HELICAL ANTENNA

Helical Antenna

Total Length of wire = nLTotal axial length (A) = nS

$$\boldsymbol{L} = \sqrt{\boldsymbol{S}^2 + \boldsymbol{C}^2}$$

$$\alpha = \tan^{-1}\left(\frac{S}{\pi D}\right) = \tan^{-1}\left(\frac{S}{C}\right)$$

Special Cases of Helical Antenna:

Case 1: $\alpha = 0^{\circ} \implies S = 0 \implies Loop Antenna$

Case 2: $\alpha = 90^{\circ} \Rightarrow D = 0 \Rightarrow$ Linear Antenna

(Reference: JD Kraus, Antennas, Tata-McGraw Hill, 1988)

Modes in Helical Antenna

Axial Mode Helical Antenna: Ground Plane

Monofilar Axial Mode Helical Antenna

- a) Flat Ground Plane
- b) Shallow Cupped Ground Plane
- c) Deep Conical Ground Plane Enclosure.

Normal Mode Helical Antenna

Small Dipole:

$$E_{\theta} = j\eta \, \frac{kI_o S e^{-jkr}}{4\pi r} sin\theta$$

Small Loop:

$$E_{\phi} = \eta \frac{k^2 I_o \left(\frac{D}{2}\right)^2 e^{-jkr}}{4r} sin\theta$$

Therefore, Axial Ratio is:

$$AR = \frac{|E_{\theta}|}{|E_{\phi}|} = \frac{2S\lambda}{C^2} = \frac{2S_{\lambda}}{C_{\lambda}^2}$$

For Circular Polarization, $AR = 1 \Rightarrow$

$$C_{\lambda} = \sqrt{2S_{\lambda}}$$

Axial Mode Helical Antenna - Input Impedance

For Axial Feed: $R = 140 * C_{\lambda} \Omega$

For Peripheral or Circumferential Feed:

$$R \approx 150 / \sqrt{C_{\lambda} \Omega}$$

Restrictions: (a) $0.8 \le C_{\lambda} \le 1.2$

(b)
$$12^{\circ} \le \alpha \le 14^{\circ}$$

(c)
$$n \ge 4$$

Radiation Pattern of Axial Mode Helical Antenna

- Measured Field Patterns of Axial Mode Helical Antenna of 6 turns and pitch angle $\alpha = 14^{\circ}$.
- \Box CP Radiation Pattern for C/ λ from 0.73 to 1.22.
- ☐ (—) Horizontally polarized field component and
 (--·) Vertically polarized.

Gain of Axial Mode Helical Antenna

HPBW (Half-Power Beamwidth)
$$\cong \frac{52}{c_{\lambda}\sqrt{nS_{\lambda}}}$$
 (deg)

BWFN (Beamwidth Between First Nulls)
$$\cong \frac{115}{c_{\lambda}\sqrt{nS_{\lambda}}}$$
 (deg)

Directivity = $32,400 / HPBW^2$

$$Directivity = 12 C_{\lambda}^2 nS_{\lambda}$$

Gain = η x Directivity, $\eta \approx 60\%$

Design of Axial Mode Helical Antenna

Desired: Directivity = 24 dB = 251.19

For Axial Mode Helical Antenna:

Assume: $C_2 = 1.05$ (0.8 to 1.2)

$$\alpha = 12.7^{\circ} (12^{\circ} \text{ to } 14^{\circ})$$

Calculate: $S_{\lambda} = C_{\lambda} \tan \alpha = 0.2366$

 $Directivity = 12 C_{\lambda}^2 nS_{\lambda}$

$$n = \frac{251.19}{12(0.2366)(1.05)^2} = 80$$

The helical antenna is used for following applications.

- It is used for transmission and reception of VHF signals through ionosphere.
- It is used for satellite and radiometry applications.
- It is possible to establish communication between moon and earth using it.

Benefits or advantages of Helical Antenna

Following are the benefits or advantages of Helical Antenna:

- → It is simple in design.
- As it uses circular polarised pattern, it is acceptable by both horizontal and vertical polarised antenna types.
- → It can be used for broadband applications due to wider bandwidth.
- → It can be used at HF/VHF frequencies for transmission and reception.
- → It offers higher directivity.
- → It is very robust in construction.

Drawbacks or disadvantages of Helical Antenna Following are the disadvantages of Helical Antenna:

- → It is large in size. This requires more space for installation.
- → For higher number of turns its efficiency decreases. The maximum efficiency of about 80% can be achieved with the use of 3 to 4 turns.
- → It is higher in cost.

Thank You...