Machine Learning and Data Mining

Linear classification

Prof. Alexander Ihler Fall 2012

Supervised learning

Notation

- Features
- Targets
- Predictions ŷ

Linear regression Target 20 10 Feature x

"Predictor":

Evaluate line:

$$r = \theta_0 + \theta_1 x_1$$

return r

- Contrast with classification
 - Classify: predict discrete-valued target y

Linear Classifiers: Parametric Form

- Let: feature 1 = "X1", feature 2 = "X2"
- Linear classifier is a linear function of features X1 and X2, i.e.,
 - f(X1,X2) = a*X1 + b*X2 + c
 - Coefficients [a,b,c] are the "weights" / "parameters" of the classifier
 - In general, d + 1 coefficients (one for each feature, plus offset)
- Output of the classifier is a class, {-1, 1}:
 - T(f) = -1 if f < 0, T(f) = +1 if f > 0
- Decision boundary
 - Transition from one class decision to another at f(X1,X2) = 0
 - Decision boundary is: a*X1 + b*X2 + c =0 Linear
- In higher dimensions, equation is a "hyperplane"

Perceptron Classifier (2 features)

Perceptrons

- Perceptron = a linear classifier
 - The w's are the weights (denoted as a, b,c, earlier)
 - real-valued constants (can be positive or negative)
 - Define an additional constant input "1" (allows an intercept in decision boundary)
- A perceptron calculates 2 quantities:
 - 1. A weighted sum of the input features
 - 2. This sum is then thresholded by the T function
- A simple artificial model of human neurons
 - weights = "synapses"
 - threshold = "neuron firing"

Notation

Inputs:

- $X_0, X_1, X_2, \dots, X_d,$
- $-x_1, x_2, \dots, x_{d-1}, x_d$ are the values of the d features
- $x_0 = 1$ (a constant input)
- $\underline{\mathbf{x}} = (x_0, x_1, x_2, \dots, x_d)$

Weights (parameters):

- $\theta_0, \theta_1, \theta_2, \ldots, \theta_d,$
- we have d+1 weights
- one for each feature + one for the constant
- $\underline{\theta} = (\theta_0, \theta_1, \theta_2, \dots, \theta_d)$

Perceptron Operation

Equations of operation:

$$o[x_{1}, x_{2},..., x_{d-1}, x_{d}] = 1 \quad (if \quad \theta_{1}x_{1} +... \quad \theta_{d} x_{d} + \theta_{0} > 0)$$

$$= -1 \quad (otherwise)$$

Note that

$$\theta = (\theta_0, \dots, \theta_d)$$
, the "weight vector" (row vector, 1 x d+1)

and $\underline{x} = (x_0, \dots, x_d)$, the "feature vector" (row vector, 1 x d+1)

$$=> \qquad \theta_0 \mathbf{x}_0 + \theta_1 \mathbf{x}_1 + \dots \theta_d \mathbf{x}_d = \underline{\theta} \cdot \underline{\mathbf{x}}'$$

and $\underline{\theta}$. $\underline{\mathbf{x}}'$ is the vector inner product $(\theta * \mathbf{x}')$ or "sum $(\theta . * \mathbf{x})$ " in MATLAB)

Perceptron Decision Boundary

Equations of operation (in vector form):

$$= 1 \quad (if \underline{\theta} \cdot \underline{\mathbf{x}'} > 0)$$

$$o(x_1, x_2, ..., x_d, x_{d+1})$$

$$= -1 \quad (otherwise)$$

The perceptron represents a hyperplane decision surface in ddimensional space

e.g., a line in 2d, a plane in 3d, etc

The equation of the hyperplane is

$$\underline{\theta} \cdot \underline{\mathbf{x}}' = 0$$

This is the equation for points in x-space that are on the boundary

$$\underline{\theta} = (\theta_1, \, \theta_2, \, \theta_0)$$
$$= (1, \, -1, \, 0)$$

Separability

- A data set is separable by a learner if
 - There is some instance of that learner that correctly predicts all the data points
- Linearly separable data
 - Can separate the two classes using a straight line in feature space
 - in 2 dimensions the decision boundary is a straight line

Class overlap

- Classes may not be well-separated
- Same observation values possible under both classes
 - High vs low risk; features {age, income}
 - Benign/malignant cells look similar

- Common in practice
- May not be able to perfectly distinguish between classes
 - Maybe with more features?
 - Maybe with more complex classifier?
- Otherwise, may have to accept some errors

Another example

(c) Alexander Ihler 2010-12

Non-linear decision boundary

(c) Alexander Ihler 2010-12

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

What kinds of functions would we need to learn the data on the right?

Representational Power of Perceptrons

- What mappings can a perceptron represent perfectly?
 - A perceptron is a linear classifier
 - thus it can represent any mapping that is linearly separable
 - some Boolean functions like AND (on left)
 - but not Boolean functions like XOR (on right)

What kinds of functions would we need to learn the data on the right?

Effect of dimensionality

- Data are increasingly separable in high dimension is this a good thing?
- "Good"
 - Separation is easier in higher dimensions (for fixed N)
 - Increase the number of features, and even a linear classifier will eventually be able to separate all the training examples!
- "Bad"
 - Remember training vs. test error? Remember overfitting?
 - Increasingly complex decision boundaries can eventually get all the training data right, but it doesn't necessarily bode well for test data...

Learning the Classifier Parameters

- Where do the parameters (weights) of the classifier come from?
 - If we know a lot about the problem, we could "design" them
 - Typically we don't know ahead of time what the values should be
- Learning from Training Data:
 - training data = labeled feature vectors
 - i.e., a set of N feature vectors each with a class label
 - we can use the training data to try to find good parameters
 - "good" parameters are ones which provide low error
 - error is estimated on the training data
 - "true" error will be on future test data
 - Statement of the Learning Problem:
 - given a classifier, and some training data, find the values for the classifier's parameters which maximize training accuracy

Learning the Weights from Data

An Example of a Training Data Set

Example	x ₁	x ₂	 x _d	true class label, y
<u>x</u> (1) <u>x</u> (2) <u>x</u> (3) <u>x</u> (4)	3.4 4.1 5.7 2.2	-1.2 -3.1 -1.0 4.1	 7.1 4.6 6.2 5.0	1 -1 -1 1
<u>x</u> (n)	1.2	4.3	 6.1	1

Learning as a Search Problem

- The objective function $J(\underline{\theta})$:
 - Classifier accuracy (for a given set of weights $\underline{\theta}$ and labeled data)
- Problem:
 - maximize this objective function (or, minimize error)
- Equivalent to an optimization or search problem
 - i.e., think of the vector $(\theta_1, \theta_2, \theta_0)$
 - this defines a 3-dimensional "parameter space"
 - we want to find the value of $(\theta_1, \theta_2, \theta_0)$ which maximizes the objective
 - we could use hill-climbing, systematic search, etc., to search this parameter space
 - many learning algorithms = hill-climbing with random restarts

Perceptron Classifier (2 features)

Decision boundary = "x such that $T(\theta_1 x + \theta_0)$ transitions"

Training a linear classifier

- How should we measure error?
- Natural measure = "fraction we get wrong" (error rate) $\operatorname{err}(\underline{\theta}) = 1/N \sum_{i} \delta(\hat{y}(i) \neq y(i))$ where $\delta(\hat{y}(i) \neq y(i)) = 0$ if $\hat{y}(i) = y(i)$, and 1 otherwise $\delta(\operatorname{Matlab})$ >> yh = sign(th*X'); err = mean(y ~= yh);
 - But, hard to train via gradient descent
 - Not continuous
 - As decision boundary moves, errors change abruptly

Training a linear classifier

- "Online" gradient descent
 - Perform a gradient update one data point at a time
 - For each data point j, predict, calculate error, modify parameters; repeat

- Perceptron algorithm
 - For each data point j:

```
\hat{y}(j) = T(\underline{w} * \underline{x}(j)) : predict output for data point j

\underline{w} \leftarrow \underline{w} + \alpha (y(j) - \hat{y}(j)) \underline{x}(j) : "gradient-like" step
```

Converges if data are linearly separable

Perceptron algorithm

- Perceptron algorithm
 - For each data point j:

```
\hat{y}(j) = T(\underline{w} * \underline{x}(j)) : predict output for data point j \underline{w} \leftarrow \underline{w} + \alpha (y(j) - \hat{y}(j)) \underline{x}(j) : "gradient-like" step
```


y(j)
predicted
incorrectly:
update
weights

Perceptron algorithm

- Perceptron algorithm
 - For each data point j:

```
\hat{y}(j) = T(\underline{w} * \underline{x}(j)) : predict output for data point j

\underline{w} \leftarrow \underline{w} + \alpha (y(j) - \hat{y}(j)) \underline{x}(j) : "gradient-like" step
```


Perceptron algorithm

- Perceptron algorithm
 - For each data point j:

```
\hat{y}(j) = T(\underline{w} * \underline{x}(j)) : predict output for data point j \underline{w} \leftarrow \underline{w} + \alpha (y(j) - \hat{y}(j)) \underline{x}(j) : "gradient-like" step
```

Converges if data are linearly separable

Surrogate loss functions

- Another solution: use a "smooth" loss
 - e.g., approximate the threshold function

- Usually some smooth function of distance
 - Example: "sigmoid", looks like an "S"

Now, measure e.g. MSE

$$J_{\sigma}(\underline{w}) = (1/N) \sum_{i} (\sigma(f(x_{i})) - t(i))^{2}$$

- Far from the decision boundary: |f(.)| large, small error
- Nearby the boundary: |f(.)| near 1/2, larger error

Classification error = MSE = 2/9

$$MSE = (0^2 + 1^2 + .2^2 + .25^2 + .05^2 + ...)/9$$

Beyond misclassification rate

- Which decision boundary is "better"?
 - Both have zero training error (perfect training accuracy)
 - But, one of them seems intuitively better…

- Side benefit of "smoothed" error function
 - Encourages data to be far from the decision boundary
 - See more examples of this principle later...

- Once we have a smooth measure of quality, we can find the "best" settings for the parameters of f(X1,X2) = a*X1 + b*X2 + c
- Example: 2D feature space⇒ parameter space

- Once we have a smooth measure of quality, we can find the "best" settings for the parameters of f(X1,X2) = a*X1 + b*X2 + c
- Example: 2D feature space
 parameter space

- Once we have a smooth measure of quality, we can find the "best" settings for the parameters of f(X1,X2) = a*X1 + b*X2 + c
- Finding the minimum MSE in parameter space...

• [a b c] = ?

[arctan(A/B), c] = [-pi/4, 1]

- Once we have a smooth measure of quality, we can find the "best" settings for the parameters of f(X1,X2) = a*X1 + b*X2 + c
- Finding the minimum MSE in parameter space...

• [a b c] = ?

Finding the Best MSE

- As in linear regression, this is now just optimization
- Methods:
 - Gradient descent
 - Improve MSE by small changes in parameters ("small" = learning rate)
 - Or, substitute your favorite optimization algorithm...
 - Coordinate descent
 - Stochastic search
 - Genetic algorithms

Gradient Equations

• MSE (note, depends on function $\sigma(.)$)

$$C(\underline{w} = [a, b, c]) = \frac{1}{N} \sum_{i} (\sigma(ax_1^{(i)} + bx_2^{(i)} + c) - y^{(i)})^2$$

 What's the derivative with respect to one of the parameters?

$$\frac{\partial C}{\partial a} = \frac{1}{N} \sum_{i} 2 \left(\sigma(w \cdot x) - y^{(i)} \right) \partial \sigma(w \cdot x) \ x_1(i)$$

Error between class and prediction

Sensitivity of prediction to changes in parameter "a"

Similar for parameters b, c [replace x₁ with x₂ or 1 (constant)]

Saturating Functions

- Many possible "saturating" functions
- "Logistic" sigmoid (scaled for range [0,1]) is

$$\sigma(x) = 1 / (1 + \exp(-x))$$

Derivative is

$$\partial \sigma(x) = \sigma(x) (1-\sigma(x))$$

Matlab Implementation:

```
function s = sig(x)
% value of [0,1] sigmoid
    s = 1 ./ (1+exp(-x));

function ds = dsig(x)
% derivative of (scaled) sigmoid
    ds = sig(x) .* (1-sig(x));
```

Aside on logistic regression

- "Logistic regression" often refers to a different loss function than MSE
- Logistic loss function:

$$C(\underline{w}) = \frac{1}{N} \sum_{i} y \log \sigma(wx^{T}) + (1 - y) \log(1 - \sigma(wx^{T}))$$

- Interpretable as a (log) conditional probability
 - $\sigma(w x) \approx Pr[y=1]$
 - Might talk about this more later
- Nicely behaved: convex, unique optimum
- BUT, we'll use MSE here...

Gradient Decent Algorithm (BATCH)

- Algorithm outline
 - Initialize the weights (e.g., randomly)
 - Loop "until convergence"
 - for each example calculate the output
 - calculate the difference between the output and the target
 - update each of the d+1 weights using the gradient update rule

$$w_j$$
 <- w_j - $\eta (\partial E/\partial w_j)$

- Convergence condition:
 - when change in MSE is sufficiently small, stop iterating
- Halt and return weights

Incremental Training Algorithm

- "Incremental Gradent Descent" online version
- Often faster than batch gradient algorithm
- Algorithm outline
 - initialize the weights (e.g., randomly)
 - loop through all N examples (this is 1 iteration)
 - for each example calculate the output
 - calculate the difference between the output and the target
 - update each of the d+1 weights using the single example gradient update rule
 - Like the full gradient, but only involves one training example
 - after all N examples are gone through
 - check if the overall error (MSE) has decreased significantly since the previous iteration
 - if not, then perform another iteration through all N examples
 - if so, then halt and return weights

Gradient Descent Learning Rule

Online (single-example) weight update rule:

$$- \qquad w_j \ \, \leftarrow \ \, w_j \ \, + \, \, \eta \, \left(\, t(i) - \sigma(f(i)) \, \right) \, \, \partial \sigma(f(i)) \, \, x_j(i)$$

- t(i) is the target class of the ith training example
- f(i) is the weighted sum (respectively) for the ith example
- w_i is the jth input weight
- $-x_i(i)$ is the jth input feature value, for the ith example
- η is called the learning rate: a small positive number, $0 < \eta < 1$
- An example of how this works:
 - Say w_i and x_i(i) are both positive:
 - say t(i) > f(i) => we increase the value of the weight
 - say t(i) < f(i) => we decrease the value of the weight
 - η controls how quickly we increase or decrease the weight

Pseudocode for Logistic Regression

Initialize each weight (e.g., randomly)

```
iteration=0;
While (convergence_criterion not achieved)
    for i=1:N
    calculate the output of the network for example i
        for j = 1: d+1
            update weight j using the update rule
        end
    end
    calculate convergence_criterion
    ++ iteration
    (optional) plot current location of decision boundary
end
```

Summary

- Linear classifier ⇔ perceptron
- Visualizing the decision boundary
- Measuring quality of a decision boundary
 - MSE criterion
- Learning the weights of a linear classifer from data
 - Reduces to an optimization problem
 - For MSE (and some others) we can do gradient descent
 - Batch gradient descent vs. Incremental gradient descent
 - Gradient equations & update rules