Условные распределения, условные математические ожидания

Рассмотрим две дискретные случайные величины: ξ со значениями $x_1, x_2, ..., x_N$, и η , принимающую значения $y_1, y_2, ..., y_M$. Совместное распределение этих случайных величин есть набор вероятностей

$$p_{ik} = P\{\xi = x_i, \eta = y_k\}$$

а их распределения по отдельности задаются вероятностями

$$p_i = P\{\xi = x_i\}$$
 и $q_k = P\{\eta = y_k\}.$

Здесь удобно будет использовать следующее представление дискретной случайной величины ξ ,

$$\xi(\omega) = \sum_{i=1}^{N} \mathcal{I}_{A_i}(\omega) x_i,$$

где \mathcal{I}_{A_i} обозначает индикатор множества $A_i = \{\omega \colon \xi(\omega) = x_i\}$,

$$\mathcal{I}_{A_i}(\omega) = \begin{cases} 1, \omega \in A_i \\ 0, \omega \notin A_i \end{cases};$$

поскольку $E\mathcal{I}_{A_i}(\omega) = P(A_i) = p_i$, то математическое ожидание случайной величины:

$$E\xi = \sum_{i=1}^{N} x_i P(A_i) = \sum_{i=1}^{N} x_i p_i.$$

Зафиксируем некоторое событие $B_k = \{\eta = y_k\}$ и рассмотрим условные вероятности $P(A_i/B_k)$, i=1,2,...,N; эти вероятности составляют распределение, поскольку

$$\sum_{i=1}^{N} P(A_i/B_k) = P\left(\sum_{i=1}^{N} A_i/B_k\right) = P(\Omega/B_k) = 1.$$

Если в математическом ожидании случайной величины ξ заменить p_i на эти условные вероятности, то получим конструкцию $\sum_{i=1}^N x_i P(A_i/B_k)$, которую естественно назвать условным математическим ожиданием.

Определение. Условное математическое ожидание случайной величины ξ при условии $\eta = y_k$ равно

$$E(\xi/\eta = y_k) = \sum_{i=1}^{N} x_i P(\xi = x_i/\eta = y_k) = \sum_{i=1}^{N} x_i \frac{p_{ik}}{q_k}.$$
 (1)

Легко проверить, что при фиксированном k это выражение действительно дает математическое ожидание. Если случайные величины ξ и η независимы, то условное математическое ожидание совпадает с обычным: $E(\xi/\eta=y_k)=E\xi$. Таким образом, мы получили условное распределение случайной величины ξ и ее условное математическое ожидание.

Выражение для $E(\xi/\eta=y_k)$ определяет некоторую функцию от случайной величины η ; обозначим эту функцию τ : $\tau(\omega)=E(\xi/\eta=y_k) \Leftrightarrow \eta(\omega)=y_k$. Иначе это можно записать в виде равенства, определяющего дискретную случайную величину:

$$\tau = \sum_{k=1}^{M} \mathcal{I}_{B_k} E(\xi/\eta = y_k).$$

Определение. Условное математическое ожидание ξ относительно η есть дискретная случайная величина

$$E(\xi/\eta) = \sum_{k=1}^{M} \mathcal{I}_{B_k} E(\xi/\eta = y_k) = \sum_{k=1}^{M} \mathcal{I}_{B_k} \sum_{i=1}^{N} x_i \frac{p_{ik}}{q_k}.$$

Основные свойства условного математического ожидания $E(\xi/\eta)$ сформулируем в следующей теореме.

Теорема 1. Справедливы следующие свойства условного математического ожилания:

- 1) Если случайные величины ξ и η независимы, то $E(\xi/\eta)$ является вырожденной случайной величиной, $E(\xi/\eta) = E\xi$.
- 2) Повторное математическое ожидание равно обычному: $E(E(\xi/\eta)) = E\xi$.
- 3) Если f некоторая заданная функция, то

$$E(f(\eta)\xi/\eta)) = f(\eta) E(\xi/\eta).$$

Доказательство. Первое утверждение очевидно. Второе следует из свойств математического ожидания и условной вероятности,

$$E(E(\xi/\eta)) = \sum_{k=1}^{M} q_k \sum_{i=1}^{N} x_i \frac{p_{ik}}{q_k} = \sum_{i=1}^{N} x_i \sum_{k=1}^{M} p_{ik} = E\xi.$$

Третье свойство также получается непосредственно:

$$E(f(\eta)\xi/\eta)) = E\tau = \sum_{k=1}^{M} q_k E(f(\eta)\xi/\eta = y_k) = \sum_{k=1}^{M} q_k \sum_{i=1}^{N} f(y_k) x_i \frac{p_{ik}}{q_k} =$$

$$= \sum_{k=1}^{M} q_k f(y_k) \sum_{i=1}^{N} x_i \frac{p_{ik}}{q_k} = \sum_{k=1}^{M} \mathcal{I}_{B_k} f(y_k) E(\xi/\eta = y_k) = f(\eta) E(\xi/\eta). \blacksquare$$

Условное распределение для непрерывного распределения построим, исходя из аналогии с дискретным случаем. Пусть ξ и η имеют плотность совместного распределения $p_{\xi,\eta}(x,y)$, соответственно, $p_{\xi}(x)$ - плотность для ξ , а $p_{\eta}(y)$ - для η . В определении условного математического ожидания (1) заменим формально p_{ik} на $p_{\xi,\eta}(x,y)dxdy$, q_k на $p_{\eta}(y)dy$, тогда, выполняя вместо суммирования интегрирование, получим выражение $\int x \frac{p_{\xi,\eta}(x,y)dxdy}{p_{\eta}(y)dy}$, которое естественно принять в качестве определения условного математического ожидания.

Определение. Если ξ и η имеют плотность совместного распределения $p_{\xi,\eta}$ (x,y), то условным математическим ожиданием случайной величины ξ при условии $\eta = y$ назовем

$$E(\xi/\eta=y)=\int_{-\infty}^{\infty}x\frac{p_{\xi,\eta}(x,y)}{p_{\eta}(y)}dx.$$

Функцию

$$p_{\xi/\eta}(x/y) = \frac{p_{\xi,\eta}(x,y)}{p_{\eta}(y)}$$

назовем плотностью условного распределения ξ при условии $\eta = y$; тогда условное математическое ожидание ξ при условии $\eta = y$ можно записать в виде интеграла от условной плотности:

$$E(\xi/\eta=y)=\int_{-\infty}^{\infty}x\cdot p_{\xi/\eta}(x/y)\,dx.$$

Полученное таким образом условное математическое ожидание есть некоторая функция $\tau(y)$ переменной y.

Определение. Условным математическим ожиданием непрерывной случайной величины ξ относительно непрерывной η называется случайна величина $E(\xi/\eta) = \tau(\eta)$, где функция $\tau(y) = E(\xi/\eta = y)$.

Упражнение 1. Доказать утверждения Теоремы 1 для условного математического ожидания непрерывных случайных величин.

Пример 1. Рассмотрим важный для будущего пример вычисления условного математического ожидания: пусть случайные величины ξ , η имеют двумерное нормальное распределение (11.3).

Для краткости будем считать, что математические ожидания a_1 , a_2 равны 0, выполнив очевидное линейное преобразование. Подставляя формулы $p_{\xi,\eta}(x,y)$ и $p_n(y)$ в выражение для условной плотности, запишем

$$p_{\xi/\eta}(x/y) = \frac{\exp(Q)}{\sqrt{2\pi}\sigma_1\sqrt{1-r^2}},$$

где квадратичная форма

$$Q = -\frac{1}{2(1-r^2)} \left[\left(\frac{x}{\sigma_1} \right)^2 - 2r \frac{x}{\sigma_1} \frac{y}{\sigma_2} + \left(\frac{y}{\sigma_2} \right)^2 \right] + \frac{1}{2} \left(\frac{y}{\sigma_2} \right)^2.$$

Выделив в квадратных скобках полный квадрат относительно переменной х,

$$Q = -\frac{1}{2(1-r^2)\sigma_1^2} \left[\left(x - r \frac{\sigma_1}{\sigma_2} y \right)^2 + \left(\frac{y}{\sigma_2} \right)^2 (1-r^2)\sigma_1^2 \right] + \frac{1}{2} \left(\frac{y}{\sigma_2} \right)^2,$$

получаем

$$Q = -\frac{1}{2(1-r^2)\sigma_1^2} \left(x - r \frac{\sigma_1}{\sigma_2} y \right)^2.$$

Поставляя полученное выражение в формулу для условной плотности и возвращая ненулевые математические ожидания a_1 , a_2 , убеждаемся в том, что получена плотность гауссовского распределения

$$p_{\xi/\eta}(x/y) = \frac{\exp\left[-\frac{1}{2(1-r^2)\sigma_1^2}\left(x - (a_1 + r\frac{\sigma_1}{\sigma_2}(y - a_2)\right)^2\right]}{\sqrt{2\pi}\sqrt{1-r^2}\sigma_1}.$$

Итак, для случайных величин, имеющих совместное нормальное распределение, условное распределение также является нормальным с математическим ожиданием

$$E(\xi/\eta) = a_1 + r \frac{\sigma_1}{\sigma_2} (\eta - a_2)$$

(условное математическое ожидание ξ относительно η) и дисперсией

$$D(\xi/\eta) = (1 - r^2)\sigma_1^2.$$

Полученные соотношения в математической статистике будут упоминаться как уравнения нормальной регрессии.