New Optimizer I

Alexander Ludwig

Deep Learning Research Kitchen (ML-4501 / 3 ECTS) June 13, 2024

Structure

1 New and popular optimizers

AdamW

Recap 2nd Order methods

Sophia

Lion

Experiments

2 Conclusion and Discussion

New and popular optimizers

AdamW: decoupling weight decay from your adaptive optimizer

More state of the art research from Freiburg

- Given a loss $L(\theta) = \ldots + \lambda ||\theta||^2$ (L_2 regularization)
- only for vanilla SGD this is equivalent to weight decay

$$\theta_{t+1} = \theta_t - \eta(\dots + \lambda \theta_t)$$

- \implies first update $\theta_{t+1} = -\eta \lambda \theta_t$ then continue
- AdamW is one of the best practice optimizers (at least firmly ingrained in NanoGPT)

DECOUPLED WEIGHT DECAY REGUI

Ilya Loshchilov & Frank Hutter University of Freiburg Freiburg, Germany, {ilya,fh}@cs.uni-freiburg.de

But why should we stick to first order methods?

Reminder: Antionio's Lecture and Newton's Method

"With $H = L \cdot I_{d \times d}$ the theory is perfect"

"the optimal η , yielding the maximum decrease is $\eta=1/L$ "

Hessian Matrix, $\theta \in \mathbb{R}^d$

$$H = \begin{bmatrix} \frac{\partial^2 L}{\partial \theta_1^2} & \frac{\partial^2 L}{\partial \theta_1 \partial \theta_2} & \cdots & \frac{\partial^2 L}{\partial \theta_1 \partial \theta_n} \\ \frac{\partial^2 L}{\partial \theta_2 \partial \theta_1} & \frac{\partial^2 L}{\partial \theta_2^2} & \cdots & \frac{\partial^2 L}{\partial \theta_2 \partial \theta_n} \\ \vdots & \vdots & \ddots & \vdots \\ \frac{\partial^2 L}{\partial \theta_n \partial \theta_1} & \frac{\partial^2 L}{\partial \theta_n \partial \theta_2} & \cdots & \frac{\partial^2 L}{\partial \theta_n^2} \end{bmatrix} \in \mathbb{R}^{d \times d}$$

Newton's Method: $\theta_{t+1} = \theta_t - H^{-1}g$

"quadratic convergence for convex problems"

◄□▶◀∰▶◀불▶◀불▶ 불 쒸٩○

5/23

Gauss-Newton-Bartlett Estimator

making the Hessian diagonal and linearize a deep neural network

Reminder: the multivariate Chain Rule $L: L(f_1(x), f_2(x), \dots, f_c(x))$:

$$\frac{\partial L}{\partial x_i}(f(x)) = \sum_{j=1}^c \frac{\partial L}{\partial f_j} \frac{\partial f_j}{\partial x_i} = \nabla_f L J_x$$

$$H_{ij} = \frac{\partial^{2} L}{\partial \theta_{i} \partial \theta_{j}} = \frac{\partial}{\partial \theta_{i}} \left(\sum_{j} \frac{\partial L}{\partial f_{j}} \frac{\partial f_{j}}{\partial \theta_{i}} \right) = \left(\sum_{j} \frac{\partial}{\partial \theta_{i}} \left(\frac{\partial L}{\partial f_{j}} \right) \frac{\partial f_{j}}{\partial \theta_{i}} + \frac{\partial L}{\partial f_{j}} \frac{\partial}{\partial \theta_{i}} \left(\frac{\partial f_{j}}{\partial \theta_{i}} \right) \right)$$

$$= \left(\sum_{j} \sum_{k} \frac{\partial^{2} L}{\partial f_{j} \partial f_{k}} \frac{\partial f_{j}}{\partial \theta_{i}} \frac{\partial f_{k}}{\partial \theta_{j}} \right) + \sum_{j} \left(\frac{\partial L}{\partial f_{j}} \underbrace{\frac{\partial}{\partial \theta_{i}} \left(\frac{\partial f_{j}}{\partial \theta_{i}} \right)}_{=0 \text{ for linear}} \right) = J_{\theta}^{T} \underbrace{H_{f}}_{\in \mathbb{R}^{c \times c}} J_{\theta} + smol$$

4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶
4□▶

GNB 2¹

Since
$$L = H(p_{data}, p_{model}) = E_{x \sim p_{data}}[-\log(p_{model}(x))]$$
 one can rewrite $H_f = E_{\hat{y} \sim p_{model}}[\frac{\partial^2 L}{\partial^2 f}] = E_{\hat{y} \sim p_{model}}[\frac{\partial L}{\partial f}^T]$ (H_f does no independent on \hat{y}) $\to G = E[J_{\theta} \frac{\partial L}{\partial f} \frac{\partial L}{\partial f}^T J_{\theta}^T] = E_{\hat{y} \sim p_{model}}[\nabla_{\theta} L \odot \nabla_{\theta} L]$

- splitting up second derivatives in expectation is called Bartlett's second identity
- sample $\hat{y} \sim p_{model}$ and calculate gradient w.r.t. L

¹Here is great Lecture about Second Order Optimizer from the Numerics of ML-lecture by Lukas Tatzel

Second-order Clipped Stochastic Optimization

- accounts for curvature information during optimization
- clips gradient at 1
- "The authors suspect the GNB estimator has a smaller variance than the Hutchinson's estimator, [...]."
- public implementation is only with GNB available
- Hessian diagonal is approximated every k steps

Algorithm 3 Sophia

- 1: **Input:** θ_1 , learning rate $\{\eta_t\}_{t=1}^T$, hyperparameters $\lambda, \gamma, \beta_1, \beta_2$, ϵ , and estimator choice Estimator \in {Hutchinson, Gauss-Newton-Bartlett}
- 2: Set $m_0 = 0$, $v_0 = 0$, $h_{1-k} = 0$
- 3: for t = 1 to T do
- 4: Compute minibach loss $L_t(\theta_t)$.
- 5: Compute $g_t = \nabla L_t(\theta_t)$.
- $6: \quad m_t = \beta_1 m_{t-1} + (1 \beta_1) g_t$
- 7: **if** $t \mod k = 1$ **then**
- S: Compute $\hat{h}_t = \text{Estimator}(\theta_t)$.
- 9: $h_t = \beta_2 h_{t-k} + (1 \beta_2) \hat{h}_t$
- 10: **else**
- 11: $h_t = h_{t-1}$
- 12: $\theta_t = \theta_t \eta_t \lambda \theta_t$ (weight decay)
- 13: $\theta_{t+1} = \theta_t \eta_t \cdot \text{clip}(m_t/\max\{\gamma \cdot h_t, \epsilon\}, 1)$

8 / 23

Defining 2x faster

 O_2 is k-times faster than O_1 if

$$\exists H_2, \quad \min_{H_1} \ \mathrm{Eval}(O_1, T, H_1) \geq \mathrm{Eval}(O_2, T/k, H_2)$$

New Optimizer I June 13, 2024 9 / 23

Lion: EvoLved Sign Momentum, an attempt to gödelize optimizers

Why not breed your dream optimizer via evolution

- regularized evolution searches through the symbolic representations
- inputs are weights, Ir and gradient; output can be weights update + extra stuff
- performance is measured on ViT on 10% of Imagenet (20 mins TPU) and very tiny on LM1B
- limited vocabulary and constants are modified/ newly sampled a la 2^a for $a \sim \mathcal{N}(0,1)$
- prune search space by checking for functional equivalence and redundant statements

Program 8: Raw program of Lion before removing redundent statements.

```
def train(w, g, m, v, lr):
 g = clip(g, lr)
 m = clip(m, lr)
 v845 = sqrt(0.6270633339881897)
 v968 = sign(v)
 v968 = v - v
 g = arcsin(g)
 m = interp(g, v, 0.8999999761581421)
 v = interp(g, m, 1.109133005142212)
 v845 = tanh(v845)
  1r = 1r * 0.0002171761734643951
 update = m * lr
 v1 = sart(v1)
 update = update / v1
  vd = 1r * 0.4601978361606598
  v1 = square(v1)
 m = cosh(update)
  lr = tan(1.4572199583053589)
 update = update + wd
 1r = \cos(v845)
 return update, m, v
```

Lion 2

Optimizing NNs is already searching over TMs, where will this lead to when we now start searching optimizers?

- decoupled weight decay is added manually (gray lines)
- interp(a,b, λ) = $(1 \lambda)a + \lambda b$
- uniform update direction across **all** dimensions of θ
- authors argue that sign operation adds noise to gradient update and regularizes
- smaller memory footprint than AdamW (only momentum stored)
- almost the same as signSGD (moment variant)

Program 1: Discovered optimizer Lion. $\beta_1=0.9$ and $\beta_2=0.99$ by default are derived from Program 4. It only tracks momentum and uses the sign operation to compute the update. The two gray lines compute the standard decoupled weight decay, where λ is the strength.

```
def train(weight, gradient, momentum, lr): update = interp(gradient, momentum, \beta_1) update = sign(update) momentum = interp(gradient, momentum, \beta_2) weight_decay = weight * \lambda update = update + weight_decay update = update * lr return update, momentum
```

Cleaned up optimizer

Experiments

[rank1]: RuntimeError: Found NVIDIA GeForce GTX 1080 Ti which is too old to be supported by the triton GPU compiler, which is used as the backend. Triton only supports devices of CUDA Capability >= 7.0, but your device is of CUDA capability 6.1

sbatch: error: OOSMaxWallDurationPerJobLimit

#SBATCH --partition=day

2.2.2 Partitions (Queues):

4 partitions with different time limits are provided:

Partition name	TimelLimit	Always accessible nodes	Additional nodes accessible if unused	
test (default)	15 min	3	37	
day	1 day	10	25	
week	7 days	17	10	
month	30 days	10	0	

https://csweb.cs.uni-tuebingen.de/webprojects/TCML/

(ロト 4回 ト 4 重 ト 4 重 ト) 重 り 9 0 0

Setup

- All Experiments are run on the tcml cluster on a single computer node with 4x GeForce GTX 1080 Ti and Intel XEON CPU E5-2650 v4 (24 cores)
- fork of Sophia repository which itself is a fork of NanoGPT repository by Andrej Karpathy
- 10K update steps during training on data from OpenWebText 2
- cross entropy loss
- Cosine learning rate schedule with 200 steps warmup
- tiny transformer (30M parameters, 6 Layers, 6 attention heads, 384 embedding dimension, context length of 1024 tokens)
- gradient accumulation was used to simulate a higher batch size (120 most of the time)

Hyperparameters

- Sophia paper reports optimal hyperparameters for tiny model on 50K (40K more) steps for different optimizers
- increase maximum learning rate until divergence

Table 2: Model Configurations and Peak Learning Rate.

Acronym	Size	d_model	n_head	depth	AdamW lr	Lion lr	Sophia-H lr	Sophia-G lr
_ Tiny	30M	384	6	6	1.2e-3	4e-4	1e-3	1e-3
Small	125M	768	12	12	6e-4	1.5e-4	6e-4	6e-4
Medium	355M	1024	16	24	3e-4	6e-5	4e-4	4e-4
_	540M	1152	18	30	3e-4	_	4e-4	4e-4
Large	770M	1280	20	36	2e-4	_	3e-4	3e-4
NeoX 1.5B	1.5B	1536	24	48	1.5e-4	_	_	1.2e-4
NeoX 6.6B	6.6B	4096	32	32	1.2e-4	_	_	6e-5

adapted from Appendix B from Liu et.al 2024

Sophia vs AdamW: 2x faster in #steps or time?

Figure: lowest validation losses: AdamW: 3.621 bits, SophiaG: 3.669 bits

New Optimizer I June 13, 2024 16 / 23

Both optimizer performed 10K steps but different wallclock times: AdamW 5h 21m, SophiaG: 6h 48m

Both optimizer run for approx. the same time: AdamW 6h 31m, SophiaG: 6h 48m

Caveats

- Since they don't report loss values for tiny (30M) model on 10K steps, this is not a "falsification" of their claims
- SophiaG run on 5k steps does also not achieve lower validation loss
- ...

Releasing the Lion

Validation Losses: Lion 3.606 bits, AdamW 3.621 bits, SophiaG 3.669 bits,

New Optimizer I June 13, 2024 20 / 23

Conclusion and Discussion

Thank you for your attention!

Any questions, comments or Feedback?

1010351	day noCLIPad	stud503 PD	0:00	1 (Resources)
1010331	day noCLIPad	stud503 PD	0:00	1 (Priority)
1010372	•			•
	day nocrash_	hilbert PD	0:00	1 (Priority)
1010309	day nocrash_	hilbert PD	0:00	1 (Priority)
1010310	day nocrash_	hilbert PD	0:00	1 (Priority)
1010311	day nocrash_	hilbert PD	0:00	1 (Priority)
1010314	day nocrash_	hilbert PD	0:00	1 (Priority)
1010313	day nocrash_	hilbert PD	0:00	1 (Priority)
1010317	day nocrash_	hilbert PD	0:00	1 (Priority)
1010318	day nocrash_	hilbert PD	0:00	1 (Priority)
1010315	day nocrash_	hilbert PD	0:00	1 (Priority)
1010316	day nocrash_	hilbert PD	0:00	1 (Priority)
1010319	day nocrash_	hilbert PD	0:00	1 (Priority)
1010320	day nocrash_	hilbert PD	0:00	1 (Priority)
1010321	day nocrash_	hilbert PD	0:00	1 (Priority)
1010322	day nocrash_	hilbert PD	0:00	1 (Priority)
1010323	day nocrash_	hilbert PD	0:00	1 (Priority)
1010324	day nocrash_	hilbert PD	0:00	1 (Priority)
1010325	day nocrash_	hilbert PD	0:00	1 (Priority)
1010326	day nocrash_	hilbert PD	0:00	1 (Priority)
1010327	day nocrash_	hilbert PD	0:00	1 (Priority)
1010328	day nocrash_	hilbert PD	0:00	1 (Priority)
1010329	day nocrash	hilbert PD	0:00	1 (Priority)
1010330	day nocrash	hilbert PD	0:00	1 (Priority)
1010331	day nocrash_	hilbert PD	0:00	1 (Priority)
1010332	day nocrash	hilbert PD	0:00	1 (Priority)
1010333	day nocrash_	hilbert PD	0:00	1 (Priority)
1010334	day nocrash_	hilbert PD	0:00	1 (Priority)
1010334	day nocrash_	hilbert PD	0:00	1 (Priority)
1010333	uay nocrasii_	HITTOGIC PD	0.00	- 「111111111111111111111111111111111111