WSI Sprawozdanie 1 – Zagadnienie przeszukiwania i podstawowe podejścia do niego

Treść polecenia:

Znana jest funkcja celu

1.
$$f(x) = 8x + 8 \sin x$$

 $x \in (-4\pi, 4\pi)$

2.
$$g(x,y) = \frac{3xy}{e^{x^2+y^2}}$$

 $x, y \in (-2, 2)$

Zaimplementować metodę gradientu prostego opisaną na wykładzie.

Użyć zaimplementowany algorytm do wyznaczenia ekstremów funkcji.

Zbadać wpływ następujących parametrów na proces optymalizacji:

- długość kroku uczącego
- limit maksymalnej liczby kroków algorytmu
- rozmieszczenie punktu startowego

Zinterpretować wyniki w kontekście kształtu badanej funkcji.

Analiza funkcji i wstępne założenia badań

Funkcja f(x)

Ta funkcja posiada w określonym przedziale 4 punkty przegięcia (pochodna w tych punktach wynosi 0):

- ok. 25,13274 dla x = 3,14159
- ok. -25,13274 dla x = -3,14159
- ok. 75,39822 dla x = 9,42478
- ok. -75,39822 dla x = -9,42478

Funkcja g(x, y)

Ta funkcja posiada w określonym przedziale 2 maksima:

- ok. 0,55182 dla x = 0,70711, y = 0,70711
- ok. 0,55182 dla x = -0,70711, y = -0,70711

Oraz 2 minima:

- ok. -0,55182 dla x = -0,70711, y = 0,70711
- ok. -0,55182 dla x = 0,70711, y = -0,70711

Uwagi

Zaimplementowany algorytm poszukuje minimum lokalnego metodą najszybszego spadku. W przypadku funkcji

g, algorytm znajduje minimum lokalne. Dodatkowo, pętla algorytmu powtarza się do momentu przekroczenia ustalonego limitu iteracji (domyślnie ustawionego na 1 000 000) lub gdy wartość gradientu w punkcie osiągnie bliskość do zera z dokładnością do 1e-4.

Miarą jakości algorytmu jest głównie liczba iteracji potrzebna do osiągnięcia tej precyzji — im mniej iteracji, tym lepsze działanie algorytmu. Algorytm przerywa działanie również w przypadku, gdy wygenerowany punkt wyjdzie poza określony przedział.

W tym sprawozdaniu zamieszczono tylko część tabel i wykresów z przeprowadzonych testów. Wszystkie wygenerowane dane i wyniki znajdują się w repozytorium.

Instrukcja do używania skryptu

Po pobraniu repozytorium należy:

przejść do głownego katalogu – lab1

\$ cd lab1

- stworzyć środowisko wirtualne i pobrać requirements.txt
- \$ python3 -m venv .venv
- \$ source .venv/bin/activate
- \$ pip install -r requirements.txt
- uruchomić plik main_gd.py, w terminalu za pomocą:
- \$ python3 text-game.py [argumenty]

Możliwe argumenty:

- function "g" lub "f", określa funkcję, którą algorytm będzie optymalizować
- **start_point** typ float, reprezentuje punkt startowy, od którego algorytm zacznie poszukiwania ekstremów, punkt może być jedno lub dwu-wymiarowy
- step_length typ float, ustawia rozmiar kroku uczącego dla algorytmu
- --step_limit opcjonalny, typ int, określa maksymalną ilość kroków, domyślnie wynosi 1000000
- --visualize store_true, gdy True skrypt generuje wykres z wizualizacją funkcji i kolejne kroki do znalezienia minimum, jako parametry przyjmuje wcześniej podane argumenty
- **--plot_filename** nazwa pliku graficznego, jako który ma być zapisany wykres z 'visualize', domyślnie 'plot.jpg'
- --run_tests store_true, gdy True skrypt przeprowadza zakres testów algorytmu, w wyniku których zostają wygenerowane wykresy i tabele, podane wcześniej argumenty zostają brane jako wartości bazowe

Wyniki analiz w formie tabel i wykresów

Funkcja f(x)

• Parametr – punkt startowy

	starting point	step_length	location of	value of the	number of
			the found	found local	steps
			local	minimum	
			minimum		
0	-1.62	0.1	-3.1366	-25.13274	493
1	-9.17	0.1	-9.41978	-75.39822	487
2	3.06	0.1	-3.13659	-25.13274	526
3	10.35	0.1	9.42977	75.39822	493
4	-4.81	0.1	-9.41979	-75.39822	496
5	9.68	0.1	9.42977	75.39822	487
6	-9.04	0.1	-9.41979	-75.39822	490
7	0.75	0.1	-3.1366	-25.13274	495
8	-4.49	0.1	-9.41978	-75.39822	496
9	5.13	0.1	3.14659	25.13274	493
10	-1.26	0.1	-3.13659	-25.13274	493
11	4.34	0.1	3.14659	25.13274	493
12	0.73	0.1	-3.1366	-25.13274	495
13	-6.48	0.1	-9.41978	-75.39822	494
14	-0.18	0.1	-3.1366	-25.13274	494
15	-5.39	0.1	-9.41978	-75.39822	495
16	0.1	0.1	-3.13659	-25.13274	494
17	5.63	0.1	3.14659	25.13274	494
18	2.51	0.1	-3.1366	-25.13274	499
19	-11.29	0.1	-12.31368	-96.50936	1
20	-0.02	0.1	-3.1366	-25.13274	494
21	0.13	0.1	-3.13659	-25.13274	494
22	6.83	0.1	3.14658	25.13274	495
23	-0.33	0.1	-3.1366	-25.13274	494
24	-11.95	0.1	-11.95106	-90.99078	0

	mean	std	min	max
step_length	0.1	0.0	0.1	0.1
value of the	-26.6	47.81	-96.51	75.4
found local				
minimum				
number of steps	455.4	137.09	0.0	526.0

Algorytm potrzebuje około 500 kroków, aby osiągnąć wymaganą precyzję wyników przy rozmiarze kroku uczącego równym 0.1.

Rozmieszczenie punktu startowego wpływa na to, do którego punktu przegięcia doprowadzi algorytm.

Parametr – długość kroku uczącego

	starting	step_length	location of	value of the	number of
	point		the found	found local	steps
			local	minimum	
			minimum		
0	6.99	0.05	3.14659	25.13274	995
1	6.99	0.1	3.14659	25.13274	495
2	6.99	0.15	3.14658	25.13274	327
3	6.99	0.2	3.14657	25.13274	244
4	6.99	0.25	3.14658	25.13274	194
5	6.99	0.3	-10.95373	-79.63684	22
6	6.99	0.35	-12.03001	-92.15199	5
7	6.99	0.4	-3.13663	-25.13274	56
8	6.99	0.45	-12.56506	-100.51	3
9	6.99	0.5	-11.29474	-82.71326	3
10	6.99	0.55	-10.59993	-77.41745	3

11	6.99	0.6	-6.81464	-58.57142	2
12	6.99	0.65	-10.64621	-77.65296	4
13	6.99	0.7	-3.13666	-25.13274	66
14	6.99	0.75	-6.61977	-55.60028	3

	mean	std	min	max
step_length	0.4	0.22	0.05	0.75
value of the	-36.59	49.76	-100.51	25.13
found local				
minimum				
number of	161.47	274.66	2.0	995.0
steps				

Można zauważyć, że dla małych wartości kroku uczącego (0.05, 0.1) wynik jest bardziej dokładny, jednak łączna liczba kroków jest wysoka. Optymalna wartość kroku do znalezienia najbliższego punktu przegięcia to około 0.25.

Z kolei dla większych wartości kroku algorytm może przeskoczyć przez kilka punktów przegięcia, ostatecznie lądując w bardziej odległym punkcie. Przy jeszcze wyższych wartościach kroku algorytm może wyjść poza określony przedział.

• Parametr – limit maksymalnej liczby kroków

	starting	step_length	location of	value of the	number of
	point		the found	found local	steps
			local	minimum	
			minimum		
0	-3.44	0.1	-3.47494	-25.18186	1
1	-3.44	0.1	-7.71157	-69.61157	11
2	-3.44	0.1	-9.24088	-75.38995	21
3	-3.44	0.1	-9.32134	-75.39675	31
4	-3.44	0.1	-9.35237	-75.39772	41
5	-3.44	0.1	-9.36896	-75.39799	51
6	-3.44	0.1	-9.37932	-75.3981	61
7	-3.44	0.1	-9.38641	-75.39815	71
8	-3.44	0.1	-9.39158	-75.39817	81
9	-3.44	0.1	-9.39551	-75.39819	91
10	-3.44	0.1	-9.39861	-75.3982	101
11	-3.44	0.1	-9.40111	-75.39821	111
12	-3.44	0.1	-9.40318	-75.39821	121
13	-3.44	0.1	-9.40491	-75.39821	131
14	-3.44	0.1	-9.40638	-75.39822	141
15	-3.44	0.1	-9.40765	-75.39822	151
16	-3.44	0.1	-9.40876	-75.39822	161
17	-3.44	0.1	-9.40973	-75.39822	171
18	-3.44	0.1	-9.41059	-75.39822	181
19	-3.44	0.1	-9.41135	-75.39822	191

	mean	std	min	max
step_length	0.1	0.0	0.1	0.1
value of the	-72.6	11.24	-75.4	-25.18
found local				
minimum				
number of	96.0	59.16	1.0	191.0
steps				

Przy małej liczbie kroków algorytm nie jest w stanie znaleźć punktu przegięcia, jeśli znajduje się on daleko od punktu startowego. Im większa liczba iteracji, tym dokładniejszy wynik optymalizacji.

Funkcja g(x, y)

• Parametr – punkt startowy

	starting point	step_length	location of the	value of the	number
			found local	found local	of steps
			minimum	minimum	
0	[1.71 -0.87]	0.2	[0.70714 -0.70711]	-0.55182	24
1	[-1.16 1.84]	0.2	[-0.70712 0.70715]	-0.55182	28
2	[1.39 1.43]	0.2	[1.99921 2.06905]	0.00315	73
3	[0.88 1.98]	0.2	[1.20104 3.49324]	1e-05	7863
4	[1.22 -0.38]	0.2	[0.70714 -0.7071]	-0.55182	19
5	[0.78 0.3]	0.2	[0.70713 -0.70706]	-0.55182	18
6	[1.17 -1.5]	0.2	[0.70713 -0.70715]	-0.55182	22
7	[-1.51 -1.83]	0.2	[-1.99987 -2.4701]	0.00061	284
8	[-1.24 -0.65]	0.2	[-0.70715 0.7071]	-0.55182	1068
9	[0.93 -1.2]	0.2	[0.70712 -0.70715]	-0.55182	18
10	[-0.39 -0.99]	0.2	[0.70709 -0.70714]	-0.55182	22
11	[-1.38 1.59]	0.2	[-0.70713 0.70715]	-0.55182	25
12	[-0.25 -0.09]	0.2	[-0.70707 0.70706]	-0.55182	19
13	[1.17 -0.62]	0.2	[0.70714 -0.7071]	-0.55182	18
14	[1.83 0.74]	0.2	[3.5526 0.83209]	1e-05	8109

15	[-0.1 -0.69]	0.2	[0.70707 -0.7071]	-0.55182	17
16	[1.82 -1.1]	0.2	[0.70714 -0.70712]	-0.55182	27
17	[0.38 0.05]	0.2	[0.70708 -0.70707]	-0.55182	18
18	[-0.56 -0.15]	0.2	[-0.70709 0.70708]	-0.55182	18
19	[-0.57 -1.69]	0.2	[0.70711 -0.70713]	-0.55182	548
20	[-0.96 0.74]	0.2	[-0.70714 0.70711]	-0.55182	16
21	[0.72 -1.93]	0.2	[0.70711 -0.70715]	-0.55182	28
22	[-1.95 -1.03]	0.2	[-3.38821 -1.53108]	2e-05	7531
23	[-1.74 -0.94]	0.2	[-3.40844 -1.47775]	2e-05	7595
24	[-0.55 -0.74]	0.2	[0.70708 -0.70712]	-0.55182	21

	mean	std	min	max
step_length	0.2	0.0	0.2	0.2
value of the	-0.42	0.24	-0.55	0.0
found local				
minimum				
number of	1337.16	2878.2	16.0	8109.0
steps				

Podobnie jak dla poprzedniej funkcji, punkt startowy ma wpływ do którego minimum lokalnego wpadnie algorytm. Można zauważyć, że im bliżej, tym mniej kroków potrzebuje do uzyskania określonej precyzji.

Uwagi

Dla niektórych wartości punktu startowego funkcja może się zatrzymać w punkcie przegięcia, ponieważ pochodna tam również wynosi 0.

Parametr – długość kroku uczącego

	starting point	step_length	location of the	value of the	number of
			found local	found local	steps
			minimum	minimum	
0	[-0.17 -0.86]	0.05	[0.70706 -0.70713]	-0.55182	85
1	[-0.17 -0.86]	0.1	[0.70706 -0.70713]	-0.55182	40
2	[-0.17 -0.86]	0.15	[0.70706 -0.70714]	-0.55182	25
3	[-0.17 -0.86]	0.2	[0.70708 -0.70713]	-0.55182	18
4	[-0.17 -0.86]	0.25	[0.70707 -0.70715]	-0.55182	13

5	[-0.17 -0.86]	0.3	[0.70708 -0.70715]	-0.55182	10
6	[-0.17 -0.86]	0.35	[0.70709 -0.70714]	-0.55182	8
7	[-0.17 -0.86]	0.4	[0.7071 -0.70715]	-0.55182	6
8	[-0.17 -0.86]	0.45	[0.70711 -0.70711]	-0.55182	5
9	[-0.17 -0.86]	0.5	[0.70708 -0.70707]	-0.55182	5
10	[-0.17 -0.86]	0.55	[0.70709 -0.70709]	-0.55182	7
11	[-0.17 -0.86]	0.6	[0.70709 -0.70711]	-0.55182	9
12	[-0.17 -0.86]	0.65	[0.70708 -0.70712]	-0.55182	11
13	[-0.17 -0.86]	0.7	[0.70713 -0.70707]	-0.55182	14
14	[-0.17 -0.86]	0.75	[0.70711 -0.70707]	-0.55182	20
15	[-0.17 -0.86]	0.8	[0.70711 -0.70715]	-0.55182	31
16	[-0.17 -0.86]	0.85	[0.70709 -0.70706]	-0.55182	60
17	[-0.17 -0.86]	0.9	[0.70708 -0.70706]	-0.55182	512
18	[-0.17 -0.86]	0.95	[0.60798 -0.60798]	-0.52946	100000
19	[-0.17 -0.86]	1.0	[0.57207 -0.57207]	-0.51022	100000
20	[-0.17 -0.86]	1.05	[0.55059 -0.55059]	-0.49598	100000
21	[-0.17 -0.86]	1.1	[0.53677 -0.53677]	-0.48578	100000
22	[-0.17 -0.86]	1.15	[0.52794 -0.52794]	-0.47885	100000
23	[-0.17 -0.86]	1.2	[0.52262 -0.52262]	-0.47452	100000
24	[-0.17 -0.86]	1.25	[0.47939 -0.47939]	-0.4354	100000
25	[-0.17 -0.86]	1.3	[0.60248 -0.60248]	-0.5269	100000
26	[-0.17 -0.86]	1.35	[1.19323 -0.48731]	-0.33126	100000
27	[-0.17 -0.86]	1.4	[0.7071 -0.70711]	-0.55182	31148
28	[-0.17 -0.86]	1.45	[1.65651 -0.70711]	-0.13707	100000

	mean	std	min	max
step_length	0.75	0.43	0.05	1.45
value of the	-0.51	0.09	-0.55	-0.14
found local				
minimum				
number of	35587.14	47900.04	5.0	100000.0
steps				

Rozmiar kroku uczącego wpływa na ilość kroków potrzebnych do osiągnięcia ekstremum. Najlepsze wyniki ma średnia dla rozmiaru równego ok. 0.5. Dla mniejszy wartości kroku wynik jest dokładniejszy. Z kolei dla dużych wartości (powyżej ok. 0.9) algorytm nie jest w stanie znaleźć ekstremum nawet w limicie 100000 operacji.

Parametr – długość kroku uczącego

	starting point	step_length	location of the found	value of the	number
			local minimum	found local	of steps
				minimum	
0	[-0.32 -1.63]	0.2	[-0.26923 -1.68535]	0.07394	1
1	[-0.32 -1.63]	0.2	[0.14967 -1.79325]	-0.03159	11
2	[-0.32 -1.63]	0.2	[0.58188 -1.22706]	-0.33874	21
3	[-0.32 -1.63]	0.2	[0.70648 -0.71189]	-0.55179	31
4	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	41
5	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	51
6	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	61
7	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	71
8	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	81
9	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	91
10	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	101
11	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	111
12	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	121
13	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	131
14	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	141
15	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	151
16	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	161

17	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	171
18	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	181
19	[-0.32 -1.63]	0.2	[0.7071 -0.70713]	-0.55182	191

	mean	std	min	max
step_length	0.2	0.0	0.2	0.2
value of the	-0.48	0.18	-0.55	0.07
found local				
minimum				
number of	96.0	59.16	1.0	191.0
steps				

Przy małej ilości kroków, algorytm nie jest w stanie znaleźć ekstremum, jeśli znajduje się on daleko od punktu startowego oraz rozmiar kroku jest bardzo mały. Im większa liczba iteracji tym dokładniejszy wynik optymalizacji.

Wnioski końcowe

Wpływ punktu startowego:

 Algorytm gradientu prostego zbliża się do najbliższego ekstremum w zależności od położenia punktu początkowego

Wpływ rozmiaru kroku uczącego:

 Długość kroku uczącego znacząco wpływa na efektywność algorytmu. Małe wartości kroku prowadzą do większej precyzji, lecz wymagają więcej iteracji.
Większe wartości kroku mogą prowadzić do przeskakiwania przez ekstrema, albo nawet nieumiejętność jego znalezienia

Wpływ limitu kroków:

 Przy niskim limicie kroków algorytm często nie znajduje dokładnie ekstremum, szczególnie gdy punkt startowy jest daleko od ekstremum. Wzrost liczby iteracji poprawia dokładność, ale zwiększa czas potrzebny do zakończenia obliczeń.

Podsumowanie:

 Metoda gradientu prostego pozwala znaleźć lokalne ekstrema funkcji. Algorytm ten może natrafić na ekstremum globalne, ale zależy to bardziej od przypadku. Dodatkowo ten algorytm może "utknąć" w punkcie przegięcia ponieważ pochodna w tym punkcie również wynosi 0.