Problem Sheet 8

Henri Sota h.sota@jacobs-university.de Computer Science 2022

November 3, 2019

Problem 8.1

Minimize $\varphi(A, B, C, D, E) = m_0 + m_2 + m_4 + m_6 + m_9 + m_{10} + m_{13} + m_{14} + m_{15} + m_{16} + m_{17} + m_{21} + m_{26} + m_{28} + m_{30} + m_{31}$.

a) Calculate prime implicants of φ : Since the expression defining φ is in DNF, then every minterm of DNF is an implicant of φ . Classify and sort minterms based on the number of positive literals they contain:

minterm	pattern	used	minterms	pattern	used	minterms	pattern	used
m_0	00000	✓	$m_{0,2}$	000-0	√	$m_{0,2,4,6}$	000	
			$m_{0,4}$	00-00	✓	$m_{0,4,2,6}$	000	
			$m_{0,16}$	-0000				
m_2	00010	✓	$m_{2,6}$	00-10	√	$m_{2,6,10,14}$	010	
			$m_{2,10}$	0-010	✓	$m_{2,10,6,14}$	010	
m_4	00100	✓	$m_{4,6}$	001-0	✓			
m_{16}	10000	✓	$m_{16,17}$	1000-				
m_6	00110	✓	$m_{6,14}$	0-110	√			
m_9	01001	✓	$m_{9,13}$	01-01				
m_{10}	01010	✓	$m_{10,14}$	01-10	✓	$m_{10,14,26,30}$	-1-10	
			$m_{10,26}$	-1010	✓	$m_{10,26,14,30}$	-1-10	
m_{17}	10001	✓	$m_{17,21}$	10-01				
m_{13}	01101	✓	$m_{13,15}$	011-1				
m_{14}	01110	\checkmark	$m_{14,15}$	0111-	✓	$m_{14,15,30,31}$	-111-	
			$m_{14,30}$	-1110	✓	$m_{14,30,15,31}$	-111-	
m_{21}	10101	\checkmark						
m_{26}	11010	\checkmark	$m_{26,30}$	11-10	✓			
m_{28}	11100	✓	$m_{28,30}$	111-0				
m_{15}	01111	✓	$m_{15,31}$	-1111	✓			
m_{30}	11110	✓	$m_{30,31}$	1111-	✓			
m_{31}	11111	✓						

 $m_{0,2,4,6}$ and $m_{0,4,2,6}$ contain the same expressions, therefore we only use one of those in the second step of the algorithm. The same case stands for $m_{2,6,10,14}$ and $m_{2,10,6,14}$, $m_{10,14,26,30}$ and $m_{10,26,14,30}$, $m_{14,15,30,31}$ and $m_{14,30,15,31}$.

Prime Implicants of φ :

- $m_{0.2.4.6} = 00 0 = \neg A \land \neg B \land \neg E$
- $m_{2.6,10,14} = 0$ -- $10 = \neg A \land D \land \neg E$
- $m_{10.14.26.30} = -1-10 = B \wedge D \wedge \neg E$
- $m_{14,15,30,31} = -111 B \wedge C \wedge D$
- $m_{0.16} = -0000 = \neg B \land \neg C \land \neg D \land \neg E$
- $m_{9,13} = 01 01 = \neg A \land B \land \neg D \land E$
- $m_{13,15} = 011-1 = \neg A \land B \land C \land E$
- $m_{16.17} = 1000 A \wedge \neg B \wedge \neg C \wedge \neg D$
- $m_{17,21} = 10\text{-}01 = A \land \neg B \land \neg D \land E$
- $m_{28.30} = 111-0 = A \wedge B \wedge C \wedge \neg E$

b) Prime Implicant Chart:

	m_0	m_2	m_4	m_6	m_9	m_{10}	m_{13}	m_{14}	m_{15}	m_{16}	m_{17}	m_{21}	m_{26}	m_{28}	m_{30}	m_{31}
$m_{0,2,4,6}$	√	√	✓	✓												
$m_{2,6,10,14}$		√		√		√		√								
$m_{10,14,26,30}$						√		√					√		√	
$m_{14,15,30,31}$								√	√						√	✓
$m_{0,16}$	√									√						
$m_{9,13}$					√		√									
$m_{13,15}$							√		√							
$m_{16,17}$										√	√					
$m_{17,21}$											√	√				
$m_{28,30}$														√	√	
E.P.I.C*	√		√	√	√	√	√	√								

Table 1: E.P.I.C stands for Essential Prime Implicant Coverage - the coverage of the minterms by the essential prime implicants found below

From the table, we can see that the essential prime implicants are:

- $m_{0,2,4,6} = 00 0 = \neg A \land \neg B \land \neg E$ (only one that covers m_4)
- $m_{10,14,26,30} = -1-10 = B \wedge D \wedge \neg E$ (only one that covers m_{26})
- $m_{14,15,30,31} = -111 B \wedge C \wedge D$ (only one that covers m_{31})
- $m_{9.13} = 01\text{-}01 = \neg A \land B \land \neg D \land E$ (only one that covers m_9)
- $m_{17.21} = 10\text{-}01 = A \land \neg B \land \neg D \land E$ (only one that covers m_{21})
- $m_{28,30} = 111-0 = A \wedge B \wedge C \wedge \neg E$ (only one that covers m_{28})

Minterm m_{16} is the only one that isn't covered by the essential prime implicants found above. Therefore we can choose the implicant $m_{0,16}$ or $m_{16,17}$ to cover it in our resulting minimal expression.

- c) The resulting minimal expressions defining $\varphi(A, B, C, D, E)$:
 - $(\neg A \land \neg B \land \neg E) \lor (B \land D \land \neg E) \lor (B \land C \land D) \lor (\neg A \land B \land \neg D \land E) \lor (A \land \neg B \land \neg D \land E) \lor (A \land B \land C \land \neg E) \lor (\neg B \land \neg C \land \neg D \land \neg E)$
 - $(\neg A \land \neg B \land \neg E) \lor (B \land D \land \neg E) \lor (B \land C \land D) \lor (\neg A \land B \land \neg D \land E) \lor (A \land \neg B \land \neg D \land E) \lor (A \land B \land C \land \neg E) \lor (A \land \neg B \land \neg C \land \neg D)$

The cost of our minimal expressions is 24, while the original expression's cost is 63 (16*3+15).