Applied Math. and Computational Math. Team

Please solve as many problems as you can!

1. (15 pts)

Given a finite positive (Borel) measure $d\mu$ on [0, 1], define its sequence of moments as follows

$$c_j = \int_0^1 x^j d\mu(x), \quad j = 0, 1, \dots$$

Show that the sequence is *completely monotone* in the sense that that

$$(I-S)^k c_j \ge 0$$
 for all $j, k \ge 0$,

where S denotes the backshift operator given by $Sc_j = c_{j+1}$ for $j \ge 0$.

2. (20 pts)

We recall that a polynomial

$$f(X) = a_d X^d + a_{d-1} X^{d-1} + \dots + a_1 X + a_0 \in \mathbb{Z}[X]$$

is called an Eisenstein polynomial if for some prime p we have

- (i) $p \mid a_i \text{ for } i = 0, \ldots, d-1,$
- (ii) $p^2 \nmid a_0$,
- (iii) $p \nmid a_d$.

Eisenstein polynomials are well-know to be irreducible over \mathbb{Z} , so they can be used to construct explicit examples of irreducible polynomials.

Questions:

- (i) Prove that a composition f(g(X)) of two Eisenstein polynomials f and g is an Eisenstein polynomial again.
- (ii) Suggest a multivariate generalisation of the Eisenstein polynomials. That is, describe a class polynomials $F(X_1, \ldots, X_m)$ in terms of the divisibility properties of their coefficients that are guaranteed to be irreducible.
- 3. (20 pts) For solving the following partial differential equation

$$u_t + f(u)_x = 0, \qquad 0 \le x \le 1 \tag{1}$$

where $f'(u) \geq 0$, with periodic boundary condition, we can use the following semi-discrete discontinuous Galerkin method: Find $u_h(\cdot,t) \in V_h$ such that, for all $v \in V_h$ and $j = 1, 2, \dots, N$,

$$\int_{I_j} (u_h)_t v dx - \int_{I_j} f(u_h) v_x dx + f((u_h)_{j+1/2}^-) v_{j+1/2}^- - f((u_h)_{j-1/2}^-) v_{j-1/2}^+ = 0,$$
(2)

with periodic boundary condition

$$(u_h)_{1/2}^- = (u_h)_{N+1/2}^-; \quad (u_h)_{N+1/2}^+ = (u_h)_{1/2}^+,$$
 (3)

where $I_j = (x_{j-1/2}, x_{j+1/2}), 0 = x_{1/2} < x_{3/2} < \dots < x_{N+1/2} = 1,$ $h = \max_j (x_{j+1/2} - x_{j-1/2}), v_{j+1/2}^{\pm} = v(x_{j+1/2}^{\pm}, t), \text{ and}$

 $V_h = \{v : v|_{I_j} \text{ is a polynomial of degree at most } k \text{ for } 1 \leq j \leq N\}.$

Prove the following L^2 stability of the scheme

$$\frac{d}{dt}E(t) \le 0 \tag{4}$$

where $E(t) = \int_0^1 (u_h(x,t))^2 dx$.

4. Consider the linear system Ax = b. The GMRES method is a projection method which obtains a solution in the m-th Krylov subspace K_m so that the residual is orthogonal to AK_m . Let r_0 be the initial residual and let $v_0 = r_0$. The Arnoldi process is applied to build an orthonormal system v_1, v_2, \dots, v_{m-1} with $v_1 = Av_0/\|Av_0\|$. The approximate solution is obtained from the following space

$$K_m = \text{span}\{v_0, v_1, \cdots, v_{m-1}\}.$$

- (i) (5 points) Show that the approximate solution is obtained as the solution of a least-square problem, and that this problem is triangular.
- (ii) (5 points) Prove that the residual r_k is orthogonal to $\{v_1, v_2, \cdots, v_{k-1}\}$.
- (iii) (5 points) Find a formula for the residual norm.
- (iv) (5 points) Derive the complete algorithm.
- **5.** (10 pts)
 - (i) Set $x_0 = 0$. Write the recurrence

$$x_k = 2x_{k-1} + b_k, \quad k = 1, 2, \dots, n,$$

in a matrix form $A\vec{x} = \vec{b}$. For $b_1 = -1/3$, $b_k = (-1)^k$, $k = 2, 3, \dots, n$, verify that $x_k = (-1)^k/3$, $k = 1, 2, \dots, n$ is the exact solution.

(ii) Find A^{-1} and compute condition number of A in L^1 norm.