Two extensions of the vanilla GLLVM

Bert van der Veen Jenni Niku Sam Perrin

In the introduction...

Occurrence pattern

Abundance/occurrence

Environment

Why analyse multivariate data?

Occurrence pattern

Abundance/occurrence

Environment

Co-occurrence pattern

Abundance/occurrence

Environment

Motivation unimodal niches

- Shelford's law of tolerance (1931)
- Specialist or generalist
- e.g., glm(y~x+I(x^2))
- JSDMs and ordination often assume equal tolerances (or linear responses)

Abundance

Tolerance models

Species response models

- Much discussion on "correct" response model
- e.g.,
 - Austin 1976, 1980, 2002, Austin et al. 1990, 1994
 - Oksanen and Minchin 2002
 - O Jansen and Oksanen 2013
- In ordination: unimodal responses ter Braak 1987
- van der Veen et al. 2021
- Most complex ordination method to date

Quadratic GLLVM

- Linear coefficients θ_i
- Quadratic coefficients in Positive-definite diagonal matrix D_i
 - Common tolerances $D_i = D$
 - Equal tolerances $D_{jqq} = D_{11}$

$$g(E(y_{ij}|\boldsymbol{\epsilon}_i)) = \boldsymbol{\beta}_{0j} + \boldsymbol{\epsilon}_i^{\top} \boldsymbol{\theta}_j - \boldsymbol{\epsilon}_i^{\top} \boldsymbol{D}_j \boldsymbol{\epsilon}_i$$
 (1)

- species tolerances $m{t}_j = rac{1}{\sqrt{(2 ext{diag}(m{D}_j))}}$ species optima $m{u}_j = rac{ heta_j}{2 ext{diag}(m{D}_j)}$
- i.e. unconstrained quadratic (residual) ordination or JSDM with quadratic latent variables

Species associations

- Similarly calculate residual correlations
- ullet Emphasizes "positive" associations for same $oldsymbol{ heta}_j$ due to positive $oldsymbol{D}_j$
- To better capture species co-occurrence patterns

Vignette quadratic model

How to use the quadratic response model?

Constrained ordination

Indirect versus direct gradient analysis

- Unconstrained ordination: indirect
- Constrained ordination: direct
 - o e.g., CCA, RDA
- Difference: how to derive meaning?
- I.e. what represents the latent variable?

Økland 2004

Model-based constrained ordination

- Also known as Reduced Rank Regression Anderson 1951
- Reduced number of parameters

Multivariate GLM or stacked SDM

$$g(E(y_{ij}|\boldsymbol{x}_i)) = \boldsymbol{\beta}_{0j} + \boldsymbol{x}_i^{\top} \boldsymbol{\beta}_j \tag{2}$$

- RRR: $\beta_i = B\theta_i$
 - i.e. we have a model for the slope parameters
 - \circ **B** is a matrix of slopes for d latent variables
 - \circ Ordination axes or LV: ${m B}^{ op}{m x}_i$
 - B gives information on LV

Model-based constrained ordination

- Common issue: what if you only have few predictors?
- Random-effects to the rescue

$$g(E(y_{ij}|\boldsymbol{x}_i)) = \boldsymbol{\beta_{0j}} + \boldsymbol{x}_i^{ op} \boldsymbol{B} \boldsymbol{\theta}_j + \boldsymbol{\epsilon}_i^{ op} \boldsymbol{\theta}_j$$
 (3)

- Ordination axes or LV: $oldsymbol{B}^{ op}oldsymbol{x}_i+oldsymbol{\epsilon}_i$
- So, RRR is a linear regression of LV without residual
- B gives information on LV
- $oldsymbol{\epsilon}_i$ is unexplained variation in the ecological gradient

Vignette quadratic model

Model-based constrained ordination

Wrap-up

You now know:

- 1) What ecological gradient analysis is
- 2a) That JSDMs and ordination are both used to study co-occurrence patterns of species
 - 2b) And that these are the same in terms of GLLVM implementation
 - 3) How to use the gllvm R-package Niku et al. 2019

Bayesian Ordination and Regression

- For GLLVMs (ordination) with spatial effects
- Bayesian, with MCMC (i.e. can be **slow**)

Methods in Ecology and Evolution

Methods in Ecology and Evolution 2016, **7**, 744–750

doi: 10.1111/2041-210X.12514

APPLICATION

BORAL – Bayesian Ordination and Regression Analysis of Multivariate Abundance Data in R

Francis K.C. Hui*

Mathematical Sciences Institute, The Australian National University, Canberra, ACT 0200, Australia

Hierarchical Modeling of Species

- For other cool GLLVM (ISDM) stuff
- Bayesian, with MCMC (i.e. can be **slow**)

Methods in Ecology and Evolution

APPLICATION Den Access C (*) (\$)

Joint species distribution modelling with the R-package HMSC

Gleb Tikhonov, Øystein H. Opedal, Nerea Abrego, Aleksi Lehikoinen, Melinda M. J. de Jonge, Jari Oksanen, Otso Ovaskainen

First published: 25 December 2019 | https://doi.org/10.1111/2041-210X.13345 | Citations: 19

Let us know if you have any questions (twitter, e-mail, github)

Thanks!