1987年全国硕士研究生入学统一考试

数学试题参考解答

数 学(试卷 I)

一、填空题(每小题3分,满分15分.只写答案不写解题过程)

(1) 与两直线
$$\begin{cases} x = 1 \\ y = -1 + t \\ z = 2 + t \end{cases}$$
 及 $\frac{x+1}{1} = \frac{y+2}{2} = \frac{z-1}{1}$ 都平行,且过原点的平面方程是 $x - y + 5 = 0$

- (2) 当 $x = -1/\ln 2$; 时,函数 $y = x2^x$ 取得极小值.
- (3) 由 $y = \ln x$ 与两直线 y = (e+1) x 及 y = 0 围成图形的面积= 3/2
- (4) 设 L 为取正向的圆周 $x^2 + y^2 = 9$,则曲线积分 $\oint_L (2xy 2y)dx + (x^2 4x)dy$ 的值是 -18π .
- (5) 已知三维线性空间的一组基底 $\alpha_1 = (1,1,0)$, $\alpha_2 = (1,0,1)$, $\alpha_3 = (0,1,1)$, 则向量 $\alpha = (2,0,0)$ 在上述基底下的坐标是 (1,1,-1)

二、(本题满分8分)

求正的常数
$$a \ni b$$
,使式 $\lim_{x\to 0} \frac{1}{bx-\sin x} \int_0^x \frac{t^2}{\sqrt{a+t^2}} dt = 1$ 成立.

解: 假若b≠1,则根据洛必达法则有

$$\lim_{x\to 0} \frac{1}{bx - \sin x} \int_0^x \frac{t^2}{\sqrt{a + t^2}} dt = \lim_{x\to 0} (\frac{1}{b - \cos x} \cdot \frac{x^2}{\sqrt{a + x^2}}) = 0 \neq 1, 与题设矛盾,于是 b = 1.$$

此时
$$\lim_{x\to 0} \frac{1}{bx - \sin x} \int_0^x \frac{t^2}{\sqrt{a + t^2}} dt = \lim_{x\to 0} \left(\frac{1}{1 - \cos x} \cdot \frac{x^2}{\sqrt{a + x^2}} \right) = \lim_{x\to 0} \left(\frac{1}{\frac{1}{2}x^2} \cdot \frac{x^2}{\sqrt{a + x^2}} \right) = \frac{2}{\sqrt{a}}$$

即
$$1=\frac{2}{\sqrt{a}}$$
,因此 $a=4$.

三、(本题满分7分)

(1) 设函数
$$f, g$$
 连续可微, $u = f(x, xy), v = g(x + xy)$, 求 $\frac{\partial u}{\partial x}, \frac{\partial v}{\partial x}$

解:
$$\frac{\partial u}{\partial x} = f_1' \cdot \frac{\partial x}{\partial x} + f_2' \cdot \frac{\partial (xy)}{\partial x} = f_1' + y \cdot f_2'$$
; $\frac{\partial v}{\partial x} = g' \cdot \frac{\partial (x + xy)}{\partial x} = (1 + y) \cdot g'$.

(2) 设矩阵
$$A$$
 和 B 满足 $AB = A + 2B$,其中 $A = \begin{bmatrix} 3 & 0 & 1 \\ 1 & 1 & 0 \\ 0 & 1 & 4 \end{bmatrix}$,求矩阵 B .

解: 因 AB = A + 2B, 故 AB - 2B = A, 即 (A - 2E)B = A,

故
$$B = (A-2E)^{-1}A = \begin{pmatrix} 5 & -2 & -2 \\ 4 & -3 & -2 \\ -2 & 2 & 3 \end{pmatrix}$$
.

四、(本题满分8分)

求微分方程 $y''' + 6y'' + (9 + a^2)y' = 1$ 的通解. 其中常数 a > 0.

解: 由特征方程 $r^3 + 2r^2 + (9+a^2)r = 0$, 知其特征根根为 $r_1 = 0$, $r_2 = -3 \pm ai$.

故对应齐次方程的通解为 $\tilde{y} = C_1 + C_2 e^{-3x} \cos x + C_3 e^{-3x} \sin x$,其中 C_1, C_2, C_3 为任意常数. 设原方程的特解为 $y^*(x) = Ax$, 代入原方程可得 $A = \frac{1}{0+a^2}$.

因此,原方程的通解为 $y(x) = y + y^* = C_1 + C_2 e^{-3x} \cos x + C_3 e^{-3x} \sin x + \frac{1}{9 + a^2} x$.

五、选择题(每小题3分,满分12分)

(1) 设常数
$$k > 0$$
,则级数 $\sum_{n=1}^{\infty} (-1)^n \frac{k+n}{n^2}$ (C)

- (A) 发散
- (B) 绝对收敛 (C) 条件收敛
- (D) 收敛与发散与k 的值有关.

(2) 设
$$f(x)$$
 为已知连续函数, $I = t \int_0^{\frac{s}{t}} f(tx) dx$, $s > 0, t > 0$, 则 I 的值 (D)

(A) 依赖于 s 和 t

- (B) 依赖于 $s \times t \times x$
- (C) 依赖于t和x,不依赖于s (D) 依赖于s,不依赖于t

(3) 设
$$\lim_{x \to a} \frac{f(x) - f(a)}{(x - a)^2} = -1$$
,则在点 $x = a$ 处 (B)

- (A) f(x) 导数存在, $f'(a) \neq 0$ (B) f(x) 取得极大值
- (C) f(x) 取得极小值
- (D) f(x) 的导数不存在.

(4) 设 A 为 n 阶方阵, 且
$$|A| = a \neq 0$$
, 而 A^* 是 A 的伴随矩阵,则 $|A^*| =$ (C)

- (A) *a*
- (B) 1/a
- (C) a^{n-1}
- (D) a^n

六、(本题满分10分)

求幂级数 $\sum_{n=1}^{\infty} \frac{1}{n^{2^n}} x^{n+1}$ 的收敛域,并求其和函数.

#:
$$i \exists u_n = \frac{1}{n2^n} x^{n+1}$$
, $fightarrow \lim_{n \to \infty} \left| \frac{u_{n+1}}{u_n} \right| = \lim_{n \to \infty} \left| \frac{x^{n+1}}{(n+1)2^{n+1}} \cdot \frac{n2^n}{x^n} \right| = \frac{|x|}{2}$,

令 $\frac{|x|}{2}$ <1, 知原级数在开区间(-2,2)内每一点都收敛.

又当
$$x = -2$$
 时,原级数= $\sum_{n=1}^{\infty} \frac{1}{n2^n} (-2)^{n+1} = 2 \sum_{n=1}^{\infty} (-1)^{n+1} \frac{1}{n}$,故由莱布尼兹判别法知其收敛;

而当 x=2 时,原级数= $\sum_{n=1}^{\infty}\frac{1}{n2^n}2^{n+1}=2\sum_{n=1}^{\infty}(-1)^{n+1}\frac{1}{n}$,显然发散,故幂级数的收敛域为[-2,2).

又记
$$S(x) = \sum_{n=1}^{\infty} \frac{1}{n2^n} x^{n+1} = x \sum_{n=1}^{\infty} \frac{1}{n} (\frac{x}{2})^n = x S_1(x)$$
,其中 $S_1(x) = \sum_{n=1}^{\infty} \frac{1}{n} (\frac{x}{2})^n$,

有
$$S_1'(x) = \sum_{n=1}^{\infty} (\frac{x}{2})^{n-1} = \frac{1}{1-x/2}$$
,于是 $S_1(x) = \int_0^x \frac{dx}{1-x/2} = 2\ln(\frac{2}{2-x})$,

因此幂级数的和函数为 $S(x) = 2x \ln \frac{2}{2-x}$, $x \in [-2,2)$.

七、(本题满分10分)

计算曲面积分 $I = \iint_S x(8y+1)dydz + 2(1-y^2)dzdx - 4yzdxdy$,

其中 s 是曲线 $\begin{cases} z = \sqrt{y-1} \\ x = 0 \end{cases}$ $(1 \le y \le 3)$ 绕 Y 轴旋转一周所形成的曲面,它的法向量与 Y 轴 正向的夹角恒大于 $\pi/2$.

解: S 的方程为 $y=x^2+z^2+1$,记 S_1 : y=3, (x^2+z^2) ,知 $S+S_1$ 为封闭曲面,设其方向取外侧,所围区域为 Ω ,则由高斯公式,有

$$I = \bigoplus_{S+S_1} x(8y+1)dydz + 2(1-y^2)dzdx - 4yzdxdy - \iint_{S_1} x(8y+1)dydz + 2(1-y^2)dzdx - 4yzdxdy$$

$$= \iiint_{\Omega} 1 \cdot dv - 0 - \iint_{S_1} 2(1-y^2)dydz + 0 = \int_1^3 dy \iint_{D_y} dzdx - \iint_{D_{zx}} 2(1-3^2)dzdx$$

$$= \int_1^3 (y-1)dy + 16 \cdot \pi \cdot 2 = 34\pi.$$

八、(本题满分10分)

设函数 f(x) 在闭区间[0,1]上可微,对于[0,1]上的每个x,函数的值都在开区间(0,1) 内,且 $f'(x) \neq 1$.证明 在(0,1) 内有且仅有一个x,使 f(x) = x.

证: 令 h(t) = f(t) - t,知 h(t) 在闭区间[0,1] 上连续,又由题设知 0 < f(x) < 1,于是有 h(0) = f(0) - 0 > 0,h(1) = f(1) - 1 < 0.故由零点定理,在 (0,1) 内有 x,使 f(x) = x.

假若 f(x) 在开区间(0,1) 内有两个不同的点 x_1 和 x_2 ,使得 $f(x_1) = x_1$, $f(x_2) = x_2$, 不妨设 $x_1 < x_2$,则易见 f(x) 在闭区间[0,1] 上连续,在(0,1) 内可导,故由拉格朗日定理知, $\exists \xi \in (0,1)$, 使得 $f'(\xi) = \frac{f(x_2) - f(x_1)}{x_2 - x_1}$, 即 $f'(\xi) = 1$.此与 $f'(x) \neq 1$ 矛盾! 故在 (0,1) 内使 f(x) = x 的 x 只能有一个.

九、(本题满分8分)

问
$$a,b$$
 为何值时,线性方程组
$$\begin{cases} x_1 + x_2 + x_3 + x_4 = 0 \\ x_2 + 2x_3 + 2x_4 = 1 \\ -x_2 + (a-3)x_3 - 2x_4 = b \end{cases}$$
 有唯一解?无解?有无穷多解?
$$3x_1 + 2x_2 + x_3 + ax_4 = -1$$

并求出无穷多解时的通解.

解:对方程组的增广矩阵进行初等变换,得

$$\widetilde{A} = (A \ b) = \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & -1 & a - 3 & -2 & b \\ 3 & 2 & 1 & a & -1 \end{pmatrix} \rightarrow \begin{pmatrix} 1 & 1 & 1 & 1 & 0 \\ 0 & 1 & 2 & 2 & 1 \\ 0 & 0 & a - 1 & 0 & b + 1 \\ 0 & 0 & 0 & a - 1 & 0 \end{pmatrix}$$

- ① 当 $a \neq 1$ 时,系数行列式 $|A| = (a-1)^2 \neq 0$,故由克拉姆法则,原方程组有唯一解;
- ② 当a=1,且 $b\neq -1$ 时, $r(\widetilde{A})=3$,r(A)=2, $r(\widetilde{A})\neq r(A)$,故原方程组无解;
- ③ 当a=1,且b=-1时, $r(\widetilde{A})=r(A)=2<4$,故原方程组有无穷的解.此时显然有

可见其通解为: $x = (-1,1,0,0)^T + c_1(1,-2,1,0)^T + c_2(1,-2,0,1)^T$, 其中 c_1,c_2 为任意常数.

十、填空题(每小题2分,满分6分)

- (1) 在一次试验中事件 A 发生的概率为 p ,现进行 n 次独立试验,则 A 至少发生一次的概率 为 $1-(1-p)^n$; 而事件 A 至多发生一次的概率为 $1-(1-p)^n$: 而事件 A 至多发生一次的概率为 $1-(1-p)^n$:
- (2) 三个箱子,第一个箱子有 4 个黑球 1 个白球,第二个箱子中有 3 个白球 3 个黑球,第三个箱子中有 3 个黑球 5 五个白球,现随机地取一个箱子,再从这个箱子中取一个球,这个球为白球的概率为 53/120 ,已知取出的是白球,此球属于第二箱的概率是 20/53 .

(3) 已知连续随机变量 X 的密度为 $f(x) = \frac{1}{\sqrt{\pi}} e^{-x^2 + 2x - 1}$,则 X 的数学期望为 <u>1</u>; X 的 方差为<u>1/2</u>.

十一、(本题满分6分)

设随机变量 X, Y 相互独立, 其概率密度函数分别为

$$f_X(x) = \begin{cases} 1 & 0 \le x \le 1 \\ 0 & \ddagger & \dot{\Sigma} \end{cases}; \ f_Y(y) = \begin{cases} e^{-y} & y > 0 \\ 0 & y \le 0 \end{cases}, 求随机变量 Z = 2X + Y 的概率密度函数 f_z(z).$$

解: 由题设,
$$(X,Y)$$
的联合密度为 $f(x,y) = f_X(x)f_Y(y) = \begin{cases} e^{-y} & 0 \le x \le 1, y > 0 \\ 0 &$ 其它

故
$$Z$$
 的分布函数 $F_z(z) = P(Z \le z) = P(2X + Y \le z) = \iint_{2x+y \le z} f(x,y) dxdy$,

③ 当
$$z > 2$$
 时, $F_z(z) = \int_0^1 dx \int_0^{z-2x} e^{-y} dy = \int_0^1 (1 - e^{2x-z}) dx = 1 - \frac{1}{2} (e^{-2} - 1) e^{-z}$,此时
$$f_z(z) = F_z'(z) = \frac{1}{2} (e^2 - 1) e^{-z}$$

综上所述,
$$Z=2X+Y$$
 的概率密度函数为 $f_z(z)= egin{cases} 0 & z<0 \\ \frac{1}{2}(1-e^{-z}) & 0\leq z\leq 2 \\ \frac{1}{2}e^{-z}(e^{-2}-1) & z>2 \end{cases}$