Sharpness-Aware Minimization For Efficiently Improving Generalization

Pierre Foret, Ariel Kleiner, Hossein Mobahi, Behnam Neyshabur ICLR 2021 (Spotlight)

Contents

- 1. Motivation
- 2. Preliminary
- 3. SAM optimizer
- 4. Experiment
- 5. Critique

Appendix

Motivation

Problem setting

Notation

- Training dataset : $S = \bigcup_{i=1}^{n} \{(x_i, y_i)\} \sim \mathcal{D}$
- Model parameter : $w \in \mathcal{W} \subseteq \mathbb{R}^k$
- Empirical loss function : $L_S(w) = \frac{1}{n} \sum_{i=1}^n l(w, x_i, y_i)$
- Population loss function : $L_{\mathcal{D}}(w) = \mathbb{E}_{(x,y)\sim\mathcal{D}}[l(w,x,y)]$

Objective

• Select model parameter w having low population loss $L_{\mathcal{D}}(w)$

* Conventional approach : $\min_{w} L_S(w) + \lambda ||w||_2^2$

Minimizing training loss is not sufficient

- Deep neural networks easily fit random labels
- Explicit regularization is not sufficient for controlling generalization error

data aug	dropout	weight decay	top-1 train	top-5 train	top-1 test	top-5 test
Image	Net 1000 cl	asses with the	original labe	els		
yes	yes	yes	92.18	99.21	77.84	93.92
yes	no	no	92.33	99.17	72.95	90.43
no	no	yes	90.60	100.0	67.18 (72.57)	86.44 (91.31)
no	no	no	99.53	100.0	59.80 (63.16)	80.38 (84.49)
Alexne	et (Krizhevsky	et al., 2012)	-	-	-	83.6
Image	Net 1000 cl	asses with rar	ndom labels			
no	yes	yes	91.18	97.95	0.09	0.49
no	no	yes	87.81	96.15	0.12	0.50
no	no	no	95.20	99.14	0.11	0.56

Training loss decaying with steps

Performance on ImageNet with true labels and random labels

Zhang, Chiyuan, et al. "Understanding deep learning (still) requires rethinking generalization." ICLR 2017.

Loss Landscape v.s. Generalization

If there exists a shift from empirical loss to population loss, flat minimum is more robust than sharp minimum.

- Smoothening loss landscape: Skip connection, Batch normalization
- Escaping basins of sharp minima: Small-batch training

How to analyze sharpness?

1D linear interpolation

2D contour plot and its 3D visualization

 $L(\alpha w_l^* + (1 - \alpha)w_s^*)$ with $-1 \le \alpha \le 1$

 $(w_s^* : converged w/ Small Batch (SB) training)$

 $(w_l^* : converged w / Large Batch (LB) training)$

$$L(w + \alpha \delta + \beta \eta)$$
 with $-1 \le \alpha, \beta \le 1$

(δ and η are random weights of the same size of w)

(Filter-wise normalization in aware of scale invariance)

Previous studies have shown better generalization, however, yet struggle to beat a range of state-of-the-art models

Li, Hao, et al. "Visualizing the loss landscape of neural nets.", NeurIPS 2018.

Sharpness-Aware Minimization (SAM)

- Find a wide and flat minima by simultaneously minimizing loss and sharpness
 - 1. Seeks parameters that lie in neighborhoods having uniformly low loss
 - 2. Conduct a rigorous empirical study across a range of widely studied computer vision tasks

Cifar10 Cifar100 Imagenet Finetuning SVHN
F-MNIST
Noisy Cifar
0 20 40
Error reduction (%)

3D visualization of the loss landscape around the converged solutions

Error rate reduction by switching to SAM (dataset / model / augmentation)

Preliminary

PAC versus PAC-bayes

PAC (Probably Approximately Correct)

With probability greater than $1 - \delta$,

$$L_{\mathcal{D}}(w) \le L_{\mathcal{S}}(w) + \sqrt{\frac{1}{2n}} \left(\ln|\mathcal{H}| + \ln\left(\frac{2}{\delta}\right) \right)$$

PAC-bayes

With probability greater than $1 - \delta$,

$$\mathbb{E}_{w \sim Q}[L_{\mathcal{D}}(w)] \leq \mathbb{E}_{w \sim Q}[L_{\mathcal{S}}(w)] + \sqrt{\frac{1}{2(n-1)}} \left(KL(Q|P) + \ln\left(\frac{n}{\delta}\right)\right)$$

Component-wise level bound

$$\left[\mathbb{E}_{w \sim Q} L_{\mathcal{D}}(w)\right] \leq \mathbb{E}_{w \sim Q} \left[L_{\mathcal{S}}(w)\right] + \sqrt{\frac{1}{2(n-1)} \left(KL(Q|P) + \ln\left(\frac{n}{\delta_j}\right)\right)}$$

Let
$$P = \mathcal{N}\left(0, c \exp\left(\frac{1-j}{k}\right)I\right)$$
 for $j \in \mathbb{N}$ and $Q = \mathcal{N}(w, \sigma^2 I)$

•
$$KL(Q|P) \le \frac{1}{2} \left[1 + k \log \left(1 + \frac{\|w\|_2^2}{k\sigma^2} \right) \right]$$

•
$$ln\left(\frac{n}{\delta_i}\right) \le log\left(\frac{n}{\delta}\right) + 2log(6n + 3k)$$

Please refer to Appendix in paper

$$\mathbb{E}_{\epsilon \sim \mathcal{N}(0,\sigma^2I)}[L_{\mathcal{D}}(w+\epsilon)] \leq \mathbb{E}_{\epsilon \sim \mathcal{N}(0,\sigma^2I)}[L_{\mathcal{S}}(w+\epsilon)] + \sqrt{\frac{1}{2(n-1)}\left(\frac{1}{2}\left[1+k\log\left(1+\frac{\|w\|_2^2}{k\sigma^2}\right)\right] + \log\left(\frac{n}{\delta}\right) + 2\log(6n+3k)\right)}$$

How can we constrain the neighborhood?

- Directly constraining ϵ is not intuitive due to high-dimensional nature
- Rather propose to use <u>norm</u>

If
$$\epsilon \sim \mathcal{N}(0, \sigma^2 I)$$
, then $\|\epsilon\|_2^2 \sim \chi^2(k\sigma^2)$

$$\Pr(\|\epsilon\|_2^2 - k\sigma^2 \ge 2\sigma^2\sqrt{kt} + 2t\sigma^2) \le \exp(-t)$$

With probability greater than $1 - 1/\sqrt{n}$,

$$\begin{aligned} \|\epsilon\|_{2}^{2} &\leq k\sigma^{2} + 2\sigma^{2}\sqrt{kt} + 2t\sigma^{2} = k\sigma^{2}(1 + 2\sqrt{t/k} + 2t/k) \\ &= k\sigma^{2}\left(1 + 2\sqrt{\ln\sqrt{n}/k} + 2\ln\sqrt{n}/k\right) (\coloneqq \rho^{2}) \end{aligned}$$

PAC-bayes Generalization Bound for SAM

$$\mathbb{E}_{\epsilon \sim \mathcal{N}(0,\sigma^2 I)}[L_{\mathcal{D}}(w+\epsilon)]$$

$$\leq \mathbb{E}_{\epsilon \sim \mathcal{N}\left(0,\sigma^2 I\right)} \left[L_S(w+\epsilon)\right] + \sqrt{\frac{1}{2(n-1)} \left(\frac{1}{2} \left[1 + k \log\left(1 + \frac{\|w\|_2^2}{k\sigma^2}\right)\right] + \log\left(\frac{n}{\delta}\right) + 2\log(6n+3k)\right)}$$

$$\leq \left(1 - \frac{1}{\sqrt{n}}\right) \max_{\|\epsilon\|_{2} \leq \rho} L_{S}(w + \epsilon) + \frac{1}{\sqrt{n}} + \sqrt{\frac{1}{4(n-1)} \left(1 + k \log\left(1 + \frac{\|w\|_{2}^{2}}{k\sigma^{2}}\right) + 2\log\left(\frac{n}{\delta}\right) + 4\log(6n + 3k)\right)}$$

$$\leq \max_{\|\epsilon\|_{2} \leq \rho} L_{S}(w+\epsilon) + \sqrt{\frac{1}{4(n-1)} \left(1 + k \log\left(1 + \frac{\|w\|_{2}^{2}}{\rho^{2}} \left(1 + \sqrt{\frac{2\ln(n)}{k}}\right)^{2}\right) + 2\log\left(\frac{n}{\delta}\right) + 4\log(6n+3k)\right)}$$

SAM optimizer

Framing into min-max optimization problem

$$\min_{w} \max_{\|\epsilon\|_{2} \le \rho} L_{S}(w + \epsilon) + \sqrt{\frac{1 + k \log\left(1 + \frac{\|w\|_{2}^{2}}{\rho^{2}}\left(1 + \sqrt{\frac{2\ln(n)}{k}}\right)^{2}\right) + 2\log\left(\frac{n}{\delta}\right) + 4\log(6n + 3k)}}$$

$$= \min_{w} \max_{\|\epsilon\|_2 \le \rho} L_S(w + \epsilon) + h\left(\frac{\|w\|_2^2}{\rho^2}\right) \approx \min_{w} \max_{\|\epsilon\|_p \le \rho} L_S(w + \epsilon) + \lambda \|w\|_2^2$$

$$= \min_{w} \max_{\|\epsilon\|_{p} \le \rho} L_{S}(w + \epsilon) - L_{S}(w) + L_{S}(w) + \lambda \|w\|_{2}^{2}$$

Sharpness Training Loss Regularizer

How quickly the training loss can be increased by moving from \boldsymbol{w} to a nearby parameter value

Solving min-max optimization problem

1.
$$\max_{\|\epsilon\|_p \le \rho} L_S(w + \epsilon)$$

$$\epsilon^*(w) = \underset{\|\epsilon\|_p \le \rho}{\arg \max} L_S(w + \epsilon) \approx \underset{\|\epsilon\|_p \le \rho}{\arg \max} L_S(w) + \epsilon^T \nabla_w L_S(w) = \underset{\|\epsilon\|_p \le \rho}{\arg \max} \epsilon^T \nabla_w L_S(w)$$

$$\approx \rho \frac{sign(\nabla_{w}L_{S}(w))|\nabla_{w}L_{S}(w)|^{\frac{q}{p}}}{(\|\nabla_{w}L_{S}(w)\|_{q})^{\frac{q}{p}}} (:= \hat{\epsilon}(w)) \text{ where } \frac{1}{p} + \frac{1}{q} = 1$$

If
$$p = 2$$
, then $\|\hat{\epsilon}(w)\|_2 = \rho$ and $\hat{\epsilon}(w) = \rho \nabla_w L_s(w) / \|\nabla_w L_s(w)\|_2$

Solving min-max optimization problem

2.
$$\min_{w} L_{S}(w + \hat{\epsilon}(w))$$

$$\begin{split} \nabla_w L_S(w_t + \hat{\epsilon}(w_t)) &= \frac{d \left(w + \hat{\epsilon}(w) \right)}{dw} \nabla_w L_S(w) \Big|_{w_t + \hat{\epsilon}(w_t)} \\ &= \nabla_w L_S(w) |_{w_t + \hat{\epsilon}(w_t)} + \frac{d \hat{\epsilon}(w)}{dw} \nabla_w L_S(w) |_{w_t + \hat{\epsilon}(w_t)} \\ &\approx \nabla_w L_S(w) |_{w_t + \hat{\epsilon}(w_t)} \end{split}$$
Hessian computation

By Stochastic Gradient Descent (SGD), $w_{t+1} = w_t - \eta \nabla_w L_S(w)|_{w_t + \hat{\epsilon}(w_t)}$

Experiment

Image classification

		CIFAR-10		CIFAR-100	
Model	Augmentation	SAM	SGD	SAM	SGD
WRN-28-10 (200 epochs)	Basic	$2.7_{\pm 0.1}$	$3.5_{\pm 0.1}$	$16.5_{\pm 0.2}$	$18.8_{\pm 0.2}$
WRN-28-10 (200 epochs)	Cutout	$2.3_{\pm 0.1}$	$2.6_{\pm 0.1}$	14.9 $_{\pm 0.2}$	$16.9_{\pm0.1}$
WRN-28-10 (200 epochs)	AA	$2.1_{\pm < 0.1}$	$2.3{\scriptstyle\pm0.1}$	13.6 _{±0.2}	$15.8_{\pm0.2}$
WRN-28-10 (1800 epochs)	Basic	2.4 _{±0.1}	$3.5_{\pm 0.1}$	$16.3_{\pm 0.2}$	$19.1_{\pm 0.1}$
WRN-28-10 (1800 epochs)	Cutout	$2.1_{\pm 0.1}$	$2.7_{\pm 0.1}$	$14.0_{\pm 0.1}$	$17.4_{\pm0.1}$
WRN-28-10 (1800 epochs)	AA	1.6 $_{\pm 0.1}$	$2.2_{\pm < 0.1}$	12.8 $_{\pm0.2}$	$16.1_{\pm 0.2}$
Shake-Shake (26 2x96d)	Basic	$2.3_{\pm < 0.1}$	$2.7_{\pm 0.1}$	15.1 $_{\pm 0.1}$	$17.0_{\pm 0.1}$
Shake-Shake (26 2x96d)	Cutout	$2.0_{\pm < 0.1}$	$2.3_{\pm 0.1}$	14.2 $_{\pm 0.2}$	$15.7_{\pm 0.2}$
Shake-Shake (26 2x96d)	AA	1.6 $_{\pm < 0.1}$	$1.9_{\pm 0.1}$	12.8 $_{\pm0.1}$	$14.1_{\pm 0.2}$
PyramidNet	Basic	2.7 _{±0.1}	$4.0_{\pm 0.1}$	14.6 _{±0.4}	$19.7_{\pm 0.3}$
PyramidNet	Cutout	$1.9_{\pm 0.1}$	$2.5_{\pm 0.1}$	12.6 ±0.2	$16.4_{\pm0.1}$
PyramidNet	AA	$1.6_{\pm 0.1}$	$1.9_{\pm 0.1}$	11.6 $_{\pm0.1}$	$14.6_{\pm 0.1}$
PyramidNet+ShakeDrop	Basic	$2.1_{\pm 0.1}$	$2.5_{\pm 0.1}$	$13.3_{\pm 0.2}$	
PyramidNet+ShakeDrop	Cutout	$1.6_{\pm < 0.1}$	$1.9_{\pm 0.1}$	11.3 $_{\pm 0.1}$	$11.8_{\pm 0.2}$
PyramidNet+ShakeDrop	AA	$1.4_{\pm < 0.1}$	$1.6_{\pm < 0.1}$	$10.3_{\pm 0.1}$	$10.6_{\pm0.1}$

Comparison of SAM and SGD for the <u>test error rate</u> on <u>CIFAR-{10, 100}</u> (Similar trend is observed on <u>SVHN</u> and <u>Fashion-MNIST</u>)

Image classification

Model	Epoch	SAM		Standard Training (No SAM)		
Model		Top-1	Top-5	Top-1	Top-5	
ResNet-50	100	$22.5_{\pm 0.1}$	$6.28_{\pm 0.08}$	$22.9_{\pm 0.1}$	$6.62_{\pm0.11}$	
	200	21.4 $_{\pm 0.1}$ 5.82 $_{\pm 0.03}$		$22.3_{\pm 0.1}$	$6.37_{\pm 0.04}$	
	400	20.9 $_{\pm0.1}$	$5.51_{\pm 0.03}$	$22.3_{\pm 0.1}$	$6.40_{\pm 0.06}$	
ResNet-101	100	20.2 ±0.1	$5.12_{\pm 0.03}$	$21.2_{\pm 0.1}$	$5.66_{\pm 0.05}$	
	200	19.4 $_{\pm0.1}$	$4.76_{\pm 0.03}$	$20.9_{\pm 0.1}$	$5.66_{\pm 0.04}$	
	400	$19.0_{\pm < 0.01}$	$4.65_{\pm 0.05}$	$22.3_{\pm 0.1}$	$6.41_{\pm 0.06}$	
ResNet-152	100	19.2 $_{\pm < 0.01}$	$4.69_{\pm 0.04}$	$20.4_{\pm < 0.0}$	$5.39_{\pm 0.06}$	
	200	18.5 $_{\pm0.1}$	$4.37_{\pm 0.03}$	$20.3_{\pm 0.2}$	$5.39_{\pm 0.07}$	
	400	$18.4_{\pm < 0.01}$	$4.35_{\pm 0.04}$	$20.9_{\pm < 0.0}$	$5.84_{\pm 0.07}$	

Comparison of SAM and SGD for the test error rate on ImageNet

Finetuning the pretrained model

Pretrained on ImageNet

Fredianied 0	ii iiiiagenet	Fielianie	u on magerie	t and umaber	EIEU JE I			
EffNet-b7 + SAM	EffNet-b7	Prev. SOTA (ImageNet only)	EffNet-L2 + SAM	EffNet-L2	Prev. SOTA			
$6.80_{\pm 0.06}$	$8.15_{\pm 0.08}$	5.3 (TBMSL-Net)	4.82 _{±0.08}	$5.80_{\pm0.1}$	5.3 (TBMSL-Net)			
$0.63_{\pm 0.02}$		0.7 (BiT-M)		$0.40_{\pm 0.02}$	0.37 (EffNet)			
$3.97_{\pm 0.04}$		4.1 (Gpipe)			4.1 (Gpipe)			
		5.0 (TBMSL-Net)			3.8 (DAT)			
		1 (Gpipe)			0.63 (BiT-L)			
$7.44_{\pm 0.06}$		7.83 (BiT-M)			6.49 (BiT-L)			
		15.7 (EffNet)			14.5 (DAT)			
_		7.0 (Gpipe)	$3.82_{\pm 0.01}$	$3.97_{\pm 0.03}$	4.7 (DAT)			
$15.14_{\pm 0.03}$	15.3	14.2 (KDforAA)	$11.39_{\pm0.02}$	11.8	11.45 (ViT)			
	EffNet-b7 \pm SAM $6.80_{\pm0.06}$ $0.63_{\pm0.02}$ $3.97_{\pm0.04}$ $5.18_{\pm0.02}$ $0.88_{\pm0.02}$ $7.44_{\pm0.06}$ $13.64_{\pm0.15}$ $7.02_{\pm0.02}$	$\begin{array}{c ccccc} EffNet-b7\\ \pm \underline{SAM} & EffNet-b7\\ \hline 6.80_{\pm 0.06} & 8.15_{\pm 0.08}\\ \hline 0.63_{\pm 0.02} & 1.16_{\pm 0.05}\\ \hline 3.97_{\pm 0.04} & 4.24_{\pm 0.09}\\ \hline 5.18_{\pm 0.02} & 5.94_{\pm 0.06}\\ \hline 0.88_{\pm 0.02} & 0.95_{\pm 0.03}\\ \hline 7.44_{\pm 0.06} & 7.68_{\pm 0.06}\\ \hline 13.64_{\pm 0.15} & 14.30_{\pm 0.18}\\ \hline 7.02_{\pm 0.02} & 7.17_{\pm 0.03} \end{array}$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$			

Pretrained on ImageNet and unlaheled IFT

<u>Top-1 error rates</u> for finetuning EffNet-b7 or EffNet-L2 to various target datasets

Robustness to label noise

Method	Noise rate (%)			
	20	40	60	80
Sanchez et al. (2019)	94.0	92.8	90.3	74.1
Zhang & Sabuncu (2018)	89.7	87.6	82.7	67.9
Lee et al. (2019)	87.1	81.8	75.4	-
Chen et al. (2019)	89.7	-	-	52.3
Huang et al. (2019)	92.6	90.3	43.4	-
MentorNet (2017)	92.0	91.2	74.2	60.0
Mixup (2017)	94.0	91.5	86.8	76.9
MentorMix (2019)	95.6	94.2	91.3	81.0
SGD	84.8	68.8	48.2	26.2
Mixup	93.0	90.0	83.8	70.2
Bootstrap + Mixup	93.3	92.0	87.6	72.0
SAM	95.1	93.4	90.5	77.9
Bootstrap + SAM	95.4	94.2	91.8	79.9

Test accuracy on clean test dataset while trained with noisy labels

Sharpness and Generalization

SGD: to sharp minima

SAM: to flat minima

Effect of batch size(m) to <u>test error rate</u>

- Small batch training leads to flat minima
- Model gets less robustness to hyperparameter ρ

Critique

In-between sharpness and flatness?

Known to be in sharp minima

By sampling the loss function in a neighborhood of LB solutions, we observe that it rises steeply only along a small dimensional subspace (e.g. 5% of the whole space); on most other directions, the function is relatively flat

Notion of sharpness and flatness may be oversimplification

Averaging SGD trajectory leads to flat side

Keskar, Nitish Shirish, et al. "On large-batch training for deep learning: Generalization gap and sharp minima." ICLR 2017. He, Haowei, Gao Huang, and Yang Yuan. "Asymmetric valleys: Beyond sharp and flat local minima." NeurIPS 2019.

How to free the choice of batch size?

Stochastic Weight Averaging (SWA), UAI 2018

Look ahead(LA), NeurIPS 2019

Test accuracy along epoch

Izmailov, Pavel, et al. "Averaging weights leads to wider optima and better generalization.", UAI 2018. Zhang, Michael R., et al. "Lookahead optimizer: k steps forward, 1 step back.", NeurIPS, 2019.

Appendix

Learning algorithm w/ PAC-bayes bound

- 1. Fix a probability $\delta > 0$ and a distribution $P = \mathcal{N}(\mu_P, \sigma_P^2 I)$
- 2. Collect an i.i.d. dataset *S* of size *n*
- 3. Compute the optimal distribution $Q = \mathcal{N}(\mu_Q, \sigma_Q^2 I)$ that minimizes

$$\mathbb{E}_{w \sim Q}[L_S(w)] + \sqrt{\frac{1}{2(n-1)}} \left(KL(Q|P) + ln\left(\frac{n}{\delta}\right) \right)$$

4. Return the randomized classifier given by Q

* Closed form expression of KL divergence:
$$KL(Q|P) = \frac{1}{2} \left| \frac{k\sigma_Q^2 + \|\mu_P - \mu_Q\|_2^2}{\sigma_P^2} - k + k \ln\left(\frac{\sigma_P^2}{\sigma_Q^2}\right) \right|$$

Dziugaite, Gintare Karolina, and Daniel M. Roy. "Computing nonvacuous generalization bounds for deep (stochastic) neural networks with many more parameters than training data." *UAI 2016*

How can we set the prior *P* in advance?

• Predefine values for σ_P^2 and pick the best one in that set

• Set
$$\delta_j = \frac{6\delta}{\pi^2 j^2}$$
 and $\sigma_P^2 \in T \coloneqq \left\{ c \exp\left(\frac{1-j}{k}\right) \middle| j \in \mathbb{N} \right\}$

Let
$$A_j$$
 is an event s.t. $\mathbb{E}[Z] > \bar{Z} + g(\delta_j)$ where $\Pr(A_j) < \delta_j$
Then, $\Pr(\bigcup_{j \in \mathbb{N}} A_j) < \sum_{j \in \mathbb{N}} \delta_j = \frac{6\delta}{\pi^2} \sum_{j \in \mathbb{N}} \frac{1}{j^2} = \delta$

 \therefore With probability $1 - \delta$, PAC-bayes bound holds for all $\sigma_P^2 \in T$