

ELEC 3210 Introduction to Mobile Robotics Lecture 1

(Machine Learning and Infomation Processing for Robotics)

Huan YIN

Research Assistant Professor, Dept. of ECE

eehyin@ust.hk

Logistics

ELEC 3210

Machine Learning and Image Processing for Robotics

- 2020 Fall
 - Prof Ming Liu
- 2021, 2022 Fall
 - Prof Lujia Wang

Introduction to Mobile Robotics

- 2023 Fall
- 50% Changed, 50% Reserved

Inspired by

• 自主移动机器人 Autonomous Mobile Robot

- Zhejiang University
- Led by Prof. Rong Xiong (my PhD advisor)
- work as TA from 2018 to 2020.

Introduction to Mobile Robots

- University of Freiburg
- Led by Prof. Wolfram Burgard

ELEC 5660 Introduction-to-Aerial-Robotics

- Hong Kong University of Science and Technology
- Led by Prof. Shaojie Shen

Teaching Team

- Instructor
 - Huan Yin
 - eehyin@ust.hk
 - Office Hour: by appointment

- Teaching Assistants
 - Zhijian Qiao
 - zqiaoac@connect.ust.hk
 - Qiucan Huang
 - qhuangag@connect.ust.hk

- TAs Q&A
 - Meeting Room, Floor G, CKSRI (University Center)
 - Every Thursday 19:00-20:00

Canvas - Discussion

Open for questions and answers

Administrative Stuff

- Lecture
 - Monday 9:00 10:20 am
 - Wednesday 9:00 10:20 am
 - CYTG003 Room
- Students who are not registered are welcome to sit in the lectures, but their assignments will not be graded
- Course Website Canvas

• I will upload slides (pdf) to Canvas after each lecture

About

- Autonomous Navigation
- Wheeled Mobile Robot
- Sening and Estimation
 - Kalman Filter
 - Particle Filter
 - Graph Optimization
- Motion Planning
 - Path Planning
 - Trajectory Planning
- Frontiers of Mobile Robotics
- 2D Laser-based ROS Projects

R.O.B.O.T. Comics

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

Syllabus (Tentative)

On Canvas

■ Timetable (Tentative)

Lecture &	Date₽	Contents ₽	Projects <i>₽</i>
L1₽	04/09₽	Robotics, Autonomous Mobile Robot ₽	(Install Ubuntu & ROS)
L2₽	06/09₽	Pose, ROS₽	ψ.
L3 ₽	11/09₽	Localization, Wheeled Locomotion ₽	ę.
L4 ₽	13/09₽	Sensors ₽	ę.
L5 <i>₽</i>	18/09₽	Iterative Closeset Point ₽	P1 - ICP odometry ₽
L6₽	20/09₽	Map Representations₽	ę.
L7 ₽	25/09₽	Bayes Theorem, Gaussian Distribution ₽	43
L8₽	27/09₽	Particle Filter and MCL₽	ę.
÷	2/10, 4/10 ₽	National Day / IROS 2023 Conference ₽	47
L9 <i>₽</i>	09/10₽	Kalman Filter, EKF ₽	P1 Out∂
L10 <i>₽</i>	11/10₽	SLAM and EKF SLAM₽	P2 - EKF SLAM ₽
L11₽	16/10₽	Fast SLAM with Particle Filter ₽	ę.
L12₽	18/10₽	Graph SLAM₽	¢.
L13 <i>₽</i>	25/10₽	Place Recognition ₽	43
L14 <i>₽</i>	30/10₽	Advanced Topic – Visual SLAM 1 (TBD) ಳ	42

Not About

- Soft Robotics
- Mechanics
- Machine Learning
- Swarm
- Vehicular Communication
- Robot Motion and Control (ELEC 4220 Prof Fumin Zhang)
- Robotic Manipulation (ELEC 4220 Prof Fumin Zhang)
- Drones (ELEC 5660 Prof Shaojie Shen)
- Visual-Inertial SLAM (ELEC 5660 Prof Shaojie Shen)
- etc

Projects Requirements

- Form a team with 1 / 2 / 3 people
- For each project, submit report, code and video
 - report 2 page, claim the contribution
 - code in C++
 - video in 1 min
- Install the Ubuntu and ROS following the EnvSetup.pdf
 - This is the foundation

Projects Requirements

- 100% Programming for projects
- Virtual labs on ROS (Robot Operating System)
- Will introduce the projects at the end of L1

Requirements

- Love Robots ©
- Basic Math
 - Linear Algebra
 - Probability
- Programming (Important!)
 - C++
 - Linux + ROS (Robot Operating System)

Grade (Tentative)

- Quiz 20%
 - Randomly in lectures
 - 1 page A4 paper
 - Maybe 4~6 times
- Homework 30%
 - Submit after letures in due time
 - Maybe 3 times
- Group Projects
 - Proj 1 10%
 - Proj 2 20%
 - Proj 3 20%

How to fail ELEC 3210?

- Missed quizzes multiple times
- Late submissions of assignments
 - Homework
 - Project

Books (Non-Compulsory)

- Probabilistic Robotics
- Introduction to Autonomous Mobile Robots

More Resources

- Books & Online Videos
 - Mastering ROS for Robotics Programming (Help Programming)
 - Handbook of Robotics (a dictionary)
 - State Estimation for Robotics (Lots of Math)
 - 5 Minutes with Cyrill (Prof. Cyrill Stachniss)
 - ...

Today's Outline

- Robotics: History and Taxonomy
- Mobile Robots
- Autonomous Navigation System

Robotics: History and Taxonomy

Robot

Definition

- A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically.
- Definition of 'robot'. Oxford English Dictionary. Retrieved 27 November 2016.

Robot

- Definition
 - A robot is a machine—especially one programmable by a computer—capable of carrying out a complex series of actions automatically.
 - Definition of 'robot'. Oxford English Dictionary. Retrieved 27 November 2016.

Question

Is ChatGPT a robot?

First Robot

 The first digitally operated and programmable robot was invented by George Devol in 1954 and was ultimately called the Unimate

Industrial Robot, 1960s

Pouring Coffee, 1960s

First Mobile Robot

- Shakey the robot
- The first general-purpose mobile robot able to reason about its own actions
- Developed from 1966 to 1972, at the Artificial Intelligence Center of Stanford Research Institute (SRI)
- Still in Computer History Museum

Shakey, 1972

Courtesy: Wikipedia 23

Experiments using Shakey

Courtesy: YouTube 24

IEEE Milestone Award

Shakey's creators at the 2017 IEEE Milestone award event

Courtesy: Wikipedia 25

First Biped Walking Robot

- Waseda University, Japan (1968-1969)
- was able to stand up and sit down

WL-3 (1969)

Courtesy: Rong Xiong 26

First Mars Robot (Rover)

- 1997, named Sojourner
- Equipped with front and rear cameras
- Traveled over 100 meters then lost signal

Sojourner rover pictured by Pathfinder lander

Controlled by "Rover Control Software" (RCS)

Courtesy: NASA, Wikipedia 27

First Robot Cleaner

- Roomba, the autonomous robotic vacuum cleaners
- Made by the company iRobot, 2002
- Why so late for commercial-used mobile robot?

Long exposure photo showing path taken by a Roomba as it cleans

Courtesy: Wikipedia 28

History

Courtesy: Rong Xiong

These are all mobile robots

and more

reasons for adoption: faster, better, safer, cheaper, access

Courtesy: Luca Carlone 30

Taxonomy of Mobile Robot

- In terms of
 - woking environments
 - indoor, outdoor, underwater, space etc
 - mobility
 - drones, legged, trunk, track, wheeled etc
 - applications
 - medical, transportation, algriculture, construction etc
 - etc

Mobility - Flying

Video 2016 from HKUST UAV Group

Online Quadrotor Trajectory Generation and Autonomous Navigation on Point Clouds

Fei Gao and Shaojie Shen

High resolution video available at http://www.ece.ust.hk/~eeshaojie/ssrr2016fei.mp4

Courtesy: Shaojie Shen

Mobility - Trunk

• CMU Snake Robot

Courtesy: CMU RI

Mobility - Legged

Atlas, best robot in the world (my opinion)

Courtesy: Boston Dynamics

Taxonomy of Mobile Robot

- In terms of
 - woking environments
 - indoor, outdoor, underwater, space etc
 - applications
 - medical, transportation, algriculture, construction etc
 - mobility
 - wheeled, flying, legged, trunk, track, etc

Application - Transportation

Self-Driving at Shanghai SeaPort

Courtesy: Huan Yin 36

Application - Transportation

Autonomous vehicle at HKUST Campus

Courtesy: HKUST SENG

Application - Manufactoring

Autonomous mobile robot at Amazon Warehouse

Courtesy: Amazon

Application - Soccer Game

RoboCup Kid-Size Humanoid League in 2016

Courtesy: Huan Yin

Autonomous Mobile Robots (AMR)

Two basic branches

Robot Manipulator

Mobile Platform

Courtesy: Rong Xiong 41

Mobile manipulator

- A robot system built from a robotic manipulator arm mounted on a mobile platform, still challenging nowadays
- For Algricultural Applications

Courtesy: YouTube 42

Why intelligent or autonomous?

- Get rid of Human Control
- Save Time, Save Money, More Safety
 - Semi-Autonomy with Human-Robot Collaboration
 - Fully autonomous without human

semi-autonomous mobile drilling robot, HILTI Group

fully-autonomous mobile robot, warehouse in Amazon

Three questions for AMR

- Where am I? (Sensing/Estimation)
- Where am I going ? (Planning)
- How do I get there ? (Control)

"HIS PATH-PLANNING MAY BE SUB-OPTIMAL, BUT IT'S GOT FLAIR."

AutoRobot Scheme

• Sensing, Estimation, Planning, Control (Act)

Courtesy: Nikolay Atanasov

AMR Scheme

Projects

Virtual Lab

- No lab time, On your PC
- A mobile robot with a LiDAR Scanner

Virtual Lab

- on Gazebo, ROS
- Provide Rosbag for projects

P1 -ICP Mapping

LiDAR Odometry and Mapping by Iterative Closest Point (ICP)

P2 - EKF SLAM

- Landmark-based Laser EKF SLAM
 - Extended Kalman filter (EKF)
 - Simultaneous localization and mapping (SLAM)

P3 - Path Planning

- Path Planning for mobile robot
 - A* / RRT

Summary

- Logisitics of ELEC 3210
- Robotics: History and Taxonomy
- Autonomous Mobile Robots (AMR)

Back to Scheme

What is the flow?

Courtesy: Nikolay Atanasov

From a "pose" perspective

- Sensing&Estimation Estimate current and past robot pose
- Planning Generate future robot pose
- Control Stabilize robot pose

Next Lecture

- Pose
- Robot Operating System (ROS)
 - If have time