Discrete Structures. CSCI-150. Summer 2014.

Homework 1.

Due Thr. June 5, 2014.

Problem 1

Using the following propositions:

p: "Phyllis goes out for a walk".

r: "The Moon is out".

s: "It is snowing".

Formulate these statements in words (try to keep the propositions unchanged, if you replace a proposition with its equivalent, prove that your substitution is correct):

(a) $(r \land \neg s) \to p$

(b) $r \to (\neg s \to p)$ (c) $\neg (p \leftrightarrow (s \lor r))$

Problem 2 (Graded)

Write out the truth table for the following propositions:

(a) $(\neg p) \leftrightarrow q$

(b) $(p \land q) \rightarrow \neg (p \lor q)$

(c) $(r \land \neg s) \to p$

Compute one operation at a time, don't skip steps.

Problem 3 (Graded)

Prove logical equivalence:

$$\neg((a \land b) \land c) \equiv \neg a \lor (\neg b \lor \neg c).$$

It is advised to do the proof by constructing a chain of equivalences. (Hint: using De Morgan's Law and associativity of \vee).

Problem 4 (Graded)

Check if the given propositions are equivalent or not:

(a) $\neg (p \leftrightarrow s)$ and $(\neg p) \leftrightarrow (\neg s)$

(b) $p \leftrightarrow s$ and $(\neg p) \leftrightarrow (\neg s)$

(c) $(p \land \neg r) \land \neg s$ and $\neg (p \to (r \lor s))$

(You are free to do the proof either by the truth table method, or using known equivalences).

1

Problem 5

You are given an argument, but it's incomplete. Finish the work by giving the reasons why each step was correct.

(a) Prove

$$\begin{array}{c}
p \wedge q \\
q \to (r \wedge s) \\
\hline
r
\end{array}$$

Complete the argument

- (1) $p \wedge q$ Given.
- (2) $q \to (r \land s)$ Given.
- (3) q ...
- $(4) \quad r \wedge s \qquad \dots$
- (5) r \dots

(b) Prove

$$p \to (\neg s \land r)$$

$$s \lor t$$

$$p$$

$$t$$

Complete the argument

- (1) $p \to (\neg s \land r)$ Given.
- (2) $s \vee t$ Given.
- (3) p Given.
- $(4) \quad \neg s \wedge r \qquad \dots$
- $(5) \quad \neg s \qquad \dots$
- (6) t \dots

(c) Prove

$$\frac{(\neg p \lor s) \leftrightarrow q}{\neg q}$$

Complete the argument

- (1) $(\neg p \lor s) \leftrightarrow q$ Given.
- (2) $\neg q$ Given.
- (3) $((\neg p \lor s) \to q) \land (q \to (\neg p \lor s))$...
- $(4) \quad (\neg p \lor s) \to q \qquad \dots$
- $(5) \quad \neg(\neg p \lor s) \qquad \dots$
- $(6) \quad \neg(\neg p) \land \neg s \qquad \dots$
- $(7) \quad \neg(\neg p) \qquad \dots$
- (7) p \dots