Math 308 O - Winter 2020 Midterm exam 1 Wednesday, January 29

Name:	

Problem 1	10	
Problem 2	10	
Problem 3	10	
Problem 4	10	
Total	40	

- There are 4 questions on this exam. Make sure you have all four.
- You must show your work on all problems. The correct answer with no supporting work may result in no credit. Put a box around your FINAL ANSWER for each problem and cross out any work that you don't want to be graded.
- Give exact answers, and simplify as much as possible.
- If you need more room, use the backs of the pages and indicate to the grader that you have done so.
- Raise your hand if you have a question.
- Any student found engaging in academic misconduct will receive a score of 0 on this exam.
- You have 50 minutes to complete the exam. Budget your time wisely!

1. (10 points) Consider the vectors in \mathbb{R}^3 given by

$$u = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}, v = \begin{bmatrix} 5 \\ 4 \\ -5 \end{bmatrix}, w = \begin{bmatrix} 3 \\ 0 \\ 1 \end{bmatrix}$$

(a) Find all solutions (x_1, x_2, x_3) to the system

$$x_1u + x_2v + x_3w = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$

(b) Is the set $\{u,v,w\}$ linearly dependent or independent? Explain.

2. (10 points)

(a) Give a matrix A such that the linear transformation $T: \mathbb{R}^2 \to \mathbb{R}^2$ given by T(v) = Av satisfies

$$T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}-1\\3\end{bmatrix}$$

(b) Suppose $u, v, w \in \mathbb{R}^4$ are vectors, and $x_1 = 3, x_2 = -6, x_3 = 1$ is a solution to the vector equation

$$x_1 u + x_2 v + x_3 w = \begin{bmatrix} 0 \\ 0 \\ 0 \\ 0 \end{bmatrix}.$$

Find another solution to this equation, other than $x_1 = x_2 = x_3 = 0$, or explain why there are no other solutions.

3.	(15)	points)	Circle T i	rue or False for each of the statements below. No justification is needed.
	(a)			Let $v, w \in \mathbb{R}^3$ be any linearly independent vectors. Then the set $\{0, v, w\}$ is indent (where 0 represents the vector of all 0's).
	(b)	True	False	Any four vectors in \mathbb{R}^2 are always linearly dependent.
	(c)	True	False	A system of linear equations always has 0 , 1 , or infinitely many solutions.
	(d)	True span $\{u$	False $, v, w \}.$	Suppose $u, v, w \in \mathbb{R}^3$ are any vectors. Then the vector $u - v + 3w$ is in
	(e)	True $\{u, v, u\}$	False $\{x_i\}$ is linear	There exist vectors $u,v,w\in\mathbb{R}^3$ such that $\{u,v\}$ is linearly dependent, and arly independent.

4. (10 points) Find all values of a such that $\operatorname{span}\{u,v,w\} = \operatorname{span}\{u,v\}$, where

$$u = \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, v = \begin{bmatrix} 3 \\ 2 \\ -3 \end{bmatrix}, w = \begin{bmatrix} 2 \\ a \\ 5 \end{bmatrix}.$$

For those values of a, what is the span $\{u, v, w\}$: a point, a line, a plane, or all of \mathbb{R}^3 ?