Principles Of Digital Design

Digital Design Lab Example

Car Locator Example

Optimizing the Car Locator

• The following equation for a constantly accelerating car is given. Minimally change the given datapath to calculate the equation in a shorter time.

$$X = \frac{at^2}{2} + V_0 t + X_0$$

- Constant acceleration (a):5^m/_s²
- An initial velocity (v₀): 2^m/_s,
- Starting location (**x**₀): 4m,
- Time (t): 8 sec,

- 8x16 Register File: 17 ns, 1 ns setup time
- ALU (ALU): 20 ns from input to output
- 16-bit Shifter: 10 ns from input to output
- 2-to-1 Selector: 5 ns from input to output
- Register: 4 ns, 1 ns setup time

M	S	So	ALU Operations
0	0	0	Complement A
0	0	1	AND
0	1	0	EX-OR
0	1	1	OR
1	0	0	Decrement A
1	0	1	Add
1	1	0	Subtract
1	1	1	Increment A

ALU operations

S ₂	Sı	So	
0	0	0	Pass
0	0	1	Pass
0	1	0	Not used
0	1	1	Not used
1	0	0	Shift left
1	0	1	Rotate left
1	1	0	Shift right
1	1	1	Rotate right

Shifter operations

Clock to Clock Delay

Total delay for the current datapath:

$$X = \frac{at^2}{2} + V_0 t + X_0$$

Clock to Clock Delay:

Load RegFile: 17 ns

ALU Operation: 20 ns

Shifter Operation: 10 ns

Selector: 5 ns

RegFile Setup time: 1 ns

Total Clk to Clk 53 ns

- 8x16 Register File: 17 ns, 1 ns setup time
- ALU (ALU): 20 ns from input to output
- 16-bit Shifter: 10 ns from input to output
- 2-to-1 Selector: 5 ns from input to output
- Register: 4 ns, 1 ns setup time

Total Delay

Total delay for the current datapath:

$$X = \frac{at^2}{2} + V_0 t + X_0$$

Number of Clocks needed:

1 Clock Cycle: a X t

1 Clock Cycle: t X at ÷ 2

1 Clock Cycle: $V_0 \times t$

1 Clock Cycle: $\frac{at^2}{2} + V_0 t$

1 Clock Cycle: $\frac{at^2}{2} + V_0 t + X_0$

Total time needed 5 X Clk to Clk = 265 ns

- 8x16 Register File: 17 ns, 1 ns setup time
- ALU (ALU): 20 ns from input to output
- 16-bit Shifter: 10 ns from input to output
- 2-to-1 Selector: 5 ns from input to output
- Register: 4 ns, 1 ns setup time

Optimizing the Car Locator Datapath

The total delay for the current datapath:

$$X = \frac{at^2}{2} + V_0 t + X_0$$

Optimization: Add Registers in Between

RegFile, Alu and Shifter

New Clock to Clock Delay: 4 ns + 20 ns + 1 ns = 25 ns

Load Register + ALU Operation + Register Setup Time

Every Clock Cycle it Performs:

- 8x16 Register File: 17 ns, 1 ns setup time
- ALU (ALU): 20 ns from input to output
- 16-bit Shifter: 10 ns from input to output
- 2-to-1 Selector: 5 ns from input to output
- Register: 4 ns, 1 ns setup time

Optimizing the Car Locator DataPath

DIGITAL DESIGN 101, University of California