Matemàtiques Segon Batxillerat

Artur Arroyo

curs 2009-2010

Matemàtiques segon batxillerat

- Producte escalar
 - Producte escalar
 - Angles en l'espai
 - Projeccions ortogonals
 - Punts simètrics
 - Distàncies

Definició i aplicacions

Definició

Donats dos vectors $\vec{u}=(u_1,u_2,u_3)$, $\vec{v}=(v_1,v_2,v_3)$ definim el seu producte escalar $\vec{u}\cdot\vec{v}$ com

$$\vec{u}\cdot\vec{v}=u_1\cdot v_1+u_2\cdot v_2+u_3\cdot v_3$$

aquesta definició dota a l'espai vectorial \mathcal{V}^3 presentat al tema anterior de l'estructura mètrica euclidea ordinària. Un cop definit un producte escalar en un espai vectorial, ens podem demanar quin és el mòdul d'un vector o quin angle formen dos vectors qualssevol.

Definicions

Mòdul i angle entre vectors

ullet Donat un vector $ec{u}$, definim el seu mòdul $|ec{u}|$ com

$$|\vec{u}| = \sqrt{\vec{u} \cdot \vec{u}} = \sqrt{u_1 \cdot u_1 + u_2 \cdot u_2 + u_3 \cdot u_3} = \sqrt{u_1^2 + u_2^2 + u_3^2}$$

• Donats dos vectors \vec{u} , \vec{v} , l'angle que formen es troba mitjançant la fòrmula

$$\cos \alpha = \frac{\vec{u} \cdot \vec{v}}{|\vec{u}| \cdot |\vec{u}|}$$

Un consequència immediata de la definició d'angle entre dos vectors és que si aquests són perpendiculars el seu procuct escalar donarà zero i viceversa, $\vec{u} \perp \vec{v} \Leftrightarrow \vec{u} \cdot \vec{v} = 0$

Exemple

Si $\vec{u}=(1,2,3)$ i $\vec{v}=(-2,1,5)$, per trobar l'angle que formen hem de calcular les quantitats:

•
$$\vec{u} \cdot \vec{v} = (1,2,3) \cdot (-2,1,5) = -2 + 2 + 15 = 15$$

•
$$|\vec{u}| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{1 + 4 + 9} = \sqrt{14}$$

•
$$|\vec{v}| = \sqrt{(-2)^2 + 1^2 + 5^2} = \sqrt{4 + 1 + 25} = \sqrt{30}$$

llavors

$$\cos \alpha = \frac{15}{\sqrt{14}\sqrt{30}} \Rightarrow \alpha = 42,9^{\circ}$$

- **1** Angles entre dues rectes: donades dues rectes amb determinació lineal $r \equiv (P, \vec{u})$, $s \equiv (Q, \vec{v})$, per trobar l'angle que formen, α , n'hi ha prou de trobar l'angle (agut) que formen els seus vectors directors, per tant: $\cos \alpha = \frac{|\vec{u} \cdot \vec{v}|}{|\vec{u}| \cdot |\vec{u}|}$
- ② Angle entre recta i pla: donada una recta $r \equiv (P, \vec{u})$ i un pla d'equació $\pi \equiv Ax + By + Cz + D = 0$, per trobar l'angle que formen, α , ho farem buscant l'angle complementari de l'angle agut que formen el vector director \vec{u} de la recta i el vector associat del pla $\vec{N} = (A, B, C)$, llavors: $\sin \alpha = \frac{|\vec{u} \cdot \vec{N}|}{|\vec{u}| \cdot |\vec{N}|}$
- **3** Angle entre dos plans: donats dos plans π_1 i π_2 , per trobar l'angle que formen aquests plans n'hi ha prou de trobar l'angle (agut) que formen els seus vectors associats.

- **OPPROJECCIÓ ORTOGONAL d'un punt sobre una recta**: donats un punt P i una recta $r \equiv (P_r, \vec{u}_r)$ amb punt genèric P_r^g per trobar la projecció ortogonal de P sobre r, n'hi ha prou de resoldre l'equació $\overrightarrow{P_r^gP} \cdot \vec{u}_r = 0$ per trobar el punt Q de la recta que és projeccció ortogonal de P sobre ella.
- ② Projecció ortogonal d'un punt sobre un pla: donat un punt P i un pla π , per trobar la projecció ortogonal de P sobre π , n'hi ha prou de trobar la intersecció d'una recta perpendicular a π que passi per P, amb el pla π . Clarament, la recta construida té com a vector director l'associat de π .
- **9 Projecció ortogonal d'una recta sobre un pla**: per trobar la projecció ortogonal d'una recta $r \equiv (P_r, \vec{u}_r)$ sobre un pla π amb vector associat \vec{N} , buscarem la intersecció de π amb el pla π' que té com a determinació lineal $\pi' \equiv (P_r, \vec{u}_r, \vec{N})$

- **1 Punt simètric d'un respecte un altre**: donat un punt P, per trobar el simètric (P') de P respecte un altre punt Q demanarem que Q sigui el punt mig de P i P', $M_{PP'} = Q$
- ② Punt simètric d'un respecte d'una recta: donat un punt P i una recta r, per trobar el punt P', simètric de P respecte de r trobarem el punt Q, projecció ortogonal de P respecte de r, i demanarem que sigui $M_{PP'}=Q$
- **9** Punt simètric d'un respecte d'un pla: donat un punt P i un pla π , per trobar el punt P', simètric de P respecte de π , n'hi ha prou de trobar el punt Q, projecció ortogonal de P sobre π , i demanar que sigui $M_{PP'}=Q$.

- **1 Distància entre dos punts**: Donats dos punts $P = (p_1, p_2, p_3)$, $Q = (q_1, q_2, q_3)$, per calcular la distància entre ells ho podem fer com el mòdul del vector \overrightarrow{PQ}
- Oistància d'un punt a una recta: donat un punt P i una recta r la distància, (mínima), entre ells es troba com la distància del punt P a la seva projecció sobre la recta.
- Oistància d'un punt a un pla: donat un punt P = (p₁, p₂, p₃) i un pla π ≡ Ax + By + Cz + D = 0 podem trobar la seva distància com la distància del punt P al punt projecció ortogonal de P sobre π. Alternativament, podem fer servir una fòrmula que, per la seva fàcil generalització a qualsevol dimensió, convé recordar.

$$d(P,\pi) = \frac{|Ap_1 + Bp_2 + Cp_3 + D|}{\sqrt{A^2 + B^2 + C^2}}$$

- ① Distància entre dos plans: donats dos plans π , π' , la seva distància només és diferent de zero si són paral·lels, i en aquest cas aquesta distància es troba com la distància d'un punt qualsevol d'un dels plans a l'altre.
- ② Distància entre una recta i un pla: donada una recta r i un pla π , amb r exterior al pla, la seva distància es troba com la distància d'un punt qualsevol de la recta r al pla π .
- **3 Distància entre dues rectes**: Donades dues rectes amb determinació lineal $r \equiv (P_r, \vec{u}_r)$, $s \equiv (P_s, \vec{u}_s)$, la seva distància es troba amb la fòrmula

$$d(r,s) = \frac{|[\overrightarrow{P_rP_s}, \overrightarrow{u}_r, \overrightarrow{u}_s]|}{|\overrightarrow{u}_r \times \overrightarrow{u}_s|}$$