PROVA COM CONETIVAS BOOLEANAS

Passos válidos usando ¬, ∧ e ∨

Para cada conetiva: padrões de inferência

- □ A P pode seguir-se qualquer fórmula que seja sua consequência
 - Ex: (dupla negação) ¬¬P dá origem a P, e vice-versa
 - eliminação da negação
- Q é verdade lógica: pode introduzir-se em qualquer ponto
- \square De P \wedge Q infere-se P e infere-se Q
 - eliminação da conjunção
- □ Tendo provado P e Q pode inferir-se P ∧ Q
 - introdução da conjunção
- □ Tendo provado P pode inferir-se P ∨ Q ∨ ... R
 - introdução da disjunção

Métodos de prova

- □ Prova por casos (eliminação da disjunção)
 - Fórmula a provar: S
 - Disjunção já provada: P v Q
 - Mostra-se que se obtém S se se assumir P, e que se obtém S se se assumir Q; como um deles tem de verificar-se, conclui-se S
 - Generaliza-se a qualquer número de elementos na disjunção
- □ Prova por contradição (introdução da negação)
 - Fórmula a provar: ¬S
 - Premissas: P, Q, R, ...
 - Assumir S e mostrar que se obtém uma contradição
 - −S é consequência lógica das premissas

Prova por casos

- Mostrar que existem números irracionais b e c tais que b^c é racional
- □ Considera-se $\sqrt{2^{1/2}}$: é racional ou é irracional
 - Se é racional: temos b = c = $\sqrt{2}$
 - Se é irracional: fazemos b= $\sqrt{2^{1/2}}$ e c = $\sqrt{2}$

o bc =
$$(\sqrt{2}^{\sqrt{2}})^{\sqrt{2}}$$

= $\sqrt{2}^{(\sqrt{2}.\sqrt{2})}$
= $\sqrt{2^2}$ = 2

Quer $\sqrt{2^{\sqrt{2}}}$ seja racional ou irracional, existem b e c irracionais tais que b^c é racional

Prova por casos 2

```
Provar que Small(c) é consequência de
(Cube(c) \land Small(c)) \lor (Tet(c) \land Small(c)) :
Prova:
(Cube(c) \land Small(c)) \lor (Tet(c) \land Small(c)) \notin premissa
Vamos analisar 2 casos, para os 2 componentes da disjunção
I- Assume-se Cube(c) ∧ Small(c)
  Então Small(c) (por eliminação da conjunção)
II- Assume-se Tet(c) \wedge Small(c)
  Então Small(c) (por eliminação da conjunção)
□ Em qualquer dos casos: obtém-se Small(c)
```

Prova por casos 3

```
De (NaSala(rita) \( \triangle \) Feliz(rui)) \( \triangle \) (NaSala(ana) \( \triangle \) Feliz(luis)) pretendemos provar Feliz(rui) \( \triangle \) Feliz(luis)
```

- Assumindo a disjunção da premissa temos que
 - (NaSala(rita) ∧ Feliz(rui))ou
 - (NaSala(ana) ∧ Feliz(luis))

No primeiro caso temos Feliz(rui) e portanto

Feliz(rui) V Feliz(luis) por introdução de disjunção

No segundo caso temos Feliz(luis) e portanto

Feliz(rui) v Feliz(luis) por introdução de disjunção

□ Em qualquer dos casos, tem-se a conclusão pretendida

Prova indireta

- □ Exemplo:
 - Premissas: BackOf(a,b)
 - BackOf(b,c)
 - i) se assumir Cube(a)
 - Não se consegue extrair mais informação
 - ii) se assumir $\neg BackOf(a,b)$
 - Contradição direta com uma premissa
 - Pode-se concluir o contrário, embora sem valor acrescentado
 - iii) se assumir BackOf(c,a)
 - o De BackOf(a,b) e BackOf(b,c) conclui-se BackOf(a,c) e daí ¬BackOf(c,a)
 - Contradição indireta com uma conclusão das premissas
 - Em geral, se há contradição é porque de algum modo a conclusão contrária já está implícita nas premissas e portanto pode ser explicitada

Prova por contradição

- □ Premissas: Cube(c) ∨ Dodec(c) e Tet(b)
- □ Concluir: b≠c
- Prova:
 - Supondo b=c
 - Da 1ª premissa: Cube(c) ou Dodec(c)
 Se Cube(c), então Cube(b) (indiscernibilidade dos idênticos)
 o que contradiz Tet(b)
 Se Dodec(c) então Dodec(b) (indiscernibilidade dos idênticos)
- □ Obtemos contradição nos 2 casos, logo a suposição b=c conduz a contradição
- Então, conclui-se b≠c

o que contradiz Tet(b)

Prova por contradição 2

- □ Provar: √2 é irracional
 - Factos acerca dos racionais
 - o nº racional pode ser expresso como p/q, com pelo menos 1 de p e q ímpar
 - elevando ao quadrado um número ímpar, obtém-se outro ímpar; se n² é par, n é par e n² é divisível por 4

□ Prova:

– Suposição: √2 é racional √2= p/q (um de p e q é ímpar) p² / q² =2 ou p² = 2 q² : p² é par e p² é divisível por 4 p² é divisível por 4, q² é divisível por 2; q é par p e q ambos pares: contradiz a afirmação inicial

□ Então √2 não é racional

O que é contradição?

☐ Afirmação que não pode ser verdadeira

```
NaSala(rita) ∧ ¬NaSala(rita)
b ≠ b
```

□ Conjunto de afirmações que não podem ser verdadeiras simultaneamente

```
Cube(c) e Tet(c)
```

- □ Conjunto de frases é contraditório se não puder ser satisfeito
- □ Para provar F usando contradição:

```
Assume-se ¬ F

Constrói-se ¬ ¬ F

Conclui-se ¬ ¬ F e portanto F
```

Premissas inconsistentes

- □ Conjunto de frases é inconsistente: não existe um mundo no qual possam ser satisfeitas simultaneamente
- □ Consequência lógica: qualquer fórmula é consequência de um conjunto inconsistente de premissas
 - Argumento é válido trivialmente por não haver nenhuma circunstância que torne as premissas simultaneamente verdadeiras

NaSala(rita) v NaSala(luis)

¬NaSala(rita)

¬NaSala(luis)

- Argumentos com premissas inconsistentes: pouco úteis
 - se não há circunstância que torne as premissas simultaneamente verdadeiras, não temos indicação quanto ao valor lógico da conclusão – argumento não é sólido

Estilo

- □ Nas provas informais, os passos mencionados devem ser
 - Relevantes, para não aborrecer nem distrair o leitor
 - De fácil compreensão, para serem convincentes
- □ Significa que as provas devem levar em consideração a quem se destinam

PROVAS FORMAIS

Regras de inferência para ^

P₁ ↓ significa que todos os elementos P_1 a P_n têm de aparecer na prova antes de se introduzir a conjunção

 P_n

nas provas formais

```
1. A ∧ B ∧ C

2. B ∧ Elim: 1

3. C ∧ Elim: 1

4. C ∧ B ∧ C ∧ Intro: 3,2,3
```

Parêntesis: introduzir quando puder haver ambiguidade

```
      1. P ∨ Q

      2. R

      3. (P ∨ Q) ∧ R
      ∧ Intro: 1,2

      3. P ∨ Q ∧ R
      ∧ Intro: 1,2
```

Regras de inferência para v

Prova por casos

v nas provas formais

```
1. (A \lambda B) \lor (C \lambda D)

2. (A \lambda B)

3. B \lambda Elim: 2

4. B \lor D \lor Intro: 3

5. (C \lambda D)

6. D \lambda Elim: 5

7. B \lor D \lor Intro: 6

8. B \lor D \lor VElim: 1, 2-4, 5-7
```

Objetivo: B \leq D

Exemplo

Propriedade distributiva da disjunção relativamente à conjunção

11.
$$(P \lor Q) \land (P \lor R)$$
 \land Intro: 8,10

12.
$$(P \lor Q) \land (P \lor R) \lor Elim: ?, 2-5, 6-?$$

Regras de Inferência para -

Prova por contradição

⊥ Contradição

Teorema 3

$$\neg (P \land Q)$$

Estratégia geral de prova por contradição com prova por casos lá dentro

– nas provas formais

 \perp Intro: 1,2

¬ Intro: 2-3

Teorema 1

 $A \Leftrightarrow \neg \neg A$

com a eliminação da —

 \perp Intro: 1,2

¬ Intro: 3-4

¬ Elim: 5

Prova-se fórmula arbitrária a partir de premissas inconsistentes

Exemplo

Prova de verdade lógica: não tem premissas

Uso de subprovas

- Quando uma subprova é <u>fechada</u>:
- Suposições são descarregadas
- Subprova pode ser usada como um todo para justificar outros passos

Exemplo

```
\neg P \vee \neg R
```

Teorema 2

Lei de DeMorgan

- ∨ Intro: 3
- \perp Intro: 4,2
- ¬ Intro: 3-5
- ¬ Elim: 6
- ∨ Intro: 8
- \perp Intro: 9,2
- ¬ Intro: 8-10
- ¬ Elim: 11
- ∧ Intro: 7,12
- Reit: 1
- ⊥ Intro: 13,14
- ¬ Intro: 2-15
- ¬ Elim: 16

Exercício

1. P \vee Q

10. Q

Teorema do Cancelamento

 \perp Intro: 3,2

¬ Intro: 4-5

¬ Elim: 6

Reit: 8

∨ Elim: 1,3-7,8-9

Estratégia seguida:

 prova por casos incluindo uma prova por contradição no 1º caso

Experimentar:

- prova por contradição com prova por casos

Citar teoremas

□ Para encurtar a prova em F : usar resultados prévios

```
    1. ¬(P ∧ Q)
    2. P
    3. ¬P ∨ ¬Q Teor Prev (Teorema 2): 1
    4. ¬¬P Teor Prev (Teorema 1): 2
    5. ¬Q Teor Prev (Cancelamento): 3,4
```

- Símbolos usados nas provas: podem ser substituídos
 - por outros símbolos
 - por fórmulas arbitrárias

Leis distributivas

Distributividade de \land sobre \lor P \land (Q \lor R) \Leftrightarrow (P \land Q) \lor (P \land R)

Distributividade de \vee sobre \wedge P \vee (Q \wedge R) \Leftrightarrow (P \vee Q) \wedge (P \vee R)

- Equivalências úteis nas simplificações de fórmulas:
 - o Idempotência
 - Leis distributivas
 - Leis de DeMorgan
 - Dupla negação
 - Princípios do 3º excluído ($P \lor \neg P \Leftrightarrow V$) e da não contradição ($P \land \neg P \Leftrightarrow F$)
 - Comutatividade, associatividade
 - Elementos neutro (\wedge : V, \vee : F) e absorvente (\vee : V, \wedge : F)
 - o Cancelamento, ...

Formas normais

■ Forma normal disjuntiva (DNF):

Fórmula construída a partir de literais com as conetivas ∧ e ∨:
 reescrita como disjunção de conjunções de literais

$$- (P_1 \wedge ... \wedge P_n) \vee (Q_1 \wedge ... \wedge Q_n) \vee ... \vee (R_1 \wedge ... \wedge R_n)$$

Forma normal conjuntiva (CNF):

 Fórmula construída a partir de literais com as conetivas ∧ e ∨: reescrita como conjunção de disjunções de literais

$$- (P_1 \vee ... \vee P_n) \wedge (Q_1 \vee ... \vee Q_n) \wedge ... \wedge (R_1 \vee ... \vee R_n)$$

Exemplo

Transformar em forma normal disjuntiva

$$(A \lor B) \land (C \lor D) \Leftrightarrow [(A \lor B) \land C] \lor [(A \lor B) \land D] \\ \Leftrightarrow (A \land C) \lor (B \land C) \lor [(A \lor B) \land D] \\ \Leftrightarrow (A \land C) \lor (B \land C) \lor (A \land D) \lor (B \land D)$$

Transformar em forma normal conjuntiva

$$(A \land B) \lor (C \land D) \Leftrightarrow [(A \land B) \lor C] \land [(A \land B) \lor D] \\ \Leftrightarrow (A \lor C) \land (B \lor C) \land [(A \land B) \lor D] \\ \Leftrightarrow (A \lor C) \land (B \lor C) \land (A \lor D) \land (B \lor D)$$

$$\neg((A \lor B) \land \neg C) \Leftrightarrow \neg(A \lor B) \lor \neg \neg C$$
$$\Leftrightarrow (\neg A \land \neg B) \lor \neg \neg C$$
$$\Leftrightarrow (\neg A \land \neg B) \lor C$$
$$\Leftrightarrow (\neg A \lor C) \land (\neg B \lor C)$$

Completude para as funções da verdade

- □ Uma conetiva arbitrária pode ser expressa com \neg , \land e \lor ?
- □ Conetivas binárias: tabela de verdade tem 4 linhas
 - cada linha pode ter V ou F
 - número de conetivas possíveis: 2⁴

<u>P</u>	Q	P * Q	0 0
V	V	valor1	$C_1 = P \wedge Q$
V	F	valor2	$C_2 = P \wedge \neg Q$
F	V	valor3	$C_3 = \neg P \wedge Q$
F	F	valor4	$C_4 = \neg P \wedge \neg Q$

Representação de *:
disjunção dos C_i
correspondentes a
linhas com valor V

Todas as funções binárias funcionais da verdade podem ser descritas com ¬, ∧ e ∨

Completude para as funções da verdade

Conetivas unárias

P	#P
V	valor1
F	valor2

Ambos os valores $F: P \land \neg P$

Outros casos: disjunção de

$$C_1 = P$$
 e $C_2 = \neg P$

Conetivas de outras aridades

<u>P</u>	Q	R	@(P,Q,R)	Exprimir conetiva em DNF:
V	V	V	F	1
V	V	F	V -	$(P \land Q \land \neg R) \lor$
•	:		:	

Bastam, e.g., $\neg e \land : P \lor Q \Leftrightarrow \neg (\neg P \land \neg Q)$