# 3.2 Linear-Time Temporal Logic

#### Model Checking

- Proof-based (syntactic):  $\Gamma \vdash \phi$
- Represent system behaviour using set of formulas  $\Gamma$

#### Theorem Proving

- Model-based (semantic):  $M \models \phi$
- Represent system behaviour using an abstraction (model) M

#### Temporal Logic

Can reason about time using predicate logic:

Use a variable t to represent time in predicates

Alternatively: try to build in the notion of time into the logic

# Linear Temporal Logic (LTL):

- Start with atoms(p,q,r,...), just like in propositional logic
- Reason about the points in time these atoms hold
- Do this by considering execution paths of a system

#### Syntax

#### LTL Formulas:

$$\phi ::= \top |\bot| \mathbf{p} |\neg \phi| \phi \wedge \phi |\phi \vee \phi| \phi \implies \phi |\mathbf{X} \phi| \mathbf{F} \phi |\mathbf{G} \phi |\phi \mathbf{U} \phi |\phi \mathbf{W} \phi| \phi \mathbf{R} \phi$$

#### Operator precedence:

- $\neg$  (highest)
- X
- F
- G
- U
- R
- W
- \/
- $\bullet \implies (lowest)$

#### Bold letters are temporal operators

- U is the only one you need for LTL. It is called the until.
- Can derive the rest from  ${\bf U}$

#### Transition Systems

A transition system (model)  $M = (S, \rightarrow, L)$  is a set of states S, a (binary) transition relation  $\rightarrow$  such that every  $s \in S$  has some  $s' \in S$  with  $s \rightarrow s'$ , and a labeling function  $L:S \rightarrow P$  (Atoms)

Example:



Figure 1: A representation of a transition system  $M = (S, \to L)$  as a directed graph. We label state s with l iff  $l \in L(s)$ 

A path in a model  $M = (S, \rightarrow, L)$  is an infinite sequence of states in S such that  $s_i \rightarrow s_{i+1}$ .

• Write the path as  $s_1 \rightarrow s_2$ 

#### Formulas over Paths

Let  $M = (S, \rightarrow, L)$  be a model

Let  $\pi = s_1 \to \dots$  be a path in M

Path semantics:

- $\pi \models \top$
- $\pi \not\models \bot$
- $\pi \models p$  if and only if  $p \in L(s_1)$  (This p is for the first set in the trace)
- $\pi \models \neg \phi$  if and only if  $\pi \not\models \phi$
- $\pi \models \phi \land \psi$  if and only if  $\pi \models \phi$  and  $\pi \models \psi$
- $\pi \models \phi \lor \psi$  if and only if  $\pi \models \phi$  or  $\pi \models \psi$
- $\pi \models \phi \implies \psi$  if and only if  $\pi \models \phi$  whenever  $\pi \models \psi$
- $\phi \models \mathbf{X} \phi$  if and only if  $\pi^2 \models \phi$
- $\phi \models \phi$  **U**  $\psi$  if and only if there is some  $k \geq 1$  where  $\pi^k \models \psi$  and  $\pi^j \models \phi$  for all  $1 \leq j < k$

#### LTL Semantics

Let  $M = (S, \rightarrow, L)$  be a model

Let  $s \in S$ 

Let  $\phi$  be an LTL formula

We write  $M, s \models \phi$  to mean:

For every path  $\pi$  of M starting at s, we have  $\pi \models \phi$ 

If the model M is clear from context, we simply write  $s \models \phi$ 

Talks about a single initial state

#### LTL Equivalences

Future operator: At some point  $\phi$  needs to hold

$$\mathbf{F}\phi \equiv \top \mathbf{U} \phi$$

$$\{\ldots\} \to \{\ldots\} \to \{\phi\} \to \{\ldots\} \to \ldots$$

Globally operator: Need to always hold at all points in the path (complement of future operator)

$$\mathbf{G}\phi \equiv \neg(\mathbf{F}\neg\phi)$$

$$\{\phi\} \to \{\phi\} \to \{\phi\} \to \{\phi\} \to \dots$$

Weak Until operator: Second holds until first

$$\phi \mathbf{W} \psi \equiv (\phi \mathbf{U} \psi) \vee \mathbf{G} \ \phi$$

$$\{\psi\} \to \dots \to \{\psi\} \to \{\phi\} \to \{\dots\} \to \dots$$

Release operator: Second formula needs to hold till the point the first formula holds with it, then do whatever (like inverse until)

$$\phi \mathbf{R} \psi \equiv \psi \mathbf{W} (\phi \wedge \psi)$$

$$\{\psi\} \to \dots \to \{\psi\} \to \{\phi, \psi\} \to \{\dots\} \to \dots$$

#### LTL Examples

1. "For any state, if a request (of some resource) occurs, then it will eventually be acknowledged"

 $\mathbf{G}(\text{requested} \implies F \text{ acknowledged})$ 

2. "A certain process is enabled infinitely often on every computation path:"

**GF** enabled

3. "A certain process will eventually be permanently deadlocked"

FG deadlock

4. "If the process is enabled infinitely often, then it runs infinitely often"

 $\mathbf{GF}$  enabled  $\Longrightarrow \mathbf{GF}$  running

5. "An upwards traveling lift at the second floor does not change its direction when it has passengers wishing to go to the fifth floor"

 $G (floor2 \land directionup \land ButtonPressed5 \implies (directionup U floor5))$ 

(Does the above only imply for floor 2, wouldnt it break for any other floor)

#### Inexpressible in LTL

Cannot assert the existence of a path

- Example: "From any state it is possible to get to a restart state" (there is a path from all states to a state satisfying restart
- To do this "quantification" over paths, we need Computation Tree Logic (CTL)

# 3.3 Model Checking

## Modeling Example: Mutual Exclusion

Mutual Exclusion model:

- Each process has **critical sections**
- Only one critical section can execute at a time (no interleaving of critical sections)
- Need a mutual exclusion protocol
- Basic requirements:
  - Safety: at most one critical section can execute at any given time
  - Liveness: request to enter critical section will eventually be granted
  - Non-blocking: a process can always request to enter critical section



Figure 2: Model of mutual exclusion

```
    Safety: G ¬(c<sub>1</sub> ∧ c<sub>2</sub>)
    Liveness: G(t<sub>1</sub> ⇒ Fc<sub>1</sub>)
```

#### NuSMV Model Checker

```
MODULE main
VAR
    request : boolean;
    state : {ready, busy}
ASSIGN
    init(state) := ready;
    next(state) := case
        request : busy;
        TRUE : {ready,busy}
    ;esac
LTLSPEC G(request -> F state = busy)
```

# 3.4 Branch-Time Logic

Quantifiers in temporal logic: quantify over paths

• "There exists a path where p eventually holds"

$$\neg (\mathbf{G} \neg \mathbf{p})$$

• "For all paths, p eventually holds"

$$\mathbf{GFp}$$

- This won't work if we have multiple quantifiers  $(\forall \exists)$
- Solution: Computation Tree Logic (CTL)

Interpreting formulas over trees

- In LTL, formulas are given meaning with respect to traces
- In CTL, formulas are given meaning with respect to a tree

#### Computation Tree Logic (CTL)

- Start with atoms (p,q,r,...), just like LTL
- Operators U, F, G, X are quantified by prefixing either E or A
- We reason about tree of states produced by executing system
- Transition Systems are the same as LTL

#### CTL Syntax

CTL formulas:

$$\phi ::= \top |\bot| p |\neg \phi| \phi \land \phi |\phi \lor \phi| \phi \implies \phi | \mathbf{A} \mathbf{X} \phi \mid \mathbf{E} \mathbf{X} \phi \mid \mathbf{A} \mathbf{F} \phi \mid \mathbf{E} \mathbf{F} \phi \mid \mathbf{A} \mathbf{G} \phi \mid \mathbf{E} \mathbf{G} \phi \mid \mathbf{A} [\phi \mathbf{U} \phi] \mid \mathbf{E} [\phi \mathbf{U} \phi]$$

Operator precedence:

- ¬ (highest)
- \*X
- \*F
- \*G
- \*U
- \
- \/
- $\Longrightarrow$  (lowest)

#### CTL Semantics

Let  $M = (S, \rightarrow, L)$  be a model

Let  $s \in S$ 

Let  $\phi$  be an CTL formula

 $M, s \models \phi \text{ means}$ :

- If  $\phi$  is atomic, satisfaction is determined by L
- If the top-level connective of  $\phi$  (the connective occurring top-most in the parse tree of  $\phi$ ) is boolean connective  $(\land, \lor, \neg, \top, \text{ etc.})$  then the satisfaction question is answered by the usual truth-table definition and further recursion down  $\phi$
- If the top level connective is an operator beginning A, then satisfaction holds if all paths from s satisfy the "LTL formula" resulting from removing the A symbol.
- Similarly, if the top level connective begins with E, then satisfaction holds if some path from s satisfy the 'LTL formula' resulting from removing the E.

#### Formulas over Trees

Let  $M = (S, \rightarrow, L)$  be a model

Tree semantics:

- $M, s \models T \text{ and } M, s \not\models \bot$
- $M, s \models p \text{ iff } p \in L(s)$
- $M, s \models \neg \phi \text{ iff } M, s \not\models \phi$
- $M, s \models \phi_1 \land \phi_2 \text{ iff } M, s \models \phi_1 \text{ and } M, s \models \phi_2$
- $M, s \models \phi_1 \lor \phi_2 \text{ iff } M, s \models \phi_1 \text{ or } M, s \models \phi_2$
- $M, s \models \phi_1 \rightarrow \phi_2 \text{ iff } M, s \not\models \phi_1 \text{ or } M, s \models \phi_2$
- $M, s \models AX\phi$  iff for all  $s_1$  such that  $s \to s_1$  we have  $M, s \models \phi$ . Thus, AX says: "in every state"
- M,  $s \models EX\phi$  iff for some  $s_1$  such that  $s \to s_1$  we have M,  $s \models \phi$ . Thus, EX says: "in some next state". E is dual to A in exactly the same way that  $\exists$  is dual to  $\forall$  in predicate logic.
- M,  $s \models AG\phi$  holds iff for all paths  $s_1 \rightarrow s_2 \rightarrow s_3 \dots$ , where  $s_1$  equals  $s_1$ , and all  $s_i$  along the path, we have M,  $s_i \models \phi$ . Mnemonically: for all computation paths beginning in  $s_1$  the property  $\phi$  holds globally. Note that 'along the path' includes the path's initial state.
- M,  $s \models EG\phi$  holds iff there is a path  $s_1 \rightarrow s_2 \rightarrow s_3 \rightarrow ...$ , where  $s_1$  equals s, and for all  $s_i$  along the path, we have M,  $s_i \models \phi$ . Mnemonically: there exists a path beginning in s such that  $\phi$  holds globally along the path
- M,  $s \models AF\phi$  holds iff for all paths  $s_1 \to s_2 \to s_3 \to \dots$ , where  $s_1$  equals s, there is some  $s_i$  such that M,  $s_i \models \phi$ . Mnemonically: for all computation paths beginning in s there will be some future state where  $\phi$  holds
- M,  $s \models EF\phi$  holds iff there is a path  $s_1 \to s_2 \to s_3 \to \dots$ , where  $s_1$  equals s, and for some  $s_i$  along the path, we have M,  $s_i \models \phi$ . Mnemonically: these exists a computation path beginning in s such that  $\phi$  holds in some future state
- M,  $s \models A[\phi_1 \cup \phi_2]$  holds iff for all paths  $s_1 \to s_2 \to s_3 \to \dots$ , where  $s_1$  equals s, that path satisfies  $\phi_1 \cup \phi_2$  ie. there is some  $s_i$  along the path, such that M,  $s_i \models \phi_2$  and, for each j < i, we have M,  $s_j \models \phi_1$ . Mnemonically: All computation paths beginning in s satisfy that  $\phi_1$  Until  $\phi_2$  holds on it
- M,  $s \models E[\phi_1 \cup \phi_2]$  holds iff there is a path  $s_1 \to s_2 \to s_3 \to \dots$ , where  $s_1$  equals s, and that path satisfies  $\phi_1 \cup \phi_2$  as specified in the previous rule. Mnemonically: there exists a computation path beginning in s such that  $\phi_1 \cup s$  holds on it

#### CTL Examples

- It is possible to get to state where started holds, but ready doesn't
  - **EF** (started  $\land \neg ready$ )
- For any state, if a request (of some resource) occurs, then it will eventually be acknowledged:
  - **AG** (requested  $\implies$  **AF** acknowledged)
- The process is enabled infinitely often on every computation path:
  - **AG** (**AF** enabled)
- Whatever happens, the process will eventually be permanently deadlocked:
  - **AF** (**AG** deadlock)
- From any state it is possible to get to a restart state:
  - AG (EF restart)

#### CTL Equivalences

- $\neg \mathbf{AF} \phi \equiv \mathbf{EG} \ \neg \phi$
- $\neg \mathbf{EF} \phi \equiv \mathbf{AG} \neg \phi$
- $\neg \mathbf{A} \mathbf{X} \phi \equiv \mathbf{E} \mathbf{X} \ \neg \phi$
- $\mathbf{AF}\phi \equiv \mathbf{A}[\top \mathbf{U}\phi]$
- $\mathbf{E}\mathbf{F}\phi \equiv \mathbf{E}[\top \mathbf{U}\phi]$

#### **Adequate Sets of Operators**

All the CTL operators can be defined using only AU, EU, and EX

# 3.6.1 Model Checking Algorithms

#### CTL Model Checking

As humans its easy to reason about all traces, but hard for a computer to reason.

LTL property:  $G\neg(c_1 \wedge c_2)$ CTL property:  $AG\neg(c_1 \wedge c_2)$ 

#### CTL Model Checking Problem

- Let  $M = (S, \rightarrow, L)$  be a model
- Model checking:  $M, s \models \phi$
- Given M,  $\phi$ , we will find a set  $S' \subseteq S$  such that M,  $s \models \phi$  for all  $s \in S'$

Solving the third bullet will allow you to solve the second. (Find all states s where property is satisfied)

#### **Adequate Sets of Operators**

Recall: all the CTL operators can be defined using only AU, EU, and EX

More generally: Set of temporal operators is adequate and only if it contains at least one of  $\{AX, EX\}$ , at least one of  $\{EG, AF, AU\}$ , and EU

Our CTL model-checking algorithm only needs to handle: AF, EU, EX,  $\wedge$ ,  $\neg$ ,  $\bot$ 

• Need three to represent the other operators. (This makes it adequate)

If the CTL formula is not in this form, first translate it

#### Label-Based CTL Model Checking Algorithm

- $\perp$ : then no states are labelled with  $\perp$
- p: then label s with p if  $p \in L(s)$
- $\psi_1 \wedge \psi_2$ : label s with  $\psi_1 \wedge \psi_2$  if s is already labelled both with  $\psi_1$  and with  $\psi_2$
- $\neg \psi_1$ : label s with  $\neg \psi_1$  if s is not already labelled with  $\psi_1$
- AF  $\psi_1$ :
  - If any state s is labelled with  $\psi_1$ , label it with AF $\psi_1$
  - Repeat: label any state with AF $\psi_1$  if all successor states are labelled with AF $\psi_1$ , until there is no change. (SHOWN IN FIGURE 3)
- $E[\psi_1 \ U \ \psi_2]$ :
  - If any state s is labelled with  $\psi_2$ , label it with  $E[\psi_1 \cup \psi_2]$
  - Repeat: label any state with  $E[\psi_1 \cup \psi_2]$ , if it is labelled with  $\psi_1$  and at least one of its successors is labelled with  $E[\psi_1 \cup \psi_2]$ , until there is no change. (SHOWN IN FIGURE 4)
- EX $\psi_1$ : label any state with EX $\psi_1$  if one of its successors is labelled with  $\psi_1$

Complexity: linear in size of the formula, quadratic in the size of the model



Figure 3: Example of AF Rule



Figure 4: Example of E Rule

#### Handling EG Directly

#### $EG\psi_1$ :

- Label all the states with  $EG\psi_1$
- If any state s is not labelled with  $psi_1$ , delete the label EG $\psi_1$
- Repeat: delete the label  $EG\psi_1$  from any state if none of its successors is labelled with  $EG\psi_1$ ; until there is no change

Translating formula is expensive. Size of the model is big, this will be terrible for the algorithm Handling EG (Alternative):

- Restrict the graph to states satisfying  $\psi$  (delete all other states and their transitions)
- Find the maximal strongly connected components (SCCs); these are maximal regions of the state space in which every state is linked with (= has a finite path to) every other one in that region
- Use backwards breadth-first search on the restricted graph to find any state that can reach an SCC



Figure 5: Example of EG alternative and the SCC

Complexity: linear in both the size of the formula, and the size of the model

#### Running label algorithm



Figure 6: Example graph to demonstrate the labeling algorithm

 $0.134 \leftarrow \text{path that satisfy property}$ 

With the labeling, if the starting node is labeled, then the property is satisfied

 $5~6~9~7 \leftarrow \text{doesn't fit property so it doesnt get label}$ 

#### Pre operators

Helper functions for the labeling algorithm

```
• \operatorname{pre}_{\exists}(Y) = \{s \in S: \exists s', (s \to s') \land \in Y\}

(set of states that may transition into Y)

• \operatorname{pre}_{\forall}(Y) = \{s \in S: \forall s', (s \to s') \implies \in Y\}
```

(set of states that **only** transition into y

```
CTL Labeling: EX
```

```
function SAT<sub>EX</sub> (\phi)
/* determines the set of states satisfying EX \phi */
local var X, Y
begin
X := \text{SAT}(\phi);
Y := \text{pre}_{\exists}(X);
return Y
end
```

### CTL Labeling: AF

```
function SAT<sub>AF</sub> (\phi)

/* determines the set of states satisfying AF \phi */
local var X, Y
begin

X := S;
Y := \text{SAT}(\phi);
repeat until X = Y
begin

X := Y;
Y := Y \cup \text{pre}_{\forall}(Y)
end
return Y
```

#### CTL Labeling: EU

```
function SAT<sub>EU</sub> (\phi, \psi)

/* determines the set of states satisfying E[\phi \ U \ \psi] */
local var W, X, Y
begin

W := SAT(\phi);
X := S;
Y := SAT(\psi);
repeat until X = Y
begin

X := Y;
Y := Y \cup (W \cap pre_{\exists}(Y))
end
return Y
```

#### CTL Labeling Algorithm

```
function SAT (\phi)
 /* determines the set of states satisfying φ */
begin
    case
         \phi is \top : return S
         \phi is \bot : return \emptyset
         \phi is atomic: return \{s \in S \mid \phi \in L(s)\}
         \phi is \neg \phi_1: return S - SAT(\phi_1)
         \phi is \phi_1 \wedge \phi_2: return SAT (\phi_1) \cap SAT (\phi_2)
         \phi is \phi_1 \lor \phi_2: return SAT (\phi_1) \cup SAT (\phi_2)
         \phi is \phi_1 \rightarrow \phi_2: return SAT (\neg \phi_1 \lor \phi_2)
         \phi is AX \phi_1: return SAT (\neg EX \neg \phi_1)
         \phi is EX \phi_1: return SAT<sub>EX</sub>(\phi_1)
         \phi is A[\phi_1 \cup \phi_2]: return SAT(\neg(E[\neg \phi_2 \cup (\neg \phi_1 \land \neg \phi_2)] \lor EG \neg \phi_2))
         \phi is E[\phi_1 \cup \phi_2]: return SAT_{EU}(\phi_1, \phi_2)
         \phi is EF \phi_1: return SAT (E(\top U \phi_1))
         \phi is EG \phi_1: return SAT(\negAF \neg \phi_1)
         \phi is AF \phi_1: return SAT<sub>AF</sub> (\phi_1)
          \phi is AG \phi_1: return SAT (\negEF \neg \phi_1)
    end case
end function
```

#### State Explosion

CTL model checking can be fast (linear), but...

- State space can be huge
- Possible solutions:
  - Binary decision diagrams (BDDs): represent sets of states
  - Partial order reduction: exploit the fact that some traces can be equivalent with respect to a temporal logic property (can ignore prefixes if two traces end up in the same spot)
  - Composition: decompose problem into easier/smaller subproblems

# 3.6.3 Labeling-Based Algorithm for LTL

Below is an example of why we CANT make a labeling-based algorithm for LTL



Figure 7: LTL fail, formula is satisfied, but neither subformula are satisfied

#### Basic Idea for LTL Model Checking

LTL model checking:

- 1. Construct automaton  $A_{\neg \phi}$  for  $\neg \phi$  (this encodes exactly the traces that don't satisfy  $\phi$ )
- 2. Combine  $A \neg \phi$  with the model M of the system (resulting in transition system whose paths are both paths of automaton and system)
- If there is a path in the combined automaton from step 2, output = true
   path = infinite trace
- If there exists a path (return it as a counter example)a

Step 1 is tricky

Also, you can combine both steps 1 and 2 into a single step

#### Example LTL Model Checking

EXAMPLE PROBLEM: LTL  $\neg$ (a U b)

```
init(a) := 1;
                                                                               q_2
init(b) := 0;
                                                    \overline{a}\overline{b}
                                                                               \overline{a}b
next(a) := case
                  !a : 0;
                     : 1;
                     : {0,1};
               esac;
next(b) := case
                  a & next(a) : !b;
                                                    a\bar{b}
                  !a : 1;
                  1 : {0,1};
               esac;
```

Figure 8: Example Model

# Automaton $A_{\neg\neg(a\ \mathbf{U}\ b)}$



Figure 9: Example Transform Model. Take in the model and transform it so that there are as many states as automaton



Figure 10: Example of combining the two models

# Combining Model with Automaton

If directed edge exist in both, it exists in combined If initial state exist in both, it exists in combined