ÖVEGES JÓZSEF Fizikaverseny 2016. február 29. II. forduló

Öveges József (1895-1979) a jeles kísérletező fizikatanár, természettudományos kultúránk igaz ápolója.

VIII. osztály

I. feladat

1. Miért emelkedik fel a héliummal felfújt lufi?

2,5 p

- 2. Miért kellemesebb a forró kánikulai napokat a tengerparti településen tölteni, mint egy nagyváros 2,5 plakónegyedében?
- 3. Miért liheg a kutya a forró nyári napokon kinyújtott nyelvvel?

2,5 p

4. Miért nem törik ki az ablaküveg a légköri nyomás hatására, annak ellenére, hogy egy 1 m^2 nagyságú ablaküvegre megközelítőleg egy 10 tonna tömegű test súlyával megegyező erő hat? 2,5 p

II. feladat

Egy $C = 1000 \frac{J}{K}$ hőkapacitású kaloriméterben $m_v = 1 \, kg$ tömegű és $t_v = 30^{\circ} \, C$ hőmérsékletű víz található.

Az adott kaloriméterrel két kísérletet végzünk el:

a) A kaloriméterbe egy m_j tömegű és $t_j = -10$ °C hőmérsékletű jégkockát teszünk. Ismerve az egyensúlyi hőmérsékletet $\theta = 10 \,^{\circ}\text{C}$, határozzátok meg a jég tömegét!

5 p b) A kaloriméterbe (kezdeti állapotban) $m_{Fe} = 0.1 \, kg$ tömegű és $t_{Fe} = 50^{\circ} \, C$ hőmérsékletű vasdarabot, valamint egy $m_i = 1 kg$ tömegű és $t_i = -10 \, ^{\circ}C$ hőmérsékletű jégkockát teszünk. Határozzuk meg az egyensúlyi hőmérsékletet, valamint a kaloriméterben maradt jég tömegét, az egyensúly beállta után.

Ismertek: a víz fajhője $c_v = 4180 \frac{J}{kaK}$, a vas fajhője $c_{Fe} = 450 \frac{J}{kaK}$, a jég fajhője $c_j = 2090 \frac{J}{kaK}$ valamint a jég fajlagos olvadási latens hője $\lambda = 334 \frac{kJ}{ka}$

III. feladat

Egy $S = 50 \, cm^2$ alapterületű jéghasáb, egy hasáb alakú $S' = 75 \, cm^2$ alapterületű vizet tartalmazó edényben

- 1. A jégdarab a víz felszínén úszik és a víz felszíne fölött a jéghasáb $h=1\,cm$ magasságú része található. Határozzátok meg a jéghasáb magasságát! Mennyivel és milyen irányba változik meg a víz szintje az edénybe, ha elolvad a jég?
- 2. A jéghengert egy fonallal az edény aljához erősítjük úgy, hogy egy része a vízfelszín fölött maradjon. Ha a fonalban fellépő feszítőerő $T=250 \, mN$ határozzátok meg, milyen irányba és mennyivel változik a víz szintje az edényben a jég elolvadása után!

Ismertek: a víz sűrűsége $\rho_v = 1000 \frac{kg}{m^3}$, a jég sűrűsége $\rho_j = 900 \frac{kg}{m^3}$, a gravitációs gyorsulás $g = 10 \frac{m}{m^2}$