Cryptography & Encryption:6G7Z1011: Lab Questions

Keith Yates

March 15, 2019

Cryptography & Encryption:6G7Z1011: Elliptic Cryptography & Quantum Encryption

1 Cryptography & Encryption:6G7Z1011: Elliptic Cryptography & Quantum Encryption

2 Problems & Supplementary Material: Elliptic Curves

2.1 problem:

☐ Write a java method that finds the solutions of

$$ax^2 + bx + c = 0; (1)$$

the method should take three arguments a, b and c. \Box

2.2 problem:

□ Write a java method that finds the solutions of

$$ax^3 + bx^2 + cx + d = 0; (2)$$

the method should take four arguments $a,\,b,\,c$ and d. Hint https://en.wikipedia.org/wiki/Cubic_function#General_formula.

2.3 problem:

Find all the solutions to

$$y^2 = x^3 + 3x + 8 \mod \mathbb{F}_{13} \tag{3}$$

That is each (x, y) solution is an element of $\mathbb{F}_{13} \times \mathbb{F}_{13}$ and it satisfies eqn. 3, for example (2, 3) is a solution. You should find eight answers, see §2.4 \bot

2.4 problem:

The eight solutions from §2.3 are shown in table 1, if we append an identity element 0 the nine elements can be given an abelian group structure. Formally you are creating

Ellip
$$(y^2 = x^3 + 3x + 8, \mathbb{F}_{13});$$
 (4)

the abelian group associated with $y^2 = x^3 + 3x + 8$ and the field \mathbb{F}_{13} . Using the algorithm in the notes evaluate the group table.

┙

	0	(1,5)	(1,8)	(2,3)	(2, 10)	(9,6)	(9,7)	(12, 2)	(12, 11)
0									
(1,5)									
(1,8)									
(2,3)									
(2,10)									
(9,6)									
(9,7)									
(12,2)									
(12, 11)									

Table 1: The points all lie on $y^2 = x^3 + 3x + 8$ over the field \mathbb{F}_{13} . Using the ideas of the lecture can you complete the table to create an abelian group of order 9?

×	b	c	d	e	f	g	h	i
b								
c								
d								
e								
f								
g								
h								
i								

2.5 problem: \mathbb{F}_{3^2}

Construct the field \mathbb{F}_{3^2} The following matrices are a field of cardinality nine over $\mathbb{Z}(3)$

$$a = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix}, \quad b = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad c = \begin{pmatrix} 0 & 2 \\ -2 & 0 \end{pmatrix},$$

$$d = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \quad e = \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \quad f = \begin{pmatrix} 1 & 2 \\ -2 & 1 \end{pmatrix},$$

$$g = \begin{pmatrix} 2 & 0 \\ 0 & 2 \end{pmatrix}, \quad h = \begin{pmatrix} 2 & 1 \\ -1 & 2 \end{pmatrix}, \quad i = \begin{pmatrix} 2 & 2 \\ -2 & 2 \end{pmatrix}.$$
(5)

┙

2.6 problem:

「Continue with your assignment. 」