Problemes de Càlcul amb Vàries Variables. Full 1

Superfícies i Volums en 3D

1. Trobeu l'equació del pla de vector normal $\vec{v} = (1, 2, 1)$ que passa pel punt (0, 0, 1).

2. Representeu gràficament les següents corbes sobre el pla x=0:

(a)
$$y^2 + z = 1$$

(b)
$$y^2 + z^2 = 1$$

(c)
$$y^2 - z^2 = 1$$

(d)
$$y^2 - z^2 = -1$$

3. Per a cadascuna de les següents paràboles sobre el pla x = 0,

(a)
$$z - y^2 = 0$$

(b)
$$2z - y^2 + 2y - 1 = 0$$
,

trobeu les equacions de la superfície generada en fer-les girar al voltant de l'eix \hat{z} .

4. Representeu gràficament les següents superfícies (fixeu-vos en la simetria i aprofiteu els resultats de l'exercici 3)

(a)
$$x^2 + y^2 + z = 1$$

(b)
$$x^2 + y^2 + z^2 = 1$$

(c)
$$x^2 + y^2 - z^2 = 1$$

(d)
$$x^2 + y^2 - z^2 = -1$$

5. Trobeu quina forma tenen les següents superfícies:

(a)
$$x^2 + 2y^2 + z^2 = 1$$

(b)
$$(2x)^2 + y^2 - z^2 = -1$$

(a)
$$x^2 + 2y^2 + z^2 = 1$$

(c) $x^2 - y^2 + z^2 = -1$

(d)
$$4x^2 + 2y^2 - z = 1$$
.

6. Representeu gràficament les següents superfícies:

(a)
$$x^2 + 2x + 2y^2 + 4y + z^2 =$$

(a)
$$x^2 + 2x + 2y^2 + 4y + z^2 = 1$$
 (b) $(2x)^2 - 8x + y^2 + 4y - z^2 = -1$

7. Representeu gràficament les següents superfícies:

(a)
$$16x^2 + y^2 - 128x + 4y + 196 = 0$$
 (b) $x^2 - y^2 - 6x + 2y - 8 = 0$

(b)
$$x^2 - y^2 - 6x + 2y - 8 = 0$$

8. Representeu gràficament i compareu les dues superfícies següents:

(a)
$$\frac{x^2}{4} + 4y^2 - z^2 = 1$$

$$(b)\frac{x^2}{4} + 4y^2 - z^2 = 0$$

9. Trobeu les equacions d'un cilindre qualsevol l'eix del qual és paral·lel a l'eix \hat{z} .

10. Trobeu les equacions d'un con qualsevol l'eix del qual és paral·lel a l'eix \hat{z} .

11. Trobeu les equacions d'un torus. Trobeu primer les equacions d'una circunferència desplaçada al llarg de l'eix \hat{y} , i feu-la girar llavors al voltant de l'eix \hat{z} .

12. Trobeu les equacions de la superfície que s'obté en fer girar la paràbola

$$z - y^2 - 2 = 0$$

al voltant de la recta x = 0, z = 1.

13. Trobeu l'equació que satisfan els punts de la superfície d'un cub d'aresta a centrat a l'origen. Trobeu l'equació (inequacions) dels punts interiors del mateix cub.

14. Trobeu quines equacions satisfan els punts del volum tancat per la superfície $x^2 + y^2 +$ $z^2 = 4$ i els plans z = 1, z = -2.