Submodular Attribute Selection for Action Recognition in Video: Supplementary Material

Jinging Zheng

UMIACS, University of Maryland College Park, MD, USA zjngjng@umiacs.umd.edu

Rama Chellappa

UMIACS, University of Maryland College Park, MD, USA rama@umiacs.umd.edu

Zhuolin Jiang

Noah's Ark Lab Huawei Technologies zhuolin.jiang@huawei.com

P. Jonathon Phillips

National Institute of Standards and Technology
Gaithersburg, MD, USA

jonathon.phillips@nist.gov

1 Proof of Submodularity of Entropy Rate

Recall our definition of $\mathcal{H}(S)$:

$$\mathcal{H}(\mathcal{S}) = -\sum_{i} u_{i} \sum_{j} p_{i,j}(\mathcal{S}) log(p_{i,j}(\mathcal{S}))$$
(1)

where u_i is the stationary probability of v_i in the stationary distribution and $p_{i,j}(S)$ is the transition probability from v_i to v_j with respect to S. T

Proof. We prove the submodularity by showing

$$\mathcal{H}(\mathcal{S} \cup \{a_1\}) - \mathcal{H}(\mathcal{S}) \ge \mathcal{H}(\mathcal{S} \cup \{a_1, a_2\}) - \mathcal{H}(\mathcal{S} \cup \{a_2\}). \tag{2}$$

It is known that the transition probability with respect to S is given as follows:

$$p_{i,j}(\mathcal{S}) = \begin{cases} \frac{w_{i,j}}{w_i} = \frac{\sum_{d \in \mathcal{S}} A_{d,l}}{w_i} & \text{if } i \neq j \\ \frac{w_{i,i}}{w_i} = \frac{\sum_{d \in \mathcal{P} \setminus \mathcal{S}} A_{d,l}}{w_i} & \text{if } i = j \end{cases}$$
(3)

where $w_i = \sum_{m:e_{i,m} \in E} w_{i,m}$ is the sum of incident weights of the vertex v_i and $w_{i,i} = w_i - \sum_{j \neq i} w_{i,j}$, l is the index of the combination of pairwise classes (i,j) in \mathcal{U} . Without loss of generality, we assume that after the addition of attribute a_n into \mathcal{S} , the transition probability becomes

$$p_{i,j}(\mathcal{S} \cup \{a_1\}) = \begin{cases} \frac{w_{i,j}}{w_i} + \frac{A_{n,l}}{w_i} & \text{if } i \neq j \\ \frac{w_{i,i}}{w_i} - \frac{\sum_{j \neq i} A_{n,l}}{w_i} & \text{if } i = j. \end{cases}$$
(4)

For simplicity of notation, we let $p_{i,j}(\mathcal{S})=p_{i,j}$ and $p_{i,j}(\mathcal{S}\cup\{a_n\})=p_{i,j}+\Delta_{i,j}^n, n=1,2$, where $\Delta_{i,j}^n$ is symmetric,i.e. $\Delta_{i,j}^n=\Delta_{j,i}^n$. We note that $\Delta_{i,j\neq i}^n\geq 0$ and $\Delta_{i,i}^n=-\sum_{j\neq i}\Delta_{i,j}^n\leq 0$. $\Delta_{i,j}^n=0$ means that the addition of a_n doesn't increase the edge weight $e_{i,j}$ while $\Delta_{i,j}^n>0$ means that the addition of a_n increase $w_{i,j}$. Similarly, we let $p_{i,j}(\mathcal{S}\cup\{a_1,a_2\})=p_{i,j}+\Delta_{i,j}^1+\Delta_{i,j}^2$.

$$\mathcal{H}(\mathcal{S} \cup \{a_1\}) - \mathcal{H}(\mathcal{S}) \tag{5}$$

$$= -\sum_{i} u_{i} \sum_{j} (p_{i,j} + \Delta_{i,j}) \log((p_{i,j} + \Delta_{i,j}) + \sum_{i} u_{i} \sum_{j} p_{i,j} \log p_{i,j}$$
(6)

$$= -\sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j})}{w_{0}} \log(p_{i,j} + \Delta_{i,j}) - \sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j})}{w_{0}} \log \frac{w_{i}}{w_{0}}$$
(7)

$$+\sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log\frac{w_{i}}{w_{0}} + \sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log p_{i,j}$$
(8)

$$= -\sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j})}{w_{0}} \log \frac{w_{i}(p_{i,j} + \Delta_{i,j})}{w_{0}} + \sum_{i} \sum_{j} \frac{w_{i}p_{i,j}}{w_{0}} \log \frac{w_{i}p_{i,j}}{w_{0}}$$
(9)

$$= -\sum_{i} \sum_{j} \frac{w_{i} p_{i,j}}{w_{0}} \log \frac{w_{i} (p_{i,j} + \Delta_{i,j})}{w_{0}} + \sum_{i} \sum_{j} \frac{w_{i} p_{i,j}}{w_{0}} \log \frac{w_{i} p_{i,j}}{w_{0}} - \sum_{i} \sum_{j} \frac{w_{i} \Delta_{i,j}}{w_{0}} \log \frac{w_{i} (p_{i,j} + \Delta_{i,j})}{w_{0}}$$

$$(10)$$

Now we prove the first two terms and the las term are larger than zeros respectively.

$$-\sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log\frac{w_{i}(p_{i,j}+\Delta_{i,j})}{w_{0}} + \sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log\frac{w_{i}p_{i,j}}{w_{0}}$$
(11)

$$= \sum_{i} \sum_{j} \frac{w_{i} p_{i,j}}{w_{0}} \log \frac{\frac{w_{i} p_{i,j}}{w_{0}}}{\frac{w_{i} (p_{i,j} + \Delta_{i,j})}{w_{0}}}$$
(12)

$$\geq \sum_{i} \sum_{j} \frac{w_{i} p_{i,j}}{w_{0}} \log \frac{\sum_{i} \sum_{j} \frac{w_{i} p_{i,j}}{w_{0}}}{\sum_{i} \sum_{j} \frac{w_{i} (p_{i,j} + \Delta_{i,j})}{w_{0}}}$$
(13)

$$= \sum_{i} \sum_{j} \frac{w_{i} p_{i,j}}{w_{0}} \log 1 = 0 \tag{14}$$

by the definition of transition probability $\sum_j (p_{i,j} + \Delta_{i,j}) = \sum_j p_{i,j} = 1$ and the *Log-sum inequality* stated as follows.

Proposition 1.1. (Log-sum inequality) For non-negative numbers $a_1, a_2, ..., a_n$ and $b_1, b_2, ..., b_n$

$$\sum_{i=1}^{n} a_i \log \frac{a_i}{b_i} \ge \left(\sum_{i=1}^{n} a_i\right) \log \frac{\sum_{i=1}^{n} a_i}{sum_{n=1}^{n} b_i}$$
(15)

with equality if and only if $\frac{a_i}{b_i} = constant$.

$$-\sum_{i}\sum_{j}\frac{w_{i}\Delta_{i,j}}{w_{0}}\log\frac{w_{i}(p_{i,j}+\Delta_{i,j})}{w_{0}}$$
(16)

$$= -\sum_{i} \sum_{j \neq i} \frac{w_{i} \Delta_{i,j}}{w_{0}} \log \frac{w_{i} (p_{i,j} + \Delta_{i,j})}{w_{0}} - \sum_{i} \frac{w_{i} \Delta_{i,i}}{w_{0}} \log \frac{w_{i} (p_{i,i} + \Delta_{i,i})}{w_{0}}$$
(17)

$$= -\sum_{i} \sum_{j \neq i} \frac{w_{i} \Delta_{i,j}}{w_{0}} \log \frac{w_{i} (p_{i,j} + \Delta_{i,j})}{w_{0}} + \sum_{i} \sum_{j \neq i} \frac{w_{i} \Delta_{i,j}}{w_{0}} \log \frac{w_{i} (p_{i,i} + \Delta_{i,i})}{w_{0}}$$
(18)

$$= \sum_{i} \sum_{j \neq i} \frac{w_{i} \Delta_{i,j}}{w_{0}} \log \frac{p_{i,i} + \Delta_{i,i}}{p_{i,j} + \Delta_{i,j}}$$
(19)

1.1 Submodularity

Proof. We prove the submodularity by showing

$$\mathcal{H}(\mathcal{S} \cup \{a_1\}) - \mathcal{H}(\mathcal{S}) \ge \mathcal{H}(\mathcal{S} \cup \{a_1, a_2\}) - \mathcal{H}(\mathcal{S} \cup \{a_2\}). \tag{20}$$

Similarly, for simplicity of notation, we let $p_{i,j}(\mathcal{S} \cup \{a_1\}) = p_{i,j} + \Delta^1_{i,j}$ and $p_{i,j}(\mathcal{S} \cup \{a_1, a_2\}) = p_{i,j} + \Delta^1_{i,j} + \Delta^2_{i,j}$.

$$\mathcal{H}(\mathcal{S} \cup \{a_1\}) - \mathcal{H}(\mathcal{S}) - \mathcal{H}(\mathcal{S} \cup \{a_1, a_2\}) + \mathcal{H}(\mathcal{S} \cup \{a_2\})$$
(21)

$$= -\sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} \log \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} + \sum_{i} \sum_{j} \frac{w_{i}p_{i,j}}{w_{0}} \log \frac{w_{i}p_{i,j}}{w_{0}}$$
(22)

$$+\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{1}+\Delta_{i,j}^{2})}{w_{0}}\log\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{1}+\Delta_{i,j}^{2})}{w_{0}}-\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}\log\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}$$
(23)

$$= -\sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} \log \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} + \sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} \log \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1} + \Delta_{i,j}^{2})}{w_{0}}$$
(24)

$$+\sum_{i}\sum_{j}\frac{w_{i}\Delta_{i,j}^{2}}{w_{0}}\log\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{1}+\Delta_{i,j}^{2})}{w_{0}}-\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}\log\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}$$
(25)

$$+\sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log\frac{w_{i}p_{i,j}}{w_{0}}\tag{26}$$

$$= -\sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} \log \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} + \sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} \log \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1} + \Delta_{i,j}^{2})}{w_{0}}$$
(27)

$$+\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}\log\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{1}+\Delta_{i,j}^{2})}{w_{0}}-\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}\log\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}$$
(28)

$$+\sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log\frac{w_{i}p_{i,j}}{w_{0}} - \sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log\frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1} + \Delta_{i,j}^{2})}{w_{0}}$$
(29)

$$= \sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} \log \frac{\frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1} + \Delta_{i,j}^{2})}{w_{0}}}{\frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}}}$$
(30)

$$+\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}\log\frac{\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{1}+\Delta_{i,j}^{2})}{w_{0}}}{\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}}$$
(31)

$$+\sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log\frac{\frac{w_{i}p_{i,j}}{w_{0}}}{\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2}+\Delta_{i,j}^{2})}{w_{0}}}$$
(32)

$$\geq \sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} \log \frac{\sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1} + \Delta_{i,j}^{2})}{w_{0}}}{\sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}}}$$
(33)

$$+\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}\log\frac{\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2}+\Delta_{i,j}^{2})}{w_{0}}}{\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2})}{w_{0}}}$$
(34)

$$+\sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}\log\frac{\sum_{i}\sum_{j}\frac{w_{i}p_{i,j}}{w_{0}}}{\sum_{i}\sum_{j}\frac{w_{i}(p_{i,j}+\Delta_{i,j}^{2}+\Delta_{i,j}^{2})}{w_{0}}}$$
(35)

$$= \sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{1})}{w_{0}} \log 1 + \sum_{i} \sum_{j} \frac{w_{i}(p_{i,j} + \Delta_{i,j}^{2})}{w_{0}} \log 1 + \sum_{i} \sum_{j} \frac{w_{i}p_{i,j}}{w_{0}} \log 1$$
 (36)

$$=0. (37)$$

by the definition of the transition probability

$$\sum_{j} p_{i,j} = \sum_{j} (p_{i,j} + \Delta_{i,j}^{1}) = \sum_{j} (p_{i,j} + \Delta_{i,j}^{1} + \Delta_{i,j}^{2}) = 1$$
(38)

2 **Proof of Proposition 2**

The proof contains two parts. The first part proves Q(S) is monotonically increasing. In the second part, we show that Q(S) is submodular.

2.1 Proof of the monotonically increasing property

Proof. Let S be a subset of attributes and $a_1 \in \mathcal{P}$ be any attribute. We prove the monotonically increasing property

$$Q(S \cup \{a_1\}) - Q(S) \ge 0. \tag{39}$$

$$Q(S \cup \{a_1\}) - Q(S) = \sum_{u \in \mathcal{U}} \max_{d \in S \cup \{a_1\}} A_{d,l} - \sum_{u \in \mathcal{U}} \max_{d \in S} A_{d,l}$$

$$\tag{40}$$

$$= \sum_{u_l \in \mathcal{U}} [\max(\max_{d \in \mathcal{S}} A_{d,l}, A_{1,l}) - \max_{d \in \mathcal{S}} A_{d,l}] \ge 0$$
 (41)

Proof of the submodularity

Proof. We prove the submodularity by showing

$$Q(S \cup \{a_1\}) - Q(S) \ge Q(S \cup \{a_1, a_2\}) - Q(S \cup \{a_2\}). \tag{42}$$

$$Q(S \cup \{a_1\}) - Q(S) \ge Q(S \cup \{a_1, a_2\}) - Q(S \cup \{a_2\})$$

$$(43)$$

$$= \sum_{u_{l} \in \mathcal{U}} \left[\max(\max_{d \in \mathcal{S}} A_{d,l}, A_{1,l}) - \max_{d \in \mathcal{S}} A_{d,l} - \max(\max_{d \in \mathcal{S}} A_{d,l}, A_{1,l}, A_{2,l}) + \max(\max_{d \in \mathcal{S}} A_{d,l}, A_{2,l}) \right]. \tag{44}$$

Depending on which term from the three terms $\max_{d \in S} A_{d,l}$, $A_{1,l}$ and $A_{2,l}$ is largest, we consider three cases and prove that

$$Q_{l} = \max(\max_{d \in \mathcal{S}} A_{d,l}, A_{1,l}) - \max_{d \in \mathcal{S}} A_{d,l} - \max(\max_{d \in \mathcal{S}} A_{d,l}, A_{1,l}, A_{2,l}) + \max(\max_{d \in \mathcal{S}} A_{d,l}, A_{2,l}) \ge 0$$
(45)

for given $u_l \in \mathcal{U}$.

Case 1: Assume that $\max_{d \in S} A_{d,l}$ is the largest, i.e. $\max_{d \in S} A_{d,l} \geq A_{1,l}, \max_{d \in S} A_{d,l} \geq A_{2,l}$ then

$$Q_{l} = \max_{d \in S} A_{d,l} - \max_{d \in S} A_{d,l} - \max_{d \in S} A_{d,l} + \max_{d \in S} A_{d,l} = 0.$$
 (46)

Case 2: Assume that $A_{1,l}$ is the largest, i.e. $A_{1,l} \ge \max_{d \in \mathcal{S}} A_{d,l}, A_{1,l} \ge \max_{d \in \mathcal{S}}$, then

$$Q_{l} = A_{1,l} - \max_{d \in S} A_{d,l} - A_{1,l} + \max_{d \in S} A_{d,l}$$

$$\tag{47}$$

$$= \max(\max_{d \in S} A_{d,l}, A_{2,l}) - \max_{d \in S} A_{d,l} \ge 0.$$
 (48)

Case 3: Assume that $A_{2,l}$ is the largest, i.e. $A_{2,l} \ge \max_{d \in \mathcal{S}} A_{d,l}, A_{2,l} \ge \max_{d \in \mathcal{S}}$, then

$$Q_{l} = \max(\max_{d \in \mathcal{S}} A_{d,l}, A_{1,l}) - \max_{d \in \mathcal{S}} A_{d,l} - A_{2,l} + A_{2,l}$$

$$= \max(\max_{d \in \mathcal{S}} A_{d,l}, A_{1,l}) - \max_{d \in \mathcal{S}} A_{d,l} \ge 0.$$
(50)

$$= \max(\max_{d \in \mathcal{S}} A_{d,l}, A_{1,l}) - \max_{d \in \mathcal{S}} A_{d,l} \ge 0.$$

$$(50)$$