PTC 3313 - Sistemas de Controle

Lista de Exercícios sobre Regime Transitório e Critério de Routh

Profs. Fuad e Diego

25 de Setembro de 2020

Exercício 1

Seja o sistema realimentado com diagrama de blocos mostrado na figura 1. Considerando que $G(s) = \frac{K}{s(s+2)}$ e F(s) = 1 + ks. Determine

- 1. Os valores de K e k tais que o sistema tenha fator de amortecimento $\xi = 0, 7$ e frequência natural não-amortecida $\omega_n = 4 \, \text{rad/s}$.
- 2. Para estes valores de K e k, determine a resposta ao degrau unitário, o tempo de subida, o tempo de pico, a porcentagem de sobressinal e o tempo de acomodação a 2%.

Exercício 2

Seja um sistema de controle em malha fechada com realimentação unitária e tal que $G(s)H(s) = \frac{1}{s(s+1)}$. Obter o tempo de subida, o tempo de acomodação, a porcentagem máxima de sobressinal e o erro estacionário para o degrau unitário e a rampa unitária para o sistema em malha fechada.

Exercício 3

Aplicando-se o critério de Estabilidade de Routh-Hurwitz, determine a faixa de valores de K para se ter estabilidade para as seguintes equações características

1.
$$s^3 + 3s^2 + 3s + 1 + K = 0$$
;

2.
$$s^4 + s^3 + Ks^2 + s + 1 = 0$$
:

3.
$$s^4 + 6s^3 + 11s^2 + 6s + K = 0$$
.

Exercício 4

Seja um sistema de controle em malha fechada com realimentação unitária e $G(s)H(s) = \frac{K}{s(s+1)(s+2)}$. Determine a faixa de valores de K para se ter estabilidade em malha fechada.

Figura 1: Diagrama de Blocos do Exercício 1