Universidad de la República Facultad de Ingeniería Instituto de Matemática y Estadística

Matemática Discreta 2 Curso 2011

SOLUCIONES DEL SEGUNDO PARCIAL.

Ejercicio 1.

- A) Si G es un grupo finito y H < G entonces |H| | |G|.
- B) $o(g) = |\langle g \rangle| | |G| \forall g \in G \text{ (Lagrange)}.$
- C) Como #U(29)=28, por Lagrange, los posibles órdenes de $\overline{2}$ en U(29) son 1,2,4,7,14 ó 28. Como $2^4=16\not\equiv 1\pmod{29}$ descartamos al 1 al 2 y al 4. Por otra parte $2^5=32\equiv 3\pmod{29} \Rightarrow 2^{15}\equiv 3^3=27\equiv -2\pmod{29} \to 2^{14}\equiv -1\not\equiv 1\pmod{29}$ asi que descartamos al 14 y también al 7 como órdenes. Por lo tanto $o(\overline{2})=28$ en U(29) y por lo tanto 2 es raíz primitiva módulo 29. Observamos que $2^5=32\equiv 3\pmod{29} \Rightarrow 2^{10}\equiv 9\pmod{29} \Rightarrow \boxed{s=10}$.
- D) Como x tiene que ser coprimo con 29 y 2 es ráiz primitiva módulo 29, tenemos que $x=2^{\alpha}$ (mód 29) para algún $\alpha \in \{0,1,\cdots,27\}$. Entonces $x^{18} \equiv 2^{18\alpha} \equiv 2^{10} \pmod{29} \Rightarrow 18\alpha \equiv 10$ (mód 28) (pues 2 es raiz primitiva), asi que $9\alpha \equiv 5 \pmod{14} \Rightarrow \alpha \equiv -1 \pmod{14} \Rightarrow \alpha \equiv -1$ ó 13 (mód 28). Asi que $x \equiv 2^{-1}$ ó 2^{13} (mód 29), nos queda:

$$x \equiv 2^{-1} \equiv 15 \pmod{29}$$
 (pues $2 \cdot 15 = 30 \equiv 1 \pmod{29}$)
 $x \equiv 2^{13} = 2^{10} \cdot 2^3 \equiv 9 \cdot 8 = 36 \cdot 2 \equiv 7 \cdot 2 = 14 \pmod{29}$

Por lo tanto las soluciones son los $x \in \mathbb{Z}$ tales que $x \equiv 14 \pmod{29}$ ó $x \equiv 15 \pmod{29}$.

Ejercicio 2.

- A) Si $\varphi: G_1 \to G_2$ morfismo de grupos $\Rightarrow G_1/Ker\varphi \simeq Im(\varphi)$.
- B) Consideramos la función $\varphi: \mathbb{R}^* \to \mathbb{R} / \varphi(x) = \log(|x|)$, que resulta un morfismo (con las operaciones correspondientes) pues $\varphi(xy) = \log(|xy|) = \log(|x| \cdot |y|) = \log(|x|) + \log(|y|) = \varphi(x) + \varphi(y)$, así que en virtud del Primer Teorema de Isomorfismos:

$$\mathbb{R}^*/Ker\varphi \simeq Im(\varphi)$$

Vemos que $x \in Ker(\varphi) \Leftrightarrow \log(|x|) = 0 \Leftrightarrow |x| = 1 \Leftrightarrow x = \pm 1$, por lo tanto $Ker(\varphi) = \{1, -1\}$. Vemos también que si $y \in \mathbb{R} \Rightarrow y = \varphi(e^y)$ por lo tanto $Im(\varphi) = \mathbb{R}$.

- C) i) Si $o(\overline{z}) = p \Rightarrow pz \equiv 0 \pmod{p^2} \Rightarrow z \equiv 0 \pmod{p} \Rightarrow z = kp$ para algún $k \in \mathbb{Z}$.
 - ii) Como $o(\overline{p}) = p$ entonces $H = \langle \overline{p} \rangle$ es un subgrupo de \mathbb{Z}_{p^2} de orden p. Si H' fuese otro subgrupo de orden p de \mathbb{Z}_{p^2} entonces $H' = \langle \overline{z} \rangle$ (subgrupo de cíclico es cíclico) donde \overline{z} es un elemento de orden p de \mathbb{Z}_{p^2} . Por la parte anterior $\overline{z} = k\overline{p} \in \langle \overline{p} \rangle \Rightarrow H' = \langle \overline{z} \rangle \subset \langle \overline{p} \rangle$ asi que por cardinalidad $H' = \langle \overline{p} \rangle = H$.
 - iii) Por el Primer Teorema de Isomorfismo $\mathbb{Z}_{p^2}/ker(\psi) \simeq Im(\psi)$ de donde resulta tomando cardinales que:

$$p^2 = |\mathbb{Z}_{n^2}| = |ker(\psi)| \cdot |Im(\psi)| \tag{1}$$

de donde $|Im(\psi)| | p^2$. Por otra parte $|Im(\psi)| | pq$ (por Lagrange), asi que $|Im(\psi)| = 1$ ó p. Como $|Im(\psi)| \neq 1$ pues ψ es no trivial se tiene que $|Im(\psi)| = p$. De (??) se tiene que también $|Ker(\psi)| = p$ asi que en virtud de la parte anterior $Ker(\psi) = \langle \overline{p} \rangle$ (el único subgrupo de orden p de \mathbb{Z}_{p^2}).

Ejercicio 2.

- A. Sea n = o(g), entonces $g^n = e_{G_1}$. Por ser ψ homomorfismo se tiene que $\psi(g^n) = \psi(\underbrace{g * \cdots * g}) = \underbrace{\psi(g) *' \cdots *' \psi(g)}_{n \text{ veces}} = \psi(g)^n$. Así que $\psi(g)^n = \psi(g^n) = \psi(e_{G_1}) = e_{G_2}$ (la última igualdad vale pues ψ es homomorfismo). Así que, por propiedades del orden se tiene que $o(\psi(g))|n$. (* denota la operación de G_1 y *' la de G_2).
- **B.** Dada $\sigma \in S_n$, existen trasposiciones τ_1, \dots, τ_k tal que $\sigma = \tau_1 \tau_2 \dots \tau_k$ (pues toda permutación es producto de trasposiciones). Así que $\psi(\sigma) = \psi(\tau_1 \tau_2 \dots \tau_k) = \psi(\tau_1) \psi(\tau_2) \dots \psi(\tau_k) = e_G * e_G \dots * e_G = e_G$ (la segunda igualdad vale'pues ψ es homomorfismo y la tercer igualdad es por hipótesis).
- C. Por lo visto en la parte B, basta con probar que si $\psi: S_n \to G$ es homomorfismo, entonces $\psi(\tau) = e_G$ para toda trasposición $\tau \in S_n$. Sea τ una trasposición; entonces $o(\tau) = 2$ y por la parte A. se tiene que $o(\psi(\tau))|2$. Por otro lado, como $\psi(\tau) \in G$ se tiene que $o(\psi(\tau))|G|$ y |G| es impar. De estas dos condiciones se deduce que $o(\psi(\tau)) = 1$ y por lo tanto $\psi(\tau) = e_G$.
- **D.** Sea $\psi: S_3 \to \mathbb{Z}_4$ un homomorfismo de grupos. Como los homomorfismos preservan neutros, se tiene que $\psi(id) = \overline{0}$. Sea $\sigma \in \{(1\,2\,3), (1\,3\,2)\}$; entonces $o(\sigma) = 3$ y por la parte A. tenemos que $o(\psi(\sigma))|3$. Pero $\psi(\sigma) \in \mathbb{Z}_4$ y en \mathbb{Z}_4 no hay elementos de orden 3; por lo tanto $o(\psi(\sigma)) = 1$ y entonces $\psi(\sigma) = \overline{0}$. Queda ver cuanto vale ψ en las trasposiciones. Si τ es una trasposición, $o(\tau) = 2$ asi que $o(\psi(\tau)|2$. Así que $\psi(\tau) \in \{\overline{0}, \overline{2}\}$.

Sopongamos que por ejemplo $\psi((1\,2)) = \overline{0}$; entonces $\psi((1\,3)) = \psi((1\,2\,3)(1\,2)) = \psi((1\,2\,3)) + \psi((1\,2)) = \overline{0} + \overline{0} = \overline{0}$. Análogamente se prueba que $\psi((1\,3)) = \overline{0}$ y por lo tanto ψ es el homomorfismo trivial. De igual forma se prueba que si cualquier trasposición está en $\ker(\psi)$, entonces están todas y por lo tanto ψ es el homomorfismo trivial.

Es decir que si ψ no es el trivial, entonces $\psi(\tau) = \overline{2}$ para toda τ trasposición.

Queda ver que el homormorfismo definido por $\psi(id) = \psi((1\,2\,3)) = \psi((1\,3\,2)) = \overline{0}$ y $\psi((1\,2) = \psi((1\,3) = \psi(2\,3)) = \overline{2}$ es efectivamente un homorfismo. Una forma de ver esto es que $\psi(\sigma) = \overline{0}$ si σ es par y $\psi(\sigma) = \overline{2}$ si σ es impar.

Así que:

- Si σ_1 y σ_2 son impares, tenemos que $\sigma_1\sigma_2$ es par y por lo tanto $\psi(\sigma_1) + \psi(\sigma_2) = \overline{2} + \overline{2} = \overline{0} = \psi(\sigma_1\sigma_2)$.
- Si σ_1 y σ_2 son pares, $\sigma_1\sigma_2$ es par y por lo tanto $\psi(\sigma_1) + \psi(\sigma_2) = \overline{0} + \overline{0} = \overline{0} = \psi(\sigma_1\sigma_2)$.
- Si σ_1 es par y σ_2 es impar, $\sigma_1\sigma_2$ es impar y por lo tanto $\psi(\sigma_1) + \psi(\sigma_2) = \overline{0} + \overline{2} = \overline{2} = \psi(\sigma_1\sigma_2)$.
- El caso σ_1 impar y σ_2 par es análogo al último.