Total mark

1 Choose the correct answer from those given:

(3 marks)

- - $(a)\{0\}$
- (b) {−1}
- $(c) \{0, 1\}$
- \otimes

- 2 If $5^{x} = 7$, then $5^{x+1} = \dots$
 - (a) 7

(b) 8

(c) 35

(d) 45

- 3 If $(x-5)^0 = 1$, then $x \in \dots$
 - \bigcirc R

- (b) $R \{5\}$
- © $R \{-5\}$
- $(d)\{5\}$

2 Simplify: $\frac{4^{x+1} \times 9^{2-x}}{6^{2x}}$

(2 marks)

, then find the value of the result when X = 1

Test

2

1 Choose the correct answer from those given :

(3 marks)

- 1 The solution set of the equation : $\chi^2 + 4 = 0$ in \mathbb{R} is
 - (a) $\{-4\}$
- (b) $\{2, -2\}$
- $(c)\{-2\}$
- $(d)\emptyset$

- 2 If $2^{x} = 5$, then $8^{x} = \cdots$
 - (a) 5

(b) 15

(c) 25

- (d) 125
- 3 If a(c+d) b(c+d) = 20 and c+d=4, then $a-b=\cdots$
 - (a) 4

(b) 5

© 80

- (d) 40
- 2 Find the positive real number which if we added its square to its three times, it becomes 28

(2 marks)

Total mark

1 Choose the correct answer from those given :

(3 marks)

- 1 If 3 is a root of the equation : $\chi^2 + k = 0$, then $k = \dots$
 - (a) 3

(b) 9

(c) – 3

(d) - 9

- 2 If $3^{x} = 5$, $\frac{1}{3^{y}} = 7$, then $3^{x+y} = \dots$
 - (a) 35

(b) 12

© $\frac{7}{5}$

(d) $\frac{5}{7}$

- 3 If $7^{X+1} = 5^{1+X}$, then $X = \cdots$
 - $\bigcirc a 1$

(b) 7

(c) 5

(d) 1

2 Find in \mathbb{R} the S.S. of the following equations:

(2 marks)

- a $\chi^2 7 \chi + 12 = 0$
- **b** $2 \times ^3 18 \times = 0$

Test

1 Choose the correct answer from those given :

(3 marks)

- 1 3 $x^0 = \dots, x \neq 0$
 - (a) 0

(b) 1

(c) 3

- (d) 3 χ
- **2** The S.S. of the equation : $\chi(\chi 4) = 0$ in \mathbb{R} is
 - (a) $\{0, 4\}$
- **(b)** {0 ,−4}
- $\bigcirc \{0,2,-2\}$
- (d) $\{2, -2\}$

- 3 a X c X c y + a y = (X + y) (.....)
 - \bigcirc a + c
- (b) a c
- $\bigcirc c a$
- (d) 2 a + 2 c
- 2 Find the dimensions of a rectangle whose length is 4 cm. more than its width and whose area is 21 cm² (2 marks)

Total mark

5

Test 5

1 Choose the correct answer from those given :

(3 marks)

- 1 If $7^{x} = 5$, then $7^{-x} = \dots$
 - (a) 5

ⓑ $\frac{1}{7}$

 $\bigcirc \frac{1}{5}$

(d) 35

- **2** Quarter of 2¹⁶ =
 - (a) 2⁴

ⓑ 2^{15}

- © 2¹⁴
- $\bigcirc \left(\frac{1}{2}\right)^4$
- 3 The solution set of the equation : $X(X-3) = 5 \times in \mathbb{R}$ is
 - (a) {3}
- **ⓑ** {0,3,5}
- © {3,5}
- $\textcircled{d} \{0, 8\}$

(2 marks)

1

Total mark

5

1 Choose the correct answer from those given :

(3 marks)

- choose the correct answer from those given:
 - (a) 50°

(b) 70°

- (c) 100°
- (d) 80°

1 In \triangle ABC, $(AB)^2 = (BC)^2 + (AC)^2$, m (\angle B) = 40°, then m (\angle A) =

(a) 3

(b) 36

(c) 100

- (d) 5
- 3 If the area of a square is 50 cm.², then the length of its diagonal =
 - (a) 5 cm.

(b) 10 cm.

(c) 20 cm.

(d) 25 cm.

2 In the opposite figure:

(2 marks)

$$\overline{AC} /\!/ \overline{ED}$$
, $\overline{AD} \cap \overline{CE} = \{B\}$

,
$$AC = 5$$
 cm. , $BE = 8$ cm. , $AB = 3$ cm. and $BD = 6$ cm.

- **1** Prove that : \triangle ABC \sim \triangle DBE
- **2** Find the length of each of : \overline{BC} and \overline{ED}

Total mark

1 Choose the correct answer from those given:

(3 marks)

- 1 All are similar.
 - (a) triangles
- (b) squares
- (c) rhombus
- d rectangles
- - (a) 27 cm.
- (b) 18 cm.
- (c) 15 cm.
- d 12 cm.
- - (a) 10

b 5

(c) 20

d) 12

2 In the opposite figure :

(2 marks)

ABCD is a quadrilateral in which:

$$AB = 7 \text{ cm.}, AD = 15 \text{ cm.}, BC = 24 \text{ cm.}$$

, DC = 20 cm. , m (∠ B) =
$$90^{\circ}$$

1 Find: The length of AC

2 Prove that : $m (\angle ADC) = 90^{\circ}$

Total mark

1 Choose the correct answer from those given:

(3 marks)

- 1 If the area of a rhombus is 30 cm.^2 , the length of one of its diagonals is 6 cm., then the length of the other diagonal =
 - (a) 5 cm.
- (b) 6 cm.
- © 10 cm.
- (d) 8 cm.
- 2 In \triangle ABC if $(AB)^2 = (BC)^2 + (AC)^2$, $m (\angle B) = 2 m (\angle A)$, then $m (\angle A) = \cdots$
 - (a) 30°

(b) 45°

(c) 60°

- (d) 90°
- 3 If the ratio of enlargement between two similar polygons equals, then the two polygons are congruent.
 - (a) 2:1
- (b) 1:2
- (c) 1:1
- (d) 3:1
- 2 A trapezium whose area is 450 cm². If the lengths of its two parallel bases are 24 cm. and 12 cm., then find its height.

Total mark

1 Choose the correct answer from those given :

(3 marks)

- 1 The trapezium in which the lengths of its two parallel bases are 7 cm. and 9 cm., then its middle base is of length
 - (a) 16

(b) 32

(c) 8

- (d) 2
- 2 In any two similar polygons, the lengths of their corresponding sides are
 - (a) alternate.

b different.

© proportional.

- d equal.
- 3 The rhombus whose diagonals lengths are 6 cm. and 10 cm. its area = \cdots cm.
 - (a) 60

(b) 30

© 15

(d) 10

2 In the opposite figure :

 $m (\angle AED) = m (\angle B)$, AD = 3 cm.,

AE = 4.5 cm. and BD = 6 cm.

- 1 Prove that : \triangle ABC \sim \triangle AED
- $\begin{array}{|c|c|c|c|c|}
 \hline
 \mathbf{2} & \mathbf{Find the length of : } \overline{\mathbf{EC}}
 \end{array}$

Total mark

5

(3 marks)

Test 5

1 Choose the correct answer from those given:

- 1 If \triangle ABC \sim \triangle DEF and AB = $\frac{1}{3}$ DE , then the perimeter of \triangle ABC = the perimeter of \triangle DEF
 - (a) 3

ⓑ $\frac{1}{3}$

(c) 1

- (d) $\frac{2}{3}$
- 2 If the perimeter of a rhombus is 24 cm. and its area is 30 cm², then its height =
 - (a) 4 cm.

(b) 5 cm.

(c) 6 cm.

- (d) 12 cm.
- 3 If the area of a trapezium is 24 cm.² and its height is 4 cm., then the length of its middle base =
 - (a) 6 cm.

b 8 cm.

© 12 cm.

(d) 16 cm.

2 In the opposite figure :

(2 marks)

ABCD is a quadrilateral in which : $m (\angle B) = 90^{\circ}$

$$AB = 9 \text{ cm.}, BC = 12 \text{ cm.},$$

$$CD = 17$$
 cm. and $DA = 8$ cm.

Prove that :
$$m (\angle DAC) = 90^{\circ}$$
,

(Algebra and Statistics)

Answers of Test

11(c)

2 (c)

3 (b)

$$2 \frac{2^{2 \times 2} \times 3^{4-2 \times 2}}{2^{2 \times 2} \times 3^{2 \times 2}} = 2^{2 \times 2} \times 3^{4-2 \times 2} \times 3^{4-2 \times 2} \times 3^{4-4 \times 2}$$

When X = 1

 \therefore The value of the result = $2^2 \times 3^{4-4} = 2^2 \times 3^0 = 4 \times 1 = 4$

Answers of Test

11(d)

2 (d)

3 (b)

2 Let the number be
$$\chi$$

$$\therefore x^2 + 3x = 28$$

$$\therefore x^2 + 3x - 28 = 0$$

$$\therefore (X-4)(X+7)=0$$

$$\therefore X - 4 = 0$$

$$\therefore X = 4$$

or
$$x + 7 = 0$$

$$\therefore X = -7 \text{ (refused)}$$

:. The number is 4

Answers of Test

11(d)

2 (d)

3 (a)

2 (a) (X-3)(X-4)=0

$$\therefore X - 3 = 0$$

$$\therefore x = 3$$

or
$$X - 4 = 0$$

$$\therefore X = 4$$

:. The S.S. =
$$\{3, 4\}$$

(b)
$$2 X (X^2 - 9) = 0$$

$$\therefore 2 \times (X-3) (X+3) = 0$$

$$\therefore 2 x = 0$$

$$\therefore x = \frac{0}{2} = 0$$

or
$$X - 3 = 0$$

$$\therefore x = 3$$

or
$$X + 3 = 0$$

$$\therefore x = -3$$

:. The S.S. =
$$\{0, 3, -3\}$$

Answers of Test 4

11c

2 (a)

- **3 b**
- 2 Let the width of the rectangle be X cm.
 - \therefore The length of the rectangle is (X + 4) cm.
 - $\therefore X(X+4)=21$
 - $\therefore x^2 + 4x 21 = 0$
 - $\therefore (X+7)(X-3)=0$
 - $\therefore X + 7 = 0$, then X = -7 (refused)
 - or X 3 = 0, then X = 3
 - \therefore The width = 3 cm. and the length = 7 cm.

Answers of Test

11c

2 (c)

3 (d)

$$\frac{2^{2x} \times 3^{x-1}}{2^{2x} \times 3^x} = 3^{x-1-x} = 3^{-1} = \frac{1}{3}$$

5cm.

Answers of Test

11 (a)

2 (b)

3 (b)

 \overrightarrow{AC} // \overrightarrow{ED} , \overrightarrow{AD} is a transversal to them.

$$\therefore$$
 m (\angle A) = m (\angle D) (alternate angles)

(1)

$$\therefore \overrightarrow{AC} / / \overrightarrow{ED}$$
, \overrightarrow{CE} is a transversal to them.

 $m (\angle C) = m (\angle E)$ (alternate angles)

$$m (\angle ABC) = m (\angle EBD)$$

From (1), (2), (3):

(the first req.)

$$\therefore \frac{AB}{DB} = \frac{BC}{BE} = \frac{CA}{ED}$$

$$\therefore \frac{3}{6} = \frac{BC}{8} = \frac{5}{ED}$$

$$\therefore$$
 BC = 4 cm., DE = 10 cm.

(the second req.)

Answers of Test

11(b)

2 (d)

3 (b)

2 In Δ ABC :

$$\therefore$$
 m (\angle B) = 90°

$$(AC)^2 = (7)^2 + (24)^2 = 49 + 576 = 625$$

(the first req.)

In A DAC:

$$(DA)^2 + (DC)^2 = (15)^2 + (20)^2 = 225 + 400 = 625$$

$$\therefore (DA)^2 + (DC)^2 = (AC)^2$$

$$\therefore$$
 m (\angle ADC) = 90°

(the second req.)

Answers of Test

11(c)

2 (a)

3 (c)

2 The area of the trapezium = $\frac{1}{2} (\ell_1 + \ell_2) \times \mathbf{h}$

∴
$$450 = \frac{1}{2} (24 + 12) \times h$$
 ∴ $450 = 18 \times h$

$$\therefore 450 = 18 \times h$$

$$\therefore$$
 h = 25 cm.

Answers of Test

2 (c)

3 (b)

2 In Δ Δ ABC , AED :

- \therefore m (\angle B) = m (\angle AED), \angle A is a common angle
- \therefore m (\angle C) = m (\angle ADE)

∴ ∆ABC ~ ∆AED

(the first req.)

$$\therefore \frac{AB}{AE} = \frac{AC}{AD}$$

$$\therefore \frac{9}{4.5} = \frac{AC}{3}$$

$$\therefore AC = \frac{3 \times 9}{4.5} = 6 \text{ cm}.$$

 \therefore EC = 6 - 4.5 = 1.5 cm.

(the second req.)

Answers of Test

2 (b)

3 (a)

2 In Δ ABC :

$$\therefore$$
 m (\angle B) = 90°

$$(AC)^2 = (AB)^2 + (BC)^2 = 81 + 144 = 225$$

 \therefore AC = 15 cm.

In Δ DAC:

:
$$(AC)^2 = 225$$
, $(AD)^2 = 64$, $(DC)^2 = 289$

:.
$$(DC)^2 = (AD)^2 + (AC)^2$$

∴ m (∠ DAC) = 90°

(The first req.)

: the area of the figure ABCD = (the area of \triangle ABC) + (the area of \triangle DAC)

∴ the area of the figure ABCD =
$$(\frac{1}{2} \times 9 \times 12) + (\frac{1}{2} \times 8 \times 15)$$

$$= 54 + 60 = 114 \text{ cm}^2$$
 (The second req.)

Total mark 10

Answer the following questions:

1 Choose the correct answer from the given ones :

(3 Marks)

1 The additive inverse of $(\sqrt{3})^{-4}$ is

(a)
$$\frac{1}{9}$$

(b)
$$-\frac{1}{9}$$

(b)
$$-\frac{1}{9}$$
 (c) $(\sqrt{3})^4$

(d)
$$\left(-\sqrt{3}\right)^4$$

 $\mathbf{2}$ 5 $\mathbf{a}^0 = \cdots$ where $\mathbf{a} \neq 0$

3 If $2^{x} = 7$, $2^{y} = 5$, then $2^{x-y} = \cdots$

(b)
$$\frac{7}{5}$$

2 Complete:

(3 Marks)

1 If $3^{X+3} = 1$, then $2X = \cdots$

- 3 Four times the number 2⁸ is
- 3 Simplify: $\frac{4^{n} \times 6^{2 n}}{3^{2 n} \times 2^{4 n}}$

(2 Marks)

4 If $3^{x} = 27$, $4^{x+y} = 1$

(2 Marks)

Find: The value of each of X, y

Total mark

Answer the following questions:

1 Choose the correct answer from the given ones :

(3 Marks)

- 1 If $2^{x} = 11$, then $2^{x+1} = \dots$
 - (a) 22

- (b) 12
- (c) 112
- (d) 212

- 2 0.004 × 0.00025 = 10 ········
 - (a) 6

- (b) 100
- (c) 5

(d) - 6

- 3 $3^{x} + 3^{x} + 3^{x} = 1$, then $x = \dots$
 - (a) 3

- (b) 1
- (c) 3
- (d) 1

2 Complete:

(3 Marks)

- $(\sqrt{3} + \sqrt{2})^{10} (\sqrt{3} \sqrt{2})^{10} = \dots$
- The multiplicative inverse of $\left| \left(\frac{2}{5} \right)^{-3} \right|$ is
- 3 If $7^{X-2} = 5^{X-2}$, then $X = \dots$
- 3 Find in \mathbb{R} the S.S. of the equation : $(X-2)^5 = 32$

(2 Marks)

4 Prove that : $\frac{9^{X+1} \times 4^X}{6^{2X}} = 9$

(2 Marks)

April tests

on Geometry

Test

1

- Total mark

10

Answer the following questions:

1 Choose the correct answer from the given ones:

(3 Marks)

- 1 The two triangles are similar if the corresponding are proportional.
 - (a) sides
- (b) angles
- (c) vertices
- (d) diagonals
- 2 The length of the projection of a line segment on a given straight line the length of the original line segment.
 - (a) ≥
- (b) ≤
- (c) >
- (d) =

3 In the oppoiste figure:

If Δ ABC ~ Δ DEF

, then the perimeter of Δ DEF = cm.

- (a) 10
- (b) 12
- (c) 24

(d) 26

2 Complete:

(3 Marks)

- 3 In the opposite figure :

(2 Marks)

ABCD is a quadrilateral, $m (\angle B) = 90^{\circ}$

AB = 7 cm. BC = 24 cm. CD = 20 cm. DA = 15 cm.

- **1** Find: The length of \overline{AC}
- 2 Prove that : $m (\angle D) = 90^{\circ}$

4 In the opposite figure :

(2 Marks)

ABC is a right-angled triangle at A

 $,\overline{AD}\perp\overline{BC}$

If BD = 9 cm., CD = 16 cm.

Find the length of : \overline{AB} , \overline{AC} and \overline{AD}

Total mark 10

Answer the following questions:

1 Choose the correct answer from the given ones:

(3 Marks)

- 1 The projection of a ray on a straight line not perpendicular to it is
 - (a) a line segment.

(b) a ray.

(c) a straight line.

- (d) a point.
- 2 All are similar.
 - (a) rohmbuses
- (b) triangles
- (c) rectangles
- (d) squares
- 3 If the enlargement ratio of two similar polygons is, then the two polygons are congruent.
 - (a) 1
- (b) 2
- (c) 0.5
- (d) otherwise

2 Complete:

(3 Marks)

1 In the opposite figure :

If \triangle ABC \sim \triangle AXY, AX = BX = 4 cm.

PBC = 10 cm. then $XY = \cdots cm$.

- 2 If $A \subseteq \overline{BC}$, then the projection of A on \overline{BC} is
- 3 In $\triangle XYZ$, $(XY)^2 (YZ)^2 = (XZ)^2$, then m ($\angle \dots = 90^\circ$
- 3 In the opposite figure :

(2 Marks)

(2 Marks)

 $m (\angle AED) = m (\angle B) , AD = 3 cm.$

AE = 4.5 cm. BD = 6 cm.

- 1 Prove that : \triangle ABC \sim \triangle AED
- 2 Find: The length of EC

4 In the opposite figure:

 $m (\angle BAC) = 90^{\circ}, \overline{AD} \perp \overline{BC}$

AB = 8 cm. AC = 6 cm.

Find: 1 The length of BC

2 The length of the prejection of AB on BC

Model (1)

1 Choose the correct answer:

- a If a (c + d) + b (c + d) = 15 and c + d = 5, then $a + b = \dots$.
 - 1 10
- 2 3

3 75

- 4 5
- - 1 {0,1}
- 2 {0}

3 Ø

- 4 {1}
- c The S.S of the equation: x(x-2)(x+7) = 0 In R is
 - **1** {2, -7} **2** {-2, 7}
- **3** {0,2, -7}
- **4** {0, -2,7}

2 Complete:

- a $x(y-z) + m(y-z) = (y-z)(\dots$
- **b** The S.S of the equation: $x^2 + 7x = 0$ In R is
- c If x + y = 7 and a 2b = 4, then the numerical value of the expression: $a(x + y) - 2b(x + y) = \dots$

- a $x^4 + 4y^4$
- **b** ax 7a + 3x 21

4 Find the S.S of the equation:

 $x^2 + 12 = 8 \times in R$

Model (2)

1 Choose the correct answer:

- - 1 {4}
- $2\left\{\frac{1}{4}\right\}$

- **3** {2, -2}
- $\{\frac{1}{4}, \frac{-1}{4}\}$
- - 1 {2}
- **2** {-2}

- **3** {2, -2}
- 4 {0}
- - **1** {1, -6}
- **2** {-1,6}
- **3** {3}

4 {3, -6,1}

2 Complete each of the following:

- **b** $ax + by + bx + ay = \dots$.
- c If a + b = 2(x + y) = 14, then $a(x + y) + b(x + y) = \dots$.
- 3 Factorize each of the following:

- a $x^4 + 4$
- **b** $a^2 4ab + 4b^2 25c^4$

4 A real number if you add it to its square, the result is 12, find that number.

1 Choose the correct answer:

- a The expression: $x^4 + 4$ can be factorized as a perfect square by adding the term and its additive inverse.
 - 1 $4x^2$
- $2 2x^2$

 $38x^2$

4 $16x^4$

- **b** The factorization of $x^3 + 2x^2 4x 8$ is
 - 1 $(x^2-4)(x-2)$ 2 $(x-2)(x+2)^2$ 3 (x-2)(x+2)
- 4 $(x^2+4)(x-2)$
- The S.S of the equation: $x^3 36x = 0$ In R is
 - **1** {6, -6} **2** Ø

3 {0}

4 {0,6, -6}

2 Complete each of the following:

- a The S.S of the equation: $x^2 25 = 0$ in R is
- **b** If x + y = 4, z + L = 5, then xz + xL + yz + yL =
- $a^2 + 2ab + b^2 c^2 =$
- 3 Factorize each of the following:

- $a x^4 + 64$
- **b** 5L + 10m + aL + 2am

4 A positive integer, if we add its square to its triple, the result will be 18.

What is this integer?

Model (4)

1 Choose the correct answer:

- - **1** {1,6}
- **2** {-1, -6}
- **3** {2, 3}
- **4** {-3, -2}

- **b** x(y-z) + L(y-z) + y z = y z (.....)
 - 1 x-L 2 x+L
- 3 x + L 1
- **4** x + L + 1

- - 1 {2,3}
- **2** {6}

- **3** {6, -6}
- 4 $\left\{\frac{3}{2}\right\}$

2 Complete each of the following:

- **a** x(y-z) + m(z-y) = (y-z)
- **b** The S.S of the equation $x^2 + 3 = 0$ in R is
- c The S.S of the equation $5x^2 2x = 0$ in R is
- **3** Factorize each of the following:

- a $81x^4 + 4z^4$
- **b** $x^2 6xy + 9y^2 49a^2$

4 Find in R the S.S of the equation:

 $x^2 - 5x = 14$

Model (5)

1 Choose the correct answer:

- a The S.S of : $x^2 + 25 = 0$ In R is
 - **1** {-5,5} **2** {5}

- **3** {-5}
- 4 Ø
- **b** The S.S In R of the equation: $(x-1)^2 = 0$ is
 - 1 {0}
- 2 {-1}

- **3** {1, -1}
- 4 {1}
- c If a + b = 3, x y = 5, then $a(x y) b(y x) = \dots$.
 - 1 8
- 2 15

3 -8

4 -15

2 Complete each of the following:

- a The S.S of x(x-2)(x+3) = 0 in R is
- **b** In the opposite figure:

$$B \in AC$$
, $m(\angle ABD) = x^2$,

$$m(\angle DBE) = 108^{\circ}$$
, $m(\angle EBC) = 6x$, then $x = \dots$

- \mathbf{c} The expression: $x^4 + 64y^4$ can be factorized using completing the square by adding the term and its additive inverse.
- 3 Factorize each of the following:

- $a x^4 + 64v^4$
- b yx 5x 5y + 25

4 The area of the rectangle whose length is 4cm more than its width is 21cm², find its dimensions.

Model (1)

Choose	thac	OFFICE	2 DCWOK
CHOOSE	tile c	orrect	aliswei:

- 3
- a The length of the diagonal of the square whose area is 50 cm² iscm.
 - 1 $5\sqrt{2}$
- **2** 15

- **3** 12.5
- 4 10
- **b** If the area of a trapezium is 100 cm² and its height is 5 cm, then the length of its middle base iscm.
 - 1 20
- **2** 30

3 50

- 4 40
- c If the side length of a rhombus is 10 cm and length of one of its diagonal is 16 cm, then its area = \dots cm².
 - 1 80
- **2** 160

3 96

4 128

2 Complete:

- a The diagonals of the isosceles trapezium are
- **b** The area of a rhombus whose diagonal lengths are 8 cm and 10 cm iscm².
- c A trapezium whose base lengths are 6 cm, 10cm and its height is 12 cm, then its area equalscm².

3 Answer the following:

a A trapezium its area is 48 cm² and its height is 6 cm. Find the length of its middle base, and if the length of one of its two bases is 7 cm, find the length of the other base.

b In the opposite figure:

ABC is a triangle, D \in $\overline{\rm AB}$, E \in $\overline{\rm AC}$, The area of Δ ABE = the area of Δ ACD.

Prove that: DE // BC

Model (2)

1 Choose the correct answer:

- a A square whose diagonal length is 12 cm, its area = \dots cm².
 - 1 144
- **2** 48

3 72

- 4 24
- - **1** 60 cm²
- 2 30 cm²
- **3** 15 cm²
- 4 10 cm²
- c The lengths of the bases of a trapezium is 6 cm and 10 cm, then the length of its middle base iscm.
 - **1** 16
- **2** 15

3 9

4 8

2 Complete:

- c The perimeter of a square is 24 cm, then its area equalscm².

3 Answer the following:

- a The area of a trapezium is 180 cm², its height is 12 cm. If the ratio between the lengths of the parallel bases is 3:2, find the lengths of its parallel bases.
- **b** In the opposite figure:

Prove that: AD // BC

The area of Δ AEB = The area of Δ DEC

10 Marks	Model (3				
1 Ch	oose the correct a	answer:			\rightarrow
		area 60 cm ² , and the len	gth of one of its di	agonals equals 10 cm,	/
	then the length	of the other diagonal ed	qualscm		
	1 4	2 8	3 10	4 12	
b	The area of the	square = $\frac{1}{2}$ of the produc	ct of the lengths of	its	
	1 sides	2 diagonals	3 heights	4 medians	
C	The area of the t	trapezium whose middle	e base is of length	7 cm, and its height	
	is 6 cm equals	cm ²			
	1 21	2 40	3 42	4 13	
2 Co	mplete:				\rightarrow
	-	trapezium with area 450	cm ² and the leng	ths of its two parallel 3	/
		and 12 cm equals		•	
b		length 20 cm, then its a		cm ² .	
				base and on one side of it,	
	then their vertic	es lie on a straight line	to this b	ase.	
3 An	swer the followin	ıa:			\rightarrow
			s diagonals is 72 cr	m^2 , and its height is 9 cm.	/
		eter of the rhombus.		,	
-		C			
D	In the opposite			2115 2	
	ABCD is a quadrilateral its diagonals intersect at the point O, H \in BO where				
		rea of \triangle ABO = The area	ι οτ Δ HUC		
	Prove that: AD	// BC			

D A H

		•
	10	- \
	10	
		_ 1
IV.	lark	S

Model (4)

1 Choose the correct answer:

- a The rhombus whose diagonal lengths are 6 cm, 8 cm, then its perimeter =cm.
- 2 48

3 20

- **b** The area of the square whose diagonal length is 8 cm is =cm².
- 2 30

3 32

- c If the product of lengths of the diagonals of a rhombus is 96 cm², and its height is 8 cm, then its side length =cm.
 - 1 2
- 2 8

2 Complete:

- a If the area of a trapezium = 84 cm^2 , and the length of the middle base = 12 cm, then its height =
- **b** The rhombus whose base length is 8 cm and its height is 10 cm its area = \dots cm².
- c In the opposite figure:

Area of \triangle ABC = area of \triangle DBC. have a common base, then BC //

3 Answer the following:

a The area of a trapezium is 88 cm², its height is 8 cm. And the length of one of the two parallel bases is 10 cm. Find the length of the other base.

D is a midpoint of EF The area of \triangle ABD = The area of \triangle CDB

Prove that: AC // EF

7	10	
V	/lark	s

Model (5)

1 Choose the correct answer:

- The trapezium whose middle base length = 8 cm and its height $= 5 \text{ cm its area} = \dots \text{cm}^2.$
 - 1 24

3 20

- 4 96
- **b** If the area of a rhombus is 24 cm² and the length one of its diagonal is 6 cm, then the length of the other diagonal iscm.
- 2 8

3 10

- 4 12
- c If the area of a square is 72 cm², then its diagonal length iscm.
- 2 8

3 36

4 12

2 Complete:

- b The area of a trapezium in which the lengths of the parallel bases are 6 cm, 10 cm and its height is 5 cm equals
- c A rhombus whose perimeter is 28 cm and its height is 5 cm, then its area equalscm².

are 12 cm, 8 cm.

b In the opposite figure:

AC \cap BD = {M}, E is a midpoint of BC,

The area of the figure ABEM = the area of the figure DCEM Prove that: AD // BC

Model (1)

1 Choose the correct answer:

- a If a (c + d) + b (c + d) = 15 and c + d = 5, then $a + b = \dots$.
 - 1 10
- 2 3

3 75

- 4 5
- **b** The S.S of the equation: $x^3 x^2 = 0$ In R is
 - 1 {0,1}
- 2 {0}

3 Ø

- 4 {1}
- The S.S of the equation: x(x-2)(x+7) = 0 In R is
 - 1 {2, -7}
- **2** {-2, 7}
- 3 {0,2,-7}
- **4** {0, -2,7}

2 Complete:

- **a** x(y-z) + m(y-z) = (y-z)(x + m)
- **b** The S.S of the equation: $x^2 + 7x = 0$ In R is $\{0, -7\}$.
- c If x + y = 7 and a 2b = 4, then the numerical value of the expression: a(x + y) - 2b(x + y) = 28.

3 Factorize each of the following:

a $x^4 + 4y^4$

Middle term=
$$\pm 2\sqrt{x^4} \times \sqrt{4y^4}$$

= $\pm 4x^2y^2$
 $\therefore x^4 + 4x^2y^2 + 4y^4 - 4x^2y^2$
= $(x^2 + 2y^2)^2 - (2xy)^2$
= $(x^2 + 2y^2 + 2xy)(x^2 + 2y^2 - 2xy)$

b ax - 7a + 3x - 21

$$ax - 7a + 3x - 21$$

= $a(x - 7) + 3(x - 7)$
= $(x - 7)(a + 3)$

4 Find the S.S of the equation:

$$x^2 + 12 = 8 \text{ x in R}$$

$$x^2 + 12 = 8x$$

$$x^2 - 8x + 12 = 0$$

$$\therefore (x-2)(x-6)=0$$

$$\therefore x = 2, x = 6$$

$$... S.S = \{2,6\}$$

Model (2)

1 Choose the correct answer:

- a The S.S of the equation: $x = \frac{4}{x} \ln R$ is
 - 1 {4}
- $2 \left\{ \frac{1}{4} \right\}$

- 3 {2,-2}
- $\{\frac{1}{4}, \frac{-1}{4}\}$
- - 1 {2}
- **2** {-2}

- 3 {2,-2}
- 4 {0}
- - 1 {1,-6}
- **2** {-1, 6}
- **3** {3}

4 {3, -6,1}

2 Complete each of the following:

- a The S.S of $x^2 3x = 0$ in R is $\{0, 3\}$.
- **b** ax + by + bx + ay = (a + b)(x + y)
- c If a + b = 2(x + y) = 14, then a(x + y) + b(x + y) = 98.
- 3 Factorize each of the following:

a $x^4 + 4$

Middle term=
$$\pm 4x^2$$

 $\therefore x^4 + 4x^2 + 4 - 4x^2$
= $(x^2 + 2)^2 - (2x)^2$
= $(x^2 + 2 + 2x)(x^2 + 2 - 2x)$

b $a^2 - 4ab + 4b^2 - 25c^4$

$$a^{2} - 4ab + 4b^{2} - 25c^{4}$$

$$= (a - 2b)^{2} - (5c^{2})^{2}$$

$$= (a + 2b + 5c^{2})(a + 2b - 5c^{2})$$

4 A real number if you add it to its square, the result is 12, find that number.

Let the number is x_i its square = x^2

$$\therefore x^2 + x = 12$$

$$x^2 + x - 12 = 0$$

$$\therefore (x+4)(x-3)=0$$

$$\therefore x = -4 \text{ or } x = 3$$

The number is -4 or 3

Model (3)

1 Choose the correct answer:

- a The expression: $x^4 + 4$ can be factorized as a perfect square by adding the term and its additive inverse.
 - 1 $4x^2$
- $2x^2$

 $38x^2$

4 $16x^4$

- **b** The factorization of $x^3 + 2x^2 4x 8$ is
 - 1 $(x^2-4)(x-2)$ 2 $(x-2)(x+2)^2$ 3 (x-2)(x+2)

- - 1 {6, -6}
- 2 Ø

3 {0}

4 {0,6,-6}

2 Complete each of the following:

- a The S.S of the equation : $x^2 25 = 0$ in R is $\{5, -5\}$.
- **b** If x + y = 4, z + L = 5, then xz + xL + yz + yL = 20.
- $a^2 + 2ab + b^2 c^2 = (a + b + c)(a + b c)$

a $x^4 + 64$

Middle term=
$$\pm 16x^2$$

$$\therefore x^4 + 16x^2 + 64 - 16x^2$$

$$= (x^2 + 8)^2 - (4x)^2$$

$$= (x^2 + 8 + 4x)(x^2 + 8 - 4x)$$

b 5L + 10m + aL + 2am

$$5L + 10m + aL + 2am$$

= $5(L + 2m) + a(L + 2m)$
= $(L + 2m)(a + 5)$

4 A positive integer, if we add its square to its triple, the result will be 18.

What is this integer?

Let the number is x, its square = x^2 , its triple = 3x

$$x^2 + 3x = 18$$

$$x^2 + 3x - 18 = 0$$

$$\therefore (x+6)(x-3)=0$$

$$x = -6$$
 (refused) or $x = 3$

.: The positive integer is 3

Model (4)

1 Choose the correct answer:

- - **1** {1,6}
- **2** {-1, -6}
- 3 {2,3}
- **4** {-3, -2}

- **b** x(y-z) + L(y-z) + y z = y z (......)
 - 1 x-L 2 x+L
- 3 x + L 1
- **4** x + L + 1

- - **1** {2, 3}
- 2 {6}

- 3 {6, -6}
- 4 $\left\{\frac{3}{2}\right\}$

2 Complete each of the following:

- a x(y-z) + m(z-y) = (y-z)(x-m)
- **b** The S.S of the equation $x^2 + 3 = 0$ in R is \emptyset .
- **c** The S.S of the equation $5x^2 2x = 0$ in R is $\left\{0, \frac{2}{5}\right\}$

3 Factorize each of the following:

a $81x^4 + 4z^4$

Middle term=
$$\pm 36x^2z^2$$

 $\therefore 81x^4 + 36x^2z^2 + 4z^4 - 36x^2z^2$
= $(9x^2 + 2z^2)^2 - (6xz)^2$
= $(9x^2 + 2z^2 + 6xz)(9x^2 + 2z^2 - 6xz)$

 $\mathbf{b} x^2 - 6xy + 9y^2 - 49a^2$

$$x^{2} + 6xy + 9y^{2} - 49a^{2}$$

$$= (x + 3y)^{2} - (7a)^{2}$$

$$= (x + 3y + 7a)(x + 3y - 7a)$$

4 Find in R the S.S of the equation:

$$x^2 - 5x = 14$$

$$\therefore (x-7)(x+2)=0$$

$$\therefore x = 7 \quad \text{or} \quad x = -2$$

∴
$$S.S = \{7, -2\}$$

Model (5)

Choose the correct answer:

- - **1** {-5, 5}
- **2** {5}

- **3** {-5}
- 4 Ø
- **b** The S.S In R of the equation: $(x-1)^2 = 0$ is
 - 1 {0}
- 2 {-1}

- **3** {1, -1}
- 4 {1}
- c If a + b = 3, x y = 5, then $a(x y) b(y x) = \dots$.
 - 1 8
- 2 15

3 -8

4 -15

2 Complete each of the following:

- a The S.S of x(x-2)(x+3) = 0 in R is $\{0,2,-3\}$.
- **b** In the opposite figure:

B
$$\in$$
 AC, m(\angle ABD) = x^2 ,
m(\angle DBE) = 108°, m(\angle EBC) = $6x$, then $x = 6$ °

c The expression: $x^4 + 64y^4$ can be factorized using completing the square by adding the term $16x^2y^2$ and its additive inverse.

a
$$x^4 + 64y^4$$

Middle term=
$$\pm 16x^2y^2$$

 $\therefore x^4 + 16x^2y^2 + 64y^4 - 16x^2z^2$
 $= (x^2 + 8y^2)^2 - (4xy)^2$
 $= (x^2 + 8y^2 + 4xy)(x^2 + 8y^2 - 4xy)$

b
$$yx - 5x - 5y + 25$$

$$yx - 5x - 5y + 25$$
$$= x(y - 5) - 5(y - 5)$$

$$= (y-5)(x-5)$$

4 The area of the rectangle whose length is 4cm more than its width is 21cm², find its dimensions.

Let the width is x, its length is x + 4

Area = $length \times width$

$$\therefore x(x+4) = 21$$

$$\therefore x^2$$

$$x^2 + 4x - 21 = 0$$

$$(x + 7)(x - 3) = 0$$

$$\therefore x = -7$$
 (refused) or $x = 3$

 \therefore Width = 3cm

Length =
$$3 + 4 = 7$$
 cm

Model (1)

1 Choose the correct answer:

- a The length of the diagonal of the square whose area is 50 cm² iscm.
 - 1 $5\sqrt{2}$
- **2** 15

- **3** 12.5
- 4 10
- **b** If the area of a trapezium is 100 cm² and its height is 5 cm, then the length of its middle base iscm.
 - 1 20
- **2** 30

3 50

- 4 40
- - 1 80
- 2 160

3 96

4 128

2 Complete:

- a The diagonals of the isosceles trapezium are equal in length.
- b The area of a rhombus whose diagonal lengths are 8 cm and 10 cm is 40 cm².
- c A trapezium whose base lengths are 6 cm, 10cm and its height is 12 cm, then its area equals 96 cm².

3 Answer the following:

- a A trapezium its area is 48 cm² and its height is 6 cm. Find the length of its middle base, and if the length of one of its two bases is 7 cm, find the length of the other base.
 - $\cdot \cdot$ Area of a trapezium = the middle base \times height
 - \therefore The middle base = $\frac{48}{6}$ = 8 cm
 - $\therefore \text{ The middle base} = \frac{b_1 + b_2}{2}$

$$\therefore 8 = \frac{7 + b_2}{2}$$

$$b_2 = 8 \times 2 - 7 = 9 \text{ cm}$$

b In the opposite figure:

ABC is a triangle, D \in \overline{AB} , E \in \overline{AC} , The area of Δ ABE = the area of Δ ACD.

Prove that: DE // BC

By subtracting Area of Δ AED

- \therefore Area of \triangle ECD = area of \triangle DBE,
- $\because \overline{\mathsf{ED}}$ is a common base
- ∴ DE // BC

3

1 Choose the correct answer:

- a A square whose diagonal length is 12 cm, its area = \dots cm².
 - 1 144
- **2** 48

3 72

- 4 24
- - **1** 60 cm²
- $2 30 \, \text{cm}^2$
- **3** 15 cm²
- 4 10 cm²
- c The lengths of the bases of a trapezium is 6 cm and 10 cm, then the length of its middle base iscm.
 - **1** 16
- **2** 15

3 9

4 8

2 Complete:

- a The base angels of the isosceles trapezium are equal in measure.
- b The area of the rhombus whose perimeter is 52 cm and the length of one of its diagonals is 10 cm equals 120 cm².
- c The perimeter of a square is 24 cm, then its area equals 36 cm².

3 Answer the following:

a The area of a trapezium is 180 cm², its height is 12 cm. If the ratio between the lengths of the parallel bases is 3:2, find the lengths of its parallel bases.

The middle base =
$$\frac{180}{12}$$
 = 15 cm

Let the length of two parallel bases are 2x and 3x

$$\therefore 15 = \frac{2x + 3x}{2}$$

∴
$$5x = 30$$

$$\therefore x = 6$$

- .. The length of the parallel bases = 12 cm and 18 cm
- **b** In the opposite figure:

The area of \triangle AEB = The area of \triangle DEC

Prove that: \overline{AD} // \overline{BC}

 $\cdot \cdot$ Area of \triangle AEB = Area of \triangle DEC

By adding Area of Δ AED

- \therefore Area of \triangle ABD = area of \triangle DCA,
- **∵** AD is a common base
- ∴ \overline{AD} // \overline{BC}

Model (3)

1 Choose the correct answer:

1 4

2 8

3 10

4 12

1 sides

2 diagonals

3 heights

4 medians

c The area of the trapezium whose middle base is of length 7 cm, and its height is 6 cm equalscm²

1 21

2 40

3 42

4 13

2 Complete:

- a The height of a trapezium with area 450 cm² and the lengths of its two parallel bases are 24 cm and 12 cm equals 25 cm.
- **b** A square of side length 20 cm, then its area equals 400 cm².
- c If two triangles are equal in area and drawn on the same base and on one side of it, then their vertices lie on a straight line parallel to this base.

3 Answer the following:

a A rhombus, the product of lengths of its diagonals is 72 cm², and its height is 9 cm. Find the perimeter of the rhombus.

Area of rhombus = $\frac{1}{2}$ product of its diagonals = $\frac{1}{2} \times 72 = 36$ cm²

∴ Side length =
$$\frac{Area}{Height}$$
 = $\frac{36}{9}$ = 4 cm

 \therefore Perimeter of the rhombus = side length \times 4 = 4 \times 4 = 16 cm

b In the opposite figure:

ABCD is a quadrilateral its diagonals intersect at the point O, H \in \overline{BO} where $\overline{OH} = \overline{OD}$, the area of Δ ABO = The area of Δ HOC

Prove that: \overline{AD} // \overline{BC}

In Δ HDC: \odot CO is a median

$$\therefore$$
 Area of \triangle HOC = area of \triangle DOC \longrightarrow 1

$$\therefore$$
 Area of \triangle HOC = area of \triangle ABO \longrightarrow 2

From 1 and 2: \therefore Area of \triangle DOC = Area of \triangle ABO

By adding area of Δ AOD

·· AD is a common base

∴ AD // BC

Model (4)

1 Choose the correct answer:

- a The rhombus whose diagonal lengths are 6 cm, 8 cm, then its perimeter =cm.
- 2 48

3 20

- **b** The area of the square whose diagonal length is 8 cm is = \dots cm².
- 2 30

3 32

- c If the product of lengths of the diagonals of a rhombus is 96 cm², and its height is 8 cm, then its side length =cm.
 - 1 2
- 2 8

4 4

2 Complete:

- then its height = 7. **b** The rhombus whose base length is 8 cm and its height is 10 cm its area = 80 cm^2 .
- c In the opposite figure:

Area of \triangle ABC = area of \triangle DBC, have a common base BC, then BC // AD

3 Answer the following:

a The area of a trapezium is 88 cm², its height is 8 cm. And the length of one of the two parallel bases is 10 cm. Find the length of the other base.

$$Area = \frac{b_1 + b_2}{2} \times H$$

$$\therefore 88 = \frac{10 + b_2}{2} \times 8 \qquad \qquad \therefore b_2 + 10 = \frac{88}{8} \times 2$$

$$b_2 + 10 = \frac{88}{8} \times 2$$

$$b_2 + 10 = 22$$

$$b_2 = 22 - 10$$

$$\therefore b_2 = 12 \text{ cm}$$

b In the opposite figure:

D is a midpoint of EF

The area of \triangle ABD = The area of \triangle CDB

Prove that: AC // EF

In \triangle BEF: \therefore BD is a median

$$\therefore$$
 Area of \triangle BDE = area of \triangle BDF \longrightarrow 1

$$\cdot$$
: Area of \triangle ABD = area of \triangle CDB \longrightarrow 2

By subtracting 1 from 2

$$\because$$
 Area of \triangle ADE = Area of \triangle CDF, \because DE = DF

∴ AC // EF

Model (5)

1 Choose the correct answer:

- a The trapezium whose middle base length = 8 cm and its height = 5 cm its area = \dots cm².
 - 1 24
- 2 40

3 20

- 4 96
- **b** If the area of a rhombus is 24 cm² and the length one of its diagonal is 6 cm, then the length of the other diagonal iscm.
 - 1 4
- 2 8

3 10

- **4** 12
- c If the area of a square is 72 cm², then its diagonal length iscm.
 - 1 6
- 2 8

3 36

4 12

2 Complete:

- a A square its perimeter = 16 cm, then its area equals 16 cm^2 .
- b The area of a trapezium in which the lengths of the parallel bases are 6 cm, 10 cm and its height is 5 cm equals 40 cm².
- c A rhombus whose perimeter is 28 cm and its height is 5 cm, then its area equals 35 cm².

3 Answer the following:

a Find the height of the trapezium whose area is 70 cm², and the two base lengths are 12 cm, 8 cm.

$$Height = area \div \frac{b_1 + b_2}{2}$$

$$\therefore 70 \div \frac{12+8}{2} = 70 \div 10 = 7 \text{ cm}$$

b In the opposite figure:

 $AC \cap BD = \{M\}$, E is a midpoint of BC,

The area of the figure ABEM = the area of the figure DCEM

Prove that: AD // BC

- \because In \triangle MBC: \because ME is a median
- \therefore Area of \triangle MEB = area of \triangle MEC \longrightarrow 1
- ∴ Area of figure ABEM = area of figure DCEM 2

By adding 1 and 2

- $\cdot \cdot$ Area of Δ MEB + area of figure DCEM = Area of Δ MEC + Area of figure ABEM
- \therefore Area of \triangle ABC = Area of \triangle DCB
- ∴ BC is a common base
- ∴ AD // BC

Lesson (5) Factorizing the sum and the difference of two cubes

The sum of two cubes of two quantities =

(the first + the second) (the square of the first - the first \times the second + the square of the second)

i.e.
$$a^3 + b^3 = (a + b) (a^2 - ab + b^2)$$

The difference between two cubes of two quantities =

(the first – the second) (the square of the first + the first × the second + the square of the second)

i.e.
$$a^3 \ominus b^3 = (a - b) (a^2 \oplus ab + b^2)$$

Complete each of the following:

1.
$$x^3 - 1 = (x - 1)$$
 (.....)

3. If
$$x-3$$
 is a factor of the expression x^3-27 , then the second factor is

4. If
$$x + y = 2$$
, $x^2 - xy + y^2 = 8$, then $x^3 + y^3 = \cdots$

If
$$(a + b)^2 = 16$$
, $a^2 + b^2 = 8$, then 2 a b =

Homework

1
$$8 a^3 + 125 = (\cdots + \cdots) (4 a^2 - 10 a + \cdots)$$

2.
$$8 a^3 - \dots = (\dots + 9)$$

3. If
$$4a^2 - 2a + 1$$
 is a factor of the expression $8a^3 + 1$, then the other factor is

Mathematics 2nd Prep 2nd term

4.
$$2 x^2 - 7 x - 15 = (2 x + 3) (\dots)$$

5. If
$$k x^2 + 4x + 1$$
 is a perfect square, then $k = \dots$

6. If
$$(x+2)$$
 is a factor of the expression : x^2-x-6 , then the other factor is

7. If
$$x^2 + ax + 5$$
 can be factorized, then $a = \cdots$

Choose the correct answer:

1. If
$$x^3 - y^3 = 14$$
, $x^2 + xy + y^2 = 7$, then $x - y = \dots$

- (a) 2

- (c) 14
- (d) 2

2. If
$$y^3 - a = (y - 2)(y^2 + 2y + 4)$$
, then $a = \dots$

- (a) 2

- (c)8
- (d) 8

3. If
$$x^3 + 27 = (x + 3)(x^2 + k + 9)$$
, then "k" equals

- (a) 6 X
- (b)-3 X
- (d) 6 X

4.
$$(x-y)(x+y)(x^4+x^2y^2+y^4) = \cdots$$

- (a) $\chi^3 v^3$
- (b) $\chi^3 + y^3$ (c) $\chi^6 y^6$
- (d) $\chi^6 + v^6$

5. If
$$a^2 + b^2 = 11$$
, $ab = 5$, then $a - b = \dots$

- (a) 6
- $(b) \pm 1$

(c) 1

(d) - 1

6. If
$$a - b = 5$$
, then $a^2 - 2$ a $b + b^2 = \cdots$

(a) 25

(b) 20

- (c) 15
- (d) 10

Homework

1 If
$$x + y = 3$$
, $x^2 - xy + y^2 = 5$, then $x^3 + y^3 = \dots$

- (a) 15

- (d)7

2. If
$$x^3 + y^3 = 28$$
, $x + y = 2$, then $x^2 - xy + y^2 = \dots$

- (a) 28

- (d)7

3. If
$$x^3 - 8 = (x + a)(x^2 + 2x + 4)$$
, then $a = \dots$

- (a) 4
- (b) 4
- (d) 2

4.
$$x^3 - k^3 = (x - k)(x^2 + 4x + k^2)$$
, then $k = \dots$

- (a) 2
- (b) 4

- (c) 16
- (d) 64

5.
$$x^3 + 8 = (x + 2) (\dots$$

(a)
$$X-2$$

(b)
$$x^2 + 2x + 4$$

(c)
$$x^2 - 4x + 4$$

(a)
$$X-2$$
 (b) X^2+2X+4 (c) X^2-4X+4 (d) X^2-2X+4

6. If
$$x^3 + 8 = (x + 2)(x^2 + a + 4)$$
, then $a = \dots$

$$(b) - X$$

$$(c)-4X$$

$$(d)-2X$$

7. If
$$x^2 + e - 16 = (x + 4)(x - 4)$$
, then $e = \cdots$

(a)
$$8^{x}$$

$$(c) - 8 \chi$$

$$(d) - 4 \chi$$

8.
$$(x^3 + 64) \div (x + 4) = \cdots$$

(a)
$$x^2 + 16$$

(b)
$$x^2 - 4x + 16$$

(c)
$$x^2 + 4x + 16$$

(d)
$$x^2 - 4x - 16$$

9.
$$3 x^2 y + 6 x y = \dots (x+2)$$

(b)
$$3 \times y^2$$

(c)
$$X^2$$
 y

10.
$$(64)^2 - (36)^2 = \cdots$$

Factorize each of the following perfectly:

1.
$$8 x^3 - 125$$

$$m^3 + 64 n^3$$

3.
$$\frac{1}{8} a^3 - 8 b^3$$

4.
$$0.027 \text{ m}^3 - \text{n}^3$$

5.
$$8 x^3 - 343 y^6$$

6.
$$16 a^3 b + 686 b^4$$

7.
$$x^6 - 7x^3 - 8$$

Mathematics	2 nd	Prep	2 nd	term
-------------	-----------------	------	-----------------	------

8. If $x^2 - y^2 = 20$, x - y = 2, $x^2 - xy + y^2 = 28$ Find the value of $x^3 + y^3$

.....

9. Factorize the following expression perfectly: $(x^3 - 9)(x^3 + 9) + 17$

Homework

$$1 x^3 + 8$$

- 2. $x^{3}-1$
- 3. $\int 512 \, \chi^3 y^3$
- 4. $l^3 \text{ m} 27 \text{ m}^4$
- 5. $m^6 + 7m^3 8$

Lesson (6) Factorizing by grouping

Factorize each of the following perfectly:

1. a X + b X + a y + by

2. am - an + m - n

Mathematics 2 nd Prep 2 nd term

3. $a^2 + 2ab + b^2 - c^2$

• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	

Homework

1.
$$xy + 5y + 7x + 35$$

2.
$$5 l - 10 m - a l + 2 am$$

3.
$$9 x^2 - 4 a^2 + y^2 + 6 x y$$

$$ab X^2 + b X - a X - 1$$

$$5. \quad 25x^2 - 30x + 9 - 16y^2$$

6.
$$x^2 - 9a^2 + y^2 + 2xy$$

Lesson (7) Factorizing by completing the square

\dashv The method of factorization by completing the square : ullet

- We add to the given expression twice the product of the two square roots of the two perfect square terms and subtract it again not to change the main expression.
- 2 Using the commutative and associative properties, we rewrite the expression after ordering its terms to get the form:

a perfect square trinomial – a perfect square monomial

- 3 We factorize the resultant expression as a difference between two squares.
- 4 If it is possible, we should factorize the resultant expressions (resultant factors) in order that the factorization is perfect.

Factorize each of the following perfectly:

1.	$x^4 + 4y^4$
2.	$a^4 + 2500 b^4$
3.	$8 x^4 y^2 + 162 z^4 y^2$
4.	$x^4 + 9x^2 + 81$
5.	

	Mathematics 2 nd Prep 2 nd term
	$m^4 - 11 m^2 n^2 + n^4$
6.	$4 X^4 + 25 y^4 - 29 X^2 y^2$
	Homework
1	$81 X^4 + 4 z^4$
2.	$4 X^4 + 625 z^4$
3.	$9 x^4 - 25 x^2 + 16$
4.	$x^4 + x^2 y^2 + 25 y^4$
5.	$16 X^4 - 28 X^2 y^2 + 9 y^4$

Lesson (8)

Solving quadratic equations in one variable algebraically

Complete each of the following:

- If 5 is a root of the equation : $x^2 + 2x 15 = 0$ 1.
 - , then the other root is
- If x = 2 is a root of the equation: $x^2 6x + k = 0$, then $k = \dots$ 2.
- and the other root is
- If one of the roots of the equation : $2 x^2 + 8 x = 0$ 3. is a root of the equation: $x^2 + 5x + a = 0$, then $a = \dots$ or

Homework

- 1 If the number 9 is a solution of the equation : $x^2 + k = 0$, then $k = \dots$
- The solution set of the equation : $x^2 + 25 = 0$ in \mathbb{R} is
- The solution set of the equation $x^2 = 4x$ in \mathbb{R} is 3.

Choose the correct answer:

- 1. The S.S. of the equation: 3(x-2)(x+5) = 0 in \mathbb{R} is
 - (a) $\{0,2,-5\}$ (b) $\{3,2,-5\}$ (c) $\{2,-5\}$ (d) $\{-2,5\}$

- 2. The S.S. of the equation : $\chi^2 - 4 = 0$ in \mathbb{R} is
 - (a) $\{4\}$

- (b) $\{4,-4\}$ (c) $\{2\}$
- (d) $\{2, -2\}$
- **3.** The S.S. of the equation : $\chi^2 + 25 = 0$ in \mathbb{R} is
 - (a) $\{5\}$

- (b) $\{5, -5\}$
- (c) $\{-5\}$
- (d) Ø

- The equation whose roots are 3 and 5 is
 - (a) $5 X^2 + 8 X + 3 = 0$

(b) $2 x^2 + 8 x - 15 = 0$

(c) $\chi^2 - 8 \chi + 15 = 0$

- (d) $3 x^2 + 8 x + 5 = 0$
- **5.** The S.S. of the equation : x(x-3) = 5 x in \mathbb{R} is
 - (a) $\{3\}$

- (b) $\{0,3,5\}$ (c) $\{3,5\}$ (d) $\{0,8\}$

6. The S.S. of the equation : $\frac{4}{x} = \frac{x}{9}$ in \mathbb{R} is

- (a) $\{4,9\}$
- (b) $\{6, -6\}$ (c) $\{6\}$ (d) $\{36\}$

If the number 4 is a solution of the equation : $x^2 + x - 20 = 0$, then the other solution is

(a) 20

(b) 5

(c) - 5

(d) - 4

Homework

The S.S. of the equation : $(x-4)^2 = 0$ in \mathbb{R} is

(a) $\{4\}$

- '(b) $\{0,4\}$
- (c) $\{0,-4\}$ (d) $\{-4\}$

The solution set of the equation : $\mathcal{X}(X-3) = 0$ in \mathbb{R} is

(a) $\{3\}$

- (b) $\{0,3\}$
- (c) $\{0, -3\}$
- $(d) \{0\}$

3. If $3 x^2 + c x - 6 = (3 x - 2) (x + 3)$, then $c = \cdots$

(a) 7

(b) 12

- (c) 13
- (d) 5

The expression: $x^2 + 6x + a$ is a perfect square when $a = \cdots$

(a) 6

(b) 16

(c) 1

(d)9

5. $x^3 + y^3 = (\cdots) (x^2 - xy + y^2)$

- (a) $x^2 + y^2$
- (b) $\chi^2 y^2$
- (c) X + y
- (d) X y

One of the factors of the expression: $x^2 - 3x - 18$ is **6.**

(a) X-3

- (b) X 6
- (c) x 9
- (d) X 18

Find in R the solution set of each of the following equations:

1. $x^2 - 7x - 30 = 0$

 $2x^2 + 7x = 0$

3. $(x+2)^2 = 25$

Mathematics 2 nd Prep 2 nd term

4. (x-3)(x+5) = 20

5. $x-\frac{2}{x}=\frac{7}{2}$

 $\begin{array}{c|c} 6. & x(x-1)=6 \\ & & \end{array}$

7. $3 x^3 = 12 x$

8. $x^3 - 4x = 0$

9. $x^4 - 13x^2 + 36 = 0$

10. If: $x^2 + \frac{1}{x^2} = 34$, then find: $x + \frac{1}{x}$

11. If: $x + \frac{1}{x} = 2$, then find: $x^2 + \frac{1}{x^2}$

.....

Homework

 $\frac{1}{x^2 - 5x - 6 = 0}$

.....

2. $x^2-6x=-9$

 $x - \frac{3}{x} = 2$

.....

4. $x^2 - 5x = 0$

5. $4x^2 = 25$

Lesson (15)

Equality of the

areas of two triangles

Theorem 2

Two triangles which have the same base and the vertices opposite to this base on a straight line parallel to the base have the same area.

Corollary 1

Triangles of bases equal in length and lying between two parallel straight lines are equal in area.

Corollary 2

The median of a triangle divides its surface into two triangular surfaces equal in area.

Corollary 3

Triangles with congruent bases on one straight line and have a common vertex are equal in areas.

Theorem 3

If two triangles are equal in area and drawn on the same base and on one side of it, then their vertices lie on a straight line parallel to this base.

Complete each of the following:

- If ABC is a triangle, D is the midpoint of \overline{BC} , then: The area of \triangle ABD = the area of \triangle
- 2. If \overline{XL} is a median in ΔXYZ , then the area of $\Delta XYZ = \cdots$ the area of ΔXYL
- The triangle XYZ in which $L \subseteq \overline{YZ}$ such that $YL = \frac{1}{2} LZ$, then: The area of $\Delta XYL = \cdots$ the area of ΔXYZ

Homework

- 1. The two triangles drawn on a common base and their vertices located on a straight line parallel to the base are
- 2. Triangles with congruent bases and drawn between two parallel lines are
- 3. The median in the triangle divides its area into

Essay problems:

In the opposite figure :

D is the midpoint of \overline{AB} and E is the midpoint of \overline{AC}

Prove that : The area of Δ BDE equals the area of Δ CDE

2. In the opposite figure :

ABCD is a quadrilateral in which $\overrightarrow{AD} / / \overrightarrow{BC}$ and $\overrightarrow{BA} \cap \overrightarrow{CD} = \{E\}$

such that BA = AE

Prove that : The area of \triangle ADC = the area of \triangle ADE

3.	In the opposite figure :
	\overline{AC} // \overline{XY} and F is the midpoint of \overline{XY}
	Prove that : The area of \triangle ABF = the area of \triangle CBF
4	
4.	In the opposite figure :
4.	ABCD is a parallelogram. $E \in \overrightarrow{CB}$ where $BC = BE$
4.	
4.	ABCD is a parallelogram. $E \in \overrightarrow{CB}$ where $BC = BE$
4.	ABCD is a parallelogram. $E \in \overrightarrow{CB}$ where $BC = BE$
4.	ABCD is a parallelogram. $E \in \overrightarrow{CB}$ where $BC = BE$
4.	ABCD is a parallelogram. $E \in \overrightarrow{CB}$ where $BC = BE$
4.	ABCD is a parallelogram. $E \in \overrightarrow{CB}$ where $BC = BE$ Prove that: The area of \triangle FEC = the area of \triangle ABCD $C = BE$
4.	ABCD is a parallelogram. $E \in \overrightarrow{CB}$ where $BC = BE$ Prove that: The area of \triangle FEC = the area of \triangle ABCD $C = BE$
4.	ABCD is a parallelogram. $E \in \overrightarrow{CB}$ where $BC = BE$ Prove that: The area of \triangle FEC = the area of \triangle ABCD $C = BE$
4.	ABCD is a parallelogram. $E \subseteq \overline{CB}$ where $BC = BE$ Prove that: The area of $\triangle FEC =$ the area of $\triangle ABCD$ $C = BE$

5.	In the opposite figure :
	ABCD is a quadrilateral whose diagonals intersect at M,
	\overline{AD} // \overline{BC} and E is the midpoint of \overline{AB} ,
	N is the midpoint of \overline{MC}
	Prove that : The area of \triangle AEM = the area of \triangle DNC
6.	In the opposite figure :
	$\overrightarrow{AD} / \overrightarrow{BC}$, $E \in \overrightarrow{BC}$ and $\overrightarrow{AC} / \overrightarrow{DE}$,
	$\overline{AC} \cap \overline{BD} = \{M\}$
	Prove that: E C B
	The area of \triangle ABM = the area of \triangle DCM = the area of \triangle EMC
	The area of \triangle DBC = the area of \triangle EBM

7.	☐ In the opposite figure :
	ABCD is a quadrilateral, its diagonals intersect at M
	and the area of \triangle ABM = the area of \triangle DCM
	Prove that: AD // BC
8.	
0.	In the opposite figure :
0.	ABCD is a quadrilateral whose diagonals are intersecting at M
0.	D A
0.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
0.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$
0.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
0.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
0.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
0.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
0.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
0.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
·	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
·	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
o.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME
o.	ABCD is a quadrilateral whose diagonals are intersecting at M and $E \in \overline{BM}$ where $ME = MD$ The area of Δ AMB = the area of Δ CME

Homework

1. In the opposite figure:

 $\overline{AD} / / \overline{BC}$, $\overline{AC} \cap \overline{BD} = \{M\}$,

E is the midpoint of \overline{BC}

rov						_						•	_					
																		••••
																		••••
																		••••
																		••••
																		••••
																		••••
• • • •	•••	• • •	 • • •	 	 • • • •	 	 • • • •	 • • •	 	 	 • • •			• • • •	• • • •	 	 • • • • •	
• • • •	•••		 • • •	 	 	 	 	 • • •	 	 	 • • •				• • • •	 	 	

2. In the opposite figure :

 $\overline{AD} /\!/ \overline{BC}$ and $\overline{AC} \cap \overline{BD} = \{M\}$,

D is the midpoint of \overline{EC}

Prove that:

The area of \triangle MDE = the area of \triangle AMB

3.	In the opposite figure :
	ABCD is a parallelogram. Its diagonals intersect at M
	in which \overline{AD} // \overline{BC} and B is the midpoint of \overline{EC}
	Prove that: The area of \triangle EBD = the area of \triangle ACD
4.	In the opposite figure :
	ABC is a triangle in which $D \in \overline{AB}$ and $E \in \overline{AC}$
	such that the area of A ADE — the area of A ACD
	such that the area of \triangle ABE = the area of \triangle ACD
	Prove that: $\overline{DE} // \overline{BC}$

5	l					
J.	Ш	In	the	opposite	figure	:

ABCD is a quadrilateral in which $\overline{AD} /\!/ \overline{BC}$

, $E \in \overrightarrow{BC}$ and $\overline{AC} \cap \overline{BD} = \{M\}$

The area of \triangle ABM = the area of \triangle ECM

Prove that : $\overrightarrow{DE} / / \overrightarrow{AC}$

	• • •																											
	• • •																											
	• • •																											
• • •		 	 	 	 	 	 	 • •	• • •	• • •	 	• • •	 	• • •	 	• •	• • •	 	 	 	 							
		 	 	 	 	 • •	 	 			 		 		 		• • •	 	 	 	 							
		 	 	 	 	 	 	 			 		 		 		• •	 	 	 	 							
		 	 	 	 	 	 	 			 		 		 		• •	 	 	 	 							
		 	 	 	 	 	 	 			 		 		 		• • •	 	 	 	 							

Lesson (16) Areas of some geometric figures

The area of the rhombus = $L \times h$ where L is the side length and h is the height.

The area of the rhombus = $\frac{1}{2}$ of the product of the lengths of its two diagonals.

If the two legs of the trapezium are equal in length, then it is called an isosceles trapezium. The following are the properties of the isosceles trapezium:

The two base angles of the isosceles trapezium are equal in measure.

The two diagonals of the isosceles trapezium are equal in length.

The isosceles trapezium has only one axis of symmetry which is the perpendicular bisector of its bases.

The area of the trapezium = half of the sum of lengths of the two parallel bases \times height

The area of the trapezium = the length of the middle base \times height

Complete each of the following:

1.	The area of rhombus whose perimeter is 20 cm. and height 4 cm. =
2.	The length of the diagonal of a square of area 50 cm ² equals cm.
3.	The length of side of a square whose area equals the area of a rectangle with dimensions 9 cm., 16 cm. =
4.	The length of the middle base of a trapezium whose area = 30 cm ² and height 5 cm. equals Homework
1	The area of the rhombus = the side length $\times \cdots = \frac{1}{2}$ of the product of
2.	The area of the square = the square of the length of $\frac{2}{1}$
3.	The length of the middle base of the trapezium equals
4.	The area of the trapezium = half of the sum of lengths of the two parallel bases ×
5.	The base angles of the isosceles trapezium are

Mathematics 2nd Prep 2nd term **6.** The diagonals of an isosceles trapezium are Choose the correct answer: 1. If the area of a square is 50 cm², then the length of its diagonal = (a) 25 cm. (b) 5 cm. (c) 10 cm. (d) 20 cm. 2. If the perimeter of a rhombus is 24 cm. and its area = 30 cm.² then its height = (a) 4 cm. (b) 5 cm. (c) 6 cm. (d) 12 cm. **3.** If the product of the lengths of the diagonals of a rhombus = 96 cm² and its height is 6 cm., then its side length = (d) 4 cm. (a) 12 cm. (c) 6 cm. (b) 8 cm. If the area of a trapezium is 32 cm² and its height is 4 cm., then the length of its middle base = (a) 4 cm. (b) 8 cm. (c) 14 cm. (d) 16 cm. **5.** The trapezium in which the length of one of its parallel bases is 15 cm., and its area is 108 cm² and its height is 8 cm., then the length of the other base is (a) 15 cm. (b) 4 cm. (c) 12 cm. (d) 27 cm. **6.** The trapezium whose middle base length is x cm. and its height = $\frac{1}{2}$ the length of the middle base, its area = \cdots cm². (b) $\frac{x^2}{2}$ (d) $\frac{x^2}{8}$ (c) $\frac{\chi^2}{4}$ (a) X^2 Homework The area of rhombus is 20 cm², the length of one of its diagonals is 5 cm., then the

length of the other diagonal =

- (a) 8 cm.
- (b) 4 cm.
- (c) 10 cm.
- (d) 15 cm.

2. The area of the square whose side length is 6 cm. the area of the square whose diagonal length is 8 cm.

- (a) >
- (b) <
- (c) =

 $(d) \equiv$

3.	_	n which the lengths	of its two parallel ba	ises are 15 cm. a	nd 11 cm.
	(a) 26 cm.	•	(c) 13 cm.	(d) 11 cm	ı.
4.		trapezium is 450 cm. then its height	m ² , and the lengths o	of its two paralle	l bases are
	(a) 12.5 cm.	(b) 25 cm.	(c) 36 cm.	(d) 52 cm	1.
F	ind the ar	ea of the f	following fig	gures:	
1.	A rhombus of sid	de length 6 cm. and	its height = 5 cm.		« 30 cm ² .»
2.	A rhombus who	se diagonal lengths	are 24 cm. and 10 cr	m.	« 120 cm ² .»
		•••••			
3.	A square whose	diagonal length = 1	0 cm.		« 50 cm ² »
4.	A trapezium who	ose bases lengths are	e 8 cm. and 10 cm. ar	nd its height = 5 o	cm. « 45 cm ² .»
5.	A trapezium who	ose middle base len	gth is 7 cm. and its h	eight = 6 cm.	« 42 cm² »
	ı	Но	mework		
]	A rhombus who	ose side length 12 o	cm. and its height =	8 cm.	« 96 cm ² »
2.	A rhombus who	ose diagonals lengt	ths are 8 cm. and 10	cm.	« 40 cm ² »
3.	A square whose	e diagonal length =	8 cm.		« 32 cm ² .»
4.					

	Mathematics 2 nd Prep 2 nd term
5.	A trapezium whose middle base length is 12 cm. and its height = 8 cm. « 96 cm ² .»
\boldsymbol{E}	ssay problems:
1.	A square whose area equals the area of the rectangle whose dimensions are 2 cm. and 9 cm.
	Find the length of its diagonal. «6 cm.»
2.	Two pieces of land have equal areas, one of them has the shape of a rhombus
	whose diagonals are 18 m. and 24 m., and the other one has the shape of a trapezium
	whose height is 12 m. Find the length of its middle base. « 18 m. »
3.	The area of a trapezium is 180 cm ² and its height is 12 cm. Find the lengths of its
	parallel bases if the ratio between their lengths is 3:2 «18 cm. > 12 cm. »
	Homework
1.	Two land pieces are equal in area, the first is in the shape of a square and the second is
	in the shape of a rhombus whose diagonals lengths are 8 metres and 16 metres.
	Find the perimeter of the square-shaped piece. « 32 cm. »
	" " " " " " " " " " " " " " " " " " "
2.	Find the area of the rhombus whose perimeter is 52 cm. and the length of one of its
	diagonals is 10 cm. « 120 cm ² .»

The	e figure	The perimeter	The area
The triangle		The sum of the lengths of its three sides	$\frac{1}{2}$ of the base length × height $= \frac{1}{2} \ell \times h$
The parallelogram	$\begin{array}{c} \begin{array}{c} \begin{array}{c} \\ h_1 \\ \\ \end{array} \\ \begin{array}{c} \\ \end{array} \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \end{array} \\ \begin{array}{c} \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\$	The sum of lengths of two adjacent sides $\times 2$ $= 2 (l_1 + l_2)$	The base length \times height $= l_1 \times h_1 = l_2 \times h_2$
The rectangle	!	2 (Length + Width) $= 2 (l + w)$	Length \times Width $= \ell \times W$
The square		Side length $\times 4 = 4 \ell$	Square of side length = l^2 or $\frac{1}{2}$ of the square of its diagonal length = $\frac{1}{2}$ r ²
The rhombus	T2 T1	Side length $\times 4 = 4 \ell$	Side length × height = ℓ × h or $\frac{1}{2}$ the product of the lengths of the two diagonals = $\frac{1}{2}$ r ₁ × r ₂
The trapezium	+l ₁ +	The sum of lengths of its sides	$\frac{1}{2}$ the sum of lengths of the two parallel bases × height $= \frac{1}{2} (\ell_1 + \ell_2) \times h$ or the length of the middle base × height $= \ell \times h$

Date:

Unit 1: Factroization

Lesson 6: Factroizing by grouping

Board Summary

1)
$$ax + bx + ay + by = x(a + b) + y(a + b) = (x + y)(a + b)$$

2) If
$$a + b = 5$$
, $x + y = 7$

find using factorization the value of the expression ax + bx + ay + by

$$x^2 + 4x + 4 - y^2$$

Evaluation

1- Complete

(a)
$$Lx + Ly + mx + my =() +($$

= ()()

(b) a + b = 10, c + d = 3 then the value of $ac + ad + bc + bd = \dots$

2- <u>Factorize completely:</u>

$$(1)a^2 + ab + 2a + 2b$$

$$(2)x^3 - 3x^2 + 6x - 18$$

$$(3)xy + 5y + 7x + 35$$

$$(4)Lb + Lc - mb - mc$$

$$(5)x^2 - 10x + 25 - y^2$$

$$(6)x^2 - 6x + 9 - L^2$$

$$(7)x^5-x^3-x^2+1$$

$$(8)x^3 + x^2 + x + 1$$

$$(9)x^3 + 2xy + y^2 - 9$$

Homework

1- Complete

(a)
$$zx - zy + lx - ly = \dots + \dots$$

(b)If
$$m + n = 10$$
, $d + e = 2$ then the value of $md + me + nd + ne = \dots$

2- Factorize completely:

(1)
$$3 ax + 3ay + 4bx + 4by$$

$$(2)x^2 - 10x + 25 - k^2$$

$$(3)x^2-3x^2+6x-18$$

$$(4)a^3+b^3+7a-7b$$

Remember

To factorize an experssion formed of 4 terms we divide the experessionsthen we take the H.C.F from each group.

Unit 1: Factroization

Lesson 7: Factroizing by completing the square

Board Summary

Example: Factorize completely:

(1)
$$x^4+4$$

$$(2)81x^4 + 4y^4$$

$$(3)x^4 + 9x^2 + 81$$

•••••••••••••••••••••••••••••••••••••••	

Date: /...... **Evaluation** 1- Complete (a) $64x^4 + y^4 = ($)((b) $81b^4 + 4c^4$ $(c)x^4+64$ $(d)x^4 - 11x^2y^2 + y^4$ (e) $x^4 + 9x^2 + 81$ 2- Factorize completely: $x^2 - (x^2 + 9y^2) + 25y^4$

Homework

1- Complete

$$(a)y^4 + 4 = ($$
)()

.....

(b)
$$625l^4 + 4m^4 = ()()$$

2- Factorize completely:

$$x^4 + 64y^4$$

......

Dat

Lesson 8: Solving 2nd degree equation in one variable in R

Board Summary

If ab = 0 then a = 0 or b = 0

Choose the correct answer:

(1) The S.S of the equations
$$x^2 + 25 = 0$$
 in R is ($\{0\}, \{-5\}, \{\pm 5\}, \emptyset$)

(2) The S.S of the equations
$$\frac{9}{x} = \frac{x}{4}$$
 in R is ({6}, {-6}, {6, -6}, {4, 9})

(3) The S.S of the equations
$$x^2 - 7x + 12 = 0$$
 in R is

$$(\{4\}, \{3,4\}, \{3\}, \emptyset)$$

Date:/	
Evaluation	
1- Complete: (a) The S.S of the equation $x^2 + 9 = 0$ in R is	
(b) The S.S of the equation $x^2 - x = 0$ in R is	
2- Find the S.S in R:	
$(a)x^2 - 5x + 6 = 0$	
(b) $x(x-5)-14=0$	
	••••
	••••
3- A real number if we add it to its square the result will be find this number?	12
	••••
	••••
4- A positive real number its square exceeds its three times by find this number?	 40
	••••
30	••••

Date://	
	oers one of them exceeds the other by 4 if the 45 find these two numbers?
1- Complete:	Homework
(a) The S.S of the eq	$vuation x^2 - 3x - 10 = 0 in R is$
(b) The S.S of the eq	$quation x^2 + 15 = 8x in Q is $
(c)If 9 is a root of th	ne equation $x^2 - 7x + b = 0$ then $b =$
2- Find the S.S in F	<u>u</u> :
$(a)x^2 - 14x + 45 =$	
(b) $x(x-2) = 8$	
	••••••
••••••	•••••••
$(c)x^3 - 5x^2 + 6x = 0$)
• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •

Date: /
3- A rectangle its length is more than its width by 4 cm and its area is 21 cm ² . Find its two dimensions.
•••••
••••••
4- A positive real number exceeds its multiplicative inverse by $\frac{6}{5}$
Find this number.
••••••
•••••••••••••••••••••••••••••••••••••••
5- If the age of Omar now is twice the age of Youssef and 2 years
ago the difference between the squares of their ages was 15 years.
Find the age of each of them now?
•••••••••••••••••••••••••••••••••••••••
••••••

Unit 4: Areas

Lesson 3 : Equality of areas of two triangles

Board Summary

- (1) Complete:
- 1)Triangle with equal bases and lying between two parallel straight lines are
 - 2)The median of a triangle divides its surface into two triangles equal in area
 - 3) If $\stackrel{\longleftrightarrow}{AD} \parallel \stackrel{\longleftrightarrow}{BF}$, BC = EF then area of $\triangle ABC = area$ of \triangle

4) If BC = DE then area of $\triangle ABC = area$ of \triangle

Date:	• • • • • • • • •	/	/

•••••••••••••••••••••••••••••••••••••

Date:	 /	/

Evaluation

1) If ABCD is equadrilateral, $\overline{AD} \parallel \overline{BC}$, E is a mid point of \overline{BC} , $\overline{AC} \cap \overline{BD} = \{M\}$ Prove that:

 $area\ of\ the\ figure\ ABEM\ = area\ of\ the\ figure\ DCEM$

2) In the opposite figure

 $\overline{AD} \parallel \overline{BC}, \overline{BC}, \overline{AC} \cap \overline{BD} = \{M\}, E, F \in \overline{BC} \text{ where } EB = FC$ Prove that:

 $area\ of\ the\ figure\ ABEM\ =\ area\ of\ the\ figure\ DCFM$

Homework

1) In the opposite figure

 $\overline{AD} \parallel \overline{BC}$, $\overline{AC} \cap \overline{BD} = \{M\}$, \overline{MD} is a median of \overline{AC}

Prove that:

area of \triangle AMB = area of \triangle CME

••••••••	•••••	••••••	••••••	•••••
•••••				
	•••••			

2) <u>In</u> the opposite figure

 \overline{AD} is a median of \triangle ABC, $E \in \overline{AD}$ Prove that: $area\ of\ (\triangle\ ABE) = area\ of\ \triangle(\ ACE\)$

3) In the opposite figure $\overline{DE} \parallel \overline{BC}$

Prove that: $area \ of (\Delta \ ABE) = area \ of \ \Delta (\ ACD)$

Remember

- * The median of triangle divides its surface into two triangles equal in area.
- * Two triangles which have the same base and lying between two parallel straight lines are equal in area.
- * Two triangles with a common vertex and equal bases lie on the same straight line are equal in area.

Date:/
Unit 4: Areas Lesson 4: Follow equality of areas of two triangles (the convers of the therom)
Board Summary
1)The two triangles which are equal in area and drawn on the same base from one side of it then their vertices lie on a straight line <u>parallel to this base</u>
2) In the opposite figure If area of (Δ ABD) = area of Δ (ACD) then \parallel \Box
•••••••••••••••••••••••••••••••••••••••
126
•••••••••••••••••••••••••••••••••••••••

Date: / / / A
1) If area $\triangle AXC = area AYB$, Prove that: $\overline{XY} \parallel \overline{BC}$
\mathbf{R}
2) In the opposite figure ABCD is a quadrilatural area (\triangle ABC) = area \triangle (ADC), ABCE is a parallelogram Prove that: $\overline{ED} \parallel \overline{AC}$

Homework

(1) Complete:

(2) If BC = DE then area ($\triangle ABC$) ----- area ($\triangle ADE$) Where $D, C \in \overline{EB}$

- (3) The median of a triangle divides its surface into two triangles equal in (length-perimeter-area-volume)
- (4) The two triangles which are equal in area and drawn on the same base from one side of it their vertices lie on a straight line ____ this base (parallel to - perpendicular to - equal to)
- $(2) If \overline{AC} \cap \overline{BD} = \{M\},$ $area \Delta AMB = area \Delta DMC$ Prove that:
- 1) $\overline{AD} \parallel \overline{BC}$
- 2) $area (\Delta AMB) = area (\Delta EMC)$

.......

Lesson 5 : Areas of some geometric figures

Board Summary

Area of a rhombus = side length \times
Area of a rhombus = $\frac{1}{2}$ of the product of
Area of a square =
Area of a square $=\frac{1}{2}$
Perimeter of rhom $\overline{b}us =$
Perimeter of a square =

Area of a trapezium =
$\underline{\hspace{0.5cm}}$ $\underline{\hspace{0.5cm}}$ $\underline{\hspace{0.5cm}}$ sum of the lengths of two parallel bases $ imes$
Area of a trapezium = $lenght$ of $Middle$ base \times
The length of the Middle base =

Evaluation

- (1) Area of a rhombus whose diagonals lengths are 8 cm and 6 cm is cm^2 .
- (2) A square its diagonal length is 10 cm then its area = cm_{---}^2
- (3) The trapezium in which the lengths of the two parallel bases are 3 cm , 7cm and its height is 5 cm its area = ----- cm²
- (4) A square of area 8 cm^2 then its diagonal length = ----- cm
- (5) A rhombus one of its diagonals lengths is 6 cm and its area is $48cm^2$ then the length of the other diagonal =----- cm
- (6) A rhombus of diagonal lengths 6 cm, 8 cm then its side length =--- cm

Choose the correct answer

- (1) A rhombus of diagonal lengths 10 cm , 6 cm its area is $-----cm^2$ (60 , 30 , 16 , 120)

- (4) A square of diagonal length 8 cm its area = ϵm^2 (64, 16, 32, 24)
- (5) The ratio between the length of the diagonals of a rhombus is 2:3 and the length of the smallest diagonal is 6 cm then its area = ----- cm² (54,45,27,18)
- (6) A rhombus of diagonal lengths 16 cm , 12 cm its perimeter = ----- cm (20, 10, 40, 28)

Date:	• • • • • • • • •	/	/

Homework

(1) **Complete:**

- (1) A trapezium whose bases lengths are 9 cm and 7 cm then the length of its middle base = ----- cm
- (2) A triangle its surface area is 40 cm^2 and the length of its base is 8 cm then its corresponding height = ----cm
- (3) A rhombus of perimeter 40 cm and its height is 8cm then its area $= ---- cm^2$
- (4) A rhombus of diagonals lengths 2L cm and 3L cm then its area = -----
- (5) A trapezium of bases lengths 10 cm and 14 cm and its area is 84 cm² then its height = -----cm
- (6) A triangle of area its diagonal length is 13 cm and its length is 12 cm its area = ----- cm²

(2) Choose the correct answer

- (1) A triangle of area 30 cm^2 and the length of its base is 6 cm then its corresponding height = ---- cm (5, 10, 18, 36)
- (2) A trapezium the lengths of its two parallel bases are 5 cm and 7 cm and its area is 60 cm 2 then its height = ____ cm (5,12,10,72)
- (3) A square of area 8 cm 2 then its diagonal length = ----- cm (64 , 4 , 32 , 16)
- (4) A rhombus of area is 42 cm^2 and the length of one of its two diagonals is 7 cm , then the length of the other diagonal = ----- cm (3,6,12,18)
- (5) A square of area 36 cm^2 then its perimeter is -----cm (12.24.6.8)
- (6) The figure whose area = $\frac{1}{2}$ the square of its diagonal length is ----- (rhombus, rectangle, square, triangle)
- (7) A rectangle its length = $4\ cm$, its width is $3\ cm$ then is diagonal length =---- cm

(7,12,5,6)

Remember

Area of a rhombus $=\frac{1}{2} \times d_1 \times d_2$

Area of a rhombus = $S \times h$

Area of a square $= S^2$

Area of a square $=\frac{1}{2}d^2$

Area of a trapezium = Middle base \times h

Area of a trapezium = $\frac{1}{2}(b_1 + b_2) \times h$ or $(\frac{b_1 + b_2}{2}) \times h$

Area of triangle = $\frac{1}{2} \times b \times h$

Area of a parallelogram = $b \times h$