```
#---输入指令:1: (I,
in R1
          #输入一个值
movi 0
              #将变量的内存地址值赋值到R0
movb R0,R1
              #将R1的值赋值给变量所在的内存地址
#---输入指令:2: (I,
                    b )
          #输入一个值
in R1
movi 1
              #将变量的内存地址值赋值到R0
movb R0,R1
              #将R1的值赋值给变量所在的内存地址
#---乘法指令:3: (*,
              a, b,
                   T1 )
              #乘法指令,变量a的内存地址放入RO
movi 0
movc R1,R0
              #乘法指令,变量a从内存地址RO拷贝至R1
movi 7
              #乘法指令, 临时内存空间地址放R0
movb R0,R1
              #乘法指令, 变量a放入临时内存空间地址
movi 1
              #乘法指令,变量b的内存地址放入RO
movc R1,R0
              #乘法指令,变量b从内存地址R0拷贝至R1
              #乘法指令, 临时内存空间地址放R0
movi 8
              #乘法指令,变量b放入临时内存空间地址
movb R0,R1
#开始做乘法循环
movi 8
              #b的内存地址存至R0
movc R1,R0
                 #从内存中取出值b
              #设置R0中的值为1
movi 1
              #R1即b值减1,此时设置G值
sub R1,R0
movi 8
              #b的内存地址存至R0
movb R0,R1
                 #b值需要保存回去
movi 7
              #a的内存地址存至R0
movc R2,R0
                 #取出a值
movi 9
              #a+b的结果内存地址存至R0
movc R1,R0
                 #取出a+b的结果值
```

```
movc R1,R0
                 #取出a+b的结果值
add R1,R2
              #做加法
movb R0,R1
                  #将结果存回去
              #保存当前的PC值到R3
movd
movi -12
              #R0的值设置为-12
add R3,R0
                 #R3的值加-12
          #如果第12行的减法设置G为1,就跳转
jg
#循环结束
movi 9
              # 做乘法,将临时结果的内存地址值赋值到RC
                 #取出a+b的结果值
movc R2,R0
movi 3
              # 做乘法,将结果的内存地址值赋值到R0
                 #将结果值写回内存
movb R0,R2
#---赋值指令:4:(=,
              T1, ,
                     c )
movi 3
              #将变量b的内存地址值赋值到R0
movc R1,R0
              #从内存中取出b的值到R1
movi 2
              #将变量a的内存地址值赋值到R0
movb R0,R1
              #将R1的值(即b)赋值给a所在的内存地址
#---输出指令:5: (O,
                     С
                        )
movi 2
              #将变量的内存地址赋值给RO
movc R1,R0
              #将变量的值从内存送到寄存器R1
out R1
              #輸出变量的值
              #空指令
mova R0,R0
halt
```

在系统中执行该文件:

文件在原型机中打开的样子。

输入两个乘数: 5和3

```
VM> si
                      movi 1
                                       #将变量的内存地址值赋值到R0
VM> si
                      movb R0,R1
                                       #将R1的值赋值给变量所在的内存地址
                      movi 0
                                       #乘法指令,变量a的内存地址放入R0
M> si
                      movc R1,R0
                                       #乘法指令,变量a从内存地址R0拷贝至R1
M> si
                      movi 7
                                       #乘法指令,临时内存空间地址放R0
/M> si
                      movb R0,R1
                                       #乘法指令,变量a放入临时内存空间地址
VM> si
                      movi 1
                                       #乘法指令,变量b的内存地址放入R0
                      movc R1,R0
                                       #乘法指令,变量b从内存地址R0拷贝至R1
/M> si
                      movi 8
                                       #乘法指令,临时内存空间地址放R0
                      movb R0,R1
                                       #乘法指令,变量b放入临时内存空间地址
```

执行乘法指令

```
      VM> si
      0010 1001
      movc R2,R0
      #取出a+b的结果值

      VM> si
      0010 1010
      movi 3
      # 做乘法,将结果的内存地址值赋值到R0

      VM> si
      0010 1011
      movb R0,R2
      #将结果值写回内存

      VM> si
      0010 1100
      movi 3
      #将变量b的内存地址值赋值到R0

      VM> si
      0010 1101
      movc R1,R0
      #从内存中取出b的值到R1

      VM> si
      0010 1110
      movi 2
      #将变量a的内存地址值赋值到R0

      VM> c
      15
```

最后我们得到结果输出: 15

47_3

```
PS D:\Desktop\CS资料\tool> gcc -g -o 47_3 47_3.s
47_3.s: Assembler messages:
47_3.s: Warning: end of file not at end of a line; newline inserted
47_3.s:2: Warning: using `%ax' instead of `%eax' due to `w' suffix
47_3.s:3: Error: too many memory references for `mov'
47_3.s:4: Error: bad register name `%sl'
47_3.s:5: Error: operand type mismatch for `mov'
47_3.s:6: Error: invalid instruction suffix for `mov'
47_3.s:7: Error: `%si' not allowed with `movb'
47_3.s:1: Error: invalid operands (*UND* and *UND* sections) for `%'
```

第一行是使用 % 符号的方式不符合语法要求。

可以看到第二行的错误是对于 movw, 我们应该使用%ax 而不是使用%eax, 因为"w"是对于 16 位的操作而%eax 是三十二位寄存器。

第三行的错误是对于 mov, 使用了两个内存引用。

movl (%eax), 4(%esp)

我们看到两个寄存器都带有括号,我们需要将(%eax)改成%eax:

movl %eax, 4(%esp)

第四行的错误是%sl 是一个名字错误的寄存器,参照寄存器表,这里的 sl 正确拼写应该为 si,同时注意到%si 为十六位而%al 是八位,我们需要改%al 为%ax,:

movw %ax, %si

第五行的错误是 mov 指令的源和目的操作数类型不匹配

"movl %eax, \$0xFFFFFFFF",指令中不能将一个寄存器中的数给一个立即数, 我们需要将两者 位置互换:

movl \$0xFFFFFFFF,%eax

第六行的错误是 mov 指令的源和目的操作数类型不匹配:

movw %eax, %bx, %eax 是三十二位寄存器而 movw 和%bx 都是十六位, 所以要把%eax 改成%ax:

movw %ax, %bx

第七行的错误是%si 和 movb 不匹配,因为%si 是 16 位寄存器但是 movb 的操作数应该是八位数据。我们将 movb 改成 movw。

至此, 所有的错误都被改正:

.section .text
.global main
main:
movb \$0xF, (%ebx)
movw %ax, (%esp)
movl %eax, 4(%esp)
movw %ax, %si
movl \$0xFFFFFFFF, %eax
movw %ax, %bx
movw %si, 8(%esp)

PS D:\Desktop\CS资料\tool> gcc -g -o 47_3 47_3.s
PS D:\Desktop\CS资料\tool> gcc -g -o 47_3 47_3.s
PS D:\Desktop\CS资料\tool>

再进行操作不会报错。

48 6

指令 1:

addl %ecx,(%eax) 将%ecx 的值加到%eax 值对应的地址中的值上面, 我们看题目上面的表知道, 此时%eax=0x100,而地址 0x100 对应的值为 0xFF,%ecx 的值为 0x1,两者相加得到更新后的地址 0x100 的值为 0x100.

指令 2:

Subl %edx,4(%eax) 指令的目的是将%edx 从 %eax 值对应寄存器中的值加上偏移量 4 后对应的地址中的值减去。%edx 此时的值为 0x3, %eax 值对应地址中的值为 0x100, 得到的地址为 0x100+4 等于 0x104,查表得到该地址对应的值为 0xAB。故更新后的地址 0x104 的值为 0xAB. 指令 3:

Imull \$16,(%eax,%edx,4), 指令的目的是从(%eax+%edx*4)得到地址, 将地址对应的值乘以 16 之后写回原地址中。%eax=0x100,%edx=0x3,计算得到的地址为 0x10C, 查表得到该地址对应的值为 0x11, 计算后得到更新后的地址 0x10C 对应值为 0x176.

指令 4:

Incl 8 (%eax), 指令目的是将%eax 值加 8 后对应地址中的值加 1, 地址为 0x100+8=0x108, 查表得到该值为 0x13, 加一后更新地址 0x108 的值为 0x14.

指令 5:

Decl %ecx, 目的是将%ecx 的值减一, 更新后的%ecx 的值为 0x0.

指令 6:

Subl %edx, %eax 指令目的是将%edx 从%eax 中减去, 得到更新后的%eax 的值为 0x100-0x3=0XFD。

0x100 0xFF %eax 0x10 0x104 0xAB %ecx 0x1 0x108 0x13 %edx 0x 0x10C 0x11 %edx 0x 填写下表、给出下面指令的效果、说明将被更新的寄存器或存储器位置、以及得到的值。 值 addi %ecx、(%cax) 0x10 0x10 subl %edx,4 (%eax) 0x10 0x10 subl %edx,4 (%eax) 0x10 0x10 imull \$16, (%eax,%edx,4) 0x10 0x11 incl 8 (%eax) 0x10 0x11 decl %ecx %ecx 0x11	0x100 0xFF %eax 0x101 0x104 0xAB %ecx 0x1 0x108 0x13 %edx 0x3 0x10C 0x11 %edx 0x3 填写下表、给出下面指令的效果,说明将被更新的寄存器或存储器位置,以及得到的值。 指令 目的 值 add1 %ecx, (%eax) 0x100 0x100 0x100 subl %edx,4 (%eax) 0x104 0x40 0x40 imull \$16, (%eax,%edx,4) 0x108 0x11b 0x11b incl 8 (%eax) 0x108 0x14 0x11b decl %ecx 1/2007 0x0 0x100 subl %edx,%eax 1/2007 0x100 0x100	地址	定的存储器地址和寄存器中:	寄存器	值	
Ox108	0x108 0x13 %ecx 0x1 0x10C 0x11 %edx 0x3 填写下表、给出下面指令的效果、说明将被更新的寄存器或存储器位置、以及得到的值。 指令 目的 值 addl %ecx、(%cax) 0x10 0x10 subl %edx,4 (%eax) 0x10 0x10 imull \$16, (%eax,%edx,4) 0x10 0x11 incl 8 (%eax) 0x10 0x11 decl %ecx %e0x 0x10 subl %edx,%eax %e0x 0x10	0x100		%eax	%eax 0x100	
0x108 0x13 %edx 0x 0x10C 0x11 %edx 0x 填写下表,给出下面指令的效果,说明将被更新的寄存器或存储器位置,以及得到的值。 指令 目的 值 addi %ecx, (%eax) 0メレク 0×100 subl %edx,4 (%eax) 0×104 0×48 imull \$16, (%eax,%edx,4) 0×10C 0×17b incl 8 (%eax) 0×10g 0×14b decl %ecx 2/20CT/ 0×0	0x108 0x13 %edx 0x3 0x10C 0x11 %edx 0x3 填写下表,给出下面指令的效果,说明将被更新的寄存器或存储器位置,以及得到的值。 指令 目的 值 addi %ecx, (%eax) 0x 00 0x 100 0x 100 subl %edx,4 (%eax) 0x 104 0x 48 0x 17b imull \$16, (%eax,%edx,4) 0x 10C 0x 17b 0x 17b incl 8 (%eax) 0x 10g 0x 11b 0x 11b decl %ecx 1/4 0 C N 0x 0 0x 10 subl %edx,%eax 1/4 0 C N 0x 10 0x 10	0x104	0xAB	9/ecx	0x1	
#写下表, 给出下面指令的效果, 说明将被更新的寄存器或存储器位置, 以及得到的值。 # 1	The image of t	0x108	0x13		0-3	
指令 目的 値 addi %ecx. (%eax)	指令 目的 値 addl %ecx, (%eax)	0x10C	0x11	%edx		
subl %edx,4 (%eax) Dx 104 Dx 104 Dx 105 imull \$16, (%eax,%edx,4) ox 10C Qx 17b incl 8 (%eax) Dx 108 Ox 144 decl %ecx 1/20CN Dx 00	subl %edx,4 (%eax) imull \$16, (%eax,%edx,4) incl 8 (%eax) decl %ecx subl %edx, 4 (%eax) Dx 104 Dx 106 Qx 176 Qx 176 Qx 176 Qx 174 Qx 107 Qx 174 Qx 107 Q	addl %ecx, (%eax)	0×100	0×	100	
addl %ecx, (%eax) subl %edx,4 (%eax) fimull \$16, (%eax,%edx,4) fincl 8 (%eax) decl %ecx 2	addl %ecx, (%eax) subl %edx,4 (%eax) imull \$16, (%eax,%edx,4) incl 8 (%eax) decl %ecx subl %edx,%eax %eax %				-	
imull \$16, (%eax,%edx,4) incl 8 (%eax) decl %ecx 0x 0C	imull \$16, (%eax,%edx,4) incl 8 (%eax) decl %ecx yech subl %edx,%eax %eax		0110	0 × 1	100	
incl 8 (%eax, %edx, 4) ox lo C Qx 17 b incl 8 (%eax) decl %eex // 20 T Ox 0 C Qx 17 b Ox 10 C Qx 17 b Ox 10 T	imull \$16, (%eax,%edx,4) 0 x 10 C 0x 17 b incl 8 (%eax) 0 x 10 g 0x 14 decl %ecx 1/20 C N 0x 0 subl %edx,%eax 1/20 C N 0x 7 D			Ox.	A8	
1018 (%eax) ()×108 (0×14) decl %ecx //2007 (0×0)	101 8 (%eax)	imull \$16, (%eax,%edx,4)	0×10C			
decl %ecx %ecx %ecx	decl %ecx /3ech QxO subl %edx,%eax %lax 0x+D	incl 8 (%eax)	D×108			
	subl %edx,%eax % lax 0x +0	decl %ecx				
	UXPU	subl %edx,%eax			The second second	
O X X D	们经常可以看见以下形式的汇编代码行:		70000	0	XXD	
Septiment to the second of the		orl teax, teax				

47 7:

1. 这条指令实现了操作将%eax 和自己做异或,每一位和自己异或后都变为了 0. 从而将其

值变成 0.

2. 更直接地表达这个操作的汇编代码为将%eax 直接设置成 0: movl \$0,%eax。

3. 我们可以看到使用异或只需要 2 个字节而使用直接赋值需要 5 个字节。