

CM2605: Simulation and Modeling Technique

Tutorial No 02

- 1. Consider the following simple linear regression model $Y = \beta_0 + \beta_1 x + \varepsilon$ for a data set $(x_i, y_i), i = 1, 2, ..., n$.
 - Determine the least squares estimators $\hat{\beta}_0$ and $\hat{\beta}_1$ of β_0 and β_1 respectively.
 - ii. Write down the assumptions you make on the error ε .
 - Using the following summary information estimate the above model: iii.

$$\sum x = 96$$

$$\sum y = 26$$

$$\sum y = 26 \qquad \qquad \sum x^2 = 270$$

$$\sum y^2 = 18$$

$$\sum xy = 58 \qquad \qquad n = 40$$

$$n = 40$$

- Predict Y when x = 3.5. iv.
- For what value of x would the mean value of the corresponding Y be zero. v.
- 2. (a) The regression model,

$$Y = \beta x + \varepsilon, \qquad \varepsilon \sim N(0, \sigma^2)$$

is called regression through the origin since it presupposes that the expected response corresponding to the input level x=0 is equal to 0.

Suppose that (x_i, Y_i) , i = 1,...,n is a data set from this model. Determine the least squares estimator β of β .

(b) In a study on the occurrence of sodium and chloride in surface streams in central Rhode Island, the following data for chloride concentration Y (in milligrams per liter) and roadway area in the watershed x (in percentage) were obtained:

	4.4											
X	0.19	0.15	0.57	0.70	0.67	0.63	0.47	0.70	0.60	0.78	0.81	0.78

- i. Fit the model $Y = \beta x + \varepsilon$ for the above data set.
- ii. Estimate the mean chloride concentration for a water shed that has 1% roadway area.

- 3. Consider the following simple linear regression model $Y = \beta_0 + \beta_1 x + \varepsilon$ for a data set (x_i, y_i) , i = 1, 2, ..., n.
 - i. Using the following summary information estimate the above model.

$$\sum x_i = 169 \qquad \sum y_i = 195 \qquad \sum x_i^2 = 3573$$

$$\sum y_i^2 = 4389 \qquad \sum x_i y_i = 3911 \qquad n = 10$$

- ii. Predict Y when x = 12.
- iii. Give an estimate for the mean of Y when X=10.
- 4. For the following data the scatter plot shows a linear relationship.

X	0.10	0.16	0.31	0.37	0.37	0.46	0.50	0.50	0.60	0.70
у	0.96	1.10	0.80	0.84	0.77	0.87	0.60	0.87	0.62	0.61
X	0.75	0.80	0.90	1.00	1.07	1.08	1.11	1.30	1.37	1.54

Write down the liner model with the intercept term. (Use RStudio)

5. Consider the following data set found in Table. It is representative of a production process with *Y* being the number of hours it takes to produce the specified item number, *X*.

(Y) Hours	(X) Unit Number		
60	5		
45	12		
32	35		
25	75		
21	125		

The proposed model is the two-parameter intrinsic linear model:

$$Y_i = \beta_0 X_i^{\beta_1} + \varepsilon_i$$

Where the ε_i 's are independent normal with constant variance.

Since the proposed model is non-linear, Answer the following questions by applying the natural log function on both sides.

- 1. Using a suitable statistical technique, estimate β_0 and β_1 .
- 2. Suggest a method to improve the accuracy of the result.
