Lesson 11

Digital Logic

Junying Chen

Finite State Machine (FSM)

- Consists of:
 - -State register
 - Stores current state
 - Loads next state at clock edge

- Computes the next state
- Computes the outputs

Finite State Machines (FSMs)

- Next state determined by current state and inputs
- Two types of finite state machines differ in output logic:
 - Moore FSM: outputs depend only on current state
 - Mealy FSM: outputs depend on current state and inputs

Moore FSM

Mealy FSM

FSM Example

- Traffic light controller
 - Traffic sensors: T_A , T_B (TRUE when there's traffic)

FSM Black Box

• Inputs: CLK, Reset, T_A , T_B

• Outputs: L_A , L_B

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Diagram

- Moore FSM: outputs labeled in each state
- States: Circles
- Transitions: Arcs

FSM State Transition Table

Current State	Inputs		Next State
S	$T_{\!A}$	T_{B}	S'
S 0	0	X	
S 0	1	X	
S 1	X	X	
S2	X	0	
S2	X	1	
S 3	X	X	

FSM State Transition Table

Current State	Inputs		Next State
S	$T_{\!A}$	T_{B}	S'
S0	0	X	S 1
S 0	1	X	S 0
S 1	X	X	S2
S2	X	0	S 3
S2	X	1	S2
S 3	X	X	S 0

VENTIAL LOGIC

FSM Encoded State Transition Table

Curren	t State	Inp	uts	Next	State
S_1	S_0	$T_{\!A}$	T_B	<i>S</i> ′ ₁	S'_0
0	0	0	X		
0	0	1	X		
0	1	X	X		
1	0	X	0		
1	0	X	1		
1	1	X	X		

State	Encoding
S0	00
S 1	01
S2	10
S 3	11

EQUENTIAL LOGIC DESIGN

FSM Encoded State Transition Table

Curren	t State	Inp	uts	Next	State
S_1	S_0	T_{A}	T_{B}	S'_1	S'_0
0	0	0	X	0	1
0	0	1	X	0	0
0	1	X	X	1	0
1	0	X	0	1	1
1	0	X	1	1	0
1	1	X	X	0	0

State	Encoding
S0	00
S 1	01
S2	10
S3	11

$$S'_{1} = S_{1} \oplus S_{0}$$

$$S'_{0} = \overline{S_{1}} \overline{S_{0}} \overline{T_{A}} + S_{1} \overline{S_{0}} \overline{T_{B}}$$

FSM Output Table

Current State			Outp	outs	
S_1	S_0	L_{A1}	$L_{\!A0}$	L_{B1}	L_{B0}
0	0				
0	1				
1	0				
1	1				

Output	Encoding
green	00
yellow	01
red	10

FSM Output Table

Curren	Current State		Outputs		
S_1	S_0	L_{A1}	$L_{\!A0}$	L_{B1}	L_{B0}
0	0	0	0	1	0
0	1	0	1	1	0
1	0	1	0	0	0
1	1	1	0	0	1

Output	Encoding
green	00
yellow	01
red	10

$$L_{A1} = S_1$$

$$L_{A0} = \overline{S_1}S_0$$

$$L_{B1} = \overline{S_1}$$

$$L_{B0} = S_1S_0$$

FSM Schematic: State Register

state register

FSM Schematic: Next State Logic

FSM Schematic: Output Logic

JENTIAL

FSM Timing Diagram

FSM State Encoding

- Binary encoding:
 - i.e., for four states, 00, 01, 10, 11
- One-hot encoding
 - One state bit per state
 - Only one state bit HIGH at once
 - i.e., for 4 states, 0001, 0010, 0100, 1000
 - Requires more flip-flops
 - Often next state and output logic is simpler

Moore vs. Mealy FSM

Alyssa P. Hacker has a snail that crawls down a paper tape with 1's and 0's on it. The snail smiles whenever the last two digits it has crawled over are 01. Design Moore and Mealy FSMs of the snail's brain.

State Transition Diagrams

Moore FSM

Mealy FSM

Mealy FSM: arcs indicate input/output

Moore FSM State Transition Table

Current State		Inputs	Next	State
S_1	S_0	A	S' ₁	S'_0
0	0	0		
0	0	1		
0	1	0		
0	1	1		
1	0	0		
1	0	1		

State	Encoding
S0	00
S 1	01
S 2	10

Moore FSM State Transition Table

Current State		Inputs	Next	State
S_1	S_0	A	S' ₁	S'_0
0	0	0	0	1
0	0	1	0	0
0	1	0	0	1
0	1	1	1	0
1	0	0	0	1
1	0	1	0	0

$$S_1' = S_0 A$$
$$S_0' = \overline{A}$$

State	Encoding	
S 0	00	
S 1	01	
S2	10	

Moore FSM

Moore FSM Output Table

Current State		Output
S_1	S_0	Y
0	0	
0	1	
1	0	

Moore FSM Output Table

Current State		Output
S_1	S_0	Y
0	0	0
0	1	0
1	0	1

$$Y = S_1$$

Moore FSM

Mealy FSM State Transition & Output Table

Current State	Input	Next State	Output
S_0	A	S'_0	Y
0	0		
0	1		
1	0		
1	1		

State	Encoding
S0	0
S1	1

Mealy FSM State Transition & Output Table

Current State	Input	Next State	Output
S_0	A	S' ₀	Y
0	0	1	0
0	1	0	0
1	0	1	0
1	1	0	1

State	Encoding
S0	0
S 1	1

S_0'	$=\overline{A}$
Y =	S_0A

Mealy FSM

Moore FSM Schematic

Mealy FSM Schematic

Moore & Mealy Timing Diagram

