Beamer Template

TeXstudio Team

April 24, 2021

Expected number of particles in state s

$$\langle n_s \rangle = \sum_R n_s P(n_s)$$
 $\langle n_s \rangle = \frac{\sum_R n_s e^{-\beta E_R}}{\sum_R e^{-\beta E_R}}$

Example: Harmonic Oscillator

3 particles distributed among 4 states

o particles distributed among 1 states					
	n=0	n=1	n=2	n=3	E_R
1	3	0	0	0	$\frac{3}{2}\hbar\omega$
2	0	3	0	0	$\frac{9}{2}\hbar\omega$
3	0	0	3	0	$\frac{15}{2}\hbar\omega$
4	0	0	0	3	$\frac{21}{2}\hbar\omega$
5	2	1	0	0	$\frac{5}{2}\hbar\omega$
6	2	0	1	0	$\frac{7}{2}\hbar\omega$
7	2	0	0	1	$\frac{9}{2}\hbar\omega$
8	0	2	1	0	$\frac{11}{2}\hbar\omega$
9	0	2	0	1	$\frac{13}{2}\hbar\omega$
10	1	2	0	0	$\frac{7}{2}\hbar\omega$