CAP 5610: Machine Learning Lecture 13:

Clustering

Instructor: Dr. Gita Sukthankar

Email: gitars@eecs.ucf.edu

Schedule

- Midterm exam next Tuesday
 - No material from the homework
 - No proofs
- Project proposal (ungraded) to be due on Oct 29
 - To be discussed in class next Thursday
- Final homework will be on deep RL
- Remaining topics: more deep learning: reinforcement learning, optimization, graphical models, LSTMs, GANs

Reading

- Bishop Chapter 9
- Marsland Chapter 14
- Murphy Chapter 11 (advanced discussion EM and mixture of Gaussians)

Supervised vs. Unsupervised Learning Algorithms

- Supervised algorithms training examples are labeled
 - Learning classifiers: KNN, (Naive) Bayes classifiers, SVM
 - Learning low-dimensional subspace: FDA
- Unsupervised algorithms training examples are unlabeled
 - Learning low-dimensional subspace: PCA, autoencoder
 - Today's topic: Clustering analysis: grouping a set of objects into (overlapped/disjoint) partitions of similar ones

Clustering Analysis

 Objective: grouping a set of objects into (overlapped/disjoint) partitions of similar ones

How to measure similarity?

- Similar in semantics or similar in appearance
 - It is hard to define a universal similarity measurement
 - E.g., Visually these two images are similar, but semantically they are not.

Pragmatically, we define similarity in terms of distance between

feature vectors.

- Euclidean distance
- L1 distance
- Manhattan distance
- etc.

By B. Poczos and A. Singh

K-means clustering

• Given a set of examples $\{X_1, X_2, ..., X_n\}$, partition these n examples into k sets $\{S_1, S_2, ..., S_k\}$, by minimizing the within-cluster sum of squares:

$$\underset{i=1}{\operatorname{argmin}} \sum_{i=1}^{k} \sum_{X_j \in S_i} ||X_j - \mu_i||^2$$

Where μ_i is the mean of examples in set S_i .

K-means clustering

- The decision variables associated with K-means clustering problem include
 - Assignment of each example to a cluster $\{S_1, S_2, ..., S_K\}$
 - Mean vectors $\{\mu_i\}$ for each cluster
- Jointly optimization of these two sets of decision variables is NP-hard.
 - Heuristic method: K-means algorithm
 - Alternately updating the two sets of decision variables.

Randomly guess the cluster means

Assign each example to the nearest cluster mean

• Update the estimates of cluster means based on current example assignment.

Reassign each example to the assignment.

K-means: Algorithms

- Step 1: randomly initialize the guess of cluster means
- Repeat
 - Step 2: assign each example to the closest cluster mean
 - Step 3: update the estimate of cluster means based on the current example assignments
- Until convergence (the cluster means and example assignments do not change too much)

Formal treatment of K-means

• Denote by C(j) the assignment of example j to a cluster C(j), then the sum of squared distance between examples and cluster means can be written as

argmin
$$\sum_{i=1}^{k} \sum_{X_j \in S_i} ||X_j - \mu_i||^2 = \sum_{j=1}^{n} ||X_j - \mu_{C(j)}||^2$$

Optimal solution

• Alternately optimizing μ , C

$$\operatorname{argmin}_{\mu,C} \sum_{j=1}^{n} ||X_{j} - \mu_{C(j)}||^{2}$$

• Fix μ , the best assignment:

$$\operatorname{argmin}_{C} \sum_{j=1}^{n} \|X_{j} - \mu_{C(j)}\|^{2} = \sum_{j=1}^{n} \operatorname{argmin}_{C(j)} \|X_{j} - \mu_{C(j)}\|^{2}$$

It is exactly assigning each example to the closest cluster as in K-means.

Optimal solution

• Alternately optimizing μ , C

$$\operatorname{argmin}_{\mu,C} \sum_{j=1}^{n} ||X_j - \mu_{C(j)}||^2 = \sum_{i=1}^{K} \sum_{j:C(j)=i} ||X_j - \mu_i||^2$$

• Fix C, the optimal means:

$$\operatorname{argmin}_{\mu} \sum_{i=1}^{K} \sum_{j:C(j)=i} ||X_j - \mu_i||^2 = \sum_{i=1}^{K} \operatorname{argmin}_{\mu_i} \sum_{j:C(j)=i} ||X_j - \mu_i||^2$$

• The best solution is obtained by setting μ_i to the mean of examples assigned to this cluster.

Expectation-Maximization

- K-means algorithm:
 - Expectation: Fix μ , find the assignment
 - "expectation" means to which cluster we expect to assign an example.
 - Maximization: Fix C, find the best mean for each cluster
 - "maximization" means we maximize the likelihood that all assigned examples belong to this cluster by setting a proper mean.
- We will see a generalization of EM to a probabilistic model.

Problems to be addressed

- K-means makes a hard assignment of an example to a cluster.
 - Ambiguity may exist when we assign an example
 - Soft assignment is preferred.
 - Directly characterizing the probability that an example belongs to a cluster
 - A distribution will be used to model each cluster, e.g., Gaussian
 - The whole distribution for all examples is a mixture of distributions for each cluster, i.e., a mixture distribution model

Convergence

K-means algorithms can be guaranteed to converge.

Proof: In each step, K-means minimizes the objective function monotonically

$$\sum_{j=1}^{n} ||X_{j} - \mu_{C(j)}||^{2}$$

This generates a sequence of non-increasing objective values, which is lower bounded by zero; hence convergence occurs.

Computation Complexity

- In each iteration,
 - It costs O(Kn) to compute the distance between each of n examples and K cluster means
 - It costs O(n) to update the cluster means by adding each example to one cluster
- Assume l iterations are done before terminating the algorithm, the computational complexity is O(lkn)

K-means algorithm

- The objective function optimized by k-means is not convex
 - It suffers from many local optima
 - It is sensitive to the initialization of mean vectors (seeds)
 - Bad seeds can result in poor convergence, or converge to bad clustering result.

Bad seeds

Bad seeds

Seed choice

- Choosing good seeds using heuristics
 - Choosing seeds which are least similar to each other
 - Initialize seeds multiple times and choose the results with least objective value (least sum of squares between cluster means and examples)
 - Initialize with the results from another methods

Applications

- Social community discovery grouping users with the similar profiles
- Image segmentation grouping pixels with similar values which are spatially close to one another
- Human genetic clustering clustering similar genetic data to find population structures
- Marketing grouping customers into market segments based on surveys, sales data, and test panels.
- Many others...

Evaluation metrics

- Internal metrics
 - High intra-cluster similarity and low inter-cluster similarity
- External metrics
 - Assume we have labeled examples
 - Purity each cluster is assigned to the class with the most frequent label in this cluster, and purity measures the portion of correctly assigned examples.

purity =
$$\frac{3+3}{9}$$

Evaluation metrics

- External metrics
 - Rand Index how good the decision made by clusters in terms of the labels
 - For each pair of examples, define
 - True positive (TP): two examples in the same cluster are assigned the same label
 - True negative (TN): two examples in different clusters are assigned the different labels
 - False positive (FP): two examples in the same cluster are assigned the different labels
 - False negative (FN): two examples in the different clusters are assigned the same label

$$RI = \frac{TP + TN}{TP + FP + FN + TN}$$

Summary

- Clustering analysis aims to group similar objects into a set of clusters
- K-means is one of most popular methods
 - Implementing a heuristic EM method to optimize sum of squared distance between cluster means and examples.
 - Guaranteed to converge, but not always converge to global convergence.
 - Sensitive to initialization
- Extension of EM to soft assignment, handling mixture distribution model