Counting Sort

Counting Sort is a Integer-Sorting Algorithm, it is a bit-different and complicated from other comparison based sorting algorithms.

Counting sort works efficiently on only positive integers, where it consider a *Key* element for various input values which are smaller than the key values, and falls in the range of 0-*Key*.

Counting Sort in Java

- The strength of counting sort is that it is comparatively faster than other comparison-based algorithms.
- It is reliable if the variation in keys is not significantly greater than the no. of elements.
- It is generally used as a sub-routine in radix sort and bucket sort to increase the productivity of those algorithms, as they work on comparatively larger data sets.
- Counting sort has a restriction of inputs when the ranges of the inputs are not known beforehand

Counting Sort 1

Algorithm for counting sort in JAVA

- Counting Sort (array P, array Q, int k)
- For $i \leftarrow 1$ to k
- do C [i] \leftarrow 0 [θ (k) times]
- for j ← 1 to length [A]
- do C[A[j]] \leftarrow C [A [j]]+1 [θ (n) times] // C [i] now contain the number of elements equal to i
- for $i \leftarrow 2$ to k
- do C [i] \leftarrow C [i] + C[i-1] [θ (k) times] //C[i] now contain the number of elements \leq i
- for $j \leftarrow \text{length [A] down to 1 [}\theta(n) \text{ times]}$
- do B[C[A[j] ← A [j]
- $C[A[j] \leftarrow C[A[j]-1]$

Counting Sort 2