Seesaw Principle and Theorem of the Cube

Remarks on Section I.5 of Milne's Abelian Varieties

University of Freiburg

26th May 2020

Seesaw Principle — Idea

Theorem (Weil)

A limit of trivial line bundles on a complete variety is again trivial.

Seesaw Principle — Idea

Theorem (Weil)

A limit of trivial line bundles on a complete variety is again trivial.

 \downarrow making this idea more precise

Theorem (Statement for varieties over $k = \bar{k}$)

V complete, T any ("parameter space"), $\mathcal{L} \in \mathsf{Pic}(V \times T)$. Then

$$Z := \{t \in T \mid \mathcal{L}_t \text{ is trivial }\} \hookrightarrow T$$

is closed and $\mathcal{L}|_{V\times Z}$ is the pullback of a line bundle on Z.

Seesaw Principle — Idea

Theorem (Weil)

A limit of trivial line bundles on a complete variety is again trivial.

 \downarrow making this idea more precise

Theorem (Statement for varieties over $k = \bar{k}$)

V complete, T any ("parameter space"), $\mathcal{L} \in \mathsf{Pic}(V \times T)$. Then

$$Z := \{t \in T \mid \mathcal{L}_t \text{ is trivial }\} \hookrightarrow T$$

is closed and $\mathcal{L}|_{V\times Z}$ is the pullback of a line bundle on Z.

This is the conclusion of the subsection on the seesaw principle in [Mil08], which can be read independently. This statement will be used to **reduce** the Theorem of the Cube to an easier case.

Seesaw Principle — Generalisation

Theorem ([Bha17, Theorem 6.3] or [Fra18, Theorem 5])

Let $f: X \to S$ be a proper flat morphism of (locally) noetherian schemes with geometrically integral fibres and let $\mathcal{L} \in X$. Then

$$Z := \{s \in S \mid \mathcal{L}_s \text{ is trivial }\} \hookrightarrow S$$

and $\mathcal{L}|_{f^{-1}(Z_{\mathrm{red}})} = f^*\mathcal{M}_0$ for some $\mathcal{M}_0 \in \operatorname{Pic}(Z_{\mathrm{red}})$. Moreover, there exists a (unique) closed subscheme structure on Z such that $\mathcal{L}|_{f^{-1}(Z)} = f^*\mathcal{M}$ for some $\mathcal{M} \in \operatorname{Pic}(Z)$ and Z is universal amongst all (locally) noetherian S-schemes with this property.

Seesaw Principle — Generalisation

Theorem ([Bha17, Theorem 6.3] or [Fra18, Theorem 5])

Let $f: X \to S$ be a proper flat morphism of (locally) noetherian schemes with geometrically integral fibres and let $\mathcal{L} \in X$. Then

$$Z := \{s \in S \mid \mathcal{L}_s \text{ is trivial }\} \hookrightarrow S$$

and $\mathcal{L}|_{f^{-1}(Z_{\mathrm{red}})} = f^*\mathcal{M}_0$ for some $\mathcal{M}_0 \in \operatorname{Pic}(Z_{\mathrm{red}})$. Moreover, there exists a (unique) closed subscheme structure on Z such that $\mathcal{L}|_{f^{-1}(Z)} = f^*\mathcal{M}$ for some $\mathcal{M} \in \operatorname{Pic}(Z)$ and Z is universal amongst all (locally) noetherian S-schemes with this property.

Brian Conrad proves this using existence and separatedness of $\operatorname{Pic}_{X/S}$ [Con15, Theorem 3.1.1]: \mathscr{O}_X gives us $[\mathscr{O}_X]$: $S \to \operatorname{Pic}_{X/S}$, whose image we identify with S, and then $Z = [\mathcal{L}](S) \cap [\mathscr{O}_X](S)$. Conversely, assuming $\operatorname{Pic}_{X/S}$ exists, the seesaw theorem implies that it is separated [Fra18, Remark 2.4.2] (automatic if S = k).

Seesaw Principle — Particular case in a picture

Seesaw Principle — Particular case in a picture

We have some $\mathcal{L} \in \operatorname{Pic}(X \times Y)$. We can think of \mathcal{L} as a weight distribution on the two extremes X and Y of this seesaw: the more points $x \in X$ such that $\mathcal{L}|_{\{x\} \times Y}$ is trivial, the heavier \mathcal{L} sits on X.

Seesaw Principle — Particular case in a picture

We have some $\mathcal{L} \in \operatorname{Pic}(X \times Y)$. We can think of \mathcal{L} as a weight distribution on the two extremes X and Y of this seesaw: the more points $x \in X$ such that $\mathcal{L}|_{\{x\} \times Y}$ is trivial, the heavier \mathcal{L} sits on X. In this case, let's say, we have $\mathcal{L}|_{X \times \{y\}}$ trivial for all $y \in Y$. Then \mathcal{L} sits with full weight on Y, so the seesaw principle tells us that there must be some line bundle on Y from which \mathcal{L} is the pullback.

Theorem of the Cube — Statement

Theorem (Statement for varieties over $k = \bar{k}$)

X,Y complete, Z any and $\mathcal{L} \in \mathsf{Pic}(X \times Y \times Z)$ such that

$$\mathcal{L}|_{X\times Y\times \{z_0\}}, \mathcal{L}|_{X\times \{y_0\}\times Z} \text{ and } \mathcal{L}|_{\{x_0\}\times Y\times Z}$$

are trivial. Then \mathcal{L} is trivial.

If the restriction of $\mathcal{L} \in Pic(Cube)$ to each face XY, YZ and XZ is trivial, then \mathcal{L} is trivial.

Theorem of the Cube — Generalisation

As with the Seesaw principle, it is possible to generalise the Theorem of the Cube to the relative setting, see for example:

- [Bha17, Corollary 6.8] for proper flat schemes with geometrically integral fibres over a noetherian base.
- [Fra18, Theorem 9] for an abelian scheme over a locally noetherian base.

Theorem of the Cube — An aplication

One application deserving its own name is [Mil08, Theorem I.5.5]:

Theorem (Theorem of the Square for varieties over $k = \bar{k}$)

Let A be an abelian variety and $\mathcal{L} \in Pic(A)$. For all $a \in A$ denote $t_a \colon A \to A$ the translation by a. Then for all $a, b \in A$ we have

$$\mathcal{L} \otimes t_{a+b}^* \mathcal{L} \cong t_a^* \mathcal{L} \otimes t_b^* \mathcal{L}.$$

Theorem of the Cube — An aplication

One application deserving its own name is [Mil08, Theorem I.5.5]:

Theorem (Theorem of the Square for varieties over $k = \bar{k}$)

Let A be an abelian variety and $\mathcal{L} \in Pic(A)$. For all $a \in A$ denote $t_a \colon A \to A$ the translation by a. Then for all $a, b \in A$ we have

$$\mathcal{L} \otimes t_{a+b}^* \mathcal{L} \cong t_a^* \mathcal{L} \otimes t_b^* \mathcal{L}.$$

In the relative setting, LHS and RHS will differ by the pullback of a line bundle on the base scheme, so if Pic(S) = 0 we still have such an isomorphism but it is not canonical. On the other hand, the isomorphisms in [Mil08, Corollaries I.5.2–I.5.4] are canonical even in the relative setting, cf. [Fra18, Corollaries to Theorem 9].

References

Math 731: Topis in Algebraic Geometry I – Abelian Varieties, 2017.

Lecture notes by Matt Stevenson, available at umich.edu/~stevmatt.

Brian Conrad.

Abelian Varieties, 2015.

Lecture notes by Tony Feng, available at math.stanford.edu/~conrad.

Jens Franke.

Jacobians of Curves, 2018.

Lecture notes by Ferdinand Wagner, available at github.com/Nicholas42/AlgebraFranke.

James S. Milne.

Abelian Varieties (v2.00), 2008.

Available at jmilne.org/math.

