Mathematics

Robin Adams

February 9, 2024

Contents

Ι	Category Theory	5					
1	Foundations						
2	Categories	9					
	2.1 Preorders	. 10					
	2.2 Monomorphisms and Epimorphisms	. 10					
	2.3 Sections and Retractions	. 12					
	2.4 Isomorphisms	. 13					
	2.5 Initial and Terminal Objects						
3	Functors	15					
	3.1 Comma Categories	. 15					
II	Group Theory	17					
4	Groups	19					
	4.1 Order of an Element	. 21					
5	Abelian Groups	25					
TT	I Linear Algebra	27					

4 CONTENTS

Part I Category Theory

Foundations

This is a placeholder — I am not sure what foundation I want to use for this project yet. I will try to work in a way which is foundation-independent. What I do could be formalized in ZFC, ETCS, or some other system. I will assume the usual set theoretic constructions as needed. Sets will be defined up to bijection only.

Categories

Definition 2.1 (Category). A category C consists of:

- A class $|\mathcal{C}|$ of *objects*. We write $A \in \mathcal{C}$ for $A \in |\mathcal{C}|$.
- For any objects A, B, a set C[A, B] of morphisms from A to B. We write $f: A \to B$ for $f \in C[A, B]$.
- For any object A, a morphism $id_A : A \to A$, the *identity* morphism on A.
- For any morphisms $f: A \to B$ and $g: B \to C$, a morphism $g \circ f: A \to C$, the *composite* of f and g.

such that:

Associativity Given $f: A \to B$, $g: B \to C$ and $h: C \to D$, we have $h \circ (g \circ f) = (h \circ g) \circ f$

Left Unit Law For any morphism $f: A \to B$, we have $id_B \circ f = f$.

Right Unit Law For any morphism $f: A \to B$, we have $f \circ id_A = f$.

Proposition 2.2. The identity morphism on an object is unique.

PROOF: If i and j are identity morphisms on A then $i = i \circ j = j$. \square

Example 2.3 (Category of Sets). The *category of sets* **Set** has objects all sets and morphisms all functions.

Definition 2.4 (Endomorphism). In a category \mathcal{C} , an *endomorphism* on an object A is a morphism $A \to A$. We write $\operatorname{End}_{\mathcal{C}}(A)$ for $\mathcal{C}[A, A]$.

Definition 2.5 (Opposite Category). For any category C, the *opposite* category C^{op} is the category with the same objects as C and

$$\mathcal{C}^{\mathrm{op}}[A,B] = \mathcal{C}[B,A]$$

2.1 Preorders

Definition 2.6 (Preorder). A *preorder* on a set A is a relation \leq on A that is reflexive and transitive.

A preordered set is a pair (A, \leq) such that \leq is a preorder on A. We usually write A for the preordered set (A, \leq) .

We identify any preordered set A with the category whose objects are the elements of A, with one morphism $a \to b$ iff $a \le b$, and no morphism $a \to b$ otherwise.

Example 2.7. For any ordinal α , let α be the preorder $\{\beta : \beta < \alpha\}$ under \leq .

Definition 2.8 (Discrete Preorder). We identify any set A with the *discrete* preorder (A, =).

2.2 Monomorphisms and Epimorphisms

Definition 2.9 (Monomorphism). In a category, let $f: A \to B$. Then f is a monomorphism or monic iff, for every object X and morphism $x, y: X \to A$, if fx = fy then x = y.

Definition 2.10 (Epimorphism). In a category, let $f: A \to B$. Then f is a *epimorphism* or *epi* iff, for every object X and morphism $x, y: B \to X$, if xf = yf then x = y.

Proposition 2.11. The composite of two monomorphism is monic.

```
Proof:
```

```
\begin{array}{ll} \langle 1 \rangle 1. & \text{Let: } f: A \rightarrowtail B \text{ and } g: B \rightarrowtail C \text{ be monic.} \\ \langle 1 \rangle 2. & \text{Let: } x,y: X \to A \\ \langle 1 \rangle 3. & \text{Assume: } g \circ f \circ x = g \circ f \circ y \\ \langle 1 \rangle 4. & f \circ x = f \circ y \\ \langle 1 \rangle 5. & x = y \\ \end{array}
```

Proposition 2.12. The composite of two epimorphisms is epi.

Proof: Dual. \square

Proposition 2.13. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is monic then f is monic.

PROOF: If $f \circ x = f \circ y$ then gfx = gfy and so x = y. \square

Proposition 2.14. Let $f: A \to B$ and $g: B \to C$. If $g \circ f$ is epi then g is epi.

Proof: Dual.

Proposition 2.15. A function is a monomorphism in **Set** iff it is injective.

```
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is monic then f is injective.
   \langle 2 \rangle 1. Assume: f is monic.
   \langle 2 \rangle 2. Let: x, y \in A
   \langle 2 \rangle 3. Assume: f(x) = f(y)
   \langle 2 \rangle 4. Let: \overline{x}, \overline{y}: 1 \to A be the functions such that \overline{x}(*) = x and \overline{y}(*) = y
   \langle 2 \rangle 5. \ f \circ \overline{x} = f \circ \overline{y}
   \langle 2 \rangle 6. \ \overline{x} = \overline{y}
       Proof: By \langle 2 \rangle 1.
   \langle 2 \rangle 7. x = y
\langle 1 \rangle 3. If f is injective then f is monic.
   \langle 2 \rangle 1. Assume: f is injective.
   \langle 2 \rangle 2. Let: X be a set and x, y : X \to A.
   \langle 2 \rangle 3. Assume: f \circ x = f \circ y
            Prove: x = y
   \langle 2 \rangle 4. Let: t \in X
            PROVE: x(t) = y(t)
   \langle 2 \rangle 5. f(x(t)) = f(y(t))
   \langle 2 \rangle 6. \ x(t) = y(t)
       Proof: By \langle 2 \rangle 1.
Proposition 2.16. A function is an epimorphism in Set iff it is surjective.
Proof:
\langle 1 \rangle 1. Let: f: A \to B
\langle 1 \rangle 2. If f is an epimorphism then f is surjective.
   \langle 2 \rangle 1. Assume: f is an epimorphism.
   \langle 2 \rangle 2. Let: b \in B
   \langle 2 \rangle 3. Let: x,y:B\to 2 be defined by x(b)=1 and x(t)=0 for all other
                     t \in B, y(t) = 0 for all t \in B.
   \langle 2 \rangle 4. \ x \neq y
   \langle 2 \rangle 5. x \circ f \neq y \circ f
   \langle 2 \rangle 6. There exists a \in A such that f(a) = b.
\langle 1 \rangle 3. If f is surjective then f is an epimorphism.
   \langle 2 \rangle 1. Assume: f is surjective.
   \langle 2 \rangle 2. Let: x, y : B \to X
   \langle 2 \rangle 3. Assume: x \circ f = y \circ f
            PROVE: x = y
   \langle 2 \rangle 4. Let: b \in B
            PROVE: x(b) = y(b)
   \langle 2 \rangle5. PICK a \in A such that f(a) = b
   \langle 2 \rangle 6. \ x(f(a)) = y(f(a))
   \langle 2 \rangle 7. \ x(b) = y(b)
```

Proposition 2.17. In a preorder, every morphism is monic and epi.

PROOF: Immediate from definitions. \square

2.3 Sections and Retractions

Definition 2.18 (Section, Retraction). In a category, let $r: A \to B$ and $s: B \to A$. Then r is a retraction of s, and s is a section of r, iff $r \circ s = \mathrm{id}_B$.

Proposition 2.19. Every identity morphism is a section and retraction of itself.

PROOF: Immediate from definitions. \square

Proposition 2.20. Let $r, r': A \to B$ and $s: B \to A$. If r is a retraction of s and r' is a section of s then r = r'.

Proof:

$$r = r \circ id_A$$

 $= r \circ s \circ r'$
 $= id_B \circ r'$
 $= r'$

Proposition 2.21. Let $r_1: A \to B$, $r_2: B \to C$, $s_1: B \to A$ and $s_2: C \to B$. If r_1 is a retraction of s_1 and r_2 is a retraction of s_2 then $r_2 \circ r_1$ is a retraction of $s_1 \circ s_2$.

Proof:

$$r_2 \circ r_1 \circ s_1 \circ s_2 = r_2 \circ \mathrm{id}_B \circ s_2$$

= $r_2 \circ s_2$
= id_C

Proposition 2.22. Every section is monic.

Proof:

- $\langle 1 \rangle 1$. Let: $s: A \to B$ be a section of $r: B \to A$. $\langle 1 \rangle 2$. Let: $x, y: X \to A$ satisfy sx = sy.
- $\langle 1 \rangle 3$. rsx = rsy
- $\langle 1 \rangle 4. \ x = y$

Proposition 2.23. Every retraction is epi.

Proof: Dual.

Proposition 2.24. In Set, every epimorphism has a retraction.

PROOF: By the Axiom of Choice. \Box

Example 2.25. It is not true in general that every monomorphism in any category has a section. nor that every epimorphism in any category has a retraction.

In the category 2, the morphism $0 \le 1$ is monic and epi but has no retraction or section.

2.4 **Isomorphisms**

Definition 2.26 (Isomorphism). In a category C, a morphism $f: A \to B$ is an isomorphism, denoted $f: A \cong B$, iff there exists a morphism $f^{-1}: B \to A$, the inverse of f, such that $f^{-1} \circ f = \mathrm{id}_A$ and $f \circ f^{-1} = \mathrm{id}_B$.

An automorphism on an object A is an isomorphism between A and itself. We write $Aut_{\mathcal{C}}(A)$ for the set of all automorphisms on A.

Objects A and B are isomorphic, $A \cong B$, iff there exists an isomorphism between them.

Proposition 2.27. The inverse of an isomorphism is unique.

Proof: Proposition 2.20. \square

Proposition 2.28. For any object A we have $id_A : A \cong A$ and $id_A^{-1} = id_A$.

PROOF: Since $id_A \circ id_A = id_A$ by the Unit Laws. \square

Proposition 2.29. If $f : A \cong B$ then $f^{-1} : B \cong A$ and $(f^{-1})^{-1} = f$.

Proof: Immediate from definitions.

Proposition 2.30. If $f:A\cong B$ and $g:B\cong C$ then $g\circ f:A\cong C$ and $(g \circ f)^{-1} = f^{-1} \circ g^{-1}$.

Proof: From Proposition 2.21. \square

Definition 2.31 (Groupoid). A *groupoid* is a category in which every morphism is an isomorphism.

2.5 **Initial and Terminal Objects**

Definition 2.32 (Initial Object). An object I in a category is *initial* iff, for any object X, there is exactly one morphism $I \to X$.

Example 2.33. The empty set is the initial object in **Set**.

Definition 2.34 (Terminal Object). An object T in a category is terminal iff, for any object X, there is exactly one morphism $X \to T$.

Example 2.35. Every singleton is terminal in **Set**.

Proposition 2.36. If I and J are initial in a category, then there exists a unique isomorphism $I \cong J$.

Proof:

- $\langle 1 \rangle 1$. Let: i be the unique morphism $I \to J$.
- $\langle 1 \rangle 2$. Let: i^{-1} be the unique morphism $J \to I$. $\langle 1 \rangle 3$. $i \circ i^{-1} = \operatorname{id}_J$

PROOF: Since there is only one morphism $J \to J$.

 $\langle 1 \rangle 4$. $i^{-1} \circ i = \mathrm{id}_I$

Proof: Since there is only one morphism $I \to I$.
Proposition 2.37. If S and T are terminal in a category, then there exists a unique isomorphism $S \cong T$.
Proof: Dual.

Functors

Definition 3.1 (Functor). Let \mathcal{C} and \mathcal{D} be categories. A functor $F:\mathcal{C}\to\mathcal{D}$ consists of:

- for every object $A \in \mathcal{C}$, an object $FA \in \mathcal{D}$
- for any morphism $f: A \to B: \mathcal{C}$, a morphism $Ff: FA \to FB: \mathcal{D}$

such that:

- $Fid_A = id_{FA}$
- $F(g \circ f) = Fg \circ Ff$

Definition 3.2 (Identity Functor). For any category C, the *identity functor* $1_C: C \to C$ is defined by

$$1_{\mathcal{C}}A = A$$
$$1_{\mathcal{C}}f = f$$

Definition 3.3 (Constant Functor). Given categories \mathcal{C} , \mathcal{D} and an object $D \in \mathcal{D}$, the constant functor $K^{\mathcal{C}}D : \mathcal{C} \to \mathcal{D}$ is the functor defined by

$$K^{\mathcal{C}}DC = D$$
$$K^{\mathcal{C}}Df = \mathrm{id}_{D}$$

3.1 Comma Categories

Definition 3.4 (Comma Category). Let $F: \mathcal{C} \to \mathcal{E}$ and $G: \mathcal{D} \to \mathcal{E}$ be functors. The *comma category* $F \downarrow G$ is the category with:

• objects all pairs (C, D, f) where $C \in \mathcal{C}, D \in \mathcal{D}$ and $f : FC \to GD : \mathcal{E}$

• morphisms $(u,v):(C,D,f)\to (C',D',g)$ all pairs $u:C\to C':\mathcal{C}$ and $v:D\to D':\mathcal{D}$ such that the following diagram commutes:

$$FC \xrightarrow{f} GD$$

$$\downarrow_{Fu} \qquad \downarrow_{Gv}$$

$$FC' \xrightarrow{g} GD'$$

Definition 3.5 (Slice Category). Let \mathcal{C} be a category and $A \in \mathcal{C}$. The *slice category* over A, denoted \mathcal{C}/A , is the comma category $1_{\mathcal{C}} \downarrow K^{\mathbf{1}}A$.

Definition 3.6 (Coslice Category). Let C be a category and $A \in C$. The *coslice category* over A, denoted $C \setminus A$, is the comma category $K^1A \downarrow 1_C$.

Definition 3.7 (Pointed Sets). The *category of pointed sets* \mathbf{Set}_* is the coslice category $\mathbf{Set} \setminus 1$.

Part II Group Theory

Groups

Definition 4.1 (Group). A group G consists of a set G and a binary operation $\cdot: G^2 \to G$ such that \cdot is associative, and there exists $e \in G$, the *identity* element of the group, such that:

- For all $x \in G$ we have xe = ex = x
- For all $x \in G$, there exists $x^{-1} \in G$, the *inverse* of x, such that $xx^{-1} = x^{-1}x = e$.

We identify a group G with the category G with one object and morphisms the elements of G, with composition given by \cdot .

The *order* of a group G, denoted |G|, is the number of elements in G if G is finite; otherwise we write $|G| = \infty$.

Proposition 4.2. The identity in a group is unique.

Proof: Proposition 2.2.

Proposition 4.3. The inverse of an element is unique.

PROOF: If i and j are inverses of x then i = ixj = j. \square

Example 4.4. • The *trivial* group is $\{e\}$ under ee = e.

- \mathbb{Z} is a group under addition
- \mathbb{Q} is a group under addition
- $\mathbb{Q} \{0\}$ is a group under multiplication
- \mathbb{R} is a group under addition
- $\mathbb{R} \{0\}$ is a group under multiplication
- \bullet $\mathbb C$ is a group under addition
- $\mathbb{C} \{0\}$ is a group under multiplication

- $\{-1,1\}$ is a group under multiplication
- The set of 2×2 real matrices with non-zero determinant is a group under matrix multiplication.
- For any positive integer n, the set \mathbb{Z}_n of integers modulo n under addition is a group.

Example 4.5. • The only group of order 1 is the trivial group.

- The only group of order 2 is \mathbb{Z}_2 .
- The only group of order 3 is \mathbb{Z}_3 .
- There are exactly two groups of order 4: \mathbb{Z}_4 and $\mathbb{Z}_2 \times \mathbb{Z}_2$ under (a, b)(c, d) = (ac, bd).

Proposition 4.6 (Cancellation). Let G be a group. Let $a, g, h \in G$. If ag = ah or ga = ha then g = h.

PROOF: If ag = ah then $g = a^{-1}ag = a^{-1}ah = h$. Similarly if ga = ha. \square

Proposition 4.7. Let G be a group and $q, h \in G$. Then $(qh)^{-1} = h^{-1}q^{-1}$.

PROOF: Since $ghh^{-1}g^{-1} = e$. \square

Definition 4.8. Let G be a group. Let $g \in G$. We define $g^n \in G$ for all $n \in \mathbb{Z}$ as follows:

$$g^{0} = e$$

 $g^{n+1} = g^{n}g$ $(n \ge 0)$
 $g^{-n} = (g^{-1})^{n}$ $(n > 0)$

Proposition 4.9. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$g^{m+n} = g^m g^n .$$

Proof:

 $\langle 1 \rangle 1$. For all $k \in \mathbb{Z}$ we have $g^{k+1} = g^k g$

 $\langle 2 \rangle$ 1. For all $k \geq 0$ we have $g^{k+1} = g^k g$

PROOF: Immediate from definition.

 $\langle 2 \rangle 2$. $g^{-1+1} = g^{-1}g$

Proof: Both are equal to e.

 $\langle 2 \rangle 3$. For all k > 1 we have $g^{-k+1} = g^{-k}g$

Proof:

$$g^{-k+1} = (g^{-1})^{k-1}$$

$$= (g^{-1})^{k-1}g^{-1}g$$

$$= (g^{-1})^k g$$

$$= g^{-k}g$$

$$\begin{array}{l} \langle 1 \rangle 2. \text{ For all } k \in \mathbb{Z} \text{ we have } g^{k-1} = g^k g^{-1} \\ \text{ Proof: Substitute } k = k-1 \text{ above and multiply by } g^{-1}. \\ \langle 1 \rangle 3. \ g^{m+0} = g^m g^0 \\ \text{ Proof: Since } g^m g^0 = g^m e = g^m. \\ \langle 1 \rangle 4. \text{ If } g^{m+n} = g^m g^n \text{ then } g^{m+n+1} = g^m g^{n+1} \\ \text{ Proof: } g^{m+n+1} = g^{m+n} g \end{array} \tag{$\langle 1 \rangle 1$}$$

$$g = g^{m}g^{n}g$$

$$= g^{m}g^{n+1} \qquad (\langle 1 \rangle 1)$$

$$=g^mg^{n+1} \\ \langle 1\rangle 5. \text{ If } g^{m+n}=g^mg^n \text{ then } g^{m+n-1}=g^mg^{n-1}$$

Proof:

$$g^{m+n-1}g = g^{m+n} \qquad (\langle 1 \rangle 1)$$
$$= g^m g^n$$

$$= g^m g^n$$

$$\therefore g^{m+n-1} = g^m g^n g^{-1}$$

$$= g^m g^{n-1} \qquad (\langle 1 \rangle 2)$$

Proposition 4.10. Let G be a group. Let $g \in G$ and $m, n \in \mathbb{Z}$. Then

$$(g^m)^n = g^{mn} .$$

Proof:

$$\langle 1 \rangle 1. \ (g^m)^0 = g^0$$

Proof: Both sides are equal to e.

$$\langle 1 \rangle 2$$
. If $(g^m)^n = g^{mn}$ then $(g^m)^{n+1} = g^{m(n+1)}$.

Proof:

$$(g^m)^{n+1} = (g^m)^n g^m$$
 (Proposition 4.9)
= $g^{mn} g^m$
= g^{mn+m} (Proposition 4.9)

$$\langle 1 \rangle 3$$
. If $(g^m)^n = g^{mn}$ then $(g^m)^{n-1} = g^{m(n-1)}$.

Proof:

$$(g^m)^n = g^{mn}$$

$$\therefore (g^m)^{n-1}g^m = g^{mn-m}g^m \qquad (Proposition 4.9)$$

$$\therefore (g^m)^{n-1} = g^{mn-m} \qquad (Cancellation)$$

Definition 4.11 (Commute). Let G be a group and $g, h \in G$. We say g and h commute iff gh = hg.

4.1 Order of an Element

Definition 4.12 (Order). Let G be a group. Let $g \in G$. Then g has finite order iff there exists a positive integer n such that $q^n = e$. In this case, the order of g, denoted |g|, is the least positive integer n such that $g^n = e$.

If g does not have finite order, we write $|g| = \infty$.

Proposition 4.13. Let G be a group. Let $g \in G$ and n be a positive integer. If $g^n = e$ then |g| | n.

Proof:

 $\langle 1 \rangle 1$. Let: n = q|g| + d where $0 \le d < |g|$

PROOF: Division Algorithm.

 $\langle 1 \rangle 2. \ g^d = e$

Proof:

$$e = g^n$$

 $= g^{q|g|+d}$
 $= (g^{|g|})^q g^d$ (Propositions 4.9, 4.10)
 $= e^q g^d$
 $= g^d$

 $\langle 1 \rangle 3. \ d = 0$

PROOF: By minimality of |g|.

$$\langle 1 \rangle 4. \ n = q|g|$$

Corollary 4.13.1. Let G be a group. Let $g \in G$ have finite order and $n \in \mathbb{Z}$. Then $g^n = e$ if and only if |g| | n.

Proposition 4.14. Let G be a group and $g \in G$. Then $|g| \leq |G|$.

Proof:

 $\langle 1 \rangle 1$. Assume: w.l.o.g. G is finite.

 $\langle 1 \rangle 2$. PICK i, j with $0 \le i < j \le |G|$ such that $g^i = g^j$. PROOF: Otherwise $g^0, g^1, \ldots, g^{|G|}$ would be |G|+1 distinct elements of G.

 $\langle 1 \rangle 3. \ q^{j-i} = e$

 $\langle 1 \rangle 4$. g has finite order and $|g| \leq |G|$ PROOF: Since $|g| \leq j - i \leq j \leq |G|$.

Proposition 4.15. Let G be a group. Let $g \in G$ have finite order. Let $m \in \mathbb{N}$. Then

$$|g^m| = \frac{\operatorname{lcm}(m, |g|)}{m} = \frac{|g|}{\gcd(m, |g|)}$$

PROOF: Since for any integer d we have

$$g^{md} = e \Leftrightarrow |g| \mid md \qquad \qquad \text{(Corollary 4.13.1)}$$

$$\Leftrightarrow \operatorname{lcm}(m,|g|) \mid md$$

$$\Leftrightarrow \frac{\operatorname{lcm}(m,|g|)}{m} \mid d$$
 and so $|g^m| = \frac{\operatorname{lcm}(m,|g|)}{m}$ by Corollary 4.13.1. \square

Corollary 4.15.1. If g has odd order then $|g^2| = |g|$.

Proposition 4.16. Let G be a group. Let $g, h \in G$ have finite order. Assume gh = hg. Then |gh| has finite order and

$$|gh| \mid \operatorname{lcm}(|g|, |h|)$$

Proof: Since $(gh)^{\operatorname{lcm}(|g|,|h|)} = g^{\operatorname{lcm}(|g|,|h|)} h^{\operatorname{lcm}(|g|,|h|)} = e.$ \square

Proposition 4.17. Let G be a finite group. Assume there is exactly one element $f \in G$ of order 2. Then the product of all the elements of G is f.

PROOF: Let the elements of G be g_1, g_2, \ldots, g_n . Apart from e and f, every element and its inverse are distinct elements of the list. Hence the product of the list is ef = f. \square

Proposition 4.18. Let G be a finite group of order n. Let m be the number of elements of G of order 2. Then n-m is odd.

PROOF: In the list of all elements that are not of order 2, every element and its inverse are distinct except for e. Hence the list has odd length. \square

Corollary 4.18.1. If a finite group has even order, then it contains an element of order 2.

Proposition 4.19. Let G be a group and $a, g \in G$. Then $|aga^{-1}| = |g|$.

PROOF: Since

$$(aga^{-1})^n = e \Leftrightarrow ag^n a^{-1} = e$$
$$\Leftrightarrow g^n = e$$

Proposition 4.20. Let G be a group and $g, h \in G$. Then |gh| = |hg|.

PROOF: Since $|gh| = |ghgg^{-1}| = |hg|$. \square

Abelian Groups

Definition 5.1 (Abelian Group). A group is *Abelian* iff any two elements commute.

In an Abelian group G, we often denote the group operation by +, the identity element by 0 and the inverse of an element g by -g. We write ng for g^n ($g \in G$, $n \in \mathbb{Z}$).

Example 5.2. Every group of order ≤ 4 is Abelian.

Proposition 5.3. Let G be a group. If $g^2 = e$ for all $g \in G$ then G is Abelian.

```
PROOF: For any g,h\in G we have ghgh=e \therefore hgh=g \qquad \qquad \text{(multiplying on the left by }g\text{)} \therefore hg=gh \qquad \qquad \text{(multiplying on the right by }h\text{)}\square
```

Part III Linear Algebra

Definition 5.4. Let $\mathrm{GL}_n(\mathbb{R})$ be the group of invertible $n \times n$ real matrices.