

機械学習研修 Day 1

author = 'Toshifumi Tsutsumi' AND
presented_at = '2021-07-15'

堤 利史 Twitter: @tosh2230

データエンジニア

GMO Pepabo, inc. 技術部 データ基盤チーム (2020/12~)

機械学習研修: 前半2日間のゴール

- 大規模データを ETL (Extract, Transform, Load)する方法を知る

- データウェアハウスの使い方やETLの基本的な考え方に慣れて、自分が利用するデータを抽出・加工できるようになる

NOTE:

演習では、一般社団法人 データサイエンティスト協会が提供する "データサイエンス100本ノック(構造化データ加工編)"のデータを BigQuery にロードしています https://github.com/The-Japan-DataScientist-Society/100knocks-preprocess

機械学習研修: 前半2日間の予定

2021/7/15(木) 15:00 - 18:00

- 1. データエンジニアリングってなんですか?
- 2. Bigfoot 最速入門
- 3. Google BigQuery 入門
- 4. Google DataStudio 入門

機械学習研修: 前半2日間の予定

2021/7/16(金) 15:00 - 17:00

- 5. ETLってなんですか?
- 6. ETL Ultraquick Tutorial
- 7. データエンジニアリングってなんですか?

Section 1

データエンジニアリングって なんですか?

データっインフォメーション*

- データは「インフォメーションの原材料」
- インフォメーションは「コンテキストを持ったデータ」
 - コンテキストを持った = 意味付けされている

^{*} DAMA International (2018) 「データマネジメント知識体系ガイド 第二版」 日経BP社

date-id-name-num0-num1-num2-num3

2021-07-15-0123456789-test0-12-34-567-890

2021-07-15-9876543210-test1-98-76-543-210

date-id-name-num0-num1-num2-num3

2021-07-15-0123456789-test0-12-34-567-890

2021-07-15-9876543210-test1-98-76-543-210

date,id,name,num0,num1,num2,num3

2021-07-15,0123456789,test0,12,34,*567*,890

2021-07-15,9876543210,test1,98,76,543,210

データをエンジニアリングするとは

手段1: インフォメーションになりうるデータをつくる

- そもそも、データを集めるのはなぜか?
 - 何かを知りたいから
 - 適切な理解は適切なデータ作成から
- データをつくるにはナレッジ(=ドメイン知識)が必要
 - 目的に沿ったデータをつくることが大事
 - システムだけではなく人もデータをつくる

データをエンジニアリングするとは

手段2: 既存のデータをインフォメーションに変換する

- コンテキストがわかりにくい場合
 - 誰もがわかる表現に加工する
 - enum(列挙型): ex, 0-6で曜日を表現
 - 信号処理
 - 別のデータとつなぎ合わせる
 - ユーザー情報 * 注文情報
 - メタデータ(データを説明するデータ)を追加する
 - 5W1H
 - 表現したいこと
 - 大元の発生源

データをエンジニアリングするとは

手段2: 既存のデータをインフォメーションに変換する

- コンテキスト自体をまだ見いだせていない場合
 - データの中から、隠れたコンテキストを探す
 - 暗黙知を形式知に
 - 統計
 - パターン認識
 - 機械学習

インフォメーションをもとに行動を起こす

OX Criteria (v202104) / ■ データ駆動

データ駆動

「データの世紀」と呼ばれるように、企業の競争戦略にとってデータの利活用は必要不可欠なものです。 しかし、そもそもデータの取得ができていなかったり、データのリテラシーが低くうまく経営に行かせな いということも多くあります。

また、機械学習やデータサイエンスの知見を利用したアプリケーションには、それを支えるビッグデータ 処理の仕組みが合わせて必要になります。

Section 2

Bigfoot 最速入門

ペパボのデータ利活用基盤をご紹介

bigfoot/data-catalog

bigfoot/data-catalog

Section 3

Google BigQuery 入門

Google BigQuery

大規模データ分析対応のエンタープライズ向け フルマネージドデータウェアハウス

- コンピュート、ストレージ、メモリがそれぞれ分離している構造
- それぞれ自動でスケールアウトしてくれるので、
 - データの保存量は事実上無制限
 - クエリ実行速度が超速(特に集計処理)

https://cloud.google.com/blog/products/data-analytics/new-blog-series-bigquery-explained-overview

Google BigQuery: インターフェース

GMO NITT

- Google Data Studio
- Google Sheets
- BigQuery Web Console
- Google Apps Script
- Google Colaboratory
- <u>bg command-line tool</u>
- API Client Libraries

C#, Go, Java, Node.js, PHP, Python, Ruby

- <u>REST API</u>

Google BigQuery: コスト

- ストレージ料金
 - アクティブ ストレージ: \$0.020 per GB
 - 長期保存: \$0.010 per GB
 - 90日間連続で使用していない場合は、自動的に"長期保存"と判定される
 - (やさしさ)

- スキャン料金
 - 通常は 1TB スキャンで \$5
 - 2021年6月より、Bigfoot はクエリ実行定額プランに移行しました
 - いまならなんと!クエリ投げ放題!お得!!1

余談: RDB と DWH の違い

RDB: 行指向

- 1. レコードに対する細かい操作が得意
 - トランザクション処理
 - インデックスによる行の特定

- 2. 列方向の集計処理効率はよくない
 - もちろん集計はできますが、リソース効率的に向いていない
 - 行データは、一定の大きさのブロックとしてファイルストレージに保存される
 - 抽出対象の行が格納されているブロックをすべて参照して、目的の行を探す
 - たとえ1列だけ欲しいとしても、構造的に全列を走査する

余談: RDB と DWH の違い

<u>DWH: 列指向(が多い)</u>

- 1. 特定列に対する集計処理が得意
 - 例: 1億行・10列のテーブルから、列Aの平均を算出
 - 列ごとにデータを保存しているので、列Aのみ走査する

- 2. Primary Key, Foreign Key の概念がない
 - 行の一意性はテーブル設計者が担保
 - テーブル結合はできる

余談: RDB と DWH の違い

<u>DWH: 列指向(が多い)</u>

- 3. "あえて"非正規化して保存することが多い
 - そもそも、なぜ RDB では正規化するのか?
 - Insert, Update, Deleteで発生する更新時異状(Update anomaly)を防ぐため
 - 可視化用/分析用に加工したデータを、行レベルで更新することは基本的にない
 - データ加工については、Day2でお話しします
 - ひとつのテーブルとして保存しているほうが、使う人にとってわかりやすい
 - そしてテーブル結合が不要なので、(一般的に)クエリ速度は速くなる

ではそろそろ実物を...

BigQuery SQLワークスペース

https://console.cloud.google.com/bigguery

エクスプローラ

プロジェクト

- GCPのリソースやコストの管理をするためのグループ

データセット

- テーブルやビューをグループ化する概念
- Bigfootでは、サービス単位で作成している
- データセットでアクセス権限を管理

列を指定するとスキャン量が減る → 速

- 全ての列を指定すると表全体をスキャン
- 特定の列を指定すると その列のみをスキャン

列を指定するとスキャン量が減る → 速

以下のクエリを実行してみてください(画面右上のスキャン量に注目)

- 1. SELECT * FROM training.receipt_join
- 2. SELECT receipt_no FROM training.receipt_join
- 3. SELECT receipt_no FROM training.receipt_join LIMIT 100

- 公式の説明:

<u>"ARRAY 型</u>ではないゼロ以上の要素の順序付きリスト。"

トートロジー...

- 配列をそのままフィールドへ挿入できる。
- 配列内の値は同一の型でなければならない

SELECT 'a' AS char, [1, 2, 3] AS nums

STRUCT型

- 公式の説明:

"順序付きフィールドのコンテナ。各フィールドはデータ型(必須)とフィールド名(オプション)を持ちます。"

- 子テーブルが列の中に存在するイメージ

1:N の関係にあるテーブル同士が、 他の列をキーとしてあらかじめ 結合された状態

ジ 1	行	_sdc_sequence	unique_actions7d_view	unique_actions7d_click
	1	1614217069695550136	null	1.0
			null	1.0
			null	1.0
			1.0	null
この例では、 unique_actions が STRUCT型 unique_actions のフィールドは2つ - unique_actions7d_view (ARRAY型) - unique_actions7d_click (ARRAY型)			1.0	null
			1.0	null
			3.0	null
			1.0	null
			1.0	null
				null
accionsi	_, ~	_======================================	3.0	null
			4.0	null

SQL演習(1)

training.receipt_join テーブル (receipt テーブルをベースに非正規化したもの) を使って計算してみましょう

列情報は テーブルの "スキーマ" タブを参照ください

- 1. **customer_id** = 'CS029512000063' の方がこれまで購入した金額は合計でいくらでしょうか?
- 2. category_small_name = 'その他駄菓子' の商品を販売した実績のある店舗は いくつあるでしょうか?

SQL演習(1) 解答

training.receipt_join テーブル (receipt テーブルをベースに非正規化したもの) を使って計算してみましょう

列情報は テーブルの "スキーマ" タブを参照ください

1. customer_id = 'CS029512000063' の方がこれまで購入した金額は

合計でいくらでしょうか? 行 total_amount 1 776

SELECT

SUM(amount) AS total_amount

FROM

training.receipt_join

WHERE

customer.customer_id = 'CS029512000063'

SQL演習(1) 解答

training.receipt_join テーブル を使って計算してみましょう 列情報は テーブルの "スキーマ" タブを参照ください

2. category_small_name = 'その他駄菓子' の商品を販売した実績のある店舗はいくつあるでしょうか?

SELECT

COUNT(DISTINCT store.store_cd) AS unique_store_count

FROM

training.receipt_join

WHERE

product.category.category_small_name = 'その他駄菓子'

SQL演習(2)

training.receipt_join テーブル と同じデータを取得できる SELECT 文を書いてみてください。 **training.receipt_join** テーブル は、下のER図のリレーションをもとに結合しています。

training.receipt_join テーブル と同じデータを取得できる SELECT 文を書いてみてください。

```
WITH product_with_category AS (
  SELECT
    product.* EXCEPT(category_major_cd, category_medium_cd, category_small_cd),
    category,
  FROM
    training.product AS product
    LEFT OUTER JOIN training.category AS category
      USING (category major cd, category medium cd, category small cd)
SFI FCT
  receipt.* EXCEPT (customer_id, product_cd, store_cd),
  customer,
  store,
  product
FROM
  training.receipt AS receipt
  LEFT OUTER JOIN training.customer AS customer USING (customer id)
  LEFT OUTER JOIN training.store AS store USING (store_cd)
  LEFT OUTER JOIN product with category AS product USING (product cd)
```


Section 4

Google DataStudio 入門

Data Studio とは?

- Google マーケティングプラットフォーム で提供されているBIサービス
- Google アナリティクスも、Google マーケティングプラットフォームの サービスのひとつ
- 日本では「データポータル」と呼ばれていますが、ここでの表記は Data Studio に統一します。

どうやってアクセスするの?

こちらへ

https://datastudio.google.com/

ダッシュボードの管理

- 自分が作成したものや共有されているものが表示される
- Google Drive に似ているが、別管理になっている
- 個人の所有物扱いなので、他の人へ見せるには共有の設定をする

用語解説

- ページ
 - グラフや画像、コントロールを載せる場所。
 - スプレッドシートでいうシートにあたる。
- レポート
 - ページをまとめたもの。ダッシュボード=レポート。
 - スプレッドシートでいうファイル(ブック)にあたる。
- データ
 - グラフが参照するデータソース。
 - グラフにつき一つだけ指定できる。
- コントロール
 - プルダウンやチェックボックス、期間指定、などフィルタリングを行うためにレポートに設置する部品。

実際につくってみましょう

使い方

<u>公式のヘルプページ</u> の解説がわかりやすいです。

Data Studio のホーム画面に表示されているチュートリアルもおすすめです。

なんか、エリアマネージャーがグラフ作りたいらしい

全店舗の売上を集計した総売上推移を、日付ごとにわかるようにしたいです。
 期間指定とか、月次・年次に切り替えられたりできるといいなあ

2. 1のグラフとは別に、もうひとつお願いします!! 地域差があるかを知りたいので、売上の累計を都道府県別・店舗別に みたいです。

3. 全店舗行ったことないのですが、女性のお客様が多い気がする… 2のグラフの内訳で、性別がみれるようにしたいです。

ヒント: データソースは "training.receipt_join" だけです

1. 全店舗の売上(receipt.amount)を集計した総売上推移を、日付 (receipt.sales_ymd)ごとにわかるようにしたいです。 期間指定とか、月次・年次に切り替えられたりできるといいなあ

1のグラフとは別に、もうひとつお願いします!!
 地域差があるかを知りたいので、売上(receipt.amount)の累計を都道府県 (store.prefecture)別・店舗(store.store_name)別にみたいです。

3. 全店舗に行ったことはないのですが、女性のお客様が多い気がする... 2のグラフの内訳で、性別(customer.gender)がみれるようにしたいです。

つくったグラフを みんなで見てみましょう

ダッシュボードを社内に共有

ダッシュボードを Notion に埋め込む

