Tarea 7: Orientabilidad

Jose Antonio Lorencio Abril

a) Como S_2 es orientable, existe un atlas de S_2 compatible, o sea, tal que si dos cartas se cortan, entonces el cambio de coordenadas tiene determinante de su jacobiano positivo.

Sea $\{U_p, X_p\}_{p \in S_2}$ dicho atlas. Vamos a ver que podemos tomar otro atlas de S_2 que es compatible y tal que φ es un difeomorfismo hacia el conjunto de llegada $X_p(U)$ con $U \subset U_p$ un entorno de p (al menos para los p tales que $\exists q \in S_1 | p = \varphi(q)$, los demás no tienen importancia para nuestro propósito).

Dado $q \in S_1 \implies \varphi(q) = p \in S_2$. Como φ es un difeomorfismo local, existen entornos V_q de q y $W_{\varphi(q)}$ de p tales que

$$\varphi_q:V_q\to W_{\varphi(q)}$$

es un difeomorfismo. Entonces, dado $q \in S_1$ si $\varphi(q)$ está cubierto por $\{U, X\}$, también está cubierto por $\{U', X_{|U'}\}$, donde $U' \subset U \cap X^{-1}(W_{\varphi(q)})$. Por tanto, podemos tomar un nuevo atlas para S_2 dado por $\{U'_p, X'_p\}_{p \in S_2}$ de tal forma que si $p \notin \varphi(S_1)$ la carta que lo cubre es la del atlas inicial, y si $p \in \varphi(S_2)$, entonces tomamos la carta como acabamos de describir. Este atlas es, también, compatible en S_2 , pues consiste en tomar el primero y restringir las parametrizaciones a abiertos contenidos en los iniciales.

Ahora, tomamos el atlas de S_1 dado por $\{U'_p, \varphi^{-1}(X'_p)\}_{p \in \varphi(S_1)}$, que es efectivamente un atlas porque:

- U_p es abierto, $\varphi^{-1}(X'_p)$ es diferenciable, porque X'_p lo es y φ^{-1} es un difeomorfismo en el dominio de definición (por la construcción del atlas en S_2)
- $\varphi^{-1}\left(X_p'\right)$ es un homeomorfismo por ser composición de homeomorfismos en su dominio
- en U_p la diferencial $d\left(\varphi^{-1}\left(X_p'\right)\right)$ es inyectiva por ser composición de un difeomorfismo y de una aplicación con diferencial inyectiva
- Además, si $q \in S_1 \implies \varphi(q) \in S_2 \implies \left\{ U'_{\varphi(q)}, X'_{\varphi(q)} \right\}$ cubre a $\varphi(q) \implies \left\{ U'_{\varphi(q)}, \varphi^{-1} \left(X'_{\varphi(q)} \right) \right\}$ cubre a q.

Supongamos ahora que hay dos cartas que cubren a $q = \varphi^{-1}(p)$. O sea

$$\left\{ U_{p}^{\prime},\varphi^{-1}\left(X_{p}^{\prime}\right)\right\} ,\ \left\{ \overline{U_{p}^{\prime}},\overline{\varphi^{-1}\left(X_{p}^{\prime}\right)}\right\} ,\ p=\varphi\left(q\right)$$

Entonces, las cartas $\{U'_p, X'_p\}$ y $\{\overline{U'_p}, \overline{X'_p}\}$ cubren p, por lo que el cambio de coordenadas $h: U_p \to \overline{U_p}$ es tal que det(Jh) > 0, pero este cambio de coordenadas nos sirve también para las cartas iniciales en S_1 .

De este modo, vemos como el atlas de S_1 descrito es compatible y, por tanto, S_1 es orientable.

b) [\Leftarrow] Como φ es difeomorfismo, entonces es difeomorfismo local. Y como S_2 es orientable, por el apartado anterior, tenemos que S_1 es orientable.

1

 $[\implies]$ Ahora, como φ es difeomorfismo, entonces φ^{-1} es difeomorfismo, y también es difeomorfismo local. De nuevo, como S_1 es orientable, usando el apartado anterior, tenemos que S_2 es orientable.

- c) Sea $\{U_p, X_p\}$ un atlas compatible de S_1 , que existe porque es orientable. Entonces $\{U_p, \varphi(X_p)\}$ es un atlas compatible de S_2 por ser φ un difeomorfismo (esto se hace como en a), pero más sencillo porque ahora el difeomorfismo es global y no hace falta andar tomando entornos).
 - Sea $\varphi(p) \in S_2$ y $N(\varphi(p))$ el valor de la orientación de S_2 en $\varphi(p)$. Llamamos ahora $M = \varphi(X_p)_u \wedge \varphi(X_p)_v$, y tenemos dos posibilidades:
 - $\frac{M}{|M|} = -N\left(\varphi\left(p\right)\right)$, entonces tomamos la orientación inducida $\frac{M}{|M|}$.
 - $\frac{M}{|M|} = N\left(\varphi\left(p\right)\right)$, en este caso tomamos el atlas de S_1 dado por $\left\{U_p, X_p'\right\}$, donde

$$X_{p}'\left(u,v\right) = X_{p}\left(v,u\right)$$

por lo que

$$(X'_p)_u = (X_p)_v, \qquad (X'_p)_v = (X_p)_u$$

У

$$(\varphi \circ X_p')_u = d\varphi (X_p') (X_p')_u = d\varphi (X_p) (X_p)_v = (\varphi \circ X_p)_v$$
$$(\varphi \circ X_p')_v = (\varphi \circ X_p)_u$$

Por tanto

$$\frac{\left(\varphi\circ X_{p}^{\prime}\right)_{u}\wedge\left(\varphi\circ X_{p}^{\prime}\right)_{v}}{\left|\left(\varphi\circ X_{p}^{\prime}\right)_{u}\wedge\left(\varphi\circ X_{p}^{\prime}\right)_{v}\right|}=\frac{\left(\varphi\circ X_{p}\right)_{v}\wedge\left(\varphi\circ X_{p}\right)_{u}}{\left|\left(\varphi\circ X_{p}\right)_{v}\wedge\left(\varphi\circ X_{p}\right)_{u}\right|}=\frac{-M}{\left|M\right|}=-N\left(\varphi\left(p\right)\right)$$

De forma que la orientación inducida buscada es $\frac{-M}{|M|}$.