Representations of the oriented Brauer category

Andrew Reynolds

Oriented Brauer diagrams

 $\langle\downarrow,\uparrow\rangle=$ the set of all words in the alphabet $\{\downarrow,\uparrow\}$, including the empty word \varnothing .

Let $a,b \in \langle\downarrow,\uparrow\rangle$. An oriented Brauer diagram of type $a\to b$ is drawn by aligning the words a,b in two rows, b above a, and drawing consistently oriented strands between the two rows connecting pairs of vertices.

Example

is a diagram of type $\uparrow\downarrow\downarrow\rightarrow\downarrow\uparrow\downarrow$.

The category \mathcal{OB}

Let k be an algebraically closed field, and let $\delta \in k$. Let \mathcal{OB} be the hom-finite k-linear category with

Objects: $\langle \downarrow, \uparrow \rangle$

Morphisms: $\mathsf{Hom}_{\mathcal{OB}}(\mathsf{a},\mathsf{b})$ has basis given by oriented Brauer diagrams $\mathsf{a}\to\mathsf{b}$ (finite dimensional).

Composition: D_1, D_2 diagrams. Stacking D_1 on top of D_2 produces an oriented Brauer diagram, with some number of "bubbles". $D_1 \circ D_2$ is obtained from this new diagram by removing all such bubbles, multiplying by δ for each bubble removed.

The category \mathcal{OB}

Example

History

 \mathcal{OB} is the free \Bbbk -linear symmetric monoidal category generated by a single object \uparrow of dimension δ and its dual \downarrow .

The endomorphism algebras in \mathcal{OB} are isomorphic to the walled Brauer algebras $B_{r,s}(\delta)$ for various r,s (Turaev, Koike - 1989).

The Karoubi envelope of \mathcal{OB} is Deligne's tensor category $\underline{\mathsf{Rep}}(\mathsf{GL}_\delta)$.

Goal

Study representations of \mathcal{OB} , ie. \mathbb{k} -linear functors $\mathcal{OB} \to \mathbb{k}$ -Vec_{fd}.

Think of these as locally finite dimensional modules over the locally unital algebra OB associated to this &-linear category: $OB = \bigoplus_{a,b \in \langle \downarrow,\uparrow \rangle} \mathsf{Hom}_{\mathcal{OB}}(a,b)$ (multiplication induced by composition).

System of idempotents: $\{1_a:a\in\langle\downarrow,\uparrow\rangle\}$

(orientations determined by a)

Main results of my thesis

- ▶ I classify the simple *OB*-modules.
- ► I construct a categorical action of a certain (type A) Kac-Moody algebra on OB -mod in the sense of Rouquier.
- ▶ I verify that one obtains a categorification of the tensor product $V(-\varpi_{m'}) \otimes V(\varpi_m)$ in this way.
- ▶ I give applications to the crystal graph structure and character formulae in characteristic zero.

Triangular decomposition

$$\mathbb{K} = \bigoplus_{\mathsf{a} \in \langle \downarrow, \uparrow \rangle} \Bbbk \cdot 1_\mathsf{a}$$

 $OB^+ = {
m span}$ of diagrams with no cups and no crossings among vertical strands.

 $OB^-={
m span}$ of diagrams with no caps and no crossings among vertical strands.

 $OB^0 = \text{span of diagrams with no cups or caps.}$

Proposition

 $OB \cong OB^- \otimes_{\mathbb{K}} OB^0 \otimes_{\mathbb{K}} OB^+$ as vector spaces.

OB^0 and the symmetric groups

$$OB^0 \cong \bigoplus_{r,s \geq 0} \mathsf{Mat}_{\binom{r+s}{r}}(\Bbbk S_r \otimes \Bbbk S_s)$$

 OB^0 is Morita equivalent to $\bigoplus_{r,s\geq 0} \mathbb{k} S_r \otimes \mathbb{k} S_s$.

Simple *OB*⁰-modules

- ▶ A partition is identified with its Young diagram as usual. It is called *p*-regular if no *p* rows have the same length (every partition is 0-regular).
- ▶ Λ = the set of *p*-regular bipartitions, ie. pairs of partitions, both of which are *p*-regular.
- ▶ Simple OB^0 -modules: $\{D(\lambda) : \lambda \in \Lambda\}$

Verma construction

V an OB^0 -module.

Let caps act as zero to make into $OB^0 \otimes_{\mathbb{K}} OB^+$ -module.

Then induce to an action of $OB^- \otimes_{\mathbb{K}} OB^0 \otimes_{\mathbb{K}} OB^+ \cong OB$.

This construction defines an exact functor

$$\Delta: OB^0\operatorname{\mathsf{-mod}} o OB\operatorname{\mathsf{-mod}}$$
 .

$$\overline{\Delta}(\lambda) = \Delta D(\lambda)$$
 (proper standard modules)

Remark

If $\delta \notin \mathbb{Z} \cdot 1_{\mathbb{k}}$, then Δ is an equivalence of categories.

Assume $\delta \in \mathbb{Z} \cdot 1_{\mathbb{k}}$ from now on.

Classification of simple OB-modules

Theorem

Let $\lambda \in \Lambda$. Then $\overline{\Delta}(\lambda)$ is an indecomposable module which has a unique maximal submodule. Let $L(\lambda)$ denote its unique simple quotient. Then $\{L(\lambda) : \lambda \in \Lambda\}$ is a complete set of inequivalent simple OB-modules.

Remarks

- $ightharpoonup \overline{\Delta}(\lambda)$ often does not possess a composition series.
- ▶ OB-mod is a locally standardly stratified category, which is a generalization of the notion of a highest weight category.

Applications (p = 0)

Markers

Another way to represent a bipartition visually. Decorate the integer vertices of the y-axis with the symbols x, x, y, x as follows:

Marker of a bipartition

Given a bipartition (λ, μ) , move the > marks downward according to the parts of λ , and move the < marks upward according to the parts of μ .

Example

If $\delta=0$, the marker of the bipartition (\Box , \Box) is

Left arc diagram

Given the marker for a bipartion λ , its left arc diagram (denoted by Δ) is obtained by drawing non-crossing rays and arcs in the left half plane incident to some subset of the vertices in the marker in such a way that

- vertices at the bottom ends of arcs are labelled >;
- vertices at the top ends of arcs are labelled <;</p>
- vertices at the right ends of rays are labelled either by < or by > in such a way that all rays labelled > appear above all rays labelled <;</p>
- all vertices not at the ends of arcs or rays are labelled either by o or by x.

Example

Composite diagram

$\Delta \mu$ is well-oriented if

- each arc has exactly one label < and one label > making it into either a counterclockwise or clockwise arc;
- ▶ all rays labelled > are above all rays labelled <.</p>

Composition multiplicities

Theorem

$$[\overline{\Delta}(\lambda):L(\mu)]=egin{cases} 1 & ext{if } \widehat{\mu\lambda} & ext{is well-oriented} \ 0 & ext{otherwise} \end{cases}$$

Proof

This is an application of the functors constructed to exhibit the categorical action and the underlying crystal graph.

Example

Let $\delta=0$. We determine all the composition factors of $\overline{\Delta}(\square,\square)$. The marker for $\lambda=(\square,\square)$ is $\stackrel{\checkmark}{>}$ (where all vertices above these are $\stackrel{\checkmark}{>}$ and all vertices below these are $\stackrel{\checkmark}{>}$). The possible well-oriented composite diagrams $\mbox{$\mathcal{Q}$}\mbox{$\lambda$}$ are

where $n \ge 0$ and all vertices not shown are at the ends of rays.

Example

The corresponding μ 's are

