Thème: ENERGIE

RÉSUMÉ DE COURS DU CHAPITRE 5

Représentation des actions mécaniques : Forces

Une force exercée sur un solide correspond à une action mécanique exercée par l'extérieur sur un solide. Une force exercée sur un solide peut :

- Mettre en mouvement le solide
- Modifier la trajectoire du solide
- Déformer le solide

Il existe deux types de forces :

- Les forces à distance : 2 objets peuvent être en interaction sans se toucher (Ex : Force gravitationnelle, électromagnétique...)
- Les forces de contact : Dès que 2 solides sont en contact, il y a une force de contact de l'un sur l'autre et réciproquement. Le point d'application est le centre géométrique de la surface de contact.

De l'action mécanique à la force

Lorsqu'une boule de bowling est posée sur la piste, elle est soumise à l'attraction gravitationnelle de la Terre, qui l'attire vers le bas, et à l'action de la piste (appelé réaction), qui l'empêche de tomber.

Chaque action est modélisée par une force :

- La force exercée par la Terre sur la boule est noté $F_{T o B}$
- La force exercée par la piste sur la boule est noté $F_{P o B}$

Schématisation d'une force Une force est représentée ,sur un schéma, par un vecteur noté \vec{F} :

Ce vecteur \vec{F} est défini par :

- Son point d'application : Le point où l'on considère que la force s'exerce.
- Sa direction

Son sens

Sa norme: proportionnelle à la longueur du segment fléché et qui s'exprime en Newton (N)

Somme de forces

Additionner deux forces, revient à faire la somme vectorielle des deux vecteurs forces. Idem pour trois forces, etc...

Les forces couramment représentées

		Réaction d'un support		
	Poids d'un objet $ec{P}$	$ec{R}$ en absence de	Frottements secs $ec{f}$	Tension d'un fil $ec{T}$
		frottements		
	Action de la Terre sur un objet	Action d'un support	Action du support sur	Action du fil sur un
	Action de la Terre sur un objet	sur un objet	un objet	objet
Point		Centre de la surface de	Centre de la surface de	Point de contact entre
d'application	Centre de gravité	contact entre l'objet et	contact entre l'objet et	le fil et l'objet
		le support	le support	
Direction	Verticale	Perpendiculaire à la	Parallèle à la surface	Parallèle au fil
		surface		
Sens	Vers le bas	De la surface vers	Opposé au	De l'objet vers le fil
		l'objet	mouvement	
Intensité	P = m. g	De même intensité	$f = -\alpha \cdot v^2$	Pas de formule
mensice	1 — III. y	que le Poids	j = α.ν	r us de formale
Exemples				

Les lois de Newton

Première loi de Newton : Principe d'inertie

Des forces se compensent si la somme vectorielle de ces forces est égale au vecteur nul

« Dans un référentiel galiléen, la somme des forces extérieures appliquées à un système est égale au produit de la masse du système par son vecteur accélération. »

$$\sum \overrightarrow{F_{ext}} = m \cdot \overrightarrow{a}$$

Lorsque les forces ne se compensent pas, on trace la somme des vecteur forces.

La résultante obtenue nous indique dans quelle direction s'applique les efforts globaux appliqué au système et nous indique donc si le système va accélérer, ou ralentir (ou bien être dévié de sa trajectoire).

