Discrete convolution

if $x_i(n)$ and $x_2(n)$ are two sign sequences then the convolution is given by

$$Y(n) = x_1(n) * x_2(n)$$

$$= \leq x_1(\kappa) \cdot x_2(n-\kappa) + \kappa$$
 oct constant

To understand the meaning of this equation. Let us break it down step by step

Step-1 change variable of the requences from n + o k. Therefore requences are now $\chi_1(k)$ and $\chi_2(k)$

step 2. flip one of the sequence. to be for example of sonvolution of x(k) and x2(k) then create x2(-k).

Step 3! Shift the flipped sequence to the leftmost position where the two sequences start overlappling by selecting proper value of n fer $x_2(n-k)$

Step 4 Multiply the sequence $x_1(k)$ and $x_2(n-k)$ at each value of k this will correcte a new sequence $z(m) = x_1(k) \cdot x_2(n-k)$

Step 5 Then calculate $y(n) = \leq x z(m)$

Repeater step 3, 4 and 5 for all values of n where there is overlapping in signals.

Example 1
$$x_1(n) = \{1, 2, 3\}$$
 $x_2(n) = \{1, -1, 1\}$ Calculate $y(n) = \lambda_1(n) * \lambda_2(n)$

Step 1
$$x_1(k) = \{1, 2, 3\}$$
 $x_2(k) = \{1, -1, 1\}$

$$\frac{\text{Step 2}}{x_1(k)} = \{1, 2, 3\}$$
 $x_2(-k) = \{1, -1, \frac{1}{k}\}$

Step 3

If
$$n=0$$

$$y(0) = \{x_1(k) x_2(-k) = \{0 \neq 0 + 1 \neq 0 \neq 0\}$$

Step 4 of
$$n=1$$
 $x_1(k)=\{1,2,3\}$, $x_2(1-k)=\{1,-1,1\}$
 $y(1)=\{x_1(k)\}(2(1-k))=\{0,-1,2,0\}$

Step 5 wf n=2
$$\chi_{1}(k) = \{1,2,3\}, \quad \chi_{2}(2-k) = \{1,-1,1\}, \quad \chi_{2}(2-k) = \{1,-2,3\}, \quad \chi_{3}(2-k) = \{1,-2,3\}, \quad \chi_{4}(2-k) = \{1,-2,3\}, \quad \chi_{5}(2-k) = \{1,-2,3\}, \quad \chi_{5}(2-$$

Step 6
$$n=3$$

$$\chi_{1}(k) = \{1,2,3\} \quad \chi_{2}(3-k) = \{0,1,-1,1\}$$

$$y(3) = \{\chi_{1}(k)\chi_{2}(3-k) = \{0,2,-3,0\}$$

$$= -1$$

$$5tep \neq n = 4$$

$$\chi_{1}(k) = \{1,2,3\} \quad \chi_{2}(4-k) = \{0,0,1,-1,1\}$$

$$y(4) = \{\chi_{1}(k)\chi_{2}(4-k) = \{0,0,3,0,0\}$$

$$= 3$$

$$5tep \neq n = 5$$

$$\chi_{1}(k) = \{1,2,3\} \quad \chi_{2}(5-k) = \{0,0,0,1,-1,1\}$$

$$y(5) = \{\chi_{1}(k)\chi_{2}(5-k) = \{0,0,0,0,0,0,0\}$$

$$= 0$$
Therefore

$$y(n) = x_1(n) + x_2(n)$$

$$y(n) = \{1, 1, 2, -1, 3\}$$

Practice problem

) Find convolution of 24(n)= \(\frac{1}{2}, \frac{3}{3}\) and \(\frac{1}{2}\)(n) = \(\frac{1}{2}, \frac{1}{2}\)

Ans: y(n) = \$1,4,8,8,3}

- ② Find convolution of $\chi_1(n) = \{1, 1, 2\}$ $\chi_2(n) = \{1, 2, 1\}$ Ans $\chi(n) = \{1, 3, 5, 5, 2\}$
- (3) Find convolution of $x_1(n) = \{1, 1, 2\}$, $x_2(n) = \{1, 1, 1\}$ Ans $y(n) = \{1, 2, 4, 3, 2\}$