Preprints

Past and present students funded by me are indicated by *. Students funded by collaborators and others are indicated by **.

- Stewart*, Jonathan R. and **Michael Schweinberger.** Pseudo-likelihood-based *M*-estimation of random graphs with dependent edges and parameter vectors of increasing dimension. Submitted.
- Jin, Ick Hoon, Jeon, Minjeong, **Schweinberger**, **Michael**, and Lizhen Lin. Hierarchical network item response modeling for discovering differences between innovation and regular school systems in Korea. Submitted.
- Sean Eli* and Michael Schweinberger. Non-asymptotic model selection for models of network data with parameter vectors of increasing dimension. Submitted.
- Jeon, Minjeong, **Schweinberger**, **Michael**, Baugh**, Samuel, and Eric Ho**. Student learning through learning progression maps, with application to online educational assessment data. To be submitted.
- With Johannes Lederer. Scalable model selection with a single observation of dependent random variables: pseudolikelihood-based Dantziq selectors.
- With Johathan R. Stewart*. Composite likelihood in dependent-data problems with parameter vectors of increasing dimension.

Publications

Past and present students funded by me are indicated by *. Students funded by collaborators and others are indicated by **.

- Schweinberger, Michael, Bomiriya**, Rashmi P., and Sergii Babkin* (2021+). A semiparametric Bayesian approach to epidemics, with application to the spread of the coronavirus MERS in South Korea in 2015. Accepted, Journal of Nonparametric Statistics, 1–35.
- Park, Jaewoo, Jin, Ick Hoon, and **Michael Schweinberger** (2021+). Bayesian model selection for high-dimensional Ising models, with applications to educational data. Accepted, *Computational Statistics & Data Analysis*, 1–20.

- Jeon, Minjeong, Jin, Ick Hoon, **Schweinberger**, **Michael**, and Samuel Baugh** (2021). Mapping unobserved item-respondent interactions: A latent space item response model with interaction map. *Psychometrika*, 86, 378–403. The first three authors have made equal contributions.
- Schweinberger, Michael (2021). Discussion of "Bayesian graphical models for modern biological applications" by Yang Ni, Veerabhadran Baladandayuthapani, Marina Vannucci, and Francesco C. Stingo. Statistical Methods & Applications, 1–7. Invited. Editorreviewed.
- Schweinberger, Michael, Stingo, Francesco C., and Maria P. Vitale (2021). Special issue on Statistical Analysis of Networks. Statistical Methods & Applications, 1–4. Invited. Editor-reviewed.
- Schweinberger, Michael and Jonathan R. Stewart* (2020). Concentration and consistency results for canonical and curved exponential-family models of random graphs. *The Annals of Statistics*, 48, 374–396.
- Schweinberger, Michael (2020). Consistent structure estimation of exponential-family random graph models with block structure. *Bernoulli*, 26, 1205–1233.
- Schweinberger, Michael, Krivitsky, Pavel N., Butts, Carter T., and Jonathan R. Stewart* (2020). Exponential-family models of random graphs: Inference in finite, super, and infinite population scenarios. *Statistical Science*, 35, 627–662.
- Babkin*, Sergii, Stewart*, Jonathan R., Long**, Xiaochen, and Michael Schweinberger (2020). Large-scale estimation of random graph models with local dependence. Computational Statistics & Data Analysis, 152, 1–19.
- **Schweinberger, Michael** (2020). Statistical inference for continuous-time Markov processes with block structure based on discrete-time network data. *Statistica Neerlandica*, 74, 342–362.
- Schweinberger, Michael (2019). Random graphs. Wiley StatsRef: Statistics Reference Online. Edited by Brian Everitt, Geert Molenberghs, Walter Piegorsch, Fabrizio Ruggeri, Marie Davidian, and Ron Kenett. Invited. Editor-reviewed.

- Stewart*, Jonathan R., **Schweinberger**, **Michael**, Bojanowski, Michal, and Martina Morris (2019). Multilevel networks facilitate statistical inference for curved ERGMs with geometrically weighted terms. *Social Networks*, 59, 98–119.
- Schweinberger, Michael and Pamela Luna** (2018). hergm: Hierarchical exponential-family random graph models. *Journal of Statistical Software*, 85, 1–39.
- Cao**, Ming, Chen, Yong, Fujimoto, Kayo, and Michael Schweinberger (2018). A two-stage working model strategy for network analysis under hierarchical exponential random graph models. Proceedings of the 2018 IEEE/ACM International Conference on Advances in Social Networks Analysis and Mining, 290–298. Acceptance rate: 15%.
- Schweinberger, Michael, Babkin*, Sergii, and Katherine B. Ensor (2017). High-dimensional multivariate time series with additional structure. *Journal of Computational and Graphical Statistics*, 26, 610–622.
- Schweinberger, Michael and Mark S. Handcock (2015). Local dependence in random graph models: Characterization, properties and statistical inference. *Journal of the Royal Statistical Society, Series B (Statistical Methodology)*, 77, 647–676.
- Schweinberger, Michael, Petrescu-Prahova, Miruna, and Duy Q. Vu** (2014). Disaster response on September 11, 2001 through the lens of statistical network analysis. *Social Networks*, 37, 42–55.
- Vu**, Duy Q., Hunter, David R., and **Michael Schweinberger** (2013). Model-based clustering of large networks. *The Annals of Applied Statistics*, 7, 1010–1039.
- Hunter, David R., Krivitsky, Pavel N., and **Michael Schweinberger** (2012). Computational statistical methods for social network models. *Journal of Computational and Graphical Statistics*, 21, 856–882. **Equal contributions. Invited.**
- Schweinberger, Michael (2012). Statistical modeling of network panel data: goodness-of-fit. British Journal of Mathematical and Statistical Psychology, 65, 263–281.
- Schweinberger, Michael (2011). Instability, sensitivity, and degeneracy of discrete exponential families. Journal of the American Statistical Association, Theory & Methods, 106, 1361–1370.

- Lospinoso**, Joshua, **Schweinberger, Michael**, Snijders, Tom A.B., and Ruth Ripley (2011). Assessing and accounting for time heterogeneity in stochastic actor oriented models. *Advances in Data Analysis and Classification*, 5, 147–176.
- Snijders, Tom A.B., Koskinen, Johan, and **Michael Schweinberger** (2010). Maximum likelihood estimation for social network dynamics. *The Annals of Applied Statistics*, 4, 567–588.
- Schweinberger, Michael and Tom A.B. Snijders (2007). Markov models for digraph panel data: Monte Carlo-based derivative estimation. *Computational Statistics and Data Analysis*, 51, 4465–4483.
- Snijders, Tom A.B., Steglich, Christian E.G. and **Michael Schweinberger** (2007). Modeling the co-evolution of networks and behavior. In: Van Montfort, K., Oud, H. and A. Satorra (editors). Longitudinal models in the behavioral and related sciences. Mahwah, NJ: Lawrence Erlbaum.
- Schweinberger, Michael and Tom A.B. Snijders (2003). Settings in social networks: A measurement model. *Sociological Methodology*, 33, 307–341.

Other publications

• Schweinberger, Michael (2007). Statistical Methods for Studying the Evolution of Networks and Behavior. Ph.D. thesis, University of Groningen, NL.

Unpublished preprints

- Schweinberger, Michael, Krivitsky, Pavel N., and Carter T. Butts (2017). A note on the role of projectivity in likelihood-based inference for random graph models. The first two authors have made equal contributions.
- Vu**, Duy Q. and **Michael Schweinberger** (2014). Model-based clustering of large random graphs with high-dimensional predictors.
- Schweinberger, Michael and Tom A.B. Snijders (2007). Random effects models for digraph panel data.