。确定目标函数和约束条件 $\max z = 72x_1 + 64x_2$ s. t. $x_1 + x_2 \le 50$ $12x_1 + 8x_2 \le 480$

 $3x_1 \leq 100$

。将不等式改为等式

。 求解方法:

Lingo 求解线性规划有不少现成的数学软件,比如用 LINGO 软件就可 以很方便地实现. 在 LINGO 下新建一个模型文件(即 LINGO 程序,一般以 "LG4"为后缀名),像书写模型(1)~(5)一样,直接输入:

> model: max = 72 * x1 + 64 * x2;[milk] x1 + x2 < 50;[time]12 * x1 + 8 * x2 < 480;[cpct] 3 * x1 < 100; end

注:LINGO 程序总是以"model:"开始,最后以"end"结束(也可以省略不 写);字母不区分大小写;每个语句都必须以分号";"结束(注意必须是英文的分 号). LINGO 中已规定所有决策变量均为非负,故(5)式不必输入;模型中符号 ≤、≥用"<="、">="形式输入,它们与"<"、">"等效.输入模型中第1行 为目标函数,[milk]、[time]、[cpct]是为了对各约束条件命名,便于从输出结果 中查找相应信息(也可以不对约束命名,此时 LINGO 会自动用数字按顺序对约 束条件命名).

Global optimal solution found.

Objective value:

3360.000

Total solver iterations	2		
Variable	Value	Reduce	d Cost
X1	20.00000	0.000000	
X2	30.00000		
Row	Slack or Su	rplus	Dual Price
1	3360.000		1.000000
MILK	0.000000		48.00000
TIME	0.000000		2.000000
CPCT	40.00000		0.000000

■ 影子价格

(2) 目标函数可以看作"效益",成为紧约束的"资源"一旦增加,"效益"必 然跟着增长. 输出第8~11 行 Dual Prices 给出这3种资源在最优解下"资源"增 加1个单位时"效益"的增量:原料[MILK]增加1个单位(1桶牛奶)时利润增长 48 元,劳动时间[TIME]增加1个单位(In)时利润增长2元,而增加非紧约束 CPCT] 甲类设备的能力显然不会使利润增长. 这里,"效益"的增量可以看作 "资源"的潜在价值,经济字上称为影子价格,即1桶牛奶的影子价格为48元, 1 h劳动的影子价格为 2 元,甲类设备的影子价格为 0.

读者可以用直接求解的办法验证上面的结论,即将输入文件中原料约束

2. 影子价格的作用

用来确定是否能够盈利

增加一桶牛奶可以盈利48元(即影子价格),假如购入牛奶价格少于48,则可盈利

3. Lingo用作敏感性分析

这种对目标函数系数变化的影响的讨论,通常称为对目标函数系数的敏感 性分析 LinGO 在缺省设置中不会给出这种敏感性分析结果,但可以通过修改 LINGO 选项得到. 具体作法是:选择"LINGO TOptions"来单,在弹出的选项卡中 选择"General Solver",然后找到选项"Dual Computations",在下拉框中选中 "Prices & Ranges",应用或保存设置.重新运行"LINGO | Solve",然后选择"LIN-GO | Ranges"菜单,则得到如下输出:

Ranges in which the basis is unchanged:

Objective Coefficient Ranges

	Current	Allowable	Allowable
Variable	Coefficient	Increase	Decrease
X1	72.00000	24.00000	8.000000
X2	64.00000	8.000000	16.00000
	Right	hand Side Range	es
Row	Current	Allowable	Allowable
	RHS	Increase	Decrease
MILK	50.00000	10.00000	6.666667
TIME	480.0000	53.33333	80.00000
CPCT	100.0000	INFINITY	40.00000

上面输出的第2~6行"Current Coefficient"(当前系数)对应的"Allowable Increase"和"Allowable Decrease"给出了最优解不变条件下目标函数系数的允许 变化范围:x, 的系数为(72-8,72+24),即(64,96);x, 的系数为(64-16,64+ 8),即(48,72).注意:x,系数的允许范围需要 x,系数 64 不变,反之亦然.

田沙人姓田尔克里的校附加岗町2) 艺冠工方 A 的基利福加到 30 元 则 需要注意的是:一般情况下 LINGO 给出的敏感性分析结果只是充分条件,

如上述"最多增加10桶牛奶"应理解为"增加10桶牛奶"一定是有利可图的,但 并不意味着"增加10桶以上的牛奶"一定不是有利可图的(对最大可增加的劳 动时间也应该类似地理解),只是此时无法通过敏感性分析直接得到结论,而需 要重新求解新的模型进行判断. 以后我们对此不再特别进行说明(同样,对目标 函数系数给出的敏感性分析结果也只是充分条件).