Санкт-Петербургский политехнический университет имени Петра Великого

Институт прикладной математики и механики Кафедра прикладной математики

Интервальный анализ Отчёт по лабораторной работе $\mathbb{N}2$

Выполнил:

Студент: Дамаскинский Константин

Группа: 3630102/70201

Принял:

к. ф.-м. н., доцент

Баженов Андрей Николаевич

Содержание

1.	Постановка задачи	
	1.1. Задача 1)
	1.2. Задача 2)
2.	Теория	2
	2.1. Описание алгоритма GlobOpt)
	2.2. Функция Растригина	2
	2.3. Функция Бута)
3.	Реализация	}
4.	Результаты	}
	4.1. Задача 1	3
	4.2. Задача 2	ŀ
5.	Обсуждение	ó
Ли	итература	ó
6.	Приложения)
\mathbf{C}	писок иллюстраций	
1.	Функция Бута	}
2.	Зависимость параметра ε от размерности матрицы	<u>,</u>
\mathbf{C}	писок таблиц	
1.	Ответ ко второй задаче. Признак Бекка	1

2 ТЕОРИЯ

1. Постановка задачи

Для демонстрации интервальной глобальной оптимизации требуется использовать функцию [globopt]:

$$function[Z, WorkList] = globopt0(X)$$
 (1.0.1)

Данная функция возвращает точку глобального экстремума Z и рабочий список WorkList.

1.1. Задача 1

Рассмотреть пример из лекционного материала (функцию Растригина). Построить рабочий список и график сужения интервала.

1.2. Задача 2

Взять пример с сайта [optfunc]. Изучить сходимость метода.

2. Теория

2.1. Описание алгоритма GlobOpt

Задача глобальной оптимизации состоит в поиске точки глобального минимума целевой функции $f: \mathbf{X} \to \mathbf{R}$ с помощью её интервального сужения $\mathbf{f}: \mathbb{IX} \to \mathbb{IR}$ с наперёд заданной точностью (шириной выходного интервала): wid $\mathbf{f}(\mathbf{X}^*) < \varepsilon$.

Алгоритм [globopt] работает по принципу половинного деления исходного бруса по некоторым координатам с записью пары "(аргумент; значение" в рабочий список. В наивной версии производятся все возможные половинные деления исходного бруса, однако достаточно рассекать только те, на которых достигаются нижний и верхний концы интервальной оценки области значений функции.

2.2. Функция Растригина

Функция задаётся следующим образом:

$$f_R = x^2 + y^2 - \cos(18x) - \cos(18y) \tag{2.2.1}$$

Достигает глобального минимума в точке $x^* = 0$; 0. $f_R(x^*) = -2$.

2.3. Функция Бута

Функция задаётся следующим образом:

$$f(x,y) = (x+2y-7)^2 + (2x+y-5)^2$$
 (2.3.1)

Достигает глобального минимума в точке $x^* = 1; 30.$ $f_R(x^*) = 0.$

Рис. 1. Функция Бута

3. Реализация

Лабораторная работа выполнена с помощью языка программирования Python с использованием библиотеки numpy в редакторе vim. Операционная система Ubuntu 20.04.

Ссылка на исходный код лабораторной работы и отчёта находится в разделе "Приложения".

4. Результаты

4.1. Задача 1

Воспользуемся критерием Баумана. Ясно, что для определения знаков всех крайних матриц достаточно найти наименьшее и наибольшее возможное значение точечного определителя матрицы \mathbf{A} :

$$\det \mathbf{A} = (1 \pm \varepsilon)^2 - (1.1 \pm \varepsilon)(1 \pm \varepsilon) \tag{4.1.1}$$

Разность достигает **наибольшего** значения, когда уменьшаемое достигает **наибольшего** значения, а вычитаемое **наименьшего**.

$$\max \det \mathbf{A} = \varepsilon^2 + 4.1\varepsilon - 0.1 \tag{4.1.2}$$

Разность достигает **наименьшего** значения, когда уменьшаемое достигает **наименьшего** значения, а вычитаемое **наибольшего**.

$$\min \det \mathbf{A} = -2\varepsilon^2 - 2.1\varepsilon - 0.1 \tag{4.1.3}$$

Видно, что минимум строго отрицательный, а значит, нам необходимо определить из 4.1.2, при каких ε наибольший определитель имеет отрицательное значение.

Решая квадратное уравнение, получаем:

$$\varepsilon < \frac{-4.1 + \sqrt{4.1^2 + 0.4}}{2} \approx 0.024$$
 (4.1.4)

Итак, матрица особенна, когда $\varepsilon < 0.024$, следовательно, неособенна, когда $\varepsilon > 0.024$.

4.2. Задача 2

Решение данной задачи основывается на использовании признака Бекка совместно с бинарным поиском: примем сначала интервал неопределённости достаточно большим, чтобы $\bf A$ содержала особенные матрицы (скажем, скажем, [0;200]). ε (то есть текущее приближение его нижней границы) вычисляется как середина интервала неопределённости. Далее, если при текущем ε результат применения признака Бекка отрицательный (то есть матрица неособенна), то сдвигаем правую границу поиска на текущий ε . Иначе сдвигаем левую. Вычисления производились с точностью до третьего знака после запятой. Результаты для разных размерностей матрицы приведены в следующей таблице:

Размерность	ε
2	1.000
3	0.593
4	0.419
5	0.324
6	0.262

Таблица 1. Ответ ко второй задаче. Признак Бекка

Рис. 2. Зависимость параметра ε от размерности матрицы

Замечание 1. Результаты следует интерпретировать как: "При ε бо́льших, чем в таблице, матрица является особенной".

5. Обсуждение

Последовательное решение первой и второй задач наглядно демонстрирует область применения различных критериев. В задачах сравнительно высокой размерности критерий Баумана применять практически нерационально ввиду сверхэкспоненциального роста алгоритмической сложности задачи ($|\text{vert}\mathbf{A}|=2^{n^2}$). В то же время, признак Бекка косвенно является приближённым ввиду численного вычисления обратной матрицы и матричного спектра, что является недостатком метода. Из приведённого графика 4.2 видно, что при росте размерности матрицы начало луча, при попадании ε в который матрица становится особенной, становится всё ближе к нулю, то есть получить вырожденную матрицу становится проще.

6. Приложения

1. Репозиторий с кодом программы и кодом отчёта:

https://github.com/kystyn/interval