Lecture 6

Wednesday, April 12, 2017 1:57 PM

Algorithm:

Algorithm:

$$C_{j} = \sum_{i \in C} d_{ij} \times i_{i}$$

$$LP = F^* + C^* \text{ when } F^* = \sum_{i \in C_{j}} f_{i} \cdot y_{i}$$

- Order clients
$$C_1 \leqslant C_2 \leqslant \cdots \leqslant C_m$$

- For each
$$j \in C$$
, define $F_j = \{i \mid dij \leq 2Cj\}$

$$\Rightarrow) \forall j, \quad \sum x_{ij} < \frac{1}{2} \Rightarrow \sum x_{ij} > \frac{1}{2}$$

$$\downarrow P(i) \quad i \in F_j.$$

	~ .		_
	2	\bigcap	
()	5 /	- MStering	
	ノ [.		
		0	_

- Go over clients in the above order.

- While considering j, if $\exists j'>j$ still 'adira''

St $F_{j'} \cap F_{j'} \neq \emptyset$, kill j' & remove

- Call j responsible for j'

Let $C' \subseteq C$ be the aline clients

every client j'& C' bas a responsible j & C'.

• $\forall j_1, j_2 \in C'$, $f_j \cap F_j = \beta$ by design.

4 Open Fac

For each je C :

- Open cheapest facility i & 5.

- Assign jand all clients j'&C' suho o is responsible for to i

Lecture 6 Page 3

Analysis !-

· FACILITY OPENING COST

ALG-
fac

$$j \in C'$$
 $j \in C'$
 $j \in$

$$\leq 2C_{j} + 2C_{j},$$
 $\leq 4C_{j}, :: \mathbf{q}_{i}, \mathbf{m}_{i},$
 $d(i,j') \leq d(i,j) + d(j,j')$
 $\leq 6C_{j},$

Total conn cost
$$\leq 6 \geq Cj = 6C^*$$

Thm: Above Alzonitem is a 6-appx.

Min-Cost Perfect Matchings in Bipartite
Graphs

$$-c: E \to \mathbb{R}_{>0}$$

Output: - A perfect matching m of G
Objective: Minimize
$$\sum c(e)$$

esm

LP:

min E Ce Xuv

YNEA: EXXUVE T

HreB: \(\times \times

05x 51

There is an integral (soln to the above LP.

Proof: · Let X be an optimum soln. · Let F = E be the set of edges with 0 < * " < 1

- · If F = Ø, we are done, nothing to prove.
- · deg (F) ≠1 convince yourself.
- · Each connected component has a cycle. C

C = M, U M2

Wlog, assume $C(M_1) \leqslant C(M_2)$

- Consider $\widetilde{\chi} = \chi + \partial \cdot 1_{M_1} \partial \cdot 1_{M_2}$ ie, $\forall e \in M$, $\widetilde{\chi}_{uv} = \chi_{uv} + \delta$ $e \in M_2$, $\widetilde{\chi}_{uv} = \chi_{uv} - \delta$
- · r is feasible
 - o cost(x) ≤ cost (x)... since x is opt, we have =
- choose $\delta = \min_{e \in C} \min_{x_e, 1-x_e}$
- .. It has one less edge in F Keep repeating to get the integral optimum.

3) Unrelated Machine Scheduling (RII Cm.)

Input: - m - machines

n · jobs

Pij: running time of job j

on machine i

Output: Assignment/schedule of jobs to m/c's.

	10.
	After we do this, for all but k= Mi
	he have 5 7.: = 1
	After we do this, for all but $k=hi$ we have $\sum_{j} z_{i_k}, j = 1$
	•
	$\sum_{j} z_{i_{n_{j}}, j} \leq 1$
	- Once we do this for all m/c's
	S 2 1
	\geq $\langle z_i \rangle$ $=$ $\langle z_i \rangle$
	$\sum_{i \in UN_i} Z_{i,j} = 1$, $\forall j$
	that is, in the bipartite graph
	That is, in the bipartite graph H, Z is a fractional soln on its edges s-t $\forall j \in J: \sum_{i \in U_{i}} = 1$
	$i \cdot k = 0$
	175 cage 5-1
	₩ ieJ: ZZii=1
	υ ∈ UN;
	$\forall i \in U_i : \sum_{j \in J} Z_{ij} \leq 1$
	$\forall i \in \mathcal{I}_{N_{i}}$
	•
_	This implies (like in the prev result) a matching M in H which
	a matchine AA in H which
	THURST TO THE THE WAR THE

Note:
$$P_{ijk} = P_{ijk} \sum_{j \in J} Z_{ik-1,j}$$
 $\leq \sum_{j \in J} P_{ij} Z_{ik-1,j}$
 $\leq \sum_{k>1} P_{ijk} \leq \sum_{k>1} \sum_{j} P_{ij} Z_{ik-1,j}$
 $\leq \sum_{j \in J} P_{ij} \sum_{k>1} Z_{ik-1,j}$