0.0.1 Re-framed Bat Inspired Algorithm (Re-framed BA)

Objectives:

Objective Problem	
$f(\mathbf{x}_i)$	fitness of \mathbf{x}_i .
n	the dimension of the search space.
$[lb_{\mathbf{x}}, ub_{\mathbf{x}}]$	the interval of objective variable ${\bf x}$, in our cases, it is defined in the IOHprofiler, $[lb_{\bf x},ub_{\bf x}]=[-5,+5].$
Objective Solution	
\mathbf{x}_i	it can be imagined as one individual in Swarm-Intelligence Algorithms, $\mathbf{x}_i \in R^n$.

Parameters:

T	maximum iteration, the budget in our cases, in our case, it is defined in IOHprofiler.
M	population size, $M=20, M\in [20,40].$
\mathbf{x}_g	the best position that the whole population has found so far.
\mathbf{y}_i	the velocity for one individual \mathbf{y}_i .
z_1	a kind of probability, in this case, it is called the decreasing pulse rate.
z_2	the decreasing loudness.
z_{1}^{0}	the initial value of pulse rate z_1 , $z_1^0=1$, $z_1^0\in[0,1]$.
z_2^0	the initial value of loudness z_2 , $z_2^0=1$, $z_2^0\in(0,+\infty)$.
w_1	used to decrease pulse rate z_1 , $w_1=0.1$, $w_1\in[-1,1]$.
w_2	used to decrease loudness z_2 , $w_2=0.97$, $w_2\in[-1,1]$.
w_3	used to update local position, $w_3=0.1$, $w_3\in[-1,1]$.

 $[lb_{w_4}, ub_{w_4}]$ the interval of frequency w_4 , $[lb_{w_4}, ub_{w_4}] = [0, 2]$. $[lb_{w_4}, ub_{w_4}] \subset [0, +\infty]$.

Components:

- Initialization Process:
 - (1) Initialize $\mathbf{x}_i(t=0)$:

$$\mathbf{x}_i(t=0) = \mathcal{U}(lb_{\mathbf{x}}, ub_{\mathbf{x}}), i = 1...M$$

(2) Initialize $y_i(t=0)$:

$$\mathbf{y}_i(t=0) = \mathcal{U}(0,0), i = 1...M$$

(3) Initialize $\mathbf{x}_g(t=0)$:

$$\mathbf{x}_q(t=0) = \mathbf{Min}(\{\mathbf{x}_i(t)\}), i = 1...M$$

(4) Initialize $z_1(t=0)$:

$$z_1(t=0) = z_1^0 \times w_2 4$$

(5) Initialize $z_2(t = 0)$:

$$z_2(t=0) = z_2^0 \times (1 - e^{-w_1 \times t})$$

- Optimization Process:
 - (1) Update the velocity $y_i(t)$ to generate $y_i(t+1)$:

$$\mathbf{y}_i(t+1) = \mathbf{y}_i(t) + \mathcal{U}(lb_{w_4}, ub_{w_4}) \times (\mathbf{x}_i(t) - \mathbf{x}_g(t))$$

(2) Update $\mathbf{x}_i(t+1)$ to generate $\mathbf{\hat{x}}_i(t+1)$:

$$\hat{\mathbf{x}}_i(t+1) = \begin{cases} \mathbf{x}_g(t) + w_3 \times \mathbf{rand} \times z_1(t) &, \quad rand < z_2(t) \\ \mathbf{x}_i(t) + \mathbf{y}_i(t+1) &, \quad \text{o.w} \end{cases}$$

(3) Dealing with outliers C:

$$\mathbf{x}_{i,n}^{\mathsf{fixed}}(t+1) = \begin{cases} ub_x &, & \mathbf{x}_{i,n}(t+1) > ub_{\mathbf{x}} \\ \mathbf{x}_{i,n}(t+1) &, & \mathsf{o.w} \end{cases}$$
 8
$$lb_x &, & \mathbf{x}_{i,n}(t+1) < lb_{\mathbf{x}}$$

(4) Select $\mathbf{x}_i(t+1)$ from $\mathbf{\hat{x}}_i(t+1)$:

$$\mathbf{x}_i(t+1) = \begin{cases} \hat{\mathbf{x}}_i(t+1) &, \quad f(\hat{\mathbf{x}}_i(t+1)) < f(\mathbf{x}_i(t)) \text{ or } rand > z_1(t) \\ \mathbf{x}_i(t) &, \quad \text{o.w} \end{cases}$$

(5) Update $\mathbf{x}_g(t)$ to generate $\mathbf{x}_g(t+1)$:

$$\mathbf{x}_g(t+1) = \mathbf{Min}(\mathbf{x}_g(t) \cup {\{\mathbf{x}_i(t+1)\}}), i = 1...M$$
 10

(6) Update the decreasing loudness $z_1(t)$ to generate $z_1(t+1)$:

$$z_1(t+1) = z_1(t) \times w_2$$
 11

(7) Update the pulse rate $z_2(t)$ to generate $z_2(t+1)$:

$$z_2(t+1) = z_2^0 \times (1 - e^{-w_1 \times (t+1)})$$
 12

Algorithm 1 Re-framed BA with population size M; search space $n, [lb_{\mathbf{x}}, ub_{\mathbf{x}}]$; stop condition T; initialization method $Init_{\mathbf{x}}$, optimization method $Opt_{\mathbf{x}}$, treatment C of outliers, and selection S to objective solutions; initialization method $Init_{\Delta}$ and optimization method Opt_{Δ} to step-size Δ .

```
1: t \leftarrow 0
 2: \mathbf{X}(t) \leftarrow Init_{\mathbf{x}}(n, M, [lb_{\mathbf{x}}, ub_{\mathbf{x}}]) as Eq.1
                                                                                                ▷ initialize initial population
 3: F(t) \leftarrow f(\mathbf{X}(t))
                                                                                                                            ▷ evaluate
 4: w, [lb_{\mathbf{y}}, ub_{\mathbf{y}}], z^0 \leftarrow Init_{\Delta:w}(w, [lb_{\mathbf{y}}, ub_{\mathbf{y}}], z^0)

    initialize w-relative step-size

 5: \mathbf{Y}(t) \leftarrow Init_{\Delta:\mathbf{y}}(n, M, [lb_{\mathbf{y}}, ub_{\mathbf{y}}]) as Eq.2

    initialize y-relative step-size

 6: \mathbf{x}_q(t) \leftarrow Init_{\Delta:\mathbf{x}}(\mathbf{X}(t)) as Eq.3
                                                                                             ▷ initialize x-relative step-size
 7: z(t) \leftarrow Init_{\Delta:z}(t, z^0, w) as Eq.4, Eq.5
                                                                                             \triangleright initialize z-relative step-size
 8: while stop condition T do
            \mathbf{Y}(t+1) \leftarrow Opt_{\Delta:\mathbf{y}}(\mathbf{Y}(t),\mathbf{x}_g,w) as Eq.6
 9:

    □ update y-relative step-size

            \mathbf{\hat{X}}(t+1) \leftarrow Opt_{\mathbf{x}}(\mathbf{X}(t), \mathbf{Y}(t), \mathbf{x}_g(t), z(t), w) as Eq.7
10:

▷ generate temporarily

      updated population
           \hat{\mathbf{X}}(t+1) \leftarrow C(\hat{\mathbf{X}}(t+1)) as Eq.8

    b treatment to outliers

11:
            F(t+1) \leftarrow f(\hat{\mathbf{X}}(t+1))
12:
                                                                                                                            ▷ evaluate
           \mathbf{X}(t+1) \leftarrow S(\mathbf{X}(t), \hat{\mathbf{X}}(t+1), z(t)) as Eq.9

    ⊳ select and generate finally

13:
      updated population
14:
           \mathbf{x}_q(t+1) \leftarrow Init_{\Delta:\mathbf{x}}(\mathbf{X}(t),\mathbf{X}(t+1)) as Eq.??

    □ update x-relative step-size

15:
            z(t+1) \leftarrow Opt_{\Delta:z}(t+1,z(t),w) as Eq.11, Eq.12 \triangleright update z-relative step-size
           t \leftarrow t + 1
16:
17: end while
```