Билет №1

- 1. Сформулировать критерий Дарбу об интегрируемости функции
- 2. Найти неопределенный интеграл: $\int x\sqrt{1+3x}dx$
- 3. Найти определенный интеграл: $\int\limits_{0}^{\ln 2}xe^{x}dx$
- 4. Эллипс задан параметрически следующим видом:

$$\begin{cases} x = a \cdot \cos t \\ y = b \cdot \sin t \\ a > b \end{cases}$$

Найти длину эллипса в общем виде.

Билет №2

- 1. Докажите, что $\int f^{-1}(x)dx = x \cdot f(x) F(f^{-1}(x)) + C$. где $f^{-1}(x)$ обратная к f(x) функция
- 2. Найти неопределенный интеграл: $\int \frac{dx}{\sqrt{tg(x)}}$
- 3. Найти определенный интеграл: $\int\limits_0^{2\pi} \frac{dx}{1+\varepsilon\cos x}; 0 \le \varepsilon < 1$
- 4. $f(x)=xe^x, \quad W(x): f(W(x))\equiv x$ Найти $\int W(x)dx$

Билет №3

- 1. Определение интеграла по Риману
- 2. Найти неопределенный интеграл: $\int \arctan(x) dx$
- 3. Найти определенный интеграл: $\int\limits_{0}^{e} \ln x^{2} dx$
- 4. Найти значения α , при которых интеграл $\int\limits_0^{+\infty} \frac{dx}{x^{\alpha}}$ имеет конечное значение (сходится).

1

Подсказка:
$$\int\limits_{a}^{+\infty}f(x)dx=\lim_{b\to+\infty}\int\limits_{a}^{b}f(x)dx=\lim_{b\to+\infty}\left(F(b)-F(a)\right)$$

Билет №4 без говна

- 1. Длина дуги в полярных координатах
- 2. Найти неопределенный интеграл: $\int \left(1-\frac{2}{x}\right)^2 e^x dx$
- 3. Найти определенный интеграл: $\int\limits_0^a b \sqrt{1-\frac{x^2}{a^2}} dx \; ; \;\; a>b$
- 4. Найти длину дуги: $\varphi \in \left[0, \frac{\pi}{4}\right]; \ \ r(\varphi) = \frac{tg(\varphi)}{\cos \varphi}$

Билет №5

1. 1. Доказательство гипотезы Римана о нулях дзета-функции.

Билет №5

- 1. Определение первообраной. Определение неопределенного интеграла. Свойства неопределенного интеграла.
- 2. Найти неопределенный интеграл: $\int \frac{dx}{2^x+1}$

Билет №6

- 1. Теорема о замене переменной в неопределенном интеграле.
- 2. Найти неопределенный интеграл: $\int e^{\operatorname{arccos} x} dx$

Билет №7

- 1. Теорема об интегрировании по частям
- 2. Найти неопределенный интеграл: $\int \frac{dx}{x^2 6x}$

Билет №8

- 1. Интегрирование тригонометрических функций, подстановки.
- 2. Найти неопределенный интеграл: $\int 6 \cdot 3^{x^6+2} \cdot x^5 dx$

Билет №9

- 1. Задача, приводящая к понятию определенного интеграла.
- 2. Найти неопределенный интеграл: $\int \ln(x+\sqrt{1+x^2})dx$

Билет №10

2

1. Определение разбиения отрезка. Определение интегральной суммы.

2. Найти неопределенный интеграл: $\int \frac{x-3}{\sqrt{x^2-6x+1}} dx$

Билет №11

- 1. Геомертический смысл определенного интеграла.
- 2. Найти неопределенный интеграл: $\int \frac{2x^2-1}{x^3-5x^2+6x} dx$

Билет №12

- 1. Необходимое условие интегрируемости.
- 2. Найти неопределенный интеграл: $\int \frac{\sin^3 x}{\cos^8 x} dx$

Билет №13

- 1. Верхняя и нижняя суммы Дарбу.
- 2. Найти неопределенный интеграл: $\int \frac{(1+\cos(2x))^3}{\cos(2x)} dx$

Билет №14

- 1. Интегралы Дарбу.
- 2. Найти неопределенный интеграл: $\int \sin(10x) \sin(15x) dx$

Билет №15

- 1. Критерий Дарбу интегрируемости функции.
- 2. Найти неопределенный интеграл: $\int \frac{dx}{\sin^2 x \cos^4 x}$

Билет №16

- 1. Интегрирование по частям в определенном интеграле.
- 2. Найти неопределенный интеграл: $\int \frac{4\sin(2x+3)}{\sqrt{4-4\cos^2(2x+3)}} dx$

Билет №17

- 1. Интеграл от четных функций по симметричному промежутку. Интеграл от нечетных функций по симметричному промежутку. Интеграл от периодических функций на отрезке, кратном периоду.
- 2. Найти неопределенный интеграл: $\int \left(x^2-2x+3\right) \cdot \cos x dx$

Билет №18

3

- 1. Определение гладкой кривой. Длина гладкой кривой.
- 2. Найти неопределенный интеграл: $\int \frac{dx}{x\sqrt{1-4\ln x}}$