Бисекция, метод Ньютона, упрощённый метод Ньютона, метод секущих

Вариант 1. $f(x) = x^3 - 10x + 20$, [a, b] = [-4, -3], $x_0 = -3.6$,

Вариант 2. $f(x) = x^3 - 2x + 2$, [a, b] = [-2, -1], $x_0 = -2.0$,

Задание № 2 (сдать 3 октября 2024):

Для уравнения

$$f(x) = 0 (1)$$

- 1. Пользуясь любой программой компьютерной математики найти и выписать корень *z* уравнения (1) с точностью до 8 знаков после запятой.
- 2. Задать точность $\varepsilon = 10^{-5}$
- 3. Решить уравнение (1) на отрезке [a,b] с точностью ε методом бисекции, пользуясь уже написанной Вами программой, записать **количество итераций**, которое потребовалось для достижения заданной точности.
- 4. Решить уравнение (1) на отрезке [a,b] с точностью ε по трём методам: метод Ньютона, упрощённый метод Ньютона, метод секущих. Для каждого метода заполнить таблицу. Условие останова $|x_{n-1}-x_n|<\varepsilon$.

Обозначим
$$\delta x_n = |x_{n-1} - x_n|, \ \delta_n = |x_n - z|$$

«Название метода»

n	x_n	$f(x_n)$	δx_n	$\delta x_n < \varepsilon$	δ_n	$\delta_n < \varepsilon$	$ f(x_n) < \varepsilon$	$\delta_n < \delta_{n-1}^2$
				да/нет		да/нет	да/нет	да/нет
0								
1								
2								

5. Сколько итераций потребовалось в каждом из методов для достижения заданной точности? Уметь объяснить полученные результаты для каждой колонки таблицы.