Breaking the Fukuoka MQ Challenges

Tung Chou*, Ruben Niederhagen*, and Bo-Yin Yang*

*Academia Sinica, Taipei, Taiwan *Eindhoven University of Technology, the Netherlands

February 26, 2016

Fukuoka MQ Challenge:

For quadratic polynomials f_i (i = 1, 2, ..., m) of n variables over a finite field \mathbb{F} , consider the following polynomial system:

$$f_1(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(1)} x_i x_j + \sum_{1 \le i \le n} b_i^{(1)} x_i + c^{(1)} = d_1$$

$$f_2(x_1, \dots, x_n) = \sum_{1 \le i \le j \le n} a_{ij}^{(2)} x_i x_j + \sum_{1 \le i \le n} b_i^{(2)} x_i + c^{(2)} = d_2$$

$$\vdots$$

$$f_m(x_1,\ldots,x_n) = \sum_{1 \le i \le n} a_{ij}^{(m)} x_i x_j + \sum_{1 \le i \le n} b_i^{(m)} x_i + c^{(m)} = d_m$$

The goal is to find an answer $v = [v_1, \dots, v_n]$ in \mathbb{F}^n of the above system.

Fukuoka MQ Challenge:

This challenge has six types of systems: three of them are related to an encryption scheme with three different base fields, and other three are related to a signature scheme:

```
Type I: Encryption, m=2n, \mathbb{F}=\mathsf{GF}(2)

Type II: Encryption, m=2n, \mathbb{F}=\mathsf{GF}(2^8)

Type III: Encryption, m=2n, \mathbb{F}=\mathsf{GF}(31)

Type IV: Signature, n\approx 1.5m, \mathbb{F}=\mathsf{GF}(2)

Type V: Signature, n\approx 1.5m, \mathbb{F}=\mathsf{GF}(2^8)

Type VI: Signature, n\approx 1.5m, \mathbb{F}=\mathsf{GF}(31)
```

Fukuoka MQ Challenge:

This challenge has six types of systems: three of them are related to an encryption scheme with three different base fields, and other three are related to a signature scheme:

```
Type I: Encryption, m=2n, \mathbb{F}=\mathsf{GF}(2)

Type II: Encryption, m=2n, \mathbb{F}=\mathsf{GF}(2^8)

Type III: Encryption, m=2n, \mathbb{F}=\mathsf{GF}(3^1)

Type IV: Signature, n\approx 1.5m, \mathbb{F}=\mathsf{GF}(2^8)

Type V: Signature, n\approx 1.5m, \mathbb{F}=\mathsf{GF}(2^8)

Type VI: Signature, n\approx 1.5m, \mathbb{F}=\mathsf{GF}(3^1)
```

Breaking MQ Challenges with XL:

We solved two Type III challenges with extended linearization (XL):

- ► Extend the system by multiplying the equations with all monomials up to a certain degree D.
- Linearize the system by treating all monomials in the resulting system as individual variables.
- Solve the resulting linear system; the solution is also a solution for the MQ system.

We are using an adaptation *Coppersmith's block Wiedemann* (BW) algorithm to solve the linear system.

Breaking MQ Challenges with XL:

34	35
68	70
32d 18h 26min	48d 23h 32min
26d 3h 31min	40d 9min
6d 14h 53min	8d 23h 21min
2min	3min
	68 32d 18h 26min 26d 3h 31min 6d 14h 53min

Computation on a quad-socket AMD Opteron 6282 SE machine with 512GB memory.

^{*}Adapted step in Coppersmith's block Wiedemann.

Breaking MQ Challenges with Gray Code enumeration:

We solved several Type I and Type IV challenges (GF(2)) using an FPGA implementation of *Gray Code enumeration*.

Using Gray Code enumeration, only the first derivative needs to be added to the previous evaluation of an equation.

⇒ Efficient "brute force" search.

We were using a cluster of 64–128 Spartan 6 FPGAs, each FPGA evaluating 1024 solution candidates in parallel at 200MHz.

Breaking MQ Challenges with Gray Code enumeration:

Breaking MQ Challenges with Gray Code enumeration:

1	More information:	
http://www.win	.tue.nl/~tchou/mqcha	allenge/

More information: http://www.win.tue.nl/~tchou/mqchallenge/

There are many open challenges; join us in breaking them!

More information: http://www.win.tue.nl/~tchou/mqchallenge/

There are many open challenges; join us in breaking them!

Thank you for your attention.