

EverLight: Indoor-Outdoor Editable HDR Lighting Estimation

Mohammad Reza Karimi Dastjerdi¹, Jonathan Eisenmann², Yannick Hold-Geoffroy², Jean-François Lalonde¹ ¹Université Laval, ²Adobe

Please check page for more results and implementa details!

but cannot be visa issues) Please feel free to reach out!

Motivations

- Lighting plays a crucial role in realistic virtual object insertion.
- Estimating lighting from a single image is an ill-posed problem.
- · Previous methods have attempted to tackle this by categorizing the domain into indoor and outdoor settings.

Therefore, when it comes to rendering a shiny images, we find ourselves navigating two distinct pathways.

Outdoor only:

- Tang et al. ECCV'22
- Yu et al. ICCV'21
- Zhu et al. CVPR'21
- Zhang et al. CVPR'19
- Hold-Geoffroy et al CVPR'19
- Hold-Geoffroy et al. CVPR'17

Indoor only:

- StyleLight [Wang et al. ECCV'22]
- Weber et al. ECCV'22
- Gardner et al. ICCV'19
- Garon et al. CVPR'19
- EMLight [Zhan et al. AAAl'21]
- Gardner et al. SIGGRAPH'17

Can we merge these two trends and have a unified and editable lighting estimation model?

Contributions

We propose a lighting estimation model based on GANs to estimate the lighting from an image that:

- Produces high dynamic range and high-resolution panoramas.
- · Works for both indoor and outdoor domains.
- Easily editable.

Method

Using parametric lighting models as style for co-modulation in generative adversarial networks (GAN)

Results

We provide examples for both outdoor and indoor scenes. Our method's performance is on par with domain-specific methods.

Outdoor

	Si-RMSE↓	RMSE↓	RGB ang.↓	PSNR↑	FID↓	Editability
EverLight (ours)	0.163	0.469	8.53°	10.03	38.44	Yes
Zhang et al. CVPR'19	0.225	1.058	11.80°	5.31	449.49	Yes
Karimi et al. 3DV'22	0.174	0.332	9.26°	11.02	37.05	No

Indoor

	Si-RMSE↓	RMSE↓	RGB ang.↓	PSNR↑	FID↓	Editability
EverLight (ours)	0.091	0.238	6.36°	10.03	78.90	Yes
Wang et al. ECCV'22	0.123	0.316	7.09°	12.35	78.55	Yes
Weber et al. ECCV'22	0.079	0.196	4.08°	12.95	130.13	Yes
Gardner et al. (1) ICCV'19	0.099	0.229	4.42°	12.21	410.12	Yes
Gardner et al. (3) ICCV'19	0.105	0.507	4.59°	10.90	386.43	Yes
Gardner et al. TOG'17	0.123	0.628	8.29°	10.22	253.40	No
Garon et a. CVPR'19	0.096	0.255	8.06°	9.73	324.51	No
Srinivasan et al. CVPR'20	0.121	0.254	4.56°	9.81	174.52	No
Zhan et al. AAAI'17	0.099	0.232	3.99°	10.34	135.97	No
Somanath et Kurz [CVPR'21]	0.097	0.286	7.67°	11.74	221.85	No
Karimi et al. 3DV'22	0.094	0.226	8.61°	10.72	65.98	No

Our method achieves a strong balance between generation quality and editability.

Editing

	Input	Ground truth	Output	No lights	New sun
			The same	EA.	
	Input	Ground truth	Output	No lights	New lighting
	1				
_	4 •				

Outdoor

Indoor

