Numer indeksu:	

Logika dla informatyków

	20811161 4	iic	11110		xoj i	110 11
	Egzamin koń	COV	vy (]	pier	WSZ	a część)
			ego 20 nia: 90		ut	
muła v	nie 1 (2 punkty). Jeśli istnieją takie $\psi \Leftrightarrow (\neg \varphi)$ jest spełnialna, to w prostokam przypadku wpisz dowód, że takie form	ąt po	oniżej	wpisz	dow	
dowan	nie 2 (2 punkty). Jeśli dla formuły φ a wyłącznie ze zmiennych zdaniowych na taką formułę ψ . W przeciwnym razio	i sp	ójnikó	w ,,¬	" ora	
słowo '	nie 3 (2 punkty). Jeżeli poniższe zbio TAK. W przeciwnym razie wpisz w prose zbudowanej ze zmiennych zdaniowych	stok	ąt prz	ykład	form	nuły, która nie jest równoważna żadnej
{⇔}			{=	<i>⇒</i> , ¬, <	⇒}	
	nie 4 (2 punkty). Czy formuła $\neg p$ jest stokąt poniżej wpisz odpowiedź oraz do					
	nie 5 (2 punkty). W prostokąty poniż cyjnej postaci normalnej, mające następ		-			
	$egin{array}{c} p \ T \ T \end{array}$	- Т	Т	<i>φ</i> Τ F		
	T	- F - F	T F	F F		
	F F F	: T : F	F T	T T T		
CNF:			I	ONF:		

stokąt po	niżej wpisz dowód	tej tautologii w sys	$\Rightarrow (q \Rightarrow \neg p)$ jest tau temie naturalnej ded		
wpisz wai	tosciowanie, dla kto	órego ta formula nie	jest speiniona.		
poniżej w			$p, \neg q, \neg p \lor q, \neg r \lor q, r \lor$ go zbioru. W przeciw		
			$X = \{1, 2, 3\}$ ma inne o równania lub dowód		
W prosto	kąty poniżej wpisz,		taką rodzina zbiorów niejszy i największy o elementu nie ma.		
			$\bigcap_{=21}^{42} \bigcup_{n=m}^{2m-1} A_n$		
$\min X =$				$\max X =$	

towana w zbiorze pierwszych. W re szości < i podzie	punkty). W prostokąt poniżej wpisz formułę logiki pierwszego rzędu, która interpre- e liczb naturalnych mówi, że każda liczba parzysta większa od 3 jest sumą dwóch liczb ozwiązaniu możesz korzystać z symboli mnożenia ·, dodawania +, równości =, mniej- elności , zmiennych oraz stałych 0,1,2 i 3. Powtarzającym się podwyrażeniom możesz i wykorzystać je w kolejnych wyrażeniach.
na zbiorze A , że	punkty). Czy istnieje taki zbiór A oraz takie $niepuste$ relacje binarne Z i S określone relacja Z jest zwrotna, relacja S jest symetryczna, a ich złożenie $Z;S$ jest antyzwrotne? iżej wpisz, odpowiednio, przykład takich relacji lub dowód, że takich relacji nie ma.
$Lubi \subseteq O \times S$ i jakie osoby lubią powiednio, osobę	punkty). Rozważmy zbiory osób O , barów B i soków S oraz relacje $Bywa \subseteq O \times B$, $Podajq \subseteq B \times S$ informujące odpowiednio o tym jakie osoby bywają w jakich barach, jakie soki oraz jakie bary podają jakie soki. Niech Bartek oraz Jagódka oznaczają, odi bar. W prostokąt poniżej wpisz taką formułę φ , że $\{o \mid \varphi\}$ jest zapytaniem relacyjnego n oznaczającym wykaz osób bywających barze Jagódka, które lubią pewien podawany nie lubi Bartek.
	punkty). Niech funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ będzie zadana wzorem $f(n,m) = 2^n(2m+1) - 1$ acza zbiór liczb naturalnych parzystych. W prostokąty poniżej wpisz obliczone wartości wobrazów:
• $f[\mathbb{N} \times \{0\}]$	
$\bullet \ f^{-1}[\mathbb{P}]$	
Jeśli istnieje fun	punkty). Niech $f: \mathbb{R} \times \mathbb{R} \to \mathbb{R} \times \mathbb{R}$ będzie określona wzorem $f(x,y) = \langle 2x, x+y \rangle$. kcja odwrotna do f , to w prostokąt poniżej wpisz wyrażenie definiujące tę funkcję. rzypadku wpisz dowód, że funkcja odwrotna nie istnieje.

 ${\bf Zadanie\ 15\ (2\ punkty).\ Wpisz\ w\ puste\ pola\ poniższej\ tabelki\ moce\ podanych\ zbiorów.}$

$(\mathbb{R} \times \mathbb{N})^{\mathbb{N}}$	$\mathcal{P}(\{1,2\}) \times (\{3,4\}^{\{5,6,7\}})$	$\mathbb{Q}\setminus\mathbb{Z}$	$\{\mathbb{R},\mathbb{Q}\}\setminus\mathbb{R}$	$\{2020\} \cap (\mathbb{R} \setminus \mathbb{Q})$	$\{\emptyset\}^{\emptyset}$	$\mathbb{N}{\times}\mathbb{Z}{\times}\mathcal{P}(\mathbb{Q})$

$(\mathbb{R} \times \mathbb{N})^{\mathbb{N}}$	$\mathcal{P}(\{1,2\})$	$\times (\{3,4\}^{\{5,6,7\}})$	$\mathbb{Q} \setminus \mathbb{Z}$	$\{\mathbb{R},\mathbb{Q}\}\setminus\mathbb{R}$	$ \{2020\} \cap (\mathbb{R} \setminus \mathbb{Q}) $	$ \{\emptyset\}^{\emptyset} $	$\mathbb{N} \times \mathbb{Z} \times \mathcal{P}(\mathbb{Q})$
	$\mathbb{N} \setminus X = X $				nieje taki zbiór X isz taki zbiór X , b		
klas abstral	kcji i każda k	,	ma moc	\aleph_0 , to w prost	zżności ≈ na zbior okąt poniżej wpisz ja nie istnieje.		
		y). Niech $A = K$ ". W pozosta			ostokąty obok tychowo "NIE".	h formuł,	które są praw-
$1 \in A$	TAK	$\{1\} \in A$		$\{\{1\}\} \in$	A	{{{1}}}} ∈	: A
$42 \in A$	NIE	$\{1\}\subseteq A$		$\{\{1\}\}\subseteq$	A [[{{1}}} ⊆	_ A
istnieje pod to w prosto	zbiór S zawiokąt poniżej	erający dokładi	nie 2 elen przykład	nenty maksym l takiego zbio	biór uporządkowa: alne oraz dokładn ru P , porządku \leq	ie 3 eleme	enty minimalne,
miast x, y i	z są zmienny ólniejsze unit	mi. W prostoką	ty obok t	ych spośród p	funkcyjnymi, a jes odanych par termo ook termów, które i	ów, które	są unifikowalne,
f(f(x,x),	$z) \stackrel{?}{=} f(a, a)$			$\int_{-\infty}^{\infty} f(g)$	$(x,x),x) \stackrel{?}{=} f(y,a)$)	
f(f(x,a),	$z) \stackrel{?}{=} f(y, a)$			$\int f(x,g(x,\cdot)) dx$	$(y)) \stackrel{?}{=} f(f(x,x),y)$		

	Numer indeksu:	
Oddane zadania:		

Logika dla informatyków

Egzamin końcowy (część druga)

6 lutego 2020 czas pisania: 120 minut

Każde z poniższych zadań będzie oceniane w skali od -4 do 20 punktów. 1

Zadanie 21. Rozważmy zbiór X i relacje równoważności $R, S \subseteq X \times X$.

(a) Czy dla wszystkich takich zbiorów i relacji zachodzi równość

$$X/_{(R\cap S)} = X/_R \cap X/_S$$
?

(b) Czy istnieje taki zbiór X i różne relacje R i S, dla których powyższa równość zachodzi? Udowodnij poprawność swoich odpowiedzi.

Zadanie 22. Udowodnij, że istnieje co najwyżej jedna funkcja $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ spełniająca dla wszystkich $i, j \in \mathbb{N}$ równość

$$f(i,j) = \begin{cases} 0, & \text{gdy } i = 0 \text{ i } j = 0, \\ f(j-1,0) + 1, & \text{gdy } i = 0 \text{ i } j > 0, \\ f(i-1,j+1) + 1, & \text{gdy } i > 0 \text{ i } j > 0. \end{cases}$$

błąd: usu nąć "i j > 0" w trzeciei linii

Zadanie 23. Rozważmy płaszczyznę z ustalonym układem współrzędnych. Przypomnijmy, że dla dowolnej prostej a i dowolnego punktu B istnieje dokładnie jedna prosta równoległa do a i przechodząca przez B. Powiemy, że prosta jest niewymierna, jeśli nie przechodzi przez żaden punkt o obu współrzędnych wymiernych. Np. prosta o równaniu $y=\sqrt{2}$ jest niewymierna, natomiast prosta o równaniu y=x nie jest niewymierna, bo przechodzi przez punkt o współrzędnych $\langle 1,1 \rangle$.

Czy dla każdej prostej istnieje równoległa do niej prosta niewymierna? Udowodnij poprawność swojej odpowiedzi.

¹Algorytm oceniania oddanych zadań jest następujący: najpierw zadanie jest ocenione w skali od 0 do 24 punktów, a następnie od wyniku zostają odjęte 4 punkty. Osoba, która nie oddaje rozwiązania zadania otrzymuje za to zadanie 0 punktów.