10/10 points (100%)

Key concepts on Deep Neural Networks Quiz, 10 questions

Cong	gratulations! You passed!	Next Item
~	1 / 1 points	
1. What is propag	s the "cache" used for in our implementation of forward propagation a gation?	nd backward
	We use it to pass variables computed during backward propagation to corresponding forward propagation step. It contains useful values for propagation to compute activations.	
0	We use it to pass variables computed during forward propagation to to backward propagation step. It contains useful values for backward procompute derivatives.	
the b	ect ect, the "cache" records values from the forward propagation units and packward propagation units because it is needed to compute the chain vatives.	
	It is used to keep track of the hyperparameters that we are searching computation.	over, to speed up
	It is used to cache the intermediate values of the cost function during	training.
2 .	1/1 points	
	the following, which ones are "hyperparameters"? (Check all that appl	y.)

number of layers \boldsymbol{L} in the neural network

Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100%)

	activation values $a^{[l]}$			
Un-selected is correct				
	weight matrices $W^{[l]}$			
Un-s	elected is correct			
	learning rate $lpha$			
Corr	ect			
	size of the hidden layers $n^{[l]}$			
Corr	ect			
	number of iterations			
Corr	ect			
	bias vectors $b^{[l]}$			
Un-s	elected is correct			
~	1 / 1 points			
3. Which	of the following statements is true?			
0	The deeper layers of a neural network are typically computing more complex features of the input than the earlier layers.			
Corr	ect			
	The earlier layers of a neural network are typically computing more complex features of			

the input than the deeper layers.

Key concepts on Deep Neural Networks

Quiz, 10 questions 10/10 points (100%)

V

1/1 points

4.

Vectorization allows you to compute forward propagation in an L-layer neural network without an explicit for-loop (or any other explicit iterative loop) over the layers l=1, 2, ..., L. True/False?

() True

False

Correct

Forward propagation propagates the input through the layers, although for shallow networks we may just write all the lines ($a^{[2]}=g^{[2]}(z^{[2]})$, $z^{[2]}=W^{[2]}a^{[1]}+b^{[2]}$, ...) in a deeper network, we cannot avoid a for loop iterating over the layers: ($a^{[l]}=g^{[l]}(z^{[l]})$, $z^{[l]}=W^{[l]}a^{[l-1]}+b^{[l]}$, ...).

1/1 points

5.

Assume we store the values for $n^{[l]}$ in an array called layers, as follows: layer_dims = $[n_x, 4,3,2,1]$. So layer 1 has four hidden units, layer 2 has 3 hidden units and so on. Which of the following forloops will allow you to initialize the parameters for the model?

```
for(i in range(1, len(layer_dims)/2)):
    parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
    parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims)/2)):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i-1], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i-1], layers[i])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

```
1 for(i in range(1, len(layer_dims))):
2  parameter['W' + str(i)] = np.random.randn(layers[i], layers[i-1])) * 0.01
3  parameter['b' + str(i)] = np.random.randn(layers[i], 1) * 0.01
```

Key concepts on Deep Neural Networks Quiz, 10 questions

10/10 points (100%)

1/1 points
6. Consider the following neural network.
How many layers does this network have?
$igcup_{A}$ The number of layers L is 4. The number of hidden layers is 3.
Correct Yes. As seen in lecture, the number of layers is counted as the number of hidden layers + 1. The input and output layers are not counted as hidden layers.
$ \qquad \qquad \text{The number of layers L is 3. The number of hidden layers is 3.} $
igcap The number of layers L is 4. The number of hidden layers is 4.
igcup The number of layers L is 5. The number of hidden layers is 4.
1/1 points
7. During forward propagation, in the forward function for a layer l you need to know what is the activation function in a layer (Sigmoid, tanh, ReLU, etc.). During backpropagation, the corresponding backward function also needs to know what is the activation function for layer l , since the gradient depends on it. True/False?
True
Correct Yes, as you've seen in the week 3 each activation has a different derivative. Thus, during backpropagation you need to know which activation was used in the forward propagation to be able to compute the correct derivative.
False

Key concepts on Deep Neural Networks Quiz, 10 questons

10/10 points (100%)

There are certain functions with the following properties:

(i) To compute the function using a shallow network circuit, you will need a large network (where we measure size by the number of logic gates in the network), but (ii) To compute it using a deep network circuit, you need only an exponentially smaller network. True/False?				
True				
Correct				
○ False				
1/1 points				
9. Consider the following 2 hidden layer neural network:				
Which of the following statements are True? (Check all that apply).				
$oxed{W}^{[1]}$ will have shape (4, 4)				
Correct Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.				
$b^{[1]}$ will have shape (4, 1)				
Correct Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.				
$W^{[1]}$ will have shape (3, 4)				
Un-selected is correct				
$b^{[1]}$ will have shape (3, 1)				
Un-selected is correct				

Key concepts on Deep Neural Networks $^{[2]}$ will have shape (3.14) Networks $^{[2]}$ Quiz, 10 questions

10/10 points (100%)

Correct

Yes. More generally, the shape	of $W^{[l]}$ is	$(n^{[l]},n^{[l-1]})$).
--------------------------------	-----------------	-----------------------	----

 $b^{[2]}$ will have shape (1, 1)

Un-selected is correct

 $oxed{ } W^{[2]}$ will have shape (3, 1)

Un-selected is correct

 $igcup b^{[2]}$ will have shape (3, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]}, 1)$.

 $oxed{ } W^{[3]}$ will have shape (3, 1)

Un-selected is correct

lacksquare $b^{[3]}$ will have shape (1, 1)

Correct

Yes. More generally, the shape of $b^{[l]}$ is $(n^{[l]},1)$.

 $W^{[3]}$ will have shape (1, 3)

Correct

Yes. More generally, the shape of $W^{[l]}$ is $(n^{[l]}, n^{[l-1]})$.

 $b^{[3]}$ will have shape (3, 1)

Un-selected is correct

Key concepts on Deep Neural Networks Quiz, 10 questlons

10/10 points (100%)

Whereas the previous question used a specific network, in the general case what is the dimension of W^{[l]}, the weight matrix associated with layer *l*?

- $W^{[l]}$ has shape $(n^{[l-1]}, n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l+1]})$
- $igcup W^{[l]}$ has shape $(n^{[l+1]},n^{[l]})$
- $W^{[l]}$ has shape $(n^{[l]}, n^{[l-1]})$

Correct

True

