Termodinâmica Clássica e Teoria da Informação

Gabriel Golfetti

1 Acessibilidade Adiabática

Definição. Um sistema termodinâmico consiste em um espaço de estados Γ onde temos pontos $X \in \Gamma$ chamados estados. Podemos realizar a composição de sistemas termodinâmicos Γ, Δ denotada por $\Gamma \oplus \Delta$ tal que para quaisquer $X \in \Gamma$ e $Y \in \Delta$ temos $X \oplus Y \in \Gamma \oplus \Delta$. Podemos também construir para qualquer $t \geq 0$ e qualquer sistema Γ uma cópia redimensionada $t\Gamma$ onde, para todo ponto $X \in \Gamma$ existe um ponto $tX \in t\Gamma$. Supomos que para quaisquer sistemas Γ, Δ , estados $X \in \Gamma, Y \in \Delta$ e $t, s \geq 0$ vale

- $\Gamma \oplus 0\Delta = \Gamma$, $X \oplus 0Y = X$
- $1\Gamma = \Gamma$, 1X = X
- $t(s\Gamma) = (ts)\Gamma$, t(sX) = (ts)X
- $\Gamma \oplus \Delta = \Delta \oplus \Gamma$, $X \oplus Y = Y \oplus X$
- $t(\Gamma \oplus \Delta) = (t\Gamma) \oplus (t\Delta), \quad t(X \oplus Y) = (tX) \oplus (tY)$

Definição. Dados dois estados X,Y, dizemos que Y é adiabaticamente acessível de X, denotado $X \preceq Y$ se existe uma transformação que leva de X para Y por meio de interação com algum dispositivo e um peso, de forma que o dispositivo retorna ao seu estado inicial após o processo, mas o peso pode ter subido ou descido. Quando vale pelo menos um de $X \preceq Y$ ou $Y \preceq X$, dizemos que X e Y são comparáveis. Quando valem ambos, dizemos que são adiabaticamente equivalentes, ou $X \equiv Y$. Quando apenas $X \preceq Y$ mas não vale que $Y \preceq X$, denotamos por $X \prec Y$. A relação \preceq satisfaz

- A1) Reflexividade. $X \equiv X$
- **A2**) Transitividade. $X \leq Y \land Y \leq Z \Rightarrow X \leq Z$
- **A3**) Consistencia $X \prec Y \land Z \prec W \Rightarrow X \oplus Z \prec Y \oplus W$
- **A4**) Invariância de escala. $\forall t > 0 (X \leq Y \Rightarrow tX \leq tY)$
- **A5**) Recombinação. $\forall t \in [0,1] (X \equiv tX \oplus (1-t)X)$
- **A6**) Estabilidade. $\exists Z, W, a_n \to 0^+ \, \forall n \in \mathbb{N} \, (X \oplus a_n Z \preceq Y \oplus a_n W) \Rightarrow X \preceq Y$

Teorema 1.1 (Cancelamento).
$$X \oplus Z \preceq Y \oplus Z \Rightarrow X \preceq Y$$
.

Com o cancelamento podemos estender a definição das cópias redimensionadas para todo \mathbb{R} no contexto de sistemas compostos na acessibilidade adiabática:

$$X \oplus tY \preceq Z \Leftrightarrow X \preceq (-tY) \oplus Z$$
.

Definição. Um espaço de estados Γ é dito satisfazer a hipótese de comparação (**HC**) se, para todo $X, Y \in \Gamma$ vale pelo menos um de $X \preceq Y$ ou $Y \preceq X$.

Teorema 1.2. Seja \leq uma relação definida sobre um sistema termodinâmico Γ e suas composições de cópias redimensionadas. São equivalentes.

- 1. \leq satisfaz A1-A6 e vale HC para todos os $t\Gamma$
- 2. Existe uma entropia $S: \Gamma \to \mathbb{R}$ que caracteriza \leq no seguinte sentido. Para todos $t_1 + \cdots + t_m = s_1 + \cdots + s_n$, temos que

$$\bigoplus_{i=1}^{m} t_i X_i \leq \bigoplus_{j=1}^{n} s_j Y_j \Leftrightarrow \sum_{i=1}^{m} t_i S(X_i) \leq \sum_{j=1}^{n} s_j S(Y_j).$$

S é única até uma transformação afim.

Lema 1.1. Sendo $X_0, X_1 \in \Gamma$ com $X_0 \prec X_1$, definimos

$$\Omega(\lambda \mid X_0, X_1) = \{ X \in \Gamma \mid (1 - \lambda) X_0 \oplus \lambda X_1 \preceq X \}.$$

Se todos os $t\Gamma$ satisfazem HC, vale que

1. $\forall X \in \Gamma \,\exists \lambda \in \mathbb{R} \, (x \in \Omega(\lambda \,|\, X_0, X_1))$

2.
$$\forall X \in \Gamma \left(\sup \{ \lambda \in \mathbb{R} \mid X \in \Omega(\lambda \mid X_0, X_1) \} < \infty \right)$$

Definição. Dados $X_0, X_1 \in \Gamma$ com $X_0 \prec X_1$, a entropia canônica com pontos de referência X_0, X_1 é definida por

$$S_0(X | X_0, X_1) = \sup \{ \lambda \in \mathbb{R} | X \in \Omega(\lambda | X_0, X_1) \}$$

Lema 1.2. Suponha que $X_0 \prec X_1$ e que $a_0 + a_1 = b_0 + b_1$. Vale que

$$a_0X_0 \oplus a_1X_1 \leq b_0X_0 \oplus b_1X_1 \Leftrightarrow a_1 \leq b_1$$

Em particular, $a_0X_0 \oplus a_1X_1 \equiv b_0X_0 \oplus b_1X_1 \Leftrightarrow a_1 = b_1$.

Lema 1.3. Suponha que Γ satisfaz HC. São equivalentes

1.
$$\lambda = S_0(X \mid X_0, X_1)$$

2.
$$X \equiv (1 - \lambda)X_0 \oplus \lambda X_1$$

Lema 1.4. Se Γ satisfaz HC e $S^* : \Gamma \to \mathbb{R}$ é tal que

$$(1-t)X \oplus tY \prec (1-t)Z \oplus tW$$

 $se,\ e\ somente\ se$

$$(1-t)S^*(X) + tS^*(Y) < (1-t)S^*(Z) + tS^*(W)$$

 $ent\~ao$

$$S^*(X) = (S^*(X_1) - S^*(X_0))S_0(X \mid X_0, X_1) + S^*(X_0).$$

Teorema 1.3. Suponha que uma familia de sistemas satisfaça as seguintes condições:

1. Quaisquer dois sistemas são disjuntos

- 2. Todas as composições de cópias redimensionadas de sistemas da família também pertencem à família
- 3. Todo sistema da família satisfaz **HC**

Para cada Γ na família seja S_{Γ} uma entropia neste definido. Então existem constantes $\alpha_{\Gamma}, \beta_{\Gamma}$ tal que a função definida para todos os estados dos sistemas da família por

$$S(X) = \alpha_{\Gamma} S_{\Gamma}(X) + \beta_{\Gamma}$$

quando $X \in \Gamma$ têm as propriedades

a. Se X e Y vêm do mesmo sistema,

$$X \prec Y \Leftrightarrow S(X) < S(Y)$$

b. S é extensiva, ou seja,

$$S(X \oplus Y) = S(X) + S(Y)$$
$$S(tX) = tS(X)$$

2 Sistemas simples

Definição. Um sistema simples é definido por um subconjunto aberto e convexo $\Gamma \in \mathbb{R}^{n+1}$. Seus pontos são denotados (U, \mathbf{V}) , onde $U \in \mathbb{R}$ é chamado de energia e $\mathbf{V} \in \mathbb{R}^n$ são os volumes ou coordenadas de trabalho. Suas cópias redimensionadas são obtidas por simples multiplicação:

$$t\Gamma = \{tX \mid X \in \Gamma\}, \quad t(U, \mathbf{V}) = (tU, t\mathbf{V}).$$

Além disso supomos que para um sistema simples vale

- S1) Combinação convexa. $\forall X, Y \in \Gamma, t \in [0,1] (tX \oplus (1-t)Y \leq tX + (1-t)Y)$
- **S2**) Irreversibilidade $\forall X \in \Gamma \exists Y \in \Gamma (X \prec Y)$
- S3) Planos tangentes Lipshitz Para todo $X \in \Gamma$ o setor de sucessores A_X possui um plano de suporte único Π_X . Este plano tangente é assumido possuir inclinação finita com relação às coordenadas de trabalho, chamada pressão. Esta é suposta ser uma função localmente Lipshitz
- S4) Fronteiras conexas As fronteiras ∂A_X são conexos por caminhos

Teorema 2.1. Para todo
$$X \in \Gamma$$
, A_X é convexo.

Teorema 2.2. Em toda vizinhança de todo
$$X \in \Gamma$$
 existe Z tal que $X \npreceq Z$.

Lema 2.1. Considere três pontos colineares de um sistema simples, X, Y, Z, com Y entre X e Z. Se $Y \leq Z$ então $X \leq Y$.

Teorema 2.3.
$$\forall X \in \Gamma(\bar{A}_X = A_X)$$

Teorema 2.4.
$$\forall X \in \Gamma (A_X^{\circ} \neq \emptyset)$$

Definição. Para $X \in \Gamma$, A_X é dito positivo (negativo) se o vetor normal a Π_X apontando para A_X° tem componente de energia positiva (negativa).

Lema 2.2. Se $X = (U_0, \mathbf{V}_0)$ é tal que A_X é positivo, então

$$A_X \cap \{(U, \mathbf{V}_0) | U \in \mathbb{R}\} = \{(U, \mathbf{V}_0) | U \in \mathbb{R}\} \cap \Gamma$$

Teorema 2.5. Se A_X é positivo para algum $X \in \Gamma$, então o mesmo vale para todo Γ .

Teorema 2.6.
$$(U_X, \mathbf{V}) \preceq (U_Y, \mathbf{V}) \Leftrightarrow U_X \leq U_Y$$
.

Definição. A projeção de trabalho da fronteira de um setor de sucessores A_X é definida

$$\rho_X = \{ \mathbf{V} \in \mathbb{R}^n \mid \exists U \in \mathbb{R} ((U, \mathbf{V}) \in \partial A_X) \}$$

Teorema 2.7. Fixamos $X = (U_0, \mathbf{V}_0) \in \Gamma$.

- 1. Se $Y \in \partial A_X$, então A_X tem um plano tangente em Y e este é Π_Y
- 2. ρ_X é aberto e conexo em \mathbb{R}^n
- 3. Definindo $u_X : \rho_X \to \mathbb{R}$,

$$u_X(\mathbf{V}) = \inf\{u \mid (u, \mathbf{V}) \in A_X\},\$$

temos que $\partial A_X = \{(u(\mathbf{V}), \mathbf{V}) | V \in \rho_X\}$. u_X é localmente convexa e

$$\{(U, \mathbf{V}) \mid \mathbf{V} \in \rho_X \land U \ge u_X(\mathbf{V})\} \cap \Gamma \subseteq A_X$$

4. u_X é diferenciável em ρ_X e satisfaz a equação diferencial

$$\nabla u_X(\mathbf{V}) = -\mathbf{p}((u_X(\mathbf{V}), \mathbf{V}))$$

onde as pressões **p** são definidas pelos planos tangentes

$$\Pi_Y = \{ Z \in \Gamma \mid (1, \mathbf{p}(Y)) \cdot (Z - Y) = 0 \}$$

5. u_X é a única função diferenciável que satisfaz a equação acima e $u_X(\mathbf{V}_0) = U_0$.

Teorema 2.8.
$$Y \in \partial A_X \Rightarrow X \in \partial A_Y \Rightarrow A_X = A_Y$$
.

Teorema 2.9. Dados $X, Y \in \Gamma$, vale exatamente um de

- 1. $A_X = A_Y$
- 2. $A_X \in A_V^{\circ}$
- 3. $A_Y \in A_X^{\circ}$

Para um sistema simples, vale HC.

Lema 2.3. Para um sistema simples,

- 1. $\Omega(\lambda \mid X_0, X_1)$ é convexo
- 2. Se $X \in \Omega(\lambda \mid X_0, X_1)$ e $X' \in \Omega(\lambda' \mid X_0, X_1)$ então para todo $t \in [0, 1]$ temos que $tX + (1 t)X' \in \Omega(t\lambda + (1 t)\lambda' \mid X_0, X_1)$

Teorema 2.10. Para um sistema simples,
$$S_0(X \mid X_0, X_1)$$
 é côncava.