TiO₂/CdSe 多层膜结构的制备及光电化学性能研究*

李立群1) 刘爱萍1)2)† 赵海新1) 崔灿1) 唐为华1)†

1)(浙江理工大学物理系光电材料与器件中心, 先进纺织材料与制备技术教育部重点实验室, 杭州 310018) 2)(浙江大学硅材料国家重点实验室, 杭州 310027)

(2011年9月7日收到; 2011年10月10日收到修改稿)

采用电化学方法在导电的 ITO/TiO₂ 薄膜上沉积了棕红色 CdSe 薄膜,并制得 TiO₂/CdSe 多层膜体系,研究了多层膜的微结构和光电化学性能.实验表明, CdSe 薄膜沿着 (111) 方向择优生长,多层膜结构的厚度和紫外-可见光吸收强度随着沉积层数的增加而增加.通过测定多层膜电极的光电化学性能表明,二层膜体系的开路电压和短路电流密度最大,光电化学性能最好.

关键词: CdSe 薄膜, 多层膜结构, 电化学沉积, 光电化学

PACS: 82.47.Jk, 72.80.Ey

1 引言

随着全球能源需求的日益增加, 化石类能 源(煤和石油)已不能满足人类需求,因此开发新 型能源来取代不可再生的能源成为科学研究的重 点. 太阳能作为一种洁净的可再生能源受到了人 们的广泛关注. TiO2 和 ZnO 是两种重要的太阳能 电池阳极材料 [1,2], 其生产成本低、稳定性高、无 污染,已经实现工业化生产.但是由于其带隙较宽, 吸收主要发生在紫外光区,一定程度上限制了其在 太阳能电池中的应用. 所以人们通常使用敏化剂 来敏化 TiO₂ 和 ZnO, 以提高其对太阳光中可见光 部分的响应. 例如, 染料 [3-8]、半导体量子点 [9-11] 和有机物 [12-14] 都可作为敏化剂提高 TiO₂ 的太 阳光吸收特性. II-VI 族半导体 CdSe 由于其可调的 尺寸、维数、光吸收性、带隙结构以及在单个光 子激发时可产生多个激子等优良特性而被广泛关 注[15-17], 因此克服了现有的太阳电池只对一定 波长范围的光进行光电转换的局限,常被用来敏 化 TiO₂^[9,16], 可能实现太阳光谱的全光谱转换. 目前 制备 CdSe 的方法很多,包括化学浴沉积 [18,19]、脉 冲激光沉积 [20]、连续离子层吸附反应法 [21,22]、溶胶凝胶法 [23]、分子束外延法 [24]、电化学沉积法 [25-28] 等. 其中电化学沉积法操作简单、成本低、实验条件简单可控、易于大面积沉积, 因此利于工业化生产使用. 本文采用电化学方法制备了 $TiO_2/CdSe$ 薄膜电极, 并构筑 $TiO_2/CdSe$ 多层膜体系 (($TiO_2/CdSe$) $_n$, n=1-4). 分析了 $TiO_2/CdSe$ 薄膜的物相和表面形貌, 测得了多层膜结构的紫外 - 可见 (UV-Vis) 吸收曲线并研究了该多层膜结构的光电化学性能.

2 实验

2.1 试剂和材料

CdSO₄·8/3H₂O 和 SeO₂ 购于 Aldrich 公司, Na₂S, H₂SO₄, 乙醇和丙酮均为分析纯 (国药集团 化学试剂有限公司). TiO₂(P25 德固赛) 和 ITO 导电玻璃 (Ω / \leq 15, 透过率 \geq 86%) 分别由广州华力森贸 易有限公司和合肥科晶提供. 实验中溶液配制均采用去离子水为溶剂.

^{*}国家自然科学基金(批准号: 50902123, 51172208, 60806045)、硅材料国家重点实验室访问学者基金(批准号: SKL2011-20)、先进纺织材料与制备技术教育部重点实验室(浙江理工大学)优秀青年人才培养基金(批准号: 2011QN05)和浙江理工大学科研启动基金(批准号: 0813824-Y)资助的课题.

[†] E-mail: liuaiping1979@gmail.com

^{© 2012} 中国物理学会 Chinese Physical Society

2.2 ITO/TiO₂ 薄膜制备

实验中使用的基底为 ITO 导电玻璃, 使用前基底分别用稀释的洗洁精、丙酮、无水乙醇和去离子水超声清洗 15 min, 然后放于干燥箱中干燥备用. 称取 0.1 g TiO₂ 超声分散于 10 mL 无水乙醇中, 然后采用旋涂法在 ITO 表面以 2500 r/min 旋涂制得 TiO₂ 薄膜. 所得 TiO₂ 薄膜在 450 °C 氮气气氛下退火 1 h.

2.3 CdSe 薄膜及多层膜结构的制备

采用 CHI660C 电化学工作站的三电极体系制备 CdSe 薄膜,工作电极为 ITO/TiO₂,辅助电极为铂片,参比电极为甘汞电极 (SCE). 电解液为 14 mmol/L SeO₂, 0.25 mol/L CdSO₄ 和 0.25 mol/L H_2SO_4 的混合溶液. 利用循环伏安模式,电压扫描范围从 -0.35 V 到 -0.75 V,扫描速率为 30 mV/s,扫描圈数为 20 圈. 电化学沉积过程在室温下完成,沉积后所得薄膜在 400 °C 氮气气氛下退火 1 h.

多层膜体系制备过程与单层膜相似,即重复 TiO_2 旋涂和 CdSe 电化学沉积过程. 每制备一层 $TiO_2/CdSe$ 薄膜都要退火处理.

2.4 性能测试

薄膜形貌采用日本电子公司生产的 JSM-5610LV 型扫描电子显微镜 (SEM) 观测. 使用德国布鲁克公司的 AXS D8 DISCOVER 型 X 射线衍射仪 (XRD) 分析薄膜样品的晶体结构. 利用 HATICHI U-3900 型 UV-Vis 吸收光谱仪测试多层膜结构的吸光特性. 采用上海华辰生产的 CHI660C 电化学工作站测定多层膜结构的光电化学性能,实验在石英器皿中进行, Pt 片为辅助电极和参比电极, $0.2 \text{ mol/L Na}_2\text{S}$ 为电解液. 光源为 150 W 氙灯 ($\lambda > 300 \text{ nm}$).

3 实验系统及测量结果

3.1 CdSe 薄膜的沉积过程

电化学沉积是电解液中活性离子在电极与溶液界面上发生氧化还原反应的过程. 本实验中 CdSe 电化学沉积原理可以表示如下 [28,29]:

$$SeO_2 + H_2O \rightarrow H_2SeO_3,$$
 (1)

$$H_2SeO_3 + 6H^+ + 6e^- \rightarrow H_2Se + 3H_2O,$$
 (2)

$$H_2SeO_3 + 2H_2Se \rightarrow 3Se + 3H_2O,$$
 (3)

$$H_2Se + Cd^{2+} \rightarrow CdSe + 2H^+,$$
 (4)

图 1 中 CdSe 电化学沉积的循环伏安曲线也显示了 CdSe 沉积过程,可以看到当电位负向扫描时, Se 和 Cd 离子共同沉积形成 CdSe 薄膜,而正向扫描时过多的 Cd 又重新氧化为 Cd²⁺ 回到溶液中,氧化峰约为 -0.6 V^[29].

图 1 电化学沉积 CdSe 薄膜的循环伏安曲线

图 2 不同样品的 XRD 图谱 1, ITO; 2, ITO/TiO₂; 3, ITO/TiO₂/CdSe 退火前; 4, ITO/TiO₂/CdSe 退火后

3.2 CdSe 薄膜的微观结构

图 2 给出了 $TiO_2/CdSe$ 薄膜的 XRD 图谱. 曲线 (b) 的 25.3°, 37.9° 和 48.1° 分别对应于 TiO_2 的 (101)、(004) 和 (200) 晶面. 当 CdSe 薄膜电沉积到 ITO/TiO_2 表面并于 400°C 氮气气氛下退火后, 曲线 (d) 的 25.3°, 42.0° 和 49.8° 出现了明显的尖峰, 分别对应于 CdSe 的 (111)、(220)和 (311) 晶面. 所得 CdSe 为立方晶相 (PDF-#19-0191), 具有闪锌矿结构, 晶型结构完整, 晶格参数为 a=b=c=6.077, 并且 CdSe 薄膜是沿着 (111)方向择优生长的. 我们的结果说明, 退火处理可

以提高 CdSe 薄膜的结晶性能. 运用 Scherrer 公式 $D = k\lambda/\beta\cos\theta$ (其中 D 是颗粒粒径, λ 是 X 射线的波长, β 是半高峰宽度, θ 是 Bragg 衍射峰对应的角度, k 是常数, 约为 0.9), 计算得到薄膜样品中 CdSe 粒子的平均粒径约为 25 nm.

图 3(a) 和 (b) 显示了 ITO/TiO₂ 上沉积的 CdSe 薄膜的表面形貌. 可以看出薄膜是由一些直径在 100—200 nm 的团簇堆积而成, 而这些团簇又是由 CdSe 纳米粒子聚集而成的, 与步进式 (progressive) 的三维成核与生长机理相一致 ^[25,30],

最终形成颗粒状、疏松多孔薄膜. 图 3(c) 为三层膜体系 (TiO₂/CdSe)₃ 的截面图. TiO₂ 层厚度约为 200 nm, CdSe 层厚度约为 600 nm,即一层 TiO₂/CdSe 体系的厚度约为 800 nm. 随着层数的增加,多层膜结构的厚度也随之增加. 层与层之间相互交叠,界限不是很明显. 这主要是因为 TiO₂ 层旋涂于 CdSe 表面时,部分 TiO₂ 会进入到 CdSe 空隙当中,经过高温退火之后TiO₂ 层与 CdSe 层结合更加紧密,分界线也更加不明显.

图 3 CdSe 薄膜的表面形貌 (a) 放大 1.5 万倍; (b) 放大 4.5 万倍; (c) (TiO₂/CdSe)₃ 三层膜结构的截面图

图 4 (a) 沉积在 ITO 表面的 CdSe 薄膜的 UV-Vis 吸收光谱和 对应的 $(\alpha h \nu)^2$ 与 $h \nu$ 函数关系; (b) $(\text{TiO}_2/\text{CdSe})_n$ 多层膜体系的 UV-Vis 吸收光谱

3.3 多层膜结构的光学和光电化学性能

图 4(a) 给出了直接沉积在 ITO 基底上的 CdSe 薄膜的 UV-Vis 吸收光谱 (以 ITO 吸收为背底), 利用公式 $\alpha h\nu = A(h\nu - E_g)^{1/n[31]}$ 计算 (式中 h 为 Planck 常数, ν 为光频率, A 为常数, E_g 为薄膜的 带隙, α 为吸收系数, $\alpha = \ln(A)/d$, A 为样品的 UV-Vis 吸收强度, d 为薄膜厚度, n 为常数, 对直接带隙 半导体 n=2, 对间接带隙半导体 n=1/2), 并利 用外推法得到 CdSe 薄膜的禁带宽度 $E_{\rm g}$ 为 1.8 eV. 与块状 CdSe 半导体 ($E_{\rm g}=1.74~{\rm eV}$) 相比, CdSe 薄 膜的光学带隙略微增大,这是量子尺寸效应引起 的. 不同多层膜体系的 UV-Vis 吸收光谱经归一 化处理后结果绘于图 4(b). 可以看出多层膜体系 在 350—700 nm 范围内都有很好的吸收. 随着层数 的增加多层膜结构的吸收强度也相应增大, 尤其 在 450—700 nm 的波长范围. 这说明膜厚的增加确 实可以提高多层膜体系的可见光吸收特性.

图 5(a) 给出了 (TiO₂/CdSe)_n 多层膜结构在有 无光照条件下瞬态光电流密度随时间的变化曲线. 无光照时系统测得的电流密度接近零, 而光照条 件下体系中的阳极电流密度急剧增加, 约 7 s 后电 流趋于稳定, 表明此电流确实为光电流. 切换光源

图 5 (TiO₂/CdSe)_n 多层膜结构在有无光照条件下的 (a) 瞬态 光电流密度; (b) 开路电压随时间的变化曲线

的开/关状态得到的光电流密度曲线重复良好,说 明该体系具有很好的化学稳定性和光稳定性. 与 单层 TiO₂/CdSe 薄膜电极相比, (TiO₂/CdSe)₂ 体系 的光电流密度增加了一倍 (约为 0.18 mA/cm²), 说 明有更多的光生载流子参与形成电流. 在去掉光 照的瞬间还会产生一个反向的光电流,说明光照 时阳极电流与阴极电流之间存在竞争. 这种现象 在之前的研究中也有所报道,是电子与电解液中 氧化态的离子复合而引起的[32]. 当 TiO₂/CdSe 层 数增加到3层和4层时,体系的光电流密度又急 剧下降, 因为厚度的增加使光生载流子在收集前必 须传输更大的距离[33],因此也增加了载流子复合 的机率,从而使光电流密度减小. 厚度的增加也影 响了多层膜结构的导电性(增加了暗电阻),从而减 小了开路电压 [34,35], 正如图 5(b) 中有无光照条件 下 $(TiO_2/CdSe)_n$ 多层膜结构开路电压变化趋势. 因

此最大的光电流密度和开路电压 (0.5 V) 均在厚度适中的 (TiO₂/CdSe)₂ 结构得到.

3.4 光电转换机理

图 6 给出了 ITO/TiO₂/CdSe 体系中光生载流子的产生及转移的示意过程. 当太阳光照射到 CdSe 后形成电子 - 空穴对, 由于 CdSe 的导带能量比 TiO₂ 导带能量高, 所以电子容易从 CdSe 的导带跃迁到 TiO₂ 的导带上去, 然后流向 ITO 玻璃表面, 从而实现了电子与空穴对的分离 [16]. 溶液中的 S^{2-} 和 S_n^{2-} 氧化还原对不断的向 CdSe 补偿电子并消耗空穴, 从而构成回路, 形成光电流.

图 6 ITO/TiO₂/CdSe 系统中光生载流子的形成和转移示意图

4 结论

本文通过电化学法制备了 CdSe 薄膜并在 ITO 导电玻璃表面构筑 (TiO₂/CdSe)_n 多层膜结构. 经退火处理后 CdSe 薄膜沿 (111) 晶面方向择优生长,产物为立方闪锌矿结构. CdSe 敏化 TiO₂ 可以明显提高 TiO₂ 的光电化学性能, (TiO₂/CdSe)_n 多层膜结构的可见光吸收强度随层数 (厚度) 的增加明显增强,且以二层膜结构 (TiO₂/CdSe)₂ 的短路电流密度和开路电压最大. 多层膜体系的光电响应灵敏, 性能稳定, 有望作为电极材料构筑新型的量子点敏化太阳电池器件.

^[1] Chen X, Mao S S 2007 Chem. Rev. 107 2891

^[2] Gao L, Zhang J M 2010 Acta Phys. Sin. 59 1263 (in Chinese) [高立, 张建民 2010 物理学报 59 1263]

^[3] Zhu K, Neale N R, Miedaner A, Frank A J 2007 Nano Lett. 7 69

^[4] Gao F, Wang Y, Shi D, Zhang J, Wang M K, Jing X Y, Humphry-Baker R, Wang P, Zakeeruddin S M, Gratzel M 2008 J. Am. Chem.

- Soc. 130 10720
- [5] Bai Y, Cao Y M, Zhang J, Wang M, Li R Z, Wang P, Zakeeruddin S M, Gratzel M 2008 Nat. Mater. 7 626
- [6] Kou D X, Liu W Q, Hu L H, Huang Y, Dai S Y, Jiang N Q 2010 *Acta Phys. Sin.* **59** 5857 (in Chinese) [寇东星, 刘伟庆, 胡林华, 黄阳, 戴松元, 姜年权 2010 物理学报 **59** 5857]
- [7] Liu W Q, Kou D X, Hu L H, Huang Y, Jiang N Q, Dai S Y 2010 *Acta Phys. Sin.* **59** 5141 (in Chinese) [刘伟庆, 寇东星, 胡林华, 黄阳, 姜年权, 戴松元 2010 物理学报 **59** 5141]
- [8] Liu W Q, Kou D X, Cai M L, Hu L H, Sheng J, Tian H J, Jiang N Q, Dai S Y 2010 J. Phys. Chem. C 114 9965
- [9] Kongkanand A, Tvrdy K, Takechi K, Kuno M, Kamat P V 2008 J. Am. Chem. Soc. 130 4007
- [10] Wang G M, Yang X Y, Qian F, Zhang J Z, Li Y 2010 Nano Lett. 10 1088
- [11] Sun W T, Yu Y, Pan H Y, Gao X F, Chen Q, Peng L M 2008 J. Am. Chem. Soc. 130 1124
- [12] Chen T, Colver P J, Bon S A F 2007 Adv. Mater. 19 2286
- [13] Mor G K, Shankar K, Paulose M, Varghese O K, Grimes C A 2007 Appl. Phys. Lett. 91 3
- [14] Peng R X, Chen C, Shen W, Wang M T, Guo Y, Geng H W 2009 *Acta Phys. Sin.* **58** 6582 (in Chinese) [彭瑞祥, 陈冲, 沈薇, 王命泰, 郭颖, 耿宏伟 2009 物理学报 **58** 6582]
- [15] Fu A H, Gu W W, Boussert B, Koski K, Gerion D, Manna L, Le Gros M, Larabell C A, Alivisatos A P 2007 Nano Lett. 7 179
- [16] Robel I, Subramanian V, Kuno M, Kamat P V 2006 J. Am. Chem. Soc. 128 2385
- [17] Weiss E A, Porter V J, Chiechi R C, Geyer S M, Bell D C, Bawendi M G, Whitesides G M 2008 J. Am. Chem. Soc. 130 83
- [18] Bhuse V M 2005 Mater. Chem. Phys. 91 60

- [19] Diguna L J, Shen Q, Kobayashi J, Toyoda T 2007 Appl. Phys. Lett. 91 3
- [20] Konda R B, Mundle R, Mustafa H, Bamiduro O, Pradhana A K, Roy U N, Cui Y, Burger A 2007 Appl. Phys. Lett. 91 3
- [21] Akaltun Y, Yildirim M A, Ates A, Yildirim M 2011 Opt. Commun. 284 2307
- [22] Chong L W, Chien H T, Lee Y L 2010 J. Power Sources 95 5109
- [23] Ptatschek V, Schreder B, Herz K, Hilbert U, Ossau W, Schottner G, Rahauser O, Bischof T, Lermann G, Materny A, Kiefer W, Bacher G, Forchel A, Su D, Giersig M, Muller G, Spanhel L 1997 J. Phys. Chem. B 101 8898
- [24] Yang Q M, Zhao J, Guan M, Liu C, Cui L J, Han D J, Zeng Y P 2007 Appl. Surf. Sci. 257 9038
- [25] Rashwan S M, Abd El-Wahab S M, Mohamed M M 2007 J. Mater. Sci-Mater. Electron. 18 575
- [26] Pawar S M, Moholkar A V, Rajpure K Y, Bhosale C H 2008 Sol. Energy Mater. Sol. Cells 92 45
- [27] Lincot D 2005 Thin Solid Films 487 40
- [28] Shpaisman N, Givan U, Patolsky F 2010 ACS Nano 4 1901
- [29] Kressin A M, Doan V V, Klein J D, Sailor M J 1991 Chem. Mat. 3 1015
- [30] Henriquez R, Badan A, Grez P, Munoz E, Vera J, Dalchiele E A, Marotti R E, Gomez H 2011 Electrochim. Acta 56 4895
- [31] Mane R S, Roh S J, Joo O S, Lokhande C D, Han S H 2005 Electrochim. Acta 50 2453
- [32] Liu D, Kamat P V 1993 J. Phys. Chem. 97 10769
- [33] Kondon M, Kim J, Udawatte N, Lee D 2008 J. Phys. Chem. C 112 6695
- [34] Guo C X, Yang H B, Sheng Z M, Lu Z S, Song Q L, Li C M 2010 Angew. Chem-Int. Edit. 49 3014
- [35] Kou D X, Jiang N Q 2010 Acta Phys. Sin. **59** 643 (in Chinese) [寇 东星, 姜年权 2010 物理学报 **59** 643]

Preparation and photoelectrochemical properties of multilayer TiO₂/CdSe structures*

Li Li-Qun $^{1)}$ Liu Ai-Ping $^{1)2)\dagger}$ Zhao Hai-Xin $^{1)}$ Cui Can $^{1)}$ Tang Wei-Hua $^{1)\dagger}$

1) (Center for Optoelectronics Materials and Devices, Department of Physics, Key Laboratory of Advanced Textile Materials and Manufacturing

Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China)

2) (State Key Laboratory of Silicon Materials, Zhejiang University, Hangzhou 310027, China)

(Received 7 September 2011; revised manuscript received 10 October 2011)

Abstract

The red-brown CdSe thin films are electrochemically deposited on conductive ITO/TiO₂ film surfaces, and the multilayer TiO₂/CdSe structures are constructed. The microstructures and the photoelectrochemical properties of multilayer TiO₂/CdSe structures are investigated. The results show that the CdSe thin films are grown preferentially along the (111) direction. The thickness and UV-Vis absorbance intensity of multilayer films increase with the increase of layer number of TiO₂/CdSe structure. The results obtained from photoelectrochemistry measurement indicate that the optimal photoelectrochemical current response and open-circuit voltage are obtained in a biolayer TiO₂/CdSe system, which therefore demonstrates the favorable photoelectrochemical properties.

Keywords: CdSe film, multilayer film structure, electrochemical deposition, photoelectrochemical property **PACS:** 82.47.Jk, 72.80.Ey

^{*} Project supported by the National Natural Science Foundation of China (Grant Nos. 50902123, 51172208 and 60806045), the Visiting Scholars Fund of State Key Laboratory of Silicon Materials (Grant No. SKL2011-20), the Excellent Young Talents Foundation of Key Laboratory of Advanced Textile Materials and Manufacturing Technology (Zhejiang Sci-Tech University) (Grant No. 2011QN05) and the Scientific Research Foundation of Zhejiang Sci-Tech University (Grant No. 0813824-Y).

[†] E-mail: liuaiping1979@gmail.com