Statistiques (STA1)

Cours I – Rappels de statistiques : estimation, tests et intervalles de confiance

Luca Ganassali

Laboratoire de Mathématiques d'Orsay, Université Paris-Saclay

Jeudi 18 septembre 2025

Introduction

Introduction: cas pratique

On dispose d'un échantillon de 6 relevés du temps de trajet (en min) domicile/bureau d'un employé : x = (15, 17, 15, 18, 16, 15).

On souhaite répondre aux questions suivantes :

- 1. Quelle est la durée moyenne estimée d'un trajet sur l'année?
- 2. Peut-on affirmer avec peu de risque que la durée moyenne d'un trajet est supérieure à 15 min?
- 3. Peut-on donner un intervalle dans lequel la durée moyenne se trouve?
- 4. Si d'autres facteurs sont disponibles pour chaque relevé en plus du temps de trajet (météo, jour de la semaine, horaire...), certains d'entre eux influencent-ils la durée de trajet?
- 5. Quelle sera la durée d'un trajet demain?

Introduction : Statistiques vs Probabilités

• En probabilités, on cherche à étudier les propriétés d'une variable aléatoire qui suit une loi $\mathbb P$ connue :

$$\mathbb{P} \longrightarrow \mathsf{propri\acute{e}t\acute{e}s} \ \mathsf{de} \ \mathit{X} \sim \mathbb{P}$$

 En statistiques, à partir d'observations d'une loi ℙ inconnue, on cherche à apprendre (inférer) des propriétés de cette loi pour répondre à une question :

observations x d'un $X \sim \mathbb{P} \longrightarrow \mathsf{propri\acute{e}t\acute{e}s}$ de \mathbb{P}

Introduction: questions typiques en statistiques

- Modélisation: choisir convenablement un ensemble de lois P
 possibles, en adéquation avec (i) nos connaissances préalables, (ii)
 nos objectifs, (iii) les données, (iv) les capacités de calcul...
- Estimation : estimer la valeur d'un paramètre d'intérêt de la loi $\mathbb P$
- Intervalle de confiance : savoir encadrer la valeur du paramètre d'intérêt entre deux bornes
- Test : prendre une décision sur une hypothèse à l'aide des données
- Prédiction: pouvoir prédire la valeur prise par une nouvelle variable non encore observée

Enjeux:

- · Comprendre comment construire, comparer, choisir des procédures
- Quantifier la fiabilité, le risque de l'information obtenue

Introduction: cas pratique

On dispose d'un échantillon de 6 relevés du temps de trajet (en min) domicile/bureau d'un employé : x = (15, 17, 15, 18, 16, 15).

On souhaite répondre aux questions suivantes :

- Quelle est la durée moyenne estimée d'un trajet sur l'année? (estimation)
- 2. Peut-on affirmer avec peu de risque que la durée moyenne d'un trajet est supérieure à 15 min? (test)
- Peut-on donner un intervalle dans lequel la durée moyenne se trouve ? (intervalle de confiance)
- 4. Si d'autres facteurs sont disponibles pour chaque relevé en plus du temps de trajet (météo, jour de la semaine, horaire...), certains d'entre eux influencent-ils la durée de trajet? (modélisation)
- 5. Quelle sera la durée d'un trajet demain? (prédiction)

Introduction: contenu du cours

- Cours I (aujourd'hui) Rappels de statistiques : estimation, tests et intervalles de confiance
- Cours II Information de Fisher, estimation par maximum de vraisemblance
- Cours III Tests uniformément plus puissants, Théorème de Neyman-Pearson
- Cours IV Vecteurs gaussiens. Modèles linéaire et linéaire gaussien
- Cours V Régression linéaire 1/2 : Estimateur des moindres carrés, propriétés générales, tests de Student
- Cours VI Régression linéaire 2/2 : intervalle de confiance pour un coefficient, interprétation géométrique, erreur de prédiction, modèles emboités, lecture de résultats sur R...

Introduction: objectifs du cours

Être capable, en utilisant les bases de la statistique mathématique, de :

- Définir une modélisation adaptée à un jeu de données
- Construire des estimateurs, en étudier le risque, l'efficacité et l'asymptotique dans des cas simples
- · Construire des tests, des intervalles de confiance
- Travailler avec le modèle linéaire: estimation, prédiction, interprétation géométrique.
- Fitter un modèle linéaire avec un logiciel et interpréter les résultats obtenus
- Prendre en compte le risque de toute décision statistique et le quantifier.

Introduction: point logistique

Documents de support de cours : Moodle/E-Campus

Evaluation : un examen le vendredi 14 novembre 2025, 10h-12h, qui pourra comporter des questions théoriques et des questions pratiques d'interprétation de résultats. Il n'y aura pas de code informatique à écrire.

Chargés de TDs : G. Debaussart, A. Janon, H. Henneuse, B. Bouriquet, J. Capitao, L. Ganassali

Modélisation statistique

Modélisation statistique

Modéliser l'expérience, c'est proposer un ensemble de lois théoriques pour la distribution possible des données observées z (échantillon).

- Un modèle est la donnée de $\mathcal{M}=(\mathcal{Z},(\mathbb{P}_{\theta})_{\theta\in\Theta})$ avec
 - $(\mathcal{Z},\mathcal{A})$ espace mesurable (on omettra \mathcal{A} dans la suite)
 - $(\mathbb{P}_{\theta})_{\theta \in \Theta}$ une famille de lois de probabilité sur \mathcal{Z} , indexées par un ensemble Θ .

Quand $\Theta \subset \mathbb{R}^d$, le modèle est dit paramétrique.

- Les données z sont une réalisation (valeur) particulière prises par la variable aléatoire Z dans Z, et dont la loi appartient au modèle.
- Lorsque Z est de la forme $Z=(X_1,\ldots,X_n)$ avec les X_i indépendantes et identiquement distribuées (i.i.d.), on dit que X est un échantillon de taille n, ou n-échantillon. Dans ce cas, \mathcal{Z} s'écrit $\mathcal{Z}=\mathcal{X}^n$ et \mathbb{P}_θ s'écrit $\mathbb{P}_\theta=(\eta_\theta)^{\otimes n}$.
- Le modèle \mathcal{M} est dit identifiable lorsque pour deux paramètres différents, la loi de Z est différente, i.e. $\theta \in \Theta \mapsto \mathbb{P}_{\theta}$ est injective.

Exemples de modèles simples

• Étude de la moyenne (espérance) d'un temps de trajet:

$$\mathcal{M} = (\mathbb{R}^n, ((\mathcal{N}(\mu, \sigma^2)^{\otimes n})_{(\mu, \sigma^2) \in \mathbb{R} \times \mathbb{R}_+}).$$

- Variance supposée connue, par ex. $\sigma=5$: on modélise seulement la moyenne inconnue, $\theta=\mu$. Le processus de décision statistique d'après les données peut utiliser la valeur connue $\sigma=5$.
- Variance inconnue: fait partie du modèle, $\theta=(\mu,\sigma^2)$. Le processus de décision statistique d'après les données ne peut pas dépendre de σ (ni de μ).
- Estimation d'une proportion par sondage $\mathcal{M}=(\{0,1\}^n,(B(p)^{\otimes n})_{p\in[0,1]})$
- Comparaison du rendement de maïs sous deux conditions de culture :

$$(X_1,\dots,X_n)\sim \mathcal{N}(\mu_X,\sigma_X^2)^{\otimes n} \text{ et } (Y_1,\dots,Y_m)\sim \mathcal{N}(\mu_Y,\sigma_Y^2)^{\otimes m} \text{ indépendants}$$

(Les observations sont indépendantes mais pas de même loi)

Tous ces modèles sont identifiables. Exemple de modèles non identifiables : cf TD.

Estimation ponctuelle

Un objet mathématique: l'estimateur

Soit $\theta \in \Theta$ paramètre d'une loi \mathbb{P}_{θ} et $Z = (X_1, \dots, X_n)$ un n-échantillon de cette loi.

Une statistique est une variable aléatoire T_n , fonction mesurable de l'échantillon et calculable à partir de l'échantillon :

$$T_n = F(X_1, \ldots, X_n).$$

Un estimateur est une statistique utilisée pour estimer un paramètre ou une quantité d'intérêt $\varphi(\theta) \in \mathbb{R}^k$.

On notera $T_n = \widehat{\varphi}$.

Exemple : si Z est un n—échantillon de variables d'espérance finie μ , un estimateur de μ est par exemple $\widehat{\mu} = \overline{X} := \frac{1}{n} \sum_{i=1}^{n} X_i$, appelée moyenne empirique.

Biais, variance, risque quadratique d'un estimateur

Soit $\widehat{\varphi}$ un estimateur de $\varphi(\theta) \in \mathbb{R}^k$, fonction du paramètre d'une loi \mathbb{P}_{θ} .

• On appelle (fonction de) biais de $\widehat{\varphi}$ pour $\varphi(\theta)$ le vecteur

$$b_{\theta}(\widehat{\varphi}) = \mathbb{E}_{\theta}[\widehat{\varphi}] - \varphi(\theta) \in \mathbb{R}^k,$$

qui est fonction du vrai paramètre θ . Si $b_{\theta}(\widehat{\varphi}) = O_k$ pour tout $\theta \in \Theta$, $\widehat{\varphi}$ est dit sans biais pour estimer $\varphi(\theta)$.

• On appelle matrice de covariance de $\widehat{\varphi}$ la valeur (fonction du paramètre θ)

$$\mathrm{Var}_{\theta}(\widehat{\varphi}) = \mathbb{E}_{\theta}[(\widehat{\varphi} - \mathbb{E}_{\theta}[\widehat{\varphi}])(\widehat{\varphi} - \mathbb{E}_{\theta}[\widehat{\varphi}])^{\mathsf{T}}] \in \mathbb{R}^{k \times k}$$

• On appelle risque quadratique de $\widehat{\varphi}$ la valeur (fonction du paramètre θ)

$$R_{\theta}(\widehat{\varphi}) = \mathbb{E}_{\theta}[\|\widehat{\varphi} - \varphi(\theta)\|^2] \in \mathbb{R}_+,$$

où $\|\cdot\|$ est la norme euclidienne canonique sur \mathbb{R}^k .

Décomposition biais-variance du risque quadratique

Proposition (Pythagore du statisticien) On a, pour tout $\theta \in \Theta$,

$$R_{\theta}(\widehat{\varphi}) = \|b_{\theta}(\widehat{\varphi})\|^2 + \operatorname{Tr}(\operatorname{Var}_{\theta}(\widehat{\varphi})).$$

Preuve.

Il suffit d'écrire, pour tout $\theta \in \Theta$,

$$\begin{split} R_{\theta}(\hat{\varphi}) &= \mathbb{E}_{\theta}[\|\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}] + \mathbb{E}_{\theta}[\hat{\varphi}] - \varphi(\theta)\|^{2}] \\ &= \mathbb{E}_{\theta}[\|\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}]\|^{2}] + \mathbb{E}_{\theta}[\|\mathbb{E}_{\theta}[\hat{\varphi}] - \varphi(\theta)\|^{2}] + 2(\mathbb{E}_{\theta}[\hat{\varphi}] - \varphi(\theta))^{T} \mathbb{E}_{\theta}[\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}]] \\ &= \mathbb{E}_{\theta}[\|\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}]\|^{2}] + \|b_{\theta}(\hat{\varphi})\|^{2}, \end{split}$$

et par cyclicité et linéarité de la trace, et linéarité de l'espérance,

$$\mathbb{E}_{\theta}[\|\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}]\|^{2}] = \mathbb{E}_{\theta}[\operatorname{Tr}[(\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}])^{\mathsf{T}}(\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}])]]$$

$$= \mathbb{E}_{\theta}[\operatorname{Tr}[(\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}])(\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}])^{\mathsf{T}}]]$$

$$= \operatorname{Tr}[\mathbb{E}_{\theta}[(\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}])(\hat{\varphi} - \mathbb{E}_{\theta}[\hat{\varphi}])^{\mathsf{T}}]]$$

$$= \operatorname{Tr}(\operatorname{Var}_{\theta}(\hat{\varphi})).$$

12/30

Performance d'un estimateur

Un estimateur δ_1 de $\varphi(\theta)$ domine l'estimateur δ_2 si, pour tout $\theta \in \Theta$,

$$R_{\theta}(\delta_1) \leq R_{\theta}(\delta_2),$$

cette inégalité étant stricte pour au moins une valeur de θ .

Il n'existe en général pas d'estimateur dominant tous les autres.

Dans le cas d'un modèle à échantillon i.i.d. de taille n, pour $\widehat{\varphi} = \widehat{\varphi}_n$ un estimateur de $\varphi(\theta)$, on dira que $\widehat{\varphi}$ est fortement consistant si il converge presque sûrement vers $\varphi(\theta)$, i.e.

$$\forall \theta \in \Theta, \mathbb{P}_{\theta}(\lim_{n \to \infty} \widehat{\varphi}_n = \varphi(\theta)) = 1$$

Tests

Tests: un exemple

- Un constructeur automobile annonce une consommation $\mu_{\rm O}=6.32\ell/$ 100 km, avec un écart type $\sigma=$ 0.21 $\ell/$ 100 km, pour des véhicules d'un type donné.
- Un organisme indépendant suspecte une sous-estimation de cette consommation et indique que la consommation s'élèverait à $\mu_1=6.45\ell/100~km$. Il ne remet pas en cause la variance.
- Sur un 30-échantillon, on observe $\bar{x}=6.43\ell/100$ km.

Doit-on incriminer le constructeur?

Tests: formalisation

- 1. Définir un modèle : Les individus sont les véhicules, $i=1,\ldots,n$, la variable observée X_i est la consommation. On suppose les $X_i \sim \mathcal{N}(\mu,\sigma^2)$ i.i.d., μ inconnue et variance connue $\sigma^2 = (0.21)^2$
- 2. Définir les hypothèses

```
H_{\rm O} conso. conforme au constructeur: \mu=\mu_{\rm O}=6.32 H_{\rm 1} conso. suspectée par l'organisme: \mu=\mu_{\rm 1}=6.45
```

Choisir, à partir de l'observation du n-échantillon, entre les deux hypothèses H_0 et H_1 , tel que le risque de choisir H_1 alors que H_0 est vrai soit faible et maîtrisé. C'est le risque de première espèce α (5%, 10%, ...) aussi appelé niveau.

- 3. Définir une statistique de test
 - Travailler à partir de \bar{X} , moyenne des consommations de n=30 véhicules
 - Loi sous H₀,

$$ar{X} \sim \mathcal{N}(\mu_0, \sigma^2/n) \ \text{donc} \ T = \sqrt{n} rac{ar{X} - \mu_0}{\sigma} \sim \mathcal{N}(0, 1)$$

- 4. Définir la région de rejet
 - Choisir a priori un niveau α , calibrant la probabilité de rejet de H_0 à tort ($\alpha=5\%$ par exemple)
 - · Calculer le seuil pour la région de rejet

$$\begin{array}{ll} \alpha & = & \mathbb{P}_{H_0}(\text{ rejeter } H_0 \text{ }) \\ & = & \underbrace{\mathbb{P}_{H_0}(T > q_{1-\alpha}^*)}_{\mathcal{R}=]q_{1-\alpha}^*:\infty[, \text{ Région de rejet pour } \tau} \\ & = & \underbrace{\mathbb{P}_{H_0}(\bar{X} > \mu_0 + q_{1-\alpha}^* \frac{\sigma}{\sqrt{n}})}_{\mathcal{R}=]\mu_0 + q_{1-\alpha}^* \frac{\sigma}{\sqrt{n}}:\infty[, \text{ Région de rejet pour } \bar{x} \end{array}$$

avec $q_{1-\alpha}^*$ le quantile d'une loi $\mathcal{N}(0,1)$ d'ordre $1-\alpha$

5. Décider:

- si T est dans la région de rejet, on rejette Ho
- sinon, on ne rejette pas H_0 et on la conserve, faute de preuves suffisantes

Ici, $\bar{x} = 6.43\ell/100 \ km$,

$$t_{obs} = \frac{6.43 - 6.32}{0.21/\sqrt{30}} = 2.86 > 1.64$$

au niveau $\alpha=5\%$, les données sont significatives pour rejeter $H_{\rm o}$, le constructeur a minimisé la consommation, avec un risque (de première espèce) α .

Un autre cas de figure:

• si la même consommation a été observée sur un échantillon de n=9 véhicules

$$t_{obs} = \frac{6.43 - 6.32}{0.21/\sqrt{9}} = 1.57 < 1.64$$

on ne peut pas rejeter le fait que le constructeur a sous-estimé la consommation, on ne peut rejeter H_0 qu'on accepte par défaut

avec quelle erreur?

Une autre façon de se tromper: l'erreur de seconde espèce: ne pas rejeter H_0 alors que H_1 est vraie.

Sous H_1 , $\bar{X} \sim \mathcal{N}(\mu_1, \frac{\sigma^2}{n})$ et le risque de seconde espèce est

$$\beta = \mathbb{P}_{H_1}(\text{ conserver } H_0)$$

$$= \mathbb{P}_{H_1}(\bar{X} < \mu_0 + q_{1-\alpha}^* \frac{\sigma}{\sqrt{n}})$$

$$= F^* \left(\sqrt{n} \frac{\mu_0 - \mu_1}{\sigma} + q_{1-\alpha}^*\right)$$

A.N.: n=9, $\beta \simeq$ 0.41. La puissance du test $\pi=1-\beta$ n'est pas très grande.

Procédure de test

Un test est une procédure de décision qui permet de trancher, au vu des résultats d'un échantillon, entre deux hypothèses l'hypothèse nulle H_0 et une hypothèse alternative H_1 , dont une seule est vraie.

La région critique ou région de rejet \mathcal{R} est l'ensemble des valeurs de la statistique de test T qui conduisent à écarter H_0 au profit de H_1 .

Le niveau du test est le risque de première espèce $\alpha = \mathbb{P}_{H_0}(T \in \mathcal{R})$.

La puissance du test est $\pi=1-\beta$ où $\beta=\mathbb{P}_{H_1}(T\notin\mathcal{R})$ est le risque de seconde espèce.

Procédure de test

A l'issue du test, les quatre situations suivantes sont possibles

	Choix Ho	Choix H₁
H _o vraie	$1-\alpha$	$\alpha = \mathbb{P}_{H_{O}}(T \in \mathcal{R})$
		risque première espèce
	bonne décision	mauvaise décision
H₁ vraie	$\beta = \mathbb{P}_{H_1}(T \notin \mathcal{R})$	$\pi = 1 - \beta$
	risque seconde espèce	puissance
	mauvaise décision	bonne décision

Construire un test

- · Définir le modèle
- Définir les hypothèses nulle Ho et alternative H1
- Choisir une statistique de test T(Z), calculer sa loi sous H_o. On fera en sorte que la loi de T(Z) sous H_o ne dépende plus d'aucun paramètre du modèle : c'est une variable pivotale.
- Définir la règle de décision en calibrant la région de rejet $\mathcal R$ suivant le risque α . Le test prend alors la forme :

$$\textbf{1}_{\{\textit{T(Z)} \in \mathcal{R}\}}$$
 .

• Calcul de la statistique observée et décision: rejet ou acceptation de $H_{\rm o}$.

Dissymétrie de la situation de test

- Le risque n'est contrôlé que pour H_o
 - La véritable décision est celle qui rejette H_0 .
 - H_0 et H_1 ne sont pas interchangeables.
- Il faut connaître la loi de la statistique de test sous H_o
- Il faut que cette loi soit différente sous H₁
- Entre deux tests de même risque de 1ère espèce α , il faut choisir le plus puissant
 - La région de rejet de la forme $\{T < q^*_{0.05}\}$ est aussi de risque 5%, mais elle n'a aucune puissance pour détecter le cas $\mu_1 > \mu_0$

Hypothèse alternative composite

La valeur observée n'a pas servi à construire la région de rejet qui a été définie a priori en fonction de la problématique fixée.

· Ainsi, pour tester

$$H_0: \theta = \theta_0 \text{ contre } H_1: \theta > \theta_0$$

on utilise la même région de rejet que pour le test d'hypothèse simple

$$H_0: \theta = \theta_0 \text{ contre } H_1: \theta = \theta_1 > \theta_0$$

• mais la puissance devient une fonction de θ :

$$\theta_1 \in \Theta_1 = \{\theta | \theta > \theta_0\}, \pi(\theta_1) = \mathbb{P}_{\theta_1}(T \in \mathcal{R}) = 1 - \beta(\theta_1).$$

Formes d'hypothèses

Hypothèses simples

$$H_0: \theta = \theta_0$$
 contre $H_1: \theta = \theta_1$

Test unilatéral pour une hypothèse nulle composite

$$H_0: \theta \leq \theta_0$$
 contre $H_1: \theta > \theta_0$

Test unilatéral pour une hypothèse nulle composite

$$H_{0}: \theta \geq \theta_{0} \text{ contre } H_{1}: \theta < \theta_{0}$$

Test bilatéral pour une hypothèse nulle simple

$$H_0: \theta = \theta_0 \text{ contre } H_1: \theta \neq \theta_0$$

• De façon générale:

$$H_0: \theta \in \Theta_0$$
 contre $H_1: \theta \in \Theta_1 = \Theta \setminus \Theta_0$

Régions de confiance

Régions de confiance

Contexte : on cherche à quantifier l'incertitude que l'on a au vu des données sur la valeur d'un paramètre d'intérêt $\varphi(\theta) \in \mathbb{R}^k$. Un ensemble aléatoire $C(Z) \subseteq \mathbb{R}^k$ est une région de confiance de niveau $1-\alpha$ pour $\varphi(\theta)$ si :

$$\forall \theta \in \Theta, \quad \mathbb{P}_{\theta}(\varphi(\theta) \in C(Z)) \geq 1 - \alpha.$$

Dans le cas d'un n—échantillon un ensemble aléatoire $C_n(Z) \subseteq \mathbb{R}^k$ est une région de confiance asymptotique de niveau $1 - \alpha$ pour si :

$$\forall \theta \in \Theta, \quad \liminf_n \mathbb{P}_{\theta}(\varphi(\theta) \in C_n(Z)) \geq 1 - \alpha.$$

Intervalle de confiance : cas k = 1.

Méthode pivotale : construire C(Z) à partir d'une statistique pivotale dont la loi ne dépend pas de θ .

Dualité tests / intervalles de confiance

Proposition

Soit C(Z) une région de confiance pour $\varphi(\theta)$ de niveau $1-\alpha$. Alors, pour tout t, le test rejetant H_0 si et seulement si $t \notin C(Z)$ est de niveau α pour $H_0: \varphi(\theta) = t$ (et H_1 quelconque).

Preuve.

Par définition,
$$\mathbb{P}_{H_0}(t \notin C(Z)) = \mathbb{P}_{H_0}(\varphi(\theta) \notin C(Z)) \leq \alpha$$
.

Dualité tests / intervalles de confiance

Proposition

Réciproquement, pour tout t, soit φ_t un test de niveau α pour $H_o: \varphi(\theta) = t$ (et H_1 quelconque). Alors

$$C(Z) := \{t : \varphi_t(Z) = 0\}$$

définit une région de confiance pour $\varphi(\theta)$ de niveau 1 $-\alpha$.

Preuve.

Par définition,

$$\mathbb{P}(\varphi(\theta) \in \mathsf{C}(\mathsf{Z})) = \mathbb{P}(\varphi_{\varphi(\theta)}(\mathsf{Z}) = \mathsf{O}) = \mathbb{P}_{\mathsf{H}_\mathsf{O}}(\mathsf{conserver}\ \mathsf{H}_\mathsf{O}) \geq \mathsf{1} - \alpha.$$

Rappels de résultats asymptotiques

Loi forte des grands nombres (LGN) : Soient X_1, \ldots, X_n i.i.d. d'espérance $\mu = \mathbb{E}[X_1]$ finie. Alors

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \xrightarrow{p.s.} \mu.$$

Théorème central limite (TCL): Soient X_1, \ldots, X_n i.i.d. avec espérance finie μ et variance finie σ^2 . Alors

$$\sqrt{n} (\overline{X}_n - \mu) \stackrel{d}{\rightarrow} \mathcal{N}(0, \sigma^2).$$

Applications : ces résultats permettent de prouver la consistance d'un estimateur, et de construire des intervalles de confiance asymptotiques.

Merci!

Rdv en TD pour les questions et la pratique de ce qui vient d'être (re)vu.