

Real World Implementation of **Precision Medicine**

Geoffrey S Ginsburg MD, PHD

Professor of Medicine, Pathology, and Biomedical Engineering

The Duke Center for Applied Genomics & Precision Medicine precisionmedicine.duke.edu

> **IGNITE** www.ignite-genomics.org

> > G2MC www.nas.edu/G2MC

Disclosure Information

Geoffrey S Ginsburg MD PhD

I have the following financial relationships to disclose

- Consultant/Advisor/Board Member for:
 Omicia, Pappas Ventures, Alere, Interleukin Genetics, CardioDx
- Grant/Research support from:
 NHGRI, NHLBI, NCI, DARPA, USAMRIID, Gates Foundation, US Air Force,
 Henry Jackson Foundation, Singulex, IBIS Biosciences
- Stockholder in: CardioDx, Alere
- Employee of: Duke University

No Conflicts with the Current Presentation

The Challenge

Using genomic information about an individual to optimize their clinical care

Human Genome Project

Dro

Precision Medicine & Health

The (Non-Linear) Genomics Translation Research Cycle

Early Precision Medicine: 1961 "Factors of Risk"

Annals of Internal Medicine

Established in 1927 by the American College of Physicians

Factors of Risk in the Development of Coronary Heart Disease—Six-Year Follow-up Experience

Kannel WB et al.

November 1961

- High blood pressure
- Increased cholesterol
- Smoking
- Diabetes
- Family history
- Male sex

Source: Kannel WB et al. Ann Intern Med 1961;55:33-50.

(Failure of) Implementation of CVD Risk Calculators

- Primary Care Physicians
 - only 13% had read guidelines carefully
 - only 17% used a CHD risk calculator

"a large variability in knowledge, beliefs, and practice patterns among practicing family physicians"

Barriers

- Lack of knowledge
- Distrust in validity
- Time consuming

Eaton CB, *J Am Board Fam Med* 2006; 19:46–53.

Lung Cancer: Molecular Guided Therapy

Erlotinib
Second generation EGFR TKI

Lapatinib/Temsirolimus

EGFR

> 50% of non-small cell lung cancers have actionable mutations, but < 20% of non-small cell lung cancer patients are tested for EGFR in the USA (Lynch, Genet Med

2013)

Crizotinib vs. Chemotherapy

Crizotinib, 2nd Generation ALK Inhibitors

Genomics Translation: Funding Priorities for Evidence or Implementation?

Schully, Public Health Genomics 2010

Puggal, Circ Cardiovasc Genet. 2013

Payer Adoption of Oncotype DX®: Not All Payers are Alike

COVERAGE INCONSISTENCIES FOR SAMPLE DIAGNOSTICS (2010)*

	FDA Cleared?	Positive Coverage Policies			
Innovative Test Examples		Aetna	Regional CMS	Cigna	Regional BCBS
AlloMap	Yes	150	1	(35)	1
Oncotype DX (breast Cancer)	No	1	1	1	1
MammaPrint	Yes	150	1	(8)	Ris.
Pathwork Tissue of Origin	Yes	DIAM.		1 187	
BRACAnalysis	No	1	1	1	1
OVA1	Yes		1	123:	1
KRAS (colorectal cancer)	No	1	1	1	1

Source: BIO and Health Advances Report: The Reimbursement Landscape for Novel Diagnostics: Current Limitations, Real-World Impact, and Proposed Solutions. 2010.

^{*}Note: All of these tests are offered as LDTs. The information in this table was current as of the publication of the source report in 2010, and has not been updated to reflect the most current information.

First Genomic Medicine Meeting Report

 Much more happening than anticipated stics dicine O American Colle Largely in isolation Open Key barriers: Lack of evidence Interpretation of variants MD3, Teri A Lack of expertise Murr MD15, Davi Lack of standards armD19 Michael Alan R EMR integration Financial model needed Although t terventions; has long been anticipated, the pace of demning the risks and benefits and purgen to patients and chinicians of assaying, reporting, inter-

of incorporating genomic findings into medical practice has been

Genet Med 2013; 15:258-67.

vening, and following up genomic findings. Key infrastructure needs

electronic MEdical Records and GEnomics (eMERGE) Network (https://emerge.mc.vanderbilt.edu/)

Decision Support for Clopidogrel

The National Academies of SCIENCES • ENGINEERING • MEDICINE

ABOUT HMD

REPORTS

ACTIVITIES

MEETINGS

ACTION COLLABORATIVES

DIGITizE: Displaying and Integrating Genetic Information Through the EHR

To develop standards for integrating genomic patient data with other types of healthcare data in the EHR so that it becomes routine to deliver that information to providers and patients for patient care and to enable healthcare systems to generate evidence.

http://www.nationalacademies.org/hmd/Activities/Research/GenomicBasedResearch/Innovation-

DIGITIZE: Standards for Genetic Information Integration into the EHR

- Government Agencies
- Providers
- Laboratories
- EMR Vendors
- Patients Representatives
- Standards Organizations

Establishing Connectivity and Pharmacogenomic Clinical Decision Support Rules to Protect Patients Carrying HLA-B*57:01 and TPMT Variants

An Implementation Guide

12/1/2015

Displaying and Integrating Genetic Information Through the EHR Action Collaborative (DIGITIZE AC)

Version 1.0

- Rational
- LOINC Transfer Codes
- Suggested Rules

http://www.pgrn.org/pgx-news/annoucing-digitize-implementation-guide

RESEARCH ARTICLE

Open Access

The IGNITE network: a model for genomic medicine implementation and research

Kristin Wiisanen Weitzel¹, Madeline Alexander², Barbara A. Bernhardt³, Neil Calman⁴, David J. Carey⁵, Larisa H. Cavallari¹, Julie R. Field⁶, Diane Hauser⁴, Heather A. Junkins⁷, Phillip A. Levin⁸, Kenneth Levy⁹, Ebony B. Madden⁷, Teri A. Manolio⁷, Jacqueline Odgis⁷, Lori A. Orlando^{10,19}, Reed Pyeritz³, R. Ryanne Wu^{10,19}, Alan R. Shuldiner^{11,12}, Erwin P. Bottinger¹³, Joshua C. Denny^{14,15}, Paul R. Dexter⁹, David A. Flockhart⁹, Carol R. Horowitz¹⁶, Julie A. Johnson¹, Stephen E. Kimmel^{2,17}, Mia A. Levy¹⁸, Toni I. Pollin¹¹, Geoffrey S. Ginsburg^{19*} and on behalf of the IGNITE Network

- Expand and link existing genomic medicine efforts
- Develop implementation methods, in diverse settings and populations
- Contribute to evidence base regarding outcomes of incorporating genomic information into clinical care
- Disseminate best practices for genomic medicine implementation, diffusion, and sustainability

Courtesy Ebony Madden, NHGRI

6 Pilot Demonstration Projects Developing Implementation and Effectiveness Outcomes

Primary Care or Specialty
Care Patient

Standard of Care

Outcome

Pragmatic Trials

Genomics-Guided

Outcome

Family History (80+ conditions)

Pharmacogenetics (Antiplatelet Agents,
Pain, HCV)

Targeted Cancer Therapies

Genetic Risk (Apo L1, MODY)

Patient, Provider, System and Economic Outcomes

New Family Health History Platform (MeTree™)

Patient entry from home or clinic Data sent to medical record, processed and report generated

Prepare with worksheet to talk with relatives

Contact available for questions or problems

Appointment

SMART on FHIR®:

Medical apps that integrate into diverse EHR systems at the point of care

White House Champions of Change Precision Medicine

- Family history is the most effective "genomic test"
 - One 1st-degree relative with CAD age < 50 doubles Framingham risk score
 - One 1st-degree relative with DM2 triples risk.
 - Only way to identify many hereditary cancer and cardiovascular syndromes
- There is limited uptake of evidence-based risk stratified guidelines for disease prevention and early detection
 - <4% of charts reviewed had even 1 relative fully documented.
 - Studies show that 40-80% of general population are at risk for at least one condition

Implementation Stages

<u>Pre-Implementation</u>	<u>Implementation</u>	Post-Implementation
 Identify current practice patterns 	 Assess implementation integrity (used as intended) 	 Assess acceptance and satisfaction for stakeholders
Identify barriers & facilitators	 Assess implementation exposure (used at intervention sites) 	Assess clinical impact for all stakeholders
Assess feasibility	 Identify explanations and solutions for low integrity or intensity 	Adapt and finalize implementation strategy
 Establish implementation plan 	Modify implementation plan	Assess impact of final implementation strategy

Adapted from Smith J, editor. Evaluation Methods in Implementation Research: An introduction. Implementation Science Meeting; 2010.

IGNITE: Implementation Outcomes and Measures

<u>Outcomes</u>	<u>Measures</u>
Model Reach	Representativeness of patient population to general population
Model Adoption	Representativeness of clinics agreeing to participate
Implementation Integrity	% time intervention used as intended
Implementation Exposure	% time intervention used
Maintenance and Sustainability	Cost to Implement Cost/Effectiveness

IGNITE: Effectiveness Outcomes

	Patient	Provider	System
Emotional	 SF-12 (quality of life) Patient Activation Measure Prochaska Stage of Change Satisfaction and anxiety Quality of clinical encounter Barriers to Model use 	 Satisfaction Knowledge Barriers to Model use Concur with CDS Quality clinical encounter Quality CDS for care 	 Staff satisfaction Organizational readiness to change (ORCA) Implementation climate
Behavioral	 Medication adherence (Morisky) % exercising (Stanford Brief Activity) % eating 3 servings fruits/veggies per day (Rapid Food Screener) % smoking % ideal BMI Implemented provider rec (uptake) 	 Discussion of prevention Discussion of risk % time CDS output used (uptake) % adherence to CDS 	 Work flow/processes Implementation policies and practices Implementation climate Intervention values and task fit
Biological	DemographicsFHH	FHH documentation & counseling	 % completion MeTree™ time to complete FHH
Clinical	 Laboratory Data (i.e. LDL) Screening tests performed Screening complications Vital Signs, Weight and BMI Number of medications 	 Disease control goals met Referrals made 	 % high risk patients % w/ risk based screening % w/ screening compl. % w/ disease at goal Visit length/Wait times
Financial	 Socio-economic status Medication costs 		 Office/ ER visits, hospitalizations Model resource needs Impact on family members

Mixture of EMR (blue) and survey data

IGNITE: Common Challenges and Solutions

1) Clinician knowledge

 all projects developed educational materials and conducted educational meetings for clinicians

2) Integration with the electronic health record

- health system level adoption of genomic standards
- development of clinical decision support and access

3) Engaging diverse patient and clinician populations

- Forming genomics medicine advisory board to represent stakeholders and involve them in every step

3) Recruiting patients

 actively involve patients in implementation (e.g., a patient advisory board to develop educational materials) and develope materials to inform patients about questions to ask their clinician or payer

The IGNITE Toolbox

To disseminate best practices in the implementation of genomic medicine

Global Genomic Medicine Collaborative (G2MC)

PERSPECTIVE

POLICY

Global implementation of genomic medicine: We are not alone

Teri A. Manolio,^{1*} Marc Abramowicz,² Fahd Al-Mulla,³ Warwick Anderson,⁴ Rudi Balling,⁵ Adam C. Berger,⁶ Steven Bleyl,⁷ Aravinda Chakravarti,⁸ Wasun Chantratita,⁹ Rex L. Chisholm,¹⁰ Vajira H. W. Dissanayake,¹¹ Michael Dunn,¹² Victor J. Dzau,¹³ Bok-Ghee Han,¹⁴ Tim Hubbard,¹⁵ Anne Kolbe,¹⁶ Bruce Korf,¹⁷ Michiaki Kubo,¹⁸ Paul Lasko,¹⁹ Erkki Leego,²⁰ Surakameth Mahasirimongkol,²¹ Partha P. Majumdar,²² Gert Matthijs,²³ Howard L. McLeod,²⁴ Andres Metspalu,²⁰ Pierre Meulien,²⁵ Satoru Miyano,²⁶ Yaakov Naparstek,²⁷ P. Pearl O'Rourke,²⁸ George P. Patrinos,²⁹ Heidi L. Rehm,³⁰ Mary V. Relling,³¹ Gad Rennert,³² Laura Lyman Rodriguez,¹ Dan M. Roden,³³ Alan R. Shuldiner,³⁴ Sukdeb Sinha,³⁵ Patrick Tan,³⁶ Mats Ulfendahl,³⁷ Robyn Ward,³⁸ Marc S. Williams,³⁹ John E. L. Wong,⁴⁰ Eric D. Green,¹ Geoffrey S. Ginsburg,^{41*}

Sci Trans Med 2015

- > 35 nations
- Explore synergies, redundancies, collaborative opportunities for implementation of genomics into medicine
- Opportunities to advance the genome sciences as an agenda to impact global health

G2MC 2015: Large Scale Genomics Initiatives

- Genomics England
 - 100,000 genomes (Linked to NHS EMR data)
- Geisinger Regeneron (USA)
 - 100,000 genomes (Linked to EPIC EMR data)
- Genome Qatar
 - 300,000 Qatari genomes (Linked to CERNER EMR data)
- Estonian Genome Project
 - 52,000 genomes (Linked to health care data)
- The US Precision Medicine Initiative
 - ? 1,000,000 Genomes (Linked to EMR and mHealth data)
- Initiating efforts in Korea, Malaysia, Scotland, Singapore

A Grand Challenge... for Implementation of Genomic Medicine

Using genomic information about individuals to optimize clinical care and population health

Millions of Genomes

Data Sharing/Security **Implementation Incentives Workforce Development** Participant Engagement/Trust

Precision Medicine & Population Health

Questions?

Please submit your question in the Q&A feature on the right of the interface. Type and press submit.

U.S. Department of Health and Human Services National Institutes of Health | National Cancer Institute

http://cancercontrol.cancer.gov/research-emphasis/precision-medicine.html

1-800-4-CANCER

Produced August 2016