"Machine Learning and Computational Statistics"

9th Homework

Exercise 1:

Wolfe dual representation: A convex programming problem is equivalent to

$$max_{\lambda \geq 0}L(\boldsymbol{\theta}, \boldsymbol{\lambda})$$

subject to
$$\frac{\partial}{\partial \boldsymbol{\theta}} L(\boldsymbol{\theta}, \boldsymbol{\lambda}) = \mathbf{0}$$

Consider the SVM problem as it is stated in slide 7 of the 9th lecture. Prove that its equivalent dual representation is the one shown in slide 8.

Hints: (a) The parameters in SVM are θ and θ_0 . Using the Karush-Kuhn-Tacker (KKT) conditions (1) and (2), derive the equations given at the beginning of the 18th slide.

- (b) Replace your findings to the Lagrangian function given in the 17th slide and perform operations.
- (c) Use the Wolfe dual representation given above to state the dual form of the SVM problem.

Exercise 2:

Consider the two-class two-dim. problem where class ω_1 (+1) consists of the vectors $x_1 = [-1, 1]^T$, $x_2 = [-1, -1]^T$, while class ω_2 (-1) consists of the vectors $x_3 = [1, -1]^T$, $x_4 = [1, 1]^T$.

- (a) **Draw** the points and make a conjecture about the line the (linear) SVM classifier will return.
- (b) Using the dual representation of the SVM problem, from ex. 1(c) derive
 - (i) the Lagrange multipliers and
 - (ii) the line that separates the data from the two classes.
- (c) **Discuss** on the results.

Hints: 1. Defining y_1 =+1, y_2 =+1, y_3 =-1, y_4 =-1, substitute to the function

$$\left(\sum_{i=1}^{N} \lambda_{i} - \frac{1}{2} \sum_{ij} \lambda_{i} \lambda_{j} y_{i} y_{j} \boldsymbol{x}_{i}^{T} \boldsymbol{x}_{j}\right) \equiv \boldsymbol{J}_{1}^{*}(\boldsymbol{\lambda})$$

 y_i 's and x_i 's and express $J_1^*(\lambda)$ only in terms of λ_i 's (keep in mind that the quantities $x_i^T x_i$ are scalars.

- 2. Taking the derivative of $J_1^*(\lambda)$ with respect to each λ_i and setting to zero, derive a system of equations for λ_i 's and find ALL its solutions.
- 3. Determine the heta vector, using the equations given in slide 8 of Lecture 9.
- 4. Determine the θ_0 parameter.

Exercise 3:

Consider the following binary classification two-class problem (classes are labeled as 0 and 1)

where x_1, x_2, x_3 are the input variables and y the class where each triplet $(x_1 x_2 x_3)$ is assigned. **Prove** that this classification problem is NOT linearly separable.

<u>Hint:</u> Proceed using the contradiction method. Assume that there is a plane (H): $\theta_1x_1+\ldots+\theta_lx_l+\theta_0=0$

that separates the two triplets from class 1 from all the rest. This means that, for example, for the triplet (1,1,1) it is $\theta_1 + \ldots + \theta_l + \theta_0 > 0 \ldots$

Focus on (i) the triplets that belong to class 1 and (ii) the triplets that belong to class 0 and have only one coordinate equal to 1.

Exercise 4:

Consider the lines ($\epsilon 1$) $x_2=0$, ($\epsilon 2$) $x_1=0$ and ($\epsilon 3$) $x_1+x_2=2$ in the two-dimensional space that all leave the point (4,4) on their positive side. Consider a two-class classification problem where class 1 contains all the points that lie on the positive side of all lines, as well as all the points that lie on the negative side of all lines. Class 0 contains all points of the remaining (polygonal) regions

- (i) Design the regions on the plane that correspond to each class.
- (ii) Design a multilayer perceptron that solves the above classification problem, where each node is modeled by the relation $y = f(w^T x + w_0)$, where f(z) = 1, for z > 0 and f(z) = 0, otherwise. Give the full architecture along with the weights and thresholds of each node (describe in some detail the steps you followed for designing the network).

Hint: (i) Use the point (4,4) to identify the positive and the negative sides of each line

- (ii) Use the theory given in the lecture.
- (iii) The equation of a plane that passes through the points (x_{11}, x_{12}, x_{13}) , (x_{21}, x_{22}, x_{23}) , (x_{31}, x_{32}, x_{33}) is $\begin{vmatrix} x_1 & x_2 & x_3 & 1 \\ x_{11} & x_{12} & x_{13} & 1 \\ x_{21} & x_{22} & x_{23} & 1 \\ x_{31} & x_{32} & x_{33} & 1 \end{vmatrix} = 0$

Exercise 5 (Python code + text):

Consider a two-class, two-dimensional classification problem for which you can find attached two sets: one for training and one for testing (file HW9a.mat). Each of these sets consists of pairs of the form (y_i,x_i) , where y_i is the class label for vector x_i . Let N_{train} and N_{test} denote the number of training and test sets, respectively. The data are given via the following arrays/matrices:

- $train_x$ (a N_{train} x2 matrix that contains in its rows the training vectors x_i)
- $train_y$ (a N_{train} -dim. column **vector** containing the **class labels** (0 or 1) of the corresponding training vectors x_i included in $train_x$).
- $test_x$ (a N_{test} x2 matrix that contains in its rows the test vectors x_i)
- $test_y$ (a N_{test} -dim. column vector containing the class labels (0 or 1) of the corresponding test vectors x_i included in $test_x$).

Train the SVM classifier using the training set given above and **measure** its performance using the test set, **using**: (a) the linear kernel, (b) the polynomial kernel and (c) rbf kernel. Perform **several runs** using the attached code, for **several choices** of the **parameters** included in each kernel and for various values of C.

Exercise 6 (Python code + text):

Consider a two-class, two-dimensional classification problem for which you can find attached two sets: one for training and one for testing (file HW9b.mat). Each of these sets consists of pairs of the form (y_i,x_i) , where y_i is the class label for vector x_i . Let N_{train} and N_{test} denote the number of training and test sets, respectively. The data are given via the following arrays/matrices:

- $train_x$ (a N_{train} x2 matrix that contains in its rows the training vectors x_i)
- *train_y* (a *N_{train}*-dim. column **vector** containing the **class labels** (0 or 1) of the corresponding training vectors x_i included in *train_x*).

- test_x (a N_{test}x2 matrix that contains in its rows the test vectors x_i)
- $test_y$ (a N_{test} -dim. column **vector** containing the **class labels** (0 or 1) of the corresponding test vectors x_i included in $test_x$).

Train a neural network classifier with a single hidden layer where the nodes have the hyperbolic tangent output function, for (a) 3 nodes, (b) 4 nodes, (c) 10 nodes, (d) 50 nodes (use the MLPClassifier Python function inserting properly the required parameters, see also the attached code), using the training set given above and **measure** the performance using the test set. Comment on the results.