Abuses of Visualization

John Keyser

Abusing Visualizations

- Visualizations are known for conveying lots of information.
- Small variations in visualization can convey incorrect information
 - This makes it easier to mislead the viewer
- These are not always intentional, but often are!

Data Visualization: Abuses

Bad Visualizations vs. Abuse of Visualizations

- Will distinguish two types here
- Bad visualizations:
 - Ineffective due to bad choices made
 - Could mislead due to ineffectiveness
 - Color, type of plot, too much/little data, etc.
- Abuse of Visualizations:
 - Choices made that will lead to incorrect interpretation of the data
 - If someone wants to mislead, this is what they do...
- Focus today is on Abuse of Visualizations

Some History

- Famous books:
 - Darrell Huff. How to Lie with Statistics. W.W.
 Norton and Company, New York, 1954.
 - Mark Monmonier. How to Lie with Maps.
 University of Chicago Press, Chicago and London, 1996.

Data Manipulation

- Sometimes the manipulation of the data itself causes issues.
 - Merging/combining/averaging data that should not be.
 - Choosing a histogram bin size too large/small
 - Reporting statistical data that has no meaning or hides the actual data distribution
 - Fitting a curve inappropriately
 - Showing change in derivative instead of value
 - Etc.
- Key: be sure that any manipulation does not destroy the interesting information

Anscombe's Quartet

- Four distributions with the same summary statistics:
 - Mean, variance (x and y), correlation, linear regression
 - F. J. Anscombe,
 "Graphs in
 Statistical
 Analysis,"
 American
 Statistician, vol.
 27, Feb. 1973,
 pp. 17-21.
- See also the "Datasaurus Dozen"

Adjusted Axis Range

- One of the easiest things to do!
- Also one of the most deceptive!!
- And, quite common to find in practice!!!

- Starting y-axis at non-zero value
- Logarithmic scale vs. Linear scale
- Use x-axis for ordinal but not numeric values

Truncated y Axis

Adjusted x-Axis Range

Linear Scale, Area/Volume Appearance

- We perceive amount based on size
 - Area or volume
- Sometimes charts scale a 2D/3D object based on one axis, but object scales

Linear Scale, Area/Volume Appearance

Interpolated/Projected Data

- Data points might not actually exist, but get added in to make the chart/data more "complete"
- Can give the impression of real data where there is not any data, even if labeled appropriately

Interpolated/Projected Data

Fitting Curve with Little Basis

- When a curve is shown over the data, it often implies that this is the "base" or accurate value
 - And the data points are just variations from that "true" data
- This curve/line may not have much basis or validity

Fitting Curve with Little Basis

Misleading Title/Text

- People can believe a chart shows something that might not really be there, if the title or other text says so.
- One example: stating or implying causation where it does not exist

Misleading Title/Text

User Satisfaction Improves with Increasing Yellow on Webpage

Implied Area as a Factor

- In a chloropleth (map with regions colored in by color), the area of a region might not be appropriate
 - e.g. if population-related, the denser cities have less visual impact than less dense rural areas

Implied Area as a Factor

