Klausur Statistik Bachelor Studiengang IBIS am 14.07.2014

Prüfer: Salzmann, Falkenberg

: _____

Matrikelnummer :
Mit meiner Unterschrift bestätige ich,
1. dass ich meine Klausur selbständig angefertigt und keine anderen als die zugelassenen Hilfsmittel verwendet habe,
2. dass ich mich gesund und prüfungsfähig fühle. Mir ist bekannt, dass mit dem Erhalt der Aufgabenstellung die Klausur als angetreten gilt und bewertet wird.
Untercebrift.

Aufgaben	1	2	3	4	5	Summe	Note
maximale Punktezahl	19	10	9	13	8	60	
erreichte Punktezahl							

Zugelassene Hilfsmittel:

Name, Vorname

1 Buch oder alternativ Unterlagen der Lehrveranstaltung aus dem SS 13 in gebundener Form, 1 selbstbeschriebenes Blatt, Taschenrechner

Arbeitsanweisung:

- 1. Schreiben Sie Ihre Lösungen direkt in die ausgeteilte Klausur.
- 2. Beachten Sie, dass bei der Lösung der Aufgaben nicht nur die Lösung sondern auch die Herleitung anzugeben ist.

Wir wünschen Ihnen viel Erfolg!

Salzmann, Falkenberg

1. Anlässlich der Fußball-WM wird untersucht, ob sich das Fernsehverhalten von Frauen und Männer unterscheidet. Bei einer Umfrage von 100 zufällig ausgewählten Personen ergaben sich folgende Daten.

	Anzahl im Fernsehen										
	betrachteter Fußballspiele										
	0 1 2 3 4 5 6 7										
Geschlecht männlich	5	2	5	12	13	15	13	5			
weiblich	2 2 5 4 6 5 5 1										

- (a) Berechnen Sie den arithmetischen Mittelwert und den Median für die Anzahl der von den männlichen Befragten gesehenen Fußballspielen.
- (b) Das Merkmal Fernsehverhalten wird durch die 3 Kategorien selten (max. 1 Spiel), häufig (2 bis 5 Spiele), sehr häufig (mehr als 5 Spiele) beschrieben.

Erstellen Sie die Kontingenztabelle der Merkmale Geschlecht und Fernsehverhalten.

	Fernsehverhalten								
	wenig häufig sehr häufig C								
Geschlecht männlich									
weiblich									
Gesamt									

(c) Bestimmen Sie die Indifferenztabelle der Kontingenztabelle aus b).

	Fernsehverhalten									
	wenig	häufig	sehr häufig	Gesamt						
Geschlecht männlich										
weiblich										
Gesamt										

(d) Bestimmen Sie die Kennzahl χ^2 für den Zusammenhang beider Merkmale.

- 2. Sie sind im Urlaub auf einer Touristeninsel und haben sich verlaufen. Ein zufällig vorbeikommender Einheimischer wollen Sie nach dem Weg fragen. Sie wissen, dass 70% aller Einheimischen sehr urlauberfreundlich sind und Fragen nach dem Weg stets mit einer Wahrscheinlichkeit von 0.9 richtig beantworten, während 30% aller Einheimischen sehr unfreundlich gegenüber Touristen sind und Fragen nach dem Weg stets mit einer Wahrscheinlichkeit von 0.8 falsch beantworten. Um festzustellen, ob Sie einen freundlichen oder unfreundlichen Einheimischen getroffen haben, beschließen Sie ihm 2 Fragen, dessen Antworten Sie wissen, zu stellen.
 - (a) Bestimmen Sie die Wahrscheinlichkeiten, dass ein freundlicher Einheimischer Ihnen 0, 1 bzw. 2 ihrer Fragen richtig beantwortet.
 - (b) Bestimmen Sie die Wahrscheinlichkeit, dass Sie eine richtige Antwort erhalten.
 - (c) Sie erhalten 2 richtige Antworten, wie groß ist die Wahrscheinlichkeit, dass Sie einen freundlichen bzw. unfreundlichen Einheimischen getroffen?

- 3. Die Bearbeitungsdauer einer Anfrage zu einer Urlaubsreise in einem online Portal sei normalverteilt mit Erwartungswert 0,55 sec und einer Standardabweichung von 0,1 sec.
 - (a) Bestimmen Sie die Wahrscheinlichkeit, dass die Bearbeitungszeit einer online Anfrage zwischen 0,2 sec und 0,5 sec dauert.
 - (b) Welcher Verteilung genügt, die Bearbeitungsdauer von 100 Anfragen? Wie groß sind der Erwartungswert und die Varianz der Bearbeitungszeit von 100 Anfragen?
 Gehen Sie davon aus, dass die Bearbeitungsdauern der Anfragen alle unabhängig von einander sind und jeweils der gleichen Vertei-
 - lungsfunktion genügen.

 (c) Wie groß ist die Wahrscheinlichkeit, dass innerhalb von einer Minute 100 Anfragen von dem System bearbeitet werden können?

- 4. Ein Meinungsforschungsinstitut hat im Mai 2014 200 zufällig ausgewählte Personen dazu befragt, ob sie glauben, dass Deutschland 2014 große Chancen hat, Fußballweltmeister zu werden. 145 der Befragten Personen haben die Frage bejaht.
 - (a) Bestimmen Sie ein 95%-Konfidenzintervall für den unbekannten Anteil der Erwartung, dass Deutschland 2014 Fußballweltmeister wird.
 - (b) Wie viele Personen müssten mindestens befragt werden, so dass die Länge des Konfidenzintervall höchstens 0.05 ist? Gehen Sie davon aus, dass mindestens 60% der Bevölkerung erwarten, dass 2014 Deutschland Fußballweltmeister wird.

- 5. Ein Autohersteller behauptet, dass der Benzinverbrauch in Liter/100 km seines neuen PKW-Typs höchstens 5.4 Liter beträgt. Der Hersteller gibt weiterhin die Standardabweichung des Verbrauchs mit 0.2 l/100 km an. Um die Behauptungen des Herstellers zu überprüfen, werden zufällig 10 neue PKWs aus der Produktionsserie ausgewählt. In einem Testversuch eines Automobilclubs wird der Benzinverbrauch in Liter/100 km bei diesen 10 PKWs gemessen. Es ergab sich dabei ein mittlerer Verbrauch von 5.57 liter / 100 km mit einer empirischen Standardabweichung von 0.231181 liter / 100 km.
 - (a) Führen Sie einen geeigneten Parametertest zum Niveau $\alpha=0.05$ zur Überprüfung der Behauptung des Herstellers, dass der Benzinverbrauch höchstens 5.5 l/100km betrage.
 - (b) Schätzen Sie mit Hilfe einer der beiliegenden Tabellen den p-Wert ab, d.h. wie groß die Wahrscheinlichkeit ist, dass, falls die Angaben des Herstellers richtig sind, sich die gemessenen Benzinverbräuche oder noch höhere ergeben.

Hinweis: Gehen Sie davon aus, dass der Benzinverbrauch einer Normalverteilung genügt.

Table of the Standard Normal Distribution N(0,1)

	?,?0	?,?1	?,?2	?,?3	?,?4	?,?5	?,?6	?,?7	?,?8	?,?9
0	0.500000	0.503989	0.507978	0.511966	0.515953	0.519939	0.523922	0.527903	0.531881	0.535856
0.1	0.539828	0.543795	0.547758	0.551717	0.555670	0.559618	0.563559	0.567495	0.571424	0.575345
0.2	0.579260	0.583166	0.587064	0.590954	0.594835	0.598706	0.602568	0.606420	0.610261	0.614092
0.3	0.617911	0.621720	0.625516	0.629300	0.633072	0.636831	0.640576	0.644309	0.648027	0.651732
0.4	0.655422	0.659097	0.662757	0.666402	0.670031	0.673645	0.677242	0.680822	0.684386	0.687933
0.5	0.691462	0.694974	0.698468	0.701944	0.705401	0.708840	0.712260	0.715661	0.719043	0.722405
0.6	0.725747	0.729069	0.732371	0.735653	0.738914	0.742154	0.745373	0.748571	0.751748	0.754903
0.7	0.758036	0.761148	0.764238	0.767305	0.770350	0.773373	0.776373	0.779350	0.782305	0.785236
0.8	0.788145	0.791030	0.793892	0.796731	0.799546	0.802337	0.805105	0.807850	0.810570	0.813267
0.9	0.815940	0.818589	0.821214	0.823814	0.826391	0.828944	0.831472	0.833977	0.836457	0.838913
1	0.841345	0.843752	0.846136	0.848495	0.850830	0.853141	0.855428	0.857690	0.859929	0.862143
1.1	0.864334	0.866500	0.868643	0.870762	0.872857	0.874928	0.876976	0.879000	0.881000	0.882977
1.2	0.884930	0.886861	0.888768	0.890651	0.892512	0.894350	0.896165	0.897958	0.899727	0.901475
1.3	0.903200	0.904902	0.906582	0.908241	0.909877	0.911492	0.913085	0.914657	0.916207	0.917736
1.4	0.919243	0.920730	0.922196	0.923641	0.925066	0.926471	0.927855	0.929219	0.930563	0.931888
1.5	0.933193	0.934478	0.935745	0.936992	0.938220	0.939429	0.940620	0.941792	0.942947	0.944083
1.6	0.945201	0.946301	0.947384	0.948449	0.949497	0.950529	0.951543	0.952540	0.953521	0.954486
1.7	0.955435	0.956367	0.957284	0.958185	0.959070	0.959941	0.960796	0.961636	0.962462	0.963273
1.8	0.964070	0.964852	0.965620	0.966375	0.967116	0.967843	0.968557	0.969258	0.969946	0.970621
1.9	0.971283	0.971933	0.972571	0.973197	0.973810	0.974412	0.975002	0.975581	0.976148	0.976705
2	0.977250	0.977784	0.978308	0.978822	0.979325	0.979818	0.980301	0.980774	0.981237	0.981691
2.1	0.982136	0.982571	0.982997	0.983414	0.983823	0.984222	0.984614	0.984997	0.985371	0.985738
2.2	0.986097	0.986447	0.986791	0.987126	0.987455	0.987776	0.988089	0.988396	0.988696	0.988989
2.3	0.989276	0.989556	0.989830	0.990097	0.990358	0.990613	0.990863	0.991106	0.991344	0.991576
2.4	0.991802	0.992024	0.992240	0.992451	0.992656	0.992857	0.993053	0.993244	0.993431	0.993613
2.5	0.993790	0.993963	0.994132	0.994297	0.994457	0.994614	0.994766	0.994915	0.995060	0.995201
2.6	0.995339	0.995473	0.995604	0.995731	0.995855	0.995975	0.996093	0.996207	0.996319	0.996427
2.7	0.996533	0.996636	0.996736	0.996833	0.996928	0.997020	0.997110	0.997197	0.997282	0.997365
2.8	0.997445	0.997523	0.997599	0.997673	0.997744	0.997814	0.997882	0.997948	0.998012	0.998074
2.9	0.998134	0.998193	0.998250	0.998305	0.998359	0.998411	0.998462	0.998511	0.998559	0.998605
3	0.998650	0.998694	0.998736	0.998777	0.998817	0.998856	0.998893	0.998930	0.998965	0.998999
3.1	0.999032	0.999065	0.999096	0.999126	0.999155	0.999184	0.999211	0.999238	0.999264	0.999289
3.2	0.999313	0.999336	0.999359	0.999381	0.999402	0.999423	0.999443	0.999462	0.999481	0.999499
3.3	0.999517	0.999534	0.999550	0.999566	0.999581	0.999596	0.999610	0.999624	0.999638	0.999651
3.4	0.999663	0.999675	0.999687	0.999698	0.999709	0.999720	0.999730	0.999740	0.999749	0.999758
3.5	0.999767	0.999776	0.999784	0.999792	0.999800	0.999807	0.999815	0.999822	0.999828	0.999835
3.6	0.999841	0.999847	0.999853	0.999858	0.999864	0.999869	0.999874	0.999879	0.999883	0.999888
3.7	0.999892	0.999896	0.999900	0.999904	0.999908	0.999912	0.999915	0.999918	0.999922	0.999925
3.8	0.999928	0.999931	0.999933	0.999936	0.999938	0.999941	0.999943	0.999946	0.999948	0.999950
3.9	0.999952	0.999954	0.999956	0.999958	0.999959	0.999961	0.999963	0.999964	0.999966	0.999967
4	0.999968	0.999970	0.999971	0.999972	0.999973	0.999974	0.999975	0.999976	0.999977	0.999978

Quantiles of the Standard Normal Distribution $N(0,1)\ u_p$

	р	X	p	X	р	X
1	0.800	0.8416212	0.950	1.6448536	0.990	2.3263479
2	0.820	0.9153651	0.955	1.6953977	0.991	2.3656181
3	0.840	0.9944579	0.960	1.7506861	0.992	2.4089155
4	0.860	1.0803193	0.965	1.8119107	0.993	2.4572634
5	0.880	1.1749868	0.970	1.8807936	0.994	2.5121443
6	0.900	1.2815516	0.975	1.9599640	0.995	2.5758293
7	0.920	1.4050716	0.980	2.0537489	0.996	2.6520698
8	0.940	1.5547736	0.985	2.1700904	0.997	2.7477814
9	0.960	1.7506861	0.990	2.3263479	0.998	2.8781617
10	0.980	2.0537489	0.995	2.5758293	0.999	3.0902323

Quantiles of the t_n -Distribution $t_{n,p}$

	p=0.6	p=0.65	p=0.7	p=0.75	p=0.8	p = 0.85	p=0.9	p = 0.95	p = 0.96	p = 0.97	p=0.975	p = 0.98	p=0.985	p = 0.99	p=0.995	p=0.999	p=0.9995
1	0.3249	0.5095	0.7265	1.0000	1.3764	1.9626	3.0777	6.3138	7.9158	10.5789	12.7062	15.8945	21.2049	31.8205	63.6567	318.3088	636.6192
2	0.2887	0.4447	0.6172	0.8165	1.0607	1.3862	1.8856	2.9200	3.3198	3.8964	4.3027	4.8487	5.6428	6.9646	9.9248	22.3271	31.5991
3	0.2767	0.4242	0.5844	0.7649	0.9785	1.2498	1.6377	2.3534	2.6054	2.9505	3.1824	3.4819	3.8960	4.5407	5.8409	10.2145	12.9240
4	0.2707	0.4142	0.5686	0.7407	0.9410	1.1896	1.5332	2.1318	2.3329	2.6008	2.7764	2.9985	3.2976	3.7469	4.6041	7.1732	8.6103
5	0.2672	0.4082	0.5594	0.7267	0.9195	1.1558	1.4759	2.0150	2.1910	2.4216	2.5706	2.7565	3.0029	3.3649	4.0321	5.8934	6.8688
6	0.2648	0.4043	0.5534	0.7176	0.9057	1.1342	1.4398	1.9432	2.1043	2.3133	2.4469	2.6122	2.8289	3.1427	3.7074	5.2076	5.9588
7	0.2632	0.4015	0.5491	0.7111	0.8960	1.1192	1.4149	1.8946	2.0460	2.2409	2.3646	2.5168	2.7146	2.9980	3.4995	4.7853	5.4079
8	0.2619	0.3995	0.5459	0.7064	0.8889	1.1081	1.3968	1.8595	2.0042	2.1892	2.3060	2.4490	2.6338	2.8965	3.3554	4.5008	5.0413
9	0.2610	0.3979	0.5435	0.7027	0.8834	1.0997	1.3830	1.8331	1.9727	2.1504	2.2622	2.3984	2.5738	2.8214	3.2498	4.2968	4.7809
10	0.2602	0.3966	0.5415	0.6998	0.8791	1.0931	1.3722	1.8125	1.9481	2.1202	2.2281	2.3593	2.5275	2.7638	3.1693	4.1437	4.5869
11	0.2596	0.3956	0.5399	0.6974	0.8755	1.0877	1.3634	1.7959	1.9284	2.0961	2.2010	2.3281	2.4907	2.7181	3.1058	4.0247	4.4370
12	0.2590	0.3947	0.5386	0.6955	0.8726	1.0832	1.3562	1.7823	1.9123	2.0764	2.1788	2.3027	2.4607	2.6810	3.0545	3.9296	4.3178
13	0.2586	0.3940	0.5375	0.6938	0.8702	1.0795	1.3502	1.7709	1.8989	2.0600	2.1604	2.2816	2.4358	2.6503	3.0123	3.8520	4.2208
14	0.2582	0.3933	0.5366	0.6924	0.8681	1.0763	1.3450	1.7613	1.8875	2.0462	2.1448	2.2638	2.4149	2.6245	2.9768	3.7874	4.1405
15	0.2579	0.3928	0.5357	0.6912	0.8662	1.0735	1.3406	1.7531	1.8777	2.0343	2.1314	2.2485	2.3970	2.6025	2.9467	3.7328	4.0728
16	0.2576	0.3923	0.5350	0.6901	0.8647	1.0711	1.3368	1.7459	1.8693	2.0240	2.1199	2.2354	2.3815	2.5835	2.9208	3.6862	4.0150
17	0.2573	0.3919	0.5344	0.6892	0.8633	1.0690	1.3334	1.7396	1.8619	2.0150	2.1098	2.2238	2.3681	2.5669	2.8982	3.6458	3.9651
18	0.2571	0.3915	0.5338	0.6884	0.8620	1.0672	1.3304	1.7341	1.8553	2.0071	2.1009	2.2137	2.3562	2.5524	2.8784	3.6105	3.9216
19	0.2569	0.3912	0.5333	0.6876	0.8610	1.0655	1.3277	1.7291	1.8495	2.0000	2.0930	2.2047	2.3456	2.5395	2.8609	3.5794	3.8834
20	0.2567	0.3909	0.5329	0.6870	0.8600	1.0640	1.3253	1.7247	1.8443	1.9937	2.0860	2.1967	2.3362	2.5280	2.8453	3.5518	3.8495
21	0.2566	0.3906	0.5325	0.6864	0.8591	1.0627	1.3232	1.7207	1.8397	1.9880	2.0796	2.1894	2.3278	2.5176	2.8314	3.5272	3.8193
22	0.2564	0.3904	0.5321	0.6858	0.8583	1.0614	1.3212	1.7171	1.8354	1.9829	2.0739	2.1829	2.3202	2.5083	2.8188	3.5050	3.7921
23	0.2563	0.3902	0.5317	0.6853	0.8575	1.0603	1.3195	1.7139	1.8316	1.9782	2.0687	2.1770	2.3132	2.4999	2.8073	3.4850	3.7676
24	0.2562	0.3900	0.5314	0.6848	0.8569	1.0593	1.3178	1.7109	1.8281	1.9740	2.0639	2.1715	2.3069	2.4922	2.7969	3.4668	3.7454
25	0.2561	0.3898	0.5312	0.6844	0.8562	1.0584	1.3163	1.7081	1.8248	1.9701	2.0595	2.1666	2.3011	2.4851	2.7874	3.4502	3.7251
26	0.2560	0.3896	0.5309	0.6840	0.8557	1.0575	1.3150	1.7056	1.8219	1.9665	2.0555	2.1620	2.2958	2.4786	2.7787	3.4350	3.7066
27	0.2559	0.3894	0.5306	0.6837	0.8551	1.0567	1.3137	1.7033	1.8191	1.9632	2.0518	2.1578	2.2909	2.4727	2.7707	3.4210	3.6896
28	0.2558	0.3893	0.5304	0.6834	0.8546	1.0560	1.3125	1.7011	1.8166	1.9601	2.0484	2.1539	2.2864	2.4671	2.7633	3.4082	3.6739
29	0.2557	0.3892	0.5302	0.6830	0.8542	1.0553	1.3114	1.6991	1.8142	1.9573	2.0452	2.1503	2.2822	2.4620	2.7564	3.3962	3.6594
30	0.2556	0.3890	0.5300	0.6828	0.8538	1.0547	1.3104	1.6973	1.8120	1.9546	2.0423	2.1470	2.2783	2.4573	2.7500	3.3852	3.6460
40	0.2550	0.3881	0.5286	0.6807	0.8507	1.0500	1.3031	1.6839	1.7963	1.9357	2.0211	2.1229	2.2503	2.4233	2.7045	3.3069	3.5510
50	0.2547	0.3875	0.5278	0.6794	0.8489	1.0473	1.2987	1.6759	1.7870	1.9244	2.0086	2.1087	2.2338	2.4033	2.6778	3.2614	3.4960
60	0.2545	0.3872	0.5272	0.6786	0.8477	1.0455	1.2958	1.6706	1.7808	1.9170	2.0003	2.0994	2.2229	2.3901	2.6603	3.2317	3.4602
70	0.2543	0.3869	0.5268	0.6780	0.8468	1.0442		1.6669	1.7765	1.9118	1.9944	2.0927	2.2152	2.3808	2.6479	3.2108	3.4350
80	0.2542	0.3867	0.5265	0.6776	0.8461	1.0432			1.7732	1.9078	1.9901	2.0878	2.2095	2.3739	2.6387	3.1953	3.4163
90	0.2541	0.3866	0.5263	0.6772	0.8456	1.0424		1.6620	1.7707	1.9048	1.9867	2.0839	2.2050	2.3685	2.6316	3.1833	3.4019
100	0.2540	0.3864	0.5261	0.6770	0.8452	1.0418	1.2901	1.6602	1.7687	1.9024	1.9840	2.0809	2.2015	2.3642	2.6259	3.1737	3.3905
200	0.2537	0.3859	0.5252	0.6757	0.8434	1.0391	1.2858	1.6525	1.7596	1.8915	1.9719	2.0672	2.1857	2.3451	2.6006	3.1315	3.3398
300	0.2536	0.3857	0.5250	0.6753	0.8428	1.0382	1.2844	1.6499	1.7566	1.8879	1.9679	2.0627	2.1805	2.3388	2.5923	3.1176	3.3233
400	0.2535	0.3856	0.5248	0.6751	0.8425	1.0378	1.2837	1.6487	1.7551	1.8861	1.9659	2.0605	2.1779	2.3357	2.5882	3.1107	3.3150
500	0.2535	0.3855	0.5247	0.6750	0.8423	1.0375	1.2832	1.6479	1.7543	1.8851	1.9647	2.0591	2.1763	2.3338	2.5857	3.1066	3.3101
∞	0.2533	0.3853	0.5244	0.6745	0.8416	1.0364	1.2816	1.6449	1.7507	1.8808	1.9600	2.0537	2.1701	2.3263	2.5758	3.0902	3.2905

4

Quantiles of the χ_n^2 -Distribution $\chi_{n,p}$

	p=0.005	p=0.01	p=0.015	p=0.02	p=0.025	p=0.05	p=0.1	p = 0.5	p = 0.9	p=0.95	p=0.975	p=0.98	p=0.985	p=0.99	p=0.995
1	0.000	0.000	0.000	0.001	0.001	0.004	0.016	0.455	2.706	3.841	5.024	5.412	5.916	6.635	7.879
2	0.010	0.020	0.030	0.040	0.051	0.103	0.211	1.386	4.605	5.991	7.378	7.824	8.399	9.210	10.597
3	0.072	0.115	0.152	0.185	0.216	0.352	0.584	2.366	6.251	7.815	9.348	9.837	10.465	11.345	12.838
4	0.207	0.297	0.368	0.429	0.484	0.711	1.064	3.357	7.779	9.488	11.143	11.668	12.339	13.277	14.860
5	0.412	0.554	0.662	0.752	0.831	1.145	1.610	4.351	9.236	11.070	12.833	13.388	14.098	15.086	16.750
6	0.676	0.872	1.016	1.134	1.237	1.635	2.204	5.348	10.645		14.449	15.033	15.777	16.812	18.548
7	0.989	1.239	1.418	1.564	1.690	2.167	2.833	6.346	12.017		16.013	16.622	17.398	18.475	20.278
8	1.344	1.646	1.860	2.032	2.180	2.733	3.490	7.344	13.362		17.535	18.168	18.974	20.090	21.955
9	1.735	2.088	2.335	2.532	2.700	3.325	4.168	8.343		16.919	19.023	19.679	20.513	21.666	23.589
10	2.156	2.558	2.837	3.059	3.247	3.940	4.865		15.987		20.483	21.161	22.021	23.209	25.188
11	2.603	3.053	3.363	3.609	3.816	4.575	5.578				21.920		23.503	24.725	26.757
12	3.074	3.571	3.910	4.178	4.404	5.226	6.304				23.337	24.054	24.963	26.217	28.300
13	3.565	4.107	4.476	4.765	5.009	5.892	7.042				24.736	25.472	26.403	27.688	29.819
14	4.075	4.660	5.057	5.368	5.629	6.571	7.790		21.064		26.119	26.873	27.827	29.141	31.319
15	4.601	5.229	5.653	5.985	6.262	7.261	8.547	14.339	22.307	24.996	27.488	28.259	29.235	30.578	32.801
16	5.142	5.812	6.263	6.614	6.908	7.962	9.312		23.542		28.845	29.633	30.629	32.000	34.267
17	5.697	6.408	6.884	7.255	7.564	8.672	10.085			27.587	30.191	30.995	32.011	33.409	35.718
18	6.265	7.015	7.516	7.906	8.231	9.390	10.865		25.989	28.869	31.526	32.346	33.382	34.805	37.156
19	6.844	7.633	8.159	8.567	8.907	10.117	11.651		27.204	30.144	32.852	33.687	34.742	36.191	38.582
20	7.434	8.260	8.810	9.237	9.591	10.851	12.443		28.412		34.170	35.020	36.093	37.566	39.997
25	10.520		12.187	12.697	13.120	14.611	16.473		34.382	37.652	40.646	41.566	42.725	44.314	46.928
30	13.787		15.719	16.306	16.791	18.493	20.599		40.256	43.773	46.979	47.962	49.199	50.892	53.672
35	17.192		19.369	20.027	20.569	22.465	24.797		46.059	49.802	53.203	54.244	55.553	57.342	60.275
40	20.707	_	23.113	23.838	24.433	26.509	29.051	39.335	51.805	55.758	59.342	60.436	61.812	63.691	66.766
45	24.311		26.933		28.366	30.612	33.350		57.505	61.656	65.410		67.994	69.957	73.166
50	27.991		30.818	31.664	32.357	34.764	37.689	49.335	63.167	67.505	71.420	72.613	74.111	76.154	79.490
60	35.534		38.744		40.482	43.188	46.459		74.397	79.082	83.298	84.580	86.188		91.952
70	43.275	45.442	46.836		48.758	51.739	55.329	69.334			95.023			100.425	104.215
80	51.172		55.061		57.153	60.391	64.278			101.879		108.069			
90	59.196		63.394	64.635	65.647	69.126	73.291				118.136				
100	67.328		71.818	73.142	74.222	77.929	82.358				129.561				
110	75.550	78.458	80.318	81.723	82.867	86.792					140.917				
120	83.852		88.886	90.367							152.211				
130	92.222	000-	97.512								163.453				
140											174.648				
150											185.800				
160											196.915				
170											207.995				
180											219.044				
190											230.064				
200	152.241	156.432	159.096	161.100	162.728	168.279	174.835	199.334	$2\frac{2}{5}6.021$	233.994	241.058	243.187	245.845	249.445	255.264