Bases de données

Lecture 1

Nabil Mustafa

mustafa@lipn.univ-paris13.fr

STORING DATA

Goal: store, maintain, search data

USPN: records of all students, teachers, grades, courses

Darty: products and all their information

Songs: artist, year of release, type of song, album cover

Banking: transactions with user accounts

Need to be able to:

update (add, delete, modify)

submit new grades of all students for the module Databases

search (called querying)

all teachers who taught C++ programming

STORING DATA

First try: store pictures, screenshots of everything as image files on a computer

- + flexible, lots of information
- rigid, difficult to search/manipulate

Second try: a list of files (doc, pdf, xls, txt, ...) on your computer

- + easier to access data
- duplicate or inconsistent information
- must write programs to search
- multiple formats

Major Concerns: Scalability, Security, Efficiency, Concurrency, . . .

STORING DATA

For wide use, **must** satisfy *many* criteria:

fast search

many concurrent users

consistency when modifying data

secure from unauthorized access

be able to recover from errors

always correct search reply

confidentiality

DATABASES

A database management system (DBMS) consists of:

storage of data—called a database

language/software to manipulate/search a database

A relation is just a table of data

account ← relation/table name

Relations (Tables)

Account_id	Branch_name	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2

account

each row in the table represents one record

Rows

Account_id	$Branch_name$	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2

account

record

each record is a sequence of individual data

(Account_id: 83123, Branch_name: Lille, Amount: 231.0)

or a shorter way:

(83123, Lille, 231.0)

 $mathematical \ name: a \ \textbf{tuple}$

COLUMNS

account

Account_id	Branch_name	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2

attribute

also called its domain

each attribute has a data type

Account_id integer
Branch_name string
Amount float

null = value unknown or unspecified

technical phrase: 'domain is atomic'

indivisible units of data

74242 | Nice, Marseille | 423.2

X

handle it as a single piece of data

RELATIONS (TABLES)

account

Account_id	Branch_name	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2

relation/table

there is no order among tuples no duplicate tuples

mathematical name:

a relation is a **set** of tuples

(Account_id: 83123, Branch_name: Lille, Amount: 231.0)

(Account_id: 49234, Branch_name: Paris, Amount: 334.6)

(Account_id: 31412, Branch_name: Nice, Amount: 323.2)

(Account_id: 31412, Branch_name: Nice, Amount: 323.2)

(Account_id: 83123, Branch_name: Lille, Amount: 231.0)

(Account_id: 49234, Branch_name: Paris, Amount: 334.6)

RELATIONS (TABLES)

To define a relation structure, we need to specify:

the list of attribute names domain of each attribute called a schema

account

Account_id	Branch_name	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2

schema of the table:

attribute name

account (Account_id integer, Branch_name string, Amount float)

a shorter way to write this:

account (Account_id, Branch_name, Amount)

EXAMPLES

schema: account (Account_id integer, Branch_name string, Amount float)

Account_id	$Branch_name$	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2
34234	Marseille	423.12
62433	Tour	391
31412	Nice	323.2

Valid table or not? NO

EXAMPLES

schema: account (Account_id integer, Branch_name string, Amount float)

Account_id	$Branch_name$	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2
34234	Marseille	423.12
62433	Tour	391
31412	Nice	271.1

Valid table or not? YES

No two tuples can have same values for all attributes

But can have same values for **some** attributes

EXAMPLES

schema: account (Account_id integer, Branch_name string, Amount float)

Account_id	$Branch_name$	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2
34234	Marseille	423.12
62433	Tour	391
31412	Nce	323.2

Valid table or not? YES

EXAMPLES

schema: account (Account_id integer, Branch_name string, Amount float)

Account_id	Branch_name	Amount
49234	Paris	334.6
83123	Lille	231.0
31412	Nice	323.2
34234	Marseille	423.12
62433	Tour	391
31412	Nce	323.2

	$Account_id$	Branch_name	Amount
	49234	Paris	334.6
•	31412	Nce	323.2
	31412	Nice	323.2
	34234	Marseille	423.12
	83123	Lille	231.0
	62433	Tour	391

Are the two tables equal? YES

order of rows does not matter!

RELATIONAL DATABASE

A relational database consists of a set of tables

250199	1	545000	1359	260166 3	(03)(MOH)HI 14/4 - MAGUL) 15/4	
3757814 1	1	3 Software	2010	Martin 4	644	1 /
1/4/1/2 1	1	18/1	8 3800 3	Valyart &	10%	119
£510x 3	1	Stoken	2 31198 3	Valente ?	163	
230 NOT 2	1	1 South Miles	1 8008	Takking &	300	8
C9/549 \$	1	Marchine	15600	Marley &	3454	A.
59.000	4	4 horas	8 91 62 3	Whitever 1	101	fy.
during 1	4	Modern	06163	49a0a00 1	1/56	4
6636	1	Curre	Wide !	Touter	5328	6
69/45	1	1 700	2000	77.00	73	
SE-Set	1	1 400	Land &	Totales a	300	
	2	4 99/4/CA	2000			84
£ 39 1/20%	*	1 341.45	2000	MACKEY, ?	301	8
1335-381 3	1	1. 50500	22/00	SHIEN A	53.4	8
390 190 3	- 1	2. 5000000	1500 1	# Whatly	484	85

189	conscid	904 July	Spogester	year
10101	£8-1Ø1	1 3	Fall	2909
10101	CS-315	1	Spring	2030
10101	C5-347	1	P.85	2009
12121	FIN-281	1 1	Spring	2010
35151	MU-199	1 1	Spreng.	2018
22727	P\$#\$*101	1	Fall	2009
32345	185-353	1	Spring	2010
\$8565	CS-101	1	Spring	2016
\$5565	CS-319	1	Spring	2019
76756	810-101	1 1	Summer	2009
76796	8163-301		Satismer	2810
83821	CS-190	1	Spring	2009
83821	£5-190	2	Spring	2809
83821	CS-319	2 .	Spring	2010
98345	E92-181	1	Bering	29119

10	ISSRIE	depinatar	adary
10101	Strangues	Consp. 8et.	6500
12121	Wa	Finance	9(850)
15151	Mezart	Mante	44833
22222	Einstein	Meyeles	45000
32343	19.8wid	History	58000
33456	Caled	Physics	87000
45565	Kastz.	Camp. 84.	75080
38363	Californ	Highert	60.060
74543	Sarrela	Finance	XXXXX
76756	Code	Biology	72000
83821	Baeruit	Comp. Sec.	92850
58345	Khn	Elec. Eng.	80000

dept_name	building	hudget
Siology	Watson	99000
Comp. Sci.	Taylor	100000
Elec. Eng.	Taylor	85000
Finance	Painter	120000
History	Painter	50000
Music	Packard	50000
Physics	Watson	70000

We will often use the University Database as an example in this module

teacher, student, course, section, teaches, takes, department

id	name	$dept_name$	salary
10101	Srinivasan	Comp. Sci.	65000.00
12121	Wu	Finance	90000.00
15151	Mozart	Music	40000.00
22222	Einstein	Physics	95000.00
32343	El Said	History	60000.00
33456	Gold	Physics	87000.00
45565	Katz	Comp. Sci.	75000.00
58583	Califieri	History	62000.00
76543	Singh	Finance	80000.00
76766	Crick	Biology	72000.00
83821	Brandt	Comp. Sci.	92000.00
98345	Kim	Elec. Eng.	80000.00

teacher

(from Database System Concepts)

$course_id$	title	$dept_name$	credits
BIO-101	Intro. to Biology	Biology	4
BIO-301	Genetics	Biology	4
BIO-399	Computational Biology	Biology	3
CS-101	Intro. to Computer Science	Comp. Sci.	4
CS-190	Game Design	Comp. Sci.	4
CS-315	Robotics	Comp. Sci.	3
CS-319	Image Processing	Comp. Sci.	3
CS-347	Database System Concepts	Comp. Sci.	3
EE-181	Intro. to Digital Systems	Elec. Eng.	3
FIN-201	Investment Banking	Finance	3
HIS-351	World History	History	3
MU-199	Music Video Production	Music	3
PHY-101	Physical Principles	Physics	$\mid 4 \mid$

course

$course_id$	sec_id	semester	year	building	$room_number$	$time_slot_id$
BIO-101	1	Summer	2009	Painter	514	В
BIO-301	1	Summer	2010	Painter	514	A
CS-101	1	Fall	2009	Packard	101	H
CS-101	1	Spring	2010	Packard	101	F
CS-190	1	Spring	2009	Taylor	3128	E
CS-190	2	Spring	2009	Taylor	3128	A
CS-315	1	Spring	2010	Watson	120	D
CS-319	1	Spring	2010	Watson	100	В
CS-319	2	Spring	2010	Taylor	3128	C
CS-347	1	Fall	2009	Taylor	3128	A
EE-181	1	Spring	2009	Taylor	3128	C
FIN-201	1	Spring	2010	Packard	101	В
HIS-351	1	Spring	2010	Painter	514	C
MU-199	1	Spring	2010	Packard	101	D
PHY-101	1	Fall	2009	Watson	100	A

section

(from Database System Concepts)

id	$course_id$	$sec_{-}id$	semester	year
10101	CS-101	1	Fall	2009
10101	CS-315	1	Spring	2010
10101	CS-347	1	Fall	2009
12121	FIN-201	1	Spring	2010
15151	MU-199	1	Spring	2010
22222	PHY-101	1	Fall	2009
32343	HIS-351	1	Spring	2010
45565	CS-101	1	Spring	2010
45565	CS-319	1	Spring	2010
76766	BIO-101	1	Summer	2009
76766	BIO-301	1	Summer	2010
83821	CS-190	1	Spring	2009
83821	CS-190	2	Spring	2009
83821	CS-319	2	Spring	2010
98345	EE-181	1	Spring	2009

teaches

$dept_name$	building	budget
Biology	Watson	90000.00
Comp. Sci.	Taylor	100000.00
Elec. Eng.	Taylor	85000.00
Finance	Painter	120000.00
History	Painter	50000.00
Music	Packard	80000.00
Physics	Watson	70000.00

department

(from Database System Concepts)

id	name	$dept_name$	tot_cred
00128	Zhang	Comp. Sci.	102
12345	Shankar	Comp. Sci.	32
19991	Brandt	History	80
23121	Chavez	Finance	110
44553	Peltier	Physics	56
45678	Levy	Physics	46
54321	Williams	Comp. Sci.	54
55739	Sanchez	Music	38
70557	Snow	Physics	0
76543	Brown	Comp. Sci.	58
76653	Aoi	Elec. Eng.	60
98765	Bourikas	Elec. Eng.	98
98988	Tanaka	Biology	120

student

id	$course_id$	sec_id	semester	year	grade
00128	CS-101	1	Fall	2009	A
00128	CS-347	1	Fall	2009	A-
12345	CS-101	1	Fall	2009	C
12345	CS-190	2	Spring	2009	A
12345	CS-315	1	Spring	2010	A
12345	CS-347	1	Fall	2009	A
19991	HIS-351	1	Spring	2010	В
23121	FIN-201	1	Spring	2010	C+
44553	PHY-101	1	Fall	2009	В-
45678	CS-101	1	Fall	2009	F
45678	CS-101	1	Spring	2010	B+
45678	CS-319	1	Spring	2010	В
54321	CS-101	1	Fall	2009	A-
54321	CS-190	2	Spring	2009	B+
55739	MU-199	1	Spring	2010	A-
76543	CS-101	1	Fall	2009	A
76543	CS-319	2	Spring	2010	A
76653	EE-181	1	Spring	2009	C
98765	CS-101	1	Fall	2009	C-
98765	CS-315	1	Spring	2010	В
98988	BIO-101	1	Summer	2009	A
98988	BIO-301	1	Summer	2010	

takes

