FIRST SEMESTER 2021-22, COURSE HANDOUT (PART-II)

Course Number : EEE G512 Date: 10-08-2021

Course Title : EMBEDDED SYSTEM DESIGN

Instructor-in-Charge: M B Srinivas

Course Description:

Introduction to embedded systems; embedded architectures: Architectures and programming of microcontrollers and DSPs. Embedded applications and technologies; power issues in system design; introduction to software and hardware co-design

This course provides a practical introduction to embedded systems with a detailed exposure to embedded architectures and programming of microcontrollers and DSPs. Several issues and constraints related to embedded system development will be discussed. Programming for 8051 and ARM controllers using assembly and embedded C is a part of the laboratory.

Scope and Objective of the course:

Introduction to embedded systems; embedded architectures: Architectures and programming of microcontrollers and DSPs. Embedded applications and technologies power issues in system design, introduction to software and hardware co-design.

The course intends to cover the design issues involved in embedded systems and system-onchip technologies. The course also deals with the applications and programming languages used for embedded systems. This course introduces the students to standard Embedded System Development tools and gives a hands-on experience in developing various embedded applications.

Text Book:

T1. Wolf, Wayne, Computers as Components – Principles of Embedded Computing System Design, Second Edition, Elsevier, 2008.

Reference Books:

R1. Muhammad Ali Mazidi, Janice Gillispie Mazidi and Rolin D. McKinlay, "The 8051 Microcontroller and Embedded Systems", Second Edition, Pearson Education, 2008. R2.Raj Kamal, Embedded Systems, Tata McGraw Hill, New Delhi, 2003.

R3.Andrew N. Sloss, Dominic Symes, Chris Wright, "ARM System Developer's Guide, Designing and Optimizing System Software" Morgan Kaufmann Publishers, Elsevier, 2004.

Course Plan:

Lectu	Learning Objectives	Topics	Reference to
re			Text books/
No.			References

1-2	Basics of Embedded System	Introduction to Embedded Systems, Design Methodology and Research Areas	T1-Chapter 1, R2 - Chapter 1 + Class Notes
3-5	Processors, Memory and I/O Devices, Device Drivers	Processors in Embedded Systems. RISC and CISC Architectures. Memories, Exemplary Embedded Systems I/O Devices, Software in Embedded Systems, Device Driver Concepts	T1 & R2 - Chapter 2, 3, 4 + Class Notes
6	Microcontrollers	Introduction to 8051 Family of Microcontroller	R1- Chapter 1 + Class Notes
	Design of Software	8051 Programming Model,	R1- Chapter 2-7,
7-10	Systems	Addressing Modes, Instruction Set, Special Function Registers(SFRs), Memory Maps, C versus Assembly, Embedded Programming in C	+ Class Notes
11	Interfacing Techniques	Methodology, Synchronizing Software and Processor with I/O.	Class Notes
12-14	8051 On-chip Peripherals	8051 Timers, Serial Ports, Programmable Counter Arrays (PCA), Keyboard Interface, Interrupt, Interrupt Vectors and Priority, Threads	R1- Chapter 9- 11 (relevant topics) + Class Notes
15-17	Interfacing External Peripheral	Interfacing of LCDs, Relays, DC Motors, Stepper Motors, Sensors, External Memories, 8255 etc	R1- Chapter 12- 15 + Class Notes
18	Real Time Operating System Basics	Introduction to RTOS on 8051 (RTX51 Full and RTX51 Tiny)	Class Notes
19	Case Study	General Purpose Processor based Design	Class Note
20-21	32-bit Processor Architecture	Introduction to ARM Architecture & NXP's LPC2378 Microcontroller/AVR	R3 – Chapter 1, 2 + Class Notes
22-26	ARM Instruction Set and Programming	Addressing Modes and Instruction Set Overview, Overview of Thumb Mode Instruction Set, ARM Assembly Programming and C Programming Concepts	R3 – Chapter 3, 4, 5 + Class Notes

27-28	LPC 2378 Peripherals	System and Power Control, Clock Module,	Class Notes
		GPIOs, Timers, Vectored Interrupt	
		Controller.	
28-32	LPC 2378 Peripherals	UARTs, ADC, DAC and PWM	Class Notes
33	Real Time Operating	Introduction to RTOS on ARM	Class Notes
	System on ARM	(RTX Kernel)	
	Case Studies	General Purpose Processor based	Class Notes
34-35		Design	
35-41	Bus Architectures	LPC 2378's I ² C and CAN Bus	Class Notes
		Interface	
	Embedded System	CPU Power Consumption and	
42	Hardware and	Optimization,	Class Notes
	Software Design	ICE, hardware –Software co-	
	Issues	simulation and	
		debugging, Real-time, Design Cycle	

Evaluation Scheme:

EC	Evaluation Component	Type	Duration	Weight	Date
No.					
1	Mid-Semester Test	Closed	90	30%	To be
		Book	minutes	(70M)	Announced
2	Assignments+Presentations	Open	All	40%	To be
	+Project	Book	Semester	(70M)	Announced
3	Comprehensive Exam	Open	2 hours	30%	To be
		Book		(60M)	Announced

Chamber Consultation Hour: To be announced in Class

Notices: All notices regarding the course will be put up in EEE notice board/CMS.

Make-up Policy: No make-up without prior permission. Make-up for the tests will be granted only on genuine grounds of sickness. In all cases prior intimation must be given to IC. There will be no make-up for the project /term paper presentations.

Academic Honesty and Integrity Policy: Academic honesty and integrity are to be maintained by all the students throughout the semester and no type of academic dishonesty is acceptable