Problem Sheet 1

- (1) Approximate $\sqrt[3]{13}$ to three decimal places by applying the bisection method to the equation $x^3 13 = 0$.
- (2) Consider the function $g(x) = e^{-x^2}$.
 - (a) Prove that this function has a unique fixed point on the interval [0, 1].
 - (b) Consider the iteration scheme $x_{n+1} = g(x_n)$. Use the theoretical error bound:

$$|x_n - x| \le \frac{\alpha^n}{1 - \alpha} |x_1 - x_0|$$

to obtain an estimate for the number of iterations needed to approximate the fixed point within 10^{-6} .

- (3) Consider the function $g(x) = \cos(x)$.
 - (a) Graphically verify that this function has a unique fixed point on the real line.
 - (b) Can we prove that the fixed point is unique using Banach's Fixed Point Theorem for $X = \mathbb{R}$? Explain your answer.
 - (c) By restricting the interval on which g is defined, demonstrate that for suitable X Banach's Fixed Point Theorem can be applied.
- (4) The function $g(x) = \sin(x)$ has a zero on the interval [3, 4], namely $x = \pi$.
 - (a) Perform three iterations of Newton's method to approximate this zero, starting at $x_0 = 4$.
 - (b) Determine the error in each of the approximations. What is the order of convergence?