基本概念-术语

因果关系定义(RCM和SCM框架下):改变一变量会引起另一变量的变化(可能不被观测,但改变概率分布),除上述因果关系定义外,其他对因果的理解通常都不被视为真正的因果。

• 因果性判断:需改变目标变量的产生机制

• 相关性判断:不需改变系统,判断 $P(X \mid Y) = P(X)$ 是否成立

• 格兰杰因果: 刻画引入一个变量是否对另一变量的预测有促进作用

- 因果推断定义:求解一对或多对变量是否存在因果关系以及因果效应强度的任务,包括因果发现和因果效应估计。
- 伪相关性:具备统计意义上相关性,却不符合客观因果规律的情况。

> X与Y具备相关性的三种情况:

Z给定时,X与Y相关

基本概念-术语

- 单元(Unit): 干预效果研究中的最小研究对象。潜在结果框架下,不同时间点的单元不同,数据集中的一个单元是整个随机变量对应的样本,术语"样本"和"单元"可互换使用。
- ▶ 变量 (Variables): 一般指干预前变量 (pre-treatment variables), 其指不受干预影响的变量, 如性别,年龄;干预后变量 (post-treatment variables)指受干预影响的变量。
- ightharpoonup 干预 (Intervention): 也叫介入,干预变量 Z=1的单元为处理组, Z=0的单元为对照组。
- > 混杂因素 (Confounders): 对1对变量同时产生影响的因素。
- ▶ 潜在结果 (Potential outcome) : 包含观测结果和反事实结果。
- ightarrow 倾向得分(Propensity score): $e(X_i)=P(Z_i=1\mid X_i)$,反映样本 X_i 选择treatment的概率。

Why causality

□ **模型分类角度: 因果模型**在所有模型中的地位

		模型分类表			
Model	Predict in i.i.d.	Predict under distr.	Answer counter-	Obtain	Learn from
	setting	shift/intervention	factual questions	physical insight	data
Mechanistic/physical	yes	yes	yes	yes	?
Structural causal	yes	yes	yes	?	?
Causal graphical	yes	yes	no	?	?
Statistical	yes	no	no	no	yes

统计模型 ———— 因果模型 ——— 微分方程模型

低级

回答干预,反事实

数据驱动

数据驱动,弱假设

高级

专家经验

因果模型结合了统计和微分方程模型各自优势

Why causality

□ 所用数据角度: 2种分类

> **非结构化数据**: 更难让计算机理解,不直接体现因果信息

Audio

Image

Four scores and seven years ago...

Text

结构化数据:存储在数据库中,由二维表结构表达,可能部分对应于因果图中变量

User Age	Ad Id	 Click
41	93242	1
80	93287	0
18	87312	1
:	:	i
27	71244	1

统计模型: 基于结构和非结构化数据, i.i.d. □

因果模型: 基于结构化数据

因果表征学习

Why causality

□ 若干悖论: Simpson悖论、替代指标悖论、新生儿体重悖论

> Simpson悖论: 总体统计结果与每一个子部分统计结果相反 Sure-thing Principle

记录是否服药的700例患者痊愈率

患者	服药时治愈率	未服药时治愈率	
男性患者	93% (81/87)	87% (234/270)	P(Y X,Z=0)
女性患者	73% (192/263)	69% (55/80)	P(Y X,Z=1)
合计	78% (273/350)	83% (289/350)	$P(Y X) = \sum P[Y X,z] P(z X)$
因果	83.20%	78.18%	$P[Y \operatorname{do}(X)] = \sum P[Y X,z]F$
			$\frac{\overline{z}}{z}$

• 统计框架下的计算:

$$rac{87}{350}(0.93)+rac{263}{350}(0.73)=0.78$$
 $ho = 0.83$ 实验组和对照组权重不同

· 因果框架下的计算:

$$rac{357}{700}(0.93) + rac{343}{700}(0.73) = 0.832 \ rac{357}{700}(0.87) + rac{343}{700}(0.69) = 0.7818$$

- 实验组和对照组权重一<mark>致</mark>

因果框架下,实验组和对照组可比

潜在结果模型-鲁宾

□ 模型背景: 现实很多统计问题,由于成本、风险和伦理问题,数据不能来自RCT,

需要从观察性研究中估计因果效应 (因果推断领域重点问题)。

 \square 模型描述: X_i : 个体 i 是否吸烟; Y_i : 个体 i 是否得肺癌; Z_i : 混杂因素。

▶ 当满足**条件可忽略性**, ACE可识别:

$$egin{aligned} ACE &= E(Y(1)) - E(Y(0)) \ &= E[E(Y(1) \mid Z)] - E[E(Y(0) \mid Z)] \ &= E[E(Y(1) \mid Z, X = 1)] - E[E(Y(0) \mid Z, X = 0)] \ &= E[E(Y \mid Z, X = 1)] - E[E(Y \mid Z, X = 1)$$

▶ 内曼潜在结果模型中ACE:

$$egin{aligned} ACE &= E(Y(1)) - E(Y(0)) \ &= E(Y(1) \mid X=1) - E(Y(0) \mid X=0) \ &= E(Y \mid X=1) - E(Y \mid X=0) \ &= E(Y \mid X=1) - E(Y \mid X=0) \end{aligned}$$
 RCT中可忽略性成立 $x \perp \{Y(1), Y(0)\}$

可忽略性下,通过观测数据,估计ACE

结构因果模型

□ POM优缺点:

- ▶ 优:对先验知识要求低,应用广泛。
- 缺:可忽略性无法被观测数据验证,数学结果无保证;混杂因素需可观测。
- □ SCM包括: 因果图,结构化方程,干预和反事实
 - 因果图:使用有向非循环图(DAG)描述变量之间关系,若节点间存在连边,则父节点是因,子节点是果。只有箭头一致的边才产生因果效应。
 - 因子分解定理:对于 $X=(X_1,\cdots,X_p)$ 构成的DAG, pa_j 为 X_j 的父节点,联合分布可分解成:

$$P(X) = \prod_{j=1}^p Pig(X_j \mid \mathrm{pa}_jig)$$

$$\langle ----\rangle$$

$$P(X) = P(X_1) \cdot P(X_2 \mid X_1, X_3) \cdot P(X_3) \\ \cdot P(X_4 \mid X_3) \cdot P(X_5 \mid X_1, X_4) \cdot \\ \cdot P(X_6 \mid X_5) \cdot P(X_7 \mid X_3, X_4, X_6)$$

结构因果模型-因果图

• 三种条件独立性:

• **d分离**: 若 Z 阻断 X 到 Y 间的所有路径(不管方向),则称 Z d分离 X 和 Y ,记为 $(X \perp Y \mid Z)_{G_{\bullet}}$

$$\begin{cases} X \perp Y \mid Z \\ & \Longrightarrow (X \perp Y \mid Z)_G \end{cases}$$

结构因果模型-结构方程模型

$$V = \{X,Y,Z\}, U = \{U_X,U_Y,U_Z\}, F = \{f_X,f_Y,f_Z\}$$
 $f_X: X = U_X$ $f_Y: Y = rac{x}{4} + U_Y$ $f_Z: Z = rac{y}{12} + U_Z$

□ 干预: 改变目标变量产生机制,维持其余机制不变的操作。

> 干预前后联合分布间关系:

$$P(X_1=x_1,\cdots,X_p=x_p\mid \operatorname{do}(X_j=x_j')ig)=rac{P(X_1=x_1,\cdots,X_p=x_p)}{Pig(X_j=x_j\mid \operatorname{pa}_jig)}Iig(x_j=x_j'ig)$$

新DAG:删除原DAG指向 X_j 的边,强制 $X_j=x_j^\prime$

ightharpoonup SCM中由do算子定义ACE:研究 X_5 对 X_7 的因果作用

 $ACE = E(X_7 \mid do(X_5 = 1)) - E(X_7 \mid do(X_5 = 0))$

由联合分布求积分得边缘分布,估计ACE

- ightharpoonup 后门准则:在DAG中,X和 Y是不相交节点子集, X_i 和 X_j 分别是X和 Y中任意节点,若变量集 Z 对任何变量有序对 (X_i,X_j) 满足如下条件:
 - (1) Z中没有 X_i 的后代节点。
 - (2) Z阻断 X_i 和 X_j 之间指向 X_i 的路径(后门路径)。

则称Z满足(X,Y)的后门准则,此时X对Y的因果作用**可识别**:

$$P(Y=y\mid do(X=x))=P_m(Y=y\mid X=x)$$
 干预定义 $=\sum_z P_m(Y=y\mid X=x,Z=z)P_m(Z=z\mid X=x)$ 全概率、条件概率 $=\sum_z P_m(Y=y\mid X=x,Z=z)P_m(Z=z)$ 干预后, $X\perp Z$ $=\sum_z P(Y=y\mid X=x,Z=z)P(Z=z)$ 两个不变性方程

 X_4 满足 (X_5,X_7) 的后门准则

$$egin{aligned} ACE &= E(X_7 \mid ext{do}(X_5 = 1)) - E(X_7 \mid ext{do}(X_5 = 0)) \ &= \sum_{x_4} \{ E(X_7 \mid X_4 = x_4, X_5 = 1) - E(X_7 \mid X_4 = x_4, X_5 = 0) \} P(X_4 = x_4) \end{aligned}$$

> SCM和POM等价性:

do算子所得结果为"潜在结果": $P\{Y \mid do(X) = x\} = P\{Y(x)\}$

SCM后门准则和POM可忽略性下,ACE结果一致

- \rightarrow **前门准则**: 在DAG中, 若变量集 Z 对 (X,Y) 满足如下条件:
 - (1) Z 阻断所有从X到 Y 的**有向路径**。
 - (2) 从 X 到 Z 的所有**后门路径**均被阻断。
 - (3) X 阻断从Z 到 Y 的**后门路径**。

则称 Z满足(X,Y) 的前门准则,此时若 P(x,z)>0,则 X 对 Y 的因果作用**可识别**:

$$P(y \mid do(X) = x) = \sum_{u} P(y \mid x, u)P(u)$$
 U 满足 (X, Y) 后门准则 $= \sum_{u} \sum_{z} P(y \mid x, z, u)P(z \mid x, u)P(u)$ $= \sum_{u} \sum_{z} P(y \mid z, u)P(z \mid x)P(u)$ $Z \perp U \mid X \perp Y \perp X \mid (Z, U)$ $= \sum_{z} P(z \mid x)P(y \mid do(Z) = z)$ U 满足 (Z, Y) 后门准则 $= \sum_{z} P(z \mid x) \sum_{x'} P(y \mid x', z)P(x')$ X 满足 (Z, Y) 后门准则

 $oxed{X_6$ 满足 (X_5,X_7) 的前门准则

$$ACE = E(X_7 \mid do(X_5 = 1)) - E(X_7 \mid do(X_5 = 0)) \\ = \sum_{x_6} P(X_6 = x_6 \mid X_5 = 1) \sum_{x_5} P(X_7 = x_7 \mid X_5 = x_5, X_6 = x_6) P(X_5 = x_5) - \sum_{x_6} P(X_6 = x_6 \mid X_5 = 0) \sum_{x_5} P(X_7 = x_7 \mid X_5 = x_5, X_6 = x_6) P(X_5 = x_5)$$

□ **反事实**: 假定两次观测只有目标变量不同,其他外生变量取值和作用机制不变,直接反映因果关系。

> SCM中计算反事实的两套公理系统:

- 第一套公理系统:基于图,通过do-Calculus计算
- 第二套公理系统: 建立SCM与POM联系

Exclusion restrictions: For every variable Y having parents PA_Y and for every set of variables $Z \subset V$ disjoint of PA_Y , we have

$$Y_{pa_Y}(u)=Y_{pa_Y,z}(u).$$

Independence restrictions: If Z_1, \ldots, Z_k is any set of nodes in V not connected to Y via paths containing only U variables, we have

$$Y_{pa_{Y}} \perp \left\{ Z_{1pa_{Z_{1}}}, \ldots, Z_{kpa_{Z_{k}}}
ight\}$$

将图中所有条件独 立性变为POM中 的假设,比孪生网 络更简单。

Composition: For any three sets of endogenous variables X, Y, and W in a causal model, we have

$$W_x(u)=w\Longrightarrow Y_{xw}(u)=Y_x(u).$$

Effectiveness: For all sets of variables X and W, we have

$$X_{xw}(u)=x.$$

将关于反事实变量 问题转为观测变量 问题。

合成性

> 第二套公理系统推导前门准则:

Step1: 写出所有节点的父节点

$$PA_X = \{\emptyset\}, PA_Z = \{X\}, PA_Y = \{Z\}$$

$$Z_x(u)=Z_{yx}(u)$$

$$X_y(u)=X_{zy}(u)=X_z(u)=X(u),$$

$$Y_z(u) = Y_{zx}(u)$$

$$Z_x \perp\!\!\!\perp \{Y_z,X\}$$

Step3: 计算 $P(Z_x = z)$, $P(Y_z = y)$

$$P(Z_x=z)=P(Z_x=z\mid x)$$
 条件独立性 $=P(Z=z\mid x)$ 合成性

Step4: 计算
$$P(Y_x = y)$$

$$egin{aligned} P(Y_x = y) &= \sum_z P(Z_x = z) P(Y_z = y) \ &= \sum_z P(z \mid x) \sum_{x'} P(y \mid x', z) P(x') \end{aligned}$$

$$P(Y_z=y)=\sum_x P(Y_z=y\mid x)P(x)$$
 全概率 $=\sum_x P(Y_z=y\mid x,Z_x=z)P(x)$ 条件独立性 $=\sum_x P(Y_z=y\mid x,z)P(x)$ 合成性

 $=\sum P(Y=y\mid x,z)P(x)$

POM与SCM对比

D POM:

- 用概率表示因果关系,所有条件独立性只是假设(形而上学),无法验证假设是否成立。
- 所有假设通过概率表示,再通过概率论推理进行因果效应估计。
- 反事实变量 Y_x 与观测变量X和Y通过一致性原则转换: $\mathbf{Z}X = \mathbf{X}, \mathbf{Y} = \mathbf{Y}, \mathbf{M}, \mathbf{Y}_x = \mathbf{Y}$

缺点: 反事实结果无法超出观测结果

- 将Y|do(x)视为 Y_x , 只有反事实概念
- 无法证明完备: POM中对于任意的反事实查询,不知道怎样给出完备的假设,使一定能从观测数据中计算。
- POM和SCM在表达性方面等价,但SCM有图的优势(实用性强:可直接验证条件独立性) "Logic void of representation is metaphysics."

-Judea Pearl

□ SCM:

• 用因果图表示因果关系,所有条件独立性来自因果图,方便验证假设。