ОСНОВНЫЕ ФОРМУЛЫ ТРИГОНОМЕТРИИ*)

СООТНОШЕНИЯ МЕЖДУ ТРИГОНОМЕТРИЧЕСКИМИ ФУНКЦИЯМИ ОДНОГО И ТОГО ЖЕ АРГУМЕНТА

$$\sin^2 x + \cos^2 x = 1$$

$$tg x = \frac{\sin x}{\cos x}$$

$$1 + tg^2 x = \frac{1}{\cos^2 x}$$

$$ctg x = \frac{\cos x}{\sin x}$$

$$1 + ctg^2 x = \frac{1}{\sin^2 x}$$

формулы сложения

$$\sin(x+y) = \sin x \cos y + \cos x \sin y$$

$$\sin(x-y) = \sin x \cos y - \cos x \sin y$$

$$\cos(x+y) = \cos x \cos y - \sin x \sin y$$

$$\cos(x-y) = \cos x \cos y + \sin x \sin y$$

$$tg(x+y) = \frac{tg x + tg y}{1 - tg x tg y} \qquad ctg(x+y) = \frac{ctg x ctg y - 1}{ctg x + ctg y}$$

$$tg(x-y) = \frac{tg x - tg y}{1 + tg x tg y} \qquad ctg(x-y) = -\frac{ctg x ctg y + 1}{ctg x - ctg y}$$

ВЫРАЖЕНИЕ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ ЧЕРЕЗ ТАНГЕНС ПОЛОВИННОГО УГЛА

$$\sin x = \frac{2 \operatorname{tg} \frac{x}{2}}{1 + \operatorname{tg}^{2} \frac{x}{2}}$$

$$\cos x = \frac{1 - \operatorname{tg}^{2} \frac{x}{2}}{1 + \operatorname{tg}^{2} \frac{x}{2}}$$

$$\cot x = \frac{1 - \operatorname{tg}^{2} \frac{x}{2}}{2 + \operatorname{tg}^{2} \frac{x}{2}}$$

$$\cot x = \frac{1 - \operatorname{tg}^{2} \frac{x}{2}}{2 \operatorname{tg} \frac{x}{2}}$$

^{*)}Во всех формулах, приведенных в этом разделе, следует учитывать область допустимых значений левой и правой частей формул.

ФОРМУЛЫ ДВОЙНОГО АРГУМЕНТА

$$\sin 2x = 2\sin x \cos x$$

$$\cos 2x = \cos^2 x - \sin^2 x = 1 - 2\sin^2 x = 2\cos^2 x - 1$$

$$tg 2x = \frac{2 tg x}{1 - tg^2 x} = \frac{2}{ctg x - tg x}$$

$$\operatorname{ctg} 2x = \frac{\operatorname{ctg}^2 x - 1}{2\operatorname{ctg} x} = \frac{\operatorname{ctg} x - \operatorname{tg} x}{2}$$

ФОРМУЛЫ ПОЛОВИННОГО АРГУМЕНТА

$$\sin^2\frac{x}{2} = \frac{1-\cos x}{2}$$

$$tg^2 \frac{x}{2} = \frac{1 - \cos x}{1 + \cos x}$$

$$\cos^2\frac{x}{2} = \frac{1+\cos x}{2}$$

$$\operatorname{ctg}^{2} \frac{x}{2} = \frac{1 + \cos x}{1 - \cos x}$$

$$tg\frac{x}{2} = \frac{\sin x}{1 + \cos x} = \frac{1 - \cos x}{\sin x}$$

$$\operatorname{ctg} \frac{x}{2} = \frac{\sin x}{1 - \cos x} = \frac{1 + \cos x}{\sin x}$$

ФОРМУЛЫ ТРОЙНОГО АРГУМЕНТА

$$\sin 3x = 3\sin x - 4\sin^3 x$$

$$\cos 3x = 4\cos^3 x - 3\cos x$$

$$tg 3x = \frac{3 tg x - tg^3 x}{1 - 3 t\sigma^2 x}$$

$$\operatorname{ctg} 3x = \frac{\operatorname{ctg}^3 x - 3\operatorname{ctg} x}{3\operatorname{ctg}^2 x - 1}$$

ФОРМУЛЫ ПРЕОБРАЗОВАНИЯ СУММЫ В ПРОИЗВЕДЕНИЕ

$$\sin x + \sin y = 2 \sin \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\sin x - \sin y = 2 \sin \frac{x-y}{2} \cos \frac{x+y}{2}$$

$$\cos x + \cos y = 2 \cos \frac{x+y}{2} \cos \frac{x-y}{2}$$

$$\cos x - \cos y = -2 \sin \frac{x+y}{2} \sin \frac{x-y}{2}$$

$$tg x + tg y = \frac{\sin(x+y)}{\cos x \cos y} \qquad ctg x + ctg y = \frac{\sin(x+y)}{\sin x \sin y}$$

$$tg x - tg y = \frac{\sin(x-y)}{\cos x \cos y} \qquad ctg x - ctg y = -\frac{\sin(x-y)}{\sin x \sin y}$$

$$tg x + ctg y = \frac{\cos(x-y)}{\cos x \sin y}$$

$$tg x - ctg y = -\frac{\cos(x+y)}{\cos x \sin y}$$

$$tg x - ctg y = -\frac{\cos(x + y)}{\cos x \sin y}$$

$$tg x + ctg x = \frac{1}{\sin x \cos x} = \frac{2}{\sin 2x}$$

$$tg x - ctg x = -2\frac{\cos 2x}{\sin 2x} = -2 ctg 2x$$

$$\cos x + \sin x = \sqrt{2}\cos(45^{\circ}-x) = \sqrt{2}\sin(45^{\circ}+x)$$
 $\cos x - \sin x = \sqrt{2}\sin(45^{\circ}-x) = \sqrt{2}\cos(45^{\circ}+x)$
 $a\sin x + b\cos x = \sqrt{a^2 + b^2}\sin(x + \phi)$,
где $\sin \phi = \frac{b}{\sqrt{a^2 + b^2}}$, $\cos \phi = \frac{a}{\sqrt{a^2 + b^2}}$

ФОРМУЛЫ ПРЕОБРАЗОВАНИЯ ПРОИЗВЕДЕНИЯ В СУММУ

$$\sin x \sin y = \frac{1}{2} [\cos(x - y) - \cos(x + y)]$$

$$\cos x \cos y = \frac{1}{2} [\cos(x - y) + \cos(x + y)]$$

$$\sin x \cos y = \frac{1}{2} [\sin(x - y) + \sin(x + y)]$$

ФОРМУЛЫ ПРИВЕДЕНИЯ

угол функция	$\beta = \frac{\pi}{2} \pm \alpha$	$\beta = \pi \pm \alpha$	$\beta = \frac{3\pi}{2} \pm \alpha$	$\beta = 2\pi \pm \alpha$
$\sin \beta$	cos α	∓ sin α	$-\cos\alpha$	$\pm \sin \alpha$
$\cos \beta$	∓ sin α	$-\cos\alpha$	$\pm \sin \alpha$	$\cos \alpha$
tgβ	∓ ct g α	$\pm \operatorname{tg} \alpha$	∓ ctg α	±tgα
$\operatorname{ctg} eta$	∓ tg α	$\pm \operatorname{ctg} \alpha$	∓ tg α	±ctgα

ЗНАЧЕНИЯ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ НЕКОТОРЫХ УГЛОВ

OHA ILHIM II III OHOMEII II ILOKHIX 40 HKUMII HEKOIOI BIX 0 I NOB											
Угол в градусах	0 °	30°	45°	60°	90°	180°	270°	360°			
Угол в радианах	0	$\frac{\pi}{6}$	$\frac{\pi}{4}$	$\frac{\pi}{3}$	$\frac{\pi}{2}$	π	$\frac{3\pi}{2}$	2π			
$\sin \alpha$	0	$\frac{1}{2}$	$rac{1}{\sqrt{2}}$	$\frac{\sqrt{3}}{2}$	1	0	-1	0			
cos α	1	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{2}}$	$\frac{1}{2}$	0	-1	0	1			
tgα	0	$\frac{1}{\sqrt{3}}$	1	$\sqrt{3}$	не сущ.	0	не сущ.	0			
ctg a	не сущ.	√3	1	$\frac{1}{\sqrt{3}}$	0	не сущ.	0	не сущ.			

СВОЙСТВА ОБРАТНЫХ ТРИГОНОМЕТРИЧЕСКИХ ФУНКЦИЙ

$$arcsin(-a) = -arcsin a,$$
 $|a| \le 1$
 $arccos(-a) = \pi - arccos a,$ $|a| \le 1$
 $arctg(-a) = -arctg a,$ $a \in \mathbb{R}$
 $arcctg(-a) = \pi - arcctg a,$ $a \in \mathbb{R}$
 $arcsin a + arccos a = \frac{\pi}{2},$ $|a| \le 1$
 $arctg a + arcctg a = \frac{\pi}{2},$ $a \in \mathbb{R}$