

DATA STRUCTURES AND ALGORITHMS

Lecture 10: Trees

Lecturer: Mohsin Abbas

National University of Modern Languages, Islamabad

TREES

- A rooted tree data structure stores information in nodes
- Similar to linked lists:
 - There is a first node, or root
 - Each node has variable number of references to successors
 - Each node, other than the root, has exactly one node pointing to it

TERMINOLOGY: PARENT CHILD RELATIONS

- All nodes have zero or more child nodes or children
 - I has three children: J, K and L
- For all nodes other than the root node, there is one parent node
 - H is the parent I

TERMINOLOGY: DEGREE

- The degree of a node is defined as the number of its children
 - deg(I) = 3
- Nodes with the same parent are siblings
 - J, K, and L are siblings

- Nodes with degree zero are also called leaf nodes
- All other nodes are said to be internal nodes, that is, they are internal to the tree

TERMINOLOGY: LEAF NODES EXAMPLES

• Leaf nodes

Wesley-Hunt, G. D.; Flynn, J. J. "Phylogeny of the Carnivora: basal relationships among the Carnivoramorphans, and assessment of the position of 'Miacoidea'

TERMINOLOGY: INTERNAL NODES EXAMPLE

Internal nodes

TERMINOLOGY: PATH

- A path is a sequence of nodes (a_0, a_1, \ldots, a_n)
 - Where $a_k + 1$ is a child of a_k is
- The length of this path is: n = |nodes in the path| 1
 - For example, the path (B, E, G) has length 2

TERMINOLOGY: PATH EXAMPLE

• Paths of length 10 (11 nodes) and 4 (5 nodes)

- For each node in a tree, there exists a unique path from the root node to that node
- The length of this path is the depth of the node, e.g.,
 - E has depth 2
 - L has depth 3

TERMINOLOGY: DEPTH EXAMPLE

• Nodes of depth up to 17

- The height of a tree is defined as the maximum depth of any node within the tree
- The height of a tree with one node is 0
 - Just the root node
- For convenience, we define the height of the empty tree to be -1

TERMINOLOGY: HEIGHT EXAMPLE

• Height of this tree is 17

TERMINOLOGY: ANCESTORS AND DESCENDANTS

THE STATE OF MODERN LAND

- If a path exists from node a to node b
 - a is an ancestor of b
 - b is a descendent of a
- Thus, a node is both an ancestor and a descendant of itself
 - We can add the adjective strict to exclude equality
 - a is a strict descendent of b if a is a descendant of b but a \neq b
- The root node is an ancestor of all nodes

TERMINOLOGY: ANCESTORS AND DESCENDANTS EXAMPLE

• The descendants of node B are C, D, E, F, and G

The ancestors of node I are H and A

TERMINOLOGY: DESCENDANTS EXAMPLE

• All descendants (including itself) of the indicated node

TERMINOLOGY: ANCESTORS EXAMPLE

• All ancestors (including itself) of the indicated node

- Another approach to a tree is to define the tree recursively
 - A degree-0 node is a tree
- A node with degree n is a tree if it has n children
 - All of its children are disjoint trees (i.e., with no intersecting nodes)
- Given any node a within a tree with root r, the collection of a and all of its descendants is said to be a subtree of the tree with root a

TREE PROPERTIES

Property

Number of nodes

Height

Root Node

Leaves

Ancestors of H

Descendants of B

Siblings of E

Left subtree

Value

EXAMPLE: HTML

HTML document has a tree structure

EXAMPLE: HTML

HTML document has a tree structure

EXAMPLE: HTML

The nested tags define a tree rooted at the HTML tag

BINARY TREE

BINARY TREE

- In a binary tree each node has at most two children
 - Allows to label the children as left and right

- Likewise, the two sub-trees are referred as
 - Left-hand subtree
 - Right-hand subtree

BINARY TREE: EXAMPLE

• Some variations on binary trees with five nodes

BINARY TREE: FULL NODE

• A full node is a node where both the left and right sub-trees are non-empty trees

- A full binary tree is where each node is:
 - A full node, or
 - A leaf node
- Full binary tree is also called proper binary tree, strictly binary tree or 2-tree

- A complete binary tree of height h is a binary tree where
 - All leaf nodes have the same depth h
 - All other nodes are full

COMPLETE BINARY TREE: RECURSIVE DEFINITION

THE STATE OF MODERN LAND OF MODERN L

- A binary tree of height h = 0 is perfect
- A binary tree with height h > 0 is perfect
 - If both sub-trees are prefect binary trees of height h = 1

COMPLETE BINARY TREE: EXAMPLE

• Complete binary trees of height h = 0, 1, 2, 3 and 4

BINARY TREE: PROPERTIES

• A complete binary tree with height h has 2h leaf nodes

BINARY TREE: PROPERTIES

- A complete binary tree with height h has 2h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes

$$n = 2^0 + 2^1 + 2^2 + \ldots + 2^h = \sum_{j=0}^h 2^j = 2^{h+1} - 1$$

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has $2^{h+1} 1$ nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A complete binary tree with n nodes has height $log_2(n + 1) 1$

$$n = 2^{h+1} - 1$$

 $2^{h+1} = n + 1$
 $h + 1 = log_2(n + 1)$
 $\Rightarrow h = log_2(n + 1) - 1$

- A complete binary tree with height h has 2^h leaf nodes
- A complete binary tree of height h has 2^{h + 1} 1 nodes
 - Number of leaf nodes: L = 2^h
 - Number of internal nodes: 2^h 1
 - Total number of nodes: $2L-1 = 2^{h+1} 1$
- A complete binary tree with n nodes has height $log_2(n + 1) 1$
- Number n of nodes in a binary tree of height h is at least h+1 and at most 2^{h + 1} - 1

- Almost complete binary tree of height h is a binary tree in which
 - 1. There are 2^d nodes at depth d for d = 1, 2, ..., h-1
 - > Each leaf in the tree is either at level h or at level h 1
 - 2. The nodes at depth h are as far left as possible

Missing node towards the right

- Almost complete binary tree of height h is a binary tree in which
 - 1. There are 2^d nodes at depth d for d = 1, 2, ..., h-1
 - > Each leaf in the tree is either at level h or at level h 1
 - 2. The nodes at depth h are as far left as possible (Formal ?)

Missing node towards the right

Condition 2: The nodes at depth h are as far left as possible

- If a node p at depth h−1 has a left child
 - Every node at depth h−1 to the left of p has 2 children
- If a node at depth h−1 has a right child
 - It also has a left child

(condition 2 violated)

FULL VS. ALMOST COMPLETE BINARY TREE

- Total number of nodes n are between
 - Complete binary tree of height h-1, i.e., 2^h nodes
 - Complete binary tree of height h, i.e., 2^{h+1} -1 nodes
- Height h is the largest integer less than or equal to $log_2(n)$

- Balanced binary tree
 - For each node, the difference in height of the right and left sub-trees is no more than one
- Completely balance binary tree
 - Left and right sub-trees of every node have the same height

BALANCED BINARY TREE: EXAMPLE

A balanced binary tree

An unbalanced binary tree

- In this lecture we have studied:
 - Tree Data Structure
 - Terminologies of Tree
 - Binary Tree
 - Full, Complete and Almost Complete Binary Tree
 - Balanced and Unbalanced Tree

Question?