Instituto de Computação – UNICAMP Algoritmos de Aproximação

http://www.ic.unicamp.br/~lehilton/mo418a/

Unique Games Conjecture

Escrito por: Felipe L. De Mello, Victor F. Ferrari e Vinícius C. Espindola

Data: 14/11/2019

1 Introdução

- → Vimos anteriormente um algoritmo de aproximação para o problema Max-Cut.
 - Utilizava Semidefinite Programming
 - .878-aproximação, chamada de algoritmo de Goemans-Williamson
- → Ao final da aula, foi visto um teorema: esse algoritmo é a melhor aproximação possível para o problema, assumindo a *Unique Games Conjecture*.
- → O que é a Unique Games Conjecture?

1.1 Histórico

Um aluno de pós-graduação chamado Subhash Khot ficou curioso para saber uma propriedade do problema de coloração em grafos. Já era sabido que decidir se um grafo é 3-colorível é NP-Difícil, mas a dúvida era se aumentar o número de cores disponíveis facilita o problema. Ou seja, se é mais fácil o problema de decidir se necessita de 3 cores, ou K, para qualquer constante K.

A partir desse problema, chegou à conclusão de que deveria estudar a complexidade do problema Unique Games, o que faz sentido ao olhar sua representação em grafo. Assim, em 2002, foi proposta a *Unique Games Conjecture*. História completa pode ser vista em [3].

2 Unique Games e Unique Label Cover

2.1 Unique Games

- → A **conjectura** do Unique Games é criada a partir do **problema** chamado Unique Games.
- → O Unique Games é um problema de satisfação de restrições, ou seja, é uma versão específica do CSP (Constraint Satisfaction Problem).
- \rightarrow O CSP é dado por:
 - Entrada:
 - * Universo *U* de valores;
 - * Variáveis $X_i \in U, \forall i \in \{1...n\};$
 - * restrições $f: U^k \to \{0,1\}$
 - Solução: Atribuição de um valor em U para cada variável.
 - Objetivo: maximizar o número de restrições satisfeitas.
- \rightarrow Há a versão com pesos também.
- → Exemplos de problemas CSP: MAX-CUT, MAX-SAT.

- → O Unique Games é um CSP *binário*, ou seja, cada restrição corresponde a uma função em *duas variáveis*.
- \rightarrow Além disso, para cada valor de U de uma das variáveis da restrição, há *exatamente um* valor para a outra variável que a satisfaz. Assim, uma restrição corresponde a uma função *bijetora*.

Conjectura 1 (Unique Games Conjecture: UGC). Dados quaisquer $\varepsilon, \delta > 0$, existe algum k > 0 dependente de ε e δ , tal que para o problema Unique Games com universo de tamanho k, é NP-Difícil distinguir entre instâncias nas quais pelo menos uma fração de $1 - \varepsilon$ das restrições pode ser satisfeita, e instâncias nas quais no máximo uma fração de δ das restrições pode ser satisfeita.

- → Informalmente, a UGC diz que é NP-Difícil diferenciar uma instância do problema na qual *quase todas* as restrições são satisfeitas e uma em que *quase nenhuma* é satisfeita.
- → Um problema é chamado *UG-Difícil* se ele é NP-Difícil considerando a UGC.
- → Não se sabe se há algoritmo de aproximação para o Unique Games que garanta desempenho que refute a UGC.

2.2 Unique Label Cover

- → Como as restrições do Unique Games são funções de duas variáveis, é fácil perceber que há uma representação do problema como *grafo*.
- → A versão em grafo do problema possui um nome: *Unique Label Cover*.
- → Essa versão é tão comum, e mais fácil de entender, que em muitos lugares o Unique Games é apresentado diretamente com ela!
- → Para a transformação do UG para o ULC, criamos *permutações*.
 - Uma permutação é um rearranjo do universo U do problema que mapeia, para cada restrição, o valor de uma variável ao valor da outra tal que $f(X_i, X_j) = 1$.
 - Isso pode ser feito pois a função é bijetora, e para universo de tamanho $k, U = 1 \dots k$.
 - Assim, podemos definir a permutação como $\pi(i) = j$ se f(i, j) = 1.

Assim, a transformação é:

Transformação-UG-ULC:

- Crie um grafo vazio não-direcionado G = (V, E)
- ² Para cada variável $X_u, u \in 1 \dots n$, insira o vértice u em V
- Para cada restrição $f(X_u, X_v)$, insira a aresta (u, v) em E
- ⁴ Para toda aresta (u, v), crie uma permutação $\pi_{uv}: U \to U$ tal que $\pi_{uv}(i) = j$ se f(i, j) = 1
- ⁵ Retorne G, π
- → Assim, o problema se torna um de encontrar *labels* (*rótulos*) em vértices tais que a maior quantidade de permutações são satisfeitas.

- → Podemos verificar em tempo polinomial se *todas* as arestas do grafo são satisfatíveis.
 - Para toda componente conexa do grafo, teste todos os *labels* para um vértice arbitrário.
 - Para cada escolha, *propague* para todos os outros, pelas permutações.
 - Se todas as arestas são satisfatíveis, há algum *label* que gera uma atribuição perfeita, e isso pode ser verificado em tempo polinomial, no pior caso.
- → Similarmente, saber se *nenhuma* aresta é satisfatível também é trivial.
- → Porém, o mesmo não pode ser dito para todos os outros casos.
- → Pela UGC, se é desejado saber se uma fração constante de arestas é satisfatível, o problema é NP-Difícil para algum universo, independentemente da fração.
- \rightarrow Existe um algoritmo de aproximação de fator $1 \sqrt{\varepsilon \log n}$ para o Unique Games/Unique Label Cover, baseado em *Semidefinite Programming*.
 - Esse algoritmo funciona para instâncias nas quais uma fração de $1-\varepsilon$ das arestas/restrições são satisfatíveis.
 - − Se $\varepsilon \in O(1/\log n)$, essa aproximação é constante.
 - Não iremos mostrar esse algoritmo hoje, mas está especificado e demonstrado em [5].
- → Há também algoritmos *subexponenciais* para o problema e outros relacionados, ao contrário de diversos outros problemas NP-Difíceis. Alguns podem ser vistos em [1].

3 Consequências da UGC

- → Desde 2002, a UGC teve diversas aplicações em problemas relacionados, como pode ser visto na figura 1.
- → A figura 1 foi extraída de [4], que também possui diversos desenvolvimentos e conclusões em cima da UGC.
- → Como visto na figura, o principal uso da UGC foi para provas de *inaproximabilidade*, muitas vezes junto com outra técnica, como PCP.
- → Ela também deu origem a diversas *variantes*.
- → Deste ponto em diante, veremos duas reduções para problemas que provam inaproximabilidade ou que uma aproximação conhecida é a melhor possível.

4 Redução para Multicut

- → Relembrando o problema do multicorte:
 - Entrada:
 - * grafo G=(V,E);
 - * custo das arestas $c_e \ge 0, e \in E$;
 - * pares de vértices fonte-ralo $s_1 t_1, \dots, s_k t_k, s, t \in V$.

Problem	Best	Inapprox.	Best	Ref.
	Approx.	Known Under	Inapprox.	
	Known	UGC	Known	
Vertex Cover (VC)	2	$2-\varepsilon$	1.36	[68, 15, 36]
VC on k-uniform	k	$k-\varepsilon$	$k-1-\varepsilon$	[68, 16, 34]
Hypergraphs, $k \geq 3$				
MaxCut	αмс	$\alpha_{MC} - \varepsilon$	$\frac{17}{16} - \varepsilon$	[43, 63, 51]
				[87, [66]
Max-2SAT*	α_{LLZ}	$\alpha_{LLZ} - \varepsilon$	APX-hard*	[78, 12]
Any CSP C with	$\alpha_{\mathcal{C}}$	$\alpha_C - \varepsilon$		[9 0]
integrality gap α_C				
Max-kCSP	$O(2^k/k)$	$\Omega(2^k/k)$	$2^{k-O(\sqrt{k})}$	[23, 101, 13, 100]
Max-3CSP on	8 5	$\frac{8}{5} - \varepsilon$, under	$\frac{27}{20} - \varepsilon$	[105, 88, 69]
satisfiable instances	"	Čonj. 3.6		
Max Acyclic Subgraph	2	$2-\varepsilon$	$\frac{66}{65} - \varepsilon$	[48, 86]
Feedback Arc Set	$\tilde{O}(\log N)$	$\omega(1)$	APX-hard	[48, 102]
Non-uni. Sparsest Cut	$\tilde{O}(\sqrt{\log N})$	$\omega(1)$	APX-hard	[8, 25, 71, 31]
Uniform Sparsest Cut,	$O(\sqrt{\log N})$	$\omega(1)$, under	No PTAS	[10, 7, 3]
		Hypo. 3.4		
Min-2SAT-Deletion,	$O(\sqrt{\log N})$	$\omega(1)$	APX-hard	[1], [60]
Min-Uncut				
	2111			
Coloring 3-colorable	N.2111	$\omega(1)$, under	5	[6, 35, 58]
Graphs		Conj. 3.7		
Coloring 2d-colorable	$N^{1-\frac{3}{2d+1}}$	$\omega(1)$, under	$2d+2\lfloor \frac{2d}{3} \rfloor -1,$	55, 35
Graphs, $d \ge 2$		Conj. 3.6	$d^{\Omega(\log d)}$	[58, 59]
Scheduling with	2	$2 - \varepsilon$, under		[15]
Prec. Constraints*		Hypo. 3.5		
14 161	77/ D	7// 70)		[D. 1 (D. 1)
Kernel Clustering	K(B)	$K(B) - \varepsilon$	APX-hard	[64, 65]
kernel matrix B	9	9		I man i i
L _p Grothendieck Prob.*	γ_p^2	$\gamma_p^2 - \varepsilon$		[72] +
p > 2				Follow-up.
M. It's a C. o			ADV 1 1	IOT (FO IOT)
Multiway Cut	α	$\alpha - \varepsilon$	APX-hard	[21, 56, 81]
integrality gap $\alpha \leq 1.344$				

Figura 1: Reduções obtidas a partir da UGC.

- Solução: conjunto de arestas F.
- Objetivo: minimizar o número de arestas |F| nas quais ao serem removidas desconectam todos os pares $s_1 t_1, \dots, s_k t_k$.

Teorema 1. Assumindo a conjectura do Unique Games, para qualquer constante $\alpha \geq 1$, não existe α -aproximação para o problema do multicorte a não ser que P = NP.

- → Pelo teorema, é *UG-Difícil* aproximar o problema do multicorte por qualquer constante maior ou igual a 1.
- → Para a redução da UG para multicorte utilizamos um caso especial da UG chamada MAX 2LIN(k).
- \rightarrow MAX 2LIN(k):
 - Entrada:
 - * L=0,...,k-1, $k \in \mathbb{Z}$;
 - * Variáveis (vértices) $\in V$;
 - * Restrições (arestas) $\in E$;
 - * $\forall uv \in E$, temos $c_{uv} \in L$ tal que $\pi_{uv}(i) = i c_{uv}(mod k)$, ou seja, uv é satisfeita \iff os vértices u e v recebem rótulos i, j tais que $i j = c_{uv}(mod k)$;
 - Solução: Atribuição de rótulos R, tal que $\forall u \in V$, existe um rótulo $r_u \in L$;
 - Objetivo: Maximizar número de arestas $uv \in E$ satisfeitas.

Conjectura 2 (Linear Unique Games Conjecture: LUGC). Dados quaisquer $\varepsilon, \delta > 0$, existe algum k > 0 dependente de ε e δ , a versão do unique games MAX 2LIN(k) com L=0,...,k-1, é NP-Difícil distinguir entre instâncias nas quais pelo menos uma fração de $1-\varepsilon$ das arestas pode ser satisfeita, e instâncias nas quais no máximo uma fração de δ das arestas pode ser satisfeita.

→ Para provar o *Teorema 1* são necessários 2 lemas:

Lema 1. Para qualquer ε tal que $0 \le \varepsilon \le 1$, dado uma solução viável de uma instância de MAX 2LIN(k) que satisfaz pelo menos $(1-\varepsilon)|E|$ arestas, então existe uma solução viável para uma instância do multicut com custo de no máximo $\varepsilon|E'|$.

Prova do Lema 1. Reduzir MAX 2LIN(k) para multicorte:

- Seja I uma instância do MAX 2LIN(k) com grafo G = (V, E), universo L de rótulos de tamanho k e C o conjunto de pesos das arestas de E;
- Faça uma instância I' do multicorte da seguinte maneira:
 - * G'=(V',E') com V' = V x L;
 - * Arestas em E' entre pares vértice-rótulo (u,i) e (v,j) $\iff uv \in E$ e $i-j = c_{uv}(mod k)$;
 - * Também faça os pares fontes-ralo serem s=(u,i) e t=(u,j) para todo $u \in V$ e $i \neq j$;

- Note que E' = k|E| e V' = k|V|;
- Suponha uma rotulação $x_u \in L$ de G que satisfaz pelo menos $(1 \varepsilon)|E|$ arestas de G;
- Particione V' em k partes, V'_0, \dots, V'_{k-1} , onde $V'_c = \{(u, x_u + c \pmod{k})\} \forall u \in V$, ou seja, a c-ésima parte será o conjunto de vértices cuja rotulação satisfazem uma aresta de custo c;
- Note que s=(u,i) e t=(u,j) $\forall u \in V$ e $i \neq j$; estão em diferentes partes da partição, portanto, ao remover todas arestas com extremos em diferentes partes da partição obtemos uma solução do multicorte;
- Agora determinamos o custo desta solução. Considere qualquer aresta $((u,i),(v,j)) \in$ E' tal que (u,i) e (v,j) estão em diferentes partes da partição. Demonstraremos que a aresta (u,v) no grafo original não é satisfeita pelo rotulamento dado;
- Pela construção de E' sabemos que $i j = c_{uv} \pmod{k}$. Também sabemos que (u,i) e (v,j) estão em diferentes partes da partição;
- Suponha que $(u,i) \in V_c$ e $(v,j) \in V_c$ para $c \neq c'$. Então $i = x_u + c \pmod{k}$ e $j = x_v + c$ c'(mod k), e portanto:

$$c_{uv} = i - j \pmod{k}$$

$$= (x_u + c) - (x_v + c') \pmod{k}$$

$$= (x_u - x_v) + (c + c') \pmod{k}$$

$$\neq x_u - x_v \pmod{k}$$

pois $c \neq c'$;

- Como uma aresta é satisfeita $\iff c_{uv} = i - j \pmod{k}$, isto significa que arestas entre vértices de diferentes partições não são satisfeitas. Como no máximo $\varepsilon |E|$ arestas não são satisfeitas em MAX 2LIN(k), no máximo $\varepsilon k|E| = \varepsilon |E'|$ arestas são removidas no multicorte.

 \Box

Lema 2. Para qualquer ε tal que $0 < \varepsilon < 1$, dado uma solução de uma instância do multicorte de custo máximo $\varepsilon |E'|$, então existe uma solução para uma instância do MAX 2LIN(k) que satisfaz pelo menos $(1-2\varepsilon)|E|$ arestas.

Prova do Lema 2. omitida por simplificação, mas é o caminho inverso da prova do Lema 1. Pode ser vista em [5].

Prova do Teorema 1.

- Suponha que existe α -aproximação para o problema do multicorte;
- Então utilizando este algoritmo e o Lema 1, sabemos que: dado uma instância do MAX LIN2(k), na qual pelo menos $(1-\varepsilon)|E|$ arestas são satisfeitas, podemos encontrar uma solução do multicorte de custo $\varepsilon \alpha |E'|$;
- Pelo Lema 2 sabemos obter uma solução do MAX 2LIN(k), a partir deste multicorte, na qual pelo menos $(1-2\varepsilon\alpha)|E|$ arestas satisfeitas;
- Se a instância do MAX LIN2(k) satisfaz no máximo $\delta |E|$ arestas, então este algoritmo satisfaz no máximo $\delta |E|$ arestas;

- Fazendo $arepsilon < rac{1-\delta}{2lpha}$, então temos que $(1-2arepsilonlpha)|E| > \delta |E|$.
- Isto implica que nosso algoritmo consegue distinguir entre instâncias nas quais pelo menos $(1-\varepsilon)|E|$ arestas são satisfeitas e instâncias nas quais no máximo $\delta|E|$ arestas são satisfeitas;
- Dado a UG, isto implica que P = NP.

5 Redução para Max-Cut

- → Relembrando o problema Max-Cut:
 - Entrada:
 - * grafo G=(V,E);
 - * pesos $\omega : E \to \mathbb{R}_+$
 - Solução: corte [S,T], $V = S \cup T$.
 - Objetivo: max $\sum_{(i,j)\in E[S,T]} \omega_{ij}$
 - -E[S,T] são arestas (i,j) com i ∈ S e j ∈ T.

Teorema 2. Assumindo a conjectura do Unique Games, não existe α -aproximação para o problema do corte máximo com constante

$$\alpha > \min_{-1 \le x \le 1} \frac{\frac{1}{\pi} \arccos x}{\frac{1}{2}(1-x)} \ge .878$$

a não ser que P = NP.

- → Ou seja, queremos provar que o algoritmo de Goemans-Williamson possui o *melhor fator de aproximação* para o Max-Cut, dada a UGC.
- → É, então, UG-Difícil aproximar o problema por um fator melhor que .878.
- → A prova completa é muito complexa, envolve conceitos um pouco mais específicos de *PCP*, então as ideias serão resumidas.
- → Esse mesmo método é utilizado para provar diversos outros resultados em relação ao UGC.
- → Para o problema, introduzimos uma nova variante da UGC, para o caso em que os grafos são bipartidos e os graus dos vértices em uma partição são os mesmos.

Conjectura 3 (Bipartite Unique Games Conjecture: BUGC). Dados quaisquer $\varepsilon, \delta > 0$, existe algum k > 0 dependente de ε e δ , tal que para o problema Unique Games com universo de tamanho k em grafos bipartidos nos quais todos os vértices de uma partição têm o mesmo grau, é NP-Difícil distinguir entre instâncias nas quais pelo menos uma fração de $1 - \varepsilon$ das restrições pode ser satisfeita, e instâncias nas quais no máximo uma fração de δ das restrições pode ser satisfeita.

- → Não provaremos a equivalência entre a BUGC e a UGC, assim como não o fizemos para a LUGC.
- → A partir dela, podemos enunciar o seguinte teorema, que é o principal resultado para provar o teorema 2:

Teorema 3 (BUGC-PCP). Supondo a BUGC, para qualquer constante positiva $\gamma > 0$ e qualquer $\rho \in (-1,0)$, NP $\subseteq PCP(\log(n),2)$, onde o verificador tem completeness no mínimo $\frac{1}{2}(1-\rho) - \gamma$ e soundness no máximo $\frac{1}{\pi} \arccos \rho + \gamma$ e o verificador aceita apenas se dois bits não são iguais.

Prova do Teorema 2.

- \rightarrow Para qualquer instância de um problema NP-Completo Π e um verificador como o do Teorema 3, podemos criar uma instância $G(V_1, V_2, E)$ do Max-Cut equivalente ao CSP gerado:
 - Sejam os bits lidos da prova vértices de G, de forma que:
 - * Se v = 0, então $v \in V_1$
 - * Se v = 1, então $v \in V_2$
 - Para toda possível *string* de bits do verificador, cria-se uma aresta $e \in E$, tal que:
 - * Se vértices comparados tem mesmo valor, então e não entra no corte
 - * Se vértices comparados valores distintos, então e entra no corte
 - Por construção, o número de restrições satisfeitas no SCP representa o número de arestas no corte do grafo G.
- \rightarrow Pelos conceitos de PCP, temos que:
 - Instâncias SIM de Π terão pelo menos uma fração c de restrições aceitas
 - Instâncias NÃO de Π terão no máximo uma fração s de restrições aceitas
- \rightarrow Tais condições implicam que qualquer α -aproximação, tal que $\alpha > \frac{s}{c}$, resultariam em distinguir entre instâncias SIM e NÃO do problema π , NP-Completo, em tempo polinomial.
- \rightarrow Como isso é válido para quaisquer $\gamma > 0$ e $\rho \in (-1,0)$, temos que não existe α-aproximação para $\alpha > \min_{\rho \in (-1,0)} \frac{s}{c}$.
- $\rightarrow \text{ Enfim, vemos que } \min_{\rho \in (-1,0)} \frac{s}{c} = \min_{\rho \in (-1,1)} \frac{\frac{s}{c}}{c} = \min_{\rho \in (-1,1)} \frac{\frac{1}{\pi} \arccos \rho}{\frac{1}{2}(1-\rho)}.$
- \rightarrow Assim, considerando o Teorema 3, o Teorema 2 é verdade: não há α-aproximação para o Max-Cut para $\alpha > .878$, a não ser que P = NP.

5.1 Construindo o Verificador PCP

- → Precisamos criar um algoritimo verificador de forma que as condições do Teorema 3 sejam satisfeitas.
- \rightarrow Criaremos um algoritimo verificador e mostraremos que há uma prova π para uma instância SIM do BUGC em que o verificador aceita com probabilidade $\geq completeness = \frac{1}{2}(1-\rho)$
- → Soundness não será provada.

\rightarrow Conceitos necessários:

- Funções ditadoras: $f: \{0,1\}^k \to \{0,1\}$, tal que para $f(b_1,b_2,...,b_k) = b_i$ tal que $i \in [0,k]$
- **Ruído:** Dado $x \in \{0,1\}^k$, podemos criar y invertendo independentemente cada bit de x com probabilidadade $\frac{1}{2}(1-\rho)$. Denota-se esse processo por $y \sim_{\rho} x$.
- *Bits permutados pela aresta:* Dado $x \in \{0,1\}^k$ e uma permutação $\pi : [k] \to [k]$, dada uma aresta (v,w), seja $x \circ \pi_{vw} = (x_{\pi vw(1)}, x_{\pi vw(2)}, ..., x_{\pi vw(k)})$.
- Observações:
 - * A sensibilidade à ruído de uma função ditadora é equivalente a probabilidade de o bit ditador ser invertido
- \rightarrow Note que dada a aresta (v, w) onde v tem rótulo i codificado por f_v e w tem rótulo j codificado por f_w , temos que $f_v(x) = f_w(x \circ \pi_{vw})$ para todo $x \in \{0, 1\}^k$.
- → Queremos codificar uma prova para uma instância SIM do BUGC. Dada uma rotulação como prova, codificaremos os rótulos de todos os vértices v em bits da seguinte forma:
 - Cria-se uma função ditadora $f_v: \{0,1\}^k \to \{0,1\}$
 - Para codificar que o vértice v possui rótulo i, temos que, para uma entrada $x \in \{0,1\}^k$, $f_v(x) = x_i$ tal que f_v é uma função ditadora e seu resultado é o i-ésimo bit de x.
 - Para todas as possíveis *strings* de entrada $x \in \{0,1\}^k$, listamos os possíveis valores de $f_v(x)$ em um bloco de bits.
 - A prova π será a concatenação de todos os blocos de bits gerados para cada um dos vértices codificados da prova.

\rightarrow Verificador:

- Dada uma instância $G(V_1, V_2, E)$ do BUG
- − Seleciona-se $v \in V_1$ aleatoriamente
- Seleciona-se dois vizinhos $w, u \in V_2$ de v aleatoriamente e independentemente.
- Seleciona-se uma string aleatória $x \in \{0,1\}^k$ e gera-se $y \sim_{\rho} x$.
- Por fim, compara os dois bits de prova $f_w(x \circ \pi_{vw})$ e $f_u(y \circ \pi_{vu})$
- Retorna SIM se $f_w(x \circ \pi_{vw}) \neq f_u(y \circ \pi_{vu})$

5.2 Completeness

Lema 3. Para qualquer $\rho \in [-1,1]$, se pelo menos uma fração de $1-\varepsilon$ das arestas da instância do BUG são satisfeitas, então pode-se provar que o verificador aceita a prova com probabilidade de pelo menos $(1-2\varepsilon) \cdot \frac{1}{2}(1-\rho)$.

Prova do Lema 3.

- \rightarrow Probabilidade de que o verificador descrito com a prova π e uma instância SIM da BUGC (que tenha pelo menos uma fração $\frac{1}{2}(1-\rho)$ da arestas satisfatíveis) retorna SIM:
 - Probabilidade de (v, w) seja satifatível é $\geq (1 \varepsilon)$
 - Probabilidade de (v, u) seja satifatível é $\geq (1 \varepsilon)$
 - Probabilidade de ambas (v, w) e (v, u) serem satisfeitas é $\geq (1 2\varepsilon)$
 - Probabilidade de que $f_w(x \circ \pi_{vw}) = f_u(x \circ \pi_{vu})$ é $\geq (1 2\varepsilon)$
 - Probabilidade de que $f_u(x \circ \pi_{vu}) \neq f_u(y \circ \pi_{vu})$ é $\frac{1}{2}(1-\rho)$
 - Probabilidade de que $f_w(x \circ \pi_{vw}) = f_u(x \circ \pi_{vu})$ e $f_u(x \circ \pi_{vu}) \neq f_u(y \circ \pi_{vu})$ é equivalente a probabilidade de que $f_w(x \circ \pi_{vw}) \neq f_u(y \circ \pi_{vu})$

- Portanto, retorna SIM com probabilidade $\geq (1-2\varepsilon)\frac{1}{2}(1-\rho)$
- → Provamos a *completeness* do verificador.

5.3 Soundness

Lema 4. Para qualquer $\rho \in (-1,0)$ e qualquer $\gamma > 0$, se pelo menos uma fração δ das arestas da instância do BUG forem satisfatíveis, então pode-se provar que o verificador aceita a instância com probabilidade de no máximo $\frac{1}{\pi} \arccos \rho + \gamma$

Prova do Lema 4.

- → Parte difícil da prova da redução. Não será discutida aqui.
- \rightarrow Pode ser encontrada em [2].
- ightarrow Aceitemos que o *soundness* do Teorema 3 vale: Para uma instância NÃO do BUGC (ou seja, no máximo uma fração $s \leq \frac{1}{\pi} \arccos \rho$ das arestas são satisfeitas), temos que o verificador retorna SIM para qualquer prova π com probabilidade de no máximo s.

5.4 Concluindo

- → Os Lemas 3 e 4 provam que podemos criar o verificador PCP do Teorema 3;
- → Temos que o Teorema 3 implica o Teorema 2, dada a redução do verificador para o Max-Cut;
- ightarrow Concluindo, o Teorema 2 (inaproximabilidade do Max-Cut para $\alpha > .878$) é verdadeiro.

6 2-2 Games Conjecture

- → Durante muito tempo, a comunidade acadêmica ficou dividida no que tange à veracidade da UGC. Ainda assim, é tópico de pesquisa há muitos anos, assim como suas variantes.
- → Uma variação do Unique Games é o 2-2 Games. Nesse problema, em vez das *labels* serem únicas para uma restrição, existem *duas alternativas* que a satisfazem.
- → Em janeiro de 2018, um artigo foi publicado pelo Subhash Khot (com outros pesquisadores) que, unido com outros publicados recentemente, prova a 2-2 Games Conjecture, variante mais fraca da UGC para o 2-2 Games.
- → Isso convenceu muitos céticos (alguns dos maiores céticos!) de que a UGC deve ser verdadeira, pela proximidade em relação ao 2-2 GC.
- \rightarrow É dito que isso prova *metade* da UGC.
- → Mais informações sobre a 2-2 Games Conjecture e suas consequências em [3].

Exercício

→ a) Dado a instância do problema do Unique Games a seguir, construa uma instância equivalente do problema Unique Label Cover (vértices, arestas e permutações):

```
Universo: U = \{0, 1, 2, 3\};
```

Variáveis: x_a, x_b, x_c, x_d ;

Restrições:

$$f_1(x_a, x_b): f_1(0,2) = 1, f_1(1,3) = 1;$$

$$f_2(x_a,x_c): f_2(0,2)=1, f_2(1,3)=1;$$

$$f_3(x_b, x_c): f_3(0,1) = 1, f_3(2,3) = 1;$$

$$f_4(x_c, x_d): f_4(0,3) = 1, f_4(1,2) = 1;$$

- \rightarrow b) Verifique se todas as arestas da instância são satisfatíveis.
- → c) Para essa instância pequena, é possível rapidamente verificar quantas arestas são satisfatíveis. Qual a consequência da UGC para o problema, com instâncias quaisquer?

Referências

- [1] S. Arora, B. Barak, and D. Steurer. Subexponential algorithms for unique games and related problems. *J. ACM*, 62(5):42:1–42:25, Nov. 2015.
- [2] S. Khot, G. Kindler, E. Mossel, and R. O'Donnell. Optimal inapproximability results for max-cut and other 2-variable csps? *SIAM J. Comput.*, 37(1):319–357, Apr. 2007.
- [3] E. Klarreich. First big steps toward proving the unique games conjecture, Apr 2018.
- [4] Subhash Khot. On the unique games conjecture. In 46th Annual IEEE Symposium on Foundations of Computer Science (FOCS'05), pages 3–, Oct 2005.
- [5] D. P. Williamson and D. B. Shmoys. *The Design of Approximation Algorithms*. Cambridge University Press, New York, NY, USA, 1st edition, 2011.