Iván Irving Rosas Domínguez

8 de febrero de 2024

- 1. Probar que la medida μ_0 , definida en el teorema de Daniell-Kolmogorov, es finita aditiva en los cilindros, i.e. en $\mathfrak C$ de acuerdo a la notación del curso.
- 2. En la propiedad de Markov para el caso de cadenas de Markov, completar el argumento de clases monótonas.
- 3. Probar que

$$\mathcal{F}_T = \{ A \in \mathcal{F} \mid A \cap \{ T = n \} \in \mathcal{F}_n \text{ para toda } n \in \mathbb{N} \}$$

es una σ -álgebra. Además, ver que $X_T \mathbb{1}_{\{T < \infty\}}$ es \mathcal{F}_T -medible.

- **4.** (Propiedad de Markov Fuerte) Sea T un tiempo de paro finito casi seguramente, i.e. \mathbb{P}_x ($T < \infty$) = 1. Entonces bajo el evento $\{X_T = y\}$, la cadena trasladada $X \circ \Theta_T$ es independiente de \mathcal{F}_T y tiene por ley \mathbb{P}_y .
- 5. (Cambio de tiempo) El objetivo de este ejercicio es el de realizar una transformación de cambio de tiempo a una cadena de Markov y ver que transforma a una cadena de Markov en otra cadena (con matriz de transición diferente).
 - 1. Caminata aleatoria (continua por la izquierda): Sean Π una medida de probabilidad en $\{-1,0,1,2,...\}$ y $(\xi_n)_{n\geq 1}$ una sucesión de v.a.i.i.d. con ley común Π . Para $x\in\mathbb{Z}$, vamos a denotar por \mathbb{P}_x a la ley de $S=(S_n,n\geq 0)$, donde

$$S_n = S_0 + \sum_{j=1}^n \xi_j$$
 $n \ge 1$, y $\mathbb{P}_x(S_0 = x) = 1$.

Además vamos a definir a $T_0 := \inf \{n \ge 0 \mid S_n = 0\}$. Probar que T_0 es un tiempo de paro.

2. Procesos de Galton-Watson: Sea γ una medida de probabilidad en $\{0, 1, ...\}$, la cual llamaremos ley de reproducción (ley del número de hijos de un individuo). Para $x \in \mathbb{N}$, vamos a denotar por \mathbb{Q}_x a la ley del proceso de Galton-Watson $Z = (Z_n, n \ge 0)$ que empieza con x individuos, donde

$$Z_0 = x,$$
 $\mathbb{Q}_x - c.s.,$ $Z_{n+1} = \sum_{j=1}^{Z_n} \alpha_{n,j},$

y $\alpha_{n,j}$ es el número de hijos del j-ésimo individuo de la generación n. Vamos a suponer que $\{\alpha_{n,j}, n \geq 0, j \geq 1\}$ son v.a.i.i.d. con ley común γ . Probar que Z es una cadena de Markov con matriz de transición

$$Q(x,y) = \begin{cases} 1 & \text{si } x = y = 0 \\ 0 & \text{si } x = 0 \neq y \\ \gamma^{*x}(y) & \text{en otro caso,} \end{cases}$$

donde γ^{*x} no es más que la convolución de γ , x-veces y representa la ley de $\alpha_{0,1} + ... + \alpha_{0,n}$.

- 3. Supongamos que x > 0. Vamos a definir de manera inductiva a $\tau_{n+1} := \tau_n + S_{\tau_n}$ con $\tau_0 = 0$. Verificar que τ_n es un tiempo de paro en la filtración natural de S, que $\tau_n \le T_0$ y que $\lim_{n\to\infty} \tau_n = T_0$.
- 4. Sea $Z_n := S_{\tau_n}$ y \mathbb{Q}_x la ley de $Z = (Z_n, n \ge 0)$ bajo \mathbb{P}_x . Verificar que \mathbb{Q}_x es la ley de un proceso de Galton-Watson y expresar a la ley de reproducción γ en términos de Π . Además verificar que la población total $\sum_{n=0}^{\infty} X_n$, bajo \mathbb{Q}_x , tiene la misma ley que T_0 bajo \mathbb{P}_x .
- **6.** Probar que el único conjunto \mathcal{F} -medible contenido en $\mathcal{C}\left([0,\infty),\mathbb{R}^d\right)$ es el conjunto vacío y deducir que $\mathcal{C}\left([0,\infty),\mathbb{R}^d\right)$ no es \mathcal{F} -medible.

1

- 7. Sean \widetilde{X} y X dos procesos continuos casi seguramente. Probar que si \widetilde{X} es una modificación de X, entonces \widetilde{X} y X son indistinguibles.
- 8. Probar que existe una única medida \mathbb{W} en $(\mathcal{C}([0,\infty),\mathbb{R}^d),\mathcal{B}(\mathcal{C}))$, donde $\mathcal{B}(\mathcal{C})$ es la σ -álgebra de Borel con la topología de los compactos-abiertos, tal que el proceso canónico $X=(X_t,t\geq 0)$ definido por

$$X_t(\omega) = \omega(t), \quad \text{donde } \omega \in \mathcal{C}\left([0, \infty), \mathbb{R}^d\right),$$

es un movimiento browniano d-dimensional en $(\mathcal{C}([0,\infty),\mathbb{R}^d),\mathcal{B}(\mathcal{C}),\mathbb{W}).$