Arbitrary products

2016-03-06 09:00 -0500

Products

Definition (Arbitrary Cartesian product as set)

Let X_{α} be a topological space for each $\alpha \in I$. The *Cartesian* product of the sets X_{α} is denoted as:

$$\prod_{\alpha\in I}X_{\alpha}$$

and consists of all maps $f: I \to \bigcup_{\alpha} X_{\alpha}$ such that $f(\alpha) \in X_{\alpha}$. If $f(\alpha) = x_{\alpha}$, we denote f as $(x_{\alpha})_{\alpha}$.

Definition (Projections)

For each $\alpha_0 \in I$, there is a projection map

$$p_{\alpha_0}: \prod_{\alpha \in I} X_{\alpha} \to X_{\alpha_0},$$

given by
$$p_{\alpha_0}((x_{\alpha})_{\alpha}) = x_{\alpha_0}$$
.

Box topology

Let X_{α} a topological space for each $\alpha \in I$, and X the product $\prod X_{\alpha}$.

Box topology

Let X_{α} a topological space for each $\alpha \in I$, and X the product $\prod X_{\alpha}$.

Definition (Box topology)

The collection of all subsets of X of the form

$$\prod_{\alpha\in I}U_{\alpha},$$

where U_{α} is open in X_{α} for all $\alpha \in I$, is a basis for a topology on X, called the *box topology*.

Product topology

Definition (Product topology)

The collection

$$S = \bigcup_{\alpha \in I} \{ p_{\alpha}^{-1}(U_{\alpha}) \mid U_{\alpha} \text{ open in } X_{\alpha} \}$$

is a subbasis for a topology on X, called the *product* topology.

Remark

The product topology has as basis the subsets of $X = \prod X_{\alpha}$ of the form

$$\prod_{\alpha\in I}U_{\alpha},$$

where U_{α} is open in X_{α} for all $\alpha \in I$, and $U_{\alpha} = X_{\alpha}$ for all but finitely many values of $\alpha \in I$

Continuous functions into the product

Theorem

Let $f: A \to \prod_{\alpha \in I} X_{\alpha}$ be given by:

$$f(a) = (f_{\alpha}(a))_{\alpha \in I},$$

where $f_{\alpha} \colon A \to X_{\alpha}$ for each α . Suppose that $\prod X_{\alpha}$ has the product topology. Then f is continuous if and only if each f_{α} is continuous.

Continuous functions into the product

Theorem

Let $f: A \to \prod_{\alpha \in I} X_{\alpha}$ be given by:

$$f(a) = (f_{\alpha}(a))_{\alpha \in I},$$

where $f_{\alpha} \colon A \to X_{\alpha}$ for each α . Suppose that $\prod X_{\alpha}$ has the product topology. Then f is continuous if and only if each f_{α} is continuous.

Remark

The last theorem is not true if we use the box topology on the Cartesian product

1. Let X_{α} be a topological space for each $\alpha \in I$, and $A_{\alpha} \subseteq X_{\alpha}$.

- 1. Let X_{α} be a topological space for each $\alpha \in I$, and $A_{\alpha} \subseteq X_{\alpha}$.
 - Show that if $A_{\alpha} \subseteq X_{\alpha}$ is closed, then $\prod A_{\alpha}$ is closed in $\prod X_{\alpha}$.

- 1. Let X_{α} be a topological space for each $\alpha \in I$, and $A_{\alpha} \subseteq X_{\alpha}$.
 - Show that if $A_{\alpha} \subseteq X_{\alpha}$ is closed, then $\prod A_{\alpha}$ is closed in $\prod X_{\alpha}$.
 - Show that

$$\overline{\prod A_{\alpha}} = \prod \overline{A_{\alpha}}.$$

- 1. Let X_{α} be a topological space for each $\alpha \in I$, and $A_{\alpha} \subseteq X_{\alpha}$.
 - Show that if $A_{\alpha} \subseteq X_{\alpha}$ is closed, then $\prod A_{\alpha}$ is closed in $\prod X_{\alpha}$.
 - Show that

$$\overline{\prod A_{\alpha}} = \prod \overline{A_{\alpha}}.$$

 Which of the last two are true if we use the box topology?

- 1. Let X_{α} be a topological space for each $\alpha \in I$, and $A_{\alpha} \subseteq X_{\alpha}$.
 - Show that if $A_{\alpha} \subseteq X_{\alpha}$ is closed, then $\prod A_{\alpha}$ is closed in $\prod X_{\alpha}$.
 - Show that

$$\overline{\prod A_{\alpha}} = \prod \overline{A_{\alpha}}.$$

- Which of the last two are true if we use the box topology?
- 2. We say that the sequence x_n of points in X converges to $x \in X$ if for any neighborhood U of x there is N such that $n \geq N$ implies $x_n \in U$. Show that a sequence x_n in $\prod_{\alpha \in I} X_{\alpha}$ converges to (x_{α}) if and only if $\pi_{\alpha}(x_n)$ converges to x_{α} for each $\alpha \in I$.