FORMAL LANGUAGES AND AUTOMATA, 2024 FALL SEMESTER

Lec 02. More on DFA & Nondeterministic Finite Automata

Eunjung Kim

FORMAL DEFINITION OF COMPUTATION

- Let $w = w_1 w_2 \cdots w_n \in \Sigma^*$, where $w_i \in \Sigma$.
- The extended transition function δ^* is a mapping from $Q \times \Sigma^*$ to Q defined as: $\delta^*(q, w) = q'$ if there is a sequence of states r_0, \ldots, r_n in Q such that
 - $r_0 = q$,
 - $r_i = \delta(r_{i-1}, w_i)$ for every $1 \le i \le n$,
 - $r_n = q'$
- Equivalently, there is a walk in the transition diagram of M from q to q' labelled by w.

COMPUTATION HISTORY

- Configuration of a finite automata $M = (Q, \Sigma, \delta, q_0, F)$ is a pair $(q, w) \in Q \times \Sigma^*$.
- We interpret a configuration (q, w) as...
- $(q, w) \sim_M (q', w')$ if...
- $(q, w) \leadsto_M^* (q', w')$ if there is...
- A sequence of configuration is a <u>computation history</u> if the first configuration is in the form (q₀, w) for some w ∈ Σ*.
- A sequence of configurations is an <u>accepting computation history</u> if the last configuration is in the form ???????.

DFA M ACCEPTS A STRING

- Let $w_1 w_2 \cdots w_n$ be a string in Σ^* .
- $M = (Q, \Sigma, \delta, q_0, F)$ accepts w if
 - $\delta^*(q_0, w) \in F$, or equivalently
 - In the transition diagram of M, there is an walk from q_0 to an accept state labelled by w.

LANGUAGE RECOGNIZED BY DFA

DEFINITION: LANGUAGE RECOGNIZED BY DFA

- Let $M = (Q, \Sigma, \delta, q_0, F)$ be a finite automata.
- A string $w \in \Sigma^*$ is accepted by M if
 - $\delta^*(q_0, w) \in F$, or equivalently
 - in the transition diagram of M, there is an walk from q₀ to an accept state labelled by w.
- Let L(M) be the set of all strings which are accepted by M.
- A language A is said to be recognized by M if A = L(M).

REGULAR LANGUAGE

REGULAR LANGUAGE = RECOGNIZED BY SOME DFA

 A language L over a finite alphabet is said to be <u>regular</u> if there is a finite-state automaton M which recognizes L.

FROM LANGUAGES TO DFA: EXAMPLES

SHOW THAT THE FOLLOWING LANGUAGE IS REGULAR.

- $L = \{$ all 0,1-strings containing 01 $\}$
- L = { all 0,1-strings containing exactly even numbers of 0's and 1's respectively }.
- $L = \{$ all strings containing at least two a's $\} \subseteq \{a, b\}^*$.
- $L = \{awa : w \in \{a, b\}^*\}.$

FROM LANGUAGES TO DFA: EXAMPLES

Suppose $L \subseteq \Sigma^*$ is regular. Is the complement of L, i.e. $\Sigma^* - L$, is regular?

FROM LANGUAGES TO DFA: EXAMPLES

 $L = \{awa : w \in \{a, b\}^*\}, L^2 = \{aw_1 aaw_2 a : w_i \in \{a, b\}^*\}$

Figure 2.6 from Linz 2017.

NONDETERMINISM

Figure 1.27, Sipser 2012.

	Deterministic FA	Nondeterministic FA
each state & symbol	one leaving arc	multiple arcs or none
labels	Σ	$\Sigma \cup \{\epsilon\}$
computation history	single path	multiple paths (tree)

Nondeterminism: computation tree and ϵ

Figure 1.27, Sipser 2012.

EXAMPLES OF NFA

Figure 1.31, Sipser 2012.

Figure 1.32, Sipser 2012.

EXAMPLES OF NFA

Figure 1.36, Sipser 2012.

FORMAL DEFINITION OF NFA

Nondeterministic FA is a 5-tuple $(Q, \Sigma, \delta, q_0, F)$

- Q a finite set called the states,
- Σ a finite set called the alphabet,
- δ a function from $Q \times \Sigma_{\epsilon}$ to 2^Q called the transition function,
- $q_0 \in Q$ the start state,
- $F \subseteq Q$ the set of accept states.

Write a formal description of this NFA