## **Definition (conservative vector field)**

A vector field is conservative if there is a scalar function with  $\nabla f = \mathbf{F}$ 

- Given f(x, y, z) = -mgz, then  $\mathbf{F}(x, y, z) = \langle 0, 0, -mg \rangle$ .
- Given  $f(x, y, z) = \frac{1}{\sqrt{x^2 + y^2 + z^2}}$  (gravity law), then  $\mathbf{F}(x, y, z) = \frac{-1}{\left(\sqrt{(x^2 + y^2 + z^2)}\right)^3} \langle x, y, z \rangle$ .
- Probably you recognize in this something of a potential function!
- Is a force of 1 variable always conservative?
- The reverse problem: Is force  $\mathbf{F}(x, y, z) = \langle yz, xz, xy \rangle$  conservative?
- And is force  $\mathbf{F}(x, y) = \langle yx, y^2 \rangle$  conservative?



# path independence

# Theorem (path independence)

Given a conservative vector field  $\mathbf{F} = \nabla f$  in space and given some curve  $\mathcal C$  given by  $\mathbf{r}(t)$  for  $t \in [a,b]$  then  $\int_{\mathcal C} \mathbf{F} \cdot d\mathbf{s} = f(\mathbf{r}(b)) - f(\mathbf{r}(a))$ .

- ▶ So if a path is closed then  $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{s} = 0$  for every conservative field.
- Why does a swing work? (also in the outer space)
- ► Examine the force  $\mathbf{F}(x,y) = \langle -2x, -2y \rangle$ . (a two dimensional spring)



#### The of conservation of mechanical energy and work:

What is the relation between kinetic energy, work and conservation of "energy" a "start":

Suppose a particle with a mass m is moving under influence of a force  $\mathbf{F}$  along a curve  $\mathcal{C}$  from point A to B.

We denote force, position, velocity, acceleration and work as  $\mathbf{F}$ ,  $\mathbf{r}$ ,  $\mathbf{v}$ ,  $\mathbf{a}$  and W.

- Why is the kinetic energy  $E_k$  for a particle defined as  $E_k = \frac{1}{2}m\mathbf{v} \cdot \mathbf{v} = \frac{1}{2}mv^2$ ?
- Examine: Work done by a force **F** is  $W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} = \int_{\mathcal{C}} m\mathbf{a} \cdot d\mathbf{r} = \mathbf{r}$
- $ightharpoonup rac{1}{2}mv^2(B) rac{1}{2}mv^2(A).$
- So work W done by a force is equal to the difference of the kinetic energy in the initial and end point.
- We have heard of the law of conservation of potential and kinetic energy. Where is it coming from?
- The final answer: Suppose that our force **F** is a conservative one. Then  $W = \int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r} =$
- $\nabla \phi(B) \nabla \phi(A)$ , with  $\mathbf{F} = \nabla \phi$ .
- So we get:  $\frac{1}{2}mv^2(B) \frac{1}{2}mv^2(A) = \phi(B) \phi(A)$ , which we rewrite as
- We define potential energy V(x, y, z) as  $-\phi(x, y, z)$ .
- Finally we get our familiar law: E<sub>k</sub> + V is conserved.



### A criterium for conservative forces in R2:

Given a vector field  $\mathbf{F}(x,y) = \langle P(x,y), Q(x,y) \rangle$ , what are the conditions for P and Q so that  $\mathbf{F}$  is a conservative field?

## Theorem (criterium for a conservative field)

Let  $\mathbf{F}(x, y) = P(x, y)\mathbf{i} + Q(x, y)\mathbf{j}$  with P and Q proper functions of 2 variables.

Let D a simply connected domain for the given functions, then: **F** is a conservative field only and only then if  $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$  on the domain D.

### Some remarks

- Roughly said: "Simple connected Region" means "one piece no holes".
- The proof for one "direction" is simple (which one?) for the other we need "theorem of Green".
- Our former example: Is force  $\mathbf{F}(x, y) = \langle yx, y^2 \rangle$  conservative?



# An important exercise 16.3 Ex.15

- Why the restriction simple connected?
- Given the field

$$\mathbf{F}(x,y) = \frac{-y\mathbf{i} + x\mathbf{j}}{x^2 + y^2}$$

- ▶ Show  $\frac{\partial P}{\partial y} = \frac{\partial Q}{\partial x}$ .
- ▶ Still  $\mathbf{F}(x, y)$  is not conservative, why?
- Is there a contradiction?

## **Theorem of Green**

## Theorem (Green)

Given a region R with a boundary C which is positively orientated. Then

$$\int_{\mathcal{C}} P dx + Q dy = \int \int_{G} \left( \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dA$$

#### Remarks:

Concerning ..."region R with a boundary C which is positively orientated...": For instance take for R the domain between the circles  $x^2 + y^2 = 1$  and  $x^2 + y^2 = 9$ . The boundary consists of the 2 circles, the "outside" one is oriented anticlockwise and the inside one clockwise

"If you are walking along a curve you will find the domain (the interior) on your left side".

Back to exercise 16.3: Explore the field  $\mathbf{F}(x, y) = \frac{-y\mathbf{i} + x\mathbf{j}}{x^2 + y^2}$ :

Again we choose the domain as the region between the circles  $x^2+y^2=1$  and  $x^2+y^2=9$ . What do we know about the line integrals  $\int_{C_1} \mathbf{F} \cdot d\mathbf{r}$  and  $\int_{C_2} \mathbf{F} \cdot d\mathbf{r}$  with  $C_1$  the circle  $x^2+y^2=1$ , and

 $\mathit{C}_2$  the circle  $\mathit{x}^2 + \mathit{y}^2 = 9$  and for  $\int_{\mathcal{C}} \mathbf{F} \cdot d\mathbf{r}$  with  $\mathcal{C}$  any square around the origin?

- The proof: "counting" total work in 2 ways.
- Why is our "criterium for a conservative field" true?



## $\nabla f$ , $\nabla \times \mathbf{f}$ , $\nabla \cdot \mathbf{f}$

Some definitions of important differential operators:

- Gradient of a scalar-function f: ∇f = ⟨f<sub>X</sub>, f<sub>y</sub>, f<sub>z</sub>⟩.
- Divergence of a vector-function  $\mathbf{f} = \langle P, Q, R \rangle$ :  $\nabla \cdot \mathbf{f} = P_X + Q_Y + R_Z$
- Rotation of a vector-function  $\mathbf{f} = \langle P, Q, R \rangle : \nabla \times \mathbf{f} = \langle R_y Q_z, P_z R_x, Q_x P_y \rangle$

### Remarks:

- We know interpretations for the gradient.
- For interpretation of the Rotation: Calculate ∇ × f for f = (P(x, y), Q(x, y), 0), then use Green to come to the equation ∫<sub>C</sub> f · ds = ∫ ∫<sub>G</sub> (∇ × f) · kdA with C a closed curve (anti-clockwise) which is circumference of domain G. So the interpretation for rotation is....
- For interpretation of the Divergence: Again for a closed curve around a domain G, calculate  $\int_{\mathcal{C}} \mathbf{f} \cdot \mathbf{n} ds$  wherein  $\mathbf{n}$  unit normal vector is of the curve  $\mathcal{C}$  which is outward chosen, we get  $\int_{\mathcal{C}} P dy Q dx$ , use Green to see that integral equals to  $\int \int_{G} \left(P_{X} + Q_{y}\right) dA$ .pause So the interpretation for divergence is....

