3. En deduire que A, B et C sont sur une spnere dont on donnera le rayon et le centre.

15

On considère trois points A(-1;8;3), B(-3;3;3) et C(-1;3;3).

- Quelles sont les coordonnées du milieu M de [AB].
- 2. Montrer que tous les points sont à égale distance de M.
- 3. En déduire que A, B et C sont sur une sphère dont on donnera le rayon et le centre.

16

Montrer que le quadrilatère ABCD est un losange où A(-3;5;0), B(0;5;1), C(3;5;0) et D(0;5;-1)

17

Montrer que le quadrilatère ABCD est un rectangle où A(2;3;2), B(8;1;2), C(9;4;2) et D(3;6;2).

18

Montrer que le quadrilatère ABCD est un losange où A(-3;-4;2), B(2.5;-4;-3), C(5;-4;4) et D(-0.5;-4;9).

19

Montrer que le quadrilatère ABCD est un carré où A(4;3;-1), B(-2;3;1), C(0;3;7) et D(6;3;5).

Coordonnées de vecteurs

20

Donner les coordonnées des vecteurs \overrightarrow{AB} , \overrightarrow{CD} et \overrightarrow{EF} avec A(1;2;5), B(-2;3;3), C(4;-1;8), D(0;3;4), E(-2;0;6) et F(8;-3;-7).

22

Donner les coordonnées de $\overrightarrow{AB} + \overrightarrow{CD}$ avec $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 5 \\ -1 \end{pmatrix}$ et $\overrightarrow{CD} = \begin{pmatrix} 2 \\ 1 \\ 8 \end{pmatrix}$.

23

Donner les coordonnées de $\overrightarrow{AB} + \overrightarrow{CD}$ avec $\overrightarrow{AB} = \begin{pmatrix} -3 \\ 5 \\ 2 \end{pmatrix}$ et $\overrightarrow{CD} = \begin{pmatrix} 2 \\ 1 \\ 1 \end{pmatrix}$.

24

Donner les coordonnées de $2\overrightarrow{AB}$ avec $\overrightarrow{AB} = \begin{pmatrix} -1 \\ 7 \\ -1 \end{pmatrix}$.

25

Donner les coordonnées de $-4\overrightarrow{AB}$ avec $\overrightarrow{AB} = \begin{pmatrix} -6 \\ 2 \\ -4 \end{pmatrix}$.

26

Donner les coordonnées de $3\overrightarrow{AB} + 5\overrightarrow{CD}$ avec $\overrightarrow{AB} = \begin{pmatrix} -2 \\ -5 \\ 0 \end{pmatrix}$ et $\overrightarrow{CD} = \begin{pmatrix} 7 \\ 8 \\ -4 \end{pmatrix}$.

27

Donner les coordonnées de $4\overrightarrow{AB} + 2\overrightarrow{CD}$ avec $\overrightarrow{AB} = \begin{pmatrix} 1 \\ 6 \\ -1 \end{pmatrix}$ et $\overrightarrow{CD} = \begin{pmatrix} -4 \\ -3 \\ 2 \end{pmatrix}$.