## Опыт Франка-Герца

Козлов Александр Краснощёкова Дарья 14 ноября 2021 г.

## 1 Определение резонансного потенциала

Сняли анодно-сеточную характеристику при задерживающем напряжении, при котором видно два максимума анодно-сеточной характеристики наилучшим образом. Задерживающее напряжение было выбрано 12.1  $\pm$  0.1 В. Результаты измерений отображены на рисунке 1. Первые два локальных максимума обнаружены при ускоряющих потенциалах



Рис. 1: Анодно-сеточная характеристика при задерживающем напряжении 12.1 В.  $\varphi_1=24.0\pm0.5~{\rm B}~{\rm i}~\varphi_1=48.0\pm0.5~{\rm B}.~{\rm H}{\rm 3}~{\rm наших}~{\rm измерений}~{\rm оказалось},~{\rm что}~{\rm не}~{\rm важно}~{\rm каким}$ 

именно образом определять резонансное напряжение. Можно как через напряжение первого локального максимума ( $\varphi_1=24.0\pm0.5~\mathrm{B}$ ), так и через разность напряжений второго и первого локальных максимумов анодно–сеточной характеристики ( $\varphi_1-\varphi_2=24\pm1~\mathrm{B}$ ). Таким образом,  $V_\mathrm{pes}=24\pm0.5~\mathrm{B}$ . Отсюда находим разность энергий

$$E_1 - E_0 = eV_{\text{pes}} = 24.0 \pm 0.5 \text{ sB}.$$
 (1)

Стоит отметить, что резонансный потенцил гелия отличается от измеренного нами. В действительности он составляет 24 В.

## 2 Определение потенциала ионизации