

Policies, Security & Reliability in NSI Systems

Henrik Thostrup Jensen <a href="https://example.com/https://exampl

OGF43 @ GEC22 March 2015, Washington D.C.

Disclaimer

I am not a network engineer

For more details consult someone who actually knows something about network engineering

"This isn't Nam... there are rules"

Walter Sobchak (The Big Lebowski)

Transit Policies 101

- Can connect customers with customers
- Can connect customers with peers
- Can <u>not</u> connect peers with peers
- Can connect customers with transit providers
- Can <u>not</u> connect peers with transit providers
- Can <u>not</u> connect transit provider with another transit provider
- One network can carry many hats

- There are lots of exceptions
- Only connect some customers to a certain transit provider
 - NORDUnet does <u>not</u> connect all its customers to GEANT
 - NORDUnet only announces <u>some</u> customers to Telia
- Not all customers are announced to all peers
- It is all about business agreements
 - No one will move your data for free...

- Transit Policies at its worst...
 - GEANT-NetherLight-NORDUnet-RUNnet
 - And KTAE.ru
 - Sometimes things are not economically rational
 - And cannot be described sensible with AUPs
 - Sometime you cannot connect networks even though it looks like it
 - NML model does not work very well here

- Policy is not necessarily the same on a link
 - E.g.: NORDUnet might sell RUNnet a 10g link into NetherLight on its 100G link
 - This example fits quite well with GNA

- Sometimes policy isn't about transit and AUPs
- The ANA infrastructure
 - A fabric, not really an infrastructure
 - In retrospect: I think this is one of the big sources of disagreement
 - Layer 1&2 engineers will see things as fabric.
 - IP engineers as an infrastructure

- Fabrics don't come with rules
 - It comes with a price ©
- Most NRENs suck at business models and pricing
 - So it is more of a service swap (we are better at those)
 - So there is a limit to how much fabric one can use
- ANA is technologically heterogeneous
 - And multi-domain
 - Hours and hours of super-fun meetings
- Spending some to think about ANA/GNA would be good for NSI

"Distrust and caution are the parents of security"

- Benjamin Franklin
- Case: Transit provider and customer
 - Knowing where to send the bill and verifying it
 - Do not bypass provider-customer and peering relations
 - Customers pay for the infrastructure of transit providers
 - External parties cannot just allocate resources only customers
 - Customers can do endpoint verification
 - Extremely difficult for transit networks
 - An obvious attack vector for DOS

- Cancelling connections
 - How does a customer terminate a circuit if the requester is malicious or unavailable
 - forcedEnd should NOT rely on third parties
 - Not involving 3rd parties is good for security and system reliability
 - Also an obvious attack vector

- Case: Network and Open Exchange
 - If a third party allocates resources, terminate/ forcedEnd relies on that third party
 - Control over resources should not rely on third parties
 - Yet another attack vector

- NSA Access Revocation
 - Message proxying / relaying is nightmare
 - Putting the NSA id helps
 - Still relies on third parties behavior
 - Access revocation should not rely on third parties
 - Relies on third parties to correctly identify requester
 - Explicitly allowing an NSA is pretty much the same as setting up a control peering
 - Control peering = Explicit control

- Complete trust in the control place
 - Everyone would have to be okay letting in a new network
 - Pretty much networks don't work
 - It should be easy to get networks on
 - Full trust in control plane makes this difficult
 - Makes attacks very straightforward
- Everyone trusting everyone is not the way to design a multi-domain system controlling critical infrastructures

- How to increase security
 - Verification over trust whenever possible
 - Avoid 3rd party involvement whenever possible
 - No Relaying A can of worms for security and reliability
 - Avoid tree as it causes indirect control flow of resources
 - Transit is a resource paid by the customer
 - Transit networks should get explicit notification from customer

- Someone is going to screw up
- There are bugs in software
- Attacks will happen

Anything that can possibly go wrong, does - Murphys Law

- Last week we had a site failure and two link failures
 - AC/DC converter failure at optical pop
 - "Unscheduled maintenance" by link operator
 - Most weeks are better
 - But failures surprinsingly common

- Ethernet+VLANs sucks at handling failures
 - A transport technology, not a "real" service
- Ethernet+VLANs across multiple networks = Unreliable service
- If we don't find a way to handle this...
 - The service provided by NSI will be unreliable
 - Guarantying bandwidth, but not protecting against failure
 - Probably a worse service than best effort that can handle link failures

- Static circuits is a step back in network engineering
 - Most networks have a way to handle this, but only inside the network
 - But there are several approaches to this between networks (that isn't IP)
 - A very real issue, that we have spend to little time on
 - Doing protected/double paths in NSI is probably the worst approach to this
 - We do not have to re-invent solutions for everything

- Technologies that can do this
 - IP (typically only best effort)
 - MPLS (For multi-domain: Labels can be leaked over BGP, e.g. MD-VPN)
 - Carrier Ethernet (IEEE 802.1aq)
 - THRILL (mainly data-center, not backbone)
 - OTN (but only inside a network AFAIK)

- Some networks can already provide protected multi-domain circuits
- NORDUnet, GEANT and many of their customers can do MD-VPN (but not all)
 - Not all GEANT customers are multi-homed
 - Have already been used for traffic engineering
- Doing this between domains with different technology is difficult
 - Common denominator is Ethernet and IP
- MD-VPN is low hanging fruit
 - But not enough in itself

- Does not have be perfect from day 1
 - Two networks can do protected circuits internally
 - Reduces single point of failure to the demarcation point
 - Some networks already have the capability to provide protected circuits between them
- On message relaying (again)
 - No network will allow third party agents to carry MPLS label configuration, alien waves, etc. for configuration

Summary

- Policies Networks are full of them
 - Don't ignore them NOC will nuke the circuits
- Security Not optional
 - We need to be a lot more conservative
 - Stop doing "the everything model"
- Reliability
 - Things break, especially networks, deal with it
- A lot of the policy and security thinking went into the service table design
 - I might not have communicated this very well
- IMHO these issues are more important than topology distribution...

