贪心算法

引入:对于大部分最优化问题,使用动态规划来求最优解有点浪费,可以使用更加高效、简单的算法——贪心算法。

贪心算法在每一步的选择中,都选择当时最佳的情况。它并不能保证得 到最优解,但是很多问题确实可以求得最优解。

Part 1活动选择问题

有n个活动的集合 $S=\{a1,a2,...,an\}$,这些活动使用同一个资源(如同一个教室),但它同时只能提供给一个活动,每个活动有一个**开始时间** si 和**结束时间** fi^* , 任务ai发生在半开区间 [*si,fi]。

i	1	2	3	4	5	6	7	8	9	10	11
s_i	1	3	0	5	3	5	6	8	8	2	12
f_i	4	5	6	7	9	9	10	11	12	14	16

1. 用动态规划方法

*c[i,j]*表示最优解的集合的大小。 则得到递归式: c[i,j]=c[i,k]+c[k,j]+1 如果不知道 sij 的最优解包含 ak,则:

$$c[i,j] = \begin{cases} 0 & \text{若 } S_{ij} = \emptyset \\ \max_{a_i \in S_i} \{c[i,k] + c[k,j] + 1\} & \text{若 } S_{ij} \neq \emptyset \end{cases}$$

2. 贪心算法

1. **最优子结构** 令*Sij表示在ai结束之后开始,且在aj开始之前结束的那些活动的集合,其最优解Aik已知包含活动ak*,则对其子问题*Sik*和*Skj*的最优解*Aik*和 *Akj*,有*Aij=Aik U{ak} UAkj*。

反证法: 若存在|*Aij*'|>|*Aij*|,即存在|*Aik*'|+|*Akj*'|+1>|*Aik*|+|*Akj*|+1,与*Aik*,*Akj* 为最优解相矛盾。

2. **贪心选择** 选择一个活动使得选出它后剩下的资源能被尽量多的其他任务所用。根据直觉,我们首选的活动应该是S中最早结束的活动。

伪代码

递归贪心算法

迭代贪心算法

Part 2 贪心算法原理

步骤:

- 1. 将最优化问题转换为这样的形式: 对其做出一些选择后, 只剩下一个子问题需要求解。
- 2. 证明做出贪心选择后原问题总是存在最优解,即贪心选择总是安全的。
- 3. 证明做出贪心选择后剩余的子问题满足性质: 其最优解与贪心选择组合即可得到原问题的最优解, 这样就得到了最优子结构。
- 1. **贪心选择性质** 可以通过做出局部最优解来构建全局最优解,而不用考虑子问题的解。

贪心算法进行选择时可能依赖之前做出的选择,但不依赖任何将来的选 择或是子问题的解。

2. 最优子结构 一个问题的最优解能够包含其子问题的最优解。

这个性质是能否应用动态规划和贪心算法的关键要素。

贪心算法和动态规划的微小差别

可以通过两个相似问题的比较来进行分辨。

1.0-1背包问题(动态规划)

只能对商品完整的拿取或留下。(金条)

2. 分数背包问题(贪心算法)

对商品可以只拿走一部分。(金砂)

其中第i个商品价值vi美元,重wi磅,背包最多容纳W磅重的商品。vi,wi都是整数。

Part3 赫夫曼编码

考虑二进制编码

- 1. 定长编码 每个字符的编码长度相同。
- 2. 变长编码 对高频字符赋予短码, 低频字符赋予长码。

使用**前缀码**(即没有如何码字是其他码字的前缀),可以保证达到最优数据压缩率,也不会使编码丧失一般性,使编码文件的开始部分无歧义。

对于一个文件,最优的编码方案总是一颗满二叉树。

构造赫夫曼编码

```
HUFFMAN(C)
n=|C|
Q=C
for i=1 to n-1
    allocate a new node z
    z.left=x=EXTRACT-MIN(Q)//寻找Q中频率最低的数作为左孩子
    z.right=y=EXTRACT-MIN(Q)
    z.freq=x.freq+y.freq
    INSERT(Q,z)
return EXTRACT-MIN(Q)
```


判断正确性

要证明赫夫曼编码是正确的,就要证明最优前缀码具有**贪心选择**和**最优子结构**性质。

证明贪心选择

引理: 给定一个字母表C,每个字符c的频率为c.freq,若x和y是C中频率最低的两个字符,则存在一个C的最优前缀码,其中x和y的码字长度相同,且只有最后一个二进制位不同。

$$egin{aligned} B(T) - B(T') &= \sum_{c \in C} c. \, \mathit{freq} \cdot d_T(c) - \sum_{c \in C} c. \, \mathit{freq} \cdot d_{T'}(c) \\ &= (a. \, \mathit{freq} - x. \, \mathit{freq}) (d_T(a) - d_T(x)) \\ &> 0 \end{aligned}$$

证明最优子结构

给定一个字母表 C,每个字符c的频率为c.frep*,若x和y是 C 中频率最低的两个字符,定义字符z且z.frep = x.frep + y.frep,定义字母表 C"=(C - $\{^*x,y\}$)U $\{z\}$,字母表 C 的任一最优前缀无关编码对应的一棵二叉树 T',将 T'中的字符z对应的叶结点修改为一个内部结点且两个孩子结点分别为字符x和y对应的叶结点,这样可以得到字母表 C 的某一最优前缀无关编码对应的一棵二叉树 T。

$$C'=(C-\{x,y\})\cup\{z\}$$
 $z.\,freq=x.\,freq+y.\,freq$ $d_T(x)=d_T(y)=d_{T'}(z)+1$ 证明: 由 $B(T)=\sum_{c\in C}c.\,freq\cdot d_T(c)$,可得 $B(T)=B(T')+x.\,freq+y.\,freq$ 。 $B(T')=\sum_{c\in C'}c.\,freq\cdot d_{T'}(c)$

Part4 离线缓存

缓存:容量比主存小,速度比主存快的**存储器**。 计算机通过把需要访问的数据的一部分储存在缓存中,可以减少数据的访问时间。缓存将数据有组织地存放在**缓存块**中,缓存块大小一般是32、64或128字节

主存:虚拟内存系统中,主内存可以被视为驻留在磁盘上的数据的缓存。这些主存块被称为页,页大小一般是4096字节。

当一个程序执行时,需要进行一系列的存储器请求。假设有*n*个访存请求,这些数据按照请求顺序分别在*b1,b2,...,bn*块中。事实上,这些请求不会完全不同,多个请求有可能需要访问同一个块。

当需要访问bi时,会出现以下三种情况:

情况一: **由于之前访问过bi, bi已经在缓存中, 当需要再次访问bi时, 可以**直接访问缓存, 称为**缓存命中**。 情况二: bi不在缓存中, 缓存未满, 当需要访问bi时, 直接将bi填充到空闲的缓存块。 情况三: bi不在缓存中, 缓存已满, 当需要访问bi时, 需要预先将某一个缓存块空出来, 然后将bi填充到空闲的缓存块。

情况二和情况三称为缓存未命中。情况二称为强制未命中。

一般情况下,由于计算机无法知道未来的请求,因此缓存是一个在线问题。 这里我们仅仅考虑缓存问题的离线版本,即已知完整的访存请求序列和缓存 块数量,我们的目标是最小化缓存未命中,最大化缓存命中。

我们采用称为**将来最久**的贪心策略求解离线缓存问题,即如果缓存已满,那么选择已在缓存中且访存序列中将来最久到达的块进行置换。

离线缓存的最优子结构

定义子问题 (C,i) ,缓存块集合为 C ,访存请求序列为 b_i,b_{i+1},\dots,b_n ,当前需要请求 b_i ,设可用的缓存块数量最多为 k , $|C|\leq k$ 。子问题 (C,i) 的最优解要求使得缓存未命中数最小。

设子问题 (C,i) 的最优解为 S ,请求 b_i 完成后缓存块集合为 C' ,子问题 (C',i+1) 的最优解为 S' 。

定义 $R_{C,i}$ 为子问题 (C,i) 请求 b_i 完成后可能的缓存块集合的集合,有:

• 情况一: $R_{C,i} = \{C\}$

• 情况二: $R_{C,i} = \{C \cup \{b_i\}\}$

• 情况三: $R_{C,i} = \{(C-x) \cup \{b_i\} : x \in C\}$

定义 miss(C,i) 为子问题 (C,i) 的最优解的缓存未命中数。递归式如下:

$$miss(C,i) = egin{cases} 0 & i = n \wedge b_n \in C \ 1 & i = n \wedge b_n
otin C, i + 1 \ miss(C,i+1) & i < n \wedge b_i
otin C, i + 1 \ 1 + \min\{miss(C',i+1):C' \in R_{C,i}\} & i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i \ otin C, i + i \ i < n \wedge b_i
otin C, i + i \ i < n \wedge b_i \ otin C, i + i \ i < n \wedge b_i \ otin C, i < n$$

离线缓存的贪心选择性质

考虑子问题 (C,i) ,缓存块集合为 C 有 k 个缓存块,即此时缓存已满,且出现缓存未命中。当前需要请求 b_i ,设 $z=b_m$ 为 C 中将来最久被请求的缓存块,(如果有缓存块将来不再被访问,优先考虑这样的缓存块成为 z ,所以可以增加虚缓存块,使得 $z=b_m=b_{n+1}$ 。)我们可以移除缓存块 z ,然后将增加缓存块 b_i ,如此操作可以得到子问题 (C,i) 的某一个最优解。

证明:设子问题 (C,i) 的最优解为 S , S 为增加缓存块 b_i 而移除缓存块 z 。如果增加缓存块 b_i 而移除缓存块 x ,设此最优解为 S' 。

定义 $C_{S,j}$ 为执行最优解 S 后且请求 b_j 前的缓存块集合,同理 $C_{S',j}$ 为执行最优解 S' 后且请求 b_j 前的缓存块集合。

下面将说明根据如下性质构造 S' 。

- 1. 对于 $j=i+1,\ldots,m$,令 $D_j=C_{S,j}\cap C_{S',j}$, $|D_j|\geq k-1$, $C_{S,j}$ 和 $C_{S',j}$ 最多有一个缓存块不同。若 $C_{S,j}$ 和 $C_{S',j}$ 不同,则 $C_{S,j}=D_j\cup\{z\}$ 且 $C_{S',j}=D_j\cup\{y\}$,其中 $y\neq z$ 。
- 2. 对于请求序列 b_i, \ldots, b_{m-1} 中每个请求,若 S 缓存命中,则 S' 也缓存命中。
- 3. 对于所有 j>m , $C_{S,j}$ 的缓存块集合与 $C_{S^{\prime},j}$ 的缓存块集合完全相同。
- 4. 对于请求序列 b_i,\ldots,b_{m-1} , S' 的缓存未命中数至多为 S 的缓存未命中数。

我们将用归纳法证明这些性质适用于每个请求.

- ・ 若 $C_{S,j}=C_{S',j}$ (此时 $|D_j|=k$),则对于请求 b_j , S 和 S' 做出的选择相同,故 $C_{S,j+1}=C_{S',j+1}$ 。
- ・ 若 $|D_j|=k-1$ 且 $b_j\in D_j$,则 $b_j\in C_{S,j}\wedge b_j\in C_{S',j}$,S 和 S' 均缓存命中,故 $C_{S,j+1}=C_{S,j}\wedge C_{S',j+1}=C_{S',j}$ 。
- 若 $|D_j|=k-1$ 且 $b_j\not\in D_j$,则 $C_{S,j}=D_j\cup\{z\}\wedge b_j\neq z$,S 缓存不命中。故此时需要移除缓存块 z 或者别的某一缓存块 $w\in D_j$ 。
 - 若移除缓存块 z ,则 $C_{S,j+1}=D_j\cup\{b_j\}$ 。根据 $b_j=y$ 还是 $b_j\neq y$,分成两种情况讨论:
 - ・ 若 $b_j=y$,则 S' 缓存命中,有 $C_{S',j+1}=C_{S',j}=D_j\cup\{b_j\}$ 。此时 $C_{S,j+1}=C_{S',j+1}$ 。
 - 若 $b_j \neq y$,则 S' 缓存未命中,此时需要移除缓存块 y ,有 $C_{S',j+1} = D_j \cup \{b_j\}$ 。此 时 $C_{S,j+1} = C_{S',j+1}$ 。
 - 若移除别的某一缓存块 $w\in D_j$,则 $C_{S,j+1}=(D_j-\{w\})\cup\{b_j,z\}$ 。根据 $b_j=y$ 还是 $b_j\neq y$,分成两种情况讨论:
 - ・ 若 $b_j=y$,则 S' 缓存命中,有 $C_{S',j+1}=C_{S',j}=D_j\cup\{b_j\}$ 。由于 $w\in D_j$ 且 w 未被 S' 移除,有 $w\in C_{S',j+1}$ 。又 $w\not\in D_{j+1}$ 且 $b_j\in D_{j+1}$,因此 $D_{j+1}=(D_j-\{w\})\cup\{b_j\}$ 。此时 $C_{S,j+1}=D_{j+1}\cup\{z\}$ 且 $C_{S',j+1}=D_{j+1}\cup\{w\}$,因为 $w\neq z$,所以当需要请求 b_{j+1} 时,性质1能够保持。(换句话说,w 替换了性质1中的 y 。)
 - ・ 若 $b_j \neq y$,则 S' 缓存未命中,此时需要移除缓存块 w ,有 $C_{S',j+1} = (D_j \{w\}) \cup \{b_j,y\}$ 。又 $w \notin D_{j+1} ext{ 且 } b_j \in D_{j+1}$,因此 $D_{j+1} = (D_j \{w\}) \cup \{b_j\}$ 。此时 $C_{S,j+1} = D_{j+1} \cup \{z\}$ 且 $C_{S',j+1} = D_{j+1} \cup \{y\}$ 。
 - 2. 在上述关于保持性质1的讨论中, S 只在前两种情况可能出现缓存命中, S'只有在缓存 S 命中的情况下才可能缓存命中。

3. 若 $C_{S,m}=C_{S',m}$,则对于请求 b_m , S 和 S' 做出的选择相同,故 $C_{S,m+1}=C_{S',m+1}$ 。若 $C_{S,m}\neq C_{S',m}$,则根据性质1,有 $C_{S,m}=D_m\cup\{z\}$ 且 $C_{S',m}=D_m\cup\{y\}$,此时 $y\neq z$ 。由于 $z=b_m$ 为 C 中将来最久被请求的缓存块,因此 S 缓存命中,有 $C_{S,m+1}=C_{S,m}=D_m\cup\{z\}$, S' 移除缓存块 y 并增加缓存块 z ,有 $C_{S',m+1}=D_m\cup\{z\}=C_{S,m+1}$ 。综上,无论 $C_{S,m}=C_{S',m}$ 还是 $C_{S,m}\neq C_{S',m}$,都有 $C_{S,m+1}=C_{S',m+1}$ 。从请求 b_{m+1} 开始, S 和 S' 同步,两者做出的选择完全相同。

4. 根据性质2,对于请求序列 b_i,\ldots,b_{m-1} 中每个请求,若 S 缓存命中,则 S' 也缓存命中。只剩下 $b_m=z$ 需要考虑,若对于请求 b_m , S 缓存未命中,则无论 S' 缓存命中还是缓存未命中, S' 的缓存未命中数至多为 S 的缓存未命中数。

若对于请求 b_m , S 缓存命中但 S' 缓存未命中,我们需要证明请求序列 b_{i+1},\ldots,b_{m-1} 中至 少有一个请求会导致 S 缓存未命中但 S' 缓存命中。我们采用反证法,假设请求序列 b_{i+1},\ldots,b_{m-1} 中没有请求会导致 S 缓存未命中但 S' 缓存命中。

对于某个 j>i ,有 $C_{S,j}=C_{S',j}$,由于 $b_m\in C_{S,m}\wedge b_m\not\in C_{S',m}$,因此 $C_{S,m}\not\in C_{S',m}$,所以 S 已经在请求序列 b_i,\ldots,b_{m-1} 中将缓存块 z 移除了,因为只有这样,才能有 $C_{S,m+1}=C_{S',m+1}$ 。对于某个 $y\not=z$,有 $C_{S,j}=D_j\cup\{z\}\wedge C_{S',j}=D_j\cup\{y\}$, S 移除了某个缓存块 $w\in D_j$ 。此外,由于这些请求中任何一个请求都不会导致 S 缓存未命中但 S' 缓存命中,因此 $b_j=y$ 永远不可能发生。即对于 b_{i+1},\ldots,b_{m-1} 中任何一个请求 b_j 都不会导致 $y\in C_{S',j}-C_{S,j}$ 。请求 b_j 完成后,有 $C_{S',j+1}=D_{j+1}\cup\{y\}$,请求前后两个缓存块集合的差集并没有发生变化。让我们回到请求 b_i ,有 $C_{S',i+1}=D_{i+1}\cup\{x\}$,由于此后直至 b_m 的请求序列都没有能够使得两个缓存块集合的差集并发生变化,因此有 $C_{S',j}=D_j\cup\{x\}$,其中 $j=i+1,\ldots,m$ 。

根据定义,请求 $z=b_m$ 在请求 x 之后,意味着 b_{i+1},\ldots,b_{m-1} 至少其中之一为 x ,但对于 $j=i+1,\ldots,m$,有 $x\in C_{S',j}\wedge x\not\in C_{S,j}$,所以其中至少有一次请求导致 S' 缓存未命中 但 S 缓存命中,与假设请求序列 b_{i+1},\ldots,b_{m-1} 中没有请求会导致 S 缓存未命中但 S' 缓存命中矛盾。所以请求序列 b_{i+1},\ldots,b_{m-1} 中至少有一个请求会导致 S 缓存未命中但 S' 缓存命中。所以 S' 的缓存未命中数至多为 S 的缓存未命中数。由于假设 S 为最优解, S' 为最优解。