

Lenguajes de Consulta

Fuentes http://www-db.stanford.edu/~ullman/fcdb.html
Fundamentals of Database Systems, Elmasri y Navathe
Database System Concepts, Silberschatz, Korth, Sudarshan

Lenguajes

- Permiten recuperación de datos de la bd
- Varios lenguajes para MR
 - Lenguajes formales
 - Basados en lógica y algebra
 - Facilita optimización
- Lenguajes
 - Acceso eficiente a bd
 - No cálculos complejos
 - Declarativos vs. imperativos

Lenguajes de Consulta Relacional

- □ Base implementación SQL
- Algebra Relacional
 - Imperativa
 - Útil representación planes de consulta
- □ Cálculo Relacional
 - Declarativa
 - Enfasis QUÉ y no en CÓMO

Lenguajes de Consulta Relacional

- Consultas aplicables a instancias de relación
- Producen instancias relación
- Esquema relaciones entrada fijo
- Esquemas basados en posición vs.
 basados en nombres de atributos

ALGEBRA RELACIONAL

Algebra Relacional

□ Algebra

- Operandos: relaciones o variables de relación
- Operadores: aplicados sobre relaciones
- Operaciones se pueden componer

Algebra usada como lenguaje de consulta para las relaciones

Algebra Relacional: Core

- Selección (σ) Selecciona un subconjunto de filas o tuplas de una relación (horizontal)
- Proyección (π) Conserva algunas columnas de la relación (vertical)
- Producto-cartesiano (x) Permite combinar dos relaciones
- □ *Diferencia-conjuntos* () tuplas en r1 no en r2.
- □ *Union* (∪) Tuplas en r1 o en r2
- \square Renombramiento (ρ)

Algebra Relacional

Operadores Unarios

- Selección (σ)
- Proyección (π)
- Renombramiento (ρ)

Operaciones de conjunto

- Producto-cartesiano (x)
- Diferencia-conjuntos ()
- **■** *Union* (∪)
- Intersección (∩)

Algebra Relacional

Operadores Relacionales Binarios

- *Join* (⋈)
- División

Otras Operaciones

- OUTER JOIN, OUTER UNION
- Funciones Agregadas (SUM, COUNT, AVG, MIN, MAX)

$$R1 := \sigma_C(R2)$$

- C es una condición(predicado) aplicable a attributes de R2
- R1 contiene todas las tuplas de R2 que satisfacen C
- Esquemas R1 y R2 iguales

$$\sigma_c(r) = \{t \mid t \in r \ y \ c(t)\}\$$

c es una fórmula del cálculo proposicional formada por términos y operadores \land (and), \lor (or), \neg (not)

Cada término puede ser:

<atributo> op <atributo> o <constante>

donde *op* puede ser: =, \neq , >, \geq , <, \leq

Selección

Relación r

Α	В	С	D
α	α	1	7
α	β	5	7
β	β	12	3
β	β	23	10

$$\sigma_{A=B \wedge D > 5}$$
 (r)

Α	В	С	D
α	α	1	7
β	β	23	10

Ejemplo

Relación Matrícula

estudiante	curso	calif
Luis	BD	3.5
José	MDI	4.7
Maria	BD	3.5
Luis	MDI	4.0

Tabulado-Luis= **o**estudiante="Luis" (Matricula)

estudiante	curso	calif
Luis	BD	3.5
Luis	MDI	4.0

Por conmutatividad una secuencia (cascada) de operaciones SELECT se puede aplicar en cualquier orden

$$\sigma_{\text{cond1}>}(\sigma_{\text{cond2}>}(\sigma_{\text{cond3}>}(R)) = \\ \sigma_{\text{cond2}>}(\sigma_{\text{cond3}>}(\sigma_{\text{cond1}>}(R)))$$

Una secuencia de operaciones SELECT se puede reemplazar por la conjunción de condiciones

$$\sigma_{\text{cond1>}}(\sigma_{\text{cond2>}}(\sigma_{\text{cond3>}}(R)) =$$

$$\sigma_{\text{cond1>AND< cond2>AND < cond3>}}(R)))$$

El número de tuplas en el resultado de un SELECT es menor que (o igual a) el número de tuplas de la relación de entrada R

Proyección π

$$R1 := \pi_L(R2)$$

- L lista de atributos (A₁,A₂,...,A_n) del esquema
 R2
- R1 está formada por tuplas de R2, con los atributos en el orden de la lista L
- tuplas duplicadas se eliminan si hay alguna (conjuntos no tienen elementos duplicados)

Proyección

Relación r

Α	В	С
α	10	1
α	20	1
β	30	1
β	40	2

$$\prod_{A,C} (r)$$

Proyección: Propiedades

El total de tuplas resultado de $\pi_{<list>}(R)$ es siempre menor o igual al total de tuplas de R

- Si la lista de atributos incluye una llave de R, el número de tuplas en el resultado de la proyección es igual al total de tuplas en R
- PROYECCIÓN no es commutativa

$$\pi_{<\text{list}1>}(\pi_{<\text{list}2>}(R)) = \pi_{<\text{list}1>}(R)$$
 sobre conteniendo los atributos en t1>

Ejemplo

Relación Matricula

estudiante	curso	calif
Luis	BD	3.5
José	MDI	4.7
Maria	BD	3.5
Luis	MDI	4.0

Estudiantes = $\pi_{\text{estudiante}}$ (Matricula)

estudiante Luis José María

Proyección Extendida

La lista L, en π_L , puede contener expresiones aplicables a los atributos:

- Aritméticas como A+B → C
- Ocurrencias duplicadas sobre el mismo atributo

Ejemplo

$$\Pi_{A+B\to C,A}(R) = \begin{array}{c|c} C & A \\ \hline 3 & 1 \\ \hline 7 & 3 \end{array}$$

Producto Cartesiano

$R3 := R1 \times R2$

- Cada tupla t1 de R1 se combina con cada tupla t2 de R2
- La concatenación t1t2 es una tupla de R3
- El esquema de R3 se forma con los atributos de R1 y de R2 en el orden en que aparecen
- Si el mismo atributo A aparece en ambas relaciones R1 y R2, usar R1.A y R2.A

Ejemplo $R3 = R1 \times R2$

R1

Α	В
1	2
3	4

R2

В	C
5	6
7	8
9	10

R3

Α	R1.B	R2.B	С
1	2	5	6
1	2	7	8
1	2	9	10
3	4	5	6
3	4	7	8
3	4	9	10

Producto Cartesiano

Relaciones

С	D	E
α	10	а
β	10	a
β	20	b
γ	10	b
		S

rxs

A	В	С	D	Ε
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	а
β	2	β	20	b
β	2	γ	10	b

Producto Cartesiano

$$r \times s = \{t \mid q \mid t \in r \land q \in s\}$$

- Se asume que los atributos en r(R) y
 s(S) son disjuntos (R ∩ S = Ø)
- Si (R ∩ S ≠ Ø) necesidad de usar renombramiento

Renombramiento p

- Operador ρ produce un nuevo esquema de relación
- □ R1 := $\rho_{R1(A1,...,An)}(R2)$ construye relación R1 con atributos $A_1,...,A_n$ y las mismas tuplas de R2
- Notación simplificada

$$R1(A1,...,An) := R2$$

Renombramiento

- Permite nombrar atributos o relaciones
- □ Formas de renombramiento
 - ρ_{S (B1, B2, ..., Bn)}(R) cambia
 - Por S el nombre de la relación
 - por B1, B1,Bn los nombres de los aributos o columnas

Renombramiento

□ Formas de renombramiento

- ρ_S(R) cambia
 - Cambia únicamente por S el nombre de la relación
- ρ_(B1, B2, ..., Bn)(R)
 - Cambia unicamente los nombres de las columnas o atributos por B1, B1,Bn

Unión U

\square Operador binario $r \cup s$

$$r \cup s = \{t \mid t \in r \lor t \in s\}$$

- r, s deben tener la misma aridad
- Devuelve tuplas que están en r, s ó ambas
- Tuplas duplicadas se eliminan
- Dominios de atributos compatibles (mismo tipo de valores columnas correspondientes)
- Relaciones UNION compatibles

Relaciones Unión Compatibles

Dos relaciones r y r'con esquemas R(A_i:D_i), R'(A_i:D_i) y cardinalidades m y m', respectivamente, son compatibles cuando ambas están definidas sobre el mismo dominio.

$$\forall A_i \exists A'_j | dom(A_i) = dom(A'_j)$$

 $\forall A'_j \exists A_j | dom(A'_j) = dom(A_j)$

Unión U

Relaciones

Α	В
α	1
α	2
β	1

Α	В	
α	2	
β	3	
S		

rus

A	В
α	1
α	2
β	1
β	3

Observación

Cuando los esquemas R y R'no se corresponden (el nombre de los atributos son diferentes en las relaciones, o están en distinto orden) se sugiere renombrar los atributos en la relación resultante

Ejemplo

Calcular la unión de las siguientes relaciones

M

Cedula-M	Nombre-M
3232330	María Ruíz
3455775	Rosa Toro
3216789	Julia Muñoz

Η

Nombre-H	Cedula-H	
6756989	Luis Lara	
6453446	Jose Cruz	

Diferencia -

Relaciones

Diferencia

$$r-s = \{t \mid t \in r \land t \notin s\}$$

- Relaciones UNION compatibles
 - ry s deben tener la misma aridad
 - Dominios de atributos de r y s deben ser compatibles

Composición de Operaciones

Expresiones con múltiples operadores

$$\Box \sigma_{A=C}(r \times s)$$

$$\sigma_{A=C}(r \times s)$$

A	В	С	D	Ε
α	1	α	10	а
$\boldsymbol{\beta}$	2	β	10	a
$\boldsymbol{\beta}$	2	β	20	b

Α	В	С	D	E
α	1	α	10	а
α	1	β	10	a
α	1	β	20	b
α	1	γ	10	b
β	2	α	10	a
β	2	β	10	a
β	2	β	20	b
β	2	γ	10	b

Definición Formal

Sean E_1 y E_2 dos expresiones relacionales Las siguientes son expresiones del álgebra

- *E*₁ ∪ *E*₂
- $E_1 E_2$
- $E_1 \times E_2$
- $\sigma_p(E_1)$, p es un predicado sobre los atributos en E_1
- $\Pi_{\mathcal{S}}(E_1)$, S lista de atributos en E_1
- $\rho_X(E_1)$, x es un nombre nuevo para el resultado de E_1

