Ferde hajítás

A ferde hajítás távolságát az alábbi képlettel számoljuk ki:

$$s = \frac{v_0^2 \cdot \sin(2\alpha)}{a}$$

, ahol s a hajítás távolsága méterben, v_0 az elhajított test kezdősebességének nagysága m/s-ban, a a kezdősebesség irányvektorának a vízszintessel bezárt szöge, g pedig a gravitációs gyorsulás (melynek közeltő értéke $g = 9.81 \, \text{m/s}^2$ a Földön).

Készíts programot, amely a képlet alapján meghatározza, hogy egy adott kezdősebességgel és az adott szögben elhajított test milyen messzire repül!

Bemenet

A standard bemenet első sora tartalmazza a hajítások számát ($1 \le N \le 10^4$). Ezután N sorban egy-egy hajítás adatai következnek, a kezdősebesség nagysága ($0 \le v_0 \le 1000$) és a kezdősebesség irányvektorának a vízszintessel bezárt szöge ($0 \le \alpha \le 90$).

Kimenet

A standard kimenet i-edik sorába az i-edik hajítás távolságát írjuk (a távolságokat kerekít-sük két tizedesjegyre)!

Példa

Bemenet	Kimenet
5 169 80 23 15 0 90 50 0 100 89	995.76 26.96 0 0 35.58

Korlátok

Időlimit: 0.1 mp.

Memórialimit: 32 MiB