CHAPTER 2 PRIMITIVES AND INTEGRALS

Mathematical Analysis 1, ENSIA 2024

PRIMITIVES AND INTEGRALS

Part I

THE PRIMITIVE OF FUNCTION

The subject of this course and subsequent ones is integral calculus, given its significance in physics, chemistry, electronics, signal processing, etc.

- The outline for this session is as follows:
 - Primitive of a Function
 - Primitives of the Same Function
 - Primitive with a Given Value
 - Existence of Primitives
 - Indefinite Integral and Properties
 - Openition of the property o
 - Integral of a Continuous Function

THE PRIMITIVE OF FUNCTION

Let I denote an interval of \mathbb{R} and $f:I\to\mathbb{R}$ be a function.

Definition

A primitive of f on I is any function $F:I\to\mathbb{R}$ that is differentiable on I and such that:

$$\forall x \in I, \quad F'(x) = f(x).$$

Example

$$F: \mathbb{R} \to \mathbb{R}, \quad x \mapsto x^3 + \frac{1}{2}x^2 - x$$

is a primitive on \mathbb{R} of $f: x \mapsto 3x^2 + x - 1$.

Example

$$F:]0, +\infty[\rightarrow \mathbb{R}, \quad x \mapsto x \ln(x) - x]$$

is a primitive on $]0, +\infty[$ of $f: x \mapsto \ln(x)$.

THE PRIMITIVE OF FUNCTION

Example

$$F: \mathbb{R} \to \mathbb{R}, \quad x \mapsto F(x) = \begin{cases} x^2 \cos\left(\frac{1}{x}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$$

is a primitive on
$$\mathbb{R}$$
 of $f: x \mapsto \begin{cases} 2x \cos\left(\frac{1}{x}\right) + \sin\left(\frac{1}{x}\right), & \text{if } x \neq 0 \\ 0, & \text{if } x = 0 \end{cases}$

Primitives of the Same Function

Definition

Let $f: I \to \mathbb{R}$ be a function having a primitive F on I. Then, it has infinitely many primitives on I.

The set of all these primitives is exactly the set of functions from $I \to \mathbb{R}$ in the form F + C, where C is a real constant.

$$(I \to \mathbb{R})$$
, $(x \mapsto F(x) + C)$, $C \in \mathbb{R}$

Proof.

Let F be a primitive of f on I, and let C be a real number.

It is clear that the function $x \in I \mapsto G(x) = F(x) + C$ is a primitive of f on I.

Conversely, let G be a primitive of f on I.

We have:

$$(G(x) - F(x))' = G'(x) - F'(x) = f(x) - f(x) = 0$$

Primitives of the Same Function

Proof.

This implies:

$$\exists C \in \mathbb{R}$$
 such that $\forall x \in I$, $G(x) - F(x) = C$

Therefore, for every x in I, G(x) = F(x) + C.

Example

The primitives of the function f defined on \mathbb{R} by:

$$f(x) = \frac{1}{1+x^2} - x$$

are the functions:

$$F(x) = \arctan(x) - \frac{1}{2}x^2 + C, \quad C \in \mathbb{R}$$

Example

The primitives of the function f defined on \mathbb{R} by:

$$f(x) = xe^{x^2}$$

are the functions:

$$F(x) = \frac{1}{2}e^{x^2} + C, \quad C \in \mathbb{R}$$

Note: The assumption I being an interval is essential.

Consider the functions F and G defined on \mathbb{R}^* by:

$$F(x) = \frac{1}{x}$$

and

$$G(x) = \begin{cases} \frac{1}{x} + 1 & \text{if } x > 0\\ \frac{1}{x} & \text{if } x < 0 \end{cases}$$

The functions F and G are differentiable on \mathbb{R}^* and share the same derivative function, namely $-\frac{1}{x^2}$.

However, there exists no real C such that F(x) = G(x) + C.

Primitive with a Given Value

There exists one and only one primitive that takes a given value $y_0 \in \mathbb{R}$ at a given point $x_0 \in I$.

Proof.

Let F be a primitive of f on I, and let $x_0 \in I$. We seek a primitive G of f on I such that $G(x_0) = y_0$, where $y_0 \in \mathbb{R}$.

According to the previous statement:

$$\exists C \in \mathbb{R}, \quad \forall x \in I, \quad G(x) = F(x) + C$$

$$G(x_0) = F(x_0) + C = y_0 \implies C = y_0 - F(x_0)$$

Therefore, for every $x \in I$, the function $x \mapsto F(x) + (y_0 - F(x_0))$ is the unique primitive of f on I such that $G(x_0) = y_0$.

Primitive with a Given Value

Example

The antiderivatives of the function f defined on \mathbb{R} by:

$$f(x) = \frac{1}{1+x^2} - x$$

are the functions: $F(x) = Arctan x - \frac{1}{2}x^2 + C$, $C \in \mathbb{R}$

$$F(1) = 0 \iff \frac{\pi}{4} - \frac{1}{2} + C = 0 \iff C = \frac{1}{2} - \frac{\pi}{4}$$

Therefore: $x \in \mathbb{R} \longrightarrow Arctanx - \frac{1}{2}x^2 + \frac{1}{2} - \frac{\pi}{4}$ is the unique antiderivative of f that equals 0 at the point $x_0 = 1$.

Existence of Primitives

Theorem

Every continuous function on an interval I in $\mathbb R$ has antiderivatives.

Example

Examples of functions with antiderivatives on \mathbb{R} :

$$f_1(x) = e^{-x^2}$$

$$f_2(x) = \cos(x^2)$$

$$f_3(x) = \begin{cases} \frac{\sin x}{x}, & \text{if } x \neq 0 \\ 1, & \text{if } x = 0 \end{cases}$$

Let I be an interval in \mathbb{R} and $f: \to \mathbb{R}$ be a function.

Definition

The "indefinite integral" of f on I, denoted by $\int dx$, is the set of primitives of f on I. For a primitive F of f on I, we have:

$$\int f(x) dx = \{x \in | F(x) + C, C \in \mathbb{R}\}.$$

In accordance with the convention:

$$\int f(x) \, \mathrm{d}x = F(x) + C, \ C \in \mathbb{R}.$$

Example

$$\int \left(\frac{1}{1+x^2} - x\right) dx = Arctanx - \frac{1}{2}x^2 + C, \quad C \in \mathbb{R}, \quad I = \mathbb{R}.$$

Example

$$\int \sqrt{x} \, dx = \frac{2}{3} x^{3/2} + C, \quad C \in \mathbb{R}, \quad I = [0, +\infty[.$$

Example

$$\int xe^{-x^2} dx = -\frac{1}{2}e^{-x^2} + C, \quad C \in \mathbb{R}, \quad I = \mathbb{R}.$$

Theorem

• If F and G are primitives on I of f and g respectively, then F+G is a primitive on of f+g. We have:

$$\int (f(x) + g(x)) dx = F(x) + G(x) + C = \int f(x) dx + \int g(x) dx.$$

② For any $\lambda \in \mathbb{R}$, λF is a primitive on I of λf .

"We have:"

$$\int \lambda f(x) \, \mathrm{d}x = \lambda F(x) + \mathcal{C}.$$

"For $\lambda \neq 0$, we have:"

$$\int \lambda f(x) \, \mathrm{d}x = \lambda \int f(x) \, \mathrm{d}x.$$

Proof.

It follows from the relations:

$$(F+F)'=F'+G'=f+g$$
 and $(\lambda F)'=\lambda F'=\lambda F$

Example

$$P(x) = a_0 + a_1 x + \ldots + a_n x^n$$

Result:

$$\int P(x) dx = a_0 x + \frac{a_1}{2} x^2 + \ldots + \frac{a_n}{n+1} x^{n+1} + C.$$

Example

$$\int (\cos^2 x + x + \sin x) \, \mathrm{d}x = \int \left(\frac{1 + \cos 2x}{2} + x + \sin x \right) \, \mathrm{d}x$$

Result:

$$=\frac{x}{2}+\frac{\sin 2x}{4}+\frac{x^2}{2}-\cos x+C.$$

1.
$$\int x^m dx$$
, $=\frac{1}{m+1}x^{m+1} + c$; $m \in \mathbb{Z}$, $m \neq -1$

$$2. \int \frac{1}{x} dx = \log|x| + c$$

3.
$$\int \sin x dx = -\cos x + c$$

4.
$$\int \cos x dx = \sin x + c$$

5.
$$\int e^{x} dx = e^{x} + c$$

6.
$$\int \sinh(x) dx = \cosh(x) + c$$

7.
$$\int \cosh(x) dx = \sinh(x) + c$$

8.
$$\int \frac{-1}{\sin^2 x} = \cot x \, dx + c$$

9.
$$\int \frac{1}{(1+x^2)} dx = \arctan x + c$$

10.
$$\int \frac{1}{\sqrt{1-x^2}} dx = \arcsin x + c$$

11.
$$\int \frac{1}{\cos^2 x} dx = \tan x + c$$

12.
$$\int_{0}^{\infty} \frac{\cos^2 x}{\sqrt{1-x^2}} dx = \arccos x + c$$

13.
$$\int \frac{1}{\cosh^2 x} dx = \tanh x + c$$
14.
$$\int \frac{1}{\sqrt{x^2 + 1}} dx = \operatorname{argsh} x + c$$
15.
$$\int \frac{1}{\sqrt{x^2 - 1}} dx = \operatorname{argch} x + c$$
16.
$$\int \frac{1}{1 - x^2} dx = \operatorname{Argth} x = \frac{1}{2} \ln \left| \frac{1 + x}{1 - x} \right| + c$$
17.
$$\int \tan(x) dx = -\ln \left| \cos(x) \right| + c$$
18.
$$\int \cot(x) dx = \ln \left| \sin(x) \right| + c$$
19.
$$\int \sec(x) dx = \ln \left| \sec(x) + \tan(x) \right| + c$$
20.
$$\int \csc(x) dx = -\ln \left| \csc(x) + \cot(x) \right| + c$$

We assume the existence of regions D in the plane called "squareable," meaning that we can assign a positive real number called the "area of D" to them. In particular:

If $f:[a,b] \to \mathbb{R}$ (a < b) is continuous and positive, and if F is a primitive of f on [a,b], then:

$$D = \{(x, y) \mid a \le x \le b, \ 0 \le y \le f(x)\}$$
 is squareable.

The area of D is given by:

$$\mathcal{A}(D) = F(b) - F(a)$$

Let h > 0 be such that $[X, X + h] \subset [a, b]$. According to the Intermediate Value Theorem, there exist c_X and d_X in [X, X + h] such that:

$$f(c_X) = \inf_{x \in [X,X+h]} f(x)$$
 and $f(d_X) = \sup_{x \in [X,X+h]} f(x)$.

We have:

$$f(c_X)h \le g(X+h) - g(X) \le f(d_X)h$$

This implies:

$$f(c_X) \leq \frac{g(X+h)-g(X)}{h} \leq f(d_X)$$

Which further implies:

$$\lim_{h\to 0}\frac{g(X+h)-g(X)}{h}=f(X).$$

This implies that g is a primitive of f on [a, b].

The same reasoning holds for h < 0.

Let F be a primitive of f on [a,b]. There exists a constant C such that F(x)=g(x)+C for $x\in [a,b]$. In particular,

$$F(a)=g(a)+C=C \quad (\text{since } \int_a^a f(x)\,dx=0).$$

Therefore, F(b) - F(a) = g(b) =the definite integral of f over [a, b].

Example

$$\int_0^2 (1+x^2) dx = \left[\frac{x}{2} + \frac{x^3}{3}\right]_0^2 = \frac{14}{3}.$$

Integral of a Continuous Function

Definition

Let $f: I \to \mathbb{R}$ be a continuous function, and F be a primitive of f. Let a and b be two real numbers in I.

The real number F(b) - F(a) does not depend on the chosen primitive. It is denoted by:

$$\int_{a}^{b} f(x) \, dx$$

and is called the integral of f over [a, b].

Indeed, if G is another primitive of f on I, we know that there exists a constant $C \in \mathbb{R}$ such that G = F + C, and therefore,

$$G(b) - G(a) = F(b) - F(a).$$

Integral of a Continuous Function

Example

$$\int_0^{\pi/2} \sin(x) \, dx = -[\cos(\pi/2) - \cos(0)] = 1$$

Example

$$\int_0^1 \frac{1}{1+x^2} \, dx = \left[\arctan(1) - \arctan(0) \right] = \frac{\pi}{4}$$

Integral of a Continuous Function

Properties:

Let f and g be two functions continuous on [a,b], and $\lambda \in \mathbb{R}$. Then, we have the following properties:

- Linearity
- Positivity
- Order
- Chasles' Relation
- Mean Value Formulas

Integral of a Continuous Function-Linearity

$$\int_{a}^{b} (f(x) + g(x)) \, dx = \int_{a}^{b} f(x) \, dx + \int_{a}^{b} g(x) \, dx$$

Proof.

Since f and g are continuous on [a, b], they admit primitives F and G.

$$\int_{a}^{b} (f(x) + g(x)) dx = (F + G)(b) - (F + G)(a)$$
$$= (F(b) - F(a)) + (G(b) - G(a))$$
$$= \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx$$

Integral of a Continuous Function-Linearity

$$\int_{a}^{b} \lambda f(x) \, dx = \lambda \int_{a}^{b} f(x) \, dx$$

Proof.

Since λF is a primitive of λf , we have:

$$\int_{a}^{b} \lambda f(x) dx = (\lambda F)(b) - (\lambda F)(a)$$
$$= \lambda (F(b) - F(a))$$
$$= \lambda \int_{a}^{b} f(x) dx$$

Integral of a Continuous Function-Positivity

$$f \ge 0 \implies \int_a^b f(x) dx \ge 0, \quad (a < b).$$

$$f \ge 0$$
 and $f \ne 0 \implies \int_a^b f(x) dx > 0$.

Proof.

2

$$f \ge 0$$
 on $[a, b] \implies F$ is increasing on $[a, b]$

$$\implies \int_a^b f(x) dx = F(b) - F(a) \ge 0.$$

Suppose $\int_a^b f(x) dx = 0$.

$$\implies F(a) = F(b)$$

$$\implies$$
 F is constant on $[a, b] \implies$ $F' = f \equiv 0$

Integral of a Continuous Function -Positivity

Proof.

This contradicts the assumption $f \neq 0 \implies \int_a^b f(x) dx > 0$.

Integral of a Continuous Function -Order

$$f \leq g \implies \int_a^b f(x) dx \leq \int_a^b g(x) dx, \quad (a < b).$$

Consequence of the previous properties applied to g - f. In particular: $\left| \int_a^b f(x) \, dx \right| \leq \int_a^b |f(x)| \, dx$.

Example

Consider the limit $\lim_{n\to\infty} I_n$ where $I_n = \int_0^{\pi} \frac{\sin x}{n+x} dx$.

The function $x \in [0, \pi] \mapsto \frac{\sin x}{n+x}$ is continuous, and we have $0 \le \frac{\sin x}{n+x} \le \frac{1}{n}$.

$$\implies 0 \le \int_0^\pi \frac{\sin x}{n+x} \, dx \le \int_0^\pi \frac{1}{n} \, dx = \frac{\pi}{n} \implies \lim_{n \to \infty} I_n = 0.$$

Integral of a Continuous Function-Order

Example

Consider the limit $\lim_{n\to\infty}I_n$ where $I_n=\int_1^{1+\frac{1}{n}}\sqrt{1+x^n}\,dx$, for $n\geq 1$. We know that the sequence $(1+\frac{1}{n})^n$ is increasing and converges to the number e.

$$1 \le x \le 1 + \frac{1}{n} \implies 1 \le x^n \le \left(1 + \frac{1}{n}\right)^n \le e < 3$$

$$\implies \sqrt{2} \le \sqrt{1 + x^n} < 2$$

$$\int_1^{1 + \frac{1}{n}} \sqrt{2} \, dx \le \int_1^{1 + \frac{1}{n}} \sqrt{1 + x^n} \, dx < \int_1^{1 + \frac{1}{n}} 2 \, dx$$

$$\implies \frac{\sqrt{2}}{n} \le I_n < \frac{2}{n} \implies \lim_{n \to \infty} I_n = 0.$$

Integral of a Continuous Function-Order

Example

Calculate $\lim_{a\to +\infty} I(a)$, where $I(a)=\int_a^{2a}\frac{1}{\sqrt{1+x^2+x^4}}\,dx$, a>0.

The function $x \mapsto \frac{1}{\sqrt{1+y^2+y^4}}$ is continuous on \mathbb{R} . Moreover:

$$\frac{1}{x^2+1}<\frac{1}{\sqrt{1+x^2+x^4}}<\frac{1}{x^2}.$$

$$\int_a^{2a} \frac{1}{x^2 + 1} \, dx < \int_a^{2a} \frac{1}{\sqrt{1 + x^2 + x^4}} \, dx < \int_a^{2a} \frac{1}{x^2} \, dx.$$

$$\arctan(2a) - \arctan(a) < I(a) < \frac{1}{a} - \frac{1}{2a} = \frac{1}{2a}$$

As $\lim_{x\to +\infty} \arctan(x) = \frac{\pi}{2}$, we conclude that $\lim_{a\to +\infty} I(a) = 0$.

Integral of a Continuous Function Chasles' Relation

Let f be continuous on I, and let a, b, c be three real numbers in I. We have:

$$\int_a^b f(x) dx = \int_a^c f(x) dx + \int_c^b f(x) dx.$$

Proof.

$$\int_{a}^{b} f(x) dx = F(b) - F(a)$$

$$= (F(b) - F(c)) + (F(c) - F(a))$$

$$= \int_{a}^{c} f(x) dx + \int_{c}^{b} f(x) dx.$$

Integral of a Continuous Function - **Mean Value Formulas**

For $c \in]a, b[$, we have $\frac{1}{b-a} \int_a^b f(x) dx = f(c)$.

Proof.

By definition:

$$\int_a^b f(x) \, dx = F(b) - F(a).$$

According to the Mean Value Theorem applied to F on [a, b], there exists $c \in]a, b[$ such that:

$$F(b) - F(a) = (b - a)F'(c) = (b - a)f(c).$$

Therefore:

$$\frac{1}{h-a}\int_{a}^{b}f(x)\,dx=f(c).$$

Integral of a Continuous Function- **Mean Value Formulas**

Example

Let $c \in [0, 1]$. We claim that

$$\int_0^1 (x - 1/2)^2 dx = (c - 1/2)^2$$

The existence of c follows from the mean value theorem applied to $f(x)=(x-1/2)^2$.

$$\int_0^1 (x - 1/2)^2 dx = (c - 1/2)^2 \iff \int_0^1 (x^2 - x + 1/4) dx = (c - 1/2)^2$$

$$\iff (c-1/2)^2 = 1/12 \iff \begin{cases} c_1 = 1/2 + 1/\sqrt{12} \\ c_2 = 1/2 - 1/\sqrt{12} \end{cases}$$

It is clear that c_1 and $c_2 \in [0, 1]$.

Integral of a Continuous Function- **Mean Value Formulas**

Example

Calculate:

$$\lim_{a \to 0} \frac{\sin a}{1 - \cos a} \int_0^a \cos(x^2) \, dx$$

According to the mean value theorem:

$$\exists c \in (0, a)$$
 s.t. $\int_0^a \cos(x^2) dx = a \cos(c^2)$

$$\implies \frac{\sin a}{1 - \cos a} \int_0^a \cos(x^2) \, dx = \frac{a \sin a}{1 - \cos a} \cos(c^2)$$

As $a \to 0$, $c \to 0$, and $\lim_{a \to 0} \cos(c^2) = 1$.

$$\therefore \lim_{a \to 0} \frac{\sin a}{1 - \cos a} \int_0^a \cos(x^2) dx = 2$$

Integral of a Continuous Function- **Mean Value Formulas**

Given $g \ge 0$ and $g \not\equiv 0$, there exists $c \in [a, b]$ such that:

$$\int_a^b f(x)g(x) dx = f(c) \int_a^b g(x) dx$$

Proof.

Since f is continuous on [a, b], it is bounded on this interval and attains its lower bound m and upper bound M.

$$g \ge 0 \implies \forall x \in [a, b], \ m \cdot g(x) \le f(x)g(x) \le M \cdot g(x)$$

$$\implies m \int_a^b g(x) dx \le \int_a^b f(x)g(x) dx \le M \int_a^b g(x) dx$$

Given $g \not\equiv 0$, we have:

 $\int_{a}^{b} f(x)g(x) dx$

Integral of a Continuous Function- **Mean Value Formulas**

By the Intermediate Value Theorem:

$$\exists c \in [a, b] \quad \text{s.t.} \quad \frac{\int_a^b f(x)g(x) \, dx}{\int_a^b g(x) \, dx} = f(c).$$

Hence:

$$\int_a^b f(x)g(x) dx = f(c) \int_a^b g(x) dx.$$

Example

Define I(t) for t > 0 by $I(t) = \int_{2t}^{2t^2} \frac{\cos x}{x} dx$.

Using the mean value theorem applied to $f(x) = \cos x$ and $g(x) = \frac{1}{x}$, there exists $c \in [t, 2t]$ such that:

$$I(t) = \cos c \int_{2t}^{2t^2} \frac{1}{x} dx.$$

Integral of a Continuous Function- **Mean Value Formulas**

Let f and g be two continuous functions on [a, b] with f increasing and $g \ge 0$. Then, there exists $c \in [a, b]$ such that:

$$\int_{a}^{b} f(x)g(x) \, dx = f(a) \int_{a}^{c} g(x) \, dx + f(b) \int_{c}^{b} g(x) \, dx.$$

Indeed, consider the auxiliary function h defined on [a, b] by:

$$h(t) = f(a) \int_{a}^{t} g(x) dx + f(b) \int_{t}^{b} g(x) dx - \int_{a}^{b} f(x)g(x) dx.$$

For all $x \in [a, b]$, we have $f(a)g(x) \le f(x)g(x) \le f(b)g(x)$, which implies:

$$f(a) \int_a^b g(x) dx \le \int_a^b f(x)g(x) dx \le f(b) \int_a^b g(x) dx.$$

Thus, h is continuous on [a,b] and $h(a)h(b) \le 0$. By the Intermediate Value Theorem, there exists $c \in [a,b]$ such that h(c) = 0.

Classroom questions

Respond true or false

- lacktriangledown If f has a primitive on an interval I, then f is continuous on I.
- ② If F denotes a primitive of f on I, then F is continuous on I.
- 3 If f^2 has a primitive on I, then the same is true for f.
- If f is continuous on [a, b] and $\int_a^b f(x) dx > 0$, then $f \ge 0$.
- **3** If f is continuous on [a, b] and $f \ge 0$, then $\int_a^b f(x) dx \ge 0$.

Classroom questions

1 If f is continuous on [a, b] and $f \ge 0$, then:

$$\int_a^b f(x) dx = 0 \implies f \equiv 0.$$

② If f and g are continuous and differentiable on [a,b] such that $f \leq g$, then:

$$\int_a^b f(x) dx \le \int_a^b g(x) dx.$$

Also, for all x in [a, b], $f'(x) \leq g'(x)$.

- $\int_{-1}^{1} \frac{1}{x^3} \, dx = 0.$

Classroom questions

• If f and g are continuous on [a, b], then:

$$\int_a^b f(x)g(x)\,dx = \left(\int_a^b f(x)\,dx\right)\left(\int_a^b g(x)\,dx\right).$$

- $\int_0^{\pi} (x |\cos x|) dx = \frac{\pi^2}{2} 2.$
- In the mean value theorems, the real number c is unique.

CHAPTER 2 PRIMITIVES AND INTEGRALS

Mathematical Analysis 1, ENSIA 2024

PRIMITIVES AND INTEGRALS

Part II

Integration techniques

- Integration by parts
- 2 Reduction formulas
- Change of variable
- Cases of even, odd, periodic functions

Integration techniques

"I" denotes an interval in \mathbb{R} , and $f:I\to\mathbb{R}$ is a function.

Definition

We will say that f is of class C^1 on I if f is differentiable on I and its derivative f' is continuous on I.

This definition is useful in the two theorems that will follow:

1. Integration by Parts 2. Change of Variable

Let f and g be two functions of class C^1 on I. We have the following formula, known as the integration by parts formula:

$$\int_{1} f(x)g'(x) \, dx = f(x)g(x) - \int_{1} f'(x)g(x) \, dx$$

For any $a \in I$ and $b \in I$,

$$\int_a^b f(x)g'(x) dx = \left| f(x)g(x) \right|_a^b - \int_a^b f'(x)g(x) dx$$

where
$$\left| f(x)g(x) \right|_a^b = f(b)g(b) - f(a)g(a)$$
.

February 25, 2024 5 / 58

Example

$$\int_{1} x \cos^{2}(x) dx = \int_{1} x \left(\frac{1 + \cos(2x)}{2} \right) dx = \frac{1}{2} \int_{1} x dx + \frac{1}{2} \int_{1} x \cos(2x) dx$$

To calculate a primitive of $x \cos^2(2x)$, we use integration by parts with:

$$\begin{cases} f(x) = x & \Rightarrow & f'(x) = 1 \\ g(x) = \frac{\sin(2x)}{2} & \Rightarrow & g'(x) = \cos(2x) \end{cases}$$

Applying the integration by parts formula:

$$\int x \cos(2x) \, dx = \frac{x \sin(2x)}{2} - \int \frac{\sin(2x)}{2} \, dx$$

February 25, 2024 6 / 58

Example

$$\int x \cos^2(x) \, dx = x \frac{\sin(2x)}{2} - \int_1 \frac{\sin(2x)}{2} \, dx$$
$$= x \frac{\sin(2x)}{2} + \frac{\cos(2x)}{4} + K$$

Where K is the constant of integration.

Therefore,

$$\int_{1} x \cos^{2}(x) dx = x \frac{\sin(2x)}{2} + \frac{\cos(2x)}{4} + K$$

Hence,

$$\int_{1} x \cos^{2}(x) dx = \frac{x^{2}}{4} + \frac{1}{2} \left(x \frac{\sin(2x)}{2} + \frac{\cos(2x)}{4} \right) + K$$

Simplifying further:

$$\int_{1} x \cos^{2}(x) dx = \frac{x^{2}}{4} + \frac{x}{4} \sin(2x) + \frac{1}{8} \cos(2x) + K$$

Example

$$\int_0^1 \arctan(x) \, dx = x \arctan(x) \Big|_0^1 - \int_0^1 \frac{x}{x^2 + 1} \, dx$$
$$= \frac{\pi}{4} - \frac{1}{2} \int_0^1 \frac{2x}{x^2 + 1} \, dx$$

Hence:

$$\int_0^1 \arctan(x) \ dx = \frac{\pi}{4} - \frac{1}{2} \int_0^1 \frac{2x}{x^2 + 1} \ dx$$

Where
$$\frac{1}{2} \int_0^1 \frac{2x}{x^2+1} dx = \frac{1}{2} \log(1+x^2) \Big|_0^1 = \frac{1}{2} \log(2) - \frac{1}{2} \log(1) = \frac{1}{2} \log(2)$$
.

Therefore:

$$\int_0^1 \arctan(x) \, dx = \frac{\pi}{4} - \frac{1}{2} \cdot \frac{1}{2} \log(2) = \frac{\pi}{4} - \frac{1}{4} \log(2)$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□

Example

$$\int_0^{\frac{\pi}{3}} \frac{x}{\cos^2(x)} \, dx = x \tan(x) \Big|_0^{\frac{\pi}{3}} - \int_0^{\frac{\pi}{3}} \tan(x) \, dx$$
$$= \frac{\pi}{3} \tan\left(\frac{\pi}{3}\right) + \log(\cos(x)) \Big|_0^{\frac{\pi}{3}}$$

Now, $\tan\left(\frac{\pi}{3}\right) = \sqrt{3}$, and $\log(\cos(\pi/3)) = \log\left(\frac{1}{2}\right) = -\log(2)$. Hence:

$$\int_0^{\frac{\pi}{3}} \frac{x}{\cos^2(x)} \, dx = \frac{\pi}{3} \sqrt{3} - \log(2)$$

February 25, 2024 9 / 58

Example

Antiderivatives of $F(x) = (x^2 + x + 1)\sin(x)$, $x \in \mathbb{R}$.

We perform integration by parts initially by setting:

$$\begin{cases} f(x) = x^2 + x + 1 & \Rightarrow & f'(x) = 2x + 1 \\ g(x) = -\cos(x) & \Rightarrow & g'(x) = -\sin(x) \end{cases}$$

This yields:

$$\int (x^2 + x + 1)\sin(x) dx = -(x^2 + x + 1)\cos(x) + \int (2x + 1)\cos(x) dx$$

Continuing the integration by parts, one would set u = 2x + 1 and $dv = \cos(x) dx$.

Example

To find an antiderivative of $(2x + 1)\cos(x)$, we integrate by parts again, setting:

$$\begin{cases} f(x) = 2x + 1 & \Rightarrow & f'(x) = 2 \\ g(x) = \sin(x) & \Rightarrow & g'(x) = \cos(x) \end{cases}$$

This gives:

$$\int (2x+1)\cos(x) dx = (2x+1)\sin(x) - \int 2\sin(x) dx = (2x+1)\sin(x) + 2$$

Finally:

$$\int (x^2 + x + 1)\sin(x) dx = -(x^2 + x + 1)\cos(x) + (2x + 1)\sin(x) + 2\cos(x)$$

Consequence of the integration by parts theorem:

Let I be an interval of \mathbb{R} , and $f:I\to\mathbb{R}$ be a continuous function on I. Let F_1 be an antiderivative of f, F_2 be an antiderivative of F_1 , F_3 be an antiderivative of F_2 , and so on.

Consider a polynomial $P(x) = a_0 + a_1 x + ... + a_n x^n$.

Then, the formula is given by:

$$\int f(x)P(x) dx = P(x)F_1(x) - P'(x)F_2(x) + P''(x)F_3(x) + \ldots + (-1)^n P^{(n)}$$

Proof.

"Let's set:"

$$\begin{cases} u = P & \Rightarrow & u' = P' \\ v = F_1 & \Rightarrow & v' = f \end{cases}$$

Then, we have the first integration by parts:

$$\int_{1} f(x)P(x) dx = P(x)F_{1}(x) - \int_{1} F_{1}(x)P'(x) dx$$

We integrate by parts a second time by setting:

$$\begin{cases} u = P' & \Rightarrow & u' = P'' \\ v = F_2 & \Rightarrow & v' = F_1 \end{cases}$$

This leads to:

$$\int f(x)P(x) dx = P(x)F_1(x) - P(x)F_1(x) + \int F_2(x)P''(x) dx$$

Particular case:

$$f(x) = e^{\lambda x}$$
, where $\lambda \neq 0$

According to the previous formula:

$$\int e^{\lambda x} P(x) dx = \frac{1}{\lambda} \left(P(x) - \frac{P'(x)}{\lambda} + \frac{P''(x)}{\lambda^2} - \frac{P'''(x)}{\lambda^3} + \ldots + (-1)^n \frac{P^{(n)}(x)}{\lambda^n} \right)$$

$$=\frac{e^{\lambda x}}{\lambda}\left(P(x)-\frac{P'(x)}{\lambda}+\frac{P''(x)}{\lambda^2}-\frac{P'''(x)}{\lambda^3}+\ldots+(-1)^n\frac{P^{(n)}(x)}{\lambda^n}\right)+K$$

The expression in parentheses is a polynomial of the same degree as P.

Rather than applying this formula, we seek an antiderivative of $e^{\lambda x}P(x)$ in the form of a product $e^{\lambda x}Q(x)$ where Q is a polynomial of the same degree as P.

The coefficients of Q are obtained by differentiation and identification of the coefficients of monomials of the same degree.

Example

$$\int e^{-x}(x^2+x) dx = (ax^2+bx+c)e^{-x} + K$$

When we differentiate the right-hand side, we obtain $e^{-x}(x^2+x)$. The coefficients a, b, and c can be determined by identifying the coefficients of monomials of the same degree in $e^{-x}(ax^2+bx+c)$.

Example

Example (continued):

$$(2ax + b)e^{-x} - (ax^2 + bx + c)e^{-x} = (-ax^2 + (2a - b)x + (b - c))e^{-x}$$

$$= e^{-x}(x^2 + x)$$

This gives:

$$-ax^{2} + (2a - b)x + (b - c) = x^{2} + x$$

By identification, we obtain:

$$\begin{cases}
-a = 1 \\
2a - b = 1 \\
b - c = 0
\end{cases}$$

Example

Example (continued): Which simplifies to:

$$\begin{cases} a = -1 \\ b = -3 \\ c = -3 \end{cases}$$

"In conclusion:"

$$\int e^{-x}(x^2+x) dx = -(x^2+3x+3)e^{-x} + K$$

$$f(x) = \cos(\lambda x)$$
 where $\lambda \neq 0$

According to the previous formula, we have:

$$\int P(x)\cos(\lambda x)\,dx = \frac{\sin(\lambda x)}{\lambda}\left(P(x) - \frac{1}{\lambda^2}P''(x) + \frac{1}{\lambda^4}P^{(4)}(x) + \frac{1}{\lambda^4}P^{(4)}(x)\right)$$

$$\ldots + \frac{\cos(\lambda x)}{\lambda} \left(\frac{P'(x)}{\lambda} - \frac{1}{\lambda^3} P'''(x) + \frac{1}{\lambda^5} P^{(5)}(x) + \ldots \right) + K$$

To compute an antiderivative of $P(x)\cos(\lambda x)$, it is preferable to use the following, but first, we provide the following definition.

$$f, F: I \longrightarrow \mathbb{C}$$

Definition

F is an antiderivative of f if and only if Re(F) is an antiderivative of Re(f) and Im(F) is an antiderivative of Im(f).

$$\int P(x)\cos(\lambda x)\,dx = \operatorname{Re}\left(\int P(x)e^{i\lambda x}\,dx\right)$$

$$\int P(x)e^{i\lambda x}\,dx = Q(x)e^{i\lambda x} + K$$

Where Q is a complex-coefficient polynomial of the same degree as P, and K is a complex constant.

Example

$$I = \int_{1} (x^{2} + x - 1) \cos(2x) dx = \text{Re} \left(\int_{1} (x^{2} + x - 1) e^{2ix} dx \right)$$
$$\int_{1} (x^{2} + x - 1) e^{2ix} dx = (ax^{2} + bx + c) e^{2ix} + K$$

where a, b, c, K are complex numbers.

After differentiation, we get:

$$2iax^{2} + (2a + 2ib)x + (b + 2ic) = x^{2} + x - 1$$

By identification, we find: a=-i/2, b=-i/2+1/2, c=3i/4+1/4Therefore, the result is:

$$I = \left(\frac{1}{2}x + \frac{1}{4}\right)\cos(2x) + \left(\frac{1}{2}x^2 + \frac{1}{2}x - \frac{3}{4}\right)\sin(2x) + C_1$$

where C1 is an arbitrary constant.

Formula of Taylor with Integral remainder:

Theorem

Let $n \in \mathbb{N}$ and $f : [a, b] \to \mathbb{R}$ be a $C^{(n+1)}$ function, meaning $f', f'', \ldots, f^{(n+1)}$ exist and are continuous on [a, b].

We have:

$$f(b) = f(a) + \frac{(b-a)}{1!}f'(a) + \frac{(b-a)^2}{2!}f''(a) + \ldots + \frac{(b-a)^n}{n!}f^{(n)}(a) + \frac{1}{n!}$$

$$\int_a^b f^{(n+1)}(x) \cdot (b-x)^n dx$$

Proof.

Proof: Induction and integration by parts reasoning.

Example

$$f(x) = \log(1+x), \quad x > -1.$$

Then:

$$\log(2) = \lim_{n \to \infty} \left(1 - \frac{1}{2} + \frac{1}{3} + \ldots + \frac{(-1)^{n-1}}{n} \right)$$

We apply the Taylor formula with Lagrange remainder on [0,1]. For all $n \ge 1$ and $x \in [0,1]$, we have:

$$f^{(n)}(x) = \frac{(-1)^{n-1}}{(1+x)^n} \frac{(n-1)!}{\Longrightarrow} f^{(n)}(0) = (-1)^{n-1} (n-1)!$$

$$\log(2) = \left(1 - \frac{1}{2} + \frac{1}{3} + \ldots + \frac{(-1)^{n-1}}{n}\right) + \frac{1}{n!} \int_0^1 \frac{(-1)^n}{(1+x)^{n+1}} n! (1-x)^n \, dx$$

It can be shown that the last expression tends to 0 after simplification and bounding.

Let $I_n = \int_1 (f_n(x))^n dx$, where n is a natural number, and f_n is a continuous function on I. If, during integration by parts, we manage to express I_n in terms of I_{n-k} and certain functions, we say that we have obtained a reduction formula.

Example

"For" x > 0, we define $I_n = \int_1 (\log x)^n dx$. Establish a reduction formula and then calculate I_n . Let's consider $I_{n+1} = \int_1 (\log x)^{n+1} dx$.

4D + 4B + 4B + B + 900

Example

Example (continued): We integrate by parts, setting:

$$\begin{cases} f(x) = (\log x)^{n+1} & \Rightarrow f'(x) = (n+1)\frac{(\log x)^n}{x} \\ g(x) = x & \Rightarrow g'(x) = 1 \end{cases}$$

This gives us:

$$I_{n+1} = x(\log x)^{n+1} - (n+1)I_n$$

Another integration by parts applied to I_n yields:

$$I_n = x(\log x)^n - nI_{n-1}$$

Combining these results, we get:

$$I_{n+1} = x(\log x)^{n+1} - (n+1)x(\log x)^n + (n+1)nI_{n-1} + \ldots + C$$

Example

Let $I_n = \int_0^1 x^n \sqrt{1-x} \, dx$. For $n \ge 1$, we seek a reduction formula using integration by parts. Let's set:

$$\begin{cases} f(x) = x^n & \Rightarrow f'(x) = nx^{n-1} \\ g(x) = -\frac{2}{3}(1-x)^{3/2} & \Rightarrow g'(x) = \sqrt{1-x} \end{cases}$$

$$I_n = -\frac{2}{3}x^n(1-x)^{3/2}\bigg|_0^1 + \frac{2n}{3}\int_0^1 x^{n-1}(1-x)^{3/2} dx$$

Example

Example (continued):

$$I_n = \frac{2n}{3} \int_0^1 x^{n-1} (1-x)^{3/2} dx = \frac{2n}{3} \int_0^1 x^{n-1} (1-x) \sqrt{1-x} dx$$

$$I_n = \frac{2n}{3} (I_{n-1} - I_n)$$

$$I_n = \frac{2n}{3+2n} I_{n-1}$$

Example

Example (continued): Therefore:

$$I_1 = \frac{2}{5}I_0 = \frac{2}{5} \cdot \frac{2}{3}$$

$$I_2 = \frac{4}{7}I_1 = \frac{4}{7} \cdot \frac{2}{5} \cdot \frac{2}{3}$$

$$I_3 = \frac{6}{9}I_2 = \frac{6}{9} \cdot \frac{4}{7} \cdot \frac{2}{5} \cdot \frac{2}{3}$$

In general:

$$I_n = \frac{2^{n+1} \cdot n!}{3 \cdot 5 \cdot 7 \cdot \cdot \cdot (2n+3)}$$

Example

(Wallis integrals):

$$I_n = \int_0^{\frac{\pi}{2}} \cos^n(x) \, dx$$

For $n \ge 2$, we use integration by parts with:

$$f(x) = \cos^{n-1}(x) \quad \Rightarrow \quad f'(x) = -(n-1)\cos^{n-2}(x)\sin(x)$$
$$g(x) = \sin(x) \quad \Rightarrow \quad g'(x) = \cos(x)$$

$$I_n = \sin(x)\cos^{n-1}(x)\Big|_0^{\frac{\pi}{2}} + (n-1)\int_0^{\frac{\pi}{2}}\cos^{n-2}(x)\sin^2(x)\,dx$$

The term $\sin(x)\cos^{n-1}(x)\Big|_0^{\frac{\pi}{2}}$ evaluates to zero since $\sin(0) = \sin\left(\frac{\pi}{2}\right) = 0$. Therefore:

$$I_n = (n-1) \int_{-\frac{\pi}{2}}^{\frac{\pi}{2}} \cos^{n-2}(x) \sin^2(x) dx$$

February 25, 2024

Example

(continued):

$$I_n = \frac{n-1}{n}I_{n-2}$$

$$I_2 = \frac{1}{2}I_0 = \frac{1}{2} \cdot \frac{\pi}{2}$$

$$I_4 = \frac{3}{4}I_2 = \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

$$I_6 = \frac{5}{6}I_4 = \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{1}{2} \cdot \frac{\pi}{2}$$

Example

(continued):

$$I_{3} = \frac{2}{3}I_{1} = \frac{2}{3}$$

$$I_{5} = \frac{3}{4}I_{3} = \frac{3}{4} \cdot \frac{2}{3}$$

$$I_{7} = \frac{5}{6}I_{5} = \frac{5}{6} \cdot \frac{3}{4} \cdot \frac{2}{3}$$

$$I_{n} = \frac{n-1}{n}I_{n-2}$$

$$I_{2p} = \frac{(2p)!}{2^{2p}(p!)^{2}} \cdot \frac{\pi}{2}$$

$$I_{2p+1} = \frac{2^{2p}(p!)^{2}}{(2p+1)!}$$

Reduction formulas

Example

(continued): We also have:

$$I_{2p+2} \leq I_{2p+1} \leq I_{2p}$$

$$\frac{2p+1}{2p+2} = \frac{I_{2p+2}}{I_{2p}} \le \frac{I_{2p+1}}{I_{2p}} \le 1$$

$$\lim_{p\to\infty}\frac{I_{2p+1}}{I_{2p}}=1$$

$$\lim_{p\to\infty}\frac{(1\cdot 2\cdot 4\cdot \ldots\cdot 2p)^2}{(1\cdot 3\cdot 5\cdot \ldots\cdot (2p-1))^2\cdot (2p+1)}=\frac{\pi}{2}$$

Let I and J be two intervals of \mathbb{R} . Let $\varphi:J\to I$ be a C^1 -class function, meaning that φ is differentiable, and its derivative is continuous on . Let $f:I\to\mathbb{R}$ be a continuous function on .

1. If F is an antiderivative of f on I, then $F \circ \varphi$ is an antiderivative on J of $(f \circ \varphi) \cdot \varphi'$. This is expressed mathematically as:

$$\int (f \circ \varphi) \cdot \varphi' \, dt = (F \circ \varphi)(t) + C,$$

where C is the constant of integration.

2. For any $c, d \in J$, the equality holds:

$$\int_{c}^{d} f(\varphi(t)) \cdot \varphi'(t) dt = \int_{\varphi(c)}^{\varphi(d)} f(x) dx.$$

Proof.

1. Result from the derivative of a composite function:

$$(F \circ \varphi)'(t) = F'(\varphi(t)) \cdot \varphi'(t) = f(\varphi(t)) \cdot \varphi'(t)$$

2. Result from the definition of the integral of a continuous function:

$$\int_{c}^{d} f(\varphi(t)) \cdot \varphi'(t) dt = F(\varphi(d)) - F(\varphi(c)) = \int_{\varphi(c)}^{\varphi(d)} f(x) dx$$

First Aspect of the Change of Variable Theorem:

To find an antiderivative of a function g that is continuous on an interval J, one examines whether it can be expressed in the form: $g(x) = f(\varphi(x))\varphi'(x)$, where:

$$\varphi: J \rightarrow I$$

is a C^1 -class function, and f is continuous on I. Knowing an antiderivative F of f implies the knowledge of an antiderivative of g, namely $F \circ \varphi$.

$$\int g(x) dx = \int f(\varphi(x))\varphi'(x) dx = F(\varphi(x)) + C$$

In practice, one often substitutes $\varphi(x)$ with t and $\varphi'(x) dx$ with dt.

$$\int g(x) dx = \int f(\varphi(x))\varphi'(x) dx = \int f(t) dt = F(t) + C$$

Example

Evaluate
$$\int_0^1 xe^{x^2} dx$$

1. Perform a change of variable by letting $t = x^2$, then dt = 2x dx.

$$\int_0^1 x e^{x^2} dx = \frac{1}{2} \int_0^1 2x e^{x^2} \sqrt{24} dx = \frac{1}{2} \int_0^1 e^t dt$$

2. Now, calculate the integral with respect to t.

$$\frac{1}{2} \int_0^1 e^t dt = \frac{1}{2} \left[e^t \right]_0^1 = \frac{1}{2} \left(e^1 - 1 \right)$$

February 25, 2024 35 / 58

Example

Evaluate

$$\int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos^2 x} dx$$

$$= -\int_0^{\frac{\pi}{4}} \frac{-\sin x}{\cos^2 x} dx$$

$$= -\int_0^{\frac{\pi}{4}} \frac{(\cos x)'}{\cos^2 x} dx$$

$$= -\int_1^{\frac{\sqrt{2}}{2}} \frac{1}{t^2} dt$$

$$= -\left[-\frac{1}{t}\right]_{\frac{\sqrt{2}}{2}}^{1}$$
$$= \sqrt{2} - 1$$

$$\therefore \int_0^{\frac{\pi}{4}} \frac{\sin x}{\cos^2 x} \, dx = \sqrt{2} - 1$$

Example

Example

Evaluate
$$\int_{1/e}^{e} \frac{1}{x\sqrt{1-\log^2(x)}} dx \text{ where } x \in \left] \frac{1}{e}, e \right[$$

$$\int_{1} \frac{1}{x\sqrt{1-\log^2 x}} dx = \int_{1} \frac{(\log x)'}{\sqrt{1-\log^2 x}} dx = \int_{1} \frac{1}{\sqrt{1-t^2}} dt$$

$$\int_{1} \frac{1}{x\sqrt{1-\log^2 x}} dx = \operatorname{Arcsin}(t) + C$$

$$\int_{1} \frac{1}{x\sqrt{1-\log^2 x}} dx = \operatorname{Arcsin}(\log x) + C$$

Second aspect of the change of variable theorem: When we don't have a simple primitive for f, we express the original variable x in terms of a new variable t, i.e., $x=\varphi(t)$ with $\varphi:J\to I$ being a C^1 -class and bijective function. We assume that the function $(f\circ\varphi)\varphi'$ has a simple-to-compute primitive G. In this case:

$$G\circ \varphi^{-1}$$

is a primitive of f. In practice, we substitute x with $\varphi(t)$ and dx with $\varphi'(t)dt$ in the expression of f.

Example

Given the function $f(x) = \sqrt{1-x^2}$, find the definite integral $\int_0^1 f(x) dx$. Let's make the substitution $x = \sin(t)$, where t belongs to $\left[-\frac{\pi}{2}, \frac{\pi}{2}\right]$.

$$\int_{0}^{1} \sqrt{1 - x^{2}} \, dx = \int_{0}^{\frac{\pi}{2}} \sqrt{1 - \sin^{2}(t)} \cdot \cos(t) \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \sqrt{\cos^{2}(t)} \cdot \cos(t) \, dt = \int_{0}^{\frac{\pi}{2}} |\cos(t)| \cdot \cos(t) \, dt$$

$$= \int_{0}^{\frac{\pi}{2}} \cos^{2}(t) \, dt = \int_{0}^{\frac{\pi}{2}} \frac{1 + \cos(2t)}{2} \, dt$$

$$= \frac{1}{2} \int_{0}^{\frac{\pi}{2}} (1 + \cos(2t)) \, dt$$

Example

$$= \frac{1}{2} \left(\left[t + \frac{1}{2} \sin(2t) \right]_0^{\frac{\pi}{2}} \right)$$

$$= \frac{1}{2} \left(\left(\frac{\pi}{2} \right) - (0+0) \right)$$

$$= \frac{\pi}{4}$$

$$\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \arcsin(x) + \frac{1}{4} \sin(2 \arcsin(x)) + C$$

$$= \frac{1}{2} \arcsin(x) + \frac{1}{4} x \sqrt{1 - x^2} + C$$

Example

(Continued): We can express the result differently for $t \in [-\frac{\pi}{2}, \frac{\pi}{2}]$, as follows:

$$\sin^2(t) = 2\sin(t)\cos(t), \quad \cos^2(t) = 2\sin(t)\cos(t), \quad \sqrt{1-\sin^2(t)} = 2x\sqrt{1-\sin^2(t)}$$

Now, let's rewrite the result:

$$\int \sqrt{1 - x^2} \, dx = \frac{1}{2} \arcsin(x) + \frac{1}{2} x \sqrt{1 - x^2} + C$$

$$\int_0^1 \sqrt{1 - x^2} \, dx = \left[\frac{1}{2} \arcsin(x) + \frac{1}{2} x \sqrt{1 - x^2} \right]_0^1$$

$$= \frac{\pi}{4}$$

Example

$$\int \frac{1}{(1+x^2)\sqrt{1+x^2}} dx, \quad x \in \mathbb{R}$$

Let's make the substitution $x = \tan(t)$, where t belongs to $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$.

$$\int \frac{1}{(1+x^2)\sqrt{1+x^2}} \, dx =$$

$$\int rac{1+ an^2(t)}{(1+ an^2(t))\sqrt{1+ an^2(t)}}\,dt = \int rac{1}{\sqrt{1+ an^2(t)}}\,dt$$

Example

This integral simplifies to $\int \cos(t) dt = \sin(t) + C$.

Now, substituting back $t = \arctan(x)$:

$$\sin(t) + C = \sin(\arctan(x)) + C$$

Therefore,

$$\int \frac{1}{(1+x^2)\sqrt{1+x^2}} dx = \sin(\arctan(x)) + C$$

Example

$$\int \frac{\sqrt{x}}{\sqrt{1-x^3}} \, dx, \quad x \in]0,1[$$

Perform a substitution by letting $x = t^{2/3}$ where $t \in]0,1[$, which implies $dx = \frac{2}{3}t^{-1/3}dt$.

$$\int \frac{\sqrt{x}}{\sqrt{1-x^3}} dx = \int \frac{\frac{2}{3}}{\sqrt{1-t^2}} dt$$
$$= \int \frac{2}{3\sqrt{1-t^2}} dt$$
$$= \int \frac{2}{3\sqrt{1-t^2}} \cdot dt$$

Example

$$= \int \frac{2}{\sqrt{1 - t^2}} dt$$
$$= \frac{2}{3} \arcsin(t) + C$$

Substitute back $x = t^{2/3}$:

$$= \frac{2}{3}\arcsin\left(\sqrt{x^3}\right) + C$$

Therefore,

$$\int \frac{\sqrt{x}}{\sqrt{1-x^3}} dx = \frac{2}{3} \arcsin\left(\sqrt{x^3}\right) + C$$

For a continuous and even function $f : \mathbb{R} \longrightarrow \mathbb{R}$, the following holds for any $a \in \mathbb{R}$:

$$\int_{-a}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

Proof.

Indeed, the proof is as follows:

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx$$

In the first integral, we perform the variable change x=-t, which implies dx=-dt:

$$\int_{-a}^{0} f(x) dx = -\int_{a}^{0} f(-t) dt = \int_{0}^{a} f(-t) dt$$

Then, renaming the variable t to x in the last expression, we get:

Proof.

$$\int_{-a}^{0} f(x) dx = \int_{0}^{a} f(-t) dt = \int_{0}^{a} f(x) dx$$

By combining this with the second integral, we have:

$$\int_{-a}^{a} f(x) dx = \int_{-a}^{0} f(x) dx + \int_{0}^{a} f(x) dx = 2 \int_{0}^{a} f(x) dx$$

Thus, the property is established for a continuous and even function.

For an odd continuous function:

Let $f : \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous and odd function. Then, for any $a \in \mathbb{R}$:

$$\int_{-a}^{a} f(x) \, dx = 0$$

The proof is identical to the previous case.

For a periodic continuous function:

Let $f: \mathbb{R} \longrightarrow \mathbb{R}$ be a continuous and periodic function, meaning there exists T > 0 such that:

$$f(x+T) = f(x)$$
 for all $x \in \mathbb{R}$

Then, for any $a \in \mathbb{R}$:

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$$

Proof.

$$\int_{a}^{a+T} f(x) \, dx = \int_{a}^{0} f(x) \, dx + \int_{0}^{T} f(x) \, dx + \int_{T}^{a+T} f(x) \, dx$$

Since f is periodic, f(x+T)=f(x). Therefore, $\int_a^0 f(x) \, dx = -\int_0^a f(x) \, dx$ and $\int_T^{a+T} f(x) \, dx = \int_0^a f(x) \, dx$. Substituting these results back into the original expression:

$$\int_{a}^{a+T} f(x) \, dx = -\int_{0}^{a} f(x) \, dx + \int_{0}^{T} f(x) \, dx + \int_{0}^{a} f(x) \, dx$$

Simplifying:

$$\int_{a}^{a+T} f(x) dx = \int_{0}^{T} f(x) dx$$

Thus, the property is established for a continuous and periodic function.

Proof.

For the last integral, we make the substitution x = u + T where dx = du:

$$\int_{T}^{a+T} f(x) dx = \int_{0}^{a} f(u+T) du = \int_{0}^{a} f(u) du = \int_{0}^{a} f(x) dx = -\int_{a}^{0} f(x) dx$$

Example

$$I_n = \int_0^{2\pi} f(\sin(nx)) dx = \int_0^{2\pi} f(\cos(nx)) dx$$

Assuming f is a continuous function on \mathbb{R} , consider f being a function of cosine. Let's make the substitution $x = u + \frac{\pi}{2n}$ where dx = du:

Example

continued

$$I_n = \int_{-\frac{\pi}{2n}}^{2\pi - \frac{\pi}{2n}} f(\sin(nu + \frac{\pi}{2})) du = \int_{-\frac{\pi}{2n}}^{2\pi - \frac{\pi}{2n}} f(\cos(nu)) du$$

Now, I_n is expressed in terms of the function f evaluated at $\cos(nu)$ over the interval $\left[-\frac{\pi}{2n}, 2\pi - \frac{\pi}{2n}\right]$.

$$I_n = \int_0^{2\pi} f(\cos(nx)) \, dx$$

This demonstrates the periodicity property when dealing with trigonometric functions in the integral.

Example

Let $f: [a, b] \longrightarrow \mathbb{R}$ be a continuous function such that f(a+b-x) = f(x) for all $x \in [a, b]$. then $\int_a^b x \cdot f(x) dx = \frac{a+b}{2} \int_a^b f(x) dx$

Proof.

If we make the substitution x = a + b - u, then dx = -du. Therefore:

$$\int_{a}^{b} x \cdot f(x) dx = -\int_{b}^{a} (a+b-u) \cdot f(a+b-u) du$$

Now, using the property f(a+b-x)=f(x):

$$= \int_a^b (a+b-u) \cdot f(u) \, du$$

Proof.

Expanding:

$$\int_{a}^{b} x \cdot f(x) dx = \int_{a}^{b} (a+b) \cdot f(u) du - \int_{a}^{b} u \cdot f(u) du$$
$$= (a+b) \int_{a}^{b} f(x) du - \int_{a}^{b} x \cdot f(x) du$$
$$= \frac{a+b}{2} \int_{a}^{b} f(x) dx$$

Thus, the claim is proven.

$$\int_{-\pi}^{\pi} \frac{x \sin x}{1 + \cos^2 x} \, dx$$

Apply the symmetry property f(x) = f(-x):

$$=2\int_0^\pi \frac{x\sin x}{1+\cos^2 x}\,dx$$

Now, using the claimed property:

$$=\pi \int_0^\pi \frac{\sin x}{1+\cos^2 x} \, dx$$

Example

(Continued):

$$= \pi \int_0^{\pi} \frac{\sin x}{1 + \cos^2 x} dx$$

$$= -\pi \int_0^{\pi} \frac{-\sin x}{1 + \cos^2 x} dx$$

$$= -\pi \int_1^{-1} \frac{1}{1 + t^2} dt$$

$$= \pi \left[\operatorname{arctan}(t) \right]_{-1}^1$$

$$= \frac{\pi^2}{2}$$

CHAPTER 2 PRIMITIVES AND INTEGRALS

Mathematical Analysis 1, ENSIA 2024

PRIMITIVES AND INTEGRALS

Part III

Antiderivatives of a Rational Function

- Polynomial Reminders
- **2** Decomposition of a Rational Function:
- Antiderivatives of a Rational Function

Definition

A polynomial in one complex variable z is any expression of the form:

$$P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$$

Where: $a_0, a_1, a_2, \ldots, a_n \in \mathbb{C}$ are called the coefficients of the polynomial. If $a_n \neq 0$, we say that the polynomial is of degree n.

The derivative of the polynomial P, denoted as P', is defined as:

$$P'(z) = a_1 + 2a_2z + \ldots + na_nz^{(n-1)}$$

This represents the derivative of P with respect to z.

Roots of a Polynomial

We say that $\lambda \in \mathbb{C}$ is a root of the polynomial P if $P(\lambda) = 0$. This definition is equivalent to P being divisible by $(z - \lambda)$, meaning there exists a polynomial Q such that $P(z) = (z - \lambda)Q(z)$.

The roots of a polynomial can be either simple or multiple.

We say that $\lambda \in \mathbb{C}$ is a simple root if:

$$P(z) = (z - \lambda)Q(z), \quad Q(\lambda) \neq 0 \implies \begin{cases} P(\lambda) = 0 \\ P'(\lambda) \neq 0 \end{cases}$$

We say that $\lambda \in \mathbb{C}$ is a double root if:

$$P(z) = (z - \lambda)^2 Q(z), \quad Q(\lambda) \neq 0 \implies \begin{cases} P(\lambda) = P'(\lambda) = 0 \\ P''(\lambda) \neq 0 \end{cases}$$

More generally:

We will say that $\lambda \in \mathbb{C}$ is a root of multiplicity or order $k \in \mathbb{N}^*$ if:

$$P(z) = (z - \lambda)^k Q(z), \quad Q(\lambda) \neq 0$$

$$\implies \begin{cases} P(\lambda) = P'(\lambda) = \dots = P^{(k-1)}(\lambda) = 0 \\ P^{(k)}(\lambda) \neq 0 \end{cases}$$

Example

$$P(z) = z^3 - 1$$

There are 3 simple roots: $z_1 = 1$, $z_2 = \frac{-1 - i\sqrt{3}}{2}$, and $z_3 = \frac{-1 + i\sqrt{3}}{2}$.

Example

$$P(z) = z^5 - 3z^4 + 4z^3 - 4z^2 + 3z - 1$$

 $z_1 = 1$ is a triple root because P(1) = P'(1) = P''(1) = 0, and

Example

$$P(z) = z^4 + 4z^3 + mz^2 + nz + 2$$
 where $m, n \in \mathbb{N}$

Choose m and n such that -1 is a double root.

We need to have
$$P(-1)=P'(-1)=0$$
 and $P''(-1)\neq 0$.

$$P'(z) = 4z^3 + 12z^2 + 2mz + n$$
$$P''(z) = 12z^2 + 24z + 2m$$

Example

Setting z = -1:

$$P'(-1) = 4(-1)^3 + 12(-1)^2 + 2m(-1) + n = 0$$

$$P''(-1) = 12(-1)^2 + 24(-1) + 2m \neq 0$$

Solving the equations:

$$m - n - 1 = 0$$
$$8 - 2m + n = 0$$

This simplifies to:

$$m = 7$$
 $n = 6$

So, m = 7 and n = 6 satisfy the conditions. Also, -1 + i and -1 - i are also roots of P.

Case of Polynomials with Real Coefficients

Let $n \in \mathbb{N}^*$ and $P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$ where $a_0, a_1, a_2, \ldots, a_n \in \mathbb{R}$.

If $\lambda \in \mathbb{C}$ is a root of the polynomial, then the conjugate $\overline{\lambda}$ is also a root. **Proof:**

$$P(\lambda) = a_0 + a_1\lambda + a_2\lambda^2 + \ldots + a_n\lambda^n = 0$$

Taking the conjugate of both sides:

$$\overline{P(\lambda)} = \overline{a_0 + a_1 \lambda + a_2 \lambda^2 + \ldots + a_n \lambda^n} = 0$$

$$\overline{P(\lambda)} = \overline{a_0} + \overline{a_1}\overline{\lambda} + \overline{a_2}\overline{\lambda}^2 + \ldots + \overline{a_n}\overline{\lambda}^n = P(\overline{\lambda}) = 0$$

As a consequence, if $\lambda \in \mathbb{C}$ is a root of order $k \geq 1$, then the conjugate $\overline{\lambda}$ is also a root of order k of the polynomial.

Polynomial Factorization

Consider $P(z) = a_0 + a_1 z + a_2 z^2 + \ldots + a_n z^n$, where

 $a_0, a_1, a_2, \ldots, a_n \in \mathbb{C}$, a polynomial of degree $n \geq 1$. It is assumed that it has at least one complex root, i.e., $\exists \lambda \in \mathbb{C}$ such that $P(\lambda) = 0$.

Note: This result is not valid in \mathbb{R} .

For example, consider $P_1(x) = x^2 + x + 1$ and $P_2(x) = x^4 + 1$.

The polynomials $P_1(x)$ and $P_2(x)$ do not have real roots. However, in \mathbb{C} , $P_1(x)$ has complex roots, and $P_2(x)$ has complex roots, even though they are not real.

This emphasizes that, unlike in \mathbb{R} , in \mathbb{C} , every non-constant polynomial has at least one complex root.

Polynomial Reminders

Consequences:

If $P(z) = a_0 + a_1z + a_2z^2 + \ldots + a_nz^n$ where $a_0, a_1, a_2, \ldots, a_n \in \mathbb{C}$ is a polynomial of degree $n \geq 1$, then it has n distinct or non-distinct roots. If $\lambda_1, \lambda_2, \ldots, \lambda_p$ are the distinct roots with respective orders k_1, k_2, \ldots, k_p (where $k_1 + k_2 + \ldots + k_p = n$), then:

$$P(z) = a_n(z - \lambda_1)^{k_1}(z - \lambda_2)^{k_2} \dots (z - \lambda_p)^{k_p}$$

Now, if $P(z)=a_0+a_1z+a_2z^2+\ldots+a_nz^n$ where $a_0,a_1,a_2,\ldots,a_n\in\mathbb{R}$ is a polynomial of degree $n\geq 1$, and $\lambda\in\mathbb{C}$ is a root of multiplicity k, then the conjugate $\overline{\lambda}$ is also a root.

In the expression of P, you find the factor $(z - \lambda)^k (z - \overline{\lambda})^k$.

Polynomial Reminders

Particularly, in the case where P is real, i.e., of the form:

$$P(x) = a_0 + a_1 x + a_2 x^2 + \ldots + a_n x^n$$

where $a_0, a_1, a_2, \ldots, a_n \in \mathbb{R}$, $x \in \mathbb{R}$,

Then, the factorization of such a polynomial in $\mathbb R$ gives us factors of the form $(x-a)^k$ or $(x^2+px+q)^m$ with $\Delta<0$.

Example

$$P(x) = x^4 + 1$$

$$P(x) = (x^2 + 1)^2 - 2x^2 = (x^2 - x\sqrt{2} + 1)(x^2 + x\sqrt{2} + 1)$$

In this example, the factorization involves quadratic factors with $\Delta < 0$.

Polynomial Reminders

Example

$$P(x) = x^5 + 1$$

Let's find the roots in \mathbb{C} . Suppose z is such a root.

$$z = \rho e^{i\theta} \implies z^5 = \rho^5 e^{5i\theta}.$$

$$z^{5} = -1 \implies \rho^{5} e^{5i\theta} = e^{i\pi} \implies \begin{cases} \rho = 1 \\ \theta = \frac{\pi}{5} + \frac{2\pi k}{5}, \quad k = 0, 1, 2, 3, 4 \end{cases}$$

So, we have 5 roots:

$$Z_1 = e^{i\pi/5}$$
, $Z_2 = (Z_1)^* = e^{-i\pi/5}$, $Z_3 = e^{i(3\pi/5)}$, $Z_4 = (Z_3)^* = e^{-i3\pi/5}$

Therefore, the factorization of P(x) is:

$$P(x) = (x+1)(x^2 - 2x\cos(\pi/5) + 1)(x^2 - 2x\cos(3\pi/5) + 1)$$

Fraction Rationale

Consider P and Q, two real polynomials that are coprime (have no common factors).

The function $F: x \mapsto F(x) = \frac{P(x)}{Q(x)}$, where $Q(x) \neq 0$, is called a rational function. F is said to be proper if the degree of P is strictly less than the degree of Q (deg(P) < deg(Q)).

The roots of Q are called the "poles" of F. A root of order k of the denominator is called a "pole" of order k.

Example

$$F(x) = \frac{x^2 + 1}{x(x - 1)^2(x + 1)^3}$$

x = 0 is a simple pole

x = 1 is a double pole

x = -1 is a triple pole

Definition

A partial (or elementary) rational fraction is a fraction of the form:

$$\frac{A}{(x-a)^k}$$
 or $\frac{Cx+D}{(x^2+px+q)^j}$

where $k, j \in \mathbb{N}^*$ and $\Delta = p^2 - 4q < 0$.

Let $F(x) = \frac{P(x)}{Q(x)}$ be a proper rational fraction. We know that the denominator can be factored into factors of the form $(x-a)^k$ or $(x^2+px+q)^j$ where $\Delta<0$. The former are called simple elements of the first kind, and the latter are simple elements of the second kind.

Theorem

Every proper rational fraction can be uniquely expressed as the sum of partial rational fractions. For simplicity, the procedure is outlined as follows:

For each simple element of the first kind $(x - a)^k$ in the partial fraction decomposition, there should be a sum of the form:

$$\frac{A_k}{(x-a)^k} + \frac{A_{k-1}}{(x-a)^{k-1}} + \dots + \frac{A_1}{(x-a)}$$

For each simple element of the second kind $(x^2 + px + q)^j$ with $\Delta < 0$ in the partial fraction decomposition, there should be a sum of the form:

$$\frac{C_1x + D_1}{x^2 + px + q} + \frac{C_2x + D_2}{(x^2 + px + q)^2} + \ldots + \frac{C_jx + D_j}{(x^2 + px + q)^j}$$

4D > 4B > 4B > 4B > 900

Example

$$F(x) = \frac{x^2 + 1}{x^2(x - 1)(x + 1)^3}$$

$$F(x) = \frac{A_2}{x^2} + \frac{A_1}{x} + \frac{B_1}{(x - 1)} + \frac{C_3}{(x + 1)^3} + \frac{C_2}{(x + 1)^2} + \frac{C_1}{(x + 1)}$$

Example

$$F(x) = \frac{x^2 + x + 1}{(x - 1)^2 (x - 2)^3 (x^2 + 1)^2}$$

$$F(x) = \frac{A_2}{(x - 1)^2} + \frac{A_1}{(x - 1)} + \frac{B_3}{(x - 2)^3} + \frac{B_2}{(x - 2)^2} + \frac{B_1}{(x - 2)} + \frac{C_1 x + D_1}{(x^2 + 1)} + \frac{C_2 x + D_2}{(x^2 + 1)^2}$$

Calculating Coefficients

Method of Undetermined Coefficients: In the decomposition of F into partial fractions, you multiply both sides by the denominator, expand, and then identify the coefficients of the monomials of the same power.

Example

Decompose the rational function into partial fractions:

$$F(x) = \frac{x^2 + 1}{x(x - 1)(x + 2)}$$

We have:

$$F(x) = \frac{A}{x} + \frac{B}{(x-1)} + \frac{C}{(x+2)}$$

Now, you would proceed to find the values of A, B, and C.

Example

(continued)

$$x^{2} + 1 = (A + B + C)x^{2} + (A + 2B - C)x - 2A$$

By identification, we get the system of equations:

$$-2A = 1$$

$$A + 2B - C = 0$$

$$A+B+C=1$$

Example

(continued) Solving this system:

$$A = -\frac{1}{2}$$

$$B = \frac{2}{3}$$

$$C = \frac{5}{6}$$

Therefore, the partial fraction decomposition is:

$$\frac{x^2+1}{x(x-1)(x+2)} = -\frac{1}{2x} + \frac{2}{3(x-1)} + \frac{5}{6(x+2)}$$

**Method of Division According to Increasing Powers: **

The previous method can be quite lengthy. Here's an alternative method for calculating coefficients for the pole of order k, $k \ge 1$.

Suppose the denominator is $Q(x) = (x - a)^k Q_1(x)$ where $Q_1(a) \neq 0$, meaning that a is a pole of order k.

The partial fraction for this pole is of the form:

$$\frac{A_k}{(x-a)^k} + \frac{A_{k-1}}{(x-a)^{k-1}} + \ldots + \frac{A_1}{(x-a)}$$

Definition

Two Cases: 1. **k = 1:** There is only one coefficient to calculate, A_1 :

$$A_1 = \lim_{x \to a} (x - a) F(x) = \frac{P(a)}{Q(a)}$$

2. **k > 1:** In the rational fraction $P(x)/Q_1(x) = (x-a)^k F(x)$, set x = a + y and perform division according to increasing powers of y up to order k - 1.

Example

$$F(x) = \frac{x^2 + 1}{x^2(x - 1)(x + 1)^3}$$

$$F(x) = \frac{A_2}{x^2} + \frac{A_1}{x} + \frac{B_1}{(x - 1)} + \frac{C_3}{(x + 1)^3} + \frac{C_2}{(x + 1)^2} + \frac{C_1}{(x + 1)}$$

Example

(continued):**

$$F(x) = \frac{x^2 + 1}{x^2(x - 1)(x + 1)^3}$$

$$F(x) = \frac{A_2}{x^2} + \frac{A_1}{x} + \frac{B_1}{(x-1)} + \frac{C_3}{(x+1)^3} + \frac{C_2}{(x+1)^2} + \frac{C_1}{(x+1)}$$

For the pole at x = 1:

$$B_1 = \lim_{x \to 1} (x - 1)F(x) = \lim_{x \to 1} \frac{x^2 + 1}{x^2(x + 1)^3} = \frac{1}{4}$$

Example

(continued):** Since x = 0 is a double pole, we perform division according to increasing powers up to order 1:

$$F(x) = \frac{1+x^2}{(x-1)(x+1)^3} = \frac{1+x^2}{(x-1)(1+3x+\ldots)} = \frac{1+x^2}{(-1-2x+\ldots)}$$

$$= -1 + 2x + \dots$$

This implies $A_2 = -1$ and $A_1 = 2$.

Example

(continued)

$$F(x) = \frac{x^2 + 1}{x^2(x - 1)(x + 1)^3}$$

For the triple pole at x = -1, we set x + 1 = y, meaning x = -1 + y, and then perform division according to increasing powers up to order 2:

$$\frac{x^2+1}{x^2(x-1)} = \frac{(-1+y)^2+1}{(-1+y)^2(-2+y)} = \frac{2-2y+y^2}{-2+5y-4y^2+\dots}$$

This implies $C_3 = -1$, $C_2 = -\frac{3}{2}$, and $C_1 = -\frac{9}{4}$.

Example

$$F(x) = \frac{x^3 - 1}{x^3(x+1)^2(x^2+1)}$$

For the triple pole at x = 0:

$$F(x) = \frac{A_3}{x^3} + \frac{A_2}{x^2} + \frac{A_1}{x} + \frac{B_1}{(x+1)} + \frac{B_2}{(x+1)^2} + \frac{C_1x + D_1}{x^2 + 1}$$

We perform division according to increasing powers up to order 2 of $x^3F(x)$:

$$x^{3}F(x) = \frac{-1+x^{3}}{1+2x+x^{2}}(1+x^{2}) = \frac{-1+x^{3}}{1+2x+2x^{2}+\dots}$$

This implies $A_3 = -1$, $A_2 = 2$, and $A_1 = -2$.

Example

(continued):

$$(x+1)^{2}F(x) = \frac{x^{3}-1}{x^{3}(x^{2}+1)} = \frac{(-1+y)^{3}-1}{(-1+y)^{3}((-1+y)^{2}+1)} = \frac{-2+3y+\dots}{-2+8y+\dots}$$

This implies $B_2 = 1$ and $B_1 = \frac{5}{2}$.

Example

(continued): We have two coefficients left to determine. We can either give x two values other than 0 and -1, or we can use:

$$\lim_{x \to +\infty} xF(x) = 0 = A_1 + B_1 + C_1$$

From this, we find that $C_1=-A_1-B_1=2-\frac{5}{2}=-\frac{1}{2}$. To find D_1 , we give x the value 1.

$$F(1) = 0 = A_3 + A_2 + A_1 + \frac{B_1}{2} + \frac{B_2}{4} + \frac{C_1}{2} + D_1$$

Solving for D_1 , we get $D_1 = -\frac{3}{4}$.

Example

$$F(x) = \frac{1}{(x^2 - 1)(x^2 + 1)}$$

We have:

$$F(x) = \frac{1}{(x-1)(x+1)(x^2+1)} = \frac{A}{x-1} + \frac{B}{x+1} + \frac{Cx+D}{x^2+1}$$

Due to the parity of the rational function, we know that F(-x) = F(x),

which implies B = -A and C = 0.

Therefore, $F(x) = \frac{A}{x-1} - \frac{A}{x+1} + \frac{D}{x^2+1}$.

By finding the limit as x approaches 1, we get $A = \frac{1}{4}$.

To find D, we give x the value 0.

$$F(0) = -1 = -2A + D = -\frac{1}{2} + D$$

Solving for D we find $D = -\frac{1}{2}$

```
** general case**
```

Let $F(x) = \frac{P(x)}{Q(x)}$ be a rational function, whether proper or not. If $\deg(P) < \deg(Q)$, we directly proceed to partial fraction decomposition. If $\deg(P) > \deg(Q)$, we perform either polynomial long division or division following the decreasing powers of P(x) by Q(x). This results in two unique polynomials E(x) (quotient) and R(x) (remainder) such that P(x) = E(x)Q(x) + R(x), where $\deg(R) < \deg(Q)$.

This implies $F(x) = \frac{P(x)}{Q(x)} = E(x) + \frac{R(x)}{Q(x)} = E(x) + F_1(x)$, where $F_1(x)$ is proper and can be expressed as a sum of partial fractions.

Example

$$f(x) = \frac{x^4 + x - 1}{x^3 + 2x^2 - x - 2} = x - 2 + \frac{5x^2 + x - 5}{(x+2)(x^2 - 1)}$$

We have $F_1(x) = \frac{5x^2 + x - 5}{(x^3 + 2x^2 - x - 2)} = \frac{A}{(x+2)} + \frac{B}{(x-1)} + \frac{C}{(x+1)}$. Solving for A, B, and C using the limits:

$$A = \lim_{x \to -2} (x+2)F_1(x) = \frac{13}{3}$$

$$B = \lim_{x \to 1} (x-1)F_1(x) = \frac{1}{6}$$

$$C = \lim_{x \to -1} (x+1)F_1(x) = \frac{1}{2}$$

Example

Thus, the decomposition is:

$$f(x) = x - 2 + \frac{13}{3(x+2)} + \frac{1}{6(x-1)} + \frac{1}{2(x+1)}$$

The decomposition of $F(x) = \frac{P(x)}{Q(x)}$ generally results in a polynomial part E(x) and partial fractions of the form:

$$\frac{A}{(x-a)^k}$$
 or $\frac{Cx+D}{(x^2+px+q)^j}$

where $k, j \in \mathbb{N}^*$ and $\Delta = p^2 - 4q < 0$. If $E(x) = a_0 + a_1x + \ldots + a_ix^i$.

$$\int E(x) dx = a_0 x + \frac{a_1}{2} x^2 + \ldots + \frac{a_i}{i+1} x^{i+1} + C$$

Similarly,

$$\int \frac{1}{(x-a)^k} \, dx = \begin{cases} \ln|x-a| + C & \text{if } k = 1\\ \frac{1}{1-k} (x-a)^{1-k} + C & \text{if } k \neq 1 \end{cases}$$

Therefore, we need to find the antiderivatives of $\frac{Ax+B}{(x^2+px+q)^m}$. We have:

$$\int \frac{Ax + B}{(x^2 + px + q)^m} dx = \int \frac{\frac{A}{2}(2x + p) + B - \frac{A}{2}p}{(x^2 + px + q)^m} dx$$

$$= \frac{A}{2} \int \frac{2x + p}{(x^2 + p + q)^m} dx + (B - \frac{A}{2}p) \int \frac{1}{(x^2 + px + q)^m} dx$$

$$\int \frac{2x + p}{(x^2 + px + q)^m} dx = \int \frac{\varphi'(x)}{\varphi(x)^m} dx$$

$$= \int \frac{dt}{t^m} = \begin{cases} \ln|t| + C & \text{if } m = 1\\ \frac{1}{1 - m}t^{1 - m} + C & \text{if } m \neq 1 \end{cases}$$

Therefore:

$$\int \frac{2x+p}{(x^2+px+q)^m} dx$$

$$= \begin{cases} \ln|x^2+px+q| + C & \text{if } m=1\\ \frac{1}{1-m}(x^2+px+q)^{1-m} + C & \text{if } m \neq 1 \end{cases}$$

Now, for the antiderivatives of $\frac{1}{(x^2+px+q)^m}$:

$$x^{2} + px + q = (x + \frac{p}{2})^{2} + (q - \frac{p^{2}}{4})$$
$$x^{2} + px + q = (x + \frac{p}{2})^{2} + \alpha^{2}$$

where $\alpha = \sqrt{q - \frac{p^2}{4}}$.

This expression can also be written as:

$$x^{2} + px + q = \alpha^{2} \left(1 + \left(\frac{x + \frac{p}{2}}{\alpha}\right)^{2}\right)$$

$$\int \frac{1}{(x^{2} + px + q)^{m}} dx = \int \frac{1}{\alpha^{2m} \left(1 + \left(\frac{x + \frac{p}{2}}{\alpha}\right)^{2}\right)^{m}} dx$$

March 5, 2024 37 / 51

Let's perform the substitution $\frac{x+\frac{p}{2}}{\alpha}=t$, which implies $x=\alpha t-\frac{p}{2}$. Then, calculate the differential dx in terms of dt:

$$dx = \alpha dt$$

Now, substitute x and dx in the integral:

$$\int \frac{1}{(x^2 + px + q)^m} dx$$
$$= \alpha^{1-2m} \int \frac{1}{(1+t^2)^m} dt$$

Now, define $I_m = \int_1 \frac{1}{(1+t^2)^m} dt$. Rewrite the integral in terms of I_m :

$$\alpha^{1-2m} \int \frac{1}{(1+t^2)^m} dt = \alpha^{2m-1} I_m$$

March 5, 2024 38 / 51

for m = 1

$$I_1 = \int \frac{1}{1+t^2} dt$$

$$I_1 = \arctan(t) + C$$

Let's evaluate I_{m+1} for m > 1 step by step. Given:

$$I_{m+1} = \int \frac{1+t^2-t^2}{(1+t^2)^{m+1}} dt$$
 $I_{m+1} = \int \frac{1}{(1+t^2)^m} dt - \frac{1}{2} \int t \frac{2t}{(1+t^2)^{m+1}} dt$

Let's perform integration by parts with the chosen u and dv:

$$dv = t \implies du = dt$$

$$dv = \frac{2t}{(1+t^2)^{m+1}} dt \implies v = \frac{-1}{m} \frac{1}{(1+t^2)^m}$$

Now, apply the integration by parts formula:

$$\begin{split} I_{m+1} &= I_m - \frac{1}{2} (\frac{-1}{m} \frac{t}{(1+t^2)^m} + \frac{1}{m} \int \frac{1}{(1+t^2)^m} dt) \\ I_{m+1} &= I_m (1 - \frac{1}{2m}) + \frac{1}{2m} \frac{t}{(1+t^2)^m} \\ I_{m+1} &= \frac{2m-1}{2m} I_m + \frac{1}{2m} \frac{t}{(1+t^2)^m} \end{split}$$

March 5, 2024 40 / 51

Example

Primitives of $f(x) = \frac{x^3-1}{x^3(x+1)^2(x^2+1)}$ are obtained by decomposing it into partial fractions, as seen in Example 2. In this regard, the expression for f(x) is as follows:

$$f(x) = -\frac{1}{x^3} + \frac{2}{x^2} - \frac{2}{x} + \frac{5/2}{(x+1)} + \frac{1}{(x+1)^2} - \frac{1/2x + 3/4}{(x^2+1)}$$

The indefinite integral of f(x) is given by:

$$\int f(x) dx = \frac{1}{2x^2} - \frac{2}{x} - 2\ln(x) + \frac{5}{2}\ln(1+x) - \frac{1}{x+1} - \frac{1}{4} \int \frac{2x}{x^2+1} dx - \frac{3}{4} \int \frac{1}{\sqrt{2}+1} dx$$

March 5, 2024 41 /

Example

(continued)

$$\int f(x) dx = \frac{1}{2x^2} - \frac{2}{x} - 2\ln(x) + \frac{5}{2}\ln(1+x) - \frac{1}{x+1} - \frac{1}{4}\ln(x^2+1) - \frac{3}{4}$$

arctan(x) + C

where C is the constant of integration.

March 5, 2024 42 / 51

Example

Decomposition and indefinite integral of $f(x) = \frac{x^2+1}{(x-1)^2(x-2)(x^2+x+1)}$ In this case, f(x) can be expressed as the sum of partial fractions:

$$f(x) = \frac{A_2}{(x-1)^2} + \frac{A_1}{(x-1)} + \frac{B}{(x-2)} + \frac{Cx+D}{x^2+x+1}$$

Calculation of coefficients:

$$B = \lim_{x \to 2} (x - 2)f(x) = \frac{5}{7}$$

$$(x-1)^2 f(x) = \frac{1+x^2}{(x-2)(x^2+x+1)} = -\frac{2}{3} - \frac{2}{3}y$$

where x = y+1.

Example

$$A_1 = A_2 = -\frac{2}{3}$$

$$\lim_{x \to \infty} xf(x) = 0 = A_1 + B + C \implies C = -A_1 - B = -\frac{1}{21}$$

$$f(0) = -\frac{1}{2} = A_2 - A_1 - \frac{1}{2}B + D \implies D = -\frac{1}{2}(-A_2 + A_1 + \frac{1}{2}B) = -\frac{1}{7}$$

Therefore, the coefficients are $A_1=A_2=-\frac{2}{3}$, $B=\frac{5}{7}$, $C=-\frac{1}{21}$, and $D=-\frac{1}{7}$.

Example

Example 2 (continued): Indefinite Integrals of $f(x) = \frac{x^2+1}{(x-1)^2(x-2)(x^2+x+1)}$ In this case, the partial fraction decomposition of f(x) was found to be:

$$f(x) = -\frac{2}{3} \cdot \frac{1}{(x-1)^2} - \frac{2}{3} \cdot \frac{1}{(x-1)} + \frac{5}{7} \cdot \frac{1}{(x-2)} - \frac{2x+1}{42(x^2+x+1)} - \frac{5}{42}$$

$$\cdot \frac{1}{(x^2+x+1)}$$

This expression can be simplified further:

$$f(x) = -\frac{2}{3} \cdot \frac{1}{(x-1)^2} - \frac{2}{3} \cdot \frac{1}{(x-1)} + \frac{5}{7} \cdot \frac{1}{(x-2)} - \frac{1}{42} \cdot \frac{2x+1}{(x^2+x+1)} - \frac{5}{42}$$

$$\cdot \frac{1}{(x^2+x+1)}$$

Example

(continued):

$$\int f(x) dx = -\int \frac{2}{3(x-1)^2} dx - \int \frac{2}{3(x-1)} dx + \int \frac{5}{7(x-2)} dx - \frac{1}{42}$$

$$\int \frac{(2x+1)}{(x^2+x+1)} dx - \int \frac{5}{42(x^2+x+1)} dx$$

$$\int f(x) dx = \frac{2}{3(x-1)} - \frac{2}{3} \ln|x-1| + \frac{5}{7} \ln|x-2| - \frac{1}{42} \ln(x^2 + x + 1) -$$

$$\int \frac{5}{42(x^2+x+1)} dx$$

Example

(continued):

$$x^{2} + x + 1 = \left(x + \frac{1}{2}\right)^{2} + \frac{3}{4} = \frac{3}{4} \left(1 + \frac{\left(x + \frac{1}{2}\right)^{2}}{\frac{3}{4}}\right) = \frac{3}{4} \left(1 + \left(\frac{2x + 1}{\sqrt{3}}\right)^{2}\right)$$
$$\int \frac{1}{x^{2} + x + 1} dx = \frac{4}{3} \int \frac{1}{1 + \left(\frac{2x + 1}{\sqrt{2}}\right)^{2}} dx$$

We make the substitution $t = \frac{2x+1}{\sqrt{3}}$, which implies $x = \frac{t\sqrt{3}-1}{2}$ and $dx = \frac{\sqrt{3}}{2}dt$.

Example

(continued):

$$\int \frac{1}{x^2 + x + 1} dx = \frac{2}{3} \frac{1}{(x - 1)} - \frac{2}{3} \ln|x - 1| + \frac{5}{7} \ln|x - 2|$$
$$-\frac{1}{42} \ln(x^2 + x + 1) - \frac{5}{21\sqrt{3}} \arctan\left(\frac{2x + 1}{\sqrt{3}}\right) + C$$

So, the final result is:

$$\int \frac{x^2 + 1}{(x - 1)^2 (x - 2)(x^2 + x + 1)} \, dx = \frac{2}{3} \frac{1}{(x - 1)} - \frac{2}{3} \ln|x - 1| + \frac{5}{7} \ln|x - 2|$$
$$-\frac{1}{42} \ln(x^2 + x + 1) - \frac{5}{21\sqrt{3}} \arctan\left(\frac{2x + 1}{\sqrt{3}}\right) + C$$

Example

$$f(x) = \frac{x^2 + 2}{(x - 1)(x^2 + 1)^2}$$

$$f(x) = \frac{A}{(x - 1)} + \frac{B_1 x + C_1}{(x^2 + 1)} + \frac{B_2 x + C_2}{(x^2 + 1)^2}$$

$$A = \lim_{x \to 1} (x - 1)f(x) = \frac{3}{4}$$

$$\lim_{x \to i} (x^2 + 1)^2 f(x) = -\frac{1}{2} (1 + i) = B_2 i + C_2 \implies B_2 = C_2 = -\frac{1}{2}$$

$$\lim_{x \to \infty} xf(x) = 0 = A + B_1 \implies B_1 = -\frac{3}{4}$$

Example

(continued):

$$f(0) = -2 = -A + C_1 + C_2$$

$$\implies C_1 = -2 + A - C_2 = -\frac{3}{4}$$

Hence:

$$f(x) = \frac{3}{4} \cdot \frac{1}{(x-1)} - \frac{3}{8} \cdot \frac{2x}{(x^2+1)} - \frac{3}{4} \cdot \frac{1}{(x^2+1)} - \frac{1}{4} \cdot \frac{2x}{(x^2+1)^2} - \frac{1}{2}$$

$$\cdot \tfrac{1}{(x^2+1)^2}$$

Example

(continued):

$$\int f(x) dx = \frac{3}{4} \ln|x - 1| - \frac{3}{8} \ln(x^2 + 1) - \frac{3}{4} \arctan(x) + \frac{1}{4} \frac{1}{1 + x^2}$$
$$-\frac{1}{2} \int_{1} \frac{1}{(x^2 + 1)^2} dx$$

To compute $\int \frac{1}{(x^2+1)^2} dx$, we apply the formula:

$$I_{m+1} = \frac{2m-1}{2m}I_m + \frac{1}{2m}\frac{t}{(1+t^2)^m}$$

Where $I_m = \int \frac{1}{(x^2+1)^m} dx$.

Example

(continued):

$$I_2 = \frac{1}{2}I_1 + \frac{1}{2}\frac{x}{1+x^2}$$
$$\frac{1}{2}I_1 = \frac{1}{2}\arctan(x) + C$$

In conclusion, we have:

$$\int f(x) dx = \frac{3}{4} \ln|x - 1| - \frac{3}{8} \ln(x^2 + 1) - \frac{3}{4} \arctan(x) + \frac{1}{4} \frac{1}{1 + x^2}$$
$$-\frac{1}{4} \arctan(x) - \frac{1}{4} \frac{x}{1 + x^2} + K$$

where K is the constant of integration.

CHAPTER 2 PRIMITIVES AND INTEGRALS

Mathematical Analysis 1, ENSIA 2024

PRIMITIVES AND INTEGRALS

Part IV

Primitives reducible to those of rational functions

- Rational fractions in sine and cosine
- BIOCHE Rules
- Trigonometric polynomials
- Rational functions in hyperbolic sine and cosine
- Functions containing radicals

Definition

A polynomial function of two real variables is defined as an application $P: \mathbb{R}^2 \longrightarrow \mathbb{R}$ where $(x,y) \longrightarrow P(x,y) = \sum_{i=0}^n \sum_{j=0}^m a_{ij} \cdot x^i \cdot y^j$, where $a_{ij} \in \mathbb{R}$.

A rational function of two real variables is defined as the quotient of two polynomial functions of two real variables.

"General Method: Let $(x, y) \longrightarrow R(x, y) = \frac{P(x, y)}{Q(x, y)}$ be a rational function of two real variables. We aim to find the antiderivatives of:

$$f(x) = R(\cos(x), \sin(x))$$

where $x \in I \subset]-\pi, \pi[$ and f is continuous on I. By making the change of variable:

$$t = \tan\left(\frac{x}{2}\right) \quad \Rightarrow \quad x = 2\arctan(t)$$

we reduce the problem to the calculation of antiderivatives of a rational function in t."

"We have:

$$\sin(x) = \frac{2\sin\left(\frac{x}{2}\right)\cos\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right) + \cos^2\left(\frac{x}{2}\right)} = \frac{2t}{1+t^2}$$
$$\cos(x) = \frac{\sin^2\left(\frac{x}{2}\right) - \cos^2\left(\frac{x}{2}\right)}{\sin^2\left(\frac{x}{2}\right) + \cos^2\left(\frac{x}{2}\right)} = \frac{1-t^2}{1+t^2}$$
$$dx = \frac{2}{1+t^2}dt$$

Where $t = \tan\left(\frac{x}{2}\right)$.

Therefore,

$$\int R(\cos(x), \sin(x)) dx = \int R\left(\frac{1-t^2}{1+t^2}, \frac{2t}{1+t^2}\right) \frac{2}{1+t^2} dt$$

Note: Instead of taking $I \subset]\pi, \pi[$, we could have taken $I_k \subset]\pi + 2k\pi, \pi + 2k\pi[$, and set in this case..."

Example

$$\int \frac{1}{2 + \cos(x)} \, dx \quad , \quad x \in]-\pi, \pi[$$

$$\int \frac{1}{2 + \cos(x)} \, dx = \int \frac{\frac{2}{1 + t^2}}{\frac{2 + (1 - t^2)}{1 + t^2}} \, dt = 2 \int \frac{1}{3 + t^2} \, dt$$

Let $t = \sqrt{3}u$, which implies $dt = \sqrt{3}du$.

$$\Rightarrow \int \frac{1}{1+\left(rac{t}{\sqrt{3}}
ight)^2} dt = \int \frac{\sqrt{3}}{1+u^2} du = \sqrt{3}\arctan(u) + C$$

$$\Rightarrow \int \frac{1}{2 + \cos(x)} dx = \frac{2}{3} \int \frac{1}{1 + \left(\frac{t}{\sqrt{3}}\right)^2} dt = \frac{2}{\sqrt{3}} \arctan\left(\frac{t}{\sqrt{3}}\right) + C$$

March 24, 2024

"In the search for primitives of rational functions involving sine and cosine, before performing the variable change $t = \tan\left(\frac{x}{2}\right)$, which can be lengthy, we check if other variable changes are possible.

It suffices that the expression $\omega(x) = R(\cos(x), \sin(x)) dx$ is invariant under one of the following cases:

$$\omega(-x) = \omega(x)$$

In such a case, we can use the following property:

$$\int R(\cos(x),\sin(x))\,dx = -\int g(\cos(x))\sin(x)\,dx$$

We set t = cos(x) to simplify the integration."

$$\omega(\pi - x) = \omega(x)$$

In this case:

$$\int R(\cos(x), \sin(x)) dx = \int g(\sin(x)) \cos(x) dx$$
$$= \int g(\sin(x)) (\sin(x))' dx$$

We set $t = \sin(x)$.

$$\omega(\pi + x) = \omega(x)$$

In this case:

$$\int R(\cos(x),\sin(x))\,dx = \int g(\tan(x))\tan(x)'\,dx$$

We set $t = \tan(x)$.

It is essential to remember that:

$$\frac{d}{dx}(-x) = -\frac{d}{dx}x$$

$$\frac{d}{dx}(\pi - x) = -\frac{d}{dx}x$$

$$\frac{d}{dx}(\pi + x) = \frac{d}{dx}x$$

Example

Antiderivatives of $f(x) = \frac{1}{\sin(x)}$, where $x \in]0, \pi[$.

$$\omega(x) = \frac{1}{\sin(x)} \, dx$$

satisfies:

$$\omega(-x) = \omega(x)$$

$$\int \frac{1}{\sin(x)} dx = \int \frac{\sin(x)}{\sin^2(x)} dx = -\int \frac{(\cos(x))'}{1 - \cos^2(x)} dx = -\int \frac{1}{1 - t^2} dt$$

$$\int \frac{1}{\sin(x)} dx = \frac{1}{2} \int \frac{1}{t-1} dt - \frac{1}{2} \int \frac{1}{t+1} dt = \frac{1}{2} \ln \left| \frac{t-1}{t+1} \right| + C$$

Example

$$\int \frac{1}{\sin(x)} dx = \frac{1}{2} \ln \left| \frac{\cos(x) - 1}{\cos(x) + 1} \right| + C = \ln \left| \tan \left(\frac{x}{2} \right) \right| + C$$

The last equality comes from the relation:

$$\cos(x) = 1 - 2\sin^2\left(\frac{x}{2}\right) = 2\cos^2\left(\frac{x}{2}\right) - 1$$

Example

Antiderivatives of $f(x) = \frac{1}{\sin(x)(1+\cos^2(x))}$, where $x \in]0, \pi[$.

$$\omega(x) = \frac{1}{\sin(x)(1+\cos^2(x))} dx$$

satisfies:

$$\omega(-x) = \omega(x)$$

$$\int \frac{1}{\sin(x)(1+\cos^2(x))} dx = \int \frac{\sin(x)}{\sin^2(x)(1+\cos^2(x))} dx$$
$$= -\int \frac{(\cos(x))'}{(1-\cos^2(x))(1+\cos^2(x))} dx$$

Example

$$\int \frac{1}{\sin(x)(1+\cos^2(x))} dx = -\int \frac{1}{(1-t^2)(1+t^2)} dt$$

$$= -\int \frac{A}{(1-t)} + \frac{B}{(1+t)} + \frac{Ct+D}{(1+t^2)} dt$$

$$= -\int \left(\frac{A}{(1-t)} + \frac{B}{(1+t)} + \frac{Ct+D}{(1+t^2)}\right) dt$$

March 24, 2024 14 / 55

Example

(continued):

$$A = \lim_{t \to 1} \frac{(1-t)}{(1-t^2)(1+t^2)} = \frac{1}{4}$$

$$B = \lim_{t \to -1} \frac{(1+t)}{(1-t^2)(1+t^2)} = \frac{1}{4}$$

$$\lim_{t \to \infty} \frac{t}{(1-t^2)(1+t^2)} = 0 = -A + B + C \implies C = 0$$

For t = 0, we find $1 = A + B + D \implies D = \frac{1}{2}$.

Therefore:

$$\int \frac{1}{\sin(x)(1+\cos^2(x))} dx = \frac{1}{4} \ln \left(\frac{1-\cos(x)}{1+\cos(x)} \right) - \frac{1}{2} \arctan(\cos(x)) + C$$

Example

Antiderivatives of $f(x) = \frac{1}{\cos(x)}$, where $x \in \left] -\frac{\pi}{2}$, $\frac{\pi}{2} \right[$.

$$\omega(x) = \frac{1}{\cos(x)} \, dx$$

satisfies:

$$\omega(\pi - x) = \omega(x)$$

$$\int \frac{1}{\cos(x)} \, dx = \int \frac{\cos(x)}{\cos^2(x)} \, dx = \int \frac{(\sin(x))'}{1 - \sin^2(x)} \, dx = \int \frac{1}{1 - t^2} \, dt$$

Example

$$\int \frac{1}{\cos(x)} dx = \frac{1}{2} \int \frac{1}{1+t} dt - \frac{1}{2} \int \frac{1}{t-1} dt = \frac{1}{2} \ln \left| \frac{t+1}{t-1} \right| + C$$

$$\int \frac{1}{\cos(x)} dx = \frac{1}{2} \ln \left(\frac{1+\sin(x)}{1-\sin(x)} \right) + C$$

Example

Antiderivatives of $f(x) = \frac{1}{\sin^2(x) + 3\cos^2(x)}$, where $x \in \left] - \frac{\pi}{2}, \frac{\pi}{2} \right[$.

$$\omega(x) = \frac{1}{\sin^2(x) + 3\cos^2(x)} \, dx$$

satisfies:

$$\omega(\pi + x) = \omega(x)$$

$$\int \frac{1}{\sin^2(x) + 3\cos^2(x)} dx = \int \frac{1}{\cos^2(x)(3 + \tan^2(x))} dx$$
$$= \int \frac{(\tan(x))'}{3 + \tan^2(x)} dx = \int \frac{1}{3 + t^2} dt$$
$$\int \frac{1}{\sin^2(x) + 3\cos^2(x)} dx = \frac{1}{3} \int \frac{1}{1 + (-t_-)^2} dt$$

Example

(continued): Let's continue with the integration:

Let $t = \sqrt{3}u$, then $dt = \sqrt{3}du$.

$$\int \frac{1}{1 + \left(\frac{t}{\sqrt{3}}\right)^2} dt = \int \frac{\sqrt{3}}{1 + u^2} du = \sqrt{3} \arctan(u) + C$$

Now, substitute back $t = \sqrt{3}u$:

$$\int \frac{1}{1 + \left(\frac{t}{\sqrt{3}}\right)^2} dt = \sqrt{3} \arctan\left(\frac{t}{\sqrt{3}}\right) + C$$

Finally, multiply by $\frac{1}{3}$:

$$\int \frac{1}{\sin^2(x) + 3\cos^2(x)} \, dx = \frac{1}{\sqrt{3}} \arctan\left(\frac{\tan(x)}{\sqrt{3}}\right) + C$$

March 24, 2024

It is about calculating:

$$I_{(n,m)} = \int \sin^n(x) \cos^m(x) \, dx$$

1st case: n = 2p + 1

$$\begin{split} I_{(n,m)} &= \int \sin^{2p}(x) \cos^m(x) \sin(x) \, dx \\ I_{(n,m)} &= \int (1 - \cos^2(x))^p \cos^m(x) \sin(x) \, dx \\ I_{(n,m)} &= -\int (1 - \cos^2(x))^p \cos^m(x) (\cos(x))' \, dx \\ I_{(n,m)} &= -\int (1 - t^2)^p t^m \, dt \end{split}$$

2nd case: m = 2q + 1

$$I_{(n,m)} = \int \sin^n(x) \cos^{2q}(x) \cos(x) dx$$

$$I_{(n,m)} = \int \sin^n(x) (1 - \sin^2(x))^q (\sin(x))' dx$$

$$I_{(n,m)} = \int t^n (1 - t^2)^q dt$$

3rd case: n = 2p and m = 2q To do this, we switch to complex numbers:

$$cos(x) = \frac{e^{ix} + e^{-ix}}{2}, \quad sin(x) = \frac{e^{ix} - e^{-ix}}{2i}$$

Then, we linearize the expression $\sin^n(x)\cos^m(x)$.

Example

$$\int \sin^3(x) \cos^4(x) \, dx = -\int (1 - \cos^2(x)) \cos^4(x) (-\sin(x)) \, dx$$
$$= -\int (1 - t^2) t^4 \, dt = -\frac{t^5}{5} + \frac{t^7}{7} + C$$
$$= -\frac{\cos^5(x)}{5} + \frac{\cos^7(x)}{7} + C$$

March 24, 2024 22 / 55

Example

$$\int \sin^4 x \cos^5 x \, dx = \int_1 \sin^4 x \, \cos^4 x \cos x) \, dx$$

$$= \int \sin^4 x \, \cos^4 x \sin' x) \, dx$$

$$= \int \sin^4 x \, (1 - \sin^2 x)^2 \sin' x) \, dx$$

$$= \int \sin^4 x \, (1 - \sin^2 x)^2 (\sin' x)) \, dx$$

$$= \int t^4 (1 - t^2)^2 \, dt)$$

$$= \frac{1}{9} t^9 - \frac{2}{7} t^7 + \frac{1}{5} t^5 + C$$

$$= \frac{1}{9} \sin^9 x - \frac{2}{7} \sin^7 x + \frac{1}{5} \sin^5 x + C$$

Example

$$\int \sin^2 x \cos^4 x \, dx$$

$$\sin^2 x \cos^4 x = \left(\frac{e^{ix} - e^{-ix}}{2i}\right)^2 \left(\frac{e^{ix} + e^{-ix}}{2}\right)^4$$

$$= \frac{1}{32} (1 - \cos^2 x) (e^{4ix} + 4e^{2ix} + 6e^{ix} e^{-ix} + 4e^{-2ix} + e^{-4ix})$$

$$= \frac{1}{32} (1 - \cos 2x) (2\cos 4x + 8\cos 2x + 6)$$

$$= \frac{1}{16} (1 - \cos 2x) (\cos 4x + 4\cos 2x + 3)$$

Example

(continuation):

$$\sin^2 x \cos^4 x = -\frac{1}{16} \cos 2x \cos 4x - \frac{1}{4} \cos^2 2x$$
$$-\frac{3}{16} \cos 2x + \frac{1}{16} (\cos 4x + 4 \cos 2x + 3)$$

Using trigonometric identities:

$$\cos 2x \cos 4x = \frac{1}{2}(\cos 6x + \cos 2x)$$

$$\cos^2 2x = \frac{1 + \cos 4x}{2}$$

$$\sin^2 x \cos^4 x = \frac{1}{32}(-\cos 6x - 2\cos 4x + \cos 2x + 2)$$

Example

(continuation):

$$\int \sin^2 x \cos^4 x \, dx = \int \frac{1}{32} (-\cos 6x - 2\cos 4x + \cos 2x + 2) \sqrt{24} \, dx$$
$$= -\frac{1}{192} \sin 6x - \frac{1}{64} \sin 4x + \frac{1}{64} \sin 2x + \frac{1}{16} x + C$$

March 24, 2024 26 / 55

The goal is to find the primitives of $x \mapsto R(\cosh(x), \sinh(x))$, where R is a rational function of two real variables.

The change of variable $t = e^x$ or even $t = \tanh\left(\frac{x}{2}\right)$ leads to:

$$\cosh(x) = \frac{1+t^2}{1-t^2}, \quad \sinh(x) = \frac{2t}{1-t^2}, \quad \text{and} \quad dx = \frac{2dt}{1-t^2}$$

This leads us to primitives of rational functions in t.

March 24, 2024 27 / 55

However, before undertaking such variable changes, it is more advantageous to see if other changes are possible, such as $t = \cosh(x)$, $t = \sinh(x)$, or $t = \tanh(x)$.

To do this, we replace cosh(x) with cos(x), sinh(x) with sin(x), and then apply the rules of BIOCHE seen previously.

Example

Calculate:

$$\int \frac{1}{1+\cosh(x)} dx$$

$$\int \frac{1}{1+\cosh(x)} dx = 2 \int \frac{e^x}{e^{2x} + 2e^x + 1} dx$$

Example

(continuation):

$$2\int \frac{e^x}{(e^x+1)^2} dx = 2\int \frac{e^x}{(e^x+1)^2} dx = -\frac{2}{1+e^x} + C$$

Hence:

$$\int \frac{1}{1+\cosh(x)} dx = -\frac{2}{1+e^x} + C.$$

March 24, 2024 29 / 55

Example

Calculate:

$$\int \frac{\sinh^3(x)}{\cosh(x)} \, dx$$

$$\int \frac{\sinh^3(x)}{\cosh(x)} dx = \int \frac{\sinh^2(x)}{\cosh(x)} \sinh(x) dx = \int (\cosh^2(x) - 1) dx = \int \frac{t^2 - 1}{t} dt$$

$$= \int (t - \frac{1}{t}) dt = \frac{1}{2} t^2 - \ln|t| + C = \frac{1}{2} \cosh^2(x) - \ln|\cosh(x)| + C$$

Rational functions in hyperbolic sine and cosine

Example

$$\int \frac{1}{\cosh 3x - \cosh x} \, dx$$

Let
$$\omega(x)=\frac{1}{\cosh 3x-\cosh x}$$
 such that $\omega(\pi-x)=\omega(x)$. Applying the BIOCHE rule, let $t=\sin x$ for the trigonometric function

$$\frac{1}{\cos 3x - \cos x}$$
.

By analogy, let $t = \sinh x$.

$$\cosh 3x = \cosh(2x + x) = \cosh 2x \cosh x + \sinh x \sinh 2x$$

$$\cosh 3x = (\cosh^2 x + \sinh^2 x) \cosh x + 2 \cosh x \sinh^2 x$$

$$\cosh 3x = \cosh x + 4 \sinh^2 x \cosh x$$

Rational functions in hyperbolic sine and cosine

Example

(continued):

$$\cosh(3x) - \cosh(x) = 4\sinh^2(x)\cosh(x)$$

$$\int \frac{1}{\cosh^3(x) - \cosh(x)} dx = \frac{1}{4} \int \frac{1}{\sinh^2(x) \cosh(x)} dx$$
$$= \frac{1}{4} \int \frac{\cosh(x)}{\sinh^2(x) \cosh^2(x)} dx$$

Rational functions in hyperbolic sine and cosine

Example

(continued): So, the integral becomes:

$$= \frac{1}{4} \int \frac{1}{t^2 (1 + t^2)} dt$$

$$= \frac{1}{4} \int \left(\frac{1}{t^2} - \frac{1}{1 + t^2}\right) dt$$

$$= -\frac{1}{4t} - \frac{1}{4} \arctan(t) + C$$

$$= -\frac{1}{4 \sinh(x)} - \frac{1}{4} \arctan(\sinh(x)) + C$$

To find the primitives of $\int R(x, \sqrt{ax^2 + bx + c}) dx$, where R is a rational function of two real variables, we refer to the canonical expression of the trinomial $ax^2 + bx + c$, which can be transformed into one of the three forms depending on the cases:

- 1. **First case:** $\sqrt{k^2-t^2}$ We can set $t=k\cos(\theta)$ with $\theta\in[0,\pi]$ or $t=k\sin(\theta)$ with $\theta\in[-\pi/2,\pi/2]$.
- 2. **Second case:** $\sqrt{k^2 + t^2}$ We set $t = k \sinh(\theta)$ with $\theta \in \mathbb{R}$.
- 3. **Third case:** $\sqrt{t^2 k^2}$ If $t \ge k$, we set $t = k \cosh(\theta)$ with $\theta \ge 0$.
- If $t \le -k$, we set $t = -k \cosh(\theta)$ with $\theta \ge 0$.

Depending on the case, we perform the appropriate variable change to simplify the expression and make the calculation of the primitive more accessible.

Example

Calculete the integral $\int \frac{1}{\sqrt{x^2+2x+3}} dx$,

$$\int \frac{1}{\sqrt{x^2 + 2x + 3}} \, dx = \int \frac{1}{\sqrt{2 + (x + 1)^2}} \, dx = \int \frac{1}{\sqrt{2} \sqrt{1 + \left(\frac{x + 1}{\sqrt{2}}\right)^2}} \, dx$$

Let's make the substitution: $\frac{x+1}{\sqrt{2}} = t$, which implies $dx = \sqrt{2} dt$.

$$\int \frac{1}{\sqrt{x^2 + 2x + 3}} dx = \frac{1}{\sqrt{2}} \int \frac{\sqrt{2}}{\sqrt{1 + t^2}} dt = \operatorname{Argsh} t + C = \operatorname{Argsh} \left(\frac{x + 1}{\sqrt{2}}\right)$$

March 24, 2024 35 / 55

Example

Now, we want to find $\int \frac{3x+2}{\sqrt{x^2+2x+3}} dx$.

$$\int \frac{3x+2}{\sqrt{x^2+2x+3}} \, dx = \int \frac{\frac{3}{2}(2x+2)-1}{\sqrt{x^2+2x+3}} \, dx$$

$$= \frac{3}{2} \int \frac{2x+2}{\sqrt{x^2+2x+3}} \, dx - \int \frac{1}{\sqrt{x^2+2x+3}} \, dx$$

$$= \frac{3}{2} \left(2\sqrt{x^2+2x+3}\right) + C_1 - \operatorname{Argsh}\left(\frac{x+1}{\sqrt{2}}\right) + C_2$$

$$= 3\sqrt{x^2+2x+3} - \operatorname{Argsh}\left(\frac{x+1}{\sqrt{2}}\right) + C$$

March 24, 2024 36 / 55

Example

$$\int \frac{1}{\sqrt{x^2 + 2x + 3}} dx$$

$$\int \frac{1}{\sqrt{1 + 2x - x^2}} dx = \int_1 \frac{1}{\sqrt{2 - (x - 1)^2}} dx$$

We set:

$$x-1=\sqrt{2}\sin\theta \quad \left(\text{with } |\theta|<\frac{\pi}{2}\right) \implies dx=\sqrt{2}\cos\theta\,d\theta$$

March 24, 2024 37 / 55

Example

$$\implies \int \frac{1}{\sqrt{1+2x-x^2}} \, dx = \int \frac{\sqrt{2} \cos \theta}{\sqrt{2-2\sin^2 \theta}} \, d\theta = \int \frac{\cos \theta}{\sqrt{1-\sin^2 \theta}} \, d\theta$$

$$=\int d\theta = \theta + C = Arcsin\left(\frac{x-1}{\sqrt{2}}\right) + C$$

Example

Calculete

$$\int \sqrt{x^2 + 3x + 2} \, dx, \quad x \ge -1$$

$$\int \sqrt{x^2 + 3x + 2} \, dx = \int \sqrt{(x + 3/2)^2 - (1/2)^2} \, dx$$

We set:

$$x + 3/2 = 1/2 \cosh \theta$$
 (for $\theta \ge 0$) $\Longrightarrow dx = 1/2 \sinh \theta d\theta$

$$\int \sqrt{x^2 + 3x + 2} \, dx = \int \frac{1}{2} \sqrt{(1/2 \cosh \theta)^2 - (1/2)^2} \sinh \theta \, d\theta$$

Example

Continued

$$\int \sqrt{x^2 + 3x + 2} \, dx = \frac{1}{4} \int \sqrt{\cosh^2 \theta - 1} \sinh \theta \, d\theta$$

$$= \frac{1}{4} \int \sqrt{\sinh^2 \theta} \sinh \theta \, d\theta$$

$$= \frac{1}{4} \int \sinh^2 \theta \, d\theta$$

$$= \frac{1}{8} \int (\cosh 2\theta - 1) \, d\theta$$

$$= \frac{1}{16} \sinh 2\theta - \frac{1}{8} \theta + C$$

Example

Continued

$$= \frac{1}{8}\cosh\theta\sqrt{\cosh^2\theta - 1} - \frac{1}{8}\theta + C$$

$$= \frac{1}{8}(2x+3)\sqrt{(2x+3)^2 - 1} - \frac{1}{8}\operatorname{Argcosh}(2x+3) + C$$

$$= \frac{1}{4}(2x+3)\sqrt{x^2 + 3x + 2} - \frac{1}{8}\operatorname{Argcosh}(2x+3) + C$$

March 24, 2024 41 / 55

Example

$$\int \frac{1}{(4x-x^2)^{3/2}} \, dx = \int_1 \frac{1}{(4-(x-2)^2)^{3/2}} \, dx$$

We set:

$$x-2=2\sin\theta, |\theta|<\frac{\pi}{2} \implies dx=2\cos\theta d\theta$$

$$\int \frac{1}{(4x - x^2)^{3/2}} \, dx = \int \frac{2\cos\theta}{(4 - 4\sin^2\theta)^{3/2}} \, d\theta$$

$$=\frac{1}{4}\int\frac{\cos\theta}{(1-\sin^2\theta)^{3/2}}\,d\theta=\frac{1}{4}\int\frac{\cos\theta}{(\cos^3\theta)}\,d\theta$$

March 24, 2024 42 / 55

Example

Continued

$$\int \frac{1}{(4x - x^2)^{3/2}} \, dx = \frac{1}{4} \int \frac{1}{\cos^2 \theta} \, d\theta = \frac{1}{4} \tan \theta + C = \frac{1}{4} \frac{\sin \theta}{\cos \theta} + C$$

$$= \frac{1}{4} \frac{\sin \theta}{\sqrt{1 - \sin^2 \theta}} + C = \frac{1}{4} \frac{\frac{x - 2}{2}}{\sqrt{4x - x^2}} + C = \frac{1}{4} \frac{x - 2}{\sqrt{4x - x^2}} + C$$

March 24, 2024 43 / 55

Example

$$\int \frac{1}{x\sqrt{x^2 + x + 1}} \, dx = \int \frac{1}{x\sqrt{3/4 + \left(x + \frac{1}{2}\right)^2}} \, dx = \frac{2}{\sqrt{3}} \int \frac{1}{x\sqrt{1 + \left(\frac{2x + 1}{\sqrt{3}}\right)^2}}$$

We let $\frac{2x+1}{\sqrt{3}} = \sinh \theta$ which implies $dx = \frac{\sqrt{3}}{2} \cosh \theta \ d\theta$. Substituting this, we get:

$$\int \frac{1}{x\sqrt{x^2 + x + 1}} dx = \frac{2}{\sqrt{3}} \int \frac{1}{\sinh \theta - \frac{1}{\sqrt{3}}} d\theta$$

March 24, 2024 44 / 55

Example

Continued We make the substitution $t = e^{\theta}$ which implies $d\theta = \frac{1}{t}dt$. Substituting this, we get:

$$\begin{split} \frac{2}{\sqrt{3}} \int \frac{1}{\sinh \theta - \frac{1}{\sqrt{3}}} \, d\theta &= \frac{4}{\sqrt{3}} \int_{1} \frac{1}{(t - \frac{1}{\sqrt{3}})^{2} - \frac{4}{3}} \, dt \\ &= \frac{4}{\sqrt{3}} \int \frac{1}{(t - \sqrt{3})(t + \frac{1}{\sqrt{3}})} \, dt \\ &= \int \left(\frac{1}{t - \sqrt{3}} - \frac{1}{t + \frac{1}{\sqrt{3}}} \right) \, dt \\ &= \ln \left| \frac{t - \sqrt{3}}{t + \frac{1}{\sqrt{3}}} \right| + C \end{split}$$

March 24, 2024 45 / 55

Example

Continued

$$\theta = \operatorname{ArgSh}\left(\frac{2x+1}{\sqrt{3}}\right) = \ln\left(\frac{2x+1}{\sqrt{3}} + \frac{2}{\sqrt{3}}\sqrt{x^2 + x + 1}\right)$$
$$\Rightarrow t = e^{\theta} = \frac{2x+1}{\sqrt{3}} + \frac{2}{\sqrt{3}}\sqrt{x^2 + x + 1}$$
$$\int \frac{1}{x\sqrt{x^2 + x + 1}} dx = \ln\left|\frac{x - 1 + \sqrt{x^2 + x + 1}}{x + 1 + \sqrt{x^2 + x + 1}}\right| + C$$

March 24, 2024 46 / 55

To find the primitives of functions of the form $\frac{P_n(x)}{\sqrt{ax^2+bx+c}}$, we can use the reduction formula:

$$\int \frac{P_n(x)}{\sqrt{ax^2 + bx + c}} dx = Q_{n-1}(x)\sqrt{ax^2 + bx + c} + \lambda \int \frac{1}{\sqrt{ax^2 + bx + c}} dx$$

To determine the coefficients, we differentiate, multiply by $\sqrt{ax^2 + bx + c}$, and then identify terms.

March 24, 2024 47 / 55

Example

$$\int \frac{x^2 + 1}{\sqrt{x^2 + 2x + 3}} \, dx = (ax + b)\sqrt{x^2 + 2x + 3} + \lambda \int_1 \frac{1}{\sqrt{x^2 + 2x + 3}} \, dx$$

We differentiate:

$$\frac{x^2+1}{\sqrt{x^2+2x+3}} = a\sqrt{x^2+2x+3} + (ax+b)\frac{x+1}{\sqrt{x^2+2x+3}} + \frac{\lambda}{\sqrt{x^2+2x+3}}$$

4□▶ 4□▶ 4□▶ 4 □▶ 3□ 900

March 24, 2024 48 / 55

Example

$$x^{2} + 1 = a(x^{2} + 2x + 3) + (ax + b)(x + 1) + \lambda$$

By identification, we find:

$$\begin{cases} 2a = 1\\ 3a + b = 0\\ 3a + b + \lambda = 1 \end{cases}$$
$$\begin{cases} a = \frac{1}{2}\\ b = -\frac{3}{2}\\ \lambda = 1 \end{cases}$$

March 24, 2024 49 / 55

Example

Continued

$$\int \frac{x^2 + 1}{\sqrt{x^2 + 2x + 3}} dx = \left(\frac{1}{2}x - \frac{3}{2}\right) \sqrt{x^2 + 2x + 3} + \int \frac{1}{\sqrt{x^2 + 2x + 3}} dx$$

The integral $\int_1 \frac{1}{\sqrt{x^2+2x+3}} dx$ has been calculated. (see Example 1, primitives of: $x \mapsto Arsh(x, \sqrt{ax^2+bx+c})$)

$$\int \frac{1}{\sqrt{x^2 + 2x + 3}} dx = Arsh\left(\frac{x+1}{\sqrt{2}}\right) + C$$

Hence:

$$\int \frac{x^2 + 1}{\sqrt{x^2 + 2x + 3}} dx = \left(\frac{1}{2}x - \frac{3}{2}\right) \sqrt{x^2 + 2x + 3} + Arsh\left(\frac{x + 1}{\sqrt{2}}\right) + C$$

Primitives of functions in the form $R(x, \left(\frac{ax+b}{cx+d}\right)^{r_1}, \left(\frac{ax+b}{cx+d}\right)^{r_2}, \ldots, \left(\frac{ax+b}{cx+d}\right)^{r_n})$ with $ad-bc \neq 0$ and r_1, r_2, \ldots, r_n as positive rational numbers. Let $\frac{ax+b}{cx+d} = t^m$, where m is the least common denominator.

Example

$$\int \frac{1}{x\sqrt{\frac{1-x}{1+x}}} \, dx$$

We set:

$$\frac{1-x}{1+x} = t^2 \implies x = \frac{1-t^2}{1+t^2} \implies dx = -\frac{4t}{(1+t^2)^2} dt$$

Thus,

$$\int \frac{1}{x\sqrt{\frac{1-x}{1+x}}} \, dx$$

=

$$\int \frac{4t^2}{(1-t^2)(1+t^2)} dt$$

Example

(continued):

$$\int \frac{1}{x\sqrt{\frac{1-x}{1+x}}} dx = -\int \left(\frac{A}{1-t} + \frac{B}{1+t} + \frac{Ct+D}{1+t^2}\right) dt$$

Where:
$$A = B = \frac{1}{4}$$
, $C = 0$, and $D = -\frac{1}{2}$

$$\int \frac{1}{x\sqrt{\frac{1-x}{1+x}}} dx = -\int \left(\frac{\frac{1}{4}}{1-t} + \frac{\frac{1}{4}}{1+t} - \frac{\frac{1}{2}}{1+t^2}\right) dt$$

March 24, 2024 53 / 55

Example

(continued):

$$\int \frac{1}{x\sqrt{\frac{1-x}{1+x}}}\,dx = -\left(\frac{1}{4}\ln|1+t| - \frac{1}{4}\ln|1-t| - \frac{1}{2}\arctan(t)\right) + C$$

$$\int \frac{1}{x\sqrt{\frac{1-x}{1+x}}}\,dx = \frac{1}{4}\ln\left(\frac{1-t}{1+t}\right) - \frac{1}{2}\arctan(t) + C$$

$$\int \frac{1}{x\sqrt{\frac{1-x}{1+x}}}\,dx = \frac{1}{4}\ln\left(\frac{\sqrt{1+x}-\sqrt{1-x}}{\sqrt{1+x}+\sqrt{1-x}}\right) - \frac{1}{2}\arctan\left(\sqrt{\frac{1-x}{1+x}}\right) + C$$

Example

$$\int \frac{1}{(\sqrt[3]{x^2}(2+3\sqrt[3]{x}))} \, dx, \quad x > 0$$

Let $x = t^3$, then $dx = 3t^2 dt$:

$$\int \frac{1}{(\sqrt[3]{x^2}(2+3\sqrt[3]{x}))} dx = \int \frac{3t^2}{t^2(2+3t)} dt = \int \frac{3}{(2+3t)} dt$$

$$\int \frac{1}{(\sqrt[3]{x^2}(2+3\sqrt[3]{x}))} dx = \ln|2+3t| + C = \ln|2+3\sqrt[3]{x}| + C$$

March 24, 2024 55 / 55