

COMP7/8118 M50

Data Mining

Bayesian Classifier

Xiaofei Zhang

Slides compiled from Jiawei Han and Raymond C.W. Wong's work

Bayes Classifier

- A probabilistic framework for solving classification problems
- A, C random variables
- Joint probability: Pr(A=a,C=c)
- Conditional probability: Pr(C=c | A=a)
- Relationship between joint and conditional probability distributions

$$Pr(C, A) = Pr(C \mid A) \times Pr(A) = Pr(A \mid C) \times Pr(C)$$

Bayes Theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

Bayesian Classifiers

How to classify the new record X = ('Yes', 'Single', 80K)

Tid	Refund	Marital Taxable Status Income		Evade	
1	Yes	Single 125K		No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Find the class with the highest probability given the vector values.

Maximum Aposteriori Probability estimate:

 Find the value c for class C that maximizes P(C=c | X)

How do we estimate P(C|X) for the different values of C?

- We want to estimate P(C=Yes | X)
- and P(C=No| X)

Bayesian Classifiers

- In order for probabilities to be well defined:
 - Consider each attribute and the class label as random variables
 - Probabilities are determined from the data

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	Married 75K		
10	No	Single	90K	Yes	

Evade C

Event space: {Yes, No}

P(C) = (0.3, 0.7)

Refund A₁

Event space: {Yes, No}

 $P(A_1) = (0.3, 0.7)$

Marital Status A₂

Event space: {Single, Married, Divorced}

 $P(A_2) = (0.4, 0.4, 0.2)$

Taxable Income A₃

Event space: R

 $P(A_3) \sim Normal(\mu, \sigma^2)$

 μ = 104:sample mean, σ^2 =1874:sample var

Bayesian Classifiers

- Approach:
 - compute the posterior probability $P(C \mid A_1, A_2, ..., A_n)$ using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Maximizing P(C | A₁, A₂, ..., A_n) is equivalent to maximizing P(A₁, A₂, ..., A_n | C) P(C)
 - The value $P(A_1, ..., A_n)$ is the same for all values of C.
- How to estimate $P(A_1, A_2, ..., A_n \mid C)$?

Naïve Bayes Classifier

- Assume conditional independence among attributes A_i when class C is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C) P(A_2 | C) \cdots P(A_n | C)$
 - We can estimate $P(Ai \mid C)$ from the data.
 - New point $X=(A_1=\alpha_1,...A_n=\alpha_n)$ is classified to class c if $P(C=c|X) \sim P(C=c) \prod_i P(A_i=\alpha_i|c)$

is maximum over all possible values of C.

Example

Record

```
X = (Refund = Yes, Status = Single, Income = 80K)
```

- For the class C = 'Evade', we want to compute:
 P(C = Yes | X) and P(C = No | X)
- We compute:

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	ingle 85K		
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Class Prior Probability:

$$P(C=c)=\frac{N_c}{N}$$

Class Prior Probability: $P(C = c) = \frac{N_c}{N}$ $N_c: \text{Number of records with class } c$ N = Number of records P(C = No) = 7/10 P(C = Yes) = 3/10

$$P(C = No) = 7/10$$

 $P(C = Yes) = 3/10$

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	No Single 85K No Married 75K		Yes	
9	No			No	
10	No	Single	90K	Yes	

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Refund = Yes | No) = 3/7$$

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	o Single 70K	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Refund = Yes | Yes) = 0$$

Tid	Refund	Marital Taxab Status Incom		Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

$$P(Status=Single|No) = 2/7$$

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No No	
4	Yes	Married	120K		
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Discrete attributes:

$$P(A_i = a | C = c) = \frac{N_{a,c}}{N_c}$$

 $N_{a,c}$: number of instances having attribute $A_i = a$ and belong to class c

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Normal distribution:

$$P(A_i = a \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(a-\mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (a, c) pair
- For Class=No
 - sample mean $\mu = 110$
 - sample variance $\sigma^2 = 2975$
- For Income = 80

$$P(Income = 80 \mid No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{-\frac{(80-110)^2}{2(2975)}} = 0.0062$$

Tid	Refund	Marital Status	Taxable Income	Evade	
1	Yes	Single	125K	No	
2	No	Married	100K	No	
3	No	Single	70K	No	
4	Yes	Married	120K	No	
5	No	Divorced	95K	Yes	
6	No	Married	60K	No	
7	Yes	Divorced	220K	No	
8	No	Single	85K	Yes	
9	No	Married	75K	No	
10	No	Single	90K	Yes	

Normal distribution:

$$P(A_i = a \mid c_j) = \frac{1}{\sqrt{2\pi\sigma_{ij}^2}} e^{-\frac{(a-\mu_{ij})^2}{2\sigma_{ij}^2}}$$

- One for each (a, c) pair
- For Class=Yes
 - sample mean $\mu = 90$
 - sample variance $\sigma^2 = 2975$
- For Income = 80

$$P(Income = 80 \mid Yes) = \frac{1}{\sqrt{2\pi}(5)} e^{-\frac{(80-90)^2}{2(25)}} = 0.01$$

Example

Record

```
X = (Refund = Yes, Status = Single, Income = 80K)
```

• We compute:

Example of Naïve Bayes Classifier

 Creating a Naïve Bayes Classifier, essentially means to compute counts:

Total number of records: N = 10

Class No:

Number of records: 7

Attribute Refund:

Yes: 3

No: 4

Attribute Marital Status:

Single: 2

Divorced: 1

Married: 4

Attribute Income:

mean: 110

variance: 2975

Class Yes:

Number of records: 3

Attribute Refund:

Yes: 0

No: 3

Attribute Marital Status:

Single: 2

Divorced: 1

Married: 0

Attribute Income:

mean: 90

variance: 25

Example of Naïve Bayes Classifier

Given a Test Record:

X = (Refund = Yes, Status = Single, Income = 80K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=NolYes) = 1
P(Marital Status=Single | No) = 2/7
P(Marital Status=Divorced | No)=1/7
P(Marital Status=Married | No) = 4/7
P(Marital Status=Single | Yes) = 2/7
P(Marital Status=Divorced | Yes)=1/7
P(Marital Status=Married | Yes) = 0
For taxable income:
If class=No:
             sample mean=110
              sample variance=2975
             sample mean=90
If class=Yes:
              sample variance=25
```

```
P(X|Class=No) = P(Refund=Yes|Class=No)
                     × P(Married | Class=No)
                     × P(Income=120K| Class=No)
                  = 3/7 * 2/7 * 0.0062 = 0.00075
   P(X | Class=Yes) = P(Refund=No | Class=Yes)
                    × P(Married | Class=Yes)
                    × P(Income=120K| Class=Yes)
                  = 0 * 2/3 * 0.01 = 0
• P(No) = 0.3, P(Yes) = 0.7
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
       => Class = No
```

Naïve Bayes Classifier

• If one of the conditional probabilities is zero, then the entire expression becomes zero

Laplace Smoothing:

$$P(A_i = a | C = c) = \frac{N_{ac} + 1}{N_c + N_i}$$

• N_i : number of attribute values for attribute A_i

Example of Naïve Bayes Classifier

Given a Test Record:

With Laplace Smoothing

X = (Refund = Yes, Status = Single, Income = 80K)

naive Bayes Classifier:

```
P(Refund=Yes|No) = 4/9
P(Refund=No|No) = 5/9
P(Refund=Yes|Yes) = 1/5
P(Refund=No|Yes) = 4/5
P(Marital Status=Single | No) = 3/10
P(Marital Status=Divorced | No)=2/10
P(Marital Status=Married | No) = 5/10
P(Marital Status=Single | Yes) = 3/6
P(Marital Status=Divorced | Yes)=2/6
P(Marital Status=Married | Yes) = 1/6
For taxable income:
If class=No:
             sample mean=110
              sample variance=2975
             sample mean=90
If class=Yes:
              sample variance=25
```

× P(Income=120K| Class=Yes)

 $= 1/5 \times 3/6 \times 0.01 = 0.001$

• P(No) = 0.7, P(Yes) = 0.3

P(X|No)P(No) = 0.0005

• P(X|Yes)P(Yes) = 0.0003

Implementation details

- Computing the conditional probabilities involves multiplication of many very small numbers
 - Numbers get very close to zero, and there is a danger of numeric instability
- We can deal with this by computing the logarithm of the conditional probability

$$\log P(C|A) \sim \log P(A|C) + \log P(C)$$

$$= \sum_{i} \log P(A_{i}|C) + \log P(C)$$

Naïve Bayes for Text Classification

- Naïve Bayes is commonly used for text classification
- For a document with k terms $d = (t_1, ..., t_k)$

$$P(c|d) = P(c)P(d|c) = P(c)\prod_{t_i \in d} P(t_i|c)$$
 Fraction of documents in c

• $P(t_i|c)$ = Fraction of terms from all documents in c that are t_i .

- Easy to implement and works relatively well
- Limitation: Hard to incorporate additional features (beyond words).
 - E.g., number of adjectives used.

Example

News titles for Politics and Sports

Politics

documents

"Obama meets Merkel"

"Obama elected again"

"Merkel visits Greece again"

$$P(p) = 0.5$$

terms

Vocabulary size: 14

obama:2, meets:1, merkel:2, elected:1, again:2, visits:1, greece:1

Total terms: 10

Sports

"OSFP European basketball champion"
"Miami NBA basketball champion"
"Greece basketball coach?"

$$P(s) = 0.5$$

OSFP:1, european:1, basketball:3, champion:2, miami:1, nba:1, greece:1, coach:1

Total terms: 11

New title: X = "Obama likes basketball"

```
P(Politics|X) \sim P(p)*P(obama|p)*P(likes|p)*P(basketball|p)
= 0.5 * 3/(10+14) *1/(10+14) * 1/(10+14) = 0.000108
P(Sports|X) \sim P(s)*P(obama|s)*P(likes|s)*P(basketball|s)
```

= 0.5 * 1/(11+14) *1/(11+14) * 4/(11+14) = 0.000128

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)
- Naïve Bayes can produce a probability estimate, but it is usually a very biased one
 - Logistic Regression is better for obtaining probabilities.

- Naïve Bayes Classifier
 - Independent Assumption
- Bayesian Belief Network
 - Do not have independent assumption

Some attributes are dependent on other attributes.

e.g., doing exercises may reduce the probability of suffering from Heart Disease

Let X, Y, Z be three random variables.

X is said to be **conditionally independent** of Y given Z if $P(X \mid Y, Z) = P(X \mid Z)$

Lemma:

If X is conditionally independent of Y given Z, $P(X, Y \mid Z) = P(X \mid Z) \times P(Y \mid Z)$

Let X, Y, Z be three random variables. X is said to be **conditionally independent** of Y given Z if $P(X \mid Y, Z) = P(X \mid Z)$

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	?	?	?
Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	High	?	?
Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
Yes	Healthy	?	High	?	?

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	?	?	?

$$\begin{split} \text{P(HD = Yes)} &= \sum_{x \in \{\text{Yes, No}\}} \sum_{y \in \{\text{Healthy, Unhealthy}\}} \text{P(HD=Yes|E=x, D=y)} \times \text{P(E=x, D=y)} \\ &= \sum_{x \in \{\text{Yes, No}\}} \sum_{y \in \{\text{Healthy, Unhealthy}\}} \text{P(HD=Yes|E=x, D=y)} \times \text{P(E=x)} \times \text{P(D=y)} \\ &= 0.25 \times 0.7 \times 0.25 + 0.45 \times 0.7 \times 0.75 + 0.55 \times 0.3 \times 0.25 \\ &\quad + 0.75 \times 0.3 \times 0.75 \\ &= 0.49 \\ \text{P(HD = No)} &= 1 - \text{P(HD = Yes)} \\ &= 1 - 0.49 \\ &= 0.51 \end{split}$$

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
?	?	?	High	?	?

$$P(BP = High) = \sum_{x \in \{Yes, No\}} P(BP = High|HD=x) \times P(HD = x)$$

$$= 0.85x0.49 + 0.2x0.51$$

$$= 0.5185$$

$$P(HD = Yes|BP = High) = \frac{P(BP = High|HD=Yes) \times P(HD = Yes)}{P(BP = High)}$$

$$= \frac{0.85 \times 0.49}{0.5185}$$

$$= 0.8033$$

$$P(HD = No|BP = High) = 1 - P(HD = Yes|BP = High)$$

$$= 1 - 0.8033$$

$$= 0.1967$$

Exercise	Diet	Heartburn	Blood Pressure	Chest Pain	Heart Disease
Yes	Healthy	?	High	?	?

```
P(HD = Yes \mid BP = High, D = Healthy, E = Yes)
= \frac{P(BP = High \mid HD = Yes, D = Healthy, E = Yes)}{x P(HD = Yes \mid D = Healthy, E = Yes)}
        P(BP = High \mid D = Healthv, E = Yes)
= \frac{P(BP = High|HD = Yes) P(HD = Yes|D = Healthy, E = Yes)}{P(BP = High|HD = Yes) P(HD = Yes|D = Healthy, E = Yes)}
    \sum_{x \in \{Yes, No\}} P(BP=High|HD=x) P(HD=x|D=Healthy, E=Yes)
    \frac{0.85 \times 0.25}{---} = 0.5862
   0.85 \times 0.25 + 0.2 \times 0.75
   P(HD = No \mid BP = High, D = Healthy, E = Yes)
 = 1- P(HD = Yes \mid BP = High, D = Healthy, E = Yes)
 = 1-0.5862 = 0.4138
```