20. For the continuous-time signals shown in Figure 1 below, compute the convolution $(x \star v)(t)$ for all $t \geq 0$, and plot the resulting signal.

$$\Rightarrow (x * v) (t) = \begin{cases} 2e^{-t}(-e^{-t}), & 0 \le t \le 2 \\ 2e^{-t}(-e^{-2}), & t \ge 2 \end{cases}$$

22. A continuous-time linear time-invariant system has the input/output relationship

$$y(t) = \int_{-\infty}^{t} (t - \lambda + 2)x(\lambda) d\lambda$$

(b) For $1 \le t \le 2$, determine the output y(t) arising from the input x(t) = u(t) - 2u(t-1).

24. Assume
$$x$$
 and h are continuous-time signals such that

$$x(t) = 0$$
, for all $|t| \ge T_1$, $h(t) = 0$, for all $|t| \ge T_2$

for some positive real numbers T_1 and T_2 . Show that

$$(x \star h)(t) = 0$$
, for all $|t| \ge T_3$

where $T_3 = T_1 + T_2$.

$$(2\times h)(t) = \int_{0}^{\infty} \chi(\lambda) h(t-\lambda) d\lambda$$

$$(2\times h)(t) = \int_{0}^{\infty} \chi(\lambda) h(t-\lambda) d\lambda$$

$$\chi(\lambda) \neq 0 \text{ in } -T_{1} \leq \lambda \leq T_{2}$$

$$\Rightarrow \lambda - T_{2} \leq t \leq \lambda + T_{2}$$

Need to Marinise the range

$$= 7 - 73 \le t \le 73$$
 (x+h)(t) $\neq 0$

26. (a) Use the definition of Laplace transform to show that

$$te^{-bt}u(t)\longleftrightarrow \frac{1}{(s+b)^2}$$

is a Laplace transform pair, for any $b \in \mathbf{R}$.

(b) Hence use the definition of the Laplace transform and Mathematical Induction to show that, for any integer $N \ge 1$,

$$t^N e^{-bt} u(t) \longleftrightarrow \frac{N!}{(s+b)^{N+1}}$$

is a Laplace transform pair.

(a)
$$\int_{0}^{\infty} + e^{-bt} u(t) e^{-st} dt$$

$$= \int_{0}^{\infty} \frac{t}{-(b+s)} de^{-(b+s)t} = \left[-\frac{t}{-(b+s)} e^{-(b+s)t} \right]_{0}^{\infty} - \int_{0}^{\infty} e^{-(b+s)t} d\frac{t}{-(b+s)}$$

$$= 0 - \left[\frac{e^{-(b+s)t}}{(-(b+s))^{2}} \right]_{0}^{\infty} = \frac{1}{(s+t)^{2}}$$

(b) When NZI, satisfied

Assume N= N-1, satisfied, we have the btu(t)
$$\iff \frac{(n-1)!}{(s+b)^n}$$

Now, we need to prove that N=n also satisfied Time Maltiplication: $f(t) = -\frac{d}{ds}F(s)$

$$\begin{aligned}
\mathcal{L}[\eta tt)] &= \mathcal{T}[t \times tt)] = -\frac{d}{ds} \times (s) \\
&= -\frac{d}{ds} \left(\frac{(n-1)!}{(s+b)^n} \right) \\
&= -1 \cdot (n-1)! \cdot (-n) \cdot \frac{1}{(s+b)^{n+1}}
\end{aligned}$$

$$=\frac{n!}{(s+b)^{n+1}}$$

27. A continuous-time signal x has Laplace transform

$$X(s) = \frac{s+1}{s^2 + 5s + 7}$$

In each case, find the LT of v:

(a)
$$v(t) = x(3t-4)u(3t-4)$$

(b)
$$v(t) = tx(t)$$

(c)
$$v(t) = \frac{d^2x}{dt^2}$$
, assuming $x(0^-) = 1$, $\dot{x}(0^-) = -4$.

(d)
$$v(t) = x(t)\sin(2t)$$

$$V(5) = \frac{1}{3} \times (\frac{3}{3}) e^{-\frac{4}{3}5} = \frac{1}{3} \cdot \frac{\frac{3}{3}+1}{\frac{5^{2}}{4} + \frac{5}{3}5 + 16} \cdot e^{-\frac{4}{3}5}$$

$$= \frac{1}{3} \cdot \frac{35 + 9}{5^{2} + 165 + 63} \cdot e^{-\frac{4}{3}5}$$

$$= \frac{5+3}{5^{2} + 165 + 16} \cdot e^{-\frac{4}{3}5}$$

(C)
$$V(s) = S^2 \chi(s) - S \chi(0) - \dot{\chi}(0)$$

$$= S^2 \times (S) - S + \Psi$$

(d)
$$V(t) = X(t) \cdot \frac{1}{25} (e^{j2t} - e^{-j2t})$$

28. Let $p = \sigma + j\omega \in \mathbb{C}$ for some real numbers σ and ω . Let $c \in \mathbb{C}$ and $t \in \mathbb{R}$. Show that

$$ce^{pt} + \bar{c}e^{\bar{p}t} = 2|c|e^{\sigma t}\cos(\omega t + \underline{c})$$

Assume
$$C = atjb = |C|e^{jC}$$
, and one real numbers $\Rightarrow a = |C|\cos C$ $b = |C|\sin C$

30. Use partial fractions to obtain inverse Laplace transforms for the following functions.

(c)
$$X(s) = \frac{3s^2 + 2s + 1}{(s+1)(s+2)^2}$$

(c)
$$\chi(5) = \frac{C_1}{(5t1)} + \frac{C_2}{(5t2)^2} + \frac{C_3}{(5t2)}$$

= $\frac{C_1(5t2)^2 + C_2(5t1) + C_3(5t1)(5t2)}{(5t1)(5t2)^2}$

Numerator:
$$C_1(S^2+45+9)+ C_2(5+1) + C_3(S^2+35+2)$$

= $(c_1+c_5)S^2+ (4c_1+c_2+3c_3)S+4C_1+c_2+2C_3$
= $3S^2+2S+1$
=> $C_1 = 2$ $C_2 = -9$ $C_3 = 1$

$$\chi(5) = \frac{2}{5+1} + \frac{-9}{(5+2)^2} + \frac{1}{(5+2)}$$

=)
$$\chi(t) = [2e^{-t} - 9te^{-2t} + e^{-2t}] \chi(t)$$

- 32. Determine the stability of the LTI systems with the following impulse response functions.
- (a) $h(t) = [2t^3 2t^2 + 3t 2](u(t) u(t 10))$
 - (b) $h(t) = \sin(2t)$
 - (c) $h(t) = e^{-t} \sin(2t)$
 - (d) $h(t) = e^t \sin(2t)$

$$\int_0^\infty |h(t)| dt < \infty \implies h$$
 is absolutely integrable \implies Stable

(a)
$$\int_{0}^{\infty} |htt| dt = \int_{0}^{10} 2t^{3} - 2t^{2} + 3t - 2 dt = constant$$

=> Stable

(b)
$$\int_0^\infty |h(t)| dt = \int_0^\infty |\sin(\alpha t)| dt$$
 is bounded but not absolutely integrable \Rightarrow marginally stable

(c)
$$\int_0^\infty |h(t)| dt = \int_0^\infty e^{-t} |sinct| dt = constant$$

=> stable

(d)
$$\int_{0}^{\infty} e^{t} |\sin(t)| dt \rightarrow \infty$$

 $\Rightarrow \text{constable}$