교재정오표 - 공학 선형대수학 (2020.01.29)

위치	수정 前	수정 後
$\frac{17}{17}$	비제차 아래에 있는 (2,7)의 위치	(유일) 화살표 ↓ 아래로 이동
		(π ₂) ਸੂਤੁਸ਼ ↓ ਅਪਾਣ ਅਨ (1 8 8)
30쪽 문제 3	(1) $AB = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, BA = \begin{pmatrix} 1 & 8 & -16 \\ 2 & 3 & -6 \\ 1 & 1 & -2 \end{pmatrix}$	(1) $AB = \begin{pmatrix} 1 & 0 \\ -4 & 1 \end{pmatrix}, BA = \begin{pmatrix} 1 & 8 & 8 \\ 2 & 3 & -10 \\ 1 & 3 & -2 \end{pmatrix}$
35쪽 연습문제 1	행렬 $xx^t(I_7+yy^t)x$ 의	행렬 $xx^t(I_5+yy^t)x$ 의
39쪽 예제 2		
	i j	$E^{-1} = \begin{pmatrix} 1 & & & & & & & & & & & & & & & & & &$
60, 66쪽 정리 1.4.8 따름정리 1.4.11	내용 추가	정사각행렬 4에 대하여
61쪽 상 9, 하 8	$BA = I_n$ 이면 $A \leftarrow B = A^{-1}$ 이다.	$BA = I_n$ 이면 $B = A^{-1}$ 이다.
63쪽	푸른색 화살표의 표시순서 ① ② ③ ④ ⑤	푸른색 화살표의 표시순서 ② ③ ④ ⑤ ①
86쪽 정의 2.1.2	$C_{ij} = (-1)^{i+j} \left M_{ij} \right $	$A_{ij} = (-1)^{i+j} \left M_{ij} \right $
95쪽 문제 2 95쪽 정리 2.2.3	B = -96 C = A + B	B = -128 $ C = A + B $
<u> </u>	$= \frac{1}{ B } B^{-1} \frac{1}{ A } A^{-1}$	
		$= B B^{-1} A A^{-1}$
109쪽 정리 2.3.3	$= \frac{1}{ B } \frac{1}{ A } B^{-1} A^{-1}$	$= B A B^{-1} A^{-1}$
	$= \frac{1}{ AB } (AB)^{-1}$	$= AB (AB)^{-1}$
		d di o
109쪽 하 3	$A(adj A) = \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & \cdots & 0 \\ \vdots & \vdots & \vdots & 0 \\ 0 & \cdots & A = A I_n \end{pmatrix}$	$ A(adj A) = \begin{pmatrix} A & 0 & \cdots & 0 \\ 0 & A & \cdots & 0 \\ \vdots & \vdots & & \vdots \\ 0 & 0 & \cdots & A \end{pmatrix} = A I_n $
110쪽 예제 3	A =7이므로	A =-7이므로
144쪽 하 3	예제 3의	예제 4의
153쪽 연습문제 3 157쪽 상 2	(1) 차수가 짝수인 유일하게 존재하는지를	(1) 최고차항의 차수가 짝수인 존재하는지를
180쪽 하 4	$W[1, x, x^{2}, \dots, x^{n}] = \dots$ $= 0!1!2! \dots (n-1)! \neq 0$	$W[1, x, x^{2}, \dots, x^{n}] = \begin{vmatrix} 1 & x & x^{2} & \cdots & x^{n} \\ 0 & 1 & 2x & \cdots & nx^{n-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 0 & 0 & 0 & & n! \end{vmatrix}$ $= 0!1!2! \cdots (n-1)!n! \neq 0$
 181쪽 하 7	정리 3.4.4로부터 v_1, v_2, \cdots, v_n	정리 3.5.6으로부터 v_1, v_2, \cdots, v_n, v
190쪽 상 3	V=	U=
191쪽 하 4	$C_j = egin{pmatrix} b_{1j} \ b_{2j} \ dots \ b_{mj} \end{pmatrix}$	$C_{j} = \begin{pmatrix} a_{1j} \\ a_{2j} \\ \vdots \\ a_{mj} \end{pmatrix}$
194쪽 문제 2	$B = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 2 & 4 & 6 & 8 \\ -1 & 0 & 1 & 2 \end{pmatrix}$	$B = \begin{pmatrix} 1 & 0 & -1 & -2 \\ 0 & 1 & 2 & 3 \\ 0 & 0 & 0 & 0 \end{pmatrix}$
195쪽 정의 3.6.3	행렬의 계수와 퇴화계수	행렬의 계수와 퇴화차수
212쪽 상 1, 2	(u_n) (v_n)	$L_{A}(\boldsymbol{x}) = \begin{pmatrix} u_{1} \\ u_{2} \\ \vdots \\ u_{m} \end{pmatrix}, L_{A}(\boldsymbol{y}) = \begin{pmatrix} v_{1} \\ v_{2} \\ \vdots \\ v_{m} \end{pmatrix}$
	$A(\boldsymbol{x}+\boldsymbol{y}) = \cdots = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_n \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_n \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ u_1 + v_1 \\ \vdots \\ u_n + v_n \end{pmatrix}$	$A(\boldsymbol{x}+\boldsymbol{y}) = \cdots = \begin{pmatrix} u_1 \\ u_2 \\ \vdots \\ u_m \end{pmatrix} + \begin{pmatrix} v_1 \\ v_2 \\ \vdots \\ v_m \end{pmatrix} = \begin{pmatrix} u_1 + v_1 \\ u_1 + v_1 \\ \vdots \\ u_m + v_m \end{pmatrix}$

위치	수정 前	수정 後
212쪽 상 3	$A(\boldsymbol{x}) = \cdots = k \begin{pmatrix} u_1 \\ u_2 \\ \vdots \end{pmatrix}$	$A(\boldsymbol{x}) = \cdots = k \begin{pmatrix} u_1 \\ u_2 \\ \vdots \end{pmatrix}$
214쪽 하 8 217쪽 상 5	(개) 연속인 일차 도함수를 I _g	u_m 연속인 1계 도함수를 I_V
223쪽 문제 6	$\begin{pmatrix} 5 \\ 5 \\ -7 \end{pmatrix}$	$\begin{pmatrix} 5\\1\\-7 \end{pmatrix}$
224쪽 문제 7 227쪽 하 8 234쪽 연습문제 1	${\rm rank}(T)=3$ 여기에서 주목할 점은 ~ 것이다. (7) $T: C[0, 1] \rightarrow C[0, 1]$	rank(T) = 2 삭제 (7) $T: C(\mathbb{R}) \rightarrow C(\mathbb{R})$
236쪽 상 5 237쪽 문제 1 정답 242쪽 정리 4.2.3	2.4절의 좌표벡터를 이용하여 (3), (4) 기저 α_{1} 개에 대한	3.4절의 좌표벡터를 이용하여 (4), (5) 기저 α, γ에 대한
252쪽 연습문제 10 (4)	$[T]_{eta_2}^{eta_1}$	$[T]_{eta_1}^{eta_2}$
256쪽 문제 1	$oldsymbol{w_1} = egin{pmatrix} -1 \\ 4 \\ 1 \end{pmatrix}$ \mathbb{R}^n 의 임의의 벡터 ~ 의 B_2 에 관한	$egin{aligned} m{w_1} = \begin{pmatrix} 1 \\ -4 \\ -1 \end{pmatrix} \\ V$ 의 임의의 벡터 ~ 의 eta 에 관한
257쪽 상 5, 6, 하 1		$egin{align*} oldsymbol{x} = [oldsymbol{v}]_{eta} = egin{pmatrix} x_1 \ x_2 \ dots \ x_n \end{pmatrix} \end{aligned}$
 258, 260, 268쪽 그림	$S = ([\boldsymbol{w_1}]_{\alpha}, [\boldsymbol{w_2}]_{\alpha}, \cdots, [\boldsymbol{w_n}]_{\alpha})$ $B = ([T(\boldsymbol{w_1})]_{\beta} [T(\boldsymbol{w_2})]_{\beta} \cdots [T(\boldsymbol{w_n})]_{\alpha})$ 그러므로	$S = ([\mathbf{w_1}]_{\alpha} [\mathbf{w_2}]_{\alpha} \cdots [\mathbf{w}_n]_{\alpha})$ $B = ([T(\mathbf{w_1})]_{\beta} [T(\mathbf{w_2})]_{\beta} \cdots [T(\mathbf{w}_n)]_{\beta})$ 그러므로
260쪽 예제 5	기저 $\beta=\{e_1,e_2,e_3\}$ 에 관한 T 의 행렬표현이다. \mathbb{R}^3 의 기저	기저 $\alpha = \{e_1, e_2, e_3\}$ 에 관한 T 의 행렬표현이다. \mathbb{R}^3 의 기저 $\beta = \left\{ w_1 = \begin{pmatrix} 1 \\ -1 \\ 0 \end{pmatrix}, w_2 = \begin{pmatrix} -2 \\ 1 \\ 1 \end{pmatrix}, w_3 = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix} \right\}$
	$\begin{array}{cccccccccccccccccccccccccccccccccccc$	(1) β_2 에서 β_1 (2) β_1 에서 β_2 (1) β_2 에서 β_1
	α, β 선형변환 <i>D</i> (3) 기저 β에서 기저 γ로의 변환을	β , α 선형변환 T (3) 기저 γ 에서 기저 β 로의 변환을
274쪽 정의 5.1.3 279쪽 하 1	$m{x}\in\mathbb{R}^n$ 가 λ 에 대응하는 고유벡터 $m{E}_{\lambda=-rac{1}{2}}=\mathrm{span}egin{pmatrix}1\0\1\end{pmatrix},egin{pmatrix}-1\1\0\end{pmatrix}$	생략 $E_{\lambda=-\frac{1}{2}} = \operatorname{span}\left\{\begin{pmatrix} -1\\0\\1 \end{pmatrix}, \begin{pmatrix} 1\\1\\0 \end{pmatrix}\right\}$
283쪽 상 3 284쪽 하 3	$[T(\mathbf{v})]_{\beta} = A[\mathbf{x}]_{\beta}$ P_2 의 고유벡터는	$ [T(\mathbf{v})]_{\beta} = A[\mathbf{v}]_{\beta} $ $ P_{2} 의 고유공간의 기저는 $
284쪽 상6 285쪽 상1, 상 4	T(1) =-2+3x A=[T] ₈ 의 고유벡터	$T(x) = -2 + 3x$ $A = [T]_{\beta}$ 의 고유공간의 기저
285쪽 하 8	$ \begin{bmatrix} \begin{pmatrix} -2 \\ 1 \\ 0 \end{pmatrix}, \begin{pmatrix} -1 \\ 0 \\ 1 \end{bmatrix} \end{bmatrix}, \ \lambda_2 = 1 : E_1 \cong \text{ 7} \text{ A} \ \begin{bmatrix} \begin{pmatrix} 0 \\ 1 \\ 0 \end{pmatrix} \end{bmatrix} $	$\{-1+x, x^2\}, \lambda_2=1: E_1$ 의 기저 $\{1+x\}$
286, 287쪽 예제 10, 11	마지막에 내용 추가	행렬 A 는 \mathbb{R}^3 의 표준기저에 의한 T 의 행렬표현이므로 A 와 T 의 고윳값, 고유벡터 및 고유공간은 동일하다.
294쪽 상 4, 5	(1단계) 풀이 중 : 고유벡터는 (2단계) 고유벡터로 구성된	(1단계) 풀이 중 : 고유벡터는 (2단계) 일차독립인 고유벡터로 구성된
299쪽 하 7 300쪽 상 3	고유벡터는 고유벡터를 구하여라.	고유공간의 기저는 일차독립인 고유벡터를 구하여라.
302쪽 예제 5 303쪽 상 9	정리 5.2.6의 역 그에 대응하는 고유벡터는	정리 5.2.7의 역 그에 대응하는 일차독립인 고유벡터는
303쪽 하 3	$\gamma = \left[\boldsymbol{e_1} = \begin{pmatrix} -1\\1\\0 \end{pmatrix}, \ \boldsymbol{e_2} = \begin{pmatrix} 0\\0\\1 \end{pmatrix}, \ \boldsymbol{e_3} = \begin{pmatrix} 1\\1\\0 \end{pmatrix} \right]$	$egin{aligned} oldsymbol{\gamma} = egin{bmatrix} oldsymbol{p_1} = egin{bmatrix} -1 \ 1 \ 0 \end{pmatrix}, \ oldsymbol{p_2} = egin{bmatrix} 0 \ 0 \ 1 \end{pmatrix}, \ oldsymbol{p_3} = egin{bmatrix} 1 \ 1 \ 0 \end{pmatrix} \end{bmatrix} \end{aligned}$

위치	수정 前	수정 後
	\mathbb{R}^n 에서 표준기저 $lpha$ 에 의한 벡터의 좌표벡터는	\mathbb{R}^n 에서 표준기저 β 에 의한 벡터의 좌표벡터는
304쪽 상 4, 5	벡터 자신이다. 예를 들면 $\begin{bmatrix} 1\\2\\3 \end{bmatrix}_{\alpha} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$	벡터 자신이다. 예를 들면 $\begin{bmatrix} 1\\2\\3 \end{bmatrix}_{\beta} = \begin{bmatrix} 1\\2\\3 \end{bmatrix}$
317쪽 상 6	③으로부터 $a+b=0$	③으로부터 a+d=0
317쪽 상 7	a+b=0인 경우	a+d=0인 경우
343쪽 따름정리 6.2.5	$A^t y = 0$ 이고 $y^t b \neq 0$ 을 만족하는	$A^t y = 0$ 이고 $y^t b = 0$ 을 만족하는
342쪽 상 1 345쪽 문제 3	필요충분조건은 y^t 가 직교집합이다.	필요충분조건은 y 가 지교집합이 아니다.
345흑 문제 3 346쪽 정리 6.2.8		
352쪽 정의 6.2.11	$x = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \cdots + \frac{\langle x, v_3 \rangle}{\langle v_3, v_3 \rangle} v_3$	$ x = \frac{\langle x, v_1 \rangle}{\langle v_1, v_1 \rangle} v_1 + \dots + \frac{\langle x, v_n \rangle}{\langle v_n, v_n \rangle} v_n $
347쪽 상 4	$\langle \boldsymbol{x}, \boldsymbol{v_i} \rangle = \cdots = \alpha_i \langle \boldsymbol{v_i}, \boldsymbol{v_i} \rangle = \alpha_i$	$\langle \boldsymbol{x}, \boldsymbol{v_i} \rangle = \cdots = \alpha_i \langle \boldsymbol{v_i}, \boldsymbol{v_i} \rangle$
347쪽 예제 5, 문제 4	정리 6.2.10을 이용하여	정리 6.2.8을 이용하여
347쪽 하 1	$a_2 = \frac{3 - \sqrt{5}}{5}$	$\alpha_2 = \frac{5 - \sqrt{5}}{5}$
	$\alpha_1 = \cdots = a+b+c=1-\sqrt{5}$	$a_1 = \cdots = \frac{1}{\sqrt{3}}(a+b+c) = \frac{1}{\sqrt{3}}(1-\sqrt{5})$
350쪽 예제 7	$\alpha_2 = \cdots = 2a + b - c = 5 - \sqrt{5}$	$\alpha_2 = \cdots = \frac{1}{\sqrt{14}}(2a+b-3c) = \frac{1}{\sqrt{14}}(7-\sqrt{5})$
	$a_3 = \cdots = 4a - 5b + c = 7 + 5\sqrt{5}$	$\alpha_3 = \cdots = \frac{1}{\sqrt{42}} (4a - 5b + c) = \frac{1}{\sqrt{42}} (7 + 5\sqrt{5})$
351쪽 상 9	$v = k w_1$	$w_1 = k v$
361쪽 하 2	$x_1 = (1, 1, 0)$	$x_1 = (1, 0, -1)$
381쪽 문제 4(2)	$p(x) = \alpha_1 \mathbf{u_1} + \alpha_2 \mathbf{u_2} + \dots + \alpha_2 \mathbf{u_2}$	$p(x) = \alpha_1 \mathbf{u_1} + \alpha_2 \mathbf{u_2} + \dots + \alpha_k \mathbf{u_k}$
395쪽 하 8	[0,1] 위에서	S 위에서
<u>396쪽 하 1</u>	[0,1] 위에서	S 위에서
397쪽 하 3 399쪽 하 3	[-1,1] 위에서 [0,1] 위에서	S 위에서 S 위에서
413쪽 상 6-7	3. 0 4. $x = -1$, 1, 2	3. 0 4. $x = 4$ 5. $x = -1$, 1, 2
		8. 참 (1), (2), (4), (6), (7), (10)
415 쪽 상 5	8. 참 (1), (2), (4), (5) 거짓 (3), (6), (7)	거짓 (3), (5), (8), (9)
416쪽 상 12	1. (1), (2), (3) 부분공간이 아니다. (4), (5) 부분공간이다.	1. (1), (2), (3), (5) 부분공간이 아니다. (4), (6), (7) 부분공간이다.
418쪽 상 3	$\boxed{11. \ [\boldsymbol{v}]_{\beta} = \left(\frac{a}{-\frac{a+b}{2}}\right)}$	$\boxed{ 11. \ [\boldsymbol{v}]_{\beta} = \left(\frac{a}{b-a} \right) }$
419쪽 상 11	7. 퇴화차수 0	7. 퇴화차수 1
422쪽 상 2	7. (2) <i>B</i> =	7. (2) <i>S</i> =
422 쪽 상 7	9. (4) $\binom{27}{11}$ 10.	9. (4) $\binom{1}{12}$ 10. 번 생략
425 쪽 상 2	7. (1) $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 2 \end{pmatrix}$	7. (1) $A = \begin{pmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 2 \end{pmatrix}$
428쪽 하 2	1. $\hat{\boldsymbol{x}} = \begin{pmatrix} \frac{19}{7} \\ -\frac{26}{7} \end{pmatrix}$, $A\hat{\boldsymbol{x}} = \begin{pmatrix} -1 \\ \frac{116}{7} \\ 0 \end{pmatrix}$	$\hat{\boldsymbol{x}} = \begin{pmatrix} 2 \\ 1 \end{pmatrix}, A\hat{\boldsymbol{x}} = \begin{pmatrix} 3 \\ 1 \\ 0 \end{pmatrix}$
428쪽 하 1	2. $\hat{\boldsymbol{x}} = \begin{pmatrix} 3 \\ 1 \end{pmatrix}$, $A\hat{\boldsymbol{x}} = \begin{pmatrix} -1 \\ 5 \\ 0 \end{pmatrix}$	$\hat{x} = \frac{1}{37} \begin{pmatrix} 95 \\ -130 \end{pmatrix}, A\hat{x} = \frac{1}{37} \begin{pmatrix} -225 \\ 60 \\ 355 \end{pmatrix}$
429쪽 상 4	6. $p(x) = 6x + \frac{35}{6}$	6. $p(x) = \frac{53}{6} + 6x$