Revisão de Fundamentos

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

10 de agosto de 2018

Plano de Aula

[Q001] Questão Cancelada

Se dermos como entrada dois parâmetros para um processo de verificação da corretude de programas:

- (i) um programa, e
- (ii) a especificação formal da tarefa para a qual foi projetado Sabe-se que não é possível automatizar este processo.

Este fato pode ser melhor estudado em que área da Teoria da Computação?

- (A) Teoria dos Autômatos
- (B) Teoria da Computabilidade
- (C) Teoria da Complexidade
- (D) Nenhuma das anteriores

[Q002]

Suponha que um novo modelo computacional foi proposto. Deseja-se conhecer melhor as suas características e potencialidades.

Este fato pode ser melhor estudado em que área da Teoria da Computação?

- (A) Teoria dos Autômatos
- (B) Teoria da Computabilidade
- (C) Teoria da Complexidade
- (D) Nenhuma das anteriores

[Q003]

Imagine que foi proposta uma nova forma de se gerenciar o ciclo de vida de software, como alternativa ao modelos clássicos existentes.

Este fato pode ser melhor estudado em que área da Teoria da Computação?

- (A) Teoria dos Autômatos
- (B) Teoria da Computabilidade
- (C) Teoria da Complexidade
- (D) Nenhuma das anteriores

[Q004] Questão Cancelada

Sejam A e B dois conjuntos. Se |A|=12 e |B|=8, o que se pode dizer do valor de $|A\cup B|$?

- (A) É 12.
- (B) Está entre 8 e 12 (incluso).
- (C) É menor que 8 (incluso).
- (D) É 0.

[Q005] Questão Cancelada

Seja $A = \{0, \{1\}, 4, 6\}$. É incorreto afirmar que

- (A) $1 \in A$
- (B) |P(A)| = 16
- (C) É menor que 8 (incluso).
- (D) É 0.

[Q006 - UFJF 2000]

A parte hachurada no diagrama que melhor representa o conjunto $D=A\setminus (B\cap C)$ é

[Q007]

Sejam $\mathbb N$ e $\mathbb R$ o conjunto dos naturais e reais, respectivamente. Seja $A=\{0\}$. Qual das opções abaixo é um elemento de $\mathbb N\times\mathbb R\times A$?

- (A) $(0; 0; \pi)$
- (B) $(\pi; 0; 0)$
- (C) $(0; \pi; 1)$
- (D) $(1; \pi; 0)$

[PVMed - Q008]

Uma empresa de táxi E_1 cobra R\$ 2,00 a "bandeirada", que é o valor inicial da corrida, e R\$ 2,00 por km rodado. Outra empresa E_2 fixa em R\$ 3,00 o km rodado e não cobra bandeirada. As duas tarifas estão melhor representadas, graficamente, em:

[POSCOMP 2016 (Adaptado) - Q009]

A matriz de um grafo G=(V,A) contendo n vértices é uma matriz $n\times n$ de bits, em que A[i,j] é 1 (ou verdadeiro, no caso de booleanos) se e somente se existir um arco do vértice i para o vértice j. Essa definição é uma:

- (A) Matriz de adjacência para grafos não ponderados.
- (B) Matriz de recorrência para grafos não ponderados.
- (C) Matriz de incidência para grafos não ponderados.
- (D) Matriz de incidência para grafos ponderados.

[Q010]

Dado a linguagem $A = \{a, bab, aba, asa\}$, é incorreto afirmar que...

- (A) $1 \le |\omega| \le 3$
- (B) Se $\omega \in A$, então $\omega^{\mathcal{R}} \in A$.
- (C) Se $\omega \in A$, então ab é subcadeia de ω .
- (D) $\epsilon \notin A$

Revisão de Fundamentos

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

10 de agosto de 2018

Revisão de Fundamentos

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

16 de agosto de 2018

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q011]

Logo abaixo há um argumento lógico para se dizer que 6 é par.

- (1) Sabe-se que a é par se:
- $a \in \mathbb{N}$ e a/2 = k em que $k \in \mathbb{N}$.
- (2) Ora, $6 \in \mathbb{N}$ e 6/2 = 3.
- (3) Como $3 \in \mathbb{N}$, logo 6 é par.

O passo (1) não pode ser descrito como

- (A) definição
- (B) enunciado matemático
- (C) teorema
- (D) lema

[Q012]

Logo abaixo há um argumento lógico para se dizer que 7 é ímpar.

- (1) Seja $p \in \mathbb{N}$.
- (2) Sabe-se que a é ímpar se:

$$a \in \mathbb{N}$$
 e $(a+1)/2 = k$.

- (3) Ora, $5 \in \mathbb{N}$ e (7+1)/2 = 4.
- (4) Como $4 \in \mathbb{N}$, logo 7 é ímpar.

O passo (2) não pode ser descrito como

- (A) lema
- (B) enunciado matemático
- (C) prova
- (D) teorema

[Q013]

Logo abaixo há um argumento lógico para se dizer que 11 é primo.

- (1) Seja $p \in \mathbb{N}$.
- (2) Sabe-se que *p* é primo se: *p* tem apenas 1 e *p* como divisores.
- (3) $11 \in \mathbb{N}$.
- (4) 11 tem apenas 1 e 11 como divisores.
- (4) Logo, 11 é primo.

O passo (1) é melhor descrito como

- (A) lema
- (B) enunciado matemático
- (C) teorema
- (D) definição

[Q014]

Logo abaixo há um argumento lógico para se dizer que 7 é ímpar.

- (1) Seja $p \in \mathbb{N}$.
- (2) Sabe-se que a é ímpar se:
- $a \in \mathbb{N}$ e (a+1)/2 = k.
- (3) Ora, $5 \in \mathbb{N}$ e (7+1)/2 = 4.
- (4) Como $4 \in \mathbb{N}$, logo 7 é ímpar.

Todo este argumento lógico pode ser melhor descrito como

- (A) lema
- (B) prova
- (C) enunciado
- (D) teorema

[Q015]

Uma das formas naturais de se provar um enunciado do tipo " $P \Leftrightarrow Q$ " é

- (A) provar cada uma das duas partes $P \Rightarrow Q \in Q \Rightarrow P$.
- (B) utilizar a estratégia do contra-exemplo.
- (C) reescrever a expressão com as suas próprias palavras.
- (D) provar a direção reversa do enunciado.

[Q016]

Logo abaixo há um argumento lógico para se dizer que não está chovendo agora.

- (1) Suponha que estivesse chovendo agora.
- (2) Se isto fosse verdade, o chão do estacionamento estaria molhado.
- (3) Mas o chão do estacionamento não está molhado.
- (4) Logo, não está chovendo agora.

Este argumento lógico utiliza qual tipo de prova?

- (A) Prova por construção
- (B) Prova por contradição
- (C) Prova por indução
- (D) Não utiliza nenhum tipo de prova.

[Q017]

Logo abaixo há um argumento lógico para se dizer que todo circuito é 2-regular (todos os vértices têm grau 2).

Para um circuito de 3 vértices, verifica-se que ele é 2-regular. Se um circuito de n-1 vértices C_1 for 2-regular, vamos mostrar que um circuito de n vértices C_2 também o é. Seja C_1 o circuito $v_1v_2\ldots v_{n-1}v_1$. Vamos admitir que C_1 é 2-regular. É possível construir C_2 a partir de C_1 : (i) adicionando um novo vértice v_n vizinho de v_{n-1} e v_1 (logo v_n tem grau 2), e (ii) removendo a aresta $v_{n-1}v_1$ (logo v_{n-1} e v_1 voltam a ter grau 2). Desta forma, C_2 é 2-regular.

Este argumento lógico utiliza qual tipo de prova?

- (A) Prova por construção
- (B) Prova por contradição
- (C) Prova por indução
- (D) Não utiliza nenhum tipo de prova.

Revisão de Fundamentos

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

16 de agosto de 2018

Autômato Finito Determinístico

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

17 de agosto de 2018

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q018]

Em relação ao diagrama do autômato finito a seguir, assinale a alternativa que está incorreta.

- (A) q_1 é o estado inicial.
- (B) q_2 é o estado final.
- (C) O alfabeto é o conjunto $\{0, 1, 01\}$.
- (D) Este diagrama é chamado de diagrama de estados.

[Q019]

Em relação ao diagrama do autômato finito M_1 a seguir, assinale a alternativa que está <u>incorreta</u>.

- (A) M_1 aceita 01
- (B) M_1 aceita 11.
- (C) M_1 aceita 0100.
- (D) M_1 aceita 1010.

[Q020]

Em relação ao diagrama do autômato finito M_1 a seguir, assinale a alternativa que está <u>incorreta</u>.

- (A) M_1 rejeita 10.
- (B) M_1 rejeita 11.
- (C) M_1 rejeita 010.
- (D) M_1 rejeita 110.

[Q021]

Um autômato finito é definido por uma 5-upla $(Q, \Sigma, \delta, q_0, F)$. Em relação à definição, assinale a alternativa que está incorreta.

- (A) Q é um conjunto infinito de estados.
- (B) Σ é um conjunto finito chamado alfabeto.
- (C) δ é a função de transição.
- (D) F é o conjunto de estados finais.

[Q022]

Um autômato finito é definido por uma 5-upla $(Q, \Sigma, \delta, q_0, F)$. A função δ é definida como se segue

$$\delta: Q \times \Sigma \rightarrow Q$$

Em relação à δ , é <u>correto</u> afirmar que...

- (A) os estados do autômato são necessários apenas no domínio da função.
- (B) o contradomínio da função é o alfabeto.
- (C) as possibilidades de valores de entradas são infinitas.
- (D) é uma função que recebe duas entradas, sendo um estado e um símbolo do alfabeto.

[Q023]

Em relação à linguagem de uma máquina M, é <u>correto</u> afirmar que...

- (A) L(M) é a notação utilizada para representar que M está ligada.
- (B) L(M) é o conjunto de todas as máquinas que têm a linguagem L.
- (C) é o conjunto de todas as cadeias que a máquina M aceita.
- (D) se L(M) = A, então A é uma cadeia aceita por M.

Autômato Finito Determinístico

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

17 de agosto de 2018

Autômato Finito Determinístico

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

30 de agosto de 2018

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q024]

Seja a descrição formal de um autômato finito determinístico (AFD) $M=(\{q_1,q_2\};\{0,1\};\delta;q_1;\{q_2\}).$

Quantas entradas distintas a função δ pode receber?

- (A) 2
- (B) 4
- (C) não se pode afirmar.
- (D) infinitas.

[Q025]

Seja a descrição formal de um AFD

$$M = (\{q_1, q_2\}; \{0, 1\}; \delta; q_1; \{q_2\}).$$

Quantas saídas distintas a função δ pode retornar?

- (A) 2
- (B) 4
- (C) não se pode afirmar.
- (D) infinitas.

[Q026]

Seja a descrição formal de um AFD

 $M = (\{q_1, q_2, q_3\}; \{0, 1\}; \delta; q_1; \emptyset)$ em que δ é desconhecido.

A linguagem da máquina M é...

- (A) o conjunto de todas as cadeias possíveis.
- (B) o conjunto de todas as cadeias que terminam com 1.
- (C) vazia.
- (D) não é possível definir.

[Q027] (ANULADA)

Seja o AFD M, conforme o diagrama de estados ao lado. Se o estado inicial de M fosse q_1 , L(M) seria composta pelo conjunto de todas as cadeias...

- (A) que começam e terminam com o mesmo símbolo.
- (B) que tem uma quantidade par de símbolos a.
- (C) que tem uma quantidade ímpar de símbolos b.
- (D) que começam com a e terminam com a.

[Q028]

Seja o AFD M, conforme o diagrama de estados ao lado. O alfabeto Σ de M é...

- (A) $\{0, 1, 2, \langle \mathsf{RESET} \rangle \}$
- (B) $\{0, 1, 2, \langle, \mathsf{RESET}, \rangle\}$
- (C) $\{0, 1, 2, \langle, R, E, S, E, T, \rangle\}$
- (D) {0,1,2}

[Q029]

Na definição formal de computação para um AFD M, se M aceita ω , então existe uma sequência de estados r_0, r_1, \ldots, r_n em que

-
$$r_0=q_0$$
;
- $\delta(r_i,\omega_{i+1})=r_{i+1}$, para $i=0,\ldots,n-1$, e
- $r_n\in {\mathcal F}$.

O que o valor de n representa

- (A) a quantidade de estados da sequência
- (B) o tamanho da cadeia ω
- (C) a quantidade de entradas distintas de δ
- (D) a quantidade de estados de *M*

Autômato Finito Determinístico

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

30 de agosto de 2018

Projetando Autômatos Finitos

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

31 de agosto de 2018

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q030]

Seja o AFD M, conforme o diagrama de estados abaixo.

Qual seria função do estado q_{00} ?

- (A) registrar se as duas últimas leituras foi de símbolos 0.
- (B) registrar se as duas primeiras leituras foi de símbolos 0.
- (C) registrar se a cadeia contém, até então, dois símbolos 0.
- (D) registrar se a cadeia tem, até então, 0 como último símbolo. 🛚

[Q031]

Seja o AFD M, conforme o diagrama de estados ao lado. Qual seria função do estado q_2 ?

- (A) registrar se a soma de todos os símbolos depois do $\langle RESET \rangle$ (se houver), até então, tem resto 0 ao dividir por 1.
- (B) registrar se a soma de todos os símbolos antes do $\langle RESET \rangle$ (se houver) tem resto 1 ao dividir por 3.
- (C) registrar se a soma de todos os símbolos depois do $\langle RESET \rangle$ (se houver), até então, tem resto 2 ao dividir por 3.
- (D) nenhuma das anteriores.

[Q032]

Seja o AFD M, conforme o diagrama de estados ao lado. Qual seria função do estado r_1 ?

- (A) registrar se a cadeia começou com um símbolo b.
- (B) registrar se, até então, a cadeia tem um número ímpar de as.
- (C) registrar se, até então, a cadeia tem um número ímpar de bs.
- (D) registrar se o último símbolo, até então, é um b.

[Q033]

Seja o AFD M, conforme o diagrama de estados abaixo.

Qual seria função do estado q_1 ?

- (A) registrar se a cadeia começa com um símbolo 1.
- (B) registrar se a cadeia começa com um símbolo 0.
- (C) registrar todos os 0s consecutivos no início da cadeia.
- (D) registrar infinitos 0s do início da cadeia.

[Q034]

Considere o alfabeto $\Sigma = \{a,b\}$ para a linguagem $L = \{\omega \mid \omega \text{ tem ao menos três as }\}$. Com quantos estados, no mínimo, seria possível construir um AFD que reconhecesse L?

- (A) 2
- (B) 3
- (C) 4
- (D) 5

[Q035]

Considere o alfabeto $\Sigma = \{a,b\}$ para a linguagem $L = \{\omega \mid |\omega| = 1 \}$. Com quantos estados, no mínimo, seria possível construir um AFD que reconhecesse L?

- (A) 2
- (B) 3
- (C) 4
- (D) 5

Projetando Autômatos Finitos

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

31 de agosto de 2018

Autômato Finito Não-Determinístico

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

06 de setembro de 2018

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q036]

Seja o AFN M, conforme o diagrama de estados abaixo.

Qual das cadeias abaixo não é aceita por M?

- (A) 0110
- (B) 01011
- (C) 1001
- (D) 0101

[Q037]

Sobre o um AFN M, é incorreto afirmar que...

- (A) para M aceitar ω , é necessário que todos os ramos de execução aceitem ω .
- (B) a sua função δ tenha como saída um conjunto de estados.
- (C) a sua função de δ tem como uma de suas entradas um símbolo de Σ_ϵ .
- (D) M tem apenas um estado inicial.

[Q038]

Seja o AFD *M*, conforme o diagrama de estados ao lado. *M* aceita qual cadeia, das alternativas abaixo?

- (A) bb
- (B) babba
- (C) b
- (D) ababa

[Q039]

Seja o AFN M, conforme o diagrama de estados abaixo.

Qual é o valor para $\delta(q_1, 1)$?

- (A) q_2
- (B) $\{q_1, q_2\}$
- (C) ∅
- (D) $\{q_1\}$

[Q040]

Seja o AFN M, conforme o diagrama de estados abaixo.

Qual é o valor para $\delta(q_3, 0)$?

- $(A) q_4$
- (B) $\{q_3, q_4\}$
- (C) ∅
- (D) não pode ser definido.

[Q041]

Na definição formal de computação para um AFN N, se N aceita ω , então existe uma sequência de estados r_0, r_1, \ldots, r_m em que

- $r_0=q_0$; - $\delta(r_i,\omega_{i+1})\in r_{i+1}$, para $i=0,\ldots,m-1$, e - $r_m\in F$.

O que o valor de m representa?

- (A) a quantidade de estados da sequência
- (B) o tamanho da cadeia ω
- (C) a quantidade de entradas distintas de δ
- (D) a quantidade de estados de *N*

Autômato Finito Não-Determinístico

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

06 de setembro de 2018

Equivalência de AFNs e AFDs

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

13 de setembro de 2018

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q042]

É verdade que todo AFN tem um AFD equivalente. Na prova apresentada pelo Sipser, ele constroi um AFD M a partir de um AFN N. Se N tem 10 estados, quantos estados teria M?

- (A) 10
- (B) 100
- $(C) 2^{10}$
- (D) 10^2

[Q043]

É verdade que todo AFN tem um AFD equivalente. Na prova apresentada pelo Sipser, ele constroi um AFD

$$M=(Q',\Sigma,\delta',q_0',F')$$
 a partir de um AFN $N=(Q,\Sigma,\delta,q_0,F)$.

$$Q' = \mathcal{P}(Q)$$
 porque...

- (A) sempre um AFD tem mais estados que um AFN.
- (B) $\mathcal{P}(Q)$ é o contradomínio de δ .
- (C) $\mathcal{P}(Q)$ é o conjunto de estados de N.
- (D) o conjunto vazio é subconjunto de qualquer conjunto.

[Q044]

É verdade que todo AFN tem um AFD equivalente. Na prova apresentada pelo Sipser, ele constroi um AFD

 $M=(Q',\Sigma,\delta',q_0',F')$ a partir de um AFN $N=(Q,\Sigma,\delta,q_0,F)$.

 $F' = \{R \in Q' \mid R \text{ contém um estado de aceitação de } N\}$ porque...

- (A) é possível que Q'=Q, então é necessário explicitar os estados finais.
- (B) se $R \in F'$ então todos os estados que estão em R são finais.
- (C) R representa o nível da árvore de execução de N em que pelo menos um dos estados é final.
- (D) R necessita ser um estado de Q, e não um conjunto de estados de Q.

[Q045]

É verdade que todo AFN tem um AFD equivalente. Na prova apresentada pelo Sipser, ele constroi um AFD $M = (Q', \Sigma, \delta', q'_0, F')$ a partir de um AFN $N = (Q, \Sigma, \delta, q_0, F)$.

A função $\delta'(R,a) = \bigcup_{r \in R} \delta(r,a)$ não está devidamente representada porque...

- (A) não inclui os estados alcançados por possíveis transições ϵ .
- (B) não considera todos os símbolos distintos de Σ .
- (C) utiliza $\bigcup_{r \in R} \delta(r, a)$ ao invés de $\bigcap_{r \in R} \delta(r, a)$.
- (D) porque R não é um estado de Q.

[Q046]

E verdade que todo AFN tem um AFD equivalente. Na prova apresentada pelo Sipser, ele constroi um AFD $M=(Q',\Sigma,\delta',q_0',F')$ a partir de um AFN $N=(Q,\Sigma,\delta,q_0,F)$.

O estado inicial de M é $E(\{q_0\})$ porque...

- (A) é necessário garantir que os estados que podem ser atingidos a partir de q_0 sejam especiais.
- (B) é necessário que q_0 não seja um conjunto e sim apenas um elemento.
- (C) é necessário que apenas q_0 seja um estado especial.
- (D) é necessário incluir também os estados que podem ser atingidos a partir de q_0 ao longo de 0 ou mais setas ϵ .

[Q047]

Seja o AFD D, conforme o diagrama de estados abaixo.

 $\acute{\rm E}$ possível remover quantos estados de D de forma que a linguagem por ele reconhecida permaneça a mesma?

(A) 0 (B) 1 (C) 2 (D) 3

Equivalência de AFNs e AFDs

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

13 de setembro de 2018

Fecho sob Operações Regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

21 de setembro de 2018

Plano de Aula

Sumário

[Q048]

É verdade que a classe de linguagens regulares é fechada sob a operação de união. Na prova apresentada pelo Sipser, ele constroi um AFN N a partir de dois AFNs: N_1 e N_2 . A prova mostra que $L(N) = L(N_1) \cup L(N_2)$.

Se N_1 e N_2 têm 20 estados cada um, quantos estados tem N?

- (A) 20
- (B) 41
- $(C) 2^{20}$
- (D) 40^2

[Q049]

É verdade que a classe de linguagens regulares é fechada sob a operação de concatenação. Na prova apresentada pelo Sipser, ele constroi um AFN N a partir de dois AFNs: N_1 e N_2 . A prova mostra que $L(N) = L(N_1) \circ L(N_2)$.

Se N_1 e N_2 têm 30 estados cada um, quantos estados tem N?

- (A) 15
- (B) 30
- (C) 60
- (D) 2^{30}

[Q050]

É verdade que a classe de linguagens regulares é fechada sob a operação de estrela. Na prova apresentada pelo Sipser, ele constroi um AFN N a partir do AFN N_1 . A prova mostra que $L(N) = L(N_1)^*$.

Se N_1 tem 10 estados, quantos estados tem N?

- (A) 5
- (B) 9
- (C) 10
- (D) 11

[Q051]

É verdade que a classe de linguagens regulares é fechada sob a operação de união. Na prova apresentada pelo Sipser, ele constroi um AFN $N=(Q,\Sigma,\delta,q_0,F)$ a partir de dois AFNs: $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$. A prova mostra que $L(N)=L(N_1)\cup L(N_2)$.

Podemos dizer que o valor de $\delta(q_0,\epsilon)$ é...

- (A) ∅
- (B) $\{q_1, q_2\}$
- (C) $\delta_1(q_0,\epsilon)$
- (D) $\delta_2(q_0,\epsilon)$

[Q052]

É verdade que a classe de linguagens regulares é fechada sob a operação de concatenação. Na prova apresentada pelo Sipser, ele constroi um AFN $N=(Q,\Sigma,\delta,q_1,F)$ a partir de dois AFNs: $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$ e $N_2=(Q_2,\Sigma,\delta_2,q_2,F_2)$. A prova mostra que $L(N)=L(N_1)\circ L(N_2)$.

Se $q \in F_1$, então podemos dizer que o valor de $\delta(q,\epsilon)$ é...

- (A) $\delta_1(q,\epsilon)$
- (B) $\delta_2(q,\epsilon)$
- (C) $\delta_1(q,\epsilon) \cup \{q_2\}$
- (D) $\delta_2(q,\epsilon) \cup \{q_2\}$

[Q053]

É verdade que a classe de linguagens regulares é fechada sob a operação de estrela. Na prova apresentada pelo Sipser, ele constroi um AFN $N=(Q,\Sigma,\delta,q_0,F)$ a partir do AFN $N_1=(Q_1,\Sigma,\delta_1,q_1,F_1)$. A prova mostra que $L(N)=L(N_1)^*$.

Se $q \in \mathcal{F}_1$ e $a \neq \epsilon$, então podemos dizer que o valor de $\delta(q,a)$ é...

- (A) $\delta_1(q, a)$
- (B) $\delta_2(q, a)$
- (C) $\delta_1(q,a) \cup \{q_1\}$
- (D) $\delta_2(q, a) \cup \{q_1\}$

Fecho sob Operações Regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

21 de setembro de 2018

Expressões Regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

27 de setembro de 2018

Plano de Aula

Sumário

[Q054]

Seja $\Sigma = \{0,1\}$. Qual das cadeias abaixo a expressão regular $\Sigma^*1\Sigma^*$ não gera?

- (A) 0001
- (B) 1111
- (C) 0
- (D) 1

[Q055]

Seja $\Sigma=\{0,1\}$. Qual das cadeias abaixo a expressão regular $(\Sigma\Sigma\Sigma)^*$ <u>não</u> gera?

- (A) 010
- (B) 11011
- (C) 000
- (D) ϵ

[Q056]

Seja $\Sigma = \{0,1\}$. Qual é a linguagem que a expressão regular $1^*\emptyset$ descreve?

- (A) A linguagem vazia.
- (B) Todas as cadeias que começam por qualquer quantidade de 1s.
- (C) Todas as cadeias com um número infinito de 1s.
- (D) Todas as cadeias de comprimento par.

[Q057]

Seja $\Sigma=\{0,1\}$ e R uma expressão regular qualquer. Qual das expressões regulares abaixo é equivalente à expressão regular $R\circ\epsilon$?

- (A) ϵ
- (B) ∅
- (C) $R \circ \emptyset$
- (D) R

[Q058]

Se uma linguagem é descrita por uma expressão regular, então ela é regular (Lema 1.55). Este lema é demonstrado pelo Sipser considerando

- (A) as transições ϵ existentes nas expressões regulares.
- (B) a construção de um autômato finito não-determinístico generalizado.
- (C) os seis casos da definição indutiva de expressão regular.
- (D) a construção de um autômato finito determinístico equivalente.

[Q059]

Se uma linguagem é descrita por uma expressão regular, então ela é regular (Lema 1.55). Qual expressão regular foi convertida para gerar o AFN ao lado (conforme algoritmo proposto pelo Sipser como parte da demonstração do lema)?

- (A) $(a \cup b)^*$
- (B) $a \cup b$
- (C) $(a \circ b)^*$
- (D) a o b

[Q060]

Se uma linguagem é regular, então ela é descrita por uma expressão regular (Lema 1.60). Este lema é demonstrado pelo Sipser utilizando um autômato finito não-determinístico generalizado (AFNG). Sobre a função de transição do AFNG, é <u>incorreto</u> afirmar que...

- (A) tem como uma de suas entradas um estado do autômato (com exceção do estado inicial).
- (B) a saída é uma expressão regular.
- (C) a saída é membro do conjunto de símbolos Σ .
- (D) tem como entrada um conjunto de estados do autômato.

Expressões Regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

27 de setembro de 2018

Linguagens Não-regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

28 de setembro de 2018

Plano de Aula

Sumário

[Q061]

O lema do bombeamento é utilizado para provar a não-regularidade de linguagens através da técnica de demonstração...

- (A) direta
- (B) por indução
- (C) por absurdo
- (D) por construção

[Q062]

A cadeia 0^p1^p pode ser usada para provar a não-regularidade da linguagem $A = \{0^n1^n \mid n \geq 0\}$, sendo p o comprimento do bombeamento. Sobre esta cadeia e o lema do bombeamento, é <u>incorreto</u> afirmar que...

- (A) x pode ser igual a ϵ .
- (B) y contém apenas Os.
- (C) $xyyz \notin A$
- (D) z contém apenas 1s.

[Q063]

A cadeia 0^p1^p pode ser usada para provar a não-regularidade da linguagem $A=\{\omega\mid\omega \text{ tem número igual de 0s e 1s }\}$, sendo p o comprimento do bombeamento. Sobre esta cadeia e o lema do bombeamento, é <u>incorreto</u> afirmar que...

- (A) y pode ser igual a ϵ .
- (B) y contém apenas Os.
- (C) $xz \notin A$
- (D) z pode conter apenas 1s.

[Q064]

A cadeia 0^p10^p1 pode ser usada para provar a não-regularidade da linguagem $F=\{\omega\omega\mid\omega\in\{0,1\}^*\ \}$, sendo p o comprimento do bombeamento. Sobre esta cadeia e o lema do bombeamento, é incorreto afirmar que...

- (A) x pode ser igual a ϵ .
- (B) y pode conter algum símbolo 1.
- (C) $xyz \in A$
- (D) z contém algum símbolo 1.

[Q065]

A cadeia $0^{p+1}1^p$ pode ser usada para provar a não-regularidade da linguagem $E=\{0^i1^j\mid i>j\}$, sendo p o comprimento do bombeamento. Sobre esta cadeia e o lema do bombeamento, é incorreto afirmar que...

- (A) \times não pode conter algum símbolo 1.
- (B) y só contém símbolos 0s.
- (C) $xz \in A$
- (D) z contém algum símbolo 1.

Linguagens Não-regulares

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

28 de setembro de 2018

Gramáticas Livres-de-Contexto

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

18 de outubro de 2018

Plano de Aula

Sumário

[Q066]

Seja a gramática livre-do-contexto conforme a descrição abaixo

$$A \rightarrow 0A1$$

$$A \rightarrow B$$

$$B \rightarrow \#$$

Qual das cadeias abaixo não é gerada pela gramática?

- (A) #
- (B) 0#1
- (C) 01#01
- (D) 00#11

[Q067]

Seja a gramática livre-do-contexto conforme a descrição abaixo

$$extstyle S o \mathsf{a} S \mathsf{b} \mid SS \mid \epsilon$$

Qual das cadeias abaixo <u>não</u> é gerada pela gramática?

- (A) ab
- (B) aabb
- (C) abab
- (D) abba

[Q068]

Seja a gramática livre-do-contexto conforme a descrição abaixo

$$\langle \mathsf{EXPR} \rangle \to \langle \mathsf{EXPR} \rangle + \langle \mathsf{TERM} \rangle \mid \langle \mathsf{TERM} \rangle$$

 $\langle \mathsf{TERM} \rangle \to \langle \mathsf{TERM} \rangle \times \langle \mathsf{FACTOR} \rangle \mid \langle \mathsf{FACTOR} \rangle$
 $\langle \mathsf{FACTOR} \rangle \to (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a}$

Qual das cadeias abaixo não é gerada pela gramática?

- (A) a+axa
- (B) a+x+a
- (C) (a+a)xa
- (D) axaxa

[Q069]

A partir da gramática livre-do-contexto descrita abaixo

$$\langle \mathsf{EXPR} \rangle \to \langle \mathsf{EXPR} \rangle + \langle \mathsf{TERM} \rangle \mid \langle \mathsf{TERM} \rangle$$

 $\langle \mathsf{TERM} \rangle \to \langle \mathsf{TERM} \rangle \times \langle \mathsf{FACTOR} \rangle \mid \langle \mathsf{FACTOR} \rangle$
 $\langle \mathsf{FACTOR} \rangle \to (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a}$

é incorreto afirmar que...

- (A) $\langle FACTOR \rangle \stackrel{*}{\Rightarrow} axa$
- (B) $\langle \mathsf{FACTOR} \rangle \stackrel{*}{\Rightarrow} (\mathsf{axa})$
- (C) $\langle EXPR \rangle \Rightarrow a$
- (D) $\langle EXPR \rangle \stackrel{*}{\Rightarrow} axa$

[Q070]

Sejam duas gramáticas G_1 e G_2 que geram as linguagens L_1 e L_2 respectivamente. G_1 tem m regras e G_2 tem n regras.

Reaproveitando as regras existentes em G_1 e G_2 , quantas regras existiriam, no mínimo, na gramática G de forma que

$$L(G) = L_1 \cup L_2$$
?

(A)
$$m + n + 1$$

(B)
$$2(m+n)+1$$

(C)
$$m \times n + 1$$

(D)
$$m - n + 1$$

[Q071]

É incorreto afirmar que...

- (A) a classe de linguagens livre-de-contexto é fechada sob a operação de concatenação.
- (B) toda linguagem regular é livre-de-contexto.
- (C) se uma GLC gera ω , então ω tem uma única derivação possível.
- (D) a classe de linguagens livre-de-contexto é fechada sob a operação estrela.

Gramáticas Livres-de-Contexto

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

18 de outubro de 2018

Ambiguidade e Forma Normal de Chomsky

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

19 de outubro de 2018

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q072]

Seja a GLC G conforme a descrição abaixo

$$\langle \mathsf{EXPR} \rangle \to \langle \mathsf{EXPR} \rangle + \langle \mathsf{EXPR} \rangle \mid \langle \mathsf{EXPR} \rangle x \langle \mathsf{EXPR} \rangle \mid (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a}$$

G é ambígua porque ela gera ao menos uma cadeia que...

- (A) tenha no mínimo duas árvores sintáticas distintas.
- (B) possa ser derivada de mais de uma forma diferente.
- (C) não possa ser formada pelos terminais definidos.
- (D) seja inerentemente ambígua.

[Q073]

Seja a GLC G conforme a descrição abaixo

$$\langle \mathsf{EXPR} \rangle \to \langle \mathsf{EXPR} \rangle + \langle \mathsf{EXPR} \rangle \mid \langle \mathsf{EXPR} \rangle x \langle \mathsf{EXPR} \rangle \mid (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a}$$

Qual das cadeias abaixo é gerada ambiguamente a partir de G?

- (A) a+a
- (B) a+(axa)
- (C) (axa)+a
- (D) axa+a

[Q074]

Seja a GLC G conforme a descrição abaixo

$$\langle \mathsf{EXPR} \rangle \to \langle \mathsf{EXPR} \rangle + \langle \mathsf{EXPR} \rangle \mid \langle \mathsf{EXPR} \rangle x \langle \mathsf{EXPR} \rangle \mid (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a}$$

G não está na forma normal de Chomsky pois...

- (A) a primeira parte da 2ª regra, (EXPR), é formada apenas por uma única variável.
- (B) contém um número par de regras de substituição.
- (C) o comprimento da segunda parte da 1^a regra, $\langle EXPR \rangle + \langle EXPR \rangle$, é maior que dois.
- (D) a segunda parte da 4ª regra é formada por um terminal isolado

[Q075]

Seja a GLC G conforme a descrição abaixo

$$S
ightarrow a S b \mid SS \mid \epsilon$$

G não está na forma normal de Chomsky pois...

- (A) a primeira parte da 1ª regra é formada apenas por uma única variável.
- (B) a segunda parte da 2ª regra, SS, contém a variável inicial.
- (C) a segunda parte da 3^a regra é formada apenas por ϵ .
- (D) ela tem uma quantidade ímpar de variáveis.

[Q076]

Sobre a forma normal de Chomsky, é incorreto afirmar que...

- (A) ela é útil quando se quer dar algoritmos para se trabalhar com GLCs.
- (B) qualquer GLC pode ser convertida em uma outra GLC na forma normal de Chomsky.
- (C) mesmo uma GLC na forma normal de Chomsky pode ser ambígua.
- (D) não pode ser aplicada a gramáticas que geram linguagens inerentemente ambíguas.

Ambiguidade e Forma Normal de Chomsky

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

19 de outubro de 2018

Autômatos com Pilha

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

08 de novembro de 2018

Plano de Aula

Instrução pelos Colegas

Sumário

Instrução pelos Colegas

[Q077]

Qual das cadeias abaixo este AP não aceita?

- (A) ϵ
- (B) 01
- (C) 01\$
- (D) 0011

[Q078]

Qual das cadeias abaixo este AP <u>não</u> aceita?

- (A) ϵ
- (B) ab
- (C) bc
- (D) abc

[Q079]

Qual das cadeias abaixo este AP <u>não</u> aceita?

- (A) ϵ
- (B) 00
- (C) 11
- (D) 010

[Q080]

Sobre APs e LLCs, é incorreto afirmar que...

- (A) um AP determinístico é equivalente em poder a um AP não-determinístico.
- (B) se um AP reconhece alguma linguagem, então ela é LLC.
- (C) se uma linguagem é LLC, então um AP a reconhece.
- (D) toda linguagem regular é LLC.

[Q081]

O AP ao lado foi construído a partir de uma dada gramática G, conforme o Lema 2.21. Qual das regras de substituição abaixo <u>não</u> está em G?

- (A) $S \rightarrow aTb$
- (B) $T \rightarrow aT$
- (C) $T \rightarrow \epsilon$
- (D) $S \rightarrow b$

[Q073]

Seja a GLC G conforme a descrição abaixo

$$\langle \mathsf{EXPR} \rangle \to \langle \mathsf{EXPR} \rangle + \langle \mathsf{EXPR} \rangle \mid \langle \mathsf{EXPR} \rangle x \langle \mathsf{EXPR} \rangle \mid (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a}$$

Qual das cadeias abaixo é gerada ambiguamente a partir de G?

- (A) a+a
- (B) a+(axa)
- (C) (axa)+a
- (D) axa + a

[Q074]

Seja a GLC G conforme a descrição abaixo

$$\langle \mathsf{EXPR} \rangle \to \langle \mathsf{EXPR} \rangle + \langle \mathsf{EXPR} \rangle \mid \langle \mathsf{EXPR} \rangle x \langle \mathsf{EXPR} \rangle \mid (\langle \mathsf{EXPR} \rangle) \mid \mathsf{a}$$

G não está na forma normal de Chomsky pois...

- (A) a primeira parte da 2ª regra, (EXPR), é formada apenas por uma única variável.
- (B) contém um número par de regras de substituição.
- (C) o comprimento da segunda parte da 1^a regra, $\langle EXPR \rangle + \langle EXPR \rangle$, é maior que dois.
- (D) a segunda parte da 4ª regra é formada por um terminal isolado

[Q075]

Seja a GLC G conforme a descrição abaixo

$$S
ightarrow a S b \mid SS \mid \epsilon$$

G não está na forma normal de Chomsky pois...

- (A) a primeira parte da 1ª regra é formada apenas por uma única variável.
- (B) a segunda parte da 2ª regra, SS, contém a variável inicial.
- (C) a segunda parte da 3^a regra é formada apenas por ϵ .
- (D) ela tem uma quantidade ímpar de variáveis.

[Q076]

Sobre a forma normal de Chomsky, é incorreto afirmar que...

- (A) ela é útil quando se quer dar algoritmos para se trabalhar com GLCs.
- (B) qualquer GLC pode ser convertida em uma outra GLC na forma normal de Chomsky.
- (C) mesmo uma GLC na forma normal de Chomsky pode ser ambígua.
- (D) não pode ser aplicada a gramáticas que geram linguagens inerentemente ambíguas.

Autômatos com Pilha

Esdras Lins Bispo Jr. bispojr@ufg.br

Linguagens Formais e Autômatos Bacharelado em Ciência da Computação

08 de novembro de 2018

