Devoir surveillé n°15

- La présentation, la lisibilité, l'orthographe, la qualité de la rédaction et la précision des raisonnements entreront pour une part importante dans l'appréciation des copies.
- On prendra le temps de vérifier les résultats dans la mesure du possible.
- Les calculatrices sont interdites.

Problème 1 – Centrale Maths I PC 2019

Réduction de sous-algèbres de $\mathcal{L}(E)$

Dans tout le problème, \mathbb{K} désigne \mathbb{R} ou \mathbb{C} et \mathbb{E} est un \mathbb{K} -espace vectoriel de dimension $n \geq 1$.

On note $\mathcal{L}(E)$ le \mathbb{K} -espace vectoriel des endomorphismes de E et $\mathcal{M}_n(\mathbb{K})$ le \mathbb{K} -espace vectoriel des matrices carrées à n lignes et n colonnes et à coefficients dans \mathbb{K} .

On note $mat_{\mathcal{B}}(u)$ la matrice, dans la base \mathcal{B} de E, de l'endomorphisme u de $\mathcal{L}(E)$.

La matrice transposée de toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est notée M^T .

On dit qu'un sous-ensemble \mathcal{A} de $\mathcal{L}(E)$ est une *sous-algèbre* de $\mathcal{L}(E)$ si \mathcal{A} est un sous-espace vectoriel de $\mathcal{L}(E)$, stable pour la composition, c'est-à-dire que $u \circ v$ appartient à \mathcal{A} quels que soient les éléments u et v de \mathcal{A} . (Remarquer qu'on ne demande pas que Id_E appartienne à \mathcal{A}).

On dit qu'une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est *commutative* si pour tous u et v dans \mathcal{A} , $u \circ v = v \circ u$.

Une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est dite *diagonalisable* (respectivement *trigonalisable*) s'il existe une base \mathcal{B} de E telle que $\operatorname{mat}_{\mathcal{B}}(u)$ soit diagonale (respectivement triangulaire supérieure) pour tout u de \mathcal{A} .

On dit qu'une partie \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est une *sous-algèbre* de $\mathcal{M}_n(\mathbb{K})$ si \mathcal{A} est un sous-espace vectoriel stable pour le produit matriciel. Elle est dite *commutative* si, pour toutes matrices A et B de \mathcal{A} , AB = BA. Une sous-algèbre \mathcal{A} de $\mathcal{M}_n(\mathbb{K})$ est *diagonalisable* (respectivement *trigonalisable*) s'il existe $P \in GL_n(\mathbb{K})$ telle que pour toute matrice M de \mathcal{A} , $P^{-1}MP$ soit diagonale (respectivement triangulaire supérieure).

Si \mathcal{B} est une base de E, l'application $\operatorname{mat}_{\mathcal{B}}: \mathcal{L}(E) \to \mathcal{M}_n(\mathbb{K})$ est une bijection qui envoie une sous-algèbre (respectivement commutative, diagonalisable, trigonalisable) de $\mathcal{L}(E)$ sur une sous-algèbre de $\mathcal{M}_n(\mathbb{K})$ (respectivement commutative, diagonalisable, trigonalisable).

Un sous-espace vectoriel F de E est strict si F est différent de E.

On désigne par $S_n(\mathbb{K})$ (respectivement $A_n(\mathbb{K})$) l'ensemble des matrices symétriques de $\mathcal{M}_n(\mathbb{K})$ (respectivement antisymétriques). On désigne par $T_n(\mathbb{K})$ (respectivement $T_n^+(\mathbb{K})$) le sous-ensemble de $\mathcal{M}_n(\mathbb{K})$ constitué des matrices triangulaires supérieures (respectivement des matrices triangulaires supérieures à coefficients diagonaux nuls).

I Exemples de sous-algèbres

I.1 Exemples de sous-algèbres de $\mathcal{M}_n(\mathbb{K})$

- 1 Les sous-ensembles $T_n(\mathbb{K})$ et $T_n^+(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?
- **2** Les sous-ensembles $S_2(\mathbb{K})$ et $A_2(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_2(\mathbb{K})$?
- 3 On suppose $n \ge 3$. Les sous-ensembles $S_n(\mathbb{K})$ et $A_n(\mathbb{K})$ sont-ils des sous-algèbres de $\mathcal{M}_n(\mathbb{K})$?

I.2 Exemples de sous-algèbres de $\mathcal{L}(E)$

Soit F un sous-espace vectoriel de E de dimension p et \mathcal{A}_F l'ensemble des endomorphismes de E qui stabilisent F, c'est-à-dire $\mathcal{A}_F = \{u \in \mathcal{L}(E) \mid u(F) \subset F\}$.

- 4 Montrer que \mathcal{A}_{F} est une sous-algèbre de $\mathcal{L}(E)$.
- [5] Montrer que dim $A_F = n^2 pn + p^2$.

 On pourra considérer une base de E dans laquelle la matrice de tout élément de A_F est triangulaire par blocs.

I.3 Exemples de sous-algèbres de $\mathcal{M}_2(\mathbb{K})$ diagonalisables et non diagonalisables

Soit $\Gamma(\mathbb{K})$ le sous-ensemble de $\mathcal{M}_2(\mathbb{K})$ constitué des matrices de la forme $\begin{pmatrix} a & -b \\ b & a \end{pmatrix}$ où $(a,b) \in \mathbb{K}^2$.

- 7 Montrer que $\Gamma(\mathbb{K})$ est une sous-algèbre de $\mathcal{M}_2(\mathbb{K})$.
- **8** Montrer que $\Gamma(\mathbb{R})$ n'est pas une sous-algèbre diagonalisable de $\mathcal{M}_2(\mathbb{R})$.
- 9 Montrer que $\begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$ est diagonalisable sur $\mathbb C$. En déduire que $\Gamma(\mathbb C)$ est une sous-algèbre diagonalisable de $\mathcal M_2(\mathbb C)$.

II Une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$

Dans cette partie, on suppose $n \ge 2$. Pour tout $(a_0, ..., a_{n-1}) \in \mathbb{R}^n$, on pose

$$\mathbf{J}(a_0,\dots,a_{n-1}) = \left(\begin{array}{cccc} a_0 & a_{n-1} & \cdots & a_1 \\ a_1 & a_0 & \dots & a_2 \\ \vdots & \vdots & & \vdots \\ a_{n-1} & a_{n-2} & \cdots & a_0 \end{array} \right)$$

Ainsi, le coefficient d'indice (i, j) de $J(a_0, ..., a_{n-1})$ est a_{i-j} si $i \ge j$ et a_{i-j+n} si i < j.

Soit \mathcal{A} l'ensemble des matrices de $\mathcal{M}_n(\mathbb{R})$ de la forme $J(a_0,\ldots,a_{n-1})$ où $(a_0,\ldots,a_{n-1})\in\mathbb{R}^n$.

Soit $J \in \mathcal{M}_n(\mathbb{R})$ la matrice canoniquement associée à l'endomorphisme $\varphi \in \mathcal{L}(\mathbb{R}^n)$ défini par $\varphi : e_j \mapsto e_{j+1}$ si $j \in \{1, ..., n-1\}$ et $\varphi(e_n) = e_1$, où $(e_1, ..., e_n)$ est la base canonique de \mathbb{R}^n .

II.1 Calcul des puissances de J

10 Préciser les matrices J et J^2 . (on pourra distinguer les cas n = 2 et $n \ge 3$).

- 11 Préciser les matrices J^n et J^k pour $2 \le k \le n-1$.
- **12** Quel est le lien entre la matrice $J(a_0, ..., a_{n-1})$ et les J^k , où $0 \le k \le n-1$?

II.2 Une base de A

- 13 Montrer que $(I_n, J, J^2, ..., J^{n-1})$ est une base de A.
- Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M commute avec J si et seulement si M commute avec tout élément de \mathcal{A} .
- 15 Montrer que \mathcal{A} est une sous-algèbre commutative de $\mathcal{M}_n(\mathbb{R})$.

II.3 Diagonalisation de J

- 16 Déterminer le polynôme caractéristique de J.
- 17 Montrer que J est diagonalisable dans $\mathcal{M}_n(\mathbb{C})$.
- **18** La matrice J est-elle diagonalisable dans $\mathcal{M}_n(\mathbb{R})$?
- 19 Déterminer les valeurs propres complexes de J et les espaces propres associés.

II.4 Diagonalisation de A

- **20** Le sous-ensemble \mathcal{A} est-il une sous-algèbre de $\mathcal{M}_n(\mathbb{C})$?
- Montrer qu'il existe $P \in GL_n(\mathbb{C})$ telle que, pour toute matrice $A \in \mathcal{A}$, la matrice $P^{-1}AP$ est diagonale.

Soit
$$(a_0, \dots, a_{n-1}) \in \mathbb{R}^n$$
. On note $Q \in \mathbb{R}[X]$ le polynôme $\sum_{k=0}^{n-1} a_k X^k$.

Quelles sont les valeurs propres complexes de la matrice $J(a_0, ..., a_{n-1})$?

III Sous-algèbres strictes de $\mathcal{M}_n(\mathbb{R})$ de dimension maximale

On se propose de montrer dans cette partie que la dimension maximale d'une sous-algèbre stricte de $\mathcal{M}_n(\mathbb{R})$ est égale à $n^2 - n + 1$.

Dans toute cette partie, \mathcal{A} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ strictement incluse dans $\mathcal{M}_n(\mathbb{R})$ et on note d sa dimension. On a donc $d < n^2$.

III.1 Un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$

La trace de toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est notée tr(M).

23 Montrer que l'application définie sur $\mathcal{M}_n(\mathbb{R}) \times \mathcal{M}_n(\mathbb{R})$ par $(A, B) \mapsto \langle A \mid B \rangle = tr(A^T B)$ est un produit scalaire sur $\mathcal{M}_n(\mathbb{R})$.

On désigne \mathcal{A}^{\perp} l'orthogonal de \mathcal{A} dans $\mathcal{M}_n(\mathbb{R})$ et on note r sa dimension.

24 Quelle relation a-t-on entre d et r?

Jusqu'à la fin de cette partie, on fixe une base $(A_1, ..., A_r)$ de \mathcal{A}^{\perp} .

- Soit $M \in \mathcal{M}_n(\mathbb{R})$. Montrer que M appartient à \mathcal{A} si et seulement si, pour tout $i \in [1, r], \langle A_i \mid M \rangle = 0$.
- **26** Montrer que pour toute matrice $N \in \mathcal{A}$ et tout $i \in [1, r]$, on a $N^T A_i \in \mathcal{A}^{\perp}$.

III.2 Conclusion

Soit $\mathcal{A}^{\mathsf{T}} = \{ \mathbf{M}^{\mathsf{T}} \mid \mathbf{M} \in \mathcal{A} \}.$

Montrer que \mathcal{A}^{T} est une sous-algèbre de $\mathcal{M}_n(\mathbb{R})$ de même dimension que \mathcal{A} .

On note $\mathcal{M}_{n,1}(\mathbb{R})$ le \mathbb{R} -espace vectoriel des matrices colonnes à n lignes et à coefficients réels. On rappelle qu'à toute matrice M de $\mathcal{M}_n(\mathbb{R})$ est associé canoniquement l'endomorphisme de $\mathcal{M}_{n,1}(\mathbb{R})$ défini par $X \mapsto MX$.

- Soit $X \in \mathcal{M}_{n,1}(\mathbb{R})$ et soit $F = \text{vect}(A_1X, ..., A_rX)$. Montrer que F est stable par les endomorphismes de $\mathcal{M}_{n,1}(\mathbb{R})$ canoniquement associés aux éléments de \mathcal{A}^T .
- **29** Montrer que $d \le n^2 n + 1$ et conclure.

IV Réduction d'une algèbre nilpotente de $\mathcal{M}_n(\mathbb{C})$

Soit E un \mathbb{C} -espace vectoriel de dimension finie $n \geq 1$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$ constituée d'endomorphismes nilpotents. On admet dans cette partie le théorème ci-dessous, qui sera démontré dans la partie V

Théorème de Burnside

Soit E un \mathbb{C} -espace vectoriel de dimension $n \geq 2$. Soit \mathcal{A} une sous-algèbre de $\mathcal{L}(E)$. Si les seuls sous-espaces vectoriels de E stables par tous les éléments de \mathcal{A} sont $\{0\}$ et E, alors $\mathcal{A} = \mathcal{L}(E)$.

On se propose de démontrer par récurrence forte sur $n \in \mathbb{N}^*$ que si tous les éléments de \mathcal{A} sont nilpotents, alors \mathcal{A} est trigonalisable.

30 Montrer que le résultat est vrai si n = 1.

On suppose désormais que $n \ge 2$ et que le résultat est vrai pour tout entier naturel $d \le n - 1$.

31 | Montrer qu'il existe un sous-espace vectoriel V de E distinct de E et $\{0\}$ stable par tous les éléments de \mathcal{A} .

On fixe dans la suite un tel sous-espace vectoriel et on note r sa dimension. Soit aussi s = n - r.

| 32 | Montrer qu'il existe une base \mathcal{B} de E telle que pour tout $u \in \mathcal{A}$,

$$\operatorname{mat}_{\mathcal{B}}(u) = \begin{pmatrix} A(u) & B(u) \\ 0 & D(u) \end{pmatrix}$$

où $A(u) \in \mathcal{M}_r(\mathbb{C})$, $B(u) \in \mathcal{M}_{r,s}(\mathbb{C})$ et $D(u) \in \mathcal{M}_s(u)$.

- Montrer que $\{A(u) \mid u \in \mathcal{A}\}$ est une sous-algèbre de $\mathcal{M}_r(\mathbb{C})$ constituée de matrices nilpotentes et que $\{D(u) \mid u \in \mathcal{A}\}$ est une sous-algèbre de $\mathcal{M}_s(\mathbb{C})$ constituée de matrices nilpotentes.
- 34 Montrer que \mathcal{A} est trigonalisable.
- 35 | Montrer qu'il existe une base de E dans laquelle les matrices des éléments de \mathcal{A} appartiennent à $T_n^+(\mathbb{C})$.

V Le théorème de Burnside

On se propose de démontrer dans cette partie le théorème de Burnside énoncé dans la partie IV.

On fixe un \mathbb{C} -espace vectoriel E de dimension $n \geq 2$.

On dira qu'une sous-algèbre \mathcal{A} de $\mathcal{L}(E)$ est irréductible si les seuls sous-espaces vectoriels stables par tous les éléments de \mathcal{A} sont $\{0\}$ et E.

Soit \mathcal{A} une sous-algèbre irréductible de $\mathcal{L}(E)$. Il s'agit donc de montrer que $\mathcal{A} = \mathcal{L}(E)$.

V.1 Recherche d'un élément de rang 1

Soient x et y deux éléments de E, x étant non nul. Montrer qu'il existe $u \in A$ tel que u(x) = y. On pourra considérer dans E le sous-espace vectoriel $\{u(x) \mid u \in A\}$.

Soit $v \in \mathcal{A}$ de rang supérieur ou égal à 2. Montrer qu'il existe $u \in \mathcal{A}$ et $\lambda \in \mathbb{C}$ tel que :

$$0 < \operatorname{rg}(v \circ u \circ v - \lambda v) < \operatorname{rg}(v)$$

Considérer x et y dans E tels que la famille (v(x), v(y)) soit libre, justifier l'existence de $u \in A$ tel que $u \circ v(x) = y$ et considérer l'endomorphisme induit par $v \circ u$ sur Im(v).

38 En déduire l'existence d'un élément de rang 1 dans \mathcal{A} .

V.2 Conclusion

Soit $u_0 \in \mathcal{A}$ de rang 1. On peut donc choisir une base $\mathcal{B} = (\varepsilon_1, \dots, \varepsilon_n)$ de E telle que $(\varepsilon_2, \dots, \varepsilon_n)$ soit une base de ker u_0 .

Montrer qu'il existe $u_1, \dots, u_n \in \mathcal{A}$ de rang 1 tels que $u_i(\varepsilon_1) = \varepsilon_i$ pour tout $i \in [1, n]$.

40 Conclure.