AI & Robotics

Machine Learning

Goals

The junior-colleague

- can explain Machine Learning in their own words
- can situate Machine Learning in the broader context of AI
- can explain the difference between traditional programming and Machine Learning
- can explain the importance of practical Machine Learning
- can describe a standard ML pipeline

Machine Learning: Definitions

"A branch of artificial intelligence in which a computer generates rules underlying or based on raw data that has been fed into it"

"A computer program is said to learn from **experience E** with respect to some class of **tasks T** and **performance measure P**,

if its performance at tasks in T, as measured by P, improves with experience E''

Data Program Computation Results

Data Program Computation Results

Theory vs Practice

- Historically:
 - Theoretical concepts
 - Formal proofs
- Nowadays:
 - More practical, empirical study
 - New insights

Machine Learning

A Standard Machine Learning Pipeline

Machine Learning

- Labeled data
- Direct feedback
- Predict outcome/future

- No labels
- · No feedback
- · "Find hidden structure"

- Decision process
- Reward system
- Learn series of actions

