Звіт

про виконання завдання з самостійної роботи

з курсу «**Теорія ймовірностей та математична статистика**» тема **«ОДНОФАКТОРНИЙ ДИСПЕРСІЙНИЙ АНАЛІЗ»**

студентом Попов А. А. (група КС-231) в 2024-2025 навчальному році за індивідуальним варіантом даних №17

Варіант 7 Задача

Виконано по чотири випробування на кожному з трьох рівнів чинника F. Методом дисперсійного аналізу при рівні значущості α =0,05 перевірити нульову гіпотезу про рівність групових середніх $\vec{x}_{\text{гр}j}$. Вважається, що вибірки взяті з нормальних сукупностей з однаковими дисперсіями. Результати випробувань наведені в таблиці:

Номер випробування, і	Рівні фактора		
	F_{I}	F_2	F_3
1	36	30	21
2	34	24	22
3	35	26	34
4	32	20	31

\vec{X}_{rni}		
1199		

Вказівка. Перейти до умовних варіант $y_{ij} = x_{ij} - C$.

Розв'язання:

Основна мета аналізу:

Дисперсійний аналіз дозволяє розкласти загальну дисперсію на дві складові:

- 1. Міжгрупова дисперсія (через різницю між середніми значеннями груп);
- 2. Внутрішньогрупова дисперсія (різниця значень всередині груп).

Порівнюючи ці дисперсії, за допомогою F-критерію Фішера визначається, чи існує статистично значуща різниця між групами.

Основні формули:

1. Загальна середня значення по всім хії:

$$\overline{x} = \frac{\sum_{i=1}^{k} \sum_{j=1}^{n} x_{ij}}{kn}$$
., де

де k — кількість груп (3 рівні фактора F), n — кількість спостережень у кожній групі.

Середні значення по групах:

$$\bar{x} = \frac{\sum_{i=1}^{n} x_{ij}}{n}$$
.,j = 1,2,3.

Це середнє значення для кожного рівня фактора F.

Загальна сума квадратів (Ѕобщ):

$$S_{oбw} = \sum_{i=1}^{k} \sum_{j=1}^{n} (x_{ij} - \overline{x})^2.$$

загальна варіація даних навколо загального середнього.

Міжгрупова сума квадратів Ѕфакт:

$$S_{\phi a \kappa m} = n \sum_{j=1}^{k} \left(-\overline{x_j} + \overline{x} \right)^2.$$

варіація, обумовлена відмінностями між груповими середніми.

Внутрішньогрупова сума квадратів Ѕост:

$$S_{ocm} = \sum_{i=1}^{k} \sum_{j=1}^{n} (x_{ij} - \overline{x}_{j})^{2}.$$

варіація, обумовлена відмінностями всередині груп.

Оцінка дисперсій:

середньоквадратична міжгрупова дисперсія: $S_{\text{міжгруп}} = \frac{S_{\phi \text{акт}}}{k-1}$.

середньоквадратична внутрішньогрупова дисперсія: $S_{\text{веруn}} = \frac{S_{\text{ocm}}}{k(n-1)}$.

F-критерій Фішера: $F \frac{S_{\scriptscriptstyle Miжcpyn}}{S_{\scriptscriptstyle grpyn}}$.

Порівняння значення F з критичним значенням $F_{\kappa p}$ при рівні значущості α =0.05. Якщо $F > F_{\kappa p}$, то відхиляємо нульову гіпотезу.

Усі формули записані, отже переходмо до розв'язку.

Знаходимо середні значення по групах:

Група
$$F_1: \overline{x_1} = \frac{36+34+35+32}{4} = 34.25$$
.

Група
$$F_2$$
: $\overline{x_2} = \frac{30 + 24 + 26 + 20}{4} = 25$.

Група
$$F_3: \overline{x_3} = \frac{21+22+34+31}{4} = 27.$$

Знайдемо загальне середнє значення:

$$\overline{x} = \frac{36+34+35+32+30+24+26+20+21+22+34+31}{12} = 28.75.$$

Далі знайдемо міжгрупову суму квадратів:

для
$$F_1$$
: $(\overline{x_1}-x)^2=(34.25-28.75)^2=30.25$.

для
$$F_2$$
: $(\overline{x_2}-x)^2=(25-28.75)^2=14.0625$.

для
$$F_3$$
: $(\overline{x_2}-x)^2=(27-28.75)^2=3.06$.

Знайдемо
$$S_{\phi a \kappa \tau}$$
: $S_{\phi a \kappa \tau} = 4 * (30.25 + 14.0625 + 3.0625) = 4 * 47.375 = 189.5.$

Тепер знайдемо внутрішньогрупову суму квадратів для кожного рівня:

для F_1 (середнє $\overline{x_1}$ = 34.25.):

$$(36-34.25)^2 = 3.0625$$

$$(34-34.25)^2 = 0.0625$$

$$(35-34.25)^2 = 0.5625$$
,

$$(32-34.25)^2 = 5.0625.$$

$$Cyma = 3.0625 + 0.0625 + 0.5625 + 5.0625 = 8.75.$$

для F_2 (середнє $\bar{x}_2 = 25$.):

$$(30-25)^2 = 25$$
,

$$(24-25)^2 = 1$$
,

$$(26-25)^2 = 1$$
,

$$(20-25)^2 = 25.$$

$$Cyma = 25 + 1 + 1 + 25 = 52.$$

для F_3 (середнє $\overline{x_3}$ =27):

$$(21-27)^2 = 36$$
,

$$(22-27)^2 = 25$$
,

$$(34-27)^2 = 49$$

$$(31-27)^2 = 16.$$

$$Cyma = 36 + 25 + 49 + 16 = 126.$$

Знайдемо Ѕост:

$$S_{\text{oct}} = 8.75 + 52 + 126 = 186.75.$$

Тепер обчислимо середньоквадратичну міжгрупову та середньоквадратичну внутрішньогрупову дисперсію:

$$S_{\text{міжгруп}} = \frac{189.5}{2} = 94.75.$$

$$S_{expyn} = \frac{186.75}{9} = 20.75$$
.

Тепер можемо обчислити F-критерій Фішера:

$$F = \frac{94.75}{20.75} = 4.75$$
.

При рівні значущості α =0.05, ступені вільності df_1 =2 (міжгрупові) і df_2 =9 (внутрішньогрупові), критичне значення $F_{\kappa p}$ знаходиться з таблиці Фішера. Для цих параметрів $F_{\kappa p} \approx 4.26$.

$$F_{obu} = 4.57 > F_{KD} = 4.26$$
.

Висновок:Оскільки обчислене значення F більше критичного значення, ми відхиляємо нульову гіпотезу. Це означає, що середні значення для трьох рівнів чинника значущо відрізняються.