SI	Name	Roll No	Assignment	Mark	Remarks
No				s	
1	Manish Kumar	EEB17036	Fig. 1 b) from	20	1. Overall good. (note: it is not a PMSG model
2	Sanjay	EEB17026	"New family of		which you mentioned in your code!)
	Barman		4-D		2. Explain the following lines of your code
3	Abhishek	EEB17035	hyperchaotic		(why negative only for Xn):
	Kumar		and chaotic		X_total=[Xn -Xn];
4	Aniket Raj	EEB17031	systems with		Y_total=[Yn Yn];
5	Trinayan	EEB17032	quadric surfaces		Z_total=[Zn Zn];
	Khatiwada		of equilibria"		3. Can you explain how the equilibrium points
					you have calculated are in the form of the
					general equation/expression of a spheroid?

1. Explain the following lines of your code (why negative only for Xn):

```
X_total= [Xn -Xn];
Y_total= [Yn Yn];
Z total= [Zn Zn];
```

Ans: Because if we don't take negative of Xn we would have half spheroid.

As we have seen equilibrium point has been acquired from approximated solution

```
E=[x1val(3,:);x2val(3,:);x3val(3,:);x4val(3,:)];
```

Where X1val having multiple equation, here 3rd and 8th equation (the red one) in box below both equations have the same magnitude with opposite sign so we have taken 3rd equation in equilibrium point. After calculating the points from E we have added another calculated point with negative sign.

e.g. X_total= [Xn -Xn] (here there is negative sign because 3rd and 8th equation in box below have opposite sign with same magnitude)

```
>> x1val =
-1.0*(1.0 - 2.0*z^2)^(1/2)
(-1.0*(z - 1.0)*(z + 1.0))^(1/2)
(-2.0*z^2 - 1.0*z1^2 + 1.0)^(1/2)
-0.47140452079103168293389624140323*(-9.0*z^2 - 8.0)^(1/2)
0.47140452079103168293389624140323*(-9.0*z^2 - 8.0)^(1/2)
-1.0*(-1.0*(z - 1.0)*(z + 1.0))^(1/2)
(1.0 - 2.0*z^2)^(1/2)
-1.0*(-2.0*z^2 - 1.0*z1^2 + 1.0)^(1/2)
```

Just like previous, here also 3^{rd} and 8^{th} equation in box below have same magnitude with same sign, we have only considered one of the them, after calculating the points from E we added second z1.

e.g. Y_total= [Yn Yn] (here there is no negative sign because in x2val value both equation 3rd and 8th are same)

Similarly, for Z_total= [Zn Zn];

2. Can you explain how the equilibrium points you have calculated are in the form of the general equation/expression of a spheroid?

Ans: This is our equilibrium point

```
E =
(- 2.0*z^2 - 1.0*z1^2 + 1.0) ^ (1/2)
z1
0
z
```

let,

$$x1=(-2.0*z^2-1.0*z^2+1.0)^(1/2)$$
 -(1)

$$x2 = z1$$
 -(2)

$$x3 = 0$$
 -(3)

$$x4 = z$$
 -(4)

Squaring both side in equation 1,2 & 3.

$$x_1^2 = (-2.0 * z^2 - 1.0 * z_1^2 + 1.0)$$
 -(5)

$$x_2^2 = z_1^2$$
 -(6)

$$x_4^2 = z^2$$
 -(7)

Now, substituting the value of z_1^2 and z^2 from equation 6 & 7 into the equation 5. We have,

$$x_1^2 + x_2^2 + \frac{x_4^2}{1/2} = 1$$
, $x_3 = 0$

This is the expression of a spheroid and is similar to the spheroid equation given in the research paper.

QS2
$$\dot{x}_1 = x_3 \ \dot{x}_2 = -x_3 (hx_2 + dx_2^2 + x_1x_3)\dot{x}_3 = \begin{cases} \frac{x_1^2}{a^2} + \frac{x_2^2}{a^2} + \frac{x_4^2}{b^2} = 1, x_3 = 0 \end{cases}$$
 Spheroid $\frac{x_1^2}{a^2} + \frac{x_2^2}{a^2} + \frac{x_4^2}{b^2} = 1, x_3 = 0$ Spheroid $\frac{x_1^2}{a^2} + \frac{x_2^2}{a^2} + \frac{x_4^2}{b^2} = 1, x_3 = 0$ Spheroid $\frac{x_1^2}{a^2} + \frac{x_2^2}{a^2} + \frac{x_2^2}{b^2} = 1, x_3 = 0$

Thank you