## CS273B: Deep learning for Genomics and Biomedicine

Lecture 2: Convolutional neural networks and applications to functional genomics 09/28/2016

Anshul Kundaje, James Zou, Serafim Batzoglou

#### Outline

- Anatomy of the human genome
- Introduction to next-gen sequence and protein-DNA binding maps
- Convolutional neural networks for predicting protein-DNA binding maps from DNA sequence
- Multi-modal convolutional neural networks for predicting protein-DNA binding maps
- Convolutional neural networks on images

## Anatomy of the human genome

TGCCAAGCAGCAAAGTTTTGCTGCTGTTTATTTTTGTAGCTCTTACTATATTCT ACTTTTACCATTGAAAATATTGAGGAAGTTATTTATATTTCTATTTTTATATAT TATATATTTTATGTATTTTAATATTACTATTACACATAATTATTTTTTTATATATATGA AGTACCAATGACTTCCTTTTCCAGAGCAATAATGAAATTTCACAGTATGAAA ATGGAAGAATCAATAAAATTATACGTGACCTGTGGCGAAGTACCTATCGTG GACAAGGTGAGTACCATGGTGTATCACAAATGCTCTTTCCAAAGCCCTCTCC GCAGCTCTTCCCCTTATGACCTCTCATCATGCCAGCATTACCTCCCTGGACCC CTTTCTAAGCATGTCTTTGAGATTTTCTAAGAATTCTTATCTTGGCAACATCTT GTAGCAAGAAATGTAAAGTTTTCTGTTCCAGAGCCTAACAGGACTTACATA TTTGACTGCAGTAGGCATTATATTTAGCTGATGACATAATAGGTTCTGTCATA GTGTAGATAGGGATAAGCCAAAATGCAATAAGAAAAACCATCCAGAGGAA ACTCTTTTTTTTTTTTTTTTTTTTTTTTCCAGATGGAGTCTCGCACTTC TCTGTCACCCGGGCTGGAGCGCAGTGGTGCAATCTTGGCTCACTGCAACCT CCACCTCCTGGGTTCAGGTGATTCTCCCACCTCAGCCTCCCGAGTAGTAGCT GGAATTACAGGTGCGCGCTCCCACACCTGGCTAATTTTTTTGTATTCTTAGTA GAGATGGGGTTTCACCATGTTGGCCAGGCTGGTCTCAAACTCCTGCCCTCA GGTGATCTGCCCACCTTGGCCTCCCAGTGTTGGGTTTACAGGCGTGAGCCA AGGCTGAGGAACTGGGCATCTGGGTTGCTTCTGGCCAGACCACCAGGCT CTTGAATCCTCCCAGCCAGAGAAAGAGTTTCCACACCAGCCATTGTTTTCCT CTGGTAATGTCAGCCTCATCTGTTGTTCCTAGGCTTACTTGATATGTTTGTAA ATGACAAAAGGCTACAGAGCATAGGTTCCTCTAAAATATTCTTCTTCCTGTGT CAGATATTGAATACATAGAAATACGGTCTGATGCCGATGAAAATGTATCAGCT TCTGATAAAAGGCGGAATTATAACTACCGAGTGGTGATGCTGAAGGGAGAC ACAGCCTTGGATATGCGAGGACGATGCAGTGCTGGACAAAAGGCAGGTAT CTCAAAAGCCTGGGGAGCCAACTCACCCAAGTAACTGAAAGAGAGAAACA AACATCAGTGCAGTGGAAGCACCCAAGGCTACACCTGAATGGTGGGAAGC TCTTTGCTGCTATATAAAATGAATCAGGCTCAGCTACTATTATT ......

#### The Human Genome



2003

~ 3 billion nucleotides

## DNA: the molecule of heredity



#### Chromosomes in humans





TGCCAAGCA
|||||||||
ACGGTTCGT

TGCCAAGCA
|||||||||
ACGGTTCGT

U.S. National Library of Medicine

- Humans are diploid (2 copies of each chromosome)
- 22 pairs of autosomes
- Sex chromosomes: female (X,X), male (X,Y)
- Mitochondrial DNA (circular, many copies per cell)
- Diploid Human genome = ~3 billion bp X 2

### Functional elements in the genome



Chromatin (epigenetic) modifications

### One genome Many cell types

ACCAGTTACGACGGTCA
GGGTACTGATACCCCAA
ACCGTTGACCGCATTTA
CAGACGGGGTTTGGGTT
TTGCCCCACACAGGTAC
GTTAGCTACTGGTTTAG
CAATTTACCGTTACAAC
GTTTACAGGGTTACGGT
TGGGATTTGAAAAAAAG
TTTGAGTTGGTTTTTC
ACGGTAGAACGTACCGT
TACCAGTA







# Introduction to functional genomics & next-gen sequencing

#### What is Functional Genomics?

#### Function?







2003

Genomic sequence => Static

What is the context-specific function of different regions (bases) of the genome? How to explain diversity of cell-types? How to explain dynamic cellular repsonse?

### Sequencing technologies



Sanger DNA sequencing

1977-1990s



**DNA Microarrays** 

Since mid-1990s



2<sup>nd</sup>-generation DNA sequencing

Since ~2007



3<sup>rd</sup>-generation & single-molecule DNA sequencing

Since ~2010

Since 2005, many DNA sequencing instruments have been described and released. They are based on a few different principles



Synthesis / ligation



SMRT cell



Nanopore

Sequencing by synthesis ("massively parallel sequencing") provides greatest throughput, and is the most prevalent today

#### DNA sequencing: DNA Polymerase



DNA polymerase moves along the template in one direction, integrating complementary nucleotides as it goes

1. Take DNA sample, which includes many copies of the genome, and chop it into single-stranded fragments ("templates")

E.g. with ultrasound waves, water-jet shearing (pictured), divalent cations





Picture: http://www.jgi.doe.gov/sequencing/education/how/how\_1.html

3. Make copies so that each template becomes a "cluster" of clones



4. Repeatedly inject mixture of *color-labeled* nucleotides (A, C, G and T) and DNA polymerase. When a complementary nucleotide is added to a cluster, the corresponding color of light is emitted. (snap) Capture images of this as it happens. **Polymerase** Shown here is just the first Pretend these are clusters sequencing cycle

5. Line up images and, for each cluster, turn the series of light signals into corresponding series of nucleotides



5. Line up images and, for each cluster, turn the series of light signals into corresponding series of nucleotides



"Base caller" software looks at this cluster across all images and "calls" the complementary nucleotides: TACAC, corresponding to the template sequence



TACAC is a "sequence read," or "read." Actual reads are usually 100 or more nucleotides long.

#### Mapping short-reads to reference genome

#### Naïve method

- Scan whole genome with every read
- Problem: Too slow

#### **Indexing + Alignment approach**

- Create a compressed reference 'genome index'
  - a map of where each short subsequence of length 'k' hits the genome
- Map reads using index via smart alignment algorithms and data structures (e.g suffix array)
- Allow for errors: insertions, deletions, mismatches in alignments

#### **Run times for indexing alignment**

- Indexing human genome ~ 3 hours
- Alignment speed: 2 million 35 bp reads on 1 processor ~20 mins
- Alignment speed depends on error rate

#### **ACGTTACCGAATCGATCAAGTCGA**







Nature Reviews | Genetics

http://www.nature.com/nrg/journal/v14/n5/box/nrg3433 BX2.html



#### Using sequencing for functional genomics

Genome-wide maps of biochemical activity



## Protein-DNA binding maps Chromatin immunoprecipitation (ChIP-seq)



Protein-DNA binding maps
Maps of histone modifications
Maps of histone variants



Nature Reviews | Genetics



### Genome-wide ChIP-seq signal maps



# DNA sequence determinants of protein-DNA interactions



#### TRANSCRIPTION FACTOR BINDING

Regulatory proteins called <u>transcription factors</u> (TFs) bind to high affinity sequence patterns (<u>motifs</u>) in regulatory DNA

## Sequence motifs

$$p_i(x_i=a_i)$$

| GGATAA |
|--------|
| CGATAA |
| CGATAT |
| GGATAT |
| GGAIAI |

Set of aligned sequences
Bound by TF

| А | 0   | 0 | 1 | 0 | 1 | 0.5 |
|---|-----|---|---|---|---|-----|
| С | 0.5 | 0 | 0 | 0 | 0 | 0   |
| G | 0.5 | 1 | 0 | 0 | 0 | 0   |
| Т | 0   | 0 | 0 | 1 | 0 | 0.5 |

Position weight matrix (PWM)



https://en.wikipedia.org/wiki/Sequence logo

The information content (y-axis) of position i is given by: [2]

$$R_i = \log_2(4) - (H_i + e_n)$$

where  $H_i$  is the uncertainty (sometimes called the Shannon entropy) of position i

$$H_i = -\sum f_{a,i} imes \log_2 f_{a,i}$$

. The height of letter  $m{a}$  in column  $m{i}$  is given by

$$\text{height} = f_{a,i} \times R_i$$



..GTGAACTGGCTG..

## Sequence motifs

Accounting for genomic background nucleotide distribution

Position-specific scoring matrix (PSSM)

$$\log_2\left(\frac{p_i(x_i=a_i)}{p_{ba}(x_i=a_i)}\right)$$

| А | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.6  |
|---|------|------|------|------|------|------|
| С | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |



## Scoring a sequence with a motif PSSM

#### **PSSM** parameters



One-hot encoding (X)
Input sequence

G
C
A
T
T
A
C
C
G
A
T
A
A

G

## Convolution: Scoring a sequence with a PSSM



## Convolution





Scoring weights W

| Α | -5.7 | -3.2 | 3.7  | -3.2 | 3.7  | 0.6  |
|---|------|------|------|------|------|------|
| C | 0.5  | -3.2 | -3.2 | -3.2 | -3.2 | -5.7 |
| G | 0.5  | 3.7  | -3.2 | -3.2 | -3.2 | -5.7 |
| Т | -5.7 | -3.2 | -3.2 | 3.7  | -3.2 | 0.5  |

One-hot encoding (X)

Input sequence

## Convolution

**Motif match Scores** sum(W \* x)

Scoring weights W



## Thresholding scores



# Convolutional neural networks for learning from DNA sequence

## Learning patterns in regulatory DNA sequence

 Positive class of genomic sequences bound a transcription factor of interest

Can we learn patterns in the DNA sequence that distinguish these 2 classes of genomic sequences?

 Negative class of genomic sequences not bound by a transcription factor of interest





#### **HOMOTYPIC MOTIF DENSITY**

Regulatory sequences often contain more than one binding instance of a TF resulting in homotypic clusters of motifs of the same TF



#### **HETEROTYPIC MOTIF COMBINATIONS**

Regulatory sequences often bound by <u>combinations of TFs</u> resulting in <u>heterotypic clusters of motifs of different TFs</u>



#### SPATIAL GRAMMARS OF HETEROTYPIC MOTIF COMBINATIONS

Regulatory sequences are often bound by <u>combinations of TFs</u> with specific <u>spatial and</u> <u>positional constraints</u> resulting in distinct <u>motif grammars</u>

# A simple classifier (An artificial neuron)

$$Y = F(x_1, x_2, x_3)$$





**Training** the neuron means learning the optimal w's and b

# A simple classifier (An artificial neuron)



**Training** the neuron means learning the optimal w's and b

# A simple classifier (An artificial neuron)



<u>Training</u> the neuron means learning the optimal w's and b

## Artificial neuron can represent a motif



## Biological motivation of DCNN



## Deep convolutional neural network



<sup>\*</sup>for genomics, a stride of 1 for conv layers is recommended

### Multi-task CNN





#### 日本語要約

#### Predicting the sequence specificities of DNA- and RNA-binding proteins by deep learning

Babak Alipanahi, Andrew Delong, Matthew T Weirauch & Brendan J Frey

Affiliations | Contributions | Corresponding author

Nature Biotechnology **33**, 831–838 (2015) | doi:10.1038/nbt.3300 Received 28 November 2014 | Accepted 25 June 2015 | Published online 27 July 2015









## Regulatory DNA sequence simulator + simple CNN models + hands tutorial

http://kundajelab.github.io/dragonn/

Many open questions on what are optimal CNN (or other deep learning) architectures for learning from DNA sequence data

## **ENCODE-DREAM** *in vivo* Transcription Factor Binding Site Prediction Challenge











**IBM Research** 

HelmholtzZentrum münchen
Deutsches Forschungszentrum für Gesundheit und Umwelt



To receive email updates about this Challenge including a launch announcement, please pre-register.

#### Pre-register

Pre-registration open Launch: Late June 2016 Close: September 30, 2016

http://dreamchallenges.org/

## Additional optional readings

### In Canvas

| Name ▲                                                   | Date Created | Date Modified | Modified By    | Size   | ©  |
|----------------------------------------------------------|--------------|---------------|----------------|--------|----|
| 2004-LifeAndItsMolecules.pdf                             | 11:23am      | 11:23am       | Anshul Kundaje | 637 KB | F  |
| 2010-Review-Genomics.pdf                                 | 11:23am      | 11:23am       | Anshul Kundaje | 549 KB | F  |
| Backpropagation In Convolutional Neural Networks - DeepG | 11:19am      | 11:19am       | Anshul Kundaje | 675 KB | PD |
| Guide2ConvArithmetic.pdf                                 | 11:19am      | 11:19am       | Anshul Kundaje | 879 KB | PD |
| Understanding Convolutions - colah's blog.pdf            | 11:19am      | 11:19am       | Anshul Kundaje | 2.2 MB | PD |