Architettura dei Sistemi di Elaborazione delle Informazioni

Lezione 1 – Macchina di von Neumann: architettura e funzionamento

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- · Architettura del calcolatore
- Architettura dell'unità centrale
 - macchina di von Neumann
- Principio di funzionamento
- Attività non sequenziali
 - istruzione di salto
- Attività asincrone
 - interruzioni

Espressività dei linguaggi di programmazione

- Figure strutturali dei linguaggi di programmazione
 - Sequenza
 - Frase condizionale semplice
 - Frase condizionale doppia
 - Ciclo a condizione iniziale
 - Ciclo a condizione finale
 - Ciclo a conteggio

In sintesi

· Architettura dei calcolatori:

- unità centrale di elaborazione
- dispositivi di ingresso/uscita

Architettura astratta dei calcolatori (Macchina di von Neumann):

- processore (CPU)
- memoria centrale
- interfacce di ingresso/uscita

• Principio di funzionamento:

- acquisizione dell'operazione (fetch)
- decodifica (decode)
- esecuzione (execute)

· Azioni non sequenziali:

- funzionamento delle istruzioni di salto
- meccanismo delle interruzioni (interrupt)

Architettura dei Sistemi di Elaborazione delle Informazioni

Lezione 2 – Chiamate di procedura e risposta alle interruzioni

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- Chiamata di procedura
 - Come avviene?
 - Come si usa lo stack?
- Risposta alle interruzioni

Realizzazione della risposta all'interruzione (1) In cosa differisce la risposta all'interruzione dalla chiamata di procedura? Tanutola Ainurola

Realizzazione della risposta all'interruzione (2) PROCEDURA IN ESECUZIONE /* rimuove le variabili locali /* ripristina il contesto della /* procedura in esecuzione POP ALL /* lo hardware ripristina lo stato /* del processore e riabilita /* le interruzioni /* continua l'esecuzione

In sintesi

- · Esecuzione della chiamata di procedura
- Gestione dei valori ritornati da una procedura
- Esecuzione della risposta alle interruzioni

Architettura dei Sistemi di Elaborazione delle Informazioni

Lezione 3 - Memoria

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- Memorie
 - Registri del processore
 - Memoria cache
 - Memoria centrale
 - Memoria di massa (dischi, nastri)
- · Gerarchia di memoria
- Caching
- · Protezione della memoria

Registri del processore

- Accesso estremamente rapido
- · Accesso diretto
- Capacità molto ridotta

Memoria cache CACHE ESTERIA • Accesso molto rapido • Capacità ridotta

Memoria centrale

- · Accesso rapido
- Accesso diretto
- · Capacità limitata

Memoria di massa: dischi magnetici

- Tempo di accesso medio rotazione
- Accesso diretto o sequenziale
- Capacità ampia

Memoria di massa: dischi ottici

- CD-ROM
- CD-ROM scrivibili
- DVD

- Accesso lento
- · Accesso diretto o sequenziale
- · Capacità molto ampia

Memoria di massa: nastri magnetici

• Dispositivi di back up: nastri magnetici, cassette

- Accesso molto lento
- · Accesso sequenziale
- Capacità estremamente ampia

Caching

- Copia di porzioni di memoria in dispositivo di memoria ad accesso molto più rapido
- · Caricamento e scaricamento
- Coerenza (consistenza)

Protezione della memoria

- Multiprogrammazione
- · Confinamento degli accessi alla memoria
- · Protezione in

registri implicita con il cambiamento

del programma in esecuzione

cache implicita nella struttura e nei

meccanismi hardware di gestione

- memoria centrale dispositivo dedicato

(Memory Management Unit)

- memoria di massa nella gestione del file system

In sintesi

- Tipi e caratteristiche delle memorie
- · Gerarchie di memoria
- Caching
- · Protezione della memoria

Architettura dei Sistemi di Elaborazione delle Informazioni

Lezione 4 – Connessione delle periferiche

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- Connessione tra calcolatore e periferiche
- · Canale di comunicazione
- Interfaccia nell'unità centrale
- Funzionamento dell'interfaccia nell'unità centrale
- Modalità di trasferimento dei dati con le periferiche
- Gestione del canale di comunicazione
- Gestione delle periferiche

Trasferimento dati

Trasferimento dati tra

CPU

е

interfaccia della periferica nell'unità centrale

≻A parole

> A blocchi

Gestione del canale di comunicazione

Controllo nell'interfaccia dell'unità centrale

Controllo nella periferica

Gestione della periferica

CANAG PERIF

Controllo del dispositivo fisico

In sintesi

- Architettura della connessione delle periferiche
- · Canale di comunicazione
- Gestione dell'interfaccia con le periferiche:
 - attesa attiva
 - interruzione
- Modalità di trasferimento dei dati con l'interfaccia:
 - a parole
 - a blocchi (DMA)
- · Gestione del canale di comunicazione
- · Gestione della periferica

Architettura dei Sistemi di Elaborazione delle Informazioni

Lezione 5 – Reti informatiche: architetture e funzionamento

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- · Architetture delle reti informatiche
- Tecnologie
- · Interfaccia di connessione alla rete

Tecnologie e standard per le reti locali

Reti a bus

 Ethernet, Ethernet 10BaseT, Ethernet 100BaseT, Ethernet Gigabit

Reti ad anello

- Token Ring, FDDI

· Reti a stella

Cablaggio strutturato

Reti wireless

- Bluetooth, WiFi

In sintesi

- · Reti informatiche:
 - tipologie
 - topologie
 - tecnologie e standard
- Connessione di un calcolatore alla rete:
 - la rete vista come periferica complessa

Architettura dei Sistemi di Elaborazione delle Informazioni

Lezione 6 – Classificazione dei sistemi di elaborazione

Vincenzo Piuri

Università degli Studi di Milano - SSRI - CDL ONLINE

- · Tipologie dei sistemi di elaborazione
 - Mainframe
 - Minicomputer
 - Workstation
 - Personal computer
 - Computer palmare
 - Sistema di elaborazione in tempo reale
 - Sistema dedicato (embedded system)
 - Sistema multimediale
 - Sistema multiprocessore
 - Cluster
 - Sistema distribuito
- Caratteristiche delle famiglie di sistemi di elaborazione

Mainframe (1)

- Architettura orientata all'elaborazione di lavori non interattivi (job)
 - processore, memoria centrale, nastri/dischi, stampanti
- Elaborazione a lotti (batch)

- CPU sottoutilizzata Sistemi multiprogrammati
 - memoria centrale ripartita tra job (multiprogrammazione)
 - condivisione CPU (multiprocessing)

Mainframe (2)

- Architettura orientata a supportare molti utenti operanti contemporaneamente
 - CPU, memoria centrale, terminali, nastri/dischi, stampanti
- Elaborazione contemporanea di flussi di attività (processi)
- Sistemi interattivi multiutente
 - ripartizione memoria tra processi (multiprogrammazione)
 - condivisione CPU (multiprocessing)
 - gestione CPU in condivisione di tempo (time sharing)

Minicomputer

- Riduzione di scala dei mainframe per soddisfare le esigenze di "piccoli" gruppi di utenti a costi contenuti
- Sistemi dipartimentali
- Sistemi interattivi multiutente
 - ripartizione memoria tra processi (multiprogrammazione)
 - condivisione CPU (multiprocessing)
 - gestione CPU in condivisione di tempo (time sharing)

Workstation

- Riduzione di scala dei minicomputer per soddisfare le esigenze di un utente sofisticato a costi contenuti
- Sistemi desktop con grafica e dispositivi per l'interazione avanzata e l'elaborazione intensiva
- Sistemi interattivi multiprocesso
 - ripartizione memoria tra processi (multiprogrammazione)
 - condivisione CPU (multiprocessing)
 - gestione CPU in condivisione di tempo (time sharing)

Personal computer

- Potenziamento dei terminali interattivi per supportare
 - interazione evoluta con sistemi centrali
 - piccole attività di elaborazione locale
- Sistemi desktop con grafica e dispositivi per interazione avanzata
- · Sistemi interattivi multiprocesso
 - ripartizione memoria tra processi (multiprogrammazione)
 - condivisione CPU (multiprocessing)
 - gestione CPU in condivisione di tempo (time sharing)

Computer palmare

- Sistemi di elaborazione portatili e di dimensioni estremamente ridotte, orientati al supporto di attività personali (personal digital assistant)
 - sistemi palmari
 - telefoni cellulari
- Sistemi interattivi multiprocesso con
 - ridotto consumo di potenza e basso numero di processi

Sistema di elaborazione in tempo reale

- Sistemi orientati ad applicazioni in tempo reale
 - controllo di processi industriali
 - controllo di sistemi complessi
 - sistemi di automazione industriale
 - sistemi di automazione della casa
 - sistemi biomedicali
 - sistemi per le telecomunicazioni
 - _ ...
- Risposta agli eventi in tempi "brevi"
 - sistemi in tempo reale stretto (hard real-time)
 - sistemi in tempo reale lasco (soft real-time)
- Architettura con capacità di scambiare segnali con il mondo esterno (ad esempio: schede di acquisizione segnali, schede di acquisizione immagini, schede di attuazione controlli)

Sistema dedicato

- Sistemi di elaborazione dedicati a supportare una sola applicazione (ad esempio: elettrodomestici, sistemi hi-fi, motore automobile, sistemi biomedicali, protesi, ...)
- Architettura usualmente con ridotte caratteristiche di prestazioni computazionali, memoria e periferiche

Sistema multimediale

- Personal computer o computer palmare con supporti avanzati per l'interazione multimediale
- · Sistemi interattivi multiprocesso
 - ripartizione memoria tra processi (multiprogrammazione)
 - condivisione CPU (multiprocessing)
 - gestione CPU in condivisione di tempo (time sharing)

Sistema multiprocessore

- Architettura con più processori strettamente connessi
 - capacità di elaborazione
 - economie di scala sulle periferiche
 - affidabilità del sistema in caso di guasti
- Attività dei processori
 - identiche (sistema multiprocessore simmetrico)
 - specializzate (sistema multiprocessore asimmetrico)
- · Sistemi interattivi multiutente

Cluster

- Architettura con più computer fortemente connessi
 - capacità di elaborazione
 - economie di scala sulle periferiche
 - affidabilità del sistema in caso di guasti
 - usando computer disponibili sul mercato
- · Sistemi interattivi multiutente

Sistema distribuito

- Architettura con più computer lascamente connessi
 - capacità di elaborazione
 - economie di scala sulle periferiche
 - affidabilità del sistema in caso di guasti
 - usando computer disponibili sul mercato
- · Sistemi interattivi multiutente

In sintesi

Abbiamo visto:

- tipologie di sistemi di elaborazione
- caratteristiche dei vari tipi di sistemi di elaborazione

• Ricordiamo:

 caratteristiche dei sistemi di elaborazione e delle relative applicazioni poiché definiscono caratteristiche dei loro sistemi operativi