SYDE 556/750 Simulating Neurobiological Systems Lecture 0: Administrative Remarks

Andreas Stöckel

January 7, 2020

Organization (I)

Instructor

Andreas Stöckel

Office E7-6342 (office hours in E7-6323)

Email astoecke@uwaterloo.ca

Website http://compneuro.uwaterloo.ca/people/andreas-stoeckel.html

GitHub https://github.com/astoeckel

Course website

- ▶ http://compneuro.uwaterloo.ca/courses/syde-750.html
- ▶ https://github.com/astoeckel/syde556-w20

Organization (II)

Course times and location

- ► Tuesday: 11:30-12:50 in **E5-4106** (SYDE 556/750)
- ► **Thursday:** 9:00-10:20 in **E5-6004** (SYDE 556/750)
- ► **Thursday:** 10:30-11:20 in **E5-6127** (SYDE 750, optional for 556)

Office hours

- ▶ Office hours are generally in E7-6323.
- ► Potential times: Tue 13:00-14:00, Tue 15:00-16:00, Thu 11:30-12:30, Fri 10:30-11:30
- Alternatively, if that time doesn't work for you, by appointment.

Textbooks and Readings

Main text:

Chris Eliasmith and Charles H. Anderson Neural Engineering: Computation, Representation, and Dynamics in Neurobiological Systems, MIT Press, 2003.

Optional:

Chris Eliasmith

How to Build a Brain,
Oxford University Press,
2013.

Coursework

Four Assignments (60% of the mark)

- ► 20%, 20%, 10%, 10%, respectively
- Roughly two weeks for each assignment
- Everyone must write their own code, generate their own graphs, and write their own answers.

Final Project (40% of the mark)

- ▶ 5% presentation, 35% report
- Build a model of some neural system.
- ► For 556 students: extension of something seen in class
- ► For 750 students: research project with more novelty
- ► Have your project approved via email before Reading Week!

Schedule (I)

Date	Reading	Topic	Assignments
WEEK 1			
Jan 7	Chapter 1	Introduction	
Jan 9	Chapter 2	Neurons	
WEEK 2			
Jan 14	Chapter 2	Population Representation (I)	#1 posted
Jan 16	Chapter 2	Population Representation (II)	
WEEK 3			
Jan 21	Chapter 4	Temporal Representation (I)	
Jan 23	Chapter 4	Temporal Representation (II)	
WEEK 4			
Jan 28	Chapters 5, 6	Feedforward Transformations (I)	#1 due*, $#2$ posted
Jan 30	Chapters 5, 6	Feedforward Transformations (II)	
WEEK 5			
Feb 4	Chapter 8	Dynamics (I)	
Feb 6	Chapter 8	Dynamics (II)	

Schedule (II)

Date WEEK 6	Reading	Торіс	Assignments	
Feb 11	Chapter 7	Analysis of Representation	#2 due*, #3 posted	
Feb 13 Feb 14	provided	Temporal Basis Functions	Project proposal due	
WEEK 7		— Reading week, no lectures —		
WEEK 8 Feb 25 Feb 27	provided provided	Symbols (I) Symbols (II)		
WEEK 9 Mar 3 Mar 5	Chapter 8 provided	Memory Action Selection	#3 due*, #4 posted	
Mar 10 Mar 12	Chaper 9 Chaper 9	Learning (I) Learning (II)		

Schedule (III)

Date	Reading	Торіс	Assignments
WEEK 11 Mar 17 Mar 19	provided provided	Spatial Semantic Pointers Biological Details	#4 due*
WEEK 12 Mar 24 Apr 2	provided	Other modelling frameworks Conclusion	
WEEK 13 Mar 31, Apr 2		Project presentations	
Apr 15			Projects due*

^{*} The project and all assignments are due at midnight (\approx 11:59p EST) of that day.

Homework

- ► Get the textbook ("Neural Engineering", Chris Eliasmith and Charles Anderson, 2003)
- ▶ Be able to run jupyter lab or (jupyter notebook) with Python 3 Install numpy, scipy, and matplotlib. You may want to use Anaconda, which ships with these packets preinstalled.
- ► Have a look at the **course website** and the **lecture notes**.
- ► Start thinking about a **project** . . . already.