МИНИСТЕРСТВО НАУКИ И ВЫСШЕГО ОБРАЗОВАНИЯ РОССИЙСКОЙ ФЕДЕРАЦИИ

Федеральное государственное автономное образовательное учреждение высшего образования

«КРЫМСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ им. В. И. ВЕРНАДСКОГО» ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ

Кафедра компьютерной инженерии и моделирования

Оценка надежности системы и разработка мероприятий по ее повышению

Отчет по лабораторной работе 5

по дисциплине «Компьютерные системы»

студента 3 курса группы ИВТ-б-о-222 Чудопалова Богдана Андреевича

Направления подготовки 09.03.01«Информатика и вычислительная техника»

Цели: Рассчитать надежность вычислительной системы с частичным контролем оборудования и периодическими профилактическими испытаниями.

Мои индивидуальные значения:

№	λ_0	$\lambda_{n \Phi}$	$\mu_{n \phi}$	Н	g
9	0,055	0,54	0,8	0,95	0,36

Рисунок 1 – Граф надежности устройства

Где S_i – состояния системы;

S₁ - система работоспособна;

 S_2 - в системе обнаружен отказ;

S₃ - состояние необнаруженного отказа;

S₄ - состояние выполнения профилактических испытаний;

 S_5 - в системе установлен скрытый отказ в результате профилактических испытаний.

Ход работы:

Уравнение Колмогорова будет иметь вид:

$$\begin{cases} -P_1*\left(g*\lambda_0+(1-g)*\lambda_0+\lambda_{\pi\varphi}\right)+P_2*H+\mu_{\pi\varphi}P_4=0;\\ -P_2*H+g*\lambda_0*P_1+g*\lambda_0*P_3=0;\\ -P_3\big(g*\lambda_0+\lambda_{\pi\varphi}\big)+(1-g)*\lambda_0*P_3=0;\\ -P_4*\mu_{\pi\varphi}+P_1*\lambda_{\pi\varphi}+P_5*H=0;\\ -P_5*H+\lambda_{\pi\varphi}*P_3=0; \end{cases}$$

Рис. 1. Уравнение Колмогорова.

Далее необходимо выразить вероятности

$$\begin{split} P_2 &= \frac{P_1 * g * \lambda_0}{H} * \frac{\left(\lambda_0 + \lambda_{\pi\varphi}\right)}{\left(g * \lambda_0 + \lambda_{\pi\varphi}\right)}; \\ P_3 &= \frac{P_1 * (1-g) * \lambda_0}{g * \lambda_0 + \lambda_{\pi\varphi}}; \\ P_4 &= \frac{P_1}{\mu_{\pi\varphi}} * \frac{\left(\lambda_0 * \lambda_{\pi\varphi} + \lambda_{\pi\varphi}\right)}{g * \lambda_0 + \lambda_{\pi\varphi}}; \\ P_5 &= \frac{P_1 * \lambda_0 * \lambda_{\pi\varphi} * (1-g)}{H * (g * \lambda_0 + \lambda_{\pi\varphi})}; \end{split}$$

Рис. 2. Формулы для вычисления вероятностей.

Выразим вероятности через Р_1:

$$\begin{split} P_2 &= P_1 \cdot \frac{g \cdot \lambda_0 \cdot H}{D} = P_1 \cdot \frac{0.36 \times 0.055 \times 0.95}{0.5598} = P_1 \cdot \frac{0.01881}{0.5598} = P_1 \times 0.0336 \\ P_3 &= P_1 \cdot \frac{(1-g) \cdot \lambda_0}{D} = P_1 \cdot \frac{0.64 \times 0.055}{0.5598} = P_1 \cdot \frac{0.0352}{0.5598} = P_1 \times 0.0629 \\ P_4 &= P_1 \cdot \frac{\lambda_0 \cdot \lambda_{\text{n}\phi} + \lambda_{\text{n}\phi}}{\mu_{\text{n}\phi} \cdot D} = P_1 \cdot \frac{0.055 \times 0.54 + 0.54}{0.8 \times 0.5598} = P_1 \cdot \frac{0.0297 + 0.54}{0.4478} = P_1 \times 1.271 \\ P_5 &= P_1 \cdot \frac{\lambda_0 \cdot \lambda_{\text{n}\phi} \cdot (1-g)}{H \cdot D} = P_1 \cdot \frac{0.055 \times 0.54 \times 0.64}{0.95 \times 0.5598} = P_1 \cdot \frac{0.0190}{0.5318} = P_1 \times 0.0357 \end{split}$$

Рис. 3. Посчитанные значения.

Следующий этап

 $P_1 = 1 - (P_2 + P_3 + P_4 + P_5) = 1 - P_1 (0.0336 + 0.0629 + 1.271 + 0.0357) = 1 - P_1 \times 1.4032$ Переносим все в одну сторону:

$$P_1 + 1.4032P_1 = 1 \Rightarrow 2.4032P_1 = 1 \Rightarrow P_1 = \frac{1}{2.4032} = 0.4162$$

Рис. 4. Посчитали Р 1.

Рассчитаем вероятности

$$P_2 = 0.4162 \times 0.0336 = 0.0140$$

 $P_3 = 0.4162 \times 0.0629 = 0.0262$
 $P_4 = 0.4162 \times 1.271 = 0.5290$
 $P_5 = 0.4162 \times 0.0357 = 0.0149$

Проверка суммы:

$$0.4162 + 0.0140 + 0.0262 + 0.5290 + 0.0149 = 1.0003 \approx 1$$

Рис. 5. Посчитанные вероятности.

Последний этап

$$P_{sys} = 1 - (1 - 0.4162)^2 = 1 - (0.5838)^2 = 1 - 0.3408 = 0.6592$$

Рис. 6. Финальный расчет.

Итоговая таблица имеет вид:

P_1	P_2	P_3	P_4	P_5	$P_{ m sys}$ (при $k=2$)
0.4162	0.0140	0.0262	0.5290	0.0149	0.659

Рис. 7. Итоговая таблица.

Найдем следующие значения

S1_2 =
$$\lambda 0 * g = 0.055 * 0.36 = 0.0198$$
;
S1_3 = $(1 - g) * \lambda 0 = (1 - 0.36) * 0.055 = 0.352$;
S1_4 = $\lambda \pi \phi = 0.54$;
S2_1 = H = 0.95;
S3_2 = $\lambda 0 * g = 0.055 * 0.36 = 0.0198$;

$$S3_5 = \lambda \pi \phi = 0.54;$$

S4_1 =
$$\mu \pi \phi$$
 = 0,8;

$$S5_4 = H = 0.95;$$

Матрица переходов

Рис. 8. Матрица переходов.

Вероятность Р_і перестают меняться на 45 шаге

Шаг	Т	P1	P2	P3	P4	P5
5	1,00	0,5692	0,0100	0,1202	0,2652	0,0354
6	1,20	0,5388	0,0107	0,1220	0,2867	0,0418
7	1,40	0,5161	0,0112	0,1218	0,3038	0,0470
8	1,60	0,4993	0,0116	0,1206	0,3174	0,0512
9	1,80	0,4867	0,0118	0,1189	0,3283	0,0544
10	2,00	0,4772	0,0119	0,1170	0,3372	0,0568
11	2,20	0,4701	0,0120	0,1151	0,3443	0,0585
12	2,40	0,4648	0,0120	0,1133	0,3502	0,0597
13	2,60	0,4608	0,0120	0,1117	0,3550	0,0605
14	2,80	0,4578	0,0120	0,1104	0,3588	0,0610
15	3,00	0,4556	0,0120	0,1092	0,3620	0,0612
16	3,20	0,4539	0,0120	0,1082	0,3645	0,0613
17	3,40	0,4527	0,0120	0,1074	0,3666	0,0613
18	3,60	0,4518	0,0119	0,1067	0,3683	0,0612
19	3,80	0,4512	0,0119	0,1062	0,3696	0,0611
20	4,00	0,4508	0,0119	0,1058	0,3707	0,0609
21	4,20	0,4505	0,0118	0,1054	0,3715	0,0607
22	4,40	0,4503	0,0118	0,1052	0,3722	0,0606
23	4,60	0,4501	0,0118	0,1050	0,3727	0,0604
24	4,80	0,4501	0,0118	0,1048	0,3731	0,0603
25	5,00	0,4500	0,0118	0,1047	0,3734	0,0601
26	5,20	0,4500	0,0117	0,1046	0,3737	0,0600
27	5,40	0,4500	0,0117	0,1045	0,3739	0,0599
28	5,60	0,4500	0,0117	0,1045	0,3740	0,0598
29	5,80	0,4500	0,0117	0,1044	0,3741	0,0597
30	6,00	0,4501	0,0117	0,1044	0,3742	0,0596
31	6,20	0,4501	0,0117	0,1044	0,3743	0,0596
32	6,40	0,4501	0,0117	0,1044	0,3743	0,0595
33	6,60	0,4501	0,0117	0,1044	0,3743	0,0595
34	6,80	0,4501	0,0117	0,1043	0,3744	0,0595
35	7,00	0,4502	0,0117	0,1043	0,3744	0,0594
36	7,20	0,4502	0,0117	0,1043	0,3744	0,0594
37	7,40	0,4502	0,0117	0,1043	0,3744	0,0594

Рис. 9. Значения вероятностей.

График установочного режима

Рис. 10. График, показывающий, что наступил установочный режим.

Сейчас требуется поднять красный график до отметки +-0,8. Старые значения

No	λ0	λ_пф	μ_пф	Н	g
9	0.055	0.54	0.8	0.95	0.36

Изменим их следующим образом

No	λ_0	λ_пф	μ_пф	Н	g
9	0.055	0.054	1.1	1.9	0.80

Повторим вычисления:

S1_2 =
$$\lambda 0 * g = 0.055*0.80 = 0.044$$
;
S1_3 = $(1 - g) * \lambda 0 = (1 - 0.80) * 0.055 = 0.011$;
S1_4 = $\lambda \pi \phi = 0.054$;

$$S2_1 = H = 1,9;$$

$$S3_2 = \lambda 0 * g = 0.055 * 0.80 = 0.044;$$

S3_5 =
$$\lambda \pi \varphi$$
 = 0,054;
S4_1 = $\mu \pi \varphi$ = 1,1;
S5_4 = H = 1,9;

Составим новую матрицу переходов

Рис. 11. Новая матрица переходов.

Новый график

Также добавим каналы для корректировки надежности:

 $P_sys = 1 - (1 - 0,4162)^4 = 0,999084 = 0,999 - в моем случае это необходимо, т.к. моя система с ограничением по времени.$