EE2302 Foundations of Information Engineering

Assignment 2 (Solution)

1.

- a) No, because the elements c and d map to the same element in the co-domain of F.
- b) Yes, because all the elements in Y are images of some element in X.
- c) $\{e, f, g\}$.
- d) No, because the elements a and b map to the same element in the co-domain of G.
- e) No, because the element g is not an image of any element in the domain of G.
- f) {*e*, *f*}.

2.

- a) No. We can give a counterexample g(1) = g(-1) = 1 and $1 \neq -1$.
- b) Yes. For $\forall y \in \mathbb{R}_+$, there exists $x = \pm \sqrt{y} \in \mathbb{R}$ such that $g(x) = (\pm \sqrt{y})^2 = y$.
- 3. Let x_1 and x_2 be elements in X such that $g \circ f(x_1) = g \circ f(x_2)$. That is equivalent to $g(f(x_1)) = g(f(x_2))$. Since g is injective, $f(x_1) = f(x_2)$. Since f is also injective, $x_1 = x_2$. Hence, $g \circ f$ is injective.
- 4. Yes. Define a function $f:(0,1) \to (10,100)$ such that f(x) = 90x + 10. Suppose $f(x_1) = f(x_2)$. Then $90x_1 + 10 = 90x_2 + 10$, which implies that $x_1 = x_2$. Hence, f is one-to-one. Given any $y \in (10,100)$, there exists $x = \frac{y-10}{90} \in (0,1)$ such that f(x) = y. Hence, f is onto. Therefore, f is a one-to-one correspondence. Hence, the two sets have the same cardinality.