

Forecasting U.S. Treasury Yields with Regime-Aware Neural Networks

By: Dante Shoghanian

Loyola Marymount University

Professor Kang

BSAN 6070

Research Objective

Primary goal:

- Predict 10-Year Treasury rates and direction changes
- Target variable: 10-Year U.S. Treasury Rate (DGS10)
- Models: Feed-Forward Neural Networks,
 Convolutional Neural Networks, LSTM, and Enhanced LSTM variants
- Time period: 2015-2025 (spanning multiple economic regimes)
- Key innovation: Bond market-specific features and regime-aware training

Economic Significance

- Mortgage Market Impact: 1% rise in 10Y Treasury
 ≈ 12% increase in monthly mortgage payments
- Corporate Financing: Determines borrowing costs for businesses across sectors
- Equity Valuation: Affects discount rates for future cash flows, influencing stock prices
- Monetary Policy Signals: Yield curve shape provides economic forecasts
- Global Capital Flows: Benchmark for international debt pricing and currency values

Dataset Characteristic

Time range: April 2015 to April 2025 (3,651 daily observations)

Variables: 67 financial and economic indicators

Key events in period: Post-pandemic inflation, Fed tightening cycle, yield curve inversions

Missing values: Limited (<2%), handled with forward/backward fill

Data splitting: 70% training (2015-2022), 15% validation (2022-2023), 15% test (2023-2025)

Dataset Characteristic

Feature Engineering

- Yield Curve Characteristics: Forward rates (2Y-5Y, 5Y-10Y)
 - Yield curve curvature (2s10s30s butterfly)
 - Term premium proxies
- Technical Indicators:
 - Moving averages (MA_20_DGS10, MA_50_DGS10)
 - Volatility measures (Volatility_20_DGS10)
 - Momentum indicators (ROC_5_DGS10, RSI_DGS10)
- Regime Identification:
 - Monetary policy regimes (tightening/easing/stable)
 - Yield curve regimes (steepening/flattening)
 - Volatility regimes (high/normal/low)
- Market Microstructure:
 - Treasury auction cycle indicators
 - Speculator positioning metrics
 - Liquidity measures (TED spread)

Feature Correlations

- Strong relationship between DGS10 and EFFR (0.89)
- High correlation with CPIAUCSL (0.72)
- Negative correlation with yield spreads

Neural Network Architectures

- Enhanced Feed-Forward Neural Network (FNN): Input:
 Flattened 10-day sequence of features
 - Architecture: 3 hidden layers (256→128→64 neurons)
 - Regularization: Batch normalization + dropout
 - Dual output heads for rate level and direction
- Enhanced CNN: Multi-kernel 1D convolutions (2, 3, 5 filter sizes)
 - Global max pooling and attention mechanism
 - Feature extraction optimized for temporal patterns
- Enhanced LSTM with Bond-Specific Attention: Bidirectional LSTM with term structure attention
 - Regime conditioning for monetary policy context
 - Layer normalization and residual connections
- Bayesian LSTM for Uncertainty Quantification: Monte Carlo dropout for prediction intervals
 - Multiple forward passes during inference
 - Calibrated confidence bands for risk assessment

Model Training

Training set: 2,579 samples

Validation set: 456 samples

Test set: 606 samples

• Early stopping criteria

 Hyperparameter optimization approach

Learning rates: 0.0001 to 0.001

Hidden dimensions: 64 to 256

Dropout rates: 0.1 to 0.5

• Sequence lengths: 5 to 20 days

Model Performance Comparison

Model Performance Comparison

Metric	FNN	CNN	LSTM	Transformer
RMSE MAE MAPE Direction Accuracy R-squared	0.0952	0.1513	1.0448	0.3965
	0.0740	0.1269	1.0212	0.3834
	1.7144406	2.9648666	23.578808	8.842618
	33.66%	32.84%	31.02%	31.35%
	0.8768802	0.68860686	-13.839241	-1.1373034

Uncertainty Quantification

Direction Prediction Analysis

Economic Shock Analysis

Performance Across Monetary Policy Regimes

Shock Sensitivity Across Regimes

Yield Curve Dynamics

Feature Importance Analysis

Business Applications

Conclusion

Key Contributions:

- 1. Comprehensive bond market feature engineering pipeline
- 2. Regime-aware neural network model architectures
- 3. Bayesian uncertainty quantification for risk assessment
- 4. Detailed economic shock analysis across market regimes
- 5. Domain-informed hybrid models outperforming pure ML approaches

Main Findings:

- Enhanced FNN with bond-specific features achieved R² of 0.8769
- Direction prediction remains challenging but valuable (35% accuracy)
- Economic shocks have regime-dependent impacts on Treasury rates
- Domain knowledge integration provides substantial performance gains