Approach

1. Data Understanding

a. Data Structure

Train data set contains 20800 rows, and 5 columns

Id: unique identifier **Title**: title of the article

Author: author of the article

Text: article

Label: 1 for fake news, 0 for real news

b. Missing Values

i. There were missing values in both test and train dataset in text columns

Imputed empty string "" to treat missing values.

c. Data Cleaning:

- i. Removing punctuations and digits and stopwords (from nltk) from text
- ii. Word tokenization and Lemmatizing nouns, to capture action words for feature engineering

d. Feature Engineering

- i. Quantifying the following hypothesis about fake news
 - 1. Polarizing words
 - 2. Vague and opinionated less citations
 - 3. Shorter due to lack of citations and supporting facts
- ii. Creating below variables
 - 1. Title polarity : polarity sentiment of title
 - 2. Text_polarity: polarity sentiment of text
 - 3. Ttl_words: count of total meaningful words in text
 - 4. Text_digit_cnt: count of numerical words in text eg: "1984", "67" etc

2. Exploratory Data Analysis

- a. Text Columns
 - i. Word Cloud words in text, author and title column for test and train
 - ii. Word Cloud of words in text, author and title column for fake and real news in train
 - 1. Fake news articles have more anonymous and vague named bloggers as authors and use more trending names

Fake news authors:

Real new authors:

b. Numeric Data Columns

- i. Title polarity was dropped, as it did not capture anything
- ii. The distribution and features of these values align with the hypothesis

```
In [96]: ## Analyzing new variables distribution w.r.t. to the label varaible
             print(pd.pivot_table(train, index = 'label', values = cols_num[1:],aggfunc = 'sum'))
print(pd.pivot_table(train, index = 'label', values = cols_num[1:],aggfunc = 'min'))
print(pd.pivot_table(train, index = 'label', values = cols_num[1:],aggfunc = 'max'))
                      text_digit_cnt text_polarity ttl_wrds
             label
             0
                                 108444
                                                 631.065967
                                                                   9522464
             1
                                   79922
                                                 589.091514
                                                                   6807367
                       text digit cnt
                                            text_polarity
                                                                 ttl wrds
             label
                                                        -0.45
             1
                                                        -1.00
                       text_digit_cnt
                                            text_polarity
                                                                 ttl_wrds
             label
             0
                                      235
                                                         0.65
                                                                     15349
                                                                     24879
             1
                                      479
                                                         1.00
                       text_digit_cnt
                                            text_polarity
                                                                    ttl_wrds
             label
                             10.440358
                                                    0.060755
             1
                               7,675214
                                                    0.056573
                                                                 653.737348
```

On average fake news articles have less data citations, range to extreme polarity, and are shorter than real news

Visualization of text sentiments with count of words and label

```
In [57]: ## text polarity and ttl wrds have small positive correlation, check their distribution
          plt.scatter(train.text_polarity,train.ttl_wrds ,c = train.label,label = 'label',alpha = 0.5)
          plt.legend()
Out[57]: <matplotlib.colorbar.Colorbar at 0x201d3299c40>
           25000
                                                 label
                                                           0.8
           20000
           15000
                                                           0.5
           10000
                                                           0.4
            5000
                                                           0.2
                         -0.5
                                           0.5
                                                   1.0
                 -1.0
```

3. Modelling

a. Data Preparation

- i. Text Columns
 - 1. Used TF-IDF vectorizer to extract features from text columns
 - 2. For title and text ignored the words appearing in less 5% of data
 - 3. For author, vectorized all data
- ii. Numerical Columns
 - 1. Min Max Scaler to scale the data
- iii. Fitted the tfidf vectorizer on entire (train + test) dataset

b. Model Selection

- i. Binary Classification problem, picked 4 models:
 - 1. Logistic Regression
 - 2. Random forest Classification

- 3. Stochastic Gradient Descent Classifier
- 4. Support Vector Classifier

c. Model Testing

- i. 5 fold cross validation score
- ii. Train and test split: 75:25
 - 1. Metrics: Precision, Recall, F1 Score
 - 2. Analysed ROC Curve

Model	Cross Validation	Metrics on 25% test
Stochastic Gradient Descent Classifier	[0.9875, 0.98846154, 0.9900641, 0.98173077, 0.98910256]	Confusion Matrix: [[2605 37] [30 2528]] Precision score: 0.9856 Recall score: 0.9883 F1 score: 0.9869
Logistic Regression	[0.98044872, 0.97980769, 0.98397436, 0.975, 0.98044872]	Confusion Matrix: [[2598 44] [49 2509]] Precision score: 0.9828 Recall score: 0.9808 F1 score: 0.9818
Random Forest Classifier	[0.94807692, 0.94871795, 0.94230769, 0.94775641, 0.94391026]	Confusion Matrix: [[2528 114] [164 2394]] Precision score: 0.9545 Recall score: 0.9359 F1 score: 0.9451
SVC	[0.98878205, 0.99166667, 0.99134615, 0.98589744, 0.99038462]	Confusion Matrix: [[2614 28] [24 2534]] Precision score: 0.9891 Recall score: 0.9906 F1 score: 0.9898

d. Conclusion

- i. ROC curve: SVC and SGD perform better
- ii. F1 Score: SVC and SGD perform better
- e. Final Predictions (tested on Kaggle, SVC and SGD performed better than other two models)

Submission and Description	Private Score	Public Score	Use for Final Score
SVC(random_state42).csv 3 minutes ago by Apurva S svc clf	0.99203	0.98589	
SGDClassifier(random_state42).csv 3 minutes ago by Apurva S sgd clf	0.98956	0.98141	
RandomForestClassifier(random_state42).csv 4 minutes ago by Apurva S random forest clf	0.95714	0.95000	
LogisticRegression(random_state42).csv 4 minutes ago by Apurva S Log CLf	0.98543	0.97628	