JEE ADVANCED

Suraj Kolluru EE24BTECH110033

I. Subjective Problems

- 1) Let 'd' be the perpendicular distance from the centre of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$ to the tangent drawn at a point **P** on the ellipse.If $\mathbf{F_1}$ and $\mathbf{F_2}$ are the two *foci* of the ellipse, then show that $(PF_1 PF_2)^2 = 4a^2(1 \frac{b^2}{d^2})$. (1995 5marks)
- 2) Points **A,B** and **C** lie on a parabola $y^2 = 4ax$. The tangents to the parabola at A,B and C taken in pairs, intersect at points **P,Q** and **R**. Determine the ratios of the areas of triangles ABC and PQR. (1996 3marks)
- 3) From a point **A** common tangents are drawn to circle $x^2 + y^2 = \frac{a^2}{2}$ and parabola $y^2 = 4ax$. Find the area of the quadrilateral formed by the common tangents, the chord of contact of circle and the chord of contact of parabola. (1996 2marks)
- 4) A tangent to the ellipse $x^2 + 4y^2 = 4$ meets the ellipse $x^2 + 2y^2 = 6$ at **P** and **Q**. Prove that the tangents at **P** and **Q** of the ellipse $x^2 + 2y^2 = 6$ are at right angles. (1997 5marks)
- 5) The angle between a pair of tangents drawn from a point **P** to the parabola $y^2 = 4ax$ is 45° . Show that the locus of point **P** is hyperbola. (1998 8marks)
- 6) Consider the family of Circles $x^2 + y^2 = r^2, 2 < r < 5$. If in the first quadrant, the common tangent to a circle of this family and the ellipse $4x^2 + 25y^2 = 100$ meets the co-ordinate axes at **A** and **B**, then find the equation of the locus of the mid-point of AB. (1999 10*marks*)
- 7) Find the co-ordinates of all the points **P** on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, for which the area of the triangle *PON* is maximum ,where **O** denotes origin and **N**,the foot of the perpendicular from O to the tangent P. (1999 10*marks*)
- 8) Let ABC be equilateral triangle inscribed in the circle $x^2 + y^2 = a^2$. Suppose perpendiculars from A,B,C to the major axis of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, (a > b) meets the ellipse respectively, at P,Q,R. so that P,Q,R lie on the same side of

- major axis as A,B,C respectively .Prove that the normals to the ellipse drawn at the points P,Q and R are concurrent. (2000 7marks)
- 9) Let C_1 and C_2 be respectively ,the parabolas $x^2 = y 1$ and $y^2 = x 1$.Let \mathbf{P} be any point on C_1 and \mathbf{q} be any point on C_2 .Let P_1 and Q_1 be the reflections of \mathbf{P} and \mathbf{Q} respectively with respect to the line y=x.Prove that P_1 lies on C_2 , Q_1 lies on C_1 and $PQ \ge \min(PP_1, QQ_1)$.Hence or otherwise determine points P_0 and Q_0 on the parabolas C_1 and C_2 respectively such that $P_0Q_0 \le PQ$ for all pairs of points (\mathbf{P}, \mathbf{Q}) with P on C_1 and Q on C_2 .
- 10) Let \mathbf{P} be a point on the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$, 0 < b < a. Let the line parallel to y-axis passing through P meet the circle $x^2 + y^2 = a^2$ at the point \mathbf{Q} such that \mathbf{P} and \mathbf{Q} are on the same side of x-axis. For two positive real numbers r and s, find the locus of the point \mathbf{R} on PQ such that PR: RQ=r:s as \mathbf{P} varies over the ellipse. (2001 4marks)
- 11) Prove that,in an ellipse,the perpendicular from a focus upon any tangent and the line joining the centre of the ellipse to the point of contact meet on the corresponding directrix.

 (2002 5marks)
- 12) Normals are drawn from the point **P** with slopes m_1, m_2, m_3 to the parabola $y^2 = 4x$. If locus of **P** with $m_1m_2 = \alpha$ is a part of parabola itself then find α . (2003 4*marks*)
- 13) Tangent is drawn to parabola $y^2 2y 4x + 5 = 0$ at a point P which cuts the directrix at the point Q.A point R is such that it divides QP externally in the ratio 1/2:1. Find the locus of point R. (2004 4marks)
- 14) Tangents are drawn from any point on hyperbola $\frac{x^2}{9} \frac{y^2}{4} = 1$ to the circle $x^2 + y^2 = 9$. Find the locus of mid-point of the chord of contact . (2005 4*marks*)
- 15) Find the equation of the common tangent in

1

 1^{st} quadrant to the circle $x^2 + y^2 = 16$ and the ellipse $\frac{x^2}{25} + \frac{y^2}{4} = 1$. Also find the length of the intercept of the tangent between the coordinate axes. (2005 – 4*marks*)