FE 512 Final Report

Database Design for Hospital Service in USA

Team13: Haitao Liu, Junhan Zhou

Introduction

There are so many medical centers in the United States and different hospital have different strength and weakness

How can we extract the information we want quickly?

How can we have a better understanding of the hospital across the United State?

How can the patients choose the hospital?

In this database, we collected the basic hospital information for more than 4000 medical centers and more than 400 long term care hospital in the United States. There are different aspects to measure in each hospital including infections, efficiency, complications and deaths. In each aspect, there are different specific measure types such as head CT efficiency, serious complications, giving the score of performance for a certain hospital.

We want to build a hospital information system database for patients, hospital, and government. For patients, they can get to know the hospital information(hospital type, hospital location, hosipital phone number, and emergency service) and then make choices for different situations. For hospitals, they can work more efficiency and reduce the medical waste. For government, different types of hospitals will attract different types investors. Different hospitals have different situation, some hospital are very effeiciency, but they may not doing well at other aspects. So you can search information what can help you make a better choice in this database.

Data Source

- · Where it comes from?
- · What it is about?

There will be six tables in our database. Most of data are from data medicare gov. (https://data.medicare.gov/ (https://data.medicare.gov/))

1. Hospital General Information(https://data.medicare.gov/Hospital-Compare/Hospital-General-Information/xubh-q36u (https://data.medicare.gov/Hospital-Compare/Hospital-General-Information/xubh-q36u))

The first one is the Hospital info table, which includes the hospital's information (Provider_ID, Hospital_Name, State, City, ZIP_Code, Phone_Number, Hospital_Type, Hospital_ownership, Emergency_service).

2. Timely and Effective Care - Hospital(https://data.medicare.gov/Hospital-Compare/Timely-and-Effective-Care-Hospital/yv7e-xc69 (https://data.medicare.gov/Hospital-Compare/Timely-and-Effective-Care-Hospital/yv7e-xc69))

The second table is the Efficiency table, which includes Measure information (Measure_ID, Provider_ID, Department, Measure_Name, Measure_Type, Measure_Start_Date, Measure_END_Date, Score).

3. Healthcare Associated Infections - Hospital(https://data.medicare.gov/Hospital-Compare/Healthcare-Associated-Infections-Hospital/77hc-ibv8))

The third one, Infections table, includes infection information(Measure_ID, Provider_ID, Measure_Name, Measure_Type, Measure_Start_Date, Measure_END_Date, Score).

Complications and Deaths - Hospital (<a href="https://data.medicare.gov/Hospital-go

The fourth one will be Complications_and_Deaths table which includes death information(Measure_ID, Provider_ID, Measure_Name, Measure_Type, Measure_Start_Date, Measure_END_Date, Score).

5. Long- Term Care Hospital - General Information(https://data.medicare.gov/Long-Term-Care-Hospital-General-Information/azum-44iv (https://data.medicare.gov/Long-Term-Care-Hospital-General-Information/azum-44iv))

The fifth one will be Long- Term Care Hospital table which includes long-term care information(CMS_Certification, facility_name, city, State, zipcode, phone number, ownership, and total number of beds).

6. Hospital Selection of Public Health Measures by State(https://dashboard.healthit.gov/datadashboard/documentation/hospital-public-health-reporting-documentation.php (https://dashboard.healthit.gov/datadashboard/documentation/hospital-public-health-reporting-documentation.php))

The fifth table is State_Repotting_Measure table, which includes region information(Region, Region_Code, Period, Immunization_Measure, Lab_Measure, Surveillance_measure).

Data Model

Basically, we have one main table called Hospital Information including some basic hospital information such as phone number, location, ownership. We use provider ID as the primary key in this table bacause provider ID is a unique identifier for all the medical centers across the united state. The three measure aspect tables which are Efficiency, Infections ,Complications and Deaths use the provider ID to connect to the hospital information table. So the provider ID is both foreigh key and primary key among these 4 tables. In each aspect, we have different measure types(different measure types have different range score) to evaluate the hospital.

The long term care hospital is a kind of hospital that focuses on the patients who stay more than 25 days. This kind of hospital generally give services like respiratory, therapy, head trauma treatment and pain management. CMS Certification number as a unique identifier in this table and ZIP code as a foreigh key connect to the hospital information table.

State reporting measure is the a table includes the percentage of hospitals who reported on these measures in program years, 2013, 2014 and 2015. More specifically, Immunization_measure is the percent of Eligible Hospitals that Reported on Immunization Measure. Reportable lab results measure is the percent of Eligible Hospitals that Reported Reportable Lab Results Measure. Syndromic_surveillance_measure is the percent of Eligible Hospitals that Reported Syndromic Surveillance Measure.

Set Environment

```
In [2]: %load_ext sql
         %sql mysql+pymysql://root:@fe512_mysql/fe512db
         %sql SHOW DATABASES;
          * mysql+pymysql://root:***@fe512_mysql/fe512db
         8 rows affected.
Out[2]:
                  Database
                Assignments
                   fe512db
           information_schema
                    mysql
          performance_schema
                    project
                      sys
                     world
In [3]:
        %sql USE project
          * mysql+pymysql://root:***@fe512 mysql/fe512db
         0 rows affected.
Out[3]: []
        %sql SELECT DATABASE();
In [4]:
          * mysql+pymysql://root:***@fe512 mysql/fe512db
         1 rows affected.
Out[4]:
         DATABASE()
              project
```

Create Tables

Hospital_Information Table

```
In [8]: | %%sql
         CREATE TABLE IF NOT EXISTS Hospital Information (
             Provider_ID CHAR(8) UNIQUE NOT NULL primary key,
             Hospital_Name VARCHAR(200),
             City VARCHAR(100),
             State CHAR(3),
             Zip Code INT(5),
             Phone Number CHAR(10),
             Hospital type VARCHAR(100),
             Hospital_ownership VARCHAR(100),
             Emergency services CHAR(5)
         );
          * mysql+pymysql://root:***@fe512_mysql/fe512db
         0 rows affected.
Out[8]: []
In [11]: %%sql
         LOAD DATA INFILE '/home/data/Hospital Information.csv' INTO TABLE Hospital
         FIELDS TERMINATED BY ','
         ENCLOSED BY ''
         ESCAPED BY ''
         LINES TERMINATED BY '\n'
         IGNORE 1 LINES
          * mysql+pymysql://root:***@fe512_mysql/fe512db
         4784 rows affected.
Out[11]: []
         Efficiency Table
In [15]: %%sql
         CREATE TABLE IF NOT EXISTS Efficiency (
```

```
Out[15]: []
```

0 rows affected.

In [16]: | %%sql

```
LOAD DATA INFILE '/home/data/Efficiency.csv' INTO TABLE Efficiency
         FIELDS TERMINATED BY ','
         ENCLOSED BY ''
         ESCAPED BY ''
         LINES TERMINATED BY '\r\n'
         IGNORE 1 LINES
          * mysql+pymysql://root:***@fe512_mysql/fe512db
         34560 rows affected.
Out[16]: []
         Infections Table
In [19]: %%sql
         CREATE TABLE IF NOT EXISTS Infections (
             Measure_ID INT(5) UNIQUE NOT NULL primary key,
             Provider_ID INT(8),
             Measure_Name VARCHAR(200),
             Measure Type CHAR(30),
             Measure_Start_Date VARCHAR(20),
             Measure_END_Date VARCHAR(20),
             Score Float
         );
          * mysql+pymysql://root:***@fe512_mysql/fe512db
         0 rows affected.
Out[19]: []
In [20]: | %%sql
         LOAD DATA INFILE '/home/data/Infections.csv' INTO TABLE Infections
         FIELDS TERMINATED BY ','
         ENCLOSED BY ''
         ESCAPED BY ''
         LINES TERMINATED BY '\r\n'
         IGNORE 1 LINES
          * mysql+pymysql://root:***@fe512 mysql/fe512db
         73674 rows affected.
Out[20]: []
```

Complications_and_Deaths Table

```
In [23]: | %%sql
         CREATE TABLE IF NOT EXISTS Complications and Deaths (
             Measure_ID INT(5) UNIQUE NOT NULL primary key,
             Provider_ID CHAR(8),
             Measure Name VARCHAR(200),
             Measure_Type CHAR(30),
             Score Float,
             Measure Start Date VARCHAR(20),
             Measure END Date VARCHAR(20)
         );
          * mysql+pymysql://root:***@fe512_mysql/fe512db
         0 rows affected.
Out[23]: []
In [24]:
         %%sql
         LOAD DATA INFILE '/home/data/Complications and Deaths.csv' INTO TABLE Compl
         FIELDS TERMINATED BY ','
         ENCLOSED BY ''
         ESCAPED BY ''
         LINES TERMINATED BY '\r\n'
         IGNORE 1 LINES
          * mysql+pymysql://root:***@fe512 mysql/fe512db
         39362 rows affected.
Out[24]: []
```

Long_Term_Care_Hospital Table

```
0 rows affected.

Out[33]: []
```

In [34]: | %%sql

```
LOAD DATA INFILE '/home/data/Long Term Care Hospital.csv' INTO TABLE Long T
         FIELDS TERMINATED BY ','
         ENCLOSED BY ''
         ESCAPED BY ''
         LINES TERMINATED BY '\n'
         IGNORE 1 LINES
          * mysql+pymysql://root:***@fe512_mysql/fe512db
         388 rows affected.
Out[34]: []
         State Repotting Measure Table
In [56]: %%sql
         CREATE TABLE IF NOT EXISTS State_Repotting_Measure (
             Region VARCHAR(50),
             Region Code CHAR(2),
             Period INT(4),
             Immunization Measure FLOAT,
             Lab_Measure FLOAT,
             Surveillance_measure FLOAT
         );
          * mysql+pymysql://root:***@fe512_mysql/fe512db
         0 rows affected.
Out[56]: []
In [59]: | %%sql
         LOAD DATA INFILE '/home/data/public-health-measures.csv' INTO TABLE State R
         FIELDS TERMINATED BY ','
         ENCLOSED BY ''
         ESCAPED BY ''
         LINES TERMINATED BY '\r\n'
         IGNORE 1 LINES
          * mysql+pymysql://root:***@fe512 mysql/fe512db
         156 rows affected.
Out[59]: []
```

Data summary

In [20]: %%sql

#how many hospital and Long_Term_Care_Hospital in total in this database
SELECT COUNT(distinct l.Facility_Name) AS Long_Term_Care_Hospital,COUNT(dis
FROM Long_Term_Care_Hospital AS l inner join Hospital_Information AS h
on l.State = h. state;

* mysql+pymysql://root:***@fe512_mysql/fe512db 1 rows affected.

Out[20]: Long_Term_Care_Hospital Hospital

388 4624

There are 388 long term care hospital and 4624 hospital in this database in total

In [18]: %%sql

```
#seq1
#see the all hospital type
SELECT DISTINCT Hospital_Information.Hospital_type
FROM Hospital_Information;
```

* mysql+pymysql://root:***@fe512_mysql/fe512db 3 rows affected.

Out[18]:

Hospital_type

Acute Care Hospitals

Critical Access Hospitals

Childrens

Result Explanation: There are 3 types of hospital which are Acute Care Hospitals, Critical Access Hospitals and Childrens. Acute Care Hospitals (ACH) are hospitals that provide short-term patient care. Critical Access Hospitals (CAH) are small facilities that give limited outpatient and inpatient hospital services to people in rural areas that receive cost-based reimbursement. Childrens Hospitals are hospitals that focus on the children care.

```
In [19]:
           %%sql
           #see all hospital ownership
           SELECT DISTINCT Hospital_Information.Hospital_ownership
           FROM Hospital_Information;
             * mysql+pymysql://root:***@fe512 mysql/fe512db
           11 rows affected.
Out[19]:
                             Hospital_ownership
                       Voluntary non-profit - Private
            Government - Hospital District or Authority
                       Voluntary non-profit - Church
                                      Proprietary
                               Government - State
                         Voluntary non-profit - Other
                              Government - Local
                             Government - Federal
                                       Physician
                                          Tribal
                                     Government
```

Result Explanation: As is shown above, there are so many ownership types. In general, the ownership can be classified as Government, Voluntary non-profit, Proprietary, Physician, Tribal. You can see the some subclassification under the government and voluntary non-profit.

```
In [70]: %%sql
# Ownership in Long_Term_Care_Hospital
SELECT distinct Ownership_Type
FROM Long_Term_Care_Hospital;
```

* mysql+pymysql://root:***@fe512_mysql/fe512db
5 rows affected.

Out[70]: Ownership_Type

Non-profit

Government

For profit

Tribal

Physician

Data Summary

- 4784 records in Hospital_Information table
- 34560 records in Efficiency table
- · 73674 records in Infections table
- 39362 Records in Complications_and_Deaths Table
- 388 Records in Long_Term_Care_Hospital Table
- 156 records in State_Repotting_Measure table

Hospital Information table

- 388 Long_Term_Care_Hospitals and 4624 Hospitals in total
- 3 different hospital types in Hospital_Info table: Acute Care Hospitals, Critical Access Hospitals, Childrens.
- 11 different Hospital_ownership types: Voluntary non-profit Private, Voluntary non-profit Church, Voluntary non-profit Other, Government, Government Hospital District or Authority, Government State, Government Local, Government Federal, Proprietary, Physician, Tribal
- 4398 Hospitals provide emergency service.

5 different Ownership Types from Long_Term_Care_Hospital table : Non-profit, Government. For profit, Tribal, Physician

In [10]: %%sql

#to understand the Measure Type and Measure Name in the Efficiency table
SELECT distinct Measure_Name ,Measure_Type
FROM Efficiency;

* mysql+pymysql://root:***@fe512_mysql/fe512db
23 rows affected.

Out[10]: Measure_Name	Measure_Type
Appropriate care for severe sepsis and septic shock	SEP_1
OP 18	OP_18b
Left before being seen	OP_22
Emergency department volume	EDV
Aspirin at Arrival	OP_4
ED1	ED_1b
Immunization for influenza	IMM_2
OP-18	OP_18c
Endoscopy/polyp surveillance: colonoscopy interval for patients with a history of adenomatous polyps - avoidance of inappropriate use	OP_30
Median Time to ECG	OP_5
ED2	ED_2b
External Beam Radiotherapy for Bone Metastases	OP_33
Door to diagnostic eval	OP_20
Head CT results	OP_23
Healthcare workers given influenza vaccination	IMM_3_OP_27_FAC_ADHPCT
Endoscopy/polyp surveillance: appropriate follow-up interval for normal colonoscopy in average risk patients	OP_29
Median Time to Transfer to Another Facility for Acute Coronary Intervention	OP_3b
Median time to pain med	OP_21
Elective Delivery	PC_01
Hospital Acquired Potentially-Preventable Venous Thromboembolism	VTE_6
Median Time to Fibrinolysis	OP_1
Fibrinolytic Therapy Received Within 30 Minutes of ED Arrival	OP_2
Improvement in Patient's Visual Function within 90 Days Following Cataract Surgery	OP_31

In [12]: %%sql
 #see the range of score for each measure type in Efficiency table
 SELECT Measure_Type,min(Score),max(Score),avg(Score)
 FROM Efficiency
 WHERE Measure_Type <> "EDV"
 GROUP BY Measure_Type;

* mysql+pymysql://root:***@fe512_mysql/fe512db
22 rows affected.

Out[12]:	Measure_Type	min(Score)	max(Score)	avg(Score)
	SEP_1	1	98	50.55382907880133
	OP_18b	100	99	141.65620857269113
	OP_22	1	9	2.068510370835952
	OP_4	100	99	94.67630057803468
	ED_1b	100	997	275.48396624472576
	IMM_2	10	99	90.78814577492992
	OP_18c	100	988	253.64973102211596
	OP_30	100	99	91.2838669950739
	OP_5	1	9	8.467015022860876
	ED_2b	1	99	101.76327054794521
	OP_33	10	99	86.27892561983471
	OP_20	1	92	22.28846153846154
	OP_23	100	98	73.7303867403315
	IMM_3_OP_27_FAC_ADHPCT	100	99	86.98057097541634
	OP_29	1	99	87.62111043319096
	OP_3b	102	98	61.71228070175439
	OP_21	101	98	49.79444967074318
	PC_01	1	9	4.116138763197586
	VTE_6	1	9	7.271739130434782
	OP_1	15	49	25.86
	OP_2	100	96	71.08163265306122
	OP_31	100	99	93.96875

In [9]: %%sql

#see the range of score for each measure type in Infections table
SELECT Measure_Type,min(Score),max(Score),avg(Score)
FROM Infections
GROUP BY Measure_Type;

* mysql+pymysql://root:***@fe512_mysql/fe512db
36 rows affected.

Out[9]: Mea

Measure_Type	min(Score)	max(Score)	avg(Score)
HAI-6-CI-LOWER	0.002	2.15	0.4506413232185509
HAI-1-DOPC-DAYS	1.0	70456.0	3164.0673773987205
HAI-2-CI-LOWER	0.003	2.64	0.41206588387794685
HAI-2-DOPC-DAYS	1.0	60007.0	3475.1052855924977
HAI-2-ELIGCASES	0.001	90.737	3.1928990873242626
HAI-2-CI-UPPER	0.118	9.581	2.0543942036548097
HAI-1-NUMERATOR	1.0	144.0	7.4688946015424165
HAI-6-DOPC-DAYS	1.0	482438.0	29406.846242111304
HAI-1-SIR	0.069	7.765	0.8907352077049614
HAI-3-ELIGCASES	0.015	44.914	1.9457409766576204
HAI-5-ELIGCASES	0.001	41.951	1.5299446422851668
HAI-5-DOPC-DAYS	1.0	500388.0	33359.30901542112
HAI-3-SIR	0.12	4.766	1.0381908907747797
HAI-6-SIR	0.04	5.305	0.8310513819068206
HAI-3-DOPC-DAYS	1.0	1520.0	95.5830639948287
HAI-4-DOPC-DAYS	1.0	1931.0	90.05406348099058
HAI-6-CI-UPPER	0.069	11.034	1.534863853737093
HAI-1-CI-UPPER	0.308	14.25	1.955648198236719
HAI-6-NUMERATOR	1.0	487.0	25.64904163912756
HAI-4-ELIGCASES	0.003	15.381	0.6950655626390781
HAI-1-ELIGCASES	0.001	77.355	2.7748133303731697
HAI-3-CI-LOWER	0.006	2.032	0.3487091870862752
HAI-1-CI-LOWER	0.003	3.787	0.34660324866028847
HAI-3-NUMERATOR	1.0	47.0	4.271631982475356
HAI-5-CI-LOWER	0.003	2.847	0.3397699237258347
HAI-4-NUMERATOR	1.0	19.0	2.185375901132853
HAI-6-ELIGCASES	0.001	366.037	14.979351640392931
HAI-2-SIR	0.055	3.972	0.9739355855754444
HAI-3-CI-UPPER	0.316	10.565	2.384044783996658
HAI-5-CI-UPPER	0.313	11.641	2.3534107620977576

8.16231505657093	111.0	1.0	HAI-2-NUMERATOR
1.0158893557875848	6.13	0.066	HAI-5-SIR
2.8978013455466387	8.266	0.316	HAI-4-CI-UPPER
0.31355172333843373	2.525	0.008	HAI-4-CI-LOWER
4.531759415401911	58.0	1.0	HAI-5-NUMERATOR
1.143876172979598	4.89	0.168	HAI-4-SIR

In [13]: | %%sql

#to understand the Measure Type and Measure Name in the Complications_and_L SELECT distinct Measure_Name ,Measure_Type FROM Complications_and_Deaths;

* mysql+pymysql://root:***@fe512_mysql/fe512db 19 rows affected.

Out[13]:

Measure_Name	Measure_Type
Pressure sores	PSI_3_ULCER
Death rate for stroke patients	MORT_30_STK
Death rate for pneumonia patients	MORT_30_PN
Death rate for COPD patients	MORT_30_COPD
A wound that splits open after surgery on the abdomen or pelvis	PSI_14_POSTOP_DEHIS
Serious complications	PSI_90_SAFETY
Accidental cuts and tears from medical treatment	PSI_15_ACC_LAC
Serious blood clots after surgery	PSI_12_POSTOP_PULMEMB_DVT
Broken hip from a fall after surgery	PSI_8_POST_HIP
Deaths among Patients with Serious Treatable Complications after Surgery	PSI_4_SURG_COMP
Collapsed lung due to medical treatment	PSI_6_IAT_PTX
Postoperative Acute Kidney Injury Requiring Dialysis Rate	PSI_10_POST_KIDNEY
Death rate for heart failure patients	MORT_30_HF
Death rate for CABG surgery patients	MORT_30_CABG
Blood stream infection after surgery	PSI_13_POST_SEPSIS
Death rate for heart attack patients	MORT_30_AMI
Perioperative Hemorrhage or Hematoma Rate	PSI_9_POST_HEM
Rate of complications for hip/knee replacement patients	COMP_HIP_KNEE
Postoperative Respiratory Failure Rate	PSI_11_POST_RESP

In [14]: | %%sql

#see the range of score for each measure type in Complications_and_Deaths t
SELECT Measure_Type,min(Score),max(Score),avg(Score)
FROM Complications_and_Deaths
GROUP BY Measure_Type;

- * mysql+pymysql://root:***@fe512 mysql/fe512db
- 19 rows affected.

Out[14]:

Measure_Type	min(Score)	max(Score)	avg(Score)
PSI_3_ULCER	0.02	12.6	0.3920983901903403
MORT_30_STK	8.9	21.4	14.238440862265966
MORT_30_PN	9.0	24.8	15.783784675787116
MORT_30_COPD	4.9	14.4	8.362775430284875
PSI_14_POSTOP_DEHIS	0.27	2.7	0.8564561380180798
PSI_90_SAFETY	0.52	4.21	1.0006571554591324
PSI_15_ACC_LAC	0.57	2.98	1.2916056334692547
PSI_12_POSTOP_PULMEMB_DVT	1.39	9.82	3.843696463041465
PSI_8_POST_HIP	0.08	0.17	0.11084930258657043
PSI_4_SURG_COMP	96.82	225.89	161.467851400752
PSI_6_IAT_PTX	0.11	0.68	0.2868233251379717
PSI_10_POST_KIDNEY	0.33	4.31	1.3086989302407956
MORT_30_HF	5.0	18.0	11.73790899350617
MORT_30_CABG	1.3	8.5	3.2063535904686753
PSI_13_POST_SEPSIS	2.09	14.45	5.248171660426669
MORT_30_AMI	8.9	18.7	13.12633390804166
PSI_9_POST_HEM	1.29	4.69	2.588323989724801
COMP_HIP_KNEE	1.2	5.4	2.5959162791204915
PSI_11_POST_RESP	1.55	34.75	8.096885491509473

Question and Answers

1. How many hospitals are not owned by the government in this database

• 3718

```
In [23]: | %%sql
          SELECT count(Provider_ID)
          FROM Hospital_Information
          WHERE Provider ID NOT IN (SELECT Provider ID
                                       FROM Hospital Information
                                       WHERE Hospital_ownership like "%govern%" );
          * mysql+pymysql://root:***@fe512_mysql/fe512db
          1 rows affected.
Out[23]:
          count(Provider_ID)
                    3718
```

2. Find the top 3 states with the most Acute Care hospitals

• TX, CA, FL

```
In [26]:
         %%sql
         SELECT State,count(Provider_ID)
         FROM Hospital_Information
         WHERE Hospital Information. Hospital type = 'Acute Care Hospitals'
         GROUP BY State
         ORDER BY count(Provider ID) DESC
         LIMIT 3;
          * mysql+pymysql://root:***@fe512_mysql/fe512db
```

3 rows affected.

```
Out[26]:
            State count(Provider_ID)
               TX
                                 305
```

CA

FL 168

294

3. Find the number of the hospitals for the different ownerships in California

Out[27]:

Hospital_ownership	count(Provider_ID)	
Voluntary non-profit - Church	30	
Voluntary non-profit - Private	105	
Voluntary non-profit - Other	60	
Proprietary	75	
Government - Hospital District or Authority	39	
Government - Local	18	
Government - Federal	4	
Government - State	3	

Physician

4. Which city have most and least hospital with emergency service

5

```
Most: Chicago (26)Least: Rawlins (1)
```

```
In [29]: %%sql
    (SELECT City,count(Provider_ID) AS count
    FROM Hospital_Information
    WHERE Emergency_services = 'TRUE\r'
    GROUP BY City
    ORDER BY count(Provider_ID) DESC
    LIMIT 1)
    UNION
    (SELECT City,count(Provider_ID) AS count
    FROM Hospital_Information
    WHERE Emergency_services = 'TRUE\r'
    GROUP BY City
    ORDER BY count(Provider_ID)
    LIMIT 1);
```

```
* mysql+pymysql://root:***@fe512_mysql/fe512db
2 rows affected.
```

Out[29]:

```
City count
```

CHICAGO 26 RAWLINS 1

5. Which 5 hospitals have the least efficiency in Aspirin at Arrival?

```
In [36]: %%sql

SELECT avg(Efficiency.Score) AS score, Hospital_Information.Hospital_Name
FROM Hospital_Information INNER JOIN Efficiency
ON Hospital_Information.Provider_ID = Efficiency.Provider_ID
WHERE Efficiency.Measure_Type = 'OP_4'
GROUP BY Efficiency.Provider_ID
ORDER BY avg(Efficiency.Score)
LIMIT 5;
```

^{*} mysql+pymysql://root:***@fe512_mysql/fe512db 5 rows affected.

Hospital_Name	Out[36]: score
BAKERSFIELD HEART HOSPITAL	48.0
ABRAZO SCOTTSDALE CAMPUS	50.0
MEMORIAL REGIONAL HOSPITAL	50.0
AURORA ST LUKES MEDICAL CENTER	53.0
WOMEN & INFANTS HOSPITAL OF RHODE ISLAND	53.0

6. Which 5 states have highest average score in Aspirin at Arrival among their hospital

```
In [35]: %%sql

SELECT Region,avg(Score)
FROM Efficiency
INNER JOIN Hospital_Information
ON Efficiency.Provider_ID = Hospital_Information.Provider_ID
INNER JOIN State_Repotting_Measure
ON State_Repotting_Measure.Region_Code = Hospital_Information.State
WHERE Measure_Type = 'OP_4'
GROUP BY Region
ORDER BY avg(Score) DESC
LIMIT 5;
```

* mysql+pymysql://root:***@fe512_mysql/fe512db
5 rows affected.

Out[35]:

avg(Score)	Region
100.0	Hawaii
100.0	District Of Columbia
100.0	Vermont
99.5	Wyoming
08 333333333333333	Maine

7. Which state has the highest total measure score

Indiana

```
In [33]: | %%sql
         ALTER table c
         ADD column Total_measure float;
         UPDATE State Repotting Measure
         SET Total measure = Immunization Measure + Lab Measure + Surveillance measu
         SELECT avg(Total_measure), Region
         FROM State Repotting Measure
         GROUP BY Region
         ORDER BY avg(Total_measure) desc
         LIMIT 1;
          * mysql+pymysql://root:***@fe512 mysql/fe512db
         156 rows affected.
         1 rows affected.
Out[33]:
```

avg(Total_measure) Region

2.096666693687439 Indiana

8. Which states of the lab measure go down from 2013 to 2014

Connecticut, District Of Columbia, Montana

```
In [32]: %%sql
         SELECT 1.Region
         FROM (SELECT Region, Lab Measure AS 1m2014
                 FROM State Repotting Measure
                 WHERE period=2014) AS 1
         INNER JOIN
                  (SELECT Lab Measure AS lm2013, Region
                 FROM State Repotting Measure
                 WHERE period=2013) AS j
         ON l.Region=j.Region
         WHERE lm2014 < lm2013;
```

```
* mysql+pymysql://root:***@fe512 mysql/fe512db
3 rows affected.
```

Out[32]:

Region

Connecticut

District Of Columbia

Montana

9.which 3 hospitals have the most balanced performance in efficient

```
In [31]: %%sql
    SELECT Hospital_Name, VAR_SAMP(score) AS variance, Efficiency.Provider_ID
    FROM Efficiency INNER JOIN Hospital_Information ON Efficiency.Provider_ID=E
    GROUP BY Efficiency.Provider_ID
    ORDER BY VAR_SAMP(score) DESC
    LIMIT 3;
```

* mysql+pymysql://root:***@fe512_mysql/fe512db
3 rows affected.

Name variance	Provider ID
1	ame variance

MAYAGUEZ MEDICAL CENTER DR RAMON EMETERIO BETANCES 506745.333333333 400103

HOSPITAL SAN FRANCISCO 502002.0 400098

HOSPITAL UPR DR FEDERICO TRILLA 302968.9166666666 400112

10.What's the score of all Surgical Site Infections for hospital with the lowest Death rate for stroke patients

* mysql+pymysql://root:***@fe512_mysql/fe512db
12 rows affected.

Out[30]:

Measure Name Score SSI - Colon Surgery: Upper Confidence Limit 3.444 SSI - Colon Surgery: Predicted Cases 6.658 SSI - Colon Surgery: Number of Procedures 260.0 SSI - Colon Surgery: Lower Confidence Limit 1.197 SSI - Abdominal Hysterectomy: Observed Cases 3.0 SSI - Abdominal Hysterectomy 1.327 SSI - Colon Surgery 2.103 SSI - Abdominal Hysterectomy: Predicted Cases 2.26 SSI - Colon Surgery: Observed Cases 14.0 SSI - Abdominal Hysterectomy: Upper Confidence Limit 3.613 SSI - Abdominal Hysterectomy: Number of Procedures 278.0

SSI - Abdominal Hysterectomy: Lower Confidence Limit

Result and Conclusion

Calculate the average head CT result efficiency by state across the USA

```
In [5]: %%sql
    SELECT State,avg(Score),count(Score)
    FROM Efficiency AS e inner join Hospital_Information AS hi on e.Provider_I
    WHERE Measure_Type="OP_23"
    GROUP BY State;
```

* mysql+pymysql://root:***@fe512_mysql/fe512db
48 rows affected.

10 20115 42200041			
Out[5]:	State	avg(Score)	count(Score)
	FL	75.95238095238095	42
	AL	61.25	20
	GA	69.77777777777777	36
	ID	78.0	5
	IL	80.04347826086956	46
	IN	85.9090909090909	22
	IA	80.9090909090909	11
	KS	75.9	10
	KY	65.16666666666667	18
	LA	70.36363636363636	22
	ME	57.285714285714285	7
	MD	68.6875	16
	AK	27.0	1
	MA	73.625	24
	MI	73.97058823529412	34
	MN	76.18181818181819	22
	MS	70.83333333333333	18
	МО	79.83333333333333	18
	MT	71.0	2
	NE	78.33333333333333	3
	NV	76.75	8
	NH	71.8	5
	AZ	71.5	14
	NJ	72.3	10
	NM	64.0	4
	NY	78.12903225806451	31
	NC	76.81818181818181	44
	ОН	74.1777777777778	45
	OK	78.4	10
	OR	69.58823529411765	17

PA	82.52631578947368	38
AR	71.875	16
RI	54.66666666666664	3
SC	76.5	16
SD	91.0	1
TN	69.33333333333333	24
TX	74.34328358208955	67
UT	60.142857142857146	7
VT	64.0	2
VA	72.43478260869566	23
WA	69.6842105263158	19
CA	71.15714285714286	70
WV	55.16666666666664	6
WI	75.66666666666667	24
WY	67.0	1
СО	81.875	8
СТ	67.76923076923077	13
DE	76.5	2

Explanation: The color shows the number of the measured hospitals in the state. The darker color, The larger number of the measured hospitals. The number shown in each state is the average score of the Head CT efficiency. We can see that the hospitals in Colorado, Missouri and Illinois have the highest head CT efficiency scores. In contrast, the efficiency scores in Utah and Maine are lowest.

Calculate the average serious comlications score by state across the USA

In [6]: %%sql

SELECT State,avg(Score),count(Score)
FROM Complications_and_Deaths AS c inner join Hospital_Information AS hi c
WHERE Measure_Type="PSI_90_SAFETY"
GROUP BY State;

* mysql+pymysql://root:***@fe512_mysql/fe512db
38 rows affected.

Out[6]:	State	avg(Score)	count(Score)
	AL	0.9945238154558909	84
	AK	0.9825000017881393	8
	AZ	1.0004918037867936	61
	AR	0.9715909145095132	44
	CA	0.9886505174801836	289
	CO	1.0089130427526392	46
	CT	1.0906896570633198	29
	DE	1.0433333118756611	6
	DC	1.1785714541162764	7
	FL	1.0101807228772037	166
	GA	0.9884000009298325	100
	HI	0.9141666740179062	12
	ID	0.8650000052792686	14
	IL	1.0081451626554612	124
	IN	0.9458823505569907	85
	IA	0.9938235282897949	34
	KS	0.9574509859085083	51
	KY	1.0246875016018748	64
	LA	1.0027906970922338	86
	TX	0.8900000154972076	2
	ME	0.9888235330581665	17
	MD	0.9969565220501112	46
	MA	0.9707272681322965	55
	MI	0.9796808514189213	94
	MN	1.001428567633337	49
	MS	1.041000000635783	60
	МО	0.9837499981125196	72
	MT	0.9485714307853154	14

NE	1.0200000068415767	23	
NH	0.9176923082425044	13	
NV	1.0871428506714957	21	
NJ	1.01218749769032	64	
NY	1.117297299407624	148	
NM	1.0064516163641406	31	
NC	0.9874698778232897	83	
ND	1.098750002682209	8	
ОН	0.9513492030756814	126	
OK	0.9853947397909666	76	

Explanation: This graph shows the serious comlicatinos score in each state. The higher socre, the less chance patients get serious complications. The color shows the number of the records in the state. We also can know the number of the hospitals in each states that were measured from the right side of the graph. After we standardized the value, the number shown in each state is the average score of the serious comlications. It can be seen from the graph that the hospitals in Ohio and Oklahoma have high serious comlications scores.

Calculate the average pressure sores score by state across the USA

```
In [7]: %%sql
    SELECT State,avg(Score),count(Score)
    FROM Complications_and_Deaths AS c inner join Hospital_Information AS hi c
    WHERE Measure_Type="PSI_3_ULCER"
    GROUP BY State;
```

* mysql+pymysql://root:***@fe512_mysql/fe512db
44 rows affected.

	44 lows allected.				
Out[7]:	State	avg(Score)	count(Score)		
	CA	0.3707317073183712	287		
	CO	0.30355555613835655	45		
	FL	0.332831327298499	166		
	IL	0.35387096914552874	124		
	IN	0.286666666689728	84		
	IA	0.2800000025616849	34		
	KY	0.3968750024214387	64		
	LA	0.43150000274181366	80		
	MI	0.36096774229920037	93		
	MS	0.43379310467119875	58		
	МО	0.30930555554934674	72		
	NH	0.28923076591812646	13		
	NY	0.7735862080650083	145		
	NC	0.3979518102504403	83		
	ОН	0.32168000042438505	125		
	TN	0.11999999731779099	1		
	TX	0.2528571401323591	7		
	WA	0.3499999940395355	1		
	WV	0.17000000178813934	1		
	WI	0.773333340883255	3		
	AL	0.3460714297280425	84		
	AK	0.40375000424683094	8		
	AZ	0.3155737702475219	61		
	AR	0.2793181815861978	44		
	СТ	0.6686206896757257	29		
	DC	0.6385714422379222	7		
	DE	0.550000011920929	6		
	GA	0.3014141401708728	99		
	HI	0.31083333243926364	12		
	ID	0.26916666453083354	12		

KS	0.31437500042375177	48
ME	0.5299999998772845	17
MD	0.6215217464967914	46
MA	0.40654545676979154	55
MN	0.3689583327310781	48
SC	0.20000000298023224	1
MT	0.3438461577663055	13
NE	0.41913043966759805	23
NV	0.342380948896919	21
NJ	0.4329687522840686	64
NM	0.35499999672174454	28
ND	0.48285713366099764	7
OK	0.3859740271196737	77
OR	0.23000000417232513	1

Explanation: The color shows the number of the records in the state. If the color is darker, the number of the records are larger. The number shown in each state is the average score of the pressure scores. Pressure scores is the one of the complications after the surgery, you can see that the New York State, Connecticut and Wisconsin have the highest score while the scores in Oregon and Texas are the lowest.

Future Study

1. In this project, we only have a few aspects(Effciency, Infection, Complications_and_Deaths).

- For the future work, we can add more aspects such as environment and infrastructure of the hospital. We also can add some insurance information ,so patients can make different decision choice for different situtaion.
- 2. The measure types for each aspect in this database are too professional and it is hard to understand from their name. We can create a reference book in the future to explain each measure type, so people can have a better understanding of these evaluation.
- 3. We collected 4000 medical centers information in this database, but we want to include as many hospitals as possible.