模拟电子技术基础

仿真报告

(2020 - 2021 学年度 春季学期)

实验名称 ______第一次仿真作业_____

姓名	刘祖炎
学号	2019010485
院系	自动化系
教师	叶朝辉
时间	2021年3月16日

目录

1	实验目的	1
2	仿真题 1-1	1
	2.1 用 IV 分析仪测量二极管的伏安特性	1
	2.2 用 IV 分析仪测量晶体管的输出特性	3
	2.3 用 IV 分析仪测量 MOS 管的输出特性	5
3	仿真题 1-2	7
	3.1 二极管直流电压随电阻 R 的变化关系	7
	3.2 二极管交流电流随电阻 R 的变化关系 \dots	8
4	仿真题 1-3	9
5	仿真中遇到的问题及解决方法	11
6	收获与体会	11

1. 实验目的

- 熟悉仿真软件环境
- 掌握仿真软件的基本测量手段 (用万用表的交流和直流档测量电压和电流量、用示波器测量和观察信号、用 IV 分析仪测量半导体器件的特性曲线)
- 熟悉仿真软件的基本分析方法 (直流扫描分析方法)

2. 仿真题 1-1

2.1 用 IV 分析仪测量二极管的伏安特性

选用小功率二极管 1N3064, 如图1所示搭建仿真电路。

图 1: 二极管伏安特性测试电路

利用 IV 分析仪分析电路, 仿真后即可得二极管 1N3064 的伏安特性曲线, 如图2所示。

图 2: 二极管伏安特性测试电路

由图可知,当对二极管施加较小的正向电压时,二极管不导通,电流几乎为零;正向电压超过开启电压时,二极管导通。当对二极管施加反向电压时,会产生反向饱和电流;反向电压超过阈值时,二极管会发生击穿。

测量正向电压 U=0.7V 时,通过二极管的电流 I_D ,如图3所示,测得 $I_D=10.754mA$ 。

图 3: 二极管正向导通电压

改变 IV 分析仪的电压范围 ($-128V \sim -86V$),根据所示图线的拐点,测得二极管的击穿电压 $U_{BR} = -100.599A$,如图4所示。

图 4: 二极管反向击穿电压

查阅 1N3064 的数据手册 (图5) 以及 Multisim 中反向击穿电压的参数 (图6),可知数据与仿真结果基本吻合。

图 5: 1N3064 数据手册

	Device No.	Package No.	V _{RRM} V Min	IR nA @ Max	V _R V	Min	V _F V Max	@ lF	C pF Max	t _{rr} ns Max	Test Cond.	Proc. No.
	1N3064	DO-35	75	100	50		0.575 0.650 0.710	0.250 1.0 2.0	2	4	(Note 3)	D4
ı							1.0	10.0			1	

图 6: 1N3064 反向击穿电压

	描述	值	单位
BV	反向击穿拐点电压	100	V

2.2 用 IV 分析仪测量晶体管的输出特性

选用小功率晶体管 2N2222A, 如图7所示搭建仿真电路。

图 7: 二极管伏安特性测试电路

根据要求改变 IV 分析仪测量值,可得相应的输出特性曲线如图8 $(U_{CE}=2V,i_B=10\mu A)$ 、9 $(U_{CE}=6V,i_B=10\mu A)$ 、 $10(U_{CE}=2V,i_B=50\mu A)$ 、 $11(U_{CE}=6V,i_B=50\mu A)$ 所示。

图 8: $U_{CE}=2V, i_B=10\mu A$

图 9: $U_{CE} = 6V, i_B = 10\mu A$

图 10: $U_{CE}=2V, i_B=50\mu A$

图 11: $U_{CE} = 6V, i_B = 50 \mu A$

由图得出对应条件下 I_C 的值,如表1所示。根据公式:

$$\beta = \frac{I_C}{I_B}$$

计算晶体管的放大倍数 β , 如表2所示。

表 1: 测得数据 I_C/mA

$I_C/mA \qquad I_B/\mu A$ U_{CE}/V	10	50
2	2.088	10.400
6	2.169	10.805

表 2: 计算数据 β

β $I_B/\mu A$ U_{CE}/V	10	50
2	208.80	208.00
6	216.90	216.10

分析表2可知, i_B 一定时, β 随 u_{CE} 的增大而增大; u_{CE} 一定时, β 随 i_B 的增大而减小。其中, u_{CE} 的变化相比于 i_B 的变化对 β 值的影响更大。

查阅数据手册如图12所示, $i_C=1mA,u_{CE}=10V$ 时,直流电流放大倍数 $h_{FE(min)}=50$,实际 β 值大于该值,结果正确。

图 12: 2N2222A 数据手册

ON CHARACTERISTICS (Note 1)							
DC Current Gain	hFE	50 75 100 100 30	325 - 300 -	-			

在 Multisim 中,查阅模型参数可知,该晶体管的理想放大倍数 $\beta=220$,与实测结果接近。

图 13: 2N2222A 模型参数 (1)

 β 随 U_{CE} 的增大而增大是 Early 效应的体现,对所测数据进行处理,可对 Early Voltage 进行估算。 对所得图像进行分析,可知 i_C 与 u_{CE} 在放大区基本成线性关系。因而,可对数据点 (u_{CE1}, i_{C1}) 、 (u_{CE2}, i_{C2}) 进行线性拟合,其截止电压的计算公式为:

$$V_A = u_{CE1} - i_{C1} \frac{u_{CE1} - u_{CE2}}{i_{C1} - i_{C2}}$$

代入点 (2,2.088)、(6,2.169),求得 $i_B = 10\mu A$ 时,Early Voltage 为 -101.11V。

代入点 (2,10.400)、(6,10.805),求得 $i_B = 50\mu A$ 时,Early Voltage 为 -100.72V。

可近似认为上述测得的两组 Early Voltage 相交于同一点。

在 Multisim 中,查阅模型参数可知,该晶体管的 Early Voltage 为 104V,与实测结果接近。

图 14: 2N2222A 模型参数 (2)

VAF Forward Early voltage

2.3 用 IV 分析仪测量 MOS 管的输出特性

选用 MOS 管 2N7000G, 如图15所示搭建仿真电路。

图 15: MOS 管输出特性测试电路

适当调节 IV 分析仪的相关参数,可得 MOS 管的输出特性曲线如图16所示。

图 16: MOS 管输出特性曲线

根据游标所示值可知,当 $u_{GS}=4V$ 时,恒流区 $i_D=123.462mA$ 。

为测量 MOS 管的跨导 g_m ,需要对 $u_{GS}=4V$ 附近的 $i_D\sim u_{GS}$ 关系进行局部线性近似。可取近似所需 $\Delta=0.01V$,调节 IV 分析仪的相关参数,显示 $u_{GS}=4.01V$ 、 $u_{GS}=3.99V$ 两种情况下 MOS 管的输出线性曲线,如图17所示。

图 17: $u_{GS} = 3.99V$

图 18: $u_{GS} = 4.01V$

根据游标所示值可知,当 $u_{GS}=3.99V$ 时,恒流区 $i_D=122.166mA$;当 $u_{GS}=4.01V$ 时,恒流区 $i_D=124.764mA$ 。据此,计算得:

$$g_m = \frac{\Delta i_D}{\Delta u_{GS}} \approx 129.9 mS$$

查阅数据手册可知,当 $V_{DS}=10V$, $t=25^\circ$ 时, $V_{GS}=4V$ 时约有 $I_D=0.2A$,此时,有 $g_{m(min)}=100mS$, $g_{m(type)}=320mS$,与仿真结果相符合。

图 19: 2N7000G 数据手册

g _{FS} F	Forward Transconductance	V _{DS} = 10 V, I _D = 200 mA	2N7000	100	320		mS	
-------------------	-----------------------------	--	--------	-----	-----	--	----	--

3. 仿真题 1-2

3.1 二极管直流电压随电阻 R 的变化关系

如图20所示,连接电路,正确设置相关元件的值。

图 20: 测量二极管直流电压与 R₁ 关系电路图

使用 Multisim 中的参数扫描功能,设置扫描变量为电阻 R_1 的阻值,范围为 $0 \sim 1k\Omega$,步长为 10Ω ,设置输出变量为二极管两端电压 V_D ,扫描模式选择直流扫描 (此时,电路中的交流电源 u_1 对扫描结果无

影响), 由此可得 D_1 两端电压值 V_D 随 R_2 的变化情况, 如图21所示。

图 21: 二极管直流电压与 R1 阻值关系曲线

由曲线可知,当 $R_1=0\Omega$ 时, V_D 与直流电压相等,此后,随着 R_1 逐渐增大, V_D 随之下降,下降速度先快后慢,最终 V_D 趋近于 0.6V,这表示二极管的开启电压大约为 0.6V。

3.2 二极管交流电流随电阻 R 的变化关系

如图22所示,连接电路,正确设置相关元件的值。

图 22: 测量二极管交流电流与 R₁ 关系电路图

由于 Multisim 的参数扫描功能不能得到交流电流的信息,无法直接得到 R_1 与二极管交流电流的关系,故考虑在二极管所在支路串联交流电流表用于测量相应值,并将电阻 R 用电位器代替,通过改变 R 的阻值读取多个 $R \sim i_D$ 数据点,利用曲线进行拟合得出二极管交流电流随电阻 R 的近似变化关系曲线,所得数据如表3所示。

表 3: 交流电流随电阻 R_1 的变化情况

序号	R_1/Ω	$i_D/\mu A$	序号	R_1/Ω	$i_D/\mu A$
1	50	1868	11	550	681
2	100	1599	12	600	640
3	150	1394	13	650	604
4	200	1233	14	700	572
5	250	1106	15	750	543
6	300	1002	16	800	516
7	350	916	17	850	493
8	400	843	18	900	471
9	450	781	19	950	451
10	500	728	20	1000	433

在 Excel 软件中作出上述曲线,如图23所示。

图 23: 交流电流随电阻 R_1 的变化情况

由图像可知,当 R_1 增大时, i_D 减小,这是由于二极管动态电阻 r_d 增大导致。

4. 仿真题 1-3

根据题目要求,设计电路如图24所示。

图 24: 仿真题 1-3 电路图

其中,为保证满足题目要求 (输入电压 u_I 为 0 到 1V 时,输出电压约为高电平 +5V,当 u_I 大于 2V 时输出电压约为低电平 0V),相关元件的参数值需要进行估算。

该电路满足如下方程:

$$\begin{cases}
I_B = \frac{U_I - U_{bc}}{R_1} \\
I_C = \beta I_B \\
U_O = V_{CC} - R_2 I_C
\end{cases} \tag{1}$$

根据限制条件:

- $U_I = 1V$ 时, $U_O > 5V$
- $U_I=2V$ 时, $U_O<0V$

可得:

$$\frac{7}{60} < \frac{R_2}{R_1} < \frac{6}{13}$$

取 $R_1=5k\Omega$, $R_2=1k\Omega$,利用参数扫描进行仿真,仿真结果如图25、26所示。由图可知, $u_I\leq 1V$ 时, $u_O\geq 4.9635V$, $u_I\geq 2V$ 时, $u_0\leq 0.1218V$,符合题目要求,设计合理。

图 25: 仿真结果 (1)

图 26: 仿真结果 (2)

5. 仿真中遇到的问题及解决方法

• Multisim 软件的使用

此次仿真原理相对较为简单,其主要目标在于了解电路的基本结构、掌握通过 Multisim 软件进行仿真的方法。因此,仿真过程中遇到的主要问题均有关于 Multisim 软件的使用,其他部分基本没有遇到问题。在仿真前,需要选取正确的元件,并对元件参数、仿真参数进行正确的设置。若元件参数设置不正确,可能使仿真结果不正确;若仿真参数设置不正确,可能造成仿真无法进行、仿真产生错误的结果甚至使软件直接退出。对参数扫描等功能,需要正确认识其原理,设置有关直流/交流、输入/输出变量的相关参数,才能产生正确的参数扫描结果。

• 实用电路的设计

设计电路与做题本身有较大的区别。在设计实际电路时,不仅要考虑电路结构,更要考虑电路元件之间的对应关系,此外,即便理论上电路元件参数无误,仍然需要通过仿真进行验证,以此检验电路的实际功能。在设计该电路时,我在理论计算的基础上选取了不同参数进行仿真,最终得到了正确的结果。

6. 收获与体会

- 通过实际仿真,我对二极管、晶体管、MOS 管的输入、输出特性曲线有了更深刻的认识。实践了反向击穿电压 U_{BR} 、晶体管 β 、二极管动态电阻 r_d 等重要参数,对跨导、Early Voltage 等平时涉及较少的概念有了更进一步的了解。
- 熟悉了 Multisim 软件的使用方法,掌握了包括 IV 分析仪、参数扫描等 Multisim 中的电路分析功能,对实际仿真在电路分析中的作用有了更多认识。
- 对实际电路设计方式与流程有了更新的认识。