### Assignment03

# Derek Olson 11/11/2019

#This section measures the time it takes to the sort function we wrote to sort increasing sizes of words

#Read in the data

library(readr)
data <- read\_csv("DerekOlson/CS6012/assignment03/word\_sorting.csv", col\_types = cols(X3 = col\_skip(), X4 = col\_skip(), X5 = col\_skip(), X6 = col\_skip(), X7 = col\_skip()))

#Add column names
colnames(data)<-c("size", "time")

#Plot the word sorting times

plot(data\$size, data\$time, type="1")

title("Word Sorting")

## **Word Sorting**



#Log transfrom the data
wordSortingData = log(data)
#Plot the log transformed data
plot(wordSortingData\$size, wordSortingData\$time, type = "1")
title("Word Sorting: log transformed")

## Word Sorting: log transformed





#Read in the data and rename the columns

```
anagram_data <- read_csv("DerekOlson/CS6012/assignment03/anagrams.csv", col_types = cols(X3 = col_skip(), X4 = col_skip(), X5 = col_skip(), X6 = col_skip(), X7 = col_skip())) colnames(anagram_data)<-c("size", "time")
```

#Plot the times to get the largest anagram groups

plot(anagram\_data\$size, anagram\_data\$time, type="l")
title("Anagram Groups")

#### Anagram Groups



#Log transform the data

 $anagramData = log(anagram_data)$ 

#Plot the log transformed data

plot(anagramData\$size, anagramData\$time, type="l")
title("Anagram Groups: log transformed")

#### Anagram Groups: log transformed





- # -What is the Big-O behavior and why? Be sure to define N.
- # The Big-O behavior for getting the largest anagram groups is N^2. This is due to the fact that it relies on the
- # insertion method which is  $N^2$ .
- # -Does the growth rate of the plotted running times match the Big-O behavior you predicted?
- # Yes, there is an obvious quadratic curve.

##This section measures the time it takes for our areAnagram method to compare strings of increasingly larger sizes

#Read in the data

areAnagrams\_data <- read\_csv("DerekOlson/CS6012/assignment03/areAnagrams.csv", col\_types = cols(X3 = col\_skip(), X4 = col\_skip(), X5 = col\_skip(), X6 = col\_skip(), X7 = col\_skip())) colnames(areAnagrams\_data)<-c("size", "time")

#Plot areAnagrams times

plot(areAnagrams\_data\\$size, areAnagrams\_data\\$time, type="l")
title("AreAnagrams function")

#### AreAnagrams function



#Log transform the data

 $areAnagrams_dataTrans = log(areAnagrams_data)$ 

#Plot the trnasformed data

plot(areAnagrams\_dataTrans\$size, areAnagrams\_dataTrans\$time, type = "l")
title("AreAnagrams function: log transformed")

## AreAnagrams function: log transformed



# -What is the Big-O behavior and why? Be sure to define N.

# The Big-O behavior for the areAnagams function is  $N^2$ . This is due to the fact that it relies on the

# insertion method which is  $N^2$ .

# -Does the growth rate of the plotted running times match the Big-O behavior you predicted? # Yes, there is an obvious quadratic curve.

##This section measures the time that it takes to get groups of anagrams with Java's native sort

#Read in the data

 $\label{eq:col_skip} javaSort\_data <- \mbox{read\_csv("DerekOlson/CS6012/assignment03/javaSort.csv", col\_types = \mbox{cols}(X3 = \mbox{col\_skip()}, X4 = \mbox{col\_skip()}, X5 = \mbox{col\_skip()}, X6 = \mbox{col\_skip()}, X7 = \mbox{col\_skip()})) \\ \mbox{colnames(javaSort\_data)} <- \mbox{c("size", "time")}$ 

#Plot the data

plot(javaSort\_data\$size, javaSort\_data\$time, type="l")
title("Get anagrams function with native java sort")

#### Get anagrams function with native java sort



#Log transform the data

 $javaSort\_dataTrans = log(javaSort\_data)$ 

#Dlot the transformed date

# et anagrams function with native java sort: log transfe



<sup># -</sup>What is the Big-O behavior and why? Be sure to define N.

<sup>#</sup> The Big-O behavior for the getting the largest group of anagrams using the java sort is N logN.

<sup># -</sup>Does the growth rate of the plotted running times match the Big-O behavior you predicted?

<sup>#</sup> Yes, the slope of the line is quite linear.