微分積分学 A 中間追試験問題

2016年6月30日第5時限施行 担当 水野 将司

注意事項: ノート・辞書・参考書・教科書・コピー・電卓の使用を禁ず. 解答用紙のみを提出し、問題用紙は持ち帰ること.

問題 1 は全員が答えよ. 問題 2 以降について, 2 題以上を選択して答えよ. なお, 必要におうじて x>0, $n\in\mathbb{N}$ に対して,

(*)
$$(1+x)^n \ge 1 + nx + \frac{n(n-1)}{2}x^2 + \frac{n(n-1)(n-2)}{6}x^3$$

を用いてよい.

問題 1.

次の各問いに答えよ. ただし、答えのみを書くこと.

- (1) 実数の部分集合 $A \subset \mathbb{R}$ について、次の問いに答えよ.
 - (a) Aが有界であることの定義を答えよ.
 - (b) $a \in \mathbb{R}$ が A の下限であること, すなわち, $a = \inf A$ であることの論理記号を用いた定義を答えよ.
- (2) 実数列 $\{a_n\}_{n=1}^{\infty} \subset \mathbb{R}$ について、次の問いに答えよ.
 - (a) $\{a_n\}_{n=1}^{\infty}$ が $a \in \mathbb{R}$ に収束すること、すなわち、 $a_n \to a \ (n \to \infty)$ の ε -N 論法による定義を答えよ.
 - (b) $\{a_n\}_{n=1}^{\infty}$ が $-\infty$ に発散すること、すなわち、 $a_n \to -\infty$ $(n \to \infty)$ の ε -N 論法による定義を答えよ.
 - (c) $\{a_n\}_{n=1}^{\infty}$ が (広義) 単調増加であることの定義を答えよ.
 - (d) $\{a_n\}_{n=1}^{\infty}$ が Cauchy 列であることの ε -N 論法による定義を答えよ.
- (3) 有理数と実数の違いに関係する次の定理の主張をそれぞれ答えよ.
 - (a) 実数の連続性²
 - (b) Bolzano-Weierstrassの定理
 - (c) 実数の完備性
 - (d) Archimedes の原理
- (4) 次の集合の下限を求めよ. なお, 答えのみを書くこと.
 - (a) $\{(-1)^n \left(1 + \frac{1}{n}\right) : n \in \mathbb{N}\}$
 - (b) $\{x \in \mathbb{Q} : x^2 < x + 3\}$
 - (c) $\left\{ \sin(\sqrt{3}x\pi) : x \in \mathbb{Q} \right\}$

²教科書 (白岩) に述べられている, 実数の切断についての連続性は答えとして認めない. 講義ノートで述べた「実数の連続性」を答えよ.

- (5) 次の性質をみたす数列 $\{a_n\}_{n=1}^{\infty}$ の例をあげよ.
 - (a) $\{na_n\}_{n=1}^{\infty}$, $\{a_n\}_{n=1}^{\infty}$ はどちらも収束するが, 収束先が異なる.
 - (b) 数列 $\{a_n\}_{n=1}^{\infty}$ は収束し、すべての $n \in \mathbb{N}$ に対して $a_n < 3$ とな るが, $\lim_{n\to\infty} a_n < 3$ とならない.
- (6) 自然対数の底の定義を述べよ.
- (7) 次の極限を求めよ. なお, 答えのみを書くこと.
 - (a) $\lim_{n\to\infty} \frac{a^n-b^n}{a^n+b^n}$, ただし, a,b>0 は定数
 - (b) $\lim_{n \to \infty} \left(\frac{2n}{2n+3} \right)^n$

 - (c) $\lim_{n \to \infty} \frac{e}{n^3}$ (d) $\lim_{n \to \infty} \frac{1^3 + 2^3 + 3^3 + \dots + n^3}{n^4}$

以下余白 計算用紙として使ってよい.

問題 2.

 $\sup(-1,2) = 2$ を示したい. 次の問いに答えよ.

- (1) 2 が開区間 (-1,2) の上界であることを論理記号を用いて表せ.
- (2) 2 が開区間 (-1,2) の上界として最小であることを論理記号を 用いて表せ.
- $(3) \sup(-1,2) = 2$ を示せ.

問題 3.

自然数 n に対して $a_n=\frac{3n+5}{2n-3}$ とおく. $\lim_{n\to\infty}a_n=\frac{3}{2}$ を ε -N 論法を用いて示したい. 次の問いに答えよ.

- $(1) \lim_{n\to\infty} a_n = \frac{3}{2}$ の定義を答えよ.
- (2) $\lim_{n\to\infty} a_n = \frac{3}{2}$ を ε -N 論法を用いて示せ.

問題 4.

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は, それぞれ $a,b \in \mathbb{R}$ に収束するとする. このとき, 数列 $\{a_n+2b_n\}_{n=1}^{\infty}$ が a+2b に収束することを ε -N 論法を用いて示したい. 次の問いに答えよ.

- (1) 数列 $\{a_n + 2b_n\}_{n=1}^{\infty}$ が a + 2b に収束することの定義を答えよ.
- (2) 数列 $\{a_n+2b_n\}_{n=1}^{\infty}$ が a+2b に収束することを ε -N 論法を用いて示せ.

問題 5.

数列 $\{a_n\}_{n=1}^{\infty}$, $\{b_n\}_{n=1}^{\infty}$ は, それぞれ $a,b \in \mathbb{R}$ に収束するとする. 次の条件 (A) を仮定する.

(A) すべての $n \in \mathbb{N}$ に対して, $|a_n| \leq 2|a|$ となる.

このとき, 数列 $\{a_nb_n\}_{n=1}^{\infty}$ は ab に収束することを ε -N 論法を用いて示せ.

以下余白 計算用紙として使ってよい.