Fourier-Mukai transform on abelian variety

Bowen Liu¹

¹liubw22@mails.tsinghua.edu.cn

CONTENTS

Preface	2
Motivations and plans	2
Assumption	2
I. Geometry of complex tori	3
1.1. Complex tori	3
1.2. Hodge structures	4
1.3. Line bundles on a complex tori	5
1.4. The dual complex tori	10
1.5. Cohomology of line bundles on complex tori	13
1.6. Poincaré bundle	15
1.7. Dual polarization	19
2. Fourier-Mukai transform	21
2.1. Preliminaries on derived category	21
2.2. Fourier-Mukai transform on abelian variety	23
2.3. Atiyah's classification	25
References	27

PREFACE

Motivations and plans. Here are main references:

- (1) [Mum70];
- (2) [BL04].

Assumption. In this lecture note we always work over $\mathbb C$ for convenience.

1. Geometry of complex tori

1.1. Complex tori.

Definition 1.1.1. Let V be a complex vector space of dimension g and Λ be a lattice in V. The quotient $X = V/\Lambda$ is called a *complex tori* of dimension g.

Proposition 1.1.1. Let $h: X = V/\Lambda \to X' = V'/\Lambda$ be a holomorphic map between complex tori.

- (1) There is a unique homomorphism $f: X \to X'$ such that h(x) = f(x) + h(0) for all $x \in X$.
- (2) There is a unique \mathbb{C} -linear map $F: V \to V'$ with $F(\Lambda) \subset \Lambda'$ inducing the homomorphism f.

In particular, there is an injective homomorphism of abelian groups

$$\rho_a : \operatorname{Hom}(X, X') \to \operatorname{Hom}(V, V')$$

$$f \mapsto F,$$

and F is called *analytic representation* of f.

Proof. Let $f = t_{-h(0)} \circ h$. Then the composed map $f \circ \pi \colon V \to X \to X'$ can be lifted to a holomorphic map $F \colon V \to V'$ such that F(0) = 0.

This shows for all $\lambda \in \Lambda$ and $v \in V$ we have $F(v+\lambda)-F(v) \in \Lambda'$, and thus the continuity of $v \mapsto F(v+\lambda)-F(v)$ implies $F(v+\lambda)-F(v)=F(\lambda)$ holds for all $\lambda \in \Lambda$ and $v \in V$, and thus f is a homomorphism. Moreover, the partial derivatives of F are periodic and thus by Liouville's theorem it follows that F is \mathbb{C} -linear. The uniqueness of F and f is obvious.

Definition 1.1.2.

- (1) An *isogeny* of a complex tori X to a complex tori X' is by definition a surjective homomorphism $X \to X'$ with finite kernel.
- (2) The *exponent* e = e(f) of an isogeny f is defined to be the exponent of the finite group $\ker f$.

Definition 1.1.3. For a homomorphism $f: X \to X'$ of complex tori, the *degree* of f is defined to be order of $\ker f$, if it is finite, and 0 otherwise.

Definition 1.1.4. For any integer n, the homomorphism $n_X : X \to X$ is defined by $x \mapsto nx$, and $X_n := \ker n_X$ is called the *group of n-division points of* X

Proposition 1.1.2. Let X be a complex tori of dimension g. If $n \in \mathbb{Z}$ and $n \neq 0$, $X_n \cong (\mathbb{Z}/n\mathbb{Z})^{2g}$. In particular, the degree of n_X is n^{2g} .

Proof. It is clear that

$$\ker n_X = \frac{1}{n} \Lambda / \Lambda = \Lambda / n \Lambda = (\mathbb{Z} / n \mathbb{Z})^{2g}.$$

Proposition 1.1.3. For any isogeny $f: X \to X'$ of exponent e, there exists an isogeny $g: X \to X'$, unique to isomorphisms, with $g \circ f = e_X$ and $f \circ g = e_{X'}$.

Proof. Since $\ker f \subseteq \ker e_X$, there is a unique map $g\colon X'\to X$ such that $g\circ f=e_X$. Indeed, we define $g:=e_X\circ f^{-1}\colon X'\to X$, which is well-defined as for any point $x'\in X$, the preimages of x' differs some element in $\ker e_X$. This provides a map $g\colon X'\to X$ such that $g\circ f=e_X$. It is unique, otherwise suppose there exists g_1,g_2 such that $g_i\circ f=e_X$. Then $(g_1-g_2)\circ f=0$, which implies $g_1-g_2=0$, since f is surjective. Moreover, g is an isogeny, since both e_X and f are isogenies.

On the other hand, the kernel of g is contained in the kernel of $e_{X'}$. Indeed, for every $x' \in \ker g$, we may choose x such that f(x) = x', and $x \in \ker e_X$ since $ex = g \circ f(x) = g(x') = 0$. Then

$$ex' = ef(x) = f(ex) = 0.$$

By the same argument $e_{X'} = f' \circ g$ for some isogeny $f': X \to X'$. Since

$$f' \circ e_X = f' \circ g \circ f = e_{X'} \circ f = f \circ e_X$$

we have f' = f since e_X is surjective.

1.2. **Hodge structures.** Let X be a compact complex manifold of Kähler type². Then there is the following Hodge decomposition

$$H^k(X,\mathbb{Z})\cong \bigoplus_{p+q=k} H^{p,q}(X),$$

such that $\overline{H^{p,q}(X)} = H^{q,p}(X)$.

For the complex tori case, there is additional description on its de Rham cohomology $H^k(X,\mathbb{Z})$. Suppose $X=\mathbb{C}^g/\Lambda$. Then we have the following commutative diagram

$$\begin{array}{c|c}
\mathbb{C}^g & \xrightarrow{\pi} & \mathbb{C}^g/\Lambda \\
\cong & & |\cong \\
T_0X = V & \xrightarrow{\exp} & X.
\end{array}$$

This implies that $\pi_1(X) = \Lambda$ and thus $H^1(X, \mathbb{Z}) = \operatorname{Hom}_{\mathbb{Z}}(\Lambda, \mathbb{Z}) = \Lambda^*$.

If we forget the complex structure, topologically we have $X \cong (S^1)^{2g}$. Then

$$H^k(X,\mathbb{Z}) \stackrel{\cong}{\longleftarrow} \wedge^k H^1(X,\mathbb{Z})$$
 $\stackrel{\cong}{\longleftarrow} \qquad \qquad \qquad \uparrow \cong$
 $H^k((S^1)^{2g},\mathbb{Z}) \stackrel{\cong}{\longleftarrow} \qquad \wedge^k H^1((S^1)^{2g},\mathbb{Z}).$

²A compact complex manifold is of Kähler, if there exists a Kähler metric ω on X.

In other words, the k-th cohomology is determined by the 1-st cohomology group $H^1(X,\mathbb{Z})$.

In order to compute the Dolbeault cohomology, we equip $X = \mathbb{C}^g/\Lambda$ with a Kähler metric ω . Then by the theory of harmonic forms, there is an isomorphism

$$\mathcal{H}^{p,q}(X) = \{ \Delta_{\mathsf{d}}(\alpha) = 0 \mid \alpha \in \mathcal{A}^{p,q}(X) \} \cong H^{p,q}(X).$$

Since $X = \mathbb{C}^g / \Lambda$ is a Lie group, its tangent bundle is trivial. Thus

$$\mathcal{A}^{p,q}(X) = \operatorname{span}_{C^{\infty}(X)} \{ \operatorname{d} z^{i_1} \wedge \cdots \wedge \operatorname{d} z^{i_p} \wedge \operatorname{d} \overline{z}^{j_1} \wedge \cdots \wedge \operatorname{d} \overline{z}^{j_q} \},$$

where $\{\mathrm{d}z^1,\dots,\mathrm{d}z^g\}$ is a basis of $H^0(X,\Omega^1_X)$.

Note that the above isomorphism is independent of the choice of Kähler metric, we choose the standard flat metric, that is, the metric induced by the Euclidean metric on \mathbb{C}^g . Suppose $\alpha = \sum_{|I|=p,|J|=q} f_{IJ} dz_I \wedge d\overline{z}_J$. Then

$$\Delta_{\rm d}(\alpha) = 0 \Longleftrightarrow \Delta f_{IJ} = 0 \Longleftrightarrow f_{IJ} \in \mathbb{C}$$
.

This shows the Hodge number of complex tori $X = \mathbb{C}^g / \Lambda$ is

$$h^{p,q}(X) = \begin{pmatrix} g \\ p \end{pmatrix} \times \begin{pmatrix} g \\ q \end{pmatrix}.$$

- 1.3. **Line bundles on a complex tori.** In this section, we will show how to describe (holomorphic) line bundles on abelian varieties explicitly.
- 1.3.1. Appell-Humbert theorem. Let X be a complex tori defined by V/Λ , where $V = \mathbb{C}^g$ and $L \subseteq V$ is a lattice. Let \mathcal{E} be a vector bundle on X, as there is a natural projection $\pi \colon V \to X$, the pullback bundle $\pi^*\mathcal{E}$ is a vector bundle on V. By Oka-Grauert principle³, the pullback bundle $\pi^*\mathcal{E}$ is trivial, since V is contractible and Stein.

For line bundle cases, this fact can be proved algebraically by using the exponential sequence

$$0 \to \mathbb{Z} \to \mathcal{O}_V \to \mathcal{O}_V^* \to 0.$$

Indeed, since $H^p(V,\mathbb{Z})=0$ for p>0 as V is contractible, and $H^p(V,\mathcal{O}_V)=0$ for p>0 as V is Stein, then by the long exact sequence induced by the exponential sequence, we have $H^1(V,\mathcal{O}_V^*)=0$, which shows every line bundle on V is trivial.

In this section, we want to introduce the classification of line bundles on X. Let \mathcal{L} be a line bundle on X and fix an isomorphism $\pi^*\mathcal{L} \cong \mathcal{O}_V$. There is a natural Λ -action on $\pi^*\mathcal{L}$ such that the quotient of $\pi^*\mathcal{L}$ by Λ is \mathcal{L} . Since the only holomorphic automorphisms of a line bundle fixing the base are given by multiplication by non-vanishing holomorphic functions, then the action of Λ on $\mathbb{C} \times V$ can be written as

$$(\alpha, z) \mapsto (\phi_{\lambda}(\alpha), z + \lambda)$$

³In complex geometry, the Oka-Grauert principle states that over Stein complex manifolds, the non-abelian cohomology-classification of holomorphic vector bundles coincides with that of topological vector bundles.

for all $\lambda \in \Lambda$. where $\phi_{\lambda} \in H^0(V, \mathcal{O}_V^*)$. Moreover, it satisfies

$$\phi_{\lambda_1+\lambda_2}=\lambda_2^*\phi_{\lambda_1}\cdot\phi_{\lambda_2},$$

that is, $\{\phi_{\lambda}\}_{\lambda \in \Lambda}$ satisfies the cocycle condition, and thus $\{\phi_{\lambda}\}_{\lambda \in \Lambda}$ gives an element in $Z^1(\Lambda, H^0(V, \mathcal{O}_V^*))$.

There is an equivalent relation \sim on $Z^1(\Lambda, H^0(V, \mathcal{O}_V^*))$ defined by $\{\phi_{\lambda}\} \sim \{\phi_{\lambda}'\}$ if and only if there exists $f \in H^0(V, \mathcal{O}_V^*)$ such that for all $\lambda \in \Lambda$, we have

$$\phi_{\lambda}' \cdot \phi_{\lambda}^{-1} = \lambda^*(f) \cdot f^{-1},$$

and the quotient group of $Z^1(\Lambda, H^0(V, \mathcal{O}_V^*))/_{\sim}$ is denoted by $H^1(\Lambda, H^0(V, \mathcal{O}_V^*))$. After passing to this cohomology group, actually there is the following isomorphism

$$H^{1}(\Lambda, H^{0}(V, \mathcal{O}_{V}^{*})) \xrightarrow{\cong} H^{1}(X, \mathcal{O}_{X}^{*})$$
$$[\{\phi_{\lambda}\}_{\lambda \in \Lambda}] \to [\mathcal{L}].$$

Thus, in order to classify all line bundles, it suffices to have an effective way to produce elements in $H^1(\Lambda, H^0(V, \mathcal{O}_V^*))$. Recall that for a Hermitian form h on V, the real part Reh is symmetric and the imaginary part E := Imh is alternating. Also, E preserves the complex structure of V, that is, $E(\sqrt{-1}x, \sqrt{-1}y) = E(x, y)$ for all $x, y \in V$.

Definition 1.3.1. Let $V = \mathbb{C}^g$ and $\Lambda \subseteq V$ be a lattice. A Hermitian form h on V satisfies the *integrality condition*, if

$$E: \Lambda \times \Lambda \to \mathbb{Z}$$
.

Lemma 1.3.1. Let h be a Hermitian form on V satisfying the integrality condition and E = Imh.

(1) There exists $\alpha: \Lambda \to U(1)$ such that for any $\lambda_1, \lambda_2 \in \Lambda$, we have

$$\frac{\alpha(\lambda_1+\lambda_2)}{\alpha(\lambda_1)\cdot\alpha(\lambda_2)}=e^{\sqrt{-1}\pi E(\lambda_1,\lambda_2)}\in\{\pm 1\}.$$

(2) For $\lambda \in \Lambda$, if we define

$$\phi_{\lambda}(z) = \alpha(\lambda) \cdot e^{\pi h(z,\lambda) + \frac{1}{2}\pi h(\lambda,\lambda)} \in H^{0}(V,\mathcal{O}_{V}^{*}),$$

then $\{\phi_{\lambda}\}\in Z^1(\Lambda, H^0(V, \mathcal{O}_V^*)).$

(3) There is a commutative diagram

$$\begin{split} [\mathcal{L}] \in H^1(X, \mathcal{O}_X^*) & \stackrel{\delta}{-\!\!\!-\!\!\!-\!\!\!-\!\!\!-\!\!\!-} H^2(X, \mathbb{Z}) \\ \downarrow^{\pi^*} & & & & & \downarrow^{\pi^*} \\ [\{\phi_\lambda\}_{\lambda \in \Lambda}] \in H^1(\Lambda, H^0(V, \mathcal{O}_V^*)) & \stackrel{\delta}{-\!\!\!\!-\!\!\!-\!\!\!-} H^2(\Lambda, \mathbb{Z}), \end{split}$$

such that $c_1(\mathcal{L}) = E$ under the identification $H^2(X, \mathbb{Z}) \cong \bigwedge^2 \Lambda^*$, where \mathcal{L} is the line bundle corresponding to $\{\phi_{\lambda}\}_{{\lambda} \in \Lambda}$.

Proof. For (1). Suppose that the rank of Λ is two and take a basis $\{e, f\}$ of Λ . Then define a map

$$\delta : \Lambda \to \mathbb{R}$$

$$ne + mf \mapsto \frac{1}{2} nm E(e, f).$$

For $\lambda_1, \lambda_2 \in \Lambda$, we may write it as

$$\lambda_1 = ae + bf$$
$$\lambda_2 = ce + df,$$

and thus by definition of δ it gives

$$\delta(\lambda_1 + \lambda_2) = \frac{1}{2}(a+c)(b+d)E(e,f)$$
$$\delta(\lambda_1) = \frac{1}{2}abE(e,f)$$
$$\delta(\lambda_2) = \frac{1}{2}cdE(e,f).$$

A direct computation shows that

$$\delta(\lambda_1 + \lambda_2) - \delta(\lambda_1) - \delta(\lambda_1) = \frac{1}{2}(ad + bc)E(e, f)$$

$$\equiv \frac{1}{2}(ad - bc)E(e, f) \pmod{1}$$

$$\equiv \frac{1}{2}E(\lambda_1, \lambda_2) \pmod{1}.$$

This shows that $\alpha = e^{2\pi\sqrt{-1}\delta}$: $\Lambda \to U(1)$ satisfies

$$\frac{\alpha(\lambda_1 + \lambda_2)}{\alpha(\lambda_1) \cdot \alpha(\lambda_2)} = e^{\sqrt{-1}\pi E(\lambda_1, \lambda_2)} \in \{\pm 1\}.$$

In the general case, we choose a symplectic basis $\{e_1, f_1, e_2, f_2, \dots, e_g, f_g\}$ of Λ and write $\Lambda = \bigoplus_{i=1}^g \Lambda_i$ as an orthogonal decomposition with respect to E, where $\Lambda_i = \operatorname{span}_{\mathbb{Z}} \{e_i, f_i\}$. Then a similar computation yields that $\delta \colon \Lambda \to \mathbb{R}$ defined by

$$\delta\left(\sum_{i=1}^g (n_i e_i + m_i f_i)\right) = \frac{1}{2} \sum_{i=1}^g n_i m_i E(e_i, f_i)$$

satisfy (1.1), and we can also define $\alpha = e^{2\pi\sqrt{-1}\delta}$: $\Lambda \to U(1)$, which satisfies the desired property.

For (2). By definition, we have

$$\begin{split} \phi_{\lambda_1+\lambda_2}(z) &= \alpha(\lambda_1+\lambda_2)e^{\pi h(z,\lambda_1+\lambda_2)+\frac{1}{2}\pi h(\lambda_1+\lambda_2,\lambda_1+\lambda_2)}\\ \phi_{\lambda_1}(z+\lambda_2) &= \alpha(\lambda_1)e^{\pi h(z+\lambda_2,\lambda_1)+\frac{1}{2}\pi h(\lambda_1,\lambda_1)}\\ \phi_{\lambda_2}(z) &= \alpha(\lambda_2)e^{\pi h(z,\lambda_2)+\frac{1}{2}\pi h(\lambda_2,\lambda_2)}. \end{split}$$

Thus

$$\begin{split} \phi_{\lambda_{1}}(z+\lambda_{2})\phi_{\lambda_{2}}(z) &= \alpha(\lambda_{1})\alpha(\lambda_{2})e^{\pi(h(z+\lambda_{2},\lambda_{1})+h(z,\lambda_{2})+\frac{1}{2}h(\lambda_{1},\lambda_{1})+\frac{1}{2}h(\lambda_{2},\lambda_{2}))} \\ &= \alpha(\lambda_{1}+\lambda_{2})e^{-\sqrt{-1}\pi E(\lambda_{1},\lambda_{2})+\pi(h(z+\lambda_{2},\lambda_{1})+h(z,\lambda_{2})+\frac{1}{2}h(\lambda_{1},\lambda_{1})+\frac{1}{2}h(\lambda_{2},\lambda_{2}))} \\ &= \alpha(\lambda_{1}+\lambda_{2})e^{\pi(h(z,\lambda_{1}+\lambda_{2}))+\frac{1}{2}h(\lambda_{1}+\lambda_{2},\lambda_{1}+\lambda_{2})}e^{-\sqrt{-1}\pi E(\lambda_{1},\lambda_{2})+\frac{1}{2}h(\lambda_{2},\lambda_{1})-\frac{1}{2}h(\lambda_{1},\lambda_{2})}. \end{split}$$

Note that

$$\begin{split} -\sqrt{-1}\pi E(\lambda_1,\lambda_2) + \frac{1}{2}h(\lambda_2,\lambda_1) - \frac{1}{2}h(\lambda_1,\lambda_2) &= -\sqrt{-1}\pi E(\lambda_1,\lambda_2) + \sqrt{-1}E(\lambda_2,\lambda_1) \\ &= -2\sqrt{-1}\pi E(\lambda_1,\lambda_2) \in 2\pi\sqrt{-1}\,\mathbb{Z}\,. \end{split}$$

This shows

$$\phi_{\lambda_1+\lambda_2}(z) = \phi_{\lambda_1}(z+\lambda_2)\phi_{\lambda_2}(z).$$

For (3). By the exponential sequence

$$0 \to \mathbb{Z} \to \mathcal{O}_V \to \mathcal{O}_V^* \to 0$$
,

there is the following short exact sequence

$$(1.2) 0 \to \mathbb{Z} \to H \to H^0(V, \mathcal{O}_V^*) \to 0,$$

since $H^1(V,\mathbb{Z})=0$. Moreover, since V is contractible and Stein, we have $H^i(V,\mathcal{O}_V^*)=0$ for $i\geq 1$. Thus by Appendix to §2 of [Mum70], we get natural isomorphisms as vertical maps

and the commutativity can be checked by using a small open covering of X.

By the commutativity of the diagram, in order to compute the first Chern class of \mathcal{L} corresponding to $\{\phi_{\lambda}\}_{\lambda\in\Lambda}\in Z^{1}(\Lambda,H^{0}(V,\mathcal{O}_{V}^{*}))$, it suffices to compute $\delta\left(\{\phi_{\lambda}\}_{\lambda\in\Lambda}\right)$. By the short exact sequence (1.2), we have $Z^{1}(\Lambda,H)\twoheadrightarrow Z^{1}(\Lambda,H^{0}(V,\mathcal{O}_{V}^{*}))$, that is, there exists $\{f_{\lambda}\}_{\lambda\in\Lambda}\in Z^{1}(\Lambda,H)$ such that $\exp(2\pi\sqrt{-1}f_{\lambda})=\phi_{\lambda}$. For $\{f_{\lambda}\}_{\lambda\in\Lambda}$, we have

$$\delta(f_{\lambda})(\lambda_1,\lambda_2)(z) = f_{\lambda_2}(z+\lambda_1) - f_{\lambda_1+\lambda_2}(z) + f_{\lambda_1}(z) \in \mathbb{Z}.$$

Then use the following fact

$$Z^2(\Lambda,\mathbb{Z}) \xrightarrow{A} \operatorname{Hom}(\bigwedge^2 L,\mathbb{Z}) \xrightarrow{\cong} \bigwedge^2 L^* \xrightarrow{\cong} H^2(X,\mathbb{Z})$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

where for $F \in \mathbb{Z}^2(\Lambda, \mathbb{Z})$, we have $A(F)(\lambda_1, \lambda_2) := F(\lambda_1, \lambda_2) - F(\lambda_2, \lambda_1)$.

Thus we get

$$\begin{split} \delta(\{\phi_{\lambda}\}_{\lambda\in\Lambda})(\lambda_{1},\lambda_{2}) &= f_{\lambda_{2}}(z+\lambda_{1}) - f_{\lambda_{1}+\lambda_{2}}(z) + f_{\lambda_{1}}(z) - f_{\lambda_{1}}(z+\lambda_{2}) + f_{\lambda_{1}+\lambda_{2}}(z) - f_{\lambda_{2}}(z) \\ &= f_{\lambda_{2}}(z+\lambda_{1}) - f_{\lambda_{1}}(z+\lambda_{2}) + f_{\lambda_{1}}(z) - f_{\lambda_{2}}(z) \\ &= \frac{1}{2\pi\sqrt{-1}}\log\alpha(\lambda_{2}) + \frac{1}{2\pi\sqrt{-1}}\left(\pi h(z+\lambda_{1},\lambda_{2}) + \frac{1}{2}\pi h(\lambda_{2},\lambda_{1})\right) \\ &- \frac{1}{2\pi\sqrt{-1}}\log\alpha(\lambda_{1}) - \frac{1}{2\pi\sqrt{-1}}\left(\pi h(z+\lambda_{2},\lambda_{1}) + \frac{1}{2}\pi h(\lambda_{1},\lambda_{2})\right) \\ &+ \frac{1}{2\pi\sqrt{-1}}\log\alpha(\lambda_{1}) + \frac{1}{2\pi\sqrt{-1}}\left(\pi h(z,\lambda_{1}) + \frac{\pi}{h}(\lambda_{1},\lambda_{2})\right) \\ &- \frac{1}{2\pi\sqrt{-1}}\log\alpha(\lambda_{2}) - \frac{1}{2\pi\sqrt{-1}}\left(\pi h(z,\lambda_{2}) + \frac{1}{2}\pi h(\lambda_{2},\lambda_{2})\right) \\ &= \frac{1}{2\sqrt{-1}}\left(h(\lambda_{1},\lambda_{2}) - h(\lambda_{2},\lambda_{1})\right) \\ &= E(\lambda_{1},\lambda_{2}). \end{split}$$

Notation 1.3.1. Since the construction of $\{\phi_{\lambda}\}_{{\lambda}\in\Lambda}$ depends on Hermitian metric h and α , we write $\mathcal{L}(h,\alpha)$ to denote the line bundle determined by h and α

Lemma 1.3.2.

$$\mathcal{L}(h_1,\alpha_1)\otimes\mathcal{L}(h_1,\alpha_1)=\mathcal{L}(h_1+h_2,\alpha_1\cdot\alpha_2).$$

Theorem 1.3.1 (Appell-Humbert). Any line bundle on X is isomorphic to a unique $\mathcal{L}(h,\alpha)$.

Remark 1.3.1. In other words, if we set

 $\operatorname{Herm}^{\operatorname{int}}(V) = \{h : V \times V \to \mathbb{C} \mid h \text{ is a Hermitian metric satisfying the integrable condition}\}$ and

 $\widetilde{\operatorname{Herm}}^{\operatorname{int}}(V) = \{(h,\alpha) \mid h \in \operatorname{Herm}^{\operatorname{int}}(V), \ \alpha \colon \Lambda \to \operatorname{U}(1) \text{ such that } \alpha(\lambda_1 + \lambda_2) = e^{\pi \sqrt{-1} \operatorname{Im} h(\lambda_1 + \lambda_2)} \alpha(\lambda_1) \cdot \alpha(\lambda_2) \},$ then we have the following commutative diagram

1.3.2. Type of a line bundle.

Lemma 1.3.3. Let $X = \mathbb{C}^g/\Lambda$ be a complex tori and h be a Hermitian form which satisfies the integrality condition. Then for the symplectic form $E = \operatorname{Im} h$, there exists a basis $\{e_1, f_1, \dots, e_g, f_g\}$ of Λ such that E is of blocked diagonal matrix

$$diag\{E_1,...,E_{g'},0,...,0\},$$

where

$$\boldsymbol{E}_i = \begin{pmatrix} 0 & n_i \\ -n_i & 0 \end{pmatrix}$$

and $n_i \in \mathbb{Z}$ and $0 < n_1 \mid n_2 \mid \cdots \mid n_{g'}$ are called elementary divisors.

Proof. If $E \equiv 0$, then there is nothing to prove, so we may assume $E \not\equiv 0$. Consider the set

$${E(\ell,\ell') \mid \ell,\ell' \in \Lambda} \subset \mathbb{Z}$$
.

Since \mathbb{Z} is ordered, there exists a pair $\{e_1, f_1\} \subset L$ such that $E(e_1, f_1) > 0$ is the minimal among

$${E(\ell,\ell') \mid \ell,\ell' \in \Lambda} \cap \mathbb{Z}_+ \neq \emptyset$$

Let $\Lambda_1=\operatorname{span}_{\mathbb{Z}}\{e_1,f_1\}$ and $\Lambda_1^{\perp}=\{\ell\in\Lambda\mid E(\ell,L_1)=0\}$. It's clear that $\Lambda_1\cap\Lambda_1^{\perp}=\{0\}$. For any $\ell\in\Lambda$, consider $a,b\in\mathbb{Q}$ such that

$$\widetilde{\ell} := \ell - ae_1 - bf_1$$

such that $E(\widetilde{\ell}, e_1) = E(\widetilde{\ell}, f_1) = 0$. Clearly we have

$$a = \frac{E(\widetilde{\ell}, f_1)}{E(e_1, f_1)}, \quad b = \frac{E(e_1, \widetilde{\ell})}{E(e_1, f_1)}.$$

Now we claim that $a, b \in \mathbb{Z}$. Indeed, suppose on contrary and write $E(e_1, f_1) = n$ and $E(e_1, \widetilde{f_1}) = m$ such that $n \nmid m$. Then there exist $c, d \in \mathbb{Z}$ such that

$$0 < cn + dm = (n, m) < n$$
.

Therefore $E(e_1,cf_1+d\widetilde{\ell})=cE(e,f_1)+dE(e,\widetilde{\ell})< n$, which contradicts to the choice of e_1,f_1 . This shows $b\in\mathbb{Z}$, and by the same argument we can show $a\in\mathbb{Z}$. The claims implies

$$\Lambda = \Lambda_1 \oplus \Lambda_1^{\perp}.$$

By induction one shows the existence of a basis $\{e_1, f_1, \dots, e_{g'}, f_{g'}, \dots, e_g, f_g\}$ of Λ such that

$$\Lambda = \bigoplus_{i=1}^{g} \Lambda_i,$$

where $\Lambda_i = \operatorname{span}_{\mathbb{Z}}\{e_i, f_i\}$. If we define $n_i = E(e_i, f_i) \in \mathbb{Z}$, then $0 < n_1 \mid n_2 \mid \cdots \mid n_{g'}$ and $n_k = 0$ for k > g'.

Definition 1.3.2. Let $X = V/\Lambda$ be a complex tori and $\mathcal{L} = \mathcal{L}(h,\alpha)$ for $(h,\alpha) \in \widetilde{\text{Herm}}^{\text{int}}(V)$. The collection of elementary divisors $\{n_1,\ldots,n_g\}$ of E = Imh is called the *type* of \mathcal{L} .

1.4. **The dual complex tori.** Let $X = V/\Lambda$ be a complex tori of dimension g. Consider the \mathbb{C} -vector space $V^{\vee} := \operatorname{Hom}_{\overline{\mathbb{C}}}(V,\mathbb{C})$ of \mathbb{C} -anti-linear forms $\ell : V \to \mathbb{C}$. The underlying \mathbb{R} -vector space of V^{\vee} is isomorphic to $\operatorname{Hom}_{\mathbb{R}}(V_{\mathbb{R}},\mathbb{R})$ by $\ell \mapsto \operatorname{Im}\ell$, and the inverse map is given by $k \mapsto \ell(z) := -k(\sqrt{-1}z) + \sqrt{-1}k(z)$. Hence the canonical \mathbb{R} -bilinear form

$$\langle -, - \rangle \colon V^{\vee} \times V \to \mathbb{R}$$

$$(\ell, v) \mapsto \operatorname{Im} \ell(v),$$

is non-degenerate, and this implies $\Lambda^{\vee} := \{ \ell \in V^{\vee} \mid \langle \ell, \Lambda \rangle \subseteq \mathbb{Z} \}$ is a lattice.

Definition 1.4.1. The *dual complex tori* is defined as

$$\widehat{X} := V^{\vee}/\Lambda^{\vee}$$
.

Proposition 1.4.1. $\widehat{X} \cong \operatorname{Pic}^0(X)$.

Proof. By Appell-Humbert Theorem (Theorem 1.3.1) the map

$$\operatorname{Hom}(\Lambda, \operatorname{U}(1)) \to \operatorname{Pic}^0(X)$$

 $\alpha \mapsto \mathcal{L}(0, \alpha)$

is an isomorphism. On the other hand, the non-degeneracy of the form $\langle \text{-},\text{-}\rangle$ implies

$$V^{\vee} \to \operatorname{Hom}(\Lambda, \operatorname{U}(1))$$

 $\ell \mapsto e^{2\pi\sqrt{-1}\langle \ell, - \rangle}$

is surjective, and the kernel of this homomorphism is exactly Λ^{\vee} . As a consequence, it induces an isomorphism $\widehat{X} \to \operatorname{Pic}^0(X)$.

Lemma 1.4.1. Let $\mathcal{L} = \mathcal{L}(h, \alpha)$ be a line bundle on X and $x_0 \in X$ with $z_0 \in V$ as a lifting of x_0 . Then

$$T_{x_0}^* \mathcal{L}(h,\alpha) = \mathcal{L}(h,\alpha e^{2\pi\sqrt{-1}\mathrm{Im}h(z_0,-)}),$$

where $T_{x_0}: X \to X$ is the translation defined by $y \mapsto y + x_0$.

Proof. Since z_0 is a lifting of x_0 , then the translation T_{z_0} on V induces the translation T_{x_0} on X, and the induced map of T_{x_0} on the fundamental group Λ of X is identity. Hence if $\{\phi_{\lambda}\}_{{\lambda}\in\Lambda}$ is the cocycle class of ${\mathcal L}$, then

$$(\mathrm{id}_\Lambda \times T_{z_0})^*\phi_\lambda = \alpha(\lambda)e^{\pi h(z_0,\lambda)}e^{\pi(h(z,\lambda)+\frac{1}{2}h(\lambda,\lambda))}$$

is the cocycle class of $T_x^*\mathcal{L}$. But $\alpha(\lambda)e^{\pi h(z_0,-)}$ may not be a map from $\Lambda \to \mathrm{U}(1)$, so we need to choose another representative in the cocycle class. Recall that $\phi_\lambda' \sim \phi_\lambda$ if and only if there exists $g \in \Gamma(V, \mathcal{O}_V^*)$ such that $\phi_\lambda'(z) = \phi_\lambda(z)g(z + \lambda)g(z)^{-1}$. If we choose $g(z) = e^{-\pi h(z,z_0)}$, then

$$(\mathrm{id}_\Lambda \times T_{z_0})^* \phi_\lambda g(z+\lambda) g(z)^{-1} = \alpha(\lambda) e^{2\pi \sqrt{-1} \mathrm{Im} h(z_0,\lambda)} e^{\pi h(z,\lambda) + \frac{\pi}{2} h(\lambda,\lambda)},$$

where $\alpha(\lambda)e^{2\pi\sqrt{-1}\mathrm{Im}h(z_0,\lambda)}$: $\Lambda \to \mathrm{U}(1)$. This shows

$$T_{x_0}^* \mathcal{L}(h,\alpha) = \mathcal{L}(h,\alpha e^{2\pi\sqrt{-1}\mathrm{Im}h(z_0,-)}).$$

Corollary 1.4.1. The map $\phi_{\mathcal{L}}$ only depends on the first Chern class of \mathcal{L} .

Proof. It follows from Lemma 1.4.1 immediately.

Corollary 1.4.2. Let \mathcal{L} be a line bundle on X. Then

$$\phi_{\mathcal{L}} \colon X \to \operatorname{Pic}^{0}(X)$$

$$x \mapsto T_{x}^{*} \mathcal{L} \otimes \mathcal{L}^{-1},$$

is a group homomorphism.

Proof. By Lemma 1.4.1 we know that \mathcal{L} and $T_x^*\mathcal{L}$ have the same first Chern class for any $x \in X$. As a consequence, $T_x^*\mathcal{L} \otimes \mathcal{L}^{-1} \in \operatorname{Pic}^0(X)$.

Corollary 1.4.3. Let $\mathcal{L} = \mathcal{L}(h, \alpha)$ be a line bundle on X. Then map

$$\phi_h: V \to V^{\vee}$$
$$z \mapsto h(z, -)$$

is the analytic representation of $\phi_{\mathcal{L}}$.

Proof. By Lemma 1.4.1 we get

$$t_x^* \mathcal{L} \otimes \mathcal{L}^{-1} = \mathcal{L}(0, e^{2\pi\sqrt{-1}\mathrm{Im}h(z, -)})$$
$$= \mathcal{L}(0, e^{2\pi\sqrt{-1}\langle \phi_h(v), -\rangle}).$$

Comparing this with the isomorphism $\widehat{X} \to \operatorname{Pic}^0(X) = \operatorname{Hom}(\Lambda, \operatorname{U}(1))$ in Proposition 1.4.1 gives the assertion.

Definition 1.4.2. A line bundle \mathcal{L} on X is called *non-degenerate*, if $K(\mathcal{L})$ is finite.

Proposition 1.4.2. Let $\mathcal{L} = \mathcal{L}(h, \alpha)$ for $(h, \alpha) \in \widetilde{\operatorname{Herm}}^{\operatorname{int}}(V)$ be a line bundle. Then the following statements are equivalent:

- (1) \mathcal{L} is non-degenerate;
- (2) $\phi_{\mathcal{L}}: X \to \widehat{X}$ is an isogeny;
- (3) $\deg \phi_{\mathcal{L}} = \det(\operatorname{Im} h) \neq 0$.

Proof. If \mathcal{L} is non-degenerate, then by definition $K(\mathcal{L})$ is finite and $\phi_{\mathcal{L}} \colon X \to \widehat{X}$ is surjective, as X is of the same dimension as \widehat{X} . Conversely, if $\phi_{\mathcal{L}}$ is an isogeny, then $K(\mathcal{L}) = \ker \phi_{\mathcal{L}}$ is finite by definition of isogeny. This shows (1) is equivalent to (2).

For (1) and (3): Note that by definition of degree, $\deg \phi_{\mathcal{L}} \neq 0$ if and only if $\ker \phi_{\mathcal{L}}$ is finite. Now it remains to show $\deg \phi_{\mathcal{L}} = \det(\operatorname{Im} h)$. Let

$$\Lambda(\mathcal{L}) = \{ v \in V \mid \operatorname{Im} h(v, \Lambda) \subseteq \mathbb{Z} \}.$$

Then by Lemma 1.4.1 it is easy to see $K(\mathcal{L}) = \Lambda(\mathcal{L})/\Lambda$, and

$$\deg \phi_{\mathcal{L}} = |\frac{\Lambda(\mathcal{L})}{\Lambda}| = \det(\mathrm{Im}h)$$

follows from elementary linear algebra.

Theorem 1.4.1 (seesaw theorem). Let X, Y be varieties with X is complete and \mathcal{L} be a line bundle on $X \times Y$. Then

- (1) $Y_1 = \{ y \in Y \mid \mathcal{L}|_{X \times \{y\}} \cong \mathcal{O}_{X \times \{y\}} \}$ is a Zariski closed subset of Y.
- (2) There exists a line bundle \mathcal{M} on Y_1 such that $\mathcal{L}|_{X\times Y_1} \cong p_Y^*\mathcal{M}$.

Corollary 1.4.4. Let X,Y be varieties with X is complete and \mathcal{L} be a line bundle on $X \times Y$. If $\mathcal{L}|_{X \times \{y\}}$ is trivial for all y out of an open dense subset of Y and $\mathcal{L}|_{\{x_0\} \times Y}$ is trivial for some $x_0 \in X$, then \mathcal{L} is trivial.

Corollary 1.4.5. $K(\mathcal{L})$ is a Zariski closed subset.

Proof. Recall that $x \in K(\mathcal{L})$ if and only if $T_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$ is trivial. If we denote $\widetilde{\mathcal{L}} = m^* \mathcal{L} \otimes p_1^* \mathcal{L}^{-1}$, where $m: X \times X \to X$ is the addition on X, then $\widetilde{\mathcal{L}}|_{X \times \{x\}} = T_x^* \mathcal{L} \otimes \mathcal{L}^{-1}$, and thus $K(\mathcal{L})$ is a Zariski closed subset of X by Theorem 1.4.1. \square

Corollary 1.4.6. Let $\mathcal{L} \in \operatorname{Pic}^0(X)$ be a line bundle which is not trivial. Then $H^k(X,\mathcal{L}) = 0$ for all $k \in \mathbb{Z}_{\geq 0}$.

Proof. Firstly, $H^0(X, \mathcal{L}) = 0$, otherwise $\mathcal{L} \cong \mathcal{O}_X$. Let k be the smallest integer such that $H^k(X, \mathcal{L}) \neq 0$. Then

$$H^k(X \times X, m^*\mathcal{L}) \neq 0$$

On the other hand,

$$H^k(X\times X,m^*\mathcal{L})\cong H^k(X\times X,p_1^*\mathcal{L}\otimes p_2^*\mathcal{L})\cong \bigoplus_{i+j=k} H^i(X,\mathcal{L})\otimes H^j(X,\mathcal{L})=0,$$

a contradiction. \Box

1.5. Cohomology of line bundles on complex tori.

1.5.1. Global section.

Proposition 1.5.1. Let $X = \mathbb{C}^g / \Lambda$ be a complex tori and $\mathcal{L} \cong \mathcal{L}(h, \alpha)$ for $(h, \alpha) \in \widetilde{\operatorname{Herm}}^{\operatorname{int}}(V)$.

- (1) If there exists $0 \neq \omega \in V$ such that $h(\omega, \omega) < 0$, then $H^0(X, \mathcal{L}) = 0$.
- (2) If h > 0, then $h^0(X, \mathcal{L}) = \sqrt{\det E}$, where $E = \operatorname{Im} h$.
- (3) If $h \ge 0$ and the null space N of h is not trivial, then the natural map $\eta: V \to V' := V/N$ induces an epimorphism $\eta: X \to X' := V'/(\Lambda/N \cap \Lambda)$ of complex tori. Moreover, there exists a line bundle $\mathcal{L}' := \mathcal{L}(h', \alpha')$ over X' with h' > 0, such that $\mathcal{L} = \eta^* \mathcal{L}'$. In particular, \mathcal{L} cannot be ample.

Proof. For a line bundle $\mathcal{L}(h,\alpha)$, the global sections of \mathcal{L} are identified with holomorphic functions on $V = \mathbb{C}^g$ with automorphic factor. To be explicit,

$$H^0(X,\mathcal{L}) = \{\theta(z) \in H^0(V,\mathcal{O}_V) \mid \theta(z+\ell) = \theta(z) \cdot \phi_\ell(z)\},$$

where

$$\phi_{\ell}(z) = e^{\pi h(z,\ell) + \frac{\pi}{2}h(\ell,\ell)}.$$

For (1). Suppose there exists $0 \neq w \in V$ such that h(w,w) < 0. Let W be a complex subspace of V of positive dimension containing w and K be a compact subset of V such that V = K + L. Let $z_0 \in V$ and $w \in W$, and write $w = k + \ell$, where $k \in K$ and $\ell \in \Lambda$. We have

$$|\theta(z_0 + w)| = |\theta(z_0 + k + \ell)|$$

= $|\theta(z_0 + k)|e^{\pi \operatorname{Re}h(z_0 + k, \ell) + \frac{\pi}{h}(\ell, \ell)}$.

Note that

$$\operatorname{Re}h(z_0 + k, \ell) + \frac{1}{2}h(\ell, \ell) = \operatorname{Re}h(z_0 + k, w) - \operatorname{Re}h(z_0 + k, k) + \frac{1}{2}h(w, w) + \frac{1}{2}h(k, k) - \operatorname{Re}h(w, k)$$
$$= \frac{1}{2}h(w, w) + \operatorname{Re}h(z_0, w) + c(k, z_0).$$

Of the terms on the right, for fixed z_0 , the first term is a real negative definite quadratic form in w, the second term is linear in w and the third term is bounded since *K* is compact. This shows $|\theta(z_0 + w)|$ tends to $-\infty$ as $w \to \infty$ in W. By applying the maximum principle to $|\theta(z_0 + w)|$ as a function of w, we conclude $\theta(z_0 + w) = 0$, hence $\theta \equiv 0$. This shows $\mathcal{L}(h, \alpha)$ has no non-zero global section.

For (2). By Lemma 1.3.1, we have $c_1(\mathcal{L}) = \text{Im}h$. Thus h > 0 is equivalent to \mathcal{L} is an ample line bundle. By Kodaira vanishing theorem, we have $H^i(X,\mathcal{L}) =$ 0 for all i > 0, and thus $\chi(X, \mathcal{L}) = h^0(X, \mathcal{L})$. By Riemann-Roch theorem, we have

$$\begin{split} h^0(X,\mathcal{L}) &= \operatorname{deg}(\operatorname{ch}(\mathcal{L})\operatorname{td}(X)) \\ &= \frac{1}{g!}c_1(\mathcal{L})^g, \end{split}$$

where $td(X) = td(\mathcal{T}_X) = 1$ as \mathcal{T}_X is trivial. We take $\{dx^i, dy^i\}$ to be dual basis to a symplectic basis $\{e_i, f_i\}$ for $L = H_1(X, \mathbb{Z})$. Then by (3) of Lemma 1.3.1, we have

$$c_1(\mathcal{L}) = E = \sum_{i=1}^g n_i dx^i \wedge dy^i.$$

In particular, we have

$$c_1(\mathcal{L})^g = \bigwedge^g \left(\sum_{i=1}^g n_i dx^i \wedge dy^i \right)$$
$$= g! \prod_{i=1}^g n_i dx^1 \wedge dy^1 \wedge \dots \wedge dx^g \wedge dy^g.$$

Therefore, $h^0(X, \mathcal{L}(h, \alpha)) = \prod_{i=1}^g n_i = \sqrt{\det E}$. For (3). Since the symplectic form $E = \mathrm{Im} h$ is not non-degenerates, by Lemma 1.3.3 we decompose the lattice Λ as $\Lambda = \Lambda' \oplus \Lambda_{\text{null}}$, and decompose Vas $V = V' \oplus V_{\text{null}}$, where $V' = \Lambda' \otimes_{\mathbb{Z}} \mathbb{C}$ and $V_{\text{null}} = \Lambda_{\text{null}} \otimes_{\mathbb{Z}} \mathbb{C}$. Therefore, we can set

$$h' = h|_{V' \times V'}, \quad \alpha' = \alpha|_{V'}, \quad \alpha_{\text{null}} = \alpha|_{V_{\text{null}}}.$$

If we set $X = V'/\Lambda'$ and $X_{\text{null}} = V_{\text{null}}/\Lambda_{\text{null}}$, then $\mathcal{L}' = \mathcal{L}'(h', \alpha')$ is a line bundle on X' and $\mathcal{L}_{\text{null}} \in \text{Pic}^0(X_{\text{null}})$ is a degree zero line bundle given by α_{null} .

Let $p: X \to X'$ and $q: X \to X_{\text{null}}$ be the natural projections. Then

$$\mathcal{L} \cong p^* \mathcal{L}' \otimes q^* \mathcal{L}_{\text{null}}$$

As p is connected and proper, then

$$\begin{split} H^0(X,\mathcal{L}) &= H^0(X',p_*(p^*\mathcal{L}'\otimes q^*\mathcal{L}_{\text{null}})) = H^0(X',\mathcal{L}') \oplus H^0(X_{\text{null}},\mathcal{L}''), \\ \text{since } p_*(p^*\mathcal{L}'\otimes q^*\mathcal{L}_{\text{null}}) &= \mathcal{L}'\oplus p_*q^*\mathcal{L}_{\text{null}} = \mathcal{L}'\oplus \mathcal{O}_{X'}^{\oplus H^0(X_{\text{null}},\mathcal{L}_{\text{null}})}. \end{split}$$

⁴If there exists w_0 such that $|\theta(z_0+w_0)|\neq 0$, let's say $|\theta(z_0+w_0)|=M>0$, then for a compact set K containing w_0 , by maximum principle we know that the maximum of $|\theta(z_0 + w)|$ attains at the boundary ∂K , but we can always choose K such that $|\theta(z_0 + w)| < M/2$ for $w \in \partial K$, as $|\theta(z_0+w)|$ tends to 0 as w tends to ∞ , a contradiction.

1.5.2. Riemann-Roch theorem.

Theorem 1.5.1. For all line bundles \mathcal{L} on X, if $\mathcal{L} \cong \mathcal{O}_X(D)$, we have

$$\chi(\mathcal{L}) = \frac{D^g}{g!}$$
$$\chi(\mathcal{L})^2 = \deg \phi_{\mathcal{L}}.$$

1.5.3. *Mumford-Kempf vanishing*. In this section we will show the following results:

Theorem 1.5.2. Let \mathcal{L} be a non-degenerate line bundle on an abelian variety X. Then

- (1) there exists a unique integer $0 \le i = i(\mathcal{L}) \le g$ such that $H^p(X, \mathcal{L}) = 0$ for all $p \ne i$ and $H^i(X, \mathcal{L}) \ne 0$;
- (2) let H be an ample line bundle and $p(n) = \chi(H^{\otimes n} \otimes \mathcal{L})$ be the Hilbert polynomial. Then all roots of p(n) are real numbers and $i(\mathcal{L})$ equals to the number of positive roots of p(n) counted with multiplicity.

Corollary 1.5.1. Let $X = V/\Lambda$ be an abelian variety and $\mathcal{L} = \mathcal{L}(h, \alpha)$ be a non-degenerate line bundle on X. The index $i(\mathcal{L})$ equals the number of negative eigenvalues of h.

Example 1.5.1. If \mathcal{L} is ample, and we simply take $H = \mathcal{L}$, then

$$p(n) = \chi(\mathcal{L}^{\otimes (n+1)}) = \frac{\mathcal{L}^g}{g!}(n+1)^g.$$

In particular, p(n) has no positive root and thus $i(\mathcal{L}) = 0$. This coincides with previous result, as we know for any ample line bundle \mathcal{L} we have $h^i(X, \mathcal{L}) = 0$ for all i > 0 and if $\mathcal{L} = \mathcal{L}(h, \alpha)$, then $h^0(X, \mathcal{L}) = \sqrt{\det E}$, where $E = \operatorname{Im} h$.

1.6. **Poincaré bundle.** Let X be an abelian variety over $\mathbb C$. The dual abelian variety $\widehat X$ and Poincaré bundle $\mathcal P$ on $X \times \widehat X$ is introduced as the solution to the problem of representing the *Picard functor*. To be precisely, it is a functor which to any variety T associates the group of equivalence classes of line bundles on $X \times T$, where two line bundles are identified when they are isomorphic up to tensoring by the pullback of a line bundle on T.

The fact that \widehat{X} represents the Picard functor means that there is a universal line bundle \mathcal{P} on $X \times \widehat{X}$, called the *Poincaré bundle*. Universality means that given a variety T and a line bundle \mathcal{L} on $X \times T$, whose restrictions to the fibers of $p_T \colon X \times T \to T$ have vanishing first Chern class, there exists a unique morphism $f \colon T \to \widehat{X}$ such that $\mathcal{L} \cong (\mathrm{id}_X \times f)^* \mathcal{P} \otimes p_T^* \mathcal{N}$, where \mathcal{N} is a line bundle on T.

Theorem 1.6.1. There exists a unique Poincaré bundle \mathcal{P}_X on $X \times \widehat{X}$, uniquely determined up to isomorphisms by the following properties:

(1) If a point $\xi \in \widehat{X}$ corresponds to a line bundle \mathcal{L} on X, then

$$\mathcal{P}_{\xi} := \mathcal{P}_X|_{X|\times \{\xi\}} \cong \mathcal{L}.$$

(2) $\mathcal{P}_X|_{\{0\}\times\widehat{X}}$ is trivial.

Proof. Consider a Hermitian form form $h: (V \times V^{\vee}) \times (V \times V^{\vee}) \to \mathbb{C}$ defined by

$$h((v_1, \ell_1), (v_2, \ell_2)) = \overline{\ell_2(v_1)} + \ell_1(v_2).$$

and $\alpha: \Lambda \times \Lambda^{\vee} \to \mathbb{C}$ defined by

$$\alpha(\lambda, \ell_0) = e^{\pi\sqrt{-1}\operatorname{Im}\ell_0(\lambda)}.$$

By definition of Λ^{\vee} , we have h satisfies the integrality condition and α is a semicharacter with respect to h. Then by Appell-Humbert theorem the pair (h,α) defines a line bundle on $X \times \widehat{X}$.

Now it remains to check (1) and (2). Let $\{\phi_{(\lambda,\ell_0)}: (\Lambda \times \Lambda^{\vee}) \times (V \times V^{\vee}) \to \mathbb{C}^*\}$ be the cocycle corresponding to (h,α) , which is given by

$$\phi_{(\lambda,\ell_0)}((v,\ell)) = \alpha(\lambda,\ell_0)e^{\pi h((v,\ell),(\lambda,\ell_0)) + \frac{\pi}{2}h((\lambda,\ell_0),(\lambda,\ell_0))}.$$

For (1): If $\mathcal{L} \in \widehat{X} = \operatorname{Pic}^0(X)$, then there is an $\ell \in V^{\vee}$ such that \mathcal{L} is given by the pair $(0, e^{2\pi\sqrt{-1}\operatorname{Im}\ell})$. On the other hand, the restriction $\mathcal{P}_X|_{X\times\{\mathcal{L}\}}$ is given by the restriction $\phi|_{\Lambda\times\{0\}\times V\times\{\ell\}}$, that is,

$$\phi_{(\lambda,0)}(v,\ell) = e^{\pi\ell(\lambda)},$$

where $\lambda \in \Lambda$ and $v \in V$. Since the complex structure on V^{\vee} is the dual complex structure on V, we have $e^{\pi \overline{\ell(v)}}$ is a nowhere vanishing holomorphic function on V. Then $\phi_{(\lambda,0)}(v,\ell)$ is equivalent to the cocycle of \mathcal{L} , since

$$\phi_{(\lambda,0)}(v,\ell)e^{-\pi\overline{\ell(v+\lambda)}}e^{\pi\overline{\ell(v)}} = e^{2\pi\sqrt{-1}\operatorname{Im}\ell(\lambda)}$$

holds for all $\lambda \in \Lambda$.

For (2): The restriction of $\mathcal{P}_X|_{\{0\} imes \widehat{X}}$ is given by

$$\phi_{(0,\ell_0)}(0,\ell) = 1$$

for all $\ell_0 \in \Lambda^{\vee}$ and all $\ell \in V^{\vee}$, which is the trivial line bundle on $\{0\} \times \widehat{X}$.

This shows the existence of the Poincaré bundle, and the uniqueness follows from Seesaw principle (Corollary 1.4.4).

Lemma 1.6.1. Identifying $X = \widehat{X}$, the homomorphism

$$\begin{split} \phi_{\mathcal{P}_X} \colon X \times \widehat{X} &\to \widehat{X} \times X \\ z &\mapsto t_z^* \mathcal{P}_X \otimes \mathcal{P}_X^{-1} \end{split}$$

coincides with the isomorphism $s: X \times \widehat{X} \to \widehat{X} \times X$ defined by $(x, \widehat{x}) \mapsto (\widehat{x}, x)$. In particular, $\phi_{\mathcal{P}_X}^* \mathcal{P}_{\widehat{X}} = \mathcal{P}_X$.

Proof. In the proof of Theorem 1.6.1, we show that the Hermitian form $h = c_1(\mathcal{P}_X)$ is

$$h: (V \times V^{\vee}) \times (V \times V^{\vee}) \to \mathbb{C}$$

 $(v_1, \ell_1), (v_2, \ell_2) \mapsto \overline{\ell_2(v_1)} + \ell_1(v_2).$

For all $(v,\ell) \in V \times V^{\vee}$, we have $h((v,\ell),-) \in \operatorname{Hom}_{\overline{\mathbb{C}}}(V \times V^{\vee},\mathbb{C})$. Under the identification $\operatorname{Hom}_{\overline{\mathbb{C}}}(V \times V^{\vee},\mathbb{C}) \cong V^{\vee} \times V$, we have $h((v,\ell),-) = (\ell,v)$. By Corollary

1.4.3 we have $h((v,\ell),-)$ is the analytic representation of $\phi_{\mathcal{P}_X}$. This implies $\phi_{\mathcal{P}_X} = s$, and $s^*\mathcal{P}_{\widehat{X}} = \mathcal{P}_X$ follows from the universal property of Poincaré bundle.

Lemma 1.6.2.
$$((-1)_X \times 1_{\widehat{X}})^* \mathcal{P}_X = (1_X \times (-1)_{\widehat{X}})^* \mathcal{P}_X \cong \mathcal{P}_X^{-1}$$
.

Proof. Note that

$$\left(1_X\times(-1)_{\widehat{X}}\right)^*\mathcal{P}_X|_{X\times\{\widehat{x}\}}=\mathcal{P}_X|_{X\times\{-\widehat{x}\}}=\mathcal{P}_{-\widehat{x}}=\mathcal{P}_{\widehat{x}}^{-1}.$$

and $(1_X \times (-1)_{\widehat{X}})^* \mathcal{P}_X|_{\{0\} \times \widehat{X}}$ is trivial. Then by Corollary 1.4.4 we have

$$\left(1_X\times(-1)_{\widehat{X}}\right)^*\mathcal{P}_X=\mathcal{P}_X^{-1}.$$

The same argument yields $((-1)_X \times 1_{\widehat{X}})^* \mathcal{P}_X = \mathcal{P}_X^{-1}$.

Lemma 1.6.3. $t_{(x,\widehat{x})}^* \mathcal{P}_X \cong \mathcal{P}_X \otimes p_1^* \mathcal{P}_{\widehat{x}} \otimes p_2^* \mathcal{P}_x$ for all $(x,\widehat{x}) \in X \times \widehat{X}$, where p_1, p_2 denote the projections of $X \times \widehat{X}$ onto its factors.

Proof. By Seesaw principle one can show

$$t_{(0,\widehat{x})}^* \mathcal{P}_X = \mathcal{P}_X \otimes p_1^* \mathcal{P}_{\widehat{x}}$$

holds for all $\hat{x} \in \hat{X}$. On the other hand, for any $x \in X$ we have

$$t_{(x,0)}^* \mathcal{P}_X = t_{(x,0)}^* s^* \mathcal{P}_{\widehat{X}} = s^* \mathcal{P}_{\widehat{X}} \otimes s^* p_1^* \mathcal{P}_x = \mathcal{P}_x \otimes p_2^* \mathcal{P}_x.$$

Combine both statements gives the assertion.

Proposition 1.6.1. The Poincaré bundle \mathcal{P}_X is a symmetric non-degenerate line bundle on $X \times \widehat{X}$ of type (1, ..., 1) and index $i(\mathcal{P}_X) = g$.

Proof. By Lemma 1.6.2 we have \mathcal{P}_X is symmetric. By Lemma 1.6.3 we have

$$t_{(x,\widehat{x})}^* \mathcal{P}_X = \mathcal{P}_X$$

if and only if $x = \hat{x} = 0$. This shows $K(\mathcal{P}_X) = 0$ and thus \mathcal{P}_X is non-degenerate of type (1, ..., 1).

For the index, by Corollary 1.5.1 the index $i(\mathcal{P}_X)$ is the number of the negative eigenvalues of the Hermitian form $c_1(\mathcal{P}_X)$ on $V \times V^{\vee}$. By Lemma 1.6.2 we have

$$((-1)_V \times 1_{V^{\vee}})^* c_1(\mathcal{P}_X) = c_1(\mathcal{P}_X) = -c_1(\mathcal{P}_X).$$

Since it is non-degenerate, it must have $g = \frac{1}{2}\dim(V \times V^{\vee})$ negative eigenvalues. This completes the proof.

Corollary 1.6.1.

$$h^{i}(\mathcal{P}_{X}) = \begin{cases} 1 & i = g, \\ 0 & i \neq g. \end{cases}$$

Proof. It follows directly from the definition of index.

Corollary 1.6.2.

$$\mathbf{R}^{j} p_{i*} \mathcal{P}_{X} = \begin{cases} \mathbb{C}_{0}, & j = g \text{ for } i = 1, 2; \\ 0, & j \neq g \text{ for } i = 1, 2. \end{cases}$$

Here \mathbb{C}_0 is the skyscraper sheaf on X respectively \widehat{X} with support 0 and fiber $\mathbb{C}.$

Corollary 1.6.3. Let e_1, \ldots, e_{2g} be a basis of $H^1(X, \mathbb{Z})$ and $e_1^*, \ldots, e_{2g}^* \in H^1(X, \mathbb{Z})^*$ be the dual basis. Denote $f_i := c_1(\mathcal{P}_X)(e_i^*)$. Then

$$c_1(\mathcal{P}_X) = \sum_{i=1}^{2g} e_i \otimes f_i \in H^1(X, \mathbb{Z}) \otimes H^1(\widehat{X}, \mathbb{Z}).$$

Proof. By Lemma 1.6.2 we have

$$((-1)_V \times 1_{V^{\vee}})^* c_1(\mathcal{P}_X) = c_1(\mathcal{P}_X^{-1}) = -c_1(\mathcal{P}_X).$$

But $(-1)_X \times 1_{\widehat{X}}$ induces the identity on $H^2(X,\mathbb{Z}) \otimes H^0(\widehat{X},\mathbb{Z})$ as well as on $H^0(X,\mathbb{Z}) \otimes H^2(\widehat{X},\mathbb{Z})$. This shows $c_1(\mathcal{P}_X) \in H^1(X,\mathbb{Z}) \otimes H^1(\widehat{X},\mathbb{Z})$.

Since \mathcal{P}_X is non-degenerate, the first Chern class $c_1(\mathcal{P}_X)$ induces an isomorphism $H^1(X,\mathbb{Z})^* \to H^1(\widehat{X},\mathbb{Z})$ and thus $\{f_i\}$ gives a basis of $H^1(\widehat{X},\mathbb{Z})$. Since $c_1(\mathcal{P}_X) \in H^1(X,\mathbb{Z}) \otimes H^1(\widehat{X},\mathbb{Z})$, we write it as

$$c_1(\mathcal{P}_X) = \sum_{i,j=1}^{2g} c_{ij} e_i \otimes f_j,$$

where $c_{ij} \in \mathbb{Z}$. Then

$$f_k = c_1(\mathcal{P}_X)(e_k^*) = \sum_{i,j} c_{ij}(e_i \otimes f_j)(e_k^*) = c_{ij}e_k^*(e_i)f_j = \sum_{i,j} c_{kj}f_j.$$

This shows $c_{kj} = \delta_{jk}$.

At the last of this section, we show some applications of Poincaré bundle. The first application is the following equivalence for line bundles are the same.

Proposition 1.6.2. For line bundles $\mathcal{L}_1, \mathcal{L}_2$ on X, the following statements are equivalent:

- (1) \mathcal{L}_1 and \mathcal{L}_2 are algebraically equivalent;
- (2) $\mathcal{L}_1 \otimes \mathcal{L}_2^{-1} \in \operatorname{Pic}^0(X)$;
- (3) $\phi_{\mathcal{L}_1} = \tilde{\phi}_{\mathcal{L}_2};$ (4) $c_1(\mathcal{L}_1) = c_1(\mathcal{L}_2).$

Proof. Firstly, it is clear that (2) is equivalent to (4) by Appell-Humbert Theorem (Theorem 1.3.1), and (3) is equivalent to (4) by Corollary 1.4.1.

For (1) \rightarrow (4): Suppose \mathcal{L}_1 and \mathcal{L}_2 are algebraically equivalent. Then by definition there exists a smooth irreducible variety T and a line bundle \mathcal{M}

on $X \times T$ such that $\mathcal{L}_1 = \mathcal{M}|_{X \times \{t_1\}}$ and $\mathcal{L}_2 = \mathcal{M}|_{X \times \{t_2\}}$, where t_1, t_2 are closed points of T. Then the map

$$T \to H^2(X, \mathbb{Z})$$

 $t \mapsto c_1(\mathcal{M}|_{X \times \{t\}})$

is a constant map, as T is connected and $H^2(X,\mathbb{Z})$ is discrete. Thus $c_1(\mathcal{L}_1) = c_1(\mathcal{L}_2)$.

For (2) \rightarrow (1): Suppose $\mathcal{L}_1 \otimes \mathcal{L}_2^{-1} \in \operatorname{Pic}^0(X)$. Define $\mathcal{M} = \mathcal{P} \otimes p_1^* \mathcal{L}_1$ on $X \times \widehat{X}$, where $p_1 : X \times \widehat{X}$ is the projection onto the first factor. Since $\mathcal{M}|_{X \times \{\mathcal{L}_1 \otimes \mathcal{L}_2^{-1}\}} = \mathcal{L}_1$ and $\mathcal{M}|_{X \times \{0\}} = \mathcal{L}_2$, this shows

The second application is the following criterion for a homomorphism $f: X \to \widehat{X}$ to be of the form $\phi_{\mathcal{L}}$ for some line bundle \mathcal{L} on X.

Theorem 1.6.2. Let $f: X \to \widehat{X}$ be a homomorphism with analytic representation $F: V \to \overline{\Omega}$. The following statement are equivalent:

- (1) $f = \phi_{\mathcal{L}}$ for some line bundle $\mathcal{L} \in \text{Pic}(X)$;
- (2) The form $F: V \times V \to \mathbb{C}$ defined by $(v, w) \mapsto F(v)(w)$ is Hermitian.

Before that, we need the following lemma:

Lemma 1.6.4 ([BL04, Lemma 2.5.6]). For a line bundle \mathcal{M} on X and an integer n, the following statements are equivalent:

- (1) $\mathcal{M} = \mathcal{L}^n$ for some line bundle \mathcal{L} on X;
- (2) $X_n := \ker n_X \subseteq K(\mathcal{M}).$

Proof of Theorem 1.6.2. It is clear that (1) implies (2) as the analytic representation of $\phi_{\mathcal{L}}$ is given by $c_1(\mathcal{L})$ by Corollary 1.4.3.

Conversely, suppose $F\colon V\times V\to\mathbb{C}$ is Hermitian. Let \mathcal{M} be the pullback of the Poincaré bundle \mathcal{P}_X under the homomorphism $(\mathrm{id}_X,f)\colon X\to X\times \widehat{X}$. The claim is $2f=\phi_{\mathcal{M}}$. Indeed, let h be the Hermitian form of Poincaré bundle. Then

$$(v,w) \mapsto (\mathrm{id}_V, F)^* h(v,w) = h((v,F(v)),(w,F(w)))$$
$$= \overline{F(w)(v)} + F(v)(w)$$
$$= 2F(v)(w)$$

is the Hermitian form of \mathcal{M} . As $(\mathrm{id}_V, F)^* \phi_h$ is the analytic representation of $\phi_{\mathcal{M}}$ and 2F is the analytic representation of 2f, we have $2f = \phi_{\mathcal{M}}$, and thus $X_2 \subseteq K(\mathcal{M})$. By Lemma 1.6.4 there exists a line bundle \mathcal{L} such that $\mathcal{M} = \mathcal{L}^2$. This shows

$$2f = \phi_{\mathcal{L}^2} = 2\phi_{\mathcal{L}}$$

and thus $f = \phi_{\mathcal{L}}$ since $\operatorname{Hom}(X, \widehat{X})$ is torsion-free.

1.7. **Dual polarization.** Let (X, \mathcal{L}) be a polarized abelian variety of dimension g, that is, \mathcal{L} is an ample line bundle. In this section we introduce there is a natural way to define a dual polarization on the dual abelian variety \widehat{X} .

Proposition 1.7.1 ([BL04, Proposition 14.4.1]). Suppose \mathcal{L} is of type (d_1,\ldots,d_g) . There is a unique polarization $\widehat{\mathcal{L}}$ on \widehat{X} characterized by the following equivalent properties:

- (1) $\phi_{\mathcal{L}}^* \widehat{\mathcal{L}} = \mathcal{L}^{d_1 d_g};$ (2) $\phi_{\widehat{\mathcal{L}}} \circ \phi_{\mathcal{L}} = d_1 d_g \operatorname{id}_X.$
- The line bundle $\widehat{\mathcal{L}}$ is called the $dual\ polarization$ and $(\widehat{X},\widehat{\mathcal{L}})$ is called the $dual\ polarized\ abelian\ variety.$

2. Fourier-Mukai transform

2.1. Preliminaries on derived category.

2.1.1. Derived category of an abelian category. Let \mathcal{A} be an abelian category and $\operatorname{Kom}(\mathcal{A})$ be its category of complexes. In order to define its derived category $D(\mathcal{A})$, firstly we need the homotopy category of complexes $K(\mathcal{A})$, whose objects are the objects of $\operatorname{Kom}(\mathcal{A})$ and morphisms are

$$\operatorname{Hom}_{K(\mathcal{A})}(A^{\bullet}, B^{\bullet}) := \operatorname{Hom}_{\operatorname{Kom}(\mathcal{A})}(A^{\bullet}, B^{\bullet})/_{\sim},$$

where \sim is the homotopy equivalence.

The derived category D(A) is defined as follows: The objects of D(A) is the same as the objects of K(A). The set of morphisms $\operatorname{Hom}_{D(A)}(A^{\bullet}, B^{\bullet})$ between two complexes A^{\bullet}, B^{\bullet} is the set of all equivalence classes of diagrams of the form

where $C^{\bullet} \to A^{\bullet}$ is a quasi-isomorphism, and two such diagrams are equivalent if they are dominated in the homotopy category by a third one of the same sort, that is, there exists a commutative diagram in K(A) of the form

Remark 2.1.1. Behind the construction of the derived category, there is a general procedure, called *localization*. In this case, quasi-isomorphisms form a localizing class in K(A), but not in Kom(A). That's why we need to pass to the homotopy category K(A) first.

Let $\mathrm{Kom}^*(\mathcal{A})$, with *=+,-,b be the category of complexes \mathcal{A}^\bullet with $A^i=0$ for $i\ll 0, i\gg 0, |i|\gg 0$ respectively. By the same construction one obtains the categories $K^*(\mathcal{A})$ and $D^*(\mathcal{A})$. There is a natural functor $\mathcal{A}\to\mathrm{Kom}^b(\mathcal{A})$ defined by considering an object A of \mathcal{A} as a complex concentrated in degree zero.

Proposition 2.1.1 ([KS90, Proposition 1.7.2]).

- (1) The natural forgetful functors $D^*(A) \to D(A)$ define equivalences of $D^*(A)$ with the full triangulated subcategories of all complexes $A^{\bullet} \in D(A)$ with $H^i(A^{\bullet}) = 0$ for $i \ll 0, i \gg 0, |i| \gg 0$ respectively.
- (2) By the composition of the functors $\mathcal{A} \to K(\mathcal{A}) \to D(\mathcal{A})$, \mathcal{A} is equivalent to the full subcategory of $D(\mathcal{A})$ consisting of objects of A^{\bullet} such that $H^{i}(\mathcal{A}^{\bullet}) = 0$ for $i \neq 0$.

Theorem 2.1.1 (Grothendieck spectral sequence). If $F: \mathcal{A} \to \mathcal{B}$ and $G: \mathcal{B} \to \mathcal{C}$ are two additive and left exact functors between abelian categories such that both \mathcal{A} and \mathcal{B} have enough injective objects and F takes injective objects to G-acyclic objects, then for each object A of \mathcal{A} , there is a spectral sequence

$$E_2^{p,q} = (\mathbf{R}^p G \circ \mathbf{R}^q F)(A) \Longrightarrow \mathbf{R}^{p+q} (G \circ F)(A).$$

2.1.2. Derived category of the abelian category of coherent sheaves. Let X be a complex algebraic variety. The symbol $D^b(X)$ denotes the bounded derived category of the abelian category of coherent sheaves on X. If $f: X \to Y$ is a proper⁵ morphism, we denote by $\mathbf{R}f_*: D^b(X) \to D^b(Y)$ and $\mathbf{L}f^*: D^b(Y) \to D^b(X)$ the associated derived functors.

Remark 2.1.2. If f is flat, then the inverse image functor is exact and thus it does not need to be derived, so that we have $\mathbf{L}f^* = f^*$. Similarly, if f is an affine morphism, then the direct image functor does not need to be derived, and thus $\mathbf{R}f_* = f_*$.

Lemma 2.1.1. Let $f: X \to Y$ be a smooth morphism of relative dimension r of smooth projective varieties and $g: Y' \to Y$ be a base change, with Y' being smooth. Denote X' as the Cartesian product as follows

$$X' \xrightarrow{g'} X$$

$$f' \downarrow \qquad \qquad \downarrow f$$

$$Y' \xrightarrow{g} Y.$$

Then there is a natural isomorphism of functors

$$\mathbf{L}g^* \circ \mathbf{R}f_* \cong \mathbf{R}f'_* \circ \mathbf{L}g'^*$$
.

Proof. Note that the right adjoint functors to $\mathbf{L}g^* \circ \mathbf{R}f_*$ and $\mathbf{R}f'_* \circ \mathbf{L}g^{'*}$ are $\mathbf{L}f^! \circ \mathbf{R}g_*$ and $\mathbf{R}g'_* \circ \mathbf{L}f^{'!}$ respectively, where $\mathbf{L}f^!$ denotes the right adjoint functor to $\mathbf{R}f_*$. We are going to prove that

$$\mathbf{L}f^! \circ \mathbf{R}g_* \cong \mathbf{R}g'_* \circ \mathbf{L}f'^!.$$

By [Sta25, Remark 48.12.6], we know that

$$\mathbf{L} f^! = \mathbf{L} f^* \otimes_{\mathcal{O}_X}^{\mathbf{L}} \omega_{X/Y}[r].$$

Hence

$$\mathbf{L}f^{!} \circ \mathbf{R}g_{*} = \mathbf{L}f^{*} \circ \mathbf{R}g_{*} \otimes_{\mathcal{O}_{Y}}^{\mathbf{L}} \omega_{X/Y}[r].$$

Analogously,

$$\begin{split} \mathbf{R}\boldsymbol{g}_{*}' \circ \mathbf{L}\boldsymbol{f}^{'!}(\textbf{-}) &= \mathbf{R}\boldsymbol{g}_{*}' \circ \left(\mathbf{L}\boldsymbol{f}^{'*}(\textbf{-}) \otimes_{\mathcal{O}_{X'}}^{\mathbf{L}} \omega_{X'/Y'}[r]\right) \\ &= \mathbf{R}\boldsymbol{g}_{*}' \circ \left(\mathbf{L}\boldsymbol{f}^{'*}(\textbf{-}) \otimes_{\mathcal{O}_{X'}}^{\mathbf{L}} \boldsymbol{g}^{'*} \omega_{X/Y}[r]\right) \\ &= \mathbf{R}\boldsymbol{g}_{*}' \circ \mathbf{L}\boldsymbol{f}^{'*}(\textbf{-}) \otimes_{\mathcal{O}_{Y}}^{\mathbf{L}} \omega_{X/Y}[r]. \end{split}$$

 $^{^{5}}$ The properness is necessary, otherwise the direct image of a coherent sheaf may fail to be coherent.

By flat base change theorem ([Har77, Chapter III, Proposition 9.3], we have

$$\mathbf{R}g'_{*} \circ \mathbf{L}f^{'*} \cong \mathbf{L}f^{*} \circ \mathbf{R}g_{*}.$$

This completes the proof.

2.2. Fourier-Mukai transform on abelian variety.

Definition 2.2.1. Let X,Y be smooth proper algebraic varieties over k and projections of the Cartesian product $X \times Y$ onto the factors X,Y are denoted by π_X,π_Y respectively. Let \mathcal{K}^{\bullet} be an object in the derived category $D^b(X \times Y)$. We define the functor

$$\Phi_{X \to Y}^{\mathcal{K}^{\bullet}} : D^b(X) \to D^b(Y)$$

by letting

$$\Phi_{X \to Y}^{\mathcal{K}^{\bullet}}(\mathcal{E}^{\bullet}) = \mathbf{R} \pi_{Y*}(\pi_X^* \mathcal{E}^{\bullet} \otimes \mathcal{K}^{\bullet}).$$

The complex \mathcal{K}^{\bullet} is called the *kernel* of the functor, and $\Phi_{X \to Y}^{\mathcal{K}^{\bullet}}$ is called the associated *integral functor*.

Definition 2.2.2. Let X,Y be smooth proper algebraic varieties over k and $\Phi_{X\to Y}^{\mathcal{K}^{\bullet}}$ be an integral functor.

- (1) A complex $\mathcal{F}^{\bullet} \in D^b(X)$ satisfies the WIT_i condition if there is a coherent sheaf \mathcal{G} on Y such that $\Phi_{X \to Y}^{\mathcal{K}^{\bullet}}(\mathcal{F}^{\bullet}) \cong \mathcal{G}[-i]$ in $D^b(Y)$.
- (2) A complex $\mathcal{F}^{\bullet} \in D^b(X)$ satisfies the IT_i condition if there is a locally free sheaf \mathcal{G} on Y such that $\Phi_{X \to Y}^{\mathcal{K}^{\bullet}}(\mathcal{F}^{\bullet}) \cong \mathcal{G}[-i]$ in $D^b(Y)$.

In the remaining part of this section, we assume X is an abelian variety of dimension g and \hat{X} is the dual abelian variety.

Definition 2.2.3. The *Fourier-Mukai transform* on X is defined as

$$\mathcal{S} := \Phi_{X \to \widehat{X}}^{\mathcal{P}_X} : D^b(X) \to D^b(\widehat{X}).$$

The $dual\ Fourier-Mukai\ transform$ is the functor

$$\widehat{\mathcal{S}} := \Phi_{X \to \widehat{X}}^{\mathcal{P}_{\widehat{X}}} : D^b(\widehat{X}) \to D^b(X).$$

Theorem 2.2.1 ([BBHR09, Theorem 3.3]). For any $\mathcal{F}^{\bullet} \in D^b(X)$, there is an isomorphism

$$\widehat{\mathcal{S}} \circ \mathcal{S}(\mathcal{F}^{\bullet}) \cong \mathcal{F}^{\bullet}[-g].$$

Remark 2.2.1. If we consider a sheaf \mathcal{F} as a complex concentrated in degree zero, by Theorem 2.1.1 there is a convergent spectral sequence

$$E_2^{p,q} = \hat{\mathcal{S}}^p(\mathcal{S}^q(\mathcal{F})) \Rightarrow \begin{cases} \mathcal{F}, & p+q=g\\ 0, & \text{otherwise.} \end{cases}$$

Lemma 2.2.1. For any $\mathcal{F}^{\bullet} \in D^b(X)$ and $\xi \in \widehat{X}$, there exists a canonical isomorphism

$$\mathbf{R}\Gamma(X,\mathcal{F}^{\bullet}\otimes\mathcal{P}_{\xi})\cong\mathcal{S}(\mathcal{F}^{\bullet})|_{\{\xi\}}$$

Similarly, for any $\mathcal{G}^{\bullet} \in D^b(\widehat{X})$, there is an isomorphism

$$\mathbf{R}\Gamma(X,\widehat{\mathcal{S}}(\mathcal{G}^{\bullet})\otimes\mathcal{P}_{\xi})\cong\mathcal{G}^{\bullet}[-g]|_{\{\xi\}}.$$

Proof. Consider the following Cartesian diagram

$$\begin{array}{cccc} X \times \{\xi\} & \longrightarrow & X \times \widehat{X} \\ \downarrow & & \downarrow \\ \{\xi\} & \longrightarrow & \widehat{X} \end{array}$$

By Lemma 2.1.1 it gives

$$S(\mathcal{F}^{\bullet})|_{\{\xi\}} \cong (\mathbf{R}p_{2*}(p_1^*\mathcal{F}^{\bullet} \otimes \mathcal{P}_X))|_{\{\xi\}}$$

$$\cong \mathbf{R}\Gamma(X, (p_1^*\mathcal{F}^{\bullet} \otimes \mathcal{P}_X)|_{X \times \{\xi\}})$$

$$\cong \mathbf{R}\Gamma(X, \mathcal{F}^{\bullet} \otimes \mathcal{P}_{\xi}).$$

This gives the proof of the first statement, and the second statement follows from the fact $S \circ \widehat{S} \cong [-g]$.

Definition 2.2.4. If \mathcal{F} be a WIT-sheaf of index i on X, then the coherent sheaf $\widehat{\mathcal{F}} := \mathcal{S}^i(\mathcal{F})$ is called *Fourier-Mukai transform* of \mathcal{F} .

Lemma 2.2.2. Let \mathcal{F} be a coherent sheaf on X such that

$$H^j(X, \mathcal{P}_{\xi} \otimes \mathcal{F}) = 0$$
 for all $\xi \in \widehat{X}$ and $j \neq i$.

Then \mathcal{F} is an IT_i -sheaf.

Proof. Note that $(\mathcal{P}_X \otimes p_1^* \mathcal{F})|_{X \times \{\xi\}} = \mathcal{P}_{\xi} \otimes \mathcal{F}$ implies

$$H^{j}(X \times \{\xi\}, (\mathcal{P}_{X} \otimes p_{1}^{*}\mathcal{F})|_{X \times \{\xi\}}) = 0$$

for $j \neq i$. Then the assertion follows from cohomology and base change theorem ([Har77, Chapter III, Theorem 12.11]).

Proposition 2.2.1. Let $0 \to \mathcal{F} \to \mathcal{G} \to \mathcal{H} \to 0$ be an exact sequence of coherent sheaves on X with \mathcal{F} and \mathcal{H} are WIT_i -sheaves. Then \mathcal{G} is also a WIT_i -sheaf and

$$0 \to \widehat{\mathcal{F}} \to \widehat{\mathcal{G}} \to \widehat{\mathcal{H}} \to 0$$

is exact.

Proof. Since the projection p_1 is flat, the sequence

$$0 \to \mathcal{P}_X \otimes p_1^* \mathcal{F} \to \mathcal{P}_X \otimes p_1^* \mathcal{G} \to \mathcal{P}_X \otimes p_1^* \mathcal{H} \to 0$$

is again exact. Then the result follows from the long exact sequence of cohomology for the functor p_{2*} .

Example 2.2.1. Let X be an abelian variety and \mathbb{C}_x be the skyscraper sheaf on X with support $x \in X$. Then \mathbb{C}_x is an IT_0 -sheaf, since $H^j(X, \mathcal{P}_\xi \otimes \mathbb{C}_x) = 0$ for all j > 0 and $\xi \in \widehat{X}$. Its Fourier-Mukai transform is given by

$$\widehat{\mathbb{C}}_x = p_{2*}(\mathcal{P}_X \otimes p_1^* \mathbb{C}_x) = \mathcal{P}_X|_{\{x\} \times \widehat{X}} = \mathcal{P}_x.$$

By Theorem 2.2.1 we know that for any $\mathcal{P}_x \in \operatorname{Pic}(\widehat{X})$, it is a WIT_g-sheaf, but it is not IT_g. Moreover, by Proposition 2.2.1 we know that every skyscraper sheaf of finite support is an IT₀-sheaf.

Definition 2.2.5. A vector bundle \mathcal{U} on X is called *unipotent*, if it admits a filtration

$$0 = \mathcal{U}_0 \subset \mathcal{U}_1 \subset \cdots \subset \mathcal{U}_r = \mathcal{U}_0$$

such that $U_i/U_{i-1} \cong \mathcal{O}_X$ for all i = 1, ..., r.

Proposition 2.2.2. A vector bundle \mathcal{U} on X is unipotent if and only if \mathcal{U} is a WIT_g-sheaf with supp(\widehat{U}) = $\{0\} \subset \widehat{X}$.

Proof. Suppose \mathcal{U} is a unipotent bundle of rank r. If r=1, then the assertion follows from Example 2.2.1. If r>1 and the assertion holds for all unipotent bundle of rank < r. Then consider the short exact sequence

$$0 \to \mathcal{U}_{r-1} \to \mathcal{U} \to \mathcal{O}_X \to 0$$

and apply Proposition 2.2.1.

Suppose \mathcal{U} is a WIT_g-sheaf and supp(\widehat{U}) = {0} is of length n. If n=1, then the assertion follows from Example 2.2.1. If n>1, and the assertion holds for all cases with length < n. Then consider the short exact sequence

$$0 \to \mathcal{V} \to \widehat{\mathcal{U}} \to \mathbb{C}_0 \to 0$$

and apply Proposition 2.2.1.

2.3. **Atiyah's classification.** Let E be an elliptic curve and $e \in E$ be the base point, which defines a line bundle $\mathcal{O}_E(e)$ of degree one. The map $\phi_{\mathcal{O}_E(e)} \colon E \to \widehat{E}$ is an isomorphism, since by Theorem 1.5.1 its degree equals the square of $\chi(E,\mathcal{O}_E(e)) = H^0(E,\mathcal{O}_E(e)) = 1$. In this section, we always identify E with \widehat{E} by this isomorphism, and under this identification, the Fourier-Mukai transform is an auto-equivalence $D^b(E) \to D^b(E)$.

In [Ati57], M. Atiyah provides a classification of all indecomposable vector bundles on E. In this section, we introduce this classification as an application of Fourier-Mukai transform.

Lemma 2.3.1. For any $\mathcal{F}^{\bullet} \in D^b(E)$, we have

$$\deg(\mathcal{S}(\mathcal{F}^{\bullet})) = -\operatorname{rk}(\mathcal{F}^{\bullet}), \quad \operatorname{rk}(\mathcal{S}(\mathcal{F}^{\bullet})) = \deg(\mathcal{F}^{\bullet}).$$

Proof. By Lemma 2.2.1 we have

$$\mathbf{R}\Gamma(E, \mathcal{S}(\mathcal{F}^{\bullet})) = \mathcal{F}^{\bullet}[-1]|_{\{e\}}, \quad \mathbf{R}\Gamma(E, \mathcal{F}^{\bullet}) = \mathcal{S}(\mathcal{F}^{\bullet})|_{\{e\}}.$$

By counting dimensions we have

$$\chi(E, \mathcal{S}(\mathcal{F}^{\bullet})) = \sum_{i} \dim \mathbf{R}^{i} \Gamma(E, \mathcal{S}(\mathcal{F}^{\bullet})) = -\operatorname{rk}(\mathcal{F}^{\bullet})$$
$$\chi(E, \mathcal{F}^{\bullet}) = \sum_{i} \dim \mathbf{R}^{i} \Gamma(E, \mathcal{F}^{\bullet}) = \operatorname{rk}(\mathcal{S}(\mathcal{F}^{\bullet})).$$

On the other hand, by the Riemann-Roch theorem we have $\chi(E, \mathcal{F}^{\bullet}) = \deg(\mathcal{F}^{\bullet})$. This completes the proof.

Lemma 2.3.2. Let \mathcal{E} be an vector bundle on E. Then the Harder-Narasimhan filtration of \mathcal{E} splits.

Proof. Suppose

$$0 = \mathcal{E}_0 \subset \mathcal{E}_1 \subset \cdots \subset \mathcal{E}_k = \mathcal{E}$$

is the Harder-Narasimhan filtration of \mathcal{E} . Then

$$\operatorname{Ext}^{1}(\mathcal{E}_{1}, \mathcal{E}/\mathcal{E}_{1}) = \operatorname{Hom}(\mathcal{E}_{1}, \mathcal{E}/\mathcal{E}_{1}) = 0$$

as \mathcal{E}_1 is semistable and $\mu_{\max}(\mathcal{E}/\mathcal{E}_1) = \mu(\mathcal{E}_2/\mathcal{E}_1) < \mu(\mathcal{E}_1)$.

Corollary 2.3.1. Every indecomposable vector bundle on *E* is semistable.

Lemma 2.3.3. Let \mathcal{F} be a semistable vector bundle on E with $\mu := \mu(\mathcal{F}) < 0$. Then $\mathcal{S}(\mathcal{F})[1]$ is a semistable vector bundle on E with $\mu(\mathcal{S}(\mathcal{E})) = -\mu^{-1}$.

Proof. Without lose of generality, we may assume \mathcal{F} is indecomposable. As \mathcal{F} has negative slope, we have

$$H^0(E, \mathcal{F} \otimes \mathcal{L}) = \text{Hom}(\mathcal{L}^{-1}, \mathcal{F}) = 0$$

for all $\mathcal{L} \in \operatorname{Pic}^0(E)$, since indecomposable bundle on elliptic curve is semistable. Then by Lemma 2.2.2 we know that \mathcal{F} is an IT_1 -sheaf, and thus $\mathcal{S}(\mathcal{F})[1]$ is a vector bundle, and $\mathcal{S}(\mathcal{F})$ is indecomposable, since \mathcal{F} is indecomposable. The slope of $\mathcal{S}(\mathcal{F})$ follows from Lemma 2.3.1.

Theorem 2.3.1 ([Ati57]). For any $\mu \in \mathbb{Q}$, let $\text{Vect}(E)_{\mu}$ be the category of semistable bundles on E with slope μ . Then there is an equivalence between $\text{Vect}(E)_{\mu}$ and $\text{Vect}(E)_{0}$.

Proof. If $\mu=0$, then there is nothing to prove. If not, then by using Lemma 2.3.1 we are allowed to replace μ by $-\mu^{-1}$. Moreover, tensoring with $\mathcal{O}_E(e)$ is also an equivalent between $\mathrm{Vect}(E)_{\mu}$ and $\mathrm{Vect}(E)_{\mu+1}$. Now it suffices to show why this process eventually reaches $\mu=0$. Recall that $\mathrm{SL}(2,\mathbb{Z})$ is generated by

$$S = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix}, \quad T = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}.$$

On the other hand, $\operatorname{SL}(2,\mathbb{Z})$ acts on $\mathbb{P}^1_{\mathbb{Q}}$ transitively, by the following way: S acts on $\mathbb{P}^1_{\mathbb{Q}}$ via $\mu \mapsto \mu^{-1}$ and T acts on $\mathbb{P}^1_{\mathbb{Q}}$ via $\mu \mapsto \mu + 1$. This coincides with the effect of Fourier-Mukai transform and tensoring with line bundle $\mathcal{O}_E(e)$, and thus this completes the proof.

Corollary 2.3.2. For any $\mu \in \mathbb{Q}$, there exists a semistable bundle with slope μ on E.

REFERENCES

- [Ati57] M. F. Atiyah. Vector bundles over an elliptic curve. Proc. London Math. Soc. (3), 7:414–452, 1957.
- [BBHR09] Claudio Bartocci, Ugo Bruzzo, and Daniel Hernández Ruipérez. Fourier-Mukai and Nahm transforms in geometry and mathematical physics, volume 276 of Progress in Mathematics. Birkhäuser Boston, Inc., Boston, MA, 2009.
- [BL04] Christina Birkenhake and Herbert Lange. Complex abelian varieties, volume 302 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, second edition, 2004.
- [Har77] Robin Hartshorne. Algebraic geometry, volume No. 52 of Graduate Texts in Mathematics. Springer-Verlag, New York-Heidelberg, 1977.
- [KS90] Masaki Kashiwara and Pierre Schapira. Sheaves on manifolds, volume 292 of Grundlehren der mathematischen Wissenschaften [Fundamental Principles of Mathematical Sciences]. Springer-Verlag, Berlin, 1990. With a chapter in French by Christian Houzel.
- [Mum70] David Mumford. Abelian varieties, volume 5 of Tata Institute of Fundamental Research Studies in Mathematics. Tata Institute of Fundamental Research, Bombay; by Oxford University Press, London, 1970.
- [Sta25] The Stacks project authors. The stacks project. https://stacks.math.columbia.edu, 2025.