

Sequence Listing

#8

<110> Ashkenazi, Avi
Baker Kevin P.
Botstein, David
Desnoyers, Luc
Eaton, Dan
Ferrara, Napoleon
Filvaroff, Ellen
Fong, Sherman
Gao, Wei-Qiang
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, Audrey
Godowski, Paul J.
Grimaldi, J. Christopher
Gurney, Austin L.
Hillan, Kenneth J
Kljavin, Ivar J.
Kuo, Sophia S.
Napier, Mary A.
Pan, James;
Paoni, Nicholas F.
Roy, Margaret Ann
Shelton, David L.
Stewart, Timothy A.
Tumas, Daniel
Williams, P. Mickey
Wood, William I.

RECEIVED
SEP 18 2002
TECH CENTER 1600/2900

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> P2630P1C54

<140> 10/143,029
<141> 2001-10-19

<150> 09/918585
<151> 2001-07-30

<150> 60/062250
<151> 1997-10-17

<150> 60/064249
<151> 1997-11-03

<150> 60/065311
<151> 1997-11-13

<150> 60/066364
<151> 1997-11-21

<150> 60/077450
<151> 1998-03-10

<150> 60/077632

<151> 1998-03-11

<150> 60/077641
<151> 1998-03-11

<150> 60/077649
<151> 1998-03-11

<150> 60/077791
<151> 1998-03-12

<150> 60/078004
<151> 1998-03-13

<150> 60/078886
<151> 1998-03-20

<150> 60/078936
<151> 1998-03-20

<150> 60/078910
<151> 1998-03-20

<150> 60/078939
<151> 1998-03-20

<150> 60/079294
<151> 1998-03-25

<150> 60/079656
<151> 1998-03-26

<150> 60/079664
<151> 1998-03-27

<150> 60/079689
<151> 1998-03-27

<150> 60/079663
<151> 1998-03-27

<150> 60/079728
<151> 1998-03-27

<150> 60/079786
<151> 1998-03-27

<150> 60/079920
<151> 1998-03-30

<150> 60/079923
<151> 1998-03-30

<150> 60/080105
<151> 1998-03-31

<150> 60/080107

<151> 1998-03-31

<150> 60/080165
<151> 1998-03-31

<150> 60/080194
<151> 1998-03-31

<150> 60/080327
<151> 1998-04-01

<150> 60/080328
<151> 1998-04-01

<150> 60/080333
<151> 1998-04-01

<150> 60/080334
<151> 1998-04-01

<150> 60/081070
<151> 1998-04-08

<150> 60/081049
<151> 1998-04-08

<150> 60/081071
<151> 1998-04-08

<150> 60/081195
<151> 1998-04-08

<150> 60/081203
<151> 1998-04-09

<150> 60/081229
<151> 1998-04-09

<150> 60/081955
<151> 1998-04-15

<150> 60/081817
<151> 1998-04-15

<150> 60/081819
<151> 1998-04-15

<150> 60/081952
<151> 1998-04-15

<150> 60/081838
<151> 1998-04-15

<150> 60/082568
<151> 1998-04-21

<150> 60/082569

<151> 1998-04-21

<150> 60/082704

<151> 1998-04-22

<150> 60/082804

<151> 1998-04-22

<150> 60/082700

<151> 1998-04-22

<150> 60/082797

<151> 1998-04-22

<150> 60/082796

<151> 1998-04-23

<150> 60/083336

<151> 1998-04-27

<150> 60/083322

<151> 1998-04-28

<150> 60/083392

<151> 1998-04-29

<150> 60/083495

<151> 1998-04-29

<150> 60/083496

<151> 1998-04-29

<150> 60/083499

<151> 1998-04-29

<150> 60/083545

<151> 1998-04-29

<150> 60/083554

<151> 1998-04-29

<150> 60/083558

<151> 1998-04-29

<150> 60/083559

<151> 1998-04-29

<150> 60/083500

<151> 1998-04-29

<150> 60/083742

<151> 1998-04-30

<150> 60/084366

<151> 1998-05-05

<150> 60/084414

<151> 1998-05-06

<150> 60/084441
<151> 1998-05-06

<150> 60/084637
<151> 1998-05-07

<150> 60/084639
<151> 1998-05-07

<150> 60/084640
<151> 1998-05-07

<150> 60/084598
<151> 1998-05-07

<150> 60/084600
<151> 1998-05-07

<150> 60/084627
<151> 1998-05-07

<150> 60/084643
<151> 1998-05-07

<150> 60/085339
<151> 1998-05-13

<150> 60/085338
<151> 1998-05-13

<150> 60/085323
<151> 1998-05-13

<150> 60/085582
<151> 1998-05-15

<150> 60/085700
<151> 1998-05-15

<150> 60/085689
<151> 1998-05-15

<150> 60/085579
<151> 1998-05-15

<150> 60/085580
<151> 1998-05-15

<150> 60/085573
<151> 1998-05-15

<150> 60/085704
<151> 1998-05-15

<150> 60/085697

<151> 1998-05-15

<150> 60/086023
<151> 1998-05-18

<150> 60/086430
<151> 1998-05-22

<150> 60/086392
<151> 1998-05-22

<150> 60/086486
<151> 1998-05-22

<150> 60/086414
<151> 1998-05-22

<150> 60/087208
<151> 1998-05-28

<150> 60/087106
<151> 1998-05-28

<150> 60/087098
<151> 1998-05-28

<150> 60/091010
<151> 1998-06-26

<150> 60/090863
<151> 1998-06-26

<150> 60/091359
<151> 1998-07-01

<150> 60/094651
<151> 1998-07-30

<150> 60/100038
<151> 1998-09-11

<150> 60/109304
<151> 1998-11-20

<150> 60/113296
<151> 1998-12-22

<150> 60/113621
<151> 1998-12-23

<150> 60/123957
<151> 1999-03-12

<150> 60/126773
<151> 1999-03-29

<150> 60/130232

<151> 1999-04-21

<150> 60/131022
<151> 1999-04-26

<150> 60/131445
<151> 1999-04-28

<150> 60/134287
<151> 1999-05-14

<150> 60/139557
<151> 1999-06-16

<150> 60/141037
<151> 1999-06-23

<150> 60/142680
<151> 1999-07-07

<150> 60/145698
<151> 1999-07-26

<150> 60/146222
<151> 1999-07-28

<150> 60/162506
<151> 1999-10-29

<150> 09/040220
<151> 1998-03-17

<150> 09/105413
<151> 1998-06-26

<150> 09/168978
<151> 1998-10-07

<150> 09/184216
<151> 1998-11-02

<150> 09/187368
<151> 1998-11-06

<150> 09/202054
<151> 1998-12-07

<150> 09/218517
<151> 1998-12-22

<150> 09/254465
<151> 1999-03-05

<150> 09/265686
<151> 1999-03-10

<150> 09/267213

<151> 1999-03-12

<150> 09/284291

<151> 1999-04-12

<150> 09/311832

<151> 1999-05-14

<150> 09/380137

<151> 1999-08-25

<150> 09/380138

<151> 1999-08-25

<150> 09/380142

<151> 1999-08-25

<150> 09/709238

<151> 2000-11-08

<150> 09/723749

<151> 2000-11-27

<150> 09/747259

<151> 2000-12-20

<150> 09/816744

<151> 2001-03-22

<150> 09/816920

<151> 2001-03-22

<150> 09/854280

<151> 2001-05-10

<150> 09/854208

<151> 2001-05-10

<150> 09/872035

<151> 2001-06-01

<150> 09/874503

<151> 2001-06-05

<150> 09/882636

<151> 2001-06-14

<150> 09/886342

<151> 2001-06-19

<150> PCT/US98/21141

<151> 1998-10-07

<150> PCT/US98/24855

<151> 1998-11-20

<150> PCT/US99/00106

<151> 1999-01-05

<150> PCT/US99/05028
<151> 1999-03-08

<150> PCT/US99/05190
<151> 1999-03-10

<150> PCT/US99/10733
<151> 1999-05-14

<150> PCT/US99/12252
<151> 1999-06-02

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28551
<151> 1999-12-02

<150> PCT/US99/28565
<151> 1999-12-02

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US99/31243
<151> 1999-12-30

<150> PCT/US99/31274
<151> 1999-12-30

<150> PCT/US00/00219
<151> 2000-05-01

<150> PCT/US00/00277
<151> 2000-01-06

<150> PCT/US00/00376
<151> 2000-01-06

<150> PCT/US00/03565
<151> 2000-02-11

<150> PCT/US00/04341
<151> 2000-02-18

<150> PCT/US00/05841
<151> 2000-03-02

<150> PCT/US00/07532
<151> 2000-03-21

<150> PCT/US00/05004
<151> 2000-02-24

<150> PCT/US00/06319

<151> 2000-03-10

<150> PCT/US00/08439
<151> 2000-03-30

<150> PCT/US00/13705
<151> 2000-05-17

<150> PCT/US00/14042
<151> 2000-05-22

<150> PCT/US00/14941
<151> 2000-05-30

<150> PCT/US00/15264
<151> 2000-06-02

<150> PCT/US00/20710
<151> 2000-07-28

<150> PCT/US00/23328
<151> 2000-08-24

<150> PCT/US00/32678
<151> 2000-12-01

<150> PCT/US00/34956
<151> 2000-12-20

<150> PCT/US01/06520
<151> 2001-02-28

<150> PCT/US01/09552
<151> 2001-03-22

<150> PCT/US01/17092
<151> 2001-05-25

<150> PCT/US01/17800
<151> 2001-06-01

<150> PCT/US01/19692
<151> 2001-06-20

<150> PCT/US01/21066
<151> 2001-06-29

<150> PCT/US01/21735
<151> 2001-07-09

<160> 624

<210> 1
<211> 1743
<212> DNA
<213> *Homo sapiens*

<400> 1
ccaggtccaa ctgcacctcg gttctatcga ttgaattccc cggggatcct 50
ctagagatcc ctcgacacctcg acccacgcgt ccgc当地 agct ggccctgcac 100
ggctgcaagg gaggctcctcg tggacaggcc aggtaggtgg gcctcaggag 150
gtgc当地tccag gcggccagtg ggc当地t gaggc cccagcaagg gctagggtcc 200
atctccagtc ccaggacaca gcagcggcca ccatggccac gcctgggctc 250
cagcagcatc agcagcccc aggaccgggg gaggcacagg tggccccac 300
cacccggagg agcagctcct gccc当地t gtcc ggggatgac tgattctcct 350
ccgccc当地g aggcc acccagagga gaaggccacc cc当地tggag gcacaggcca 400
tgaggggctc tc当地gagggtg ct当地t gatgt ggcttctggt gttggcagtg 450
ggc当地g cacag agc当地gccta cc当地ccggc cgttagggtg tgtgctgtcc 500
cgggctc当地g gggaccctgt ctccgagtcg tt当地tgc当地g gt当地gtacca 550
gcc当地tccctc accacctgc当地g acgggacccg ggcc当地gc当地g acctaccgaa 600
ccat当地tatag gaccgc当地tac cgcc当地c当地g cc当地tgc当地g cc当地tgc当地g 650
cctcgctacg cgtgctgccc cggctggaag aggaccagcg ggcttctgg 700
ggcc当地tgtgga gc当地aatat gccagccgccc atgccc当地aac ggagggagct 750
gtgtccagcc tggccgctgc cgctgccc当地g caggatggcg gggtaacact 800
tgccagtc当地g atgtggatga atgc当地gtc aggagggcg gctgtcccca 850
gc当地tgc当地t aacaccgc当地g cagttactg gt当地c当地t当地g tggaggggc当地g 900
acagc当地tgc当地c tgc当地gacggt acactctgtg tgcccaaggg agggcccccc 950
agggtggccc ccaaccgc当地g aggactggac agt当地aatga aggaagaagt 1000
gc当地aggctg cagtc当地gaggg tggacctgct ggaggagaag ct当地c当地t当地g 1050
tgctggccc当地g actgc当地c当地g ctggccctc当地g aggactgga gcatgggctc 1100
ccggacccccc当地g cagc当地tccct ggtgc当地tcc ttccagc当地g tc当地ccgcat 1150
cgactccctg agc当地gacgaga tttcccttccct ggaggagc当地g ctggggctc当地g 1200
gctc当地tgc当地a gaaagactcg tgactgccc当地g gc当地ccccc当地g ctggactgag 1250
ccc当地tacgc cgc当地tgc当地g cccccc当地tgc当地c cctgccc当地aac atgctggggg 1300
tccagaaggcc acctc当地gggt gactgagc当地g aaggccaggc agggc当地tcc 1350
tc当地tttccct cctcccttc当地c cctc当地ggagg gtc当地ccaggac cctggcatgg 1400

gatgggctgg gattttttt gtgaatccac ccctggctac ccccaccctg 1450
gttaccccaa cggcatccca aggccaggtg ggcctcagc tgagggagg 1500
tacgagttcc cctgctggag cctggaccc atggcacagg ccaggcagcc 1550
cgaggctgg gtgggcctc agtggggct gctgcctgac ccccagcaca 1600
ataaaaatga aacgtaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1650
aaaaaaaaagg gcggccgcga ctctagatc gacctgcaga agcttggccg 1700
ccatggccca acttgttat tgcagcttat aatggttaca aat 1743

<210> 2
<211> 295
<212> PRT
<213> Homo sapiens

<400> 2
Met Thr Asp Ser Pro Pro Gly His Pro Glu Glu Lys Ala Thr
1 5 10 15

Pro Pro Gly Gly Thr Gly His Glu Gly Leu Ser Gly Gly Ala Ala
20 25 30

Asp Val Ala Ser Gly Val Gly Ser Gly Arg His Arg Ala Arg Leu
35 40 45

Pro Ala Arg Pro Leu Gly Cys Val Leu Ser Arg Ala His Gly Asp
50 55 60

Pro Val Ser Glu Ser Phe Val Gln Arg Val Tyr Gln Pro Phe Leu
65 70 75

Thr Thr Cys Asp Gly His Arg Ala Cys Ser Thr Tyr Arg Thr Ile
80 85 90

Tyr Arg Thr Ala Tyr Arg Arg Ser Pro Gly Leu Ala Pro Ala Arg
95 100 105

Pro Arg Tyr Ala Cys Cys Pro Gly Trp Lys Arg Thr Ser Gly Leu
110 115 120

Pro Gly Ala Cys Gly Ala Ala Ile Cys Gln Pro Pro Cys Arg Asn
125 130 135

Gly Gly Ser Cys Val Gln Pro Gly Arg Cys Arg Cys Pro Ala Gly
140 145 150

Trp Arg Gly Asp Thr Cys Gln Ser Asp Val Asp Glu Cys Ser Ala
155 160 165

Arg Arg Gly Gly Cys Pro Gln Arg Cys Ile Asn Thr Ala Gly Ser
170 175 180

Tyr Trp Cys Gln Cys Trp Glu Gly His Ser Leu Ser Ala Asp Gly

185	190	195
Thr Leu Cys Val Pro Lys Gly Gly Pro Pro Arg Val Ala Pro Asn		
200	205	210
Pro Thr Gly Val Asp Ser Ala Met Lys Glu Glu Val Gln Arg Leu		
215	220	225
Gln Ser Arg Val Asp Leu Leu Glu Glu Lys Leu Gln Leu Val Leu		
230	235	240
Ala Pro Leu His Ser Leu Ala Ser Gln Ala Leu Glu His Gly Leu		
245	250	255
Pro Asp Pro Gly Ser Leu Leu Val His Ser Phe Gln Gln Leu Gly		
260	265	270
Arg Ile Asp Ser Leu Ser Glu Gln Ile Ser Phe Leu Glu Glu Gln		
275	280	285
Leu Gly Ser Cys Ser Cys Lys Lys Asp Ser		
290	295	

<210> 3
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 3
tggagcagca atatgccagc c 21

<210> 4
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 4
tttccactc ctgtcggtt gg 22

<210> 5
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 5
ggtgacactt gccagtca a tgtggatgaa tgcagtgcta ggaggg 46

<210> 6

<211> 2945
<212> DNA
<213> Homo sapiens

<400> 6
cgctcgcccc gtcgcccctc gcctcccccgc agagtccctt cgcggcagca 50
gatgtgtgtg gggtcagccc acggcgaaaa ctatggtaaa attcccgccg 100
ctcacgcact actggccctt gatccggttc ttgggtcccc tgggcacac 150
caacatagcc atcgacttcg gggagcaggc cttgaaccgg ggcattgctg 200
ctgtcaagga ggtatgcagtc gagatgctgg ccagactacgg gctggcgac 250
tccctcatga agttttcac gggtcccatg agtacttca aaaatgtggg 300
cctgggtttt gtgaacagca agagagacag gaccaaagcc gtcctgtta 350
tggtggtggc aggggccatc gctgccgtct ttcacacact gatacgcttat 400
agtgatttag gatactacat tatcaataaa ctgcaccatg tggacgagtc 450
ggtggggagc aagacgagaa gggccttcct gtacctcgcc gccttcctt 500
tcatggacgc aatggcatgg acccatgctg gcattctttt aaaacacaaa 550
tacagtttcc tggtggtatg tgcctcaatc tcagatgtca tagctcagg 600
tgtttttgtt gccatttgc ttcacagtca cctgaaatgc cgggagcccc 650
tgctcatccc gatcccttcc ttgtacatgg ggcacttgtt ggcgtgcacc 700
accctgtgcc tggctacta caagaacatt cacgacatca tccctgacag 750
aagtggcccg gagctggggg gagatgcaac aataagaaag atgctgagct 800
tctggtgcc tttggctcta attctggcca cacagagaat cagtcggcct 850
attgtcaacc tctttgtttc cgggacattt ggtggcagtt ctgcagccac 900
agaggcagtg gcgatttga cagccacata ccctgtgggt cacatgccat 950
acggctggtt gacgaaatc cgtgctgtt atcctgcttt cgacaagaat 1000
aaccccagca acaaactggt gagcacgagc aacacagtca cggcagccca 1050
catcaagaag ttcacccctcg tctgcattgc tctgtcactc acgctctgtt 1100
tcgtatgtt ttggacaccc aacgtgtctg agaaaatctt gatagacatc 1150
atcggagtg ggactttgcctt tgcaactc tgtgttggc ctttgcggat 1200
cttctcccttc ttcccagttc cagtcacagt gagggcgcac ctcaccgggt 1250
ggctgtatgac actgaagaaa accttcgtcc ttgccccca gtcctgtgtt 1300

cgatcatcg tcctcatcgc cagcctcggt gtcctaccct acctgggggt 1350
gcacggtgcg accctggcg tggctccct cctggcgccc tttgtggag 1400
aatccaccat ggtcgccatc gtcggtgtct atgttacccg gaagcagaaa 1450
aagaagatgg agaatgagtc gccacggag gggaaagact ctgccatgac 1500
agacatgcct ccgacagagg aggtgacaga catcggtggaa atgagagagg 1550
agaatgaata aggcacggga cgccatgggc actgcaggga cggtcagtca 1600
ggatgacact tcggcatcat ctcttcctc tccatcgta ttttgttccc 1650
ttttttgt tttgtttgg taatgaaaga ggcattgatt taaaggtttc 1700
gtgtcaattc tctagcatac tggtatgct cacactgacg gggggaccta 1750
gtgaatggtc ttactgttg ctatgtaaaa acaaacgaaa caactgactt 1800
cataccctg ctcacgaaa acccaaaaga cacagctgcc tcacggttga 1850
cgttgtgtcc tcctccctg gacaatctcc tcttggacc aaaggactgc 1900
agctgtgcca tcgcgcctcg gtcaccctgc acagcaggcc acagactctc 1950
ctgtccccct tcattcgctt taagaatcaa cagttaaaa ctggcttcc 2000
ttttagttgc ttcccaagtca catggccgtt caaagagatg gagccccgt 2050
ggcctcttaa attcccttc tgccacggag ttcgaaacca tctactccac 2100
acatgcagga ggcgggtggc acgctgcagc ccggagtccc cggtcacact 2150
gaggaacgga gacctgtgac cacagcaggc tgacagatgg acagaatctc 2200
ccgtagaaag gtttggtttgg aaatgccccg ggggcagcaa actgacatgg 2250
ttgaatgata gcatttcact ctgcgttctc ctatgttgc gcaagctgtc 2300
agttctcacc cccaccgtgt atatacatga gctaactttt ttaaattgtc 2350
acaaaagcgc atctccagat tccagaccct gccgcattgc ttccctgaa 2400
ggcttgcttt tccctcgct ttcctgaagg tcgcatttgc gcgagtccaca 2450
tggagcatcc taactttgca ttttagttt tacagtgaac tgaagcttta 2500
agtctcatcc agcattctaa tgccaggttg ctgttagggta acttttgaag 2550
tagatatatt acctggttct gctatcctt gtcataactc tgcggtagac 2600
gtaattgaga atgttactacg gtacttcctt cccacaccat acgataaagc 2650
aagacatttt ataacgatac cagagtcaact atgtggctt ccctgaaata 2700
acgcattcga aatccatgca gtgcagtata ttttctaaag ttttgaaag 2750

caggtttttt cctttaaaaa aattatagac acggttcact aaattgattt 2800
agtcaagaatt cctagactga aagaacctaa aaaaaaaaaat attttaaaga 2850
tataaatata tgctgtatat gttatgtaat ttattttagg ctataataca 2900
tttcctattt tcgcatttc aataaaaatgt ctctaataca aaaaa 2945

<210> 7
<211> 492
<212> PRT
<213> Homo sapiens

<400> 7
Met Val Lys Phe Pro Ala Leu Thr His Tyr Trp Pro Leu Ile Arg
1 5 10 15
Phe Leu Val Pro Leu Gly Ile Thr Asn Ile Ala Ile Asp Phe Gly
20 25 30
Glu Gln Ala Leu Asn Arg Gly Ile Ala Ala Val Lys Glu Asp Ala
35 40 45
Val Glu Met Leu Ala Ser Tyr Gly Leu Ala Tyr Ser Leu Met Lys
50 55 60
Phe Phe Thr Gly Pro Met Ser Asp Phe Lys Asn Val Gly Leu Val
65 70 75
Phe Val Asn Ser Lys Arg Asp Arg Thr Lys Ala Val Leu Cys Met
80 85 90
Val Val Ala Gly Ala Ile Ala Ala Val Phe His Thr Leu Ile Ala
95 100 105
Tyr Ser Asp Leu Gly Tyr Tyr Ile Ile Asn Lys Leu His His Val
110 115 120
Asp Glu Ser Val Gly Ser Lys Thr Arg Arg Ala Phe Leu Tyr Leu
125 130 135
Ala Ala Phe Pro Phe Met Asp Ala Met Ala Trp Thr His Ala Gly
140 145 150
Ile Leu Leu Lys His Lys Tyr Ser Phe Leu Val Gly Cys Ala Ser
155 160 165
Ile Ser Asp Val Ile Ala Gln Val Val Phe Val Ala Ile Leu Leu
170 175 180
His Ser His Leu Glu Cys Arg Glu Pro Leu Leu Ile Pro Ile Leu
185 190 195
Ser Leu Tyr Met Gly Ala Leu Val Arg Cys Thr Thr Leu Cys Leu
200 205 210

Gly Tyr Tyr Lys Asn Ile His Asp Ile Ile Pro Asp Arg Ser Gly
215 220 225

Pro Glu Leu Gly Gly Asp Ala Thr Ile Arg Lys Met Leu Ser Phe
230 235 240

Trp Trp Pro Leu Ala Leu Ile Leu Ala Thr Gln Arg Ile Ser Arg
245 250 255

Pro Ile Val Asn Leu Phe Val Ser Arg Asp Leu Gly Gly Ser Ser
260 265 270

Ala Ala Thr Glu Ala Val Ala Ile Leu Thr Ala Thr Tyr Pro Val
275 280 285

Gly His Met Pro Tyr Gly Trp Leu Thr Glu Ile Arg Ala Val Tyr
290 295 300

Pro Ala Phe Asp Lys Asn Asn Pro Ser Asn Lys Leu Val Ser Thr
305 310 315

Ser Asn Thr Val Thr Ala Ala His Ile Lys Lys Phe Thr Phe Val
320 325 330

Cys Met Ala Leu Ser Leu Thr Leu Cys Phe Val Met Phe Trp Thr
335 340 345

Pro Asn Val Ser Glu Lys Ile Leu Ile Asp Ile Ile Gly Val Asp
350 355 360

Phe Ala Phe Ala Glu Leu Cys Val Val Pro Leu Arg Ile Phe Ser
365 370 375

Phe Phe Pro Val Pro Val Thr Val Arg Ala His Leu Thr Gly Trp
380 385 390

Leu Met Thr Leu Lys Lys Thr Phe Val Leu Ala Pro Ser Ser Val
395 400 405

Leu Arg Ile Ile Val Leu Ile Ala Ser Leu Val Val Leu Pro Tyr
410 415 420

Leu Gly Val His Gly Ala Thr Leu Gly Val Gly Ser Leu Leu Ala
425 430 435

Gly Phe Val Gly Glu Ser Thr Met Val Ala Ile Ala Ala Cys Tyr
440 445 450

Val Tyr Arg Lys Gln Lys Lys Met Glu Asn Glu Ser Ala Thr
455 460 465

Glu Gly Glu Asp Ser Ala Met Thr Asp Met Pro Pro Thr Glu Glu
470 475 480

Val Thr Asp Ile Val Glu Met Arg Glu Glu Asn Glu
485 490

<210> 8
<211> 535
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 33, 66, 96, 387
<223> unknown base

<400> 8
cctgacagaaa gtgccccgga gctgggggag atncaacatt aagaagatgc 50
tgagcttctg gtgccontttg gctctaattc tggccacaca gagaancagt 100
cggccttattt tcaaccttctt tggttcccgg gaccttggtg gcagttctgc 150
agccacagag gcagttggcga ttttgacagc cacataccct gtgggtcaca 200
tgccatacgg ctgggttgcacg gaaatccgtg ctgtgtatcc tgcttcgac 250
aagaataacc ccagcaacaa actggtgagc acgagcaaca cagtcacggc 300
ggcccacatc aagaagttca ctttcgtctg catggctctg tcactcacgc 350
tctgtttcgt gatgttttg acacccaacg tgtctngaa aatcttgata 400
gacatcatcg gagtgactt tgccttgca gaactctgtg ttgttcctt 450
gcggatcttc tccttcttcc cagttccagt cacagtgagg ggcgcacatca 500
ccgggtggct gatgacactg aagaaaaaccc tcgtc 535

<210> 9
<211> 434
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 32, 54, 80, 111, 117, 122, 139, 193, 205, 221, 226, 228, 273,
293, 296, 305, 336, 358, 361
<223> unknown base

<400> 9
tgacggaatc ccgggctggg tatcctggtt tngacaagat aaaccccccag 50
caanaaaattt gggagcaggg caaaacagtn acgggcagcc cacatcaaga 100
agttcacctt ngtttgnatg gntctgtcaa ctcacgctnt gtttcgtat 150
gttttggaca cccaaagtgt ttgagaaaat tttgatagac atnatcggag 200
tggantttgc ctttgcagaa ntttgnngntg ttcccttgcg gatttctcc 250
tttttcccaag ttccagtcac agngagggcg catctcaccg ggnggntgat 300

gacantgaag aaaaccttg tccttgc(ccc cagctttg gtgcggatca 350
ttgtcctnat ngccagcctt gtggcctac cctacctggg ggtgcacggt 400
gcgaccctgg gcgtgggttc ctcctggcg ggca 434

<210> 10
<211> 154
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 33, 49, 68, 83, 90, 98, 119
<223> unknown base

<400> 10
tattcccagt tccggtcacg gggagggcgc atntcaccgg gtggctgang 50
acactgaaga aaaccttngt cttgc(cccc agntttgtgn tgccgatnat 100
cgtcctcatc gccagcctng tggcctacc ctacctgggg gtgcacggtg 150
agac 154

<210> 11
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 11
ctgatccggt tcttggtgcc cctg 24

<210> 12
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 12
gctctgtcac tcacgctc 18

<210> 13
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 13
tcatctttc cctctccc 18

<210> 14
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 14
ccttccgcca cggagttc 18

<210> 15
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 15
gccaaagtcc actccgatga tgtc 24

<210> 16
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 16
gcctgctgtg gtcacaggc tccg 24

<210> 17
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 17
tcggggagca ggccttgaac cggggcatcg ctgctgtcaa ggagg 45

<210> 18
<211> 1901
<212> DNA
<213> Homo sapiens

<400> 18
cccccgcgcc cggcgccggg cgcccgaagc cgggagccac cgccatgggg 50

gcctgcctgg gagcctgctc cctgctcagc tgcgcgtcct gcctctgcgg 100

ctctgcccccc tgcatcctgt gcagctgctg ccccgccagc cgcaactcca 150

ccgtgagccg cctcatcttc acgttcttcc tcttcctggg ggtgctggtg 200
tccatcatta tgctgagccc gggcggtggag agtcagctct acaagctgcc 250
ctgggtgtgt gaggaggggg ccgggatccc caccgtcctg cagggccaca 300
tcgactgtgg ctccctgctt ggctaccgcg ctgtctaccg catgtgcttc 350
gccacggcgg ccttcttctt cttcttttc accctgctca tgctctgcgt 400
gagcagcagc cgggaccccc gggctgccat ccagaatggg ttttggttct 450
ttaagttcct gatcctggtg ggcctcaccg tgggtgcctt ctacatccct 500
gacggctcct tcaccaacat ctggttctac ttcggcgtcg tgggctcctt 550
cctcttcatac ctcatccagc tggtgctgt catcgacttt gcgcactcct 600
ggaaccagcg gtggctggc aaggccgagg agtgcgattc ccgtgcctgg 650
tacgcaggcc tcttcttctt cactctccctc ttctacttgc tgtcgatcgc 700
ggccgtggcg ctgatgttca tgtactacac tgagcccagc ggctgccacg 750
agggcaaggt cttcatcagc ctcaacctca cttctgtgt ctgcgtgtcc 800
atcgctgctg tcctgccc aa ggtccaggac gcccagccca actcgggtct 850
gctgcaggcc tcggcatca ccctctacac catgtttgtc acctggtcag 900
ccctatccag tatccctgaa cagaaatgca acccccattt gccaacccag 950
ctgggcaacg agacagttgt ggcaggcccc gagggctatg agacccagtg 1000
gtgggatgcc ccgagcattg tgggcctcat catttcctc ctgtgcaccc 1050
tcttcatcag tctgcgtcc tcagaccacc ggcaggtgaa cagcctgatg 1100
cagaccgagg agtgcccacc tatgcttagac gccacacagc agcagcagca 1150
gcaggtggca gcctgtgagg gcccggcctt tgacaacgag caggacggcg 1200
tcacctacag ctactccttc ttccacttct gcctggtgct ggcctcaactg 1250
cacgtcatga tgacgctcac caactggtac aagcccggtg agacccggaa 1300
gatgatcagc acgtggaccg ccgtgtgggt gaagatctgt gccagctggg 1350
cagggctgct cctctacctg tggaccctgg tagccccact cttcctgcgc 1400
aacccgcact tcagctgagg cagcctcaca gcctgccatc tggtgccctcc 1450
tgccacctgg tgcctctcg ctcggtgaca gccaacctgc cccctccccca 1500
caccaatcag ccaggctgag ccccccaccc tgccccagct ccaggacctg 1550
ccctgagcc gggccttcta gtcgtagtgc ctccagggtc cgaggagcat 1600

caggctcctg cagagccccca tccccccgcc acacccacac ggtggagctg 1650
cctcttcctt cccctcctcc ctgttgccca tactcagcat ctcggatgaa 1700
agggctccct tgtcctcagg ctccacggga gcggggctgc tggagagagc 1750
gggaaactcc caccacagtg gggcatccgg cactgaagcc ctggtgttcc 1800
tggtcacgta ccccagggga ccctgcccccc ttccctggact tcgtgcctta 1850
ctgagtctct aagactttt ctaataaaca agccagtgcg tgtaaaaaaaaa 1900

a 1901

<210> 19
<211> 457
<212> PRT
<213> Homo sapiens

<400> 19

Met	Gly	Ala	Cys	Leu	Gly	Ala	Cys	Ser	Leu	Leu	Ser	Cys	Ala	Ser
1				5					10					15
Cys	Leu	Cys	Gly	Ser	Ala	Pro	Cys	Ile	Leu	Cys	Ser	Cys	Cys	Pro
				20				25						30
Ala	Ser	Arg	Asn	Ser	Thr	Val	Ser	Arg	Leu	Ile	Phe	Thr	Phe	Phe
				35				40						45
Leu	Phe	Leu	Gly	Val	Leu	Val	Ser	Ile	Ile	Met	Leu	Ser	Pro	Gly
				50				55						60
Val	Glu	Ser	Gln	Leu	Tyr	Lys	Leu	Pro	Trp	Val	Cys	Glu	Glu	Gly
				65				70						75
Ala	Gly	Ile	Pro	Thr	Val	Leu	Gln	Gly	His	Ile	Asp	Cys	Gly	Ser
				80				85						90
Leu	Leu	Gly	Tyr	Arg	Ala	Val	Tyr	Arg	Met	Cys	Phe	Ala	Thr	Ala
				95				100						105
Ala	Phe	Phe	Phe	Phe	Phe	Thr	Leu	Leu	Met	Leu	Cys	Val	Ser	
							110		115					120
Ser	Ser	Arg	Asp	Pro	Arg	Ala	Ala	Ile	Gln	Asn	Gly	Phe	Trp	Phe
				125				130						135
Phe	Lys	Phe	Leu	Ile	Leu	Val	Gly	Leu	Thr	Val	Gly	Ala	Phe	Tyr
				140				145						150
Ile	Pro	Asp	Gly	Ser	Phe	Thr	Asn	Ile	Trp	Phe	Tyr	Phe	Gly	Val
				155				160						165
Val	Gly	Ser	Phe	Leu	Phe	Ile	Leu	Ile	Gln	Leu	Val	Leu	Leu	Ile
				170				175						180

Asp Phe Ala His Ser Trp Asn Gln Arg Trp Leu Gly Lys Ala Glu
185 190 195

Glu Cys Asp Ser Arg Ala Trp Tyr Ala Gly Leu Phe Phe Phe Thr
200 205 210

Leu Leu Phe Tyr Leu Leu Ser Ile Ala Ala Val Ala Leu Met Phe
215 220 225

Met Tyr Tyr Thr Glu Pro Ser Gly Cys His Glu Gly Lys Val Phe
230 235 240

Ile Ser Leu Asn Leu Thr Phe Cys Val Cys Val Ser Ile Ala Ala
245 250 255

Val Leu Pro Lys Val Gln Asp Ala Gln Pro Asn Ser Gly Leu Leu
260 265 270

Gln Ala Ser Val Ile Thr Leu Tyr Thr Met Phe Val Thr Trp Ser
275 280 285

Ala Leu Ser Ser Ile Pro Glu Gln Lys Cys Asn Pro His Leu Pro
290 295 300

Thr Gln Leu Gly Asn Glu Thr Val Val Ala Gly Pro Glu Gly Tyr
305 310 315

Glu Thr Gln Trp Trp Asp Ala Pro Ser Ile Val Gly Leu Ile Ile
320 325 330

Phe Leu Leu Cys Thr Leu Phe Ile Ser Leu Arg Ser Ser Asp His
335 340 345

Arg Gln Val Asn Ser Leu Met Gln Thr Glu Glu Cys Pro Pro Met
350 355 360

Leu Asp Ala Thr Gln Gln Gln Gln Gln Val Ala Ala Cys Glu
365 370 375

Gly Arg Ala Phe Asp Asn Glu Gln Asp Gly Val Thr Tyr Ser Tyr
380 385 390

Ser Phe Phe His Phe Cys Leu Val Leu Ala Ser Leu His Val Met
395 400 405

Met Thr Leu Thr Asn Trp Tyr Lys Pro Gly Glu Thr Arg Lys Met
410 415 420

Ile Ser Thr Trp Thr Ala Val Trp Val Lys Ile Cys Ala Ser Trp
425 430 435

Ala Gly Leu Leu Leu Tyr Leu Trp Thr Leu Val Ala Pro Leu Leu
440 445 450

Leu Arg Asn Arg Asp Phe Ser
455

<210> 20
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 20
ggcgccat cttcacgttc ttcc 24

<210> 21
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 21
tcatccagct ggtgctgctc 20

<210> 22
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 22
cttcttccac ttctgcctgg 20

<210> 23
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 23
cctggcaaaa aatgcaac 18

<210> 24
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 24
caggaatgta gaaggcaccc acgg 24

<210> 25
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 25
tggcacagat cttcacccac acgg 24

<210> 26
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 26
tgtccatcat tatgctgagc ccgggcgtgg agagtcagct ctacaagctg 50

<210> 27
<211> 1351
<212> DNA
<213> Homo sapiens

<400> 27
gagcgaggcc ggggactgaa ggtgtgggtg tcgagccctc tggcagaggg 50
ttaacctggg tcaaattgcac ggattctcac ctcgtacagt tacgctctcc 100
cgccggcacgt ccgcgaggac ttgaagtccct gagcgctcaa gtttgcgtt 150
aggtcgagag aaggccatgg aggtgccgcc accggcaccg cggagcttc 200
tctgttagagc attgtgccta tttccccgag tctttgctgc cgaagctgtg 250
actgccgatt cggaagtccct tgaggagcgt cagaagcggc ttccctacgt 300
cccagagccc tattaccgg aatctggatg ggaccgcctc cgggagctgt 350
ttggcaaaga tgaacacgag agaatttcaa aggaccttgta taatatctgt 400
aagacggcag ctacagcagg catcattggc tgggtgtatg gggaaatacc 450
agcttttatt catgctaaac aacaatacat tgagcagagc caggcagaaa 500
tttatcataa ccggtttcatgat gctgtcaat ctgcacatcg tgctgccaca 550
cgaggcttca ttcgttatgg ctggcgctgg gttggagaa ctgcagtgtt 600
tgtgactata ttcaacacag tgaacactag tctgaatgtta taccgaaata 650
aagatgcctt aagccatttt gtaattgcag gagctgtcac gggaaagtctt 700
tttaggataa acgttaggcct gcgtggcctg gtggctggtg gcataattgg 750
agccttgcgtg ggcactcctg taggaggcct gctgatggca tttcagaagt 800

acgctggta gactgttcag gaaagaaaac agaaggatcg aaaggcactc 850
catgagctaa aactggaaga gtggaaaggc agactacaag ttactgagca 900
cctccctgag aaaattgaaa gtagttacg ggaagatgaa cctgagaatg 950
atgctaagaa aattgaagca ctgctaaacc ttcctagaaa cccttcagta 1000
atagataaac aagacaagga ctgaaagtgc tctgaacttg aaactcactg 1050
gagagctgaa gggagctgcc atgtccgatg aatgccaaca gacaggccac 1100
tctttggta gcctgctgac aaatttaagt gctggtacct gtggtggcag 1150
tggcttgctc ttgtctttt ctttcttt taactaagaa tggggctgtt 1200
gtactctcac tttacttac cttaaattta aatacatact tatgtttgta 1250
ttaatctatc aatatatgca tacatggata tatccaccca cctagattt 1300
aagcagtaaa taaaacattt cgcaaaagat taaagttgaa ttttacagtt 1350

t 1351

<210> 28
<211> 285
<212> PRT
<213> Homo sapiens

<400> 28
Met Glu Val Pro Pro Pro Ala Pro Arg Ser Phe Leu Cys Arg Ala
1 5 10 15

Leu Cys Leu Phe Pro Arg Val Phe Ala Ala Glu Ala Val Thr Ala
20 25 30

Asp Ser Glu Val Leu Glu Glu Arg Gln Lys Arg Leu Pro Tyr Val
35 40 45

Pro Glu Pro Tyr Tyr Pro Glu Ser Gly Trp Asp Arg Leu Arg Glu
50 55 60

Leu Phe Gly Lys Asp Glu Gln Gln Arg Ile Ser Lys Asp Leu Ala
65 70 75

Asn Ile Cys Lys Thr Ala Ala Thr Ala Gly Ile Ile Gly Trp Val
80 85 90

Tyr Gly Gly Ile Pro Ala Phe Ile His Ala Lys Gln Gln Tyr Ile
95 100 105

Glu Gln Ser Gln Ala Glu Ile Tyr His Asn Arg Phe Asp Ala Val
110 115 120

Gln Ser Ala His Arg Ala Ala Thr Arg Gly Phe Ile Arg Tyr Gly
125 130 135

Trp Arg Trp Gly Trp Arg Thr Ala Val Phe Val Thr Ile Phe Asn
140 145 150

Thr Val Asn Thr Ser Leu Asn Val Tyr Arg Asn Lys Asp Ala Leu
155 160 165

Ser His Phe Val Ile Ala Gly Ala Val Thr Gly Ser Leu Phe Arg
170 175 180

Ile Asn Val Gly Leu Arg Gly Leu Val Ala Gly Gly Ile Ile Gly
185 190 195

Ala Leu Leu Gly Thr Pro Val Gly Gly Leu Leu Met Ala Phe Gln
200 205 210

Lys Tyr Ala Gly Glu Thr Val Gln Glu Arg Lys Gln Lys Asp Arg
215 220 225

Lys Ala Leu His Glu Leu Lys Leu Glu Glu Trp Lys Gly Arg Leu
230 235 240

Gln Val Thr Glu His Leu Pro Glu Lys Ile Glu Ser Ser Leu Arg
245 250 255

Glu Asp Glu Pro Glu Asn Asp Ala Lys Lys Ile Glu Ala Leu Leu
260 265 270

Asn Leu Pro Arg Asn Pro Ser Val Ile Asp Lys Gln Asp Lys Asp
275 280 285

<210> 29

<211> 324

<212> DNA

<213> Homo sapiens

<400> 29

cggaagtccc ttgaggagcg tcagaagcgg cttccctacg tcccagagcc 50

ctattacccg gaatctggat gggaccgc tcggagctgt ttggcaaaga 100

tgaacagcag agaatttcaa aggaccttgc taatatctgt aagacggcag 150

ctacagcagg catcattggc tgggtgtatg gggaaatacc agcttttatt 200

catgctaaac aacaatacat tgagcagagc caggcagaaa tttatcataa 250

ccggtttcatg gctgtgcaat ctgcacatcg tgctgccaca cgaggcttca 300

ttcgttcatg gctggcgccg aacc 324

<210> 30

<211> 377

<212> DNA

<213> Homo sapiens

<220>

<221> unsure
<222> 262, 330, 371
<223> unknown base

<400> 30
tcaagttgt ccgttaggtcg agagaaggcc atggaggtgc cgccaccggc 50
accgcggagc tttttctgt agagcattgt gcctattcc ccgagtttt 100
gctgccgaag ctgtgactgc cgattcgaa gtccttgagg agcgtcagaa 150
gcggcttccc tacgtcccaag agccctatata cccggaattt ggatgggacc 200
gcctccggga gctgttggc aaagatgaac agcagagaat ttcaaaggac 250
cttgctgata tntgtaagac ggcagctaca gcaggcatca ttggctgggt 300
gtatggggga ataccagctt ttattcatgn taaacaacaa tacattgagc 350
agagccaggc agaaatttat nataacc 377

<210> 31
<211> 20
<212> DNA .
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 31
tcgtacagtt acgctctccc 20

<210> 32
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 32
cttgaggagc gtcagaagcg 20

<210> 33
<211> 20 ..
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 33
ataaacgaatg aagcctcggt 20

<210> 34
<211> 40
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 34

gctaataatct gtaagacggc agctacagca ggcatttcattt 40

<210> 35

<211> 1819

<212> DNA

<213> Homo sapiens

<400> 35

gagccgcgc cgcgcgcgc cgcgcactg cagccccagg ccccgcccc 50

ccacccacgt ctgcgttgct gccccgcctg ggccaggccc caaaggcaag 100

gacaaaggcag ctgtcaggga acctccgccc gagtcgaatt tacgtgcagc 150

tgccggcaac cacaggttcc aagatggtt gcgggggctt cgcgtgttcc 200

aagaactgcc tgtgcgcctt caacctgctt tacaccttgg ttagtctgtt 250

gctaatttggaa attgctgcgt ggggcattgg cttcgggctg atttccagtc 300

tccgagtggt cggcgtggc attgcagtgg gcatcttctt gttcctgatt 350

gcttttagtgg gtctgattgg agctgtaaaa catcatcagg tggcttattt 400

tttttatatg attattctgt tacttgtatt tattgtttag ttttctgtat 450

cttgcgcctt tttagccctg aaccaggagc aacagggtca gcttctggag 500

gttgggttggaa acaatacggc aagtgcgtca aatgacatcc agagaaatct 550

aaactgctgt gggttccgaa gtgttaaccc aaatgacacc tgcgtggcta 600

gctgtgttaa aagtgaccac tcgtgcgtcg catgtgcgtcc aatcatagga 650

aatatgctg gagagggttt gagattgtt ggtggcattt gcctgttctt 700

cagttttaca gagatcctgg gtgttggct gacctacaga tacaggaacc 750

agaaagaccc ccgcgcgaat cctagtgcatt tcctttgtat agaaaacaag 800

gaagatttcc ttgcgttata tgatctgtt cactttctgt aatttctgt 850

taagctccat ttgccagttt aaggaaggaa acactatctg gaaaagtacc 900

ttattgatag tggaaattata tattttact ctatgtttctt ctacatgtt 950

ttttcttcc gttgcgtaaa aatatttggaa acttgcgttc tctgaagctc 1000

ggggcacct ggaatttact gtattcattt tcgggcactg tccactgtgg 1050

ccttcttag cattttacc tgcagaaaaa ctttgtatgg taccactgtg 1100

ttggttatat ggtgaatctg aacgtacatc tcactggtat aattatatgt 1150
agcactgtgc tgttagata gttcctactg gaaaaagagt gcaaattat 1200
taaaatcaga aagtatgaga tcctgttatg ttaaggaaa tccaaattcc 1250
caattttttt tggctttttt aggaaagatt gttgtggtaa aaagtgttag 1300
tataaaaatg ataatttact tgtgtcttt tatgattaca ccaatgtatt 1350
ctagaaatag ttatgtctta ggaaatttg gtttaatttt tgactttac 1400
aggttaagtgc aaaggagaag tggttcatg aatgttcta atgtataata 1450
acatttacct tcagcctcca tcagaatgga acgagtttg agtaatcagg 1500
aagtatatct atatgatctt gatattgtt tataataatt tgaagtctaa 1550
aagactgcat ttttaaacaa gttagtatta atgcgttggc ccacgttagca 1600
aaaagatatt tgattatctt aaaaattgtt aaataccgtt ttcattgaaat 1650
ttctcagtt tgtaacagca acttgtcaaa cctaagcata tttgaatatg 1700
atctcccata atttgaattt gaaatcgat tttgtggctc ttatattct 1750
gttaaaaaat taaaggacag aaacctttct ttgtgtatgc atgttgaat 1800
taaaagaaag taatggaag 1819

<210> 36

<211> 204

<212> PRT

<213> Homo sapiens

<400> 36

Met	Val	Cys	Gly	Gly	Phe	Ala	Cys	Ser	Lys	Asn	Cys	Leu	Cys	Ala
1														15

Leu	Asn	Leu	Leu	Tyr	Thr	Leu	Val	Ser	Leu	Leu	Leu	Ile	Gly	Ile
														30
20								25						

Ala	Ala	Trp	Gly	Ile	Gly	Phe	Gly	Leu	Ile	Ser	Ser	Leu	Arg	Val
														45
35								40						

Val	Gly	Val	Val	Ile	Ala	Val	Gly	Ile	Phe	Leu	Phe	Leu	Ile	Ala
														60
50								55						

Leu	Val	Gly	Leu	Ile	Gly	Ala	Val	Lys	His	His	Gln	Val	Leu	Leu
														75
65								70						

Phe	Phe	Tyr	Met	Ile	Ile	Leu	Leu	Val	Phe	Ile	Val	Gln	Phe	
														90
80								85						

Ser	Val	Ser	Cys	Ala	Cys	Leu	Ala	Leu	Asn	Gln	Gl	Gln	Gly	
														105
95								100						

Gln Leu Leu Glu Val Gly Trp Asn Asn Thr Ala Ser Ala Arg Asn
110 115 120

Asp Ile Gln Arg Asn Leu Asn Cys Cys Gly Phe Arg Ser Val Asn
125 130 135

Pro Asn Asp Thr Cys Leu Ala Ser Cys Val Lys Ser Asp His Ser
140 145 150

Cys Ser Pro Cys Ala Pro Ile Ile Gly Glu Tyr Ala Gly Glu Val
155 160 165

Leu Arg Phe Val Gly Gly Ile Gly Leu Phe Phe Ser Phe Thr Glu
170 175 180

Ile Leu Gly Val Trp Leu Thr Tyr Arg Tyr Arg Asn Gln Lys Asp
185 190 195

Pro Arg Ala Asn Pro Ser Ala Phe Leu
200

<210> 37

<211> 390

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 20, 35, 61, 83, 106, 130, 133, 187, 232, 260, 336

<223> unknown base

<400> 37

tgattggagc tgtaaaaaan tcttcaggtg ttgttatttt tttatatgtat 50

tattctgtaa nttgtattta ttgttcagtt ttntgtatct tgcgcttgg 100

tagccntgaa ccaggagcaa cagggtcagn ttntggaggt tggttggAAC 150

aatacggcaa gtgctcgaaa tgacatccag agaaatntaa actgctgtgg 200

gttccgaagt gttaacccaa atgacacactg tntggcttagc tgtgttaaaa 250

gtgaccactn gtgctcgcca tgtgctccaa tcataggaga atatgctgga 300

gaggttttga gatttgttgg tggcattggc ctgttnttca gttttacaga 350

gatcctgggt gtttggctga cctacagata caggaaccag 390

<210> 38

<211> 566

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 27

<223> unknown base

<400> 38

aatcccaaatttcccccaattttgggncttttagggaaa gatgtgtgt 50
ggtaaaaaagt gttagttataaaatgataat ttacttgtag tcttttatga 100
ttacaccaat gtattctaga atagttatgt cttaggaaat tgtggttaa 150
ttttgactt ttacaggtaa gtgcaaaggaa gaagtgggtt catgaaatgt 200
tctaattgtat aataacattt accttcagcc tcccatcaga atgaaacgag 250
ttttgagtaa tccaggaagt atatctatat gatcttgata ttgtttata 300
taatttgaag tctaaaagac tgcattttta aacaagtttag tattaatgcg 350
ttggcccacg tagcaaaaag atatttgatt atcttaaaaa ttgttaata 400
ccgaaaaatcat gaaagttctc agtattgtaa cagcaacttg tcaaaccctaa 450
gcataatttga atatgatctc ccataatttggaaat cgtattgtgt 500
ggagggaaatg gcaatcttgcgtgtgctgaa ggacacagta agagcaccaa 550
gttgcgtcccc acttgc 566

<210> 39

<211> 264

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 84-85, 206

<223> unknown base

<400> 39

atgattatttc tgttacttgtt atttattgtt cagttttatgtt gatcttgcg 50
cttggtagc ccctgaaacc aggagcaaca gggncagct tcctggaggt 100
tggttggcaa caatcacggc caagtgactc cgcaaatgac atcccagaga 150
aatcctaaac tgctgtgggt tccgaagtgtt taacccaaat gacacctgtc 200
tggctngctg tgtaaaaagt gaccactcgt gctgccatg tgctccaatc 250
ataggagaat atgc 264

<210> 40

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 40
acccacgtct gcgttgctgc c 21

<210> 41
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 41
gagaatatgc tggagagg 18

<210> 42
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 42
aggaatgcac taggattcgc gcgg 24

<210> 43
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 43
ggccccaaag gcaaggacaa agcagctgac agggAACCTC cgccg 45

<210> 44
<211> 2061
<212> DNA
<213> Homo sapiens

<400> 44
cagtcaccat ga~~a~~gctgggc tgtgtcctca tggcctggc cctctacctt 50
tcccttggtg tgctctgggt ggcccagatg ctactggctg ccagtttga 100
gacgctgcag tgtgaggac ctgtctgcac tgaggagac agctgccaca 150
cgaggatga cttgactgat gcaaggaaag ctggcttcca ggtcaaggcc 200
tacactttca gtgaaccctt ccacctgatt gtgtcctatg actggctgat 250
cctccaaggt ccagccaagc cagttttga aggggacctg ctggttctgc 300
gctgccaggc ctggcaagac tggccactga ctcaggtgac cttctaccga 350

gatggctcag ctctgggtcc ccccgggcct aacaggaaat tctccatcac 400
cgtggtacaa aaggcagaca gcgggcacta ccactgcagt ggcatcttcc 450
agagccctgg tcctggatc ccagaaacag catctgttgt ggctatcaca 500
gtccaagaac tgtttccagc gccaattctc agagctgtac cctcagctga 550
accccaagca ggaagcccc tgaccctgag ttgtcagaca aagttgcccc 600
tgtagaggc agctgcccgc ctccctttct ccttctacaa ggtatggaaagg 650
atagtgc当地 gcagggggct ctcctcagaa ttccagatcc ccacagcttc 700
agaagatcac tccgggtcat actggtgtga ggcagccact gaggacaacc 750
aagtttggaa acagagcccc cagctagaga tcagagtgc gggtgcttcc 800
agctctgctg caccccccac attgaatcca gtcctcaga aatcagctgc 850
tccaggaact gtcctgagg aggccccctgg gcctctgcct ccggcccaa 900
ccccatcttc tgaggatcca ggctttctt ctccctctgg gatgccagat 950
cctcatctgt atcaccagat gggccttctt ctcaaacaca tgcaggatgt 1000
gagagtcctc ctcggtcacc tgctcatgga gttgaggaa ttatctggcc 1050
accagaagcc tgggaccaca aaggctactg ctgaatagaa gttaaacagtt 1100
catccatgtat ctcacttaac caccccaata aatctgattc tttatcttct 1150
cttcctgtcc tgcacatatg cataagtact tttacaagtt gtcccagtgt 1200
tttggtagaa taatgttagtt aggtgagtgt aaataaattt atataaagtg 1250
agaatttagag tttagctata attgtgtatt ctctcttaac acaacagaat 1300
tctgctgtct agatcaggaa tttctatctg ttatatcgac cagaatgttg 1350
tgatttaaag agaactaatg gaagtggatt gaatacagca gtctcaactg 1400
ggggcaattt tgccccccag aggacattgg gcaatgtttg gagacatttt 1450
ggtcattata cttgggggggt tggggatgg tggatgtgt gtctactggc 1500
atccagtaaa tagaagccag gggtgccgct aaacatccta taatgcacag 1550
ggcagtaccc cacaacgaaa aataatctgg cccaaaatgt cagttgtact 1600
gagtttgaga aaccccagcc taatgaaacc ctaggtgttgg ggcctctggaa 1650
tgggactttg tcccttctaa ttattatctc tttccagcct cattcagcta 1700
ttcttactga cataccagtc tttagctggt gctatggtct gttcttagt 1750
tctagttgt atccctcaa aagccattat gttgaaatcc taatccccaa 1800

ggtgatggca ttaagaagtg ggccttggg aagtgattag atcaggagtg 1850
cagagccctc atgattagga ttagtgcct tatttaaaaa ggccccagag 1900
agctaactca cccttccacc atatgaggac gtggcaagaa gatgacatgt 1950
atgagaacca aaaaacagct gtcgccaaac accgactctg tcgttgcctt 2000
gatcttgaac ttccagcctc cagaactatg agaaataaaa ttctggttgt 2050
ttgttagccta a 2061

<210> 45

<211> 359

<212> PRT

<213> Homo sapiens

<400> 45

Met Lys Leu Gly Cys Val Leu Met Ala Trp Ala Leu Tyr Leu Ser
1 5 10 15

Leu Gly Val Leu Trp Val Ala Gln Met Leu Leu Ala Ala Ser Phe
20 25 30

Glu Thr Leu Gln Cys Glu Gly Pro Val Cys Thr Glu Glu Ser Ser
35 40 45

Cys His Thr Glu Asp Asp Leu Thr Asp Ala Arg Glu Ala Gly Phe
50 55 60

Gln Val Lys Ala Tyr Thr Phe Ser Glu Pro Phe His Leu Ile Val
65 70 75

Ser Tyr Asp Trp Leu Ile Leu Gln Gly Pro Ala Lys Pro Val Phe
80 85 90

Glu Gly Asp Leu Leu Val Leu Arg Cys Gln Ala Trp Gln Asp Trp
95 100 105

Pro Leu Thr Gln Val Thr Phe Tyr Arg Asp Gly Ser Ala Leu Gly
110 115 120

Pro Pro Gly Pro Asn Arg Glu Phe Ser Ile Thr Val Val Gln Lys
125 130 135

Ala Asp Ser Gly His Tyr His Cys Ser Gly Ile Phe Gln Ser Pro
140 145 150

Gly Pro Gly Ile Pro Glu Thr Ala Ser Val Val Ala Ile Thr Val
155 160 165

Gln Glu Leu Phe Pro Ala Pro Ile Leu Arg Ala Val Pro Ser Ala
170 175 180

Glu Pro Gln Ala Gly Ser Pro Met Thr Leu Ser Cys Gln Thr Lys
185 190 195

Leu Pro Leu Gln Arg Ser Ala Ala Arg Leu Leu Phe Ser Phe Tyr
200 205 210

Lys Asp Gly Arg Ile Val Gln Ser Arg Gly Leu Ser Ser Glu Phe
215 220 225

Gln Ile Pro Thr Ala Ser Glu Asp His Ser Gly Ser Tyr Trp Cys
230 235 240

Glu Ala Ala Thr Glu Asp Asn Gln Val Trp Lys Gln Ser Pro Gln
245 250 255

Leu Glu Ile Arg Val Gln Gly Ala Ser Ser Ser Ala Ala Pro Pro
260 265 270

Thr Leu Asn Pro Ala Pro Gln Lys Ser Ala Ala Pro Gly Thr Ala
275 280 285

Pro Glu Glu Ala Pro Gly Pro Leu Pro Pro Pro Pro Thr Pro Ser
290 295 300

Ser Glu Asp Pro Gly Phe Ser Ser Pro Leu Gly Met Pro Asp Pro
305 310 315

His Leu Tyr His Gln Met Gly Leu Leu Leu Lys His Met Gln Asp
320 325 330

Val Arg Val Leu Leu Gly His Leu Leu Met Glu Leu Arg Glu Leu
335 340 345

Ser Gly His Gln Lys Pro Gly Thr Thr Lys Ala Thr Ala Glu
350 355

<210> 46

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 46

tgggctgtgt cctcatgg 18

<210> 47

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 47

tttccagcgc caattctc 18

<210> 48

<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 48
agt~~t~~ttgga ctgtatgc cac 23

<210> 49
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 49
aaact~~t~~gggtt gtcctc~~at~~gtg gctg 24

<210> 50
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 50
gtgagg~~gg~~acc tgtctgc~~a~~c~~t~~ gaggag~~ag~~ca gctgccac~~ac~~c ggagg 45

<210> 51
<211> 2181
<212> DNA
<213> Homo sapiens

<400> 51
cccacgc~~gt~~tc cgcc~~cc~~acgc~~g~~ tccgccc~~ac~~g ggtccgccc~~a~~ cgcgtcc~~gg~~g 50
ccaccagaag tttgagc~~ct~~c tttggtag~~c~~a ggaggctg~~g~~a agaaaggaca 100
gaagtagctc tggctgtat gggatctta ctgggc~~ct~~gc tactcct~~gg~~g 150
gcacctaaca gtggacactt atggccgtcc catcct~~gg~~aa gtgccagaga 200
gtgtaacagg accttggaaa gggatgt~~g~~a atcttccctg cacctat~~g~~ac 250
cccctgcaag gctacaccca agtcttgg~~g~~tg aagtggctgg tacaacgtgg 300
ctcagaccc~~t~~ gtcaccat~~ct~~ ttctacgt~~g~~a ctcttct~~g~~ga gaccat~~at~~cc 350
agcaggcaaa gtaccagg~~g~~gc cgc~~ct~~gc~~at~~g tgagccac~~aa~~ ggttcc~~ca~~g~~g~~ga 400
gatgtatccc tccaatt~~g~~ag caccct~~gg~~ag atggat~~g~~acc ggagccacta 450
cacgtgt~~g~~aa gtcac~~c~~ct~~gg~~c agactc~~c~~ct~~g~~a tggcaac~~cc~~aa gtcgtgagag 500

ataagattac tgagctccgt gtccagaaac tctctgtctc caagcccaca 550
gtgacaactg gcagcggtta tggcttcacg gtgccccagg gaatgaggat 600
tagccttcaa tgccaggctc ggggttctcc tcccatcagt tatatttggt 650
ataagcaaca gactaataac caggaaccca tcaaagttagc aaccctaagt 700
accttactct tcaaggcctgc ggtgatagcc gactcaggct cctatttctg 750
cactgccaag ggccagggtt gctctgagca gcacagcgac attgtgaagt 800
ttgtggtcaa agactcctca aagctactca agaccaagac tgaggcacct 850
acaaccatga cataccctt gaaagcaaca tctacagtga agcagtcctg 900
ggactggacc actgacatgg atggctacct tggagagacc agtgctggc 950
cagggaaagag cctgcctgtc tttgccatca tcctcatcat ctccctgtgc 1000
tgtatggtgg ttttaccat ggcctataatc atgctctgtc ggaagacatc 1050
ccaacaagag catgtctacg aagcagccag gtaagaaaatc ctctcctt 1100
ccatffffga ccccgccct gccctcaatt ttgattactg gcaggaaatg 1150
tggaggaagg ggggtgtggc acagacccaa tcctaaggcc ggaggccttc 1200
agggtcagga catagctgcc ttccctctc caggcacctt ctgaggttgt 1250
tttggccctc tgaacacaaa ggataattta gatccatctg ccttctgctt 1300
ccagaatccc tgggtggtag gatcctgata attaattggc aagaatttag 1350
gcagaagggt gggaaaccag gaccacagcc ccaagtcctc tcttatgggt 1400
ggtgggctct tggccatag ggcacatgcc agagaggcca acgactctgg 1450
agaaaccatg agggtggcca tcttcgcaag tggctgctcc agtgtatgagc 1500
caactccca gaatctggc aacaactact ctgatgagcc ctgcataagga 1550
caggagtacc agatcatcgc ccagatcaat ggcaactacg cccgcctgt 1600
ggacacagtt cctctggatt atgagttct ggccactgag ggcaaaatgt 1650
tctgttaaaa atgccccatt aggccaggat ctgctgacat aattgcctag 1700
tcagtccttgc cttctgtcat ggccttcttc cctgctacct ctcttcctgg 1750
atagccaaa gtgtccgcct accaacactg gagccgctgg gagtcactgg 1800
ctttggccctg gaatttgcca gatgcacatc aagtaagcca gctgctggat 1850
ttggctctgg gcccattcttag tatctctgcc gggggcttct ggtactcctc 1900

tctaaatacc agagggaga tgcccatagc actaggactt ggtcatcatg 1950
cctacagaca ctattcaact ttggcatctt gccaccagaa gacccgaggg 2000
aggctcagct ctgccagctc agaggaccag ctatatccag gatcatttct 2050
ctttcttcag ggccagacag ctttaattt aaattgttat ttcacaggcc 2100
agggttcagt tctgctcctc cactataagt ctaatgttct gactctctcc 2150
tggtgctcaa taaatatcta atcataaacag c 2181

<210> 52
<211> 321
<212> PRT
<213> Homo sapiens

<400> 52
Met Gly Ile Leu Leu Gly Leu Leu Leu Leu Gly His Leu Thr Val
1 5 10 15

Asp Thr Tyr Gly Arg Pro Ile Leu Glu Val Pro Glu Ser Val Thr
20 25 30

Gly Pro Trp Lys Gly Asp Val Asn Leu Pro Cys Thr Tyr Asp Pro
35 40 45

Leu Gln Gly Tyr Thr Gln Val Leu Val Lys Trp Leu Val Gln Arg
50 55 60

Gly Ser Asp Pro Val Thr Ile Phe Leu Arg Asp Ser Ser Gly Asp
65 70 75

His Ile Gln Gln Ala Lys Tyr Gln Gly Arg Leu His Val Ser His
80 85 90

Lys Val Pro Gly Asp Val Ser Leu Gln Leu Ser Thr Leu Glu Met
95 100 105

Asp Asp Arg Ser His Tyr Thr Cys Glu Val Thr Trp Gln Thr Pro
110 115 120

Asp Gly Asn Gln Val Val Arg Asp Lys Ile Thr Glu Leu Arg Val
125 130 135

Gln Lys Leu Ser Val Ser Lys Pro Thr Val Thr Thr Gly Ser Gly
140 145 150

Tyr Gly Phe Thr Val Pro Gln Gly Met Arg Ile Ser Leu Gln Cys
155 160 165

Gln Ala Arg Gly Ser Pro Pro Ile Ser Tyr Ile Trp Tyr Lys Gln
170 175 180

Gln Thr Asn Asn Gln Glu Pro Ile Lys Val Ala Thr Leu Ser Thr
185 190 195

Leu Leu Phe Lys Pro Ala Val Ile Ala Asp Ser Gly Ser Tyr Phe
200 205 210

Cys Thr Ala Lys Gly Gln Val Gly Ser Glu Gln His Ser Asp Ile
215 220 225

Val Lys Phe Val Val Lys Asp Ser Ser Lys Leu Leu Lys Thr Lys
230 235 240

Thr Glu Ala Pro Thr Thr Met Thr Tyr Pro Leu Lys Ala Thr Ser
245 250 255

Thr Val Lys Gln Ser Trp Asp Trp Thr Thr Asp Met Asp Gly Tyr
260 265 270

Leu Gly Glu Thr Ser Ala Gly Pro Gly Lys Ser Leu Pro Val Phe
275 280 285

Ala Ile Ile Leu Ile Ile Ser Leu Cys Cys Met Val Val Phe Thr
290 295 300

Met Ala Tyr Ile Met Leu Cys Arg Lys Thr Ser Gln Gln Glu His
305 310 315

Val Tyr Glu Ala Ala Arg
320

<210> 53

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 53

tatccctcca attgagcacc ctgg 24

<210> 54

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 54

gtcggaaagac atcccaacaa g 21

<210> 55

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 55
cttcacaatg tcgctgtgct gctc 24

<210> 56
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 56
agccaaatcc agcagctggc ttac 24

<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 57
tgatgaccg gagccactac acgtgtgaag tcacctggca gactcctgat 50

<210> 58
<211> 2458
<212> DNA
<213> Homo sapiens

<400> 58
gcgcggggag cccatctgcc cccaggggca cggggcgccgg ggccggctcc 50
cgcccgac atggctgcag ccacctcgcg cgacccccga ggcgccgcgc 100
ccagctcgcc cgaggctccgt cggaggcgcc cggccgcccc ggagccaagc 150
agcaactgag cgggaaagcg cccgcgtccg gggatcggga tgtccctcct 200
ccttctcctc ttgctagttt cctactatgt tggAACCTTg gggactcaca 250
ctgagatcaa gagagtggca gagaaaaagg tcactttgcc ctgccaccat 300
caactggggc ttccagaaaa agacactctg gatattgaat ggctgctcac 350
cgataatgaa gggAACCAAA aagtgggtat cacttactcc agtcgtcatg 400
tctacaataa cttgactgag gaacagaagg gccgagtgcc ctggcttcc 450
aatttcctgg caggagatgc ctccttgca gttAACCTC tgaAGCCAG 500
tgatgagggc cggtaacacct gtaaggtaa gaattcaggc cgctacgtgt 550
ggagccatgt catctaaaa gtcttagtga gaccatccaa gcccAGTGT 600
gagttggaaag gagagctgac agaaggaagt gacctgactt tgcagtgtga 650

gtcatcctct ggcacagagc ccattgtgta ttactggcag cgaatccgag 700
agaaaagaggg agaggatgaa cgtctgcctc ccaaatactg gattgactac 750
aaccaccctg gacgagttct gctgcagaat cttaccatgt cctactctgg 800
actgtaccag tgcacagcag gcaacgaagc tggaaaggaa agctgtgtgg 850
tgcgagtaac tgtacagtat gtacaaagca tcggcatggt tgcaaggagca 900
gtgacaggca tagtggctgg agccctgctg atttcctct tggtgtggct 950
gctaataccgaa aggaaagaca aagaaagata tgaggaagaa gagagaccta 1000
atgaaattcg agaagatgct gaagctccaa aagcccgtct tgtgaaaccc 1050
agctcctctt cctcaggctc tcggagctca cgctctgggtt ctccctccad 1100
tcgctccaca gcaaatactg cctcacgcag ccagcggaca ctgtcaactg 1150
acgcagcacc ccagccaggg ctggccaccc aggcatcag cctagtgggg 1200
ccagaggtga gaggttctga accaaagaaa gtccaccatg ctaatctgac 1250
caaaggcagaa accacaccca gcatgatccc cagccagagc agagccttcc 1300
aaacggtctg aattacaatg gacttgactc ccacgcttcc ctaggagtca 1350
gggtctttgg actcttctcg tcattggagc tcaagtcacc agccacacaa 1400
ccagatgaga ggtcatctaa gtagcagtga gcattgcacg gaacagattc 1450
agatgagcat ttcccttata caataccaaa caagcaaaag gatgtaagct 1500
gattcatctg taaaaaggca tcttattgtg ccttagacc agagtaaggg 1550
aaagcaggag tccaaatcta tttgttgacc aggacctgtg gtgagaaggt 1600
tggggaaagg tgaggtgaat atacctaaaa ctttaatgt gggatattt 1650
gtatcagtgc tttgattcac aattttcaag aggaaatggg atgctgttg 1700
taaattttct atgcatttct gcaaacttat tggattatta gttattcaga 1750
cagtcaagca gaaccacacag ccttattaca cctgtctaca ccatgtactg 1800
agctaaccac ttctaagaaa ctccaaaaaaaa ggaaacatgt gtcttctatt 1850
ctgacttaac ttcatgtc ataaggttt gatattaatt tcaaggggag 1900
ttgaaaatagt gggagatgga gaagagtgaa tgagttctc ccactctata 1950
ctaatactcac tatttgtatt gagccaaaa taactatgaa aggagacaaa 2000
aatttgtgac aaaggattgt gaagagctt ccatcttcat gatgttatga 2050
ggattgttga caaacattag aaatatataa tggagcaatt gtggatttcc 2100

cctcaaatca gatgcctcta aggacttcc tgctagatat ttctggaagg 2150
agaaaataca acatgtcatt tatcaacgtc cttagaaaga attcttctag 2200
agaaaaaggg atcttaggaat gctgaaagat tacccaacat accattata 2250
tctcttcttt ctgagaaaat gtgaaaccag aattgcaaga ctgggtggac 2300
tagaaaggg gattagatca gtttctt aatatgtcaa ggaaggttagc 2350
cgggcatggc gccaggcacc tgttagaaaa tccagcaggt ggaggttgca 2400
gtgagccgag attatgccat tgcactccag cctgggtgac agagcgggac 2450
tccgtctc 2458

<210> 59
<211> 373
<212> PRT
<213> Homo sapiens

<400> 59

Met Ser Leu Leu Leu Leu Leu Leu Val Ser Tyr Tyr Val Gly
1 5 10 15

Thr Leu Gly Thr His Thr Glu Ile Lys Arg Val Ala Glu Glu Lys
20 25 30

Val Thr Leu Pro Cys His His Gln Leu Gly Leu Pro Glu Lys Asp
35 40 45

Thr Leu Asp Ile Glu Trp Leu Leu Thr Asp Asn Glu Gly Asn Gln
50 55 60

Lys Val Val Ile Thr Tyr Ser Ser Arg His Val Tyr Asn Asn Leu
65 70 75

Thr Glu Glu Gln Lys Gly Arg Val Ala Phe Ala Ser Asn Phe Leu
80 85 90

Ala Gly Asp Ala Ser Leu Gln Ile Glu Pro Leu Lys Pro Ser Asp
95 100 105

Glu Gly Arg Tyr Thr Cys Lys Val Lys Asn Ser Gly Arg Tyr Val
110 115 120

Trp Ser His Val Ile Leu Lys Val Leu Val Arg Pro Ser Lys Pro
125 130 135

Lys Cys Glu Leu Glu Gly Glu Leu Thr Glu Gly Ser Asp Leu Thr
140 145 150

Leu Gln Cys Glu Ser Ser Gly Thr Glu Pro Ile Val Tyr Tyr
155 160 165

Trp Gln Arg Ile Arg Glu Lys Glu Gly Glu Asp Glu Arg Leu Pro

170	175	180
Pro Lys Ser Arg Ile Asp Tyr Asn His	Pro Gly Arg Val Leu	Leu
185	190	195
Gln Asn Leu Thr Met Ser Tyr Ser Gly	Leu Tyr Gln Cys Thr Ala	
200	205	210
Gly Asn Glu Ala Gly Lys Glu Ser Cys	Val Val Arg Val Thr Val	
215	220	225
Gln Tyr Val Gln Ser Ile Gly Met Val	Ala Gly Ala Val Thr Gly	
230	235	240
Ile Val Ala Gly Ala Leu Leu Ile Phe	Leu Leu Val Trp Leu Leu	
245	250	255
Ile Arg Arg Lys Asp Lys Glu Arg Tyr	Glu Glu Glu Arg Pro	
260	265	270
Asn Glu Ile Arg Glu Asp Ala Glu Ala	Pro Lys Ala Arg Leu Val	
275	280	285
Lys Pro Ser Ser Ser Ser Gly Ser Arg Ser Ser Arg Ser Gly		
290	295	300
Ser Ser Ser Thr Arg Ser Thr Ala Asn	Ser Ala Ser Arg Ser Gln	
305	310	315
Arg Thr Leu Ser Thr Asp Ala Ala Pro	Gln Pro Gly Leu Ala Thr	
320	325	330
Gln Ala Tyr Ser Leu Val Gly Pro Glu Val Arg Gly Ser Glu Pro		
335	340	345
Lys Lys Val His His Ala Asn Leu Thr	Lys Ala Glu Thr Thr Pro	
350	355	360
Ser Met Ile Pro Ser Gln Ser Arg Ala	Phe Gln Thr Val	
365	370	

<210> 60
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 60
ccagtgcaca gcaggcaacg aagc 24

<210> 61
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 61
actaggctgt atgcctgggt gggc 24

<210> 62
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 62
gtatgtacaa agcatcgca tggttgcagg agcagtgaca ggc 43

<210> 63
<211> 3534
<212> DNA
<213> Homo sapiens

<400> 63
gtcgttcctt tgctctctcg cgcccgatcc tcctccctgg ttctcctcag 50
ccgctgtcgg aggagagcac ccggagacgc gggctgcagt cgcggcggct 100
tctccccgcc tgggcggcct cgccgctggg caggtgctga gcgcccctag 150
agcctccctt gccgcctccc tcctctgcgg ggccgcagca gtgcacatgg 200
ggtgttggag gtagatgggc tcccgcccg ggaggcggcg gtggatgcgg 250
cgctggcag aagcagccgc cgattccagc tgcccgccgc gccccggcgc 300
cccctgcag tccccggttc agccatggg acctctccga gcagcagcac 350
cgccctcgcc tcctgcagcc gcatgcggc ccgagccaca gccacgatga 400
tcgcgggctc ctttcctcg cttggattcc ttagcaccac cacagctcag 450
ccagaacaga aggcctcgaa tctcattggc acataccgcc atgttgaccg 500
tgccacccggc caggtgctaa cctgtgacaa gtgtccagca ggaacctatg 550
tctctgagca ttgtaccaac acaaggctgc gcgtctgcag cagttccct 600
gtggggacct ttaccaggca tgagaatggc atagagaaat gccatgactg 650
tagtcagcca tgcccatggc caatgattga gaaattacct tgtgctgcct 700
tgactgaccg agaatgcact tgcccacctg gcatgttcca gtctaacgct 750
acctgtgccc cccatacggt gtgtcctgtg ggttgggtg tgcggaaagaa 800
agggacagag actgaggatg tgcggtgtaa gcagtgtgct cggggtacct 850

tctcagatgt gccttctagt gtgatgaaat gcaaaggata cacagactgt 900
ctgagtcaga acctgggtgatcaagccg gggaccaagg agacagacaa 950
cgctctgtggc acactcccgt ccttctccag ctccacctca ccttccccctg 1000
gcacagccat ctttccacgc cctgagcaca tggaaaccca tgaagtccct 1050
tcctccactt atgttcccaa aggcatgaac tcaacagaat ccaactcttc 1100
tgccctgtt agaccaaagg tactgagtag catccaggaa gggacagtcc 1150
ctgacaacac aagctcagca agggggaaagg aagacgtgaa caagaccctc 1200
ccaaaccttc aggtagtc aa ccaccagcaa ggccccacc acagacacat 1250
cctgaagctg ctgccgtcca tggaggccac tggggcgag aagtccagca 1300
cgccccatcaa gggcccaag aggggacatc ctagacagaa cctacacaag 1350
cattttgaca tcaatgagca ttggccctgg atgattgtgc ttccctgct 1400
gctggtgctt gtgggatttgg tgggtgcag tatccggaaa agctcgagga 1450
ctctgaaaaa gggccccgg caggatccca gtgcattgtt ggaaaaggca 1500
gggctgaaga aatccatgac tccaacccag aaccgggaga aatggatcta 1550
ctactgcaat ggccatggta tcgatatcct gaagcttgcgatgc 1600
tggaaagcca gtggaaagat atctatcgt ttcttgcaa tgccagttag 1650
agggaggtttgcgttctcaatgggtac acagccgacc acgagcgggc 1700
ctacgcagct ctgcagcact ggaccatccg gggccccgag gccagcctcg 1750
cccagctaat tagcgccctg cgccagcacc ggagaaacga tgggtggag 1800
aagattcgttggatggc agacaccacc cagctggaaa ctgacaaact 1850
agctctcccg atgagccca gcccgttag cccgagcccc atccccagcc 1900
ccaaacgcgaa acttgagaat tccgctctcc tgacggtgga gccttcccc 1950
caggacaaga acaagggtt ctgcgtggat gagtcggagc cccttctccg 2000
ctgtgactct acatccagcg gtcctccgc gctgagcagg aacggttcct 2050
ttattaccaa agaaaagaag gacacagtgt tgcggcaggt acgcctggac 2100
ccctgtgact tgcagcctat ctttgcgttgcgatgc atgctccact ttctaaatcc 2150
tgaggagctg cgggtgatttgcgttgcgatgc atgctccact ttctaaatcc 2200
accggctatt cgaaattatt ggagtcaaga gccaggaagc cagccagacc 2250
ctcctggact ctgtttatag ccatcttcctt gacgtgttgcgttgcgatgc 2300

<210> 64
<211> 655
<212> PRT
<213> *Homo sapiens*

<400> 64

Met Gly Thr Ser Pro Ser Ser Ser Thr Ala Leu Ala Ser Cys Ser
1 5 10 15

Arg Ile Ala Arg Arg Ala Thr Ala Thr Met Ile Ala Gly Ser Leu
20 25 30

Leu Leu Leu Gly Phe Leu Ser Thr Thr Ala Gln Pro Glu Gln
35 40 45

Lys Ala Ser Asn Leu Ile Gly Thr Tyr Arg His Val Asp Arg Ala
50 55 60

Thr Gly Gln Val Leu Thr Cys Asp Lys Cys Pro Ala Gly Thr Tyr
65 70 75

Val Ser Glu His Cys Thr Asn Thr Ser Leu Arg Val Cys Ser Ser
80 85 90

Cys Pro Val Gly Thr Phe Thr Arg His Glu Asn Gly Ile Glu Lys
95 100 105

Cys His Asp Cys Ser Gln Pro Cys Pro Trp Pro Met Ile Glu Lys
110 115 120

Leu Pro Cys Ala Ala Leu Thr Asp Arg Glu Cys Thr Cys Pro Pro
125 130 135

Gly Met Phe Gln Ser Asn Ala Thr Cys Ala Pro His Thr Val Cys
140 145 150

Pro Val Gly Trp Gly Val Arg Lys Lys Gly Thr Glu Thr Glu Asp
155 160 165

Val Arg Cys Lys Gln Cys Ala Arg Gly Thr Phe Ser Asp Val Pro
170 175 180

Ser Ser Val Met Lys Cys Lys Ala Tyr Thr Asp Cys Leu Ser Gln
185 190 195

Asn Leu Val Val Ile Lys Pro Gly Thr Lys Glu Thr Asp Asn Val
200 205 210

Cys Gly Thr Leu Pro Ser Phe Ser Ser Ser Thr Ser Pro Ser Pro
215 220 225

Gly Thr Ala Ile Phe Pro Arg Pro Glu His Met Glu Thr His Glu
230 235 240

Val Pro Ser Ser Thr Tyr Val Pro Lys Gly Met Asn Ser Thr Glu
245 250 255

Ser Asn Ser Ser Ala Ser Val Arg Pro Lys Val Leu Ser Ser Ile
260 265 270

Gln Glu Gly Thr Val Pro Asp Asn Thr Ser Ser Ala Arg Gly Lys
275 280 285

Glu Asp Val Asn Lys Thr Leu Pro Asn Leu Gln Val Val Asn His
290 295 300

Gln Gln Gly Pro His His Arg His Ile Leu Lys Leu Leu Pro Ser
305 310 315

Met Glu Ala Thr Gly Gly Glu Lys Ser Ser Thr Pro Ile Lys Gly
320 325 330

Pro Lys Arg Gly His Pro Arg Gln Asn Leu His Lys His Phe Asp
335 340 345

Ile Asn Glu His Leu Pro Trp Met Ile Val Leu Phe Leu Leu Leu
350 355 360

Val Leu Val Val Ile Val Val Cys Ser Ile Arg Lys Ser Ser Arg
365 370 375

Thr Leu Lys Lys Gly Pro Arg Gln Asp Pro Ser Ala Ile Val Glu
380 385 390

Lys Ala Gly Leu Lys Lys Ser Met Thr Pro Thr Gln Asn Arg Glu
395 400 405

Lys Trp Ile Tyr Tyr Cys Asn Gly His Gly Ile Asp Ile Leu Lys
410 415 420

Leu Val Ala Ala Gln Val Gly Ser Gln Trp Lys Asp Ile Tyr Gln
425 430 435

Phe Leu Cys Asn Ala Ser Glu Arg Glu Val Ala Ala Phe Ser Asn
440 445 450

Gly Tyr Thr Ala Asp His Glu Arg Ala Tyr Ala Ala Leu Gln His
455 460 465

Trp Thr Ile Arg Gly Pro Glu Ala Ser Leu Ala Gln Leu Ile Ser
470 475 480

Ala Leu Arg Gln His Arg Arg Asn Asp Val Val Glu Lys Ile Arg
485 490 495

Gly Leu Met Glu Asp Thr Thr Gln Leu Glu Thr Asp Lys Leu Ala
500 505 510

Leu Pro Met Ser Pro Ser Pro Leu Ser Pro Ser Pro Ile Pro Ser
515 520 525

Pro Asn Ala Lys Leu Glu Asn Ser Ala Leu Leu Thr Val Glu Pro
530 535 540

Ser Pro Gln Asp Lys Asn Lys Gly Phe Phe Val Asp Glu Ser Glu
545 550 555

Pro Leu Leu Arg Cys Asp Ser Thr Ser Ser Gly Ser Ser Ala Leu
560 565 570

Ser Arg Asn Gly Ser Phe Ile Thr Lys Glu Lys Lys Asp Thr Val
575 580 585

Leu Arg Gln Val Arg Leu Asp Pro Cys Asp Leu Gln Pro Ile Phe
590 595 600

Asp Asp Met Leu His Phe Leu Asn Pro Glu Glu Leu Arg Val Ile
605 610 615

Glu Glu Ile Pro Gln Ala Glu Asp Lys Leu Asp Arg Leu Phe Glu
620 625 630

Ile Ile Gly Val Lys Ser Gln Glu Ala Ser Gln Thr Leu Leu Asp
635 640 645

Ser Val Tyr Ser His Leu Pro Asp Leu Leu
650 655

<210> 65

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 65

gtacgcgtgc acatgggttg ttgg 24

<210> 66

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 66

accgcacatc ctcagtctct gtcc 24

<210> 67

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 67

acgatgatcg cgggcctccct tctcctgcct ggattcctta gcaccaccac 50

<210> 68

<211> 2412

<212> DNA

<213> Homo sapiens

<400> 68

atgggaagcc agtaaacactg tggcctacta tctcttccgt ggtgccatct 50
acatttttgg gactcggaa ttatgaggtt gaggtggagg cgtagccgga 100
tgtcagaggt cctgaaaatag tcaccatggg ggaaaatgtat ccgcctgctg 150
ttgaagcccc cttctcatc cgatcgctt ttggccttga tgatttggaa 200
ataagtccctg ttgcaccaga tgcagatgtt gttgctgcac agatcctgtc 250
actgctgcca ttgaagttt ttccaatcat cgtcattggg atcattgtcat 300
tgatatttagc actggccatt ggtctggca tccacttcga ctgctcaggg 350
aagtacagat gtcgctcatc ctttaagtgt atcgagctga tagctcgatg 400
tgacggagtc tcggatttgc aagacggggg ggacgagtttgc cgcgtgtcc 450
gggtgggtgg tcagaatgcc gtgctccagg tgttcacagc tgcttcgtgg 500
aagaccatgt gctccgatga ctggaagggt cactacgaa atgttcctg 550
tgcccaactg ggtttccaa gctatgtgag ttcagataac ctcagagtga 600
gctcgcttgc gggcagttc cgggaggagt ttgtgtccat cgatcacctc 650
ttgccagatg acaaggtgac tgcattacac cactcagtttgc atgtgaggga 700
gggatgtgcc tctggccacg tggttacctt gcagtgcaca gcctgtggc 750
atagaagggg ctacagctca cgcacgtgg gtggaaacat gtccttgctc 800
tcgcagtggc cctggcaggc cagccttcag ttccagggtt accacctgtg 850
cggggctct gtcatcacgc ccctgtggat catcactgtt gcacactgtg 900
tttatgactt gtacctcccc aagtcatggc ccatccaggt gggtcttagtt 950
tccctgttgg acaatccagc cccatcccac ttgggggaga agattgtcta 1000
ccacagcaag tacaagccaa agaggctggg caatgacatc gcccttatga 1050
agctggccgg gccactcacg ttcaatggaa tgatccagcc tgtgtgcctg 1100
cccaactctg aagagaactt ccccgatggaa aaagtgtgtt ggacgtcagg 1150
atggggggcc acagaggatg gaggtgacgc ctccctgtc ctgaaccacg 1200
cggccgtccc tttgatttcc aacaagatct gcaaccacag ggacgtgtac 1250
ggtggcatca tctccccctc catgctctgc gcgggctacc tgacgggtgg 1300
cgtggacacg tgccaggggg acagcggggg gcccctggtg tgtcaagaga 1350
ggaggctgtg gaagtttagtg ggagcggacca gcttggcat cggctgcgca 1400
gaggtgaaca agcctgggtt gtacaccgt gtcacccctt tcctggactg 1450

gatccacgag cagatggaga gagacctaaa aacctgaaga ggaaggggac 1500
aagttagccac ctgagttcct gaggtgatga agacagcccc atcctcccct 1550
ggactcccggt gtaggaacct gcacacgagc agacaccctt ggagctctga 1600
gttccggcac cagtagcagg cccgaaagag gcacccttcc atctgattcc 1650
agcacaacct tcaagctgct ttttgtttt tgttttttt aggtggagtc 1700
tcgctctgtt gcccaggctg gagtgcaagtgc gcgaaatccc tgctcaactgc 1750
agcctccgct tccctggttc aagcgattct cttgcctcag cttcccccagt 1800
agctgggacc acaggtgccc gccaccacac ccaactaatt tttgtatttt 1850
tagtagagac agggtttcac catgttggcc aggctgctct caaaccctg 1900
acctaataatg atgtgcctgc ttcagcctcc cacagtgcgtg ggattacagg 1950
catgggccac cacgcctagc ctcacgctcc tttctgatct tcactaagaa 2000
caaaagaagc agcaacttgc aaggcgccc tttcccactg gtccatctgg 2050
ttttctctcc agggcttgc aaaattcctg acgagataag cagttatgtg 2100
acctcacgtg caaagccacc aacagccact cagaaaagac gcaccagccc 2150
agaagtgcag aactgcagtc actgcacgtt ttcatctcta gggaccagaa 2200
ccaaaccac cctttctact tccaagactt attttcacat gtggggaggt 2250
taatcttagga atgactcggt taaggcctat tttcatgatt tctttgttagc 2300
atttggtgct tgacgtatta ttgtcctttg attccaaata atatgtttcc 2350
ttccctcatt gtctggcgtg tctgcgtgga ctggtgacgt gaatcaaaat 2400
catccactga aa 2412

<210> 69
<211> 453
<212> PRT
<213> Homo sapiens

<400> 69
Met Gly Glu Asn Asp Pro Pro Ala Val Glu Ala Pro Phe Ser Phe
1 5 10 15
Arg Ser Leu Phe Gly Leu Asp Asp Leu Lys Ile Ser Pro Val Ala
20 25 30
Pro Asp Ala Asp Ala Val Ala Ala Gln Ile Leu Ser Leu Leu Pro
35 40 45
Leu Lys Phe Phe Pro Ile Ile Val Ile Gly Ile Ile Ala Leu Ile

50	55	60
Leu Ala Leu Ala Ile Gly Leu Gly Ile His Phe Asp Cys Ser Gly		
65	70	75
Lys Tyr Arg Cys Arg Ser Ser Phe Lys Cys Ile Glu Leu Ile Ala		
80	85	90
Arg Cys Asp Gly Val Ser Asp Cys Lys Asp Gly Glu Asp Glu Tyr		
95	100	105
Arg Cys Val Arg Val Gly Gly Gln Asn Ala Val Leu Gln Val Phe		
110	115	120
Thr Ala Ala Ser Trp Lys Thr Met Cys Ser Asp Asp Trp Lys Gly		
125	130	135
His Tyr Ala Asn Val Ala Cys Ala Gln Leu Gly Phe Pro Ser Tyr		
140	145	150
Val Ser Ser Asp Asn Leu Arg Val Ser Ser Leu Glu Gly Gln Phe		
155	160	165
Arg Glu Glu Phe Val Ser Ile Asp His Leu Leu Pro Asp Asp Lys		
170	175	180
Val Thr Ala Leu His His Ser Val Tyr Val Arg Glu Gly Cys Ala		
185	190	195
Ser Gly His Val Val Thr Leu Gln Cys Thr Ala Cys Gly His Arg		
200	205	210
Arg Gly Tyr Ser Ser Arg Ile Val Gly Gly Asn Met Ser Leu Leu		
215	220	225
Ser Gln Trp Pro Trp Gln Ala Ser Leu Gln Phe Gln Gly Tyr His		
230	235	240
Leu Cys Gly Gly Ser Val Ile Thr Pro Leu Trp Ile Ile Thr Ala		
245	250	255
Ala His Cys Val Tyr Asp Leu Tyr Leu Pro Lys Ser Trp Thr Ile		
260	265	270
Gln Val Gly Leu Val Ser Leu Leu Asp Asn Pro Ala Pro Ser His		
275	280	285
Leu Val Glu Lys Ile Val Tyr His Ser Lys Tyr Lys Pro Lys Arg		
290	295	300
Leu Gly Asn Asp Ile Ala Leu Met Lys Leu Ala Gly Pro Leu Thr		
305	310	315
Phe Asn Glu Met Ile Gln Pro Val Cys Leu Pro Asn Ser Glu Glu		
320	325	330
Asn Phe Pro Asp Gly Lys Val Cys Trp Thr Ser Gly Trp Gly Ala		

335 340 345

Thr Glu Asp Gly Gly Asp Ala Ser Pro Val Leu Asn His Ala Ala
350 355 360

Val Pro Leu Ile Ser Asn Lys Ile Cys Asn His Arg Asp Val Tyr
365 370 375

Gly Gly Ile Ile Ser Pro Ser Met Leu Cys Ala Gly Tyr Leu Thr
380 385 390

Gly Gly Val Asp Ser Cys Gln Gly Asp Ser Gly Gly Pro Leu Val
395 400 405

Cys Gln Glu Arg Arg Leu Trp Lys Leu Val Gly Ala Thr Ser Phe
410 415 420

Gly Ile Gly Cys Ala Glu Val Asn Lys Pro Gly Val Tyr Thr Arg
425 430 435

Val Thr Ser Phe Leu Asp Trp Ile His Glu Gln Met Glu Arg Asp
440 445 450

Leu Lys Thr

<210> 70

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 70

tgacatcgcc cttatgaagc tggc 24

<210> 71

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 71

tacacgtccc tgtggttgca gatc 24

<210> 72

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 72

cgttcaatgc agaaatgatc cagcctgtgt gcctgcccaa ctctgaagag 50
<210> 73
<211> 3305
<212> DNA
<213> Homo sapiens

<400> 73
cccacgcgtc cgtcctagtc cccgggccaa ctcggacagt ttgctcattt 50
attgcaacgg tcaaggctgg cttgtgccag aacggcgac gcgcgacac 100
gcacgcacac acacgggggg aaactttttt aaaaatgaaa ggctagaaga 150
gctcagcggc ggcgcggcg ctgcgcgagg gctccggagc tgactcgccg 200
aggcagggaaa tccctccggt cgcgacgccc ggccccggct cggcgcccg 250
gtgggatggc gcagcgctcg ccgcggggcc cgagagctgc tgcaactgaag 300
gccggcgacg atggcagcgc gcccgcgtcc cgtgtccccc gcccgcggcc 350
tcctgctcgc cctggccggt gctctgctcg cgcctgcga ggcccggaggg 400
gtgagttat ggaaccaagg aagagctgat gaagttgtca gtgccttgt 450
tcggagtggg gacctctgga tcccagtgaa gagcttcgac tccaagaatc 500
atccagaagt gctgaatatt cgactacaac gggaaagcaa agaactgatc 550
ataaatctgg aaagaaatga aggtctcatt gccagcagtt tcacggaaac 600
ccactatctg caagacggta ctgatgtctc cctcgctcga aattacacgg 650
gtcactgtta ctaccatgga catgtacggg gatattctga ttcagcagtc 700
agtctcagca cgtgttctgg tctcagggga cttattgtgt ttgaaaatga 750
aagctatgtc tttagaaccaa tgaaaagtgc aaccaacaga tacaaactct 800
tcccagcga aagactgaaa agcgtccggg gatcatgtgg atcacatcac 850
aacacaccaa acctcgctgc aaagaatgtg tttccaccac cctctcagac 900
atgggcaaga aggcataaaa gagagaccct caaggcaact aagtatgtgg 950
agctgggtat cgtggcagac aaccgagagt ttcagaggca aggaaaagat 1000
ctggaaaaag ttaagcagcg attaatagag attgctaatc acgttgacaa 1050
gttttacaga ccactgaaca ttccggatcgt gttggtaggc gtggaaagtgt 1100
ggaatgacat ggacaaatgc tctgttaagtc aggacccatt caccagcctc 1150
catgaatttc tggactggag gaagatgaag cttctacctc gcaaatccca 1200
tgacaatgcg cagcttgcgtca gtggggttta tttccaagg accaccatcg 1250

gcatggcccc aatcatgagc atgtgcacgg cagaccagtc tgggggaatt 1300
gtcatggacc attcagacaa tccccttggt gcagccgtga ccctggcaca 1350
ttagctgggc cacaatttcg gatgaatca tgacacactg gacaggggct 1400
tagctgtca aatggcggtt gagaaaggag gctgcatcat gaacgcttcc 1450
accgggtacc cattttccat ggtgttcagc agttgcagca ggaaggactt 1500
ggagaccagc ctggagaaag gaatgggggt gtgcctgttt aacctgccgg 1550
aagtcaaaaaa gtcttcggg ggccagaagt gtggaaacag atttgtggaa 1600
gaaggagagg agtgtgactg tggggagcca gagaaatgta tgaatcgctg 1650
ctgcaatgcc accacctgta ccctgaagcc ggacgctgtg tgccacatg 1700
ggctgtgctg tgaagactgc cagctgaagc ctgcaggaac agcgtgcagg 1750
gactccagca actcctgtga cctcccagag ttctgcacag gggccagccc 1800
tcactgccc gccaatgtgt acctgcacga tggcactca tgtcaggatg 1850
tggacggcta ctgctacaat ggcatactgcc agactcacga gcagcagtgt 1900
gtcacgctct ggggaccagg tgctaaacct gcccctggg tctgcttga 1950
gagagtcaat tctgcaggtg atccttatgg caactgtggc aaagtctcga 2000
agagttcctt tgccaaatgc gagatgagag atgctaaatg tggaaaaatc 2050
cagtgtcaag gaggtgccag ccggccagtc attggatcca atgccgttc 2100
catagaaaca aacatccctc tgcagcaagg aggccggatt ctgtgccggg 2150
ggacccacgt gtacttggc gatgacatgc cggacccagg gcttgtgctt 2200
gcagggcaca agtgtgcaga tggaaaaatc tgcctgaatc gtcaatgtca 2250
aaatattatgt gtcttgggg ttcacgagtg tgcaatgcag tgccacggca 2300
gaggggtgtg caacaacagg aagaactgcc actgcgaggc ccactggca 2350
cctcccttct gtgacaagtt tggcttgga ggaagcacag acagcggccc 2400
catccggcaa gcagaagcaa ggcaggaagc tgcagagtcc aacagggagc 2450
gcggccaggg ccaggagccc gtgggatcgc aggagcatgc gtctactgcc 2500
tcactgacac tcatctgagc cctccatga catggagacc gtgaccagtg 2550
ctgctgcaga ggaggtcactg cgtccccaaag gcctcctgtg actggcagca 2600
ttgactctgt ggcttgcca tcgttccat gacaacagac acaacacagt 2650

tctcggggct caggagggta agtccagcct accaggcacg tctgcagaaa 2700
cagtgcagg aaggcagcg acttcctggt tgagttctg ctaaaacatg 2750
gacatgcttc agtgctgctc ctgagagagt agcaggttac cactctggca 2800
ggccccagcc ctgcagcaag gaggaagagg actcaaaagt ctggccttc 2850
actgagcctc cacagcagtg ggggagaagc aagggttggg cccagtgtcc 2900
cctttccca gtgacacctc agccttggca gccctgatga ctggtctctg 2950
gctgcaactt aatgctctga tatggctttt agcatttatt atatgaaaat 3000
agcagggtt tagttttaa tttatcagag accctgccac ccattccatc 3050
tccatccaag caaactgaat ggcaatgaaa caaactggag aagaaggtag 3100
gagaaaggc ggtgaactct ggctcttgc tgtggacatg cgtgaccagc 3150
agtactcagg tttgagggtt tgcagaaagc cagggAACCC acagagtac 3200
caacccttca tttaacaagt aagaatgtta aaaagtgaaa acaatgtaa 3250
agcctaactc catccccgt ggccattact gcataaaata gagtgcattt 3300
gaaat 3305

<210> 74
<211> 735
<212> PRT
<213> Homo sapiens

<400> 74
Met Ala Ala Arg Pro Leu Pro Val Ser Pro Ala Arg Ala Leu Leu
1 5 10 15

Leu Ala Leu Ala Gly Ala Leu Leu Ala Pro Cys Glu Ala Arg Gly
20 25 30

Val Ser Leu Trp Asn Gln Gly Arg Ala Asp Glu Val Val Ser Ala
35 40 45

Ser Val Arg Ser Gly Asp Leu Trp Ile Pro Val Lys Ser Phe Asp
50 55 60

Ser Lys Asn His Pro Glu Val Leu Asn Ile Arg Leu Gln Arg Glu
65 70 75

Ser Lys Glu Leu Ile Ile Asn Leu Glu Arg Asn Glu Gly Leu Ile
80 85 90

Ala Ser Ser Phe Thr Glu Thr His Tyr Leu Gln Asp Gly Thr Asp
95 100 105

Val Ser Leu Ala Arg Asn Tyr Thr Gly His Cys Tyr Tyr His Gly
110 115 120

His Val Arg Gly Tyr Ser Asp Ser Ala Val Ser Leu Ser Thr Cys
125 130 135

Ser Gly Leu Arg Gly Leu Ile Val Phe Glu Asn Glu Ser Tyr Val
140 145 150

Leu Glu Pro Met Lys Ser Ala Thr Asn Arg Tyr Lys Leu Phe Pro
155 160 165

Ala Lys Lys Leu Lys Ser Val Arg Gly Ser Cys Gly Ser His His
170 175 180

Asn Thr Pro Asn Leu Ala Ala Lys Asn Val Phe Pro Pro Pro Ser
185 190 195

Gln Thr Trp Ala Arg Arg His Lys Arg Glu Thr Leu Lys Ala Thr
200 205 210

Lys Tyr Val Glu Leu Val Ile Val Ala Asp Asn Arg Glu Phe Gln
215 220 225

Arg Gln Gly Lys Asp Leu Glu Lys Val Lys Gln Arg Leu Ile Glu
230 235 240

Ile Ala Asn His Val Asp Lys Phe Tyr Arg Pro Leu Asn Ile Arg
245 250 255

Ile Val Leu Val Gly Val Glu Val Trp Asn Asp Met Asp Lys Cys
260 265 270

Ser Val Ser Gln Asp Pro Phe Thr Ser Leu His Glu Phe Leu Asp
275 280 285

Trp Arg Lys Met Lys Leu Leu Pro Arg Lys Ser His Asp Asn Ala
290 295 300

Gln Leu Val Ser Gly Val Tyr Phe Gln Gly Thr Thr Ile Gly Met
305 310 315

Ala Pro Ile Met Ser Met Cys Thr Ala Asp Gln Ser Gly Gly Ile
320 325 330

Val Met Asp His Ser Asp Asn Pro Leu Gly Ala Ala Val Thr Leu
335 340 345

Ala His Glu Leu Gly His Asn Phe Gly Met Asn His Asp Thr Leu
350 355 360

Asp Arg Gly Cys Ser Cys Gln Met Ala Val Glu Lys Gly Gly Cys
365 370 375

Ile Met Asn Ala Ser Thr Gly Tyr Pro Phe Pro Met Val Phe Ser
380 385 390

Ser Cys Ser Arg Lys Asp Leu Glu Thr Ser Leu Glu Lys Gly Met
395 400 405

Gly Val Cys Leu Phe Asn Leu Pro Glu Val Arg Glu Ser Phe Gly
410 415 420

Gly Gln Lys Cys Gly Asn Arg Phe Val Glu Glu Gly Glu Glu Cys
425 430 435

Asp Cys Gly Glu Pro Glu Glu Cys Met Asn Arg Cys Cys Asn Ala
440 445 450

Thr Thr Cys Thr Leu Lys Pro Asp Ala Val Cys Ala His Gly Leu
455 460 465

Cys Cys Glu Asp Cys Gln Leu Lys Pro Ala Gly Thr Ala Cys Arg
470 475 480

Asp Ser Ser Asn Ser Cys Asp Leu Pro Glu Phe Cys Thr Gly Ala
485 490 495

Ser Pro His Cys Pro Ala Asn Val Tyr Leu His Asp Gly His Ser
500 505 510

Cys Gln Asp Val Asp Gly Tyr Cys Tyr Asn Gly Ile Cys Gln Thr
515 520 525

His Glu Gln Gln Cys Val Thr Leu Trp Gly Pro Gly Ala Lys Pro
530 535 540

Ala Pro Gly Ile Cys Phe Glu Arg Val Asn Ser Ala Gly Asp Pro
545 550 555

Tyr Gly Asn Cys Gly Lys Val Ser Lys Ser Ser Phe Ala Lys Cys
560 565 570

Glu Met Arg Asp Ala Lys Cys Gly Lys Ile Gln Cys Gln Gly Gly
575 580 585

Ala Ser Arg Pro Val Ile Gly Thr Asn Ala Val Ser Ile Glu Thr
590 595 600

Asn Ile Pro Leu Gln Gln Gly Arg Ile Leu Cys Arg Gly Thr
605 610 615

His Val Tyr Leu Gly Asp Asp Met Pro Asp Pro Gly Leu Val Leu
620 625 630

Ala Gly Thr Lys Cys Ala Asp Gly Lys Ile Cys Leu Asn Arg Gln
635 640 645

Cys Gln Asn Ile Ser Val Phe Gly Val His Glu Cys Ala Met Gln
650 655 660

Cys His Gly Arg Gly Val Cys Asn Asn Arg Lys Asn Cys His Cys
665 670 675

Glu Ala His Trp Ala Pro Pro Phe Cys Asp Lys Phe Gly Phe Gly
680 685 690

Gly Ser Thr Asp Ser Gly Pro Ile Arg Gln Ala Glu Ala Arg Gln
695 700 705

Glu Ala Ala Glu Ser Asn Arg Glu Arg Gly Gln Gly Gln Glu Pro
710 715 720

Val Gly Ser Gln Glu His Ala Ser Thr Ala Ser Leu Thr Leu Ile
725 730 735

<210> 75

<211> 483

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 30, 94, 143, 156, 163, 179, 193, 369, 371, 381, 390, 473

<223> unknown base

<400> 75

tcccaaggct tcttggatgg cagatgattn tgggttttg cattgtttcc 50

ctgacaacga aaacaaaaca gtttggggg ttcaggaggg gaantccagc 100

ctacccagga agtttgcaga aacagtgcaa ggaaggcag ganttcctgg 150

ttgagnttt tgntaaaaca tggacatgnt tcagtgctgc tcntgagaga 200

gtagcaggtt accacttttgc caggccccca gccctgcagc aaggaggaag 250

aggactcaaa agtttggcct ttcactgagc ctccacagca gtgggggaga 300

agcaagggtt gggcccagtg tcccctttcc ccagtgacac ctcagccttg 350

gcagccctga taactggtn ntggctgcaa nttaatgctn tgatatggct 400

tttagcattt attatatgaa aatagcaggg tttagttt taatttatca 450

gagaccctgc cacccattcc atntccatcc aag 483

<210> 76

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 76

gtctcagcac gtgttctggc ctcaggg 27

<210> 77

<211> 18

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 77
catgagcatg tgcacggc 18

<210> 78
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 78
tacctgcacg atgggcac 18

<210> 79
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 79
cactggcac ctcccttc 18

<210> 80
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 80
ctccaggctg gtctccaagt cttcc 26

<210> 81
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 81
tccctgttgg actctgcagc ttcc 24

<210> 82
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 82
cttcgctggg aagagttt 19

<210> 83
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 83
gtgcaaccaa cagatacAAA ctcttcccAG cgaagaAGCT gaaaAGCGTC 50 .

<210> 84
<211> 1714
<212> DNA
<213> Homo sapiens

<400> 84
catcctgcaa catggtgaaa ccacgcctgg ctaattttgt tgtatTTTg 50
gttagagatgg gatttcaccg tgTTAGCCAG gattgtctca atctgacCTC 100
atgatctgcc cgccTcggcc tcccaaAGTG ctgggattAC aggCGAGTGC 150
aaccacacCC ggCCacAAAC ttTTAAGAA gttaATgAAA ccatacCTT 200
tacatTTTA atgacaggAA aATgCTcaca ataattgtTA accCAAAATT 250
ctggatacaa aagtacaATC ttTactgtGT aaatacatgt atatgtACTA 300
tatgAAAATA tacCAAATAT caataACT tatctCTGGG taAAAACCTC 350
ttCTCataACC ctgtGctaAC aactTTAAC AAAAATTG catcaCTTT 400
aagaatcaag AAAAATTCT gaaggTCATA TgggacAGAA AAAAAGACCA 450
aggaaaaat cacGCCACTT gggAAAAAAA gattcgAAAT CTGCCTTTT 500
atagatttGT aattaATAAG gtccaggCtt tctaAGcaAC ttaaatgtTT 550
tgTTTcgAAA caaAGTACTT gtctggatgt aggAGGAAG ggAGTgATgt 600
cactGCCATT atgatGCCc TTGAATATAA gaccCTACTT gCTatCTCCC 650
ctgcaccAGC caggAGCCAC CCATCCTCCA gcACACTGAG cAGCAAGCTG 700
gacacacGGC acACTGATCC AAATGGGtaA gggatggTG gCGATGCTCA 750
ttCTGGGTCT gCTACTTCTG gCGCTGCTCC tACCCGTGCA ggTTTCTTCA 800
tttGTTcCTT TAACCAGTAT GCCGGAAGCT ACTGCAGCCG AAACCAACAA 850
GCCCTCCAAC agtGCCCTAC AGCCTACAGC CGGTCTCCTT GTGGTCTTGC 900

ttgcccttct acatctctac cattaagagg caggtcaaga aacagctaca 950
gttctccaac ccatacacta aaaccgaatc caaatggtgc ctagaagttc 1000
aatgtggcaa ggaaaaaaac caggtcttca tcaaattctac taatttcact 1050
ccttattaac agagaaacgc ttgagagtct caaactggac tggttaaag 1100
agcatctgaa ggatttgact agatgataaa tgcctgtact cccagtactt 1150
tgggaggcct aggccggcgg atcacctgag gtcaggagtt tgagactaac 1200
ctggccaaaaa tggtgaaacc ccatctgtac taaaaataca aatattgact 1250
gggcgtggtg gtgagtgct gtgatcccag ctactcaggt ggctgaagca 1300
ggacaatcac ttgaactcag gaggcagagg ttgcagttag ctgagatcgc 1350
gctactgcac tctaggctag cctggcaac agagtgagac ttcgtctcaa 1400
aaaaaaaaaa gccaaatgca gtggctcagc cctgtaatcc cggcactttg 1450
ggaggccgag gtggcgat cacgaggtaa ggagatcaag accatcctgg 1500
ctaatacagt gaaaccctgt ctctactaaa aataaaaaaa attagccggg 1550
gatggtggca ggcacctgga gtcccagcta ctcggaggc tgaggcagga 1600
gaatagcgtg aactcaggag gcggagctg cagtgagccg agattgcgct 1650
actgcactcc agcctggcg acagcgcgag actccgtctc aaaaaaaaaa 1700
aaaaaaaaaa aaaa 1714

<210> 85

<211> 67

<212> PRT

<213> Homo sapiens

<400> 85

Met Gly Lys Gly Met Val Ala Met Leu Ile Leu Gly Leu Leu Leu
1 5 10 15

Leu Ala Leu Leu Leu Pro Val Gln Val Ser Ser Phe Val Pro Leu
20 25 30

Thr Ser Met Pro Glu Ala Thr Ala Ala Glu Thr Thr Lys Pro Ser
35 40 45

Asn Ser Ala Leu Gln Pro Thr Ala Gly Leu Leu Val Val Leu Leu
50 55 60

Ala Leu Leu His Leu Tyr His
65

<210> 86

<211> 23

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 86
acgggcacac tggatcccaa atg 23

<210> 87
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 87
ggtagagatg tagaaggca agcaagacc 29

<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 88
gctccctacc cgtcaggtt ttttcatttg ttcccttaac cagtatgccg 50

<210> 89
<211> 2956
<212> DNA
<213> Homo sapiens

<400> 89
gccgcggcga gagcgccc agccccggc cgatccccgc gcgcggcagga 50
cgccctcctcc cgctgctggc ccggccggcg gccctgactg cgctgctgct 100
gctgctgctg ggccatggcg gcggcggcg ctggggcgcc cggccggcagg 150
aggcggcggc ggcggcggcg gacggggccc ccgcggcaga cggcgaggac 200
ggacaggacc cgcacagcaa gcacctgtac acggccgaca tgttcacgca 250
cgggatccag agcgccgcgc acttcgtcat gttctcgcg ccctggtgtg 300
gacactgcca gcggctgcag ccgacttggg atgacctggg agacaaatac 350
aacagcatgg aagatgccaa agtctatgtg gctaaagtgg actgcacggc 400
ccactccgac gtgtgctccg cccagggggt gcgaggatac cccacctaa 450
agctttcaa gccaggccaa gaagctgtga agtaccaggg tcctcggac 500

ttccagacac tggaaaactg gatgctgcag acactgaacg aggagccagt 550
gacaccagag ccgaaagtgg aaccgcccag tgccccgag ctcaagcaag 600
ggctgtatga gctctcagca agcaactttg agctgcacgt tgcacaaggc 650
gaccacttta tcaagttctt cgctccgtgg tgtggtaact gcaaagccct 700
ggctccaacc tgggagcagc tggctctggg ccttgaacat tccgaaactg 750
tcaagattgg caaggttgat tgtacacagc actatgaact ctgctccgga 800
aaccagggttc gtggctatcc cactttctc tggtaacat tccgaaactg 850
ggtggatcaag tacaaggaa agcgggattt ggagtcaactg agggagtacg 900
tggagtcgca gctgcagcgc acagagactg gagcgacgga gaccgtcacg 950
ccctcagagg ccccggtgct ggcagctgag cccgaggctg acaagggcac 1000
tgtgttggca ctcactgaaa ataacttcga tgacaccatt gcagaaggaa 1050
taaccttcat caagtttat gctccatggt gtggtaatttgc taagactctg 1100
gctcctactt gggaggaact ctctaaaaag gaattccctg gtctggcggg 1150
ggtaagatc gccgaagtag actgcactgc tgaacggaat atctgcagca 1200
agtattcgtt acgaggctac cccacgttat tgctttccg aggaggaaag 1250
aaagtcagtg agcacagtgg aggcagagac cttgactcgt tacaccgctt 1300
tgtcctgagc caagcgaaag acgaacttta ggaacacagt tggaggtcac 1350
cttcctgcc cagctccgc accctgcgtt taggagttca gtcccacaga 1400
ggccactggg ttcccaactgg tggctgttca gaaagcagaa catactaagc 1450
tgaggtatc ttctttgtgt gtgtgttttc caagccaaca cactctacag 1500
attcttatt aagttaagtt tctctaagta aatgtgtaac tcatggtcac 1550
tgtgtaaaca ttttcagtgg cgatatatcc ccttgaccc tctcttgatg 1600
aaatttacat ggtttccctt gagactaaaa tagcgttgag ggaaatgaaa 1650
ttgctggact atttggctt cctgagttga gtgattttgg tgaaagaaaag 1700
cacatccaaa gcatagttta cctgcccacg agttctggaa aggtggcctt 1750
gtggcagttat tgacgttctt ctgatcttaa ggtcacagtt gactcaatac 1800
tgtgttggc cgttagcatgg agcagattga aatgcaaaaa cccacaccc 1850
tggaaagatac cttcacggcc gctgctggag cttctgtgc tgtgaataact 1900
tctctcagtg tgagaggta gccgtgatga aagcagcgtt acttctgacc 1950

gtgcctgagt aagagaatgc tgatgccata actttatgtg tcgatacttg 2000
tcaaatacgacttgcag gggatccttc tgtttctcac ggggtgaaac 2050
atgtcttag ttcctcatgt taacacgaag ccagagccca catgaactgt 2100
tggatgtctt ccttagaaag ggtaggcatg gaaaattcca cgaggctcat 2150
tctcagttatc tcattaactc attgaaagat tccagttgta tttgtcacct 2200
ggggtgacaa gaccagacag gctttcccag gcctgggtat ccagggaggc 2250
tctgcagccc tgctgaaggg ccctaactag agttctagag tttctgattc 2300
tgtttctcag tagtcctttt agaggcttgc tatacttggt ctgcttcaag 2350
gaggtcgacc ttctaatgta tgaagaatgg gatgcatttgc atctcaagac 2400
caaagacaga tgtcagtggg ctgctctggc cctgggtgtgc acggctgtgg 2450
cagctgttga tgccagtgtc ctctaactca tgctgtcctt gtgattaaac 2500
acctctatct cccttggaa taagcacata caggcttaag ctctaagata 2550
gataggtgtt tgtccttttta ccatcgagct acttcccata ataaccactt 2600
tgcatccaac actcttcacc cacctcccat acgcaagggg atgtggatac 2650
ttggcccaaa gtaactggtg gtaggaatct tagaaacaag accacttata 2700
ctgtctgtct gaggcagaag ataacacgacg catctcgacc agcctctgcc 2750
ttaaaggaaa tctttattaa tcacgtatgg ttcacagata attcttttt 2800
aaaaaaaaacc caacccctta gagaagcaca actgtcaaga gtcttgtaca 2850
cacaacttca gctttgcac tgcgttgc tattccaaga aaatcaaagt 2900
gttacaattt gtttggttac actatgatac tttctaaata aactctttt 2950
ttttaa 2956

<210> 90
<211> 432
<212> PRT
<213> Homo sapiens

<400> 90
Met Pro Ala Arg Pro Gly Arg Leu Leu Pro Leu Leu Ala Arg Pro
1 5 10 15
Ala Ala Leu Thr Ala Leu Leu Leu Leu Leu Gly His Gly Gly
20 25 30
Gly Gly Arg Trp Gly Ala Arg Ala Gln Glu Ala Ala Ala Ala
35 40 45

Ala Asp Gly Pro Pro Ala Ala Asp Gly Glu Asp Gly Gln Asp Pro
50 55 60

His Ser Lys His Leu Tyr Thr Ala Asp Met Phe Thr His Gly Ile
65 70 75

Gln Ser Ala Ala His Phe Val Met Phe Phe Ala Pro Trp Cys Gly
80 85 90

His Cys Gln Arg Leu Gln Pro Thr Trp Asn Asp Leu Gly Asp Lys
95 100 105

Tyr Asn Ser Met Glu Asp Ala Lys Val Tyr Val Ala Lys Val Asp
110 115 120

Cys Thr Ala His Ser Asp Val Cys Ser Ala Gln Gly Val Arg Gly
125 130 135

Tyr Pro Thr Leu Lys Leu Phe Lys Pro Gly Gln Glu Ala Val Lys
140 145 150

Tyr Gln Gly Pro Arg Asp Phe Gln Thr Leu Glu Asn Trp Met Leu
155 160 165

Gln Thr Leu Asn Glu Glu Pro Val Thr Pro Glu Pro Glu Val Glu
170 175 180

Pro Pro Ser Ala Pro Glu Leu Lys Gln Gly Leu Tyr Glu Leu Ser
185 190 195

Ala Ser Asn Phe Glu Leu His Val Ala Gln Gly Asp His Phe Ile
200 205 210

Lys Phe Phe Ala Pro Trp Cys Gly His Cys Lys Ala Leu Ala Pro
215 220 225

Thr Trp Glu Gln Leu Ala Leu Gly Leu Glu His Ser Glu Thr Val
230 235 240

Lys Ile Gly Lys Val Asp Cys Thr Gln His Tyr Glu Leu Cys Ser
245 250 255

Gly Asn Gln Val Arg Gly Tyr Pro Thr Leu Leu Trp Phe Arg Asp
260 265 270

Gly Lys Lys Val Asp Gln Tyr Lys Gly Lys Arg Asp Leu Glu Ser
275 280 285

Leu Arg Glu Tyr Val Glu Ser Gln Leu Gln Arg Thr Glu Thr Gly
290 295 300

Ala Thr Glu Thr Val Thr Pro Ser Glu Ala Pro Val Leu Ala Ala
305 310 315

Glu Pro Glu Ala Asp Lys Gly Thr Val Leu Ala Leu Thr Glu Asn
320 325 330

Asn Phe Asp Asp Thr Ile Ala Glu Gly Ile Thr Phe Ile Lys Phe
335 340 345
Tyr Ala Pro Trp Cys Gly His Cys Lys Thr Leu Ala Pro Thr Trp
350 355 360
Glu Glu Leu Ser Lys Lys Glu Phe Pro Gly Leu Ala Gly Val Lys
365 370 375
Ile Ala Glu Val Asp Cys Thr Ala Glu Arg Asn Ile Cys Ser Lys
380 385 390
Tyr Ser Val Arg Gly Tyr Pro Thr Leu Leu Leu Phe Arg Gly Gly
395 400 405
Lys Lys Val Ser Glu His Ser Gly Gly Arg Asp Leu Asp Ser Leu
410 415 420
His Arg Phe Val Leu Ser Gln Ala Lys Asp Glu Leu
425 430

<210> 91
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 91
atgttcttcg cgccctggtg 20

<210> 92
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 92
ccaagccaaac acactctaca g 21

<210> 93
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 93
aagtggtcgc ctttgcaac gtgc 24

<210> 94
<211> 23

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 94
ggtcaaagg gatatatcgc cac 23

<210> 95
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 95
gcatggaaga tgccaaagtc tatgtggcta aagtggactg cacggccc 49

<210> 96
<211> 1016
<212> DNA
<213> Homo sapiens

<400> 96
cttttctgag gaaccacagc aatgaatggc tttgcattct tgcttcgaag 50
aaaccaattt atcctcctgg tactatttct tttgcaatt cagagtctgg 100
gtctggatat tgatagccgt cctaccgctg aagtctgtgc cacacacaca 150
atttcaccag gacccaaagg agatgatggt gaaaaaggag atccaggaga 200
agagggaaag catggcaaag tgggacgcat ggggccaaa ggaattaaag 250
gagaactggg tgatatggg gatcaggca atattggcaa gactggccc 300
attgggaaga agggtgacaa agggaaaaaa ggtttgcttg gaatacctgg 350
agaaaaaggc aaagcaggta ctgtctgtga ttgtggaaga taccggaaat 400
ttgttggaca actggatatt agtattgctc ggctcaagac atctatgaag 450
tttgtcaaga atgtgatagc agggatttagg gaaactgaag agaaattcta 500
ctacatcggt caggaagaga agaactacag ggaatcccta acccactgca 550
ggattcgggg tggaatgcta gccatgccca aggatgaagc tgccaacaca 600
ctcatcgctg actatgttgc caagagtggc ttcttcggg tgttcattgg 650
cgtgaatgac cttgaaaggg agggacagta catgtccaca gacaacactc 700
cactgcagaa ctatagcaac tggaatgagg gggAACCCAG CGACCCCTAT 750
ggtcatgagg actgtgtgga gatgctgagc tctggcagat ggaatgacac 800

agagtgccat cttaccatgt actttgtctg tgagttcatc aagaagaaaa 850
agtaacttcc ctcatcctac gtatttgcta ttttcctgtg accgtcatta 900
cagttattgt tatccatcct tttttcctg attgtactac atttgatctg 950
agtcaacata gctagaaaat gctaaactga ggtatggagc ctccatcatc 1000
aaaaaaaaaaa aaaaaaa 1016

.

<210> 97
<211> 277
<212> PRT
<213> Homo sapiens

<400> 97

Met	Asn	Gly	Phe	Ala	Ser	Leu	Leu	Arg	Arg	Asn	Gln	Phe	Ile	Leu
1								10					15	

Leu Val Leu Phe Leu Leu Gln Ile Gln Ser Leu Gly Leu Asp Ile
20 25 30

Asp Ser Arg Pro Thr Ala Glu Val Cys Ala Thr His Thr Ile Ser
35 40 45

Pro Gly Pro Lys Gly Asp Asp Gly Glu Lys Gly Asp Pro Gly Glu
50 55 60

Glu Gly Lys His Gly Lys Val Gly Arg Met Gly Pro Lys Gly Ile
65 70 75

Lys Gly Glu Leu Gly Asp Met Gly Asp Gln Gly Asn Ile Gly Lys
80 85 90

Thr Gly Pro Ile Gly Lys Gly Asp Lys Gly Glu Lys Gly Leu
95 100 105

Leu Gly Ile Pro Gly Glu Lys Gly Lys Ala Gly Thr Val Cys Asp
110 115 120

Cys Gly Arg Tyr Arg Lys Phe Val Gly Gln Leu Asp Ile Ser Ile
125 130 135

Ala Arg Leu Lys Thr Ser Met Lys Phe Val Lys Asn Val Ile Ala
140 145 150

Gly Ile Arg Glu Thr Glu Glu Lys Phe Tyr Tyr Ile Val Gln Glu
155 160 165

Glu Lys Asn Tyr Arg Glu Ser Leu Thr His Cys Arg Ile Arg Gly
170 175 180

Gly Met Leu Ala Met Pro Lys Asp Glu Ala Ala Asn Thr Leu Ile
185 190 195

Ala Asp Tyr Val Ala Lys Ser Gly Phe Phe Arg Val Phe Ile Gly

	200	205	210
Val Asn Asp Leu Glu Arg Glu Gly Gln Tyr Met Ser Thr Asp Asn			
215	220	225	
Thr Pro Leu Gln Asn Tyr Ser Asn Trp Asn Glu Gly Glu Pro Ser			
230	235	240	
Asp Pro Tyr Gly His Glu Asp Cys Val Glu Met Leu Ser Ser Gly			
245	250	255	
Arg Trp Asn Asp Thr Glu Cys His Leu Thr Met Tyr Phe Val Cys			
260	265	270	
Glu Phe Ile Lys Lys Lys Lys			
275			

<210> 98
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 98
cgctgactat gttgccaaga gtgg 24

<210> 99
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe .

<400> 99
gatgatggag gctccataacc tcag 24

<210> 100
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 100
gtgttcattg gcgtgaatga ccttgaaagg gagggacagt acatgttcac 50

<210> 101
<211> 2574
<212> DNA
<213> Homo sapiens

<400> 101
ggttctatcg attcgaattc ggccacactg gccggatcct ctagagatcc 50

ctcgacctcg acccacgcgt ccgctgctct ccgcccgtgt ggagtggtgg 100
ggccctgggt gggaatgggc gtgtgccagc gcacgcgcgc tccctggaag 150
gagaagtctc agctagaacg agcggcccta ggtttcgga agggaggatc 200
agggatgtt gcgagcggct ggaaccagac ggtgccata gaggaagcgg 250
gctccatgac tgccctcctg ctgctgcccc tgctgctgtt gctaccgctg 300
ctgctgctga agctacaccc ctggccgcag ttgcgctggc ttccggcgaa 350
cttggccttt gcgggtgcgag ctctgtctg caaaaagggt cttcgagctc 400
gcgcgcctggc cgccgcgtgcc gccgaccggg aagggtccga ggggggctgc 450
agcctggcct ggcgcctcgc ggaactggcc cagcagcgcg ccgcgcacac 500
cttttcatt cacggctcgc ggcgccttag ctactcagag gcggagcgcg 550
agagtaacag ggctgcacgc gccttcctac gtgcgcttagg ctgggactgg 600
gcgcgcgcgcg gcggcgacag cggcgagggg agcgctggag aaggcgagcg 650
ggcagcgcgcg ggagccggag atgcagcggc cggaagcggc gcggagttt 700
ccggaggggga cgggtgccgc agaggtggag gagccgcgcgc ccctctgtca 750
cctggagcaa ctgtggcgct gtcctcccc gctggccag agtttctgtg 800
gctctggttc gggctggcca aggccggcct ggcactgcc tttgtgcccc 850
ccgcgcctgcg ccggggcccc ctgctgcaact gcctccgcag ctgcggcgcg 900
cgcgcgctgg tgctggcgcc agagttctg gagtccctgg agccggacct 950
gcgcgcgcgcg agagccatgg ggctccaccc gtgggctgca ggcgcaggaa 1000
cccacccctgc tggaattagc gatttgctgg ctgaagtgtc cgctgaagtg 1050
gatggggccag tgccaggata cctctttcc cccagagca taacagacac 1100
gtgcctgtac atcttacccct ctggcaccac gggctcccc aaggctgctc 1150
ggatcagtca tctgaagatc ctgcaatgcc agggcttcta tcagctgtgt 1200
ggtgtccacc aggaagatgt gatctacccct gcgcgcgcgc tctaccacat 1250
gtccgggttcc ctgctggca tcgtggcgtg catggcatt gggccacag 1300
tggtgctgaa atccaagttc tcggctggc agttctggaa agattgccag 1350
cagcacaggg tgacgggtttt ccagtttccat ggggagctgt gccgataacct 1400
tgtcaaccag ccccccggca aggcagaacg tggccataag gtccggctgg 1450

cagtggcag cgggctgcgc ccagataacct gggagcggtt tgtgcggcgc 1500
ttcgggcccc tgcagggtct ggagacatata ggactgacag agggcaacgt 1550
ggccaccatc aactacacag gacagcgggg cgctgtgggg cgtgcttcct 1600
ggctttacaa gcataatcttc cccttctcct tgattcgcta tgatgtcacc 1650
acaggagagc caattcggga ccccccagggg cactgtatgg ccacatctcc 1700
aggtgagcca gggctgctgg tggcccccgg aagccagcag tccccattcc 1750
tgggctatgc tggcgggcca gagctggccc agggaaagtt gctaaaggat 1800
gtcttccggc ctggggatgt tttcttcaac actggggacc tgctggtctg 1850
cgatgaccaa ggaaaaatcc gcttccatga tcgtactgga gacacccatca 1900
ggtggaaggg ggagaatgtg gccacaaccg aggtggcaga ggtcttcgag 1950
gcccttagatt ttcttcagga ggtgaacgta tatggagtca ctgtgccagg 2000
gcatgaaggc agggctggaa tggcagccct agttctgcgt cccccccacg 2050
ctttggaccc tatgcagctc tacacccacg tgtctgagaa cttgccacct 2100
tatgccccgc cccgattcct caggctccag gagtcttgg ccaccacaga 2150
gaccccaa cagcagaaag ttcggatggc aaatgagggc ttcgacccca 2200
gcaccctgtc tgacccactg tacgttctgg accaggctgt aggtgcctac 2250
ctgccccctca caactgcccc gtacagcgcc ctcctggcag gaaacctcg 2300
aatctgagaa cttccacacc tgaggcacct gagagagggaa ctctgtgggg 2350
tggggccgt tgcagggtta ctgggctgtc agggatctt tctataccag 2400
aactgcggtc actatttgt aataaatgtg gctggagctg atccagctgt 2450
ctctgaccta aaaaaaaaaa aaaaaaaaaa aaaaaaaaaaag ggccggccgc 2500
actcttagagt cgacctgcag tagggataaac aggtaataa gcttggccgc 2550
catggcccaa cttgtttatt gcag 2574

<210> 102
<211> 730
<212> PRT
<213> Homo sapiens

<400> 102
Met Gly Val Cys Gln Arg Thr Arg Ala Pro Trp Lys Glu Lys Ser
1 5 10 15
Gln Leu Glu Arg Ala Ala Leu Gly Phe Arg Lys Gly Gly Ser Gly
20 25 30

Met Phe Ala Ser Gly Trp Asn Gln Thr Val Pro Ile Glu Glu Ala
35 40 45

Gly Ser Met Ala Ala Leu Leu Leu Pro Leu Leu Leu Leu Leu
50 55 60

Pro Leu Leu Leu Lys Leu His Leu Trp Pro Gln Leu Arg Trp
65 70 75

Leu Pro Ala Asp Leu Ala Phe Ala Val Arg Ala Leu Cys Cys Lys
80 85 90

Arg Ala Leu Arg Ala Arg Ala Leu Ala Ala Ala Ala Asp Pro
95 100 105

Glu Gly Pro Glu Gly Gly Cys Ser Leu Ala Trp Arg Leu Ala Glu
110 115 120

Leu Ala Gln Gln Arg Ala Ala His Thr Phe Leu Ile His Gly Ser
125 130 135

Arg Arg Phe Ser Tyr Ser Glu Ala Glu Arg Glu Ser Asn Arg Ala
140 145 150

Ala Arg Ala Phe Leu Arg Ala Leu Gly Trp Asp Trp Gly Pro Asp
155 160 165

Gly Gly Asp Ser Gly Glu Gly Ser Ala Gly Glu Gly Glu Arg Ala
170 175 180

Ala Pro Gly Ala Gly Asp Ala Ala Ala Gly Ser Gly Ala Glu Phe
185 190 195

Ala Gly Gly Asp Gly Ala Ala Arg Gly Gly Ala Ala Ala Pro
200 205 210

Leu Ser Pro Gly Ala Thr Val Ala Leu Leu Leu Pro Ala Gly Pro
215 220 225

Glu Phe Leu Trp Leu Trp Phe Gly Leu Ala Lys Ala Gly Leu Arg
230 235 240

Thr Ala Phe Val Pro Thr Ala Leu Arg Arg Gly Pro Leu Leu His
245 250 255

Cys Leu Arg Ser Cys Gly Ala Arg Ala Leu Val Leu Ala Pro Glu
260 265 270

Phe Leu Glu Ser Leu Glu Pro Asp Leu Pro Ala Leu Arg Ala Met
275 280 285

Gly Leu His Leu Trp Ala Ala Gly Pro Gly Thr His Pro Ala Gly
290 295 300

Ile Ser Asp Leu Leu Ala Glu Val Ser Ala Glu Val Asp Gly Pro
305 310 315

Val Pro Gly Tyr Leu Ser Ser Pro Gln Ser Ile Thr Asp Thr Cys
320 325 330

Leu Tyr Ile Phe Thr Ser Gly Thr Thr Gly Leu Pro Lys Ala Ala
335 340 345

Arg Ile Ser His Leu Lys Ile Leu Gln Cys Gln Gly Phe Tyr Gln
350 355 360

Leu Cys Gly Val His Gln Glu Asp Val Ile Tyr Leu Ala Leu Pro
365 370 375

Leu Tyr His Met Ser Gly Ser Leu Leu Gly Ile Val Gly Cys Met
380 385 390

Gly Ile Gly Ala Thr Val Val Leu Lys Ser Lys Phe Ser Ala Gly
395 400 405

Gln Phe Trp Glu Asp Cys Gln Gln His Arg Val Thr Val Phe Gln
410 415 420

Tyr Ile Gly Glu Leu Cys Arg Tyr Leu Val Asn Gln Pro Pro Ser
425 430 435

Lys Ala Glu Arg Gly His Lys Val Arg Leu Ala Val Gly Ser Gly
440 445 450

Leu Arg Pro Asp Thr Trp Glu Arg Phe Val Arg Arg Phe Gly Pro
455 460 465

Leu Gln Val Leu Glu Thr Tyr Gly Leu Thr Glu Gly Asn Val Ala
470 475 480

Thr Ile Asn Tyr Thr Gly Gln Arg Gly Ala Val Gly Arg Ala Ser
485 490 495

Trp Leu Tyr Lys His Ile Phe Pro Phe Ser Leu Ile Arg Tyr Asp
500 505 510

Val Thr Thr Gly Glu Pro Ile Arg Asp Pro Gln Gly His Cys Met
515 520 525

Ala Thr Ser Pro Gly Glu Pro Gly Leu Leu Val Ala Pro Val Ser
530 535 540

Gln Gln Ser Pro Phe Leu Gly Tyr Ala Gly Gly Pro Glu Leu Ala
545 550 555

Gln Gly Lys Leu Leu Lys Asp Val Phe Arg Pro Gly Asp Val Phe
560 565 570

Phe Asn Thr Gly Asp Leu Leu Val Cys Asp Asp Gln Gly Phe Leu
575 580 585

Arg Phe His Asp Arg Thr Gly Asp Thr Phe Arg Trp Lys Gly Glu
590 595 600

Asn Val Ala Thr Thr Glu Val Ala Glu Val Phe Glu Ala Leu Asp
605 610 615

Phe Leu Gln Glu Val Asn Val Tyr Gly Val Thr Val Pro Gly His
620 625 630

Glu Gly Arg Ala Gly Met Ala Ala Leu Val Leu Arg Pro Pro His
635 640 645

Ala Leu Asp Leu Met Gln Leu Tyr Thr His Val Ser Glu Asn Leu
650 655 660

Pro Pro Tyr Ala Arg Pro Arg Phe Leu Arg Leu Gln Glu Ser Leu
665 670 675

Ala Thr Thr Glu Thr Phe Lys Gln Gln Lys Val Arg Met Ala Asn
680 685 690

Glu Gly Phe Asp Pro Ser Thr Leu Ser Asp Pro Leu Tyr Val Leu
695 700 705

Asp Gln Ala Val Gly Ala Tyr Leu Pro Leu Thr Thr Ala Arg Tyr
710 715 720

Ser Ala Leu Leu Ala Gly Asn Leu Arg Ile
725 730

<210> 103

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 103

gagagccatg gggctccacc tg 22

<210> 104

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 104

ggagaatgtg gccacaac 18

<210> 105

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 105
gccctggcac agtgactcca tagacg 26

<210> 106
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 106
atccacttca gcggacac 18

<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 107
ccagtgcag gataacctctc ttccccccag agcataacag acacg 45

<210> 108
<211> 2579
<212> DNA
<213> Homo sapiens

<400> 108
cctgtttaa gctgaggttt cccctagatc tcgtatatcc ccaacacata 50
cctccacgca cacacatccc caagaacctc gagtcacac caacagacac 100
acgcgcgcac acacactcgc tctcgcttgt ccataccct cccgggggag 150
ccggcgcgcg ctccccac ttgcgcacac tccggcgagc cgagcccgca 200
gcgcgtccagg attctgcggc tcggaactcg gattgcagct ctgaaccccc 250
atggtggttt tttaaacact tctttccctt ctcttcctcg ttttattgc 300
accgtttcca tctggggct agaggagcaa ggcagcagcc ttcccagcca 350
gccctgttg gcttgccatc gtccatctgg cttataaaag tttgctgagc 400
gcagtccaga gggctgcgct gtcgtcccc tcggctggca gaagggggtg 450
acgctgggca gcggcgagga gcgcgcgcgt gcctctggcg ggcttcggc 500
ttgaggggca aggtgaagag cgcaccggcc gtggggttta ccgagctgga 550
tttgtatgtt gcaccatgcc ttcttgatc gggctgtga ttcttcccct 600
cttggggctg ctgctctccc tccccgcccgg ggcggatgtg aaggctcgga 650

gctgcggaga ggtccgccag gcgtacggtg ccaaggatt cagcctggcg 700
gacatcccct accaggagat cgccagggaa cacttaagaa tctgtcctca 750
ggaatataca tgctgcacca cagaaatgga agacaagtta agccaacaaa 800
gcaaactcga atttggaaaac cttgtggaag agacaagcca ttttgtgcgc 850
accacttttgc tgtccaggca taagaaattt gacgaatttt tccgagagct 900
cctggagaat gcagaaaaagt cactaaatga tatgtttgta cgacccatg 950
gcatgctgta catgcagaat tcagaagtct tccaggacct cttcacagag 1000
ctgaaaaggta actacactgg gggtaatgtg aatctggagg aaatgctcaa 1050
tgacttttgg gctcggctcc tggaaacggat gtttcagctg ataaaccctc 1100
agtatcactt cagtgaagac tacctggaat gtgtgagcaa atacactgac 1150
cagctcaagc catttggaga cgtccccgg aaactgaaga ttcaggttac 1200
ccgcgccttc attgctgcca ggacctttgt ccagggctg actgtgggca 1250
gagaagttgc aaaccgagtt tccaagggtca gcccaacccc agggtgtatc 1300
cgtgccctca tgaagatgct gtactgccca tactgtcggt ggcttccac 1350
tgtgaggccc tgcaacaact actgtctcaa cgtcatgaag ggctgcttgg 1400
caaattcaggc tgaccccgac acagagtggaa atctgtttat agatgcaatg 1450
ctcttggtgg cagagcgact ggaggggcca ttcaacattt agtcggcat 1500
ggacccgata gatgtcaaga tttctgaagc cattatgaac atgcaagaaaa 1550
acagcatgca ggtgtctgca aaggctttc agggatgtgg tcagccaaa 1600
cctgctccag ccctcagatc tgcccgctca gctcctgaaa attttataac 1650
acgtttcagg ccctacaatc ctgagggaaag accaacaact gctgcaggca 1700
caagcttggaa ccggctggtc acagacataa aagagaaatt gaagctctct 1750
aaaaagggtct ggtcagcatt accctacact atctgcaagg acgagagcgt 1800
gacagcgggc acgtccaacg aggaggaatg ctggAACGGG cacagcaaag 1850
ccagatactt gcctgagatc atgaatgtg ggctcaccaa ccagatcaac 1900
aatcccgagg tggatgtgga catcaactcggt cctgacactt tcatcagaca 1950
gcagattatg gctctccgtg tgatgaccaa caaactaaaa aacgcctaca 2000
atggcaatga tgtcaatttc caggacacaa gtgatgaatc cagtggctca 2050

gggagtgcca gtgggtgcata gatgacgttgtccacgg agttttagtt 2100
tgtcaccaca gagggcccccg cagtggatcc cgaccggaga gaggtggact 2150
cttctgcagc ccagcgtggc cactccctgc tctcctggtc tctcacctgc 2200
attgtcctgg cactgcagag actgtgcaga taatcttggg tttttggta 2250
gatgaaactg cattttagct atctgaatgg ccaactcaact tctttctta 2300
cactcttggc caatggacca tgccacaaaa acttaccgtt ttctatgaga 2350
agagagcagt aatgcaatct gcctccctt ttgtttccc aaagagtacc 2400
gggtgccaga ctgaactgct tcctcttcc ttcaagctatc tgtgggacc 2450
ttgtttattc tagagagaat tcttactcaa attttcgta ccaggagatt 2500
ttcttacctt catttgcttt tatgctgcag aagtaaagga atctcacgtt 2550
gtgagggttt ttttttctc atttaaaat 2579

<210> 109
<211> 555
<212> PRT
<213> Homo sapiens

<400> 109
Met Pro Ser Trp Ile Gly Ala Val Ile Leu Pro Leu Leu Gly Leu
1 5 10 15

Leu Leu Ser Leu Pro Ala Gly Ala Asp Val Lys Ala Arg Ser Cys
20 25 30

Gly Glu Val Arg Gln Ala Tyr Gly Ala Lys Gly Phe Ser Leu Ala
35 40 45

Asp Ile Pro Tyr Gln Glu Ile Ala Gly Glu His Leu Arg Ile Cys
50 55 60

Pro Gln Glu Tyr Thr Cys Cys Thr Thr Glu Met Glu Asp Lys Leu
65 70 75

Ser Gln Gln Ser Lys Leu Glu Phe Glu Asn Leu Val Glu Glu Thr
80 85 90

Ser His Phe Val Arg Thr Thr Phe Val Ser Arg His Lys Lys Phe
95 100 105

Asp Glu Phe Phe Arg Glu Leu Leu Glu Asn Ala Glu Lys Ser Leu
110 115 120

Asn Asp Met Phe Val Arg Thr Tyr Gly Met Leu Tyr Met Gln Asn
125 130 135

Ser Glu Val Phe Gln Asp Leu Phe Thr Glu Leu Lys Arg Tyr Tyr
140 145 150

Thr Gly Gly Asn Val Asn Leu Glu Glu Met Leu Asn Asp Phe Trp
155 160 165

Ala Arg Leu Leu Glu Arg Met Phe Gln Leu Ile Asn Pro Gln Tyr
170 175 180

His Phe Ser Glu Asp Tyr Leu Glu Cys Val Ser Lys Tyr Thr Asp
185 190 195

Gln Leu Lys Pro Phe Gly Asp Val Pro Arg Lys Leu Lys Ile Gln
200 205 210

Val Thr Arg Ala Phe Ile Ala Ala Arg Thr Phe Val Gln Gly Leu
215 220 225

Thr Val Gly Arg Glu Val Ala Asn Arg Val Ser Lys Val Ser Pro
230 235 240

Thr Pro Gly Cys Ile Arg Ala Leu Met Lys Met Leu Tyr Cys Pro
245 250 255

Tyr Cys Arg Gly Leu Pro Thr Val Arg Pro Cys Asn Asn Tyr Cys
260 265 270

Leu Asn Val Met Lys Gly Cys Leu Ala Asn Gln Ala Asp Leu Asp
275 280 285

Thr Glu Trp Asn Leu Phe Ile Asp Ala Met Leu Leu Val Ala Glu
290 295 300

Arg Leu Glu Gly Pro Phe Asn Ile Glu Ser Val Met Asp Pro Ile
305 310 315

Asp Val Lys Ile Ser Glu Ala Ile Met Asn Met Gln Glu Asn Ser
320 325 330

Met Gln Val Ser Ala Lys Val Phe Gln Gly Cys Gly Gln Pro Lys
335 340 345

Pro Ala Pro Ala Leu Arg Ser Ala Arg Ser Ala Pro Glu Asn Phe
350 355 360

Asn Thr Arg Phe Arg Pro Tyr Asn Pro Glu Glu Arg Pro Thr Thr
365 370 375

Ala Ala Gly Thr Ser Leu Asp Arg Leu Val Thr Asp Ile Lys Glu
380 385 390

Lys Leu Lys Leu Ser Lys Lys Val Trp Ser Ala Leu Pro Tyr Thr
395 400 405

Ile Cys Lys Asp Glu Ser Val Thr Ala Gly Thr Ser Asn Glu Glu
410 415 420

Glu Cys Trp Asn Gly His Ser Lys Ala Arg Tyr Leu Pro Glu Ile
425 430 435

Met Asn Asp Gly Leu Thr Asn Gln Ile Asn Asn Pro Glu Val Asp
440 445 450
Val Asp Ile Thr Arg Pro Asp Thr Phe Ile Arg Gln Gln Ile Met
455 460 465
Ala Leu Arg Val Met Thr Asn Lys Leu Lys Asn Ala Tyr Asn Gly
470 475 480
Asn Asp Val Asn Phe Gln Asp Thr Ser Asp Glu Ser Ser Gly Ser
485 490 495
Gly Ser Gly Ser Gly Cys Met Asp Asp Val Cys Pro Thr Glu Phe
500 505 510
Glu Phe Val Thr Thr Glu Ala Pro Ala Val Asp Pro Asp Arg Arg
515 520 525
Glu Val Asp Ser Ser Ala Ala Gln Arg Gly His Ser Leu Leu Ser
530 535 540
Trp Ser Leu Thr Cys Ile Val Leu Ala Leu Gln Arg Leu Cys Arg
545 550 555

<210> 110

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 110

aagcgtgaca gcgggcacgt c 21

<210> 111

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 111

tgcacagtct ctgcagtgcc cagg 24

<210> 112

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 112

gaatgctgga acgggcacag caaagccaga tacttgccctg 40

<210> 113
<211> 4649
<212> DNA
<213> Homo sapiens

<400> 113
cgacgcgtg ggcggacgct tggcaaaag aactcggagt gccaaagcta 50
aataagtttag ctgagaaaac gcacgcgtt tgcaagccct ggcgggttg 100
cgccaactac gcaaagacca agcggctcc gcgcggaccg gccgcggggc 150
tagggacccg gctttggcct tcaggctccc tagcagcggg gaaaaggaat 200
tgctgccccg agtttctgcg gaggtggagg gagatcagga aacggcttct 250
tcctcacttc gccgcctggt gagtgcggg gagattggca aacgcctagg 300
aaaggactgg ggaaaatagc cctggaaag tggagaaggt gatcaggagg 350
ccggccact acggcagttt atctgtctga tcagagccag acgcgcgcg 400
tccacttcgc agtttttcc aggtgtgggg accgcaggac agacggccga 450
tcccggccct ctccgtacca gcactcccag gagagtcaag ctcgctcccc 500
aacgtcgagg gcgcgttggc cacgaaaagt tcctgtccac tgtgattctc 550
aattccttgc ttgggttttt tctccagaga actttgggt ggagatatta 600
acttttttct tttttttttt ctttgttggaa agctgtctta gggagggggg 650
aggaggagga gaaagtgaaa tgtgtggag aagagcgagc cttcccttgtt 700
cttccggagt cccatccatt aagccatcac ttcttggaa ttaaagttgt 750
cgacatggt gacagctgag aggaggagg gatttcttgc caggtggaga 800
gtcttcaccg tcttgtgggt gcatgtgtgc gcccgcagcg gcgcggggcg 850
cgtggttctc cgcgtggagt ctcacctggg acctgagtga atggctccca 900
ggggctgtgc ggggcatccg cttccgcctt ctccacaggc ctgtgtctgt 950
cctggaaaga tgcttagcaat gggggcgctg gcaggattct ggatcctctg 1000
cctcctcaact tatggttacc tgtcctgggg ccaggcctta gaagaggagg 1050
aagaagggc cttacttagct caagctggag agaaactaga gcccagcaca 1100
acttccacct cccagccccca tctcattttc atcctagcgg atgatcaggg 1150
attttagagat gtgggttacc acggatctga gattaaaaca cctactcttgc 1200
acaagctcgc tgccgaagga gttaaactgg agaactacta tgtccagcct 1250

atttgcacac catccaggag tcagtttatt actggaaagt atcagataca 1300
caccggactt caacattcta tcataagacc tacccaaccc aactgtttac 1350
ctctggacaa tgccacccta cctcagaaac tgaaggaggt tggatattca 1400
acgcatatgg tcggaaaatg gcacttggtt tttaacagaa aagaatgcat 1450
gccaccaga agaggattt gatcacccctt tggtccctt ttgggaagt 1500
gggattacta tacacactac aaatgtgaca gtcctggat gtgtggctat 1550
gacttgtatg aaaacgacaa tgctgcctgg gactatgaca atggcatata 1600
ctccacacag atgtacactc agagagtaca gcaaatttta gcttcccata 1650
accccacaaa gcctatattt ttatatactg cctatcaagc tgttcattca 1700
ccactgcaag ctcctggcag gtatttcgaa cactaccgat ccattatcaa 1750
cataaacagg agaagatatg ctgccccatg ttcctgctta gatgaagcaa 1800
tcaacaacgt gacattggct ctaaagactt atggtttcta taacaacagc 1850
attatcatt actttcaga taatggtggc cagctacgg caggagggag 1900
taactggcct ctcagaggta gcaaaggaac atattggaa ggagggatcc 1950
ggctgttagg ctgtgcacat agccacttc tgaaaaacaa gggAACAGTG 2000
tgtaaggaac ttgtgcacat cactgactgg tacccactc tcatttcact 2050
ggctgaagga cagattgtatg aggacattca actagatggc tatgatatct 2100
gggagaccat aagtggggat cttcgctcac cccgagtaga tattttgcat 2150
aacattgacc cctatacacc aaggcaaaaa atggctcctg ggcagcaggc 2200
tatggatct ggaacactgc aatccagtca gccatcagag tgcagcactg 2250
gaaattgctt acaggaaatc ctggctacag cgactgggtc cccccctcagt 2300
cttcagcaa cctgggaccg aaccgggtggc acaatgaacg gatcaccttg 2350
tcaactggca aaagtgtatg gctttcaac atcacagccg acccatatga 2400
gagggtggac ctatctaaca ggtatccagg aatcgtgaag aagctcctac 2450
ggaggctctc acagttcaac aaaactgcag tgccggtcag gtatcccccc 2500
aaagacccca gaagtaaccc taggctcaat ggaggggtct ggggaccatg 2550
gtataaagag gaaaccaaga aaaagaagcc aagcaaaaaat caggctgaga 2600
aaaagcaaaa gaaaagcaaa aaaaagaaga agaaacagca gaaagcagtc 2650
tcaggtaaac cagcaaattt ggctcgataa tatcgctggc ctaagcgtca 2700

ggcttgcatgctgtgc cactccagag acttctgccca cctggccgccc 2750
acactgaaaa ctgtcctgct cagtgccaag gtgctactct tgcaaggccac 2800
acttagagag agtggagatg tttatttctc tcgctccctt agaaaacgtg 2850
gtgagtcctg agttccactg ctgtgcttca gtcaactgac caaacactgc 2900
tttgaattat aggaggagaa caataaccta ccatccgcaa gcatgctaat 2950
ttgatggaag ttacagggta gcatgattaa aactaccttt gataaattac 3000
agtcaaagat tgtgtcacct caaaggcctt gaagaatata ttttcttggt 3050
gaattttgt atgtctgtca tatgacactt gggttttta attaattcta 3100
ttttatatat ataaatatat gtttcttttc ctgtgaaaag ctgttttct 3150
cacatgtgaa cagcttgcac ctcattttac catgcgtgag ggaatggcaa 3200
ataagaatgt ttgagcacac tgcccacaat gaatgtaact attttctaaa 3250
cactttacta gaagaacatt tcagtataaa aaacctaatt tatttttaca 3300
gaaaaatatt ttgttgttt tataaaaagt tatgcaaatg acttttattt 3350
ttatccctg cataccatta gaagaatttt atttcatttc ttcaaatttat 3400
caagcactgt aatactataa attaatgtaa tactgtgtga attcagacta 3450
taaaaaacat cattcagaaa actttataat cgtcattgtt caatcaagat 3500
tttgaatgta ataagatgaa tatattcctt acaaattact tggaaattca 3550
atgtttgtgc agagttgaga caactttatt gtttctatca taaactattt 3600
atgtatctta attattaaaa tgatttactt tatggcacta gaaaatttac 3650
tgtggcttt ctgatctaac ttctagctaa aattgtatca ttggccttaa 3700
aaaataaaaaa tctttactaa taggcaattt aaggaatggt ttgctaacaa 3750
ccacagtaat ataatatgtat tttacagata gatgcttccc cttggctatg 3800
acatggagaa agattttccc ataataataa ctaatattta tatttagttt 3850
gtgcaaaact agttgcgggtt tttcccattt aaagtaataa ccttactctt 3900
atacaaagtg gacactgtgg ggagatacag agaaatggaa gatacggatc 3950
ctgcctggag tagtaacct tgcttgaaa ccccacatgc aaacgtcatg 4000
aggagaatta aaggagttt atcagtaatg aagtttatca tgggtcatca 4050
atgagcatag attgggtgtgg atccctgtaga ccctgggttt ttctttgaag 4100

tgccctctcc taatgcagag gccttgaagc ttacagtata cactgaaaa 4150
gtcacagata gctagaatta tgatcttga agttataact gtgatctgaa 4200
aatgtgtgtg gtggtatgac agcataccat taaatacatt tacatcacag 4250
ctcaaaggac tgtgatataa tccattata tcacaactca aaggacttg 4300
atataatcca tttatatcac agtcacagt ttctgaaaat gtataaaaga 4350
atctataatc tagtactgaa attactaaat tggtaagat gatttaatg 4400
attttaattt taacatTTT tttctagaat atatggctcc attttatttt 4450
atagtgtaaa gttgtatttc ctaaagttt tgTTTgtcg acagtatctt 4500
ttaaatgagt cttaaaaata aaggcatatt gttcatgttt aaaaaaaaaa 4550
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 4600
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 4649

<210> 114
<211> 515
<212> PRT
<213> Homo sapiens

<400> 114
Met Ala Pro Arg Gly Cys Ala Gly His Pro Pro Pro Pro Ser Pro
1 5 10 15
Gln Ala Cys Val Cys Pro Gly Lys Met Leu Ala Met Gly Ala Leu
20 25 30
Ala Gly Phe Trp Ile Leu Cys Leu Leu Thr Tyr Gly Tyr Leu Ser
35 40 45
Trp Gly Gln Ala Leu Glu Glu Glu Glu Gly Ala Leu Leu Ala
50 55 60
Gln Ala Gly Glu Lys Leu Glu Pro Ser Thr Thr Ser Thr Ser Gln
65 70 75
Pro His Leu Ile Phe Ile Leu Ala Asp Asp Gln Gly Phe Arg Asp
80 85 90
Val Gly Tyr His Gly Ser Glu Ile Lys Thr Pro Thr Leu Asp Lys
95 100 105
Leu Ala Ala Glu Gly Val Lys Leu Glu Asn Tyr Tyr Val Gln Pro
110 115 120
Ile Cys Thr Pro Ser Arg Ser Gln Phe Ile Thr Gly Lys Tyr Gln
125 130 135
Ile His Thr Gly Leu Gln His Ser Ile Ile Arg Pro Thr Gln Pro
140 145 150

Asn Cys Leu Pro Leu Asp Asn Ala Thr Leu Pro Gln Lys Leu Lys
155 160 165

Glu Val Gly Tyr Ser Thr His Met Val Gly Lys Trp His Leu Gly
170 175 180

Phe Asn Arg Lys Glu Cys Met Pro Thr Arg Arg Gly Phe Asp Thr
185 190 195

Phe Phe Gly Ser Leu Leu Gly Ser Gly Asp Tyr Tyr Thr His Tyr
200 205 210

Lys Cys Asp Ser Pro Gly Met Cys Gly Tyr Asp Leu Tyr Glu Asn
215 220 225

Asp Asn Ala Ala Trp Asp Tyr Asn Gly Ile Tyr Ser Thr Gln
230 235 240

Met Tyr Thr Gln Arg Val Gln Gln Ile Leu Ala Ser His Asn Pro
245 250 255

Thr Lys Pro Ile Phe Leu Tyr Thr Ala Tyr Gln Ala Val His Ser
260 265 270

Pro Leu Gln Ala Pro Gly Arg Tyr Phe Glu His Tyr Arg Ser Ile
275 280 285

Ile Asn Ile Asn Arg Arg Arg Tyr Ala Ala Met Leu Ser Cys Leu
290 295 300

Asp Glu Ala Ile Asn Asn Val Thr Leu Ala Leu Lys Thr Tyr Gly
305 310 315

Phe Tyr Asn Asn Ser Ile Ile Ile Tyr Ser Ser Asp Asn Gly Gly
320 325 330

Gln Pro Thr Ala Gly Gly Ser Asn Trp Pro Leu Arg Gly Ser Lys
335 340 345

Gly Thr Tyr Trp Glu Gly Gly Ile Arg Ala Val Gly Phe Val His
350 355 360

Ser Pro Leu Leu Lys Asn Lys Gly Thr Val Cys Lys Glu Leu Val
365 370 375

His Ile Thr Asp Trp Tyr Pro Thr Leu Ile Ser Leu Ala Glu Gly
380 385 390

Gln Ile Asp Glu Asp Ile Gln Leu Asp Gly Tyr Asp Ile Trp Glu
395 400 405

Thr Ile Ser Glu Gly Leu Arg Ser Pro Arg Val Asp Ile Leu His
410 415 420

Asn Ile Asp Pro Tyr Thr Pro Arg Gln Lys Met Ala Pro Gly Gln
425 430 435

Gln Ala Met Gly Ser Gly Thr Leu Gln Ser Ser Gln Pro Ser Glu
440 445 450

Cys Ser Thr Gly Asn Cys Leu Gln Glu Ile Leu Ala Thr Ala Thr
455 460 465

Gly Ser Pro Leu Ser Leu Ser Ala Thr Trp Asp Arg Thr Gly Gly
470 475 480

Thr Met Asn Gly Ser Pro Cys Gln Leu Ala Lys Val Tyr Gly Phe
485 490 495

Ser Thr Ser Gln Pro Thr His Met Arg Gly Trp Thr Tyr Leu Thr
500 505 510

Gly Ile Gln Glu Ser
515

<210> 115

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 115

cccaaccaa ctgttacctt ctgg 24

<210> 116

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 116

ctctctgagt gtacatctgt gtgg 24

<210> 117

<211> 53

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<220>

<221> unsure

<222> 33

<223> unknown base

<400> 117

gccaccctac ctcagaaact gaaggaggtt ggntattcaa cgcatatgg 50

cg^g 53

<210> 118
<211> 2260
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 2009, 2026, 2033, 2055, 2074, 2078, 2086
<223> unknown base

<400> 118
cg^gacgcgtg ggtgcgagtg gagcggagga cccgagcggc tgaggagaga 50
ggaggcggcg gcttagctgc tacggggtcc ggccggcgcc ctcccgaggg 100
gggctcagga ggaggaagga ggaccgcgtgc gagaatgcct ctgccctgga 150
gccttgcgtcccgcgtctg ctctcctggg tggcaggtgg tttcgaaac 200
gcggccagtgc aaggcatca cgggttgtta gcatcgac gtcagcctgg 250
ggtctgtcac tatgaaacta aactggcctg ctgctacggc tggagaagaa 300
acagcaaggg agtctgtgaa gctacatgcg aacctggatg taagtttgg 350
gagtgcgtgg gaccaaacaa atgcagatgc tttccaggat acaccggaa 400
aacctgcagt caagatgtga atgagtgtgg aatgaaaccc cggccatgcc 450
aacacagatg tgtgaataaca cacggaaagct acaagtgc ttgcctcagt 500
ggccacatgc tcataccaga tgctacgtgt gtgaactcta ggacatgtgc 550
catgataaac tgtcagtaca gctgtgaaga cacagaagaa gggccacagt 600
gcctgtgtcc atcctcagga ctccgcctgg ccccaaatgg aagagactgt 650
ctagatattg atgaatgtgc ctctggtaaa gtcatactgc cctacaatcg 700
aagatgtgtg aacacatttg gaagctacta ctgcaaatgt cacattgg 750
tcgaactgca atatatcagt ggacgatatg actgtataga tataaatgaa 800
tgtactatgg atagccatac gtgcagccac catgccaatt gcttcaatac 850
ccaagggtcc ttcaagtgtta aatgcaagca gggatataaa ggcaatggac 900
ttcgggtttc tgctatccct gaaaattctg tgaaggaagt cctcagagca 950
cctggtagcca tcaaagacag aatcaagaag ttgcttgctc aaaaaacag 1000
catgaaaaaag aaggcaaaaa taaaaatgt tacccagaa cccaccagga 1050
ctcctacccc taaggtgaac ttgcagccct tcaactatga agagatagtt 1100

tccagaggcg ggaactctca tggaggtaaa aaaggaaatg aagagaaatg 1150
aaagagggc ttgaggatga gaaaagagaa gagaaagccc tgaagaatga 1200
catagaggag cgaaggcctgc gaggagatgt gttttccct aaggtgaatg 1250
aagcaggtga attcggcctg attctggtcc aaaggaaagc gctaacttcc 1300
aaacttggAAC ataaagattt aaatatctcg gttgactgca gcttcaatca 1350
tgggatctgt gactggAAAC aggatagaga agatgatttt gactggaatc 1400
ctgctgatcg agataatgct attggcttct atatggcagt tccggccttg 1450
gcaggtcaca agaaagacat tggccgattg aaacttctcc tacctgacct 1500
gcaaccccaa agcaacttct gtttgctctt tgattaccgg ctggccggag 1550
acaaagtcgg gaaacttcga gtgttgtga aaaacagtaa caatgccctg 1600
gcatgggaga agaccacgag tgaggatgaa aagtggAAG cagggAAAAT 1650
tcagttgtat caaggaactg atgctaccaa aagcatcatt tttgaagcag 1700
aacgtggcaa gggcaaaacc ggcgaaatcg cagtgatgg cgtcttgctt 1750
gtttcaggct tatgtccaga tagcctttta tctgtggatg actgaatgtt 1800
actatctta tatttgactt tgtatgtca tagccctggtt tttttgatata 1850
tgcatcatag gacctctggc attttagaat tactagctga aaaattgtaa 1900
tgtaccaaca gaaatattat tgtaagatgc ctttctgtta taagatatgc 1950
caatatttgc tttaaatatc atatcactgt atcttctcag tcatttctga 2000
atctttccnc attatattat aaaatntgga aangtcagtt tatctccct 2050
cctcngtata tctgatttgt atangtangt tgatngcctt ctctctacaa 2100
catttctaga aaatagaaaa aaaagcacag agaaatgttt aactgtttga 2150
ctcttatgat acttcttgaa aactatgaca tcaaagatag actttgcct 2200
aagtggctta gctgggtctt tcatagccaa acttgtatata ttaattctt 2250
gtaataataa 2260

<210> 119
<211> 338
<212> PRT
<213> Homo sapiens

<400> 119
Met Pro Leu Pro Trp Ser Leu Ala Leu Pro Leu Leu Ser Trp
1 5 10 15

Val Ala Gly Gly Phe Gly Asn Ala Ala Ser Ala Arg His His Gly
20 25 30

Leu Leu Ala Ser Ala Arg Gln Pro Gly Val Cys His Tyr Gly Thr
35 40 45

Lys Leu Ala Cys Cys Tyr Gly Trp Arg Arg Asn Ser Lys Gly Val
50 55 60

Cys Glu Ala Thr Cys Glu Pro Gly Cys Lys Phe Gly Glu Cys Val
65 70 75

Gly Pro Asn Lys Cys Arg Cys Phe Pro Gly Tyr Thr Gly Lys Thr
80 85 90

Cys Ser Gln Asp Val Asn Glu Cys Gly Met Lys Pro Arg Pro Cys
95 100 105

Gln His Arg Cys Val Asn Thr His Gly Ser Tyr Lys Cys Phe Cys
110 115 120

Leu Ser Gly His Met Leu Met Pro Asp Ala Thr Cys Val Asn Ser
125 130 135

Arg Thr Cys Ala Met Ile Asn Cys Gln Tyr Ser Cys Glu Asp Thr
140 145 150

Glu Glu Gly Pro Gln Cys Leu Cys Pro Ser Ser Gly Leu Arg Leu
155 160 165

Ala Pro Asn Gly Arg Asp Cys Leu Asp Ile Asp Glu Cys Ala Ser
170 175 180

Gly Lys Val Ile Cys Pro Tyr Asn Arg Arg Cys Val Asn Thr Phe
185 190 195

Gly Ser Tyr Tyr Cys Lys Cys His Ile Gly Phe Glu Leu Gln Tyr
200 205 210

Ile Ser Gly Arg Tyr Asp Cys Ile Asp Ile Asn Glu Cys Thr Met
215 220 225

Asp Ser His Thr Cys Ser His His Ala Asn Cys Phe Asn Thr Gln
230 235 240

Gly Ser Phe Lys Cys Lys Cys Lys Gln Gly Tyr Lys Gly Asn Gly
245 250 255

Leu Arg Cys Ser Ala Ile Pro Glu Asn Ser Val Lys Glu Val Leu
260 265 270

Arg Ala Pro Gly Thr Ile Lys Asp Arg Ile Lys Lys Leu Leu Ala
275 280 285

His Lys Asn Ser Met Lys Lys Lys Ala Lys Ile Lys Asn Val Thr
290 295 300

Pro Glu Pro Thr Arg Thr Pro Thr Pro Lys Val Asn Leu Gln Pro
305 310 315

Phe Asn Tyr Glu Glu Ile Val Ser Arg Gly Gly Asn Ser His Gly
320 325 330

Gly Lys Lys Gly Asn Glu Glu Lys
335

<210> 120
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 120
cctcagtggc cacatgctca tg 22

<210> 121
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 121
ggctgcacgt atggctatcc atag 24

<210> 122
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 122
gataaaactgt cagtacagct gtgaagacac agaagaaggg ccacagtgcc 50

<210> 123
<211> 1199
<212> DNA
<213> Homo sapiens

<400> 123
gggagctgct gctgtggctg ctggtgctgt gcgcgcgtgct cctgctcttg 50
gtgcagctgc tgcgccttcct gagggctgac ggcgcacctga cgctactatg 100
ggcccgagtgg caggagcacac gcccagaatg ggagctgact gatatggtgg 150
tgtgggtgac tggagcctcg agtggaaattg gtgaggagct ggcttaccag 200
ttgtctaaac taggagtttc tcttgtgctg tcagccagaa gagtgcatga 250

gctggaaagg gtgaaaagaa gatgcctaga gaatggcaat taaaaagaaa 300
aagatatact tgtttgccc cttgacactga ccgacactgg ttcccatgaa 350
gcggctacca aagctgtct ccaggagttt ggtagaatcg acattctgg 400
caacaatggt ggaatgtccc agcgttctct gtgcatggat accagcttgg 450
atgtctacag aaagctaata gagcttaact acttagggac ggtgtccttg 500
acaaaaatgtg ttctgcctca catgatcgag aggaagcaag gaaagattgt 550
tactgtgaat agcatcctgg gtatcatatc tgtacctt tccattggat 600
actgtgctag caagcatgct ctccggggtt ttttaatgg cttcgaaca 650
gaacttgcca cataccagg tataatagtt tctaacattt gcccaggacc 700
tgtgcaatca aatattgtgg agaattccct agctggagaa gtcacaaaga 750
ctataggcaa taatggagac cagtcccaca agatgacaac cagtcgttgt 800
gtgcggctga tgttaatcag catggccaat gattgaaag aagtttggat 850
ctcagaacaa ccttcttgt tagtaacata tttgtggcaa tacatgccaa 900
cctggccctg gtggataacc aacaagatgg ggaagaaaag gattgagaac 950
tttaagagtg gtgtggatgc agactcttct tattttaaaa tctttaagac 1000
aaaacatgac tgaaaagagc acctgtactt ttcaagccac tggagggaga 1050
aatggaaaac atgaaaacag caatcttctt atgcttctga ataatcaaag 1100
actaatttgt gattttactt tttaatagat atgactttgc ttccaacatg 1150
gaatgaaata aaaaataaaat aataaaagat tgccatgaat cttgcaaaa 1199

<210> 124
<211> 289
<212> PRT
<213> Homo sapiens

<400> 124
Met Val Val Trp Val Thr Gly Ala Ser Ser Gly Ile Gly Glu Glu
1 5 10 15
Leu Ala Tyr Gln Leu Ser Lys Leu Gly Val Ser Leu Val Leu Ser
20 25 30
Ala Arg Arg Val His Glu Leu Glu Arg Val Lys Arg Arg Cys Leu
35 40 45
Glu Asn Gly Asn Leu Lys Glu Lys Asp Ile Leu Val Leu Pro Leu
50 55 60

Asp Leu Thr Asp Thr Gly Ser His Glu Ala Ala Thr Lys Ala Val
65 70 75

Leu Gln Glu Phe Gly Arg Ile Asp Ile Leu Val Asn Asn Gly Gly
80 85 90

Met Ser Gln Arg Ser Leu Cys Met Asp Thr Ser Leu Asp Val Tyr
95 100 105

Arg Lys Leu Ile Glu Leu Asn Tyr Leu Gly Thr Val Ser Leu Thr
110 115 120

Lys Cys Val Leu Pro His Met Ile Glu Arg Lys Gln Gly Lys Ile
125 130 135

Val Thr Val Asn Ser Ile Leu Gly Ile Ile Ser Val Pro Leu Ser
140 145 150

Ile Gly Tyr Cys Ala Ser Lys His Ala Leu Arg Gly Phe Phe Asn
155 160 165

Gly Leu Arg Thr Glu Leu Ala Thr Tyr Pro Gly Ile Ile Val Ser
170 175 180

Asn Ile Cys Pro Gly Pro Val Gln Ser Asn Ile Val Glu Asn Ser
185 190 195

Leu Ala Gly Glu Val Thr Lys Thr Ile Gly Asn Asn Gly Asp Gln
200 205 210

Ser His Lys Met Thr Thr Ser Arg Cys Val Arg Leu Met Leu Ile
215 220 225

Ser Met Ala Asn Asp Leu Lys Glu Val Trp Ile Ser Glu Gln Pro
230 235 240

Phe Leu Leu Val Thr Tyr Leu Trp Gln Tyr Met Pro Thr Trp Ala
245 250 255

Trp Trp Ile Thr Asn Lys Met Gly Lys Lys Arg Ile Glu Asn Phe
260 265 270

Lys Ser Gly Val Asp Ala Asp Ser Ser Tyr Phe Lys Ile Phe Lys
275 280 285

Thr Lys His Asp

<210> 125
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 125

gcaatgaact gggagctgc 19
<210> 126
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 126
ctgtgaatag catcctggg 19

<210> 127
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 127
cttttcaagc cactggaggg 20

<210> 128
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 128
ctgttagacat ccaagctggc atcc 24

<210> 129
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 129
aagagtctgc atccacaccca ctc 23

<210> 130
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 130
acctgacgct actatgggcc gagtgccagg gacgacgccc agaatg 46

<210> 131
<211> 2365
<212> DNA
<213> Homo sapiens

<400> 131
gcgacgtgg caccgccatc agctgttcgc gcgtttctc ctccaggtgg 50
ggcagggggtt tcgggctggt ggagcatgtg ctggacagg acagcatcct 100
caatcaatcc aacagcatat tcggttgcat cttctacaca ctacagctat 150
tgttaggttg cctgcggaca cgctgggcct ctgtcctgat gctgctgagc 200
tccctggtgt ctctcgctgg ttctgtctac ctggcctgga tcctgttctt 250
cgtgctctat gatttctgca ttgtttgtat caccacctat gctatcaacg 300
tgagcctgat gtggctcagt ttccggaagg tccaagaacc ccagggcaag 350
gctaagaggc actgagccct caacccaagc caggctgacc tcatactgctt 400
tgctttggtc ttcaagccgc tcagcgtgcc tgtggacagc gtggccccgg 450
cccccccaag cctcaggagg gcaacacagt ccctggcgag tggccctggc 500
aggccagtgt gaggaggcaa ggagcccaca tctgcagcgg ctccctggtg 550
gcagacacccctt gggccctcac tgctgcccac tgcttgaaa aggccagcgc 600
aacagaactg aattcctggt cagtggctct gggttctctg cagcgtgagg 650
gactcagccc tggggccgaa gaggtggggg tggctgccct gcagttgccc 700
agggcctata accactacag ccagggctca gacctggccc tgctgcagct 750
cgcccacccc acgacccaca caccctctg cctggcccaag cccgcccatac 800
gtttccctt tggagcctcc tgctggcca ctggctggta tcaggacacc 850
agtgtatgctc ctgggaccct acgcaatctg cgcctgcgtc tcatacgtcg 900
ccccacatgt aactgtatct acaaccagct gcaccagcga cacctgtcca 950
acccggcccg gcctgggatg ctatgtgggg gccccagcc tggggtgccag 1000
ggccctgtc agggagattc cggggccct gtgctgtgcc tcgagcctga 1050
cggacactgg gttcaggctg gcatcatcag ctttgcatac agctgtgccc 1100
aggaggacgc tcctgtgctg ctgaccaaca cagctgctca cagttcctgg 1150
ctgcaggctc gagttcagggg ggcagcttc ctggccaga gcccagagac 1200
cccgagatg agtgtatgagg acagctgtgt agcctgtgga tccttgagga 1250
cagcaggtcc ccaggcagga gcaccctccc catggccctg ggaggccagg 1300

ctgatgcacc agggacagct ggcctgtggc ggagccctgg tgcagagga 1350
ggcggtgcta actgctgccc actgcttcat tggcgccag gccccagagg 1400
aatggagcgt agggctgggg accagaccgg aggagtgggg cctgaagcag 1450
ctcatcctgc atggagccta cacccaccct gaggggggct acgacatggc 1500
cctcctgctg ctggcccagc ctgtacact gggagccagc ctgcggcccc 1550
tctgcctgcc ctatcctgac caccacctgc ctgatgggga gcgtggctgg 1600
gttctggac gggcccgccc aggagcagggc atcagctccc tccagacagt 1650
gcccgtgacc ctcctggggc cttagggcctg cagccggctg catgcagctc 1700
ctgggggtga tggcagccct attctgccc ggttgtgtg taccagtgt 1750
gtgggtgagc tgcccagctg tgagggcctg tctggggcac cactggtgca 1800
tgaggtgagg ggcacatggt tcctggccgg gctgcacagc ttggagatg 1850
cttgccaagg ccccgccagg ccggcggtct tcaccgcgtc ccctgcctat 1900
gaggactggg tcagcagttt ggactggcag gtctacttcg ccgaggaacc 1950
agagcccgag gctgagccctg gaagctgcct ggccaacata agccaaccaa 2000
ccagctgctg acaggggacc tggccattct caggacaaga gaatgcagggc 2050
aggcaaatgg cattactgcc cctgtcctcc ccaccctgtc atgtgtgatt 2100
ccaggcacca gggcaggccc agaagcccgag cagctgtggg aaggaacctg 2150
cctggggcca caggtgcccc ctccccaccc tgcaggacag gggtgtctgt 2200
ggacactccc acacccaaact ctgctaccaa gcaggcggtct cagcttcct 2250
cctccttac tcttcagat acaatcacgc cagccacgtt gtttgaaaa 2300
tttctttttt tggggggcag cagtttcct ttttttaaac ttaaataaat 2350
tgttacaaaa taaaa 2365

<210> 132
<211> 571
<212> PRT
<213> Homo sapiens

<400> 132
Met Leu Leu Ser Ser Leu Val Ser Leu Ala Gly Ser Val Tyr Leu
1 5 10 15
Ala Trp Ile Leu Phe Phe Val Leu Tyr Asp Phe Cys Ile Val Cys
20 25 30

Ile Thr Thr Tyr Ala Ile Asn Val Ser Leu Met Trp Leu Ser Phe
35 40 45

Arg Lys Val Gln Glu Pro Gln Gly Lys Ala Lys Arg His Gly Asn
50 55 60

Thr Val Pro Gly Glu Trp Pro Trp Gln Ala Ser Val Arg Arg Gln
65 70 75

Gly Ala His Ile Cys Ser Gly Ser Leu Val Ala Asp Thr Trp Val
80 85 90

Leu Thr Ala Ala His Cys Phe Glu Lys Ala Ala Ala Thr Glu Leu
95 100 105

Asn Ser Trp Ser Val Val Leu Gly Ser Leu Gln Arg Glu Gly Leu
110 115 120

Ser Pro Gly Ala Glu Glu Val Gly Val Ala Ala Leu Gln Leu Pro
125 130 135

Arg Ala Tyr Asn His Tyr Ser Gln Gly Ser Asp Leu Ala Leu Leu
140 145 150

Gln Leu Ala His Pro Thr Thr His Thr Pro Leu Cys Leu Pro Gln
155 160 165

Pro Ala His Arg Phe Pro Phe Gly Ala Ser Cys Trp Ala Thr Gly
170 175 180

Trp Asp Gln Asp Thr Ser Asp Ala Pro Gly Thr Leu Arg Asn Leu
185 190 195

Arg Leu Arg Leu Ile Ser Arg Pro Thr Cys Asn Cys Ile Tyr Asn
200 205 210

Gln Leu His Gln Arg His Leu Ser Asn Pro Ala Arg Pro Gly Met
215 220 225

Leu Cys Gly Gly Pro Gln Pro Gly Val Gln Gly Pro Cys Gln Gly
230 235 240

Asp Ser Gly Gly Pro Val Leu Cys Leu Glu Pro Asp Gly His Trp
245 250 255

Val Gln Ala Gly Ile Ile Ser Phe Ala Ser Ser Cys Ala Gln Glu
260 265 270

Asp Ala Pro Val Leu Leu Thr Asn Thr Ala Ala His Ser Ser Trp
275 280 285

Leu Gln Ala Arg Val Gln Gly Ala Ala Phe Leu Ala Gln Ser Pro
290 295 300

Glu Thr Pro Glu Met Ser Asp Glu Asp Ser Cys Val Ala Cys Gly
305 310 315

Ser Leu Arg Thr Ala Gly Pro Gln Ala Gly Ala Pro Ser Pro Trp
320 325 330

Pro Trp Glu Ala Arg Leu Met His Gln Gly Gln Leu Ala Cys Gly
335 340 345

Gly Ala Leu Val Ser Glu Glu Ala Val Leu Thr Ala Ala His Cys
350 355 360

Phe Ile Gly Arg Gln Ala Pro Glu Glu Trp Ser Val Gly Leu Gly
365 370 375

Thr Arg Pro Glu Glu Trp Gly Leu Lys Gln Leu Ile Leu His Gly
380 385 390

Ala Tyr Thr His Pro Glu Gly Gly Tyr Asp Met Ala Leu Leu Leu
395 400 405

Leu Ala Gln Pro Val Thr Leu Gly Ala Ser Leu Arg Pro Leu Cys
410 415 420

Leu Pro Tyr Pro Asp His His Leu Pro Asp Gly Glu Arg Gly Trp
425 430 435

Val Leu Gly Arg Ala Arg Pro Gly Ala Gly Ile Ser Ser Leu Gln
440 445 450

Thr Val Pro Val Thr Leu Leu Gly Pro Arg Ala Cys Ser Arg Leu
455 460 465

His Ala Ala Pro Gly Gly Asp Gly Ser Pro Ile Leu Pro Gly Met
470 475 480

Val Cys Thr Ser Ala Val Gly Glu Leu Pro Ser Cys Glu Gly Leu
485 490 495

Ser Gly Ala Pro Leu Val His Glu Val Arg Gly Thr Trp Phe Leu
500 505 510

Ala Gly Leu His Ser Phe Gly Asp Ala Cys Gln Gly Pro Ala Arg
515 520 525

Pro Ala Val Phe Thr Ala Leu Pro Ala Tyr Glu Asp Trp Val Ser
530 535 540

Ser Leu Asp Trp Gln Val Tyr Phe Ala Glu Glu Pro Glu Pro Glu
545 550 555

Ala Glu Pro Gly Ser Cys Leu Ala Asn Ile Ser Gln Pro Thr Ser
560 565 570

Cys

<210> 133

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 133
cctgtgctgt gcctcgagcc tgac 24

<210> 134

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 134
tggggcagca gtttagcaccg cctc 24

<210> 135

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 135
ggctggcatc atcagcttg catcaagctg tgcccaggag gacgc 45

<210> 136

<211> 1998

<212> DNA

<213> Homo sapiens

<400> 136
cgggcccggcc cccggccccca ttccggccgg gcctcgctgc ggccggcgact 50
gagccaggct gggccgcgtc cctgagtccc agagtcggcg cggcgcggca 100
ggggcagcct tccaccacgg ggagcccgac tgtcagccgc ctcacaggaa 150
gatgctgcgt cggcggggca gccctggcat gggtgtgcat gtgggtgcag 200
ccctgggagc actgtggttc tgcctcacag gagccctgga ggtccaggtc 250
cctgaagacc cagtggtggc actgggtggc accgatgcca ccctgtgctg 300
ctccttctcc cctgagcctg gcttcagcct ggcacagctc aacctcatct 350
ggcagctgac agataccaaa cagctggtgc acagcttgc tgagggccag 400
gaccaggcgca ggcgcctatgc caaccgcacg gccctttcc cggacctgct 450
ggcacaggcgca aacgcattccc tgaggctgca ggcgcgtgcgt gtggcggacg 500
agggcagctt cacctgcttc gtgagcatcc gggatttcgg cagcgctgcc 550

gtcagcctgc aggtggccgc tccctactcg aagcccagca tgaccctgga 600
gcccaacaag gacctgcggc caggggacac ggtgaccatc acgtgctcca 650
gctaccaggc ctaccctgag gctgaggtgt tctggcagga tgggcaggg 700
gtgcccctga ctggcaacgt gaccacgtcg cagatggcca acgagcaggg 750
cttggttgat gtgcacagcg tcctgcgggt ggtgctgggt gcgaatggca 800
cctacagctg cctggtgcbc aaccccggtgc tgcaagcagga tgcgcacrcgc 850
tctgtcacca tcacagggca gcctatgaca ttccccccag agggcctgtg 900
ggtgaccgtg gggctgtctg tctgtctcat tgcaactgctg gtggccctgg 950
cttcgtgtg ctggagaaaat caaacaga gctgtgagga ggagaatgca 1000
ggagctgagg accaggatgg ggagggagaa ggctccaaga cagccctgca 1050
gcctctgaaa cactctgaca gcaaagaaga tggatggacaa gaaatagcct 1100
gaccatgagg accagggagc tgctaccctt ccctacagct cctaccctct 1150
ggctgcaatg gggctgcact gtgagccctg ccccaacag atgcattcctg 1200
ctctgacagg tgggctcctt ctccaaagga tgcgatacac agaccactgt 1250
gcagccttat ttctccaatg gacatgattc ccaagtcatc ctgctgcctt 1300
ttttcttata gacacaatga acagaccacc cacaacctta gttctctaag 1350
tcatcctgcc tgctgcctta tttcacagta catacatttc ttagggacac 1400
agtacactga ccacatcacc accctcttct tccagtgctg cgtggaccat 1450
ctggctgcct ttttctcca aaagatgcaa tattcagact gactgacccc 1500
ctgccttatt tcaccaaaga cacgatgcat agtcaccccg gccttgcattc 1550
tccaatggcc gtgatacact agtgcattg ttcagccctg cttccacctg 1600
catagaatct tttcttctca gacagggaca gtgcggcctc aacatctcct 1650
ggagtctaga agctgtttcc tttccctcc ttcctccctg ccccaagtga 1700
agacagggca gggcoaggaa tgctttgggg acaccgaggg gactgcccc 1750
caccccccacc atggtgctat tctggggctg gggcagtctt ttcctggctt 1800
gcctctggcc agctcctggc ctctggtaga gtgagacttc agacgttctg 1850
atgccttccg gatgtcatct ctccctgccc caggaatgga agatgtgagg 1900
acttctaatt taaatgtggg actcggaggg attttgtaaa ctgggggtat 1950

attttgggaa aaataaatgt ctttgtaaaa aaaaaaaaaa aaaaaaaaa 1998

<210> 137

<211> 316

<212> PRT

<213> Homo sapiens

<220>

<221> unsure

<222> 233

<223> unknown amino acid

<400> 137

Met Leu Arg Arg Arg Gly Ser Pro Gly Met Gly Val His Val Gly
1 5 10 15

Ala Ala Leu Gly Ala Leu Trp Phe Cys Leu Thr Gly Ala Leu Glu
20 25 30

Val Gln Val Pro Glu Asp Pro Val Val Ala Leu Val Gly Thr Asp
35 40 45

Ala Thr Leu Cys Cys Ser Phe Ser Pro Glu Pro Gly Phe Ser Leu
50 55 60

Ala Gln Leu Asn Leu Ile Trp Gln Leu Thr Asp Thr Lys Gln Leu
65 70 75

Val His Ser Phe Ala Glu Gly Gln Asp Gln Gly Ser Ala Tyr Ala
80 85 90

Asn Arg Thr Ala Leu Phe Pro Asp Leu Leu Ala Gln Gly Asn Ala
95 100 105

Ser Leu Arg Leu Gln Arg Val Arg Val Ala Asp Glu Gly Ser Phe
110 115 120

Thr Cys Phe Val Ser Ile Arg Asp Phe Gly Ser Ala Ala Val Ser
125 130 135

Leu Gln Val Ala Ala Pro Tyr Ser Lys Pro Ser Met Thr Leu Glu
140 145 150

Pro Asn Lys Asp Leu Arg Pro Gly Asp Thr Val Thr Ile Thr Cys
155 160 165

Ser Ser Tyr Gln Gly Tyr Pro Glu Ala Glu Val Phe Trp Gln Asp
170 175 180

Gly Gln Gly Val Pro Leu Thr Gly Asn Val Thr Thr Ser Gln Met
185 190 195

Ala Asn Glu Gln Gly Leu Phe Asp Val His Ser Val Leu Arg Val
200 205 210

Val Leu Gly Ala Asn Gly Thr Tyr Ser Cys Leu Val Arg Asn Pro
215 220 225

Val Leu Gln Gln Asp Ala His Xaa Ser Val Thr Ile Thr Gly Gln
230 235 240

Pro Met Thr Phe Pro Pro Glu Ala Leu Trp Val Thr Val Gly Leu
245 250 255

Ser Val Cys Leu Ile Ala Leu Leu Val Ala Leu Ala Phe Val Cys
260 265 270

Trp Arg Lys Ile Lys Gln Ser Cys Glu Glu Glu Asn Ala Gly Ala
275 280 285

Glu Asp Gln Asp Gly Glu Gly Glu Ser Lys Thr Ala Leu Gln
290 295 300

Pro Leu Lys His Ser Asp Ser Lys Glu Asp Asp Gly Gln Glu Ile
305 310 315

Ala

<210> 138

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 138

ctggcacagc tcaacacctat ctgg 24

<210> 139

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 139

gctgtctgtc tgtctcattt 20

<210> 140

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 140

ggacacagta tactgaccac 20

<210> 141

<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 141
tgcgaaccag gcagctgtaa gtgc 24

<210> 142
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 142
tggaagaaga gggtggtgat gtgg 24

<210> 143
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 143
cagctgacag acaccaaaca gctggtgcac agtttcaccg aaggc 45

<210> 144
<211> 2336
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1620, 1673
<223> unknown base

<400> 144
ttcgtgaccc ttgagaaaag agttggtggt aaatgtgcc a cgtcttctaa 50
gaagggggag tcctgaactt gtctgaagcc cttgtccgta agccttgaac 100
tacgttctta aatctatgaa gtcgaggagc ct ttcgctgc tttttaggg 150
acttcttcc ttgcttcagc aacatgaggc ttttcttgc gaa cgcggc 200
ttgactctgt tcgtcacttc tttgattgg gctttgatcc ctgaaccaga 250
agt gaaaatt gaagttctcc agaaggcatt catctgccat cgcaagacca 300
aaggagggga tttgatgtt g tccactatg aaggctactt agaaaaggac 350
ggctccttat ttcactccac tcacaaacat aacaatggc agcccattt 400

gtttaccctg ggcatcctgg aggctctcaa aggttggac cagggcttga 450
aaggaatgtg tgttaggagag aagagaaaagc tcatcattcc tcctgctctg 500
ggctatggaa aagaaggaaa aggtaaaatt cccccagaaa gtacactgat 550
attnaatatt gatctcctgg agattcgaaa tggaccaaga tcccatgaat 600
cattccaaga aatggatctt aatgatgact ggaaactctc taaagatgag 650
gttaaagcat atttaaagaa ggagttgaa aaacatggtg cggtggtgaa 700
tgaaaagtcat catgatgctt tggtggagga tattttgat aaagaagatg 750
aagacaaaga tgggttata tctgccagag aatttacata taaacacgt 800
gagttataga gatacatcta ccctttaat atagcactca tcttcaga 850
gagggcagtc atcttaaag aacattttat ttttatacaa tgttcttct 900
tgcttggtttt ttatTTTT tatATTTT ctgactccta ttAAAGAAC 950
cccttaggtt tctaagtacc catttcttc tgataagtta ttggaaagaa 1000
aaagctaatt ggttttgaa tagaagactt ctggacaatt tttcacttcc 1050
acagatatga agctttgttt tactttctca cttataaatt taaaatgtt 1100
caactggaa tataccacga catgagacca gttatagca caaattagca 1150
cccttatattt ctgctccctt ctatTTCTC caagtttagag gtcaacattt 1200
gaaaagcctt ttgcaatagc ccaaggcttgc ctatTTTcat gttataatga 1250
aatagtttat gtgtaactgg ctctgagctt ctgcttgagg accagagggaa 1300
aatggttttt ggacctgact tgttaatggc tactgcttta ctaaggagat 1350
gtgcaatgct gaagttagaa acaaggtaa tagccaggca tggggctca 1400
tgcctgtaat cccagcactt tgggaggctg aggccccggg atcacctgag 1450
gttgggagtt cgagaccagc ctgaccaaca cggagaaacc ctatctctac 1500
taaaaataca aagttagcccg gcgtggtgat gcgtgcctgt aatcccagct 1550
acccaggaag gctgaggcgg cagaatcact tgaacccgag gccgaggtt 1600
cggttaagccg agatcacctn cagcctggac actctgtctc gaaaaaaagaa 1650
aagaacacgg ttaataccat atnaatatgt atgcattgag acatgctacc 1700
taggacttaa gctgatgaag cttggctcct agtGattggt ggcctattat 1750
gataaaatagg acaaatcatt tatgtgtgag tttctttgtatataaaatgtat 1800

tcaatatgtt atagatgagg tagaaagtta tatttatatt caatattac 1850
ttcttaaggc tagcgaata tccttcctgg ttcttaatg ggttgtctat 1900
agtatattat actacaataa cattgtatca taagataaag tagtaaacca 1950
gtctacattt tcccatttct gtctcatcaa aaactgaagt tagctgggtg 2000
tggtggtca tgccctgtaat cccagcactt tgggggcca ggagggtgga 2050
tcacttgaga tcaggagttc aagaccagcc tggccaacat ggtgaaacct 2100
tgtctctact aaaaatacaa aaatttagcca ggcgtggtgg tgcacacac 2150
tagtcccagc tactcgggag gctgagacag gagatttgct tgaacccggg 2200
aggcgaggt tgcaagtggc caagatttg ccactgcact ccagcctggg 2250
tgacagagca agactccatc tcaaaaaaaaaaaaaa aaaaaagaag cagacctaca 2300
gcagctacta ttgaataaaat acctatcctg gatttt 2336

<210> 145
<211> 211
<212> PRT
<213> Homo sapiens

<400> 145
Met Arg Leu Phe Leu Trp Asn Ala Val Leu Thr Leu Phe Val Thr
1 5 10 15
Ser Leu Ile Gly Ala Leu Ile Pro Glu Pro Glu Val Lys Ile Glu
20 25 30
Val Leu Gln Lys Pro Phe Ile Cys His Arg Lys Thr Lys Gly Gly
35 40 45
Asp Leu Met Leu Val His Tyr Glu Gly Tyr Leu Glu Lys Asp Gly
50 55 60
Ser Leu Phe His Ser Thr His Lys His Asn Asn Gly Gln Pro Ile
65 70 75
Trp Phe Thr Leu Gly Ile Leu Glu Ala Leu Lys Gly Trp Asp Gln
80 85 90
Gly Leu Lys Gly Met Cys Val Gly Glu Lys Arg Lys Leu Ile Ile
95 100 105
Pro Pro Ala Leu Gly Tyr Gly Lys Glu Gly Lys Gly Lys Ile Pro
110 115 120
Pro Glu Ser Thr Leu Ile Phe Asn Ile Asp Leu Leu Glu Ile Arg
125 130 135
Asn Gly Pro Arg Ser His Glu Ser Phe Gln Glu Met Asp Leu Asn
140 145 150

Asp Asp Trp Lys Leu Ser Lys Asp Glu Val Lys Ala Tyr Leu Lys
155 160 165
Lys Glu Phe Glu Lys His Gly Ala Val Val Asn Glu Ser His His
170 175 180
Asp Ala Leu Val Glu Asp Ile Phe Asp Lys Glu Asp Glu Asp Lys
185 190 195
Asp Gly Phe Ile Ser Ala Arg Glu Phe Thr Tyr Lys His Asp Glu
200 205 210
Leu

<210> 146

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 146

ctttccttgc ttcagcaaca tgaggc 26

<210> 147

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 147

gcccgagagca ggaggaatga tgagc 25

<210> 148

<211> 49

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 148

gtggaacgcg gtcttgactc tgttcgtcac ttcttgatt ggggcttg 49

<210> 149

<211> 2196

<212> DNA

<213> Homo sapiens

<400> 149

aataaagctt ccttaatgtt gtatatgtct ttgaagtaca tccgtgcatt 50

tttttttagc atccaaccat tcctcccttg tagttctgc cccctcaa 100
caccctctcc cgtagcccac ccgactaaca tctcagtctc tgaaaatgca 150
cagagatgcc tggctacctc gccctgcctt cagcctcacf gggctcagtc 200
tcttttctc tttggtgcca ccaggacgga gcatggaggt cacagtacct 250
gccaccctca acgtcctcaa tggctctgac gcccgcctgc cctgcaccc 300
caactcctgc tacacagtga accacaaaca gttctccctg aactggactt 350
accaggagtg caacaactgc tctgaggaga tggctccca gttccgcatt 400
aagatcatta acctgaagct ggagcggtt caagaccgcg tggagttctc 450
agggAACCCC agcaagtacg atgtgtcggt gatgtgaga aacgtgcagc 500
cgaggatga ggggatttac aactgctaca tcatgaaccc ccctgaccgc 550
caccgtggcc atggcaagat ccatctgcag gtcctcatgg aagagcccc 600
tgagcgggac tccacggtgg ccgtgattgt ggggcctcc gtcggggct 650
tcctggctgt ggtcatcttgc tgctgatgg tggtaagtgc tgtgaggaga 700
aaaaaaagagc agaagctgag cacagatgac ctgaagaccg aggaggagg 750
caagacggac ggtgaaggca acccgatga tggcgcctt tagtgggtgg 800
ccggccctgc agcctcccgat gtcctgcctc ctccctctc cgcctgtac 850
agtgaccctg cctgctcgct ttgggtgtgc ttccctgtac ctaggacccc 900
agggccccacc tggggcctcc tgaacccccc acttcgtatc tcccacccctg 950
caccaagagt gaccactct cttccatccg agaaacctgc catgctctgg 1000
gacgtgtggg ccctggggag aggagagaaa gggctccac ctgccagtcc 1050
ctggggggag gcaggaggca catgtgaggg tccccagaga gaagggagtg 1100
ggtgtggcagg ggttagaggag gggccgctgt cacctgcctt gtgcttgct 1150
ggcagtggct tcagagagga cctgggtggg agggagggtt ttcctgtgt 1200
gacagcgctc cctcaggagg gccttggctt ggcacggctg tgctcctccc 1250
ctgctccctc cccagagcag ccatcaggct ggaggtgacg atgagttcct 1300
. gaaacttgaa gggcatgtt aaaggatga ctgtgcattc cagggcactg 1350
acggaaagcc agggctgcag gcaaagctgg acatgtgccc tggcccagga 1400
ggccatgttg ggccctcggtt tccattgcta gtggcctcct tggggctcct 1450
gttggctcct aatcccttag gactgtggat gagggcagac tggaagagca 1500

gctccaggtt gggggccatg tttcccagcg gggacccacc aacagaggcc 1550
agtttcaaag tcagctgagg ggctgagggg tggggctcca tggtaatgc 1600
agggtgctgc aggctctgcc ttctccatgg ggtaaccacc ctcgcctggg 1650
caggggcagc caaggctggg aaatgaggag gccatgcaca gggtgccccca 1700
gctttctttg gggcttcagt gagaactctc ccagttgccccc ttggtggtt 1750
ttccacacctgg cttttggcta cagagaggga agggaaagcc tgaggccggc 1800
ataaggggag gccttggAAC ctgagctgcc aatgccagcc ctgtcccatc 1850
tgccggccacg ctactcgctc ctctcccaac aactcccttc gtggggacaa 1900
aagtgacaat tgttaggcccag gcacagtggc tcacgcctgt aatcccagca 1950
ctttgggagg ccaaggccggg tggattacct ccatactgttt agtagaaatg 2000
ggcaaaaaccc catctctact aaaaatacaa gaattagctg ggcgtggtgg 2050
cgtgtgcctg taatcccagc tatttgggag gctgaggcag gagaatcgct 2100
tgagccccggg aagcagaggt tgcagtgaac tgagatagtg atagtgccac 2150
tgcaattcag cctgggtgac atagagagac tccatctcaa aaaaaaa 2196

<210> 150
<211> 215
<212> PRT
<213> Homo sapiens

<400> 150
Met His Arg Asp Ala Trp Leu Pro Arg Pro Ala Phe Ser Leu Thr
1 5 10 15
Gly Leu Ser Leu Phe Phe Ser Leu Val Pro Pro Gly Arg Ser Met
20 25 30
Glu Val Thr Val Pro Ala Thr Leu Asn Val Leu Asn Gly Ser Asp
35 40 45
Ala Arg Leu Pro Cys Thr Phe Asn Ser Cys Tyr Thr Val Asn His
50 55 60
Lys Gln Phe Ser Leu Asn Trp Thr Tyr Gln Glu Cys Asn Asn Cys
65 70 75
Ser Glu Glu Met Phe Leu Gln Phe Arg Met Lys Ile Ile Asn Leu
80 85 90
Lys Leu Glu Arg Phe Gln Asp Arg Val Glu Phe Ser Gly Asn Pro
95 100 105
Ser Lys Tyr Asp Val Ser Val Met Leu Arg Asn Val Gln Pro Glu

	110	115	120
Asp Glu Gly Ile Tyr Asn Cys Tyr Ile Met Asn Pro Pro Asp Arg			
	125	130	135
His Arg Gly His Gly Lys Ile His Leu Gln Val Leu Met Glu Glu			
	140	145	150
Pro Pro Glu Arg Asp Ser Thr Val Ala Val Ile Val Gly Ala Ser			
	155	160	165
Val Gly Gly Phe Leu Ala Val Val Ile Leu Val Leu Met Val Val			
	170	175	180
Lys Cys Val Arg Arg Lys Lys Glu Gln Lys Leu Ser Thr Asp Asp			
	185	190	195
Leu Lys Thr Glu Glu Glu Gly Lys Thr Asp Gly Glu Gly Asn Pro			
	200	205	210
Asp Asp Gly Ala Lys			
	215		
<210> 151			
<211> 524			
<212> DNA			
<213> Homo sapiens			
<220>			
<221> unsure			
<222> 103, 233			
<223> unknown base			
<400> 151			
gttgtatatg tcctgaagta catccgtgca ttttttttag catccaacca 50			
tcctcccttg tagttctcgc cccctcaa at cacccctcc cttagccccac 100			
ccnactaaca tctcagtctc tgaaaatgca cagagatgcc tggctacctc 150			
gccctgcctt cagcctcacg gggctcagtc tcttttctc tttggtgcca 200			
ccaggacgga gcatggaggt ccacagtacc tgnccaccct caacgtcctc 250			
aatggctctg acgcccgcct gccctgccct tcaactcctg ctacacagt 300			
aaccacaaac agttctccct gaactggact taccaggagt gcaacaactg 350			
ctctgaggag atgttcctcc agttccgcatt gaagatcatt aacctgaagc 400			
tggagcggtt tcaagaccgc gtggagttct cagggAACCC cagcaagtac 450			
gatgtgtcgg tcatgtcgag aaacgtgcag ccggaggatg aggggattta 500			
caactgctac atcatgaacc cccc 524			
<210> 152			

<211> 368
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 56, 123
<223> unknown base

<400> 152
tcacggggct catcttttt tctcttttgtt gcccaccagg acggagcatg 50
gaggtnccaca tacctgccac cctcaacgtc ctcaatggct ttgacgccccg 100
cctgcctgc accttcaact ccngctacac agtgaaccac aaacagttct 150
ccctgaactg gatttaccag gagtgcaaca actggctctg aggagatgtt 200
cctccagttc ccgcattggaa gatcatattaa cctgaaaagct ggaagcggtt 250
ttcaagaacc gcgtggaagt ttctcaggaa accccagcaa gtacgatgtg 300
tcggtgatgc tgagaaacgt gcagccggag gatgaggggta tttacaactg 350
ctacatcatg aacccccc 368

<210> 153
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 153
acggagcatg gaggtccaca gtac 24

<210> 154
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 154
gcacgtttct cagcatcacc gac 23

<210> 155
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 155

cgccctgcctc gcaccccaa ctcctgctac acagtgaacc acaaacagtt 50
<210> 156
<211> 2680
<212> DNA
<213> Homo sapiens

<400> 156
tgcggcgacc gtcgtacacc atgggcctcc acctccgccc ctaccgtgtg 50
gggctgctcc cggatggcct cctgttcctc ttgctgctgc taatgctgt 100
cgcggaccga ggcgtcccg ccggacgtca ccccccaagt gtgctggtcc 150
ctggtgattt gggtaaccaa ctggaagcca agctggacaa gccgacagt 200
gtgcactacc tctgctccaa gaagaccgaa agctacttca caatctggct 250
gaacctggaa ctgctgctgc ctgtcatcat tgactgctgg attgacaata 300
tcaggctggt ttacaacaaa acatccaggg ccacccagtt tcctgatgg 350
gtggatgtac gtgtccctgg ctggggaaag accttctcac tggagttcct 400
ggaccccaagc aaaagcagcg tgggttccta tttcacacc atggtgaga 450
gccttgggg ctggggctac acacggggtg aggatgtccg aggggctccc 500
tatgactggc gccgagcccc aaatgaaaac gggccctact tcctggccct 550
ccgcgagatg atcgaggaga tgtaccagct gtatggggc cccgtggtgc 600
tggggccca cagtatggc aacatgtaca cgctctactt tctgcagcgg 650
cagccgcagg cctggaagga caagtatac cggcccttcg tgtcaactgg 700
tgccgcctgg gggggcgtgg ccaagaccct ggcgtcctg gcttcaggag 750
acaacaaccc gatcccagtc atcggggcccc tgaagatccg ggagcagcag 800
cggtcagctg tctccaccag ctggctgctg ccctacaact acacatggtc 850
acctgagaag gtgtcgtgc agacacccac aatcaactac acactgcggg 900
actaccgcaa gttttccag gacatcggtt ttgaagatgg ctggctcatg 950
cgccaggaca cagaagggtt ggtggaaagcc acgatgccac ctggcgtgca 1000
gctgcactgc ctctatggta ctggcgtccc cacaccagac tccttctact 1050
atgagagctt ccctgaccgt gaccctaaaa tctgctttgg tgacggcgat 1100
ggtaactgtga acttgaagag tgccctgcag tgccaggcct ggcagagccg 1150
ccaggagcac caagtgtgc tgcaggagct gccaggcagc gagcacatcg 1200
agatgctggc caacgccacc accctggcct atctgaaacg tgtgctcctt 1250

ggccctgac tcctgtcca caggactcct gtggctggc cgtggacctg 1300
ctgttggcct ctggggctgt catggccac gcgtttgca aagtttgta 1350
ctcaccattc aaggccccga gtcttgact gtgaagcatc tgccatggg 1400
aagtgcgtt ttttatcctt tctctgtggc agtgaagaag gaagaaatga 1450
gagtcttagac tcaaggaca ctggatggca agaatgctgc tgatggg 1500
actgctgtga ccttaggact ggctccacag ggtggactgg ctggccctg 1550
gtcccagtcctgcctgggg ccatgtgtcc ccctattcct gtgggcttt 1600
catacttgcc tactggccc tggcccccga gccttcctat gagggatgtt 1650
actgggctgt ggtcctgtac ccagaggtcc cagggatcggtt ctcctggccc 1700
ctcgggtgac cttccacaca caccagccac agataggcct gccactggc 1750
atggtagct agagctgctg gttccctgt ggcttagctg gtggccagcc 1800
tgactggctt cctggcgag cctagtagct cctgcaggca gggcagttt 1850
gttgcgttct tcgtggttcc caggccctgg gacatctcac tccactccta 1900
cctcccttac caccaggagc attcaagctc tggattggc agcagatgtg 1950
cccccagtcc cgccaggctgt gttccagggg ccctgatttc ctggatgtg 2000
ctattggccc caggactgaa gctgcctccc ttccacccctgg gactgtggtt 2050
ccaaggatga gagcagggtt tggagccatg gccttctggg aacctatgga 2100
gaaaggaaat ccaaggaagc agccaaggct gctcgagct tccctgagct 2150
gcacctcttgc ttaacccac catcacactg ccaccctgcc ctgggtctc 2200
actagtagcca agtgggtcag cacaggctg aggtatgggc tcctatccac 2250
cctggccagc acccagctta gtgctggac tagccagaa acttgaatgg 2300
gaccctgaga gagccagggg tcccctgagg cccccctagg ggctttctgt 2350
ctgccccagg gtgctccatg gatctccctg tggcagcagg catggagagt 2400
cagggctgcc ttcatggcag taggctctaa gtgggtgact ggccacagggc 2450
cgagaaaagg gtacagcctc taggtgggtt tcccaaagac gccttcagggc 2500
tggactgagc tgctctccca cagggtttct gtgcagctgg attttctctg 2550
ttgcatacat gcctggcatc tgtctccct tggccatgg tggccccaca 2600
tggggctctg agcaggctgt atctggattc tggcaataaa agtactctgg 2650

atgctgtaaa aaaaaaaaaaa aaaaaaaaaa 2680

<210> 157

<211> 412

<212> PRT

<213> Homo Sapien

<400> 157

Met Gly Leu His Leu Arg Pro Tyr Arg Val Gly Leu Leu Pro Asp
1 5 10 15

Gly Leu Leu Phe Leu Leu Leu Leu Met Leu Leu Ala Asp Pro
20 25 30

Ala Leu Pro Ala Gly Arg His Pro Pro Val Val Leu Val Pro Gly
35 40 45

Asp Leu Gly Asn Gln Leu Glu Ala Lys Leu Asp Lys Pro Thr Val
50 55 60

Val His Tyr Leu Cys Ser Lys Lys Thr Glu Ser Tyr Phe Thr Ile
65 70 75

Trp Leu Asn Leu Glu Leu Leu Leu Pro Val Ile Ile Asp Cys Trp
80 85 90

Ile Asp Asn Ile Arg Leu Val Tyr Asn Lys Thr Ser Arg Ala Thr
95 100 105

Gln Phe Pro Asp Gly Val Asp Val Arg Val Pro Gly Phe Gly Lys
110 115 120

Thr Phe Ser Leu Glu Phe Leu Asp Pro Ser Lys Ser Ser Val Gly
125 130 135

Ser Tyr Phe His Thr Met Val Glu Ser Leu Val Gly Trp Gly Tyr
140 145 150

Thr Arg Gly Glu Asp Val Arg Gly Ala Pro Tyr Asp Trp Arg Arg
155 160 165

Ala Pro Asn Glu Asn Gly Pro Tyr Phe Leu Ala Leu Arg Glu Met
170 175 180

Ile Glu Glu Met Tyr Gln Leu Tyr Gly Gly Pro Val Val Leu Val
185 190 195

Ala His Ser Met Gly Asn Met Tyr Thr Leu Tyr Phe Leu Gln Arg
200 205 210

Gln Pro Gln Ala Trp Lys Asp Lys Tyr Ile Arg Ala Phe Val Ser
215 220 225

Leu Gly Ala Pro Trp Gly Gly Val Ala Lys Thr Leu Arg Val Leu
230 235 240

Ala Ser Gly Asp Asn Asn Arg Ile Pro Val Ile Gly Pro Leu Lys

	245	250	255
Ile Arg Glu Gln Gln Arg Ser Ala Val Ser Thr Ser Trp Leu Leu			
260	265	270	
Pro Tyr Asn Tyr Thr Trp Ser Pro Glu Lys Val Phe Val Gln Thr			
275	280	285	
Pro Thr Ile Asn Tyr Thr Leu Arg Asp Tyr Arg Lys Phe Phe Gln			
290	295	300	
Asp Ile Gly Phe Glu Asp Gly Trp Leu Met Arg Gln Asp Thr Glu			
305	310	315	
Gly Leu Val Glu Ala Thr Met Pro Pro Gly Val Gln Leu His Cys			
320	325	330	
Leu Tyr Gly Thr Gly Val Pro Thr Pro Asp Ser Phe Tyr Tyr Glu			
335	340	345	
Ser Phe Pro Asp Arg Asp Pro Lys Ile Cys Phe Gly Asp Gly Asp			
350	355	360	
Gly Thr Val Asn Leu Lys Ser Ala Leu Gln Cys Gln Ala Trp Gln			
365	370	375	
Ser Arg Gln Glu His Gln Val Leu Leu Gln Glu Leu Pro Gly Ser			
380	385	390	
Glu His Ile Glu Met Leu Ala Asn Ala Thr Thr Leu Ala Tyr Leu			
395	400	405	
Lys Arg Val Leu Leu Gly Pro			
410			

<210> 158

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 158

ctggggctac acacgggtg agg 23

<210> 159

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 159

ggtgccgctg cagaaagtag agcg 24

<210> 160
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 160
gcccccaaatg aaaacgggcc ctacttcctg gccctccgcg agatg 45

<210> 161
<211> 1512
<212> DNA
<213> Homo sapiens

<400> 161
cggacgcgtg ggcggacgcg tggggcggcg gcagcggcg cgacggcgac 50
atggagagcg gggcctacgg cgcggccaag gcggcggt cttcgacct 100
gcggcgcttc ctgacgcage cgcagggtgt ggccgcgcgc gtgtgcttgg 150
tcttcgcctt gatcggttc tcctgcatct atggtgaggg ctacagcaat 200
gcccacgagt ctaagcagat gtactgcgtg ttcaaccgca acgaggatgc 250
ctgcccgtat ggcagtgcca tcgggggtgt ggccttcctg gcctcggcct 300
tcttcgttgtt ggtcgacgcg tatttcccc agatcagcaa cgccactgac 350
cgcaagtacc tggtcattgg tgacctgctc ttctcagctc tctggacctt 400
cctgtggttt gttggtttct gtttcctcac caaccagtgg gcagtcacca 450
acccgaagga cgtgctggcg gggccgact ctgtgagggc agccatcacc 500
ttcagcttct tttccatctt ctcctgggt gtgctggcct ccctggccta 550
ccagcgctac aaggctggcg tggacgactt catccagaat tacgttgacc 600
ccactccgga ccccaacact gcctacgcct cctacccagg tgcatactgtg 650
gacaactacc aacagccacc cttcacccag aacgcggaga ccaccgaggg 700
ctaccagccg cccctgtgt actgagtggc ggttagcgtg ggaaggggaa 750
cagagagggc ctccttcctt gcccctggact ttcccatcag ctcctggaa 800
ctgccagccc ctctctttca cctgttccat cctgtgcagc tgacacacag 850
ctaaggagcc tcatagcctg gcgggggctg gcagagccac accccaagtg 900
cctgtgcccc gagggcttca gtcagccgt cactcctcca gggcactttt 950
aggaaagggt ttttagctag tgttttcct cgctttaat gacctcagcc 1000

ccgcctgcag tggctagaag ccagcaggtg cccatgtgct actgacaagt 1050
gcctcagctt cccccggcc cgggtcaggc cgtgggagcc gctattatct 1100
gcgttctctg ccaaagactc gtggggcca tcacacctgc cctgtgcagc 1150
ggagccggac caggctttg tgccctact caggttgct tcccctgtgc 1200
ccactgctgt atgatctggg ggccaccacc ctgtgccggt ggcctctggg 1250
ctgcctcccg tggtgtgagg gcggggctgg tgctcatggc acttcctcct 1300
tgctcccacc cctggcagca gggaaaggct ttgcctgaca acacccagct 1350
ttatgtaaat attctgcagt tgtaacttag gaagcctggg gagggcaggg 1400
gtgccccatg gctcccagac tctgtctgtg ccgagtgtat tataaaatcg 1450
tgggggagat gcccgccctg ggatgctgtt tggagacgga ataaatgtt 1500
tctcattcaa ag 1512

<210> 162

<211> 224

<212> PRT

<213> Homo sapiens

<400> 162

Met	Glu	Ser	Gly	Ala	Tyr	Gly	Ala	Ala	Lys	Ala	Gly	Gly	Ser	Phe
1				5					10					15

Asp	Leu	Arg	Arg	Phe	Leu	Thr	Gln	Pro	Gln	Val	Val	Ala	Arg	Ala
				20					25				30	

Val	Cys	Leu	Val	Phe	Ala	Leu	Ile	Val	Phe	Ser	Cys	Ile	Tyr	Gly
				35					40				45	

Glu	Gly	Tyr	Ser	Asn	Ala	His	Glu	Ser	Lys	Gln	Met	Tyr	Cys	Val
				50					55				60	

Phe	Asn	Arg	Asn	Glu	Asp	Ala	Cys	Arg	Tyr	Gly	Ser	Ala	Ile	Gly
				65					70				75	

Val	Leu	Ala	Phe	Leu	Ala	Ser	Ala	Phe	Phe	Leu	Val	Val	Asp	Ala
				80					85				90	

Tyr	Phe	Pro	Gln	Ile	Ser	Asn	Ala	Thr	Asp	Arg	Lys	Tyr	Leu	Val
				95					100				105	

Ile	Gly	Asp	Leu	Leu	Phe	Ser	Ala	Leu	Trp	Thr	Phe	Leu	Trp	Phe
				110					115				120	

Val	Gly	Phe	Cys	Phe	Leu	Thr	Asn	Gln	Trp	Ala	Val	Thr	Asn	Pro
				125					130				135	

Lys	Asp	Val	Leu	Val	Gly	Ala	Asp	Ser	Val	Arg	Ala	Ala	Ile	Thr
				140					145				150	

Phe Ser Phe Phe Ser Ile Phe Ser Trp Gly Val Leu Ala Ser Leu
155 160 165
Ala Tyr Gln Arg Tyr Lys Ala Gly Val Asp Asp Phe Ile Gln Asn
170 175 180
Tyr Val Asp Pro Thr Pro Asp Pro Asn Thr Ala Tyr Ala Ser Tyr
185 190 195
Pro Gly Ala Ser Val Asp Asn Tyr Gln Gln Pro Pro Phe Thr Gln
200 205 210
Asn Ala Glu Thr Thr Glu Gly Tyr Gln Pro Pro Pro Val Tyr
215 220

<210> 163
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 163
tggtcttcgc cttgatcgta ttct 24

<210> 164
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 164
gtgtactgag cggcggtag 20

<210> 165
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 165
ctgaaggta tggctgccct cac 23

<210> 166
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 166
ccaggaggct catggaaag tcc 23

<210> 167
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 167
ccacgagtct aagcagatgt actgcgtgtt caaccgcaac gaggatgcct 50

<210> 168
<211> 3143
<212> DNA
<213> Homo sapiens

<400> 168
gagccaccta ccctgctccg aggccaggcc tgcagggcct catcgccag 50
agggtgatca gtgagcagaa ggtatgcccgt ggccgaggcc ccccaggtgg 100
ctggcgggca gggggacgga ggtatggcg aggaagcgga gccagagggg 150
atgttcaagg cctgtgagga ctccaagaga aaagccccggg gctacctccg 200
cctggtgccc ctgttgtgc tgctggccct gctcgtgctg gcttcggcg 250
gggtgctact ctggatttc ctagggtaca aggccggaggt gatggtcagc 300
caggtgtact caggcagtct gcgtgtactc aatcgccact tctcccagga 350
tcttacccgc cggaatcta gtgccttccg cagtgaaacc gccaaagccc 400
agaagatgct caaggagctc atcaccagca cccgcctggg aacttactac 450
aactccagct ccgtctattc ctttggggag ggacccctca cctgcttctt 500
ctggttcatt ctccaaatcc ccgagcaccc cgccgtatg ctgagccccg 550
aggtggtgca ggcactgctg tgggaggagc tgctgtccac agtcaacagc 600
tcggctgccc tcccctacag ggccgagtac gaagtggacc ccgagggcct 650
agtgtatcctg gaagccagtg tgaaagacat agctgcattg aattccacgc 700
tgggttgtta ccgctacagc tacgtgggcc agggccaggt cctccggctg 750
aaggggcctg accacctggc ctccagctgc ctgtggcacc tgcagggccc 800
caaggacctc atgctcaaac tccggctgga gtggacgctg gcagagtgcc 850
gggaccgact ggccatgtat gacgtggccg ggccctgga gaagaggctc 900
atcacctcggttgtacggctg cagccgccag gagccgtgg tggaggttct 950

ggcgtcgaaa gccatcatgg cggtcgtctg gaagaaggac ctgcacagct 1000
actacgaccc cttcgtgctc tccgtgcagc cggtggtctt ccaggcctgt 1050
gaagtgaacc tgacgctgga caacaggctc gactcccagg gcgtcctcag 1100
caccccgta cttccccagct actactcgcc ccaaaccac tgctcctggc 1150
acctcacggt gccctctctg gactacggct tggccctctg gtttgatgcc 1200
tatgcactga ggaggcagaa gtatgatttgc cctgcaccc agggccagtg 1250
gacgatccag aacaggaggc tgtgtggctt gcgcacccctg cagccctacg 1300
ccgagaggat ccccggtgtg gccacggccg ggatcaccat caacttcacc 1350
tcccagatct ccctcaccgg gcccgggtgtg cgggtgcact atggcttgta 1400
caaccagtcg gaccctgccc ctggagagtt cctctgttct gtgaatggac 1450
tctgtgtccc tgcctgtgat ggggtcaagg actgccccaa cggcctggat 1500
gagagaaact gcgttgcag agccacattc cagtgcggaa aggacagcac 1550
atgcacatctca ctgcacaagg tctgtgatgg gcagcctgat tgtctcaacg 1600
gcagcgatga agagcagtgc caggaagggg tgccatgtgg gacattcacc 1650
ttccagtgtg aggaccggag ctgcgtgaag aagccaaacc cgcagtgtga 1700
tggcgccccc gactgcaggg acggctcgga tgaggagcac tgtgactgtg 1750
gcctccaggg cccctccagc cgcattgttg gtggagctgt gtcctccgag 1800
ggtgagtgcc catggcaggc cagccctccag gttccccgtc gacacatctg 1850
tgggggggcc ctcatcgctg accgctgggt gataacagct gcccactgt 1900
tccaggagga cagcatggcc tccacgggtc tgtggaccgt gttcctggc 1950
aagggtgtggc agaactcgcg ctggcctgga gaggtgttct tcaaggtgag 2000
ccgcctgctc ctgcacccgtt accacgaaga ggacagccat gactacgacg 2050
tggcgctgct gcagctcgac cacccgggtgg tgccgtcgcc cgccgtgcgc 2100
cccgctgccc tgcccgccgc ctccccatcc ttccgagcccg gcctgcactg 2150
ctggattacg ggctggggcg cttgcgcga gggcgcccc atcagcaacg 2200
ctctgcagaa agtggatgtg cagttgatcc cacaggaccc gtgcagcgag 2250
gcctatcgctt accaggtgac gccacgcattt ctgtgtggccg gctaccgcaa 2300
gggcaagaag gatgcctgtc agggtgactc aggtggtccg ctgggtgtca 2350

aggcactcag tggccgctgg ttccctggcg ggctggtcag ctggggcctg 2400
ggctgtggcc ggcctaacta cttcggcgac tacacccgca tcacaggtgt 2450
gatcagctgg atccagcaag tggtgacctg aggaactgcc cccctgcaaa 2500
gcagggccca cctcctggac tcagagagcc cagggcaact gccaagcagg 2550
gggacaagta ttctggcggg gggtggggga gagagcaggc cctgtggtgg 2600
caggaggtgg catcttgtct cgtccctgat gtctgctcca gtgatggcag 2650
gaggatggag aagtgccagc agctgggggt caagacgtcc cctgaggacc 2700
caggcccaca cccagccctt ctgcctccca attctctctc ctccgtcccc 2750
ttcctccact gctgccta at gcaaggcagt ggctcagcag caagaatgt 2800
ggttctacat cccgaggagt gtctgaggtg cgccccactc tgtacagagg 2850
ctgtttgggc agccttgcct ccagagagca gattccagct tcggaagccc 2900
ctggtctaac ttgggatctg ggaatggaag gtgctcccat cggaggggac 2950
cctcagagcc ctggagactg ccaggtggc ctgctgccac tgtaagccaa 3000
aaggtgggga agtcctgact ccagggtcct tgccccaccc ctgcctgcca 3050
cctggccct cacagcccag accctcaactg ggaggtgagc tcagctgccc 3100
tttggataa agtcgcctga tcaaaaaaaaaaaaaaaa aaa 3143

<210> 169

<211> 802

<212> PRT

<213> Homo sapiens

<400> 169

Met	Pro	Val	Ala	Glu	Ala	Pro	Gln	Val	Ala	Gly	Gly	Gln	Gly	Asp
1									10					15

Gly	Gly	Asp	Gly	Glu	Glu	Ala	Glu	Pro	Glu	Gly	Met	Phe	Lys	Ala
									25					30

Cys	Glu	Asp	Ser	Lys	Arg	Lys	Ala	Arg	Gly	Tyr	Leu	Arg	Leu	Val
									35					45

Pro	Leu	Phe	Val	Leu	Leu	Ala	Leu	Leu	Val	Leu	Ala	Ser	Ala	Gly
									50					60

Val	Leu	Leu	Trp	Tyr	Phe	Leu	Gly	Tyr	Lys	Ala	Glu	Val	Met	Val
									65					75

Ser	Gln	Val	Tyr	Ser	Gly	Ser	Leu	Arg	Val	Leu	Asn	Arg	His	Phe
									80					90

Ser Gln Asp Leu Thr Arg Arg Glu Ser Ser Ala Phe Arg Ser Glu

95	100	105
Thr Ala Lys Ala Gln Lys Met Leu Lys Glu Leu Ile Thr Ser Thr		
110	115	120
Arg Leu Gly Thr Tyr Tyr Asn Ser Ser Ser Val Tyr Ser Phe Gly		
125	130	135
Glu Gly Pro Leu Thr Cys Phe Phe Trp Phe Ile Leu Gln Ile Pro		
140	145	150
Glu His Arg Arg Leu Met Leu Ser Pro Glu Val Val Gln Ala Leu		
155	160	165
Leu Val Glu Glu Leu Leu Ser Thr Val Asn Ser Ser Ala Ala Val		
170	175	180
Pro Tyr Arg Ala Glu Tyr Glu Val Asp Pro Glu Gly Leu Val Ile		
185	190	195
Leu Glu Ala Ser Val Lys Asp Ile Ala Ala Leu Asn Ser Thr Leu		
200	205	210
Gly Cys Tyr Arg Tyr Ser Tyr Val Gly Gln Gly Gln Val Leu Arg		
215	220	225
Leu Lys Gly Pro Asp His Leu Ala Ser Ser Cys Leu Trp His Leu		
230	235	240
Gln Gly Pro Lys Asp Leu Met Leu Lys Leu Arg Leu Glu Trp Thr		
245	250	255
Leu Ala Glu Cys Arg Asp Arg Leu Ala Met Tyr Asp Val Ala Gly		
260	265	270
Pro Leu Glu Lys Arg Leu Ile Thr Ser Val Tyr Gly Cys Ser Arg		
275	280	285
Gln Glu Pro Val Val Glu Val Leu Ala Ser Gly Ala Ile Met Ala		
290	295	300
Val Val Trp Lys Lys Gly Leu His Ser Tyr Tyr Asp Pro Phe Val		
305	310	315
Leu Ser Val Gln Pro Val Val Phe Gln Ala Cys Glu Val Asn Leu		
320	325	330
Thr Leu Asp Asn Arg Leu Asp Ser Gln Gly Val Leu Ser Thr Pro		
335	340	345
Tyr Phe Pro Ser Tyr Tyr Ser Pro Gln Thr His Cys Ser Trp His		
350	355	360
Leu Thr Val Pro Ser Leu Asp Tyr Gly Leu Ala Leu Trp Phe Asp		
365	370	375
Ala Tyr Ala Leu Arg Arg Gln Lys Tyr Asp Leu Pro Cys Thr Gln		

380 385 390

Gly Gln Trp Thr Ile Gln Asn Arg Arg Leu Cys Gly Leu Arg Ile
395 400 405

Leu Gln Pro Tyr Ala Glu Arg Ile Pro Val Val Ala Thr Ala Gly
410 415 420

Ile Thr Ile Asn Phe Thr Ser Gln Ile Ser Leu Thr Gly Pro Gly
425 430 435

Val Arg Val His Tyr Gly Leu Tyr Asn Gln Ser Asp Pro Cys Pro
440 445 450

Gly Glu Phe Leu Cys Ser Val Asn Gly Leu Cys Val Pro Ala Cys
455 460 465

Asp Gly Val Lys Asp Cys Pro Asn Gly Leu Asp Glu Arg Asn Cys
470 475 480

Val Cys Arg Ala Thr Phe Gln Cys Lys Glu Asp Ser Thr Cys Ile
485 490 495

Ser Leu Pro Lys Val Cys Asp Gly Gln Pro Asp Cys Leu Asn Gly
500 505 510

Ser Asp Glu Glu Gln Cys Gln Glu Gly Val Pro Cys Gly Thr Phe
515 520 525

Thr Phe Gln Cys Glu Asp Arg Ser Cys Val Lys Lys Pro Asn Pro
530 535 540

Gln Cys Asp Gly Arg Pro Asp Cys Arg Asp Gly Ser Asp Glu Glu
545 550 555

His Cys Asp Cys Gly Leu Gln Gly Pro Ser Ser Arg Ile Val Gly
560 565 570

Gly Ala Val Ser Ser Glu Gly Glu Trp Pro Trp Gln Ala Ser Leu
575 580 585

Gln Val Arg Gly Arg His Ile Cys Gly Gly Ala Leu Ile Ala Asp
590 595 600

Arg Trp Val Ile Thr Ala Ala His Cys Phe Gln Glu Asp Ser Met
605 610 615

Ala Ser Thr Val Leu Trp Thr Val Phe Leu Gly Lys Val Trp Gln
620 625 630

Asn Ser Arg Trp Pro Gly Glu Val Ser Phe Lys Val Ser Arg Leu
635 640 645

Leu Leu His Pro Tyr His Glu Glu Asp Ser His Asp Tyr Asp Val
650 655 660

Ala Leu Leu Gln Leu Asp His Pro Val Val Arg Ser Ala Ala Val

	665	670	675
Arg Pro Val Cys Leu Pro Ala Arg Ser His Phe Phe Glu Pro Gly			
680	685	690	
Leu His Cys Trp Ile Thr Gly Trp Gly Ala Leu Arg Glu Gly Gly			
695	700	705	
Pro Ile Ser Asn Ala Leu Gln Lys Val Asp Val Gln Leu Ile Pro			
710	715	720	
Gln Asp Leu Cys Ser Glu Ala Tyr Arg Tyr Gln Val Thr Pro Arg			
725	730	735	
Met Leu Cys Ala Gly Tyr Arg Lys Gly Lys Lys Asp Ala Cys Gln			
740	745	750	
Gly Asp Ser Gly Gly Pro Leu Val Cys Lys Ala Leu Ser Gly Arg			
755	760	765	
Trp Phe Leu Ala Gly Leu Val Ser Trp Gly Leu Gly Cys Gly Arg			
770	775	780	
Pro Asn Tyr Phe Gly Val Tyr Thr Arg Ile Thr Gly Val Ile Ser			
785	790	795	
Trp Ile Gln Gln Val Val Thr			
800			

<210> 170
<211> 1327
<212> DNA
<213> Homo sapiens

<400> 170
gcacccaggg ccagtggacg atccagaaca ggaggctgtg tggcttgcgc 50
atcctgcagc cctacgccga gaggatcccc gtggtgccca cggccgggat 100
caccatcaac ttcacctccc agatctccct caccgggccc ggtgtcgaaa 150
tgcactatgg cttgtacaac cagtcggacc cctgccctgg agagttccctc 200
tgttctgtga atggactctg tgtccctgcc tgtgatgggg tcaaggactg 250
ccccaacggc ctggatgaga gaaactgcgt ttgcagagcc acattccagt 300
gcaaagagga cagcacatgc atctcactgc ccaaggtctg tgatgggcag 350
cctgattgtc tcaacggcag cgatgaagag cagtgccagg aaggggtgcc 400
atgtggaca ttcaccctcc agtgtgagga ccggagctgc gtgaagaagc 450
ccaacccgca gtgtgatggg cggcccgact gcagggacgg ctcggatgag 500
gagcaactgtg actgtggcct ccagggcccc tccagccgca ttgttggtgg 550

agctgtgtcc tccgagggtg agtggccatg gcagggccagc ctccaggttc 600
ggggtcgaca catctgtggg ggggcctca tcgctgaccg ctgggtgata 650
acagctgccc actgcttcca ggaggacagc atggcctcca cggtgctgtg 700
gaccgtgttc ctggcaagg tgtggcagaa ctcgcgctgg cctggagagg 750
tgtccttcaa ggtgagccgc ctgctcctgc acccgtagca cgaagaggac 800
agccatgact acgacgtggc gctgctgcag ctcgaccacc cggtggtgcg 850
ctcggccgccc gtgcgcggc tctgcctgcc cgccgcgtcc cacttcttcg 900
agccccggcct gcactgctgg attacgggct ggggcgcctt ggcgcagggc 950
ggccccatca gcaacgtct gcagaaagtg gatgtgcagt tgatcccaca 1000
ggacctgtgc agcgaggcct atcgctacca ggtgacgcca cgcatgctgt 1050
gtgccggcta ccgcaaggc aagaaggatg cctgtcaggg tgactcaggt 1100
ggtcgcgtgg tgtgcaaggc actcagtggc cgctggttcc tggcggggct 1150
ggtcagctgg ggcctggct gtggccggcc taactacttc ggcgtctaca 1200
cccgcatcac aggtgtgatc agctggatcc agcaagtggt gacctgagga 1250
actgcccccc tgcaaagcag ggcccaccc tcggactcag agagcccagg 1300
gcaactgcca agcagggga caagtat 1327

<210> 171

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 171

taacagctgc ccactgcttc cagg 24

<210> 172

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 172

taatccagca gtgcaggccg gg 22

<210> 173

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 173
atggcctcca cgggtgtg gaccgtgtc ctggcaagg tgtggcagaa 50

<210> 174

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 174
tgccatgcg ctgaggaggc agaag 25

<210> 175

<211> 25

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 175
aggcagggac acagagtcca ttcac 25

<210> 176

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 176
agtatgatt gccgtgcacc cagggccagt ggacgatcca gaacaggagg 50

<210> 177

<211> 1510

<212> DNA

<213> Homo sapiens

<400> 177
ggacgagggc agatctcggtt ctggggcaag ccgttgacac tcgctccctg 50
ccaccgcccc ggctccgtgc cgccaaaggtt tcattttcca ctttctctgc 100
ctccagtcggcc ccagccccgt gcggagagaaa gggctttacc ggccgggatt 150
gctggaaaca ccaagagggtg gttttgtt tttaaaactt ctgtttcttg 200
ggagggggggtg tggcggggca ggatgagcaa ctccgttcct ctgctctgtt 250

tctggagcct ctgctattgc tttgctgcgg ggagccccgt accttttgt 300
ccagaggac ggctggaaga taagctccac aaacccaaag ctacacagac 350
tgaggtcaaa ccatctgtga ggtttaacct ccgcacctcc aaggaccag 400
agcatgaagg atgctacctc tccgtcgccc acagccagcc cttagaagac 450
tgcagttca acatgacagc taaaaccttt ttcatcattc acggatggac 500
gatgagcggt atcttgaaa actggctgca caaactcgtg tcagccctgc 550
acacaagaga gaaagacgcc aatgttagttg tggttgactg gctccccctg 600
gccaccaggc tttacacgga tgcggtaat aataccaggg tggtggaca 650
cagcattgcc aggatgctcg actggctgca ggagaaggac gattttctc 700
tcggaatgt ccacttgatc ggctacagcc tcggagcgca cgtggccggg 750
tatgcaggca acttcgtgaa aggaacggtg ggccgaatca caggtttgga 800
tcctgcccggg cccatgtttg aaggggccga catccacaag aggctctc 850
cgacgatgc agattttgtg gatgtcctcc acacctacac gcgttccttc 900
gcttgagca ttggattca gatgcctgtg ggccacattt acatctaccc 950
caatgggggt gacttccagc caggctgtgg actcaacgat gtcttggat 1000
caattgcata tggaaacaatc acagaggtgg taaaatgtga gcatgagcga 1050
gccgtccacc tctttgtga ctctctggtg aatcaggaca agccgagttt 1100
tgccttccag tgcactgact ccaatcgctt caaaaagggg atctgtctga 1150
gctgccgcaa gaaccgttgt aatagcattt gctacaatgc caagaaaatg 1200
aggaacaaga ggaacagcaa aatgtaccta aaaacccggg caggcatgcc 1250
tttcagaggt aacccctagt ccctggagtg tccctgagga aggcccttaa 1300
taccccttc ttaataccat gctgcagagc agggcacatc ctagcccagg 1350
agaagtggcc agcacaatcc aatcaaatcg ttgcaaatca gattacactg 1400
tgcatgtcct aggaaaggga atctttacaa aataaacagt gtggaccct 1450
aataaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaaaaaaa 1510

<210> 178
<211> 354
<212> PRT
<213> Homo sapiens

<400> 178

Met	Ser	Asn	Ser	Val	Pro	Leu	Leu	Cys	Phe	Trp	Ser	Leu	Cys	Tyr
1				5					10					15
Cys	Phe	Ala	Ala	Gly	Ser	Pro	Val	Pro	Phe	Gly	Pro	Glu	Gly	Arg
				20				25						30
Leu	Glu	Asp	Lys	Leu	His	Lys	Pro	Lys	Ala	Thr	Gln	Thr	Glu	Val
					35			40						45
Lys	Pro	Ser	Val	Arg	Phe	Asn	Leu	Arg	Thr	Ser	Lys	Asp	Pro	Glu
				50				55						60
His	Glu	Gly	Cys	Tyr	Leu	Ser	Val	Gly	His	Ser	Gln	Pro	Leu	Glu
				65				70						75
Asp	Cys	Ser	Phe	Asn	Met	Thr	Ala	Lys	Thr	Phe	Phe	Ile	Ile	His
				80				85						90
Gly	Trp	Thr	Met	Ser	Gly	Ile	Phe	Glu	Asn	Trp	Leu	His	Lys	Leu
				95				100						105
Val	Ser	Ala	Leu	His	Thr	Arg	Glu	Lys	Asp	Ala	Asn	Val	Val	Val
					110			115						120
Val	Asp	Trp	Leu	Pro	Leu	Ala	His	Gln	Leu	Tyr	Thr	Asp	Ala	Val
				125				130						135
Asn	Asn	Thr	Arg	Val	Val	Gly	His	Ser	Ile	Ala	Arg	Met	Leu	Asp
				140				145						150
Trp	Leu	Gln	Glu	Lys	Asp	Asp	Phe	Ser	Leu	Gly	Asn	Val	His	Leu
				155				160						165
Ile	Gly	Tyr	Ser	Leu	Gly	Ala	His	Val	Ala	Gly	Tyr	Ala	Gly	Asn
				170				175						180
Phe	Val	Lys	Gly	Thr	Val	Gly	Arg	Ile	Thr	Gly	Leu	Asp	Pro	Ala
				185				190						195
Gly	Pro	Met	Phe	Glu	Gly	Ala	Asp	Ile	His	Lys	Arg	Leu	Ser	Pro
				200				205						210
Asp	Asp	Ala	Asp	Phe	Val	Asp	Val	Leu	His	Thr	Tyr	Thr	Arg	Ser
				215				220						225
Phe	Gly	Leu	Ser	Ile	Gly	Ile	Gln	Met	Pro	Val	Gly	His	Ile	Asp
				230				235						240
Ile	Tyr	Pro	Asn	Gly	Gly	Asp	Phe	Gln	Pro	Gly	Cys	Gly	Leu	Asn
				245				250						255
Asp	Val	Leu	Gly	Ser	Ile	Ala	Tyr	Gly	Thr	Ile	Thr	Glu	Val	Val
				260				265						270
Lys	Cys	Glu	His	Glu	Arg	Ala	Val	His	Leu	Phe	Val	Asp	Ser	Leu
				275				280						285

Val Asn Gln Asp Lys Pro Ser Phe Ala Phe Gln Cys Thr Asp Ser
290 295 300

Asn Arg Phe Lys Lys Gly Ile Cys Leu Ser Cys Arg Lys Asn Arg
305 310 315

Cys Asn Ser Ile Gly Tyr Asn Ala Lys Lys Met Arg Asn Lys Arg
320 325 330

Asn Ser Lys Met Tyr Leu Lys Thr Arg Ala Gly Met Pro Phe Arg
335 340 345

Gly Asn Leu Gln Ser Leu Glu Cys Pro
350

<210> 179
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 179
gtgagcatga gcgagccgtc cac 23

<210> 180
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 180
gctattacaa cggttttgc ggcagc 26

<210> 181
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 181
ttgactctt ggtaatcag gacaagccga gttttgcctt ccag 44

<210> 182
<211> 3240
<212> DNA
<213> Homo sapiens

<400> 182
cgacgcgtg ggccggacgcg tgggcctggg caaggccgg ggccgcgggc 50

cgagccacct cttccccctcc cccgcttccc tgtcgcgctc cgctggctgg 100
acgcgctgga ggagtggagc agcacccggc cggccctggg ggctgacagt 150
cgcaaaggtt tggcccaag aggaagtggt ctcaaaccggc ggcaggtggc 200
gaccaggcca gaccaggggc gctcgctgcc tgcccgggg ctgttaggcga 250
ggcgccgccc cagtgccgag accccggggct tcaggagccg gccccgggag 300
agaagagtgc ggcggcggac ggagaaaaca actccaaagt tggcggaaagg 350
caccggccct actcccgggc tgccgccc tcccgcccc cagccctggc 400
atccagagta cgggtcgagc ccggggccatg gagccccct ggggaggcgg 450
caccagggag cctggcgcc cggggctccg ccgcgacccccc atcgggtaga 500
ccacagaagc tccgggaccc ttccggcacc tctggacagc ccaggatgct 550
gttggccacc ctccctctcc tcctccttgg aggccgtctg gcccatccag 600
accggattat tttccaaat catgcttggt aggacccccc agcagtgctc 650
ttagaagtgc agggcacctt acagaggccc ctggtccggg acagccgcac 700
ctccctgcc aactgcacct ggctcatctt gggcagcaag gaacagactg 750
tcaccatcag gttccagaag ctacacctgg cctgtggctc agagcgctta 800
accctacgct cccctctcca gccactgatc tccctgtgtg aggcacccctcc 850
cagccctctg cagctgccccg gggcaacgt caccatcaact tacagctatg 900
ctggggccag agcacccatg ggccagggt tcctgctctc ctacagccaa 950
gattggctga tgtgcctgca ggaagagtt cagtgcctga accaccgctg 1000
tgtatctgct gtccagcgct gtatgggt tcatgcctgt ggcatggct 1050
ctgatgaagc aggttgccgc tcagacccct tccctggcct gacccaaga 1100
cccgccccct ccctgccttg caatgtcacc ttggaggact tctatgggt 1150
cttctcctct cctggatata cacacccatgc ctcagtcctcc caccggcact 1200
cctgccattt gctgctggac ccccatgtg gccggcggt ggccgtgcgc 1250
ttcacagccc tggacttggg ctggagat gcagtgcattg tgtatgacgg 1300
ccctggggccc cctgagagct cccgactact gcgtgtctc acccacttca 1350
gcaatggcaa ggctgtcaact gtggagacac tgtctggcca ggctgttg 1400
tcctaccaca cagttgcttg gagcaatggt cgtggcttca atgccaccta 1450
ccatgtgcgg ggctattgtc tgccttggga cagaccctgt ggcttaggt 1500

ctggcctggg agctggcgaa ggcctaggtg agcgctgcta cagtgaggca 1550
cagcgctgtg acggctcatg ggactgtgct gacggcacag atgaggagga 1600
ctgcccaggc tgcccacctg gacacttccc ctgtggggct gctggcacct 1650
ctggtgccac agcctgctac ctgcctgctg accgctgcaa ctaccagact 1700
ttctgtgctg atggagcaga ttagagacgc tgtcggcatt gccagcctgg 1750
caatttccga tgccgggacg agaagtgcgt gtatgagacg tgggtgtgct 1800
atggcagcc agactgtgcg gacggcagtg atgagtggga ctgctcctat 1850
gttctgcccc gcaaggcat tacagctgca gtcattggca gcctagtgt 1900
cggcctgctc ctggcatcg ccctggctg cacctgcaag ctctatgcca 1950
ttcgcaccca ggagtacagc atcttgccc ccctctcccg gatggaggct 2000
gagattgtgc agcagcaggc acccccatttcc tacggcagc tcattgccc 2050
gggtgccatc ccacctgttag aagactttcc tacagagaat cctaatgata 2100
actcagtgtc gggcaacctg cgttctctgc tacagatctt acgcccaggat 2150
atgactccag gaggtggccc aggtgcccgc cgtcgtcagc gggccgcctt 2200
gatgcgacgc ctggtacgcc gtctccgccc ctggggcttgc ctccctcgaa 2250
ccaacacccc ggctcggccc tctgaggcca gatcccaggat cacaccttct 2300
gctgctcccc ttgaggccct agatggtggc acaggtccag cccgtgaggg 2350
cggggcagtg ggtggcaag atggggagca ggcaccccca ctgcccata 2400
aggctccctt cccatctgtc agcacgtctc cagccccac tactgtccct 2450
gaagccccag ggccactgcc ctcactgccc ctagagccat cactattgtc 2500
tggagtggtg caggccctgc gaggccgcct gttgcccagc ctggggcccc 2550
caggaccaac cggagcccc cctggacccc acacagcagt cctggccctg 2600
gaagatgagg acgatgtgtc actggtgcca ctggctgagc cgggggtgt 2650
ggtagctgag gcagaggatg agccactgtc tacctgaggg gacctggggg 2700
ctctactgag gcctctcccc tgggggcctt actcatagtg gcacaacctt 2750
tttagaggtgg gtcagcctcc cctccaccac ttccctccct gtccctggat 2800
ttcaggggact tggtgggcct cccgttgacc ctatgttagt gctataaaagt 2850
taagtgtccc tcaggcaggg agaggctca cagagtctcc tctgtacgt 2900

gccccatggcca gacacccca g tcccttcacc accacctgct ccccacgcca 2950
ccaccatttgc ggtggctgtt tttaaaaagt aaagttctta gaggatcata 3000
ggtctggaca ctccatcctt gccaaacctc tacccaaaag tggccttaag 3050
caccggaatg ccaattaact agagaccctc cagccccaa ggggaggatt 3100
tgggcagaac ctgaggtttt gccatccaca atccctccta cagggcctgg 3150
ctcacaaaaa gagtgcaaca aatgcttcta ttccatagct acggcattgc 3200
tcagtaagtt gaggtcaaaa ataaaggaat catacatctc 3240

<210> 183

<211> 713

<212> PRT

<213> Homo sapiens

<400> 183

Met Leu Leu Ala Thr Leu Leu Leu Leu Leu Gly Gly Ala Leu
1 5 10 15

Ala His Pro Asp Arg Ile Ile Phe Pro Asn His Ala Cys Glu Asp
20 25 . 30

Pro Pro Ala Val Leu Leu Glu Val Gln Gly Thr Leu Gln Arg Pro
35 40 45

Leu Val Arg Asp Ser Arg Thr Ser Pro Ala Asn Cys Thr Trp Leu
50 55 60

Ile Leu Gly Ser Lys Glu Gln Thr Val Thr Ile Arg Phe Gln Lys
65 70 75

Leu His Leu Ala Cys Gly Ser Glu Arg Leu Thr Leu Arg Ser Pro
80 85 90

Leu Gln Pro Leu Ile Ser Leu Cys Glu Ala Pro Pro Ser Pro Leu
95 100 105

Gln Leu Pro Gly Gly Asn Val Thr Ile Thr Tyr Ser Tyr Ala Gly
110 115 120

Ala Arg Ala Pro Met Gly Gln Gly Phe Leu Leu Ser Tyr Ser Gln
125 130 135

Asp Trp Leu Met Cys Leu Gln Glu Glu Phe Gln Cys Leu Asn His
140 145 150

Arg Cys Val Ser Ala Val Gln Arg Cys Asp Gly Val Asp Ala Cys
155 160 165

Gly Asp Gly Ser Asp Glu Ala Gly Cys Ser Ser Asp Pro Phe Pro
170 175 180

Gly Leu Thr Pro Arg Pro Val Pro Ser Leu Pro Cys Asn Val Thr

▼

	185	190	195
Leu Glu Asp Phe Tyr Gly Val Phe Ser Sér Pro Gly Tyr Thr His			
200	205	210	
Leu Ala Ser Val Ser His Pro Gln Ser Cys His Trp Leu Leu Asp			
215	220	225	
Pro His Asp Gly Arg Arg Leu Ala Val Arg Phe Thr Ala Leu Asp			
230	235	240	
Leu Gly Phe Gly Asp Ala Val His Val Tyr Asp Gly Pro Gly Pro			
245	250	255	
Pro Glu Ser Ser Arg Leu Leu Arg Ser Leu Thr His Phe Ser Asn			
260	265	270	
Gly Lys Ala Val Thr Val Glu Thr Leu Ser Gly Gln Ala Val Val			
275	280	285	
Ser Tyr His Thr Val Ala Trp Ser Asn Gly Arg Gly Phe Asn Ala			
290	295	300	
Thr Tyr His Val Arg Gly Tyr Cys Leu Pro Trp Asp Arg Pro Cys			
305	310	315	
Gly Leu Gly Ser Gly Leu Gly Ala Gly Glu Gly Leu Gly Glu Arg			
320	325	330	
Cys Tyr Ser Glu Ala Gln Arg Cys Asp Gly Ser Trp Asp Cys Ala			
335	340	345	
Asp Gly Thr Asp Glu Glu Asp Cys Pro Gly Cys Pro Pro Gly His			
350	355	360	
Phe Pro Cys Gly Ala Ala Gly Thr Ser Gly Ala Thr Ala Cys Tyr			
365	370	375	
Leu Pro Ala Asp Arg Cys Asn Tyr Gln Thr Phe Cys Ala Asp Gly			
380	385	390	
Ala Asp Glu Arg Arg Cys Arg His Cys Gln Pro Gly Asn Phe Arg			
395	400	405	
Cys Arg Asp Glu Lys Cys Val Tyr Glu Thr Trp Val Cys Asp Gly			
410	415	420	
Gln Pro Asp Cys Ala Asp Gly Ser Asp Glu Trp Asp Cys Ser Tyr			
425	430	435	
Val Leu Pro Arg Lys Val Ile Thr Ala Ala Val Ile Gly Ser Leu			
440	445	450	
Val Cys Gly Leu Leu Leu Val Ile Ala Leu Gly Cys Thr Cys Lys			
455	460	465	
Leu Tyr Ala Ile Arg Thr Gln Glu Tyr Ser Ile Phe Ala Pro Leu			

470 475 480

Ser Arg Met Glu Ala Glu Ile Val Gln Gln Gln Ala Pro Pro Ser
485 490 495

Tyr Gly Gln Leu Ile Ala Gln Gly Ala Ile Pro Pro Val Glu Asp
500 505 510

Phe Pro Thr Glu Asn Pro Asn Asp Asn Ser Val Leu Gly Asn Leu
515 520 525

Arg Ser Leu Leu Gln Ile Leu Arg Gln Asp Met Thr Pro Gly Gly
530 535 540

Gly Pro Gly Ala Arg Arg Gln Arg Gly Arg Leu Met Arg Arg
545 550 555

Leu Val Arg Arg Leu Arg Arg Trp Gly Leu Leu Pro Arg Thr Asn
560 565 570

Thr Pro Ala Arg Ala Ser Glu Ala Arg Ser Gln Val Thr Pro Ser
575 580 585

Ala Ala Pro Leu Glu Ala Leu Asp Gly Gly Thr Gly Pro Ala Arg
590 595 600

Glu Gly Gly Ala Val Gly Gly Gln Asp Gly Glu Gln Ala Pro Pro
605 610 615

Leu Pro Ile Lys Ala Pro Leu Pro Ser Ala Ser Thr Ser Pro Ala
620 625 630

Pro Thr Thr Val Pro Glu Ala Pro Gly Pro Leu Pro Ser Leu Pro
635 640 645

Leu Glu Pro Ser Leu Leu Ser Gly Val Val Gln Ala Leu Arg Gly
650 655 660

Arg Leu Leu Pro Ser Leu Gly Pro Pro Gly Pro Thr Arg Ser Pro
665 670 675

Pro Gly Pro His Thr Ala Val Leu Ala Leu Glu Asp Glu Asp Asp
680 685 690

Val Leu Leu Val Pro Leu Ala Glu Pro Gly Val Trp Val Ala Glu
695 700 705

Ala Glu Asp Glu Pro Leu Leu Thr
710

<210> 184

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 184
ggctgtcact gtggagacac 20

<210> 185
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 185
gcaaggcat tacagctg 18

<210> 186
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 186
agaacatagg agcagtccca ctc 23

<210> 187
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 187
tgcctgctgc tgcacaatct cag 23

<210> 188
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 188
ggctattgct tgcctggga cagaccctgt ggcttaggct ctggc 45

<210> 189
<211> 663
<212> DNA
<213> Homo sapiens

<400> 189
cgagctgggc gagaagtagg ggagggcggt gctccgcccgc ggtggcggtt 50

gctatcgctt cgcagaacct actcaggcag ccagctgaga agagttgagg 100

gaaagtgcgtc ctgctgggtc tgcagacgcg atggataacg tgcagccgaa 150
aataaaaacat cgccccttct gcttcagtgt gaaaggccac gtgaagatgc 200
tgcggtggc actaactgtg acatctatga cctttttat catgcacaa 250
gccctgaac catatatgt tatcaactgga tttgaagtca ccgttatctt 300
attttcata cttttatatg tactcagact tgatcgatta atgaagtgg 350
tattttggcc tttgcttgat attatcaact cactggtaac aacagtattc 400
atgctcatcg tatctgtgtt ggcactgata ccagaaacca caacattgac 450
agttggtgga ggggtgtttg cacttgtgac agcagtatgc tgtcttgccg 500
acggggccct tatttaccgg aagttctgt tcaatccag cggtccttac 550
cagaaaaaagc ctgtgcatga aaaaaaaagaa gtttgtaat tttatattac 600
tttttagttt gatactaagt attaaacata tttctgtatt cttccaaaaa 650
aaaaaaaaaaa aaa 663

<210> 190
<211> 152
<212> PRT
<213> Homo sapiens

<400> 190
Met Asp Asn Val Gln Pro Lys Ile Lys His Arg Pro Phe Cys Phe
1 5 10 15

Ser Val Lys Gly His Val Lys Met Leu Arg Leu Ala Leu Thr Val
20 25 30

Thr Ser Met Thr Phe Phe Ile Ile Ala Gln Ala Pro Glu Pro Tyr
35 40 45

Ile Val Ile Thr Gly Phe Glu Val Thr Val Ile Leu Phe Phe Ile
50 55 60

Leu Leu Tyr Val Leu Arg Leu Asp Arg Leu Met Lys Trp Leu Phe
65 70 75

Trp Pro Leu Leu Asp Ile Ile Asn Ser Leu Val Thr Thr Val Phe
80 85 90

Met Leu Ile Val Ser Val Leu Ala Leu Ile Pro Glu Thr Thr Thr
95 100 105

Leu Thr Val Gly Gly Val Phe Ala Leu Val Thr Ala Val Cys
110 115 120

Cys Leu Ala Asp Gly Ala Leu Ile Tyr Arg Lys Leu Leu Phe Asn
125 130 135

Pro Ser Gly Pro Tyr Gln Lys Lys Pro Val His Glu Lys Lys Glu
140 145 150

Val Leu

<210> 191
<211> 495
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 78, 212, 234, 487
<223> unknown base

<400> 191
gggcgagaag taggggaggg cgtgttccgc cgcggtggcg gttgctatcg 50
ttttgcagaa cctactcagg cagccagntg agaagagttg agggaaaagtg 100
ctgctgctgg gtctgcagac gcgtatggata acgtgcagcc gaaaataaaa 150
catcgccccct tctgcttcag tgtgaaaggc cacgtgaaga tgctgcggct 200
ggcactaact gngacatcta tgacctttt tatnatcgca caagccccctg 250
aaccatatat tgttatcact ggatttgaag tcaccgttat cttattttc 300
atactttat atgtactcag acttgatcga ttaatgaagt ggttattttg 350
gcctttgctt gatattatca actcactggt aacaacagta ttcatgctca 400
tcgtatctgt gttggcactg ataccagaaa ccacaacatt gacagttgg 450
ggaggggtgt ttgcacttgt gacagcagta tgctgtnttg ccgac 495

<210> 192
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 192
cgttttgcag aacctactca ggcag 25

<210> 193
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 193
cctccaccaa ctgtcaatgt tgtgg 25

<210> 194
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 194
aaagtgcgc tgctgggtct gcagacgcga tggataacgt 40

<210> 195
<211> 1879
<212> DNA
<213> Homo sapien

<400> 195
cagccccgcg cgccggccga gtcgctgagc cgcggtgcc ggacgggacg 50
ggaccggcta ggctgggcgc gccccccggg ccccgccgtg ggcattggcg 100
caactggcccg ggcgtgctg ctgcctctgc tggcccaagt gtcctgcgc 150
gccgccccgg agctggccccc cgccgccttc acgctgcccc tccgggtggc 200
cgcgccacg aaccgcgtag ttgcgcaccc cccgggaccc gggacccctg 250
ccgagcgcca cgccgacggc ttggcgctcg ccctggagcc tgccctggcg 300
tccccccggc gcgcgcggaa cttttggcc atggtagaca acctgcagg 350
ggactctggc cgcggtact acctggagat gctgatcggg accccccgc 400
agaagctaca gattctcggt gacactggaa gcagtaactt tgccgtggca 450
ggaaccccgc actcctacat agacacgtac tttgacacag agaggcttag 500
cacataccgc tccaagggtt ttgacgtcac agtgaagtac acacaaggaa 550
gctggacggg cttcggtggg gaagacctcg tcaccatccc caaaggcttc 600
aataacttctt ttcttgtcaa cattgccact attttgaaat cagagaattt 650
ctttttgcct gggattaaat ggaatggaaat acttggctta gcttatgcca 700
cacttgccaa gccatcaagt tctctggaga ctttcttcga ctccctggtg 750
acacaaggcaa acatccccaa cgttttctcc atgcagatgt gtggagccgg 800
cttggccgtt gctggatctg ggaccaacgg aggttagtctt gtcttgggtg 850
gaattgaacc aagtttgtat aaaggagaca tctggtatac ccctattaag 900
gaagagtggt actaccagat agaaattctg aaattggaaa ttggaggcga 950

aagccttaat ctggactgca gagagtataa cgca gaca ag gccatcg tgg 1000
acagtggcac cacgctgctg cgcctgcccc agaagggttt tgatgcgg 1050
gtggaa gctg tggcccg cgc atctctgatt ccagaattct ctgatgg 1100
ctggactggg tcccagctgg cgtgctggac gaattcgaa acaccc 1150
cttacttccc taaaatctcc atctacctga gagacgagaa ctccagcagg 1200
tcattccgta tcacaatcct gcctcagctt tacattcagc ccatgatgg 1250
ggccggcctg aattatgaat gttaccgatt cggcattcc ccatccacaa 1300
atgcgctggt gatcggtgcc acggtgatgg agggcttcta cgtcatcttc 1350
gacagagccc agaagagggt gggcttcgca gcgagccct gtgcagaaat 1400
tgcaggtgct gcagtgtctg aaatttccgg gccttctca acagaggatg 1450
tagccagcaa ctgtgtcccc gctcagtctt tgagcgagcc cattttgtgg 1500
attgtgtcct atgcgctcat gagcgtctgt ggagccatcc tccttgc 1550
aatcgtcctg ctgctgctgc cgttccggtg tcagcgtcgc ccccgtaacc 1600
ctgaggtcgt caatgatgag tcctctctgg tcagacatcg ctggaaatga 1650
atagccaggc ctgacacctaa gcaaccatga actcagctat taagaaaatc 1700
acatttccag ggcagcagcc gggatcgatg gtggcgctt ctccgtgcc 1750
caccctgtt caatctctgt tctgctccca gatgccttct agattcactg 1800
tcttttgcattt cttgattttc aagcttcaa atcctcccta cttccaagaa 1850
aaataattaa aaaaaaaact tcattctaa 1879

<210> 196
<211> 518
<212> PRT
<213> Homo sapien

<400> 196
Met Gly Ala Leu Ala Arg Ala Leu Leu Leu Pro Leu Leu Ala Gln
1 5 10 15

Trp Leu Leu Arg Ala Ala Pro Glu Leu Ala Pro Ala Pro Phe Thr
20 25 30

Leu Pro Leu Arg Val Ala Ala Ala Thr Asn Arg Val Val Ala Pro
35 40 45

Thr Pro Gly Pro Gly Thr Pro Ala Glu Arg His Ala Asp Gly Leu
50 55 60

Ala Leu Ala Leu Glu Pro Ala Leu Ala Ser Pro Ala Gly Ala Ala
65 70 75

Asn Phe Leu Ala Met Val Asp Asn Leu Gln Gly Asp Ser Gly Arg
80 85 90

Gly Tyr Tyr Leu Glu Met Leu Ile Gly Thr Pro Pro Gln Lys Leu
95 100 105

Gln Ile Leu Val Asp Thr Gly Ser Ser Asn Phe Ala Val Ala Gly
110 115 120

Thr Pro His Ser Tyr Ile Asp Thr Tyr Phe Asp Thr Glu Arg Ser
125 130 135

Ser Thr Tyr Arg Ser Lys Gly Phe Asp Val Thr Val Lys Tyr Thr
140 145 150

Gln Gly Ser Trp Thr Gly Phe Val Gly Glu Asp Leu Val Thr Ile
155 160 165

Pro Lys Gly Phe Asn Thr Ser Phe Leu Val Asn Ile Ala Thr Ile
170 175 180

Phe Glu Ser Glu Asn Phe Phe Leu Pro Gly Ile Lys Trp Asn Gly
185 190 195

Ile Leu Gly Leu Ala Tyr Ala Thr Leu Ala Lys Pro Ser Ser Ser
200 205 210

Leu Glu Thr Phe Phe Asp Ser Leu Val Thr Gln Ala Asn Ile Pro
215 220 225

Asn Val Phe Ser Met Gln Met Cys Gly Ala Gly Leu Pro Val Ala
230 235 240

Gly Ser Gly Thr Asn Gly Gly Ser Leu Val Leu Gly Gly Ile Glu
245 250 255

Pro Ser Leu Tyr Lys Gly Asp Ile Trp Tyr Thr Pro Ile Lys Glu
260 265 270

Glu Trp Tyr Tyr Gln Ile Glu Ile Leu Lys Leu Glu Ile Gly Gly
275 280 285

Gln Ser Leu Asn Leu Asp Cys Arg Glu Tyr Asn Ala Asp Lys Ala
290 295 300

Ile Val Asp Ser Gly Thr Thr Leu Leu Arg Leu Pro Gln Lys Val
305 310 315

Phe Asp Ala Val Val Glu Ala Val Ala Arg Ala Ser Leu Ile Pro
320 325 330

Glu Phe Ser Asp Gly Phe Trp Thr Gly Ser Gln Leu Ala Cys Trp
335 340 345

Thr Asn Ser Glu Thr Pro Trp Ser Tyr Phe Pro Lys Ile Ser Ile
350 355 360

Tyr Leu Arg Asp Glu Asn Ser Ser Arg Ser Phe Arg Ile Thr Ile
365 370 375

Leu Pro Gln Leu Tyr Ile Gln Pro Met Met Gly Ala Gly Leu Asn
380 385 390

Tyr Glu Cys Tyr Arg Phe Gly Ile Ser Pro Ser Thr Asn Ala Leu
395 400 405

Val Ile Gly Ala Thr Val Met Glu Gly Phe Tyr Val Ile Phe Asp
410 415 420

Arg Ala Gln Lys Arg Val Gly Phe Ala Ala Ser Pro Cys Ala Glu
425 430 435

Ile Ala Gly Ala Ala Val Ser Glu Ile Ser Gly Pro Phe Ser Thr
440 445 450

Glu Asp Val Ala Ser Asn Cys Val Pro Ala Gln Ser Leu Ser Glu
455 460 465

Pro Ile Leu Trp Ile Val Ser Tyr Ala Leu Met Ser Val Cys Gly
470 475 480

Ala Ile Leu Leu Val Leu Ile Val Leu Leu Leu Pro Phe Arg
485 490 495

Cys Gln Arg Arg Pro Arg Asp Pro Glu Val Val Asn Asp Glu Ser
500 505 510 .

Ser Leu Val Arg His Arg Trp Lys
515

<210> 197

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 197

cgcagaagct acagattctc g 21

<210> 198

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 198

ggaaatttggta ggccaaagc 19

<210> 199
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 199
ggatgtagcc agcaactgtg 20

<210> 200
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 200
gccttggctc gttctcttc 19

<210> 201
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 201
ggtcctgtgc ctggatgg 18

<210> 202
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 202
gacaagacta cctccgttgg tc 22

<210> 203
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 203
tgatgcacag ttcagcacct gttg 24

<210> 204

<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 204
cgctccaagg gctttgacgt cacagtgaag tacacacaag gaagctg 47

<210> 205
<211> 1939
<212> DNA
<213> Homo sapiens

<400> 205
cgcctccgcc ttcggaggct gacgcgcccc ggcgccgttc caggcctgtg 50
cagggcggat cggcagccgc ctggcggcga tccagggcgg tgccgggcct 100
gggcgggagc cgggaggcgc ggccggcatg gaggcgctgc tgctgggcgc 150
ggggttgctg ctggcgcctt acgtgcttgt ctactacaac ctggtaagg 200
ccccgcctgt cggcggcatg ggcaacctgc gggccgcac ggccgtggtc 250
acgggcgcac acagcggcat cgaaaagatg acggcgctgg agctggcgcg 300
ccggggagcg cgcgtggcgc tggcctgcgc cagccaggag cgcggggagg 350
cggtgcctt cgacctccgc caggagatg ggaacaatga ggtcatcttc 400
atggccttgg acttggccag tctggcctcg gtgcgggcct ttgccactgc 450
ctttctgagc tctgagccac gttggacat cctcatccac aatgccggta 500
tcagttcctg tggccggacc cgtgaggcgt ttaacctgct gttcgggtg 550
aaccatatcg gtccctttct gctgacacat ctgctgctgc cttgcctgaa 600
ggcatgtgcc cctagccgcg tggtggtggt agcctcagct gcccaactgtc 650
ggggacgtct tgacttcaa cgcctggacc gcccaagtggt gggctggcgg 700
caggagctgc gggcatatgc tgacactaag ctggctaatt tactgtttgc 750
ccgggagctc gccaaccagg ttgaggccac tggcgtcacc tgctatgcag 800
cccacccagg gcctgtgaac tcggagctgt tcctgcgcac tgttcctgga 850
tggctgcgcc cactttgcg cccattggct tggctggcgc tccgggcacc 900
aagaggggggt gcccagacac ccctgtattg tgctctacaa gagggcatcg 950
agccccctcaag tggagatat ttgcactt gccatgtgga agaggtgcct 1000
ccagctgccc gagacgaccg ggcagcccat cggctatggg aggccagcaa 1050

gaggctggca gggcttggc ctggggagga tgctgaaccc gatgaagacc 1100
cccagtctga ggactcagag gccccatctt ctctaagcac cccccaccct 1150
gaggagccca cagttctca accttacccc agccctcaga gctcaccaga 1200
tttgtctaag atgacgcacc gaattcaggc taaagtttag cctgagatcc 1250
agctctccta accctcaggc caggatgctt gccatggcac ttcatgggcc 1300
ttgaaaacct cgatgtgtg tgaggccatg ccctggacac tgacgggtt 1350
gtgatcttga cctccgttgt tactttctgg ggccccaagc tgtgccttgg 1400
acatctctt tcctggttga agaataatg ggtgattatt tcttccttag 1450
agtgacagta accccagatg gagagatagg ggtatgctag acactgtgct 1500
tctcgaaat ttggatgttag tatttcagg ccccaccctt attgattctg 1550
atcagctctg gagcagaggc agggagttt caatgtgatg cactgccaac 1600
attgagaatt agtgaactga tcccttgca accgtctagc tagtagtta 1650
aattacccccc atgttaatga agcggaaatta ggctcccgag ctaaggact 1700
cgccctagggt ctcacagtga gtaggaggag ggcctggat ctgaacccaa 1750
gggtctgagg ccagggccga ctgccgtaaat atgggtgctg agaagtgagt 1800
cagggcaggg cagctggat cgaggtgccc catggagta aggggacgcc 1850
ttccggggcgg atgcagggct ggggtcatct gtatctgaag cccctcgaa 1900
taaagcgcgt tgaccgccaa aaaaaaaaaa aaaaaaaaaa 1939

<210> 206

<211> 377

<212> PRT

<213> Homo sapiens

<400> 206

Met	Glu	Ala	Leu	Leu	Leu	Gly	Ala	Gly	Leu	Leu	Leu	Gly	Ala	Tyr
1									10					15

Val	Leu	Val	Tyr	Tyr	Asn	Leu	Val	Lys	Ala	Pro	Pro	Cys	Gly	Gly
								20				25		30

Met	Gly	Asn	Leu	Arg	Gly	Arg	Thr	Ala	Val	Val	Thr	Gly	Ala	Asn
									35		40			45

Ser	Gly	Ile	Gly	Lys	Met	Thr	Ala	Leu	Glu	Leu	Ala	Arg	Arg	Gly
									50		55			60

Ala	Arg	Val	Val	Leu	Ala	Cys	Arg	Ser	Gln	Glu	Arg	Gly	Glu	Ala
									65		70			75

Ala Ala Phe Asp Leu Arg Gln Glu Ser Gly Asn Asn Glu Val Ile
80 85 90

Phe Met Ala Leu Asp Leu Ala Ser Leu Ala Ser Val Arg Ala Phe
95 100 105

Ala Thr Ala Phe Leu Ser Ser Glu Pro Arg Leu Asp Ile Leu Ile
110 115 120

His Asn Ala Gly Ile Ser Ser Cys Gly Arg Thr Arg Glu Ala Phe
125 130 135

Asn Leu Leu Leu Arg Val Asn His Ile Gly Pro Phe Leu Leu Thr
140 145 150

His Leu Leu Leu Pro Cys Leu Lys Ala Cys Ala Pro Ser Arg Val
155 160 165

Val Val Val Ala Ser Ala Ala His Cys Arg Gly Arg Leu Asp Phe
170 175 180

Lys Arg Leu Asp Arg Pro Val Val Gly Trp Arg Gln Glu Leu Arg
185 190 195

Ala Tyr Ala Asp Thr Lys Leu Ala Asn Val Leu Phe Ala Arg Glu
200 205 210

Leu Ala Asn Gln Leu Glu Ala Thr Gly Val Thr Cys Tyr Ala Ala
215 220 225

His Pro Gly Pro Val Asn Ser Glu Leu Phe Leu Arg His Val Pro
230 235 240

Gly Trp Leu Arg Pro Leu Leu Arg Pro Leu Ala Trp Leu Val Leu
245 250 255

Arg Ala Pro Arg Gly Gly Ala Gln Thr Pro Leu Tyr Cys Ala Leu
260 265 270

Gln Glu Gly Ile Glu Pro Leu Ser Gly Arg Tyr Phe Ala Asn Cys
275 280 285

His Val Glu Glu Val Pro Pro Ala Ala Arg Asp Asp Arg Ala Ala
290 295 300

His Arg Leu Trp Glu Ala Ser Lys Arg Leu Ala Gly Leu Gly Pro
305 310 315

Gly Glu Asp Ala Glu Pro Asp Glu Asp Pro Gln Ser Glu Asp Ser
320 325 330

Glu Ala Pro Ser Ser Leu Ser Thr Pro His Pro Glu Glu Pro Thr
335 340 345

Val Ser Gln Pro Tyr Pro Ser Pro Gln Ser Ser Pro Asp Leu Ser
350 355 360

Lys Met Thr His Arg Ile Gln Ala Lys Val Glu Pro Glu Ile Gln
365 370 375

Leu Ser

<210> 207

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 207

cttcatggcc ttggacttgg ccag 24

<210> 208

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 208

acgccagttgg cctcaagctg gttg 24

<210> 209

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 209

ctttctgagc tctgagccac gggtggacat cctcatccac aatgc 45

<210> 210

<211> 3716

<212> DNA

<213> Homo sapiens

<400> 210

ggaggagaca gcctcctggg gggcaggggt tccctgcctc tgctgctcct 50

gctcatcatg ggaggcatgg ctcaggactc cccgccccag atccttagtcc 100

accccccagga ccagctgttc cagggccctg gccctgccag gatgagctgc 150

caagcctcag gccagccacc tcccaccatc cgctggttgc tgaatggca 200

gccccctgagc atggtgcccc cagacccaca ccacccctg cctgatggga 250

cccttctgct gctacagccc cctgccccggg gacatgcccc caatggccag 300

gccctgtcca cagacacctggg tgtctacaca tgtgaggcca gcaaccggct 350
tggcacggca gtcagcagag gcgcctcggt gtctgtggct gtcctccggg 400
aggatttcca gatccagcct cgggacatgg tggctgtgggt gggtgagcag 450
tttactctgg aatgtgggcc gccctggggc caccagagc ccacagtctc 500
atggtgaaa gatggaaac ccctggccct ccagccccga aggcacacag 550
tgtccggggg gtccctgctg atggcaagag cagagaagag tgacgaaggg 600
acctacatgt gtgtggccac caacagcgca ggacataggg agagccgcgc 650
agcccccgtt tccatccagg agccccagga ctacacggag cctgtggagc 700
ttctggctgt gcgaattcag ctggaaaatg tgacactgct gaacccggat 750
cctgcagagg gccccaaagcc tagaccggcg gtgtggctca gctggaaggt 800
cagtggccct gctgcgcctg cccaatctta cacggcctt ttcaggaccc 850
agactgcccc gggaggccag ggagctccgt gggcagagga gctgctggcc 900
ggctggcaga gcgagagct tggaggcctc cactggggcc aagactacga 950
gttcaaagtg agaccatcct ctggccgggc tcgaggccct gacagcaacg 1000
tgctgctcct gaggctgccc gaaaaagtgc ccagtgcggc acctcaggaa 1050
gtgactctaa agcctggcaa tggcaactgtc tttgtgagct gggtcccacc 1100
acctgctgaa aaccacaatg gcatcatccg tggctaccag gtctggagcc 1150
tggcaacac atcaactgcca ccagccaact ggactgttagt tggtgagcag 1200
acccagctgg aaatcgccac ccatatgcca ggctcctact gcgtgcaagt 1250
ggctgcagtc actggtgctg gagctgggga gcccaacttgc cctgtctgcc 1300
tcctttaga gcaggccatg gagcgagcca cccaaagaacc cagtgagcat 1350
ggcccttggg ccctggagca gctgagggt accttgaagc ggcctgaggt 1400
cattgccacc tgcgggtttg cactctggct gctgcttctg ggcaccggc 1450
tgtgtatcca ccggccggcgc cgagcttaggg tgcacctggg cccaggtctg 1500
tacagatata ccagtgagga tgccatccta aaacacagga tggatcacag 1550
tgactcccag tggttggcag acacttggcg ttccacactt ggctctcggt 1600
acctgagcag cagcagcagc ctcagcagtc ggctggggc ggatgccccgg 1650
gacccactag actgtcgctg ctccttgctc tcctggact cccgaagccc 1700

cggcgtgccc ctgcttccag acaccagcac ttttatggc tccctcatcg 1750
ctgagctgcc ctccagtacc ccagccaggc caagtccccca ggtcccagct 1800
gtcaggcgcc tcccacccca gctggcccag ctctccagcc cctgttccag 1850
ctcagacagc ctctgcagcc gcaggggact ctcttctccc cgcttgctc 1900
tggccccctgc agaggcttgg aaggccaaaa agaagcagga gctgcagcat 1950
gccaacagtt ccccaactgct ccggggcagc cactccttgg agctccggc 2000
ctgtgagttt ggaaatagag gttccaagaa cctttcccaa agcccaggag 2050
ctgtgccccca agctctggtt gcctggcggg ccctgggacc gaaactcctc 2100
agctcctcaa atgagctggt tactcgtcat ctccctccag caccctctt 2150
tcctcatgaa actcccccaa ctcagagtca acagacccag cctccggtgg 2200
caccacagggc tccctccctcc atcctgctgc cagcagcccc catccccatc 2250
cttagccccct gcagtcffff tagcccccaag gcctcttccc tctctggccc 2300
cagccccagct tccagtcgccc tgtccagctc ctcactgtca tccctggggg 2350
aggatcaaga cagcgtgctg acccctgagg aggtagccct gtgcttgaa 2400
ctcagtgagg gtgaggagac tcccaggaac agcgtctctc ccatgccaag 2450
ggctccttca cccccccacca cctatggta catcagcgtc ccaacagcct 2500
cagagttcac ggacatgggc aggactggag gaggggtggg gcccaagggg 2550
ggagtcttgc tgtgcccacc tcggccctgc ctcaccccca cccccagcga 2600
gggctcctta gccaatggtt ggggctcagc ctctgaggac aatgccgcca 2650
gcccagagc cagccttgtc agctcctccg atggctcatt cctcgctgat 2700
gctcaacttg cccggggccct ggcagtggtc gtggatagct ttggttcgg 2750
tctagagccc agggaggcag actgcgtctt catagatgcc tcatacaccc 2800
cctccccacg ggatgagatc ttcctgaccc ccaacctctc cctgccccctg 2850
tgggagtggaa ggccagactg gttggaaagac atggaggtca gccacaccca 2900
gcggctggaa agggggatgc ctccctggcc ccctgactct cagatcttt 2950
cccagagaag tcagctccac tgtcgatgc ccaaggctgg tgcttctcct 3000
gttagattact cctgaaccgt gtccctgaga cttcccagac ggaaatcaga 3050
accacttctc ctgtccaccc acaagacctg ggctgtggtg tgtgggtctt 3100
ggcctgtgtt tctctgcagc tggggtccac cttcccaagc ctccagagag 3150

ttctccctcc acgattgtga aaacaaatga aaacaaaatt agagcaaagc 3200
tgacctggag ccctcaggga gcaaaacatc atctccacct gactccttagc 3250
caactgctttc tcctctgtgc catccactcc caccaccagg ttgtttggc 3300
ctgaggagca gccctgcctg ctgctttcc cccaccattt ggatcacagg 3350
aagtggagga gccagagggtg ccttgcgttggaa ggacagcagt ggctgctggg 3400
agagggctgt ggaggaagga gcttctcgga gccccctctc agccttacct 3450
gggcccctcc tctagagaag agctcaactc tctcccaacc tcaccatgg 3500
aagaaaataa ttatgaatgc caactgaggca ctgaggccct acctcatgcc 3550
aaacaaaggg ttcaaggctg ggtctagcga ggtatgctgaa ggaagggagg 3600
tatgagaccg taggtcaaaaa gcaccatcct cgtactgttgc tcactatgag 3650
cttaagaaat ttgataccat aaaatggtaa aaaaaaaaaa aaaaaaaaaa 3700
aaaaaaaaaa aaaaaa 3716

<210> 211
<211> 985
<212> PRT
<213> Homo sapiens

<400> 211
Met Gly Gly Met Ala Gln Asp Ser Pro Pro Gln Ile Leu Val His
1 5 10 15
Pro Gln Asp Gln Leu Phe Gln Gly Pro Gly Pro Ala Arg Met Ser
20 25 30
Cys Gln Ala Ser Gly Gln Pro Pro Pro Thr Ile Arg Trp Leu Leu
35 40 45
Asn Gly Gln Pro Leu Ser Met Val Pro Pro Asp Pro His His Leu
50 55 60
Leu Pro Asp Gly Thr Leu Leu Leu Gln Pro Pro Ala Arg Gly
65 70 75
His Ala His Asp Gly Gln Ala Leu Ser Thr Asp Leu Gly Val Tyr
80 85 90
Thr Cys Glu Ala Ser Asn Arg Leu Gly Thr Ala Val Ser Arg Gly
95 100 105
Ala Arg Leu Ser Val Ala Val Leu Arg Glu Asp Phe Gln Ile Gln
110 115 120
Pro Arg Asp Met Val Ala Val Val Gly Glu Gln Phe Thr Leu Glu
125 130 135

Cys Gly Pro Pro Trp Gly His Pro Glu Pro Thr Val Ser Trp Trp
140 145 150

Lys Asp Gly Lys Pro Leu Ala Leu Gln Pro Gly Arg His Thr Val
155 160 165

Ser Gly Gly Ser Leu Leu Met Ala Arg Ala Glu Lys Ser Asp Glu
170 175 180

Gly Thr Tyr Met Cys Val Ala Thr Asn Ser Ala Gly His Arg Glu
185 190 195

Ser Arg Ala Ala Arg Val Ser Ile Gln Glu Pro Gln Asp Tyr Thr
200 205 210

Glu Pro Val Glu Leu Leu Ala Val Arg Ile Gln Leu Glu Asn Val
215 220 225

Thr Leu Leu Asn Pro Asp Pro Ala Glu Gly Pro Lys Pro Arg Pro
230 235 240

Ala Val Trp Leu Ser Trp Lys Val Ser Gly Pro Ala Ala Pro Ala
245 250 255

Gln Ser Tyr Thr Ala Leu Phe Arg Thr Gln Thr Ala Pro Gly Gly
260 265 270

Gln Gly Ala Pro Trp Ala Glu Glu Leu Leu Ala Gly Trp Gln Ser
275 280 285

Ala Glu Leu Gly Gly Leu His Trp Gly Gln Asp Tyr Glu Phe Lys
290 295 300

Val Arg Pro Ser Ser Gly Arg Ala Arg Gly Pro Asp Ser Asn Val
305 310 315

Leu Leu Leu Arg Leu Pro Glu Lys Val Pro Ser Ala Pro Pro Gln
320 325 330

Glu Val Thr Leu Lys Pro Gly Asn Gly Thr Val Phe Val Ser Trp
335 340 345

Val Pro Pro Pro Ala Glu Asn His Asn Gly Ile Ile Arg Gly Tyr
350 355 360

Gln Val Trp Ser Leu Gly Asn Thr Ser Leu Pro Pro Ala Asn Trp
365 370 375

Thr Val Val Gly Glu Gln Thr Gln Leu Glu Ile Ala Thr His Met
380 385 390

Pro Gly Ser Tyr Cys Val Gln Val Ala Ala Val Thr Gly Ala Gly
395 400 405

Ala Gly Glu Pro Ser Arg Pro Val Cys Leu Leu Leu Glu Gln Ala
410 415 420

Met Glu Arg Ala Thr Gln Glu Pro Ser Glu His Gly Pro Trp Thr
425 430 435

Leu Glu Gln Leu Arg Ala Thr Leu Lys Arg Pro Glu Val Ile Ala
440 445 450

Thr Cys Gly Val Ala Leu Trp Leu Leu Leu Gly Thr Ala Val
455 460 465

Cys Ile His Arg Arg Arg Ala Arg Val His Leu Gly Pro Gly
470 475 480

Leu Tyr Arg Tyr Thr Ser Glu Asp Ala Ile Leu Lys His Arg Met
485 490 495

Asp His Ser Asp Ser Gln Trp Leu Ala Asp Thr Trp Arg Ser Thr
500 505 510

Ser Gly Ser Arg Asp Leu Ser Ser Ser Ser Ser Leu Ser Ser Arg
515 520 525

Leu Gly Ala Asp Ala Arg Asp Pro Leu Asp Cys Arg Arg Ser Leu
530 535 540

Leu Ser Trp Asp Ser Arg Ser Pro Gly Val Pro Leu Leu Pro Asp
545 550 555

Thr Ser Thr Phe Tyr Gly Ser Leu Ile Ala Glu Leu Pro Ser Ser
560 565 570

Thr Pro Ala Arg Pro Ser Pro Gln Val Pro Ala Val Arg Arg Leu
575 580 585

Pro Pro Gln Leu Ala Gln Leu Ser Ser Pro Cys Ser Ser Ser Asp
590 595 600

Ser Leu Cys Ser Arg Arg Gly Leu Ser Ser Pro Arg Leu Ser Leu
605 610 615

Ala Pro Ala Glu Ala Trp Lys Ala Lys Lys Lys Gln Glu Leu Gln
620 625 630

His Ala Asn Ser Ser Pro Leu Leu Arg Gly Ser His Ser Leu Glu
635 640 645

Leu Arg Ala Cys Glu Leu Gly Asn Arg Gly Ser Lys Asn Leu Ser
650 655 660

Gln Ser Pro Gly Ala Val Pro Gln Ala Leu Val Ala Trp Arg Ala
665 670 675

Leu Gly Pro Lys Leu Leu Ser Ser Ser Asn Glu Leu Val Thr Arg
680 685 690

His Leu Pro Pro Ala Pro Leu Phe Pro His Glu Thr Pro Pro Thr
695 700 705

Gln Ser Gln Gln Thr Gln Pro Pro Val Ala Pro Gln Ala Pro Ser
710 715 720

Ser Ile Leu Leu Pro Ala Ala Pro Ile Pro Ile Leu Ser Pro Cys
725 730 735

Ser Pro Pro Ser Pro Gln Ala Ser Ser Leu Ser Gly Pro Ser Pro
740 745 750

Ala Ser Ser Arg Leu Ser Ser Ser Leu Ser Ser Leu Gly Glu
755 760 765

Asp Gln Asp Ser Val Leu Thr Pro Glu Glu Val Ala Leu Cys Leu
770 775 780

Glu Leu Ser Glu Gly Glu Glu Thr Pro Arg Asn Ser Val Ser Pro
785 790 795

Met Pro Arg Ala Pro Ser Pro Pro Thr Thr Tyr Gly Tyr Ile Ser
800 805 810

Val Pro Thr Ala Ser Glu Phe Thr Asp Met Gly Arg Thr Gly Gly
815 820 825

Gly Val Gly Pro Lys Gly Gly Val Leu Leu Cys Pro Pro Arg Pro
830 835 840

Cys Leu Thr Pro Thr Pro Ser Glu Gly Ser Leu Ala Asn Gly Trp
845 850 855

Gly Ser Ala Ser Glu Asp Asn Ala Ala Ser Ala Arg Ala Ser Leu
860 865 870

Val Ser Ser Ser Asp Gly Ser Phe Leu Ala Asp Ala His Phe Ala
875 880 885

Arg Ala Leu Ala Val Ala Val Asp Ser Phe Gly Phe Gly Leu Glu
890 895 900

Pro Arg Glu Ala Asp Cys Val Phe Ile Asp Ala Ser Ser Pro Pro
905 910 915

Ser Pro Arg Asp Glu Ile Phe Leu Thr Pro Asn Leu Ser Leu Pro
920 925 930

Leu Trp Glu Trp Arg Pro Asp Trp Leu Glu Asp Met Glu Val Ser
935 940 945

His Thr Gln Arg Leu Gly Arg Gly Met Pro Pro Trp Pro Pro Asp
950 955 960

Ser Gln Ile Ser Ser Gln Arg Ser Gln Leu His Cys Arg Met Pro
965 970 975

Lys Ala Gly Ala Ser Pro Val Asp Tyr Ser
980 985

<210> 212
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 212
gaagggacct acatgtgtgt ggcc 24

<210> 213
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 213
actgacccttc cagctgagcc acac 24

<210> 214
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 214
aggactacac ggagcctgtg gagcttctgg ctgtgcgaat tcagctggaa 50

<210> 215
<211> 2749
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1869, 1887
<223> unknown base

<400> 215
ctcccacgt gtccagcgcc cagaatgcgg cttctggtcc tgctatgggg 50
ttgcctgctg ctcccagggtt atgaagccct ggagggccca gagaaatca 100
gcgggttcga agggacact gtgtccctgc agtgcaccta cagggaaagag 150
ctgagggacc accggaagta ctggtgcaagg aagggtggga tcctttctc 200
tcgctgtct ggcaccatct atgcagaaga agaaggccag gagacaatga 250
agggcaggggt gtccatccgt gacagccgcc aggagctctc gctcattgtg 300

accctgtgga acctcaccct gcaagacgct ggggagtact ggtgtggggt 350
cgaaaaacgg ggccccgatg agtctttact gatctctctg ttcgtctttc 400
caggaccctg ctgtcctccc tccccttctc ccaccccca gcctctggct 450
acaacacgcc tgcaaaaaaa ggcaaaaagct cagcaaaccc agcccccagg 500
attgacttct cctgggctct accccggcagc caccacagcc aagcagggga 550
agacaggggc tgaggccccct ccattgccag ggacttccca gtacgggcac 600
gaaaggactt ctcagtagcac aggaacctct cctcacccag cgacctctcc 650
tcctgcaggg agctcccgcc ccccatgca gctggactcc acctcagcag 700
aggacaccag tccagctctc agcagtggca gctctaagcc cagggtggtcc 750
atcccgtatgg tccgcataact ggccccagtc ctggtgctgc tgagccttct 800
gtcagccgca ggcctgatcg cttctgcag ccacccgtc ctgtggagaa 850
aggaagctca acaggccacg gagacacaga ggaacgagaa gttctggctc 900
tcacgcttga ctgcggagga aaaggaagcc cttccagg cccctgaggg 950
ggacgtgatc tcgatgcctc ccctccacac atctgaggag gagctgggtc 1000
tctcgaagtt tgtctcagcg tagggcagga ggcctcctg gccaggccag 1050
cagtgaagca gtatggctgg ctggatcagc accgattccc gaaagcttcc 1100
cacctcagcc tcagagtcca gctgcccggaa ctccagggtc ctccccaccc 1150
tccccaggct ctcctttgc atgttccagc ctgacctaga agcgtttgtc 1200
agccctggag cccagagcgg tggccttgct cttccggctg gagactggga 1250
catccctgat agttcacat ccctggcag agtaccaggc tgctgaccct 1300
cagcagggcc agacaaggct cagtggatct ggtctgagtt tcaatctgcc 1350
aggaactcct gggcctcatg cccagtgtcg gaccctgcct tcctccact 1400
ccagacccca ctttgttttc cttccctggc gtcctcagac ttagtcccac 1450
ggtctcctgc atcagctggt gatgaagagg agcatgctgg ggtgagactg 1500
ggattctggc ttctcttga accacctgca tccagccctt caggaagcct 1550
gtgaaaaacg tgattcctgg ccccaaccaag acccaccaaa accatctctg 1600
ggcttgggtgc aggactctga attctaaca tgcccaagtga ctgtcgact 1650
ttagtttgag ggccagtggtt cctgatgaac gtcacaccc cttcagctta 1700
gagtctgcat ttgggctgtg acgtctccac ctgccccaat agatctgctc 1750

tgtctgcgac accagatcca cgtgggact cccctgaggc ctgctaagtc 1800
caggccttgg tcaggtcagg tgcacattgc aggataagcc caggaccggc 1850
acagaagtgg ttgccttnc catttgcct ccctggncca tgccttcttgc 1900
cctttggaaa aaatgatgaa gaaaaccttg gtccttcct tgtctggaaa 1950
gggttacttg cctatgggtt ctggtggcta gagagaaaag tagaaaaacca 2000
gagtgcacgt aggtgtctaa cacagaggag agtaggaaca gggcggatac 2050
ctgaaggtga ctccgagtcc agccccctgg agaagggtc gggggtgtgg 2100
gtaaaagtagc acaactacta ttttttttct ttttccatta ttattgttt 2150
ttaagacaga atctcggtct gctgcccagg ctggagtgcgtt gttggcacat 2200
ctgcaaactc cgccctcctgg gttcaagtga ttcttctgcc tcagcctccc 2250
gagtagctgg gattacagggc acgcaccacc acacctggct aattttgtta 2300
cttttagtag agatggggtt tcaccatgtt ggccaggctg gtcttgaact 2350
cctgacactca aatgagcctc ctgcttcagt ctcccaaatt gccgggattta 2400
caggcatgag ccactgtgtc tggccctatt tcctttaaaa agtgaatatt 2450
agagttgttc agtatgcaaa acttggaaaag atggaggaga aaaagaaaaag 2500
gaagaaaaaaaaa atgtcaccca tagtctcacc agagactatc attatttcgt 2550
tttgggttac ttccctccac tctttcttc ttccacataat ttgccgggtgt 2600
tctttttaca gagcaattat cttgtatata caactttgtta tcctgcctt 2650
tccaccttat cgttccatca ctttattcca gcacttctct gtgttttaca 2700
gacctttta taaataaaaat gttcatcagc tgcataaaaaa aaaaaaaaaa 2749

<210> 216
<211> 332
<212> PRT
<213> Homo sapiens

<400> 216
Met Arg Leu Leu Val Leu Leu Trp Gly Cys Leu Leu Leu Pro Gly
1 5 10 15

Tyr Glu Ala Leu Glu Gly Pro Glu Glu Ile Ser Gly Phe Glu Gly
20 25 30

Asp Thr Val Ser Leu Gln Cys Thr Tyr Arg Glu Glu Leu Arg Asp
35 40 45

His Arg Lys Tyr Trp Cys Arg Lys Gly Gly Ile Leu Phe Ser Arg

	50	55	60
Cys Ser Gly Thr Ile Tyr Ala Glu Glu Gly Gln Glu Thr Met			
65	70	75	
Lys Gly Arg Val Ser Ile Arg Asp Ser Arg Gln Glu Leu Ser Leu			
80	85	90	
Ile Val Thr Leu Trp Asn Leu Thr Leu Gln Asp Ala Gly Glu Tyr			
95	100	105	
Trp Cys Gly Val Glu Lys Arg Gly Pro Asp Glu Ser Leu Leu Ile			
110	115	120	
Ser Leu Phe Val Phe Pro Gly Pro Cys Cys Pro Pro Ser Pro Ser			
125	130	135	
Pro Thr Phe Gln Pro Leu Ala Thr Thr Arg Leu Gln Pro Lys Ala			
140	145	150	
Lys Ala Gln Gln Thr Gln Pro Pro Gly Leu Thr Ser Pro Gly Leu			
155	160	165	
Tyr Pro Ala Ala Thr Thr Ala Lys Gln Gly Lys Thr Gly Ala Glu			
170	175	180	
Ala Pro Pro Leu Pro Gly Thr Ser Gln Tyr Gly His Glu Arg Thr			
185	190	195	
Ser Gln Tyr Thr Gly Thr Ser Pro His Pro Ala Thr Ser Pro Pro			
200	205	210	
Ala Gly Ser Ser Arg Pro Pro Met Gln Leu Asp Ser Thr Ser Ala			
215	220	225	
Glu Asp Thr Ser Pro Ala Leu Ser Ser Gly Ser Ser Lys Pro Arg			
230	235	240	
Val Ser Ile Pro Met Val Arg Ile Leu Ala Pro Val Leu Val Leu			
245	250	255	
Leu Ser Leu Leu Ser Ala Ala Gly Leu Ile Ala Phe Cys Ser His			
260	265	270	
Leu Leu Leu Trp Arg Lys Glu Ala Gln Gln Ala Thr Glu Thr Gln			
275	280	285	
Arg Asn Glu Lys Phe Trp Leu Ser Arg Leu Thr Ala Glu Glu Lys			
290	295	300	
Glu Ala Pro Ser Gln Ala Pro Glu Gly Asp Val Ile Ser Met Pro			
305	310	315	
Pro Leu His Thr Ser Glu Glu Glu Leu Gly Phe Ser Lys Phe Val			
320	325	330	
Ser Ala			

<210> 217
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 217
ccctgcagtg cacctacagg gaag 24

<210> 218
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 218
ctgtcttccc ctgcttggct gtgg 24

<210> 219
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 219
ggtgtggatac ctcttctctc gctgctctgg ccacatc 47

<210> 220
<211> 950
<212> DNA
<213> Homo sapiens

<400> 220
tttgactaa aagctggcct agcaggccag ggagtgcagc tgcaggcgtg 50
ggggtgtggcag gagccgcaga gccagagcag acagccgaga aacaggtgga 100
cagtgtgaaa gaaccagtgg tctcgctctg ttgcccaaggc tagagtgtac 150
tggcgtgatc atagctcaact gcagcctcag actcctggac ttgagaaatc 200
ctcctgcctt agcctcctgc atatctggta ctccagggtt gcactcaagc 250
cctgtttctt ctccttctgt gagtggacca cggaggctgg tgagctgcct 300
gtcatccccaa agctcagctc tgagccagag tgggtggc tccacacctg 350
ccggccggcat agaaggccagg agcaggggctc tcagaaggcg gtggtgccca 400

gctgggatca tgggttggc cctggctgt ctgctcagct gcctgctacc 450
ctccagttag gccaagctct acggtcgtt tgaactggcc agagtgtac 500
atgacttcgg gctggacgga taccggggat acaggctggc tgactgggc 550
tgccctgctt attcacaag cggttcaac gcagctgctt tggactacga 600
ggctgatggg agcaccaaca acgggatctt ccagatcaac agccggaggt 650
ggtcagcaa cctcaccccc aacgtcccc acgtgtgccg gatgtactgc 700
tcagattgt tgaatcctaa tctcaaggat accgttatct gtgccatgaa 750
gataacccaa gagcctcagg gtctgggta ctggaggcc tggaggcatc 800
actgccaggg aaaagacctc actgaatggg tggatggctg tgacttctag 850
gatggacgga accatgcaca gcaggctggg aaatgtggtt tggttcctga 900
cctaggcttg ggaagacaag ccagcgaata aaggatggtt gaacgtgaaa 950

<210> 221

<211> 146

<212> PRT

<213> Homo sapiens

<400> 221

Met	Leu	Leu	Ala	Leu	Val	Cys	Leu	Leu	Ser	Cys	Leu	Leu	Pro	Ser
1				5				10					15	

Ser	Glu	Ala	Lys	Leu	Tyr	Gly	Arg	Cys	Glu	Leu	Ala	Arg	Val	Leu
				20				25					30	

His	Asp	Phe	Gly	Leu	Asp	Gly	Tyr	Arg	Gly	Tyr	Ser	Leu	Ala	Asp
				35				40					45	

Trp	Val	Cys	Leu	Ala	Tyr	Phe	Thr	Ser	Gly	Phe	Asn	Ala	Ala	Ala
				50				55					60	

Leu	Asp	Tyr	Glu	Ala	Asp	Gly	Ser	Thr	Asn	Asn	Gly	Ile	Phe	Gln
				65				70					75	

Ile	Asn	Ser	Arg	Arg	Trp	Cys	Ser	Asn	Leu	Thr	Pro	Asn	Val	Pro
				80				85					90	

Asn	Val	Cys	Arg	Met	Tyr	Cys	Ser	Asp	Leu	Leu	Asn	Pro	Asn	Leu
				95				100					105	

Lys	Asp	Thr	Val	Ile	Cys	Ala	Met	Lys	Ile	Thr	Gln	Glu	Pro	Gln
				110				115					120	

Gly	Leu	Gly	Tyr	Trp	Glu	Ala	Trp	Arg	His	His	Cys	Gln	Gly	Lys
				125				130					135	

Asp	Leu	Thr	Glu	Trp	Val	Asp	Gly	Cys	Asp	Phe
				140				145		

<210> 222
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 222
gggatcatgt tgttgccct ggtc 24

<210> 223
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 223
gcaaggcaga cccagtcagc cag 23

<210> 224
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 224
ctgcctgcta ccctccaagt gaggccaagc tctacggtcg ttgtg 45

<210> 225
<211> 2049
<212> DNA
<213> Homo sapiens

<400> 225
agccgctgcc ccggggccggg cgccccgcggc ggcaccatga gtcccccgtc 50
gtgcctgcgt tcgctgcgcc tcctcgctt cgccgtcttc tcagccggcg 100
cgagcaactg gctgtacctg gccaaagctgt cgtcggtgaaa gagcatctca 150
gaggaggaga cgtgcgagaa actcaagggc ctgatccaga ggcaggtgca 200
gatgtgcaag cggAACCTGG aagtcatgga ctgcgtgcgc cgcgggtcccc 250
agctggccat tgaggaggatgc cagtaccagt tccggAACCG gcgctggAAC 300
tgctccacac tcgactcctt gcccgtcttc ggcaagggtgg tgacgcaagg 350
gactcgggag gcggccattcg tgtacgccat ctcttcggca ggtgtggcct 400
ttgcagtgac gcgggcgtgc agcagtgggg agctggagaa gtgcggctgt 450

gacaggacag tgcatgggt cagcccacag ggcttccagt ggtcaggatg 500
ctctgacaac atcgccctacg gtgtggcctt ctcacagtcg tttgtggatg 550
tgcgggagag aagcaagggg gcctcgtcca gcagagccct catgaacctc 600
cacaacaatg aggccggcag gaaggccatc ctgacacaca tgcgggtgga 650
atgcaagtgc cacgggtgt caggctcctg tgaggtaaag acgtgctggc 700
gagccgtgcc gcccttccgc caggtgggtc acgcactgaa ggagaagttt 750
gtatggtgcca ctgaggtgga gccacgcccgc gtgggctcct ccagggcact 800
ggtaccacgc aacgcacagt tcaagccgca cacagatgag gacctggtgt 850
acttggagcc tagccccgac ttctgtgagc aggacatgcf cagcggcgtg 900
ctgggcacga ggggccccac atgcaacaag acgtccaagg ccatcgacgg 950
ctgtgagctg ctgtgctgtg gccgcggcctt ccacacggcg caggtggagc 1000
tggctgaacg ctgcagctgc aaattccact ggtgctgctt cgtcaagtgc 1050
cggcagtgcc agcggctcgt ggagttgcac acgtgccgat gaccgcctgc 1100
ctagccctgc gccggcaacc accttagtggc ccagggaaagg ccgataattt 1150
aaacagtctc ccaccaccta ccccaagaga tactggtgtt attttttgtt 1200
ctggtttgtt ttttgggtcc tcatgttatt tattgcccggaa accaggcagg 1250
caaccccaag ggcaccaacc agggcctccc caaagcctgg gcctttgtgg 1300
ctgccactga ccaaaggac cttgctcgtg ccgcggcgtg cccgcattgt 1350
gctgccactg accactcagt tgttatctgt gtccgtttt ctacttgac 1400
acctaaggta gagtaacaag gagtattacc accacatggc tactgaccgt 1450
gtcatcgaaa aagagggggc cttatggcag ggaaaatagg taccgacttg 1500
atgaaagtca caccctctgg aaaaaagaac tcttaactct ccagcacaca 1550
tacacatgga ctcctggcag cttgagccctt gaagccatgt ctctcaaatt 1600
ccctgagaaa gggaaacaagc agataccagg tcaagggcac caggttcatt 1650
tcagccctta catggacagc tagaggttcg atatctgtgg gtccttccag 1700
gcaagaagag ggagatgaga gcaagagacg actgaagtcc caccctagaa 1750
cccagcctgc cccagcctgc ccctggaaag aggaaactta accactcccc 1800
agacccaccc aggcaggcat ataggctgcc atcctggacc agggatcccc 1850

gctgtgcctt tgcagtcatg cccgagtcac ct当地cacagc gctgttcctc 1900
catgaaactg aaaaacacac acacacacac acacacacac 1950
acacacacac ggacacacac acacacctgc gagagagagg gaggaaaggg 2000
ctgtgcctt gcagtcatgc cc当地gtcacc tt当地cacagca ct当地tcctc 2049

<210> 226

<211> 351

<212> PRT

<213> Homo sapiens

<400> 226

Met Ser Pro Arg Ser Cys Leu Arg Ser Leu Arg Leu Leu Val Phe
1 5 10 15

Ala Val Phe Ser Ala Ala Ala Ser Asn Trp Leu Tyr Leu Ala Lys
20 25 30

Leu Ser Ser Val Gly Ser Ile Ser Glu Glu Glu Thr Cys Glu Lys
35 40 45

Leu Lys Gly Leu Ile Gln Arg Gln Val Gln Met Cys Lys Arg Asn
50 55 60

Leu Glu Val Met Asp Ser Val Arg Arg Gly Ala Gln Leu Ala Ile
65 70 75

Glu Glu Cys Gln Tyr Gln Phe Arg Asn Arg Arg Trp Asn Cys Ser
80 85 90

Thr Leu Asp Ser Leu Pro Val Phe Gly Lys Val Val Thr Gln Gly
95 100 105

Thr Arg Glu Ala Ala Phe Val Tyr Ala Ile Ser Ser Ala Gly Val
110 115 120

Ala Phe Ala Val Thr Arg Ala Cys Ser Ser Gly Glu Leu Glu Lys
125 130 135

Cys Gly Cys Asp Arg Thr Val His Gly Val Ser Pro Gln Gly Phe
140 145 150

Gln Trp Ser Gly Cys Ser Asp Asn Ile Ala Tyr Gly Val Ala Phe
155 160 165

Ser Gln Ser Phe Val Asp Val Arg Glu Arg Ser Lys Gly Ala Ser
170 175 180

Ser Ser Arg Ala Leu Met Asn Leu His Asn Asn Glu Ala Gly Arg
185 190 195

Lys Ala Ile Leu Thr His Met Arg Val Glu Cys Lys Cys His Gly
200 205 210

Val Ser Gly Ser Cys Glu Val Lys Thr Cys Trp Arg Ala Val Pro

215 220 225

Pro Phe Arg Gln Val Gly His Ala Leu Lys Glu Lys Phe Asp Gly
230 235 240

Ala Thr Glu Val Glu Pro Arg Arg Val Gly Ser Ser Arg Ala Leu
245 250 255

Val Pro Arg Asn Ala Gln Phe Lys Pro His Thr Asp Glu Asp Leu
260 265 270

Val Tyr Leu Glu Pro Ser Pro Asp Phe Cys Glu Gln Asp Met Arg
275 280 285

Ser Gly Val Leu Gly Thr Arg Gly Arg Thr Cys Asn Lys Thr Ser
290 295 300

Lys Ala Ile Asp Gly Cys Glu Leu Leu Cys Cys Gly Arg Gly Phe
305 310 315

His Thr Ala Gln Val Glu Leu Ala Glu Arg Cys Ser Cys Lys Phe
320 325 330

His Trp Cys Cys Phe Val Lys Cys Arg Gln Cys Gln Arg Leu Val
335 340 345

Glu Leu His Thr Cys Arg
350

<210> 227

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 227

gctgcagctg caaattccac tgg 23

<210> 228

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 228

tggtgggaga ctgtttaaat tatcggcc 28

<210> 229

<211> 41

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 229

tgcttcgtca agtgcggca gtgccagcgg ctcgtggagt t 41

<210> 230

<211> 1355

<212> DNA

<213> Homo sapiens

<400> 230

cggacgcgtg ggcggacgcg tggcgacg cgtggcgga cgcgtggct 50

gggtgcctgc atcgccatgg acaccaccag gtacagcaag tggggcgca 100

gctccgagga ggtccccgga gggccctggg gacgctgggt gcactggagc 150

aggagacccc tcttcttggc cctggctgtc ctggcacca cagtcctttg 200

ggctgtgatt ctgagtatcc tattgtccaa ggcctccacg gagcgcgcgg 250

cgctgcttga cggccacgac ctgctgagga caaacgcctc gaagcagacg 300

cgccgcgtgg gtgcctgaa ggaggaggc ggagactgcc acagctgctg 350

ctcggggacg caggcgcagc tgcagaccac gcgcgcggag cttgggagg 400

cgcaggcgaa gctgatggag caggagacg ccctgcggga actgcgtgag 450

cgcgtgaccc agggcttggc tgaagccggc agggccgtg aggacgtccg 500

cactgagctg ttccgggcgc tggaggccgt gaggctccag aacaactcct 550

gcgagccgtg ccccacgtcg tggctgtcct tcgagggctc ctgctacttt 600

ttctctgtgc caaagacgac gtgggcggcg gcgcaggatc actgcgcaga 650

tgccagcgcg cacctggta tcgttgggg cctggatgag cagggcttcc 700

tcactcgaaa cacgcgtggc cgtggtaact ggctggccct gagggctgtg 750

cgcacatctgg gcaagggttca gggctaccag tgggtggacg gagtctctct 800

cagttcagc cactggaacc agggagagcc caatgacgct tggggcgcg 850

agaactgtgt catgatgctg cacacggggc tgtggaacga cgcaccgtgt 900

gacagcgaga aggacggctg gatctgtgag aaaaggcaca actgctgacc 950

ccgcccagtg ccctggagcc gcgcacattg cagcatgtcg tatcctgggg 1000

gctgctcacc tccctggctc ctggagctga ttgccaaaga gttttttct 1050

tcctcatcca cgcgtgtca gtctcagaaa cacttggccc aacatagccc 1100

tgtccagccc agtgcctggg ctctggacc tccatgccga cctcatccta 1150

actccactca cgcatccccca acctaaccctc cactagctcc aaaatccctg 1200
ctccctgcgtc cccgtgatat gcctccactt ctctccctaa ccaaggtag 1250
gtgactgagg actggagctg tttgggtttc tcgcatttc caccaaactg 1300
gaagctgttt ttgcagcctg aggaagcatc aataaatatt tgagaaatga 1350
aaaaaa 1355

<210> 231
<211> 293
<212> PRT
<213> Homo sapiens

<400> 231
Met Asp Thr Thr Arg Tyr Ser Lys Trp Gly Gly Ser Ser Glu Glu
1 5 10 15
Val Pro Gly Gly Pro Trp Gly Arg Trp Val His Trp Ser Arg Arg
20 25 30
Pro Leu Phe Leu Ala Leu Ala Val Leu Val Thr Thr Val Leu Trp
35 40 45
Ala Val Ile Leu Ser Ile Leu Leu Ser Lys Ala Ser Thr Glu Arg
50 55 60
Ala Ala Leu Leu Asp Gly His Asp Leu Leu Arg Thr Asn Ala Ser
65 70 75
Lys Gln Thr Ala Ala Leu Gly Ala Leu Lys Glu Glu Val Gly Asp
80 85 90
Cys His Ser Cys Cys Ser Gly Thr Gln Ala Gln Leu Gln Thr Thr
95 100 105
Arg Ala Glu Leu Gly Glu Ala Gln Ala Lys Leu Met Glu Gln Glu
110 115 120
Ser Ala Leu Arg Glu Leu Arg Glu Arg Val Thr Gln Gly Leu Ala
125 130 135
Glu Ala Gly Arg Gly Arg Glu Asp Val Arg Thr Glu Leu Phe Arg
140 145 150
Ala Leu Glu Ala Val Arg Leu Gln Asn Asn Ser Cys Glu Pro Cys
155 160 165
Pro Thr Ser Trp Leu Ser Phe Glu Gly Ser Cys Tyr Phe Phe Ser
170 175 180
Val Pro Lys Thr Thr Trp Ala Ala Ala Gln Asp His Cys Ala Asp
185 190 195
Ala Ser Ala His Leu Val Ile Val Gly Gly Leu Asp Glu Gln Gly
200 205 210

Phe Leu Thr Arg Asn Thr Arg Gly Arg Gly Tyr Trp Leu Gly Leu
215 220 225

Arg Ala Val Arg His Leu Gly Lys Val Gln Gly Tyr Gln Trp Val
230 235 240

Asp Gly Val Ser Leu Ser Phe Ser His Trp Asn Gln Gly Glu Pro
245 250 255

Asn Asp Ala Trp Gly Arg Glu Asn Cys Val Met Met Leu His Thr
260 265 270

Gly Leu Trp Asn Asp Ala Pro Cys Asp Ser Glu Lys Asp Gly Trp
275 280 285

Ile Cys Glu Lys Arg His Asn Cys
290

<210> 232

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 232

gcgagaactg tgtcatgatg ctgc 24

<210> 233

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 233

gtttctgaga ctcagcagcg gtgg 24

<210> 234

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 234

caccgtgtga cagcgagaag gacggctgga tctgtgagaa aaggcacaac 50

<210> 235

<211> 1847

<212> DNA

<213> Homo sapiens

<400> 235

gccaggggaa gagggtgatc cgaccgggg aaggtcgctg ggcagggcga 50
gttggaaag cggcagcccc cgccgcccc gcagcccctt ctccctcctt 100
ctccccacgtc ctatctgcct ctcgctggag gccaggccgt gcagcatcga 150
agacaggagg aactggagcc tcattggccg gcccggggcg ccggcctcgg 200
gcttaaatag gagctccggg ctctggctgg gacccgaccg ctgcccggccg 250
cgctcccgct gtcctgccc ggtgatggaa aaccccagcc cggccgcccgc 300
cctggcaag gccctctgcg ctctcctcct ggccactctc ggcggccggc 350
gccagcctct tgaaaaatggag tccatctgtt ccggcagagc cccggccaaa 400
tacagcatca cttcacggg caagtggagc cagacggcct tccccaaagca 450
gtaccccttg ttccgccccc ctgcgcagtg gtctcgctg ctggggccg 500
cgcatagctc cgactacagc atgtggagga agaaccagta cgtcagtaac 550
gggctgcgcg actttgcgga ggcggccgag gcctggccgc tgatgaagga 600
gatcgaggcg gcggggagg cgctgcagag cgtgcacgag gtgtttcgg 650
cgcccgccgt ccccaagcggc accgggcaga cgtcgccgga gctggaggtg 700
cagcgcaggc actcgcttgtt ctcgtttgtg gtgcgcatcg tgcccagccc 750
cgactggttc gtggcgtgg acagcctgga cctgtgcgac ggggaccgtt 800
ggcgggaaca ggcggcgctg gacctgtacc cctacgacgc cgggacggac 850
agcggcttca ctttccttc ccccaacttc gccaccatcc cgcaaggacac 900
ggtgaccgag ataacgtcct cctctccag ccacccggcc aactccttct 950
actaccccgcg gctgaaggcc ctgcctccca tcgcccagggt gacactgctg 1000
cgctgcgac agagccccag ggccttcatac cctccggccc cagtcctgcc 1050
cagcagggac aatgagattt tagacagcgc ctcagttcca gaaacgcccgc 1100
tggactgcga ggtctccctg tggcgtcct gggactgtg cggaggccac 1150
tgtggagggc tcgggaccaa gagcaggact cgctacgtcc gggtccagcc 1200
cgccaaacaac gggagccct gccccgagct cgaagaagag gctgagtgcg 1250
tccctgataa ctgcgtctaa gaccagagcc ccgcagcccc tggggcccc 1300
cgagccatg ggtgtcggg ggctcctgtg caggtctatg ctgcaggcgg 1350
ccgagggcac agggggtttc ggcgtgctcc tgaccgcgtt gaggccgccc 1400

cgaccatctc tgcactgaag gcccctctgg tggccggcac gggcattggg 1450
aaacagcctc ctccttccc aactttgctt cttaggggcc cccgtgtccc 1500
gtctgctctc agcctcctcc tcctgcagga taaagtcatc cccaaggctc 1550
cagctactct aaattatgtc tccttataag ttattgctgc tccaggagat 1600
tgtccttcat cgtccagggg cctggctccc acgtggttgc agataacctca 1650
gacctgggtgc tctaggctgt gctgagccca ctctcccgag ggcgcatcca 1700
agcgggggccc acttgagaag tgaataaatg gggcggttgc ggaagcgtca 1750
gtgttccat gttatggatc tctctgcgtt tgaataaaga ctatctctgt 1800
tgctcacaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaa 1847

<210> 236

<211> 331

<212> PRT

<213> Homo sapiens

<400> 236

Met	Glu	Asn	Pro	Ser	Pro	Ala	Ala	Ala	Leu	Gly	Lys	Ala	Leu	Cys
1					5				10				15	
Ala	Leu	Leu	Leu	Ala	Thr	Leu	Gly	Ala	Ala	Gly	Gln	Pro	Leu	Gly
					20				25				30	
Gly	Glu	Ser	Ile	Cys	Ser	Ala	Arg	Ala	Pro	Ala	Lys	Tyr	Ser	Ile
					35				40				45	
Thr	Phe	Thr	Gly	Lys	Trp	Ser	Gln	Thr	Ala	Phe	Pro	Lys	Gln	Tyr
					50				55				60	
Pro	Leu	Phe	Arg	Pro	Pro	Ala	Gln	Trp	Ser	Ser	Leu	Leu	Gly	Ala
					65				70				75	
Ala	His	Ser	Ser	Asp	Tyr	Ser	Met	Trp	Arg	Lys	Asn	Gln	Tyr	Val
					80				85				90	
Ser	Asn	Gly	Leu	Arg	Asp	Phe	Ala	Glu	Arg	Gly	Glu	Ala	Trp	Ala
					95				100				105	
Leu	Met	Lys	Glu	Ile	Glu	Ala	Ala	Gly	Glu	Ala	Gln	Ser	Val	
					110				115				120	
His	Glu	Val	Phe	Ser	Ala	Pro	Ala	Val	Pro	Ser	Gly	Thr	Gly	Gln
					125				130				135	
Thr	Ser	Ala	Glu	Leu	Glu	Val	Gln	Arg	Arg	His	Ser	Leu	Val	Ser
					140				145				150	
Phe	Val	Val	Arg	Ile	Val	Pro	Ser	Pro	Asp	Trp	Phe	Val	Gly	Val
					155				160				165	

Asp Ser Leu Asp Leu Cys Asp Gly Asp Arg Trp Arg Glu Gln Ala
170 175 180

Ala Leu Asp Leu Tyr Pro Tyr Asp Ala Gly Thr Asp Ser Gly Phe
185 190 195

Thr Phe Ser Ser Pro Asn Phe Ala Thr Ile Pro Gln Asp Thr Val
200 205 210

Thr Glu Ile Thr Ser Ser Pro Ser His Pro Ala Asn Ser Phe
215 220 225

Tyr Tyr Pro Arg Leu Lys Ala Leu Pro Pro Ile Ala Arg Val Thr
230 235 240

Leu Leu Arg Leu Arg Gln Ser Pro Arg Ala Phe Ile Pro Pro Ala
245 250 255

Pro Val Leu Pro Ser Arg Asp Asn Glu Ile Val Asp Ser Ala Ser
260 265 270

Val Pro Glu Thr Pro Leu Asp Cys Glu Val Ser Leu Trp Ser Ser
275 280 285

Trp Gly Leu Cys Gly Gly His Cys Gly Arg Leu Gly Thr Lys Ser
290 295 300

Arg Thr Arg Tyr Val Arg Val Gln Pro Ala Asn Asn Gly Ser Pro
305 310 315

Cys Pro Glu Leu Glu Glu Ala Glu Cys Val Pro Asp Asn Cys
320 325 330

Val

<210> 237
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 237
cagcactgcc agggaaagag gg 22

<210> 238
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 238
caggactcgc tacgtccg 18

<210> 239
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 239
cagccccttc tcctcccttc tccc 24

<210> 240
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 240
gcagtttatca gggacgcact cagcc 25

<210> 241
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 241
ccagcgagag gcagatag 18

<210> 242
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 242
cggtcaccgt gtcctgcggg atg 23

<210> 243
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 243
cagccccttc tcctcccttc tcccacgtcc tatctgcctc tc 42

<210> 244

<211> 1894
<212> DNA
<213> Homo sapiens

<400> 244
ggcggcggtcc gtgagggct cctttggca gggtagtgtt ttgggtgtccc 50
tgtcttcgtt gatattgaca aactgaagct ttccctgcacc actggactta 100
aggaagagtgt tactcgtagg cgacagctt tagtgccgg ccggccgctc 150
tcatcccccg taaggagcag agtcctttgt actgaccaag atgagcaaca 200
tctacatcca ggagcctccc acgaatggaa aggttttatt gaaaactaca 250
gctggagata ttgacataga gttgtggtcc aaagaagctc ctaaagctt 300
cagaaatttt atccaacttt gtttggaaagc ttattatgac aataccattt 350
ttcatagagt tgtgcctggt ttcatagtc aaggcggaga tcctactggc 400
acagggagtg gtggagagtc tatctatgga gcgcattca aagatgaatt 450
tcattcacgg ttgcgttta atcggagagg actgggtgcc atggcaaatg 500
ctggttctca tgataatggc agccagttt tcttcacact gggtcgagca 550
gatgaactta acaataagca taccatcttt ggaaaggta cagggatac 600
agtatataaac atgttgcgac tgtcagaagt agacattgtat gatgacgaaa 650
gaccacataaa tccacacaaa ataaaaagct gtgaggtttt gtttaatcct 700
tttgatgaca tcattccaag ggaaattaaa aggctgaaaa aagagaaacc 750
agaggaggaa gtaaagaaat tgaaacccaa aggacacaaaa aatttttagtt 800
tactttcatt tggagaggaa gctgaggaag aagaggagga agtaaatcga 850
gttagtcaga gcatgaaggg caaaagcaaa agtagtcattt acttgcttaa 900
ggatgatcca catctcagtt ctgttccagt tgtagaaagt gaaaaagggtg 950
atgcaccaga ttttagttgat gatggagaag atgaaagtgc agagcatgtat 1000
gaatatattt atgggtatgaa aaagaacctg atgagagaaa gaattgcca 1050
aaaattaaaa aaggacacaa gtgcgaatgt taaatcagct ggagaaggag 1100
aagtggagaa gaaatcagtc agccgcagtg aagagctcag aaaagaagca 1150
agacaattaa aacgggaact ctttcgttcaaa aaacaaaaaaa aagtagaaaa 1200
tgcagcaaaa caagcagaaa aaagaagtga agaggaagaa gccctccag 1250
atggtgctgt tgccgaaatac agaagagaaa agcaaaagta tgaagctttg 1300

aggaagcaac agtcaaagaa gggacttcc cgggaagatc agacccttgc 1350
actgctgaac cagttaaat ctaaactcac tcaagcaatt gctgaaacac 1400
ctgaaaatga cattcctgaa acagaagtag aagatgatga aggatggatg 1450
tcacatgtac ttcatgttga ggataaaagc agaaaaagtga aagatgcaag 1500
catgcaagac tcagatacat ttgaaatcta tgatcctcg aatccagtga 1550
ataaaagaag gagggaaagaa agcaaaaagc tgatgagaga gaaaaaagaa 1600
agaagataaa atgagaataa tgataaccag aacttgctgg aatgtgcct 1650
acaatggcct tgtaacagcc attgttccca acagcatcac tttagggtgt 1700
gaaaagaagt attttgaac ctgttgcctg gtttgaaaa acaattatct 1750
tgtttgcaa attgtgaaat gatgtaaagca aatgttttg gttactggta 1800
catgtgtttt ttccttagctg acctttata ttgctaaatc taaaataaaa 1850
taacttcct tccacaaaaa aaaaaaaaaa aaaaaaaaaa aaaa 1894

<210> 245

<211> 472

<212> PRT

<213> Homo sapiens

<400> 245

Met	Ser	Asn	Ile	Tyr	Ile	Gln	Glu	Pro	Pro	Thr	Asn	Gly	Lys	Val
1					5				10					15

Leu	Leu	Lys	Thr	Thr	Ala	Gly	Asp	Ile	Asp	Ile	Glu	Leu	Trp	Ser
					20				25					30

Lys	Glu	Ala	Pro	Lys	Ala	Cys	Arg	Asn	Phe	Ile	Gln	Leu	Cys	Leu
				35				40						45

Glu	Ala	Tyr	Tyr	Asp	Asn	Thr	Ile	Phe	His	Arg	Val	Val	Pro	Gly
				50				55						60

Phe	Ile	Val	Gln	Gly	Gly	Asp	Pro	Thr	Gly	Thr	Gly	Ser	Gly	Gly
			65					70						75

Glu	Ser	Ile	Tyr	Gly	Ala	Pro	Phe	Lys	Asp	Glu	Phe	His	Ser	Arg
					80			85						90

Leu	Arg	Phe	Asn	Arg	Arg	Gly	Leu	Val	Ala	Met	Ala	Asn	Ala	Gly
				95				100						105

Ser	His	Asp	Asn	Gly	Ser	Gln	Phe	Phe	Phe	Thr	Leu	Gly	Arg	Ala
					110			115						120

Asp	Glu	Leu	Asn	Asn	Lys	His	Thr	Ile	Phe	Gly	Lys	Val	Thr	Gly
				125				130						135

Asp Thr Val Tyr Asn Met Leu Arg Leu Ser Glu Val Asp Ile Asp
140 145 150

Asp Asp Glu Arg Pro His Asn Pro His Lys Ile Lys Ser Cys Glu
155 160 165

Val Leu Phe Asn Pro Phe Asp Asp Ile Ile Pro Arg Glu Ile Lys
170 175 180

Arg Leu Lys Lys Glu Lys Pro Glu Glu Glu Val Lys Lys Leu Lys
185 190 195

Pro Lys Gly Thr Lys Asn Phe Ser Leu Leu Ser Phe Gly Glu Glu
200 205 210

Ala Glu Glu Glu Glu Glu Val Asn Arg Val Ser Gln Ser Met
215 220 225

Lys Gly Lys Ser Lys Ser Ser His Asp Leu Leu Lys Asp Asp Pro
230 235 240

His Leu Ser Ser Val Pro Val Val Glu Ser Glu Lys Gly Asp Ala
245 250 255

Pro Asp Leu Val Asp Asp Gly Glu Asp Glu Ser Ala Glu His Asp
260 265 270

Glu Tyr Ile Asp Gly Asp Glu Lys Asn Leu Met Arg Glu Arg Ile
275 280 285

Ala Lys Lys Leu Lys Lys Asp Thr Ser Ala Asn Val Lys Ser Ala
290 295 300

Gly Glu Gly Glu Val Glu Lys Lys Ser Val Ser Arg Ser Glu Glu
305 310 315

Leu Arg Lys Glu Ala Arg Gln Leu Lys Arg Glu Leu Leu Ala Ala
320 325 330

Lys Gln Lys Lys Val Glu Asn Ala Ala Lys Gln Ala Glu Lys Arg
335 340 345

Ser Glu Glu Glu Glu Ala Pro Pro Asp Gly Ala Val Ala Glu Tyr
350 355 360

Arg Arg Glu Lys Gln Lys Tyr Glu Ala Leu Arg Lys Gln Gln Ser
365 370 375

Lys Lys Gly Thr Ser Arg Glu Asp Gln Thr Leu Ala Leu Leu Asn
380 385 390

Gln Phe Lys Ser Lys Leu Thr Gln Ala Ile Ala Glu Thr Pro Glu
395 400 405

Asn Asp Ile Pro Glu Thr Glu Val Glu Asp Asp Glu Gly Trp Met
410 415 420

Ser His Val Leu Gln Phe Glu Asp Lys Ser Arg Lys Val Lys Asp
425 430 435

Ala Ser Met Gln Asp Ser Asp Thr Phe Glu Ile Tyr Asp Pro Arg
440 445 450

Asn Pro Val Asn Lys Arg Arg Arg Glu Glu Ser Lys Lys Leu Met
455 460 465

Arg Glu Lys Lys Glu Arg Arg
470

<210> 246
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 246
tgcggagatc ctactggcac aggg 24

<210> 247
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 247
cgagtttagtc agagcatg 18

<210> 248
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 248
cagatggtgtc tgttgccg 18

<210> 249
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 249
caactggaac aggaactgag atgtggatc 29

<210> 250

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 250
ctggttcagc agtgcaaggg tctg 24

<210> 251
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 251
cctctccgat taaaacgc 18

<210> 252
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 252
gagaggactg gttgccatgg caaatgctgg ttctcatgtat aatgg 45

<210> 253
<211> 2456
<212> DNA
<213> Homo sapiens

<400> 253
cgccgcgtt gggctggaa gttccgcaca ggtccgtgcc gggcgagaga 50
gatgctgcccgccccc ggccgcctc ggcttgagg cgagagaagt gtcccagacc 100
catttcgcct tgctgacggc gtcgagccct ggccagacat gtccacaggg 150
ttctccttcg ggtccggac tctggctcc accaccgtgg ccggccggcgg 200
gaccagcaca ggcggcgaaa tctccttcgg aacggaaacg tctagcaacc 250
cttctgtggg gctcaatttt gaaatcttg gaagtaatcc aactccagca 300
actacatctg ctcctcaag tggtttgaa accgggctct ttggatctaa 350
acctgccact gggttcactc taggaggaac aaatacaggt gccttgcaca 400
ccaagaggcc tcaagtggtc accaaatatg gaaccctgca aggaaaacag 450
atgcatgtgg ggaagacacc catccaagtc ttttaggag tcccccttc 500

cagacccct ctaggtatcc tcagggttgc acctccagaa cccccggagc 550
cctggaaagg aatcagagat gctaccacct acccgctgg atggagtctc 600
gctctgtcgc caggctggag tgcagtggca cgatctggc tcactgcaac 650
ctccgcctcc cgggttcaag cgagtctcct gcctcagcct ctgagtgtct 700
ggggctacag gtgcctgcag gagtcctggg gccagctggc ctgcgtgtac 750
gtcagcacgc gggAACGGTA caagtggctg cgcttcagcg aggactgtct 800
gtacactgaac gtgtacgcgc cggcgccgc gccccggat ccccagctgc 850
cagtgtatggt ctggttcccg ggaggcgcct tcatacggttggg cgctgcttct 900
tcgtacgagg gctctgactt ggccgcccgc gagaaagtgg tgctggtgtt 950
tctgcagcac aggctcggca tcttcggcctt cctgagcacg gacgacagcc 1000
acgcgcgcgg gaactggggg ctgctggacc agatggcggc tctgcgtgg 1050
gtgcaggaga acatcgcagc ctgcggggga gaccaggaa atgtgaccct 1100
tttcggccag tcggcggggg ccatgagcat ctcaggactg atgtgtcac 1150
ccctagcctc gggctcttc catcgggcca ttcccagag tggcaccgcg 1200
ttattcagac tttcatcac tagtaaccca ctgaaagtgg ccaagaaggt 1250
tgcccacctg gctggatgca accacaacag cacacagatc ctggtaaact 1300
gcctgagggc actatcaggg accaaggta tgctgtgtc caacaagatg 1350
agattcctcc aactgaactt ccagagagac ccggaagaga ttatctggtc 1400
catgagccct gtggatggatg gtgtggatg cccagatgac cctttgggtc 1450
tcctgaccca gggaaagggtt tcatacggtc cctaccttct aggtgtcaac 1500
aacctggaat tcaattggct cttgccttat aatatcacca aggagcaggt 1550
accacttggc gtggaggagt acctggacaa tgtcaatgag catgactgga 1600
agatgctacg aaaccgtatg atggacatag ttcaagatgc cactttcggt 1650
tatgccacac tgcagactgc tcactaccac cgagaaaccc caatgtatggg 1700
aatctgcctt gctggccacg ctacaacaag gatgaaaagt acctgcagct 1750
ggatTTTacc acaagagttgg gcatgaagct caaggagaag aagatggctt 1800
tttggatgag tctgtaccag tctcaaagac ctgagaagca gaggcaattc 1850
taagggtggc tatgcaggaa ggagccaaag aggggttgc ccccaccatc 1900

caggccctgg ggagactgc catggacata cctggggaca agagttctac 1950
ccaccccagt ttagaactgc aggagctccc tgctgcctcc aggccaaagc 2000
tagagcttt gcctgttgtg tgggacctgc actgccctt ccagcctgac 2050
atccccatgtat gccccctctac ttcaactgttg acatccagtt aggccaggcc 2100
ctgtcaacac cacactgtgc tcagctctcc agcctcagga caacctttt 2150
ttttcccttc ttcaaattc cccacccttc aatgtctcct tgtgactcct 2200
tcttatggga ggtcgaccga gactgccact gcccctgtca ctgcacccag 2250
cttggcattt accatccatc ctgctcaacc ttgttccctgt ctgttcacat 2300
tggcctggag gccttagggca gtttgtgaca tggagcaaac ttttggtagt 2350
ttgggatctt ctctcccacc cacacttac tcccccaggg ccactccaaa 2400
gtctatacac aggggtggtc tcttcaataa agaagtgttg attagaaaaa 2450
aaaaaaa 2456

<210> 254

<211> 545

<212> PRT

<213> Homo sapiens

<400> 254

Met Ser Thr Gly Phe Ser Phe Gly Ser Gly Thr Leu Gly Ser Thr
1 5 10 15

Thr Val Ala Ala Gly Gly Thr Ser Thr Gly Gly Val Phe Ser Phe
20 25 30

Gly Thr Gly Thr Ser Ser Asn Pro Ser Val Gly Leu Asn Phe Gly
35 40 45

Asn Leu Gly Ser Thr Ser Thr Pro Ala Thr Thr Ser Ala Pro Ser
50 55 60

Ser Gly Phe Gly Thr Gly Leu Phe Gly Ser Lys Pro Ala Thr Gly
65 70 75

Phe Thr Leu Gly Gly Thr Asn Thr Gly Ala Leu His Thr Lys Arg
80 85 90

Pro Gln Val Val Thr Lys Tyr Gly Thr Leu Gln Gly Lys Gln Met
95 100 105

His Val Gly Lys Thr Pro Ile Gln Val Phe Leu Gly Val Pro Phe
110 115 120

Ser Arg Pro Pro Leu Gly Ile Leu Arg Phe Ala Pro Pro Glu Pro
125 130 135

Pro Glu Pro Trp Lys Gly Ile Arg Asp Ala Thr Thr Tyr Pro Pro
140 145 150

Gly Trp Ser Leu Ala Leu Ser Pro Gly Trp Ser Ala Val Ala Arg
155 160 165

Ser Arg Leu Thr Ala Thr Ser Ala Ser Arg Val Gln Ala Ser Leu
170 175 180

Leu Pro Gln Pro Leu Ser Val Trp Gly Tyr Arg Cys Leu Gln Glu
185 190 195

Ser Trp Gly Gln Leu Ala Ser Met Tyr Val Ser Thr Arg Glu Arg
200 205 210

Tyr Lys Trp Leu Arg Phe Ser Glu Asp Cys Leu Tyr Leu Asn Val
215 220 225

Tyr Ala Pro Ala Arg Ala Pro Gly Asp Pro Gln Leu Pro Val Met
230 235 240

Val Trp Phe Pro Gly Gly Ala Phe Ile Val Gly Ala Ala Ser Ser
245 250 255

Tyr Glu Gly Ser Asp Leu Ala Ala Arg Glu Lys Val Val Leu Val
260 265 270

Phe Leu Gln His Arg Leu Gly Ile Phe Gly Phe Leu Ser Thr Asp
275 280 285

Asp Ser His Ala Arg Gly Asn Trp Gly Leu Leu Asp Gln Met Ala
290 295 300

Ala Leu Arg Trp Val Gln Glu Asn Ile Ala Ala Phe Gly Gly Asp
305 310 315

Pro Gly Asn Val Thr Leu Phe Gly Gln Ser Ala Gly Ala Met Ser
320 325 330

Ile Ser Gly Leu Met Met Ser Pro Leu Ala Ser Gly Leu Phe His
335 340 345

Arg Ala Ile Ser Gln Ser Gly Thr Ala Leu Phe Arg Leu Phe Ile
350 355 360

Thr Ser Asn Pro Leu Lys Val Ala Lys Lys Val Ala His Leu Ala
365 370 375

Gly Cys Asn His Asn Ser Thr Gln Ile Leu Val Asn Cys Leu Arg
380 385 390

Ala Leu Ser Gly Thr Lys Val Met Arg Val Ser Asn Lys Met Arg
395 400 405

Phe Leu Gln Leu Asn Phe Gln Arg Asp Pro Glu Glu Ile Ile Trp
410 415 420

Ser Met Ser Pro Val Val Asp Gly Val Val Ile Pro Asp Asp Pro
425 430 435

Leu Val Leu Leu Thr Gln Gly Lys Val Ser Ser Val Pro Tyr Leu
440 445 450

Leu Gly Val Asn Asn Leu Glu Phe Asn Trp Leu Leu Pro Tyr Asn
455 460 465

Ile Thr Lys Glu Gln Val Pro Leu Val Val Glu Glu Tyr Leu Asp
470 475 480

Asn Val Asn Glu His Asp Trp Lys Met Leu Arg Asn Arg Met Met
485 490 495

Asp Ile Val Gln Asp Ala Thr Phe Val Tyr Ala Thr Leu Gln Thr
500 505 510

Ala His Tyr His Arg Glu Thr Pro Met Met Gly Ile Cys Pro Ala
515 520 525

Gly His Ala Thr Thr Arg Met Lys Ser Thr Cys Ser Trp Ile Leu
530 535 540

Pro Gln Glu Trp Ala
545

<210> 255

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 255

aggtgcctgc aggagtcctg ggg 23

<210> 256

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 256

ccacacctcagg aagccgaaga tgcc 24

<210> 257

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 257
gaacggtaca agtggctgcg cttcagcgag gactgtctgt acctg 45

<210> 258
<211> 2764
<212> DNA
<213> Homo sapiens

<400> 258
gagaacaggc ctgtctcagg caggccctgc gcctcctatg cgagatgt 50
actgccactg ctgctgtcct cgctgctggg cgggtcccag gctatggatg 100
ggagattctg gatacgagtg caggagtca gatggtgcc ggagggctg 150
tgcacatctcg tgccctgctc tttctcctac ccccgacaag actggacagg 200
gtctacccca gcttatggct actggttcaa agcagtgact gagacaacca 250
agggtgctcc tgtggccaca aaccaccaga gtcgagaggt ggaaatgagc 300
acccggggcc gattccagct cactggggat cccgccaagg ggaactgctc 350
cttggtgatc agagacgcgc agatgcagga tgagtcacag tacttcttc 400
gggtggagag aggaagctat gtgacatata attcatgaa cgatgggttc 450
tttctaaaag taacagtgct cagttcacg cccagaccc aggaccacaa 500
caccgaccc acctgccatg tggacttctc cagaaagggt gtgagcgcac 550
agaggaccgt ccgactccgt gtggcctatg ccccccagaga ccttggatc 600
agcatttcac gtgacaacac gccagccctg gagccccagc cccagggaaa 650
tgtcccatac ctggaagccc aaaaaggcca gttcctgcgg ctcctctgtg 700
ctgctgacag ccagccccct gccacactga gctgggtcct gcagaacaga 750
gtccttcct cgtccatcc ctggggccct agaccctgg ggctggagct 800
gcccggggtg aaggctggg attcagggcg ctacacctgc cgagcggaga 850
acaggcttgg ctcccagcag cgagccctgg acctctctgt gcagtatcct 900
ccagagaacc tgagagtgat gtttcccaa gcaaacagga cagtcctgga 950
aacaccccttggg aacggcacgt ctctccagt actggagggc caaagcctgt 1000
gcctggctg tgtcacacac agcagcccc cagccaggct gagctggacc 1050
cagaggggac aggttctgag cccctccag ccctcagacc ccgggggtcct 1100
ggagctgcct cgggttaag tggagcacga aggagagttc acctgccacg 1150
ctcggcaccc actgggctcc cagcacgtct ctctcagcct ctccgtgcac 1200

tataagaagg gactcatctc aacggcattc tccaaacggag cgtttctggg 1250
aatcggttc acggctcttc ttttcctctg cctggccctg atcatcatga 1300
agattctacc gaagagacgg actcagacag aaaccccgag gcccagggttc 1350
tcccggcaca gcacgatcct ggattacatc aatgtggtcc cgacggctgg 1400
ccccctggct cagaagcgga atcagaaagc cacaccaaac agtcctcgga 1450
cccctcctcc accaggtgct ccctcccaag aatcaaagaa gaaccagaaa 1500
aagcagtatc agttgcccaag tttcccaagaa cccaaatcat ccactcaagc 1550
cccagaatcc caggagagcc aagaggagct ccattatgcc acgctaact 1600
tcccaggcgt cagacccagg cctgaggccc ggtatgccaa gggcacccag 1650
gcggattatg cagaagtcaa gttccaatga gggtctctta ggcttagga 1700
ctgggacttc ggctagggag gaaggttagag taagaggtt aagataaacag 1750
agtgc当地 1800
ctctttctct ctctttaaa aaaacatctg gccagggcac agtggctcac 1850
gcctgtaatc ccagcaactt gggaggttga ggtggcaga tcgcctgagg 1900
tcgggagttc gagaccagcc tggccaactt ggtgaaaccc cgtctctact 1950
aaaaatacaa aaattagctg ggc当地 2000
tacttggaa gctgaggcag gagaatcact tgaacctggg agacggaggt 2050
tgca本地 2100
agactccatc tcaaaaaaaaaa aatcctccaa atgggttggg tgtctgtaat 2150
cccagcaactt tgggaggcta aggtgggtgg attgcttgag cccaggagtt 2200
cgagaccagc ctggcaaca tggtaaaacc ccatctctac aaaaaataca 2250
aaacatagct gggcttggtg gtgtgtgcct gtagtcccag ctgtcagaca 2300
tttaaaccag agcaactcca tctgaaatag gagctgaata aaatgaggct 2350
gagacctact gggctgcatt ctcagacagt ggaggcattc taagtcacag 2400
gatgagacag gaggtccgta caagatacag gtcataaaga ctggctgtat 2450
aaaacagatt gcagtaaaga agccaaccaa atcccaccaa aaccaagtt 2500
gccacgagag tgacctctgg tcgtcctcac tgctacactc ctgacagcac 2550
catgacagtt tacaaatgcc atggcaacat caggaagttt cccgatatgt 2600
ccaaaagggg ggaggaatga ataatccacc cttgttttag caaataagca 2650

agaaataacc ataaaagtgg gcaaccagca gctctaggcg ctgctttgt 2700
ctatggagta gccattctt tgcccttta ctttcttaat aaacttgctt 2750
tcaccttaaa aaaa 2764

<210> 259
<211> 544
<212> PRT
<213> Homo sapiens

<400> 259
Met Leu Leu Pro Leu Leu Ser Ser Leu Leu Gly Gly Ser Gln
1 5 10 15
Ala Met Asp Gly Arg Phe Trp Ile Arg Val Gln Glu Ser Val Met
20 25 30
Val Pro Glu Gly Leu Cys Ile Ser Val Pro Cys Ser Phe Ser Tyr
35 40 45
Pro Arg Gln Asp Trp Thr Gly Ser Thr Pro Ala Tyr Gly Tyr Trp
50 55 60
Phe Lys Ala Val Thr Glu Thr Thr Lys Gly Ala Pro Val Ala Thr
65 70 75
Asn His Gln Ser Arg Glu Val Glu Met Ser Thr Arg Gly Arg Phe
80 85 90
Gln Leu Thr Gly Asp Pro Ala Lys Gly Asn Cys Ser Leu Val Ile
95 100 105
Arg Asp Ala Gln Met Gln Asp Glu Ser Gln Tyr Phe Phe Arg Val
110 115 120
Glu Arg Gly Ser Tyr Val Thr Tyr Asn Phe Met Asn Asp Gly Phe
125 130 135
Phe Leu Lys Val Thr Val Leu Ser Phe Thr Pro Arg Pro Gln Asp
140 145 150
His Asn Thr Asp Leu Thr Cys His Val Asp Phe Ser Arg Lys Gly
155 160 165
Val Ser Ala Gln Arg Thr Val Arg Leu Arg Val Ala Tyr Ala Pro
170 175 180
Arg Asp Leu Val Ile Ser Ile Ser Arg Asp Asn Thr Pro Ala Leu
185 190 195
Glu Pro Gln Pro Gln Gly Asn Val Pro Tyr Leu Glu Ala Gln Lys
200 205 210
Gly Gln Phe Leu Arg Leu Leu Cys Ala Ala Asp Ser Gln Pro Pro
215 220 225

Ala Thr Leu Ser Trp Val Leu Gln Asn Arg Val Leu Ser Ser Ser
230 235 240

His Pro Trp Gly Pro Arg Pro Leu Gly Leu Glu Leu Pro Gly Val
245 250 255

Lys Ala Gly Asp Ser Gly Arg Tyr Thr Cys Arg Ala Glu Asn Arg
260 265 270

Leu Gly Ser Gln Gln Arg Ala Leu Asp Leu Ser Val Gln Tyr Pro
275 280 285

Pro Glu Asn Leu Arg Val Met Val Ser Gln Ala Asn Arg Thr Val
290 295 300

Leu Glu Asn Leu Gly Asn Gly Thr Ser Leu Pro Val Leu Glu Gly
305 310 315

Gln Ser Leu Cys Leu Val Cys Val Thr His Ser Ser Pro Pro Ala
320 325 330

Arg Leu Ser Trp Thr Gln Arg Gly Gln Val Leu Ser Pro Ser Gln
335 340 345

Pro Ser Asp Pro Gly Val Leu Glu Leu Pro Arg Val Gln Val Glu
350 355 360

His Glu Gly Glu Phe Thr Cys His Ala Arg His Pro Leu Gly Ser
365 370 375

Gln His Val Ser Leu Ser Leu Ser Val His Tyr Lys Lys Gly Leu
380 385 390

Ile Ser Thr Ala Phe Ser Asn Gly Ala Phe Leu Gly Ile Gly Ile
395 400 405

Thr Ala Leu Leu Phe Leu Cys Leu Ala Leu Ile Ile Met Lys Ile
410 415 420

Leu Pro Lys Arg Arg Thr Gln Thr Glu Thr Pro Arg Pro Arg Phe
425 430 435

Ser Arg His Ser Thr Ile Leu Asp Tyr Ile Asn Val Val Pro Thr
440 445 450

Ala Gly Pro Leu Ala Gln Lys Arg Asn Gln Lys Ala Thr Pro Asn
455 460 465

Ser Pro Arg Thr Pro Pro Pro Pro Gly Ala Pro Ser Pro Glu Ser
470 475 480

Lys Lys Asn Gln Lys Lys Gln Tyr Gln Leu Pro Ser Phe Pro Glu
485 490 495

Pro Lys Ser Ser Thr Gln Ala Pro Glu Ser Gln Glu Ser Gln Glu
500 505 510

Glu Leu His Tyr Ala Thr Leu Asn Phe Pro Gly Val Arg Pro Arg
515 520 525
Pro Glu Ala Arg Met Pro Lys Gly Thr Gln Ala Asp Tyr Ala Glu
530 535 540
Val Lys Phe Gln

<210> 260

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 260

caaaggctgc gcctggtctg tg 22

<210> 261

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 261

ttctggagcc cagagggtgc tgag 24

<210> 262

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 262

ggagctgcc caattcaaa tggagcacga aggagatgc acctg 45

<210> 263

<211> 2857

<212> DNA

<213> Homo sapiens

<400> 263 .

tgaagagtaa tagttgaat caaaagagtc aacgcaatga actgttattt 50

actgctgcgt tttatgttgg gaattcctct cctatggcct tgtcttgag 100

caacagaaaa ctctcaaaca aagaaaagtca agcagccagt gcgatctcat 150

ttgagagtga agcgtggctg ggtgtgaaac caatttttt taccagagga 200

aatgaatacg actagtcatc acatcgccca gctaagatct gathtagaca 250
atggaaacaa ttcttccag tacaagctt tgggagctgg agctggaagt 300
acttttatca ttgatgaaag aacaggtgac atatatgccca tacagaagct 350
tgatagagag gagcgatccc tctacatctt aagagccag gtaatagaca 400
tcgctactgg aaggcgtgtg gaacctgagt ctgagttgt catcaaagtt 450
tcggatatca atgacaatga accaaaattc ctagatgaac cttatgaggc 500
cattgtacca gagatgtctc cagaaggaac attagttatc caggtgacag 550
caagtgatgc tgacgatccc tcaagtggta ataatgctcg tctcctctac 600
agcttacttc aaggccagcc atattttct gttgaaccaa caacaggagt 650
cataagaata tcttctaaaa tggatagaga actgcaagat gagtattggg 700
taatcattca agccaaggac atgattggtc agccaggagc gttgtctgga 750
acaacaagtg tattaattaa actttcagat gttaatgaca ataagcctat 800
attnaaagaa agtttatacc gcttgactgt ctctgaatct gcacccactg 850
ggacttctat aggaacaatc atggcatatg ataatgacat aggagagaat 900
gcagaaatgg attacagcat tgaagaggat gattcgcaaa catttgacat 950
tattactaat catgaaactc aagaaggaat agttatatta aaaaagaaaag 1000
tggttttga gcaccagaac cactacggta ttagagcaaa agttaaaaac 1050
catcatgttc ctgagcagct catgaagtac cacactgagg cttccaccac 1100
tttcatttaag atccaggtgg aagatgttga tgagcctcct ctttcctcc 1150
ttccatatta tgtatTTGAA gtttttgaag aaaccccaca gggatcattt 1200
gtaggcgtgg tgtctgccac agacccagac aataggaaat ctcctatcag 1250
gtattctatt actaggagca aagtgttcaa tatcaatgtat aatggtacaa 1300
tcactacaag taactcactg gatcgtgaaa tcagtgcctg gtacaaccta 1350
agtattacag ccacagaaaa atacaatata gaacagatct cttcgatccc 1400
actgtatgtg caagttctta acatcaatga tcatgctcct gagttctctc 1450
aatactatga gacttatgtt tgtgaaaatg caggctctgg tcaggttaatt 1500
cagactatca gtgcagtggta tagagatgaa tccatagaag agcaccattt 1550
ttactttaat ctatctgttag aagacactaa caattcaagt tttacaatca 1600
tagataatca agataacaca gctgtcattt tgactaatag aactggttt 1650

aaccttcaag aagaacctgt cttctacatc tccatcttaa ttgccgacaa 1700
tggatatccc tcacttacaa gtacaaacac cttaccatc catgtctgtg 1750
actgtggtga cagtgggagc acacagacct gccagtagca ggagcttgcg 1800
ctttccatgg gattcaagac agaagttatc attgctattc tcatttgcatt 1850
tatgatcata tttgggttta ttttttgac tttgggttta aaacaacgga 1900
gaaaaacagat tctatttcct gagaaaagtg aagatttcag agagaatata 1950
ttccaatatg atgatgaagg gggtaggaa gaagatacag aggcccttga 2000
tatagcagag ctgaggagta gtaccataat gcggAACgc aagactcgga 2050
aaaccacaag cgctgagatc aggacccat acaggcagtc tttgcaagtt 2100
ggccccgaca gtgcattatt cagaaattc attctggaaa agctcgaaga 2150
agctaatact gatccgtgtg cccctcctt tgattccctc cagacctacg 2200
ctttgaggg aacagggtca ttagctggat ccctgagctc cttagaatca 2250
gcagtctctg atcaggatga aagctatgat taccttaatg agttgggacc 2300
tcgctttaaa agattagcat gcatgtttgg ttctgcagtg cagtcaaata 2350
attaggcattttt accatca aaattttaa aagtgcataat gtgtattcga 2400
acccaatggt agtcttaaag agttttgtgc cctggctcta tggcgggaa 2450
agccctagtc tatggagtt tctgatttcc ctggagtaaa tactccatgg 2500
ttatTTtaag ctacctacat gctgtcattt aacagagatg tggggagaaa 2550
tgtaaacaat cagctcacag gcatcaatac aaccagattt gaagtaaaat 2600
aatgttaggaa gatattaaaa gtagatgaga ggacacaaga tgttagtcgt 2650
ccttatgcga ttatATCATT atttacttag gaaagagtaa aaataccaaa 2700
cgagaaaatt taaaggagca aaaatttgca agtcaaatacg aaatgtacaa 2750
atcgagataa catttacatt tctatcatat tgacatgaaa attgaaaatg 2800
tatagtcaga gaaatTTCA tgaattattc catgaagtat tgTTTcctt 2850
atTTaaa 2857

<210> 264
<211> 772
<212> PRT
<213> Homo sapiens

<400> 264

Met Asn Cys Tyr Leu Leu Leu Arg Phe Met Leu Gly Ile Pro Leu
1 5 10 15

Leu Trp Pro Cys Leu Gly Ala Thr Glu Asn Ser Gln Thr Lys Lys
20 25 30

Val Lys Gln Pro Val Arg Ser His Leu Arg Val Lys Arg Gly Trp
35 40 45

Val Trp Asn Gln Phe Phe Val Pro Glu Glu Met Asn Thr Thr Ser
50 55 60

His His Ile Gly Gln Leu Arg Ser Asp Leu Asp Asn Gly Asn Asn
65 70 75

Ser Phe Gln Tyr Lys Leu Leu Gly Ala Gly Ala Gly Ser Thr Phe
80 85 90

Ile Ile Asp Glu Arg Thr Gly Asp Ile Tyr Ala Ile Gln Lys Leu
95 100 105

Asp Arg Glu Glu Arg Ser Leu Tyr Ile Leu Arg Ala Gln Val Ile
110 115 120

Asp Ile Ala Thr Gly Arg Ala Val Glu Pro Glu Ser Glu Phe Val
125 130 135

Ile Lys Val Ser Asp Ile Asn Asp Asn Glu Pro Lys Phe Leu Asp
140 145 150

Glu Pro Tyr Glu Ala Ile Val Pro Glu Met Ser Pro Glu Gly Thr
155 160 165

Leu Val Ile Gln Val Thr Ala Ser Asp Ala Asp Asp Pro Ser Ser
170 175 180

Gly Asn Asn Ala Arg Leu Leu Tyr Ser Leu Leu Gln Gly Gln Pro
185 190 195

Tyr Phe Ser Val Glu Pro Thr Thr Gly Val Ile Arg Ile Ser Ser
200 205 210

Lys Met Asp Arg Glu Leu Gln Asp Glu Tyr Trp Val Ile Ile Gln
215 220 225

Ala Lys Asp Met Ile Gly Gln Pro Gly Ala Leu Ser Gly Thr Thr
230 235 240

Ser Val Leu Ile Lys Leu Ser Asp Val Asn Asp Asn Lys Pro Ile
245 250 255

Phe Lys Glu Ser Leu Tyr Arg Leu Thr Val Ser Glu Ser Ala Pro
260 265 270

Thr Gly Thr Ser Ile Gly Thr Ile Met Ala Tyr Asp Asn Asp Ile
275 280 285

Gly Glu Asn Ala Glu Met Asp Tyr Ser Ile Glu Glu Asp Asp Ser
290 295 300

Gln Thr Phe Asp Ile Ile Thr Asn His Glu Thr Gln Glu Gly Ile
305 310 315

Val Ile Leu Lys Lys Lys Val Asp Phe Glu His Gln Asn His Tyr
320 325 330

Gly Ile Arg Ala Lys Val Lys Asn His His Val Pro Glu Gln Leu
335 340 345

Met Lys Tyr His Thr Glu Ala Ser Thr Thr Phe Ile Lys Ile Gln
350 355 360

Val Glu Asp Val Asp Glu Pro Pro Leu Phe Leu Leu Pro Tyr Tyr
365 370 375

Val Phe Glu Val Phe Glu Glu Thr Pro Gln Gly Ser Phe Val Gly
380 385 390

Val Val Ser Ala Thr Asp Pro Asp Asn Arg Lys Ser Pro Ile Arg
395 400 405

Tyr Ser Ile Thr Arg Ser Lys Val Phe Asn Ile Asn Asp Asn Gly
410 415 420

Thr Ile Thr Thr Ser Asn Ser Leu Asp Arg Glu Ile Ser Ala Trp
425 430 435

Tyr Asn Leu Ser Ile Thr Ala Thr Glu Lys Tyr Asn Ile Glu Gln
440 445 450

Ile Ser Ser Ile Pro Leu Tyr Val Gln Val Leu Asn Ile Asn Asp
455 460 465

His Ala Pro Glu Phe Ser Gln Tyr Tyr Glu Thr Tyr Val Cys Glu
470 475 480

Asn Ala Gly Ser Gly Gln Val Ile Gln Thr Ile Ser Ala Val Asp
485 490 495

Arg Asp Glu Ser Ile Glu Glu His His Phe Tyr Phe Asn Leu Ser
500 505 510

Val Glu Asp Thr Asn Asn Ser Ser Phe Thr Ile Ile Asp Asn Gln
515 520 525

Asp Asn Thr Ala Val Ile Leu Thr Asn Arg Thr Gly Phe Asn Leu
530 535 540

Gln Glu Glu Pro Val Phe Tyr Ile Ser Ile Leu Ile Ala Asp Asn
545 550 555

Gly Ile Pro Ser Leu Thr Ser Thr Asn Thr Leu Thr Ile His Val
560 565 570

Cys Asp Cys Gly Asp Ser Gly Ser Thr Gln Thr Cys Gln Tyr Gln
575 580 585

Glu Leu Val Leu Ser Met Gly Phe Lys Thr Glu Val Ile Ile Ala
590 595 600

Ile Leu Ile Cys Ile Met Ile Ile Phe Gly Phe Ile Phe Leu Thr
605 610 615

Leu Gly Leu Lys Gln Arg Arg Lys Gln Ile Leu Phe Pro Glu Lys
620 625 630

Ser Glu Asp Phe Arg Glu Asn Ile Phe Gln Tyr Asp Asp Glu Gly
635 640 645

Gly Gly Glu Glu Asp Thr Glu Ala Phe Asp Ile Ala Glu Leu Arg
650 655 660

Ser Ser Thr Ile Met Arg Glu Arg Lys Thr Arg Lys Thr Thr Ser
665 670 675

Ala Glu Ile Arg Ser Leu Tyr Arg Gln Ser Leu Gln Val Gly Pro
680 685 690

Asp Ser Ala Ile Phe Arg Lys Phe Ile Leu Glu Lys Leu Glu Glu
695 700 705

Ala Asn Thr Asp Pro Cys Ala Pro Pro Phe Asp Ser Leu Gln Thr
710 715 720

Tyr Ala Phe Glu Gly Thr Gly Ser Leu Ala Gly Ser Leu Ser Ser
725 730 735

Leu Glu Ser Ala Val Ser Asp Gln Asp Glu Ser Tyr Asp Tyr Leu
740 745 750

Asn Glu Leu Gly Pro Arg Phe Lys Arg Leu Ala Cys Met Phe Gly
755 760 765

Ser Ala Val Gln Ser Asn Asn
770

<210> 265
<211> 349
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 24, 60, 141, 226, 228, 249, 252
<223> unknown base

<400> 265
atttcaaggc cagccatatt ttntgttga accaacaaca ggagtataa 50
gaatattttn taaaatggat agagaactgc aagatgagta ttgggtatac 100

attcaagcca aggacatgat tggtcagcca ggagcggtgt ntggAACAC 150
aagtgtatta attaaacttt cagatgttaa tgacaataag cctatatatta 200
aagaaaAGTTT ataccgcttg actgtntntg aatctgcacc cactgggant 250
tntataggaa caatcatggc atatgataat gacataggag agaatgcaga 300
aatggattac agcattgaag aggatgattc gcaaacattt gacattatt 349

<210> 266
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 266
cttgactgtc tctgaatctg caccc 25

<210> 267
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 267
aagtgggtgga agcctccagt gtgg 24

<210> 268
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400>.268
ccactacggt attagagcaa aagttaaaaa ccacatggc tcctggagca 50
gc 52

<210> 269
<211> 2747
<212> DNA
<213> Homo sapiens

<400> 269
gcaacacctag cttcttagtat ccagactcca ggcggcccc gggcgcgac 50
cccaaccccg acccagagct tctccagcgg cggcgagcg agcagggctc 100
cccgcccttaa ctccctccgc gggcccagc caccccggtt agtccgggtt 150

ccccacacctgc aaactctccg cttctgcac ctgccacccc tgagccagcg 200
cggggccccc agcgagtcat ggccaacgcg gggctgcagc tggggctt 250
cattctcgcc ttccctggat ggatcggcgc catcgtcagc actgccctgc 300
cccagtgtag gatttactcc tatgcggcg acaacatcg taccggccag 350
ccatgtacg aggggctgtg gatgtcctgc gtgtcgcaga gcaccggca 400
gatccagtgc aaagtctttg actccttgcgtaatctgagc agcacattgc 450
aagcaacccg tgcccttgatg gtgggtggca tcctcctgg agtgatagca 500
atctttgtgg ccaccgttgg catgaagtgt atgaagtgcg tggaaagacga 550
tgaggtgcag aagatgagga tggctgtcat tgggggtgcg atatttc 600
ttgcaggcttgc ggctattttt gttgccacag catggtatgg caatagaatc 650
gttcaagaat tctatgaccc tatgacccca gtcaatgcca ggtacgaatt 700
tggtcaggct ctcttcactg gctggctgc tgcttctctc tgccctctgg 750
gaggtgcctt actttgcgt tcctgtcccc gaaaaacaac ctcttacccca 800
acaccaaggc cctatccaaa acctgcaccc tccagcggga aagactacgt 850
gtgacacaga gcaaaaagga gaaaatcatg ttgaaacaaa ccgaaaatgg 900
acattgagat actatcatta acattaggac cttagaattt tgggtattgt 950
aatctgaagt atggatttac aaaacaaaca aacaaacaaa aaacccatgt 1000
gttaaaatac tcagtgctaa acatggctt atcttatttt atcttcttc 1050
ctcaatatac gagggaaat tttccattt gtattactgc ttcccatgaa 1100
gtaatcatac tcaaattgggg gaagggtgc tccttaata tatatagata 1150
tgttatatac catgttttc tattaaaaat agacagtaaa atactattct 1200
cattatgtt atactagcat actaaaaata tctctaaaat agttaatgt 1250
atttaaattcc atattgatga agatgtttat tggtatattt tcttttcgt 1300
ccttatatac atatgtaca gtcaaatac atttactctt cttcattagc 1350
tttgggtgcc tttgccacaa gacctagcct aatttaccaa ggttgcattt 1400
tttcaattct tcatgcgtgc cttttcata tacttatttt attttttacc 1450
ataatcttat agcacttgca tcgttattaa gcccttattt gttttgtgtt 1500
tcattggtct ctatctcctg aatctaacad atttcatagc ctacattttt 1550
gtttctaaq ccaqaqaqaa tttattacaa atcaqaactt tqqacqcaaa 1600

tctttctgca tgaccaaagt gataaaattcc tggacccctt cccacacaat 1650
ccctgtactc tgaccatag cactcttggtt tgcttgaaa atatttgc 1700
aatttagtag ctgcattgtg ttccccagg tggtaaca caactttatt 1750
gattgaattt ttaagctact tattcatagt tttatatccc cctaaactac 1800
ctttttgttc cccatttcctt aattgtattg ttttcccaag tgtaattatc 1850
atgcgtttta tatcttccta ataaggtgtg gtctgttgt ctgaacaaag 1900
tgcttagactt tctggagtga taatctggtg acaaataattc tctctgtac 1950
tgtaagcaag tcacttaatc tttctacctc tttttctat ctgccaaatt 2000
gagataatga tacttaacca gttagaagag gtagtgtgaa tattaattag 2050
tttatattac tcttattctt tgaacatgaa ctatgcctat gtagtgtctt 2100
tatttgctca gctggctgag acactgaaga agtcaactgaa caaaacctac 2150
acacgtacct tcattgtgatt cactgccttc ctctctctac cagtctattt 2200
ccactgaaca aaacctacac acatacccttc atgtggttca gtgccttc 2250
ctctctacca gtctatttcc actgaacaaa acctacgcac ataccttcat 2300
gtggctcagt gccttcctct ctctaccagt ctattccat tcttcagct 2350
gtgtctgaca tgtttgcgt ctgttccatt ttaacaactg ctcttacttt 2400
tccagtctgt acagaatgct atttcacttg agcaagatga tgtaatggaa 2450
agggtgttgg cactgggtgc tggagacctg gatttgagtc ttgggtctat 2500
caatcaccgt ctgtgttga gcaaggcatt tggctgctgt aagcttattg 2550
cttcattctgt aagcgggtgt ttgtaattcc tgatctccc acctcacagt 2600
gatgttgggg ggatccagtg agatagaata catgtaagtg tggtttgta 2650
ataaaaaaag tgctatacta agggaaagaa ttgaggaatt aactgcatac 2700
gttttgggtgt tgctttcaa atgttgaaa ataaaaaaaaa tgttaag 2747

<210> 270
<211> 211
<212> PRT
<213> Homo sapiens

<400> 270
Met Ala Asn Ala Gly Leu Gln Leu Leu Gly Phe Ile Leu Ala Phe
1 5 10 15
Leu Gly Trp Ile Gly Ala Ile Val Ser Thr Ala Leu Pro Gln Trp

20	25	30
Arg Ile Tyr Ser Tyr Ala Gly Asp Asn Ile Val Thr Ala Gln Ala		
35	40	45
Met Tyr Glu Gly Leu Trp Met Ser Cys Val Ser Gln Ser Thr Gly		
50	55	60
Gln Ile Gln Cys Lys Val Phe Asp Ser Leu Leu Asn Leu Ser Ser		
65	70	75
Thr Leu Gln Ala Thr Arg Ala Leu Met Val Val Gly Ile Leu Leu		
80	85	90
Gly Val Ile Ala Ile Phe Val Ala Thr Val Gly Met Lys Cys Met		
95	100	105
Lys Cys Leu Glu Asp Asp Glu Val Gln Lys Met Arg Met Ala Val		
110	115	120
Ile Gly Gly Ala Ile Phe Leu Leu Ala Gly Leu Ala Ile Leu Val		
125	130	135
Ala Thr Ala Trp Tyr Gly Asn Arg Ile Val Gln Glu Phe Tyr Asp		
140	145	150
Pro Met Thr Pro Val Asn Ala Arg Tyr Glu Phe Gly Gln Ala Leu		
155	160	165
Phe Thr Gly Trp Ala Ala Ala Ser Leu Cys Leu Leu Gly Gly Ala		
170	175	180
Leu Leu Cys Cys Ser Cys Pro Arg Lys Thr Thr Ser Tyr Pro Thr		
185	190	195
Pro Arg Pro Tyr Pro Lys Pro Ala Pro Ser Ser Gly Lys Asp Tyr		
200	205	210
Val		

<210> 271
<211> 564
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 21, 69, 163, 434, 436, 444
<223> unknown base

<400> 271
ttctggccaa acccggggct ncagctgttg ggcttcatct cgccttcctg 50
ggatggatcg ggcacatcnt cacactgccc ttccccagtg gaggattta 100
ctcccttatgc tggcgacaac atcgtgaccg cccagcccat gtacgagggg 150

ctgtggatgt ccngcgtgtc gcagagcacc gggcagatcc agtgcaaagt 200
cttgactcc ttgctgaatc tgagcagcac attgcaagca acccgtgcct 250
tcatgggtt tggcatcctc ctgggagtga tagcaatctt tgtggccacc 300
gttggcatga agtgtatgaa gtgcttggaa gacgatgagg tgcagaagat 350
gaggatggct gtcattgggg gcgcgatatt tcttcttgcg ggtctggcta 400
tttagttgc cacagcatgg tatggcaata gaancntca acanttctat 450
gaccctatga ccccagtcaa tgccaggtac gaatttggtc aggctcttt 500
cactggctgg gctgctgctt ctctctgcct tctggaggt gccctacttt 550
gctgttcctg tccc 564

<210> 272
<211> 498
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 30, 49, 102, 141, 147, 171, 324-325, 339-341
<223> unknown base

<400> 272
acccttgacc caacgcggcc ccccgaccgn ttcatggcca aacgcgggn 50
tccagctgtt gggcttcatt ctccccttcc tggatggac cgccgcggcat 100
cntcagcact gccctgcccc agtggaggat ttactcctat nccggcnaca 150
acatcgtgac cgcccaggcc ntgtacgagg ggctgtggat gtcctgcgtg 200
tcgcagagca ccgggcagat ccagtgcaaa gtcttgact cccttgctga 250
atctgagcag cacattgcaa gcaaccgtg cttgtatggat ggttggcatc 300
ctcctggag ttagtgcatt cttnntggcc accgttgnn ntgaagtgt 350
tgaagtgcatt ggaagacgat gaggtgcaga agatgaggat ggctgtcatt 400
gggggcgcga tattttctt tgcaggctg gctatttttag ttgccacagc 450
atggtatggc aatagaatcg ttcaagaatt ctatgaccct atgaccga 498

<210> 273
<211> 552
<212> DNA
<213> Homo sapiens

<220>
<221> unsure

<222> 25, 57, 67, 94-95, 116, 152, 165, 212, 233, 392-394
<223> unknown base

<400> 273
gggcccgacc attatccaac cgggntcaact gttggctcat ctccctcctg 50
gatgaancgc gccatcntca gactccctgc cccatggaga tttncctat 100
gctggcgaca acatcntgac ccccagccat gtacgagggg ctttgaacgt 150
cngcgtgtcg cagancaccg ggcagatcca gtgcaaagtc tttgactcct 200
tgctgaatct gngcagcaca ttgcagcaac ccntgccctg atggtggtt 250
gcatcctcct gggagtgata gcaatcttg tggccaccgt tggcatgaag 300
tgtatgaagt gcttggaaaga cgatgaggtg cagaagatga ggatggctgt 350
cattgggggc gcgatatttc ttcttgcagg tctggctatt tnnngttgcc 400
acagcatggt atggcaatag aatcggtcaa gaattctatg accctatgac 450
cccagtcaat gccaggtacg aatttggtca ggctctcttc actggctggg 500
ctgctgcttc tctctgcctt ctgggaggtg ccctactttt ctgttcctgc 550
ga 552

<210> 274
<211> 526
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 25, 50, 60, 123, 127, 370, 395, 397-398, 402-403, 405-407
<223> unknown base

<400> 274
attctccct cctggatgga tcgcnccacc gtcacattgc cttccccan 50
tggaggattt actcctatgc tggcgacaac atcgtgaccc cccaggccat 100
ttaccgaggg gctttggatg tcntgcntgt cgccagacac cgggcagatc 150
ccagtgcaaa gtcttgact cttgctgaa tctgagcagc acattgcaag 200
caacccgtgc cttgatgggg ttggcatcct cctgggagtg atagcaacct 250
ttgtggccac cggtggcatg aagtgtatga agtgcttggaa agacgatgag 300
gtgccagaag atgaggatgg ctgtcattgg gggcgcgata tttcttgg 350
cagggtctggc tatttttagtn gccacagcat ggtatggcaa tagantnntt 400
cnngnnntct atgaccctat gaccccgatc aatgccaggt acgaatttgg 450

tcaggctctc ttcactggct gggctgctgc ttctctctgc cttctggag 500

gtgccctact ttgctgttcc tgtccc 526

<210> 275

<211> 398

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 22, 61, 91, 144, 238-239, 262, 265-266, 271, 274

<223> unknown base

<400> 275

agagcacccgg cagatccccag tncaaagtct ttgacccttg ctgaatctga 50

gcagcacatt ncaagcaacc ccttgcccttg aaggtggttt ncatcccccc 100

tgggagtgaa tagcaatctt tgtggccacc gttggcatga agtntatgaa 150

gtgcttggaa gacgatgagg tgcagaagat gaggatggct gtcattgggg 200

gcgcgatatt tcttcttgca ggtctggcta ttttagtnnc cacagcatgg 250

tatggcaata gnatnnttcg nggnntctat gaccctatga ccccagtcaa 300

tgccaggtac gaatttggtc aggctctttt cactggctgg gctgctgctt 350

ctctctgcct tctgggaggt gccctactttt gctgttccttg tccccgaa 398

<210> 276

<211> 495

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 39, 58, 130, 234, 314, 364, 427, 450, 461, 476

<223> unknown base

<400> 276

agcaatgcccg tgcccccagt ggaggattaa ttccttatgnt ggggacaaca 50

tttgtacngc ccaggccatg tacggggggc tgtggatgtc ctgcgtgtcg 100

cagagcacccg ggcagatcca gtgcaaagtn tttgactcct tgctgaattt 150

gagcagcaca ttgcaagcaa cccgtgcctt gatggtggtt ggcacatttcc 200

tgggagtgat agcaatctttt gtggccaccg tggnaatgaa gtgtatgaag 250

tgcttggaaac acgatgagg gcagaagatg aggatggctg tcattgggg 300

cgcgatattttt ctntttgcag gtctggctat ttttagttgcc acagcatgg 350

atggcaatag aatngttcaa gaattttatg accctatgac cccagtcaat 400

gccaggtacg aatttggtaa ggctttnttc actggctggg ctgctgctn 450
tttctgcctt ntgggaggta ccctantttg ctgttcctgc gaacc 495

<210> 277
<211> 200
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 34, 87, 138, 147, 163, 165-166, 172
<223> unknown base

<400> 277
tcataggggg ggcgcatatt ttttcttgc ggtntggta tttagttgc 50
cacagcatgg tatggcaata gaatcggtca agaattntat gaccctatga 100
ccccagtcaa tgccaggtac gaatttggtc aggctctttt cactggntgg 150
gctgctgctt ctntnngcct tntgggaggt gccctactttt gctgttcctg 200

<210> 278
<211> 542
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 26, 43, 55, 77, 198, 361-362, 391-392, 396
<223> unknown base

<400> 278
ttcctggat ggatccgccc ccatcntcac atgccttgcc ccntggagat 50
ttacncctat gctggcgaac aacatcntga ccgcccaggc catgtacgag 100
gggctgtgga atgtcctgcg tgtcccagag cacccggcag atccagtgc 150
aagtcttga ctccttgctg aatctgagca gcacattgca agcaaccntg 200
ccttgcgtggat ggttggcatc ctcctggagat tgatagcaat ctttgtggcc 250
accgttggca tgaaagtgtt tgaagtgcattt ggaagacgat gaggtgcaga 300
agatgaggat ggctgtcatt gggggcgcga tatttcttct tgcaggtctg 350
gctatttttag nngccacagc atggtatgca aatcagaccc nntcanaaac 400
tctatgaccc tatgacccca gtcaatgcca ggtacgaattt tggtcaggct 450
ctcttcactg gctgggctgc tgcttcttc tgccttctgg gaggtgcct 500
actttgctgt tcctgtcccc gaaaaacaac ctcttaccca cg 542

<210> 279
<211> 548
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 90, 115, 147, 228, 387
<223> unknown base

<400> 279
cggggctgca gctgttggc ttcatctcg ttcctggat ggaatcggcg 50
ccatcgtag cactgccctg ccccatggag gatttactcn tatgctggcg 100
acaacatcgat gaccncccag gccatgtacg aggggctgtg gatgtcngcg 150
tgtcgcagag caccggcag atccagtgc aagtcttga ctcccttgctg 200
aatctgagca gcacattgc acaaccntg ctttgatggt gttggcattc 250
ctcctggag tgatagcaat ctttgtggcc accgttggca tgaagtgtat 300
gaagtgcattt gaagacgatg aggtgcagaa gatgaggatg gctgtcattt 350
ggggcgcgat atttcttctt gcaggtctgg ctattntag ttgccacagc 400
atggtatggc aatagaatcg ttcaagaattt ctatgaccct atgaccggcag 450
tcaatgccag gtacgaattt ggtcaggctc tcttcactgg ctgggctgct 500
gcttctctct gccttctggg aggtgcccta ctggctgtt cctgcgaa 548

<210> 280
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 280
cgagcgagtc atggccaacg c 21

<210> 281
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 281
gtgtcacacag tagtcttcc cgctgg 26

<210> 282
<211> 43

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 282
ctgcagctgt tgggcttcat tctcgcccttc ctggatgga tcg 43

<210> 283
<211> 2285
<212> DNA
<213> Homo sapiens

<400> 283
gcgtgccgtc agctcgccgg gcaccgcggc ctcgcctcg ccctccgccc 50
ctgcgcctgc accgcgtaga ccgacccccc cctccagcgc gcccacccgg 100
tagaggaccc ccgcccggtc cccgaccggt cccgccttt ttgtaaaact 150
taaagcgggc gcagcattaa cgcttcccgc cccggtgacc tctcaggggt 200
ctccccgcca aaggtgctcc gccgctaagg aacatggcga aggtggagca 250
ggtcctgagc ctcgagccgc agcacgagct caaattccga ggtcccttca 300
ccgatgttgt caccaccaac ctaaagcttg gcaacccgac agaccgaaat 350
gtgtgtttta aggtgaagac tacagcacca cgtaggtact gtgtgaggcc 400
caacagcgga atcatcgatg caggggcctc aattaatgta tctgtatgt 450
tacagcctt cgattatgat cccaatgaga aaagtaaaca caagtttatg 500
gttcagtcta tgttgctcc aactgacact tcagatatgg aagcagtatg 550
gaaggaggca aaaccggaag accttatgga ttcaaaactt agatgtgt 600
ttgaattgcc agcagagaat gataaaccac atgatgtaga aataaataaa 650
attatatcca caactgcac 700
tctgagttct tctttggatg acaccgaagt taagaaggaaat 750
gtaagaggct gcaagggtgaa gttcagaggc tacgggagga gaacaagcag 800
ttcaaggaag aagatggact gcggatgagg aagacagtgc agagcaacag 850
ccccatttca gcattagccc caactggaa ggaagaaggc cttagcaccc 900
ggctcttggc tctgggggtt ttgttcttta tcgttggtgt aattattggg 950
aagattgcct tgttagaggta gcatgcacag gatgttaat tggattggtg 1000
gatccaccat atcatggat ttaaatttat cataaccatg tgaaaaaga 1050

aattaatgta tgatgacatc tcacaggctc tgcctttaaa ttaccctcc 1100
ctgcacacac atacacagat acacacacac aaatataatg taacgatctt 1150
ttagaaagtt aaaaatgtat agtaactgat tgaggggaa aaagaatgat 1200
ctttattaaat gacaaggaa accatgagta atgccacaat ggcatttgt 1250
aaatgtcatt ttaaacattg gtaggccttg gtacatgatg ctggattacc 1300
tctcttaaaa tgacaccctt cctcgctgt tggtgctggc ccttgggag 1350
ctggagccc gcatgctggg gagtgcggtc agctccacac agtagtcccc 1400
acgtggccca ctcccgcccc aggctgctt ccgtgtcttc agttctgtcc 1450
aagccatcag ctccctggga ctgatgaaca gagtcagaag cccaaaggaa 1500
ttgcactgtg gcagcatcag acgtactcgt cataagttag aggcgtgtgt 1550
tgactgattt acccagcgct ttggaaataa atggcagtgc tttgttact 1600
taaaggacc aagctaaatt tgtattgggt catgtatg agtcaaactg 1650
ttattcagag atgttaatg cataattaaac ttatttaatg tatttcatct 1700
catgtttct tattgtcaca agagtagt taatgctgctg tgctgctgaa 1750
ctctgttggg tgaactggta ttgctgctgg agggctgtgg gctcctctgt 1800
ctctggagag tctggtcatg tggaggtggg gtttattggg atgctggaga 1850
agagctgcca ggaagtgttt tttctgggtc agtaaataac aactgtcata 1900
gggaggggaaa ttctcagtag tgacagtcaa ctcttaggtt cctttttaa 1950
tgaagagtag tcagtcttct agattgttct tataaccacct ctcaaccatt 2000
actcacactt ccagcgcccc ggtccaagtc tgagcctgac ctcccttgg 2050
ggacctagcc tggagtcagg acaaattggat cgggctgcag agggtagaa 2100
gcgagggcac cagcagttgt gggggggag caagggaga gagaaactct 2150
tcagcgaatc cttcttagtac tagttgagag tttgactgtg aattaatttt 2200
atgccataaa agaccaaccc agttctgttt gactatgtag catctgaaa 2250
agaaaaattta taataaagcc ccaaaattaa gaaaa 2285

<210> 284

<211> 243

<212> PRT

<213> Homo sapiens

<400> 284

Met Ala Lys Val Glu Gln Val Leu Ser Leu Glu Pro Gln His Glu

1	5	10	15
Leu Lys Phe Arg Gly Pro Phe Thr Asp Val Val Thr Thr Asn Leu			
	20	25	30
Lys Leu Gly Asn Pro Thr Asp Arg Asn Val Cys Phe Lys Val Lys			
	35	40	45
Thr Thr Ala Pro Arg Arg Tyr Cys Val Arg Pro Asn Ser Gly Ile			
	50	55	60
Ile Asp Ala Gly Ala Ser Ile Asn Val Ser Val Met Leu Gln Pro			
	65	70	75
Phe Asp Tyr Asp Pro Asn Glu Lys Ser Lys His Lys Phe Met Val			
	80	85	90
Gln Ser Met Phe Ala Pro Thr Asp Thr Ser Asp Met Glu Ala Val			
	95	100	105
Trp Lys Glu Ala Lys Pro Glu Asp Leu Met Asp Ser Lys Leu Arg			
	110	115	120
Cys Val Phe Glu Leu Pro Ala Glu Asn Asp Lys Pro His Asp Val			
	125	130	135
Glu Ile Asn Lys Ile Ile Ser Thr Thr Ala Ser Lys Thr Glu Thr			
	140	145	150
Pro Ile Val Ser Lys Ser Leu Ser Ser Ser Leu Asp Asp Thr Glu			
	155	160	165
Val Lys Lys Val Met Glu Glu Cys Lys Arg Leu Gln Gly Glu Val			
	170	175	180
Gln Arg Leu Arg Glu Glu Asn Lys Gln Phe Lys Glu Glu Asp Gly			
	185	190	195
Leu Arg Met Arg Lys Thr Val Gln Ser Asn Ser Pro Ile Ser Ala			
	200	205	210
Leu Ala Pro Thr Gly Lys Glu Glu Gly Leu Ser Thr Arg Leu Leu			
	215	220	225
Ala Leu Val Val Leu Phe Phe Ile Val Gly Val Ile Ile Gly Lys			
	230	235	240
Ile Ala Leu			

<210> 285
<211> 418
<212> DNA
<213> *Homo sapiens*

<220>
<221> unsure

<222> 40, 53, 68, 119, 134, 177-178, 255
<223> unknown base

<400> 285
gtcagtcttc tagattgtcc ttatcccacc tttcaaccan tactcacatt 50

tcnagcgccc aggtccangt ctgagcctga cttcccttg gggacctagc 100
ctggagtcag gacaatggnt cgggctgcag aggnttagaa gcgagggcac 150
cagcagttt gggggggag caagggnnga gagaaactct tcagcgaatc 200
cttctagtagc tagttgagag tttgactgtg aattaatttt atgccataaa 250
agacnaaccc agttctgttt gactatgtag catctgaaa agaaaaattta 300
taataaagcc ccaaaattaa gaattctttt gtcattttgt cacatttgc 350
ctatgggggg aattattatt ttatcatttt tattatttg ccattggaag 400
gttaacttta aaatgagc 418

<210> 286
<211> 543
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 73, 97
<223> unknown base

<400> 286
tattgtaaag gccattttaa accattggta ggccttggta catgatgctg 50

gattacctcc ttAAATgaca ccNTTcCTcg CCTGTTGGTg CTGGCCNTG 100
gggagctgga gccccagcat gctggggagt gcggtcagct ccacacagta 150
gtccccacgt ggcccactcc cggcccaggc tgcttccgt gtcttcagtt 200
ctgtccaagc catcagctcc ttgggactga tgaacagagt cagaagccca 250
aaggaattgc cactgtggca gcatcagacg tactcgtcat aagtgagagg 300
cgtgtgttga ctgattgacc cagcgcttg gaaataaatg gcagtgcTTT 350
gttcaactaa agggaccaag ctaaattgta ttggTTcatg tagtgaagt 400
aaactgttat tcagagatgt ttaatgcata tttaacttat ttaatgtatt 450
tcatctcatg ttttcttatt gtcacaagag tacagttaat gctgcgtgct 500
gctgaactct gttgggtgaa ctggattgc tgctggaggg ctg 543

<210> 287
<211> 270

<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 38, 64, 72, 164, 198, 200, 220, 222, 229, 242
<223> unknown base

<400> 287
ccctgggtt tttgttcttt aattcggtgg tgtaattttt gggaaaggattg 50
ctttagagg tagnatgcac cnggctggta aattggattt gtggatccac 100
catatccatg ggatataat ttatcataac catgtgtaaa aagaaattaa 150
tgtatgtga catntcacag gtattgcctt taaattaccc atccctgnan 200
acacatacac agatacacan anacaaatnt aatgtaacga tnttttagaa 250
agttaaaaat gtatagtaac 270

<210> 288
<211> 428
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 35, 116, 129, 197, 278, 294, 297, 349, 351
<223> unknown base

<400> 288
ggtggcccat tccccggccca ggctgctttc cggtnttcag ttctgtccaa 50
gccatcagct ccttgggact gatgaacaga gtcagaagcc caaaggaatt 100
gcactgtggc agcatnagac gtacttgtna taagtgagag gcgtgtgtt 150
actgattgac ccagcgcttt gcaaataaat ggcagtgcctt tgttcantta 200
aagggaccaa gctaaatttg tattggttca tgttagtgaag tcaaactgtt 250
attcagagat gttaatgca tatttaantt atttaatgtt tttnatntca 300
tgttttctta ttgtcacaag agtacagtta atgctgcgtg ctgctgaant 350
ntgttgggtt aactggattt gctgctggag ggctgtgggc tcctctgtct 400
ttggagagtc tggtcatgtg gaggtggg 428

<210> 289
<211> 320
<212> DNA
<213> Homo sapiens

<400> 289
tgctttccgt gtcttcagtt ctgtccaagc catcagctcc ttgggacttg 50

atgaacagag tcagaagccc aaaggaattt cactgtggca gcatcagacg 100
tactcgcat aagttagagg cgtgtttttt ctgatttacc cagcgctttt 150
gaaataaatg gcagtgcctt gtttacttaa agggaccaag ctaaatttgt 200
attggttcat gtagtgaagt caaactgtta ttcagagatg ttatgcatt 250
atttaactta ttatgttat ttcatctcat gttttttttt tgtcacaaga 300
gtacagttaa tgctgcgtgc 320

<210> 290
<211> 609
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 57, 60, 186, 235, 244, 304, 339, 355, 359, 361, 387, 432, 441,
447, 481, 513, 532, 584, 598
<223> unknown base

<400> 290
aaaccttaa aagtttaggg gaaaagaatg atcctttatt aatgacaagg 50
gaaaccntgn gtaatgccac aatggcatat tgtaaatgtc attttaaaca 100
ttggtaggcc ttggtacatg atgctggatt acctcttta aatgacacc 150
cttcctcgcc tgggttgct ggcccttggg gagctngagc ccagcatgct 200
ggggagtgcg gtctgctcca cacagtagtc cccangtggc ccantccgg 250
cccaggctgc ttccgtgtc ttcaagttctg tccaagccat cagctccttg 300
ggantgatga acagagtcag aagccaaag gaattgcant gtggcagcat 350
cagangtant ngtcataagt gagaggcgtg tggtgantga ttgacccagc 400
gctttggaaa taaatggcaq tgctttgttc anttaaaggg nccaagntaa 450
atttgtattt gttcatgttag tgaagtcaaa ntgttattca gagatgtttt 500
atgcataattt aanttattta atgtatttca tntcatgttt tcttattgtc 550
acaagggtac agttaatgtc gcgtgcgtc gaantctgtt gggtgaantg 600
gtattgctg 609

<210> 291
<211> 493
<212> DNA
<213> Homo sapiens

<400> 291

gccccttggg gagctggagc ccagcatgct ggggagtgcg gtcagctcca 50
cacagtagtc cccacgtggc ccactcccg cccaggctgc tttccgtgtc 100
ttcagttctg tccaagccat cagctccttg ggactgatga acagagtcag 150
aagccaaag gaattgcact gtggcagcat cagacgtact cgtcataagt 200
gagaggcgtg tggtgactga ttgacccagc gctttggaaa taaatggcag 250
tgcttggttc acttaaaggg accaagctaa atttgttattg gttcatgttag 300
tgaagtcaaa ctgttattca gagatgtta atgcatattt aacttattta 350
atgtatttca tctcatgttt tcttattgtc acaagagtac agttaatgct 400
gcgtgctgct gaactctgtt gggtgaactg gtattgctgc tggagggctg 450
tgggctcctc tgtctctgga gagtctggtc atgtggaggt ggg 493

<210> 292

<211> 27

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 292

gcaccaccgt aggtacttgt gtgaggc 27

<210> 293

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 293

aaccaccaga gccaaagagcc ggg 23

<210> 294

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 294

cagcggaaatc atcgatgcag gggcctcaat taatgttatct gtgatgttac 50

<210> 295

<211> 2530

<212> DNA

<213> Homo sapiens

<400> 295
gcgagctccg ggtgctgtgg cccggccttg gcggggcgcc ctccggctca 50
ggctggctga gaggctccca gctgcagcgt ccccgccccgc ctccctcgaaa 100
gctctgatct cagctgacag tgccctcgaa gaccaaacaacaa gcctggcagg 150
gtctcacttt gttgcccagg ctggagttca gtgccatgtat catggtttac 200
tgcagccttg acctcctggg ttcaagcgat cctgctgagt agctggact 250
acaggacaaa attagaagat caaaaatggaa aatatgctgc tttgggttat 300
attttcacc cctgggtgga ccctcatttgaa tggatctgaa atggaaatggg 350
attttatgtg gcacttgaga aaggtacccc ggattgtcag taaaaggact 400
ttccatctca ccagccccgc atttggca gatgctaaga tgatggtaaa 450
tacagtgtgt ggcattcgaaat gccagaaaaga actccaaact cccagcctt 500
ctgaatttggaa ggattatctt tcctatgaga ctgtcttga gaatggcacc 550
cgaaccttaa ccagggtgaa agttcaagat ttgggtcttg agccgactca 600
aaatatcacc acaaagggag tatctgttag gagaaagaga caggtgtatg 650
gcaccgacag caggttcagc atcttggaca aaaggttctt aaccaatttc 700
ccttcagca cagctgtgaa gcttccacg ggctgttagtg gcattctcat 750
ttcccctcag catgttctaa ctgctgccca ctgtgttcat gatggaaagg 800
actatgtcaa agggagtaaa aagctaagg tagggttggtaa gaagatgagg 850
aataaaagtg gaggcaagaa acgtcgaggt tctaagagga gcaggagaga 900
agcttagtgtt ggtgaccaaaa gagagggtac cagagagcat ctgcaggaga 950
gagcgaaggg tgggagaaga agaaaaaaat ctggccgggg tcagaggatt 1000
gccgaaggga ggccttcctt tcagtggacc cgggtcaaga atacccacat 1050
tccgaagggc tgggcacgag gaggcatggg ggacgctacc ttggactatg 1100
actatgctct tctggagctg aacgcgtgctc acaaaaagaa atacatggaa 1150
cttggaatca gcccaacgat caagaaaatg cctggtgaa tgatccactt 1200
ctcaggattt gataacgata gggctgatca gttggtctat cggttttgc 1250
gtgtgtccga cgaatccaaat gatctcctt accaatactg cgtatgctgag 1300
tcgggctcca ccgggttcggg ggtctatctg cgtctgaaag atccagacaa 1350
aaagaattgg aagcgcaaaa tcattgcggt ctactcaggc caccagtggg 1400

tggatgtcca cggggttcag aaggactaca acgttgctgt tcgcacact 1450
ccccctaaaat acgcccagat ttgcctctgg attcacggga acgatgccaa 1500
ttgtgcttac ggctaacaga gacctgaaac agggcggtgt atcatctaaa 1550
tcacagagaa aaccagctct gcttaccgta gtgagatcac ttcataaggtt 1600
atgcctggac ttgaactctg tcaatagcat ttcaacattt ttcaaaatca 1650
ggagattttc gtccatttaa aaaatgtata ggtgcagata ttgaaactag 1700
gtgggcactt caatgccaag tatatactct tctttacatg gtgatgagtt 1750
tcattttag aaaaattttg ttgccttctt aaaaatttga cacactttaa 1800
accttcaaacc aggtattata aataacatgt gactccttaa tggacttatt 1850
ctcagggtcc tactctaaga agaatctaattt aggtgctgg ttgtgtatta 1900
aatgtgaaat tgcatagata aaggttagatg gtaaagcaat tagtacaga 1950
atagagacag aaagttacaa cacagttgtt actactctga gatggatcca 2000
ttcagctcat gccctcaatg tttatattgt gttatctgtt gggctggga 2050
cattttagttt agttttttt aagaattaca aatcagaaga aaaagcaagc 2100
attataaaca aaactaataa ctgtttact gcttaagaa ataacaatta 2150
caatgtgtat tatttaaaaa tgggagaaat agtttgtct atgaaataaa 2200
cctagtttag aaatagggaa gctgagacat tttaagatct caagttttta 2250
tttaactaat actcaaataa tggacttttc atgtatgcat agggaaagaca 2300
cttcacaaat tatgaatgtt catgtgttga aagccacattt attttatgct 2350
atacattcta tgtatgaggt gctacatttt taggacaaag aattctgtaa 2400
tcttttcaa gaaagagtct ttttctcctt gacaaaatcc agctttgtt 2450
tgaggactat agggtaattt ctctgattttt taatttttaga tatgtccttt 2500
cctaaaaatg aataaaatggaaatg aataaatatga 2530

<210> 296
<211> 413
<212> PRT
<213> Homo sapiens

<400> 296
Met Glu Asn Met Leu Leu Trp Leu Ile Phe Phe Thr Pro Gly Trp
1 5 10 15

Thr Leu Ile Asp Gly Ser Glu Met Glu Trp Asp Phe Met Trp His

	20	25	30
Leu Arg Lys Val Pro Arg Ile Val Ser Glu Arg Thr Phe His Leu			
35	40	45	
Thr Ser Pro Ala Phe Glu Ala Asp Ala Lys Met Met Val Asn Thr			
50	55	60	
Val Cys Gly Ile Glu Cys Gln Lys Glu Leu Pro Thr Pro Ser Leu			
65	70	75	
Ser Glu Leu Glu Asp Tyr Leu Ser Tyr Glu Thr Val Phe Glu Asn			
80	85	90	
Gly Thr Arg Thr Leu Thr Arg Val Lys Val Gln Asp Leu Val Leu			
95	100	105	
Glu Pro Thr Gln Asn Ile Thr Thr Lys Gly Val Ser Val Arg Arg			
110	115	120	
Lys Arg Gln Val Tyr Gly Thr Asp Ser Arg Phe Ser Ile Leu Asp			
125	130	135	
Lys Arg Phe Leu Thr Asn Phe Pro Phe Ser Thr Ala Val Lys Leu			
140	145	150	
Ser Thr Gly Cys Ser Gly Ile Leu Ile Ser Pro Gln His Val Leu			
155	160	165	
Thr Ala Ala His Cys Val His Asp Gly Lys Asp Tyr Val Lys Gly			
170	175	180	
Ser Lys Lys Leu Arg Val Gly Leu Leu Lys Met Arg Asn Lys Ser			
185	190	195	
Gly Gly Lys Lys Arg Arg Gly Ser Lys Arg Ser Arg Arg Glu Ala			
200	205	210	
Ser Gly Gly Asp Gln Arg Glu Gly Thr Arg Glu His Leu Gln Glu			
215	220	225	
Arg Ala Lys Gly Gly Arg Arg Arg Lys Lys Ser Gly Arg Gly Gln			
230	235	240	
Arg Ile Ala Glu Gly Arg Pro Ser Phe Gln Trp Thr Arg Val Lys			
245	250	255	
Asn Thr His Ile Pro Lys Gly Trp Ala Arg Gly Gly Met Gly Asp			
260	265	270	
Ala Thr Leu Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Arg Ala			
275	280	285	
His Lys Lys Lys Tyr Met Glu Leu Gly Ile Ser Pro Thr Ile Lys			
290	295	300	
Lys Met Pro Gly Gly Met Ile His Phe Ser Gly Phe Asp Asn Asp			

	305	310	315
Arg Ala Asp Gln Leu Val Tyr Arg Phe Cys Ser Val Ser Asp Glu			
320	325		330
Ser Asn Asp Leu Leu Tyr Gln Tyr Cys Asp Ala Glu Ser Gly Ser			
335	340		345
Thr Gly Ser Gly Val Tyr Leu Arg Leu Lys Asp Pro Asp Lys Lys			
350	355		360
Asn Trp Lys Arg Lys Ile Ile Ala Val Tyr Ser Gly His Gln Trp			
365	370		375
Val Asp Val His Gly Val Gln Lys Asp Tyr Asn Val Ala Val Arg			
380	385		390
Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Leu Trp Ile His Gly			
395	400		405
Asn Asp Ala Asn Cys Ala Tyr Gly			
410			

<210> 297

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 297

gcatctgcag gagagagcga aggg 24

<210> 298

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 298

catcggtccc gtgaatccag aggc 24

<210> 299

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 299

gaaggggaggc cttcccttca gtggacccgg gtcaagaata cccac 45

<210> 300

<211> 1869
<212> DNA
<213> Homo sapiens

<400> 300
aatgtgagag gggctgatgg aagctgata g caggactgg agtgttagca 50
ccagtactgg atgtgacagc aggagagga g cacttagca gcttattcag 100
tgtccgattc tgattccggc aaggatcaa gcatggaatg ctgccgtcg 150
gcaactcctg gcacactgct cctcttcgt gcttcctgc tcctgagttc 200
caggaccgca cgctccgagg aggaccggg cggcctatgg gatgcctggg 250
gccccatggag tgaatgctca cgcacactgct ggggaggggc ctcctactct 300
ctgaggcgct gcctgagcag caagagctgt gaaggaagaa atatccgata 350
cagaacatgc agtaatgtgg actgcccacc agaagcaggt gatttccgag 400
ctcagcaatg ctcagctcat aatgatgtca agcaccatgg ccagtttat 450
gaatggcttc ctgtgtctaa tgaccctgac aaccatgtt cactcaagtg 500
ccaagccaaa ggaacaaccc tgggtgttga actagcacct aaggtcttag 550
atggtacgct ttgctataca gaatcttgg atatgtcat cagtggttta 600
tgccaaattt tgggtgcga tcaccagctg ggaagcaccc tcaaggaaga 650
taactgtggg gtctgcaacg gagatgggtc cacctgccc gttggccgag 700
ggcagtataa atcccagctc tccgcaacca aatcgatga tactgtggtt 750
gcacttccct atgaaatgtt acatattcgc cttgtctaa aaggtcctga 800
tcacttatac ctggaaacca aaaccctcca gggactaaa ggtgaaaaca 850
gtctcagctc cacaggaact ttccttgg acaattctag tgtggacttc 900
cagaaattt cagacaaaga gatactgaga atggctggac cactcacagc 950
agatttcatt gtcaagattc gtaactcggt ctccgctgac agtacagtcc 1000
agttcatctt ctatcaaccc atcatccacc gatggaggga gacggatttc 1050
tttccttgc tggaggaggt tatcagctga catcggttga 1100
gtgctacgt ctgaggagca accgtgtggt tgctgacca tactgtcact 1150
attacccaga gaacatcaa cccaaaccc agcttcagga gtgcaacttg 1200
gatccttgc tggaggaggt tatcagctga catcggttga 1250
ctaccatccc cttccctcggt gggaggccac cccatggacc gcgtgctcct 1300

cctcgtgtgg gggggcata cagagccggg cagttcctg tgtggaggag 1350
gacatccagg ggcatgtcac ttcagtggaa gagtgaaat gcatgtacac 1400
ccctaagatg cccatcgac agccctgcaa cattttgac tgccctaaat 1450
ggctggcaca ggagtggtct ccgtgcacag tgacatgtgg ccagggcctc 1500
agataccgtg tggtcctctg catcgaccat cgaggaatgc acacaggagg 1550
ctgttagccca aaaacaaagc cccacataaa agaggaatgc atcgtaccca 1600
ctccctgcta taaacccaaa gagaaacttc cagtcgaggc caagttgcc 1650
tggttcaaac aagctcaaga gctagaagaa ggagctgctg tgtcagagga 1700
gccctcgtaa gttgtaaaag cacagactgt tctatattt 1750
gtttaaagaa agcagtgtct cactggtgt agcttcatg gttctgaac 1800
taagtgtaat catctcacca aagttttt gctctcaa 1850
ttagttcaa aaaaaaaaa 1869

<210> 301

<211> 525

<212> PRT

<213> Homo sapiens

<400> 301

Met	Glu	Cys	Cys	Arg	Arg	Ala	Thr	Pro	Gly	Thr	Leu	Leu	Leu	Phe
1				5				10						15
Leu	Ala	Phe	Leu	Leu	Ser	Ser	Arg	Thr	Ala	Arg	Ser	Glu	Glu	
			20				25					30		
Asp	Arg	Asp	Gly	Leu	Trp	Asp	Ala	Trp	Gly	Pro	Trp	Ser	Glu	Cys
				35				40				45		
Ser	Arg	Thr	Cys	Gly	Gly	Ala	Ser	Tyr	Ser	Leu	Arg	Arg	Cys	
				50			55				60			
Leu	Ser	Ser	Lys	Ser	Cys	Glu	Gly	Arg	Asn	Ile	Arg	Tyr	Arg	Thr
					65			70				75		
Cys	Ser	Asn	Val	Asp	Cys	Pro	Pro	Glu	Ala	Gly	Asp	Phe	Arg	Ala
				80			85				90			
Gln	Gln	Cys	Ser	Ala	His	Asn	Asp	Val	Lys	His	His	Gly	Gln	Phe
				95				100				105		
Tyr	Glu	Trp	Leu	Pro	Val	Ser	Asn	Asp	Pro	Asp	Asn	Pro	Cys	Ser
				110				115				120		
Leu	Lys	Cys	Gln	Ala	Lys	Gly	Thr	Thr	Leu	Val	Val	Glu	Leu	Ala
				125				130				135		

Pro Lys Val Leu Asp Gly Thr Arg Cys Tyr Thr Glu Ser Leu Asp
140 145 150

Met Cys Ile Ser Gly Leu Cys Gln Ile Val Gly Cys Asp His Gln
155 160 165

Leu Gly Ser Thr Val Lys Glu Asp Asn Cys Gly Val Cys Asn Gly
170 175 180

Asp Gly Ser Thr Cys Arg Leu Val Arg Gly Gln Tyr Lys Ser Gln
185 190 195

Leu Ser Ala Thr Lys Ser Asp Asp Thr Val Val Ala Leu Pro Tyr
200 205 210

Gly Ser Arg His Ile Arg Leu Val Leu Lys Gly Pro Asp His Leu
215 220 225

Tyr Leu Glu Thr Lys Thr Leu Gln Gly Thr Lys Gly Glu Asn Ser
230 235 240

Leu Ser Ser Thr Gly Thr Phe Leu Val Asp Asn Ser Ser Val Asp
245 250 255

Phe Gln Lys Phe Pro Asp Lys Glu Ile Leu Arg Met Ala Gly Pro
260 265 270

Leu Thr Ala Asp Phe Ile Val Lys Ile Arg Asn Ser Gly Ser Ala
275 280 285

Asp Ser Thr Val Gln Phe Ile Phe Tyr Gln Pro Ile Ile His Arg
290 295 300

Trp Arg Glu Thr Asp Phe Phe Pro Cys Ser Ala Thr Cys Gly Gly
305 310 315

Gly Tyr Gln Leu Thr Ser Ala Glu Cys Tyr Asp Leu Arg Ser Asn
320 325 330

Arg Val Val Ala Asp Gln Tyr Cys His Tyr Tyr Pro Glu Asn Ile
335 340 345

Lys Pro Lys Pro Lys Leu Gln Glu Cys Asn Leu Asp Pro Cys Pro
350 355 360

Ala Ser Asp Gly Tyr Lys Gln Ile Met Pro Tyr Asp Leu Tyr His
365 370 375

Pro Leu Pro Arg Trp Glu Ala Thr Pro Trp Thr Ala Cys Ser Ser
380 385 390

Ser Cys Gly Gly Ile Gln Ser Arg Ala Val Ser Cys Val Glu
395 400 405

Glu Asp Ile Gln Gly His Val Thr Ser Val Glu Glu Trp Lys Cys
410 415 420

Met Tyr Thr Pro Lys Met Pro Ile Ala Gln Pro Cys Asn Ile Phe
425 430 435

Asp Cys Pro Lys Trp Leu Ala Gln Glu Trp Ser Pro Cys Thr Val
440 445 450

Thr Cys Gly Gln Gly Leu Arg Tyr Arg Val Val Leu Cys Ile Asp
455 460 465

His Arg Gly Met His Thr Gly Gly Cys Ser Pro Lys Thr Lys Pro
470 475 480

His Ile Lys Glu Glu Cys Ile Val Pro Thr Pro Cys Tyr Lys Pro
485 490 495

Lys Glu Lys Leu Pro Val Glu Ala Lys Leu Pro Trp Phe Lys Gln
500 505 510

Ala Gln Glu Leu Glu Glu Gly Ala Ala Val Ser Glu Glu Pro Ser
515 520 525

<210> 302
<211> 1533
<212> DNA
<213> Homo sapiens

<400> 302
cggacgcgtg ggcggcggt gcggaaactcc cgtggagggg ccgggtggcc 50
ctcgggcctg acagatggca gtggccactg cggcggcagt actggccgct 100
ctgggcgggg cgctgtggct ggccggccgc cggttcgtgg ggcccagggt 150
ccagcggctg cgcagaggcg gggaccccg cctcatgcac gggaaagactg 200
tgctgatcac cggggcgaac agcggcctgg gccgcgccac ggccgcccag 250
ctactgcgcc tgggagcgcg ggtgatcatg ggctgccggg accgcgcgcg 300
cgccgaggag gcggcggtc agctccgcg cgagctccgc caggccgcgg 350
agtgcggccc agagcctggc gtcagcgggg tggcgagct catagtcgg 400
gagctggacc tcgcctcgct gcgcctcggt cgccgccttct gccagggaaat 450
gctccaggaa gagccttaggc tggatgtctt gatcaataac gcagggatct 500
tccagtgcctt ttacatgaag actgaagatg ggtttgagat gcagttcgga 550
gtgaaccatc tggggactt tctactcacc aatcttctcc ttggactcct 600
caaaagttca gctcccgca ggattgtggt agtttcttcc aaactttata 650
aatacggaga catcaatttt gatgacttga acagtgaaca aagctataat 700
aaaagctttt gttatagccg gagcaaactg gctaacattc tttttaccag 750

ggaactagcc cgccgcttag aaggcacaaa tgtcaccgtc aatgtgtgc 800
atcctggtat tgtacggaca aatctgggaa ggcacataca cattccactg 850
tttgtcaaac cactctcaa ttttgtgtca tgggctttt tcaaaaactcc 900
agtagaaggt gcccagactt ccatttattt ggcctttca cctgaggtag 950
aaggagtgtc aggaagatac tttgggatt gttaagagga agaactgttgc 1000
cccaaagcta tggatgaatc tggtcaaga aaactctggg atatcagtga 1050
agtgatggtt ggctgctaa aataggaaca aggagtaaaa gagctgttta 1100
taaaaactgca tatcatgttat atctgtgatc aggaatggtg tggattgaga 1150
acttgttact tgaagaaaaa gaattttgat attgaaatag cctgctaaga 1200
ggtacatgtg ggtattttgg agttactgaa aaattatttt tggataaga 1250
gaatttcagc aaagatgttt taaatatata tagtaagtat aatgaataat 1300
aagtacaatg aaaaatacaa ttatattgtaa attataac tggcaagca 1350
tggatgacat attaatattt gtcagaatata agtgactcaa agtgctatcg 1400
agaggaaaaa caagtatctt tgagttcat ggccaaagtg ttaacttagtt 1450
ttactacaat gtttgggttt tgggtggaaa ttatctgcct ggtgtgtc 1500
cacaagtctt acttggataa aatttactgg tac 1533

<210> 303

<211> 336

<212> PRT

<213> Homo sapiens

<400> 303

Met Ala Val Ala Thr Ala Ala Ala Val Leu Ala Ala Leu Gly Gly
1 5 10 15

Ala Leu Trp Leu Ala Ala Arg Arg Phe Val Gly Pro Arg Val Gln
20 25 30

Arg Leu Arg Arg Gly Gly Asp Pro Gly Leu Met His Gly Lys Thr
35 40 45

Val Leu Ile Thr Gly Ala Asn Ser Gly Leu Gly Arg Ala Thr Ala
50 55 60

Ala Glu Leu Leu Arg Leu Gly Ala Arg Val Ile Met Gly Cys Arg
65 70 75

Asp Arg Ala Arg Ala Glu Glu Ala Ala Gly Gln Leu Arg Arg Glu
80 85 90

Leu Arg Gln Ala Ala Glu Cys Gly Pro Glu Pro Gly Val Ser Gly

95	100	105
Val Gly Glu Leu Ile Val Arg Glu Leu Asp Leu Ala Ser Leu Arg		
110	115	120
Ser Val Arg Ala Phe Cys Gln Glu Met Leu Gln Glu Glu Pro Arg		
125	130	135
Leu Asp Val Leu Ile Asn Asn Ala Gly Ile Phe Gln Cys Pro Tyr		
140	145	150
Met Lys Thr Glu Asp Gly Phe Glu Met Gln Phe Gly Val Asn His		
155	160	165
Leu Gly His Phe Leu Leu Thr Asn Leu Leu Gly Leu Leu Lys		
170	175	180
Ser Ser Ala Pro Ser Arg Ile Val Val Val Ser Ser Lys Leu Tyr		
185	190	195
Lys Tyr Gly Asp Ile Asn Phe Asp Asp Leu Asn Ser Glu Gln Ser		
200	205	210
Tyr Asn Lys Ser Phe Cys Tyr Ser Arg Ser Lys Leu Ala Asn Ile		
215	220	225
Leu Phe Thr Arg Glu Leu Ala Arg Arg Leu Glu Gly Thr Asn Val		
230	235	240
Thr Val Asn Val Leu His Pro Gly Ile Val Arg Thr Asn Leu Gly		
245	250	255
Arg His Ile His Ile Pro Leu Leu Val Lys Pro Leu Phe Asn Leu		
260	265	270
Val Ser Trp Ala Phe Phe Lys Thr Pro Val Glu Gly Ala Gln Thr		
275	280	285
Ser Ile Tyr Leu Ala Ser Ser Pro Glu Val Glu Gly Val Ser Gly		
290	295	300
Arg Tyr Phe Gly Asp Cys Lys Glu Glu Glu Leu Leu Pro Lys Ala		
305	310	315
Met Asp Glu Ser Val Ala Arg Lys Leu Trp Asp Ile Ser Glu Val		
320	325	330
Met Val Gly Leu Leu Lys		
335		

<210> 304
<211> 521
<212> DNA
<213> Homo sapiens

<220>
<221> unsure

<222> 20, 34, 62, 87, 221, 229

<223> unknown base

<400> 304

ggggattgta aagaggaagn actgtgccca aagntatgga tgaatctgtt 50
gcaagaaaaat tntggatata cagtgaagt atggtngcc tgctaaaata 100
ggaacaagga gtaaaagacg tgtttataaa actgcatac agttatatct 150
gtgatcagga atggtgtgga ttgagaactt gttacttgaa gaaaaagaat 200
tttgatattt gaatagcctg ntaagaggna catgtggta tttggagtt 250
actgaaaaat tattttggg ataagagaat ttcagcaaag atgtttaaa 300
tatataatgt aagtataatg aataataagt acaatgaaaa atacaattat 350
attgtaaaat tataactggg caagcatgga tgacatatta atatttgtca 400
gaattaatgt actcaaagtg ctatcgagag gttttcaag tatcttgag 450
tttcatggcc aaagtgttaa ctagtttac tacaatgtt ggtgttg 500
tgaaaattat ctgcctggct t 521

<210> 305

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 305

ccagggaaatg ctccaggaag agcc 24

<210> 306

<211> 26

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 306

gcccatgaca ccaaattgaa gagtgg 26

<210> 307

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 307

aacgcaggg a tcttccagt g cccttacat g aagactgaag atggg 45
<210> 308
<211> 1523
<212> DNA
<213> Homo sapiens

<400> 308
gagaggac ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 50
cgagccccag cccttccta acccaacc a acctagccc gtcggccg 100
ccagcgcctg tccctgtcac ggacccca gttaccatgc atcctgccgt 150
cttcctatcc ttacccgacc tcagatgctc cttctgctc ctggtaactt 200
gggttttac tcctgtaaca actgaaataa caagtctgc tacagagaat 250
atagatgaaa tttaaacaa tgctgatgtt gcttagtaa atttttatgc 300
tgactggtgt cgtttcagtc agatgttgc tccaattttt gaggaagctt 350
ccgatgtcat taaggaagaa ttccaaatg aaaatcaagt agtgttgcc 400
agagttgatt gtgatcagca ctctgacata gccagagat acaggataag 450
caaataccca accctcaa at tttcgtaa tggatgatg atgaagagag 500
aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggcaa 550
caaaaaatg accccattca agaaattcg gacttagcag aaatcaccac 600
tcttgatcgc agcaaaagaa atatcattgg atatttgag caaaaggact 650
cgacacta tagatttt gaacgagtag cgaatattt gcatgatgac 700
tgtgccttc tttctgcatt tggatgatg tcaaaaccgg aaagatata 750
tggcacaac ataatctaca aaccaccagg gcattctgct ccggatatgg 800
tgtacttggg agctatgaca aatttgatg tgacttacaa ttggattcaa 850
gataaatgtt ttccttgc tggatgatg acatttggaa atggagaggg 900
attgacagaa gaaggactgc ctttctcat actcttcac atgaaagaag 950
atacagaaag tttagaaata ttccagaatg aagtagctg gcaattaata 1000
agtaaaaaag gtacaataaa cttttacat ggcgattgtg acaaatttag 1050
acatcctctt ctgcacatac agaaaactcc agcagattgt cctgtaatcg 1100
ctattgacag cttaggcat atgtatgtt ttggagactt caaagatgta 1150
ttaattcctg gaaaactcaa gcaattcgta ttgacttac attctggaaa 1200
actgcacaga gaattccatc atggacctga cccaaactgat acagccccag 1250

gagagcaagc ccaagatgt a gcaaggagtc cacctgagag ctccttccag 1300
aaactagcac ccagtgaata taggtatact ctattgaggg atcgagatga 1350
gctttaaaaa cttgaaaaac agtttgtaag ccttcaaca gcagcatcaa 1400
cctacgtggt ggaaatagta aacctatatt ttcataattc tatgtgtatt 1450
tttattttga ataaacagaa agaaatttaa aaaaaaaaaa aaaaaaaaaa 1500
aaaaaaaaaa aaaaaaaaaa aaa 1523

<210> 309

<211> 406

<212> PRT

<213> Homo sapiens

<400> 309

Met	His	Pro	Ala	Val	Phe	Leu	Ser	Leu	Pro	Asp	Leu	Arg	Cys	Ser
1				5				10					15	
Leu	Leu	Leu	Leu	Val	Thr	Trp	Val	Phe	Thr	Pro	Val	Thr	Thr	Glu
				20				25					30	
Ile	Thr	Ser	Leu	Ala	Thr	Glu	Asn	Ile	Asp	Glu	Ile	Leu	Asn	Asn
				35				40					45	
Ala	Asp	Val	Ala	Leu	Val	Asn	Phe	Tyr	Ala	Asp	Trp	Cys	Arg	Phe
				50				55					60	
Ser	Gln	Met	Leu	His	Pro	Ile	Phe	Glu	Glu	Ala	Ser	Asp	Val	Ile
				65				70					75	
Lys	Glu	Glu	Phe	Pro	Asn	Glu	Asn	Gln	Val	Val	Phe	Ala	Arg	Val
				80				85					90	
Asp	Cys	Asp	Gln	His	Ser	Asp	Ile	Ala	Gln	Arg	Tyr	Arg	Ile	Ser
				95				100					105	
Lys	Tyr	Pro	Thr	Leu	Lys	Leu	Phe	Arg	Asn	Gly	Met	Met	Met	Lys
				110				115					120	
Arg	Glu	Tyr	Arg	Gly	Gln	Arg	Ser	Val	Lys	Ala	Leu	Ala	Asp	Tyr
				125				130					135	
Ile	Arg	Gln	Gln	Lys	Ser	Asp	Pro	Ile	Gln	Glu	Ile	Arg	Asp	Leu
				140				145					150	
Ala	Glu	Ile	Thr	Thr	Leu	Asp	Arg	Ser	Lys	Arg	Asn	Ile	Ile	Gly
				155				160					165	
Tyr	Phe	Glu	Gln	Lys	Asp	Ser	Asp	Asn	Tyr	Arg	Val	Phe	Glu	Arg
				170				175					180	
Val	Ala	Asn	Ile	Leu	His	Asp	Asp	Cys	Ala	Phe	Leu	Ser	Ala	Phe
				185				190					195	

Gly Asp Val Ser Lys Pro Glu Arg Tyr Ser Gly Asp Asn Ile Ile
200 205 210

Tyr Lys Pro Pro Gly His Ser Ala Pro Asp Met Val Tyr Leu Gly
215 220 225

Ala Met Thr Asn Phe Asp Val Thr Tyr Asn Trp Ile Gln Asp Lys
230 235 240

Cys Val Pro Leu Val Arg Glu Ile Thr Phe Glu Asn Gly Glu Glu
245 250 255

Leu Thr Glu Glu Gly Leu Pro Phe Leu Ile Leu Phe His Met Lys
260 265 270

Glu Asp Thr Glu Ser Leu Glu Ile Phe Gln Asn Glu Val Ala Arg
275 280 285

Gln Leu Ile Ser Glu Lys Gly Thr Ile Asn Phe Leu His Ala Asp
290 295 300

Cys Asp Lys Phe Arg His Pro Leu Leu His Ile Gln Lys Thr Pro
305 310 315

Ala Asp Cys Pro Val Ile Ala Ile Asp Ser Phe Arg His Met Tyr
320 325 330

Val Phe Gly Asp Phe Lys Asp Val Leu Ile Pro Gly Lys Leu Lys
335 340 345

Gln Phe Val Phe Asp Leu His Ser Gly Lys Leu His Arg Glu Phe
350 355 360

His His Gly Pro Asp Pro Thr Asp Thr Ala Pro Gly Glu Gln Ala
365 370 375

Gln Asp Val Ala Ser Ser Pro Pro Glu Ser Ser Phe Gln Lys Leu
380 385 390

Ala Pro Ser Glu Tyr Arg Tyr Thr Leu Leu Arg Asp Arg Asp Glu
395 400 405

Leu

<210> 310
<211> 182
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 36, 48
<223> unknown base

<400> 310

attaaggaag aatttccaaa tgaaaatcaa gtagtnttg ccagagtnga 50
ttgtgatcg cactctgaca tagcccagag atacaggata agcaaatacc 100
caaccctcaa attgttcgt aatggatga tcatgaagag agaatacagg 150
ggtcagcgat cagtgaaagc attggcagat ta 182

<210> 311
<211> 598
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 38, 59, 140, 169, 174, 183, 282-283, 294-295, 319, 396
<223> unknown base

<400> 311
agaggcctct ctgaaagttg tcccgggtgt tcgcgcngg agcccggtc 50
gagaggacna ggtgccgctg cctggagaat cctccgctgc cgtcggctcc 100
cgagccccag cccttccta acccaaccca acctagccn gtcccagccg 150
ccagcgccctg tccctgtcnc ggancggcgc gtnaccatgc atcctggcgt 200
cttcctatcc ttacccgacc tcagatgctc cttctgctc ctggtaactt 250
gggtttttac tcctgtaaca actgaaataa cnngtcttga tacnnagaat 300
atagatgaaa ttttaaacna tgctgatgtg gctttagtca attttatgc 350
tgactggtgt cgtttcagtc agatgtggca tccaattttt gaggangtt 400
ccgatgtcat taaggaagaa ttccaaatg aaaatcaagt agtggggcc 450
agagttgatt gtgatcagca ctctgacata gcccagagat acaggataag 500
caaataaccca accctcaaat tgttcgtaa tggatgatg atgaagagag 550
aatacagggg tcagcgatca gtgaaagcat tggcagatta catcaggc 598

<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 312
tgagaggcct ctctgaaagt tg 22

<210> 313
<211> 19
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 313
gtcagcgatc agtcaaagc 19

<210> 314

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 314
ccagaatgaa gtagtcggc 20

<210> 315

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 315
ccgactcaaa atgcattgtc 20

<210> 316

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 316
catttggcag gaattgtcc 19

<210> 317

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 317
ggtgctatacg gccaaagg 18

<210> 318

<211> 24

<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 318
ctgttatctc gggctatgtc agag 24

<210> 319
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 319
ctacatataa tggcacatgt cagcc 25

<210> 320
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 320
cgctttccta tccttacccg acctcagatg ctcccttctg ctcttg 46

<210> 321
<211> 1333
<212> DNA
<213> Homo sapiens

<400> 321
gcccacgcgt ccgatggcgt tcacgttcgc ggccttctgc tacatgctgg 50
cgctgctgct cactgccgca ctcatcttct tcgcatttg gcacattata 100
gcatttgatg agctgaagac tgattacaag aatccatag accagtgtaa 150
taccctgaat ccccttgtac tcccagagta cctcatccac gctttcttct 200
gtgtcatgtt tctttgtgca gcagagtggc ttacactggg tctcaatatg 250
ccccctttgg catatcatat ttggaggat atgagtagac cagtgtatg 300
tggcccagga ctctatgacc ctacaaccat catgaatgca gatattctag 350
catattgtca gaaggaagga tggtgcaa at tagctttta tcttctagca 400
ttttttact acctatatgg catgatctat gtttggta gctcttagaa 450
caacacacag aagaatttgtt ccagttaagt gcatgcaaaa agccacaaaa 500
tgaagggatt ctatccagca agatcctgtc caagagtagc ctgtggaatc 550
tgatcagtta cttaaaaaaaaa tgactcctta ttttttaat gtttccacat 600

tttgcttgt ggaaagactg tttcatatg ttatactcg ataaagattt 650
taaatggtat tacgtataaa ttaatataaa atgattacct ctgggttgta 700
caggttgaa cttgcacttc ttaaggaaca gccataatcc tctgaatgat 750
gcattaatta ctgactgtcc tagtacattg gaagctttg tttataggaa 800
ctttagggc tcatttttgt ttcattgaaa cagtatctaa ttataaatta 850
gctgtagata tcaggtgctt ctgatgaagt gaaaatgtat atctgactag 900
tggaaactt catgggttcc ctcatctgatc atgtcgatga ttatatatgg 950
atacatttac aaaaataaaaa agcgggaatt ttcccttcgc ttgaatatta 1000
tccctgtata ttgcataat gagagatttc ccataattcc atcagagtaa 1050
taaatatact tgcttaatt cttaagcata agtaaacatg atataaaaaat 1100
atatgctgaa ttacttgta agaatgcatt taaagctatt ttaaatgtgt 1150
ttttatgtt aagacattac ttattaagaa attggttatt atgcttactg 1200
ttctaattctg gtggtaaagg tattcttaag aatttgcagg tactacagat 1250
tttcaaaact gaatgagaga aaattgtata accatcctgc tgttccttta 1300
gtgcaataca ataaaaactct gaaattaaga ctc 1333

<210> 322

<211> 144

<212> PRT

<213> Homo sapiens

<400> 322

Met Ala Phe Thr Phe Ala Ala Phe Cys Tyr Met Leu Ala Leu Leu
1 5 10 15

Leu Thr Ala Ala Leu Ile Phe Phe Ala Ile Trp His Ile Ile Ala
20 25 30

Phe Asp Glu Leu Lys Thr Asp Tyr Lys Asn Pro Ile Asp Gln Cys
35 40 45

Asn Thr Leu Asn Pro Leu Val Leu Pro Glu Tyr Leu Ile His Ala
50 55 60

Phe Phe Cys Val Met Phe Leu Cys Ala Ala Glu Trp Leu Thr Leu
65 70 75

Gly Leu Asn Met Pro Leu Leu Ala Tyr His Ile Trp Arg Tyr Met
80 85 90

Ser Arg Pro Val Met Ser Gly Pro Gly Leu Tyr Asp Pro Thr Thr
95 100 105

Ile Met Asn Ala Asp Ile Leu Ala Tyr Cys Gln Lys Glu Gly Trp
110 115 120

Cys Lys Leu Ala Phe Tyr Leu Leu Ala Phe Phe Tyr Tyr Leu Tyr
125 130 135

Gly Met Ile Tyr Val Leu Val Ser Ser
140

<210> 323
<211> 477
<212> DNA
<213> Homo sapiens

<400> 323
attatagcat ttgatgagct gaagactgat tacaagatcc tatagaccag 50
tgtaataccc tgaatcccct tgtactccca gagtacctca tccacgcttt 100
cttctgtgtc atgttcttt gtgcagcaga gtggcttaca ctgggtctca 150
atatccccct cttggcatat catattgga ggtatatgag tagaccagt 200
atgagtggcc caggactcta tgaccctaca accatcatga atgcagat 250
tctagcatat tgtcagaagg aaggatggtg caaatttagct ttttatcttc 300
tagcattttt ttactaccta tatggcatga tctatgtttt ggtgagctct 350
tagaacaaca cacagaagaa ttggtccagt taagtgcattg caaaaagcca 400
ccaaatgaag ggattctatc cagcaagatc ctgtccaaga gtagcctgtg 450
gaatctgatc agttacttta aaaaatg 477

<210> 324
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 324
tgtaaaaacgca cggccagttt aatagacctg caattattaat tct 43

<210> 325
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 325
caggaaacagat ctagaccac ctgcacacccat gcaaattttt t 41

<210> 326
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 326
gtgcagcaga gtggcttaca 20

<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 327
actggaccaa ttcttctgtg 20

<210> 328
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 328
gatattctag catattgtca gaaggaagga tggtgcaaat tagct 45

<210> 329
<211> 1174
<212> DNA
<213> Homo sapiens

<400> 329
cggacgcgtg gggaaaccc ttccgagaaa acagcaacaa gctgagctgc 50
tgtgacagag gggacaaga tggcgccgcgaa agggggagc ctctgggtga 100
ggacccaact ggggctcccg ccgctgctgc tgctgaccat ggccttggcc 150
ggaggttcgg ggaccgcttc ggctgaagca tttgactcgg tcttgggtga 200
tacggcgtct tgccaccggg cctgtcagtt gacctacccc ttgcacacct 250
accctaagga agaggagttg tacgcattgc agagaggtt caggctgttt 300
tcaatttgtc agtttggaa tgatgaaatt gacttaaatc gaactaaatt 350
ggaatgtgaa tctgcattgtc cagaagcata ttcccaatct gatgagcaat 400
atgcttgcca tcttggttgc cagaatcagc tgccattcgc tgaactgaga 450

caagaacaac ttatgtccct gatgccaaaa atgcacctac tcttcctct 500
aactctggtg aggtcattct ggagtgacat gatggactcc gcacagagct 550
tcataacctc ttcatggact ttttatcttc aagccgatga cgaaaaata 600
gttatattcc agtctaagcc agaaatccag tacgcaccac atttggagca 650
ggagcctaca aattttagag aatcatctct aagcaaaatg tcctatctgc 700
aaatgagaaa ttcacaagcg cacaggaatt ttcttgaaga tggagaaagt 750
gatggcttt taagatgcct ctctcttaac tctgggtgga ttttaactac 800
aactcttgc tcctcggtgta tggatttgct ttggatttgt tgtgcaactg 850
ttgctacagc tgtggaggcag tatgttccct ctgagaagct gagtatctat 900
ggtgacttgg agtttatgaa tgaacaaaag ctaaacagat atccagcttc 950
ttctcttgc gttgttagat ctaaaactga agatcatgaa gaagcagggc 1000
ctctacctac aaaagtgaat cttgctcatt ctgaaattta agcattttc 1050
ttttaaaaga caagtgtaat agacatctaa aattccactc ctcatalogc 1100
ttttaaaatg gtttcattgg atataggcct taagaaatca ctataaaatg 1150
caaataaaagt tactcaaatac tgtg 1174

<210> 330

<211> 323

<212> PRT

<213> Homo sapiens

<400> 330

Met	Ala	Ala	Pro	Lys	Gly	Ser	Leu	Trp	Val	Arg	Thr	Gln	Leu	Gly
1				5					10				15	

Leu	Pro	Pro	Leu	Leu	Leu	Leu	Thr	Met	Ala	Leu	Ala	Gly	Gly	Ser
							20			25			30	

Gly	Thr	Ala	Ser	Ala	Glu	Ala	Phe	Asp	Ser	Val	Leu	Gly	Asp	Thr
					35				40				45	

Ala	Ser	Cys	His	Arg	Ala	Cys	Gln	Leu	Thr	Tyr	Pro	Leu	His	Thr
				50				55				60		

Tyr	Pro	Lys	Glu	Glu	Glu	Leu	Tyr	Ala	Cys	Gln	Arg	Gly	Cys	Arg
					65				70			75		

Leu	Phe	Ser	Ile	Cys	Gln	Phe	Val	Asp	Asp	Gly	Ile	Asp	Leu	Asn
					80			85				90		

Arg	Thr	*Lys	Leu	Glu	Cys	Glu	Ser	Ala	Cys	Thr	Glu	Ala	Tyr	Ser
					95				100			105		

Gln Ser Asp Glu Gln Tyr Ala Cys His Leu Gly Cys Gln Asn Gln
110 115 120

Leu Pro Phe Ala Glu Leu Arg Gln Glu Gln Leu Met Ser Leu Met
125 130 135

Pro Lys Met His Leu Leu Phe Pro Leu Thr Leu Val Arg Ser Phe
140 145 150

Trp Ser Asp Met Met Asp Ser Ala Gln Ser Phe Ile Thr Ser Ser
155 160 165

Trp Thr Phe Tyr Leu Gln Ala Asp Asp Gly Lys Ile Val Ile Phe
170 175 180

Gln Ser Lys Pro Glu Ile Gln Tyr Ala Pro His Leu Glu Gln Glu
185 190 195

Pro Thr Asn Leu Arg Glu Ser Ser Leu Ser Lys Met Ser Tyr Leu
200 205 210

Gln Met Arg Asn Ser Gln Ala His Arg Asn Phe Leu Glu Asp Gly
215 220 225

Glu Ser Asp Gly Phe Leu Arg Cys Leu Ser Leu Asn Ser Gly Trp
230 235 240

Ile Leu Thr Thr Leu Val Leu Ser Val Met Val Leu Leu Trp
245 250 255

Ile Cys Cys Ala Thr Val Ala Thr Ala Val Glu Gln Tyr Val Pro
260 265 270

Ser Glu Lys Leu Ser Ile Tyr Gly Asp Leu Glu Phe Met Asn Glu
275 280 285

Gln Lys Leu Asn Arg Tyr Pro Ala Ser Ser Leu Val Val Val Arg
290 295 300

Ser Lys Thr Glu Asp His Glu Glu Ala Gly Pro Leu Pro Thr Lys
305 310 315

Val Asn Leu Ala His Ser Glu Ile
320

<210> 331
<211> 350
<212> DNA
<213> Homo sapiens

<400> 331
ttgggtgata cggcgtcttg ccaccgggcc tgtcagttga cctacccctt 50
gcacacctac cctaaggaag aggagttgta cgcatgtcag agaggttgca 100
ggctgttttc aatttgtcag tttgtggatg atgaaattga cttaaatcga 150

actaaattgg aatgtgaatc tgcatagtaca gaagcatatt cccaatctga 200
tgagcaatat gcttgcacatc ttggttgcca gaatcagctg ccattcgctg 250
aactgagaca agaacaactt atgtccctga tgccaaaaat gcacctactc 300
tttcctctaa ctctggtgag gtcattctgg agtgacatga tggactccgc 350
<210> 332
<211> 562
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 47
<223> unknown base

<400> 332
cacactggcc ggatctttta gagtccttg accttgacca agggtcngga 50
aacacgcaac aagctgagct gctgtgacag agggaaacaag atggcggcgc 100
cgaagggagc ctttgggtga ggacccaact ggggctcccgg ccgctgctgc 150
tgctgaccat ggccttggcc ggagggttcgg ggaccgcttc ggctgaagca 200
tttgactcgg tcttgggtga tacggcgctc tgccaccggg cctgtcagtt 250
gacctacccc ttgcacacacct accctaagga agaggagttg tacgcatgtc 300
agagaggttg caggctgttt tcaatttgc agtttgtgga tgatggaatt 350
gacttaaattc gaactaaattt ggaatgtgaa tctgcattgtc cagaagcata 400
ttcccaatct gatgagcaat atgcttgcga tcttgggtgc cagaatcagc 450
tgccattcgc tgaactgaga caagaacaac ttatgtccct gatgccaaaa 500
atgcacccatc tctttcctct aactctggtg aggtcattct ggagtgacat 550
gatggactcc gc 562

<210> 333
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 333
acaagctgag ctgctgtgac ag 22

<210> 334
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 334
tgattctggc aaccaagatg gc 22

<210> 335
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 335
atggccttgg ccggagggttc ggggaccgct tcggctgaag 40

<210> 336
<211> 1885
<212> DNA
<213> Homo sapiens

<400> 336
gcgagggtggc gatcgctgag aggcaggagg gccgaggcgg gcctgggagg 50
cggcccgag gtggggcgcc gctggggccg gcccgcacgg gcttcatctg 100
agggcgcacg gcccgcgacc gagcgtgcgg actggcctcc caagcgtgg 150
gcgacaagct gccggagctg caatggccg cggctggga ttcttgtttg 200
gcctcctggg cgccgtgtgg ctgctcagct cgggccacgg agaggagcag 250
ccccccggaga cagcggcaca gaggtgcttc tgccaggtta gtggttactt 300
ggatgattgt acctgtgatg ttgaaaccat ttagatgattt aataactaca 350
ggctttcccc aagactacaa aaacttcttg aaagtgacta cttaggtat 400
tacaaggtaa acctgaagag gccgtgtcct ttcttggatg acatcagcca 450
gtgttggaaa agggactgtg ctgtcaaacc atgtcaatct gatgaaggttc 500
ctgatggaat taaatctgcg agctacaagt attctgaaga agccaataat 550
ctcattgaag aatgtgaaca agctgaacga cttggagcag tggatgaatc 600
tctgagttag gaaacacaga aggctttct tcagtggacc aagcatgatg 650
attcttcaga taacttctgt gaagctgatg acattcagtc ccctgaagct 700
gaatatgttag atttgcatttct taatcctgag cgctacactg gttacaaggg 750
accagatgct tggaaaatat ggaatgtcat ctacgaagaa aactgtttta 800

agccacagac aattaaaaga cctttaaatc ctggcggtc tggcaaggg 850
acaagtgaag agaacacttt ttacagttgg ctagaaggc tctgtgtaga 900
aaaaagagca ttctacagac ttatatctgg cctacatgca agcattaatg 950
tgcatggag tgcaagatat ctttacaag agacctgggtt agaaaagaaa 1000
tggggacaca acattacaga atttcaacag cgatttgatg gaattttgac 1050
tgaaggagaa ggtccaagaa ggcttaagaa cttgtatccc ctctacttaa 1100
tagaactaag ggcttatcc aaagtgttac cattttcga ggcggccagat 1150
tttcaactct ttactggaaa taaaatttag gatgaggaaa acaaaatgtt 1200
acttctggaa atacttcatg aaatcaagtc atttcctttg cattttgatg 1250
agaattcatt ttttgctggg gataaaaaag aagcacacaa actaaaggag 1300
gactttcgac tgcatggat aaatatttca agaattatgg attgtgttgg 1350
ttgtttaaa tgtcgctgt gggaaagct tcagacttag ggtttggca 1400
ctgctctgaa gatcttattt tctgagaaat tgatagcaa tatgccagaa 1450
agtggaccta gttatgaatt ccatctaacc agacaagaaa tagtattcatt 1500
attcaacgca tttggaagaa tttctacaag tgtgaaagaa ttagaaaaact 1550
tcaggaactt gttacagaat attcattaaa gaaaacaagc tgatatgtgc 1600
ctgtttctgg acaatggagg cgaaagagtg gaatttcatt caaaggcata 1650
atagcaatga cagtcctaaag ccaaacattt tatataaaatg tgctttgtt 1700
aaggagaatt atattgtttt aagtaaacac attttaaaa attgtgtttaa 1750
gtctatgtat aatactactg tgagtaaaag taatacttta ataatgtggt 1800
acaaatttta aagtttaata ttgaataaaa ggaggattat caaattaaaa 1850
aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaa 1885

<210> 337
<211> 468
<212> PRT
<213> Homo sapiens

<400> 337
Met Gly Arg Gly Trp Gly Phe Leu Phe Gly Leu Leu Gly Ala Val
1 5 10 15
Trp Leu Leu Ser Ser Gly His Gly Glu Glu Gln Pro Pro Glu Thr
20 25 30

Ala Ala Gln Arg Cys Phe Cys Gln Val Ser Gly Tyr Leu Asp Asp
35 40 45

Cys Thr Cys Asp Val Glu Thr Ile Asp Arg Phe Asn Asn Tyr Arg
50 55 60

Leu Phe Pro Arg Leu Gln Lys Leu Leu Glu Ser Asp Tyr Phe Arg
65 70 75

Tyr Tyr Lys Val Asn Leu Lys Arg Pro Cys Pro Phe Trp Asn Asp
80 85 90

Ile Ser Gln Cys Gly Arg Arg Asp Cys Ala Val Lys Pro Cys Gln
95 100 105

Ser Asp Glu Val Pro Asp Gly Ile Lys Ser Ala Ser Tyr Lys Tyr
110 115 120

Ser Glu Glu Ala Asn Asn Leu Ile Glu Glu Cys Glu Gln Ala Glu
125 130 135

Arg Leu Gly Ala Val Asp Glu Ser Leu Ser Glu Glu Thr Gln Lys
140 145 150

Ala Val Leu Gln Trp Thr Lys His Asp Asp Ser Ser Asp Asn Phe
155 160 165

Cys Glu Ala Asp Asp Ile Gln Ser Pro Glu Ala Glu Tyr Val Asp
170 175 180

Leu Leu Leu Asn Pro Glu Arg Tyr Thr Gly Tyr Lys Gly Pro Asp
185 190 195

Ala Trp Lys Ile Trp Asn Val Ile Tyr Glu Glu Asn Cys Phe Lys
200 205 210

Pro Gln Thr Ile Lys Arg Pro Leu Asn Pro Leu Ala Ser Gly Gln
215 220 225

Gly Thr Ser Glu Glu Asn Thr Phe Tyr Ser Trp Leu Glu Gly Leu
230 235 240

Cys Val Glu Lys Arg Ala Phe Tyr Arg Leu Ile Ser Gly Leu His
245 250 255

Ala Ser Ile Asn Val His Leu Ser Ala Arg Tyr Leu Leu Gln Glu
260 265 270

Thr Trp Leu Glu Lys Lys Trp Gly His Asn Ile Thr Glu Phe Gln
275 280 285

Gln Arg Phe Asp Gly Ile Leu Thr Glu Gly Glu Gly Pro Arg Arg
290 295 300

Leu Lys Asn Leu Tyr Phe Leu Tyr Leu Ile Glu Leu Arg Ala Leu
305 310 315

Ser Lys Val Leu Pro Phe Phe Glu Arg Pro Asp Phe Gln Leu Phe
320 325 330

Thr Gly Asn Lys Ile Gln Asp Glu Glu Asn Lys Met Leu Leu Leu
335 340 345

Glu Ile Leu His Glu Ile Lys Ser Phe Pro Leu His Phe Asp Glu
350 355 360

Asn Ser Phe Phe Ala Gly Asp Lys Lys Glu Ala His Lys Leu Lys
365 370 375

Glu Asp Phe Arg Leu His Phe Arg Asn Ile Ser Arg Ile Met Asp
380 385 390

Cys Val Gly Cys Phe Lys Cys Arg Leu Trp Gly Lys Leu Gln Thr
395 400 405

Gln Gly Leu Gly Thr Ala Leu Lys Ile Leu Phe Ser Glu Lys Leu
410 415 420

Ile Ala Asn Met Pro Glu Ser Gly Pro Ser Tyr Glu Phe His Leu
425 430 435

Thr Arg Gln Glu Ile Val Ser Leu Phe Asn Ala Phe Gly Arg Ile
440 445 450

Ser Thr Ser Val Lys Glu Leu Glu Asn Phe Arg Asn Leu Leu Gln
455 460 465

Asn Ile His

<210> 338

<211> 507

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 101, 263, 376, 397, 426

<223> unknown base

<400> 338

gctggaaata tggatgtcat ctacgagaaa ctgttttaag ccacagacaa 50

ttaaaagacc tttaaatcct ttggcttctg gtcaaggac aagtgaagag 100

nacactttt acagttggct agaaggtctc tgtgttagaaa aaagagcatt 150

ctacagactt atatctggcc tacatgcaag cattaatgtc catttgagtg 200

caagatatct tttacaagag acctggtagg aaaagaaatg gggcacacaac 250

attacagaat tttaacagcg atttgatgga atttgactg aaggagaagg 300

tccaagaagg cttaagaact tgtatttct ctacttaata gaactaaggg 350

ctttatccaa agtgttacca ttcttngagc gcccagattt tcaactnttt 400
actggaaata aaattcagga tgaggnaaac aaaatgttac ttttgaaat 450
acttcatgaa atcaagtcat ttccttgca ttttgatgag aattcatttt 500
tttgctg 507

<210> 339
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 339
aagctgccgg agctgcaatg 20

<210> 340
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 340
ttgcttctta atcctgagcg c 21

<210> 341
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 341
aaaggaggac ttgcactgc 20

<210> 342
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 342
agagattcat ccactgctcc aagtgc 26

<210> 343
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 343
tgtccagaaa caggcacata tcagc 25

<210> 344
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 344
agacagcggc acagaggtgc ttctgccagg ttagtggta cttggatgat 50

<210> 345
<211> 1486
<212> DNA
<213> Homo sapiens

<400> 345
cgacgcgtg ggcggacgcg tggcggaacg cgtgggttgg gagggggcag 50
gatgggaggaa aagtgaaga aaacagaaaa ggagagggac agaggccaga 100
ggacttctca tactggacag aaaccgatca ggcatttgcac tccccttcgt 150
cactcacctg ttcttgcccc tgggtttcct gacaggtctc tgctccccct 200
ttaacctgga tgaacatcac ccacgcctat tcccaggggcc accagaagct 250
gaatttggat acagtgtctt acaacatgtt ggggtggac agcgatggat 300
gctggggc gccccctggg atgggccttc aggccaccgg aggggggacg 350
tttatcgctg ccctgttaggg gggccaca atgcggcatg tgccaagggc 400
cacttaggtg actaccaact gggaaattca tctcatcctg ctgtgaatat 450
gcacctgggg atgtctctgt tagagacaga tggtgatggg ggattcatgg 500
tgagctaagg agagggtggt ggcagtgtct ctgtggatggc ataaaagaaa 550
aaagagaagt gtggtaaggg aaaatggtct gtgtggaggg gtcaaggagt 600
taaaaaaccct agaaagcaa aggttaggtaa tgtcaggag tagtcttcatt 650
gcctccttca actgggagca tggtctgagg gtgcctccc aagcctggga 700
gtaactatccccc cccatccc caggcctgtg cccctctctg gtctcgtgt 750
tgtggcagct ctgtcttcag ttctggata tgtgcccgtg tggatgcttc 800
atcccagcct caggaaagcc tggcacccac tgcccaacgt gagccagagg 850

aaggctgagt acttggttcc cagaaggaga tactgggtgg gaaaaagatg 900
ggccaagcg gtatgatgcc tggcaaaggc cctgcattgc tatcctcatt 950
gctacctaattgtcttgc aagctccatg tttcctaaca gattcagact 1000
cctggccagg tgtggtggcc cacacctgta attctagcac ttgggaggc 1050
caaggtggc agatcacttg aggtcaggag ttcaagacca gcctggccaa 1100
catggtaaaa ctccatctct actaaaaaaaaaaaaataca aaaatttagct 1150
gggtgcgcta gtgcattgcct gtaatctcat ctactcgga ggctaaagaca 1200
ggagactctc acttcaaccc aggaggtgga ggttgcggtg agccaagatt 1250
gtgcctctgc actctagcgt gggtgacaga gtaagcgaga ctccatctca 1300
aaaataataa taataataat tcagactcct tattcaggagt ccatgatctg 1350
gcctggcaca gtaactcatg cctgtaatcc caacattttggaggccaac 1400
gcaggaggat tgcttgaggt ctggagggtt gagaccagcc tggcaacat 1450
agaaagaccc catctctaaa taaatgtttt aaaaat 1486

<210> 346

<211> 124

<212> PRT

<213> Homo sapiens

<400> 346

Met	Glu	Leu	Pro	Phe	Val	Thr	His	Leu	Phe	Leu	Pro	Leu	Val	Phe	
1				5					10					15	
Leu	Thr	Gly	Leu	Cys	Ser	Pro	Phe	Asn	Leu	Asp	Glu	His	His	Pro	
									20					30	
Arg	Leu	Phe	Pro	Gly	Pro	Pro	Glu	Ala	Glu	Phe	Gly	Tyr	Ser	Val	
									35					45	
Leu	Gln	His	Val	Gly	Gly	Gly	Gln	Arg	Trp	Met	Leu	Val	Gly	Ala	
									50					60	
Pro	Trp	Asp	Gly	Pro	Ser	Gly	Asp	Arg	Arg	Gly	Asp	Val	Tyr	Arg	
									65					75	
Cys	Pro	Val	Gly	Gly	Ala	His	Asn	Ala	Pro	Cys	Ala	Lys	Gly	His	
									80					90	
Leu	Gly	Asp	Tyr	Gln	Leu	Gly	Asn	Ser	Ser	His	Pro	Ala	Val	Asn	
									95					105	
Met	His	Leu	Gly	Met	Ser	Leu	Leu	Glu	Thr	Asp	Gly	Asp	Gly	Gly	
									110					120	
									115						

Phe Met Val Ser

<210> 347
<211> 509
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 22
<223> unknown base

<400> 347
cacagttccc caccatcaact cntcccattc cttccaactt tatttttagc 50
ttgccattgg gagggggcag gatgggaggaa aaagtgaaga aaacagaaaa 100
ggagagggac agaggccaga ggacttctca tactggacag aaaccgatca 150
ggcatggaac tccccttcggt cactcacctg ttcttgcccc tggtgttcct 200
gacaggtctc tgctccccct ttaacctgga tgaacatcac ccacgcctat 250
tcccaggggcc accagaagct gaatttggat acagtgtctt acaacatgtt 300
gggggtggac agcgatggat gctggtggc gccccctggg atgggccttc 350
aggcgaccgg aggggggacg tttatcgctg ccctgttaggg ggggcccaca 400
atgccccatg tgccaaagggc cacttaggtg actaccaact gggaaattca 450
tctcatcctg ctgtgaatat gcacctgggg atgtctctgt tagagacaga 500
tggtgatgg 509

<210> 348
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 348
aggcacagag gccagaggac ttc 23

<210> 349
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 349
caggtgcata ttcacagcag gatg 24

<210> 350
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 350
ggaaactcccc ttctgtcactc acctgttctt gcccctggtg ttcct 45

<210> 351
<211> 2056
<212> DNA
<213> Homo sapiens

<400> 351
aaagttacat tttctctgga actctccctag gccactccct gctgatgcaa 50
catctgggtt tgggcagaaa ggagggtgct tcggagcccg ccctttctga 100
gcttcctggg ccggctctag aacaatttag gcttcgctgc gactcagacc 150
tcagctccaa catatgcatt ctgaagaaaatggctgaga tggacagaat 200
gctttatTTT ggaaagaaac aatgttctag gtcaaactga gtctaccaaa 250
tgcagacttt cacaatggtt cttagaagaaa tctggacaag tctttcatg 300
tggTTTTCT acgcattgtat tccatgtttg ctcacagatg aagtggccat 350
tctgcctgcc cctcagaacc tctctgtact ctcaaccaac atgaagcatc 400
tcttgatgtg gagccagtg atcgcgcctg gagaaacagt gtactattct 450
gtcgaataacc agggggagta cgagagcctg tacacgagcc acatctggat 500
ccccagcagc tggtgctcac tcactgaagg tcctgagtgt gatgtcactg 550
atgacatcac ggccactgtg ccatacaacc ttcgtgtcag ggccacattg 600
ggctcacaga cctcagcctg gagcatcctg aagcatccct ttaatagaaa 650
ctcaaccatc cttacccgac ctgggatgga gatcaccaaa gatggcttcc 700
acctggttat tgagctggag gacctggggc cccagttga gttccttgt 750
gcctactgga ggagggagcc tggtgccgag gaacatgtca aaatggtgag 800
gagtgggggt attccagtgc acctagaaac catggagcca ggggctgcat 850
actgtgtgaa ggcccagaca ttcgtgaagg ccattggag gtacagcgcc 900
ttcagccaga cagaatgtgt ggaggtgcaa ggagaggcca ttcccctggt 950
actggccctg tttgccttgc ttggcttcat gctgatcctt gtggctgtgc 1000

cactgttcgt ctggaaaatg ggccggctgc tccagtaactc ctgttgcccc 1050
gtggtgttcc tcccagacac cttgaaaata accaattcac cccagaagtt 1100
aatcagctgc agaaggagg agggtggatgc ctgtgccacg gctgtgatgt 1150
ctcctgagga actcctcagg gcctggatct cataggtttg cggaagggcc 1200
caggtgaagc cgagaacctg gtctgcata catgaaacc atgaggggac 1250
aagttgtgtt tctgtttcc gccacggaca agggatgaga gaagtaggaa 1300
gagcctgttg tctacaagtc tagaagcaac catcagaggc agggtggtt 1350
gtctaacaga acactgactg aggcttaggg gatgtgaccc ctagactggg 1400
ggctgccact tgctggctga gcaaccctgg gaaaagtgac ttcatccctt 1450
cggtcctaag ttttctcatc tgtaatgggg gaattaccta cacacctgct 1500
aaacacacac acacagagtc tctctctata tatacacacg tacacataaaa 1550
tacacccagc acttgcaagg ctagaggaa actggtgaca ctctacagtc 1600
tgactgattc agtgtttctg gagagcagga cataaatgta tgatgagaat 1650
gatcaaggac tctacacact gggtggttg gagagccac tttccagaa 1700
taatccttga gagaaaagga atcatggag caatgggtt gagttcactt 1750
caagcccaat gccgggtcag agggaaatgg cttagcgagc tctacagtag 1800
gtgacctgga ggaagggtcac agccacactg aaaatggat gtgcataaac 1850
acggaggatc catgaactac tgtaaatgt tgacagtgtg tgcacactgc 1900
agacagcagg tgaaatgtat gtgtcaatg cgacgagaat gcagaagtca 1950
gtaacatgtg catgtttgtt gtgctcctt tttctgttgg taaagtacag 2000
aattcagcaa ataaaaaggg ccaccctggc caaaagcggt aaaaaaaaaa 2050
aaaaaaaa 2056

<210> 352
<211> 311
<212> PRT
<213> Homo sapiens

<400> 352
Met Gln Thr Phe Thr Met Val Leu Glu Glu Ile Trp Thr Ser Leu
1 5 10 15
Phe Met Trp Phe Phe Tyr Ala Leu Ile Pro Cys Leu Leu Thr Asp
20 25 30

Glu Val Ala Ile Leu Pro Ala Pro Gln Asn Leu Ser Val Leu Ser
35 40 45

Thr Asn Met Lys His Leu Leu Met Trp Ser Pro Val Ile Ala Pro
50 55 60

Gly Glu Thr Val Tyr Tyr Ser Val Glu Tyr Gln Gly Glu Tyr Glu
65 70 75

Ser Leu Tyr Thr Ser His Ile Trp Ile Pro Ser Ser Trp Cys Ser
80 85 90

Leu Thr Glu Gly Pro Glu Cys Asp Val Thr Asp Asp Ile Thr Ala
95 100 105

Thr Val Pro Tyr Asn Leu Arg Val Arg Ala Thr Leu Gly Ser Gln
110 115 120

Thr Ser Ala Trp Ser Ile Leu Lys His Pro Phe Asn Arg Asn Ser
125 130 135

Thr Ile Leu Thr Arg Pro Gly Met Glu Ile Thr Lys Asp Gly Phe
140 145 150

His Leu Val Ile Glu Leu Glu Asp Leu Gly Pro Gln Phe Glu Phe
155 160 165

Leu Val Ala Tyr Trp Arg Arg Glu Pro Gly Ala Glu Glu His Val
170 175 180

Lys Met Val Arg Ser Gly Gly Ile Pro Val His Leu Glu Thr Met
185 190 195

Glu Pro Gly Ala Ala Tyr Cys Val Lys Ala Gln Thr Phe Val Lys
200 205 210

Ala Ile Gly Arg Tyr Ser Ala Phe Ser Gln Thr Glu Cys Val Glu
215 220 225

Val Gln Gly Glu Ala Ile Pro Leu Val Leu Ala Leu Phe Ala Phe
230 235 240

Val Gly Phe Met Leu Ile Leu Val Val Val Pro Leu Phe Val Trp
245 250 255

Lys Met Gly Arg Leu Leu Gln Tyr Ser Cys Cys Pro Val Val Val
260 265 270

Leu Pro Asp Thr Leu Lys Ile Thr Asn Ser Pro Gln Lys Leu Ile
275 280 285

Ser Cys Arg Arg Glu Glu Val Asp Ala Cys Ala Thr Ala Val Met
290 295 300

Ser Pro Glu Glu Leu Leu Arg Ala Trp Ile Ser
305 310

<210> 353
<211> 864
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 654, 711, 748, 827
<223> unknown base

<400> 353
tcctgctgat gcacatctgg gtttggcaaa aggaggttgc ttcgagccgc 50
cctttctagc ttcctggccg gctctagaac aattcaggct tcgctgcgac 100
tagacctca gtcacata tgcattctga agaaagatgg ctgagatgac 150
agaatgcttt atttggaaa gaaacaatgt tctaggtcaa actgagtcta 200
ccaaatgcag actttcacaa tggttctaga agaaatctgg acaagtcttt 250
tcatgtggtt tttctacgca ttgattccat gtttgctcac agatgaagtg 300
gccattctgc ctgccccctca gaacctctct gtactctcaa ccaacatgaa 350
gcatctcttg atgtggagcc cagtgatcgc gcctggagaa acagtgtact 400
attctgtcga ataccagggg gagtacgaga gcctgtacac gagccacatc 450
tggatccccca gcagctggtg ctcactcact gaaggccctg agtgtgatgt 500
cactgatgac atcacggcca ctgtgccata caacctttgt gtcagggcca 550
cattgggctc acagacctca gcctggagca tcctgaagca tcccttaat 600
agaaaactcaa ccatcctac ccgacctggg atggagatca ccaaagatgg 650
cttncacctg gttattgagc tggaggacct gggggcccaag tttgagttcc 700
tttgtggccta ntggaggagg ggcgaacccc ttgcggcgca aggggttngc 750
gaaccccttg cggccgctgg ggtatctctc gagaaaagag aggcccaata 800
tgacccacat actcaaatatg gacgaantgc tattgtccac ctgtttgagt 850
ggcgctgggt tgat 864

<210> 354
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 354
aggcttcgct gcgactagac ctc 23

<210> 355
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 355
ccaggtcggg taaggatggt tgag 24

<210> 356
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 356
tttctacgca ttgattccat gtttgctcac agatgaagtg gccattctgc 50

<210> 357
<211> 1670
<212> DNA
<213> Homo sapiens

<400> 357
cccacgcgtc cgccccacgcg tccgaggac aagagagaag agagactgaa 50
acagggagaa gaggcaggag aggaggaggt ggggagagca cgaagctgga 100
ggccgacact gagggagggc gggaggaggt gaagaaggag agaggggaga 150
agaggcagga gctggaaagg agagaggag gaggaggagg agatgcggga 200
tggagacctg gagtttaggtg gcttggaga gcttaatgaa aagagaacgg 250
agaggaggtg tgggttagga accaagaggt agccctgtgg gcagcagaag 300
gctgagagga gtaggaagat caggagctag agggagactg gagggttccg 350
ggaaaagagc agagggaaaga ggaaagacac agagagacgg gagagagaag 400
aagagtgggt ttgaagggcg gatctcagtc cctggctgct ttggcatttg 450
ggaaactggg actccctgtg gggaggagag gaaagctgga agtcctggag 500
ggacagggtc ccagaaggag gggacagagg agctgagaga gggggcagg 550
gcgttgggca ggggtccctc ggaggcctcc tggggatggg ggctgcagct 600
cgtctgagcg cccctcgagc gctggtaactc tgggctgcac tggggcagc 650
agctcacatc ggaccagcac ctgaccccgaa ggactgggtgg agctacaagg 700

ataatctcca gggaaacttc gtgccaggc ctccttctg gggcctgg 750
aatgcagcgt ggagtctgtg tgctgtggg aagcggcaga gccccgtg 800
tgtggagctg aagagggttc tttatgaccc ct当地tgc当地 ccattaaggc 850
tcagcactgg aggagagaag ctccgggaa ccttgc当地 aaccggccga 900
catgtctc当地 tc当地gc当地tgc accccc当地tgc当地 gtggtaatg tgtctggagg 950
tccc当地tc当地 tacagccacc gactc当地gtga actgc当地ggctg ct当地ttggag 1000
ctcgac当地gg agccggctcg gaacatcaga tcaaccacca gggcttctc 1050
gctgagggtgc agctc当地tca cttcaaccag gaactctacg ggaattttag 1100
cgctgc当地tcc cgccggccca atggc当地tggc cattctc当地g ct当地ttgtca 1150
acgttgccag tacctcttaac cc当地ttctca gtc当地cttcc taaccgc当地ac 1200
accatc当地ctc gcatctc当地ta caagaatgt gc当地tacttcc ttcaaggac 1250
gaggc当地tggag ct当地ctgttcc ct当地atc当地t cc当地ttcatc acctatcagg 1300
gctctctc当地ag cacccgccc tgctccgaga ct当地tccacctg gatc当地tccatt 1350
gaccgggccc tcaatatcac ct当地ccctc当地ag atgc当地actccc tgagactc 1400
gagccagaat cctccatctc agatcttcc a gaggc当地tccagc ggttaacagcc 1450
ggccc当地tgca gcccttggcc cacaggccac tgaggggcaa cagggacccc 1500
cgccacccccc agaggc当地gtg cc当地gggccc aactaccgcc tgcatgtg 1550
tggtgc当地cccc catggtc当地gtct gagactcccc tt当地cgaggatt gc当地ccggcc 1600
gtc当地ctaagcc tccccacaag gcgaggggag tt当地ccc当地taa aacaaggct 1650
ttaaagggac agaatactta 1670

<210> 358

<211> 328

<212> PRT

<213> Homo sapiens

<400> 358

Met	Gly	Ala	Ala	Ala	Arg	Leu	Ser	Ala	Pro	Arg	Ala	Leu	Val	Leu
1					5				10					15

Trp	Ala	Ala	Leu	Gly	Ala	Ala	His	Ile	Gly	Pro	Ala	Pro	Asp	
					20				25					30

Pro	Glu	Asp	Trp	Trp	Ser	Tyr	Lys	Asp	Asn	Leu	Gln	Gly	Asn	Phe
					35				40					45

Val	Pro	Gly	Pro	Pro	Phe	Trp	Gly	Leu	Val	Asn	Ala	Ala	Trp	Ser
					50				55					60

Leu Cys Ala Val Gly Lys Arg Gln Ser Pro Val Asp Val Glu Leu
65 70 75

Lys Arg Val Leu Tyr Asp Pro Phe Leu Pro Pro Leu Arg Leu Ser
80 85 90

Thr Gly Gly Glu Lys Leu Arg Gly Thr Leu Tyr Asn Thr Gly Arg
95 100 105

His Val Ser Phe Leu Pro Ala Pro Arg Pro Val Val Asn Val Ser
110 115 120

Gly Gly Pro Leu Leu Tyr Ser His Arg Leu Ser Glu Leu Arg Leu
125 130 135

Leu Phe Gly Ala Arg Asp Gly Ala Gly Ser Glu His Gln Ile Asn
140 145 150

His Gln Gly Phe Ser Ala Glu Val Gln Leu Ile His Phe Asn Gln
155 160 165

Glu Leu Tyr Gly Asn Phe Ser Ala Ala Ser Arg Gly Pro Asn Gly
170 175 180

Leu Ala Ile Leu Ser Leu Phe Val Asn Val Ala Ser Thr Ser Asn
185 190 195

Pro Phe Leu Ser Arg Leu Leu Asn Arg Asp Thr Ile Thr Arg Ile
200 205 210

Ser Tyr Lys Asn Asp Ala Tyr Phe Leu Gln Asp Leu Ser Leu Glu
215 220 225

Leu Leu Phe Pro Glu Ser Phe Gly Phe Ile Thr Tyr Gln Gly Ser
230 235 240

Leu Ser Thr Pro Pro Cys Ser Glu Thr Val Thr Trp Ile Leu Ile
245 250 255

Asp Arg Ala Leu Asn Ile Thr Ser Leu Gln Met His Ser Leu Arg
260 265 270

Leu Leu Ser Gln Asn Pro Pro Ser Gln Ile Phe Gln Ser Leu Ser
275 280 285

Gly Asn Ser Arg Pro Leu Gln Pro Leu Ala His Arg Ala Leu Arg
290 295 300

Gly Asn Arg Asp Pro Arg His Pro Glu Arg Arg Cys Arg Gly Pro
305 310 315

Asn Tyr Arg Leu His Val Asp Gly Val Pro His Gly Arg
320 325

<210> 359

<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 359
tctgctgagg tgcagtcat tcac 24

<210> 360
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 360
gaggctctgg aagatctgag atgg 24

<210> 361
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 361
gcctctttgt caacgttgcc agtacacctta acccattcct cagtcgcctc 50

<210> 362
<211> 3038
<212> DNA
<213> Homo sapiens

<400> 362
ggcgccctggt tctgcgcgta ctggctgtac ggagcaggag caagaggctg 50
ccgccagcct ccgcgcgcga gcctcggtcg tgtccccgcc cctcgctcct 100
gcagctactg ctcagaaacg ctggggcgcc caccctggca gactaacgaa 150
gcagctccct tcccacccca actgcagggtc taattttgga cgctttgcct 200
gccatttctt ccaggtttag ggagccgcag aggccggaggc tcgcgtattc 250
ctgcagtcag cacccacgtc gccccggac gctcggtgct caggcccttc 300
gcgagcgggg ctctccgtct gcgggtccctt gtgaaggctc tgggcggctg 350
cagaggccgg ccgtccgggtt tggctcacct ctcccaggaa acttcacact 400
ggagagccaa aaggagtgga agagcctgtc ttggagattt tcctgggaa 450
atcctgaggt cattcattat gaagtgtacc gcgcggaggt ggctcagagt 500

aaccacagtg ctgttcatgg ctagagcaat tccagccatg gtggttccca 550
atgccactt attggagaaa cttttggaaa aatacatgga tgaggatgg 600
gagtggtgga tagccaaaca acgaggaaa agggccatca cagacaatga 650
catgcagagt attttggacc ttcataataa attacgaagt caggtgtatc 700
caacagcctc taatatggag tatatgacat gggatgtaga gctggaaaga 750
tctgcagaat cctgggctga aagttgctt gggAACATG gacctgcaag 800
cttgcttcca tcaattggac agaatttgg agcacactgg ggaagatata 850
ggcccccgac gtttcatgta caatcgttgt atgatgaagt gaaagacttt 900
agctacccat atgaacatga atgcaaccca tattgtccat tcaggtgttc 950
tggccctgta tgtacacatt atacacaggt cgtgtggca actagtaaca 1000
gaatcggttg tgccattaat ttgtgtcata acatgaacat ctggggcag 1050
atatggccca aagctgtcta cctggtgtgc aattactccc caaaggaaa 1100
ctggtggggc catgcccctt acaaACATGG gcggccctgt tctgcttgcc 1150
cacctagttt tggagggggc tgtAGAGAAA atctgtgcta caaAGAAGGG 1200
tcagacaggt attatcccc tcgagaAGAG gaaACAAATG aaATAGAAACG 1250
acagcagtca caagtccatg acacCCATGT ccggacaAGA tcagatgata 1300
gtAGCAGAAA tgaAGTCATA AGCGCACAGC AAATGTCCC AATTGTTCT 1350
tgtGAAGTAA gattaAGAGA tcAGTGCAA GGAACAACCT GCAATAGGTa 1400
cgaatgtcct gctggctgtt tggatAGTAa agctAAAGTT attggcAGTG 1450
tacatttatga aatgcaatcc agcatctgta gagctgcaat tcattatgg 1500
ataatAGACA atgatGGTGG ctgggtAGAT atcactAGAC aAGGAAGAAA 1550
gcattatttc atcaAGTCCA atAGAAATGG tattCAAACA attggcAAAT 1600
atcAGTCTGC taattcCTTC acagtctcta aagtaACAGT tcaggctgtg 1650
acttgtgaaa caactgtgga acagctctgt ccatttcata agcctgcttc 1700
acattGCCCA agagtataCT gtcctcgtaa ctgtatgcaA gcaaATCCAC 1750
attatgctcg tgtaattgga actcgagttt attctgatct gtccAGTATC 1800
tgcagAGCAG cagtACATGC tggagtggTT cgAAATCACG gtggTTATGT 1850
tGATGTAATG CCTGTGGACA aaAGAAAGAC ctacattgct tctttcaga 1900
atgGAATCTT CTCAGAAAGT ttacAGAAATC ctccAGGAGG aaAGGcATTc 1950

agagtgtttg ctgttgtgtg aaactgaata cttggaagag gaccataaag 2000
actattccaa atgcaatatt tctgaatttt gtataaaact gtaacattac 2050
tgtacagagt acatcaacta tttcagccc aaaaaggtgc caaatgcata 2100
taaatcttga taaacaaagt ctataaaata aaacatggga cattagctt 2150
gggaaaagta atgaaaatat aatggttta gaaatcctgt gttaaatatt 2200
gctatatttt cttagcagtt atttctacag ttaattacat agtcatgatt 2250
gttctacgtt tcataatatta tatggtgctt tgtatatgcc actaataaaa 2300
tgaatctaaa cattgaatgt gaatggccct cagaaaatca tctagtgcatt 2350
ttaaaaataa tcgactctaa aactgaaaga aaccttatca cattttcccc 2400
agttcaatgc tatgccatta ccaactccaa ataatctcaa ataattttcc 2450
acttaataac tgtaaagttt ttttctgtta atttaggcat atagaatatt 2500
aaattctgat attgcacttc ttatTTATA taAAATAATC cttaatATC 2550
caaatgaatc tgtaaaatg tttgattcct tggaaatggc cttaaaaata 2600
aatgtataa agtcagagtg gtggatgaa aacattccta gtgatcatgt 2650
agtaaatgta gggtaagca tggacagcca gagcttctta tgtactgtta 2700
aaattgaggt cacatatttt ctTTTGTATC ctggcaaata ctccTGCAGG 2750
ccaggaagta taatagcaaa aagttgaaca aagatgaact aatgtattac 2800
attaccattt ccactgattt ttTTAAATG gtAAATGACC ttgtatataa 2850
atattGCCat atcatggtac ctataatggt gatatatttG tttctatgaa 2900
aaatgtattt tgcttgata ctaaaaatct gtAAAATGTT agTTTGGTA 2950
atTTTTTTC tgctggtgga ttacatatt aaatTTTTC tgctggtgga 3000
taaacattaa aattaatcat gtttcaaaaa aaaaaaaaa 3038

<210> 363

<211> 500

<212> PRT

<213> Homo sapiens

<400> 363

Met	Lys	Cys	Thr	Ala	Arg	Glu	Trp	Leu	Arg	Val	Thr	Thr	Val	Leu
1				5					10				15	
Phe	Met	Ala	Arg	Ala	Ile	Pro	Ala	Met	Val	Val	Pro	Asn	Ala	Thr
				20					25				30	

Leu Leu Glu Lys Leu Leu Glu Lys Tyr Met Asp Glu Asp Gly Glu
35 40 45

Trp Trp Ile Ala Lys Gln Arg Gly Lys Arg Ala Ile Thr Asp Asn
50 55 60

Asp Met Gln Ser Ile Leu Asp Leu His Asn Lys Leu Arg Ser Gln
65 70 75

Val Tyr Pro Thr Ala Ser Asn Met Glu Tyr Met Thr Trp Asp Val
. 80 85 90

Glu Leu Glu Arg Ser Ala Glu Ser Trp Ala Glu Ser Cys Leu Trp
95 100 105

Glu His Gly Pro Ala Ser Leu Leu Pro Ser Ile Gly Gln Asn Leu
110 115 120

Gly Ala His Trp Gly Arg Tyr Arg Pro Pro Thr Phe His Val Gln
125 130 135

Ser Trp Tyr Asp Glu Val Lys Asp Phe Ser Tyr Pro Tyr Glu His
140 145 150

Glu Cys Asn Pro Tyr Cys Pro Phe Arg Cys Ser Gly Pro Val Cys
155 160 165

Thr His Tyr Thr Gln Val Val Trp Ala Thr Ser Asn Arg Ile Gly
170 175 180

Cys Ala Ile Asn Leu Cys His Asn Met Asn Ile Trp Gly Gln Ile
185 190 195

Trp Pro Lys Ala Val Tyr Leu Val Cys Asn Tyr Ser Pro Lys Gly
200 205 210

Asn Trp Trp Gly His Ala Pro Tyr Lys His Gly Arg Pro Cys Ser
215 220 225

Ala Cys Pro Pro Ser Phe Gly Gly Cys Arg Glu Asn Leu Cys
230 235 240

Tyr Lys Glu Gly Ser Asp Arg Tyr Tyr Pro Pro Arg Glu Glu Glu
245 250 255

Thr Asn Glu Ile Glu Arg Gln Gln Ser Gln Val His Asp Thr His
260 265 270

Val Arg Thr Arg Ser Asp Asp Ser Ser Arg Asn Glu Val Ile Ser
275 280 285

Ala Gln Gln Met Ser Gln Ile Val Ser Cys Glu Val Arg Leu Arg
290 295 300

Asp Gln Cys Lys Gly Thr Thr Cys Asn Arg Tyr Glu Cys Pro Ala
305 310 315

Gly Cys Leu Asp Ser Lys Ala Lys Val Ile Gly Ser Val His Tyr
320 325 330

Glu Met Gln Ser Ser Ile Cys Arg Ala Ala Ile His Tyr Gly Ile
335 340 345

Ile Asp Asn Asp Gly Gly Trp Val Asp Ile Thr Arg Gln Gly Arg
350 355 360

Lys His Tyr Phe Ile Lys Ser Asn Arg Asn Gly Ile Gln Thr Ile
365 370 375

Gly Lys Tyr Gln Ser Ala Asn Ser Phe Thr Val Ser Lys Val Thr
380 385 390

Val Gln Ala Val Thr Cys Glu Thr Thr Val Glu Gln Leu Cys Pro
395 400 405

Phe His Lys Pro Ala Ser His Cys Pro Arg Val Tyr Cys Pro Arg
410 415 420

Asn Cys Met Gln Ala Asn Pro His Tyr Ala Arg Val Ile Gly Thr
425 430 435

Arg Val Tyr Ser Asp Leu Ser Ser Ile Cys Arg Ala Ala Val His
440 445 450

Ala Gly Val Val Arg Asn His Gly Gly Tyr Val Asp Val Met Pro
455 460 465

Val Asp Lys Arg Lys Thr Tyr Ile Ala Ser Phe Gln Asn Gly Ile
470 475 480

Phe Ser Glu Ser Leu Gln Asn Pro Pro Gly Gly Lys Ala Phe Arg
485 490 495

Val Phe Ala Val Val
500

<210> 364
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 364
ggacagaatt tgggagcaca ctgg 24

<210> 365
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 365
ccaagagtat actgtcctcg 20

<210> 366
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 366
agcacagatt ttctctacag ccccc 25

<210> 367
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 367
aaccactcca gcatgtactg ctgc 24

<210> 368
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 368
ccattcagggt gttctggccc tgtatgtaca cattatacac aggtcgtgtg 50

<210> 369
<211> 1685
<212> DNA
<213> Homo sapiens

<400> 369
gcggagacaa gcgcagagcg cagcgcacgg ccacagacag ccctggcat 50
ccaccgacgg cgcagccga gccagcagag ccggaaggcg cgccccggc 100
agagaaaagcc gagcagagct gggtggcgta tccggccgc cgctccgacg 150
ggccagcgcc ctccccatgt ccctgctccc acgcccgcgc cctccggta 200
gcatgaggct cctggcgcc gcgctgctcc tgctgctgct ggcgctgtac 250
accgcgcgtg tggacgggtc caaatgcaag tgctccggaa agggacccaa 300
gatccgctac agcgacgtga agaagctgga aatgaagcca aagtacccgc 350

actgcgagga gaagatggtt atcatcacca ccaagagcgt gtccaggta 400
cgaggtcagg agcactgcct gcaccccaag ctgcagagca ccaagcgctt 450
catcaagtgg tacaacgcct ggaacgagaa gcgcagggtc tacgaagaat 500
agggtgaaaa acctcagaag ggaaaactcc aaaccagttt ggagacttgt 550
gcaaaggact ttgcagatta aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 600
aaaaaaaaaa aaagccttc tttctcacag gcataagaca caaattatat 650
attgttatga agcactttt accaacggtc agttttaca ttttatacg 700
gcgtgcgaaa ggcttccaga tgggagaccc atctctcttg tgctccagac 750
ttcatcacag gctgctttt atcaaaaagg ggaaaactca tgcccttcct 800
ttttaaaaaa tgctttttt tatttgcata tacgtcacta tacatctgag 850
ctttataagc gcccgagg aacaatgagc ttggggaca catttcattt 900
cagtgttgc ccattcctag cttggaaagc ttccgcttag aggtcctggc 950
gcctcggcac agctgccacg ggctctccctg ggcttatggc cggtcacagc 1000
ctcagtgtga ctccacagtg gcccctgttag ccggcaagc aggagcaggt 1050
ctctctgcat ctgttctctg aggaactcaa gtttggttgc cagaaaaatg 1100
tgcttcattt cccccctgggtt aattttaca caccctagga aacatttcca 1150
agatcctgtg atggcgagac aaatgatcct taaagaaggt gtggggtctt 1200
tcccaacctg aggatttctg aaaggttcac aggttcaata ttatgtctt 1250
cagaagcatg tgaggttccc aacactgtca gcaaaaacct taggagaaaa 1300
cttaaaaata tatgaataca tgcgcaatac acagctacag acacacattc 1350
tggtgacaag ggaaaacctt caaagcatgt ttcttcctt caccacaaca 1400
gaacatgcag tactaaagca atatatttgt gattccccat gtaattcttc 1450
aatgttaaac agtgcagtcc tctttcgaaa gctaagatga ccatgcggcc 1500
tttcctctgt acatatacc ttaagaacgc cccctccaca cactgcccc 1550
cagttatgc cgcatgtac tgctgtgtt tatgttatgt acatgtcaga 1600
aaccattagc attgcatgca gtttcataat tctttctaag atggaaagta 1650
ataaaatata tttgaaatgt aaaaaaaaaa aaaaa 1685

<210> 370
<211> 111
<212> PRT

<213> Homo sapiens

<400> 370

Met Ser Leu Leu Pro Arg Arg Ala Pro Pro Val Ser Met Arg Leu
1 5 10 15

Leu Ala Ala Ala Leu Leu Leu Leu Leu Ala Leu Tyr Thr Ala
20 25 30

Arg Val Asp Gly Ser Lys Cys Lys Cys Ser Arg Lys Gly Pro Lys
35 40 45

Ile Arg Tyr Ser Asp Val Lys Lys Leu Glu Met Lys Pro Lys Tyr
50 55 60

Pro His Cys Glu Glu Lys Met Val Ile Ile Thr Thr Lys Ser Val
65 70 75

Ser Arg Tyr Arg Gly Gln Glu His Cys Leu His Pro Lys Leu Gln
80 85 90

Ser Thr Lys Arg Phe Ile Lys Trp Tyr Asn Ala Trp Asn Glu Lys
95 100 105

Arg Arg Val Tyr Glu Glu
110

<210> 371

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 371

cagcgccctc cccatgtccc tg 22

<210> 372

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 372

tcccaactgg tttggagttt tccc 24

<210> 373

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 373
ctccggtag catgaggctc ctggcgccg ctgctcctgc tgctg 45

<210> 374
<211> 3113
<212> DNA
<213> Homo sapiens

<400> 374
gccccaggg a ctgctatggc ttcctttgtt gttcaccccg gtctgcgtca 50
tgttaaactc caatgtcctc ctgtggtaa ctgctctgc catcaagttc 100
accctcattg acagccaagc acagtatcca gttgtcaaca caaattatgg 150
caaaatccgg ggcctaagaa caccgttacc caatgagatc ttgggtccag 200
tggagcagta cttaggggtc ccctatgcct caccggccac tggagagagg 250
cggtttcagc ccccagaacc cccgtcctcc tggactggca tccgaaatac 300
tactcagtt gctgctgtgt gcccccagca cctggatgag agatccttac 350
tgcatgacat gctgccatc tggtttaccg ccaatttgg a tactttgatg 400
acctatgttc aagatcaaaa tgaagactgc cttaacttaa acatctacgt 450
gcccacggaa gatggagcca acacaaagaa aaacgcagat gatataacga 500
gtaatgaccg tggtaagac gaagatattc atgatcagaa cagtaagaag 550
cccgcatgg tctatatcca tgggggatct tacatggagg gcaccggcaa 600
catgattgac ggcagcattt tggcaagcta cgaaacgtc atcgtgatca 650
ccattaacta cctgtctggaa atactaggt tttaagtac cggtgaccag 700
gcagcaaaag gcaactatgg gctcctggat cagattcaag cactgcggtg 750
gattgaggag aatgtggag ctttggcg ggaccccaag agagtgacca 800
tctttggctc ggggctggg gcctcctgtg tcagcctgtt gaccctgtcc 850
cactactcag aaggctctt ccagaaggcc atcattcaga gggcaccgc 900
cctgtccagc tggcagtg a actaccagcc ggccaaatc actcggatat 950
tggcagacaa ggtcggtgc aacatgctgg acaccacgga catggtagaa 1000
tgcctgcgga acaagaacta caaggagctc atccagcaga ccatcaccgc 1050
ggccacctac cacatagcct tcggccggt gatcgacggc gacgtcatcc 1100
cagacgaccc ccagatcctg atggagcaag gcgagttcct caactacgac 1150
atcatgctgg gcgtaacca agggaaaggc ctgaagttcg tggacggcat 1200

cgtggataac gaggacggtg tgacgccccaa cgactttgac ttctccgtgt 1250
ccaacttcgt ggacaacctt tacggctacc ctgaaggaa agacactttg 1300
cgggagacta tcaagttcat gtacacagac tggggcata aggaaaaccc 1350
ggagacgcgg cgaaaaaccc tggtggtct ctttactgac caccagtgg 1400
tggcccccgcc cgtggccgcc gacctgcacg cgca^{*}gtacgg ctccccacc 1450
tacttctatg ccttctatca tcactgccaa agcgaaatga agcccagctg 1500
ggcagattcg gcccatggtg atgaggtccc ctatgtcttc ggcattccca 1550
tgatcggtcc caccgagctc tt^tcagttgta actttccaa gaacgacg^tc 1600
atgctcagcg ccgtgg^tcat gac^ttactgg acgaacttcg ccaaaactgg 1650
tgatccaaat caaccagttc ctcaggatac caagttcatt cacacaaaac 1700
ccaaccgctt tgaagaagtg gcctggtcca agtataatcc caaagaccag 1750
ctctatctgc atattggctt gaaacccaga gtgagagatc actaccggc 1800
aacgaaagt^t gcttctgg^t tggactcgt tcctcattt^t cacaacttga 1850
acgagatatt ccagtatgtt tcaacaacca caaagg^ttcc tccaccagac 1900
atgacatcat ttccctatgg cacccggcga tctccgcca agatatggcc 1950
aaccaccaaa cgcccagcaa tcactc^ttcg caacaatccc aaacactcta 2000
aggaccctca caaaacaggg cctgaggaca caactgtcct cattgaaacc 2050
aaacgagatt attccaccga attaagtgtc accattgccc tcggggcgtc 2100
gctccttttc ctcaacatct tagtttgc ggcgtgtac tacaaaaagg 2150
acaagaggcg ccatgagact cacaggcgc^t ccagtcccc^t gagaaacacc 2200
acaatgata tcgctcacat ccagaacgaa gagatcatgt ctctgcagat 2250
gaagcagctg gaacacgatc acgagtgtga gtcgtgcag gcacacgaca 2300
cactgaggct cac^tgccccg ccagactaca ccctcacgct gcgccggcgt^t 2350
ccagatgaca tcccacttat gacgccaac accatcacca tgattccaa 2400
cacactgacg gggatgcagc ctttgcacac ttttaacacc ttcagtggag 2450
gacaaaacag tacaaattta ccccacggac attccaccac tagagtata^tg 2500
cttgcctta ttcccttcc tatccctctg ccctacccgc tcagcaacat 2550
agaagaggaa aggaaagaga gaaggaaaga gagagagaaa gaaagtctcc 2600
agaccaggaa tg^ttttgc^t ccactgactt aagacaaaaa tgcaaaaagg 2650

cagtcatccc atcccgca gacccttatcg ttgggtttt ccagtattac 2700
aagatcaact tctgaccctg tgaaatgtga gaagtacaca tttctgttaa 2750
aataactgct ttaagatctc taccactcca atcaatgttt agtgtgatag 2800
gacatcacca tttcaaggcc ccgggtgttt ccaacgtcat ggaaggcagct 2850
gacacttctg aaactcagcc aaggacactt gatattttt aattacaatg 2900
gaagtttaaa catttcttc tgtgccacac aatggatggc ttccttaag 2950
tgaagaaaga gtcaatgaga ttttgcacag cacatggagc tgtaatccag 3000
agagaaggaa acgtagaaat ttattattaa aagaatggac tgtgcagcga 3050
aatctgtacg gttctgtgca aagaggtgtt ttgcagcct gaactatatt 3100
taagagactt tgt 3113

<210> 375

<211> 816

<212> PRT

<213> Homo sapiens

<400> 375

Met	Leu	Asn	Ser	Asn	Val	Leu	Leu	Trp	Leu	Thr	Ala	Leu	Ala	Ile	
1					5				10						15
Lys	Phe	Thr	Leu	Ile	Asp	Ser	Gln	Ala	Gln	Tyr	Pro	Val	Val	Asn	
					20				25						30
Thr	Asn	Tyr	Gly	Lys	Ile	Arg	Gly	Leu	Arg	Thr	Pro	Leu	Pro	Asn	
					35				40						45
Glu	Ile	Leu	Gly	Pro	Val	Glu	Gln	Tyr	Leu	Gly	Val	Pro	Tyr	Ala	
					50				55						60
Ser	Pro	Pro	Thr	Gly	Glu	Arg	Arg	Phe	Gln	Pro	Pro	Glu	Pro	Pro	
					65				70						75
Ser	Ser	Trp	Thr	Gly	Ile	Arg	Asn	Thr	Thr	Gln	Phe	Ala	Ala	Val	
					80				85						90
Cys	Pro	Gln	His	Leu	Asp	Glu	Arg	Ser	Leu	Leu	His	Asp	Met	Leu	
					95				100						105
Pro	Ile	Trp	Phe	Thr	Ala	Asn	Leu	Asp	Thr	Leu	Met	Thr	Tyr	Val	
					110				115						120
Gln	Asp	Gln	Asn	Glu	Asp	Cys	Leu	Tyr	Leu	Asn	Ile	Tyr	Val	Pro	
					125				130						135
Thr	Glu	Asp	Gly	Ala	Asn	Thr	Lys	Lys	Asn	Ala	Asp	Asp	Ile	Thr	
					140				145						150

Ser Asn Asp Arg Gly Glu Asp Glu Asp Ile His Asp Gln Asn Ser
155 160 165

Lys Lys Pro Val Met Val Tyr Ile His Gly Gly Ser Tyr Met Glu
170 175 180

Gly Thr Gly Asn Met Ile Asp Gly Ser Ile Leu Ala Ser Tyr Gly
185 190 195

Asn Val Ile Val Ile Thr Ile Asn Tyr Arg Leu Gly Ile Leu Gly
200 205 210

Phe Leu Ser Thr Gly Asp Gln Ala Ala Lys Gly Asn Tyr Gly Leu
215 220 225

Leu Asp Gln Ile Gln Ala Leu Arg Trp Ile Glu Glu Asn Val Gly
230 235 240

Ala Phe Gly Gly Asp Pro Lys Arg Val Thr Ile Phe Gly Ser Gly
245 250 255

Ala Gly Ala Ser Cys Val Ser Leu Leu Thr Leu Ser His Tyr Ser
260 265 270

Glu Gly Leu Phe Gln Lys Ala Ile Ile Gln Ser Gly Thr Ala Leu
275 280 285

Ser Ser Trp Ala Val Asn Tyr Gln Pro Ala Lys Tyr Thr Arg Ile
290 295 300

Leu Ala Asp Lys Val Gly Cys Asn Met Leu Asp Thr Thr Asp Met
305 310 315

Val Glu Cys Leu Arg Asn Lys Asn Tyr Lys Glu Leu Ile Gln Gln
320 325 330

Thr Ile Thr Pro Ala Thr Tyr His Ile Ala Phe Gly Pro Val Ile
335 340 345

Asp Gly Asp Val Ile Pro Asp Asp Pro Gln Ile Leu Met Glu Gln
350 355 360

Gly Glu Phe Leu Asn Tyr Asp Ile Met Leu Gly Val Asn Gln Gly
365 370 375

Glu Gly Leu Lys Phe Val Asp Gly Ile Val Asp Asn Glu Asp Gly
380 385 390

Val Thr Pro Asn Asp Phe Asp Phe Ser Val Ser Asn Phe Val Asp
395 400 405

Asn Leu Tyr Gly Tyr Pro Glu Gly Lys Asp Thr Leu Arg Glu Thr
410 415 420

Ile Lys Phe Met Tyr Thr Asp Trp Ala Asp Lys Glu Asn Pro Glu
425 430 435

Thr Arg Arg Lys Thr Leu Val Ala Leu Phe Thr Asp His Gln Trp
440 445 450

Val Ala Pro Ala Val Ala Ala Asp Leu His Ala Gln Tyr Gly Ser
455 460 465

Pro Thr Tyr Phe Tyr Ala Phe Tyr His His Cys Gln Ser Glu Met
470 475 480

Lys Pro Ser Trp Ala Asp Ser Ala His Gly Asp Glu Val Pro Tyr
485 490 495

Val Phe Gly Ile Pro Met Ile Gly Pro Thr Glu Leu Phe Ser Cys
500 505 510

Asn Phe Ser Lys Asn Asp Val Met Leu Ser Ala Val Val Met Thr
515 520 525

Tyr Trp Thr Asn Phe Ala Lys Thr Gly Asp Pro Asn Gln Pro Val
530 535 540

Pro Gln Asp Thr Lys Phe Ile His Thr Lys Pro Asn Arg Phe Glu
545 550 555

Glu Val Ala Trp Ser Lys Tyr Asn Pro Lys Asp Gln Leu Tyr Leu
560 565 570

His Ile Gly Leu Lys Pro Arg Val Arg Asp His Tyr Arg Ala Thr
575 580 585

Lys Val Ala Phe Trp Leu Glu Leu Val Pro His Leu His Asn Leu
590 595 600

Asn Glu Ile Phe Gln Tyr Val Ser Thr Thr Lys Val Pro Pro
605 610 615

Pro Asp Met Thr Ser Phe Pro Tyr Gly Thr Arg Arg Ser Pro Ala
620 625 630

Lys Ile Trp Pro Thr Thr Lys Arg Pro Ala Ile Thr Pro Ala Asn
635 640 645

Asn Pro Lys His Ser Lys Asp Pro His Lys Thr Gly Pro Glu Asp
650 655 660

Thr Thr Val Leu Ile Glu Thr Lys Arg Asp Tyr Ser Thr Glu Leu
665 670 675

Ser Val Thr Ile Ala Val Gly Ala Ser Leu Leu Phe Leu Asn Ile
680 685 690

Leu Ala Phe Ala Ala Leu Tyr Tyr Lys Lys Asp Lys Arg Arg His
695 700 705

Glu Thr His Arg Arg Pro Ser Pro Gln Arg Asn Thr Thr Asn Asp
710 715 720

Ile Ala His Ile Gln Asn Glu Glu Ile Met Ser Leu Gln Met Lys
725 730 735

Gln Leu Glu His Asp His Glu Cys Glu Ser Leu Gln Ala His Asp
740 745 750

Thr Leu Arg Leu Thr Cys Pro Pro Asp Tyr Thr Leu Thr Leu Arg
755 760 765

Arg Ser Pro Asp Asp Ile Pro Leu Met Thr Pro Asn Thr Ile Thr
770 775 780

Met Ile Pro Asn Thr Leu Thr Gly Met Gln Pro Leu His Thr Phe
785 790 795

Asn Thr Phe Ser Gly Gly Gln Asn Ser Thr Asn Leu Pro His Gly
800 805 810

His Ser Thr Thr Arg Val
815

<210> 376
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 376
ggcaagctac ggaaacgtca tcgtg 25

<210> 377
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 377
aacccccc gag ccaaaagatg gtcac 25

<210> 378
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 378
gtaccggta ccaggcagca aaaggcaact atgggctcct ggatcag 47

<210> 379
<211> 2461
<212> DNA

<213> Homo sapiens

<400> 379

ggaaagatg gcggcgactc tgggaccctt tgggtcggtgg cagcagtggc 50
ggcgatgttt gtcggctcggtt gatgggtccca ggatgttact cttcttctt 100
tttgtgggtt ctgggcagggtt gccacagcaa gtcggggcggtt gtcaaacgtt 150
cgagtacttg aaacggggagc actcgctgtc gaagccctac cagggtgtgg 200
gcacaggcag ttcctctactg tggaatctga tggcaatgc catggtgatg 250
accaggata tccgccttac cccagatatg caaagtaaac agggtgcctt 300
gtggaaccgg gtgccatgtt tcctgagaga ctggagttt caggtgcact 350
tcaaaatcca tggacaagga aagaagaatc tgcatggggta tggcttggca 400
atctggtaca caaaggatcg gatgcagcca gggcctgtgtt ttggaaacat 450
ggacaaattt gtggggctgg ggttattttt agacacctac cccaatgggg 500
agaagcagca agagcgggtta ttcccctaca tctcagccat ggtgaacaac 550
ggctccctca gctatgtca tgagcgggat gggcggccta cagagctggg 600
aggctgcaca gccattgtcc gcaatcttca ttacgacacc ttcttggta 650
ttcgctacgtt caagaggcat ttgacgataa tgatggatat tgatggcaag 700
catgagtggta gggactgcat tgaagtgcctt ggagtccgccc tgccccggg 750
ctactacttc ggcacccctt ccatcactgg ggttctctca gataatcatg 800
atgtcatttc ttgtttttttt tttttttttt tttttttttt tttttttttt 850
gaggaaaagc tccatcgaga tgtgtttttt ccctcagttttt acaatatgaa 900
gctgcctgag atgacagctc cactgcggcc cctgagttttt ctggccctct 950
tcctcatcgtt ctgtttttttt ctgtttttttt ctgtttttttt tttttttttt 1000
ggtatcatac tctacaacaa atggcaggaa cagagccgaa agcgcttctta 1050
ctgagcccttc ctgtgtccac cactttttttt actgtcaccc atgaggatgtt 1100
gaaggagcag gcactggccctt gagcatgcag cctggagagt gttttttttt 1150
ctagcagctg gttttttttt atattctgtc actggagttt tgaatgcagg 1200
gaccccgcat tcccatggttt gtgcattttttt acatcttaact ctggtctggg 1250
aagccaccca ccccaggggca atgctgtgtt gatgtgcctt tccctgcagt 1300
ccttccatgtt gggagcagag gttttttttt aattttttttt tttttttttt 1350

caaaatcaca gaacagaatt tcatagccca ggctgccgtg ttgtttgact 1400
cagaaggccc ttctacttca gtttgaatc cacaagaat taaaaactgg 1450
taacaccaca ggcttctga ccatccattc gttgggttt gcatttgacc 1500
caaccctctg cctacctgag gagcttcctt tgaaaccag gatggaaact 1550
tctccctgc cttaccttcc tttcactcca ttcattgtcc tctctgtgt 1600
caacctgagc tggaaaggc atttggatgc ctctctgtt gggcctgggg 1650
ctgcagaaca cacctgcgtt tcactggcct tcattaggtg gccctaggga 1700
gatggcttc tgctttggat cactgttccc tagcatgggt cttgggtcta 1750
ttggcatgtc catggccttc ccaatcaagt ctcttcaggc cctcagtgaa 1800
gtttggctaa aggttggtgt aaaaatcaag agaaggctgg aagacatcat 1850
ggatgccatg gattagctgt gcaactgacc agctccaggt ttgatcaaac 1900
caaaagcaac atttgtcatg tggctcgacc atgtggagat gtttctggac 1950
ttgcttagagc ctgcttagct gcatgtttt tagtacgat ttttgaatc 2000
ccactttgag tgctgaaagt gtaaggaagc tttcttctta caccttgggc 2050
ttggatattg cccagagaag aaatttggct tttttttct taatggacaa 2100
gagacagttg ctgttctcat gttccaagtc tgagagcaac agaccctcat 2150
catctgtgcc tggaaagagtt cactgtcatt gagcagcaca gcctgagtgc 2200
tggcctctgt caacccttat tccactgcct tatttgacaa ggggttacat 2250
gctgctcacc ttactgccct gggattaaat cagttacagg ccagagtctc 2300
cttggagggc ctggaactct gagtcctcct atgaacctct gtgcctaaa 2350
tgaaattctt aaaatcaccg atggaaccaa aaaaaaaaaa aaaaagggcg 2400
gccgcgactc tagagtcgac ctgcagtagg gataacaggg taataagctt 2450
ggccgccccatg g 2461

<210> 380
<211> 348
<212> PRT
<213> Homo sapiens

<400> 380
Met Ala Ala Thr Leu Gly Pro Leu Gly Ser Trp Gln Gln Trp Arg
1 5 10 15

Arg Cys Leu Ser Ala Arg Asp Gly Ser Arg Met Leu Leu Leu
20 25 30

Leu Leu Leu Gly Ser Gly Gln Gly Pro Gln Gln Val Gly Ala Gly
35 40 45

Gln Thr Phe Glu Tyr Leu Lys Arg Glu His Ser Leu Ser Lys Pro
50 55 60

Tyr Gln Gly Val Gly Thr Gly Ser Ser Ser Leu Trp Asn Leu Met
65 70 75

Gly Asn Ala Met Val Met Thr Gln Tyr Ile Arg Leu Thr Pro Asp
80 85 90

Met Gln Ser Lys Gln Gly Ala Leu Trp Asn Arg Val Pro Cys Phe
95 100 105

Leu Arg Asp Trp Glu Leu Gln Val His Phe Lys Ile His Gly Gln
110 115 120

Gly Lys Lys Asn Leu His Gly Asp Gly Leu Ala Ile Trp Tyr Thr
125 130 135

Lys Asp Arg Met Gln Pro Gly Pro Val Phe Gly Asn Met Asp Lys
140 145 150

Phe Val Gly Leu Gly Val Phe Val Asp Thr Tyr Pro Asn Glu Glu
155 160 165

Lys Gln Gln Glu Arg Val Phe Pro Tyr Ile Ser Ala Met Val Asn
170 175 180

Asn Gly Ser Leu Ser Tyr Asp His Glu Arg Asp Gly Arg Pro Thr
185 190 195

Glu Leu Gly Gly Cys Thr Ala Ile Val Arg Asn Leu His Tyr Asp
200 205 210

Thr Phe Leu Val Ile Arg Tyr Val Lys Arg His Leu Thr Ile Met
215 220 225

Met Asp Ile Asp Gly Lys His Glu Trp Arg Asp Cys Ile Glu Val
230 235 240

Pro Gly Val Arg Leu Pro Arg Gly Tyr Tyr Phe Gly Thr Ser Ser
245 250 255

Ile Thr Gly Asp Leu Ser Asp Asn His Asp Val Ile Ser Leu Lys
260 265 270

Leu Phe Glu Leu Thr Val Glu Arg Thr Pro Glu Glu Glu Lys Leu
275 280 285

His Arg Asp Val Phe Leu Pro Ser Val Asp Asn Met Lys Leu Pro
290 295 300

Glu Met Thr Ala Pro Leu Pro Pro Leu Ser Gly Leu Ala Leu Phe
305 310 315

Leu Ile Val Phe Phe Ser Leu Val Phe Ser Val Phe Ala Ile Val
320 325 330
Ile Gly Ile Ile Leu Tyr Asn Lys Trp Gln Glu Gln Ser Arg Lys
335 340 345
Arg Phe Tyr

<210> 381
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 381
ccttgggtcg tggcagcagt gg 22

<210> 382
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 382
cactctccag gctgcattgt cagg 24

<210> 383
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 383
gtcaaacgtt cgagtttttg aaacgggagc actcgctgtc gaagc 45

<210> 384
<211> 3150
<212> DNA
<213> Homo sapiens

<400> 384
ccgagccggg cgcgacgcga cggagctggg gccggcctgg gaccatgggc 50
gtgagtgcaa tctacggatc agtctctgtat ggtgggtcgt taacctcagt 100
ggggactcca agattccat gaagaaaatc agttgtcttc attcaagaat 150
tggggtctgg ctcagaattc ctgcagctgg tgaaaatctg ttttctagaa 200

gaggtttaat taatgcctgc agtctgacat gttcccgatt tgaggtgaaa 250
ccatgaagag aaaatagaat acttaataat gctttccgc aaccgcttct 300
tgctgctgct ggccctggct gcgcgtgtgg cctttgttag cctcagcctg 350
cagttcttcc acctgatccc ggtgtcgact cctaagaatg gaatgagtag 400
caagagtcga aagagaatca tgccccgaccc tgtgacggag cccccctgtga 450
cagaccccggt ttatgaagct cttttgtact gcaacatccc cagtgtggcc 500
gagcgcagca tggaaaggta tgccccgcat catttaaagc tggtctcagt 550
gcatgtgttc attcgccacg gagacaggtta cccactgtat gtcattccca 600
aaacaaagcg accagaaatt gactgcactc tggggctaa cagggaaaccg 650
tatcacccaa aactggaagc tttcatttagt cacatgtcaa aaggatccgg 700
agccttttc gaaagccct tgaactcctt gcctctttac ccaaattcacc 750
cattgtgtga gatgggagag ctcacacaga caggagttgt gcagcatttg 800
cagaacggtc agctgctgag ggatatctat ctaaagaaac acaaactcct 850
gcccaatgat tggtctgcag accagctcta ttttagagacc actggaaaa 900
gccggaccct acaaagtggg ctggccttgc tttatggctt tctccagat 950
tttgactgga agaagattta tttcaggcac cagccaagtg cgctgttctg 1000
ctctggaagc tgctattgcc cggttaagaaa ccagtatctg gaaaaggagc 1050
agcgtcgtca gtacccctca cgtttggaaaa acagccagct ggagaagacc 1100
tacggggaga tggccaagat cgtggatgtc cccaccaagc agcttagagc 1150
tgcccaacccc atagactcca tgctctgcca cttctgccac aatgtcagct 1200
ttccctgtac cagaaatggc tgtgttgaca tggagcactt caaggttaatt 1250
aagacccatc agatcgagga tgaaaggaa agacggaga agaaattgta 1300
cttcgggtat tctctcttgg gtggccaccc catcctgaac caaaccatcg 1350
gccggatgca gcgtgccacc gagggcagga aagaagagct cttgccctc 1400
tactctgctc atgatgtcac tctgtcacca gttctcagtg ctttggccct 1450
ttcagaagcc aggttccaa ggtttgcagc caggttgatc tttgagctt 1500
ggcaagacag agaaaagccc agtgaacatt ccgtccggat tctttacaat 1550
ggcgtcgtat tcacattcca cacctcttcc tgccaagacc accacaagcg 1600
ttctcccaag cccatgtgcc cgcttggaaaa cttggccgc tttgtgaaaa 1650

gggacatgtt ttagccctg ggtggcagtg gtacaatta ttatgatgca 1700
tgtcacaggg aaggattcta aaaggtatgc agtacagcag tatagaatcc 1750
atgccaatac agagcatagg gaaaggtcca cttctagttt tgtctgttac 1800
taaggtaga agattattgc ttttaaagg ctaaatattg tttgtggaa 1850
ccacagatgg ttggggttga acagtaagca cattgctgca atgtggtacg 1900
tgaattgctt ggtacaaaat ggccagttca cagaggaata gaaggtactt 1950
tatcatagcc agacttcgct tagaatgcca gaataatata gttcaagacc 2000
tgaagttgcc aatccaagtt tgcactcttc tggcctgccc catgttacta 2050
tgtgatggaa ccagcacacc tcaaccaaaa ttttttaat ctttagacatt 2100
tttaccttgt ccttgttaag aatttcttga agtgatttat ctaaaataaa 2150
ggttggcaaa cttttctgt aaaggccag attgtaaata tttcagactg 2200
tgtggaccaa aaggccacat acagtctctg tcataactac tcaactctgt 2250
ttctgaagca ggaaagccac cacagacagt acataaagga atatgttag 2300
ctgggttccc aggccagaca aaacagatgg tgaccagact tggccctgg 2350
gctgtagttt gctgaccct catctaaaaa ataggctata ctacaattgc 2400
acttccagca ctttgagaac gagttgaata ccaagaatta ttcaatgtt 2450
cctccagtaa cttctgctag aaacacagaa tttggctgt atctgacact 2500
agaacaaaac ttgagggtaa ataaacattg aattagaatg aatcatagaa 2550
aactgattag aagaatactt gatgtttatg atgattgtgg tacaagatag 2600
tttaagtat gttctaaata tttgtctgct gtagtctatt tgctgtatat 2650
gctgaaattt ttgtatgcca ttttagtattt ttatagttt gaaaaatatt 2700
ttctaagacc agtttagat gactcttatt cctgttagtaa tattcaattt 2750
gctgtacctg cttggtggtt agaaggaggc tagaagatga attcaggcac 2800
tttcttccaa taaaactaat tatggctcat tcccttgac aagctgtaga 2850
actggattca ttttaaacc attttcatca gttcaaattg gtaaattctg 2900
attgattttt aatgcgttt ttggaagaac tttgcttattt ggtagttac 2950
agatctttat aagggtttt atatattaga agcaattata attacatctg 3000
tgatttctga actaatggtg ctaattcaga gaaatggaaa gtgaaagtga 3050

gattctctgt tgtcatcgcc attccaaactt tttctcttg ttttgtcca 3100
gtgttgcatt tgaatatgtc tgtttctata aataaatttt ttaagaataa 3150

<210> 385
<211> 480
<212> PRT
<213> Homo sapiens

<400> 385

Met	Leu	Phe	Arg	Asn	Arg	Phe	Leu	Leu	Leu	Ala	Leu	Ala	Ala
1		5					10					15	

Leu Leu Ala Phe Val Ser Leu Ser Leu Gln Phe Phe His Leu Ile
20 25 30

Pro Val Ser Thr Pro Lys Asn Gly Met Ser Ser Lys Ser Arg Lys
35 40 45

Arg Ile Met Pro Asp Pro Val Thr Glu Pro Pro Val Thr Asp Pro
50 55 60

Val Tyr Glu Ala Leu Leu Tyr Cys Asn Ile Pro Ser Val Ala Glu
65 70 75

Arg Ser Met Glu Gly His Ala Pro His His Phe Lys Leu Val Ser
80 85 90

Val His Val Phe Ile Arg His Gly Asp Arg Tyr Pro Leu Tyr Val
95 ? 100 105

Ile Pro Lys Thr Lys Arg Pro Glu Ile Asp Cys Thr Leu Val Ala
110 115 120

Asn Arg Lys Pro Tyr His Pro Lys Leu Glu Ala Phe Ile Ser His
125 130 135

Met Ser Lys Gly Ser Gly Ala Ser Phe Glu Ser Pro Leu Asn Ser
140 145 150

Leu Pro Leu Tyr Pro Asn His Pro Leu Cys Glu Met Gly Glu Leu
155 160 165

Thr Gln Thr Gly Val Val Gln His Leu Gln Asn Gly Gln Leu Leu
170 175 180

Arg Asp Ile Tyr Leu Lys Lys His Lys Leu Leu Pro Asn Asp Trp
185 190 195

Ser Ala Asp Gln Leu Tyr Leu Glu Thr Thr Gly Lys Ser Arg Thr
200 205 210

Leu Gln Ser Gly Leu Ala Leu Leu Tyr Gly Phe Leu Pro Asp Phe
215 220 225

Asp Trp Lys Lys Ile Tyr Phe Arg His Gln Pro Ser Ala Leu Phe
230 235 240

Cys Ser Gly Ser Cys Tyr Cys Pro Val Arg Asn Gln Tyr Leu Glu
245 250 255

Lys Glu Gln Arg Arg Gln Tyr Leu Leu Arg Leu Lys Asn Ser Gln
260 265 270

Leu Glu Lys Thr Tyr Gly Glu Met Ala Lys Ile Val Asp Val Pro
275 280 285

Thr Lys Gln Leu Arg Ala Ala Asn Pro Ile Asp Ser Met Leu Cys
290 295 300

His Phe Cys His Asn Val Ser Phe Pro Cys Thr Arg Asn Gly Cys
305 310 315

Val Asp Met Glu His Phe Lys Val Ile Lys Thr His Gln Ile Glu
320 325 330

Asp Glu Arg Glu Arg Glu Lys Lys Leu Tyr Phe Gly Tyr Ser
335 340 345

Leu Leu Gly Ala His Pro Ile Leu Asn Gln Thr Ile Gly Arg Met
350 355 360

Gln Arg Ala Thr Glu Gly Arg Lys Glu Glu Leu Phe Ala Leu Tyr
365 370 375

Ser Ala His Asp Val Thr Leu Ser Pro Val Leu Ser Ala Leu Gly
380 385 390

Leu Ser Glu Ala Arg Phe Pro Arg Phe Ala Ala Arg Leu Ile Phe
395 400 405

Glu Leu Trp Gln Asp Arg Glu Lys Pro Ser Glu His Ser Val Arg
410 415 420

Ile Leu Tyr Asn Gly Val Asp Val Thr Phe His Thr Ser Phe Cys
425 430 435

Gln Asp His His Lys Arg Ser Pro Lys Pro Met Cys Pro Leu Glu
440 445 450

Asn Leu Val Arg Phe Val Lys Arg Asp Met Phe Val Ala Leu Gly
455 460 465

Gly Ser Gly Thr Asn Tyr Tyr Asp Ala Cys His Arg Glu Gly Phe
470 475 480

<210> 386

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 386
ccaaggcagct tagagctcca gacc 24

<210> 387
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 387
ttcccttatgc tctgtattgg catgg 25

<210> 388
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 388
gccacttctg ccacaatgtc agctttccct gtaccagaaa tggctgtgtt 50

<210> 389
<211> 3313
<212> DNA
<213> Homo sapiens

<400> 389
aaaaaaagctc actaaagttt ctattagagc gaatacggtt gatttccatc 50
cccttttcaa gaacagtact gtggagctat ttaagagata aaaacgaaat 100
atcctttctg ggagttcaag attgtgcagt aattggtagt gactctgagc 150
gccgctgttc accaatcggg gagagaaaag cgagatcct gctcgccctg 200
cacgcgcctg aagcacaag cagatagcta ggaatgaacc atccctggaa 250
gtatgtggaa acaacggagg agctctgact tcccaactgt cccattctat 300
gggcgaagga actgctcctg acttcagtggt ttaagggcag aattgaaaat 350
aattctggag gaagataaga atgattcctg cgcgactgca ccgggactac 400
aaaggccttg tcctgctggg aatcctcctg gggactctgt gggagaccgg 450
atgcacccag atacgctatt cagttccggaa agagctggag aaaggctcta 500
gggtgggcga catctccagg gacctggggc tggagccccg ggagctcgcg 550
gagcgcggag tccgcatcat ccccagaggt aggacgcagc ttttcgcctt 600
gaatccgcgc acggcagct tggtcacggc gggcaggata gaccgggagg 650

agctctgtat gggggccatc aagtgtcaat taaatctaga cattctgatg 700
gaggataaaag tgaaaatata tggagtagaa gtagaagtaa gggacattaa 750
cgacaatgcg ccttactttc gtgaaagtga attagaaata aaaatttagt 800
aaaatgcagc cactgagatg cggttccctc taccacgc ctggatccg 850
gatatcgaaa agaactctct gcagagctac gagtcagcc cgaacactca 900
cttctccctc atcgtgaaa atggagccga cggtagtaag taccaccaat 950
tggtgctgaa acgcgcctg gaccgcgaag aaaaggctgc tcaccacctg 1000
gtccttacgg cctccgacgg gggcgacccg gtgcgcacag gcaccgcgcg 1050
catccgcgtg atggttctgg atgcgaacga caacgcacca gcgttgctc 1100
agcccggatc ccgcgcgagc gttccggaga atctggcctt gggcacgcag 1150
ctgctttagt tcaacgctac cgaccctgac gaaggagtca atgcggaaatg 1200
gaggtattcc ttccggatg tggacgacaa ggcggccaa gtttcaaacc 1250
tagattgtaa ttcaaggaca atatcaacaa tagggagtt ggaccacgag 1300
gagtcaggat tctaccagat ggaagtgcac gcaatggata atgcaggata 1350
ttctgcgcga gccaaagtcc tgatcactgt tctggacgtg aacgacaatg 1400
ccccagaagt ggtcctcacc tctctcgcca gtcgggtcc cgaaaactct 1450
cccaagggga cattaattgc cttttaaat gtaaatgacc aagattctga 1500
ggaaaacgga caggtgatct gtttcatcca agggaaatctg ccctttaaat 1550
tagaaaaatc ttacggaaat tactatagtt tagtcacaga catagtctt 1600
gatagggaac aggttcctag ctacaacatc acagtgaccg ccactgaccg 1650
ggaaaccccg cccctatcca cggaaactca tatctcgctg aacgtggcag 1700
acaccaacga caacccgccc gtcttccctc aggccctcta ttccgcttat 1750
atccccagaga acaatcccg aggagttcc ctcgtctctg tgaccgccc 1800
cgaccccgac tgtgaagaga acgcccagat cacttattcc ctggctgaga 1850
acaccatcca aggggcaagc ctatcgctt acgtgtccat caactccgac 1900
actgggtac tgtatgcgt gagtccttc gactacgagc agttccgaga 1950
cttgcaagtg aaagtgtatgg cgcgggacaa cgggcacccg cccctcagca 2000
gcaacgtgtc gttgagcctg ttctgtctgg accagaacga caatgcgcac 2050
gagatcctgt accccgcctt ccccacggac gttccactg gcgtggagct 2100

ggctccccgc tccgcagaga ccggctaccc ggtgaccaag gtggtggcgg 2150
tggacagaga ctccggccag aacgcctggc tgtcctaccg tctgctcaag 2200
gccagcgagc cgggactctt ctccgggtt ctgcacacgg gcgagggtgcg 2250
cacggcgca gcccctgctgg acagagacgc gctcaagcag agcctcgtag 2300
tggccgtcca ggaccacggc cagccccctc tctccgcccac tgtcacgctc 2350
accgtggccg tggccgacag catccccaa gtcctggcgg acctcggcag 2400
cctcgagtct ccagctaact ctgaaacctc agacactcact ctgtacctgg 2450
tggtagcggt ggccgcggtc tcctgcgtct tcctggcatt cgtcatctt 2500
ctgctggcgc tcaggctgcg gcgcgtggcac aagtacgccc tgctgcaggc 2550
ttcaggaggc ggcttgacag gagcgccggc gtgcacttt gtggcgtgg 2600
acggggtgca ggcttcctg cagacctatt cccacgaggt ttccctcacc 2650
acggactcgc ggaagagtca cctgatcttc ccccagccca actatgcaga 2700
catgctcgtc agccaggaga gcttgaaaa aagcgagccc ctggctgt 2750
caggtgattc ggtattttct aaagacagtc atgggttaat tgaggtgagt 2800
ttatatcaaa tcttctttct tttttttt aattgctctg tctcccaagc 2850
tggagtgcag cggtacgatc atagctcaact gcggcctcaa actcctaggc 2900
tcaagcaatt atcccacctt tgccctccggt gtaacaggga ctacaggtgc 2950
aagccaccta ctgtctgcct atctatctat ctatctatct atctatctat 3000
ctatctatct atctatctat tactttcttg tacagacggg agtctcacgc 3050
ctgtaatccc agtactttgg gaggccgagg cgggtggatc acctgagggt 3100
gggagtttga gaccagcctg accaacatgg agaaaccccg tctataactaa 3150
aaaaatacaa aattagccgg gcgtgggtt gcatgtctgt aatcccagct 3200
acttgggagg ctgagtcagg agaattgtt taacctggga ggtggagggt 3250
gcaatgagct gagattgtgc cattgcactc cagcctgggc aacaagagtg 3300
aaactctatc tca 3313

<210> 390
<211> 916
<212> PRT
<213> Homo sapiens

<400> 390

Met Ile Pro Ala Arg Leu His Arg Asp Tyr Lys Gly Leu Val Leu
1 5 10 15

Leu Gly Ile Leu Leu Gly Thr Leu Trp Glu Thr Gly Cys Thr Gln
20 25 30

Ile Arg Tyr Ser Val Pro Glu Glu Leu Glu Lys Gly Ser Arg Val
35 40 45

Gly Asp Ile Ser Arg Asp Leu Gly Leu Glu Pro Arg Glu Leu Ala
50 55 60

Glu Arg Gly Val Arg Ile Ile Pro Arg Gly Arg Thr Gln Leu Phe
65 70 75

Ala Leu Asn Pro Arg Ser Gly Ser Leu Val Thr Ala Gly Arg Ile
80 85 90

Asp Arg Glu Glu Leu Cys Met Gly Ala Ile Lys Cys Gln Leu Asn
95 100 105

Leu Asp Ile Leu Met Glu Asp Lys Val Lys Ile Tyr Gly Val Glu
110 115 120

Val Glu Val Arg Asp Ile Asn Asp Asn Ala Pro Tyr Phe Arg Glu
125 130 135

Ser Glu Leu Glu Ile Lys Ile Ser Glu Asn Ala Ala Thr Glu Met
140 145 150

Arg Phe Pro Leu Pro His Ala Trp Asp Pro Asp Ile Gly Lys Asn
155 160 165

Ser Leu Gln Ser Tyr Glu Leu Ser Pro Asn Thr His Phe Ser Leu
170 175 180

Ile Val Gln Asn Gly Ala Asp Gly Ser Lys Tyr Pro Glu Leu Val
185 190 195

Leu Lys Arg Ala Leu Asp Arg Glu Glu Lys Ala Ala His His Leu
200 205 210

Val Leu Thr Ala Ser Asp Gly Gly Asp Pro Val Arg Thr Gly Thr
215 220 225

Ala Arg Ile Arg Val Met Val Leu Asp Ala Asn Asp Asn Ala Pro
230 235 240

Ala Phe Ala Gln Pro Glu Tyr Arg Ala Ser Val Pro Glu Asn Leu
245 250 255

Ala Leu Gly Thr Gln Leu Leu Val Val Asn Ala Thr Asp Pro Asp
260 265 270

Glu Gly Val Asn Ala Glu Val Arg Tyr Ser Phe Arg Tyr Val Asp
275 280 285

Asp Lys Ala Ala Gln Val Phe Lys Leu Asp Cys Asn Ser Gly Thr
290 295 300

Ile Ser Thr Ile Gly Glu Leu Asp His Glu Glu Ser Gly Phe Tyr
305 310 315

Gln Met Glu Val Gln Ala Met Asp Asn Ala Gly Tyr Ser Ala Arg
320 325 330

Ala Lys Val Leu Ile Thr Val Leu Asp Val Asn Asp Asn Ala Pro
335 340 345

Glu Val Val Leu Thr Ser Leu Ala Ser Ser Val Pro Glu Asn Ser
350 355 360

Pro Arg Gly Thr Leu Ile Ala Leu Leu Asn Val Asn Asp Gln Asp
365 370 375

Ser Glu Glu Asn Gly Gln Val Ile Cys Phe Ile Gln Gly Asn Leu
380 385 390

Pro Phe Lys Leu Glu Lys Ser Tyr Gly Asn Tyr Tyr Ser Leu Val
395 400 405

Thr Asp Ile Val Leu Asp Arg Glu Gln Val Pro Ser Tyr Asn Ile
410 415 420

Thr Val Thr Ala Thr Asp Arg Gly Thr Pro Pro Leu Ser Thr Glu
425 430 435

Thr His Ile Ser Leu Asn Val Ala Asp Thr Asn Asp Asn Pro Pro
440 445 450

Val Phe Pro Gln Ala Ser Tyr Ser Ala Tyr Ile Pro Glu Asn Asn
455 460 465

Pro Arg Gly Val Ser Leu Val Ser Val Thr Ala His Asp Pro Asp
470 475 480

Cys Glu Glu Asn Ala Gln Ile Thr Tyr Ser Leu Ala Glu Asn Thr
485 490 495

Ile Gln Gly Ala Ser Leu Ser Ser Tyr Val Ser Ile Asn Ser Asp
500 505 510

Thr Gly Val Leu Tyr Ala Leu Ser Ser Phe Asp Tyr Glu Gln Phe
515 520 525

Arg Asp Leu Gln Val Lys Val Met Ala Arg Asp Asn Gly His Pro
530 535 540

Pro Leu Ser Ser Asn Val Ser Leu Ser Leu Phe Val Leu Asp Gln
545 550 555

Asn Asp Asn Ala Pro Glu Ile Leu Tyr Pro Ala Leu Pro Thr Asp
560 565 570

Gly Ser Thr Gly Val Glu Leu Ala Pro Arg Ser Ala Glu Pro Gly
575 580 585

Tyr Leu Val Thr Lys Val Val Ala Val Asp Arg Asp Ser Gly Gln
590 595 600

Asn Ala Trp Leu Ser Tyr Arg Leu Leu Lys Ala Ser Glu Pro Gly
605 610 615

Leu Phe Ser Val Gly Leu His Thr Gly Glu Val Arg Thr Ala Arg
620 625 630

Ala Leu Leu Asp Arg Asp Ala Leu Lys Gln Ser Leu Val Val Ala
635 640 645

Val Gln Asp His Gly Gln Pro Pro Leu Ser Ala Thr Val Thr Leu
650 655 660

Thr Val Ala Val Ala Asp Ser Ile Pro Gln Val Leu Ala Asp Leu
665 670 675

Gly Ser Leu Glu Ser Pro Ala Asn Ser Glu Thr Ser Asp Leu Thr
680 685 690

Leu Tyr Leu Val Val Ala Val Ala Ala Val Ser Cys Val Phe Leu
695 700 705

Ala Phe Val Ile Leu Leu Ala Leu Arg Leu Arg Arg Trp His
710 715 720

Lys Ser Arg Leu Leu Gln Ala Ser Gly Gly Gly Leu Thr Gly Ala
725 730 735

Pro Ala Ser His Phe Val Gly Val Asp Gly Val Gln Ala Phe Leu
740 745 750

Gln Thr Tyr Ser His Glu Val Ser Leu Thr Thr Asp Ser Arg Lys
755 760 765

Ser His Leu Ile Phe Pro Gln Pro Asn Tyr Ala Asp Met Leu Val
770 775 780

Ser Gln Glu Ser Phe Glu Lys Ser Glu Pro Leu Leu Leu Ser Gly
785 790 795

Asp Ser Val Phe Ser Lys Asp Ser His Gly Leu Ile Glu Val Ser
800 805 810

Leu Tyr Gln Ile Phe Phe Leu Phe Phe Asn Cys Ser Val Ser
815 820 825

Gln Ala Gly Val Gln Arg Tyr Asp His Ser Ser Leu Arg Pro Gln
830 835 840

Thr Pro Arg Leu Lys Gln Leu Ser His Leu Cys Leu Arg Cys Asn
845 850 855

Arg Asp Tyr Arg Cys Lys Pro Pro Thr Val Cys Leu Ser Ile Tyr
860 865 870

Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Ser Ile Tyr Leu Leu Leu
875 880 885

Ser Cys Thr Asp Gly Ser Leu Thr Pro Val Ile Pro Val Leu Trp
890 895 900

Glu Ala Glu Ala Gly Gly Ser Pro Glu Val Gly Ser Leu Arg Pro
905 910 915

Ala

<210> 391
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 391
tccgtctctg tgaaccggccc cac 23

<210> 392
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 392
ctcgggcgca ttgtcgttct ggtc 24

<210> 393
<211> 40
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 393
ccgactgtga aagagaacgc cccagatcca cttttcccc 40

<210> 394
<211> 999
<212> DNA
<213> Homo sapiens

<400> 394
cccaggctct agtgcaggag gagaaggagg aggagcagga ggtggagatt 50

cccagttaaa aggctccaga atcgtgtacc aggcagagaa ctgaagtact 100

ggggcctcct ccactgggtc cgaatcagta ggtgaccccg cccctggatt 150
cttggaaagacc tcaccatggg acgccccca cctcgtgcgg ccaagacgtg 200
gatgttcctg ctcttgctgg ggggagcctg ggcaggacac tccagggcac 250
aggaggacaa ggtgctgggg ggtcatgagt gccaaaccca ttgcgcagcct 300
tggcaggcgg ccttggttcca gggccagcaa ctactctgtg gcgggtgcct 350
tgttaggtggc aactgggtcc ttacagctgc ccactgtaaa aaaccgaaat 400
acacagtacg cctgggagac cacagcctac agaataaaga tggcccagag 450
caagaaaatac ctgtggttca gtccatccca caccctgtct acaacagcag 500
cgatgtggag gaccacaacc atgatctgat gcttcttcaa ctgcgtgacc 550
aggcatccct ggggtccaaa gtgaagccca tcagcctggc agatcattgc 600
acccagcctg gccagaagtgc caccgtctca ggctggggca ctgtcaccag 650
tccccgagag aattttcctg acactctcaa ctgtgcagaa gtaaaaatct 700
ttccccagaa gaagtgttag gatgcttacc cggggcagat cacagatggc 750
atggtctgtg caggcagcag caaaggggct gacacgtgcc agggcgattc 800
tggaggcccc ctgggtgttg atggtgact ccagggcatc acatcctggg 850
gctcagaccc ctgtgggagg tccgacaaac ctggcgtcta taccaacatc 900
tgccgctacc tgactggat caagaagatc ataggcagca agggctgatt 950
ctaggataag cactagatct cccttaataa actcacaact ctctggttc 999

<210> 395
<211> 260
<212> PRT
<213> *Homo sapiens*

```

<400> 395
Met Gly Arg Pro Arg Pro Arg Ala Ala Lys Thr Trp Met Phe Leu
   1           5           10          15

Leu Leu Leu Gly Gly Ala Trp Ala Gly His Ser Arg Ala Gln Glu
   20          25          30

Asp Lys Val Leu Gly Gly His Glu Cys Gln Pro His Ser Gln Pro
   35          40          45

Trp Gln Ala Ala Leu Phe Gln Gly Gln Gln Leu Leu Cys Gly Gly
   50          55          60

Val Leu Val Gly Gly Asn Trp Val Leu Thr Ala Ala His Cys Lys
   65          70          75

```

Lys Pro Lys Tyr Thr Val Arg Leu Gly Asp His Ser Leu Gln Asn
80 85 90

Lys Asp Gly Pro Glu Gln Glu Ile Pro Val Val Gln Ser Ile Pro
95 100 105

His Pro Cys Tyr Asn Ser Ser Asp Val Glu Asp His Asn His Asp
110 115 120

Leu Met Leu Leu Gln Leu Arg Asp Gln Ala Ser Leu Gly Ser Lys
125 130 135

Val Lys Pro Ile Ser Leu Ala Asp His Cys Thr Gln Pro Gly Gln
140 145 150

Lys Cys Thr Val Ser Gly Trp Gly Thr Val Thr Ser Pro Arg Glu
155 160 165

Asn Phe Pro Asp Thr Leu Asn Cys Ala Glu Val Lys Ile Phe Pro
170 175 180

Gln Lys Lys Cys Glu Asp Ala Tyr Pro Gly Gln Ile Thr Asp Gly
185 190 195

Met Val Cys Ala Gly Ser Ser Lys Gly Ala Asp Thr Cys Gln Gly
200 205 210

Asp Ser Gly Gly Pro Leu Val Cys Asp Gly Ala Leu Gln Gly Ile
215 220 225

Thr Ser Trp Gly Ser Asp Pro Cys Gly Arg Ser Asp Lys Pro Gly
230 235 240

Val Tyr Thr Asn Ile Cys Arg Tyr Leu Asp Trp Ile Lys Lys Ile
245 250 255

Ile Gly Ser Lys Gly
260

<210> 396

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 396

cagcctacag aataaagatg gccc 24

<210> 397

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 397

ggtgcaatga tctgccaggc tgat 24

<210> 398

<211> 48

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 398

agaaataacct gtggttcagt ccatccaaa cccctgctac aacagcag 48

<210> 399

<211> 2236

<212> DNA

<213> Homo sapiens

<400> 399

ggcgccggtg caccgggcgg gctgagcgcc tcctgcggcc cgccctgcgc 50

gccccggccc gccgcgcgc ccacgcccc accccggccc gcgcggcccta 100

gccccggccc gggccgcgc ccgcgcgcgc gccaggtga gcgcgtccgcc 150

cgcgcgagg ccccgccccg gcccggcccc gccccgggg ggccggcg 200

ggaaccgggc ggattcctcg cgcgtcaaac cactgtatcc cataaaacat 250

tcatcctccc ggccgcgcgc gctgagcgcc ccccgccagt ccgcgcgc 300

gccgcctcg ccctgtgcgc cctgcgcgc ctgcgcaccc gcggcccgag 350

cccagccaga gccgggcgga gcggagcgcg ccgagcctcg tcccgcggcc 400

ggggccggggc cggccgttag cggccgcgcc tggatgcgga cccggccgc 450

gggagacggg cgccgcgc gaaacgactt tcagtcggc acgcgcgc 500

cccaacccct acgatgaaga gggcgccgc tggagggagc cggctgtgg 550

catgggtgct gtggctgcag gcctggcagg tggcagcccc atgcccaggt 600

gcctgcgtat gctacaatga gccaagggtg acgacaagct gccccagca 650

gggcctgcag gctgtgcgc tggcatccc tgctgcgc cagcgcatct 700

tcctgcacgg caaccgcac tcgcgtgtgc cagctgcgc cttccgtgcc 750

tgccgcaacc tcaccatcct gtggctgcac tcgaatgtgc tggcccaaat 800

tgtatgcggct gccttcactg gcctggccct cctggagcag ctggacacta 850

gcgataatgc acagctccgg tctgtggacc ctgcccacatt ccacggcc 900

ggccgcctac acacgctgca cctggaccgc tgcggcctgc aggagctggg 950
cccgccccgtt ttccgcggcc tggctgccct gcagtacctc tacctgcagg 1000
acaacgcgct gcaggcactg cctgatgaca cttccgcga cctggcaac 1050
ctcacacacc tcttcctgca cggcaaccgc atctccagcg tgcccagcg 1100
cgccctccgt gggctgcaca gcctcgaccg tctctactg caccagaacc 1150
gcgtggccca tgtgcacccg catgccttcc gtgaccttgg ccgcctcatg 1200
acactctatc tgtttgccaa caatctatca gcgcgtgcac ctgaggccct 1250
ggcccccctg cgtgcctgc agtacctgag gctcaacgac aaccctggg 1300
tgtgtgactg ccgggcacgc ccactctggg cctggctgca gaagttccgc 1350
ggctcctcct ccgaggtgcc ctgcagccctc ccgcaacgac tggctggccg 1400
tgacctcaaa cgccttagctg ccaatgaccc gcaggctgc gctgtggcca 1450
ccggccctta ccatccatc tggaccggca gggccaccga tgaggagccg 1500
ctggggcttc ccaagtgcgt ccagccagat gccgctgaca aggccctcagt 1550
actggagccct ggaagaccag cttcggcagg caatgcgtg aagggacgcg 1600
tgccgccccgg tgacagcccg ccggcaacg gctctggccc acggcacatc 1650
aatgactcac cctttggac tctgcctggc tctgctgagc ccccgctcac 1700
tgcaagtgcgg cccgagggtcc ccgagccacc agggttcccc acctcgggcc 1750
ctcgccggag gccaggctgt tcacgcaaga accgcacccg cagccactgc 1800
cgtctgggcc aggcaggcag cgggggtggc gggactggtg actcagaagg 1850
ctcaggtgcc ctacccagcc tcacctgcag cctcacccccc ctgggcctgg 1900
cgctgggtct gtggacagtg cttggccct gctgacccccc agcggacaca 1950
agagcgtgt cagcagccag gtgtgtgtac atacgggtc tctctccacg 2000
ccgccaagcc agccgggcgg ccgacccgtg gggcaggcca ggccagggtcc 2050
tccctgatgg acgcctgccc cccgccaccc ccatctccac cccatcatgt 2100
ttacagggtt cggcggcagc gtttggcca gaacggcc tcccacccag 2150
atcgcggtat atagagatat gcattttatt ttacttgcgtt aaaaatatcg 2200
gacgacgtgg aataaagagc tctttctta aaaaaa 2236

<210> 400

<211> 473

<212> PRT
<213> Homo sapiens

<400> 400

Met	Lys	Arg	Ala	Ser	Ala	Gly	Gly	Ser	Arg	Leu	Leu	Ala	Trp	Val	
1					5				10						15
Leu	Trp	Leu	Gln	Ala	Trp	Gln	Val	Ala	Ala	Pro	Cys	Pro	Gly	Ala	
					20				25						30
Cys	Val	Cys	Tyr	Asn	Glu	Pro	Lys	Val	Thr	Thr	Ser	Cys	Pro	Gln	
					35				40						45
Gln	Gly	Leu	Gln	Ala	Val	Pro	Val	Gly	Ile	Pro	Ala	Ala	Ser	Gln	
					50				55						60
Arg	Ile	Phe	Leu	His	Gly	Asn	Arg	Ile	Ser	His	Val	Pro	Ala	Ala	
					65				70						75
Ser	Phe	Arg	Ala	Cys	Arg	Asn	Leu	Thr	Ile	Leu	Trp	Leu	His	Ser	
					80				85						90
Asn	Val	Leu	Ala	Arg	Ile	Asp	Ala	Ala	Ala	Phe	Thr	Gly	Leu	Ala	
					95				100						105
Leu	Leu	Glu	Gln	Leu	Asp	Leu	Ser	Asp	Asn	Ala	Gln	Leu	Arg	Ser	
					110				115						120
Val	Asp	Pro	Ala	Thr	Phe	His	Gly	Leu	Gly	Arg	Leu	His	Thr	Leu	
					125				130						135
His	Leu	Asp	Arg	Cys	Gly	Leu	Gln	Glu	Leu	Gly	Pro	Gly	Leu	Phe	
					140				145						150
Arg	Gly	Leu	Ala	Ala	Leu	Gln	Tyr	Leu	Tyr	Leu	Gln	Asp	Asn	Ala	
					155				160						165
Leu	Gln	Ala	Leu	Pro	Asp	Asp	Thr	Phe	Arg	Asp	Leu	Gly	Asn	Leu	
					170				175						180
Thr	His	Leu	Phe	Leu	His	Gly	Asn	Arg	Ile	Ser	Ser	Val	Pro	Glu	
					185				190						195
Arg	Ala	Phe	Arg	Gly	Leu	His	Ser	Leu	Asp	Arg	Leu	Leu	Leu	His	
					200				205						210
Gln	Asn	Arg	Val	Ala	His	Val	His	Pro	His	Ala	Phe	Arg	Asp	Leu	
					215				220						225
Gly	Arg	Leu	Met	Thr	Leu	Tyr	Leu	Phe	Ala	Asn	Asn	Leu	Ser	Ala	
					230				235						240
Leu	Pro	Thr	Glu	Ala	Leu	Ala	Pro	Leu	Arg	Ala	Leu	Gln	Tyr	Leu	
					245				250						255
Arg	Leu	Asn	Asp	Asn	Pro	Trp	Val	Cys	Asp	Cys	Arg	Ala	Arg	Pro	
					260				265						270

Leu Trp Ala Trp Leu Gln Lys Phe Arg Gly Ser Ser Ser Glu Val
275 280 285

Pro Cys Ser Leu Pro Gln Arg Leu Ala Gly Arg Asp Leu Lys Arg
290 295 300

Leu Ala Ala Asn Asp Leu Gln Gly Cys Ala Val Ala Thr Gly Pro
305 310 315

Tyr His Pro Ile Trp Thr Gly Arg Ala Thr Asp Glu Glu Pro Leu
320 325 330

Gly Leu Pro Lys Cys Cys Gln Pro Asp Ala Ala Asp Lys Ala Ser
335 340 345

Val Leu Glu Pro Gly Arg Pro Ala Ser Ala Gly Asn Ala Leu Lys
350 355 360

Gly Arg Val Pro Pro Gly Asp Ser Pro Pro Gly Asn Gly Ser Gly
365 370 375

Pro Arg His Ile Asn Asp Ser Pro Phe Gly Thr Leu Pro Gly Ser
380 385 390

Ala Glu Pro Pro Leu Thr Ala Val Arg Pro Glu Gly Ser Glu Pro
395 400 405

Pro Gly Phe Pro Thr Ser Gly Pro Arg Arg Arg Pro Gly Cys Ser
410 415 420

Arg Lys Asn Arg Thr Arg Ser His Cys Arg Leu Gly Gln Ala Gly
425 430 435

Ser Gly Gly Gly Thr Gly Asp Ser Glu Gly Ser Gly Ala Leu
440 445 450

Pro Ser Leu Thr Cys Ser Leu Thr Pro Leu Gly Leu Ala Leu Val
455 460 465

Leu Trp Thr Val Leu Gly Pro Cys
470

<210> 401

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 401

tggctgccct gcagttacctc tacc 24

<210> 402

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 402
ccctgcaggcattggcagc tagg 24

<210> 403

<211> 45

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 403
aggcactgcc tgatgacacc ttccgcgacc tggcaacct cacac 45

<210> 404

<211> 2738

<212> DNA

<213> Homo sapiens

<400> 404
ggaagtccac ggggagcttg gatgccaaag ggaggacggc tgggtcctct 50
ggagaggact actcaactggc atatttctga ggtatctgta gaataaccac 100
agcctcagat actggggact ttacagtccc acagaaccgt cctcccagga 150
agctgaatcc agcaagaaca atggaggcca gcgggaagct catttgcaga 200
caaaggcaag tccttttc ctttctcctt ttggccttat ctctggcggg 250
cgccgcggaa cctagaagct attctgttgtt ggaggaaact gagggcagct 300
ccttgcac caatttagca aaggacctgg gtctggagca gagggaaattc 350
tccaggcggg gggtaggt tgttccaga gggacaaac tacatttgc 400
gctcaatcag gagaccgcgg atttgttgtt aaatgagaaa ttggaccgtg 450
aggatctgtg cggtcacaca gagccctgtg tgctacgtt ccaagtgtt 500
ctagagagtc cttcgagtt tttcaagct gagctgcaag taatagacat 550
aaacgaccac tctccagttt ttctggacaa acaaattttg gtgaaagtat 600
cagagagcag tcctcctggg actacgttcc ctctgaagaa tgccgaagac 650
tttagatgttag gccaaaacaa tattgagaac tatataatca gccccaaactc 700
ctatttcgg gtcctcaccc gcaaacgcag tggatggcagg aaatacccg 750
agctggtgct ggacaaagcg ctggaccgag aggaagaagc tgagctcagg 800

ttaacactca cagcactgga tggtggctct ccgcccagat ctggcaactgc 850
tcaggtctac atcgaagtcc tggatgtcaa cgataatgcc cctgaatttg 900
agcagcctt ctataagatg cagatctctg aggacagtcc ggtaggctc 950
ctggttgtga aggtctctgc cacggatgta gacacaggag tcaacggaga 1000
gatttcctat tcactttcc aagcttcaga agagattggc aaaaccttta 1050
agatcaatcc cttgacagga gaaattgaac taaaaaaaca actcgattc 1100
gaaaaacttc agtcctatga agtcaatatt gaggcaagag atgctggaac 1150
cttttctgga aaatgcaccg ttctgattca agtcatagat gtgaacgacc 1200
atgccccaga agttaccatg tctgcattta ccagccaat acctgagaac 1250
gcgcctgaaa ctgtggttgc acttttcagt gtttcagatc ttgattcagg 1300
agaaaaatggg aaaatttagtt gctccattca ggaggatcta cccttcctcc 1350
tgaaatccgc ggaaaacttt tacaccctac taacggagag accactagac 1400
agagaaaagca gagcggaaa caacatcaat atcactgtca ctgacttggg 1450
gaccctatg ctgataaacac agtcataat gaccgtgctg atcgccgatg 1500
tcaatgacaa cgctcccgcc ttcacccaaä cctcctacac cctgttcgtc 1550
cgcgagaaca acagccccgc cctgcacatc cgcaagcgtca gcgcgtacaga 1600
cagagactca ggcaccaacg cccaggtcac ctactcgctg ctgcccggcc 1650
aggacccgca cctgcccctc acatccctgg tctccatcaa cgccgacaac 1700
ggccacctgt tcgcccctag gtctctggac tacgaggccc tgcaggggtt 1750
ccagttccgc gtggcgctt cagaccacgg ctccccggcg ctgagcagcg 1800
aggcgctggt gcgcgtggtg gtgcgtggacg ccaacgacaa ctcgcccctc 1850
gtgcgttacc cgctgcagaa cggctccgcg ccctgcacccg agctggtgcc 1900
ccggcgccc gagccggct acctggtgac caaggtggtg gcgggtggacg 1950
gcgactcggg ccagaacgccc tggctgtcgt accagctgct caaggccacg 2000
gagctcggtc tggtcggcgt gtggcgac aatggcgagg tgcgcaccgc 2050
caggctgctg agcgagcgcg acgcggccaa gcacaggctg gtggtgctgg 2100
tcaaggacaa tggcgagcct ccgcgcgtcgg ccacccgcac gctgcacgtg 2150
ctcctggtgg acggcttctc ccagccctac ctgcctctcc cggaggcggc 2200
cccgacccag gcccaggccg acttgctcac cgtctacactg gtggtggcgt 2250

tggcctcggt gtcttcgctc ttcctctttt cggtgctcct gttcgtggcg 2300
gtgcggctgt gtaggaggag cagggcggcc tcggtggtc gctgcttgg 2350
gccccgagggc ccccttccag ggcacatcttgt ggacatgagc ggcaccagga 2400
ccctatccca gagctaccag tatgaggtgt gtctggcagg aggctcaggg 2450
accaatgagt tcaagttcct gaagccgatt atcccaact tccctccca 2500
gtgccctggg aaagaatac aaggaaattc taccttcccc aataacttg 2550
ggttcaatat tcagtgacca tagttgactt ttacattcca taggtat 2600
attttgtggc atttccatgc caatgtttat ttcccccaat ttgtgttat 2650
gtaatattgt acggatttac tcttgatttt tctcatgttc tttctccctt 2700
tgaaaaaag tgaacattta cctttattcc tggttctt 2738

<210> 405

<211> 798

<212> PRT

<213> Homo sapiens

<400> 405

Met	Glu	Ala	Ser	Gly	Lys	Leu	Ile	Cys	Arg	Gln	Arg	Gln	Val	Leu	
1									10						15
Phe	Ser	Phe	Leu	Leu	Gly	Leu	Ser	Leu	Ala	Gly	Ala	Ala	Glu		
			20					25						30	
Pro	Arg	Ser	Tyr	Ser	Val	Val	Glu	Glu	Thr	Glu	Gly	Ser	Ser	Phe	
					35				40					45	
Val	Thr	Asn	Leu	Ala	Lys	Asp	Leu	Gly	Leu	Glu	Gln	Arg	Glu	Phe	
				50					55					60	
Ser	Arg	Arg	Gly	Val	Arg	Val	Val	Ser	Arg	Gly	Asn	Lys	Leu	His	
				65					70					75	
Leu	Gln	Leu	Asn	Gln	Glu	Thr	Ala	Asp	Leu	Leu	Leu	Asn	Glu	Lys	
				80					85					90	
Leu	Asp	Arg	Glu	Asp	Leu	Cys	Gly	His	Thr	Glu	Pro	Cys	Val	Leu	
				95					100					105	
Arg	Phe	Gln	Val	Leu	Leu	Glu	Ser	Pro	Phe	Glu	Phe	Phe	Gln	Ala	
				110					115					120	
Glu	Leu	Gln	Val	Ile	Asp	Ile	Asn	Asp	His	Ser	Pro	Val	Phe	Leu	
				125					130					135	
Asp	Lys	Gln	Met	Leu	Val	Lys	Val	Ser	Glu	Ser	Ser	Pro	Pro	Gly	
				140					145					150	

Thr Thr Phe Pro Leu Lys Asn Ala Glu Asp Leu Asp Val Gly Gln
155 160 165

Asn Asn Ile Glu Asn Tyr Ile Ile Ser Pro Asn Ser Tyr Phe Arg
170 175 180

Val Leu Thr Arg Lys Arg Ser Asp Gly Arg Lys Tyr Pro Glu Leu
185 190 195

Val Leu Asp Lys Ala Leu Asp Arg Glu Glu Glu Ala Glu Leu Arg
200 205 210

Leu Thr Leu Thr Ala Leu Asp Gly Gly Ser Pro Pro Arg Ser Gly
215 220 225

Thr Ala Gln Val Tyr Ile Glu Val Leu Asp Val Asn Asp Asn Ala
230 235 240

Pro Glu Phe Glu Gln Pro Phe Tyr Arg Val Gln Ile Ser Glu Asp
245 250 255

Ser Pro Val Gly Phe Leu Val Val Lys Val Ser Ala Thr Asp Val
260 265 270

Asp Thr Gly Val Asn Gly Glu Ile Ser Tyr Ser Leu Phe Gln Ala
275 280 285

Ser Glu Glu Ile Gly Lys Thr Phe Lys Ile Asn Pro Leu Thr Gly
290 295 300

Glu Ile Glu Leu Lys Lys Gln Leu Asp Phe Glu Lys Leu Gln Ser
305 310 315

Tyr Glu Val Asn Ile Glu Ala Arg Asp Ala Gly Thr Phe Ser Gly
320 325 330

Lys Cys Thr Val Leu Ile Gln Val Ile Asp Val Asn Asp His Ala
335 340 345

Pro Glu Val Thr Met Ser Ala Phe Thr Ser Pro Ile Pro Glu Asn
350 355 360

Ala Pro Glu Thr Val Val Ala Leu Phe Ser Val Ser Asp Leu Asp
365 370 375

Ser Gly Glu Asn Gly Lys Ile Ser Cys Ser Ile Gln Glu Asp Leu
380 385 390

Pro Phe Leu Leu Lys Ser Ala Glu Asn Phe Tyr Thr Leu Leu Thr
395 400 405

Glu Arg Pro Leu Asp Arg Glu Ser Arg Ala Glu Tyr Asn Ile Thr
410 415 420

Ile Thr Val Thr Asp Leu Gly Thr Pro Met Leu Ile Thr Gln Leu
425 430 435

Asn Met Thr Val Leu Ile Ala Asp Val Asn Asp Asn Ala Pro Ala
440 445 450

Phe Thr Gln Thr Ser Tyr Thr Leu Phe Val Arg Glu Asn Asn Ser
455 460 465

Pro Ala Leu His Ile Arg Ser Val Ser Ala Thr Asp Arg Asp Ser
470 475 480

Gly Thr Asn Ala Gln Val Thr Tyr Ser Leu Leu Pro Pro Gln Asp
485 490 495

Pro His Leu Pro Leu Thr Ser Leu Val Ser Ile Asn Ala Asp Asn
500 505 510

Gly His Leu Phe Ala Leu Arg Ser Leu Asp Tyr Glu Ala Leu Gln
515 520 525

Gly Phe Gln Phe Arg Val Gly Ala Ser Asp His Gly Ser Pro Ala
530 535 540

Leu Ser Ser Glu Ala Leu Val Arg Val Val Val Leu Asp Ala Asn
545 550 555

Asp Asn Ser Pro Phe Val Leu Tyr Pro Leu Gln Asn Gly Ser Ala
560 565 570

Pro Cys Thr Glu Leu Val Pro Arg Ala Ala Glu Pro Gly Tyr Leu
575 580 585

Val Thr Lys Val Val Ala Val Asp Gly Asp Ser Gly Gln Asn Ala
590 595 600

Trp Leu Ser Tyr Gln Leu Leu Lys Ala Thr Glu Leu Gly Leu Phe
605 610 615

Gly Val Trp Ala His Asn Gly Glu Val Arg Thr Ala Arg Leu Leu
620 625 630

Ser Glu Arg Asp Ala Ala Lys His Arg Leu Val Val Leu Val Lys
635 640 645

Asp Asn Gly Glu Pro Pro Arg Ser Ala Thr Ala Thr Leu His Val
650 655 660

Leu Leu Val Asp Gly Phe Ser Gln Pro Tyr Leu Pro Leu Pro Glu
665 670 675

Ala Ala Pro Thr Gln Ala Gln Ala Asp Leu Leu Thr Val Tyr Leu
680 685 690

Val Val Ala Leu Ala Ser Val Ser Ser Leu Phe Leu Phe Ser Val
695 700 705

Leu Leu Phe Val Ala Val Arg Leu Cys Arg Arg Ser Arg Ala Ala
710 715 720

Ser Val Gly Arg Cys Leu Val Pro Glu Gly Pro Leu Pro Gly His
725 730 735

Leu Val Asp Met Ser Gly Thr Arg Thr Leu Ser Gln Ser Tyr Gln
740 745 750

Tyr Glu Val Cys Leu Ala Gly Gly Ser Gly Thr Asn Glu Phe Lys
755 760 765

Phe Leu Lys Pro Ile Ile Pro Asn Phe Pro Pro Gln Cys Pro Gly
770 775 780

Lys Glu Ile Gln Gly Asn Ser Thr Phe Pro Asn Asn Phe Gly Phe
785 790 795

Asn Ile Gln

<210> 406

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 406

ctgagaacgc gcctgaaaact gtg 23

<210> 407

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 407

agcgttgtca ttgacatcgg cg 22

<210> 408

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 408

ttagttgctc cattcaggag gatctaccct tcctcctgaa atccgcggaa 50

<210> 409

<211> 1379

<212> DNA

<213> Homo sapiens

<400> 409

acccacgcgt ccgcccacgc gtccgcccac gcgtccgccc acgcgtccgc 50
cgtagccgt ggcggattt cctctggcc tggcaatgg tccccgtgc 100
cggtcgacga ccggcccgcg tcatgcggct cctcggtgg tggcaagtat 150
tgctgtgggt gctggactt cccgtcccg cggtggaggt tgcaaggaa 200
agtggtcgt tatggtcaga ggagcagcct gctcacccctc tccaggtgg 250
ggctgtgtac ctgggtgagg aggagctcct gcatgaccgg atgggccagg 300
acagggcagc agaagaggcc aatgcgggtgc tgggctgga cacccaaggc 350
gatcacatgg ttagtgcgtc tgtgattcct gggaaagctg aggacaaagt 400
gagttcagag cctagcggcg tcacctgtgg tgctggagga gcggaggact 450
caaggtgcaa cgtccgagag agcctttct ctctggatgg cgctggagca 500
cacttccctg acagagaaga ggagtattac acagagccag aagtggcgga 550
atctgacgca gccccgacag aggactccaa taacactgaa agtctgaaat 600
ccccaaaggt gaactgtgag gagagaaaaca ttacaggatt agaaaatttc 650
actctgaaaa tttaaatat gtcacaggac cttatggatt ttctgaaccc 700
aaacggtagt gactgtactc tagtcctgtt ttacaccccg tggtgccgct 750
tttctgccag ttggccct cacttaact ctctgccccg ggcatttcca 800
gctttcact tttggcact ggtgcatac cagcacagca gccttctac 850
caggttggc accgttagctg ttcctaataat ttattattt caaggagcta 900
aaccaatggc cagatttaat catacagatc gaacactgga aacactgaaa 950
atcttcattt ttaatcagac aggtatagaa gccaagaaga atgtggtggt 1000
aactcaagcc gaccaaatac gcccctttcc cagcactttt ataaaaagtg 1050
tggactggtt gcttgtattt tccttattct tttaatttag ttattttatg 1100
tatgctacca ttcaactga gagtattcg tggctaattc caggacaaga 1150
gcaggaacat gtggagtagt gatggtctga aagaagttgg aaagaggaac 1200
ttcaatcctt cgtttcagaa attagtgcata cagtttcata cattttctcc 1250
agtgacgtgt tgacttgaaa cttcaggcag attaaaagaa tcatttgg 1300
aacaactgaa tgtataaaaa aattataaac tggtgttttta actagtattt 1350
caataagcaa atgcaaaaat attcaatag 1379

<211> 360
<212> PRT
<213> Homo sapiens

<400> 410
Met Val Pro Ala Ala Gly Arg Arg Pro Pro Arg Val Met Arg Leu
1 5 10 15

Leu Gly Trp Trp Gln Val Leu Leu Trp Val Leu Gly Leu Pro Val
20 25 30

Arg Gly Val Glu Val Ala Glu Glu Ser Gly Arg Leu Trp Ser Glu
35 40 45

Glu Gln Pro Ala His Pro Leu Gln Val Gly Ala Val Tyr Leu Gly
50 55 60

Glu Glu Glu Leu Leu His Asp Pro Met Gly Gln Asp Arg Ala Ala
65 70 75

Glu Glu Ala Asn Ala Val Leu Gly Leu Asp Thr Gln Gly Asp His
80 85 90

Met Val Met Leu Ser Val Ile Pro Gly Glu Ala Glu Asp Lys Val
95 100 105

Ser Ser Glu Pro Ser Gly Val Thr Cys Gly Ala Gly Gly Ala Glu
110 115 120

Asp Ser Arg Cys Asn Val Arg Glu Ser Leu Phe Ser Leu Asp Gly
125 130 135

Ala Gly Ala His Phe Pro Asp Arg Glu Glu Glu Tyr Tyr Thr Glu
140 145 150

Pro Glu Val Ala Glu Ser Asp Ala Ala Pro Thr Glu Asp Ser Asn
155 160 165

Asn Thr Glu Ser Leu Lys Ser Pro Lys Val Asn Cys Glu Glu Arg
170 175 180

Asn Ile Thr Gly Leu Glu Asn Phe Thr Leu Lys Ile Leu Asn Met
185 190 195

Ser Gln Asp Leu Met Asp Phe Leu Asn Pro Asn Gly Ser Asp Cys
200 205 210

Thr Leu Val Leu Phe Tyr Thr Pro Trp Cys Arg Phe Ser Ala Ser
215 220 225

Leu Ala Pro His Phe Asn Ser Leu Pro Arg Ala Phe Pro Ala Leu
230 235 240

His Phe Leu Ala Leu Asp Ala Ser Gln His Ser Ser Leu Ser Thr
245 250 255

Arg Phe Gly Thr Val Ala Val Pro Asn Ile Leu Leu Phe Gln Gly

	260	265	270
Ala Lys Pro Met Ala Arg Phe Asn His Thr Asp Arg Thr Leu Glu			
275	280	285	
Thr Leu Lys Ile Phe Ile Phe Asn Gln Thr Gly Ile Glu Ala Lys			
290	295	300	
Lys Asn Val Val Val Thr Gln Ala Asp Gln Ile Gly Pro Leu Pro			
305	310	315	
Ser Thr Leu Ile Lys Ser Val Asp Trp Leu Leu Val Phe Ser Leu			
320	325	330	
Phe Phe Leu Ile Ser Phe Ile Met Tyr Ala Thr Ile Arg Thr Glu			
335	340	345	
Ser Ile Arg Trp Leu Ile Pro Gly Gln Glu Gln Glu His Val Glu			
350	355	360	
<210> 411			
<211> 24			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Synthetic oligonucleotide probe			
<400> 411			
cacagagcca gaagtggcgg aatc 24			
<210> 412			
<211> 25			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Synthetic oligonucleotide probe			
<400> 412			
ccacatgttc ctgctttgt cctgg 25			
<210> 413			
<211> 45			
<212> DNA			
<213> Artificial Sequence			
<220>			
<223> Synthetic oligonucleotide probe			
<400> 413			
cggttagtgac tgtactctag tcctgtttta cacccgtgg tgccg 45			
<210> 414			
<211> 1196			
<212> DNA			
<213> Homo sapiens			

.

<400> 414
ccgggctcg ctccctctgc cccctcgaaa tcgcgcgccc acgatgctgc 50
aggcccctgg ctgcgtgctg ctgctttcc tcgcctcgca ctgctgcctg 100
ggctcggcgc gcgggctt cctttggc cagccgact tctcctacaa 150
gcgcagcaat tgcaagccca tcccggtcaa cctgcagctg tgccacggca 200
tcgaataccca gaacatgcgg ctgcccacc tgctggcca cgagaccatg 250
aaggagggtgc tggagcaggc cggcgcttgg atcccgctgg tcatgaagca 300
gtgccacccg gagaccaaga agttcctgtg ctgcgttcc gccccgtct 350
gcctcgatga cctagacgag accatccagc catgccactc gctctgcgtg 400
caggtgaagg accgctgcgc cccggcatg tccgccttcg gcttccctg 450
gccccacatg cttgagtgcg accgtttccc ccaggacaac gacctttgca 500
tccccctcgc tagcagcgac cacccctgc cagccaccga ggaagctcca 550
aaggtatgtg aagcctgcaa aaataaaaat gatgatgaca acgacataat 600
ggaaacgctt tgtaaaaatg attttgcact gaaaataaaa gtgaaggaga 650
taacctacat caaccgagat accaaaatca tcctggagac caagagcaag 700
accatttaca agctgaacgg tgtgtccgaa agggacctga agaaatcggt 750
gctgtggctc aaagacagct tgcagtgcac ctgtgaggag atgaacgaca 800
tcaacgcgcc ctagctggtc atgggacaga aacagggtgg ggagctggtg 850
atcacctcgg tgaagcggtg gcagaagggg cagagaggt tcaagcgcat 900
ctcccgcagc atccgcaagc tgcagtgcata gtccggcat cctgatggct 950
ccgacaggcc tgctccagag cacggctgac catttctgct ccgggatctc 1000
agctcccggt ccccaagcac actccctagct gctccagtct cagcctggc 1050
agcttccccc tgcctttgc acgtttgcatt ccccagcatt tcctgagtt 1100
taaggccaca ggagtggata gctgtttca cctaaaggaa aagcccaccc 1150
gaatcttgta gaaatattca aactaataaa atcatgaata ttttaa 1196

<210> 415
<211> 295
<212> PRT
<213> Homo sapiens

<400> 415
Met Leu Gln Gly Pro Gly Ser Leu Leu Leu Leu Phe Leu Ala Ser

1	5	10	15
His Cys Cys Leu Gly Ser Ala Arg Gly Leu Phe Leu Phe Gly Gln			
20	25		30
Pro Asp Phe Ser Tyr Lys Arg Ser Asn Cys Lys Pro Ile Pro Val			
35	40		45
Asn Leu Gln Leu Cys His Gly Ile Glu Tyr Gln Asn Met Arg Leu			
50	55		60
Pro Asn Leu Leu Gly His Glu Thr Met Lys Glu Val Leu Glu Gln			
65	70		75
Ala Gly Ala Trp Ile Pro Leu Val Met Lys Gln Cys His Pro Asp			
80	85		90
Thr Lys Lys Phe Leu Cys Ser Leu Phe Ala Pro Val Cys Leu Asp			
95	100		105
Asp Leu Asp Glu Thr Ile Gln Pro Cys His Ser Leu Cys Val Gln			
110	115		120
Val Lys Asp Arg Cys Ala Pro Val Met Ser Ala Phe Gly Phe Pro			
125	130		135
Trp Pro Asp Met Leu Glu Cys Asp Arg Phe Pro Gln Asp Asn Asp			
140	145		150
Leu Cys Ile Pro Leu Ala Ser Ser Asp His Leu Leu Pro Ala Thr			
155	160		165
Glu Glu Ala Pro Lys Val Cys Glu Ala Cys Lys Asn Lys Asn Asp			
170	175		180
Asp Asp Asn Asp Ile Met Glu Thr Leu Cys Lys Asn Asp Phe Ala			
185	190		195
Leu Lys Ile Lys Val Lys Glu Ile Thr Tyr Ile Asn Arg Asp Thr			
200	205		210
Lys Ile Ile Leu Glu Thr Lys Ser Lys Thr Ile Tyr Lys Leu Asn			
215	220		225
Gly Val Ser Glu Arg Asp Leu Lys Lys Ser Val Leu Trp Leu Lys			
230	235		240
Asp Ser Leu Gln Cys Thr Cys Glu Glu Met Asn Asp Ile Asn Ala			
245	250		255
Pro Tyr Leu Val Met Gly Gln Lys Gln Gly Gly Glu Leu Val Ile			
260	265		270
Thr Ser Val Lys Arg Trp Gln Lys Gly Gln Arg Glu Phe Lys Arg			
275	280		285
Ile Ser Arg Ser Ile Arg Lys Leu Gln Cys			

<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 416
cctggctcg tgcgtgc c 21

<210> 417
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 417
cctcacaggt gcaactgcaag ctgtc 25

<210> 418
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 418
ctcttcctct ttggccagcc cgacttctcc tacaaggcgca gaattgc 47

<210> 419
<211> 1830
<212> DNA
<213> Homo sapiens

<400> 419
gtggaggccg ccgacgatgg cggggccgac ggaggccgag acggggttgg 50
ccgagccccg ggccctgtgc ggcgcggg gccaccgcac ctacgcgcgc 100
cgctgggtgt tcctgctcg c gatcagcctg ctcaactgct ccaacgcccac 150
gctgtggctc agcttgac c t g t g c a c c t g t g a c g t c a t t g c t g a t t g g 200
tcctgtccat ggagcagatc aactggctgt cactggctca cctcgtggta 250
tccacccat ttggcgtggc ggccatctgg atcctggact ccgtcgggct 300
ccgtgcggcg accatcctgg gtgcgtggct gaacttgcc gggagtgtgc 350
tacgcatggt gccctgcattt gttgttggga cccaaaaccc atttgccttc 400

ctcatgggtg gccagagcct ctgtgccctt gcccagagcc tggtcatctt 450
ctctccagcc aagctggctg ctttgtggtt cccagagcac cagcgagcca 500
cggccaacat gctgccacc atgtcgaacc ctctggcgt cttgtggcc 550
aatgtgctgt cccctgtgct ggtcaagaag ggtgaggaca ttccgttaat 600
gctcggtgtc tataccatcc ctgctggcgt cgtctgcctg ctgtccacca 650
tctgcctgtg ggagagtgtg ccccccaccc cgccctctgc cggggctgcc 700
agctccacct cagagaagtt cctggatggg ctcaagctgc agctcatgtg 750
gaacaaggcc tatgtcatcc tggctgtgtg cttgggggaa atgatcgga 800
tctctgccag cttctcagcc ctcctggagc agatcctctg tgcaagcggc 850
cactccagtg gttttccgg cctctgtggc gctctttca tcacgtttgg 900
gatcctgggg gcactggctc tcggcccccta tgtggaccgg accaagcact 950
tcactgaggc caccaagatt ggcctgtgcc tttctctct ggcctgcgtg 1000
ccctttgccc tgggtccccca gctgcaggga cagacccttg ccctggctgc 1050
cacctgctcg ctgctcgggc tgggggctt ctcgggtggc cccgtggcca 1100
tggagttggc ggtcgagtgt tccttccccg tgggggaggg ggctgccaca 1150
ggcatgatct ttgtgctggg gcaggccgag ggaatactca tcatgctggc 1200
aatgacggca ctgactgtgc gacgctcgga gccgtccttgc tccacactgcc 1250
agcagggggaa ggatccactt gactggacag tgtctctgt gctgatggcc 1300
ggcctgtgca ctttttcag ctgcattctg gcggtcttct tccacacccc 1350
ataccggcgc ctgcaggccg agtctgggaa gccccctcc acccgtaaact 1400
ccgtggccgg cgcaactca gggccgggtg tggaccgagg gggagcagga 1450
agggctgggg tcctggggcc cagcacggcg actccggagt gcacggcgag 1500
gggggcctcg ctagaggacc ccagaggccc cgggagcccc cacccagcct 1550
gccaccgagc gactccccgt ggcgaaggcc cagcagccac cgacgcggcc 1600
tcccgccccg gcagactcgc aggcaagggtc caagcgtcca gtttattga 1650
cccggtggg tctcactctt ctttcctc cccgtgggtg atcacgtac 1700
tgagcgcctt gtagtccagg ttgcccccca catcgatgga ggcgaactgg 1750
aacatctggt ccacctgcgg gcgggggcga aagggtcct tgcgggctcc 1800
gggagcgaat tacaagcgcg cacctgaaaa 1830

<210> 420
<211> 560
<212> PRT
<213> Homo sapiens

<400> 420
Met Ala Gly Pro Thr Glu Ala Glu Thr Gly Leu Ala Glu Pro Arg
1 5 10 15

Ala Leu Cys Ala Gln Arg Gly His Arg Thr Tyr Ala Arg Arg Trp
20 25 30

Val Phe Leu Leu Ala Ile Ser Leu Leu Asn Cys Ser Asn Ala Thr
35 40 45

Leu Trp Leu Ser Phe Ala Pro Val Ala Asp Val Ile Ala Glu Asp
50 55 60

Leu Val Leu Ser Met Glu Gln Ile Asn Trp Leu Ser Leu Val Tyr
65 70 75

Leu Val Val Ser Thr Pro Phe Gly Val Ala Ala Ile Trp Ile Leu
80 85 90

Asp Ser Val Gly Leu Arg Ala Ala Thr Ile Leu Gly Ala Trp Leu
95 100 105

Asn Phe Ala Gly Ser Val Leu Arg Met Val Pro Cys Met Val Val
110 115 120

Gly Thr Gln Asn Pro Phe Ala Phe Leu Met Gly Gly Gln Ser Leu
125 130 135

Cys Ala Leu Ala Gln Ser Leu Val Ile Phe Ser Pro Ala Lys Leu
140 145 150

Ala Ala Leu Trp Phe Pro Glu His Gln Arg Ala Thr Ala Asn Met
155 160 165

Leu Ala Thr Met Ser Asn Pro Leu Gly Val Leu Val Ala Asn Val
170 175 180

Leu Ser Pro Val Leu Val Lys Gly Glu Asp Ile Pro Leu Met
185 190 195

Leu Gly Val Tyr Thr Ile Pro Ala Gly Val Val Cys Leu Leu Ser
200 205 210

Thr Ile Cys Leu Trp Glu Ser Val Pro Pro Thr Pro Pro Ser Ala
215 220 225

Gly Ala Ala Ser Ser Thr Ser Glu Lys Phe Leu Asp Gly Leu Lys
230 235 240

Leu Gln Leu Met Trp Asn Lys Ala Tyr Val Ile Leu Ala Val Cys
245 250 255

Leu Gly Gly Met Ile Gly Ile Ser Ala Ser Phe Ser Ala Leu Leu
260 265 270

Glu Gln Ile Leu Cys Ala Ser Gly His Ser Ser Gly Phe Ser Gly
275 . 280 285

Leu Cys Gly Ala Leu Phe Ile Thr Phe Gly Ile Leu Gly Ala Leu
290 295 300

Ala Leu Gly Pro Tyr Val Asp Arg Thr Lys His Phe Thr Glu Ala
305 310 315

Thr Lys Ile Gly Leu Cys Leu Phe Ser Leu Ala Cys Val Pro Phe
320 . 325 330

Ala Leu Val Ser Gln Leu Gln Gly Gln Thr Leu Ala Leu Ala Ala
335 340 345

Thr Cys Ser Leu Leu Gly Leu Phe Gly Phe Ser Val Gly Pro Val
350 355 360

Ala Met Glu Leu Ala Val Glu Cys Ser Phe Pro Val Gly Glu Gly
365 370 375

Ala Ala Thr Gly Met Ile Phe Val Leu Gly Gln Ala Glu Gly Ile
380 385 390

Leu Ile Met Leu Ala Met Thr Ala Leu Thr Val Arg Arg Ser Glu
395 400 405

Pro Ser Leu Ser Thr Cys Gln Gln Gly Glu Asp Pro Leu Asp Trp
410 415 420

Thr Val Ser Leu Leu Met Ala Gly Leu Cys Thr Phe Phe Ser
425 430 435

Cys Ile Leu Ala Val Phe Phe His Thr Pro Tyr Arg Arg Leu Gln
440 445 450

Ala Glu Ser Gly Glu Pro Pro Ser Thr Arg Asn Ala Val Gly Gly
455 460 465

Ala Asp Ser Gly Pro Gly Val Asp Arg Gly Gly Ala Gly Arg Ala
470 475 480

Gly Val Leu Gly Pro Ser Thr Ala Thr Pro Glu Cys Thr Ala Arg
485 490 495

Gly Ala Ser Leu Glu Asp Pro Arg Gly Pro Gly Ser Pro His Pro
500 505 510

Ala Cys His Arg Ala Thr Pro Arg Ala Gln Gly Pro Ala Ala Thr
515 520 525

Asp Ala Pro Ser Arg Pro Gly Arg Leu Ala Gly Arg Val Gln Ala
530 535 540

Ser Arg Phe Ile Asp Pro Ala Gly Ser His Ser Ser Phe Ser Ser
545 550 555

Pro Trp Val Ile Thr
560

<210> 421
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 421
agcttctcag ccctcctgga gcag 24

<210> 422
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 422
cgggtaata aacctggacg cttgg 25

<210> 423
<211> 43
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 423
tatgtggacc ggaccaagca cttcaactgag gccaccaaga ttg 43

<210> 424
<211> 4313
<212> DNA
<213> Homo sapiens

<400> 424
gtcccacatc ctgctcaact gggtcaggc cctcttagac cagctttgt 50
ccatcatttg ctgaagtggc ccaactagtt ccccaatggg gggctcccc 100
tggcaattct tgatcggcgt ttggacatct cagatcgctt ccaatgaaga 150
tggccttgcc ttggggtcct gcttgcgttca taatcatcta actatggac 200
aagggttgtgc cggcagctct gggggaaagga gcacgggct gatcaagcca 250
tccaggaaac actggaggac ttgtccagcc ttgaaaacaac tcttagtggtt 300

tctgaatcta gcccacttgg cggttaagcat gatgcaactt ctgcaacttc 350
tgctggggct tttggggcca ggtggctact tatttctttt aggggattgt 400
caggaggtga ccactctcac ggtgaaatac caagtgtcag aggaagtgcc 450
atctggtaca gtgatcgaaa agctgtccca ggaactgggc cgggaggaga 500
ggcggaggca agctggggcc gccttccagg tggtgcagct gcctcaggcg 550
ctccccattc aggtggactc tgaggaaggc ttgctcagca caggcaggcg 600
gctggatcga gagcagctgt gccgacagtg ggatccctgc ctggtttct 650
ttgatgtgct tgccacaggg gatttggctc tgatccatgt ggagatccaa 700
gtgctggaca tcaatgacca ccagccacgg tttcccaaag gcgagcagga 750
gctggaaatc tctgagagcg cctctctgcg aaccggatc cccctggaca 800
gagctcttga cccagacaca ggccctaaca ccctgcacac ctacactctg 850
tctcccagtg agcactttgc cttggatgtc attgtggcc ctgatgagac 900
caaacatgca gaactcatag tggtaagga gctggacagg gaaatccatt 950
catttttga tctggtgtta actgcctatg acaatggaa cccccc当地 1000
tcaggtacca gcttggtcaa ggtcaacgtc ttggactcca atgacaatag 1050
ccctgcgtt gctgagagtt cactggact ggaaatccaa gaagatgctg 1100
cacctggtagc gcttctcata aaactgaccc ccacagaccc tgaccaaggc 1150
cccaatgggg aggtggagtt cttcctcagt aagcacatgc ctccagaggt 1200
gctggacacc ttcaatgtt atgccaagac aggccaggc attctgcgtc 1250
gacctctaga ctatgaaaag aaccctgcct acgaggtgga tggtcaggca 1300
agggacctgg gtcccaatcc tatcccagcc cattgcaaag ttctcatcaa 1350
ggttctggat gtcaatgaca acatccaaag catccacgtc acatgggc当地 1400
cccagccatc actgggtgtca gaagctcttc ccaaggacag ttttattgtc 1450
cttgcgtt cagatgactt ggattcagga cacaatggtt tggtccactg 1500
ctggctgagc caagagctgg gccacttcag gctgaaaaga actaatggca 1550
acacatacat gttgctaacc aatgccacac tggacagaga gcagtggccc 1600
aaatataacc tcactctgtt agcccaagac caaggactcc agcccttatac 1650
agccaaagaaa cagctcagca ttcaatgtc tgacatcaac gacaatgcac 1700

ctgtgtttga gaaaagcagg tatgaagtct ccacgcggga aaacaactta 1750
ccctctcttc acctcattac catcaaggtt catgatgcag acttggcat 1800
taatggaaaa gtctcataacc gcatccagga ctccccagtt gctcacttag 1850
tagctattga ctccaacaca ggagaggta ctgctcagag gtcactgaac 1900
tatgaagaga tggccggctt tgagttccag gtgatgcag aggacagcgg 1950
gcaacccatg cttgcatcca gtgtctctgt gtgggtcagc ctcttggatg 2000
ccaatgataa tgccccagag gtggtccagc ctgtgctcag cgatggaaaa 2050
gccagcctct ccgtgcttgt gaatgcctcc acaggccacc tgctggtgcc 2100
catcgagact cccaatggct tgggcccagc gggcaactgac acacctccac 2150
tggccactca cagctccgg ccattccttt tgacaaccat tgtggcaaga 2200
gatgcagact cggggcaaa tggagagccc ctctacagca tccgcaatgg 2250
aaatgaagcc cacctttca tcctcaaccc tcatacgggg cagctgttcg 2300
tcaatgtcac caatgccagc agcctcattt ggagtgagtg ggagctggag 2350
atagtagtag aggaccaggg aagccccccc ttacagaccc gagccctgtt 2400
gagggtcatg tttgtcacca gtgtggacca cctgaggac tcagcccgca 2450
agcctggggc cttgagcatg tcgatgctga cggtgatctg cctggctgta 2500
ctgttgggca tcttcgggtt gatcctggct ttgttcatgt ccatctgccc 2550
gacagaaaaag aaggacaaca gggcctacaa ctgtcgggag gccgagtcca 2600
cctaccgcca gcagcccaag aggccccaga aacacattca gaaggcagac 2650
atccacctcg tgcctgtgct caggggtcag gcaggtgagc cttgtgaagt 2700
cgggcagtcc cacaaggatg tggacaaggaa ggcgtatgtt gaagcaggct 2750
gggacccttg cctgcaggcc cccttccacc tcaccccgac cctgtacagg 2800
acgctgcgta atcaaggcaa ccagggagca ccggcggaga gccgagaggt 2850
gctgcaagac acggtaacc tcctttcaa ccatcccgagg cagaggaatg 2900
cctcccgaaa gaacctgaac cttcccgagc cccagcctgc cacaggccag 2950
ccacgttcca ggcctctgaa gttgcaggc agccccacag ggaggctggc 3000
tggagaccag ggcagtgagg aagccccaca gaggccacca gcctcctctg 3050
caaccctgag acggcagcga catctcaatg gcaaagtgtc ccctgagaaa 3100
gaatcagggc cccgtcagat cctgcggagc ctggtccggc tgtctgtggc 3150

tgccctcgcc gagcggAACCC ccgtggagga gctcaCTGTG gattctcCTC 3200
ctgttcAGCA aatctcccAG ctgctgtcCT tgctgcATCA gggccaATTc 3250
cagccccAAAC caaaccACCG aggaAATAAG tacttggCCA agccaggAGG 3300
cagcaggAGT gcaatcccAG acacAGATGG cccaaGTgCA agggctggAG 3350
gccagacAGA cccagaACAG gagGAAGGGC ctTTggATCC tgaAGAGGAC 3400
ctctctgtGA agcaactgCT agaAGAAGAG ctgtcaAGTC tgctggACCC 3450
cagcacAGGT ctggccCTGG accggctgAG cgccCCTgAC ccggcCTGG 3500
tggcgagACT ctcttgcCC ctcaccACCA actaccGTgA caatgtgATC 3550
tccccggATG ctgcagCCAC ggaggAGGCC aggacCTTC AGACGTTG 3600
caaggcAGAG gcaccAGAGC tgAGCCCAAC aggCACGAGG ctggccAGCA 3650
cctttgtCTC ggagatgAGC tcactgCTGG agatgCTgCT ggaacAGCGC 3700
tccagcatGC ccgtggAGGC cgcctccAG GCGCTGCGC ggctctcgGT 3750
ctgcgggAGG accctcAGTT tagacttggC caccAGTGCA gcctcaggCA 3800
tgaaaAGTGCA aggggACCCA ggtggAAAGA cggggACTgA gggcaAGAGC 3850
agaggcAGCA gcagcAGCAG caggtgcCTG tgaacataCC tcagacgcCT 3900
ctggatccAA gaaccAGGGG CCTgAGGATC tgtggACAAG agctggTTc 3950
taaaatcttG taactcACTA gctAGCGGCg gcctgAGAAC tttagggTgA 4000
ctgatgCTAC ccccACAGAG gaggCAAGAG ccccAGGACT AACAGCTgAC 4050
tgaccaaAGC agccCCTGT aAGCAGCTCt gagtctttG gaggACAGGG 4100
acggTTTGTG gctgAgATAA gtgtttcCTG gcaAAACATA tgtggAGCAC 4150
aaagggtcAG tcctctggCA gaACAGATgC cacggAGTAC cacaggcAGG 4200
aaagggtggC cttcttggGT agcaggAGTC agggggCTGT accctggggG 4250
tgccagggAAA tgctctCTgA cctatcaATA aaggAAAAGC agtaaaaaAA 4300
aaaaaaaaaa AAA 4313

<210> 425
<211> 1184
<212> PRT
<213> Homo sapiens

<400> 425
Met Met Gln Leu Leu Gln Leu Leu Leu Gly Leu Leu Gly Pro Gly
1 5 10 15

Gly Tyr Leu Phe Leu Leu Gly Asp Cys Gln Glu Val Thr Thr Leu
20 25 30

Thr Val Lys Tyr Gln Val Ser Glu Glu Val Pro Ser Gly Thr Val
35 40 45

Ile Gly Lys Leu Ser Gln Glu Leu Gly Arg Glu Glu Arg Arg Arg
50 55 60

Gln Ala Gly Ala Ala Phe Gln Val Leu Gln Leu Pro Gln Ala Leu
65 70 75

Pro Ile Gln Val Asp Ser Glu Glu Gly Leu Leu Ser Thr Gly Arg
80 85 90

Arg Leu Asp Arg Glu Gln Leu Cys Arg Gln Trp Asp Pro Cys Leu
95 100 105

Val Ser Phe Asp Val Leu Ala Thr Gly Asp Leu Ala Leu Ile His
110 115 120

Val Glu Ile Gln Val Leu Asp Ile Asn Asp His Gln Pro Arg Phe
125 130 135

Pro Lys Gly Glu Gln Glu Leu Glu Ile Ser Glu Ser Ala Ser Leu
140 145 150

Arg Thr Arg Ile Pro Leu Asp Arg Ala Leu Asp Pro Asp Thr Gly
155 160 165

Pro Asn Thr Leu His Thr Tyr Thr Leu Ser Pro Ser Glu His Phe
170 175 180

Ala Leu Asp Val Ile Val Gly Pro Asp Glu Thr Lys His Ala Glu
185 190 195

Leu Ile Val Val Lys Glu Leu Asp Arg Glu Ile His Ser Phe Phe
200 205 210

Asp Leu Val Leu Thr Ala Tyr Asp Asn Gly Asn Pro Pro Lys Ser
215 220 225

Gly Thr Ser Leu Val Lys Val Asn Val Leu Asp Ser Asn Asp Asn
230 235 240

Ser Pro Ala Phe Ala Glu Ser Ser Leu Ala Leu Glu Ile Gln Glu
245 250 255

Asp Ala Ala Pro Gly Thr Leu Leu Ile Lys Leu Thr Ala Thr Asp
260 265 270

Pro Asp Gln Gly Pro Asn Gly Glu Val Glu Phe Phe Leu Ser Lys
275 280 285

His Met Pro Pro Glu Val Leu Asp Thr Phe Ser Ile Asp Ala Lys
290 295 300

Thr Gly Gln Val Ile Leu Arg Arg Pro Leu Asp Tyr Glu Lys Asn
305 310 315

Pro Ala Tyr Glu Val Asp Val Gln Ala Arg Asp Leu Gly Pro Asn
320 325 330

Pro Ile Pro Ala His Cys Lys Val Leu Ile Lys Val Leu Asp Val
335 340 345

Asn Asp Asn Ile Pro Ser Ile His Val Thr Trp Ala Ser Gln Pro
350 355 360

Ser Leu Val Ser Glu Ala Leu Pro Lys Asp Ser Phe Ile Ala Leu
365 370 375

Val Met Ala Asp Asp Leu Asp Ser Gly His Asn Gly Leu Val His
380 385 390

Cys Trp Leu Ser Gln Glu Leu Gly His Phe Arg Leu Lys Arg Thr
395 400 405

Asn Gly Asn Thr Tyr Met Leu Leu Thr Asn Ala Thr Leu Asp Arg
410 415 420

Glu Gln Trp Pro Lys Tyr Thr Leu Thr Leu Leu Ala Gln Asp Gln
425 430 435

Gly Leu Gln Pro Leu Ser Ala Lys Lys Gln Leu Ser Ile Gln Ile
440 445 450

Ser Asp Ile Asn Asp Asn Ala Pro Val Phe Glu Lys Ser Arg Tyr
455 460 465

Glu Val Ser Thr Arg Glu Asn Asn Leu Pro Ser Leu His Leu Ile
470 475 480

Thr Ile Lys Ala His Asp Ala Asp Leu Gly Ile Asn Gly Lys Val
485 490 495

Ser Tyr Arg Ile Gln Asp Ser Pro Val Ala His Leu Val Ala Ile
500 505 510

Asp Ser Asn Thr Gly Glu Val Thr Ala Gln Arg Ser Leu Asn Tyr
515 520 525

Glu Glu Met Ala Gly Phe Glu Phe Gln Val Ile Ala Glu Asp Ser
530 535 540

Gly Gln Pro Met Leu Ala Ser Ser Val Ser Val Trp Val Ser Leu
545 550 555

Leu Asp Ala Asn Asp Asn Ala Pro Glu Val Val Gln Pro Val Leu
560 565 570

Ser Asp Gly Lys Ala Ser Leu Ser Val Leu Val Asn Ala Ser Thr
575 580 585

Gly His Leu Leu Val Pro Ile Glu Thr Pro Asn Gly Leu Gly Pro
590 595 600

Ala Gly Thr Asp Thr Pro Pro Leu Ala Thr His Ser Ser Arg Pro
605 610 615

Phe Leu Leu Thr Thr Ile Val Ala Arg Asp Ala Asp Ser Gly Ala
620 625 630

Asn Gly Glu Pro Leu Tyr Ser Ile Arg Asn Gly Asn Glu Ala His
635 640 645

Leu Phe Ile Leu Asn Pro His Thr Gly Gln Leu Phe Val Asn Val
650 655 660

Thr Asn Ala Ser Ser Leu Ile Gly Ser Glu Trp Glu Leu Glu Ile
665 670 675

Val Val Glu Asp Gln Gly Ser Pro Pro Leu Gln Thr Arg Ala Leu
680 685 690

Leu Arg Val Met Phe Val Thr Ser Val Asp His Leu Arg Asp Ser
695 700 705

Ala Arg Lys Pro Gly Ala Leu Ser Met Ser Met Leu Thr Val Ile
710 715 720

Cys Leu Ala Val Leu Leu Gly Ile Phe Gly Leu Ile Leu Ala Leu
725 730 735

Phe Met Ser Ile Cys Arg Thr Glu Lys Lys Asp Asn Arg Ala Tyr
740 745 750

Asn Cys Arg Glu Ala Glu Ser Thr Tyr Arg Gln Gln Pro Lys Arg
755 760 765

Pro Gln Lys His Ile Gln Lys Ala Asp Ile His Leu Val Pro Val
770 775 780

Leu Arg Gly Gln Ala Gly Glu Pro Cys Glu Val Gly Gln Ser His
785 790 795

Lys Asp Val Asp Lys Glu Ala Met Met Glu Ala Gly Trp Asp Pro
800 805 810

Cys Leu Gln Ala Pro Phe His Leu Thr Pro Thr Leu Tyr Arg Thr
815 820 825

Leu Arg Asn Gln Gly Asn Gln Gly Ala Pro Ala Glu Ser Arg Glu
830 835 840

Val Leu Gln Asp Thr Val Asn Leu Leu Phe Asn His Pro Arg Gln
845 850 855

Arg Asn Ala Ser Arg Glu Asn Leu Asn Leu Pro Glu Pro Gln Pro
860 865 870

Ala Thr Gly Gln Pro Arg Ser Arg Pro Leu Lys Val Ala Gly Ser
875 880 885

Pro Thr Gly Arg Leu Ala Gly Asp Gln Gly Ser Glu Glu Ala Pro
890 895 900

Gln Arg Pro Pro Ala Ser Ser Ala Thr Leu Arg Arg Gln Arg His
905 910 915

Leu Asn Gly Lys Val Ser Pro Glu Lys Glu Ser Gly Pro Arg Gln
920 925 930

Ile Leu Arg Ser Leu Val Arg Leu Ser Val Ala Ala Phe Ala Glu
935 940 945

Arg Asn Pro Val Glu Glu Leu Thr Val Asp Ser Pro Pro Val Gln
950 955 960

Gln Ile Ser Gln Leu Leu Ser Leu Leu His Gln Gly Gln Phe Gln
965 970 975

Pro Lys Pro Asn His Arg Gly Asn Lys Tyr Leu Ala Lys Pro Gly
980 985 990

Gly Ser Arg Ser Ala Ile Pro Asp Thr Asp Gly Pro Ser Ala Arg
995 1000 1005

Ala Gly Gly Gln Thr Asp Pro Glu Gln Glu Glu Gly Pro Leu Asp
1010 1015 1020

Pro Glu Glu Asp Leu Ser Val Lys Gln Leu Leu Glu Glu Glu Leu
1025 1030 1035

Ser Ser Leu Leu Asp Pro Ser Thr Gly Leu Ala Leu Asp Arg Leu
1040 1045 1050

Ser Ala Pro Asp Pro Ala Trp Met Ala Arg Leu Ser Leu Pro Leu
1055 1060 1065

Thr Thr Asn Tyr Arg Asp Asn Val Ile Ser Pro Asp Ala Ala Ala
1070 1075 1080

Thr Glu Glu Pro Arg Thr Phe Gln Thr Phe Gly Lys Ala Glu Ala
1085 1090 1095

Pro Glu Leu Ser Pro Thr Gly Thr Arg Leu Ala Ser Thr Phe Val
1100 1105 1110

Ser Glu Met Ser Ser Leu Leu Glu Met Leu Leu Glu Gln Arg Ser
1115 1120 1125

Ser Met Pro Val Glu Ala Ala Ser Glu Ala Leu Arg Arg Leu Ser
1130 1135 1140

Val Cys Gly Arg Thr Leu Ser Leu Asp Leu Ala Thr Ser Ala Ala
1145 1150 1155

Ser Gly Met Lys Val Gln Gly Asp Pro Gly Gly Lys Thr Gly Thr
1160 1165 1170

Glu Gly Lys Ser Arg Gly Ser Ser Ser Ser Arg Cys Leu
1175 1180

<210> 426

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 426

gtaaggcacat gcctccagag gtgc 24

<210> 427

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 427

tgacgttggaa tgcttggat gttg 24

<210> 428

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 428

tggacacacctt cagtattgtat gccaaagacag gccaggtcat tctgcgtcga 50

<210> 429

<211> 2037

<212> DNA

<213> Homo sapiens

<400> 429

cggacgcgtg ggcggacgcg tgggggagag ccgcagtccc ggctgcagca 50

cctgggagaa ggcagaccgt gtgagggggc ctgtggcccc agcgtgctgt 100

ggcctcgaaa agtggaaagt ggaggcagga gccttcctta cacttcgcca 150

tgagttcctt catcgactcc agcatcatga ttaccccca gatactattt 200

tttggatttg ggtggctttt cttcatgcgc caattgttta aagactatga 250

gatacgtcag tatgttgtac aggtgatctt ctccgtgacg tttgcatttt 300

cttgcaccat gtttgagctc atcatcttg aaatcttagg agtattgaat 350
agcagctccc gtttatccca ctggaaaatg aacctgtgtg taattctgct 400
gatcctggtt ttcatggtgc cttttacat tggctattt attgtgagca 450
atatccgact actgcataaa caacgactgc tttttcctg tctcttatgg 500
ctgaccttta tgtatttctt ctggaaacta ggagatccct ttcccattct 550
cagccccaaa catgggatct tatccataga acagctcatc agccgggttg 600
gtgtgattgg agtgaactc atggctcttc tttctggatt tggtgctgtc 650
aactgcccac acacttacat gtcttacttc ctcaggaatg tgactgacac 700
ggatattcta gccctggAAC ggcgactgct gcaaaccatg gatatgatca 750
taagcaaaaa gaaaaggatg gcaatggcac ggagaacaat gttccagaag 800
ggggaaagtgc ataacaaacc atcaggttgc tgggaatga taaaaagtgt 850
taccacttca gcatcaggaa gtgaaaatct tactcttatt caacaggaag 900
tggatgcttt ggaagaatta agcaggcagc ttttctgga aacagctgat 950
ctatatgcta ccaaggagag aatagaatac tccaaaacct tcaaggggaa 1000
atattttaat tttcttgggtt acttttctc tatttactgt gtttggaaaa 1050
ttttcatggc taccatcaat attgttttg atcgagttgg gaaaacggat 1100
cctgtcacaa gaggcattga gatcaactgtg aattatctgg gaatccaatt 1150
tgatgtgaag ttttgtccc aacacatttc cttcattctt gttgaaataa 1200
tcatcgac atccatcaga ggattgctga tcactcttac caagttcttt 1250
tatgccatct ctagcagtaa gtcctccaaat gtcattgtcc tgctattagc 1300
acagataatg ggcatgtact ttgtctcctc tgtgctgctg atccgaatga 1350
gtatgccttt agaataccgc accataatca ctgaagtccct tggagaactg 1400
cagttcaact tctatcaccg ttggtttgat gtgatcttcc tggtcagcgc 1450
tctctctagc atactcttcc tctatttggc tcacaaacag gcaccagaga 1500
agcaaatggc accttgaact taagcctact acagactgtt agaggccagt 1550
ggtttcaaaa ttttagatata agagggggga aaaatggAAC cagggcctga 1600
cattttataa acaaacaaaa tgctatggta gcattttca ctttcatacg 1650
atactccttc cccgtcaggt gatactatga ccatgagtag catcagccag 1700

aacatgagag ggagaactaa ctcaggacaa tactcagcag agagcatccc 1750
gtgtggatat gaggctggtg tagaggcgga gagggagccaa gaaaactaaag 1800
gtaaaaata cactggaact ctggggcaag acatgtctat gtagctgag 1850
ccaaacacgt aggattccg ttttaaggtt cacatggaaa aggttatagc 1900
ttgccttga gattgactca ttaaatcag agactgtaac aaaaaaaaaa 1950
aaaaaaaaaa agggcggccg cgactctaga gtcgacctgc agaagcttgg 2000
ccgccccatggc ccaacttgtt tattgcagct tataatg 2037

<210> 430

<211> 455

<212> PRT

<213> Homo sapiens

<400> 430

Met	Ser	Phe	Leu	Ile	Asp	Ser	Ser	Ile	Met	Ile	Thr	Ser	Gln	Ile
1									10					15
Leu	Phe	Phe	Gly	Phe	Gly	Trp	Leu	Phe	Phe	Met	Arg	Gln	Leu	Phe
							20		25					30
Lys	Asp	Tyr	Glu	Ile	Arg	Gln	Tyr	Val	Val	Gln	Val	Ile	Phe	Ser
							35		40					45
Val	Thr	Phe	Ala	Phe	Ser	Cys	Thr	Met	Phe	Glu	Leu	Ile	Ile	Phe
							50		55					60
Glu	Ile	Leu	Gly	Val	Leu	Asn	Ser	Ser	Arg	Tyr	Phe	His	Trp	
							65		70					75
Lys	Met	Asn	Leu	Cys	Val	Ile	Leu	Ile	Leu	Val	Phe	Met	Val	
							80		85					90
Pro	Phe	Tyr	Ile	Gly	Tyr	Phe	Ile	Val	Ser	Asn	Ile	Arg	Leu	Leu
							95		100					105
His	Lys	Gln	Arg	Leu	Leu	Phe	Ser	Cys	Leu	Leu	Trp	Leu	Thr	Phe
							110		115					120
Met	Tyr	Phe	Phe	Trp	Lys	Leu	Gly	Asp	Pro	Phe	Pro	Ile	Leu	Ser
							125		130					135
Pro	Lys	His	Gly	Ile	Leu	Ser	Ile	Glu	Gln	Leu	Ile	Ser	Arg	Val
							140		145					150
Gly	Val	Ile	Gly	Val	Thr	Leu	Met	Ala	Leu	Leu	Ser	Gly	Phe	Gly
							155		160					165
Ala	Val	Asn	Cys	Pro	Tyr	Thr	Tyr	Met	Ser	Tyr	Phe	Leu	Arg	Asn
							170		175					180
Val	Thr	Asp	Thr	Asp	Ile	Leu	Ala	Leu	Glu	Arg	Arg	Leu	Leu	Gln

185	190	195
Thr Met Asp Met Ile Ile Ser Lys Lys	Lys Arg Met Ala Met Ala	
200	205	210
Arg Arg Thr Met Phe Gln Lys Gly Glu	Val His Asn Lys Pro Ser	
215	220	225
Gly Phe Trp Gly Met Ile Lys Ser Val	Thr Thr Ser Ala Ser Gly	
230	235	240
Ser Glu Asn Leu Thr Leu Ile Gln Gln	Glu Val Asp Ala Leu Glu	
245	250	255
Glu Leu Ser Arg Gln Leu Phe Leu Glu	Thr Ala Asp Leu Tyr Ala	
260	265	270
Thr Lys Glu Arg Ile Glu Tyr Ser Lys	Thr Phe Lys Gly Lys Tyr	
275	280	285
Phe Asn Phe Leu Gly Tyr Phe Ser Ile	Tyr Cys Val Trp Lys	
290	295	300
Ile Phe Met Ala Thr Ile Asn Ile Val	Phe Asp Arg Val Gly Lys	
305	310	315
Thr Asp Pro Val Thr Arg Gly Ile Glu	Ile Thr Val Asn Tyr Leu	
320	325	330
Gly Ile Gln Phe Asp Val Lys Phe Trp	Ser Gln His Ile Ser Phe	
335	340	345
Ile Leu Val Gly Ile Ile Val Thr	Ser Ile Arg Gly Leu Leu	
350	355	360
Ile Thr Leu Thr Lys Phe Phe Tyr Ala	Ile Ser Ser Ser Lys Ser	
365	370	375
Ser Asn Val Ile Val Leu Leu Ala Gln	Ile Met Gly Met Tyr	
380	385	390
Phe Val Ser Ser Val Leu Leu Ile Arg	Met Ser Met Pro Leu Glu	
395	400	405
Tyr Arg Thr Ile Ile Thr Glu Val Leu	Gly Glu Leu Gln Phe Asn	
410	415	420
Phe Tyr His Arg Trp Phe Asp Val Ile	Phe Leu Val Ser Ala Leu	
425	430	435
Ser Ser Ile Leu Phe Leu Tyr Leu Ala	His Lys Gln Ala Pro Glu	
440	445	450
Lys Gln Met Ala Pro		
455		

<211> 407
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 78, 81, 113, 157, 224, 297
<223> unknown base

<400> 431
catgggaagt ggagccggag ctttccttac actcgccatg agtttcctca 50
tcgactccag catcatgatt acctcccnga nactatttt tggatttggg 100
tggctttct tcngcgccaa tgtttaaaga ctatgagata cgtcagtgatg 150
ttgtacnggt gatcttctcc gtgacgtttgc ccatttcttgc caccatgttt 200
gagctcatca tctttgaaat cttnnaggta ttgaatagca gctcccgta 250
ttttcactgg aaaatgaacc tgtgtgtaat tctgctgatc ctggttntca 300
tggtgccctt ttacattggc tattttatttgc tgagcaatat ccgactactg 350
cataaacaac gactgctttt ttccctgtctc ttatggctga cctttatgta 400
tttccag 407

<210> 432
<211> 457
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 31, 66, 81-82, 84, 122, 184, 187, 232, 241, 400, 424, 427, 434
<223> unknown base

<400> 432
gtgttgcctt tggggagggg aaggggagcc nggcccttgc ctaaaaatttgc 50
gccaaagggtt tctttnttgc attccgggtt nnngnataacct tcccaaaaa 100
tattttttgg atttggggta gnttttttc atgcgcatttgc tgtttaaaga 150
ctatgagata cgtcagtgatg ttgtacaggt gatnttntcc gtgacgtttgc 200
cattttcttgc caccatgttttgc gagctcatca ntttgaaat nttaggagta 250
ttgaatagca gctcccgta ttttcactgg aaaatgaacc tgtgtgtaat 300
tctgctgatc ctggtttca tggtgccctt ttacattggc tattttatttgc 350
tgagcaatat ccgactactg cataaacaac gactgctttt ttccctgtctc 400
ttatggctga cctttatgta tttnttnttgc aaantaggaa atccctttcc 450

cattctc 457

<210> 433
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 433
aagtggagcc ggagccttcc 20

<210> 434
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 434
tcgttgttta tgcagtagtc gg 22

<210> 435
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 435
attgtttaaa gactatgaga tacgtcagta tgttgtacag g 41

<210> 436
<211> 3951
<212> DNA
<213> Homo sapiens

<400> 436
ctcgcgcaagg gatcgcccc tggccggggc tcggagccgc gacccttggg 50
gggcctccgg gatttgctac cttttggct ccctgctcgt cgaactgctc 100
tttcacggg ctgtcgccctt caatctggac gtgatgggtg cttgcgc 150
ggagggcggag ccaggcagcc tcttcggctt ctctgtggcc ctgcaccggc 200
agttgcagcc ccgaccccag agctggctgc tgggggtgc tccccaggcc 250
ctggctttc ctggcgac ggcgaatcgc actggaggcc tcttcgcttg 300
cccgttgagc ctggaggaga ctgactgcta cagagtggac atcgaccagg 350
gagctgataat gcaaaaaggaa agcaaggaga accagtggtt gggagtcagt 400

gttcggagcc aggggcctgg gggcaagatt gttacctgtg cacaccgata 450
tgaggcaagg cagcgagtgg accagatcct ggagacgcgg gatatgattg 500
gtcgctgctt tgtgctcagc caggacctgg ccatccggga tgagttggat 550
ggtggggaat ggaagttctg tgagggacgc ccccaaggcc atgaacaatt 600
tgggttctgc cagcagggca cagctgccgc cttctccct gatagccact 650
acctcctctt tggggccccca ggaacctata attggaaggg cacggccagg 700
gtggagctct gtgcacaggg ctcagcggac ctggcacacc tggacgacgg 750
tccctacgag gcggggggag agaaggagca ggaccccccgc ctcatccgg 800
tccctgccaa cagctacttt ggcttctcta ttgactcggt gaaaggtctg 850
gtgcgtgcag aagagctgag ctttgtggct ggagcccccc ggcggcaacca 900
caagggtgct gtggcatcc tgcgcaagga cagccggcgt cgccctgggtc 950
ccgagggttat gctgtctggg gagcgcctga cctccggctt tggctactca 1000
ctggctgtgg ctgacactcaa cagtgtatggc tggccagacc tgatagtggt 1050
tgccccctac ttcttgagc gccaagaaga gctgggggt gctgtgtatg 1100
tgtacttgaa ccaggggggt cactgggctg ggatctcccc tctccggctc 1150
tgcggctccc ctgactccat gttcgggatc agcctggctg tcctggggga 1200
cctcaaccaa gatggcttc cagatattgc agtgggtgcc ccctttgatg 1250
gtgatgggaa agtcttcatc taccatggga gcagcctggg gttgtcgcc 1300
aaaccttcac aggtgctgga gggcgaggct gtggcatca agagcttcgg 1350
ctactccctg tcagggcagct tggatatggta tggaaaccaa taccctgacc 1400
tgctggtggtt ctccctggct gacaccgcag tgctttcag ggccagaccc 1450
atcctccatg tctcccatga ggtctctatt gtcacacaa gcatcgaccc 1500
ggagcagccc aactgtgctg gcggccactc ggtctgtgtg gacctaaggg 1550
tctgtttcag ctacattgca gtccccagca gctatagccc tactgtggcc 1600
ctggactatg tggatagatgc ggacacagac cggaggctcc gggccaggt 1650
tccccgtgtg acgttcctga gccgttaacct ggaagaaccc aagcaccagg 1700
cctcgggcac cgtgtggctg aagcaccagc atgaccgagt ctgtggagac 1750
gccatgttcc agctccagga aaatgtcaaa gacaagcttc gggccattgt 1800
agtgaccttg tcctacagtc tccagacccc tcggctccgg cgacaggctc 1850

ctggccaggg gctgcctcca gtggccccc tcctcaatgc ccaccagccc 1900
agcacccagc gggcagagat ccacttcctg aagcaaggct gtggtaaga 1950
caagatctgc cagagcaatc tgcagcttgtt ccacgcccgc ttctgtaccc 2000
gggtcagcga cacggaattc caacctctgc ccatggatgt ggatggaaca 2050
acagccctgt ttgcactgag tggcagccca gtcattggcc tggagctgat 2100
gtcaccaac ctgccatcg acccagccca gccccaggct gatggggatg 2150
atgcccattga agcccagctc ctggcatgc ttccctgactc actgcactac 2200
tcaggggtcc gggccctgga ccctgcggag aagccactct gcctgtccaa 2250
tgagaatgcc tcccatgttg agtgtgagct gggaaacccc atgaagagag 2300
gtgcccaggta caccttctac ctcatcctta gcacccctgg gatcagcatt 2350
gagaccacgg aactggaggt agagctgctg ttggccacga tcagttagca 2400
gagactgcat ccagtctctg cacgagcccg tgtttcatt gagctgccac 2450
tgtccattgc aggaatggcc attccccagc aactttctt ctctggtg 2500
gtgaggggagc agagagccat gcagtctgag cggatgtgg gcagcaagg 2550
caagtatgag gtcacggttt ccaaccaagg ccagtcgctc agaaccctgg 2600
gctctgcctt cctcaacatc atgtggcctc atgagattgc caatgggaag 2650
tggttgctgt acccaatgca gttttagctg gagggcgggc agggcctgg 2700
gcagaaaaggc ctttgctctc ccaggcccaa catccctccac ctggatgtgg 2750
acagtaggga taggaggcgg cggagctgg agccacctga gcagcaggag 2800
cctggtgagc ggcaggagcc cagcatgtcc tggccctgg tgccctctgc 2850
tgagaagaag aaaaacatca ccctggactg cggccgggc acggccaact 2900
gtgtgggttt cagctgccc ctctacagct ttgaccgcgc ggctgtgctg 2950
catgtctggg gccgtctctg gaacagcacc tttctggagg agtactcagc 3000
tgtgaagtcc ctggaagtga ttgtccgggc caacatcaca gtgaagtct 3050
ccataaaagaa cttgatgctc cgagatgcct ccacagtat cccagtatg 3100
gtataacttgg accccatggc tgggtggca gaaggagtgc cctgggtgg 3150
catcctcctg gctgtactgg ctgggctgtt ggtgttagca ctgctggtgc 3200
tgctcctgtg gaagatggga ttcttcaaacc gggcgaagca ccccgaggcc 3250

accgtcccc agtaccatgc ggtgaagatt cctcggaag accgacagca 3300
gttcaaggag gagaagacgg gcaccatcct gaggaacaac tggggcagcc 3350
cccgccggga gggccggat gcacaccca tcctggctgc tgacggcat 3400
cccggctgg gccccatgg gcatccagg ccaggcaccg cctaggttcc 3450
catgtcccag cctggctgt ggctgccctc catcccttcc ccagagatgg 3500
ctccttggga tgaagagggt agagtggct gctggtgtcg catcaagatt 3550
tggcaggatc ggcttcctca ggggcacaga cctctccac ccacaagaac 3600
tcctcccacc caactcccc ttagagtgt gtgagatgag agtggtaaa 3650
tcagggacag gccatgggg tagggtgaga agggcaggg tgtcctgatg 3700
caaaggtggg gagaaggat cctaattccct tcctctccca ttcaccctgt 3750
gtaacaggac cccaaggacc tgcctcccg gaagtgcctt aacctagagg 3800
gtcggggagg aggttgtgtc actgactcag gctgctcctt ctctagttc 3850
ccctctcatac tgaccttagt ttgctgccat cagtcgttg 3900
ttcgtctatt tattaaaaaa tatttgagaa caaaaaaaaaaaa aaaaaaaaaaa 3950
a 3951

<210> 437
<211> 1141
<212> PRT
<213> Homo sapiens

<400> 437
Met Ala Gly Ala Arg Ser Arg Asp Pro Trp Gly Ala Ser Gly Ile
1 5 10 15
Cys Tyr Leu Phe Gly Ser Leu Leu Val Glu Leu Leu Phe Ser Arg
20 25 30
Ala Val Ala Phe Asn Leu Asp Val Met Gly Ala Leu Arg Lys Glu
35 40 45
Gly Glu Pro Gly Ser Leu Phe Gly Phe Ser Val Ala Leu His Arg
50 55 60
Gln Leu Gln Pro Arg Pro Gln Ser Trp Leu Leu Val Gly Ala Pro
65 70 75
Gln Ala Leu Ala Leu Pro Gly Gln Gln Ala Asn Arg Thr Gly Gly
80 85 90
Leu Phe Ala Cys Pro Leu Ser Leu Glu Glu Thr Asp Cys Tyr Arg
95 100 105

Val Asp Ile Asp Gln Gly Ala Asp Met Gln Lys Glu Ser Lys Glu
110 115 120

Asn Gln Trp Leu Gly Val Ser Val Arg Ser Gln Gly Pro Gly Gly
125 130 135

Lys Ile Val Thr Cys Ala His Arg Tyr Glu Ala Arg Gln Arg Val
140 145 150

Asp Gln Ile Leu Glu Thr Arg Asp Met Ile Gly Arg Cys Phe Val
155 160 165

Leu Ser Gln Asp Leu Ala Ile Arg Asp Glu Leu Asp Gly Gly Glu
170 175 180

Trp Lys Phe Cys Glu Gly Arg Pro Gln Gly His Glu Gln Phe Gly
185 190 195

Phe Cys Gln Gln Gly Thr Ala Ala Ala Phe Ser Pro Asp Ser His
200 205 210

Tyr Leu Leu Phe Gly Ala Pro Gly Thr Tyr Asn Trp Lys Gly Thr
215 220 225

Ala Arg Val Glu Leu Cys Ala Gln Gly Ser Ala Asp Leu Ala His
230 235 240

Leu Asp Asp Gly Pro Tyr Glu Ala Gly Gly Glu Lys Glu Gln Asp
245 250 255

Pro Arg Leu Ile Pro Val Pro Ala Asn Ser Tyr Phe Gly Phe Ser
260 265 270

Ile Asp Ser Gly Lys Gly Leu Val Arg Ala Glu Glu Leu Ser Phe
275 280 285

Val Ala Gly Ala Pro Arg Ala Asn His Lys Gly Ala Val Val Ile
290 295 300

Leu Arg Lys Asp Ser Ala Ser Arg Leu Val Pro Glu Val Met Leu
305 310 315

Ser Gly Glu Arg Leu Thr Ser Gly Phe Gly Tyr Ser Leu Ala Val
320 325 330

Ala Asp Leu Asn Ser Asp Gly Trp Pro Asp Leu Ile Val Gly Ala
335 340 345

Pro Tyr Phe Phe Glu Arg Gln Glu Glu Leu Gly Gly Ala Val Tyr
350 355 360

Val Tyr Leu Asn Gln Gly Gly His Trp Ala Gly Ile Ser Pro Leu
365 370 375

Arg Leu Cys Gly Ser Pro Asp Ser Met Phe Gly Ile Ser Leu Ala
380 385 390

Val Leu Gly Asp Leu Asn Gln Asp Gly Phe Pro Asp Ile Ala Val
395 400 405

Gly Ala Pro Phe Asp Gly Asp Gly Lys Val Phe Ile Tyr His Gly
410 415 420

Ser Ser Leu Gly Val Val Ala Lys Pro Ser Gln Val Leu Glu Gly
425 430 435

Glu Ala Val Gly Ile Lys Ser Phe Gly Tyr Ser Leu Ser Gly Ser
440 445 450

Leu Asp Met Asp Gly Asn Gln Tyr Pro Asp Leu Leu Val Gly Ser
455 460 465

Leu Ala Asp Thr Ala Val Leu Phe Arg Ala Arg Pro Ile Leu His
470 475 480

Val Ser His Glu Val Ser Ile Ala Pro Arg Ser Ile Asp Leu Glu
485 490 495

Gln Pro Asn Cys Ala Gly Gly His Ser Val Cys Val Asp Leu Arg
500 505 510

Val Cys Phe Ser Tyr Ile Ala Val Pro Ser Ser Tyr Ser Pro Thr
515 520 525

Val Ala Leu Asp Tyr Val Leu Asp Ala Asp Thr Asp Arg Arg Leu
530 535 540

Arg Gly Gln Val Pro Arg Val Thr Phe Leu Ser Arg Asn Leu Glu
545 550 555

Glu Pro Lys His Gln Ala Ser Gly Thr Val Trp Leu Lys His Gln
560 565 570

His Asp Arg Val Cys Gly Asp Ala Met Phe Gln Leu Gln Glu Asn
575 580 585

Val Lys Asp Lys Leu Arg Ala Ile Val Val Thr Leu Ser Tyr Ser
590 595 600

Leu Gln Thr Pro Arg Leu Arg Arg Gln Ala Pro Gly Gln Gly Leu
605 610 615

Pro Pro Val Ala Pro Ile Leu Asn Ala His Gln Pro Ser Thr Gln
620 625 630

Arg Ala Glu Ile His Phe Leu Lys Gln Gly Cys Gly Glu Asp Lys
635 640 645

Ile Cys Gln Ser Asn Leu Gln Leu Val His Ala Arg Phe Cys Thr
650 655 660

Arg Val Ser Asp Thr Glu Phe Gln Pro Leu Pro Met Asp Val Asp
665 670 675

Gly Thr Thr Ala Leu Phe Ala Leu Ser Gly Gln Pro Val Ile Gly
680 685 690

Leu Glu Leu Met Val Thr Asn Leu Pro Ser Asp Pro Ala Gln Pro
695 700 705

Gln Ala Asp Gly Asp Asp Ala His Glu Ala Gln Leu Leu Val Met
710 715 720

Leu Pro Asp Ser Leu His Tyr Ser Gly Val Arg Ala Leu Asp Pro
725 730 735

Ala Glu Lys Pro Leu Cys Leu Ser Asn Glu Asn Ala Ser His Val
740 745 750

Glu Cys Glu Leu Gly Asn Pro Met Lys Arg Gly Ala Gln Val Thr
755 760 765

Phe Tyr Leu Ile Leu Ser Thr Ser Gly Ile Ser Ile Glu Thr Thr
770 775 780

Glu Leu Glu Val Glu Leu Leu Ala Thr Ile Ser Glu Gln Glu
785 790 795

Leu His Pro Val Ser Ala Arg Ala Arg Val Phe Ile Glu Leu Pro
800 805 810

Leu Ser Ile Ala Gly Met Ala Ile Pro Gln Gln Leu Phe Phe Ser
815 820 825

Gly Val Val Arg Gly Glu Arg Ala Met Gln Ser Glu Arg Asp Val
830 835 840

Gly Ser Lys Val Lys Tyr Glu Val Thr Val Ser Asn Gln Gly Gln
845 850 855

Ser Leu Arg Thr Leu Gly Ser Ala Phe Leu Asn Ile Met Trp Pro
860 865 870

His Glu Ile Ala Asn Gly Lys Trp Leu Leu Tyr Pro Met Gln Val
875 880 885

Glu Leu Glu Gly Gly Gln Gly Pro Gly Gln Lys Gly Leu Cys Ser
890 895 900

Pro Arg Pro Asn Ile Leu His Leu Asp Val Asp Ser Arg Asp Arg
905 910 915

Arg Arg Arg Glu Leu Glu Pro Pro Glu Gln Gln Glu Pro Gly Glu
920 925 930

Arg Gln Glu Pro Ser Met Ser Trp Trp Pro Val Ser Ser Ala Glu
935 940 945

Lys Lys Lys Asn Ile Thr Leu Asp Cys Ala Arg Gly Thr Ala Asn
950 955 960

Cys Val Val Phe Ser Cys Pro Leu Tyr Ser Phe Asp Arg Ala Ala
965 970 975

Val Leu His Val Trp Gly Arg Leu Trp Asn Ser Thr Phe Leu Glu
980 985 990

Glu Tyr Ser Ala Val Lys Ser Leu Glu Val Ile Val Arg Ala Asn
995 1000 1005

Ile Thr Val Lys Ser Ser Ile Lys Asn Leu Met Leu Arg Asp Ala
1010 1015 1020

Ser Thr Val Ile Pro Val Met Val Tyr Leu Asp Pro Met Ala Val
1025 1030 1035

Val Ala Glu Gly Val Pro Trp Trp Val Ile Leu Leu Ala Val Leu
1040 1045 1050

Ala Gly Leu Leu Val Leu Ala Leu Leu Val Leu Leu Leu Trp Lys
1055 1060 1065

Met Gly Phe Phe Lys Arg Ala Lys His Pro Glu Ala Thr Val Pro
1070 1075 1080

Gln Tyr His Ala Val Lys Ile Pro Arg Glu Asp Arg Gln Gln Phe
1085 1090 1095

Lys Glu Glu Lys Thr Gly Thr Ile Leu Arg Asn Asn Trp Gly Ser
1100 1105 1110

Pro Arg Arg Glu Gly Pro Asp Ala His Pro Ile Leu Ala Ala Asp
1115 1120 1125

Gly His Pro Glu Leu Gly Pro Asp Gly His Pro Gly Pro Gly Thr
1130 1135 1140

Ala

<210> 438

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 438

ggctgacacc gcagtgcctc tcag 24

<210> 439

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 439
gctgctgggg actgaatgt agct 24

<210> 440
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 440
catcctccat gtctccatg aggtcttat tgctccacga agcatac 46

<210> 441
<211> 1964
<212> DNA
<213> Homo sapiens

<400> 441
cgcgccgggc gcagggagct gaggacgg ctcgagacgg cggcgcgtgc 50
agcagctcca gaaagcagcg agttggcaga gcagggctgc atttccagca 100
ggagctgcga gcacagtgc ggctcacaac aagatgctca aggtgtcagc 150
cgtactgtgt gtgtgtgcag ccgcttggtg cagtcagtct ctgcagctg 200
ccgcggcggt ggctgcagcc gggggcggt cggacggcgg taatttctg 250
gatgataaac aatggctcac cacaatctc cagtagtaca aggaagtctgg 300
acagtggAAC aaattccgag acgaagtaga ggatgattat ttccgcactt 350
ggagtcagg AAAACCCttc gatcaggctt tagatccagc taaggatcca 400
tgcttaaaga tgaaatgttag tcgccataaa gtatgcattt ctcaagattc 450
tcagactgca gtctgcatta gtcaccggag gcttacacac aggatgaaag 500
aagcaggagt agaccatagg cagtgagggtt gtcggatatt atccacactgc 550
aagcagtgcC cagtggctta tcccagccct gtttgtggtt cagatggtca 600
tacctactct tttcagtgcA aactagaata tcaggcatgt gtcttaggaa 650
aacagatctc agtcaaATgt gaaggacatt gcccattgtcc ttcaagataag 700
cccaccagta caagcagaaa tgttaagaga gcatgcagtg acctggagtt 750
cagggaaagtg gcaaacagat tgccggactg gttcaaggcc cttcatgaaa 800
gtggaaagtca aaacaagaag acaaaaaacat tgctgaggcc tgagagaagc 850
agattcgata ccagcatctt gccaatttgc aaggactcac ttggctggat 900

gtttaacaga cttgatacaa actatgacct gctattggac cagtcagagc 950
tcagaagcat ttaccttgat aagaatgaac agtgtaccaa ggcattctc 1000
aattcttgtg acacatacaa ggacagttt atatctaata atgagtggtg 1050
ctactgcttc cagagacagc aagaccacc ttgccagact gagctcagca 1100
atattcagaa gcggcaaggg gtaaaagaagc tcctaggaca gtatatcccc 1150
ctgtgtgatg aagatggta ctacaagcca acacaatgtc atggcagtgt 1200
tggacagtgc tgggtgttg acagatatgg aaatgaagtc atgggatcca 1250
gaataaatgg tggtgcagat tgtgctatacg attttgagat ctccggagat 1300
tttgctagtg gcgattttca tgaatggact gatgatgagg atgatgaaga 1350
cgatattatg aatgatgaag atgaaattga agatgatgat gaagatgaag 1400
gggatgatga tggatgggt gatgaccatg atgtatacat ttgattgatg 1450
acagttgaaa tcaataaaatt ctacatttct aatatttaca aaaatgatag 1500
cctatttaaa attatcttct tccccaaataa caaaatgatt ctaaacctca 1550
catatatttt gtataattat ttgaaaaatt gcagctaaag ttatagaact 1600
ttatgtttaa ataagaatca tttgcttga gttttatat tccttacaca 1650
aaaagaaaaat acatatgcag tctagtcaga caaaataaag ttttgaagtg 1700
ctactataat aaattttca cgagaacaaa ctttgtaaat cttccataag 1750
caaaatgaca gcttagtgctt gggatcgtac atgttaattt tttgaaagat 1800
aattctaagt gaaatttaaa ataaataaat tttaatgac ctgggtctta 1850
aggattnagg aaaaatatgc atgcttaat tgcatttcca aagtagcatc 1900
ttgcttagacc tagatgagtc aggataacag agagatacca catgactcca 1950
aaaaaaaaaa aaaa 1964

<210> 442
<211> 436
<212> PRT
<213> Homo sapiens

<400> 442
Met Leu Lys Val Ser Ala Val Leu Cys Val Cys Ala Ala Ala Trp
1 5 10 15
Cys Ser Gln Ser Leu Ala Ala Ala Ala Val Ala Ala Gly
20 25 30
Gly Arg Ser Asp Gly Gly Asn Phe Leu Asp Asp Lys Gln Trp Leu

	35	40	45
Thr Thr Ile Ser Gln Tyr Asp Lys Glu Val Gly Gln Trp Asn Lys			
	50	55	60
Phe Arg Asp Glu Val Glu Asp Asp Tyr Phe Arg Thr Trp Ser Pro			
	65	70	75
Gly Lys Pro Phe Asp Gln Ala Leu Asp Pro Ala Lys Asp Pro Cys			
	80	85	90
Leu Lys Met Lys Cys Ser Arg His Lys Val Cys Ile Ala Gln Asp			
	95	100	105
Ser Gln Thr Ala Val Cys Ile Ser His Arg Arg Leu Thr His Arg			
	110	115	120
Met Lys Glu Ala Gly Val Asp His Arg Gln Trp Arg Gly Pro Ile			
	125	130	135
Leu Ser Thr Cys Lys Gln Cys Pro Val Val Tyr Pro Ser Pro Val			
	140	145	150
Cys Gly Ser Asp Gly His Thr Tyr Ser Phe Gln Cys Lys Leu Glu			
	155	160	165
Tyr Gln Ala Cys Val Leu Gly Lys Gln Ile Ser Val Lys Cys Glu			
	170	175	180
Gly His Cys Pro Cys Pro Ser Asp Lys Pro Thr Ser Thr Ser Arg			
	185	190	195
Asn Val Lys Arg Ala Cys Ser Asp Leu Glu Phe Arg Glu Val Ala			
	200	205	210
Asn Arg Leu Arg Asp Trp Phe Lys Ala Leu His Glu Ser Gly Ser			
	215	220	225
Gln Asn Lys Lys Thr Lys Thr Leu Leu Arg Pro Glu Arg Ser Arg			
	230	235	240
Phe Asp Thr Ser Ile Leu Pro Ile Cys Lys Asp Ser Leu Gly Trp			
	245	250	255
Met Phe Asn Arg Leu Asp Thr Asn Tyr Asp Leu Leu Leu Asp Gln			
	260	265	270
Ser Glu Leu Arg Ser Ile Tyr Leu Asp Lys Asn Glu Gln Cys Thr			
	275	280	285
Lys Ala Phe Phe Asn Ser Cys Asp Thr Tyr Lys Asp Ser Leu Ile			
	290	295	300
Ser Asn Asn Glu Trp Cys Tyr Cys Phe Gln Arg Gln Gln Asp Pro			
	305	310	315
Pro Cys Gln Thr Glu Leu Ser Asn Ile Gln Lys Arg Gln Gly Val			

	320	325	330
Lys Lys Leu Leu Gly Gln Tyr Ile Pro Leu Cys Asp Glu Asp Gly			
335	340	345	
Tyr Tyr Lys Pro Thr Gln Cys His Gly Ser Val Gly Gln Cys Trp			
350	355	360	
Cys Val Asp Arg Tyr Gly Asn Glu Val Met Gly Ser Arg Ile Asn			
365	370	375	
Gly Val Ala Asp Cys Ala Ile Asp Phe Glu Ile Ser Gly Asp Phe			
380	385	390	
Ala Ser Gly Asp Phe His Glu Trp Thr Asp Asp Glu Asp Asp Glu			
395	400	405	
Asp Asp Ile Met Asn Asp Glu Asp Glu Ile Glu Asp Asp Asp Glu			
410	415	420	
Asp Glu Gly Asp Asp Asp Gly Gly Asp Asp His Asp Val Tyr			
425	430	435	

Ile

<210> 443
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 443
cagcaatatt cagaaggcggc aaggg 25

<210> 444
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 444
catcatggtc atcaccacca tcatcatc 28

<210> 445
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 445

ggttactaca agccaacaca atgtcatggc agtgtggac agtgctgg 48
<210> 446
<211> 3617
<212> DNA
<213> Homo sapiens

<400> 446
cagactccag attccctgt caaccacgag gagtccagag aggaaacgcg 50
gagcggagac aacagtacct gacgccttt tcagcccg 100
cagggatggg cgacaagatc tggctgcct tccccgtgt ccttctggcc 150
gctctgcctc cggtgctgt gcctggggcg gccggctca caccccttc 200
cgatagcgac ttcacctta cccttcccgc cggccagaag gagtgcttct 250
accagcccat gcccctgaag gcctcgctgg agatcgagta ccaagttta 300
gatggagcag gattagatat tgatttccat cttgcctctc cagaaggcaa 350
aaccttagtt ttgaacaaa gaaaatcaga tggagttcac actgttagaga 400
ctgaagttgg tgattacatg ttctgcttt acaatacatt cagcaccatt 450
tctgagaagg tgattttctt tgaattaatc ctggataata tgggagaaca 500
ggcacaagaa caagaagatt ggaagaaata tattactggc acagatata 550
tggatatgaa actgaaagac atcctggaat ccatcaacag catcaagtcc 600
agactaagca aaagtggca catacaaatt ctgcttagag catttgaagc 650
tcgtgatcga aacatacaag aaagcaactt tgatagagtc aatttctggt 700
ctatggtaa ttttagtggtc atggtggtgg tgtcagccat tcaagtttat 750
atgctgaaga gtctgttga agataagagg aaaagttagaa cttaaaactc 800
caaactagag tacgtaacat tgaaaaatga ggcataaaaa tgcaataaac 850
tggtagtgc aagaccatta atggtcttct ccaaaatatt ttgagatata 900
aaagttagaa acaggtaaa tttaatgtg aaaattaatg cttcactttc 950
tgtgcaagta atcctgctga tccagttgtc cttaagtgtg taacaggaat 1000
atttgcaga atataggttt aactgaatga agccatatta ataactgcat 1050
tttcctaact ttgaaaaatt ttgcaaatgt cttaggtgt ttaaataat 1100
gagtattggg cctaattgca acaccagtct gttttaaca ggttctatta 1150
cccagaactt tttgtaaat gcggcagttt caaattaact gtggaagttt 1200
tcagtttaa gttataaattc acctgagaat tacctaatttgaat tggattgaat 1250

aaatcttag actacaaaag cccaaacttt ctctattac atatgcac 1300
ctcctataat gtaaatagaa taatagctt gaaatacaat taggttttg 1350
agattttat aaccaaatac atttcagtgt aacatattag cagaaagcat 1400
tagtcttgtt acyttgctta cattccaaa agctgacatt ttcacgattc 1450
ttaaaaacac aaagttcac ac ttactaaaat taggacatgt tttctcttg 1500
aaatgaagaa tatagttaa aagtttcctc ctccataggg acacatttc 1550
tctaaccctt aactaaagtg taggattta aaattaaatg tgaggtaaaa 1600
taagtttatt tttaatagta tctgtcaagt taatatctgt caacagttaa 1650
taatcatgtt atgttaattt taacatgatt gctgacttgg ataattcatt 1700
attaccagca gttatgaagg aaatattgct aaaatgatct gggcctacca 1750
taaataaata tctcctttc tgagctctaa gaattatcag aaaacaggaa 1800
agaatttaga aaaacttgag aaaacctaatt cccaaataaa attcacttaa 1850
gtagaactat aaataaataat ctagaatctg actggctcat catgacatcc 1900
tactcataac ataaatcaaa ggagatgatt aatttccagt tagctggaag 1950
aaactttggc tgttagtttt tattttctac aagaattctg gtttgaatta 2000
tttttgaag caggtacatt ttataaaatg taagccctac tgtaaggtt 2050
agcactgggt gtacatattt attaaaaatt tttattataa caactttat 2100
taaaatggcc tttctgaaca ctttatattt tgatgtgaa gtaaggatta 2150
gaaacataga ctcccaagtt ttaaacacctt aaatgtgaat aacccatata 2200
tacaacaaag tttctgccat cttagttttt gaagtctatg ggggtcttac 2250
tcaagtacta gtaatttaac ttcatcatga atgaactata attttaagt 2300
tatgcccatt tataacgttg tttatgacta cattgtgagt tagaaacaaa 2350
cttaaaattt ggggtataga acccctcaac aggttagtaa tgctggaatt 2400
cttgatgagc aataatgata accagagagt gatttcattt acactcatag 2450
tagtataaaaa agagatacat ttccctctta ggccccctggg agaagagcag 2500
cttagatttc cctactggca aggttttaa aaatgaggta aatgccgtat 2550
atgatcaatt accttaattt gccaagaaaa tgcttcaggt gtctagggt 2600
atcctctgca acacttgca ag aacaaaggc aataagatcc ttgcctatga 2650

ataccctcc ctttgcgt gttaaattt caatgagaag caaattaca 2700
gtaccataac taataaagca gggtacagat ataaaactact gcatcttc 2750
tataaaactg tgattaagaa ttctacctct cctgtatggc tggactgta 2800
ctgtactctc tgactccta cctaacaatg aattgttac ataatctct 2850
acatgtatga tttgtgccac tgatctaaa cctatgattc agtaacttct 2900
taccatataa aaacgataat tgcttattt ggaaaagaat ttaggaatac 2950
taaggacaat tattttata gacaaagtaa aaagacagat atttaagagg 3000
cataaccaa aaagcaaaac ttgtaaacag agtaaaaatc tttaatattt 3050
ctaaagacat actgtttatc tgcttcataat gcttttttta atttcactat 3100
tccatttcta aattaaagtt atgctaaatt gagtaagctg tttatcactt 3150
aacagctcat tttgtctttt tcaatataca aattttaaaa atactacaat 3200
atttaactaa ggcccaaccg atttccataa tgttagcagtt accgtgttca 3250
cctcacacta aggcttagag tttgctctga tatgcatttg gatgattaat 3300
gttatgctgt tcttcatgt gaatgtcaag acatggaggg tggtaat 3350
tttatggtaa aattaaatcct tcttacacat aatggtgtct taaaattgac 3400
aaaaaatgag cacttacaat tgtatgtctc ctcaaatgaa gattctttat 3450
gtacaataat gcacaatcag tggctcaa actgctttat acttataaac 3500
agccatctta aataagcaac gtattgtgag tactgatatg tatataataa 3600
aaattatcaa aggaaaaa 3617

<210> 447

<211> 229

<212> PRT

<213> Homo sapiens

<400> 447

Met	Gly	Asp	Lys	Ile	Trp	Leu	Pro	Phe	Pro	Val	Leu	Leu	Leu	Ala
1				5					10					15

Ala	Leu	Pro	Pro	Val	Leu	Leu	Pro	Gly	Ala	Ala	Gly	Phe	Thr	Pro
				20					25					30

Ser	Leu	Asp	Ser	Asp	Phe	Thr	Phe	Thr	Leu	Pro	Ala	Gly	Gln	Lys
					35				40					45

Glu	Cys	Phe	Tyr	Gln	Pro	Met	Pro	Leu	Lys	Ala	Ser	Leu	Glu	Ile
					50				55					60

Glu Tyr Gln Val Leu Asp Gly Ala Gly Leu Asp Ile Asp Phe His
65 70 75

Leu Ala Ser Pro Glu Gly Lys Thr Leu Val Phe Glu Gln Arg Lys
80 85 90

Ser Asp Gly Val His Thr Val Glu Thr Glu Val Gly Asp Tyr Met
95 100 105

Phe Cys Phe Asp Asn Thr Phe Ser Thr Ile Ser Glu Lys Val Ile
110 115 120

Phe Phe Glu Leu Ile Leu Asp Asn Met Gly Glu Gln Ala Gln Glu
125 130 135

Gln Glu Asp Trp Lys Lys Tyr Ile Thr Gly Thr Asp Ile Leu Asp
140 145 150

Met Lys Leu Glu Asp Ile Leu Glu Ser Ile Asn Ser Ile Lys Ser
155 160 165

Arg Leu Ser Lys Ser Gly His Ile Gln Ile Leu Leu Arg Ala Phe
170 175 180

Glu Ala Arg Asp Arg Asn Ile Gln Glu Ser Asn Phe Asp Arg Val
185 190 195

Asn Phe Trp Ser Met Val Asn Leu Val Val Met Val Val Val Ser
200 205 210

Ala Ile Gln Val Tyr Met Leu Lys Ser Leu Phe Glu Asp Lys Arg
215 220 225

Lys Ser Arg Thr

<210> 448
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 448
cccagcagg ctgggcgaca aga 23

<210> 449
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 449

gtcttccagt ttcatatcca ata 23

<210> 450

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 450

ccagaaggag cacgggaaag ggcagccaga tcttgtcgcc cat 43

<210> 451

<211> 859

<212> DNA

<213> Homo sapiens

<400> 451

ccatccctga gatctttta taaaaaaccc agtcttgct gaccagacaa 50

agcataccag atctcaccag agagtcgcag acactatgct gcctccatg 100

gccctgccc gtgtgtcctg gatgctgctt tcctgcctca ttctcctgtg 150

tcaggttcaa ggtgaagaaa cccagaagga actgccctct ccacggatca 200

gctgtcccaa aggctccaag gcctatggct cccccctgcta tgccttgaaa 250

ttgtcaccaa aatcctggat ggatgcagat ctggcttgcc agaagcggcc 300

ctctggaaaaa ctgggtgtctg tgctcagttgg ggctgaggga tccttcgtgt 350

cctccctgggt gaggagcatt agtaacagct actcatacat ctggattggg 400

ctccatgacc ccacacaggg ctctgagcct gatggagatg gatggagatg 450

gagtagcact gatgtgatga attactttgc atggagaaa aatccctcca 500

ccatcttaaa ccctggccac tgtgggagcc tgtcaagaag cacaggattt 550

ctgaagtggaa aagattataa ctgtgatgca aagttaccct atgtctgcaa 600

gttcaaggac tagggcaggt gggaaagtca ggcctcagc ttggcgtgca 650

gctcatcatg gacatgagac cagtgtgaag actcaccctg gaagagaata 700

ttctccccaa actgcctac ctgactacct tgtcatgatc ctccttcittt 750

ttcccttttc ttcacccatca tttcaggctt ttctctgtct tccatgtctt 800

gagatctcag agaataataa taaaaatgtt actttataaa aaaaaaaaaa 850

aaaaaaaaaa 859

<210> 452

<211> 175

<212> PRT

<213> Homo sapiens

<400> 452

Met	Leu	Pro	Pro	Met	Ala	Leu	Pro	Ser	Val	Ser	Trp	Met	Leu	Leu
1					5				10					15
Ser	Cys	Leu	Ile	Leu	Leu	Cys	Gln	Val	Gln	Gly	Glu	Glu	Thr	Gln
				20					25					30
Lys	Glu	Leu	Pro	Ser	Pro	Arg	Ile	Ser	Cys	Pro	Lys	Gly	Ser	Lys
						35			40					45
Ala	Tyr	Gly	Ser	Pro	Cys	Tyr	Ala	Leu	Phe	Leu	Ser	Pro	Lys	Ser
					50				55					60
Trp	Met	Asp	Ala	Asp	Leu	Ala	Cys	Gln	Lys	Arg	Pro	Ser	Gly	Lys
					65				70					75
Leu	Val	Ser	Val	Leu	Ser	Gly	Ala	Glu	Gly	Ser	Phe	Val	Ser	Ser
					80				85					90
Leu	Val	Arg	Ser	Ile	Ser	Asn	Ser	Tyr	Ser	Tyr	Ile	Trp	Ile	Gly
					95				100					105
Leu	His	Asp	Pro	Thr	Gln	Gly	Ser	Glu	Pro	Asp	Gly	Asp	Gly	Trp
					110				115					120
Glu	Trp	Ser	Ser	Thr	Asp	Val	Met	Asn	Tyr	Phe	Ala	Trp	Glu	Lys
					125				130					135
Asn	Pro	Ser	Thr	Ile	Leu	Asn	Pro	Gly	His	Cys	Gly	Ser	Leu	Ser
					140				145					150
Arg	Ser	Thr	Gly	Phe	Leu	Lys	Trp	Lys	Asp	Tyr	Asn	Cys	Asp	Ala
					155				160					165
Lys	Leu	Pro	Tyr	Val	Cys	Lys	Phe	Lys	Asp					
					170				175					

<210> 453

<211> 550

<212> DNA

<213> Homo sapiens

<400> 453

ccagtctgtc gccacactcac ttggtgtctg ctgtccccgc caggcaagcc 50
tgggttgaga gcacagagga gtgggccggg accatgcgggg ggacgcggct 100
ggcgctcctg gcgctggtgc tggctgcctg cggagagctg gcgccggccc 150
tgcgctgcta cgtctgtccg gagcccacag gagtgtcgga ctgtgtcacc 200
atcgccacct gcaccaccaa cgaaaccatg tgcaagacca cactctactc 250
ccgggagata gtgtacccct tccaggggga ctccacggtg accaagtcc 300

gtgccagcaa gtgtaagccc tcggatgtgg atggcatcg ccagaccctg 350
cccggtgcct gctgaatac tgagctgtgc aatgtagacg gggcgccccgc 400
tctgaacagc ctccactgctg 450
tccgactgta gagtccccgc ccaccccat gccctatgc ggcccagccc 500
cgaatgcctt gaagaagtgc cccctgcacc aggaaaaaaaaaaaaaaa 550
<210> 454
<211> 125
<212> PRT
<213> Homo sapiens

<400> 454
Met Arg Gly Thr Arg Leu Ala Leu Leu Ala Leu Val Leu Ala Ala
1 5 10 15
Cys Gly Glu Leu Ala Pro Ala Leu Arg Cys Tyr Val Cys Pro Glu
20 25 30
Pro Thr Gly Val Ser Asp Cys Val Thr Ile Ala Thr Cys Thr Thr
35 40 45
Asn Glu Thr Met Cys Lys Thr Thr Leu Tyr Ser Arg Glu Ile Val
50 55 60
Tyr Pro Phe Gln Gly Asp Ser Thr Val Thr Lys Ser Cys Ala Ser
65 70 75
Lys Cys Lys Pro Ser Asp Val Asp Gly Ile Gly Gln Thr Leu Pro
80 85 90
Val Ser Cys Cys Asn Thr Glu Leu Cys Asn Val Asp Gly Ala Pro
95 100 105
Ala Leu Asn Ser Leu His Cys Gly Ala Leu Thr Leu Leu Pro Leu
110 115 120
Leu Ser Leu Arg Leu
125

<210> 455
<211> 1518
<212> DNA
<213> Homo sapiens

<400> 455
ctgcagtcag gactctggga ccgcaggggg ctcccgacc ctgactctgc 50
agccgaacct gcacggtttc gtggggaccc aggcttgcaa agtgacggtc 100
attttctctt tctttctccc tcttgagtcc ttctgagatg atggctctgg 150
gcgcaagcggg agtacccgg gtcttgcg cgatggtagc ggcggctc 200

ggcgccacc ctctgctggg agtgagcgcc accttgaact cggttctaa 250
ttccaacgct atcaagaacc tgcccccacc gctgggcggc gctgcggggc 300
acccaggctc tgcagtcagc gccgcgccgg gaatcctgta cccgggcggg 350
aataagtacc agaccattga caactaccag ccgtaccgt gcgcagagga 400
cgaggagtgc ggcactgatg agtactgcgc tagtcccacc cgccggaggg 450
acgcaggcgt gcaaatctgt ctcgcctgca ggaagcgccg aaaacgctgc 500
atgcgtcacf ctagtgctg ccccgaaat tactgaaaa atgaaatatg 550
tgtgtttct gatcaaaatc atttccgagg agaaatttag gaaaccatca 600
ctgaaagctt tggtaatgtat catagcacct tggatggta ttccagaaga 650
accacccctt cttcaaaaat gtatcacacc aaaggacaag aaggttctgt 700
ttgtctccgg tcatcagact gtgcctcagg attgtgtgt gctagacact 750
tctggtccaa gatctgtaaa cctgcctgaa aagaaggta agtgtgtacc 800
aagcatagga gaaaaggctc tcatggacta gaaatattcc agcgttggta 850
ctgtggagaa ggtctgtctt gccggataca gaaagatcac catcaagcca 900
gttaattcttc taggcttcac acttgcaga gacactaac cagctatcca 950
aatgcagtga actcccttta tataatagat gctatgaaaa ccttttatga 1000
ccttcataa ctcataatcata aggtatataca agttctgtgg tttcagttaa 1050
gcattccaaat aacacccctcc aaaaacctgg agtgcataagag ctttgggttct 1100
ttatggaaact cccctgtat tgcagtaat tactgtattt taaattctca 1150
gtgtggact tacctgtaaa tgcaatgaaa ctttaatta tttttctaaa 1200
ggtgctgcac tgcctatccc tcctcttgc atgtttttt ttgtacacat 1250
tgattgttat cttgactgac aaatattcta tattgcactg aagtaatca 1300
tttcagctta tagttcttaa aagcataacc ctttacccca tttaattctca 1350
gagtctagaa cgcaaggatc tcttggatg acaaattgata ggtacctaaa 1400
atgttaacatg aaaatactag cttatccctt gaaatgtact atcttaatgc 1450
ttaaattata ttcccttta ggctgtgata gttttgaaa taaaattaa 1500
catttaaaaaa aaaaaaaaaa 1518

<210> 456

<211> 266

<212> PRT

<213> Homo sapiens

<400> 456

Met Met Ala Leu Gly Ala Ala Gly Ala Thr Arg Val Phe Val Ala
1 5 10 15

Met Val Ala Ala Ala Leu Gly Gly His Pro Leu Leu Gly Val Ser
20 25 30

Ala Thr Leu Asn Ser Val Leu Asn Ser Asn Ala Ile Lys Asn Leu
35 40 45

Pro Pro Pro Leu Gly Gly Ala Ala Gly His Pro Gly Ser Ala Val
50 55 60

Ser Ala Ala Pro Gly Ile Leu Tyr Pro Gly Gly Asn Lys Tyr Gln
65 70 75

Thr Ile Asp Asn Tyr Gln Pro Tyr Pro Cys Ala Glu Asp Glu Glu
80 85 90

Cys Gly Thr Asp Glu Tyr Cys Ala Ser Pro Thr Arg Gly Gly Asp
95 100 105

Ala Gly Val Gln Ile Cys Leu Ala Cys Arg Lys Arg Arg Lys Arg
110 115 120

Cys Met Arg His Ala Met Cys Cys Pro Gly Asn Tyr Cys Lys Asn
125 130 135

Gly Ile Cys Val Ser Ser Asp Gln Asn His Phe Arg Gly Glu Ile
140 145 150

Glu Glu Thr Ile Thr Glu Ser Phe Gly Asn Asp His Ser Thr Leu
155 160 165

Asp Gly Tyr Ser Arg Arg Thr Thr Leu Ser Ser Lys Met Tyr His
170 175 180

Thr Lys Gly Gln Glu Gly Ser Val Cys Leu Arg Ser Ser Asp Cys
185 190 195

Ala Ser Gly Leu Cys Cys Ala Arg His Phe Trp Ser Lys Ile Cys
200 205 210

Lys Pro Val Leu Lys Glu Gly Gln Val Cys Thr Lys His Arg Arg
215 220 225

Lys Gly Ser His Gly Leu Glu Ile Phe Gln Arg Cys Tyr Cys Gly
230 235 240

Glu Gly Leu Ser Cys Arg Ile Gln Lys Asp His His Gln Ala Ser
245 250 255

Asn Ser Ser Arg Leu His Thr Cys Gln Arg His
260 265

<210> 457
<211> 638
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 30, 123, 133, 139, 180, 214, 259, 282, 308, 452, 467, 471, 473,
509, 556
<223> unknown base

<400> 457
tgcgtttccc tgcagtcaga atttgggacn gcaggggttc ccggacctga 50
tttgcagcg gaacgggaag gtttgtgg acccaggtt aatgacggt 100
catttttttt tcttctcct tcnggagtcc ttntgagang atggtttgg 150
gcgcagcggg agctaaccgg gtttttgtn gcgtggtag cggcggttt 200
cgccggccac ctntgctgg gagtgagcgc cacctgaat cggtttcaa 250
ttccaacgnt atcaagaacc tgccccacc gntggcggc gctgcggggc 300
acccaggntt tgcagtcagc gccgcgcgg gaatcctgta cccgggggg 350
aataagtacc agaccattga caattaccag ccgtaccgt gcgcagagga 400
cgaggagtgc ggcactgatg agtactgcgc tagtcccacc cgccggagggg 450
angcgggcgt gcaaantgt ntngcctgca ggaagcgcgg aaaacgctgc 500
atgcgtcang ctatgtctg ccccgaaat tactgaaaa atgaaatatg 550
tgtgtttct gataaaatc atttccgagg agaaatttag gaaaccatca 600
ctgaaagctt tggtaatgat catagcacct tggatgg 638

<210> 458
<211> 4040
<212> DNA
<213> Homo sapiens

<400> 458
gaggaaccta ccgttaccgg ccgcgcgcgt gtagtcgcgg gtgtggctgc 50
acctcaccaa tcccgtgcgc cgccgcgtgg ccgtcgagaa gtgcgtgtgc 100
ttctctcctg cacgcgggtgc ttgggctcgg ccaggcgggg tccgccgcca 150
gggtttgagg atgggggagt agctacagga agcgaccccg cgatggcaag 200
gtatattttt gtggaatgaa aaggaagtat tagaaatgag ctgaagacca 250
ttcacagatt aatattttt gggacagatt tgtgatgctt gattcaccc 300

cttctttatg gtcagcttaa gtttggtaca ctagattgt a cagttcatga 1800
gggactctgt aacatgtata acattcaggc ttatccaaca acagtggat 1850
tcaaccagtc caacattcat gagtatgaag gacatcaactc tgctgaacaa 1900
atcttggagt tcatagagga tcttatgaat ctttcagtg gg tctcccttac 1950
accaccacc ttcaacgaac tagttacaca aagaaaacac aacgaagtct 2000
ggatgggtga tttctattct ccgtgggtgc atccttgcca agtcttaatg 2050
ccagaatgga aaagaatggc ccggacatta actggactga tcaacgtggg 2100
cagtatagat tgccaaacagt atcattctt ttgtgcccag gaaaacgttc 2150
aaagatacc tggataaga tttttcccc caaaatcaa aaaaagctt 2200
cagtatcaca gttacaatgg ttggaatagg gatgcttatt ccctgagaat 2250
ctgggtcta ggattttac ctcaagtatc cacagatcta acacctcaga 2300
cttcagtga aaaagttcta caagggaaaa atcattgggt gattgatttc 2350
tatgctcctt ggtgtggacc ttgccagaat tttgctccag aatttgagct 2400
cttggctagg atgattaaag gaaaagtgaa agctggaaaa gtagactgtc 2450
aggcttatgc tcagacatgc cagaaagctg ggatcaggc ctatccaact 2500
gttaagttt atttctacga aagagcaaag agaaattttc aagaagagca 2550
gataaatacc agagatgcaa aagcaatcgc tgccttaata agtggaaaat 2600
tgaaaactct ccgaaatcaa ggcaagagga ataaggatga actttgataa 2650
• ttttgaagat gaagaaaaag tttaaaagaa attctgacag atgacatcag 2700
aagacaccta ttttagatgt tacatttatg atggaaatgt atgaacatcta 2750
tcttagactt gcagttgtac tgccagaatt atctacagca ctgggttaaa 2800
agaagggct gcaaacttt tctgtaaagg gccggtttat aaatattta 2850
gactttgcag gctataatat atgggtcaca catgagaaca agaatagagt 2900
catcatgtat tctttgttat ttgctttaa caacctttaa aaaatattaa 2950
aacgattctt agctcagagc cataaaaaag taggctggat tcagtccatg 3000
gaccatagat tgctgtcccc ctcgacggac ttataatgtt tcaggtggct 3050
ggcttgaaca tgagtctgct gtgctatcta cataaatgtc taagttgtat 3100
aaagtccact ttcccttcac gtttttggc tgacctgaaa agaggttaact 3150

tagttttgg tcacttgttc tcctaaaaat gctatcccta accatatatt 3200
tatatttcgt tttaaaaaca cccatgatgt ggcacagtaa acaaaccctg 3250
ttatgctgta ttattatgag gagattcttc attgtttct ttccttctca 3300
aagggtgaaa aaatgcttt aattttcac agccgagaaa cagtgcagca 3350
gtatatgtgc acacagtaag tacacaaatt tgagcaacag taagtgcaca 3400
aattctgttag tttgctgtat catccaggaa aacctgaggg aaaaaaatta 3450
tagcaattaa ctggcattg tagagtatcc taaatatgtt atcaagtatt 3500
tagagttcta tattttaaag atatatgtgt tcatgtattt tctgaaattt 3550
ctttcataga aattttcca ctgatagttg attttgagg catctaata 3600
ttacatattt gccttctgaa ctttgggggg acctgtatcc tttatattaca 3650
ttgggtttt ctttcatagt ttgggtttt cactcctgtc cagtctattt 3700
attattcaaa tagaaaaat tactttacag gttgtttac tgtagctt 3750
aatgatactg tagttattcc agttactagt ttactgtcag agggctgcct 3800
tttcagata aatattgaca taataactga agttatttt ataagaaaaat 3850
caagtgatata aatcttagaa agggatcttc tagttctgt gttgtttaga 3900
ctcaaagaat cacaaatttg tcaagtaacat gtatgtttt agttataatt 3950
cagagtgtac agaatggtaa aaattccaat cagtc当地ag aggtcaatga 4000
ataaaaaggc ttgcaacttt tcaaaaaaaaaaaaaaaa 4040

<210> 459

<211> 747

<212> PRT

<213> Homo sapiens

<400> 459

Met	Gly	Val	Trp	Leu	Asn	Lys	Asp	Asp	Tyr	Ile	Arg	Asp	Leu	Lys
1				5					10				15	

Arg	Ile	Ile	Leu	Cys	Phe	Leu	Ile	Val	Tyr	Met	Ala	Ile	Leu	Val
					20				25				30	

Gly	Thr	Asp	Gln	Asp	Phe	Tyr	Ser	Leu	Leu	Gly	Val	Ser	Lys	Thr
					35				40				45	

Ala	Ser	Ser	Arg	Glu	Ile	Arg	Gln	Ala	Phe	Lys	Lys	Leu	Ala	Leu
					50				55				60	

Lys	Leu	His	Pro	Asp	Lys	Asn	Pro	Asn	Asn	Pro	Asn	Ala	His	Gly
					65				70				75	

Asp Phe Leu Lys Ile Asn Arg Ala Tyr Glu Val Leu Lys Asp Glu
80 85 90

Asp Leu Arg Lys Lys Tyr Asp Lys Tyr Gly Glu Lys Gly Leu Glu
95 100 105

Asp Asn Gln Gly Gly Gln Tyr Glu Ser Trp Asn Tyr Tyr Arg Tyr
110 115 120

Asp Phe Gly Ile Tyr Asp Asp Asp Pro Glu Ile Ile Thr Leu Glu
125 130 135

Arg Arg Glu Phe Asp Ala Ala Val Asn Ser Gly Glu Leu Trp Phe
140 145 150

Val Asn Phe Tyr Ser Pro Gly Cys Ser His Cys His Asp Leu Ala
155 160 165

Pro Thr Trp Arg Asp Phe Ala Lys Glu Val Asp Gly Leu Leu Arg
170 175 180

Ile Gly Ala Val Asn Cys Gly Asp Asp Arg Met Leu Cys Arg Met
185 190 195

Lys Gly Val Asn Ser Tyr Pro Ser Leu Phe Ile Phe Arg Ser Gly
200 205 210

Met Ala Pro Val Lys Tyr His Gly Asp Arg Ser Lys Glu Ser Leu
215 220 225

Val Ser Phe Ala Met Gln His Val Arg Ser Thr Val Thr Glu Leu
230 235 240

Trp Thr Gly Asn Phe Val Asn Ser Ile Gln Thr Ala Phe Ala Ala
245 250 255

Gly Ile Gly Trp Leu Ile Thr Phe Cys Ser Lys Gly Gly Asp Cys
260 265 270

Leu Thr Ser Gln Thr Arg Leu Arg Leu Ser Gly Met Leu Phe Leu
275 280 285

Asn Ser Leu Asp Ala Lys Glu Ile Tyr Leu Glu Val Ile His Asn
290 295 300

Leu Pro Asp Phe Glu Leu Leu Ser Ala Asn Thr Leu Glu Asp Arg
305 310 315

Leu Ala His His Arg Trp Leu Leu Phe Phe His Phe Gly Lys Asn
320 325 330

Glu Asn Ser Asn Asp Pro Glu Leu Lys Lys Leu Lys Thr Leu Leu
335 340 345

Lys Asn Asp His Ile Gln Val Gly Arg Phe Asp Cys Ser Ser Ala
350 355 360

Pro Asp Ile Cys Ser Asn Leu Tyr Val Phe Gln Pro Ser Leu Ala
365 370 375

Val Phe Lys Gly Gln Gly Thr Lys Glu Tyr Glu Ile His His Gly
380 385 390

Lys Lys Ile Leu Tyr Asp Ile Leu Ala Phe Ala Lys Glu Ser Val
395 400 405

Asn Ser His Val Thr Thr Leu Gly Pro Gln Asn Phe Pro Ala Asn
410 415 420

Asp Lys Glu Pro Trp Leu Val Asp Phe Phe Ala Pro Trp Cys Pro
425 430 435

Pro Cys Arg Ala Leu Leu Pro Glu Leu Arg Arg Ala Ser Asn Leu
440 445 450

Leu Tyr Gly Gln Leu Lys Phe Gly Thr Leu Asp Cys Thr Val His
455 460 465

Glu Gly Leu Cys Asn Met Tyr Asn Ile Gln Ala Tyr Pro Thr Thr
470 475 480

Val Val Phe Asn Gln Ser Asn Ile His Glu Tyr Glu Gly His His
485 490 495

Ser Ala Glu Gln Ile Leu Glu Phe Ile Glu Asp Leu Met Asn Pro
500 505 510

Ser Val Val Ser Leu Thr Pro Thr Thr Phe Asn Glu Leu Val Thr
515 520 525

Gln Arg Lys His Asn Glu Val Trp Met Val Asp Phe Tyr Ser Pro
530 535 540

Trp Cys His Pro Cys Gln Val Leu Met Pro Glu Trp Lys Arg Met
545 550 555

Ala Arg Thr Leu Thr Gly Leu Ile Asn Val Gly Ser Ile Asp Cys
560 565 570

Gln Gln Tyr His Ser Phe Cys Ala Gln Glu Asn Val Gln Arg Tyr
575 580 585

Pro Glu Ile Arg Phe Phe Pro Pro Lys Ser Asn Lys Ala Tyr Gln
590 595 600

Tyr His Ser Tyr Asn Gly Trp Asn Arg Asp Ala Tyr Ser Leu Arg
605 610 615

Ile Trp Gly Leu Gly Phe Leu Pro Gln Val Ser Thr Asp Leu Thr
620 625 630

Pro Gln Thr Phe Ser Glu Lys Val Leu Gln Gly Lys Asn His Trp
635 640 645

Val Ile Asp Phe Tyr Ala Pro Trp Cys Gly Pro Cys Gln Asn Phe
650 655 660

Ala Pro Glu Phe Glu Leu Leu Ala Arg Met Ile Lys Gly Lys Val
665 670 675

Lys Ala Gly Lys Val Asp Cys Gln Ala Tyr Ala Gln Thr Cys Gln
680 685 690

Lys Ala Gly Ile Arg Ala Tyr Pro Thr Val Lys Phe Tyr Phe Tyr
695 700 705

Glu Arg Ala Lys Arg Asn Phe Gln Glu Gln Ile Asn Thr Arg
710 715 720

Asp Ala Lys Ala Ile Ala Ala Leu Ile Ser Glu Lys Leu Glu Thr
725 730 735

Leu Arg Asn Gln Gly Lys Arg Asn Lys Asp Glu Leu
740 745

<210> 460

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 460

actccccagg ctgttcacac tgcc 24

<210> 461

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 461

gatcagccag ccaataccag cagc 24

<210> 462

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 462

gtgggtatga tagaatgctt tgccgaatga aaggagtcaa cagctatccc 50

<210> 463

<211> 1818

<212> DNA

<213> Homo sapiens

<400> 463

agacagtacc tcctccctag gactacacaa ggactgaacc agaaggaaga 50
ggacagagca aagccatgaa catcatccta gaaatccttc tgcttctgat 100
caccatcatc tactcctact tggagtcgtt ggtgaagttt ttcattcctc 150
agaggagaaa atctgtggct ggggagattg ttctcattac tggagctggg 200
catggaatag gcaggcagac tacttatgaa tttgcaaaac gacagagcat 250
attggttctg tgggatatta ataagcgcgg tgtggagaa actgcagctg 300
agtgccgaaa actaggcgtc actgcgcatt cgtatgttgtt agactgcagc 350
aacagagaag agatctatcg ctctctaaat caggtgaaga aagaagtggg 400
tgatgtaaca atcgtggtaataatgctgg gacagtatat ccagccgatc 450
ttctcagcac caaggatgaa gagattacca agacattga ggtcaacatc 500
ctaggacatt tttggatcac aaaagcactt cttccatcga tgatggagag 550
aatcatgac cacatcgta cagtggcttc agtgcgcggc cacgaaggaa 600
ttccttacct catccatat tggccagca aattgccgc tggtggctt 650
cacagaggc tgacatcaga acttcaggcc ttggaaaaaa ctggtatcaa 700
aacctcatgt ctctgcccag ttttgtgaa tactgggttc accaaaaatc 750
caagcacaag attatggcct gtattggaga cagatgaagt cgtaagaagt 800
ctgatagatg gaatacttac caataagaaa atgatttttgc ttccatcgta 850
tatcaatatc tttctgagac tacagaagtt tcttcctgaa cgccgcctcag 900
cgatTTaaa tcgtatgcag aatattcaat ttgaaggagt gggtggccac 950
aaaatcaaaa tgaaatgaat aaataagctc cagccagaga tgtatgcatt 1000
ataatgatat gaatagttc gaatcaatgc tgcaagctt tatttcacat 1050
tttttcagtc ctgataatat taAAAACATT ggTTGGCAC tagcagcagt 1100
caaacgaaca agattaatta cctgtcttcc tgTTCTCAA gaatatttac 1150
gtatTTTTC ataggctgtt tttccttcc atgcctctta aaaacttctg 1200
tgcttacata aacatactta aaaggTTTC tttaagatat tttatTTTC 1250
catttaaagg tggacaaaag ctacccctt aaaagtaaat acaaagagaa 1300
cttatttaca cagggaaagg ttaagactgt tcaagtagca ttccaatctg 1350

tagccatgcc acagaatatac aacaagaaca cagaatgagt gcacagctaa 1400
gagatcaagt ttcagcaggc agctttatct caacctggac atatttaag 1450
attcagcatt tgaaagattt ccctagcctc ttcccttttc attagcccaa 1500
aacggtgcaa ctctattctg gactttatta cttgattctg tcttctgtat 1550
aactctgaag tccaccaaaa gtggaccctc tatatttcct cccttttat 1600
agtcttataa gatacattat gaaaggtgac cgactctatt ttaaatctca 1650
gaatttaag ttctagcccc atgataacct ttttcttgt aatttatgct 1700
ttcatatatac ctgggtccca gagatgtta gacaattta ggctcaaaaa 1750
ttaaagctaa cacagaaaaa ggaactgtac tggctattac ataagaaaca 1800
atggacccaa gagaagaa 1818

<210> 464

<211> 300

<212> PRT

<213> Homo sapiens

<400> 464

Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Ile Thr Ile Ile
1 5 10 15

Tyr Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg
20 25 30

Arg Lys Ser Val Ala Gly Glu Ile Val Leu Ile Thr Gly Ala Gly
35 40 45

His Gly Ile Gly Arg Gln Thr Thr Tyr Glu Phe Ala Lys Arg Gln
50 55 60

Ser Ile Leu Val Leu Trp Asp Ile Asn Lys Arg Gly Val Glu Glu
65 70 75

Thr Ala Ala Glu Cys Arg Lys Leu Gly Val Thr Ala His Ala Tyr
80 85 90

Val Val Asp Cys Ser Asn Arg Glu Glu Ile Tyr Arg Ser Leu Asn
95 100 105

Gln Val Lys Lys Glu Val Gly Asp Val Thr Ile Val Val Asn Asn
110 115 120

Ala Gly Thr Val Tyr Pro Ala Asp Leu Leu Ser Thr Lys Asp Glu
125 130 135

Glu Ile Thr Lys Thr Phe Glu Val Asn Ile Leu Gly His Phe Trp
140 145 150

Ile Thr Lys Ala Leu Leu Pro Ser Met Met Glu Arg Asn His Gly

	155	160	165
His Ile Val Thr Val Ala Ser Val Cys Gly His Glu Gly Ile Pro			
170	175		180
Tyr Leu Ile Pro Tyr Cys Ser Ser Lys Phe Ala Ala Val Gly Phe			
185	190		195
His Arg Gly Leu Thr Ser Glu Leu Gln Ala Leu Gly Lys Thr Gly			
200	205		210
Ile Lys Thr Ser Cys Leu Cys Pro Val Phe Val Asn Thr Gly Phe			
215	220		225
Thr Lys Asn Pro Ser Thr Arg Leu Trp Pro Val Leu Glu Thr Asp			
230	235		240
Glu Val Val Arg Ser Leu Ile Asp Gly Ile Leu Thr Asn Lys Lys			
245	250		255
Met Ile Phe Val Pro Ser Tyr Ile Asn Ile Phe Leu Arg Leu Gln			
260	265		270
Lys Phe Leu Pro Glu Arg Ala Ser Ala Ile Leu Asn Arg Met Gln			
275	280		285
Asn Ile Gln Phe Glu Ala Val Val Gly His Lys Ile Lys Met Lys			
290	295		300
<210> 465			
<211> 1547			
<212> DNA			
<213> Homo sapiens			
<400> 465			
cgccggcggc tgcgggcgag aggtgagggg cgcgagggtga ggggcgcgag 50			
gttcccagca ggatcccccg gctctgcagg aagctgaagt gagaggcccg 100			
gagagggccc agcccgccccg gggcaggatg accaaggccc ggctgttccg 150			
gctgtggctg gtgctgggtt cgggtttcat gatcctgctg atcatcgtgt 200			
actggacacg cgccaggcgcc ggcacttct acttgacac gtccttctct 250			
aggccgcaca cggggccgccc gctgcccacg cccggccgg acagggacacg 300			
ggagctcacg gcccactccg atgtcgacga gtttctggac aagttctca 350			
gtgctggcgt gaagcagagc gaccccca gaaaggagac ggagcagccg 400			
cctgcgccgg ggagcatgga ggagagcgtg agaggctacg actggcccc 450			
cgccgacgccc cggcgccagcc cagaccagg ccggcagcag gcggagcgga 500			
ggagcgtgct gcggggcttc tgcccaact ccagcctggc cttccccacc 550			

aaggagcgcg cattcgacga catccccaaac tcggagctga gccacctgat 600
cgtggacgac cggcacgggg ccatctactg ctacgtgccc aaggtggcct 650
gcaccaactg gaagcgcgtg atgatcggtc tgagcggaag cctgctgcac 700
cgcggtgcgc cctaccgcga cccgctgcgc atccgcgcg agcacgtgca 750
caacgccagc ggcacacctga cttcaacaa gttctggcgc cgctacggga 800
agctctcccg ccacccatg aaggtcaagc tcaagaagta caccaagttc 850
ctttcggtgc gcgacccctt cgtgcgcctg atctccgcct tccgcagcaa 900
gttcgagctg gagaacgagg agttctaccg caagttcgcc gtgcccattgc 950
tgccggctgtc cgccaaccac accagcctgc cgcgcgcgc ggcgaggcc 1000
ttccgcgcctg gcctcaaggt gtccttcgccc aacttcattc agtacctgct 1050
ggacccgcac acggagaagc tggcgccctt caacgagcac tggcggcagg 1100
tgtaccgcct ctgccaccccg tgccagatcg actacgactt cgtggggaaag 1150
ctggagactc tggacgagga cgccgcgcag ctgctgcgc tactccaggt 1200
ggaccggcag ctccgcttcc ccccgagcta ccggAACAGG accggccagca 1250
gctgggagga ggactggttc gccaagatcc ccctggcctg gaggcagcag 1300
ctgtataaac tctacgaggc cgactttgtt ctcttcggct accccaagcc 1350
cgaaaacctc ctccgagact gaaagtttc gcgttgctt ttctcggtg 1400
cctggAACCT gacgcacgcg cactccagtt ttttatgac ctacgattt 1450
gcaatctggg cttcttggttc actccactgc ctctatccat tgagtactgt 1500
atcgatattt ttttttaaga ttaatatatt tcaggtattt aatacga 1547

<210> 466

<211> 414

<212> PRT

<213> Homo sapiens

<400> 466

Met	Thr	Lys	Ala	Arg	Leu	Phe	Arg	Leu	Trp	Leu	Val	Leu	Gly	Ser
1					5				10					15

Val	Phe	Met	Ile	Leu	Leu	Ile	Ile	Val	Tyr	Trp	Asp	Ser	Ala	Gly
								20		25				30

Ala	Ala	His	Phe	Tyr	Leu	His	Thr	Ser	Phe	Ser	Arg	Pro	His	Thr
								35		40				45

Gly	Pro	Pro	Leu	Pro	Thr	Pro	Gly	Pro	Asp	Arg	Asp	Arg	Glu	Leu
								50		55				60

Thr Ala Asp Ser Asp Val Asp Glu Phe Leu Asp Lys Phe Leu Ser
65 70 75

Ala Gly Val Lys Gln Ser Asp Leu Pro Arg Lys Glu Thr Glu Gln
80 85 90

Pro Pro Ala Pro Gly Ser Met Glu Glu Ser Val Arg Gly Tyr Asp
95 100 105

Trp Ser Pro Arg Asp Ala Arg Arg Ser Pro Asp Gln Gly Arg Gln
110 115 120

Gln Ala Glu Arg Arg Ser Val Leu Arg Gly Phe Cys Ala Asn Ser
125 130 135

Ser Leu Ala Phe Pro Thr Lys Glu Arg Ala Phe Asp Asp Ile Pro
140 145 150

Asn Ser Glu Leu Ser His Leu Ile Val Asp Asp Arg His Gly Ala
155 160 165

Ile Tyr Cys Tyr Val Pro Lys Val Ala Cys Thr Asn Trp Lys Arg
170 175 180

Val Met Ile Val Leu Ser Gly Ser Leu Leu His Arg Gly Ala Pro
185 190 195

Tyr Arg Asp Pro Leu Arg Ile Pro Arg Glu His Val His Asn Ala
200 205 210

Ser Ala His Leu Thr Phe Asn Lys Phe Trp Arg Arg Tyr Gly Lys
215 220 225

Leu Ser Arg His Leu Met Lys Val Lys Leu Lys Lys Tyr Thr Lys
230 235 240

Phe Leu Phe Val Arg Asp Pro Phe Val Arg Leu Ile Ser Ala Phe
245 250 255

Arg Ser Lys Phe Glu Leu Glu Asn Glu Glu Phe Tyr Arg Lys Phe
260 265 270

Ala Val Pro Met Leu Arg Leu Tyr Ala Asn His Thr Ser Leu Pro
275 280 285

Ala Ser Ala Arg Glu Ala Phe Arg Ala Gly Leu Lys Val Ser Phe
290 295 300

Ala Asn Phe Ile Gln Tyr Leu Leu Asp Pro His Thr Glu Lys Leu
305 310 315

Ala Pro Phe Asn Glu His Trp Arg Gln Val Tyr Arg Leu Cys His
320 325 330

Pro Cys Gln Ile Asp Tyr Asp Phe Val Gly Lys Leu Glu Thr Leu
335 340 345

Asp Glu Asp Ala Ala Gln Leu Leu Gln Leu Leu Gln Val Asp Arg
350 355 360
Gln Leu Arg Phe Pro Pro Ser Tyr Arg Asn Arg Thr Ala Ser Ser
365 370 375
Trp Glu Glu Asp Trp Phe Ala Lys Ile Pro Leu Ala Trp Arg Gln
380 385 390
Gln Leu Tyr Lys Leu Tyr Glu Ala Asp Phe Val Leu Phe Gly Tyr
395 400 405
Pro Lys Pro Glu Asn Leu Leu Arg Asp
410

<210> 467
<211> 1071
<212> DNA
<213> Homo sapiens

<400> 467
tcgggccaga attcggcacg aggcggcacg agggcgacgg cctcacgggg 50
ctttggaggt gaaagaggcc cagagtagag agagagagag accgacgtac 100
acgggatggc tacgggaacg cgctatgccg ggaaggtggt ggtcgtgacc 150
gggggcgggc gcggcatcg agctgggatc gtgcgcgcct tcgtgaacag 200
cggggcccgca gtggatatct gcgacaagga tgagtctggg ggccgggccc 250
tggagcagga gtccttgaa gctgtctta tcctctgtga tgtgactcag 300
gaagatgatg tgaagaccct gtttctgag accatccgcc gatttggccg 350
cctggattgt gttgtcaaca acgctggcca ccacccaccc ccacagaggg 400
ctgaggagac ctctgcccag ggattccgcc agctgctgga gctgaaccta 450
ctggggacgt acaccttgac caagctcgcc ctcccttacc tgcggaagag 500
tcaaggaaat gtcataaca tctccagcct ggtggggca atcggccagg 550
cccaggcagt tccctatgtg gccaccaagg gggcagtaac agccatgacc 600
aaagctttgg ccctggatga aagtccatat ggtgtccgag tcaactgtat 650
ctccccagga aacatctgga ccccgctgtg ggaggagctg gcagccttaa 700
tgccagaccc tagggccaca atccgagagg gcatgctggc ccagccactg 750
ggccgcattgg gccagccgc tgaggtcggg gctgcggcag tggcctggc 800
ctccgaagcc aacttctgca cggcattga actgctcgtg acgggggtg 850
cagagctggg gtacgggtgc aaggccagtc ggagcacccc cgtggacgcc 900

cccgatatcc cttcctgatt tctctcattt ctacttgggg cccccttcct 950
aggactctcc caccccaaac tccaacctgt atcagatgca gcccccaagc 1000
ccttagactc taagcccagt tagcaaggtg ccgggtcacc ctgcaggttc 1050
ccataaaaaac gatttgcagc c 1071

<210> 468

<211> 270

<212> PRT

<213> Homo sapiens

<400> 468

Met Ala Thr Gly Thr Arg Tyr Ala Gly Lys Val Val Val Val Thr
1 5 10 15

Gly Gly Gly Arg Gly Ile Gly Ala Gly Ile Val Arg Ala Phe Val
20 25 30

Asn Ser Gly Ala Arg Val Val Ile Cys Asp Lys Asp Glu Ser Gly
35 40 45

Gly Arg Ala Leu Glu Gln Glu Leu Pro Gly Ala Val Phe Ile Leu
50 55 60

Cys Asp Val Thr Gln Glu Asp Asp Val Lys Thr Leu Val Ser Glu
65 70 75

Thr Ile Arg Arg Phe Gly Arg Leu Asp Cys Val Val Asn Asn Ala
80 85 90

Gly His His Pro Pro Gln Arg Pro Glu Glu Thr Ser Ala Gln
95 100 105

Gly Phe Arg Gln Leu Leu Glu Leu Asn Leu Leu Gly Thr Tyr Thr
110 115 120

Leu Thr Lys Leu Ala Leu Pro Tyr Leu Arg Lys Ser Gln Gly Asn
125 130 135

Val Ile Asn Ile Ser Ser Leu Val Gly Ala Ile Gly Gln Ala Gln
140 145 150

Ala Val Pro Tyr Val Ala Thr Lys Gly Ala Val Thr Ala Met Thr
155 160 165

Lys Ala Leu Ala Leu Asp Glu Ser Pro Tyr Gly Val Arg Val Asn
170 175 180

Cys Ile Ser Pro Gly Asn Ile Trp Thr Pro Leu Trp Glu Glu Leu
185 190 195

Ala Ala Leu Met Pro Asp Pro Arg Ala Thr Ile Arg Glu Gly Met
200 205 210

Leu Ala Gln Pro Leu Gly Arg Met Gly Gln Pro Ala Glu Val Gly
215 220 225

Ala Ala Ala Val Phe Leu Ala Ser Glu Ala Asn Phe Cys Thr Gly
230 235 240

Ile Glu Leu Leu Val Thr Gly Gly Ala Glu Leu Gly Tyr Gly Cys
245 250 255

Lys Ala Ser Arg Ser Thr Pro Val Asp Ala Pro Asp Ile Pro Ser
260 265 270

<210> 469

<211> 687

<212> DNA

<213> Homo sapiens

<400> 469

aggcgggcag cagctgcagg ctgacccgtc agcttggcgg aatggactgg 50
cctcacaacc tgctgtttct tcttaccatt tccatcttcc tggggctggg 100
ccagccccagg agccccaaaa gcaagagggaa ggggcaaggg cggcctggc 150
ccctggccccc tggccctcac caggtgccac tggacctggc gtcacggatg 200
aaaccgtatg cccgcatgga ggagtatgag aggaacatcg aggagatgg 250
ggcccagctg aggaacagct cagagctggc ccagagaaag tgtgaggtca 300
acttgcagct gtggatgtcc aacaagagga gcctgtctcc ctggggctac 350
agcatcaacc acgaccccaag ccgtatcccc gtggacctgc cggaggcactg 400
gtgcctgtgt ctgggctgtg tgaaccctt caccatgcag gaggaccgca 450
gcatggtgag cgtgccggtg ttcagccagg ttccctgtgcg ccgcgcctc 500
tgcccgccac cgccccgcac agggccttcgc cgccagcgcg cagtcatgga 550
gaccatcgct gtgggctgca cctgcacatt ctgaatcacc tggcccagaa 600
gccaggccag cagcccgaga ccatcctct tgcacctttg tgccaagaaa 650
ggcctatgaa aagtaaacac tgactttga aagcaag 687

<210> 470

<211> 180

<212> PRT

<213> Homo sapiens

<400> 470

Met Asp Trp Pro His Asn Leu Leu Phe Leu Leu Thr Ile Ser Ile
1 5 10 15

Phe Leu Gly Leu Gly Gln Pro Arg Ser Pro Lys Ser Lys Arg Lys
20 25 30

Gly Gln Gly Arg Pro Gly Pro Leu Ala Pro Gly Pro His Gln Val
35 . 40 45

Pro Leu Asp Leu Val Ser Arg Met Lys Pro Tyr Ala Arg Met Glu
50 55 60

Glu Tyr Glu Arg Asn Ile Glu Glu Met Val Ala Gln Leu Arg Asn
65 70 75

Ser Ser Glu Leu Ala Gln Arg Lys Cys Glu Val Asn Leu Gln Leu
80 85 90

Trp Met Ser Asn Lys Arg Ser Leu Ser Pro Trp Gly Tyr Ser Ile
95 100 105

Asn His Asp Pro Ser Arg Ile Pro Val Asp Leu Pro Glu Ala Arg
110 115 120

Cys Leu Cys Leu Gly Cys Val Asn Pro Phe Thr Met Gln Glu Asp
125 130 135

Arg Ser Met Val Ser Val Pro Val Phe Ser Gln Val Pro Val Arg
140 145 150

Arg Arg Leu Cys Pro Pro Pro Pro Arg Thr Gly Pro Cys Arg Gln
155 160 165

Arg Ala Val Met Glu Thr Ile Ala Val Gly Cys Thr Cys Ile Phe
170 175 180

<210> 471
<211> 2368
<212> DNA
<213> Homo sapiens

<400> 471
gcgccgcccag gcgttaggcgg ggtggccctt gcgtctcccg cttccttgaa 50
aaaccggcg ggcgagcggag gctgcggggcc ggccgctgcc cttccccaca 100
ctccccgccc agaaggctcg ctggcgcccc aacatggcggt gtggcgctg 150
cgcccccgca gtaacggcgc tcctggccgc ctggatcgcg gctgtggcg 200
cgacggcagg ccccgaggag gccgcgtgc cgccggagca gagccgggtc 250
cagcccatga ccgcctccaa ctggacgctg gtgatggagg gcgagtggat 300
gctgaaattt tacgccccat ggtgtccatc ctgccagcag actgattcag 350
aatgggaggc ttttgcaaag aatggtgaaa tacttcagat cagtgtgggg 400
aaggtagatg tcattcaaga accaggtttg agtggccgct tctttgtcac 450
cactctccca gcatttttc atgcaaagga tggatattc cgccgttatac 500

gtggcccagg aatcttcgaa gacctgcaga attatatctt agagaagaaa 550
tggcaatca gtcgagccctc gactggctgg aaatccccag cttctctaac 600
gatgtctgga atggctggc ttttagcat ctctggcaag atatggcatc 650
ttcacaca acttccacatg actcttgaa ttccctgctt gtttttttat 700
gtgttttcg tcataccac cttggttttt ggcctttta tgggtctgg 750
cttgggtggta atatcagaat gtttctatgt gccacttcca aggcatttat 800
ctgagcgttc tgagcagaat cgagatca agggggctca tagagctgaa 850
cagttgcagg atgcggagga gaaaaaagat gattcaaatg aagaagaaaa 900
caaagacagc cttgttagatg atgaagaaga gaaagaagat cttggcgatg 950
aggatgaagc agaggaagaa gaggaggagg acaacttggc tgctgggttg 1000
gatgaggaga gaagtggagc caatgatca gggcccccag gagaggacgg 1050
tgtgaccgg gaggaagtag agcctgagga ggctgaagaa ggcattcttg 1100
agcaaccctg cccagctgac acagagggtgg tggaagactc cttggggcag 1150
cgtaaaagtc agcatgctga caagggactg tagatttaat gatgcgttt 1200
caagaataca cacaaaaaca atatgtcagc ttcccttgg cctgcagtt 1250
gtaccaaatc cttttttt cctgaatgag caagttctc taaaagatg 1300
ctctctagtc atttggtctc atggcagtaa gcctcatgta tactaaggag 1350
agtcttccag gtgtgacaat caggatata gaaaaacaaac gtatgtttgg 1400
gatctgtttg gagactggaa tggaaacaag ttcatttact taggggtcag 1450
agagtctcga ccagaggagg ccattccag tcctaatca cacccctcag 1500
agacaaggct gcaggccctg tgaaatgaaa gccaagcagg agccttggct 1550
cctgagcattc cccaaagtgt aacgtagaag cttgcattcc tttcttgg 1600
taaagtattt atttttgtca aattgcagga aacatcaggc accacagtgc 1650
atgaaaaatc tttcacagct agaaattgaa agggccttgg gtatagagag 1700
cagctcagaa gtcatccag ccctctgaat ctcctgtgt atgttttatt 1750
tcttacctt aattttcca gcattccac catggcatt caggctctcc 1800
acactcttca ctattatctc ttggtcagag gactccaata acagccaggt 1850
ttacatgaac tgtgtttgtt cattctgacc taaggggtt agataatca 1900
taaccataac ccctgaagct gtgactgcca aacatctcaa atgaaatgtt 1950

gtggccatca gagactcaa aggaagtaag gatttacaa gacagattaa 2000
aaaaaaaaattg ttttgtccaa aatatagttg ttgttgattt tttttaagt 2050
tttctaagca atattttca agccagaagt cctctaagtc ttgccagtagc 2100
aaggtagtct tgtgaagaaa agttgaatac tgtttggtt tcatctcaag 2150
gggttccctg ggtcttgaac tactttaata ataactaaaa aaccacttct 2200
gatttcctt cagtatgtg cttttggta aagaattaat gaactccagt 2250
acctgaaagt gaaagatttgc attttggttc catttctgt aatcttccaa 2300
agaattataat ctttgtaaat ctctcaatac tcaatctact gtaagtaccc 2350
agggaggcta atttcttt 2368

<210> 472

<211> 349

<212> PRT

<213> Homo sapiens

<400> 472

Met Ala Gly Gly Arg Cys Gly Pro Gln Leu Thr Ala Leu Leu Ala
1 5 10 15

Ala Trp Ile Ala Ala Val Ala Ala Thr Ala Gly Pro Glu Glu Ala
20 25 30

Ala Leu Pro Pro Glu Gln Ser Arg Val Gln Pro Met Thr Ala Ser
35 40 45

Asn Trp Thr Leu Val Met Glu Gly Glu Trp Met Leu Lys Phe Tyr
50 55 60

Ala Pro Trp Cys Pro Ser Cys Gln Gln Thr Asp Ser Glu Trp Glu
65 70 75

Ala Phe Ala Lys Asn Gly Glu Ile Leu Gln Ile Ser Val Gly Lys
80 85 90

Val Asp Val Ile Gln Glu Pro Gly Leu Ser Gly Arg Phe Phe Val
95 100 105

Thr Thr Leu Pro Ala Phe Phe His Ala Lys Asp Gly Ile Phe Arg
110 115 120

Arg Tyr Arg Gly Pro Gly Ile Phe Glu Asp Leu Gln Asn Tyr Ile
125 130 135

Leu Glu Lys Lys Trp Gln Ser Val Glu Pro Leu Thr Gly Trp Lys
140 145 150

Ser Pro Ala Ser Leu Thr Met Ser Gly Met Ala Gly Leu Phe Ser
155 160 165

Ile Ser Gly Lys Ile Trp His Leu His Asn Tyr Phe Thr Val Thr
170 175 180

Leu Gly Ile Pro Ala Trp Cys Ser Tyr Val Phe Phe Val Ile Ala
185 190 195

Thr Leu Val Phe Gly Leu Phe Met Gly Leu Val Leu Val Val Ile
200 205 210

Ser Glu Cys Phe Tyr Val Pro Leu Pro Arg His Leu Ser Glu Arg
215 220 225

Ser Glu Gln Asn Arg Arg Ser Glu Glu Ala His Arg Ala Glu Gln
230 235 240

Leu Gln Asp Ala Glu Glu Glu Lys Asp Asp Ser Asn Glu Glu Glu
245 250 255

Asn Lys Asp Ser Leu Val Asp Asp Glu Glu Glu Lys Glu Asp Leu
260 265 270

Gly Asp Glu Asp Glu Ala Glu Glu Glu Glu Glu Asp Asn Leu
275 280 285

Ala Ala Gly Val Asp Glu Glu Arg Ser Glu Ala Asn Asp Gln Gly
290 295 300

Pro Pro Gly Glu Asp Gly Val Thr Arg Glu Glu Val Glu Pro Glu
305 310 315

Glu Ala Glu Glu Gly Ile Ser Glu Gln Pro Cys Pro Ala Asp Thr
320 325 330

Glu Val Val Glu Asp Ser Leu Arg Gln Arg Lys Ser Gln His Ala
335 340 345

Asp Lys Gly Leu

<210> 473
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 473
gtccagccca tgaccgcctc caac 24

<210> 474
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 474

ctctcctcat ccacaccaggc agcc 24

<210> 475

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 475

tgggatgctg aaattttacg ccccatggtg tccatcctgc cagc 44

<210> 476

<211> 2478

<212> DNA

<213> Homo sapiens

<400> 476

atctgggtga actacttaag cttaatttgt taaactccgg taagtaccta 50

gcccacatga tttgacttag agattcttt ttgtccacag acagtcatct 100

caggggcaga aagaaaagag ctcccaaatg ctatatctat tcaggggctc 150

tcaagaacaa tggaatatca tcctgattta gaaaatttgg atgaagatgg 200

atatactcaa ttacacttcg actctcaaag caataccagg atagctgttg 250

tttcagagaa aggatcggtgt gctgcatttc tccttggcg cctcattgtct 300

gtaattttgg gaatcctatg ctggtaata ctggtgatag ctgtggcct 350

gggtaccatg ggggttcttt ccagcccttg tcctcctaattt tggatttat 400

atgagaagag ctgttatcta ttcagcatgt cactaaattc ctggatgg 450

agtaaaaagac aatgctggca actgggctct aatctcctaa agatagacag 500

ctcaaattgaa ttgggattta tagaaaaaca agtgcattcc caacctgata 550

attcatttttgc gataggcattt tctcgcccccc agactgaggt accatggctc 600

tgggaggatg gatcaacattt ctcttctaa ttatccaga tcagaaccac 650

agctacccaa gaaaacccat ctccaaatttgc tgtatggatt cacgtgtcag 700

tcatttatgaa ccaactgtgt agtgcattcc catatagttt ttgtgagaag 750

aagttttcaaa tgtaagagga agggtggaga aggagagaga aatatgtgag 800

gtagtaagga ggacagaaaa cagaacagaa aagagtaaca gctgaggtca 850

agataaaatgc agaaaatgtt tagagagctt ggccaactgt aatcttaacc 900

aagaaattga agggagaggc tgtgatttct gtatttgcg acctacaggt 950
aggctagtat tattttcta gtttagtagat ccctagacat ggaatcaggg 1000
cagccaagct tgagtttta ttttttattt atttattttt ttgagatagg 1050
gtctcacttt gttaccagg ctggagtgcg gtggcacaat ctcgactcac 1100
tgccagctatc tctcgctca gcccctcaag tagctggac tacaggtgc 1150
tgccaccatg ccaggctaat ttttggtgtt tttttagag actgggttt 1200
gccatgttga ccaagctggt ctctaaactcc tgggcttaag tgatctgcc 1250
gccttggcct cccaaagtgc tgggattaca gatgtgagcc accacacctg 1300
gccccaaagct tgaattttca ttctgccatt gactggcat ttaccttggg 1350
taagccataa gcgaatctta atttctggct ctatcagagt tgttcatgc 1400
tcaacaatgc cattgaagtg cacgggtgt tgccacgatt tgaccctcaa 1450
cttctagcag tatatcagtt atgaactgag ggtgaaatat atttctgaat 1500
agctaaatga agaaatggga aaaaatcttc accacagtca gagcaatttt 1550
attattttca tcagttatgt cataattatg attatcatct tagtaaaaaag 1600
caggaactcc tacttttctt ttatcaatta aatacgctc agagtacatc 1650
tgccatatct ctaatagaat cttttttttt tttttttttt tttgagacag 1700
agtttcgctc ttgttgcaca ggctggagtg caacggcacf atctcggttc 1750
accgcaacct ccgcggccctg ggttcaagca atttcctgc ctcagcctcc 1800
caagtagctg ggattacagt caggcaccac cacacccggc taattttgt 1850
tttttttagt agagacaggg tttctccatg tcggcaggg tagtcccgaa 1900
ctcctgacct caagtgtatc gcctgcctcg gcctcccaag tgctggatt 1950
acaggcgtga gccactgcac ccagcctaga atcttgtata atatgtatt 2000
gtaggaaac tgctctcata gaaaagttt ctgctttta aataaaaaaa 2050
tacataaaaaa tacataaaat ctgatgtga atataaaaaa gtaaccaacc 2100
tcatttggaaac aagtattaaac attttggaaat atgttttattt agttttgtga 2150
tgtactgttt tacaattttt accattttt tcagtaatta ctgtaaaatg 2200
gtattattgg aatgaaaacta tatttcctca tgtgctgatt tgtcttattt 2250
ttttcataact ttcccaactgg tgctattttt atttccaaatg gatatttctg 2300

tattactagg gaggcattta cagtcctcta atgttgatta atatgtgaaa 2350
agaaattgta ccaattttac taaattatgc agttaaaaat ggatgattt 2400
atgttatgtg gatttcattt caataaaaaa aaactcttat caaaaaaaaa 2450
aaaaaaaaaa aaaaaaaaaa aaaaaaaaa 2478

<210> 477
<211> 201
<212> PRT
<213> Homo sapiens

<400> 477
Met Glu Tyr His Pro Asp Leu Glu Asn Leu Asp Glu Asp Gly Tyr
1 5 10 15

Thr Gln Leu His Phe Asp Ser Gln Ser Asn Thr Arg Ile Ala Val
20 25 30

Val Ser Glu Lys Gly Ser Cys Ala Ala Ser Pro Pro Trp Arg Leu
35 40 45

Ile Ala Val Ile Leu Gly Ile Leu Cys Leu Val Ile Leu Val Ile
50 55 60

Ala Val Val Leu Gly Thr Met Gly Val Leu Ser Ser Pro Cys Pro
65 70 75

Pro Asn Trp Ile Ile Tyr Glu Lys Ser Cys Tyr Leu Phe Ser Met
80 85 90

Ser Leu Asn Ser Trp Asp Gly Ser Lys Arg Gln Cys Trp Gln Leu
95 100 105

Gly Ser Asn Leu Leu Lys Ile Asp Ser Ser Asn Glu Leu Gly Phe
110 115 120

Ile Val Lys Gln Val Ser Ser Gln Pro Asp Asn Ser Phe Trp Ile
125 130 135

Gly Leu Ser Arg Pro Gln Thr Glu Val Pro Trp Leu Trp Glu Asp
140 145 150

Gly Ser Thr Phe Ser Ser Asn Leu Phe Gln Ile Arg Thr Thr Ala
155 160 165

Thr Gln Glu Asn Pro Ser Pro Asn Cys Val Trp Ile His Val Ser
170 175 180

Val Ile Tyr Asp Gln Leu Cys Ser Val Pro Ser Tyr Ser Ile Cys
185 190 195

Glu Lys Lys Phe Ser Met
200

<210> 478

<211> 27
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 478
gtccacagac agtcatctca ggagcag 27

<210> 479
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 479
acaagtgtct tcccaacctg 20

<210> 480
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 480
atcctccag agccatggta cctc 24

<210> 481
<211> 51
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 481
ccaaggatag ctgttgttc agagaaagga tcgtgtgctg catctcctcc 50

t 51

<210> 482
<211> 3819
<212> DNA
<213> Homo sapiens

<400> 482
ggaaggggag gagcaggcca cacaggcaca ggccggtgag ggacctgcc 50

agacctggag ggtctcgctc tgtcacacag gctggagtgc agtggtgtga 100

tcttggctca tcgtaacctc cacctcccg gttcaagtga ttctcatgcc 150

tcagcctccc gagtagctgg gattacaggt ggtgacttcc aagagtgact 200
ccgtcgagg aaaatgactc cccagtcgct gctgcagacg acactgttcc 250
tgctgagtct gctttccctg gtccaaggtg cccacggcag gggccacagg 300
gaagactttc gcttctgcag ccagcggAAC cagacacaca ggagcagcct 350
ccactacaaa cccacaccag acctgcgcat ctccatcgag aactccgaag 400
aggccctcac agtccatgcc ccttccctg cagcccaccc tgcttcccga 450
tccttccctg accccagggg cctctaccac ttctgcctct actggaaccg 500
acatgctggg agattacatc ttctctatgg caagcgtgac ttcttgctga 550
gtgacaaagc ctctagcctc ctctgcttcc agcaccagga ggagagcctg 600
gctcagggcc ccccgtgtt agccacttct gtcacccctt ggtggagccc 650
tcagaacatc agcctgcccc gtgccgcccAG cttcacccct tccttccaca 700
gtcctcccca cacggccgct cacaatgcct cggggacat gtgcgagctc 750
aaaaggggacc tccagctgct cagccagttc ctgaagcatc cccagaaggc 800
ctcaaggagg ccctcggtc ccccccggcag ccagcagttg cagagcctgg 850
agtcgaaact gacctctgtg agattcatgg gggacatggt gtccttcgag 900
gaggaccgga tcaacgcccAC ggtgtggaaag ctccagcccc cagccggcct 950
ccaggacctg cacatccact cccggcagga ggaggaggcag agcgagatca 1000
tggagtactc ggtgctgctg cctcgaacac tcttccagag gacgaaaggc 1050
cgagcgggg aggctgagaa gagactcctc ctggggact tcagcagccA 1100
agccctgttc caggacaaga attccagcca agtcctgggt gagaaggct 1150
tggggattgt ggtacagaac accaaagttag ccaacccatc ggagccctg 1200
gtgctcaattt tccagcacca gctacagccg aagaatgtga ctctgcaatg 1250
tgtgttctgg gttgaagacc ccacatttag cagccgggg cattggagca 1300
tgctgggtt tgagaccgtc aggagagaaa cccaaacatc ctgcttctgc 1350
aaccacttga cctactttgc agtgctgatg gtctccctgg tggaggtgga 1400
cgccgtgcac aagcactacc tgagcctcct ctcctacgtg ggctgtgtcg 1450
tctctgcctt ggcctgcctt gtcaccatg ccgcctaccc ctgctccagg 1500
gtgccccctgc cgtgcaggag gaaacctcgG gactacacca tcaaggtgca 1550
catgaacctg ctgctggccg tcttcctgct ggacacgagc ttccctgctca 1600

gcgagccgt ggccctgaca ggctctgagg ctggctgccg agccagtgcc 1650
atcttcctgc acttctccct gtcacactgc ctttcctgga tgggcctcga 1700
gggtacaac ctctaccgac tcgtggtgga ggtctttggc acctatgtcc 1750
ctggctacct actcaagctg agcgccatgg gctggggctt ccccatctt 1800
ctggtgacgc tggtgccct ggtggatgtg gacaactatg gccccatcat 1850
cttggctgtg cataggactc cagagggcgt catctaccct tccatgtgct 1900
ggatccggga ctccctggtc agctacatca ccaacctggg cctttcagc 1950
ctggtgtttc tggtaaacat ggccatgcta gccaccatgg tggtgcaaat 2000
cctgcggctg cgccccaca cccaaaagtg gtcacatgtg ctgacactgc 2050
tgggccttag cctggtcctt ggcctgcctt gggcattgtat cttttctcc 2100
tttgcttctg gcaccttcca gcttgcgtc ctctacctt tcagcatcat 2150
cacctccttc caaggcttcc tcatacttcat ctggacttgg tccatgcggc 2200
tgcaggcccc gggtgccccc tccctctga agagcaactc agacagcgcc 2250
aggctccccca tcagctcgaa cagcacctcg tccagccgca tctaggccctc 2300
cagcccaccc gcccattgtga tgaaggcagag atgcggccctc gtgcacact 2350
gcctgtggcc cccgagccag gcccagccccc aggccagtca gtcgcagact 2400
ttggaaagcc caacgaccat ggagagatgg gccgttgcca tggtgacgg 2450
actccgggc tgggttttg aattggcctt gggactact cggctctcac 2500
tcagctccca cgggactcag aagtgcgccc ccatgctgcc tagggactg 2550
tccccacatc tgtcccaacc cagctggagg cctggctctc ctttacaacc 2600
cctggggccca gcccatttg ctggggccca ggcattggat cttgagggtc 2650
tggcacatcc ttaatctgt gcccattgcctt gggacagaaa tgtggctcca 2700
gttgctctgt ctctcggtt caccctgagg gcactctgca tcctctgtca 2750
tttaacccatc aggtggcacc cagggcgaat gggggccagg gcagacccatc 2800
agggccagag ccctggcgaa ggagaggccc tttggccagga gcacagcagc 2850
agctcgccata cctctgagcc caggccccctt ccctccctca gccccccagt 2900
cctccctccca tcttccctgg gtttctccctc ctctccctagg gcctccttgc 2950
tccttcgttc acagctgggg gtcggccattt ccaatgttgtt tttttgggg 3000

gtggtttcca ggagctgcct ggtgtctgct gtaaatgtt gtctactgca 3050
caaggcctcg cctgcccctg agccaggctc ggtaccgatg cgtgggctgg 3100
gctaggtccc tctgtccatc tgggccttg tatgagctgc attgcccttg 3150
ctcacccctga ccaagcacac gcctcagagg gccctcagc ctctcctgaa 3200
gccctcttgtt ggcaagaact gtggaccatg ccagtccgt ctggtttcca 3250
tcccaccact ccaaggactg agactgaccc cctctggtga cactggccta 3300
gagcctgaca ctctcctaag aggttcttc caagccccca aatagctcca 3350
ggcgccctcg gccggccatc atggtaatt ctgtccaaca aacacacacg 3400
ggtagattgc tggcctgttg taggtggtag ggacacagat gaccgacctg 3450
gtcaactcctc ctgccaacat tcagtctggt atgtgaggcg tgcgtgaagc 3500
aagaactcct ggagctacag ggacagggag ccatcattcc tgcctggaa 3550
tcctggaaga cttcctgcag gagtcagcgt tcaatcttga ccttgaagat 3600
gggaaggatg ttctttttac gtaccaattc ttttgtctt tgatattaaa 3650
aagaagtaca tgttcattgt agagaatttg gaaactgttag aagagaatca 3700
agaagaaaaaa taaaaatcag ctgttgtaat cgccctagcaa aaaaaaaaaa 3750
aaaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 3800
aaaaaaaaaaa aaaaaaaaaa 3819

<210> 483
<211> 693
<212> PRT
<213> Homo sapiens

<400> 483
Met Thr Pro Gln Ser Leu Leu Gln Thr Thr Leu Phe Leu Leu Ser
1 5 10 15
Leu Leu Phe Leu Val Gln Gly Ala His Gly Arg Gly His Arg Glu
20 25 30
Asp Phe Arg Phe Cys Ser Gln Arg Asn Gln Thr His Arg Ser Ser
35 40 45
Leu His Tyr Lys Pro Thr Pro Asp Leu Arg Ile Ser Ile Glu Asn
50 55 60
Ser Glu Glu Ala Leu Thr Val His Ala Pro Phe Pro Ala Ala His
65 70 75
Pro Ala Ser Arg Ser Phe Pro Asp Pro Arg Gly Leu Tyr His Phe
80 85 90

Cys Leu Tyr Trp Asn Arg His Ala Gly Arg Leu His Leu Leu Tyr
95 100 105

Gly Lys Arg Asp Phe Leu Leu Ser Asp Lys Ala Ser Ser Leu Leu
110 115 120

Cys Phe Gln His Gln Glu Glu Ser Leu Ala Gln Gly Pro Pro Leu
125 130 135

Leu Ala Thr Ser Val Thr Ser Trp Trp Ser Pro Gln Asn Ile Ser
140 145 150

Leu Pro Ser Ala Ala Ser Phe Thr Phe Ser Phe His Ser Pro Pro
155 160 165

His Thr Ala Ala His Asn Ala Ser Val Asp Met Cys Glu Leu Lys
170 175 180

Arg Asp Leu Gln Leu Leu Ser Gln Phe Leu Lys His Pro Gln Lys
185 190 195

Ala Ser Arg Arg Pro Ser Ala Ala Pro Ala Ser Gln Gln Leu Gln
200 205 210

Ser Leu Glu Ser Lys Leu Thr Ser Val Arg Phe Met Gly Asp Met
215 220 225

Val Ser Phe Glu Glu Asp Arg Ile Asn Ala Thr Val Trp Lys Leu
230 235 240

Gln Pro Thr Ala Gly Leu Gln Asp Leu His Ile His Ser Arg Gln
245 250 255

Glu Glu Glu Gln Ser Glu Ile Met Glu Tyr Ser Val Leu Leu Pro
260 265 270

Arg Thr Leu Phe Gln Arg Thr Lys Gly Arg Ser Gly Glu Ala Glu
275 280 285

Lys Arg Leu Leu Leu Val Asp Phe Ser Ser Gln Ala Leu Phe Gln
290 295 300

Asp Lys Asn Ser Ser Gln Val Leu Gly Glu Lys Val Leu Gly Ile
305 310 315

Val Val Gln Asn Thr Lys Val Ala Asn Leu Thr Glu Pro Val Val
320 325 330

Leu Thr Phe Gln His Gln Leu Gln Pro Lys Asn Val Thr Leu Gln
335 340 345

Cys Val Phe Trp Val Glu Asp Pro Thr Leu Ser Ser Pro Gly His
350 355 360

Trp Ser Ser Ala Gly Cys Glu Thr Val Arg Arg Glu Thr Gln Thr
365 370 375

Ser Cys Phe Cys Asn His Leu Thr Tyr Phe Ala Val Leu Met Val
380 385 390

Ser Ser Val Glu Val Asp Ala Val His Lys His Tyr Leu Ser Leu
395 400 405

Leu Ser Tyr Val Gly Cys Val Val Ser Ala Leu Ala Cys Leu Val
410 415 420

Thr Ile Ala Ala Tyr Leu Cys Ser Arg Val Pro Leu Pro Cys Arg
425 430 435

Arg Lys Pro Arg Asp Tyr Thr Ile Lys Val His Met Asn Leu Leu
440 445 450

Leu Ala Val Phe Leu Leu Asp Thr Ser Phe Leu Leu Ser Glu Pro
455 460 465

Val Ala Leu Thr Gly Ser Glu Ala Gly Cys Arg Ala Ser Ala Ile
470 475 480

Phe Leu His Phe Ser Leu Leu Thr Cys Leu Ser Trp Met Gly Leu
485 490 495

Glu Gly Tyr Asn Leu Tyr Arg Leu Val Val Glu Val Phe Gly Thr
500 505 510

Tyr Val Pro Gly Tyr Leu Leu Lys Leu Ser Ala Met Gly Trp Gly
515 520 525

Phe Pro Ile Phe Leu Val Thr Leu Val Ala Leu Val Asp Val Asp
530 535 540

Asn Tyr Gly Pro Ile Ile Leu Ala Val His Arg Thr Pro Glu Gly
545 550 555

Val Ile Tyr Pro Ser Met Cys Trp Ile Arg Asp Ser Leu Val Ser
560 565 570

Tyr Ile Thr Asn Leu Gly Leu Phe Ser Leu Val Phe Leu Phe Asn
575 580 585

Met Ala Met Leu Ala Thr Met Val Val Gln Ile Leu Arg Leu Arg
590 595 600

Pro His Thr Gln Lys Trp Ser His Val Leu Thr Leu Leu Gly Leu
605 610 615

Ser Leu Val Leu Gly Leu Pro Trp Ala Leu Ile Phe Phe Ser Phe
620 625 630

Ala Ser Gly Thr Phe Gln Leu Val Val Leu Tyr Leu Phe Ser Ile
635 640 645

Ile Thr Ser Phe Gln Gly Phe Leu Ile Phe Ile Trp Tyr Trp Ser
650 655 660

Met Arg Leu Gln Ala Arg Gly Gly Pro Ser Pro Leu Lys Ser Asn
665 670 675

Ser Asp Ser Ala Arg Leu Pro Ile Ser Ser Gly Ser Thr Ser Ser
680 685 690

Ser Arg Ile

<210> 484

<211> 516

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 68, 70, 84, 147

<223> unknown base

<400> 484

tgccctggcct gccttgtcaa caatgccgct tactctgctt ccaggttgcc 50

ctgccttgca gagaaancn tcgggactac accntcaagt gcacatgaac 100

ctgctgctgg ccgtcttcct gctggacacg agcttcctgc tcagcgnagc 150

cggtggccct gacaggctct gaaggctggc tgccgagcca gtgccatctt 200

cctgcacttc tcctgctcac ctgcctttcc tggatgggcc tcgagggta 250

caacctctac cgactcgtgg tggaggtctt tggcacctat gtccctgct 300

acctactcaa gctgagcgcc atgggctgg gcttccccat ctttctggtg 350

acgctggtgg ccctggtgga tgtggacaac tatggccca tcatacttggc 400

tgtgcataagg actccagagg gcgtcatcta ccctccatg tgctggatcc 450

gggactccct ggtcagctac atcaccaacc tggcctctt cagcctggtg 500

tttctgttca acatgg 516

<210> 485

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 485

ggcattggag cagtgtggg tg 22

<210> 486

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 486

tggaggccta gatgcggctg gacg 24

<210> 487

<211> 2849

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 2715

<223> unknown base

<400> 487

cggacgcgtg ggcggacgcg tggcgacg cgtggcgga cgctggct 50

ggttcaggtc caggtttgc tttgatcctt ttcaaaaact ggagacacag 100

aagagggctc tagaaaaaaag ttttggatgg gattatgtgg aaactaccct 150

gcgattctct gctgccagag caggctcgcc gcttccaccc cagtgcagcc 200

ttcccctggc ggtggtaaaa gagactcggg agtcgtgct tccaaagtgc 250

ccgcccgtgag tgagctctca ccccagtca ccaaattgagc ctcttcgggc 300

ttctcctgct gacatctgcc ctggccggcc agagacaggg gactcaggcg 350

gaatccaacc tgagtagtaa attccagttt tccagcaaca aggaacagaa 400

cggagtacaa gatcctcagc atgagagaat tattactgtg tctactaatg 450

gaagtattca cagcccaagg tttcctcata cttatccaag aaatacggc 500

ttggtatgga gattagtagc agtagagggaa aatgtatgga tacaacttac 550

gtttgatgaa agatttggc ttgaagaccc agaagatgac atatgcaagt 600

atgattttgt agaagttgag gaacccagtg atggaactat attagggcgc 650

tggtggtt ctggtaactgt accagggaaa cagatttcta aaggaaatca 700

aattaggata agatttgtat ctgatgaata ttttcctct gaaccaggg 750

tctgcatcca ctacaacatt gtcatgccac aattcacaga agctgtgagt 800

ccttcagtgc taccccttc agctttgcca ctggacctgc ttaataatgc 850

tataactgcc ttttagtacct tggaaagacct tattcgatat cttgaaccag 900

agagatggca gttggactta gaagatctat ataggccaac ttggcaactt 950

cttggcaagg cttttgttt tggaagaaaa tccagagtgg tggatctgaa 1000
ccttctaaca gaggaggtaa gattatacag ctgcacacct cgtaacttct 1050
cagtgtccat aagggaaagaa ctaaagagaa ccgataccat tttctggcca 1100
ggttgtctcc tggtaaacg ctgtggtggg aactgtgcct gttgtctcca 1150
caattgcaat gaatgtcaat gtgtcccaag caaagttact aaaaaatacc 1200
acgaggtcct tcagttgaga ccaaagaccg gtgtcagggg attgcacaaa 1250
tcactcaccc acgtggccct ggagcaccat gaggagtgtg actgtgtgt 1300
cagagggagc acaggaggat agccgcata ccaccagcag ctcttgccca 1350
gagctgtgca gtgcagtggc tgattctatt agagaacgta tgcgttatct 1400
ccatccttaa tctcagttgt ttgcttcaag gacctttcat cttaggatt 1450
tacagtgcacat tctgaaagag gagacatcaa acagaattag gagttgtgca 1500
acagctcttt tgagaggagg cctaaaggac aggagaaaag gtcttcaatc 1550
gtggaaagaa aattaaatgt tgtattaaat agatcaccag ctatgtttag 1600
agttaccatg tacgtattcc actagctggg ttctgtatctt cagttcttc 1650
gatacggctt agggtaatgt cagtagcaga aaaaaactgt gcaagtgagc 1700
acctgattcc gttgccttgc ttaactctaa agctccatgt cctgggccta 1750
aaatcgata aaatctggat ttttttttt ttttttgctc atattcacat 1800
atgtaaacca gaacattcta tgtactacaa acctgggttt taaaaaggaa 1850
ctatgttgc atgaattaaa cttgtgtcat gctgatagga cagactggat 1900
ttttcatatt tcttattaaa atttctgcca ttttagaagaa gagaactaca 1950
ttcatggttt ggaagagata aacctgaaaa gaagagtggc cttatctca 2000
ctttatcgat aagttagttt atttgtttca ttgtgtacat ttttatattc 2050
tcctttgac attataactg ttggcttttc taatctgtt aaatatatct 2100
atttttacca aaggatatttta atattctttt ttatgacaac ttagatcaac 2150
tatttttagc ttggtaaatt tttctaaaca caattgttat agccagagga 2200
acaaagatga tataaaatat tggctctg acaaaaatac atgtatttca 2250
ttctcgatg gtgcttaggt tagattaatc tgcattttaa aaaactgaat 2300
tggaaatagaa ttggtaagtt gcaaagactt tttgaaaata attaaattat 2350
catatcttcc attcctgtta ttggagatga aaataaaaag caacttatga 2400

aagtagacat tcagatccag ccattactaa cctattcctt ttttgggaa 2450
atctgagcct agctcagaaa aacataaagc accttgaaaa agacttggca 2500
gcttcctgat aaagcgtgct gtgctgtgca gtaggaacac atcctattta 2550
ttgtgatgtt gtggtttat tatcttaaac tctgttccat acacttgtat 2600
aaatacatgg atattttat gtacagaagt atgtctctta accagttcac 2650
ttattgtact ctggcaattt aaaagaaaat cagtaaaata ttttgcttgt 2700
aaaatgctta atatngtgcc taggttatgt ggtgactatt tgaatcaaaa 2750
atgtattgaa tcatcaaata aaagaatgtg gctatttgg ggagaaaatt 2800
aaaaaaaaaa aaaaaaaaaa aggtttaggg ataacagggt aatgcggcc 2849

<210> 488

<211> 345

<212> PRT

<213> Homo sapiens

<400> 488

Met Ser Leu Phe Gly Leu Leu Leu Leu Thr Ser Ala Leu Ala Gly
1 5 10 15

Gln Arg Gln Gly Thr Gln Ala Glu Ser Asn Leu Ser Ser Lys Phe
20 25 30

Gln Phe Ser Ser Asn Lys Glu Gln Asn Gly Val Gln Asp Pro Gln
35 40 45

His Glu Arg Ile Ile Thr Val Ser Thr Asn Gly Ser Ile His Ser
50 55 60

Pro Arg Phe Pro His Thr Tyr Pro Arg Asn Thr Val Leu Val Trp
65 70 75

Arg Leu Val Ala Val Glu Glu Asn Val Trp Ile Gln Leu Thr Phe
80 85 90

Asp Glu Arg Phe Gly Leu Glu Asp Pro Glu Asp Asp Ile Cys Lys
95 100 105

Tyr Asp Phe Val Glu Val Glu Glu Pro Ser Asp Gly Thr Ile Leu
110 115 120

Gly Arg Trp Cys Gly Ser Gly Thr Val Pro Gly Lys Gln Ile Ser
125 130 135

Lys Gly Asn Gln Ile Arg Ile Arg Phe Val Ser Asp Glu Tyr Phe
140 145 150

Pro Ser Glu Pro Gly Phe Cys Ile His Tyr Asn Ile Val Met Pro
155 160 165

Gln Phe Thr Glu Ala Val Ser Pro Ser Val Leu Pro Pro Ser Ala
170 175 180

Leu Pro Leu Asp Leu Leu Asn Asn Ala Ile Thr Ala Phe Ser Thr
185 190 195

Leu Glu Asp Leu Ile Arg Tyr Leu Glu Pro Glu Arg Trp Gln Leu
200 205 210

Asp Leu Glu Asp Leu Tyr Arg Pro Thr Trp Gln Leu Leu Gly Lys
215 220 225

Ala Phe Val Phe Gly Arg Lys Ser Arg Val Val Asp Leu Asn Leu
230 235 240

Leu Thr Glu Glu Val Arg Leu Tyr Ser Cys Thr Pro Arg Asn Phe
245 250 255

Ser Val Ser Ile Arg Glu Glu Leu Lys Arg Thr Asp Thr Ile Phe
260 265 270

Trp Pro Gly Cys Leu Leu Val Lys Arg Cys Gly Gly Asn Cys Ala
275 280 285

Cys Cys Leu His Asn Cys Asn Glu Cys Gln Cys Val Pro Ser Lys
290 295 300

Val Thr Lys Lys Tyr His Glu Val Leu Gln Leu Arg Pro Lys Thr
305 310 315

Gly Val Arg Gly Leu His Lys Ser Leu Thr Asp Val Ala Leu Glu
320 325 330

His His Glu Glu Cys Asp Cys Val Cys Arg Gly Ser Thr Gly Gly
335 340 345

<210> 489

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 489

acttctcagt gtccataagg g 21

<210> 490

<211> 40

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 490

gaactaaaga gaaccgatac cattttctgg ccaggttgc 40
<210> 491
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 491
caccacagcg tttaaccagg 20
<210> 492
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 492
acaacaggca cagttccac 20
<210> 493
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 493
ggcggaatcc aacctgagta g 21
<210> 494
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 494
gcggctatcc tccttgctc 20
<210> 495
<211> 3283
<212> DNA
<213> Homo sapiens

<400> 495
cccatctcaa gctgatcttg gcacctctca tgctctgctc tcttcaacca 50
gacctctaca ttccatTTG gaagaagact aaaaatggtg tttccaatgt 100
ggacactgaa gagacaatt cttatcctt ttaacataat cctaattcc 150

aaactccttg gggctagatg gtttcctaaa actctgccct gtgatgtcac 200
tctggatgtt ccaaagaacc atgtgatcgt ggactgcaca gacaaggatt 250
tgacagaaaat tcctggaggt attcccacga acaccacgaa cctcaccctc 300
accattaacc acataccaga catctcccc gcgcccttc acagactgga 350
ccatctggta gagatcgatt tcaaatgcaa ctgtgtaccc attccactgg 400
ggtaaaaaaa caacatgtgc atcaagaggc tgccagattaa acccagaagc 450
tttagtggac tcacttattt aaaatccctt tacctggatg gaaaccagct 500
actagagata ccgcagggcc tcccgccctg cttacagctt ctcagccttg 550
agccaaacaa catctttcc atcagaaaag agaatctaac agaactggcc 600
aacatagaaa tactctaccc gggccaaaac tgttattatc gaaatccttg 650
ttatgtttca tattcaatag agaaagatgc cttccctaaac ttgacaaagt 700
taaaagtgcct ctcctgaaa gataacaatg tcacagccgt ccctactggt 750
ttgccatcta ctttaacaga actatatctc tacaacaaca tgattgcaaa 800
aatccaagaa gatgattta ataacctcaa ccaattacaa attcttgacc 850
taagtggaaa ttgcctcggt tggtataatg ccccatcc ttgtgcggcg 900
tgtaaaaata attctccct acagatccct gtaaatgctt ttgatgcgcct 950
gacagaatta aaagtttac gtctacacag taactctttt cagcatgtgc 1000
ccccaaatgtt gtttaagaac atcaacaaac tccaggaact ggatctgtcc 1050
caaaacttct tggccaaaga aattggggat gctaaatttc tgcattttct 1100
ccccagcctc atccaaattgg atctgtctt caatttgaa cttcaggtct 1150
atcgatc tatgaatcta tcacaaggat ttttttact gaaaagcctg 1200
aaaattctgc ggatcagagg atatgtctt aaagagttga aaagctttaa 1250
cctctcgcca ttacataatc ttcaaaaatct tgaagttctt gatcttgca 1300
ctaactttat aaaaattgtt aacctcagca tgttaaaca atttaaaaga 1350
ctgaaaatgttca tagatcttc agtgaataaa atatcacctt caggagattc 1400
aagtgaagtt ggcttctgct caaatgccag aacttctgtt gaaagttatg 1450
aacccccaggt cctggaaacaa ttacattttt tcagatatga taagtatgca 1500
aggagttgca gattcaaaaa caaagaggct tctttcatgt ctgttaatga 1550

aagctgctac aagtatggc agaccttgg a tctaagtaaa aatagtata 1600
ttttgtcaa gtcctctgat tttcagcatc tttcttcct caaatgcctg 1650
aatctgtcag gaaatctcat tagccaaact cttaatggca gtgaattcca 1700
accttagca gagctgagat atttggactt ctccaaacaac cggcttgatt 1750
tactccattc aacagcattt gaagagcttc acaaactgga agttctggat 1800
ataaggcata atagccatta ttttcaatca gaaggaaatta ctcatatgct 1850
aaactttacc aagaacctaa aggttctgca gaaactgatg atgaacgaca 1900
atgacatctc ttccctccacc agcaggacca tggagagtga gtctctttaga 1950
actctggaat tcagaggaaa tcacttagat gtttatgga gagaaggtga 2000
taacagatac ttacaattat tcaagaatct gctaaaatta gaggaattag 2050
acatctctaa aaattcccta agtttcttgc cttctggagt ttttgcgtt 2100
atgcctccaa atctaaagaa tctctcttg gccaaaaatg ggctcaaatc 2150
tttcagttgg aagaaactcc agtgtctaaa gaacctggaa actttggacc 2200
tcagccacaa ccaactgacc actgtccctg agagattatc caactgttcc 2250
agaagcctca agaatctgat tcttaagaat aatcaaatca ggagtctgac 2300
gaagtatttt ctacaagatg cttccagtt gcgatatctg gatctcagct 2350
caaataaaat ccagatgatc caaaagacca gcttcccaga aaatgtcctc 2400
aacaatctga agatgttgct ttgcacatcat aatcggttc tgtgcaccc 2450
tgatgctgtg tggttgtct ggtgggttaa ccatacggag gtgactattc 2500
cttacctggc cacagatgtg acttgtgtgg ggccaggagc acacaaggc 2550
caaagtgtga tctccctgga tctgtacacc tgtgagttag atctgactaa 2600
cctgattctg ttctcacttt ccatatctgt atctctctt ctcattggta 2650
tgatgacagc aagtacaccc tatttctggg atgtgtggta tatttaccat 2700
ttctgttaagg ccaagataaa ggggtatcag cgtctaataat caccagactg 2750
ttgctatgat gctttattt gttatgacac taaagaccc gctgtgaccg 2800
agtgggtttt ggctgagctg gtggccaaac tggaagaccc aagagagaaa 2850
catttaatt tatgtctcga gaaaggac tggttaccag ggcagccagt 2900
tctggaaaac ctttccaga gcatacagct tagaaaaag acagtgttg 2950
tgatgacaga caagtatgca aagactgaaa attttaagat agcattttac 3000

ttgtcccatc agaggctcat gatgaaaaa gttgatgtga ttatcttgc 3050
atttcttgag aagcctttc agaagtccaa gttcctccag ctccggaaaa 3100
ggctctgtgg gagttctgtc cttgagtggc caacaaaccc gcaagctcac 3150
ccataacttct ggcagtgtct aaagaacgcc ctggccacag acaatcatgt 3200
ggcctatagt caggtgttca aggaaacggt ctagccctc tttgcaaaac 3250
acaactgcct agttaccaa ggagaggcct ggc 3283

<210> 496
<211> 1049
<212> PRT
<213> Homo sapiens

<400> 496
Met Val Phe Pro Met Trp Thr Leu Lys Arg Gln Ile Leu Ile Leu
1 5 10 15
Phe Asn Ile Ile Leu Ile Ser Lys Leu Leu Gly Ala Arg Trp Phe
20 25 30
Pro Lys Thr Leu Pro Cys Asp Val Thr Leu Asp Val Pro Lys Asn
35 40 45
His Val Ile Val Asp Cys Thr Asp Lys His Leu Thr Glu Ile Pro
50 55 60
Gly Gly Ile Pro Thr Asn Thr Thr Asn Leu Thr Leu Thr Ile Asn
65 70 75
His Ile Pro Asp Ile Ser Pro Ala Ser Phe His Arg Leu Asp His
80 85 90
Leu Val Glu Ile Asp Phe Arg Cys Asn Cys Val Pro Ile Pro Leu
95 100 105
Gly Ser Lys Asn Asn Met Cys Ile Lys Arg Leu Gln Ile Lys Pro
110 115 120
Arg Ser Phe Ser Gly Leu Thr Tyr Leu Lys Ser Leu Tyr Leu Asp
125 130 135
Gly Asn Gln Leu Leu Glu Ile Pro Gln Gly Leu Pro Pro Ser Leu
140 145 150
Gln Leu Leu Ser Leu Glu Ala Asn Asn Ile Phe Ser Ile Arg Lys
155 160 165
Glu Asn Leu Thr Glu Leu Ala Asn Ile Glu Ile Leu Tyr Leu Gly
170 175 180
Gln Asn Cys Tyr Tyr Arg Asn Pro Cys Tyr Val Ser Tyr Ser Ile
185 190 195

Glu Lys Asp Ala Phe Leu Asn Leu Thr Lys Leu Lys Val Leu Ser
200 205 210
Leu Lys Asp Asn Asn Val Thr Ala Val Pro Thr Val Leu Pro Ser
215 220 225
Thr Leu Thr Glu Leu Tyr Leu Tyr Asn Asn Met Ile Ala Lys Ile
230 235 240
Gln Glu Asp Asp Phe Asn Asn Leu Asn Gln Leu Gln Ile Leu Asp
245 250 255
Leu Ser Gly Asn Cys Pro Arg Cys Tyr Asn Ala Pro Phe Pro Cys
260 265 270
Ala Pro Cys Lys Asn Asn Ser Pro Leu Gln Ile Pro Val Asn Ala
275 280 285
Phe Asp Ala Leu Thr Glu Leu Lys Val Leu Arg Leu His Ser Asn
290 295 300
Ser Leu Gln His Val Pro Pro Arg Trp Phe Lys Asn Ile Asn Lys
305 310 315
Leu Gln Glu Leu Asp Leu Ser Gln Asn Phe Leu Ala Lys Glu Ile
320 325 330
Gly Asp Ala Lys Phe Leu His Phe Leu Pro Ser Leu Ile Gln Leu
335 340 345
Asp Leu Ser Phe Asn Phe Glu Leu Gln Val Tyr Arg Ala Ser Met
350 355 360
Asn Leu Ser Gln Ala Phe Ser Ser Leu Lys Ser Leu Lys Ile Leu
365 370 375
Arg Ile Arg Gly Tyr Val Phe Lys Glu Leu Lys Ser Phe Asn Leu
380 385 390
Ser Pro Leu His Asn Leu Gln Asn Leu Glu Val Leu Asp Leu Gly
395 400 405
Thr Asn Phe Ile Lys Ile Ala Asn Leu Ser Met Phe Lys Gln Phe
410 415 420
Lys Arg Leu Lys Val Ile Asp Leu Ser Val Asn Lys Ile Ser Pro
425 430 435
Ser Gly Asp Ser Ser Glu Val Gly Phe Cys Ser Asn Ala Arg Thr
440 445 450
Ser Val Glu Ser Tyr Glu Pro Gln Val Leu Glu Gln Leu His Tyr
455 460 465
Phe Arg Tyr Asp Lys Tyr Ala Arg Ser Cys Arg Phe Lys Asn Lys
470 475 480

Glu Ala Ser Phe Met Ser Val Asn Glu Ser Cys Tyr Lys Tyr Gly
485 490 495

Gln Thr Leu Asp Leu Ser Lys Asn Ser Ile Phe Phe Val Lys Ser
500 505 510

Ser Asp Phe Gln His Leu Ser Phe Leu Lys Cys Leu Asn Leu Ser
515 520 525

Gly Asn Leu Ile Ser Gln Thr Leu Asn Gly Ser Glu Phe Gln Pro
530 535 540

Leu Ala Glu Leu Arg Tyr Leu Asp Phe Ser Asn Asn Arg Leu Asp
545 550 555

Leu Leu His Ser Thr Ala Phe Glu Glu Leu His Lys Leu Glu Val
560 565 570

Leu Asp Ile Ser Ser Asn Ser His Tyr Phe Gln Ser Glu Gly Ile
575 580 585

Thr His Met Leu Asn Phe Thr Lys Asn Leu Lys Val Leu Gln Lys
590 595 600

Leu Met Met Asn Asp Asn Asp Ile Ser Ser Ser Thr Ser Arg Thr
605 610 615

Met Glu Ser Glu Ser Leu Arg Thr Leu Glu Phe Arg Gly Asn His
620 625 630

Leu Asp Val Leu Trp Arg Glu Gly Asp Asn Arg Tyr Leu Gln Leu
635 640 645

Phe Lys Asn Leu Leu Lys Leu Glu Glu Leu Asp Ile Ser Lys Asn
650 655 660

Ser Leu Ser Phe Leu Pro Ser Gly Val Phe Asp Gly Met Pro Pro
665 670 675

Asn Leu Lys Asn Leu Ser Leu Ala Lys Asn Gly Leu Lys Ser Phe
680 685 690

Ser Trp Lys Lys Leu Gln Cys Leu Lys Asn Leu Glu Thr Leu Asp
695 700 705

Leu Ser His Asn Gln Leu Thr Thr Val Pro Glu Arg Leu Ser Asn
710 715 720

Cys Ser Arg Ser Leu Lys Asn Leu Ile Leu Lys Asn Asn Gln Ile
725 730 735

Arg Ser Leu Thr Lys Tyr Phe Leu Gln Asp Ala Phe Gln Leu Arg
740 745 750

Tyr Leu Asp Leu Ser Ser Asn Lys Ile Gln Met Ile Gln Lys Thr
755 760 765

Ser Phe Pro Glu Asn Val Leu Asn Asn Leu Lys Met Leu Leu Leu
770 775 780

His His Asn Arg Phe Leu Cys Thr Cys Asp Ala Val Trp Phe Val
785 790 795

Trp Trp Val Asn His Thr Glu Val Thr Ile Pro Tyr Leu Ala Thr
800 805 810

Asp Val Thr Cys Val Gly Pro Gly Ala His Lys Gly Gln Ser Val
815 820 825

Ile Ser Leu Asp Leu Tyr Thr Cys Glu Leu Asp Leu Thr Asn Leu
830 835 840

Ile Leu Phe Ser Leu Ser Ile Ser Val Ser Leu Phe Leu Met Val
845 850 855

Met Met Thr Ala Ser His Leu Tyr Phe Trp Asp Val Trp Tyr Ile
860 865 870

Tyr His Phe Cys Lys Ala Lys Ile Lys Gly Tyr Gln Arg Leu Ile
875 880 885

Ser Pro Asp Cys Cys Tyr Asp Ala Phe Ile Val Tyr Asp Thr Lys
890 895 900

Asp Pro Ala Val Thr Glu Trp Val Leu Ala Glu Leu Val Ala Lys
905 910 915

Leu Glu Asp Pro Arg Glu Lys His Phe Asn Leu Cys Leu Glu Glu
920 925 930

Arg Asp Trp Leu Pro Gly Gln Pro Val Leu Glu Asn Leu Ser Gln
935 940 945

Ser Ile Gln Leu Ser Lys Lys Thr Val Phe Val Met Thr Asp Lys
950 955 960

Tyr Ala Lys Thr Glu Asn Phe Lys Ile Ala Phe Tyr Leu Ser His
965 970 975

Gln Arg Leu Met Asp Glu Lys Val Asp Val Ile Ile Leu Ile Phe
980 985 990

Leu Glu Lys Pro Phe Gln Lys Ser Lys Phe Leu Gln Leu Arg Lys
995 1000 1005

Arg Leu Cys Gly Ser Ser Val Leu Glu Trp Pro Thr Asn Pro Gln
1010 1015 1020

Ala His Pro Tyr Phe Trp Gln Cys Leu Lys Asn Ala Leu Ala Thr
1025 1030 1035

Asp Asn His Val Ala Tyr Ser Gln Val Phe Lys Glu Thr Val
1040 1045

<210> 497
<211> 4199
<212> DNA
<213> *Homo sapiens*

<400> 497
gggtaccatt ctgcgctgct gcaagttacg gaatgaaaaa ttagaacaac 50
agaaaacatgg aaaacatgtt ctttcagtcg tcaatgtga cctgcatttt 100
cctgctaata tctggttcct gtgagttatg cgccgaagaa aattttctta 150
gaagctatcc ttgtgtatgag aaaaagcaaa atgactcagt tattgcagag 200
tgcagcaatc gtcgactaca ggaagttccc caaacggtgg gcaaatatgt 250
gacagaacta gacctgtctg ataatttcat cacacacata acgaatgaat 300
catttcaagg gctgcaaaaat ctcactaaaa taaatctaaa ccacaacccc 350
aatgtacagc accagaacgg aaatcccggt atacaatcaa atggcttgaa 400
tatcacagac gggcattcc tcaacctaaa aaacctaagg gagttactgc 450
ttgaagacaa ccagttaccc caaataccct ctggtttgcc agagtctttg 500
acagaactta gtctaattca aaacaatata tacaacataa ctaaagaggg 550
catttcaaga cttataaaact tgaaaaatct ctatttgcc tggactgct 600
attttaacaa agtttgcgag aaaactaaca tagaagatgg agtatttgaa 650
acgctgacaa atttggagtt gctatcacta tcttcaatt ctcttcaca 700
cgtgccaccc aaactgccaa gtcctactg caaactttt ctgagcaaca 750
cccagatcaa atacattagt gaagaagatt tcaaggatt gataaattta 800
acattactag atttaagcgg gaactgtccg aggtgcttca atgccccatt 850
tccatgcgtg cttgtatg gtggtgcttc aattaatata gatcgtttg 900
ctttcaaaa cttgacccaa cttcgatacc taaacctctc tagcacttcc 950
ctcaggaaga ttaatgtgc ctggttaaa aatatgcctc atctgaaggt 1000
gctggatctt gaattcaact atttagtggg agaaatagtc tctggggcat 1050
tttaacgat gtcggccgc ttagaaatac ttgacttgct ttttaactat 1100
ataaagggga gttatccaca gcatattaat' atttccagaa acttctctaa 1150
actttgtct ctacgggcat tgcatttaag aggttatgtg ttccaggaac 1200
tcagagaaga tgatttccag cccctgatgc agcttccaaa cttatcgact 1250

atcaacttgg gtattaattt tattaagcaa atcgattca aactttcca 1300
aaatttctcc aatctggaaa ttatTTactt gtcagaaaac agaatatcac 1350
cgTTggtaaa agatacccg cagagttatg caaatagttc ctctttcaa 1400
cgtcatatcc ggaaacgacg ctcaacagat tttgagttg acccacattc 1450
gaacttttat catttcaccc gtccttaat aaagccacaa tgtgctgctt 1500
atggaaaagc cttagattta agcctcaaca gtatTTctt cattgggcca 1550
aaccaatttg aaaatctcc tgacattgc tgTTaaatc tgtctgcaaa 1600
tagcaatgct caagtgttaa gtggaaactga atttcagcc attcctcatg 1650
tcaaataTTt ggatttgaca aacaatagac tagacttga taatgctagt 1700
gctcttactg aattgtccga cttggaagtt ctagatctca gctataattc 1750
acactatttc agaatacgag gcgtAACACA tcataCTAGAA ttTATTCAA 1800
atTCACAAA tctaaaagtt ttaaacttga gccacaacaa catTTataCT 1850
ttaacagata agtataacct ggaaAGCAAG TCCCTGGTAG aattAGTTT 1900
cagtggcaat cgccTTgaca ttttGTggAA tgatgatgac AACAGGTATA 1950
tctccatttt caaaggTCTC aagaATCTGA cacgtCTGGA tttatCCCTT 2000
aataggCTGA agCACATCCC aaATGAAGCA ttCCCTTAATT TGCCAGCGAG 2050
tctcactgaa ctacatataa atgataatat gttaaAGTTT tttaacttggA 2100
cattactCCA gcagTTTCTC cgtCTCGAGT tgCTTGACTT acgtggAAAC 2150
aaactactCT tttaacttGA tagCCTATCT gactttACAT CTTCCCTTCG 2200
gacactgCTG ctgAGTCATA acaggATTc ccACCTACCC tctggCTTTC 2250
tttCTGAAGT cagtagtCTG aagcacCTG atttaAGTTc caatCTGCTA 2300
aaaacaatCA acaaATCCGC acttGAAACT aagACCACCA ccaaATTATC 2350
tatgttggaa ctacacggaa ACCCCTTGA atgcacCTGT gacattGGAG 2400
atTTCCGAAG atggatGGAT gaACATCTGA atgtcaAAAT tcccAGACTG 2450
gtAGATGTCA tttgtGCCAG tcctgggat caaAGAGGGa agagtattgt 2500
gagtCTGGAG ctaacaACTT gtgttCAGA tgcTACTGCA gtGATATTAT 2550
tttCTTCAC gttCTTATC accaccatgg ttatgttggc tgcCCTGGCT 2600
caccatttGT tttaCTGGGA tggTTGGTT atatataatG tggTTTAgC 2650
taaggtaaaa ggctacAGGT ctcttCCAC atcccaaACT ttctatGATG 2700

cttacatttc ttatgacacc aaagatgcct ctgttactga ctgggtgata 2750
aatgagctgc gctaccacct tgaagagagc cgagacaaaa acgttctcct 2800
ttgtcttagag gagagggatt gggacccggg attggccatc atcgacaacc 2850
tcatgcagag catcaaccaa agcaagaaaa cagtatttgt tttAACCAAA 2900
aaatatgcaa aaagctggaa cttaaaaaca gcttttact tggcttgca 2950
gaggctaattg gatgagaaca tggatgtat tatatttac ctgctggagc 3000
cagtgttaca gcattctcag tatttgaggc tacggcagcg gatctgttaag 3050
agctccatcc tccagtggcc tgacaacccg aaggcagaag gcttggttt 3100
gcaaactctg agaaatgtgg tcttgactga aaatgattca cggtataaca 3150
atatgtatgt cgattccatt aagcaatact aactgacgtt aagtcatgtat 3200
ttcgcgccat aataaaagatg caaaggaatg acatttctgt attagttatc 3250
tattgctatg taacaaatta tccccaaact tagtggtta aaacaacaca 3300
tttgctggcc cacagttttt gagggtcagg agtccaggcc cagcataact 3350
gggtcctctg ctcagggtgt ctcagaggct gcaatgttagg tggttaccag 3400
agacataggc atcactgggg tcacactcat gtgggttta tctggattca 3450
attcctccctg ggctattggc caaaggctat actcatgtaa gccatgcgag 3500
cctctcccac aaggcagctt gcttcattcag agctagcaaa aaagagaggt 3550
tgctagcaag atgaagtcac aatctttgt aatcgaatca aaaaagtgtat 3600
atctcatcac tttggccata ttcttattgt tagaagtaaa ccacaggtcc 3650
caccagctcc atgggagtga ccacactcag ccaggaaaa cagctgaaga 3700
ccaagatggt gagctctgat tgcttcagtt ggtcatcaac tattttccct 3750
tgactgtgt cctggatgg cctgctatct tggatgataga ttgtgaatat 3800
caggaggcag ggatcactgt ggaccatctt agcagttgac ctaacacatc 3850
ttctttcaa tatctaagaa ctttgccac tgtgactaat ggtcctaata 3900
ttaagctgtt gtttatattt atcatatatac tatggctaca tggttatatt 3950
atgctgtgtt tgcgttcggt tttatattaca gttgtttta caaatatttg 4000
ctgttaacatt tgacttctaa ggttttagatg ccatttaaga actgagatgg 4050
atagctttta aagcatctt tacttcttac catttttaa aagtatgcag 4100

ctaaattcga agcttttgtt ctatattgtt aattgccatt gctgtaaatc 4150

ttaaaatgaa tgaataaaaaa tgtttcattt tacaaaaaaaaaaa aaaaaaaaaa 4199

<210> 498

<211> 1041

<212> PRT

<213> Homo sapiens

<400> 498

Met Glu Asn Met Phe Leu Gln Ser Ser Met Leu Thr Cys Ile Phe
1 5 10 15

Leu Leu Ile Ser Gly Ser Cys Glu Leu Cys Ala Glu Glu Asn Phe
20 25 30

Ser Arg Ser Tyr Pro Cys Asp Glu Lys Lys Gln Asn Asp Ser Val
35 40 45

Ile Ala Glu Cys Ser Asn Arg Arg Leu Gln Glu Val Pro Gln Thr
50 55 60

Val Gly Lys Tyr Val Thr Glu Leu Asp Leu Ser Asp Asn Phe Ile
65 70 75

Thr His Ile Thr Asn Glu Ser Phe Gln Gly Leu Gln Asn Leu Thr
80 85 90

Lys Ile Asn Leu Asn His Asn Pro Asn Val Gln His Gln Asn Gly
95 100 105

Asn Pro Gly Ile Gln Ser Asn Gly Leu Asn Ile Thr Asp Gly Ala
110 115 120

Phe Leu Asn Leu Lys Asn Leu Arg Glu Leu Leu Leu Glu Asp Asn
125 130 135

Gln Leu Pro Gln Ile Pro Ser Gly Leu Pro Glu Ser Leu Thr Glu
140 145 150

Leu Ser Leu Ile Gln Asn Asn Ile Tyr Asn Ile Thr Lys Glu Gly
155 160 165

Ile Ser Arg Leu Ile Asn Leu Lys Asn Leu Tyr Leu Ala Trp Asn
170 175 180

Cys Tyr Phe Asn Lys Val Cys Glu Lys Thr Asn Ile Glu Asp Gly
185 190 195

Val Phe Glu Thr Leu Thr Asn Leu Glu Leu Leu Ser Leu Ser Phe
200 205 210

Asn Ser Leu Ser His Val Pro Pro Lys Leu Pro Ser Ser Leu Arg
215 220 225

Lys Leu Phe Leu Ser Asn Thr Gln Ile Lys Tyr Ile Ser Glu Glu
230 235 240

Asp Phe Lys Gly Leu Ile Asn Leu Thr Leu Leu Asp Leu Ser Gly
245 250 255

Asn Cys Pro Arg Cys Phe Asn Ala Pro Phe Pro Cys Val Pro Cys
260 265 270

Asp Gly Gly Ala Ser Ile Asn Ile Asp Arg Phe Ala Phe Gln Asn
275 280 285

Leu Thr Gln Leu Arg Tyr Leu Asn Leu Ser Ser Thr Ser Leu Arg
290 295 300

Lys Ile Asn Ala Ala Trp Phe Lys Asn Met Pro His Leu Lys Val
305 310 315

Leu Asp Leu Glu Phe Asn Tyr Leu Val Gly Glu Ile Val Ser Gly
320 325 330

Ala Phe Leu Thr Met Leu Pro Arg Leu Glu Ile Leu Asp Leu Ser
335 340 345

Phe Asn Tyr Ile Lys Gly Ser Tyr Pro Gln His Ile Asn Ile Ser
350 355 360

Arg Asn Phe Ser Lys Leu Leu Ser Leu Arg Ala Leu His Leu Arg
365 370 375

Gly Tyr Val Phe Gln Glu Leu Arg Glu Asp Asp Phe Gln Pro Leu
380 385 390

Met Gln Leu Pro Asn Leu Ser Thr Ile Asn Leu Gly Ile Asn Phe
395 400 405

Ile Lys Gln Ile Asp Phe Lys Leu Phe Gln Asn Phe Ser Asn Leu
410 415 420

Glu Ile Ile Tyr Leu Ser Glu Asn Arg Ile Ser Pro Leu Val Lys
425 430 435

Asp Thr Arg Gln Ser Tyr Ala Asn Ser Ser Ser Phe Gln Arg His
440 445 450

Ile Arg Lys Arg Arg Ser Thr Asp Phe Glu Phe Asp Pro His Ser
455 460 465

Asn Phe Tyr His Phe Thr Arg Pro Leu Ile Lys Pro Gln Cys Ala
470 475 480

Ala Tyr Gly Lys Ala Leu Asp Leu Ser Leu Asn Ser Ile Phe Phe
485 490 495

Ile Gly Pro Asn Gln Phe Glu Asn Leu Pro Asp Ile Ala Cys Leu
500 505 510

Asn Leu Ser Ala Asn Ser Asn Ala Gln Val Leu Ser Gly Thr Glu
515 520 525

Phe Ser Ala Ile Pro His Val Lys Tyr Leu Asp Leu Thr Asn Asn
530 535 540

Arg Leu Asp Phe Asp Asn Ala Ser Ala Leu Thr Glu Leu Ser Asp
545 550 555

Leu Glu Val Leu Asp Leu Ser Tyr Asn Ser His Tyr Phe Arg Ile
560 565 570

Ala Gly Val Thr His His Leu Glu Phe Ile Gln Asn Phe Thr Asn
575 580 585

Leu Lys Val Leu Asn Leu Ser His Asn Asn Ile Tyr Thr Leu Thr
590 595 600

Asp Lys Tyr Asn Leu Glu Ser Lys Ser Leu Val Glu Leu Val Phe
605 610 615

Ser Gly Asn Arg Leu Asp Ile Leu Trp Asn Asp Asp Asp Asn Arg
620 625 630

Tyr Ile Ser Ile Phe Lys Gly Leu Lys Asn Leu Thr Arg Leu Asp
635 640 645

Leu Ser Leu Asn Arg Leu Lys His Ile Pro Asn Glu Ala Phe Leu
650 655 660

Asn Leu Pro Ala Ser Leu Thr Glu Leu His Ile Asn Asp Asn Met
665 670 675

Leu Lys Phe Phe Asn Trp Thr Leu Leu Gln Gln Phe Pro Arg Leu
680 685 690

Glu Leu Leu Asp Leu Arg Gly Asn Lys Leu Leu Phe Leu Thr Asp
695 700 705

Ser Leu Ser Asp Phe Thr Ser Ser Leu Arg Thr Leu Leu Leu Ser
710 715 720

His Asn Arg Ile Ser His Leu Pro Ser Gly Phe Leu Ser Glu Val
725 730 735

Ser Ser Leu Lys His Leu Asp Leu Ser Ser Asn Leu Leu Lys Thr
740 745 750

Ile Asn Lys Ser Ala Leu Glu Thr Lys Thr Thr Lys Leu Ser
755 760 765

Met Leu Glu Leu His Gly Asn Pro Phe Glu Cys Thr Cys Asp Ile
770 775 780

Gly Asp Phe Arg Arg Trp Met Asp Glu His Leu Asn Val Lys Ile
785 790 795

Pro Arg Leu Val Asp Val Ile Cys Ala Ser Pro Gly Asp Gln Arg
800 805 810

Gly Lys Ser Ile Val Ser Leu Glu Leu Thr Thr Cys Val Ser Asp
815 820 825

Val Thr Ala Val Ile Leu Phe Phe Phe Thr Phe Phe Ile Thr Thr
830 835 840

Met Val Met Leu Ala Ala Leu Ala His His Leu Phe Tyr Trp Asp
845 850 855

Val Trp Phe Ile Tyr Asn Val Cys Leu Ala Lys Val Lys Gly Tyr
860 865 870

Arg Ser Leu Ser Thr Ser Gln Thr Phe Tyr Asp Ala Tyr Ile Ser
875 880 885

Tyr Asp Thr Lys Asp Ala Ser Val Thr Asp Trp Val Ile Asn Glu
890 895 900

Leu Arg Tyr His Leu Glu Glu Ser Arg Asp Lys Asn Val Leu Leu
905 910 915

Cys Leu Glu Glu Arg Asp Trp Asp Pro Gly Leu Ala Ile Ile Asp
920 925 930

Asn Leu Met Gln Ser Ile Asn Gln Ser Lys Lys Thr Val Phe Val
935 940 945

Leu Thr Lys Lys Tyr Ala Lys Ser Trp Asn Phe Lys Thr Ala Phe
950 955 960

Tyr Leu Ala Leu Gln Arg Leu Met Asp Glu Asn Met Asp Val Ile
965 970 975

Ile Phe Ile Leu Leu Glu Pro Val Leu Gln His Ser Gln Tyr Leu
980 985 990

Arg Leu Arg Gln Arg Ile Cys Lys Ser Ser Ile Leu Gln Trp Pro
995 1000 1005

Asp Asn Pro Lys Ala Glu Gly Leu Phe Trp Gln Thr Leu Arg Asn
1010 1015 1020

Val Val Leu Thr Glu Asn Asp Ser Arg Tyr Asn Asn Met Tyr Val
1025 1030 1035

Asp Ser Ile Lys Gln Tyr
1040

<210> 499

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 499
taaagaccca gctgtgaccg 20

<210> 500
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 500
atccatgagc ctctgatggg 20

<210> 501
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 501
atttatgtct cgagggaaagg gactggttac cagggcagcc agttc 45

<210> 502
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 502
gccgagacaa aaacgttctc c 21

<210> 503
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 503
catccatgtt ctcatccatt agcc 24

<210> 504
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 504
tcgacaacct catgcagagc atcaacaaaa gcaagaaaac agtatt 46

<210> 505
<211> 1738
<212> DNA
<213> Homo sapiens

<400> 505
ccaggtccaa ctgcacctcg gtttatcga ttgaattccc cggggatcct 50
ctagagatcc ctcgacacctg acccacgcgt ccgc当地 agct ggccctgcac 100
ggctgcaagg gaggctcctg tggacaggcc aggcatgtgg gcctcaggag 150
gtgc当地 ccaggccaggc ggc当地 gaggc cccagcaagg gctagggtcc 200
atctccagtc ccaggacaca gcagcggcca ccatggccac gc当地 gggctc 250
cagcagcatc agcagcccc aggaccgggg aggcatgtgg ggccccacc 300
accaggagga gc当地 gctcctg cccctgtccg gggatgact gattctcctc 350
cgccaggcca cccagaggag aaggccaccc cgc当地 ggagg cacaggccat 400
gaggggctct caggaggcgc tgctgatgtg gcttctgggt ttggcagtgg 450
gc当地 gacaga gcacgc当地 ac cggccggcc gt当地 ggtgt tgctgtccgg 500
gctc当地 cgggg accctgtctc cgagtcgtc gt当地 cgttg tgtaccagcc 550
cttc当地 tcacc acctgc当地 acg ggc当地 cggccctg ctgc当地 agcacc tacca local 600
tctataggac cgc当地 taccgc cgc当地 agccctg ggctggccccc tgccaggcct 650
cgctacgcgt gctgccccgg ctggaagagg accagcgggc ttc当地 tggggc 700
ctgtggagca gcaatatgcc agccgccc当地 cc当地 gaacggga gggagctgtg 750
tccagcctgg cc当地 ctgccc当地 tc当地 cctgc当地 agtggcgggg tgacacttgc 800
cagtcagatg tggatgaatg cagtc当地 tagg agggcggct gtccccagcg 850
ctgc当地 catcaac accgc当地 cggca gttactgggt cc当地 agtggtgg gaggggacaca 900
gc当地 ctgtctgc agacggta ca ctc当地 gtgc当地 ccaaggagg gccccccagg 950
gtggccccca acccgacagg agtggacagt gcaatgaagg aagaagtgc当地 1000
gaggctgc当地 ag tccagggtgg acctgc当地 tggaaagctg cagtc当地 ggtgc 1050
tggccccact gcacagcctg gc当地 tc当地 cagg cactggagca tggc当地 tcccg 1100
gacccccc当地 ggca gc当地 ctgggt gcactcctc cagcagc当地 cg gccgcatcga 1150
ctccctgagc gagcagattt cttc当地 ctgga ggagcagctg gggc当地 ctgtctgc当地 1200
cctgcaagaa agactcgtga ctgccc当地 caggc当地 gactgagccc 1250

ctcacgccc.cctgcagccc ccatgccctt gccccacatg ctgggggtcc 1300
agaaggcacc tcggggtgac tgagcggaaag gccaggcagg gccttcctcc 1350
tcttcctcctt ccccttcctc gggaggctcc ccagaccctg gcatggatg 1400
ggctgggatc ttctctgtga atccacccct ggctacccccc accctggcta 1450
cccccaacggc atcccaaggc caggtgggcc ctcagctgag ggaaggtacg 1500
agctccctgc tggagcctgg gacccatggc acaggccagg cagcccgag 1550
gctgggtggg gcctcagtgg gggctgctgc ctgaccccca gcacaataaa 1600
aatgaaacgt gaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1650
aaaggcgccgc cgcgactcta gagtcgacct gcagaagctt ggccgccatg 1700
gcccaacttg tttattgcag cttataatgg ttacaaat 1738

<210> 506

<211> 273

<212> PRT

<213> Homo sapiens

<400> 506

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu
1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val
20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val
35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg
65 70 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro
80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala
95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro
110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln
125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln
140 145 150

Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu

	155	160	165
Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly			
170		175	180
Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala			
185		190	195
Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu			
200		205	210
Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala			
215		220	225
Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu			
230		235	240
Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu			
245		250	255
Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys			
260		265	270
Lys Asp Ser			

<210> 507
<211> 1700
<212> DNA
<213> Homo sapiens

<400> 507
gccaggcagg tgggcctcag gaggtgcctc caggcgcca gtgggcctga 50
ggccccagca agggctaggg tccatctcca gtcccaggac acagcagcgg 100
ccaccatggc cacgcctggg ctccagcagc atcagagcag cccctgtgg 150
tggcagcaaa gttcagcttg gctgggcccgttgtgagggg cttcgcgcta 200
cgccctgcgg tgtcccgagg gctgaggtct cctcatcttc tccctagcag 250
tggatgagca acccaacggg ggccccggga gggaaactgg ccccgaggg 300
gaggaacccc aaagccacat ctgtagccag gatgagcagt gtgaatccag 350
gcagccccc ggaccgggg ggcacaggtg gccccacca cccggaggag 400
cagctcctgc ccctgtccgg gggatgactg attctcctcc gccaggccac 450
ccagaggaga aggccacccc gcctggaggc acaggccatg aggggctctc 500
aggaggtgct gctgatgtgg cttctggtgt tggcagtggg cggcacagag 550
cacgcctacc ggccccggcg tagggtgtgt gctgtccggg ctcacggg 600
ccctgtctcc gagtcgttgc tgcaagcgtgt gtaccagccc ttcctcacca 650

cctgcgacgg gcaccgggcc tgcagcacct accgaaccat ctataggacc 700
gcctaccgcc gcagccctgg gctggcccct gccaggcctc gctacgcgtg 750
ctgccccggc tggaagagga ccagcgggct tcctggggcc tgtggagcag 800
caatatgccca gccgcccattgc cggAACGGAG ggagctgtgt ccagcctggc 850
cgctgcccgtt gcccctgcagg atggcgggggt gacacttgcc agtcagatgt 900
ggatgaatgc agtgcttagga ggggcggctg tccccagcgc tgcatcaaca 950
ccggccggcag ttactgggtgc cagtgttggg aggggcacag cctgtctgca 1000
gacggtaaacac tctgtgtgcc caagggaggg ccccccaggg tggccccc 1050
cccgacagga gtggacagtg caatgaaggaa agaagtgcag aggctgcagt 1100
ccaggggtgga cctgctggag gagaagctgc agctgggtgct ggccccactg 1150
cacagcctgg cctcgcaggc actggagcat gggctcccg accccggcag 1200
cctcctggtg cactccttcc agcagctcg ccgcattcgac tccctgagcg 1250
agcagatttc cttcctggag gagcagctgg ggtcctgctc ctgcaagaaa 1300
gactcgtgac tgcccagcgc tccaggctgg actgagcccc tcacgccc 1350
ctgcagcccc catgccccctg cccaacatgc tgggggtcca gaagccacct 1400
cggggtgact gagcggaaagg ccaggcaggg ctttccttcc cttccttc 1450
cctttcctcg ggaggctccc cagaccctgg catggatgg gctggatct 1500
tctctgtgaa tccaccctg gctaccccca ccctggctac cccaacggca 1550
tcccaaggcc aggtggaccc tcagctgagg gaaggtacga gtcctctgct 1600
ggagcctggg acccatggca caggccaggc agcccgagg ctgggtgggg 1650
cctcagtggg ggctgctgcc tgacccca cacaataaaa atgaaacgtg 1700

<210> 508

<211> 273

<212> PRT

<213> Homo sapiens

<400> 508

Met	Arg	Gly	Ser	Gln	Glu	Val	Leu	Leu	Met	Trp	Leu	Leu	Val	Leu
1					5				10				15	

Ala	Val	Gly	Gly	Thr	Glu	His	Ala	Tyr	Arg	Pro	Gly	Arg	Arg	Val
					20				25				30	

Cys	Ala	Val	Arg	Ala	His	Gly	Asp	Pro	Val	Ser	Glu	Ser	Phe	Val
						35			40				45	

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
 50 55 60

 Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg
 65 70 75

 Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro
 80 85 90

 Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala
 95 100 105

 Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro
 110 115 120

 Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln
 125 130 135

 Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln
 140 145 150

 Arg Cys Ile Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu
 155 160 165

 Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly
 170 175 180

 Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala
 185 190 195

 Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu
 200 205 210

 Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala
 215 220 225

 Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu
 230 235 240

 Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu
 245 250 255

 Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys
 260 265 270

 Lys Asp Ser

<210> 509
 <211> 1538
 <212> DNA
 <213> Homo sapiens

<400> 509
 cccacgcgtc cgaagctggc cctgcacggc tgcaaggag gtcctgtgg 50

acaggccagg caggtggcc tcaggaggcg cctccaggcg gccagtggc 100
ctgaggcccc agcaaggcgt agggtccatc tccagtccca ggacacagca 150
gcggccacca tggccacgcc tgggctccag cagcatcagc agccccagg 200
accggggagg cacaggtggc ccccaccacc cgaggagca gctcctgcc 250
ctgtccgggg gatgactgat tctcctccgc cagggcaccc agaggagaag 300
gccaccccgc ctggaggcac aggccatgag gggctctcg gaggtgctgc 350
tgatgtggct tctgggttg gcagtggcg gcacagagca cgcctaccgg 400
cccgccgta gggtgtgtgc tgtccggct cacgggacc ctgtctccga 450
gtcgttcgta cagcgtgtgt accagccctt ctcaccacc tgcgacggc 500
accgggcctg cagcacctac cgaaccatct ataggaccgc ctaccggcg 550
agccctggc tggccctgc caggcctcg taccgtgtgc gccccggctg 600
gaagaggacc agcgggcttc ctggggcctg tggagcagca atatgccagc 650
cgccatgcg gaacggaggg agctgtgtcc agcctggccg ctgcccgtc 700
cctgcaggat ggcggggtga cacttgccag tcagatgtgg atgaatgcag 750
tgcttaggagg ggcggctgtc cccagcgctg cgtcaacacc gccggcagtt 800
actggtgcca gtgttggag gggcacagcc tgtctgcaga cggtaactc 850
tgtgtgcca agggagggcc ccccagggtg gcccccaacc cgacaggagt 900
ggacagtgca atgaaggaag aagtgcagag gctgcagtcc agggtggacc 950
tgctggagga gaagctgcag ctgggtctgg ccccactgca cagcctggcc 1000
tcgcaggcac tggagcatgg gctccggac cccggcagcc tcctggtgca 1050
ctccttccag cagctcgcc gcatcgactc cctgagcgag cagatttcct 1100
tcctggagga gcagctgggg tcctgctcct gcaagaaaga ctcgtgactg 1150
cccagcgccc caggctggac tgagccctc acgcccctc gcagccccca 1200
tgccccctgcc caacatgctg ggggtccaga agccacctcg gggtgactga 1250
gcggaaggcc aggcagggcc ttccctctt tcctcctccc cttcctcg 1300
aggctccca gaccctggca tggatgggc tggatcttc tctgtgaatc 1350
cacccctggc taccggacc ctggctaccc caacggcatc ccaaggccag 1400
gtggggccctc agctgaggga aggtacgagc tccctgctgg agcctgggac 1450
ccatggcaca ggccaggcag cccggaggct gggtggggcc tcagtgggg 1500

ctgctgcctg acccccagca caataaaaat gaaacgtg 1538

<210> 510

<211> 273

<212> PRT

<213> Homo sapiens

<400> 510

Met Arg Gly Ser Gln Glu Val Leu Leu Met Trp Leu Leu Val Leu
1 5 10 15

Ala Val Gly Gly Thr Glu His Ala Tyr Arg Pro Gly Arg Arg Val
20 25 30

Cys Ala Val Arg Ala His Gly Asp Pro Val Ser Glu Ser Phe Val
35 40 45

Gln Arg Val Tyr Gln Pro Phe Leu Thr Thr Cys Asp Gly His Arg
50 55 60

Ala Cys Ser Thr Tyr Arg Thr Ile Tyr Arg Thr Ala Tyr Arg Arg
65 70 75

Ser Pro Gly Leu Ala Pro Ala Arg Pro Arg Tyr Ala Cys Cys Pro
80 85 90

Gly Trp Lys Arg Thr Ser Gly Leu Pro Gly Ala Cys Gly Ala Ala
95 100 105

Ile Cys Gln Pro Pro Cys Arg Asn Gly Gly Ser Cys Val Gln Pro
110 115 120

Gly Arg Cys Arg Cys Pro Ala Gly Trp Arg Gly Asp Thr Cys Gln
125 130 135

Ser Asp Val Asp Glu Cys Ser Ala Arg Arg Gly Gly Cys Pro Gln
140 145 150

Arg Cys Val Asn Thr Ala Gly Ser Tyr Trp Cys Gln Cys Trp Glu
155 160 165

Gly His Ser Leu Ser Ala Asp Gly Thr Leu Cys Val Pro Lys Gly
170 175 180

Gly Pro Pro Arg Val Ala Pro Asn Pro Thr Gly Val Asp Ser Ala
185 190 195

Met Lys Glu Glu Val Gln Arg Leu Gln Ser Arg Val Asp Leu Leu
200 205 210

Glu Glu Lys Leu Gln Leu Val Leu Ala Pro Leu His Ser Leu Ala
215 220 225

Ser Gln Ala Leu Glu His Gly Leu Pro Asp Pro Gly Ser Leu Leu
230 235 240

Val His Ser Phe Gln Gln Leu Gly Arg Ile Asp Ser Leu Ser Glu
245 250 255

Gln Ile Ser Phe Leu Glu Glu Gln Leu Gly Ser Cys Ser Cys Lys
260 265 270

Lys Asp Ser

<210> 511
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 511
tggagcagca atatgccagc c 21

<210> 512
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 512
ttttccactc ctgtcgggtt gg 22

<210> 513
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 513
ggtgacactt gccagtcaga tgtggatgaa tgcagtgcta ggaggg 46

<210> 514
<211> 2690
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 2039-2065
<223> unknown base

<400> 514
ggttgccaca gctggtttag ggccccgacc actggggccc cttgtcagga 50

ggagacagcc tcccgccccg gggaggacaa gtcgctgcca ccttggctg 100

ccgacgtgat tccctggac ggtccgttc ctgccgtcag ctgccggccg 150
agtgggtct ccgtttca ggccggctcc cccttcctgg tctcccttct 200
cccgctgggc cggttatcg ggaggagatt gtctccagg gctagcaatt 250
ggactttga tgatgttga cccagcggca ggaatagcag gcaacgtgat 300
ttcaaagctg ggctcagcct ctgttcttc tctcgtgtaa tcgcaaaacc 350
catttggag caggaattcc aatcatgtct gtatggtgg tgagaaagaa 400
ggtacacgg aaatggaga aactcccagg caggaacacc tttgctgtg 450
atggccgcgt catgatggcc cggcaaaagg gcatttcta cctgaccctt 500
ttcctcatcc tggggacatg tacactcttc ttgcctttg agtgcgccta 550
cctggctgtt cagctgtctc ctgccccccc tgtatttgc gccatgctct 600
tcctttctc catggctaca ctgttgagga ccagttcag tgaccctgga 650
gtgattcctc gggcgctacc agatgaagca gcttcataa aatggagat 700
agaagctacc aatggtgcgg tgccccaggg ccagcgacca ccgcctcgta 750
tcaagaattt ccagataaac aaccagattt tgaaactgaa atactgttac 800
acatgcaaga tcttcggcc tccccggcc tcccattgca gcatctgtga 850
caactgtgtg gagcgcttcg accatcaactg cccctgggtg gggatttgt 900
ttggaaagag gaactaccgc tacttctacc tttcatcct ttctctctcc 950
ctcctcacaa tctatgtctt cgcctcaac atcgctatg tggccctcaa 1000
atcttgaaa attggcttct tggagacatt gaaagaaact cctggaaactg 1050
ttctagaagt cctcatttgc ttcttacac tctggccgt cgtggactg 1100
actggatttc atacttcct cgtggctctc aaccagacaa ccaatgaaga 1150
catcaaagga tcatggacag ggaagaatcg cgtccagaat ccctacagcc 1200
atggcaatat tgtgaagaac tgctgtgaag tgctgtgtgg ccccttgc 1250
cccaagtgc tggatcgaag gggatatttg ccactggagg aaagtggaaag 1300
tcgacctccc agtactcaag agaccagtag cagccttgc ccacagagcc 1350
cagccccac agaacacactg aactcaaatg agatgccggaa ggacagcagc 1400
actcccgaag agatgccacc tccagagccc ccagagccac cacaggaggc 1450
agctgaagct gagaagtagc ctatctatgg aagagacttt tgtttgc 1500
taatttagggc tatgagagat ttcaggtgag aagttaaacc tgagacagag 1550

agcaagtaag ctgtccctt taactgttt tcttggtct ttagtcaccc 1600
agttgcacac tggcatttc ttgctgcaag ctttttaaa tttctgaact 1650
caaggcagtgcagaagatgtcagtcacct ctgataactg gaaaaatggg 1700
tctctgggc cctggcactg gttctccatg gcctcagcca cagggtcccc 1750
ttggacccccc tctctccct ccagatccca gccctcctgc ttgggtcac 1800
tggtctcatt ctggggctaa aagttttga gactggctca aatcctccca 1850
agctgctgca cgtgctgagt ccagaggcag tcacagagac ctctggccag 1900
gggatcctaa ctgggttctt ggggtcttca ggactgaaga ggagggagag 1950
tgggtcaga agattctcct ggccaccaag tgccagcatt gcccacaaat 2000
ccttttagga atggacagg taccttccac ttgttgtann nnnnnnnnnn 2050
nnnnnnnnnnnnnnnnnnnnnttggtt tttccttttactcctgctccatttaggag 2100
caggaatggc agtaataaaaa gtctgcactt tggtcatttc tttcctcag 2150
aggaagcccg agtgctcaact taaacactat cccctcagac tccctgtgtg 2200
aggcctgcag aggcctgaa tgcacaaaatggaaaccaag gcacagagag 2250
gctctcctct cctctcctct ccccccgtatgt accctcaaaaa aaaaaaaaaat 2300
gctaaccagt tcttccatta agcctcggtt gaggtagggaa aagcccagca 2350
ctgctgccct ctgggttaac tcaccctaag gcctcgcccc acctctggct 2400
atggtaacca cactggggc ttccctccaag ccccgcttccatcacttc 2450
caccggcaga gtcccagagc cacttcaccc tgggggtggg ctgtggcccc 2500
cagtcagctc tgctcaggac ctgctctatt tcagggaaaga agatttatgt 2550
attatatgtg gctatatttc ctagagcacc tgggtttcc tctttctaag 2600
ccagggtcct gtctggatga cttatgcgggtt gggggagtgt aaaccggAAC 2650
ttttcatcta tttgaaggcg attaaactgt gtctaatgca 2690

<210> 515
<211> 364
<212> PRT
<213> Homo sapiens

<400> 515
Met Ser Val Met Val Val Arg Lys Lys Val Thr Arg Lys Trp Glu
1 5 10 15

Lys Leu Pro Gly Arg Asn Thr Phe Cys Cys Asp Gly Arg Val Met

20	25	30
Met Ala Arg Gln Lys Gly Ile Phe Tyr Leu Thr Leu Phe Leu Ile		
35	40	45
Leu Gly Thr Cys Thr Leu Phe Phe Ala Phe Glu Cys Arg Tyr Leu		
50	55	60
Ala Val Gln Leu Ser Pro Ala Ile Pro Val Phe Ala Ala Met Leu		
65	70	75
Phe Leu Phe Ser Met Ala Thr Leu Leu Arg Thr Ser Phe Ser Asp		
80	85	90
Pro Gly Val Ile Pro Arg Ala Leu Pro Asp Glu Ala Ala Phe Ile		
95	100	105
Glu Met Glu Ile Glu Ala Thr Asn Gly Ala Val Pro Gln Gly Gln		
110	115	120
Arg Pro Pro Pro Arg Ile Lys Asn Phe Gln Ile Asn Asn Gln Ile		
125	130	135
Val Lys Leu Lys Tyr Cys Tyr Thr Cys Lys Ile Phe Arg Pro Pro		
140	145	150
Arg Ala Ser His Cys Ser Ile Cys Asp Asn Cys Val Glu Arg Phe		
155	160	165
Asp His His Cys Pro Trp Val Gly Asn Cys Val Gly Lys Arg Asn		
170	175	180
Tyr Arg Tyr Phe Tyr Leu Phe Ile Leu Ser Leu Ser Leu Leu Thr		
185	190	195
Ile Tyr Val Phe Ala Phe Asn Ile Val Tyr Val Ala Leu Lys Ser		
200	205	210
Leu Lys Ile Gly Phe Leu Glu Thr Leu Lys Glu Thr Pro Gly Thr		
215	220	225
Val Leu Glu Val Leu Ile Cys Phe Phe Thr Leu Trp Ser Val Val		
230	235	240
Gly Leu Thr Gly Phe His Thr Phe Leu Val Ala Leu Asn Gln Thr		
245	250	255
Thr Asn Glu Asp Ile Lys Gly Ser Trp Thr Gly Lys Asn Arg Val		
260	265	270
Gln Asn Pro Tyr Ser His Gly Asn Ile Val Lys Asn Cys Cys Glu		
275	280	285
Val Leu Cys Gly Pro Leu Pro Pro Ser Val Leu Asp Arg Arg Gly		
290	295	300
Ile Leu Pro Leu Glu Ser Gly Ser Arg Pro Pro Ser Thr Gln		

305 310 315

Glu Thr Ser Ser Ser Leu Leu Pro Gln Ser Pro Ala Pro Thr Glu
320 325 330

His Leu Asn Ser Asn Glu Met Pro Glu Asp Ser Ser Thr Pro Glu
335 340 345

Glu Met Pro Pro Pro Glu Pro Pro Glu Pro Pro Gln Glu Ala Ala
350 355 360

Glu Ala Glu Lys

<210> 516

<211> 255

<212> DNA

<213> Homo sapiens

<220>

<221> unsure

<222> 36, 38, 88, 118, 135, 193, 213, 222

<223> unknown base

<400> 516

aaaaccctgt atttttaca atgcaaatac acaatnancc tggaggtctt 50

tgaatttaggt attataggga tggtggggtt gatTTTNTT cctggaggct 100

tttggctttg gactctcnct ttctcccaca gagcncttcg accatcactg 150

ccccctgggtg ggaaattgtg ttggaaagag gaactaccgc tanttctacc 200

tcttcatcct ttntctctcc cncctcacaa tctatgtctt cgccctcaac 250

atcgt 255

<210> 517

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 517

caacgtgatt tcaaagctgg gctc 24

<210> 518

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 518

gcctcgatc aagaatttcc 20
<210> 519
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 519
agtggaaagtc gacctccc 18

<210> 520
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 520
ctcacctgaa atctctcata gccc 24

<210> 521
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 521
cgcaaaaccc attttggag caggaattcc aatcatgtct gtgatggtgg 50

<210> 522
<211> 1679
<212> DNA
<213> Homo sapiens

<400> 522
gttgtgtcct tcagcaaaac agtggattta aatcccttg cacaagctt 50
agagcaacac aatctatcag gaaagaaaaga aaaaaaaaaa ccgaacctga 100
caaaaaagaa gaaaaagaag aaaaaaaaaa atcatgaaaa ccatccagcc 150
aaaaatgcac aattcttatct cttggcaat ctgcacgggg ctggctgctc 200
tgtgtctctt ccaaggagtg cccgtgcga gcggagatgc cacccccc 250
aaagctatgg acaacgtgac ggtccggcag ggggagagcg ccaccctcag 300
gtgcactatt gacaaccggg tcacccgggt ggctggcta aaccgcagca 350
ccatccctcta tgctggaaat gacaagtggt gcctggatcc tcgcgtggtc 400

cttctgagca acacccaaac gcagtacagc atcgagatcc agaacgtgga 450
tgtgtatgac gagggccctt acacctgctc ggtgcagaca gacaaccacc 500
caaagacctc tagggcac ctcattgtgc aagtatctcc caaaattgta 550
gagatttctt cagatatctc catatatgaa gggacaata ttagcctcac 600
ctgcatagca actggtagac cagagcctac ggtaacttgg agacacatct 650
ctcccaaaggc ggttggcttt gtgagtgaag acgaatactt ggaaattcag 700
ggcatcaccc gggagcagtc agggactac gagtgcaatg cctccaatga 750
cgtggcccg cccgtggtaac ggagagtaaa ggtcaccgtg aactatccac 800
catacatttc agaagccaag ggtacaggtg tccccgtggg acaaaagggg 850
acactgcagt gtgaagcctc agcagtcccc tcagcagaat tccagtggta 900
caaggatgac aaaagactga ttgaaggaaa gaaagggtg aaagtggaaa 950
acagaccttt cctctcaaaa ctcatcttct tcaatgtctc tgaacatgac 1000
tatgggaact acacttgcgt ggcctccaac aagctggcc acaccaatgc 1050
cagcatcatg ctatttggtc caggcgccgt cagcgaggtg agcaacggca 1100
cgtcgaggag ggcaggctgc gtctggctgc tgcccttct ggtcttgac 1150
ctgcttctca aattttgatg tgagtgccac ttccccaccc gggaaaggct 1200
gccgccacca ccaccaccaa cacaacagca atggcaacac cgacagcaac 1250
caatcagata tatacaaatg aaattagaag aaacacagcc tcatgggaca 1300
gaaatttgag ggagggaaac aaagaatact ttgggggaa aagagttta 1350
aaaaagaaat tgaaaattgc cttgcagata tttaggtaca atggagttt 1400
ctttcccaa acgggaagaa cacagcacac ccggcttggc cccactgca 1450
gctgcacgt gcaacacttt tggtgccagt gtggcaagg gctcagcctc 1500
tctgcccaca gagtgcccc acgtggaaca ttctggagct ggccatccca 1550
aattcaatca gtccatagag acgaacagaa tgagaccttc cggccaaagc 1600
gtggcgctgc gggcactttg gtagactgtg ccaccacggc gtgtgttgg 1650
aaacgtgaaa taaaaagagc aaaaaaaaaa 1679

<210> 523

<211> 344

<212> PRT

<213> Homo sapiens

<400> 523

Met Lys Thr Ile Gln Pro Lys Met His Asn Ser Ile Ser Trp Ala			
1	5	10	15
Ile Phe Thr Gly Leu Ala Ala Leu Cys Leu Phe Gln Gly Val Pro			
20	25	30	
Val Arg Ser Gly Asp Ala Thr Phe Pro Lys Ala Met Asp Asn Val			
35	40	45	
Thr Val Arg Gln Gly Glu Ser Ala Thr Leu Arg Cys Thr Ile Asp			
50	55	60	
Asn Arg Val Thr Arg Val Ala Trp Leu Asn Arg Ser Thr Ile Leu			
65	70	75	
Tyr Ala Gly Asn Asp Lys Trp Cys Leu Asp Pro Arg Val Val Leu			
80	85	90	
Leu Ser Asn Thr Gln Thr Gln Tyr Ser Ile Glu Ile Gln Asn Val			
95	100	105	
Asp Val Tyr Asp Glu Gly Pro Tyr Thr Cys Ser Val Gln Thr Asp			
110	115	120	
Asn His Pro Lys Thr Ser Arg Val His Leu Ile Val Gln Val Ser			
125	130	135	
Pro Lys Ile Val Glu Ile Ser Ser Asp Ile Ser Ile Asn Glu Gly			
140	145	150	
Asn Asn Ile Ser Leu Thr Cys Ile Ala Thr Gly Arg Pro Glu Pro			
155	160	165	
Thr Val Thr Trp Arg His Ile Ser Pro Lys Ala Val Gly Phe Val			
170	175	180	
Ser Glu Asp Glu Tyr Leu Glu Ile Gln Gly Ile Thr Arg Glu Gln			
185	190	195	
Ser Gly Asp Tyr Glu Cys Ser Ala Ser Asn Asp Val Ala Ala Pro			
200	205	210	
Val Val Arg Arg Val Lys Val Thr Val Asn Tyr Pro Pro Tyr Ile			
215	220	225	
Ser Glu Ala Lys Gly Thr Gly Val Pro Val Gly Gln Lys Gly Thr			
230	235	240	
Leu Gln Cys Glu Ala Ser Ala Val Pro Ser Ala Glu Phe Gln Trp			
245	250	255	
Tyr Lys Asp Asp Lys Arg Leu Ile Glu Gly Lys Lys Gly Val Lys			
260	265	270	
Val Glu Asn Arg Pro Phe Leu Ser Lys Leu Ile Phe Phe Asn Val			
275	280	285	

Ser Glu His Asp Tyr Gly Asn Tyr Thr Cys Val Ala Ser Asn Lys
290 295 300

Leu Gly His Thr Asn Ala Ser Ile Met Leu Phe Gly Pro Gly Ala
305 310 315

Val Ser Glu Val Ser Asn Gly Thr Ser Arg Arg Ala Gly Cys Val
320 325 330

Trp Leu Leu Pro Leu Leu Val Leu His Leu Leu Leu Lys Phe
335 340

<210> 524

<211> 503

<212> DNA

<213> Homo sapiens

<400> 524

aaaaaaaat catgaaaacc atccagccaa aaatgcacaa ttcttatctct 50

tggcaatct tcacgggct ggctgctctg tgtctttcc aaggagtgcc 100

cgtgcgcagc ggagatgcc a cttcccaa agctatggac aacgtgacgg 150

tccggcaggg ggagagcgcc accctcaggt gcactattga caaccgggtc 200

accgggtgg cctggctaaa ccgcagcacc atcctctatg ctggaatga 250

caagtggtgc ctggatcctc gcgtggtcct tctgagcaac acccaaacgc 300

agtacagcat cgagatccag aacgtggatg tgtatgacga gggcccttac 350

acctgctcgg tgcagacaga caaccaccca aagacctcta gggtccacct 400

cattgtgcaa gtatctccaa aattttaga gatttcttca gatatctcca 450

ttaatgaagg gaacaatatt agcctcacct gcatagcaac tggtagacca 500

gag 503

<210> 525

<211> 2602

<212> DNA

<213> Homo sapiens

<400> 525

atggctggtg acggcggggc cgggcagggg accggggccg cggcccggga 50

gcggggcagc tgccgggagc cctgaatcac cgcctggccc gactccacca 100

tgaacgtcgc gctgcaggag ctggagctg gcagcaacgt gggattccag 150

aaggggacaa gacagctgtt aggctcacgc acgcagctgg agctggtctt 200

acgcagggtgcc tctctactgc tggctgcact gcttctggc tgccttgtgg 250

cccttaggggt ccagtaccac agagacccat cccacagcac ctgccttaca 300
gaggcctgca ttcgagtggc tggaaaaatc ctggagtccc tggaccgagg 350
tgtgagcccc tgtgaggact tttaccagtt ctcctgtggg ggctggattc 400
ggaggaaccc cctgccccat gggcgatctc gctggaacac cttcaacagc 450
ctctgggacc aaaaccaggc catactgaag cacctgcttgc 500
cttcaactcc agcagtgaag ctgagcagaa gacacagcgc ttctacctat 550
cttgccata ggtggagcgc attgaggagc tggagccca gccactgaga 600
gacctcattt agaagattgg tggtttggaaac attacggggc cctgggacca 650
ggacaacttt atggaggtgt tgaaggcagt agcagggacc tacagggcca 700
ccccattctt caccgtctac atcagtgcgc actctaagag ttccaaacagc 750
aatgttatcc aggtggacca gtctgggctc tttctgcctt ctcgggatta 800
ctacttaaac agaactgcca atgagaaaatg gctcaactgcc tatctggatt 850
acatggagga actggggatg ctgctgggtg ggcggccac ctccacgagg 900
gagcagatgc agcaggtgtt ggagttggag atacagctgg ccaacatcac 950
agtgcggccag gaccagcggc gcgacgagga gaagatctac cacaagatga 1000
gcatttcgga gctgcaggct ctggcgccct ccatggactg gcttgagttc 1050
ctgtctttct tgctgtcacc attggagttg agtgactctg agcctgtgg 1100
ggtgtatggg atggattatt tgcagcaggt gtcagagctc atcaaccgca 1150
cggaaccaag catcctgaac aattacctga tctggAACCTT ggtgcggaaag 1200
acaacctcaa gcctggaccg acgctttgag tctgcacaag agaagctgt 1250
ggagaccctc tatggcacta agaagtcctg tggccgagg tggcagaccc 1300
gcacatccaa cacggatgac gcccggcgt ttgctttggg gtcactcttc 1350
gtgaaggcca cggttgaccg gcaaagcaaa gaaattgcag aggggatgtat 1400
cagcgaaatc cggaccgcatt tgaggaggc cctggacag ctggtttgg 1450
tggatgagaa gacccggccag gcagccaaagg agaaagcaga tgccatctat 1500
gatatgattt gttcccaaga ctttatcctg gagccaaag agctggatga 1550
tgtttatgac gggtacgaaa tttctgaaga ttctttcttc caaaacatgt 1600
tgaatttta caacttctt cccaaaggta tggctgacca gctccgcaag 1650
cctcccaagcc gagaccaggta gagcatgacc cccagacag tgaatgccta 1700

ctaccttcca actaagaatg agatcgtctt ccccgctggc atcctgcagg 1750
cccccttcta tgcccgaac caccccaagg ccctgaactt cggtggcatc 1800
ggtgtggtca tgggccatga gttgacgcat gccttgatg accaaggcg 1850
cgagtatgac aaagaaggaa acctgccc ctggtggcag aatgagtccc 1900
tggcagcctt ccgaaaccac acggcctgca tggaggaaca gtacaatcaa 1950
taccaggtca atggggagag gctcaacggc cgccagacgc tgggggagaa 2000
cattactgac aacggggggc tgaaggctgc ctacaatgct tacaaagcat 2050
ggctgagaaa gcatggggag gagcagcaac tgccagccgt ggggctcacc 2100
aaccaccagc tcttcttcgt gggatttgcc caggtgttgt gctcggtccg 2150
cacaccagag agctctcacf aggggcttgt gaccgacccc cacagccctg 2200
cccgcttcgg cgtgctggc actcttcacca actcccgta cttccctgcgg 2250
cacttcggct gccctgtcgg ctccccatg aaccaggc agctgtgtga 2300
ggtgtggtag acctggatca ggggagaaat ggccagctgt caccagacct 2350
ggggcagctc tcctgacaaa gctgtttgt cttgggttg gaggaagcaa 2400
atgcaagctg ggctgggtct agtccctccc ccccacaggt gacatgagta 2450
cagaccctcc tcaatcacca cattgtgcct ctgctttggg ggtgccccctg 2500
cctccagcag agccccacc attcactgtg acatcttcc gtgtcaccct 2550
gccttggaga ggtctgggtg gggaggccag ttcccatagg aaggagtctg 2600
cc 2602

<210> 526
<211> 736
<212> PRT
<213> Homo sapiens

<400> 526
Met Asn Val Ala Leu Gln Glu Leu Gly Ala Gly Ser Asn Val Gly
1 5 10 15
Phe Gln Lys Gly Thr Arg Gln Leu Leu Gly Ser Arg Thr Gln Leu
20 25 30
Glu Leu Val Leu Ala Gly Ala Ser Leu Leu Leu Ala Ala Leu Leu
35 40 45
Leu Gly Cys Leu Val Ala Leu Gly Val Gln Tyr His Arg Asp Pro
50 55 60

Ser His Ser Thr Cys Leu Thr Glu Ala Cys Ile Arg Val Ala Gly
65 70 75

Lys Ile Leu Glu Ser Leu Asp Arg Gly Val Ser Pro Cys Glu Asp
80 85 90

Phe Tyr Gln Phe Ser Cys Gly Gly Trp Ile Arg Arg Asn Pro Leu
95 100 105

Pro Asp Gly Arg Ser Arg Trp Asn Thr Phe Asn Ser Leu Trp Asp
110 115 120

Gln Asn Gln Ala Ile Leu Lys His Leu Leu Glu Asn Thr Thr Phe
125 130 135

Asn Ser Ser Ser Glu Ala Glu Gln Lys Thr Gln Arg Phe Tyr Leu
140 145 150

Ser Cys Leu Gln Val Glu Arg Ile Glu Glu Leu Gly Ala Gln Pro
155 160 165

Leu Arg Asp Leu Ile Glu Lys Ile Gly Gly Trp Asn Ile Thr Gly
170 175 180

Pro Trp Asp Gln Asp Asn Phe Met Glu Val Leu Lys Ala Val Ala
185 190 195

Gly Thr Tyr Arg Ala Thr Pro Phe Phe Thr Val Tyr Ile Ser Ala
200 205 210

Asp Ser Lys Ser Ser Asn Ser Asn Val Ile Gln Val Asp Gln Ser
215 220 225

Gly Leu Phe Leu Pro Ser Arg Asp Tyr Tyr Leu Asn Arg Thr Ala
230 235 240

Asn Glu Lys Val Leu Thr Ala Tyr Leu Asp Tyr Met Glu Glu Leu
245 250 255

Gly Met Leu Leu Gly Gly Arg Pro Thr Ser Thr Arg Glu Gln Met
260 265 270

Gln Gln Val Leu Glu Leu Glu Ile Gln Leu Ala Asn Ile Thr Val
275 280 285

Pro Gln Asp Gln Arg Arg Asp Glu Glu Lys Ile Tyr His Lys Met
290 295 300

Ser Ile Ser Glu Leu Gln Ala Leu Ala Pro Ser Met Asp Trp Leu
305 310 315

Glu Phe Leu Ser Phe Leu Leu Ser Pro Leu Glu Leu Ser Asp Ser
320 325 330

Glu Pro Val Val Val Tyr Gly Met Asp Tyr Leu Gln Gln Val Ser
335 340 345

Glu Leu Ile Asn Arg Thr Glu Pro Ser Ile Leu Asn Asn Tyr Leu
350 355 360

Ile Trp Asn Leu Val Gln Lys Thr Thr Ser Ser Leu Asp Arg Arg
365 370 375

Phe Glu Ser Ala Gln Glu Lys Leu Leu Glu Thr Leu Tyr Gly Thr
380 385 390

Lys Lys Ser Cys Val Pro Arg Trp Gln Thr Cys Ile Ser Asn Thr
395 400 405

Asp Asp Ala Leu Gly Phe Ala Leu Gly Ser Leu Phe Val Lys Ala
410 415 420

Thr Phe Asp Arg Gln Ser Lys Glu Ile Ala Glu Gly Met Ile Ser
425 430 435

Glu Ile Arg Thr Ala Phe Glu Glu Ala Leu Gly Gln Leu Val Trp
440 445 450

Met Asp Glu Lys Thr Arg Gln Ala Ala Lys Glu Lys Ala Asp Ala
455 460 465

Ile Tyr Asp Met Ile Gly Phe Pro Asp Phe Ile Leu Glu Pro Lys
470 475 480

Glu Leu Asp Asp Val Tyr Asp Gly Tyr Glu Ile Ser Glu Asp Ser
485 490 495

Phe Phe Gln Asn Met Leu Asn Leu Tyr Asn Phe Ser Ala Lys Val
500 505 510

Met Ala Asp Gln Leu Arg Lys Pro Pro Ser Arg Asp Gln Trp Ser
515 520 525

Met Thr Pro Gln Thr Val Asn Ala Tyr Tyr Leu Pro Thr Lys Asn
530 535 540

Glu Ile Val Phe Pro Ala Gly Ile Leu Gln Ala Pro Phe Tyr Ala
545 550 555

Arg Asn His Pro Lys Ala Leu Asn Phe Gly Gly Ile Gly Val Val
560 565 570

Met Gly His Glu Leu Thr His Ala Phe Asp Asp Gln Gly Arg Glu
575 580 585

Tyr Asp Lys Glu Gly Asn Leu Arg Pro Trp Trp Gln Asn Glu Ser
590 595 600

Leu Ala Ala Phe Arg Asn His Thr Ala Cys Met Glu Glu Gln Tyr
605 610 615

Asn Gln Tyr Gln Val Asn Gly Glu Arg Leu Asn Gly Arg Gln Thr
620 625 630

Leu Gly Glu Asn Ile Thr Asp Asn Gly Gly Leu Lys Ala Ala Tyr
635 640 645

Asn Ala Tyr Lys Ala Trp Leu Arg Lys His Gly Glu Glu Gln Gln
650 655 660

Leu Pro Ala Val Gly Leu Thr Asn His Gln Leu Phe Phe Val Gly
665 670 675

Phe Ala Gln Val Trp Cys Ser Val Arg Thr Pro Glu Ser Ser His
680 685 690

Glu Gly Leu Val Thr Asp Pro His Ser Pro Ala Arg Phe Arg Val
695 700 705

Leu Gly Thr Leu Ser Asn Ser Arg Asp Phe Leu Arg His Phe Gly
710 715 720

Cys Pro Val Gly Ser Pro Met Asn Pro Gly Gln Leu Cys Glu Val
725 730 735

Trp

<210> 527
<211> 4308
<212> DNA
<213> Homo sapiens

<220>
<221> unsure
<222> 1478, 3978, 4057-4058, 4070
<223> unknown base

<400> 527
gcccggccct ccgcctccg cactcccggc tccctccctc cgcccgctcc 50
cgccccctcc tccctccctc ctccccagct gtcccggtcg cgtcatgccg 100
agcctcccg ccccgccggc cccgctgctg ctccctgggc tgctgctgct 150
cggtccccgg ccggcccgcg gcggccggccc agagcccccc gtgctgcccc 200
tccgttctga gaaggagccg ctgcccgttc ggggagccgc aggttaggtgg 250
gcggccgggg gagggcgccgg cggggagtcg ggctcgccgc gagtcagcgc 300
cagccccggag ggggccccgg ggcgcagggtgg ctcggccgg cgggcggccc 350
ggaggggtggg cggggcaga agggcgccgt gcctgggacc cgggacccgc 400
gggcagcccc cggggcggca cacggcgca gctgggcagc ggcctccagc 450
caagccccgtc cccgcaggct gcaccttcgg cgggaaggtc tatgccttgg 500
acgagacgtg gcacccggac ctagggagc cattcggggt gatgcgctgc 550

gtgctgtgcg cctgcgaggc gcagtgggtt cgccgtacca ggggcctgg 600
cagggtcagc tgcaagaaca tcaaaccaga gtgccaacc ccggcctgtg 650
ggcagccgcg ccagctgccg ggacactgct gccagacctg cccccaggac 700
ttcgtggcgc tgctgacagg gccgaggtcg caggcggtgg cacgagcccg 750
agtctcgctg ctgcgtcta gcctccgctt ctctatctcc tacaggcggc 800
tggaccgccc taccaggatc cgcttcttag actccaatgg cagtgtcctg 850
ttttagcacc ctgcagcccc cacccaagat ggcctggtct gtggggtgtg 900
gcgggcagtg cctcggttgt ctctgcggct ccttagggca gaacagctgc 950
atgtggcact tgtgacactc actcaccctt cagggaggt ctgggggcct 1000
ctcatccggc accggggcct gtccccagag accttcagtg ccatcctgac 1050
tctagaaggc ccccaccagc agggcgttagg gggcatcacc ctgctcactc 1100
tcagtgacac agaggactcc ttgcatttt tgctgctttt ccgaggcctt 1150
gcaggactaa cccaggttcc cttgaggctc cagattctac accaggggca 1200
gctactgcga gaacttcagg ccaatgtctc agcccaggaa ccaggcttg 1250
ctgaggtgct gcccaacctg acagtccagg agatggactg gctggtgctg 1300
ggggagctgc agatggccct ggagtggca ggcaggccag ggctgcgcac 1350
cagtggacac attgctgcca ggaagagctg cgacgtcctg caaatgttcc 1400
tttgtgggc taatgccctg atcccagtcc aaacgggtgc tgccggctca 1450
gccagcctca ctctgctagg aatggcncc ctgatcctcc aggtgcaatt 1500
ggtagggaca accagtgagg tggtgccat gacactggaa accaagcctc 1550
agcggaggga tcagcccact gtcctgtgcc acatggctgg cctatcctcc 1600
cctgccccca ggccgtgggt atctgccctg ggctggggtg cccgaggggc 1650
tcatatgctg ctgcagaatg agctttctt gaacgtggc accaaggact 1700
tcccagacgg agagcttcgg gggcaacgtg gctgccctgc cctactgtgg 1750
ggcatagcgc cgcgcctgccc cgtgccctta gcaggagccc tggcttacc 1800
ccctgtgaag agccaagcag cagggcacgc ctggcttcc ttggataacc 1850
actgtcacct gcactatgaa gtgctgctgg ctgggcttgg tggctcagaa 1900
caaggcactg tcactgccc cctccttggg cctcctggaa cgccaggggcc 1950
tcggcggctg ctgaaggat tctatggctc agaggcccag ggtgtggta 2000

aggacctgga gccggaactg ctgcggcacc tggcaaaagg catggcttcc 2050
ctgatgatca ccaccaaggt agccccagag gggagctccg agggcagcct 2100
ctcctcccag gtgcacatag ccaaccaatg tgaggttggc ggactgcgcc 2150
tgaggcgcc cgggggccgag ggggtgcggg cgctggggc tccggataca 2200
gcctctgctg cgccgcctgt ggtgccttgt ctcccgcccc tagcgcggc 2250
caaacctggt ggtccctggc ggccccgaga ccccaacaca tgcttcttcg 2300
aggggcagca gcgcacccac ggggctcgt gggcgcccaa ctacgacccg 2350
ctctgctcac tctgcacctg ccagagacga acggtgatct gtgacccgg 2400
ggtgtgcccc caaaaaaaaaaaaaaaa ggtgcaggct cccgaccagt 2450
gctgcctgt ttgcctggc tgctattttg atggtgaccg gagctggcgg 2500
gcagcgggta cgcggtggca ccccggttgt cccccccttg gcttaattaa 2550
gtgtgctgtc tgcacctgca agcagggggg cactggagag gtgcactgt 2600
agaaggtgca gtgtccccgg ctggcctgtg cccagcctgt gcgtgtcaac 2650
cccaccgact gctgcaaaca gtgtccaggt gaggcccacc cccagctggg 2700
ggaccccatg caggctgatg gccccgggg ctgcccgttt gctggcagt 2750
ggttcccaaga gagtcagagc tggcacccct cagtggcccc gtttggagag 2800
atgagctgta tcacctgcag atgtgggta agtggggagc agaggcttgt 2850
gtgaggtggg tactggagc ctggtctgga gtagggagac cttccaggg 2900
aggtccctga agaagctgaa ggtcactgtg tcccagtgcc tctggggac 2950
actcagtgtc tgctctgtct tgtaccaggc aggggtgcct cactgtgagc 3000
ggatgactg ttcactgcca ctgtcctgtg gctggggaa ggagagtgcga 3050
tgctgttccc gctgcacggc ccacggcgg cgtaagttag gtagtccagg 3100
gtcagcagct gtgagtgag ggctcacctg cctgtggac tcctgatcag 3150
ggaaggggagc actcactgtg tgcaggaaca gtgcagcctg cctcacaagt 3200
gccattccaa tccaccctca cagcaacctg gtggaaattgt tatttatgac 3250
ctttcttta caaatgagat ttctgaagct cagagaaatt aagcaacgag 3300
atgaaggtca cccagctgtg tgcactgacc tgtttagaaa atactggcct 3350
ttctgggacc aaggcagggta tgcttgccc tgccctctat gcctctgt 3400

gcctctccac tccctctccc ctcctccaac attccctccc ttctgtctcc 3450
agcagccccca gagaccagaa ctgatccaga gctggagaaa gaagccgaag 3500
gctcttaggg agcagccaga gggccaagtg accaagagga tggggcctga 3550
gctgggaag gggtggcatc gaggaccttc ttgcattctc ctgtgggaag 3600
cccagtgcct ttgctcctct gcctgcctc tactcccacc cccactacct 3650
ctgggaacca cagctccaca agggggagag gcagctggc cagaccgagg 3700
tcacagccac tccaagtcct gccctgccac cctcgccctc tgtcctggaa 3750
gccccacccc tttcttcctg tacataatgt cactggcttg ttgggatttt 3800
taatttatct tcactcagca ccaagggccc cgacactcc actcctgctg 3850
cccctgagct gagcagagtc attattggag agttttgtat ttattaaaac 3900
atttctttt cagtcttgg gcatgaggtt ggctctttgt ggccaggaac 3950
ctgagtgggg cctgggtggag aaggggcnga gagtaggagg tgagagagag 4000
gagctctgac acttggggag ctgaaagaga cctggagagg cagaggatag 4050
cgtggcnntt ggctggcatn cctgggttcc gcagaggggc tggggatgg 4100
tcttgagatg gtctagagac tcaagaattt agggaaatgg aaggcaggatt 4150
ttgactcaag tttagttcc cacatcgctg gcctgttgc tgacttcatg 4200
tttgaagttt ctccagagag agaatcaaag gtgtcaccag cccctctctc 4250
cctccttccc ttcccttccc tttctttccc tcccccccccc tcccccccccc 4300
tccccctcc 4308

<210> 528
<211> 1285
<212> DNA
<213> Homo sapiens

<400> 528
ggccgagcgg gggtgctgcg cggcggccgt gatggctggt gacggcgggg 50
ccgggcaggg gaccggggcc gcggcccccggg agcggggccag ctgcccggag 100
ccctgaatca ccgcctggcc cgactccacc atgaacgtcg cgctgcagga 150
gctggagct ggcagcaacg tgggattcca gaaggggaca agacagctgt 200
taggctcacg cacgcagctg gagctggct tagcaggtgc ctctctactg 250
ctggctgcac tgcttctggg ctgccttgcg gccctagggg tccagtagcca 300
cagagaccca tcccacagca cctgccttac agaggcctgc attcgagtgg 350

ctggaaaaat cctggagtcc ctggaccgag gggtagcccc ctgtgaggac 400
tttaccagt ttcctgtgg gggctggatt cgaggaacc ccctgcccg 450
tggcggtct cgctgaaaca cttcaacag cctctggac caaaaccagg 500
ccatactgaa gcacctgctt gaaaacacca cttcaactc cagcagtgaa 550
gctgagcaga agacacagcg cttcaccta tcttgctac aggtggagcg 600
cattgaggag ctgggagccc agccactgag agacctcatt gagaagattg 650
gtggttggaa cattacgggg ccctggacc aggacaactt tatggaggtg 700
ttgaaggcag tagcagggac ctacagggcc acccattct tcaccgtcta 750
catcagtgcc gactctaaga gttccaacag caatgttac caggtggacc 800
agtctggct cttctgccc tctcggatt actactaaa cagaactgcc 850
aatgagaaag taaggaacat cttccgaacc cccatcccta cccctggctg 900
agctgggctg atccctgttg actttccct ttgccaaggg tcagagcagg 950
gaaggtgagc ctatcctgtc acctagtgaa caaactgccc ctcctttctt 1000
tcttcttttc ttccctccctc cttcccttcc ttccctttt cttcccttcc 1050
ttccctttat tcttcttagta ggtttcatag acacctactg tgtgccaggt 1100
ccagtgggg aattccggaga tataagtttc cgagccattg ccacaggaag 1150
cgttcagtgt cgatgggttc atggacctag ataggctgat aacaaagctc 1200
acaagagggt cctgaggatt caggagagac ttatggagcc agcaaagtct 1250
tcctgaagag attgcatttg agccaggtcc tgttag 1285

<210> 529
<211> 1380
<212> DNA
<213> Homo sapiens

<400> 529
atgcctacta cttccaact aagaatgaga tcgtttccc cgctggcatc 50
ctgcaggccc cttcttatgc ccgaaccac cccaaggccc tgaacttcgg 100
tggcatcggt gtggcatgg gccatgagtt gacgcattgc tttgatgacc 150
aaggcgccga gtatgacaaa gaaggaaacc tgcggccctg gtggcagaat 200
gagtccctgg cagcattccg gaaccacacg gcctgcattgg aggaacagta 250
caatcaatac caggtcaatg gggagaggct caacggccgc cagacgctgg 300

gggagaacat tgctgacaac gggggctga aggctgccta caatgcttac 350
aaagcatggc tgagaaagca tggggaggag cagcaactgc cagccgtgg 400
gctcaccaac caccagctct tcttcgtgg atttgccag gtgtggtgct 450
cggtccgcac accagagagc tctcacgagg ggctggtgac cgaccccccac 500
agccctgccc gcttccgcgt gctggcact ctctccaact cccgtgactt 550
cctgcggcac ttcggctgcc ctgtcggctc ccccatgaac ccagggcagc 600
tgtgtgaggt gtggtagacc tggatcaggg gagaatggc cagctgtcac 650
cagacctggg gcagctctcc tgacaaagct gtttgcttt gggttgggag 700
gaagcaaatg caagctggc tgggtctagt ccctcccccc cacaggtgac 750
atgagtagac agccctcctca atcaccacat tgtgcctctg ctttgggggt 800
gcccccgcct ccagcagagc cccaccatt cactgtgaca tcttccgtg 850
tcaccctgccc tgaaagaggt ctgggtgggg aggccagttc ccataggaag 900
gagtctgcct cttctgtccc caggctca cagcctggcg gccatggggc 950
ctgccgtgcc tgccccactg tgacccacag gcctgggtgg tgtacctcct 1000
ggacttctcc ccaggctcac tcagtgcga cttaggggtg gactcagctc 1050
tgtctggctc accctcacgg gctaccccca cctcaccctg tgctccttgt 1100
gccactgctc ccagtgctgc tgctgacctt cactgacagc tcctagtgg 1150
agcccaaggg cctctgaaag cctcctgctg cccactgttt ccctgggctg 1200
agaggggaag tgcatatgtg tagcgggtac tggttcctgt gtcttagggc 1250
acaaggccta gcaaatgatt gattctccct ggacaaagca ggaaagcaga 1300
tagagcaggg aaaaggaaga acagagttt ttttacaga aaagagggtg 1350
ggaggggtgtg gtctggccc ttataggacc 1380

<210> 530
<211> 39
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 530
gaagcagtgc agccagcagt agagaggcac ctgctaaga 39

<210> 531
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 531
acgcagctgg agctggtctt agca 24

<210> 532
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 532
ggtaactggac cccttagggcc acaa 24

<210> 533
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 533
cctcccagcc gagaccagtg g 21

<210> 534
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 534
ggtcctataaa gggccaagac c 21

<210> 535
<211> 44
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 535
gactagttct agatcgcgag cggccgcctt tttttttttt tttt 44

<210> 536
<211> 16
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 536
cggacgcgtg ggtcgaa 16

<210> 537
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 537
cggccgtat ggctggtgac g 21

<210> 538
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 538
ggcagactcc ttccttatggg 20

<210> 539
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 539
ggcacttcat ggtccttgaa a 21

<210> 540
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 540
cgatgtgtg tgaggccatg cc 22

<210> 541
<211> 24
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 541
gaaagtaacc acggagggtca agat 24

<210> 542
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 542
cctcctccga gactgaaagc t 21

<210> 543
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 543
tcgcgttgct ttttctcgcg tg 22

<210> 544
<211> 17
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 544
gcgtgcgtca ggttcca 17

<210> 545
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 545
cgttcgtgca gcgtgtgta 19

<210> 546
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 546
cttcctcacc acctgcgacg gg 22

<210> 547
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 547
ggtaggcggt cctatagatg gtt 23

<210> 548
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 548
agatgtggat gaatgcagtg cta 23

<210> 549
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 549
atcaaacaccg ccggcagtta ctgg 24

<210> 550
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 550
acagagtgtt ccgtctgcag aca 23

<210> 551
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 551
agcctcctgg tgcactcct 19

<210> 552
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 552
cgactccctg agcgagcaga tttcc 25

<210> 553
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 553
gctgggcagt cacgagtctt 20

<210> 554
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 554
aatcctccat ctcagatctt ccag 24

<210> 555
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 555
cctcagcggt aacagccggc c 21

<210> 556
<211> 15
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 556
tgggccaagg gctgc 15

<210> 557

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 557
tggtgatcaa ccaacaagat gg 22

<210> 558
<211> 34
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 558
gagtctgcat ccacaccact cttaaagtgc tcaa 34

<210> 559
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 559
cagggtgctct tttcagtcgt gttt 24

<210> 560
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 560
tggccattct caggacaaga g 21

<210> 561
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> synthetic oligonucleotide probe

<400> 561
cagtaatgcc atttgctgc ctgcgt 26

<210> 562
<211> 19
<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 562
tgcctggaat cacatgaca 19

<210> 563
<211> 20
<212> DNA
<213> Artificial Sequence

<220>

<223> synthetic oligonucleotide probe

<400> 563
tgtggcacag acccaatcct 20

<210> 564
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 564
gaccctgaag gcctccggcc t 21

<210> 565
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 565
gagagagggaa aggtagctat gtc 23

<210> 566
<211> 21
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 566
cagccccctct ctttcacctg t 21

<210> 567
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 567
ccatcctgtg cagctgacac acagc 25

<210> 568
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 568
gccaggctat gaggctcctt 20

<210> 569
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 569
ttcaagttcc tgaagccgat tat 23

<210> 570
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 570
ccaacttccc tccccagtgc cct 23

<210> 571
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 571
ttgggaaagg tagaatttcc ttgtat 26

<210> 572
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 572
cccttctgcc tcccaattct 20

<210> 573
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 573
tctcctccgt ccccttcctc cact 24

<210> 574
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 574
tgagccactg cttgcatta 20

<210> 575
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 575
tctgcagacg cgatggataa 20

<210> 576
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 576
ccgaaaataa aacatcgccc cttctg 26

<210> 577
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 577

cacgtggcct ttcacactga 20

<210> 578
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 578
acttgtgaca gcagtatgct gtctt 25

<210> 579
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 579
aagcttctgt tcaatccag cggtcc 26

<210> 580
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 580
atgcacaggc ttttctggtaaa 22

<210> 581
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 581
gcaggaaacc ttcgaatctg ag 22

<210> 582
<211> 29
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 582
cacacctgagg cacctgagag aggaactct 29

<210> 583
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 583
gacagcccaag tacaccctgca a 21

<210> 584
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 584
gacggctgga tctgtgagaa a 21

<210> 585
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 585
cacaactgct gaccccgccc a 21

<210> 586
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 586
ccaggatacg acatgctgca 20

<210> 587
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 587
aaactccaac ctgtatcaga tgca 24

<210> 588
<211> 25

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 588
cccccaagcc cttagactct aagcc 25

<210> 589
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 589
gaccggcac cttgctaac 19

<210> 590
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 590
ggacggtcag tcaggatgac a 21

<210> 591
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 591
ttcggcatca tctcttccct ctccc 25

<210> 592
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 592
acaaaaaaaaaa ggaaacaaaa tacga 25

<210> 593
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 593
ctttgaatag aagacttctg gacaattt 28

<210> 594
<211> 30
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 594
ttgcaactgg gaatataccca cgacatgaga 30

<210> 595
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 595
tagggtgcta atttgtgcta taacct 26

<210> 596
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 596
ggctctgagt ctctgcttga 20

<210> 597
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 597
tccaacaacc atttcctct ggtcc 25

<210> 598
<211> 23
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 598

aagcagtagc cattaacaag tca 23

<210> 599

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 599

caagcgtcca ggtttattga 20

<210> 600

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 600

gactacaagg cgctcagcta 20

<210> 601

<211> 21

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 601

ccggctgggt ctcactcctc c 21

<210> 602

<211> 19

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 602

cgttcgtgca gcgtgtgta 19

<210> 603

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 603
cttcctcacc acctgcgacg gg 22

<210> 604
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 604 ,
ggtaggcggt cctatagatg gtt 23

<210> 605
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 605
agatgtggat gaatgcagtg cta 23

<210> 606
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 606
atcaaacaccg ccggcagtta ctgg 24

<210> 607
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 607
acagagtgtt ccgtctgcag aca 23

<210> 608
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 608
agccctcctgg tgcactcct 19

<210> 609
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 609
cgactccctg agcgagcaga tttcc 25

<210> 610
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe.

<400> 610
gctgggcagt cacgagtctt 20

<210> 611
<211> 2840
<212> DNA
<213> Homo Sapien

<400> 611
cccacgcgtc cgagccgccc gagaattaga cacactccgg acgcggccaa 50
aagcaaccga gaggagggga ggcaaaaaca ccgaaaaaca aaaagagaga 100
aacaacaccc aacaactggg gtggggggaa gaaagaaaga aaagaaaccc 150
acccacccac caaaaaaaaaaaaaaaaaaaaaaaaatc 200
ctgtggcgcg cgcctgggtt cccggaaaga ctgcgcagca ccaggggtg 250
ggggagtgcg agctgaaagc tgctggagag tgagcagccc tagcagggat 300
ggacatgatg ctgttgtgc agggtgcttg ttgctcgaac cagtggctgg 350
cggcggtgct ctcagcctg tgctgcctgc taccctcctg cctccggct 400
ggacagagtg tggacttccc ctggcggcc gtggacaaca tggatggtcag 450
aaaaggggac acggcggtgc ttaggtgtta tttggaagat ggagcttcaa 500
agggtgcctg gctgaaccgg tcaagtattt ttttgcggg aggtgataag 550
tggtcagtgg atcctcgagt ttcaatttca acattgaata aaaggacta 600
cagcctccag atacagaatg tagatgtgac agatgatggc ccatacacgt 650
gttctgttca gactcaacat acacccagaa caatgcaggt gcatctaact 700

gtgcaagttc ctccctaagat atatgacatc tcaaattgata tgaccgtcaa 750
tgaaggaacc aacgtcaactc ttacttgttt ggccactggg aaaccagagc 800
cttccatttc ttggcgacac atctccccat cagcaaaacc atttgaaaat 850
ggacaatatt tggacattta tggaattaca agggaccagg ctgggaaata 900
tgaatgcagt gcggaaaatg ctgtgtcatt cccagatgtg aggaaagtaa 950
aagttgttgt caactttgct cctactattc aggaattaa atctggcacc 1000
gtgacccccc gacgcagtgg cctgataaga tgtgaaggtg caggtgtgcc 1050
gcctccagcc tttgaatggt acaaaggaga gaagaagctc ttcaatggcc 1100
aacaaggaat tattattcaa aatttttagca caagatccat tctcaactgtt 1150
accaacgtga cacaggagca ctccggcaat tatacctgtg tggctgcca 1200
caagctaggc acaaccaatg cgagcctgcc tcttaaccct ccaagtacag 1250
cccagtatgg aattaccggg agcgctgatg ttctttctc ctgctggcac 1300
cttgcgttga cactgtcctc tttcaccagc atattctacc tgaagaatgc 1350
cattctacaa taaattcaaa gacccataaa aggctttaa ggattctctg 1400
aaagtgcgtga tggctggatc caatctggta cagttgtta aaagcagcgt 1450
gggatataat cagcagtgct tacatggga tgatgcctt ctgtagaatt 1500
gctcattatg taaatacttt aattctactc tttttgatt agctacatta 1550
cttgtgaag cagtacacat tgcctttt ttaagacgtg aaagctctga 1600
aattactttt agaggatatt aattgtgatt tcatgtttgt aatctacaac 1650
tttcaaaag cattcagtca tggctcgcta ggtgcaggc tgttagttac 1700
aaaaacgaat attgcagtga atatgtgatt cttaaggct gcaatacaag 1750
cattcagttc cctgtttcaa taagagtcaa tccacattta caaagatgca 1800
ttttttctt ttttgataaa aaagcaaata atattgcctt cagattttt 1850
cttcaaaata taacacatat ctgatTTT ctgcttgcattt gatattcagg 1900
tttcaggaat gagccttgta atataactgg ctgtgcagct ctgcttctct 1950
ttcctgttaag ttcaagcatgg gtgtgccttc atacaataat attttctct 2000
ttgtctccaa ctaatataaa atgtttgtt aaatcttaca atttgaaagt 2050
aaaaataaac cagagtgtac aagttaaacc atacaactatc tctaagtaac 2100
gaaggagcta ttggactgtac aaaatctttt cctgcactga caatggggtt 2150

tgagaatttt gccccacact aactcagttc ttgtgatgag agacaattta 2200
ataaacagtat agtaaatata ccatatgatt tcttagttg tagctaaatg 2250
ttagatccac cgtggaaat cattccctt aaaatgacag cacagtccac 2300
tcaaaggatt gcctagcaat acagcatctt ttccttcac tagtccaagc 2350
caaaaatttt aagatgattt gtcagaaagg gcacaaagtc ctatcaccta 2400
atattacaag agttgtaag cgctcatcat taattttatt ttgtggcagg 2450
tattatgaca gtcgacctgg agggtatgga tatggatatg gacgttccag 2500
agactataat ggcagaaacc agggtggta tgaccgctac tcaggaggaa 2550
attacagaga caattatgac aactgaaatg agacatgcac ataatataga 2600
tacacaagga ataatttctg atccaggatc gtccttccaa atggctgtat 2650
ttataaaggt ttttggagct gcactgaagc atcttatttt atagtatatc 2700
aacctttgt ttttaatttgc acctgccaag gtagctgaag accttttaga 2750
cagttccatc tttttttta aatttttct gcctattaa agacaaatta 2800
tgggacgttt gtcaaaaaaa aaaaaaaaaa aaaaaaaaaa 2840

<210> 612
<211> 352
<212> PRT
<213> Homo Sapien

<400> 612
Met Met Leu Leu Val Gln Gly Ala Cys Cys Ser Asn Gln Trp Leu
1 5 10 15
Ala Ala Val Leu Leu Ser Leu Cys Cys Leu Leu Pro Ser Cys Leu
20 25 30
Pro Ala Gly Gln Ser Val Asp Phe Pro Trp Ala Ala Val Asp Asn
35 40 45
Met Met Val Arg Lys Gly Asp Thr Ala Val Leu Arg Cys Tyr Leu
50 55 60
Glu Asp Gly Ala Ser Lys Gly Ala Trp Leu Asn Arg Ser Ser Ile
65 70 75
Ile Phe Ala Gly Gly Asp Lys Trp Ser Val Asp Pro Arg Val Ser
80 85 90
Ile Ser Thr Leu Asn Lys Arg Asp Tyr Ser Leu Gln Ile Gln Asn
95 100 105
Val Asp Val Thr Asp Asp Gly Pro Tyr Thr Cys Ser Val Gln Thr

110 115 120

Gln His Thr Pro Arg Thr Met Gln Val His Leu Thr Val Gln Val
125 130 135

Pro Pro Lys Ile Tyr Asp Ile Ser Asn Asp Met Thr Val Asn Glu
140 145 150

Gly Thr Asn Val Thr Leu Thr Cys Leu Ala Thr Gly Lys Pro Glu
155 160 165

Pro Ser Ile Ser Trp Arg His Ile Ser Pro Ser Ala Lys Pro Phe
170 175 180

Glu Asn Gly Gln Tyr Leu Asp Ile Tyr Gly Ile Thr Arg Asp Gln
185 190 195

Ala Gly Glu Tyr Glu Cys Ser Ala Glu Asn Ala Val Ser Phe Pro
200 205 210

Asp Val Arg Lys Val Lys Val Val Val Asn Phe Ala Pro Thr Ile
215 220 225

Gln Glu Ile Lys Ser Gly Thr Val Thr Pro Gly Arg Ser Gly Leu
230 235 240

Ile Arg Cys Glu Gly Ala Gly Val Pro Pro Pro Ala Phe Glu Trp
245 250 255

Tyr Lys Gly Glu Lys Lys Leu Phe Asn Gly Gln Gln Gly Ile Ile
260 265 270

Ile Gln Asn Phe Ser Thr Arg Ser Ile Leu Thr Val Thr Asn Val
275 280 285

Thr Gln Glu His Phe Gly Asn Tyr Thr Cys Val Ala Ala Asn Lys
290 295 300

Leu Gly Thr Thr Asn Ala Ser Leu Pro Leu Asn Pro Pro Ser Thr
305 310 315

Ala Gln Tyr Gly Ile Thr Gly Ser Ala Asp Val Leu Phe Ser Cys
320 325 330

Trp Tyr Leu Val Leu Thr Leu Ser Ser Phe Thr Ser Ile Phe Tyr
335 340 345

Leu Lys Asn Ala Ile Leu Gln
350

<210> 613

<211> 1797

<212> DNA

<213> Homo Sapien

<400> 613

agtggttcga tggaaaggat ctttctccaa gtggttcctc ttgaggggag 50

catttctgct ggctccagga ctttggccat ctataaagct tggcaatgag 100
aaataagaaa attctcaagg aggacgagct cttgagttag acccaacaag 150
ctgctttca ccaaattgca atggagcctt tcgaaatcaa tggccaagg 200
ccaaagagga gaaatgggt gaacttctcc ctagctgtgg tggcatcta 250
cctgatcctg ctcaccgctg gcgcgtggct gctgggtggc caagttctga 300
atctgcaggc gcggctccgg gtcctggaga tgtatttcct caatgacact 350
ctggcggctg aggacagccc gtccttctcc ttgctgcagt cagcacaccc 400
tggagaacac ctggctcagg gtgcattcgag gctgcaagtc ctgcaggccc 450
aactcacctg ggtcccggtc agccatgagc acttgctgca gcgggttagac 500
aacttcactc agaaccaggc gatgttcaga atcaaagggtg aacaaggcgc 550
cccaggtctt caaggtcaca agggggccat gggcatgcct ggtgccctg 600
ccccggccggg accacctgct gagaagggag ccaagggggc tatggacga 650
gatggagcaa caggccccctc gggaccccaa ggcccaccgg gagtcaaggg 700
agaggcgggc ctccaaggac cccagggtgc tccagggaaag caaggagcca 750
ctggcacccc aggacccaa ggagagaagg gcagcaaagg cgatgggggt 800
ctcattggcc caaaaggggg aactggaact aaggagaga aaggagacct 850
gggtctccca ggaagcaaag gggacagggg catgaaagga gatgcagggg 900
tcatggggcc tcctggagcc cagggagta aaggtgactt cgggaggcca 950
ggcccaccag gtttggctgg ttttctggta gctaaaggag atcaaggaca 1000
acctggactg caggggttgc cggccctcc tggtgctggc ggacacccag 1050
gtgccaaggg tgagcctggc agtgcgtggc cccctggcg agcaggactt 1100
ccagggagcc ccgggagtc aggagccaca ggcctgaaag gaagcaaagg 1150
ggacacagga cttcaaggac agcaaggaag aaaaggagaa tcaggagttc 1200
caggccctgc aggtgtgaag ggagaacagg ggagccagg gctggcaggt 1250
cccaagggag cccctggaca agctggccag aaggagacc agggagtgaa 1300
aggatcttct ggggagcaag gagtaaagg agaaaaagggt gaaagaggtg 1350
aaaactcagt gtccgtcagg attgtcgca gtagtaaccg aggccggct 1400
gaagtttact acagtggtaac ctgggggaca atttgcgtatg acgagtggca 1450

aattctgat gccattgtct tctgcccat gctgggttac tccaaaggaa 1500
ggccctgta caaagtggga gctggcactg ggcagatctg gctggataat 1550
gttcagtgtc gggcacgga gagtaccctg tggagctgca ccaagaatag 1600
ctggggccat catgactgca gccacgagga ggacgcaggc gtggagtgca 1650
gcgtctgacc cgaaaacctt ttcacttctc tgctcccgag gtgtcctcgg 1700
gctcatatgt gggaaaggcag aggatctctg aggagttccc tggggacaac 1750
tgagcagcct ctggagaggg gccattaata aagctcaaca tcattga 1797

<210> 614
<211> 520
<212> PRT
<213> Homo Sapien

<400> 614
Met Arg Asn Lys Lys Ile Leu Lys Glu Asp Glu Leu Leu Ser Glu
1 5 10 15
Thr Gln Gln Ala Ala Phe His Gln Ile Ala Met Glu Pro Phe Glu
20 25 30
Ile Asn Val Pro Lys Pro Lys Arg Arg Asn Gly Val Asn Phe Ser
35 40 45
Leu Ala Val Val Val Ile Tyr Leu Ile Leu Leu Thr Ala Gly Ala
50 55 60
Gly Leu Leu Val Val Gln Val Leu Asn Leu Gln Ala Arg Leu Arg
65 70 75
Val Leu Glu Met Tyr Phe Leu Asn Asp Thr Leu Ala Ala Glu Asp
80 85 90
Ser Pro Ser Phe Ser Leu Leu Gln Ser Ala His Pro Gly Glu His
95 100 105
Leu Ala Gln Gly Ala Ser Arg Leu Gln Val Leu Gln Ala Gln Leu
110 115 120
Thr Trp Val Arg Val Ser His Glu His Leu Leu Gln Arg Val Asp
125 130 135
Asn Phe Thr Gln Asn Pro Gly Met Phe Arg Ile Lys Gly Glu Gln
140 145 150
Gly Ala Pro Gly Leu Gln Gly His Lys Gly Ala Met Gly Met Pro
155 160 165
Gly Ala Pro Gly Pro Pro Gly Pro Pro Ala Glu Lys Gly Ala Lys
170 175 180
Gly Ala Met Gly Arg Asp Gly Ala Thr Gly Pro Ser Gly Pro Gln

	185	190	195
Gly Pro Pro Gly Val Lys Gly Glu Ala Gly Leu Gln Gly Pro Gln			
200	205		210
Gly Ala Pro Gly Lys Gln Gly Ala Thr Gly Thr Pro Gly Pro Gln			
215	220		225
Gly Glu Lys Gly Ser Lys Gly Asp Gly Gly Leu Ile Gly Pro Lys			
230	235		240
Gly Glu Thr Gly Thr Lys Gly Glu Lys Gly Asp Leu Gly Leu Pro			
245	250		255
Gly Ser Lys Gly Asp Arg Gly Met Lys Gly Asp Ala Gly Val Met			
260	265		270
Gly Pro Pro Gly Ala Gln Gly Ser Lys Gly Asp Phe Gly Arg Pro			
275	280		285
Gly Pro Pro Gly Leu Ala Gly Phe Pro Gly Ala Lys Gly Asp Gln			
290	295		300
Gly Gln Pro Gly Leu Gln Gly Val Pro Gly Pro Pro Gly Ala Val			
305	310		315
Gly His Pro Gly Ala Lys Gly Glu Pro Gly Ser Ala Gly Ser Pro			
320	325		330
Gly Arg Ala Gly Leu Pro Gly Ser Pro Gly Ser Pro Gly Ala Thr			
335	340		345
Gly Leu Lys Gly Ser Lys Gly Asp Thr Gly Leu Gln Gly Gln Gln			
350	355		360
Gly Arg Lys Gly Glu Ser Gly Val Pro Gly Pro Ala Gly Val Lys			
365	370		375
Gly Glu Gln Gly Ser Pro Gly Leu Ala Gly Pro Lys Gly Ala Pro			
380	385		390
Gly Gln Ala Gly Gln Lys Gly Asp Gln Gly Val Lys Gly Ser Ser			
395	400		405
Gly Glu Gln Gly Val Lys Gly Glu Lys Gly Glu Arg Gly Glu Asn			
410	415		420
Ser Val Ser Val Arg Ile Val Gly Ser Ser Asn Arg Gly Arg Ala			
425	430		435
Glu Val Tyr Tyr Ser Gly Thr Trp Gly Thr Ile Cys Asp Asp Glu			
440	445		450
Trp Gln Asn Ser Asp Ala Ile Val Phe Cys Arg Met Leu Gly Tyr			
455	460		465
Ser Lys Gly Arg Ala Leu Tyr Lys Val Gly Ala Gly Thr Gly Gln			

470 475 480

Ile Trp Leu Asp Asn Val Gln Cys Arg Gly Thr Glu Ser Thr Leu
485 490 495

Trp Ser Cys Thr Lys Asn Ser Trp Gly His His Asp Cys Ser His
500 505 510

Glu Glu Asp Ala Gly Val Glu Cys Ser Val
515 520

<210> 615

<211> 647

<212> DNA

<213> Homo Sapien

<400> 615

cgcacgcgtc cgaaggcaga caaaggttca tttgtaaaga agtccttcc 50
agcacccctt ctcttcctt tttgccaaa ctcacccagt gagtgtgagc 100
attnaagaag catcctctgc caagacccaa aggaaagaag aaaaaggccc 150
aaaagccaaa atgaaactga tggtaacttgt tttcaccatt gggctaactt 200
tgctgctagg agttcaagcc atgcctgcaa atgcctctc ttgctacaga 250
aagataactaa aagatcacaa ctgtcacaac cttccggaag gagtagctga 300
cctgacacag attgatgtca atgtccagga tcatttctgg gatgggaagg 350
gatgtgagat gatctgttac tgcaacttca gcgaattgct ctgctgccc 400
aaagacgttt tcttggacc aaagatctt ttcgtgattc cttgcaacaa 450
tcaatgagaa tcttcatgtt ttctggagaa caccatttctt gatttcccc 500
aaactgcact acatcagttt aactgcattt ctagttctta tatagtgcaa 550
tagagcatag attctataaa ttcttacttg tctaagacaa gtaaatctgt 600
gttaaacaag tagtaataaa agttaattca atctaaaaaa aaaaaaaa 647

<210> 616

<211> 98

<212> PRT

<213> Homo Sapien

<400> 616

Met Lys Leu Met Val Leu Val Phe Thr Ile Gly Leu Thr Leu Leu
1 5 10 15

Leu Gly Val Gln Ala Met Pro Ala Asn Arg Leu Ser Cys Tyr Arg
20 25 30

Lys Ile Leu Lys Asp His Asn Cys His Asn Leu Pro Glu Gly Val
35 40 45

Ala Asp Leu Thr Gln Ile Asp Val Asn Val Gln Asp His Phe Trp
50 55 60

Asp Gly Lys Gly Cys Glu Met Ile Cys Tyr Cys Asn Phe Ser Glu
65 70 75

Leu Leu Cys Cys Pro Lys Asp Val Phe Phe Gly Pro Lys Ile Ser
80 85 90

Phe Val Ile Pro Cys Asn Asn Gln
95

<210> 617

<211> 2558

<212> DNA

<213> Homo Sapien

<400> 617

cccacgcgtc cgccgacgcg tggctggac cccaggtctg gagcgaattc 50

cagcctgcag ggctgataag cgaggcatta gtgagattga gagagacttt 100

accccgccgt ggtggttgga gggcgccag tagagcagca gcacaggcgc 150

gggtccccggg aggccggctc tgctcgccgag gagatgtgga atctccttca 200

cgaaccgcac tcggctgtgg ccaccgcgcg ccgcggcgc tggctgtgcg 250

ctggggcgct ggtgctggcg ggtggcttct ttctcctcgg ctccctcttc 300

gggtggttta taaaatcctc caatgaagct actaacatta ctccaaagca 350

taatatgaaa gcattttgg atgaattgaa agctgagaac atcaagaagt 400

tcttacataa ttttacacag ataccacatt tagcaggaac agaacaac 450

tttcagcttg caaagcaaattcaatcccag tggaaagaat ttggcctgga 500

ttctgtttag ctagtcatt atgatgtcct gttgtcctac ccaaataaga 550

ctcatcccaa ctacatctca ataattaatg aagatggaaa tgagatttc 600

aacacatcat tatttgaacc acctcctcca gatatgaaa atgttcgg 650

tattgtacca ctttcagtg ctttctctcc tcaaggaatg ccagagggcg 700

atcttagtgta tgttaactat gcacgaactg aagacttctt taaattggaa 750

cgggacatga aaatcaatttgcctggaaa attgtatgg ccagatatgg 800

gaaagtttc agaggaaata aggtaaaaa tgcccagctg gcagggccca 850

aaggagtcat tctctactcc gaccctgctg actacttgc tcctgggtg 900

aagtcctatc cagacggttg gaatcttccctt ggaggtggtg tccagcgtgg 950

aaatatccta aatctgaatg gtgcaggaga ccctctcaca ccaggttacc 1000
cagcaaatga atatgcttat aggcggtggaa ttgcagaggc tgggtgttt 1050
ccaagtattc ctgttcatcc aattggatac tatgtatgcac agaagctcct 1100
agaaaaaaatg ggtggctcag caccaccaga tagcagctgg agaggaagtc 1150
tcaaagtgcc ctacaatgtt ggacctggct ttactggaaa ctttctaca 1200
caaaaagtca agatgcacat ccactctacc aatgaagtga cgagaattta 1250
caatgtgata ggtactctca gaggagcagt ggaaccagac agatatgtca 1300
ttctgggagg tcaccggac tcatgggtgt ttgggtgtat tgaccctcag 1350
agtggagcag ctgttgtca taaaatttg aggagcttg gaacactgaa 1400
aaaggaaggg tggagaccta gaagaacaat tttgtttgca agctggatg 1450
cagaagaatt tggcttctt gttctactg agtgggcaga ggagaattca 1500
agactccttc aagagcgtgg cgtggcttat attaatgctg actcatctat 1550
agaaggaaac tacactctga gagttgattt tacaccgctg atgtacagct 1600
tggcacacaa cctaacaaaa gagctgaaaa gccctgatga aggcttgaa 1650
ggcaaatactc tttatgaaag ttggactaaa aaaagtcctt ccccagagtt 1700
cagtggcatg cccaggataa gcaaattggg atctggaaat gatttgagg 1750
tggcttcca acgacttgga attgcttcag gcagagcacg gtataactaaa 1800
aattgggaaa caaacaattt cagcggctat ccactgtatc acagtgtcta 1850
tgaaacatat gagttggggaaaat tggatccatg tttaaatatc 1900
acctcactgt ggcccaagggtt cgaggaggaa tgggtttga gctagccat 1950
tccatagtgc tccctttga ttgtcgagat tatgtgttag ttttaagaaa 2000
gtatgctgac aaaatctaca gtatttctat gaaacatcca caggaaatga 2050
agacatacag tgtatcattt gattcacttt tttctgcagt aaagaatttt 2100
acagaaattt cttccaagtt cagtgagaga ctccaggact ttgacaaaag 2150
caacccaata gtattaagaa tggatccatg tcaactcatg tttctggaaa 2200
gagcatttat tggatccatg gggttaccag acaggcctt ttataggcat 2250
gtcatctatg ctccaagcag ccacaacaag tatgcagggg agtcattccc 2300
aggaattttat gatgctctgt ttgatattga aagcaaagtg gacccttcca 2350
aggcctgggg agaagtgaag agacagattt atgttgcagc cttcacagtg 2400

caggcagctg cagagacttt gagtgaagta gcctaagagg atttttaga 2450
gaatccgtat tgaatttgtg tggtatgtca ctcagaaaga atcgtaatgg 2500
gtatattgat aaattttaaa attggatatat ttgaaataaa gttgaatatt 2550
atatataa 2558.

<210> 618
<211> 750
<212> PRT
<213> Homo Sapien

<400> 618

Met	Trp	Asn	Leu	Leu	His	Glu	Thr	Asp	Ser	Ala	Val	Ala	Thr	Ala
1			5					10					15	
Arg	Arg	Pro	Arg	Trp	Leu	Cys	Ala	Gly	Ala	Leu	Val	Leu	Ala	Gly
				20					25				30	
Gly	Phe	Phe	Leu	Leu	Gly	Phe	Leu	Phe	Gly	Trp	Phe	Ile	Lys	Ser
					35			40				45		
Ser	Asn	Glu	Ala	Thr	Asn	Ile	Thr	Pro	Lys	His	Asn	Met	Lys	Ala
					50			55				60		
Phe	Leu	Asp	Glu	Leu	Lys	Ala	Glu	Asn	Ile	Lys	Lys	Phe	Leu	His
					65			70				75		
Asn	Phe	Thr	Gln	Ile	Pro	His	Leu	Ala	Gly	Thr	Glu	Gln	Asn	Phe
					80			85				90		
Gln	Leu	Ala	Lys	Gln	Ile	Gln	Ser	Gln	Trp	Lys	Glu	Phe	Gly	Leu
					95			100				105		
Asp	Ser	Val	Glu	Leu	Ala	His	Tyr	Asp	Val	Leu	Leu	Ser	Tyr	Pro
					110			115				120		
Asn	Lys	Thr	His	Pro	Asn	Tyr	Ile	Ser	Ile	Ile	Asn	Glu	Asp	Gly
					125			130				135		
Asn	Glu	Ile	Phe	Asn	Thr	Ser	Leu	Phe	Glu	Pro	Pro	Pro	Pro	Gly
					140			145				150		
Tyr	Glu	Asn	Val	Ser	Asp	Ile	Val	Pro	Pro	Phe	Ser	Ala	Phe	Ser
					155			160				165		
Pro	Gln	Gly	Met	Pro	Glu	Gly	Asp	Leu	Val	Tyr	Val	Asn	Tyr	Ala
					170			175				180		
Arg	Thr	Glu	Asp	Phe	Phe	Lys	Leu	Glu	Arg	Asp	Met	Lys	Ile	Asn
					185			190				195		
Cys	Ser	Gly	Lys	Ile	Val	Ile	Ala	Arg	Tyr	Gly	Lys	Val	Phe	Arg
					200			205				210		

Gly Asn Lys Val Lys Asn Ala Gln Leu Ala Gly Ala Lys Gly Val
215 220 225

Ile Leu Tyr Ser Asp Pro Ala Asp Tyr Phe Ala Pro Gly Val Lys
230 235 240

Ser Tyr Pro Asp Gly Trp Asn Leu Pro Gly Gly Gly Val Gln Arg
245 250 255

Gly Asn Ile Leu Asn Leu Asn Gly Ala Gly Asp Pro Leu Thr Pro
260 265 270

Gly Tyr Pro Ala Asn Glu Tyr Ala Tyr Arg Arg Gly Ile Ala Glu
275 280 285

Ala Val Gly Leu Pro Ser Ile Pro Val His Pro Ile Gly Tyr Tyr
290 295 300

Asp Ala Gln Lys Leu Leu Glu Lys Met Gly Gly Ser Ala Pro Pro
305 310 315

Asp Ser Ser Trp Arg Gly Ser Leu Lys Val Pro Tyr Asn Val Gly
320 325 330

Pro Gly Phe Thr Gly Asn Phe Ser Thr Gln Lys Val Lys Met His
335 340 345

Ile His Ser Thr Asn Glu Val Thr Arg Ile Tyr Asn Val Ile Gly
350 355 360

Thr Leu Arg Gly Ala Val Glu Pro Asp Arg Tyr Val Ile Leu Gly
365 370 375

Gly His Arg Asp Ser Trp Val Phe Gly Gly Ile Asp Pro Gln Ser
380 385 390

Gly Ala Ala Val Val His Glu Ile Val Arg Ser Phe Gly Thr Leu
395 400 405

Lys Lys Glu Gly Trp Arg Pro Arg Arg Thr Ile Leu Phe Ala Ser
410 415 420

Trp Asp Ala Glu Glu Phe Gly Leu Leu Gly Ser Thr Glu Trp Ala
425 430 435

Glu Glu Asn Ser Arg Leu Leu Gln Glu Arg Gly Val Ala Tyr Ile
440 445 450

Asn Ala Asp Ser Ser Ile Glu Gly Asn Tyr Thr Leu Arg Val Asp
455 460 465

Cys Thr Pro Leu Met Tyr Ser Leu Val His Asn Leu Thr Lys Glu
470 475 480

Leu Lys Ser Pro Asp Glu Gly Phe Glu Gly Lys Ser Leu Tyr Glu
485 490 495

Ser Trp Thr Lys Lys Ser Pro Ser Pro Glu Phe Ser Gly Met Pro
500 505 510

Arg Ile Ser Lys Leu Gly Ser Gly Asn Asp Phe Glu Val Phe Phe
515 520 525

Gln Arg Leu Gly Ile Ala Ser Gly Arg Ala Arg Tyr Thr Lys Asn
530 535 540

Trp Glu Thr Asn Lys Phe Ser Gly Tyr Pro Leu Tyr His Ser Val
545 550 555

Tyr Glu Thr Tyr Glu Leu Val Glu Lys Phe Tyr Asp Pro Met Phe
560 565 570

Lys Tyr His Leu Thr Val Ala Gln Val Arg Gly Gly Met Val Phe
575 580 585

Glu Leu Ala Asn Ser Ile Val Leu Pro Phe Asp Cys Arg Asp Tyr
590 595 600

Ala Val Val Leu Arg Lys Tyr Ala Asp Lys Ile Tyr Ser Ile Ser
605 610 615

Met Lys His Pro Gln Glu Met Lys Thr Tyr Ser Val Ser Phe Asp
620 625 630

Ser Leu Phe Ser Ala Val Lys Asn Phe Thr Glu Ile Ala Ser Lys
635 640 645

Phe Ser Glu Arg Leu Gln Asp Phe Asp Lys Ser Asn Pro Ile Val
650 655 660

Leu Arg Met Met Asn Asp Gln Leu Met Phe Leu Glu Arg Ala Phe
665 670 675

Ile Asp Pro Leu Gly Leu Pro Asp Arg Pro Phe Tyr Arg His Val
680 685 690

Ile Tyr Ala Pro Ser Ser His Asn Lys Tyr Ala Gly Glu Ser Phe
695 700 705

Pro Gly Ile Tyr Asp Ala Leu Phe Asp Ile Glu Ser Lys Val Asp
710 715 720

Pro Ser Lys Ala Trp Gly Glu Val Lys Arg Gln Ile Tyr Val Ala
725 730 735

Ala Phe Thr Val Gln Ala Ala Ala Glu Thr Leu Ser Glu Val Ala
740 745 750

<210> 619

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 619
agatgtgaag gtgcaggtgt gccg 24

<210> 620
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 620
gaacatcagc gctcccgta attcc 25

<210> 621
<211> 46
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 621
ccagccttg aatggtacaa aggagagaag aagctttca atggcc 46

<210> 622
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 622
ccaaactcac ccagttagtg tgagc 25

<210> 623
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 623
tggaaatca ggaatggtgt tctcc 25

<210> 624
<211> 50
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide probe

<400> 624

cttgtttca ccattggct aacttgctg ctaggagttc aagccatgcc 50