Continuous Optimization

Daniel Mao

Copyright \bigodot 2020 - 2022 Daniel Mao All Rights Reserved.

Contents

1 Constrained Optimization		1
	1.1 Definitions	1

ii CONTENTS

Chapter 1

Constrained Optimization

Let $f: \mathbb{R}^n \to \mathbb{R}$, $g: \mathbb{R}^n \to \mathbb{R}^m$, and $h: \mathbb{R}^n \to \mathbb{R}^p$. Consider the following optimization problem

(P) inf
$$f(x)$$

subject to: $g(x) \le 0$
 $h(x) = 0$
 $x \in \mathbb{R}^n$.

Let $S \subseteq \mathbb{R}^n$ denote the feasible region.

1.1 Definitions

DEFINITION 1.1 (Local Minimizer). ...

DEFINITION 1.2 (Active Set). Let $x \in S$. We define the **active set** at x, denoted by A(x), to be a subset of $\{1, ..., m\}$ given by

$$\mathcal{A}(x) := \{i \in \{1, ..., m\} : g_i(x) = 0\}.$$

We say that the inequality constraint $g_i(x) \leq 0$ is **active** if and only if $g_i(x) = 0$; and say that it is **inactive** if and only if $g_i(x) < 0$.