

PpsMasterClock

Reference Manual

Product Info	
Product Manager	Sven Meier
Author(s)	Sven Meier
Reviewer(s)	-
Version	1.7
Date	16.04.2024

Copyright Notice

Copyright © 2024 NetTimeLogic GmbH, Switzerland. All rights reserved. Unauthorized duplication of this document, in whole or in part, by any means, is prohibited without the prior written permission of NetTimeLogic GmbH, Switzerland.

All referenced registered marks and trademarks are the property of their respective owners

Disclaimer

The information available to you in this document/code may contain errors and is subject to periods of interruption. While NetTimeLogic GmbH does its best to maintain the information it offers in the document/code, it cannot be held responsible for any errors, defects, lost profits, or other consequential damages arising from the use of this document/code.

NETTIMELOGIC GMBH PROVIDES THE INFORMATION, SERVICES AND PRODUCTS AVAILABLE IN THIS DOCUMENT/CODE "AS IS," WITH NO WARRANTIES WHATSOEVER. ALL EXPRESS WARRANTIES AND ALL IMPLIED WARRANTIES, INCLUDING WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE, AND NON-INFRINGEMENT OF PROPRIETARY RIGHTS ARE HEREBY DISCLAIMED TO THE FULLEST EXTENT PERMITTED BY LAW. IN NO EVENT SHALL NETTIMELOGIC GMBH BE LIABLE FOR ANY DIRECT, INDIRECT, INCIDENTAL, CONSEQUENTIAL, SPECIAL AND EXEMPLARY DAMAGES, OR ANY DAMAGES WHATSOEVER, ARISING FROM THE USE OR PERFORMANCE OF THIS DOCUMENT/CODE OR FROM ANY INFORMATION, SERVICES OR PRODUCTS PROVIDED THROUGH THIS DOCUMENT/CODE, EVEN IF NETTIMELOGIC GMBH HAS BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

IF YOU ARE DISSATISFIED WITH THIS DOCUMENT/CODE, OR ANY PORTION THEREOF, YOUR EXCLUSIVE REMEDY SHALL BE TO CEASE USING THE DOCUMENT/CODE.

Overview

NetTimeLogic's PPS Master Clock is a full hardware (FPGA) only implementation of a synchronization core able to synchronize other nodes to a Pulse per Second output. The whole algorithms and calculations are implemented in the core, no CPU is required. This allows running PPS synchronization completely independent and standalone from the user application. The core can be configured either by signals or by an AXI4Lite-Slave Register interface.

Key Features:

- PPS Master Clock
- Output delay compensation
- PPS duty cycle adjustment, width can be set via register
- AXI4Lite register set or static configuration
- PPS resolution with 50 MHz system clock: 10ns
- Optional High Resolution Generation with 4ns resolution
- Optional DTC Generation with 1ns resolution
- Optional cable delay compensation

Revision History

This table shows the revision history of this document.

Version	Date	Revision
0.1	28.12.2015	First draft
1.0	19.05.2016	First release
1.1	07.06.2016	Added polarity
1.2	20.12.2017	Status interface added
1.3	25.02.2020	HighResolution added
1.4	22.04.2021	Cable Delay added
1.5	03.01.2023	Added Vivado upgrade version description
1.6	26.05.2023	Extended Calble delay range
1.7	16.04.2024	Added DTC

Table 1: Revision History

Content

1 INTRODUCTION	8
1.1 Context Overview	8
1.2 Function	9
1.3 Architecture	9
2 PPS BASICS	10
2.1 Interface	10
2.2 Delays	10
2.3 Accuracy	10
3 REGISTER SET	12
3.1 Register Overview	12
3.2 Register Descriptions3.2.1 General	13 13
4 DESIGN DESCRIPTION	19
4.1 Top Level - Pps Master	19
4.2 Design Parts4.2.1 TX Processor4.2.2 Registerset	27 27 31
4.3 Configuration example4.3.1 Static Configuration4.3.2 AXI Configuration	35 35 35
4.4 Clocking and Reset Concept4.4.1 Clocking4.4.2 Reset	36 36 36

5	RESOURCE USAGE	38
5.1	Intel/Altera (Cyclone V)	38
5.2	AMD/Xilinx (Artix 7)	38
6	DELIVERY STRUCTURE	39
7	TESTBENCH	40
7.1	Run Testbench	40
8	REFERENCE DESIGNS	41
8.1	Intel/Altera: Terasic SocKit	41
8.2	AMD/Xilinx: Digilent Arty	42
8.3	AMD/Xilinx: Vivado version	43

Definitions

Definitions	
PPS Master Clock	A clock that can synchronize others to a PPS output
PI Servo Loop	Proportional-integral servo loop, allows for smooth corrections
Offset	Phase difference between clocks
Drift	Frequency difference between clocks

Table 2: Definitions

Abbreviations

Abbreviations	
AXI	AMBA4 Specification (Stream and Memory Mapped)
IRQ	Interrupt, Signaling to e.g. a CPU
PPS	Pulse Per Second
PS	PPS Slave
TS	Timestamp
DTC	Digital-to-Time Converted
ТВ	Testbench
LUT	Look Up Table
FF	Flip Flop
RAM	Random Access Memory
ROM	Read Only Memory
FPGA	Field Programmable Gate Array
VHDL	Hardware description Language for FPGA's

Table 3: Abbreviations

1 Introduction

1.1 Context Overview

The PPS Master Clock is meant as a co-processor handling a PPS output. It takes a time as reference input and calculates when the next PPS has to be generated at the nanosecond overflow by taking output and optional cable delays into account to get the maximum accuracy.

In parallel the duty cycle can be set via registers to show for e.g. the accuracy of the time against a primary reference.

The PPS Master Clock is designed to work in cooperation with the Counter Clock core from NetTimeLogic (not a requirement). It contains an AXI4Lite slave for configuration and status supervision from a CPU, this is however not required since the PPS Master Clock can also be configured statically via signals/constants directly from the FPGA.

It can be combined with a TOD Master clock to act like for e.g. a GPS receiver. Offset and drift are then distributed via the PPS Master Clock to the next second and the TOD Master Clock will distribute the absolute time on seconds level.

Figure 1: Context Block Diagram

1.2 Function

The PPS Master Clock generates a PPS of configurable polarity at the nanoseconds overflow of the local clock. It takes the duty cycle of the PPS from a register and generates a pulse of that width with an accuracy of +/- 1ms.

If the reference clock makes a jump in time, the PPS generation is skipped for the moment of the time jump and restarted at the next second overflow. This can cause two pulses to be very close to each other, overlapped or missing, this condition is marked as an error condition and provided to a register.

1.3 Architecture

The core is split up into different functional blocks for reduction of the complexity, modularity and maximum reuse of blocks. The interfaces between the functional blocks are kept as small as possible for easier understanding of the core.

Figure 2: Architecture Block Diagram

Register Set

This block allows reading status values and writing configuration.

PPS Gen

This generates the PPS at the second overflow of the reference time minus the output delay and optional cable delay with a configurable duty cycle.

2 PPS Basics

2.1 Interface

The Pulse per Second is a very simple interface and can be electrical or optical. It can be a single ended, differential, open drain, open collector and therefore also high or low active signal. The signal has a frequency of 1Hz as the name says. The reference point is the edge to the active level; this shall be at the second overflow of the reference clock. This edge shall be very accurate compared to the edge to the idle level (drive active level, tristate idle level).

For high accuracy synchronization delays have to be compensated for, and the duty cycle of the PPS can be used for accuracy encoding.

A PPS network is normally a one-to-many configuration: one PPS master synchronizes multiple PPS slave of different distance from the master.

2.2 Delays

There are two kinds of delays in a PPS Network. One is the output delay of the PPS to the core; this shall be constant and is compensated for. The second delay is the propagation delay of the signal from the master to the slave. This is dependent on the cable length and medium: 15cm of copper cable are equal to roughly 1ns of propagation delay. As stated earlier in a PPS network is normally one PPS master synchronizes multiple PPS slave of different distance from the master. Because the propagation delay to the master is different for each slave this delay has to be normally compensated for in the slave (supported by NetTimeLogic's PPS Slave core). However if it is a one-to-one connection and the PPS slave can not compensate the cable delay, it is possible that the PPS Master can compensate for the cable delay.

2.3 Accuracy

Some PPS Masters (also this one) are capable of encoding its synchronization accuracy to the duty cycle of the PPS signal. Often a logarithmic scale is used to encode the accuracy to a primary reference. E.g. 100ms of duty cycle = 10ns, 200ms = 100ns, 300ms = 1000ns, 400ms = 10000ns ... However this is not standardized. This core is capable of adjusting the duty cycle with millisecond resolution (dependend on the alignment of the 1ms pulse of the clock). Interpretation/definition of the duty cycle is up to the user.

Figure 3: PPS Waveform

3 Register Set

This is the register set of the PPS Master Clock. It is accessible via AXI4Lite Memory Mapped. All registers are 32bit wide, no burst access, no unaligned access, no byte enables, no timeouts are supported. Register address space is not contiguous. Register addresses are only offsets in the memory area where the core is mapped in the AXI inter connects. Non existing register access in the mapped memory area is answered with a slave decoding error.

3.1 Register Overview

Registerset Overview			
Name	Description	Offset	Access
Pps MasterControl Reg	PPS Master Enable Control Register	0x0000000	RW
Pps MasterStatus Reg	PPS Master Error Status Register	0x0000004	WC
Pps MasterPolarity Reg	PPS Master Polarity Register	0x0000008	RW
Pps MasterVersion Reg	PPS Master Version Register	0x000000C	RO
Pps MasterPulseWidth Reg	PPS Master Pulse Width Register	0x0000010	RW
Pps MasterCableDelay Reg	PPS Master Cable Delay Register	0x00000020	RW

Table 4: Register Set Overview

PpsMaster Reference Manual 1.7 Page 12 of 45

3.2 Register Descriptions

3.2.1 General

3.2.1.1 PPS Master Control Register

Used for general control over the PPS Master Clock, all configurations on the core shall only be done when disabled.

PPS MasterControl Reg	
Reg Description	
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0
	Щ
	\BL
	ENA
	Ш
RO	RW
Reset: 0x0000000	
Offset: 0x0000	

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:1	RO
ENABLE	Enable	Bit: 0	RW

PpsMaster Reference Manual 1.7 Page 13 of 45

3.2.1.2 PPS Master Status Register

Shows the current status of the PPS Master Clock.

Pps MasterStatus Reg				
Reg Description				
31 3 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2	1 0			
	ERROR			
	H			
RO	W C			
Reset: 0x0000000				
Offset: 0x0004				

-	Name	Description	Bits	Access
	-	Reserved, read 0	Bit:31:1	RO
	ERROR	Error (sticky)	Bit: 0	WC

PpsMaster Reference Manual 1.7

3.2.1.3 PPS Master Polarity Register

Used for setting the signal output polarity of the PPS Master Clock, shall only be done when disabled. Default value is set by the OutputPolarity_Gen generic.

PPS MasterPolarity Reg			
Reg Description			
31 30 29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1	0		
	POLARITY		
RO	RW		
Reset: 0x000000X			
Offset: 0x0008			

Name	Description	Bits	Access
-	Reserved, read 0	Bit:31:1	RO
POLARITY	Signal Polarity (1 active high, 0 active low)	Bit: 0	RW

PpsMaster Reference Manual 1.7 Page 15 of 45

3.2.1.4 PPS Master Version Register

Version of the IP core, even though is seen as a 32bit value, bits 31 down to 24 represent the major, bits 23 down to 16 the minor and bits 15 down to 0 the build numbers.

Name	Description	Bits	Access
VERSION	Version of the core	Bit: 31:0	RO

PpsMaster Reference Manual 1.7 Page 16 of 45

3.2.1.5 PPS Master Pulse Width Register

Defines the current pulse width in milliseconds of the PPS output generated. This can be useful if the Slave supports accuracy detection on the PPS duty cycle (as NetTimeLogic's Slave is capable of). Changes to this register will have an effect at the next PPS.

Pps MasterPulseWidth Reg			
Reg Description			
31 30 29 28 27 26 25 24 23 22 21	20 19 18 17 16 15 14 13 12 11 10	9 8 7 6 5 4 3 2 1 0	
		PULSE_WIDTH	
RO		RW	
Reset: 0x000003FF			
	Offset: 0x0010		

Name	Description	Bits	Access
-	Reserved, read 0	Bit: 31:10	RO
PULSE_WIDTH	Pulse width of PPS in milliseconds (min 1, max 999)	Bit: 9:0	RW
	Accuracy (dependent on the synchronization of the clock)		

PpsMaster Reference Manual 1.7 Page 17 of 45

3.2.1.6 PPS Master Cable Delay Register

This register allows to compensate for the propagation delay of the cable between the PPS master and the PPS slave (only for one-to-one connections). To calculate the delay a rule of thumb says around 1ns per 15cm of cable.

Pp:	Pps MasterCableDelay Reg					
Reg	Des	scription				
31	30	29 28 27 26 25 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6 5 4 3 2 1 0				
SIGN	-	CABLE_DELAY				
R W	RO	RW RW				
	Reset: 0x0000000					
		Offset: 0x0020				

Name	Description	Bits	Access
SIGN	Sign of the cable delay, default positive (0)	Bit: 31	RW
•	Reserved, read 0	Bit: 30	RO
CABLE_DELAY	Cable delay of cable to slave in nanoseconds (15cm is around 1ns)	Bit: 29:0	RW

PpsMaster Reference Manual 1.7 Page 18 of 45

4 Design Description

The following chapters describe the internals of the PPS Master Clock: starting with the Top Level, which is a collection of subcores, followed by the description of all subcores.

4.1 Top Level - Pps Master

4.1.1.1 Parameters

The core must be parametrized at synthesis time. There are a couple of parameters which define the final behavior and resource usage of the core.

Name	Туре	Size	Description
PulseWidthDynamic Support_Gen	boolean	1	Support for Pulse width generation: true = pulse width can dynamically set, false = pulse width is fixed to OutputPulseWidth-Millsecond_Gen
CableDelaySup- port_Gen	boolean	1	If the core shall support to compensate for cable delays to the PPS sink
OutputPulseWidth Millsecond_Gen	natural	1	Default Pulse width, minimum pulse width and fixed pulse width if no dynamic support
StaticConfig_Gen	boolean	1	If Static Configuration or AXI is used
ClockClkPeriod Nanosecond_Gen	natural	1	Clock Period in Nanosecond: Default for 50 MHz = 20 ns
OutputDelay Nanosecond_Gen	natural	1	Output delay of the PPS from the output signal to the connector.
OutputPolarity_Gen	boolean	1	true = high active, false = low active
AxiAddressRange Low_Gen	std_logic_vector	32	AXI Base Address
AxiAddressRange	std_logic_vector	32	AXI Base Address plus Regis-

High_Gen			terset Size
			Default plus 0xFFFF
			If a high-resolution clock
HighResSupport_Gen	boolean	1	SysClkNx with alignment to
			SysClk is used
HighResFreq			Multiplication factor of the
Multiply_Gen	natural	1	high-resolution clock com-
Maidply_Gen			pared to SysClk
DtcSupport_Gen	boolean	1	If DTC is supported
DtcCarryDelay	natural	1	Delay of a Carry element
Femtosecond_Gen	riacarai	'	Delay of a carry element
DtcOutputDelay	natural	1	Delay from the Carry to the IO
Picoseconds_Gen	riaturai	1	Pin
			If the position of the DTC shall
DtcFixPosition_Gen	boolean	1	be fixed in the design (Xilinx
			only)
DtcXPosition_Gen	natural	1	DTC Start position Slice X
DicArosition_Gen	riaturai	'	position. Area is (X-1) - (X+1)
			DTC Start position Slice Y
DtcYPosition_Gen	natural	1	position. Area is (Y-1) -
			(Y+NrOfCarries)
			If in Testbench simulation
Sim Gen	 boolean	1	mode:
-5im_Gen	Doolean		true = Simulation, false =
			Synthesis
			1

Table 5: Parameters

4.1.1.2 Structured Types

4.1.1.2.1 Clk_Time_Type

Defined in Clk_Package.vhd of library ClkLib

Type represents the time used everywhere. For this type overloaded operators + and - with different parameters exist.

Field Name	Туре	Size	Description
Second	std_logic_vector	32	Seconds of time

Nanosecond	std_logic_vector	32	Nanoseconds of time
Fraction	std_logic_vector	2	Fraction numerator (mostly not used)
Sign	std_logic	1	Positive or negative time, 1 = negative, 0 = positive.
TimeJump	std_logic	1	Marks when the clock makes a time jump (mostly not used)

Table 6: Clk_Time_Type

4.1.1.2.2 Pps_MasterStaticConfig_Type

Defined in Pps_MasterAddrPackage.vhd of library PpsLib This is the type used for static configuration.

Field Name	Туре	Size	Description
Polarity	std_logic	1	'1' = high active, '0' = low active
PulseWidth	std_logic_vector	10	Pulse width in milliseconds 1- 999 to generate if dynamic pulse generation is enabled.
CableDelay	std_logic_vector	30	Cable delay in nanoseconds 0 to 64k to compensate id cable delay compensation is enabled

Table 7: Pps_MasterStaticConfig_Type

4.1.1.2.3 Pps_MasterStaticConfigVal_Type

Defined in Pps_MasterAddrPackage.vhd of library PpsLib This is the type used for valid flags of the static configuration.

Field Name	Туре	Size	Description
Enable_Val	std_logic	1	Enables the PPS Master

Table 8: Pps_MasterStaticConfigVal_Type

4.1.1.2.4 Pps_MasterStaticStatus_Type

Defined in Pps_MasterAddrPackage.vhd of library PpsLib

This is the type used for static status supervision.

Field Name	Туре	Size	Description
CoreInfo	Clk_CoreInfo_ Type	1	Infor about the Cores state

Table 9: Pps_MasterStaticConfig_Type

4.1.1.2.5 Pps_MasterStaticStatusVal_Type

Defined in Pps_MasterAddrPackage.vhd of library PpsLib
This is the type used for valid flags of the static status supervision.

Field Name	Туре	Size	Description
CoreInfo_Val	std_logic	1	Core Info valid

Table 10: Pps_MasterStaticConfigVal_Type

4.1.1.3 Entity Block Diagram

Figure 4: PPS Master Clock

4.1.1.4 Entity Description

Tx Processor

This module generates the PPS signal at the nanoseconds overflow of the reference time. It generates a pulse with a duty cycle which is provided by the Registerset.

See 4.2.1 for more details.

Registerset

This module is an AXI4Lite Memory Mapped Slave. It provides access to all registers and allows configuring the PPS Master Clock. It can be configured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the registers is done via signals and can be easily done from within the FPGA without CPU. If in AXI mode, an AXI Master has to configure the registers with AXI writes to the registers, which is typically done by a CPU See 4.2.2 for more details.

4.1.1.5 Entity Declaration

Name	Dir	Туре	Size	Description
		Generics		
General				
PulseWidthDynamic Support_Gen	-	boolean	1	Support for Pulse width analysis
CableDelaySup- port_Gen	-	boolean	1	If the core shall support to compensate for cable delays

				to the PPS sink
StaticConfig_Gen	-	boolean	1	If Static Configura- tion or AXI is used
ClockClkPeriod Nanosecond_Gen	-	natural	1	Integer Clock Period
OutputPulseWidth Millsecond_Gen	-	natural	1	Default Pulse width, minimum pulse width and fixed pulse width if no dynamic support
OutputDelay Nanosecond_Gen	-	natural	1	Output delay of the PPS from the output signal to the connector
OutputPolarity_Gen	-	boolean	1	True: High active, False: Low active
AxiAddressRange Low_Gen	-	std_logic_vector	32	AXI Base Address
AxiAddressRange High_Gen	-	std_logic_vector	32	AXI Base Address plus Registerset Size
HighResSupport_Gen	-	boolean	1	If a high-resolution clock SysClkNx with alignment to SysClk is used
HighResFreq Multiply_Gen	-	natural	1	Multiplication factor of the high-resolution clock compared to SysClk
DtcSupport_Gen	-	boolean	1	If DTC is supported
DtcCarryDelay Femtosecond_Gen	-	natural	1	Delay of a Carry element
DtcOutputDelay Picoseconds_Gen	-	natural	1	Delay from the Carry to the IO Pin
DtcFixPosition_Gen	-	boolean	1	If the position of the DTC shall be fixed in the design (Xilinx only)

DtcXPosition_Gen	-	natural	1	DTC Start position Slice X position. Area is (X-1) - (X+1)
DtcYPosition_Gen	-	natural	1	DTC Start position Slice Y position. Area is (Y-1) - (Y+NrOfCarries)
Sim_Gen	-	boolean	1	If in Testbench simulation mode
		Ports		
System				
SysClk_ClkIn	in	std_logic	1	System Clock
				High-resolution
SysClkNx_ClkIn	in	std_logic	1	clock (multiple of
				Sys Clock)
SysRstN_RstIn	in	std_logic	1	System Reset
Config	I	Du Markey	ı	Chatia Can financhia
StaticConfig_DatIn	in	Pps_Master StaticConfig_Type	1	Static Configuration
StaticConfig_ValIn	in	Pps_Master StaticConfigVal _Type	1	Static Configuration valid
Status				
StaticStatus_DatOut	out	Pps_Master StaticStatus_Type	1	Static Status
StaticStatus_ValOut	out	Pps_Master StaticStatusVal _Type	1	Static Status valid
Timer			l	Millisagand times
Timer1ms_EvtIn	in	std_logic	1	Millisecond timer adjusted with the Clock
Time Input				Adjusted DTD Class
ClockTime_DatIn	in	Clk_Time_Type	1	Adjusted PTP Clock Time
ClockTime_ValIn	in	std_logic	1	Adjusted PTP Clock Time valid
AXI4 Lite Slave				\\/\\
AxiWriteAddrValid _ValIn	in	std_logic	1	Write Address Valid

AxiWriteAddrReady _RdyOut	out	std_logic	1	Write Address Ready
AxiWriteAddrAddress AdrIn	in	std_logic_vector	32	Write Address
AxiWriteAddrProt _DatIn	in	std_logic_vector	3	Write Address Protocol
AxiWriteDataValid ValIn	in	std_logic	1	Write Data Valid
AxiWriteDataReady _RdyOut	out	std_logic	1	Write Data Ready
AxiWriteDataData DatIn	in	std_logic_vector	32	Write Data
AxiWriteDataStrobe DatIn	in	std_logic_vector	4	Write Data Strobe
	out	std_logic	1	Write Response Valid
AxiWriteRespReady _RdyIn	in	std_logic	1	Write Response Ready
AxiWriteResp Response_DatOut	out	std_logic_vector	2	Write Response
AxiReadAddrValid ValIn	in	std_logic	1	Read Address Valid
AxiReadAddrReady _RdyOut	out	std_logic	1	Read Address Ready
AxiReadAddrAddress AdrIn	in	std_logic_vector	32	Read Address
AxiReadAddrProt _DatIn	in	std_logic_vector	3	Read Address Protocol
AxiReadDataValid ValOut	out	std_logic	1	Read Data Valid
AxiReadDataReady RdyIn	in	std_logic	1	Read Data Ready
AxiReadData Response_DatOut	out	std_logic_vector	2	Read Data
AxiReadDataData _DatOut	out	std_logic_vector	32	Read Data Re- sponse
Pulse Per Second Outp	ut			
Pps_EvtOut	out	std_logic	1	PPS output

Table 11: PPS Master Clock

4.2 Design Parts

The PPS Master Clock core consists of a couple of subcores. Each of the subcores itself consist again of smaller function block. The following chapters describe these subcores and their functionality.

4.2.1 TX Processor

4.2.1.1 Entity Block Diagram

Figure 5: TX Processor

4.2.1.2 Entity Description

PPS Generator

This module generates the PPS with the required polarity at the nanoseconds overflow of the reference clock. It takes the output delay because of e.g. external driver ICs and optionally a configurable cable delay to the PPS sink into account and asserts the internal signal earlier respectively. For maximum accuracy but still minimum frequency requirements the generation can start at both edges of the clock, or it uses the high-resolution functionality with e.g. 250MHz which gives a quantization fault of only 4ns. De-assertion of the PPS is timer driven and has an accuracy of +/- 1ms. The pulse width is generated according to the values received from the Registerset. Once the pulse generation is started it will only be canceled by disabling. The pulse width is evaluated only at the PPS generation; intermediate changes will not have an effect until the next PPS, that way no inconsistency is possible. For a positive polarity the rising edge is accurate, for a negative polarity the falling edge is accurate.

4.2.1.3 Entity Declaration

Name	Dir	Туре	Size	Description	
Generics					
General					
ClockClkPeriod	1	natural	1	Clock Period in	

Nanosecond_Gen				Nanosecond
TX Processor				
PulseWidthDynamic Support_Gen	-	boolean	1	Support for Pulse width analysis
CableDelaySup- port_Gen	-	boolean	1	If the core shall support to compensate for cable delays to the PPS sink
OutputPulseWidth Millsecond_Gen	-	natural	1	Default Pulse width, minimum pulse width and fixed pulse width if no dynamic support
OutputDelay Nanosecond_Gen	-	natural	1	Output delay of the PPS from the output signal to the connector
OutputPolarity_Gen	-	boolean	1	True: High active, False: Low active
HighResSupport_Gen	-	boolean	1	If a high-resolution clock SysClkNx with alignment to SysClk is used
HighResFreq Multiply_Gen	-	natural	1	Multiplication factor of the high-resolution clock compared to SysClk
DtcSupport_Gen	-	boolean	1	If DTC is supported
DtcCarryDelay Femtosecond_Gen	-	natural	1	Delay of a Carry element
DtcOutputDelay Picoseconds_Gen	-	natural	1	Delay from the Carry to the IO Pin
DtcFixPosition_Gen	-	boolean	1	If the position of the DTC shall be fixed in the design (Xilinx only)
DtcXPosition_Gen	-	natural	1	DTC Start position Slice X position.

			Ī	Area is (X-1) - (X+1)
				DTC Start position
	-	natural		Slice Y position.
DtcYPosition_Gen			1	Area is (Y-1) -
				(Y+NrOfCarries)
		Douto		(1+INIOICarries)
		Ports	_	
System SysClk_ClkIn	in	std_logic	1 1	System Clock
		555755.5	·	High-resolution
SysClkNx_ClkIn	in	std_logic	1	clock (multiple of
		g		Sys Clock)
SysRstN RstIn	in	std logic	1	System Reset
Timer		3ta_1091c	'	Gystem Reset
				Millisecond timer
Timer1ms_EvtIn	in	std_logic	1	adjusted with the
				Clock
Time Input				
	in	Clk_Time_Type	1	Adjusted PTP Clock
ClockTime_DatIn	""	CIK_THITE_TYPE	'	Time
CL LT: V/ II	in	std_logic	1	Adjusted PTP Clock
ClockTime_ValIn	'''	364_10916	'	Time valid
Pulse Per Second Polar	ty			
PpsPolarity_DatIn	in	std_logic	10	'1': High active,
				'0': Low active
Pulse Per Second Error	Outpu	it 		Indicates a time
Pps_ErrOut	out	std_logic_vector	1	jump
Pulse Per Second Width	n Innut			јаттр
T disc i ci secona vviati	Прас			0-999 in millisecond
			10	marks the duty
PpsPulseWidth_DatIn	in	std_logic_vector	10	cycle of the gener-
				ated PPS
Cable Delay Input				
				Propagation delay
				in nanoseconds to
PpsCableDelay_DatIn	in	Clk_Time_Type	1	compensate cable
				delay if compensa-
				tion is enabled
Pulse Per Second Outp	ut		-	
Pps_EvtOut	out	std_logic	1	PPS output

Enable Input				
Enable_EnaIn	in	std_logic	1	Enables the correction and supervision

Table 12: TX Processor

4.2.2 Registerset

4.2.2.1 Entity Block Diagram

Figure 6: Registerset

4.2.2.2 Entity Description

Register Set

This module is an AXI4Lite Memory Mapped Slave. It provides access to all registers and allows configuring the PPS Master Clock. AXI4Lite only supports 32 bit wide data access, no byte enables, no burst, no simultaneous read and writes and no unaligned access. It can be configured to either run in AXI or StaticConfig mode. If in StaticConfig mode, the configuration of the registers is done via signals and can be easily done from within the FPGA without CPU. For each parameter a valid signal is available, the enable signal shall be set last (or simultaneously). To change configuration parameters the clock has to be disabled and enabled again, the pulse width and cable delay can be changed at runtime. If in AXI mode, an AXI Master has to configure the registers with AXI writes to the registers, which is typically done by a CPU. Parameters can in this case also be changed at runtime.

4.2.2.3 Entity Declaration

Name	Dir	Туре	Size	Description			
	Generics						
General							
PulseWidthDynamic		boolean	1	Support for Pulse			
Support_Gen	-	Doolean	'	width generation			
				If the core shall			
CableDelaySup-		boolean	1	support to compen-			
port_Gen	_	Doolean		sate for cable delays			
				to the PPS sink			
OutputPulseWidth		natural	1	Default Pulse width,			

Millsecond_Gen				minimum pulse width and fixed pulse width if no dynamic support
Register Set	ı			If Charles Constitution
StaticConfig_Gen	-	boolean	1	If Static Configura- tion or AXI is used
AxiAddressRange Low_Gen	-	std_logic_vector	32	AXI Base Address
AxiAddressRange High_Gen	-	std_logic_vector	32	AXI Base Address plus Registerset Size
		Ports		
System				
SysClk_ClkIn	in	std_logic	1	System Clock
SysRstN_RstIn	in	std_logic	1	System Reset
Config				
StaticConfig_DatIn	in	Pps_Master StaticConfig_Type	1	Static Configuration
StaticConfig_ValIn	in	Pps_Master StaticConfigVal _Type	1	Static Configuration valid
Status				
StaticStatus_DatOut	out	Pps_Master StaticStatus_Type	1	Static Status
StaticStatus_ValOut	out	Pps_Master StaticStatusVal _Type	1	Static Status valid
AXI4 Lite Slave AxiWriteAddrValid	•		1	Write Address Valid
_Valln	in	std_logic	1	Write Address Valid
AxiWriteAddrReady _RdyOut	out	std_logic	1	Write Address Ready
AxiWriteAddrAddress _AdrIn	in	std_logic_vector	32	Write Address
AxiWriteAddrProt _DatIn	in	std_logic_vector	3	Write Address Protocol
AxiWriteDataValid _ValIn	in	std_logic	1	Write Data Valid
AxiWriteDataReady _RdyOut	out	std_logic	1	Write Data Ready
AxiWriteDataData	in	std_logic_vector	32	Write Data

Datin				
AxiWriteDataStrobe _DatIn	in	std_logic_vector	4	Write Data Strobe
AxiWriteRespValid _ValOut	out	std_logic	1	Write Response Valid
AxiWriteRespReady _RdyIn	in	std_logic	1	Write Response Ready
AxiWriteResp Response_DatOut	out	std_logic_vector	2	Write Response
AxiReadAddrValid _ValIn	in	std_logic	1	Read Address Valid
AxiReadAddrReady _RdyOut	out	std_logic	1	Read Address Ready
AxiReadAddrAddress _AdrIn	in	std_logic_vector	32	Read Address
AxiReadAddrProt _DatIn	in	std_logic_vector	3	Read Address Protocol
AxiReadDataValid ValOut	out	std_logic	1	Read Data Valid
AxiReadDataReady _RdyIn	in	std_logic	1	Read Data Ready
AxiReadData Response_DatOut	out	std_logic_vector	2	Read Data
AxiReadDataData _DatOut	out	std_logic_vector	32	Read Data Re- sponse
Pulse Per Second Polari	ity			
PpsPolarity_DatOut	out	std_logic	10	'1': High active, '0': Low active
Pulse Per Second Error	Input			
Pps_ErrIn	in	std_logic_vector	1	Indicates a time jump
Pulse Per Second Width	ր Outp	ut		
PpsPulseWidth _DatOut	in	std_logic_vector	10	O-999 in millisecond marks the duty cycle of the gener- ated PPS
Cable Delay Output				Draw a gratic is alleles
PpsCableDelay _DatOut	out	Clk_Time_Type	1	Propagation delay in nanoseconds to compensate cable delay if compensation is enabled
Enable Output PpsMaster		std_logic		Enables the correc-

		tion and supervision

Table 13: Registerset

4.3 Configuration example

In both cases the enabling of the core shall be done last, after or together with the configuration.

4.3.1 Static Configuration

Figure 7: Static Configuration

The pulse width can be changed at runtime. It is always valid.

4.3.2 AXI Configuration

The following code is a simplified pseudocode from the testbench: The base address of the PPS Master Clock is 0x10000000.

```
-- PPS MASTER
-- Config
-- Set polarity to high active
AXI WRITE 10000008 00000001
-- Set pulse width to 200 ms
AXI WRITE 10000010 000000008
-- Set cable delay 128 ns
AXI WRITE 10000020 00000080
-- enable PPS Slave
AXI WRITE 10000000 00000001
```

Figure 8: AXI Configuration

In the example the pulse width is first set to 200ms, the cable delay set to 128ns, then the core is enabled.

4.4 Clocking and Reset Concept

4.4.1 Clocking

To keep the design as robust and simple as possible, the whole PPS Master Clock, including the Counter Clock and all other cores from NetTimeLogic are run in one clock domain. This is considered to be the system clock. Per default this clock is 50MHz. Where possible also the interfaces are run synchronous to this clock. For clock domain crossing asynchronous fifos with gray counters or message patterns with meta-stability flip-flops are used. Clock domain crossings for the AXI interface is moved from the AXI slave to the AXI interconnect.

Clock	Frequency	Description		
System				
System Clock	50MHz	System clock where the frequency		
System Clock	(Default)	generation core runs on.		
High Rsolution				
High Resolution Clock	250MHz (Default)	High resolution clock for more accurate assertion/deassertion of the output signal		
AXI Interface				
AXI Clock	50MHz (Default)	Internal AXI bus clock, same as the system clock		

Table 14: Clocks

4.4.2Reset

In connection with the clocks, there is a reset signal for each clock domain. All resets are active low. All resets can be asynchronously set and shall be synchronously released with the corresponding clock domain. All resets shall be asserted for the first couple (around 8) clock cycles. All resets shall be set simultaneously and released simultaneously to avoid overflow conditions in the core. See the reference designs top file for an example of how the reset shall be handled.

Reset	Polarity	Description
System		
System Reset	Active low	Asynchronous set, synchronous release

		with the system clock
AXI Interface		
AXI Reset	Active low	Asynchronous set, synchronous release with the AXI clock, which is the same as the system clock

Table 15: Resets

5 Resource Usage

Since the FPGA Architecture between vendors and FPGA families differ there is a split up into the two major FPGA vendors.

5.1 Intel/Altera (Cyclone V)

Configuration	FFs	LUTs	BRAMs	DSPs
Minimal (No Dynamic pulse width support)	15	67	0	0
Maximal (Dynamic pulse width support)	116	180	0	0

Table 16: Resource Usage Intel/Altera

5.2 AMD/Xilinx (Artix 7)

Configuration	FFs	LUTs	BRAMs	DSPs
Minimal (No Dynamic pulse width support)	15	105	0	0
Maximal (Dynamic pulse width support)	116	184	0	0

Table 17: Resource Usage AMD/Xilinx

6 Delivery Structure

AXI -- AXI library folder

CLK -- CLK library folder

COMMON -- COMMON library folder

PPS -- PPS library folder -- PPS library cores

SIM -- SIM library folder

|-Testbench -- SIM library testbench template sources

7 Testbench

The PPS Master testbench consist of 2 parse/port types: AXI and SIG.

The SIG input port takes the time of the Clock instance as reference and the PPS signal from the DUT port. The SIG input checks the waveform if the pulse is asserted at the correct point in time and if the pulse width is ok. In addition for configuration and result checks an AXI read and write port is used in the testbench and for accessing more than one AXI slave also an AXI interconnect is required.

Figure 9: Testbench Framework

For more information on the testbench framework check the Sim_ReferenceManual documentation.

With the Sim parameter set the time base for timeouts are divided by 1000 to 100000 to speed up simulation time.

7.1 Run Testbench

1. Run the general script first source XXX/SIM/Tools/source with args.tcl

2. Start the testbench with all test cases

src XXX/PPS/Testbench/Core/PpsMaster/Script/run Pps Master Tb.tcl

3. Check the log file LogFile1.txt in the XXX/PPS/Testbench/Core/PpsMaster/Log/folder for simulation results.

8 Reference Designs

The PPS Master reference design contains a PLL to generate all necessary clocks (cores are run at 50 MHz), an instance of the PPS Master Clock IP core and an instance of the Adjustable Counter Clock IP core (needs to be purchased separately). The Reference Design is intended to be connected to any PPS Slave which can handle a logic high single ended PPS signal with pulse widths of 100ms +. Via dipswitches the pulse width can be set in 50ms steps It is a free running PPS with 50ppm accuracy and no lock to any primary reference.

All generics can be adapted to the specific needs.

Figure 10: Reference Design

8.1 Intel/Altera: Terasic SocKit

The SocKit board is an FPGA board from Terasic Inc. with a Cyclone V SoC FPGA from Intel/Altera. (http://www.terasic.com.tw/cgi-bin/page/archive.pl?Language=English&CategoryNo=205&No=816)

- 1. Open Quartus 16.x
- 2. Open Project /PPS/Refdesign/Altera/SocKit/PpsMaster/PpsMaster.qpf
- 3. Rerun implementation
- 4. Download to FPGA via JTAG

Figure 11: SocKit (source Terasic Inc)

For the ports on the HSMC connector the GPIO to HSMC adapter from Terasic Inc. was used.

8.2 AMD/Xilinx: Digilent Arty

The Arty board is an FPGA board from Digilent Inc. with an Artix7 FPGA from AMD/Xilinx. (http://store.digilentinc.com/arty-board-artix-7-fpga-development-board-for-makers-and-hobbyists/)

- 1. Open Vivado 2019.1.
 - Note: If a different Vivado version is used, see chapter 8.3.
- 2. Run TCL script /PPS/Refdesign/Xilinx/Arty/PpsMaster/PpsMaster.tcl
 - a. This has to be run only the first time and will create a new Vivado Proiect
- 3. If the project has been created before open the project and do not rerun the project TCL
- 4. Rerun implementation
- 5. Download to FPGA via JTAG

Figure 12: Arty (source Digilent Inc)

8.3 AMD/Xilinx: Vivado version

The provided TCL script for creation of the reference-design project is targeting AMD/Xilinx Vivado 2019.1.

If a lower Vivado version is used, it is recommended to upgrade to Vivado 2019.1 or higher.

If a higher Vivado version is used, the following steps are recommended:

- Before executing the project creation TCL script, the script's references of Vivado 2019 should be manually replaced to the current Vivado version. For example, if version Vivado 2022 is used, then:
 - The statement occurrences:
 - set_property flow "Vivado Synthesis 2019" \$obj
 shall be replaced by:
 - set property flow "Vivado Synthesis 2022 \$obj
 - The statement occurrences:
 - set_property flow "Vivado Implementation 2019" \$obj
 shall be replaced by:
 - set property flow "Vivado Implementation 2022" \$obj
- After executing the project creation TCL script, the AMD/Xilinx IP cores, such as the Clocking Wizard core, might be locked and a version upgrade might be required. To do so:

- 1. At "Reports" menu, select "Report IP Status".
- 2. At the opened "IP Status" window, select "Upgrade Selected". The tool will upgrade the version of the selected IP cores.

A List of tables

Table 1:	Revision History	4
Table 2:	Definitions	7
Table 3:	Abbreviations	7
Table 4:	Register Set Overview	12
Table 5:	Parameters	20
Table 6:	Clk_Time_Type	21
Table 7:	Pps_MasterStaticConfig_Type	21
Table 8:	Pps_MasterStaticConfigVal_Type	21
Table 9:	Pps_MasterStaticConfig_Type	22
Table 10:	Pps_MasterStaticConfigVal_Type	22
Table 11:	PPS Master Clock	26
Table 12:	TX Processor	30
Table 13:	Registerset	34
Table 14:	Clocks	36
Table 15:	Resets	37
Table 16:	Resource Usage Intel/Altera	38
Table 17:	Resource Usage AMD/Xilinx	38
B List	of figures	
Figure 1:	Context Block Diagram	8
Figure 2:	Architecture Block Diagram	9
Figure 3:	PPS Waveform	11
Figure 4:	PPS Master Clock	23
Figure 5:	TX Processor	27
Figure 6:	Registerset	31
Figure 7:	Static Configuration	35
Figure 8:	AXI Configuration	35
Figure 9:	Testbench Framework	40
Figure 10:	Reference Design	41
Figure 11:	SocKit (source Terasic Inc)	42
Figure 12:	Arty (source Digilent Inc)	43