ترینهای توپولوژی

 $\Delta(X^{\mathsf{r}}) = \{(x,x): x \in X\}$ را فضای توپولوژیک، و $X \times X$ را با توپولوژی حاصل ضربی بگیرید. نشان دهید زیرمجموعهٔ $\Delta(X^{\mathsf{r}}) = \{(x,x): x \in X\}$ باز است اگر و تنها اگر X گسسته $X \times X$ که قُطر X^{r} خوانده می شود – بسته است اگر و تنها اگر X هوسدرف باشد. نشان دهید $\Delta(X^{\mathsf{r}})$ باز است اگر و تنها اگر X گسسته باشد.

۲- فرض کنید X و Y فضاهای توپولوژیک، و $Y \to X \to Y$ و $Y \to X \to Y$ تابعهای پیوسته باشند. نشان دهید اگر Y هوسدرف باشد، $\{x \in X: f(x) = g(x)\}$

Y- فرض کنید X فضای توپولوژیک و (Y, \leqslant) مجموعهای کلاً مرتب باشد. Y را با توپولوژی ترتیبی در نظر بگیرید و فرض کنید تابعهای $f \land g : X \to Y$ و $f \lor g : X \to Y$ و $f \lor g : X \to Y$ و $f \lor X \to Y$ با در نقطهٔ $f \lor g : X \to Y$ با دستورهای $f \lor g : X \to Y$ و $f \lor g : X \to Y$ دستورهای $f \lor g : X \to Y$ و $f \lor g : X \to Y$ و $f \lor g : X \to Y$ دستورهای $f \lor g : X \to Y$ و $f \lor g : X \to Y$ و $f \lor g : X \to Y$ دستورهای $f \lor g : X \to Y$ و $f \lor g : X \to Y$ و $f \lor g : X \to Y$ در $f \lor g : X \to Y$ و $f \lor g : X \to Y$ در $f \lor g : X \to Y$ و $f \lor g : X \to Y$ و $f \lor g : X \to Y$ در $f \lor g : X \to Y$ و $f \lor$

 $\mathbb{R} \times \mathbb{R}$ را با توپولوژی اقلیدسی و $\mathbb{R} \times \mathbb{R} = \mathbb{R}$ را زیرفضای \mathbb{R} بگیرید. $\mathbb{R} \times \mathbb{R} \times \mathbb{R}$ و $\mathbb{R} \times \mathbb{R}$ را با توپولوژی حاصل ضربی در نظر بگیرید. نشان دهید تابعهای جمع و تفریق و ضرب از $\mathbb{R} \times \mathbb{R}$ به \mathbb{R} ، و تابع تقسیم از $\mathbb{R} \times \mathbb{R}$ به \mathbb{R} پیوستهاند.

فضای توپولوژیک X، فضای متری (Y,d) با توپولوژی متر d، و تابع f:X o Y در نظر بگیرید. نشان دهید

 $\omega_f(x) = 0$ در نقطهٔ x پیوسته است اگر و تنها اگر $f: X \longrightarrow Y$ (آ)

f رب) به ازای هر عدد حقیقی a محد حقیقی a b نیوستگی a زیرمجموعهای باز از a است. نتیجه بگیرید مجموعهٔ نقاط ناپیوستگی a زیرمجموعهای زیرمجموعهای باز a است. همچنین مجموعهٔ نقاط ناپیوستگی a زیرمجموعهای a زیرمجموعهای باز a است. a است. a سیگما یعنی اجتماعی شمارا از زیرمجموعههای بسته a از a است.

(پ) \mathbb{R} را با توپولوژی اقلیدسی در نظر بگیرید و نشان دهید تابع $\mathbb{R} \to \mathbb{R}$ نیست که مجموعهٔ نقاط پیوستگیاش \mathbb{Q} باشد. تابع $f: \mathbb{R} \to \mathbb{R}$