

Viscoelasticity,Creep and Oscillation Experiment

Basic Seminar

Applied Rheology

Overview

- ✓ Repetition of some basic terms
- √ Viscoelastic behavior
- ✓ Experimental approach to viscoelasticity

Creep- and recovery

Oscillation

Amplitude sweep

Frequency sweep

Temperature sweep

Time sweep

✓ Expansion of the measuremnent range for Oscillation

Time Temperature Superposition (TTS) principle

Cox-Merz Rule

Repetition of some basic terms

Calculation of the dynamic viscosity

Viscosity (dynamic)	η [Pa·s]	
Shear stress	τ [Pa]	$n = \frac{\tau}{1}$
Deformation	γ [-]	Ϋ́
Shear rate	γ̈́ [1/s]	

Repetition of some basic terms

Calculation of the dynamic viscosity

Viscoelasticity

- ✓ Repetition of some basic terms
- √ Viscoelastic behavior
- ✓ Experimental approach to viscoelasticity

Creep and recovery

Oscillation

Amplitude sweep

Frequency sweep

Time sweep

Temperature sweep

✓ Expansion of the measurement range for oscillation

Time Temperature Superposition (TTS) principle

Cox-Merz Rule

Viscoelastic behavior

Reasons for viscoelasticity

- √ Polymer solutions
- ✓ Polymer melts

Viscoelastic behavior

Appying Hookke's law to rheology

Purely elastic behavior

$$k = Spring constant = \frac{F}{\Delta I}$$

Viscoelastic behavior

$$\gamma = \frac{\Delta x}{\Delta y} \qquad \qquad \tau = \frac{F}{A}$$

Result

√ Complex modulus G*

$$G^* = \frac{\tau}{\gamma} \left[Pa \right]$$

Viscoelastic behavior

Models for viscoelasticity

Viscoelasticity

- ✓ Repetition of some basic terms
- √ Viscoelastic behavior
- ✓ Experimental approach to viscoelasticity

Creep and recovery

Oscillation

Amplitude sweep

Frequency sweep

Time sweep

Temperature sweep

✓ Expansion of the measurement range for oscillation

Time Temperature Superposition (TTS) principle

Cox-Merz Rule

Creep and recovery

The viscoelastic behavior is observed by applying instantaneous shear stress changes.

- √ Non-destructive method (within the LVB)
- ✓ Destinguishes between elastic and viscous properties
- ✓ Determination of the time-dependent reaction to such changes

Viscoelasticity

✓ Experimental approach to viscoelasticity

Oscillation

Uscillation

Principle of measurement

- ✓ A usually sinosoidal oscillation is being applied by the rheometer
- ✓ Controllable parameters are the maximum amplitude (Δx_i) of the shear stress (τ) or deformation (γ) as well as the (angular) frequency (f, ω) and the temperature (T)

Principle of measurement

Principle of measurement

Purely elastic sample

Input

- \checkmark Shear stress τ (CS)
- \checkmark Deformation γ (CD) resp.

Response

- \checkmark Deformation γ
- \checkmark Shear stress τ resp.
- \checkmark Phase angle δ

Principle of measurement

Purely viscous sample

Input

- √ Shear stressτ (CS)
- \checkmark Deformation γ (CD) resp.

Response

- \checkmark Deformation γ
- \checkmark Shear stress τ resp.
- \checkmark Phase angle δ

Principle of measurement

Viscoelastic sample

Input

- √ Shear stress τ (CS)
- \checkmark Deformation γ (CD) resp.

Response

- \checkmark Deformation γ
- \checkmark Shear stress τ resp.
- \checkmark Phase angle δ

Principle of measurement

Shear stress

$$\tau(t) = \tau \cdot \sin(\omega \cdot t)$$

Response

Deformation

$$\gamma(t) = \gamma \cdot \sin(\omega \cdot t - \delta)$$

Results I

$$G^* = G' + i G'' (i^2 = -1)$$

√ Storage modulus

G' (elastic part)

√ Loss modulus

G" (viscous part, damping)

Results I

$$G^* = G' + i G'' (i^2 = -1)$$

√ Storage modulus

G' (elastic part)

√ Loss modulus

G" (viscous part, damping)

Results I

$$G^* = G' + i G'' (i^2 = -1)$$

√ Storage modulus

G' (elastic part)

√ Loss modulus

G" (viscous part, damping)

Results II

$$\delta$$
 (0° \geq δ \leq 90°)

$$tan\delta = G''/G'$$

$$\eta^* = G^* / i \omega$$

$$\omega = 2\pi f$$

Viskoelastizität

Amplitude sweep

Amplitude sweep

Amplitude sweep

- \checkmark Determination of the linear-viscoelastic range (LVR), where material functions (Gʻ,Gʻʻ, δ) are independent of the stress or the deformation applied
- ✓ Information about product stability e.g. gel strength

Amplitude sweep

Amplitude sweep

Plotted over τ

Width of the linearviscoelastic regime (LVB) depends on the frequency

Plotted over γ

Width of LVB is less frequency depending

Viskoelastizität

Frequency sweep

riequency sweep

Frequency sweep

Variation of frequency with constant shear stress τ or deformation γ respectively

- ✓ Determination of material's structure
- ✓ Determination of material's properties, which cannot be measured in shear

Frequency sweep

Frequency sweep

Viscous Flow

The samples behaves mainly viscous over the entire measuring range

For ideal viscous samples:

Slope
$$G'(\omega) = 2$$

Slope
$$G''(\omega) = 1$$

Frequency sweep

Elastic Plateau

Sample behavior is dominated by the elastic properties

Examples:

- √ Cross linked Polymers
- √ Physical Networks

Frequency sweep

Viscoelastic behavior

In the region of low frequencies the sample behaves viscous

At high frequencies the elastic behavior predominates

Cross-Over-Point G' = G"

Frequency sweep

Cross-Over-Point

The Cross-Over-Point
G' = G' separates
viscous flow at low
frequencies and elastic
behavior at higher
frequencies

Viskoelastizität

Temperature sweep

remperature sweep

Temperature sweep

Variation of the temperature with constant shear stress τ or deformation γ and (angluar) frequency ω ,f

- ✓ Determination of the temperature depending sample charteristics
- ✓ Determination of the glas transition, softening and melting temperature
- ✓ Investigation of chrystallization processes and sol-gel transitions

Temperature sweep

Time

Temperature sweep

Amorphous polymers

- ✓ Not cross linked
- √ No positional order
- ✓ Random orientation

Examples:

- Polystyrene
- √ Polyvinylchloride
- Polycarbonate

Temperature sweep

Semi crystalline Polymers

- √ Not cross linked
- √ Partially ordered structure
- √ Partially oriented

Examples:

- √ Low Density Polyethylen
- √ High Density Polyethylen
- √ Polypropylen

Temperature sweep

Cross-linked Polymers

Via covalent or ionic bonds cross-linked macro molecules

Examples:

Depending on the cross-link density

Elastomers (wide-meshed)

Thermosets (close-meshed)

Viscoelasticity

- ✓ Repetition of some basic terms
- √ Viscoelastic behavior
- ✓ Experimental approach to viscoelasticity

Creep and recovery

Oscillation

Amplitude sweep

Frequency sweep

Time sweep

Temperature sweep

✓ Expansion of the measurement range for oscillation Time Temperature Superposition (TTS) principle Cox-Merz Rule

Long Measurement

times limit the

measurement range towards small

frequencies

Frequency sweep

Inertia effects of rheometer limit the measurement range towards high frequencies

Thermo Fisher

Frequency sweep

Time Temperature Superposition (TTS)

Performance

Several frequency sweeps are being performed at different temperatures

Time Temperature Superposition (TTS)

Time Temperature Superposition (TTS)

Time Temperature Superposition (TTS)

Determination of the zero shear viscosity η_0

Cox-Merz Rule

Empiric Rule

Valid for numerous unfilled polymer melts and polymer solutions

Validity in the Non-Newtonian may vary

Not valid for dispersions, suspensions and gels

Any questions?

Thermo Fisher S C I E N T I F I C

The world leader in serving science

Thank you for your attention

