

➤ 2022년 1년간 하기와 같은 일정으로 3D 개발팀간 교류회를 진행하고자 함. (세부 안건 및 일정은 유동적으로 조정해 나가겠음.)

2022년 일정	발표부서	기술 교류회 Agenda		
2월 4주 2/25, 금 13:30~14:30	플랫폼개발3팀	MOE(Meta-surface Optic Element) 1차 교류회 회의 장소: 안산 E603, 파주 W211(IYL), Webex(https://innowow.webex.com/join/ssspecial) Agenda : MOE에 대한 이론적 접근, 유사 Optic element에 대한 분석 결과 review, 분석 방법 논의		
3월 4주 3/25, 금 13:30~14:30	플랫폼개발3팀	FMCW 기술동향 소개 교류회 회의 장소: 안산 E603, 파주 W211(IYL), Webex(https://innowow.webex.com/join/ssspecial Agenda : FMCW 기술 소개 및 동향 분석 (연구소내 신기술 committee 발표 내용과 유사. 기술전파 목적)		
4월 4주 4/29, 금 13:30~14:30	플랫폼개발3팀 3D 개발2팀	Falcon pjt. Lens calibration 기술 분석 (Tesseract) 회의 장소: 안산 E603, 파주 W211(IYL), Webex(https://innowow.webex.com/join/ssspecial) Agenda : (Non-chart) DOE 적용 lens cal. 방식 기술 분석, Quartus Inc.의 Tesseract 장비 구성 및 test 결과 Review		
5월 3주	3D 개발1팀	MOE(Meta-surface Optic Element) 2차 교류회 Agenda : 4월중 입고되는 MOE 부품에 대한 분석 결과 Review		
6월	미정	후보 안건 : Falcon 차량용 카메라 과제 소개 (3D개발2팀)		
7월	미정	후보 안건 : ACE LM,TM module laser-safety (플랫폼개발3팀)		
8월	미정	후보 안건 : 3D개발1팀, 3D개발2팀, 플랫폼개발3팀 진행 과제 소개 (공통)		
9월	미정	후보 안건 : 개발용 AA 통합 장비 소개 (플랫폼개발3팀)		
10월	미정	후보 안건 : LM,TM VCSEL emitter 특성 분석 Library화 논의 (공통)		

FMCW LiDAR 기술 소개 및 동향

- 1. FMCW LiDAR 소개
- 2. FMCW LiDAR 이론적 접근
- 3. FMCW LiDAR의 구성
- 4. FMCW LiDAR 개발 업체 및 특허 현황
- 5. ACE의 자율 주행 특허 현황
- 6. FMCW LiDAR의 업체 협력 현황

'FMCW' 란?

□ 빛의 주파수를 변조 시켜 거리와 속도에 대한 정보를 동시에 측정 가능한 LiDAR★

기존 dToF 방식

펄스를 방사 후 왕복 시간을 측정

Emit
ToF
Receive

기존 iToF 방식 (AMCW)

크기가 변화는 빛을 이용한 거리 측정

FMCW 방식

주파수가 변하는 빛을 이용한 거리 측정

FMCW의 장점 및 단점

□ 거리와속도의 동시 측정 (+)

- 도플러 효과를 이용한 속도 측정
- 파동이 움직이는 물체로 부터 반사되면 도플러 효과에 의해 주파수 변화 발생
- 이러한 주파수 변화를 감지하여 물체의 속도와 위치를 시간 소모 없이 동시 측정 가능

velocity map

□ 주변 광 및 다른 LiDAR 와의 간섭에 강건 (+)

- 간섭계를 이용한 광 측정
- LiDAR에서 보내는 신호가 아닌 다른 신호와 상호 작용 차단

□ 복잡한 시스템과 레이저 제어의 어려움 (-)

- 다양한 광학 부품 필요
- 안정적인 구동을 위해 tunable laser, 내부 간섭계 등의 다양한 광학 부품과 실시간 제어 필요
- 현재 tunable laser의 실시간 정확한 주파수 변조의 어려움

Depth map Velocity map

주변 광 간섭에 강건

2-1. FMCW LiDAR의 이론적 접근

[Confidential]

※ λ : 빛의 파장

□ 정지된 물체에 대한 거리 계산

$$E(t) = Eexp\left[j2\pi\left\{f_0t + \frac{(f_1 - f_0)}{T}t^2 + \varphi\right\}\right]$$
: 투사파

$$R(t) = Rexp\left[j2\pi\left\{f_0(t- au) + rac{(f_1-f_0)}{T}(t- au)^2 + arphi
ight\}
ight]$$
 : 반사파

$$M(t) = E(t) + R(t)$$
: 간섭광

$$I(t) = MM^*$$
: 빛의 세기

$$= E^{2} + R^{2} + 2ER\cos\left\{2\pi\left(2\frac{(f_{1} - f_{0})}{T}\tau t + f_{0}\tau - \frac{(f_{1} - f_{0})}{T}\tau^{2}\right)\right\}$$

$$=I_{DC}+I_{AC}\cos(2\pi\Delta ft+\varphi)$$

$$oldsymbol{\Delta f} = 2rac{(f_1-f_0)}{T} au$$
 : 맥놀이 주파수

$$au = rac{\Delta fT}{2(f_1 - f_0)}$$
 : 시간 지연

$$=I_{DC}+I_{AC}\cos(2\pi\Delta ft+\varphi)$$

$$\Delta f=2\frac{(f_1-f_0)}{T}\tau: 맥놀이 주파수$$

$$\Delta R=\frac{c\tau}{2}=\frac{\Delta fcT}{4(f_1-f_0)}: 물체 거리$$

$$\Delta R=\frac{c}{4(f_1-f_0)}: 거리 해상도$$

$$4(f_1 - f_0)$$
 ※ 측정 시간이 T 일 때

$$R_{max} = \frac{f_s cT}{8(f_1 - f_0)}$$
 : 최대 거리

□ 움직이는 물체에 대한 거리와 축 방향 속력 계산

도플러 효과 발생

$$f_{c'} = \left(\frac{c - v_t}{c}\right) f_c$$
 f_c : 실제 빛의 주파수 $f_{c'}$: 변화된 빛의 주파수 v_t : 물체의 축 방향 속력

$$f_d = f_c - f_c$$
" $= \frac{2v_t}{c} f_c$: 도플러 주파수

$$\Delta f_{up} = (\Delta f + f_d)$$

$$\Delta f_{down} = (\Delta f - f_d)$$

$$\Delta f = \frac{\left(\Delta f_{up} + \Delta f_{down}\right)}{2}$$

$$f_d = \frac{\left(\Delta f_{up} - \Delta f_{down}\right)}{2}$$
$$= \frac{2v_t}{c} f_c = \frac{2v_t}{c}$$

$$R = \frac{c\tau}{2} = \frac{cT}{4(f_1 - f_0)} \frac{\left(\Delta f_{up} + \Delta f_{down}\right)}{2}$$

: 물체 거리

$$v_t = \frac{\lambda}{2} f_d = \frac{\lambda (\Delta f_{up} - \Delta f_{down})}{4}$$

: 물체 축 속력

2-1. FMCW LiDAR의 이론적 접근

τ : 시간 지연 f_c : 중심 주파수

<u>f_d : 도플러 주파수</u> **1825** c : 빛의 속력

[Confidential]

□ 예제

 $\lambda = 1550nm$: 중심 파장

 $\Delta \lambda = 2nm$: 파장 조절 범위

 $f_1 = 193.67THz$: 최대 주파수

 $f_0 = 193.42THz$: 최소 주파수

T = 2ms: 변조 주기

R = 124.95m : 탁겟 거리

 $f_s = 500MHz$: 샘플링 주파수

 $\lambda = 1550nm$: 중심 파장

 $\Delta \lambda = 2nm$: 파장 조절 범위

 $f_1 = 193.67THz$: 최대 주파수

 $f_0 = 193.42THz$: 최소 주파수

T = 2ms: 변조 주기

R = 124.95m : 타겟 거리

 $v_t=108km/h$: 타겟 속도

: up-beat frequency

: 도플러 주파수

 $f_c = 500MHz$: 샘플링 주파수

$$\Delta f = 2 \frac{(f_1 - f_0)}{T} \tau = 208MHz$$
 : 맥놀이 주파수

$$R = \frac{\Delta f c T}{4(f_1 - f_0)} = 124.95m$$
 : 탁겟 거리

$$R_{max} = \frac{f_s cT}{8(f_1 - f_0)} = 150m$$
 : 최대 측정 가능 거리

$$\Delta R = \frac{c}{4(f_1 - f_0)} = 0.3mm$$
 : 거리 분해능

$$\Delta f_{down} = (\Delta f - f_d) = 169.54 MHz$$
 : down-beat frequency

$$f_d = \frac{2v_t}{c} f_c = 38.7 MHz$$

$$v_t = \frac{f_d c}{2f_s} = 30m/s = 108km/h$$
 : 탁겟 속도

2-1. FMCW LiDAR의 이론적 접근

□ FMCW LiDAR 고려사항

■ 각 항 사이의 관계

$$f_s = \frac{4(f_1 - f_0)}{cT} R_{max}$$
 : 샘플링 주파수

- *R_{max}* ↑ : 최대 측정 거리 증가, 샘플링 주파수증가

- $(f_1 - f_0)$ ↑ : 주파수 변조 속도 증가, 샘플링 주파수 증가, 거리 해상도 증가

- *T* ↑ : 주파수 변조 속도 감소, 샘플링 주파수 감소, 측정 시간 증가

- AMCW의 주파수 변조를 통한 FMCW
- Wave의 frequency 한계로 인한 range 분해능 감소

- iToF 중심주파수 $f_c = 100MHz$

- 주파수 변조 범위

$$f_1 = 150MHz$$

$$f_0 = 50MHz$$

- 거리 분해능

$$\Delta R = \frac{c}{2(f_1 - f_0)} = 1.5m$$

- Laser의 선형 주파수 변조
- 레이저 자체의 비선형성으로 인해 실시간 선형 파형의 구현의 어려움
- 비선형 제어를 이용한 선형 주파수 변조 구현 필요

- 좁은 linewidth laser 필요
 - 파장 간섭을 이용한 거리 측정
 - → Coherence length가 긴 laser 필요
- Coherence length

$$l_c < \frac{c\tau_c}{2} = \frac{c}{2\Delta f_c} = \frac{\lambda^2}{2\Delta\lambda}$$

- 300m 측정 시

$$\Delta f_C < 500kHz$$

 $\Delta \lambda < 4.004 fm$

2-2. Laser linewidth 에 따른 phase noise의 영향

1440.1825

□ Laser linewidth에 따른 FMCW signal 변화

$$\vec{E}(t) = \vec{E}_0 \exp[j\theta]$$

$$\frac{d\theta}{dt} = \omega = \omega_0 + \xi t$$

$$\theta(t) = \int \omega(t)dt$$

Spontaneous emission으로 인한
$$\vec{E}(t) = \vec{E}_0 \exp[j\{\theta(t) + \theta_n(t)\}]$$
 phase noise

$$\begin{split} I(t) &= I_{DC} + I_{AC} \cos[\theta(t) - \theta(t - \tau) + \theta_n(t) - \theta_n(t - \tau)] \\ &= I_{DC} + I_{AC} \cos[\theta(t) - \theta(t - \tau) + \Delta\theta_n(t, \tau)] \end{split}$$

$$\Delta\theta_n(t,\tau) = \theta_n(t) - \theta_n(t-\tau) = \Delta\omega \times \tau$$

$$\Delta\omega = 2\pi\Delta f_c = \pi \frac{c\Delta\lambda}{\lambda^2}$$

au : 거리에 의한 time delay

Δλ : laser의 spectrum 범위

■ Phase noise 있을 시의 파형

2-2. Laser linewidth 에 따른 phase noise의 영향

[Confidential]

□ Phase noise 에 따른 FMCW signal 변화

$$\frac{d\theta}{dt} = \omega = \omega_0 + \xi t$$

$$\theta(t) = \int \omega(t)dt$$

$$\begin{split} I(t) &= I_{DC} + I_{AC} \cos[\theta(t) - \theta(t - \tau) + \theta_n(t) - \theta_n(t - \tau)] \\ &= I_{DC} + I_{AC} \cos[\theta(t) - \theta(t - \tau) + \Delta \theta_n(t, \tau)] \end{split}$$

$$\Delta\theta_n(t,\tau) = \theta_n(t) - \theta_n(t-\tau) = \Delta\omega \times \tau$$

 $\Delta\omega = 2\pi\Delta f_c = \pi \frac{c\Delta\lambda}{\lambda^2}$

au : 거리에 의한 time delay

 $\vec{E}(t)$

Δλ : laser의 spectrum 범위

□ 타겟 거리에 따른 간섭무늬의 변형

- Δf_c : 1MHz ($\Delta \lambda$: 8fm @ 1550nm), d: 5m

- Δf_c : 1MHz ($\Delta \lambda$: 8fm @ 1550nm), d: 70m

- Δf_c : 1MHz ($\Delta \lambda$: 8fm @ 1550nm), d: 140m

[Confidential]

2-2. Laser linewidth 에 따른 phase noise의 영향

☐ Phase noise 에 따른 FMCW signal 변화

$$\frac{d\theta}{dt} = \omega = \omega_0 + \xi t$$

$$\theta(t) = \int \omega(t)dt$$

Spontaneous emission으로 인한 $\vec{E}(t) = \vec{E}_0 \exp[j\{\theta(t) + \theta_n(t)\}]$ phase noise

$$\begin{split} I(t) &= I_{DC} + I_{AC} \cos[\theta(t) - \theta(t - \tau) + \theta_n(t) - \theta_n(t - \tau)] \\ &= I_{DC} + I_{AC} \cos[\theta(t) - \theta(t - \tau) + \Delta\theta_n(t, \tau)] \end{split}$$

$$\Delta\theta_n(t,\tau) = \theta_n(t) - \theta_n(t-\tau) = \Delta\omega \times \tau$$

 $\Delta\omega = 2\pi\Delta f_c = \pi \frac{c\Delta\lambda}{\lambda^2}$

τ : 거리에 의한 time delay

 $\vec{E}(t)$

Δλ : laser의 spectrum 범위

□ Laser linewidth에 따른 간섭무늬의 변형

- d: 30m, Δf_c : 0MHz

- d: 30m, Δf_c : 1MHz ($\Delta \lambda$: 8fm @ 1550nm)

- d: 30m, Δf_c : 10MHz ($\Delta \lambda$: 80fm @ 1550nm)

☐ FMCW LiDAR의 기본적인 광학계 구조

TX

- Tunable 레이저를 이용한 주파수 변조 신호 발생

RX

- 물체로 부터 반사된 빛과 투사하는 레이저의 간섭을 이용한 거리 측정

Control

변조 신호 선형 locking

target

RX

* DSP: Digital signal processor, FFT: Fast Fourier transform, BPD: Balanced photodetector

3-2. FMCW LiDAR 시스템 구성: TX (single mode laser)

1440.1825

☐ Single mode laser

- Lasing mode의 변화
- Cavity length를 좁혀서 lasing mode의 간격을 늘임

- 특정 mode selection
- → Mode selection part를 추가함으로써 특정 파장만 lasing 시킴

- Single mode VCSEL
- Cavity length를 좁혀서 lasing mode의 간격을 늘임

- External cavity
 - 레이저 외부에 레이저 파장 선택을 위한 grating 소자를 이용하여 특정 mode selection
 - Amber LiDAR project의 laser 방식

AR coating

- DBR laser
- 레이저 cavity 내부에 DBR grating을 생성
- DBR grating에서 특정 mode selection
- DFB laser
- single mode 생성을 위한 모든 component들을 gain medium에 통합

3-2. FMCW LiDAR 시스템 구성 : TX (tunable laser)

DBR mirror

moving

□ Tunable laser

- FMCW LiDAR의 구현을 위해서 빛의 파장을 직접적으로 변화시켜야 함
- Laser wavelength tuning 방법
 - ① Gain 을 변경하여 output 파장 변경
 - ② Lasing mode 를 변경하여 output 파장 변경
 - ④ Mode selection 을 변경하여 output 파장

- MEMS VCSEL
 - VCSEL의 DBR mirror를 MEMS 기술을 이용하여 실시간 변형
 - Cavity length를 변형하여 tuning
- External cavity laser
- External cavity를 위한 grating의 실시간 회전
- grating 각도에 따른 mode selection 변화를 이용

- 전류에 따라 물질의 굴절률이 바뀌는 electro-optic 특성을 이용
- cavity와 DBR의 굴절률을 바꿈으로써 lasing mode와 mode selection 동시 변경
- DFB laser
- 전류에 따라 물질의 굴절률이 바뀌는 electro optic 특성을 이용
- DBR laser와는 달리 한 개의 신호로 tuning 가능

Gain

Output

Output

0000000

3-3. FMCW LiDAR 시스템 구성: RX

□ Coherent detection

- 일반적으로 2x2 optical coupler와 balanced photodiode를 이용한 coherent detection을 이용

- 2x2 coupler
 - 2개의 input 신호를 결합시켜 간섭 신호 발생시킴

$$\begin{bmatrix} E_1 \\ E_2 \end{bmatrix} = \begin{bmatrix} \frac{1}{\sqrt{2}} e^{j0} & \frac{1}{\sqrt{2}} e^{j\frac{\pi}{2}} \\ \frac{1}{\sqrt{2}} e^{j\frac{\pi}{2}} & \frac{1}{\sqrt{2}} e^{j0} \end{bmatrix} \begin{bmatrix} E_{Re} \\ E_{LO} \end{bmatrix}$$
Port 2: Input B - 100% Power

Port 3: Output A (Tap)

$$E_1(t) = \frac{|E_{Re}(t)|^2 + |E_{LO}(t)|^2}{2} + \frac{1}{2} E_{Re} E_{LO} sin \left\{ 2\pi \left(2 \frac{(f_1 - f_0)}{T} \tau t + f_0 \tau - \frac{(f_1 - f_0)}{T} \tau^2 \right) \right\}$$

$$E_2(t) = \frac{|E_{Re}(t)|^2 + |E_{LO}(t)|^2}{2} - \frac{1}{2} E_{Re} E_{LO} sin \left\{ 2\pi \left(2 \frac{(f_1 - f_0)}{T} \tau t + f_0 \tau - \frac{(f_1 - f_0)}{T} \tau^2 \right) \right\}$$

- Balanced photodiode
- 2개의 photo diode로 구정
- 2개의 photo diode output 신호의 차이를 증폭시켜 output
- noise로 작용하는 DC 신호의 제거 가능

$$I(t) = E_1(t) - E_2(t)$$

$$= E_{Re}E_{LO}\sin\left\{2\pi\left(2\frac{(f_1 - f_0)}{T}\tau t + f_0\tau - \frac{(f_1 - f_0)}{T}\tau^2\right)\right\}$$

3-4. FMCW LiDAR 시스템 구성: control

1440.1825

☐ FMCW LiDAR의 laser 제어

- FMCW LiDAR의 tunable laser의 wavelength 신호의 실시간 제어 루프 필요
- 간섭계를 이용하여 참조 신호를 생성 시킴

- Mach-Zehnder interferometer
 - 전류에 따라 물질의 굴절률이 바뀜에 따라 레이저의 간섭 신호 생성 (참조 beat frequency 생성)

☐ Beam steering mechanism

- 2D 측정을 위해 beam steering mechanism 필요
- 모터나 MEMS: 기계적 회전을 이용
- OPA: 전기적 신호로 laser scan
- Flash: Scan 없이 회절 소자 등을 이용

4-1. FMCW LiDAR 개발 업체

[Confidential]

Manufacturer	Туре	Range	Frame rate	FoV (VxH)	Resolution (VxH)	Point # rate	Wavelength
Aeva	FMCW, On-Chip	500m	1000lines/frame	30°x120°	N/A	4Mp/s	N/A
Aurora	FMCW LIDAR	450m	N/A	30°x120°	0.1°x0.1°	2.4Mp/s	1550nm
Baraja	FMCW	>250m	30Hz	25°x125°	0.0125°x0.4°	N/A	1550nm
Insight LiDAR	FMCW (1600)	250m	10Hz	30°x120°	0.025°x0.025°	3.4Mp/s	N/A
	FMCW (400)	200m	10Hz	30°x120°	0.05°x0.05°	1.7Mp/s	N/A
SiLC	FMCW, On-Chip	N/A	N/A	N/A	N/A	N/A	1550nm

☐ AEVA

- Apple에서 파생되어 나온 FMCW LiDAR 제조 업체
- 가장 활발히 개발 중

☐ Aurora

- 자율 주행 알고리즘 개발 업체
- FMCW LiDAR 제조 업체였던 Blackmore사와 OURS사 인수를 통하여 FMCW LiDAR 개발

☐ Insight LiDAR

- 미국의 FMCW LiDAR 제조 업체

- 미국의 FMCW LiDAR 제조 업체
- Laser와 prism만을 이용해 solid state scanning 구현

☐ SiLC

- 미국의 FMCW LiDAR 제조 업체
- FMCW LiDAR 방식에 추가로 물체로부터 반사된 빛의 편광 특성 측정을 통한 표면 측정

4-2. FMCW LiDAR 선도 업체(AEVA, SiLC)와 ACE LiDAR 특허 동향

[Confidential]

14.0.1825

※ 특허 searching: 특허분석팀 김민환 님 도움

Point cloud noise 처리 방식

LiDAR용 <u>편광</u>waveguide

LiDAR 신호처리 방식

*실시간 FM 제어*방식

4건

AEVA FMCW 특허

■ 2018년 10월 ~ 2021년 6월, 총 26건 출원 - 26건 중 16건 특허 등록 (63%)

실시간 제어 4건 (15.4%)

*편광*광학계를 이용한

coaxial LiDAR 구조

12건

LiDAR scanning 방식

2건

SiLC FMCW 특허

■ 2018년 5월 ~ 2020년 6월, 총 16건 출원 - 16건 중 1건 특허 등록 (6.3%)

기술 분류	건수	등록 건수
<i>편광</i> 광학계를 이용한 coaxial LiDAR 구조	12건	6건
<i>실시간FM 제어</i> 방식	4건	3건
LiDAR 신호 처리 방식	4건	2건
LiDAR용 <i>편광</i> waveguide	2건	2건
Point cloud noise 처리 방식	2건	2건
LiDAR scanning 방식	2건	1건

기술 분류	건수	등록 건수
<i>On chip</i> LiDAR waveguide 광학계 구조 및 파생 특허	7건	1건
주파수 변조 함수	3건	-
LiDAR 신호 처리 방식	3건	-
기타	3건	-
		·

ACE LiDAR 특허

- 2011년 2월 ~ 2020년 10월, 총 30건 출원
- 30건 중 24건 특허 등록
- FMCW와 관련 없으며, 대부분 Jasper 유사 기술

기술 분류	건수	등록 건수
LiDAR 시스템 구동 방식	11건	8건
기타 depth sensing 방식	6건	4건
LiDAR scanning 방식	5건	5건
LiDAR 광학계 구조	5건	4건
차량간 통신	2건	2건
LiDAR data를 통한 이미지 처리	1건	1건

4-3. 특허로 본 AEVA社 LiDAR 구현 방식 🖊

편광 광학계를 이용한 coaxial LiDAR 특허

- 전체 특허의 46.2% 차지 (등록 특허 중 37.5%)
- AEVA의 FMCW LiDAR 광학계 구조
- 빔 스플리터를 이용하여 coaxial 한 FMCW LiDAR 광학계를 구성 (17/031515)
- 편광 광학계를 이용하여 p편광과 s편광을 분리하여 측정 (17/188765)
- 편광을 이용해 표적의 물체 특성을 측정 (16/712749)
- 편광 광학계를 이용한 장점
- Coaxial한 광학계를 구성하여 광경로가 simple하고 form factor를 줄일 수 있음
- 물체로 부터 반사되는 모든 편광성분을 측정하여 SNR 증가

[대표도면] Optica Circulato System : LO signal (all) 215 -- : LO signal (p편광) --: LO signal (s편광)

실시간 주파수 변조 제어 특허

- 전체 특허의 15.4% 차지 (등록 특허 중 18.8%)
- AEVA의 LiDAR 실시간 주파수 제어 방식
- 피드백 루프를 구성하여 실시간 선형 주파수 제어 시스템 구성 (17/234460, 17/335530, 16/287687)

- AEVA의 LiDAR 실시간 주파수 제어의 장점
 - 모델링을 이용하여 원하는 신호와 기존 제어 이론들의 유연한 적용 가능

[대표도면]

특허로 본 AEVA 社 FMCW LiDAR 구현 방식

다양한 광학 이론 or 제어 이론을 적용하여 FMCW LiDAR의 최적화에 대한 고민을 많이 하고 있는 중으로 판단

On Chip LiDAR 광학계 구조 특허

- 최초 출헌 특허(15/977957)를 기준으로 여러 개량 특허 작성
- SiLC의 on chip FMCW LiDAR 광학계 구조
- FMCW LiDAR 구동을 위한 모든 구성품을 on chip 형태로 구성하고 대략적인 다이어그램 제시
- Waveguide의 사이즈에 대한 구체적인 치수, 물질 등 제시
- scanning 시 scanner는 chip 외부에 위치 (칩내부에 위치시키는 파생특허 존재)

■ 개량특허1

- Chip 수신부에 추가 광경로를 형성 후 신호처리를 통하여 노이즈 감소

[대표도면]

■ 개량특허2

- 광원+센서와 발광/수광부의 집적화 난이도가 다르므로 이를 분리하여 발광/수광부는 LiDAR adaptor로 구성

Laser를 위한 waveguide 광원부 칩 외부 scanner 제어를 위한 참조신호 회로부 • Figure 1

■ 개량특허3

- 여러 개의 칩을 수직으로 쌓은 후 해당 array를 회전시켜 rotation LiDAR type으로 스캔

특허로본 SiLC 社 FMCW LiDAR 구현 방식

On chip FMCW의 구조를 참고하기는 좋으나 전체적으로 적용 가능한지 의문, AEVA보다 기술력이 낮을 것으로 판단

5. 특허로 본 ACE의 자율주행 (with 카메라 or LiDAR) 구현 방식

[Confidential]

※ 특허 searching: 특허분석팀 김민환 님 도움

ACE 자율주행 특허

■ 2003년 10월 ~ 2021년 8월, 총 112건 출원 - 112건 중 71건 특허 등록 (63%)

기술 분류	건수	등록 건수
자율주행용 데이터 통신	28건	11건 (만료3건)
V2V/V2X 통신	22건	12건
자율주행용 데이터 처리	21건	16건
일반 차량 구동 시스템	17건	14건
자율주행 차량 구동 시스템	15건	12건
차량내 기기간 통신	4건	3건
AR/VR 기기	3건	2건
레이다	2건	1건

ACE 자율주행 관련 동향 분석

■ 애플카자율주행 컨셉

- <u>V2X</u>로 각 차량이 노드를 구현하여 애플카가 지나갈 때마다 서로간 데이터를 전송하고 (16/639660)
- <u>스마트폰</u> 유저도 V2X 차량에 데이터를 전송하여 보행자, 자전거 등의 충돌을 피하고 (16/582081)
- 차량 내에서는 <u>생생한 VR 시스템</u>을 구현하고 (16/687446)
- <u>대화형 사용자 인터페이스</u>도 구현한 (17/182736) 시스템을 구상함

■ 위치 정보 도출

- 카메라, 레이더, 라이더, 근접센서를 다양하게 예시로 듦
- 일부 특허는 라이다 만을 예시로 듦 (1건)

■ 3D 센싱 주요 특허

- "Radar antenna array" (16/310109)를 직접 차량에 적용하여 복잡성을 최소화하면서 진정한 거리-방위각 구현
- "Predicting lidar data using machine learning" (15/711982)를 카메라와 레이더 이미징에 보조하여 위치 정보의 정확도를 높임
- "Barrier detection" (16/126085)를 LiDAR output 데이터에 적용하여 머신러닝 또는 딥러닝 학습 데이터로 이용

특허로 본 ACE 자율주행 구현 방식

하드웨어 보다 데이터 통신방법과 네트워크 구축에 대한 고민 중 LiDAR를 보는 시각: camera와 radar보다 fps가 느리지만, 머신러닝 등에 사용될 LiDAR만의 추가적인 데이터를 얻기에는 적합

6. LiDAR 업체 협력 현황

: FMCW社 : 차량용 LiDAR 양산 (FMCW 제외)

1440.1825

[Confidential]

※ 21년 03월 LiDAR potential 점검 보고 자료 중 page 8 참고

FMCW LiDAR: 3개社만 투자 진행 중 (토요타, 폭스바겐, BMW), 전체적으로 시작 단계

➤ 2022년 1년간 하기와 같은 일정으로 3D 개발팀간 교류회를 진행하고자 함. (세부 안건 및 일정은 유동적으로 조정해 나가겠음.)

2022년 일정	발표부서	기술 교류회 Agenda	
2월 4주 2/25, 금 13:30~14:30	플랫폼개발3팀	MOE(Meta-surface Optic Element) 1차 교류회 회의 장소: 안산 E603, 파주 W211(IYL), Webex(https://innowow.webex.com/join/ssspecial) Agenda : MOE에 대한 이론적 접근, 유사 Optic element에 대한 분석 결과 review, 분석 방법 논의	
3월 4주 3/25, 금 13:30~14:30	플랫폼개발3팀	FMCW 기술동향 소개 교류회 회의 장소: 안산 E603, 파주 W211(IYL), Webex(https://innowow.webex.com/join/ssspecial Agenda: FMCW 기술 소개 및 동향 분석 (연구소내 신기술 committee 발표 내용과 유사. 기술전파 목적)	
4월 4주 4/29, 금 13:30~14:30	플랫폼개발3팀 3D 개발2팀	Falcon pjt. Lens calibration 기술 분석 (Tesseract) 회의 장소: 안산 E603, 파주 W211(IYL), Webex(https://innowow.webex.com/join/ssspecial) Agenda : (Non-chart) DOE 적용 lens cal. 방식 기술 분석, Quartus Inc.의 Tesseract 장비 구성 및 test 결과 Review	
5월 3주	3D 개발1팀	MOE(Meta-surface Optic Element) 2차 교류회 Agenda : 4월중 입고되는 MOE 부품에 대한 분석 결과 Review	
6월	미정	후보 안건 : Falcon 차량용 카메라 과제 소개 (3D개발2팀)	
7월	미정	후보 안건 : ACE LM,TM module laser-safety (플랫폼개발3팀)	
8월	미정	후보 안건 : 3D개발1팀, 3D개발2팀, 플랫폼개발3팀 진행 과제 소개 (공통)	
9월	미정	후보 안건 : 개발용 AA 통합 장비 소개 (플랫폼개발3팀)	
10월	미정	후보 안건 : LM,TM VCSEL emitter 특성 분석 Library화 논의 (공통)	