Fenomenologia delle reazioni chimiche

1) Come distinguere l'acqua distillata dall'acqua di rubinetto

Per distinguere l'acqua distillata dall'acqua di rubinetto, che è un miscuglio contenente diverse specie ioniche oltre l'acqua pura, si sfrutta una reazione specifica di riconoscimento dei cloruri (ione Cl⁻).

In particolare, si aggiungono alcune gocce di una soluzione di nitrato d'argento (AgNO₃) alle provette contenenti acqua distillata e acqua di rubinetto; si nota che nel primo caso non avviene alcuna reazione mentre nel secondo caso la soluzione diventa lattiginosa a causa della formazione di un precipitato di cloruro d'argento dovuto alla presenza dei cloruri nell'acqua di rubinetto:

$$Ag^+ + Cl^- \rightarrow AgCl_{(s)}$$

2) Bottiglia magica

In un matraccio si pongono acqua distillata, idrossido di sodio (NaOH), glucosio e blu di metilene e si chiude il contenitore con un tappo di gomma. Quindi lo si agita energicamente e così la soluzione, inizialmente incolore, assume un colore blu scuro, finché dopo un po' si decolora nuovamente.

Ponendo assieme il blu di metilene e il glucosio avviene una reazione di ossido-riduzione. Infatti, il glucosio si ossida ad acido gluconico mentre il blu di metilene, in presenza della base NaOH, si riduce e diventa incolore. Quando si scuote il matraccio viene attivato l'ossigeno dell'aria che converte il blu di metilene incolore nella forma colorata in blu scuro. Posto a riposo il matraccio, il blu di metilene tende a cedere l'ossigeno e quindi si ripristina il colore iniziale.

3) Un lampo di luce

Se si pone un nastro di magnesio alla fiamma si verificherà una reazione del metallo con l'ossigeno, che porterà all'emissione intensa di luce bianca e alla formazione di ossido di magnesio (MgO), di colore bianco:

$$2 \text{ Mg} + \text{O}_2 \rightarrow 2 \text{ MgO}$$

Questa reazione veniva utilizzata in passato per la produzione di luce nei flash delle macchine fotografiche.

4) Reazioni di precipitazione

 $Pb(NO_3)_2 + K_2CrO_4 \rightarrow PbCrO_4(s) + 2KNO_3$ (si forma un precipitato di colore rosso)

 $Pb(NO_3)_2 + 2KI \rightarrow PbI_2 + 2KNO_3$ (si forma un precipitato di colore giallo)

FeSO₄ + 2NaOH → Fe(OH)₂ + Na₂SO₄ (si forma un precipitato di colore verde)

 $Pb(NO_3)_2 + K_2Cr_2O_7 \rightarrow PbCr_2O_7 + 2KNO_3$ (si forma un precipitato di colore giallo)

Scuola: Liceo Scientifico Statale "Benedetto Croce" - Palermo

Disciplina: Chimica

Parole chiave: reazioni, luce, colore

Ordine di scuola: scuola superiore di secondo grado