SBML Model Report

Model name: "Sarma2012 - Interaction topologies of MAPK cascade (M4_K2_QSS_PSEQ)"

May 6, 2016

1 General Overview

This is a document in SBML Level 2 Version 4 format. This model was created by the following two authors: Vijayalakshmi Chelliah¹ and Uddipan Sarma² at November 23rd 2012 at 4:21 p. m. and last time modified at May 30th 2014 at 6:21 p. m. Table 1 gives an overview of the quantities of all components of this model.

Table 1: Number of components in this model, which are described in the following sections.

Element	Quantity	Element	Quantity
compartment types	0	compartments	2
species types	0	species	11
events	0	constraints	0
reactions	10	function definitions	10
global parameters	14	unit definitions	2
rules	0	initial assignments	0

Model Notes

Sarma2012 - Interaction topologies of MAPK cascade (M4_K2_QSS_PSEQ)

¹EMBL-EBI, viji@ebi.ac.uk

²National Centre for Cell Science, uddipans@gmail.com

The paper presents the various interaction topologies between the kinases and phosphatases of MAPK cascade. They are represented as M1, M2, M3 and M4. The kinases of the cascades are MKKK, MKK and MK, and Phos1, Phos2 and Phos3 are phosphatases of the system. All three kinases in a M1 type network have specific phosphatases Phos1, Phos2 and Phos3 for the dephosphorylation process. In a M2 type system, kinases MKKK and MKK are dephosphorylated by Phos1 and MK is dephosphorylated by Phos2. The architecture of system like M3 is such that MKKK gets dephosphorylated by Phos1, whereas Phos2 dephosphorylates both MKK and MK. Finally, the MAPK cascade exhibiting more complex design of interaction such as M4 is such that MKKK and MKK are dephosphorylated by Phos1 whereas MKK and MK are dephosphorylated by Phos2. In addition, as it is plausible that the kinases can sequester their respective phosphatases by binding to them, this is considered in the design of the systems (PSEQ-sequestrated system; USEQ-Unsequestrated system). The robustness of different interaction designs of the systems is checked, considering both MichaelisMenten type kinetics (K1) and elementary mass action kinetics (K2). In the living systems, the MAPK cascade transmit both short and long duration signals where short duration signals trigger proliferation and long duration signals trigger cell differentiation. These signal variants are considered to interpret the systems behaviour. It is also tested how the robustness and signal response behaviour of K2 models are affected when K2 assumes quasi steady state (QSS). The combinations of the above variants resulted in 40 models (MODEL1204280001-MODEL1204280040). All these 40 models are available from BioModels Database.

Models that correspond to type M4 with mass-action kinetics K2, in four condition 1) USEQ [MODEL1204280020 - M4_K2_USEQ], 2) PSEQ [MODEL1204280024 - M4_K2_PSEQ], 3) QSS_USEQ [MODEL1204280036 - M4_K2_QSS_USEQ] and 4) QSS_PSEQ [MODEL1204280040 - M4_K2_QSS_PSEQ] are available from the curated branch. The remaining 36 models can be accessed from the non-curated branch.

This model [MODEL1204280040 - M4_K2_QSS_PSEQ] correspond to type M4 with mass-action kinetics K2, in QSS (quasi steady state) and USEQ (Unsequestrated) condition. .

This model is described in the article:Different designs of kinase-phosphatase interactions and phosphatase sequestration shapes the robustness and signal flow in the MAPK cascade.Sarma U, Ghosh I.BMC Syst Biol. 2012 Jul 2;6(1):82.

Abstract:

BACKGROUND: The three layer mitogen activated protein kinase (MAPK) signaling cascade exhibits different designs of interactions between its kinases and phosphatases. While the sequential interactions between the three kinases of the cascade are tightly preserved, the phosphatases of the cascade, such as MKP3 and PP2A, exhibit relatively diverse interactions with their substrate kinases. Additionally, the kinases of the MAPK cascade can also sequester their phosphatases. Thus, each topologically distinct interaction design of kinases and phosphatases could exhibit unique signal processing characteristics, and the presence of phosphatase sequestration may lead to further fine tuning of the propagated signal.

RESULTS: We have built four models of the MAPK cascade, each model with identical kinase-kinase interactions but unique kinases-phosphatases interactions. Our simulations unravelled that MAPK cascade's robustness to external perturbations is a function of nature of interaction between its kinases and phosphatases. The cascade's output robustness was enhanced when

phosphatases were sequestrated by their target kinases. We uncovered a novel implicit/hidden negative feedback loop from the phosphatase MKP3 to its upstream kinase Raf-1, in a cascade resembling the B cell MAPK cascade. Notably, strength of the feedback loop was reciprocal to the strength of phosphatases' sequestration and stronger sequestration abolished the feedback loop completely. An experimental method to verify the presence of the feedback loop is also proposed. We further showed, when the models were activated by transient signal, memory (total time taken by the cascade output to reach its unstimulated level after removal of signal) of a cascade was determined by the specific designs of interaction among its kinases and phosphatases.

CONCLUSIONS: Differences in interaction designs among the kinases and phosphatases can differentially shape the robustness and signal response behaviour of the MAPK cascade and phosphatase sequestration dramatically enhances the robustness to perturbations in each of the cascade. An implicit negative feedback loop was uncovered from our analysis and we found that strength of the negative feedback loop is reciprocally related to the strength of phosphatase sequestration. Duration of output phosphorylation in response to a transient signal was also found to be determined by the individual cascade's kinase-phosphatase interaction design.

This model is hosted on BioModels Database and identified by: MODEL1204280040.

To cite BioModels Database, please use: BioModels Database: An enhanced, curated and annotated resource for published quantitative kinetic models.

To the extent possible under law, all copyright and related or neighbouring rights to this encoded model have been dedicated to the public domain worldwide. Please refer to CCO Public Domain Dedication for more information.

2 Unit Definitions

This is an overview of five unit definitions of which three are predefined by SBML and not mentioned in the model.

2.1 Unit volume

Name volume

Definition ml

2.2 Unit substance

Name substance

Definition nmol

2.3 Unit area

Notes Square metre is the predefined SBML unit for area since SBML Level 2 Version 1.

Definition m²

2.4 Unit length

Notes Metre is the predefined SBML unit for length since SBML Level 2 Version 1.

Definition m

2.5 Unit time

Notes Second is the predefined SBML unit for time.

Definition s

3 Compartments

This model contains two compartments.

Table 2: Properties of all compartments.

Id	Name	SBO	Spatial	Size	Unit	Constant	Outside
			Dimensions				
$compartment_1$	compartment		3	1	litre		
${\tt compartment_2}$	No Name		3	1	litre		

3.1 Compartment compartment_1

This is a three dimensional compartment with a constant size of one ml.

Name compartment

3.2 Compartment compartment_2

This is a three dimensional compartment with a constant size of one ml.

Name No Name

4 Species

This model contains eleven species. Section 8 provides further details and the derived rates of change of each species.

Table 3: Properties of each species.

Id	Name	Compartment	Derived Unit	Constant	Boundary Condi- tion
species_1	MKKK	compartment_1	$nmol \cdot ml^{-1}$		\Box
species_2	$MKKK_{-}P$	${ t compartment}_{ t 1}$	$\mathrm{nmol}\cdot\mathrm{ml}^{-1}$		\Box
species_3	MKK	${\tt compartment_1}$	$nmol \cdot ml^{-1}$		
species_4	$MKK_{-}P$	${\tt compartment_1}$	$nmol \cdot ml^{-1}$		
species_5	MKK_PP	${\tt compartment_1}$	$nmol \cdot ml^{-1}$		
species_6	MK	${\tt compartment_1}$	$nmol \cdot ml^{-1}$		
species_7	$MK_{-}P$	${\tt compartment_1}$	$\mathrm{nmol}\cdot\mathrm{ml}^{-1}$		
species_8	$MK_{-}PP$	${\tt compartment_1}$	$\mathrm{nmol}\cdot\mathrm{ml}^{-1}$		\Box
species_9	P1	${\tt compartment_1}$	$\mathrm{nmol}\cdot\mathrm{ml}^{-1}$		
species_10	P2	${\tt compartment_1}$	$nmol \cdot ml^{-1}$		
species_11	Sig	${\tt compartment_1}$	$nmol \cdot ml^{-1}$		

5 Parameters

This model contains 14 global parameters.

Table 4: Properties of each parameter.

Id	Name	SBO V	Value	Unit	Constant
parameter_1	K1	1	00.00		$lue{2}$
$parameter_2$	K2a		54.30		
$parameter_3$	K3		50.50		
$parameter_4$	K4	5	00.00		
$parameter_5$	K5a		24.30		
$parameter_6$	K6a	1	08.60		
$parameter_{-}7$	K7		50.50		
$parameter_8$	K8	5	00.00		$\overline{\mathbf{Z}}$
$parameter_9$	K9b		24.30		$\overline{\mathbf{Z}}$
$parameter_10$	K10b	1	08.60		$\overline{\mathbf{Z}}$
$parameter_11$	Kse1		0.06		
$parameter_12$	Kse2		0.06		$\overline{\mathbf{Z}}$
$parameter_13$	K5b		24.30		$\overline{\mathbf{Z}}$
parameter_14	K6b	1	08.60		$\overline{\checkmark}$

6 Function definitions

This is an overview of ten function definitions.

6.1 Function definition function_10

Name 10

Arguments MK_P, MKK_PP, MKK_P, MK_PP, MKK, MK, P2, K10b, K5b, K6b, Kse2, K9b, k10b

Mathematical Expression

$$\frac{\frac{\text{k10b P2 · MK . P}}{\text{K10b}}}{1 + \frac{\text{MKK . PP}}{\text{K5b}} + \frac{\text{MKK . P}}{\text{K6b}} + \frac{\text{MKK}}{\text{Kse2}} + \frac{\text{MK}}{\text{Kse2}} + \frac{\text{MK . P}}{\text{K10b}} + \frac{\text{MK . PP}}{\text{K9b}}}$$
(1)

6.2 Function definition function_1

Name 1

Arguments MKKK, K1, k1, Sig

Mathematical Expression

$$\frac{k1 \cdot Sig \cdot MKKK}{K1 + MKKK} \tag{2}$$

6.3 Function definition function_6

Name 6

Arguments P1, MKK_P, MKK_PP, MK_P, MK_PP, MKK, MK, k6a, K6a, MKKK, MKKK_P, P2, K6b, K2a, Kse1, K5a, k6b, K5b, Kse2, K10b, K9b

Mathematical Expression

$$\frac{\frac{k6a \cdot P1 \cdot MKK \cdot P}{K6a}}{1 + \frac{MKKK \cdot P}{K2a} + \frac{MKKK}{Kse1} + \frac{MKK \cdot PP}{K5a} + \frac{MKK \cdot P}{K6a} + \frac{MKK}{Kse1}} + \frac{\frac{k6b \cdot P2 \cdot MKK \cdot P}{K6b}}{1 + \frac{MKK \cdot PP}{K5b} + \frac{MKK \cdot P}{K6b} + \frac{MKK}{Kse2} + \frac{MK}{Kse2} + \frac{MK \cdot P}{K10b} + \frac{MK \cdot PP}{K9b}}$$
(3)

6.4 Function definition function_2

Name 2

Arguments MKKK_P, MKKK, P1, MKK_PP, MKK_P, MKK, Kse1, K2a, K5a, K6a, k2a

Mathematical Expression

$$\frac{\frac{k2a \cdot MKKK \cdot P \cdot P1}{K2a}}{1 + \frac{MKKK \cdot P}{K2a} + \frac{MKKK}{Kse1} + \frac{MKK \cdot PP}{K5a} + \frac{MKK \cdot P}{K6a} + \frac{MKK}{Kse1}}$$
(4)

6.5 Function definition function_3

Name 3

Arguments k3, MKKK_P, MKK, K3, MKK_P, K4

Mathematical Expression

$$\frac{\frac{\text{k3·MKKK.P·MKK}}{\text{K3}}}{1 + \frac{\text{MKK}}{\text{K3}} + \frac{\text{MKK.P}}{\text{K4}}}$$
 (5)

6.6 Function definition function_4

Name 4

Arguments k4, MKKK_P, MKK_P, K4, MKK, K3

Mathematical Expression

$$\frac{\frac{\text{k4-MKKK_P-MKK_P}}{\text{K4}}}{1 + \frac{\text{MKK_}}{\text{K3}} + \frac{\text{MKK_P}}{\text{K4}}}$$
 (6)

6.7 Function definition function_5

Name 5

Arguments MKK_PP, MKK_P, MK_P, MK_PP, P1, MKK, MK, k5a, K5a, MKKK, MKKK_P, k5b, P2, K5b, K6a, Kse1, K2a, K6b, Kse2, K10b, K9b

Mathematical Expression

$$\frac{\frac{k5a \cdot P1 \cdot MKK \cdot PP}{K5a}}{1 + \frac{MKKK \cdot P}{K2a} + \frac{MKKK}{Kse1} + \frac{MKK \cdot PP}{K5a} + \frac{MKK \cdot P}{K6a} + \frac{MKK}{Kse1}} + \frac{\frac{k5b \cdot P2 \cdot MKK \cdot PP}{K5b}}{1 + \frac{MKK \cdot PP}{K5b} + \frac{MKK \cdot P}{K6b} + \frac{MK}{Kse2} + \frac{MK}{K10b} + \frac{MK \cdot PP}{K9b}}$$
(7)

6.8 Function definition function_7

Name 7

Arguments k7, MKK_PP, MK, K7, MK_P, K8

Mathematical Expression

$$\frac{\frac{k7 \cdot MKK \cdot PP \cdot MK}{K7}}{1 + \frac{MK}{K7} + \frac{MK \cdot P}{K8}}$$
 (8)

6.9 Function definition function_9

Name 9

Arguments MK_PP, MKK_PP, MKK_P, MK_P, MKK, MK, P2, K9b, K5b, K6b, Kse2, K10b, k9b

Mathematical Expression

$$\frac{\frac{k9b \cdot P2 \cdot MK \cdot PP}{K9b}}{1 + \frac{MKK \cdot PP}{K5b} + \frac{MKK \cdot P}{K6b} + \frac{MKK}{Kse2} + \frac{MK}{Kse2} + \frac{MK \cdot P}{K10b} + \frac{MK \cdot PP}{K9b}}$$
(9)

6.10 Function definition function_8

Name 8

 $\textbf{Arguments} \;\; k7, MKK_PP, MK_P, K8, MK, K7$

Mathematical Expression

$$\frac{\frac{\underline{k}7 \cdot \underline{M}\underline{K}\underline{K}\underline{P}\underline{P} \cdot \underline{M}\underline{K}\underline{P}}{\underline{K}8}}{1 + \frac{\underline{M}\underline{K}}{\underline{K}7} + \frac{\underline{M}\underline{K}\underline{P}}{\underline{K}8}}$$
(10)

10

7 Reactions

This model contains ten reactions. All reactions are listed in the following table and are subsequently described in detail. If a reaction is affected by a modifier, the identifier of this species is written above the reaction arrow.

Table 5: Overview of all reactions

No	Id	Name	Reaction Equation	SBO
1	reaction_1	1	species_1 species_11, species_11, species_11	species_2
2	reaction_2	2	species_2 species_1, species_9, species_5, species_5	pecies_4, species_3, species_2, species_1, sp
3	reaction_3	3	species_3 species_2, species_4, species_2, species_2	pecies_3, species_4 ⇒ species_4
4	reaction_4	4	species_4 species_2, species_3, species_2, species_2	
5	reaction_5	5	species_5 species_4, species_7, species_8, species_8	
6	reaction_6	6	species_4 species_9, species_5, species_7, species_7	
7	reaction_7	7	species_6 species_5, species_7, species_5, species_5	
8	reaction_8	8	species_7 species_5, species_6, species_5, species_5, species_5	
9	reaction_9	9	species_8 species_9, species_4, species_7, species_8	
10	reaction_10	10	species_7 species_5, species_4, species_8, species_8	pecies_3, species_6, species_10, species_7, s

7.1 Reaction reaction_1

This is an irreversible reaction of one reactant forming one product influenced by three modifiers.

Name 1

Reaction equation

$$species_{-1} \xrightarrow{species_{-1}1, species_{-1}, species_{-1}1} species_{-2}$$
 (11)

Reactant

Table 6: Properties of each reactant.

Id	Name	SBO
species_1	MKKK	

Modifiers

Table 7: Properties of each modifier.

Id	Name	SBO
species_11 species_1 species_11	Sig MKKK Sig	

Product

Table 8: Properties of each product.

Id	Name	SBO
species_2	MKKK_P	

Kinetic Law

$$v_1 = \text{vol}(\text{compartment_1}) \cdot \text{function_1}([\text{species_1}], \text{parameter_1}, \text{k1}, [\text{species_11}])$$
 (12)

$$function_{-}1\left(MKKK,K1,k1,Sig\right) = \frac{k1 \cdot Sig \cdot MKKK}{K1 + MKKK} \tag{13}$$

$$function_{-}1 (MKKK, K1, k1, Sig) = \frac{k1 \cdot Sig \cdot MKKK}{K1 + MKKK}$$
 (14)

Table 9: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k1	k1	1.0	

7.2 Reaction reaction_2

This is an irreversible reaction of one reactant forming one product influenced by eleven modifiers.

Name 2

Reaction equation

Reactant

Table 10: Properties of each reactant.

Id	Name	SBO
species_2	MKKK_P	

Modifiers

Table 11: Properties of each modifier.

Id	Name	SBO
species_1	MKKK	
species_9	P1	
species_5	MKK_PP	
species_4	MKK_P	
species_3	MKK	
species_2	$MKKK_P$	
species_1	MKKK	
species_9	P1	
species_5	MKK_PP	

Id	Name	SBO
species_4 species_3		

Product

Table 12: Properties of each product.

Id	Name	SBO
species_1	MKKK	

Kinetic Law

Derived unit contains undeclared units

$$v_2 = \text{vol} (\text{compartment_1}) \cdot \text{function_2} ([\text{species_2}], [\text{species_1}], [\text{species_9}], [\text{species_5}], [\text{species_4}], [\text{species_3}], \text{parameter_11}, \text{parameter_2}, \text{parameter_5}, \text{parameter_6}, \text{k2a})$$
 (16)

$$function_2 (MKKK_P, MKKK, P1, MKK_PP, MKK_P, MKK, Kse1, K2a, K5a, K6a, k2a) \\ = \frac{\frac{k2a \cdot MKKK_P \cdot P1}{K2a}}{1 + \frac{MKK_P}{K2a} + \frac{MKK_R}{Kse1} + \frac{MKK_P}{K5a} + \frac{MKK_P}{K6a} + \frac{MKK}{Kse1}}$$
 (17)

$$\begin{aligned} & \text{function_2} \left(\text{MKKK_P,MKKK,P1,MKK_PP,MKK_P,MKK,Kse1,K2a,K5a,K6a,k2a} \right) \\ & = \frac{\frac{\text{k2a\cdot MKKK_P\cdot P1}}{\text{K2a}}}{1 + \frac{\text{MKKK_P}}{\text{K2a}} + \frac{\text{MKKK_P}}{\text{K5a}} + \frac{\text{MKK_P}}{\text{K5a}} + \frac{\text{MKK_P}}{\text{K6a}} + \frac{\text{MKK}}{\text{Kse1}}} \end{aligned} \tag{18}$$

Table 13: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k2a	k2a	0.086	Ø

7.3 Reaction reaction_3

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name 3

Reaction equation

Reactant

Table 14: Properties of each reactant.

Id	Name	SBO
species_3	MKK	

Modifiers

Table 15: Properties of each modifier.

Id	Name	SBO
species_2	MKKK_P	
species_4	MKK_P	
species_2	MKKK_P	
species_3	MKK	
${\tt species_4}$	$MKK_{-}P$	

Product

Table 16: Properties of each product.

Id	Name	SBO
species_4	MKK_P	

Kinetic Law

$$v_3 = \text{vol (compartment_1)}$$

· function_3 (k3, [species_2], [species_3], parameter_3, [species_4], parameter_4) (20)

function_3 (k3, MKKK_P, MKK, K3, MKK_P, K4) =
$$\frac{\frac{k3 \cdot MKKK_P \cdot MKK}{K3}}{1 + \frac{MKK}{K3} + \frac{MKK_P}{K4}}$$
 (21)

function_3 (k3, MKKK_P, MKK, K3, MKK_P, K4) =
$$\frac{\frac{k3 \cdot MKKK_P \cdot MKK}{K3}}{1 + \frac{MKK}{K3} + \frac{MKK_P}{K4}}$$
 (22)

Table 17: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k3	k3	0.01	

7.4 Reaction reaction_4

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name 4

Reaction equation

Reactant

Table 18: Properties of each reactant.

Id	Name	SBO
species_4	MKK_P	

Modifiers

Table 19: Properties of each modifier.

Id	Name	SBO
species_2	MKKK_P	
species_3	MKK	
species_2	$MKKK_P$	
species_4	MKK_P	
species_3	MKK	

Product

Table 20: Properties of each product.

Id	Name	SBO
species_5	MKK_PP	

Kinetic Law

Derived unit contains undeclared units

$$v_4 = \text{vol} (\text{compartment_1})$$

· function_4 (k4, [species_2], [species_4], parameter_4, [species_3], parameter_3) (24)

function_4 (k4, MKKK_P, MKK_P, K4, MKK, K3) =
$$\frac{\frac{\underline{k4 \cdot MKKK_P \cdot MKK_P}}{K4}}{1 + \frac{MKK}{K3} + \frac{MKK_P}{K4}}$$
(25)

function_4 (k4, MKKK_P, MKK_P, K4, MKK, K3) =
$$\frac{\frac{k4 \cdot MKKK_P \cdot MKK_P}{K4}}{1 + \frac{MKK}{K3} + \frac{MKK_P}{K4}}$$
(26)

Table 21: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k4	k4	15.0	

7.5 Reaction reaction_5

This is an irreversible reaction of one reactant forming one product influenced by 19 modifiers.

Name 5

Reaction equation

Reactant

Table 22: Properties of each reactant.

Id	Name	SBO
species_5	MKK_PP	

Modifiers

Table 23: Properties of each modifier.

Id	Name	SBO
species_4	MKK_P	
species_7	MK_P	
species_8	$MK_{-}PP$	
species_9	P1	
species_3	MKK	
species_6	MK	
${ t species_1}$	MKKK	
species_2	MKKK_P	
species_10	P2	
species_5	MKK_PP	
${ t species_4}$	MKK_P	
${\tt species_7}$	$MK_{-}P$	
species_8	$MK_{-}PP$	
species_9	P1	
species_3	MKK	
species_6	MK	
${ t species_1}$	MKKK	
species_2	$MKKK_P$	
species_10	P2	

Product

Table 24: Properties of each product.

Id	Name	SBO
species_4	MKK_P	

Kinetic Law

```
v_5 = \text{vol} (\text{compartment\_1}) \cdot \text{function\_5} ([\text{species\_5}], [\text{species\_4}], [\text{species\_7}], [\text{species\_8}], [\text{species\_9}], [\text{species\_3}], [\text{species\_6}], k5a, parameter\_5, [\text{species\_1}], [\text{species\_2}], k5b, (28) [\text{species\_10}], parameter\_13, parameter\_6, parameter\_11, parameter\_2, parameter\_14, parameter\_12, parameter\_10, parameter\_9)
```

function_5 (MKK_PP, MKK_P, MK_P, MK_PP, P1, MKK, MK, k5a, K5a, MKKK, MKKK_P, k5b, P2, K5b, K6a, Kse1, K2a, K6b, Kse2,

$$K10b, K9b) = \frac{\frac{k5a \cdot P1 \cdot MKK \cdot PP}{K5a}}{1 + \frac{MKKK \cdot P}{K2a} + \frac{MKK}{Kse1} + \frac{MKK \cdot PP}{K5a} + \frac{MKK \cdot P}{K6a} + \frac{MKK}{Kse1}} + \frac{\frac{k5b \cdot P2 \cdot MKK \cdot PP}{K5b}}{1 + \frac{MKK \cdot PP}{K5b} + \frac{MKK \cdot P}{K6b} + \frac{MK}{Kse2} + \frac{MK}{Kse2} + \frac{MK \cdot PP}{K10b} + \frac{MK \cdot PP}{K9b}}$$
(29)

function_5 (MKK_PP, MKK_P, MK_P, MK_PP, P1, MKK, MK, k5a, K5a, MKKK, MKKK_P, k5b, P2, K5b, K6a, Kse1, K2a, K6b, Kse2,

$$K10b, K9b) = \frac{\frac{K5a \cdot P1 \cdot MKK \cdot PP}{K5a}}{1 + \frac{MKK \cdot P}{K2a} + \frac{MKK \cdot P}{Kse1} + \frac{MKK \cdot PP}{K5a} + \frac{MKK \cdot P}{K6a} + \frac{MKK}{Kse1}} + \frac{\frac{k5b \cdot P2 \cdot MKK \cdot PP}{K5b}}{1 + \frac{MKK \cdot PP}{K5b} + \frac{MKK \cdot P}{K6b} + \frac{MK \cdot P}{K6b} + \frac{MK \cdot P}{Kse2} + \frac{MK \cdot P}{K10b} + \frac{MK \cdot PP}{K9b}}$$
(30)

Table 25: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k5a	k5a	0.092	\overline{Z}
k5b	k5b	0.092	

7.6 Reaction reaction_6

This is an irreversible reaction of one reactant forming one product influenced by 19 modifiers.

Name 6

Reaction equation

Reactant

Table 26: Properties of each reactant.

Id	Name	SBO
species_4	MKK_P	

Modifiers

Table 27: Properties of each modifier.

Id	Name	SBO
species_9	P1	
species_5	MKK_PP	
species_7	MK_P	
species_8	MK_PP	
species_3	MKK	
species_6	MK	
species_1	MKKK	
species_2	MKKK_P	
species_10	P2	
species_9	P1	
species_4	$MKK_{-}P$	
species_5	$MKK_{-}PP$	
species_7	$MK_{-}P$	
species_8	MK_PP	
species_3	MKK	
species_6	MK	
species_1	MKKK	
species_2	$MKKK_P$	
species_10	P2	

Product

Table 28: Properties of each product.

Id	Name	SBO
species_3	MKK	

Kinetic Law

```
\begin{split} \nu_6 &= vol \, (compartment\_1) \cdot function\_6 \, ([species\_9], [species\_4], [species\_5], [species\_7], \\ & [species\_8], [species\_3], [species\_6], k6a, parameter\_6, [species\_1], [species\_2], [species\_10], \\ & parameter\_14, parameter\_2, parameter\_11, parameter\_5, k6b, parameter\_13, parameter\_12, \\ & parameter\_10, parameter\_9) \end{split}
```

function_6 (P1, MKK_P, MKK_PP, MK_P, MK_PP, MKK, MK, k6a, K6a, MKKK, MKKK_P, P2, K6b, K2a, Kse1, K5a, k6b, K5b, Kse2,

$$K10b, K9b) = \frac{\frac{K0a\cdot PI\cdot MKK.P}{K6a}}{1 + \frac{MKK.P}{K2a} + \frac{MKK.P}{Kse1} + \frac{MKK.PP}{K5a} + \frac{MKK.P}{K6a} + \frac{MKK}{Kse1}}{1 + \frac{MKK.PP}{K5b} + \frac{MKL.P}{K6b} + \frac{MKL.P}{K6b} + \frac{MKL.P}{Kse2} + \frac{MK.P}{K10b} + \frac{MK.P}{K9b}}$$
(33)

function_6 (P1, MKK_P, MKK_PP, MK_P, MK_PP, MKK, MK, k6a, K6a, MKKK, MKKK_P, P2, K6b, K2a, Kse1, K5a, k6b, K5b, Kse2,

$$K10b, K9b) = \frac{\frac{k6a \cdot P1 \cdot MKK \cdot P}{K6a}}{1 + \frac{MKK \cdot P}{K2a} + \frac{MKK \cdot P}{K6b}} + \frac{MKK \cdot P}{K5a} + \frac{MKK \cdot P}{K6a} + \frac{MKK}{Kse1}} + \frac{MKK \cdot P}{K6b} + \frac{MKK \cdot P}{K6b} + \frac{MK \cdot P}{K6b} + \frac{$$

Table 29: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k6a	k6a	0.086	
k6b	k6b	0.086	\square

7.7 Reaction reaction_7

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name 7

Reaction equation

Reactant

Table 30: Properties of each reactant.

Id	Name	SBO
species_6	MK	

Modifiers

Table 31: Properties of each modifier.

Id	Name	SBO
species_5	MKK_PP	
${\tt species_7}$	MK_P	
species_5	MKK_PP	
species_6	MK	
species_7	$MK_{-}P$	

Product

Table 32: Properties of each product.

Id	Name	SBO
species_7	MK_P	

Kinetic Law

$$v_7 = \text{vol} (\text{compartment_1})$$

 $\cdot \text{function_7} (\text{k7}, [\text{species_5}], [\text{species_6}], \text{parameter_7}, [\text{species_7}], \text{parameter_8})$ (36)

function_7 (k7, MKK_PP, MK, K7, MK_P, K8) =
$$\frac{\frac{k7 \cdot MKK_PP \cdot MK}{K7}}{1 + \frac{MK}{K7} + \frac{MK_P}{K8}}$$
 (37)

function_7 (k7, MKK_PP, MK, K7, MK_P, K8) =
$$\frac{\frac{k7 \cdot MKK_PP \cdot MK}{K7}}{1 + \frac{MK}{K7} + \frac{MK_P}{K8}}$$
 (38)

Table 33: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k7	k7	0.01	

7.8 Reaction reaction_8

This is an irreversible reaction of one reactant forming one product influenced by five modifiers.

Name 8

Reaction equation

Reactant

Table 34: Properties of each reactant.

Id	Name	SBO
species_7	MK_P	

Modifiers

Table 35: Properties of each modifier.

Id	Name	SBO
species_5	MKK_PP	
species_6	MK	
species_5	MKK_PP	
species_7	$MK_{-}P$	
species_6	MK	

Product

Table 36: Properties of each product.

Id	Name	SBO
species_8	MK_PP	

Kinetic Law

$$v_8 = \text{vol} (\text{compartment_1})$$

· function_8 (k7, [species_5], [species_7], parameter_8, [species_6], parameter_7) (40)

function_8 (k7, MKK_PP, MK_P, K8, MK, K7) =
$$\frac{\frac{k7 \cdot MKK_PP \cdot MK_P}{K8}}{1 + \frac{MK}{K7} + \frac{MK_P}{K8}}$$
 (41)

function_8 (k7, MKK_PP, MK_P, K8, MK, K7) =
$$\frac{\frac{k7 \cdot MKK_PP \cdot MK_P}{K8}}{1 + \frac{MK}{K7} + \frac{MK_P}{K8}}$$
(42)

Table 37: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k7	k7	15.0	

7.9 Reaction reaction_9

This is an irreversible reaction of one reactant forming one product influenced by 13 modifiers.

Name 9

Reaction equation

species_8 species_9, species_4, species_7, species_3, species_6, species_10, species_8, species_9, species_4, species_4, species_6 (43)

Reactant

Table 38: Properties of each reactant.

Id	Name	SBO
species_8	MK_PP	

Modifiers

Table 39: Properties of each modifier.

Id	Name	SBO
species_9	P1	
${ t species_4}$	MKK_P	
${ t species_7}$	$MK_{-}P$	
species_3	MKK	
species_6	MK	
species_10	P2	

Id	Name	SBO
species_8	MK_PP	
species_9	P1	
${ t species_4}$	$MKK_{-}P$	
${ t species_7}$	$MK_{-}P$	
species_3	MKK	
species_6	MK	
species_10	P2	

Product

Table 40: Properties of each product.

Id	Name	SBO
species_7	MK_P	

Kinetic Law

Derived unit contains undeclared units

 $v_9 = vol(compartment_1)$

· function_9 ([species_8], [species_9], [species_4], [species_7], [species_3], [species_6], [species_10], parameter_9, parameter_13, parameter_14, parameter_12, parameter_10, k9b) (44)

 $function_9 \left(MK_PP, MKK_PP, MKK_P, MKL_P, MKK, MK, P2, K9b, K5b, K6b, MK, P2, K9b, K5b, MK, P2, K9b, MK, P2, MK,$

$$Kse2, K10b, k9b) = \frac{\frac{\underline{k9b \cdot P2 \cdot MK \cdot PP}}{K9b}}{1 + \frac{MKK \cdot PP}{K5b} + \frac{MKK \cdot P}{K6b} + \frac{MKK}{Kse2} + \frac{MK}{Kse2} + \frac{MK \cdot P}{K10b} + \frac{MK \cdot PP}{K9b}}$$
(45)

 $function_9 \, (MK_PP, MKK_PP, MKK_P, MK_P, MKK, MK, P2, K9b, K5b, K6b,$

$$Kse2, K10b, k9b) = \frac{\frac{k9b \cdot P2 \cdot MK \cdot PP}{K9b}}{1 + \frac{MKK \cdot PP}{K5b} + \frac{MKK \cdot P}{K6b} + \frac{MKK}{Kse2} + \frac{MK}{Kse2} + \frac{MK \cdot P}{K10b} + \frac{MK \cdot PP}{K9b}}$$
(46)

Table 41: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k9b	k9b	0.092	

7.10 Reaction reaction_10

This is an irreversible reaction of one reactant forming one product influenced by 13 modifiers.

Name 10

Reaction equation

species_7 species_5, species_4, species_8, species_3, species_6, species_10, species_7, species_5, species_4, species_8 (47)

Reactant

Table 42: Properties of each reactant.

Id	Name	SBO
species_7	$MK_{-}P$	

Modifiers

Table 43: Properties of each modifier.

Id	Name	SBO
species_5	MKK_PP	
species_4	$MKK_{-}P$	
species_8	MK_PP	
species_3	MKK	
species_6	MK	
species_10	P2	
species_7	$MK_{-}P$	
species_5	MKK_PP	
species_4	MKK_P	
species_8	MK_PP	
species_3	MKK	
species_6	MK	
species_10	P2	

Product

Table 44: Properties of each product.

Id	Name	SBO
species_6	MK	

Kinetic Law

Derived unit contains undeclared units

$$v_{10} = \text{vol} (\text{compartment}_1) \cdot \text{function}_10 ([\text{species}_7], [\text{species}_5], [\text{species}_4], [\text{species}_8], [\text{species}_8], [\text{species}_6], [\text{species}_10], \text{parameter}_10, \text{parameter}_13, \text{parameter}_14, (48) \\ \text{parameter}_12, \text{parameter}_9, \text{k}10b)$$

$$function_10 (MK_P, MKK_PP, MKK_PP, MKK_PP, MKK, MK, P2, K10b, K5b, K6b, \\ Kse2, K9b, k10b) = \frac{\frac{k10b \cdot P2 \cdot MK_P}{K10b}}{1 + \frac{MKK_PP}{K5b} + \frac{MKK_P}{K6b} + \frac{MKK_P}{Kse2} + \frac{MK_P}{K10b} + \frac{MK_PP}{K10b} + \frac{MK_PP}{K9b}}$$
 (49)

$$\begin{aligned} & \text{function_10} \left(\text{MK_P}, \text{MKK_PP}, \text{MKK_PP}, \text{MKK_MK}, \text{P2}, \text{K10b}, \text{K5b}, \text{K6b}, \\ & \text{Kse2}, \text{K9b}, \text{k10b} \right) = \frac{\frac{\text{k10b \cdot P2 \cdot MK_P}}{\text{K10b}}}{1 + \frac{\text{MKK_PP}}{\text{K5b}} + \frac{\text{MKK_P}}{\text{K6b}} + \frac{\text{MKK}}{\text{Kse2}} + \frac{\text{MK}}{\text{Kse2}} + \frac{\text{MK_PP}}{\text{K10b}} + \frac{\text{MK_PP}}{\text{K9b}}} \end{aligned}$$
 (50)

Table 45: Properties of each parameter.

Id	Name	SBO Value Unit	Constant
k10b	k10b	0.086	Ø

8 Derived Rate Equations

When interpreted as an ordinary differential equation framework, this model implies the following set of equations for the rates of change of each species.

Identifiers for kinetic laws highlighted in gray cannot be verified to evaluate to units of SBML substance per time. As a result, some SBML interpreters may not be able to verify the consistency of the units on quantities in the model. Please check if

- parameters without an unit definition are involved or
- volume correction is necessary because the hasOnlySubstanceUnits flag may be set to false and spacialDimensions> 0 for certain species.

8.1 Species species_1

Name MKKK

Initial concentration 300 nmol·ml⁻¹

This species takes part in nine reactions (as a reactant in reaction_1 and as a product in reaction_2 and as a modifier in reaction_1, reaction_2, reaction_2, reaction_5, reaction_5, reaction_6, reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-1} = |v_2| - |v_1| \tag{51}$$

8.2 Species species_2

Name MKKK_P

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in eleven reactions (as a reactant in reaction_2 and as a product in reaction_1 and as a modifier in reaction_2, reaction_3, reaction_3, reaction_4, reaction_5, reaction_5, reaction_6, reaction_6).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{2} = |v_{1}| - |v_{2}| \tag{52}$$

8.3 Species species_3

Name MKK

Initial concentration 1199.99994221325 nmol·ml⁻¹

This species takes part in 15 reactions (as a reactant in reaction_3 and as a product in reaction_6 and as a modifier in reaction_2, reaction_2, reaction_3, reaction_4, reaction_5, reaction_5, reaction_6, reaction_6, reaction_9, reaction_9, reaction_10, reaction_10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{3} = |v_{6}| - |v_{3}| \tag{53}$$

8.4 Species species_4

Name MKK_P

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in 16 reactions (as a reactant in reaction_4, reaction_6 and as a product in reaction_3, reaction_5 and as a modifier in reaction_2, reaction_2, reaction_3, reaction_4, reaction_5, reaction_5, reaction_6, reaction_9, reaction_9, reaction_10, reaction_10).

$$\frac{d}{dt} \text{species}_{4} = |v_{3}| + |v_{5}| - |v_{4}| - |v_{6}| \tag{54}$$

8.5 Species species_5

Name MKK_PP

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in 13 reactions (as a reactant in reaction_5 and as a product in reaction_4 and as a modifier in reaction_2, reaction_2, reaction_5, reaction_6, reaction_6, reaction_7, reaction_7, reaction_8, reaction_8, reaction_10, reaction_10.

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{5} = |v_4| - |v_5| \tag{55}$$

8.6 Species species_6

Name MK

Initial concentration $1199.99994221325 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in 13 reactions (as a reactant in reaction_7 and as a product in reaction_10 and as a modifier in reaction_5, reaction_5, reaction_6, reaction_6, reaction_7, reaction_8, reaction_8, reaction_9, reaction_9, reaction_10, reaction_10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{6} = |v_{10}| - |v_{7}| \tag{56}$$

8.7 Species species_7

Name MK_P

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in 14 reactions (as a reactant in reaction_8, reaction_10 and as a product in reaction_7, reaction_9 and as a modifier in reaction_5, reaction_5, reaction_6, reaction_6, reaction_7, reaction_7, reaction_8, reaction_9, reaction_9, reaction_10).

$$\frac{d}{dt} \text{species}_{-7} = |v_7| + |v_9| - |v_8| - |v_{10}| \tag{57}$$

8.8 Species species_8

Name MK PP

Initial concentration $0 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in nine reactions (as a reactant in reaction_9 and as a product in reaction_8 and as a modifier in reaction_5, reaction_5, reaction_6, reaction_6, reaction_9, reaction_10, reaction_10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{8} = |v_{8}| - |v_{9}| \tag{58}$$

8.9 Species species_9

Name P1

Initial concentration 100 nmol·ml⁻¹

This species takes part in eight reactions (as a modifier in reaction_2, reaction_2, reaction_5, reaction_6, reaction_6, reaction_9, reaction_9).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}.9 = 0 \tag{59}$$

8.10 Species species_10

Name P2

Initial concentration $200 \text{ nmol} \cdot \text{ml}^{-1}$

This species takes part in eight reactions (as a modifier in reaction_5, reaction_5, reaction_6, reaction_9, reaction_9, reaction_10, reaction_10).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}10 = 0 \tag{60}$$

8.11 Species species_11

Name Sig

Initial concentration 20 nmol·ml⁻¹

This species takes part in two reactions (as a modifier in reaction_1, reaction_1).

$$\frac{\mathrm{d}}{\mathrm{d}t}\mathrm{species}_{-}11 = 0 \tag{61}$$

 $\mathfrak{BML2}^{d}$ was developed by Andreas Dräger^a, Hannes Planatscher^a, Dieudonné M Wouamba^a, Adrian Schröder^a, Michael Hucka^b, Lukas Endler^c, Martin Golebiewski^d and Andreas Zell^a. Please see http://www.ra.cs.uni-tuebingen.de/software/SBML2LaTeX for more information.

^aCenter for Bioinformatics Tübingen (ZBIT), Germany

^bCalifornia Institute of Technology, Beckman Institute BNMC, Pasadena, United States

^cEuropean Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, United Kingdom

^dEML Research gGmbH, Heidelberg, Germany