The Macroeconomics of Partial Irreversibility

Isaac Baley UPF, CREI, BSE, CEPR Andrés Blanco University of Michigan

ASSA 2023

New Orleans, January, 2023

Motivation

- Capital market characterized by a significant price wedge
- Purchase price > Resale price
 - o Evidence (Ramey and Shapiro, 02, Kermani and Ma, 22)
 - Significant and heterogenous across sectors
 - Asymmetric info, asset specificity, obsolescence, fees, taxes...
- The price wedge renders investment partially irreversible
- How does partially irreversible investment affect...
 - aggregate productivity? firms' market value? business cycles?

A parsimonious investment model

Technology, shocks, and frictions

- Production: $y_s = u_s^{1-\alpha} k_s^{\alpha}, \quad \alpha < 1$
 - o u, idiosyncratic productivity: $d\log(u_s) = \mu ds + \sigma dW_s$
 - o k, uncontrolled capital: $\operatorname{dlog}(k_s) = -\xi^k ds$
- Fixed adj. cost: $\theta_s = \theta u_s$
 - Paid for each non-zero investment $\Delta k_s \neq 0$
- Price wedge: $p(\Delta k_s) = p\mathbb{1}_{\{\Delta k_s > 0\}} + p(1-\omega)\mathbb{1}_{\{\Delta k_s < 0\}}, \ \omega > 0$
 - Asymmetric linear cost $p(\Delta k_s)\Delta k_s$
- Firm problem

$$V(k_0, u_0) = \max_{\{T_h, \Delta k_{T_h}\}_{h=1}^{\infty}} \mathbb{E}_0 \left[\int_0^{\infty} e^{-\rho s} y_s \, \mathrm{d}s - \sum_{h=1}^{\infty} e^{-\rho T_h} \left(\underbrace{\theta_{T_h}}_{\text{fixed}} + \underbrace{p(\Delta k_{T_h}) \, \Delta k_{T_h}}_{\text{wedge}} \right) \right]$$

Policy and cross-sectional distribution

- State: capital-productivity ratio $\hat{k} \equiv \log(k/u)$
- Policy: $\mathcal{K} \equiv \{\hat{k}^- < \hat{k}^{*-} < \hat{k}^{*+} < \hat{k}^+\}$ and $q(\hat{k}) \equiv \frac{1}{p} \frac{\partial V(k,u)}{\partial k}$

Investment policy outer inner outer inaction buy $-q(\hat{k})$ sell \hat{k} sell

- Marginal $q(\hat{k})$ is not a **sufficient statistic** for firm-level investment
- Key: Two reset points \Longrightarrow Markov structure for adjustment sign

Three long-run macro outcomes

(1) Capital Allocation

Allocation \equiv Dispersion of log marginal product

$$\mathbb{V}[\log mpk] = (1-\alpha)^2 \mathbb{V}[\hat{k}]$$

- Both investment frictions as a source of (efficient) dispersion
 - Frictionless: $\mathbb{V}[\hat{k}] = 0$
 - With frictions: $\mathbb{V}[\hat{k}] > 0$

(2) Capital Valuation

Aggregate $q \equiv$ weighted average of individual $q(\hat{k})$

$$q = \int q(\hat{k})\phi(\hat{k})g(\hat{k})d\hat{k}, \qquad \phi(\hat{k}) = \frac{e^{\hat{k}}}{\mathbb{E}[e^{\hat{k}}]}$$

- Investment frictions affect marginal valuations
 - Frictionless: q = 1
 - With frictions: $q \neq 1$
- Define the capital-loss function $\mathcal{P}(\hat{k})$ over $[\hat{k}^-, \hat{k}^+]$

$$\mathcal{P}(\hat{k}) \equiv \begin{cases} 0 & \text{for all} & \hat{k} \leq \hat{k}^{*-} \\ -\omega & \text{for all} & \hat{k} \geq \hat{k}^{*+} \end{cases}, \quad \mathcal{P}(\hat{k}) \in \mathbb{C}^{2}$$

(2) Capital Valuation (cont...)

Costs and benefits of capital accumulation

$$q = \frac{1}{r} \left(\underbrace{\frac{\alpha \hat{Y}}{p \hat{K}} + \frac{\sigma^2}{2} - \nu}_{\text{Productivity}} - \underbrace{\mathbb{E}\left[\frac{1}{\text{d}s} \mathbb{E}_s \left[\text{d}(\mathcal{P}(\hat{k}_s)\phi(\hat{k}_s)) \right] \right]}_{\text{Irreversibility}(>0)} \right)$$
where
$$\frac{\hat{Y}}{\hat{K}} \approx \exp\left\{ -(1 - \alpha) \left(\mathbb{E}[\hat{k}] + \frac{\alpha}{2} \mathbb{V}[\hat{k}] \right) \right\}$$

- q is monotonic! <u>Sufficient statistic</u> for aggregate investment
- Productivity
 - Volatility $(\sigma^2 \uparrow, q \uparrow) + \text{Dispersion } (\mathbb{V}[\hat{k}] \uparrow, q \downarrow)$
- Irreversibility
 - Capital losses "amortized" across inaction periods $(q \downarrow)$

(3) Capital Fluctuations

- MIT aggregate shock $\delta > 0$ reduces all firms' productivity
- Transitional dynamics of aggregate capital (fixed r, SOE)

- Investment frictions as a source of persistence
 - Frictionless: CIR = 0
 - ightharpoonup With frictions: CIR > 0

(3) Capital Fluctuations (cont...)

Persistence of capital fluctuations

$$\frac{\operatorname{CIR}(\delta)}{\delta} = \underbrace{\frac{\mathbb{V}[\hat{k}]}{\sigma^2} + \frac{\nu \mathbb{C}ov[\hat{k}, a]}{\sigma^2}}_{\text{Responsiveness}} - \underbrace{\mathbb{E}\left[\frac{1}{\mathrm{d}s}\mathbb{E}_s[\mathrm{d}(\mathcal{M}(\hat{k}_s)\hat{k}_s)]\right]}_{\text{Irreversibility}<0} + o(\delta)$$

Responsiveness

 $\hspace{0.1in} \circ \hspace{0.1in} \text{Dispersion} \hspace{0.1in} (\mathbb{V}[\hat{k}] \hspace{0.1in} \uparrow\hspace{-0.1in} , \hspace{0.1in} \text{CIR} \hspace{0.1in} \uparrow\hspace{-0.1in}) \hspace{0.1in} + \hspace{0.1in} \text{Asymmetry} \hspace{0.1in} (\text{If} \hspace{0.1in} \mathbb{C}ov[\hat{k},a] > 0, \hspace{0.1in} \text{CIR} \hspace{0.1in} \uparrow\hspace{-0.1in}) \\$

Irreversibility

- Deviations from steady-state mean: $\mathcal{M}(\hat{k})$ (similar to $\mathcal{P}(\hat{k})$)
- One large adjustment is "amortized" across periods (CIR ↑)

Nature of frictions matters for macro

- Consider isoquant (θ, ω) that delivers constant $\mathbb{V}[\hat{k}]$
- Opposite macro implications:
 - Price wedge ω dominates: $q \downarrow$ and CIR \uparrow
 - Fixed cost θ dominates: $q \uparrow$ and CIR \downarrow

Mappings from investment microdata

Strategy: From micro to macro

Output: Macro outcomes

• External/estimated parameters for Chile 1980-2011

				±k:	2
ρ	μ	α	ω	ξ"	σ^{2}
0.066	0.033	0.5	0.15	0.08	0.055

• Irreversibility lowers valuation and slows down fluctuations

Investment Policy	Capital Allocation		
Reset capitals $(\hat{k}^{*+} - \hat{k}^{*-})$	0.57	$\mathbb{V}[\log mpk]$	0.024
Exogenous price wedge	0.33		
Endogenous response	0.24		

Capital Valua	Capital Fluctuations		
Aggregate q	1.06	CIR	3.07
Productivity	1.09	Responsiveness	2.29
Irreversibility	-0.03	Irreversibility	0.78

Application: Corporate income tax

Corporate income tax t^c and deductions ξ^d

• Pay t^c on cashflow net of deductions and capital losses

$$\pi_s = \underbrace{(1 - t^c) \ u_s^{1 - \alpha} k_s^{\alpha}}_{\text{after-tax revenue}} + \underbrace{t^c \xi^d d_s}_{\text{deductions}} - \underbrace{t^c \omega p \Delta k_s \mathbb{1}_{\{\Delta k_s < 0\}}}_{\text{capital losses}}$$

where deductions d_s evolve as:

$$\log d_{s} = \log d_{0} - \xi^{d} s + \sum_{h:T_{h} \leq s} \left(1 + \frac{\theta_{T_{h}} + p\Delta k_{T_{h}}}{d_{T_{h}^{-}}} \right)$$

- Fixed costs are capitalized
- Let $z \equiv \frac{\xi^d}{r + \xi^d} < 1$, then after-tax effective frictions
 - \star Fixed cost: $\tilde{\theta} \propto \left(\frac{1-t^cz}{1-t^c}\right)^{\frac{1}{1-\alpha}}\theta$, increasing in t^c
 - * Price wedge: $\tilde{\omega} \propto (1 t^c) \omega$, decreasing in t^c

Corporate income tax cut

- From 42% in 1980 to 25% in 2020 (average OECD)
- Increases importance of price wedge

① Decreases $V[\log mpk]$ (lower frictions, improves allocation)

Decreases q (higher capital loses)

3 Increases CIR (slower propagation)

Backup material

Backup

- **A1.** Contributions
- **A2.** Importance of Corporate Taxes
- A3. General Hazard Model
- **A4.** Firm Policy and HJB
- **A5.** Distributions and KFE
- A6. Measuring misallocation
- A7. CIR and cumulative deviations
- A8. Taxes in the model
- A9. Two benchmark cases
- A10. Observability

A1. Contributions

Contributions

- Investment irreversibility
 - Sargent (1980), Abel and Eberly (94, 96), Bertola and Caballero (94), Dixit and Pindyck (94), Veracierto (02), Kahn and Thomas (13), Lanteri (18), Lanteri, Medina and Tan (2020), Fang (2022)
 - > We characterize effect on capital allocation, valuation, and fluctuations
- Role of micro-level frictions for macro dynamics
 - Caballero and Engel (99, 07), Alvarez and Lippi (14), Alvarez, Le Bihan and Lippi (16), Baley and Blanco (21)
 - > We derive sufficient statistics for the effects of irreversibility
- Interaction of investment frictions and corporate taxes
 - Altug, Demers and Demers (09), Gourio and Miao (10), Miao and Wang (14), Miao (19), Chen, et. al. (19), Winberry (21)
 - > We reduce complex interactions to rescaling of frictions

A2. Importance of Corporate Taxes

\star Importance of Corporate Taxes

\star General decreasing trends

* Very persistent reforms at country-level

A3. General Hazard Model

Asymmetric Generalized Hazard Model

• Adjustment technology:

$$\theta_s = \Theta(i_s, dN_s^-, dN_s^+, \vartheta_s^-, \vartheta_s^+) u_s$$

$$\Theta(i, dN^+, dN^-, \vartheta^-, \vartheta^+) = \begin{cases} 0 & \text{if } i = 0\\ \bar{\theta}^+ (1 - dN) + dN\vartheta^+ & \text{if } i < 0\\ \bar{\theta}^- (1 - dN) + dN\vartheta^- & \text{if } i > 0. \end{cases}$$

- $\circ \ N_t^{\pm} \sim Poisson(\lambda^{\pm}), \ \vartheta^{\pm} \sim_{i.i.d.} J^{\pm}(\varphi), \ \mathrm{Supp}(\vartheta^{\pm}) = [0, \bar{\theta}^{\pm}]$
- o Models of adjustment:
 - Standard Ss model: $\lambda = 0$ and $\bar{\theta}^+ = \bar{\theta}^-$ Sheshinski and Weiss (77)
 - Bernoulli fixed costs: Free adj. opportunity $\vartheta^+ = \vartheta^- = 0$ Baley and Blanco (21)
 - Generalized hazard: $\vartheta^+ = \vartheta^-$ Caballero and Engel (93)

Asymmetric Generalized Hazard Model

• Firm Problem:

$$V(k_0,u_0) \; = \; \max_{\left\{T_h,i_{T_h}\right\}_{h=1}^{\infty}} \mathbb{E}\left[\int_0^{\infty} e^{-\rho s} \pi_s \, \mathrm{d}s - \sum_{h=1}^{\infty} e^{-\rho T_h} \left(\theta_{T_h} + p\left(i_{T_h}\right)i_{T_h}\right)\right]$$

- Hazard rate of adjustment $\Lambda(\hat{k})$: Adjustment prob. $\Lambda(\hat{k}) dt$
 - **1** $\Lambda(\hat{k}) = 0$ for all $\hat{k} \in (\hat{k}^{*-}, \hat{k}^{*+})$
 - 2 $\Lambda(\hat{k})$ weakly increasing in $|\hat{k} \frac{\hat{k}^{*-} + \hat{k}^{*+}}{2}|$
 - **3** If $J^{-}(0) > 0$, then $\Lambda(\hat{k}) \geq \lambda^{-}J^{-}(0)$ in $(\hat{k}^{-}, \hat{k}^{*-})$
 - **4** If $J^+(0) > 0$, then $\Lambda(\hat{k}) \ge \lambda^+ J^+(0)$ in $(\hat{k}^{*+}, \hat{k}^+)$

A4. Firm policy and HJB

Sufficient optimality conditions

- Let $r \equiv \rho \mu \sigma^2/2$ and $\nu \equiv \mu + \xi^d$
- $v(\hat{k})$ and the optimal policy $\{\hat{k}^-, \hat{k}^{*-}, \hat{k}^{*+}, \hat{k}^+\}$ satisfy:
 - HJB:

$$rv(\hat{k}) = Ae^{\alpha\hat{k}} - \nu v'(\hat{k}) + \frac{\sigma^2}{2}v''(\hat{k})$$

2 Value-matching:

$$\begin{array}{llll} v(\hat{k}^{-}) & = & v(\hat{k}^{*-}) & - & \theta & + & p^{buy}(e^{\hat{k}^{-}} - e^{\hat{k}^{*-}}) \\ v(\hat{k}^{+}) & = & v(\hat{k}^{*+}) & - & \theta & + & p^{sell}(e^{\hat{k}^{+}} - e^{\hat{k}^{*+}}) \end{array}$$

3 Optimality and smooth-pasting:

$$v'(\hat{k}) = p^{buy}e^{\hat{k}}, \quad \hat{k} \in \left\{\hat{k}^{-}, \hat{k}^{*-}\right\}$$
$$v'(\hat{k}) = p^{sell}e^{\hat{k}}, \quad \hat{k} \in \left\{\hat{k}^{*+}, \hat{k}^{+}\right\}$$

A5. Distributions and KFE

Cross-sectional distributions

- Distribution of capital-productivity ratio $g(\hat{k})$
 - Conditional on last reset point: $g^{\pm}(\hat{k})(\hat{k})$
 - Expectations in cross-section: $\mathbb{E}, \mathbb{E}^{\pm}$
- Distribution of investment $H(\Delta \hat{k}, \tau)$
 - Conditional on last reset point: $H^{\pm}(\Delta \hat{k})$
 - Expectations of adjusters: $\overline{\mathbb{E}}, \overline{\mathbb{E}}^{\pm}$

Characterizing cross-sectional distribution

- Characterizing $g(\hat{k}) \in \mathbb{C}$
 - ► KFE: $0 = \nu \frac{\mathrm{d}g(\hat{k})}{\mathrm{d}\hat{k}} + \frac{\sigma^2}{2} \frac{\mathrm{d}^2g(\hat{k})}{\mathrm{d}\hat{k}^2}, \quad \forall \hat{k} \in (\hat{k}^-, \hat{k}^+) / \{\hat{k}^{*-}, \hat{k}^{*+}\}$
 - ▶ Border conditions: $0 = g(\hat{k}^-) = g(\hat{k}^+)$; $\int_{\hat{k}^-}^{\hat{k}^+} g(\hat{k}) \, d\hat{k} = 1$
 - ► Irreversibility

$$\underbrace{\frac{\sigma^2}{2} \lim_{\hat{k} \downarrow \hat{k}^-} g'(\hat{k})}_{\text{freq. with } \Delta \hat{k} > 0} = \underbrace{\frac{\sigma^2}{2} \left[\lim_{\hat{k} \uparrow \hat{k}^{*-}} g'(\hat{k}) - \lim_{\hat{k} \downarrow \hat{k}^{*-}} g'(\hat{k}) \right]}_{\text{discontinuity due to entry}}$$

- Characterizing $g^{\pm}(\hat{k}) \in \mathbb{C}$
 - ► KFE: $0 = \nu \frac{\mathrm{d}g^{\pm}(\hat{k})}{\mathrm{d}\hat{k}} + \frac{\sigma^2}{2} \frac{\mathrm{d}^2g^{\pm}(\hat{k})}{\mathrm{d}\hat{k}^2}, \quad \forall \hat{k} \in (\hat{k}^-, \hat{k}^+) / \{\hat{k}^{*\pm}\}$
 - ▶ Border conditions: $0 = g(\hat{k}^-) = g(\hat{k}^+)$; $\int_{\hat{k}^-}^{\hat{k}^+} g(\hat{k}) \, d\hat{k} = 1$

Steady-state distribution of firms

- $g(\hat{k})$: firms' distribution
- $H^{\pm}(\Delta \hat{k}, \tau)$: firms' distribution conditional on last reset \hat{k}^{\pm}
- $g^{\pm}(\hat{k})$: firms' distribution conditional on last reset \hat{k}^{\pm}
- \mathcal{N}^+ & \mathcal{N}^- : frequency of of $\Delta \hat{k} < 0$ and $\Delta \hat{k} > 0$
- Bayes' law

$$H(\Delta \hat{k}, \tau) = \frac{\mathcal{N}^{-}}{\mathcal{N}} H^{-}(\Delta \hat{k}, \tau) + \frac{\mathcal{N}^{+}}{\mathcal{N}} H^{+}(\Delta \hat{k}, \tau)$$
$$g(\hat{k}) = \frac{\mathcal{N}^{-}}{\mathcal{N}} \frac{\overline{\mathbb{E}}^{-}[\tau]}{\overline{\mathbb{E}}[\tau]} g^{-}(\hat{k}) + \frac{\mathcal{N}^{+}}{\mathcal{N}} \frac{\overline{\mathbb{E}}^{+}[\tau]}{\overline{\mathbb{E}}[\tau]} g^{+}(\hat{k})$$

A6. Measuring Misallocation

Measuring cross-sectional moments with microdata

- Challenge: $g(\hat{k})$ is not observed
- Let $\hat{k}^*(\Delta \hat{k})$ and $\hat{k}_{\tau}(\Delta \hat{k})$ be given by

$$\hat{k}^*(\Delta \hat{k}) = \begin{cases} \hat{k}^{*-} & \text{if} \quad \Delta \hat{k} > 0\\ \hat{k}^{*+} & \text{if} \quad \Delta \hat{k} < 0, \end{cases}$$
$$\hat{k}_{\tau}(\Delta \hat{k}) = \hat{k}^*(\Delta \hat{k}) - \Delta \hat{k}.$$

- Two steps:
 - 1. Obtain ν , σ , \hat{k}^{*-} , \hat{k}^{*+}
 - **2.** Obtain $\mathbb{E}[\hat{k}]$ and $\mathbb{V}[\hat{k}]$

Step 1

Let $\Phi(\nu, \sigma^2) \equiv \log \left(\alpha A / (r + \alpha \nu - \alpha^2 \sigma^2 / 2) \right)$. Then

$$\nu = \frac{\overline{\mathbb{E}}[\Delta \hat{k}]}{\overline{\mathbb{E}}[\tau]}, \ \sigma^2 = \frac{\overline{\mathbb{E}}[(\hat{k}_{\tau} + \nu \tau)^2] - \overline{\mathbb{E}}[(\hat{k}^*)^2]}{\overline{\mathbb{E}}[\tau]}$$

$$\hat{k}^{*-} = \frac{1}{1-\alpha} \left[\Phi(\nu, \sigma^2) - \log(p^{buy}) + \log\left(\frac{1 - \overline{\mathbb{E}} \left[e^{-\hat{r}\tau + \alpha(\hat{k}_\tau - \hat{k}^{*+})}\right]}{1 - \overline{\mathbb{E}} \left[\frac{p(\Delta \hat{k})}{p^{\text{buy}}} e^{-\hat{r}\tau + \hat{k}_\tau - \hat{k}^{*+}}\right]} \right) \right]$$

$$\hat{k}^{*+} = \frac{1}{1-\alpha} \left[\Phi(\nu, \sigma^2) - \log(p^{sell}) + \log\left(\frac{1 - \overline{\mathbb{E}}^+ \left[e^{-\hat{\tau}\tau + \alpha(\hat{k}_{\tau} - \hat{k}^{*-})} \right]}{1 - \overline{\mathbb{E}}^+ \left[\frac{p(\Delta \hat{k})}{p^{sell}} e^{-\hat{\tau}\tau + \hat{k}_{\tau} - \hat{k}^{*-}} \right]} \right) \right]$$

- Drift =adjustment size × frequency of adjustment
- Volatility =quadratic size without trend \times frequency of adjustment
- $\Phi(\cdot)$ = profitability to user cost p^{sell} , p^{buy} = cost of investment
- Last term= PDV marginal profits over expected resale value

Step 2

$$\mathbb{E}[\hat{k}] = \overline{\mathbb{E}} \left[\overline{\mathbb{E}} \left[\underbrace{\left(\frac{\hat{k}^* + \hat{k}_{\tau}}{2} \right)}_{\text{midpoint start-finish}} \underbrace{\left(\frac{\hat{k}^* - \hat{k}_{\tau}}{\overline{\mathbb{E}}[\Delta \hat{k}]} \right)}_{\text{midpoint start-finish}} \right] + \underbrace{\frac{\sigma^2}{2\nu}}_{\text{accum. drift correction}}$$

$$\mathbb{V}[\hat{k}] = \overline{\mathbb{E}} \left[\overline{\mathbb{E}} \left[\left((\hat{k}^* - \mathbb{E}[\hat{k}])(\hat{k}_{\tau} - \mathbb{E}[\hat{k}]) + \frac{(\hat{k}^* - \hat{k}_{\tau})^2}{3} \right) \left(\frac{\hat{k}^* - \hat{k}_{\tau}}{\overline{\mathbb{E}}[\Delta \hat{k}]} \right) \middle| \Delta \hat{k} \right] \right]$$

distance start-finish

renewal weight

renewal weight

A7. CIR and cumulative deviations

CIR

• Let $\mathcal{M}(\hat{k})$ be equal to

$$\mathcal{M}(\hat{k}) = \begin{cases} \mathcal{M}^{buy} & \text{if } \hat{k} \in [\hat{k}^-, \hat{k}^{*-}] \\ \mathcal{M}^{sell} & \text{if } \hat{k} \in [\hat{k}^{*+}, \hat{k}^+], \end{cases}$$

$$\mathcal{M}^{buy} \equiv (\mathbb{E}^-[\hat{k}] - \mathbb{E}[\hat{k}])\overline{\mathbb{E}}^-[\tau] \frac{\mathbb{E}[\mathbb{P}^+]}{\mathbb{P}^{-+}} < 0,$$

$$\mathcal{M}^{sell} \equiv (\mathbb{E}^+[\hat{k}] - \mathbb{E}[\hat{k}])\overline{\mathbb{E}}^+[\tau] \frac{\mathbb{E}[\mathbb{P}^-]}{\mathbb{P}^{+-}} > 0.$$

•
$$\mathbb{E}[\mathbb{P}^+] \equiv \Pr[\Delta \hat{k}' < 0] \text{ and } \mathbb{P}^{-+} \equiv \Pr[\Delta \hat{k}' < 0 | \Delta \hat{k} > 0]$$

• $\mathbb{C}ov[\hat{k}, a]$ can be obtained as

$$\mathbb{C}ov[\hat{k},a] = \frac{1}{2\nu} \left(\mathbb{V}[\hat{k}] - \frac{\overline{\mathbb{E}}[(\hat{k}_{\tau} - \mathbb{E}[\hat{k}])^2 \tau]}{\overline{\mathbb{E}}[\tau]} + \frac{\sigma^2}{2} \frac{\overline{\mathbb{E}}[\tau]}{2} (1 + \overline{\mathbb{C}\mathbb{V}}^2[\tau]) \right),$$

A7. Taxes

Personal income tax t^p and capital gains tax t^p

• Equity held by a stockholder, with access to risk-less bond return ρ

No-arbitrage:
$$\underbrace{(1-t^p)\rho\,\mathrm{d}s}_{\mathrm{bond\ return}} = \underbrace{(1-t^g)\frac{\mathbb{E}[\mathrm{d}P_s]}{P_s}}_{\mathrm{capital\ gains}} + \underbrace{(1-t^p)\frac{D_s}{P_s}\,\mathrm{d}s}_{\mathrm{dividends}}$$

- o P_s price per share, 1 share (normalization)
- o D_s dividend per share
- Let V_0 be the firm's market value:

$$V_0 = P_0 = \frac{1 - t^p}{1 - t^g} \mathbb{E}_0 \left[\int_0^\infty e^{-\frac{1 - t^p}{1 - t^g} \rho s} D_s \, \mathrm{d}s \right]$$

- o Firm maximizes cum-dividends market value of equity P_0
- Dividend policy: tax capitalization view

$$D_s ds = \pi_s ds - [\theta_s + p(\Delta k_s)\Delta k_s] \mathbb{D}(\Delta k_s \neq 0), \quad \mathbb{D} \sim Dirac$$

A7. Two cases: Additional Material

Two benchmark cases

- Study macro outcomes under two polar cases
 - 1. Symmetry: $\nu \to 0$ and $\tilde{p}^{buy} = -\tilde{p}^{sell} = \tilde{p}$
 - **2.** Small idiosyncratic shocks: $\sigma \to 0$
- Why?
 - ▶ Isolate the role of each friction
 - ▶ Characterize analytically macro elasticities to taxes

CASE 1: $\nu \to 0$ and $\tilde{p}^{buy} = -\tilde{p}^{sell} = \tilde{p}$

• Only fixed costs: $x^{*+} = x^{*-} = 0$ and $\bar{x} = \left(\frac{6\tilde{\theta}\sigma^2}{\alpha(1-\alpha)}\right)^{1/4}$

$$\mathbb{V}[\hat{k}] = \bar{x}^2/6; \qquad q = 1 - \frac{\mathcal{U}}{\tilde{r}} \frac{\alpha(1-\alpha)}{2} \mathbb{V}[\hat{k}]; \qquad \text{CIR} = \frac{1}{\sigma^2} \mathbb{V}[\hat{k}]$$

- Lower t^c , decreases $\tilde{\theta}$
- $\mathbb{V}[\hat{k}]$ and CIR fall, q increases if $\rho > \sigma^2$
- Both frictions: marginal increase of smaller friction has no effect

$$\frac{\mathrm{d}M}{\mathrm{d}\tilde{\theta}}\Big|_{\tilde{\theta}=0,\;\tilde{p}>0}=0,\;\mathrm{for}\;M\in\{\mathbb{V}[\hat{k}],q,\mathrm{CIR}\}.$$

CASE 2: $\sigma \to 0$

- Partial irreversibility has no effect
- Indifference curve for relevant steady-state moment

$$\mathbb{E}[x]\sqrt{\mathbb{V}[x]} \ = \ -\frac{\tilde{r}\tilde{\theta}}{\sqrt{12}\alpha(1-\alpha)}; \qquad \frac{\mathbb{E}[x]}{\mathbb{V}[x]+\mathbb{E}[x]^2} \ = \ -\left(\frac{\tilde{r}}{\nu}+\frac{\alpha+1}{2}\right),$$

Macro outcomes

$$q = 1 - \frac{\tilde{U}}{\tilde{r}}(1 - \alpha) \left(\mathbb{E}[x] + \frac{\alpha}{2} \mathbb{V}[x] \right);$$
 CIR = 0.

- ightharpoonup Lower t^c , decreases $\tilde{\theta}$
- $ightharpoonup \mathbb{V}[\hat{k}]$ and $|\mathbb{E}[x]|$ fall, ambiguous effect on q

A10. Observability

Parameters and policy from microdata

- Use $\overline{\mathbb{E}}[\cdot]$ to denote expectations conditional on adjustment
- Assume for simplicity $\hat{k}^{\pm} = \mathbb{E}[\hat{k}]$
- We recover stochastic process (ν, σ^2) as:

- Drift = frequency × average of investment
- Volatility = frequency × dispersion of investment
- We recover the **reset capital** \hat{k}^* as:

$$\hat{\mathbf{k}}^* = \frac{1}{1-\alpha} \left[\Phi + \log \left(\frac{1 - \overline{\mathbb{E}} \left[e^{-\hat{r}\tau - \alpha \Delta \hat{k}} \right]}{1 - \overline{\mathbb{E}} \left[e^{-\hat{r}\tau - \Delta \hat{k}} \right]} \right) \right]$$

where
$$\Phi \equiv \log \left(\frac{\alpha (1-t^c)}{(1-t^d)p(\hat{r}+\alpha \nu -\alpha^2\sigma^2/2)} \right)$$

Cross-sectional moments from microdata

• We recover **cross-sectional moments** as:

$$\mathbb{E}[\hat{k}] = \hat{k}^* + \frac{1}{2\nu} \left(\sigma^2 - \frac{\overline{\mathbb{E}}[\Delta \hat{k}^2]}{\overline{\mathbb{E}}[\tau]} \right) \\
\mathbb{V}[\hat{k}] = \frac{(\hat{k}^* - \mathbb{E}[\hat{k}])^3 - \overline{\mathbb{E}} \left[(\hat{k}_\tau - \mathbb{E}[\hat{k}])^3 \right]}{3\overline{\mathbb{E}}[\Delta \hat{k}]} \\
\mathbb{C}ov[\hat{k}, a] = \frac{1}{2\nu} \left[\mathbb{V}[\hat{k}] - \frac{\overline{\mathbb{E}}[\tau \hat{k}_\tau^2]}{\overline{\mathbb{E}}[\tau]} + \frac{\sigma^2}{2} \overline{\mathbb{E}}[\tau] \left(1 + \overline{\mathbb{C}} \overline{\mathbb{V}}^2[\tau] \right) \right]$$

where $\hat{k}_{\tau} = \hat{k}^* + \Delta \hat{k}$

• Intuition for $\mathbb{V}[\hat{k}]$:

$$\circ \text{ If } \hat{k}^* = \mathbb{E}[\hat{k}]: \qquad \mathbb{V}[\hat{k}] = (1/3) \underbrace{\overline{\mathbb{E}[\Delta k]}^2}_{\text{size}} \underbrace{\overline{\mathbb{E}}\left[\left(\Delta k/\overline{\mathbb{E}}[\Delta k]\right)^3\right]}_{\text{dispersion}}$$

- \circ Large investments \implies Signals large \hat{k}
- \circ Dispersed investments \implies Large \hat{k} more representative