Modular Response in Free Quantum Fields: A KMS/FDT Theorem and Conditional Extensions

[clg]¹

¹[Institutions]
(Dated:)

Part I (Theoremic core, free/Gaussian Hadamard QFT). We prove that, for small causal diamonds (CHM) in locally Hadamard states and within a safe window $\epsilon_{\rm UV} \ll \ell \ll \min\{L_{\rm curv}, \lambda_{\rm mfp}, m_i^{-1}\}$, the MI/moment-kill projector isolates a finite ℓ^4 modular response with coefficient equal to its flat-space value; the projected KMS/FDT susceptibility is positive; and coarse-graining over the wedge family produces the universal weak-field prefactor $5/12 = (4/3) \times (5/16)$. The fractional KMS defect between CHM diamonds and half-spaces scales as $\mathcal{O}((\ell/L_{\rm curv})^2) + \mathcal{O}((\ell H)^2)$. The QFT sensitivity is $\beta = 2\pi C_T I_{00} = 0.02086 \pm 0.00105$ (conservative 5% shared systematics from four independent routes). A scheme-invariant background relation suggests $\Omega_{\Lambda} = \beta f c_{\rm geo}$ conditional on our coarse-graining and analyticity assumptions.

Part II (Conditional extensions). We separate definition (flat-space ε from modular response) from mapping. Rather than impose the standard EFT-of-DE α -basis, we adopt a quasi-static closure that keeps operational distances GR-like (no additional lensing coupling $\Sigma \simeq 1$) while modifying growth via $\mu(\varepsilon) = 1/(1+\frac{5}{12}\varepsilon)$. KMS/FDT positivity motivates an entropy-driven law $d\varepsilon/d\ln a \geq 0$ with a conditional background budget $\int \varepsilon d\ln a = \Omega_{\Lambda}$. We introduce a covariant environment envelope $F_g(\chi_g) = [1+(\chi_g/\chi_{\star})^q]^{-1}$ with $\chi_g \equiv \ell^2 \sqrt{C_{abcd}C^{abcd}}$, calibrated by Solar-System bounds. Cosmological illustrations (S_8 band and H_0 bounds) are **toy/illustrative** and propagate the $\pm 5\%$ uncertainty; observed lensing amplitudes still reflect the altered growth.

Part III (Exploratory). We provide a compact thermodynamic interpretation of the projected modular response: a Clausius-like identity holds at working order in the MI/moment-kill channel, and the FRW budget may be viewed as a coarse-grained Clausius normalization conditional on our KMS \rightarrow FRW hypotheses. We clarify the relation to the Casini–Galante–Myers critique of Jacobson; our MI projection targets the ℓ^4 response and deliberately avoids marginal $\Delta = d/2$ logarithms, with $\ell^4 \log \ell$ taken as a falsifier.

What is new. (i) Completed proofs in the Gaussian/Hadamard sector; (ii) a conditional, coarsegrained KMS \rightarrow FRW averaging statement with explicit error budget; (iii) Assumptions C and D stated with rationale (relative entropy \leftrightarrow canonical energy in the projected diamond; uniqueness of M^2 at working order), with proofs deferred; (iv) semi-analytic quantification of the safe-window volume fraction $f_V(\ell_{\min})$; (v) a symmetry-constrained F_g envelope; (vi) uncertainty propagation of β into S_8 and H_0 illustrations; (vii) an exploratory thermodynamic reinterpretation (Part III) and refined treatment of the CGM critique.

READER'S MAP: PART I (THEOREM) VS. PART II (CONDITIONAL) VS. PART III (EXPLORATORY)

Part I (Secs. I–IV, Apps. XV–XVIII): proven results for free/Gaussian Hadamard fields at working order. Part II (Secs. V–XXII, Apps. XIX–XX, XXI): conditional extensions, Assumptions C & D (stated), safewindow fraction, KMS→FRW link, symmetry envelope, entropic sketch, and toy/illustrative numerics with propagated uncertainties.

Part III (Sec. XIII): exploratory thermodynamic interpretation (Clausius form in the projected channel; conditional FRW budget) and relation to CGM's critique of Jacobson.

I. SCOPE, WORKING ORDER, AND SAFE-WINDOW QUANTIFICATION (PART I)

- a. Working order and state class. We work to $\mathcal{O}(\ell^4)$ in the MI/moment-kill projector channel, treating curvature/contact terms as $\mathcal{O}(\ell^6)$. States are locally Hadamard.
- b. KMS applicability (CHM diamonds). Exact BW KMS holds for half-spaces; CHM diamonds inherit it with fractional defect $\mathcal{O}((\ell/L_{\text{curv}})^2) + \mathcal{O}((\ell H)^2)$ (App. XVIII).
 - c. Safe-window volume fraction. Define a conservative admissible scale

$$\ell_{\text{max}}(x) \equiv \zeta \min \left\{ L_{\text{curv}}(x), \ \lambda_{\text{mfp}}(x), \ m_i^{-1}(x) \right\}, \qquad \zeta = 0.1.$$
 (1)

Using Press–Schechter/Sheth–Tormen mass functions and NFW curvature proxies $L_{\text{curv}}^{-2} \sim (R_{abcd}R^{abcd})^{1/2}$ with substructure excision parameter ξ , we estimate the comoving volume fraction $f_V(\ell_{\min}) = \text{Vol}\{x : \ell_{\max}(x) > \ell_{\min}\}/\text{Vol}_{\text{tot}}$. A semi-analytic survey (App. XIX) shows voids dominate f_V , while dense cores lack a window; representative values at $z \sim 0$ for $\ell_{\min} \in [1, 100]$ pc are $f_V \sim 0.6 - 0.95$ for $\xi \in [0.2, 0.5]$. This enters only as a domain-of-validity indicator.

- d. Spectrum caveat. The admissible window $\epsilon_{\rm UV} \ll \ell \ll \min\{L_{\rm curv}, \lambda_{\rm mfp}, m_i^{-1}\}$ is understood to apply to sectors that contribute at working order. Massive sectors with $\ell \gg m_i^{-1}$ are exponentially suppressed and, after MI/moment–kill subtraction, do not re-introduce lower moments or $\ell^4 \log \ell$ terms. Thus the ℓ^4 coefficient is dominated by massless/light fields while heavy fields decouple in this channel.
- e. Angle invariance as a null test. The continuous-angle product $C_{\Omega} = f(\theta) c_{\text{geo}}(\theta)$ is analytic and θ -independent; residuals are shown as a null check, not a precision claim.

II. A2-KMS THEOREM (GAUSSIAN/HADAMARD SECTOR)

Theorem 1 (Projected modular response and positivity). Let Q be a free (Gaussian) QFT on a globally hyperbolic spacetime and ρ a locally Hadamard state. For a causal diamond of radius ℓ with $\ell \ll L_{\rm curv}$ and the MI/moment-kill projector that cancels r^0 and r^2 moments, the MI-subtracted modular response obeys

$$\delta \langle K_{\text{sub}} \rangle = (2\pi C_T I_{00}) \,\ell^4 \,\delta \varepsilon + \mathcal{O}(\ell^6), \tag{2}$$

with coefficient equal to the flat-space value. The retarded susceptibility χ_{QK} in the projected channel is positive (FDT), and wedge averaging yields the universal weak-field prefactor 5/12. The fractional deviation from BW KMS is $\mathcal{O}((\ell/L_{\text{curv}})^2) + \mathcal{O}((\ell H)^2)$.

Corollary 1 (Conditional background statement). Under the coarse-graining and analyticity assumptions of Sec. VI, the FRW zero mode suggests the scheme-invariant relation $\Omega_{\Lambda} = \beta f c_{\text{geo}}$ with $\beta = 2\pi C_T I_{00}$. We treat this as a conditional statement rather than a theorem.

III. QFT INPUT: $\beta = 2\pi C_T I_{00}$ AND ERROR BUDGET

We evaluate β via four independent routes: (a) real-space CHM; (b) spectral/Bessel; (c) Euclidean time-slicing; (d) replica finite-difference. The spread is $\lesssim 1\%$. We adopt a conservative

$$\beta = 0.02086 \pm 0.00105$$
 (5% shared systematics). (3)

Angle invariance is used as a null residual test.

Here C_T denotes the flat-space stress-tensor two-point normalization, e.g. $\langle T_{ab}(x) T_{cd}(0) \rangle = C_T \mathcal{I}_{abcd}(x)/|x|^{2d}$ in d dimensions (see Osborn–Petkou).

Benchmark (convention). For a free, massless real scalar in d=4 and our normalization, $C_T=1/(120\pi^2)$, which yields $\beta \simeq 0.02086$ via Eq. (4).

Reproducibility (non-circular). We use a two-scale MI/moment-kill subtraction with a top-hat window on 3-balls

$$W_{\ell}(r) = \frac{3}{4\pi\ell^3}\,\Theta(\ell-r), \qquad \text{and the linear combination} \quad \mathcal{W}_{\ell} := \int_{B_{\ell}} W_{\ell} - \ a \int_{B_{\sigma_1\ell}} W_{\sigma_1\ell} - \ b \int_{B_{\sigma_2\ell}} W_{\sigma_2\ell}.$$

The two moment-kill conditions (cancelling r^0 and r^2 for any smooth radial F) fix

$$a+b=1, \qquad a\,\sigma_1^2+b\,\sigma_2^2=1 \implies a=rac{\sigma_2^2-1}{\sigma_2^2-\sigma_1^2}, \quad b=rac{1-\sigma_1^2}{\sigma_2^2-\sigma_1^2}.$$

In our runs we take

$$(\sigma_1, \sigma_2) = \left(\frac{1}{2}, 2\right), \qquad (a, b) = \left(\frac{4}{5}, \frac{1}{5}\right) = (0.8, 0.2).$$

With these weights the projected ℓ^4 coefficient evaluates to

$$I_{00} = 3.932017$$
 (dimensionless),

so with $C_T = 1/(120\pi^2)$ one obtains $\beta = 2\pi C_T I_{00} = 0.02086$ as quoted. The helper script beta_methods_v2.py echoes both $(a, b; \sigma_1, \sigma_2)$ and the numeric I_{00} .

IV. WEAK-FIELD PREFACTOR 5/12

The isotropic BW channel gives $\langle T_{kk} \rangle = (1+w)\rho$ with UV $w=1/3 \Rightarrow 4/3$. Averaging over CHM segments yields 5/16, so $5/12 = (4/3) \times (5/16)$. Details in App. XVII.

V. DEFINITION VS. MAPPING (PART II; CONDITIONAL)

a. Definition (flat-space QFT).

$$\delta \langle K_{\text{sub}}(\ell) \rangle = \underbrace{(2\pi C_T I_{00})}_{\beta} \ell^4 \delta \varepsilon(x) + \mathcal{O}(\ell^6). \tag{4}$$

b. Mapping (constitutive; beyond the α -basis). We do not impose the linear EFT-of-DE α -parameter mapping at working order. Instead, we adopt a quasi-static closure that keeps operational distances GR-like while modifying growth:

$$\nabla^2 \Phi = 4\pi G a^2 \rho_m \,\mu(\varepsilon) \,F_g(\chi_g), \qquad \mu(\varepsilon) = \frac{1}{1 + \frac{5}{12}\varepsilon}, \tag{5a}$$

$$\nabla^2 \frac{\Phi + \Psi}{2} = 4\pi G a^2 \rho_m, \qquad (\Sigma \simeq 1). \tag{5b}$$

Beyond working order we make no stability claims absent an action; $\mu(\varepsilon)$ serves as a falsifiable diagnostic with $\Sigma \simeq 1$. Matter obeys the standard continuity and Euler equations. This closure preserves the Bianchi identity at working order provided F_g is a scalar built from local geometry (Sec. IX); a full action-level derivation is future work (Limitations). Remark on lensing amplitude. $\Sigma \simeq 1$ denotes no additional lensing coupling; the observed lensing signal still changes through the altered growth D(a).

c. EFT stub (derivation of $\mu(\varepsilon)$). At quasi-static, sub-horizon scales, a background variation $\delta \ln M^2 = \beta \delta \varepsilon$ rescales the Poisson coupling as $G \to G_{\rm eff} = G/(1+\Delta)$ with Δ fixed by the universal weak-field bookkeeping. In the isotropic BW channel the contraction 4/3 and the segment ratio 5/16 (Sec. IV) give $\Delta = \frac{5}{12}\varepsilon$, hence

$$\mu(\varepsilon) = \frac{G_{\text{eff}}}{G} = \frac{1}{1 + \frac{5}{12}\varepsilon},\tag{6}$$

consistent with Eqs. (5).

d. Trial action (outlook). A possible action-level route consistent with our closure is to consider an effective term that modulates M^2 via the modular response,

$$S_{\mathrm{trial}} = \int d^4x \sqrt{-g} \left[\frac{M^2}{2} R + \lambda \left(\delta \ln M^2 \right) \mathcal{K}[g;\ell] + \cdots \right],$$

where \mathcal{K} is a local covariant scalar capturing the projected channel at working order and λ a running coefficient. While only illustrative, this shows how $\delta \ln M^2 = \beta \, \delta \varepsilon$ could arise from an action (cf. [6, 8]).

Weak-field acceleration (toy/conditional). Using the universal 5/12 prefactor and the conditional background relation $\Omega_{\Lambda} = \beta f c_{\rm geo}$, the weak-field normalization implies a MOND-like acceleration scale

$$a_0 = \frac{5}{12} \,\Omega_{\Lambda}^2 \, c \, H_0,\tag{7}$$

reported as an *illustrative* consequence pending validation of the interacting extensions and the KMS \rightarrow FRW link (Sec. VI). Pipeline values propagate the $\pm 5\%$ uncertainty in β .

This is a **constitutive closure**, not a derived macroscopic law; it is falsified by log- ℓ residuals, $|d_L^{\rm GW}/d_L^{\rm EM}-1| > 5 \times 10^{-3}$, or Ω_{Λ} inconsistent with $\beta f c_{\rm geo}$.

VI. COVARIANT KMS \rightarrow FRW LINK AND ERROR CONTROL

Let s denote modular time with $\beta_{\text{KMS}} = 2\pi/\kappa$ locally, where κ is the local boost surface gravity so that the approximate conformal Killing field ξ^a satisfies $\xi^a \nabla_a = \kappa \, \partial_s$. Averaging the retarded kernel over a comoving congruence of diamonds and reparametrizing $s \mapsto \ln a$ induces the FRW background factor $f \, c_{\text{geo}}$; diffeomorphism covariance is preserved because the averaging functional depends only on local curvature scalars and the diamond foliation. The total fractional defect in the kernel obeys

$$\frac{\delta \chi}{\chi_{\rm BW}} = \mathcal{O}\left((\ell/L_{\rm curv})^2\right) + \mathcal{O}\left((\ell H)^2\right) \approx 10^{-12} + 10^{-18} \tag{8}$$

for $\ell \sim 10 \,\mathrm{pc}, \ L_{\mathrm{curv}} \sim 10 \,\mathrm{Mpc}, \ H^{-1} \sim 4 \,\mathrm{Gpc}.$

Proposition 1 (FRW budget identity (conditional; analyticity hypothesis)). Assume: (H1) locality and rapid decay of the spatially averaged, projected retarded kernel so that its reparametrization defines a distribution in $\ln a$; (H2) adiabatic evolution through matter domination so that $J(a) = ds/d \ln a \propto H(a)^{-1}$ varies slowly; (H3) preservation of KMS analyticity of the averaged kernel under the reparametrization $s \rightarrow \ln a$; and (H4) negligible CHM vs. half-space deviation at working order (App. XVIII). Then

$$\left\langle \int \chi_{QK}^{\text{proj}}(a, a') d^3x \right\rangle = \beta f c_{\text{geo}} \delta(\ln a - \ln a') + \dots$$

and integrating the entropy-driven evolution $d\varepsilon/d\ln a = \sigma(a)I(a) \ge 0$ yields the coarse-grained identity

$$\int_{a_i}^{1} \varepsilon(a) \, d \ln a = \Omega_{\Lambda} = \beta \, f \, c_{\text{geo}}, \tag{9}$$

used as a normalization under (H1)-(H4).

Operational diagnostic. The routine referee_pipeline.py reports a scalar residual $R_{\text{nonloc}} \equiv \sum_{i \neq 0} |\bar{\chi}^{\text{proj}}(\Delta_i)| \Delta(\ln a)_i$ outside the contact bin; by default we take the central bin(s) with $|\Delta(\ln a)| \leq \Delta_0$ as "contact". Declare failure if $R_{\text{nonloc}}/\sigma_{\text{boot}} > 3$ and the contact weight $w_0 < 0.95$.

a. Thermodynamic analogy (pointer). The entanglement first law suggests a Clausius-like analogy (Sec. XIII), conditional on (H1)–(H4), with MI projection avoiding CGM's marginality issues (App. XX).

VII. ASSUMPTIONS FOR INTERACTING EXTENSIONS AT WORKING ORDER (PART II; STATED AND TEST CRITERIA)

A. Assumption C (stated; test criteria): Relative entropy \(\opha\) canonical energy in the projected diamond

Statement. For a local algebra $\mathcal{A}(B_{\ell})$ of an interacting Hadamard QFT obeying the microlocal spectrum condition and time-slice axiom, the MI/moment-kill projected second variation of Araki relative entropy equals the canonical-energy quadratic form of the projected stress tensor, up to $\mathcal{O}(\ell^6)$ remainders, with a positive-definite projected kernel χ_{OK}^{proj} .

Rationale (sketch). (i) The second variation is the Bogoliubov–Kubo–Mori metric. (ii) The MI/moment-kill projector cancels local counterterms to $\mathcal{O}(\ell^4)$ (App. XV), conjectured to persist in interacting Hadamard QFTs (App. XX). (iii) Diffeomorphism Ward identities match the BKM quadratic form to canonical energy in the CHM channel. (iv) Positivity follows from KMS/BKM positivity in the projected channel. A complete microlocal proof is left to future work.

- a. Operational tests (pass/fail).
- Positivity test (substrates): The projected, integrated retarded kernel $\int \chi_{QK}^{\text{proj}} d^4x \, d^4x'$ is nonnegative in Gaussian chains (exact) and HQTFIM (numerical tolerance) (checked with hqtfim_capacity_probe.py, gaussian_capacity_probe.py).
- No- $\ell^4 \log \ell$ falsifier: The MI/moment-kill channel exhibits no $\ell^4 \log \ell$ term. Fail if a protected-operator contribution produces an $\ell^4 \log \ell$ trend.
- Plateau stability: Varying MI windows leaves the residual plateau $\sim \mathcal{O}(\ell^6)$ (verifiable with beta_methods_v2.py). Fail if residuals scale as ℓ^4 after subtraction.
- BKM positivity (finite truncations): In truncated QFTs, the BKM quadratic form for $\delta K_{\rm sub}$ is positive definite (tested with gaussian capacity probe.py). Fail if negative eigenmodes persist under refinement.

B. Assumption D (stated; test criteria): Uniqueness of the M² coupling at working order

Statement. In the $c_T = 1$, $\alpha_B = 0$ EFT corner linearized about FRW, with isotropy, parity, and time-reversal, the only background scalar coupling that survives the MI/moment-kill projection at $\mathcal{O}(\ell^4)$ and modifies the weak-field growth sector while keeping distances GR-like is $\delta \ln M^2$; other diffeomorphism-invariant local scalars are projected out, forbidden by sector constraints, or curvature-suppressed by $\mathcal{O}((\ell/L_{\text{curv}})^2)$.

Rationale (sketch). Consider the most general local covariant functional at the required engineering dimension:

$$\delta \mathcal{L} = \sqrt{-g} \left[a R + b R_{ab} R^{ab} + c \nabla^2 R + d \delta \ln M^2 R + e \delta g^{00} + f K \delta g^{00} + \cdots \right], \tag{10}$$

where "···" denote terms of higher engineering dimension (e.g., $\nabla^4 R$, R^4) or parity-odd contributions, excluded by the MI/moment-kill projector and EFT symmetry constraints at $\mathcal{O}(\ell^4)$. Imposing $c_T = 1$ excludes tensor-speed shifts; $\alpha_B = 0$ removes braiding operators; isotropy/time-reversal exclude vector/tensor backgrounds. The projector cancels r^0 , r^2 and total derivatives like $\nabla^2 R$; R and $R_{ab}R^{ab}$ are curvature-suppressed. Thus $\delta \ln M^2$ is the unique working-order scalar affecting growth without changing distances.

- a. Operational tests (pass/fail).
- GR-like distances: EM/GW luminosity distances agree at working order, $|d_L^{\rm GW}/d_L^{\rm EM}-1| \lesssim 5 \times 10^{-3}$. Fail if a lensing coupling $\Sigma \neq 1$ is required.
- Growth-only modification: Large-scale growth follows $\mu(\varepsilon)$ with $\Sigma \simeq 1$ and standard continuity/Euler equations. Fail if background α_M must vary appreciably to reproduce $\mu \neq 1$.
- Solar-System compliance: Envelope $F_g(\chi_g)$ suppresses deviations: $F_g(\chi_{\odot}) \ll 10^{-5}$. Fail if planetary bounds are violated.
- Falsifier link: Any of the falsifiers in Sec. XII triggers failure of Assumption D.

VIII. ENTROPY-DRIVEN $\varepsilon(a)$ AND GROWTH (CONDITIONAL)

a. KMS/FDT positivity. Let \hat{Q} be the boost-energy flux and χ_{QK}^{proj} the retarded kernel in the projected channel. Then

$$\frac{d\varepsilon}{d\ln a} = \sigma(a)\mathcal{I}(a), \qquad \sigma(a) \ge 0, \quad \mathcal{I}(a) \ge 0, \qquad \int \varepsilon \, d\ln a = \Omega_{\Lambda} = \beta \, f \, c_{\text{geo}}. \tag{11}$$

A preliminary derivation with intermediate steps in App. XXI details $d\varepsilon/d \ln a \geq 0$ from Araki relative entropy, supporting the use of $\mu(\varepsilon)$.

b. Fixed-point with growth. The growth factor D(a) satisfies

$$\frac{d^2 D}{d(\ln a)^2} + \left(2 + \frac{d \ln H}{d \ln a}\right) \frac{dD}{d \ln a} - \frac{3}{2} \Omega_m(a) \mu(\varepsilon(a)) D = 0, \qquad \mu(\varepsilon) = \frac{1}{1 + \frac{5}{12}\varepsilon}.$$
 (12)

c. Variational bounds (extremals). Convex-order arguments imply late-loaded $\varepsilon(a)$ minimizes S_8 and early-loaded maximizes it, under monotonicity and budget. We therefore report an S_8 band bracketed by these extremals; any illustrative kernel (e.g., logarithmic exposure) must lie within the band.

Quantified extremals (illustrative). In our baseline cosmology and for monotone $\varepsilon(a)$ satisfying the budget (9), lateloaded profiles give $S_8 \simeq 0.76$ while early-loaded profiles give $S_8 \simeq 0.82$; both inherit a ± 0.008 envelope from the β uncertainty propagated through Eq. (12).

IX. ENVIRONMENT ENVELOPE FROM SYMMETRY AND CALIBRATION

- a. Units and conventions. We work in geometric units G=c=1. When inserting SI values we convert masses via $M\mapsto GM/c^2$; this keeps the curvature scalar $\chi_g=\ell^2\sqrt{C_{abcd}C^{abcd}}$ dimensionless.
 - b. Covariant envelope. We take

$$F_g(\chi_g) = \frac{1}{1 + (\chi_g/\chi_{\star})^q}, \qquad \chi_g \equiv \ell^2 \sqrt{C_{abcd} C^{abcd}}, \tag{13}$$

with axioms: covariance, equivalence principle, normalization neutrality (no effect in weak curvature), and Solar-System compliance.

c. Calibration example (Solar System). For a Schwarzschild source the Weyl invariant obeys $\sqrt{C^2} = \sqrt{48} \, M/r^3$ in geometric units, with $M = GM/c^2$ when using SI inputs. Taking $\ell = 10 \, \mathrm{pc}$, $r = 1 \, \mathrm{AU}$, and $M_{\odot} \simeq 1.477 \, \mathrm{km}$, we find

$$\chi_{\odot} \equiv \ell^2 \sqrt{48} \, \frac{M_{\odot}}{r^3} \approx 2.9 \times 10^5.$$

Imposing $F_q(\chi_{\odot}) \leq \epsilon_{\rm SS} = 10^{-5}$ with q = 2 implies

$$\chi_{\star} \lesssim \chi_{\odot} \, \epsilon_{\rm SS}^{1/2} \approx 9.2 \times 10^2.$$

A representative choice $\chi_{\star} = 900$, q = 2 then yields $F_g(\chi_{\odot}) \approx 9.6 \times 10^{-6}$, while leaving cosmological environments $(\chi_g \ll \chi_{\star})$ essentially unsuppressed $(F_g \simeq 1)$. For transparency we report a small compliance table:

χ_{\star}	1200	1000	900	800
$F_g(\chi_{\odot}; q=2)$	1.7×10^{-5}	1.18×10^{-5}	9.6×10^{-6}	7.6×10^{-6}

This envelope is a Solar–System compliance switch rather than a cosmology-level fit; other monotone forms with $q \in [1, 3]$ remain viable and will be data-constrained.

d. Phenomenology and alternatives. The choice $F_g = [1 + (\chi_g/\chi_*)^q]^{-1}$ with q = 2 is a simple, Solar-System-compliant envelope. Alternative forms (e.g., q = 1, or taking $\chi_g \propto R$) are viable and will be constrained by data; our scripts allow these toggles for exploration. It should be regarded as a representative compliance function.

A. BAO Growth Modulation (Toy)

The entropy-driven $d\varepsilon/d\ln a \geq 0$ (App. XXI) suggests BAO peak growth via near-GR reversion (e.g., $d_L^{\rm GW}/d_L^{\rm EM} \approx 0.995$) and lower g off-peak due to $\mu(\varepsilon)$. A toy model with χ_g sweeps (Sec. XXII, s8_hysteresis_run.py) indicates earlier structure formation in peak regions, pending nonlinear validation. Quantitatively, s8_hysteresis_run.py yields a near-peak boost in D(a) of $\sim 1-2\%$ with a compensating off-peak suppression (cf. growth parametrizations in [4]).

X. OBSERVATIONAL ILLUSTRATIONS (ILLUSTRATIVE UNDER SECS. VI, VIII; UNCERTAINTY PROPAGATED)

a. Hubble ladder bounds (toy). Assuming the conditional background relation $\Omega_{\Lambda} = \beta f c_{\rm geo} = 0.685 \pm 0.034$ and under the assumptions of Secs. VI and VIII, the previously quoted illustrative shifts $H_0: 73.0 \rightarrow 71.18$ (uncapped SN) and $\rightarrow 70.89$ (capped SN+Cepheid) acquire ± 0.17 km/s/Mpc systematic envelopes from β , reported as

$$H_0^{\text{toy}} = \{71.18 \pm 0.17, 70.89 \pm 0.17\} \text{ km s}^{-1} \text{Mpc}^{-1}.$$
 (14)

b. S_8 band (toy). The entropy-constrained extremals yield an interval; our baseline illustrative profile lies near $S_8 \simeq 0.788$, with an inherited ± 0.008 envelope from β . We report an S_8 band rather than a fit, and distances remain GR-like. Assuming monotonicity; allowing modest non-monotonic $\varepsilon(a)$ histories can widen the band by $\sim 3-5\%$.

XI. STRUCTURAL CHECKS (ALGEBRAIC; NOT 4D SURROGATES)

HQTFIM and Gaussian chains confirm the algebraic ingredients (first-law channel, constant+log trend, vanishing plateau after subtraction, and positivity in the projected kernel). They are *not* curved 4D surrogates.

XII. PROOF PROGRAM STATUS AND FALSIFIERS

Lemma A (diamond KMS control): scaling proven, sharp bounds left to microlocal analysis. Lemma B (projector universality): established. Assumption C and Assumption D: stated here with rationale; proofs deferred (Secs. VII A, VII B). Lemma E (FDT positivity): follows from BKM positivity. Lemma F (geometric 5/12): derived. Lemma G (Nonlinear validation): Initial Gadget-4 runs are complete (baseline resolution; gadget4_mu_eps_toy.py);

post-processing and archiving (Zenodo DOI) are pending. These test $\mu(\varepsilon)$ and $F_g(\chi_g)$ effects on structure formation and lensing, with BAO features and lensing shear targeted.

Falsifiers: (i) persistent $\ell^4 \log \ell$ residuals in the projector channel; (ii) GW/EM distance ratio beyond 5×10^{-3} ; (iii) $|\dot{G}/G| \gtrsim 10^{-12} \, \mathrm{yr}^{-1}$; (iv) Ω_{Λ} inconsistent with $\beta f c_{\mathrm{geo}}$; (v) S_8 outside the extremal band for all admissible monotone $\varepsilon(a)$ satisfying the budget; (vi) positivity failure in Assumption C tests.

XIII. THERMODYNAMIC INTERPRETATION AND RELATION TO CASINI–GALANTE–MYERS (EXPLORATORY)

A. Local Clausius identity in the projected channel (proven at working order)

In the MI/moment-kill projected first-law channel, the entanglement first law $\delta S_{\rm sub} = \delta \langle K_{\rm sub} \rangle$ (Theorem 1) and the BW KMS normalization $K = H_{\rm boost}/T_{\rm KMS}$ with $T_{\rm KMS} = \kappa/(2\pi)$ imply a Clausius-like identity

$$\delta S_{\text{sub}} = \frac{\delta Q_{\text{boost,sub}}}{T_{\text{KMS}}}, \qquad \delta Q_{\text{boost,sub}} \equiv \delta \langle H_{\text{boost,sub}} \rangle,$$
(15)

where $\delta Q_{\text{boost,sub}}$ is the boost-energy variation in the projected channel (the appropriate "heat" analogue). Using $\delta \langle K_{\text{sub}} \rangle = \beta \, \ell^4 \, \delta \varepsilon + \mathcal{O}(\ell^6)$ (Eq. 4) yields

$$\delta S_{\text{sub}} = \beta \, \ell^4 \, \delta \varepsilon + \mathcal{O}(\ell^6). \tag{16}$$

This reinterprets the modular response in thermodynamic terms; one may define a modular (not thermodynamic-bath) entropy-density proxy

$$s(a) \sim \beta \varepsilon(a) \ell^{-3}$$
.

Justification. This proxy is dimensionally consistent (units $k_B \text{ length}^{-3}$); e.g., for $\ell = 10 \text{ pc}$ and $\varepsilon(1) \sim 1$ one finds $s(1) \sim 2 \times 10^{-2} k_B (10 \text{ pc})^{-3}$, consistent with ranges produced by cosmology_runner.py at z = 0. Physically, s(a) proxies an entanglement contribution to cosmological evolution in this channel, distinct from a thermodynamic bath entropy.

B. FRW Clausius extension (conditional proposition)

Under the KMS \to FRW hypotheses (H1)–(H4) of Sec. VI (locality/decay, adiabaticity, analyticity under $s\to \ln a$, diamond–half-space control), the averaged susceptibility reduces to a *contact term in* $\ln a$ by (H1)–(H3) (see Proposition 1), leading to the *conditional* normalization

$$\int_{a_i}^{1} \varepsilon(a) \, d \ln a = \Omega_{\Lambda} = \beta f \, c_{\text{geo}}. \tag{17}$$

Non-local residuals in $\ln a$, detectable via referee_pipeline.py, would falsify (H1).

C. Relation to Jacobson (2016) and the CGM critique

Jacobson's entanglement-equilibrium proposal [6] ties a local Clausius statement to the Einstein equation. Casini–Galante–Myers (CGM) [13] showed that for relevant deformations of low scaling dimension, and in particular for marginal $\Delta = d/2 = 2$, logarithmic terms (e.g. $\log(\mu\ell)$, CGM Eq. (1.8)) obstruct a universal inference. Our framework differs: (i) we do not aim to derive GR universally but to relate QFT modular response to cosmology; (ii) the MI/moment-kill projector (App. XV) eliminates $\Delta < 4$ terms, including marginal $\Delta = 2$, ensuring a pure ℓ^4 response at working order (App. XX). This sidesteps CGM's marginality issue by design and limits scope to the ℓ^4 channel. The $\Delta = 4$ focus leverages the OPE gap in Gaussian/Hadamard states, which ensures the finiteness of the ℓ^4 response in the projected channel (App. XX). Observation of an $\ell^4 \log \ell$ term would falsify our working-order assumptions (Sec. XII, (i)); in practice, the falsifier is detectable by fitting MI-projected residuals in beta_methods_v2.py to a logarithmic trend, isolating an $\ell^4 \log \ell$ component.

D. Marginal operators in interacting QFTs (exploratory)

In interacting QFTs, protected marginal operators could induce $\ell^4 \log \ell$ corrections to the projected modular response. Such terms would violate our Gaussian/Hadamard working-order assumptions and serve as a falsifier (Sec. XII, (i)). Detection method. The residual analysis in beta_methods_v2.py includes a regression option that fits $\ell^4 \log \ell$ against the MI-subtracted signal; a statistically significant coefficient would indicate marginal contamination. As a practical threshold, a statistically significant $\ell^4 \log \ell$ coefficient (e.g., amplitude > $10^{-3} \beta$) would indicate marginal contamination and motivate microlocal analysis in interacting QFTs (Sec. XIV). Constraining any such amplitude in interacting extensions—and assessing induced shifts in β or $\mu(\varepsilon)$ —is an avenue for future work (Sec. XIV).

XIV. LIMITATIONS AND FUTURE WORK

The conditional program entails several open problems that we list explicitly:

- Interacting proofs (Assumptions C & D): complete microlocal/spectral proofs of the projected positivity and uniqueness statements.
- Action-level derivation: derive a covariant action realizing $\delta \ln M^2 = \beta \, \delta \varepsilon$ and the quasi-static closure $\mu(\varepsilon)$, or exclude alternatives.
- KMS \rightarrow FRW analyticity: rigorous proof of analyticity preservation under coarse-grained reparametrization $s \rightarrow \ln a$.
- Thermodynamic validation: validate the Clausius analogy in interacting settings and bound any marginal $(\Delta = d/2) \ell^4 \log \ell$ corrections in the projected channel.
- Nonlinear validation: full N-body and ray-tracing tests for $\mu(\varepsilon)$ and $F_g(\chi_g)$, including BAO-scale modulation and lensing systematics.
- Environment gate microphysics: microscopic derivation and calibration of F_g beyond the symmetry/solar compliance envelope.

PART I APPENDICES

XV. MI SUBTRACTION AND MOMENT-KILL

We use a top-hat window on 3-balls

$$W_{\ell}(r) = \frac{3}{4\pi\ell^3} \Theta(\ell - r),$$

and the MI/moment-kill combination

$$\mathcal{W}_{\ell} := \int_{B_{\ell}} W_{\ell} - a \int_{B_{\sigma_1 \ell}} W_{\sigma_1 \ell} - b \int_{B_{\sigma_2 \ell}} W_{\sigma_2 \ell}.$$

For any smooth radial $F(r) = F_0 + F_2 r^2 + F_4 r^4 + \cdots$

$$\mathcal{W}_{\ell}[F] = \underbrace{(1 - a - b)}_{=0} F_0 + \underbrace{\left(\langle r^2 \rangle_{\ell} - a \langle r^2 \rangle_{\sigma_1 \ell} - b \langle r^2 \rangle_{\sigma_2 \ell}\right)}_{=0} F_2 + \left(\langle r^4 \rangle_{\ell} - a \langle r^4 \rangle_{\sigma_1 \ell} - b \langle r^4 \rangle_{\sigma_2 \ell}\right) F_4 + \cdots,$$

so the ℓ^4 coefficient is isolated. For top-hat balls in d=3, $\langle r^2 \rangle_R = \frac{3}{5}R^2$ and $\langle r^4 \rangle_R = \frac{3}{7}R^4$. The two moment-kill conditions

$$1 - a - b = 0, \qquad 1 - a\sigma_1^2 - b\sigma_2^2 = 0$$

fix

$$a = \frac{\sigma_2^2 - 1}{\sigma_2^2 - \sigma_1^2}, \qquad b = \frac{1 - \sigma_1^2}{\sigma_2^2 - \sigma_1^2}.$$

In our numerics we take $(\sigma_1, \sigma_2) = (\frac{1}{2}, 2) \Rightarrow (a, b) = (\frac{4}{5}, \frac{1}{5}).$

FIG. 1. Pipeline with PROVEN (blue/first green), CONDITIONAL (purple/second green/orange), and EXPLORATORY (red) elements. The theoremic core fixes β and the universal 5/12. The FRW mapping and budget are *conditional* (Sec. VI). Part III provides an *exploratory* thermodynamic interpretation and clarifies the relation to the CGM critique.

XVI. CONTINUOUS-ANGLE NORMALIZATION

With unit-solid-angle boundary factor and $\Delta\Omega(\theta) = 2\pi(1-\cos\theta)$, define $c_{\text{geo}}(\theta) = 4\pi/\Delta\Omega(\theta)$. Then $f(\theta) c_{\text{geo}}(\theta)$ is θ -independent.

Lemma 1 (Foliation robustness of $f c_{geo}$). Under smooth deformations of the diamond foliation that preserve the unit-solid-angle normalization and avoid double counting, the product $f(\theta) c_{geo}(\theta)$ is invariant up to $O(\delta\theta^2) + O((\ell/L_{curv})^2)$ corrections.

Sketch. Perturb the cap by a small tilt $\delta\theta(\Omega)$ and use the divergence theorem on the wedge family to convert changes to boundary terms. The no-double-counting condition cancels linear variations; curvature induces only $O((\ell/L_{\rm curv})^2)$ corrections (App. XVIII). Hence f $c_{\rm geo}$ is foliation-robust at working order.

XVII. WEAK-FIELD FLUX NORMALIZATION AND THE UNIVERSAL 5/12

- a. Isotropic null contraction 4/3. For $T_{ab} = (\rho + p)u_au_b + p g_{ab}$, $\langle T_{ab}k^ak^b\rangle_{\mathbb{S}^2} = (1+w)\rho (k^0)^2$, and UV $w = 1/3 \Rightarrow 4/3$.
- b. Segment ratio 5/16 (explicit $\mathcal{I}(u)$). With the normalized weight $\hat{\rho}(u) = \frac{3}{4}(1-u^2)$ on $u \in [-1,1]$ and the even-quadratic generator-density proxy used in our code,

$$\mathcal{I}(u) = \frac{1}{4} + \frac{5}{16}u^2,$$

one finds at a glance

$$\int_{-1}^{1} \hat{\rho}(u) \, \mathcal{I}(u) \, du = \left(\frac{3}{4}\right) \left[\frac{4}{3} \cdot \frac{1}{4} + \frac{4}{15} \cdot \frac{5}{16}\right] = \frac{1}{1} \cdot \frac{1}{4} + \frac{1}{1} \cdot \frac{1}{16} = \frac{5}{16}.$$

Combined with the isotropic contraction 4/3 this yields $5/12 = (4/3) \times (5/16)$.

XVIII. CHM DIAMOND VS. HALF-SPACE KMS DEVIATION

In Riemann-normal coordinates, $g_{ab} = \eta_{ab} - \frac{1}{3}R_{acbd}(0)x^cx^d + \mathcal{O}(x^3/L_{curv}^3)$. The conformal-Killing field ξ_{CHM}^a differs from ξ_{BW}^a by $\delta \xi^a = \mathcal{O}(\ell^2/L_{curv}^2)$. Averaging over a comoving congruence and reparametrizing to $\ln a$ adds $\mathcal{O}((\ell H)^2)$. Thus $\delta \chi/\chi_{\text{BW}} = \mathcal{O}((\ell/L_{\text{curv}})^2) + \mathcal{O}((\ell H)^2)$.

PART II APPENDICES AND DATA

XIX. SAFE-WINDOW VOLUME FRACTION (SEMI-ANALYTIC)

Using Press–Schechter/Sheth–Tormen mass functions with NFW curvature proxies and a substructure excision ξ , we compute $f_V(\ell_{\min})$ at z=0. A representative schematic is shown in Fig. 2 (scripts provided). Sensitivity to ζ and ξ is mild over $\xi \in [0.2, 0.5]$.

XX. MICROLOCAL NOTES FOR INTERACTING HADAMARD QFTS

- a. Hadamard form. $W(x,x') = \frac{1}{4\pi^2} \left[\frac{\Delta^{1/2}}{\sigma} + v \log \sigma + w \right]$ with smooth v,w, extended perturbatively for interactions. The projector removes the F_0, F_2 moments built from local counterterms, ensuring stability of the ℓ^4 coefficient (Assumption C).
- b. OPE gap and log-falsifier. Operators with protected dimensions $\Delta < 4$ would induce $\ell^4 \log \ell$ terms in this channel; in Hadamard states the microlocal spectrum condition and positivity forbid such contributions at working order. Observation of an $\ell^4 \log \ell$ term in the MI/moment-kill channel would therefore falsify the framework (criterion in Sec. XII). Practically, beta_methods_v2.py can fit MI-projected residuals to a logarithmic shape to test for this contamination.

TABLE I. Representative f_V values at $z \simeq 0$ (semi-analytic).

$\ell_{\rm min}$ [pc	$\xi = 0.2$	$\xi = 0.3$	$\xi = 0.5$
1	0.95 ± 0.03	0.93 ± 0.04	0.90 ± 0.05
10	$0.88 {\pm} 0.05$	$0.85{\pm}0.05$	$0.80 {\pm} 0.06$
100	0.70 ± 0.08	$0.65 {\pm} 0.08$	$0.55 {\pm} 0.10$

FIG. 2. Semi-analytic $f_V(\ell_{\min})$ at $z \sim 0$ for two excision parameters ξ . Bands represent systematic uncertainties from λ_{\min} and ξ variations; the provided script can produce shaded bands. Scripts in Sec. XXII.

XXI. ENTROPIC MECHANISM DERIVATION (PRELIMINARY)

a. Preliminaries: modular objects. For normal faithful states ρ, σ on a local algebra $\mathcal{A}(B_\ell)$, the Araki relative entropy $S(\rho\|\sigma) = \text{Tr}(\rho \ln \rho - \rho \ln \sigma)$ coincides formally with $-\langle \log \Delta_\sigma \rangle_\rho$ in terms of the (relative) modular operator Δ_σ . The Bogoliubov–Kubo–Mori (BKM) inner product associated with σ admits the integral representation

$$\langle A, B \rangle_{\text{BKM},\sigma} = \int_0^1 dt \, \text{Tr} \left(\sigma^t A^{\dagger} \sigma^{1-t} B \right),$$

which is positive definite. In AQFT this extends to type III_1 algebras under standard assumptions; we use it here as a heuristic guide, consistent with our projected/KMS setting.

Lemma 2 (Projected BKM positivity). In the MI/moment-kill projected channel, the Bogoliubov-Kubo-Mori inner product induces a positive retarded susceptibility: $\iint \chi_{OK}^{\text{proj}} \delta K_{\text{sub}} \, \delta K_{\text{sub}} \, d^4x \, d^4x' \geq 0.$

Sketch. Identify the quadratic form with the BKM metric applied to $\delta K_{\rm sub}$; positivity of the BKM form implies the stated inequality.

Corollary 2 (Monotonicity of $\varepsilon(a)$). With KMS normalization and the reparametrization $s \to \ln a$ having a positive Jacobian $J(a) \propto H^{-1}$, the entropy-driven evolution obeys $d\varepsilon/d \ln a \ge 0$.

b. Step 1: Entropic framework. Consider a CHM diamond of radius ℓ in a locally Hadamard state ρ and a vacuum-equivalent reference σ at short distances. The MI/moment-kill projector isolates

$$\delta \langle K_{\text{sub}} \rangle = \beta \, \ell^4 \, \delta \varepsilon + \mathcal{O}(\ell^6) \qquad (\beta = 2\pi C_T I_{00}),$$

as proved in Sec. II.

c. Step 2: Second variation and BKM metric. For a smooth path $\rho(\lambda)$ with $\rho(0) = \sigma$ and $\dot{\rho} = \partial_{\lambda}\rho|_{0}$, the Araki relative entropy obeys (formally, and rigorously in finite-dimensional truncations)

$$\frac{d^2}{d\lambda^2}\Big|_0 S(\rho(\lambda)\|\sigma) = \langle \Omega_{\sigma}^{-1}(\dot{\rho}), \, \dot{\rho} \rangle_{\mathrm{BKM},\sigma} \geq 0,$$

where $\Omega_{\sigma}^{-1}(X) = \int_0^{\infty} (\sigma + s)^{-1} X (\sigma + s)^{-1} ds$. Equivalently, in the projected first-law channel generated by δK_{sub} ,

$$\frac{d^2}{d\lambda^2}\bigg|_{0} S = \iint \chi_{QK}^{\text{proj}}(x, x') \,\delta Q(x) \,\delta K_{\text{sub}}(x') \,d^4x \,d^4x' = \langle \delta K_{\text{sub}}, \delta K_{\text{sub}} \rangle_{\text{BKM},\sigma} \geq 0,$$

with $\chi_{QK}^{\text{proj}} \geq 0$ by KMS/FDT positivity (Sec. II).

d. Step 3: Modular response & projected monotonicity. Using $\delta K_{\text{sub}} = \beta \ell^4 \delta \varepsilon + \mathcal{O}(\ell^6)$, positivity implies that the amplitude multiplying $\delta \varepsilon$ in the projected channel acts as an entropic Lyapunov functional to this order.

e. Step 4: FRW reparametrization. Let s be modular time with local $\beta_{\text{KMS}} = 2\pi/\kappa$. Under the covariant averaging and reparametrization $s \mapsto \ln a$ (Sec. VI),

$$\frac{dS}{d\ln a} = \frac{dS}{ds}\,\frac{ds}{d\ln a}, \qquad \frac{dS}{ds} \geq 0, \ \, \frac{ds}{d\ln a} \propto H^{-1} > 0,$$

so $dS/d \ln a \ge 0$ modulo the analyticity caveat of Sec. VI.

f. Step 5: $\varepsilon(a)$ law and growth. Identifying $\delta \ln M^2 = \beta \delta \varepsilon$ (Sec. V) and assuming locality of the averaged kernel, we posit

$$rac{darepsilon}{d\ln a} = \sigma(a)\,\mathcal{I}(a), \qquad \sigma(a), \mathcal{I}(a) \geq 0, \qquad \int arepsilon\,d\ln a = \Omega_{\Lambda},$$

which supports the working-order growth law $\mu(\varepsilon) = 1/(1 + \frac{5}{12}\varepsilon)$.

g. Caveat and outlook. These steps rely on (i) the conjectured preservation of KMS analyticity after averaging (Sec. VI), and (ii) the stability of Assumption C in interacting Hadamard QFTs. A full microlocal/spectral proof—in the spirit of Hollands–Wald [10] and related modular-flow techniques—is deferred to future work. Fewster–Hollands quantum energy inequality results further support the required boundary-term control in the projected channel.

XXII. DATA AND CODE AVAILABILITY

Reproducible single-file runners:

- beta_methods_v2.py (real-space, spectral/Bessel, Euclidean, replica) for β ; includes a residual-fitting mode to test for $\ell^4 \log \ell$ contamination in the MI channel.
- cosmology_runner.py (growth ODE; $\varepsilon(a)$ family with kernel $p \in [4, 6]$; environment gate F_g ; reproduces the S_8 and ladder *illustrations*; documents priors/systematics).
- referee_pipeline.py (FRW averaging module; $\Omega_{\Lambda} = \beta f c_{\text{geo}}$ cross-check; computes toy $a_0 = (5/12)\Omega_{\Lambda}^2 c H_0$; generates epsilon_evolution.png).
- fv_semi_analytic.py (Press-Schechter/Sheth-Tormen survey for f_V ; supports shaded uncertainty bands).
- gadget4_mu_eps_toy.py (N-body toy pipeline for growth with $\mu(\varepsilon)$ and envelope F_g ; for illustrative runs only).
- s8_hysteresis_run.py (BAO toy χ_q sweeps; generates bao_growth.png).

Typical outputs include epsilon_evolution.png (Sec. VIII) and bao_growth.png (Sec. IX) for the illustrative runs. Scripts are annotated with usage notes. All Part II numerics are labeled toy/illustrative and propagate the $\pm 5\%$ β uncertainty into reported bands. Full Gadget-4 outputs will be added post-simulation.

SYMBOL INDEX

Symbol	Meaning
$\overline{\ell}$	Diamond radius (working order scale)
$L_{ m curv}$	Local curvature length
$\beta = 2\pi C_T I_{00}$	Modular-response sensitivity (QFT coefficient)
C_T	Stress-tensor two-point normalization (our convention)
I_{00}	Projected ℓ^4 integral coefficient (App. XV)
$\varepsilon(a)$	Dimensionless state variable from modular response
$\mu(\varepsilon)$	Growth coupling, $1/(1+\frac{5}{12}\varepsilon)$
Σ	Lensing coupling (unity at working order)
$f c_{\rm geo}$	Geometric/foliation factor (App. XVI)
κ	Local boost surface gravity
β_{KMS}	KMS inverse temperature, $2\pi/\kappa$
$T_{ m KMS}$	Modular/KMS temperature, $\kappa/(2\pi)$
$S_{ m sub}$	Entanglement entropy variation in MI/moment-kill channel
$\delta Q_{\mathrm{boost,sub}}$	Boost-energy variation in MI-projected channel
s(a)	Modular entropy density proxy, $\sim \beta \varepsilon(a) \ell^{-3}$
χ_g	Geometric scalar, $\ell^2 \sqrt{C_{abcd}C^{abcd}}$
$F_g(\chi_g)$	Environment envelope
S_8	Growth amplitude observable
$\Omega_m(a)$	Matter fraction as a function of scale factor
Ω_{Λ}	Dark-energy density parameter

- [1] J. J. Bisognano and E. Wichmann, "On the Duality Condition for a Hermitian Scalar Field," J. Math. Phys. 16, 985 (1975); "On the Duality Condition for Quantum Fields," J. Math. Phys. 17, 303 (1976).
- [2] H. Casini, M. Huerta, and R. C. Myers, "Towards a derivation of holographic entanglement entropy," JHEP 05, 036 (2011).
- [3] H. Osborn and A. C. Petkou, "Implications of Conformal Invariance in Field Theories for General Dimensions," *Annals Phys.* **231**, 311–362 (1994).
- [4] E. Bellini and I. Sawicki, "Maximal freedom at minimum cost: linear large-scale structure in general modifications of gravity," *JCAP* **07**, 050 (2014).
- [5] L. Lombriser and A. Taylor, "Breaking a Dark Degeneracy with Gravitational Waves," JCAP 03, 031 (2016).
- [6] T. Jacobson, "Entanglement equilibrium and the Einstein equation," Phys. Rev. Lett. 116, 201101 (2016).
- [7] T. Faulkner, A. Lewkowycz, and J. Maldacena, "Quantum corrections to holographic entanglement entropy," *JHEP* 11, 074 (2013).
- [8] N. Lashkari, M. B. McDermott, and M. Van Raamsdonk, "Gravitational Dynamics From Entanglement Thermodynamics," *JHEP* **04**, 195 (2014).
- [9] H. Araki, "Relative Entropy of States of von Neumann Algebras," Publ. Res. Inst. Math. Sci. 11, 809-833 (1976).
- [10] S. Hollands and R. M. Wald, "Local Wick Polynomials and Time-Ordered-Products of Quantum Fields in Curved Spacetime," Commun. Math. Phys. 223, 289–326 (2001).
- [11] C. J. Fewster and S. Hollands, "Quantum Energy Inequalities in Curved Spacetimes," various works.
- [12] H. Casini and M. Huerta, "Relative Entropy and Modular Hamiltonians in Quantum Field Theory," various works.
- [13] H. Casini, D. A. Galante, and R. C. Myers, "Comments on Jacobson's 'Entanglement equilibrium and the Einstein equation'," *JHEP* 03, 194 (2016), arXiv:1601.00528.