A ConvNet for the 2020s

Zhuang Liu^{1,2*} Hanzi Mao¹ Chao-Yuan Wu¹ Christoph Feichtenhofer¹ Trevor Darrell² Saining Xie^{1†}

¹Facebook AI Research (FAIR) ²UC Berkeley

Code: https://github.com/facebookresearch/ConvNeXt

论文地址: https://arxiv.org/abs/2201.03545

推荐博文: https://blog.csdn.net/qq_37541097/article/details/122556545

model	image size	FLOPs	throughput (image / s)	IN-1K / 22K trained, 1K acc.
o Swin-T	224^{2}	4.5G	1325.6	81.3 / -
ConvNeXt-T	224^{2}	4.5G	1943.5 (+47%)	82.1 / -
Swin-S	224^{2}	8.7G	857.3	83.0 / -
ConvNeXt-S	224^{2}	8.7G	1275.3 (+49%)	83.1 / -
Swin-B	224^{2}	15.4G	662.8	83.5 / 85.2
ConvNeXt-B	224^{2}	15.4G	969.0 (+46%)	83.8 / 85.8
Swin-B	384^{2}	47.1G	242.5	84.5 / 86.4
ConvNeXt-B	384^{2}	45.0G	336.6 (+39%)	85.1 / 86.8
Swin-L	224^{2}	34.5G	435.9	- /86.3
 ConvNeXt-L 	224^{2}	34.4G	611.5 (+40%)	84.3 / 86.6
o Swin-L	384^{2}	103.9G	157.9	- /87.3
ConvNeXt-L	384^{2}	101.0G	211.4 (+34%)	85.5 / 87.5
ConvNeXt-XL	224^{2}	60.9G	424.4	- / 87.0
• ConvNeXt-XL	384^{2}	179.0G	147.4	- /87.8

Table 12. Inference throughput comparisons on an A100 GPU. ConvNeXt enjoys up to \sim 49% higher throughput compared with a Swin Transformer with similar FLOPs.

backbone	FLOPs	FPS	APbox	AP_{50}^{box}	AP_{75}^{box}	AP ^{mask}	AP_{50}^{mask}	AP ₇₅ mask
		Mask	-RCNN	3× sch	edule			
o Swin-T	267G	23.1	46.0	68.1	50.3	41.6	65.1	44.9
ConvNeXt-T	262G	25.6	46.2	67.9	50.8	41.7	65.0	44.9
	Cas	cade N	Aask-R0	CNN 3×	schedu	le		3
ResNet-50	739G	11.4	46.3	64.3	50.5	40.1	61.7	43.4
• X101-32	819G	9.2	48.1	66.5	52.4	41.6	63.9	45.2
• X101-64	972G	7.1	48.3	66.4	52.3	41.7	64.0	45.1
o Swin-T	745G	12.2	50.4	69.2	54.7	43.7	66.6	47.3
ConvNeXt-T	741G	13.5	50.4	69.1	54.8	43.7	66.5	47.3
o Swin-S	838G	11.4	51.9	70.7	56.3	45.0	68.2	48.8
ConvNeXt-S	827G	12.0	51.9	70.8	56.5	45.0	68.4	49.1
o Swin-B	982G	10.7	51.9	70.5	56.4	45.0	68.1	48.9
ConvNeXt-B	964G	11.4	52.7	71.3	57.2	45.6	68.9	49.5
∘ Swin-B [‡]	982G	10.7	53.0	71.8	57.5	45.8	69.4	49.7
 ConvNeXt-B[‡] 	964G	11.5	54.0	73.1	58.8	46.9	70.6	51.3
o Swin-L‡	1382G	9.2	53.9	72.4	58.8	46.7	70.1	50.8
 ConvNeXt-L[‡] 	1354G	10.0	54.8	73.8	59.8	47.6	71.3	51.7
 ConvNeXt-XL[‡] 	1898G	8.6	55.2	74.2	59.9	47.7	71.6	52.2

Table 3. **COCO object detection and segmentation results** using Mask-RCNN and Cascade Mask-RCNN. [‡] indicates that the model is pre-trained on ImageNet-22K. ImageNet-1K pre-trained Swin results are from their Github repository [3]. AP numbers of the ResNet-50 and X101 models are from [42]. We measure FPS on an A100 GPU. FLOPs are calculated with image size (1280, 800).

backbone	input crop.	mIoU	#param.	FLOPs
	ImageNet-1K p	re-trained		
o Swin-T	512^{2}	45.8	60M	945G
ConvNeXt-T	512^{2}	46.7	60M	939G
o Swin-S	512^{2}	49.5	81M	1038G
ConvNeXt-S	512^{2}	49.6	82M	1027G
o Swin-B	512^{2}	49.7	121M	1188G
ConvNeXt-B	512^{2}	49.9	122M	1170G
Imag	eNet-22K pre-tra	ined		
o Swin-B [‡]	640^{2}	51.7	121M	1841G
 ConvNeXt-B[‡] 	640^{2}	53.1	122M	1828G
Swin-L [‡]	640^{2}	53.5	234M	2468G
 ConvNeXt-L[‡] 	640^{2}	53.7	235M	2458G
• ConvNeXt-XL [‡]	640^{2}	54.0	391M	3335G

Table 4. **ADE20K validation results** using UperNet [80]. [‡] indicates IN-22K pre-training. Swins' results are from its GitHub repository [2]. Following Swin, we report mIoU results with multiscale testing. FLOPs are based on input sizes of (2048, 512) and (2560, 640) for IN-1K and IN-22K pre-trained models, respectively.

ConvNeXt设计与实验

- Macro design
- □ ResNeXt
- ☐ Inverted bottleneck
- ☐ Large kerner size
- ☐ Various layer-wise Micro designs

Macro design

Swin-T的比例是1:1:3:1 Swin-L的比例是1:1:9:1

作者将ResNet50中的堆叠次数由(3, 4, 6, 3)调整成(3, 3, 9, 3)

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer	
conv1	112×112	7×7, 64, stride 2					
			A 11 0	3×3 max pool, stric	ax pool, stride 2		
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 64\\ 3\times3, 64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	
conv3_x	28×28	$\left[\begin{array}{c}3\times3,128\\3\times3,128\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$	
conv4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$	
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$ \begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3 $	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	
	1×1	average pool, 1000-d fc, softmax					
FLO	OPs	1.8×10^{9}	3.6×10^9	3.8×10^{9}	7.6×10^9	11.3×10 ⁹	

Macro design

作者将stem换成卷积核大小为4,步距为4的卷积层

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer			
conv1	112×112	7×7, 64, stride 2							
			3×3 max pool, stride 2						
conv2_x	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$			
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$			
conv4_x	14×14	$\left[\begin{array}{c} 3\times3, 256\\ 3\times3, 256 \end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36$			
conv5_x	7×7	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,512\\ 3\times3,512 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$			
	1×1	average pool, 1000-d fc, softmax							
FLO	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10^9			

ResNeXt

ResNeXt相比普通的ResNet而言在FLOPs以及 accuracy之间做到了更好的平衡。这里作者采用 的是更激进的depthwise convolution。

Macro design

layer name	output size	18-layer	34-layer	50-layer	101-layer	152-layer		
conv1	112×112		7×7, 64, stride 2					
				3×3 max pool, stric	le 2			
conv2_x 5	56×56	$\left[\begin{array}{c}3\times3,64\\3\times3,64\end{array}\right]\times2$	$\left[\begin{array}{c} 3\times3,64\\ 3\times3,64 \end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 64 \\ 3 \times 3, 64 \\ 1 \times 1, 256 \end{bmatrix} \times 3$		
conv3_x	28×28	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 2$	$\left[\begin{array}{c} 3\times3, 128\\ 3\times3, 128 \end{array}\right] \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 4$	$\begin{bmatrix} 1 \times 1, 128 \\ 3 \times 3, 128 \\ 1 \times 1, 512 \end{bmatrix} \times 8$		
conv4_x	14×14	$\left[\begin{array}{c}3\times3,256\\3\times3,256\end{array}\right]\times2$	$ \begin{bmatrix} 3 \times 3, 256 \\ 3 \times 3, 256 \end{bmatrix} \times 6 $	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 6$	$\begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 23$	$ \begin{bmatrix} 1 \times 1, 256 \\ 3 \times 3, 256 \\ 1 \times 1, 1024 \end{bmatrix} \times 36 $		
conv5_x	7×7	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times2$	$\left[\begin{array}{c}3\times3,512\\3\times3,512\end{array}\right]\times3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$	$\begin{bmatrix} 1 \times 1, 512 \\ 3 \times 3, 512 \\ 1 \times 1, 2048 \end{bmatrix} \times 3$		
	1×1		av	erage pool, 1000-d fc,	softmax			
FL	OPs	1.8×10^{9}	3.6×10^{9}	3.8×10^{9}	7.6×10^9	11.3×10 ⁹		

	downsp. rate (output size)	Swin-T	Swin-S	Swin-B	Swin-L
stage 1	4× (56×56)	concat 4×4, 96-d, LN win. sz. 7×7, dim 96, head 3 × 2	concat 4×4 , 96-d, LN win. sz. 7×7 , dim 96, head 3 \times 2	concat 4×4, 128-d, LN win. sz. 7×7, dim 128, head 4 × 2	concat 4×4, 192-d, LN win. sz. 7×7, dim 192, head 6 × 2
stage 2	8× (28×28)	concat 2×2, 192-d, LN win. sz. 7×7 , dim 192, head 6 × 2	concat 2×2, 192-d , LN win. sz. 7×7, dim 192, head 6 × 2	concat 2×2, 256-d , LN win. sz. 7×7, dim 256, head 8 × 2	concat 2×2, 384-d , LN win. sz. 7×7, dim 384, head 12 × 2
stage 3	16× (14×14)	concat 2×2, 384-d, LN win. sz. 7×7, dim 384, head 12	concat 2×2, 384-d , LN win. sz. 7×7, dim 384, head 12 × 18	concat 2×2, 512-d , LN win. sz. 7×7, dim 512, head 16 × 18	concat 2×2, 768-d, LN win. sz. 7×7, dim 768, head 24 × 18
stage 4	32× (7×7)	concat 2×2, 768-d, LN win. sz. 7×7, dim 768, head 24 × 2	concat 2×2, 768-d , LN win. sz. 7×7, dim 768, head 24 × 2	concat 2×2, 1024-d , LN win. sz. 7×7, dim 1024, head 32	concat 2×2, 1536-d, LN win. sz. 7×7, dim 1536, head 48
	ls		7. Detailed architecture spec		[um 1556, neud 46]

Inverted bottleneck

作者认为Transformer block中的MLP模块非常像MobileNetV2中的Inverted Bottleneck模块,即两头细中间粗。

Figure 3. **Block modifications and resulted specifications.** (a) is a ResNeXt block; in (b) we create an inverted bottleneck block and in (c) the position of the spatial depthwise conv layer is moved up.

在较小的模型上准确率由80.5%提升到了80.6%在较大的模型上准确率由81.9%提升到82.6%

Large kerner size

Moving up depthwise conv layer, 将depthwise conv模块上移

原来是 1x1 conv -> depthwise conv -> 1x1 conv 现在变成 depthwise conv -> 1x1 conv -> 1x1 conv

Increasing the kernel size, 将depthwise conv的卷积核大小由3x3改成了7x7

model	IN-1K acc.	GFLOPs
ResNet-50 (PyTorch [1])	76.13	4.09
ResNet-50 (enhanced recipe)	78.82 ± 0.07	4.09
stage ratio	79.36 ± 0.07	4.53
"patchify" stem	79.51 ± 0.18	4.42
depthwise conv	78.28 ± 0.08	2.35
increase width	80.50 ± 0.02	5.27
inverting dimensions	80.64 ± 0.03	4.64
move up depthwise conv	79.92 ± 0.08	4.07
kernel size \rightarrow 5	80.35 ± 0.08	4.10
kernel size \rightarrow 7	80.57 ± 0.14	4.15
kernel size \rightarrow 9	80.57 ± 0.06	4.21
kernel size $\rightarrow 11$	80.47 ± 0.11	4.29
$ReLU \rightarrow GELU$	80.62 ± 0.14	4.15
fewer activations	81.27 ± 0.06	4.15
fewer norms	81.41 ± 0.09	4.15
$BN \to LN$	81.47 ± 0.09	4.46
separate d.s. conv (ConvNeXt-T)	81.97 ± 0.06	4.49
Swin-T [42]	81.30	4.50

Swin Transformer Block

96-d

Micro designs

- Replacing ReLU with GELU
- > Fewer activation functions
- > Fewer normalization layers
- > Substituting BN with LN
- > Separate downsampling layers

Micro designs

- Replacing ReLU with GELU
- > Fewer activation functions
- > Fewer normalization layers
- > Substituting BN with LN
- Separate downsampling layers

- Arr ConvNeXt-T: C = (96, 192, 384, 768), B = (3, 3, 9, 3)
- Arr ConvNeXt-S: C = (96, 192, 384, 768), B = (3, 3, 27, 3)
- Arr ConvNeXt-B: C = (128, 256, 512, 1024), B = (3, 3, 27, 3)
- Arr ConvNeXt-L: C = (192, 384, 768, 1536), B = (3, 3, 27, 3)
- Arr ConvNeXt-XL: C = (256, 512, 1024, 2048), B = (3, 3, 27, 3)

• ConvNeXt-T 4×4, 96, stride 4

$$\begin{bmatrix} d7 \times 7, 192 \\ 1 \times 1, 768 \\ 1 \times 1, 192 \end{bmatrix} \times 3$$

$$\begin{bmatrix} d7 \times 7, 384 \\ 1 \times 1, 1536 \\ 1 \times 1, 384 \end{bmatrix} \times 9$$

$$\begin{bmatrix} d7 \times 7, 768 \\ 1 \times 1, 3072 \\ 1 \times 1, 768 \end{bmatrix} \times 3$$

ConvNeXt-T 结构图

沟通方式

1.github

https://github.com/WZMIAOMIAO/deep-learning-for-image-processing

2.bilibili

https://space.bilibili.com/18161609/channel/index

3.CSDN

https://blog.csdn.net/qq_37541097/article/details/103482003