3: Measuring Robustness

March 15, 2022 8:30 PM

- Sensitivity curve

$$\widehat{\mu}(x_1,\ldots,x_n,x_0) - \widehat{\mu}(x_1,\ldots,x_n)$$

3.1 Influence Function

- Influence function

Approximation to the behavior of estimator $\hat{\theta}$ when the sample contains a small fraction of ϵ outliers

$$\begin{split} \mathrm{IF}_{\widehat{\theta}}(x_0,F) &= \lim_{\varepsilon \downarrow 0} \frac{\widehat{\theta}_{\infty}((1-\varepsilon)F + \varepsilon \delta_{x_0}) - \widehat{\theta}_{\infty}(F)}{\varepsilon} \\ &= \frac{\partial}{\partial \varepsilon} \left. \widehat{\theta}_{\infty}((1-\varepsilon)F + \varepsilon \delta_0) \right|_{\varepsilon \downarrow 0}, \end{split}$$

where δ_{x_0} is the point-mass at x_0 and " \downarrow " stands for "limit from the right"

 $\circ \quad \widehat{\theta}_{\infty}((1-\varepsilon)F + \varepsilon \delta_{x_0})$

is the asymptotic value of the estimator when the underlying distribution is F and a fraction ϵ of outliers is equal to x_0

$$\widehat{\theta}_{\infty}((1-\varepsilon)F + \varepsilon\delta_{x_0}) \approx \widehat{\theta}_{\infty}(F) + \varepsilon \operatorname{IF}_{\widehat{\theta}}(x_0, F)$$

- Standardized sensitivity curve

$$\begin{split} \mathrm{SC}_n(x_0) &= \frac{\widehat{\theta}_{n+1}(x_1,\ldots,x_n,x_0) - \widehat{\theta}_n(x_1,\ldots,x_n)}{1/(n+1)}, \\ &= (n+1) \left(\widehat{\theta}_{n+1}(x_1,\ldots,x_n,x_0) - \widehat{\theta}_n(x_1,\ldots,x_n) \right) \end{split}$$

o just replace epsilon with 1/(n+1)

- Result: 1/(n+1) -> 0

$$SC_n(x_0) \rightarrow_{a.s.} IF_{\widehat{\theta}}(x_0, F),$$

- M-estimator for location influence function

$$\operatorname{IF}_{\widehat{\mu}}(x_0, F) = \frac{\psi(x_0 - \widehat{\mu}_{\infty})}{\operatorname{E}\psi'(x - \widehat{\mu}_{\infty})}$$

- M-estimator for scale incfluence function

$$\operatorname{IF}_{\widehat{\sigma}}(x_0, F) = \widehat{\sigma}_{\infty} \frac{\rho(x_0/\widehat{\sigma}_{\infty}) - \delta}{\operatorname{E}(x/\widehat{\sigma}_{\infty})\rho'(x/\widehat{\sigma}_{\infty})}.$$

- General M-estimator theta hat is the solution of

$$\sum_{i=1}^{n} \Psi(x_i, \widehat{\theta}) = 0$$

- General M-estimator influence function

$$\mathrm{IF}_{\widehat{\theta}}(x_0,F) = -\frac{\Psi(x_0,\widehat{\theta}_\infty)}{B(\widehat{\theta}_\infty,\Psi)}$$

$$B(\theta, \Psi) = \frac{\partial}{\partial \theta} E \Psi(x, \theta),$$

or

$$ext{IF}(x;T,F_{ heta}) = rac{\Psi(x, heta)}{\int rac{\partial}{\partial heta} \Psi(y, heta) dF_{ heta}(y)}.$$

3.2 Breakdown Point

- Definition

Definition 3.1 The asymptotic contamination BP of the estimator $\hat{\theta}$ at F, denoted by $\varepsilon^*(\hat{\theta}, F)$, is the largest $\varepsilon^* \in (0, 1)$ such that for $\varepsilon < \varepsilon^*$, $\hat{\theta}_{\infty}((1 - \varepsilon)F + \varepsilon G)$ remains bounded away from the boundary of Θ for all G.

- Intuition: the breakdown point (BP) of an estimator $\hat{\theta}$ of the parameter θ is the largest amount of contamination (proportion of atypical points) that the data may contain such that $\hat{\theta}$ still gives some information about θ
- 1. Location M-estimators

For monotonic ψ , let

$$k_1 = -\psi(-\infty), k_2 = \psi(\infty)$$

Then BP is ϵ_1^* and ϵ_2^* for $+\infty$ and $-\infty$ correspondingly

$$\varepsilon_j^* = \frac{k_j}{k_1 + k_2} \ (j = 1, 2)$$

For redescending

- 2. Scale and dispersion estimators
 - BP for

SDL: 0

■ MAD: 1/2

■ IQR: 1/4

3.3 Maximum Asymptotic Bias

- Maximum Bias (MS)

$$MB_{\hat{\theta}}(\varepsilon, \theta) = \max\{|b_{\hat{\theta}}(F, \theta)| : F \in \mathcal{F}_{\varepsilon, \theta}\}$$

where b() is bias

- Contamination sensitivity of $\hat{\theta}$

$$\gamma_c(\widehat{\theta}, \theta) = \left[\frac{d}{d\varepsilon} MB_{\widehat{\theta}}(\varepsilon, \theta)\right]_{\varepsilon=0}$$

3.4 Balancing robustness and efficiency

 we recommend when estimating location the bisquare M-estimator with previously computed MAD

3.5 Optimal robustness

- 1. Bias and variance optimality of location estimators
 - Minimax bias: median has smallest maximum bias among all shift equivariant estimators
 - Minimax variance
- 2. Bias optimality of scale and dispersion estimators
 - For simultaneous estimation of location and scale/dispersion with the monotone ψ -

function, the minimax bias estimator is well approximated by the MAD for all ε < 0.5

- For M-estimators of scale with a general location estimator that includes location M-estimators with redescending ψ -functions, the minimax bias estimator is well approximated by the Shorth dispersion estimator (the shortest half of the data, see Problem 2.16b) for a wide range of ε < 0.5
- 3. Infinitesimal approach
- 4. Hampel approach
- 5. Balancing bias and variance

3.6 Multidimensional parameters

- Let $\theta = (\mu, \sigma)$ then

$$\Psi_1(x, \theta) = \psi\left(\frac{x - \mu}{\sigma}\right) \text{ and } \Psi_2(x, \theta) = \rho_{\text{scale}}\left(\frac{x - \mu}{\sigma}\right) - \delta.$$

and the estimators satisfy

$$\sum_{i=1}^{n} \Psi(x_i, \widehat{\boldsymbol{\theta}}) = \mathbf{0},$$

- Generalized IF of $\hat{\theta}$

$$\operatorname{IF}_{\widehat{\boldsymbol{\theta}}}(x_0, F) = -\mathbf{B}^{-1} \boldsymbol{\Psi}(x_0, \widehat{\boldsymbol{\theta}}_{\infty}),$$

where

$$B_{jk} = E \left\{ \left. \frac{\partial \Psi_j(x, \theta)}{\partial \theta_k} \right|_{\theta = \theta_E} \right\}.$$

- Multidimensional M-estimators are asymptotically normal with covariance

$$\mathbf{V} = \mathbf{B}^{-1}(\mathbf{E}\mathbf{\Psi}(x_0, \boldsymbol{\theta})\mathbf{\Psi}(x_0, \boldsymbol{\theta})')\mathbf{B}^{-1},$$

3.7 Estimators as Functionals

- A "function" T whose argument is a distribution (a functional) is

$$T(F) = \mathbf{E}_F x = \int x dF(x).$$

- Mean

It follows that $T(\widehat{F}_n) = \overline{x}$. If **x** is an i.i.d. sample from *F*, the law of large numbers implies that $T(\widehat{F}_n) \to_p T(F)$ when $n \to \infty$.

- M-estimators

T(F) is the solution θ of

$$E_F \Psi(x, \theta) = 0.$$

Then \widehat{T}_{k} (empirical) is a solution of

$$E_{\widehat{F}_n}\Psi(x,\theta) = \frac{1}{n} \sum_{i=1}^n \Psi(x_i,\theta) = 0.$$

- Qualitative robustness: an estimator corresponding to a functional T is said to be qualitatively robust at F if T is continuous at F according to the metric d; that is, for all ε there exists δ such that $d(F, G) < \delta$ implies $|T(F) - T(G)| < \varepsilon$.