HW3 R Markdown

Santanu Mukherjee 10/24/2021

R Markdown

Problem 1

Answer 1a

Problem-1-a

Answer 1 b and 1 c

Problem-1-b-c

Answer 1d

The 95% credible interval for μ_d is

qnorm(c(0.025, 0.975), -0.0000208127, 0.0000133564)

[1] -4.699076e-05 5.365363e-06

Answer 1e

Here the null hypothesis is H_0 : μ_d = 0. Now looking at the 95% credible interval of μ_d , as we can see that the value of μ_d = 0 falls in between the 95% credible interval, and so we can say that we FAIL to REJECT H_0 .

Answer 2a

Problem-2-a

Answer 2b

Use the Bayesian procedures under the non-informative priors to answer the following questions:

Answer 2b i

```
## [1] "P(Test Scores of new method > Test Scores for Standard Method) : 0.93333"
```

Answer 2b ii

Is the variance of the test scores for the new method smaller than that for the standard method?

```
## [1] "P(variance of test scores for new method < Variance of test scores for Standard Method)
: 0.60688"</pre>
```

So, the answer is YES

Answer 2b iii

Histogram of CVnew

Histogram of CVstd

Answer 2b iv

[1] "Probability that a randomly selected learner taught by the new method will have better t est scores than a randomly selected learner taught by the standard model is : 0.67266"

Answer 3a

If $X_1 \sim N(\mu_1, \sigma_1^2)$ and $X_2 \sim N(\mu_2, \sigma_2^2)$ such that X_1 and X_2 are independent, then the distribution of $Y = X_1 + X_2$ is also normally distributed.

So,
$$Y \sim N(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$$
.

Answer 3b

Approach 1 - Using Monte Carlo sampling. Direct Sampling of X_1 and X_2 .

I have taken $X_1 \sim N(2,1)$ and $X_1 \sim N(3,1)$. So ,this means Y should be N(5,2), the above histogram validates this as it is centered around 5 (which is mean of Y) and looking at the Empirical Rule, it can be said that the majority of the data lies within $3\sqrt{2}$, which means 3 times standard deviation.

According to what I see, the generated distribution (by Monte Carlo method) is very close to the TRUE distribution.

Sum of TWO Independent Normal Random Variables

Answer 3c

Approach 2

For any specified y, we can approximate P(y) by sampling g from $N(\mu_1, \sigma_1^2)$ and then calculating the average density of y-g when sampled from $N(\mu_2, \sigma_2^2)$. The GREEN line in the plot below has been generated in this manner.

Now, for each value of y, 100,000 samples $(x_{1,i})$ were taken from $N(\mu_1,\sigma_1^2)$. Then the average density of y – $x_{1,i}$ in $N(\mu_2,\sigma_2^2)$ was used to estimate P(y). The result of this (in GREEN) is plotted on top of the previous results tha you see above in part (b).

Sum of TWO Independent Normal Random Variables

