1 Метрические пространства. Примеры.

Опр

$$X$$
 - мн-во $(X \neq \varnothing)$ $\rho: X \times X \to \mathbb{R}$ (метрика)

Пара (X, ρ) назыв. метр. пр-вом, если:

1.
$$\rho(x,y) \geqslant 0$$
 и $\rho(x,y) = 0 \Leftrightarrow x = y$

2.
$$\rho(x, y) = \rho(y, x)$$

3. нер-во
$$\triangle$$
 $\rho(x,z) \leqslant \rho(x,y) + \rho(y,z)$

Примеры

- 1. $\mathbb{R}, \mathbb{R}^2, \mathbb{R}^3$ со станд. ρ
- 2. Ha \mathbb{R}^2
 - (a) $\rho_1((x_1,y_1),(x_2,y_2))=|x_1-x_2|+|y_1-y_2|$ манхэттенская метрика
 - (b) $\rho_{\infty} = \max\{|x_1 x_2|, |y_1 y_2|\}$
 - (c) $\rho_p = (|x_1 x_2|^p + |y_1 y_2|^p)^{\frac{1}{p}}$
 - (d) ρ_2 евклидова метрика
- 3. X город без односторонних дорог, $\rho(A,B)$ min время, за которое можно добраться от A до B
- 4. Х мн-во

$$\rho(a,b) = \begin{cases} 0, & a=b \\ 1, & a \neq b \end{cases}$$
 - дискретная метрика

Упр

Доказать, что это метрики

2 Открытые и замкнутые множества. Свойства

Опр

Открытый шар с центром в x_0 и радиусом \mathcal{E} (окр. x_0):

$$B(x_0, \mathcal{E}) = \{ x \in X \mid \rho(x, x_0) < \mathcal{E} \}$$

Опр

 $U \subset X$, U - открыто, если:

$$\forall x \in U \quad \exists \mathcal{E} : B(x, \mathcal{E}) \subset U$$

Опр

 $Z \subset X$ Z— замкнуто, если:

 $X \setminus Z$ - открытое мн-во

Теорема (св-ва откр. мн-в)

1. $\{U_{\alpha}\}_{\alpha\in A}$ - семейство откр. мн-в

$$\Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - \text{откр.}$$

2. $U_1,...,U_n$ - откр.(конеч. число)

$$\Rightarrow \bigcap_{i=1}^n U_i - \text{откр.}$$

3. \emptyset , X – откр.

Док-во

1.
$$\forall x \in \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \exists \alpha_0 : x \in U_{\alpha_0}$$

$$U_{\alpha_0}$$
 – otkp. $\Rightarrow \exists \mathcal{E} \colon B(x, \mathcal{E}) \subset U_{\alpha_0}$

$$B(x,\mathcal{E}) \subset \bigcup_{\alpha \in A} U_{\alpha} \Rightarrow \bigcup_{\alpha \in A} U_{\alpha} - \text{откр.}$$

2.
$$\forall x \in \bigcap_{i=1}^{n} U_i \Rightarrow \forall i \quad x \in U_i$$

$$\exists \mathcal{E}_i : B(x, \mathcal{E}_i) \subset U_i$$

$$\mathcal{E} = \min_{i=1,\dots,n} \{\mathcal{E}_i\} \quad B(x,\mathcal{E}) \subset B(x,\mathcal{E}_i) \subset U_i$$

$$B(x,\mathcal{E}) \subset \bigcap_{i=1}^{n} U_i \Rightarrow \bigcap_{i=1}^{n} U_i - \text{откр}$$

Пример

$$U_i = \left(-\frac{1}{i}, \frac{1}{i}\right)$$

 $\bigcap_{i=1}^{\infty} U_i = \{0\}$ - объясняет, почему должно быть конечное число в пересечении

Лемма

$$B(x_0,r)$$
— открыто \forall метр. пр-ва $X \quad \forall x_0 \quad \forall r>0$

Док-во

$$x \in B(x_0, r) \Rightarrow \rho(x_0, x) = d < r$$

Возьмём $\mathcal{E} = \frac{r - d}{2}$
 $B(x, \mathcal{E}) \subset B(x_0, r)$?

*/ Здесь очень внимательно надо смотреть на предположение, x_1 лежит в предполагаемой области за пределами шарика $B(x_0,r)$ */

$$\exists x_1 \in B(x, \mathcal{E}) \setminus B(x_0, r)$$

$$\rho(x_1, x) < \mathcal{E} = r - d$$

$$\rho(x_0, x) = d$$

$$\rho(x_1, x_0) \geqslant r$$

$$rho(x_1, x_0) \geqslant \rho(x_1, x) + \rho(x, x_0)$$

$$\rho(x_1, x_0) \geqslant r \quad \text{if} \quad \rho(x_1, x) + \rho(x, x_0) < r$$

противореч. нер-ву \triangle

Теорема (св-ва замкнутых мн-в)

1.
$$\{F_i\}_{i \in A}$$
— замкн.

$$\Rightarrow \bigcap_{i \in A} F_i - \text{замкн.}$$

2.
$$F_1, ..., F_n$$
— замкн.

$$\Rightarrow \bigcup_{i=1}^{n} F_i - \text{замкн.}$$

 $3. \varnothing$ и X замкн.

Докажем 1:

$$F_i = X \setminus U_i$$
, U_i - откр.

$$\bigcap F_i = \bigcap (X \setminus U_i) = X \setminus \bigcup U_i$$

3 Внутренность и вшеность множества.

Опр

X - метр. про-во, $A\subset X,\quad x_0\in X$ x_0 - назыв. внутреней относ. A (в X), если:

$$\exists \mathcal{E} > 0 : B(x_0, \mathcal{E}) \subset A$$

Опр

 x_0 - назыв. внешней относ. A, если x_0 - внутр. для $\overline{A} = X \setminus A$

$$\exists \mathcal{E} > 0 : B(x_0, \mathcal{E}) \cap A = \emptyset$$

Опр

Остальные точки - граничные x_0 - граничная, если:

$$\forall \mathcal{E} > 0 \ B(x_0, \mathcal{E}) \ \cap \ A \neq \emptyset$$
 и $B(x_0, \mathcal{E}) \not\subset A$

 $\operatorname{Int} A$ - внутренность A - мн-во внутр. точек

 $\operatorname{Ex} A$ - внешность A - мн-во внешних точек

 $\partial A = \operatorname{Fr} A$ - граница A - мн-во гр. точек

Теорема

Следующие определения эквививалентны:

- 1. Int A мн-во внутр. т.
- 2. Наибольшее (по включению) откр. мн-во, содерж. в А
- 3. тах (по включению) откр. мн-во, содерж. в А
- 4. Int $A = \bigcup U_i$, $U_i \text{откр.}$ $U_i \subset A$
- 5. Int $A = (X \setminus \operatorname{Ex} A) \setminus \partial A$

Док-во

- $(2) \Leftrightarrow (4) \Leftrightarrow (3)$ т.к объед. откр. откр.
- $(1) \Leftrightarrow (4)$:
- (\Rightarrow) :

 $x_0\in$ мн-во внутр. т. $\subset\bigcup U_i,\quad U_i$ - откр. $U_i\subset A$

 $\exists \mathcal{E} > 0 : B(x_0, \mathcal{E})$ - откр. $\subset A$ (по определению Int A)

$$(\Leftarrow)$$
:

$$\exists i: x_0 \in U_i \subset A \quad x_0 \in \bigcup U_i$$

$$\exists \ \mathcal{E}: B(x_0,\mathcal{E}) \subset U_i \subset A \Rightarrow x_0$$
 - внутр. т. А

Теорема

Следующие определения эквививалентны:

- 1. $\operatorname{Ex} A$ мн-во внеш. т.
- 2. $\operatorname{Ex} A = \operatorname{Int}(X \setminus A)$
- 3. $\operatorname{Ex} A$ max (по вкл.) откр. мн-во, не пересек. с А
- 4. Ex $A = \bigcup U_i$, $U_i \text{otkp.}$ $U_i \cap A = \emptyset$

Относительно внутр.

$$A \subset X \Rightarrow (A, \rho)$$
 — метр. пр-во

$$B \subset A \quad \operatorname{Int}_A B \neq \operatorname{Int}_X B$$

Пример

$$X = \mathbb{R}, \quad \rho -$$
станд.

$$A = [0,1] \quad B = [0,\frac{1}{2})$$

$$\operatorname{Int}_X B = (0, \frac{1}{2}) \quad \operatorname{Int}_A B = [0, \frac{1}{2})$$

4 Замыкание множества.

Теорема

Следующие определения эквививалентны:

1. Cl
$$A = \{x \in X \mid \forall \mathcal{E} > 0 \mid B(x, \mathcal{E}) \cap A \neq \emptyset\}$$

2.
$$Cl A = Int A \cup \partial A$$

3. Cl
$$A = \cap F_i$$
, $F_i - \text{замк}$ $F_i \supset A$

4.
$$\operatorname{Cl} A = \min (\text{по вкл.})$$
 замк. $\supset A$

Док-во

$$(3) \Leftrightarrow (4)$$
 - пересеч. замкн. - замкн.

$$(1) \Leftrightarrow (2)$$
 - очевидно

$$(1) \Rightarrow (3)$$
:

$$\forall \mathcal{E} > 0 \quad x : B(x, \mathcal{E}) \cap A \neq \emptyset$$

$$\exists x \notin F$$
- замк. $F \supset A$ $x \in X \setminus F$ - откр.

$$\exists \mathcal{E} > 0: B(x, \mathcal{E}) \subset X \setminus F \subset X \setminus A$$

$$\Rightarrow x$$
 - внеш. противореч.

$$(3) \Leftarrow (1)$$
:

$$x \in \bigcap F_i$$

$$\exists \mathcal{E} > 0 : B(x, \mathcal{E}) \cap A = \emptyset$$

$$B(x,\mathcal{E})$$
 - откр. (по л.) — замк - $F=X\setminus B(x,\mathcal{E})$ — $F\supset A$

$$x \not\in F$$
 - противореч.

Замечание

1. A - откр.
$$\Leftrightarrow A = IntA$$

2. А - замк.
$$\Leftrightarrow A = ClA$$

3. Int
$$A \subset A \subset ClA$$

 $\partial A = ClA \setminus IntA$

Пример

$$X = \mathbb{R}; \quad A = \emptyset$$

Int $A = \emptyset$ Ex $A = \emptyset$ $\partial A = \mathbb{R}$

Пример

Канторово мн-во - замк.

5 Топологические пространства. Примеры.

Опр

X - мн-во $\Omega \subset 2^X = \{A \subset X\}$ - мн-во подмн-в X (X,Ω) - назыв. топологическим пр-вом, если:

1.
$$\forall \{U_i\}_{i \in I} \in \Omega \Rightarrow \bigcup_{i \in I} U_i \in \Omega$$

2.
$$U_1, U_2, ..., U_n \Rightarrow U_1 \cap U_2 \cap ... \cap U_n \in \Omega$$

3.
$$\varnothing$$
; $X \in \Omega$

 Ω - топология на X $U \in \Omega$ - называется открытым мн-вом

Опр

 (X,Ω) - топ. пр-во; $F\subset X$ F - называется замкнутым, если $X\setminus F\in\Omega$

Теорема

- 1. $\bigcap_{i\in I}F_i$ замкн., если F_i замкн.
- 2. $F_1 \cup F_2$ замкн., если F_1, F_2 замкн.
- $3. \varnothing, X$ замкн.

Примеры

- 1. (X, ρ) топ. пр-во
- 2. Дискр. пр-во: $\Omega=2^X$ Нетрудно заметить, что все его элементы открыты по определению (можно сравнить с мешком гороха, где каждая горошина сама по себе). Также они замкнуты
- 3. Антидискр. пр-во: $\Omega = \{\varnothing, X\}$ (можно сравнить с запутанным клубком ниток) Замкнуты только x и \varnothing

Опр

 (X,Ω) - метризуемо, если \exists метрика $\rho: X \times X \to \mathbb{R}_X$ $\Omega=$ мн-во откр. подмн. в ρ Антидискретное - не метризуемо, если |X|>1

4. Стрелка

$$X=\mathbb{R}$$
 или $\mathbb{R}_+=\{x\geqslant 0\}$ $\Omega=\{(a,+\infty)\}\cup\{\varnothing\}\cup\{X\}$

5. Связное двоеточие

$$X = \{a, b\}$$

$$\Omega = \{\emptyset, X, \{a\}\}$$

6. Топология конечных дополнений (Зариского)

Х - беск. мн-во

Замкнутые конечные мн-ва и Х

$$Ω = \{A \mid X \setminus A \text{ конечно}\}$$

$y_{TB}*$

Вариации топологии Зарицкого:

(a)
$$\mathbb{C}^n=\{(z_1,...,z_n)\mid z_i\in CC\}$$
 $F\subset\mathbb{C}^n$ - замкн., если F является мн-вом решений системы:

$$\begin{cases} f_1(z_1, ..., z_n) = 0 \\ f_2(z_1, ..., z_n) = 0 \\ ... \\ f_k(z_1, ..., z_n) = 0 \end{cases}$$

 $f_1,...,f_k$ - мн-ны от n переменных

$$\underbrace{\frac{x^2}{a^2} + \frac{y^2}{b^2} - 1}_{f} = 0$$
 - эллипс

$$\frac{x^2}{a^2} + \frac{y^2}{b^2} + 1 = 0$$
 - в С непусто, поэтому используем их

Любое пересечение замкнутых замкнуто?

$$F \longleftrightarrow \begin{cases} f_1(z_1, ..., z_n) = 0 \\ f_2(z_1, ..., z_n) = 0 \\ ... \\ f_k(z_1, ..., z_n) = 0 \end{cases} \qquad G \longleftrightarrow \begin{cases} g_1(z_1, ..., z_n) = 0 \\ g_2(z_1, ..., z_n) = 0 \\ ... \\ g_k(z_1, ..., z_n) = 0 \end{cases}$$

$$F \cup G \longleftrightarrow \begin{cases} f_1(z_1, ..., z_n) = 0 \\ f_2(z_1, ..., z_n) = 0 \\ ... \\ f_k(z_1, ..., z_n) = 0 \\ g_1(z_1, ..., z_n) = 0 \\ g_2(z_1, ..., z_n) = 0 \\ ... \\ g_k(z_1, ..., z_n) = 0 \end{cases}$$

Теорема* (Гильберта о базисе)

Мн-во решений бесконечной системы равносильно мн-ву решений конечной системы

здесь когда-нибудь возможно будет алгебраическая формулировка с примером

Теорема* (Гильберта)

Любой идеал можно представить как конечную систему мнов

здесь когда-нибудь возможно будет дополнение

Теорема* (Гильберта о нулях)

K - алгебраически замкнутое поле \Rightarrow замкнутые мн-ва в K^n - идеалы в $K[x_1,...,x_n]$ - биекция

6 База топологии. Критерий базы.

Опр

X - топ. пр-во;
$$A\subset X$$
 Int $A=\cup U,\ U\in\Omega\ U\subset A$ Cl $A=\cap F,\ F-$ замк. $F\supset A$ $\partial A=\operatorname{Cl} A\setminus\operatorname{Int} A$

Опр

$$x_0 \in X$$

Окрестностью x_0 назыв. $\forall U \in \Omega : x_0 \in U$

Опр

$$x_0$$
 назыв. внутренней т. А, если $\exists U_{x_0} \subset A$ x_0 назыв. внешей т. А, если $\exists U_{x_0} \cap A = \varnothing$ x_0 назыв. граничной, если $\forall U_{x_0} \quad (U_{x_0} \not\subset A)$ и $(U_{x_0} \cap A \neq \varnothing)$

Опр

$$(X,\Omega)$$
 - топ. пр-во $\mathcal{B}\subset\Omega$ \mathcal{B} назыв. базой топологии, если:

$$\forall U \in \Omega \quad \exists \{V_i\} \in \mathcal{B} : \quad U = \bigcup_{i \in I} V_i$$

Пример

$$X=\mathbb{R}^n$$
 или другое метр. пр-во $\mathcal{B}=\{B(x_0,\mathcal{E})|x_0\in X,\mathcal{E}>0\}$ - база топологии $orall U$ - откр. $orall x_0\in U$ $\exists \mathcal{E}:B(x_0,\mathcal{E})\subset U$

$$\bigcup_{x_0 \in U} B(x_0, \mathcal{E}) = U$$

Теорема (Критерий базы)

X - мн-во
$$\mathcal B$$
 - нек. совокупность подмн-в X $\mathcal B$ - база $\Omega \Leftrightarrow$

1.
$$\bigcup_{U_i \in \mathcal{B}} U_i = X$$

2.
$$\forall U, V \in \mathcal{B} \quad \forall x \in U \cap V \quad \exists W \in \mathcal{B} : x \in W; W \subset U \cap V$$

Док-во

 (\Rightarrow) :

очевидно

 (\Leftarrow) :

$$\Omega = \{ \bigcup_{i \in I} U_i \mid U_i \in \mathcal{B} \}$$

1.
$$\bigcup_{j \in J} (\bigcup_{i \in I_j}) = \bigcup_{i,j} U_i$$

2.
$$(\bigcup_{j} U_{j}) \cap (\bigcup_{i} U_{i}) = \bigcup_{i,j} (U_{i} \cap U_{j}) = \bigcup_{i,j} (\bigcup_{x \in U_{i} \cap U_{j}} W_{x})$$

$$x \in W_x \subset U_i \cap U_j$$

$$\bigcup_{x \in U_i \cap U_j} W_x = U_i \cap U_j \quad W_x \in \mathcal{B}$$

3.
$$\emptyset = \bigcup_{i \in \emptyset} U_i \quad X = \bigcup_{U_i \in \mathcal{B}} U_i$$

Теорема (База окр. точки)

X - мн-во, $\forall x \in X \quad \exists \mathcal{B}_x \subset 2^x$

- 1. $x \in U \quad \forall U \in \mathcal{B}_x$
- 2. $U, V \in \mathcal{B}_x \to \exists W \in \mathcal{B}_x : W \subset U \cap V$
- 3. $y \in U \quad (U \in \mathcal{B}_x) \to \exists V \in \mathcal{B}_y : \quad V \subset U \text{ T.e. } \mathcal{B}_x \neq \varnothing \to \bigcup_{x \in X} \mathcal{B}_x -$ база нек. топологии

Док-во

^{*}здесь когда-нибудь будет док-во*

7 Топология произведения пространств.

Пример (- конструкция)

Даны
$$X,Y$$
 - топ. пр-ва $(X,\Omega_X); \quad (Y,\Omega_Y)$

Введем базу топ. на $X \times Y$:

$$\mathcal{B} = \{ U \times V | \quad U \in \Omega_X; \quad V \in \Omega_Y \}$$

Это топология:

$$\Omega_{X \times Y} = \{ \bigcup_{i \in I} U_i \times V_i \mid U_i \in \Omega_X; \quad V_i \in \Omega_Y \}$$

Для объединения - очевидно, для пересечения:

$$(\bigcup_{i \in I} U_i \times V_i) \cap (\bigcup_{j \in J} S_j \times T_j) = \bigcup_{i \in I} \underbrace{(U_i \cap S_j)}_{\in \Omega_X} \times \underbrace{(V_i \cap T_j)}_{\in \Omega_Y} \in \Omega_{XXY}$$

8 Равносильные определения непрерывности.

Опр

$$(X, \rho);$$
 (Y, d) - метр. пр-ва $f: X \to Y$ f - назыв. непрерывна в т. x_0 , если:
$$\forall \mathcal{E} > 0 \quad \exists \ \delta > 0 : \text{если} \rho(x, x_0) < \delta \Rightarrow d(f(x), f(x_0)) < \mathcal{E}$$

f - непрерывна, если она непр. в каждой точке

Теорема

f - непр в
$$x_0 \Leftrightarrow$$

$$\forall U - \text{откр.} \subset Y : U \ni f(x_0) \quad \exists V \subset X - \text{откр.} : \quad x_0 \in V \text{ и } f(V) \subset U$$

Док-во

$$f$$
 - непр. в x_0 $\Rightarrow \forall \mathcal{E} > 0 \quad \exists \delta > 0 : f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E})$ $\Rightarrow \forall U$ - откр. $\subset Y : \quad f(x_0) \in U \Rightarrow \exists \mathcal{E} > 0 :$ $f(x_0) \in B(f(x_0), \mathcal{E}) \subset U \Rightarrow \exists \delta > 0 :$ $f(B(x_0, \delta)) \subset B(f(x_0), \mathcal{E}) \subset U \quad B(x_0, \delta) = V$ $\leftarrow \forall$ обрывается

Опр

$$X,Y$$
 - топологические пр-ва, $x_0 \in X, f: X \to Y$ f назыв. непр. в т. x_0 , если \forall откр. $U \ni f(x_0)$: \exists откр. $V: x_0 \in V$ и $f(V) \subset U$

Теорема

$$X,Y$$
 - метрич. (тополог.), $f:X\to Y$. f - непр \Leftrightarrow $\forall U$ откр. в Y $f^{-1}(U)=\{x:f(x)\in U\}$

Док-во

здесь когда-нибудь будет док-во

Пример*

здесь когда-нибудь будет пример

9 Прообраз топологии. Индуцированная топология.

Опр

Пусть заданы (X,Ω_1) и (X,Ω_2) Тогда Ω_1 сильнее (тоньше) Ω_2 , если $\Omega_1 \supset \Omega_2$

Или: id : $(X, \Omega_1) \xrightarrow{\text{непр.}} (X, \Omega_2)$

y_{TB}

f:X o Y - отобр. мн-в, (Y,Ω_Y) - топ. пр-во

Вопрос: можно ли ввести топологию на X, чтобы отображение стало непрерывным? Да можно, если Ω_X - дискретная

 Ω_X - самая слабая топ.: f - непр.

 $\forall U \in \Omega_Y \quad f^{-1}(U)$ должен быть открытым в X

Вопрос: не является ли совокупность $f^{-1}(U)$ уже топологией?

Теорема

 $\{f^{-1}(U)\}$ - топология на X и она назыв. прообразом Ω_Y

Док-во

1.
$$f^{-1}(\bigcup_{i \in I} U_i) = \bigcup_{i \in I} f^{-1}(U_i)$$
 (*)

2.
$$f^{-1}(U_1 \cap U_2) = f^{-1}(U_1) \cap f^{-1}(U_2)$$

3.
$$f^{-1}(\emptyset) = \emptyset$$
 $f^{-1}(Y) = X$

$$(*): \quad f^{-1}(\bigcup_{i \in I} U_i) = \{x | f(x) \in \bigcup_{i \in I} U_i\} = \{x | \exists i \in I : f(x) \in U_i\}$$

Опр

$$(X,\Omega_X)$$
 - топ. пр-во

$$A \subset X$$

 $\Omega_A = \{U \cap A | \ U \in \Omega_X\}$ - индуцированная топология на А

10 Инициальная топология. Топология произведения как инициальная.

Опр

$$orall i\in I$$
 $f_i:X o Y_i$ (Y_i,Ω_i) - топ. пр-во
$$\{f_{i1}^{-1}(U_1)\cap f_{i2}^{-1}(U_2)\cap\ldots\cap f_{ik}^{-1}(U_k)|\ U_j\in\Omega_{ij}\} \text{ - база нек. топологии}$$
 $j=1,\ldots,k\in\mathbb{N}$

 Ω_X - соотв. топология (инициальная топология)

Опр

$$\{f_i^{-1}(U)\}$$
 - предбаза топологии

Пример

здесь когда-нибудь будет пример

Теорема

Топология произведения совпадает с инициальной

Док-во

здесь когда-нибудь будет док-во

Опр

$$\prod_{i \in I} x_i = \{f : I \to \bigcup_{i \in I} x_i \mid f(i) \in X_i\}$$

$$p_k : \prod_{i \in I} x_i \to X_k \quad k \in I$$

$$p_k(f) = f(k)$$

$$\Rightarrow если X_i - топ. \to \prod_{i \in I} X_i - топ.$$

Пример

^{*}когда-нибудь билет будет понят и поправлен*

^{*}здесь когда-нибудь будет пример*

11 Финальная топология. Фактортопология. Приклеивание.

когда-нибудь бидет будет поправлен

Опр

$$\forall i \in I \quad f_i: \ X_i \to Y$$
 - отобр. (X_i, Ω_i) Хотим завести на Y топологию: $\forall f_i$ - непр. Топ на Y самая сильная $U \subset Y \quad \forall i \in I \quad f_i^{-1}(U) \in \Omega_i$ $\Omega_Y = \{U \mid \forall i \ f_i^{-1}(U) \in \Omega_i\}$ $\varnothing, Y \in \Omega_Y$ $f_i^{-1}(U_1 \cap U_2) = f_i^{-1}(U_1) \cap f_i^{-1}(U_2)$ $f_i^{-1}(\bigcup_{k \in K} U_k) = \bigcup_{k \in K} f_i^{-1}(U_k)$

Пример

Приклеивание

X,Y - пр-ва

 $A \subset X$ $f: A \to Y$ - отобр.

Хотим получить $X \cup_f Y$ - приклеивание

 $X \cup_f Y = X \cup Y / \sim \forall a \ a \sim f(a)$

U - откр. в $X \cup_f Y$, если $U \cap X$ - откр. в X и

 $U\cap Y$ - откр. в Y (если f - инъект.)

12 Гомеоморфизм.

Опр

 $f:X\to Y$ - гомеоморфизм $(X\simeq Y),$ если:

- 1. f непр.
- 2. f биекция
- 3. f^{-1} непр.

Примеры

$$\frac{1}{1} \cdot \left(-\frac{\pi}{2}; \ \frac{\pi}{2}\right) \simeq \mathbb{R} \qquad (f(x) = \operatorname{tg} x)$$

2. Не гомеоморфизм (3 пункт):

$$[0,\ 2\pi)\stackrel{f}{ o}S'=\{z\in\sigma\mid |z|=1\}$$
 $f(t)=e^{it}=\cos t+i\sin t,\quad f$ - непр. и биект.

Предположение

 \simeq - отношение эквив.

Теорема

Если
$$(X, \Omega_X) \simeq (Y, \Omega_Y)$$
, то:
 $f_*: \Omega_X \to \Omega_Y$ - биекция, $f_*(U) = f(U)$

Док-во

13 Связность топологического пространства и множества.

Опр

X называется несвязным, если \exists откр. $U_1, U_2 \neq \varnothing \in X$:

$$X = U_1 \cap U_2, \qquad U_1 \cup U_2 = \emptyset$$

Упр

Написать определение связного, как не несвязного

Опр

 $A\subset X,\,A$ называется связным, если A связно как топол. пр-во с индуцированной топологией

A несв., если \exists открытые $U_1, U_2 \subset X$:

$$\begin{aligned} (U_1 \cup A) \cap (U_2 \cup A) &= A \\ (U_1 \cup A) \cup (U_2 \cup A) &= \varnothing \\ U_1 \cup A \neq \varnothing \end{aligned} \Rightarrow \begin{aligned} U_1 \cap U_2 \supset A \\ U_1 \cup U_2 \cup A &= \varnothing \\ U_1 \cup A \neq \varnothing \end{aligned} \\ U_2 \cup A \neq \varnothing \end{aligned}$$

14 Связность отрезка.

Теорема

[0,1] - связен

Док-во

15 Связность замыкания. Связность объединения.

Теорема

$$(X,\Omega)$$
 - топ. пр-во, $A\subset X$ - связно
$$\Rightarrow \forall B: \qquad A\subset B\subset ClA \qquad \Rightarrow B$$
 - связно

Следствие

Если A - связ., то ClA - связ.

Док-во

здесь когда-нибудь будет док-во

Теорема

$$(X,\Omega)$$
 - топ. пр-во, $A,B\subset X$ - связны,
$$A\cap B\neq\varnothing\Rightarrow A\cup B$$
 - связно

Док-во

16 Связность и непрерывные отображения.

Теорема

$$(X,\Omega_X),\ (Y,\Omega_Y)$$
 - топ. пр-ва, $f:X o Y$ - непр.,
$${\rm X}\text{ - связно}\Rightarrow {\rm f}({\rm x})\text{ - связно}$$

Док-во

здесь когда-нибудь будет док-во

Следствие

Связность - топологическое св-во

Примеры

здесь когда-нибудь будут примеры

Следствие

X - связно
$$\Leftrightarrow$$
 $\not\exists$ сюръект. непр. $f:X \to \{0,1\}$

Док-во

17 Связность произведения пространств

Теорема*

$$\{X_i\}_{i\in I}$$
 - топ. пр-во
$$\Rightarrow \forall i \quad X_i \text{ - cb. } \Leftrightarrow \prod_{i\in I} X_i \text{ - cbяз.}$$

Теорема

$$X, \ Y$$
 - топ. пр-ва

$$X \times Y$$
 - связн. \Leftrightarrow X, Y - связн.

Замечание

Любое конечное произведение связных топ. пр-в связно

Теорема

$$\prod_{i \in I} X_i$$
 - связно $\Leftrightarrow \forall i \in I \quad X_i$ - связно

Док-во

^{*}здесь когда-нибудь будет док-во*

18 Компоненты Связности.

Опр

Х - топ. пр-во

Компонентой связности т. $x_0 \in X$ назыв. наиб. по включению связное множество, ее содерж.

Опр (другое определение)

А - компонента связности ⇔

- 1. А связно
- 2. $\forall B \underset{\neq}{\supset} A \Rightarrow B$ несвязно

Пример

здесь когда-нибудь будет пример

Следствие

Компоненты связности могут не быть открытыми

Теорема

- 1. $\forall x, y \in X \quad K_x = K_y$ или $K_x \cap K_y = \emptyset$
- 2. компоненты связности замк.

Док-во

здесь когда-нибудь будет док-во

Опр*

X - топ. пр-во назыв. вполне несвязным, если $\forall x \in X : K_x = \{x\}$

19 Линейная связность

Опр

X - топ. пр-во, $f:[0,1] \to X$ - непр. f называется путем в X

f(0) - начало пути

f(1) - конец пути

Опр

X называется лин. связным, если ∀две точки X можно соединить путём

Замечание

Начало и конец пути меняются: g(t) := f(1-t)

Пример

здесь когда-нибудь будет пример

Теорема

Х - топ. пр-во

X - лин. св. $\Rightarrow X$ - св.

Док-во

здесь когда-нибудь будет док-во

Пример

здесь когда-нибудь будет пример

Опр

Компоненты лин. связности - тах лин. св. мн-ва

Замечание

Компоненты лин. связности не всегда замкнуты

Теорема*

A, B - лин. св. $A \cap B \neq \emptyset \rightarrow A \cup B$ - лин.св.

Теорема*

X, Y - топ. пр-во; $f: X \to Y$ - непр.

X - лин. св. $\rightarrow f(x)$ - лин. св.

20 Компактность. Примеры.

Опр

 (X, Ω) - топ. пр-во

 ${\bf X}$ - компакт, если из любого открытого покрытия ${\bf X}$ можно выбрать конечное подпокрытие

$$\forall \{U_i\}_{i\in I}, \quad U_i \in \Omega$$

$$\bigcup_{i \in I} U_i = X \to \exists n \in \mathbb{N} \quad \exists \{i_1, ..., i_n\}_{ij \in I} : \bigcup_{k=1}^n U_{ik} = X)$$

Примеры

- 1. Конечное топ. пр-во всегда компактно
- 2. Дискретное бесконечное множ. не комп.
- 3. Антидискр. мн-во комп.
- 4. Топология зарицкого комп. (выберем окр. мн-во, оно покрывается конечным набором мн-в, для каждой из остальных также)
- 5. $X = \mathbb{R}$ с топологией стрелки не компакт $(U_n = (-n, \infty))$
- 6. (\mathbb{R} , станд.) не компакт $(U_n = (n, \infty))$
- 7. [0,1] компакт

Опр

$$(X,\Omega)$$
 - топ. пр-во

 $A\subseteq X$ - компактно, если оно комп. в индуц. топ.

Теорема

X - комп.
$$A \subseteq X$$
 - замк. $\Rightarrow A$ - комп.

Док-во

^{*}здесь когда-нибудь будет док-во*

21 Простейшие свойства компактности.

Теорема

$$f:X o Y,\quad A\subset X$$
 - компакт $\Rightarrow f(A)$ - комп. в ${
m Y}$

Док-во

здесь когда-нибудь будет док-во

Следствие

Компактность - топ. св-во

22 Компактность произведения пространств.

Теорема (А.Н. Тихонов)

$$\{X_i\}_{i\in I}$$
 - комп. $\Leftrightarrow \prod_{i\in I} X_i$ - комп.

Теорема

$$X, Y$$
 - комп $\Leftrightarrow X \times Y$ - комп.

Док-во

23 Компактность и хаусдорфовость

Опр

Х называется хаусдорфовым, если:

$$\forall x_1 \neq x_2 \in X \quad \exists U_{x_1}, U_{x_2} : \quad U_{x_1} \cap U_{x_2} = \varnothing$$

Пример

здесь когда-нибудь будет пример

Теорема

X - хаусдорф. A - комп \in X \Rightarrow A - замк.

Док-во

$$\overline{X}\setminus A$$
 - откр?
$$x_0\in X\setminus A$$
 $\forall x_1\in A\Rightarrow\exists U_{x_0}\ni x_0;\ V_{x_1}\ni x_1$ $U_{x_0}\cap V_{x_1}=\varnothing$
$$\bigcup_{x_1\in A}V_{x_1}\subset A\Rightarrow x_1,x_2,...,x_k:\ \bigcup_{i=1}^kV_{x_i}\supset A$$
 $U_{x_0}=\bigcap_{i=1}^kU_{x_i}$ - искомая окр. $U_{x_0}\cap A=\varnothing$ (Иначе $U_{x_0}\cap V_{x_i}\neq\varnothing,\ U_{x_i}\cap V_{x_i}\neq\varnothing$)

Теорема

f:X o Y непр., биекция

X - комп.

Ү - хаусдорф.

 $\Rightarrow f$ - гомеоморф.

Док-во

24 Лемма Лебега. Компактность отрезка.

Теорема (Лемма Лебега)

$$X = [0,1] \subset \bigcup_{i \in I} U_i \qquad \{U_i\}_{i \in I}$$
 - откр. покр. X

$$\Rightarrow \exists \mathcal{E} > 0 : \forall x_0 \ \exists i \in I : B(x_0, \mathcal{E}) \subseteq U_i$$

(${\mathcal E}$ зависит от покр., называется числом Лебега)

Док-во

здесь когда-нибудь будет док-во

Следствие

[0,1] - компактен

Док-во

25 Критерий компактности подмножеств евклидова пространства.

Теорема

$$A \subset \mathbb{R}^n$$

$$A$$
 - комп. $\Leftrightarrow A$ - замк и огр.

Опр

A - огр., если
$$\exists N: A \subset B(0,N)$$

Док-во

$$(\Rightarrow)$$
:
$$A$$
 - замк. т.к. \mathbb{R}^n - хаусдорф.
$$A$$
 - огр.
$$\{B(0,n)\}_{n\in\mathbb{N}}$$

$$(\Leftarrow)$$
: $A\subset [-N,N]\times [-N,N]\times ...\times [-N,N]=K$, т.к. огр K - компакт (каждый отрезок компактен, произведение комп. компактно) A - замк. в $K\Rightarrow A$ - комп.

26 Теорема Вейерштрасса. Примеры.

Теорема (Вейерштрасса)

K - компакт.,
$$f:K\to\mathbb{R}$$
 - непр.
$$\to \exists x_0\in K: \quad \forall x\in K \quad f(x)\leqslant f(x_0) \quad (x_0-max)$$

Док-во

$$f(K)$$
 - комп. $\subset \mathbb{R} \to f(K)$ - замк. и огр \to $\sup f(K) \in f(K)$ (замк.) $\sup f(K) \neq \infty$ (огр.) $\sup f(K) = f(x_0)$

27 Вторая аксиома счётности и сепарабельность.

Опр

X - обл. II А.С., если в X \exists счетная база

Опр

X - назыв сепараб., если
$$\exists \ A \subset X$$
 $|A| \leqslant \aleph_0$ и $ClA = X$

Опр

A - всюду плотно, если ClA=X

Теорема

X - II А.С. \rightarrow X - сепараб.

28 Теорема Линделёфа.

Теорема

X - II A.C. \to из \forall откр. покр. X можно извлечь не более чем счетное подпокрытие

29 Первая аксиома счётности.

Опр

База окр-тей точки $\forall x \quad \exists \{U_{x_i}\}_{i \in I_x}$

- 1. $U_{x_i} \in \Omega$; $x \in U_{x_i}$
- 2. $\forall U \in \Omega : x \in U \quad \exists U_{x_i} : x \in U_{x_i} \subset U$

Опр

Если \exists база окр-тей:

 $\forall x \; \{U_{x_i}\}_{i \in I_x}$ не более чем счетное $\to \mathbf{X}$ удовл. І А.С.

Из компактности следует секвенциальная компактность (с первой AC).

31 Из секвенциальной компактности следует компкатность (со второй AC).

32 Полнота и вполне ограниченность метрических пространств.

Опр

Фунд. послед.

$$\{X_n\}$$
 - фунд., если $orall \mathcal{E}>0$ $\exists N: orall n, m>N:
ho(X_n,X_m)<\mathcal{E}$

Опр

Х назыв. полным, если ∀ фунд. послед. сходится

Опр

$$\{X_i\}_{i\in I}$$
 - \mathcal{E} -сеть, если $\forall x \quad \exists x_i: \rho(x,x_i)<\mathcal{E}$

Опр

X назыв. вполне огранич., если $\forall \mathcal{E} > 0 \quad \exists$ конечная \mathcal{E} -сеть

33 Из полноты и вполне ограниченности следует компактность

Теорема (равносильные)

- 1. Х компактно
- 2. Х секцвенц. комп.
- 3. Х полн. и вполне огр.

34 Аксиомы отделимости.

Теорема (Колмогорова)

$$\forall x,y \in X: x \neq y \ \to \ \exists U \in \Omega$$

Теорема (Тихонова)

$$\forall x, y \in X : x \neq y \rightarrow \exists U \in \Omega$$

Теорема (Хаусдорфа)

$$\forall x, y \in X \quad \exists U_x, U_y : U_x \cap U_y = \varnothing$$

Теорема (3)

$$\forall x \in X$$
 и замкнуто $F \subseteq X, \ x \notin F$ $\exists U_x \text{ и } U_F: \ U_x \cap U_F = \varnothing$

Теорема (4)

$$F_1,F_2$$
 - замк. : $F_1\cap F_2=\varnothing$ $\exists U_{F_1}$ и $U_{F_2}:\ U_{F_1}\cap U_{F_2}=\varnothing$ $T_2\to T_1\to T_0$

35 Нормальность матрического пространства.

Опр

$$(X,\Omega)$$
 - хаусдорф. X - нормально \Leftrightarrow $\forall F$ - замк., $\forall G\in\Omega$ $F\subseteq G o \exists G'\in\Omega$: $F\subseteq G'\subseteq ClG'\subseteq G$