LIGHTRAG

Simple And Fast Retrieval-Augmented Generation

- 1. Introduction
- 2. Related Works
- 3. Proposed Methods
- 4. Experiments
- 5. Conclusion

01 Introduction

LLM - Large Language Model

- Nature Language Generative Al
 - Two types
 - Closed Source
 - EX)
 - OpenAI GPT Series (Recently, GPT o1 preview)
 - Anthropic Claude Series (Recently, Claude 3.5 Sonnet)
 - Etc,...
 - 대기업 활용 LLM, 클라우드 기반 LLM -> 관련 어플리케이션 및 API를 통해서만 활용 가능
 - 최고 수준의 성능
 - 모델 구조(코드) 및 데이터 미공개
 - Open Source
 - EX)
 - Llama Series (Recently, Llama-3.1-50B)
 - o GLM-4
 - QWEN
 - o Etc,...
 - 연구용 LLM, 사용자 기반 성장 (커스터마이즈) -> 개인, 연구기관, 스타트업이 주로 활용 & 소스 코드를 가져와서 활용 가능
 - 중간 수준의 성능 -> Fine tuning을 통해 성능 향상 가능
 - 모델 구조(코드) 및 데이터 공개

01 Introduction

RAG - Retrieval Augmented Generation

- RAG Retrieval Augmented Generation
 - Generating 단계에서 LLM의 성능을 높이기 위한 방법론
 - **외부 데이터를 활용**하여 LLM의 input을 보충 및 도메인 지식 제공을 통해 성능 향상시킴
 - 기존 RAG의 한계점
 - Query를 Vector DB에 저장 후 **단순한 Cosine Similarity**의 top-k texts만 활용
 - 단편적인 text chunks만 활용
 - 기존의 간단한 Vector DB와 Cosine Sim만을 활용한 RAG보다 빠르고 더 정확하고 연관성을 잘 파악할 수 있는 방법론을 해당 논문에서 제시함
 - Graph와 dual-level retrieval가 주를 이루는 방법론을 제시

02 Related Works

LLMs for Graphs

- Graph for Data Structure
 - **복잡한 관계를 가지는 데이터 구조**에는 그래프 구조가 강력한 힘을 가짐
 - LLM과 Graph를 결합하여 LLM의 성능을 향상 시키는 방법들을 활발히 연구 중
 - GNNs for Prefix (Graph → LLM)
 - GNN를 초기 처리 layer로 적용
 - Graph data를 구조 인식 token으로 변환하여 LLM의 추론에 활용
 - LLMs for Prefix (LLM → Graph)
 - Graph data를 text data로 강화하여 LLM이 node embedding이나 label 생성
 - 이를 통해 GNN 훈련 과정을 개선
 - LLMs Graphs Integration (LLM + Graph)
 - LLM과 Graph data의 상호작용을 통해 성능 향상

02 Related Works

Reformulating and Sub-query Generation

- User query reformulating & Sub query
 - 사용자의 질문의 의도를 보다 더 잘 파악하기 위해 **재구성 및 서브 쿼리 생성**
 - Query reformulation은 특히 IR과 QA 부분에서 좋은 성능 향상을 보였음
 - 주로, Multi-step decomposition, Dynamic Knowledge Structure 등에 활용 됨
 - GenCRF, RQ-RAG, Hybrid RAG 등 다양한 논문에 언급 및 활용됨

Data preprocessing mechanism

Data preprocessing

$$\hat{\mathcal{D}} = (\hat{\mathcal{V}}, \hat{\mathcal{E}}) = \text{Dedupe} \circ \text{Prof}(\mathcal{V}, \mathcal{E}), \quad \mathcal{V}, \mathcal{E} = \cup_{\mathcal{D}_i \in \mathcal{D}} \text{Recog}(\mathcal{D}_i)$$

Recog(~); R(~): Extracting entity & relationship

Dedupe(~); D(~): Deduplicating Key-value structure

D_i : Raw documents

- Documents preprocessing
- Chunking
 - 1200 단위로 documents chunking
- Entity & Relationship extracting → R(~)
 - Chunking된 texts에서 Entity와 Relationship을 추출 ← LLM을 통해 추출 및 생성
- Group structure → P(~)
 - Node : Entity → 주체 (주인공 느낌)
 - Edge: Relationship → entities끼리의 관계
- Deduplicating → D(~)
 - Node & Edge에서 중복되는 내용을 제거
- Key Value Indexing
 - Entity와 Relationship을 Key-Value Structure로 변환하여 Indexing
 - 이를 통해 Retrieval 속도를 향상 시킴

Prof(~); P(~): Profiling entity & relationship into Key-value structure

Query processing mechanism

- Query processing
 - User의 prompt(question) preprocessing
 - LLM을 통해 Local & Global Key-words 추출 및 구조화
 - Local Key-words : Prompt에서의 Entity
 - Global Key-words : Prompt에서의 Relationship
 - 위의 방법으로 추출된 Key-Value는 Graph Structure인 Vector DB와 결합되어 Retrieval & Generating Phase에서 활용됨

Information Retrieval

- Dual level Retrieval
 - Low level retrieval
 - Specific entity & relationship retrieval
 - Graph내에서 연관된 특정한 entity에 대해서 자세히 탐색
 - Graph에서 직접 연결된 부분들만 참고하는 one-hop retrieval
 - High level retrieval
 - Focus on topic and context
 - Graph내에서 연관된 넓은 범위의 entities과의 관계를 탐색
 - Graph에서 직접 연결된 부분이 아닌 다른 node & edge까지 참고하는 multi-hop retrieval 진행
 - Sub graph까지 깊게 검색 → Broader & Inter-dependent information retrieval 가능

Graph & Vector Structure Advantages

- Integrating Graph and Vectors for Efficient Retrieval
 - Query Keyword Extraction
 - Keyword matching
 - 위의 두개의 Keyword 부분은 preprocessing에서 언급 한 바와 같이 Local & Global Key word를 추출함
 - Incorporating High-Order Relatedness
 - Graph structure이기 때문에, 집중하고 싶은 node(entity)와 인접 노드 탐색으로 고차 관계까지 확장할 수 있음

$$\{v_i|v_i\in\mathcal{V}\land (v_i\in\mathcal{N}_v\lor v_i\in\mathcal{N}_e)\}$$
ige까지 documents의 key와 intersection 후 활용하는 수식

(node & edge의 이웃 (neighborhood)의 union) 기존 documents의 Key와의 intersection

- 이를 통해 검색에 불필요한 데이터 탐색을 제거
- Vector와 graph의 결합으로 정확하고 빠른 관계 파악 가능

Response Generation

LLM Response Generation

- Low & High level Retrieval을 통해 검색된 entity, relationship, text chunk를 통합하여 활용
- 위의 data를 모두 통합 & 요약하여 LLM에게 제공
- LLM의 output을 user's needs에 맞춰 output formatting
 - user's needs에 맞춰서 세부 내용 요약 및 추가 정보 제공 등 가능

Fast & quick adaptation for new dataset

LightRAG

- LightRAG의 graph structure & data preprocessing (Profiling & Deduplicate)등의
 과정을 새로운 documents에 적용시 다른 방법론보다 더 빠르고 효율적으로 dynamic
 update 가능
- 새로운 documents에 대해서 똑같은 preprocessing 적용 시 기존 documents에서 얻은 graph를 재활용
 - 새로운 documents에 적용시킨 preprocessing 데이터를 **기존의 graph와 비교**하여 **중복 제거 처리** 등 진행
 - 모든 graph를 update하지 않아도 일부의 data만 graph에 추가하여 dynamic하게 새로운 데이터 추가할 수 있음

Complexity analysis of the LightRAG

- Computing Complexity Analysis
 - Two main parts
 - The graph-based Index phase
 - Using LLM to extract entities & relationships from each chunks
 - Need to use LLM for total tokens times
 - \circ Ex. total tokens = 100,000, chunk size = 200 \rightarrow 500 times calling
 - The process involves the graph-based retrieval phase
 - First, Need to utilize LLM to generate relevant key words → Like original RAG relied on vector-based search
 - However, LightRAG only need to relying on retrieving entities and relationships → Use less computing power & low complexity

03 Experiments

Performance comparison

Performance Measure

- Comprehensiveness 응답 포괄성
- Diversity 응답 다양성
- Empowerment 사용자 이해도
- Overall 전반적 성과

Experiment Dataset - UltraDomain Benchmark

- Agriculture 농업 관련 주제
- CS 컴퓨터 과학 및 머신러닝
- Legal 법률 및 규제 자료
- Mix 다양한 문학 및 철학 텍스트

Comparison models

NaiveRAG, RQ-RAG, HyDE, GraphRAG

03 Experiments

Performance comparison

LightRAG Performance

○ Comprehensiveness : 67% 더 높은 확률로 포괄적인 응답 제공

○ Diversity : 최대 20% 높은 확률로 다양한 응답 제공

○ Empowerment : 사용자에게 더 나은 정보 활용 능력 제공

○ Overall : 모든 데이터셋에서 기존 모델 대비 우위에 있는 능력 제공

Table 1: Win rates (%) of baselines v.s. LightRAG across four datasets and four evaluation dimensions.

-	Agriculture		CS		Legal		Mix	
	NaiveRAG	LightRAG	NaiveRAG	LightRAG	NaiveRAG	LightRAG	NaiveRAG	LightRAG
Comprehensiveness	32.4%	67.6%	38.4%	61.6%	16.4%	83.6%	38.8%	61.2%
Diversity	23.6%	76.4%	38.0%	62.0%	13.6%	86.4%	32.4%	67.6%
Empowerment	32.4%	67.6%	38.8%	61.2%	16.4%	83.6%	42.8%	57.2%
Overall	32.4%	67.6%	38.8%	61.2%	15.2%	84.8%	40.0%	60.0%
	RQ-RAG	LightRAG	RQ-RAG	LightRAG	RQ-RAG	LightRAG	RQ-RAG	LightRAG
Comprehensiveness	31.6%	68.4%	38.8%	61.2%	15.2%	84.8%	39.2%	60.8%
Diversity	29.2%	70.8%	39.2%	60.8%	11.6%	88.4%	30.8%	69.2%
Empowerment	31.6%	<u>68.4%</u>	36.4%	63.6%	15.2%	84.8%	42.4%	57.6%
Overall	32.4%	<u>67.6%</u>	38.0%	62.0%	14.4%	<u>85.6%</u>	40.0%	60.0%
	HyDE	LightRAG	HyDE	LightRAG	HyDE	LightRAG	HyDE	LightRAG
Comprehensiveness	26.0%	74.0%	41.6%	58.4%	26.8%	73.2%	40.4%	59.6%
Diversity	24.0%	76.0%	38.8%	61.2%	20.0%	80.0%	32.4%	67.6%
Empowerment	25.2%	74.8%	40.8%	59.2%	26.0%	74.0%	46.0%	54.0%
Overall	24.8%	75.2%	41.6%	58.4%	26.4%	73.6%	42.4%	57.6%
	GraphRAG	LightRAG	GraphRAG	LightRAG	GraphRAG	LightRAG	GraphRAG	LightRAG
Comprehensiveness	45.6%	54.4%	48.4%	51.6%	48.4%	51.6%	50.4%	49.6%
Diversity	22.8%	77.2%	40.8%	59.2%	26.4%	73.6%	36.0%	<u>64.0%</u>
Empowerment	41.2%	58.8%	45.2%	54.8%	43.6%	56.4%	<u>50.8%</u>	49.2%
Overall	45.2%	<u>54.8%</u>	48.0%	<u>52.0%</u>	47.2%	<u>52.8%</u>	<u>50.4%</u>	49.6%

04 Conclusion

Graph & Vector Structure And entity & Relationship preprocessing

Graph & Vector Structure

- Graph Structure Database → Fast & quick retrieval
- Incorporating High-Order Relatedness → More specific & boarder retrieval
- Dual-Level Retrieval (Low / High) → More specific & boarder retrieval

Entity & Relationship preprocessing

- Fast & quick retrieval
- Easy to understand complex data interactions (Inter-dependency data)
- Easy to detect High-Order Relatedness relationship
- Performance improvement by Local & Global Keyword matching

Q & A The strict of the stric