COMPUTATIONAL PHYSICS

HOMEWORK #1

Garcia / Numerical Methods for Physics, chapters 1,2

- 1. Use the computer you have, and find the following:
 - 1. The largest and smallest positive numbers that you can write.
 - 2. The smallest ϵ which does not give $1 + \epsilon = 1$.
 - 3. Calculate $\sqrt{1.1}$ using the relevant function on your computer language (e.g. SQRT(x) with Fortran). Use the Taylor expansion to express $\sqrt{1+\epsilon}$ as a sum of polynomials in ϵ . How many terms in the Taylor expansion you need to include to reach the accuracy of your computer for $\epsilon = 0.1$?
- 2. Take an interesting analytic f(x) of your choice. Derive the analytic expression for the first derivative, df/dx. Calculate numerically the first derivative, using

$$\frac{\Delta f}{\Delta x} = \frac{f(x + \Delta x) - f(x)}{\Delta x},$$

for some specific value of x and Δx of your choice. Derive the relative error R in the derivative,

$$R = \frac{df/dx - \Delta f/\Delta x}{df/dx}.$$

That is the difference between the accurate numerical value of df/dx from the analytic expression, and the one derived numerically from f(x). Make a plot of $\log R$ versus $\log \Delta x$ for a large range of values of Δx . The range of Δx values should be large enough to probe both the error at large Δx , and the roundoff errors at very small Δx . Find Δx which gives the most accurate numerical calculation.

3. Ballistic motion. Make a plot of the analytic solution for a ballistic trajectory, y(x), i.e. height versus distance (no friction), for initial conditions of your choice, for some time range t = 0 - T. Add a plot of the numerical solution for y(x) using the Euler method with 10 time steps of size T/10, and 100 time steps of size T/100. Plot all the orbits in one figure, and compare the numerical solutions to the analytic solution.

Derive the numerical solution above using the Midpoint method, with a time step of your choice. Repeat the calculations with a time step which is much smaller, and with a time step which is much larger. Repeat the calculation with just a single time step of size T. Make all the plots above in a single figure. Compare the different solutions to the analytic solution. Explain the results.

Please submit on Moodle by Sunday, November 7th, 2022. Behatzlacha! Ari