

USN:										
------	--	--	--	--	--	--	--	--	--	--

CS2820 - Calculus for CS B.Tech. CSE 4^{rd} Semester

Internal Assessment 2

Date: 16 April. 2024 (Tue) FN	(B)	Marks: 15	Time: 1.0hr

Instructions

There are 7 questions. Q#1 is for 3 marks and is **compulsory**. Answer any 3 questions from Q#2 to Q#7. Only first 15 marks worth of attempt will be considered.

Q. No.	Question	Marks	СО	Blooms Level
1	For the function $f(x,y) = x \cos y + ye^x$, calculate all the second order partial derivatives with respect to all independent variables.	3	CO5	Ap
2	Find the tangent plane on the surface $F(x,y,z)=z-x^2-2y^2+1$ at the point $\left(1,\frac{1}{2},\frac{1}{2}\right)$	4	CO5	Ap
3	 The position of a particle at time t is specified by (x, y) = (at, bt - ct²), where a, b, c are positive constants. a). Find the time t at which the velocity of the particle is zero? b). If a = 3, b = 4 and c = 0, find the distance travelled by the particle during the time interval [0,2]. 	4	CO5	Ap

Q. No.	${f Question}$	Marks	СО	Blooms Level
4	Using polar coordinates for double integral, find the volume of a segment of a sphere of radius 2 units centred at origin in the first octant.	4	CO8	Ap
5	The temperature at a given point (x, y, z) in a room is given by, $T(x, y, z) = \frac{1}{2}e^{-(x^2+y^2+z^2)}$. What is the rate of change of temperature at the point $(1, 1, 1)$ along the direction $\mathbf{v} = \hat{i} + \hat{j} + \hat{k}$?	4	CO6	Ap
6	If $f(x, y, z) = e^x \sqrt{y}z$, estimate the value of $f(0.01, 24.8, 1.02)$. Hint: Calculate the linear approximation of the function at $(0, 25, 1)$.	4	CO7	Ap
7	Find the critical points of $f(x,y) = -x^3 + 4xy - 2y^2 + 1$ and determine for each critical point whether it is a saddle point, a maximum or a minimum.	4	CO6	Ap

END