Konfigurasi dan Mode Serat Optik

Gambaran Umum Serat Optik

- ❖ Serat optik adalah suatu bumbung gelombang yang berisi dielektrik dengan indeks bias tertentu yang digunakan untuk merambatkan energi elektro magnetik pada frekuensi antara 300 − 600 Tera Hertz (frekuensi optik). Serat optik terdiri dari core (inti) dan cladding (selubung inti).
- ❖ Fungsi inti adalah sebagai penyalur gelombang cahaya, dan cladding berfungsi untuk memperkecil rugi-rugi permukaan serta mengarahkan gelombang cahaya tersebut.

Gambar Struktur Serat Optik

Serat Optik

• Bagaimana cahaya merambat dalam serat optik?

Serat Optik

• Bagaimana cahaya merambat dalam serat optik?

Step index fiber

$$NA = \sin \theta_{\text{maks}} = \sqrt{n_1^2 - n_2^2} = n_1 \sqrt{2\Delta}$$

 Δ : beda indeks bias relatif

$$\Delta = \frac{n_1^2 - n_2^2}{2n_1^2} \cong \frac{n_1 - n_2}{n_1}$$

V-parameter

V-parameter -> menentukan jumlah modus yang menjalar dalam SO

$$V = \frac{2\pi a}{\lambda} \sqrt{n_1^2 - n_2^2} = \frac{2\pi a}{\lambda} NA$$

Konstanta propagasi normalisasi b : $b = \frac{(\beta/k)^2 - n_2^2}{n_1^2 - n_2^2}$

dengan

β : konstanta propagasi $n_2 \le β/k \le n_1$ $k = 2\pi/\lambda$

Mode cut off jika $\beta/k = n_2$

Single mode fiber : V ≤ 2,405

Atau V cut off : $V_C = 2,405$

Panjang gelombang cut off:

$$\lambda_{C} = \frac{2\pi a}{V_{C}} \sqrt{n_{1}^{2} - n_{2}^{2}} = \frac{2\pi a n_{1}}{V_{C}} \sqrt{2\Delta}$$

Grafik β/k terhadap V untuk beberapa modus orde terendah

V-Number and Fiber Modes

Fiber Modes

Solid acceptance angle dari fiber :

$$\Omega = \pi \theta^2 \cong \pi (n_1^2 - n_2^2)$$
 [Sterad]

Jumlah mode yang masuk ke fiber :

$$M = \frac{2A}{\lambda^2} \Omega = \frac{2\pi^2 a^2}{\lambda^2} (n_1^2 - n_2^2) = \frac{V^2}{2}$$

Daya mengalir pada Step Index

$$\frac{P_{clad}}{P} = 1 - \frac{P_{core}}{P}$$

$$\left(\frac{P_{clad}}{P}\right) = \frac{4}{3}M^{-\frac{1}{2}}$$

Contoh:

Fiber step index a = 10 μ m, n₁ = 1,48; Δ = 0,001; λ = 1,3 μ m;

Hitung V; Ω ; M; P_{clad}/P ; λc ;

Jika Δ = 0,03, hitung M dan P_{clad}/P;

Grafik aliran daya pada kulit dari fiber Step Index terhadap V

Graded Index

GI Fiber (Graded Index)

$$NA(r) = \begin{cases} NA(0) \left[1 - (r/a)^g \right] & \text{for } r < a \\ 0 & \text{for } r \ge a \end{cases}$$

Perbandingan NA dari fiber yang memiliki profil α yang berbeda

GI Fiber (Graded Index)

Jumlah modus:

$$M = \frac{\alpha}{\alpha + 2} a^2 k^2 n_1^2 \Delta = \frac{\alpha}{\alpha + 2} \left(\frac{2\pi a n_1}{\lambda} \right)^2 \Delta$$

Untuk V besar \rightarrow Jumlah modus $M = V^2/4$ atau setengah dari jumlah mode pada SI fiber

V cut off:
$$V_C = 2,405\sqrt{1 + \frac{2}{\alpha}}$$

Untuk $\alpha = 2$ pada GI:

- →harga $V_C = 3,401$ atau $\sqrt{2}$ kali lebih besar dari pada SI.
- → Harga λ_C akan 1/(√2) lebih pendek dari pada SI

Latihan:

Fiber graded index, $\alpha = 2$, $a = 10 \mu m$, $n_1 = 1,48$; $\Delta = 0,001$; $\lambda = 1,3 \mu m$; Hitung n(r); NA(r); Vc; M; λ c;