Feature Selection for Machine Learning

Emmanuel AFRIFA

Supervisor: Tony TONA LANDU

African Institute for Mathematical Sciences (AIMS-GHANA)

Table of Contents

- 1. Introduction
- 2. Methodology
- 3. Results and Discussions
- 4. Conclusion

Introduction

Figure 1: Overview of feature selection techniques

• The dataset used was the titanic dataset (from Kaggle) and it has 891 observations and 11 features and 1 target which is the *survival* column.

- The dataset used was the titanic dataset (from Kaggle) and it has 891 observations and 11 features and 1 target which is the *survival* column.
- Language and Libraries:
 - Python programing language
 - Pandas
 - Matplotlib and Seaborn
 - Scikit-Learn
 - Xgboost

- The dataset used was the titanic dataset (from Kaggle) and it has 891 observations and 11 features and 1 target which is the *survival* column.
- Language and Libraries:
 - Python programing language
 - Pandas
 - Matplotlib and Seaborn
 - Scikit-Learn
 - Xgboost
- Feature selection Methods:
 - Random Forest
 - Recursive Feature Elimination
 - Xgboost

	Passengerld	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S
5	6	0	3	Moran, Mr. James	male	NaN	0	0	330877	8.4583	NaN	Q
6	7	0	1	McCarthy, Mr. Timothy J	male	54.0	0	0	17463	51.8625	E46	S
7	8	0	3	Palsson, Master. Gosta Leonard	male	2.0	3	1	349909	21.0750	NaN	S
8	9	1	3	Johnson, Mrs. Oscar W (Elisabeth Vilhelmina Berg)	female	27.0	0	2	347742	11.1333	NaN	S
9	10	1	2	Nasser, Mrs. Nicholas (Adele Achem)	female	14.0	1	0	237736	30.0708	NaN	С
10	11	1	3	Sandstrom, Miss. Marguerite Rut	female	4.0	1	1	PP 9549	16.7000	G6	S

Figure 2: Overview of dataset

Results and Discussions

Figure 3: Machine Learning Workflow

Results and Discussions

Figure 4: Feature Selection using Random Forest

 $\it Figure 5: Feature Selection using Xgboost$

Figure 6: Feature Selection using recursive feature elimination (RFE) feature ranking

Results and Discussions

Feature Selection Method	Features	Accuracy	
Without Feature Selection	Pclass, Sex, Age, SibSp, Parch, Ticket, Fare, Embarked	78.21%	
RFE Feature Selection	Pclass, Sex, Age, SibSp, Parch, Ticket, Fare	83.24%	
Random Forest	Sex, Ticket, Fare	84.36%	
Xgboost	Pclass, Sex, Age, SibSp, Fare, Embarked	83.80%	

Table 1: Different feature selection methods and accuracy.

 In this study, we reviewed the different feature selection methods and investigated the impact of three methods (random forests, recursive feature elimination, and Xgboost) on the accuracy of the model.

- In this study, we reviewed the different feature selection methods and investigated the impact of three methods (random forests, recursive feature elimination, and Xgboost) on the accuracy of the model.
- Using Feature selection increased the accuracy of the model in making predictions.

- In this study, we reviewed the different feature selection methods and investigated the impact of three methods (random forests, recursive feature elimination, and Xgboost) on the accuracy of the model.
- Using Feature selection increased the accuracy of the model in making predictions.
- Although the different methods gave different feature rankings, they all gave a higher accuracy than the model built without any feature selection.

- In this study, we reviewed the different feature selection methods and investigated the impact of three methods (random forests, recursive feature elimination, and Xgboost) on the accuracy of the model.
- Using Feature selection increased the accuracy of the model in making predictions.
- Although the different methods gave different feature rankings, they all gave a higher accuracy than the model built without any feature selection.
- The random forest and Xgboost methods give the highest accuracy for this dataset.

References

- Jason Brownlee (2020). How to Choose a Feature Selection Method For Machine Learning
- Kuhn, M., & Johnson, K. (2013). Applied predictive modeling (Vol. 26, p. 13). New York: Springer.
- Ndung'u, R. N. (2022). Data Preparation for Machine Learning Modelling.
- Michal Oleszak (2023). Feature Selection Methods and How to Choose Them
- Titanic Machine Learning from Disaster

