1 Preliminaries

1.1 Basics

Proposition 1. Let $f: A \to B$.

- 1. The map f is injective if and only if f has a left inverse.
- 2. The map f is surjective if and only if f has a right inverse.
- 3. The map f is a bijection if and only if there exist $g: B \to A$ such that $f \circ g$ is the identity map on B and $g \circ f$ is the identity map on A.
- 4. If A and B are finite sets with the same number of elements the $f: A \to B$ is bijective if and only if f is injective if and only if f is surjective.

Proposition 2. Let A be a nonempty set.

- 1. If \sim defines an equivalence relation on A then the set of equivalence classes of \sim form a partition of A.
- 2. If $\{A_i \mid i \in I\}$ is a partition of A then there is an equivalence relation on A whose equivalence classes are precisely the sets $A_i, i \in I$