U-Net

Convolutional Networks for Biomedical Image Segmentation

2021210088 허지혜

Table of Contents

prior knowledge Contraction Path

Expansive Path

Methods

Prior Knowledge

1) CNN

Convolution layer

Pooling layer

이미지 특징 추출, 축약

Fully Connected layer

추출된 특징을 사용해 입력에 속하는 범주 분류

2) Sliding Windows

Sliding Window

사진을 윈도우 크기에 맞춘 다음 매 윈도우로 잘린 이미지를 입력 값으로 모델을 통과해서 결과를 얻는 방법

https://medium.com/@jongdae.lim/%EA%B8%B0%EA%B3%84-%ED%95%99%EC%8A%B5-machine-learning-%EC%9D%80-%EC%A6%90%EA%B2%81%EB%8B%A4-part-3-928a841a3aa

U-Net Architecture

Contraction Path

- Contraction Path 특징

- 1. 전형적인 Convolution network 수행 -> Padding이 없어서 feature map이 조금씩 줄어든다.
- 2. 3x3 conv 후, RelU 사용
- 3. 2X2 max-pooling(stride 2) -> 크기가 절반으로 줄어든다.
- 4. down-sampling시 채널 수 2배
- 5. VGG 기반 아키텍쳐

Expansive Path

Overlap-tite Input

Mirroring extrapolatation

image를 tile로 나누어 입력으로 사용한다. 파란 영역의 image를 입력으로 사용하면 노란 영역의 segmentation 결과를 얻을 수 있다.

Overlap-tite Input

Data Augmentation Method

선형 변환에 확률적으로 노이즈를 추가

Touching cells separation

pixel-wise loss를 활용한 이미지

Touching cells separation

W(x): the weight map equation

x : 두 세포 사이에 존재하는 pixel

$$w(x) = w_c(x) + w_0 \cdot e^{-\frac{(d_1(x) + d_2(x))^2}{2\sigma^2}}.$$

where $w_c: \Omega \to \mathbb{R}$ is the weight map to balance the class frequencies

 $d_1: \Omega \to \mathbb{R}$ denotes the distance to the border of the nearest cell

 $d_2: \Omega \to \mathbb{R}$ denotes the distance to the border of the second nearest cell

Train

$$E = \sum_{\mathbf{x} \in \Omega} w(\mathbf{x}) \log(p_{\ell(\mathbf{x})}(\mathbf{x}))$$

 $\ell:\,\Omega\to\{1,\ldots,K\}$

 $w\,:\,\varOmega\,\rightarrow\,\mathbb{R}$

Table 1. Ranking on the EM segmentation challenge [14] (march 6th, 2015), sorted by warping error.

Rank	Group name	Warping Error	Rand Error	Pixel Error
	** human values **	0.000005	0.0021	0.0010
1.	u-net	0.000353	0.0382	0.0611
2.	DIVE-SCI	0.000355	0.0305	0.0584
3.	IDSIA [1]	0.000420	0.0504	0.0613
4.	DIVE	0.000430	0.0545	0.0582
10.	IDSIA-SCI	0.000653	0.0189	0.1027

84 A

U-Net

https://arxiv.org/pdf/1505.04597.pdf)%e5%92%8c%5bTiramisu%5d(https://arxiv.org/abs/1611.09326.pdf U-Net 리뷰

https://medium.com/@msmapark2/u-net-%EB%85%BC%EB%AC%B8-%EB%A6%AC%EB%B7%B0-u

-net-convolutional-networks-for-biomedical-image-segmentation-456d6901b28a

https://www.youtube.com/watch?v=O 7mR4H9WLk

https://jlog1016.tistory.com/85

https://lmb.informatik.uni-freiburg.de/people/ronneber/u-net/

https://everyday-image-processing.tistory.com/58

Thank you!

