ÖRNEK SORULAR

- 1. Şekil 1 deki doğrultucu devrenin girişine tepe değeri $v_i = 24 \, Volt$ olan bir sinüs işareti uygulandığında;
- a) Yük üzerindeki v_a çıkış geriliminin dalga şeklini çiziniz
- b) Yük üzerindeki doğru gerilim değerini integral hesabını yaparak hesaplayınız ($R_{v\bar{u}k}=18\,k\Omega$ ve $R_1=6\,k\Omega$). (Devredeki diyotlar idealdir)
- c) Devredeki diyotlar üzerindeki PIV değerlerini bulunuz. (Diyotlar idealdir)

- 2. Şekil 1 deki doğrultucu devrenin girişine $v_i = 12.8 \sin \omega t \, Volt$ gerilimi uygulandığında;
- a) R_{yiik} üzerinde oluşacak v_o çıkış geriliminin dalga şeklini tepe değerini göstermek suretiyle çiziniz.
- b) Yük üzerindeki ortalama gerilimini entegral hesabını yaparak hesaplayınız ($R_{y\bar{u}k}=6\,k\Omega$ ve $R_2=R_3=4\,k\Omega$).
- c) Devredeki diyotlar üzerindeki PIV değerlerini bulunuz. (Diyotlar idealdir)

- 3. Şekil 1 deki doğrultucu devrenin girişine tepe değeri 9.6 Volt olan bir sinüs işareti uygulandığında;
- a.) v_o çıkış geriliminin dalga şeklini değerini göstererek çiziniz ve her bir diyot için PIV değerlerini elde ediniz.
- b.) Yük üzerindeki doğru gerilimi hesaplayınız ($R_{y\bar{u}k}=4\,k\Omega$, $R_1=R_2=8\,k\Omega$) (Diyotlar idealdir)
- c.) Devredeki diyotlar üzerindeki PIV değerlerini bulunuz. (Diyotlar idealdir)

4. Şekil 3 deki kırpıcı devrenin girişine tepe değeri 8 Volt olan Şekil 2 deki gibi bir kare dalga işaret uygulandığında, çıkış geriliminin dalga şeklini veriniz. (Diyotlar idealdir)

- **5**. Şekil 2 deki paralel kırpıcı devrede kullanılan diyotlar **silisyum diyot** olduğuna göre, devrenin girişine tepe değeri 9 Volt olan şekil 3 deki gibi bir üçgen dalga işaret uygulandığında;
- a.) Çıkış geriliminin dalga şeklini veriniz.
- b.) $R = 1 k\Omega$ luk direnç üzerinde düşen gerilimin dalga şeklini veriniz.

Şekil 2

6. Şekil 1 deki kırpıcı devrenin girişine, şekil 2 deki gibi bir üçgen dalga işaret uygulandığında, devrenin çıkışındaki gerilim dalga şeklini açıklayarak belirleyiniz. (Diyot idealdir)

7. Şekil 1 deki kenetleme devresinin girişine frekansı $f = 1\,kHz$ olan şekil 2 deki gibi bir v_i giriş işareti uygulandığında, $R = 100\,k\Omega$ luk direnç uçlarındaki v_o çıkışının dalga şeklini çiziniz.

8. Girişine şekil 1 deki gibi frekansı 1 kHz olan bir kare dalga işaret uygulandığında, çıkışında şekil 2 deki gibi bir v_o gerilimi elde edebileceğimiz bir kenetleme devresi tasarlayınız. Tasarlamış olduğunuz devredeki elemanlara değer tayin ederek devrenin çalışmasını her bir aralık için detaylı bir biçimde açıklayınız.

9. Girişine şekil 1 deki gibi frekansı 1 kHz olan bir kare dalga V_{input} giriş işareti uygulandığında, çıkışında şekil 2 deki gibi bir V_{output} çıkış gerilimi elde edebileceğimiz bir kenetleme devresi tasarlayınız. Tasarlamış olduğunuz devredeki elemanlara değer tayin ederek devrenin çalışmasını açıklayınız.

10. Girişine şekil 1 deki gibi frekansı 1 kHz olan bir kare dalga V_{input} giriş işareti uygulandığında, çıkışında şekil 2 deki gibi bir V_{output} çıkış gerilimi elde edebileceğimiz bir kenetleme devresi tasarlayınız. Tasarlamış olduğunuz devredeki elemanlara değer tayin ederek devrenin çalışmasını açıklayınız.

11. Şekil 3 deki kenetleme devresinin girişine frekansı f=1kHz olan şekil 4 deki gibi bir işaret uygulandığında, R direnci uçlarındaki ν₀ çıkışının değerini bulunuz ve dalga şeklini çiziniz. (Diyod idealdir)

12. Şekil 1 deki kenetleme devresinin girişine frekansı $f = 1\,kHz$ olan şekil 2 deki gibi bir v_i giriş işareti uygulandığında, $R = 100\,k\Omega$ luk direnç uçlarındaki v_o çıkışının dalga şeklini çiziniz.

- 13. Şekil 3 deki zener devresinde;
- (a) $R_{\rm L}$ =180 Ω iken $V_{\rm RL}$, $I_{\rm RL}$, $I_{\rm Z}$ ve $I_{\rm RS}$ değerlerini bulunuz.
- (b) $R_L=470\Omega$ iken V_{RL} , I_{RL} , I_Z ve I_{RS} değerlerini bulunuz. $(V_Z=10V$ ve $P_{Z\max}=400mW$)

- 14. $1k\Omega$ luk bir yük direnci üzerinde 20 voltluk bir çıkış gerilimi sağlayacak, 30 ila 50 volt arası girişe sahip bir gerilim regülatörü tasarlayınız. Yani uygun R_S değerini ve maksimum zener akımını ($I_{Z\max}$) bulunuz.
- 15. Giriş gerilimi 20 volt olacak şekilde, 0.2 kohm ile 0.4 kohm aralığında değişen bir yük direnci üzerinde 10 voltluk bir çıkış gerilimi sağlayacak bir gerilim regülatörü tasarlayarak çiziniz. Yani uygun $R_{\scriptscriptstyle S}$ değerini ve $I_{\scriptscriptstyle Z_{\rm max}}$ maksimum zener akımını bulunuz.
- 16. a.) Aşağıdaki devrede V_i giriş gerilimi $16\,V$ olmak üzere aşağıdaki şekildeki devrede I_{RL} yük akımının 0 ila 200 mA değer aralığında değişmesi durumunda V_{RL} yi $12\,V$ da tutacak R_S ve R_L değerlerini bulunuz.
- b.) a şıkkındaki zener diyod için $P_{Z \max}$ değerini bulunuz.

