Дисциплина: Электротехника

№ группы: ИВТ-23

Ф.И.О.: Джугели Дмитрий Александрович

№ д/з: 5

№ варианта: 10

Рис.1 - *С*труктурная схема устройства X

Рис.2 - Предлагаемая схема формирования питания

Таблица 1 – Уровни напряжений для схемы формирования питания

10)	25	3,3	3,3	5	1	1,6	11	18	-18

Таблица 2 – Токи потребления для схемы формирования питания

10	170	60	150	50	110	15	20	20

Выбор компонентов:

MK <u>STM32F446ZEJ7</u>

ПЛИС <u>EP4CE15F23C9LN</u>

OY 1 LMH6618MK/NOPB

ОУ 2 AD548KNZ

Линейный стабилизатор напряжения 1 **ZSR330GTA**

$$U_{BX} = 5.3V-20V$$
, $U_{BMX} = 3.3V$, $I_{BMX} = 200$ mA, корпус SOT-223

$$P_{\text{Harp.}} = U*I = 3.3V*200\text{mA} = 660\text{mW};$$

$$P_{pacc.} = I_{Bых}*(U_{BXMAKC} - U_{Bыx}) = 0.2A*(20V-3.3V) = 3.3W$$

$$P_{\text{CYMM1}} = P_{\text{Harp}} + P_{\text{pacc}} = 3.9W$$

Линейный стабилизатор напряжения 2 <u>L78L33ABD-TR</u>

$$U_{BX} = 5.3 \text{V} - 30 \text{V}$$
, $U_{BMX} = 3.3 \text{V}$, $I_{BMX} = 100 \text{mA}$, корпус: SOIC-8

$$P_{\text{Harp.}} = U*I = 3.3V*100mA = 300mW$$

$$P_{pacc.} = I_{вых}*(U_{вхмакс} - U_{вых}) = 0.1A*(30V-3.3V) = 2.6W$$

$$P_{\text{CYMM}} = P_{\text{Harp}} + P_{\text{pacc}} = 2.9W$$

Линейный стабилизатор напряжения 3 **ZXTR2005ZQ-13**

$$U_{BX} = -0.3V-10V$$
, $U_{BMX} = 5V$, $I_{BMX} = 300$ mA, корпус: SOT-89-3

$$P_{\text{Harp.}} = U*I = 5V*300\text{mA} = 1.5\text{W}$$

$$P_{pacc.} = I_{Bbix}*(U_{BXMAKC} - U_{Bbix}) = 0.3A*(10-5) = 1,5W$$

$$P_{\text{CYMM3}} = P_{\text{Harp}} + P_{\text{pacc}} = 3W$$

Линейный стабилизатор напряжения 4 <u>NCP110AFCT105T2G</u>

$$U_{BX} = 1.1 \text{V}-5.5 \text{V}$$
, $U_{BMX} = 1.05$, $I_{BMX} = 300 \text{mA}$, корпус: WLCSP-4

$$P_{\text{Harp.}} = U*I = 1.05*0.3A = 0.315W$$

$$P_{\text{расс.}} = I_{\text{вых}} * (U_{\text{вхмакс}} - U_{\text{вых}}) = 0.3 A * (5,5 V - 1.05 V) = 1,3 W$$

$$P_{\text{CYMM4}} = P_{\text{Harp}} + P_{\text{pacc}} = 1,615W$$

Линейный стабилизатор напряжения 5 NJM2867F3-21-TE2

$$U_{BX} = 14V$$
, $U_{BMX} = 2.1V$, $I_{BMX} = 0.13A$, корпус: SC-88A

$$P_{\text{Harp.}} = U*I = 2.1V*0.13A = 0.27W$$

$$P_{\text{pacc.}} = I_{\text{BMX}} * (U_{\text{BXMAKC}} - U_{\text{BMX}}) = 0.13 \text{A} * (14 \text{V} - 2.1 \text{V}) = 1.53 \text{W}$$

$$P_{\text{CYMM}} = P_{\text{Harp}} + P_{\text{pacc}} = 1.8W$$

$$P$$
общ.cyмм= P cyмм1 + P cyмм2 + P cyмм3 + P cyмм4 + P cyмм5 = $13W$

Импульсный стабилизатор напряжения 1 MP38873DL-LF-P

Оценка уровня выходного напряжения:

максимально потребляемое напряжение 5V (\pm 2V) получим Ucтаб = 7V Учитывая, что Робщ.сумм = 13W, а Ucтаб = 7V Получим I=P/U=1,8A

 $U_{\text{вх}} = 4.5 \text{V} - 25 \text{V}, \ U_{\text{вых}} = 7 \text{V}, \ I_{\text{вых}} = 15 \text{A}, \ \text{корпус: QFN-20}$

Импульсный стабилизатор напряжения 2 <u>LTC3632IDD#PBF</u>

 $U_{\text{вх}} = 4.5 \text{V} - 50 \text{V}, \ U_{\text{вых}} = 0.8 \text{ V} - 50 \text{ V}, \ I_{\text{вых}} = 20 \text{mA}, \ \text{корпус: DNF-8}$

Импульсный стабилизатор напряжения 3 <u>LTC3265EFE#PBF</u>

 $U_{BX} = 3.5 \text{V} - 36 \text{V}$, U_{BMX} adj, $I_{BMX} = 20 \text{mA}$, корпус: SMD

Итоговая схема:

Оценка выходного тока ИП:

P1=UI=1,8A*7B=12.6W

$$Psum = 21,45W$$

$$I = Psum/U_{BX} = 21,45/25 = 0.85A$$

Определение мощности адаптера питания для телефона:

$$U_{\text{BMX}} = 11V \quad I_{\text{BMX}} = 3.0A$$

$$P = U*I = 11*3 = 33W$$

К какому из перечисленных вариантов приведёт подключение вашего телефона к адаптеру питания, выходной ток которого в два раза превышает ток вашего адаптера?

Оба девайса будут работать в штатном режиме.