Aspectos computacionales de la resolución numérica de ecuaciones diferenciales ordinarias: Parte I

Computación en ciencia e ingeniería: simulación numérica MÁSTER UNIVERSITARIO EN INGENIERÍA COMPUTACIONAL Y SISTEMAS INTELIGENTES, Euskal Herriko Unibertsitatea / Universidad del Pais Vasco (UPV/EHU)

Estrategia adaptativa de la longitud de paso

La eficiencia de los métodos de Runge-Kutta se puede mejorar enormemente en algunos casos si en lugar de utilizar una discretización del tiempo uniforme, con $t_{j+1}=t_j+h$ (donde $h=(T_{\rm final}-t_0)/n$) para $j=0,1,2,\ldots,n$, se obtienen las aproximaciones $u_j\approx u(t_j)$ para una discretización temporal no uniforme adecuadamente elegida, de la forma

$$t_0 = 0$$
, $t_1 = t_0 + h_1$, $t_2 = t_1 + h_2$, $t_3 = t_2 + h_3$, $t_4 = t_3 + h_4$,... con longitudes de paso h_1, h_2, h_2, \ldots distintas.

La elección a priori de la secuencia h_1, h_2, h_3, \ldots de las longitudes de paso más apropiada no es en absoluto trivial.

Estrategia adaptativa de la longitud de paso

Esquema del procedimiento habitual: Partiendo de (t_0, u_0) , para j = 0, 1, 2, 3, ..., a partir de (t_i, u_i)

- elegir h_j apropiado
- ② calcular (t_{j+1}, u_{j+1}) como $\begin{cases} t_{j+1} &= t_j + h_j, \\ u_{j+1} &= \text{formula RK con longitud de paso } h_j \end{cases}$

¿Pero cómo se va eligiendo en concreto la longitud h_j de cada paso?

Consideraciones generales

- Criterio para elegir h_j : Tratar de mantener un mismo nivel de precisión en cada paso.
- El nivel de precisión requerido se fija por medio de un parametro de control del error tol (tolerancia respecto al error).
- Cuanto menor es tol, menor será el error cometido, y menores van a ser las longitudes de paso, y por tanto, el tiempo de cómputo necesario será mayor.
- El error cometido suele ser, en las implementaciones estándar de los integradores con longitud de paso variable, "a grosso modo" proporcional a tol.