

UNIVERSIDAD NACIONAL DE LOJA ÁREA DE LA ENERGÍA, LAS INDUSTRIAS Y LOS RECURSOS NATURALES NO RENOVABLES

CARRERA DE INGENIERÍA DE SISTEMAS INFORME

MATERIA: SIMULACIÓN

TEMA: Generadores de números pseudoaleatorios y pruebas de uniformidad y aleatoriedad.

DOCENTE: Marlon Santiago Viñan Ludueña

AUTOR: Sandro Michael Córdova Carrión

23 de Mayo del 2019

Loja – Ecuador

1. Determine el ciclo o período de vida de los siguientes generadores congruencia les:

a.
$$xi\#1=(21xi+15)mod(31)$$
 con $x0=21$

El número de ciclos obtenido es igual a 1.

b.
$$xi#1=(13xi+9)mod(128) con x0=7$$

El número de ciclos obtenido es igual a 1.

c.
$$xi#1=(17xi)mod(31)$$
 con $x0=23$

El número de ciclos obtenido es igual a 1.

d.
$$xi#1=(121+xi)mod(256)$$
 con $x0=17$

El número de ciclos obtenido es igual a 1.

e.
$$xi#1=(21xi+15)mod(31)$$
 con $x0=21$

El número de ciclos obtenido es igual a 1.

2. Determine el ciclo o periodo de vida de los siguientes generadores congruenciales:

a.
$$xi#1=(137xi+47)mod(17)$$

Se utilizaron semillas con valores de 56, 4, 10 y se pudo deducir que los ciclos siempre serán 1 ya que los valores condicionan a la semilla.

b.
$$xi#1=(191xi+17)mod(23)$$

Se utilizaron semillas con valores de 6, 7, 8 en donde se pudo concluir que se da un ciclo y toma el primer valor del siguiente ciclo.

c.
$$xi\#1=(237xi+71)mod(37)$$

Se utilizó una semilla de 6 y se da un ciclo perfecto.

d.
$$xi\#1=(117xi+31)mod(19)$$

Se utilizaron semillas de valores de 2, 50, 100 en donde se pudo concluir que se da un ciclo y toma el primer valor del siguiente ciclo

e.
$$xi#1=(157xi+47)mod(37)$$

Se utilizaron semillas de valores de 2, 50, 100 y la conclusión es que siempre da 4 ciclos.

f.
$$xi\#1=(321xi+11)mod(27)$$

Se utilizaron semillas de valores de 2, 50, 100 y la conclusión es que para ningún número se da un periodo, a excepción del 5, 50, 500, 5000... aquí el resultado siempre es 27 ciclos.

3. A través del programa desarrollado realice el cálculo de la serie congruencial xi#1=(553+121xi)mod (177) con x0=23, haga lo siguiente:

a. Determine el ciclo o período de vida.

	PRUEBA DE	PROMEDIOS			
Columna1 🔻	Columna2 🔻	Columna3 🔻	Columna4 🔻	Sumatoria	43,5932203
0,847457627	0,581920904	0,265536723	0,186440678	X =	0,5010715
0,666666667	0,536723164	0,254237288	0,683615819	Z =	0.010952878
0,790960452	0,06779661	0,88700565	0,84180791	95%	-> 1.96
0,830508475	0,327683616	0,451977401	0,983050847		
0,615819209	0,774011299	0,813559322	0,073446328		
0,638418079	0,779661017	0,564971751	0,011299435		
0,372881356	0,463276836	0,485875706	0,491525424		
0,242937853	0,18079096	0,915254237	0,598870056		
0,519774011	0	0,870056497	0,587570621		
0,016949153	0,124293785	0,401129944	0,220338983		
0,175141243	0,163841808	0,661016949	0,785310734		
0,316384181	0,949152542	0,107344633	0,146892655		
0,406779661	0,971751412	0,11299435	0,898305085		
0,344632768	0,706214689	0,796610169	0,81920904		
0,824858757	0,576271186	0,514124294	0,248587571		
0,93220339	0,853107345	0,333333333	0,203389831		
0,920903955	0,350282486	0,457627119	0,734463277		
0,553672316	0,508474576	0,497175141	0,994350282		
0,118644068	0,649717514	0,282485876	0,440677966		
0,480225989	0,740112994	0,305084746	0,446327684		
0,231638418	0,677966102	0,039548023	0,129943503		
0,152542373	0,15819209	0,90960452			

Conclusión:

Se acepta la hipótesis de que los números pseudoaleatorios generados provienen de una muestra uniforme

b. Realice las pruebas de promedios con un nivel de confianza del 95%, frecuencias y series con n=10.

						PRUEB	A DE FRECUEI	NCIAS						
0,84745763	0,37288136	0,40677966	0,11864407	0,06779661	0	0,57627119	0,6779661	0,81355932	0,66101695	0,45762712	0,18644068	0,49152542	0,89830508	0,44067797
0,66666667	0,24293785	0,34463277	0,48022599	0,32768362	0,12429379	0,85310734	0,15819209	0,56497175	0,10734463	0,49717514	0,68361582	0,59887006	0,81920904	0,44632768
0,79096045	0,51977401	0,82485876	0,23163842	0,7740113	0,16384181	0,35028249	0,26553672	0,48587571	0,11299435	0,28248588	0,84180791	0,58757062	0,24858757	0,1299435
0,83050847	0,01694915	0,93220339	0,15254237	0,77966102	0,94915254	0,50847458	0,25423729	0,91525424	0,79661017	0,30508475	0,98305085	0,22033898	0,20338983	
0,61581921	0,17514124	0,92090395	0,5819209	0,46327684	0,97175141	0,64971751	0,88700565	0,8700565	0,51412429	0,03954802	0,07344633	0,78531073	0,73446328	
0,63841808	0,31638418	0,55367232	0,53672316	0,18079096	0,70621469	0,74011299	0,4519774	0,40112994	0,33333333	0,90960452	0,01129944	0,14689266	0,99435028	
					n =	10								
					FE=	8,7								
	FE	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7	8,7			
	FO	6	12	8	7	11	10	7	8	10	8			
		0.1	0.2	0.3	0.4	0.5	0.6	0.7	0.8	0.9	1			
	Frecuencia =	34,1												
	X=	3,91954023												

Conclusión:

No se puede rechazar la hipótesis de que los números pseudoaleatorios presentados provienen de una distribución uniforme.

4. Realice las pruebas de frecuencias, series y corridas a los primeros 100 aleatorios de los siguientes generadores:

a. xi#1 = (1117xi + 3057) mod (1679567) con x0 = 1457

	SI	ERIE GENERAD	PΑ	
Columna1 🔻	Columna2 🔻	Columna3 🔻	Columna4 🔻	Columna5 🔻
0,970801403	0,415439813	0,603905649	0,433196175	0,520873535
0,386987241	0,048090966	0,564430594	0,88194755	0,817558335
0,266568705	0,719429472	0,470793961	0,137232989	0,21448028
0,759063497	0,604540337	0,878674087	0,291069067	0,57629258
0,875745951	0,273376412	0,480775105	0,125968181	0,720632163
0,21004759	0,363272201	0,027611879	0,708278384	0,947946108
0,624977747	0,776868086	0,844288439	0,148774654	0,857622232
0,10196378	0,763471776	0,072006059	0,183109099	0,965853699
0,895362317	0,799793637	0,432587685	0,534683642	0,860402116
0,121527751	0,371312963	0,202264036	0,243447865	0,070983176
0,74831787	0,758400231	0,930748223	0,933085134	0,290027727
0,872880927	0,13487762	0,647584764	0,257915284	0,9627916
0,009815625	0,660121924	0,354001954	0,093192472	
0,965873347	0,358009535	0,422002814	0,097810924	
0,882348843	0,89847026	0,378963149	0,256622094	
0,585478281	0,593101079	0,303658026	0,648698742	
0,981059999	0,495725386	0,187835317	0,598314923	
0,845839434	0,727076681	0,813869289	0,319588918	
0,804467461	0,146472871	0,093815847	0,982641359	
0,591974003	0,612016669	0,794120747	0,612218506	
0,236781266	0,624438918	0,034694061	0,849891669	

1) Prueba de	Frecuencias - A					
n =	5					
fe=	20					
FO	18	20	17	21	24	
FE	20	20	20	20	20	
	0.2	0.4	0.6	0.8		1
Frecuencia	30)				
X =	1,!	5				

$$X_0^2 < X_{\infty,n^2-1}^2$$

$$X_{0.05,5^2-1}^2$$

$$X_{0.05,24}^2$$

10.84 < 36.415

Conclusión:

El resultado del chi cuadrado de la prueba de series es igual a 93.96 y el calor de chi cuadrado con el 90% de confianza y n=10 es de 118.498, como 93.96 es menor que 118 la hipótesis se acepta.

3) Prueba de Corridas -A						
Numero de Corridas:	55					
n1:	46					
n2:	54					
Tabla de Resul	tados					
Χ	50,68					
Desv. Est	4,94					
Zo	0,77					
Zo T	0,47					

5. Para cada uno de los generadores del problema anterior tome ahora los datos del 101 al 200 y realice las pruebas de Kolmogórov-Smirnov con un nivel de confianza del 95%, póker con un valor de $\propto =0.05$ y corridas con un valor de $\propto =0.05$.

a. Kolmogórov-Smirnov y póker para el literal A de la pregunta 4. Kolmogórov-Smirnov

ı) riueva de Koin	nogorov Smirnov - A				
		TABLA DE RESULTA	DOS		
N° Aleatorios	Orden_Ascendente	Fn	abs	0/1	Clasificació
0,440037819	9,89E-04	0,01	0,009011055	0	Poker
0,524064238	0,008745706	0,02	0,011254294	1	Diferentes
0,381573941	0,010443763	0,03	0,019556237	0	
0,219912632	0,013412981	0,04	0,026587019	0	Dos Pares
0,644230328	0,051575793	0,05	0,001575793	1	Un par
0,607096948	0,053379234	0,06	0,006620766	1	
0,129111253	0,053638229	0,07	0,016361771	0	Tercia
0,219089801	0,083859114	0,08	0,003859114	0	
0,725127965	0,102203723	0,09	0,012203723	1	
0,969756491	0,106472085	0,1	0,006472085	1	
0,219820347	0,113919838	0,11	0,003919838	0	
0,541147212	0,12852896	0,12	0,00852896	1	
0.463256304	0,128583736	0,13	0,001416264	0	
0,459111188	0,129111253	0,14	0,010888747	0	
0,829016645	0,130713452	0,15	0,019286548	1	
0,013412981	0,142976732	0,16	0,017023268	0	
0,984119717	0,163378418	0,17	0,006621582	1	
0,984119717	0,169362103	0,17	0,010637897	0	
	<u> </u>		<u> </u>	0	
0,379932447	0,179289662	0,19	0,010710338	0	
0,386363271	0,204465794	0,2	0,004465794		
0,56959383	0,204636671	0,21	0,005363329	1	
0,238128041	0,217169663	0,22	0,002830337	0	
0,990842283	0,219089801	0,23	0,010910199	11	
0,772649737	0,219820347	0,24	0,020179653	1	
0,051575793	0,219912632	0,25	0,030087368	0	
0,611980945	0,235007594	0,26	0,024992406	1	
0,584535776	0,238128041	0,27	0,031871959	1	
0,928282111	0,250278792	0,28	0,029721208	1	
0,892937882	0,258727994	0,29	0,031272006	1	
0,413434534	0,26354352	0,3	0,03645648	0	
0,808194612	0,268372741	0,31	0,041627259	1	
0,755201787	0,306648678	0,32	0,013351322	1	
0,562216333	0,3266324	0,33	0,0033676	1	
0,997464227	0,379932447	0,34	0,039932447	1	
0,169362103	0,381573941	0,35	0,031573941	0	
0,179289662	0,386363271	0,36	0,026363271	0	
0,268372741	0,390111856	0,37	0,020111856	0	
0,774172153	0,413434534	0,38	0,033434534	1	
0,752114682	0,425108972	0,39	0,035108972	1	
0,113919838	0,440037819	0,4	0,040037819	0	
0,250278792	0,459111188	0,41	0,049111188	0	
0,56323088	0,460274583	0,42	0,040274583	1	
0,130713452	0,463256304	0,43	0,033256304	0	
0,008745706	0,49031804	0,44	0,05031804	0	
0,770774253	0,495513427	0,45	0,045513427	1	Full

Numero Máximo 0,065827847

En la tabla se muestran los resultados del 1 al 50 de un total de 100 datos.

Conclusión:

Los números pertenecientes a la serie, siguen una distribución uniforme, y puesto a que $Dn \le d$, se acepta la hipótesis.

Póker

2) Prueba de Poker	- A					
Total:	100					
Clasificación	FO	Constante	FE	(Fo-Fe)	(Fo-Fe) ²	(Fo-Fe)²/Fe
Columna1 🔻	Columna2 🔻	Columna3	Columna	Columnat 🔻	Columna ▼	Columna ▼
Diferentes	25	0,3024	30,24	-5,24	27,4576	0,90798942
Par	46	0,504	50,4	-4,4	19,36	0,38412698
Dos pares	18	0,108	10,8	7,2	51,84	4,8
Tercia	7	0,072	7,2	-0,2	0,04	0,0055556
Full	2	0,009	0,9	1,1	1,21	1,3444444
Poker	2	0,0045	0,45	1,55	2,4025	5,33888889
Quintilla	0	0,0001	0,01	-0,01	0,0001	0,01
Total:						12,79100529

Prueba de Corridas

3) Prueba de Corrid	las -A								
Total de Corridas:	60								
n1:	46								
n2:	54								
				RESU	LTADOS				
n1*n2	(n1*n2)/n1+n2	X_r=2((n1*n2)/n1+n2)+1	2(n1*n2)	(2n1*n2)-n1-n2	(n1*n2) ²	(n1+n2-1)	[(2n1*n2)-n1-n2]/(n1*n2) ^{2*} (n1+n2-1)	1_8	Z_r=(R-h-X_r)/S_r
2484	24,84	50,68	4968	4868	10000	99	24,42850909	4,94252052	1,784514594

Conclusión:

Los números tomados para la generación de la serie siguen una frecuencia aleatoria....

- **6.** Obtenga una secuencia de aleatorios (200) con el generador congruencial xi#1=(69069xi)mod(4294967296) con x0=1 y efectúe lo siguiente:
 - a. Prueba de promedios con un nivel de confianza del 90%

a) Prueba de promedios						
Prueba de promedios						
Media		Z sub cero				
	0,469164143	-1,510642332				

b. Prueba de frecuencias con n = 10

b) Prueba d	e frecuencias			
	Pruek	oa de frecuencias		
Intervalo	Frecuencia observada	Frecuencia esperada	(FO-FE) ²	X_0^2
0,1	28	20	64	7,6
0,2	20	20	0	
0,3	24	20	16	
0,4	16	20	16	
0,5	19	20	1	
0,6	19	20	1	
0,7	23	20	9	
0,8	14	20	36	
0,9	20	20	0	
1	17	20	9	
	200		152	

Conclusión:

Como 7.6 es menor que 14.6837 se puede establecer que proviene de una distribución uniforme.

c. Prueba de series con n = 10

			Tab	la de frecuen	cias observa	das				
2	3	2	2	0	2	4	1	0	1	
4	1	4	5	2	0	0	1	1	2	
1	1	3	1	3	1	1	1	1	1	
4	1	4	0	4	3	3	1	1	2	
3	0	2	3	1	1	1	1	3	4	
2	0	2	2	1	2	3	1	5	2	
3	1	2	0	1	1	1	2	3	2	
3	6	3	0	3	5	2	0	3	0	
3	3	1	1	1	1	4	3	1	0	
2	4	1	2	4	3	4	2	2	3	
27	20	24	16	20	19	23	13	20	17	199
Frecuencia e										
1,99	1,99	1,99	1,99	1,99	1,99	1,99	1,99	1,99	1,99	
		_								
				I*FE^2	(I*FE^2)*F					
	0	12	0	3,9601	47,5212					
	1	32	32	0,9801	31,3632		Prueba d			
	2	21	42	0,0001	0,0021		93,964	82412		
	3	20	60	·	20,402					
	4	11	44	4,0401	44,4411					
	5	3	15	9,0601	27,1803					
	6	1	6	16,0801	16,0801					
			199		186,99					

$$X_0^2 < X_{\infty,n^2-1}^2$$

$$X_{0.1,10^2-1}^2$$

$$X_{0.1,99}^2$$

$$93.96 < 118.498$$

Conclusión:

El resultado del chi cuadrado de la prueba de series es igual a 93.96 y el calor de chi cuadrado con el 90% de confianza y n=10 es de 118.498, como 93.96 es menor que 118 la hipótesis se acepta.

Prueba de Kolmogorov con un nivel de confianza del 90%

	Ordenede	:				ı	n .
4 000445 05	Ordenada 4 000445 05	1		F_n		d_n=max F_n(X_i)	D _{0·10} ; ₂₀₀
1,60814E-05	1,60814E-05	1	200		0,00498392	0,068727391	0,08626703
0,110724816	0,008957556	2	200	0,01			
0,65233921	0,009080419	3	200		0,00591958		
0,416897927	0,016223186	4	200	·	0,00377681		
0,722900099	0,020140405	5	200	0,025	,		
0,986962272	0,025636652	6		0,03			
0,497170785	0,027690417	7	200		0,00730958		
0,088931449	0,033051601	8	200	0,04	0,0069484		
0,406250323	0,037341614	9	200	0,045	,		
0,303587036	0,039684262	10			0,01031574		
0,453019885	0,046845929	11	200		0,00815407		
0,630412739	0,050816329	12	200		0,00918367		
0,977470204	0,051143266	13		0,065	•		
0,889488003	0,053719742	14	200	0,07			
0,046845929	0,062917888	15	200	0,075	0,01208211		
0,601470009	0,064923668	16	200	0,08	0,01507633		
0,932032648	0,065557866	17	200	0,085	0,01944213		
0,562949205	0,068250337	18	200	0,09	0,02174966		
0,338643615	0,074010145	19	200	0,095	0,02098985		
0,775869776	0,07763611	20	200	0,1	0,02236389		
0,549544475	0,078524349	21	200	0,105	0,02647565		
0,487362711	0,081089545	22	200	0,11	0,02891045		
0,655085498	0,083456489	23	200	0,115	0,03154351		
0,100245379	0,085427555	24	200	0,12	0,03457244		
0,848092119	0,088757598	25	200	0,125	0,0362424		
0,87459776	0,088931449	26	200	0,13	0,04106855		
0,592695815	0,091167914	27	200	0,135	0,04383209		
0,907231745	0,098526156	28	200	0,14	0,04147384		
0,589368581	0,100245379	29	200	0,145	0,04475462		
0,098526156	0,103055568	30	200	0,15	0,04694443		
0,103055568	0,110724816	31	200	0,155	0,04427518		
0,945006401	0,123603149	32	200	·	0,03639685		
0,647081631	0,127263907	33	200		0,03773609		
0,281203905	0,131188194	34	200	0,17	0,03881181		
0,472538849	0,132145313	35	200	0,175	0,04285469		
0,785736744	0,13595218	36	200		0,04404782		
0,051143266	0,143160503	37	200	0,185			
0,414209111	0,144613069	38	200		0,04538693		
0.009080419	0,145871946	39		<i>'</i>	0,04912805		
0,175433554	0,147970978	40	200	,	0.05202902		
0,020140405	0,160031899	41	200	0,205	,		
0,07763611	0,168431308	42	200	0,21	- '		
0,248474536	0,174800449	43	200	,	0,04019955		
0,887710762	0,175433554	44	200	,	0,04456645		
0,294586851	0,176913327	45	200	<i>'</i>	0,04808667		
0,819245866	0,182326711	46			0,04767329		
0,492705033	0,188087676	47	200		0,04691232		
0,643951461	0,199304659	48		,	0,04069534		
0,083456489	0,200122006	49		· · · · · · · · · · · · · · · · · · ·	0,04487799		
0,000400489	0,200122006	49	200	0,243	0,04401199		

En la tabla se muestran los resultados del 1 al 50 de un total de 200 datos.

Conclusión:

Como dn es igual a 0,0687 por ende se puede decir que provienen de una distribución uniforme.

Prueba de póker con un valor de \propto =0.1

Indicador	FO	Valores Asociados	FE	FO-FE	(FO-FE)^2	(FO-FE)^2/FE
Columna1	Columna2 🔻	Columna3	Columna4 🔻	Columna5 🔻	Columna6 🔻	Columna7
Todos Diferentes	66	0,3024	60,48	5,52	30,4704	0,503809524
1 Par	100	0,504	100,8	-0,8	0,64	0,006349206
2 Pares	20	0,108	21,6	-1,6	2,56	0,118518519
Tercia	11	0,072	14,4	-3,4	11,56	0,802777778
Full	1	0,009	1,8	-0,8	0,64	0,35555556
Poker	2	0,0045	0,9	1,1	1,21	1,34444444
Quintilla	0	0,0001	0,02	-0,02	0,0004	0,02
	200					3,151455026
Alfa:	0,1					
Chi =	10,645					

Conclusión:

Se rechaza la hipótesis de que los números pseudoaleatorios presentados provienen de una distribución uniforme

f. Prueba de las corridas con un valor de \propto =0.1

	f. Prueba de las con	ridas con un valor de α = 0 .	1									
	n1:	93										
	n2:	107										
	Corridas:	112										
	RESULTADOS											
n1*n2	(n1*n2)/n1+n2	X_r=2((n1*n2)/n1+n2)+1	2(n1*n2)	(2n1*n2)-n1-n2	(n1+n2) ²	(n1+n2-1)	[(2n1*n2)-n1-n2]/(n1*n2) ² *(n1+n2-1)	S_r	Z_r=(R-h-X_r)/S_r			
9951	49,755	100,51	19902	19702	40000	199	49,25995025	7,018543	1,565851988			
Alfa:	0.1	2,576										

Conclusión:

Se acepta la prueba de uniformidad de los números pseudoaleatorios.

Anexos

Para la elaboración de la prueba póker se desarrolló un algoritmo en Java el cual presenta las diferentes configuraciones de póker y el número total de las mismas.

```
21
           private static int contPares = 0, contDosPares = 0, contTripe = 0, contFull = 0, contQuintilla = 0, contPoker = 0, contDiferentes = 0;
22
23 -
           public static void main(String[] args) {
24
               String resultado = "";
25
               String resultados = "";
26
                   File archivo = new File("C:/Users/Sandro Córdova/Documents/SandroCordova.CSV");
27
28
                   FileReader fr = new FileReader(archivo);
 <u>Q.</u>
                    BufferedReader br = new BufferedReader(fr);
 <u>Q.</u>
                   String linea = "";
                   while ((linea = br.readLine()) != null) {
31
32
                       resultado += linea + ";" + analizar(linea) + "\n";
33
34
                   br.close();
                   String ruta = "C:/Users/Sandro Córdova/Documents/SandroCordova2.CSV";
35
36
                   File file = new File(ruta);
37
                   if (!file.exists()) {
                       file.createNewFile();
38
39
                   FileWriter fw = new FileWriter(file);
40
41
                   BufferedWriter bw = new BufferedWriter(fw);
42
                   bw.write(resultado);
                   bw.newLine();
43
                   resultados = "\nDiferentes: " + contDiferentes + " \nPares: " + contPares
+ " \nDoble Par: " + contDosPares + " \nTriple: " + contTripe
44
45
                            + " \nFull: " + contFull + " \nQuintilla: " + contQuintilla;
46
                   bw.write(resultados);
47
48
                   bw.close():
                } catch (Exception e) {
50
51
                System.out.println(resultado);
                                                                                                                         Activar Windows
52
                System.out.println(resultados);
```

```
55 🖃
             public static String analizar(String entrada) {
                  String aux = entrada;
String str = aux.substring(aux.indexOf(".") + 1, aux.length());
 56
 57
                  String resultado = "", arreglo = "";
int cont = 0, contPar = 0, contTriple = 0;
 58
 59
                  for (int i = 0; i < aux.length() - 2; i++) {</pre>
 60
                       String base = String.valueOf(str.charAt(i));
 61
                       if (!arreglo.contains(base)) {
 62
                            for (int j = i; j < aux.length() - 2; j++) {</pre>
 63
                                String alternador = String.valueOf(str.charAt(j));
 64
                                 if (base.contains(alternador)) {
 65
 66
                                     cont++:
 67
                                 1
 68
                            1
                            if (cont == 2) {
    resultado = "Un par";
 9
 70
 71
                                contPares++;
 72
                                contPar++;
 73
                            } else if (cont == 3) {
 74
                                resultado = "Triple";
 75
                                contTripe++;
 76
                                contTriple++;
                            } else if (cont == 4) {
   resultado = "full";
 77
 78
 79
                                 contFull++:
                            } else if (cont == 5) {
    resultado = "Quintilla";
 80
 81
                                contOuintilla++:
 82
 83
                            cont = 0;
 84
 85
                            arreglo += base;
 86
 87
 88
                  if (contPar == 2) {
    resultado = "Doble Par";
 89
 90
 91
                       contDosPares++;
 92
                   } else if (contTriple == 1 && contPar == 1) {
 93
                      resultado = "Poker";
 94
                       contPoker++;
 95
                  } else if (resultado.length() == 0) {
 96
                      resultado = "Todos diferentes";
 97
                       contDiferentes++;
 98
                  return resultado;
 99
100
101
102
        }
         <
```

Output - Simulación (run-single)

- 0.91572; Todos diferentes
- 0.86366;Triple
- 0.70815; Todos diferentes
- 0.01044;Doble Par
- 0.66750;Un par
- 0.60333;Triple
- 0.91999;full
- 0.63607;Un par
- 0.49654;Un par
- 0.64219; Todos diferentes
- 0.32663;Doble Par
- 0.85021; Todos diferentes
- 0.68728;Un par
- 0.69570; Todos diferentes
- 0.10220; Doble Par
- 0.16338;Un par
- 0.49551;Un par
- 0.49032; Todos diferentes
- 0.68707;Un par
- 0.46027; Todos diferentes
- 0.12853; Todos diferentes
- 0.56867;Un par
- 0.20464;Un par
- 0.58098;Un par

Diferentes: 25 Pares: 84 Doble Par: 18 Triple: 9 Full: 2 Quintilla: 0

BUILD SUCCESSFUL (total time: 4 seconds)

Tabla de Chi Cuadrado

γ/p	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15
1	10,8274	9.1404	7,8794	6.6349	5,0239	3,8415	2,7055	2,07.22
2	13,8150	11.9827	10,5965	9,2104	73778	5,9915	4,6052	3,7942
3	16,2660	14,3202	12,8381	11,3449	9,3484	7,81.47	6,2514	5,3170
4	18,4662	16,4238	14,8602	13,2767	11,1433	9,4877	7.7794	6,7449
5	20,5147	18.3854	16.7496	15.0863	12,8325	11,0705	9.2363	8,1152
6	22,4575	20,2491	18,5 475	16,8119	14,4494	12,5916	10,6446	9,4461
7	24,3213	22,0402	20.2777	18,4753	16,0128	14,0671	12,0170	10.7479
8	26,1239	23,7742	21.9549	20,0902	17,5345	15,5073	13,3616	12,0271
9	27,8767	25,4625	23,5893	21,6660	19,0228	16,9190	14,6837	13,2880
10	29,5879	27.1119	25,1881	23,2093	20,4832	18,3070	15,9872	14,5339
11	31,2635	28.7 29 1	26.7569	24,7250	21,9200	19,6752	17,2750	15,7671
12	32,9092	30.3182	28.2997	26,2170	23,3367	21,0261	18,5493	16,9893
13	34,5274	31.8830	29.8193	27,6882	24,7356	22,3620	19,8119	18,2020
14	36,1239	33,4262	31,3194	29.1412	26,1189	23,6848	21,0641	19,4062
15	37,6978	34.9494	32,8015	30,5780	27,4884	24,9958	22,3071	20,6030
16	39,2518	36,4555	34,2671	31,9999	28,8453	26,2962	23,5418	21,7931
17	40,7911	37.9462	35,7184	33,4087	30,1910	27,5871	24,7690	22,9770
18	42,3119	39,4220	37,1564	34.8052	31,5264	28,8693	25,9894	24,1555
19	43,8194	40,8847	38,5821	36,1908	32,8523	30,1435	27,2036	25,3289
20	45,3142	42,3358	39,9969	37,5663	34,1696	31,4104	28,4120	26,4976
21	46,7963	43.7749	41,4009	38,9322	35,4789	32,6706	29,6151	27,6620
22	48,2676	45,2041	42,7957	40,2894	36,7807	33,9245	30,8133	28,8224
23	49,7276	46,6231	44,1814	41,6383	38,0756	35,1725	32,0069	29,9792
24	51,1790	48,0336	45,5584	42,9798	39,3641	36,4150	33,1962	31,1325
25	52,6187	49,4351	46.9280	44,3140	40,6465	37,6525	34,3816	32,2825
26	54,0511	50,8291	48.2898	45,6416	41,9231	38,8851	35,5632	33,4295
27	55,4751	52.2152	49.6450	46.9628	43.1945	40.1133	36.7412	34,5736

Tabla de Chi Cuadrado (Para el valor 100)

v/p	0,001	0,0025	0,005	0,01	0,025	0,05	0,1	0,15	0,2
30	59,7022	56,3325	53,6719	50,8922	46,9792	43,7730	40,2560	37,9902	36,2502
31	61,0980	57,6921	55,0025	52,1914	48,2319	44,9853	41,4217	39,1244	37,3591
32	62,4873	59,0461	56,3.280	53,4857	49,4804	46,1942	42,5847	40,2563	38,4663
33	63,8694	60,3953	57.6483	54,7754	50,7251	47,3999	43,7452	41,3861	39,5718
34	65,2471	61.7.382	58.9 637	56,0609	51,9660	48,6024	44,9032	42,5140	40.6756
35	66,6192	63,0760	60.2746	57,3420	53,2033	49,8018	46,0588	43,6399	41,7780
36	67,9850	64,4097	61,5811	58,6192	54,4373	50,9985	47,2122	44,7641	42,8788
37	69,3476	65,7384	62,8832	59,8926	55,6680	52,1923	48,3634	45,8864	43.9782
38	70,7039	67,0628	64,1812	61,1620	56,8955	53,3835	49,5126	47,0072	45,0763
39	72,0550	68,3830	65,4753	62,4281	58,1201	54,5722	50,6598	48,1263	46,1730
40	73,4029	69.6987	66.7660	63,6908	59,3417	55,7585	51,8050	49,2438	47.2685
45	80,0776	76,2229	73,1660	69,9569	65,4101	61,6562	57,5053	54,8105	52,7288
50	86,6603	82,6637	79,4898	76,1538	71,4202	67,5048	63,1671	60,3460	58,1638
55	93,1671	89,0344	85,7491	82,2920	77,3804	73,3115	68,7962	65,8550	63,5772
60	99,6078	95,3443	91,9518	88,3794	83,2977	79,0820	74,3970	71,3411	68.9721
70	112,3167	107,8079	104,2148	100,4251	95,0231	90,5313	85,5270	82,2553	79.7147
80	124,8389	1 20,10 18	116,3209	112,3288	106,6285	101,8795	96,5782	93,1058	90,4053
90	137,2082	132,2554	128,2987	124,1162	118,1359	113,1452	107.5650	103,9040	101,0537
100	149,4488	144,2925	140,1697	135,8069	129,5613	124,3421	118,4980	114,6588	111,6667
120	173,6184	168,0814	163,6485	158,9500	152,2113	146,5673	140,2326	136,0620	132,8063

Tabla de Z

1–α	90%	92%	94%	95%	96%	97%	98%	99%
α	10%	8%	6%	5%	4%	3%	2%	1%
Z _{0/2}	1,645	1,751	1,881	1,960	2,054	2,170	2,326	2,576
Zα	1,282	1,405	1,555	1,645	1,751	1,881	2,054	2,326

Siendo:

 $1-\alpha$ = Nivel de confianza

 α = Nivel de significación