Persuasion with Verifiable Information

Maria (Masha) Titova

UC SAN DIEGO

January 27, 2021

INTRODUCTION

- ▶ persuasion games with verifiable information
 - privately informed sender
 - wants receivers to approve his proposal
 - sends verifiable messages to receivers
 - group of uninformed receivers, each choosing between
 - approving and rejecting proposal
- many applications
 - ♦ politician challenges status quo, convinces voters to elect him
 - firm convinces consumers to adopt its product
 - \diamond job market candidate convinces committee members to offer them a job

PREVIEW OF RESULTS

▶ persuasion games with verifiable information

- ♦ direct implementation: can restrict attention to direct equilibria
 - sender tells each receiver what to do
- ♦ ranking of equilibrium outcomes (ex-ante utility of sender):
 - worst: equivalent to full disclosure
 - best: commitment outcome (Kamenica and Gentzkow, 2011)

▶ targeted advertising in elections

- challenger has positive odds of winning elections that he certainly loses with public advertising
- ♦ more polarized electorate ⇒ higher odds of swinging elections

LITERATURE

communication:

♦ Milgrom (1981) and Grossman (1981); Crawford and Sobel (1982); Spence (1973); Kamenica and Gentzkow (2011); Alonso and Câmara (2016); Lipnowski and Ravid (2020)

my contribution: sender reaches commitment outcome with verifiable information

▶ targeted advertising in elections:

 Prat and Strömberg (2013); DellaVigna and Gentzkow (2010); George and Waldfogel (2006); DellaVigna and Kaplan (2007); Enikolopov et al. (2011); Oberholzer-Gee and Waldfogel (2009)

 $\underline{\text{my contribution}};$ targeted advertising allows politicians to swing elections

MODEL SETUP

$$\Omega := [0,1] - \underline{\text{state space}}$$

▶ sender (he)

- \diamond privately observes state of the world $\omega \in \Omega$
 - ω drawn from common prior p > 0 over Ω
- ♦ gets 1 if receiver approves, 0 otherwise
 - state-independent preferences
- \diamond sends verifiable message $m \in \mathbb{M}$ to receiver
 - message space $\mathbb{M} := 2^{|\Omega|}$
 - $\omega \in m$ no lies of commission

MODEL SETUP

▶ receiver (she)

- \diamond $\delta(\omega)$ is her net payoff of approval
- \diamond she approves in state ω if only if $\delta(\omega) \geq 0$
- her approval set is

$$\mathcal{A} := \{ \omega \in \Omega \mid \delta(\omega) \ge 0 \}$$

ILLUSTRATION WITH SPATIAL PREFERENCES

- ▶ receiver has ideal position $v \in \Omega$
 - \diamond compares sender's position to status quo $\omega_0 \in (0,1)$
 - \diamond approval set $\mathcal{A} = \left\{ \omega \in \Omega \text{ s.t. } |v \omega| \le |v \omega_0| \right\}$

EQUILIBRIUM

- ightharpoonup (Perfect Bayesian) Equilibrium (σ, a, q)
 - $\diamond \ \sigma: \Omega \to \Delta \mathbb{M}$ messaging strategy of sender
 - maximizes sender's utility $\forall \omega \in \Omega$ subject to $\omega \in m$, $\forall m \in \mathbb{M}$
 - $\diamond a: \mathbb{M} \to \{0,1\}$ approval strategy of receiver
 - set of approval beliefs

$$\mathcal{B} := \{ q \in \Delta\Omega \mid \mathbb{E}_q[\delta(\omega)] \ge 0 \}$$

- best response $a(m) = \mathbb{1}(q(m) \in \mathcal{B}), \forall m \in \mathbb{M}$
- $\diamond q: \mathbb{M} \to \Delta\Omega$ posterior belief of receiver
 - Bayes-rational on equilibrium path
 - supp $q(m) \subseteq m, \forall m \in \mathbb{M}$

EQUILIBRIUM OUTCOMES

- ▶ in equilibrium, consider receiver's action in each state
 - \diamond let $W \subseteq \Omega$ be set of approval states

▶ sender does weakly better than full disclosure:

$$\mathcal{A} \subseteq W \tag{IC}$$

▶ receiver best responds:

$$p(\cdot \mid W) \in \mathcal{B}$$
 (obedience)

where $p(\omega \mid W) := \frac{p(\omega)}{\int_{W} p(\omega')d\omega'}$ is conditional prior probability

DIRECT IMPLEMENTATION

Theorem 1

The following statements about set $W \subseteq \Omega$ are equivalent:

- (1) W is an equilibrium set of approval states
- (2) W satisfies receiver's (obedience) and sender's (IC) constraints
- \triangleright proof by direct implementation of W

EQUILIBRIUM PAYOFF SET

- ▶ Theorem 1 allows us to restrict attention to sets of approval states $W \subseteq \Omega$ satisfying (obedience) and (IC)
- ▶ rank equilibria by sender's ex-ante utility
 - same as his ex-ante odds of approval
 - $\diamond\,$ equals P(W), measure of set of approval states under prior distribution

SENDER-WORST EQUILIBRIUM

- sender's odds of approval are minimized across all equilibria
 - \diamond smallest (in terms of ex-ante utility) set of approval states \underline{W}
 - $\diamond W = A$, sender's (IC) constraint binds
- ▶ receiver makes fully informed choice
- ▶ outcome-equivalent to full disclosure
 - ♦ (Grossman, 1981); (Milgrom, 1981); (Milgrom and Roberts, 1986); reviewed by (Milgrom, 2008)

SENDER-PREFERRED EQUILIBRIUM

- ▶ sender's odds of approval are maximized across all equilibria
 - \diamond largest (in terms of ex-ante utility) set of approval states \overline{W}
 - ⋄ receiver's (obedience) constraint binds

Theorem 2

Sender-preferred equilibrium outcome is a ${\bf commitment}$ outcome.

Specifically, \overline{W} is characterized by a cutoff value $c^* > 0$ such that

- ▶ sender's proposal is approved if $\delta(\omega) \ge -c^*$ and rejected if $\delta(\omega) < -c^*$
- ▶ when sender's proposal is approved, receiver's expected net payoff of approval is zero: $\mathbb{E}_{p}[\delta(\omega) \mid \overline{W}] = 0$

ILLUSTRATION WITH SPATIAL PREFERENCES

- ▶ equilibrium range
 - \diamond sender-worst equilibrium: $\underline{W} = \mathcal{A}$
 - sender-preferred equilibrium:
 - maximize P(W) subject to receiver's (obedience) constraint
 - \overline{W} is characterized by $c^* > 0$ that solves (obedience)

SETUP

$$I := \{1, \dots, n\}$$
 – set of receivers p is common prior

▶ sender:

- \diamond has state-independent utility $u_s: 2^I \to \mathbb{R}$
- $\diamond u_s$ weakly increases in every receiver's action

ightharpoonup receiver $i \in I$:

- \diamond observes private verifiable message $m_i \in \mathbb{M}$ chosen by sender
- \diamond solves independent problem: approves if $\omega \in \mathcal{A}_i$

MANY RECEIVERS: DIRECT IMPLEMENTATION

Theorem 3

The following statements about the sender's ex-ante payoff \bar{u}_s are equivalent:

- (1) \bar{u}_s is reached in equilibrium
- (2) \bar{u}_s is given by

$$\bar{u}_s = \int_{\Omega} u_s(\{i \in I \mid \omega \in W_i\}) \cdot p(\omega) d\omega,$$

where for every receiver $i \in I$, $W_i \subseteq \Omega$ is her set of approval states, which satisfies

- \diamond receiver's (obedience) constraint $p(\cdot \mid W_i) \in \mathcal{B}_i$
- \diamond sender's (IC) constraint $\mathcal{A}_i \subseteq W_i$

MANY RECEIVERS: RANGE OF EQUILIBRIUM OUTCOMES

Sender-worst equilibrium is outcome-equivalent to full disclosure.

Theorem 4

Sender's ex-ante payoff in <u>sender-preferred equilibrium</u> is the commitment payoff.

MOTIVATION

- ► Targeted Advertising was an important part of winning campaigns in recent U.S. Presidential Elections:
 - ♦ **2016 Trump**: used voter data from Cambridge Analytica
 - ♦ 2008 Obama: first social media campaign
 - ♦ 2000 Bush: targeting voters by mail

Can targeted advertising swing elections? \rightarrow Yes

TARGETED ADVERTISING VS. PUBLIC DISCLOSURE

- \blacktriangleright approach: compare <u>Targeted Advertising</u> (**TA**) to <u>Public Disclosure</u> (**PD**)
 - ♦ **TA**: private messages (e.g. through Facebook)
 - application of the main model
 - ♦ **PD**: public message (e.g. debate, tweeting)
 - $common\ prior + common\ message \rightarrow common\ posterior$

APPLYING THE MODEL

- $\triangleright \Omega$ is policy space, positions range from far-left (0) to far-right (1)
- ▶ sender: challenger
 - \diamond privately knows his policy position $\omega \in \Omega$
 - this talk: uniform prior, $p \sim U[0, 1]$
 - ♦ receives 1 if wins election, 0 otherwise
 - any social choice rule satisfying weak monotonicity (e.g. majority, unanimity)

APPLYING THE MODEL: RECEIVERS

- ▶ receivers: sincere voters with spatial preferences:
 - expressively choose between challenger and status quo
 - \diamond approval set of voter $i \in I$ is $A_i = \{ \omega \in \Omega \text{ s.t. } |v_i \omega| \le |v_i \omega_0| \varepsilon \}$
 - policies that are closer to v_i than status quo by at least ε
 - $\varepsilon \in \left(0, \frac{|v_i \omega_0|}{2}\right), \forall i \in I$, is status quo bias

REPRESENTATIVE VOTERS

- ▶ $L = \arg \max_{i \in I, \ v_i < \omega_0} v_i$ is representative voter on the left
 - $\diamond L$ is convinced \Rightarrow every left voter is convinced: $\mathcal{A}_L \subseteq \mathcal{A}_i, \forall v_i < \omega_0$
- ▶ $R = \arg\min_{j \in I, \ v_j > \omega_0} v_j$ is representative voter on the right
 - $\diamond R$ is convinced \Rightarrow every right voter is convinced: $\mathcal{A}_R \subseteq \mathcal{A}_j, \forall v_j > \omega_0$

INCOMPATIBLE VOTERS

 \triangleright representative voters L and R are incompatible

$$\diamond \ \mathcal{A}_L \cap \mathcal{A}_R = \emptyset \text{ and } \mathcal{B}_L \cap \mathcal{B}_R = \emptyset$$

UNWINNABLE ELECTIONS

- \triangleright voters L and R never both vote for the challenger under common belief
- \triangleright if voters L and R are jointly pivotal, challenger loses with probability 1

Definition

Election with representative voters L and R is **unwinnable** for the challenger under common belief, if for all $T \subseteq I$, $u_s(T) = 1$ if and only if $\{L, R\} \in T$.

TARGETED ADVERTISING

Theorem: Targeting in Unwinnable Elections

In the sender-preferred equilibrium of unwinnable election with representative voters \underline{L} and \underline{R} ,

- ▶ set of winning policies is $[a_R, b_L]$ with $a_R < \omega_0 < b_L$
- ▶ challenger's odds of winning are $b_L a_R > 0$

TARGETED ADVERTISING: COMPARATIVE STATICS

- ▶ when $v_R \uparrow (v_L \downarrow)$, voter R(L) becomes more persuadable
- \blacktriangleright when $v_R \uparrow$ or $v_L \downarrow$, electorate becomes more polarized

Theorem: Comparative Statics

In sender-preferred equilibrium of unwinnable election with voters \boldsymbol{L} and $\boldsymbol{R},$

- ightharpoonup as $v_R \uparrow$ and/or $v_L \downarrow$, challenger's odds of winning $b_L a_R$ increase
- ightharpoonup suppose $|v_L \omega_0| = |v_R \omega_0|$
 - \diamond as $v_R \uparrow$, set of winning policies shifts to the left, i.e. $a_R \downarrow$ and $b_L \uparrow$

CONCLUSION

- ▶ I solve persuasion games with **verifiable information**
 - \diamond <u>direct implementation</u>: W is an equilibrium set of approval states \iff
 - W satisfies receiver's (obedience) and sender's (IC) constraints
 - ♦ set of equilibrium outcomes (ranked by ex-ante utility of sender):

worst: full disclosure \rightarrow best: commitment outcome

- ▶ targeted advertising swings elections:
 - \diamond challenger says different things to incompatible voters L and R
 - L: left + some right policies, left on average
 - R: right + some left policies, right on average
 - · challenger wins if his policy is not too far from status quo
 - $\diamond L$ and R are more polarized \Longrightarrow challenger wins with TA more often

Thank You!

DIRECT IMPLEMENTATION OF W

state	sender's message	receiver's belief	receiver's action
$\omega \in W$	W	$p(\cdot \mid W)$	approve
$\omega \in \Omega \smallsetminus W$	$\Omega \smallsetminus W$	$p(\cdot \mid \Omega \smallsetminus W)$	reject

COMMITMENT PROTOCOL

- ightharpoonup commitment protocol (σ, a, q)
 - $\diamond \ \sigma: \Omega \to \Delta(\mathbb{M})$ messaging strategy of sender maximizes sender's utility $\forall \omega \in \Omega$ subject to $\omega \in m$, $\forall m \in \mathbb{M}$
 - $\diamond \ a: \mathbb{M} \to \{0,1\}$ approval strategy of receiver
 - best response $a(m) = \mathbb{1}(q(m) \in \mathcal{B}), \forall m \in \mathbb{M}$
 - $\diamond q: \mathbb{M} \to \Delta\Omega$ posterior belief of receiver
 - Bayes-rational on equilibrium path supp $q(m) \subseteq m, \forall m \in \mathbb{M}$

go back

UNWINNABLE ELECTIONS: EXAMPLE

▶ simple majority rule – which elections are unwinnable?

(version of the) Median Voter Theorem

Under simple majority rule, election is unwinnable for the challenger under public disclosure if and only if ω_0 is the bliss point of the median voter.

COMPARATIVE STATICS

go back