Labs

Optimization for Machine Learning Spring 2022

EPFL

School of Computer and Communication Sciences Martin Jaggi & Nicolas Flammarion github.com/epfml/OptML_course

Problem Set 5 — Solutions (Recap on convexity and gradient descent algorithms.)

Gradient descent on a quadratic function. Consider the quadratic function $f(x) = \frac{1}{2}x^{T}Ax + \langle b, x \rangle + c$, where A is a $d \times d$ symmetric matrix, $b \in \mathbb{R}^d$ and c in \mathbb{R} .

1. What are the minimal conditions on A, b and c that ensure that f is strictly convex ? For the rest of the exercise we assume that these conditions are fulfilled.

Answer: f is a quadratic function which has a constant hessian equal to A since for all $x \in \mathbb{R}^d$, $\nabla^2 f(x) =$ $\frac{1}{2}(A+A^{\top})=A$ (last equality is because A is symmetric). f is therefore **strictly convex** iif $A\succ 0$. Note that we don't need any assumptions on b or c.

2. Is *f* strongly convex ?

Answer: Since $A \succ 0$, all the eigenvalues are strictly positive, let μ denote its smallest one. This leads to $A\succeq \mu I_d$ and therefore $abla^2 f(x)-\mu I_d\succeq 0$ which means that $x\mapsto f(x)-rac{\mu}{2}\|x\|_2^2$ is convex. From Lemma 2.11 this is equivalent to f being strongly convex with parameter μ .

3. Prove that f has a unique minimum x^* and give its closed form expression.

Answer: Since f is strongly convex, we have from Lemma 2.12 that f has a unique global minimum. Furthermore $\nabla f(x) = Ax + b$, setting it to 0 we get that $x^* = -A^{-1}b$ (note that A is indeed invertible since from question 1 we assume that $A \succ 0$).

4. Show that f can be rewritten as $f(x) = \frac{1}{2}(x-x^*)^{\top}A(x-x^*) + f(x^*)$

Answer: Direct computations provide:

$$f(x) - f(x^*) = \frac{1}{2}x^{\top}Ax + \langle b, x - x^* \rangle - \frac{1}{2}x^{*\top}Ax^*$$
$$= \frac{1}{2}x^{\top}Ax - \langle Ax^*, x - x^* \rangle - \frac{1}{2}x^{*\top}Ax^*$$
$$= \frac{1}{2}(x - x^*)^{\top}A(x - x^*)$$

5. From an initial point $x_0 \in \mathbb{R}^d$, assume we run gradient descent with step-size $\gamma > 0$ on the function f. Show that the n^{th} iterate x_n satisfies $x_n=x^*+(I_d-\gamma A)^n$ (x_0-x^*) , where I_d is the $d\times d$ identity

Answer: From the previous expression we get that $\nabla f(x) = A(x-x^*)$, hence one step of gradient descent corresponds to $x_n = x_{n-1} - \gamma \nabla f(x_{n-1}) = x_{n-1} - \gamma A(x_{n-1} - x^*)$. Therefore $x_n - x^* = x_n - x_$ $(I_d - \gamma A)(x_{n-1} - x^*) = (I_d - \gamma A)^n (x_0 - x^*).$

6. In which range must the step-size γ be so that the iterates towards x^* ?

Answer: Since A is symmetric we can diagonalise A as $A = P\begin{pmatrix} \lambda_1 & 0 \\ & \ddots & \\ 0 & \lambda_d \end{pmatrix} P^{\top}$, where $PP^{\top} = P^{\top} = P^{\top} = I_d$ and $A_1 \geq \cdots \geq A_d$. Therefore $(x_n - x^*) = P\begin{pmatrix} (1 - \gamma \lambda_1)^n & 0 \\ & \ddots & \\ 0 & (1 - \gamma \lambda_d)^n \end{pmatrix} P^{\top}(x_0 - x^*)$. In order to have that $x_n \xrightarrow[n \to \infty]{} x^*$ we must have that $-1 < 1 - \gamma \lambda_i < 1$ for all i, i.e. $0 < \gamma < 2/\lambda_i$ for all i. This leads to having $\gamma \in (0, \frac{2}{\pi})$ where I corresponds to the leasest size $I = (1 + \gamma \lambda_1)^{-1} = (1 + \gamma \lambda_1)^{-1}$.

This leads to having $\gamma \in (0, \frac{2}{L})$ where L corresponds to the largest eigenvalue of A (which also corresponds to the smoothness constant of our quadratic).