"Data-Efficient LTL Translators" Learning Poster

Tags: Human-Robot Interaction

(Reference: Pan, Jiayi, Glen Chou, and Dmitry Berenson. "Data-Efficient Learning of Natural Language to Linear Temporal Logic Translators for Robot Task Specification." arXiv preprint arXiv:2303.08006 (2023).)

Summarization of Innovations:

- 1. Generalization in Data Augmentation:
 GPT-3 as paraphrasing model can generate more generation features, thus better help improve later finetuned BART's ability of generalization on "natural language to LTL" tasks.
- 2. <u>Data-efficient</u>: Based on 1, much handful human labor work can be reduced.

Questions:

Model architecture

lead to overfitting.

Ideas about Future Work:

specifications.

RNN [6]

CopyNet [29]	4/5 golden	1/5 golden	88.97	95.47	93.14
BART-FT-Raw (ours)	4/5 golden	1/5 golden	90.78	97.84	95.97
BART-FT-Canonical (ours)	4/5 golden	1/5 golden	90.56	97.81	95.70
RNN [6]	synthetic	full golden	22.41	52.54	32.39
CopyNet [29]	synthetic	full golden	36.41	53.40	40.36
BART-FT-Raw (ours)	synthetic	full golden	69.39	78.00	81.45
BART-FT-Canonical (ours)	synthetic	full golden	68.99	77.90	78.23
BART-FT-Raw-NoConstrainedDecoding	synthetic	full golden	68.23	76.26	81.05
BART-FT-Canonical-NoConstrainedDecoding	synthetic	full golden	67.45	72.06	69.49
BART-FT-Raw (ours)	synthetic; no augmentation	full golden	29.43	52.51	80.38
BART-FT-Canonical (ours)	synthetic; no augmentation	full golden	39.21	53.16	67.88
Q1: Whether deep model or LLMs is suitable for this low-resource scenario?					
a. Since deep model or LLMs need lots of data for training so that they can have ability to generate to unseen					
data, low-resource scenario may have less data and lead to shortage of generalization and sometimes may					

Test data

1/5 golden

Drone (5/343)

87.18

Cleanup (4/39)

95.51

Pick (1/5) 93.78

Training data

4/5 golden

somehow different, thus may lead to degrade on generalization when applying it on generating LTL

b. BART is a LLM for general language but not for general LTL specifications since these two forms are

c. A tree-based model may be more suitable since the structures of LTL formula are more similar to trees.

1. Exploit LM's uncertainty by grounding them to environment, and uncertainty-aware planning (paper

- mentioned).
- 2. Automatic synthesis to generate to unseen LTL structures.
- 3. Specific LTL-generating models, such as (deep) tree-based models or LLMs using lots of language-LTL corpus when pre-training.
- corpus when pre-training.

 4. Training Down-stream structures attached to pre-trained model during fine-tuning period may somehow help improve generalization on generating LTL specifications.