A	D		

TECHNICAL REPORT ARCCB-TR-96026

COMPOSITION OF COAL DUSTS AND THEIR CYTOTOXICITY ON ALVEOLAR MACROPHAGES

C. Y. LEE S. L. LEE C. E. SHEEHAN Y. WANG

SEPTEMBER 1996

US ARMY ARMAMENT RESEARCH, DEVELOPMENT AND ENGINEERING CENTER

CLOSE COMBAT ARMAMENTS CENTER BENÉT LABORATORIES WATERVLIET, N.Y. 12189-4050

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

19961227 025

DTIC QUALITY INSPEC

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacturer(s) does not constitute an official indorsement or approval.

DESTRUCTION NOTICE

For classified documents, follow the procedures in DoD 5200.22-M, Industrial Security Manual, Section II-19 or DoD 5200.1-R, Information Security Program Regulation, Chapter IX.

For unclassified, limited documents, destroy by any method that will prevent disclosure of contents or reconstruction of the document.

For unclassified, unlimited documents, destroy when the report is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION PAGE

Form Approved
OMB No. 0704-0188

Public reporting burgen for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions searching existing date source, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burgen estimate or any other aspect of this collection of information, including suggestions for reducing this burgen, to Washington Headquarters Services, Directorate for information, Operations and Reprint, 1215 Jeffenson Davis Highway, Suite 1204, Arlington, VA 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0185), Washington, DC 20563

Davis Highway, Stiff 1204, Arinington, VA 22202-	2. REPORT DATE	3. REPORT TYPE AND DATE	COVERED
1. AGENCY USE ONLY (Leave blank			3311112
A TITLE AND SUBTITUE	September 1996	Final 5. FUN	IDING NUMBERS
4. TITLE AND SUBTITLE COMPOSITION OF COAL DUSTS CYTOTOXICITY ON ALVEOLAR			MCMS No. 6111.02.H611.1
6. AUTHOR(S)			
C.Y. Lee*, S.L. Lee, C.E. Sheehan* * Stratton VA Medical Center and	Albany Medical College,	00	
7. PERFORMING ORGANIZATION NA	oratory Medicine, Albany, NY 1226 ME(S) AND ADDRESS(ES)	8. Ptr	FORMING ORGANIZATION
U.S. Army ARDEC		REF	PORT NUMBER
Benet Laboratories, AMSTA-AR-CCB-O Watervliet, NY 12189-4050			RCCB-TR-96026
			ONSORING / MONITORING
9. SPONSORING/MONITORING AGE	NCY NAME(S) AND ADDRESS(ES)	10. SP	SENCY REPORT NUMBER
U.S. Army ARDEC			
Close Combat Armaments Center			
Picatinny Arsenal, NJ 07806-5000		į,	
11. SUPPLEMENTARY NOTES			
Presented at the 44th Annual Denv	er X-Ray Conference, Colorado Spr	rings, CO, 31 July - 4 August 19	995.
Published in Advances in X-Ray Ar	ialysis, Volume 39, 1996.		
12a. DISTRIBUTION / AVAILABILITY	STATEMENT	12b. I	DISTRIBUTION CODE
Approved for public release; distrib	oution unlimited.		
Approved for paone release, asset	, <u> </u>		
ĺ			
1			
13. ABSTRACT (Maximum 200 word	/ _* \		
Coal mine dust is produced from co	omplex materials consisting of orga-	nic sedimentary strata, inorganic	minerals, and trace elements. The
dust varies in its chemical composi	itions and is capable of causing lun	g injury and damage when inhal	ed. The purpose of this study was
to perform scanning electron micro	oscopy combined with energy-dispe	rsive spectrometry, wavelength-	dispersive spectrometry, and X-ray
diffraction analyses of three coal d	usts, and examine their effects on re f anthracite, meager, and fat coal mi	at lung alveolar macrophages (A	bronchoalveolar lavage from adult
were obtained from coal surfaces of	d in Eagle's medium at 37°C. Pro	estaglandin E ₂ (PGE ₂) and lactat	e dehydrogenase (LD) released by
cultured AMs were measured by r	adioimmunoassay and enzymatic m	ethods, respectively, 24 hours at	ter addition of coal dust.
Elemental analysis revealed that al	ll dusts consisted of high carbon con	ntent (93-96 wt%); small amoun	ts of S1, Al, Ca, S, Mg, T1, Na, Fe,
K; and trace elements. Anthracite	contained the highest sulfur concentated the existence of high amorphou	s carbon background. Kaolinite	with chemical form Al-Si-O-(OH).
was the major mineral component	in all three coal dusts. In addition	, meager coal contained muscov	ite, anthracite contained pyrite and
was the major mineral component in all three coal dusts. In addition, meager coal contained muscovite, anthracite contained pyrite and muscovite, and fat coal contained calcite. Cytotoxicity was evident in AM culture of all three coal dusts, which caused the release of LD			
and PGE. The release was dose-dependent. In summary, our study shows that all three coal dusts exhibit cytotoxicity to AMs and			
suggests that the pathogenesis of	coal associated with pulmonary dis	ease may be linked to the eleme	ental compositions and mineralogic
components.			
14. SUBJECT TERMS			15. NUMBER OF PAGES
	al Fat Coal Cytotoxicity		12
Coal, Anthracite Coal, Meager Coal, Fat Coal, Cytotoxicity 12 16. PRICE CODE			
1			
17. SECURITY CLASSIFICATION	18. SECURITY CLASSIFICATION	19. SECURITY CLASSIFICATIO	R 20. LIMITATION OF ABSTRAC
OF REPORT	OF THIS PAGE	OF ABSTRACT	UL
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	1

TABLE OF CONTENTS

INTRODU	CTION 1	-		
EXPERIM	ENTAL PROCEDURE 1			
	eolar Lavage 1			
	acrophage Cultures			
	Preparation 2			
	Composition of Coal Dust			
	raction Analysis			
Assay for Pr	rostaglandin E ₂ (PGE ₂) and Lactate Dehydrogenase (LD)	ż		
	nalyses 3			
	/DISCUSSION 3			
Elemental C	Composition of Coal Dust	3		
Mineralogic	Composition of Coal Dust	3		
	y			
Release of I	Lactate Dehydrogenase and PGE ₂	ļ		
SUMMAR	Y 4	ı		
REFERENCES 6				
FIGURES				
Figure 1	Energy-dispersive X-ray spectrometry of three coal dusts	7		
Figure 2	X-ray diffraction patterns for three coal dusts			
Figure 3	Cytotoxicity of three coal dusts on alveolar macrophages			
	at coal dust concentration 200 µg/ml 9)		
Figure 4	Effects of coal dust on LD release from alveolar macrophages			
	at coal dust concentration 200 µg/ml)		
Figure 5	Effects of coal dusts on PGE ₂ release from alveolar macrophages			
	at coal dust concentration 200 µg/ml	l		

INTRODUCTION

Coal mine dust is produced from complex materials consisting of organic sedimentary strata, minerals, and trace elements. The dust varies in its chemistry, depending on its source; i.e., location of the mine, the type of coal-anthracite vs. bituminous. The dust is generated from pulverized rocks associated with the coal. It can cause a tissue reaction when inhaled, ranging from a mild inflammatory response to coal workers' pneumoconiosis (CWP). As with other forms of pneumoconiosis, the degree of host response depends partly on the amount of dust inhaled, the duration of exposure, the rank of coal, and the host cellular response. The purpose of this study is to examine three coal mine dusts from different mines in China to determine their elemental and mineral compositions and the effects on alveolar macrophages (AMs). The AMs are the principal cells involved in the defense of the lung to inhaled dusts and play a central role in the pathogenesis of dust-related tissue injury. In addition to their phagocytic function, they are capable of releasing various cytokines, enzymes, and growth factors many of which are mediators relevant to the pathogenesis of chronic inflammation and fibrosis. [3]

EXPERIMENTAL PROCEDURE

Animals

The AMs were obtained from male Wistar rats throughout the study. Rats weighing 250-300 grams were housed in wire cages and received food and water *ad libitum*. The rats remained healthy without apparent signs of infection.

Bronchoalveolar Lavage

After anesthesia, the rat's trachea was cannulated, and the heart and lungs removed en bloc. The AMs were harvested by bronchoalveolar lavage by instilling five 10-ml boluses of sterile physiological saline. The saline was withdrawn into a syringe following gentle massaging of the lung and the retrieved boluses pooled.

Alveolar Macrophage Cultures

After harvest, the AMs were adjusted to 1×10^6 /ml in Eagle's medium with antibiotics plus 10% heat-inactivated fetal calf serum; 2×10^6 cells were placed in sterile glass tissue culture flasks. After one hour of incubation at 37°C in a 5% $CO_2/95\%$ humidified air atmosphere, the nonadherent cells were removed by two washings with Hank's medium. Each culture then received 2.0 ml of Eagle's medium without fetal calf serum, to which was added coal dust so that the final dust concentration was 200 µg/ml, 400 µg/ml, or 800 µg/ml. Four or five macrophage/coal dust cultures were incubated at 37°C in a 5% $CO_2/95\%$ humidified air atmosphere. Viability was determined by trypan blue dye exclusion.

Coal Dust Preparation

Coal samples were obtained from the coal face of anthracite, meager, and fat coal mines. After passing through the crusher at the mine site, the coal samples were ground to a fine powder using an agate mortar and pestle. The powders were passed through a 200-mesh sieve to allow passage of particles less than 74 µm. Meager and fat are Chinese terms for a bituminous coal used for industrial purposes including the generation of electrical power. Anthracite coal is typically used for home heating and cooking.

Elemental Composition of Coal Dust

The elemental composition of the coal samples was determined by scanning electron microscopy in combination with energy-dispersive X-ray spectrometry and wavelength-dispersive X-ray spectrometry. For these studies, the following equipment was used: JEOL 6100 scanning electron microscope (JEOL USA, Inc., Peabody, MA) equipped with a Fision Kevex Delta-Pro energy-dispersive X-ray spectrometer (Fision Corp., San Carlos, CA) and a Rigaku X-ray fluorescence spectrometer (Danvers, MA). X-ray spectra were collected from a minimum of 50 individual coal particles from each coal type.

X-Ray Diffraction Analysis

The three coal samples were analyzed using a Scintag X-ray diffractometer (Scintag, Inc., Sunnyvale, CA). The diffractometer was equipped with a θ -2 θ goniometer with 0.0003 degree resolution, and a diffractometer radius set at 286 mm. A Kevex-Peltier-cooled Si(Li) solid-state detector with a microprocessor-controlled four-axis microstep diffractometer motion was used with a multichannel analyzer energy discrimination. The software ran on a Digital VAX 3100 microcomputer and included automated crystallographic powder diffraction analysis. The most current powder diffraction database from the International Center for Diffraction Data Base (ICDD) was used. A copper K α radiation source was used for this study. Intensities were accumulated from 4 to 25 seconds per point at 0.03° 2 θ increments.

Assay for Prostaglandin E2 (PGE2) and Lactate Dehydrogenase (LD)

PGE₂ in macrophage supernatants was determined by a commercially available radioimmunoassay kit from PLA General Hospital, Beijing, China. Sensitivity for the assay was 25 pg/ml.

LD release by cultured macrophages was measured according to methods described by Morgenstern et al.^[4] The colorimetric estimation of the enzyme was determined from a standard curve.

Statistical Analyses

Data from two sets of parameters obtained from AM cultures were compared by a two-tailed t-test, and p < 0.05 was considered significant.

RESULTS/DISCUSSION

Elemental Composition of Coal Dust

Scanning electron microscopy in conjunction with energy-dispersive X-ray spectrometric analysis of each of the three coal dusts revealed that all dusts-meager, anthracite, and fat-consist of Al and Si (silicates) as common constituents. In addition, each dust exhibits elements that are characteristic of themselves. As seen in Figure 1, meager coal gives elemental peaks for aluminum, silicon; a small sulphur peak; and a very small titanium peak. Anthracite exhibits peaks for aluminum, silicon, and a large peak for sulfur, indicating that this is a high-sulfur-containing coal. A wavelength-dispersive X-ray spectrometry confirms these results. Anthracite contains the greatest amount of sulfur (1.5 wt%), followed by fat coal (0.53 wt%), and meager coal (0.47 wt%). Fat coal dust shows peaks for aluminum, silicon, sulfur, and a large peak for calcium.

Semiquantitative analysis by wavelength-dispersive X-ray spectrometry reveals that the three coal samples contain high carbon contents: fat coal, 96 wt%, anthracite 94 wt%, and meager coal, 93 wt%. There are small amounts of Mg, Na, K, Cl, and Fe. Iron contents are as follows: fat coal, 0.047 wt%; anthracite, 0.041 wt%; and meager coal, 0.040 wt%. Trace amounts of P, Mn, Ni, Cu, Zn, Ga, As, Se, Br, Sr, Zr, As, and Pb are present.

Mineralogic Composition of Coal Dust

Diffraction patterns were obtained for the three samples in the 20 range from 5° to 90°. The d-spacing (Å)/relative intensity (counts per second) were automatically determined. The amorphous background is high for all three samples, reflecting their carbon contents.

In Figure 2, background-subtracted diffraction patterns are given for coal samples 1a, 2a, and 3a. X-ray diffraction assignments of kaolinite, muscovites, pyrite, calcite, and quartz are shown in Figure 2. All three coal samples consist of predominately aluminum silicates hydroxide with the chemical form $Al_2Si_2O_5(OH)_4$. The diffraction pattern for sample 1a, meager bituminous coal dust, is summarized as follows: (1) high kaolinite contents; (2) small amount of muscovite or potassium aluminum silicate hydroxide with chemical form $KAL_2(Si_3AL)O_{10}(OH,F)_2$; sample 2a, anthracite, mineral phases included kaolinite, pyrite FeS_2 . Muscovite is a small constituent of this sample. Kaolinite contents are also high in sample 3a fat coal dust. Additional enhanced lines indicate the existence of calcite $CaCO_3$. Pyrite peaks in sample 3a are weak compared with sample 2a. All three coal dusts contain a small amount of quartz (crystalline SiO_2).

Cytotoxicity

Cytotoxicity is evident in AM cultures at 24 hours, with all three coal dust concentrations at 200 μ g/ml. Controls without coal dust show 97.5% viability at 24 hours incubation (Figure 3). The AM cultured with three coal dusts exhibits significantly decreased viability compared with untreated controls (p < 0.01 or < 0.05). There is no significant difference in viability among three coal dusts (p > 0.05). Cytotoxicity is dose-dependent (200 μ g/ml, 400 μ g/ml, 800 μ g/ml) for all three coal dusts (data not shown).

Release of Lactate Dehydrogenase and PGE₂

As seen in Figure 4, LD release increases in all three coal dusts compared with untreated controls (p < 0.01). Generally, this release is dose-related and increases over time (data not shown). Anthracite causes greater release of LD then fat coal (p < 0.01).

Figure 5 illustrates the influence of coal dust on the release of PGE_2 from AM. As is the case with LD, there is increased release of PGE_2 compared with untreated controls (p < 0.01 or p < 0.05). The PGE_2 release is also dose-related (data not shown). Anthracite induces greater release of PGE_2 than fat coal (p < 0.05).

SUMMARY

This study demonstrates that all three coal dusts exert cytotoxicity on lung AMs and are capable of causing the release of LD and PGE₂. The release occurs with a small amount of minerals (4-7 wt% of coal samples) present in culture media. PGE₂ may exert potent modulating effects on AMs in the inflammatory response. Elevated levels of LD in rat bronchoalveolar lavage fluid have been reported to correlate well with the degree of known fibrogenic potential of different dusts in the lungs.^[5]

Several mechanisms have been proposed to support the role of macrophage products in the development and progression of silicosis and CWP. Such products include enzymes, cytokines, ^[6] growth factors, and reactive oxygen species that may cause lung injury. ^[3] This study shows that the three coal dusts contain pyrite (FeS₂). Huang et al. ^[7,8] have shown that ferrous sulfate (FeSO₄) originated from oxidation of pyrite can reduce oxygen to produce reactive oxygen species in aqueous medium in vitro and can also inactivate alpha 1-antitrypsin, resulting in destruction of the lung parenchyma. These processes may play an important role in the development of emphysema in coal miners. Dalal et al. ^[9] have proposed that higher concentrations of surface iron in coal dust may be involved in the generation of increased levels of hydroxyl radicals and lipid peroxidation. The hydroxyl radicals are highly reactive, causing peroxidation of cell membranes and cell injury, and may play an important role in the development of CWP. Finally, silica cannot be precluded as playing some role in the pathogenesis of CWP, since it is present at low concentrations in the three coal dusts.

In conclusion, this study demonstrates that the three coal dusts exhibit cytotoxicity on AMs and that the pathogenesis of CWP may be related to the grade of coal, including its elemental compositions and mineralogic components.

REFERENCES

- 1. Hurley, J. F., Copland, L., Dodgson, J. B., and Jacobsen, M., "Simple Pneumoconiosis and Exposure to Dust at 10 British Coal Mines," *British Journal of Industrial Medicine*, Vol. 42, 1982, pp. 120-127.
- 2. Attfield, M. D., and Seixas, N. S., "Prevalence of Pneumoconiosis and Its Relationship to Dust Exposure in a Cohort of U.S. Bituminous Coal Miners and Ex-Miners," *American Journal of Industrial Medicine*, Vol. 27, 1995, pp. 137-151.
- 3. Lapp, N. L., and Castranova, V., "How Silicosis and Coal Workers' Pneumoconiosis Develop-A Cellular Assessment," *Occupational Medicine*, Vol. 8, 1993, pp. 35-56.
- 4. Morgenstern, S., Flor, R., Kessler, G., and Klein, B., "Automated Determination of NAD-Coupled Enzymes. Determination of Lactic Dehydrogenase," *Analytical Biochemistry*, Vol. 13, 1965, pp. 149-161.
- 5. Bajpai, R., Waseem, M., Gupta, G. S., and Kaw, J. L., "Ranking Toxicity of Industrial Dusts by Bronchoalveolar Lavage Fluid Analysis," *Toxicology*, Vol. 73, 1992, pp. 161-167.
- 6. Barm, P. J., "Biological Markers and Occupational Lung Disease: Mineral Dust-Induced Respiratory Disorders," *Experimental Lung Research*, Vol. 20, 1994, pp. 457-470.
- 7. Huang, X., Laurent, P. A., Zalma, R., and Pezerat, H., "Inactivation of Alpha 1-Antitrypsin by Aqueous Coal Solution: Possible Relation to the Emphysema of Coal Workers," *Chemical Research in Toxicology*, Vol. 6, 1993, pp. 452-458.
- 8. Huang, X., Zalma, R., and Pezerat, H., "Factors that Influence the Formation and Stability of Hydrated Ferrous Sulfate in Coal Dusts: Possible Relation to the Emphysema of Coal Miners," *Chemical Research in Toxicology*, Vol. 7, 1994, pp. 451-457.
- 9. Dalal, et al., "Hydroxyl Radical Generation by Coal Mine Dust; Possible Implication to Coal Workers' Pneumoconiosis (CWP)," *Free Radical Biology and Medicine*, Vol. 18, 1995, pp. 11-20.

Figure 1. Energy-dispersive X-ray spectrometry of three coal dusts

K-Kaolinte, M-Muscovite, P-Pyrite, C-Calcium, Q-Quartz

Figure 2. X-ray diffraction patterns for three coal dusts

Legend: Each bar represents mean SE from 5 determinations (* p < 0.05 vs. control) ** p < 0.01 vs. control)

Figure 3. Cytotoxicity of three coal dusts on alveolar macrophages at coal dust concentration 200 µg/ml

Legend: Each bar represents mean SE from 5 determinations (** p < 0.01 vs. control)

Figure 4. Effects of coal dusts on LD release from alveolar macrophages at coal dust concentration 200 µg/ml

Legend: Each bar represents mean SE from 4 determinations. (* p < 0.05 vs. control ** p < 0.01 vs. control)

Figure 5. Effects of coal dusts on PGE_2 release from alveolar macrophages at coal dust concentration 200 $\mu g/ml$

TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

		NO. OF COPIES
-] -]	ERING DIVISION A DB DC DD DE	1 1 1 1
-	EA EB EC	1 1 1 1
-	TA TB TC	2 1 1 1
TECHNICAL LIBRARY ATTN: AMSTA-AR-CCB-O		5
TECHNICAL PUBLICATIONS & FATTN: AMSTA-AR-CCB-C	EDITING SECTION	3
OPERATIONS DIRECTORATE ATTN: SIOWV-ODP-P		1
DIRECTOR, PROCUREMENT & C ATTN: SIOWV-PP	CONTRACTING DIRECTORATE	1
DIRECTOR, PRODUCT ASSURAN ATTN: SIOWV-QA	NCE & TEST DIRECTORATE	1

NOTE: PLEASE NOTIFY DIRECTOR, BENÉT LABORATORIES, ATTN: AMSTA-AR-CCB-O OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

NO. C COPIE		NO. (COPI	
ASST SEC OF THE ARMY RESEARCH AND DEVELOPMENT ATTN: DEPT FOR SCI AND TECH THE PENTAGON WASHINGTON, D.C. 20310-0103	1	COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-SEM ROCK ISLAND, IL 61299-5001	1
DEFENSE TECHNICAL INFO CENTER ATTN: DTIC-OCP (ACQUISITIONS) 8725 JOHN J. KINGMAN ROAD STE 0944	2	MIAC/CINDAS PURDUE UNIVERSITY 2595 YEAGER ROAD WEST LAFAYETTE, IN 47906-1398	1
FT. BELVOIR, VA 22060-6218 COMMANDER U.S. ARMY ARDEC ATTN: AMSTA-AR-AEE, BLDG. 3022	1	COMMANDER U.S. ARMY TANK-AUTMV R&D COMMAND ATTN: AMSTA-DDL (TECH LIBRARY) WARREN, MI 48397-5000	1
AMSTA-AR-AES, BLDG. 321 AMSTA-AR-AET-O, BLDG. 183 AMSTA-AR-FSA, BLDG. 354 AMSTA-AR-FSM-E	1 1 1 1	COMMANDER U.S. MILITARY ACADEMY ATTN: DEPARTMENT OF MECHANICS WEST POINT, NY 10966-1792	1
AMSTA-AR-FSS-D, BLDG. 94 AMSTA-AR-IMC, BLDG. 59 PICATINNY ARSENAL, NJ 07806-5000 DIRECTOR	1 2	U.S. ARMY MISSILE COMMAND REDSTONE SCIENTIFIC INFO CENTER ATTN: AMSMI-RD-CS-R/DOCUMENTS BLDG. 4484	2
U.S. ARMY RESEARCH LABORATORY ATTN: AMSRL-DD-T, BLDG. 305	1	REDSTONE ARSENAL, AL 35898-5241	
ATTN: AMSRL-DD-1, BLDG. 303 ABERDEEN PROVING GROUND, MD 21005-5066 DIRECTOR U.S. ARMY RESEARCH LABORATORY ATTN: AMSRL-WT-PD (DR. B. BURNS)	1	COMMANDER U.S. ARMY FOREIGN SCI & TECH CENTER ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	1
ABERDEEN PROVING GROUND, MD 21005-5066	1	COMMANDER U.S. ARMY LABCOM, ISA ATTN: SLCIS-IM-TL 2800 POWER MILL ROAD	1
DIRECTOR U.S. MATERIEL SYSTEMS ANALYSIS ACTV ATTN: AMXSY-MP ABERDEEN PROVING GROUND, MD 21005-5071	1 .	ADELPHI, MD 20783-1145	

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, BENÉT LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND, AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

NO. OF <u>COPIES</u>	NO. OF <u>COPIES</u>
COMMANDER U.S. ARMY RESEARCH OFFICE ATTN: CHIEF, IPO 1 P.O. BOX 12211 RESEARCH TRIANGLE PARK, NC 27709-2211	WRIGHT LABORATORY ARMAMENT DIRECTORATE ATTN: WL/MNM 1 EGLIN AFB, FL 32542-6810
DIRECTOR U.S. NAVAL RESEARCH LABORATORY ATTN: MATERIALS SCI & TECH DIV WASHINGTON, D.C. 20375	WRIGHT LABORATORY ARMAMENT DIRECTORATE ATTN: WL/MNMF 1 EGLIN AFB, FL 32542-6810

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH, DEVELOPMENT, AND ENGINEERING CENTER, BENÉT LABORATORIES, CCAC, U.S. ARMY TANK-AUTOMOTIVE AND ARMAMENTS COMMAND, AMSTA-AR-CCB-O, WATERVLIET, NY 12189-4050 OF ADDRESS CHANGES.