Todoy's content

- Basics of Sorting
- Selection sort
- -> Merge two sorted arrays -->IMP
- -> Merge Sort
 - Inversion count (Googk, Amazon, G.S)

Sorting: Arronging data in a specific order based on parameter. $1,2,3,5,7,10 \rightarrow \text{increasing (parameter > value)}$ $1,6,3,-1,-5 \rightarrow \text{decreasing (parameter > value)}$ $1,7,2,9,29 \rightarrow \text{increasing (parameter > count of factors)}$ button-12228

Why sorting? - searching of an element becomes cary & fast stable unstable writing - Two data points have same parameter value and the order is preserved before and after the sorting. then this is called stable sorting.

Name.	Marks		Name	Marks.
Ashor	92		Vitul	42
Chubham	45	sort on the	Chubham	45
Divya	001	hasis of marks	Bran	45
V	45	0	Ashok	92
Brian			Divya	100
Vitul	42		clable	
			stable-	

$$arr(7 - [15262]$$
 $sort1. \rightarrow 12256 \rightarrow stable sorting$
 $sort2. \rightarrow 12256 \rightarrow unstable sorting$

In-place Sorting -> Sorting the data without taking extra space.

S.L. O(1)

Selection sort

code.

```
void selection sort [ int(7 am, int N) {

for [i=0; i < N-1; i++) {

min=arr(i), idx=i

for (j=i+1; j < N; j++) {

min element

[i+1,N-1]

min = arr[j];

[iax = j;

]

swap (arr(i) with arr[idx]);

[in-place v
```

=0 unstable sorting

Q' Given two sorted arrays. Merge them & get a final sorted array. $A[7] \rightarrow \begin{bmatrix} 2 & 3 & 7 & 12 & 20 & 24 & 297 \Rightarrow N \\ 0 & 1 & 2 & 3 & 7 & 6 \end{bmatrix} \rightarrow M.$ $B[7] \rightarrow \begin{bmatrix} 6 & 9 & 12 & 14 & 15 & 197 \\ 0 & 1 & 2 & 3 & 4 & 5 \end{bmatrix} \rightarrow M.$ idea., copy all the element from ATT and B(T) in C(T) and sort CM. T.C- O((N+M) log (N+M)) S.C → O(1)

 $C[N+m]: \begin{bmatrix} 2 & 3 & 6 & 7 & 9 & 12 & 14 & 15 & 19 & 20 & 24 & 29 \\ 0 & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \end{bmatrix}$

K

Hoodu merged Two Sorted Arrays (Int () A, Int () B, Int N, Int m) { int() inf ([N+m]; i=0, j.0, K=0; while (i < N & j < m) { if (A(i) & B(j)){ ([KT = A(i] P++; K++ elsco ([KT = B(j); j++, K++; while (i < N) { ([K]= A(i) 1++, K++

while (j < m) d ((K7 = B(j); j++, K++ return (17;

J. C→ O(N+m)

S. C→ O(1)

Single array and 3 integers.
$$\Rightarrow$$
 l, y, v. [l=y=r]

$$\begin{cases}
\text{Subarray from l to y.1} \\
\text{Subarray from l to v.}
\end{cases}$$
Sort the subarray from l to v.

$$\begin{cases}
\text{l=2} \\
\text{y=5} \\
\text{r=+}
\end{cases}$$
arr[] = [8 1 2 6 11 2 4 9 7 6]
$$\begin{cases}
\text{l=2} \\
\text{y=5} \\
\text{r=+}
\end{cases}$$

```
# coll -
 integ merged Two SorkedsubArrays ( int () A, Int 1, int y, int r) }
         int ([r-l+1];
         i= l, j.y, K=0;
         while (i < y & j < r) {
                if (A(i) = A(j)){
                [ C[KT = A(i)]
3++; K++
                 elsef
                C[x] = A[j];

j++, K++;
         while ( i < y) {
                                                  (T.C. 0(r-l+1)

S.C. 0(r-l+1)
          while (j \leq r)
               ((K]=A [j];
j++, K++
                                                            0(N)
          1/copy the elements from (() to A()
            2=0
           for(1=1; 1 =8; 1++){
                A(i) = C(K)
```


code .-

```
Void mergesort ( arr, 1, r) {

if ( l == r) { return }

mid = (l+r)/2;

merge Sort ( arr, l, mid);

merge Sort ( arr, mid+1, r);

merge Two Corked Subarrays ( arr, l, mid+1, r);

record of the subarrays ( arr, l, mid+1, r);
```


$$T(N) = 2T(N/2) + N$$

$$[T(N/2) = 2T(N/4) + N/2] \neq 2$$

$$2T(N/2) = 4T(N/4) + N$$

$$T(N) = 4T(N/4) + 2N$$

$$[T(N/4) = 2T(N/6) + \frac{N}{4}] \neq 4$$

$$4T(N/4) = 8T(N/6) + N$$

$$T(N) = 8T(N/6) + N$$

$$T(N) = 16 T(N_{16}) + 4N$$

$$T(N) = 32 T(N_{32}) + 5N$$

$$\frac{1}{1}$$

$$T(N) = 2^{K} T(\frac{N}{2^{K}}) + K \cdot N \qquad T(1) = 1.$$

$$\frac{N}{2^{K}} = 1 \Rightarrow N = 2^{K} \Rightarrow \log_{1} N = K$$

$$T(N) = N \cdot T(T)^{2} + \log_{2} N \cdot N$$

$$= N + N \log_{2} N$$

$$C(C \rightarrow O(N))$$

Inversion Count -> Google, Amazon, C.C.

Given an array of size N. Find the nor of pairs sij such that sij and sij and sij inversion pairs.

T(-0(N) 5.(-0(1)

$$a_{m} = \begin{bmatrix} 0 & 3 & 8 & 15 & 6 \\ 0 & 1 & 2 & 3 & 4 \end{bmatrix} \begin{bmatrix} 2 & 18 & 7 & 1 \\ 5 & 6 & 7 & 8 & 9 \end{bmatrix}$$

total inversion pairs = I.P in first half + I.P in second half + I.P across the sub-arrays.

= 5 + 7 + 14 = 26.

[idea - Morge Sort?]

