Математический анализ, лекция

Салихов Тимур, группа М8О-212Б-22, telegram: @salikhovtr19.09.23

Теорема Фубини

Π ролог:

 $A \subset \mathbb{R}^n$, $B \subset \mathbb{R}^m$ - промежутки

 $A \times B = \{(x,y) : x \in A, y \in B\}$ - промежуток в \mathbb{R}^{n+m}

Пусть $f:A\times B\to\mathbb{R}$. Определим функции $g_x:B\to\mathbb{R}$ и $g_y:B\to\mathbb{R}$ для $x\in A,\ y\in B$ равенстами:

$$g_x(y) = f(x, y), \forall y \in B; \ g_y(x) = f(x, y), \forall x \in A$$

Пусть $P_A = I_A$ - разбиение A

Пусть $P_B = I_B$ - разбиение B

$$P = \{I_A \times I_B: \ I_A \in P_A, \ I_B \in P_B\}$$
 - разбиение $A \times B$

$$J_*(x) = \lim_{\lambda(P_B) o 0} s(g_x, P_B)$$
 - нижний интеграл Дарбу функции g_x

$$J^*(x) = \lim_{\lambda(P_B) o 0} S(g_x, P_B)$$
 - верхний интеграл Дарбу функции g_x

$$J_*(y) = \lim_{\lambda(P_A) o 0} s(g_y, P_A)$$
 - нижний интеграл Дарбу функции g_y

$$J^*(y) = \lim_{\lambda(P_A) o 0} S(g_y, P_A)$$
 - верхний интеграл Дарбу функции g_y

 $Teopema(\Phi y \delta u h u)$: Если $f \in R(A \times B)$, то $J_*(x)$, $J^*(x)$ интегрируемы на A и

$$\int_{A \times B} f(x, y) dx dy = \int_{A} J_{*}(x) dx = \int_{A} J^{*}(x) dx$$

аналогично для $J_*(y)$ и $J^*(y)$

Выводы из Фубини:

Пусть $\exists \int_B g_x(y)dy = \int_B f(x,y)dy \Rightarrow$ по критерию Дарбу $J_*(x) = \int_B g_x(y)dy \Rightarrow \int_{A\times B} f(x,y)dxdy = \int_A J_*(x)dx = \int_A \Big(\int_B g_x(y)dy\Big)dx = \int_A dx \int_B f(x,y)dy$ Аналогично, если $\exists \int_A g_y(x)dx = \int_A f(x,y)dx \Rightarrow \int_B dy \int_A f(x,y)dx$

Пусть $f:E \to \mathbb{R}$, где $E = \{(x,y): x \in [a,b], \ \phi(x) \leqslant y \leqslant \psi(x)\}$

Пусть $E \subset I^2 \Rightarrow$ если $I^2 = [a,b] \times [c,d]$

$$\iint_E f(x,y)dxdy = \iint_{I^2} f(x,y)\chi_E(x,y)dxdy = \int_a^b dx \int_c^d f(x,y)\chi_E(x,y)dy = \int_a^b f(x,y)\chi_E(x,y)dy = \int_a^b f(x,y)\chi_E(x,y)dy = \int_a^b f(x,y)\chi_E(x,y)dx = \int_a^b f(x,y)dx = \int_a^b f(x,y)\chi_E(x,y)dx = \int_a^b f(x,y)dx = \int_a^b f(x,y)\chi_E(x,y)dx = \int_a^b f(x,y)dx = \int_a^b f$$

$$\int_{a}^{b} dx \int_{\phi(x)}^{\psi(x)} f(x, y) dy$$

Если $E = \{(x,y) : y \in [c,d], \ \phi(y) \leqslant x \leqslant \psi(x)\},$ то

$$\iint_{E} f(x,y)dxdy = \int_{c}^{d} dy \int_{\phi(y)}^{\psi(y)} f(x,y)dx$$

Если $E=\bigcup_{j=1}^m E_j$, где E_j и $\mu(E_i\bigcap E_j)=0,\ i\neq j,$ то

$$\iint_{E} f(x,y)dxdy = \sum_{j=1}^{m} \iint_{E_{j}} f(x,y)$$

3

$$f: E \to \mathbb{R}, E = \{(x, y, z) : (x, y) \in D \subset \mathbb{R}^2, \phi(x, y) \leqslant z \leqslant \psi(x, y)\} \subset \mathbb{R}^3$$

$$\iiint_E f(x, y, z) dx dy dz = \iiint_{I^3} f(x, y, z) \chi_E(x, y, z) dx dy dz =$$

$$\iiint_{I^2} dx dy \int_I f(x, y, z) \chi_E(x, y, z) dz = \iint_D dx dy \int_{\phi(x, y)}^{\psi(x, y)} f(x, y, z) dz$$