Problem (Problem 1): Let R be a ring and M a left R-module.

- (a) Prove that for every $m \in M$, the map $r \mapsto r \cdot m$ from R to M is a homomorphism of R-modules.
- (b) Assume that R is commutative and M an R-module. Prove that there is an isomorphism $hom_R(R,M)\cong M$ as left R-modules.

Solution:

(a) Let $m \in M$ be fixed, and define $\phi_m \colon R \to M$ by

$$\phi_m(r) = r \cdot m$$
.

It follows from the axioms of left R-modules that

$$\varphi_{m}(r+s) = (r+s) \cdot m$$

$$= r \cdot m + s \cdot m$$

$$= \varphi_{m}(r) + \varphi_{m}(s),$$

and

$$\varphi_{m}(rs) = (rs) \cdot m$$

$$= r \cdot (s \cdot m)$$

$$= r \cdot (\varphi_{m}(s)),$$

so that ϕ_m is a homomorphism of left R-modules.

(b) If $\phi_m \colon R \to M$ is the homomorphism as defined in part (a), we define a map $\phi \colon M \to hom_R(R,M)$ by

$$\varphi(m)(r) = \varphi_m(r)$$
.

First, we verify that φ is a homomorphism. If $r \in R$ is arbitrary, then

$$\begin{split} \phi(m+n)(r) &= \phi_{m+n}(r) \\ &= r \cdot (m+n) \\ &= r \cdot m + r \cdot n \\ &= \phi_m(r) + \phi_n(r) \\ &= (\phi(m) + \phi(n))(r). \end{split}$$

To see that ϕ is injective, we see that $\ker(\phi)$ consists of all elements $m \in M$ such that $\phi(m) = \phi_0$, where $\phi_0 \colon R \to M$ takes $r \mapsto 0$ for all $r \in R$. In particular, since $1 \in R$, it follows that $1 \cdot m = m = 0$, meaning that $\ker(\phi) = \{0\}$.