算法概要

- 1. 构造 文章-标签 的 0-1 矩阵
- 2. 构造 用户-文章 评分矩阵
- 3. 计算相似度 (余弦相似性)
- 4. 推荐

变量说明

• *users*[*i* = 1:*S*]: 用户集

• articles[j=1:M]: 文章集

• features[k=1:N]: 已经得到的特征集

• MA_j : 向量, 1*N, 文章 j 特征向量, 初始为全0

。 $MA_{j,k}$:表示文章 articles[j] 在特征 features[k] 的值

• MP_i : 向量, 1*M, 用户i评分向量, 初始为全0

。 $MP_{i,j}$:表示用户 users[i] 对文章 articles[j] 的评分

• MU_i : 向量, 1*N, 用户i特征向量, 初始为全0

。 $MU_{i,k}$:表示用户 users[i] 在特征 features[k] 的值

预处理 文章特征01矩阵

```
1. for all articles j = 1 to M
2. for all features k = 1 to N
3. if (articles[j] 拥有 features[k] 属性)
4. MA_{j}[k] = 1;
5. else
6. MA_{j}[k] = 0;
```

构造 用户-文章评分矩阵

- 对于某一个用户 users[i],在阅读某篇文章 articles[j] 之后,评分为 $score_{i,j}$,则 $MP_{i,j} = score_{i,j}$
- $score_{i,j}$ 的计算如下:

$$score_{i,j} = rac{readtime}{words}$$

其中 readtime 为阅读时间,words 为文章的字数

计算相似度

对于某一个用户 users[i]:

• 计算 *users*[*i*] 所有评分的均值:

$$Avg_i = rac{\sum_{j \in Scored} MP_{i,j}}{|Scored|}$$

其中 Scored 为用户 users[i] 已评分的文章集

• 计算用户 users[i] 对 features[k] 的喜好程度

$$MU_{i,k} = rac{\sum (x_k - Avg_i)}{n}$$

这里, x_k 为所有包含 features[k] 旦用户 users[i] 已评过分的文章的评分,n 为所有包含 features[k] 的文章的数量 至此,对于用户 users[i],得到了一个 1*N 的向量 MU_i

• 计算 users[i] 和 article[j] 的相似度

$$\cos(i,j) = rac{\sum (MU_{i,k}*MA_{j,k})}{\sqrt{\sum MU_{i,k}^2}*\sqrt{\sum MA_{j,k}^2}}$$

推荐

对于用户 users[i] ,遍历整个文章集,计算 users[i] 和每个文章的相似度(推荐度),选择相似度最高的前若干个文章,推荐给用户 users[i]

算法说明

- 预处理所有文章的特征01矩阵
- 在用户 users[i] 注册后,该用户的 MU_i 被初始化为全0
- 在用户 *users*[*i*] 需要获取文章时,运用上述【算法概要】中【推荐】的做法,选择若干篇文章推荐给用户
- 在用户 *users*[*i*] 阅读文章时,获取参数【阅读时间】和【文章字数】。在阅读完文章时,根据参数依次处理:
 - 。 更新用户评分向量 MP_i
 - \circ 更新用户特征向量 MU_i