GP-PRO/PBIII for Windows Device/PLC CONNECTION MANUAL ADDITIONAL MANUAL

Fuji Electric MICREX-SX Series

Reading the GP-PRO/PBIII Device/PLC Connection Manual

This document is designed as an addition to the latest GP-PRO/PBIII for Windows Device/PLC Connection manual's Fuji Electric data.

When connecting a Factory Gateway unit, please substitute the words "Factory Gateway" for this document's "GP/GLC/ST".

Installation

This CD-ROM includes all the protocol files required by the GP/GLC to communicate with a Fuji Electric Micrex-SX Series PLC. Also, you will need to have one or more of the following software applications installed. The screen and data transfer files included in the CD-ROM must be installed in each of those applications. For information regarding installing the software, refer to that software's Operation Manual.

■ Software Applications

- GP-PRO/PBIII for Windows Ver. 7.0
- Pro-Server with Pro-Studio for Windows Ver. 4.1 *1
- 1) Be sure to confirm that the required software application is installed in your PC prior to starting installation.
- 2) Double-click the CD-ROM's "MICREXSX.exe" file to start the installation process.
- 3) Once the installation program starts, follow the instructions given to install the protocol files.

When using Fuji Electric Micrex-SX Series PLCs, be sure to select [Others] - [FUJI MICREX-SX SERIES] for the "Device/PLC Type".

^{*1} When using the Factory Gateway unit, GP-Web Ver. 1.0 or later or GP-Viewer Ver. 1.0 or later, be sure to select "Pro-Server with Pro-Studio for Windows" as the "Destination Folder".

2.3 Fuji Electric

2.3.1 System Structure

The following describes the system structure for connecting the GP to Fuji Electric Corporation, Ltd. PLCs.

Reference Cable Diagrams mentioned in the following tables are listed in the section titled "2.3.2 Cable Diagrams".

In the LS area, 32-bit devices are not supported. Therefore, when System Area addresses are allocated to BD, DL, or W33 devices, only System Area (LS0 to LS19) addresses can be used. Other LS areas, such as the user area, etc. should not be used.

■ MICREX-F Series (using Link I/F)

^{*1} When expansion units are attached via a T-Link system to a main PLC unit, and more than 2 link units are attached to the expansion unit, the GP unit can be attached to only one of the link units. (Simultaneous connection to 2 link units is not possible.)

Simultaneous connection to 2 link units is possible only when they are attached to the main PLC unit.

■ MICREX-F Series <T-link> (using Link I/F)

■ MICREX-F Series (FLT-ASFK) (CPU Direct Connection)

CPU	Adapter	Cable Diagram	Cables	GP
	PC Loader adapter			
		◀	•	
F80H, F250,	Fuji Electric's FLT-ASFK	RS-232C	RS-232C	GP Series
F120H		(Cable Diagram 1)	Digital's GP410-IS00-O	OI Julius

■ MICREX-SX Series

CPU	Link I/F	Cable Diagram	Cables	GP/GLC
	PC Loader adapter	+		
NP1PS-32 NP1PS-74 NP1PS-117	Loader Connection Connector on CPU	RS-232C (Cable Diagram 5)	Fuji Electric's NW0H-CNV + NP4HCB2 (2m)	
NP1PS-32R NP1PS-74R NP1PS-117R NP1PH-08 NP1PH-16	NP1L-RS1 NP1L-RS2	RS-232C (Cable Diagram 6) RS-422 4-wire (Cable Diagram 7) RS-422 2-wire (Cable Diagram 8) RS-232C (Cable Diagram 6)		GP/GLC/ST Series, Factory Gateway
	NP1L-RS4	RS-422 4-wire (Cable Diagram 7) RS-422 2-wire (Cable Diagram 8)		

■ Connection Structure Diagram

♦ CPU Direct Connection

The GP interface's 9Pin <-> 25Pin converter is not required when connecting the PLC unit to ST series units.

♦ Link Unit Connection

■ FLEX-PC Series (using Link I/F)

СРИ	Link I/F	Cable Diagram	Cables	GP
	General SIO Unit/ General I/F Module	4		
NB1, NB2, NB3	NB-RS1-AC	RS-232C	RS-232C	
	(Generic RS-232C/ 485 SIO unit)	(Cable Diagram 1)	Digital's GP410-IS00-O (5m)	
	,	RS-422		
		(Cable Diagram 2)		
NJ	NJ-RS2 (Generic RS-	RS-232C	Digital's GP410-IS00-O (5m)	
	232C SIO interface	(Cable Diagram 1)		
	module)			GP Series
	NJ-RS2 (Generic RS-	RS-422		OI Julius
	485 SIO interface	(Cable Diagram 2)		
	module)			
NS	NS-RS1 (Generic RS-	RS-232C	RS-232C	
	232C/485 interface	(Cable Diagram 1)	Digital's GP410-IS00-O (5m)	
	module)			
		RS-422		
		(Cable Diagram 2)		

Places noted as RS-422 can also use RS-485 on the PLC side.

■ FLEX-PC Series (CPU Direct Connection)

When using Digital's T-Link I/F Unit, refer to the GP-*50/70 Series T-Link I/F Unit User's Manual.

2.3.2 Cable Diagrams

The cable diagrams illustrated below and the cable diagrams recommended by Fuji Electric Co., Ltd. may differ; in any case, using these cables for your PLC operations will not cause any problems.

Ground your PLC's FG terminal according to your country's applicable standard. For details, refer to the corresponding PLC manual.

- Connect the FG line of the Shield cable to either the GP or PLC, depending on your environment. When using a connector hood and grounding the FG line, be sure to use an electrical conductor.
- For the RS-232C connection, use a cable length less than 15m.
- If a communications cable is used, it must be connected to the SG (signal ground).

Cable Diagram 1 (RS-232C)

Cable Diagram 2 (RS-422)

Turn on the Termination Resistor switch, on the PLC side.

• When using Digital's RS-422 connector terminal adapter GP070-CN10-0

• When using Digital's RS-422 Cable, GP230-IS11-0

• When making your own cable connections

- When making your own cable connections, we recommend using Hitachi Densen's CO-SPEV-SB(A)3P*0.5S cable.
- When connecting the #9 and #10 pins in the GP Serial I/F, a termination resistance of 100Ω is added between RDA and RDB.

Cable Diagram 3 (RS-232C)

Cable Diagram 4 (RS-422)

For the PLC side connector (modular-jack) you can use Hirose's TM11P-88P.

The pin numbers of the modular-jack for the connection diagrams below are based on the order described in the figure at the left.

• When using Digital's RS-422 connector terminal adapter GP070-CN10-0

• When using Digital's RS-422 Cable, GP230-IS11-0

• When making your own cable connections

When connecting the #9 and #10 pins in the GP Serial I/F, a termination resistance of 100Ω is added between RDA and RDB.

Cable Diagram 5 (RS-232C)

■ D-sub 25Pin <-> D-sub 9Pin Conversion Adapter Specifications

- Straight connection type
- D-sub 25 pin male Lock-screw (mm)
- D-sub 9 pin male Lock-nut (inch)

<Adaptor: Roas Co. Model No. ZA-403>

Cable Diagram 6 (RS-232C)

Cable Diagram 7 (RS-422, 4-wire)

- Set up the PLC interface's termination resistance via the unit's dip switch.
- The cable length should be 600m or less.
- When using Digital's RS-422 Connector Terminal Adapter (GP070-CN10-O)

When making your own cable

Cable Diagram 8 (RS-422, 2-wire)

• When using Digital's RS-422 Connector Terminal Adapter (GP070-CN10-O)

• When making your own cable

For ST Series units, pin numbers vary as indicated by the following table.

GP Pin No.	GP Signal Name	ST Signal Name	ST Series Pin No.
1	FG		Connector Shell
7	SG	GND	5
10	RDA	RXA	1
11	SDA	TXA	3
15	SDB	TXB	7
16	RDB	RXB	2
18	CSB	CSB	6
19	ERB	ERB	9
21	CSA	CSA	8
22	ERA	ERA	4

2.3.3

Supported Devices

The following describes the range of devices supported by the GP.

■ MICREX-F Series

Setup System Area here.

Device	Bit Address	Word Address	Particulars	
I/O Relay	B0000 ~ B511F	WB0000 ~ WB0511	*1	
Direct I/O		W24.0000 ~ W24.0159		
Auxilary Relay	M0000 ~ M511F	WM0000 ~ WM0511	*1	
Keep Relay	K0000 ~ K063F	WK000 ~ WK063	*1	
Differential Relay	D0000 ~ D063F	WD000 ~ WD063	*1 *4	
Link Relay	L0000 ~ L511F	WL000 ~ WL0511	*1	
Special Relay	F00000 ~ F4095F	WF0000 ~ WF4095	*1 *4	
Announce Relay	A00000 ~ A4095F	WA0000 ~ WA4095	*1 *4	
Timer 0.01 sec	T0000 ~ T0511			
Timer 0.1 sec	T0512 ~ T1023			
Counter	C0000 ~ C0255			
Timer 0.01 sec (current value)		TR0000 ~ TR0511		
Timer 0.01 sec (setup value)		TS0000 ~ TS0511		H/L
Timer 0.1 sec (current value)		W9.000 ~ W9.511		
Counter (current value)		CR0000 ~ CR0255		
Counter (setup value)		CS0000 ~ CS0255		
Data Memory		BD0000 ~ BD4095	Bit 31)	
		DI0000 ~ DI4095	Bit 31)	
		S10000 ~ S14095	Bit 1 51	
File Memory		W30.0000 ~ W30.4094	Bit 1 5 1 *2	
		W31.0000 ~ W31.4094	Bit 151 *2	
		W32.0000 ~ W32.4094	Bit 1 5 1 *2	
		W33.0000 ~ W33.4094	<u>Bit</u> 311	
		W34.0000 ~ W34.4094	<u>Bit</u> 311	

^{* 1} The MSB (most significant bit) of a word device corresponds to bit **0** of the device, and the LSB (least significant bit) corresponds to bit **F**.

E.g. When hexadecimal data **0001** is written to a Word device address

(from previous page)

- * 2 Define and use 16 bit length data.
- * 3 Define and use 32 bit length data.
- * 4 This device cannot write. Use it only for reading.

- In the LS area, 32-bit devices are not supported. Therefore, when System Area addresses are allocated to BD, DL, or W33 devices, only System Area (LS0 to LS19) addresses can be used. Other LS areas, such as the user area, etc. should not be used.
- When using the GP-570VM or GP-870VM, do not allocate the System Area for BD, DI, or W33 word addresses.
- Certain PLC models and versions may not be able to perform bit reading or writing.

F30 not possible with versions 0.9 or lower
F50 not possible with versions 1.4 or lower
F50H not possible with versions 0.7 or lower
F80 not possible with any version
F81 not possible with any version
F120 not possible with any version
F200 not possible with any version

Check the information plate on the side of the PLC to find the PLC's version information.

When processing 16-bit single word data:

Internally, the GP basically processes 1 word as 16 bit length data. As a result, the reading and writing of 32 bit length data devices are processed as follows:

Reading From 32 bit data, reads data only from the bottom

16 bits.

Writing From 32 bit data, writes data only to the bottom 16

bits, as 0 is written to the top 16 bits.

E.g. When data is **12345678** hex.

When processing 2 word 32-bit data:

Two word addresses at bit length 16 are necessary to handle 32 bit long data, but when using a 32 bit device, only one word address needs to be specified.

When using a 16 bit device

When using a 32 bit device

■ FLEX-PC Series

Setup System Area here.

Device	Bit Address	Word Address	Particulars	
Input Relay	X0000 ~ X07FF	WX0000 ~ WX07F		
Output Relay	Y0000 ~ Y07FF	WY0000 ~ WY07F		
Internal Relay	M0000 ~ M03FF	WM000 ~ WM03F		
Extended Internal Relay	M0400 ~ M1FFF	WM040 ~ WM1FF		
Latch Relay	L0000 ~ L03FF	WL000 ~ WL03F		
Extended Latch Relay	L0400 ~ L1FFF	WL040 ~ WL1FF		
Special Relay	M8000 ~ M81 FF	WM800 ~ WM81F		
Timer	T0000 ~ T03FF			
Counter	C0000 ~ C01FF			L/H
Timer (current value)		T0000 ~ T03FF		
Timer (setup value)		TS0000 ~ TS03FF	*1	
Counter (current value)		C0000 ~ C01FF		
Counter (setup value)		CS0000 ~ CS01FF	*1	
Data Register		D0000 - D2FFF	Bit 1 51	
Special Register		D8000 ~ D837F	Bit 1 5 1	
Link Register		W0000 ~ W3FFF	Bit 1 51	
File Register		R0000 ~ R7EFF	Bit 1 51	

^{* 1} Define and use 16 bit length data.

- Cannot read the *Timer* and *Counter* setup value. However, the write operation is possible only when the PLC is in program mode.
- When the *Timer* and *Counter* setup values are written from the GP, the ladder is changed so that the setup value uses a relative reference. For this reason, be careful when the setup value for the *Timer* and *Counter* uses an indirect ladder. Normally, *access* is recommended for indirectly referenced devices.

■ MICREX-SX Series

Setup System Area here.

Device	Bit Address	Word Address	Description
Input Memory	%IX 1.0.0 ~ %IX 238.3.15	% IW1.0 ~ % IW238.3	*1
Output Memory	% QX 1.0.0 ~ % QX 238.3.15	% QW1.0 ~ % QW 238.3	*1
Standard Memory	%MX□.1.0.0 ~ %MX□.1.65535.15	% MW□.1.0 ~ % MW□.1.65535	*2,*3, *4
	% MX□.1.65536.0 ~ % MX□.1.131071.15	% MW□.1.65536 ~ % MW□.1.131071	*2,*3,*4
	% MX□.1131072.0 ~ % MX□.1.196607.15	%MW□.1131072 ~ %MW□.1.196607	*2,*3, *4 *2,*3, *4
	%MX□.1. 196608.0 ~	%MW□.1. 196608 ~	*2,*3,*4
	%MX□.1.262143.15	%MW□.1.262143	*2,*3, *4 L/H
Retain Memory	% MX□.3.0.0 ~ % MX□.3.32768.15	% MW□.3.0 ~ % MW□.3.65535	*2,*3,*4
	%MX□.3.65536.0 ~	%MW□.3.65536 ~	*2,*3,*4
	%MX□.3.131071.15	% MW□.3.131071	*2,*3,*4
	%MX□.3131072.0 ~	% MW□.3.131072 ~	*2,*3,*4
	%MX□.3.196607.15	% MW□.3.196607	*2,*3,*4
	% MX □ .3. 196608.0 ~	%MW□.3. 196608 ~	*2,*3,*4
	% MX□.3.260095.15	% MW□.3.260095	*2,*3,*4
System Memory	%MX□.10.0.0 ~ %MX□.10.512.15	% MW□.10.0 ~ % MW□.10.512	*2

^{*1} Input/Output Memory Address Designation is as shown below.

BitDesignation

Word Designation

*2 Standard/Retain/System Memory Address Designation is as shown below.

BitDesignation

Word Designation

- *3 Standard GP internal memory is allocated 65535 words. As a result, be sure any tags, etc. used do not span consecutive addresses. Failure to do so may cause a "Host Communication Error (02:44)" message to display.
- *4 Standard and Retain memory sizes can be changed. However, the total memory size is fixed. (For details, refer to your PLC Manual). The screen editor's default setting assumes the input address range is set for the maximum.

• Standard/Retain/System Memory Address Word Designation

• Input/Output Memory Word Designation

• Input/Output Memory Bit Designation

The device address range availabel will vary depending on the type of CPU used. Be sure to check the PLC manual for your unit prior to actual use.

 When using PLC direct address designation, be sure the range used is the AT range designated in the ladder software program.
 Also, Pro-face recommends that the PLC variables used on the GP be the designated AT variables.

For detailed AT range designations and set up method information, please refer to the Fuji Electric Corporation's MICREX-SX Series D300Win<Reference Manual> User Manual.

When using varibles not designated by AT and changing the variables or ladder program, they must be reconverted and re-imported, then sent again via screen transfer to the GP.

- When using the System Area or Read Area, be sure the range used is the AT range designated.
- When a high-performance CPU is used to access the system area, be sure to use addresses starting from %MW2048.
- Only Global PLC variables can be set using the Editor software.
 Local variables cannot be set.
- When using Pro-Server, symbols must be designated and screens must be created for the devices to be accessed, then transferred to Pro-Server using Pro-Server's Import Symbol feature. For details, please refer to the Pro-Server Operation manual.

MICREX-SX Series Variable Conversion Program

The variable conversion program "cv_micrexsx.exe" creates a conversion file that is used to import ladder program variables created with Fuji Electric Corporation's MICREX-SX Series Ladder Software "D300win" into screen creation software. This variable conversion program has the following features.

- 1) Using a file saved via D300win, reads out variable information and outputs the following files:
- a) A symbol file (*.LBE) that is used by GP-PRO/PBIII's Symbol Editor for importing symbols.
- b) A variable file (*.VRF) that consists of conversion information (Tag settings, etc.) used by GP-PRO/PBIII to import variables.
- Applicable ladder software: Fuji Electric Corporation's MICREX-SX Series Programming Support Tool D300Win Ver. 3.1
- Compatible OS types: Windows98/ Windows2000/ Windows ME/ Windows NT/Windows XP

Basic Steps Prior to Using Variables

1. Variable Conversion Main Screen

Start up the variable conversion program cv_micrexsx.exe. Immediately after startup, the following Variable Conversion Main Screen will appear. The cv_micrexsx.exe file is installed with the GP-PRO/PBIII C-Package. This program is installed when the default installation is performed and is contained in the following folder.

C:\Program Files\Pro-face\ProPBWin

Right-clicking on this section calls up the "About" screen.

(1) Variable Converter

Displays the Variable Conversion screen. (See below)

(2) Symbol Name Editor

Displays the Symbols Name Editor screen. See -> File Update Check dialog box.

(3)Exit

Quits the conversion program.

2. Variable Conversion Screen

This screen is used to designate files created using the D300Win Ladder Logic software, and convert those variables.

Variable Conversion Main Menu

(1) D300win project file:

Used to select the desired D300win project file (*.mwt). The path and filename of any selected D300win project will remain in the combo-box menu, up to the 10 most recent projects. Simply selecting a previously run project will place its name in this filename entry line.

Also, once the path is selected, the program will automatically read the file extension ".mwt" and by default automatically insert that file in the directory path marked by "_VRF", which is used to save symbol/variable files.

(2) Directory to store symbol and variable files:

Designates the directory used for symbol and variable file output. Also, when the D300win project file is selected, the program will automatically read the file extension ".mwt" from the file path and by default automatically insert that file in the directory path marked by "_VRF".

The following file is output to the designated location. The filename is automatically created, based on the configuration name set in the ladder software.

- Symbol file (*.LBE)
 Symbol file created after converting variables in GP-PRO/PBIII.
- Variable file (*.VRF)
 Variable information file required by GP-PRO/PBIII.

(3) Execute

Performs the conversion processing. If a previously created output file exists, the following "File Update Confirmation Dialog Box" will appear.

File Update Confirmation Dialog Box

Ater the conversionis completed, either the "No Change to Symbol Name" dialog box or the "Changed Symbol Name" dialog box will appear. For steps on converting variables to symbol names, refer to step 4. Import Symbol Names Screen.

No Change to Symbol Name Dialog Box

Symbol Name Changed Dialog Box

(4) Exit

Clicking this button completes all processing and returns to the Variable Conversion Main Menu.

♦ Converting Variable Names to Symbol Names

When converting D300win variable names (max. 30 char.) to GP-PRO/PBIII symbol names (max. 20 char.), some variable names may be allocated to the same name symbol. In this case, use the steps below to convert variable names to symbol names.

- (1) When variable names are 21 characters or longer, 20 characters are taken, starting from the left-most character.
- (2) Check if the variable name has been previously registered as a symbol name.
- (3) If it has not been previously registered, that variable name is used as the symbol name.
- (4) If it has been previously registered as a symbol name, apply symbol names using the following steps, starting from the smallest value and continuing to the largest value, until an unregistered symbol name is found. If the largest value is reached and a symbol name has not been found, remove the variable's rightmost character and repeat the same process from step (2).

Variable Name to Symbol Name Conversion Table

No. of Var. Char.	Continuous. No. of Char. (Min.)	Continuous. No. of Char. (Max.)	Symbol Name Type	Description
1 to 11	1	99999999		Same symbol name is 10000000 or more.
12	1	9999999		Same symbol name is 1000000 or more.
13	1	999999		Same symbol name is 100000 or more.
14	1	99999	Var. Name "_" Contin. No.	Same symbol name is 10000 or more.
15	1	9999		Same symbol name is 1000 or more.
16	1	999		Same symbol name is 100 or more.
17	1	99		Same symbol name is 10 or more.
18	1	9		Same symbol name is 2 or more.
19	None	None	Var. Name	Same symbol name is 1 or more.
20	None	None	Var. Name	No other symbol names are same.

When a variable name is 30 characters long, i.e.

"ABDEFGHIJKLMNOPQRSTUVWXYZ1234" and is to be converted to a symbol name, the following example table shows the conversion results. See -> 1. Variable Conversion Main Screen.

Conversion Results of Conversion Table

No. of Char in Var.	Continuous. No. of Char.	Continuous. No. of Char.
Name	(Min.)	(Max.)
20	ABCDEFGHUKLMNOPQRST	ABCDEFGHIJKLMNOPQRST
19	ABCDEFGHUKLMNOPQRS	ABCDEFGHIJKLMNOPQRS
18	ABCDEFGHIJKLMNOPQR_1	ABCDEFGHIJKLMNOPQR_9
17	ABCDEFGHIJKLMNOPQ_1	ABCDEFGHIJKLMNOPQ_99
16	ABCDEFGHIJKLMNOP_1	ABCDEFGHIJKLMNOP_999
15	ABCDEFGHIJKLMNO_1	ABCDEFGHIJKLMNO_9999
14	ABCDEFGHIJKLMN_1	ABCDEFGHIJKLMN_99999
13	ABCDEFGHIJKLM_1	ABCDEFGHIJKLM_999999
12	ABCDEFGHIJKL_1	ABCDEFGHIJKL_9999999
11	ABCDEFGHIJK_1	ABCDEFGHIJK_99999999
10	ABCDEFGHIJ_1	ABCDEFGHIJ_99999999
9	ABCDEFGHI_1	ABCDEFGHI_99999999
8	ABCDEFGH_1	ABCDEFGH_99999999
7	ABCDEFG_1	ABCDEFG_99999999
6	ABCDEF_1	ABCDEF_99999999
5	ABCDE_1	ABCDE_99999999
4	ABCD_1	ABCD_99999999
3	ABC_1	ABC_99999999
2	AB_1	AB_99999999
1	A_1	A_99999999

3. Symbol Name Editor Screen

When the "Symbol Name Editor" is selected, the following screen will appear. This screen is allows you to edit the symbol name information of imported symbols.

Symbol Name Editor Main Screen

(1) Edit File

Selects the output file (*.VRF) created by [Variable Conversion]. The path of any selected variable file will remain in the combo-box menu, up to the 10 most recent files and can be easily selected.

(2) Execute

Displays the variable list screen to perform the symbol name conversion. (See below)

(3) Close

Quits the symbol conversion processing and returns to the Variable Conversion Main Menu.

♦ List of Variables Screen

After designating the file name and clicking [Execute], the following screen will appear.

(1) Project Name, Configuration Name

Displays the selected variable file's D300win's project and configuration names. The configuration name's default is "C_SX", and can be changed via the ladder software.

(2) Resource Name, Group Name

When the Resource or Group names are selected, their registered variable and symbol names will appear.

Resource Name: Resource names registered to the D300win project.

Group Name: Group names registered to the D300win project.

(3) Variable Name, Symbol Name

Displays the selected variable and symbol names.

(4) Variable Name

Displays the variable name(s) set in the PLC ladder program.

(5) Symbol Name

Displays the symbol names registered in the GP Symbol Editor.

(6) was assigned by

Indicates the method used to set the symbol name.

a) [Blank]

Indicates same variable and symbol names were entered using either the variable conversion program or manually.

b) converter

Indicates the conversion program changed the variable name to a different symbol name.

c) user

Indicates the variable name was manually changed to a different symbol name.

(7) Edit

Clicking on the [Edit] button causes the selected variable's [Symbol Name Editor] edit screen to appear. (See -> 3. Symbol Name Editor Screen)

You can also double-click on the variable name's row to call up the edit screen.

(8) Save

Saves the edited symbol names to the variable and symbol files.

(9) Close

Returns to the Symbol Name Editor screen. (See -> 3. Symbol Name Editor Screen) However, if this is clicked after symbols are edited but before the changes have been saved, the following [Variable File Save Confirmation Screen] will appear.

♦ Symbol Name Editor Screen

The Symbol Name Editor Screen is as follows. All data in this screen, except for the symbol name, is view-only and cannot be edited.

Symbol Name Editor Screen

(1) Symbol Name

Symbol name can be edited.

(2) OK

After editing the symbol name, returns to the [List of Variables].

(3) Cancel

Closes this screen and returns to the previous [List of Variables] screnn, without changing symbol name data.

4. Import Symbol Names Screen

This Editor feature will import symbol files.

Symbol Editor

Importing Symbol files

5. Import Variable Information Screen

The "Import Variable" feature reads the file created by the variable conversion program. After this information is read, variable name information can be seen when setting up Tags.

Mode Settings Screen

Click the [GP Setup] screen's [Mode Settings] tab. Then, click the [Variable Import] button to call up the [Variable Import] screen.

After clicking the [Variable Import] button, the following [Variable Import] screen appears. Here is where the variable file (*.VRF) is designated. Clicking [OK] changes to the [Project Confirmation] screen. (See -> Project Confirmation Screen)

Variable Import Screen

After clicking the [GP Setup] screen's [Variable Import] button, the following [Project Confirmation] screen appears. Clicking [OK] imports the variable file, and returns to the [Mode Settings] screen. Pressing [Cancel] returns to the [Mode Settings] screen and does not import the variables. (See -> Mode Settings Screen)

Project Confirmation Screen

6. Tag Setting Screen

To enter Tag settings, simply click on the keypad to call up the following screen. Next, click on the keypad's [Variable (V)] button to call up the [Variable Designation Screen].

If [Variable Import] has not been performed, the [Variable (V)] button will be disabled (gray).

Keypad Screen

After the [Variable (V)] button is pressed, the following screen will appear and variables can be selected. After selecting the Resource and Group names, select the Variable name.

Variable Designation Screen

In the Variable Designation screen, imported variables can be selected.

Variable Designation Screen

- Pro-face recommends using AT designation (Address designation) when setting up the communication area to communicate with a GP Series unit. If the variables are not AT designated, they will be automatically allocated by the ladder software.
- Only Global PLC variables can be set using the Editor software. Local variables cannot be set.
- After using the Screen Editor to import symbols, do not use the Symbol Editor to update addresses used by variables. If these addresses are updated, it will create a diference between the address settings used in the ladder software, which could in turn lead to a unit operation error. Also, if ladder software variables are updated, they must be reimported to update the variable information.

2.3.4

Environment Setup

The following tables list Digital's recommended PLC and GP communication settings.

■ MICREX-F Series (using PC I/F module FFU120B)

GP Setup		FFU120B Set	ир
Baud Rate	19200 bps	Baud Rate	19200 bps
Data Length	7 bit	Data Bit	7 bit
Stop Bit	2 bit	Stop Bit	2 bit
Parity Bit	Even	Parity Bit	Even
Data Flow Control	ER Control	Transfer Condition	None
Communication Format (RS-232C)	RS-232C	MODE Switch (RS-232C)	1
Communication Format (RS-422)	4-wire type	MODE Switch (RS-422)	3
		Char. structure Switch	8 (INIT) is Off
		RS-485 Station # setup Switch (Only for RS-485)	0
		DCE/DTE Mode	DCE Mode
		Transfer Process	No Process
		Mode	Setting
		CTS/RTS Control	Normally ON
		DSR/DTR Control	Normally ON
		PK Access	Allowed
		Transfer Code	JIS
		Code Conversion	Used
		Start Code	STX
		End Code	ETX
		Start code 1,2	0
		End Code 1,2	0
		BCC	None
Unit No. 0 (fixed)			

■ MICREX-F Series (using General Interface Module NC1L-RS2)

GP Setup		NC1L-RS2 S	Setup
Baud Rate	19200 bps	Baud Rate	19200 bps
Data Length	8 bit	Data Bit	8 bit
Stop Bit	1 bit	Stop Bit	1 bit
Parity Bit	Even	Parity Bit	Even
Data Flow Control	ER Control	Transfer Condition	None
Communication Format (RS-232C)	RS-232C	MODE Switch (RS-232C)	1
		Char. Structure Switch	8 (INIT) is Off (FILE)
		DCE/DTE Mode	DCE Mode
		Transfer Process	No Process
		Mode	Setting
		CTS/RTS Control	Normally ON
		DSR/DTR Control	Normally ON
		PK Access	Allowed
		Transfer Codes	JIS
		Code Conversion	Used
		Start Code	STX
		End Code	ETX
		Start code 1,2	0
			0
		BCC	None
Unit No.	0 (fixed)		·

■ MICREX-F Series (using PC I/F capsule FFK120A-C10)

GP Setup		FFK120A-C10	Setup
Baud Rate	19200 bps	Baud Rate	19200 bps
Data Length	7 bit	Data Bit	7 bit
Stop Bit	2 bit	Stop Bit	2 bit
Parity Bit	Even	Parity Bit	Even
Data Flow Control	ER Control	Transfer Condition	None
Communication Format (RS-232C)	RS-232C	MODE Switch (RS-232C)	1
Communication Format (RS-422)	4-wire type	MODE Switch (RS-422)	3
		Char. structure Switch	8 (INIT) is Off (FILE)
		RS-485 Station # setup Switch (Only for RS-485)	0
		DCE/DTE Mode	DCE Mode
		Transfer Process	No Process
		Mode	Setting
		CTS/RTS Control	Normally ON
		DSR/DTR Control	Normally ON
		PK Access	Allowed
		Transfer Code	JIS
		Code Conversion	Used
		Start Code	STX
		End Code	ETX
		Start code 1,2	0
		End Code 1,2	0
		BCC	None
Unit No. 0 (fixed)			-

■ MICREX-F Series (using PC I/F capsule FFK100A-C10)

GP Setup		FFK100A-C1	0 Setup
Baud Rate	9600 bps	Baud Rate	9600 bps
Data Length	7 bit	Data Bit	7 bit
Stop Bit	2 bit	Stop Bit	2 bit
Parity Bit	Even	Parity Bit	Even
Data Flow Control	ER Control	Transfer Condition	None
Communication Format (RS-232C)	RS-232C		
		Char. Structure Switch	8 (INIT) is Off (FILE)
		DCE/DTE Mode	DCE Mode
		Transfer Process	No Process
		Mode	Setting
		CTS/RTS Control	Normally ON
		DSR/DTR Control	Normally ON
		PK Access	Allowed
		Transfer Code	JIS
		Code Conversion	Used
		Start Code	STX
		End Code	ETX
		Start code 1,2	0
		End Code 1,2	0
		BCC	None
Unit No.	0 (fixed)		

■ MICREX-F Series (FLT-ASFK)

GP Setup		Adapter Setu	p
Baud Rate	19200 bps	Baud Rate	19200 bps
Data Length	8 bit	Data Length	8 bit
Stop Bit	1 bit		
Parity Bit	Even	Parity Bit	Even
Data Flow Control	ER Control	Transfer Condition	None
Communication Format	RS-232C		
Unit No.	0		
		MODE	LOADER

This is set via the adaptor's dipswitch. There is no need to set this via the initial file.

■ MICREX-SX Series

• CPU Direct Connection

GP Settings		PLC Setting	S
Baud Rate	38400 bps (Fixed)	Baud Rate	38400 bps
Data Length	8 bits (Fixed)	Data Length	8 bits
Stop Bit	1 bit (Fixed)	Stop Bit	1 bit
Parity Bit	Even (Fixed)	Parity	Even
Data Flow Control	ER (Fixed)		
Communication Format (When using RS-232C)	RS-232C		
Communication Format (When using RS-422)	4-wire		
Communication Format (When using RS-422)	2-wire		
Unit No.	0 (Fixed)		

• When Using the Communication Module

GP Settings		PLC Setting	S
Baud rate	38400 bps (Fixed)		
Data Length	8 bits (Fixed)		
Stop Bit	1 bit (Fixed)		
Parity Bit	Even (Fixed)		
Data Flow Control	ER (Fixed)		
Communication Format (When using RS-232C)	RS-232C	Mode Setting Switch	1 or 3
Communication Format (When using RS-422)	4-wire	Mode Setting Switch	2 or 3
Communication Format (When using RS-422)	2-wire	Mode Setting Switch	2 or 3
Unit No.	0 (Fixed)		

■ FLEX-PC Series (When using the Link I/F)

GP Settings		Communication Unit, Module Settin	
Baud rate	19200 bps	Baud rate	19200 bps
Data Length	7 bit	Data Length	7 bit
Stop Bit	1 bit	Stop Bit	1 bit
Parity Bit	Even	Parity Bit	Even
Data Flow Control	ER	Send Status	DTRon/CTSon
Communication Format (When using RS-232C)	RS-232C	Mode Switch (When using RS-232C)	1
Communication Format (When using RS-422)	4-wire	Mode Switch (When using RS-422)	3
Unit No.	1 (Fixed)	Station No.	1

■ FLEX-PC Series (CPU Direct Connection)

GP Settings		PLC Settings
Baud Rate	19200 bps (Fixed)	
Data Length	8 bit (Fixed)	
Stop Bit	1 bit (Fixed)	
Parity Bit	Odd (Fixed)	
Data Flow Control	ER (Fixed)	
Communication Format	4-wire (Fixed)	
Unit No.	1 (Fixed)	

A

Fuji Electric

Δ.1

Maximum Number of Consecutive Device Address

The following lists the maximum number of consecutive addresses that can be read by each PLC. Refer to these tables to utilize *Block Transfer*.

When the device is setup using the methods below, the Data Communication Speed declines by the number of times the device is read.

- When consecutive addresses exceed the maximum data number range
- When an address is designated for division
- When device types are different

To speed up data communication, plan the tag layout in screen units, as consecutive devices. (Includes the Alarm and Trend screens.)

■ PLC

<MICREX-F Series>

Device	Max. No. of Consecutive Addresses	Device	Max. No. of Consecutive Addresses
Input/Output Relay B		Timer 0.1 (current	
input Output Netay B		value) W9	
Auxilary Relay M		Counter (current	
Maximary Relay W	40.14	value) CR	
Keep Relay K	48 Words	Coutner (setup	24 Words
Recp Relay R		value) CS	
Differential Relay D		Data Memory BD	
Link Relay L		Data Memory DI	
Timer (0.01 sec) T		Data Memory SI	
Timer (0.1 sec) T	1 Word	File Memory (W30)	48 Words
Counter C		File Memory (W31)	40 Words
Direct Input/Output W	48 Words	File Memory (W32)	
Timer 0.01 (current		File Memory (W33)	
value) TR	24 Words	The Michiely (W33)	24 Words
Timer 0.01 (setup value) TS	21 110103	File Memory (W34)	21.110103

<MICREX-SX Series>

Device	Max. No. of Consecutive Addresses
Input Memory	
Output Memory]
Standard Memory	243 Words
Retain Memory]
System Memory	1

<FLEX-PC N Series>

Device	Max. No. of Consecutive Addresses	Device	Max. No. of Consecutive Addresses
Input Relay X		Data Register D	
Output Relay Y		Special Register D]
Internal Relay M		Link Register W]
Extended Internal Relay M		File Register R	
Latch Relay L	105 Words	Timer (current v alue) T	105 Words
Extended Latch Relay L		Timer (setup value) TS]
Special Relay M		Counter (current value)	
Timer T		Coutner (setup value) CS	
Counter C			•

■ Inverters

<Micro-Controller X Series (Model:PXR)>

Device	Max. No. of Consecutive Addresses
Standard Feature	1 bit
Terminal Feature	8 bit
Control Feature	15 words
Motor 1	60 words
High-Level Feature	15 words
Motor 2	60 words

<FRENICS5000G11S, FRENICS5000P11S, FVR-E11S, FVR-C11S Series>

Device	Max. No. of Consecutive
Device	Addresses
Standard Feature	
Terminal Feature	
Control Feature	
Motor 1	
High-Level Feature	1 Word
Motor 2	
Option	
Instruction Data	
Monitor Data	

A.2

Device Codes and Address Codes

Device codes and address codes are used to specify indirect addresses for the E-tags or K-tags.

The word addresses of data to be displayed are coded and stored in the word address specified by the E-tags and K-tags. (Code storage is done either by the PLC, or with T-tag and K-tags)

■ PLC

<MICREX-F Series>

		Word	Device	Address Code	
	Device	Address	Code		
	land Dalan	MDOOO	(HEX)	Mond Addus as	
	Input Relay	WB0000~	8040	Word Address	
	Direct I/O	W24.0000~	4840	Word Address	
	Auxilary Relay	WM0000~	9040	Word Address	
Bit	Keep Relay	WK000~	C040	Word Address	
Device	Differential Relay	WD000~	D040	Word Address	
	Link Relay	WL000~	C840	Word Address	
	Special Relay	WF0000~	B040	Word Address	
	Announce Relay	WA0000~	B840	Word Address	
	Timer 0.01 sec	TR0000~	6080	Word Address	
	(current value)	1 10000~	0000	Word Address	
	Timer 0.01 sec	TS0000~	6880	Word Address	
	(set value)	1 30000~		IVVOIU MUUICSS	
	Timer 0.1 sec	W9.000~	6480	Word Address	
	(current value)	VV9.000~			
	Counter (curent	CR0000~	7080	Word Address	
	value)	CRUUUU~			
Word	Counter (set	CS0000~	7000	Word Address	
Device	value)	C30000~	7880		
Device		BD0000~	0800	Word Address	
	Data Memory	DI0000~	0880	Word Address	
		SI0000~	0440	Word Address	
	File Memory	W30.0000~	2040	Word Address	
		W31.0000~	2240	Word Address	
		W32.0000~	2440	Word Address	
		W33.0000~	2680	Word Address	
		W34.0000~	2880	Word Address	
	LS Area	LS0000~	4040	Word Address	

<MICREX-SX Series>

Device	Word Address	Device Code	Address Code	
Input Memory	%IW1.0 ~	0x8000	Word Address	
Output Memory	%QW1.0 ~	0x8800	Word Address	
	%MW 1.0 ~	0x9000	Word Address	
	%MW 1.65536 ~	0x9200	Word Address	
	%MW 1.131072 ~	0xD000	Word Address	
	%MW 1.196608 ~	0xD200	Word Address	
	%MW1.1.0 ~	0x9400	Word Address	
	%MW 1.1.65536 ~	0x9600	Word Address	
	%MW 1.1. 131072 ~	0xD400	Word Address	
	%MW 1.1. 196608 ~	0xD600	Word Address	
	%MW 2.1.0 ~	0x9800	Word Address	
Standard Mamon	%MW 2.1.65536 ~	0x9A00	Word Address	
Standard Memory	%MW 2.1. 131072 ~	0xD800	Word Address	
	%MW 2.1.196608 ~	0xDA00	Word Address	
	%MW 3.1.0 ~	0x9C00	Word Address	
	%MW 3.1.65536 ~	0x9E00	Word Address	
	%MW 3.1. 131072 ~	0xDC00	Word Address	
	%MW 3.1.196608 ~	0xDE00	Word Address	
	%MW 4.1.0 ~	0xA000	Word Address	
	%MW 4.1.65536 ~	0xA200	Word Address	
	%MW 4.1. 131072 ~	0xE000	Word Address	
	%MW 4.1. 196608 ~	0xE200	Word Address	
Retain Memory	%MW 3.0 ~	0xB000	Word Address	
	%MW 3.65536 ~	0xF000	Word Address	
	%MW 3. 131072 ~	0x8400	Word Address	
	%MW 3. 196608 ~	0x8200	Word Address	
	%MW1.3.0 ~	0xB200	Word Address	
	%MW 1.3.65536 ~	0xF200	Word Address	
	%MW 1.3. 131072 ~	0x8600	Word Address	
	%MW 1.3. 196608 ~	0xAC00	Word Address	
	%MW 2.3.0 ~	0xB400	Word Address	
	%MW 2.3.65536 ~	0xF400	Word Address	
	%MW 2.3. 131072 ~	0x8A00	Word Address	
	%MW 2.3.196608 ~	0xAE00	Word Address	
[%MW 3.3.0 ~	0xB600	Word Address	
[%MW 3.3.65536 ~	0xF600	Word Address	
[%MW 3.3. 131072 ~	0x8C00	Word Address	
[%MW 3.3. 196608 ~	0xEC00	Word Address	
Ī	%MW 4.3.0 ~	0xB800	Word Address	
[%MW 4.3.65536 ~	0xF800	Word Address	
[%MW 4.3. 131072 ~	0x8E00	Word Address	
	%MW 4.3.196608 ~	0xEE00	Word Address	

System Memory	%MW 1.0 ~	0xC000	Word Address	
	%MW 1.10.0 ~	0xC200	Word Address	
	%MW 2.10.0 ~	0xC400	Word Address	
	%MW 3.10.0 ~	0xC600	Word Address	
	%MW 4.10.0 ~	0xC800	Word Address	
LS Area	LS0000 ~	0x4000	Word Address	

<FLEX-PC Series>

	Device	Word Address	Device Code (HEX)	Address Code
	Input Relay	WX000~	8040	Word Address
	Output Relay	WY000~	8840	Word Address
	Internal Relay	WM000~	9040	Word Address
Bit Device	Extended Internal Relay	WM 040~	9840	Word Address
	Latch Relay	WL000~	C 040	Word Address
	Extended Latch Relay	WL040~	C 840	Word Address
	Special Relay	WM800~	Х	Х
	Timer (current value)	T0000~	6000	Word Address
	Timer (set value)	TS0000~	6800	Word Address
	Counter (current value)	C 0000~	7000	Word Address
Mond	Counter (set value)	CS0000~	7800	Word Address
Word Device	Data Register	D0000~	0040	Word Address
	Special Register	D8000~	Х	Х
	Link Register	W0000~	0440	Word Address
	File Register	R0000~	4840	Word Address
	LS area	LS0000~	4040	Word Address

■ Inverters

<Micro-Controller X Series (Model:PXR)>

	Device	Word Address	Device Code (HEX)	Address Code
Bit Device	Parameter	00001 ~	8000	Cannot be set
		10001 ~	8200	Word Address minus 1
		30001 ~	8400	Word Address minus 1
		40001 ~	8600	Word Address minus 1
Word Device		31001 ~	8800	Word Address minus 1
		41001 ~	8A00	Word Address minus 1
	LS Area	LS0000 ~	4000	Word Address

<FRENICS5000G11S, FRENICS5000P11S, FVR-E11S, FVR-C11S Series>

	Device	Word Address	Device Code (HEX)	Address Code	
	Standard Feature	F00 ~	0	Word Address	
	Terminal Feature	E01 ~	1000	Word Address minus 1	
	Control Feature	C01 ~	2000	Word Address minus 1	
	Motor 1	P00 ~	3000	Word Address	
Word	High-level Feature	H01 ~	5000	Word Address minus 1	
Device	Motor 2	A01 ~	6000	Word Address minus 1	
	Option	000 ~	7000	Word Address	
	Instruction Data	S01 ~	1200	Word Address minus 1	
	Monitor Data	M01 ~	1400	Word Address minus 1	
	Alarm Reset	m00 ~	1600	Word Address	
	LS Area	LS0000 ~	4000	Word Address	

A.3

Address Conversion Table

The address conversion table is shown below.

		After Conversion					
		%IW	%QW	% MW1	%MW3	% MW10	LS
	Input Memory	0	0	O	O	O	0
	Output Memory	O	O	O	O	O	0
Before Conve-	Standard Memory	O	O	O	O	O	0
rsion	Retain Memory	0	0	0	O	0	0
	System Memory	0	0	0	O	0	0
	LS	O	O	0	O	0	O

O: When the conversion mode is set to "Word", both word and bit devices will be converted. If the conversion mode is set to "Bit", only bit devices will be converted.