第十章 多元函数的极限与连续

10.1 n维欧氏空间

例 1 对 R^2 中的集合 $A = \{(\frac{n-1}{n}, \frac{m+1}{m}) | m, n\}$,求 A° ,A'和 \bar{A} .

 \mathbf{R} $A' = \{(1, \frac{m+1}{m}) | m$ 为正整数 $\} \cup \{(\frac{n-1}{n}, 1) | n$ 为正整数 $\} \cup \{(1, 1)\}.$

 $\overline{A} = A \cup A'$

 $A^{\circ} = \varnothing$

 $\partial A = \overline{A} \setminus A^\circ = \overline{A} = \{(\tfrac{n-1}{n}, \tfrac{m-1}{m}) | m, n$ 为正整数 $\} \cup \{(1, \tfrac{m+1}{m}) | m$ 为正整数 $\} \cup \{(\tfrac{n-1}{n}, 1) | n$ 为正整数 $\} \cup \{(1, 1)\}.$

证明A是闭集可以尝试以下想法: (1)证明 $A = \overline{A}$ 或 $A' \subseteq A$; (2)证明 A^c 是开集; (3)证明A是列闭集.

例 2 设A是 \mathbb{R}^n 的子集,证明: (1)(A')' $\subseteq A'$; (2) A'是闭集.

证 A'是闭集 $\Leftrightarrow A' = \overline{A'} \Leftrightarrow A' = A' \cup (A')' \Leftrightarrow (A')' \subseteq A'$. 因此只需证明(1)和(2)中的一个即可. 下面证明(2),只需证明A'列闭. 任取A'中一个收敛点列 $\{X_m\}$,设 $\lim_{m \to \infty} X_m = X_0$,若 X_0 等于某个 X_m ,则 $X_0 \in A'$,下设 $X_m \neq X_0$, $m = 1, 2, \cdots$. 因为 $X_m \in A'$,所以 $B(X_m, r_m) \cap (A \setminus \{X_m\}) \neq \emptyset$,其中 $r_m = \frac{1}{2}|X_m - X_0| > 0$. 任意取定一点 $Y_m \in B(X_m, r_m) \cap (A \setminus \{X_m\})$,则 $Y_m \in A$,由 $|Y_m - X_0| \geqslant |X_m - X_0| - |X_m - Y_m| > \frac{1}{2}|X_m - X_0| > 0$ 知 $Y_m \neq X_0$, $m = 1, 2, \cdots$. 再由 $|Y_m - X_0| \leqslant |X_m - X_0| + |X_m - Y_m| < \frac{3}{2}|X_m - X_0|$ 和 $\lim_{m \to \infty} X_m = X_0$ 和 $\lim_{m \to \infty} Y_m = X_0$. 因此 $X_0 \in A'$. 这就证明了A'列闭,从而A'是闭集.

例 3 设A和B都是 \mathbb{R}^n 的子集, 求证: 如果 $A' \subset B \subset A$, 则B是闭集.

证 因为 $B \subseteq A$, 所以 $B' \subseteq A'$. 于是 $B' \subseteq B$, 故B是闭集.

例 4 设A是 \mathbb{R}^m 中的闭集, B是 \mathbb{R}^n 中的闭集, 求证: $A \times B$ 是 \mathbb{R}^{m+n} 中的闭集.

证 任取 $A \times B$ 中的一个收敛点列 $\{(X_k, Y_k)\}$, 其中 $X_k \in A$, $Y_k \in B$, $k = 1, 2, \cdots$, 则 $\{X_k\}$ 是A中的收敛点列, $\{Y_k\}$ 是B中的收敛点列。由A和B是闭集知A和B是列闭集,从而 $\{X_k\}$ 收敛于A中点 X_0 , $\{Y_k\}$ 收敛于B中点 Y_0 . 因此, $\{(X_k, Y_k)\}$ 收敛于 $A \times B$ 中点 (X_0, Y_0) . 由此知 $A \times B$ 是列闭集,故 $A \times B$ 是 \mathbb{R}^{m+n} 中的闭集.

例 5 判断下列命题是否成立,说明理由.

- (1) 设A是 \mathbb{R}^n 的非空子集,如果A中任意基本列的极限仍属于A,则A是闭集.
- (2) 设A和B都是 \mathbb{R}^n 的子集,如果A和B都是道路连通集且 $A \cap B$ 非空,则 $A \cup B$ 也是道路连通集。
- (3) 设A和B都是 \mathbb{R}^n 中的区域,如果 $A \cap B$ 非空,则 $A \cup B$ 和 $A \cap B$ 也都是 \mathbb{R}^n 中的区域.
- (4) 如果 \mathbb{R}^n 的子集A是无限集,则A的任意无限子集都有聚点的充分必要条件是A有界.
- (5) 如果A是 \mathbb{R}^n 的非空真子集,则 $\partial A \neq \emptyset$.
- (6) 如果A是 \mathbb{R}^n 的非空真子集,则必有 $A' \neq A^\circ$.
- 答 (1) 成立. 因为A中任意基本列的极限仍属于A,所以由柯西收敛原理知A中任意收敛点列的极限仍属于A,即A列闭,从而A是闭集.
- (2) 成立. 取定一点 $P \in A \cap B$, 对任意 $X \in A$, $Y \in B$, 有A中从X到P的道路 $\gamma_1(t)$ 和B中从P到Y的道路 $\gamma_2(t)$. 令 $\gamma(t) = \begin{cases} \gamma_1(2t), & 0 \leqslant t \leqslant \frac{1}{2}, \\ \gamma_2(2t-1), & \frac{1}{2} < t \leqslant 1, \end{cases}$ 则由 γ_1, γ_2 的连续性以及 $\gamma_1(1) = P = \gamma_2(0)$ 知 $\gamma(t)$ 在[0,1]连续. 又 $\gamma(0) = X$, $\gamma(1) = Y$, $\gamma(t) \in A \cup B$, $\forall t \in [0,1]$, 故 $\gamma(t)$ 是 $A \cup B$ 中连接X和Y的道路. 因此 $A \cup B$ 是道路连通集.
- (3) 不成立. $A \cup B和A \cap B$ 都是 \mathbb{R}^n 中的开集,由(2)知 $A \cup B$ 是道路连通集,故 $A \cup B$ 是区域. 但 $A \cap B$ 未必是区域,例如在 \mathbb{R}^2 中, $A = \{(x,y)|4 < x^2 + y^2 < 9\}$, $B = \{(x,y)|-4 < x < 4,-1 < y < 1\}$,则不难看到 $A \cap B$ 不是道路连通集.
- (4) 成立. " \Rightarrow ". 反证. 若A无界,任取 $X_1 \in A$,利用A的无界性可知,存在 $X_2 \in A$,使得

$$|X_2 - X_1| \geqslant 1.$$

再由A的无界性可知,存在 X_3 ,使得

$$|X_3 - X_2| \geqslant 1$$
, $|X_3 - X_1| \geqslant 1$.

依此类推, 用归纳法易证, 存在A中的点列 $\{X_m\}$, $m=1,2,3,\cdots$, 使得对于任意 $i\neq j$ 均有

$$|X_i - X_i| \geqslant 1.$$

不难看到 $\{X_m|m=1,2,\cdots\}$ 是A的无限子集且没有聚点. 矛盾!

- " \leftarrow ". 设A有界,则对A的任意无限子集B,取B中无穷多点排成点列 $\{X_m\}$,由Bolzano-Weierstrass定理知 $\{X_m\}$ 有收敛子列 $\{X_{m_k}\}$. 设 $\xi = \lim_{k \to \infty} X_{m_k}$,则 ξ 的任何邻域都有B中无穷多点. 因此B有聚点 ξ .
- (5) 成立. 反证. 若 $\partial A = \emptyset$, 则 $A^{\circ} = A \setminus \partial A = A$,故A是非空开集. 同理可证 A° 也是非空开集, 从而A既开又闭. 但A不是 \emptyset 和 \mathbb{R}^n ,矛盾!

$$d(A) = \sup\{|X - Y| \mid X, Y \in A\}.$$

不难看到,若B是 \mathbb{R}^n 的有界子集, $A \subseteq B$,则 $d(A) \leqslant d(B)$.

例 6 设A是 \mathbb{R}^n 的有界子集, 求证: $d(A) = d(\overline{A})$.

证 因为 $A \subseteq \overline{A}$,所以 $d(A) \leqslant d(\overline{A})$. 因为A是 \mathbb{R}^n 的有界子集,所以 \overline{A} 是有界闭集. 由练习题3知存在 $X,Y \in \overline{A}$,使得 $d(\overline{A}) = |X-Y|$. A中有收敛于X的点列 $\{X_m\}$ 和收敛于Y的点列 $\{Y_m\}$,从而由练习题3的证明过程知 $\lim_{m \to \infty} |X_m - Y_m| = |X-Y|$. 由极限的保序性得 $\lim_{m \to \infty} |X_m - Y_m| \leqslant d(A)$,故 $d(\overline{A}) = |X-Y| \leqslant d(A)$. 因此 $d(A) = d(\overline{A})$.

思考 设A是 \mathbb{R}^n 的有界子集, 是否必有 $d(A) = d(\partial A)$?

例 7 设 $S_1 \supseteq S_2 \supseteq \cdots \supseteq S_m \supseteq \cdots$,且每一个 S_m 均是 \mathbb{R}^n 中非空闭集, $\lim_{m \to \infty} d(S_m) = 0$,求证: 存在 $\xi \in \mathbb{R}^n$,使得

$$\bigcap_{m=1}^{\infty} S_m = \{\xi\}.$$

证 先证明 $\bigcap_{m=1}^{\infty} S_m \neq \emptyset$. 反证. 若 $\bigcap_{m=1}^{\infty} S_m = \emptyset$, 则 $\bigcup_{m=1}^{\infty} S_m^c = \mathbb{R}^n$, 从而 $S_1 \subseteq \bigcup_{m=2}^{\infty} S_m^c$, 即 $\{S_m^c\}_{m=2}^{\infty} \mathbb{E} S_1$ 的一个开覆盖. 因为 S_1 是紧集,所以有有限子覆盖 $\{S_{m_k}^c | k = 1, 2, \cdots, K\}$. 不妨设 $m_1 < m_2 < \cdots < m_K$, 则由 $S_1 \subseteq \bigcup_{k=1}^K S_{m_k}^c$ 知 $S_1 \cap \left(\bigcap_{k=1}^K S_{m_k}^c\right) = \emptyset$, 即 $S_{m_K} = \emptyset$, 矛盾! 然后结合 $\lim_{m \to \infty} d(S_m) = 0$ 即知存在 $\xi \in \mathbb{R}^n$, 使得

$$\bigcap_{m=1}^{\infty} S_m = \{\xi\}.$$

另证 先证明 $\bigcap_{m=1}^{\infty} S_m \neq \emptyset$. 任意取定一点 $X_m \in S_m$, 则 $\{X_m\}$ 是 S_1 中的有界点列,由 S_1 有界知 $\{X_m\}$ 有收敛子列 $\{X_{m_k}\}$. 设 $X_{m_k} \to \xi$ $(k \to \infty)$, 则对任意正整数m, $\{X_{m_k}\}$ 除有限项外都在 S_m 中. 由 $S_1 \supseteq S_2 \supseteq \cdots \supseteq S_m \supseteq \cdots$ 和 S_m 都是闭集知 $\xi \in S_m$, $m=1,2,\cdots$. 因此 $\bigcap_{m=1}^{\infty} S_m \neq \emptyset$. 然后结合 $\lim_{m \to \infty} d(S_m) = 0$ 即知存在 $\xi \in \mathbb{R}^n$, 使得

$$\bigcap_{m=1}^{\infty} S_m = \{\xi\}.$$

注 设 $S_1 \supseteq S_2 \supseteq \cdots \supseteq S_m \supseteq \cdots$, 且每一个 S_m 均是 \mathbb{R}^n 中非空有界闭集, 那么

$$\bigcap_{m=1}^{\infty} S_m \neq \emptyset,$$

如果仅假定每一个 S_m 都是非空闭集,结论未必成立. 例如,在 \mathbb{R}^1 中, $S_m=[m,+\infty)$ $(m=1,2,\cdots)$ 是一族满足题设的非空闭集,但 $\bigcap_{m=1}^\infty S_m=\emptyset$.

设A是 \mathbb{R}^n 的非空子集, X是 \mathbb{R}^n 中的一个点,点X到集合A的距离是 $d(X,A) = \inf_{Y \in A} |X-Y|$.

例 8 设A是 \mathbb{R}^n 中的一个闭集, X是 \mathbb{R}^n 中的一个点,求证存在 $Y \in A$, 使得d(X,A) = |X-Y|.

4

证 由 $d(X,A) = \inf_{Y \in A} |X - Y|$ 知存在点列 $\{Y_m\} \subseteq A$,使得 $\lim_{m \to \infty} |X - Y_m| = d(X,A)$. 因为收敛数列必有界,所以 $\{|X - Y_m|\}$ 有界.于是由 $|Y_m| \leqslant |X - Y_m| + |X|$ 知 $\{Y_m\}$ 有界,故 $\{Y_m\}$ 有收敛子列 $\{Y_{m_k}\}$.设 $\lim_{k \to \infty} Y_{m_k} = Y$,则由A闭知 $Y \in A$.因为 $\lim_{k \to \infty} |Y - Y_{m_k}| = 0$,所以由 $||X - Y_{m_k}| - |X - Y|| \leqslant |Y - Y_{m_k}|$ 知 $\lim_{k \to \infty} |X - Y_{m_k}| = |X - Y|$.因此结合 $\lim_{m \to \infty} |X - Y_m| = d(X,A)$ 就得到d(X,A) = |X - Y|.

注 设A是 \mathbb{R}^n 的非空子集,X是 \mathbb{R}^n 中的一个点,不难证明: $X \in \overline{A}$ 当且仅当d(X,A) = 0, $X \in A'$ 当且仅当 $d(X,A \setminus \{X\}) = 0$.

空集与A本身是A的相对开且相对闭的子集, 如果A的相对开且相对闭的子集只有这两个, 则称A是 \mathbb{R}^n 中的连通集. 也就是说若A是连通的, 则A不能分成两个非空的不相交的相对开了集之并(请读者自己证明这两个说法的等价性). 因此,A不连通当且仅当存在 \mathbb{R}^n 中的开集 O_1 , O_2 , 使得 $A \cap O_1 \neq \emptyset$, $A \cap O_2 \neq \emptyset$, $A \cap O_1 \cap O_2 = \emptyset$, $(A \cap O_1) \cup (A \cap O_2) = A$.

例 9 设A是 \mathbb{R} 的非空子集,证明: A是连通集当且仅当A是区间或单点集.

证 "⇒". 反证. 若A不是区间或单点集,则存在 $a,b \in A$ 和 $c \notin A$,使得a < c < b. 记 $O_1 = (-\infty,c), O_2 = (c,+\infty)$,由 $A \cap O_1 \neq \emptyset$, $A \cap O_2 \neq \emptyset$, $A \cap O_1 \cap O_2 = \emptyset$, $(A \cap O_1) \cup (A \cap O_2) = A$ 知A不连通. 矛盾!

"←". 单点集显然是连通集,由区间是道路连通集知区间也是连通集.

例 10 设D是闭区域,证明:D°是区域.

证 反证. 若 D° 不是区域,则由 D° 开知 D° 不连通. 因此存在开集 O_1 , O_2 , 使得 $O_1 \neq \emptyset$, $O_2 \neq \emptyset$, $O_1 \cap O_2 = \emptyset$, $D^{\circ} = O_1 \cup O_2$. 因为D是闭区域,所以存在区域U, 使得 $D = \overline{U}$. 由 $U \subseteq D^{\circ}$ 和U连通知 $U \subseteq O_1$ 或 $U \subseteq O_2$ (否则, $U \cap O_1 \neq \emptyset$, $U \cap O_2 \neq \emptyset$, $U \cap O_1 \cap O_2 = \emptyset$, $U = (U \cap O_1) \cup (U \cap O_2)$, 与U连通矛盾). 不妨设 $U \subseteq O_1$, 则 $D = \overline{U} \subseteq \overline{O_1}$. 注意到 $\overline{O_1} \subseteq O_2^c$, 故 $D \cap O_2 = \emptyset$, 与 $O_2 \subseteq D^{\circ}$ 矛盾!

例 11 设A和B都是 R^n 的子集且A是开集,证明 $A \cap \overline{B}$ 是 $\overline{A \cap B}$ 的子集.

证 任取 $x \in A \cap B$,任取x的领域U,由于A是开集, $U \cap A$ 也是x 的领域,由 $x \in \overline{B}$ 知

$$(U \cap A) \cap B \neq \emptyset$$
,

即

$$U \cap (A \cap B) \neq \emptyset$$
,

所以由触点的定义, $x \in (A \cap B)$, 因此 $A \cap \overline{B} \subset (A \cap B)$.

例 12 证明: 如果 \mathbb{R}^n 的子集A是无限集, 则A的任意无限子集都有聚点当且仅当A是有界集.

证 " \leftarrow ". 任取A的无限子集B,则B中有无穷点列 $\{X_m\}$ 满足 X_m 两两不同,由A是有界集知 $\{X_m\}$ 是有界点列. 由波尔查诺-魏尔斯特拉斯引理可知 $\{X_m\}$ 有在 \mathbb{R}^n 中收敛的子序列 $\{X_{m_k}\}$,记 $X_0 = \lim_{k \to \infty} X_{m_k}$,则由 X_m 两两不同知 X_0 是B的聚点. 因此,A的任意无限子集都有聚点. " \Rightarrow ". 反证. 若不然,则A是无界集. 任取 $X_1 \in A$,利用A的无界性可知,存在 $X_2 \in A$,使得

$$|X_2 - X_1| \geqslant 1.$$

再由A的无界性可知,存在 X_3 ,使得

$$|X_3 - X_2| \ge 1$$
, $|X_3 - X_1| \ge 1$.

依此类推, 用归纳法易证, 存在A中的点列 $\{X_m\}$, $m=1,2,3,\cdots$, 使得对于任意 $i\neq j$ 均有

$$|X_i - X_j| \geqslant 1.$$

令 $B = \{X_m | m = 1, 2, \cdots\}$,则B是A的无限子集. 对任意点 $P \in \mathbb{R}^n$,以P为中心, $\frac{1}{2}$ 为半径的开球中至多只含B中1个元素,故P不是B的聚点. 因此,A的无限子集B没有聚点,矛盾! \square

例 13 设S是 \mathbb{R}^n 的子集,S的内部与S的外部都非空. 证明:对S的任何内点P和S的任何外点Q, 存在 $t \in (0,1)$, 使得(1-t)P+tQ是S的边界点.

证 反证. 若不然,则存在S的内点P和外点Q,使得对任意 $t \in (0,1)$,点(1-t)P+tQ不是S的边界点,从而对任意 $t \in [0,1]$,点(1-t)P+tQ是S的内点或者外点. 令 $a_1=0$, $b_1=1$, $P_1=(1-a_1)P+a_1Q$, $Q_1=(1-b_1)P+b_1Q$,考虑点 $\frac{P_1+Q_1}{2}$. 若 $\frac{P_1+Q_1}{2}$ 是S的内点,则令 $a_2=\frac{a_1+b_1}{2}$, $b_2=b_1$;若 $\frac{P_1+Q_1}{2}$ 是S的外点,则令 $a_2=a_1$, $b_2=\frac{a_1+b_1}{2}$. 令 $P_2=(1-a_2)P+a_2Q$, $Q_2=(1-b_2)P+b_2Q$,考虑点 $\frac{P_2+Q_2}{2}$. 若 $\frac{P_2+Q_2}{2}$ 是S的内点,则令 $a_3=\frac{a_2+b_2}{2}$, $b_3=b_2$;若 $\frac{P_2+Q_2}{2}$ 是S的外点,则令 $a_3=a_2$, $b_3=\frac{a_2+b_2}{2}$. 一般地,设 $a_1,a_2,\cdots,a_n,b_1,b_2,\cdots,b_n$ 已取好,令 $a_1=(1-a_n)P+a_nQ$, $a_1=(1-b_n)P+a_nQ$,考虑点 $\frac{P_1+Q_1}{2}$ 是S的内点,则令 $a_1=a_1$,若 $\frac{P_1+Q_1}{2}$ 是S的内点,则令 $a_1=a_1$,是S的内点,则令 $a_1=a_1$, $a_1=a_1$,是S的外点,则令 $a_1=a_1$,是S的内点,则令 $a_1=a_1$,是S的外点,则令 $a_1=a_1$,是S的内点,则令 $a_1=a_1$, $a_1=a_1$, $a_1=a_1$, $a_1=a_1$ 是S的外点,则令 $a_1=a_1$ 是S的内点,则令 $a_1=a_1$ 是S的内点,则令

(i) $[0,1] = [a_1,b_1] \supseteq [a_2,b_2] \supseteq \cdots \supseteq [a_n,b_n] \supseteq \cdots;$

(ii)
$$b_n - a_n = \frac{1}{2^{n-1}} \to 0 \ (n \to \infty);$$

(iii) P_n 是S的内点, Q_n 是S的外点,其中 $P_n = (1 - a_n)P + a_nQ$, $Q_n = (1 - b_n)P + b_nQ$, $n = 1, 2, 3, \cdots$.

由区间套定理,有唯一的 $\xi \in [0,1]$ 使得 $\lim_{n\to\infty} a_n = \lim_{n\to\infty} b_n = \xi$. 记 $K = (1-\xi)P + \xi Q$, 则K是S的 内点或者外点,且 $\lim_{n\to\infty} P_n = \lim_{n\to\infty} Q_n = K$. 对K的任意邻域B(K),都存在正整数N,使得 $\lim_{n\to\infty} N$ 时, P_n 和 Q_n 都属于B(K). 又 $P_n \in S$, $Q_n \in S^c$, $n=1,2,\cdots$,故对于K的任意邻域B(K),有 $B(K) \cap S \neq \emptyset$ 且 $B(K) \cap S^c \neq \emptyset$. 按定义知K是S的边界点,与K是S的内点或者外点矛盾!

例 14 设A和B都是 \mathbb{R} 的非空子集. 证明: 如果A和B都是紧集,那么 $A \times B = \{(x,y) \in \mathbb{R}^2 | x \in A, y \in B\}$ 是 \mathbb{R}^2 中的紧集.

证 因为A和B都是紧集,所以A和B都是列紧集. 任取点列 $\{(x_m,y_m)\}\subseteq A\times B, 则\{x_m\}\subseteq A$

 $A, \{y_m\} \subseteq B.$ 由A列紧知 $\{x_m\}$ 有收敛于A中点的子列 $\{x_{m_k}\}$,设 $\lim_{k\to\infty} x_{m_k} = a.$ 由B列紧知 $\{y_{m_k}\}$ 有收敛于B中点的子列 $\{y_{m_{k_l}}\}$,设 $\lim_{l\to\infty} y_{m_{k_l}} = b.$ 于是 $\{(x_m,y_m)\}$ 有子列 $\{(x_{m_{k_l}},y_{m_{k_l}})\}$ 收敛于 $(a,b) \in A \times B$,故 $A \times B$ 是 \mathbb{R}^2 中的列紧集,从而 $A \times B$ 是 \mathbb{R}^2 中的紧集.

10.2 多元函数的极限与连续

此外,若两个累次极限都存在但不相等,则二元极限不存在.

求多元函数极限比求一元函数的极限要复杂得多,通常要应用不等式的性质,两边夹定理等,把问题转化为一个一元函数的极限.

例 1 判断下列极限是否存在, 如果存在并求其值.

$$(1) \lim_{\substack{x \to +\infty \\ y \to +\infty}} \left(\frac{xy}{x^2 + y^2} \right)^x;$$

(2)
$$\lim_{\substack{x\to 0\\y\to 0}} \frac{\sin(x^3+y^3)}{x^2+y}$$
;

(3) $\lim_{\substack{x \to 0^+ \\ y \to 0^+}} x^y$.

解 (1) 因为当x > 0, y > 0时有

$$0\leqslant \left(\frac{xy}{x^2+y^2}\right)^x\leqslant \left(\frac{1}{2}\right)^x,$$

所以由两边夹定理得 $\lim_{\substack{x \to +\infty \\ x \to +\infty}} \left(\frac{xy}{x^2 + y^2} \right)^x = 0.$

(2) 因为(x,y)沿y = 0趋于(0,0)时 $f(x,y) = \frac{\sin(x^3 + y^3)}{x^2 + y}$ 的极限为 $\lim_{x \to 0} \frac{\sin(x^3)}{x^2} = 0$, (x,y)沿 $y = x^3 - x^2$ 趋于(0,0)时f(x,y)的极限为 $\lim_{x \to 0} \frac{\sin(x^3 + (x^3 - x^2)^3)}{x^3} = 1$, 所以二元极限 $\lim_{x \to 0 \ y \to 0} \frac{\sin(x^3 + y^3)}{x^2 + y}$ 不存在.

(3) 由 $\lim_{x\to 0^+} x^y = 0$ 得 $\lim_{y\to 0^+} \lim_{x\to 0^+} x^y = 0$,由 $\lim_{y\to 0^+} x^y = 1$ 得 $\lim_{x\to 0^+} \lim_{y\to 0^+} x^y = 1$. 因为两个累次极限都存在但不相等,所以二元极限 $\lim_{x\to 0^+} x^y$ 不存在.

$$f(x,y) = \begin{cases} \frac{xy}{x^2 + y^2}, & x^2 + y^2 \neq 0, \\ 0, & x^2 + y^2 = 0 \end{cases}$$

这个例子说明f(x,y)分别对x,y连续不能保证f(x,y)的连续性. 事实上,f(x,y)在(0,0)点不连续.

例 2 设 $(x_0, y_0) \in \mathbb{R}^2$, f(x, y)定义在 (x_0, y_0) 的一个开邻域 $U = \{(x, y) | |x - x_0| < \eta, |y - y_0| < \eta \}$ 内且分别对每一自变量x与y是一元连续函数,f(x, y)关于x, y中的一个是单调的,求证: f(x, y)作为二元函数在 (x_0, y_0) 连续.

证 不妨设对任意固定的y, f(x,y)是x的单调函数. 对任意 $\varepsilon > 0$, 存在 $\delta_1 > 0$, 当 $|x - x_0| \le \delta_1$ 时, 有 $|f(x,y_0) - f(x_0,y_0)| < \varepsilon$. 特别地, 有 $|f(x_0 - \delta_1,y_0) - f(x_0,y_0)| < \varepsilon$, $|f(x_0 + \delta_1,y_0) - f(x_0,y_0)| < \varepsilon$. 对上述的 ε 和 δ_1 , 存在 $\delta_2 > 0$, 当 $|y - y_0| < \delta_2$ 时, 有 $|f(x_0 - \delta_1,y) - f(x_0,y_0)| < \varepsilon$. 对上述的 ε 和 δ_1 , 存在 $\delta_2 > 0$, 当 $|y - y_0| < \delta_2$ 时, 有 $|f(x_0 - \delta_1,y) - f(x_0,y_0)| < \varepsilon$. 于是 $|f(x_0 - \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y) - f(x_0,y_0)| < \varepsilon$. | $|f(x_0 + \delta_1,y_0)| < \varepsilon$

例 3 设 $(x_0, y_0) \in \mathbb{R}^2$, f(x, y)定义在 (x_0, y_0) 的一个开邻域 $U = \{(x, y) | |x - x_0| < \eta, |y - y_0| < \eta \}$ 内且分别对每一自变量x与y是一元连续函数,f(x, y)关于一个变量的连续性对另一个变量是一致的,例如关于x的连续性对于y一致,即对于任何 $\tilde{x} \in (x_0 - \eta, x_0 + \eta)$ 和任给的 $\varepsilon > 0$,存在 $\delta > 0$,使得当 $x \in (x_0 - \eta, x_0 + \eta)$ 且 $|x - \tilde{x}| < \delta$ 时,对所有的 $y \in (y_0 - \eta, y_0 + \eta)$ 有

$$|f(x,y) - f(\tilde{x},y)| < \varepsilon.$$

求证: f(x,y)作为二元函数在 (x_0,y_0) 连续.

证 因为f(x,y)对y是一元连续函数,所以对任意 $\varepsilon > 0$,存在 $\delta_1 > 0$,当 $|y - y_0| < \delta_1$ 时, $f|f(x_0,y) - f(x_0,y_0)| < \varepsilon.$ 又因为f(x,y)关于x的连续性对于y一致,所以对上述的 ε 和 δ_1 ,

存在 $\delta_2 > 0$, 当 $|x - x_0| < \delta_2$ 时, 对所有的 $y \in (y_0 - \delta_1, y_0 + \delta_1)$, 有 $|f(x, y) - f(x_0, y)| < \varepsilon$. 令 $\delta = \min\{\delta_1, \delta_2\} > 0$, 当 $|x - x_0| < \delta$, $|y - y_0| < \delta$ 时, 就有 $|f(x, y) - f(x_0, y_0)| \leqslant |f(x, y) -$

例 4 设f(x,y)是 \mathbb{R}^2 上的函数,对任意实数 y_0 , $f(x,y_0)$ 作为x的函数在 $(-\infty,+\infty)$ 连续,对任意实数 x_0 , $f(x_0,y)$ 作为y的函数在 $(-\infty,+\infty)$ 连续,对任意 \mathbb{R}^2 中的紧集K, f(K)是 \mathbb{R} 中的紧集,证明: f(x,y)在 \mathbb{R}^2 上连续.

证 不失一般性,只需证明f(x,y)在(0,0)连续 $((x_0,y_0)$ 处连续的一般情形可以通过平移变换归为(0,0)处连续的情形),并且不妨设f(0,0)=0(否则用f(x,y)-f(0,0)代替f(x,y)来讨论). 反证. 若f(x,y)在(0,0)处不连续,则存在 $\varepsilon_0>0$,存在 $\{(x_m,y_m)\}$ 满足 $(x_m,y_m)\to(0,0)$ $(m\to\infty)$ 且 $|f(x_m,y_m)|\geq \varepsilon_0$. 因为f(x,0)作为x的函数在 $(-\infty,+\infty)$ 连续,所以对上述的 $\varepsilon>0$,存在 $\delta>0$,当 $|x|<\delta$ 时,就有 $|f(x,0)|<\frac{\varepsilon_0}{2}$. 由 $(x_m,y_m)\to(0,0)$ $(m\to\infty)$ 知 $\lim_{m\to\infty}x_m=\lim_{m\to\infty}y_m=0$. 于是对上述的 $\delta>0$,存在正整数M,当m>M时,就有 $|x_m|<\delta$. 因此当m>M时,就有 $|f(x_m,0)|<\frac{\varepsilon_0}{2}$. 因为当m>M时, $f(x_m,y)$ 作为y的函数在 $(-\infty,+\infty)$ 连续, $|f(x_m,0)|<\frac{\varepsilon_0}{2}$,因为当m>M时, $f(x_m,y)$ 作为y的函数在 $(-\infty,+\infty)$ 连续, $|f(x_m,0)|<\frac{\varepsilon_0}{2}$, $|f(x_m,y_m)|\geq \varepsilon_0$,所以由介值定理知存在 x_m 介于 x_m 与0之间,使得 $x_m,x_m=0$ 0,由两边夹定理知 $x_m=0$ 0,故 $x_m,x_m=0$ 0, $x_m=0$ 0。令

$$K = \{(x_m, z_m) | m > M\} \cup \{(0, 0)\},\$$

则K是 \mathbb{R} 中的有界闭集,从而K是 \mathbb{R} 中的紧集,因此f(K)是 \mathbb{R} 中的紧集。不难看到

$$f(K) = \left\{ \frac{m\varepsilon_0}{m+1} \middle| m > M \right\} \cup \{0\},$$

 ε_0 是f(K)的聚点且 $\varepsilon_0 \not\in f(K)$,故f(K)不是闭集,与f(K)是 \mathbb{R} 中的紧集矛盾!

例 5 设 $D=(-\infty,+\infty)\times[0,1]$, 函 数f(x,y)在D上一致 连 续 , 对 任 意 实 数x,令 $g(x)=\int_0^1 f(x,y)\mathrm{d}y$,求证: g(x)在 $(-\infty,+\infty)$ 上一致连续.

证 因为函数f(x,y)在D上一致连续,所以对任意 $\varepsilon > 0$,存在 $\delta > 0$,对任何 $(x_1,y_1),(x_2,y_2) \in D$,只要 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} < \delta$,就有 $|f(x_1,y_1)-f(x_2,y_2)| < \varepsilon$. 于是对任何实数 x_1,x_2 ,当 $|x_1-x_2| < \delta$ 时,对任何 $y \in [0,1]$,都有 $|f(x_1,y)-f(x_2,y)| < \varepsilon$. 因此,当 $|x_1-x_2| < \delta$ 时,

$$|g(x_1) - g(x_2)| = \left| \int_0^1 f(x_1, y) dy - \int_0^1 f(x_2, y) dy \right| = \left| \int_0^1 [f(x_1, y) - f(x_2, y)] dy \right|$$

$$\leqslant \int_0^1 |f(x_1, y) - f(x_2, y)| dy < \int_0^1 \varepsilon dy = \varepsilon.$$

按定义知g(x)在 $(-\infty, +\infty)$ 上一致连续.

10.3 连续函数的重要性质

应用有界闭集上连续函数的性质与一元函数的情形完全类似.

例 1 设函数f(x,y)在 \mathbb{R}^2 上连续, $\lim_{x^2+y^2\to+\infty}f(x,y)$ 存在. 证明: 函数f(x,y)在 \mathbb{R}^2 上一致连续.

证 设 $\lim_{x^2+y^2\to+\infty} f(x,y) = a$,则对任意 $\varepsilon > 0$,存在r > 0,当 $x^2+y^2 > r^2$ 时,有 $|f(x,y)-a| < \frac{\varepsilon}{2}$. 由 $A = \left\{ (x,y) \middle| x^2 + y^2 \leqslant (r+1)^2 \right\}$ 是紧集知f在A上一致连续,从而对上述的 $\varepsilon > 0$,存在 $\delta_1 > 0$,当 (x_1,y_1) , $(x_2,y_2) \in A$ 且 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} < \delta_1$ 时,就有 $|f(x_1,y_1)-f(x_2,y_2)| < \varepsilon$. 令 $\delta = \min\{\delta_1,1\}$,则当 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} < \delta$ 时,要么 (x_1,y_1) , (x_2,y_2) 都在A中,从而 $|f(x_1,y_1)-f(x_2,y_2)| < \varepsilon$;要么 (x_1,y_1) , (x_2,y_2) 至少有一个不在A中,不妨设 (x_1,y_1) 不在A中,那么 $x_1^2+y_1^2>(r+1)^2$,故由 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} < 1$ 知 $x_2^2+y_2^2>r^2$,从而 $|f(x_1,y_1)-f(x_2,y_2)| < |f(x_1,y_1)-a|+|a-f(x_2,y_2)| < \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$.按一致连续的定义知f(x,y)在 \mathbb{R}^2 上一致连续。

注 由本题就不难解决(A)组的第7题:

$$f(x,y) = \begin{cases} \frac{y\sin(x^2 + y^2)}{x^2 + y^2}, & (x,y) \neq (0,0) \\ 0, & (x,y) = (0,0) \end{cases}$$

在聚2上一致连续.应用有界闭集上连续函数的性质与一元函数的情形完全类似.

例 2 设 $D_1 \subseteq D$ 且D的每个点均是 D_1 的聚点. 设 $f_1(X)$ 在 D_1 一致连续,求证: 存在D上唯一的连续函数f(X),使得

$$f(X) = f_1(X), \quad \forall X \in D_1,$$

且f(X)在D上一致连续.

证 任取 $X_0 \in D$,由10.2节例3的结论知 $\lim_{X \to X_0} f_1(X)$ 存在,令 $f(X_0) = \lim_{X \to X_0} f_1(X)$. 对任意 $X_0 \in D_1$,有 $f(X_0) = \lim_{X \to X_0} f_1(X) = f_1(X_0)$. 下面证明f(X)在D上一致连续。因为 $f_1(X)$ 在 D_1 一致连续,所以对任意 $\varepsilon > 0$,存在 $\delta > 0$,当 $X,Y \in D_1$, $|X-Y| < \delta$ 时,有 $|f_1(X) - f_1(Y)| < \varepsilon$. 对任意 $P,Q \in D$, $|P-Q| < \frac{\delta}{2}$,由P,Q是P 的聚点以及P (P) = $\lim_{X \to P} f_1(X)$, $f(Q) = \lim_{X \to Q} f_1(X)$,知存在P (P),使得P - X (P) P) P) P (P) P) P) P) P (P) P

$$|f(P) - f(Q)| \le |f(P) - f_1(X)| + |f_1(X) - f_1(Y)| + |f_1(Y) - f(Q)| < 3\varepsilon.$$

按定义知f(X)在D上一致连续.

f(X)的唯一性由其连续性和极限的唯一性就可以得到.

注 由练习题4可知D上的一致连续函数可以唯一地延拓为 \overline{D} 上的一致连续函数. 由此不难解 决(A)组的第10题: 设f(X)是 \mathbb{R}^n 中有界集D上的一致连续函数, 求证: f(X) 在D上有界.

1934年E. J. McShane在"Extension of range of functions"一文中证明了D上有界的一致连续函数可以延拓为 \mathbb{R}^n 上的一致连续函数且保持函数的界不变.

例 3 设A和B都是 \mathbb{R} 中的有界闭集,f(x,y)在 $A \times B$ 上连续, $m(x) = \sup_{y \in B} f(x,y), x \in A$. 证明: m(x)在A上一致连续.

证 因为A和B都是 \mathbb{R} 中的有界闭集,所以A和B都是紧集,故由上题知 $A \times B$ 是 \mathbb{R}^2 中的 紧集. 因为f(x,y)在 $A \times B$ 上连续,所以由康托尔定理知f(x,y)在 $A \times B$ 上一致连续,即 对任意 $\varepsilon > 0$,存在 $\delta > 0$,当 (x_1,y_1) , $(x_2,y_2) \in A \times B$ 且 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} < \delta$ 时,就 有 $|f(x_1,y_1) - f(x_2,y_2)| < \varepsilon$. 对任意 $x_1, x_2 \in A$, $|x_1 - x_2| < \delta$, 有 $|f(x_1,y) - f(x_2,y)| < \varepsilon$, $\forall y \in B$. 由 $f(x_1,y)$ 作为y的函数在B上连续和B是有界闭集知 $f(x_1,y)$ 在B上取得最大值,故存在 $y_1 \in B$, 使得 $f(x_1,y_1) = m(x_1)$. 于是有

$$m(x_2) \geqslant f(x_2, y_1) > f(x_1, y_1) - \varepsilon = m(x_1) - \varepsilon.$$

同理可得

$$m(x_1) > m(x_2) - \varepsilon$$
.

因此对任意 $x_1, x_2 \in A, |x_1 - x_2| < \delta, 有$

$$|m(x_1) - m(x_2)| < \varepsilon.$$

按定义知m(x)在A上一致连续.

10.4 向量值函数(映射)及其连续性

与连续函数的情形没有本质差别,只是更加一般化了.

例 1 设 $F: \mathbb{R}^n \to \mathbb{R}^m$ 是连续的向量值函数.

- (1) 求证: 对任意 \mathbb{R}^n 的子集D, 都有 $F(\overline{D}) \subseteq \overline{F(D)}$;
- (2) 举例说明 $F(\overline{D}) = \overline{F(D)}$ 未必成立;
- (3) 对于 $F(D^{\circ})$ 与 $(F(D))^{\circ}$,有类似于(1)的结果吗?
- 证 (1) 任取 $X_0 \in \overline{D}$, 则存在 $\{X_m\} \subseteq D$, 使得 $\lim_{m \to \infty} X_m = X_0$. 因为 $F : \mathbb{R}^n \to \mathbb{R}^m$ 是连续的向量值函数,所以 $\lim_{m \to \infty} F(X_m) = F(X_0)$. 因此 $F(X_0) \in \overline{F(D)}$, 由 X_0 的任意性知 $F(\overline{D}) \subseteq \overline{F(D)}$.
- (2) 例如,取n=m=1,令 $F(x)=\mathrm{e}^x$, $D=(-\infty,+\infty)$,则 $F(\overline{D})=(0,+\infty)\neq[0,+\infty)=\overline{F(D)}$.
- (3) 对于 $F(D^{\circ})$ 与 $(F(D))^{\circ}$,没有类似于(1)的结果. 例如,取n = m = 1,令 $F(x) = x^2$,则

例 2 设A和B都是 \mathbb{R} 的非空子集, $A \times B$ 是 \mathbb{R}^2 中的紧集,f(x,y)在 $A \times B$ 上连续.

- (1) 求证: A和B都是R中的紧集.
- (2) 令 $m(x) = \max_{y \in B} f(x, y), x \in A,$ 求证: m(x)在A上一致连续.
- (3) 求证: $\max_{x \in A} m(x) = \max_{(x,y) \in A \times B} f(x,y)$.
- 证 (1) $\Diamond \varphi(x,y) = x$, $(x,y) \in A \times B$, 则由初等函数的连续性知 φ 在 $A \times B$ 上连续. 因为 $\varphi(A \times B) = A$, 所以根据连续映射把紧集映为紧集知A是 \mathbb{R} 中的紧集. 同理可证B是 \mathbb{R} 中的紧集.
- (2) 因为f(x,y)在 $A \times B$ 上连续,所以由康托尔定理知f(x,y)在 $A \times B$ 上一致连续,即对任意 $\varepsilon > 0$,存在 $\delta > 0$,当 $(x_1,y_1),(x_2,y_2) \in A \times B$ 且 $\sqrt{(x_1-x_2)^2+(y_1-y_2)^2} < \delta$ 时,就有 $|f(x_1,y_1)-f(x_2,y_2)| < \varepsilon$. 对任意 $x_1,x_2 \in A$, $|x_1-x_2| < \delta$,有 $|f(x_1,y)-f(x_2,y)| < \varepsilon$, 对任意 $x_1,x_2 \in A$, $|x_1-x_2| < \delta$,有 $|f(x_1,y)-f(x_2,y)| < \varepsilon$, $\forall y \in B$. 由 $f(x_1,y)$ 作为y的函数在B上连续和B是有界闭集知 $f(x_1,y)$ 在B上取得最大值,故存在 $y_1 \in B$,使得 $f(x_1,y_1) = m(x_1)$.于是有

$$m(x_2) \geqslant f(x_2, y_1) > f(x_1, y_1) - \varepsilon = m(x_1) - \varepsilon.$$

同理可得

$$m(x_1) > m(x_2) - \varepsilon$$
.

因此对任意 $x_1, x_2 \in A, |x_1 - x_2| < \delta, 有$

$$|m(x_1) - m(x_2)| < \varepsilon.$$

按定义知m(x)在A上一致连续.

 $(3) 一方面, 易见对任意<math>x \in A, \ fm(x) = \max_{y \in B} f(x,y) \leqslant \max_{(x,y) \in A \times B} f(x,y), \ \text{故}\max_{x \in A} m(x) \leqslant \max_{(x,y) \in A \times B} f(x,y); \ \beta - f$ 面,由 $A \times B$ 是 \mathbb{R}^2 中的紧集和f(x,y)在 $A \times B$ 上连续知存在 $(a,b) \in \mathbb{R}^2$

 $A \times B$, 使得 $f(a,b) = \max_{(x,y) \in A \times B} f(x,y)$, 从而

$$\max_{x \in A} m(x) \geqslant m(a) \geqslant f(a, b) = \max_{(x, y) \in A \times B} f(x, y).$$

合起来即得 $\max_{x \in A} m(x) = \max_{(x,y) \in A \times B} f(x,y)$.

例 3 设 $F: \mathbb{R}^n \to \mathbb{R}^n$ 是连续映射,存在常数L > 0,使得对任何 $X, Y \in \mathbb{R}^n$,有 $|F(X) - F(Y)| \geqslant L|X - Y|$,求证:对 \mathbb{R}^n 中的任意紧集K,其完全原像 $F^{-1}(K)$ 也是 \mathbb{R}^n 中的紧集.

证 只需证明 $F^{-1}(K)$ 是 \mathbb{R}^n 中的列紧集. 任取点列 $\{X_m\} \subseteq F^{-1}(K)$, 令 $Y_m = F(X_m)$, 则 $Y_m \in K$. 因为K是 \mathbb{R}^n 中的紧集,所以K是 \mathbb{R}^n 中的列紧集. 于是 $\{Y_m\}$ 有收敛于K中点 Y_0 的子列 $\{Y_{m_k}\}$. 因为 $\{Y_{m_k}\}$ 收敛,所以 $\{Y_{m_k}\}$ 是柯西列,从而对任意 $\varepsilon > 0$,存在正整数K,当k > K,k > K时,有k > K0,有k > K1 。因为对任何k > K2,即k > K3,有k > K4。因为对任何k > K5。因为对任何k > K6。因为对任何k > K7。有k > K8,有k > K9。

$$|X_{m_k} - X_{m_l}| \leqslant \frac{1}{L} |F(X_{m_k}) - F(X_{m_l})| < \frac{\varepsilon}{L}.$$

故 $\{X_{m_k}\}$ 是柯西列,由柯西收敛原理知 $\{X_{m_k}\}$ 收敛. 设 $\lim_{k\to\infty}X_{m_k}=X_0$,则由F的连续性 得 $\lim_{k\to\infty}F(X_{m_k})=F(X_0)$,即 $\lim_{k\to\infty}Y_{m_k}=F(X_0)$. 因此 $F(X_0)=Y_0$,再由 $Y_0\in K$ 知 $X_0\in F^{-1}(K)$. 于是 $\{X_m\}$ 有收敛于 $F^{-1}(K)$ 中点 X_0 的子列 $\{X_{m_k}\}$,按定义知 $F^{-1}(K)$ 是 \mathbb{R}^n 中的列紧集.

例 4 设 $B = \{X \in \mathbb{R}^n | |X| < 1\}$, $F: B \to B$ 是连续映射,对任意 $X \in B \setminus \{O\}$, 有|F(X)| < |X|. 任意取定 $X_1 \in B$, 令 $X_{k+1} = F(X_k)$, $k = 1, 2, \cdots$. 证明: $\lim_{k \to \infty} X_k = O$.

证 因为对任意 $X \in B \setminus \{O\}$,有|F(X)| < |X|,所以由两边夹定理知 $\lim_{X \to O} |F(X)| = 0$. 又 $F: B \to B$ 是连续映射,故 $F(O) = \lim_{X \to O} F(X) = O$. 若某个 $X_k = O$,则后面的项全为O,从而 $\lim_{k \to \infty} X_k = O$. 下面设 $X_k \ne O$, $k = 1, 2, \cdots$. 因为 $|X_{k+1}| = |F(X_k)| < |X_k|$, $k = 1, 2, \cdots$,所以{ $|X_k|$ }严格递减. 又{ $|X_k|$ }有下界O,故由单调收敛定理知 $\lim_{k \to \infty} |X_k|$ 存在,记 $r = \lim_{k \to \infty} |X_k|$. 由波尔查诺-魏尔斯特拉斯引理知{ X_k }有收敛的子序列{ X_{k_l} },记 $P = \lim_{l \to \infty} X_{k_l} \in B$,则有

$$|P| = \left| \lim_{l \to \infty} X_{k_l} \right| = \lim_{l \to \infty} |X_{k_l}| = r = \lim_{l \to \infty} |X_{k_l+1}| = \lim_{l \to \infty} |F(X_{k_l})| = \left| \lim_{l \to \infty} F(X_{k_l}) \right| = |F(P)|.$$

因此,P = O,从而r = 0,故 $\lim_{k \to \infty} X_k = O$.

例 5 设D是 \mathbb{R}^n 中的开集, $f:D\to\mathbb{R}^n$ 是从D到 \mathbb{R}^n 的双射,f在D上一致连续, f^{-1} 在 \mathbb{R}^n 上连续,证明: $D=\mathbb{R}^n$.

证 因为 \mathbb{R}^n 中既开又闭的集合只有 \mathbb{R}^n 和空集,所以由D是 \mathbb{R}^n 中的非空开集知为证 $D=\mathbb{R}^n$,只需证D是闭集,又只需证D列闭. D列闭的证明如下:任取D中的收敛子列 $\{X_m\}$,设 $\lim_{m\to\infty}X_m=X_0$,则 $\{X_m\}$ 是柯西列. 因为f在D上一致连续,所以对任意 $\varepsilon>0$,存在 $\delta>0$,当 $X,Y\in D$, $|X-Y|<\delta$ 时,有 $|f(X)-f(Y)|<\varepsilon$. 由 $\{X_m\}$ 是柯西列知对上述的 $\delta>0$,存在正整数M,当m>M,k>M时,就有 $|X_m-X_k|<\delta$. 于是当m>M,k>M时,就有 $|f(X_m)-f(X_k)|<\varepsilon$,故 $\{f(X_m)\}$ 也是柯西列。由柯西收敛原理知 $\{f(X_m)\}$ 收敛,设 $\lim_{m\to\infty}f(X_m)=Y_0$,则由 $f:D\to\mathbb{R}^n$ 是从D到 \mathbb{R}^n 的双射, f^{-1} 在 \mathbb{R}^n 上连续得

$$f^{-1}(Y_0) = f^{-1}\left(\lim_{m \to \infty} f(X_m)\right) = \lim_{m \to \infty} f^{-1}(f(X_m)) = \lim_{m \to \infty} X_m = X_0.$$

因此 $X_0 \in D$. 这就证明了D列闭.

例 6 设 $F: \mathbb{R}^n \to \mathbb{R}^m$ 是连续单射.证明:F是闭映射(即F把 \mathbb{R}^n 中的闭集映为 \mathbb{R}^m 中的闭集) 当且仅当对 \mathbb{R}^m 中的任意紧集 $K, F^{-1}(K)$ 是 \mathbb{R}^n 中的紧集.

证 " \Leftarrow ". 设对 \mathbb{R}^m 中的任意紧集K, $F^{-1}(K)$ 是 \mathbb{R}^n 中的紧集,下证F是闭映射. 任取 \mathbb{R}^n 中的闭集A, 任取收敛点列 $\{Y_k\}\subseteq F(A)$, 由F是单射知存在唯一的 $X_k\in A$, 使得 $Y_k=F(X_k)$. 记 $\lim_{k\to\infty}Y_k=Y_0$, 令 $K=\{Y_k\big|k=0,1,2,\cdots\}$, 则K是 \mathbb{R}^m 中的紧集,从而 $F^{-1}(K)$ 是 \mathbb{R}^n 中的紧集. 因为 $\{X_k\}\subseteq F^{-1}(K)$,所以 $\{X_k\}$ 有收敛子列 $\{X_{k_l}\}$,将其极限记为 X_0 ,由A是闭集知 $X_0\in A$. 于是由F连续知

$$Y_0 = \lim_{l \to \infty} Y_{k_l} = \lim_{l \to \infty} F(X_{k_l}) = F(X_0) \in F(A).$$

故F(A)是 \mathbb{R}^m 中的列闭集,从而F(A)是 \mathbb{R}^m 中的闭集. 按定义知F是闭映射.

"⇒". 设F是闭映射,任取 \mathbb{R}^m 中的紧集K,下证 $F^{-1}(K)$ 是 \mathbb{R}^n 中的紧集. 令 $B = F(\mathbb{R}^n)$,则B是 \mathbb{R}^m 中的闭集. 由 $F: \mathbb{R}^n \to \mathbb{R}^m$ 是单射知F有逆映射 $G: B \to \mathbb{R}^n$. 任取 \mathbb{R}^n 中的闭集A,由 $G^{-1}(A) = F(A)$ 以及F(A)是 \mathbb{R}^m 中的闭集可知 $G^{-1}(A)$ 是B的相对闭子集,从而G是连续映射. 由K是 \mathbb{R}^m 中的紧集以及B是 \mathbb{R}^m 中的闭集知 $K \cap B$ 是 \mathbb{R}^m 中的紧集,因此, $F^{-1}(K) = F^{-1}(K \cap B) = G(K \cap B)$ 是 \mathbb{R}^n 中的紧集.