

DPP SOLUTION

Subject – Physical Chemistry

 Chapter – Thermodynamics and Thermochemistry

DPP No.- 07

By – Amit Mahajan Sir

In which reaction ΔS is positive: $S^{(1)}$

$$2) \xrightarrow{3} 0_{2}(g) \rightarrow \underline{20_{3}(g)} \quad \Delta g = (-) \vee e \quad \Delta S = (-) \vee e$$

$$H_2O(\ell) \rightarrow H_2O(g)$$

$$4$$
 $N_2(g) + 3H_2(g) \rightarrow 2NH_3(g)$

When the egg is hard boiled, there is-

If S° for H₂, Cl₂ and HCl are 0.13, 0.22 and 0.19 KJ K⁻¹ mol⁻¹ respectively. The total change in standard entropy for the reaction $H_2 + \slash\!\!/ Cl_2 \longrightarrow 2HCl$ is:

- 30 JK-1 mol-1 DS = 2x 0.19 (1x0.13 +1x0.22)
 - 40 JK⁻¹ mol⁻¹
 - 60 JK⁻¹ mol⁻¹
- 20 JK⁻¹ mol⁻¹

- = 0.03 KJ/Kmol = 30 J/Kmol

The enthalpy of vaporization for water is 186.5KJ mol⁻¹, the entropy of its vaporization will be-

- 0.5 KJ K⁻¹ mol⁻¹
- 2 1.0 KJ K⁻¹ mol⁻¹
- (3) 1.5 KJ K⁻¹ mol⁻¹
- (4) 2.0 KJ K⁻¹ mol⁻¹

$$\Delta H_{\text{Wab}} = 186.5 \text{ KJ/mol}$$

$$\Delta S_{\text{Wab}} = \frac{186.5}{373} = \frac{1}{2} = 0.5 \text{ KJ/mol}$$

The enthalpy of vaporization of per mole of ethanol (b.p. = 79.5° C and $\Delta S = 109.8$ JK⁻¹ mol⁻¹) is: $\Delta H_{3.45} = 3^{\circ}$

$$\Delta H \text{ var} = 38.704$$

$$K J K | \text{mol}$$

42.37 KJ/mol

$$\Delta H_{Vab} = \Delta S_{Vab} \times T_{B}$$

$$= 109.8 \times 358.5$$

$$= 3870 + .57 \text{ F}_{Ans.}(3)$$

Ammonium chloride when dissolved in water leads to cooling sensation. The dissolution of NH₄Cl at constant temperature is accompanied by :

Increase in entropy.

Decrease in entropy

No change in entropy

Ci (09,1)

No change in enthalpy

The spontaneous nature of a reaction is impossible if

- $\begin{pmatrix} 1 \end{pmatrix}$ Δ H is +ve, Δ S is also +ve
- (2) ΔH is -ve, ΔS is also -ve
- (3) ΔH is -ve, ΔS is +ve

Which of the following is true for the reaction $H_2O(\ell) \rightleftharpoons H_2O(g)$ at 100°C and 1 Dng=1-0=1 atmosphere

$$\Delta S = 0 \ \chi$$

$$\Delta H = 0 \text{ }$$

$$(3)$$
 $\Delta H = \Delta E \times$

$$\Delta H = T\Delta S$$

Determine the entropy change for the reaction given below:

$$2H_2(g) + O_2(g) \rightarrow 2H_2O(\ell)$$
 at 300 K.

If standard entropies of $H_2(g)$, $O_2(g)$ and $H_2O(\ell)$ are 126.6, 201.20 and 68.0 J K⁻¹ mol⁻¹ respectively. 18-2×68 - (2×126.6+1×201.2)

$$(1)$$
 -218.4 J K⁻¹ mol⁻¹

$$(3)$$
 -520.2 J K⁻¹ mol⁻¹

$$(4)$$
 -128.6 J K⁻¹ mol⁻¹

M.Pt. = 273

<u>Calculate the entropy change in melting of one gm ice at 0°C if latent heat of ice is</u>

80 cal/g-

$$(2)$$
 20 Cal K⁻¹

$$(3)$$
 4.4 Cal K⁻¹

$$\Delta S_{\text{fusion}} = \frac{80}{273} = 6.29 \text{ GeV}$$

Standard state means-

298 K & lat M

- 1) \geq 25°C and 70 mmHg \times
- 2) 298 K and 760 cmHg
- (3) \times 273 K and 1 atm
- 298 K and one atm

M 450 = 189/mole

If 900 J/g of heat is exchanged at boiling point of water, then what is increase in

entropy?

43.4 J/K mole

87.2 J/K mole

900 J/K mole

Zero

$$\Delta S_{\text{fusion}} = \frac{900}{2373} \Im \frac{\Im / 8}{8}$$

