Gray codes

Danny Nygård Hansen

19th November 2022

If a and b are binary strings of the same length, we denote the bitwise exclusive disjunction of a and b by $a \oplus b$. We denote the concatenation of a with b either by $a \circ b$ or ab. Also, if b is a binary string, denote by b^{\gg} the right logical shift of b, i.e. the string obtained by removing the rightmost bit of b and appending a 0 on the left of the result.

Let $n \in \mathbb{N}$. For a number $k \in \mathbb{N}$ with $k < 2^n$ we denote the n-bit binary representation of k by $\operatorname{bin}_n(k)$. Furthermore, we denote the n-bit Gray code for k by $\operatorname{gr}_n(k)$. By definition, $\operatorname{gr}_0(0) = \lambda$ and

$$\operatorname{gr}_{n+1}(k) = \begin{cases} 0 \circ \operatorname{gr}_n(k), & k < 2^n, \\ 1 \circ \operatorname{gr}_n(2^{n+1} - 1 - k), & k \ge 2^n. \end{cases}$$

for all $n \in \mathbb{N}$ and (n + 1)-bit numbers k. We claim the following:

PROPOSITION 0.1

Let $n \in \mathbb{N}$, and let $k \in \mathbb{N}$ be an n-bit number. Writing $\operatorname{bin}_n(k) = b_{n-1} \cdots b_0$ we have $\operatorname{gr}_n(k) = a_{n-1} \cdots a_0$, where $a_{n-1} = b_{n-1}$ and

$$a_i = b_{i+1} \oplus b_i \tag{0.1}$$

for $i \in \{0, ..., n-2\}$. That is,

$$\operatorname{gr}_n(k) = b_{n-1}(b_{n-1} \oplus b_{n-2}) \cdots (b_1 \oplus b_0).$$

Conversely we have

$$b_i = a_i \oplus \cdots \oplus a_{n-1}$$
.

The formula (0.1) also holds in the case i = n-1 if we let $b_n = 0$, i.e. we prepend zeros if necessary.

PROOF. If n = 0, then the claim is obvious since there are no 0-bit numbers. Now let k be an (n + 1)-bit number, so that $k < 2^{n+1}$, and write $b_{n+1}(k) = b_n \cdots b_0$. If $k < 2^n$, then $b_n = 0$ and $gr_{n+1}(k) = 0 \circ gr_n(k)$. By induction we have

$$\operatorname{gr}_n(k) = b_{n-1}(b_{n-1} \oplus b_{n-2}) \cdots (b_1 \oplus b_0)$$

= $(b_n \oplus b_{n-1})(b_{n-1} \oplus b_{n-2}) \cdots (b_1 \oplus b_0),$

so it follows that

$$\operatorname{gr}_{n+1}(k) = b_n \circ \operatorname{gr}_n(k) = b_n(b_n \oplus b_{n-1})(b_{n-1} \oplus b_{n-2}) \cdots (b_1 \oplus b_0)$$

as claimed. If instead $k \ge 2^n$, then $b_n = 1$. Writing $k = 2^n + r$ with $0 \le r < 2^n$ we have $bin_n(r) = b_{n-1} \cdots b_0$. Now notice that $bin_n(2^n - 1 - r) = \bar{b}_{n-1} \cdots \bar{b}_0$ since

$$(\overline{b}_{n-1}\cdots\overline{b}_0)_2 + r + 1 = (\overline{b}_{n-1}\cdots\overline{b}_0)_2 + (b_{n-1}\cdots b_0)_2 + 1 = 2^n$$

By induction we have

$$\operatorname{gr}_{n}(2^{n}-1-r) = \overline{b}_{n-1}(\overline{b}_{n-1} \oplus \overline{b}_{n-2}) \cdots (\overline{b}_{1} \oplus \overline{b}_{0})$$
$$= (b_{n} \oplus b_{n-1})(b_{n-1} \oplus b_{n-2}) \cdots (b_{1} \oplus b_{0})$$

since $b_n = 1$, so it follows that

$$\operatorname{gr}_{n+1}(k) = b_n \circ \operatorname{gr}_n(2^n - 1 - r)$$

= $b_n(b_n \oplus b_{n-1})(b_{n-1} \oplus b_{n-2}) \cdots (b_1 \oplus b_0)$

as desired.

For the final claim, simply notice that

$$a_{i} \oplus \cdots \oplus a_{n-1} = (b_{i} \oplus b_{i+1}) \oplus (b_{i+1} \oplus b_{i+2}) \oplus \cdots \oplus (b_{n-2} \oplus b_{n-1}) \oplus b_{n-1}$$
$$= b_{i} \oplus (b_{i+1} \oplus b_{i+1}) \oplus (b_{i+2} \oplus \cdots \oplus b_{n-2}) \oplus (b_{n-1} \oplus b_{n-1})$$
$$= b_{i}.$$

Alternatively we may notice that (0.1) defines a linear system of equations with coefficients in $\mathbb{Z}/2\mathbb{Z}$ and invert this.

COROLLARY 0.2

For $n \in \mathbb{N}$ and any n-bit number k, we have

$$\operatorname{gr}_n(k) = \operatorname{bin}_n(k) \oplus \operatorname{bin}_n(k)^{\gg}.$$

PROOF. Writing $bin_n(k) = b_{n-1} \cdots b_0$, the proposition implies that

$$\operatorname{gr}_{n}(k) = b_{n-1}(b_{n-1} \oplus b_{n-2}) \cdots (b_{1} \oplus b_{0})$$
$$= (0 \oplus b_{n-1})(b_{n-1} \oplus b_{n-2}) \cdots (b_{1} \oplus b_{0}).$$

But $bin_n(k)^{\gg} = 0b_{n-1} \cdots b_1$, so the claim follows.

References 3

References

Knuth, Donald E. (2011). *The Art of Programming, Volume 4A: Combinatorial Algorithms, Part 1*. 1st ed. Addison-Wesley. 883 pp. ISBN: 978-0-201-03804-0.