MTH 354 Homework 3

Definition 0.1. A point $p \in X$ is a limit point of $S \subseteq X$ if there exists a sequence (s_n) from $S \setminus \{p\}$ which converges to p.

1. Show if (a_n) is a bounded sequence of real numbers then

$$\limsup a_n \ge \liminf a_n.$$

- 2. Suppose that y is a limit point of a metric space X. Show that $Y = X \setminus \{y\}$ is not complete.
- 3. A metric space (X, d) is called sequentially compact if every sequence has a convergent subsequence. Show that X is sequentially compact if and only if every infinite subset has a limit point in X.
- 4. Let (X, d_X) and (Y, d_Y) be complete metric spaces. Let $(X \times Y, d)$ be the metric space defined by the metric

$$d: (X \times Y) \times (X \times Y) \to \mathbb{R}; \qquad d((x,y),(a,b)) = d_X(x,a) + d_Y(y,b)$$

is a complete metric space.

- 5. Prove, if X is a metric space and (a_n) is a sequence in X which converge to $A \in X$ then $\{A, a_1, a_2, \ldots, \}$ is a compact set.
- 6. Show any finite set in a metric space is compact.