实对称矩阵必可在实数域上相似对角化

顾格非 统计学 3210103528 2022 年 6 月 27 日

这是一个来自数分的问题, 也是我《数学软件》的作业 1.

1 问题描述

实对称矩阵在实数域上一定能相似对角化吗? 答案是肯定的。下面我们就来证明它吧!

2 证明

我们只要证明存在 n 阶的正交阵 U 使得 U^TAU 为对角阵即可。为此,我们对矩阵的阶作归纳。

若 A 是 1 阶方阵,它已经对角化,令 $U=(1)_{1x1}$ 即得。

设已证明任何一个 n-1 阶实对称阵都存在相应的正交阵 U_1 使得 U_1^TAU 为对角阵. 首先对于任何一个 n 阶实对称阵 A,它有 n 个实特征值 (包括重数)。设 λ_1 为其中一个特征值, ξ 为 A 的属于 λ_1 的一个特征向量 且 $|\xi_1|=1$,用 Schmidt 正交化方法将 ξ_1 扩充为 R^n 中的一组标准正交集 $\xi_1, \xi_2, ..., \xi_n$,则 $A\xi_1, A\xi_2, ..., A\xi_n$ 均可以用 $\xi_1, \xi_2, ..., \xi_n$ 线性表示,不难验证:

$$A(\xi_1, \xi_2, ..., \xi_n) = (A\xi_1, A\xi_2, ..., A\xi_n) = (\xi_1, \xi_2, ..., \xi_n) \begin{pmatrix} \lambda_1 & a \\ 0 & A_1 \end{pmatrix}$$
(1)

令 $U_0 = (\xi_1, \xi_2, ..., \xi_n)$,则因为 $\xi_1, \xi_2, ..., \xi_n$ 为标准正交基知 U_0 为正交阵,故 (1) 等价与

$$U_0^T A U_0 = \begin{pmatrix} \lambda_1 & a \\ 0 & A_1 \end{pmatrix} \tag{2}$$

由于 (2) 等式左端为实对称阵,故其等式右端的矩阵也是实对称的,从而 a 为 n-1 维的零向量, A_1 为 n-1 阶的实对称阵,依归纳假设知,存在

2 证明 2

n-1 阶正交阵 U_1 及 n-1 阶对角阵 Λ_1 , 使得 $U_1^TAU_1=\Lambda_1$, 令

$$U = U_0 \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} \tag{3}$$

则 U 为正交阵,且

$$U^{T}AU = \begin{pmatrix} 1 & 0 \\ 0 & U_{1}^{T} \end{pmatrix} \begin{pmatrix} \lambda_{1} & 0 \\ 0 & A_{1} \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 0 & U_{1} \end{pmatrix} = \begin{pmatrix} \lambda_{1} & 0 \\ 0 & \Lambda_{1} \end{pmatrix}$$
(4)

这说明所要证明的结论对 n 阶实对称阵 A 也成立。由数学归纳法,对所有 n 阶的实对称阵 A,均存在一个 n 阶的正交阵 U 使得 U^TAU 为对角阵,证 毕。