

SEQ ID 2 1 ATG TAC CAG ATG CCT GGG CAG TGC TCC CAA ATT GAA TAT TTT GAA AGT TTG TAC CAT GCT
SEQ ID 1 11 M L Q M A G Q C S Q N E Y F D S L L H A
61 TGC ATA CCT TGT CAA CCT OGA TGT TCT ATT ACT CCT CCT CTA ACA TGT CAG OGT TAT
211 C I P C Q L R C S N T P P L T C Q R Y
121 TGT AAT GCA AGT GTG ACC ATT TCA GTG AAA GGA ACG ATT GCG ATT CTC TGG ACC TGT TIG
411 C N A S V T N S V K G T N A I L W T C L
181 GGA CTG AGC TTA ATA ATT TCT TGT TTG GCA GTT TTC GTG CTA ATG TTT TTG CTA AGG AAG ATA
611 G L S L I I S L A V F V L M F L L R K I
241 AGC TCT GAA CCA TTA AAC GAC GAG TTT AAA AAC ACA GGA TCA CGT CTC CTG GGC ATG GCT
811 S S E P L K D E F K N T G S G L L G M A
301 AAC ATT GAC CTG GAA AAC AGC AGG ACT GGT GAT GAA ATT ATT CTT CCG AGA GGC CTC GAG
1011 N I D L E K S R T G D E I I L P R G L E
361 TAC ACG GTG GAA GAA TGC ACC TGT GAA GAC TGC ATC AAC AGC ATC AAA CGG AAG GTC GAC TCT
1211 Y T V E E C T C E D C I K S K P K V D S
421 GAC CAT TGC TTT CCA CTC CCA GCT ATG GAG GAA GGC GCA ACC ATT CTT GTC ACC ACG AAA
1411 D H C F P L P A M E E G A T I L V T T K
481 ACG AAT GAC ATT TGC MAG AGC CTG CCA GCT GCT TTG AGT GCT ACG GAG ATA GAG AAA TCA
1611 T N D Y C K S L P A A T S A T E I E K S
541 ATT TCT GCT AGG TAA
1811 I S A R .

1/19

FIG. 1

FIG. 2

ATG GAG ACA GAC ACA CTC CTC TTA TCG GTG CTG CTG CTC TCG GTT CCA GGT TCC ACT GGT

1 ATG GAG ACA GAC ACA CTC CTC TTA TCG GTG CTG CTG CTC TCG GTT CCA GGT TCC ACT GGT
1 M E T D T L L W V L L W V P G S T G
SEQ ID 4 1 M E T D T L L W V L L W V P G S T G
SEQ ID 3 61 GAC GTC ACG ATG TTG CAG ATG GCT GGG CAG TGC TCC CAA AAT GAA TAT TTT GAC AGT TTG
1 M L Q M A G Q C S Q N E Y F D S L
21 D V T M L Q M A G Q C S Q N E Y F D S L
121 TGC CAT GCT GTC ATA CCT TTG CAA CCT CGA TGT TCT AAT ACT CCT CCT CTA ACA TGT
18 L H A C I P C Q L R C S N T P P L T C
41 L H A C I P C Q L R C S N T P P L T C
181 CAG CGT TAT TGT AAT GCA AGT GTG ACC AAT TCA GTG AAA GGA GTC GAC AAA ACT CAC ACA
38 Q R Y C N A S V T N S V K G V D K T H T
61 Q R Y C N A S V T N S V K G V D K T H T
241 TGC CGC CGA CCT GAA CTC CTC CGC CGG CGA CGG TCA GTC TTC CTC TTC CCC CCA
81 C P P C P A P E L L G G P S V F L F P P
301 AAA CCC AAG GAC ACC CTC ATG ATC TCC CGG ACC CCT GAG GTC ACA TGC GTG GTG GAC
101 K P K D T L M I S R T P E V T C V V V D
361 GTG AGC CAC GAA GAC CCT GAG GTC AAC TGC TAC GTG GAC GGC GTC CGT GTG GAG GTC AGC GTC
121 V S H E D P E V K F N W Y V D G V E V H
421 AAT GCC AAG ACA AAG CGG CGG GAG GAG CAG TAC AAC AGC AGG TAC CGT GTG GTC GTC AGC GTC
141 N A K T K P R E E Q Y N S T Y R V V S V
481 CTC ACC GTC CTG CAC CAG GAC TGG CTG AAT GGC AAG GAG TAC AAG TGC AAG GTC TCC AAC

2/19

FIG. 2A

161† L T V L H Q D W L N G K E Y K C K V S N
541 AAA GCC CTC CCA GCC CCC ATC GAG AAA ACC ATC TOC AAA GCC AAA GGG CAG CCC CGA GAA
181† K A L P A P I E K T I S K A K G Q P R E
601 CCA CAG CTG TAC ACC CTG CCC CCA TOC CGG GAT GAG CTG ACC AAC AAC CAG GTC AGC CTG
201† P Q V Y T L P P R D E L T K N Q V S L
661 ACC TGC CTG GTC AAA GCC TTC TAT CCC AGC GAC ATC GOC GTG GAG TCG GAG AGC AAT GGG
221† T C L V K G F Y P S D I A V E W E S N G
721 CAG CCG GAG AAC AAC TAC AAG ACC ACG CCT CCT GAC GTG GAC TCC GAC GGC TCC TTC TTC
241† Q P E N N Y K T P P V L D S D G S F F
781 CTC TAC AGC AAG CTC ACC GTG GAC AAG AGC AGG TGG CAG CAG GGG AAC GTC TTC TCA TGC
261† L Y S K L T V D K S R W Q Q G N V F S C
841 TOC GTG ATG CAT GAG GCT CTG CAC AAC CAC TAC ACG CAG AAG AGC CTC TCC TCG TCT CCC
281† S V M H E A L H N H Y T Q K S L S L S P
901 GGG AAA TGA
301† G K *

FIG. 2B

	BsaAI	BbsI
1 AAGACTCAA CTTAGAACT TGAATTAGAT GTGGTATTCA AATCCTTACG TGCCGCGAAG		
61 ACACAGACAG CCCCGTAAG AACCCACGAA GCAGGCGAAG TTCATTGTC TCAACATTCT		
EcoRI		
121 AGCTGCTCTT GCTGCATTTG CTCTGGAATT CTTGTAGAGA TATTACTTGT CCTTCCAGGC		
SfcI	BclI	
181 TGTTCTTCT GTAGCTCCCT TGTTTCTTT TTGTGATCAT GTTGCAGATG GCTGGGCAGT		
1► M L Q M A G Q		
SspI	SphI	HincII
241 GCTCCCAGAA TGAATATTTT GACAGTTTGT TGCATGCTTG CATACTTGT CAACCTCGAT		
8► C S Q N E Y F D S L L H A C I P C Q L R		
PciI		
AflIII		
301 GTTCTCTAA TACTCCTCCT CTAACATGTC AGCGTTATTG TAATGCAAGT GTGACCAATT		
28► C S S N T P P L T C Q R Y C N A S V T N		
BsmFI		
361 CAGTGAAGG AACGAATGCG ATTCTCTGGA CCTGTTGGG ACTGAGCTTA ATAATTCTT		
48► S V K G T N A I L W T C L G L S L I I S		
421 TGGCAGTTT CGTGCTAACG TTTTGCTAA GGAAGATAAG CTCTGAACCA TTAAAGGACG		
68► L A V F V L M F L L R K I S S E P L K D		
DraI	AlwI	BsaI
481 AGTTTAAAAA CACAGGATCA GGTCTCCTGG GCATGGCTAA CATTGACCTG GAAAAGAGCA		
88► E F K N T G S G L L G M A N I D L E K S		
XmnI	StuI	Xhol
541 GGACTGGTGA TGAAATTATT CTTCCGAGAG GCCTCGAGTA CACGGTGGAA GAATGCACCT		
108► R T G D E I I L P R G L E Y T V E E C T		
SalI		
HincII		
BbsI		
601 GTGAAGACTG CATCAAGAGC AAACCGAAGG TCGACTCTGA CCATTGCTTT CCACTCCCAG		
128► C E D C I K S K P K V D S D H C F P L P		
661 CTATGGAGGA AGGCAGCAACC ATTCTTGTCA CCACGAAAAC GAATGACTAT TGCAAGAGCC		
148► A M E E G A T I L V T T K T N D Y C K S		
PvuII		
721 TGCCAGCTGC TTTGAGTGCT ACGGAGATAG AGAAATCAAT TTCTGCTAGG TAATTAACCA		
168► L P A A L S A T E I E K S I S A R		
Xhol	DraI	BglIII
781 TTTGACTCG AGCACTGCCA CTTTAAAAAT CTTTGTCAAG AATAGATGAT GTGTCAGATC		
841 TCTTTAGGAT GACTGTATTT TTCAGTTGCC GATACAGCTT TTTGTCTCT AACTGTGGAA		
StyI		
901 ACTCTTTATG TTAGATATAT TTCTCTAGGT TACTGTTGGG AGCTTAATGG TAGAAACTTC		
961 CTTGGTTTCA TGATTAAAGT CTTTTTTT CCTGA		

FIG. 3

STRUCTURE COMPARISON BETWEEN TNF-R55 AND BAFF-R

FIG. 4

FIG. 5A

FIG. 5B

7/19

FIG. 6A

FIG. 6B-1

FIG. 6B-2

FIG. 6B-3

jt072799.004

Marker	Left	Right	Events	% Gated	% Total	Mean	Geo Mean	CV	Median
All	1.	9910	10000	100.00	108.24	15.40	459.27	10.27	
M1	17.	9910	2785	27.85	366.10	85.21	243.61	45.32	

FIG. 6B-4

jt072799.005

Marker	Left	Right	Events	% Gated	% Total	Mean	Geo Mean	CV	Median
All	1.	9910	10000	100.00	100.00	72.53	11.42	516.47	7.84
M1	17.	9910	2054	20.54	20.54	324.52	88.86	239.37	61.80

FIG. 6B-5

jt072799.006

Marker	Left	Right	Events	% Gated	% Total	Mean	Geo Mean	CV	Median
All	1.	9910	10000	100.00	100.00	51.15	9.41	566.98	6.67
M1	17.	9910	1673	16.73	16.73	272.40	81.97	244.63	54.25

FIG. 6B-6

FIG. 6B-7

FIG. 6B-8

FIG. 6B-9

11/19

FIG. 7

FIG. 8

hBAFF - R:hIgG1
hLTBR:hIgG1

FIG. 9

FIG. 10A

**BCMA-Ig Treatment Reduces Total CD1^{hi}/IgM^{hi}
B Cell Populations in Spleens of Baff Tg Mice**

FIG. 10B

**BCMA-Ig Treatment Reduces Total Mature B
and T2 B Cell Populations in Spleens of Baff Tg Mice**

FIG. 10C

**BCMA-Ig Treatment Reduces Total Marginal Zone
and T1 B Cell Populations in Spleens of Baff Tg Mice**

hBCMA-hIg Treatment Reduces Spleen Weight in BAF Tg Mice

FIG. 11

FIG. 12

FIG. 13

FIG. 14

**BCMA-Ig Treatment of Moderately Nephritic SNF1 Mice
Slows Progression to Severe Nephritis**

FIG. 15

FIG. 16