Lucas congruences modulo p^2

Eric Rowland

Hofstra University

Experimental Mathematics Seminar

Rutgers University, 2021-11-4

Pascal's triangle

Which does Pascal's triangle look like modulo 2? First 128 rows:

Explored by many people, probably including Lucas in the 1870s.

4 subsequences:

$$\binom{2n+0}{2m+1}$$

$$\binom{2n+1}{2m+0}$$

$$\binom{2n+1}{2m+1}$$

If $0 \le r \le 1$ and $0 \le s \le 1$, then

$$\binom{2n+r}{2m+s} \equiv \begin{cases} 0 \mod 2 & \text{if } r=0 \text{ and } s=1 \\ \binom{n}{m} \mod 2 & \text{otherwise.} \end{cases}$$

What's special about r = 0, s = 1?

$$\binom{0}{0} = \frac{1}{2}$$

$$\binom{0}{1} = 0$$

$$\binom{1}{0} = 1$$

$$\binom{1}{1} = 1$$

Modulo 3:

9 subsequences:

$$\begin{pmatrix} 3n+0 \\ 3m+0 \end{pmatrix} \quad \begin{pmatrix} 3n+0 \\ 3m+1 \end{pmatrix} \quad \begin{pmatrix} 3n+0 \\ 3m+2 \end{pmatrix} \quad \begin{pmatrix} 3n+1 \\ 3m+0 \end{pmatrix} \quad \begin{pmatrix} 3n+1 \\ 3m+1 \end{pmatrix} \quad \begin{pmatrix} 3n+1 \\ 3m+2 \end{pmatrix} \quad \begin{pmatrix} 3n+2 \\ 3m+0 \end{pmatrix} \quad \begin{pmatrix} 3n+2 \\ 3m+1 \end{pmatrix} \quad \begin{pmatrix} 3n+2 \\ 3m+2 \end{pmatrix}$$

Modulo 5:

Theorem (Édouard Lucas 1878)

Let p be a prime. If $n \ge 0$, $m \ge 0$, and $r, s \in \{0, 1, \dots, p-1\}$, then

$$\binom{pn+r}{pm+s} \equiv \binom{n}{m} \binom{r}{s} \mod p.$$

Iterate:

If $n_\ell, \ldots, n_1, n_0, m_\ell, \ldots, m_1, m_0$ are elements of $\{0, 1, \ldots, p-1\}$, then

$$\binom{n_{\ell}p^{\ell}+\cdots+n_{1}p+n_{0}}{m_{\ell}p^{\ell}+\cdots+m_{1}p+m_{0}}\equiv \binom{n_{\ell}}{m_{\ell}}\cdots \binom{n_{1}}{m_{1}}\binom{n_{0}}{m_{0}}\mod p.$$

What about non-primes?

Modulo 6:

Modulo 4:

Does the Lucas congruence hold modulo p^2 ?

$$\binom{pn+r}{pm+s} \stackrel{?}{=} \binom{n}{m} \binom{r}{s} \mod p^2$$

Counterexample

Let p = 2.

$$\begin{pmatrix} 2 \cdot 1 + 0 \\ 2 \cdot 0 + 1 \end{pmatrix} = \begin{pmatrix} 2 \\ 1 \end{pmatrix} = 2 \not\equiv 0 = \begin{pmatrix} 1 \\ 0 \end{pmatrix} \begin{pmatrix} 0 \\ 1 \end{pmatrix} \mod 2$$

However, $\binom{pn}{pm} \equiv \binom{n}{m} \mod p^2$.

Jacobsthal 1949: If $p \ge 5$, then $\binom{pn}{pm} \equiv \binom{n}{m} \mod p^3$.

Bailey 1990: If $p \ge 5$ and $r, s \in \{0, 1, ..., p - 1\}$, then

$$\binom{p^3n+r}{p^3m+s} \equiv \binom{n}{m}\binom{r}{s} \mod p^3.$$

Apéry numbers

$$A(n) := \sum_{k=0}^{n} {n \choose k}^2 {n+k \choose k}^2$$
 arose in Apéry's proof that $\zeta(3)$ is irrational.

 $A(n)_{n\geq 0}$: 1, 5, 73, 1445, 33001, 819005, 21460825, ...

Theorem (Gessel 1982)

Let p be a prime. The Apéry numbers satisfy the Lucas congruence

$$A(pn+d) \equiv A(n)A(d) \mod p$$

for all $n \ge 0$ and all $d \in \{0, 1, \dots, p-1\}$.

A(n) modulo 7:

 $1,5,3,3,3,5,1,5,4,1,1,1,4,5,3,1,2,2,2,1,3,\ldots$

Example

$$A(2039) = A(56427) \equiv A(5)A(6)A(4)A(2) \equiv 5 \cdot 1 \cdot 3 \cdot 3 \equiv 3 \mod 7.$$

Automaton:

A(n) modulo 5:

 $1,0,3,0,1,0,0,0,0,0,3,0,4,0,3,0,0,0,0,0,\dots$

If the base-5 digits of *n* contain 1 or 3, then $A(n) \equiv 0 \mod 5$.

A(n) modulo 9:

Theorem (Gessel)

 $A(3n+d) \equiv A(n)A(d) \mod 9 \text{ for all } n \ge 0 \text{ and all } d \in \{0,1,2\}.$

The Lucas congruence does not always hold modulo p^2 :

$$A(5 \cdot 2 + 1) = A(11) = 403676083788125$$

 $\not\equiv 365 = 73 \cdot 5 = A(2)A(1) \mod 25.$

A(*n*) modulo 25:

Restrict the digit set.

Theorem (Rowland-Yassawi 2015)

 $A(5n+d)\equiv A(n)A(d)\ \ \text{mod 25 for all }n\geq 0\ \text{and all }d\in\{0,2,4\}.$

Which digits support a Lucas congruence for A(n) modulo p^2 ?

A(n) modulo 7^2 :

digit set: {0, 2, 3, 4, 6}

 $(A(0), A(2), A(3), A(4), A(6)) \equiv (1, 24, 24, 24, 1) \mod 7^2$

A(n) modulo 23²:

digit set: $\{0, 7, 11, 15, 22\}$

 $(A(0), A(7), A(11), A(15), A(22)) \equiv (1, 415, 473, 415, 1) \mod 23^2$

A(n) modulo 59^2 :

digit set: {0, 6, 29, 52, 58}

 $(A(0), A(6), A(29), A(52), A(58)) \equiv (1, 460, 2813, 460, 1) \mod 59^2$

Reflection symmetry:

Theorem (Malik-Straub 2016)

$$A(d) \equiv A(p-1-d) \mod p$$
 for each $d \in \{0, 1, \dots, p-1\}$.

Let
$$D_A(p) := \left\{ d \in \{0, 1, \dots, p-1\} : A(d) \equiv A(p-1-d) \mod p^2 \right\}.$$

In particular, $\{0, \frac{p-1}{2}, p-1\} \subseteq D_A(p).$ $\{0, 2, 4\} \subseteq D_A(5)$

Theorem (Rowland-Yassawi 2021)

Let p be a prime and $d \in \{0, 1, ..., p-1\}$. The congruence

$$A(pn+d) \equiv A(n)A(d) \mod p^2$$

holds for all $n \ge 0$ if and only if $d \in D_A(p)$.

Size of $D_A(p)$ for the *n*th prime:

$$2,3,3,5,3,3,3,5,3,3,3,7,3,3,5,\dots$$
 [A348883]

Primes p with $|D_A(p)| \ge 4$:

р	$D_A(p)$
7	{0,2,3,4,6}
23	$\{0, 7, 11, 15, 22\}$
43	$\{0, 5, 18, 21, 24, 37, 42\}$
59	$\{0, 6, 29, 52, 58\}$
79	$\{0, 18, 39, 60, 78\}$
103	$\{0, 17, 51, 85, 102\}$
107	{0, 14, 21, 47, 53, 59, 85, 92, 106}
127	{0, 17, 63, 109, 126}
131	{0,62,65,68,130}
139	{0,68,69,70,138}
151	$\{0, 19, 75, 131, 150\}$
167	{0,35,64,83,102,131,166}

How does $\sum_{p \le x} |D_A(p)|$ grow?

Binomial coefficients

Let D(p) be the set of pairs (r, s) such that

$$\binom{pn+r}{pm+s} \equiv \binom{n}{m} \binom{r}{s} \mod p^2$$

for all n > 0 and m > 0.

Which pairs belong to D(p)?

Experimentally...

$$D(2) = \{(0,0)\}\$$

$$D(3) = \{(0,0),(2,0),(2,2)\}\$$

$$D(5) = \{(0,0), (4,0), (4,4)\}$$

Since $\binom{pn}{pm} \equiv \binom{n}{m} \mod p^2$, D(p) contains the pair (0,0).

$$p = 7$$
:

$$D(7) = \{(0,0), (4,2), (6,0), (6,6)\}$$

Example

$$\binom{12002}{7156} \equiv \binom{4}{2} \binom{6}{6} \binom{6}{6} \binom{6}{6} \binom{6}{2} \equiv 6 \cdot 1 \cdot 1 \cdot 1 \cdot 6 = 36 \mod 7^2.$$

p = 11:

 $D(11) = \{(0,0), (3,0), (3,3), (7,0), (7,7), (10,0), (10,3), (10,7), (10,10)\}$

D(p) seems to possess the symmetries of the equilateral triangle!

Reflection symmetry through the vertical axis follows (after some work) from reflection symmetry in Pascal's triangle.

But the first p rows modulo p are not invariant under rotation.

Where does rotation by 120° take a point (r, s)?

First reflection: $(r, s) \mapsto (r, r - s)$

Second reflection: $(r, s) \mapsto (p - 1 - r + s, s)$

Rotation: $(r, s) \mapsto (p - 1 - s, r - s)$

The three binomial coefficients visited by the orbit of (r, s) are

$$\binom{r}{s}, \binom{p-1-s}{r-s}, \binom{p-1-r+s}{s}.$$

If $0 \le s \le r \le p-1$, then

$$\binom{r}{s} \equiv (-1)^{r-s} \binom{p-1-s}{r-s} \mod p.$$

p = 7:

Theorem (Rowland)

Let p be a prime and $0 \le s \le r \le p-1$. The following are equivalent.

- $(r,s) \in D(p)$; that is, the congruence $\binom{pn+r}{pm+s} \equiv \binom{n}{m}\binom{r}{s} \mod p^2$ holds for all $n \geq 0$ and $m \geq 0$.
- $\bullet \ \binom{r}{s} \equiv (-1)^{r-s} \binom{p-1-s}{r-s} \equiv (-1)^s \binom{p-1-r+s}{s} \mod p^2.$
- $H_r \equiv H_{r-s} \equiv H_s \mod p$.

 $H_n = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n}$ is the *n*th harmonic number.

$$(H_n)_{n\geq 0}$$
: 0, 1, $\frac{3}{2}$, $\frac{11}{6}$, $\frac{25}{12}$, $\frac{137}{60}$, $\frac{49}{20}$, $\frac{363}{140}$, ...

When $n \le p-1$, we interpret $H_n \mod p$ by inverting the denominator.

Size of D(p) for the *n*th prime:

$$1, 3, 3, 4, 9, 4, 6, 4, 3, 9, 4, 16, 6, 10, 3, 9, 3, 10, \dots$$
 [A348884]

In general:

Theorem

Let p be a prime. If $n \ge 0$, $m \ge 0$, and $r, s \in \{0, 1, \dots, p-1\}$, then

$$\binom{pn+r}{pm+s} \equiv \binom{n}{m} \binom{r}{s} (1+pn(H_r-H_{r-s})+pm(H_{r-s}-H_s)) \mod p^2.$$

When

$$H_r - H_{r-s} \equiv 0 \mod p$$
 and $H_{r-s} - H_s \equiv 0 \mod p$,

we obtain a Lucas congruence.

Center of the triangle:

Corollary

If $p \equiv 1 \mod 3$, $n \ge 0$, and $m \ge 0$, then

$$\binom{pn + \frac{2}{3}(p-1)}{pm + \frac{1}{3}(p-1)} \equiv \binom{n}{m} \binom{\frac{2}{3}(p-1)}{\frac{1}{3}(p-1)} \mod p^2.$$

Jacobi studied $\binom{2(p-1)/3}{(p-1)/3}$ modulo p.

Yeung 1989: $\binom{2(p-1)/3}{(p-1)/3} \equiv -a + \frac{p}{a} \mod p^2$, where $4p = a^2 + 27b^2$ and the sign of a is chosen so that $a \equiv 1 \mod 3$.

Edge midpoints:

$$\{(\frac{p-1}{2},0),(\frac{p-1}{2},\frac{p-1}{2}),(p-1,\frac{p-1}{2})\}\subseteq D(p)\iff 2^{p-1}\equiv 1\mod p^2.$$

These are Wieferich primes. Only two are known: 1093, 3511.

$$\binom{p-1}{(p-1)/2} \equiv (-1)^{(p-1)/2} \mod p^2$$

Why do harmonic numbers arise?

Lemma

If $0 \le s \le r \le p-1$, then $H_r \equiv H_s \mod p$ if and only if

$$\binom{r}{s} \equiv (-1)^{r-s} \binom{p-1-s}{r-s} \mod p^2.$$

$$(p-1-s)! = \prod_{i=s+1}^{p-1} (p-i)$$

$$\equiv \prod_{i=s+1}^{p-1} (-i) + p(-1)^{p-1-s} \frac{(p-1)!}{s!} \sum_{i=s+1}^{p-1} \frac{1}{-i} \mod p^2$$

$$= (-1)^{p-1-s} \frac{(p-1)!}{s!} (1 - p(H_{p-1} - H_s)).$$

Multinomial coefficients

Joshua Crisafi is currently looking at generalizations.

2-argument multinomial $\frac{(m+n)!}{m!n!}$ seems to be more natural than $\frac{n!}{m!(n-m)!}$: The orbit of (r,s) contains (p-1-r-s,r) and (s,p-1-r-s).