(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 December 2000 (28.12.2000)

PCT

(10) International Publication Number WO 00/78787 A1

- (51) International Patent Classification⁷: C07H 21/04, C07K 1/00, A61K 39/09, 39/38, 38/385, C12N 15/00, 15/09, C12P 21/04, G01N 33/53, 33/569
- (21) International Application Number: PCT/US00/17082
- (22) International Filing Date: 21 June 2000 (21.06.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data: 60/140,084

21 June 1999 (21.06.1999) US

- (71) Applicant (for all designated States except US): UNIVER-SITY OF UTAH RESEARCH FOUNDATION [US/US]; Suite 110, 615 Arapeen Drive, Salt Lake City, UT 84108 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ADDERSON, Elisabeth [US/US]; St. Jude Children's Research Hospital, Room D 2038, 332 N. Lauderdale, Memphis, TN 38105 (US). BOHNSACK, John [US/US]; University of Utah Health Sciences Center, Dept. of Pediatrics, 50 North Medical Drive, Salt Lake City, UT 84132 (US).

- (74) Agent: MADSON & METCALF; 15 West South Temple, Suite 900, Salt Lake City, UT 84101 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- Before the expiration of the time limit for amending the claims and to be republished in the event of receipt of amendments.

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

ISOLATED GENES FROM VIRULENT GROUP B STREPTOCOCCUS AGALACTIAE

1. FIELD OF THE INVENTION

5

10

15

20

25

30

The present invention relates to genes isolated from Group B streptococci ("GBS"). More specifically, the present invention relates to genes that are specific to virulent forms of GBS and methods of using such genes and their products for the diagnosis and treatment of GBS infections.

2. TECHNICAL BACKGROUND

Group B streptococci ("GBS") are a common cause of disease in newborns, pregnant women, and other persons. Common manifestations of these infections include bacteremia, pneumonia, meningitis, endocarditis, and osteoarticular infections. C.J. Baker & M.S. Edwards, *Group B Streptococcal Infections*, in *Infectious Disease of the Fetus and Newborn Infant*, 980-1054 (J.S. Remington & J.O. Klein, eds., 1995); P. Munoz et al., *Arch Int Med* 157:213-216 (1997).

Nearly 3 out of every 1,000 children born are infected with an invasive form of GBS disease. While GBS disease is of great concern in neonates, GBS is also an important pathogen in the general population, in which the incidence of invasive GBS disease is nearly 8 in 100,000. Of these infections, the mortality rate can be as high as 30%.

During childbirth, GBS can pass from the mother to the newborn. By one estimate, up to 30% of pregnant women carry GBS at least temporarily in the vagina or rectum without symptoms. Infants born to these women become colonized with GBS during delivery. Baker & Edwards, *supra*. Aspiration of infected amniotic fluid or vaginal secretions allow GBS to gain access to the lungs. Adhesion to, and invasion of, respiratory epithelium and endothelium appear to be critical factors in early onset neonatal infection. Baker & Edwards, *supra*; C.E. Rubens et al., *J Inf Dis* 164:320-330 (1991). Subsequent steps in infection, such as blood stream invasion and the establishment of metastatic local infections have not been clarified. The pathogenesis of neonatal infection occurring after the first week of life is also not well understood. Gastrointestinal colonization may be more important than a respiratory focus in late onset neonatal disease. Baker & Edwards, *supra*. Considerable evidence suggests that invasion of brain microvascular endothelial cells by GBS is the initial step in the pathogenesis of

meningitis. GBS are able to invade human brain microvascular endothelial cells and type III GBS, which are responsible for the majority of meningitis, accomplish this 2-6 times more efficiently than other serotypes. V. Nizet et al. *Infect Immun* **65**:5074-5081 (1997).

5

10

15

20

25

30

Because GBS is widely distributed among the population and is an important pathogen in newborns, pregnant women are commonly tested for GBS at 26 to 28 weeks of pregnancy. Much of GBS neonatal disease is preventable by administration of prophylactic antibiotics during labor to women who test positive or display known risk factors. However, these antibiotics programs do not prevent all GBS disease. The programs are deficient for a number of reasons. First, the programs can be inefficient. Second, it is difficult to ensure that all healthcare providers and patients comply with the testing and treatment. And finally, if new serotypes or antibiotic resistance emerges, the antibiotic programs may fail altogether. Currently available tests for GBS are inefficient. These tests may provide false negatives. Furthermore, the tests are not specific to virulent strains of GBS. Thus, antibiotic treatment may be given unnecessarily and add to the problem of antibiotic resistance. Although a vaccine would be advantageous, none are yet commercially available.

Traditionally, GBS have been divided into 9 serotypes according to the immunologic reactivity of the polysaccharide capsule. H.M. Blumberg et al., *J Inf Dis* 173: 365-373 (1996). Serotype III GBS cause 60-70% of all infections and almost all meningitis. Baker & Edwards, *supra*. Type III GBS can be subdivided into three groups of related strains based on the analysis of restriction digest patterns (RDPs) produced by digestion of chromosomal DNA with *Hind* III and *Sse*8387 I. Y. Nagano et al., *J Med Micro* 35:297-303 (1991); S. Takahashi et al., *J Inf Dis* 177:1116-1119 (1998). Figure 1 illustrates a comparison of *Hind* III and *Sse*8387 I RDP typing of 62 type III isolates from Salt Lake City, Utah and Tokyo, Japan. Isolates were classified into types based on the similarity of the restriction digest patterns produced by *Hind* III or *Sse*8387 I digestion of chromosomal DNA. The two methods divided the isolates into RDP types containing exactly the same isolates: III-3 contains isolates 1-41, II-2 contains isolates 42-59, and II-1 contains isolates 60-62.

Over 90% of invasive type III GBS neonatal disease in Tokyo, Japan and in Salt Lake City, Utah is caused by bacteria from one of three RDP types, termed RDP type III-3, while RDP type III-2 are significantly more likely to be isolated from vagina than from

blood or CSF. These results suggest that this genetically-related cluster of type III-3 GBS are more virulent than III-2 strains and could be responsible for the majority of invasive type III disease globally.

From the foregoing, it will be appreciated that it would be a significant advancement in the art to provide one or more markers that are specific to virulent type III-3 GBS. It would be a further advancement to provide a method to exploit these markers for clinical identification of virulent type III-3 GBS. It would be a further advancement to provide methods for producing vaccines against type III-3 GBS.

Such compositions and methods are disclosed herein.

3. BRIEF SUMMARY OF THE INVENTION

5

10

15

20

25

30

The present invention relates to markers specific to type III-3 GBS. These markers, the *spb1* and *spb2* gene products (SEQ ID NO: 2 and SEQ ID NO: 4, respectively), are encoded by the *spb1* (SEQ ID NO: 1) and *spb2* (SEQ ID NO: 3) genes. The invention also provides these genes and gene products in substantially purified form.

In certain other embodiments, the present invention relates to recombinant vectors which incorporate the *spb1* gene or other nucleic acid molecules that code for the *spb1* gene product. The recombinant vector may be a plasmid. In certain embodiments, the recombinant vector is a prokaryotic or eukaryotic expression vector. In certain preferred embodiments, the nucleic acid molecule is operably linked to a heterologous promoter and/or other expression control elements, such as heterologous enhancers and polyadenylation sequences.

In certain other embodiments, the present invention relates to recombinant vectors which incorporate the spb2 gene or other nucleic acid molecules that code for the spb2 gene product. The recombinant vector may be a plasmid. In certain embodiments, the recombinant vector is a prokaryotic or eukaryotic expression vector. In certain preferred embodiments, the nucleic acid molecule is operably linked to a heterologous promoter and/or other expression control elements.

The present invention also provides host cells comprising the *spb1* and/or *spb2* genes. In other embodiments, a host cell of the present invention comprises nucleic acid molecules that code for the *spb1* and/or *spb2* gene products. The host cell may be a prokaryotic or eukaryotic host cell.

The present invention also relates to diagnostic methods for determining whether a mammal is infected or colonized by virulent GBS. In certain embodiments, a diagnostic method comprises the steps of (1) collecting a bodily fluid or culture from the mammal and (2) analyzing the bodily fluid or culture for the presence of absence of one or more gene products specific to type III-3 GBS, wherein the presence of one or more gene products specific to type III-3 GBS indicates infection or colonization by virulent GBS. The mammal may be a human. Alternatively, the mammal may be a laboratory, domestic, or agricultural animal. The bodily fluid or culture may be any bodily fluid or culture that is typically analyzed for the presence of bacteria. For example, the bodily fluid or culture may be a vaginal or rectovaginal culture. The bodily fluid or culture may also be a throat culture. The bodily fluid or culture may also be an endotracheal tube aspirant, fluid from a brochioaveloar lavage, or tissue from a lung biopsy. In certain embodiments, the bodily fluid or culture is blood, serum, amniotic fluid, cerebrospinal fluid, or joint fluid. Other sources of material will be apparent to those of skill in the art. In certain embodiments, a diagnostic method of the present invention comprises analyzing a sample for the presence or absence of the spb1 and/or spb2 gene product(s).

5

10

15

20

25

30

In certain embodiments of a diagnostic method of the present invention, the polymerase chain reaction ("PCR") is used to identify the presence or absence of the *spb1* and/or *spb2* gene(s). In certain other embodiments, antibodies are used to identify the presence or absence of the *spb1* and/or *spb2* gene products. The antibodies may be monoclonal or polyclonal antibodies.

The present invention also relates to GBS vaccines. In certain embodiments, the present invention provides vaccines comprising the *spb1* gene product, i.e., a protein comprising the amino acid sequence of SEQ ID NO: 2. In certain other embodiments, a vaccine comprises the *spb2* gene product, i.e., a protein comprising the amino acid sequence of SEQ ID NO: 4. In certain preferred embodiments, a vaccine comprises both the *spb1* and *spb2* gene products. The vaccine may include an adjuvant, such as alum. In certain other embodiments, the *spb1* and/or *spb2* gene(s) may be introduced into a mammal using either naked DNA or other gene therapy techniques to induce an immune response against type III GBS.

The present invention further provides methods of immunizing a mammal against GBS infection. In certain embodiments, such methods comprise administering to the

mammal a vaccine comprising an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 2. In certain other embodiments, a method of the present invention comprises administering to the mammal a vaccine comprising an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 4. The vaccine may also contain a mixture of the spb1 and spb2 gene products. Vaccines used in the methods of the present invention may further comprise an adjuvant, such as alum.

These and other features and advantages of the present invention will become more fully apparent from the following detailed description.

4. SUMMARY OF THE DRAWINGS

5

10

15

20

30

Figure 1 illustrates a comparison of *Hin*dIII and *Sse*83871 RDP typing of 62 type III GBS isolates from Salt Lake City, Utah and Tokyo, Japan. Isolates were classified into types based on the similarity of the restriction digest patterns produced by *Hind*III or *Sse*83871 digestion of chromosomal DNA. The two methods divided isolates into RDP types containing exactly the same isolates: III-3 contains isolates 1 - 41, III-2 contains isolates 42 - 59, and III-1 contains isolates 60 - 62.

Figure 2 illustrates a dot blot hybridization of probe 1 with genomic DNA isolated from type III GBS. 10 μg of genomic DNA from each of 62 type III GBS strains was transferred to nylon membrane. Radiolabeled probe 1 hybridized with DNA from all III-3 strains (rows A - D) including the original type III-3 strain (well E1). The probe failed to hybridize with DNA from III-2 strains (F1 - F10, G1 - G7) including the original strain used in the subtraction hybridization (well E10) and III-1 strains (wells H1 - H3). The same pattern of hybridization was observed using clone 3 and 11 probes.

25 5. <u>DETAILED DESCRIPTION OF THE INVENTION</u>

The present invention relates to the identification and prevention of infections by virulent forms of GBS. The present invention also relates to isolated genes specific to type III-3 GBS. These genes, spb1 and spb2, encode the spb1 and spb2 gene products.

The spb1 and spb2 genes or other nucleeic acid moleucles coding for the spb1 or spb2 gene products may be incorporated into a recombinant vector using methods known in the art. See, e.g., 1-3 J. Sambrook et al., Molecular Cloning: A Laboratory Manual

(2d ed. 1989). Recombinant vectors include any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, virus, etc., that is capable of replication when associated with the proper control elements and that can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles.

5

10

15

20

25

A nucleic acid molecule of the present invention may be operably linked to expression control sequences, such as heterologous promoters. Examples include, but are not limited to, viral promoters such as the SV40 early promoter and the CMV immediate early promoter region, bacterial promoters, mammalian promoters, inducible promoters, synthetic promoters, hybrid promoters, and the like. Other expression control sequences are known in the art and include polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites ("IRES"), and enhancers. These expression control sequences collectively provide for the replication, transcription and translation of a coding sequence in a recipient cell. Not all of these control sequences need always be present in a recombinant vector, so long as the selected coding sequence is capable of being replicated, transcribed and translated in an appropriate host cell.

Recombinant vectors can be constructed to include selectable markers. Suitable markers include genes which confer antibiotic resistance or sensitivity, or impart color, or change the antigenic characteristics when host cells which have been transfected with the recombinant vectors are grown in an appropriate selective medium. Suitable markers are known to those of skill in the art.

The discovery of type III-3 GBS-specific gene products will allow clinicians to diagnose and treat infection and colonization with virulent GBS. For example, hybridization-based assays may be used to determine whether a GBS isolate is type III-3. Figure 2 illustrates the results of hybridization assays with a III-3-specific probe. Likewise, PCR may be used to detect the presence or absence of either the *spb1* gene or the *spb2* gene (or both) in samples from patients. PCR methods are described generally in C.R. Newton & A. Graham, *PCR* (2nd. ed. 1997); *PCR: Essential Techniques* (J.F. Burke ed., 1996). Patients who are infected with type III-3 GBS may then receive appropriate antibiotic therapy.

Antibodies may also be used to detect the presence or absence of the *spb1* and/or *spb2* gene product(s). Methods for preparing both monoclonal and polyclonal antibodies are described in, e.g., E. Harlow & D. Lane, *Antibodies: A Laboratory Manual* (1988).

The present invention also relates to methods for producing type III-3 GBS vaccines. See generally Vaccine Protocols (A. Robinson, G.H. Farrar & C.N. Wiblin eds. 1996). In certain embodiments, the spb1 and/or spb2 gene product(s) may be used to immunize against GBS. These gene products may be produced in large quantities using techniques that are known in the art. For example, the appropriate gene or genes may be linked to a prokaryotic promoter and expressed in bacteria. The gene products may then be purified using conventional techniques and used to vaccinate at-risk individuals. Alternatively, the appropriate gene or genes may be linked to a eukaryotic promoter and enhancer (e.g., yeast, baculovirus, SV40, etc.) and expressed in an appropriate cell type. The gene products may then be purified using conventional techniques.

5

10

15

20

25

30

The *spb1* and/or *spb2* gene products, or immunogenic fragments thereof, may stimulate an immune response when administered to a host. Recombinantly produced proteins are especially desirable, as they can be produced in large amounts and purified. Furthermore, recombinantly produced proteins may be engineered to maximize desirable activities and to minimize unwanted effects.

The recombinantly produced *spb1* and/or *spb2* gene products may be used as carrier proteins for a polysaccharide-protein or oligosaccharide-protein conjugate vaccine. *See, e.g.*, R. Schneerson, et al., *Infect Immun* 60:3528-3532 (1992) (describing a *Pneumococcus*-pertussis toxin conjugate vaccine). For example, *Haemophilus influenzae* B vaccines have been produced by conjugating a tetanus toxoid; a *Corynebacteriaum* toxin, CRM₁₉₇ (which is a mutant diptheria toxin); and a *Neisseria* outer membrane protein. Oligo- and polysaccharides from GBS might be used in a vaccine. Oligosaccharide- and polysaccharide-protein conjugates alter the immunological properties of the polysaccharide or oligosaccharide and may improve the immune response.

An adjuvant may be used to enhance the immune response to a vaccine containing the *spb1* and/or *spb2* gene products. An adjuvant is any substance that enhances the immune response to an antigen. Without being bound by any particular theory, adjuvants may act by retaining the antigen locally near the site of administration to produce a depot

effect, facilitating the slow, sustained release of the antigen to cells of the immune system. Adjuvants may also attract cells of the immune system. Aluminum hydroxide and aluminum phosphate (collectively and commonly referred to as "alum") are routinely used as adjuvants in human and veterinary vaccines. Currently, alum is the only adjuvant licensed for human use, although a number of experimental adjuvants are being tested.

The *spb1* and/or *spb2* gene(s) may also be introduced into a mammal using either naked DNA or other gene therapy techniques to induce an immune response against virulent GBS.

All publications, patents, and patent applications cited in this application are hereby incorporated by reference. U.S. Patent Application Serial No. 60/140,084 is hereby incorporated by reference in its entirety.

6. EXAMPLES

5

10

15

20

25

30

The following examples are given to illustrate several embodiments which have been made within the scope of the present invention. It is to be understood that these examples are neither comprehensive nor exhaustive of the many types of embodiments which can be prepared in accordance with the present invention.

Example 1 - Isolation of the spb1 and spb2 genes

Bacterial factors that contribute to the increased virulence of III-3 strains can be identified by characterizing the differences between the genetic composition of III-3 and III-2 strains. Such genetic differences will be found in the bacterial chromosomes since these strains do not contain plasmids. Takahashi et al., *supra*.

To identify genes present in virulent type III-3 GBS strains and not in the avirulent type III-2 strains, a modification of the technique described by Lisitsyn et al., *Science* **259**:946-951 (1993), was used. High molecular weight genomic DNA from an invasive RDP type III-3 GBS strain (strain 874391) and a colonizing ("avirulent") RDP type III-2 strain (strain 865043) were prepared by cell lysis with mutanolysin and Proteinase K digestion. Y. Nagano et al., *supra*. For genetic subtraction, genomic DNA from both strains was digested with *Taq* I. *Taq* I-digested DNA from the virulent strain was mixed with two complementary oligonucleotides, TaqA (5'-CTAGGTGGA-TCCTTCGGCAAT-3' (SEQ ID NO: 5)) and TaqB (5'-CGATTGCCGA-3' (SEQ ID NO: 6)), heated to 50°C for 5 minutes, then allowed to cool slowly to 16°C in T4 ligase

buffer. Oligonucleotides were ligated to the virulent strain DNA by incubation with 20 units of T4 ligase at 16° C for 12 hours. After ligation, 500 ng of DNA from the virulent strain, with ligated linkers, and 40 μ g of DNA from the avirulent strain, without linkers, was mixed together, denatured by heating, and hybridized at 68° C for 20 hours.

Ten percent of the resulting hybridization mixture was incubated with *Taq* DNA polymerase and dNTPs to fill in the ends of annealed virulent strain DNA. The hybridized DNA was amplified by *Taq* DNA polymerase for 10 cycles using the TaqA oligonucleotide as the forward and reverse amplification primer. After amplification, single stranded products remaining after amplification were digested with mung bean nuclease. Twenty percent of the resulting product was then reamplified for 20 cycles. This process of subtraction followed by PCR amplification results in enhanced amplification of DNA segments from the III-3 strains that do not hybridize with DNA segments from the III-2 strains.

5

10

15

20

25

30

A total of four cycles of subtraction and amplification were carried out using successively smaller quantities of III-3 specific PCR products. Two pairs of oligonucleotides were used for subtraction, which were alternated with successive rounds of subtraction-amplification. The oligos were TaqA (SEQ ID NO: 5) and TaqB (SEQ ID NO: 6) (the first pair) and TaqE (5'-AGGCAACTGTGCTAACCGAGGGAAT-3' (SEQ ID NO: 7)) and TaqF (5'-CGATTCCCTCG-3' (SEQ ID NO: 8)) (the second pair). The final amplification products were ligated into pBS KS+ vector and transformed into competent XL1-Blue strain *E. coli*. Thirteen clones were randomly selected for analysis. Cross hybridization studies of the 13 inserts revealed that 6 were unique. These probes were used in slot and dot blot experiments to determine whether subtraction was successful and to identify probes hybridizing with all III-3 strains. Each of the 6 unique probes hybridized with the parental III-3 virulent strain, while none of the probes hybridized with the avirulent III-2 strains. Three of the amplified sequence tags (clones 1, 3 and 11) hybridized with genomic DNA from all 62 type III-3 isolates, but did not hybridize with DNA prepared from the III-2 and III-1 isolates.

Figure 2 illustrates a dot blot hybridization of type III GBS genomic DNA hybridized with a clone 1 probe. 10 µg of genomic DNA from each of 62 type III GBS strains was transferred to nylon membrane. Radiolabeled clone 1 probe hybridized with DNA from all III-3 strains (rows A-D) including the original type III-3 strain (well E-1).

The probe failed to hybridize with DNA from III-2 strains (F1-F10, G1-G7) including the original strain used in the subtraction hybridization (well E10) and III-1 strains (wells H1-H3). The same pattern of hybridization was observed using clone 3 and 11 probes. These data demonstrate the feasibility of identifying genes unique to III-3 strains by this method of PCR-based subtractive hybridization, and further support the validity of the RDP typing for identifying genetically-related type III GBS.

5

10

15

20

25

30

The three GBS type III-3-specific sequence tags are short (130-360 bp). To obtain additional sequence information, a genomic GBS III-3 library was constructed. High molecular weight GBS genomic DNA was partially digested with Bgl II and cloned into λ FIX II phage vector. Phage were packaged and the library, consisting of 1.7 x 10^5 recombinant phage containing inserts with a mean size of about 18 kb (totaling approximately 3 x 10^9 bp), was amplified once. Multiple plaques hybridizing with each of the III-3 GBS-specific probes were purified for further characterization.

Three overlapping genomic clones hybridizing with probe 1 were identified, with approximate sizes of 9, 22, and 23 kb. Since the boundaries of GBS III-3 specific DNA are not known, smaller fragments were subcloned and the DNA was verified present in virulent GBS strains before proceeding with further characterization. The first segment examined is a 6.4 kb *Sal* I-*Bgl* II fragment. This genomic DNA is present in all RDP type III-3 strains and in none of 17 RDP type III-2 strains.

Over 90% of this genomic DNA fragment has been sequenced and found to contain 5 open reading frames ("ORFs"). Three of these are likely to be authentic genes. They feature ATG start sites, are preceded by potential ribosomal binding sites and, in two cases, stop codons are followed by palindromic sequences that may represent transcriptional terminators. They are relatively short, however, and do not show significant homology at the nucleic acid or amino acid level with sequences registered with Genbank or the available bacterial genome databases.

The two other ORFs appear to be more obvious candidates for virulence genes. The *spb1* gene includes a 1509 bp ORF that is preceded by a potential ribosomal binding site 10 bases upstream from an ATG start codon. The predicted protein (502 amino acids and Mr 53,446) has the characteristics of a cell wall-bound protein. The N-terminus of the predicted protein is a hydrophilic, basic stretch of 6 amino acids followed by a 23 amino acid hydrophobic, proline-rich core, consistent with a signal peptide. The

hydrophilic mature protein terminates in a typical LPXTG (SEQ ID NO: 9) domain that immediately precedes a hydrophobic 20 amino acid core and a short, basic hydrophilic terminus.

5

10

15

20

25

30

The nucleotide sequence is not homologous to sequences of other known bacterial genes. The translated amino acid sequence, however, shares segmental homology with a number of characterized proteins, including the fimbrial type 2 protein of *Actinomyces naeslundii* (27% identity over 350 amino acids) and the fimbrial type 1 protein of *Actinomyces viscosus* (25% homology over 420 amino acids), the T6 surface protein of *S. pyogenes* (23% identity over 359 amino acids), and the *hsf* (27% identity over 260 amino acids) and HMW1 adhesins (25% identity over 285 amino acids) of *Haemophilus influenzae*. *See* M.K. Yeung & J.O. Cisar, *J Bacteriol* 172:242-2468 (1990); O. Schneewind, et al., *J Bacteriol* 172:3310-3317 (1990); J.W. St. Geme III, et al., *J Bacteriol* 178:6281-6287 (1996); J.W. St. Geme III, *Infect Immun* 62: 3881-3889 (1994). The function of the *S. pyogenes* T6 protein is unknown. Each of the other homologues plays a role in bacterial adhesion and/or invasion.

The second ORF, *spb2*, terminates 37 bp upstream from *spb1* and is in the same transcriptional orientation. This 1692 bp ORF has a deduced amino acid sequence of 563 residues and Mr 64,492. It shares 50.5% nucleic acid identity and 20.7% amino acid identity with *spb1*. Conservation is highest in the carboxy-terminal regions, including a shared LPSTGG (SEQ ID NO: 10) motif. In contrast to *spb1*, *spb2* does not have an obvious signal sequence. Its secretion may be mediated by carboxy-terminal recognition sequences or by accessory peptides. T. Michiels, et al., *Infect Immun* 58:2840-2849 (1990). The deduced amino acid sequence of *spb2* is also homologous with *S. pyogenes* T6 and *Actinomyces naeslundii* proteins, and to *Listeria monocytogenes* internalin A (22% identity over 308 amino acids)—again, proteins important in adhesion and invasion.

Neither of the predicted gene products has the repetitive structure of previously described GBS surface proteins such as the C and Rib proteins or of *L. monocytogenes* internalin family members. L.C. Madoff et al., *Infect Immun* 59:2638-2644 (1991); J. Gaillard, et al., *Cell* 65: 1127-1141 (1991). Hybridization of the originating strain 874391 genomic DNA with an *spb1* probe under low stringency conditions identifies a single band in *EcoR* I, *Sal* I and *Sst* I digests (data not shown), suggesting that a single

copy of spb1 is present in this strain and that spb1 is not a member of a significantly homologous "family" of genes.

5

10

15

Example 2 - Adherence and Invasion Assays Using spb1 Bacteria

Genomic subtraction identified a 1509 bp ORF, spb1, which is present in virulent RDP type III-3 GBS and not in RDP type III-2 strains. The predicted 53 kD protein product has the characteristics of a typical gram positive cell-wall bound protein. The nucleic acid sequence of spb1 is not homologous to sequences of other known bacterial genes, however the translated amino acid sequence shares segmental homology with several characterized adhesins, including *Actinomyces* fimbrial proteins and *H. influenzae* HMW1, suggesting that Spb1 might contribute to GBS adhesion or invasion. A spb1 isogenic deletion mutant GBS strain was created by homologous recombination and the ability of the spb1 mutant to adhere to and invade A549 respiratory epithelial cells was determined. Compared to the wild type strain, the number of spb1 bacteria adherent to A549 monolayers was reduced by 60.0% (p<0.01) and the number of intracellular invading bacteria was reduced by 53.6% (p<0.01). Without being bound by any particular theory, it appears that Spb1 may contribute to the pathogenesis of GBS pneumonia and bacterial entry into the bloodstream.

CLAIMS:

1. An isolated nucleic acid molecule comprising nucleotides which code for the amino acid sequence of SEQ ID NO: 2.

- 2. A recombinant vector comprising the nucleic acid molecule of claim 1.
- 3. The recombinant vector of claim 2, wherein said recombinant vector is a plasmid.
- 5 4. The recombinant vector of claim 2, wherein said recombinant vector is a prokaryotic or eukaryotic expression vector.
 - 5. The recombinant vector of claim 2, wherein the nucleic acid molecule is operably linked to a heterologous promoter.
 - 6. A host cell comprising the nucleic acid molecule of claim 1.
- 10 7. The host cell of claim 6, wherein the host cell is a eukaryotic host cell.
 - 8. The host cell of claim 6, wherein the host cell is a prokaryotic host cell.
 - 9. An isolated nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 1.
 - 10. A recombinant vector comprising the nucleic acid molecule of claim 9.
- 15 11. The recombinant vector of claim 10, wherein said recombinant vector is a plasmid.
 - 12. The recombinant vector of claim 10, wherein said recombinant vector is a prokaryotic or eukaryotic expression vector.
 - 13. The recombinant vector of claim 10, wherein the nucleic acid molecule is operably linked to a heterologous promoter.
 - 14.
 - A host cell comprising the nucleic acid molecule of claim 9.
 - 16. The host cell of claim 14, wherein the host cell is a prokaryotic host cell.
 - 17. An isolated nucleic acid molecule comprising nucleotides which code for the

The host cell of claim 14, wherein the host cell is a eukaryotic host cell.

25 amino acid sequence of SEQ ID NO: 4

20

15.

- 18. A recombinant vector comprising the nucleic acid molecule of claim 17.
- 19. The recombinant vector of claim 18, wherein said recombinant vector is a plasmid.
- 20. The recombinant vector of claim 18, wherein said recombinant vector is a 30 prokaryotic or eukaryotic expression vector.

21. The recombinant vector of claim 18, wherein the nucleic acid molecule is operably linked to a heterologous promoter.

- 22. A host cell comprising the nucleic acid molecule of claim 17.
- 23. The host cell of claim 22, wherein the host cell is a eukaryotic host cell.
- 24. The host cell of claim 22, wherein the host cell is a prokaryotic host cell.
- 5 25. An isolated nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 3.
 - 26. A recombinant vector comprising the nucleic acid molecule of claim 25.
 - 27. The recombinant vector of claim 26, wherein said recombinant vector is a plasmid.
- 10 28. The recombinant vector of claim 26, wherein said recombinant vector is a prokaryotic or eukaryotic expression vector.
 - 29. The recombinant vector of claim 26, wherein the nucleic acid molecule is operably linked to a heterologous promoter.
 - 30. A host cell comprising the nucleic acid molecule of claim 25.
- 15 31. The host cell of claim 30, wherein the host cell is a eukaryotic host cell.
 - 32. The host cell of claim 30, wherein the host cell is a prokaryotic host cell.
 - 33. A method of immunizing a mammal against Group B streptococci infection, said method comprising administering to the mammal a vaccine comprising an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 2.
 - 34. The method of claim 33, wherein the vaccine further comprises an adjuvant.
 - 35. The method of claim 34, wherein the adjuvant comprises alum.

20

25

- 36. The method of claim 33, wherein the vaccine further comprises an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 4.
- 37. The method of claim 36, wherein the vaccine further comprises an adjuvant.
- 38. A method of immunizing a mammal against Group B streptococci infection, said method comprising administering to the mammal a vaccine comprising an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 4.
- 39. The method of claim 38, wherein the vaccine further comprises an adjuvant.

40. The method of claim 39, wherein the adjuvant comprises alum.

5

10

20

- 41. A diagnostic method for determining whether a mammal is infected or colonized by virulent Group B streptococci (GBS), said method comprising the steps of:
 - (a) collecting a bodily fluid or culture from the mammal;
 - (b) analyzing the bodily fluid or culture for the presence or absence of one or more gene products specific to type III-3 GBS;

wherein the presence of one or more gene products specific to type III-3 GBS indicates infection or colonization by virulent GBS.

- 42. The diagnostic method of claim 41, wherein the one or more gene products specific to type III-3 GBS comprise a protein, said protein comprising the amino acid sequence of SEQ ID NO: 2.
- 43. The diagnostic method of claim 41, wherein the one or more gene products specific to type III-3 GBS comprise a protein, said protein comprising the amino acid sequence of SEQ ID NO: 4.
- 44. The diagnostic method of claim 41, wherein the one or more gene products

 specific to type III-3 GBS comprise a first protein comprising the amino acid sequence of SEQ ID NO: 2 and a second protein comprising the amino acid sequence of SEQ ID NO: 4.
 - 45. The diagnostic method of claim 41, wherein the mammal is a human.
 - 46. The diagnostic method of claim 41, wherein the bodily fluid or culture is a vaginal or rectovaginal culture.
 - 47. The diagnostic method of claim 41, wherein the bodily fluid or culture is a throat culture.
 - 48. The diagnostic method of claim 41, wherein the bodily fluid or culture is blood, serum, amniotic fluid, cerebrospinal fluid, or joint fluid.
- 25 49. The diagnostic method of claim 41, wherein the analysis step comprises using polymerase chain reaction (PCR) to identify the presence or absence of one or more gene products specific to type III-3 GBS.
 - 50. The diagnostic method of claim 49, wherein the analysis step comprises using PCR to determine the presence or absence of the *spb1* gene product.
- The diagnostic method of claim 49, wherein the analysis step comprises using PCR to determine the presence or absence of the *spb2* gene product.

52. The diagnostic method of claim 41, wherein the analysis step comprises using antibodies to identify the presence or absence of one or more gene products specific to type III-3 GBS.

- 53. The diagnostic method of claim 52, wherein the antibodies are monoclonal antibodies.
- 5 54. The diagnostic method of claim 53, wherein the monoclonal antibodies are specific for the *spb1* gene product.
 - 55. The diagnostic method of claim 53, wherein the monoclonal antibodies are specific for the *spb2* gene product.
 - 56. An isolated and purified protein comprising the amino acid sequence of SEQ ID
- 10 NO: 2.

- 57. A vaccine for immunizing a mammalian host against virulent Group B streptococci infection, said vaccine comprising the protein of claim 56.
- 58. The vaccine of claim 57, further comprising an adjuvant.
- 59. The vaccine of claim 58, wherein the adjuvant comprises alum.
- 15 60. The vaccine of claim 57, wherein the protein is conjugated to a bacterial polysaccharide or oligosaccharide.
 - 61. An isolated and purified protein comprising the amino acid sequence of SEQ ID NO: 4.
 - 62. A vaccine for immunizing a mammalian host against virulent Group B streptococci infection, said vaccine comprising the protein of claim 61.
 - 63. The vaccine of claim 62, further comprising an adjuvant.
 - 64. The vaccine of claim 63, wherein the adjuvant comprises alum.
 - 65. The vaccine of claim 62, further comprising an isolated and purified protein comprising the amino acid sequence of SEQ ID NO: 2.
- 25 66. The vaccine of claim 65, further comprising an adjuvant.
 - 67. The vaccine of claim 62, wherein the protein is conjugated to a bacterial polysaccharide or oligosaccharide.

Figure 1. Type III GBS RDP types. Comparison of HindIII and Sse83871 RDP typing of 62 type III GBS isolates from Salt Lake City and Tokyo. Isolates were classified into types based on the similarity of the restriction digest patterns produced by HindIII or Sse83871 digestion of chromosomal DNA. The two methods divided the isolates into RDP types containing exactly the same isolates: III-3 contains isolates 1 - 41, III-2 contains isolates 42 - 59, and III-1 contains isolates 60-62.

Figure 2. RDP type III-3 specific probes. Dot blot hybridization of probe 1 with genomic DNA isolated from type III GBS. 10 ug of genomic DNA from each of 62 type III GBS strains was transferred to nylon membrane. Radiolabeled probe 1 hybridized with DNA from all III-3 strains (rows A-D) including the original type III-3 strain (well E-1). The probe failed to hybridize with DNA from III-2 strains (F1-F10, G1-7) including the original strain used in the subtraction hybridization (well E 10) and III-1 strains (wells H1-3). The same pattern of hybridization was observed using clone 3 and 11 probes.

SEQUENCE LISTING

<110> Adderson, Elisabeth E. Bohnsack, John F. University of Utah Research Foundation <120> Isolated Genes from Virulent Group B Streptococcus agalactiae <130> 1321.2.29 <140> <141> <150> 60/140,084 <151> 1999-06-21 <160> 10 <170> PatentIn Ver. 2.1 <210> 1 <211> 1509 <212> DNA <213> Streptococcus agalactiae <220> <221> CDS <222> (1)..(1509) <400> 1 atg aaa aag aaa atg att caa tcg ctg tta gtg gcg agt tta gca ttt 48 Met Lys Lys Lys Met Ile Gln Ser Leu Leu Val Ala Ser Leu Ala Phe 5 10 ggt atg gct gta tca cca gtt acg ccg ata gct ttt gcc gct gag aca 96 Gly Met Ala Val Ser Pro Val Thr Pro Ile Ala Phe Ala Ala Glu Thr 20 25 ggg aca att aca gtt caa gat act caa aaa ggc gca acc tat aaa gca Gly Thr Ile Thr Val Gln Asp Thr Gln Lys Gly Ala Thr Tyr Lys Ala 35 45 tat aaa gtt ttt gat gca gaa ata gat aat gca aat gta tct gat tcg 192 Tyr Lys Val Phe Asp Ala Glu Ile Asp Asn Ala Asn Val Ser Asp Ser 50 55 60 aat aaa gat gga gct tct tat tta att cct caa ggt aaa gaa gct gag 240

Asn 65	Lys	Asp	Gly	Ala	Ser 70	Tyr	Leu	Ile	Pro	Gln 75	Gly	Lys	Glu	Ala	Glu 80	
		_			_	ttt Phe					_					288
		-			_	act Thr			_				_			336
				_		tct Ser			_					_		384
	_					aat Asn 135	_				_			_		432
						gtt Val		_		_				_		480
	_	_			_	act Thr			_				_	_		528
	_					gat Asp						_	_			576
_		_	-		_	aca Thr	_							_		624
						aca Thr 215	_									672
_		_			_	tct Ser	_	_	_	_						720
					_	gga Gly									_	768
ggt	tcg	gaa	aaa	gca	act	3 33	aag	tat	aac	ctg	tta	gag	gaa	aat	aat	816

Gly	Ser	Glu	Lys 260	Ala	Thr	Gly	Lys	Tyr 265	Asn	Leu	Leu	Glu	Glu 270	Asn	Asn	
									-		aat Asn					864
	_	_			_		_	_			tat Tyr 300	_				912
			_					_		_	agt Ser		_			960
		_	_			_					gcg Ala					1008
_		_		_	_			_		_	aca Thr			_		1056
_	_						_				aaa Lys	_			_	1104
				_		_		_	_		caa Gln 380					1152
						_				_	gct Ala					1200
				_	_						aca Thr					1248
_					_						tta Leu					1296
				_	_	_				_	gga Gly					1344
act	aat	tca	gat	aac	ctt	tta	gtt	aac	cca	act	gtt	gaa	aat	aac	aaa	1392

Thr Asn Ser Asp Asn Leu Leu Val Asn Pro Thr Val Glu Asn Asn Lys
450
455
460

ggt act gag ttg cct tca aca ggt ggt att ggt aca aca att ttc tac 1440 Gly Thr Glu Leu Pro Ser Thr Gly Gly Ile Gly Thr Thr Ile Phe Tyr 465 470 475 480

att ata ggt gca att tta gta ata gga gca ggt atc gtg ctt gtt gct 1488 Ile Ile Gly Ala Ile Leu Val Ile Gly Ala Gly Ile Val Leu Val Ala 485 490 495

cgt cgt cgt tta cgt tct taa 1509
Arg Arg Arg Leu Arg Ser
500

<210> 2

<211> 502

<212> PRT

<213> Streptococcus agalactiae

<400> 2

Met Lys Lys Lys Met Ile Gln Ser Leu Leu Val Ala Ser Leu Ala Phe 1 5 10 15

Gly Met Ala Val Ser Pro Val Thr Pro Ile Ala Phe Ala Ala Glu Thr
20 25 30

Gly Thr Ile Thr Val Gln Asp Thr Gln Lys Gly Ala Thr Tyr Lys Ala 35 40 45

Tyr Lys Val Phe Asp Ala Glu Ile Asp Asn Ala Asn Val Ser Asp Ser 50 55 60

Asn Lys Asp Gly Ala Ser Tyr Leu Ile Pro Gln Gly Lys Glu Ala Glu 65 70 75 80

Tyr Lys Ala Ser Thr Asp Phe Asn Ser Leu Phe Thr Thr Thr Asn 85 90 95

Gly Gly Arg Thr Tyr Val Thr Lys Lys Asp Thr Ala Ser Ala Asn Glu 100 105 110

Ile Ala Thr Trp Ala Lys Ser Ile Ser Ala Asn Thr Thr Pro Val Ser 115 120 125

Thr Val Thr Glu Ser Asn Asn Asp Gly Thr Glu Val Ile Asn Val Ser 130 135 140

Gln Tyr Gly Tyr Tyr Tyr Val Ser Ser Thr Val Asn Asn Gly Ala Val 145 150 155 160

Ile Met Val Thr Ser Val Thr Pro Asn Ala Thr Ile His Glu Lys Asn 165 170 175

Thr Asp Ala Thr Trp Gly Asp Gly Gly Gly Lys Thr Val Asp Gln Lys
180 185 190

Thr Tyr Ser Val Gly Asp Thr Val Lys Tyr Thr Ile Thr Tyr Lys Asn 195 200 205

```
Ala Val Asn Tyr His Gly Thr Glu Lys Val Tyr Gln Tyr Val Ile Lys
                       215
Asp Thr Met Pro Ser Ala Ser Val Val Asp Leu Asn Glu Gly Ser Tyr
                   230
                                       235
Glu Val Thr Ile Thr Asp Gly Ser Gly Asn Ile Thr Thr Leu Thr Gln
               245
                                   250
Gly Ser Glu Lys Ala Thr Gly Lys Tyr Asn Leu Leu Glu Glu Asn Asn
                               265
Asn Phe Thr Ile Thr Ile Pro Trp Ala Ala Thr Asn Thr Pro Thr Gly
                           280
Asn Thr Gln Asn Gly Ala Asn Asp Asp Phe Phe Tyr Lys Gly Ile Asn
                       295
Thr Ile Thr Val Thr Tyr Thr Gly Val Leu Lys Ser Gly Ala Lys Pro
                   310
                                      315
Gly Ser Ala Asp Leu Pro Glu Asn Thr Asn Ile Ala Thr Ile Asn Pro
               325
                                   330
Asn Thr Ser Asn Asp Asp Pro Gly Gln Lys Val Thr Val Arg Asp Gly
                               345
Gln Ile Thr Ile Lys Lys Ile Asp Gly Ser Thr Lys Ala Ser Leu Gln
                           360
Gly Ala Ile Phe Val Leu Lys Asn Ala Thr Gly Gln Phe Leu Asn Phe
                       375
Asn Asp Thr Asn Asn Val Glu Trp Gly Thr Glu Ala Asn Ala Thr Glu
                   390
                                       395
Tyr Thr Thr Gly Ala Asp Gly Ile Ile Thr Ile Thr Gly Leu Lys Glu
               405
                                   410
Gly Thr Tyr Tyr Leu Val Glu Lys Lys Ala Pro Leu Gly Tyr Asn Leu
           420
                               425
Leu Asp Asn Ser Gln Lys Val Ile Leu Gly Asp Gly Ala Thr Asp Thr
                           440
Thr Asn Ser Asp Asn Leu Leu Val Asn Pro Thr Val Glu Asn Asn Lys
                       455
Gly Thr Glu Leu Pro Ser Thr Gly Gly Ile Gly Thr Thr Ile Phe Tyr
                   470
                                       475
Ile Ile Gly Ala Ile Leu Val Ile Gly Ala Gly Ile Val Leu Val Ala
               485
                                   490
Arg Arg Leu Arg Ser
           500
```

5

<210> 3

<211> 1692

<212> DNA

<213> Streptococcus agalactiae

<220>

<221> CDS

<222> (1)..(1692) <400> 3 att tgc att atg gtg atc gta ttc cgg att ata cag ata tta caa ggg Ile Cys Ile Met Val Ile Val Phe Arg Ile Ile Gln Ile Leu Gln Gly 10 att ata tcc aag atc ctt cag gta cat att att ata agt atg att cac Ile Ile Ser Lys Ile Leu Gln Val His Ile Ile Ser Met Ile His 25 gag ata aag atc ccg act caa cta aag atg cct att ata cga cag ata 144 Glu Ile Lys Ile Pro Thr Gln Leu Lys Met Pro Ile Ile Arg Gln Ile 35 40 cta gtc tca tca aat gtt gat aca aca act aag tac aag tac gta aaa 192 Leu Val Ser Ser Asn Val Asp Thr Thr Thr Lys Tyr Lys Tyr Val Lys 50 gac gct tac aaa tta gtc ggt tgg tat tat gtt aat cca tat ggt agt Asp Ala Tyr Lys Leu Val Gly Trp Tyr Tyr Val Asn Pro Tyr Gly Ser 70 75 att aga cct tat aac ttt tca ggt gct gta act caa gat atc aat tta 288 Ile Arg Pro Tyr Asn Phe Ser Gly Ala Val Thr Gln Asp Ile Asn Leu 90 aga gct att tgg cga aag gct gga gat tat cat att ata tac agc aat 336 Arg Ala Ile Trp Arg Lys Ala Gly Asp Tyr His Ile Ile Tyr Ser Asn

100 105 110

gat gct gtt ggt aca gat gga aag cca gca ttg gat gct tct ggt cag 384 Asp Ala Val Gly Thr Asp Gly Lys Pro Ala Leu Asp Ala Ser Gly Gln 115 120

caa tta caa aca agt aat gag cct act gac cct gat tcc tat gac gat 432 Gln Leu Gln Thr Ser Asn Glu Pro Thr Asp Pro Asp Ser Tyr Asp Asp 130 135 140

ggc tcc cat tca gcc tta ctg aga cgt ccg aca atg cca gat ggc tat 480 Gly Ser His Ser Ala Leu Leu Arg Arg Pro Thr Met Pro Asp Gly Tyr 145

cgt ttc cgt ggc tgg tgc tac aat ggt aaa att tat aac cca tat gat 528 Arg Phe Arg Gly Trp Trp Tyr Asn Gly Lys Ile Tyr Asn Pro Tyr Asp 165 170 175

tcc att gat att gac gcc cat tta gca gat gct aat aaa aat atc acc

Ser	Ile	Asp	Ile 180	Asp	Ala	His	Leu	Ala 185	Asp	Ala	Asn	Lys	Asn 190	Ile	Thr	
			_				_		_		aaa Lys		_	_		624
										_	gta Val 220					672
	_						_	_	_		ttg Leu		_			720
			_								ggt Gly					768
				_	_	_		_	_		gga Gly	_				816
		-						_			ctt Leu					864
			_	_					_		acc Thr 300	_		_		912
		_	_			_	_	_	_	_	aaa Lys	_				960
											ccg Pro					1008
		_	_			_					tct Ser					1056
					_						tca Ser					1104
aat	cta	gca	act	ggt	gaa	gct	gat	aaa	act	tat	gat	gct	acc	ggc	tta	1152

Asn	Leu 370	Ala	Thr	Gly	Glu	Ala 375	Asp	Lys	Thr	Tyr	Asp 380	Ala	Thr	Gly	Leu	
		_		_			_	_	_	att Ile 395	_				_	1200
										gtt Val						1248
										att Ile					_	1296
				_				_		tca Ser			_			1344
										aac Asn						1392
										gcc Ala 475						1440
				-	_			-		gtg Val						1488
										cca Pro						1536
	_		_		_					att Ile						1584
										aca Thr						1632
_			_		_					tta Leu 555						1680
aaa	aaa	ata	tga													1692

Lys Lys Ile

<210> 4 <211> 563 <212> PRT <213> Streptococcus agalactiae <400> 4 Ile Cys Ile Met Val Ile Val Phe Arg Ile Ile Gln Ile Leu Gln Gly Ile Ile Ser Lys Ile Leu Gln Val His Ile Ile Ser Met Ile His 25 Glu Ile Lys Ile Pro Thr Gln Leu Lys Met Pro Ile Ile Arg Gln Ile 40 Leu Val Ser Ser Asn Val Asp Thr Thr Thr Lys Tyr Lys Tyr Val Lys 55 Asp Ala Tyr Lys Leu Val Gly Trp Tyr Tyr Val Asn Pro Tyr Gly Ser Ile Arg Pro Tyr Asn Phe Ser Gly Ala Val Thr Gln Asp Ile Asn Leu Arg Ala Ile Trp Arg Lys Ala Gly Asp Tyr His Ile Ile Tyr Ser Asn 105 Asp Ala Val Gly Thr Asp Gly Lys Pro Ala Leu Asp Ala Ser Gly Gln 120 Gln Leu Gln Thr Ser Asn Glu Pro Thr Asp Pro Asp Ser Tyr Asp Asp 135 140 Gly Ser His Ser Ala Leu Leu Arg Arg Pro Thr Met Pro Asp Gly Tyr 150 155 Arg Phe Arg Gly Trp Trp Tyr Asn Gly Lys Ile Tyr Asn Pro Tyr Asp 165 170 Ser Ile Asp Ile Asp Ala His Leu Ala Asp Ala Asn Lys Asn Ile Thr 185 Ile Lys Pro Val Ile Ile Pro Val Gly Asp Ile Lys Leu Glu Asp Thr 200 Ser Ile Lys Tyr Asn Gly Asn Gly Gly Thr Arg Val Glu Asn Gly Asn 215 Val Val Thr Gln Val Glu Thr Pro Arg Met Glu Leu Asn Ser Thr Thr 230 235 Thr Ile Pro Glu Asn Gln Tyr Phe Thr Arg Thr Gly Tyr Asn Leu Ile 250 245 Gly Trp His His Asp Lys Asp Leu Ala Asp Thr Gly Arg Val Glu Phe 265 Thr Ala Gly Gln Ser Ile Gly Ile Asp Asn Asn Leu Asp Ala Thr Asn Thr Leu Tyr Ala Val Trp Gln Pro Lys Glu Tyr Thr Val Gly Val Ser 295 Lys Thr Val Val Gly Leu Asp Glu Asp Lys Thr Lys Asp Phe Leu Phe

```
305
                   310
                                       315
Asn Pro Ser Glu Thr Leu Gln Gln Glu Asn Phe Pro Leu Arg Asp Gly
               325
                                   330
Gln Thr Lys Glu Phe Lys Val Pro Tyr Gly Thr Ser Ile Ser Ile Asp
                               345
Glu Gln Ala Tyr Asp Glu Phe Lys Val Ser Glu Ser Ile Thr Glu Lys
                           360
Asn Leu Ala Thr Gly Glu Ala Asp Lys Thr Tyr Asp Ala Thr Gly Leu
                       375
                                           380
Gln Ser Leu Thr Val Ser Gly Asp Val Asp Ile Ser Phe Thr Asn Thr
                   390
                                       395
Arg Ile Lys Gln Lys Val Arg Leu Gln Lys Val Asn Val Glu Asn Asp
               405
                                   410
Asn Asn Phe Leu Ala Gly Ala Val Phe Asp Ile Tyr Glu Ser Asp Ala
                               425
Asn Gly Asn Lys Ala Ser His Pro Met Tyr Ser Gly Leu Val Thr Asn
                           440
Asp Lys Gly Leu Leu Leu Val Asp Ala Asn Asn Tyr Leu Ser Leu Pro
                       455
Val Gly Lys Tyr Tyr Leu Thr Glu Thr Lys Ala Pro Pro Gly Tyr Leu
                   470
                                       475
Leu Pro Lys Asn Asp Asp Ile Ser Val Leu Val Ile Ser Thr Gly Val
               485
                                   490
Thr Phe Glu Gln Asn Gly Asn Asn Ala Thr Pro Ile Lys Glu Asn Leu
                               505
Val Asp Gly Ser Thr Val Tyr Thr Phe Lys Ile Thr Asn Ser Lys Gly
       515
                           520
Thr Glu Leu Pro Ser Thr Gly Gly Ile Gly Thr His Ile Tyr Ile Leu
                       535
Val Gly Leu Ala Leu Ala Leu Pro Ser Gly Leu Ile Leu Tyr Tyr Arg
                   550
                                       555
Lys Lys Ile
```

<210> 5

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence:Synthetic oligonucleotide

<400> 5

ctaggtggat ccttcggcaa t

	WO 00/78787		PCT/US00/17082
<210>	6		
<211>	10		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial	Sequence: Synthetic	
	oligonucleotide		
<400>			
cgatto	gccga		10
.0.7.0			
<210>			
<211><212>			
	Artificial Sequence		
~213/	Artificial Sequence		
<220>			
	Description of Artificial	Sequence: Synthetic	
	oligonucleotide	boquence. Symonotic	
<400>	7		
aggcaa	ictgt gctaaccgag ggaat		25
<210>	8		
<211>	11		
<212>	DNA		
<213>	Artificial Sequence		
<220>			
<223>	Description of Artificial	Sequence:Synthetic	
	oligonucleotide		
<400>	0		
	eccto g		11
cgatte	seere g		11
<210>	9		
<211>			
<212>			
	Artificial Sequence		
<220>			
<223>	Description of Artificial	Sequence: Consensus	
	sequence		

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17082

A. CLASSIFICATION OF SUBJECT MATTER IPC(7): Please See Extra Sheet.								
US CL :Please See Extra Sheet.	and and almost Earlies and IRC							
According to International Patent Classification (IPC) or to both	national classification and IPC							
B. FIELDS SEARCHED								
Minimum documentation searched (classification system followers)								
U.S. : 536/23.7; 530/350, 825; 424/244.1, 184.1, 236.1, 234.1, 193.1; 435/320.1, 69.3, 71.1, 7.1, 7.34								
Documentation searched other than minimum documentation to the	e extent that such documents are included in	the fields searched						
Electronic data base consulted during the international search (n	ame of data base and, where practicable, s	search terms used)						
DIALOG, MEDLINE, BIOSIS, EMBASE, WEST spb1, spb2, GBS, SEQ ID NOs: 1, 2, 3 and 4, streptococc?, inventors' names								
C. DOCUMENTS CONSIDERED TO BE RELEVANT								
Category* Citation of document, with indication, where a	ppropriate, of the relevant passages	Relevant to claim No.						
X,P ADDERSON et al. Genetic subtraction	- 7 1	-16, 56						
, 1								
1992, see chare abstract.		,						
	j							
		ŀ						
	į							
		:						
Further documents are listed in the continuation of Box (See patent family annex.							
Special categories of cited documents:	"T" later document published after the interna date and not in conflict with the applicat							
"A" document defining the general state of the art which is not considered to be of particular relevance	the principle or theory underlying the inv	vention						
E earlier document published on or after the international filing date	"X" document of particular relevance; the cl considered novel or cannot be considered							
"L" document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other	when the document is taken alone							
special reason (as specified)	"Y" document of particular relevance; the cl considered to involve an inventive ste							
O document referring to an oral disclosure, use, exhibition or other means	combined with one or more other such do being obvious to a person skilled in the							
P document published prior to the international filing date but later than the priority date claimed	"&" document member of the same patent far	•						
Date of the actual completion of the international search	Date of mailing of the international searce	ch report						
31 OCTOBER 2000	14 NOV 2000	2-1						
Name and mailing address of the ISA/US	Authorized officer	miloen-						
Commissioner of Patents and Trademarks Box PCT	S. DEVI, Ph.D.	Judger						
Washington, D.C. 20231 Facsimile No. (703) 305-3230	Telephone No. (703) 308-1235	A						

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17082

Box I Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This international report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1. Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2. Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3. Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This International Searching Authority found multiple inventions in this international application, as follows:
Please See Extra Sheet.
1. X As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2. As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3. As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4. No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark on Protest X The additional search fees were accompanied by the applicant's protest.
No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17082

A. CLASSIFICATION OF SUBJECT MATTER: IPC (7):

C07H 21/04; C07K 1/00, A61K 39/09, 39/38, 39/39, 38/385; C12N 15/00, 15/09; C12P 21/04, G01N 33/53, 33/569

A. CLASSIFICATION OF SUBJECT MATTER:

US CL :

536/23.7; 530/350, 825; 424/244.1, 184.1, 236.1, 234.1, 193.1; 435/320.1, 69.3, 71.1, 7.1, 7.34

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

Group I, claim(s) 1-16, 33-35 and 56-60, drawn to an isolated nucleic acid molecule encoding SEQ ID NO: 2, a vector and a host cell comprising the same and a method of immunizing a mammal by administering a protein comprising SEQ ID NO: 2.

Group II, claim(s) 17-32, 38-40, 61-64 and 67, drawn to an isolated nucleic acid molecule encoding SEQ ID NO: 4, a vector and a host cell comprising the same and a method of immunizing a mammal by administering a protein comprising SEQ ID NO: 4.

Group III, claim(s) 42, 50 and 54, drawn to a diagnostic method comprising analyzing for the presence or absence of SEQ ID NO: 2.

Group IV, claims 43, 51 and 55, drawn to a diagnostic method comprising analyzing for the presence or absence of SEQ ID NO: 4.

Claims 36, 37, 65 and 66 are considered linking claims and would be joined with Group I or II, if elected.

Claims 41, 44-49, 52 and 53 are considered linking claims and would be joined with Group II or III, if elected.

The inventions listed as Groups I-IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons:

Group I is directed to a nucleic acid molecule of SEQ ID NO:1, a protein with amino acid sequence of SEQ ID NO: 2, a vector and a host cell comprising the nucleic acid molecule and the first method of use of the protein in immunization. This is a permitted category under PCT Rule 13.2. Group II is directed to a second product, a nucleic acid molecule of SEQ ID NO:3, protein with amino acid sequence of SEQ ID NO: 4, a vector and a host cell comprising the nucleic acid molecule and a method of immunizing a mammal by administering the protein. Groups III and IV are directed respectively to a second method of use of the gene products, i.e., diagnostic methods for analyzing spb1 and spb2 gene products respectively. The SEQ ID NO:s of inventions I and II are the special technical features, which distinct from one another in their structure and specificity. The inventions therefore lack unity because the special technical feature is not a unifying feature.

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 December 2000 (28.12.2000)

PCT

(10) International Publication Number WO 00/78787 A 1

- (51) International Patent Classification⁷: C07H 21/04, C07K 1/00, A61K 39/09, 39/38, 39/39, 38/385, C12N 15/00, 15/09, C12P 21/04, G01N 33/53, 33/569
- (21) International Application Number: PCT/US00/17082
- (22) International Filing Date: 21 June 2000 (21.06.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/140,084

21 June 1999 (21.06.1999) US

- (71) Applicant (for all designated States except US): UNIVER-SITY OF UTAH RESEARCH FOUNDATION [US/US]; Suite 110, 615 Arapeen Drive, Salt Lake City, UT 84108 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ADDERSON, Elisabeth [US/US]; St. Jude Children's Research Hospital, Room D 2038, 332 N. Lauderdale, Memphis, TN 38105 (US). BOHNSACK, John [US/US]; University of Utah Health Sciences Center, Dept. of Pediatrics, 50 North Medical Drive, Salt Lake City, UT 84132 (US).

- (74) Agent: MADSON & METCALF; 15 West South Temple, Suite 900, Salt Lake City, UT 84101 (US).
- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- With international search report.
- (48) Date of publication of this corrected version:

5 April 2001

(15) Information about Correction: see PCT Gazette No. 14/2001 of 5 April 2001, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

CORRECTED VERSION

(19) World Intellectual Property Organization International Bureau

(43) International Publication Date 28 December 2000 (28.12.2000)

PCT

(10) International Publication Number WO 00/78787 A1

- (51) International Patent Classification⁷: C07H 21/04, C07K 1/00, A61K 39/09, 39/38, 39/39, 38/385, C12N 15/00, 15/09, C12P 21/04, G01N 33/53, 33/569
- (21) International Application Number: PCT/US00/17082
- (22) International Filing Date: 21 June 2000 (21.06.2000)
- (25) Filing Language:

English

(26) Publication Language:

English

(30) Priority Data:

60/140,084

21 June 1999 (21.06.1999) US

- (71) Applicant (for all designated States except US): UNIVER-SITY OF UTAH RESEARCH FOUNDATION [US/US]: Suite 110, 615 Arapeen Drive, Salt Lake City, UT 84108 (US).
- (72) Inventors; and
- (75) Inventors/Applicants (for US only): ADDERSON, Elisabeth [US/US]; St. Jude Children's Research Hospital, Room D 2038, 332 N. Lauderdale, Memphis, TN 38105 (US). BOHNSACK, John [US/US]; University of Utah Health Sciences Center, Dept. of Pediatrics, 50 North Medical Drive, Salt Lake City, UT 84132 (US).
- (74) Agent: MADSON & METCALF; 15 West South Temple, Suite 900, Salt Lake City, UT 84101 (US).

- (81) Designated States (national): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, BZ, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW.
- (84) Designated States (regional): ARIPO patent (GH, GM, KE, LS, MW, MZ, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published:

- with international search report
- (48) Date of publication of this corrected version:

27 June 2002

(15) Information about Corrections:

see PCT Gazette No. 26/2002 of 27 June 2002, Section II **Previous Correction:**

see PCT Gazette No. 14/2001 of 5 April 2001, Section II

For two-letter codes and other abbreviations, refer to the "Guidance Notes on Codes and Abbreviations" appearing at the beginning of each regular issue of the PCT Gazette.

0/78787 A1

(54) Title: ISOLATED GENES FROM VIRULENT GROUP B STREPTOCOCCUS AGALACTIAE

(57) **Abstract:** The present invention relates to the identification and prevention of infections by virulent forms of Group B streptococci. Disclosed herein is the identification of two genes. *spb1* and *spb2*, that are specific to virulent type III-3 GBS. Also disclosed herein are diagnostic methods for detecting virulent GBS infections and methods of immunizing a mammal against these bacteria.

ISOLATED GENES FROM VIRULENT GROUP B STREPTOCOCCUS AGALACTIAE

1. FIELD OF THE INVENTION

5

10

15

20

25

30

The present invention relates to genes isolated from Group B streptococci ("GBS"). More specifically, the present invention relates to genes that are specific to virulent forms of GBS and methods of using such genes and their products for the diagnosis and treatment of GBS infections.

2. TECHNICAL BACKGROUND

Group B streptococci ("GBS") are a common cause of disease in newborns, pregnant women, and other persons. Common manifestations of these infections include bacteremia, pneumonia, meningitis, endocarditis, and osteoarticular infections. C.J. Baker & M.S. Edwards, *Group B Streptococcal Infections*, in *Infectious Disease of the Fetus and Newborn Infant*, 980-1054 (J.S. Remington & J.O. Klein, eds., 1995); P. Munoz et al., *Arch Int Med* 157:213-216 (1997).

Nearly 3 out of every 1,000 children born are infected with an invasive form of GBS disease. While GBS disease is of great concern in neonates, GBS is also an important pathogen in the general population, in which the incidence of invasive GBS disease is nearly 8 in 100,000. Of these infections, the mortality rate can be as high as 30%.

During childbirth, GBS can pass from the mother to the newborn. By one estimate, up to 30% of pregnant women carry GBS at least temporarily in the vagina or rectum without symptoms. Infants born to these women become colonized with GBS during delivery. Baker & Edwards, *supra*. Aspiration of infected amniotic fluid or vaginal secretions allow GBS to gain access to the lungs. Adhesion to, and invasion of, respiratory epithelium and endothelium appear to be critical factors in early onset neonatal infection. Baker & Edwards, *supra*; C.E. Rubens et al., *J Inf Dis* 164:320-330 (1991). Subsequent steps in infection, such as blood stream invasion and the establishment of metastatic local infections have not been clarified. The pathogenesis of neonatal infection occurring after the first week of life is also not well understood. Gastrointestinal colonization may be more important than a respiratory focus in late onset neonatal disease. Baker & Edwards, *supra*. Considerable evidence suggests that invasion of brain microvascular endothelial cells by GBS is the initial step in the pathogenesis of

meningitis. GBS are able to invade human brain microvascular endothelial cells and type III GBS, which are responsible for the majority of meningitis, accomplish this 2-6 times more efficiently than other serotypes. V. Nizet et al. *Infect Immun* **65**:5074-5081 (1997).

5

10

15

20

25

30

Because GBS is widely distributed among the population and is an important pathogen in newborns, pregnant women are commonly tested for GBS at 26 to 28 weeks of pregnancy. Much of GBS neonatal disease is preventable by administration of prophylactic antibiotics during labor to women who test positive or display known risk factors. However, these antibiotics programs do not prevent all GBS disease. The programs are deficient for a number of reasons. First, the programs can be inefficient. Second, it is difficult to ensure that all healthcare providers and patients comply with the testing and treatment. And finally, if new serotypes or antibiotic resistance emerges, the antibiotic programs may fail altogether. Currently available tests for GBS are inefficient. These tests may provide false negatives. Furthermore, the tests are not specific to virulent strains of GBS. Thus, antibiotic treatment may be given unnecessarily and add to the problem of antibiotic resistance. Although a vaccine would be advantageous, none are yet commercially available.

Traditionally, GBS have been divided into 9 serotypes according to the immunologic reactivity of the polysaccharide capsule. H.M. Blumberg et al., *J Inf Dis* 173: 365-373 (1996). Serotype III GBS cause 60-70% of all infections and almost all meningitis. Baker & Edwards, *supra*. Type III GBS can be subdivided into three groups of related strains based on the analysis of restriction digest patterns (RDPs) produced by digestion of chromosomal DNA with *Hind* III and *Sse*8387 I. Y. Nagano et al., *J Med Micro* 35:297-303 (1991); S. Takahashi et al., *J Inf Dis* 177:1116-1119 (1998). Figure 1 illustrates a comparison of *Hind* III and *Sse*8387 I RDP typing of 62 type III isolates from Salt Lake City, Utah and Tokyo, Japan. Isolates were classified into types based on the similarity of the restriction digest patterns produced by *Hind* III or *Sse*8387 I digestion of chromosomal DNA. The two methods divided the isolates into RDP types containing exactly the same isolates: III-3 contains isolates 1-41, II-2 contains isolates 42-59, and II-1 contains isolates 60-62.

Over 90% of invasive type III GBS neonatal disease in Tokyo, Japan and in Salt Lake City, Utah is caused by bacteria from one of three RDP types, termed RDP type III-3, while RDP type III-2 are significantly more likely to be isolated from vagina than from

blood or CSF. These results suggest that this genetically-related cluster of type III-3 GBS are more virulent than III-2 strains and could be responsible for the majority of invasive type III disease globally.

From the foregoing, it will be appreciated that it would be a significant advancement in the art to provide one or more markers that are specific to virulent type III-3 GBS. It would be a further advancement to provide a method to exploit these markers for clinical identification of virulent type III-3 GBS. It would be a further advancement to provide methods for producing vaccines against type III-3 GBS.

Such compositions and methods are disclosed herein.

3. BRIEF SUMMARY OF THE INVENTION

5

10

15

20

25

30

The present invention relates to markers specific to type III-3 GBS. These markers, the *spb1* and *spb2* gene products (SEQ ID NO: 2 and SEQ ID NO: 4, respectively), are encoded by the *spb1* (SEQ ID NO: 1) and *spb2* (SEQ ID NO: 3) genes. The invention also provides these genes and gene products in substantially purified form.

In certain other embodiments, the present invention relates to recombinant vectors which incorporate the *spb1* gene or other nucleic acid molecules that code for the *spb1* gene product. The recombinant vector may be a plasmid. In certain embodiments, the recombinant vector is a prokaryotic or eukaryotic expression vector. In certain preferred embodiments, the nucleic acid molecule is operably linked to a heterologous promoter and/or other expression control elements, such as heterologous enhancers and polyadenylation sequences.

In certain other embodiments, the present invention relates to recombinant vectors which incorporate the spb2 gene or other nucleic acid molecules that code for the spb2 gene product. The recombinant vector may be a plasmid. In certain embodiments, the recombinant vector is a prokaryotic or eukaryotic expression vector. In certain preferred embodiments, the nucleic acid molecule is operably linked to a heterologous promoter and/or other expression control elements.

The present invention also provides host cells comprising the spb1 and/or spb2 genes. In other embodiments, a host cell of the present invention comprises nucleic acid molecules that code for the spb1 and/or spb2 gene products. The host cell may be a prokaryotic or eukaryotic host cell.

The present invention also relates to diagnostic methods for determining whether a mammal is infected or colonized by virulent GBS. In certain embodiments, a diagnostic method comprises the steps of (1) collecting a bodily fluid or culture from the mammal and (2) analyzing the bodily fluid or culture for the presence of absence of one or more gene products specific to type III-3 GBS, wherein the presence of one or more gene products specific to type III-3 GBS indicates infection or colonization by virulent GBS. The mammal may be a human. Alternatively, the mammal may be a laboratory, domestic, or agricultural animal. The bodily fluid or culture may be any bodily fluid or culture that is typically analyzed for the presence of bacteria. For example, the bodily fluid or culture may be a vaginal or rectovaginal culture. The bodily fluid or culture may also be a throat culture. The bodily fluid or culture may also be an endotracheal tube aspirant, fluid from a brochioaveloar lavage, or tissue from a lung biopsy. In certain embodiments, the bodily fluid or culture is blood, serum, amniotic fluid, cerebrospinal fluid, or joint fluid. Other sources of material will be apparent to those of skill in the art. In certain embodiments, a diagnostic method of the present invention comprises analyzing a sample for the presence or absence of the spb1 and/or spb2 gene product(s).

5

10

15

20

25

30

In certain embodiments of a diagnostic method of the present invention, the polymerase chain reaction ("PCR") is used to identify the presence or absence of the *spb1* and/or *spb2* gene(s). In certain other embodiments, antibodies are used to identify the presence or absence of the *spb1* and/or *spb2* gene products. The antibodies may be monoclonal or polyclonal antibodies.

The present invention also relates to GBS vaccines. In certain embodiments, the present invention provides vaccines comprising the *spb1* gene product, i.e., a protein comprising the amino acid sequence of SEQ ID NO: 2. In certain other embodiments, a vaccine comprises the *spb2* gene product, i.e., a protein comprising the amino acid sequence of SEQ ID NO: 4. In certain preferred embodiments, a vaccine comprises both the *spb1* and *spb2* gene products. The vaccine may include an adjuvant, such as alum. In certain other embodiments, the *spb1* and/or *spb2* gene(s) may be introduced into a mammal using either naked DNA or other gene therapy techniques to induce an immune response against type III GBS.

The present invention further provides methods of immunizing a mammal against GBS infection. In certain embodiments, such methods comprise administering to the

mammal a vaccine comprising an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 2. In certain other embodiments, a method of the present invention comprises administering to the mammal a vaccine comprising an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 4. The vaccine may also contain a mixture of the spb1 and spb2 gene products. Vaccines used in the methods of the present invention may further comprise an adjuvant, such as alum.

These and other features and advantages of the present invention will become more fully apparent from the following detailed description.

4. SUMMARY OF THE DRAWINGS

5

10

15

20

25

30

Figure 1 illustrates a comparison of *Hin*dIII and *Sse*83871 RDP typing of 62 type III GBS isolates from Salt Lake City, Utah and Tokyo, Japan. Isolates were classified into types based on the similarity of the restriction digest patterns produced by *Hind*III or *Sse*83871 digestion of chromosomal DNA. The two methods divided isolates into RDP types containing exactly the same isolates: III-3 contains isolates 1 - 41, III-2 contains isolates 42 - 59, and III-1 contains isolates 60 - 62.

Figure 2 illustrates a dot blot hybridization of probe 1 with genomic DNA isolated from type III GBS. 10 µg of genomic DNA from each of 62 type III GBS strains was transferred to nylon membrane. Radiolabeled probe 1 hybridized with DNA from all III-3 strains (rows A - D) including the original type III-3 strain (well E1). The probe failed to hybridize with DNA from III-2 strains (F1 - F10, G1 - G7) including the original strain used in the subtraction hybridization (well E10) and III-1 strains (wells H1 - H3). The same pattern of hybridization was observed using clone 3 and 11 probes.

5. DETAILED DESCRIPTION OF THE INVENTION

The present invention relates to the identification and prevention of infections by virulent forms of GBS. The present invention also relates to isolated genes specific to type III-3 GBS. These genes, spb1 and spb2, encode the spb1 and spb2 gene products.

The spb1 and spb2 genes or other nuclceic acid moleucles coding for the spb1 or spb2 gene products may be incorporated into a recombinant vector using methods known in the art. See, e.g., 1-3 J. Sambrook et al., Molecular Cloning: A Laboratory Manual

(2d ed. 1989). Recombinant vectors include any genetic element, such as a plasmid, phage, transposon, cosmid, chromosome, virus, etc., that is capable of replication when associated with the proper control elements and that can transfer gene sequences between cells. Thus, the term includes cloning and expression vehicles.

5

10

15

20

25

A nucleic acid molecule of the present invention may be operably linked to expression control sequences, such as heterologous promoters. Examples include, but are not limited to, viral promoters such as the SV40 early promoter and the CMV immediate early promoter region, bacterial promoters, mammalian promoters, inducible promoters, synthetic promoters, hybrid promoters, and the like. Other expression control sequences are known in the art and include polyadenylation signals, transcription termination sequences, upstream regulatory domains, origins of replication, internal ribosome entry sites ("IRES"), and enhancers. These expression control sequences collectively provide for the replication, transcription and translation of a coding sequence in a recipient cell. Not all of these control sequences need always be present in a recombinant vector, so long as the selected coding sequence is capable of being replicated, transcribed and translated in an appropriate host cell.

Recombinant vectors can be constructed to include selectable markers. Suitable markers include genes which confer antibiotic resistance or sensitivity, or impart color, or change the antigenic characteristics when host cells which have been transfected with the recombinant vectors are grown in an appropriate selective medium. Suitable markers are known to those of skill in the art.

The discovery of type III-3 GBS-specific gene products will allow clinicians to diagnose and treat infection and colonization with virulent GBS. For example, hybridization-based assays may be used to determine whether a GBS isolate is type III-3. Figure 2 illustrates the results of hybridization assays with a III-3-specific probe. Likewise, PCR may be used to detect the presence or absence of either the *spb1* gene or the *spb2* gene (or both) in samples from patients. PCR methods are described generally in C.R. Newton & A. Graham, *PCR* (2nd. ed. 1997); *PCR: Essential Techniques* (J.F. Burke ed., 1996). Patients who are infected with type III-3 GBS may then receive appropriate antibiotic therapy.

Antibodies may also be used to detect the presence or absence of the *spb1* and/or *spb2* gene product(s). Methods for preparing both monoclonal and polyclonal antibodies are described in, e.g., E. Harlow & D. Lane, *Antibodies: A Laboratory Manual* (1988).

The present invention also relates to methods for producing type III-3 GBS vaccines. See generally Vaccine Protocols (A. Robinson, G.H. Farrar & C.N. Wiblin eds. 1996). In certain embodiments, the spb1 and/or spb2 gene product(s) may be used to immunize against GBS. These gene products may be produced in large quantities using techniques that are known in the art. For example, the appropriate gene or genes may be linked to a prokaryotic promoter and expressed in bacteria. The gene products may then be purified using conventional techniques and used to vaccinate at-risk individuals.

5

10

15

20

25

30

Alternatively, the appropriate gene or genes may be linked to a eukaryotic promoter and enhancer (e.g., yeast, baculovirus, SV40, etc.) and expressed in an appropriate cell type. The gene products may then be purified using conventional techniques.

The *spb1* and/or *spb2* gene products, or immunogenic fragments thereof, may stimulate an immune response when administered to a host. Recombinantly produced proteins are especially desirable, as they can be produced in large amounts and purified. Furthermore, recombinantly produced proteins may be engineered to maximize desirable activities and to minimize unwanted effects.

The recombinantly produced *spb1* and/or *spb2* gene products may be used as carrier proteins for a polysaccharide-protein or oligosaccharide-protein conjugate vaccine. *See, e.g.*, R. Schneerson, et al., *Infect Immun* 60:3528-3532 (1992) (describing a *Pneumococcus*-pertussis toxin conjugate vaccine). For example, *Haemophilus influenzae* B vaccines have been produced by conjugating a tetanus toxoid; a *Corynebacteriaum* toxin, CRM₁₉₇ (which is a mutant diptheria toxin); and a *Neisseria* outer membrane protein. Oligo- and polysaccharides from GBS might be used in a vaccine.

Oligosaccharide- and polysaccharide-protein conjugates alter the immunological properties of the polysaccharide or oligosaccharide and may improve the immune response.

An adjuvant may be used to enhance the immune response to a vaccine containing the *spb1* and/or *spb2* gene products. An adjuvant is any substance that enhances the immune response to an antigen. Without being bound by any particular theory, adjuvants may act by retaining the antigen locally near the site of administration to produce a depot

effect, facilitating the slow, sustained release of the antigen to cells of the immune system. Adjuvants may also attract cells of the immune system. Aluminum hydroxide and aluminum phosphate (collectively and commonly referred to as "alum") are routinely used as adjuvants in human and veterinary vaccines. Currently, alum is the only adjuvant licensed for human use, although a number of experimental adjuvants are being tested.

The *spb1* and/or *spb2* gene(s) may also be introduced into a mammal using either naked DNA or other gene therapy techniques to induce an immune response against virulent GBS.

All publications, patents, and patent applications cited in this application are hereby incorporated by reference. U.S. Patent Application Serial No. 60/140,084 is hereby incorporated by reference in its entirety.

6. EXAMPLES

5

10

15

20

25

30

The following examples are given to illustrate several embodiments which have been made within the scope of the present invention. It is to be understood that these examples are neither comprehensive nor exhaustive of the many types of embodiments which can be prepared in accordance with the present invention.

Example 1 - Isolation of the spb1 and spb2 genes

Bacterial factors that contribute to the increased virulence of III-3 strains can be identified by characterizing the differences between the genetic composition of III-3 and III-2 strains. Such genetic differences will be found in the bacterial chromosomes since these strains do not contain plasmids. Takahashi et al., *supra*.

To identify genes present in virulent type III-3 GBS strains and not in the avirulent type III-2 strains, a modification of the technique described by Lisitsyn et al., *Science* **259**:946-951 (1993), was used. High molecular weight genomic DNA from an invasive RDP type III-3 GBS strain (strain 874391) and a colonizing ("avirulent") RDP type III-2 strain (strain 865043) were prepared by cell lysis with mutanolysin and Proteinase K digestion. Y. Nagano et al., *supra*. For genetic subtraction, genomic DNA from both strains was digested with *Taq* I. *Taq* I-digested DNA from the virulent strain was mixed with two complementary oligonucleotides, TaqA (5'-CTAGGTGGA-TCCTTCGGCAAT-3' (SEQ ID NO: 5)) and TaqB (5'-CGATTGCCGA-3' (SEQ ID NO: 6)), heated to 50°C for 5 minutes, then allowed to cool slowly to 16°C in T4 ligase

buffer. Oligonucleotides were ligated to the virulent strain DNA by incubation with 20 units of T4 ligase at 16°C for 12 hours. After ligation, 500 ng of DNA from the virulent strain, with ligated linkers, and 40 µg of DNA from the avirulent strain, without linkers, was mixed together, denatured by heating, and hybridized at 68°C for 20 hours.

Ten percent of the resulting hybridization mixture was incubated with *Taq* DNA polymerase and dNTPs to fill in the ends of annealed virulent strain DNA. The hybridized DNA was amplified by *Taq* DNA polymerase for 10 cycles using the TaqA oligonucleotide as the forward and reverse amplification primer. After amplification, single stranded products remaining after amplification were digested with mung bean nuclease. Twenty percent of the resulting product was then reamplified for 20 cycles. This process of subtraction followed by PCR amplification results in enhanced amplification of DNA segments from the III-3 strains that do not hybridize with DNA segments from the III-2 strains.

5

10

15

20

25

30

A total of four cycles of subtraction and amplification were carried out using successively smaller quantities of III-3 specific PCR products. Two pairs of oligonucleotides were used for subtraction, which were alternated with successive rounds of subtraction-amplification. The oligos were TaqA (SEQ ID NO: 5) and TaqB (SEQ ID NO: 6) (the first pair) and TaqE (5'-AGGCAACTGTGCTAACCGAGGGAAT-3' (SEQ ID NO: 7)) and TaqF (5'-CGATTCCCTCG-3' (SEQ ID NO: 8)) (the second pair). The final amplification products were ligated into pBS KS+ vector and transformed into competent XL1-Blue strain *E. coli*. Thirteen clones were randomly selected for analysis. Cross hybridization studies of the 13 inserts revealed that 6 were unique. These probes were used in slot and dot blot experiments to determine whether subtraction was successful and to identify probes hybridizing with all III-3 strains. Each of the 6 unique probes hybridized with the parental III-3 virulent strain, while none of the probes hybridized with the avirulent III-2 strains. Three of the amplified sequence tags (clones 1, 3 and 11) hybridized with genomic DNA from all 62 type III-3 isolates, but did not hybridize with DNA prepared from the III-2 and III-1 isolates.

Figure 2 illustrates a dot blot hybridization of type III GBS genomic DNA hybridized with a clone 1 probe. 10 µg of genomic DNA from each of 62 type III GBS strains was transferred to nylon membrane. Radiolabeled clone 1 probe hybridized with DNA from all III-3 strains (rows A-D) including the original type III-3 strain (well E-1).

The probe failed to hybridize with DNA from III-2 strains (F1-F10, G1-G7) including the original strain used in the subtraction hybridization (well E10) and III-1 strains (wells H1-H3). The same pattern of hybridization was observed using clone 3 and 11 probes. These data demonstrate the feasibility of identifying genes unique to III-3 strains by this method of PCR-based subtractive hybridization, and further support the validity of the RDP typing for identifying genetically-related type III GBS.

5

10

15

20

25

30

The three GBS type III-3-specific sequence tags are short (130-360 bp). To obtain additional sequence information, a genomic GBS III-3 library was constructed. High molecular weight GBS genomic DNA was partially digested with Bgl II and cloned into λ FIX II phage vector. Phage were packaged and the library, consisting of 1.7 x 10^5 recombinant phage containing inserts with a mean size of about 18 kb (totaling approximately 3 x 10^9 bp), was amplified once. Multiple plaques hybridizing with each of the III-3 GBS-specific probes were purified for further characterization.

Three overlapping genomic clones hybridizing with probe 1 were identified, with approximate sizes of 9, 22, and 23 kb. Since the boundaries of GBS III-3 specific DNA are not known, smaller fragments were subcloned and the DNA was verified present in virulent GBS strains before proceeding with further characterization. The first segment examined is a 6.4 kb *Sal* I-*Bgl* II fragment. This genomic DNA is present in all RDP type III-3 strains and in none of 17 RDP type III-2 strains.

Over 90% of this genomic DNA fragment has been sequenced and found to contain 5 open reading frames ("ORFs"). Three of these are likely to be authentic genes. They feature ATG start sites, are preceded by potential ribosomal binding sites and, in two cases, stop codons are followed by palindromic sequences that may represent transcriptional terminators. They are relatively short, however, and do not show significant homology at the nucleic acid or amino acid level with sequences registered with Genbank or the available bacterial genome databases.

The two other ORFs appear to be more obvious candidates for virulence genes. The *spb1* gene includes a 1509 bp ORF that is preceded by a potential ribosomal binding site 10 bases upstream from an ATG start codon. The predicted protein (502 amino acids and Mr 53,446) has the characteristics of a cell wall-bound protein. The N-terminus of the predicted protein is a hydrophilic, basic stretch of 6 amino acids followed by a 23 amino acid hydrophobic, proline-rich core, consistent with a signal peptide. The

hydrophilic mature protein terminates in a typical LPXTG (SEQ ID NO: 9) domain that immediately precedes a hydrophobic 20 amino acid core and a short, basic hydrophilic terminus.

5

10

15

20

25

30

The nucleotide sequence is not homologous to sequences of other known bacterial genes. The translated amino acid sequence, however, shares segmental homology with a number of characterized proteins, including the fimbrial type 2 protein of *Actinomyces naeslundii* (27% identity over 350 amino acids) and the fimbrial type 1 protein of *Actinomyces viscosus* (25% homology over 420 amino acids), the T6 surface protein of *S. pyogenes* (23% identity over 359 amino acids), and the *hsf* (27% identity over 260 amino acids) and HMW1 adhesins (25% identity over 285 amino acids) of *Haemophilus influenzae. See* M.K. Yeung & J.O. Cisar, *J Bacteriol* 172:242-2468 (1990); O. Schneewind, et al., *J Bacteriol* 172:3310-3317 (1990); J.W. St. Geme III, et al., *J Bacteriol* 178:6281-6287 (1996); J.W. St. Geme III, *Infect Immun* 62: 3881-3889 (1994). The function of the *S. pyogenes* T6 protein is unknown. Each of the other homologues plays a role in bacterial adhesion and/or invasion.

The second ORF, *spb2*, terminates 37 bp upstream from *spb1* and is in the same transcriptional orientation. This 1692 bp ORF has a deduced amino acid sequence of 563 residues and Mr 64,492. It shares 50.5% nucleic acid identity and 20.7% amino acid identity with *spb1*. Conservation is highest in the carboxy-terminal regions, including a shared LPSTGG (SEQ ID NO: 10) motif. In contrast to *spb1*, *spb2* does not have an obvious signal sequence. Its secretion may be mediated by carboxy-terminal recognition sequences or by accessory peptides. T. Michiels, et al., *Infect Immun* 58:2840-2849 (1990). The deduced amino acid sequence of *spb2* is also homologous with *S. pyogenes* T6 and *Actinomyces naeslundii* proteins, and to *Listeria monocytogenes* internalin A (22% identity over 308 amino acids)—again, proteins important in adhesion and invasion.

Neither of the predicted gene products has the repetitive structure of previously described GBS surface proteins such as the C and Rib proteins or of *L. monocytogenes* internalin family members. L.C. Madoff et al., *Infect Immun* 59:2638-2644 (1991); J. Gaillard, et al., *Cell* 65: 1127-1141 (1991). Hybridization of the originating strain 874391 genomic DNA with an *spb1* probe under low stringency conditions identifies a single band in *EcoR* I, *Sal* I and *Sst* I digests (data not shown), suggesting that a single

copy of spb1 is present in this strain and that spb1 is not a member of a significantly homologous "family" of genes.

5

10

15

Example 2 - Adherence and Invasion Assays Using spb1 Bacteria

Genomic subtraction identified a 1509 bp ORF, *spb1*, which is present in virulent RDP type III-3 GBS and not in RDP type III-2 strains. The predicted 53 kD protein product has the characteristics of a typical gram positive cell-wall bound protein. The nucleic acid sequence of *spb1* is not homologous to sequences of other known bacterial genes, however the translated amino acid sequence shares segmental homology with several characterized adhesins, including *Actinomyces* fimbrial proteins and *H. influenzae* HMW1, suggesting that Spb1 might contribute to GBS adhesion or invasion. A *spb1* isogenic deletion mutant GBS strain was created by homologous recombination and the ability of the *spb1* mutant to adhere to and invade A549 respiratory epithelial cells was determined. Compared to the wild type strain, the number of *spb1* bacteria adherent to A549 monolayers was reduced by 60.0% (p<0.01) and the number of intracellular invading bacteria was reduced by 53.6% (p<0.01). Without being bound by any particular theory, it appears that Spb1 may contribute to the pathogenesis of GBS pneumonia and bacterial entry into the bloodstream.

CLAIMS:

1. An isolated nucleic acid molecule comprising nucleotides which code for the amino acid sequence of SEQ ID NO: 2.

- 2. A recombinant vector comprising the nucleic acid molecule of claim 1.
- 3. The recombinant vector of claim 2, wherein said recombinant vector is a plasmid.
- 5 4. The recombinant vector of claim 2, wherein said recombinant vector is a prokaryotic or eukaryotic expression vector.
 - 5. The recombinant vector of claim 2, wherein the nucleic acid molecule is operably linked to a heterologous promoter.
 - 6. A host cell comprising the nucleic acid molecule of claim 1.
- The host cell of claim 6, wherein the host cell is a eukaryotic host cell.
 - 8. The host cell of claim 6, wherein the host cell is a prokaryotic host cell.
 - An isolated nucleic acid molecule comprising the nucleotide sequence of SEQ ID
 NO: 1.
 - 10. A recombinant vector comprising the nucleic acid molecule of claim 9.
- 15 11. The recombinant vector of claim 10, wherein said recombinant vector is a plasmid.
 - 12. The recombinant vector of claim 10, wherein said recombinant vector is a prokaryotic or eukaryotic expression vector.
 - 13. The recombinant vector of claim 10, wherein the nucleic acid molecule is operably linked to a heterologous promoter.
 - 14. A host cell comprising the nucleic acid molecule of claim 9.
 - 15. The host cell of claim 14, wherein the host cell is a eukaryotic host cell.
 - 16. The host cell of claim 14, wherein the host cell is a prokaryotic host cell.
 - 17. An isolated nucleic acid molecule comprising nucleotides which code for the
- amino acid sequence of SEQ ID NO: 4

- 18. A recombinant vector comprising the nucleic acid molecule of claim 17.
- 19. The recombinant vector of claim 18, wherein said recombinant vector is a plasmid.
- 20. The recombinant vector of claim 18, wherein said recombinant vector is a prokaryotic or eukaryotic expression vector.

21. The recombinant vector of claim 18, wherein the nucleic acid molecule is operably linked to a heterologous promoter.

- 22. A host cell comprising the nucleic acid molecule of claim 17.
- 23. The host cell of claim 22, wherein the host cell is a eukaryotic host cell.
- 24. The host cell of claim 22, wherein the host cell is a prokaryotic host cell.
- 5 25. An isolated nucleic acid molecule comprising the nucleotide sequence of SEQ ID NO: 3.
 - 26. A recombinant vector comprising the nucleic acid molecule of claim 25.
 - 27. The recombinant vector of claim 26, wherein said recombinant vector is a plasmid.
- 10 28. The recombinant vector of claim 26, wherein said recombinant vector is a prokaryotic or eukaryotic expression vector.
 - 29. The recombinant vector of claim 26, wherein the nucleic acid molecule is operably linked to a heterologous promoter.
 - 30. A host cell comprising the nucleic acid molecule of claim 25.
- 15 31. The host cell of claim 30, wherein the host cell is a eukaryotic host cell.
 - 32. The host cell of claim 30, wherein the host cell is a prokaryotic host cell.
 - 33. A method of immunizing a mammal against Group B streptococci infection, said method comprising administering to the mammal a vaccine comprising an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 2.
 - 34. The method of claim 33, wherein the vaccine further comprises an adjuvant.
 - 35. The method of claim 34, wherein the adjuvant comprises alum.

20

25

- 36. The method of claim 33, wherein the vaccine further comprises an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 4.
- 37. The method of claim 36, wherein the vaccine further comprises an adjuvant.
- 38. A method of immunizing a mammal against Group B streptococci infection, said method comprising administering to the mammal a vaccine comprising an immunologically effective amount of a recombinantly produced protein comprising the amino acid sequence of SEQ ID NO: 4.
- 39. The method of claim 38, wherein the vaccine further comprises an adjuvant.

40. The method of claim 39, wherein the adjuvant comprises alum.

5

10

20

- 41. A diagnostic method for determining whether a mammal is infected or colonized by virulent Group B streptococci (GBS), said method comprising the steps of:
 - (a) collecting a bodily fluid or culture from the mammal;
 - (b) analyzing the bodily fluid or culture for the presence or absence of one or more gene products specific to type III-3 GBS;

wherein the presence of one or more gene products specific to type III-3 GBS indicates infection or colonization by virulent GBS.

- 42. The diagnostic method of claim 41, wherein the one or more gene products specific to type III-3 GBS comprise a protein, said protein comprising the amino acid sequence of SEQ ID NO: 2.
- 43. The diagnostic method of claim 41, wherein the one or more gene products specific to type III-3 GBS comprise a protein, said protein comprising the amino acid sequence of SEQ ID NO: 4.
- 44. The diagnostic method of claim 41, wherein the one or more gene products

 specific to type III-3 GBS comprise a first protein comprising the amino acid sequence of SEQ ID NO: 2 and a second protein comprising the amino acid sequence of SEQ ID NO: 4.
 - 45. The diagnostic method of claim 41, wherein the mammal is a human.
 - 46. The diagnostic method of claim 41, wherein the bodily fluid or culture is a vaginal or rectovaginal culture.
 - 47. The diagnostic method of claim 41, wherein the bodily fluid or culture is a throat culture.
 - 48. The diagnostic method of claim 41, wherein the bodily fluid or culture is blood, serum, amniotic fluid, cerebrospinal fluid, or joint fluid.
- 25 49. The diagnostic method of claim 41, wherein the analysis step comprises using polymerase chain reaction (PCR) to identify the presence or absence of one or more gene products specific to type III-3 GBS.
 - 50. The diagnostic method of claim 49, wherein the analysis step comprises using PCR to determine the presence or absence of the *spb1* gene product.
- The diagnostic method of claim 49, wherein the analysis step comprises using PCR to determine the presence or absence of the *spb2* gene product.

52. The diagnostic method of claim 41, wherein the analysis step comprises using antibodies to identify the presence or absence of one or more gene products specific to type III-3 GBS.

- 53. The diagnostic method of claim 52, wherein the antibodies are monoclonal antibodies.
- 5 54. The diagnostic method of claim 53, wherein the monoclonal antibodies are specific for the *spb1* gene product.
 - 55. The diagnostic method of claim 53, wherein the monoclonal antibodies are specific for the *spb2* gene product.
 - 56. An isolated and purified protein comprising the amino acid sequence of SEQ ID NO: 2.
 - 57. A vaccine for immunizing a mammalian host against virulent Group B streptococci infection, said vaccine comprising the protein of claim 56.
 - 58. The vaccine of claim 57, further comprising an adjuvant.

10

- 59. The vaccine of claim 58, wherein the adjuvant comprises alum.
- 15 60. The vaccine of claim 57, wherein the protein is conjugated to a bacterial polysaccharide or oligosaccharide.
 - 61. An isolated and purified protein comprising the amino acid sequence of SEQ ID NO: 4.
 - 62. A vaccine for immunizing a mammalian host against virulent Group B streptococci infection, said vaccine comprising the protein of claim 61.
 - 63. The vaccine of claim 62, further comprising an adjuvant.
 - 64. The vaccine of claim 63, wherein the adjuvant comprises alum.
 - 65. The vaccine of claim 62, further comprising an isolated and purified protein comprising the amino acid sequence of SEQ ID NO: 2.
- 25 66. The vaccine of claim 65, further comprising an adjuvant.
 - 67. The vaccine of claim 62, wherein the protein is conjugated to a bacterial polysaccharide or oligosaccharide.

FIG. 1

SUBSTITUTE SHEET (RULE 26)

FIG. 2

SEQUENCE LISTING

<110> Adderson, Elisabeth E.

Bohnsack, John F. University of Utah Research Foundation <120> Isolated Genes from Virulent Group B Streptococcus agalactiae <130> 1321.2.29 <140> <141> <150> 60/140,084 <151> 1999-06-21 <160> 10 <170> PatentIn Ver. 2.1 <210> 1 <211> 1509 <212> DNA <213> Streptococcus agalactiae <220> <221> CDS <222> (1)..(1509) <400> 1 atg aaa aag aaa atg att caa tcg ctg tta gtg gcg agt tta gca ttt 48 Met Lys Lys Lys Met Ile Gln Ser Leu Leu Val Ala Ser Leu Ala Phe 96 ggt atg gct gta tca cca gtt acg ccg ata gct ttt gcc gct gag aca Gly Met Ala Val Ser Pro Val Thr Pro Ile Ala Phe Ala Ala Glu Thr 30 20 25 ggg aca att aca gtt caa gat act caa aaa ggc gca acc tat aaa gca Gly Thr Ile Thr Val Gln Asp Thr Gln Lys Gly Ala Thr Tyr Lys Ala 35 40 tat aaa gtt ttt gat gca gaa ata gat aat gca aat gta tct gat tcg 192 Tyr Lys Val Phe Asp Ala Glu Ile Asp Asn Ala Asn Val Ser Asp Ser 50 60 aat aaa gat gga gct tct tat tta att cct caa ggt aaa gaa gct gag 240

Asn 65	Lys	Asp	Gly	Ala	Ser 70	Tyr	Leu	Ile	Pro	Gln 75	Gly	Lys	Glu	Ala	Glu 80	
					gat Asp											288
					gta Val											336
					aaa Lys											384
					aat Asn											432
					tat Tyr 150											480
					gta Val											528
					gga Gly											576
					gat Asp											624
_	_				ggt Gly											672
					gct Ala 230											720
					gat Asp											768
ggt	tcg	gaa	aaa	gca	act	999	aag	tat	aac	ctg	tta	gag	gaa	aat	aat	816

		• • •	0 00, ,	0.0.													
G	31y	Ser	Glu	Lys 260	Ala	Thr	Gly	Lys	Tyr 265	Asn	Leu	Leu	Glu	Glu 270	Asn	Asn	
											acc Thr						864
											ttt Phe						912
Т											aag Lys 315						960
											att Ile						1008
											gta Val						1056
											aca Thr						1104
											ggt Gly						1152
P											gaa Glu 395						1200
											att Ile						1248
											ccc Pro						1296
		_			_	_					gat Asp						1344
ć	act	aat	tca	gat	aac	ctt	tta	gtt	aac	cca	act	gtt	gaa	aat	aac	aaa	1392

Thr Asn Ser Asp Asn Leu Leu Val Asn Pro Thr Val Glu Asn Asn Lys 450 455 460

ggt act gag ttg cct tca aca ggt ggt att ggt aca aca att ttc tac 1440 Gly Thr Glu Leu Pro Ser Thr Gly Gly Ile Gly Thr Thr Ile Phe Tyr 465 470 475 480

att ata ggt gca att tta gta ata gga gca ggt atc gtg ctt gtt gct 1488 Ile Ile Gly Ala Ile Leu Val Ile Gly Ala Gly Ile Val Leu Val Ala 485 490 495

cgt cgt cgt tta cgt tct taa 1509
Arg Arg Arg Leu Arg Ser
500

<210> 2

<211> 502

<212> PRT

<213> Streptococcus agalactiae

<400> 2

Met Lys Lys Lys Met Ile Gln Ser Leu Leu Val Ala Ser Leu Ala Phe 1 5 10 15

Gly Met Ala Val Ser Pro Val Thr Pro Ile Ala Phe Ala Ala Glu Thr

Gly Thr Ile Thr Val Gln Asp Thr Gln Lys Gly Ala Thr Tyr Lys Ala
35 40 45

Tyr Lys Val Phe Asp Ala Glu Ile Asp Asn Ala Asn Val Ser Asp Ser 50 55 60

Asn Lys Asp Gly Ala Ser Tyr Leu Ile Pro Gln Gly Lys Glu Ala Glu
65 70 75 80

Tyr Lys Ala Ser Thr Asp Phe Asn Ser Leu Phe Thr Thr Thr Thr Asn 85 90 95

Gly Gly Arg Thr Tyr Val Thr Lys Lys Asp Thr Ala Ser Ala Asn Glu 100 105 110

Ile Ala Thr Trp Ala Lys Ser Ile Ser Ala Asn Thr Thr Pro Val Ser

Thr Val Thr Glu Ser Asn Asn Asp Gly Thr Glu Val Ile Asn Val Ser 130 135 140

Gln Tyr Gly Tyr Tyr Tyr Val Ser Ser Thr Val Asn Asn Gly Ala Val
145 150 155 160

Ile Met Val Thr Ser Val Thr Pro Asn Ala Thr Ile His Glu Lys Asn 165 170 175

Thr Asp Ala Thr Trp Gly Asp Gly Gly Gly Lys Thr Val Asp Gln Lys
180 185 190

Thr Tyr Ser Val Gly Asp Thr Val Lys Tyr Thr Ile Thr Tyr Lys Asn 195 200 205

```
Ala Val Asn Tyr His Gly Thr Glu Lys Val Tyr Gln Tyr Val Ile Lys
                         215
 Asp Thr Met Pro Ser Ala Ser Val Val Asp Leu Asn Glu Gly Ser Tyr
                     230
                                         235
 Glu Val Thr Ile Thr Asp Gly Ser Gly Asn Ile Thr Thr Leu Thr Gln
                                    250
 Gly Ser Glu Lys Ala Thr Gly Lys Tyr Asn Leu Leu Glu Glu Asn Asn
                                 265
 Asn Phe Thr Ile Thr Ile Pro Trp Ala Ala Thr Asn Thr Pro Thr Gly
                            280
 Asn Thr Gln Asn Gly Ala Asn Asp Asp Phe Phe Tyr Lys Gly Ile Asn
                        295
Thr Ile Thr Val Thr Tyr Thr Gly Val Leu Lys Ser Gly Ala Lys Pro
                    310
                                        315
Gly Ser Ala Asp Leu Pro Glu Asn Thr Asn Ile Ala Thr Ile Asn Pro
                325
Asn Thr Ser Asn Asp Asp Pro Gly Gln Lys Val Thr Val Arg Asp Gly
                                345
Gln Ile Thr Ile Lys Lys Ile Asp Gly Ser Thr Lys Ala Ser Leu Gln
                            360
Gly Ala Ile Phe Val Leu Lys Asn Ala Thr Gly Gln Phe Leu Asn Phe
                        375
Asn Asp Thr Asn Asn Val Glu Trp Gly Thr Glu Ala Asn Ala Thr Glu
                    390
                                        395
Tyr Thr Thr Gly Ala Asp Gly Ile Ile Thr Ile Thr Gly Leu Lys Glu
                405
                                    410
Gly Thr Tyr Tyr Leu Val Glu Lys Lys Ala Pro Leu Gly Tyr Asn Leu
                                425
Leu Asp Asn Ser Gln Lys Val Ile Leu Gly Asp Gly Ala Thr Asp Thr
                            440
Thr Asn Ser Asp Asn Leu Leu Val Asn Pro Thr Val Glu Asn Asn Lys
                       455
Gly Thr Glu Leu Pro Ser Thr Gly Gly Ile Gly Thr Thr Ile Phe Tyr
                   470
                                        475
Ile Ile Gly Ala Ile Leu Val Ile Gly Ala Gly Ile Val Leu Val Ala
                                   490
Arg Arg Leu Arg Ser
           500
```

5

<210> 3

<211> 1692

<212> DNA

<213> Streptococcus agalactiae

<220>

<221> CDS

<222> (1)..(1692)

<400> 3

att tgc att atg gtg atc gta ttc cgg att ata cag ata tta caa ggg 48

Ile Cys Ile Met Val Ile Val Phe Arg Ile Ile Gln Ile Leu Gln Gly

1 5 10 15

att ata tcc aag atc ctt cag gta cat att att ata agt atg att cac 96

Ile Ile Ser Lys Ile Leu Gln Val His Ile Ile Ile Ser Met Ile His

20 25 30

gag ata aag atc ccg act caa cta aag atg cct att ata cga cag ata 144
Glu Ile Lys Ile Pro Thr Gln Leu Lys Met Pro Ile Ile Arg Gln Ile
35 40 45

cta gtc tca tca aat gtt gat aca aca act aag tac aag tac gta aaa 192 Leu Val Ser Ser Asn Val Asp Thr Thr Thr Lys Tyr Lys Tyr Val Lys 50 55 60

gac gct tac aaa tta gtc ggt tgg tat tat gtt aat cca tat ggt agt 240
Asp Ala Tyr Lys Leu Val Gly Trp Tyr Tyr Val Asn Pro Tyr Gly Ser
65 70 75 80

att aga cct tat aac ttt tca ggt gct gta act caa gat atc aat tta 288

Ile Arg Pro Tyr Asn Phe Ser Gly Ala Val Thr Gln Asp Ile Asn Leu

85 90 95

aga gct att tgg cga aag gct gga gat tat cat att ata tac agc aat 336 Arg Ala Ile Trp Arg Lys Ala Gly Asp Tyr His Ile Ile Tyr Ser Asn 100 105 110

gat gct gtt ggt aca gat gga aag cca gca ttg gat gct tct ggt cag 384
Asp Ala Val Gly Thr Asp Gly Lys Pro Ala Leu Asp Ala Ser Gly Gln
115 120 125

Caa tta caa aca agt aat gag cct act gac cct gat tcc tat gac gat 432 Gln Leu Gln Thr Ser Asn Glu Pro Thr Asp Pro Asp Ser Tyr Asp Asp 130 135 140

ggc tcc cat tca gcc tta ctg aga cgt ccg aca atg cca gat ggc tat 480 Gly Ser His Ser Ala Leu Leu Arg Arg Pro Thr Met Pro Asp Gly Tyr 145 150 155 160

cgt ttc cgt ggc tgg tgg tac aat ggt aaa att tat aac cca tat gat 528 Arg Phe Arg Gly Trp Trp Tyr Asn Gly Lys Ile Tyr Asn Pro Tyr Asp 165 170 175

tcc att gat att gac gcc cat tta gca gat gct aat aaa aat atc acc 576

Ser	Ile	Asp	Ile 180	Asp	Ala	His	Leu	Ala 185	Asp	Ala	Asn	Lys	Asn 190	Ile	Thr	
			gtc Val													624
			tac Tyr													672
			caa Gln												_	720
			gaa Glu													768
			cat His 260	_	-	_										816
			caa Gln													864
			gct Ala													912
			gtt Val													960
		_	gaa Glu	_	_											1008
			gaa Glu 340													1056
			tac Tyr													1104
aat	cta	gca	act	ggt	gaa	gct	gat	aaa	act	tat	gat	gct	acc	ggc	tta	1152

				-												
Asn	Leu 370	Ala	Thr	Gly	Glu	Ala 375	Asp	Lys	Thr	Tyr	Asp 380	Ala	Thr	Gly	Leu	
	tcc Ser															1200
	atc Ile															1248
	aat Asn															1296
	gjà aaa															1344
	aaa Lys 450															1392
	gga Gly															1440
	cct Pro															1488
	ttt Phe															1536
	gat Asp														gga Gly	1584
												Ile			cta Leu	1632
	Gly					Leu					Ile				cga Arg 560	1680
aaa	aaa	ata	tga													1692

Lys Lys Ile

<210> 4

<211> 563 <212> PRT <213> Streptococcus agalactiae <400> 4 Ile Cys Ile Met Val Ile Val Phe Arg Ile Ile Gln Ile Leu Gln Gly Ile Ile Ser Lys Ile Leu Gln Val His Ile Ile Ser Met Ile His 25 Glu Ile Lys Ile Pro Thr Gln Leu Lys Met Pro Ile Ile Arg Gln Ile 40 Leu Val Ser Ser Asn Val Asp Thr Thr Lys Tyr Lys Tyr Val Lys 55 Asp Ala Tyr Lys Leu Val Gly Trp Tyr Tyr Val Asn Pro Tyr Gly Ser Ile Arg Pro Tyr Asn Phe Ser Gly Ala Val Thr Gln Asp Ile Asn Leu Arg Ala Ile Trp Arg Lys Ala Gly Asp Tyr His Ile Ile Tyr Ser Asn 105 Asp Ala Val Gly Thr Asp Gly Lys Pro Ala Leu Asp Ala Ser Gly Gln 125 120 Gln Leu Gln Thr Ser Asn Glu Pro Thr Asp Pro Asp Ser Tyr Asp Asp 140 135 Gly Ser His Ser Ala Leu Leu Arg Arg Pro Thr Met Pro Asp Gly Tyr 155 150 Arg Phe Arg Gly Trp Trp Tyr Asn Gly Lys Ile Tyr Asn Pro Tyr Asp 165 170 Ser Ile Asp Ile Asp Ala His Leu Ala Asp Ala Asn Lys Asn Ile Thr 185 180 Ile Lys Pro Val Ile Ile Pro Val Gly Asp Ile Lys Leu Glu Asp Thr 200 205 195 Ser Ile Lys Tyr Asn Gly Asn Gly Gly Thr Arg Val Glu Asn Gly Asn 215 Val Val Thr Gln Val Glu Thr Pro Arg Met Glu Leu Asn Ser Thr Thr 230 235 Thr Ile Pro Glu Asn Gln Tyr Phe Thr Arg Thr Gly Tyr Asn Leu Ile 250 245 Gly Trp His His Asp Lys Asp Leu Ala Asp Thr Gly Arg Val Glu Phe 265 260 Thr Ala Gly Gln Ser Ile Gly Ile Asp Asn Asn Leu Asp Ala Thr Asn 280 Thr Leu Tyr Ala Val Trp Gln Pro Lys Glu Tyr Thr Val Gly Val Ser 295 Lys Thr Val Val Gly Leu Asp Glu Asp Lys Thr Lys Asp Phe Leu Phe

```
315
305
                   310
Asn Pro Ser Glu Thr Leu Gln Gln Glu Asn Phe Pro Leu Arg Asp Gly
                                    330
                325
Gln Thr Lys Glu Phe Lys Val Pro Tyr Gly Thr Ser Ile Ser Ile Asp
                                345
            340
Glu Gln Ala Tyr Asp Glu Phe Lys Val Ser Glu Ser Ile Thr Glu Lys
                            360
Asn Leu Ala Thr Gly Glu Ala Asp Lys Thr Tyr Asp Ala Thr Gly Leu
                        375
                                            380
Gln Ser Leu Thr Val Ser Gly Asp Val Asp Ile Ser Phe Thr Asn Thr
                                        395
                    390
Arg Ile Lys Gln Lys Val Arg Leu Gln Lys Val Asn Val Glu Asn Asp
                                    410
                405
Asn Asn Phe Leu Ala Gly Ala Val Phe Asp Ile Tyr Glu Ser Asp Ala
                                425
Asn Gly Asn Lys Ala Ser His Pro Met Tyr Ser Gly Leu Val Thr Asn
                            440
Asp Lys Gly Leu Leu Leu Val Asp Ala Asn Asn Tyr Leu Ser Leu Pro
                        455
Val Gly Lys Tyr Tyr Leu Thr Glu Thr Lys Ala Pro Pro Gly Tyr Leu
                                        475
                   470
Leu Pro Lys Asn Asp Asp Ile Ser Val Leu Val Ile Ser Thr Gly Val
                                    490
Thr Phe Glu Gln Asn Gly Asn Asn Ala Thr Pro Ile Lys Glu Asn Leu
                                505
Val Asp Gly Ser Thr Val Tyr Thr Phe Lys Ile Thr Asn Ser Lys Gly
                            520
Thr Glu Leu Pro Ser Thr Gly Gly Ile Gly Thr His Ile Tyr Ile Leu
                        535
Val Gly Leu Ala Leu Ala Leu Pro Ser Gly Leu Ile Leu Tyr Tyr Arg
                    550
                                        555
Lys Lys Ile
```

```
<210> 5
```

<220>

<223> Description of Artificial Sequence:Synthetic
 oligonucleotide

<400> 5

ctaggtggat ccttcggcaa t

<211> 21

<212> DNA

<213> Artificial Sequence

	WO 00/78787	PCT/US00/17082
<210>	6	
<211>	10	
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Synthetic	
	oligonucleotide	
<400>	6	
cgatte		10
-5400	20030	
<210>	7	
<211>	25	
<212>	DNA	
<213>	Artificial Sequence	
<220>	<u>.</u>	
<223>	Description of Artificial Sequence:Synthetic	
	oligonucleotide	
. 4 0 0 -		
<400>		25
aggca	actgt gctaaccgag ggaat	23
<210>	8	
<211>		
<212>	DNA	
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence:Synthetic	
	oligonucleotide	
<400>		11
cgatti	ccetc g	**
<210>	9	
<211>	5	
<212>		
<213>	Artificial Sequence	
<220>		
<223>	Description of Artificial Sequence: Consensus	
	sequence	

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17082

	· · · · · · · · · · · · · · · · · · ·					
1	SSIFICATION OF SUBJECT MATTER					
, ,	:Please See Extra Sheet. :Please See Extra Sheet.					
	to International Patent Classification (IPC) or to both	national classification and IPC				
B. FIEI	LDS SEARCHED					
Minimum c	documentation searched (classification system followe	d by classification symbols)				
U.S. :	536/23.7; 530/350, 825; 424/244.1, 184.1, 236.1, 2	234.1, 193.1; 435/320.1, 69.3, 71.1, 7	7.1, 7.34			
Documenta	tion searched other than minimum documentation to the	e extent that such documents are included	in the fields searched			
Electronic	data base consulted during the international search (na	ame of data base and, where practicable	e, search terms used)			
	DIALOG, MEDLINE, BIOSIS, EMBASE, WEST spb1, spb2, GBS, SEQ ID NOs: 1, 2, 3 and 4, streptococc?, inventors' names					
C. DOC	CUMENTS CONSIDERED TO BE RELEVANT					
Category*	Citation of document, with indication, where ap	ppropriate, of the relevant passages	Relevant to claim No.			
X,P	ADDERSON et al. Genetic subtraction	_	1-16, 56			
Y,P	epithelial adhesin/invasin of type III gi Pediatr. Res. 30 March 2000, Vol. 47		17-32, 33-55, 57-			
1,1	1992, see entire abstract.	, 110. 4, page 33771, additact	67			
	2572, 200 000000					
		1				
Furtl	her documents are listed in the continuation of Box C	See patent family annex.				
•	ecial categories of cited documents:	"T" later document published after the int date and not in conflict with the app				
	cument defining the general state of the art which is not considered be of particular relevance	the principle or theory underlying the				
E ca	rlier document published on or after the international filing date	"X" document of particular relevance; the considered novel or cannot be considered.				
L do	cument which may throw doubts on priority claim(s) or which is ed to establish the publication date of another citation or other	when the document is taken alone				
sp-	ecial reason (as specified)	"Y" document of particular relevance; the considered to involve an inventive combined with one or more other suc-	step when the document is			
me	cument referring to an oral disclosure, use, exhibition or other seans cument published prior to the international filing date but later than	being obvious to a person skilled in document member of the same pater	the art			
the	priority date claimed					
Date of the	actual completion of the international search	Date of mailing of the international se	aren repon			
31 OCTO	DBER 2000	14 NOV ZUUU	2.1			
Name and	mailing address of the ISA/US mer of Patents and Trademarks	Authorized officer Jacque	Budgers			
Box PCT	n, D.C. 20231	S. DEVI, Ph.D.				
_	In (703) 305-3230	Telephone No. (703) 308-1235	per			

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17082

Box I	Observations where certain claims were found unsearchable (Continuation of item 1 of first sheet)
This inte	mational report has not been established in respect of certain claims under Article 17(2)(a) for the following reasons:
1.	Claims Nos.: because they relate to subject matter not required to be searched by this Authority, namely:
2.	Claims Nos.: because they relate to parts of the international application that do not comply with the prescribed requirements to such an extent that no meaningful international search can be carried out, specifically:
3.	Claims Nos.: because they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).
Box II	Observations where unity of invention is lacking (Continuation of item 2 of first sheet)
This Inte	rnational Searching Authority found multiple inventions in this international application, as follows:
Ple	case See Extra Sheet.
1. X	As all required additional search fees were timely paid by the applicant, this international search report covers all searchable claims.
2.	As all searchable claims could be searched without effort justifying an additional fee, this Authority did not invite payment of any additional fee.
3.	As only some of the required additional search fees were timely paid by the applicant, this international search report covers only those claims for which fees were paid, specifically claims Nos.:
4.	No required additional search fees were timely paid by the applicant. Consequently, this international search report is restricted to the invention first mentioned in the claims; it is covered by claims Nos.:
Remark	on Protest X The additional search fees were accompanied by the applicant's protest. No protest accompanied the payment of additional search fees.

INTERNATIONAL SEARCH REPORT

International application No. PCT/US00/17082

A. CLASSIFICATION OF SUBJECT MATTER:

IPC (7):

C07H 21/04; C07K 1/00, A61K 39/09, 39/38, 39/39, 38/385; C12N 15/00, 15/09; C12P 21/04, G01N 33/53, 33/569

A. CLASSIFICATION OF SUBJECT MATTER:

US CL:

536/23.7; 530/350, 825; 424/244.1, 184.1, 236.1, 234.1, 193.1; 435/320.1, 69.3, 71.1, 7.1, 7.34

BOX II. OBSERVATIONS WHERE UNITY OF INVENTION WAS LACKING This ISA found multiple inventions as follows:

Group I, claim(s) 1-16, 33-35 and 56-60, drawn to an isolated nucleic acid molecule encoding SEQ ID NO: 2, a vector and a host cell comprising the same and a method of immunizing a mammal by administering a protein comprising SEQ ID NO: 2.

Group II, claim(s) 17-32, 38-40, 61-64 and 67, drawn to an isolated nucleic acid molecule encoding SEQ ID NO: 4, a vector and a host cell comprising the same and a method of immunizing a mammal by administering a protein comprising SEQ ID NO: 4.

Group III, claim(s) 42, 50 and 54, drawn to a diagnostic method comprising analyzing for the presence or absence of SEQ ID NO: 2.

Group IV, claims 43, 51 and 55, drawn to a diagnostic method comprising analyzing for the presence or absence of SEQ ID NO: 4.

Claims 36, 37, 65 and 66 are considered linking claims and would be joined with Group I or II, if elected. Claims 41, 44-49, 52 and 53 are considered linking claims and would be joined with Group II or III, if elected.

The inventions listed as Groups I-IV do not relate to a single inventive concept under PCT Rule 13.1 because, under PCT Rule 13.2, they lack the same or corresponding special technical features for the following reasons: Group I is directed to a nucleic acid molecule of SEQ ID NO:1, a protein with amino acid sequence of SEQ ID NO: 2, a vector and a host cell comprising the nucleic acid molecule and the first method of use of the protein in immunization. This is a permitted category under PCT Rule 13.2. Group II is directed to a second product, a nucleic acid molecule of SEQ ID NO:3, protein with amino acid sequence of SEQ ID NO: 4, a vector and a host cell comprising the nucleic acid molecule and a method of immunizing a mammal by administering the protein. Groups III and IV are directed respectively to a second method of use of the gene products, i.e., diagnostic methods for analyzing spb1 and spb2 gene products respectively. The SEQ ID NO:s of inventions I and II are the special technical features, which distinct from one another in their structure and specificity. The inventions therefore lack unity because the special technical feature is not a unifying feature.