Pharmakologie Skriptum

15. September 2015

Inhaltsverzeichnis

1]	Pha	${f rmakokinetik}$		7
		1.0.1 Definitionen		7
		1.0.2 Bezeichnung von	Pharmaka	8
		1.0.3 Pharmakokinetik	k/Pharmakodynamik	8
		1.0.4 Biotransformatio	on / Metabolisierung	8
		1.0.5 Pharmakogenetik	k / Genetisch bedingte Unterschiede in der Metabolisierung von Pharma	a-
		ka (Beispiele)		13
		1.0.6 Ausscheidung		13
		1.0.7 Elimination von	Pharmaka	14
		1.0.8 Pharmakokinetise	sche Parameter	14
2]	Pha	rmakodynamik		18
2	2.1	Angriffsorte von Pharma	aka	18
		2.1.1 Fremdorganismus	s / Mikroorganismus	18
		2.1.2 Menschlicher / ti	ierischer Organismus (Makroorganismus)	18
2	2.2	Kanäle: Definiton und F	\overline{C} unktion	19
2	2.3	Transporter: Definition u	und Funktion	19
4	2.4	Enzyme		20
4	2.5	Rezeptor: Definition und	d Funktion	22
4	2.6			
4	2.7	G-Protein-gekoppelte Re	ezeptoren (GPCR)	22
			aktivierungs-Zyklus	
2	2.8	G-Protein vermittelte Si	ignalwege (ubiquitär)	22
		2.8.1 Gs-gekoppelte Re	ezeptoren	22
		2.8.2 Gi/o-gekoppelte	$\label{eq:Rezero} Rezeptoren \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	23
_			enkanäle	
2	2.10		yme	
			Tyrosinkinase-Aktivität (Beispiel: Insulin-Rezeptor)	
			teraktion	
2	2.14	Wirksamkeit/Potenz		27
		0		
2	2.17			
		2.17.1 Toleranz:		
		2.17.2 Tachyphylavie		28

	2.18	Unerwünschte Wirkungen von Pharmaka	28
		2.18.1 Häufigkeit unerwünschter Arzneimittelwirkungen	28
		2.18.2 Unerwünschte Wirkungen im Rahmen des pharmakodynamischen Wirkprofils	
		2.18.3 Ursachen dosisabhängiger unerwünschter Arzneimittelwirkungen	
		2.18.4 Arzneimittel-unabhängige Faktoren, die zu einer relativen Überdosierung führen	
		2.18.5 Unerwünschte Wirkungen durch Arzneimittelinteraktionen	
		2.18.6 Unerw. Wirkungen außerhalb des pharmakodynam. Wirkprofils	
3	Cho	linerges System	32
	3.1	cholinerge und adrenerge Übertragung im peripheren efferenten Nervensystem	32
		3.1.1 Eigenschaften des somatomotor. und autonomen Systems	32
	3.2	Acetylcholin	32
		3.2.1 Cholinerge Synapse	32
		3.2.2 Acetylcholinesterase	32
	3.3	Pharmakologische Beeinflussung cholinerger Systeme	
		3.3.1 Cholinerge Rezeptoren	
		3.3.2 Agonisten / Antagonisten des nikotinischen Ach-Rezeptor	
		3.3.3 nicht-depolarisierende Muskelrelaxantien	
		3.3.4 depolarisiernde Muskelrelaxantien	35
	3.4	Agonisten / Antagonisten muskarinischer Rezeptoren antimuskarinerge Substanzen / Parasym-	
		patholytika	35
		3.4.1 Belladonna-Alkaloide	35
		3.4.2 M3-selektiv	35
		3.4.3 quarternäre Derivate	36
	3.5	muskarinerge Agonisten / direkte Parasympathomimetika	36
	3.6	Cholinesterase-Hemmer/indirekte Parasympathomimetika	37
		3.6.1 Hydrolyse von Ach durch AchE:	
		3.6.2 Wirkung von AchE-Hemmern:	
		3.6.3 reversible AchE-Hemmer	37
		3.6.4 irreversible AchE-Hemmer	38
4	\mathbf{Adr}	energes System	39
		4.0.5 adrenerge Varikosität	39
		4.0.6 Hemmer der NA-Freisetzung	39
		4.0.7 indirekte Sympathomimetika	
	4.1	adrenerge Rezeptoren	
	4.2	β_2 -Adrenozeptor-Agonisten / β_2 -Sympathomimetika	40
	4.3	α -Adrenozeptor-Agonisten	40
	4.4	α_2 -Adrenozeptor-Agonisten	42
	4.5	α_1 -Adrenozeptor-Antagonisten	42
	4.6	$\bullet \dots \dots$	43
		4.6.1 Wirkprofil	43
		4.6.2 Pharmakokinetik	44
		4.6.3 Kontraindikationen	44
		4.6.4 Wechselwirkungen	44
		4.6.5 Indikation	44
		4.6.6 unerwünschte Wirkungen	
	17	Relative Recentercelektivität von Adrenezenter Agenisten und Antagenisten	45

5	$\mathbf{R}\mathbf{A}$	AS/ Diuretika 46
	5.1	Renin-Angiotensin-System
	5.2	Renin-Inhibitoren
	5.3	ACE-Hemmer
	5.4	AT_1 -Rezeptor-Antagonisten
	5.5	Klassen von Diuretika
		5.5.1 Tubuloglomeruläre Feedback-Mechanismen
	5.6	Schleifendiuretika
	5.7	Thiazide
	5.8	K^+ -sparende Diuretika
	5.9	Mineralokortikoid-Rezeptor-Antagonisten
		Arterielle Hypertonie
		Therapie der Hypertonie
	9.11	Therapic der Hypertoine
6	Digi	italisglykoside 54
	6.1	Herzinsuffizienz
	6.2	Digitalisglykoside
7	Ant	iarrhythmika 58
	7.1	Mechanismen der Arrhythmieenstehung
	7.2	Antiarrhythmika-Klassen (Vaughan-Williams)
		7.2.1 Klasse I-Antiarrhythmika
		7.2.2 Klasse II-Antiarrhythmika
		7.2.3 Klasse III-Antiarrhythmika
		7.2.4 Klasse IV-Antiarrhythmika
		7.2.5 weitere als Antiarrhythmika eingesetzte Pharmaka
		7.2.6 weitere Kardiaka mit Wirkung auf kardiale Kanäle
	7.3	Relaxantien glatter Muskulatur
		7.3.1 Regulation des Tonus der glatten Muskulatur
		7.3.2 NO-Donatoren
	7.4	Ca^{2+} -Kanalblocker
	1.1	7.4.1 spannungsabhängige Ca^{2+} -Kanäle
	7.5	Koronare Herzkrankheit (KHK)
	1.0	7.5.1 Pathogenese und Klinik
		7.5.2 Symptomatische Behandlung der Angina pectoris (A.p.)
		7.5.2 Symptomatische behandrung der Angina pectoris (A.p.)
	7.6	K^+ -Kanalöffner
	7.7	Phosphodiesterase(PDE)-Hemmer
		7.7.1 Unselektive PDE-Hemmer
		7.7.2 Selektive PDE-Hemmer
8	Ant	idiabetica 69
J		Diabetes mellitus
	0.1	8.1.1 Typ I Diabetes
		8.1.2 Typ II Diabetes
		8.1.3 Sonderformen
	8.2	Insulinsynthese/-sekretion
	0.2	
	0.9	8.2.1 Insulin-Rezeptor
	8.3	Insulin

		8.3.1	Kurz-/ultrakurz-wirksame Insuline	70
		8.3.2	Mittellang-/lang-wirksame Insuline	70
				71
			,	71
	8.4			71
				71
	8.5			72
	8.6	Biguan	ide	72
	8.7	Thiazo	idindion-Derivate ("Glitazone")	73
	8.8	Glucag	on-like-peptide-1(GLP-1)-Agonisten	73
	8.9	Dipepti	dyl-Peptidase-IV(DPP-IV)-Hemmer	74
	8.10	SGLT2		74
	8.11	Diabets	s-mellitus Behandlung	74
		8.11.1	Typ I Diabetes	74
		8.11.2	Typ II Diabetes	75
_				
9	_	dsenke		76
	9.1			76
	9.2			76
			V 1 1 1	76 76
			VI II	76 77
			U 1 V1	1 1 77
	9.3			' ' 77
	9.4		,	79
	9.5		•	79
	9.6			79
	9.7	Fibrate	•	30
	9.8			30
	9.9			31
		r		-
10			,	32
			pozyten-Adhäsion/-Aktivierung	
	10.2		ildung über Koagulationskaskade	
			Antikoagulatorische Mechanismen	
			Pathogenese und Zusammensetzung arterieller und venöser Thromben	
			Medikamentöse Beeinflussung	
	10.3		zxtenfunktionshemmer	
				33
			10	33
	40.4		, , , , , ,	34
	10.4			35
			,	35
				36
				37
	10 -			37
	10.5	Fibrino	V .	38
			•	38
		10.5.2	Gewebsplasminaktivator (rt-PA / Alteplase)	38

	10.6	Arterielle Thrombose, Beispiel: Akutes Koronarsyndrom	
11	Anti	iphlogistika	90
		Nicht-steroidale Antiphlogistika / Antirheumatika (NSAID, NSAR)	
		11.1.1 Erwünschte Wirkqualitäten nicht-steroidaler Antiphlogistika	
		11.1.2 Unerw. Wirkqualitäten nicht-steroidaler Antiphlogistika	
		11.1.3 Salicylate	
		11.1.4 Arylessigsäuren	
		11.1.5 Arylpropionsäuren	
		11.1.6 Oxicame	
		11.1.7 Selektive COX-2 Hemmer	
		11.1.8 Langfristig wirksame Antirheumatika (LWAR)	
		11.1.9 Glukokortikoide	
	11.2	Pharmakotherapie des Asthma bronchiale (Stufenschema)	
			0=
12		algetika Nozizeptoren	97 07
		Nozizeptoren Nozizeptive Synapse des Hinterhorns	
		Deszendierendes anti-nozizeptives System	
		Analgetika	
	14.4	12.4.1 antiphlogistische/saure Analgetika s. "Antiphlogistika"	
		12.4.2 Nicht-saure Analgetika	
		12.4.3 Anilinderivate	
		12.4.4 Pyrazolderivate	
		12.4.5 narkotische / opioide Analgetika	
	12.5	Toleranz, Abhängigkeit	
		Koanalgetika / Adjuvantien	
	12.0	12.6.1 Hemmer neuronaler Natrium und Calcium Kanäle	
		12.6.2 Nicht-selektive Noradrenalin Serotonin Wiederaufnahmehemmer	
	12.7	Chronische Schmerzkrankheiten	
		12.7.1 Stufenplan der WHO für Behandlung chron. Tumorschmerzen	
		12.7.2 Therapieempfehlung bei chronischen Schmerzen	
13		ualhormone	106
		Östrogene	
		Selektive Estrogen-Rezeptor Modulatoren (SERM)	
		Antiöstrogene	
		Aromatase-Hemmer	
	13.5	Gestagene	
	10.0	13.5.1 Synthetische Gestagene	
		Antigestagene	
	13.7	Hormonale Kontrazeptiva (Antikonzeptiva)	
		13.7.1 Konzepte	
	19.0	13.7.2 Sicherheit verschiedener hormonaler Kontrazeptiva (Pearl-Index)	
	13.8	Androgene	
		13.8.1 seynthetische Androgene	
		13.8.2 Androgenrezeptor-Antagonisten	
		LA A A DOS DECORRESSED STORMS	111

14	Schi		12
	14.1	Schildrüsenhormone	.12
		14.1.1 Bildung	.12
	14.2	Therapeutische Anwendung von L-Tyroxin	.12
	14.3	Thioharnstoff-Derivate / Thionamide	.13
	14.4	Iodid-Ionen	14
		14.4.1 Kaliumjodid (KJ)	14
	14.5	Iodprophylaxe	.14
15	Anti	ineoplastika 1	15
	15.1	Antimetabolite	.15
		15.1.1 Hemmer der Dihydrofolatreduktase	.15
		15.1.2 Antipurine	.16
		15.1.3 Pentostatin	16
		15.1.4 Pyrimidin-Antimetabolite	16

Kapitel 1

Pharmakokinetik

Vorgänge nach oral Gabe eines Pharmakon

Abbildung 1.1: Pharmakokinetik/Pharmakodynamik

1.0.1 Definitionen

Pharmakon

biologisch wirksame Substanz (ohne Wertung) auch "Wirkstoff"; Wirkung erwünscht \rightarrow Heilmittel; Wirkung unerwünscht \rightarrow Gift

Arzneistoff

Pharmakon, das zur Vorbeugung, Linderung, Heilung oder Erkennung von Erkrankungen dienen kann

Arzneimittel

zur Anwendung bei Mensch/Tier bestimmte Zubereitungsform eines Pharmakons nach der Zulassung

1.0.2 Bezeichnung von Pharmaka

- 1. chemischer Name, Code-Nummer 4'-Hydroxyacetanilid
- 2. internationaler Freiname "generic name" Paracetamol
- 3. Handelsname, Warenzeichen Benuron ®, Captin ®, Enelfa ® (25 Namen allein in Deutschl.)

1.0.3 Pharmakokinetik/Pharmakodynamik

Pharmakokinetik

Einflüsse des Organismus auf das Pharmakon (Resorption, Verteilung, Speicherung, Elimination)

Pharmakodynamik

Einflüsse des Pharmakon auf den Organismus (Wirkmechanismus, zelluläre und system. Wirkung)

Pharmakokinetik

Vorgänge nach oraler Applikation eines Pharmakon

Elimination

Prozesse, die zur Konzentrationsabnahme des Pharmakons im Körper führen

- 1. Biotransformation / Metabolisierung
- 2. Ausscheidung (Niere, Galle, Lunge)

1.0.4 Biotransformation / Metabolisierung

Problem lipophile, unpolare Pharmaka werden gut resorbiert, aber schlecht ausgeschieden.

Lösung Biotransformation zu hydrophilen Metaboliten v.a. in der Leber, Darm, Niere, Lunge u.a.

Phase I: Funktionalisierungsreaktion

Oxidation, Reduktion, Hydrolyse u.a. Einführung oder Freisetzung funktioneller, meist polarer Gruppen

- $\bullet\,$ Wirkung des Pharmakons wird beeinflusst
- meist Voraussetzung für Phase II Reaktion

Phase II: Konjugationsreaktion

Glucuronidierung, Acetylierung, Sulfatierung, Methylierung u.a.. Kopplung von entsprechenden Resten an funktionelle Gruppe, die häufig in Phase I geschaffen wurde \rightarrow Entstehung von meist biologisch inaktiven, gut wasserlöslichen Produkten, die problemlos ausgeschieden werden können.

Abbildung 1.2: Biotransformation

Bedeutung von Arzneimittelmetabolisierungsprozessen

- Eliminationsmechanismus
- Arzneimittelinteraktionen durch Enzymhemmung oder Enzyminduktion
- Bildung aktiver oder toxischer Metabolite
- präsystemische Elimination oral verabreichter Pharmaka (first-pass-Effekt)
- genetisch bedingte individuelle Unterschiede der Arzneimittelelimination

Für den Fremdstoffmetabolismus wichtige Vertreter aus der Superfamilie der humanen Cytochrom P450 Monooxygenasen (CYP)

Name	Vorkommen	typische Sub- strate	Induktoren	Inhibitoren	Bemerkungen
CYP1A1	intestinal, pul-	arom. Kohlen-	arom. Koh-	Chinole	mögliche Be-
	monal	wasserstoffe,	lenwasser-		deutung bei
		Paracetamol	stoffe, via		Biotoxin-
			Ah-Rezeptor		fizierung von
CVD1 A O	1 1	C C C TI	TZ 11		Präkanzerogenen
CYP1A2	hepatisch	Coffein, Theo-	arom. Kohlen-		mögliche Be-
		phyllin	wasserstoffe via Ah-Rezeptor		deutung bei Biotoxin-
			(z.B. Ta-		fizierung von
			bakrauch)		Präkanzerogenen
CYP2B6	hepatisch	Cyclophosphamic	d Cyclophosphami	d	Trakanzerogenen
C 11 2B0	nepaulsen	Сусторноврнани	Phenobarbital	α,	
CYP2C9/19	hepatisch, inte-	Phenytoin, Wa-	Barbiturate,	Cimetidin	ca. 20% aller
,	stinal	farin, Omepra- zol	Rifampicin		Pharmaka
CYP2D6	hepatisch inte-	β -Blocker An-		Chinidin SSRI	ca. 25% aller
	stinal renal	tiarrhythmika		(z.B. Fluoxe-	Pharmaka, 40%
		Antidepressiva		an)	aller Allele de-
		Neuroleptika			fekt
CYP2E1	hepatisch inte-	Ethanol Nitro-	Ethanol Isonia-	Disolfiram	ca. 15% aller
	stinal Leukozy-	samine	zid		Pharmaka Bio-
CT TD a A .	ten	G. 1	5.4		toxifizierung?
CYP3A4	hepatisch inte-	Ciclosporin Ni-	Rifampicin	Azol-	ca. 40-50% aller
	stinal	fedipin Terfen-	Carbamaze-	Antimykotika	Pharmaka
		dadin Ethindy-	pin Phenytoin	Naringin (Gra-	
		lestradiol HIV-	Phenobarbital	pefruitsaft)	
		Proteaseh. Sta-	Hyperforin (Jo-	HIV-Proteaseh.	
		$_{ m tine}$	hanniskraut)	Makrolide	

Abbildung 1.3: Bioverfügbarkeit

Mechanismen der Induktion von Cytochrom P450 Monooxygenasen

Xenobiotikum Pharma-	nukleärer Rezeptor	induz. Enzym / Trans-	Enzymubstrate
kon	(A/B)	porter	
Dioxin, aromat. Hydro-	Ah-Rezeptor/ARNT	CYP1A1 CYP1A2	aromat. Hydrocarbone,
carbone (Rauchen)			Coffein, Theophyllin;
			nicht Dioxin!
Barbiturate	CAR/RXR	CYP2B,C ABCC3	viele Pharmaka
Rifampicin, Hyperforin,	PXR/RXR	CYP3A/2C)/ MDR-1,	viele Pharmaka
Paclitaxel, u.a.	·	ABCB1, C2	
Fibrate	$PPAR\alpha/RXR$	CYP4A1,3	

Abbildung 1.4: Induktion von Cytochrom P450 Monooxygenasen

Beispiele für Arzneimittelinteraktionen durch Enzymhemmung und -induktion

Enzyminduktion

- \bullet Induktion von CYP1A1/2 bei Rauchern \rightarrow Abbau von Theophyllin und Coffein \uparrow
- Induktion von CYP3A4 durch Rifampicin, Johanniskraut, Phenytoin u.a.
 - -Abbau von Ethinylestradiol \uparrow ("Pillenversager")
 - Abbau von Ciclosporin (Transplantat-Abstoßung) etc.

Enzymhemmung

- Hemmung von CYP2D6 durch Selektive Serotonin-"Reuptake"-Hemmer (z.B. Fluoxetin)
 - verminderter Abbau von Antidepressiva, Neuroleptika

- Hemmung von CYP3A4 durch Azol-Antimykotika oder Grapefruitsaft u.v.a.
 - -verminderter Abbau von Ciclosporin (\rightarrow Nephrotoxizität) oder Terfenadin, Cisaprid (\rightarrow Herzrhythmusstörungen) oder Statinen (\rightarrow Myopathie)

Phase II Reaktionen

Glucuronosyltransferasen

- ca. 40% aller Pharmaka
- Uridindiphosphat-Glucuronosyltransferasen (UGT)
- 17 Isoformen, mikrosomal; Leber, Darmepithel, Niere

Glutathion-S-Transferase (GST)

 $\bullet\,$ ca. 10% aller Pharmaka

N-Acetyltransferase (NAT)

- $\bullet\,$ ca. 10% aller Pharmaka
- 2 Isoformen (NAT I und NAT II); NAT II Polymorphismus

Sulfotransferase (SULT)

- ca. 20% aller Pharmaka
- Transfer eines Sulfat-Restes aus dem Kosubstrat PAPS

Methyltransferase

• Methylgruppentransfer aus S-Adenosylmethionin

Bildung aktiver oder toxischer Metabolite (Beispiele)

First-Pass-Effekt

enteral resorbierte Pharmaka gelangen nach Passage der Darmwand über die Pfortader zuerst in die Leber, danach in die systemische Zirkulation *First-Pass-Effekt*: Anteil eines Pharmakons, der bei Passage der Darmwand und Leber metabolisiert oder zurückgehalten wird hoher first-pass-Effekt: z.B. Glyceroltrinitrat, Lidocain

Abbildung 1.5: Bildung aktiver oder toxischer Metabolite (Beispiele)

Abbildung 1.6: First-Pass-Effekt

1.0.5 Pharmakogenetik / Genetisch bedingte Unterschiede in der Metabolisierung von Pharmaka (Beispiele)

Phase I

Aldehyd-Dehydrogenase~2: inaktive Variante bei 50% der Asiaten \rightarrow Abbau von Äthanol \downarrow

CYP2D6 inaktive Variante bei 8% der Europäer "PM, poor metabolizer" vs. "EM, extensive metabolizer" Abbau von β-Blockern, Antidepressiva, Antiarrhythmika u.a. \downarrow

Phase II

N-Acetyltransferase~(NAT~II)"langsam Acetylierer" vs. "schnell Acetylierer (je 50% bei Europäern) \rightarrow Abbau von Isoniazid u.a. \downarrow

1.0.6 Ausscheidung

v.a. renal, biliär/intestinal, pulmonal

Abbildung 1.7: Ethanol Biotransformation

renal

(häufigster Ausscheidungsweg)

- glomeruläre Filtration bis Molmasse von ca. 15.000-20.000
- tubuläre Rückresorption lipophile Stoffe: gut; hydrophile Stoffe: schlecht Basen und Säuren: pH-abhängig
- tubuläre Sekretion: aktiver Prozeß im proximalen Tubulus; Transportsystem für organische Säuren z.B. Harnsäure, Penicillin G (u.a. MRP2) Transportsystem für organische Basen z.B. Dopamin (u.a. MDR1), organ. Anionen (z.B.: Thiazide)

Allgemein: Renale Ausscheidung ↓ bei Niereninsuffizienz und im Alter

bilär/intestinal

häufig Metabolite mit Molmassen >500 z.B. Tetracycline, Digitoxin-Metabolite enterohepatischer Kreislauf Intestinale Ausscheidung

pulmonal

z.B. Inhalationsanästhetika

1.0.7 Elimination von Pharmaka

1.0.8 Pharmakokinetische Parameter

Abbildung 1.8: Elimination

Bioververfügbarkeit

Der Anteil eines Pharmakons, der unverändert ins systemische Blut (großer Kreislauf) gelangt Bei i.v.-Gabe: 100%

Bei oraler gabe abhängig von: Wirkstofffreisetzung, Resorptionsquote, First-Pass-Effekt

"area under the curve" (AUC): AUC repräsentiert die Substanzmenge, die in das systemische Blut gelangt (unabhängig von der Resorptionsgeschwindigkeit) AUC ist ein Maß für die Bioverfügbarkeit $f = \frac{AUC_x}{AUC_{i.v.}} * 100 [\%]$

Verteilungsvolumen

fiktives Volumen, in dem sich ein Pharmakon verteilen würde, wenn es die gleiche Konzentration wie im Plasma hätte $V=\frac{MengedesPharmakonimOrganismus}{Plasmakonzentration}$ Das Verteilungsvolumen ist ein Proportionalitätsfaktor zwischen der im Körper vorhandenen Menge und der Plasmakonzentration

Clearance

Plasmavolumen, das pro Zeiteinheit von einem Pharmakon befreit wird \rightarrow Maß für die Eliminationsleistung $CL = \frac{MengeeinesPharmakons, dieproZeiteinheiteliminiertwird}{Plasmakonzentration}$

Abbildung 1.9: Bioverfügbarkeit

Abbildung 1.10: Clearance

Plasmahalbwertszeit $t_{\frac{1}{2}}$

Zeit, in der die Plasmakonzentration auf die Hälfte des ursprünglichen Wertes abfällt.

Plasmakonzentration, Exponentialfunktion

Abbildung 1.11: Kinetik 0. Ordnung: (häufig!) Elimi- Abbildung 1.12: Kinetik 1. Ordung: (selten) Eliminanationsgeschwindigkeitist proportional zur jeweiligen tionsgeschwindigkeit ist konstant z.B. durch Sättigung des abbauenden Enzyms

Kinetik nach wiederholter Gabe

Konz. im Körper abhängig von:- Dosis, - Dosierintervall, - Eliminations-HWZ

Kumulation Wirkstoffzunahme nach wiederholter Gabe; abhängig vom relativen Dosierintervall (ϵ) ; $\epsilon = \frac{Dosierintervall(\tau)}{Eliminations-HWZ}$ $(t_{\frac{1}{2}})$; $\epsilon < 1 \rightarrow$ Gefahr der Kumulation (z.B. Pharmaka mit langer $t_{\frac{1}{2}}$; Digitoxin, Cumarine u.a.)

Kapitel 2

Pharmakodynamik

2.1 Angriffsorte von Pharmaka

2.1.1 Fremdorganismus / Mikroorganismus

(Bakterium, Virus, Pilz, Parasit)

2.1.2 Menschlicher / tierischer Organismus (Makroorganismus)

Extrazellulär

- 1. physikalisch wirksam: Laxantien, osmotische Diuretika, Plasmaexpander
- 2. chemisch wirksam: Antazida, Chelatbildner, Protaminsulfat (bindet Heparin), Ionenaustauscher wie Cholestyramin (bindet Gallensäuren)
- 3. enzymatisch wirksam: tPA (Fibrinolyse), Enzym-Substitution

Zellulär

- 1. Zytoskelett z.B.: Vincaalkoloide (Zytostatika), Colchizin
- 2. DNS z.B.: Alkylantien (Zytostatika)
- 3. Transporter z.B.: Noradrenalin-/Serotonin-Transporter (Antidepressiva) Ionentransporter (Diuretika); Protonenpumpe (Omeprazol)
- 4. Ionenkanäle z.B.: Spannungsabhängiger Na^+ -Kanal (Lokalanästhetika) Spannungsabh. Ca^{2+} -Kanal (Calciumkanal-Blocker) ATP-regulierter K^+ -Kanal (Sulfonylharnstoffe)
- 5. Schlüsselenzyme (meist Inhibition) z.B.: Na^+/K^+ -ATPase (Digitalis-Glykoside) Monoaminoxidasen (Antidepressiva, Anti-Parkinson) Acetylcholinesterase (Parasympathomimetika) Cyclooxygenase (Analgetika) Angiotensin-Konversionsenzym (ACE-Hemmer) HMG-CoA-Reduktase (Lipidsenker) Vitamin-K-Reduktase (Cumarine) Guanylyl-Cyclase (org. Nitrate, Stimulation!)
- 6. Rezeptoren (Agonismus oder Antagonismus) viele!

2.2 Kanäle: Definition und Funktion

Membranporen, die selektiv den Transport von Ionen oder Wasser entlang eines elektrochemischen Gradienten erlauben; $10^6-10^8\frac{Ionen}{Sekunde}$ z.B.: Spannungs-abhängig, Liganden-operiert, d. Phosphorylierung reguliert.

Abbildung 2.1: Kanäle der Zellmembran

Na^+ -Kanäle

(Beispiele)

- Nicht-Spannungs-abhängig (epitheliale Na⁺-Kanäle) Pharmaka: Diuretika (z.B.: Amilorid) ENac
- Spannungs-abhängige Na^+ -Kanäle (erregbare Zellen) Pharmaka: Lokalanästhetika, Klasse-I-Antiarrhythmika, Antiepileptika (z.B.: Lidocain, Phenytoin, Carbamazepin)

Ca^{2+} -Kanäle

(Beispiele)

• Spannungs-abhängige Ca^{2+} -Kanäle *Pharmaka:* Ca^{2+} -Kanalblocker (z.B. Dihydropyridine (Nifedipin))

K^+ -Kanäle

(Beispiele)

- \bullet Spannungs-abhängige K^+ -Kanäle *Pharmaka:* Klasse-III-Antiarrhythmika (z.B. Amiodaron, Sotalol)
- \bullet ATP-regulierte K^+ -Kanäle Pharmaka: Orale Antidiabetika (Sulfonylharnstoffe; z.B. Glibenclamid) Vasorelaxantien (z.B. Minoxidil)

2.3 Transporter: Definition und Funktion

Membranproteine, die selektiv den Transport von Molekülen entlang oder gegen einen elektrochemischen Gradienten erlauben; im Gegensatz zu den Kanälen findet eine Bindung an das Solut sowie eine umfangreiche des Transporters Konformationsänderung statt; Transportrate: $10^0 - 10^4 \frac{Moleküle}{Sekunde}$

Carrier

(primär nicht-aktiver Transporter)

Uniporter, Kotransporter (Symporter), Antiporter (Austauscher) Beispiele:

Na^+ /Neurotransmitter-Kotransporter

- NAT (Noradralin) *Pharmaka*: Antidepressiva (z.B.: Reboxetin, Desipramin)
- SERT (Serotonin) Pharmaka: Antidepressiva (z.B.: Fluoxetin)
- GAT (GABA) Pharmaka: Antiepileptika (z.B.: Tiagabin)
- DAT (Dopamin) Pharmaka: Cocain

Kation/Cl-Kotransporter

- NKCC $(Na^+/K^+/2\text{Cl-})$ Pharmaka: Schleifendiuretika (z.B.: Furosemid)
- NCC $(Na^+/\text{Cl-})$ Pharmaka: Diuretika (z.B.: Hydrochlorothiazid)

Pumpen

(aktive, primär ATP-verbrauchende Transporter)

Ionenpumpen (Beispiele)

- Na^+/K^+ -ATPase *Pharmaka*: Digitalisglykoside (z.B.: Digitoxin)
- $H+/K^+$ -ATPase *Pharmaka*: Protonenpumpenhemmer (z.B.: Omeprazol)

ABC-Transporter (ATP-binding cassette; Beispiele)

• MDR, MRP Multidrug resistence gene product Arzneimittelresistenz (z.B. Zytostatika)

2.4 Enzyme

Die meisten Pharmaka, die über Enzyme wirken, hemmen als Substratanaloga das Enzym kompetitiv, reversibel oder irreversibel. Eine Ausnahme stellen z.B. organ. Nitrate dar, die durch Freisetzung von NO die Guanylylcyclase stimulieren.

Körpereigene Enzyme Oxidoreduktasen	Substrat	Produkt	Pharmakon (Beispiel)
HMG-CoA-Reduktase	HMG-CoA	Mevalonat	Lovastatin, Simvastati
VitK-Reduktase	Vitamin K	Vitamin-K-Hydrochinon	Phenprocoumon
5α -Reduktase	Testosteron	5α -Dihydrotestosteron	Finasterid
Cyclooxygenase	Arachidonat	Prostaglandin H2	Acetylsalicylsäure (rev.); Diclofenac (rev.)a.
Monoaminoxidase A	Abbau v. Serotonin, Noradrenalin, Dopamin		Moclobemid (rev.)
Monoaminoxydase B	Abbau v. Dopamin, Phenylethylamin u.a.		Selegilin (irrev.)
Xanthinoxydase	Xanthin	Harnsäure	Allopurinol
Peroxidase	Tyrosylreste	Iodotyrosylreste	Carbimazol
Dihydrofolatreduktase Transferasen	Dihydrofolat	Tetrahydrofolat	Methotrexat
Tyrosinkinase	Tyrosinreste	Phosphotyrosinreste	Imatinib, Gefitinib
COMT	Catecholgruppe	Methoxycatechol	Entacapon
GABA Transaminase Hydrolasen	GABA	Succinatsemialdehyd	Vigabatrin
Phosphodiesterase	cAMP, cGMP	AMP, GMP	Theophyllin, Sildenafil
Acetylcholinesterase	Acetylcholin	Cholin, Acetat	Tacrin, Neostigmin, S
Calcineurin (Phosphatase)	P-Ser/Thr/Tyr	Ser/Thr/Tyr	Ciclosporin, Tacrolimus
α -Glucosidase	Disaccharid	Monosaccharid	Acarbose
Renin	Angiotensinogen	Angiotensin I	Aliskiren
ACE/Kininase II	Angiotensin I	Angiotensin II	Captopril, Lisinopril
Thrombin (Faktor IIa)	Fibrinogen	Fibrin	Hirudin, Dabigatrann
Enkephalinase	Enkephalin		Racecadotril
Dipeptidylpeptidase IV	GLP-1(7-36)	GLP-1(9-36)	Sitagliptin, Vildaglipti
Lipase	Triacylglycerine	Monoacylglycerin, FS	Orlistat
Lyasen			
Guanylyl cyclase	GTP	cGMP	Glyceroltrinitrat, Mod domin
Dopamin-decarboxylase	L-Dopa	Dopamin	Benserazid, Carbidopa

Mikrobielle Enzyme	Pharmakon (Beispiel)
Bakterien	
Peptidoglykansynthetasen	β -Laktame
Dihydrofolat-Reduktase	Trimethoprim
Dihydropteroat Synthase	Sulfonamide
bakt. Topoisomerase II	Gyrasehemmer
Pilze	
Lanosterol C14 Demethylase	Azole
Squalenepoxidase	Allylamine
Protozoen	
Dihydrofolat-Reduktase	Pyrimethamin
Viren	
HIV Reverse Transkriptase	Zidovudin, Didanosid
HIV Protease	Saquinavir
Neuraminidase	Zanamivir

2.5 Rezeptor: Definition und Funktion

- 1. Erkennen (hohe Spezifität) und reversibles Binden (hohe Affinität) des Wirkstoffes (physiol. Ligand oder Pharmakon)
- 2. Bindung löst Signalweiterleitungsfunktion aus

2.6 Rezeptortypen

- membranär
 - G-Protein-gekoppelte Rezeptoren
 - Liganden-gesteuerte Ionenkanäle
 - Liganden-regulierte Enzyme multimere Rezeptoren
- zytosolisch/nukleär
 - nukleäre Rezeptoren

2.7 G-Protein-gekoppelte Rezeptoren (GPCR)

ca. 1500 Säugergene für G-Protein-gekoppelte Rezeptoren, davon ca. 1000 olfaktorische, gustatorische und Pheromon-Rezeptoren sowie ca. 500 Rezeptoren für Hormone, Neurotransmitter u.a.

2.7.1 Aktivierungs-/Inaktivierungs-Zyklus

2.8 G-Protein vermittelte Signalwege (ubiquitär)

2.8.1 Gs-gekoppelte Rezeptoren

 \rightarrow Adenylylcyclase † \rightarrow cAMP† \rightarrow PKA† \rightarrow Protein phosphorylierung

Beispiele

 $\beta_{1,2}$ -adrenerg , Histamin H_2 , Dopamin D_1,D_5 , Prostacyclin IP, Adenosin A_2 , Vasopressin V_2

2.8.2 Gi/o-gekoppelte Rezeptoren

 \rightarrow Adenylylcyclase $\downarrow \rightarrow$ cAMP $\downarrow \rightarrow$ Spannungsabh. Ca^{2+} -Kanal $\downarrow \rightarrow K^+$ -Kanal (GIRK) $\uparrow \rightarrow$ Erregbarkeit \downarrow

Beispiele

Opioide (μ, δ, κ) , GABAB, Cannabinoide $CB_{1,2}$ Dopamin D_{2-4} , mGluR2-4,6-8, α_2 4-adrenerg, muskarinerg $M_{2,4}$, Adenosin A_1 , Somatostatin Sst_{1-5} , 5-HT₁ Chemokine CCR1-10; CXCR1-5

Physiol. Ligand Aminosäuren	Rezeptor	G-Protein(e)	Pharmaka (Beispiele)
Glutamat GABA	${ m mGluR1,5;2-4,6-8}\ GABA_{B1}/GABA_{B2}$	$G_{q/11}; G_{i/o}$ $G_{i/o}$	DHPG (1/5-Ag, experimentell) Baclofen (Ag)
Biogene Amine Acetylcholin (Nor)Adrenalin	$M_1, M_3, M_5; M_2, M_4$ $\alpha_{1A}, \alpha_{1B}, \alpha_{1D}, \alpha_{2A}, \alpha_{2B}, \alpha_{2C},$	$G_{q/11}; G_{i/o} $ $G_{q/11}; G_{i/o}, G_S$	Atropin (Ant); Carbachol (Ag) Phenylephrin (Ag); Prazosin (Ant) Clonidin (Ag); Yohimbin (Ant) Isopropanol (Ag); Pro- pranolol (Ant)
eta_1,eta_2,eta_3 Dopamin	$D_1, D_5; D_2, D_3, D_4$	$G_S;G_{i/o}$	Bromocriptin/Haloperidol(D_{2-4} -
Histamin	$H_1; H_2; H_3, H_4$	$G_{q/11}; G_{i/o}, G_S$	Ag/Ant) Loratadin (H1-Ant); Ranitidin
Serotonin	$\begin{array}{l} 5\text{-}HT_{1A/B/D/E/F}5\text{-}\\ HT_{2A/B/C};5\text{-}HT_{4/6/7} \end{array}$	$G_{q/11};G_{i/o},G_S$	(H2-Ant) Sumatriptan(1B/D- Ag);Buspiron(1A-Ag), Ris- peridon (2A-Ant); Cisaprid
Melatonin Trace Amines	$MT_1, MT_2 \ TA_1, TA_2$	$G_{i/o} \ G_S$	(4-Ag) Ramelteon (Ag)
Ionen Calcium	CaSR	$G_{q/11}; G_{i/o}$	Cinacalcet (Modul.)
Nukleotide / Nukleoside Adenosin ADP	$A_1, A_3; A_{2A}, A_{2B} \\ P2Y_{12}, P2Y_{13}$	$G_{i/o}, G_S$ $G_{i/o}$	Theophyllin, Coffein (Ant) Clopidogrel ($P2Y_{12}$ -Ant)
Lipide Endocannabinoide	CB_1, CB_2	$G_{i/o}$	Δ9-THC (Ag); Rimonabant
LTC_4, LTD_4 Lysophospholipide	$CysLT1, CysLT2 \\ LPA_{1-5}, S1P_{1-5}$	$\begin{array}{c} G_{q/11} \\ G_{q/11}, G_{12/13}, G_{i/o} \end{array}$	(CB1-Ant) Montelukast (Ant) Fingolimod (FTY720; S1P-Ag.)
Prostacyclin (PGI_2) Prostaglandin E_2 Peptide / Proteine	${\rm IP} \\ EP_1; EP_2; EP_4; EP_3$	$G_s \ G_{q/11}; G_s; G_{q/11}, G_i$	Iloprost (Ag) Misoprostol (Ag)
Angiotensin II Bradykinin CGRP Chemokine Cholecyctokinin Komplem. C3a / C5a Endothelin- 1, -2, -3	$AT_1; AT_2$ B_1, B_2 CL+RAMP1 CCR1-10; CXCR1-5 CCK_1, CCK_2 C3a; C5a $ET_A; ET_B$	$G_{q/11}, G_{12/13}, G_{i/o}; ? \ G_{q/11}$ $G_{q/11}.G_S$ $G_{i/o}$ $G_{q/11}.G_S$ $G_{i/o}$ $G_{q/11}.G_S$ $G_{i/o}$	Losartan (AT1-Ant) Icatibant(B_2 -Ant; experim.) BIBN 4096 BS (Ant, exp.) Maraviroc (CCR5-Antag.) Bosentan (ETA/B-Ant), Daru-
Galanil Glucagon-like pept. Glykoproteinhorm. Melanocortine	GAL1-3 GLP1-3 TSH, LH, FSH MC1,3,4,5	$G_{q/11}, G_{i/o}$ G_S G_S G_S	sentan (ETA-Ant) Exenatid (Ag)
Glukagon Gonadoliberin Motilin Opioide Orexin A/B Oxytocin	Glukagon GnRH GPR38 γ, κ, μ , ORL1 OXYD, OX2 OT	G_S $G_{q/11}$ $G_{q/11}$ $G_{i/o}$ $G_s, G_{q/11}$ $G_{q/11}, G_{i/o}$	Buserelin (Ag) Erythromycin (Ag) Morphin (Ag), Naloxon (Ant) Atosiban (Ant, experimentell)
PTH Sekretin Somatostatin Substance P Urotensin II	PTH/PTHrP Secretin SST_{1-5} NK_1 UT-II (GPR14)	$G_s, G_{q/11} \ G_s \ G_{i/o} \ G_{q/11} \$	Teriparatid (Ag) Octreotid (Ag) Aprepitant (Ant)
VIP, PACAP Vasopressin Proteasen (der durch proteolyt. Spaltung gebildete "neue" N-	$VPAC_{1,2}, PAC_{1}$ $V_{1a}, V_{1b}; V_{2}$	$G_s \ G_{q/11}; G_s$	Desmopressin $(V_2\text{-Ag})$, Terlipressin $(V_1\text{-Ag})$
Terminus fungiert als interner Ligand) Thrombin u.a. Trypsin u.a.	PAR-1/2/4 PAR-2	$G_{q/11}, G_{12/13}, Gi/o$ $G_{q/11}$	
"orphan"-Rezeptoren (physio- logischer Ligand bisher unbe-			

2.9 Liganden-gesteuerte Ionenkanäle

Rezeptor	Ligand	Kanaltyp	Pharmaka(Beispiele)
Pentamere			
nikotinisch	Acetylcholin	Na^+/K^+	Curare/Muskelrelaxantien (Ant)
$5 - HT_3$	Serotonin	Na^+/K^+	Ondansetron (Ant; Antiemetika)
$GABA_A$	$GABA_A$	Cl^-	Benzodiazepine (Modul.)
Glyzin-R.	Glyzin-R.	Cl^-	Strychnin (Ant)
Tetramere			
NMDA	Glutamat	$Na^+/K^+/(Ca^{2+})$	Phencyclidin (Ant), Memantin (Modul.)
AMPA	"	Na^+/K^+	,
Kainat Trimere	ш	Na^+/K^+	
ATP	P2X	$Na^{+}/K^{+}/(Ca^{2+})$	

2.10 Liganden-regulierte Enzyme

2.10.1 Rezeptoren mit Tyrosinkinase-Aktivität (Beispiel: Insulin-Rezeptor)

BILD!

- Insulin-Rezeptor Familie: Insulin, Insulin-like growth factor (IGF-1) etc.
- Pharmaka: verschiedene Insuline
- ErbB Rezeptor Familie: Epidermal growth factor (EGF), ErbB1-4 etc.
- Pharmaka: Trastuzumab (Antikörper gegen ErbB2/Her2)
- Gefitinib, Erlotinib (Tyrosinkinasehemmer mit Selekt. für ErbB1)
- Cetuximab (Antikörper gegen ErbB1)
- Platelet-derived growth factor (PDGF)- Rezeptor Familie: PDGF, CSF, SCF
- Pharmaka: Imatinib (Tyrosinkinasehemmer mit Selekt. v.a. für BCR-ABL)
- Vascular endothelial growth factor (VEGF)-Rezeptor Familie : VEGF
- Pharmaka: Bevacizumab (Antikörper gegen VEGF)
- Fibroblast growth factor (FGF)-Rezeptor Familie: FGF
- Nerve growth factor (NGF)-Rezeptor Familie: NGF, Neurotrophins etc.
- Hepatocyte growth factor (HGF): HGF
- Eph family receptors: Ephs, Ephrins; Axl; Tie; etc..

2.11 nukleäre Rezeptoren

Ligand	Rezeptor A/B	Pharmaka (Beispiele)
Östrogen	ER/ER	Ethinylestradiol (Ag); Tamoxifen(Ag/Ant); Clomiphen (pAg)
Progesteron	PR/PR	Norethisteron (Ag), Mifepriston (Ant)
Androgen	AR/AR	Nandrolon (Ag), Flutamid (Ant)
Aldosteron	MR/MR	Spironolacton (Ant); Fludrocortison (Ag)
Glukokortikoide	GR/GR	Dexamethason (Ag)
Retinsäure	RAR/RXR	Acitretin (Ag)
Schilddrüsenhormon	TR/RXR	T_3 (Ag)
Vitamin D	VDR/RXR	Tacalcitol (Ag)
Gallensäuren	FXR/RXR	
Oxysterole	LXR/RXR	
Xenobiotika	Ah-Rezeptor/ $ARNT$	Dioxin (Ag)
Xenobiotika	CAR / RXR	Barbiturate (Ag)
Xenobiotika	PXR bzw. SXR/RXR	Rifampicin (Ag) u.a.
Fettsäuren	$PPAR\alpha / RXR$	Fibrate (Ag)
Fettsäuren	$PPAR\gamma / RXR$	Thiazolidindione (Ag)

2.12 Pharmakon-Rezeptor-Interaktion

$$P + R \underset{k_2}{\overset{k_1}{\longleftrightarrow}} PR \tag{2.1}$$

$$\frac{[P] * [R]}{[PR]} = \frac{k_2}{k_1} = K_D$$
 (2.2)

Abbildung 2.2: Pharmakon-Rezeptor-Interaktion:k1: Geschwindigkeitskonstante der Assoziation; k2: Geschwindigkeitskonstante der Dissoziation im Äquilibrium gilt gemäß Massenwirkungsgesetz: KD: Äquilibrium-Dissoziations-Konstante Maß für die Affinität KD der meisten physiologischen Rezeptoren im Bereich von: 10-9 - 10-6 M

2.13 Wirkungsauslösung

Intrinsische Aktivität (Wirksamkeit, "efficacy")

Maß für die maximale Wirkung eines Pharmakons

$$P + R \xrightarrow[k_2]{k_1} PR \xrightarrow{proportional} Effekt$$
 (2.3)

Abbildung 2.3: Wirkungsauslösung: Der Effekt ist proportional der Rezeptor-Besetzung

Konzentrations- Wirkungs-Beziehung:

 EC_{50} :effektive Konzentration $50\% \neq K_D$

2.14 Wirksamkeit/Potenz

Potenz:

Maß für die Konzentration einer Substanz, die zur Erreichung der halb- maximalen Wirkung notwendig ist

Wirksamkeit:

Maß für die maximal erreichbare Wirkung

2.15 Agonismus

- unbesetzter Rezeptor hat basale Aktivität
- Agonist: Affinität zu Rezeptor + intrinsische Aktivität
 - volle/partielle Wirksamkeit \rightarrow voller/partieller Agonismus
 - -negativ intrinsische Aktivität \rightarrow inverser Agonismus
- Antagonist/Blocker: Affinität zu Rezeptor, keine intrinsische Aktivität

2.16 Antagonismus

Agonist:

Affinität zum Rezeptor + intrinsische Aktivität

Antagonist:

Affinität zum Rezeptor, keine intrinsische Aktivität

kompetitiver Antagonismus

Antagonist konkurriert mit Agonist um Bindungsstelle \rightarrow Parallelverschiebung der DWK

nichtkompetitiver Antagonismus

- keine Kompetition mit Agonist, eher selten
- Beeinflussung der Rezeptor-Effektor-Kopplung
- Wirkung kann durch hohe Agonist-Konzentrationen nicht aufgehoben werden
- Maximaleffekt des Agonisten verringert

2.17 Toleranzphänomene

2.17.1 Toleranz:

abnehmende Wirkung nach wiederholter Gabe bei gleicher Dosis

pharmakokinetische Toleranz

z.B. Metabolisation \(\text{(Barbiturate, Äthanol)} \)

pharmakodynamische Toleranz

z.B.: Rezeptorzahl \downarrow (β -Adrenozeptor-Agonisten)

2.17.2 Tachyphylaxie

sehr rasche Toleranzentwicklung (Minuten bis Stunden)

- indirekte Sympathomimetika
- (organische Nitrate; Stunden bis Tage)

2.18 Unerwünschte Wirkungen von Pharmaka

Hauptwirkung

therapeutisch erwünschte Wirkung

Nebenwirkung

jede Reaktion außerhalb der Hauptwirkung

Unerwünschte Wirkung

jede unerwünschte Reaktion, die auf die Verordnung eines Arzneimittels ursächlich zurückgeführt werden kann erwünschte therapeutische Wirkung (Hauptwirkung) \longleftrightarrow unerwüunschte Wirkung (Nebenwirkung) (2.4)

2.18.1 Häufigkeit unerwünschter Arzneimittelwirkungen

- 2 5% in der Praxis
- 6 20% in der Klinik

ca. 5% der Klinikaufnahmenerfolgen wegen unerw. Arzneimittelwirkungen

"Alle Dinge sind Gift und nichts ist ohn' Gift; allein die Dosis macht, daß ein Ding kein Gift ist.Paracelsus"

2.18.2 Unerwünschte Wirkungen im Rahmen des pharmakodynamischen Wirkprofils

treten bei jedem Patienten dosisabhängig und spezifisch auf: "Die Dosis macht das Gift"

- bei therapeutischer Dosierung z.B.: Zytostatika
- erst bei Überdosierung: Pharmaka mit geringer therapeutischer Breite (Beispiele): Digitalisglykoside, Cumarin-Derivate, Lithium, Theophyllin

2.18.3 Ursachen dosisabhängiger unerwünschter Arzneimittelwirkungen

Absolute Überdosierung

durch Verordnungs- oder Einnahmefehler

Relative Überdosierung

durch verminderte Elimination (Metabolisierung/Ausscheidung) oder verstärkte Wirkung

2.18.4 Arzneimittel-unabhängige Faktoren, die zu einer relativen Überdosierung führen

- Alter des Patienten:
 - Kinder: Besonderh. der Pharmakokinetik (Verteilungsvolumen↑; hepat. Metabol. und renale Ausscheidung: ↓ bei Früh- /Neugeborenen; ↑ ab 1-2 Monaten) Nur bei Kindern auftretende unerwünschte Wirkungen z.B.: Tetracycline → Gelbfärbung der Zähne, Kariesanfälligkeit; Acetylsalicylsäure → Reye-Syndrom; Chloramphenicol → Grey-Syndrom
 - ältere Menschen
 - * Polymorbidität, Compliance
 - * Pharmakokinetik (hepatische Metabolisierung ↓; renale Elimination ↓)
- Einfluss der Krankheit
 - auf Pharmakokinetik (z.B.: Metabolisierungs- und Ausscheidungsstörungen bei Leber- und Nierenerkrankungen)
 - auf Pharmakodynamik (z.B.: Hypokaliämie → verstärkte Digitaliswirkung)
- Schwangerschaft und Stillzeit
 - Unerw: Wirkungen in der Schwangerschaft meist Phasen-spezifisch
 - -Blastogenese bei Schädigung \rightarrow Abstoßung
 - Embryogenese/Organogenese (Tag 15 Tag 60) hohe Gefährdung durch teratogene Substanzen ! z.B.: Thalidomid → Phokomelien, Lithium → Herzmißbildungen, Alkohol → Entwicklungsverzögerung, Gesichtsmißbildungen, Phenytoin → Gaumenspalten
 - Fetalphase (Histogenese/funktionelle Reifung; 3. Monat Geburt) keine teratogene Gefährdung, aber selektive unerwünschte Wirkungen v.a. auf Funktion und Wachstum des Fetus z.B.: ACE- Hemmer: gegenüber der Mutter gesteigerte Empfindlichkeit des Fetus → RR ↓ → Nierenfunktion ↓ → Anurie → Fruchtwassermangel; Tetrazykline: Einlagerung als Ca^{2+} -Komplex in Zahnschmelz und Knochen → Gelbfärbung der Zähne, evtl. Knochenschädigungen; Stillzeit: Im Gegensatz zur Schwangerschaft geringere Gefahr unerwünschter Wirkungen auf Kind
- Pharmakogenetische Faktoren
 - Pharmakokinetik z.B.: Polymorphismen Arzneimittel-metabolisierender Enzyme
 - Pharmakodynamik z.B.: Polymorphismen von pharmakologischen Zielstrukturen

2.18.5 Unerwünschte Wirkungen durch Arzneimittelinteraktionen

Häufigkeit steigt exponentiell mit Anzahl der verabreichten Pharmaka Auftreten unerw. Wirkungen, aber auch Wirkungsabschwächung

Beispiele

Pharmakokinetisch		
Resorption		Effekte
$Ca^{2+}, Mg^{2+}, Al^{2+}, Fe^{2+},$	+ Tetracycline	Tetracyclinresorption ↓
Colestyramin	+Digitalisglyk., Thyroxin u.a.	Resorption \downarrow
Metabolismus		
CYP3A4 Induktion		T 1 0
Johanniskraut, Rifampicin	+ Ciclosporin	Transplantatabstoßung
Phenytoin, Carbamazepin	+ Ethinylestradiol	"Pillenversager"
HIV-Protease Hemmer		Wirkverlust der antiviralen Thera-
CT TO A 4 TT		pie
CYP3A4 Hemmung		
Azol-Antimykotika,	+ Statine	Statin-Abbau $\downarrow \rightarrow$ Myopathierisi-
		ko ↑
HIV-Proteasehemmer,	+ Ciclosporin	Nephrotoxizität ↑
Makrolide, Grapefruitsaft	+ Cisaprid, Terfenadin	Long-QT-S., Torsade de Pointes
CYP2C9 Induktion		
Rifampicin, Phenytoin	+ Cumarine	Thromboserisiko ↑
CYP2D6 Hemmung		
Fluoxetin, Paroxetin	+ Trizykl. Antidepressiva	Kardiale Effekte
Ausscheidung		
Diuretika	+ Lithium	Lithiumausscheidung \downarrow
ASS	+ Methotrexat	Methotrexattoxizität ↑
Pharmakodynamisch		
additive Effekte		
Fibrate	+ Statine	Myopathierisiko ↑
β -Blocker	+ Verapamil/Diltazem	Bradykardie, AV-Block, Herzin-
		suff.
Aminoglykoside	+ Schleifendiuretika	Oto-, Nephro-Toxizität ↑
PDE5-Hemmer	+ organ. Nitrate	Schwere Hypotension
MAOA-Hemmer	+ SSRI (z.B.: Fluoxetin)	Serotoninsyndrom
ASS, Clopidogrel	+ Cumarinderivate	Blutungsneigung (v.a. Ma-
		$gen/Darm) \uparrow$
K^+ -sparende Diuretika	+ ACE-Hemmer/AT1-Blocker	Hyperkaliämiegefahr
Benzodiazepine	+ Ethanol	Sedation↑
Antagonistischer Effekt		
NSAIDs (z.B. Ibuprofen, Indome-	+ Antihypertensiva(v.a. Diureti-	Aufhebung der antihypertensiven
thacin)	ka)	Wirkung
β -Blocker	$+ \beta_2$ Agonisten	Antiasthmat. Effekt \downarrow
L-Dopa	+ klass. Neuroleptika	gegenseit. Abschwächung der Ef-
		fekte
Ibuprofen	+ ASS	Thrombozytenfunktionshemmung
		↓

2.18.6 Unerw. Wirkungen außerhalb des pharmakodynam. Wirkprofils

dosisunabhängig, nicht Arzneistoff-spezifisch, meist allergisch

${\bf Arzneimitte lallergie}$

: Arzneistoff / Metabolit bindet (als Hapten) an körpereigenes Makromolekül \rightarrow Bildung eines Vollantigens \rightarrow Bildung von Antikörpern oder sensibilisierten T-Lymphozyten \rightarrow allergische Reaktion nach Reexposition

Pseudoallergische Reaktion

: meist dosisabhängige, unspezif. Aktivierung immunologischer Prozesse, z.B. Freisetzung v. Mediatoren aus Mastzellen

Kapitel 3

Cholinerges System

3.1 cholinerge und adrenerge Übertragung im peripheren efferenten Nervensystem

3.1.1 Eigenschaften des somatomotor. und autonomen Systems

somatomotor. System autonomes System

distale Synapse Vorderhorn Ganglion

Plexusbildung nein ja (v.a. Sympathikus) Verzweigung ja (motor. Einheit) ja (Symp.>Parasymp.)

Myelinisierung Nerven myelinisiert postganglionär nicht myelinisiert

3.2 Acetylcholin

3.2.1 Cholinerge Synapse

Depolarisation $\to Ca^{2+}$ -Einstrom \to Freisetzung von Ach aus Vesikeln in den synapt. Spalt \to Bindung von Ach an postsynapt. Rezeptor \to Inaktivierung von Ach durch Acetylcholinesterase (260 kDa, $\alpha 2, \beta 2$ -Struktur, ca. 20.000/s)

3.2.2 Acetylcholinesterase

motorische Endplatte

 3×4 enzymatische Untereinheiten über Kollagenanker an Basalmembran des synaptischen Spalts verankert extrem hohe Umsatzrate (ca. 20.000 Ach-Moleküle/s)

ZNS

1 x 4 enzymatische Untereinheiten, über Lipidrest in Plasmamembran verankert

sezernierte Form

1 x 4 enzymatische Untereinheiten, hydrophil Acetylcholin-spezifische Form: u.a. Liquor unspez. Cholinesterase (Pseudocholinesterase, Butyrylcholinesterase): v.a. in der Leber synthetisiert, hohe Aktivität im Plasma

3.3 Pharmakologische Beeinflussung cholinerger Systeme

- Nikotinischer Ach-Rezeptor (Agonisten/Antagonisten)
- \bullet Muskarinischer Ach-Rezeptor (Agonisten) \to Direkte Parasympathomimetika
- Muskarinischer Ach-Rezeptor (Antagonisten) \rightarrow Direkte Parasympatholytika
- Acetylcholinesterase-Hemmer \rightarrow Indirekte Parasympathomimetika

3.3.1 Cholinerge Rezeptoren

muskarinisch

G-Protein-gekoppelte Rezep	otoren		
Rezeptorsubtyp	Hauptlokalisation	zellulärer Effekt	Effektorsystem
M_1	neuronal ZNS	Exzitation	
	auton. Ganglien	Magensaftsekretion \uparrow	$PLC\uparrow (G_{q/11})$
	(v.a. enteral)	MDMotilität ↑	1,
M_2	kardial Sinusknoten	diastol. Depolar. $\downarrow \Rightarrow HF$	K^+ -Kanal \uparrow
		↓	
	AV-Knoten	Fortleitung ↓	Ca^{2+} -Kanal \downarrow
	Atrium (Ventrikel)	Kontraktionskraft \downarrow	A-cyclase \downarrow
	präsynaptisch	Transmitterfreisetzung \downarrow	$(G_{i/o})$
M_3	exokrine Drüsen (Pan-	Sekretion ↑	` ' '
	kreas, Parotis)		
	glatte Muskula-	Kontraktion ↑	$PLC \uparrow (G_{q/11})$
	tur(Bronch., Darm,		
	Harnbl.)		
	vaskuläres Endothel	Vasodilatation (NO-	
		Freisetz.)	
	Auge (Ziliarmuskel, M.	Kontraktion (Nahak-	
	constr. pupillae)	komod.), Kontraktion	
		(Miosis)	
M_4	ZNS	?	wie M_2
M_5	weit verbreitet (low le-	?	$PLC \uparrow (G_{q/11})$
	vel)		. 1,

nikotinisch

ionotrope Rezeptoren, Pentamere, 2 α -Untereinheiten (α 2-10 3 β -Untereinheiten (β 2-4) α -Untereinheit bindet Ach Rezeptor bildet Na^+/K^+ -Kanal, der d. Bindung von Ach geöffnet wird $\rightarrow Na^+$ -Einstrom \rightarrow Depolarisation N_M (muskulärer Typ) (α 1)₂, β 1, δ , ϵ (embryonal/denerv. Muskel: γ statt ϵ) neuromuskuläre Endplatte der Skelettmuskulatur, vermittelt Kontraktion N_N (neuronaler Typ) (α 4)₂/(β 2)₃ häufig im ZNS, (v.a. K^+/Na^+ permeabel) (α 7)₅ häufig im ZNS, (auch Ca^{2+} permeabel) (α 3)₂/(β 4)₃ Ganglion-Typ \rightarrow Depolarisation/Weiterleitung; NN-Mark \rightarrow Sekretion von Katecholaminen

3.3.2 Agonisten / Antagonisten des nikotinischen Ach-Rezeptor

Nikotin

(agonistische Wirkung v.a. auf neuronalen Rezeptor (N_N)

Pharmakokinetik

- rasche Aufnahme über Mundschleimhaut oder Lunge (je nach pH-Wert)
- gute Verteilung (insb. ZNS) der nicht-ionisierten Form; Plasma-HWZ: 2-3 h
- 80% hepat. metabolisiert zu Cotinin

Pharmakodynamik niedrige Dosis: Ganglien erregend \rightarrow Adrenalinfreisetzung aus NNM, RR \uparrow , hohe Dosis: Ganglien blockierend (Depol.) + zentrale Effekte \rightarrow komplexe Effekte: Durchfall, Magensaftproduktion \uparrow , RR \uparrow , HF \uparrow , Speichelsekretion \uparrow , Übelkeit, Tremor; Krämpfe, Atemlähmung Sucht-erzeugende Wirkung durch Aktivierung des "reward pathways Toxizität: 50 mg tödlich (1 Zigarette \simeq 10 mg)

Cytisin / Vareniclin

(partieller Agonismus an $(\alpha 4)2(\beta 2)3$ Rezeptoren Cytisin z.B. im Goldregen vorkommend, 3-4 Früchte für Kleinkinder tödlich Abkömmling Vareniclin als Raucherentwöhnungsmittel 3/07 zugelassen.

Muskelrelaxantien

(Wirkung v.a. auf muskulären Rezeptor (N_M))

- nicht-depolarisierende Muskelrelaxantien kompetitive Antagonisten am muskulären nikotinischen Ach-Rezeptor
- depolarisierende Muskelrelaxantien Agonisten am muskulären nikotinischen Ach-Rezeptor

Wirkung Motorische Lähmung, keine Bewusstseinsbeeinflussung äußere Augenmuskeln \rightarrow Zunge \rightarrow Finger \rightarrow Nacken \rightarrow Stamm \rightarrow Extremitäten \rightarrow Atemmuskulatur

Einsatz V.a. Narkose

Pharmakokinetik Quarternären Stickstoff \rightarrow schlechte Resorption nach oraler Gabe \rightarrow keine ZNS-Gängigkeit

3.3.3 nicht-depolarisierende Muskelrelaxantien

Tubocurarin: Wirkdauer 60-80 min; zusätzliche Wirkungen: Histaminfreisetzung aus Mastzellen GanglienblockaPotenz (im Vergl. zu Tu- Wirkdauer Wirkbeginn bocurarin)

Benzylisochinoline

Benzylisochinoline Atracurium $20-35 \min$ 2-4 min ca. 2x $de \rightarrow RR\downarrow$; obsolet. Mivacurium ca. 3x $15-25 \min$ 2-4 min Steroidderivate Pancuronium ca. 5x 60-120 min 4-6 min Vecuronium 45-90 min 2-4 min ca. 5x Rocuronium ca. 0.5x $35-70 \min$ 1-2 min! Elimination spontan (Atracurium); unspez. Esterasen (Atracurium, Mivacurium) renal/hepatisch: Steroid-derivate

Antidot Acetylcholinesterase-Hemmer

3.3.4 depolarisiernde Muskelrelaxantien

Suxamethonium, Succinylcholin

Wirkung Agonismus am Rezeptor, langsamer Abbau persistierende Depolarisation \rightarrow Inaktiv. spannungsabh. Na⁺-Kanälen \rightarrow Sarcolemm elektrisch unerregbar; kein Antagonismus durch Ach-esterase-Hemmer! Wirkdauer 5-10 min, Abbau d. Esterspaltung (unspez. Cholinesterasen)

Einsatz nur noch selten eingesetzt (kurzdauernde Eingriffe)

unerwünschte Wirkungen protrahierte Apnoe (hereditärer Cholinesterase-Mangel); Muskelkater-ähnliche Symptome; Hyperkaliämie; maligne Hyperthermie

3.4 Agonisten / Antagonisten muskarinischer Rezeptoren antimuskarinerge Substanzen / Parasympatholytika

3.4.1 Belladonna-Alkaloide

- Atropin tertiäres Amin \rightarrow gute Resorption, ZNS-gängig \rightarrow Exzitation
- Scopolamin tertiäres Amin → gute Resorption, ZNS-gängig → Dämpfung; i.G. zu Atropin stärker mydriatisch, sekretionshemmend, schwächer spasmolyt., kardial wirks.

Wirkung

- Auge: Mydriasis, Akkomodationslähmung (8–12 d), intraokularen Drucks ↑
- Herz: Tachykardie, AV-Überleitungszeit verkürzt
- Bronchien: Bronchodilatation, Sekretion ↓, Hemmung eines Laryngospasmus M.-D.-Trakt: Speichelsekretion ↓ (Mundtrockenheit) (0,5 mg), Magensaftsekretion ↓ (1–2 mg), Motilität↓, Darmatonie, Tonus von Darm, Gallenblase ↓
- Harnwege: Tonusabnahme, Blasenatonie
- Schweißdrüsen: Sekretionshemmung, ZNS: Atropin: Unruhe/Verwirrtheit;
- Scopolamin: Sedation/Schlaf, Temperatur
- Tropicamid Mydriatikum (gute Hornhautpenetration, Wirkdauer: 6h)
- Pirenzepin nicht ZNS-gängig, M_1 -selektiv; Magensaftsekretion \downarrow ; M_1 -Blockade an ECL-Zellen: Histamin-freisetzung \downarrow ; bei höherer Dosierung auch M_3 -Blockade an Parietalzellen

3.4.2 M3-selektiv

Solifenacin, Darifenacin

3.4.3 quarternäre Derivate

(schlecht resorbierbar, keine ZNS-Gängigkeit!!)

- N-Butylscopolamin Spasmolytikum bei Gallen-, Nierenkolik (meist i.v.-Gabe)
- Ipratropiumbromid Einsatz bei obstruktiven Atemwegserkrankungen
- Tiotropiumbromid (als Dosieraerosol) Plasma-HWZ: 4h (Ipratropiumbromid), 5d (Tiotropiumbromid)

Hauptindikationen für Parasympatholytika

- Spasmen der glatten Muskulatur (Gallen-, Nierenkolik, spast. Obstipation) v.a. N-Butylscopolamin
- chron.-obstruktive Lungenerkrankung (COPD) (Ipratropiumbromid, Tiotropiumbromid); symptomatisch wirksam, kein Einfluß auf Fortschreiten der Erkrankung, cave: kardial vorgeschädigte Patienten
- bradykarde Herzrhythmusstörungen (v.a. Atropin)
- Dranginkontinenz (Solifenacin, Darifenacin)
- \bullet Narkosevorbereitung (Schleimhautsekretion \downarrow , vagale Reflexe \downarrow) (v.a. Atropin)
- Mydriatikum (z.B. Tropicamid);
- Morbus Parkinson (Biperiden)
- Intoxikation mit Alkylphosphaten (Atropin, hohe Dosis)
- Prophylaxe von Kinetosen (Scopolamin)

unerwünschte Wirkungen (je nach erwünschter Wirkung) Mydriasis, Akkomodationsstörungen, Mundtrockenheit, Tachykardie, Obstipation

Kontraindikationen

- Glaukom (Kammerwasserabfluss ↓ unter Mydriasis)
- tachykarde Herzrhyth-musstörungen
- Prostataadenom (Kontraktion des Detrusor vesicae \(\)
- obstruktive gastrointestinale Störungen

3.5 muskarinerge Agonisten / direkte Parasympathomimetika

	Rezeptorspezifität muskarin.	Hydrolyse durch nikotin.	durch AchE/ChE
Acetylcholin	+++	+++	+++
Carbachol	+++	+++	-
Bethanechol	+++	-	-
Pilocarpin	++	-	-

Hauptindikation für direkte Parasympathomimetika

- \bullet Glaukom (miotische Wirkung \to Kammerwasserabfluß $\uparrow)$ z.B. Pilocarpin lokal (gute Resorption, Wirkdauer: 1 Tag)
- Darm-/Blasenatonie (z.B. postop., neurolog. Läsionen)(Carbachol, Bethanechol)

unerwünschte Wirkung (je nach erwünschter Wirkung) Schweißausbruch; Speichelfluss; Übelkeit, Erbrechen, Diarrhoe; Bradykardie, Blutdruckabfall; asthmatische Beschwerden; Harndrang; Myopie

Kontraindikationen Herzinsuffizienz, Asthma bronchiale

3.6 Cholinesterase-Hemmer/indirekte Parasympathomimetika

3.6.1 Hydrolyse von Ach durch AchE:

3.6.2 Wirkung von AchE-Hemmern:

- reversible AchE-Hemmer (nicht-kovalent bzw. Carbaminsäure-Derivate) pharmakologische Bedeutung
- irreversible AchE-Hemmer (Alkylphosphate) toxikologische Bedeutung

3.6.3 reversible AchE-Hemmer

nicht-kovalent:

- Edrophonium kurz wirksam, nur peripher zur Diagnose der Myasthenia gravis eingesetzt, nicht ZNS-gängig
- Tacrin, Donepezil gute ZNS-Gängigkeit, Einsatz bei Alzheimer-Demenz (therapeut. Nutzen fraglich)

kovalent (carbamylierend)

- Physostigmin natürlich vorkommendes Alkaloid, ZNS-gängig (tert. Amin) mittellang wirksam (1-2 h), Einsatz als Antidot bei Vergiftungen mit parasympatholytischen Substanzen
- Neostigmin, Pyridostigmin 2-4 bzw. 3-6 h wirksam, keine ZNS-Gängigkeit

Hauptindikationen für ind. Parasympathomimetika

- Myasthenia gravis (diagnostisch, therapeutisch)
- Aufhebung der neuromuskulären Blockade durch nicht-depolarisierende Muskelrelaxantien (zusammen mit Atropin)
- Demenzen, z.B. M. Alzheimer (Verlust cholinerger Neurone)
- Darm- und Blasenatonie (s.c. oder oral), Glaukom (lokal)

3.6.4 irreversible AchE-Hemmer

Insektizide

• Parathion (E605) Verstoffwechselung zur wirksamen Form Paraoxon ("Giftung"); hohe Humantoxizität Kampfstoffe

- Tabun, Sarin, Soman extrem toxische "Nervengase" Aufnahme in den Körper: oral, inhalatorisch, transdermal! Vergiftungssymptome:
 - muskarinische Wirkung: Schweißausbruch, Speichel-, Bronchialsekretion, Bronchospasmus, Miosis, Übelkeit, Erbrechen, Diarrhoe, Bradykardie
 - nikotinische Wirkung: Muskelschwäche, evtl. Faszikulationen
 - ZNS Wirkung: Angstgefühl, Kopfschmerz, Krämpfe, Atemlähmung
- Behandlung: Atropin (kein Effekt auf neuromuskuläre Blockade) Cholinesterase-Regeneratoren:
- Pralidoxim, Obidoxim besonders gute Wirkung an neuromusk. Synapse, keine ZNS-Gängigkeit, Wirkung nur wenige Stunden nach Vergiftung (Alterungsphänomen der AchE)

Kapitel 4

Adrenerges System

Noradrenalin Adrenalin

Katecholaminsynthese

 $Tyrosin {\rightarrow} Dopa {\rightarrow} Dopamin {\rightarrow} Noradrenalin {\rightarrow} Adrenalin$

Abbau von Katecholaminen

- Monoaminoxidase A + B (MAO) Abbau vor allem im Neuron
- Catechol-O-Methyltransferase (COMT) Abbau zirkulierend. Katecholam. v.a. Leber/Niere

4.0.5 adrenerge Varikosität

das postganglionäre sympathische Neuron endet im Endorgan in Form eines Terminalretikulums, das Varikositäten aufweist Mechanismus der Freisetzung: Aktionspotential \rightarrow Depolarisation \rightarrow Einstrom von Ca^{2+} durch spannungsabhängige Ca^{2+} -Kanäle \rightarrow Fusion synaptischer Vesikel mit der präsynaptischen Membran \rightarrow Freisetzung von Noradrenalin zusammen mit Kotransmittern (z.B. ATP, Neuropeptid Y) Terminierung der Wirkung von Noradrenalin durch Wiederaufnahme.

4.0.6 Hemmer der NA-Freisetzung

- Reserpin (Rauwolfia-Alkaloid) hemmt Speicherung von NA in Vesikel über vesikul. Monoamin-Transporter → Wirkung auch auf Dopamin- und Serotonin-Speicherung
 - Einsatz: Reserveantihypertensivum
 - unerwünschte Wirkungen: Depression (ZNS-Effekt), Parkinsonismus, HF↓, (RR↓)
- Guanethidin Aufnahme und Speicherung wie NA \rightarrow Anreicherung in Axon \rightarrow Blockade schneller Na^+ -Kanäle \rightarrow Depol. \downarrow \rightarrow NA-Freisetzung \downarrow
- \bullet $\alpha\textsc{-Methyldopa}$ pro-drug, Umwandlung in $\alpha\textsc{-Methyl-NA} \to$ vesikuläre Speicherung als "falscher Transmitter"
 - Agonist an prä- und postsynapt. α_2 -Adrenozeptoren
 - NA-Freisetzung↓, Sympathikotonus↓ (zentraler Effekt)

4.0.7 indirekte Sympathomimetika

Amphetamin, Ephedrin: Aufnahme über NA-Carrier in Axoplasma

- Hemmung der NA-Aufnahme in Vesikel und des NA-Abbaus d. MAO
- NA-Konzentration im Axoplasma ↑
- \bullet NA-Ausschleusung über NA-Carrier (umgekehrt) + Wiederaufnahme \downarrow
- NA-Konzentration im synaptischen Spalt ↑

nach wiederholter Gabe nimmt Effekt rapide ab (Tachyphylaxie)

- periphere Wirkung: sympathomimetisch
- zentrale Wirkung: (Amphetamin>Ephedrin): Euphorie, Aufmerksamkeit\u00e1, Selbstvertrauen\u00e1, Appetit\u00e4, Halluzinationen, Stereotypien

Effekt von Amphetamin auf die Noradrenalin (NA)-Freisetzung: Effekte auf verschied. Neurotransmittersysteme unterschiedlich stark ausgeprägt v.a. Noradrenalin, Dopamin: (Met)Amphetamin>Methylphenidat, Fenetyllin> Ephedrin v.a. Serotonin: MDA, MDMA, Fenfluramin, Sibutramin

4.1 adrenerge Rezeptoren

4.2 β_2 -Adrenozeptor-Agonisten / β_2 -Sympathomimetika

mittellang wirksam (4-6 h) Fenoterol; Salbutamol; Terbutalin Akuttherapie oder 3-4 x tgl. lang wirksam (12 h, "LABA") Formoterol; Salmeterol ultra lang wirksam (24 h, uLABA) Indacaterol

Gabe oral oder per inhalationem (Wirkungseintritt innerhalb 5-15 min)

Indikation

- Astma bronchiale (Prävention und bedarfsorientiert b. Beschwerd.)
 - stärkste Bronchodilatatoren
 - Zilien-Flimmerbewegung $\uparrow \rightarrow$ mukoziliäre Clearance \uparrow
 - Hemmung der Mediatorfreisetzung aus Mastzellen
- Tokolyse

unerwünschte Wirkungen (v.a. bei system. Gabe) Skelettmuskeltremor; Unruhe, Angstgefühl; Tachykardie, Herzklopfen; anabole Wirkung (v.a. Clenbuterol)

4.3 α -Adrenozeptor-Agonisten

Phenylephrin $(\alpha_1 > \alpha_2)$ Oxymetazolin $(\alpha_2 > \alpha_1)$ Xylometazolin

Tabelle 4.1:

Rezeptorsubtyp	${f Hauptlokalisation}$	zellulärer Effekt	Effektor- system
$\alpha_1(\alpha_{1A,B,D})$	glatte Gefäßmuskulatur (Haut, Schleimhaut, Ab-	Kontraktion	$PLC\uparrow (G_q/G_{11})$
	domen, Niere)		
	Blasensphinkter	Kontraktion	
	Leber	Glycogenolyse↑	
		Gluconeogenese [†]	
	Auge (M. dilatator pup.)	Mydriasis	
$\alpha_2(\alpha_{2A,B,C})$	sympathische, postgangl.	NA-Freisetzung↓	K^+ -Kanal \uparrow A-cyclase \downarrow
	präsynapt. Nervenend. (α_{2}	1	Ca^{2+} -Kanal $\downarrow (G_i/G_o)$
	$+ \alpha_{2C}$		
	ZNS (α_{2A})	Sympathikotonus \downarrow Se-	
		dierung	
	β -Zellen (Pankreas)	Insulin-Freisetzung \downarrow	
β_1	Herz	$Inotropie \uparrow$	A-cyclase $\uparrow Ca^{2+}$ -Kanal \uparrow
		$Chronotropie \uparrow$	(Herz via PKA) (G_s)
		$Dromotropie \uparrow$	
	juxtaglomeruläre Zellen	Renin-Freisetzung ↑	
eta_2	Bronchialmuskulatur	Relaxation	A-cyclase $\uparrow (G_s)$
	glatter Gefäßmuskel	Relaxation	
	(Skelettm.)		
	Herz	wie β_1 (weniger stark)	
	Uterusmuskulatur	Relaxation	
	Skelettmuskel	Glycogenolyse	
	Leber	Glycogenolyse, Gluco-	
		neogenese	
eta_3	Fettzellen	Lipolyse	A-cyclase? (G_s)

Indikation zur lokalen Anwendung: Schleimhautabschwellung bei Konjunktivitis, Sinusitis, Rhinitis; Mydriatikum (Phenylephrin)

unerwünschte Wirkungen chron. Einnahme: Wirkungsverlust; atroph. Mukosaschäden (Rhinitis sicca); Säuglingen und Kindern: Vergiftungsgefahr durch Resorption (Koma, Atemlähmung) nur verdünnte Lösungen anwenden!

4.4 α_2 -Adrenozeptor-Agonisten

Clonidin	Guanfacin	Moxonidin	lpha-
			Methyldopa:Umwandlung

zu α -Methylnoradrenalin

Indikation

- Antihypertensivum
 - Aktivierung postsynaptischer α_2 -Rezeptoren im Bereich des Nucl. tractus solitarii (u.a. Umschaltstelle des Barorezeptoren-Reflexes) → Sympathikotonus ↓, Parasympathikotonus↑
 - Aktivierung peripherer, präsynaptischer α_2 -Rezeptoren \rightarrow NA-Freisetzung \downarrow
 - Hemmung der Adrenalinfreisetzung aus NNM über $\alpha_2\text{-Rezeptoren}$
 - Reservetherapeutika, Einsatz bei therapieresistenten Formen der Hypertonie oder bei Schwangerschaftshypertonus (α -Methyldopa) bzw. hypertensiver Krise (Clonidin)
- Migränetherapie (Intervallbehandlung, Tonisierung meningealer Gefäße)
- Opiat-Entzugssyndrom (überschießende Aktivität noradrenerger Neurone, die durch Opiate gehemmt wurden)
- Alkohol-Entzugssyndrom

unerwünschte Wirkungen • Sedation (zentrale $alpha_2$ -Rezeptoren) • Mundtrockenheit (Parasympathikotonus \downarrow , präsynaptische α_2 -Rezeptoren an cholinergen Neuronen); • Potenzstörungen • bei plötzlichem Absetzen: hypertensive Krise

4.5 α_1 -Adrenozeptor-Antagonisten

	Plasma-HWZ	
Prazosin	2,5 h	
Terazosin	8-14 h	
Doxazosin	22 h	
Bunazosin	12 h	
Urapidil	3-8 h	(zusätzl 5- HT_1A Rezeptoragonist)

Indikation Hypertonie (art./ven. Vasodilatation) benigne Prostatahyperplasie Urapidil: auch hypertensive Notfälle / Krise (über zentrale 5-HT1A Rezeptoren: Sympathikotonus↓→ Reflextachykardie vermindert)

unerwünschte Wirkungen v.a. initial Hypotonie (einschleichend dosieren!), sonst selten

4.6 •

			Tabell	e 4.2:			
	Rezept spez.	Lipophilie	Bioverfüg- barkeit	Elimination	Plsama- HWZ	Dosis (mg) KHK	$\begin{array}{c} \operatorname{Dosis}(\operatorname{mg}) \\ \operatorname{RR} \uparrow \end{array}$
					(h)		
unselektive							
Propranolol	$\beta_1/beta_2$	+++	30%	hepat.	3-4	3/4x10/40	2/3x40
Pindolol	$\beta_1/beta_2(pA)$) +	95%	hep./ren.	4-6	3x5/103x5	
β -selektive							
Metoprolol	$\beta_1 > \beta_2$	+	50%	hepat.	3-4	2x50/100	2x50
Bisoprolol	$\beta_1 > \beta_2$	0/+	90%	hep./ren.	10-12	1x5/10	1x2,5/5
Atenolol	$\beta_1 > \beta_2$	0	50%	renal	6-9	1x50/100	1x25/50
vasodilatiere	nde						
Carvedilol	$\beta_1/\beta_2/\alpha_1$	++	25%	hep./ren.6- 7	1x12/25	1x12/25	
Nebivolol	β_1 >	20 80%	hep./ren.	10	1x2,5/5	1x2,5/5	
	β_2 +NO-		- ,		,	,	
	Freistzung						
Celiprolol	β_1 -Antag.	0/+	30 - 70%	renal	5-7	1x200/400	1x200
	$+$ $beta_2$ -	•				,	
	Agon.						

4.6.1 Wirkprofil

β_1 -Selektivität ("Kardioselektivität")

- $\bullet\,$ relative Selektivität für $\beta_1\text{-Rezeptoren}$
- $\bullet\,$ geringer ausgeprägte metabolische Effekte ($\beta_2\text{-Rezeptoren})$ bei Diabetikern
- $\bullet\,$ geringere Gefahr der Bronchokonstrikt. b. Pat. m. obstrukt. Ventilationsstörg.
- \bullet bei Schwangeren: β_2 -vermittelte Effekte nicht gehemmt
- vermindertes Risiko für periphere Durchblutungsstörungen

partielle agonistische Aktivität (PAA)

- früher: intrinsische sympathomimetische Aktivität (ISA); z.B. Pindolol
- Wirkungen abhängig vom Sympathikotonus
 - Tonus hoch: Überwiegen antagonistischer Effekte (z.B. $\mathrm{HF}\!\downarrow)$
 - $-\,$ Tonus niedrig: agonistische Effekte (Ruhefrequenz unbeeinflußt oder erhöht)
- klinisch kein Vorteil; bei Myokardinfarkt und Sekundärprävention geringere Mortalitätssenkung als durch β -Blocker ohne PAA

"membranstabilisierende Wirkung"

(z.B. Propranolol)

- \bullet lokalanästhetische Wirkung unabhängig von β -blockierender Wirkung
- in therapeutischen Dosen unbedeutend

vasodilatierende Wirkung

- durch Antagonismus an α_1 -adrenergen Rezeptoren (Carvedilol), Agonismus an β_2 -adrenergen Rezeptoren (Celiporolol) oder Freisetzung von NO (Nebivolol); hepatisch gebildeter Nebivolon-Metabolit steigert NO-Bildung im Endothel
- therapeutischer Nutzen derzeit unklar

4.6.2 Pharmakokinetik

Lipophilie[↑] gute Resorption

starker first-pass-Effekt

überwiegend hepatisch metabolisiert

schlechte Resorption geringer first-pass-Effekt

überwiegend renal eliminiert

 $\operatorname{Lipophilie} \downarrow$

4.6.3 Kontraindikationen

- ausgeprägte Bradykardie
- AV-Block II./III. Grades Anwendung nur mit bes. Vorsicht bei obstruktiven Atemwegserkrankungen

4.6.4 Wechselwirkungen

- \bullet Ca^{2+} -Antagonsiten vom Verapamil- und Diltiazem-Typ (Kardiodepression; AV-Block)
- Herzglykoside (neg. chronotrop)
- orale Antidiabetika/Insulin (verstärkte Hypoglykämieneigung)

4.6.5 Indikation

- koronare Herzkrankheit (Anfallsprophylaxe, Sekundärprävention)
 - Blockade von β_1 -Rezeptoren am Herzen $\rightarrow O_2$ -Verbrauch des Myokards \downarrow
- Herzinsuffizienz
 - für Metoprolol, Bisoprolol und Carvedilol Wirksamkeit nachgewiesen
 - Abschwächung kardiotox. Langzeiteffekte von Katechol- aminen im Rahmen der neurohumoralen Gegenregulation
 - antiarrhythmischer, antitachykarder Effekt
- \bullet tachykarde Herzrhythmusstörungen ($\beta_1\text{-selektive Blocker})$

- Hypertonie (v.a. bei gleichzeitig bestehender KHK oder Herzinsuffizienz)
 - Blockade von β_1 -Rezeptoren am Herzen Abschwächung des positiv inotropen, chronotropen, dromotropen und bathmotropen Einflusses des Sympathikus
 - -Abnahme der Renin-Sekretion \rightarrow Angiotensin II \downarrow
 - zentrale Wirkung → Sympathikotonus↓
- Hyperthyreose (unselektive Blocker, z.B. Propranolol)
- Migräneprophylaxe
- Glaukom (lokale Gabe) Kammerwasserproduktion ↓ (Mechanismus unklar)
- Angstzustände, Tremor (Hemmung des Sympathikotonus)

4.6.6 unerwünschte Wirkungen

- kardiovaskulär Bradykardie, Blutdruckabfall, SA/AV-Blockieruungen (β_1 -Blockade) Verstärkung peripherer Durchblutungsstörungen; Kältegefühl (β_2 -Blockade)
- pulmonal Atemwegswiderstand ↑, evtl. Auslösung asthmat. Beschwerden (β₂-Block.)
- zentralnervös Kopfschmerzen, Schwindel Müdigkeit, depressive Verstimmung, Schlafstörungen
- metabolisch Hypoglykämieneigung bei Diabetes mellitus direkte metabolische Effekte (Glykogenolyse (Mechanismus unklar)), Hemmung der sympathotonen Gegenregulation bei beginnender Hypoglykämie, Unterdrückung der Prodromi (Tachykardie, Schwitzen, Tremor)
- Potenzstörungen
- Rebound-Phänomen bei plötzlichem Absetzen

4.7 Relative Rezeptorselektivität von Adrenozeptor-Agonisten und -Antagonisten

Kapitel 5

RAAS/ Diuretika

5.1 Renin-Angiotensin-System

5.2 Renin-Inhibitoren

Aliskiren

seit 9/2007 zugelassen; Vorteile gegenüber ACE-Hemmern unklar (Reninaktivität↓)

Pharmakokinetik Bioverfügbarkeit: 2,6%; 50% metabolisiert (u.a. CYP3A4); Plasma-HWZ: 25-60h

Unerw. Wirkungen ähnlich ACE-Hemmer (weniger Husten, Angioödeme)

Einsatz essentielle Hypertonie (klinischer Stellenwert unklar; teuer!)

 ${\bf Kontraindikationen} \quad {\rm wie \ ACE\text{-}Hemmer \ (Schwangerschaft \ etc.)}$

5.3 ACE-Hemmer

	Plasma-HWZ	Bioverfügbarkeit	Elimination	Tageszieldosis (mg) bei	Hypertonie
				Herzinsuff.	
Captopril	1,7 h	60%	renal	3×50	$2-3 \times 12,5-50$
Enalapril	11 h	40%	renal	1×20	$1-2 \times 5-10$
Lisinopril	12,5 h	25%	renal	1×20	1 x 5-10
Quinapril	2 h	35%	v.a. renal	1×20	$1-2 \times 10$
Fosinopril	12,5 h	25%	biliär+renal	1×20	$1 \times 10-20$
Ramipril	15 h	44%	renal	1 x 10	$1 \times 2,5-5$
Cilazapril	15-20 h	30%	renal	1×5	$1 \times 2,5$
Perindopril	6 h	19%	renal	1 x 4	1×4
Benazepril	10 h	30%	renal	$2 \times 5 - 10$	$2 \times 5 - 10$
Trandolapril	16-24 h	50%	renal	1 x 4	1×4

Pharmakokinetik

- unterschiedl. Wirkdauer (langwirks. Formen mit 1 x tägl. Gabe bevorzugen)
- pro-drugs (außer Captopril und Lisinopril); Elimination renal (außer Fosinopril)

unerwünschte Wirkungen

- trockener Reizhusten (Dosis-unabhängig, durch Kininase II-Hemmung)
- Hypotonie (v.a. zu Beginn der Behandlung; einschleichend dosieren)
- Verschlechterung einer Nierenfunktionsstörung (Nierenfunktionskontrolle)
- Muskel-/Gelenk-/Kopfschmerzen, Schwindel, Geschmacksstörungen
- angioneurotisches Ödem (sehr selten)

Indikation

- Herzinsuffizienz, indiziert in allen Stadien der chron. Herzinsuffizienz (Senkung der Mortalität durch Studien belegt)
- Hypertonie
- Zustand nach Herzinfarkt
- diabetische Nephropathie

Kontraindikationen

- Nierenarterienstenose, Hyperkaliämie, Niereninsuffizienz
- Schwangerschaft, Angioödem in der Anamnese

Wechselwirkungen

- \bullet K^+ -sparenden Diuretika vermeiden (Hyperkaliämiegefahr)
- nicht-steroidale Antirheumatika (ACE-Hemmerwirkung \(\))

5.4 AT_1 -Rezeptor-Antagonisten

Plasma-HWZ	Bioverfügb.	Elimination	antiypert. Dosis	
Losartan	2 bzw. 6-9 h	33%	v.a. biliär	$1 \times 100 \text{ mg}$
Valsartan	6-9 h	23%	v.a. biliär	$1-2 \times 80-160 \text{ mg}$
Eprosartan	5-9 h	13%	v.a. renal	$12 \times 200400 \text{ mg}$
Irbesartan	11-15 h	60 80%	v.a. biliär	$1 \ge 150\text{-}300 \text{ mg}$
Candesartan	6-9 h	14%	v.a. renal	$1 \times 8-16 \text{ mg}$
Olmesartan	10-15 h	26%	$bili\ddot{a}r + renal$	$1 \times 10\text{-}40 \text{ mg}$
Telmisartan24 h	43%	v.a. biliär	$1 \times 20\text{-}80 \text{ mg}$	

Wirkmechanismus Kompetitiver Antagonismus am AT₁-Rezeptor, Wirkungen wie ACE-Hemmer aber: fehlende Beeinflussung des Abbaus von Kininen und Substanz P sowie Hemmung der Wirkung von ACE-unabhängig gebildetem Ang II

Einsatz 2. Wahl, wenn ACE-Hemmer nicht gegeben werden können; keine Vorteile bei Kombination mit ACE-Hemmern, eher mehr UEW

5.5 Klassen von Diuretika

Klasse Schleifendiuretika Benzothiadiazine/Thiazide K^+ -sparende Diuretika Aldosteronantagonisten osmotische Diuretika

Wirkort aufsteigender Ast der Henleschen Schleife frühdistaler Tubulus spätdistaler Tubulus, Sammelrohr spätdistaler Tubulus, Sammelrohr

5.5.1 Tubuloglomeruläre Feedback-Mechanismen

Regulation durch den "juxta-glomerulären Apparat" Macula densa Zellen→ermitteln NaCl Konzentration im Tubulus Mesangiale Zellen (extraglomerulär)→Vermittlung des Feedback?

Juxtaglomeruläre Zellen / Vas afferens→Reninfreisetzung / Tonusregulation

Regulation der GFR des Einzelnephrons (TGF sensu stricto) GFR \rightarrow NaCl-Aufnahme in MD-Zellen \rightarrow ATP/ Adenosin-Bildung \rightarrow Vasokonstriktion d. Vas afferens

Regulation der Reninfreisetzung über MD z.B. drohender NaCl/Volumen-Verlust \rightarrow NaCl-Aufnahme in MD-Zellen \rightarrow PGE2 \rightarrow Reninfreisetzung

5.6 Schleifendiuretika

Furosemid Piretamid
Torasemid Bumetamid

Wirkmechanismus reversible Hemmung des Na^+ K^+ $2Cl^-$ -Cotransporters (NKCC2) im aufsteig. Schenkel der Henleschen Schleife,rascher Venen-dilatierender Effekt (humoral über die Niere vermittelt) Wirkung ist kurz und intensiv ("high ceiling")

- maximal 25% des glomerulär filtrierten Volumens
- Wirkungseintritt: innerhalb 1 h nach oraler Gabe, innerhalb von Minuten nach i.v.-Gabe
- Wirkdauer: 4-6 h nach oraler Gabe, 2-3 h nach i.v.-Gabe,
- Nierendurchblutung ↑

vermehrte Ausscheidung von $Na^+, Cl^-, K^+, Mg^{2+}, Ca^{2+}$ direkt und indirekt v.a. durch erhöhte Strömungsgeschwindigkeit im distalen Tubulus und im Sammelrohr

Pharmakokinetik

- gute Resorption nach oraler Gabe, hohe Plasmaeiweißbindung
- Bioverfügbarkeit 65-90%; Plasma-HWZ: 2-4 h
- Elimination: glomerulär filtriert, proximal tubulär sezerniert → Konzentration im Tubulus 20-50 x höher als im Blut, → selektive Wirkung auf NKCC2 (NKCC1 ubiquitär)

Unerwünschte Wirkungen

- \bullet Hämokonzentration, Hypovolämie, Hypotonie, \rightarrow Thromboembolieneigung
- Elektrolyt-Störungen, insb. Hypokaliämie
- Hyperurikämie
- Glucosetoleranz ↓ (Insulinsekretion ↓ durch Hypokaliämie?)
- Hörstörungen (bei rascher i.v.-Gabe höherer Dosen)

Einsatz

- Dauertherapie Herzinsuffizienz/Hypertonie (wenn Thiazide nicht mehr wirksam)
- kardiale, renale oder hepatogene Ödeme
- akute Herzinsuffizienz (v.a. bei Lungenödem)
- Niereninsuffizienz (akut und chronisch)
- Hyperkalzämie
- forcierte Diurese bei Intoxikationen

Interaktionen bei gleichzeitiger Gabe von Aminoglykosiden: erhöhte Oto- und Nephrotoxizität

5.7 Thiazide

	Bioverfügbark.	HWZ	max. Tagesdosis
Hydrochlorthiazid	70%	6-8 h	75 mg
Chlortalidon	64%	50 h	$200~\mathrm{mg}$
Indapamid	93%	15-18 h	$2,5~\mathrm{mg}$
Xipamid	> 95%	7 h	40 mg

Wirkmechanismus Hemmung des fast ausschließlich im frühdistalen Tubulus exprimierten Na^+/Cl –Kotransportes (NCC)

Wirkung weniger stark aber länger als Schleifendiuretika

- maximal 10% des glomerulär filtrierten Volumens
- Wirkungseintritt: innerhalb von 1-2 h nach oraler Gabe
- Wirkdauer: 8-12 h (Hydrochlorthiazid)
- GFR ↓

vermehrte Ausscheidung von Na^+, Cl^-, K^+, Mg^{2+} verminderte Ausscheidung von Ca^{2+}

Pharmakokinetik

• Bioverfügbarkeit: 70-100

• Plasma-HWZ: 7-50 h

• Elimination: unverändert renal (filtriert, proximal-tubulär sezerniert)

Unerwünschte Wirkungen bei niedriger Dosierung selten!

- Hämokonzentration, Hypovolämie
- Elektrolyt-Störungen, insb. Hypokaliämie
- Hyperurikämie (kompetitive Hemmung der Harnsäureausscheidung)
- Glucosetoleranz ↓ (Insulinsekretion ↓ durch Hypokaliämie ?)
- Hyperlipoproteinämie
- Hyperkalzämie

Einsatz

- Herzinsuffizienz (insb. bei Flüssigkeitsretention)
- akute kardiale, renale oder hepatogene Ödeme
- Hypertonie (relativ niedrige Dosen)
 - Volumenverminderung
 - direkter relaxierender Effekt auf Widerstandsgefäße (Mechanismus?)
- renaler Diabetes insipidus (Mechanismus?)
- Hyperkalziurie

Kontraindikationen Niereninsuffizienz (Kreatinin > 2-2,5 $\frac{mg}{dl}$), bei Hypokaliämieentwicklung: Kalium-reiche Kost oder Kombination mit Kalium-sparenden Diuretika (Triamteren 50 mg, Amilorid 5 mg; keine Kombination mit ACE-Hemmern!)

$5.8 ext{ } K^+$ -sparende Diuretika

Triamteren Amilorid

Wirkmechanismus Hemmung des epithelialen Na^+ -Kanals (ENaC)im spätdistalen Tubulus und im Sammelrohr

schwacher diuretischer Effekt, lange Wirkung

- maximal 2-3% des glomerulär filtrierten Volumens
- Wirkungseintritt: innerhalb von 1-2 h nach oraler Gabe
- Wirkdauer:10 h (Triamteren), 20 h (Amilorid)

schwacher Effekt!

Leicht vermehrte Ausscheidung von Na^+, Cl^-, HCO_3^-

Leicht verminderte Ausscheidung von: K^+, Mg^{2+}

kaum Einfluß auf Ausscheidung von Ca^{2+}

Hemmung der Na^+ -Resorption \to lumennegatives transzelluläres Potential $\downarrow \to$ passive Sekretion von $K^+ \downarrow$

Pharmakokinetik Resorption nach oraler Gabe: 80% (Triamteren), 40% (Amilorid), HWZ: 6-9 h (Amilorid); 2-3 h (Triamteren), hepatische Metabolisierung von Triamteren (akt. Metabolite), glomerulär filtriert, tubulär sezerniert

Unerwünschte Wirkungen relativ geringe therapeutische Breite

Hyperkaliämie, Übelkeit, Erbrechen, Diarrhoe, Schwindel, Kopfschmerzen

Einsatz kardiale, renale oder hepatogene Ödeme (meist in Kombination mit Thiaziden (ähnliche Wirkdauer, gegenläufiger Effekt auf K^+ -Ausscheidung)

Kontraindikationen Niereninsuffizienz, Hyperkaliämie

Wechselwirkungen ACE-Hemmer (Hyperkaliämiegefahr)

5.9 Mineralokortikoid-Rezeptor-Antagonisten

Spironolacton Eplerenon

Wirkung Antagonismus am Mineralokortikoid-Rezeptor (Eplerenon ist selektiver!) protrahierte, schwache Wirkung

- maximal 2% des glomerulär filtrierten Volumens
- Wirkungseintritt: 1-2 Tage nach oraler Gabe; Wirkdauer: 5-7 Tage
- keine Wirkung ohne Aldosteron (z.B. kochsalzreiche Diät, M. Addison)
- leicht vermehrte Ausscheidung von $Na^+, Cl^-, Ca^{2+}, HCO_3^-$
- leicht verminderte Ausscheidung von K^+

Pharmakokinetik Gute Resorption nach oraler Gabe. Spironolacton: Metabolisierung zu Canrenon (aktiver Metabolit), renal ausgeschieden, HWZ: 16.5 h (Canrenon) Eplerenon: CYP3A4-abh. Metabolisation in inakt. Metabolite (Plasma-HWZ: 5h)

Unerwünschte Wirkungen

- Hyperkaliämie (v.a. bei Niereninsuffizienz)
- gastrointestinal Beschw.
- Spironolacton (nicht jedoch Eplerenon) besitzt antiandrogene und progestagene Effekte → Männer: Gynäkomastie, Potenzstörungen Frauen: Menstruationsstörungen, Amenorrhoe

Einsatz

- primärer Hyperaldosteronismus
- \bullet Ödeme bei sekundärem Hyperaldosteronismus z.B. Leberzirrhose + Aszites (Plasmavol. $\downarrow \to$ RAAS $\uparrow,$ Aldosteronabbau $\downarrow)$
- Herzinsuffizienz: NYHA III-IV (RALES-Studie 1999), NYHA II (EMPHASIS-HF- Studie 2011)

Interaktionen Erhöhte Gefahr v. Hyperkaliämien b. gleichz. Gabe v. ACE-Hemmern, Max. Spironolactondosis in Kombin. mit ACE-Hemmern: 25 mg

Kontrainkdikationen Niereninsuffizienz, Hyperkaliämie

5.10 Arterielle Hypertonie

Definition und Klassifikation der Hypertonie (Joint National Commitee VI, 1997) Blutdruckwerte bei 3 unabhäng. Messungen

	RR syst. (mmHg)		RR diast. (mmHg)	
Optimal	< 120	und	< 80	
Normal	<130	und	< 85	
Hochnormal	130-139	oder	85-89	
Hypertonie				
Stadium 1 (Grenzwerth.)	140-159	oder	90-99	
Stadium 2	160-179	oder	100-109	
Stadium 3	≥ 180	oder	110	

Prävalenz: 15-20% (Erwachsene); Komplikationen: KHK/Herzinfarkt, Schlaganfall, Herz-/Niereninsuffizienz, Augenschäden: Ätiologie: 90-95% idiopathisch; 5-10% sekundär (renal, endokrin, Aortenisthmusstenose etc.)

5.11 Therapie der Hypertonie

Ziel

Senkung des Blutdrucks auf < $140/90~\mathrm{mmHg}$ (bei Diabetes mellitus oder Nierenerkrankung auf < $130/85~\mathrm{mmHg})$

nicht-medikamentös

bei leichter Hypertonie; regelmäßige RR-Kontrolle über mehrere Monate

- regelmäßige körperliche Aktivität
- Gewichtsreduktion, ggf. Cholesterin-senkende Diät
- kochsalzarme Diät (< 6 g / Tag)
- Beschränkung des Alkoholkonsums (< 30 g / Tag), Rauchverzicht

medikamentös

Indikationen für medikamentöse Therapie abh. von kardiovask. Gesamtrisiko:

RR hochnormal (130-139 / 85-89 mmHg) bei hohem kardiovaskulärem Risiko (hypertensive Organschäden, symptomat. kardiovask. Erkrankungen und/oder Diabetes mellitus)

 $\textbf{Stadium 1} \quad (140\text{-}159 \ / \ 90\text{-}99 \ \text{mmHg}) \ \text{wenn nicht-medikament\"ose Therapie nach 6-12 Monaten nicht anschlägt oder hohes kardiovaskuläres Risiko besteht}$

Stadium 2 und 3 ($\geq 160 / \geq 100 \text{ mmHg}$)

Stufentherapie

- 1. Stufe Monotherapie (Responder-Rate: 45-50%)
 - Diuretika (Thiazide)
 - ACE-Hemmer (z.B. bei Herzinsuff. oder diabet. Nephropathie)
 - β -Blocker (v.a. bei KHK oder Herzinsuffizienz)
 - Ca^{2+} -Antagonisten (z.B. bei KHK)
- 2. Stufe Zweierkombination (Responder-Rate: 70-80%)

bei nicht ausreichender Blutdrucksenkung durch Monotherapie

- Diuretikum + β -Blocker oder
- Diuretikum + ACE-Hemmer Ca^{2+} -Antag. (Dihydropyridin) + β -Blocker
- Diuretikum + Ca^{2+} -Antagonist Ca^{2+} -Antagonist + ACE-Hemmer
- 3. Stufe Mehrfachkombination (Responder-Rate: 90-95%), indiziert bei schwerer Hypertonieform, die mit Zweierkombination nicht zu behandeln ist (Diuretikum obligat). Nutzung der in Stufe 1 und 2 eingesetzten antihypertensiven Pharmaka plus ggf. Reserveantihypertensiva (Dihydralazin, Minoxidil, Clonidin, α_1 -Antagonist u.a.)

Kapitel 6

Digitalisglykoside

6.1 Herzinsuffizienz

Ursachen

Koronare Herzkrankheit (KHK), langjährige Hypertonie, Kardiomyopathie, Herzklappenfehler, Myokarditis, Arrhythmien, Stoffwechselerkrankungen

Pathogenese und Klinik

Kompensierte Herzinsuffizienz klinisch kompensiert durch:

- Frank-Starling-Mechanismus
- neurohumorale Gegenregulation (Sympathikotonus[†], Aktivierung d. RAAS)
- kardiale Hypertrophie

 $\textbf{Dekompensierte Herzinsuffizienz} \quad \text{,} \textbf{Umkippen" des kompensierten Systems} \rightarrow \textbf{Circulus vitiosus}$

bei der Diagnosestellung Unterscheidung in

- \bullet HF-pEF (heart failure with preserved ejection fraction ${>}50\%)$
- HF-rEF (heart failure with reduced ejection fraction <40%)

Symptome

Dyspnoe, Müdigkeit, Flüssigkeitsretention

Klassifikation

(New York Heart Association):

NYHA I keine Symptome

NYHA II Beschwerden bei mittelschwerer bis schwerer Bela-

stung

NYHA III Beschwerden bei geringer alltäglicher Belastung

NYHA IV Beschwerden in Ruhe

Prognose

10% der Patienten im Stadium NYHA II und III sowie 50% der Patienten im Stadium NYHA IV sterben im ersten Jahr nach Diagnosestellung (Prognose korreliert mit Ausmaß der neurohumoralen Gegenregulation)

Zur Behandlung der chron. Herzinsuff. eingesetzte Pharmaka

- ACE-Hemmer, β -Blocker, Mineralokortikoid-Rezeptorantagonisten
- $\bullet\,$ ggf. $AT_1\text{-Antag.},$ Digitalisglykoside, Ivabradin, Hydralazin/ISDN
- Diuretika (symptomatsich)

6.2 Digitalisglykoside

natürliche Digitalisglykoside

Digitoxin Digitoxin

 $halb synthetische \ Digitalisglykoside$

 β -Acetyldigoxin Metildigoxin

Wirkmechanismus

Hemmung der plasmalemmalen Na^+ - K^+ -ATPase

- kardial: Akkumulation von Na^+ in der Zelle $\to Na^+/Ca^{2+}$ -Antiport (NCX1) \downarrow
 - Steigerung der intrazellulären Ca^{2+} -Konzentration
 - positiv inotrop, positiv bathmotrop
- zentral: Erregung zentraler Vaguskerne, gesteigerte Empfindlichkeit der Barorezeptoren \rightarrow Parasympathikotonus \uparrow , Sympathikotonus \downarrow (bereits bei niedriger Dosierung) \rightarrow negativ chronotrop, negativ dromotrop
- glatte Gefäßmuskulatur: Tonisierung bei Gesunden, bei Herzinsuffizienten als Nettoeffekt allerdings Abnahme des Gefäßtonus durch Normalisierung des erhöhten Sympathikotonus

Pharmokokinetik

	Digoxin	Digitoxin
enterale Resorption	50 80%	98%
Plasma-Eiweiß-Bindung	30-40%	>95%
Metabolisation	30%	70%
Elimination	überwiegend unverändert renal	überwieg. hepatisch metabol. (en-
		terohep. Kreisl.)
Plasma-HWZ	35-50 h	5-8 d

 β -Acetyldigoxin und Metildigoxin werden sehr rasch (teils bereits in der Darmmukosa) zu Digoxin metabolisiert (Resorptionsquote 80-90%)

Unerwünschte Wirkungen

(geringe therapeutische Breite!)

- kardial (häufig): Bradykardie, AV-Überleitungsstörungen, ventrikuläre Extrasystolen, Kammerflimmern
- gastrointestinal (häufig): Inappetenz, Übelkeit, Erbrechen (durch Chemorezeptor-Aktivierung in der Area postrema der M. oblongata); selten: Diarrhoe
- ZNS: Verwirrung, Agitiertheit, Müdigkeit, Schlaflosigkeit, Depressionen, Psychosen, Sehstörungen (Halo-Phänomene, verändertes Farbensehen (Gelb-Grün)

Kontraindikationen

- Hypokaliämie, Hyperkaliämie, Hyperkalziämie
- Bradykardie, AV-Block 2./3. Grades

Interaktionen / Wechselwirkungen

- Hyperkaliämie: Wirkung ↓
- Hypokaliämie und Hyperkalziämie: Wirkung ↑
- \bullet Resorption \downarrow bei gleichzeitiger Gabe von Anionenaustauscher

Vorgehen bei Digitalisierung

Kumulationsgefahr, geringe therapeutische Breite!

70 7	Digoxin	Digitoxin
Abklingquote (tägl. prozentualer	20%	7%
Wirkverlust)		
Erhaltungsdosis pro Tag	0.15-0.3 mg	0,07-0,1 mg
therapeut. Plasmakonzentration	0.5- $0.8 ng/ml$	10-20 ng/ml

langsame Digitalisierung tägl. 1x Erhaltungsdosis, Vollwirkspiegel erreicht: nach 7-8 Tagen (Digoxin), bzw. 3-4 Wochen (Digitoxin)

mittelschnelle Digitalisierung – Digoxin: z.B. 2 Tage 2 x Erhaltungsdosis/d, dann 1 x tägl. 1x Erhaltungsdosis

Digitoxin: z.B. 3 Tage 3 x Erhaltungsdosis/d, dann 1 x tägl. 1x Erhaltungsdosis

Vergiftung

Zeichen Herzrhythmusstörungen (AV-Block, Bradykardie, ventrikuläre Rhythmusstörung), gastrointestinale, neurotoxische Symptome (Übelkeit, Erbrechen, Durchfall, Verwirrtheit, Farbensehen, Kopfschmerzen)

Therapie leichte Intoxikation (chron.): Absetzen über mehrere Tage schwere Intoxikation: Magenspülung, Aktivkohle, Digitalis-Antikörper (Fab- Fragmente), ggf. K^+ -Spiegel auf hochnormale Werte anheben, ansonsten symptomatische Behandlung

Stellenwert der Digitalisglykoside

- DIG-Studie 1997: Senkung der Hospitalisierungsrate, kein Effekt auf Mortalität;
- DIG- Studie 2003:
 - unter niedriger Dosierung (0,5-0,8 ng/ml Digoxin): Mortalitätssenkung
 - unter mittlerer Dosierung (0,9-1,1 ng/ml Digoxin): kein Effekt auf Mortalität
 - unter höherer Dosierung (¿1,2 ng/ml Digoxin): Erhöhung der Mortalität
- bei Niereninsuffizienz Digoxin-Dosisreduktion oder Umsetzen auf Digitoxin
- indiziert (laut Therapierichtlinie der AKDAE, 2007) bei :
 - NYHA I + II u. tachysystolischem Vorhofflimmern (niedrige Zielserumspiegel)
 - NYHA II im Sinusrhythmus nach Besserung von schwerer Symptomatik
 - Herzinsuffizienz NYHA III + IV bei persistierenden Symptomen unter ACE Hemmer- und β -Blocker Gabe (niedrige Zielserumspiegel)

Therapie der chron. Herzinsuffizienz

nicht medikamentös

- Reduktion d. körperl. Aktivität bei hochgradiger und dekomp. Herzinsuffizienz
- Reduktion des Kochsalzkonsum ($< 6\frac{g}{d}$), Flüssigkeitsreduktion (1-2 $\frac{l}{d}$)
- ggf. Gewichtsreduktion, Nikotin- und Alkoholkarenz

medikamentös				
	NYHA I	NYHA II	NYHA III	NYHA IV
ACE-Hemmer*	+	+	+	+
β_1 -Blocker	-	+	+	+
Mineralkortikoidreze	ptor-	+	+	+
Antagonist				
(MRA)**				
Therapien mit we-				
niger eindeutigem				
Nutzen:				
Digitalisglykoside***	-	(+)	(+)	(+)
Ivabradin****	-	(+)	(+)	(+)
Hydralazin-	-	(+)	(+)	(+)
ISDN*****				

Diuretika in allen Stadien zur Herstellung der Euvolämie bei Luftnot/Ödemen

Kapitel 7

Antiarrhythmika

Ströme, die an der Generierung von Ruhepotential und Aktionspotential beteiligt sind:

- Phase 0: Aktivierung eines schnellen Na^+ -Einwärtsstroms (I_{Na}) , wenn Membranpotential einen bestimmten Schwellenwert erreicht (ca. -60 mV)
- Phase 2: Ca^{2+} -Einwärtsstroms (v.a. L-Typ Kanäle; I_{Ca-L}), Ca^{2+} -Einstrom stellt Ca^{2+} für elektromechan. Kopplung zur Verfügung; K^+ -Leitfähigkeit nimmt langsam zu
- Phase 3: Ca^{2+} -Kanäle inaktivieren \to Repolarisation; K^+ -Auswärtsstrom (I_K) über spannungsabhäng. K^+ -Kanäle mit langsamer Aktivierungskinetik \to Repolarisation
- Phase 4 (diastolische Vordepolarisation) langsame Depol., die Schrittmacherpotential erzeugt; langsamer Na^+ -Einwärtsstroms bis zur Schwelle über unspezif. Kationenkanal (I_f ; Hyperpolarisations-aktiv. Kanal), gegen Ende: langsamer Ca^{2+} -Einwärtsstroms (v.a. L-Typ Kanäle, aber auch T-Typ); führt zur Depol. und Fortleitung \rightarrow Phase 0; K^+ -Leitfähigkeit \downarrow . Phase 0 (Depolarisation) überw. durch Ca^{2+} -Einwärtsstrom getragen (T-/L-Typ); Phase 3 (Repolarisation) Ca^{2+} -Einwärtsstrom \downarrow , K^+ -Auswärtsstrom \uparrow .

7.1 Mechanismen der Arrhythmieenstehung

abnorme Schrittmacheraktivität

Sinusknoten, AV-Knoten (Phase 4); - Arbeitsmyokard bei geschädigten Zellen \rightarrow meist durch Na^+/Ca^{2+} -Ionen getragene Depol. \rightarrow ektope Erregungsbildung

Nachdepolarisation

frühe Nachdepolarisation (EAD) Störung d. Repol.; K^+ -Strom (I_{Kr}), Verläng. d. Ca^{2+}/Na^+ -Einstroms \to QT-Zeit $\uparrow \to$ Gefahr d. Entwicklung v. torsade de pointes Häufig d. Pharmaka: Klasse III Antiarrhythmika, Erythromycin, Terfenadin, Clarithromycin, Cisaprid*, Astemizol*, Sertindol* u.a. *vom Markt genommen

späte Nachdepolarisation durch Ca^{2+} -Überladung der Zelle, z.B. durch Katecholamine, Digitalisglykoside, Ischämie

Blockade der Fortleitung

z.B. AV-Block

Reentry

normalerweise endet Impuls mit der Erregung des Arbeitsmyokards. Voraussetzung für "Reentry"-Phänomen: Kreisweg durch Leitungshindernis, unidirektionaler Block; Leitungszeit lang genug, daß kreisende Erregung auf nicht-refraktäres Gewebe trifft.

7.2 Antiarrhythmika-Klassen (Vaughan-Williams)

7.2.1 Klasse I-Antiarrhythmika

v.a. Blockade des schnellen Na^+ -Einstroms in Phase $0 \to \text{Hemmung der Aktionspotential-Weiterleitung Erholungszeit der <math>Na^+$ -Kanäle $\uparrow \to \text{Refraktärzeit} \uparrow$

Klasse I Antiarrhythmika binden bevorzugt an offenen und/oder inaktiven Zustand des Na^+ -Kanals \rightarrow je häufiger aktiviert, desto größer der Grad der Blockade Dissoziation vom ruhenden Kanal

Klasse Ia

Chinidin Procainamid
Disopyramid Ajmalin

Wirkmechanismus mittellange Blockade von Na^+ -Kanälen (I_{Na}) im offenen Zustand \to Depolarisationsgeschwindigkeit $\downarrow \to$ Anstiegssteilheit des Aktionspotentials (Phase 0/1) $\downarrow \to$ Leitungsgeschwindigkeit, Automatie, Erregbarkeit \downarrow (auch reguläre Impulse werden beeinflusst) \to möglicher proarrhythmogener Effekt)

- Blockade von verschiedenen K^+ -Kanälen \to Repolarisation $\downarrow \to$ Aktionspotentialdauer / Refraktärzeit \uparrow
- \bullet anticholinerge Wirkung (v.a. Chinidin, Disopyramid ; ggf. paradoxe Wirkung bei niedriger Dosierung \to Tachykardie

Pharmakokinetik gute Bioverfügbarkeit; Plasma-HWZ: 4-7 h (Chinidin lang)

Einsatz Chinidin: Reservemittel zur Rhythmisierung bei Vorhofflimmern. Disopyramid, Procainamid: Reservemittel bei komplexen ventrikulären/ supraventrikulären Herzrhythmusstörungen. Ajmalin: Reservemittel zur Akuttherapie lebensbedrohlicher ventrikulärer Herzrhythmusstörungen.

unerwünschte Wirkungen relativ häufig (v.a. Chinidin) kardial: negativ ino-, dromotrop; potentiell arrhythmogen gastrointestinale Störungen, Mundtrockenheit (anticholinerge Wirkung) zentralnervöse Störungen (Cinchonismus): Kopfschmerzen, Schwindel, Sehstörungen, Delirien, Psychose; allergische Reaktionen

Interaktionen v.a. Chinidin: Erhöht freie Plasmakonzentration von Digitalisglykosiden; Hemmung von CYP2D6 \rightarrow Abbau einiger β -Blocker, Antidepressiva, Neuroleptika \downarrow

Klasse Ib

Lidocain Phenytoin

Wirkmechanismus kurzfristige Bindung an Na^+ -Kanäle (I_{Na}) im inaktivierten Zustand; Dissoziation und Assoziation im Rhythmus des Herzschlages \rightarrow effektive Blockade bei frühzeitiger Erregung \rightarrow binden v.a. im depolarisierten Zustand (z.B. Ischämie) \rightarrow Einsatz bei Ischämie-bedingten Arrhythmien; Frequenzfiltereffekt (je tachykarder desto wirksamer); (reguläre Impulse werden kaum beeinflusst)

Pharmakokinetik Lidocain: hoher first-pass-Effekt (nur i.v.-/i.m.-Gabe)

Plasma-HWZ ca. 1 h (meist nur akute Therapie); Phenytoin: gute Resorption n.oraler Gabe, Plasma-HWZ: 10-20/15-25 h)

Einsatz ventrikuläre Arrhythmien; z.B.: nach Herzinfarkt [akut: Lidocain(i.v.)]; durch Digitalis-Intoxikation (Phenytoin)

unerwünschte Wirkungen kardial: weniger stark ausgeprägt als bei Klasse Ia/c; schwach negativ inotrop und chronotrop, schwach arrhythmogen. zentralnervöse Störungen (bei Überdosierung): Unruhe, Tremor, Krämpfe, Koma

Klasse Ic

Flecainid Propafenon

Wirkmechanismus langfristige Bindung an Na^+ -Kanäle (langsame Dissoziation); Blockade über mehrere Herzschläge \rightarrow verringerte Erregbarkeit, Leitungsgeschwindigkeit \downarrow ; Beeinflussung regulärer Impulse (proarrhythmogener Effekt); zusätzlich: β -Adrenozeptor-Blockade durch Propafenon

unerw. Wirkungen negativ ino-/dromo-/chronotrop; arrhythmogen (CAST-Studie)

Einsatz Reservemittel b. ventrikuläre/supraventrikulären Arrhythmien; obsolet

7.2.2 Klasse II-Antiarrhythmika

β -Adrenozeptor-Blocker

Supraventrikuläre Tachykardien (Sinustachykardie, paroxysmale Tachykardie); Vorhofflimmer, -flatter; - ventrikuläre Arrhythmien (durch Belastung oder Aufregung); cave: Kombination mit Verapamil, Diltiazem

7.2.3 Klasse III-Antiarrhythmika

Amiodaron Sotalol Dronedaron

Wirkmechanismus Blockade verschiedener K^+ -Kanäle \to Aktionspotential verlängert \to Refraktärzeit verlängert; β -Adrenozeptorblockade (v.a. Sotalol) Amiodaron: zusätzlich leichte Blockade von Na^+ - und Ca^{2+} -Kanälen

Pharmakokinetik Sotalol: 100% bioverfügbar, Plasma-HWZ 7-18 h Amiodaron: 22-86% bioverfügbar, Plasma-HWZ 20-100 Tage !; hohe Plasmaeiweißbindung (96%), lipophil; Anreicherung im Gewebe, Wirkungseintritt nach 4-10 Tagen

Einsatz therapieresistente supraventrikuläre und ventrikuläre Arrhythmien, Rezidivprophylaxe supraventr. Tachykardien; Vorhofflimmern, -flattern; anhalt. Kammertachykardie (Amiodaron auch bei ventrikular vorgeschädigten Pat.)

unerwünschte Wirkungen Long-QT-Syndrom, negativ inotrop (v.a. Sotalol), Sinusbradykardie (Sotalol); Amiodaron: gelbbraune Ablagerungen an der Vorderseite der Hornhaut, Schilddrüsenfunktionsstörung, phototoxische Hautreaktionen, Neuropathien, Lungeninfiltrate Dronedaron: jodfreies Amiodaron-Derivat (→ kein Einfluss auf Schilddrüsen-funkt.), hepatotoxisch; pharmadynamisch wie Amiodaron, aber weniger wirksam NICHT bei Herzinsuffizienz, permanentem VHF, AV-Block °II-III, Bradykardie

7.2.4 Klasse IV-Antiarrhythmika

Verapamil Diltiazem

Wirkmechanismus Ca^{2+} -Kanal-Blockade (L-Typ) \rightarrow Depolarisationsgeschwindigkeit in spontan-depolarisierenden Zellen $\downarrow \rightarrow$ z.B. AV-Überleitung $\downarrow \rightarrow$ pathol., Ca^{2+} -Kanal-vermittelte Depolarisationen $\downarrow \rightarrow$ Nachdepolarisationen \downarrow

Einsatz paroxysmale, supraventrikuläre Tachykardien; Vorhofflimmern, -flattern

unerwünschte Wirkungen Flush, Hitzegefühl, Obstipation; allergische Reaktion, Schwindel, Benommenheit; Bradykardie / AV-Blockierung cave: Kombination mit β -Blockern

7.2.5 weitere als Antiarrhythmika eingesetzte Pharmaka

Digitalisglykoside

(supraventrikuläre Tachykardien, Vorhofflimmern/flattern)

Atropin

Einsatz: Sinusbradykardien

Adenosin

Wirkung über Adenosin A1 Rezeptoren im Vorhof, Sinus- und AV-Knoten: Aktivierung von K^+ -Kanälen, Hemmung von Ca^{2+} -Kanälen \to Hyperpolarisation, negativ dromotrop, chronotrop

Pharmakokinetik sehr schnelle Inaktivierung (Aufnahme und Desaminierung in Erythrozyten); Plasma-HWZ: Sekunden $! \to Bolusinjektion$

Einsatz Akutbehandlung supraventrikuläre Tachykardien

Unerw. Wirkungen AV-Block, Flush, Dyspnoe, Brustschmerzen, Übelkeit

7.2.6 weitere Kardiaka mit Wirkung auf kardiale Kanäle

Ivabradin

Blocker des atrialen Schrittmacherkanals (If; HCN2/HCN4)

Wirkung negativ chronotrop; kein Effekt auf Dromotropie und Inotropie

Einsatz - chron. stabile Angina pectoris in Komb. mit β -Blockern oder wenn Blocker nicht vertragen werden; bei Pat. mit Herzinsuff. + Tachykardie (SHIFT-Studie 2010) bzw. + VHF

Unerw. Wirkungen Sehstörungen (Phosphene, 3% der Pat.), ggf. Bradykardie

7.3 Relaxantien glatter Muskulatur

7.3.1 Regulation des Tonus der glatten Muskulatur

Gefäße, Bronchien, Uterus, Magen-Darm-Trakt, Ableitende Harnwege

Regulation über Rezeptoren

Gefäß AT_1 -Blocker, α_1 -Blocker

Bronchien Parasympatholytika, β_2 -Agonisten

Uterus Oxytocinrezeptor-Antagonisten, Prostaglandine, β_2 -

Agonisten

M.-D.-Trakt Parasympatholytika, dir./indir. Parasympathomime-

tika

Prokinetika (indirekt), Opiate/Opioide (indirekt)

7.3.2 NO-Donatoren

Organische Nitrate

Glyceroltrinitrat Isosorbiddinitrat (ISDN) Isosorbidmononitrat (ISMN) Molsidomin Natriummnitroprussid

Wirkmechanismus

Toleranzentwicklung bei organischen Nitraten

- \bullet verminderte Wirkung nach wiederholter Gabe durch Erschöpfung des zellulären Metabolismus zu NO (Verfügbarkeit von SH-Gruppen $\downarrow 4)$
- vermehrte Inaktivierung von NO zu $ONOO^-$ durch vermehrte Bildung von $O_2^- \to Intervalltherapie$ (mind. 8 h Pause / Tag)

Kardiovaskuläre Effekte von NO-Donatoren

- in therapeutischen Dosen: Dilatation v.a. großer venöser Gefäße (Natrium-nitroprussid auch arterielle Gefäße) Vorlast $\downarrow \rightarrow$ kard. Füllungsdruck \downarrow ,
 - Wandspannung \downarrow myokardialer O_2 -Verbrauch* \downarrow
 - Abnahme der extravasalen Komponente des Koronarwiderstands \to koronarer Perfusionsdruck $\uparrow \to$ Innenschichtdurchblutung \uparrow
 - Kollateraldurchblutung ↑

- v.a. unter Natriumnitroprussid und auch Molsidomin Nachlastsenkung
- direkte Koronardilatation nur bei vasospastischer Angina relevant
- Bedeutung der Thrombozytenfunktionshemmung durch NO-induzierte cGMP Bildung in Thrombozyten unklar

Pharmokokinetik

Glyceroltrinitrat

- oraler Gabe: Extrem hoher first-pass-Effekt
- sublinguale Gabe: max. Plasmakonzentration nach 4 min Plasma-HWZ: 1-3 min, Wirkdauer: 30 min
- auch transdermale Gabe (Nitratpflaster); selten i.v. (Perfusor)

ISDN / ISMN

- gute Resorption nach oraler Gabe, rasche Metabol. von ISDN zu ISMN,
- Plasma-HWZ: ISDN 50 min, ISMN 5 h; Wirkbeginn nach oraler Gabe: 10-30 min (ISDN schneller als ISMN); Wirkdauer: 4-6 h

Natriumnitroprussid

- \bullet instabil \rightarrow nur i.v.-Gabe, Zerfall unter CN-Freisetzung
- Antidot: Natriumthiosulfat (Thiosulfat $(S_2O_3^{2-})+CN^-\to {\rm Sulfit}\;(SO_3^{2-})+SCN^-$)

Molsidomin

- gute Resorption nach oral. Gabe
- hepatisch zu SIN1 metabolisiert (pro-drug), langsam. Wirkbeginn
- Plasma-HWZ: 1-2 h

Indikationen

- KHK Anfall: Glyceroltrinitrat (s.l.), evtl. ISDN (s.l.) Prophylaxe: ISDN, ISMN, Molsidomin
- therapieresistente Hypertonie (Natriumnitroprussid i.v.)

unerwünschte Wirkungen

- vasomotorische Kopfschmerzen (Verschwinden bei Dauertherapie)
- orthostatische Dysregulation (bei hohen Dosen), Reflextachykardie
- Flush, Schwindel

^{*} Hauptdeterminanten d. O_2 -Verbrauchs: Wandspannung (Vorlast, Nachlast), Herzfrequenz, Kontraktiliät, Myokardmasse

Kontraindikationen Kreislaufschock, symptomat. Hypotonie

Interaktionen PDE5-Hemmer

7.4 Ca^{2+} -Kanalblocker

7.4.1 spannungsabhängige Ca^{2+} -Kanäle

Current L-Type(long lasting; high voltage activating, high conductance, slow inactivation)	α_1 -subunit $Ca_v 1.1 \ (\alpha_{1S})$	Localization Skeletal muscle (t-tub.)	Function/Modulation Excitation-contion- coupling (PKA †)	n Blocker Dihydropyridines, Phenylalkylamines, Benzothiazepines (wirksam v.a. bei $Ca_v1,2a$ und $Ca_v1,2b$)
	$Ca_v 1.2a \ (\alpha_{1C-a})$ $Ca_v 1.2b \ (\alpha_{1C-b})$ $Ca_v 1.2c \ (\alpha_{1C-c})$	Cardiomyocyte Smooth muscle Neurons	Hormone release, synaptic integrati- on	
P/Q-Type (Purk-	$Ca_{v}1.3 \; (\alpha_{1D})$ $Ca_{v}1.4 \; (\alpha_{1F})$ $Ca_{v}2.1 \; (\alpha_{1A})$	neuroendocrine Retina Nerve terminals and dendrites	Transmitter release Neurotransmitter	ω -Agatoxin IVA
inje; mod. Voltage activ., med. Con- duct., very slow in- activ.)		and dendrites	release; dendritic transients($G\beta\gamma\downarrow$)	
N-Type (neuronal; high voltage activ., med. Conduct., med. Inactiv.)	$Ca_v 2.2(\alpha_{1B})$	Nerve terminals and dendrites	Neurotransmitter release; dendritic Ca^{2+} transients $(G\beta\gamma\downarrow)$	ω -Conotoxin GVIA
R-Type	$Ca_v 2.3(\alpha_{1E})$	Neuronal cell bodies and dendrites	Repetitive firing $(G\beta\gamma\downarrow)$	SNX-482
T-Type(transient; low volt. Activ., small cond., fast inact.)	$Ca_v3.1(\alpha_{1G})$	Neuronal cell bo- dies and dendri- tes; cardiomyocytes $(Ca_v3.1/3.2)$	Pacemaking, repetitive firing	Mibefradil
	$Ca_v 3.2(\alpha_{1H}) Ca_v 3.3(\alpha_{1I})$			

Dihydropyridine

Nifedipin Amlodipin Nitrendipin Nimodipin u.a.

- binden von extrazellulär v.a. an den inaktivierten Kanal und stabilisieren den inaktivierten Zustand, der v.a. in Zellen der glatten Muskulatur häufig auftritt
- die im glatten Gefässmuskel vorherrschende Splice-Variante α_{1C-b} zeigt eine höhere Sensitivität gegenüber Dihydropyridinen als die kardiale Variante α_{1C-a}

• Wirkung: Glatter Gefäßmuskel > Herz

Phenylalkylamine

Verapamil Gallopamil

binden an offenen Zustand des Kanals, Wirkung frequenzabhängig, blockieren Pore von innen, gute Wirkung am Herzen (Myokard und Reizleitungssystem) Wirkung: Glatter Gefäßmuskel = Herz

Benzothiazepine

Diltiazem

genauer Blockademechanismus ungeklärt. Die Gewebeempfindlichkeit entspricht weitgehend der der Phenylalkylamine

Wirkmechanismus Hemmung spannungs-abhängiger Ca^2 +-Kanäle (L-Typ)

- Herz: $[Ca^2+]_i \downarrow$? negativ inotrop, Ca^2+ -Einstrom in diastolisch depolaris. Zellen $\downarrow \rightarrow$ negativ chronotrop und dromotrop $\rightarrow O_2$ -Verbrauch \downarrow ; Verapamil > Diltiazem > Nifedipin
- glatte Gefäßmuskulatur: $[Ca^2+]_i \downarrow \to$ generalisierte arterielle Dilatation kein oder geringer Effekt auf Venen; Nachlastsenkung, spasmolyt. Wirkung auf Koronarien, bessere Kollateraldurchblutung (cave: Steal Effekt); Nifedipin \geq Diltiazem = Verapamil

kardiovaskuläre Effekte

	Dihydropyridine	Phenylalkylamine	Benzothiazepine
periph. Art. Widerstand	\downarrow	↓	↓
Blutdruck	\downarrow	\downarrow	↓
Herzfrequenz	†	↓	↓
Herzkontraktionskraft	- /(↑)	(\downarrow)	(\downarrow)
AV-Überleitung	- /(↑)	\downarrow	(\downarrow)

Indikationen KHK (2. Wahl), Hypertonie (v.a. Dihydropyridine), paroxysm. Supraventrik. Arrhythmien (Phenylalkylamine, Benzothiazepine)

Unerwünschte Wirkungen alle Gruppen: Flush, Hitzegefühl, allerg. Reaktion, Schwindel, Benommenheit; v.a. Dihydropyridine: Reflextachykardie, Knöchelödeme; Verapamil: Obstipation Diltiazem, Verapamil: Bradykard., AV-Block., Inotropie ↓

Kontraindikationen Herzinsuff. (NYHA III/IV), akut. M-Infarkt, AV-Block II./III. Grades, Sick-Sinus-Syndrome (Verapamil, Diltiazem); Schwangerschaft, Stillzeit Keine gleichzeitige Gabe von Diltiazem/Verapamil und β -Blockern!

7.5 Koronare Herzkrankheit (KHK)

7.5.1 Pathogenese und Klinik

Stabile Angina pectoris

Reversible Beschwerden z.B. nach Belastung, meist atherosklerot. Verengung epikardialer Koronarien

Akutes Koronarsyndrom

Beschwerden auch in Ruhe, Infarktrisiko! Meist Ruptur atherosklerot. Plaques \rightarrow Thrombozytenadhäsion und -aggregation.

Instabile Angina pectoris

Keine Nekrosezeichen (EKG, Labor)

Nicht ST-Hebungsinfarkt

Keine ST-Streckenhebung, pos. Nekrosemarker(Troponin)

ST-Hebungsinfarkt

ST-Streckenhebung + pos. Nekrosemarker

Sonderformen

z.B. Prinzmetal-Angina: Spasmen von Koronarien

7.5.2 Symptomatische Behandlung der Angina pectoris (A.p.)

- β -Rezeptorenblocker mit β 1-Selektivität (meist 1. Wahl) negativ dromotrop, negativ chronotrop, negativ inotrop $\rightarrow O_2$ -Verbrauch \downarrow
- Organische Nitrate / Molsidomin (zusätzlich oder bei KI von β -Blocker) Dilatation v.a. venöser Gefäße $\rightarrow \dots \rightarrow O_2$ -Verbrauch \downarrow Kollateraldurchblutung \uparrow
- Ca^{2+} -Antagonisten (selten Monotherapie, nicht bei u. 4 Wochen nach Infarkt!) Dihidropyridine (fast ausnahmslos retardierte Formulierungen): Gefahr d. Reflextachykardie, sinnvoll Komb. mit β -Blocker
- Verapamil/Diltiazem: nicht bei Bradykardie, AV-Überleitungsstörung, β -Blocker

Th. von Risikofaktoren (v.a. Diab. mell., Hypertonie, Hyperlipidämie, Rauchen)

Symptomatische Therapie der A.p. je nach Begleitarkrankungen

Hypertonie Herzinsuffizienz Diabetes mellitus Asthma bronchiale supraventr. Tachykardie periph.-art. Verschl.-Krankh. β-Blocker, Ca^{2+} -Antagonisten β-Blocker, Nitrate (zusätzl. zu ACE-Hemmern) Nitrate, (Ca^{2+} -Antagonisten) Nitrate, Ca^{2+} -Antagonisten; [cave: β-Blocker] β-Blocker, Ca^{2+} -Antagonisten Nitrate; [cave: β-Blocker]

Prognose verbessernde Pharmakotherapie (Mortalitätssenkung)

ASS Thrombozyten
aggregationshemmung, $\downarrow \! \mathrm{Rate} \ \mathrm{z.B.}$ von

Reinfarkten

Statine \quad \Progression atheromatöser Plaques (Koronarsklero-

se)

 β -Rez.-Blocker bei Postinfarktpatienten \downarrow ventr. Arrhythmien, \downarrow Reinfarkte

7.5.3 Therapie des akuten Angina-pectois Anfall

Mittel d. Wahl: Glyceroltrinitrat als Zerbeißkapseln oder sublingual als Spray (Wirkeintritt binnen weniger Minuten), ggf. Wdhlg. (RR-Kontrolle!), Isosorbiddinitrat p.o. oder sublingual als Spray (Wirkeintritt langsamer)

7.6 K^+ -Kanalöffner

ATP-abhängiger K^+ -Kanal

Aktivierung des Kanals in der glatten Gefäßmuskul. (Kir
6.1/SUR2B) d. K+-Kanalöffner (z.B. Cromakalim) \rightarrow Relaxation v.a. arterieller Gefäße
 \rightarrow Gefäßwiderstand

7.7 Phosphodiesterase(PDE)-Hemmer

Isoform PDE 1	Substrat cAMP	Expression glatter Muskel, Ge- hirn	Regulation $Ca^{2+}/\mathrm{CaM}\uparrow$	Hemmer
PDE 2	cAMP/cGMP	Thrombozyten	$cGMP\uparrow$	
PDE 3	cAMP	glatter Muskel, Herz u.a.	$\mathrm{cGMP}\!\!\downarrow$	Amrinon, Milrinon
PDE 4	cAMP	Bronchien, Immunz., Gehirn	Roflumilast, Cilomilas	st
PDE 5	cGMP	glatte Muskulatur	Sildenafil, Vardena- fil	
PDE 6	cGMP	Retina		

7.7.1 Unselektive PDE-Hemmer

Methylxanthine

Theophyllin Coffein

Wirkmechanismus

- \bullet unselektive Hemmung von PDE (halbmax. Hemmkonz. für PDE: 400-700 μ M)
- Antagonismus an Adenosin (A₁/A₂)-Rezeptoren (K_D : 2-10 μ M) \rightarrow Vermittlung z.B. der psychostimulatorischen Effekte

Wirkung bei Asthma / COPD: Bronchodilatation, Anti-Inflammation (PDE4)

Pharmakokinetik

- gute Bioverfügbarkeit nach oraler Gabe
- Wirkbeginn: 5-15 Minuten, Wirkmaximum: 30 Minuten, Wirkdauer: 6-8 h
- nahezu vollständige hepatische Metabolisierung

sehr stark schwankende individuelle Plasma-Halbwertszeiten

Clearance †: Kinder, Raucher, versch. Pharmaka (Enzyminduktion; CYP1A2)

Clearance ↓: ält. Patient., Alkohol, Koffein, versch. Pharmaka (Enzymhemm.)

unerwünschte Wirkungen

PDE-Hemmung

(geringe therapeutische Breite) $A_{1/2}$ Antagonismus

Übelkeit, Erbrechen, Kopfschmerzer Unruhe, Schlafstörungen, Diures Krampfschwelle↓

Einsatz (vorzugsweise p.o.; i.v.) Prophylaxe und Soforttherapie des Asthmaanfalls, Status asthmaticus

Kontraindikationen KHK, Tachyarrhythmie, Hyperthyreose etc.

7.7.2 Selektive PDE-Hemmer

PDE 3-Hemmer

Amrinon Milrinon

Einsatz stark eingeschränkt wegen unerwünschter Wirkungen (Arrhythmien, Progredienz einer linksventrikulären Dysfunktion u.a.) Evtl. Kurzzeittherapie bei schwerer Herzinsuffizienz, die gegenüber anderen Pharmaka refraktär ist

PDE 5-Hemmer

Sildenafil Vardenafil Tadalafil

Wirkung v.a. auf PDE 5 der glatten Gefäßmuskulatur \rightarrow Verstärkung natürlicher NO-relaxierender Effekte Einsatz: Pulmonale Hypertonie, Erektile Dysfunktion

Wirkung nur bei intakter NO-Freistzung. Im Bereich des Corpus cavernosum NO-Freisetzung aus nitrergen (NANC) parasympathischen Neuronen, daneben Endothel-vermittelt nach Aktivierung endothelialer M3-Rezeptoren.

Pharmakokinetik Bioverfügbarkeit 40%, Max. Plasmaspiegel 1 h, Plasma-HWZ: 3-5 h (Tadalafil: 18 h), Hepat. Metabolisierung

Unerw. Wirkungen RR ↓, Kopfschmerzen, Schwindel, Flush, Störungen des Blau/Grün-Sehens (PDE 6)

Wechselwirkungen NO-Donatoren $\to RR \downarrow, \to Reflextachykardie gleichzeitige Gabe kontrainidiziert, Gefahr v.a. bei kardial vorgeschädigten Patienten!$

Kapitel 8

Antidiabetica

8.1 Diabetes mellitus

Nüchtern-Blutglukose (mg/dl) 2 h nach oraler Glukosebelastung

(75g) (mg/dl)

Normal < 110 < 140

Pathol. Glukosetoleranz 110-126 140-200 Diabetes \geq 126 \geq 200

8.1.1 Typ I Diabetes

- \bullet absoluter Insulinmangel, meist aufgrund autoimmunologisch zerstörter β -Zellen des Pankreas
- ca. 200.000 Patienten in Deutschland, Manifestation meist vor dem 40. Lebensjahr

8.1.2 Typ II Diabetes

- \bullet Insulin
resistenz und zunehmend inadäquate kompensatorische Insulinsek
retion
- Vererbungsrisiko höher als bei Typ I Diabetes Manifestation und Verlauf von exogenen Faktoren (Ernährung, Körpergewicht, Bewegung) abhängig
- ca. 4 Mio. Patienten in Deutschland, Typ IIa (Normalgewicht): 10% Typ IIb (Übergewicht): 90%; Manifestation meist nach dem 40. Lebensjahr

8.1.3 Sonderformen

- nicht-medikamentös (Diät, "lifestyle")
- $\bullet\,$ medikamentös: orale Antidiabetika: Sulfonylharnstoffe, Biguanide, $\alpha\textsc{-}$ Glukosidasehemmer, Thiazolidindione Insulin

8.2 Insulinsynthese/-sekretion

Synthese in den β -Zellen der Langerhansschen Inseln

8.2.1 Insulin-Rezeptor

200.000 - 300.000 Rezeptoren pro Leber- / Fettzelle 2 α -Untereinheiten (135 kDa), 2 β -Untereinheiten (95 kDa) Bindung von Insulin führt zur Aktivierung einer Tyrosinkinase-Aktivität (β -Untereinheit) \rightarrow Autophosphorylierung sowie Phosphorylierung spezifischer zellulärer Substrate an Tyrosin-Resten (z.B. IRS-1, IRS-2 u.a., "Insulin-Rezeptor-Substrate")

- \rightarrow Induktion verschiedener Signaltransduktionskaskaden (Phosphoinositid-3-Kinase "PI-3-Kinase", Ras/MAP-Kinase etc.)
- \rightarrow Auslösung zellulärer Effekte
 - Translokation von Glukosetransportern (GLUT-4) an die Plasmamembran
 - Regulation von Stoffwechselenzymen
 - Induktion von Wachstumsprozessen

8.3 Insulin

8.3.1 Kurz-/ultrakurz-wirksame Insuline

• Reguläres Insulin ("Alt-Insulin"; "Normal-Insulin")

Analoga (Stellenwert umstritten)

- Insulin lispro Austausch von Prolin 28 und Lysin 29 der B-Kette
- Austausch von Prolin 28 gegen Asparagin B-Kette. Gentechnisch hergestellte Formen des Humaninsulins mit geringerer Neigung zur Hexamer-Bildung → schnellere Resorption nach s.c.-Gabe

8.3.2 Mittellang-/lang-wirksame Insuline

• NPH-Verzögerungsinsulin (Neutral-Protamin Hagedorn) Resorptionsverzögerung durch Kristallbildung mit Protamin

Analoga (Stellenwert umstritten)

- Insulin glargin Ersatz v. Asparagin 21 der A-Kette d. Glycin; Verlängerung der B-Kette C-terminal d.
 2 Arginin-Reste Gentechnisch hergestellte Form des Humaninsulins mit erhöhter Neigung zur Hexamer-Bildung → langsamere Resorption nach s.c.-Gabe
- Insulin detemir verzögerte Resorption und Ausscheidung durch Anheftung eines Myristinsäurerestes

Insulin (-Analogon)	Wirkbeginn (h)	Wirkungsmaximum (h)	Wirkdauer (h)
Kurz-/ ultrakurz-	- , ,	- , ,	, ,
wirksame Insuline			
Reguläres Insulin0,5	2-4	5-8	
Insulin lispro	0,25	1	2-4
Insulin aspart	0,25	1	2-4
Mittellang-/ lang-			
wirksame Insuline			
NPH-Insulin	1-2	4-8	16-20
Insulin-Zn2 ⁺ -Suspension	2-4	6-12	18-24
Insulin glargin	2-4	5-15	20-36
Insulin detemir	1-2	5-12	20

8.3.3 Kombinations-/Mischinsuline

Kombination aus kurz-/ultrakurz-wirksamen Insulinen und Verzögerungsinsulin \rightarrow schneller Wirkeintritt, lange Wirkdauer

8.3.4 Insulinapplikation

- i.v. (Bolus, Perfusor) bei Coma diabeticum, Intensivmedizin
- s.c. (Einmalspritzen, Pen, Insulinpumpe) Standardverfahren,
 - bevorzugt Unterhautfettgewebe des Bauchs oder obere Außenfläche des Oberschenkels (Resorptionsgeschw.: Bauch > Oberschenkel)
 - Insulinpumpe nur bei kooperativen, gut geschulten Patienten

unerwünschte Wirkungen Hypoglykämie, allergische Reaktionen (z.B. durch Konservierungsstoffe), Lipodystrophie am Injektionsort

8.4 Sulfonylharnstoffe

z.B.:	Tagesdosis	Wirkdauer	Tagesdosen
Tolbutamid (obsolet)	500-2000 mg	6-10 h	2-3
Glibenclamid	2,5-15 mg	18-24 h	1-3
Glipizid	2,5-30 mg	16-24 h	1-3
Glimepirid	1-8 mg	1-3	

Wirkmechanismus Hemmung ATP-sensitiver K+-Kanäle der β -Zellen

- Insulin-Sekretion ↑
- Wirkung abhängig von endogener Insulinproduktion
- Insulinfreisetzung

8.4.1 ATP-abhängiger K^+ -Kanal

Hemmung des Kanals in $\beta\text{-}\mathrm{Zellen}$ des Pankreas (Kir
6.2/SUR1) durch Sulfonylharnstoffe

Glatter Gefäßmuskel Kir6.1 SUR2B Cromakalim↑

Sulfonylharnstoffe ↓

Pharmakokinetik

- gute Bioverfügbarkeit
- hohe Plasmaeiweißbindung
- Wirkdauer > Plasma-HWZ (Anreicherung u.a. in β -Zellen)
- meist hepatisch metabolisiert; renal/biliär ausgeschieden

unerwünschte Wirkungen

- Hypoglykämien (protrahiert; v.a. alte Patienten)
- gastrointestinal (Übelkeit, Erbrechen)
- allergische Reaktionen (Haut, hämolyt. Anämien, Agranulozytosen)
- Gewichtszunahme

Interaktionen Interferenzen durch hohe Plasma-Eiweißbindung (Salicylate, Cumarin-Derivate, Phenylbutazon)

Indikationen Typ IIa Diabetes, wenn Diät nicht erfolgreich Typ IIb Diabetes, wenn Biguanide/Acarbose-Therapie erfolglos

Kontraindikationen Typ I Diabetes, Schwangerschaft / Stillzeit

8.5 α -Glucosidasehemmer

Acarbose Miglitol

Wirkmechanismus hemmen als Pseudosubstrate die Disaccharidasen im Bürstensaum des Darmepithels \rightarrow Ausmaß und Geschwindigkeit des Blutzuckeranstiegs nach Kohlehydrat-Aufnahme vermindert, keine Veränderung der Netto-Kohlehydrat-Aufnahme, keine nennenswerte Resorption

unerwünschte Wirkungen Meteorismus, Flatulenz, Tenesmen, Diarrhoe

Konratindikationen Malassimilation, Schwangerschaft

Indikation Typ I und II Diabetes, insbesondere diätetisch unzureichend behandelbarer Typ IIb; therapeutischer Nutzen wahrscheinlich gering; eventuelle Vorteile: keine Hypoglykämiegefahr

8.6 Biguanide

Metformin

Wirkmechanismus Steigerung der Insulinempfindlichkeit der Gewebe periphere Glucoseutilisation \uparrow , Insulinsensitivität \uparrow , hepatische Gluconeogenese \downarrow , aerobe Glykolyse \downarrow , enterale Glucoseresorption \downarrow , Mechanismus: Stimulation der AMP-aktivierten Proteinkinase, Hemmung der Glukagonwirkung an Hepatocyten (cAMP \downarrow)

- \rightarrow keine Hypoglykämiegefahr, Fettstoffwechsel günstig beeinflusst,
- \rightarrow Appetit \downarrow

Pharmakokinetik

- Bioverfügbarkeit 50-60%
- Plasma-HWZ: 2-4 h
- unverändert renal eliminiert

unerwünschte Wirkungen

- Laktatazidose (Kontraindikationen beachten!)
- gastrointestinal (Übelkeit, Diarrhoe, Inappetenz)
- Blutbildveränderungen

Kontraindikationen

- alle Erkrankungen, die zu einer azidotischen Stoffwechsellage disponieren
 - Nierenfunktionsstörungen
 - kardiale, pulmonale, hepat. Erkrankungen
 - Infekte, Neoplasien, Alkoholismus
- Schwangerschaft
- perioperativ (ggf. absetzen)

Indikationen v.a. Typ IIb Diabetes, wenn Diät erfolglos und keine Kontraindikationen vorliegen; Vorteile: keine Hypoglykämiegefahr, eher Gewichtsabnahme

8.7 Thiazolidindion-Derivate ("Glitazone")

Pioglitazon

Rosiglitazon (Marktrücknahme 2010 wegen ungünstigem Nutzen-Schaden Profil)

Wirkmechanismus Aktivierung des Peroxisomenproliferator-Aktivator-Rezeptor- γ (PPAR γ , nukleärer Rezeptor); Wirkung v.a. auf Adipozyten \rightarrow Adipozytendifferenzierung $\rightarrow \downarrow$ Freisetzung/Bildung Insulinresistenzfördernder Faktoren, \uparrow Insulin-Sensitivität

unerwünschte Wirkung

- Flüssigkeitsretention, Ödeme, Gewichtszunahme, Hepatotoxizität
- Frakturrisiko \uparrow bei Frauen, Osteoblastendifferenzierung \downarrow , Blasentumorrisiko \uparrow
- erhöhtes Herzinfarkt-/Herzinsuffizienzrisiko bei Langzeitgabe

Einsatz Kombination mit Metformin oder Sulfonylharnstoffen Therapeutischer Nutzen und Unbedenklichkeit nach wie vor umstritten!

8.8 Glucagon-like-peptide-1(GLP-1)-Agonisten

Exenatid(synthetisches Peptid aus 39 Aminosäuren) Liraglutid

Wirkmechanismus Agonist am GLP-1 Rezeptor auf β -Zellen und im Magen-Darm-Trakt \rightarrow Glucose-abhängige Insulinsekretion \uparrow , Magenentleerung verzögert

unerwünschte Wirkungen Übelkeit/Erbrechen, Durchfall, Pankreatitis, Bildung inaktivierend. AK. Häufige Inzidenz von Neoplasien?

Kontraindikationen Typ-I Diabetes; Insulin-pflichtiger Typ-II Diabetes

Einsatz subkutane Gabe 2 x tägl. (morgens und abends vor den Mahlzeiten); Zusatz bei Typ-2 Diabetikern ab Therapiestufe 2 (Metforminunverträglichkeit) bzw. Stufe 3; teuer, Wirksamkeitsbelege zur Risikoreduktion klinischer Endpunkte fehlen

8.9 Dipeptidyl-Peptidase-IV(DPP-IV)-Hemmer

Sitagliptin Vildagliptin

Wirkmechanismus

Hemmt den Abbau von GLP-1 und des Glucose-dependent insulinotropic peptide (GIP)

Unerwünschte Wirkungen

Übelkeit/Erbrechen, Leberschäden

Pharmakokinetik

87% bioverfügbar; Plasma-HWZ: 12h; 80% unverändert renal ausgeschieden

Einsatz

orale Gabe, Sitagliptin: $1 \times t$ ägl., Vildagliptin: $2 \times t$ ägl.; Zusatz bei Typ-2 Diabetikern ab Therapiestufe $2 \times t$ (Metforminunverträglichkeit) bzw. Stufe 3; teuer, Wirksamkeitsbelege zur Risikoreduktion klinischer Endpunkte fehlen

8.10 SGLT2-Inhibitoren

Dapagliflozin, seit 2013

Wirkmechanismus

Hemmung des SGLT2-Glukosetransporters im proximalen Tubulus $HbA1_c$ -Abfall um ca 0,6%, Gewichtsverlust (2-3 KG), geringe Blutdrucksenkung, unwirksam bei Nierenisuffizienz oder Volumenmangel (Schleifendiuretika!), UAW: Harnwegs- und Genitalinfektionen, klinischer Stellenwert noch unklar

8.11 Diabets-mellitus Behandlung

8.11.1 Typ I Diabetes

- Diät
- Insulintherapie, bevorzugt "intensivierte Insulintherapie"
- \bullet evtl. Gabe von α -Glucosidasehemmern

8.11.2 Typ II Diabetes

Nationale Versorgungsleitlinie (Sept. 2013): Festlegung individualisierter Therapieziele (Zielwerte) unter Berücksichtigung Manifestationsfördernder Faktoren (u.a. Adipositas, Dyslipoproteinämie, Hypertonie, Alter, familiäre Belastung, Komedikation sowie Lebensstilfaktoren wie Rauchen bzw. Bewegungsmangel) für: HbA1_C (meist 6,5%-7,5%), LDL-Cholesterin, Blutdruck und Körpergewicht

Pharmakotherapie

- bei unzureichendem Effekt lebensstilmodifizierender, nichtmedikamentöser Therapiemaßnahmen (Stufe 1)
- Stufe 2: Metformin (bei Unverträglichkeit Humaninsulin oder andere orale Antidiabetika, OAD)*
- Stufe 3: Insulintherapie oder Zweifachkombinationen, z.B. Insulin+ Metformin (bzw. Glibenclamid oder DPP4-Hemmer) oder OAD-Zweifachkombinationen*
- Stufe 4: Insulintherapie (patientenspezifisch konventionell oder intensiviert) ohne oder zusammen mit oralen Antidiabetika
- * unterschiedliche Priorisierung durch einzelne Fachgesellschaften ! konventionelle Insulintherapie:
 - tägl. 2 Injektionen von Normalinsulin (1/3) und NPH-Insulin (2/3)
 - morgens (2/3) und abends (1/3), Spritz-Ess-Abstand: 30 Minuten

Nachteil starres Mahlzeiten- und Zwischenmahlzeitenschema. Patient muss essen, da er Insulin gespritzt hat

- günstige Effekte der Blutzuckersenkung bei D. mellitus Typ 2 stellen sich erst spät ein (z.B. 10 J. später; UKPDS Folgestudien)
- intensive, normnahe Blutzuckereinstellung bei älteren Typ-2 Diabetikern: Retinopathierisiko ↓, Albuminurie ↓, trotzdem kein Effekt auf Rate von Visusverlust und Niereninsuffizienz; Schaden durch schwere Hypoglykämien ↑; gefährdet durch Übersterblichkeit (ACCORD, ADVANCE)

Kapitel 9

Lipidsenker

9.1 Lipoproteinstoffwechsel

9.2 Fettstoffwechselstörung

9.2.1 Primäre Hyperlipoproteinämie

Bezeichnung	Häufigkeit	Typ	erhöht	KHK-Risiko
Hypercholesterinämie "polygene" Hyper- cholesterinämie	e sehr häufig	IIa	LDL/Chol.	variabel (weitere Risikofaktoren)
familiäre Hyper- cholesterinämie	heterozygot 1:500	IIa	LDL/Chol.	sehr hoch
	homozygot 1:1Mio	IIa	LDL/Chol.	extrem hoch
Kombinierte Hy- perlipidämie				
familiäre kombin. Hyperlipidämie	0,5-3:100	IIb	LDL/VLDL Chol./TG	hoch
Typ III-(Remnant-) Hyperlipoprote-	1:5000-10000	III	Remnants Chol./TG	hoch
inämie Hypertriglyzeridämie				
familiäre Hypertri- glyzeridämie	relativ selten	IV	VLDL / TG	gering
Chylomikronen- Syndrom	selten	I	Chylom./TG	variabel, aber: Pan- kreatitisrisiko

9.2.2 Sekundäre Hyperlipoproteinämie

- $\bullet \ \ Hypercholesterin\"{a}mie: Fehlern\"{a}hrung, Hypothyreose, Schwangerschaft, nephrot. Syndrom, Cholestase$
- Kombinierte Hyperlipidämie: Fehlernährung, Diabetes mellitus Typ 2, nephrot. Syndrom, Alkohol, Thiazide
- Hypertriglyzeridämie: Diabetes mellitus Typ 2, Alkohol, Niereninsuffizienz, Schwangerschaft, Arzneimittel (Thiazide, β-Blocker, Kontrazeptiva, Glukokortikoide)

9.2.3 Bedeutung der Therapie insb. der Hypercholesterinämie

Das LDL-Cholesterin ist ein hochspezifischer Parameter zur Bewertung des Atherosklerose-Risikos (v.a. KHK). Die Indikation zur Therapie wird durch Vorhandensein weiterer Risikofaktoren (vorhandene kardiovaskuläre Erkrankung, Alter, Geschlecht, art. Blutdruck, Raucher/Nichtraucher, evtl. HDL-Cholesterin-Plasmakonz.) bestimmt.

Die Wirksamkeit einer Lipid-senkenden Therapie im Rahmen der Sekundärprävention kardiovaskulärer Erkrankungen ist durch verschiedene Studien belegt.

Studie / Statin	Methode	Gesamtmortalität Placebo	Gesamtmortalität Verum	p-Wert
Sekundärprävention				
4S (1994) Simva-	4444 KHK, 5,4 J.	11,5%	$8,\!2\%$	0,0003 NNT 164
statin	$LDL\text{-}C.188 \ \rightarrow \ 122$			
	mg/dl			
CARE (1996) Pra-	4159 KHK, 5 J.	9,4%	8,6%	ns
vastatin	$LDL-C.139 \rightarrow 98$			
	mg/dl			
LIPID (1998) Pra-	9014 KHK, 6,1 J.	14,1%	11,0%	<0,0001 NNT 197
vastatin	$LDL-C.150 \rightarrow 113$			
	mg/dl			
HPS (2002) Simva-	20536	14,7%	12,9%	0,0003 NNT 278
statin	KHK, AVK, Diabetes,			
	$5 \text{ J.,LDL-C.131} \rightarrow$			
	92 mg/dl			
PROSPER (2002)	5804 Pat. /70-82	10,5%	10,3%	ns
Pravastatin	J.), vask. Risikofak-	,	,	
	toren, LDL-C.147			
	$\rightarrow 97 \mathrm{mg/dl}$			
	,			

Diverse große Studien, wie z.B. ALLHAT-LLT (2002), ASCOT-LLA (2003), JUPITER (2008), MEGA (2006) u.v.a. sowie eine ausführliche Metaanalyse ergaben, dass bei niedrigem kardiovask. Risiko kein Nutzen von Statinen in der Primärprävention vorhanden sind; dies ist erst sinnvoll bei hohem Ausgangsrisiko (ab 10-Jahres-Risiko von 20

9.2.4 Therapie

nicht medikamentös	Diät, körperliche Aktivität	
medikamentös	HMG-CoA-Reduktase-Hemmer (Statine) Anionen-	
	Austauscher-Harze, Fibrate, Nikotinsäurederivate	
technische Verfahren	z.B. extrakorporale LDL-Elimination	

9.3 HMG-CoA-Reduktase-Hemmer (Statine)

	Tagesdosis	syst. Bioverfügbark.	hepat. Metabol.
Lovastatin	10-80 mg	< 5%	CYP 3A4
Simvastatin	5-40 mg	< 5%	CYP 3A4
Pravastatin	10-40 mg	17%	
Atorvastatin	2,5-80 mg	30%	CYP 3A4
Fluvastatin	20-40 mg	24%	CYP 2C9
Cerivastatin	0.1-0.3 mg	60%	CYP 3A4/2C8

Wirkmechanismus

Hemmung der Cholesterin-Synthese v.a. in der Leber \rightarrow vermehrte Bildung hepatischer LDL-Rezeptoren

- \rightarrow vermehrte Aufnahme von LDL- Cholesterin aus dem Blut
- \rightarrow LDL-C: $\downarrow\downarrow$ (20-50%), HDL-C: \uparrow (5-10%), VLDL: \downarrow ; TG: \downarrow (7-30%)
- ⇒ verminderte Progression/Ruptur von atheromatösen Plaques

Pleiotrope Wirkungen

- Verbesserung der Endothelfunktion,
- Thrombozytenstabilisation
- Fibrinogenreduktion (korreliert mit TG-Abfall)
- Hemmung der mit Atherosklerose-assoziierten Entzündungsreaktion

Pharmakokinetik

- Resorption 30-98%
- Teilweise hoher first-pass-Effekt (Lovastatin, Simvastatin) mit geringer Bioverfügbarkeit. Allerdings ist die systemische Verfügbarkeit für die Lipid-senkende Wirkung weniger relevant (cave: unerwünschte Effekte)
- größtenteils hepatisch metabolisiert; renal/biliär ausgeschieden
- Plasma-HWZ: 1-3 h (Atorvastatin: 14 h)

unerwünschte Wirkungen

- gastrointestinale Störungen (v.a. unspez. Oberbauchschmerzen)
- Hepatotoxizität (Transaminasenanstieg)
- Myalgien, Myopathien, Rhabdomyolyse (CK-Anstieg)
- Kopfschmerzen, Schlafstörungen, Schwindel

Interaktionen

Lovastatin, Simvastatin + Makrolide, Azol-Antimykotika, Fibrate, Ciclosporin, Grapefruitsaft: vermehrtes Auftreten hepatotoxischer und myopathischer Effekte, v.a. bei Gabe von Lovastatin und Simvastatin (Hemmung der CYP 3A4 bei hohem first-pass-Effekt und hoher Gewebegängigkeit/Lipophilie von Lovastatin und Simvastatin)

alternativ bei diesen Patienten: Fluvastatin (CYP2C9) oder Prastatin (kein Metabol. über CYP-Enzyne)

Kontraindikationen

Lebererkrankungen, Muskelerkrankungen, Kinder, Schwangerschaft / Stillzeit

9.4 Cholesterol-Resorption

9.5 Anionen-Austauscher-Harze

Colestyramin Colestipol $3 \ge 4\text{-}8g$ pro Tag vor oder während der Mahlzeiten $3 \ge 5\text{-}10g$ pro Tag vor oder während der Mahlzeiten

Wirkmechanismus

hohe Affinität für Gallensäuren, nicht resorbierbar

- → erhöhte Gallensäurenausscheidung (enterohepatischer Kreislauf)
- \rightarrow Cholesterin-Konzentration in der Leber \downarrow
- \rightarrow Neusynthese von hepat. LDL-Rezeptoren \uparrow
- \rightarrow LDL-C: \downarrow (10-20%), HDL-C: -/ \uparrow (3-5%); TG: Ø

unerwünschte Wirkungen

Obstipation, Völlegefühl (häufig!); Verlust fettlöslicher Vitamine bei hoher Dosierung

Ineraktionen

Beeinflussung der Resorption verschiedener Pharmaka: Cumarine, Digitalisglykoside, Thyroxin, Thiazide, Tetrazykline \rightarrow versetzte Einnahme 1 Stunde vor oder 4 Stunden nach Anionenaustauscher-Harze

9.6 Cholesterinresorptionshemmer

Ezetimib 10mg/d

Wirkmechanismus

Hemmung der intestinalen Resorption von diätetischem sowie biliärem Cholesterin um mehr als 50% durch Blockade der Internalisation von Cholesterin durch das Protein "Niemann-Pick C1-like 1" (NPC1L1) \rightarrow LDL-C: \downarrow (15-20%), Anstieg der Cholesterinsynthese; HDL-C: -/ \uparrow ; TG: -/ \downarrow Trotz deutlicher LDL-Senkung (auch additiv zu HMG-CoA-Reduktase Hemmer) wurde in klinischen Studien bisher kein Zusatznutzen zur Reduktion atherosklerotischer Spätschäden gezeigt

Pharmakokinetik

- Gute Resorption, intestinale und hepatische Glukuronidierung
- Ezetimib und glukuronidiertes Ezetimib unterliegen einem ausgeprägten enterohepatischen Kreislauf; biliäre Ausscheidung, Plasma HWZ: 13-21 h

Indikation

- Zusatztherapie zu Statinen bei schwerer Hypercholesterinämie (z.B. homozygote familiäre Hypercholesterinämie)
- alternativ bei unerwünschten Wirkungen unter hochdosierter Statin-Therapie

unerwünschte Wirkungen

Transaminasenanstieg

9.7 Fibrate

Bezafibrat $3 \times 200 \text{ mg oder } 1 \times 400 \text{ mg retard.}$ Fenofibrat $3 \times 100 \text{ mg oder } 1 \times 250 \text{ mg retard.}$

Etofibrat $1-2 \times 500 \text{ mg retard.}$

Gemfibrozil $2 \times 450 \text{ mg oder } 1 \times 900 \text{ mg retard.}$

Wirkmechanismus

Aktivierung des Transkriptionsfaktors Peroxisome-proliferator-activator-receptor α (PPAR α)

- \rightarrow hepat. Triglyzerid-Synthese $\downarrow \rightarrow$ VLDL-Produktion \downarrow
- \rightarrow Lipoproteinlipase-Aktivität \uparrow
- \rightarrow Abbau von VLDL in der Peripherie \uparrow
- \rightarrow TG: \downarrow (20-40%), VLDL: \downarrow , LDL-C: \downarrow (5-20%), HDL-C: \uparrow (10-20%)

Pharmakokinetik

- gute Resorption nach oraler Gabe
- \bullet Plasma-HWZ: 1,5-5 h
- überwiegend renal ausgeschieden

unerwünschte Wirkungen

- gastrointestinale Störungen
- Myalgien, Myositis (CK-Anstieg)
- Gallensteinbildung

Interaktionen

- Wirkungsverstärkung von Antikoagulantien vom Cumarin-Typ
- Verstärkung der Muskelbeschwerden bei Kombination mit Statinen

Kontraindikationen

Lebererkrankungen; Schwangerschaft / Stillzeit; Kinder

9.8 Nikotinsäurederivate

Nikotinsäure 0,45 - 3 g pro Tag Acipimox 2-3 x 250 mg pro Tag

Wirkmechanismus

teilweise unklar; Lipolyse-Hemmung durch Aktivierung des G_i -gekoppelten Rezeptors GPR109A auf Adipozyten; VLDL-Produktion \downarrow , LDL-Bildung \downarrow TG: \downarrow (20-40%); LDL-C: \downarrow (5-25%), HDL-C: \uparrow (20-50%)

unerwünschte Wirkungen

- Flush ausgelöst durch Aktivierung des Rezeptors GPR109A auf dermalen Immunzellen; vermittelt durch Bildung vasodilatatorischer Prostanoide, v.a. PGD₂ und PGE₂ (Hemmung des Flush durch COX-Hemmer sowie durch den PGD₂ Rezeptor (DP₁) Antagonisten Laropiprant
- gastrointestinale Beschwerden
- evtl. Schwindel
- Hyperurikämie (bei Patienten mit entsprechender Neigung)
- Glukosetoleranz ↓

Bei randomisierten Studien jedoch kein Vorteil von retardierter Nikotinsäure gegenüber Statinen (AIM-HIGH-Studie 2011)

9.9 Therapieindikationen bei Hypercholesterinämie

BILDUNTERTITEL dikation zur Behandlung von Gesamtrisiko-Konstellation bezüglich kardiovaskulärer Ereignisse abhängig.

Risikokonstellation Behandlungsziel (NCEP ATPIII Guideline 2004)

niedriges bis leicht erhöhtes Risiko (< 5-10%) LDL-Cholesterin: < 160 mg/dl mäßig erhöhtes Risiko (10-20%) LDL-Cholesterin: < 130 mg/dl hohes Risiko (> 20%) LDL-Cholesterin: < 130 mg/dl KHK oder ausgeprägtes Risikoprofil LDL-Cholesterin: < 100 mg/dl

Risikofaktoren: LDL-Cholesterin-Plasmakonz., Zigarettenrauchen, Hypertonie, HDL-Cholesterin (<40 mg/dl),

pos. Familienanamnese, Alter, männl. Geschlecht.

Kapitel 10

Hömostase, Thrombose

10.1 Thrombozyten-Adhäsion/-Aktivierung

Vermittelt durch von Willebrand Faktor und Kollagen, die auf der subendothelialen Oberfläche deponiert bzw. exponiert vorliegen

- "Shape change", rasche Umwandlung des Thrombozyten von diskoider in runde Form unter Ausbildung von Pseudopodien
- Degranulation von Mediatoren (ADP, Serotonin), Koagulationsfaktoren (Faktor V, Fibrinogen), Wachstums-Faktoren
- "Biosynthese von Mediatoren (Thromboxan A2, "Platelet activating factor ")
- Aggregation: Aktivierung von Glykoprotein IIb/IIIa (GP IIbIIIa, integrin $\alpha_{IIb}\beta_3 \to \text{Bindung}$ von Fibrinogen und von Willebrand Faktor $\to \text{Vernetzung}$ von Thrombozyten

10.2 Fibrinbildung über Koagulationskaskade

10.2.1 Antikoagulatorische Mechanismen

Antithrombin III

hemmt unter dem Einfluß von Heparin und Heparin-ähnlichen Molekülen auf der Endotheloberfläche (z.B. Heparansulfat) verschied. aktiv. Faktoren (v.a. IIa + Xa)

Protein C

(Vitamin K-abhängige Synthese) Aktivierung an Endotheloberfläche durch Thrombin, das an das Membranprotein Thrombomodulin gebunden ist; aktiviertes Protein C (APC) führt unter Beteiligung von Protein S zur proteolytischen Inaktivierung der Kofaktoren Va und VIIIa; Mutation des Faktor V (Faktor V Leiden) mit Resistenz gegenüber APC führt zur häufigsten angeborenen Form von Thromboseneigung

10.2.2 Pathogenese und Zusammensetzung arterieller und venöser Thromben

Arterieller Thrombus (weißer Thrombus)

Z.B. auf der Basis eines atherosklerotischen Plaque: Thrombozyten + Leukozyten + Fibrinnetzwerk; meist auf der Basis einer Atherosklerose \rightarrow Ischämie, Infarkt

Venöser Thrombus (roter Thrombus)

Z.B. aufgrund von Stase: Häufig kleine "weiße" Spitze gefolgt von größerem Blutgerinsel (intravital geronnene Blutsäule) \rightarrow Embolie

10.2.3 Medikamentöse Beeinflussung

Thrombozytenfunktionshemmer, Antikoagulantien, Fibrinolytika

10.3 Throbozxtenfunktionshemmer

10.3.1 Acetylsalicylsäure(ASS)

Wirkmechanismus

Irreversible Hemmung der thrombozytären Cyclooxygenase-1 (COX-1) durch Acetylierung von Serin-530 \rightarrow Hemmung der TXA₂-Synthese über die gesamte Lebenszeit des Thrombozyten (7-10 Tage) Thrombozytäre Effekte treten in deutlich niedrigeren Konzentrationen auf (75-300 mg) als andere ASS-Effekte

- Thrombozyten sind nicht in der Lage, COX-1 nachzusynthetisieren
- Acetylsalicylsäure wird bereits während der ersten Leberpassage zu einem großen Teil zu Salicylsäure deacetyliert → relativ hohe ASS-Konzentration im Pfortaderblut, die zu einer selektiven Inaktivierung von Thrombozyten führt.

unerwünschte Wirkungen

tungen v.a. im oberen GI-Trakt (selten unter niedriger Dosierung); ggf mit Protonenpumpen-Hemmern kombinieren

Kontraindikationen

Allergische Disposition; Asthma; Kinder < 12 Jahren (Reye-Syndrom)

Einsatz

- Sekundärprophylaxe arterieller thrombotischer Erkrankungen
- Instabile Angina pectoris, Myokardinfarkt
- Primärprophylaxe bei Patienten mit hohem Risiko für arterielle thromboembolische Erkrankungen

10.3.2 Thienopyridine

Clopidogrel	Ticlopidin
Prasugrel	Ticagrelor

Wirkmechanismus

Nach hepatischer Biotransformation Bildung eines aktiven Metaboliten, der spezifisch den thrombozytären Purinozeptor $P2Y_12$ blockiert und dadurch den Effekt von ADP beeinflusst \rightarrow Wirkung tritt erst nach ca. 2 Tagen auf.

unerwünschte Wirkungen

Diarrhoe, Exantheme; Leukopenie (Ticlopidin), Blutungen (v.a. Prasugrel)

Einsatz

- Mittel der 2. Wahl zur Sekundärprophylaxe arterieller thrombot. Erkrankungen, wenn ASS kontraindiz.
- vorübergehend bei akutem Koronarsyndrom / koronaren Interventionen (zusätzlich zu ASS)
- \bullet Ticagrelor: reversible Hemmung von P2Y12; Senkung der kardiovaskulären und Gesamtmortalität stärker als bei Clopidogrel

10.3.3 GPIIb/IIIa(Integrin α IIb β 3)-Rezeptor-Antagonisten

Abciximab	Fab-Fragment eines monoklonalen Antikörpers,
	blockiert auch Integrin $\alpha M\beta 2/\alpha v\beta 3$; Langanhalt.:
	Blockade über mehrere Tage
Eptifibatid	niedermolekulares ringförmiges Peptid; reversibel
Tirofiban	nicht-peptidische Verbindung (parenteral); reversibel

Wirkmechanismus

Blockade der Bindung von Fibrinogen und von Willebrand Faktor an GP IIb/IIIa \rightarrow Hemmung des Endschrittes der Thrombozytenaggregation

unerwünschte Wirkung

Blutungen, Thrombozytopenie (seltener)

Einsatz

F	Akutes Koronarsyndrom, int	terventionelle Kardiologie		
		Abciximab	Eptifibatid	Tirofiban
	Molekulargewicht (Da)	50.000	800	500
	Integrinselektivität α IIb β 3,	$\alpha \text{IIb}\beta 3$	$\alpha \text{IIb}\beta 3$	
	$\alpha V \beta 3$			
	Affinität für $\alpha IIb\beta 3$ (KD,	5	120	15
	nmol/l)			
	Plasma-HWZ	0,5 h	$2-2,5 \mathrm{\ h}$	2 h
	Wirkdauer	12 - 24 h	2 - 2.5 h	2 h
	Elimination	Proteolyse / renal	v.a. renal	v.a. renal

10.4 Antikoagulatien

- Vitamin-K-Reduktase-Hemmer (Cumarin-Derivate; Vitamin-K-"Antagonisten")
- Antithrombin-III-Aktivatoren (Heparine; synthet. Pentasaccharide)
- direkte Thrombin-/ Faktor Xa-Inhibitoren (Hirudine; niedermolek., orale Inhibitoren)

10.4.1 Vitamin-K-Reduktase-Hemmer (Cumarin-Derivate)

Wirkmechanismus

Hemmung der Reduktion von Vitamin K in der Leber \rightarrow Störung der posttranslationalen γ -Carboxylierung der Gerinnungsfaktoren II, VII, IX, X sowie von Protein C u.a.

 \rightarrow Bildung physiologisch inaktiver Gerinnungsfaktoren (fehlende Interaktion mit Ca^{2+}). Effekt abhängig von HWZ der Faktoren: Protein C: 6 h; Faktor X: 40 h; Faktor VII: 6 h; Faktor II: 60 h; Faktor IX: 24 h.

Pharmakokinetik

- Schnelle fast vollst. Resorption nach oraler Gabe
- Geringes Verteilungsvolumen (99
- Hepat. Metabolisierung durch P450-Monooxygenasen (v.a. CYP2C9) + Glucuronidierung
- Plasma-HWZ: Warfarin: 40 h Phenprocoumon: 6 d
 Wirkdauer: Warfarin: 2-6 d Phenprocoumon: 6-10 d

unerwünschte Wirkungen

- Blutungen (Magen-Darm, Harnwege, intrakraniell)
- Nekrosen der Haut / Unterhautfettgewebe durch Thrombosierung von Kapillaren/Venolen v.a. zu Beginn der Therapie(selten, ausgelöst durch Protein C-Mangel)
- Haarausfall, Leberfunktionsstörungen (selten)

Maßnahmen je nach Schweregrad: Absetzen, Gabe von Vitamin K (Wirkdauer: 8-32 h), Substitution der Gerinnungsfaktoren (sofortige Wirkung)

Interaktionen

- Verstärkung der Effekte durch verminderte hepatische Metabolisierung; z.B.: Amiodaron, Erythromycin, Metronidazol u.a.
- Verminderung der Effekte durch verstärkten hepatischen Abbau z.B.: Rifampicin, Carbamazepin, Barbiturate, Griseovulvin u.a.
- Vitamin-K-reiche Ernährung

Kontraindikationen

erhöhtes Blutungsrisiko; Schwangerschaft (teratogene Wirkung 6.-12. Woche; fetale Anomalien)

Einsatz

Prophylaxe thromboembolischer Erkrankungen z.B.: Venenthrombosen, Lungenembolie, bei Vorhofflimmern, Herzklappenersatz Probleme: Verzögerter Wirkbeginn (3-5 d); Beginn der Therapie mit Heparin; variables Ausmaß der Wirkung; geringe therapeutische Breite

Dosierung nach Thromboplastin-Zeit ("Quick-Wert" bzw. INR)

INR: International Normalized Ratio (Verhältnis von "Quick-Wert" des Patienten zu "Quick-Wert" eines Normalkollektivs); Angestrebte Werte je nach Erkrankung: INR: 2 - 3,5

10.4.2 Antithrombin-III-Aktivatoren

Unfraktioniertes Heparin

Negativ geladene sulfatierte Glucosaminoglykane, ca. 15-150 Hexose-Einheiten. Mit typ. Pentasaccharid (MW: 6.000 - 30.000 Da); Bindung der Pentasaccharid-Sequenz des Heparins an Antithrombin III

 \rightarrow Konformationsänderung des AT III Bindung und Inaktivierung von Faktor Xa Thrombin bindet an negative Bereiche des Heparins außerhalb der Pentasaccharid-Sequenz und gleitet entlang des Heparins \rightarrow Bindung und Inaktivierung durch ebenfalls Heparin-gebundenes AT III

Niedermolekulares Heparin (z.B. Enoxaparin, Nadroparin, Dalteparin)

Niedermolekulares Heparin: MW: 4.000 - 7.000 (10-25 Monosaccharideinheiten) Aktivierung von AT III \rightarrow Inaktivierung von Faktor Xa, aber kaum Effekt auf Thrombin

Synthetische Pentasaccharide (z.B. Fondaparinux)

leicht modifiziertes Pentasaccharid; Wirkung ähnlich niedermolekularem Heparin

	${\bf Unfraktioniertes Heparin}$	Niedermolekulare Heparine	Synthetische Pentasac- charide (Fondaparinux)
Hexoseeinheiten / Mole- kulargewicht (Da)	20 - 100 / 6.000 - 30.000	10 - 15 / 3.000 - 7.000	5 / 1.728
Relative Hemmung der	IIa = Xa 1:1	IIa < Xa 1:3	nur Xa
aktiven Gerinnungsfak-			
toren Xa u. IIa			
Applikation	s.c. und i.v.	s.c.	s.c.
Bioverfügbarkeit (s.c	30%	> 90%	>95%
Gabe)			
Plasma-HWZ	1-2 h	2-5 h	18 h
Elimination	v.a. durch das RES*	v.a. renal	v.a. renal
Gabe (Thromboseprophylaxe)	2-3xtägl.	1-2xtägl.	1xtägl.

unerwünschte Wirkungen

- generell: Blutungen
- Heparine: Thrombozytopenie (seltener mit niedermolekularem Heparin)
- Typ I: frühzeitig, leicht, reversibel; Typ II: seltener, schwerer, nach ca. 1 Woche

- Heparin-induzierte Thrombozytopenie (HIT): Antikörperbildung gegen Komplex aus Heparin und Plättchenfaktor $4 \to \text{Aktivierung}$ des thrombozytären Immunglobulinrezeptors $\to \text{Thrombozytenaktiv.}$, Thrombosen, intravaskuläre Koagulat.
- Osteoporose (bei Langzeittherapie > 6 Monate)
- Allergien
- Haarausfall (4-12 Wochen n. Therapiebeginn; Haarwurzeleinblutung?)

Maßnahmen je nach Schweregrad: Absetzen, Gabe von Protamin i.v. (bildet inaktiven Komplex mit Heparin)

Einsatz

Thromboseprophylaxe; Ther. thromboembolischer Erkrankungen

10.4.3 Direkte Thrombin-Inhibitoren

Hirudine

(Hirudin, Lepirudin; 65 Aminosäuren) Protein aus der Speicheldrüse des Blutegels Hirudo medicinalis; bildet hochaffinen 1:1 Komplex mit Thrombin \rightarrow Inhibition; hemmt i.G. zu akt. AT-III auch Fibrin-gebundenes Thrombin; Gabe: s.c. oder i.v.; Einsatz z.B. bei HIT Typ II

niedermolekulare Thrombin-Inhibitoren

Argatroban (nur pareneterale (i.v.) Gabe möglich). Einsatz bei HIT Typ II, wenn orale antithrombotische Therapie nicht möglich

Dagibatranetexilat Oraler Thrombinin-Inhibitor (Zulassung 2008). Pro-drug; gute Resorption, Umwandlung in Dabigatran Einsatz: Thromboseprophylaxe nach größeren orthopädischen Operationen, Prophylaxe von Schlaganfällen und system. Embolien bei Vorhofflimmern.

10.4.4 Direkte Faktor Xa-Inhibitoren

pEinsatz

1) Thromboembolienprophylaxe nach elektiven Hüft- oder Kniegelenksersatz-OP, 2) Proph. von Schlaganfällen und system. Embolien bei Vorhofflimmern, 3) Akutes Koronarsyndrom, 4) Behandlung u. Proph. von tiefen Beinvenenthrombosen und Lungenembolien (3) u. 4) nur Rivaroxaban) (insbes. wenn Einstellung mit Cumarinen oder INR Kontrolle erschwert ist)

Vorteile

gegenüber Cumarinen: schneller OnSet/Offset, konstante Dosierung, kein Gerinnungsstatus-Monitoring, weniger Wechselwirkungen (Medik., Nahrung)

Nachteile

schneller OnSet/Offset (schneller Wirkverlust bei Einnahmefehlern), kein Antidot, (Kosten).

Nutzen

bisher keine Überlegenheit in Endpunktstudien

10.5 Fibrinolytika

Wirkmechanismus

Umwandlung von Plasminogen in Plasmin \rightarrow Abbau von v.a. Fibrin

10.5.1 Streptokinase

- nicht-enzymatisches Protein (MW: 46.000) aus β -hämolys. Streptokokken
- Bindung an Plasminogen → Konformationsänderung des Plasminogens
 → Streptokinase/Plasminogen-Komplex, wandelt Plasminogen in Plasmin um
- Bildung von Anti-Streptokinase-Antikörpern, Plasma-HWZ: 40-80 Minuten

10.5.2 Gewebsplasminaktivator (rt-PA / Alteplase)

- Serinprotease (MW: 70.000), die u.a. von Endothelzellen synthetisiert wird (gentechnisch hergestellt)
- Bildet Plasmin v.a. aus Fibrin-gebundenem Plasminogen → effektive lokale Fibrinolyse Plasma-HWZ: 4 min (Gabe als Bolus + 60-90 min Infusion)
- neuere Entwicklung: Reteplase (HWZ: 18 min; Gabe: 2 Boli im Abstand v. 30 min)

unerwünschte Wirkungen

- Blutungen (entsprechende Kontraindikationen beachten)
- Allergische Reaktionen (Streptokinase)

Einsatz

- akuter Myokardinfarkt (innerhalb 12 Stunden)
- akuter thrombotischer Hirninfarkt (innerhalb $3-4\frac{1}{2}$ Stunden)
- periphere arterielle Thromben
- venöse Thromben

10.6 Arterielle Thrombose, Beispiel: Akutes Koronarsyndrom

10.6.1 Instabile Angina pectoris

(Troponin-Test 2 x negativ innerhalb 12 h)

- Acetylsalicylsäure (100-325 mg/d) + evtl. Clopidogrel (75 mg/d)
- \bullet Heparin 80 I.E./kg i.v. Bolus, danach effekt. Heparinis. (aPTT 1,5-2-fach $\uparrow)$

- Nitrate (z.B. 1-5 mg/h Glyceroltrinitrat i.v.)
- β_1 -Blocker (z.B. Metoprolol 2 x 25-50 mg/d)

wenn Troponin-Test positiv, aber keine ST-Streckenhebung zusätzlich

GPIIb/IIIa Rezeptorantagon. (z.B. Abciximab 0,25 mg/kg Bolus, dann 0,125 mg/kg x min.) Heparindosis ↓

bei eingetretenem Myokardinfarkt zusätzlich

- Opioid. Analgetika (z.B. Morphin 3-5 mg i.v.; Buprenorphin 2 mg s.l. (nicht i.m.!)
- O₂ (3-6 l / min per Nasensonde)
- fakultativ:
 - bei Unruhe: 5-10 mg Diazepam langsam i.v.
 - bei ventr. Arrhythmien: 50-200 mg Lidocain langsam i.v.; alternativ: Amiodaron
 - bei Bradykardie: 0,5-1 mg Atropin i.v., ggf. wiederholen
- Reperfusionstherapie (Lysetherapie, PTCA, aortocoronarer Bypass)
 - Lysetherapie
 - innerhalb von 12 Stunden
 - Heparin Bolus und Vollheparinisierung s.o.
 - tPA 50 mg Bolus, dann über 60 min 100 mg i.v.

Kapitel 11

Antiphlogistika

11.1 Nicht-steroidale Antiphlogistika / Antirheumatika (NSAID, NSAR)

Wirkung v.a. durch Hemmung der Cyclooxygenase (COX-1 und COX-2) \rightarrow verminderte Bildung von Prostaglandinen

11.1.1 Erwünschte Wirkqualitäten nicht-steroidaler Antiphlogistika

Antiphlogistische Wirkung

Entzündung: physiol. Antwort auf verschiedene Stimuli wie Infektionen, Gewebeschädigung etc.; Akute Entzündung mit lokaler und systemischer Reaktion

Lokale Reaktion Prostaglandin E2 und I2 (durch COX-1/COX-2 synthetisiert) sind wichtige Mediatoren der Entzündungsreaktion (Histamin, PAF, Leukotriene, C5a/C5b, Bradykinin u.a.)

- \bullet Erhöhte Permeabilität v.a. postkapillärer Venolen (u.a. $\mathrm{PGE}_2,\,\mathrm{PGI}_2)\to\mathrm{Tumor}$
- Vasodilatation (u.a. PGE_2 , PGI_2) \rightarrow Rubor, Calor
- Sensibilisierung nozizeptiver Nervenendigungen (u.a. PGE_2 , PGI_2) \rightarrow Dolor

Chronische Entzündung mit persistierender Immunantwort (pathologisch)

Systemische Reaktion Akute-Phase-Reaktion: Fieber, Leukozytose, hepat. Bildung von Akute-Phase-Proteinen (C-reaktives Protein etc.), Kortisonausschüttung aus NNR Mediatoren: IL-1, IL-6, TNF α

Analgetische Wirkung

v.a. Prostaglandin E_2 (COX-1/COX-2) sensibilisiert Nozizeptoren für schmerzauslös. Mediatoren (z.B. Bradykinin, Serotonin); Wirkung auch auf spinaler Ebene (COX-1 / COX-2); wirksam v.a. bei: Entzündungsschmerz, den meisten Formen v. Kopfschmerz, Zahnschmerzen, Dysmenorrhoe, Arthritis, deg. Erkrankungen etc.

Antipyretische Wirkung

endog. Pyrogene (IL-1, LPS, TNF α) \rightarrow Hypothalamus \rightarrow Sollwertverstellung der Körpertemperatur unter Vermittlung von PGE2 (kein Effekt auf normale Körpertemp.)

11.1.2 Unerw. Wirkqualitäten nicht-steroidaler Antiphlogistika

Gastrointestinal (v.a. COX-1)

Magenschleinhauterosionen, Ulzera, Übelkeit, Erbrechen: physiolog.protektiver Effekt von PGE₂ Säureproduktion \downarrow , Schleimpr Regulation der Schleimhautdurchblutung, mögl. Rolle von COX-2 bei Heilungsvorgängen; Gefahr der Ulkusblutung zusätzlich durch Thrombozytenfunktionshemmung (COX-1 \rightarrow TXA₂-Synthese) Ulkusprophylaxe bei NSAID-Therapie: Misoprostol (PGE₂-Analogon) unerw. Wirkung: Diarrhoe Zusätzlich/alternativ: z.B. Omeprazol)

Renal (COX-1 / COX-2)

(v.a. bei vorgeschädigter Niere)

Rolle von COX-1/2 bei renaler Steuerung des Salz- und Wasserhaushaltes, z.B.:

- Macula densa: Salzarme Kost \rightarrow COX-2 \uparrow \rightarrow PGE2 \rightarrow Renin \uparrow ,RR \uparrow
- Medulla: Salzreiche Kost \rightarrow COX-2 \uparrow \rightarrow PGE/I2 \rightarrow Durchblutung \uparrow , Na+-Exkretion \uparrow \rightarrow RR \downarrow

Insbes. bei vorgeschädigter Niere kann Organdurchblutung PG-abhängig sein Salz- und Wasserretention, Abschwächung der Wirkung versch. Antihypertensiva; reversibles akutes Nierenversagen; chron. Nephritis, Papillennekrose (Analgetika-Nephropathie)

Provokation von asthmatischen Beschwerden bei Asthmatikern

(Bildung bronchokonstrikt. Leukotriene↑)

erhöhtes Risiko für kardiovaskuläre Ereignisse

am niedrigsten mit Naproxen, am höchsten mit selektiven COX-2-Hemmern

11.1.3 Salicylate

Acetylsalicylsäure

Einsatz und Dosierung

100-300 mg/Tag: Thrombozytenfunktionshemmung (z.B. Sekundärprophylaxe); 1-3 g/Tag: analgetisch, antipyretisch (leichte und mittlere Schmerzen, Fieber); 3-6 g/Tag: antiphlogistisch (chron. entzündl. Erkrankungen)

Pharmakokinetik

gut resorbiert, überwiegend hepatisch metabolisiert (Deazetylierung), renal ausgeschieden; Plasma HWZ: dosisabhängig, bei übl. analgetischer Dosierung ca. 4h

Vergiftung

ab 8-10 g/Tag metabolische Azidose; Therapie: NaCO₃ zusätzl.

unerwünschte Wirkungen

Blutungsneigung (Thrombozytenfunktionshemmung); Reye-Syndrom bei Kindern und Jugendlichen (Enzephalopathie, Hepatopathie nach viralen Infektionen)

Kontraindikationen

Ulkus duodeni und ventriculi; hämorrhagische Diathese; Schwangerschaft; schwere Nierenfunktionsstörung; virale Erkrankungen bei Kindern und Jugendlichen

11.1.4 Arylessigsäuren

Diclofenac Indometacin

Einsatz und Dosierung

- akute und chron. Schmerzen (v.a. Diclofenac) Tageshöchstdosis: 200-300 mg (p.o., Supp.); 150 mg (i.m.) -
- chron. entzündl. Erkrankungen Tageshöchstdosis: 200-300 mg (Diclofenac); 150 mg (Indometacin)

Pharmakokinetik

gute, schnelle Resorption; Plasma HWZ: 2 h (Diclofenac); 3-11 h (Indometacin)

unerwünschte Wirkungen

Kopfschmerzen und psych. Reaktionen (v.a. Indometacin); Überempfindlichkeitsreaktionen (v.a. Diclofenac nach i.m.-Gabe)

11.1.5 Arylpropionsäuren

Ketoprofen Ibuprofen Naproxen

Einsatz und Dosierung

akute und chron. Schmerzen; Tageshöchstdosis: 2400 mg (p.o., Supp.); chron. entzündl. Erkrankungen; Tageshöchstdosis: 2400 mg

Pharmakokinetik

gute, schnelle Resorption; Plasma HWZ: 2 h

11.1.6 Oxicame

Piroxicam Meloxicam

Pharmakokinetik

Plasma-HWZ: 45-50 h (Piroxicam); 20 h (Meloxicam); nur bei chron. entzündl. Erkrankungen zugelassen (nicht erste Wahl)

11.1.7 Selektive COX-2 Hemmer

Celecoxib (Marktrücknahme 9/04)

Lumiracoxib (Marktrücknahme 2009)

$\mathbf{Wirkungen}$

analgetisch, antipyretisch

antiphlogistische Wirksamkeit bei chronisch entzündlichen Erkrankungen vergleichbar mit nicht-selektiven COX-Hemmern; renale unerwünschte Wirkungen ähnlich wie unter nicht-selektiven COX-Hemmern, geringe Reduktion klinisch relevanter gastrointestinaler Komplikationen im Vergleich zu nicht-selektiven COX-Hemmern (herkömmliche NSAID); Komplikationsrate auf gleichem Niveau wie unter Placebo

Kardiovask. Risiko unter COX-2 Hemmung ist erhöht (Marktrücknahmen); Langzeiteffekte z. Zt. noch unklar; deutlich teurer im Vergleich zu herkömmlichen NSAID

Indikationen

(z. Zt. unklar): Chron. entzündliche Erkrankungen (Arthritis, aktiv. Arthrosen) bei Patienten mit erhöhtem Risiko für gastrointestinale unerwünschte Wirkungen von NSAID und wenn kein erhöhtes kardiovaskuläres Risiko vorliegt

11.1.8 Langfristig wirksame Antirheumatika (LWAR)

Methotrexat Leflunomid

Sulphasalazin

Unbekannter Wirkmechanismus, verändern langfristig Eigenschaften von Entzündungszellen (z.B. Sekretion von Mediatoren), langsamer Wirkungseintritt

Einsatz

Rheumatoide Arthritis, entzündliche Darmerkrankungen

$TNF\alpha/IL$ -1-Hemmstoffe

gentechnologisch hergestellte monoklonale anti-TNF α -Antikörper (Infliximab, Adalimumab), Fusionsproteine die freien TNF α binden (Etanercept) oder Interleukin-1 Rezeptorantagonisten (Anakinra)

Einsatz

aktive rheumatoide Arthritis bei Methotrexat Unverträglichkeit (Etanercept) oder in Kombination mit Methotrexat wenn NSAID erfolglos

unerwünschte Wirkung

Überempfindlichkeitsreaktionen, Infektionsgefahr↑ sehr hohe Kosten

11.1.9 Glukokortikoide

Freiname	Relative antiphlo-	Mineralkortikoid-	Cushing-Schwellen-	Biolog. HWZ
	gist. Potenz	Potenz	Dosis	
Cortison	0,8	0,8	30 mg	8-12 h
Hydrocortison	1	1	30 mg	8-12 h
(Cortisol)				
Prednison	4	0,6	7.5 mg	12-36 h
Prednisolon	4	0,6	7.5 mg	12-36 h
Triamcinolon	6	0	$6~\mathrm{mg}$	12-36 h
Methyl-prednisolon	5	0	$6~\mathrm{mg}$	12-36 h
Fluocortolon	5	0	$6~\mathrm{mg}$	12-36 h
Dexamethason	30	0	1.5 mg	36-72 h
Betamethason	30	0	1 mg	36-72 h

Inhalat. Glukokortikoide: Beclometason, Budesonid, Flunisolid, Fluticason

Entzündungshemmung durch Glukokortikoide

In hohen Dosen, unabh. von Ursache (mechan., chem., infektiös., immunol.) Hemmung von Transkriptionsfaktoren, die die Wirkung zentraler Mediatoren der Entstehung und Aufrechterhaltung von entzündlichen Vorgängen (IL-1, TNF α , LPS etc.) vermittel (NF κ B, AP-1), Synthese von Lipocortin $\uparrow \rightarrow PLA_2$ -Aktivität \downarrow

Immunsuppression

Hemmung der Funktion v.a. von Makrophagen und T-Lymphozyten durch Störung der Mediatorbildung oder -wirkung (IL-1, IL-2, INF γ , MIF etc.)

Pharmakokinetik von Glukokortikoiden

gute enterale Resorption; inhalative Glukokortikoide (Beclometason, Budesonid, Flunisolid, Fluticason) besitzen hohen first-pass-Effekt (80-99%) \rightarrow keine systemische Wirkung nach enteraler Aufnahme hepatisch metabolisiert, Cortison (inaktiv) \rightarrow Hydrocortison (Cortisol); Prednison (inaktiv) \rightarrow Prednisolon; Cortisol/Prednisolon: Glukuronidierung, Sulfatierung, renal elimin.. Biologische Wirkdauer ($\frac{1}{2}$ - 3 Tage) > Plasma-HWZ ($\frac{1}{2}$ - 5 h)

Dosierung / Applikation von Glukokortikoiden

Cushing-Schwellendosis beachten, Einnahmezeit: Hauptdosis morgens 6^{00} - 8^{00} . Absetzen von Glukokortikoiden: langsame Reduktion der Dosis über Wochen bis Monate nach längerer Therapie (NNR-Suppression) Applikationsort: lokal, oral, i.v. (in Ausnahmen bei hochakuten Krankheiten), inhalativ: bei Asthma bronchiale (Prophylaxe, Behandlung)

Unerwünschte Wirkungen (Dauertherapie)

eine Einzeldosis ist in der Regel ohne Nebenwirkungen

oral, lokal

- Infektanfälligkeit ↑ (immunsupressiv, antiphlogistisch)
- Magen-Darm-Geschwüre, Reaktivierung! (Wundheilung ↓), Pankreatitis

- Osteoporose (Eiweißabbau, Ca^{2+} -Verlust, Phosphatclearance \uparrow), Osteoklastenaktivität \uparrow , Osteoblastenaktivität \downarrow , katabole Wirkung
- Wachstumshemmung (Kinder); Myopathie (Eiweißabbau)
- diabetogen (KH-Stoffwechsel, Gluconeogenese†), Hyperlipoproteinämie
- ZNS: Unruhe, Euphorie, Depression, Persönlichkeitsveränderungen
- Haut: Steroid-Akne, Striae, Atrophie, Teleangiektasien
- Auge: Katarakt, Glaukom
- NNR-Insuffizienz/Atrophie (Gefahr v.a. bei plötzlichem Absetzen nach Dauertherapie)
- Cushing-Syndrom (Fettverteilung, Hypertonie (mineralokortikoide Wirkung)
- Schwäche, Müdigkeit, Persönlichkeits veränderungen, Frauen: Hirsutismus, Amenorrhoe)

inhalativ Soormykose, Heiserkeit

Relative Kontraindikationen

Ulkusanamnese, bestehende Ulzera (schwere) Osteoporose
Psychosen Infektionen (v.a. viral)
Glaukom Hypertonie, Diabetes mellitus
Kindesalter (Wachstumshemmung) Schwangerschaft, Stillzeit

Therapeutische Anwendung von Glukokortikoiden

Substitutionstherapie 20-35 mg Cortisol (2/3 morgens, 1/3 abends) bei Belastungen (Unfall, Infektionen etc.): 5-10 fache Menge

Prim. NNR-Insuff. (M.Addison) in Komb. mit Mineralokortik. (Fludrocortison), sekundäre NNR-Insuffizienz (HVL-, Hypoth.-Insuffizienz)

"pharmakodynamische" Therapie antiallergisch, antiphlogistisch, immunsuppressiv; meist deutlich höhere Dosen als bei Substitutionstherapie; Mittel der Wahl in der Regel: Prednisolon

- rheumatische Erkrankungen (Arthritis, Karditis); Kollagenosen (SLE etc.)
- allergische Erkrankungen, autoimmunologische Erkrankungen
- Asthma bronchiale (inhalative Glukokortikoide, Prednisolon)
- Hauterkrankungen (Ekzeme etc.)
- Morbus Crohn
- Sarkoidose
- Hirnödem (Dexamethason)
- Lymphozytäre Leukämien, Lymphome Proliferationshemmung, proapoptotisch (Prednisdolon, Dexamethason)
- Transplantationen

11.2 Pharmakotherapie des Asthma bronchiale (Stufenschema)

Stufe 1

(intermittierende Beschwerden, tagsüber: ≥ 2 x pro Woche, Symptome nachts : ≥ 2 x pro Monat) bei Bedarf: kurz-wirksames β_2 -Sympathikomimetikum inhalativ

Stufe 2

(leicht persistierend, Symptome tagsüber: < 1 x pro Tag, Symptome nachts: > 2 x pro Monat) bei Bedarf: kurz-wirksames β_2 -Sympathikomimetikum inhalativ Dauertherapie: Glukokortikoid in niedriger Dosierung inhalativ alternativ (bei Kindern): Degranulationshemmer

Stufe 3

(mittelgradig persistierend, Symptome tagsüber: täglich, Symptome nachts: > 1 x pro Woche) bei Bedarf: kurz-wirksames β_2 -Sympathikomimetikum inhalativ

Dauertherapie: Glukokortikoid in mittlerer Dosierung inhalativ lang-wirksames β_2 -Sympathikomimetikum inhalativ/oral zusätzlich evtl. retardiertes Theophyllin

Stufe 4

(schwer persistierend, Symptome tagsüber: ständig, Symptome nachts: häufig) bei Bedarf: kurz-wirksames β_2 -Sympathikomimetikum inhalativ

Dauertherapie: Glukokortikoid in hoher Dosierung inhalativ; Glukokortikoid oral (z.B. 25-50 mg Prednisolon pro Tag; langsame Dosisreduktion nach Besserung); lang-wirksames β_2 -Sympathikomimetikum inhalativ/oral; zusätzlich evtl. retardiertes Theophyllin; ab Stufe 2 können Leukotrien-Rezeptorantagonisten (z.B. Montelukast) zusätzlich gegeben werden (klinischer Nutzen fraglich). Stellenwert der lang-wirksamen β_2 -Sympathikomimetika derzeit umstritten

Kapitel 12

Analgetika

12.1 Nozizeptoren

Fasertyp

Freie Nervenendigungen von nozizeptiven A δ - und C-Fasern

Funktion

 $15 \ \mu m$ 70-120 m/s $A\alpha$ Motoneurone, primäre Muskelspindelafferenzen $A\beta$ Hautafferenzen $8 \mu m$ 30-70 m/sBerührung und Druck 15-30 m/sMotorisch zu Muskel- $A\gamma$ $5 \mu m$ spindeln

Faserdurchmesser

 $A\delta$ Hautafferenzen für Tem- $<3 \mu m$ 12-30 m/speratur und Nozizeption В Sympathisch $3 \ \mu \mathrm{m}$ 3-15 m/spräganglionär \mathbf{C} Hautafferenzen für Tem- $1 \mu m$ peratur und Nozizeption marklos! Sympathische postgan-

0.5-2 m/s

Leitungsgeschwindigkeit

glionär

- thermische Nozizeptoren (>45°C oder <5°C) myelinisierte A δ -Fasern • mechanische Nozizeptoren (Druck, Berührung, Vibration) A δ -Fasern
- polymodale Nozizeptoren (mech., therm., chem.) micht-myelin. C-Fasern

Plasmamembran freier nozizeptiver Nervenendigungen besitzt Proteine, die thermische, mechanische oder chemische Reize in ein depolarisierendes elektrisches Potential umwandeln. Bsp.: Vanilloid aktivierter Kationenkanal (TRPV1)-Vorkommen v.a. auf C-Faser-aktiviert durch Wärme (>43 °C oder H^+ -Ionen, pH <6) sowie Capsaicin TRPV1-homologer Kationenkanal (TRPV2) Vorkommen v.a. auf A δ -Fasern, aktiviert durch Hitze (>52 °C)

Chronifizierung des Schmerzesbei pathologischen Zuständen: Periphere Sensibilisierung

durch Bradykinin, Histamin, Serotonin, Prostaglandine, K^+ , H^+ , ATP \to Auslösung pathologischer Zustände: Hyperalgesie Allodynie, spontane Schmerzen

12.2 Nozizeptive Synapse des Hinterhorns

Transmitter exzitatorischer nozizeptiver A δ - un C-Fasern

Glutamat: Wirkung über AMPA-Rezeptoren \rightarrow schnelle synaptische Potentiale Substanz P, Calcitonin gene related peptide (CGRP): Wirkung über G-Protein gekoppelte, modulatorische Rezeptoren (PI-response) \rightarrow langsame exzitatorische postsynaptische Potentiale

Chronifizierung des Schmerzes bei pathologischen Zuständen: Zentrale Sensibilisierung

Bei starken persistierenden peripheren Schmerzreizen kommt es zur repetitiven Aktivierung von C-Fasern \rightarrow starke, repetitive Aktivierung von AMPA- und NMDA-Rezeptoren \rightarrow Potenzierungseffekt an der glutamatergen Synapse ähnlich LTP, wobei NO und evtl. Prostaglandine als retrograde Verstärker der synaptischen Transmission fungieren. Außerdem kommt es durch starke Depolarisation zur Aufhebung des Mg^{2+} -Blocks von NMDA-Rezeptoren \rightarrow wind-up-Phänomen / chronische Schmerzen. Zentrale Sensibilisierung kommt auch bei Synapsen des Thalamus und der Grosshirnrinde vor.

12.3 Deszendierendes anti-nozizeptives System

Ursprungskerne: Periaquäduktales Grau, Locus coeruleus, Nucleus raphe magnus

Periaquäduktales Grau

u.a. durch Tractus spinomesencephalicus innerviert, besitzt selbst Opiat-Rezeptoren, außerdem beeinflußt von Cortex und Thalamus. Neurone des periaquä-duktalen Graus aktivieren serotoninerge Neurone des Nucleus raphe magnus

- → Aktivierung inhibit. opioiderger Interneurone im Hinterhorn (Laminae I,II,V)
- ightarrow Freisetzung von Enkephalinen ightarrow prä- und postsynaptische Hemmung nozizeptiver Synapsen

12.4 Analgetika

- nicht-opioide Analgetika / antipyretische Analgetika
 - antiphlogistische/saure Analgetika;
 - nichtsteroidaleAntiphlogistika / Antirheumatika (NSAID, NSAR)
 - nicht-saure Analgetika: Anilinderivate (z.B. Paracetamol)
- narkotische / opioide Analgetika
 - schwach/mittelstark wirksame (nicht BtM-pflichtig)
 - stark wirksame (BtM-pflichtig)
- Koanalgetika / Adjuvantien

12.4.1 antiphlogistische/saure Analgetika s. "Antiphlogistika"

Acetylsalicylsäure Diclofenac Wirkung v.a. durch Hemmung der Cyclooxygenase (COX-1 und COX-2)

erwünschte Wirkqualitäten

analgetisch v.a. Prostaglandin E sensibilisiert Nozizeptoren für schmerzauslösende Mediatoren (z.B. Bradykinin, Serotonin); Wirkung auch auf spinaler Ebene wirksam v.a. bei: Entzündungsschmerz, den meisten Formen von Kopfschmerz, Zahnschmerzen, Dysmenorrhoe, Arthritis, deg. Erkrankungen etc.

antiphlogistisch / antipyretisch

s. "Antiphlogistika"

12.4.2 Nicht-saure Analgetika

gute analget. und antipyret. Wirkung, geringe antiphlogistische Wirkung Wirkmechanismus unklar

12.4.3 Anilinderivate

Paracetamol (Acetaminophen)

Einsatz und Dosierung

- analgetisch, erste Wahl bei Säuglingen und Kindern sowie während Schwangerschaft und Stillzeit (v.a. nicht-viszerale Schmerzen)
- antipyretisch
- Dosierung Erwachsene: Einzeldosis 500-1000 mg,
 Tageshöchstdosis 4g Kinder: 50 mg/kg in 2-3 Einzeldosen (Saft, Supp.)

Pharmakokinetik

gut resorbiert, überwiegend hepatisch metabolisiert (Konjugation); Plasma HWZ: 2h, Wirkdauer 4-6 h

unerwünschte Wirkungen

allgemein gut verträglich; cave: Überdosierung

Vergiftung

ab 6-10 g/Tag: Erschöpfung der Inaktivierung toxischer Metabolite (N-Acetylbenzochinonimin) in der Leber durch Konjugation an Glutathion \rightarrow Bindung reaktiver Zwischenprodukte an Leberzellproteine \rightarrow Leberzellnekrosen

Klinik

Übelkeit, Erbrechen, abdominelle Schmerzen (2-14 h nach Ingestion); Leberversagen (12-36 h nach Ingestion)

Therapie

primäre Elimination (Erbrechen, Magenspülung), N-Acetylcystein (bis 12 h nach Ingestion); Kontraindikationen: Leberinsuffizienz

12.4.4 Pyrazolderivate

Metamizol

Einsatz und Dosierung

- analgetisch, bei schweren akuten und chronischen Schmerzzuständen, Koliken (spasmolyt. Effekt)
- antipyretisch (Reservemittel bei hohem Fieber)
- Dosierung: Einzeldosis 500-1000 mg (p.o., i.v., Supp.) Injektion unter Puls-, Atem- und RR-Kontrolle Tageshöchst dosis 5 g

Pharmakokinetik

gut wasserlöslich (auch i.v.-Gabe möglich); gute Resorption, rasche Metabolisierung zu teilw. aktiven Metaboliten; Wirkdauer 4 h

unerwünschte Wirkungen

allergische Reaktionen, anaphylakt. Schock (v.a. nach i.v.-Gabe); Agranulozytose (1 Fall pro 20.000 Anwendungen)

Kontraindikationen

instabile Kreislaufsituation; Säuglinge und Kleinkinder; Schwangerschaft

12.4.5 narkotische / opioide Analgetika

Opiate Hauptalkaloide des Opiums z.B. 12% Morphin, 0,5% Codein

Opioide Endogene Substanzen (Endorphine, Dynorphine, Enkephaline) Synthetische / halbsynthetische Substanzen

Opioid-Rezeptoren

 μ -Opioidrezeptoren: Haupt-Angriffsort der meisten klinisch eingesetzten Opioide; vermittelt u.a. Analgesie, Atemdepression, Euphorie, Abhängigkeit, Miosis

 κ -Opiatrezeptoren: vermitteln u.a. spinale Analgesie, Dysphorie, Sedierung

 $\delta\text{-}\textsc{Opiatrezeptoren:}$ vermitteln u.a. spinale Analgesie

Wirkungen

Zentral

- Schmerzhemmung
 - Aktivierung absteig. Schmerz-hemmender Systeme (Angriff im Bereich des periaquäduktalen Graus)
 - Unterdrückung nozizeptiver Impulse auf spinaler Ebene
 - Beeinflussung der Schmerzerlebens (limb. System)
 - Periphere Wirkung durch Hemmung nozizept. Nervenendigungen v.a. im Rahmen von Entzündungen
- Atemdepression (bei Schmerzpatienten gering!) CO2-Empfindlichkeit ↓, Hemmung des Prä-Bötzinger-Komplex (Hirnstamm)

- Sedierung; Anxiolyse, Tranquilisierung; euphorisierend; antitussiv (Hemmung des Hustenreflex); emetisch (Stim. der Chemorezeptor-Triggerzone); miotisch (Aktivierung des Edinger-Westphal-Kerns)
- Barorezeptoren
reflex $\downarrow \rightarrow$ orthostatische Hypotonie

Peripher

- Magen-Darm-Trakt: Tonus ↑, Motilität ↓; spastische Obstipation (+ antisekretorisch b. Diarrhoe); Magenentleerung ↓, Gallenfluß ↓ (Konstriktion d. Sphinkter Oddi)
- Urogenital-Trakt; Harnblasenentleerung \(\) (Konstriktion des Sphinkter vesicae)
- Blutgefäßtonus ↓; Histaminfreisetzung aus Mastzellen

Kontraindikationen

Bei starken Schmerzen sind alle Kontraindikationen relativ

Opiat-Abhängigkeit in der Anamnese
Astma brochiale, andere Lungenerkrankungen
(Hustenreflex↓)
Schwangerschaft, Stillzeit

Bewusstseinsstörungen
Atemstörungen (Atemdepression)

wichtige unerwünschte Wirkungen bei Dauerschmerztherapie

- 100% Obstipation (dosisabhängig)
- 20% Übelkeit, Erbrechen (individueller Früheffekt; in den ersten 5-7 Tagen)
- 20% Sedierung (dosisabhängig, bei Langzeitanwendung gering)
- 1-2% Verwirrtheit, Halluzinationen

praktisch nie: Atemdepression, Abhängigkeit

Opiatintoxikation

Leitsymptomtrias: Bewusstseinstörung; Atemdepression; Miosis Therapie: Seitenlage, Überwachung der Vitalfunktionen; Naloxon 0,4-2 mg i.v. über 2-3 min (evtl. auch i.m. oder s.c.); ggf. wiederholen

Reine Agonisten

Morphin und seine Derivate)

Morphin nach oraler Aufnahme hoher first-pass-Effekt (Bioverfügbarkeit 20-40%), mäßig ZNS-gängig; v.a. Glukuronidierung an OH-Gruppen in Position 3 und 6

- \rightarrow Morphin-3-glukuronid (55%), unwirksam, renal ausgeschieden
- → Morphin-6-glukuronid (10%), wirksam!, ZNS-gängig, renal ausgeschieden

Einsatz: Analgetikum, oral (Retardform), i.m., s.c.

Codein natürlich vorkommendes Opiat, selbst unwirksam; gute Resorption (Bioverfügbarkeit 40-60%), Methylgruppe in Position 3 schützt vor Abbau. 10% wird hepatisch durch CYP2D6 zu Morphin demethyliert (akt. Prinzip)

Einsatz: Analgetikum, Antitussivum (Gabe: oral), Suchtgefahr gering

Heroin (Diacetylmorphin), synthetisches Opioid, selbst unwirksam, nach i.v.-Gabe extrem schneller Übertritt in das ZNS, dort Deacetylierung zu Morphin

Weitere reine Agonisten

(schwach wirksame Opioide der WHO Stude 2)

Tilidin und Naloxon Tilidin (Agonist): Prodrug; Bioverfügbarkeit: 60-70%, Wirkdauer 3-5 Std. Naloxon (Antagonist): Bioverfügbarkeit: 1-2%, Wirkdauer 1 Std.

Einsatz: Analgetikum (p.o.): Bei erster Leberpassage wird Tilidin aktiviert, Naloxon inaktiviert; bei parenteraler Gabe oder Überdosis hemmt Naloxon die suchterzeugende Wirkung von Tilidin.

Weitere reine Agonisten

(hohe analgetische Potenz)

Levomethadon, Methadon 4-fach stärker und länger wirksam als Morphin, hohe Bioverfügbarkeit (92%), Plasma-HWZ: 1-1,5 Tage; langsame Toleranzentwicklung

Einsatz: Analgetikum (p.o., s.c., i.m.); Substitutionstherapie (p.o.)

Hydromorphon 7,5-fach stärker wirksam als Morphin; Plasma HWZ: 3 Std.

Fentanyl hochpotent (100-fach stärker Wirksam als Morphin), Wirkdauer 20-30 min) Einsatz: Neuroleptanalgesie (i.v.); chron. Tumorschmerztherapie (transdermal), Wirkdauer 72 Std.

Partielle Agonisten

Buprenorphin hochpotent (30-40-fach potenter als Morphin), maximale analgetische Wirkung geringer als die des Morphins; Bioverfügbarkeit unter 20%, Wirkdauer 6-8 Std.; mäßiges Abhängigkeitspotential, durch Naloxon nicht voll antagonisierbar (cave: Atemdepression); Einsatz: Analgetikum (p.o., s.l., i.m.)

Pentazocin schwacher partieller Agonist am μ -Opioid-Rezeptor, Agonist am κ -Opioid-Rezeptor; in Deutschland nicht mehr im Handel

μ -Opioid Agonisten mit hemmender Wirkung auf NA/5-HT-Wiederaufnahme

Tramadol schwach wirksames Opioid der WHO Studie 2, Bioverfügbarkeit: 60-70% Wirkdauer: 6 h; Einsatz: Analgetikum (p.o., i.v., s.c.); Razemat hemmt NA/5-HT Wiederaufnahme; analgetische, atemdepressive und suchterzeugende Wirkungen sind deutlich geringer als bei klassischen Opioiden; häufig Übelkeit aufgrund 5-HT Wiederaufnahmehemmung

Tapentadol Wirkungsgrad gleicht stark wirksamen Opioiden, weniger Inzidenz von unerwünschten Nebenwirkungen

Antagonisten

Naloxon Antagonist an allen Opioid-Rezeptoren; Plasma-HWZ: 2 Std., Bioverfügbarkeit 2%, kein Effekt bei Normalpersonen, Entzugssyndrom bei Abhängigen; Einsatz: akute Opiat-Intoxikation, Diagnose einer Opiat-Abhängigkeit, Abhängigkeitsprophylaxe (Tilidin + N)

Methylnaltrexon Antagonist v.a. am μ -Opioid-Rezeptor; Plasma-HWZ: 8 Std., Bioverfügbarkeit nach oraler Gabe gering \rightarrow s.c.-Gabe; als quartäres Amin keine ZNS-Gängigkeit. Einsatz: Behandlung Opioid-induzierter Obstipation; zur Reduktion des Rückfallrisikos nach Alkoholentzug

12.5 Toleranz, Abhängigkeit

Toleranz

Abnehmende Wirkung nach wiederholter Gabe bei gleicher Dosis; bei Opiat-Toleranz v.a. pharmakodynamische Mechanismen (z.B.: Rezeptorzahl \downarrow ; Ansprechen nachgeordneter Signaltransduktionsvorgänge \downarrow)

Abhängigkeit

Körperliche Abhängigkeit

Auftreten von Entzugssymptomen (meist vegetativer Natur) bei abruptem Absetzen nach chronischer Einnahme; Entzugssymptomatik: Gänsehaut, Schweißausbruch, Tränenfluß, Unruhe, Tremor, Glieder-Muskel-Schmerzen, Muskelspasmen, Gliederschmerzen, Schlaflosigkeit, Übelkeit/ Erbrechen, Tachykardie, RR \uparrow ; Häufig eng mit Toleranzphänomenen verknüpft

Psychische Abhängigkeit

Unstillbares Verlangen ("Craving"), Kontrollverlust. Verhaltensweisen, die zur Einnahme führen, werden verstärkt, Einnahme wird als "Belohnung" ("reward") empfunden

Reward-Systeme z.B.: im mesolimbischen dopaminergen Systems, Neurone des ventralen Tegments vermitteln "reward" Dopaminfreisetzung durch Opioide u.a. erhöht

12.6 Koanalgetika / Adjuvantien

12.6.1 Hemmer neuronaler Natrium und Calcium Kanäle

Lidocain(Pflaster, 5%) topische Hemmung peripherer Na^+ Kanäle

Ziconitid Hemmung der spinalen nozizeptiven Übertragung durch Blockade v.a. von präsynaptischen Ca2+ Kanälen (Neurotransmitterfreisetzung \downarrow)

 ${\bf Carbamezapin}$

Lamotrigin (s. Antikonvulsiva); hemmen periph. Sensibilisier-ung + ektopische Erregung von Nozizeptoren durch Na^+ und Ca^{2+} Kanäle

Gabapentin (s. Antikolvulsiva)

12.6.2 Nicht-selektive Noradrenalin Serotonin Wiederaufnahmehemmer

Desipramin

Nortriptylin (s. Antidepressiva)

Hemmung der Wiederaufnahme von Noradrenalin und Serotonin im synaptischen Spalt \rightarrow erhöhte Freisetzung von Enkephalinen in Rückenmark, d.h. prä- und post-synaptische Hemmung der spinalen nozizeptiven Übertragung. Verbesserung der chronischen Schmerz-assozierten negativen Symptome wie Depression, Verlust des Selbstwertgefühls

12.7 Chronische Schmerzkrankheiten

- 1. Verlauf ohne offensichtliche periphere Pathologie: z.B. Fibromyalgie, Spannungskopfschmerzen, Migräne, zentrales Schmerzsyndrom
- 2. Verlauf mit Pathologie: Inflammatorische Schmerzen (z.B. Rheumatoide Arthritis, Morbus Bechterew, Pankreatitis), Neuropathische Schmerzen (Phantomschmerzen, Post-Herpes Neuralgie, Diabetische Neuropathie, Trigeminus-Neuralgie), Tumor-bedingte Schmerzen (Knochenmetastasen, Pankreaskarzinom)

12.7.1 Stufenplan der WHO für Behandlung chron. Tumorschmerzen

Stufe 1 - Nicht-opioide Analgetika

Paracetamol/ASS	500-1000 mg	alle $4\text{-}6$ h	\max . 6000 mg
Diclofenac	25-50 mg	alle 4-8 h	$\max. 200-300 \text{ mg}$
Ibuprofen	500 mg	alle 4-8 h	$\max. 2400 \text{ mg}$
Metamizol	500-1000 mg	alle 4-6 h	\max . 6000 mg

Stufe 2 - Mittelstarke Opiate/Opioide + ggf. nicht-opioide Analgetika

Codein	30-60 mg	alle 4-6 h	\max . 360 mg
Dihydrocodein ret.	$60\text{-}120~\mathrm{mg}$	alle $8-12 h$	$\max. 360 mg$
Tramadol ret.	100 mg	alle $8-12 h$	\max . 600 mg
Tilidin+Naloxon	50 + 4 mg	alle 2-4 h	max. 600 mg Tilidin

Stufe 3 - Starke Opiate/Opioide + ggf. nicht-opioide Analgetika

Morphin	$5\text{-}500~\mathrm{mg}$	alle 4 h	keine Obergrenze (BtM:
			2000 mg
Morphin retard .I	10-500 mg	alle 8-12 h	
Morphin retard .II	20-500 mg	alle 12-24 h	
Buprenorphin	0,2-0,6 mg	alle 6-8 h	\max . 4 mg
Fentanyl(transdermal)	0.6-12 mg	alle 48-72 h	

Stufe 4 - Starke Opioide kontinuierlich i.v., s.c., peridural

Begleittherapie unerw. Wirkungen: Laxantien, Antiemetika, evtl. Methylnaltrexon. Koanalgetika / Adjuvantien: Antidepressiva , Glukokortikoide, Antikonvulsiva

12.7.2 Therapieempfehlung bei chronischen Schmerzen

Degenerative Gelenkerkrankungen Inflammatorische Schmerzen

Rückenschmerzen

Post-Herpes Neuropathie Trigeminus-Neuralgie Diabetische Neuropathie

Neuropathische Schmerzen aller Art als Mittel der 1.

oder 2. Wahl

Starke, therapieresistente neuropathische Schmerzen

aller Art als Mittel der 3. oder 4. Wahl

Therapie-resistente Schmerzen wenn andere Analgetika erfolglos

Migräne

Paracetamol (1. Wahl) NSAR (2. Wahl)

NSAR; Opioidanalgetika bei refraktären Schmerzen Vergleichbare Wirkung bei NSAR und Paracetamol;

Opioidanalgetika bei refraktären Schmerzen Gabapentin (1. Wahl), Lidocain Pflaster (5%)

Carbamezapin (1. Wahl); Lamotrigin

Gabapentin

Desipramin; Nortriptylin

Oxycodon, Morphin, Methadon, Fentanyl (Transder-

mal

Ziconitid (intrathekal)

Triptane; β -Blocker (prophylaktisch)

Kapitel 13

Sexualhormone

Wirkmechanismus

Bindung an nukleären Rezeptor \to Regulation transkriptioneller Vorgänge Beispiel: Östrogenrezeptor

13.1 Östrogene

Natürliche Östrogene; geringe Bioverfügbarkeit

Östradiol Östriol Östron

Synthetische Östrogene

konjugiert Estradiolvalerat sulfat./glukuron. Estradiol

ethinyliert Mestranol (Vorstufe d. Ethinyle- Ethinylestradiol

stradiol)

vollsynthetisch Fosfestrol

Indikationen

- Bestandteil oraler Kontrazeptiva (häufig Ethinylestradiol)
- ovarielle Insuffizienz
- Substitutionstherapie bei der Frau (Klimakterium, nach Hysterektomie) meist werden natürliche Östrogene mit Gestagenen kombiniert (Estradiol, Estradiolvalerat, konj. Estradiol; oral/transdermal) bei komb. Gabe mit Gestagen ist Endometriumkarzinom-Risiko nicht erhöht alleinige Gabe von Östrogenen nur bei Frauen nach Hysterektomie
 - günstiger Effekt auf klimakterische Beschwerden
 - Prophylaxe der Osteoporose (Knochenresorption \downarrow , Hüftfrakturrisiko \downarrow)

aber: Mammakarzinomrisiko \uparrow , Herzinfarkt-/Schlaganfallrisiko \uparrow , Thromboembolierisiko $\uparrow \rightarrow$ Langzeiteinsatz obsolet (WHI-Studie 2002). Kurzfristiger Einsatz zur Linderung klimakterischer Beschwerden vertretbar. Gabe: oral oder transdermal

unerwünschte Wirkung

- erhöhtes Thromboembolie-Risiko (u.a. Fakt. VII, VIII + Fibrinogen \uparrow ; Prot. S + AT-III \downarrow) \rightarrow kardiovas-kuläre Komplikationen (insb. bei zusätzl. Risikofaktoren)
- Endometriumhyperplasie (bei Dauer-Monotherapie ohne Gestagen)
- Übelkeit, Erbrechen (zu Beginn der Therapie)
- Wasserretention ↓ Mammakarzinomrisiko ↑

Kontraindikationen

Lebererkrankungen, Thromboembolien, Mammakarzinom, Schwangerschaft

13.2 Selektive Estrogen-Rezeptor Modulatoren (SERM)

Bindung von SERMs an Östrogenrezeptor führt zu einer Konformationsänderung, die eine Interaktion mit bestimmten Koaktivatoren und Korepressoren ermöglicht.

 \rightarrow SERMs wirken Gewebe-abhängig agonistisch oder antagonistisch

	Mamma	Knochen	Endometrium	Leber
Tamoxifen (T)	Ant.	Ag.	Ag.	Ag.
Raloxifen (R)	Ant.	Ag.	-	Ag.

Indikationen: Mamma-Ca (Tamoxifen), postmenopausale Osteoporose (Raloxifen)

Clomiphen

überwiegend antagonistisch

Indikationen: Anregung der Ovulation bei Sterilität (vermehrte Gonadotropinausschüttung durch Aufhebung der negativen Rückkopplung)

13.3 Antiöstrogene

Fulvestrant

Indikation: fortgeschrittenes Ösrogen-Rezeptor positives Mamma-Ca bei postmenopausalen Frauen

13.4 Aromatase-Hemmer

Formestan Exemestan

Anastrozol

Indikation: fortgeschrittenes Mamma-Ca

13.5 Gestagene

13.5.1 Synthetische Gestagene

Nortestosteron-Derivate Norethisteron(acetat) Desogestrel/Etonogestrel

androgen Levonorgestrel antiandrogen Dienogest

 17α - Medroxyprogesteron Medrogeston

Hydroxyprogesteron-

Derivate

antiandrogen Clormadinon(acetat) Cyproteron(acetat)

antiandrogen / antimine- Drospirenon

ralokortikoid

Indikationen

• Bestandteil oraler Kontrazeptiva

 $\bullet\,$ Hormongabe in der Menopause

• Dysmenorrhoe, Endometriose, Zyklusregulation, Mastopathie, prämenstruelles Syndrom (therap. Wert umstritten)

• fortgeschrittenes Mamma-, Endometrium-, Prostatakarzinom

unerwünschte Wirkungen

(selten)

Übelkeit/Erbrechen Libido-Veränderungen Blutungsunregelmäßigkeiten

evtl. Gewichtszunahme, Akne vaginale Sekretionssteigerung

(Candidiasis)

Kontraindikationen

schwere Leberfunktionsstörungen, Schwangerschaft

13.6 Antigestagene

Mifepriston (RU486)

seit 1999 in Dtl. zugelassen zur Abortinduktion durch Luteolyse bis zum 49. Tag nach Beginn der letzten Regelblutung; orale Gabe von Mifepriston + 2 Tage später: Prostaglandin-E-Analogon (z.B. Misoprostol oral oder Gemeprost vaginal) zur Förderung der Uteruskontraktion; Wirkungsweise: Blockade wachstumsfördernder und kontraktionshemmender Effekte von Progesteron auf Endometrium und Myometrium;

unerw. Wirkungen

Blutungen, schmerzhafte Uteruskontraktionen, Übelkeit, Erbrechen, Durchfall, Kopfschmerzen

13.7 Hormonale Kontrazeptiva (Antikonzeptiva)

Verhütung der Schwangerschaft durch Zufuhr von Östrogenen und/oder Gestagenen

Östrogenkomponente Ethinylestradiol (gute orale Wirksamkeit; 20-50 μ g/d)

Gestagenkomponente Levonogestrel, Norethisteronacetat, Dienogest, Desogestrel, Norgestinat, Chlormadi-

nonacetat (schwach antiandrogen)

Wirkmechanismus

• Hemmung der Ovulation (Hemmung der LH/FSH-Freisetzung)

- direkter Effekt auf Follikelreifung und Gelbkörperfunktion
- Verminderung der Tubenmotilität (v.a. Gestagene)
- erhöhte Viskosität des Zervixschleimes (v.a. Gestagene)

13.7.1 Konzepte

Einstufen-Kombinationspräparat

leichbleibende Dosierung über 21 Tage und niedriger Östrogenanteil von 20-50 μ g. Ethinylöstradiol + Gestagen; sicherste Verhütungsmethode mit oralen Kontrazeptiva 3-4 Tage nach Absetzen: Abbruchblutung

Zwei-/Dreistufen-Kombinationspräparat

Zweiphasen-/Sequenzpräparat

Monopräparat ("Minipille")

kontinuierliche Gabe geringer Dosen eines Gestagens \rightarrow primär periphere Effekte zeitl. exakte Einnahme erforderlich, keine sichere Antikonzeption

Depot-Gestagene

Injektion von Gestagen i.m. alle 3 Monate oder als Implantat bei unzuverlässiger Einnahme von Kontrazeptiva.

"postkoitale Kontrazeption"

Levonorgestrel oral 2x 750 μ g oder einmalig 1,5 mg, spätestens 72 Std. postkoital eingesetzt; hemmt Ovulation und verhindert Nidation; unerwünschte Wirkungen: Übelkeit, Erbrechen, Kopfschmerzen, Bauchkrämpfe. Progesteonrezeptormodulator Ulipristalacetat: bis zu 5 d postkoital eingesetzt

unerwünschte Wirkungen

allgemein selten bei neueren Präparaten mit niedriger Dosierung

- Thromboembolierisiko (durch Östrogenanteil); Risikofaktoren: bekannte Thromboembolieneigung; Alter > 35 Jahre, Übergewicht, Hypertonie, Rauchen
- neoplastische Erkrankungen? evtl. Verminderung für Endometrium- und Ovarialtumoren; Lebertumoren? Mammakarzinomrisiko nach Ergebnissen der CARE-Studie (2002) nicht erhöht

Gründe für "Pillenversager"

- Einnahmefehler
- Diarrhoe
- Arzneimittelwechselwirkungen; z.B. Induktion von CYP3A durch Barbiturate, Phenytoin oder Rifampicin
 → vermehrter Abbau von Ethinylestradiol

Kontraindikationen

thromboembolische Erkrankungen, kardiovaskuläre Hypertonie > 160/100

Erkrankungen (auch anamnestisch)

Diabetes mellitus, Fettstoffwechselstörung Mamma-, Korpus-, Lebertumoren

starkes Zigarettenrauchen (> 15 / Tag) Lebererkrankungen

13.7.2 Sicherheit verschiedener hormonaler Kontrazeptiva (Pearl-Index)

Ovulationshemmer: 0,1-1.0; "Minipille": 0,5-3,0; Dreimonatsspritze (Gestagen): 0,3-1,5; Gestagen-haltiges IUP: 0,1; Subdermales Gestagenimplantat: 0; Postkoitale Kontrazeption: 1-3

13.8 Androgene

Testosteron ist gut resorbierbar, unterliegt jedoch einem sehr hohen first-pass-Effekt; Keine orale Anwendung; Wirkungsverlängerung nach i.m.-Gabe oder transdermaler Gabe durch Acylierung.

13.8.1 seynthetische Androgene

Testosteronproprionat

Testosteronenantat

Test osteron un decano at

medizinische Indikationen: primärer (testikulärer) / sekundärer (hypothalamisch-hypophysärer) Hypogonadismus.

unerwünschte Wirkungen

(bei Überdosierung): Leberfunktionsstörungen, Akne, Seborrhoe, Alopezie, Übelkeit, Erbrechen, psych. Veränderungen (Libido, Aggressivität), Wasserretention, Hemmung der Spermatogenese; Einsatz bei Klimakterium virile: häufigere Inzidenz von unerwünschten kardiovaskulären Ereignissen!

13.8.2 Androgenrezeptor-Antagonisten

Cyproteronacetat

auch gestagene Eigenschaften) u.a. Hemmung der Gonadotropin-Ausschüttung (gestagener Effekt); fragl. Hepatotoxizität; Indikationen: Behandlung von Virilisierungserscheinungen bei der Frau; Pubertas praecox, Prostatakarzinom

Flutamid

(nicht steroidal)

Einsatz: Prostatakarzinom (nicht steroidal) Einsatz: Prostatakarzinom

13.8.3 5α -Reduktasehemmer

Finasterid

geringe Beeinflussung des Effektes von Testosteron auf Muskulatur/Knochen, negative Rückkopplung, Libido und Potenz bleiben weitestgehend erhalten.

Indikationen: ausgeprägte Prostatahyperplasie, androgenetische Alopezie (umstritten!)

Kapitel 14

Schilddrüse

14.1 Schildrüsenhormone

Thyroxin (T_4)

Prohormon

Trijodthyronin (T₃)

14.1.1 Bildung

Wirkmechanismus

v.a. T_3 gelangt in den Zellkern und bindet an nukleären Rezeptor \rightarrow direkte Rezeptor-DNA-Interaktion \rightarrow Transkriptionsregulation

Wirkung

- Wachstum, Entwicklung insbesondere ZNS und Skelettsystem; Kretinismus unter T₃/T₄ Mangel!
- kalorigene Wirkung basaler Energieumsatz ↑, O₂-Verbrauch ↑ u.a. oxidativer Abbau von Fetten und Kohlehydraten; Mechanismus ? v.a. Herz, Skelettmuskel, Leber, Niere; kein Effekt auf: Gehirn, Milz, Gonaden
- metabolische Effekte Cholesterinplasmakonz. ↓ (Abbau zu Gallensäuren ↑); Kohlenhydrat-Abbau ↑ Lipolyse ↑ (lipolyt. Effekt von Katecholaminen ↑)
- kardiovaskuläre Effekte direkte und indirekte Regulation von Chronotropie und Inotropie Beeinflussung von β -Adrenozeptordichte und -empfindlichkeit (erhöht bei Hyperthyreose); Beeinflussung der Expression myokardialer Proteine (MHC α/β , Myosin, Ca^{2+} ATPase)

14.2 Therapeutische Anwendung von L-Tyroxin

- z.B. bei Hypothyreose
- meist lebenslange Dauertherapie mit L-Thyroxin (T_4) (selten T_3)
- Dosis langsam über Wochen steigern (z.B.: 25 μg-Schritte)

- Gabe 1 x täglich morgens (80% Resorption in nüchternem Zustand, 50-70% mit Nahrung)
- Kontrolle: Klinik, Bestimmung basaler TSH-Spiegel
- \bullet Erhaltungsdosis meist: 2 $\mu \mathrm{g/kg/Tag}$

unerwünschte Wirkungen

- Hyperthyreose (bei Überdosierung)
- bei kardiovaskulär vorbelasteten Patienten nach langer Hypothyreose: Myokardinfarktgefahr
- \bullet Glukosetoleranz \downarrow

kontraindikationen

frischer Myokardinfarkt Myokarditis
Angina pectoris tachykarde Arrhythmien (relative KI)

Wechselwirkungen

Cumarinwirkung \uparrow , Antidiabetikawirkung \downarrow ; Cholestyramin: T₄ Resorption \downarrow

14.3 Thioharnstoff-Derivate / Thionamide

	Initialdosis	Erhaltungsdosis
Propylthiouracil	$3 \times 50\text{-}100 \text{ mg}$	$3 \times 25\text{-}50 \text{ mg}$
Thiamazol	$2 \times 10 \text{ mg}$	$1 \times 2,5-5 \text{ mg}$
Carbimazol	$2-3 \times 10-30 \text{ mg}$	$1 \times 5\text{-}20 \text{ mg}$

Wirkmechanismus

Hemmung der Hormonsynthese durch Hemmung der Peroxidase in den Follikelzellen der Schilddrüse \rightarrow Iodisationshemmer. Wirkungseintritt nach Tagen bis 2 Wo. (Inkretion fertiger Hormone unbeeinflußt)

Pharmakokinetik

gute enterale Resorption; Carbimazol wird zu Thiamazol metabolisiert

unerwünschte Wirkungen

- Leukopenie, Agranulozytose (<0,5%)
- Exantheme, Pruritus
- Fieber, Gelenkschmerzen
- Cholestase, Übelkeit, Erbrechen

Kontraindikationen

Cholestase, Stillzeit; hämatopoetische Störungen

Indikationen

- primäre Behandlung der Hyperthyreose nach Erreichen der Euthyreose ggf. OP oder Radiojodtherapie
- \bullet thyreotoxische Krise, Thioharnstoffderivate, β -Blocker, Glukokortikoide, evtl. Jodid therapeut. Anwendung von Radiojod oder Iodid

14.4 Iodid-Ionen

14.4.1 Kaliumjodid (KJ)

- Physiologischer Jodid-Bedarf: 150-200 μ g/d
- Jodid-Ionen in hoher Konzentration (>5-10 mg/d) hemmen kurzfristig die Freisetzung von T₃/T₄ aus der Schilddrüse (v.a. durch Proteolyse-Hemmung)

Pharmakokinetik

gute enterale Resorption, Wirkungsbeginn: innerhalb von 24 Stunden. Wirkdauer bei Hochdosis-gabe: vorübergehend (Maximum nach $10-14~\mathrm{d}$)

unerwünschte Wirkungen

Jodismus: Schleimhautreizung im Kopf-Hals-Bereich, Bronchitis, Fieber, Magen-Darm-Störungen (Diarrhoe, Gastroenteritis)

Indikationen

- Prävention der Jodmangelstruma
- Hochdosis-Gabe: nicht Jod-induzierte thyreotox. Krise früher: präoperativ zur Herstellung einer euthyreotischen Stoffwechsellage

14.5 Iodprophylaxe

Folgen Größenzunahme durch lokale Wachstumsfaktoren wie "epidermal growth factor" (EGF) und "insulin-like growth factor I" (IGF I)

 \rightarrow Hyperplasie von Thyreozyten

 $\text{TSH} \to \text{Hypertrophie}$ von Thyreozyten \to endemische Struma

normaler Jod-Bedarf: 150-200 $\mu g/d$ (50% davon werden verwertet) 5-15% der deutschen Bevölkerung (F > M) haben einen Jodmangel

Gefahr lokale Kompressions-/Verdrängungskomplikationen Jod-induzierte Hyperthyreose Entwicklung einer funktionellen Autonomie

Prophylaxe jodiertes Speisesalz, jodhaltige Nahrung (Meeresfische). Kaliumjodid 100-200 μ g/d in Tablettenform (konst. Aufnahme)

Therapie Jodid + evtl. T_4 (100-200 $\mu g/d$) ggf.: operativ, Radiojodtherapie

Kapitel 15

Antineoplastika

Nebenwirkungen der Zytostatikatherapie

Schnell proliferierende Gewebe sind am stärksten betroffen! Frühreaktionen: Erbrechen, Übelkeit, Fieber, allergische Erscheinungen; Spätreaktionen: Knochenmarkschädigungen, gestörte Hämatopoese; gastrointestinale Wirkungen durch Beeinträchtigung der Schleimhäute; Haarausfall; Reproduktionstrakt: Infertilität, Teratogenität hepatotoxische Wirkungen; mutagene, teratogene und kanzerogene Wirkungen Indirekte Wirkungen: Immunsuppression: gehäuftes Auftreten von bakteriellen, viralen und Pilzinfektionen; Erhöhung des Harnsäurespiegels: Hyperurikämie, Harnsäurenephropathie; Paravasate: Phlebitis oder Nekrose

15.1 Antimetabolite

Hemmung der an der Nukleosid-Synthese beteiligt. Enzyme; Einbau als falsche Basen in DNA/RNA \to Hemmung v. Polymerasen und DNA-/RNA-Strangabbruch

Substanzen	Hemmung der	Falsche Base?
Folsäure-Analoga		
Methotrexat	Dihydrofolsäurereduktase	-
Purin-Analoga		
6-Mercaptopurin	Adenylosuccinatsynthetase	+
6-Thioguanin	IMP-Dehydrogenase	+
Pentostatin	Adenosindesaminase	+
Pyrimidin-Analoga		
5-Fluorouracil	Thymidilatsynthase (FdUMP)	+ (FUMP)
Cytarabin	-	+
Gemcitabin	-	+

15.1.1 Hemmer der Dihydrofolatreduktase

Methotrexat

Wirkmechanismus

Gestörte Thymidin- und Purinsynthese; Kinetik: Applikation: oral, parenteral; Intrazelluläre Umwandlung in Polyglutamat-Derivate \rightarrow Kumulation intrazellulär; Elimination renal

unerwünschte Wirkungen

Knochenmarksuppression; Schleimhautschäden; Pneumonitis; Nephro-/Hepatotoxizität

Indikation

Leukämien, Lymphome, Karzinome; Autoimmune Erkrankungen

Besonderes

Gleichzeitige Folinsäuregabe (Formyl-Tetrahydrofolsäure) zur Milderung der Wirkung auf gesundes Gewebe

15.1.2 Antipurine

6-Mercaptopurin

6-Thioguanin

Wirkmechanismus

Aktivierung zum entsprechenden Ribonukleotid (Thio-IMP, -GMP); - Hemmung der Purinsynthese (Adenylosuccinatsynthetase, IMP-Dehydrogenase); Einbau als "falsche Base" in DNA;

Indikationen

Leukämien (6-MP), Autoimmune Erkrankungen (Azathioprin, hepatisch zu 6-MP metabol.)

unerwünschte Wirkungen

Knochenmarksdepression; Hepato-/Nephrotoxizität; Dosisreduktion unter Allopurinol-Gabe (hemmt Abbau d. Xanthinoxidase)!

15.1.3 Pentostatin

Aus Streptomyces antibioticus

Wirkmechanismus

Hemmung der Adenosinde
aminase \rightarrow erhöhte dATP-Spiegel \rightarrow "feedback"-Hemmung der Bildung anderer Desoxyribonuk
leotide.

15.1.4 Pyrimidin-Antimetabolite

5-Fluoruracil i.v.-Gabe

Wirkmechanismus

als FdUMP Hemmung der Thymidinsynthese; als FUMP Einbau als falsche Base; Wirkung bei TH4-Gabe;

Indikationen

kolorektale Tumoren, Mammakarzinom

Cytarabin i.v.-Gabe