Tutorial questions MT5830

5 Fuchsian groups

- 1. Prove that the modular group, $PSL(2,\mathbb{Z})$, is Fuchsian, but that $PSL(2,\mathbb{Q})$ is not.
- 2. Prove that a Fuchsian group $\Gamma \leq \mathrm{PSL}(2,\mathbb{R})$ is closed in $\mathrm{PSL}(2,\mathbb{R})$.
- 3. Let (X,d) be a metric space. Prove that if $K \subseteq X$ is compact and $P \subseteq X$ is discrete and closed, then $K \cap P$ is at most finite. Give an example to show that this is false if P is discrete but not closed.

This fact was used in lectures when we proved that Fuchsian groups act properly discontinuously.

- 4. Let (X,d) be a metric space and say that $K \subseteq X$ is bounded if $K \subseteq B(x,r)$ for some $x \in X$ and r > 0. Prove that a set $K \subseteq \mathbb{H}^2$ is bounded if and only if there exists a constant C > 1 such that for all $z \in K$ we have both
 - (i) $|z| \leqslant C$
 - (ii) Im(z) > 1/C.

This fact was used in lectures when we proved that Fuchsian groups act properly discontinuously.

- 5. Prove that a Fuchsian group $\Gamma \leq \mathrm{PSL}(2,\mathbb{R})$ is finite if and only if $\Gamma(z)$ is finite for all $z \in \mathbb{H}^2$.
- 6. Prove that a group $\Gamma \leq \operatorname{PSL}(2,\mathbb{R})$ is Fuchsian if and only if $\Gamma(z)$ is discrete for all $z \in \mathbb{H}^2$.
- 7. Prove that the elliptic fixed points of a Fuchsian group (i.e. $z \in \mathbb{H}^2$ which are fixed by elliptic elements of the group) form a discrete set.
- 8. Prove that each of the following monogenic subgroups of $PSL(2, \mathbb{R})$ are Fuchsian, and describe a typical fundamental domain for its action:
 - (i) $\langle g \rangle$ where g is an elliptic element of finite order
 - (ii) $\langle g \rangle$ where g is a parabolic element
 - (iii) $\langle q \rangle$ where g is a hyperbolic element.

Describe all monogenic subgroups of $PSL(2,\mathbb{R})$ which are *not* Fuchsian.

- 9. Let $g \in \mathrm{PSL}(2,\mathbb{R})$ be the parabolic element given by g(z) = z + 8 and $h \in \mathrm{PSL}(2,\mathbb{R})$ be the elliptic element given by h(z) = -4/z. Find the Dirichlet fundamental domain for the action of $\langle g, h \rangle$ with respect to the base point 4i.
- 10. Let $p, h \in \mathrm{PSL}(2, \mathbb{R})$ be a parabolic and a hyperbolic element respectively and suppose they have a common fixed point. Prove that $\langle p, h \rangle \leq \mathrm{PSL}(2, \mathbb{R})$ is not a Fuchsian group. You may wish to consider elements of the form $h^n p^m h^{-n}$.
- 11. Consider $g, h \in \mathrm{PSL}(2,\mathbb{R})$ given by g(z) = z + 2 and h(z) = z/(2z + 1). Use Poincaré's Theorem to find a presentation for $\langle g, h \rangle$.