

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Machine learning, big data and artificial intelligence – Block 2

Måns Magnusson Department of Statistics, Uppsala University

November 2020

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

This weeks lectures

- Regularization
- Model Selection and Assement
- Cross-Validation
- Evaluate classification models

- Model Predictive Performance
 - Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Section 1

Model Predictive Performance

- Model Predictive
 Performance
 Measuring Performance
- Test error
 - Training Error
- Model Assesment
- Model Selection
- Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Previous Model Evaluation

In the past, we have used a large number of tools for assessing models, e.g.:

- Various plots
- Residuals
- Leverage, Cook's distance
- p-values
- R²

That is, they only tell us how well the model fits the data, and diagnose the model.

The focus is usually estimation or attribution.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Predictive Performance

 We are interested in how our model work when predicting a new observation

The generalization performance of a learning method relates to its prediction capability on independent test data.

(Hastie et al, 2017, p. 219)

 Models can be overly optimistic – the model can have a good fit but be poor at making predictions for new data¹, a phenomenon known as overfitting.

¹See e.g. Picard, R.R., Cook, R.D. (1984). Cross-validation of regression models. *Journal of the American Statistical Association*, **79(387)**, 575–583.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Wodel Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Loss Functions (again)

• To assess the performance we use the loss function for a new unseen observation y_0 , and the prediction of that observation \hat{y}

$$L(y_0, \hat{y}_0)$$

- This is quite general and we choose based L based on what we want the model performe well on.
- Examples:
 - Regression problems:

$$L(y_0, \hat{y}_0) = \begin{cases} |y_0 - \hat{y}_0| \\ (y_0 - \hat{y}_0)^2 \end{cases}$$

• Language models: Perplexity, Glue, Human annotation

- Model Predictive
 Performance
 Measuring Performance
- Test error
 - Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
 Optimism of Training Error
- Cross-validation
- Regularisation

Confusion Matrix

Prediction Outcome

- Model Predictive Performance
 - Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Accuracy

$$\mathsf{Accuracy} = \frac{\left(\mathsf{TP} {+} \mathsf{TN}\right)}{\left(\mathsf{TP} {+} \mathsf{FP} {+} \mathsf{FN} {+} \mathsf{TN}\right)}$$

What is the problem with Accuracy?

Model Predictive Performance Measuring Performance

- Test error
- Training Error

 Model Assesment
- Model Selection
- IVIOGEI SELECTION
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Precision and Recall

$$Precision = \frac{(TP)}{(TP+FP)}$$

Of the predicted positives, how many are actually positive?

Recall = Sensitivity =
$$\frac{(TP)}{(TP+FN)}$$

Of all positives, how many are predicted correctly?

Specificity =
$$\frac{(TN)}{(TN+FP)}$$

Of all negative, how many are predicted correctly?

$$F1 = 2 \cdot \frac{(\mathsf{Precision} \cdot \mathsf{Recall})}{(\mathsf{Precision} + \mathsf{Recall})}$$

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Example

Say that we want to classify spam vs. ham.

	$\hat{y} = 0$	$\hat{y}=1$
y = 0	515	91
y = 1	85	569

The cell counts yield us estimates of

• Accuracy
$$P(\hat{y} = y)$$
: $\frac{515+569}{515+91+85+569} \approx 0.86$

In this example, we let $\hat{y}_i = 1$ whenever $\hat{\pi}_i > 0.5$. What if we choose another cut-off level $\hat{\pi}_i > \alpha$ instead?

Model Predictive Performance

- Measuring Performance

- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Classification tables

Previous table, with acc. 86 %, sens. 87 % and spec. 85 %:

$\alpha = 0.5$	$\hat{y}=0$	$\hat{y}=1$
y = 0	515	91
y = 1	85	569

Now let $\alpha=0.3$ instead, so that we are more prone to say that $\hat{y}=1$:

$\alpha = 0.3$	$\hat{y}=0$	$\hat{y}=1$
y = 0	462	144
y = 1	38	616

Accuracy: 86 %, sensitivity: 94 %, specificity: 76 %.

The sensitivity has increased, but the sensitivity has decreased.

Model Predictive Performance Measuring Performance

- Test error
 - Training Error
- Model Assesment
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

A more reasonable example

Previous table, highly unbalanced. 1001 ham and 17 spam.

Our new classifier: Everything is ham!

	$\hat{y}=0$	$\hat{y}=1$
y = 0	1001	0
y = 1	17	0

Accuracy: 98 %! and sensitivity: 100 %, specificity: 0 %.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Cross-validation
- Regularisation

Cross-Entropy Loss

• When we have probabilities $\hat{p} = \hat{y}_0$:

$$L(y_0, \hat{p}) = -(y_0 \log \hat{p}) + ((1 - y_0) \log (1 - \hat{p}))$$

Question: Do you recognize the loss function?

- Maximizing the likelihood is the same as minimizing the cross-entropy.
- Multi class generalization over M classes

$$L(\mathbf{y}_0, \hat{\mathbf{p}}) = -\sum_{j=1}^M y_{0,j} \log \hat{p}_j$$

- Model Predictive Performance
 - Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
 Optimism of Training Error
- Optimism of Training Error
- Cross-validation
- Regularisation

Section 2

Test error

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Cross-validation
- Regularisation

Test Error

- The main error of interest generalization error
- Conditional Test Error (Model performance for the training data):

$$\mathsf{Err}_{\mathcal{T}} = \mathbb{E}_{Y,X}(\mathit{L}(Y,\hat{Y}(X)|\mathcal{T})$$

 Expected Test Error (Model performance over different data):

$$\mathsf{Err} = \mathbb{E}_{\mathcal{T}}(\mathbb{E}_{Y,X}(L(Y,\hat{Y}(X))))$$

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Training Error

- The Error the algorithm try to minimize
- Error over the training sample:

$$\overline{\mathsf{err}} = \frac{1}{N} \sum_{i=1}^N L(y_i, \hat{y}_i)$$

Can be seen as a Monte Carlo Appraximation over data

Model Predictive Performance Measuring Performance

- Test error
 Training Error
- Model Assesment
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

How are training and test error related?

Figure: Test, training, and model complexity (Hastie et al, 2009, Figure 7)

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- NIOGEL SELECTION
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

How to estimate the Test Error: Model Assesment

- We set aside a *test set* from the data
- Use as the last step to estimate the test error
- Should only be used ONCE
- Size of testset:
 - Common suggestion 10%
 - A statistical estimation problem

Model Predictive Performance - Measuring Performance

- Test error - Training Error
- Model Assesment
- Model Selection
- Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Multiple Use of Test Set for Model Assesment

- Say that we have $\hat{L}(\mathcal{T})$ an estimate of the loss on the test set given a training set
- Lets say that we have $i \in \{1, ..., M\}$ be models trained on M independent training sets \mathcal{T}_i but they all have the same underlying error L*
- Then we can assume that.

$$\hat{L}_i(\mathcal{T}_i) \sim N(L^*, \sigma)$$

• What happens if we use the test set to pick the model?

- Model Predictive Performance
 - Measuring Performance
- Test error - Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Section 4

Model Selection

- Model Predictive
 Performance
 Measuring Performance
- ivieasuring renormal
- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Model Selection

- We want to select a model based on performance.
- Important when using hyperparameters (as in regularization)

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- IVIOGEL Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Bias and Variance

Assume we have the following data generating process:

$$Y=f(X)+\epsilon\,,$$

where $\mathbb{E}(\epsilon) = 0$ and $V(\epsilon) = \sigma_{\epsilon}$.

$$\begin{aligned} \mathsf{Err}(x_0) &= \mathbb{E}_Y \{ (Y - \hat{f}(x_0))^2 | X = x_0 \} \\ &= \sigma_\epsilon^2 + \{ \mathbb{E}_Y (\hat{f}(x_0)) - f(x_0) \}^2 + \mathbb{E} \{ \hat{f}(x_0) - \mathbb{E}_Y (\hat{f}(x_0)) \}^2 \\ &= \sigma_\epsilon^2 + \mathsf{Bias}^2 (\hat{f}(x_0)) + V(\hat{f}(x_0)) \end{aligned}$$

- Bias: How close can we get to the true model
- Variance: The variability of the predictions
- Irreducible error: The best (theoretically) possible model

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
 - Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Bias and Variance: Linear regression

In linear regression we have:

$$\hat{f}(x_i) = \hat{\beta}x_i$$

This give us the following error decomposition:

$$\frac{1}{N}\sum_{i}^{N} \mathsf{Err}(x_i) = \sigma_{\epsilon}^2 + \frac{1}{N}\sum_{i}^{N} (f(x_i) - E(\hat{f}(x_i))^2 + \frac{p}{N}\sigma_{\epsilon}^2$$

- Model Predictive
 Performance
 Measuring Performance
- Test error
 - Training Error
- Model Assesment
- Model Selection
- Bias and Variance
 Optimism of Training Error
- Cross-validation
- Regularisation

Bias and Variance

Figure: Test, training, and model complexity (Hastie et al, 2009, Figure 7)

• High Bias: Underfit

High Variance: Overfit

High Irreducible error: No model is good

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Optimism of Training Error

The in-sample test error:

$$\mathsf{Err}_{\mathsf{in}} = \frac{1}{N} \sum_{i=1}^{N} \mathbb{E}_{\mathsf{Y}^{\mathsf{0}}} \{ L(\mathsf{Y}_{i}^{\mathsf{0}}, \hat{f}(\mathsf{x}_{i})) | \mathcal{T} \},$$

where $Y_{0,i}$ is a new response variable condition on x_i .

We have that

$$\mathbb{E}_{\mathbf{y}}(\mathsf{Err}_{\mathsf{in}}) = \mathbb{E}_{\mathbf{y}}(\overline{\mathsf{err}}) + \underbrace{\frac{2}{N} \sum_{i=1}^{N} \mathsf{Cov}(\hat{y}_i, y_i)}_{\mathsf{optimism}},$$

where err is the training error.

How could we create an optimistic classifier for the training data?

- Model Predictive Performance
- Measuring Performance
- Test error - Training Error
- Model Assesment
- Model Selection
- Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Estimating Optimism

- Under certain conditions we can estimate this optimism.
- AIC, BIC etc are examples of this asymptotic predictive performance.

Model Predictive Performance Measuring Performance

- Test error
 Training Error
- Model Assesment
- M 1161 .:
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Find the Optimism!

Figure: Test, training, and model complexity (Hastie et al, 2009, Figure 7)

- Model Predictive Performance
 - Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Section 5

Cross-validation

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Cross-Valdidation

We want to estimate Err for different models and to choose the best model.

Cross-Validation is probably the most popular approach to estimate Err.

- The model is judged only on how well it does predictions for new data.
- No need for rules-of-thumbs to verify that tests and estimators are applicable.
- No need to worry about significance levels, standard errors etc.
- Equally useful for frequentist, Bayesian and algorithmic methods (and these can easily be compared).

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- IVIOGEI SELECTION
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Cross-Valdidation Algorithm

Figure: Cross-Validation (Hastie et al, 2009, p. 222, 242)

		Val	idation	Test
1	2	3	4	5
Train	Train	Validation	Train	Train

- 1. Split data in K folds
- 2. For each fold k = 1, 2, ..., K
 - 2.1 Use all samples except those in k to build the predictive model
 - 2.2 Use the model and predict the observations in fold k

$$CV(\hat{f},\alpha) = \frac{1}{N} \sum_{i=1}^{N} L(y_i, \hat{y}_{-\kappa(i)}(x_i, \alpha))$$

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

The Bias of Cross-Valdidaton

Figure: Cross-Validation Bias (Hastie et al, 2009, Fig. 7.8)

- Model Predictive Performance
 - Measuring Performance
- Test error - Training Error
- Model Assesment
- Model Selection Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Leave-One-Out Cross Validation

- We set K = N
- Benefits
 - Almost unbiased estimate of Err
 - Can be less computationally costly is some situations
- Drawbacks
 - Higher Variance
 - Can be more computationally costly (naive implementation)

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
 -
- Model Assesment
- Model Selection
 - Bias and Variance
 Optimism of Training Error
- Cross-validation
- Regularisation

Leave-One-Out Cross Validation

Figure: Cross-Validation Bias (Hastie et al, 2009, Fig. 7.14)

- Model Predictive Performance
- Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Section 6

Regularisation

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Regression and GLM

- Linear regression and logistic regression are examples of generalised linear models, GLMs.
- Both use maximum likelihood estimation for fitting the model, where the likelihood function $L(\beta)$ is maximised.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Regularised regression models

- In some situations, for instance when the predictors are highly collinear, when there are too many predictors or when there is complete separation in the data, maximum likelihood estimation is unstable.
 - Either the solution is not unique, or minuscule changes in the data can change the solution completely.
 - Such datasets are increasingly common in e.g. genomics, finance, astronomy and image analysis.
- In such cases, regularisation/shrinkage methods can be used instead.
- In a regularized GLM, it is not the likelihood $L(\beta)$ that is maximized, but a regularised function $L(\beta) \cdot p(\beta)$, where p is a penalty function that typically forces the resulting estimates to be closer to 0, which leads to a stable solution.

- Model Predictive Performance
 - Measuring Performance
- Test error - Training Error
- Model Assesment
- Model Selection Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Regularised regression models

Regularised linear regression models increase the bias of the estimates, but lowers their variance, thereby potentially decreasing the MSE.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Connection to Bayesian estimation

In Bayesian estimation, a prior distribution $p(\beta)$ for the parameters β_i is chosen.

The estimates are then computed from the conditional distribution of the β_i given the data, called the posterior distribution.

Using Bayes' theorem, we find that

$$P(\beta|\mathbf{x}) \propto L(\beta) \cdot p(\beta),$$

i.e. that the posterior distribution is proportional to the likelihood times the prior.

A special type of Bayesian estimator is the maximum a posteriori (MAP) estimator, which is found by maximizing the above expression (i.e. finding the mode of the posterior).

This is equivalent to the estimates from a regularised frequentist model with penalty function $p(\beta)$!

UNIVERSITET

Model Predictive

- Performance

 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- NIOGEI SEIECTION
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Inference and invariance

- Regularised regression models are not invariant under linear rescaling of the predictors.
 - If a predictor is multiplied by a scalar a ≠ 0, this can change the entire model.
 - A model with measurements in inches might yield completely different results from a model with measurements in cm.
- For this reason, it is widely agreed that the predictors should be standardized to have mean 0 and variance 1 before a regularised model is fitted.
 - With this approach we choose a particular (natural?) scaling, among all possible scalings.
 - All predictors are on the same scale and are therefore treated equally by the penalty function.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Cross-validation
- Regularisation

Inference and invariance

- Hypothesis tests are available (e.g. Lockhart et al. (2014), A significance test for the lasso, Annals of Statistics), but I advise against using them.
- Note that the hypothesis tests will be conditioned on the choice of scaling.
 - Because of this, regularised models are not appropriate for hypothesis testing – the p-values could change completely if we rescaled the data!
- Regularised regression models are however very useful for predictive modelling.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
- Wodel Selection
 Bias and Variance
 - Optimism of Training Error
- Optimism of Training Error
- Cross-validation
- Regularisation

L_q -penalties

The most popular penalty terms correspond to common L_q -norms. On a log-scale, the function to be maximized is

$$\ell(\beta) + \lambda \sum_{i=1}^{p} |\beta_i|^q,$$

where $\ell(\beta)$ is the loglikelihood of β and $\sum_{i=1}^{p} |\beta_i|^q$ is the L_q -norm, with $q \geq 0$.

This is equivalent to maximizing $\ell(\beta)$ under the constraint that $\sum_{i=1}^{p} |\beta_i|^q \leq \frac{1}{h(\lambda)}$, for some increasing positive function h.

• Relies on the sparsity assumption that most β are 0.

 $\lambda > 0$ is a smoothing parameter:

- When $\lambda = 0$, we are back at the standard ML-estimate.
- The $\hat{\beta}$ are forced to be closer to 0 when λ increases.
- λ is usually chosen using cross-validation.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Ridge regression

When the L_2 penalty is used, the regularised model is called ridge regression, for which we maximize

$$\ell(\beta) + \lambda \sum_{i=1}^{p} \beta_i^2.$$

- Invented and reinvented by several authors, from the 1940's onwards.
- In a linear model, the OLS estimate is $\hat{\beta} = (\mathbf{X}^T\mathbf{X})^{-1}\mathbf{X}^T\mathbf{y}$, whereas the ridge estimate is $\hat{\beta} = (\mathbf{X}^T\mathbf{X} + \lambda \mathbf{I})^{-1}\mathbf{X}^T\mathbf{y}$. The $\lambda \mathbf{I}$ is the 'ridge'.
- The β_i can become very small, but are never pushed all the way down to 0.
- In a Bayesian context, this corresponds to putting a standard normal prior on the β_i.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 - Bias and Variance
- Optimism of Training Error
- Cross-validation
- Regularisation

Lasso

When the L_1 penalty is used, the regularised model is called the lasso (Least Absolute Shrinkage and Selection Operator), for which we maximize

$$\ell(\beta) + \lambda \sum_{i=1}^{p} |\beta_i|.$$

- Introduced by Robert Tibshirani in 1996.
- As λ increases, more and more β_i become 0.
 - Simultaneously performs estimation and variable selection!
- In a Bayesian context, this corresponds to putting a standard Laplace prior on the β_i.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
-
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Examples in R

Functions for regularised generalized linear models (linear, logistic, Poisson, multinomial, and more) are available e.g. in the glmnet package for R.

The syntax used is somewhat different from that for glm and lm.

- Model Predictive
 Performance
 Measuring Performance
- Test error
 Training Error
- Model Assesment
- Model Selection
 Bias and Variance
 - Optimism of Training Error
- Cross-validation
- Regularisation

Generalizations

Regularised models have been a hot research topics in the last 20 years. Some additional important models are:

Elastic net: a compromise between ridge and lasso, in which

$$\ell(\beta) + \lambda_1 \sum_{i=1}^{p} |\beta_i| + \lambda_2 \sum_{i=1}^{p} \beta_i^2$$

is maximized.

- Introduced by Zou and Hastie in 2005.
- Is better than the lasso at handling correlated predictors.
- Has two smoothing parameters that we need to choose.
- Available in the glmnet package.
- Group lasso: a version of the lasso in which variables can be grouped before fitting the model. The group lasso then selects groups of variables rather than individual variables.
 - Introduced by Yuan and Lin in 2006.
 - Useful e.g. when we have dummies for categorical variables (in contrast, the lasso may choose to only include the dummies for some of the categories).