Proof that the three altitudes of a triangle meet at a point Does not use the Jacobi identity explicitly

J.B. Parkinson March 2007

Sides of the triangle are \mathbf{a} , \mathbf{b} , and \mathbf{c} as shown,

with
$$\mathbf{a} + \mathbf{b} + \mathbf{c} = 0$$
.

Define

$$\mathbf{a}' = \mathbf{a} \times (\mathbf{b} \times \mathbf{c})$$

$$\mathbf{b}' = \mathbf{b} \times (\mathbf{c} \times \mathbf{a})$$

$$\mathbf{c}' = \mathbf{c} \times (\mathbf{a} \times \mathbf{b})$$

Clearly these are in the correct directions for the altitudes.

Hence equations of the altitudes are:

$$\mathbf{r} = \mathbf{r}_A + \lambda_A \mathbf{a}'$$
 (line l_1)

$$\mathbf{r} = \mathbf{r}_B + \lambda_B \, \mathbf{b}'$$
 (line l_2)

$$\mathbf{r} = \mathbf{r}_A + \lambda_A \mathbf{a}'$$
 (line l_1)
 $\mathbf{r} = \mathbf{r}_B + \lambda_B \mathbf{b}'$ (line l_2)
 $\mathbf{r} = \mathbf{r}_C + \lambda_C \mathbf{c}'$ (line l_3)

where \mathbf{r}_A is the position vector of A and

 λ_A is the parameter of the altitude through A etc.

 l_1 and l_2 meet when

$$\mathbf{r}_A + \lambda_A^{12} \, \mathbf{a}' \quad = \quad \mathbf{r}_B + \lambda_B^{12} \, \mathbf{b}'$$

where λ_A^{12} , λ_B^{12} are the values of λ_A , λ_B at the meeting point of l_1 and l_2 .

Since
$$\mathbf{r}_B - \mathbf{r}_A = \mathbf{c}$$
 we have

$$\lambda_A^{12} \mathbf{a}' = \mathbf{c} + \lambda_B^{12} \mathbf{b}' \qquad (3)$$

Similarly when l_2 and l_3 meet we have

$$\mathbf{r}_B + \lambda_B^{23} \mathbf{b}' = \mathbf{r}_C + \lambda_C^{23} \mathbf{c}'$$
$$\lambda_B^{23} \mathbf{b}' = \mathbf{a} + \lambda_C^{23} \mathbf{c}' \qquad (4)$$

Now need to show that $\lambda_B^{12} = \lambda_B^{23}$. From (3) and (4)

$$\lambda_B^{12} \, \mathbf{b}' = \lambda_A^{12} \, \mathbf{a}' - \mathbf{c}$$
 and $\lambda_B^{23} \, \mathbf{b}' = \lambda_C^{23} \, \mathbf{c}' + \mathbf{a}$

Since
$$\mathbf{a}.\mathbf{a}' = \mathbf{b}.\mathbf{b}' = \mathbf{c}.\mathbf{c}' = 0$$

$$\lambda_B^{12} \mathbf{b}'.\mathbf{a} = 0 - \mathbf{c}.\mathbf{a}$$

$$\lambda_B^{23} \mathbf{b}'.\mathbf{c} = 0 + \mathbf{a}.\mathbf{c}$$

$$\therefore \lambda_B^{12} \mathbf{b}'.\mathbf{a} = -\lambda_B^{23} \mathbf{b}'.\mathbf{c}$$
 (5)

Since
$$\mathbf{c} = -\mathbf{a} - \mathbf{b}$$
 we have

$$\mathbf{b}'.\mathbf{c} \quad = \quad -\mathbf{b}'.(\mathbf{a}+\mathbf{b}) \quad = \quad -\mathbf{b}'.\mathbf{a}.$$

Substitution in (5) proves the result.