Shapes: Alignment, Descriptors, Similarity

Prof. Angela Dai

M. Sc. Yujin Chen, M. Sc. Can Guemeli

Brief Recap

Machine Perception of Real-World Environments

We perceive and interact with a 3D world

ASIMO, Honda

Star Trek TNG (Phantasms)

How to represent 3D?

Discrete:
Meshes,
Point Samples

Parametric

Implicit:
Distance Fields

All about shapes

Alignment

Correspondences

Descriptors

Shape Acquisition

• 3D Scanning and Motion Capture (IN2354)

3D Alignment

• Many applications, e.g., 3D scanning, SLAM

3D Alignment

• Many applications, e.g., 3D scanning, SLAM

3D Alignment

Many applications

Protein Structure Alignment:

- (red) from humans
- (yellow) from fly Drosophila melanogaster.

3D Alignment (Registration)

- Input:
 - 2 shapes A and B with partial overlap
- Problem:

Register B to A by rigid transform, minimizing distance between A and

B

Shape Distance

Measure of success for registration problem

$$\min_{T} \delta(A, T(B))$$

T: rigid transform to bring B to A

• Fundamental for shape similarity, classification, general machine learning losses

How to evaluate 3D distance?

- What about common function norms, e.g., ℓ_2 ?
 - We don't have correspondences across 3D structures, shapes
- Should support partial matches

- Trade-off between support size and aggregated distance
- Distance for partial matches not a metric

Alignment Estimation

Given shapes A and B

• Establish correspondences between A and B

 Find optimal transform that best aligns correspondences together, based on a distance measure

Transform Estimation

Degrees of freedom

• Rigid motion has 6 degrees of freedom (3 rotation, 3 translation)

Typically estimate with more correspondences -> overdetermined problem

 More general transforms -> more degrees of freedom, e.g., nonrigid deformations

Alignment Challenges

- Correspondence Estimation
 - Combinatorial search

- Transform Estimation
 - Transforms can be non-linear
- Difficult optimization -> look for good features, lowdimensional transforms

Rigid 3D Alignment

• Find 6DoF rigid transform that best aligns shapes, even if the shapes are different

Rigid 3D Alignment (Given Correspondences)

- Given correspondences $\{x_i\}$, $\{y_i\} \in \mathbb{R}^3$
- Find rigid transform \mathbf{R} , t that minimizes $\sum_{i=1}^{N} ||\mathbf{R}x_i + t y_i||_2^2$

Solved as orthogonal Procrustes problem in 1966

Rigid 3D Alignment (Given Correspondences)

$$\min_{R,t} \sum_{i=1}^{N} ||Rx_i + t - y_i||_2^2$$

- How to solve for R, t?
- Consider coordinate system centered at the mean of the x_i

$$\min_{R,t} \sum_{i=1}^{N} ||t-y_i||_2^2 - 2 \sum_{i=1}^{N} \langle Rx_i, y_i \rangle$$
 translation part rotation part

Rigid 3D Alignment (Given Correspondences)

$$\min_{\mathbf{R},t} \sum_{i=1}^{N} ||t - y_i||_2^2 - 2 \sum_{i=1}^{N} \langle \mathbf{R} x_i, y_i \rangle$$

- Translation: $t = \frac{1}{N} \sum_{i=1}^{N} y_i$ (align centroids)
- Remove translation by mean-centering:

$$\bar{x} = \frac{1}{N} \sum_{i=1}^{N} x_i \qquad \bar{y} = \frac{1}{N} \sum_{i=1}^{N} y_i \qquad X = [x_0 - \bar{x}, \dots, x_n - \bar{x}]^T \qquad Y = [y_0 - \bar{y}, \dots, y_n - \bar{y}]^T \qquad Y$$

- Compute SVD: $XY^T = UDV^T \leftarrow 3 \times 3$ matrix
- Define $S = \begin{cases} I, & \text{if } \det(U) \det(V) = 1 \\ diag(1, ..., 1, -1) & \text{otherwise} \end{cases}$

 $R = USV^T$

How to get correspondences?

How to get correspondences?

- Iterate between finding correspondences and solving for the best transform for those correspondences
- ➤ Iterative Closest Points (ICP)

 Various methods to explicitly match features (handcrafted or learned), which can also be refined with ICP

Iterative Closest Points (Besl and McKay '92)

• Developed for aligning 3D shapes

• Nice analysis: Efficient variants of the ICP algorithm (Rusinkiewicz and Levoy 2001)

- How to find correspondences?
- Assume that closest points correspond
- Align the P_a points to their closest P_B neighbors; repeat
- Converges if starting positions are "close enough"

- Given a pair of shapes, A and B
- Iterate:
 - Find corresponding points P_A and P_B based on proximity
 - Find optimal transform \mathbf{R} , t minimizing $\underset{\mathbf{R},t}{\operatorname{argmin}} \sum_i ||\mathbf{R}x_i + t y_i||_2^2$
 - Apply optimized **R**, t

- Given a pair of shapes, A and B
- Iterate:
 - Find corresponding points P_A and P_B based on proximity
 - Find optimal transform \mathbf{R} , t minimizing $\underset{\mathbf{R},t}{\operatorname{argmin}} \sum_i ||\mathbf{R}x_i + t y_i||_2^2$
 - Apply optimized **R**, t

- Given a pair of shapes, A and B
- Iterate:
 - Find corresponding points P_A and P_B based on proximity
 - Find optimal transform \mathbf{R} , t minimizing $\underset{\mathbf{R},t}{\operatorname{argmin}} \sum_i ||\mathbf{R}x_i + t y_i||_2^2$
 - Apply optimized **R**, t

ICP: Runtime Analysis

- Each iteration:
 - Find closest points:
 - $O(N_B)$ per point
 - $O(N_B * N_A)$ total
 - Compute optimal alignment: $O(N_A)$
 - Update scene $O(N_A)$
- Speed up with fast or approximate nearest-neighbor data structures, e.g., kd-tree

ICP Analysis

- Selection of points
- Matching correspondences
- Weighting correspondences
- Rejecting outlier correspondences
- Assigning error metric to the current transform
- Minimizing error metric w.r.t transform

ICP Analysis

How to select correspondences?

But: Uneven Sampling

Ideally, 1:1 correspondences

ICP Analysis

How to select correspondences?

In practice: faster convergence than point-point ICP

Global Registration

Given shapes in arbitrary positions, find the alignments

Often approximate – to be refined (e.g., by ICP)

Global Registration

- Various Approaches
 - Exhaustive Search
 - Normalization
 - Random Sampling
 - Invariance

Global Registration: Exhaustive Search

- Compare all alignments
 - Sample space of possible initial alignments
 - Find alignment at which models are closest
 - (Refine with ICP)
 - Can find optimal result
 - Can be unnecessarily slow
 - Often intractable for larger degrees of freedom (e.g., non-rigid deformations)

Global Registration: Normalization

• If: only a handful of initial configurations

 Center all shapes at the origin and use PCA to find the principal directions

Global Registration: Normalization

Align a collection of shapes

• Works well for complete shapes with no noise

Global Registration: Normalization

- Problems with PCA:
 - Principal axes not consistently oriented

• Unstable axes:

Partial Similarity

Global Registration: Random Sampling

RANSAC

- Iterate:
 - Pick random pair of n (3 for rigid) points on both shapes
 - Estimate alignment, and check for error
- Guess and verify

Global Matching: Invariant Features

Characterize shape with properties that are invariant under the desired transform

• Often trade-off: invariance vs informative

- Identify salient feature points
- Compute informative descriptors

Matching Feature Points

- Find feature points on each shape
- Establish correspondences
- Compute transform that aligns correspondences

How to establish correspondence?

 When do two points on different shapes/scans represent the same feature?

Are the surrounding regions similar?

Feature descriptors summarize surrounding regions

Shape Descriptors

Spin Images [Johnson and Hebert '99]

(Fast) Point Feature Histograms [Rusu et al. '09]

Classical Descriptors

Curvature

 Differential features describe characteristics of surrounding surface

 Differential features can be noisy on meshes and real-world captured data

Classical Descriptors: Spin Images

- Create image associated with neighborhood of a feature point
- "Spin" image along point normal
- Collect contributions of each other point by their distance to tangent and distance to normal

• 2D spin image comparison

Spin Images [Johnson and Hebert '99]

Classical Descriptors: Point Feature Histograms

- For a point p find its k neighbors $\{q_i\}$
- Compute histogram from tuples of $\{(p, q_i)\}$ based on distances, normal, optionally curvature etc.

Global Shape Similarity

• Do two 3D models represent the same or similar shapes?

3D models can have different representations, tessellations, topologies, etc.

Global Shape Similarity

- Do two 3D models represent the same or similar shapes?
- Represent each model by a shape descriptor
 - Structured, abstraction of a 3D model
 - Captures salient shape information
 - Typically a high-dimensional vector

Global Shape Similarity

- Do two 3D models represent the same or similar shapes?
- Represent each model by a shape descriptor
- Compare shapes by comparing descriptors

Global Shape Descriptors

Simple descriptor: Shape Histograms

 Store histogram of how much surface area resides within different concentric shells in space

Global Shape Descriptors

Should be invariant to rigid transforms of the shapes (rotation, translation)

Compute descriptors at the optimal alignment of shapes

Global -> Local Descriptors

Center and restrict around local region

Non-Rigid Shape Matching

- Consider near-isometric cases
- Find correspondences that preserve intrinsic (geodesic) distances on the shapes

Measuring intrinsic shape similarity

- Gromov-Hausdorff distance
- Hausdorff distance: maximin
 - Maximum of all minimum distances between two sets of points

- Gromov-Hausdorff: infimum of all Hausdorff distances over mappings or correspondences
 - Over all correspondences -> difficult to compute!

Near isometries preserve local structure

- Optimal alignment can be defined, but difficult to compute
- Define descriptors of local regions -> establish good mappings

How large should a local region be?

Scale for local features?

 Given a point on a shape, find other points with similar neighborhoods

 How to meaningfully compare neighborhoods at different scales?

Heat kernel signature

- Spectral shape analysis
- Heat kernel $k_t(x, y)$: amount of heat transferred from x to y in time t

$$f(x,t) = \int_{M} k_{t}(x,y)f(y)dy$$

- Invariant under isometric deformations
- Multi-scale description

Shape Search

Shape Search: Bag of Words

Geometric Words

Features + Descriptors

Parts

Shape Search

• Retrieval through descriptor space

Learned Shape Search

[Dahnert et al. '19]

Additional references

- Efficient variants of the ICP algorithm [Rusinkiewicz et al. '01]
 - http://www.pclusers.org/file/n4037867/Rusinkiewicz_Effcient_Variants_of_ICP.pdf
- Sparse Principal Component Analysis [Zou et al '16]
 - https://web.stanford.edu/~hastie/Papers/spc_jcgs.pdf