Finding Request Closing Time

```
In [72]: 1 df_an['Created Date'] = pd.to_datetime(df_an['Created Date'])
In [73]: 1 df_an['Closed Date'] = pd.to_datetime(df_an['Closed Date'])
In [74]: 1 df_an['time diff'] = df_an['Closed Date'] - df_an['Created Date']
In [75]: 1 df_an['time diff in sec'] = df_an['time diff'] / pd.Timedelta(seconds=1)
In [77]: 1 df_an['time diff in hr'] = np.around(df_an['time diff in sec']/3600, decimals = 2)
In [78]: 1 df_an.head()
Out[78]:
                                                                                                                                                  ime
diff
in
hr
                     Descriptor Location Type
                                                                                                    QUEENS 40.775945 -73.915094 01:26:16
                                             11105.0 ADDRESS
                                                                                                     BRONX 40.870325 -73.888525 {0 \atop 04:51:31} 17491.0 4.86
                                             10458.0 ADDRESS
                                                                   BRONX Closed
                                                                                                     BRONX 40.835994 -73.828379 {0 \atop 07:45:14} 27914.0 7.75
         Ilegal Parking
                                              10461.0 ADDRESS
                                                                   BRONX Closed
                                                                                  01-
16
7:56
                                                                                         01-01-16
3:24
                                                                                                    QUEENS 40.733060 -73.874170 0 days 12422.0 3.45
         llegal Parking
                               Street/Sidewalk 11373.0 ADDRESS ELMHURST Closed
```

Percentage of complaint types

```
In [82]: 1 plt.figure(figsize = (8,6))
2 plt.xticks(rotation =30, ha ='right')
3 sns.barplot(data = complaints, x = complaints['Complaint Type'], y = complaints['Percentage'])
```

Out[82]: <Axes: xlabel='Complaint Type', ylabel='Percentage'>

Plotting percentage of different features

Labeled complaints according to their name

Complaints according to days

Out[112]: <Axes: xlabel='Day', ylabel='count'>

Complaints according to months

Complaints according to Boroughs

Brooklyn analysis

Will plot descriptor and lcation type in scatter plot with using latitude and longitude to understand how this data is distributed around brooklyn

```
In [126]: 1 plt.figure(figsize =(16,12))
2 sns.scatterplot(data= df_an[df_an['City'] == 'BROOKLYN'], x = 'Latitude', y = 'Longitude', hue= 'Descriptor')
```

Out[126]: <Axes: xlabel='Latitude', ylabel='Longitude'>


```
plt.figure(figsize = (16,12))
sns.scatterplot(data= df_an[df_an['City'] == 'BROOKLYN'], x = 'Latitude', y = 'Longitude', hue= 'Location Type')
In [128]:
Out[128]: <Axes: xlabel='Latitude', ylabel='Longitude'>
                                                                                                                                                                                                                                              Location Type
Street/Sidewalk
Club/Bar/Restaurant
Store/Commercial
Residential Building/Hous
Residential Building/Park/Playground
House and Store
                           -73.875
                                                                                                                                                                                                                                              House and Store
Highway
House of Worship
Vacant Lot
Parking Lot
Bridge
Commercial
Subway Station
Roadway Tunnel
                           -73.925
                           -73.975
                           -74.000
                           -74.025
                           -74.050
                                                                             40.60
                                                                                                                                 40.65
                                                                                                                                                                                                                                        40.75
                                                                                                                                                                                    40.70
                                                                                                                                                         Latitude
```


We can compare these plots to Brooklyn's map to see where service request concentration is highest.

```
In [118]: 1 plt.figure(figsize = (10,6))
2 plt.xticks(rotation = 30, ha='right')
3 sns.countplot(data = df_an, x='Borough', hue = 'Day')
```

Out[118]: <Axes: xlabel='Borough', ylabel='count'>


```
In [123]: 1 plt.figure(figsize = (10,6))
2 sns.countplot(data = df_an, x='Borough', hue = 'Month')
```

Out[123]: <Axes: xlabel='Borough', ylabel='count'>

