# Университет ИТМО Физико-технический мегафакультет Физический факультет



| Группа М3213                                              | К работе допущен |
|-----------------------------------------------------------|------------------|
| Студент Губанов Константин                                | Работа выполнена |
| Преподаватель <u>Хуснутдинова Наира</u> <u>Рустемовна</u> | Отчет принят     |

# Рабочий протокол и отчет по лабораторной работе №1.02

Изучение скольжения тележки по наклонной плоскости

#### 1. Цель работы

- 1. Экспериментальная проверка равноускоренности движения тележки по наклонной плоскости.
- 2. Определение величины ускорения свободного падения g.

# 2. Задачи, решаемые при выполнении работы

- 1. Измерение времени движения тележки по рельсу с фиксированным углом наклона.
- 2. Измерение времени движения тележки по рельсу при разных углах наклона рельса к горизонту.
- 3. Исследование движения тележки при фиксированном угле наклона рельса. Проверка равноускоренности движения тележки.
- 4. Исследование зависимости ускорения тележки от угла наклона рельса к горизонту. Определение ускорения свободного падения.

#### 3. Объект исследования

Тележка, скользящая по наклонной плоскости с воздушной подушкой.

#### 4. Метод экспериментального исследования

Многократные измерения времени прохождения тележки через оптические ворота и проверка теории скользящего по наклонной поверхности тела.

#### 5. Рабочие формулы и исходные данные

- Ускорение тележки:  $a = \frac{\sum Z_i Y_i}{\sum Z_i^2}$
- СКО ускорения:  $\sigma_a = \sqrt{\frac{\sum (Y_i aZ_i)^2}{(N-1)\sum Z_i^2}}$
- Значение угла наклона рельса к горизонту:  $\sin \alpha = \frac{(h_0 h) (h'_0 h')}{x' x}$
- Значение ускорения:  $\bar{a} = \frac{2(x_2 x_1)}{t_2^2 t_1^2}$
- Коэффициенты линейной зависимости для определения ускорения свободного падения:
  - $\circ$  Коэффициент В (ускорение свободного падения g):  $B \equiv g = \frac{\sum a_i \sin \alpha_i \frac{1}{N} \sum a_i \sum \sin \alpha_i}{\sum \sin^2 \alpha_i \frac{1}{N} (\sum \sin \alpha_i)^2}$
  - о Коэффициент А:  $A = \frac{1}{N} (\sum a_i B \sum \sin \alpha_i)$
- СКО для ускорения свободного падения:  $\sigma_g = \sqrt{\frac{\sum d_i^2}{D(N-2)}}$ , где  $d_i = a_i (A+B\sin\alpha_i)$  и  $D = \sum \sin^2\alpha_i \frac{1}{N}(\sum\sin\alpha_i)^2$

# 6. Измерительные приборы

| № n/n | Наименование               | Предел<br>измерений | Цена деления | $\it \Delta_{\scriptscriptstyle  m H}$ |
|-------|----------------------------|---------------------|--------------|----------------------------------------|
| 1     | Линейка на рельсе          | 1,3 м               | 1 см/дел     | 5 мм                                   |
| 2     | Линейка на угольнике       | 340 мм              | 1 мм/дел     | 0,5 мм                                 |
| 3     | ПКЦ-3 в режиме секундомера | 100 с               | 0,1 с        | 0,1 с                                  |

#### 7. Схема установки.



Общий вид экспериментальной установки

- 1. Рельс с сантиметровой шкалой на лицевой стороне
- 2. Тележка
- 3. Воздушный насос
- 4. Источник питания насоса ВС 4-12
- 5. Опоры рельса
- 6. Опорная плоскость (поверхность стола)
- 7. Фиксирующий электромагнит
- 8. Оптические ворота
- 9. Цифровой измерительный прибор ПКЦ-3
- 10. Пульт дистанционного управления прибором ПКЦ-3
- 11. Линейка угольник

# 8. Результаты прямых измерений и их обработки

Таблица 2. Координаты высоты:

| <i>x</i> , M | x', M | $h_0$ , мм | $h_0^\prime$ , MM |
|--------------|-------|------------|-------------------|
| 0,22         | 1     | 210        | 201               |

### Таблица 3:

|    | Измеренные величины       |           |                           |                           | Рассчитанные величины                                 |                                |
|----|---------------------------|-----------|---------------------------|---------------------------|-------------------------------------------------------|--------------------------------|
| Nº | <i>x</i> <sub>1</sub> , M | $x_2$ , M | <i>t</i> <sub>1</sub> , c | <i>t</i> <sub>2</sub> , C | $\begin{array}{c} x_2-x_1, \\ \mathbf{M} \end{array}$ | $\frac{t_2^2 - t_1^2}{2}, c^2$ |

| 1 | 0,15 | 0,4 | 1,1 | 2,1 | 0,25 | 1,6   |
|---|------|-----|-----|-----|------|-------|
| 2 | 0,15 | 0,5 | 1,1 | 2,5 | 0,35 | 2,52  |
|   | ,    | ,   | •   | •   | •    | ,     |
| 3 | 0,15 | 0,7 | 1,1 | 3   | 0,55 | 3,895 |
|   |      |     |     |     |      |       |
| 4 | 0,15 | 0,9 | 1,5 | 3,6 | 0,75 | 5,355 |
|   |      |     |     |     |      |       |
| 5 | 0,15 | 1,1 | 1,4 | 4   | 0,95 | 7,02  |

### Расчет ускорения методом наименьших квадратов

(МНК)Для нахождения ускоренияaа методом наименьших квадратов (МНК) используем формулу:  $a=\frac{\sum Z_i Y_i}{\sum Z_i^2}$ , где $Y=x_2-x_1$ и  $Z=\frac{t_2^2-t_1^2}{2}$  =>  $a=\frac{14.1095}{102.03285}\approx 0.1383$  м/с²

**Суммируем квадраты отклонений:**  $\Sigma (Y_i - aZ_i)^2 = 0.0008256 + 5.933 \times 10^{-6} + 0.0001015 + 0.0001635 + 2.71 \times 10^{-6} = 0.001099273$ 

Подставляем значения в формулу для  $\sigma_a$ :

$$\sigma_a = \sqrt{\frac{0.001099273}{(5-1) \cdot 102.03285}} \approx 0.0019 \, \text{m/c}^2$$

#### Таблица 4:

| $N_{\Pi\Lambda}$ | <i>h</i> , мм | <i>h</i> ′, мм | № | <i>t</i> <sub>1</sub> , c | t <sub>2</sub> , c |
|------------------|---------------|----------------|---|---------------------------|--------------------|
|                  |               |                | 1 | 1,4                       | 4,1                |
|                  |               |                | 2 | 1,4                       | 4,1                |
| 1                | 210           | 201            | 3 | 1,4                       | 4                  |
|                  |               |                | 4 | 1,4                       | 4                  |
|                  |               |                | 5 | 1,4                       | 4                  |
|                  |               |                | 1 | 1                         | 3                  |
|                  |               |                | 2 | 1                         | 3                  |
| 2                | 220           | 202            | 3 | 1                         | 3                  |
|                  |               |                | 4 | 1,1                       | 3                  |
|                  |               |                | 5 | 1                         | 3                  |
|                  |               | 203            | 1 | 0,9                       | 2,4                |
|                  |               |                | 2 | 0,8                       | 2,4                |
| 3                | 230           |                | 3 | 0,8                       | 2,4                |
|                  |               |                | 4 | 0,9                       | 2,4                |
|                  |               |                | 5 | 0,9                       | 2,4                |
|                  |               |                | 1 | 0,8                       | 2,1                |
|                  | 240           |                | 2 | 0,7                       | 2,1                |
| 4                |               | 204            | 3 | 0,8                       | 2,1                |
|                  |               |                | 4 | 0,7                       | 2,1                |
|                  |               |                | 5 | 0,7                       | 2,1                |
| 5                | 250           | 205            | 1 | 0,6                       | 1,9                |
| <u> </u>         | 250           | 203            |   | 0,7                       | 1,9                |

| 1 1 | İ   |     |
|-----|-----|-----|
| 3   | 0,7 | 1,9 |
| 4   | 0,7 | 1,9 |
| 5   | 0,7 | 1,9 |

#### Обозначения:

 $N_{\Pi\Lambda}$  – количество пластин толщиной d=1,000 см h – высота на координате x=0,220 м h' – высота на координате x'=1,000 м

#### 9. Расчет результатов косвенных измерений.

**1)** Вычисление синуса угла наклона рельса с измененными высотами Формула для вычисления синуса угла наклона рельса к горизонту с измененными высотами:

$$\sin a = \frac{(h - h_0) - (h` - h`_0)}{x` - x}$$

Где:

h — высота рельса в начальной точке x = 0.22 м  $h_0 = 210$ мм — начальная высота в точке x = 0.22 м h` — высота рельса в конечной точке x` = 1.00 м h` $_0$  = 201 мм — высота в точке x` = 1.00 м

x = 0.22м — координата начальной точки; x` = 1.00м — координата конечной точки; sin a — синус угла наклона рельса.

sin(a1) = 0 sin(a2) = -0.0115 sin(a3) = -0.0231 sin(a4) = -0.0346sin(a5) = -0.0462

2) Вычисление средних значений времени и их погрешностей

Для  $N_{\Pi\Pi}$  1:  $\langle t_1 \rangle = 1,4$ ,  $\langle t_2 \rangle = 4,04$  Для  $N_{\Pi\Pi}$  2:  $\langle t_1 \rangle = 1,02$ ,  $\langle t_2 \rangle = 3$  Для  $N_{\Pi\Pi}$  3:  $\langle t_1 \rangle = 0,86$ ,  $\langle t_2 \rangle = 2,4$  Для  $N_{\Pi\Pi}$  4:  $\langle t_1 \rangle = 0,74$ ,  $\langle t_2 \rangle = 2,1$  Для  $N_{\Pi\Pi}$  5:  $\langle t_1 \rangle = 0,68$ ,  $\langle t_2 \rangle = 1,9$ 

3) Вычисление ускорения и его погрешности Формула для вычисления ускорения:

$$\langle a \rangle = \frac{2(x_2 - x_1)}{t_2^2 - t_1^2}$$

где:

x1 = 0.22 M

x2 = 1.00 M

t1 и t2 — средние значения времени для каждой серии.

Теперь давайте рассчитаем а для каждой серии измерений:

Для первой серии  $(t_1=1.4, t_2=4.04)$ :

$$\langle a \rangle = \frac{2(1 - 0.22)}{4.04^2 - 1.4^2} \approx 0.1086$$

Для второй серии (t₁=1.02, t₂=3):

$$\langle a \rangle = \frac{2(1 - 0.22)}{3^2 - 1.02^2} \approx 0.1960$$

Для третьей серии ( $t_1$ =0.86,  $t_2$ =2.4):

$$\langle a \rangle = \frac{2(1 - 0.22)}{2.4^2 - 0.86^2} \approx 0.3107$$

Для четвёртой серии ( $t_1$ =0.74,  $t_2$ =2.1):

$$\langle a \rangle = \frac{2(1-0.22)}{2.1^2-0.74^2} \approx 0.4039$$

Для пятой серии (t<sub>1</sub>=0.68, t<sub>2</sub>=1.9):

$$\langle a \rangle = \frac{2(1 - 0.22)}{1.9^2 - 0.68^2} \approx 0.4956$$

Вычисление коэффициентов А и В (ускорение свободного падения) Формула для вычисления:

$$B \equiv g = \frac{\sum a_i \sin \alpha_i - \frac{1}{N} \sum a_i \sum \sin \alpha_i}{\sum \sin^2 \alpha_i - \frac{1}{N} (\sum \sin \alpha_i)^2} = -8.494$$
$$A = \frac{1}{N} \left( \sum a_i - B \sum \sin \alpha_i \right) = 0.107$$
$$\sigma_g = \sqrt{\frac{\sum d_i^2}{D(N-2)}} = 0.0069$$

Таблица 5:

| $N_{\Pi A}$ | sin α   | $\langle t_1  angle \pm \varDelta t_1$ , C | $\langle t_2  angle \pm \Delta t_2$ , C | $\langle a \rangle \pm \Delta a , \frac{M}{c^2}$ |
|-------------|---------|--------------------------------------------|-----------------------------------------|--------------------------------------------------|
| 1           | 0       | $1.40 \pm 0.000$                           | $4.040 \pm 0.024$                       | $0.109 \pm 0.0017$                               |
| 2           | -0.0115 | $1.020 \pm 0.02$                           | $3.000 \pm 0.000$                       | 0.196 ± 0.0020                                   |
| 3           | -0.0231 | $0.860 \pm 0.024$                          | $2.400 \pm 0.000$                       | 0.311 ± 0.0038                                   |
| 4           | -0.0346 | $0.740 \pm 0.024$                          | $2.100 \pm 0.000$                       | $0.404 \pm 0.0052$                               |
| 5           | -0.0462 | $0.680 \pm 0.02$                           | 1.900 ± 0.000                           | 0.496 ± 0.0062                                   |

#### 10. Расчет погрешностей измерений

По формуле  $\Delta a = 2\sigma_a$  можем найти абсолютную погрешность коэффициента a для доверительной вероятности,  $\Delta a = 0.0121$  м/с<sup>2</sup>

По формуле  $\varepsilon_a=\frac{\Delta a}{a}\cdot 100\%$  можем найти относительную погрешность ускорения,  $\varepsilon_a=13{,}24\%$ 

По формуле  $\Delta g = 2\sigma_g$  можем найти абсолютную погрешность ускорения свободного падения  $\Delta g = 1,128 \; \text{м/c}^2$ 

По формуле  $\varepsilon_g = \frac{\Delta g}{g} \cdot 100\%$  можем найти относительную погрешность g,  $\varepsilon_g = 12,82\%$ 

По формуле  $\Delta g = |g_{_{^{3}\mathrm{KCII}}} - g_{_{\mathrm{Taf},\mathrm{I}}}|$  можем найти абсолютное отклонение экспериментального значения ускорения свободного падения  $\Delta g = 1,022~\mathrm{m/c^2}$ 

# 11. Графики.





#### 12. Окончательные результаты.

Относительная погрешность ускорения  $\varepsilon_a=13,24\%$  Абсолютная погрешность коэффициента a  $\Delta a=0,0121$  Значение ускорения свободного падения  $g=(8,797\pm1,128)~\text{м/c}^2$  Относительная погрешность ускорения свободного падения  $\varepsilon_g=12,82\%$  Абсолютное отклонение экспериментального значения ускорения свободного падения  $g_{\text{эксп}}$  от его табличного значения  $g_{\text{табл}}$  для Санкт-Петербурга  $\Delta g=1,022~\text{м/c}^2$ 

#### 13. Выводы и анализ результатов работы.

В рамках работы был проведен эксперимент по исследованию равноускоренного движения тележки по наклонной плоскости. Проведены необходимые расчеты и построен график зависимости ускорения (a) от угла наклона плоскости ( $\sin \alpha$ ). Анализ линейности графика подтвердил, что движение является равноускоренным, а ускорение зависит линейно от ( $\sin \alpha$ ).

Также было рассчитано значение ускорения свободного падения ( g ) на основе данных эксперимента. Экспериментальное значение ускорения свободного падения отличается от табличного значения для города Санкт-Петербург на  $(1.022~{\rm M/c^2})$ , что укладывается в диапазон абсолютной погрешности, равной  $(1.128~{\rm M/c^2})$ . Это позволяет сделать вывод о корректности эксперимента.