Q: Let $\{-1, -\frac{1}{2}, 1, \frac{5}{2}, 3\}$ be a realization of a random sample of size 5 from a population having $N\left(\frac{1}{2}, \sigma^2\right)$ distribution, where $\sigma > 0$ is an unknown parameter. Let T be an unbiased estimator of σ^2 whose variance attains the Cramer-Rao lower bound. Then, based on the above data, the realized value of T (rounded off to two decimal places) equals

Solution:

Definition 1. Unbiased Estimator is defined as

$$E(\hat{\sigma^2}) = \sigma^2 \tag{1}$$

where, $E(\hat{\sigma^2})$ represents the expected value of the estimator $\hat{\sigma^2}$ and σ^2 represents the true parameter

Definition 2. The Cramér-Rao bound can be defined as follows:

$$Var(\sigma^2) \ge \frac{1}{I(\sigma^2)}$$
 (2)

where $I(\sigma^2)$ represents a measure of the amount of information in the data about the parameter σ^2 .

Definition 3. Variance of T attains Cramer-Rao lower bound

 \implies T has attained minimum possible variance and T is an efficient estimator

Therefore,

$$T = \frac{\sum (X_i - \mu)^2}{n}$$

$$n = 5$$
(3)

$$n = 5 \tag{4}$$

$$\mu = \frac{1}{2} \tag{5}$$

$$\frac{\sum (X_i - \mu)^2}{n} = 13.75\tag{6}$$

Hence,

$$T = 2.75 \tag{7}$$