Channel Coordination on Exclusive vs. Non-Exclusive Content under Endogenous Consumer Homing

Malin Arve, NHH

Ole Kristian Dyskeland, NHH

Øystein Foros, NHH

Research Question

Does a snowballing effect exist in content access platform markets, where high existing incremental value leads to consumer multihoming, which in turn encourages content providers to pursue exclusive distribution? How does this interplay affect the wholesale terms of trade between platforms and content providers?

Mode

Model

Layout

(Armstrong, 1999; Stennek, 2014; Weeds, 2015; Jiang et al., 2019)

• Downstream, distribution platforms, i = 0,1

• Upstream, independent, monopoly content provider

- Subgame Perfect Nash Equilibrium, two-stage game:
 - 1.Access pricing stage
 - 2. Price competition stage

Model

Demand

(Hotelling, 1929; Kim and Serfes, 2006; Anderson et al., 2017)

Consumer singlehoming utility:

$$u_i(x) = n + \varepsilon_i - p_i - t |X_i - x|$$

• Singlehoming demand follows from *indifferent-consumer margin*, $u_0(x) = u_1(x)$:

$$D_i^{SH} = \frac{1}{2} + \frac{\varepsilon_i - p_i}{2t} - \frac{\varepsilon_j - p_j}{2t}$$

• Consumer multihoming utility:

$$u_B = n + \varepsilon_0 + \varepsilon_1 - p_0 - p_1 - t$$

• Multihoming demand follows from singlehomermultihomer margins, $u_i(x) = u_B$:

$$D_i^{MH} = \frac{\varepsilon_i - p_i}{t}$$

Stage 2 Nash equilibrium

- Equilibrium candidates:
 - Singlehoming: (p_i^{SH}, π_i^{SH})
 - Multihoming: (p_i^{MH}, π_i^{MH})
- Deviation contraints:

•
$$\pi_i^{SH} - \pi_i^{MH} > 0$$
iff $\varepsilon < \varepsilon^{SH}$

$$\quad \boldsymbol{\pi}_i^{MH} - \boldsymbol{\pi}_i^{SH}(p_i^{SH}(p_j^{MH}), p_j^{MH}) > 0$$
 iff $\boldsymbol{\varepsilon} > \varepsilon_{MH}$

Stage 1: consumer multihoming

- Non-exclusive distribution access price: s.t. $\pi_1^{MH}(\Delta,\Delta) \geq \pi_1^{MH}(\Delta,0)$
 - $\pi_{CP}^{MH}(\theta, \theta) = \pi_{CP}^{MH}(w, w) = 0$

- Exclusive distribution: access price: s.t. $\pi_0^{MH}(\Delta,0) \geq \pi_0^{MH}(0,0)$
 - $\pi_{CP}^{MH}(\theta,0) > 0, \pi_{CP}^{MH}(w,0) > 0$

Stage 1: consumer singlehoming

- Non-exclusive distribution: access price: s.t. $\pi_1^{SH}(\Delta, \Delta) \geq \pi_1^{SH}(\Delta, 0)$
 - $\pi_{CP}^{SH}(\theta, \theta) > 0, \pi_{CP}^{SH}(w, w) > 0$

- Exclusive distribution: access price: s.t. $\pi_0^{SH}(\Delta,0) \geq \pi_0^{SH}(0,0)$
 - $\pi_{CP}^{SH}(\theta,0) > 0, \pi_{CP}^{SH}(w,0) > 0$

Results - SPE ε_{MH}

Results

Extensions / Robustness

- Exclusive distribution right:
 - → Allowing for exclusive distribution rights has no impact on our results

- Vertical Foreclosure
 - → When platforms are allowed to unilaterally deviate from singlehoming and induce consumer multihoming, platform 1 will not be vertically foreclosed from the market

Concluding Remarks

- Bottleneck consumers and content distribution
- Snowballing effect

- Netflix AND Disney+ AND ... AND HBO MAX
- Spotify OR Apple Music OR Tidal

References

References

- Anderson, S.P., Foros, Ø., and Kind, H.J., 2017. Product Functionality, Competition, And Multipurchasing.
 International Economic Review, 58(1), pp.183-210.
- Armstrong, M., 1999. Competition In The Pay-Tv Market. Journal of the Japanese and International Economies, 13(4), pp.257-280.
- Hotelling, H., 1929. Stability In Competition. The Economic Journal, 39(153), pp.41-57.
- Jiang, B., Tian, L., and Zhou, B., 2019. Competition Of Content Acquisition And Distribution Under Consumer Multipurchase. *Journal of Marketing Research*, 56(6), pp.1066-1084.
- Kim, H. and Serfes, K., 2006. A Location Model With Preference For Variety. *The Journal of Industrial Economics*, 54(4), pp.569-595.
- Stennek, J., 2014. Exclusive Quality–Why Exclusive Distribution May Benefit The Tv-Viewers. *Information Economics and Policy*, 26, pp.42-57.
- Weeds, H., 2016. Tv Wars: Exclusive Content And Platform Competition In Pay Tv. *The Economic Journal*, 126(594), pp.1600-1633.

14

Appendix

Stage 2 Nash equilibrium

Consumer Singlehoming

$$p_i^{SH}(p_j) = \frac{t + (\varepsilon_i - \varepsilon_j) + p_j + c_i}{2}$$

$$p_i^{SH} = t + \frac{(\varepsilon_i - \varepsilon_j) + 2c_i + c_j}{3}$$

$$\pi_i^{SH} = \frac{\left(3t + (\varepsilon_i - \varepsilon_j) - (c_i - c_j)\right)^2}{18t}$$

•
$$\varepsilon < \varepsilon^{SH} = \sqrt{2}t - \left(\frac{3 - \sqrt{2}}{3}\right)\Delta \approx \sqrt{2}t$$
 • $\varepsilon > \varepsilon_{MH} = \frac{2}{\sqrt{2} + 3}\left((\sqrt{2} + 1)t - \Delta\right) \approx 1.09t$

Consumer Multihoming

$$p_i^{MH}(p_j) = p_i^{MH} = \frac{\varepsilon_i + c_i}{2}$$

$$\pi_i^{MH} = \frac{(\varepsilon_i - c_i)^2}{4t}$$

$$\varepsilon > \varepsilon_{MH} = \frac{2}{\sqrt{2} + 3} \left((\sqrt{2} + 1)t - \Delta \right) \approx 1.09t$$

Stage 1 Consumer multihoming

Revenue Sharing

$$\theta \frac{\varepsilon^2}{4t} \ge \frac{\varepsilon^2}{4t} \Longrightarrow \theta^{MH-0} = 1$$

•
$$\pi_{CP} = 2(1 - \theta^{MH-0})\pi_1^{MH-0} = 0$$

$$\theta \frac{(\varepsilon + \Delta)^2}{4t} \ge \frac{\varepsilon^2}{4t} \implies \theta^{MH - \Delta} = \frac{\varepsilon^2}{(\varepsilon + \Delta)^2}$$

•
$$\pi_{CP} = (1 - \theta^{MH-\Delta})\pi_1^{MH-\Delta} = \Delta \frac{2\varepsilon + \Delta}{4t}$$

Per-consumer wholesale price

$$\frac{(\varepsilon - w)^2}{4t} \ge \frac{\varepsilon^2}{4t} \implies w^{MH-0} = 0$$

•
$$\pi_{CP} = w(2 * D_1(\Delta, \Delta, w)) = 0$$

$$\theta \frac{(\varepsilon + \Delta)^2}{4t} \ge \frac{\varepsilon^2}{4t} \implies \theta^{MH - \Delta} = \frac{\varepsilon^2}{(\varepsilon + \Delta)^2} \qquad \theta \frac{(\varepsilon + \Delta - w)^2}{4t} \ge \frac{\varepsilon^2}{4t} \implies w^{MH - \Delta} = \Delta$$

$$\pi_{CP} = wD_0(\Delta, 0, w) = \frac{\varepsilon \Delta}{4t}$$

Stage 1 Consumer singlehoming

Revenue Sharing

•
$$\theta \frac{t}{2} \ge \frac{(3t - \Delta)^2}{18t} \Longrightarrow \theta^{SH-0} = \frac{(3t - \Delta)^2}{9t^2}$$

•
$$\pi_{CP} = 2(1 - \theta^{SH-0})\pi_1^{SH-0} = \Delta \frac{6t - \Delta}{9t}$$

$\theta \frac{(3t+\Delta)^2}{18t} \ge \frac{t}{2} \implies \theta^{SH-\Delta} = \frac{9t^2}{(3t+\Delta)^2} \qquad \theta = \frac{(\varepsilon+\Delta-w)^2}{2} \ge \frac{\varepsilon^2}{4t} \implies w^{MH-\Delta} = \Delta$

•
$$\pi_{CP} = (1 - \theta^{SH-\Delta})\pi_1^{SH-\Delta} = \Delta \frac{6t + \Delta}{18t}$$

Per-consumer wholesale price

$$\frac{t}{2} \ge \frac{(3t - \Delta + w)^2}{18t} \implies w^{SH-0} = \Delta$$

•
$$\pi_{CP} = wD_1(\Delta, \Delta, w) = \Delta$$

$$\frac{(\varepsilon + \Delta - w)^2}{4t} \ge \frac{\varepsilon^2}{4t} \implies w^{MH - \Delta} = \Delta$$

•
$$\pi_{CP} = wD_0(\Delta, 0, w) = \frac{\Delta}{2}$$