### **CERAMIC HEATER**

Patent Number:

JP6176855

Publication date: .

1994-06-24

Inventor(s):

NOBORI KAZUHIRO; others: 01

Applicant(s):

**NGK INSULATORS LTD** 

Requested Patent:

☐ JP6176855

Application Number: JP19920321921 19921201.

Priority Number(s):

IPC Classification:

H05B3/14; H01L21/22; H01L21/324

EC Classification:

Equivalents:

JP2644660B2

#### Abstract

PURPOSE:To provide a ceramic heater equiped with a temp. measuring mecha nism which can measure the temp. of the heater accurately and stably.

CONSTITUTION: A resistance heat emitting element 2 consisting of a high melting point metal is embedded in a ceramic base body 1. A threaded area 3 is furnished on the surface of base body 1 other than the wafer heating surface 1a on which a wafer is placed, and a thermocouple 6 for temp. measuring is fixed to this threaded area 3.

Data supplied from the esp@cenet database - I2

## (19)日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公開番号

## 特開平6-176855

(43)公開日 平成6年(1994)6月24日

(51)Int.Cl.<sup>5</sup>

識別配号 庁内整理番号 FΙ

技術表示箇所

H 0 5 B 3/14 H01L 21/22 B 7913-3K

N 9278-4M

21/324

H 8617-4M

審査請求 未請求 請求項の数4(全 4 頁)

(21)出願番号

特願平4-321921

(71)出願人 000004064

日本碍子株式会社

(22)出願日

平成 4年(1992)12月 1日

愛知県名古屋市瑞穂区須田町2番56号

(72)発明者 ▲昇▼ 和宏

愛知県葉栗郡木曽川町大字黒田字北宿二ノ

切66番地の1

(72)発明者 牛越 隆介

岐阜県多治見市元町四丁目8番地8

(74)代理人 弁理士 杉村 暁秀 (外5名)

#### (54)【発明の名称】 セラミックスヒーター

#### (57)【要約】

【目的】 セラミックスヒーターの温度を正確かつ安定 に測定することのできる温度測定構造を有するセラミッ クスヒーターを提供する。

【構成】 セラミックス基体1中に髙融点金属からなる 抵抗発熱体2を埋設してなるセラミックスヒーターにお いて、前記セラミックス基体1のウェハーを載置するウ ェハー加熱面1a以外の面にネジ部3を設け、このネジ 部3に温度測定用の熱電対6を固定する。



#### 【特許請求の範囲】

【請求項1】 セラミックス基体中に高融点金属からな る抵抗発熱体を埋設してなるセラミックスヒーターにお いて、前記セラミックス基体のウェハーを載置するウェ ハー加熱面以外の面にネジ部を設け、とのネジ部に測温 体の先端を固定したことを特徴とするセラミックスヒー ター。

【請求項2】 前記測温体の先端の固定を、前記セラミ ックス基体に設けた雌ネジ部に、熱電対を保護するシー スの先端部に設けた雄ネジ部を螺合させて行う請求項1 記載のセラミックスヒーター。

【請求項3】 前記測温体の先端の固定を、前記セラミ ックス基体に設けた雌ネジ部に、熱電対自体の先端部に 設けた雄ネジ部を螺合させて行う請求項1記載のセラミ ックスヒーター。

【請求項4】 前記測温体の先端の固定を、前記セラミ ックス基体に埋設した塊状埋設体に設けた雌ネジ部に螺 合させて行う請求項1記載のセラミックスヒーター。

#### 【発明の詳細な説明】

#### [0001]

【産業上の利用分野】本発明は、緻密なセラミックス基 体中に高融点金属からなる抵抗発熱体を埋設してなる好 ましくは半導体ウェハー加熱用のセラミックスヒーター に関するものである。

#### [0002]

【従来の技術】従来、半導体製造装置等における熱源と しては、いわゆるステンレスヒーターや間接加熱方式の ものが一般的であった。しかし、これらの熱源を用いる と、ハロゲン系腐食ガスの作用によってパーティクルが 発生したり、熱効率が悪いといった問題があった。こう した問題を解決するため、本発明者らは、緻密質セラミ ックスからなる円盤状の基体の内部に、髙融点金属から なる抵抗発熱体を埋設したセラミックスヒーターを提案 した。

【0003】上述したセラミックスヒーターにおいて は、加熱時の温度制御のためセラミックスヒーターの温 度を測定する必要があり、そのためセラミックスヒータ ーに温度測定用の熱電対を設けていた。図6は従来の熱 電対の取り付け方法の一例を示す図である。図6におい て、21は窒化珪素等のセラミックスよりなるセラミッ クス基体、22はW、Mo等の髙融点金属よりなる抵抗 発熱体、23はウェハー加熱面21a以外の面に設けた 熱電対の取り付け穴、24は熱電対、25は熱電対を保 護するためのシース、26はシース25を取り付け穴2 3に固定するための接着用ガラスである。

#### [0004]

【発明が解決しようとする課題】しかしながら、図6に 示す従来の熱電対取り付け方法では、セラミックス基体 21とシース25とは接着用ガラス26を介して接着・ 固定されており、接着用ガラス26の安定性、密着性の 50 の28.6倍が断面の接触距離となる。従って、深さ 1

不良や熱接触抵抗の問題により、セラミックスヒーター の温度を正確かつ安定に測定することができず、セラミ ックスヒーターの安定した温度制御をすることができな い問題があった。また、接着用ガラス26の代わりに、 カーボン接着剤や無機接着剤等の他の材料を使用すると ともできるが、やはり同様の問題があった。

【0005】本発明の目的は上述した課題を解消して、 セラミックスヒーターの温度を正確かつ安定に測定する ことのできる温度測定構造を有するセラミックスヒータ ーを提供しようとするものである。

#### [0006]

【課題を解決するための手段】本発明のセラミックスヒ ーターは、セラミックス基体中に高融点金属からなる抵 抗発熱体を埋設してなるセラミックスヒーターにおい て、前記セラミックス基体のウェハーを載置するウェハ ー加熱面以外の面にネジ部を設け、このネジ部に温度測 定用の熱電対を固定したことを特徴とするものである。 [0007]

【作用】上述した構成において、熱電対をセラミックス 20 基体にネジ止めして固定しているため、熱電対とセラミ ックス基体との直接接触する面積が従来の例と比べて大 きくなり、その結果セラミックスヒーター自体の温度を 正確に測定することができる。また、熱電対とセラミッ クス基体との固定をネジ止めにより行っているため、温 度測定時の接触状態が変化しにくく、セラミックスヒー ターの温度を安定して測定することができる。

#### [0008]

【実施例】図1は本発明のセラミックスヒーターの一例 の構成を示す図である。図1に示す実施例において、1 は窒化珪素等のセラミックスよりなる円盤状のセラミッ クス基体、2はセラミックス基体1中に埋設したW、M o等の髙融点金属よりなる抵抗発熱体である。この抵抗 発熱体2は好ましくは螺旋状に巻回されるとともに、円 盤状のセラミックス基体2を平面的にみると、抵抗発熱 体2は渦巻形をなすように配置されている。また、セラ ミックス基体1のウェハー加熱面1a以外の面、図1に 示す例ではセラミックス基体1のウェハー加熱面1aと 反対側の面に、深さ1の雌ネジ部3を設けている。そし て、先端部にこの雌ネジ部3と螺合する雄ネジ部4を有 40 するシース5を準備し、シース5の内部に熱電対6を固 定した状態で、シース5の雄ネジ部4とセラミックス基 体1のネジ部3とを螺合して、熱電対6を内部に固定し たシース5をセラミックス基体1に固定している。 【0009】ととで、図2に示すネジの公式に従って、 ネジ部を設けたことによる接触面積の増大について考え てみると、M3のネジで図1に示す深さ1が10mmの 場合を考えてみると、ピッチがP=0. 35でネジ山は 28.6個となる。ネジ山一個の接触面積を断面の距離 として求めると2×(H1/cos30°)となり、こ

= 10mmに対する断面の接触距離しはL=2×(0.  $54 \times 0.35 / 0.87) \times 28.6 = 12.5 mm$ となり、接触面積は約1.25倍となる。また、M5の ネジで同様の条件でピッチがP=0.5のときを考える と、断面の接触面積はL=2×(0.54×0.5/c os30°)×20=12.5mmとなり、同様に接触 面積が約1.25倍となる。

【0010】図3は本発明のセラミックスヒーターの他 の例の構成を示す図である。図3に示す例において、図 1に示す例と同一の部材には同一の符号を付し、その説 10 明を省略する。図3に示す例において、図1に示す例と 異なるのは、熱電対自体を直接セラミックス基体にネジ 止め固定した点である。 すなわち、熱電対6を、一対の リード線11a、11bと金属製の先端部12とから構 成し、リード線11a、11bを先端部12に溶接する とともに、先端部12の外周に雄ネジ部4を形成し、セ ラミックス基体 1 に形成した雌ネジ部 3 と螺合して固定 している。先端部12の材質としては、髙温でも使用で きる点からPtを使用することが好ましい。図3に示す 例では、図1に示す例と比較して、先端部12がバルク 形状であり熱容量が大であるため、、温度の変動が少な くできさらに安定してセラミックスヒーターの温度を測 定することができる。

【0011】図4は本発明のセラミックスヒーターのさ らに他の例の構成を示す図である。図4に示す例におい ては、セラミックス基体31に、抵抗発熱体32を埋設 するとともに、金属またはセラミックスからなる塊状埋 設体34を一体となして、この塊状埋設体34に雌ネジ 部36を設け、熱電対先端35をネジ込み固定してい る。また、熱電対先端35より、リード線33a,33 30 bを取り出している。図4に示す構造のメリットは、塊 状埋設体34を加工しやすい材質(例えばW、Mo、S iC) にすることによって、安価なセラミックスヒータ ーを提供できることである。

【0012】図5は本発明のセラミックスヒーターのさ らに他の例の構成を示す図である。図5に示す例におい ては、熱電対先端44とセラミックス基材41との間に インサート金具47を入れ、外周の雄ネジ部45にてセ ラミックス基体41と結合するとともに、内周の雌ネジ 部46にて熱電対先端44と結合している。また、熱電 40 3 雌ネジ部 対先端44より、リード線43a,43bを取り出して いる。図5に示す構造のメリットは、セラミックスから なる基体41に小さな雌ネジの加工は困難であるため

に、一回り大きなネジとすることが可能であり、安価な セラミックスヒーターを提供できることである。

【0013】本発明は上述した実施例にのみ限定される ものではなく、幾多の変形、変更が可能である。例え ば、上述した実施例では、ネジ部をセラミックス基体1 のウェハー加熱面1 a の反対側に設けたが、この位置は ウェハー加熱面la以外の面であればどこでも良く、例 えば側面にネジ部を設けても同様の効果を得ることがで きることは明かである。また、ネジ部の径および深さも 上述した実施例に限定されるものではなく、セラミック ス基体の大きさ等に応じて適宜選べば良いことはいうま でもない。

#### [0014]

【発明の効果】以上の説明から明かなように、本発明に よれば、熱電対をセラミックス基体にネジ止めして固定 しているため、熱電対とセラミックス基体との直接接触 する面積が従来の例と比べて大きくなり、その結果セラ ミックスヒーター自体の温度を正確に測定することができ きるとともに、熱電対とセラミックス基体との固定をネ ジ止めにより行っているため、温度測定時の接触状態が 変化しにくく、セラミックスヒーターの温度を安定して 測定することができる。

#### 【図面の簡単な説明】

【図1】本発明のセラミックスヒーターの一例の構成を 示す図である。

【図2】本発明のネジ部により接触面積が増大する例を 説明するための図である。

【図3】本発明のセラミックスヒーターの他の例の構成 を示す図である。

【図4】本発明のセラミックスヒーターのさらに他の例 の構成を示す図である。

【図5】本発明のセラミックスヒーターのさらに他の例 の構成を示す図である。

【図6】従来のセラミックスヒーターの一例の構成を示 す図である。

#### 【符号の説明】

- 1 セラミックス基体
- 1a ウェハー加熱面
- 2 抵抗発熱体
- - 4 雄ネジ部
  - 5 シース
  - 6 熱電対





# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

## **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited to the items checked: |
|-------------------------------------------------------------------------|
| ☐ BLACK BORDERS                                                         |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES                                 |
| ☐ FADED TEXT OR DRAWING                                                 |
| BLURRED OR ILLEGIBLE TEXT OR DRAWING                                    |
| ☐ SKEWED/SLANTED IMAGES                                                 |
| COLOR OR BLACK AND WHITE PHOTOGRAPHS                                    |
| ☐ GRAY SCALE DOCUMENTS                                                  |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT                                   |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY                 |
|                                                                         |

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.