au-Tilting Reduction

Gustavo Jasso

ICRA XV, August 2012 Bielefeld, Germany

We fix a field $k=ar{k}$

and

a finite dimensional k-algebra A.

au-Tilting Modules

DEFINITION (IYAMA-REITEN)

M is τ -rigid if

$$\operatorname{Hom}_A(M, \tau M) = 0.$$

 $lacksquare M\colon au ext{-tilting module}:\Leftrightarrow |M|=|A|$

au-Tilting Modules

DEFINITION (IYAMA-REITEN)

M is τ -rigid if

$$\operatorname{Hom}_A(M, \tau M) = 0.$$

- M: τ -tilting module : $\Leftrightarrow |M| = |A|$
- M: $support \ \tau$ -tilting A-module : $\Leftrightarrow M$: τ -tilting (A/e)-module

RELATIONSHIP WITH TILTING THEORY I

Remark

- $\blacksquare \operatorname{Hom}_A(M, \tau M) = 0 \implies \operatorname{Ext}_A^1(M, M) = 0$
- M: tilting $\Rightarrow M$: τ -tilting
- A: hereditary, then

$$M: \tau$$
-tilting $\Leftrightarrow M:$ tilting

au-Tilting Reduction Gustavo Jasso (名 大)

FUNCTORIALLY FINITE TORSION CLASSES

THEOREM (IYAMA-REITEN)

There is a bijection

 $\{f.f. \ torsion \ classes \ in \ mod \ A\}$

 $\{supp. \ au ext{-tilting } A ext{-modules}\}/\sim$

given by $\mathcal{T}\mapsto P(\mathcal{T})$ with inverse $M\mapsto\operatorname{Fac} M$.

au-Tilting Reduction

Relationship with Tilting Theory II

R.emark

■ M: support τ -tilting module

$$M$$
 is tilting $\Leftrightarrow DA \in \operatorname{Fac} M$

In particular, M must be sincere.

au-Tilting Reduction Gustavo Jasso (名 大)

C: triangulated category

- Hom-finite
- Krull-Schmidt
- 2-Calabi-Yau
- \blacksquare has a cluster-tilting object T

```
Theorem (Adachi-Iyama-Reiten)  \{ cluster\text{-}tilting \ objects \ in \ \mathcal{C} \} / \sim \\ \\ \{ supp. \ \tau\text{-}tilting \ \mathrm{End}_{\mathcal{C}}(T)\text{-}modules \} / \sim
```

au-Tilting Reduction Gustavo Jasso (名 大)

THEOREM (IYAMA-YOSHINO)

lacktriangleq X: rigid $\bot(X[1]) = \{Y \in \mathcal{C} \mid \operatorname{Hom}_{\mathcal{C}}(Y, X[1]) = 0\}$

There is a bijection

 τ -Tilting Reduction

PROPOSITION (IYAMA-REITEN)

- $U: \tau$ -rigid A-module
- M: support τ -tilting module

Then, $U \in \operatorname{add} M$ if and only if

Fac
$$U\subseteq \operatorname{Fac} M\subseteq {}^{\perp}(\tau\,U).$$

BONGARTZ'S COMPLETION

PROPOSITION (IYAMA-REITEN)

- $U: \tau$ -rigid A-module
- M: support τ -tilting module

Then, $U \in \operatorname{add} M$ if and only if

Fac
$$U\subseteq \operatorname{Fac} M\subseteq {}^{\perp}(\tau\,U).$$

 $T:=P(^{\perp}(\tau U))$ is called the Bongartz's completion of U.

 τ -Tilting Reduction

MODULE CATEGORIES FROM TORSION PAIRS

■ *U*: τ-rigid A-module

There are f.f. torsion pairs:

$$(^{\perp}(\tau U),\operatorname{Sub}\tau U)$$

(Fac
$$U, U^{\perp}$$
)

■ U: τ -rigid A-module

There are f.f. torsion pairs:

$$(^{\perp}(au\,U),\operatorname{Sub} au\,U)$$
 $(\operatorname{Fac}\,U,\,U^{\perp})$

τ-Tilting Reduction Gustavo Jasso (名大)

Module Categories from Torsion Pairs

THEOREM

- $\blacksquare B = \operatorname{End}_A(T)$
- $C = B/e_U$

 $\operatorname{Hom}_A(T, -)$ induces an exact equivalence

$$\mathbb{F}: {}^\perp\!(au\,U)\cap\,U^\perp \longrightarrow \operatorname{\mathsf{mod}} C$$

with inverse $\mathbb{G} = - \otimes_B T : \text{mod } C \to {}^{\perp}(\tau U) \cap U^{\perp}$.

au-Tilting Reduction

$$^{\perp}(au\,U)$$

UI

 \mathcal{T}

 \bigcup

Fac *U*

$$0 \rightarrow tM \rightarrow M \rightarrow M/tM \rightarrow 0$$

is the canonical sequence of M with respect to (Fac U, U^{\perp}).

au-Tilting Reduction

$$0 \rightarrow tM \rightarrow M \rightarrow M/tM \rightarrow 0$$

is the canonical sequence of M with respect to (Fac U, U^{\perp}).

THEOREM

There is an order-preserving bijection

given by $\mathcal{T} \mapsto \mathbb{F}(\mathcal{T} \cap U^{\perp})$ with inverse $\mathcal{X} \mapsto \operatorname{Fac} U * \mathbb{G} \mathcal{X}$.

au-Tilting Reduction Gustavo Jasso (名 大)

au-Tilting Reduction

THEOREM

There is an order-preserving bijection

$$egin{cases} supp. \ au ext{-}tilting \ modules \ M \in \operatorname{mod} A \ such \ that \ U \in \operatorname{add} M \end{cases}$$
 $igcapsum \{supp. \ au ext{-}tilting \ modules \ in \ \operatorname{mod} C \}$

 $M \mapsto P(\mathbb{F}(\operatorname{Fac} M \cap U^{\perp}))$ with inverse $N \mapsto P(\operatorname{Fac} U * \mathbb{G} \operatorname{Fac} N)$.

$$A = k(1 \stackrel{y}{\leftarrow} 2 \stackrel{x}{\leftarrow} 3)/xy$$

$$A = k(1 \stackrel{y}{\leftarrow} 2 \stackrel{x}{\leftarrow} 3)/xy$$

$$U = 1$$

$$A = k(1 \stackrel{y}{\leftarrow} 2 \stackrel{x}{\leftarrow} 3)/xy$$

$$U = \mathbf{1}$$
 $T = \mathbf{1} \oplus \frac{2}{1} \oplus \frac{3}{2}$

$$A = k(1 \stackrel{y}{\leftarrow} 2 \stackrel{x}{\leftarrow} 3)/xy$$

$$U = \mathbf{1} \qquad T = \mathbf{1} \oplus {}_{1}^{2} \oplus {}_{2}^{3}$$

$$^{\perp}(\tau\,U)\cap\,U^{\perp}=\,U^{\perp}$$

$$A = k(1 \stackrel{y}{\leftarrow} 2 \stackrel{x}{\leftarrow} 3)/xy$$

$$U = \mathbf{1}$$
 $T = \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$

$$^{\perp}(au U)\cap U^{\perp}=U^{\perp}$$

$$A = k(1 \stackrel{y}{\leftarrow} 2 \stackrel{x}{\leftarrow} 3)/xy$$

$$U = \mathbf{1}$$
 $T = \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1} \oplus \mathbf{1}$

$$^{\perp}(au U)\cap U^{\perp}=U^{\perp}$$

$$\operatorname{End}_A(T)/e_U \cong k(ullet \leftarrow ullet)$$

$$A = k(1 \stackrel{y}{\leftarrow} 2 \stackrel{x}{\leftarrow} 3)/xy$$

$$U=\mathbf{1}$$
 $T=\mathbf{1}\oplus {1 \atop 1}\oplus {3 \atop 2}$

$$^{\perp}(au \, U) \cap \, U^{\perp} = \, U^{\perp}$$

$$\operatorname{End}_A(T)/e_U \cong k(ullet \leftarrow ullet)$$

$$A = k(1 \stackrel{y}{\leftarrow} 2 \stackrel{x}{\leftarrow} 3)/xy$$

$$U=\mathbf{1}$$
 $T=\mathbf{1}\oplus {1 \atop 1}\oplus {3 \atop 2}$

$$^{\perp}(au U)\cap U^{\perp}=U^{\perp}$$

$$\operatorname{End}_A(T)/e_U \cong k(ullet \leftarrow ullet)$$

