23/06/2024, 07:28 dotproduct

The general formula for the dot product of two vectors \mathbf{u} and \mathbf{v} is given by:

$$\mathbf{u} \cdot \mathbf{v} = \|\mathbf{u}\| \|\mathbf{v}\| \cos(\theta)$$

where $\|\mathbf{u}\|$ and $\|\mathbf{v}\|$ are the magnitudes (norms) of the vectors \mathbf{u} and \mathbf{v} , and θ is the angle between them.

Given that \mathbf{u} and \mathbf{v} are unit vectors, we have:

$$\|\mathbf{u}\| = 1$$
 and $\|\mathbf{v}\| = 1$

So for unit vectors, the formula simplifies to:

$$\mathbf{u} \cdot \mathbf{v} = 1 \cdot 1 \cdot \cos(\theta) \, \mathbf{u} \cdot \mathbf{v} = \cos(\theta)$$

Detailed Proof

Let $\mathbf{u}=(u_1,u_2)$ and $\mathbf{v}=(v_1,v_2)$ be two unit vectors. The dot product $\mathbf{u}\cdot\mathbf{v}$ is given by:

$$\mathbf{u} \cdot \mathbf{v} = u_1 v_1 + u_2 v_2$$

Since both \mathbf{u} and \mathbf{v} are unit vectors, their magnitudes are:

$$\|\mathbf{u}\| = \sqrt{u_1^2 + u_2^2} = 1 \|\mathbf{v}\| = \sqrt{v_1^2 + v_2^2} = 1$$

The cosine of the angle θ between the vectors \mathbf{u} and \mathbf{v} is given by:

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{\|\mathbf{u}\| \|\mathbf{v}\|}$$

Since $\|\mathbf{u}\| = 1$ and $\|\mathbf{v}\| = 1$, this becomes:

$$\cos(\theta) = \frac{\mathbf{u} \cdot \mathbf{v}}{1 \cdot 1} \cos(\theta) = \mathbf{u} \cdot \mathbf{v}$$

Therefore, for unit vectors \mathbf{u} and \mathbf{v} :

$$\mathbf{u} \cdot \mathbf{v} = \cos(\theta)$$

This confirms that the dot product of two two-dimensional unit vectors is the cosine of the angle between them.