Practicing problems for the final exam for MTH 202, Spring 2018,

Provided by Dr. Pajoohesh

1.1 Four Ways to Represent a Function:

- # 1) The graph of a function f is given.
- (a) State the value of f(-1).
- (b) For what values of x is f(x) = 2?
- (c) State the domain and range of f.
- (d) On what interval is f increasing?
- (e) On what interval is f decreasing?

2.2 The limit of a function:

- # 1) Explain in your own words what is meant by the equation $\lim_{x\to 2} f(x) = 5$. Is it possible for this statement to be true and yet f(2) = 3? Explain.
- # 2) Explain what is meant to say that $\lim_{x\to 1^-} f(x) = 3$ and $\lim_{x\to 1^+} f(x) = 7$. In this situation is it possible that $\lim_{x\to 1} f(x)$ exists? Explain.

2.3 Calculating limits using limit laws:

2) The graph of f and g are given. Use them to evaluate each limit, if it exists. If the limit does not exist, explain why.

(a)
$$\lim_{x\to 2} [f(x) + g(x)]$$

(b)
$$\lim_{x\to 1} |f(x) + g(x)|$$

(c)
$$\lim_{x\to 0} [f(x)g(x)]$$

(d)
$$\lim_{x\to -1} \frac{f(x)}{g(x)}$$

(e)
$$\lim_{x\to 2} [x^3 f(x)]$$

(b)
$$\lim_{x\to 1} [f(x) + g(x)]$$
 (c) $\lim_{x\to 0} [f(x)g(x)]$
(e) $\lim_{x\to 2} [x^3f(x)]$ (f) $\lim_{x\to 1} \sqrt{3+f(x)}$

$$\lim_{x \to -4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

$$\lim_{x \to -1} \frac{x^2 - 4x}{x^2 - 3x - 4}$$

$$\lim_{x \to 7} \frac{\sqrt{x + 2} - 3}{x - 7}$$

$$\lim_{x\to 4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4}$$

$$(4+h)^2 - 16$$

$$\lim_{x\to 4} \frac{x^2 + 5x + 4}{x^2 + 3x - 4} \qquad \lim_{t\to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

$$\lim_{h\to 0} \frac{(4+h)^2 - 16}{h} \qquad \lim_{x\to -1} \frac{x^2 + 2x + 1}{x^4 - 1}$$

$$\lim_{x\to 7} \frac{\sqrt{x+2}-3}{x-7}$$

- # 25) Use the Squeeze Theorem to show that $\lim_{x\to 0} x^2 \cos(20\pi x) = 0$.
- # 27) If $4x 9 \le f(x) \le x^2 4x + 7$ for $x \ge 0$, find $\lim_{x\to 4} f(x)$.

2.4 Continuity:

26) Use continuity to evaluate $\lim_{x\to\pi}\sin(x+\sin x)$

2.5 Limits involving infinity:

4) For the function q below, state the following:

- (a) $\lim_{x\to\infty} g(x)$
- **(b)** $\lim_{x\to-\infty}g(x)$
- (c) $\lim_{x\to 3} g(x)$
- (d) $\lim_{x\to 0} g(x)$
- (e) $\lim_{x\to -2^+} g(x)$
- (f) The equation of the asymptotes.

6,9,10) Sketch the graph of a function that satisfies the following conditions:

6)
$$\lim_{x\to 0^+} f(x) = \infty$$
 $\lim_{x\to 0^-} f(x) = -\infty$ $\lim_{x\to \infty} f(x) = 1$ $\lim_{x\to \infty} f(x) = 1$

9)
$$f(0) = 3$$
 $\lim_{x \to 0^{-}} f(x) = 4$ $\lim_{x \to 0^{+}} f(x) = 2$ $\lim_{x \to -\infty} f(x) = -\infty$

$$\lim_{x\to 4^-} f(x) = -\infty \quad \lim_{x\to 4^+} f(x) = \infty \quad \lim_{x\to \infty} f(x) = 3$$

10)
$$\lim_{x\to 3} f(x) = -\infty$$
 $\lim_{x\to \infty} f(x) = 2$ $f(0) = 0$, f is even.

15, 17, 20, 22, 24, 31, 33) Find the limit.

15)
$$\lim_{x\to -3^{+}} \frac{x+2}{x+3}$$
 # 17) $\lim_{x\to 1} \frac{2-x}{(x-1)^{2}}$ # 20 $\lim_{x\to \infty} \frac{3x+5}{x-4}$ # 22 $\lim_{t\to -\infty} \frac{t^{2}+2}{t^{3}+t^{2}-1}$ # 24 $\lim_{x\to \infty} \frac{x+2}{\sqrt{9x^{2}+1}}$ # 31 $\lim_{x\to -\infty} (x^{4}+x^{5})$ # 33 $\lim_{x\to \infty} \frac{x+x^{3}+x^{5}}{1-x^{2}+x^{4}}$

22
$$\lim_{t\to-\infty} \frac{t^2+2}{t^3+t^2-1}$$
 # 24 $\lim_{x\to\infty} \frac{x+2}{\sqrt{9x^2+1}}$

31
$$\lim_{x\to-\infty} (x^4 + x^5)$$
 # 33 $\lim_{x\to\infty} \frac{x+x^3+x^5}{1-x^2+x^4}$

2.7 Derivatives:

7) If $f(x) = 3x^2 - 5x$, find f'(2) and use it to find an equation of the tangent line to the curve $y = 3x^2 - 5x$ at the point (2, 2).

13) Find
$$f'(a)$$
 for $f(x) = 3 - 2x + 4x^2$.

2.8 The Derivative as a Function:

19, 20, 23) Find the derivative of each of the following functions using the definition of derivative. State the domain of the function and the domain of its derivative.

19.
$$f(x) = \frac{1}{2}x - \frac{1}{3}$$
 # 20. $f(x) = 1.5x^2 - x + 3.7$ # 23. $g(x) = \sqrt{1 + 2x}$ 2.9 What Does f' Say about f?:

- # 11) The graph of f' of a function f is shown below.
- (a) On what interval f is increasing or decreasing?
- (b) At what values of x does f have a local maximum or minimum?
- (c) On what interval f is concave upward or downward?
- (c) State the x-coordinate(s) of the point(s) of inflection.
- (e) If it is known that f(0) = 0, sketch a possible graph of f.
- # 16) Sketch the graph of a function that satisfies all of the given conditions. f'(x) > 0 for all $x \neq 1$, vertical asymptote x = 1, f''(x) > 0 if x < 1 or x > 3, f''(x) < 0 if 1 < x < 3.
 - # 21) Suppose $f'(x) = xe^{-x^2}$.
 - (a) On what interval f is increasing? On what interval f is decreasing?
 - (b) Does f have a maximum of minimum value?
 - # 23) Let $f(x) = x^3 x$. Use the facts that $f'(x) = 3x^2 1$ and f''(x) = 6x to find:
 - (a) The intervals on which f is increasing or decreasing.
 - (b) The intervals on which f is concave upward or downward.
 - (c) The inflection points of f.

3.1 Derivatives and Polynomials and Exponential Functions:

3,4,6,11,14,19,21) Differentiate the function:

3)
$$f(x) = 186.5$$
 # 4) $f(x) = \sqrt{30}$ # 6) $f(t) = \frac{1}{2}t^6 - 3t^4 + t$ # 11) $G(x) = \sqrt{x} - 2e^x$ # 14) $R(x) = \frac{\sqrt{10}}{x^7}$ # 19) $y = \frac{x^4 + 4x + 3}{\sqrt{x}}$ # 21) $v = t^2 - \frac{1}{4\sqrt{t^3}}$

25) Find the equation of the tangent line and normal line to the curve $y = x^4 + e^x$ at the point (0, 2).

44) On what interval is the function $f(x) = x^3 - 4x^2 + 5x$ concave upward?

3.2 The Product and Quotient Rules:

4, 5,6,10, 18) Differentiate:

#4.
$$g(x) = \sqrt{x}e^x$$
 #5. $y = \frac{e^x}{x^2}$ #6. $y = \frac{e^x}{1+x}$ #10. $R(t) = (t + e^t)(3 - \sqrt{t})$ #18. $f(x) = \frac{1 - xe^x}{x + e^x}$

3.3 Rules of Changes in the Natural and Social Sciences:

- # 1) A particle is moving according to a law of motion $s = f(t) = t^3 12t^2 + 36t$, where s is in meters and t in seconds.
 - (a) Find the velocity and acceleration as functions of t.
 - (b) When is the particle moving forward?
 - (c) When is the particle at rest?
 - (d) Find the acceleration after 5s.
 - (e) Find the total distance traveled and displacement during the first 8s.
 - (g) When is the particle speeding up? When is it slowing down?

3.4 Derivatives of Trigonometric Functions:

#1, 3,4,8,) Differentiate:

1
$$f(x) = \sin x + \frac{1}{2} \cot x$$
 # 4 $g(x) = \sqrt{x} \sin x$ # 8 $y = \frac{1 + \sin x}{x + \cos x}$

19-a Find an equation of the tangent line to the curve $y = x \cos x$ at $(\pi, -\pi)$.

3.5 The Chain Rule:

1.
$$y = \sin(4x)$$
 #3. $y = (1 - x^2)^{10}$ # 6 $y = \sin(e^x)$

7, 9,10,13,16,17,27,29) Find the derivative of the function:

7.
$$F(x) = \sqrt[4]{1 + 2x + x^3}$$
 # 9. $g(t) = \frac{1}{(t^4 + 1)^3}$ # 10. $f(t) = \sqrt[3]{1 + \tan t}$ # 13. $h(t) = t^3 - 3^t$ # 16. $y = e^{-5x} \cos(3x)$

17.
$$g(x) = (1+4x)^5(3+x-x^2)^8$$
 # 27. $y = 2^{\sin \pi x}$ # 29. $y = \cot^2(\sin \theta)$

35) Find an equation of the tangent line to the curve $y = (1+2x)^{10}$ at the point (0,1).

39-(a)) If
$$f(x) = x\sqrt{2-x^2}$$
, find $f'(x)$.

3.6 Implicit Differentiation:

3, 8, 11) Find dy/dx by implicit differentiation.

3.
$$x^3 + x^2y + 4y^2 = 6$$
 # 8. $1 + x = \sin(xy^2)$ # 11. $e^{\frac{x}{y}} = x - y$

8.
$$1 + x = sin(xy^2)$$

11.
$$e^{\frac{x}{y}} = x - y$$

15) Use implicit differentiation to find an equation of the tangent line to the curve $x^2 + xy + y^2 = 3$ at the point (1, 1).

29, 30, 31) Find the derivative of the function. Simplify where possible.

29.
$$y = \tan^{-1}(\sqrt{x})$$

30.
$$y = \sqrt{\tan^{-1}(x)}$$

31.
$$y = \sin^{-1}(2x+1)$$

3.7 Derivatives of Logarithmic Functions:

2,3,4,7,10,18) Differentiate the function:

#2
$$f(x) = \ln(x^2 + 1)$$

#3
$$f(\theta) = \ln(\cos \theta)$$

#4
$$f(x) = \cos(\ln x)$$

#7
$$f(x) = \log_2(1 - 3x)$$

#10
$$f(t) = \frac{1+\ln t}{1-\ln t}$$

#18
$$y = [\ln(1 + e^x)]$$

23) Find an equation of the tangent line to the curve $y = \ln(x^2 - 3)$ at the point (2,0).

27, 31) Use the logarithmic differentiation to find the derivative of the function.

27
$$y = (2x+1)^5(x^4-3)^6$$

$$#31 \ y = x^x$$

3.8 Linear approximations and derivatives:

5,6) Find the linearization L(x) of the function at a.

#5.
$$f(x) = x^4 + 3x^2$$
, $a = -1$

#6.
$$f(x) = \ln x, a = 1$$

9) Find the linear approximation of the function $f(x) = \sqrt{1-x}$ at a=0 and use it to approximate the numbers $\sqrt{0.9}$ and $\sqrt{0.99}$.

17) Use a linear approximation to estimate $\#17.(8.06)^{\frac{2}{3}}$

4.1 Related Rates:

- # 1) If V is the volume of a cube with edge length x and the cube expands as time passes, find dV/dt in terms of dx/dt.
- # 3) Each side of a square is increasing at a rate of 6cm/s. At what rate is the area of the square increasing when the area of the square is $16cm^2$.

5) If
$$y = x^3 + 2x$$
 and $dx/dt = 5$, find dy/dt when $x = 2$.

9) If a snowball melts so that its surface area decreases at a rate of $1cm^2/min$, find the rate at which the diameter decreases when the diameter is 10cm.

4.2 Maximum and Minimum Values:

8) Sketch the graph of a function f that is continuous on [1, 5] such that f has absolute minimum at 1, absolute maximum at 5, local maximum at 2 and local minimum at 4.

12-(b)) Sketch the graph of a function on [-1,2] that has a local maximum but no absolute maximum.

13) (a) Sketch the graph of a function on [-1,2] that has an absolute maximum but no absolute minimum.

(b) Sketch the graph of a function on [-1, 2] that is discontinuous but has both an absolute maximum and an absolute minimum.

23,24,29,32,35) Find the critical numbers of the following functions.

23.
$$f(x) = 5x^2 + 4x$$

23.
$$f(x) = 5x^2 + 4x$$
 24. $f(x) = x^3 + x^2 - x$ **29.** $g(y) = \frac{y-1}{y^2 - y + 1}$

29.
$$g(y) = \frac{y-1}{y^2-y+1}$$

32.
$$G(x) = \sqrt[3]{x^2 - x}$$
 35. $f(x) = x \ln x$

35.
$$f(x) = x \ln x$$

37,38,43,46,48) Find the absolute maximum and absolute minimum values of f on the **37.** $f(x) = 3x^2 - 12x + 5$, [0,3] **38** $f(x) = x^3 - 3x + 1$, [0,3]**43** $f(t) = t\sqrt{4-t^2}$, [-1,2] **46.** $f(x) = x-2\cos x$, $[-\pi,\pi]$ **48.** $f(x) = x-\ln x$, $[\frac{1}{2},2]$

4.3 Derivatives and the Shape of Curves:

#7,9,11) (a) Find the intervals on which is the function increasing or decreasing.

- (b) Find the local maximum and minimum values of the function.
- (c) Find the intervals of concavity and the inflection points.

7.
$$f(x) = x^3 - 12x + 1$$

7.
$$f(x) = x^3 - 12x + 1$$
 9. $f(x) = x - 2\sin x$, $0 < x < 3\pi$

11.
$$f(x) = xe^x$$
.

24, 26) (a) Find the intervals of increase or decrease.

- (b) Find the local maximum and minimum values.
- (c) Find the intervals of concavity and the inflection points.
- (d) Use the information from parts (a)-(c) to sketch the graph.

24.
$$B(x) = 3x^{2/3} - x$$

26.
$$f(x) = \ln(x^4 + 27)$$
.

30, 34, & more) (a) Find the vertical and horizontal asymptotes.

- (b) Find the intervals of increase or decrease.
- (c) Find the local maximum and minimum values.

- (d) Find the intervals of concavity and the inflection points.
- (e) Use the information from parts (a)-(d) to sketch the graph.

30.
$$f(x) = \frac{x^2}{(x-2)^2}$$
 34. $f(x) = \frac{e^x}{1+e^x}$
$$f(x) = \frac{x}{(x-1)^2}$$

$$f(x) = \frac{x^2+1}{x+2}$$

$$f(x) = \frac{x^2}{x^2-1}$$

$$f(x) = \frac{2x}{x^2-1}$$

4.5 Intermediate Forms and 1'Hospital's Rule:

Find the limit. Use l'Hospital's Rule where appropriate. If there is a more elementary method, consider using it. If l'Hospital's Rule doesn't apply, explain why.

(a)
$$\lim_{t\to 0} \frac{e^t - 1}{t^3}$$
 (b) $\lim_{x\to \infty} \frac{e^x}{x^3}$ (c) $\lim_{x\to 0^+} x^{x^2}$

4.6 Optimization Problems:

- # 2) Find two numbers whose difference is 100 and whose product is minimum.
- # 3) Find two positive numbers whose product is 100 and whose sum is minimum.
- # 6) Find the dimension of a rectangle with area 1000 cm^2 whose perimeter os as small as possible.
- # 9) If 1200 cm^2 of material is available to make a box with a square base and an open top, find the largest possible volume of the box.
- # 10) A box with a square base and open top must have a volume of $32,000 \text{ cm}^3$. Find the dimension of the box that minimize the amount of material used.

4.9 Antiderivatives:

2,5,7,9,10,11) Find the most general antiderivative of the function (check your answer by differentiation).

2.
$$1 - x^3 + 12x^5$$
 5. $f(x) = \sqrt[3]{x} + \frac{5}{x^6}$ 7. $f(u) = \frac{u^4 + 3\sqrt{u}}{u^2}$ 9. $g(\theta) = \cos \theta - 5\sin \theta$ 10. $f(x) = 3e^x + 7\sec^2 x$ 11. $f(x) = 2x + 5(1 - x^2)^{-1/2}$

16, 21, 24) Find f.

16.
$$f''(x) = 2 + x^3 + x^6$$
 21. $f'(t) = 2\cos t + \sec^2 t$, $-\pi/2 < t < \pi/2$, $f(\pi/3) = 4$ **24.** $f''(x) = 4 - 6x - 40x^3$, $f(0) = 2$, and $f'(0) = 1$

3) A particle moves with acceration function $a(t) = 5 + 4t - 2t^2$. Its initial velocity is v(0) = 3m/s and its initial displacement is s(0) = 10. Find its position after t seconds.

5.2 The Definite Integrals:

31) The graph of f is shown. Evaluate each integral by interpreting it in terms of areas.

(a)
$$\int_{0}^{2} f(x) dx$$

(b)
$$\int_{0}^{5} f(x) dx$$

(c)
$$\int_{5}^{7} f(x) dx$$

(a)
$$\int_0^2 f(x)dx$$
 (b) $\int_0^5 f(x)dx$ (c) $\int_5^7 f(x)dx$ (d) $\int_0^9 f(x)dx$

34, 37) Evaluate the integrals $\int_{-1}^{2} \sqrt{4-x^2} dx$ and $\int_{-1}^{2} |x| dx$ by interpreting it in terms of area.

39) Given that
$$\int_4^9 \sqrt{x} dx = \frac{38}{3}$$
, what is $\int_9^4 \sqrt{t} dt$?

40) Evaluate
$$\int_1^1 x^2 \cos x dx$$
.

5.3 Evaluating Definite Integrals:

2,4,8,14,23,24) Evaluate the integral.

(1)
$$\int_{-1}^{3} x^5 dx$$

(4)
$$\int_{-2}^{0} (u^5 - u^3 + u^2) du$$
 (8) $\int_{\pi}^{2\pi} \cos\theta d\theta$

(8)
$$\int_{\pi}^{2\pi} \cos \theta d\theta$$

(14)
$$\int_1^9 \frac{3x-2}{\sqrt{x}} dx$$

(23)
$$\int_{-1}^{1} e^{u+1} du$$

(14)
$$\int_{1}^{9} \frac{3x-2}{\sqrt{x}} dx$$
 (23) $\int_{-1}^{1} e^{u+1} du$ (24) $\int_{0}^{1} (1+x^{2})^{3} dx$

#29) What is wrong with the equation $\int_{-1}^{3} \frac{1}{x^2} dx = \frac{x^{-1}}{-1} \Big]_{-1}^{3} = -\frac{4}{3}$?

35) Evaluate the integral $\int_{-1}^{2} x^{3} dx$ and interpret it as a difference of areas. Illustrate with a sketch.

37) Verify by differentiation that the formula $\int \frac{x}{\sqrt{x^2+1}} dx = \sqrt{x^2+1} + C$ is correct.

#41) Find the general indefinite integral $\int (1-t)(2+t^2)dt$.

5.4 The Fundamental Theorem of Calculus:

7,8,10,12,14,15) Use Part 1 of The Fundamental Theorem of Calculus to find the derivative of the function.

(7)
$$g(x) = \int_0^x \sqrt{1 + 2t} dt$$

(8)
$$g(x) = \int_{1}^{x} \ln t dt$$

(10)
$$F(x) = \int_{x}^{10} \tan \theta d\theta$$

(7)
$$g(x) = \int_0^x \sqrt{1+2t} dt$$
 (8) $g(x) = \int_1^x \ln t dt$ (10) $F(x) = \int_x^{10} \tan \theta d\theta$ (12) $h(x) = \int_0^{x^2} \sqrt{1+r^3} dr$ (14) $y = \int_{e^x}^0 \sin^3 t dt$ (15) $g(x) = \int_{2x}^{3x} \frac{u^2-1}{u^2+1} du$

(14)
$$y = \int_{e^x}^0 \sin^3 t dt$$

(15)
$$g(x) = \int_{2x}^{3x} \frac{u^2 - 1}{u^2 + 1} du$$