

Detecting Ransomware Payments Harry Smith

\$7.5 billion

from the US economy in 2019

Data

From study at University of Texas, Dallas by Akcora et al.

- Jan 2009 Dec 2018
- All bitcoin addresses which receive >=0.3 bitcoin in each 24 hour period
- Labels only include <u>reported</u> Ransomware addresses

Feature	Row data
Income	6.4
Length	3

24 hours

Feature	Row data
Income	6.4
Length	3
Count	3

24 hours

Feature	Row data
Income	6.4
Length	3
Count	3
Loop	1

24 hours

Modelling

Round 1

- Uploaded data onto Spark cluster on AWS
- Modelling done with PySpark
- Final model was a Gradient Boosted Tree Classifier:

```
Accuracy = 66.7%
Recall = 34.5%
```

Frequency of Attacks

Modelling

Round 2

Modelled with scikit-learn, Random Forest Classifier

- First Wave: Accuracy = 71.7%
 - ♦ Recall = 59.4%
 - 30 false positives for each true positive

Modelling

Round 2

Modelled with scikit-learn, Random Forest Classifier

- Second Wave: Accuracy = 66.3%
 - Recall = 83.4%
 - 15 false positives for each true positive

Conclusion

- Ransomware has exhibited different patterns of behaviour over time
- Ability to detect Ransomware payments is greatly improved by targeting groups with similar behaviour

Harry Smith hsmith14680@gmail.com Linkedin: hsmith14680 Github: hsmith24