1 Уравнение Переноса

Уравнение переноса в общем случае имеет следующий вид:

$$\frac{\partial f}{\partial t} + \nabla \cdot (f \overrightarrow{u}) = 0 \tag{1}$$

Где и — векторное поле скоростей, f - переносимая скалярная величина, ∇ — оператор дивергенции. Определим f как функцию Хевисайда, принимающую значения 0 и 1:

$$f(x,t) = \begin{cases} 1 & \mathbf{x} \in liquid \\ 0 & \mathbf{x} \notin liquid \end{cases}$$
 (2)

В одномерном случае уравнение сводится к виду:

$$\frac{\mathrm{d}f_x}{\mathrm{d}t} + \frac{\mathrm{d}(f_x u_x)}{\mathrm{d}x} = 0 \tag{3}$$

В дальнейшем будем обозначать f_x u_x просто как f и u, подразумевая значения, взятые вдоль направлений соответствующих осей.

2 Численное решение

Для численного решения проводится дискретизация:

Отрезок [0;X], на котором рассматривается данное уравнение, разбивается на cellCount последовательных подотрезков, длиной Δx_i каждый ячейки сетки. i=1..cellCount. Положения $x_{i-\frac{1}{2}},\,x_{i+\frac{1}{2}}$ являются узлами данной сетки (ребрами ячеек). $\Delta x_i = x_{i+\frac{1}{2}} - x_{i-\frac{1}{2}}$. Для реализации программы была выбрана равномерная сетка с ячейками равной длины Δx . Зададим длину временного шага Δt и построим схему для вычисления средних значений функции f(x,t) в каждой ячейке.

$$\overline{f}_{i}^{n} = \frac{1}{\Delta x_{i}} \int_{x_{i-\frac{1}{2}}}^{x_{i+\frac{1}{2}}} f(x, t_{n}) dx$$
(4)

- среднее по ячейке значение функции f(x,t) на i-ом отрезке Δx_i на n-ом временном шаге.

Проинтегрируем уравнение переноса в одномерном случае (3) по времени на шаге $[t_n; t_{n+1}]$:

$$(f^{n+1} - f^n) + \int_{t_n}^{t_{n+1}} \frac{\mathrm{d}(fu)}{\mathrm{d}x} d\tau = 0$$

Для численного дифференцирования используем явную разностную схему 2 порядка:

$$\frac{\mathrm{d}(fu)}{\mathrm{d}x} = \frac{f_{i+\frac{1}{2}}u_{i+\frac{1}{2}} - f_{i-\frac{1}{2}}u_{i-\frac{1}{2}}}{\Delta x_i}$$