Frage 1 Vollständig

Erreichte Punkte 2,00 von 2,00 Frage markieren

Sei
$$A=egin{pmatrix} 1 & 0 & -2 \ -2 & -9 & 5 \ 2 & -1 & -5 \end{pmatrix}$$
. Dann ist $||A||_1=$

Antwort: 12

Die richtige Antwort ist: 12

Frage 2

Vollständig Erreichte Punkte 0,00 von 2,00 Frage markieren

Sei
$$A=egin{pmatrix}2&-3&-3\\0&-2&1\\0&0&4\end{pmatrix}$$
 . Welchen Wert hat das charakteristische Polynom $P(\lambda)$ von A bei $\lambda=1$?

Antwort: 3

Die richtige Antwort ist: -9

Frage 3 Nicht beantwortet

beantwortet
Erreichbare
Punkte: 2,00

Frage
markieren

Sei

$$A = egin{pmatrix} 3 & 0 & 2 \ 0 & 2 & 1 \ 0 & 0 & 1 \end{pmatrix},$$

 $ec{x}$ Eigenvektor von A zum Eigenwert 2 und weiterhin x_3 die dritte Komponente von $ec{x}$, dann ist $x_3/\|ec{x}\|_1 =$

Antwort:

Die richtige Antwort ist: 0

Frage 4

Vollständig Erreichte Punkte 0,67 von 2,00 ₹ Frage markieren Ist A eine symmetrische Matrix, S jene Matrix, die die (orthonormierten) Eigenvektoren von A als Spalten enthält und D eine Diagonalmatrix, deren Diagonale die entsprechenden Eigenwerte von A enthält, so gilt

Wählen Sie eine oder mehrere Antworten:

 \blacksquare a. $A=SDS^T$

 $\ensuremath{\mbox{f eta}}$ b. $S^TAS=D$

 $_{\square}$ c. $A^2=SDS^T$

Die richtigen Antworten sind: AS = SD , $A = SDS^T$, $S^TAS = D$

Frage 5

Vollständig Erreichte Punkte 2,00 von 2,00 Frage markieren Welche der folgenden Aussagen ist/sind wahr?

Wählen Sie eine oder mehrere Antworten:

☑ a. Fehler können sich im Rahmen von Fließkommaoperationen verstärken.

 $_{oxdot}$ b. Fließkommamultiplikation ist assoziativ, dh. allgemein gilt $(a \cdot b) \cdot c = a \cdot (b \cdot c)$

☑ d. Die Präzision p eines Fließkommazahlensystems bestimmt die maximale Anzahl an signifikanten Stellen, die Zahlen in diesem System haben können.

Die richtigen Antworten sind: Fehler können sich im Rahmen von Fließkommaoperationen verstärken., Die Präzision p eines Fließkommazahlensystems bestimmt die maximale Anzahl an signifikanten Stellen, die Zahlen in diesem System haben können.