Homework #2

Build a logistic regression model to predict heart disease

Import data and preview

```
data1 = readtable("../cleveland_data_revised.xlsx");
head(data1,5)
```

ans = 5×14 table

	Age	SEX	chestPain	restingBP	cholest	highBloodSugar	ECG
1	63	1	1	145	233	1	2
2	67	1	4	160	286	0	2
3	67	1	4	120	229	0	2
4	37	1	3	130	250	0	0
5	41	0	2	130	204	0	2

Build model that predicts whether individual has heart disease, and model that predicts disease severity. Evaluate using 3-fold cross validation.

```
X = data1{:,1:13};
Y = double(data1.diseaseSeverity > 0); % convert logical to double

Y2 = data1.diseaseSeverity;
s = rng;
```

```
indices = crossvalind('kfold', size(data1,1),3);

accuracy = zeros(1,3);
precision = zeros(1,3);

recall = zeros(1,3);

rank = zeros(1,3);

avg_error = zeros(1,3);

for i = 1:3
    rng(s)
    test = indices == i;
    train = ~test;

Xtrain = X(train,:);
    Ytrain = categorical(Y(train,:));
    Ytrain2 = categorical(Y2(train,:));

Xtest = X(test,:);
```

```
Ytest = Y(test,:);
    Ytest2 = Y2(test,:);
    % Model 1
    [mdl1,~,stats1] = mnrfit(Xtrain,Ytrain);
    probability = mnrval(mdl1, Xtest);
    Ypred = round(probability(:,2));
    accuracy(i) = sum(Ypred==Ytest)/length(Ypred);
    precision(i) = sum(Ypred==1 & Ytest==1)/sum(Ypred==1);
    recall(i) = sum(Ypred==1 & Ytest==1)/sum(Ytest==1);
    % Model 2
    [mdl2,~,stats2] = mnrfit(Xtrain,Ytrain2);
    probability2 = mnrval(mdl2, Xtest);
    [max prob, index] = max(probability2,[],2); % find highest probability
    Ypred2 = index-1; % subtract 1 so that index equals disease severity
    rank(i) = corr(Ytest2, Ypred2, "type", "Spearman", "rows", "complete");
    avg error(i) = nanmean(abs(Ypred2-Ytest2));
    accuracy2(i) = sum(Ypred2==Ytest2)/length(Ypred2);
end
```

Model 1 Performance

```
mean(accuracy)
ans = 0.8086

mean(precision)
ans = 0.8042

mean(recall)
ans = 0.7962

confusionchart(Ytest, Ypred); % uses last cross-validation iteration
```


Model 2 Performance

```
mean(rank)
ans = 0.6776

mean(avg_error)
ans = 0.6436

mean(accuracy2)
ans = 0.5710
```

Compare models to distribution of 100 random guesses using a t-test

```
guess_accuracy1 = zeros(100,1);
guess_accuracy2 = zeros(100,1);
for i = 1:100
    mdl1_guess = Y(randperm(length(Ytest)));
    mdl2_guess = Y2(randperm(length(Ytest2)));

guess_accuracy1(i,1) = sum(mdl1_guess == Ytest)/length(Ytest);
    guess_accuracy2(i,1) = sum(mdl2_guess == Ytest2)/length(Ytest2);
end
```

```
mean(guess_accuracy1)
ans = 0.4939

mean(guess_accuracy2)
ans = 0.3407

[h_mdl1, p_mdl1] = ttest2(accuracy, guess_accuracy1)

h_mdl1 = 1
p_mdl1 = 1.7905e-18

[h_mdl2, p_mdl2] = ttest2(accuracy2, guess_accuracy2)

h_mdl2 = 1
p_mdl2 = 2.6424e-18
```

Most important features from each model, based on p-value

Model 1

```
% Must subtract 1 from index to account for intercept term
data1.Properties.VariableNames([12, 13, 3, 10])

ans = 1×4 cell array
{'fluoroscopy'} {'thalliumTest'} {'chestPain'} {'ECGDepression'}
```

Model 2

```
data1.Properties.VariableNames([12,11,13,8])

ans = 1×4 cell array
{'fluoroscopy'} {'slopeST'} {'thalliumTest'} {'maxHR'}
```

Brain cancer survival data set

Import and inspect data

```
data2 = readtable("Top 100 Genes.xlsx");
tail(data2,5)
```

ans = 5×104 table

. .

	PATIENT_ID	SurvivalDaysOS	SurvivalDaysPF	Test	LIX1L	NEU4
1	'GSM1912975'	313	313	0	0.1122	-1.5424
2	'GSM1912976'	962	277	0	0.8193	0.9344
3	'GSM1912977'	826	826	0	0.3891	1.7826
4	'GSM1912978'	257	257	0	-0.3570	-1.5359
5	'GSM1912979'	593	395	1	0.4702	2.6611

Create train and tests sets X and Y

```
Xtrain = data2{data2.Test==0,5:end};
Xtest = data2{data2.Test==1,5:end};

Ytrain = data2{data2.Test==0,3};
Ytest = data2{data2.Test==1,3};
```

Build lasso model

```
[B1, Fit] = lasso(Xtrain, Ytrain, 'CV', 10);
B1_coeff = B1(:, Fit.IndexMinMSE);
B1_intercept = Fit.Intercept(Fit.IndexMinMSE)
```

B1_intercept = 458.9062

Build stepwise model

```
[B2,~,~,inmodel,stats] = stepwisefit(Xtrain,Ytrain,"display","off");
```

Use models to predict survival (PFS). Calculate correlation and mean absolute error Lasso

```
Ypred_lasso = Xtest * B1_coeff + B1_intercept;
r_lasso = corr(Ypred_lasso,Ytest)

r_lasso = 0.2258

avg_error_lasso = mean(abs(Ypred_lasso-Ytest))

avg_error_lasso = 284.4510
```

Stepwise

```
Ypred_step = Xtest(:,find(stats.PVAL < 0.05))*B2(find(stats.PVAL < 0.05)) + stats.inter
r_stepwise = corr(Ypred_step,Ytest)

r_stepwise = 0.4530

avg_error_stepwise = mean(abs(Ypred_step-Ytest))

avg_error_stepwise = 275.6031</pre>
```

Compare regression methods with linear regession

Build linear regression model with top 15 correlated genes

Estimate

```
% Find correlation of all 100 genes and then extract data for top 15 genes
r_100 = corr(Xtrain,Ytrain);
[r_15,index_15] = maxk(abs(r_100),15);

% Create new training and test sets with top 15 genes
Xtrain_15 = Xtrain(:,index_15);
Xtest_15 = Xtest(:,index_15);
mdl = fitlm(Xtrain_15,Ytrain)
```

```
 \begin{array}{l} \text{mdl =} \\ \text{Linear regression model:} \\ \text{y} \sim 1 + \text{x1} + \text{x2} + \text{x3} + \text{x4} + \text{x5} + \text{x6} + \text{x7} + \text{x8} + \text{x9} + \text{x10} + \text{x11} + \text{x12} + \text{x13} + \text{x14} + \text{x15} \\ \end{array}
```

tStat

pValue

Estimated Coefficients:

E3 CIMA CE	55	Cocac	pvarue
457.33	56.354	8.1153	5.9897e-09
213.75	120.73	1.7704	0.087166
-160.74	114.06	-1.4093	0.16939
-33.507	159.69	-0.20982	0.83527
174.4	195.9	0.89022	0.38068
31.944	170.59	0.18725	0.85277
180.64	128.12	1.4099	0.1692
-80.843	193	-0.41887	0.67839
215.96	213.79	1.0102	0.32077
48.88	44.087	1.1087	0.27666
8.2189	69.133	0.11888	0.90619
-41.904	167.72	-0.24985	0.80447
63.079	59.104	1.0673	0.29466
-120.49	156.75	-0.76867	0.44831
55.38	60.463	0.91593	0.36726
-94.028	173.23	-0.54279	0.59142
	457.33 213.75 -160.74 -33.507 174.4 31.944 180.64 -80.843 215.96 48.88 8.2189 -41.904 63.079 -120.49 55.38	457.33 56.354 213.75 120.73 -160.74 114.06 -33.507 159.69 174.4 195.9 31.944 170.59 180.64 128.12 -80.843 193 215.96 213.79 48.88 44.087 8.2189 69.133 -41.904 167.72 63.079 59.104 -120.49 156.75 55.38 60.463	457.33 56.354 8.1153 213.75 120.73 1.7704 -160.74 114.06 -1.4093 -33.507 159.69 -0.20982 174.4 195.9 0.89022 31.944 170.59 0.18725 180.64 128.12 1.4099 -80.843 193 -0.41887 215.96 213.79 1.0102 48.88 44.087 1.1087 8.2189 69.133 0.11888 -41.904 167.72 -0.24985 63.079 59.104 1.0673 -120.49 156.75 -0.76867 55.38 60.463 0.91593

SE

```
Number of observations: 45, Error degrees of freedom: 29 Root Mean Squared Error: 231 R-squared: 0.674, Adjusted R-Squared: 0.505 F-statistic vs. constant model: 3.99, p-value = 0.000688
```

Predict survival (PFS) in test set and measure model accuracy

```
Ypred_norm = predict(mdl, Xtest_15);

r_norm = corr(Ytest, Ypred_norm)

r_norm = 0.0677

avg_error = mean(abs(Ypred_norm-Ytest))

avg_error = 279.0284
```

Compare correlation and number of features of 3 methods

```
% Create labels for bar graphs
x = categorical({'Normal','Lasso','Stepwise'});
x = reordercats(x,{'Normal','Lasso','Stepwise'});

% Correlation bar graph.
bar(x,[r_norm,r_lasso,r_stepwise])
xlabel("Regression Method")
ylabel("Correlation Coefficient, r")
title("Survival Days PF Correlation ")
```



```
% Find number of features in each model
size_lin_reg = size(mdl.Coefficients,1)-1 % subtract 1 for intercept term

size_lin_reg = 15

size_lasso = sum(Bl_coeff ~= 0)

size_lasso = 31

size_stepwise = length(find(stats.PVAL < 0.05))

size_stepwise = 5

% Number of features bar graph
bar(x,[size_lin_reg,size_lasso,size_stepwise])
xlabel("Regression Method")
ylabel("Number of Features")
title("Number of Features per Regression Method ")</pre>
```

