FROM 2004 – 2011 E.C

COMPILED BY MR. SHISHAY

# From grade 11

# Unit 1 and 2

1. If x < 0, then the simplest form of  $f(x) = \frac{x - |x|}{x}$  is equal to:

D. 0

2. If  $f(x) = \frac{\sqrt{x+2}}{x+2}$  and  $g(x) = \frac{1}{x} - 2$ , then f(g(x)) is equal to?

A.  $\sqrt{x}-2$ 

B.  $\sqrt{x} + 2$ 

3. If  $f(x) = \ln\left(\frac{x}{x-1} + 2\right)$ , for x > 1, then which of the following is the inverse of f?

A.  $g(x) = \frac{e^x - 2}{e^x - 3}$  B.  $g(x) = \frac{e^x - 2}{e^x + 1}$  C.  $g(x) = \frac{e^x}{e^x + 1} - 2$  D.  $g(x) = e^{\frac{x}{x - 1} - 2}$ 

4. Which of the following is a simplified form of  $\frac{4-(a-2)^2}{a^4+2a^2+1} \div \frac{1-\frac{1}{a^2+1}}{a}$ ?

A.  $\frac{4-a}{a}$  B.  $-\frac{a}{a^2+1}$  C.  $-\frac{1}{a^2(a^2+1)}$  D.  $\frac{4-a}{a^2+1}$ 

5. If  $(x) = \frac{x-1}{(x-2)^2(x+1)}$ , which of the following is true about f?

A. Its graph has an oblique asymptote. C. The graph of f does not meet its asymptote.

D. As  $x \rightarrow 2^-$ ,  $f(x) \rightarrow -\infty$ 

B. As  $x \to -1^+$ ,  $f(x) \to -\infty$ .

6. What is the value of |x| + 2x if x < 0?

A. -3x

C. - x

D. x

7. Which of the following functions has **No** vertical asymptote?

 $A. f(x) = \ln(x+1)$ 

C.  $f(x) = \frac{x^2 - 9}{x - 3}$ 

B.  $f(x) = \frac{x^2+1}{x^3+8}$ 

D.  $f(x) = \frac{x-1}{x^2-x}$ 

8. If  $f(x) = \frac{1}{e^{x+1}}$ , then which of the following is equal to  $f^{-1}(x)$ ?

A.  $\ln(1-x) - \ln(x)$ 

C.  $\ln\left(\frac{1}{x+1}\right)$ 

B.  $e^{-x} + 1$ 

D.  $\frac{1}{e^{-x+1}}$ 

9. What is the solution set of  $\frac{2}{x} - \frac{x-2}{x^2 - 2x} = 1 - \frac{2x-2}{3x-2}$ ?

D. {1}

10. Given  $f(x) = \ln(x-1)$  and  $g(x) = \sqrt{1-2x}$ , which one of the following is the domain of  $f \circ g$ ?

A.  $\{x \in \Re: x > 1\}$ 

C.  $\{x \in \Re: x < 0\}$ 

B.  $\left\{x \in \Re: x \leq \frac{1}{2}\right\}$ 

D.  $\{x \in \Re: x > \frac{1}{2}\}$ 

11. Which of the following is expression is a polynomial expression?

A.  $x^2 - 3x + \sin x$ 

B.  $\frac{4x^3+12x^2-x}{-x^2}$ 

D.  $2 - 3x^{\frac{2}{3}} + 7x^{\frac{5}{2}} + 3x^{-1}$ 

12. If  $f(x) = \frac{x+1}{x-1}$  and f(a) = 5, then f(2a) is equal to:

13. If  $f(x) = \sqrt[3]{1 + e^{-x}}$ , which of the following is equal to  $f^{-1}(x)$ ?

A.  $\ln\left(\frac{1}{x^3-1}\right)$ 

C.  $\ln(1 - x^3)$ 

D.  $(1 + e^{-x})^3$ 

14. Which one of the following is true?

A. A polynomial can have infinitely many vertical asymptotes.

B. The graph of a rational function can never cross its horizontal asymptote?

- C. The graph of  $f(x) = \frac{3x-1}{x-1}$  has no horizontal asymptote.
- D. The graph of  $f(x) = \frac{x^3 x}{x^2 x}$  has no vertical asymptote.
- 15. Which of the following is true about the graph of  $f(x) = \frac{x^2-1}{x-x^2}$ ?
  - A. x = 0 and x = 1 are its vertical asymptotes
  - B. y=1 is its horizontal asymptote.
  - C. y = x 1 is its oblique asymptote.
  - D. It is almost the same as the horizontal line y = -1 as  $x \to \pm \infty$ .
- 16. Which one of the following functions is one-to-one correspondence?
  - A.  $f: \Re' \to \Re$ ,  $f(x) = \tan x$ , where  $\Re'$  is the domain of f.
  - B.  $g: \Re \to \Re, g(x) = 2^x$
  - C.  $h:[0,\infty) \to [0,\infty), h(x) = x^2$
  - D.  $r: [0, \infty) \to [0, \infty), r(x) = x + 5$
- 17. The inverse of the function defined by  $g(x) = \frac{2x}{x+3}$  is equal to:

A. 
$$g^{-1}(x) = -\frac{2x}{x-3}$$

C. 
$$g^{-1}(x) = -\frac{x+3}{2x}$$
  
D.  $g^{-1}(x) = \frac{x+2}{3x}$ 

B. 
$$g^{-1}(x) = -\frac{3x}{x-2}$$

D. 
$$g^{-1}(x) = \frac{x+2}{3x}$$

18. If  $p(x) = 3x^2$  and  $q(x) = x^2 + x$ , then what is the solution set of  $\frac{p(x)}{3q(x)} - \frac{1}{x} = \frac{1}{q(x)}$ ?

A. 
$$\{-1, 2\}$$

C. 
$$\{-3, 2\}$$

19. The value(s) of x where the graph of the function  $y = \frac{x^2 - 1}{x^3}$  crosses its horizontal asymptote is(are):

A. 
$$x = -2$$

C. 
$$x = 0$$

B. 
$$x = -1$$
 and  $x = 1$ 

D. 
$$x = -\sqrt{2} \text{ and } x = 1 + \sqrt{2}$$

20. Which of the following functions could most likely be drawn as in the figure below?

A. 
$$f(x) = \frac{x+3}{x+2}$$

B. 
$$f(x) = \frac{x^2 - 2x}{x^2 - 4}$$

C. 
$$f(x) = \frac{-x^2 - x + 6}{x^2 - 4}$$

D. 
$$f(x) = \frac{x^2 + x - 6}{x^2 - 4}$$



21. Which of the following is one-to-one correspondence function from A = [0, 1] to B = [1, 2]?

A. 
$$f(x) = x$$

C. 
$$f(x) = 2x + 1$$

B. 
$$f(x) = \frac{1}{3}x^3 + 1$$

D. 
$$f(x) = x^2 + 1$$

22. What is the solution set of  $\frac{1-\frac{1}{x}}{1-\frac{1}{x^2}} = 3x^2 - \frac{x}{1+\frac{1}{x}}$ ?

A. 
$$\{-1,\frac{1}{2}\}$$

B. 
$$\left\{\frac{1}{2}\right\}$$

A. 
$$\left\{-1, \frac{1}{3}\right\}$$
 B.  $\left\{\frac{1}{3}\right\}$  C.  $\left\{3, \frac{-1}{3}\right\}$  D.  $\left\{\frac{-1}{3}\right\}$ 

D. 
$$\left\{ \frac{-1}{2} \right\}$$

- 23. Suppose  $f(x) = \frac{Q(x)}{x(x^2-1)}$  where Q(x) is a quadratic function. Which of the following is necessarily true about the graph of f?
  - A. x = 0, x = 1 and x = -1 are the vertical asymptotes of the graph of f.
  - B. The graph of f does not intersect with its horizontal asymptote.
  - C. The vertical asymptote of the graph of f is only x = -1 if  $Q(x) = x^2 x$ .
  - D. The vertical asymptote of the graph of f is only x = 1 if  $Q(x) = 2x^2$ .
- 24. Which one of the following is true about the horizontal asymptote(s) of the graphs of  $y = \frac{|x|+2}{x}$ ?
  - A. y = 2 is the only horizontal asymptote of the graph.

B. y = 1 and y = -1 are horizontal asymptotes of the graph.

C. y = 2 and y = -2 are horizontal asymptotes of the graph.

D. y = 1 is the only horizontal asymptote of the graph.

25. If  $f: A \to B$  and  $g: B \to C$  are functions, then which one of the following is true about the composition function?

A. Domain of  $(g \circ f) \subseteq Domain \circ f$ 

C. Domain of  $(gof) \nsubseteq Domain of f$ 

B. Range of  $(g \circ f) \nsubseteq Range \circ f g$ 

D. Range of  $(gof) \subseteq Range$  of f

26. If the point (3, -2) is on the graph of y = f(x), which point is on the graph of  $y = f^{-1}(x)$ ?

A. 
$$(\frac{1}{3}, -2)$$

B. (3,-1) C. (-2,3)

D.  $(3, -\frac{1}{2})$ 

27. Which one of the following is true about the graph of  $f(x) = \frac{x^3 - x}{x^3(x-1)}$ ?

A. The vertical asymptotes of the graph are x = 0 and x = 1.

B. The horizontal asymptote of the graph is y = 1.

C. The graph intersects its horizontal asymptote at the point (-1,0).

D. The graph intersects the vertical line x = 1 at the point (1, 2)

28. What is the solution set of  $\frac{1}{1+\frac{1}{x}} - \frac{1}{1-\frac{1}{x}} = \frac{x+\frac{1}{x}}{x-\frac{1}{x}}$ ?

A. {}

B.  $\{-1\}$ 

D.  $\{-1,1\}$ 

29. Which of the following is the inverse of  $f(x) = 8x^3 + 2$ ?

A. 
$$f^{-1}(x) = \frac{1}{8x^3 + 2}$$

C. 
$$f^{-1}(x) = 8x^{-3} - 2$$

B. 
$$f^{-1}(x) = \frac{1}{2} \sqrt[3]{x-2}$$

D. 
$$f^{-1}(x) = \frac{1}{8}\sqrt[3]{x-2}$$

30. If  $f(x) = \sqrt{x^3}$  and  $(f \circ g)(x) = \sqrt[4]{x}$ , then what is the value of g(8)?

A.  $\sqrt[3]{2}$ 

B. 2

C.  $\sqrt{2}$ 

31. Which of the following functions is one-to-one correspondence?

A.  $f:[0,\infty)\to\Re$  defined by f(x)=|x|. C.  $f:\Re\to[0,\infty)$  defined by  $f(x)=3^x$ 

B.  $f: \mathbb{R} \to [0, \infty)$  defined by  $f(x) = x^2$ 

D.  $f:(0,\infty)\to\Re$  defined by  $f(x)=\log_2 x$ 

32. Which of the following is true about signum, absolute value and greatest integer functions?

A.  $sgn(x) = \pm |x|$ , for all  $x \in \mathbb{R}$ .

C. |x| = x sgn(x), for all  $x \in \mathbb{R}$ .

B.  $sgn(x) \le \lfloor x \rfloor$ , for all  $x \le 0$ 

D.  $sgn(x) \le \lfloor x \rfloor$ , for all  $x \ge 0$ 

33. What is the partial fraction decomposition of  $\frac{x^2+x+1}{(x+2)(x^2+1)}$ ?

A. 
$$\frac{3}{5(x+2)} + \frac{2x+1}{5(x^2+1)}$$

C. 
$$\frac{2}{5(x+2)} + \frac{3x+1}{5(x^2+1)}$$

B. 
$$\frac{5}{3(x+2)} + \frac{2x+1}{3(x^2+1)}$$

D. 
$$\frac{2}{3(x+2)} + \frac{2x+1}{3(x^2+1)}$$

34. Which of the following is true about the graph of  $f(x) = \frac{2x^3 + 2x^2 + 3x}{x^2 + x}$ ?

A. The vertical asymptote of the graph is only x = -1 and its oblique asymptote is y = 2x.

B. The graph has y-intercept at (0, 3).

C. The graph has at least one x-intercept.

D. The vertical asymptotes of the graphs are at x = 0 and x = -1 but it has no vertical asymptote.

35. Let  $f(x) = x - x^2$  and  $g(x) = \frac{1}{x}$ . Then  $g(f(\frac{1}{x}))$  is equal to:

A. 
$$x - x^2$$

C.  $\frac{1}{x^2-1}$ 

D.  $\frac{x-1}{x^2}$ 

36. Let  $f(x) = \frac{3x+1}{x-2}$ . Then what is the range of f(x)?

A.  $\mathbb{R}\setminus\{2\}$ 

B. ℝ

C.  $\mathbb{R}\setminus\{3\}$  D.  $\mathbb{R}\setminus\left\{\frac{-1}{3}\right\}$ 



A. 
$$g(x) = x + 4$$

C. 
$$g(x) = |x + 4|$$

B. 
$$g(x) = x + 2$$

D. 
$$g(x) = |x| + 4$$

38. What is the simplified form of 
$$\frac{a^{-1}b^{-1}}{a^{-3}-b^{-3}}$$
?

A. 
$$\frac{a^2b^2}{b^2-a^2}$$

C. 
$$\frac{a^3-b^3}{ab}$$

B. 
$$\frac{a^2b^2}{b^3-a^3}$$

$$D. \frac{a^3 - b^3}{a - b}$$

39. If f(x) = ax - b and  $f^{-1}(x+1) = \frac{1}{2}x + 2$ , for each  $x \in \Re$ , then what must be the value of a and b?

A. 
$$a = \frac{1}{2}, b = -2$$

C. 
$$a = 1, b = 1$$

B. 
$$a = 2, b = 2$$

D. 
$$a = 2, b = 3$$

40. Which of the following is true about the graph of  $f(x) = \frac{x^2 + 5x + 6}{x^2 + 6} + 3$ ?

- A. The graph has a hole at x = 2.
- B. The vertical asymptotes of the graph are x = 2 and x = -2.
- C. The horizontal asymptote of the graph is y = 4.
- D. The graph has y-intercept at  $\left(0, -\frac{3}{2}\right)$ .

41. If f is greatest integer function and g is absolute value function, then what is the value of

$$((fog)\left(\frac{3}{2}\right) + (gof)\left(-\frac{4}{3}\right)?$$

C. -1

D. 2

42. A line  $\ell$  passes through (0, 5) and (-5, 0). What is the acute angle between the y-axis and the line  $\ell$  in radian measure?

A. 
$$\frac{\pi}{4}$$

B. 
$$\frac{\pi}{3}$$

$$C.\frac{\pi}{2}$$

A.  $\frac{\pi}{4}$  B.  $\frac{\pi}{3}$  C.  $\frac{\pi}{2}$  D.  $\frac{3\pi}{4}$  43. Consider a circle whose center is on the x –axis. If a line given by y=x is tangent to the circle at the point (2, 2), what the equation of the circle?

A. 
$$x^2 + y^2 = 8$$

C. 
$$(x-4)^2 + y^2 = 8$$

B. 
$$(x-2)^2 + y^2 = 4$$

D. 
$$(x-1)^2 + y^2 = 5$$

44. What is the vertex and the equation of the directricx, respectively, of the parabola  $x + y^2 + 2y + 1 = 0$ ?

A. 
$$(0, -1)$$
,  $x = \frac{-1}{4}$   
B.  $(-1, 0)$ ,  $y = \frac{-1}{4}$ 

C. 
$$(0, -1)$$
,  $x = \frac{1}{4}$ 

B. 
$$(-1, 0)$$
,  $y = \frac{-1}{4}$ 

D. 
$$(-1, 0)$$
,  $y = \frac{1}{4}$ 

45. The orbit of Mercury around the sun forms an ellipse with eccentricity 0.206, length of major axis  $1.16 \times 10^8$  km and the sun at one focus. Which of the following is the best approximation of the maximum distance from Mercury to the sun?

A. 
$$7.596 \times 10^7 \text{km}$$

C. 
$$8.695 \times 10^7 \text{km}$$

B. 
$$5.695 \times 10^{-7}$$
 km

D. 
$$6.995 \times 10^7 \text{km}$$

46. If  $x^2 - 6x + y^2 + k = 0$  is equation of a circle with radius 2, then what is the value of k?

47. If a line with angle of inclination of  $\frac{3\pi}{4}$  passes through (0. 1), which one of the following is the equation of the line?

A. 
$$y = -x + 1$$

B. 
$$y = x + 1$$

$$C.y = -x - 1$$

0. 
$$v = x - 1$$

48. A parabola with focus at (3, -1) has directrix y = 3, which one of the following is the equation of the parabola?

A. 
$$(X-3)^2 = -4(Y+1)$$

C. 
$$(X-3)^2 = 4(Y+1)$$

B. 
$$(X-3)^2 = -8(Y-1)$$

D. 
$$(X-3)^2 = 8(Y-1)$$

# ETHIO NATIONAL SCHOOL

49. A satellite moves along a hyperbolic curve whose horizontal transverse axis is 24 km and an asymptote  $y = \frac{5}{12}x + 2$ . what is the eccentricity of the hyperbola?

50. For what value of b does the parabola  $p(x) = ax^2 + x + b$  passes through the points (-1,5) and (2,-1)?

A. 9

B. 3

C. -3

51. What is the equation of the direcrix for the parabola whose equation is  $y^2 + 8x + 6y + 25 = 0$ ?

B. x = 0

C.x = 2

52. If two lines y = x and y = x - 4 are tangent to a circle at (2, 2) and (4, 0), respectively, then what is the equation of the circle?

A.  $(x-2)^2 + y^2 = 4$ 

C.  $(x-3)^2 + (y-1)^2 = 2$ 

B.  $(x-4)^2 + (y-2)^2 = 4$ 

D.  $(x-1)^2 + (y+1)^2 = 10$ 

53. A semi elliptical arc over a tunnel for a road through a mountain has a major axis of length 80 m and height of 30 m at the center. What is the equation of the semi-elliptical arc over the tunnel, if the center is considered as the origin?

- A.  $\frac{X^2}{6400} + \frac{Y^2}{900} = 1$ B.  $\frac{X^2}{1600} + \frac{Y^2}{900} = 1$ C.  $\frac{X^2}{900} + \frac{Y^2}{6400} = 1$ D.  $\frac{X^2}{6400} + \frac{Y^2}{8100} = 1$ 54. Let the equation  $x^2 + 2x + y^2 = 8$  represents a circle. Then which one of the following lines cut the circle at exactly two points?

A. 4x + 3y + 19 = 0

C. 2v = 5x + 43

B. 3x + 4y + 14 = 0

- D. 2x = y 50
- 55. If the equation  $(x-2)^2 (y-2)^2 = 1$  represents a hyperbola, which one of the following represents the equation of an asymptote of the hyperbola?

A. y = 4 - x

B. x + y = 1

C. x = 2 - y

D. x + 2y = 3

56. Which of the equations below is represented by the following parabola?

A.  $y = x^2 + 2$ 

B.  $v = (2x - 1)^2$ 

C.  $y = 2(x - 1)^2$ D.  $y = (2x + 1)^2$ 



57. The equation of an ellipse with center at (1, 4) and vertices at (10, 4) and (1, 2) is:

A.  $4(x-1)^2 + 8\overline{1}(y-4)^2 = 324$ 

C.  $9(x-1)^2 + 4(y-4)^2 = 1$ 

B.  $(x-1)^2 + 9(y-4)^2 = 4$ 

- D.  $2(x-1)^2 + 9(y-4)^2 = 4$
- 58. What is the focus of the parabola  $y^2 + 4y + 8x = 4$ ?

A. (1, -2)

B. (-1, -2)

C. (3, -2)

59. Two perpendicular lines  $l_1$  and  $l_2$  are intersecting at (-1, 2). If the angle of inclination of  $l_1$  is  $45^0$  then what is the equation of  $l_2$ ?

A. y = -x + 3

B. y = x + 3

C. y = -x + 1

- 60. Which of the following is true about a conic section represented by the equation  $\frac{x^2}{\nu} + \frac{y^2}{\nu o} = 1$ ?
  - A. it is a circle whose center is at the origin for some  $k \in \mathbb{R}$ .
  - B. It is an ellipse whose major axis is vertical when k > 9.
  - C. it is a hyperbola whose foci are at (-3, 0) and (3, 0) when 0 < k < 9.
  - D. It is a hyperbola whose foci are (-3k, 0) and (3k, 0) when 0 < k < 9.

61. The planet Mercury's orbit around the sun is an ellipse with eccentricity 0.206, length of major axis 11.6×10<sup>8</sup> km and the sun at one focus. What is the maximum distance from Mercury to the sun?

- A.  $6.99 \times 10^{8}$
- . B.  $6.99 \times 10^7$
- C.  $9.66 \times 10^7$
- D.  $9.66 \times 10^8$
- 62. The equation of the line that passes through (2, -1) and is perpendicular to 3x + 4y = 6 is:

A. -4x + 3y = 5

C. 4x + 3y = 11

B. 4x - 3y = 5

D. -4x + 3y = -11

# ETHIO NATIONAL SCHOOL

63. Which one of the following is the equation of a circle whose center is on the y-axis and radius 3?

$$A.x^2 + y^2 + 6y = 0$$

C. 
$$x^2 + (y-2)^2 = 3$$

B. 
$$(x-2)^2 + y^2 = 9$$

D. 
$$x^2 - 2x + y^2 = 8$$

64. The graph of a hyperbola and the lines of its asymptotes are as shown in the following figure. Which one of the following is an equation of the hyperbola?

A. 
$$y^2 - 2y - x^2 = 0$$

B. 
$$y^2 - 3y - x^2 = 0$$

$$C.x^2 - (y-1)^2 = 1$$

D. 
$$(x-1)^2 - y^2 = 1$$



65. Suppose the eccentricity of the hyperbola  $\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$  is a reciprocal to that of eccentricity of the ellipse $x^2 + 4y^2 = 4$ . If the hyperbola passes through a focus of the ellipse, then what is the equation of the hyperbola?

A. 
$$x^2 - 2y^2 = 2$$

B. 
$$x^2 - 3y^2 = 3$$

A. 
$$x^2 - 2y^2 = 2$$
 B.  $x^2 - 3y^2 = 3$  C.  $\frac{x^2}{3} - \frac{y^2}{2} = 1$  D.  $\frac{x^2}{2} - \frac{y^2}{3} = 1$ 

D. 
$$\frac{x^2}{2} - \frac{y^2}{3} = 1$$

66. What is the radius of the largest possible circle that can be inscribed in the ellipse given by 5(x - $(1)^2 + 3y^2 = 15$ ?

A. 
$$\sqrt{3}$$

B. 
$$\sqrt{5}$$

67. What are the values of the center (C) and radius (r) of the circle  $x^2 + y^2 - 4x + 6y = 5$ ?

A. 
$$C = (-2,3), r = 3\sqrt{2}$$

C. 
$$C = (2, -3), r = 2\sqrt{3}$$

B. 
$$C = (2, -3), r = 3\sqrt{2}$$

D. 
$$C = (-2, 3), r = 2\sqrt{3}$$

68. What is the equation of a line that passes through (a, a) in the xy-plane if it is parallel to a line that passes points through (a, b) and (b, a), where  $a \neq b$ ? C. y = -x + 2a D. y = 2x - a

A. 
$$y = x$$

B. 
$$y = -x$$

C. 
$$y = -x + 2a$$

$$D. y = 2x - a$$

69. What is the equation of the line that passes through (1, 1) and is parallel to 3y - x = 1?

A. 
$$x - 3y + 2 = 0$$

B. 
$$x + 3y = 4$$

C. 
$$3y - x + 2 = 0$$
 D.  $3x - y = 2$ 

$$D 3x - y = 2$$

70. Which one of the following is the equation of the circle whose end points of a diameter are (0, -2) and (2, 2)?

A.
$$x^2 + y^2 = 4$$
  
B.  $x^2 + y^2 - 2y - 4 = 0$ 

C. 
$$(x-1)^2 + y^2 = 4$$

$$D.x^2 + v^2 - 2x - 4 = 0$$

71. What is the area of the triangle in (sq. units) formed by the lines joining the vertex of the parabola  $x^2 = -36y$  to the end points of the latus rectum?

- 72. A man running a race-course noted that the sum of the distances from the two flag posts from him is always 10 m and the distance between the flag posts is 8 m. what is the equation of the path traced by the man?
  - (Take the flag posts to be on the x-axis with the origin at their mid-point)

A. 
$$\frac{X^2}{9} + \frac{Y^2}{25} = 1$$

C. 
$$\frac{X^2}{100} + \frac{Y^2}{64} = 1$$

B. 
$$\frac{X^2}{25} + \frac{Y^2}{9} = 1$$

$$D.\frac{X^2}{64} + \frac{Y^2}{100} = 1$$

- 73. Which one of the following is true about the pair of lines 3x + 9y 24 = 0 and 4x + 12y + 32 = 0?
  - A. Perpendicular lines

C. parallel and distinct lines

B. Intersecting lines

- D. representing the same lines
- 74. The center of a circle is on the line y = 2x and the line x = 1 is tangent to the circle at the point (1, 6). How long is the radius of the circle?
  - A. 5
- B. 4

C. 3

D. 2

75. If the circle passing through the point (-1,0) touches the y-axis at (0,2), then what is the equation of the circle?

A. 
$$x^2 + y^2 + 5x + 4y + 4 = 0$$

C. 
$$x^2 + y^2 - 5x - 4y + 4 = 0$$

B. 
$$x^2 + y^2 - 5x + 4y + 4 = 0$$

D. 
$$x^2 + y^2 + 5x - 4y + 4 = 0$$

76. The earth's orbit has a semi-major axis  $a \approx 149.6$  *Gm*(gigameters) and an eccentricity of  $e \approx 0.017$ . What is the approximate value of the semi-minor axis?

<u>Unit 4</u> 2004

77. Suppose the proposition  $p \Rightarrow \neg q$  is false (F), which of the following is true?

A. 
$$\neg q \land (p \Rightarrow q)$$

C. 
$$(\neg q \lor p) \Leftrightarrow q$$

B. 
$$\neg p \lor (q \Rightarrow \neg p)$$

D. 
$$(p \land q) \Leftrightarrow \neg q$$

78. Suppose  $e(x) \equiv x$  is even;  $p(x) \equiv x$  is prime;  $d(x) \equiv x$  is divisible by 2. Which one of the following has the truth value F on the set of natural numbers?

A. 
$$(\exists x)[e(x) \land p(x)]$$

C. 
$$(\exists x)[e(x) \land \neg d(x)]$$

B. 
$$(\forall x)[e(x) \Rightarrow d(x)]$$

D. 
$$(\forall x)[e(x) \lor \neg d(x)]$$

79. If x and y are non-negative integers, which of the following is **NOT** true?

A. 
$$(\forall x)(\exists y)(y > x^2 - 1)$$

C. 
$$(\exists y)(\forall x)(y \le x^2 - 1)$$

B. 
$$(\exists x)(\forall y)(y > x^2 - 1)$$

$$D. (\exists y)(\exists x)(y \le x^2 - 1)$$

80. . Consider the following argument form. Production is high if rain continues. Rain does not continue. Therefore, either production low or rain continues.

Let p: production is low

q: rain continues

The following table is also given about p and q.

| row | P | Q | ¬р | ¬q | ¬p⇒q | q⇒¬p | pVq |
|-----|---|---|----|----|------|------|-----|
| 1   | T | T | F  | F  | T    | F    | T   |
| 2   | T | F | F  | T  | Т    | T    | T   |
| 3   | F | T | T  | F  | T    | T    | T   |
| 4   | F | F | T  | T  | F    | T    | F   |

Which of the following is necessarily true?

- A. The argument form is valid due to row 2.
- B. The argument form is valid due to row 2 and 3.
- C. The argument form is invalid due to row 4.
- D. The argument form is invalid due to row 1 and 3.

2005

81. For real numbers x and y, which one of the following statements is true?

A.
$$(\forall x)(\exists y)(x^2 + y + 1 = 0)$$

C. 
$$(\exists y)(\forall x)(x^2 + y + 1 = 0)$$

B.
$$(\exists x)(\forall y)(x^2 + y + 1 = 0)$$

D. 
$$(\forall y)(\exists x)(x^2 + y + 1 = 0)$$

82. Let p, q and r be propositions such that  $p \Rightarrow (r \lor \neg q)$  is false. Then which one of the following proposition is true?

83. Consider the following argument:

"If he does not love her, she will not marry him. He loves her. Therefore, she will marry him."

If 'p≡ He loves her and 'q≡ she will marry him', which one of the following is correct representation of the argument form?

- A.  $\neg p \Rightarrow \neg q, p \vdash q$ ; valid argument
- C.  $p \Rightarrow q, p \vdash q$ ; valid argument
- B.  $\neg p \Rightarrow \neg q, p \vdash q$ ; invalid argument
- D.  $p \Rightarrow q, p \vdash q$ ; invalid argument
- 84. Suppose the following statements are the premises of an argument.

"He was lazy or he did not like the class room. If he was lazy, he could not pass the exam. He passed the exam."

Which one of the following could be a conclusion that makes the argument valid?

- A. He did like the class room
- C. If he was not lazy, he did like the class room
- B. He did not like the class room. D. He was not lazy and he did like the class room
- 85. If  $(pVq) \Rightarrow (\neg r \land r)$  is true, then which one of the following is necessarily true?
  - A.  $(pVq) \Rightarrow q$
- B. ¬q∧r
- C.¬p⇔r
- D.¬p∨r
- 86. Which one of the following is a valid logical argument?
  - A.  $p \Rightarrow q, q \vdash p$

C.  $\neg p \land q, q \Rightarrow r \vdash r$ 

B.  $p \Leftrightarrow q, p \Rightarrow q \vdash q$ 

- D.  $\neg p$ ,  $p \lor q$ ,  $r \Rightarrow q \vdash r$
- 87. Which one of the following is equivalent to  $\neg [(\forall x)(p \Rightarrow q)]$ ?
  - A.  $(\forall x)(\neg p(x) \Rightarrow \neg q(x))$

C.  $(\exists x)(\neg p(x) \land q(x))$ 

B.  $(\exists x)(\neg p(x) \Rightarrow \neg q(x))$ 

D.  $(\exists x)(p(x) \land \neg q(x))$ 

- 88. Suppose that p represents the statement "He missed the tournament." q represents the statement "He got the gold medal." And r represents the statement "He took a trip abroad." Then which of the following symbolic expression represents the statement: "If he takes a trip abroad and he does not miss the tournament, then he will get the gold medal."
  - A.  $(r \Rightarrow q) \land \neg p$

C.  $(r \land \neg p) \Rightarrow q$ 

B.  $r \land (P \Rightarrow q)$ 

- D.  $\neg (r \lor p) \lor q$
- 89. For arbitrary propositions p and q, which one of the following is valid equivalence?
  - A.  $\neg (p \Rightarrow q) \equiv (q \Rightarrow p)$
- C.  $(p \lor \neg q) \equiv (p \Rightarrow q)$
- B.  $[\neg (p \Rightarrow q) \land p)] \equiv (p \land \neg q)$  D.  $[(p \lor q) \Rightarrow q] \equiv (p \Rightarrow \neg q)$
- 90. If each of the compound propositions  $p \lor q, p \Rightarrow r$  and  $\neg r$  is true, then which one of the following is True?
  - A. P

- C.  $q \Rightarrow p$
- D.  $p \land \neg r$

- 91. Which one of the following is not a tautology?
  - A.  $[p \lor (q \Rightarrow r)] \Leftrightarrow [\neg p \Rightarrow (q \Rightarrow r)]$  C.  $P \Rightarrow (P \Rightarrow q) \lor q$

B. pV  $(q \Rightarrow \neg p)$ 

D.  $[p \Leftrightarrow (q \land \neg r)] \Leftrightarrow [\neg p \Leftrightarrow (\neg q \lor r)]$ 

92. Which one of the following compound proposition is tautology?

A.  $(qV \neg q) \Rightarrow p$ 

C. pV  $(q \land \neg q)$ 

B.  $p \Rightarrow (q \lor \neg q)$ 

- D.  $p \Rightarrow (q \land \neg q)$
- 93. If the truth value of a proposition p is false, then which one of the following compound proposition has a truth value true?
  - A.  $\neg p \land p$
- B.  $\neg p \Rightarrow P$
- C.  $\neg(\neg p \lor p)$
- D.  $p \Rightarrow \neg p$
- 94. What is the contra positive of "If  $x \in \mathbb{N}$ , then x is integer and x > 0."?
  - A. If x is not integer or x<0, then  $x\notin \mathbb{N}$ . C. If x is not integer or  $x\leq 0$ , then  $x\notin \mathbb{N}$ .
  - B. If x is integer and x>0, then  $x \in \mathbb{N}$ . D If  $x \notin \mathbb{N}$ , then x is not integer and  $x \le 0$
- 95. The valid conclusion from the premises:  $p \lor q$ ,  $q \Rightarrow r$ ,  $p \Rightarrow m$ ,  $\neg m$  is......

| A. | $p \wedge (r \vee r)$ | B. PA $(p \land r)$ | C. $q \wedge (p \wedge r)$ | D. | $r \land (p \lor q)$ |
|----|-----------------------|---------------------|----------------------------|----|----------------------|
|    |                       | 2000                |                            |    |                      |

96. Let p and q stands for the statements "Nejat is intelligent" and "Almaz is hard working", respectively. Which of the following represent the statement "Almaz is hard working if Nejat is intelegent"?

A. 
$$\neg p \land q$$

B. 
$$\neg p \lor q$$

$$C. p \land q$$

D. 
$$\neg a \lor p$$

97. Which of the following is a valid argument?

A. 
$$\neg p \Rightarrow \neg q, q \vdash \neg p$$

$$C. \neg p \lor q, r \Rightarrow p, r \vdash \neg q$$

B. 
$$p \Rightarrow \neg q, p, r \Rightarrow q \vdash \neg r$$

$$D. \neg p, p \lor q, r \Rightarrow q \vdash \neg r$$

98. Suppose "if  $x \in A$ , then  $y \in B$ " is a true statement. Then which one of the following is necessarily true?

A. 
$$y \in B$$
.

C. if 
$$y \in B$$
, then  $x \in A$ .

B. If 
$$x \notin A$$
, then  $y \notin B$ .

D. If 
$$y \notin B$$
, then  $x \notin A$ .

99. Consider the following compound open proposition:  $P(x) \equiv X$  is a prime number,  $C(x) \equiv X$  is a composite number, and  $\mathbf{E}(x) \equiv X$  is an even number. Which one of the following has a truth value of True in the set of positive integers?

A. 
$$(\forall x) [ P(x) \Rightarrow \neg E(x) ]$$

$$C.(\exists x) [\neg P(x) \land \neg C(x)]$$

B. 
$$\neg(\forall x) [ C(x) \Rightarrow \neg P(x) ]$$

$$D.\neg(\exists x) [E(x) \land \neg C(x)]$$

100. If the truth value of  $(p \land \neg p) \Leftrightarrow [(q \lor \neg q) \Rightarrow r]$  is True, then which one of the following must be True?

101. Suppose the following are premises of an argument:

He is healthy and he is not angry.

He is angry or his plan fails.

His plan does not fail if he does not travel abroad.

Given that the premises are true, which one of the following can be a conclusion that makes the argument valid?

A. His plan fails and he is not angry.

C. He travels abroad.

B. His plan does not fail.

D. His plan fails and he does not travel abroad.

102. Let  $U = \mathbb{N}$  (the set of natural numbers) be the universe. Which one of the following propulsion is True?

A. 
$$(\exists x) (x + x = x)$$

C. 
$$(\forall x)(\exists x)(x \div y = y \div x)$$

B. 
$$(\forall x) (y < x)$$

D. 
$$(\forall x)(\exists x)(x \div y = y \div x)$$

103. If  $\neg p \Rightarrow r$  is false and  $p \Leftrightarrow q$  is True, then which if the following is True?

A. 
$$P \vee (\neg q \wedge r)$$

A. 
$$P \lor (\neg q \land r)$$
 B.  $\neg p \land (q \Rightarrow r)$  C.  $\neg p \Rightarrow (q \lor r)$  D.  $p \Leftrightarrow (\neg q \lor r)$ 

C. 
$$\neg p \Rightarrow (q \lor r)$$

D. 
$$p \Leftrightarrow (\neg q \lor r)$$

104. Which one of the following is a valid argument?

A. If I don't change my oil regularly, my engine will die. My engine died. Thus, I didn't change my oil regularly.

- B. If I am literate, then I can read and write. I can read but I can't write. Thus, I am not literate.
- C. If you do every problem in the book, then you will learn the subject. You learned the subject. Thus, you did every problem in the book.
- D. If it rains or snows, then my roof leaks. My roof is leaking. Thus, it is raining and snowing.

For real numbers x and y, which one of the following is NOT true?

A. 
$$(\forall x)(\forall y)(y^2 + x^2 \ge -1)$$
 C.  $(\exists x)(\forall y)(y \ge x^2 + 1)$ 

C. 
$$(\exists x)(\forall y)(y \geq x^2 + 1)$$

B. 
$$(\forall x)(\exists y) (y \ge x^2 + 1)$$

D. 
$$(\exists x)(\exists y)(y \ge x^2 + 1)$$

Unit 5

A three-digit library identification card is to be printed from the numbers 0,1, 2,3,4,5 in a way that the first is non-zero and no number is to be repeated. How many such cards can be printed?

A. 100

B. 120

C. 150

D. 180

A.  $\frac{3}{35}$ 

108.

B.  $\frac{9}{35}$ 

|      | A. 0.2 B. 0.05                             |                      | C.                 | 0.1               | D. 0.4             |                  |               |
|------|--------------------------------------------|----------------------|--------------------|-------------------|--------------------|------------------|---------------|
| 109. | You are given a data on the                | age of stud          | lents, in a        | primary sch       | nool.              |                  |               |
|      | Age                                        | 8 10                 | 11 12              | 13                |                    |                  |               |
|      | Number of students                         | 5 15                 | 8 10               | 2                 |                    |                  |               |
| V    | Which of the following is not              |                      |                    |                   |                    |                  |               |
|      | A. The median is 10.5                      |                      |                    | C. The m          | nean is 10.5       |                  |               |
|      | B. The mode is 10                          |                      |                    |                   | range is 5         |                  |               |
| 110. | The following is a table of s              | imple from           | onov diet          |                   | •                  | rioblo v         |               |
| 110. |                                            |                      |                    |                   | i uata witii vai   | Table X.         |               |
|      | X 1                                        | 3 4                  |                    | 7                 |                    |                  |               |
|      | Frequency 2                                | 5 6                  | 5                  | 2                 |                    |                  |               |
| The  | standard deviation of the date             | . ia a aveal 4a      |                    |                   |                    |                  |               |
| The  | standard deviation of the data             |                      |                    |                   |                    | <del></del>      |               |
|      | A. $\sqrt{3}$ B. $\sqrt{2.3}$              |                      |                    | C. 3              |                    | $\sqrt{3.6}$     |               |
|      | A school has three class roo               | _                    |                    | •                 |                    |                  |               |
| th   | ese classrooms is 28, 20 and               | 22, respect          | vely. All          | the students      | s took an exan     | nination and th  | e average     |
| SC   | core of the students of 11A, 1             | 1B and 11C           | is 60, 70          | and 70, res       | pectively. Wh      | at is the averag | ge score in   |
| th   | is examination for all grade 1             | 1 students           | )                  |                   |                    |                  |               |
|      | A. 66 B. 66.6                              | 57                   | (                  | C. 65             | D. 65              | 5.67             |               |
| 110  | 2005                                       | 1 <i>F</i>           | م معسما میں        | amad 6 20 a       | 4                  | d 7 10 aturdant  | 0 hanaaa      |
| 112. | Among students who took                    | _                    |                    |                   |                    | 1 /, 10 students | s scored 8    |
| ar   | nd 5 students scored 10. Wha               | t is the aver        |                    |                   |                    |                  |               |
|      | A. 7.8 B.7.5                               |                      | C.                 |                   | D. 7.0             |                  |               |
| 113. | How many four-digit even                   | numbers ca           |                    |                   |                    | f the numbers    | start with 3? |
|      | A. 40 B. 50                                |                      | C. 100             |                   | D. 120             |                  |               |
| 114. | A committee consisting of 3                | students is          | to be sele         | ected from 1      | 0 candidates       | among which 4    | 4 are girls.  |
| W    | That is the probability that at I          | least one gi         | rl is select       | ted.              |                    |                  |               |
|      | A. $\frac{5}{6}$ B. $\frac{2}{3}$          | C.                   | 1                  | D. $\frac{1}{-}$  | ,                  |                  |               |
| 115  | A group of six students take               |                      | J                  | · ·               |                    | cussion What     | is the        |
|      |                                            |                      |                    |                   | table for a dis    | scussion, what   | is the        |
| pı   | cobability that two specific st            | udents do n          |                    |                   | 1                  |                  |               |
|      | A. $\frac{3}{5}$ B. $\frac{2}{3}$          |                      | C                  | $\frac{2}{5}$     | D. $\frac{1}{3}$   |                  |               |
| 116. | The mark of students score                 | d in an exar         | nination i         | s grouped in      | n class interva    | ls as shown be   | low.          |
|      | Class interval(mark)                       | 55-64                | 65-74              | 75-84             | 85-94              | 95-100           | 7             |
|      | ` ´                                        |                      |                    |                   |                    |                  | 4             |
|      | Number of students                         | 8                    | 12                 | 20                | 6                  | 4                |               |
|      | What is the median of                      | the mark?            |                    |                   |                    |                  | _             |
|      | A. 25.0 B. 75.5                            |                      | C. 77.0            | Т                 | D. 79.5            |                  |               |
| 117. | A box contains 5 white 6 red               |                      |                    |                   |                    | are randomly to  | iken out      |
|      | om the box one after the other             |                      |                    |                   |                    | •                |               |
|      | and the third are red?                     | i, what is th        | ic probab.         | inty that the     | ilist ball is w    | inte and both t  | ne second     |
| aı   |                                            |                      |                    | 4                 |                    | 5                |               |
|      | A. $\frac{2}{15}$ B. $\frac{3}{15}$        |                      | C.                 | 75                | D.                 | 91               |               |
| 110  | If the list of a massyroment               | 200<br>in 10 or 5    | 5                  |                   |                    |                  | ha walua of   |
|      | If the list of a measurement $\overline{}$ | 18 10, $\alpha$ , 3, | $\alpha, 3, 10, 2$ | .0, 13, 20, 3     | , with mean x      | , men what is t  | ne value of   |
| α    | in terms of $\overline{x}$ ?               | - 00                 | ~                  | r <del>-</del> 00 | ъ                  | 4 🗖              |               |
| 110  | A. $10\bar{x} - 90$ B. 97                  |                      |                    |                   | D. $5\overline{x}$ | - 45             |               |
| 119. | The following is the frequer               | icy distribu         | tion of a g        | grouped data      | <b>ો.</b>          |                  |               |
|      |                                            |                      |                    |                   |                    |                  | 10   Page     |

7. A student needs to select 3 books from 3 mathematics, 3 physics and 1 history book. What is the probability that one of them is mathematics and the other two are either physics or history books?

production, if 5% have defect D<sub>1</sub>, 10% have defect D<sub>2</sub> and 2% have both defects, then what is the

probability for an item that have defect  $D_2$ , given that it has defect  $D_1$ ?

Items produced by a certain company are subjected to two kinds of defects D<sub>1</sub> and D<sub>2</sub>. Out the total

| Class intervals | 3-7 | 8-12 | 13-17 | 18-22 |
|-----------------|-----|------|-------|-------|
| Frequency(f)    | 2   | 2    | 10    | 6     |

What is the mean and the standard deviation of the distribution, respectively?

A. 15,  $2\sqrt{5}$ 

B. 15,  $\sqrt{7.5}$ 

C. 12.5,  $5\sqrt{2}$ 

D. 12.5,  $\sqrt{15}$ 

120. If distinct codes (words) of eight letters are formed by rearranging the letters in the word 'ABBEBAYE', how many of the codes begin with B or Y?

A. 840

B. 630

C. 1680

D. 4220

121. If  $Q_i$ ,  $D_i$ , and  $P_i$  are respectively the i<sup>th</sup>-quartile, decile and percentile of a data arranged in increasing order, then which one of the following is necessarily true?

A.  $Q2 = \frac{Q1+Q3}{2}$ 

C.  $P_{25} > Q_1$ 

B. D<sub>3</sub>>P<sub>25</sub>

D. Q = mean of the data

122. A company produced 25,000 bulbs and randomly tested 2% of the product. Among the tested bulbs, if 40 have defect of  $D_1$ , 60 have defect of  $D_2$  and 25 have both types of defects, what is the probability that a bulb produced by the company has **none** of the defects?

A. 0.95

B. 0.80

C. 0.85

D. 0.20

123. If **S** is a set with **10** elements and  $A \subseteq S$ , what is the probability that **A** has **3** or more elements?

A.  $\frac{7}{10}$ 

B.  $\frac{8}{11}$ 

C.  $\frac{121}{128}$ 

D.  $\frac{7}{128}$ 

124. Different codes, each of which consisting of five characters, are to be generated in such a way that the first two characters are any of the English letters (A TO Z) and the remaining three are any of the digits (0, 1, . . . ,9). How many distinct codes can be generated so?

A. 468,000

B. 260

C. 676,000

D.  $26! \times 10!$ 

125. The following is a set of data representing the average mark of 13 students: 91, 89, 93, 91, 87, 94, 92, 85, 91, 90, 96, 93, and 89. Then which of the following statements is true about the data?

A. The median is 90.5

C. The range of the mark is 11.

B. The upper quartile is 92

D. The mean is 91.5

126. A city has two daily newspapers, X and Y. the following information was obtained from a survey of 100 residents of the city: 35 people subscribe to X, 60 people subscribe to Y and 20 subscribe to both newspapers. Then how many of the people in the survey do not subscribe to either of the newspapers?

A. 5

B. 25

C. 40

D 5

127. Suppose that the first 3 letters (A, B and C) and number digits are to be used to form car plates in a small town. How many different plates can be formed in a total that contain 1, 2 or 3 letters and then followed by 3 digits?

A. 3,000

B. 27,000

C. 39,000

D. 100,000

128. A

| Class interval | 5-15 | 15-25 | 25-35 | 35-45 | 45-55 |
|----------------|------|-------|-------|-------|-------|
| frequency      | 22   | 40    | 68    | 50    | 20    |

measurement is grouped into five

class intervals with the following frequency distribution.

What are the first quartile  $Q_1$  and the  $75^{th}$  percentile  $P_{75}$  of the measurement?

A.  $Q_1=20$ ,  $P_{75}=40$ 

C.  $Q_1=20$ ,  $P_{75}=39$ 

B.  $Q_1=22$ ,  $P_{75}=40$ 

D.  $Q_1=22$ ,  $P_{75}=39$ 

129. Three persons **P**<sub>1</sub>, **P**<sub>2</sub> and **P**<sub>3</sub> are firing at a target independently and have a probability **0.7**, **0.5** and **0.4**, respectively, of hitting the target. What is the probability that at least one of them hits the target?

A. 0.95

B. 0.85

C. 0.91

D. 0.99

 X
 3
 5
 6
 7

 Frequency
 2
 5
 2
 1

130. The following is a simple frequency distribution of a data with variable X.

What are the mean  $(\bar{x})$  and variance  $\delta^2$  of the data?

A. 
$$\overline{X} = 5$$
,  $\delta^2 = 0.7$ 

B. 
$$\overline{X} = 6. \delta^2 = 1.4$$

A. 
$$\overline{X} = 5, \delta^2 = 0.7$$
 B.  $\overline{X} = 6, \delta^2 = 1.4$  C.  $\overline{X} = 6, \delta^2 = 0.7$  D.  $\overline{X} = 5, \delta^2 = 1.4$ 

D. 
$$\overline{X} = 5.\delta^2 = 1.4$$

131. A box contains 10 items of which 3 are defective. If two items are randomly taken out of the box, what is the probability that both items are not defective?

A. 
$$\frac{7}{10}$$

B. 
$$\frac{4}{7}$$

C. 
$$\frac{7}{15}$$

D. 
$$\frac{49}{100}$$

A.  $\frac{7}{10}$  B.  $\frac{4}{7}$  C.  $\frac{7}{15}$  D.  $\frac{49}{100}$  132. Items produced by a certain company are subjected to two kinds of defects  $\mathbf{D_1}$  and  $\mathbf{D_2}$ . Out of the total product 5% have the defect  $D_1$ , 10% have the defect  $D_2$ , and 2% have both defects. What is the probability that a randomly selected item has neither defect  $D_1$  or  $D_2$ ?

133. There are three children in a room, ages three, four, and five, if a four- year-old child enters the room then which one of the following is true?

A. Mean age will stay the same but the standard deviation will increase.

B. Mean age will stay the same but the standard deviation will decrease.

C. Mean age and the standard deviation will increase.

D. Mean age and the standard deviation will stay the same.

In how many more ways can 4 people be arranged in a row than if they were arranged in a circle?

A. 1

B. 6

C. 18

D. 12

135. Two machines **A** and **B** work independently. The probability that both machines **A** and **B** work is **0.4.** if the conditional probability that machine **B** works given that machine **A** works is **0.5**, then the conditional probability that machine **A** works given that machine **B** works is.....

B.0

C. 0.5

D. 0.7

136. A team of 10 researchers consists of 4 biologists and 6 chemists. If 3 persons are chosen randomly from the team, what is the probability that at least one is a biologist?

A. 
$$\frac{2}{3}$$

C. 
$$\frac{5}{6}$$

D. 
$$\frac{7}{10}$$

137. The probability that an electronic device produced by a company does not function properly is equal to 0.1. If two devices are bought, then what is the probability that at least one device function properly?

138. Two machines A and B produce respectively 60% and 40% of the total number of items of a factory. The percentages of defective of these machines are 2% and 5%, respectively. If an item is selected at random, then what is the probability that the item is defective?

139. In how many ways can a committee of 3 members be formed from 7 candidates?

A. 7

B. 21

C. 28

D. 35

|      | X         | 3-7 | 8-12 | 13-17 | 18-22 |
|------|-----------|-----|------|-------|-------|
| of a | Frequency | 4   | 6    | 8     | 2     |

140. The following is a frequency distribution table grouped data with variable X.

What is the mean  $(\overline{x})$  and the variance  $(\delta^2)$  of the data respectively?

A. 
$$\bar{x}_1 = 12, \delta^2 = 21$$

C. 
$$\bar{x} = 13, \delta^2 = 9$$

B. 
$$\bar{x} = 12, \delta^2 = 25$$

D. 
$$\bar{x} = 13, \delta^2 = 16$$

141. The expenditure of 100 families is given below.

| Expenditure     | 0-9 | 10-19 | 20-29 | 30-39 | 40-49 |
|-----------------|-----|-------|-------|-------|-------|
| No. Of families | 14  | 23    | $F_1$ | 21    | $F_2$ |

If the mode of the data is 23.5, what are the values of  $F_1$  and  $F_{2?}$ 

A. 
$$F_1 = 27$$
,  $F_2 = 15$ 

C. 
$$F_1 = 25$$
,  $F_2 = 17$ 

B. 
$$F_1 = 15$$
,  $F_2 = 27$ 

D. 
$$F_1 = 17$$
,  $F_2 = 25$ 

D. 32

D.  $\frac{3}{4}$ 

A. 28

B. 29

probability that atleast one of the events occur?

| What is t             | he mean $(\overline{x})$ an        | d the stan  | dard deviation   | on ( <i>sd</i> ) of | f the data              | in minute?        |                   |                |
|-----------------------|------------------------------------|-------------|------------------|---------------------|-------------------------|-------------------|-------------------|----------------|
| A. $\overline{x}$     | $= 7$ , $sd = \sqrt{1}$ .          | 5           |                  | C                   | $\overline{x} = 8$ , so | $d=\sqrt{2}$      |                   |                |
| B. $\overline{x}$     | $=7, sd = \sqrt{2}$                |             |                  | D.                  | $\overline{x} = 8$ , s  | $sd = \sqrt{1.5}$ |                   |                |
| 145. A priv           | ate college has                    | 1000 stu    | dents. 60% of    | f these st          | udents ar               | e males, 45%      | % of these stude  | ents pay their |
|                       | •                                  | including   | 175 females.     | What is             | the proba               | ibility that tl   | he student is a 1 | male or a      |
| credit car            |                                    |             |                  |                     |                         | _                 |                   |                |
| A. 0.6                |                                    |             | 0.225            | 1.0 (0              | C. 0.325                |                   | D. 0.775          |                |
|                       |                                    |             |                  |                     |                         |                   | numbers is dele   |                |
| •                     | multiple of 3?                     | mese sets.  | , what is the p  | товавш              | y mat an                | of the three      | deleted number    | ars are even   |
|                       | -                                  |             | $C^{-1}$         |                     | D 8                     |                   |                   |                |
| _                     | B. $\frac{2}{21}$                  |             |                  |                     |                         |                   |                   |                |
| 147. The ag           | ge distribution                    |             |                  |                     |                         |                   | 7                 |                |
| Age                   |                                    | 10-14       | 15-19            | 20-24               |                         | 25-29             |                   |                |
| N <u>o</u> .          | Of students                        | 2           | 10               | 6                   | 7                       | 7                 |                   |                |
| W                     | hat is the moda                    | ıl value of | the distributi   | ion?                |                         |                   |                   |                |
| A. 17                 |                                    | . 17.38     | C. 18.           |                     | D. 18.73                |                   |                   |                |
| 148. The va           | ariance of 20 o                    | bservatior  | s is 5. If each  | observa             | tion is m               | ultiplied by      | 2, then what is   | the variance   |
| of the res            | ulting observa                     | tions?      |                  |                     |                         |                   |                   |                |
| A. 5                  |                                    | B. 10       |                  | . 20                |                         | D. 40             |                   |                |
| 149. If there family? | e are two child                    | ren in a fa | amily, what is   | the prob            | ability th              | at there is a     | t least one girl  | in the         |
|                       | B. $\frac{1}{4}$                   |             | C. $\frac{3}{4}$ |                     | Γ                       | $\frac{2}{3}$     |                   |                |
|                       | _                                  |             | _                |                     | -                       | le of certain     | student's score   | e is 90.       |
|                       | the following                      |             |                  |                     |                         |                   |                   |                |
|                       | e students have                    |             |                  | -                   |                         | •                 |                   |                |
|                       | e student's sco<br>e student's sco |             |                  |                     |                         |                   |                   |                |
|                       | e score of the                     |             |                  | _                   |                         |                   |                   |                |
|                       | ark of 50 stude                    |             | _                | as that of          | 7070 tile               | stadents.         |                   |                |
|                       | Marks                              | 0-1         |                  | 20-30               | 30-40                   | 40-50             |                   |                |
|                       | 10. Of students                    | -           | 8                | $\frac{20-30}{f_1}$ | 10                      | $f_2$             |                   |                |
| <u> </u>              | ·                                  |             |                  |                     |                         |                   |                   |                |
|                       | dian of the data                   | ı is 26, wh | at are the val   |                     |                         |                   |                   |                |
| -                     | $= 7, f_2 = 20$                    |             |                  |                     | •                       | $f_1, f_2 = 12$   |                   |                |
| •                     | $= 12, f_2 = 15$                   | are produ   | ead by a macl    |                     | $f_1 = 20$              | . , –             | e randomly sele   | acted and      |
|                       |                                    | -           | •                |                     |                         | -                 | an item produc    |                |
|                       | has No defect?                     |             | e a derect, th   | on white            | is the pro              | outility that     | an item produc    | ica oy u       |
| A. 0.8                |                                    | B. 0.85     |                  | C. 0.90             |                         | D. (              | ).95              |                |
|                       |                                    |             |                  |                     |                         |                   |                   | 13   Page      |
|                       |                                    |             |                  |                     |                         |                   |                   |                |

142. The first group of 10 children has a mean weight of 15.6 kg, and the second group of another 10 children has a mean weight of 16 kg, and the third group of children has a mean weight 20kg. If the mean weight of all children is 17 kg, what is the total number of children in all of the three groups?

Let A and B be two events. Suppose that the probability that neither event occurs is  $\frac{3}{8}$ . What the

144. The time needed to type a sample of 8 business letters in an office is 7, 8, 6, 8, 9, 7, 5, 6 minutes.

C. 30

# ETHIO NATIONAL SCHOOL

| 153. | Fatuma can solve 90%       | of the problems    | given in a                  | book and | Mesfin car | n solve 70%. | What is the |
|------|----------------------------|--------------------|-----------------------------|----------|------------|--------------|-------------|
| pr   | obability that at least or | ne of them will so | olve the $\mathfrak{p}_{1}$ | oblem?   |            |              |             |

- 154. There are three children in a room with, ages four, five, and six. If a five year old child enters the room, then which of the following statement is correct?
  - A. Mean age will stay the same the standard deviation will decrease.
  - B. Mean age will stay the same the standard deviation will increase.
  - C. Mean age will and standard deviation will increase.
  - D. Mean age and standard deviation will stay the same.

155. Let 
$$A = \begin{pmatrix} -2 & 0 & x \\ 2y & x+y & -4 \end{pmatrix}$$
 and  $B = \begin{pmatrix} 1 & -y \\ 0 & 3 \\ 1-x & 2 \end{pmatrix}$  such that  $A+2B^T = 0$ . Then which of the

following is the value of y?

B. 
$$-\frac{13}{2}$$

A. 0 B. 
$$-\frac{13}{2}$$
 C. -8 D. any real number

156. Let A and B be  $3\times3$  matrices such that  $A = \begin{pmatrix} 2 & 0 & 0 \\ 1 & 5 & 0 \\ 0 & -1 & \frac{1}{2} \end{pmatrix}$  and  $|B| = \frac{1}{10}$ . Which of the following is

equal to  $|2AB^T|$ 

157. If 
$$\begin{pmatrix} \alpha & 2 & \beta \\ 2 & 1 & 3 \\ -1 & 0 & 1 \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} -5 \\ 5 \\ 0 \end{pmatrix}$$
 and the determinant of the coefficient matrix is -5, then the value of x is equal to:

B. 
$$\alpha + \beta$$

$$C. -5a$$

A. 3 B. 
$$\alpha + \beta$$
 C.  $-5\alpha$  D. 5

158. What is the solution set of the following system of equation 
$$\begin{cases} x + y + 2z = 1 \\ x + 2y + z = 2 \end{cases}$$
?
$$(-2x - 2y - 4z = -2)$$

A. 
$$\{(0,1,0)$$

C. 
$$\{(-3k, k+1, k) | k \in (-\infty, \infty)\}$$

B. 
$$(-\infty, \infty)$$

D. 
$$\{(3k, k-1, k) \mid k \in (-\infty, \infty)\}$$

A. 
$$\{(0,1,0)\}$$
 C.  $\{(-3k,k+1,k)\setminus k \in (-\infty,\infty)\}$   
B.  $(-\infty,\infty)$  D.  $\{(3k,k-1,k)\setminus k \in (-\infty,\infty)\}$   
159. Suppose  $A = \begin{pmatrix} 1 & 2 \\ 2 & 3 \end{pmatrix}$ . If X is  $2 \times 2$  matrix such that  $AX - A^T = 2A$ , then what is the value of X?  
A.  $\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$  B.  $\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$  C.  $\begin{pmatrix} 3 & 6 \\ 6 & 9 \end{pmatrix}$  D.  $\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$   
160. Suppose that A and B are  $3 \times 3$  matrices, I is identity matrix of order 3 such that  $AB = 2I$ . If  $|B| = 6$ , what is det  $(A^T)^2$ 

A. 
$$\begin{pmatrix} 3 & 1 \\ 1 & 3 \end{pmatrix}$$

B. 
$$\begin{pmatrix} 3 & 3 \\ 3 & 3 \end{pmatrix}$$

C. 
$$\begin{pmatrix} 3 & 6 \\ 6 & 9 \end{pmatrix}$$

D. 
$$\begin{pmatrix} 3 & 0 \\ 0 & 3 \end{pmatrix}$$

what is  $\det(A^T)$ ?

A. 
$$\frac{1}{3}$$

B. 
$$\frac{4}{3}$$

A.  $\frac{1}{3}$  B.  $\frac{4}{3}$  C. 12 D. 48  $\begin{cases} \alpha x + y + z = 1 \\ x + 2y + 4z = 0 \end{cases}$ 161. Consider the system  $\begin{cases} x + y + z = 1 \\ x + 2y + 4z = 0 \end{cases}$ . If the determinant of the coefficient matrix is 2, then what is 5x - y + z = 0

A. 
$$\left(3\alpha, \frac{19\alpha}{2}, \frac{-11\alpha}{2}\right)$$

B. 
$$\left(3, \frac{19}{2}, \frac{-11}{2}\right)$$

C. 
$$\left(\frac{3}{\alpha}, \frac{-19}{2}, \frac{11}{2}\right)$$

D. 
$$\left(\frac{3}{2}, \frac{19}{2}, \frac{-9}{2}\right)$$

the solution of the system of the equations?

A.  $\left(3\alpha, \frac{19\alpha}{2}, \frac{-11\alpha}{2}\right)$ B.  $\left(3, \frac{19}{2}, \frac{-11}{2}\right)$ C.  $\left(\frac{3}{\alpha}, \frac{-19}{2}, \frac{11}{2}\right)$ D.  $\left(\frac{3}{2}, \frac{19}{2}, \frac{-9}{2}\right)$ 162. Let  $A = \begin{pmatrix} 2 & 0 & -1 \\ 1 & 2 & 0 \\ 0 & 0 & -1 \end{pmatrix}$  and  $(2A + B)^T = A^T A$ , then which of the following is equal to the value of **B**?

A. 
$$\begin{pmatrix} 1 & 0 & -2 \\ 2 & 0 & 0 \\ 0 & 0 & 4 \end{pmatrix}$$

C. 
$$\begin{pmatrix} 8 & 0 & -4 \\ 4 & 8 & 0 \\ 0 & 0 & -4 \end{pmatrix}$$

B. 
$$\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$$
 D.  $\begin{pmatrix} 1 & 2 & 0 \\ 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$ 

B.  $\begin{pmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{pmatrix}$   $D. \begin{pmatrix} 0 & 0 & 0 \\ -2 & 0 & 4 \end{pmatrix}$ 163. If  $M = \begin{pmatrix} 0 & 1 & 2 \\ 3 & -1 & 0 \\ 5 & 2 & 4 \\ 5 & 3 & 4 \end{pmatrix}$  and  $A^{T}M = 2I$ , where A is 3×3 matrix and I is identity matrix of order 3, then

B. 
$$\frac{4}{17}$$

D. 
$$\frac{1}{17}$$
  
  $x - y + z = 1$ 

A. 0.2 B.  $\frac{1}{17}$  C. 0.8 D.  $\frac{1}{17}$ 164. What should be the value of k so that the system of equation  $\begin{cases} x - y + z = 1 \\ -x + 5y \pm 4z = 1 \\ 2x + 2y - z = k \end{cases}$ 

has a

solution?

165. Suppose AX = b, where A is a  $3\times3$  matrix,  $b = (b1, b2, b3)^T$  and  $X = (x, y, z)^T$ . Which of the following is necessarily true?

- A. The system has a solution only when  $det(A) \neq 0$ .
- B. The Cramer's is suitable to solve the system if two rows of A are identical.
- C. If  $det(A) \neq 0$  and the second column of A is multiple of b, then x = 0.
- D. If b = 0, then  $X = (0, 0, 0)^T$  is the only solution of the system.

166. Consider the following system of equations:  $\begin{cases} ax + by = 2 \\ x + 3y + 2z = 0 \end{cases}$  if the determinant of the coefficient

matrix is 2, then what is the solution set of the system?

A. 
$$\{(1,3,-5)\}$$

B. 
$$\left\{ \left( \frac{1}{a}, \frac{1}{b}, 0 \right) \right\}$$

C. 
$$\{(-2, -6, 10)\}$$

A.  $\{(1,3,-5)\}$  B.  $\{\left(\frac{1}{a},\frac{1}{b},0\right)\}$  C.  $\{(-2,-6,10)\}$  D.  $\emptyset$ 167. If  $A = \begin{pmatrix} 0 & x & 0 \\ 1 & -1 & 1 \\ 0 & y & -1 \end{pmatrix}$  and  $A^{-1} = \begin{pmatrix} 1 & 1 & 1 \\ 3 & 0 & 0 \\ 2 & 0 & -1 \end{pmatrix}$ , then what are the values of x and y?

A. x = 3, y = -2 C. x = -3, y = 2B.  $x = \frac{2}{3}, y = \frac{1}{3}$  D.  $x = \frac{1}{3}, y = \frac{2}{3}$ 

A. 
$$x = 3, y = -2$$

C. 
$$x = -3, y = 2$$

B. 
$$x = \frac{2}{3}, y = \frac{1}{3}$$

D. 
$$x = \frac{1}{3}, y = \frac{2}{3}$$

A. 12

169. What is the solution set of the system  $\begin{cases} x + y - z = 1 \\ x + 2y - 3z = 1 \\ 2x + 3y - 4z = 2 \end{cases}$ 

A. 
$$\{(0,2,1)\}$$

C. 
$$\{(2k+1, -k, k) | k \in \Re\}$$

B. 
$$\{(1-k, 2k, k) | k \in \mathcal{R}\}$$

170. If  $A = \begin{pmatrix} 2 & 7 \\ 1 & 3 \end{pmatrix}$  and  $B^{-1} = \begin{pmatrix} 1 & 1 \\ 0 & 2 \end{pmatrix}$ , then  $(AB)^{-1}$  is equal to:

A.  $\begin{pmatrix} 4 & -3 \\ 4 & -5 \end{pmatrix}$ B.  $\begin{pmatrix} -2 & 5 \\ 2 & -4 \end{pmatrix}$ C.  $\begin{pmatrix} -3 & 11 \\ 1 & -3 \end{pmatrix}$ D.  $\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$ 

A. 
$$\begin{pmatrix} 4 & -3 \\ 4 & 5 \end{pmatrix}$$

B. 
$$\begin{pmatrix} -2 & 5 \\ 2 & 4 \end{pmatrix}$$

C. 
$$\begin{pmatrix} -3 & 11 \\ 1 & 2 \end{pmatrix}$$

D. 
$$\begin{pmatrix} 4 & 0 \\ 0 & 4 \end{pmatrix}$$

171. Let  $A = \begin{pmatrix} 0 & \alpha & \beta \\ 2 & 2 & 1 \\ 3 & 1 & 2 \end{pmatrix}$ ,  $b = \begin{pmatrix} 6 \\ 0 \\ 0 \end{pmatrix}$ , and  $X = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$ . If det(A) = 3, then what is the solution set of the system AX = b?

A.  $\{(6, -2, -8)^T\}$ B.  $\{(0, \frac{1}{\alpha}, \frac{1}{\beta})^T\}$ C.  $\{(-3, 1, 4)^T\}$ D.  $\emptyset$ 

A. 
$$\{(6, -2, -8)^T\}$$

B. 
$$\left\{ \left(0, \frac{1}{\alpha}, \frac{1}{\beta}\right)^T \right\}$$

C. 
$$\{(-3,1,4)^T\}$$

172. For any n×n square matrix A, which one of the following is true?

- A.  $det(A) = -det(A^T)$ , where  $A^T$  is the transpose of A.
- B. If k is scalar, then  $det(kA) = k^n det(A)$ .
- C. If B is a matrix obtained from A by interchanging of two rows of A, det(B)=det(A).

- D. If A is invertible, then  $det(A) = det(A^{-1})$ .
- x 3y 2z = 6173. The solution of the system of linear equation of  $\begin{cases} 2x - 4y - 3z = 8 \\ -3x + 6y + 8z = -5 \end{cases}$ 
  - A.  $\{(-1, -3, -2)\}$

C.  $\{(1, -3, 2)\}$ 

B.  $\{(-1, -3, 2)\}$ 

- D.  $\{(1, 3, -2)\}$

- 174. If  $A = (a_{ij})_{3\times 3}$  is a square matrix with  $A^{-1} = \begin{pmatrix} 1 & 3 & 2 \\ 1 & 1 & 3 \\ 0 & 4 & 5 \end{pmatrix}$ , then what is the cofactor of  $a_{23}$ ?

  A.  $-\frac{3}{14}$ B.  $-\frac{2}{7}$ C.  $\frac{2}{7}$ D.  $-\frac{3}{7}$ 175. When  $\begin{vmatrix} a & b & c \\ a & -a & a \\ a & a & -a \end{vmatrix} = a^3$ , and  $a \neq 0$ , what is the solution of  $\begin{pmatrix} a & b & c \\ a & -a & a \\ a & a & -a \end{pmatrix} \begin{pmatrix} x \\ y \\ z \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ 0 \end{pmatrix}$ 
  - A.  $\{(0, 2a, 2a)\}$

- A.  $\{(0, 2a, 2a)\}$ B.  $\left\{\left(\frac{1}{a}, -2a, 2a\right)\right\}$ D.  $\left\{\left(0, \frac{2}{a}, \frac{2}{a}\right)\right\}$   $\left\{x + y + z = 6\right\}$ 176. What are the values of  $\gamma$  and  $\mu$  so that the system  $\begin{cases} x + 2y + 3z = 10, \text{ has infinitely many solutions?} \\ x + 2y + \gamma z = \mu \end{cases}$ 
  - A.  $\gamma \neq 3$  and  $\mu \in \Re$

C.  $\gamma = 3$  and  $\mu = 10$ 

B.  $\gamma = 3$  and  $\mu \neq 10$ 

D.  $\gamma \in \Re$  and  $\mu = 10$ 

177. A salesman sold items  $x_1$  x and  $x_3$ , with different rates of commissions as shown in the table below.

| Month    | Sales of units |                |    | Total commission(in Birr) |
|----------|----------------|----------------|----|---------------------------|
|          | $\mathbf{x}_1$ | $\mathbf{x}_2$ | X3 |                           |
| February | 90             | 100            | 20 | 800                       |
| March    | 130            | 50             | 40 | 900                       |
| April    | 60             | 100            | 30 | 850                       |

What the rates of commission on items  $x_1$ ,  $x_2$  and  $x_3$  respectively.

A. 4, 2 and 11

C. 4, 11 and 2

B. 2, 4 and 11

- D. 11, 2 and 11
- 178. If A is a square matrix of order 3 and det(A) = 5, then what is the value of det(A.adi(A))?
  - A. 3
- B. 5
- C. 125
- 179. Let A be a 3×3 invertible of matrix and B be any 3×3 matrix. If |A| = a and, |B| = b, then which of the following is not true?
  - A.  $|A^{T}A| = a^{2}$

- C.  $|A^{-1}B| = ab$
- B.  $|kA| = k^3 |A|$ , for any  $k \in \mathbb{R}$

- D. if b = 0, then B is not invertible
- 180. Let A be a  $3\times 3$  matrix and |A| = -2. Then what is the value of |adj(A)|?

- D. 4
- 181. If  $\begin{vmatrix} -1 & 1 & 2 \\ 3 & 2 & x \\ 2 & 4 & 1 \end{vmatrix} = \begin{vmatrix} -x & 3 & 2 \\ 2 & 2 & 3 \\ 1 & -1 & -2 \end{vmatrix}$ , then what is the value of x?

- 182. Consider the following system of equation:  $\begin{cases} x 2y + z = 1 \\ -x + y + z = 3 \end{cases}$  How much should be the value of k so that the system has a solution?

so that the system has a solution?

C. 0

- D. -1
- 183. If A is a  $3\times3$  matrix and det(A) = 5, then  $det(2A^TA)$  is equal to:

ETHIO NATIONAL SCHOOL MATHEMATICS EUEE QUESTION FROM 2004-2011 E.C. D. 20 184. If  $2\begin{pmatrix} 2x & x \\ -5 & -3 \end{pmatrix}^{-1} = \begin{pmatrix} 3 & 2 \\ -5 & -4 \end{pmatrix}$ , then what is the value of x? 185. Which of the following is the simplest form of  $\frac{4-3i}{3+4i} + \overline{1-2i}$ ? B. 1 + 3i186. Let z be a complex number. Which of the following is the solution set of  $z^3 - iz = 0$ ? C.  $\{\pm\sqrt{2}(1+i)\}$ A.  $\left\{ \pm \frac{1}{\sqrt{2}} (1+i) \right\}$ B.  $\left\{0, \pm \frac{1}{\sqrt{2}}(1-i)\right\}$ D.  $\left\{0, \pm \frac{1}{\sqrt{2}}(1+i)\right\}$ 187. In the set of complex numbers, the solution set of  $x^2 - 2x + 5 = 0$ ? C.  $\{1 + 2i, 1 - 2i\}$ B.  $\{2+i, 2-i\}$ D.  $\{2+4i, 2-4i\}$ Which one of the following is the simplest form of  $|3 + 4i| - \frac{25i}{3+4i}$ ? 188. B. 5+5iD. 1 - 3i189. If  $z = \cos\left(\frac{\pi}{10}\right) + i\sin\left(\frac{\pi}{10}\right)$ , then what is the value of  $z^5$ ? A.  $\frac{\pi}{2} + \frac{\pi}{2}i$  B.  $\frac{1}{2} + \frac{1}{2}i$ 190. In the set of complex numbers, which one of the following is the solution set of  $z^3 - iz^2 + 2z = 0?$ C.  $\{0, -i, 2i\}$ B.  $\{0, -i\}$ D.  $\{0, i, -2i\}$ 191. If z = x + yi, is a complex number, then  $|z|^2 + \frac{1}{2}(z - \bar{z})^2 = 1$  is equivalent to which one of the following equation? C.  $x^2 - y^2 = 2$ D.  $2x^2 - y^2 = 2$ A.  $x^2 - y^2 = 1$ B.  $x^2 - 3iy^2 = 1$ 192. If  $w = \frac{16i}{1+i} + (1-3i)^2$  and  $z = |w| + \overline{w}$ , which one of the following is the simplest form of z? C. 4 - 2iD. 2 - 2i193. If  $z = \frac{3+i}{i-2}$  is a given complex number, then what is the conjugate,  $\bar{z}$ , of z? C.  $\bar{z} = -6 - 2i$ D.  $\bar{z} = -1 - i$ 194. What is the principal argument of  $(5 + 5i)^{11}$ ?

A.  $\frac{\pi}{2}$  B  $\frac{2\pi}{3}$  C.  $\frac{\pi}{4}$ 195. What are the values of u and v that satisfy the equation:  $\frac{u+3i}{4-2i} = \frac{2+vi}{20}$ ? A. u = 2, v = 3B. u = -6, v = 10C. u = 2, v = 16D. u = -4, v = 6196. In the set of complex numbers, what is the solution set of  $x^2 + 4x + 5 = 0$ ? C.  $\{2-i, 2+i\}$ B.  $\{1-2i, 1+2i\}$ D.  $\{-2-i, -2+i\}$ 197. If  $z = (1+i)^{10}$ , then which of the following is equal to z? B. 32*i* D. 1 + 10i198. If  $z = \frac{2-4i}{1+i}$ , then the modulus of the conjugate of z,  $|\bar{z}|$  is: D.  $2\sqrt{2}$ 199. If  $z = \sqrt{2}\cos\left(\frac{\pi}{12}\right) + i\sqrt{2}\sin\left(\frac{\pi}{12}\right)$ , then what is the value of  $z^3$ ? C.  $2\sqrt{2} + 2i\sqrt{2}$ A. 2 + 2i

B. 
$$\sqrt{2} + i\sqrt{2}$$

D. 
$$3\sqrt{2} + 3i\sqrt{2}$$

200. Which one of the following is the conjugate of  $|3 + 4i| - \frac{25i}{3+4i}$ ?

A. 
$$5 + 3i$$

B. 
$$1 + 3i$$

C. 
$$3 - 5i$$

D. 
$$1 - 3i$$

201. If  $z_1 = \frac{2-i}{1+i}$ ,  $z_2 = \frac{1+i}{1-i}$  then what is the value of  $z_1 + 2z_2$ ?

A. 
$$1 + i$$

B. 
$$\frac{1+i}{2}$$

C. 
$$\frac{1-}{2}$$

D. 
$$1 - i$$

202. If z = -3 + 4i and w = 1 + 2i, then what is the value of  $\frac{2z}{w} + \overline{w}$ ?

A. 2 + 3iB. 3 + 5iC. 3 + 2i

A. 
$$2 + 3i$$

$$C \cdot 3 + 2$$

D. 
$$3 - 2i$$

203. Let  $z = \left(\frac{1-i}{1+i}\right)^{18}$ , then what is the value of z?

A. 
$$-1$$

D. 
$$1 - i$$

204. If  $z = (1 + i\sqrt{3})(1 + i)$ , then which one of the following is the polar representation of z?

A. 
$$z = 4(\cos(105^\circ) + i\sin(105^\circ))$$

C. 
$$z = 2\sqrt{2}(\cos(15^\circ) + i\sin(15^\circ))$$

B. 
$$z = 2\sqrt{2}(\cos(105^\circ) + i\sin(105^\circ))$$

D. 
$$z = 4(\cos(75^\circ) + i\sin(75^\circ))$$

205. Which of the following is the multiplicative inverse of  $z = \frac{3+4i}{4-5i}$ ?

A. 
$$\frac{8}{25} - \frac{31}{25}i$$

A. 
$$\frac{8}{25} - \frac{31}{25}i$$
 B.  $-\frac{8}{25} + \frac{31}{25}i$ 

C. 
$$-\frac{8}{25} - \frac{31}{25}i$$
 D.  $\frac{8}{25} + \frac{31}{25}i$ 

D. 
$$\frac{8}{25} + \frac{31}{25}i$$

206. Let z be a complex number and w = 3 + 4i. If  $\frac{z^2 + 1}{z + i} = |w|z - \frac{1}{i}\overline{w}$ , then what is the value of z?

A. 
$$-4 - 2i$$

B. 
$$4 - 2i$$

C. 
$$-1 + i$$

D. 
$$-1 - i$$

207. What is the polar form of  $\frac{7-i}{3-4i}$ ?

A. 
$$\sqrt{2}\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

C. 
$$2\left(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}\right)$$

B. 
$$\sqrt{2}\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

D. 
$$2\left(\cos\frac{\pi}{4} + i\sin\frac{\pi}{4}\right)$$

208. Which of the following is a vector that lies on the line through (0, 0) and (2, 4)?

A. 
$$\vec{u} = (2, 1)$$

C. 
$$\vec{u} = (\frac{1}{2}, 2)$$

B. 
$$\vec{u} = (-1, -2)$$

D. 
$$\vec{u} = (-2, -6)$$

209. Let i and j be the standard unit vectors in the direction of positive X-axis and positive Y-axis, respectively, and  $\overrightarrow{AB}$  be a vector from the point B(2,2). If  $\overrightarrow{v} = 3\overrightarrow{AB} + 2i$ , the unit vector in the direction of  $\vec{v}$  is equal to:

A. 
$$(\frac{3}{5}, \frac{4}{5})$$

B. 
$$\left(\frac{-3}{5}, \frac{-4}{5}\right)$$

C. 
$$\left(\frac{-3}{5}, \frac{4}{5}\right)$$

D. 
$$\left(\frac{3}{5}, \frac{-4}{5}\right)$$

210. Which of the following is a vector equation of the line tangent to the circle  $x^2 + y^2 + 2x - 7 = 0$  at (1, 2)

A. 
$$(x, y) = (0,3) + \lambda(-1,2)$$

C. 
$$(x, y) = (0, 3) + \lambda(1, -1)$$

B. 
$$(x, y) = (1, 2) + \lambda(2, -1)$$

D. 
$$(x, y) = (1, 2) + \lambda(-1, 2)$$

211. Let  $\ell$  be the line whose equation is 2x - y = 10. Which one of the following is the equation of the image of  $\ell$  after a reflection in the line y = 2x - 5 followed by a rotation through the angle of 90° about the origin?

A. 
$$x + 2y = 0$$

B. 
$$2x + y = 0$$

B. 
$$2x + y = 0$$
 C.  $x + 2y = 5$ 

D. 
$$x - 2y = 5$$

212. If  $\vec{u} = (-3, x)$  and  $\vec{v} = (x, y - 2)$  are vectors, what is the value of y so that

$$\vec{u} + \vec{v} = 3\vec{u} - \frac{1}{2}\vec{v}?$$

A. 
$$\frac{2}{3}$$

B. 
$$-\frac{10}{3}$$

D. 
$$-\frac{22}{3}$$

|      | A line given by a vector equation $r(x) = (0$                                         |                                                       |                                                                      |
|------|---------------------------------------------------------------------------------------|-------------------------------------------------------|----------------------------------------------------------------------|
| ra   | dius of the circle is $\sqrt{2}$ , which one of the following                         | owing is the of the circle?                           | ,                                                                    |
|      | A. (1,4) B. (1,-4)                                                                    | C. (-1,2) D.                                          | (1,2)                                                                |
| 214. | What is the image of the ellipse whose equat                                          | $x = (x + 2)^2 + (y - 2)^2$                           | $1)^2 = 2$ under a translation that                                  |
| ta   | kes (2, 1) to (4, 0) followed by a rotation of 9                                      | 0°?                                                   |                                                                      |
|      | A. $x^2 + 2y^2 = 2$                                                                   | C. $2(x-4)^2 + y^2 = 2$                               |                                                                      |
|      | B. $2x^2 + y^2 = 2$                                                                   | C. $2(x-4)^2 + y^2 = 2$<br>D. $(x-4)^2 + 2y^2 = 2$    |                                                                      |
| 215. | If $\vec{A}$ is perpendicular to $\vec{B}$ , what is the cosine                       | e of the angle between $\vec{A}$ :                    | and $\vec{A} - \vec{B}$ ?                                            |
|      | A. $\frac{ \vec{A} - \vec{B} }{ \vec{A} }$ B. $\frac{ \vec{A} }{ \vec{A} - \vec{B} }$ |                                                       | 1 ->1                                                                |
|      | A. $ \vec{A} $ B. $ \vec{A}-\vec{B} $                                                 | $C. { \vec{B} }$                                      | D. $\frac{ B }{ \vec{A}-\vec{B} }$                                   |
| 216. | Which of the following is necessarily true?                                           |                                                       |                                                                      |
|      | A. If $ \vec{A}  =  \vec{B} $ , then $\vec{A} = \vec{B}$ . C. If $\vec{u}$            | is a unit vector in the dire                          | ection of $\vec{A}$ , then $\vec{A} \cdot \vec{u} =  \vec{A} $       |
|      | B. $ k\vec{A}  = k \vec{A} $ , for any real number. D. If                             | $\vec{A}$ is parallel to $\vec{B}$ , then $\vec{A}$ . | $ \vec{B} = 0 $                                                      |
| 017  | 2006                                                                                  |                                                       |                                                                      |
| 217. | If a point (2, 5) is reflected under a line to th                                     |                                                       | ne line of reflection?                                               |
|      | A. 2x + 3y = 7                                                                        | C. $8y + 10x = 19$                                    |                                                                      |
| 210  | B. $x + 3y = 7$                                                                       | D. $2x + 3y + 5 = 0$                                  | 1:1 64 611 : :                                                       |
|      | If $A = (-2, 3)$ , $B = (3, 1)$ and C is any other                                    | point on the plane, then v                            | which one of the following is                                        |
| th   | e coordinate form of $\overrightarrow{AC} - \overrightarrow{BC}$ ?                    |                                                       |                                                                      |
|      | A. $(-5,2)$ B. $(5,-2)$                                                               |                                                       |                                                                      |
| 219. | What is the equation of a line that passes thr                                        |                                                       | and parallel to the vector $(1,-1)$ ?                                |
|      | A. $2x - y = 1$                                                                       | C. $x - 2y = 3$                                       |                                                                      |
|      | B. $x + y - 1 = 0$                                                                    | D. $y - 2x + 1 = 0$                                   |                                                                      |
|      | What is the image of the line given by $(x, y)$                                       |                                                       | $\Re$ , under the translation that                                   |
| ta   | kes $(1, 0)$ to $(0, 1)$ followed by the reflection a                                 |                                                       |                                                                      |
|      | A. $y = 2x + 3$                                                                       | C. $y = 2x + 6$                                       |                                                                      |
|      | B. $y = 2x - 3$                                                                       | D. $y = 2x - 3$                                       |                                                                      |
|      | If a translation T takes the circle $x^2 + y^2 - \frac{1}{2}$                         |                                                       | e circle whose equation is                                           |
| ()   | $(x + 2)^2 + (y - 4)^2 = 7$ , then what is the image                                  |                                                       |                                                                      |
|      |                                                                                       | C. $(13)$                                             |                                                                      |
|      | If $\ell$ is the line that passes through $(0, 2)$ and                                |                                                       | ich of the following is true                                         |
| ab   | Shout $\ell$ and the circle $(x-2)^2 + (y-1)^2 = 5$                                   | 5?                                                    |                                                                      |
|      | A. $\ell$ is tangent to circle at $(0, 2)$ .                                          |                                                       |                                                                      |
|      | B. $\ell$ is tangent to the circle at some point p                                    | , where $p \neq (0, 2)$ .                             |                                                                      |
|      | C. $\ell$ Intersects the circle at exactly two points                                 | its.                                                  |                                                                      |
|      | D. The distance between $\ell$ and the center of                                      |                                                       |                                                                      |
| 223. | Suppose $\vec{A} = 3i - 4j$ and $\vec{B}$ is a vector in the                          | e xy-plane such that the a                            | angle between $\vec{A}$ and $\vec{B}$ is $\frac{\pi}{3}$ . $\vec{u}$ |
| is   | a unit vector in the direction of $\vec{B}$ , then $\vec{A}$ . ( $\vec{A}$            |                                                       | 3                                                                    |
|      | A. 20 B. 5                                                                            | C. 15                                                 | D. 30                                                                |
|      | 2007                                                                                  |                                                       |                                                                      |
| 224. | If $A = (1, -2)$ , $B = (-3, 2)$ and $\vec{V}$ is a posi                              | tion vector such that $2V$ -                          | $+AB = 0$ , then $\vec{V}$ is equal to:                              |
|      |                                                                                       | C. $(-2,2)$                                           |                                                                      |
| 225. | If $\vec{A} = 4i - 3j$ and $\vec{u}$ is a unit vector such t                          | that $ \vec{A} + u ^2 = 27$ , then                    | the cosine of the angle between                                      |
|      | and $\vec{u}$ is equal to                                                             |                                                       | -                                                                    |
|      | A. 0.1 B. 0.2                                                                         | C. 0.3                                                | D. 0.4                                                               |
| 226. | What is the image of the ellipse $(x-1)^2 +$                                          | $4y^2 = 1$ under the transl                           | ation that takes $(1, 1)$ and $(0, 2)$                               |

C.  $x^2 + 4(y+1)^2 = 1$ D.  $4x^2 + (y+1)^2 = 1$ 

followed by the reflection through the x-axis? A.  $x^2 + 4(y - 1)^2 = 1$ B.  $4x^2 + (y - 1)^2 = 1$ 

**19** | Page

|      |                                                                   |                              | en a force of 50N is used to p                                  | oull a crate 20m along a level pa                   | ath   |
|------|-------------------------------------------------------------------|------------------------------|-----------------------------------------------------------------|-----------------------------------------------------|-------|
| if   | the force is at an ang                                            |                              |                                                                 | 5                                                   |       |
|      | A. 360                                                            | B. 500                       | C. 760                                                          | D. $1500\sqrt{2}$                                   |       |
| 228. | The image of a figu                                               | are with vertices A(         | 1, 2), $B(3, 6) C(-1, 2)$ and $I$                               | O(-2, -2) after reflection across                   | SS    |
| th   | e x-axis is:                                                      |                              |                                                                 |                                                     |       |
|      | A. $A'(1,-2)$ , $B'($                                             | •                            |                                                                 |                                                     |       |
|      | B. $A'(1,-2)$ , $B'($                                             |                              |                                                                 |                                                     |       |
|      | C. A' $(-1,2)$ , B' $($                                           |                              |                                                                 |                                                     |       |
| 220  | D. A'(1, -2), B'(                                                 |                              |                                                                 |                                                     | 1     |
|      |                                                                   |                              | distinct points in the coordin                                  | nate plane, then which one of the                   | ne    |
| 10   | ollowing is equal to $\overrightarrow{A}$ . $\overrightarrow{AB}$ | B. $-6\overrightarrow{AB}$   | C. $12\overrightarrow{AB}$                                      | $D = 12\overline{4R}$                               |       |
| 220  |                                                                   |                              |                                                                 |                                                     |       |
| 230. |                                                                   |                              | $\vec{A}$ and $ \vec{A}  = 4$ , $\vec{A} \cdot \vec{u}$ is equa |                                                     |       |
|      | A. $\frac{1}{4}$                                                  | B. 4                         | 2                                                               | D. 2                                                |       |
| 231. | If $\vec{A}$ and $\vec{B}$ are para                               |                              |                                                                 | $2\vec{A} $ , then $\vec{B} - \vec{A}$ is equal to: |       |
|      | A. $\vec{A}$                                                      | B. $-\vec{A}$                | $C3\vec{A}$                                                     | D. $3\vec{A}$                                       |       |
| 232. | What is the translat                                              | tion vector u=(h. k`         | so that the equation $x^2 + 2$                                  | $v^2 + 6x - 8v + 15 = 0$ is                         |       |
|      |                                                                   |                              | $x^{2} + 2y^{2} + d = 0$ where d is                             | -                                                   |       |
|      | A. $u = (-3, 2)$                                                  |                              | C. $u = (-2, 3)$                                                |                                                     |       |
|      | B. $u = (3, 2)$                                                   |                              | D. $u = (2, -3)$                                                |                                                     |       |
|      |                                                                   |                              |                                                                 | R, is tangent to a circle at point                  | t (1, |
| 4)   | _                                                                 | 1 —                          | enter is on the y-axis?                                         | 7. / <del>10</del>                                  |       |
|      | A. $\sqrt{5}$                                                     | 2                            | C. 2√5                                                          | D. $\sqrt{10}$                                      |       |
| 234. |                                                                   |                              | $\left  \vec{a} + \vec{b} \right  =  \vec{a} $ , then which of  |                                                     |       |
|      | A. $2\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{b}$               |                              |                                                                 | $2\vec{a} + \vec{b}$ are parallel                   |       |
|      | _                                                                 | $d \; ec{b}$ are perpendicul |                                                                 | _                                                   |       |
|      |                                                                   |                              |                                                                 | $t Q = (4, 0)$ . If $\vec{V} = xi + 2j$ is          |       |
| pa   | rallel to $PQ$ , then when                                        |                              |                                                                 |                                                     |       |
|      | A. $-\frac{6}{5}$                                                 | B3                           | C. $-\frac{2}{5}$                                               | D. 3                                                |       |
| 236. | Let $\ell$ be the line gi                                         | ven by the vector e          | quation $(x, y) = (-2, 1) + \lambda$                            | $l(1,1), \lambda \in \mathbb{R}$ . Which one of the | he    |
|      |                                                                   |                              |                                                                 | (2, -1) followed by a rotation                      |       |
| th   | rough 45° about the                                               | _                            |                                                                 | _                                                   |       |
| 227  | -                                                                 |                              | C. x = 0                                                        |                                                     |       |
|      | What is the image one $y = -x$ ?                                  | of the circle $x^2 + y$      | $x^2 - 4x - 6y + 12 = 0$ whe                                    | en it is reflected with respect the                 | e     |
| 1111 | A. $(x+3)^2 +$                                                    | $(y+2)^2=1$                  | $(x+2)^2$                                                       | $+(y+3)^2=1$                                        |       |
|      | B. $(x-2)^2 +$                                                    |                              | D. $(x-3)^2$                                                    |                                                     |       |
| 238. |                                                                   |                              | under a translation is $2x - 3$                                 | y = 0, which one of the                             |       |
| fo   | llowing is a translat                                             |                              |                                                                 | ->                                                  |       |
|      | A. $u = (2, -1)$                                                  |                              | C. $u = (-1)^{n}$                                               |                                                     |       |
| 230  | B. $u = (-2, 1)$                                                  |                              | D. $u = (1, -60^{\circ})$                                       | -2) ne length of AC and the cosine                  | of    |
|      | A, respectively?                                                  | 5, DC — 4 and m(             | $\langle D \rangle = 00$ , then what are the                    | ic length of Ac and the cosme                       | OI    |
| Ì    | A. $\sqrt{13}$ and $\frac{1}{\sqrt{1}}$                           | <u>.</u>                     | C. $\sqrt{13}$ an                                               | d <u>6</u>                                          |       |
|      | •                                                                 | _                            | D. $\sqrt{13}$ and                                              | 5√13<br>2d                                          |       |
|      | B. $\sqrt{13}$ and $\frac{1}{\sqrt{100}}$                         | <del>1</del> 3               | D. V13 at                                                       | $\frac{10}{5\sqrt{13}}$                             |       |

| ETHIO NATIONAL SCHOOL                                                                                  | MATHEMATICS EUEE QUESTION FROM 2004-2011                                                                                       | E.C.     |
|--------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------|----------|
| 240. What is the standard equation of the                                                              | line passing through the point (2, 3) and parallel to the line                                                                 | <b>;</b> |
| given by $\begin{cases} x = 1 + 2\lambda \\ y = -2 - \lambda \end{cases}$ , $\lambda \in \mathbb{R}$ ? |                                                                                                                                |          |
| A. $\frac{x-2}{-1} = \frac{y-3}{2}$                                                                    | C. $\frac{x-2}{2} = \frac{y-3}{-1}$                                                                                            |          |
| B. $\frac{x-1}{2} = \frac{y-3}{2}$                                                                     | D. $\frac{x-1}{1} = \frac{y-3}{-2}$                                                                                            |          |
| 2 –2                                                                                                   | 2011                                                                                                                           | Cand     |
|                                                                                                        | se vertices $A=(0, 3)$ and $B=(4, 0)$ and the other vertices, e plane. If its height BC is half of the length of its base, the |          |
| which of the following indicates the co                                                                |                                                                                                                                | •        |
| A. $(4, \frac{5}{2})$ B. $(6, \frac{3}{2})$                                                            | $C.\left(\frac{5}{2},-2\right) 	 D.\left(\frac{11}{2},2\right)$                                                                |          |
|                                                                                                        | $+y^2 - 4x - 6x + 11 = 0$ when the origin is shifted to the                                                                    | point    |
| (1, 1) after translation of axes?<br>A. $x^2 + y^2 - 6x - 8y + 23 =$                                   | 0 C. $x^2 + y^2 + 6x + 8y - 23 = 0$                                                                                            |          |
| B. $x^2 + y^2 - 4x - 6y + 3 = 0$                                                                       |                                                                                                                                |          |
| -                                                                                                      | the point $(1,-2)$ , then what would be the image of the point                                                                 | ıt       |
| (2,4)?                                                                                                 |                                                                                                                                |          |
| A. $\left(1 - \frac{5\sqrt{2}}{2}, -2 + \frac{7\sqrt{2}}{2}\right)$                                    | $C.\left(\frac{5\sqrt{2}}{2},\frac{7\sqrt{2}}{2}\right)$                                                                       |          |
| B. $\left(1 - \frac{\sqrt{2}}{2}, -2 + \frac{\sqrt{2}}{2}\right)$                                      | D. $\left(\frac{\sqrt{2}}{2}, \frac{\sqrt{2}}{2}\right)$                                                                       |          |
| 244. Let $\ell$ be a line given by the equation                                                        | $a(x,y) = (1,1) + t(\sqrt{3},1), t \in \mathbb{R}$ , what is the equation of                                                   | the      |
|                                                                                                        | at $(1, 1)$ and then translated by the vector $\mathbf{u} = (-1, 1)$ ?                                                         |          |
| A. $-x + y = 2$                                                                                        | C. $\sqrt{3}x - y = 2$                                                                                                         |          |
| B. $x - y = 2$                                                                                         | D. $-x + \sqrt{3}y = 1$                                                                                                        |          |
| $\underline{U}_{i}$                                                                                    | <u>nit 9</u><br><sub>2004</sub>                                                                                                |          |
|                                                                                                        | plified form of $\csc\left(\frac{\pi}{2} - x\right)\cos x - \sin^2 x$ ?                                                        |          |
| A. $2\cos x$ B.cos                                                                                     | $S^2$ C. $2\sin x$ D. $\sin 2x$                                                                                                |          |
| 246. $\cos(\tan^{-1}(0.5))$ is equal to:                                                               |                                                                                                                                |          |
| A. $\frac{1}{\sqrt{5}}$ B. $\frac{1}{\sqrt{3}}$                                                        | vo vo                                                                                                                          |          |
|                                                                                                        | s station 10km to the south and then changed its course and                                                                    |          |
| sailed $5 + \sqrt{6}$ km in the direction of N6 station by the shortest route?                         | 60°E. What is the boat should travel in order to return to its                                                                 |          |
| A. $4\sqrt{6}$ km B. 9 km                                                                              | m C. $3\sqrt{6}$ km D. 7 km                                                                                                    |          |
| 200:                                                                                                   | 5                                                                                                                              |          |
| 248. If $f(x) = 2 - \frac{1}{2}\sin\left(\frac{n}{2}x\right)$ , then whic                              | th of the following is the amplitude and period of $f$ , respect                                                               | ively?   |
| A. $\frac{1}{2}$ and 4 B. $\frac{-1}{2}$ a                                                             |                                                                                                                                |          |
| 249. Which of the following is equal to so                                                             | $\operatorname{ec}\left(\frac{\pi}{2}-x\right)\sin^3x+\cos 2x$ ?                                                               |          |
| A. $2\cos x$ B. $2\sin$                                                                                | (2)                                                                                                                            |          |
| 050 What is 1 1 1 1 2 2 2                                                                              | 1 -4-2 1 : 4 : 1 [0.2. ]0                                                                                                      |          |

250. What is the source

A.  $\left\{0, \frac{\pi}{4}, \pi, \frac{5\pi}{4}\right\}$ B.  $\left\{0, \frac{\pi}{4}, \frac{3\pi}{4}, \pi\right\}$ 251. What is  $\cot(\arcsin(x))$  if 0 < x < 1?

A.  $\frac{x}{2}$ B.  $\frac{\sqrt{1-x^2}}{x}$ 250. What is the solution set of  $\cos^2 x + \frac{1}{2}\sin 2x = 1$  in the interval  $[0, 2\pi]$ ?

C.  $\{0, \pi\}$ 

 $D.\left\{0,\frac{\pi}{4},\pi\right\}$ 

C.  $\sqrt{1-x^2}$ 

D.  $\frac{1}{\sqrt{1-x^2}}$ 

252. Suppose an airplane is descending at a speed of 50 miles per hour at an angle of 30° below the horizontal line. What is the x- and y- components, respectively, of the velocity of the plane?

A.  $50\sqrt{3}$ , 25

B.  $-25,50\sqrt{3}$ 

C. 25,  $-25\sqrt{3}$ 

D.  $-25\sqrt{3}$ , -25

| <ul> <li>253. An observer on level ground is at a distance 10√3 m from a building. The angle of elevation to bottom of the windows on the second and third floors are 30° and 60°, respectively. What is the distance h between the bottoms of the windows? <ul> <li>A. 15m</li> <li>B. 20m</li> <li>C. 15√3m</li> <li>D. 32m</li> </ul> </li> <li>254. If θ = 2arctan (1/2), then which of the following is equal to sec(θ)?</li> </ul> |      |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------|
| A. 15m B. 20m C. $15\sqrt{3}$ m D. 32m                                                                                                                                                                                                                                                                                                                                                                                                   | that |
| 254 If $\theta = 2 \arctan\left(\frac{1}{2}\right)$ then which of the following is equal to $\sec(\theta)$ ?                                                                                                                                                                                                                                                                                                                             | that |
| 234. If $0 = 2$ arctair $\binom{1}{2}$ , then which of the following is equal to sec(0):                                                                                                                                                                                                                                                                                                                                                 | that |
| A. $\frac{25}{3}$ B. $\frac{4}{5}$ C. $\frac{5}{3}$ D. $\frac{5}{4}$                                                                                                                                                                                                                                                                                                                                                                     | that |
| 255. If angle $\theta$ is an acute angle of a right triangle, what is the length of the side adjacent to $\theta$ , given the hypotenuse has 6 unit length and $\sec \theta = \frac{10}{3}$ ?                                                                                                                                                                                                                                            | ınal |
| A. 1.8 units B. 2 units C. 18 units D. 20 units                                                                                                                                                                                                                                                                                                                                                                                          | iits |
| 256. What is the possible value of x that solves the equation: $\sin^{-1} x + \cos^{-1} \left(\frac{5}{3}\right) = \pi$ ?                                                                                                                                                                                                                                                                                                                |      |
| A. $\frac{\pi}{3}$ B. $\frac{3}{5}$ C. $\frac{5\pi}{2}$ D. $\frac{4}{5}$                                                                                                                                                                                                                                                                                                                                                                 |      |
| 257. Two ships, one with angle of depression 60° due to east and the other with 30° due to west are observed from a plane 1000m above a sea. If the two ships are on the same line, what is the distance between the two ships?                                                                                                                                                                                                          | e    |
| A. $\frac{1}{\sqrt{3}}$ 600m B. 2000m C. $500\sqrt{3}$ m D. $\frac{1}{\sqrt{3}}$ 4000r                                                                                                                                                                                                                                                                                                                                                   | n    |
| 258. What is the amplitude and period, respectively, of the graph of $f(x) = -6 \sin x \cdot \cos x$ ?                                                                                                                                                                                                                                                                                                                                   |      |
| A. $3, \pi$ B. $6, \pi$ C. $3, \frac{\pi}{2}$ D. $6, 2\pi$                                                                                                                                                                                                                                                                                                                                                                               |      |
| 259. If $\cot(\theta) = 2$ , then which of the following is equal to $\csc(\theta)$ ?                                                                                                                                                                                                                                                                                                                                                    |      |
| $\sqrt{5}$ B. $\frac{2}{\sqrt{5}}$ C. $\frac{1}{\sqrt{5}}$ D. $\frac{1}{2}$                                                                                                                                                                                                                                                                                                                                                              |      |
| 260. What is the amplitude and period, respectively, of the graph of $f(x) = 4 \sin\left(\frac{x}{3}\right) \cos\left(\frac{x}{3}\right)$ ?                                                                                                                                                                                                                                                                                              |      |
| A. $4, \frac{\pi}{3}$ B. $2, 3\pi$ C. $2, \frac{2\pi}{3}$ D. $4, 3\pi$                                                                                                                                                                                                                                                                                                                                                                   |      |
| 261. A boat on a sea sailed from its station toward North with constant speed of 80 km/hr. Another be                                                                                                                                                                                                                                                                                                                                    | oat  |
| from the same station sailed 60° NE(North East) with constant speed of 100 km/hr. if the two boats state sailing at the same time, what is the straight distance between them after they have sailed for just 30 minutes?                                                                                                                                                                                                                |      |
| A. $10\sqrt{42} \text{ km}$ B. 90 km C. $10\sqrt{41} \text{ km}$ D. $10\sqrt{2}$                                                                                                                                                                                                                                                                                                                                                         | 1 km |
| 262. What is the value of $\arcsin\left(-\frac{\sqrt{2}}{2}\right)$ ?                                                                                                                                                                                                                                                                                                                                                                    |      |
| A. $\frac{\pi}{4}$ B. $\frac{\pi}{2}$ C. $-\frac{\pi}{4}$ D. $-\frac{\pi}{2}$                                                                                                                                                                                                                                                                                                                                                            |      |
| 263. Which one of the following is true?                                                                                                                                                                                                                                                                                                                                                                                                 |      |
| A. The amplitude of $f(x) = \sin 3x$ is 3. C. The period of $f(x) = \cos \left(\frac{1}{2}x - \frac{\pi}{3}\right)$ is $4\pi$                                                                                                                                                                                                                                                                                                            |      |
| B. The period of $f(x) = 2\sin 4x$ is $\pi$ D. The amplitude of $f(x) = -5\cos(3x + 2) - 2$ is 7 264. If $\theta = \arctan(2)$ , then what is the value of $\sin(2\theta)$ ?                                                                                                                                                                                                                                                             |      |
| A. $\frac{2}{5}$ B. $\frac{4}{5}$ C. $\frac{4}{\sqrt{5}}$ D. $\frac{2}{\sqrt{5}}$                                                                                                                                                                                                                                                                                                                                                        |      |
| 265. If $\cot \theta = \sqrt{8}$ , and $\theta$ is in the first quadrant angle, then what is the value of $\csc \theta$ ?                                                                                                                                                                                                                                                                                                                |      |

 $D.\frac{1}{\sqrt{8}}$ B. 3

266. A patrol on a sea sailed from its station 7 km to the North; and changed its course and sailed  $4\sqrt{2}$ km in the direction of 45° South-East. What is the shortest (straight) distance the boat should travel in order to return to its station?

C.  $5\sqrt{2}$  km D.  $5 + \sqrt{2} \text{ km}$ A. 5 km B. 7 KM

267. What is the period (p) and the range(R) of  $f(x) = 5 \sin(\frac{1}{3}x + 2) + 3$ ?

C.  $p = 6\pi$ , R = [-5, 5]D.  $p = \frac{2\pi}{3}$ , R = [-2, 8]A.  $p = 6\pi$ , R = [-2, 8]B.  $p = \frac{2\pi}{3}$ , R = [-5, 5]

268. In order to measure the height of a tower, suppose a surveyor takes two sightings from a transit 1m high which are positioned d meters apart on the same ground level as in the figure below. If the first measured angle is  $\alpha$  and the second is  $\beta$  (see, in the figure), then what is the height of the tower (in meter) in terms of  $\alpha$ ,  $\beta$ , and d?



269. If  $\theta$  is a fourth quadrant angle and  $\sec \theta = \sqrt{2}$  then  $\csc \theta$  is equal to? A.  $\frac{-1}{\sqrt{2}}$  B.  $-\sqrt{2}$  C.  $\frac{1}{\sqrt{2}}$ 

A. 
$$\frac{-1}{\sqrt{2}}$$

B. 
$$-\sqrt{2}$$

C. 
$$\frac{1}{\sqrt{2}}$$

D. 
$$\sqrt{2}$$

270. Ship A and B depart from the same point at the same time on the course N60°E and N40°E, respectively. If the speed of ship A is 20 km/hr and the speed of ship b is 30 km/hr, what is the distance between the two ships just after 30 minutes of their departure? (you may take  $\cos(40^\circ)$  =

 $0.77, \cos(20^\circ) = 0.94, \sin(20^\circ) = 0.34$ 

A. 
$$\sqrt{40}$$
 km

$$B.\sqrt{43}$$

C. 
$$\sqrt{50}$$
 km

D. 
$$\sqrt{53} \, k$$

271. What is the value of  $\cot 270^{\circ} + 2 \cos 90^{\circ} + 4 \sec^2 180^{\circ}$ ?

272. The diagram below is a representation of 25m vertical observation of tower TB and two cars K and L on a road. The angle of depression from T to car L is 30°. The angle of elevation from car K to the top of the tower is 60°. B, K and L lie in a straight line and lie on the same horizontal plane as the base of the tower.



What is the distance between the two cars?

A. 
$$\frac{50\sqrt{3}}{3}$$
 M

B. 
$$50\sqrt{3}$$

$$C. \ \frac{50\sqrt{3}}{2} \, m$$

D. 
$$50 + \sqrt{3} \text{ m}$$

273. What is the solution set of  $\sin^2 x - \sin x \cos x = 0$ ?

A. 
$$\left\{0, \pi, \frac{5\pi}{4}, 2\pi\right\}$$

C. 
$$\left\{0, \frac{\pi}{4}, \pi, \frac{5\pi}{4}, 2\pi\right\}$$
  
D.  $\left\{0, \frac{\pi}{4}, \pi, \frac{5\pi}{4}\right\}$ 

B. 
$$\left\{0, \frac{\pi}{4}, \pi, 2\pi\right\}$$

# From grade 12

# $\frac{Unit \ 1}{2004}$ 274. Let $a_{n=}n + \cos n\pi$ , n = 1, 2, 3, ... be the $n^{th}$ terms of a sequence. Then which of the following is

| tr    | ue?                                                                                                           |                                                                            | •                                               |                                |     |
|-------|---------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|-------------------------------------------------|--------------------------------|-----|
|       | A. The fifth to                                                                                               | erm is 6                                                                   | C. $a_7 + a_8 = 15$                             |                                |     |
|       | B. The $10^{th}$ t                                                                                            |                                                                            | D. $a_7 - a_6 = 1$                              |                                |     |
| 275.  |                                                                                                               | f the series $\sum_{n=0}^{\infty} (2^2 3^{2-})$                            |                                                 |                                |     |
| _,,,  | A. 6                                                                                                          | B. 18                                                                      | C. 27                                           | D. ∞                           |     |
| 276.  |                                                                                                               |                                                                            | t term $A_1 = 5$ and the fifth term             |                                | 1   |
|       | $\lim_{n=1}^{30} A_n$ is equal                                                                                |                                                                            |                                                 | 21, men me partie              | ••  |
| 50    | A. 760                                                                                                        | B. 780                                                                     | C. 860                                          | D. 870                         |     |
| 277   |                                                                                                               |                                                                            | Birr 3,000 at the end of each                   |                                |     |
|       |                                                                                                               |                                                                            | the starting amount of the bu                   |                                |     |
| ,     | A. 47,000                                                                                                     | B. 50,000                                                                  | C. 53,000                                       | D. 56,000                      |     |
|       | ,                                                                                                             | ,                                                                          | 2005                                            | •                              |     |
| 278.  |                                                                                                               |                                                                            | $1 a_{n+1} = a_n + 4 \text{ for all } n \ge 1,$ |                                |     |
|       | A. 2460                                                                                                       | B. 2458                                                                    | C.2450                                          | D. 2442                        |     |
| 279.  |                                                                                                               | term of the sequence 3, 1                                                  |                                                 |                                |     |
|       | A. 310                                                                                                        | B. 346                                                                     | C. 510                                          | D. 531                         |     |
| 280.  | What is the sum o                                                                                             | f the series $\sum_{n=1}^{\infty} \left( \frac{2^{2n+1}}{5^{n-1}} \right)$ | )?                                              |                                |     |
| 200.  | What is the sain o                                                                                            |                                                                            |                                                 |                                |     |
|       | A. 40                                                                                                         | B. 20                                                                      | C. 10                                           | D. 8                           |     |
| 281.  | The population of                                                                                             | certain country is 80 mil                                                  | llion with growth rate of 2%                    | per year.                      |     |
|       | Cit                                                                                                           | $ven (0.02)^9 = 5.12 \times 10^{-1}$                                       | 16                                              | $(1.02)^9 = 1.19$              |     |
|       | GIV                                                                                                           | •                                                                          |                                                 |                                |     |
|       |                                                                                                               | $(0.02)^{10} = 1.024 \times 10$                                            | )-17,                                           | $(1.02)^{10} = 1.22$           |     |
| W     | hich of the followi                                                                                           | ng is the best approxima                                                   | tion of the population (in mi                   | llion) after 10 years?         |     |
|       | A. 81.9                                                                                                       | B. 86.8                                                                    | C. 95.2                                         | D. 97.6                        |     |
| 202   | XXII : 1 . C.1                                                                                                | C 11                                                                       | 2006                                            |                                |     |
| 282.  |                                                                                                               | following represents a ge                                                  | -                                               |                                |     |
|       | A. $3, 1, \frac{1}{3}, \frac{1}{9}, \frac{1}{2}$                                                              | <del>-</del><br>7,                                                         | C. 1, 3, 6, 10, 15,                             | •••                            |     |
|       | A. $3, 1, \frac{1}{3}, \frac{1}{9}, \frac{1}{2}$<br>B. $\frac{1}{2}, -\frac{1}{3}, \frac{1}{4}, -\frac{1}{3}$ | $-\frac{1}{5}, \frac{1}{6}, \dots$                                         | D3, 6, -9, 12,                                  | <b>-15,</b>                    |     |
| 202   | 2 3 4                                                                                                         | of the sum $\sum_{n=1}^{\infty} \left(\frac{2^{n}}{1}\right)^{n}$          | +5 <sup>n</sup> \                               |                                |     |
| 283.  | What is the value                                                                                             | of the sum $\sum_{n=1}^{\infty} \left( \frac{1}{n} \right)^{n}$            | $\overline{0^n}$ )                              |                                |     |
|       | A. 0.325                                                                                                      | B. 1                                                                       | C. $\frac{5}{4}$                                | D. $\frac{37}{9}$              |     |
|       | 11. 0.323                                                                                                     | <b>D.</b> 1                                                                | C. <sub>4</sub>                                 | D. 9                           |     |
| 204   | Wile of the same of                                                                                           | $f$ the series $\nabla^{\infty}$ (1) $n$                                   | (2)-2n 9                                        |                                |     |
| 284.  |                                                                                                               | f the series $\sum_{n=1}^{\infty} (-1)^n$                                  |                                                 | 1                              |     |
|       | A. $-\frac{1}{8}$                                                                                             | B. $-0.13$                                                                 | C0.1                                            | D. $\frac{1}{8}$               |     |
|       |                                                                                                               | 2007                                                                       |                                                 | · ·                            |     |
| 285.  |                                                                                                               | following is an arithmeti                                                  | •                                               |                                |     |
|       | A. 3, 5, 7, 11,                                                                                               |                                                                            | C3, 6, -9,                                      |                                |     |
| • • • | B. 3, 6, 12, 24                                                                                               |                                                                            | D. 1, 3, 6, 10,                                 |                                |     |
| 286.  | _                                                                                                             |                                                                            | s. There are 20 seats in the fin                |                                |     |
| rc    |                                                                                                               |                                                                            | w many seats are there on the                   |                                | l?  |
| 205   | A. 46                                                                                                         | B. 58                                                                      | C. 760                                          | D. 5240                        |     |
| 287.  |                                                                                                               | f all multiples of three be                                                |                                                 | D # 166                        |     |
| 200   | A. 7,227                                                                                                      | B. 6,570                                                                   | C. 6,150                                        | D. 5, 166                      |     |
| 288.  |                                                                                                               |                                                                            | to a height of 16m. Each tim                    |                                |     |
|       |                                                                                                               | =                                                                          | s every height of h twice, wh                   | at is the total vertical dista | nce |
| tr    | •                                                                                                             | before it comes to rest?                                                   | C 160                                           | D 220                          |     |
|       | A. 40m                                                                                                        | B. 80m                                                                     | C. 160m                                         | D. 320m                        |     |

| : 4                        |                                                                                                                                                                                                                                                                    | metic sequence such that its                                                                                                                                                                                                                                                                         | s $1^{3i}$ term $A_1 = -5$ and its 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | $^{tn}$ term $A_5 = 15$ , then                                                                                                                                          |
|----------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 10                         | s $11^{th}$ term $A_{11}$ is equa<br>A. 40                                                                                                                                                                                                                         | B. 50                                                                                                                                                                                                                                                                                                | C. 45                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | D. 55                                                                                                                                                                   |
| 290.                       |                                                                                                                                                                                                                                                                    | multiples of 4 that are bet                                                                                                                                                                                                                                                                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | D < 000                                                                                                                                                                 |
| 201                        | A. $12,882$                                                                                                                                                                                                                                                        | B. 11,288 equence:1, -4, 9, -16, is:                                                                                                                                                                                                                                                                 | C. 6,288                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | D. 6, 882                                                                                                                                                               |
| 291.                       | A. $a_n = (-2)^n$                                                                                                                                                                                                                                                  | equence.1, -4, 9, -10, is.                                                                                                                                                                                                                                                                           | $C_{n} = (-1)^{2n} n^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                                                                                                                         |
|                            | B. $a_n = (-1)^n n$                                                                                                                                                                                                                                                | .2                                                                                                                                                                                                                                                                                                   | C. $a_n = (-1)^{2n} n^2$<br>D. $a_n = (-1)^{n-1} n^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                                                                                                                         |
| 292.                       | The sum of $\sum_{n=0}^{\infty} 5$ (                                                                                                                                                                                                                               | $\left(\frac{2}{3}\right)^n$ is                                                                                                                                                                                                                                                                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |
|                            | A. 0                                                                                                                                                                                                                                                               | B. 15                                                                                                                                                                                                                                                                                                | C. $\frac{10}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D. 5                                                                                                                                                                    |
| 293.                       | Suppose a radioactive                                                                                                                                                                                                                                              | material loses one-third of                                                                                                                                                                                                                                                                          | f its mass per year. If its curre                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | ent mass is 81 gram,                                                                                                                                                    |
|                            |                                                                                                                                                                                                                                                                    | nass (in gram) just after 7 y                                                                                                                                                                                                                                                                        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 400                                                                                                                                                                     |
|                            | A. 27                                                                                                                                                                                                                                                              | B. $\frac{1}{27}$ ag is the sum of the series 5                                                                                                                                                                                                                                                      | C. $\frac{128}{27}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | D. $\frac{128}{81}$                                                                                                                                                     |
| 294.                       | Which of the followin                                                                                                                                                                                                                                              | g is the sum of the series 5                                                                                                                                                                                                                                                                         | $5 - \frac{10}{2} + \frac{20}{2} - \frac{40}{27} + \cdots$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | 01                                                                                                                                                                      |
|                            | 11. 5                                                                                                                                                                                                                                                              | <b>D</b> . 3                                                                                                                                                                                                                                                                                         | C. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | D. 5                                                                                                                                                                    |
| 295.                       | What is the sum of $\sum_{n=0}^{\infty} A_n = \frac{29}{30}$                                                                                                                                                                                                       | $\sum_{n=1}^{30} (-1)^n \left(\frac{1}{n} + \frac{1}{n+1}\right)$                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |
|                            | $A_{1} - \frac{29}{1}$                                                                                                                                                                                                                                             | $-n=1$ B $\frac{29}{}$                                                                                                                                                                                                                                                                               | C. $\frac{30}{31}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D. $-\frac{30}{31}$                                                                                                                                                     |
| 296.                       | 50                                                                                                                                                                                                                                                                 |                                                                                                                                                                                                                                                                                                      | juence: $-10, -3, 4, 11, \dots$ ?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | 31                                                                                                                                                                      |
| 270.                       | A. $a_n = a_{n-1} - 8$                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                      | C. $a_n = a_{n-1} - 7$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                         |
|                            | B. $a_n = a_{n-1} + 7$                                                                                                                                                                                                                                             | 7                                                                                                                                                                                                                                                                                                    | D. $a_n = a_{n-1} + 8$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                                                                                                                         |
| 297.                       | What is the value of $A$ . $\frac{17}{20}$                                                                                                                                                                                                                         | $\sum_{n=2}^{20} \left(\frac{1}{n-1} - \frac{1}{n}\right) ?$                                                                                                                                                                                                                                         | 24                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 40                                                                                                                                                                      |
|                            | A. $\frac{17}{20}$                                                                                                                                                                                                                                                 | B. $\frac{23}{20}$                                                                                                                                                                                                                                                                                   | C. $\frac{21}{20}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D. $\frac{19}{20}$                                                                                                                                                      |
| 298.                       |                                                                                                                                                                                                                                                                    | -                                                                                                                                                                                                                                                                                                    | rate of 3% per year. If the p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | opulation was 100,000                                                                                                                                                   |
|                            |                                                                                                                                                                                                                                                                    | will be the population in 20                                                                                                                                                                                                                                                                         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 2.50                                                                                                                                                                    |
| ((                         | Fiven: $(1.03)^{7} = 1.30$ ,<br>A. $134,000$                                                                                                                                                                                                                       | $(1.30)^{10} = 134, (1.30)^{10}$ B. 130,000                                                                                                                                                                                                                                                          | $(3)^9 = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10} = 10.60, (1.3)^{10$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | 3.78)<br>D. 1,378.000                                                                                                                                                   |
| 299                        | *                                                                                                                                                                                                                                                                  | D. 130,000                                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |
|                            |                                                                                                                                                                                                                                                                    | ree consecutive terms of a                                                                                                                                                                                                                                                                           |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                                                                                                                                                         |
| 1S                         |                                                                                                                                                                                                                                                                    |                                                                                                                                                                                                                                                                                                      | n arithmetic sequence is $\{A_n\}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | with $A_n > 0$ for all n,                                                                                                                                               |
|                            | 9 and the sum of their A. $n^2 + 1$                                                                                                                                                                                                                                | squares is 35, then what is B. $n^2 - 1$                                                                                                                                                                                                                                                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | with $A_n > 0$ for all n,                                                                                                                                               |
|                            | 9 and the sum of their A. $n^2 + 1$                                                                                                                                                                                                                                | squares is 35, then what is B. $n^2 - 1$                                                                                                                                                                                                                                                             | n arithmetic sequence is $\{A_n\}$<br>the sum $s_n$ of the first n term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | with $A_n > 0$ for all n, as?                                                                                                                                           |
|                            | 9 and the sum of their                                                                                                                                                                                                                                             | squares is 35, then what is B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$                                                                                                                                                                                                                 | n arithmetic sequence is $\{A_n\}$<br>the sum $s_n$ of the first n term                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | with $A_n > 0$ for all n, as?                                                                                                                                           |
| 300.                       | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$                                                                                                                                                                                             | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$                                                                                                                                                                                              | n arithmetic sequence is $\{A_n\}$ the sum $s_n$ of the first n term C. $n^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$                                                                                                                         |
| 300.                       | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$                                                                                                                                                            | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ $= 10, a_4 = 14,, then \sum_{n=1}^{\infty} (3^n 4^{-n})$                                                                                                                                     | n arithmetic sequence is $\{A_n\}$ the sum $s_n$ of the first n term C. $n^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | e, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4                                                                                                                    |
| 300.<br>301.               | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020                                                                                                                                                  | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ = 10, $a_4 = 14,$ , then $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. 20,200                                                                                                                        | n arithmetic sequence is $\{A_n\}$<br>the sum $s_n$ of the first n term<br>C. $n^2$<br>C. 3 $C_n = 0$ $C_n$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | p, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4                                                                                                                    |
| 300.<br>301.<br>302.       | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020  Every day a person sale we the total amount of                                                                                                  | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ = 10, $a_4 = 14,$ , then $a_4 = 14$ B. 20,200 ves 5 cents more than the a 3225 cents by the end of 36                                                                                        | n arithmetic sequence is $\{A_n\}$ the sum $s_n$ of the first n term C. $n^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | t, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4  D. 22,000 ous day. His target is to                                                                               |
| 300.<br>301.<br>302.<br>sa | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020  Every day a person sale the total amount of a ving to meet the target A. 35                                                                     | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ = 10, $a_4 = 14,$ , then $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. 20,200 ves 5 cents more than the a 3225 cents by the end of 36? B. 25                                                         | the sum $s_n$ of the first n term $C$ . $n^2$ C. $3$ $C$ $C$ $C$ $C$ $C$ $C$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4  D. 22,000 tous day. His target is to st to be the starting  D. 60                                                 |
| 300.<br>301.<br>302.<br>sa | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020  Every day a person sale the total amount of a ving to meet the target A. 35                                                                     | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ = 10, $a_4 = 14,$ , then $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. 20,200 ves 5 cents more than the a 3225 cents by the end of 36? B. 25                                                         | the sum $s_n$ of the first n term $C$ . $n^2$ C. $3$ $C$ $C$ $C$ $C$ $C$ $C$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         | t, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4  D. 22,000 tous day. His target is to st to be the starting  D. 60                                                 |
| 300. 301. 302. sa sa 303.  | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020  Every day a person sale the total amount of a ving to meet the target A. 35                                                                     | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ $= 10, a_4 = 14,$ , then $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. 20,200 ves 5 cents more than the a 3225 cents by the end of 36? B. 25 terms of a geometric program                            | the sum $s_n$ of the first n term $C$ . $n^2$ $C$ . $a$ $C$ $C$ $C$ $C$ $C$ $C$ $C$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | t, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4  D. 22,000 tous day. His target is to st to be the starting  D. 60                                                 |
| 300. 301. 302. sa sa 303.  | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020  Every day a person sale the total amount of a ving to meet the target A. 35  If the second and fifth the first eight terms of $\frac{85}{1000}$ | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ $= 10$ , $a_4 = 14$ ,, then $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. 20,200 ves 5 cents more than the asset of 3225 cents by the end of 36? B. 25 terms of a geometric program of the sequence? | the sum $s_n$ of the first n term $C$ . $n^2$ C. 3  C. 3 $a_{n=1}^{100}$ $a_{n} = \dots$ $a_{n=1}^{100}$ $a_{n} = \dots$ | b, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4  D. 22,000  Out day. His target is to st to be the starting  D. 60  ctively, what is the sum                       |
| 300. 301. 302. sa sa 303.  | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020  Every day a person sale the total amount of a ving to meet the target A. 35  If the second and fifth the first eight terms of $\frac{85}{1000}$ | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ $= 10$ , $a_4 = 14$ ,, then $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. 20,200 ves 5 cents more than the asset of 3225 cents by the end of 36? B. 25 terms of a geometric program of the sequence? | the sum $s_n$ of the first n term $C$ . $n^2$ C. 3  C. 3 $a_{n=1}^{100}$ $a_{n} = \dots$ $a_{n=1}^{100}$ $a_{n} = \dots$ | t, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4  D. 22,000 tous day. His target is to st to be the starting  D. 60                                                 |
| 300. 301. 302. sa sa 303.  | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020  Every day a person sale the total amount of a ving to meet the target A. 35  If the second and fifth the first eight terms of $\frac{85}{1000}$ | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ $= 10$ , $a_4 = 14$ ,, then $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. 20,200 ves 5 cents more than the asset of 3225 cents by the end of 36? B. 25 terms of a geometric program of the sequence? | the sum $s_n$ of the first n term $C$ . $n^2$ C. 3  C. 3 $a_{n=1}^{100}$ $a_{n} = \dots$ $a_{n=1}^{100}$ $a_{n} = \dots$ | t, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4  D. 22,000  Out day. His target is to st to be the starting  D. 60  Ctively, what is the sum  D. $\frac{256}{255}$ |
| 300. 301. 302. sa sa 303.  | 9 and the sum of their A. $n^2 + 1$ What is the sum of the A. $\infty$ If $a_1 = 2$ , $a_2 = 6$ , $a_3$ A. 20,020  Every day a person sale the total amount of a ving to meet the target A. 35  If the second and fifth the first eight terms of $\frac{85}{1000}$ | squares is 35, then what is  B. $n^2 - 1$ e series $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. $\frac{3}{16}$ $= 10, a_4 = 14,$ , then $\sum_{n=1}^{\infty} (3^n 4^{-n})$ B. 20,200 ves 5 cents more than the a 3225 cents by the end of 36? B. 25 terms of a geometric progential for the sequence?       | the sum $s_n$ of the first n term $C$ . $n^2$ C. 3  C. 3 $a_{n=1}^{100}$ $a_{n} = \dots$ $a_{n=1}^{100}$ $a_{n} = \dots$ | b, with $A_n > 0$ for all n, as?  D. $2n^2 + 1$ D. 4  D. 22,000  Out day. His target is to st to be the starting  D. 60  ctively, what is the sum                       |

| 305.                           | Which of the following is equal to $\lim_{n\to\infty}$                                                                                            | $\frac{3\sqrt{n}-6n+5}{4n+1}?$                                |                            |
|--------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------|----------------------------|
|                                | A. $-\frac{3}{2}$ B. 0                                                                                                                            | C. $\frac{3}{4}$                                              | D. $\frac{5}{4}$           |
| 306.                           | $\lim_{x\to 0} \frac{x \csc 3x}{x+1}$ is equal to:                                                                                                |                                                               |                            |
|                                | A. $\frac{1}{3}$ B. 0                                                                                                                             | C. 1                                                          | D. 3                       |
| 307.                           | $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{2x+4}$ is equal to:                                                                                |                                                               |                            |
|                                | A. e B. $e^2$ $\lim_{x\to 1^-} \frac{x^4-1}{ x-1 }$ is equal to:                                                                                  | C. <i>e</i> <sup>4</sup>                                      | D. ∞                       |
| 308.                           | $\lim_{x\to 1^-} \frac{x^{x-1}}{ x-1 }$ is equal to:                                                                                              |                                                               |                            |
|                                | A. 4 B. 0                                                                                                                                         | C1                                                            | D4                         |
| 309.                           | Let $f(x) = \begin{cases} \frac{a}{x^2 + 1}, & \text{if } x \le 1\\ \frac{x - 1}{\sqrt{x} - 1}, & \text{if } x > 1 \end{cases}$ what is the       | value of $a$ if $f$ is continuous at                          | x= 1?                      |
|                                | A. 0 B. 0                                                                                                                                         | C. 4                                                          | D. 8                       |
| 310                            | What is the value of $\lim_{x\to\infty} \left(1+\frac{1}{x}\right)^{-\frac{x^2}{2}}$ ?                                                            | 5                                                             |                            |
| 310.                           | 1                                                                                                                                                 | C. e <sup>-2</sup>                                            | D. ∞                       |
| 211                            | A. $\frac{1}{\sqrt{e}}$ B. $\sqrt{e}$                                                                                                             | C. 6                                                          | Д. ॐ                       |
| 311.                           | $\lim_{n\to\infty} \frac{1-n-3n^2}{6n^2+1}$ is equal to:                                                                                          | ~ 1                                                           | _                          |
|                                | A. $\frac{1}{6}$ B. $-\frac{1}{2}$                                                                                                                | C. $-\frac{1}{6}$                                             | D. −∞                      |
| 312.                           | A. $\frac{1}{6}$ B. $-\frac{1}{2}$<br>Let $(x) = \begin{cases} 3^{x} + k, & x \le 0 \\ 3\frac{\sin(2x)}{x}, & x > 0 \end{cases}$ , if $f$ is cont | inuous at $x = 0$ , then what is t                            | he value of k?             |
|                                | A. 6 B. 5                                                                                                                                         | C. 2                                                          | D. 0                       |
| 313.                           | Which of the following is equal to $\lim_{x\to x}  x ^2$                                                                                          | $\rightarrow 1 \frac{\sqrt{x-1}}{x^2-1}$ ?                    |                            |
|                                | A. $\infty$ B. $\frac{1}{2}$                                                                                                                      | C. $\frac{1}{4}$                                              | D. 0                       |
| 314.                           | Which of the following is equal to $\lim_{x\to a} \frac{1}{x}$                                                                                    | $\frac{1-x}{1-\frac{1}{2}}$ ?                                 |                            |
|                                | A. 1 B.0                                                                                                                                          | C. $-\frac{1}{2}$                                             | D. Doesn't exist           |
| 315.                           | The sequence $\left\{\frac{(n-1)(2n+1)}{1-n^2}\right\}_{n=1}^{\infty}$ converges                                                                  | s to:                                                         |                            |
|                                | A. $-\infty$ B. $-2$                                                                                                                              | C. 0                                                          | D. 1                       |
| 316.                           | Given that $\lim_{x\to 3} f(x) = 5$ and $\lim_{x\to 3} f(x) = 5$                                                                                  | g(x) = 11, what is the value of                               | of $\lim_{x\to 3}$         |
| $\left(\frac{\cdot}{2}\right)$ | $\frac{f(x) - g(x))(g(x) - 2f(x))}{g(x)^2 - f(x)^2}$ ?                                                                                            |                                                               |                            |
| `                              | A. $-\frac{66}{96}$ B. $-\frac{1}{16}$                                                                                                            | C. 0                                                          | D. Doesn't exist           |
| 317.                           | Let $f(x) = \begin{cases} a \frac{\sin x}{x -  x }, & x < 0 \\ e^{-x} + \cos x, & x \ge 0 \end{cases}$ if $f$ is                                  | continuous at $x = 0$ then who                                | at is the value of $a^{9}$ |
|                                | $(e^{-x} + \cos x, \ x \ge 0)$                                                                                                                    | 1                                                             |                            |
|                                | A. 4 B.2                                                                                                                                          | C. $-\frac{1}{2}$                                             | D4                         |
| 318.                           | If $a_n = \left(\frac{n+3}{n+1}\right)^n$ , then the limit of the sequ                                                                            | uence $\{a_n\}_{n=1}^{\infty}$ is equal to:                   |                            |
|                                | A. 1 B. $\frac{1}{2}e$                                                                                                                            | C. <i>e</i> <sup>2</sup>                                      | D. +∞                      |
| 319.                           | Which of the following is equal to $\lim_{x\to a}$                                                                                                |                                                               |                            |
|                                | A. $e^6$ B. $e^{-3}$                                                                                                                              | C. $e^{\frac{-3}{2}}$                                         | D. $e^{-6}$                |
| 320.                           | Which of the following sequences is a co                                                                                                          | onvergent sequence?                                           | _                          |
|                                | A. $1, \frac{1}{2}, 1, \frac{1}{3}, 1, \frac{1}{4}, \dots$                                                                                        | C. $\left\{ 100^{109} - \frac{1}{100} n \right\}_{n}^{\circ}$ | o<br>1=1                   |

**26 |** Page

B. 
$$\{(-1)^n\}_{n=1}^{\infty}$$

D. 
$$\left\{\sin\left(\frac{1}{n}\right)\right\}_{n=1}^{\infty}$$

321. Let  $f(x) = \begin{cases} a \frac{\sin 2x}{x}, & \text{if } x < 0 \\ e^{2x} - 2, & \text{if } x \ge 0 \end{cases}$  if f is continuous at x = 0, then what is the value of a?

A. 
$$\frac{1}{2}$$

C. 
$$-\frac{1}{2}$$

A.  $\frac{1}{2}$  B. 2 C.  $-\frac{1}{2}$  322. Which one of the following is equal to  $\lim_{x\to 9} \frac{x-9}{3-\sqrt{x}}$ ?

$$D \propto$$

A. 6 B. -3 C. -6 D.  $\infty$ 323. Let  $f(x) = \begin{cases} 3 - e^{2x}, & \text{if } x < 0.5 \\ \frac{2^{x} - 5}{x + 1}, & \text{if } x \ge 0.5 \end{cases}$  if c is a zero of f, that is f(c) = 0, then which one of the

following intervals must contain c?

A. 
$$(-\infty,0]$$

324. Which one of the following is equal to  $\lim_{x\to\infty} \left(\frac{3x}{3x+2}\right)^{-3x}$ A.  $e^2$ B.  $e^{-3}$ C.  $e^{-2}$ 

A. 
$$e^2$$

B. 
$$e^{-3}$$

C. 
$$e^{-2}$$

D. 
$$e^3$$

325. The left hand side limit,  $\lim_{x\to 0^-} \frac{xe^x - |x|}{x}$  is equal to:
A. 0
B. 2

D. Doesn't exist

A. 0 B. 2 C. 1 326. Which one of the following is equal to  $\lim_{x\to 0} \frac{C. 1}{x \sec x}$ ?

327. In which interval the sequence  $\left\{\frac{(-1)^n}{3n}\right\}_{n=1}^{\infty}$  is bounded?

A. 
$$\left[\frac{-1}{9}, \frac{1}{12}\right]$$

B. 
$$\left[\frac{-1}{3}, \frac{1}{6}\right]$$

C. 
$$\left[\frac{-1}{6}, \frac{1}{3}\right]$$
 D.  $\left[\frac{-1}{12}, \frac{1}{9}\right]$ 

D. 
$$\left[\frac{-1}{12}, \frac{1}{9}\right]$$

328. Which one of the following is true about the function  $(x) = \begin{cases} \frac{x^2}{x}, & x \neq 0 \\ 0, & x \neq 0 \end{cases}$ ?

A. f is continuous except at x = 0

C. *f* is continuous everywhere

B. f has an infinite discontinuity at x = 0

D. f has a vertical asymptote at x = 0

329.  $\lim_{x\to\infty} x \sin\frac{1}{x}$  is equal to:

D. -1

330. Which one of the following is a convergent sequence?

A. 
$$\{(\frac{5}{2})^n\}$$

$$B \cdot \left\{ \frac{n^2}{n+1} \right\}$$

C. 
$$\left\{\frac{2n}{n+1}\right\}$$

D. 
$$\left\{ \frac{(-1)^n}{2} \right\}$$

331. What is the value of k so that  $f(x) = \begin{cases} \frac{\tan(2x)}{x}, & \text{if } x > 0 \\ k - e^{2x}, & \text{if } x \le 0 \end{cases}$  is continuous at x = 0?

A. 2

B. 3

332. If f is continuous at x = 0 and  $g(x) = \sqrt{x} \left( 2f(x) + \frac{3}{\sqrt{x}} \right)$  for all x > 0, then what is the value of  $\lim_{x\to 0^+} g(x)$ ?

D. 5

333. What is the value of  $\lim_{x\to 0} \frac{\sin x \cos 2x}{x^2+3x}$ ?

D. 2

334. If  $a \neq 0$ , then what is the value of  $\lim_{x \to a} \frac{x^2 - a^2}{x^4 - a^4}$ ?

D. 0

335. Which one of the following is a convergent sequence?

A. 
$$\left\{ \frac{1+2^n}{2^n} \right\}$$

B. 
$$\left\{ \frac{1}{n} + \sin(n) \right\}$$
 C.  $\left\{ \frac{1-3^n}{2^n} \right\}$ 

C. 
$$\left\{ \frac{1-3^n}{2^n} \right\}$$

D. 
$$\left\{ \frac{(-1)^n}{2} \right\}$$

336. What are the greatest lower bound and the least upper bound of the sequence  $\left\{(-1)^n\left(1+\frac{1}{n}\right)\right\}$ , respectively?

ETHIO NATIONAL SCHOOL

A. 
$$-2$$
 and  $2$ 
B.  $-\frac{3}{2}$  and  $2$ 
C.  $-2$  and  $\frac{3}{2}$ 
D.  $-2$  and  $-\frac{3}{2}$ 
337. What is the value of  $\lim_{x\to 0} \frac{1}{x^2} \sin^2\left(\frac{x}{2}\right)$ ?
A.  $\frac{1}{2}$ 
B.  $\frac{1}{4}$ 
C.  $2$ 
D.  $4$ 
338. What are the values of  $a$  and  $b$  so that the function  $\begin{cases} x+1, & x<1\\ ax+b, & 1\leq x<2 \end{cases}$  is continuous everywhere?

A.  $a=4,b=-2$ 
B.  $a=-4,b=-2$ 
C.  $a=4,b=2$ 
B.  $a=-4,b=2$ 
D.  $a=-4,b=2$ 
339. If  $f(x)=\frac{|x|}{x}$  and  $g(x)=\frac{x+2}{x^2-4x}$ , then what is the value of  $\lim_{x\to-2} f(x)+g(x)$ ?
A.  $-\frac{9}{8}$ 
B.  $\infty$ 
C.  $\frac{2}{9}$ 
D.  $-\frac{7}{8}$ 
340. Let  $\{a_n\}$  be a sequence with  $a_1=a,a_2=f(a_1)=f(a_1)=f(a),a_3=f(a_2)=f(f(a)),...,a_{n+1}=f(a_n),x_n$  where  $f$  is continuous function. If  $\lim_{n\to\infty} \sum_{k=1}^n \left[\frac{2}{n}\left(\frac{2k}{n}\right)^3+5\left(\frac{2k}{n}\right)\right]$ 
A.  $4$ 
B.  $14$ 
B.  $14$ 
C.  $10$ 
D.  $18$ 
341. What is the value of  $\lim_{n\to\infty} \sum_{k=1}^n \left[\frac{2}{n}\left(\frac{2k}{n}\right)^3+5\left(\frac{2k}{n}\right)\right]$ 
A.  $4$ 
B.  $10$ 
C.  $10$ 
D.  $18$ 
342. What is the greatest lower bound of the sequence  $\left\{(-1)^n \frac{1}{n+1}\right\}_{n=1}^\infty$ ?
A.  $1$ 
B.  $0$ 
C.  $10$ 
D.  $10$ 
D.  $10$ 
C.  $10$ 
D.  $10$ 
D.

349. If  $f(x) = \pi^2$ , then f'(x) is equal to:

C. 1 D. 0

350. Let  $(x) = \frac{6x}{x+a}$ . For value of *a* is f'(a) = 1?

 $B.\frac{2}{3}$ D. 3

351. If  $g(x) = \frac{f(x)}{x+1} + (f(x))^2$ , f(1) = 8 and f'(1) = 2, then g'(1) is equal to: D. 16

352. If  $f(x) = xe^{3x} - \cos(2x)$ , then f''(0) is equal to:

|      | A. 0                                            | B. 2                                         | C. 6                                                        | D. 10                                                                                 |                               |
|------|-------------------------------------------------|----------------------------------------------|-------------------------------------------------------------|---------------------------------------------------------------------------------------|-------------------------------|
| 353. | If $f(x) = x^2 +$                               | $2 \ln x$ , then what is                     | $\lim_{h \to 0} \frac{f(2+h) - f(2)}{h} ?$                  |                                                                                       |                               |
|      | A. 5                                            |                                              | $C. 2^h$                                                    | D. 0                                                                                  |                               |
| 354. |                                                 | $+x-3\cos(x)$ , then                         | of $f''(x)$ is equal to:                                    |                                                                                       |                               |
|      | A. $e^{2x} + 1 - 3$                             | $3\sin(x)$                                   | C. $4e^{2x} - 3c$<br>D. $4e^{2x} + 3$                       | $\cos(x)$                                                                             |                               |
| 255  | B. $e^{2x} + 1 + 3$                             |                                              |                                                             |                                                                                       | a avval to a /(m)?            |
| 333. | g(x) = xf(x) A. 11                              |                                              |                                                             | which of the following is D. 0                                                        | equal to $g(x)$ ?             |
| 356  |                                                 |                                              |                                                             | line to the graph of $f(x)$                                                           | $a = \frac{1}{1} + \cos x$ at |
|      | f(0)?                                           | ie rono wing is the ex                       | quation of the tangent                                      | Time to the graph of f (x)                                                            | x+1                           |
| (0   | A. $x + y = 1$                                  |                                              | C. $x + y = 2$                                              |                                                                                       |                               |
|      | B. $x - y = -2$                                 |                                              | D. $x + 4y = 2$                                             |                                                                                       |                               |
|      |                                                 | <del>-</del>                                 | about the derivative of                                     |                                                                                       |                               |
| A.   | f is not differe                                |                                              |                                                             | $2x$ , for every $x \in (-\infty, \infty)$<br>$ x  + x$ , for every $x \in (-\infty)$ |                               |
|      |                                                 |                                              | 2006                                                        |                                                                                       |                               |
| 358. | If $f(x) = \frac{x^2}{1 + xg(x)}$               | $\frac{1}{(x)}$ , $g(2) = 1$ and $g'(2) = 1$ | (2) = 10, then which                                        | h of the following is equa                                                            | ol to $f'(2)$ ?               |
|      | A8                                              | $B\frac{8}{9}$                               | C. $\frac{4}{3}$                                            | D. $\frac{8}{9}$                                                                      |                               |
|      |                                                 | ,                                            | we of $f(x) = \frac{1+\sin x}{\cos x}$ i                    | •                                                                                     |                               |
|      | A. $\sec x + \tan x$                            | $x 	 B.\frac{1+\sin x}{2}$                   | C. $\frac{1}{1+\tan x}$                                     | D. $\frac{\cos x}{\cos x}$                                                            |                               |
|      |                                                 | τος χ                                        | $1 + tan \lambda$                                           | $\sin^2 x$ ne to the graph of $f$ at $x = 1$                                          | = 2?                          |
| 500. | A. $-4$                                         | B. 2                                         | C. 18                                                       | D. 17                                                                                 | 2.                            |
| 361. |                                                 | in $x$ , then $f''(x)$ is                    |                                                             |                                                                                       |                               |
|      | A. $3e^{2x} \sin x - \frac{1}{2}e^{-2x} \sin x$ | $-4e^{2x}\cos x$                             | C. $e^{2x}(3\sin x +$                                       | $4\cos x$                                                                             |                               |
|      |                                                 |                                              | D. $e^{2x}(4\sin x - e^{2x})$                               | $3\sin x$                                                                             |                               |
| 362. |                                                 | ), then the simplified                       | ux                                                          |                                                                                       |                               |
|      | A. $-6\sin(3x^2)$                               | )                                            | C. $6\cos(3x^2)$ – D. $x^2\cos(3x^2)$                       | $-36x^2 sin(3x^2)$                                                                    |                               |
| 262  |                                                 |                                              |                                                             | $+ 6\sin(3x^2)$<br>= 4, g(1) = -5,  and  g'                                           | (1) = 1 than what             |
|      | the value of $F'(t)$                            |                                              | $\min_{j} (2) = -3, j (2)$                                  | y = 4, y(1) = -3, and y                                                               | (1) = 1, then what            |
| 15   | A40                                             |                                              | C. 0                                                        | D. 19                                                                                 |                               |
| 364  | If $f(x) = \ln(\sqrt{x})$                       |                                              | 2007<br>ne following is equal t                             | f'(x)?                                                                                |                               |
|      | `                                               | •                                            | C. $\frac{2x}{\sqrt{x^2+1}}$                                |                                                                                       |                               |
|      | .,,,                                            |                                              | 1,70 . =                                                    | 0 = 4, g(1) = -5,  and  g'                                                            | (1) = 1 than what             |
|      | the value of $F'(t)$                            |                                              | $\min_{j} (2) = -3, j (2)$                                  | y = 4, y(1) = -3, and y                                                               | (1) = 1, then what            |
| 15   | •                                               | B20                                          | C. 0                                                        | D. 19                                                                                 |                               |
|      |                                                 |                                              |                                                             | f(x)f(y) for all values of                                                            |                               |
| f(   |                                                 |                                              |                                                             | esents the formula for the                                                            | derivative $f'(x)$ ?          |
|      | A. $f'(x) = 2f$                                 | • •                                          | C. $f'(x) =$<br>D. $f'(x) = 2$                              |                                                                                       |                               |
|      | $B. \ f'(x) = f(x)$                             |                                              |                                                             |                                                                                       |                               |
| 367. | For what value                                  | of $a$ and $b$ is the fun                    | $action f(x) = \begin{cases} 1 - 3x \\ ax + 3x \end{cases}$ | $x^2$ , $for  x \le 1$<br>b, $for  x > 1$ differential                                | able at $x = 1$ ?             |
|      | A. $a = 6, b =$                                 |                                              | C. $a = 0, b$                                               | = -2                                                                                  |                               |
|      | B. $a = -3, b =$                                | = 1                                          | D. $a = -6$ ,                                               | b = 4                                                                                 |                               |

| 368. | If $f(x) = 2x^5 - 3x$ , then $\lim_{x \to 1} \frac{f(x) - 3x}{x - 3x}$              | $\frac{f(1)}{1}$ is equal to:                                      |                                                   |
|------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------------------------------|
|      | A. 1 B1                                                                             |                                                                    | D. ∞                                              |
| 369. | If $f(x) = e^{3x} \cos x - \frac{x+\pi}{x^2+2}$ , then $f'(0)$                      |                                                                    |                                                   |
|      | A. $3 - \frac{\pi}{2}$ B. $\frac{3}{2}$                                             |                                                                    |                                                   |
| 370. | If $f(x) = \ln(\sqrt{x^2 - 5})$ , which one of t                                    | =                                                                  | ——————————————————————————————————————            |
|      | A. $\frac{x}{x^2-5}$ B. $\frac{-x}{\sqrt{x^2-5}}$                                   | C. $\frac{2x}{\sqrt{x^2-5}}$                                       |                                                   |
| 371  | $\frac{d}{dx}(\ln e^{2x}) \text{ is equal to:}$                                     | $\sqrt{x^2-5}$                                                     | x <sup>2</sup> -5                                 |
| 371. | A. $\frac{1}{e^{2x}}$ B. $\frac{2}{e^{2x}}$                                         | C. 2x                                                              | D 2                                               |
| 372  | C                                                                                   |                                                                    | D. 2 a derivative $f'(x)$ at $x = 32$             |
| 312. | If $f(x) = 2 +  x - 3 $ for all x, then w<br>A1 B. 1                                | C. 2                                                               | D. does not exist                                 |
| 373. | Let $f$ be a differentiable function with                                           | f(1) = -1  and  f'(1)                                              | $f(x) = 1$ . If $g(x) = [f(2x + 1) + 2]^2$ , then |
|      | hat is the value of $g'(x)$ ?                                                       | f(1) = 1  and  f(1)                                                | f = 1. If $g(x) = f(2x + 1) + 2f$ , then          |
|      | A. 4 B. 2                                                                           |                                                                    | D4                                                |
| 374. | If $(x) = \ln(x^2 + 2)$ , then what is the                                          | _                                                                  | 2                                                 |
|      | A. $\frac{3}{2}$ B. $\frac{5}{9}$                                                   | C. $\frac{2}{3}$                                                   | D. $\frac{2}{9}$                                  |
| 375. | If $x^2 + xy = 10$ , then what is the value                                         | e of $\frac{dy}{dx}$ when $x = 2$                                  | ?                                                 |
|      | A. $-\frac{7}{2}$ B. $\frac{2}{7}$                                                  | C. $\frac{3}{2}$                                                   | D. $\frac{7}{2}$                                  |
| 376. | What is the equation of the tangent line                                            | e to the graph of $f(x)$                                           | $=3x^{2}+4x-5$ at $(1,2)$ ?                       |
|      | A. $10x - y - 8 = 0$                                                                | C. $-10x - y -$                                                    |                                                   |
| 277  |                                                                                     | D. $10x + y - 8$                                                   | = 0                                               |
| 311. | If $f(x) = \pi^2 + 1$ , then what is the value A. $2\pi + 1$ B. $2\pi$              | $\begin{array}{c} \text{ce of } f(x) : \\ \text{C. 2} \end{array}$ | D. 0                                              |
| 270  |                                                                                     | 2010                                                               |                                                   |
| 3/8. | If a function $f$ is differentiable at $a$ , the A. $f(a)$ B. $f'(a)$               |                                                                    |                                                   |
| 379. | What is the slope of the tangent line to                                            |                                                                    |                                                   |
|      | A. 2 B. 3                                                                           | C. 5                                                               | D. 4                                              |
| 380. | If $f(x) = k \ln x + e^{\sin x}$ and $f''(x) =$                                     |                                                                    |                                                   |
| 201  | A. $2\pi^2$ B. $\pi^2$                                                              | C. π                                                               | D. 2π                                             |
| 361. | Let $f(x) = \ln(x\sqrt{x})$ . Then $f'(x)$ is eq                                    | _                                                                  | 5 3                                               |
|      | A. $\frac{2x}{3}$ B. $\frac{\sqrt{x}}{2}$                                           | C. $\frac{2}{x\sqrt{x}}$                                           | D. $\frac{3}{2x}$                                 |
| 382. | Which one of the following is equal to                                              |                                                                    |                                                   |
|      | A. $\frac{1}{2x \ln(2)}$ B. $\frac{3}{2x \ln(2)}$                                   | C. $\frac{3x}{2 \ln(2)}$                                           | D. $\frac{1}{6x \ln(2)}$                          |
| 383. | Let $f(x) = 2e^x - k \sin x + 1$ . If the expression $f(x) = 2e^x - k \sin x + 1$ . |                                                                    | at line to the graph of $f$ at $(0, 3)$ is        |
|      | = $5x + 3$ , then what is the value of k?                                           |                                                                    |                                                   |
| 20.4 | A. 3 B3                                                                             | C5                                                                 | D. 2                                              |
| 384. | If $f(x) = \ln(2^{\tan x})$ , then what is the v                                    |                                                                    | 5.4                                               |
|      | A. ln 2 B2 ln 2                                                                     | C. $\frac{\ln 2}{2}$                                               | D. 1                                              |
| 385. | If $h(x) = \sqrt{1 + \sqrt{x}}$ , then which of the                                 |                                                                    |                                                   |
|      | A. $\frac{1}{2\sqrt{1+\sqrt{x}}}$ B. $\frac{1}{4\sqrt{x+x\sqrt{x}}}$                | C. $\frac{\lambda}{2\sqrt{1+\sqrt{x}}}$                            | D. $\frac{x}{4\sqrt{x+x\sqrt{x}}}$                |
| 386. | If $(x) = \frac{1}{x}$ , then what is the value of $f$                              | $^{(n)}(x)$ ?                                                      |                                                   |
|      | A. $f^{(n)}(x) = \frac{(-1)^n n!}{x^n}$                                             | C. $f^{(n)}(x) = \frac{(-1)^n}{n!}$                                | $(1)^n n!$                                        |
|      | χ"ι                                                                                 | $x^{1}$                                                            | r= T                                              |

B. 
$$f^{(n)}(x) = \frac{(-1)^{n+1}(n+1)!}{x^{n+1}}$$

D. 
$$f^{(n)}(x) = \frac{(-1)^n n!}{x^{n+1}}$$

387. Which of the following is necessarily true about a function f(x)?

A. If f is continuous at x = a, then it is differentiable at x = a.

B. If f is not differentiable at x = a, then  $\lim_{x \to a^-} f(x) \neq \lim_{x \to a^+} f(x)$ .

C. If f is differentiable at x = a, then  $\lim_{x \to a^{-}} f(x) = f(a) = \lim_{x \to a^{+}} f(x)$ .

D. If f'(a) = 0, then f attains its maximum value at x = a.

388. At what value(s) of x does  $f(x) = \frac{1}{3}x^3 - \frac{1}{2}x^2 - 2x + 1$  have a local maximum?

A. x = 2

D. x = 2, x = -1

389. Look at the following graph of f'(x). Which of the following is true about f?



B. f is decreasing on [b, c].

C. f has local minimum at d.

D. f has local extreme value at c.



390. A rectangular field of length l and width w meters for w < l. Has perimeter 400 meters. If a circular region of area  $w^2$  is to be reserved for office purpose, what should be the length of the field (in meters) so that the area of the remaining region is maximum?

A. 50

B. 100

D. 150

391. On which of the following intervals is the graph of  $f(x) = \ln(x^2 + 1)$  concave upward?

A.  $(-\infty, -1] \cup [1, \infty)$  B.  $[0, \infty)$ 

C.  $(-\infty,0]$ 

D. [-1,1]

392. Water is poured into a cylindrical tanker of radius 5m at a rate of  $10m^3/min$  what is the rate of change of the height of the level of water (in m/min) when it rises to 3m?

393. The volume of the solid which is generated when the region bounded by  $y = \sqrt{x+1}$  and the x-axis from x = 0 to x = 2 is rotated bout the x-axis is equal to:

Α. 4π

 $C.\frac{4}{3}\pi$ 

D.  $\frac{3}{4}\pi$ 

394. On which of the following intervals does  $f(x) = x^4 + 4x$  increase?

A.  $(-\infty, -1]$ 

B.  $(-\infty,0]$ 

C. [−1,∞)

395. At which value(s) of x does  $f(x) = \frac{1}{4}x^4 - 2x^2$  have a local maximum?

B. x = 0

C. x = -2, x = 2 D. x = 0, x = 2

396. The volume V of a melting ice cube after t seconds is  $V = 2000 - 4t + 0.2t^2$  (in  $cm^3$ ). How fast is the volume changing (in  $cm^3/sec$ ) when t = 40 seconds?

B. 15

C. -15

D. -24

397. A box seen below is to have a square base, an open top and volume of 32 cubic unit. If x is length of each side of its base and y is its height, how many units should x and y be in order to make the box with the smallest amount of material?

A. x = 4, y = 2

C.  $x = \sqrt{8}$ , y = 4

B. x = 2, y = 8

D.  $x = \sqrt{2}$ , y = 16

398. Suppose f is differentiable on  $(-\infty, \infty)$  and the graph of its usualive is as shown below? Which of the following is true about f?

A. f is decreasing on  $(-\infty,-1] \cup [1,\infty)$ 

B. f has a local minimum at x = -2

C. f is concave downward on  $[0,\infty)$ 

D. f is concave up on (-1,1)



D. 5,800

A. 8.5

A.  $\left\{\frac{1}{4}, 2\right\}$ 

volume of the box in  $cm^3$ ?

2006

 $0 \le x \le 100$ . What is the marginal (rate of change of) cost at a production level of 80 iron sheets?

C.  $\{-2, 2\}$ 

401. If a box with a square base and open top is made from 1,200  $cm^2$  material, what is the largest

C. 1,800

399. The total cost (in Birr) of producing x iron sheets per day is  $C(x) = 1,000 + 10x - 0.5x^2$ ,

400. Which one of the following is the set of all critical numbers of  $f(x) = \frac{1}{3}x^3 - |4x - 1|$ ?

B.  $\left\{-2, \frac{1}{4}, 2\right\}$ 

|      | A. 4,000                              | B. 8,000                                              | C. 15,000                               | D. 3,000                                                       |
|------|---------------------------------------|-------------------------------------------------------|-----------------------------------------|----------------------------------------------------------------|
| 402. | Suppose equal squar                   | es are cut from each of t                             | he four corners of a sq                 | uare cardboard whose sides are 72                              |
|      |                                       |                                                       | -                                       | a top. How long should be each of                              |
|      |                                       | s to be cut off to maximi                             |                                         |                                                                |
|      | A. 6 cm                               | B. 12 cm                                              | C. 15 cm                                | D. 24 cm                                                       |
| 403. | What is the absolute                  | maximum value of $f(x)$                               | $= 2x^2 - x^4 - 4$ on [                 | 0, 2]?                                                         |
|      | A3                                    | B. 3                                                  | C4                                      | D. 12                                                          |
| fe   | ormula: $(t) = 80 + 12$               |                                                       | t = 0 correspond                        | opolitan area is given by the ds to 9 A.M. What is the rate of |
| 11   | A. 6ppb                               | ,                                                     | C. 107ppb                               | D. 113ppb                                                      |
|      |                                       | along the parabola $y = \frac{1}{2}$                  |                                         | At what point on its path does the                             |
|      | A. $(3, \sqrt{6})$                    | B.(1, 1)                                              | C. $(1, \sqrt{2})$                      | D. (2,2)                                                       |
| 406. |                                       | lowing is necessarily tru                             |                                         |                                                                |
|      | A. If $f'(x) = 0$                     | for all x in the interval I                           | , then $f(x) = 0$ for all               | x in I.                                                        |
|      |                                       | $\sin x + 5$ , then there is                          |                                         | f'(c)=0.                                                       |
|      | • • •                                 | $+ x^2$ , then f is increasi                          | -                                       |                                                                |
|      |                                       | then $f$ attains its extrem                           |                                         |                                                                |
|      |                                       |                                                       |                                         | ladder slides away from the wall                               |
| a    | t the rate (speed) of $\frac{1}{2}$ r | n/sec, how fast is the ar                             | igle between the top of                 | the ladder and the wall changing                               |
|      | when the angle is $\frac{\pi}{4}$ rad | ?                                                     |                                         |                                                                |
|      | A. $\frac{\sqrt{2}}{12}$ rad/sec      | B. $\frac{\sqrt{2}}{2}$ rad/sec                       | C. $\frac{\sqrt{2}}{6}$ rad/se          | D. $\frac{\sqrt{2}}{3}$ rad/sec                                |
|      | perates:                              |                                                       | roduce per day is a fun                 | nction of the number of hours $t$ it                           |
|      | s(t)                                  | $= 40t \text{ for } 0 \le t \le 12.$                  |                                         |                                                                |
|      | <del>-</del>                          | Birr, to manufacture $s$ sh<br>= $0.1s^2 + 90s + 800$ | oes is given by the fun                 | ction                                                          |
|      | ` '                                   |                                                       | he cost it incurs in pro-               | ducing as much shoes it can                                    |
|      | within this time?                     | ,                                                     | 1 · · · · · · · · · · · · · · · · · · · | 8                                                              |
|      | A. Birr 400                           | B. Birr 1,600                                         | C. Birr 52,800                          | D. Birr 124,600                                                |
| 409. |                                       | ,                                                     |                                         | •                                                              |
|      |                                       |                                                       |                                         | the expression $\frac{1}{4}x^2 + 35x + 25$                     |
| a    | nd the price per set at               | which they may be sold                                | is given by $50 - \frac{1}{2}x$ . V     | What should be the daily output                                |
| р    | er day to a maximum t                 | total profit?                                         | _                                       |                                                                |
| -    | A. 50                                 | B. 23                                                 | C. 10                                   | D. 7                                                           |
| _    | A company manufac<br>y:               | tures x computer sets pe                              | r month. The monthly                    | marginal profit (in Birr) is given                             |
| U    |                                       | $= 165 - 0.1x$ , for $0 \le x$                        | $x \le 400.$                            |                                                                |
|      |                                       |                                                       |                                         |                                                                |

# ETHIO NATIONAL SCHOOL

The company is currently manufacturing 10 sets of computers per month, but it is planning to increase production. What is the total change in the monthly profit if the monthly production is increased to 60 sets?

- A. Birr 500
- B. Birr 1, 865
- C. Birr 8,075
- D. Birr 18,635

- 411. Let f be twice differentiable function on  $\Re$ . Which one of the following is necessarily true?
  - A. If f'(c) = 0, at some  $c \in \Re$ , then f has relative extreme value at x = c.
  - B. If f'(x) is increasing, then the graph of y = f(x) is concave upward.
  - C. If f'(x) = 0, for all  $x \in \Re$ , then f(x) = 0 for all  $x \in \Re$ .
  - D. If f(x) is increasing, then  $f''(x) \ge 0$  for all  $\in \Re$ .
- 412. Suppose f(x) is differentiable on  $(-\infty, \infty)$  and the graph of its derivative, y = f'(x) is as shown in the figure below.

Which one of the following is true about f(x)?

- A. f(x) is increasing on  $(-\infty, 0) \cup (2, \infty)$ .
- B. f(x) has local extreme value at x = 2.
- C. f(x) has a local minimum value at x = -2
- D. f(x) has a local maximum value at x = 0



413. A closed cylindrical can is to be made to hold  $1000cm^3$  of oil. What are the dimensions (r radius and h height) that will minimize the total surface area of the can?

A. 
$$r = \frac{\sqrt[3]{50}}{\pi}$$
,  $h = 2\frac{\sqrt[3]{50}}{\pi}$ 

C. 
$$r = \sqrt[3]{\frac{50}{\pi}}, h = 2\left(\sqrt[3]{\frac{50}{\pi}}\right)$$

B. 
$$r = \frac{\sqrt[3]{500}}{\pi}$$
,  $h = 2\frac{\sqrt[3]{500}}{\pi}$ 

D. 
$$r = \sqrt[3]{\frac{500}{\pi}}$$
,  $h = 2\left(\sqrt[3]{\frac{500}{\pi}}\right)$ 

- 414. The graph of  $y = 5x^4 x^5$  has a point of inflection at:
  - A. (3, 162) only
- B. (4, 256) only
- C. (0,0) *only*
- D. (0,0) and (3,162)
- 415. Which of the following is true about the function f defined by  $f(x) = x^2 + e^{2x}$ ?
  - A. f is decreasing for  $x \ge 0$

- C. f has a relative minimum at x = 0
- B. f is increasing for  $x \le 0$

D. f has a relative maximum at x = 0

- 416. Which of the following is the set of critical numbers of  $f(x) = \frac{4}{3}x^3 + |x|$ ?
- B.  $\{0,\frac{1}{2}\}$
- C.  $\left\{0, -\frac{1}{2}\right\}$
- D.  $\left\{-\frac{1}{2}, 0, \frac{1}{2}\right\}$
- 417. Suppose f is continuous on [2, 6] and the only solutions of the equation f(x) = 7 are x = 2 and x = 5. If f(3) = 9, then one of the following **CANNOT** be the value of f(4):

- 418. Suppose  $f:(-\infty,\infty)\to\Re$  is differentiable and the graph of its derivative, y=f'(x), is as shown in the figure below.

Which one of the following is true about f?

- A. f is increasing on  $(1, \infty)$ .
- C. f has no relative maximum value.
- A. f is increasing on  $(1, \infty)$ . C. f has no relative maximum value. B. f is concave upward on  $(0, \infty)$ . D. f has a relative minimum value at x = 2.
- 419. A tin can of volume  $54\pi cm^3$  is to be made in the form of a circular cylinder that has both flat top and bottom. What is the base radius of the tin if it is to be made of the least amount of metal?
  - A. 2 cm
- B. 3 cm
- C. 4 cm
- 420. Air is being pumped into a spherical balloon so that its volume increases at a rate of  $50 \text{ cm}^3/\text{se}$ . How fast is the radius of the balloon increasing when the diameter is 5 cm?

- A.  $\frac{1}{50\pi}cm/sec$  B.  $\frac{1}{25\pi}cm/sec$  C.  $\frac{5}{\pi}cm/sec$  D.  $\frac{2}{\pi}cm/sec$ 421. What is the maximum value of the function  $f(x) = x^4 - 2x^2$  on [-2, 1]?

- 422. Which one of the following is NOT true about the function  $f(x) = 3x^4 4x^3$ ?
  - A. (0,0) is point of inflection of f.

# ETHIO NATIONAL SCHOOL

- B. 0 and 1 are critical numbers of f.
- C. f is concave upward on  $\left(0,\frac{2}{3}\right)$  and concave downward on  $\left(-\infty,0\right)$  and  $\left(\frac{2}{3},\infty\right)$
- D. f is decreasing on  $(-\infty, 1)$  and increasing on  $(1, \infty)$ .
- 423. if  $f(x) = \frac{1}{3}x^3 + cx^2 + ax + 5$  has a local minimum value at x = 1, then which one of the following is true about the possible values of a and c?

A. 
$$a = 3$$
,  $c = -2$ 

C. 
$$a = -2c - 1$$
,  $c < -1$ 

B. 
$$a = -2c - 1$$
, c is any real number.

D. 
$$a = -2c - 1$$
,  $c > -1$ 

424. What is the maximum possible area of a rectangle in square units with diagonal of length 16 units?

425. Which one of the following is the set of critical numbers of  $(x) = \frac{3}{8}x^{\frac{8}{3}} - 6x^{\frac{2}{3}}$ ?

B. 
$$\{-1, 1\}$$

D. 
$$\{-2,0,2\}$$

426. If  $f(x) = ax^3 + \frac{b}{x} + 5$  has a local minimum value at (2, -3), what are the values of a and b?

A. 
$$a = -\frac{1}{4}$$
,  $b = 12$ 

C. 
$$a = \frac{1}{4}$$
,  $b = 12$ 

B. 
$$a = \frac{-1}{4}$$
,  $b = -12$ 

D. 
$$a = \frac{1}{4}$$
,  $b = -12$ 

427. At value of x does the function  $f(x) = \frac{4x^3}{3} - x^4$  attains its maximum value?

A. 
$$-1$$

D. 
$$\frac{4}{3}$$

428. A man wants to fence two identical rectangular enclosures in a field alongside a straight river as shown in the following figure.



What is the maximum area of each enclosure that he can make with 192 m fencing material if the side along the river do not need a fence?

A. 
$$1530m^2$$

B. 
$$1564m^2$$

C. 
$$1664m^2$$

D. 
$$1536m^2$$

- 429. A water tank is a rectangular parallelepiped with base length 3m, width 2m and height 2.5m. if water is flowing into the tank at the rate of  $0.12m^3/\text{sec}$ , then how fast does the level of water rises up in the tank?
  - A. 0.02 m/sec
- B. 0.03 m/sec
- C. 0.04 m/sec
- D. 0.06 m/sec

Unit 5
2004

430. Which of the following is equal to  $\int \frac{x}{x^2 + 2x + 1} dx$ ?

A. 
$$\ln(x^2 + 2x + 1) + c$$

C. 
$$\ln(x^2 + 2x + 1) - \frac{1}{x+1} - c$$

B. 
$$\ln|x+1| - \frac{1}{x+1} + c$$

C. 
$$\ln(x^2 + 2x + 1) - \frac{1}{x+1} - c$$
  
D.  $\ln(x^2 + 2x + 1) + \frac{1}{x+1} + c$ 

431.  $\int \frac{e^{2x}-4x}{xe^{2x}} dx$  is equal to:

A. 
$$\ln|x| + 2e^{-2x} + c$$

C. 
$$\ln|x| + 4e^{-2x} + c$$

B. 
$$\ln|x| - 4e^{2x} + c$$

C. 
$$\ln|x| + 4e^{-2x} + c$$
  
D.  $-\frac{1}{x^2} + 2e^{-2x} + c$ 

432. Which of the following is equal to  $\int_0^1 \frac{(x-1)^2}{x+1} dx$ ?

A. 
$$-\frac{3}{2} + \ln 16$$

C. 
$$-\frac{5}{2} + 4 \ln 2$$

B. 
$$-\frac{5}{2} + \ln 15$$

D. 
$$\frac{5}{2} + \ln 16$$

- 432. Which of the following is equal to  $J_0 = x+1$ A.  $-\frac{3}{2} + \ln 16$ B.  $-\frac{5}{2} + \ln 15$ C.  $-\frac{5}{2} + 4\ln 2$ D.  $\frac{5}{2} + \ln 16$ 433. If  $f(x) = \begin{cases} \sin x, & x \le 0 \\ 3x\sqrt{x^2 + 1}, & x > 0 \end{cases}$ , which of the following is equal to  $\int_{-\frac{\pi}{2}}^{\sqrt{8}} f(x) dx$ ?

- 434. Which of the following is an anti-derivative of  $f(x) = \tan x$ ?

| A. | $\frac{1}{2}tar$ | $i^2x$ |
|----|------------------|--------|
|----|------------------|--------|

B. 
$$sec^2x$$

C. 
$$ln(cos x)$$

D. 
$$ln(sec x)$$

435. The volume of the solid which is generated when the region bounded by  $y = \sqrt{x+1}$  about the xaxis from x = 0 to x = 2 is rotated about the x-axis is equal to?

C. 
$$\frac{4}{3}\pi$$

D. 
$$\frac{3}{4}\pi$$

436. What is the ant-derivative of  $f(x) = \frac{2}{4x^2 + 4x + 1}$ ?

A.  $\frac{1}{2x+1}$  B.  $\frac{-2}{2x+1}$  C.  $-\frac{1}{2x+1}$ 437. Which one of the following is equal to  $\int (1+x)3^x dx$ ?

A. 
$$\frac{1}{2x+1}$$

B. 
$$\frac{-2}{2n+1}$$

C. 
$$-\frac{1}{2x+1}$$

D. 
$$\ln(4x^2 + 4x + 1)$$

A. 
$$(1+x)3^x - 3^x + c$$

C. 
$$(1+x)(3^x \log_3 e) - 3^x (\log_3 e)^2 + c$$

B. 
$$(1+x)3^x + 3^x(\log_3 e) + c$$

D. 
$$(1+x)(3^x \log_3 e) - 3^x(\log_3 e) + c$$

438. Which one of the following is equal to  $\int \frac{1}{x^2+x} dx$ ?

A. 
$$\ln|x^2 + x| + c$$

C. 
$$\ln|x| - \ln|x + 1| + c$$

B. 
$$2 \ln|x + 1| + \ln|x| + c$$

$$2 \ln|x + 1| + \ln|x| + c$$
 D.  $\ln|x| + \ln|x + 1| + c$ 

439. What is the value of  $\int_0^{\frac{\pi}{2}} 2x \cos x \, dx$ ?

A.  $\pi - 2$  B.  $\frac{\pi}{2} + 1$  C.  $\pi + 2$ 

A. 
$$\pi - 2$$

B. 
$$\frac{\pi}{2} + 1$$

C. 
$$\pi + 2$$

D. 
$$\frac{\pi}{2} - 1$$

440. Which one of the following is equal to  $\int \frac{\ln(xe^x)}{r} dx$ ?

A. 
$$\ln|x| + \frac{1}{2}e^x + c$$

C. 
$$\ln|x| + e^{2x} + c$$

B. 
$$\frac{1}{2}(\ln x)^2 + x + a$$

D. 
$$-\frac{1}{x^2} + (\ln x)^2 + c$$

B.  $\frac{1}{2}(\ln x)^2 + x + c$  D.  $-\frac{1}{x^2} + (\ln x)^2 + c$ 441. What is the area of the region between the graphs of  $y = x^2$  and y = -x + 2, where  $0 \le x \le 2$ ? A. 3 B. 2 C.  $\frac{3}{2}$  D.  $\frac{2}{3}$ 

C. 
$$\frac{3}{2}$$

D. 
$$\frac{2}{3}$$

442. A water tank is a circular cylinder with base radius 2m and height 3m. if the tank is empty and water is pumped into it at rate of  $2 m^3/min$ , how long does it take for the tank to be full?

B. 
$$\frac{3}{2}\pi$$
 min

C. 
$$6\pi$$
 min

- 443. If F(x) is anti-derivative of  $f(x) = 1 \frac{2}{x^2}$  and F(1) = 0, then F(2) is equal to:

B. 
$$\frac{1}{2}$$

C. 
$$-\frac{1}{2}$$

444. What is the area of the region between the graphs of  $y = -x^2 + 2$  and y = |x|, where  $-1 \le x \le 2$ ?

A. 
$$\frac{11}{6}$$

B. 
$$\frac{25}{6}$$

C. 
$$\frac{7}{2}$$

D. 
$$\frac{11}{3}$$

445. What is the derivative of  $(x) = \int_0^{(x^2 + \pi)} \frac{dt}{\sin t + 1}$ ?

A.  $\frac{\cos x}{\sin(x^2 + \pi) + 1}$ C.  $\frac{2x \cos x}{\sin(x^2 + \pi) + 1}$ 

A. 
$$\frac{\cos x}{\sin(x^2+\pi)+1}$$

C. 
$$\frac{2x\cos x}{\sin(x^2+\pi)+}$$

B. 
$$\frac{2x}{\sin(x^2+\pi)+1}$$

D. 
$$\int_0^{2x} \frac{dt}{\sin t + 1}$$

Which one of the following is equal to  $\int_0^{\frac{\pi}{2}} (\frac{x-\sin x}{\sec x}) dx$ ?

A. 
$$\frac{\pi - 3}{2}$$

$$B.\frac{\pi-1}{2}$$

C. 
$$\frac{3-\pi}{2}$$

D. 
$$\frac{\pi+3}{2}$$

A.  $\frac{\pi-3}{2}$  B.  $\frac{\pi-1}{2}$  C.  $\frac{3-\pi}{2}$  D.  $\frac{\pi+3}{2}$  447. What is the area of the region between the graph of  $f(x) = -x^2 + 4x - 3$  and the x-axis from x = 0 to x = 3?

A. 
$$-\frac{2}{3}$$

B. 
$$\frac{2}{3}$$

C. 
$$\frac{4}{5}$$

D. 
$$\frac{8}{3}$$

448. Which one of the following is equal to  $\int \frac{x + \ln(x+1)}{(x+1)^2} dx$ ?
A.  $\ln(x+1) + \frac{x}{1-x} = 0$ 

A. 
$$\ln(x+1) + \frac{x}{x+1} + c$$

C. 
$$(x+1)^2 - \frac{x}{x+1} + c$$
  
D.  $\frac{x \ln(x+1)}{x+1} + c$ 

B. 
$$(x+1)^2 + \frac{x}{x+1} + c$$

D. 
$$\frac{x \ln(x+1)}{x+1} + e^{-x}$$

- 449. If  $f(x) = 2x(x^2 + 1)^4$  which one of the following is an anti-derivative of f(x)? C.  $\frac{x}{5}(x^2+1)^5+c$ A.  $\frac{2x}{5}(x^2+1)^5+c$ 
  - B.  $\frac{2}{5}(x^2+1)^5+c$ D.  $\frac{1}{5}(x^2+1)^5+c$
- 450. What is the area of the region between the graphs of  $y = \sin x$  and the x-axis where  $0 \le x \le 2\pi$ ? A. 4 B.  $4\pi$
- 451. If f and g are continuous on  $\Re$  and  $a, b \in \Re$ , which one of the following is necessarily true? A. If  $\int_a^b f(x)dx = \int_a^b g(x)dx$ , then f(x) = g(x) for all  $x \in [a, b]$ .
  - B. If f'(x) = g'(x) for all  $x \in [a, b]$ , then  $\int_a^b f(x) dx = \int_a^b g(x) dx$ .
  - C. If  $f(x) \ge 3$  for all x[-2, 2], then  $\int_{-2}^{2} f(x) \ge 12$ .
- D.  $\int_{a}^{b} f(x)dx = \int_{b}^{a} f(x)dx$ . 452. Which one of the following is equal to  $\int \frac{\ln x + x^{2}e^{x}}{x}$ A.  $\frac{1}{2}\ln^{2}x + e^{x}(x^{2} 1) + c$ C.  $\frac{1}{x^{2}}\ln x + e^{x}(x 1) + c$ D  $-\frac{1}{x^{2}}\ln x + e^{x}(x^{2} 1) + c$
- 453. The derivative of the function  $F(x) = \int_{-x}^{x} \frac{1}{1+t} dt$  is equal to:
- A.  $\frac{2}{1-x^2}$  B.  $\ln|1+x|$  C.  $\frac{1}{1+x}$  D.  $\ln\left|\frac{1+x}{1-x}\right|$ 454. Which of the following is equal to  $\int \frac{(\ln x)^2 + x^2 \cos x}{x} dx$ ?

  A.  $\frac{1}{x^2} \ln x + x \sin x \cos x + c$  C.  $\frac{1}{3} (\ln x)^3 + x \sin x + \cos x + c$ B.  $\frac{1}{3} (\ln x)^3 + x \sin x \cos x + c$  D.  $\frac{1}{x^2} \ln x + x \sin x + \cos x + c$ 455. The volume of the solid generated when the region bounded between the graph of  $(x^2, 0 < x < 2)$
- - $y = \begin{cases} x^2, & 0 \le x \le 2\\ 4, & 2 \le x \le 3 \end{cases} \text{ and the x-axis is:}$ A.  $\frac{32\pi}{5}$ B.  $\frac{112\pi}{5}$ C.  $\frac{112\pi}{3}$
- 456. If  $(x) = 3x^2\sqrt{x^3 1}$ , then which one of the following is an anti-derivative of f(x)?
  - A.  $\frac{3x}{2}(x^3-1)^{\frac{3}{2}}+c$

C.  $\frac{3}{2}(x^3-1)^{\frac{3}{2}}+c$ 

B.  $\frac{2}{3}(x^3-1)^{\frac{3}{2}}$ 

- D.  $\frac{3}{2}(x^3-1)^{\frac{2}{3}}+c$
- 457.  $\int_0^3 (x+1)^{\frac{1}{2}} dx$  is equal to:

- 457.  $\int_{0}^{3} (x+1)^{\frac{1}{2}} dx \text{ is equal to:}$ A.  $\frac{21}{2} \qquad \text{B. } \frac{14}{3} \qquad \text{C. 7} \qquad \text{D. } \frac{16}{3}$ 458. Given  $f_{0} = \begin{cases} -x+1, & x < 0 \\ \cos \pi x, & x \ge 0 \end{cases}$ , then  $\int_{-1}^{1} f(x) dx = \frac{1}{2} \qquad \text{C. } \frac{1}{2} \qquad \text{D. } -\frac{1}{2}$ 458. Given  $(x) = (\cos nx)$ ,  $x = -\frac{1}{2}$ A.  $\frac{1}{2} + \frac{1}{\pi}$ B.  $\frac{1}{2} - \frac{1}{\pi}$ C.  $\frac{1}{2}$ 459. The value of  $\int_0^1 (x+1) e^{(x^2+2x)} dx$  is:

  B.  $\frac{e^4 - e}{2}$ C.  $\frac{e^3 - 1}{2}$ D.  $e^3 - 1$

- 460. If f(0) = -1, f(1) = 2 and f'(x) is continuous on [0, 1], then which of the following is equal to  $\int_0^1 f'(x) \sqrt{2 + f(x)} \, dx ?$

D.  $\frac{4}{3}$ 

- 461. What is the value of  $\int_0^{\ln\sqrt{3}} \frac{e^x}{e^{-x} + e^x} dx$ ?
  - A.  $\frac{1}{2} \ln 2$
- C. ln 2
- D. 1

# ETHIO NATIONAL SCHOOL

| 462. | What is the value of the  | he area of the r | region enclosed | by the graph | $of f(x) = e^x$ | and | g(x) = x | x |
|------|---------------------------|------------------|-----------------|--------------|-----------------|-----|----------|---|
| h    | etween the lines $\gamma$ | 1 and $r = 19$   |                 |              |                 |     |          |   |

A. 
$$\frac{e^2-1}{a}$$

B.
$$e^{2} - \frac{1}{e}$$

C. 
$$e^2 - \frac{1}{a} + 2$$

A. 
$$\frac{e^2-1}{e}$$
 C.  $e^2 - \frac{1}{e} + 2$  D.  $e - \frac{1}{e} + 2$ 

463. Which of the following is equal to the volume of the solid generated when the region bounded by the  $y = 2\sqrt{x+1}$  and the x-axis, when  $0 \le x \le 2$ , rotates about the x-axis? graph of

$$B.8\pi^2$$

C. 
$$16\pi$$

464. A particle moves along the x-axis with velocity given by  $v(x) = 3t^2 + 6t$  for time  $t \ge 0$ . If the particle is at position

x = 2 at time t = 0, what is the position of the particle at t = 1?

$$\mathbf{B}$$

465. Which of the following is equal to  $\int x(e^x + \sin(x^2))dx$ ?

A. 
$$e^{x}(x+1) + \frac{1}{2}\sin(x^2) + e^{x}$$

C. 
$$e^{x}(x-1) - \frac{1}{2}\cos(x^2) + c$$

B. 
$$e^x(x-1) - \frac{1}{2}\sin(x^2) + c$$

A. 
$$e^{x}(x+1) + \frac{1}{2}\sin(x^{2}) + c$$
 C.  $e^{x}(x-1) - \frac{1}{2}\cos(x^{2}) + c$   
B.  $e^{x}(x-1) - \frac{1}{2}\sin(x^{2}) + c$  D.  $e^{x}(x-1) + \frac{1}{2}\cos(x^{2}) + c$ 

466. If  $2 \le f'(x) \le 4$  for all values of x, then the value of f(8) - f(2) is between which of the following numbers?

467. What is the area of the region enclosed by the graph of  $y^2 = x + 1$  and  $y^2 = -x + 1$ ?

C. 
$$\frac{8}{3}$$
 sq. units D.  $\frac{3}{4}$  sq. units

A.  $\frac{3}{8}$  sq. units

B.  $\frac{4}{3}$  sq. units

468. What is the value of  $\int_{1}^{2} \frac{x+4}{x(x+2)} dx$ ?

D. 
$$\ln 4 - \ln 2$$

469. If  $f'(x) = e^{x-1} + 3x^2 - \frac{1}{x}$  and f(1) = 5, what is f(x)?

A. 
$$f(x) = e^{x-1} + 3x^2 + \frac{1}{x^2} + 2$$

C. 
$$f(x) = e^{x-1} + 3x^2 - \frac{1}{x} + 5$$

B. 
$$f(x) = e^{x-1} - x^3 + \ln x + 5$$

D. 
$$f(x) = e^{x-1} + x^3 - \ln x + 3$$

470. What is the value of  $\int_1^9 \frac{e^{\sqrt{x}}}{\sqrt{x}} dx$ ?

A. 
$$e^3 - e$$

B. 
$$\frac{e^3}{3} - e$$

C. 
$$e\left(e^2 - \frac{1}{3}\right)$$
 D.  $2(e^3 - e)$ 

D. 
$$2(e^3 - e)$$

471. What is the value of  $\int x\sqrt{1-x^2} dx$ ?

A. 
$$-\frac{1}{3}(1-x^2)^{\frac{3}{2}}+c$$

C. 
$$(1-x^2)^{\frac{3}{2}}+c$$

B. 
$$-2x\sqrt{1-x^2} + c$$

D. 
$$\frac{1}{2}\sqrt{1-x^2} + c$$

472. What is the value of  $\int \frac{1}{x} (\ln x + x^2 e^{-x}) dx$ ?

A. 
$$\frac{1}{2}x^2 \ln x - (x+1)e^{-x} + c$$

C. 
$$\frac{1}{2}x^2 \ln x + (2-x)e^{-x} + c$$

B. 
$$\frac{1}{2}ln^2x - (x+1)e^{-x} + c$$

D. 
$$\frac{1}{2}ln^2x + (2-x)e^{-x} + c$$

473. A cylindrical tank whose inner diameter is 2 m and contains  $4\pi m^3$  oil. If the oil is discharged from the tank at the rate of  $\frac{2\pi}{3}m^3/min$ , then how long (in min) does it take for the tank to be empty?

A. 
$$\frac{4}{3}$$

474. If  $F(X) = \int_0^x e^{-t} dt$ , then what is the value of F'(x)?

A. 
$$e^{-x}$$

B. 
$$-e^{-x} - 1$$

C. 
$$\frac{e^{-x+1}}{-x+1}$$

D. 
$$-e^{-x}$$

475. What is the value of  $\int_{1}^{2} \frac{\ln x}{x^{2}} dx?$ A.  $-\frac{\ln 2}{2} - \frac{1}{2}$ B.  $\frac{\ln 2}{2}$ 

A. 
$$-\frac{\ln 2}{2} - \frac{1}{2}$$

B. 
$$\frac{\ln 2}{2} - \frac{1}{2}$$

C. 
$$-\frac{\ln 2}{2} + \frac{1}{2}$$
 D.  $\frac{\ln 2}{2} + \frac{1}{2}$ 

D. 
$$\frac{\ln 2}{2} + \frac{1}{2}$$

476. What is the value of  $\int \frac{x^{e^{-1}} + e^{x-1}}{x^e + e^x} dx$ ?

A. 
$$\frac{1}{2}\ln(x^e + e^{x+1}) + c$$

C. 
$$\frac{1}{2}\ln((x+1)^e + e^{x+1}) + c$$

$$B. \quad \frac{1}{2}\ln(x^e + e^x) + c$$

D. 
$$\frac{1}{2}\ln(x^{e+1}+e^{x+1})+c$$

477. What is the area of the region bounded by the lines x = 0, x = 2, y = 1 and the curve  $y = e^{2x}$ ?

A. 
$$\frac{e^4}{2} - \frac{5}{2}$$

B. 
$$\frac{e^2}{2} - \frac{1}{2}$$

C. 
$$\frac{e^3}{3} - \frac{1}{3}$$

478. If the region enclosed by the graphs of  $f(x) = x^2$  and  $f(x) = x^3$  from x = 0 to x = 1 rotates about the x-axis, what is the volume of the solid revolution (in cubic units)?

A. 
$$\frac{2\pi}{27}$$

B. 
$$\frac{2\pi}{25}$$

C. 
$$\frac{2\pi}{5}$$

D.  $\frac{2\pi}{35}$ 

479. What is the value of  $\int 4x \left( \ln x + \frac{1}{x^2} \right) dx$ ?

A. 
$$4x^2(\ln x + 1) - 2x^2 + c$$

C. 
$$x^2(2 \ln x + 1) + 4 \ln x + c$$

B. 
$$x^2(4 \ln x - 1) + 2 \ln x + c$$

D. 
$$x^2(2 \ln x - 1) + 4 \ln x + c$$

480. If a sphere with center C(0, 1, 1) intersects the z-axis at p(0, 0, 3), then the radius of the sphere is equal to:

B. 3

 $C.\sqrt{3}$ 

481. Let  $\ell_1$  and  $\ell_1$  be two lines in space intersecting at the origin, (0, 0, 0). If  $\ell_1$  and  $\ell_1$  passes through A(1, 1, 0) and B(0, 1, 1), respectively, then the angle between  $\ell_1$  and  $\ell_1$  is equal to:

B. 45°

482. Let  $\vec{V} = 3i - 4k$ , and  $\vec{AB}$  is a vector from point A(0, 1, 2) to a point B in space. If  $\vec{AB}$  is parallel to  $\vec{V}$ and  $|\overrightarrow{AB}| = 10$ , then point B is at:

A. 
$$(-6, -1, 10)$$

C. 
$$(6, 1, -6)$$

B. 
$$(6, -1, -10)$$

D. 
$$(-6, -1, 6)$$

483. Let  $\vec{a} = -i + 3k$  and  $\vec{b} = -i + j$  be vectors in space. Which one of the following is the cosine of the angle between  $\vec{a}$  and  $\vec{a} - \vec{b}$ ?

A.  $\frac{9}{10}$  B.  $\frac{3}{5}$  C.  $\frac{3}{\sqrt{10}}$  D.  $-\frac{9}{10}$ 484. Suppose A and B are the end points of a diameter of the sphere whose equation is  $x^2 + y^2 + (z + 2)^2 = 1$ . If A=(1, 0, -2), then B is equal to:

A. (0, 1, -2)

C. (-1, 0, -2)

B. (0, 0, -1)

D. (0, -1, -2)

485. Suppose P(1, 2, 1) and Q(1, 0, 2) are points in space and  $\vec{A} = \overrightarrow{PQ}$  if  $\vec{B}$  is parallel to  $\vec{PQ}$  and  $\vec{A} \cdot \vec{B} = -10$ , then which one of the following is true?

A.  $\vec{A}$  and  $\vec{B}$  have the same direction.

C. 
$$|\vec{B}| = \frac{1}{10} |\vec{A}|$$

B. 
$$|\vec{B}| = 10|\vec{A}|$$

D. 
$$|\vec{B}| = 2|\vec{A}|$$

486. Which one of the following points is closer to the sphere  $x^2 + y^2 + z^2 - 2x + 6z + 9 = 0$ ?

A. (1, 0, 0)

B.(0,0,0)

C. (0, -1, 0)

D. (0, 0, -1)

487. Suppose  $\vec{A} = 2j - k$  and  $\vec{B} = 5i + 15k$  where i, j and k are the standard unit vectors in the direction of positive x, y and z-axis, respectively. Which one of the following is the unit vector in the direction of  $\vec{A} + \frac{1}{5}\vec{B}$ ?

A. 
$$\frac{3}{5}i + \frac{4}{5}k$$
  
B.  $\frac{1}{3}i + \frac{2}{3}j + \frac{2}{3}k$ 

A.  $\frac{3}{5}i + \frac{4}{5}k$ B.  $\frac{1}{3}i + \frac{2}{3}j + \frac{2}{3}k$ D.  $\frac{2}{3}i - \frac{1}{3}j + \frac{2}{3}k$ 488. Let  $\vec{a} = 2i + (x - 1)j + k$  and  $\vec{c} = i - j + yk$  be vectors. If  $\vec{a} \cdot \vec{c} = 0$  and  $|\vec{a}| = 3$ , which one of the following is possible value of y?

A. -4

C. 3

D. 4

489. Suppose  $\vec{A} = 2i - j + 2k$  and  $\vec{B}$  is a vector in space such that  $|\vec{B}| = \vec{A} \cdot \vec{B}$ . if  $\vec{u}$  is a unit vector in the direction of  $|\vec{B}|$ , then  $|\vec{A} + \vec{u}|^2$  is equal to:

A. 16

C. 10

D. 14

respectively, what is  $\vec{A}$ ?

|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | •                             | <u>-</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is on the negative z-axis and the                                          |
|--------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------|
| an                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | Ind  Q  is 6.11  P = (2, -    | (1,0), then what is the coord                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                                                                            |
|                          | A. $(-2, 1, 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | C. $(2,-1,-6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     |                                                                            |
|                          | B. $(2, -1, 6)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | 21                            | D. $(-2, 1, -4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | 1                                                                          |
|                          | _                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | + 1, 3, 3 $\alpha$ ) are points in spa                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             | ace, what should be the value(s) of                                        |
| и                        | A. $\alpha = -2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | <u>=</u>                      | C. $\alpha = -1$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | or $\alpha = 3$                                                            |
|                          | B. $\alpha = 0$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                             |                               | D. $\alpha = -3$ or                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                                                            |
| 402                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | re, then which one of the following                                        |
|                          | true about the sphe                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | ints of a diameter of a spiler                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | e, then which one of the following                                         |
| 13                       | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | a point on the sphere         |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | $z^2 + (y-1)^2 + z^2 = 6.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | $x^2 + (y-1)^2 + z^2 = 0.$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                                                            |
|                          | -                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | s of the sphere is 6.         | + (y-2) + 2 = 0.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |
| 402                      |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | $\frac{2}{3} + \frac{2}{3} + \frac{2}$ | mussants a subara Whore is the                                             |
| 493.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | presents a sphere. Where is the                                            |
| ро                       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | ted relative to the sph       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | f the enhance                                                              |
|                          | A. Inside the                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | •                             | C. At the center o                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | ±                                                                          |
| 404                      | B. On the sph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                               | D. outside the sph                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                                            |
| 494.                     |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | _                             |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $(z-2)^2 = 9$ and intersects the                                           |
| sp                       | 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              |                               | ne angle between $\ell$ and posi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                                            |
|                          | A. $\frac{2}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B. $\frac{1}{3}$              | C. $\frac{3}{5}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D. $\frac{4}{5}$                                                           |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | <u>-</u>                      | 2008                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                                                            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | and Q are points in space. If                                              |
| $\vec{V}$ .              | $\overrightarrow{PQ} = 2$ , the what                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | is the distance between       |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
|                          | A. $\frac{3}{4}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | B. $\frac{4}{5}$              | C. $\frac{4}{3}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | D. $\frac{5}{4}$                                                           |
|                          | 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 3                             | S                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4                                                                          |
| 496.                     | What is the value                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | of k, for which the tw        | vo vectors $\vec{u} = \begin{pmatrix} 1 \\ k \\ -3 \end{pmatrix}$ and $\vec{b}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $\vec{V} = \begin{pmatrix} 2k \\ -5 \\ 4 \end{pmatrix}$ are perpendicular? |
|                          | A. 4                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B4                            | C. 3                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D3                                                                         |
| 497.                     | If one of the end p                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | point of the line segme       | ent is $(3, 2, -4)$ and the mi                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | d-point is $(4, 1, -2)$ , then the                                         |
|                          | ordinate of the oth                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |                               | ` ' '                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 1                                                                          |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | C. (5. 1. 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D (3.1.0)                                                                  |
|                          | 11. (5, 6, 6)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 2009                          | C. (5, 1, 2)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | 2. (3, 1, 5)                                                               |
| 498.                     | Let $\vec{A}$ and $\vec{B}$ be ve                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | ectors in space such the      | hat $\vec{A}$ and $\vec{B}$ be vectors in sp                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | pace such that $\vec{A}$ . $\vec{B} = -2$ and                              |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | ween $\vec{A}$ and $\vec{B}$ , then what is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        |                                                                            |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
|                          | A. $\frac{1}{5}\cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | B. $\frac{1}{5\cos\theta}$    | C. $-\frac{1}{5}\cos\theta$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | D. $-\frac{1}{5\cos\theta}$                                                |
| 499.                     | If P(2, $\sqrt{5}$ , 1) and                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | O(3, 0, 9) are points         | on a sphere whose center is                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | s on z-axis, then which one of the                                         |
|                          | , ,                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | outside of the sphere?        |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
| 10                       | A. $(-4, 3, 5)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               | C. (3, 1, 1)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | D. (0,0,0)                                                                 |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | -                                                                          |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | $(0,2)$ and $C(2,\sqrt{3},2)$ | are vertices of equilateral t                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | triangle in space, then what is the                                        |
| va                       | lue of x?                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      |                               |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    |                                                                            |
|                          | A. 5                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | B. 3                          | C. 2                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               | D. 1                                                                       |
|                          |                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                | a > 0, be a point or          | 1 the sphere $x^2 + y^2 + z^2$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     | -6z = 0 and C be center of the                                             |
| _                        | here. If $P(k, 2, 4)$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | ——                            | —                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                                                            |
| $\frac{\mathrm{Is}}{P0}$ | A CONTRACTOR OF THE CONTRACTOR | ch that <i>PA</i> is perpend  | dicular to $CA$ , what is the co                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | osine of the angle between $\overrightarrow{PA}$ and                       |
|                          | A. $\frac{5}{\sqrt{35}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       | B. $\frac{7}{\sqrt{35}}$      | C. $\frac{7}{\sqrt{70}}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | D. $\frac{5}{\sqrt{70}}$                                                   |
|                          | √3 <u>5</u>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    | $-\sqrt{35}$                  | $\sqrt{70}$                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                        | $\sqrt{70}$                                                                |

502. If the dot product of a vector  $\vec{A}$  with the vectors i - j + k, 2i + j - 3k and i + j + k are 4, 0 and 2,

**39** | Page

A. 
$$\vec{A} = (2, 1, 1)$$

C. 
$$\vec{A} = (-2, -1, 1)$$

B. 
$$\vec{A} = (-2, 1, -1)$$

D. 
$$\vec{A} = (2, -1, 1)$$

503. Let  $P = (1, \alpha, \alpha)$  and  $Q = (\alpha - 1, 1, 1)$  be two points in space and the distance between P and Q is 3. Then what is the value(s) of  $\alpha$ ?

A. 
$$\alpha = -1$$
,  $\alpha = 9$ 

C. 
$$\alpha = 3$$
,  $\alpha = \frac{-1}{3}$ 

B. 
$$\alpha = 1$$
,  $\alpha = -9$ 

D. 
$$\alpha = -3$$
,  $\alpha = \frac{1}{3}$ 

504. If the angle between the vectors  $\vec{A} = (2, -1, 1)$  and  $\vec{B} = (1, 1, \alpha)$  is  $\frac{\pi}{3}$ , then what is the value of  $\alpha$ ?

- B. -1

C. 2

D. -2

505. If the point  $(\alpha, 0, 3)$  is on the sphere whose center is (1, 2, 3) and radius 2, what is the value of  $\alpha$ ?

C. 2

D. 
$$-3$$

506. If  $\vec{u} = 2j - k$  and  $\vec{v} = i - 8j + 3k$ , then what is the unit vector in the direction of 5u + v?

A. 
$$i + 2j - 2k$$

C. 
$$\frac{1}{3}i + \frac{2}{3}j - \frac{2}{3}k$$

B. 
$$\frac{2}{3}i + \frac{1}{3}j - \frac{2}{3}k$$

D. 
$$\frac{1}{3}i + \frac{2}{3}j + \frac{2}{3}k$$

507. Let  $a_n = n^2 - n$ , when  $n \in \mathbb{N}$  (the set of natural number). Which one of the following is true, when k is arbitrary chosen natural number and m is an integer?

A.  $a_n$  is not a multiple of 2 for some  $n \in \mathbb{N}$  because  $a_1 = 0$ .

B.  $a_n$  is a multiple of 2 for all  $n \in \mathbb{N}$  because  $a_1 = 0$  and if  $a_k = 2m$ , then  $a_{k+1} = 2(m+1)$ .

C.  $a_n$  is a multiple of 2 for all  $n \in \mathbb{N}$  because  $a_1 = 0$  and if  $a_k = 2m$ , then  $a_{k+1} = 2(m+k)$ .

D.  $a_n$  is a multiple of 3 for all  $n \in \mathbb{N}$  because  $a_1 = 0$  and if  $a_k = 3m$ , then  $a_{k+1} = 3(m+k-1)$ .

Consider the following statement:

$$\frac{x^2+2}{x} \neq 0$$
 for every real number x.

To show this, a person constructed the following proof.

"**Proof**: Take 
$$x = 1$$
. Then  $\frac{x^2+2}{x} = \frac{1^2+2}{1} \neq 0$ .  
In the same way, if we take  $x = n$  for any real number n we get

$$\frac{x^2 + 2}{x} = \frac{n^2 + 2}{n} \neq 0.$$

It follows that  $\frac{x^2+2}{x} \neq 0$ , for real number x."

Which one of the following is true about the proof?

A. The proof is correct by the principle of induction.

B. The proof is correct by the method of exhaustion.

C. The proof is correct and it uses the method of direct proof.

D. It is not a valid proof since its argument cannot lead to the conclusion.

509. Which one of the following describes the principle of Mathematical induction on the set of natural numbers?

A. If an assertion is true for a natural number n, then it is true for n + 1.

B. If the assertion is true for 1 and it is true for n + 1, then it is true for some n.

C. If the assertion holds for n = 20 and for any  $n \ge 20$ , then it is true for n implies true for n + 1.

D. If an assertion is true for n = 1, and is true for n = k, whenever is true for n = k + 1

The following is an assertion of a person and his proof. 510.

"for any natural number n,  $n! < 10^n$ .

# **Proof:**

Step1. Let n = 1. Since 1! = 1 and  $10^1 = 10$ , it is true that 1! < 10.

Step2. Let n = 2. Since 2! = 2 and  $10^2 = 100$ , it is true that  $2! < 10^2$ .

Step3. Let n = 3. Since 3! = 6 and  $10^3 = 1000$ , it is true that  $3! < 10^3$ .

Step4. Continuing in this manner, we can see that whenever

 $k! < 10^k$  is true, then  $(k+1)! < 10^{k+1}$  is also true.

Therefore, by induction,  $n! < 10^n$  for all natural numbers."

- A. The proof is correct by the principle of mathematical induction, though step2 and step3 can be omitted.
- B. The proof is correct by the principle of mathematical induction; and step2 and step3 are necessary since they provide additional information.
- C. The proof is invalid because step4 did not justify the desired induction step.
- D. The proof follows the technique of a proof by exhaustion.
- 511. Consider the formula for a natural number  $n \in \mathbb{N}$ :

$$2 + 4 + 8 + \dots + 2^n = 2^{n+1} + 1$$

To proof this formula a person has used the following argument.

"Assume the formula is true for n = k, for some  $k \in \mathbb{N}$ . Then the person has shown that the formula is also true for n = k + 1. And then, the person has conclude that, by the principle of Mathematical induction, the formula is true for all natural number  $n \in \mathbb{N}$ ." Which one of the following is true about the above arguments?

- A. The formula holds true through it does not work for n = 1.
- B. Since the left-hand side is an even number and the right hand-hand side an odd number, the principle of Mathematical induction is false.
- C. This is one example where the principle of mathematical induction fails to work.
- D. The above formula does not work for all natural numbers for  $n \in \mathbb{N}$ .
- 512. Which one of the following is a valid assertion that can be proved by the principle of mathematical induction?
  - A.  $2^n > 10n$  for every integer n such that  $n \ge 6$ .
  - B.  $r^2 > 0$  for every real number r such that  $r \ge 1$ .
  - C.  $n^2 + 10n > 2n^2$  for every natural number  $n \ge 1$ .
  - D.  $2^n > 8n$  for every integer n such that  $n \ge 3$ .
- 513. Consider the following assertion of a person and his proof.

"If x and y are equal positive integers, then x + y = y."

**Proof:** The following steps and reasons are used to proof the assertion.

# Step

# 1. x = y

2. 
$$x^2 = xy$$
  
3.  $x^2 - y^2 = xy - y^2$ 

4. 
$$(x - y)(x + y) = (x - y)y$$

5. x + y = y

# Reason

Given hypothesis

Multiply both sides of (1) by x

Subtract  $y^2$  from both sides of (2)

Factor both sides of (3)

Divide both sides of (4) by x - y

Step 5 completes the proof.

Which one of the following is true about this proof?

- A. It is a correct direct proof of the assertion.
- B. It follows the technique of a proof by contradiction because the steps lead to a contradiction.
- C. The proof is invalid because step 4 does not lead to step 5.
- D. The proof is invalid because step 4 does not followed from step 3.

514. Which one of the following is a valid assertion that can be proved by the principle of mathematical induction?

- A. The sum of any two rational numbers is positive.
- B.  $r^2 \ge 1$ , for every real number  $r \ge 1$ .
- C.  $n^2 \ge 4n$ , for every integer  $n \ge 4$ .
- D.  $2^n \le 4^n$ , for every integer  $n \le 100$ .
- 515. Consider the assertion: "The sum of positive irrational numbers is positive irrational number". Which one of the following is correct about the assertion?
  - A. Taking the irrational numbers such as  $\sqrt{2}$ ,  $\sqrt{3}$ ,  $\sqrt{5}$ ,  $\sqrt{6}$ ,  $\sqrt{7}$  and so on, if we add any two of them, the sum is irrational. Therefore the assertion is true.
  - B. The sum of  $1 + \sqrt{2}$  and  $1 \sqrt{2}$  is 2, which is rational. This is a counter example that disproves the assertion.

- C. The sum of  $\sqrt{7}$  and  $\sqrt{2}$  is a counter example that shows the assertion is false.
- D. The assertion can be disproved by taking the sum of  $1 + \sqrt{2}$  and  $2 \sqrt{2}$ .

- 516. Let P(n) be an open proposition on the set of natural number ( $\mathbb{N}$ ). Which one of the following is correct application of the principle of mathematical induction?
  - A. If P(1) is true for n = 1; and if both P(n) and P(n+1) are true for a certain  $n \in \mathbb{N}$ , then P(n) is true for all  $n \in \mathbb{N}$ .
  - B. If P(10) is true; and if P(n) is true implies that P(n+1) is true, then P(n) is true for all  $n \in \mathbb{N}$ .
  - C. If P(1) is true; and P(n)  $\Rightarrow$  P(n+1) is true for any  $n \in \mathbb{N}$ , then P(n) is true for all  $n \in \mathbb{N}$ .
  - D. If P(10) is true; and assuming P(n) is true for any n > 10 if it follows that P(n+1) is true, then P(n) is true for all n > 10.
- Consider the following assertion: 517.

 $p + 2^n$  is an odd number for any prime p and any  $n \in \mathbb{N}$ .

Which one of the following is correct about a prove or disprove of the assertion?

- A. The assertion can be proved by direct method; because p is odd and  $2^n = 2(2^{n-1})$  is even imply  $p + 2^n$  is odd since the sum of even and odd is odd.
- B. There is a counter example that disproves the assertion.
- C. The assertion can be proved by the direct method; because if  $n \notin \mathbb{N}$ , then  $2^n \notin \mathbb{N}$  and hence  $p + 2^n$  is not odd.
- D. The assertion can be proved by the method of assertion.

- 518. Which one of the following is a valid assertion that can be proved by the principle of mathematical induction?
  - A.  $3n + 25 < 3^n$ , for every integer  $n \ge 3$ . C.  $n^2 \le 2^n$ , for every integer  $n \ge 1$ .
  - B.  $2^n > n + 20$ , for every integer  $n \ge 4$ . D.  $n^3 n$  is divisible by 6, for every integer  $n \ge 1$ .
- 519. Which of the following is a correct assertion that can be proved by the principle of mathematical induction?
  - A.  $\frac{1}{n+1} \le 1$ , for each real number  $n \ge 1$ . C.  $2^p 1$  is prime for each prime integer p.
  - B.  $m! \le 4^m$ , for each positive integer m. D.  $k! \ge 2^k$ , for each integer  $k \ge 4$ .
- 520.  $\forall_n \in \mathbb{N}, 3^n 2$  is prime number that can be proved or disproved by which of the following mathematical proof?
  - A. Direct proof

C. Disprove by counter example

B. Proof by exhaustion

D. proof by contradiction.