Chapter 2: Limits and Continuity

2.1 Rate of Change and Limits

The limit of a function represents the value a function *approaches* for a given x value.

$$\lim_{x \to c} f(x) = L$$

The limit of f as x approaches c equals L.

This is not always the value of the function at $\emph{c}, f(c)$, but the value the function approaches.

Consider limits for functions you have seen before:

$$\lim_{x \to 1} x^2 = 1$$

$$(-7.4)$$

$$(0.1)$$

$$\lim_{x \to 1} x^2 = 4$$

$$(-7.4)$$

Consider limits for functions you have seen before:

$$\lim_{x \to 1} \frac{x^2 - 1}{x - 1}$$
Chapter 9 in Math 621B

$$|| (x + 1) (x - 1)|$$

$$|| (x + 1)$$

Consider limits for functions you have seen

An important limit is given below:

$$\lim_{x \to 0} \frac{\sin x}{x} = \frac{\sin x}{0} = \frac{0}{0} \text{ DIVE}$$

Radians
$$\lim_{x\to 0} \frac{\sin x}{x} = 1$$

We know that x=0 is a discontinuity, but we don't know if it is a hole, or an asymptote. We can use a table of values to see what is happening as x approaches 0.

$$y = \frac{\sin x}{x}$$

[x will always be radians for trigonometric functions, unless otherwise stated]

X	Y		X	Y
-0.1	0.9983341	7	0.1	0.99833417
-0.01	0.999983	33	0.01	0-9999833
-0.001	0.9999998	3	0.001	0.99999 83
0	DNE		0	DNE

$$\lim_{x\to 0}\frac{\sin x}{x} = 1$$

Properties of Limits

If
$$\lim_{x\to c} f(x) = L$$
 and $\lim_{x\to c} g(x) = M$

where L, M, c, and k are real numbers

Sum
$$\lim_{x\to c} (f(x) + g(x)) = L + M$$

Difference
$$\lim_{x\to c} (f(x)-g(x)) = L-M$$

Product
$$\lim_{x\to c} (f(x) \cdot g(x)) = L \cdot M$$

Quotient
$$\lim_{x\to c} \frac{f(x)}{g(x)} = \frac{L}{M}, M \neq 0$$

Constant Multiple $\lim_{x\to c} k \cdot f(x) = k \cdot L$

Power
$$\lim_{x \to c} (f(x))^{r/s} = L^{r/s}$$
 r and s are integers, and $s \neq 0$

$$\lim_{r \to c} k = k$$

Evaluate the limit:

$$\lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^2 + 2(4) - 5$$

$$= 64 - 5(16) + 8 - 5$$

$$= 64 - 80 + 3$$

$$= 67 - 80 = -13$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^2 + 2(4) - 5$$

$$= 64 - 80 + 3 - 5 = -13$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4) - 5$$

$$= \lim_{x\to 4} (x^3 - 5x^2 + 2x - 5) = 4^3 - 5(4)^3 + 2(4)^3$$

Use the product rule to evaluate:

$$\lim_{x \to 0} \frac{\tan x}{x} = \frac{\tan 0}{6} = DNE$$

$$\lim_{x \to 0} \frac{\sin x}{x} = \lim_{x \to 0} \left(\frac{\sin x}{\cos x} + \frac{1}{x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0} \left(\frac{\sin x}{x} - \frac{1}{\cos x} \right)$$

$$= \lim_{x \to 0$$

The "int" function. int(x) -> round **down** to the nearest integer.

$$int(4.5) = 4$$

$$int(-4.5) = -5$$

$$int(4.5) = 4$$
 $int(-4.5) = -5$ $int(-7.999) = -8$

$$int(0.001) = 0$$
 $int(-0.001) = -1$

Page 66 #5-14 20

start #15-20 in class