Workshop Data processing

Experimental Project

Master Engineering Physics

Contents

Learn with an example

- 1. Image processing: segmentation, filtering, measurements
- 2. Data processing: selection, model fitting
- 3. Statistical analysis: descriptive statistics, t-test, ANOVA

Practice with your preliminary data

An example

Captured at 2000fps Scale unknown

Final goal

Analyze the image, and infer the radius of both drops

An example

Captured at 2000fps Scale unknown

Final goal

Analyze the image, and infer the radius of both drops

Strategy

- Detect the drop position vs. time by image processing
 → Image J: https://imagej.nih.gov/ij/
 (all functions → equiv. in Matlab)
- 2. Fit a theoretical model of free fall on the data, and deduce the scale from the acceleration of gravity
 → Matlab

Image processing

	● ● Results											
	Area	X	Υ	BX	BY	Width	Height	Circ.	Slice	AR	Round	Solidity
689	29	74.3	207.4	71	205	7	5	1.0	261	1.4	0.7	0.9
690	1018	83.1	380.1	62	363	40	36	0.7	261	1.2	0.8	0.9
691	41	57.9	52.0	53	49	10	6	0.8	262	2.4	0.4	0.9
692	24	74.5	209.2	72	206	5	6	1.0	262	1.1	0.9	0.9
693	1014	82.8	383.4	62	367	39	35	0.8	262	1.2	0.9	0.9
694	46	58.1	52.1	53	49	11	6	0.8	263	2.2	0.5	0.9
695	20	74.4	211.4	72	209	5	5	1.0	263	1.1	0.9	0.9
696	1003	83.0	386.7	62	370	41	35	0.8	263	1.2	0.9	0.9
697	46	58.0	52.0	53	49	10	6	0.9	264	2.0	0.5	0.9
698	32	73.8	213.2	70	210	7	6	1.0	264	1.2	0.9	0.9
699	991	83.2	389.7	62	374	41	34	0.8	264	1.2	0.8	0.9

Goal Detect objects of interest, then calculate their properties (position, size, shape, etc.)

Strategy

- 1. Image preparation
- 2. Background removal to highlight the objects
- 3. Segmentation to select the objects
- 4. Filtering to remove noise
- 5. Measurement of object properties + storage

Image preparation

e.g. Rotation, cropping, resizing(./Image/)

Background generation

./Image/Duplicate

1st frame Last frame

./Image/Stack/Z-project

Time average

Time median

Background generation

./Image/Duplicate

Last frame

Time average

Background subtraction

./Process/ImageCalculator

Background subtraction

./Process/ImageCalculator

Original

Background

Subtraction

Segmentation

./Image/Type/8-bit

RGB 3x [0, 255]

Gray level [0, 255]

Threshold [100, 255]

Threshold [40, 255]

Segmentation

./Image/Type/8-bit

RGB 3x [0, 255]

Gray level [0, 255]

./Image/Adjust/Threshold

Threshold [100, 255]

[40, 255]

Filtering

= convolution of the image matrix by a filtering kernel

./Process/Filters/

Kernel – R=2									
0	0	0	0	0	0	0			
0	0	1	1	1	0	0			
0	1	1	1	1	1	0			
0	1	1	1	1	1	0			
0	1	1	1	1	1	0			
0	0	1	1	1	0	0			
0	0	0	0	0	0	0			

→ Each pixel is replaced by the mean / median / ... of the 21 neighboring pixels

Original B&W (noisy)

Mean − R=2

→ gray

Median − R=2 → B&W

Filtering – morphological operations

= special convolutions (B&W → B&W)

./Process/Binary/

Original B&W (noisy)

= remove one layer

Dilate = add one layer

Fill holes

Filtering – combinations

Succession of filters (Median, Erode, Dilate, Fill holes) Size \pm conserved if \pm (E) = \pm (D)

Original B&W (noisy)

FED

MF

Measurements

./Analyze/SetMeasurements

→ e.g. Select Area, Centroid, Bounding rectangle, Shape descriptors, Stack position

./Analyze/AnalyzeParticles

Additional noise removal → Size: 10-inf pixel²

Possible constraint on circularity
$$C = 4\pi \frac{\text{Area}}{\text{Perimeter}^2}$$

Results												
	Area	X	Υ	BX	BY	Width	Height	Circ.	Slice	AR	Round	Solidity
689	29	74.3	207.4	71	205	7	5	1.0	261	1.4	0.7	0.9
690	1018	83.1	380.1	62	363	40	36	0.7	261	1.2	0.8	0.9
691	41	57.9	52.0	53	49	10	6	0.8	262	2.4	0.4	0.9
692	24	74.5	209.2	72	206	5	6	1.0	262	1.1	0.9	0.9
693	1014	82.8	383.4	62	367	39	35	0.8	262	1.2	0.9	0.9
694	46	58.1	52.1	53	49	11	6	0.8	263	2.2	0.5	0.9
695	20	74.4	211.4	72	209	5	5	1.0	263	1.1	0.9	0.9
696	1003	83.0	386.7	62	370	41	35	0.8	263	1.2	0.9	0.9
697	46	58.0	52.0	53	49	10	6	0.9	264	2.0	0.5	0.9
698	32	73.8	213.2	70	210	7	6	1.0	264	1.2	0.9	0.9
699	991	83.2	389.7	62	374	41	34	0.8	264	1.2	0.8	0.9
				5.43						•		

→ Save as .txt file, to be imported in Matlab for further processing

Contents

Learn with an example

- 1. Image processing: segmentation, filtering, measurements
- 2. Data processing: selection, model fitting
- 3. Statistical analysis: descriptive statistics, t-test, ANOVA

Practice with your preliminary data

Data import in Matlab

```
data=dlmread('Results.txt','\t',1,0);
A=data(:,2);
                                                  % Area [pix^2]
y=data(:,4);
                                                  % Vertical position [pix]
W=data(:,7);
                                                  % Width [pix]
H=data(:,8);
                                                  % Height [pix]
t=data(:,10)/2000;
                                                  % Time [s]
                                                                         Liquid residue
                           50
     Sampling
                          100
     freq.
                                                                          Small
                          150
                                                                          drop
                        .
호
200
                                Attached
                                drop
                          250
                          300
                                                    Large
                          350
                                                    drop
figure(1);
                          400
                                                   0.08
                                 0.02
                                       0.04
                                             0.06
                                                         0.1
                                                              0.12
                                                                    0.14
plot(t,y,'.');
                                                t [s]
xlabel('$t$ [s]','fontsize',FS,'fontname','Times','interpreter','latex');
ylabel('$y$ [pix]','fontsize',FS,'fontname','Times','interpreter','latex');
set(gca, 'fontsize', FS-2, 'YDir', 'reverse', 'fontname', 'Times');
print -depsc ./Figures/Fig1 ty.eps;
```

f0=find(y>60); ——— Exclude the liquid residue, based on vertical position

f0=find(y>60); ——— Exclude the liquid residue, based on vertical position

Then check size histogram to distinguish and separate both drops

hist(log10(A(f0)),30);

f0=find(y>60); ——— Exclude the liquid residue, based on vertical position

Then check size histogram to distinguish and separate both drops

The partition based on area works to distinguish both drops.

→ Tracking (more complicated) not needed

f0=find(y>60); ——— Exclude the liquid residue, based on vertical position

Then check size histogram to distinguish and separate both drops

f1=find(A>100); f01=intersect(f0,f1); hist(log10(A(f0)),30); f2=find(A<100); f02=intersect(f0,f2); plot(t(f01),y(f01),'b.'); plot(t(f02),y(f02),'r.'); 150 100 Large drop 150 100 Break-up <u>범</u> 200 Small drop ≈ 250 50 300 350 400 0.02 0.04 0.06 0.08 0.1 0.12 0.14 10 100 1000 t [s] $A [pix^2]$

The partition based on area works to distinguish both drops.

→ Tracking (more complicated) not needed

Acceleration of gravity

Deduced from y, through finite differences

$$y_{n+1} = y_n + v_n(\Delta t) + \frac{a_n}{2}(\Delta t)^2$$

$$y_{n-1} = y_n - v_n(\Delta t) + \frac{a_n}{2}(\Delta t)^2$$

$$\Rightarrow a_n = \frac{2(y_{n+1} + y_{n-1} - 2y_n)}{(\Delta t)^2}$$

y [pix] a_n = acceleration [pix/s²] c = size [m] of one pixel g = 9.81 [m/s²]

$$c = \frac{g}{\text{mean}(a_n)}$$

Acceleration of gravity

Deduced from *y*, through finite differences

$$y_{n+1} = y_n + v_n(\Delta t) + \frac{a_n}{2}(\Delta t)^2$$

$$y_{n-1} = y_n - v_n(\Delta t) + \frac{a_n}{2}(\Delta t)^2$$

$$\Rightarrow a_n = \frac{2(y_{n+1} + y_{n-1} - 2y_n)}{(\Delta t)^2}$$

y [pix] a_n = acceleration [pix/s²] c = size [m] of one pixel g = 9.81 [m/s²]

$$c = \frac{g}{\text{mean}(a_n)}$$

ac=(y1(3:end)+y1(1:end-2)-2*y1(2:end-1))*2./(t1(2:end-1)-t1(1:end-2)).^2; plot(t1(2:end-1),ac,'.'); hold on; plot([min(t1),max(t1)],mean(ac)*[1 1],'r'); c=9.81/mean(ac);

It yields

c = 87 µm/pix, from the large drop c = 29µm/pix, from the small drop

Why?

Acceleration of gravity

Deduced from *y*, through finite differences

$$y_{n+1} = y_n + v_n(\Delta t) + \frac{a_n}{2}(\Delta t)^2$$

$$y_{n-1} = y_n - v_n(\Delta t) + \frac{a_n}{2}(\Delta t)^2$$

$$\Rightarrow a_n = \frac{2(y_{n+1} + y_{n-1} - 2y_n)}{(\Delta t)^2}$$

y [pix] a_n = acceleration [pix/s²] c = size [m] one pixel g = 9.81 [m/s²]

$$c = \frac{g}{\text{mean}(a_n)}$$

ac=(y1(3:end)+y1(1:end-2)-2*y1(2:end-1))*2./(t1(2:end-1)-t1(1:end-2)).^2; plot(t1(2:end-1),ac,'.'); hold on; plot([min(t1),max(t1)],mean(ac)*[1 1],'r'); c=9.81/mpan(ac);

It yields

 $c = 87 \mu \text{m/pix}$, from the large drop $c = 29 \mu \text{m/pix}$, from the small drop

Why?

Model fitting

Physical model of free fall (without drag)

$$yc = y_0c + v_0t + \frac{g}{2}t^2$$

y [pix] c = size [m] of one pixel $V_0 = \text{initial speed [m/s]}$ $g = 9.81 \text{ [m/s}^2\text{]}$

Implementation:
$$y = p_2 t^2 + p_1 t + p_0$$

$$c = \frac{g}{2p_2}$$

 \rightarrow fitting of a 2nd order polynomial (i.e. linear in fitting coefficients p_i)


```
p1=polyfit(t1,y1,2); c1=9.81/2/p1(1),
p2=polyfit(t2,y2,2); c2=9.81/2/p2(1),
plot(t1,y1,'b.'); hold on;
plot(t2,y2,'r.');
plot(t1,polyval(p1,t1),'k');
plot(t2,polyval(p2,t2),'k');
```

It yields

 $c = 147 \mu \text{m/pix}$, from the large drop $c = 160 \mu \text{m/pix}$, from the small drop

Why?

Linear regression

Linear in the unknown coefficients. E.g.

$$z(t) \approx ae^{bt} \Rightarrow \ln z \approx \ln a + bt$$

$$y = \ln z$$
, $X = [1, t]$, $c = [\ln a, b]^T$, $y \approx Xc$

Linear regression

Linear in the unknown coefficients. E.g.

$$z(t) \approx ae^{bt} \Rightarrow \ln z \approx \ln a + bt$$

$$y = \ln z$$
, $X = [1, t]$, $c = [\ln a, b]^T$, $y \approx Xc$

Least min square: $S(c) = ||y - Xc||^2 = y^Ty - 2c^TX^Ty + c^TX^TXc$

$$\frac{1}{2}\nabla_c S = X^T X c - X^T y = 0$$

→ Normal equations (linear system)

In Matlab: $c = X \setminus y$; (polyfit is just a particular case for polynomial fitting)

Drop oscillation – non-linear regression

Drop width $W(t) = c_1 \cos(\omega t + \varphi) + c_2$

 \rightarrow not linear in ω and φ

Equivalent and better: $W(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) + c_3$ \rightarrow not linear in ω

Drop oscillation – non-linear regression

Drop width $W(t) = c_1 \cos(\omega t + \varphi) + c_2$

 \rightarrow not linear in ω and φ

Equivalent and better: $W(t) = c_1 \cos(\omega t) + c_2 \sin(\omega t) + c_3$ \rightarrow not linear in ω

Trick: Screening in the space of non-linear parameters

for $\omega = \dots : \dots$

"solve linear problem in (c_1, c_2, c_3) ", and store residual min(S)

end;

Then select the ω which gave the smallest residual Also possible with iterative method (optimization)

Drop oscillation – non-linear regression

```
om=linspace(100,300,1001);
Res=[];
for i0=1:numel(om),
    X=[cos(om(i0)*t(f31)), sin(om(i0)*t(f31)),ones(size(f31))];
    cW=X\W(f31);
    Res(i0)=norm(W(f31)-X*cW);
end;
i0=find(Res==min(Res));
XW=[cos(om(i0)*t(f31)), sin(om(i0)*t(f31)), ones(size(f31))];
cW=XW\W(f31);
plot(t(f31),XW*cW,'b');
```

Why is the width amplitude smaller than the height amplitude?

Contents

Learn with an example

- 1. Image processing: segmentation, filtering, measurements
- 2. Data processing: selection, model fitting
- 3. Statistical analysis: descriptive statistics, t-test, ANOVA

Practice with your preliminary data

Drop size – Descriptive statistics

• Equivalent radius R [m] calculated from area A [pix²]: $R \simeq \sqrt{Ac^2/\pi}$

hist(R1*1e3,13);

→ Depends on bins

Drop size – Descriptive statistics

- Equivalent radius R [m] calculated from area A [pix²]: $R \simeq \sqrt{Ac^2/\pi}$
- Reminder: Mean μ , variance, standard deviation σ , median, quantile, box plot

hist(R1*1e3,13);

→ Depends on bins

plot(sort(R1),linspace(0,1,numel(R1)),'.');

→ Independent of bins

boxplot(R1);

Drop size – Descriptive statistics

- Equivalent radius R [m] calculated from area A [pix²]: $R \simeq \sqrt{Ac^2/\pi}$
- Reminder: Mean μ , variance, standard deviation σ , median, quantile, box plot
- Variance of the sample mean = variance of the sample / size of the sample
 - ightharpoonup Error on the mean radius (for N indep. measurements): $\Delta R = \frac{\sigma}{\sqrt{N}}$

hist(R1*1e3,13);

→ Depends on bins

plot(sort(R1),linspace(0,1,numel(R1)),'.');

→ Independent of bins

boxplot(R1);

37

Does the filtering method influence the results?

Comparison of PDFs of R_1 , from both MF and DFEEEEDDD filters

MF
$$\rightarrow$$
 $R_1 = 2.68 \pm 0.07 \text{ mm}$

DFEEEEDDD $\rightarrow R_1 = 2.72 \pm 0.07 \text{ mm}$

Is this difference significant?

Welch's two-sample t-test

One output, 2 samples (e.g. with one factor that varies)

Two independent (not paired) samples, assumed normal distribution

 \rightarrow Is m_1 is significantly different from m_2 ?

Sample	X ₁	X ₂
Size	N_1	N_2
Average	m_1	m_2
Standard deviation	<i>s</i> ₁	<i>s</i> ₂

Welch's two-sample t-test

One output, 2 samples (e.g. with one factor that varies)

Two independent (not paired) samples, assumed normal distribution

 \rightarrow Is m_1 is significantly different from m_2 ?

Method: 2-tailed hypothesis test with a t-distribution = Welch's two-sample t-test

Practically, in Matlab:

[h,p] = ttest2(X1, X2, 'Vartype', 'unequal');

p = probability to observe such difference between m_1 and m_2 if the two samples have the same mean in reality.

Sample	X ₁	X ₂
Size	N_1	N_2
Average	m_1	m_2
Standard deviation	<i>s</i> ₁	<i>s</i> ₂

Welch's two-sample t-test

One output, 2 samples (e.g. with one factor that varies)

Two independent (not paired) samples, assumed normal distribution

 \rightarrow Is m_1 is significantly different from m_2 ?

Method: 2-tailed hypothesis test with a t-distribution = Welch's two-sample t-test

Practically, in Matlab:

[*h*,*p*] = ttest2(*X*1, *X*2, 'Vartype', 'unequal');

p = probability to observe such difference between m_1 and m_2 if the two samples have the same mean in reality. α = significance level (= 5% by default)

Sample	X ₁	X ₂
Size	N_1	N_2
Average	m_1	m_2
Standard deviation	<i>s</i> ₁	<i>s</i> ₂

Conclusion

- $p>\alpha \rightarrow h=0$: we cannot conclude that $m_1 \neq m_2$
- $p < \alpha \rightarrow h = 1$: we conclude that $m_1 \neq m_2$, with less than 5% chance of being wrong

Power P of the test = probability to have h=1 if $m_1 \neq m_2$ Practically in Matlab: P = sampsizepwr('t2', [m1, s1], m2, [], N2, 'ratio', N1/N2);

→ tells you if the samples are sufficiently large to conclude

ANOVA

One output, several factors

ANOVA (ANalysis Of VAriance) test

- → check if factors g have any influence on a measurement y
- → Generalization of the Welch's test to many variables

Example in Matlab:

```
y = [52.7 57.5 45.9 44.5 53.0 57.0 45.9 44.0]';
g1 = [1 2 1 2 1 2 1 2];
g2 = {'hi';'hi';'lo';'lo';'hi';'hi';'lo';'lo'};
g3 = {'may';'may';'may';'june';'june';'june';'june';'june'};
p = anovan(y,{q1,q2,q3})
```

ANOVA \rightarrow p-factor associated to factor g = probability that g has no influence on y

Here: p(g1) = 0.42 p(g2) = 0.003 p(g3) = 0.91

So g2 does necessarily influence y, while g1 and g3 do not significantly influence y.

Contents

Learn with an example

- 1. Image processing: segmentation, filtering, measurements
- 2. Data processing: selection, model fitting
- 3. Statistical analysis: descriptive statistics, t-test, ANOVA

Practice with your preliminary data