03-People Adipiz

Alonso Pizarro Lagunas

29/10/2021

Ejemplo color de pelos y ojos

• La tabla *HairEyeColor* tiene datos agregados.

${\tt HairEyeColor}$

```
, , Sex = Male
       Eye
Hair
        Brown Blue Hazel Green
            32
  Black
                 11
                        10
  Brown
            53
                 50
                        25
                               15
  Red
            10
                 10
                         7
                                7
  Blond
             3
                 30
                                8
, , Sex = Female
       Eye
Hair
         Brown Blue Hazel Green
            36
                         5
                                2
  Black
                  9
  Brown
            66
                 34
                        29
                               14
                  7
                         7
                                7
            16
  Red
  Blond
                 64
                         5
                                8
```

sum(HairEyeColor) -> total

El total de individuos de la tabla de datos es 592

• Ahora podemos calcular las frecuencias relativas marginales

```
prop.table(HairEyeColor, margin = 3)
```

```
, , Sex = Male
       Eye
Hair
                           Blue
                                       Hazel
              Brown
 Black 0.114695341 0.039426523 0.035842294 0.010752688
 Brown 0.189964158 0.179211470 0.089605735 0.053763441
       0.035842294 0.035842294 0.025089606 0.025089606
 Blond 0.010752688 0.107526882 0.017921147 0.028673835
, , Sex = Female
       Eye
Hair
              Brown
                           Blue
                                       Hazel
                                                   Green
```

```
Black 0.115015974 0.028753994 0.015974441 0.006389776
  Brown 0.210862620 0.108626198 0.092651757 0.044728435
        0.051118211 0.022364217 0.022364217 0.022364217
  Blond 0.012779553 0.204472843 0.015974441 0.025559105
prop.table(HairEyeColor, margin = c(1,2))
, , Sex = Male
       Eye
Hair
            Brown
                       Blue
                                Hazel
  Black 0.4705882 0.5500000 0.6666667 0.6000000
  Brown 0.4453782 0.5952381 0.4629630 0.5172414
        0.3846154 0.5882353 0.5000000 0.5000000
  Blond 0.4285714 0.3191489 0.5000000 0.5000000
, , Sex = Female
       Eve
Hair
                       Blue
                                Hazel
                                           Green
            Brown
  Black 0.5294118 0.4500000 0.3333333 0.4000000
  Brown 0.5546218 0.4047619 0.5370370 0.4827586
        0.6153846 0.4117647 0.5000000 0.5000000
  Blond 0.5714286 0.6808511 0.5000000 0.5000000
  • Cambiando el orden de la tabla con la función aperm()
aperm(HairEyeColor, perm = c("Sex", "Hair", "Eye"))
, , Eye = Brown
        Hair
Sex
         Black Brown Red Blond
  Male
            32
                  53 10
                             3
 Female
            36
                  66 16
, , Eye = Blue
        Hair
         Black Brown Red Blond
Sex
  Male
            11
                  50 10
             9
                  34
                      7
  Female
                            64
, , Eye = Hazel
        Hair
Sex
         Black Brown Red Blond
                  25
                       7
  Male
            10
                             5
 Female
            5
                  29
                       7
, , Eye = Green
        Hair
Sex
         Black Brown Red Blond
  Male
             3
                  15
                       7
  Female
             2
                  14
```

• Importando la librería kable

library(kableExtra)

Warning: package 'kableExtra' was built under R version 4.0.5

kable(HairEyeColor)

	· ·		
Hair	Eye	Sex	Freq
Black	Brown	Male	32
Brown	Brown	Male	53
Red	Brown	Male	10
Blond	Brown	Male	3
Black	Blue	Male	11
Brown	Blue	Male	50
Red	Blue	Male	10
Blond	Blue	Male	30
Black	Hazel	Male	10
Brown	Hazel	Male	25
Red	Hazel	Male	7
Blond	Hazel	Male	5
Black	Green	Male	3
Brown	Green	Male	15
Red	Green	Male	7
Blond	Green	Male	8
Black	Brown	Female	36
Brown	Brown	Female	66
Red	Brown	Female	16
Blond	Brown	Female	4
Black	Blue	Female	9
Brown	Blue	Female	34
Red	Blue	Female	7
Blond	Blue	Female	64
Black	Hazel	Female	5
Brown	Hazel	Female	29
Red	Hazel	Female	7
Blond	Hazel	Female	5
Black	Green	Female	2
Brown	Green	Female	14
Red	Green	Female	7
Blond	Green	Female	8

- Otra librería para manejar tablas `xtable`

```
library(xtable)
sex = factor(c("H","M","M","H","H","M","M"))
ans = factor(c("S","N","S","S","S","N","N","S"))
xtable(table(sex,ans))
```

% latex table generated in R 4.0.3 by x table 1.8-4 package % Fri Oct 29 12:55:40 2021

	N	S
H	1	2
\mathbf{M}	2	3