Automation of slide matching

Libraries Used:

- 1. Numpy
- 2. OpenCV

Implementation Details

 All the images are first converted to grayscale. This improves the efficiency and also helps in edge detection.

Original Image vs Grayscale Image

 Using Adaptive thresholding the image is converted into a binary image. This also removes noise from the images.

After Adaptive Thresholding

• The sobel operator differentiates the image along a given axis by convolving it with the kernel matrix.

Kernel along
$$x - axis$$
 $G_x = [-101; -202; -101]$

Kernel along
$$y - axis G_y = [-1 -2 -1; 0 0 0; 1 2 1]$$

After finding derivatives along the 2 axes we find the magnitude (L2 Norm) of the derivative. This gives us the 'edges' of the image.

After Applying Sobel operator (Twice)

• For finding the slide corresponding to a frame we iterate over all the slides and find the cross-correlation of the frame with them using the formula

$$CC = \frac{\sum frame(i,j) * slide(i,j)}{\left[\sum [frame(i,j)]^2 * \sum [slide(i,j)]^2\right]^{0.5}}$$
 (where frame and slide are normalized)

The slide giving the maximum correlation with the frame matches the frame.