Lista Semana 07

Questão 15: Sejam $f:A\to B,\ g:A\to B$ e $h:B\to C$ funções. Prove que se h é injetora e $h\circ g=h\circ f,$ então g=f.

Questão 18: Mostrar que toda função injetora (sobrejetora) de um conjunto finito em si mesmo é também sobrejetora (injetora).

Lista Semana 08

Questão 10: Seja $f:A\to B$ uma função e sejam $P\subseteq A$ e $X,Y\subseteq B$. Mostre que:

- e) $f(f^{-1}(X)) = X \cap \text{Im} f$ e conclua que se f é sobrejetora então $f(f^{-1}(X)) = X$.
- g) f é sobrejetora se, e somente se, $f^{-1}(T) \neq \emptyset$ para todo $T \subseteq B$.

Lista Semana 09

Questão 5: Prove que são anéis:

- b) O conjunto \mathbb{Q} com as operações $x \oplus y = x + y 1$ e $x \odot y = x + y xy$.
- c) O conjunto $\mathbb{Z} \times \mathbb{Z}$ com as operações:

$$(a,b) \oplus (c,d) = (a+c,b+d)$$
$$(a,b) \otimes (c,d) = (ac,ad+bc).$$

Quais destes anéis são comutativos? Quais têm unidade?

Questão 12: Quais dos conjuntos abaixo são subanéis de $M_2(\mathbb{R})$?

$$L_{1} = \left\{ \begin{pmatrix} a & 0 \\ b & 0 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$L_{2} = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

$$L_{3} = \left\{ \begin{pmatrix} a & 0 \\ 0 & b \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

$$L_{4} = \left\{ \begin{pmatrix} 0 & a \\ c & b \end{pmatrix} \mid a, b, c \in \mathbb{R} \right\}$$

$$L_{5} = \left\{ \begin{pmatrix} 0 & a \\ 0 & b^{2} + 1 \end{pmatrix} \mid a, b \in \mathbb{R} \right\}$$

Questão 10: Seja $f: \mathbb{C} \to M_2(\mathbb{R})$ dada por

$$f(a+bi) = \begin{bmatrix} a & -b \\ b & a \end{bmatrix}.$$

- (a) Mostre que f é um homomorfismo de anéis.
- (b) Esse homomorfismo é injetor?
- (c) É sobrejetor?

Questão 12: Seja $f:A\to B$ um homomorfismo de anéis. Mostre que:

- b) Se D é um subanel de B, então $f^{-1}(D)$ é um subanel de A.
- c) Se I é um ideal de A e f é sobrejetora, então f(I) é um ideal de B.
- d) Se J é um ideal de B, então $f^{-1}(J)$ é um ideal de A.

Questão 21: Seja $(A, +, \cdot)$ um anel comutativo.

- d) Sejam $J_1, J_2 \subset A$ ideiais tais que $J_1 \subset J_2$. Mostre que $J_1 \cup J_2$ é um ideal de A.
- e) Sejam I e J ideais de A. Mostre que

$$I + J = \{x + y \mid x \in I, y \in J\}$$

 \acute{e} um ideal de A.

Questão 23: Seja $(A, +, \cdot)$ um anel comutativo e com unidade. Mostre que se I é um ideal de A, então

$$\left(\frac{A}{I}, \oplus, \otimes\right)$$

é um anel comutativo e com unidade.