

Plot No.2, Sector 17-A, Yamuna Expressway, Greater Noida, Gautam Buddha Nagar, U.P., India

School of Computer Science and Engineering

Lab Report

B. Tech- II Sem

Winter: 2023-24

Engineering Mathematics-II(Lab)

(C1UC222B)

Submitted by:	Submitted to:	
Name:	••••••••••	
Batch:		
Adm No:		

S.No.	List of Experiments	
1.		
2.		
3.		
4.		
5.		
6.		
7.		
8.		
9.		
10.		
11.		
12.		

S.	Experiment	Date	Signature
No.		Date (Performed)	(with date)
1.			
2.			
3.			
4.			
5.			
6.			
7.			
8.			
9.			
·			
10.			
11.			
12.			

Experiment: 1 Vectors in 2D and 3D

Exercises

To write a Scilab code of the following problems:

Q1. (i) Create a row vector with 3 elements.

```
--> M=[1 4 2]
M =
1. 4. 2.
```

(ii) Create a column vector with 4 elements.

```
--> U=[1;7;0;8]
U =

1.
7.
0.
8.
```

- 2. By taking the first term a=1 and the last term b=10 create a vector:
- (i) By taking the spacing between two consecutive terms d=2,

```
--> S=[1:2:10]
S =
1. 3. 5. 7. 9.
```

(ii) By taking the number of terms n=12

```
--> K=linspace(1,10,12)
K =

column 1 to 9

1. 1.8181818 2.6363636 3.4545455 4.2727273 5.0909091 5.9090909 6.7272727 7.5454545

column 10 to 12

8.3636364 9.1818182 10.
```

(iii) Create two-row vectors a and b such that the following operations are defined and hence find:

(i) 2a-3b

(ii) 2(transpose a) - 3(transpose b)

4. Find the angle between the following pair of vectors

```
(i) (0,0),(1,1)
```

(ii) (1,2), (0,1)

(iii) (0,1,0), (1,2,1)

(iv) (1,2,3), (2,3,4)

```
exc1q4.sce (C:\Users\Ayushmaan.DESKTOP-FNLU7C6 | Scilab 6.1.1 Console |
exc1q4.sce | | "Theta is "

1 clc
2 M=[1,2,3]
3 U=[2,3,4]
4 S=acosd (M*U'/(norm(M)*norm(U)))
5 disp("Theta·is·",S)
```

5. Draw the arrows for the following vectors:

(i)(1,2)

(ii) (2,5)

(iii) (0,7)

(iv) (1,2,3)

(v)(-1,0,1)

(vi)(0,1,-1)

Experiment: 2

Exercises:

1) Plotting of a Scalar Field $f(x,y)=x^{2y}$

```
clc; clear; clf;
function z=scalarfield(x, y)
    z=(x.^2).*y
endfunction
x=linspace(-5,5,100)
y=linspace(-5,5,100)
[X,Y]=meshgrid(x,y)
z=scalarfield(X,Y)
surf(x,y,z)
xtitle('Scalar Field','X-Axis','Y-Axis')
colorbar
```


 Plotting of a Scalar Field f(x,y)= x*e^{-x^2+y^2} clc; clear; clf;

```
function z=scalarfield(x, y)
z=x.*exp(-x.^2-y.^2)
endfunction
x=linspace(-5,5,100)
y=linspace(-5,5,100)
[X,Y]=meshgrid(x,y)
z=scalarfield(X,Y)
surf(x,y,z)
xtitle('Scalar Field','X-Axis','Y-Axis')
```


3) Plotting of vector field f(x,y)=(x,y)

colorbar

```
clc; clear; clf;
function [Zx, Zy]=vfield(x, y)
    Zx=x
    Zy=y
endfunction
x=-4:.1:4
y=-4:.1:4
[X,Y]=ndgrid(x,y)
[Zx,Zy]=vfield(X,Y)
champ(x,y,Zx,Zy,0.2,rect=[-2,-2,2,2])
gce.colored="on"
xtitle('Vector Field','X-Axis','Y-Axis')
colorbar
```


4) Plotting of vector field f(x,y) = (-y,x)

```
clc; clear; clf;
function [Zx, Zy]=vfield(x, y)
    Zx=-y
    Zy=x
endfunction
x=-4:.1:4
y=-4:.1:4
[X,Y]=ndgrid(x,y)
[Zx,Zy]=vfield(X,Y)
champ(x,y,Zx,Zy,0.2,rect=[-2,-2,2,2])
gce.colored="on"
xtitle('Vector Field','X-Axis','Y-Axis')
colorbar
```


5) Plotting of vector field $f(x,y) = (\sin y, \cos x)$

```
clc; clear; clf;
function [Zx, Zy]=vfield(x, y)
    Zx=sin(y)
    Zy=cos(x)
endfunction
x=linspace(-1,1,100)*2*%pi
y=linspace(-1,1,100)*2*%pi
[X,Y]=ndgrid(x,y)
[Zx,Zy]=vfield(X,Y)
champ(x,y,Zx,Zy,0.2,rect=[-3,-2,3,2])
gce.colored="on"
xtitle('Vector Field','X-Axis','Y-Axis')
colorbar
```


6) Divergence of vector field f(x,y)=(-y,x)

```
clc; clear; clf;
function [Zx, Zy, Div]=vfield(x, y)
Zx=-y; Zy=x; Div=0*x
endfunction
x=-4:.1:4; y=-4:.1:4; [X,Y]=meshgrid(x,y)
[Zx,Zy,Div]=vfield(X,Y)
surf(x,y,Div)
xtitle('Divergence of Vector field f(x,y)=(y,x)','X-Axis','Y-Axis'); colorbar;
scf();
champ(x,y,Zx,Zy,0.2,rect=[-2,-2,2,2])
gce().colored="on"
xtitle('Vector field f(x,y)=(-y,x)','X-Axis','Y-Axis');
colorbar
```


7) Divergence of vector field $f(x,y)=(\sin x, \cos y)$

```
clc; clear; clf;
function [Zx, Zy, Div]=vfield(x, y)
Zx=sin (x); Zy=cos (y); Div=cos(x)- sin(y)
endfunction
x=linspace(-1,1,50)*%pi; y=linspace(-1,1,50)*%pi
[X,Y]=ndgrid(x,y)
[Zx,Zy,Div]=vfield(X,Y)
surf(x,y,Div)
xtitle('Divergence of Vector field f(x,y)=(sin x, cos y)','X-Axis','Y-Axis'); colorbar; scf; champ(x,y,Zx,Zy,0.2,rect=[-3,-%pi,2.5,%pi]); gce().colored="on"; xtitle('Vector field f(x,y)=(sin x, cos y)','X-Axis','Y-Axis');
```


8) The gradient of scalar field $f(x,y)=x^2y$

```
clc; clear; clf;
function [z, DZx, DZy]=scalarfield(x, y)
   z = x.^2 .* y;
   DZx = 2 * x .* y;
  \mathbf{DZy} = \mathbf{x}.^2;
endfunction
x = linspace(-5, 5, 100);
y = linspace(-5, 5, 100);
[X, Y] = \underline{\text{meshgrid}}(x, y);
[z, DZx, DZy] = \underline{scalarfield}(X, Y);
\underline{\operatorname{surf}}(x, y, z);
xtitle('Scalar field f(x,y)=x^2y', 'X-Axis', 'Y-Axis'); scf();
champ(x, y, DZx, DZy, 0.5, rect=[-3, -3, 3, 3]);
gce().colored = "on";
xtitle('Gradient of scalar field f(x,y)=x^2y', 'X-Axis', 'Y-Axis');
colorbar
```


Experiment :- 3 Linear dependence and Independence

Exercises:

Determine LI of the following vectors:

1) (0,1), (1,0)

clc

```
clear
v1=[0,1]
v2=[1,0]
n=input ('Enter - the - number - of - vector: - ')
A=[v1;v2]
                                                      Enter the number of vector: 2
if . rank . (A) == . n . then
----disp('L.I.')
                                                        "L.I."
----disp('L.D.')
end
   2) (2,4), (1,2)
clc
clear
v1 = [2, 4]
v2=[1,2]
n=input ('Enter - the - number - of - vector: - ')
A=[v1;v2]
if - rank - (A) == · n · then
disp('L.I.')
else
----disp('L.D.')
end
Enter the number of vector: 1
  "L.I."
```

```
3) (1,1), (1,3), (2,5)
clc
clear
                                             Enter the number of vector: 2
v1=[1,1]
v2=[1,3]
v3=[2,5]
n=input('Enter - the - number - of - vector: -')
A=[v1;v2;v3]
                                                "L.I."
if rank (A) == n then
----disp('L.I.')
else
....disp('L.D.')
end
4) (1,2,3), (1,2,4)
clc
clear
v1=[1,2,3]
v2=[1,2,4]
n=input('Enter the number of vector: ') Enter the number of vector: 2
A=[v1;v2]
if rank (A) == n then
---disp('L.I.')
                                               "L.I."
else
----disp('L.D.')
end
                                             -->
5) (1,1,0), (1,0,1), (0,1,1)
 clc
clear
                                            Enter the number of vector: 3
 vl=[1,1,0]
 v2=[1,0,1]
v3=[0,1,1]
n=input ('Enter - the - number - of - vector: - ')
A=[v1;v2;v3]
if rank (A) == n then
                                               "L.I."
 · · · · disp('L.I.')
 else
 ----disp('L.D.')
end
6) (2,2,1), (1,-1,1), (1,0,1)
clc
clear
v1=[2,2,1]
v2=[1,-1,1]
                                               Enter the number of vector: 3
v3=[1,0,1]
n=input ('Enter - the - number - of - vector: - ')
A=[v1;v2;v3]
if \cdot \underline{rank} \cdot (A) == \cdot n \cdot then
                                                  "L.I."
----disp('L.I.')
else
....disp('L.D.')
end
```

7)(1,2,3,1), (2,1,-1,1), (4,5,5,3), (5,4,1,3)

```
clc
clear
v1=[1,2,3,1]
v2=[2,1,-1,1]
                                             Enter the number of vector: 2
v3=[4,5,5,3]
v4 = [5, 4, 1, 3]
n=input ('Enter - the - number - of - vector: - ')
A=[v1;v2;v3;v4]
if rank (A) == n then
                                                "L.I."
----disp('L.I.')
else
....disp('L.D.')
                                             -->
end
```

8) (1,2,3), (1,2,4), (0,0,0)

Experiment :- 4 Matrix representation of a linear Transformation

To find Matrix representation of any linear transformation T and use it to determine the inverse of T if the inverse exists.

Let T: $\mathbb{R}3$ to $\mathbb{R}3$ be a linear transformation with basis B={(1, 1,1), (1,1,0), (1,0,0)} and B' ={(1,0,1), (-1,2,1), (2,1,1)} respectively and defined by T(a,b,c)= (3a+b, a+b, a-b).

- (i) Find matrix [T;B,B']
- (ii) Determine, if T is invertible

```
b2 = [1; 1; 0];
b3 = [1; 0; 0];
// Define basis vectors in B'
bpl = [1; 0; 1];
bp2 = [-1; 2; -1];
bp3 = [2; 1; 1];
// Define the linear transformation function
function [y] = \underline{T}(x)
y = [3*x(1) + x(2); x(1) + x(2); x(1) - x(2)];
endfunction
// Apply T to each basis vector in B
T bl = T(bl);
T b2 = \underline{T}(b2);
T_b3 = \underline{T}(b3);
//-Create the transformed basis in B' (optional, not used directly)
transformed basis_B = [T_bl T_b2 T_b3];
// Create the matrix representation of B' (optional, not used directly)
B prime = [bpl bp2 bp3];
// Calculate the coordinates of T(v1), T(v2), and T(v3) with respect to B'
C1 = inv(B prime) * <u>T(b1)</u>;
C2 = inv(B_prime) * I(b2);
C3 = inv(B_prime) * T(b3);
// Combine the coordinates into a single matrix
                                                                                     -2.5 -2.5 -0.25
C = [C1 \ C2 \ C3];
//-Display-the-coordinates-of-T(v1), T(v2), and T(v3)-with-respect-to-B'
                                                                                     -0.5 -0.5 -0.25
disp(C): // Check for invertibility (assuming T BBp is square)
// Check for invertibility
det_C = det(C);
if (det C~=0)
 -disp("T-is-invertible.");
                                                                                     "T is invertible."
 -disp("T-is-not-invertible.");
```

Find the matrix representation of linear map T given below with respect to the user input basis of domain and codomain.

(a)
$$T(x,y,x) = (x+y,y+z,z+x)$$

```
function T = \underline{linear}(v)
   T = [v(1) + v(2); v(2) + v(3); v(3) + v(1)];
vl = input ("Enter -vl -of -Basis -of -domain -vector -space: -");
v2 = input ("Enter v2 of Basis of domain vector space: ");
v3 = input ("Enter-v3-of-Basis of domain-vector-space: -");
wl = input ("Enter-wl-of-Basis-of-co-domain-vector-space:-");
w2 = input ("Enter-w2-of-Basis-of-co-domain-vector-space:-");
w3 = input ("Enter w3 of Basis of co-domain vector space: ");
Tvl = linear(vl);
Tv2 = linear(v2);
Tv3 = linear(v3);
B = [w1, w2, w3]';
c3 = B \ Tv3;
C = [c1, c2, c3];
disp("Matrix of Linear map with respect to (A, B) is given by the matrix:");
disp(C);
```

```
Enter v1 of Basis of domain vector space: [1;0;0]

Enter v2 of Basis of domain vector space: [0;1;0]

Enter v3 of Basis of domain vector space: [0;0;1]

Enter w1 of Basis of co-domain vector space: [1;1;0]

Enter w2 of Basis of co-domain vector space: [1;0;1]

Enter w3 of Basis of co-domain vector space: [0;1;1]

"Matrix of Linear map with respect to (A,B) is given by the matrix:"

0. 1. 0.
1. 0. 0.
0. 0. 1.
```

(b) T(x,y,z) = (x-y,y-z,z-x)

```
2 clear;
1 function T = linear a(V)
2 T = [v(1) - v(2); v(2) - v(3); v(3) - v(1)];
3 endfunction
g v1 = [1; 0; 0];
9 v2 = [0; 1; 0];
10 v3 = [0; 0; 1];
12 w1 = [1; 1; 0];
13 w2 = [1; 0; 1];
14 w3 = [0; 1; 1];
16 Tvl = linear a(vl);
17 Tv2 = linear a(v2);
18 Tv3 = linear a(v3);
20 B = [w1, w2, w3]';
22 cl = B \ Tv1;
23 c2 = B \ Tv2;
24 c3 = B \ Tv3;
26 C = [c1, c2, c3];
28 disp("Matrix of Linear map (a) with respect to (A, B) is given by the matrix:");
29 disp(C);
```

```
"Matrix of Linear map (a) with respect to (A,B) is given by the matrix:"

1. 0. -1.

0. -1. 1.
-1. 1. 0.
```

(c) (c) T(x,y) = (x+2y,y-2x)

```
1 clc;
2 clear;
1 function T = linear c(v)
2 T = [v(1) + 2*v(2); v(2) - 2*v(1)];
3 endfunction
g vl = input ("Enter-vl-of-Basis-of-domain-vector-space: -");
9 v2 = input ("Enter - v2 - of - Basis - of - domain - vector - space: - ");
12 wl = input ("Enter wl of Basis of co-domain vector space: ");
13 w2 = input ("Enter-w2 of Basis of co-domain vector space: ");
15 Tvl = linear_c(vl);
16 Tv2 = <u>linear_c(v2);</u>
18 B = [w1, w2]';
20 cl = B \ Tvl;
21 c2 = B \ Tv2;
22 C = [c1, c2];
24 disp ("Matrix-of Linear map (c) -with respect to (A, B) -is-given by the matrix:");
25 disp(C);
```

```
Enter v1 of Basis of domain vector space: [1;0]

Enter v2 of Basis of domain vector space: [0;1]

Enter w1 of Basis of co-domain vector space: [1;1]

Enter w2 of Basis of co-domain vector space: [1;-1]

"Matrix of Linear map (c) with respect to (A,B) is given by the matrix:"

-0.5 1.5
1.5 0.5
```

(d) T(x,y) = (-y,x)

```
clc;
clear;
function T = linear d(v)
T = [-v(2); v(1)];
endfunction
vl = input ("Enter-vl-of-Basis-of-domain-vector-space: -");
v2 = input ("Enter-v2 of Basis of domain vector space: ");
wl = input ("Enter-wl-of-Basis-of-co-domain-vector-space: -");
w2 = input ("Enter w2 of Basis of co-domain vector space: ");
Tvl = linear d(vl);
Tv2 = linear d(v2);
B = [w1, w2]';
cl = B \ Tvl;
c2 = B \ Tv2;
C = [c1, c2];
disp ("Matrix of Linear map (d) with respect to (A, B) is given by the matrix:");
disp(C);
```

```
Enter v1 of Basis of domain vector space: [1;0]

Enter v2 of Basis of domain vector space: [0;1]

Enter w1 of Basis of co-domain vector space: [1;0]

Enter w2 of Basis of co-domain vector space: [0;1]

"Matrix of Linear map (d) with respect to (A,B) is given by the matrix:"

0. -1.
1. 0.
```

Experiment :- 5 Gram Schmidt Orthogonalization Process

Find an orthogonal set corresponding to the given sets

(a) $B=\{(1,1),(1,0)\}$

```
n = input ("Enter-number-of-vectors: ");
    v(:,i) = input ("Enter-vector: ");
end
disp("Input-vectors:");
disp(v);
w(:,1) = v(:,1);
for i = 2:n
sum = 0;
for j = 1:i-1
 = sum + ((w(:,j)' - * - v(:,i)) - / - (w(:,j)' - * - w(:,j))) - * - w(:,j); 
end
w(:,i) = v(:,i) - sum;
end
disp ("Orthogonal -vectors:");
disp(w);
Enter number of vectors: 2
Enter vector: [1,1]
Enter vector: [1,0]
 "Input vectors:"
  1. 1.
 "Orthogonal vectors:"
  1. 0.5
  1. -0.5
```

(b) $\{(1,2),(1,-1)\}$

```
Enter number of vectors: 2
clc;
n = input("Enter-number-of-vectors: -");
                                                                 Enter vector: [1,2]
for i = 1:n
v(:,i) = input("Enter-vector:-");
                                                                 Enter vector: [1,-1]
disp("Input vectors:");
disp(v);
                                                                    "Input vectors:"
w(:,1) = v(:,1);
for i = 2:n
- sum = 0;
for j = 1:i-1
sum = sum + ((w(:,j)' - * - v(:,i)) - / - (w(:,j)' - * - w(:,j))) - * - w(:,j);
end
                                                                    "Orthogonal vectors:"
 w(:,i) = v(:,i) - sum;
                                                                         1.2
disp("Orthogonal vectors:");
                                                                     2. -0.6
```

(c) $\{(1,1,1),(1,0,1)\}$

```
clc;
                                                                   Enter number of vectors: 2
n = input("Enter-number-of-vectors:-");
                                                                  Enter vector: [1,1,1]
for i = 1:n
 v(:,i) = input("Enter vector: -");
                                                                  Enter vector: [1,0,1]
disp("Input-vectors:");
disp(v);
                                                                      "Input vectors:"
w(:,1) = v(:,1);
for i = 2:n
-- sum = 0;
-- for j = 1:i-1
sum = sum + ((w(:,j)' * v(:,i)) / (w(:,j)' * w(:,j))) * w(:,j);
                                                                      "Orthogonal vectors:"
end
w(:,i) = v(:,i) - sum;
end
                                                                            0.3333333
                                                                           -0.6666667
disp("Orthogonal vectors:");
                                                                            0.3333333
disp(w);
```

(d) $\{(1,1,2),(1,0,1),(1,3,2)\}$

```
Enter number of vectors: 3
clear;
n = input("Enter-number-of-vectors:-");
                                                                  Enter vector: [1 1 2]
for i = l:n
v(:,i) = input("Enter vector: ");
                                                                  Enter vector: [1 0 1]
end
                                                                  Enter vector: [1 3 2]
disp("Input -vectors:");
disp(v);
                                                                    "Input vectors:"
w(:,1) = v(:,1);
for i = 2:n
                                                                     1. 1. 1.
sum = 0;
for j = 1:i-1
sum = sum + ((w(:,j)' * v(:,i)) / (w(:,j)' * w(:,j))) * w(:,j);
                                                                     "Orthogonal vectors:"
 w(:,i) = v(:,i) - sum;
end
                                                                      1. 0.5 0.6666667
                                                                     1. -0.5 0.6666667
disp("Orthogonal vectors:");
                                                                     2. 0. -0.6666667
```

(e) $\{(1,2,3),(2,0,3),(1,4,2)\}$

```
clc;
n = input("Enter-number-of-vectors:-");
for i = 1:n
                                                                        Enter number of vectors: 3
 v(:,i) = input("Enter-vector:-");
end
                                                                       Enter vector: [1 2 3]
disp("Input-vectors:");
                                                                        Enter vector: [2 0 3]
disp(v);
                                                                        Enter vector: [1 4 2]
w(:,1) = v(:,1);
                                                                         "Input vectors:"
for i = 2:n
 sum = 0;
                                                                          1. 2. 1.
 for j = 1:i-1
 sum = sum + ((w(:,j)' * v(:,i)) / (w(:,j)' * w(:,j))) * w(:,j);
  w(:,i) = v(:,i) - sum;
                                                                          "Orthogonal vectors:"
                                                                          1. 1.2142857 0.9836066
                                                                          2. -1.5714286 0.4918033
disp("Orthogonal vectors:");
                                                                          3. 0.6428571 -0.6557377
disp(w);
```

(f) $\{(1,2,3,4),(2,3,4,5),(3,4,5,6)\}$

```
Enter number of vectors: 3
n = input("Enter-number-of-vectors: ");
                                                                       Enter vector: [1 2 3 4]
v(:,i) = input("Enter-vector:-");
                                                                       Enter vector: [2 3 4 5]
end
                                                                       Enter vector: [3 4 5 6]
disp("Input vectors:");
disp(v);
                                                                         "Input vectors:"
w(:,1) = v(:,1);
for i = 2:n
--- sum = 0;
for j = 1:i-1
sum = sum + ((w(:,j)' * v(:,i)) / (w(:,j)' * w(:,j))) * w(:,j);
                                                                         "Orthogonal vectors:"
 w(:,i) = v(:,i) - sum;
                                                                          1. 0.6666667 -2.220D-15
                                                                         2. 0.3333333 -1.776D-15
disp("Orthogonal-vectors:");
                                                                          4. -0.3333333 0.
```