

ЭТИКЕТКА

УП3.487.366 ЭТ

Микросхема интегральная 564 ИЕ10В Функциональное назначение – Два четырехразрядных счетчика

Климатическое исполнение УХЛ Схема расположения выводов

Таблица назначения выводов

№ вывода	Назначение вывода	№ вывода	Назначение вывода
1	Вход тактовый С1	9	Вход тактовый С2
2	Вход сигнала разрешения Е1	10	Вход сигнала разрешения Е2
3	Выход 1 разряда СТ1	11	Выход 1 разряда СТ2
4	Выход 2 разряда СТ1	12	Выход 2 разряда СТ2
5	Выход 3 разряда СТ1	13	Выход 3 разряда СТ2
6	Выход 4 разряда СТ1	14	Выход 4 разряда СТ2
7	Вход установки «0» R1	15	Вход установки «0» R2
8	Общий	16	Питание, U _{CC}

1 ОСНОВНЫЕ ТЕХНИЧЕСКИЕ ДАННЫЕ

1.1 Основные электрические параметры (при $t = (25\pm10)$ °C)

Таблица 1

11	Буквенное	Норма	
Наименование параметра, единица измерения, режим измерения	обозначение	не менее	не более
1	2	3	4
1. Выходное напряжение низкого уровня, B, при: $U_{CC} = 5 \; B, \; 10 \; B$	U_{OL}	-	0,01
2. Выходное напряжение высокого уровня, B, при: $U_{CC} = 5~B$ $U_{CC} = 10~B$	U _{ОН}	4,99 9,99	-
3. Максимальное выходное напряжение низкого уровня, B, при: $U_{CC}=5~B,~U_{IL}=1,5~B,~U_{IH}=3,5~B$ $U_{CC}=10~B,~U_{IL}=3,0~B,~U_{IH}=7,0~B$	U _{OL max}	- -	0,8 1,0
4. Минимальное выходное напряжение высокого уровня, B, при: U_{CC} = 5 B, U_{IL} = 1,5 B, U_{IH} = 3,5 B U_{CC} = 10 B, U_{IL} = 3,0 B, U_{IH} = 7,0 B	U_{OHmin}	4,2 9,0	
5. Входной ток низкого уровня, мкА, при: $U_{CC} = 15 \; B$	$I_{\rm IL}$	-	/-0,1/
6. Входной ток высокого уровня, мкА, при: $U_{CC} = 15 \; B$	I_{IH}	-	0,1
7. Выходной ток низкого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 0,4 \; B$ $U_{CC} = 10 \; B, \; U_O = 0,5 \; B$	I_{OL}	0,4 1,0	-

Продолжение таблицы 1			
1	2	3	4
8. Выходной ток высокого уровня, мА, при: $U_{CC} = 5 \; B, \; U_O = 2.5 \; B$ $U_{CC} = 10 \; B, \; U_O = 9.5 \; B$	I_{OH}	/-1,0/ /-1,0/	-
9. Ток потребления, мкА, при: $U_{CC} = 5 B$ $U_{CC} = 10 B$ $U_{CC} = 15 B$	Icc	- - -	5,0 10,0 20,0
10. Время задержки распространения при включении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	$t_{ m PHL}$		700 330
11. Время задержки распространения при выключении, нС, при: U_{CC} = 5 B, C_L = 50 пФ U_{CC} = 10 B, C_L = 50 пФ	t _{PLH}	-	700 330

1.2 Содержание драгоценных металлов в 1000 шт. микросхем:

золото г, серебро г,

в том числе:

золото г/мм

на 16 выводах, длиной мм.

Цветных металлов не содержится.

2 НАДЕЖНОСТЬ

2.1 Минимальная наработка (Тнм) микросхем в режимах и условиях эксплуатации, допускаемых стандартом ОСТ В $11\,0398-2000\,$ и ТУ, при температуре окружающей среды (температуре эксплуатации) не более $65\,^{\circ}$ С не менее $100000\,$ ч., а в облегченных режимах, которые приводят в ТУ при $U_{CC}=5B\pm10\%$ - не менее $120000\,$ ч.

 Γ амма – процентный ресурс ($T_{p\gamma}$) микросхем устанавливают в ТУ при γ = 95% и приводят в разделе " Справочные данные" ТУ.

2.2 Минимальный срок сохраняемости микросхем (Т см) при их хранении в отапливаемом хранилище или в хранилище с регулируемыми влажностью и температурой или местах хранения микросхем, вмонтированных в защищенную аппаратуру, или находящихся в защищенном комплекте ЗИП, должен быть 25 лет.

Минимальный срок сохраняемости микросхем в условиях, отличающихся от указанных, - в соответствии с разделом 4 ОСТ В 11 0398 – 2000.

2.3 Срок сохраняемости исчисляют с даты изготовления, указанной на микросхеме.

3 ГАРАНТИИ ПРЕДПРИЯТИЯ – ИЗГОТОВИТЕЛЯ

3.1 Гарантии предприятия – изготовителя – по ОСТ В 11 0398 – 2000:

Предприятие-изготовитель гарантирует соответствие поставляемой микросхемы всем требованиям ТУ в течение срока сохраняемости и минимальной наработки в пределах срока сохраняемости при соблюдении потребителем режимов и условий эксплуатации, правил хранения и транспортирования, а также указаний по применению, установленных ТУ.

Срок гарантии исчисляют с даты изготовления, нанесенной на микросхеме.

4 CR	ЕЛЕНИ	$I \cap D$	TDIAL	AKE

Микросхемы 564 ИЕ10В соответствуют техническим условиям бК0.347.064 ТУ 9 и признаны годными для эксплуатации.

Приняты по(извещение, акт и др.)	от(дата)	
Место для штампа ОТК		Место для штампа ВП
Место для штампа «Перепроверка	произведена	(дата)
Приняты по	от(дата)	
Место для штампа ОТК		Место для штампа ВП

Цена договорная

5 УКАЗАНИЯ ПО ПРИМЕНЕНИЮ И ЭКСПЛУАТАЦИИ

5.1 При работе с микросхемами и монтаже их в аппаратуре должны быть приняты меры по защите их от воздействия электростатических зарядов. Допустимое значение статического потенциала 500 В. Наиболее чувствительные к статическому электричеству последовательности (пары выводов): вход – общая точка, выход – общая точка.

Остальные указания по применению и эксплуатации – в соответствии с бК0.347.064 ТУ/02.