GRANDEURS CHINIQUES

Exercice 1

1)
$$M = 4 M(c) + 6 M(H) + 3 M(o)$$

 $M = 4 \times 12,0 + 6 \times 1,0 + 3 \times 16,0$
 $M = 102,0 \text{ g. mol} \cdot 1$

2) On a:
$$\ell = \frac{m}{V}$$
; donc: $m = \rho \times V$

A.N.: $m = 1.08 \times 10^{3} \text{ g. L}^{-1} \times 2.70 \times 10^{9} \text{ L}$
 $m \approx 2.92 \times 10^{120} \text{ g}$

3) on a:
$$n = \frac{m}{M}$$
; A.N.: $n = \frac{2,92 \times 10^{12} \text{g}}{102,0 \text{ g.md}^{-1}} \approx \frac{2,86 \times 10^{10} \text{ msf}}{102,0 \text{ g.md}^{-1}}$

Exercice 2

1) On a:
$$n_{gag} = \frac{V_{gag}}{V_{m}}$$
; A.N.: $n_{gag} = \frac{200 \times 10^{-3} L}{25,0 L. mol^{-3}} \approx \frac{8,00 \times 10^{-3} mol}{25}$

?) On a:
$$G = \frac{n_{gas}}{V}$$
; A.N.: $G = \frac{8,80 \times 10^{-3} \text{ mol}}{250 \times 10^{-3} \text{ L}} \approx \frac{3,20 \times 10^{-2} \text{ mol. L}^{-1}}{V}$

3) Comme la concentration a été dividée par 5
$$\left(\frac{C_0}{C_1}=5\right)$$
, alors le facteur de dilution vant $F=5$.
Le volume V_0 doit donc être multiplié par 5 par obtenir V_1 .

Donc $V_0 = \frac{V_1}{5} = \frac{50,0 \text{ ml}}{5} = 10,0 \text{ mL}$

GRANDEURS CHITIQUES

Exercice 3

- # la seule information que nous ayons est G=3,0 × 10-1 mol. L-1 Donc, nous allows partir de 53 puis remonter à S1 et m.
- * Solution S_3 : $||C_3 = 3.0 \times 10^{-1} \text{ mol.l}^{-1}$ $|V_3 = 50.0 \text{ mL}$ (can fish jaught de 59.0 mL ohe l'étape 3
- * Solution S_2 : Pour passer de S_2 à S_3 , il y a en une dilution de $V_2 = 1,0$ mL à $V_3 = 50,0$ mL. Donc F = 50.

Donc $V_2 = 50 \times C_3 = 50 \times 3,0 \times 10^{-1} = 15 \text{ mol. L}^{-1}$ $V_2 = 1,0 \text{ mL}$

- * Solution S_1 : Dans un prélèvement, le volume change, mais par la concentration.

 Donc $||C_1| = 15 \text{ mol. L}^{-1}$ $||V_1| = 20,0 \text{ mL}$
- # la quantité de glucese dissoute est $n = C_1 \times V_1$ $n = 15 \text{ mgl. L}^{-1} \times 29,0 \times 10^{-3} \text{ L}$ n = 9,30 mol
 - # Ce qui conrespond à une masse: $m = n \times M = 0.30 \text{ mol} \times 180 \text{ g. mol}^{-1}$ m = 54 g dans la main.