Representation Theoretic Realization of Exact Categories

Haruhisa Enomoto

Graduate School of Mathematics, Nagoya University

March 6, 2017

Outline

- Introduction
- Three Morita-type Results
 - Exact Category with a Progenerator
 - + Injective Cogenerator
 - + Higher Kernels
- Applications
 - (mod Λ)/[Sub M] as Torsionfree-class
 - Classification of CM-finite IG algebras

Outline

- Introduction
- 2 Three Morita-type Results
 - Exact Category with a Progenerator
 - + Injective Cogenerator
 - + Higher Kernels
- Applications
 - (mod Λ)/[Sub M] as Torsionfree-class
 - Classification of CM-finite IG algebras

Characterization of Module Categories

Theorem (Morita Theorem)

The following are equivalent for a category \mathcal{E} and a field k.

- **1** $\mathcal{E} \simeq \operatorname{mod} \Lambda$ for some f.d. k-algebra Λ .
- 2 E is an abelian Hom-finite k-category with a projective generator P and an injective cogenerator I.

Proof.

- (1) \Rightarrow (2): $P := \Lambda$ and $I := D\Lambda = \operatorname{Hom}_k(\Lambda, k)$.
- (2) \Rightarrow (1): $\Lambda := \operatorname{End}_{\mathcal{E}}(P)$ and Consider the functor

$$\mathcal{E}(P,-):\mathcal{E} \to \mathsf{mod}\,\Lambda.$$

This is equivalence.

Motivation

Problem

Find a similar condition for an exact category \mathcal{E} .

- **1** (R): $\mathcal{E} \simeq$ (Representation theoretic category)
- (C): \mathcal{E} is an exact cat. with (Categorical property)
- i.e. Morita type theorem for exact categories.

Assumption:

k: field. All algebras are f.d. over k and All Categories are:

- skeletally small
- additive Hom-finite k-categories
- idempotent complete.

- + Injective Cogenerator
- + Higher Kernels

Outline

- 1 Introduction
- Three Morita-type Results
 - Exact Category with a Progenerator
 - + Injective Cogenerator
 - + Higher Kernels
- Applications
 - (mod Λ)/[Sub M] as Torsionfree-class
 - Classification of CM-finite IG algebras

- + Injective Cogenerator
- + Higher Kernels

(R): Extension-Closed Subcategory

 Λ : f.d. algebra. mod Λ : the category of f.d. right Λ -modules.

Definition

 $\mathcal{E} \subset \mathsf{mod}\,\Lambda$: subcategory is extension-closed : \Leftrightarrow for every exact sequence in $\mathsf{mod}\,\Lambda$

$$0 \rightarrow L \rightarrow M \rightarrow N \rightarrow 0$$
,

 $L \in \mathcal{E}$ and $N \in \mathcal{E}$ implies $M \in \mathcal{E}$.

Example

For $U \in \text{mod } \Lambda$,

$$^{\perp}U := \{M \in \operatorname{mod} \Lambda \mid \operatorname{Ext}_{\Lambda}^{i}(M, U) = 0 \text{ for all } i > 0 \}$$

- + Injective Cogenerator
- + Higher Kernels

(R): Resolving Subcategory

Definition (Auslander-Bridger 1969)

 $\mathcal{E} \subset \mathsf{mod} \, \Lambda$: subcategory is resolving : \Leftrightarrow

- \bigcirc \mathcal{E} is ext-closed in mod Λ .
- 2 All projective Λ -modules are in \mathcal{E} .
- **③** For every $M ∈ \mathcal{E}$, there is an exact sequence in mod Λ

$$0 \rightarrow \Omega M \rightarrow P \rightarrow M \rightarrow 0$$

where *P* is projective Λ -module and $\Omega M \in \mathcal{E}$.

Example

For $U \in \text{mod } \Lambda$, the subcat. $^{\perp}U$ is always resolving.

Exact Category with a Progenerator

- + Injective Cogenerator
- + Higher Kernels

(C): Exact Category

Definition (Quillen 1973)

An exact category consists of the pair (\mathcal{E}, F) , where \mathcal{E} is the category and F is the class of short exact sequences in \mathcal{E} satisfying some conditions.

Remark

- Any ext-closed subcat. $\mathcal{E} \subset \operatorname{mod} \Lambda$ is an exact category, whose s.e.s. are those in $\operatorname{mod} \Lambda$ with all terms in \mathcal{E} .
- Conversely, any exact cat. is an ext-closed subcat. of some big abelian category (Gabriel-Quillen).

- + Injective Cogenerator
- + Higher Kernels

1st Morita-type Theorem

Proposition (folklore?)

For an exact category \mathcal{E} , TFAE.

① (C): \mathcal{E} has a projective generator P, i.e. P is projective in \mathcal{E} and for every $M \in \mathcal{E}$, there is a s.e.s. in \mathcal{E}

$$0 \to \Omega M \to P^n \to M \to 0$$
.

② (R): $\mathcal{E} \simeq$ (resolving subcat) of mod Λ for some f.d. alg. Λ .

Categorical Property	Rep. Theoretic Property
Exact Cat with Progen.	Resolving subcat of M

- + Injective Cogenerator
- + Higher Kernels

(R): Wakamatsu-tilting Module

For $W \in \text{mod } \Lambda$, $^{\perp}W := \{M \in \text{mod } \Lambda | \text{Ext}_{\Lambda}^{>0}(M, W) = 0\}$. $X_W \subset ^{\perp}W \subset \text{mod } \Lambda \text{ consists of } X \in ^{\perp}W$ such that there is an exact sequence

$$0 \to X \to W^{a_0} \xrightarrow{f^1} W^{a_1} \xrightarrow{f^2} W^{a_2} \to \cdots$$

with $\operatorname{Im} f^i \in {}^{\perp}W$.

(W behaves like injective cogenerator in X_W)

Definition (Wakamatsu 1988)

 $W \in \text{mod } \Lambda$ is called Wakamatsu-tilting (or semi-dualizing) : \Leftrightarrow

- \bullet $\Lambda_{\Lambda} \in X_{W}$.

- + Injective Cogenerator
- + Higher Kernels

(R): Properties of Wakamatsu-tilting Module

Proposition

For $W \in \text{mod } \Lambda$: Wakamatsu-tilting,

- X_W ⊂ mod ∧ is resolving, hence exact category.
- X_W has a progenerator Λ and an injective cogenerator W.

Example

- Λ_Λ is always Wakamatsu-tilting.
 - \Rightarrow X_{\Lambda} =: GP \Lambda, the cat. of Gorenstein projective modules. This is Frobenius exact category
 - (:⇔ progenerator and inj. cogen. exist and coincide).
- Tilting and Cotilting modules are Wakamatsu-tilting.

- + Injective Cogenerator
- + Higher Kernels

2nd Morita-type Theorem

Theorem

For an exact category \mathcal{E} , TFAE.

- ② (R): $\mathcal{E} \simeq$ (resolving-coresolving subcat) of X_W for some f.d. algebra Λ and Wakamatsu-tilting Λ -module W.

Exact Cat. with	Rep. Theoretic Property
Progenerator	Resolving subcat of $mod \Lambda$.
Progen. and Inj. cogen.	Resolving-Coresolving subcat of X_W for Wak. tilting W .

- + Injective Cogenerator
- + Higher Kernels

(R): Cotilting Module

Definition (Miyashita 1986)

 $U \in \text{mod } \Lambda \text{ is } n\text{-cotilting for } n \geq 0 : \Leftrightarrow$

- Ext $^{>0}_{\Lambda}(U,U)=0.$
- ② id $U_{\Lambda} \leq n$.
- There exists an exact sequence in mod Λ

$$0 \rightarrow U^{a_n} \rightarrow \cdots \rightarrow U^{a_1} \rightarrow U^{a_0} \rightarrow D\Lambda \rightarrow 0$$
.

where $D\Lambda = \operatorname{Hom}_k(\Lambda, k)$.

Remark

Cotilting module U is always Wakamatsu-tilting and $X_U = {}^{\perp}U$.

- + Injective Cogenerator
- + Higher Kernels

(R): Properties of Cotilting Module

Proposition

For U: a cotilting Λ -module, $^{\perp}U(=X_U)$ is an exact category with a projective generator Λ and an injective cogenerator U.

Example

- 0-cotilting module = inj. cogen. of mod $\Lambda = D\Lambda$.
- Cotilting module = dual of (Miyashita) tilting module.
- Λ_{Λ} is cotilting $\Leftrightarrow \Lambda$ is Iwanaga-Gorenstein, i.e. id $\Lambda_{\Lambda} = id_{\Lambda}\Lambda < \infty$. In this case, ${}^{\perp}\Lambda =: CM \Lambda$, the category of Cohen-Macaulay Λ -modules, which is Frobenius category.

- + Injective Cogenerator
- + Higher Kernels

(C): n-Kernels for $n \ge 1$

 \mathcal{E} : category.

Definition (Jasso 2016)

 \mathcal{E} has *n*-kernels : \Leftrightarrow for every $M \to N$ in \mathcal{E} , there is a cpx. in \mathcal{E}

$$0 \to K_n \to \cdots \to K_1 \to M \to N$$

such that for every $X \in \mathcal{E}$,

$$0 \to \mathcal{E}(X,K_n) \to \cdots \to \mathcal{E}(X,K_1) \to \mathcal{E}(X,M) \to \mathcal{E}(X,N)$$

is exact.

n-cotilting
$$\leftrightarrow$$
 $(n-1)$ -kernel,

so we need 0-kernel and (-1)-kernel!

- + Injective Cogenerator
- + Higher Kernels

(C): n-Kernels for n = 0, -1

 \mathcal{E} : exact category.

 $Y \rightarrow Z$ in \mathcal{E} is admissible epi

: \Leftrightarrow there is a short exact sequence $0 \to X \to Y \to Z \to 0$ in \mathcal{E} .

Definition (E)

- \mathcal{E} has 0-kernel : \Leftrightarrow every $f: M \to N$ can be written as $f = i \circ p$ with p: adm. epi and i:mono.
- \mathcal{E} has (-1)-kernel : \Leftrightarrow every $f: M \to N$ can be written as $f = i \circ p$ with p: adm. epi and i: adm. mono.

- + Injective Cogenerator
- + Higher Kernels

(C): Properties of Higher Kernels

 \mathcal{E} : exact category.

The lower kernel \mathcal{E} has, the better \mathcal{E} behaves!

Proposition

- \mathcal{E} has (-1)-kernel $\Leftrightarrow \mathcal{E}$ is abelian with usual exact str.
- \mathcal{E} has n-kernel $\Rightarrow \mathcal{E}$ has m-kernels for all $m \geq n$.

Remark

For $n \ge 1$, \mathcal{E} has n-kernel $\Leftrightarrow \mathcal{E}$ has the global dimension $\le n + 1$ as an algebra \mathcal{E} .

- + Injective Cogenerator
- + Higher Kernels

(C): Properties of Higher Kernels

 \mathcal{E} : exact category.

The lower kernel \mathcal{E} has, the better \mathcal{E} behaves!

Proposition

- \mathcal{E} has (-1)-kernel $\Leftrightarrow \mathcal{E}$ is abelian with usual exact str.
- \mathcal{E} has n-kernel $\Rightarrow \mathcal{E}$ has m-kernels for all $m \geq n$.

Remark

For $n \geq 1$, \mathcal{E} has n-kernel

 $\Leftrightarrow \mathcal{E}$ has the global dimension $\leq n+1$ as an algebra \mathcal{E} .

- + Injective Cogenerator
- + Higher Kernels

Theorem (E)

Let \mathcal{E} be an exact cat and $n \ge 0$. The following are equivalent:

- ① (C): \mathcal{E} has projective generator P, injective cogenerator I and (n-1)-kernel.
- ② (R): $\mathcal{E} \simeq {}^{\perp}U \subset \text{mod } \Lambda$ for some *n*-cotilting module *U* over some f.d. algebra Λ .

Example

For n = 0, " \mathcal{E} has (-1)-kernel $\Leftrightarrow \mathcal{E}$ is abelian" and $^{\perp}(0\text{-cotilting}) = \text{mod } \Lambda$. Thus

- \bigcirc (C): $\mathcal E$ has progen, inj cogen and abelian.
- (R): $\mathcal{E} \simeq \operatorname{mod} \Lambda$ for some alg Λ .

This equivalence is our first observation.

- + Injective Cogenerator
- + Higher Kernels

Theorem (E)

Let \mathcal{E} be an exact cat and $n \ge 0$. The following are equivalent:

- ① (C): \mathcal{E} has projective generator P, injective cogenerator I and (n-1)-kernel.
- ② (R): $\mathcal{E} \simeq {}^{\perp}U \subset \text{mod } \Lambda$ for some *n*-cotilting module *U* over some f.d. algebra Λ .

Example

For n = 0, " \mathcal{E} has (-1)-kernel $\Leftrightarrow \mathcal{E}$ is abelian" and $^{\perp}(0$ -cotilting) = mod \wedge . Thus

- lacktriangle (C): $\mathcal E$ has progen, inj cogen and abelian.
- **2** (R): $\mathcal{E} \simeq \text{mod } \Lambda$ for some alg Λ .

This equivalence is our first observation

- + Injective Cogenerator
- + Higher Kernels

Theorem (E)

Let \mathcal{E} be an exact cat and $n \ge 0$. The following are equivalent:

- ① (C): \mathcal{E} has projective generator P, injective cogenerator I and (n-1)-kernel.
- ② (R): $\mathcal{E} \simeq {}^{\perp}U \subset \text{mod } \Lambda$ for some *n*-cotilting module *U* over some f.d. algebra Λ .

Example

For n = 0, " \mathcal{E} has (-1)-kernel $\Leftrightarrow \mathcal{E}$ is abelian" and $^{\perp}(0\text{-cotilting}) = \text{mod } \Lambda$. Thus

- lacktriangle (C): $\mathcal E$ has progen, inj cogen and abelian.
- **2** (R): $\mathcal{E} \simeq \text{mod } \Lambda$ for some alg Λ .

This equivalence is our first observation.

- + Injective Cogenerator
- + Higher Kernels

Exact Cat. with	Rep. Theoretic Property
Progenerator	Resolving subcat of mod Λ .
+ Inj. Cogen.	Resolving-Coresolving subcat
	of X_W for Wak. tilting W .
+ (n – 1)-Kernel	$^{\perp}U$ for <i>n</i> -cotilting <i>U</i> .

Corollary (KIWY)

Let \mathcal{E} be an exact cat and $n \geq 0$. The following are equivalent:

- **1** (C): \mathcal{E} is Frobenius and has (n-1)-kernel.
- **②** (R): $\mathcal{E} \simeq \mathsf{CM} \, \Lambda$ for some n-Iwanaga-Gorenstein algebra Λ .

Outline

- Introduction
- 2 Three Morita-type Results
 - Exact Category with a Progenerator
 - + Injective Cogenerator
 - + Higher Kernels
- Applications
 - (mod Λ)/[Sub M] as Torsionfree-class
 - Classification of CM-finite IG algebras

For $M \in \text{mod } \Lambda$ over f.d. algebra Λ ,

Sub $M \subset \text{mod } \Lambda$: subcat consisting of submodules of M^n .

 $(\text{mod }\Lambda)/[\text{Sub }M]$: the ideal quotient.

Corollary (E)

There is another algebra Γ and 1-cotilting $U \in \text{mod } \Gamma$ s.t.

 $(\operatorname{\mathsf{mod}}\nolimits\Lambda)/[\operatorname{\mathsf{Sub}}\nolimits M] \simeq {}^\perp U(=\operatorname{\mathsf{Sub}}\nolimits U) \subset \operatorname{\mathsf{mod}}\nolimits \Gamma.$

Proof.

Construct an exact str. on $(\text{mod }\Lambda)/[\text{Sub }M]$ with 0-kernel.

Remark

If M is simple, then [Sub M] = [M]. This is a generalization of APR tilting.

 Λ : the path algebra of *a* ← *b* ← *c*, *M*: simple at *b*.

mod Λ:

Sub *M* consists only of *M*.

 $(\text{mod }\Lambda)/[\text{Sub }M]$: shaded.

$$(\operatorname{\mathsf{mod}}\nolimits\Lambda)/[\operatorname{\mathsf{Sub}}\nolimits M] \simeq {}^\perp U \subset \operatorname{\mathsf{mod}}\nolimits \Gamma.$$

 $\Gamma := \text{End}(1 \oplus 2 \oplus 3 \oplus 4)$

modΓ:

U: orange

 Λ : the path algebra of *a* ← *b* ← *c*, *M*: simple at *b*.

mod Λ:

Sub *M* consists only of *M*.

 $(\text{mod }\Lambda)/[\text{Sub }M]$: shaded.

 $(\operatorname{\mathsf{mod}}\nolimits\Lambda)/[\operatorname{\mathsf{Sub}}\nolimits M] \simeq {}^\perp U \subset \operatorname{\mathsf{mod}}\nolimits \Gamma.$

 $\Gamma := \text{End}(1 \oplus 2 \oplus 3 \oplus 4)$

mod Γ:

U: orange

 Λ : the path algebra of *a* ← *b* ← *c*, *M*: simple at *b*.

mod Λ:

Sub *M* consists only of *M*.

 $(\text{mod }\Lambda)/[\text{Sub }M]$: shaded.

 $(\operatorname{\mathsf{mod}}\nolimits\Lambda)/[\operatorname{\mathsf{Sub}}\nolimits M] \simeq {}^\perp U \subset \operatorname{\mathsf{mod}}\nolimits \Gamma.$

 $\Gamma := \text{End}(1 \oplus 2 \oplus 3 \oplus 4)$

mod Γ:

U: orange

Classification of CM-finite IG algebras

Definition

- Λ is Iwanaga-Gorenstein : \Leftrightarrow id $\Lambda_{\Lambda} = id_{\Lambda}\Lambda < \infty$. ($\Leftrightarrow \Lambda_{\Lambda}$ is cotilting module.)
- CM $\Lambda := {}^{\perp}\Lambda := \{M \in \text{mod } \Lambda | \text{Ext}_{\Lambda}^{>0}(M, \Lambda) = 0\}$ (This is Frobenius category with progen. = Λ).
- Λ is CM-finite if CM Λ has finitely many indecomposables.

Example

- Algebra with finite global dimension Λ
 (CM Λ = proj Λ, the cat. of f.g. proj Λ-modules).
- Representation-finite self-injective algebra Λ (CM Λ = mod Λ).

Corollary (E, in preparation)

We can 'classify' all CM-finite Iwanaga-Gorenstein algebras.

Proof.

- There's a bijection {CM-finite IG alg. Λ} ↔
 {alg. Γ with fin. gl.dim. and Frobenius exact str. on proj Γ}.
- $\Lambda \mapsto its \ CM$ -Auslander alg Γ , then proj $\Gamma \simeq CM \Lambda$. $\Gamma \mapsto End \ of \ progenerator \ of \ proj \ \Gamma$.
- We cannot classify algebra with finite global dimension,
 BUT we can classify Frobenius exact str. on proj Γ by

```
Set of stable \tau-orbits of proj \Gamma }.
```

Corollary (E, in preparation)

We can 'classify' all CM-finite Iwanaga-Gorenstein algebras.

Proof.

- There's a bijection {CM-finite IG alg. Λ} ↔
 {alg. Γ with fin. gl.dim. and Frobenius exact str. on proj Γ}.
- $\Lambda \mapsto its \ CM$ -Auslander alg Γ , then proj $\Gamma \simeq CM \Lambda$. $\Gamma \mapsto End$ of progenerator of proj Γ .
- We cannot classify algebra with finite global dimension,
 BUT we can classify Frobenius exact str. on proj Γ by

```
{ Set of stable \tau-orbits of proj \Gamma }.
```


with commutativity and zero relation.

Thus proj Γ has 2 stable τ -orbits.

 \Rightarrow proj Γ has 4 Frobenius exact structure.

with commutativity and zero relation.

Thus proj Γ has 2 stable τ -orbits.

 \Rightarrow proj Γ has 4 Frobenius exact structure.

with commutativity and zero relation.

Thus proj Γ has 2 stable τ -orbits.

 \Rightarrow proj Γ has 4 Frobenius exact structure.

with commutativity and zero relation.

Thus proj Γ has 2 stable τ -orbits.

 \Rightarrow proj Γ has 4 Frobenius exact structure.

with commutativity and zero relation.

Thus proj Γ has 2 stable τ -orbits.

 \Rightarrow proj Γ has 4 Frobenius exact structure.