

Tópicos de Física Moderna 2º Teste

Licenciatura em Engenharia Informática

11 de maio de 2012 - 16h00 Duração - 2h00

•	
Δ	
_	

NOME:	nº:
-------	-----

O teste é constituído por oito questões sendo três de escolha múltipla. A resposta a estas questões só é considerada correta se forem assinaladas com uma cruz todas as opções corretas que lhe correspondem. Pode usar o espaço vazio na última folha de teste para apresentar todos os cálculos, principalmente os que fizer para responder às questões Q5 e Q6.

- **Q1.** Uma lâmpada de incandescência de 60 W radia devido ao aquecimento do seu filamento à temperatura de 3500 K.
 - **a)** Assumindo que radia como um corpo negro ideal, o máximo no seu espetro de energia radiada ocorre para
 - $\lambda_{\text{max}} = 828 \text{ nm}; \ v_{\text{max}} = 3.6 \times 10^{14} \text{ Hz}$
 - $\Delta_{\text{max}} = 1014 \text{ nm}; \ v_{\text{max}} = 3.0 \times 10^{14} \text{ Hz}$
 - \square $\lambda_{max} = 650 \text{ nm}; \ v_{max} = 4.6 \times 10^{14} \text{ Hz}$
 - \square $\lambda_{max} = 828 \text{ nm}; \ \nu_{max} = 4.6 \times 10^{14} \text{ Hz}$
 - \square $\lambda_{max} = 650 \text{ nm}; \ \nu_{max} = 3.6 \times 10^{14} \text{ Hz}$
- **b)** Se apenas 8% da potência total emitida pela lâmpada se situar na região do visível (considere λ (médio do visível) = 550nm), o número (N) de fotões do visível emitidos por segundo é
 - \square N = 1.66 × 10²⁰ fotões/s
 - \mathbb{X} N = 13.3 × 10¹⁸ fotões/s
 - \square N = 1.66 × 10¹⁹ fotões/s
 - \mathbb{X} N = 1.33 × 10¹⁹ fotões/s
- **2val Q2.** O trabalho de extração do molibdénio é de 4.22 eV (1 eV = 1.602×10^{-19} J)
 - a) O maior comprimento de onda (λ_{max}) da radiação incidente no molibdénio que ainda provoca emissão de fotoeletrões é
 - \square $\lambda_{\text{max}} = 199 \text{ nm}$
 - $\lambda_{max} = 294 \text{ nm}$

 - $\lambda_{\text{max}} = 2.94 \times 10^{-7} \text{ m}$

- **b)** Se radiação de 180 nm (ultra-violeta) incidir sobre a placa de molibdénio, o potencial de travagem (V_c) dos fotoeletrões emitidos é
 - $V_c = 2673 \text{ mV}$
 - \Box V_c = 2.673 mV
 - \Box V_c = 0.2673 V
 - $V_c = 2.673 \text{ V}$
- 3val Q3. Das seguintes afirmações assinale as que são verdadeiras (V) e as que são falsa (F)

a) No efeito fotoelétrico

- **v** Se a frequência da radiação incidente no cátodo aumenta, aumenta o potencial de corte.
- F Se o comprimento de onda da radiação incidente no cátodo aumenta, aumenta o potencial de corte.
- **V** Se a intensidade da radiação monocromática que incide no cátodo aumenta, aumenta a intensidade da fotocorrente medida mas o potencial de corte mantém-se constante.

	V Se o comprimento de onda da ra	adiação in	cidente no cátodo diminui, aumenta o potencial de corte.
	F Se a intensidade da radiação n	nonocrom	ática que incide no cátodo aumenta, aumenta o potencial de
	corte.		
	F Se o comprimento de onda d	a radiaçã	io incidente no cátodo aumenta, aumenta a intensidade da
	fotocorrente medida e aumenta o pot	encial de	corte.
	b) Considere o efeito fo	toelétric	o, a experiência de Franck-Hertz e o efeito de Compton
			imental direta da existência de níveis eletrónicos discretos nos
	átomos.	27 G. G. G. G.	
	V No efeito de Compton radiação	monocr	omática de alta energia (raios-X ou raios γ) interage com os
	eletrões de um metal e é difundida e	m todas a	s direções.
	V A experiência de Franck-Hertz fo	i a prime	ira prova experimental direta da existência de níveis eletrónicos
	discretos nos átomos.		
	V Para explicar quer o efeito fotoe	létrico qu	er o efeito de Compton é assumida a natureza corpuscular da
	radiação e a noção de fotão.		
			mática de alta energia (raios-X ou raios γ) interage com os
	eletrões de um metal e é difundida el		•
			ática com energia de alguns eV (energia maior do que a energia
	de ligação dos eletroes no metal) l elétrica.	inciae nui	m metal (cátodo da fotocélula) e dá origem a uma corrente
	eletrica.		
1val	M Associa corretamente es model	os atómic	os (coluna da esquerda) com as suas principais características
	(coluna da direita)	us atomic	os (coluna da esquerda) com as suas principais características
	(oorana aa an ora)		A – O átomo é indivisível
	1 – Modelo atómico de Thomson	(1-D)	B – Nos átomos existem órbitas estáveis, quantificadas.
	2 – Modelo atómico de Dalton	(2-A)	C – O átomo é formado por um núcleo central, muito pequeno,
		(/	onde está localizada a carga positiva e as cargas estão sujeitas
	3 – Modelo atómico de Bohr	(3-B)	apenas à interação de Coulomb.
	4 – Modelo atómico de Rutherford	(4-C)	D – O átomo é uma distribuição esférica e uniforme de carga
		(/	positiva com eletrões uniformemente distribuídos.
3val	Q5. Átomos de hidrogénio encontra	m-se num	estado excitado, tal que a sua energia de ligação é $-1,509$ eV.
	a) O número quântico n corresponde	ente a ess	e estado excitado é $n = 3$
	b) Quando estes átomos passam ao	estado fui	ndamental são emitidos fotões com três comprimentos de onda
	diferentes, λ_1 , λ_2 , λ_3 . Calcule-os.		LO2.55 nm; $\lambda_2 = 121.54$ nm; $\lambda_3 = 656.34$ nm
5val	Q6. Considere um sistema atómico	formado	por um protão e um mesão μ^- , cuja massa é 207 vezes a
			o eletrão. Usando o modelo atómico de Bohr determine:
	a) A massa reduzida do sistema	[μ=	1.694 × 10⁻²⁸ kg
	b) A constante de Rydberg para este		R = 2.04 × 10⁹ m ⁻¹
	c) A energia de ligação do estado fur		

d) O menor raio permitido para este sistema atómico.

e) O maior e o menor comprimento de onda da série de Lyman deste "átomo".

$$\lambda_{\text{max}} = 6.5 \times 10^{-10} \text{ m};$$

 $\lambda_{\text{min}} = 4.9 \times 10^{-10} \text{ m}$

3val Q7. Considere um protão dum raio cósmico com energia cinética igual a 2 GeV ($1G = 1 \times 10^9$).

a) A velocidade deste protão é

 $v = 2.8 \times 10^8 \, \text{m/s}$

 $\nabla = 6.2 \times 10^8 \, \text{m/s}$

 $v = 1.0 \times 10^9 \, \text{km/h}$

b) O comprimento de onda de de Broglie deste protão é

 $\Delta = 1.42 \times 10^{-15} \,\mathrm{m}$

 $\lambda = 4.46 \times 10^{-16} \, \text{m}$

 \triangle $\lambda = 1.42 \text{ fm (1fm} = 1 \times 10^{-15} \text{m)}$

1val Q8. Usando as regras que aprendeu, princípio da energia mínima e princípio de exclusão de Pauli, faça a distribuição eletrónica dos 22 eletrões do átomo de titânio.