Chapitre 2 : Systèmes de numération et codage numérique

Justine Philippe

Sommaire

- Système de numération
- Système binaire
- Détection d'erreur
- Codage numérique

Sommaire

- Système de numération
- Système binaire
- Détection d'erreur
- Codage numérique

Définitions

- Un système de numération décrit la façon avec laquelle les nombres sont représentés
- Un système de numération est défini par :
 - Un alphabet A : ensemble de symboles ou chiffres
 - Des règles d'écriture des nombres : juxtaposition de symboles
- **□** Exemple : Numération décimale
 - C'est le système de numération le plus pratiqué actuellement
 - L'alphabet est composé de dix chiffres : A = {0,1,2,3,4,5,6,7,8,9}
 - Le nombre 10 est la base de cette numération
 - C'est un système positionnel. Chaque position possède un poids.

ex:
$$4134 = 4x10^3 + 1x10^2 + 3x10^1 + 4x10^0$$

Définitions

Un système de numérotation positionnel pondéré à base b est défini sur un alphabet de b chiffres (ou digit) :

$$A = \{c_0, c_1, \dots, c_{b-1}\} \ avec \ 0 \le c_i < b$$

- Soit $N = (a_{n-1}a_{n-2} \dots a_1a_0)_b$: représentation en base b sur n chiffres
 - a_i: chiffre de l'alphabet de poids i (position i)
 - a₀: chiffre de poids 0 appelé chiffre de poids faible
 - a_{n-1}: chiffre de poids n-1 appelé chiffre de poids fort
- □ La valeur de N en base 10 est donnée par :

$$(N)_{10} = a_{n-1}b^{n-1} + a_{n-2}b^{n-2} + \dots + a_0b^0 = \sum_{i=0}^{n-1} a_ib^i$$

$$(101)_{10} \longrightarrow (1)_{10} \longrightarrow (1)$$

Bases de numération

Nom	Dimension	Dimension Symboles Exemple (496) ₁₀		Remarques
Décimale	10	{0,1,2,3,4,5,6,7,8,9}	496	-
Binaire	2	{0,1}	111110000	C'est avec ce système que fonctionnent les ordinateurs
Octale	8	{0,1,2,3,4,5,6,7}	760	Utilisée il y a un certain temps en Informatique, elle permet de coder 3 bits en un seul symbole
Hexadécimale	16	{0,1,2,3,4,5,6,7,8,9, A,B,C,D,E,F}	1F0	Cette base est très utilisée dans le monde de la micro- informatique, elle permet de coder 4 bits par un seul symbole

Transcodage (ou conversion de base)

- Opération qui permet de passer de la représentation d'un nombre exprimé dans une base à la représentation du même nombre mais exprimé dans une autre base
- Changement de base de la base 10 vers une base b : Méthode des divisions successives
 - On divise le nombre par la base b
 - Puis le quotient par la base b
 - Et ainsi de suite jusqu'à l'obtention d'un quotient nul
 - La suite des restes correspond aux symboles de la base visée
 - On obtient en premier le chiffre de poids faible et en dernier le chiffre de poids fort

Ex:
$$(73)_{10} \rightarrow (?)_{2}$$
 $(73)_{10} \rightarrow (?)_{8}$ $(73)_{10} \rightarrow (?)_{16}$ $(1001001)_{2}^{73} \stackrel{|2}{|_{10}}{|_{10}} \stackrel{|2}{|_{10}}{|_{1$

Transcodage (ou conversion de base)

- □ Changement de base de la base 2 vers la base 10 : $\sum_{i=0}^{n-1} a_i b^i$
- □ Changement de la base 2 vers la base 8 : On regroupe les bits en sousensembles de 3 bits puis on remplace chaque groupe par le symbole correspondant dans la base 8

Symbole octal	0	1	2	3	4	5	6	7
Symbole binaire	000	001	010	011	100	101	110	111

□ Changement de la base 2 vers la base 16 : On regroupe les bits en sous-ensembles de 4 bits puis on remplace chaque groupe par le symbole correspondant dans la base 16

Symbole hexadécimal	0	1	2	3	4	5	6	7	8	9	А	В	С	D	Ш	F
Symbole binaire	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001	1010	1011	1100	1101	1110	1111

Sommaire

- Système de numération
- Système binaire
- Détection d'erreur
- Codage numérique

Encodage des nombres

- □ 1 bit = 2 valeurs, il faut donc en associer plusieurs pour représenter des grands nombres
- Symbolisation sous forme de bus :

□ Plusieurs formalisations pour un même nombre binaire :

```
- Ex: '11100011' en binaire naturel => 227
```

'11100011' en complément à 2 => -29

'11100011' en code ASCII => π

ISEN école d'ingénieurs

Encodage en binaire naturel

□ Chaque bit, situé en position n, a un poids dans la représentation de 2^n . (Attention, n commence à 0!)

Not significant Bit MSB
$$\rightarrow$$
 \rightarrow \rightarrow LSB Least Significant Bit 2^4 2^3 2^2 2^1 2^0

A[4] A[3] A[2] A[1] A[0]

0 0 0 0 \rightarrow 0

0 0 0 \rightarrow 0

0 0 0 \rightarrow 0

0 0 1 0 \rightarrow 2² = 4

0 0 1 1 0 \rightarrow 2² + 2¹ + 2⁰ = 7

1 1 0 1 \rightarrow \rightarrow 2⁴ + 2³ + 2¹ = 26

- □ Pour un mot de k bits, il y a donc 2^k valeurs, de 0 à 2^k -1
 - → Dynamique de codage

ISEN école d'ingénieurs

Encodage en binaire naturel

- □ Représentation standard : sous forme d'octet (8 bits)
- □ Nombre représentés entre 0 et 255 (2⁸-1) :
 - En décimal : par exemple '165'
 - En binaire : par exemple '1010 0101'
 - En hexadécimal : écriture par groupes de 4 bits (entre 0 et F) par exemple 'A5' → '1010 0101'

Arithmétique en base 2

Addition :

A	В	A + B	Retenue (Carry)
0	0	0	0
0	1	1	0
1	0	1	0
1	1	0	1

Soustraction:

A	В	A - B	Retenue (Borrow)
0	0	0	0
0	1	1	1
1	0	1	0
1	1	0	0

Arithmétique en base 2

Multiplication :

A	В	AxB
0	0	0
0	1	0
1	0	0
1	1	1

103	1100
X	10
= 000	0000
+ 1011	<u> 100 .</u>
≠ 1013	1000

Division :

A	В	A÷B
0	0	X
0	1	0
1	0	X
1	1	1

Code binaire signé

- □ Le bit le plus significatif est utilisé pour représenter le signe du nombre :
 - Si le bit le plus fort vaut 1, alors il s'agit d'un nombre négatif
 - Si le bit le plus fort vaut 0, alors il s'agit d'un nombre positif
- Les autres bits codent la valeur absolue du nombre
- Exemples: $(+2)_{10} = (010)_2$ $(-2)_{10} = (110)_2$

Problème : Ce codage nécessite un traitement particulier pour le signe et introduit deux codes différents pour le chiffre 0

Encodage en complément à 1

- □ Ce code est également appelé complément logique ou restreint :
 - Les nombres positifs sont codés de la même façon qu'en binaire pur
 - Un nombre négatif est codé en inversant chaque bit de la représentation de sa valeur absolue
- □ Le bit le plus significatif est utilisé pour représenter le signe du nombre :
 - Si le bit le plus fort vaut 1, alors il s'agit d'un nombre négatif
 - Si le bit le plus fort vaut 0, alors il s'agit d'un nombre positif

Exemple : -24 en complément à 1 sur 8 bits |-24| en binaire pur \rightarrow (00011000)₂ puis on inverse les bits \rightarrow (11100111)_{Cà1}

Problème : Ce codage introduit deux codes différents pour le chiffre 0

Encodage en complément à 2

- Permet de représenter les nombres négatifs
- □ 2 conditions à respecter pour préserver les règles de calcul dans un anneau commutatif :
 - Représentation du 0 : '0000 0000'
 - Respect de l'addition : la représentation d'un nombre 'x+1'
 doit être égale à la représentation du nombre 'x' +1

Encodage en complément à 2

□ Dynamique de codage pour k bits : $-2^{k-1} \rightarrow 2^{k-1} - 1$ ex : 8 bits = 256 valeurs = $-128 \rightarrow 127$

MSB							LSB			
0	1	1	1	1	1	1	1	\rightarrow	127	
0	0	0	0	0	0	0	1	\rightarrow	1	Le 0 compte
0	0	0	0	0	0	0	0	\rightarrow	0 ←	- comme un
1	1	1	1	1	1	1	1	\rightarrow	-1	nombre positif
1	1	1	1	1	1	1	0	\rightarrow	-2	
1	0	0	0	0	0	0	0	\rightarrow	-128	

□ Propriété corollaire : $-A = \overline{A} + 1$

Codage des nombres réels

Codage en virgule fixe :

- Etant donné une base b, un nombre x est représenté, en format virgule fixe, par :
 - $x = (a_{n-1}a_{n-2} \dots a_1 a_0, a_{-1}a_{-2} \dots a_{-p})_{h}$
 - a_{n-1} est le chiffre de poids fort (MSB)
 - a_{-p} est le chiffre de poids faible (LSB)
 - n est le nombre de chiffres avant la virgule
 - p est le nombre de chiffre après la virgule
- □ La valeur de x en base 10 est : $x = \sum_{i=-p}^{n-1} a_i b^i$

Exemple:

$$(101,01)_2 = 1 \times 2^2 + 0 \times 2^1 + 1 \times 2^0 + 0 \times 2^{-1} + 1 \times 2^{-2} = (5,25)_{10}$$

Codage des nombres réels

Codage en virgule fixe :

- □ Le passage de la base 10 à la base 2 est défini par :
 - Partie entière est codée sur p bits (divisions successives par 2)
 - Partie décimale est codée sur q bits en multipliant par 2 successivement jusqu'à ce que la partie décimale soit nulle ou le nombre de bits q est atteint
- □ Ce codage était utilisé par les premières machines

Codage des nombres réels

Codage en virgule flottante :

- Soit un nombre N dans une base B. Sa notation décimale peut être écrite en utilisant la mantisse M et l'exposant E : $N = \pm M \times B^E$
- □ La mantisse est à virgule fixe et l'exposant E un nombre signé (complément à 2)
- D'une manière générale, le nombre peut être écrit :

Signe	Exposant	Mantisse

- □ Le signe est codé sur un bit ayant le poids le plus fort :
 - Le signe : bit = 1
 - Le signe +: bit = 0

Sommaire

- Système de numération
- Système binaire
- Détection d'erreur
- Codage numérique

Opérations sur les nombres relatifs

- Un résultats faux est renvoyé s'il y a dépassement de mémoire
- \Box Exemple : $A = (a_3 a_2 a_1 a_0)_b$ et $B = (b_3 b_2 b_1 b_0)_b$

Il y a erreur si le nombre de digits est supérieur au nombre de digits des termes de l'opération

> +1100 +0111 10011 => Kesaltat sun 5 his => enem.

ISEN

école d'ingénieurs

JPH – CIR2/L3Si – Chapitre 2

Problèmes de conversions erronées

Exemple :
$$(0,1)_{10} \rightarrow (?)_2$$

$$0.1x2 = 0.2 - 0 = 0.2$$

 $0.2x2 = 0.4 - 0 = 0.4$
 $0.4x2 = 0.8 - 0 = 0.8$
 $0.8x2 = 1.6 - 1 = 0.6$
 $0.6x2 = 1.2 - 1 = 0.2$
 $0.2x2 = 0.4 - 0 = 0.4$
 $0.4x2 = 0.8 - 0 = 0.8$

$$0 \times 2^{-1} + 0 \times 2^{-2} + 0 \times 2^{-3} + 1 \times 2^{-4} + 1 \times 2^{-5} \approx 0.05$$

→ Introduction d'une erreur

Sommaire

- Système de numération
- Système binaire
- Détection d'erreur
- Codage numérique

Généralités

- Un codage est une opération qui établit une correspondance entre les éléments de deux ensembles
- Il permet d'établir une correspondance entre le langage humain et le langage machine
- □ Un codage est dit **pondéré** s'il associe à chaque variable un poids qui est une valeur numérique (ex : code binaire naturel)
- Un codage est dit non pondéré lorsque seule la combinaison des variables est significative (ex : code de Gray)

Code BCD (Binary Coded Decimal)

- Code décimal le plus utilisé en électronique
- Contient des mots-code qui sont la traduction en binaire naturel (sur 4 bits) de chacun des dix chiffres du système décimal

Exemple:

1	9	8	2	en décim
\downarrow	\downarrow	\downarrow	\downarrow	
0001	1001	1000	0010	en BCD

0101	0000	0111	0011	en BCD
\downarrow	\downarrow	\downarrow	\downarrow	
5	0	7	3	en décimal

Décimal	BCD		
0	0000		
1	0001		
2	0010		
3	0011		
4	0100		
5	0101		
6	0110		
7	0111		
8	1000		
9	1001		

Code de Gray (ou binaire réfléchi)

- □ Un seul bit change de valeur entre deux codes successifs. Ce code est obtenu par réflexions successives.
- □ Il est utilisé dans les tableaux de Karnaugh, afin de coder les valeurs d'entrées de telle sorte qu'une seule d'entre elles ne change de valeur d'une ligne à l'autre, ou d'une colonne à l'autre

a	b	С	Décimal	
0	0	0	0	
0	0	1	1	
0	1	1	2	
0	1	0	3	
1	1	0	4	
1	1	1	5	
1	0	1	6	
1	0	0	7	

$$(b_2b_1b_0)_2 \to (abc)_{Gray}$$

$$a = b_2$$

$$b = b_2 \oplus b_1$$

$$c = b_1 \oplus b_0$$

Codage avec bit de parité

- Ce codage permet de vérifier la parité des nombres après transmission
- □ Le bit de parité P vaut 0 si le nombre de bits à 1 est pair

а	b	С	Р
0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Codage P parmi N

Le code P parmi N est un code à N bits dont P bits sont à 1 et (N-P) bits sont à 0. La lecture de ce code peut être associée à la vérification du nombre des 1 et des 0 dans l'information, ce qui permet de contrôler l'information lue par la détection du code erroné

Exemple: Code 2 parmi 5

Nombre de combinaisons possibles :

$$C = \frac{N!}{P! (N - P)!}$$

Décimal	7	4	2	1	0
0	1	1	0	0	0
1	0	0	0	1	1
2	0	0	1	0	1
3	0	0	1	1	0
4	0	1	0	0	1
5	0	1	0	1	0
6	0	1	1	0	0
7	1	0	0	0	1
8	1	0	0	1	0
9	1	0	1	0	0

Codage de Hamming

- Ce codage a été mis au point par R. Hamming à la fin des années 1940 afin de corriger les erreurs de transmission
- Il consiste à introduire des bits de contrôle en plus des bits transportant l'information
- Les bits de contrôle servent à effectuer des tests de parité avec les bits transportant l'information

Tests de parité :

$$\begin{cases} T_1 = k_1 m_1 m_2 m_4 \\ T_2 = k_2 m_1 m_3 m_4 \\ T_3 = k_3 m_2 m_3 m_4 \end{cases}$$

Récapitulatif (A savoir)

- Systèmes binaire, octale et hexadécimal
- Encodage binaire des entiers naturels et relatifs
- □ Arithmétique en base 2
- Détection d'erreur
- Codes BCD et binaire réfléchi
- Notion de bit de parité

Fin du chapitre 2

