Machine Learning CS 165B

Prof. Matthew Turk

Wednesday, April 13, 2016

- Classification (cont.)Chapters 2-3
- Concept learning
- Chapter 4

Notes

- HW#2
 - Posted on Friday, due next Friday (April 22)

Multi-class classification

- Many classification problems involve multiple classes
- Performance can be described with the multi-class contingency table
 - Not including the marginals, also known as the confusion matrix
 - We can compute accuracy, per-class precision, per-class recall...

Predicted							
	15	2	3	20			
Actual	7	15	8	30			
	2	3	45	50			
	24	20	56	100			

Accuracy =
$$(15+15+45)/100 = 0.75$$

Class 1 precision = $15/24 = 0.63$
Class 1 recall = $15/20 = 0.75$
Etc.

K-class classifiers

- How to build a *k*-class classifier?
 - We can combine several binary classifiers, e.g.:
 - One-versus-rest scheme learn k-1 models, apply in sequence
 - C1 vs. { C2, C3, C4 }
 - C2 vs. { C3, C4 }
 - C3 vs. C4

- One-versus-rest scheme learn a *one-class* model for each class
 - C1 vs. { C2, C3, C4 }
 - C2 vs. { C1, C3, C4 }
 - C3 vs. { C1, C2, C4 }
 - C4 vs. { C1, C2, C3 }

K-class classifiers

- One-versus-one scheme learn a model for each pair of classes
 - Train k(k-1)/2 binary classifiers, apply them all to x and **vote**

• One-versus-one scheme with a decision tree:

Example: A 3-class linear classifier

Classify instances into three classes {A, B, C} using three linear discriminant functions classifying (A vs. B), (A vs. C), and (B vs. C)

Regression – another predictive ML task

- In the classification tasks we've been discussing, the label space was a discrete set of classes
 - Classification, scoring, ranking, probability estimation
- Regression learns a function (the regressor) that is a mapping $\hat{f}: \mathcal{X} \to \mathbb{R}$ from examples $-f(x_i)$
 - I.e., the target variable (output) is real-valued
- Assumption: the examples will be noisy, so watch out for overfitting – need to capture the general trend or shape of the function, not exactly match every data point
 - E.g., if fitting an N-degree polynomial to the training data (thus N+1 parameters to estimate), choose one as low degree as possible
- The number of data points should be much greater than the number of parameters to be estimated!
 - How much data is needed? An open question in ML....

Regression example

Training data

	\mathcal{C}
\mathcal{X}	f(x)
1.0	1.2
2.5	2.0
4.1	3.7
6.1	4.6
7.9	7.0

---- Globally linear fit

The regression function may or may not fit the training data exactly

Regression example

Training data

$\boldsymbol{\mathcal{X}}$	f(x)
1.0	1.2
2.5	2.0
4.1	3.7
6.1	4.6
7.9	7.0

 $\{1, 2, 3, 4\}$ -order functions

Regression

• We'll generally estimate a regression function based on some function of the *residual*, the different between the estimate and the label (the true value):

$$r(x) = f(x) - \hat{f}(x)$$

$$\uparrow \qquad \qquad \uparrow$$
True function Regression function

- That function is (again) the *loss function* L
 - The most common loss function for regression is the squared residual:

$$L(x) = r^2(x) = (f(x) - \hat{f}(x))^2$$

However, this is sensitive to <u>outliers</u> (large errors have a disproportionately large effect), so often a function that minimizes large errors is used – the result is called a *robust estimator*

Concept Learning

Chapter 4 in the textbook

Logical Models: tree models and rule models

Concept learning

- Concept learning means learning (typically binary) concepts from examples
 - The learned concept is the positive class
 - Everything else is the negative class
- We'll now use <u>logical models</u> logical expressions describe concepts and divide the instance space appropriately
 - See "Background 4.1" on p. 105 in the textbook (or take CS 40 or CS 165A!) for an overview of the logical concepts and notation
 - Propositional logic
 - Logical manipulation of propositions (symbols that have values)
 - (First-order) predicate logic
 - Add variables, predicates (binary functions), functions, and variable quantification (for all x..., there exists an x such that...)

Propositional (Boolean) logic

- Symbols represent propositions (statements of fact, sentences)
 - P means "San Francisco is the capital of California"
 - Q means "It is raining in Seattle"
 - Length = 3 means "The value of the feature Length is 3"
 - Teeth=many means "The value of the feature Teeth is many
- Expressions are generated by combining proposition symbols with Boolean (logical) connectives
 - *True*, *false*, propositional symbols
 - feature/value relations − e.g., feature = value, feature < value, ...
 - (), \neg (not), \land (and), \lor (or), \Rightarrow (implies), \Leftrightarrow (equivalent)

Propositional logic

Semantics

- Defined by clearly interpreted symbols and straightforward application of truth tables
- Rules for evaluating truth: Boolean algebra
- Simple method: truth tables

P	Q	$\neg P$	$P \wedge Q$	$P \lor Q$	$P \Rightarrow Q$	$P \Leftrightarrow Q$
False	False	True	False	False	True	True
False	True	True	False	True	True	False
True	False	False	False	True	False	False
True	True	False	True	True	True	True

2^N rows for N propositions

Concept learning

- In concept learning, we want to learn a Boolean function over a set of attributes+values
 - I.e., derive a Boolean function from training examples
 - Positive and negative examples of the concept
 - Positive: Temperature = high \land Coughing = yes \land Spots = yes
 - Negative: Temperature = medium \land Coughing = no \land Spots = yes
 - This is our hypothesis
- The target concept c is the true concept
 - We want the hypothesis to be a good estimate of the true concept
 - Thus we wish to find h (or \hat{c}) such that h = c (or $\hat{c} = c$)
- The hypothesis is a Boolean function over the features
 - E.g., some combinations of {Temperature, Coughing, Spots} are <u>in</u> the concept, and others are <u>not in</u> the concept

The hypothesis space

- Using a set of features, what concepts can possibly be learned?
- The space of all possible concepts is called the hypothesis space
 - What is the hypothesis space for a given problem?
- First, how many possible instances are there for a given set of features?
 - In set theory, the Cartesian product of all the features
 - $-F_1 \times F_2 \times ... \times F_N$
 - All combinations of feature values
 - UCSB courses: Quarter (4), Dept (40), courselevel (2), topic (500)
 - $-4\times40\times2\times500 = 160,000$ possible instances
 - E.g., (spring, CS, ugrad, ML), (fall, Music, grad, StringTheory), ...

The hypothesis space

- The hypothesis space is the number of binary functions on these instances, which is... 2^{160,000}!!
 - I.e., the number of different sets you can make from 160,000 elements
 - Or if you laid out all possible instances, the number of different contours you could draw separating some instances from the rest
 - Each of these hypotheses... sets... contours... defines a concept
- The challenge in concept learning is deciding which hypothesis is best, given the training data
 - As with all problems in machine learning, generalization is of key importance – we don't only want to memorize the training data (the overfitting problem)
 - We want to learn a concept that will generalize well to new, unseen instances

The conjunctive hypothesis space

• Let's limit our hypothesis space to conjunctive concepts – i.e., hypotheses that can be expressed as a conjunction of literals (features)

```
Quarter=? ∧ Dept=? ∧ courselevel=? ∧ topic=?
```

- We add "absence" or "don't care" to each feature, so now the total number of combinations is $5 \times 41 \times 3 \times 501 = 308,115$
 - That's a lot, but much better than $2^{160,000}$! (between 2^{18} and 2^{19})
- The most general hypothesis is (X, X, X, X), which includes all possible instances
 - (fall, X, X, X) is the concept of all fall quarter courses
 - (fall, CS, grad, X) is the concept of all CS graduate courses in the fall
- In this conjunctive hypothesis space, we can't represent concepts like "all courses in AI or Graphics"

An example hypothesis space

Target concept:

c = Pays income taxes

Instance space:

 $\{Age \times Student\}$

 $2 \times 2 = 4$ instances:

$$(Yes, Yes) - A$$
 $(Yes, No) - B$
 $(No, Yes) - C$ $(No, No) - D$

How many possible hypotheses are there? $2^4 = 16$ possible hypotheses (concepts)

The training example (Yes, No) provides evidence for which hypotheses?

All the ones that contain B

Now what if we observe a second training example (No, No)?

Our example using conjunctive hypothesis space

Instance space:

 $\{Age \times Student\}$

CHS: Hypotheses that can be represented as

 $Age=\{Yes, No, X\} \land Student=\{Yes, No, X\}$

That's 9 hypotheses:

{A} {A, D}

{B} {B, C}

{C} {B, C, D}

{D} {A, C, D}

{A, B} {A, B, D}

{C, D} {A, B, C}

{A, C} {A, B, C, D}

{B, D} { } or \phi

Conjunctive = combining rows and columns via AND (not by OR)

An example of CHS learning

Suppose you come across a number of sea animals that you suspect belong to the same species. You observe their length in meters, whether they have gills, whether they have a prominent beak, and whether they have few or many teeth. The first animal can described by the following conjunction of features:

Length =
$$3 \land Gills = no \land Beak = yes \land Teeth = many$$

The next one has the same characteristics but is a meter longer, so you drop the length condition and generalize the conjunction to

Gills = no
$$\land$$
 Beak = yes \land Teeth = many

The third animal is again 3 meters long, has a beak, no gills and few teeth, so your description becomes

Gills = no
$$\land$$
 Beak = yes

All remaining animals satisfy this conjunction, and so your hypothesis is formed.

Someone tells you what these animals are called: Dolphins

An example of CHS learning

We took a specific-to-general approach in coming up with a hypothesis here.

Instances:

Hypotheses:

- (1) Length = $3 \land Gills = no \land Beak = yes \land Teeth = many$ Length = $3 \land Gills = no \land Beak = yes \land Teeth = many$
- (2) Length = $4 \land Gills = no \land Beak = yes \land Teeth = many$ Length = $X \land Gills = no \land Beak = yes \land Teeth = many$
- (3) Length = 3 \land Gills = no \land Beak = yes \land Teeth = few

 Length = X \land Gills = no \land Beak = yes \land Teeth = X

An example of CHS learning

Features and possible values:

```
Length = { 3, 4, 5 }
Gills = { yes, no }
Beak = { yes, no }
Teeth = { few, many }
```

In this problem, there are $3\times2\times2\times2=24$ possible instances and 2^{24} possible hypotheses over the instances (about 16.8 million)

But with the conjunctive hypothesis space, we have only $4\times3\times3\times3=108$ possible conjunctive hypotheses

- In our earlier example, we went from 16 hypotheses to 9 using CHS
- Here we go from 16.8 million to 108

Let's visualize the conjunctive hypothesis space for this problem:

This connects upward to every more general hypothesis that includes it

The Conjunctive Hypothesis Space

Number of "Don't know" (X) increases by 1 each level

Reducing the hypothesis space

• Given that hypothesis space and our training examples:

```
Length = 3 ∧ Gills = no ∧ Beak = yes ∧ Teeth = many
Length = 4 ∧ Gills = no ∧ Beak = yes ∧ Teeth = many
Length = 3 ∧ Gills = no ∧ Beak = yes ∧ Teeth = few
```

- Let's rule out all the hypotheses (concepts) that don't include at least one of the instances in our example
 - I.e., delete nodes that don't fit with at least one training example
 - This leaves us with just 32 conjunctive concepts (out of the original 108)

Reducing the hypothesis space

• But if we require hypotheses to cover <u>all</u> three examples, we're left with only four concepts

• Let's choose the least general of these as our result – the concept defined by our training data

Gills = no
$$\land$$
 Beak = yes

Least general generalization (LGG)

- We want to generalize beyond our specific training data, but not too much – the most general hypothesis is to accept everything
- Thus we'd like the *least general* generalization
 - General enough to include all of our training data, but no more general than that
- Referring to our classification terminology, the more general our hypothesis, the lower our...
 - False negative rate H(x) = True
- And the less general (more specific) our hypothesis, the lower our...
 - False positive rate H(x) = False
- So, our approach to generating a hypothesis/concept should depend on the needs of our application