Пользуясь этим, найти сумму ряда $\sum_{n=1}^{\infty} \frac{1}{n^2}$ с точностью до 0,01.

2624. Доказать признак Ермакова: пусть f(x) — положительная монотонно убывающая функция и

$$\lim_{x\to\infty}\frac{e^{x}f(e^{x})}{f(x)}=\lambda.$$

Ряд $\sum_{n=1}^{\infty} f(n)$ сходится, если $\lambda < 1$, и расходится, если $\lambda > 1$.

2625. Доказать признак Лобачевского: ряд $\sum_{n=1}^{\infty} a_n$ с положительными и монотонно стремящимися к нулю членами сходится нли расходится одновременно срядом $\sum_{m=0}^{\infty} p_m 2^{-m}$, где p_m — наибольший номер членов a_n , удовлетворяющих неравенству

$$a_n \geqslant 2^{-m} \ (n=1, 2, \ldots, p_m).$$

Исследовать сходимость следующих рядов:

2626.
$$\sum_{n=2}^{\infty} \frac{\sqrt{n+2} - \sqrt{n-2}}{n^{\alpha}}.$$
2627.
$$\sum_{n=1}^{\infty} \left(\sqrt{n+a} - \sqrt[4]{n^{2}+n+b}\right).$$
2628.
$$\sum_{n=1}^{\infty} \left(\operatorname{ctg} \frac{n\pi}{4n-2} - \sin \frac{n\pi}{2n+1}\right).$$
2629.
$$\sum_{n=1}^{\infty} \left(\frac{1}{\sqrt{n}} - \sqrt{\ln \frac{n+1}{n}}\right).$$
2630.
$$\sum_{n=1}^{\infty} \frac{\ln (n!)}{n^{\alpha}}.$$
2631.
$$\sum_{n=1}^{\infty} e^{-\sqrt[3]{n}}.$$
2632.
$$\sum_{n=1}^{\infty} n^{2}e^{-\sqrt{n}}.$$