

Table of Content

- Project Overview
- Data Cleaning
- Visualizations
- Data Examination
- Machine Learning
- Recommendations

Project Overview

Objective

A machine learning model capable of accurately predicting HIV progression to AIDS.

Dataset

- Source: Kaggle AIDS Clinical Trials Group
- Task: to predict whether or not each patient is infected with AIDS at end of the trial
- Target: infected yes/no a binary classification problem
- Features: current treatments, previous treatments, CD4/CD8 cell count at baseline and after 20 weeks (immunity measure), symptomatic, sex, age, weight, race, history of drug use, etc.

Data Cleaning

Extract, transform, and load (ETL)

PostgreSQL

Data cleaning

Connection to SQL Database

Visualisations

Data Insights

Infected vs Not infected Distribution

Categorical and Numerical Variables

Correlation matrix and Variable Outliers

Visualisations Data Insights

Variables affecting AIDS infection Rate

Handling class Imbalance

- 1. SMOTE (Synthetic Minority Over-sampling Technique)
- 2. Algorithmic techniques: class weight parameter to "balance" e.g. Logistic Regression, SVM(Support Vector Machine)
- 3. Machine Learning Model selection like Random Forest
- 4. Evaluation Metrics. i.e. precision, and recall

KNN, SVM and Logistic Regression

Methodology

Train-Test Split:

Split the dataset into 80% training and 20% testing using 'train_test_split' with stratification to maintain the class distribution.

Metric	Logistic Regression (Train)	Logistic Regression (Test)	K-Nearest Neighbors (Train)	K-Nearest Neighbors (Test)	Support Vector Machine (Train)	Support Vector Machine (Test)
Accuracy	0.8597	0.8388	0.9447	0.8248	0.8636	0.8364
Precision	0.8606	0.7807	0.9451	0.7624	0.8645	0.7774
Recall	0.8597	0.8184	0.9447	0.7863	0.8636	0.8104
F1-score	0.8597	0.7954	0.9447	0.7726	0.8635	0.7908
Support	None	None	None	None	None	None

KNN, SVM and Logistic Regression

Consistent accuracy across models - approx. 82% to 84%

- Logistic Regression and SVM performed similarly, with Logistic Regression having a slightly better balance between precision and recall for the test set.
- **KNN** had the highest training accuracy, but slightly lower test accuracy compared to Logistic Regression and SVM, indicating potential overfitting.
- **Logistic Regression** showed the highest F1-score for the infected class on the test set, which may be crucial depending on the importance of minimizing false negatives or positives.
- Overall, Logistic Regression and SVM appear to be more reliable, with Logistic Regression having a slight edge in handling imbalanced data better.

Random Forest

Image source: https://medium.com/@denizgunay/random-forest-af5bde5d7e1e

	precision	recall	f1-score	support	
0 1	0.92 0.76	0.93 0.73	0.92 0.75	327 101	
accuracy macro avg weighted avg	0.84 0.88	0.83 0.88	0.88 0.84 0.88	428 428 428	

Random Forest

• Extracts feature importances from the trained Random Forest model.

DNN Model (Attempt 1)

optimizer='adam' epochs=50

Measured metrics:

acc train: 100%

acc test: 87%

precision: 74%

recall: 73%

Model is over fitted

DNN Model (Attempt 2)

optimizer='adam' epochs=100

Measured metrics:

acc train: 96% acc test: 86% precision: 71%

recall: 76%

- Model is less overfitted
- 3% increase in recall

30 neuron

Relu

DNN Model (Attempt 3)

The structure optimised using the Keras Tuner

optimizer='adam' epochs=25

Measured metrics:

acc train: 96% acc test: 88%

precision: 73%

recall: 81%

- Model is less overfitted
- 5% increase in recall

30 neuron

Relu

DNN Model (Attempt 4)

The structure optimised using the Keras Tuner
We just kept 7 first important features offered by Random Forest model.

optimizer='adam' epochs=25

Measured metrics:

acc train: 95% acc test: 89%

precision: 79%

recall: 81%

- Model was not over fitted
- •This was the best model with highest accuracy, precision, and recall

Evaluation of Models

Logistic Regression

K-Nearest Neighbours

SVM

Random Forest

Deep Neural Network

Test Accuracy

Precision

Recall

Statistical Metrics Comparison - Test Accuracy

Statistical Metrics Comparison - Precision

Statistical Metrics Comparison - Recall

Predictive Machine Learning Models Discussion

Overall Conclusion:

Based on the evaluation metrics:

- •Random Forest: This model has strong performance across all metrics, particularly in test accuracy (0.88), precision (macro avg: 0.84), recall (macro avg: 0.83), and F1-score (macro avg: 0.84).
- •Neural Network: This model also performs very well, with the highest accuracy (0.89) and strong precision (0.79) and recall (0.81).

Recommendation:

The **Random Forest** model is the best choice overall because it offers a good balance of accuracy, precision, recall, and F1-score, making it highly reliable for predicting both infected and not infected cases. The Neural Network is a close second and might be preferable in scenarios where slightly higher accuracy is crucial.

Any Questions?

Thank you

Rahul Gade rahulmg2002@yahoo.com

+614032732966

https://github.com/RahulG2381

