|                 | 20 |
|-----------------|----|
| Name: Score:    |    |
| Regents Physics |    |

Worksheet 1.1.5 – Freefall (20 points) Show all work – multiple choice answers MUST be proven for full credit!

| 1. | A person drops a stone from the top of a 45 meter high | 3. | An object that is dropped from a helicopter takes 15 |
|----|--------------------------------------------------------|----|------------------------------------------------------|
|    | building.                                              |    | seconds to reach the ground.                         |

Determine the time that it will take for the stone to reach the ground.

Determine height from which the object was dropped.

[3.0 s]

Determine the final speed of the stone AS IT HITS the ground (not AFTER it hits the ground).

[1103 m]

b. Determine the speed with which the object hit the ground.

[29 m/s]

- A man throws a rock directly upward with an initial speed of 15 meters per second.
  - Determine the time that it takes for the rock to

[147 m/s]

reach its maximum height.

[1.5 s]

Determine the maximum height that the rock will reach.

- As an object falls freely near the surface of the Earth, its acceleration
  - (1) decreases
  - (2) increases
  - (3) remains the same

Proof: Explain.

5. Which of the following sets of graphs describe an object in freefall near the surface of the Earth?



Proof: Explain.

- 6. An object starts from rest and falls freely. What will the velocity of this object be after it has fallen for 0.050 minutes?
  - (1) 9.8 m/s
- (3) 29. m/s
- (2) 20. m/s
- (4) 88. m/s

Proof: Show calculation.

- 7. Starting from rest, object A falls freely for 2.0 seconds while object B falls for 4.0 seconds. Compared with object A, object B falls
  - (1) one half as far
- (3) three times as far
- (2) twice as far
- (4) four times as far

Proof: Show calculation for each object.

8. A student throws a baseball vertically upward and then catches it. If vertically upward is considered to be the positive direction, which graph best represents the relationship between velocity and time for the baseball? [Neglect friction]









Proof: Explain.