A Hybrid 3DCNN and 3DC-LSTM Based Model for 4D Spatio-Temporal fMRI Data: An ABIDE Autism Classification Study

Binghao HE

12th Dec 2019

Abstract

This paper introduces an end-to-end algorithm to extract spatiotemporal features from the full 4-D data (3D space + 1D time)

- > End-to-end
- Spatio-temporal features
- > Full
- > 4-D data

Introduction

Functional Magnetic Resonance Imaging (fMRI)

- ➤ Captures the <u>temporal</u> dynamics of neural activity as function of <u>spatial</u> location in brain.
- Can be represented as <u>4D-Dimensional</u> (3D:space; 1D:time)
- > spatio-temporal patterns in fMRI manifests as behavior and clinical symptoms.

Introduction

Challenges in Pattern Extraction in fMRI

high dimensionality (~1 million)

Standard Approach

- Reduce the dimensionality of the data by either summarizing activation over time or space
- loss of information

3D CNN with 4 convolutional layer

MICCAI 2019 Journal Club SRIBD

- Reduce the spatial dimension
- Extract lower level spatial feature maps

Traditional LSTM

- Input: sequence of vectors
- -> Flatten spatial dimension
- Fully connected transformations
- -> Very large weight matrices

3D C-LSTM

Replaces the fully connected vectortransformations by convolutions

->

Model temporal information in a memory efficient way

Don't need to flatten the spatial dimensions

3D C-LSTM

Replaces the fully connected vectortransformations by convolutions

->

Model temporal information in a memory efficient way

Don't need to flatten the spatial dimensions

3D C-LSTM

The inputs X_1, \ldots, X_t , the cell states C_1, \ldots, C_t , the hidden states H_1, \ldots, H_t and the gates i_t, f_t, o_t of C-LSTM are all 4D tensors. Let * denote the convolution operator, and let \otimes denote the Hadamard product. The C-LSTM can be formulated as:

$$i_{t} = \sigma(W_{xi} * X_{t} + W_{hi} * H_{t-1} + b_{i})$$

$$f_{t} = \sigma(W_{xf} * X_{t} + W_{hf} * H_{t-1} + b_{f})$$

$$o_{t} = \sigma(W_{xo} * X_{t} + W_{ho} * H_{t-1} + b_{o})$$

$$C_{t} = f_{t} \otimes C_{t-1} + i_{t} \tanh(W_{xc} * X_{t} + W_{hc} * H_{t-1} + b_{c})$$

$$H_{t} = o_{t} \otimes \tanh(C_{t})$$

3D CNN

3D Spatio-temporal feature maps still have large spatial size

-> Dimensionality reduction is needed

Learn higher level spatio-temporal features

Model 3DCNN-CLSTM -> 3DCNN-1D-Conv [Alternative]

Experiment Results

Available ABIDE dataset is used to evaluate the proposed pipeline.

Autism Spectrum Disorder (ASD) classification

- Single site experiments: NYU and UM sites from ABIDE-I
 (184 and 110 subjects repsectively)
- Multi-site experiments: ABIDE-I with 19 sites and 1100 subjects

Experiment Results

Data	Model	Accuracy	F1-score
NYU	AE_MLP [8]	0.64 ± 0.1	0.67
	SVM [5]	0.6 ± 0.13	0.59
	1D_Conv [7]	0.64 ± 0.11	0.62
	$CNN3D_TC^*$ [3]	0.57	0.61
	$CNN3D_MS^*$ [3]	0.60	0.65
	convGRU-CNN3D* [3]	0.67	0.71
	CNN4D* [3]	0.60	0.68
	3DCNN_1D (ours)	0.59 ± 0.07	0.58
	3DCNN_C-LSTM (ours)	$\boldsymbol{0.77 \pm 0.05}$	0.78
UM	AE_MLP [8]	0.56 ± 0.11	0.59
	SVM [5]	0.54 ± 0.11	0.56
	1D_Conv [7]	0.63 ± 0.1	0.62
	3DCNN_1D (ours)	0.66 ± 0.09	0.58
	3DCNN_C-LSTM (ours)	$\textbf{0.71} \pm \textbf{0.06}$	0.70
ABIDE-I	AE_MLP [8]	0.63 ± 0.02	0.64
	SVM [5]	0.58 ± 0.04	0.6
	1D_Conv [7]	0.64 ± 0.06	0.64
	3DCNN_1D (ours)	0.54 ± 0.02	0.50
	3DCNN_C-LSTM (ours)	0.58 ± 0.03	0.53

^{*}Results as reported by Bengs et al. [3] on NYU data.

Conclusion

This paper introduces an end-to-end algorithm to extract spatiotemporal features from the full 4-D data (3D space + 1D time)

- > End-to-end
- Spatio-temporal features
- > Full
- > 4-D data

Advanced Multi-objective Design Analysis to Identify Ideal Stent Design

Binghao HE

12th Dec 2019

Binghao He

Abstract

This paper provides a <u>methodology</u> for <u>multi-objective</u> design analysis for ideal stent design. With this methodology, <u>"trade-off" curves</u> between different objectives can be constructed.

Introduction

Coronary Stent (冠状动脉支架)

- → treating diseased coronary arteries(冠状动脉)
 - > Still high failure (2%-8%)
 - ➤ Restenosis (再狭窄) and stent thrombosis (支架血栓)

Stent → blood flow disruption (hemodynamic (血液动力学) change)

<u>Several</u> hemodynamic measures $\leftarrow \rightarrow$ restenosis and thrombosis

Goal:

> minimize these adverse hemodynamic conditions (multi-objective)

Introduction

Limitations of Previous Studies

- Consider only 3-4 design variables
- Crucial variables are left out due to difficulty of constraining them such that designs remain physically feasible
- Use Newtonian model for blood flow (less accuracy compared to non-Newtonian)
- ➤ Conflicting conclusion (thicker stent → better or worse?)
- ➤ Pant et al. analyzed 3 design variables and 6 objectives, objectives too simple and utilized a Newtonian fluid model

Method: objectives selection

Some primary hemodynamic objective:

- Minimizing areas with low Wall Shear Stress (low WSS: <0.5Pa)</p>
 - → Atherosclerotic plague (动脉粥样硬化病) formation
- Minimizing areas with low Time Averaged WSS (low TAWSS: <0.5Pa)</p>
 - → Similar with low WSS

- Minimizing areas with <u>high WSS</u> (high WSS: >2.5Pa)
 - → Adverse vessel remodeling

Method: variables selection

Stent Geometry (Primary determinant of hemodynamic changes)

- > Struct width (60~120 μm)
- \triangleright Struct thickness (60~120 μm)
- Struct angle (25°~50°)
- \triangleright Cell height (CH, distance between strut rings) (0.86 $^{\sim}$ 2 mm)
- Struct alignment (0°, 180°)
- Connector type (straight, spline, semicircular)
- * Parameterized in a CAD model to automatically generate new stent design

Method: variables selection

Fig. 1. Design variables used for this study.

Method: variables selection

Fig. 2. Connector arrangements (a) one connector per strut ring, alternating location between rings; (b) two connectors per strut placed 180° apart, alternating between rings; (c) Alternating 1-2-1 number of connectors per strut ring.

Method: Computational Modeling (?)

Boundary Conditions

Conditions for blood flow

Mesh Generation

ANSYS 19.1 (有限元分析软件) is used to generate a patch-conforming unstructured tetrahedral mesh

Simulation

ABSYS CFX 19.1 is used to solve the transient simulation.

Method: Multi-objective Design Optimization

Pareto Trade-off Curve

- Boundary formed by plotting the non-dominated solutions found
- ➤ Can be used to find the <u>optimal design criteria</u> depending on the desired trade-offs between the multiple objective functions

Method: Multi-objective Design Optimization

Finding Pareto Trade-off Curve

Create a single objective function incorporating all objective functions considered [x]

Difficult to account for non-convex objective and non-continuous variables

Response Surface Model (RSM) [\(\frac{1}{2} \)]

Method: Multi-objective Design Optimization

Finding Pareto Trade-off Curve

Response Surface Models (RSM) [\(\)]

Used to model the relationship between input space (variables) and output space (objectives), acts as an estimator of the real response

After construction of RSMs for variables being studied, <u>new data points</u> are generated and their <u>performance is tested</u> to refine the predictions of the model.

- > Gaussian process regression: a commonly used RSM
- Non-dominated genetic sorting algorithm (NGSA II): multiple objective RSM optimization.
- Expected hypervolume improvement (EHVI): another multiple objective RSM optimization.

Experiments Results

An optimal stent design can be picked based on **the importance of each objective** and the need to **balance** these adverse flow conditions.

Trying to <u>optimize a single objective</u> often results in <u>large increase in other</u> objective functions. So, pick stent solutions from the central regions.

6

Conclusion

This study provide an effective methodology to investigate influence of a large number of design variables on hemodynamic measures.

This study gives a way for more "smart" design for stent.

This study has a potential to result in novel stent designs which take flow disruption caused by the stent and its potential adverse effects into acount