

Importamos las librerías a utilizar en jupyter y leemos nuestro archivo "Estudycas/Usvideos.csv".

Creamos la definición del error logarítmico cuadrático medio

Métrica de precisión

Error logarítmico cuadrático medio

```
def rmsle(actual, predictions):
    log_diff = np.log((predictions+1)/(actual+1))
    return np.sqrt(np.mean(log_diff**2))
```

Creamos una función de prueba de modelos

```
def mod_eval(xtrain,xtest,ytrain,ytest,regressor,parameters,score):
    preds=pd.DataFrame(index=list(range(1,25)))

    gs = GridSearchCV(regressor, parameters, cv=5, n_jobs=1, verbose=1, scoring = score)
    gs = GridSearchCV(regressor, parameters, cv=5, n_jobs=1, scoring = score)
    gs.fit(xtrain, ytrain)

    mdl=gs.best_estimator_
    fctest=gs.predict(xtest)

    mdl_metric=gs.best_score_
    tst_metric=rmsle(ytest,fctest)

    return mdl,mdl_metric,tst_metric
```


Procedemos con la lectura e inspección de datos

```
data = pd.read_csv("data/Train.csv")
data.info()
```

```
RangeIndex: 401125 entries, 0 to 401124
Data columns (total 53 columns):
# Column
                            Non-Null Count Dtype
    SalesID
                            401125 non-null int64
    SalePrice
                            401125 non-null int64
    MachineID
                            401125 non-null int64
    ModelID
                            401125 non-null int64
                            401125 non-null int64
    datasource
                            380989 non-null float64
                            401125 non-null int64
    MachineHoursCurrentMeter 142765 non-null float64
    UsageBand
                            69639 non-null object
                            401125 non-null object
    saledate
 10 fiModelDesc
                            401125 non-null object
11 fiBaseModel
                            401125 non-null object
12 fiSecondaryDesc
                            263934 non-null object
13 fiModelSeries
                            56908 non-null object
14 fiModelDescriptor
                            71919 non-null object
15 ProductSize
                            190350 non-null object
16 fiProductClassDesc
                            401125 non-null object
17 state
                            401125 non-null object
                            401125 non-null object
18 ProductGroup
19 ProductGroupDesc
                            401125 non-null object
 20 Drive_System
                            104361 non-null object
 21 Enclosure
                            400800 non-null object
 22 Forks
                            192077 non-null object
 23 Pad_Type
                            79134 non-null object
24 Ride Control
                            148606 non-null object
25 Stick
                            79134 non-null object
```

<class 'pandas.core.trame.DataFrame'>

```
26 Transmission
                              183230 non-null
 27 Turbocharged
                             79134 non-null
 28 Blade Extension
                             25219 non-null
 29 Blade Width
                             25219 non-null
 30 Enclosure_Type
                             25219 non-null
 31 Engine Horsepower
                             25219 non-null
 32 Hydraulics
                             320570 non-null
                                              object
                             25219 non-null
 33 Pushblock
                             104137 non-null
 34 Ripper
 35 Scarifier
                             25230 non-null
                                              object
 36 Tip Control
                             25219 non-null
 37 Tire Size
                             94718 non-null
                                              object
 38 Coupler
                             213952 non-null
                                             object
 39 Coupler System
                             43458 non-null
 40 Grouser Tracks
                             43362 non-null
                                              object
 41 Hydraulics_Flow
                             43362 non-null
                                              object
 42 Track_Type
                              99153 non-null
 43 Undercarriage_Pad_Width 99872 non-null
                                              object
 44 Stick Length
                             99218 non-null
                             99288 non-null
 45 Thumb
                                              object
 46 Pattern Changer
                             99218 non-null
                                              object
 47 Grouser Type
                             99153 non-null
 48 Backhoe_Mounting
                             78672 non-null
                                              object
 49 Blade Type
                             79833 non-null
 50 Travel Controls
                             79834 non-null
                                              object
 51 Differential Type
                              69411 non-null
                                             object
                             69369 non-null
 52 Steering Controls
                                             object
dtypes: float64(2), int64(6), object(45)
```


Continuamos con la selección de features y limpieza de datos

data4preds= data[['YearMade','MachineHoursCurrentMeter','UsageBand','Transmission','ProductGroup','Drive_System','SalePrice']]
data4preds.head()
#scatter_matrix(data4preds, figsize=(15,9));

	YearMade	Machine Hours Current Meter	UsageBand	Transmission	ProductGroup	Drive_System	SalePrice
0	2004	68.0	Low	NaN	WL	NaN	66000
1	1996	4640.0	Low	NaN	WL	NaN	57000
2	2001	2838.0	High	NaN	SSL	NaN	10000
3	2001	3486.0	High	NaN	TEX	NaN	38500
4	2007	722.0	Medium	NaN	SSL	NaN	11000

data4preds['UsageBand'] =data4preds.UsageBand.map({'Low':1, 'High':3, 'Medium':2})
data4preds

	YearMade	MachineHoursCurrentMeter	UsageBand	Transmission	ProductGroup	Drive_System	SalePrice
0	2004	68.0	1.0	NaN	WL	NaN	66000
1	1996	4640.0	1.0	NaN	WL	NaN	57000
2	2001	2838.0	3.0	NaN	SSL	NaN	10000
3	2001	3486.0	3.0	NaN	TEX	NaN	38500
4	2007	722.0	2.0	NaN	SSL	NaN	11000
401120	2005	NaN	NaN	NaN	TEX	NaN	10500
401121	2005	NaN	NaN	NaN	TEX	NaN	11000
401122	2005	NaN	NaN	NaN	TEX	NaN	11500
401123	2005	NaN	NaN	NaN	TEX	NaN	9000
401124	2005	NaN	NaN	NaN	TEX	NaN	7750

Continuamos con la selección de features y limpieza de datos

dummies = pd.get_dummies(data4preds[['Transmission','ProductGroup','Drive_System']])
data4preds=pd.concat([data4preds,dummies],axis=1).drop(['Transmission','ProductGroup','Drive_System','Transmission_AutoShift'],axis=1)
data4preds

	YearMade	MachineHoursCurrentMeter	UsageBand	SalePrice	Transmission_Autoshift	Transmission_Direct Drive		Transmission_None or Unspecified	Transmission_Powe
0	2004	68.0	1.0	66000	0	0	0	0	
1	1996	4640.0	1.0	57000	0	0	0	0	
2	2001	2838.0	3.0	10000	0	0	0	0	
3	2001	3486.0	3.0	38500	0	0	0	0	
4	2007	722.0	2.0	11000	0	0	0	0	
				***			***		
401120	2005	NaN	NaN	10500	0	0	0	0	
401121	2005	NaN	NaN	11000	0	0	0	0	
401122	2005	NaN	NaN	11500	0	0	0	0	
401123	2005	NaN	NaN	9000	0	0	0	0	
401124	2005	NaN	NaN	7750					

data4preds['UsageBand'].fillna(0,inplace=True)
data4preds

		YearMade	MachineHoursCurrentMeter	UsageBand	SalePrice	Transmission_Autoshift	Transmission_Direct Drive		Transmission_None or Unspecified	Transmission_Powe
	0	2004	68.0	1.0	66000	0	0	0	0	
	1	1996	4640.0	1.0	57000	0	0	0	0	
	2	2001	2838.0	3.0	10000	0	0	0	0	
	3	2001	3486.0	3.0	38500	0	0	0	0	
	4	2007	722.0	2.0	11000	0	0	0	0	
401	1120	2005	NaN	0.0	10500	0	0	0	0	
401	1121	2005	NaN	0.0	11000	0	0	0	0	
401	1122	2005	NaN	0.0	11500	0	0	0	0	
401	1123	2005	NaN	0.0	9000	0	0	0	0	
401	1124	2005	NaN	0.0	7750	0	0	0	0	

Creamos el conjunto de entrenamiento y prueba

```
X_data = data4preds.drop('SalePrice',axis=1)
y_data = data4preds['SalePrice']

X_train, X_test, y_train, y_test = train_test_split(X_data, y_data, test_size=0.33)
score =make_scorer(rmsle,greater_is_better=False)
```


Realizamos un Grid Search de modelos de regresión: LR, Lasso,Ridge, Elastic Net. Se prueban parámetros separados en escala logarítmica para los últimos tres modelos.

```
mdl_list=[LinearRegression(),Lasso(),Ridge(),ElasticNet()]
param_array=list(np.logspace(-2,4,num=100))
mdl_params=[{},{'alpha':param_array},{'alpha':param_array},{'alpha':param_array,'l1_ratio':list(np.linspace(0.01,0.03,10))}]
best_mdl=[]
scores=[]
for m in range(0,len(mdl_list)):
    res=mod_eval(X_train,X_test,y_train,y_test,mdl_list[m],mdl_params[m],score)
    best_mdl.append(res[0])
    scores.append(res[2])

summary=pd.DataFrame(list(zip(best_mdl,scores)),columns=['Mejor Modelo','Scores'])
```

S	ummary		
	Mejor Modelo	Scores	
0	LinearRegression()	0.567405	
1	Lasso(alpha=305.38555088334186)	0.555447	
2	Ridge (alpha = 1232.8467394420659)	0.559299	
3	ElasticNet(alpha=0.02009233002565047, I1_ratio	0.554539	

Realizamos un Grid Search de modelos de regresión: LR, Lasso,Ridge, Elastic Net. Se prueban parámetros separados en escala logarítmica para los últimos tres modelos.

```
mdl_list=[LinearRegression(),Lasso(),Ridge(),ElasticNet()]
param_array=list(np.logspace(-2,4,num=100))
mdl_params=[{},{'alpha':param_array},{'alpha':param_array},{'alpha':param_array,'l1_ratio':list(np.linspace(0.01,0.03,10))}]
best_mdl=[]
scores=[]
for m in range(0,len(mdl_list)):
    res=mod_eval(X_train,X_test,y_train,y_test,mdl_list[m],mdl_params[m],score)
    best_mdl.append(res[0])
    scores.append(res[2])

summary=pd.DataFrame(list(zip(best_mdl,scores)),columns=['Mejor Modelo','Scores'])
```

S	ummary		
	Mejor Modelo	Scores	
0	LinearRegression()	0.567405	
1	Lasso(alpha=305.38555088334186)	0.555447	
2	Ridge (alpha = 1232.8467394420659)	0.559299	
3	ElasticNet(alpha=0.02009233002565047, I1_ratio	0.554539	

Selección del mejor modelo con datos de entrenamiento y su conjunto de validación

```
best_mdl=summary[summary['Scores']==min(summary.Scores)].loc[:,'Mejor Modelo'].reset_index()
best_mdl
```

index Mejor Modelo

3 ElasticNet(alpha=0.02009233002565047, I1_ratio...

```
feats4val = pd.read_csv('data/test.csv').set_index('SalesID')
y4val = pd.read_csv('data/test_actual.csv').set_index('SalesID')
#data4val = data4val.set_index('SalesID')
feats4val.info()
feats4val.describe().T
```

	count	mean	std	min	25%	50%	75%	max
MachinelD	11573.0	1.651495e+06	652248.533150	150.0	1067304.0	1862151.0	2270530.0	2485252.0
ModelID	11573.0	8.940136e+03	7807.393696	28.0	3362.0	4763.0	14303.0	37197.0
datasource	11573.0	1.526227e+02	14.872064	121.0	149.0	149.0	172.0	173.0
auctioneerID	11573.0	7.547481e+00	22,307077	0.0	1.0	1.0	3.0	99.0
YearMade	11573.0	1.895332e+03	305.481901	1000.0	1993.0	2001.0	2005.0	2014.0
MachineHoursCurrentMeter	4739.0	5.482141e+03	6391.097182	0.0	1268.0	3786.0	7793.0	89200.0

Se lleva a cabo la limpieza de datos de validación

Limpieza de datos de validación

Finalmente se lleva acabo la predicción del mejor modelo

```
mdl_val=best_mdl.loc[:,'Mejor Modelo'][0]
y_hat = mdl_val.predict(X_val)
rmsle(y_val, y_hat)
```

0.599499603598123

iGracias!

