考研高数习题集

枫聆

2021年6月22日

目录

1	极限相关	2
	1.1 1∞ 类型极限	2
	1.2 夹逼准则应用	2
	1.3 级数相关的极限	3
	1.4 换元取极限	4
2	tricks	5
	2.1 一些有趣的不等式	5

极限相关

1^{∞} 类型极限

Example 1.1. 若 $\lim \alpha(x) = 1$, $\lim \beta(x) = \infty$, 且 $\lim \alpha(x)\beta(x) = A$, 其中 A 是一个常数,则

$$\lim \left[1 + \alpha(x)\right]^{\beta(x)} = e^A.$$

hints 带指数形式的表达式,第一想法是把指数拿下来

$$\lim [1 + \alpha(x)]^{\beta(x)} = \lim e^{\beta(x)\ln(1+\alpha(x))} = \lim e^{\beta(x)\alpha(x)} = e^A.$$

夹逼准则应用

Example 1.2. 求极限

$$\lim_{n\to\infty} \left(\frac{n}{n^2+1} + \frac{n}{n^2+2} + \dots + \frac{n}{n^2+n} \right).$$

hints

$$\frac{n^2}{n^2+n} \le s \le \frac{n^2}{n^2+1}.$$

Example 1.3. 求极限

$$\lim_{n \to 0^+} x \left[\frac{1}{x} \right].$$

hints

$$x-1 \leq [x] \leq x$$

Example 1.4. 求极限

$$\lim_{n\to\infty}\frac{2^n}{n!}.$$

hints

$$\left(\frac{2}{1}\right) \times \frac{2}{2} \times \frac{2}{3} \times \dots \times \frac{2}{n}.$$

级数相关的极限

$$\lim_{n \to \infty} \frac{a_1 + a_2 + \dots + a_n}{n} = A.$$

hints 直接考察

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| = \left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_n - A)}{n} \right|$$

用极限的定义等式右边分成两部分,即对任意的 $\varepsilon > 0$,可以找到一个 n_1 ,使得 $n > n_1$ 时有 $|x_n - A| < \varepsilon$,那么

$$\left| \frac{(a_1 - A) + (a_2 - A) + \dots + (a_{n_1} - A)}{n} + \frac{(a_{n_1 + 1} - A) + (a_{n_1 + 2} - A) + \dots + (a_n - A)}{n} \right| \\ \leq \frac{|a_1 - A| + |a_2 - A| + \dots + |a_{n_1} - A|}{n} + \frac{|a_{n_1 + 2} - A| + |a_{n_1 + 1} - A| + \dots + |a_n - A|}{n}$$

上述不等式右边第一项,形如 $\frac{C}{n}$,因为先对任意 $n>n_1$ 都有上述不等式成立,那么只需要让 n 取的大一点,就能使得 $\frac{C}{n}<\varepsilon$ (阿基米德公理). 右边第二项显然小于 $\frac{n-n_1}{n}\varepsilon$,于是综上

$$\left| \frac{a_1 + a_2 + \dots + a_n}{n} - A \right| < \varepsilon + \frac{n - n_1}{n} \varepsilon < 2\varepsilon.$$

如果题目中没有直接给出极限的具体值,我们可以用 O.Stolz 定理先猜出来,然后用初等方法来验证,再根据极限的唯一性,就得到了答案. 把 a_n 换成形式,例如

$$\lim_{n \to \infty} \frac{1 + \sqrt[2]{2} + \dots + \sqrt[n]{n}}{n} = \lim_{n \to \infty} \sqrt[n]{n} = 1.$$

Example 1.6. 求极限

$$x_n = \frac{1^k + 2^k + \dots + n^k}{n^{k+1}}.$$

hints 用 O.Stolz 定理考虑

$$\lim_{n \to \infty} \frac{n^k}{n^{k+1} - (n-1)^{k+1}}$$

分母二项式展开合并极有 $\lim \frac{n^k}{(k+1)n^k+\cdots} = \frac{1}{k+1}$. 这道题初等方法似乎不能很好的把握,用和式的方法写出来其实就是黎曼积分的定义

$$\lim_{n \to \infty} \frac{1}{n} \sum_{k=1}^{k} \frac{k}{n} = \int_{0}^{1} x^{k} = \frac{1}{k+1}.$$

级数相关的问题往往可以尝试考虑用定积分的思路来解决. 下面是 $1^k+2^k+\cdots+n^k$ 的转换思路

$$\sum_{i=1}^{n} i^{k} = n^{k+1} \frac{1}{n} \sum_{i=1}^{n} \left(\frac{i}{n}\right)^{k} \sim_{\infty} n^{k+1} \int_{0}^{1} x^{k} dx = \frac{n^{k+1}}{k+1}$$

换元取极限

Example 1.7. 求极限

$$\lim_{x \to 0} \frac{\sqrt[m]{x+1} - 1}{x}, \ m \in \mathbb{N}.$$

hints 设 $y = \sqrt[m]{x+1} - 1$, 显然 y 在 x = 0 处连续,所以当 $x \to 0$ 时有 $y \to 0$,那么此时的极限就变成了

$$\lim_{y \to 0} \frac{y}{(y+1)^m - 1} = \frac{1}{m}.$$

这样上下都变成我们熟悉的多项式,分母二项式展开.

Example 1.8. 求极限

$$\lim_{x \to 0} \frac{(x+1)^{\frac{n}{m}} - 1}{x}.$$

hints 还是使得 $y = (x+1)^{\frac{1}{m}} - 1$,那么就变成了

$$\lim_{y \to 0} \frac{(1+y)^n - 1}{(1+y)^m - 1} = \lim_{y \to 0} \frac{(1+y)^n - 1}{y} \frac{y}{(1+y)m - 1} = \frac{n}{m}.$$

\mathbf{tricks}

一些有趣的不等式

Proposition 2.1.

$$a^{\frac{1}{n}} - 1 < \frac{a-1}{n}, \ a > 1.$$

hints 伯努利不等式.

$$(1+x)^n \le 1 + nx, \ n \ge 0, x \le -1.$$

使得 $(1+x)=a^{\frac{1}{n}}$, 即可得到上式.