Warum bin ich nicht einfach Staubsaugervertreter geworden?

Inhaltsverzeichnis

1 Allgemeiner Unsinn für Grundlagen aktuarieller Kalkulation

2

Kapitel 1

Allgemeiner Unsinn für Grundlagen aktuarieller Kalkulation

Sparten

- Umfasst Leben, Kranken, Komposit, Pensionen
- Leben, Kranken, Pensionen sind zusammen Personenversicherung
- Komposit: Schaden/Unfall
- Besonders: priv. Unfall ist Komposit

Definition 1 (Farny) Deckung eines im Einzelnen ungewissen, insgesamt schätzbaren Mittelbedarfs unter Nutzung von Ausgleichsmechanismen im Kollektiv.

Wichtigste Zweige Komposit

- Sachversicherung
- Haftpflichtversicherung
- Transportversicherung
- Technische Versicherung

Prämienzahlweise

- üblicherweise jährlich
- bei unterjährigen Zahlung Ableitung aus Jahresprämie

Diskont und Barwert

• Diskontfunktion bei einjährigem Zinssatz r: $D(t) = (1+r)^{-t}$

• Diskontfunktion bei Rechnungszins $i: D(t) = (\frac{1}{1+i})^t =: v^t$

• Barwert aller Leistungen: $L = \sum_{t=0}^{\bar{n}} D(t) \cdot L_t$

• Barwert aller Prämien: $P = \sum_{t=0}^{\bar{n}} D(t) \cdot P_t$

• Barwert aller Kosten: $K = \sum_{t=0}^{\bar{n}} D(t) \cdot K_t$

Äquivalenzprinzip

$$(\ddot{A}P I): E(P) = E(L) (1.1)$$

(ÄP II):
$$E(P) = E(L) + E(K)$$
 (1.2)

Definition 2

• Falls L und P das Äquivalenzprinzip erfüllen, dann heißt P_{\bullet} Nettorisikoprämienprozess und P_t Nettorisikoprämie.

• L und P erfüllen ÄP und \exists w_t Wahrscheinlichkeit der Prämienzahlung P_t und \bar{P} konstant mit $E(P_t) = \bar{P} \cdot w_t \ \forall \ t \in \{0,...,\bar{n}\}$. \bar{P} konstante Nettorisikoprämie.

• Bruttorisikoprämie: $P^+ := \bar{P} + c \text{ mit } c > 0$ Sicherheitszuschlag.

• Alternativ: Sicherheitszuschlag bereits in Nettorisikoprämie enthalten

Notation

• \bar{n} : Modelldauer

• t: Zeit in jahren

• r: einjähriger konstanter Zinssatz

• D(t): Diskontfunktion

• L_t : Versicherungsleistung in t

• q_t : Eintrittswahrscheinlichkeit Leistungsfall in t

• P_t : Prämienzahlung in t

• w_t : Wahrscheinlichkeit Prämienzahöung in t

- K_t : Kosten in t
- L: Leistungsbarwert
- P: Prämienbarwert
- *K*: Kostenbarwert

Sterbetabeln

Alter	Männer				
	l _x	t _x Tote	q _x roh rohe Sterb-	q _x ^{2.Ord.} Sterblichkeit	q _x Sterblichkeit
					(Zuschlag 34%)
14	33.700	9	0,000267	0,000226	0,000303
15	35.163	7	0,000199	0,000311	0,000417
16	35.471	11	0,000310	0,000416	0,000557
17	36.430	15	0,000412	0,000529	0,000709
18	36.158	31	0,000857	0,000634	0,000850
19	36.500	28	0,000767	0,000711	0,000953
20	43.193	37	0,000857	0,000755	0,001012
21	64.534	64	0,000992	0,000763	0,001022
22	100.268	74	0,000738	0,000749	0,001004
23	142.584	110	0,000771	0,000719	0,000963

Allgemeine aktuarielle Herangehensweise, spartenübergreifend ähnliches Standardvorgehen zur Bewertung zufälliger zukünftiger Versicherungsleistungen

- Beobachtung von Vergangenheit (Daten) zur Vorhersage der Zukunft
- Anpassung geeigneter Wahrscheinlichkeitsverteilung
- Sorgfalt bzgl. möglicher Änderungen von Annahmen im zeitlichen Verlauf
- typischerweise konstante Prämienhöhe
- Risiko steigt mit zeitlichem Verlauf
- Ansparprozess und Entsparprozess

Rückstellungen

- Ziel: Sicherstellung der dauernden Erfüllbarkeit
- versicherungstechnische Rückstellungen wichtigste Passivposition in der Bilanz des VU

- hohe bedeutung für interne Unternehmensbewertung
- Einfluss auf Besteuerung des VU
- Unterschied zwischen bilanzieller und einzelvertraglicher versicherungsmathematischer Deckungsrückstellung

Rückstellungen in der Schadenversicherung

- Einzelschadenreserven: für noch nicht vollständig abgewickelte Schäden
- Deckungsrückstellungen: für Haftpflicht, Unfallrenten und Beitragsrückgewähr in Unfall
- Spätschadenpauschalreserve: für IBNR
- Schwankungsrückstellung: relevant für Zweige mit stark variierenden Schadenfällen

Prämienprinzipien

- Ziel: Zuordnung angemessener Prämie durch Bemessung geeigneter Sicherheitszuschläge
- Deckung der Leistungsfälle und zusätzliche Prämie zur Bereitschaft der Risikoübernahme durch VU (Sicherheitszuschlag SZ(X))
- Prämienprinzipien $H(X) := E(X) + SZ(X) = P^+, X$ ist das versicherte Risiko
- Sicherheitszuschlag bei gleichem EW höher, wenn Risiko gefährlicher
- Nettorisikoprinzip: H(X) = E(X)
- Erwartungswertprinzip: $H(X) = E(X) + \delta \cdot E(X) = (1 + \delta) \cdot E(X)$
- Varianzprinzip: $H(X) = E(X) + \delta \cdot Var(X)$
- Standardabweichungsprinzip: $H(X) = E(X) + \delta \cdot \sqrt{Var(X)} = E(X) + \delta \cdot \sigma(X)$
- Exponentialprinzip: $H(X) = \frac{1}{a} \cdot ln(M_X(a)) = \frac{1}{a} \cdot ln(E[e^{aX}])$ mit a > 0, Monumenterzeugender Funktion M_X , entspricht näherungsweise Varianzprinzip mit $\delta = \frac{a}{2}$

Definition 3 (*Ungleichung von Centelli*) $P(X > E(X) + c) \le \frac{Var(X)}{c^2 + Var(X)}$ *Hinweis: SZ wird hier stark überschätzt.*

Beispiele Risikomaße

- Erwartungswert E(X)
- Varianz Var(X)
- Schiefe $\gamma(X)$ (Symmetriemaß
- Tail-Whk P(X > t)
- Ruin- und Verlustwahrscheinlichkeiten
- Bernoulli-Nutzen
- Value at Risk (VaR), Expected Shortfall, Tail Value at Risk (TVaR)

Definition 4

Additivität:
$$H(X+Y) = H(X) + H(Y) \ \forall \ X, Y \text{ stochastisch unabhängig}$$
 (1.3)

Subadditivität:
$$H(X+Y) \le H(X) + H(Y) \ \forall \ X, Y \text{ stochastisch unabhängig}$$
 (1.4)

Erwartungswertübersteigend:
$$SZ(X) \ge 0$$
 (1.5)

Definition 5 (1) Ein Kollektiv stellt eine Zusammenfassung von Risiken dar, die durch gleichartige Gefahren bedrohnt sind. Kollektiv bedeutet nicht zwangsläufig, dass es sich um versicherte Risiken handelt.

- (2) Der Risikoausgleich im Kollektiv stellt neben dem Ausgleich in der Zeit ein wesentliches Funktionsprinzip von Versicherungen dar.
- (3) Ein Kollektiv heißt homogen, falls alle Risiken des Kollektivs dieselbe Verteilung besitzen, anderenfalls heißt es heterogen.
- (!) Hinweis: Homogenität und Unabhängigkeit sind keine notwendige Voraussetzung für Risikoausgleich im Kollektiv. Im Gegenteil: gleicht sich durch gegenläufige Abhängigkeiten z.T. aus.

Risikoausgleich

- Das Überschreiten einer prozentualen Maximalabweichung vom Erwartungswert wird bei wachsendem Kollektiv immer unwahrscheinlicher.
- Risikoausgleich im Kollektiv erfolgt insofern, als dass der Variationskoeffizient als versicherungsspezifisches Risikomaß für wachsende Bestände gegen 0 konvergiert.
- Mit zunehmender Zahl von Risiken sinkt die relative Abweichung des arithmetischen Mittels vom Erwartungswert.

Definition 6 $Y_i \ge kumulierter$ Gesamtaufwand des i-ten Risikos. $S^{ind} = \sum_{i=1}^{n} Y_i$.

Durch Linearität des EWs:
$$E(S^{ind}) = \sum_{i=1}^{n} E(Y_i)$$
 (1.6)

Da
$$Y_i$$
 unabhängig: $Var(S^{ind}) = \sum_{i=1}^{n} Var(Y_i)$ (1.7)

Variationskoeffizient:
$$Vko(S^{ind}) = \frac{\sqrt{\sum_{i=1}^{n} Var(Y_i)}}{\sum_{i=1}^{n} E(Y_i)}$$
 (1.8)

Definition 7 Erste und zweite Formel von Wald. N die Schadenzahl.

$$(1) E(S^{koll}) = E(N) \cdot E(X)$$

(2)
$$Var(S^{koll}) = E(N) \cdot Var(X) + (E(X))^2 \cdot Var(N)$$

Gegenüberstellung individuelles und kollektives Modell

- dieselbe Gesamtsumme $S^{int} = S^{koll}$
- im individuellen Modell Aggregation der einzelnen Aufwände pro Risiko und Zeitraum erforderlich
- kollektives Modell: Betrachtung einzelner Ereignisse ohne Erfassung, welches Risiko den Aufwand verursacht
- i.A. bietet das KM eine bessere Basis für die Schätzung der Verteilung
- Annahme identisch verteilter Aufwände bei IM nur näherungsweise erfüllt

Zustandsmodell der Personenversicherung

- Modellannahmen nicht immer sachgerecht
- Markov-Eigenschaft kritisch: Relevant, ob *aktiv* \rightarrow *Rente* oder *invalide* \rightarrow *Rente*
- z.T. sehr viele Zustände erforderlich (z.B. Abhängigkeit der Leistungshöhe von Anzahl Dienstjahren, bei Invalidität der Zeitpunkt des Eintritts in den Invalidenstatus)

Risikoteilung

- teilweiser Risikotransfer im direkten Geschäft zwischen VN und Erstversicherer sowie im Rahmen von Rückversicherung (RV)
- Risikoteilung im Direktgeschäft: Selbstbehalt beim VN, genannt Franchisen
- in der Rückversicherung: Selbstbehalt beim Erstversicherer, genannt Prioritäten
- risikopolitisch und nicht gewinnorientierte Vorgehensweise
- für den Erstversicherer:
 - Verringerung des versicherungstechnischen Risikos
 - Erhöhung Zeichnungskapazität
 - Solvenzverbesserung
 - Kapitalkostenreduktion
- für den Rückversicherer:
 - Existenzgrundlage
 - bessere Diversifikation der Risiken als beim Erstversicherer

Begrifflichkeiten Rückversicherung

- aktive RV: Angebot von Rückversicherungskaapzitäten
- passive RV: Nachfrage nach RV-Schutz durch Erstversicherer
- Retrozession: Weitergabe in Rückdeckung genommener Risiken eines RV an anderen RV
- obligatorische RV: Verpflichtung des Erstversicherers zur Übertragung aller vertraglich definierten Risiken ohne Ablehnungsrecht des RV
- fakultative RV: individuelle Abgabe und Annahme von Risiken auf einzelvertraglicher Basis
- Originalbasis: RV erhält anteilig Prämie und muss Deckungskapital bilden
- Risikobasis: RV erhält Risikobeitrag und bildet kein Deckungskapital

Proportionale Risikoteilung

- proportionale Aufteilung der Schäden in festem Verhältnis zwischen Vertragspartnern
- Proportionen vorab fest und unabhängig von Schadenhöhen
- einfache Struktur, geringe Flexibilität
- bei RV Schicksalsteilung: Übernahme von Teilen des Erstversicherungsrisikos, aber nicht kaufmännischen oder unternehmerischen Risikos des Erstversicherers
- wichtigste Formen der proportionalen RV: Quotenrückversicherung, Summenexedentenrückversicherung
 - QRV: feste Quotenabgabe q, Selbstbehalt $\underline{S^{ind}} = (1 q) \cdot S^{ind}$
 - SERV: Festlegung eines Maximums v_0 als maximaler Selbstbehalt des Erstversicherers bei jedem einzelnen Risiko und vertragsindividuelle Quote $q_i = \frac{max\{v_i-v_0,\,0\}}{v_i}$ in Abhängigkeit der jeweiligen Versicherungssumme
- SERV dient der Homogenisierung des Portfolios und der Reduktion von Spitzenrisiken
- Üblicherweise Haftungsbegrenzung für RV i.H.v. Vielfachem m von v_0 . Mehrere aneinandergereiht, s.d. man Layering erhält.