Криптографические методы защиты информации

Алгебраические структуры, группы, подгруппы

Московский институт электроники и

математики им. А.Н. Тихонова

Алгебраические структуры

Множества

- Множество это совокупность элементов, объединенных неким общим признаком.
- Числовые множества:
 - множество натуральных чисел №,
 - множество целых чисел \mathbb{Z} ,
 - множество рациональных чисел Q,
 - множество действительных чисел \mathbb{R} ,
 - множество комплексных чисел С.

Криптографические алгоритмы оперируют целыми числами.

Алгебраические операции

- На множестве X задана **алгебраическая** операция *, если любой упорядоченной паре элементов $x, y \in X$ поставлен в соответствие однозначно определенный элемент $z \in X$, который обозначается как z = x * y.
- M ножество X с заданной алгебраической операцией * называется алгебраической структурой обозначается (X;*).

Примеры алгебраических структур:

- (\mathbb{Z} ; +): алгебраическая структура.
- (\mathbb{Z} ;:): не алгебраическая структура.
- $X = \{a, b, c\}$

Алгебраические структуры, группы,

подгруппы

*	a	b	С
а	a	С	а
b	b	a	a
С	С	b	а

Свойства алгебраических операций

• Ассоциативность:

$$\forall x, y, z \in X \Rightarrow x * (y * z) = (x * y) * z.$$

- Существование нейтрального элемента: $\exists ! \ e \ \text{такой}, \text{что} \ \forall x \in X \Rightarrow x * e = e * x = x.$
- Существование обратимых элементов (при наличии нейтрального элемента): $x, y \in X$ взаимно обратные элементы, если x * y = y * x = e, тогда $y = x^{-1}$.

• Коммутативность:

$$\forall x, y \in X \Rightarrow x * y = y * x.$$

• Свойство квазигруппы:

 $\forall \ a,b \in X$ однозначно разрешимы уравнения a*x=b и y*a=b .

Типы алгебраических структур

- Полугруппа:
 - ассоциативность.
- Моноид:
 - ассоциативность;
 - наличие нейтрального элемента.

- Квазигруппа:
 - свойство квазигруппы.

Группы и подгруппы

Группы

- Алгебраическая структура $(G; \cdot)$ является \bullet группой, если она обладает следующими свойствами:
 - ассоциативность;

Московский институт электроники

и математики им. А.Н. Тихонова

- нейтрального – существование единицей элемента, называемого группы 1_G ;
- обратимость всех элементов.
- Если групповая операция коммутативна, группа называется абелевой.

- Формы записи группы:
 - мультипликативная:

$$(G; \cdot), \ a \cdot a^{-1} = 1.$$

аддитивная:

$$(G; +), a + (-a) = 0.$$

Подгруппы

- Подмножество H группы G называется **подгруппой** группы G, если H само является группой относительно той же операции, что и G.
- Обозначение: $H \le G$ или H < G.
- Критерий подгруппы:

 $H \le G$ тогда и только тогда, когда $\forall x, y \in H \Rightarrow xy^{-1} \in H$.

• Примеры:

- (\mathbb{Z} ; +) группа.
- $-A\subset \mathbb{Z}$ множество четных целых чисел, является подмножеством \mathbb{Z} , является подгруппой $(\mathbb{Z};+)$.
- $B \subset \mathbb{Z}$ множество нечетных целых чисел, является подмножеством \mathbb{Z} , не является подгруппой $(\mathbb{Z}; +)$.

Циклические группы

Целочисленные степени и целочисленные кратные элементов группы

Пусть $(G; \cdot)$ — некоторая группа и $g \in G$. • Для любого $n \in \mathbb{Z}$ целочисленной степенью элемента g называется элемент $g^n \in G$:

$$g^n = egin{cases} \underbrace{g \cdot g \dots \cdot g}_n, & \text{если } n > 0, \ & \underbrace{g^{-1} \cdot g^{-1} \dots \cdot g^{-1}}_n, & \text{если } n < 0, \ & \underbrace{1_G}_n, & \text{если } n = 0. \end{cases}$$

Свойства целочисленных степеней:

$$- \forall m, n \in \mathbb{Z} \Rightarrow g^m \cdot g^n = g^{m+n};$$

$$- \forall m, n \in \mathbb{Z} \Rightarrow (g^m)^n = g^{mn}.$$

Пусть (G; +) — некоторая группа и $g \in G$. Для любого $n \in \mathbb{Z}$ целочисленным кратным элемента g называется элемент $ng \in G$:

$$ng = egin{cases} \underbrace{g + g + \cdots + g}_{n}, & \text{если } n > 0, \\ \underbrace{(-g) + (-g) + \cdots + (-g)}_{|n|}, & \text{если } n < 0, \\ \underbrace{0_{G}}_{n}, & \text{если } n = 0. \end{cases}$$

Свойства целочисленных кратных:

Алгебраические структуры, группы,

подгруппы

$$- \forall m, n \in \mathbb{Z} \Rightarrow mg + ng = (m+n)g;$$

$$- \ \forall \ m, n \in \mathbb{Z} \Longrightarrow n(mg) = (nm)g.$$

Целочисленные степени и целочисленные кратные элементов группы

- Пусть $(G; \cdot)$ некоторая группа и $g \in G$. Обозначим множество всевозможных целочисленных степеней элемента $g \in G$ как $\langle g \rangle = \{ \dots, g^{-1}, g^0 = 1_G, g, g^2, \dots \}.$
 - Пусть (G; +) некоторая группа и $g \in G$. Обозначим множество всевозможных целочисленных кратных элемента $g \in G$ как $\langle g \rangle = \{..., -g, 0g = 0_G, g, 2g, ...\}.$

- $\langle g \rangle$ подгруппа группы G, **порожденная** элементом $g \in G$.
 - Элемент $g \in G$ образующий подгруппы $\langle g \rangle$.

13

Конечные циклические группы

- Группа G называется **циклической группой**, если $G = \langle g \rangle$ для некоторого $g \in G$, который называется образующим циклической группы G.
- Виды циклических групп:
 - бесконечные: все целочисленные степени образующего элемента gциклической группе $\langle g \rangle$ различны;
 - **конечные**: $g^m = g^n$ для некоторых целых чисел $m \neq n$.

Порядком элемента $g \in G$ называется наименьшее натуральное число k такое, что $g^{k} = 1_{G}, O(g) = k.$

Алгебраические структуры, группы,

подгруппы

- Если O(g)=k, то $G=\langle g \rangle$ это конечная циклическая группа порядка k , причем |G| = O(g) = k.
- Пусть G некоторая конечная группа и $g \in G$, тогда $\langle g \rangle \leq G$ — конечная циклическая подгруппа, порожденная элементом g.

Конечные циклические группы имеют криптографическое приложение.

Примеры циклических групп

• Бесконечные циклические группы:

$$--(\mathbb{Z};+)=\langle 1\rangle.$$

Московский институт электроники

и математики им. А.Н. Тихонова

• Конечные циклические группы:

$$- (\mathbb{Z}^*; \cdot) = (\{-1, 1\}; \cdot) = \langle -1 \rangle.$$

$$- G = \left\langle A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix} \right\rangle = \{1_G, A, A^2, A^3\},$$

$$A = \begin{bmatrix} 0 & 1 \\ -1 & 0 \end{bmatrix}, A^2 = \begin{bmatrix} -1 & 0 \\ 0 & -1 \end{bmatrix}, A^3 = \begin{bmatrix} 0 & -1 \\ 1 & 0 \end{bmatrix}, A^4 = \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} = 1_G.$$

Алгебраические структуры, группы,

подгруппы

Свойства конечных циклических групп и подгрупп

- **Теорема Лагранжа**. Пусть G конечная группа порядка n. Если $H \leq G$ и |H| = k, то n = ks для некоторого $s \in \mathbb{N}$.
- Следствие из теоремы Лагранжа. Если G — конечная группа порядка n , то $g^n = 1_G \ \forall g \in G$.
- **Обратная теорема**. Пусть G конечная циклическая группа и |G|=n . Если d есть делитель n, то существует и единственная подгруппа H группы G такая, что |H| = d.
- Теорема об образующих элементах. Пусть $G = \langle g \rangle$ — конечная циклическая группа, порожденная своим элементом g, и |G|=n . Элемент $g^k \in G$ является образующим группы G тогда и только тогда, когда выполняется условие HOД(k,n)=1.
- Теорема о подгруппе конечной циклической группы. Любая подгруппа конечной циклической группы G является циклической группой.

Кафедра информационной безопасности киберфизических систем

Криптографические методы защиты информации

Спасибо за внимание!

Евсютин Олег Олегович

Заведующий кафедрой информационной безопасности киберфизических систем Канд. техн. наук, доцент

+7 923 403 09 21 oevsyutin@hse.ru