

Álgebra Lineal Conceptualización

Sergio A. Cantillo sacantillo@uao.edu.co

Facultad de Ingeniería y Ciencias Básicas Universidad Autónoma de Occidente

Agenda

1 Las Matematicas en la Inteligencia Artificial

Agenda

- 1 Las Matematicas en la Inteligencia Artificial
- 2 Algebra Lineal
 - Vectores
 - ullet Operaciones con Vectores en \mathbb{R}^2 y \mathbb{R}^3
 - Matrices
 - Operaciones Con Matrices

Agenda

- 1 Las Matematicas en la Inteligencia Artificial
- Algebra Lineal
 - Vectores
 - ullet Operaciones con Vectores en \mathbb{R}^2 y \mathbb{R}^3
 - Matrices
 - Operaciones Con Matrices
- Referencias

Las Matemáticas en la IA

"Una persona que trabaje en IA y no tenga conocimiento en **matemáticas**, es como un político que no sabe como persuadir."¹

httns://tnuardsdatascience.com/mathematics-for-ai-all-the-essential-math-tonics-vou-need-ed1dqc910haf

Las Matemáticas en la IA

https://towards datascience.com/mathematics-for-ai-all-the-essential-math-topics-you-need-ed1d9c910baffer and the statement of the statement

Álgebra Lineal

Definición

- Especialización del álgebra que trabaja con vectores, matrices, espacios vectoriales y ecuaciones de tipo lineal.
- Desarrollado en la década de 1840 con los aportes del alemán Hermann Grassmann (1809-1877) y el irlandés William Rowan Hamilton (1805–1865).
- Altamente compatible con el procesamiento computacional (volumenes de datos - codificacion de la realidad)

Escalar

Definición

Un **escalar**, hace referencia a cualquier tipo de número cuando se manejan vectores. En física, se asocian con magnitudes físicas representadas por un único numero (es decir, sin dirección).

Observación

En Python, los escalares hacen mención a cualquier valor numérico *individual* que se pueda almacenar en una variable.

Ejemplo

La masa de un cuerpo. $(m=70\,\mathrm{Kg})$

Definición Geométrica de un Vector

Segmento de recta dirigido de un P a un punto Q.

Fuente:[1]

Definicion Algebraica de un Vector

Un vector ${\bf v}$ en el plano xy es un par ordenado (tupla) de números reales (a,b)

$$v = (a, b)$$

Nota

Cualquier punto en el plano xy con coordenadas (a,b) se considera un vector que comienza en el origen y termina en (a,b)

Propiedades: Magnitud y Dirección

Magnitud

La longitud de cualquier representación del vector.

$$|v| = \sqrt{a^2 + b^2}$$

Dirección

Angulo θ , medido en radianes, que forma el vector con el lado positivo del eje x.

$$\tan \theta = \frac{b}{a}$$

Propiedades: Magnitud y Dirección

Ejemplo

- Calcular la magnitud de los siguientes vectores:
 - a) v = (2, 2); b) $v = (-2\sqrt{3}, 2)$; c) v = (6, -6)
- Calcular las direcciones de los vectores del ejercicio anterior.

Vector Fila

Se define a un **vector fila de n componentes** como un conjunto **ordenado** de n numeros escritos de la siguiente manera:

$$[x_1, x_2, ..., x_n]$$

Vector Columna

Se define a un **vector columna de n componentes** como un conjunto **ordenado** de n números escritos de la siguiente manera:

$$\begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}$$

Componentes de un Vector

• vector fila de dos componentes (2-vector)

vector columna de tres componentes (3-vector)

$$\begin{bmatrix} 1 \\ -1 \\ 2 \end{bmatrix}$$

• vector fila de cuatro componentes (4-vector)

$$\left[2,6,-1,0\right]$$

• vector **cero** (todos sus elementos son cero)

Vectores en Python

Python: Librería Numpy - Tipos de array

Usualmente se incluye esta librería como: import numpy as np

Vectores en Python

Librería Numpy: Creación de arrays

Creating Arrays

Initial Placeholders

```
>>> np.zeros((3,4))
>>> np.ones((2,3,4),dtype=np.int16)
>>> d = np.arange(10,25,5)

>>> np.linspace(0,2,9)

>>> e = np.full((2,2),7)
>>> f = np.eye(2)
>>> np.random.random((2,2))
>>> np.empty((3,2))
```

Create an array of zeros
Create an array of ones
Create an array of evenly
spaced values (step value)
Create an array of evenly
spaced values (number of samples)
Create a constant array
Create a 2X2 identity matrix
Create an array with random values
Create an empty array

Vectores en Python

Librería Numpy: Manipulación de Arrays, Dimensiones

Inspecting Your Array

>>> a.shape	Array dimensions
>>> len(a)	Length of array
>>> b.ndim	Number of array dimensions
>>> e.size	Number of array elements
>>> b.dtype	Data type of array elements
>>> b.dtype.name	Name of data type
>>> b.astype(int)	Convert an array to a different type

Operaciones

Suma Algebraica de Vectores

sean ${f v}$ y ${f w}$ dos vectores. Entonces la suma algebraica de ${f v}$ y ${f w}$ esta dada por:

$$v \pm w = (x_1, x_2) \pm (y_1, y_2) = (x_1 \pm y_1, x_2 \pm y_2)$$

Observac<u>ión</u>

cuando se suman o restan vectores también aplica lo siguiente:

- $v \pm w = w \pm v$ (ley conmutativa para la suma/resta de vectores)
- $(v \pm w) \pm x = v \pm (w \pm x)$ (ley asociativa para la suma/resta de vectores)
- ullet Los vectores v y w deben tener el **mismo tamaño**

Operaciones

Multiplicación Vector-Escalar

sea ${\bf v}$ un vector y α un escalar, entonces el producto $\alpha {\bf v}$, esta dado por:

$$\alpha \mathbf{v} = \alpha(x_1, x_2) = (\alpha x_1, \alpha x_2)$$

Observación

Cuando se trabaja multiplicando un vector con escalares también aplica:

• $\alpha(v \pm w) = \alpha v \pm \alpha w$ (ley distributiva para la multiplicación por un escalar)

Operaciones

Ejemplo:

$$\operatorname{sea} \, a = \begin{bmatrix} 4 \\ 6 \\ 1 \\ 3 \end{bmatrix} \, \operatorname{y} \, b = \begin{bmatrix} -2 \\ 4 \\ -3 \\ 0 \end{bmatrix} \, \operatorname{Calcular} \, 2a - 3b$$

Librería Numpy: Operaciones

Arithmetic Operations

```
Subtraction
>>> q = a - b
  array([[-0.5, 0. , 0.],
>>> np.subtract(a,b)
                                             Subtraction
>>> b + a
                                             Addition
  array([[ 2.5, 4., 6.],
      [5., 7., 9.]])
>>> np.add(b,a)
                                             Addition
                                             Division
>>> a / b
  array([[ 0.66666667, 1. , 1. [ 0.25 , 0.4 , 0.5
>>> np.divide(a,b)
                                             Division
>>> a * b
                                             Multiplication
  array([[ 1.5, 4., 9.],
      [ 4. , 10. , 18. 11)
>>> np.multiply(a,b)
                                             Multiplication
>>> np.exp(b)
                                             Exponentiation
>>> np.sqrt(b)
                                             Square root
                                             Print sines of an array
>>> np.sin(a)
>>> np.cos(b)
                                             Flement-wise cosine
>>> np.log(a)
                                             Element-wise natural logarithm
                                             Dot product
>>> e.dot(f)
  arrav([[ 7., 7.],
```

Comparison

Companison	
>>> a == b array([[False, True, True],	Element-wise comparison
<pre>[False, False, False]], dtype=bool) >>> a < 2 array([True, False, False], dtype=bool)</pre>	Element-wise comparison
>>> np.array_equal(a, b)	Array-wise comparison

Aggregate Functions

>>> a.sum()	Array-wise sum
>> a.min()	Array-wise minimum value
>>> b.max(axis=0)	Maximum value of an array row
>>> b.cumsum(axis=1)	Cumulative sum of the elements
>>> a.mean()	Mean
>>> b.median()	Median
>>> a.corrcoef()	Correlation coefficient
>>> np.std(b)	Standard deviation

Operaciones *Element-wise* significan operaciones termino a termino.

Propiedades de los Vectores

Objeto	Definición intuitiva
Vector v	Un objeto que tiene magnitud y dirección
$ \mathbf{v} $	Magnitud (o longitud) de v
αν	v αv (en este dibujo $\alpha = 2$)
- v	7 v
$\mathbf{u} + \mathbf{v}$	u+v v v
$\mathbf{u} - \mathbf{v}$	$v \underbrace{\int_{\mathbf{u}} \mathbf{u} - \mathbf{v}}$

Vector unitario

Un **vector unitario** es un vector con magnitud 1.

$$|v| = 1$$

Sea v un vector diferente de cero. Entonces $u=\frac{v}{|v|}$

$$u = \frac{v}{|v|} = \left(\frac{a_1}{|v|}, \frac{b_1}{|v|}\right)$$

será un vector unitario que tenga la misma dirección de \boldsymbol{v}

Vector Unitario

Ejemplo

Hallar un vector unitario que tenga la misma dirección de v = (2, -3)

$$|v| = \sqrt{4+9} = \sqrt{13}$$

$$u = \frac{v}{|v|} = \left(\frac{2}{\sqrt{13}}, \frac{-3}{\sqrt{13}}\right)$$

En Código Python:

$$v = np.array([2,-3])$$

 $u = v / np.linalg.norm(v)$

Vectores en \mathbb{R}^2

Representación Geométrica de un Vector Unitario

En \mathbb{R}^2 existen dos vectores especiales que forman una **base**:

$$i = (1, 0)$$

$$j=(0,1)$$

Entonces, si v = (a, b), se puede es escribir:

$$v = (a, b) = a(1, 0) + b(0, 1) = ai + bj$$

Sea u=ai+bj un vector unitario. Este se puede representar por un punto en el circulo unitario.

$$u = (\cos \theta)i + (\sin \theta)j$$

Vectores en \mathbb{R}^3

Definición

Un vector en \mathbb{R}^3 es definido como un punto en el espacio y se puede representar mediante una **terna ordenada** de números reales.

$$v = (a, b, c)$$

Magnitud de un Vector en \mathbb{R}^3

$$|v| = \sqrt{a^2 + b^2 + c^2}$$

Suma Algebraica en \mathbb{R}^3

$$u \pm v = (x_1 \pm x_2, y_1 \pm y_2, z_1 \pm z_2)$$

Multiplicación Vector-Escalar en \mathbb{R}^3

$$\alpha u = (\alpha x_1, \alpha y_1, \alpha x_1)$$

Vectores: Asociación con I.A.

Training example #	Feature #1	Feature #2		$v^{(1)} = (x_1, y_1)$
1	x_1	y_1		$v^{(3)} = (x_3, y_3)$
2	x_2	y_2		
3	x_3	<i>y</i> ₃		· · · · · · · · · · · · · · · · · · ·
n be represent		an n-dimension		nate system sion for each element. $v^{(2)} = (x_2)^{-1}$

En Resumen, cada posición de un vector podrá representar características/atributos/variables independientes en un problema en I.A. Esto equivale a una muestra.

Matriz

Definición

Una matriz ${\bf A}$ de $m\times n$ es un arreglo rectangular de mn números organizados en m filas y n columnas

$$A = \begin{bmatrix} a_{1,1} & a_{1,2} & \dots & a_{1,n} \\ a_{2,1} & a_{2,2} & \dots & a_{2,n} \\ \vdots & \vdots & & \vdots \\ a_{m,1} & a_{m,2} & \dots & a_{m,n} \end{bmatrix}$$

Ejemplo

$$\begin{bmatrix} 1 & 3 \\ 4 & 2 \end{bmatrix}$$
 matriz de 2×2 (cuadrada)

$$\begin{bmatrix} 1 & 3 & 2 \\ 4 & 2 & -4 \end{bmatrix} \text{ matriz de } 2 \times 3$$

Matrices en Python

Librería Numpy

Matrices en Python

Librería Numpy

Creating Arrays

```
>>> a = np.arrav([1,2,3])
>>> b = np.array([(1.5,2,3), (4,5,6)], dtype = float)
>>> c = np.array([[(1.5,2,3), (4,5,6)], [(3,2,1), (4,5,6)]],
dtype = float)
```

Initial Placeholders

```
>>> np.zeros((3,4))
>>> np.ones((2,3,4),dtype=np.int16)
>>> d = np.arange(10,25,5)
>>> np.linspace(0,2,9)
>>> e = np.full((2,2),7)
>>> f = np.eye(2)
>>> np.random.random((2,2))
>>> np.empty((3,2))
```

Create an array of zeros
Create an array of ones
Create an array of evenly
spaced values (step value)
Create an array of evenly
spaced values (number of samples)
Create a constant array
Create a 2X2 identity matrix
Create an array with random values
Create an empty array

Operaciones

Igualdad

Dos matrices $A = (a_{ij})$ y $B = (b_{ij})$ son iguales si:

- Son del mismo tamaño
- 2 Las componentes correspondientes en cada posición son iguales

Ejemplo

$$\begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix} = \begin{bmatrix} -2 & 0 \\ 1 & 3 \end{bmatrix}$$

Suma Algebraica de matrices

Sean $A=(a_{ij})$ y $B=(b_{ij})$ dos matrices de $m\times n$. Entonces la suma algebraica de A y B es la matriz $A\pm B$ de $m\times n$ dada por:

$$A \pm B = (a_{ij} \pm b_{ij}) = \begin{bmatrix} a_{11} \pm b_{11} & a_{12} \pm b_{12} & \dots & a_{1n} \pm b_{1n} \\ a_{21} \pm b_{21} & a_{22} \pm b_{22} & \dots & a_{2n} \pm b_{2n} \\ \vdots & \vdots & & \vdots \\ a_{m1} \pm b_{m1} & a_{m2} \pm b_{m2} & \dots & a_{mn} \pm b_{mn} \end{bmatrix}$$

La suma/resta de matrices solo esta definida cuando las matrices son del mismo tamaño.

Ejemplo

Sumar:

$$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 1 & 6 \end{bmatrix} + \begin{bmatrix} 3 & 0 & 3 \\ 1 & -4 & -6 \end{bmatrix}$$

Multiplicación Matriz-Escalar

Definición

Si $A=(a_{ij})$ es una matriz de $m\times n$ y α es un escalar. Entonces αA esta dada por:

$$\alpha A = (\alpha a_{ij}) = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} & \dots & \alpha a_{1n} \\ \alpha a_{21} & \alpha a_{22} & \dots & \alpha a_{2n} \\ \vdots & \vdots & & \vdots \\ \alpha a_{m1} & \alpha a_{m2} & \dots & \alpha a_{mn} \end{bmatrix}$$

Ejemplo

Sea
$$A = \begin{bmatrix} 1 & -3 & 4 & 2 \\ 3 & 1 & 4 & 6 \\ -2 & 3 & 5 & 7 \end{bmatrix}$$
 Calcular: a) $2A$; b) $\frac{1}{3}A$; c) $0A$

Producto Vectorial y Matricial

El producto vectorial recibe diferentes nombres (producto escalar, producto interno, producto interior o producto punto). En ingles (dot product or inner product).

Producto Escalar

Sean
$$a = \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix}$$
 y $b = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ dos vectores. Entonces el producto escalar de a y b ,

denotado por $\bar{a} \cdot b$ esta dado por:

$$a \cdot b = a_1b_1 + a_2b_2 + \cdots + a_nb_n$$

El producto escalar de a y b solo es posible si a y b tienen el mismo número de componentes.

Producto Vectorial y Matricial

Producto Matricial

Sea $A=(a_{ij})$ una matriz $m\times n$ y $B=(b_{ij})$ una matriz $n\times p$. Entonces el producto de A y B es una matriz $m\times p$, $C=(c_{ij})$, en donde:

$$c_{ij} = (\mathsf{fila}\ i\ \mathsf{de}\ A) \cdot (\mathsf{columna}\ j\ \mathsf{de}\ B)$$

$$c_{ij} = a_{i1}b_{1j} + a_{i2}b_{2j} + \dots + a_{in}b_{nj}$$

$$A_{n \times m} = \begin{bmatrix} \boxed{a_{11} & a_{12} & \dots & a_{1m}} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \vdots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \mathbf{a}_{\mathsf{i}} \\ B_{m \times p} = \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1p} \\ b_{21} & b_{22} & \dots & b_{2p} \\ \vdots & \vdots & \vdots & \vdots \\ b_{m1} & b_{m2} & \dots & b_{mp} \end{bmatrix}$$

$$\mathbf{b}_{\mathsf{j}}$$

El producto de matrices solo es posible si el numero de columnas de la primera matriz es igual al numero de filas de la segunda matriz. Además, esta operación en matrices **NO** es conmutativa

Ejemplo

For
$$\boldsymbol{A} = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \in \mathbb{R}^{2\times 3}$$
, $\boldsymbol{B} = \begin{bmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \in \mathbb{R}^{3\times 2}$, we obtain

$$AB = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} \begin{bmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 3 \\ 2 & 5 \end{bmatrix} \in \mathbb{R}^{2 \times 2},$$
 (2.15)

$$BA = \begin{bmatrix} 0 & 2 \\ 1 & -1 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 2 & 3 \\ 3 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 6 & 4 & 2 \\ -2 & 0 & 2 \\ 3 & 2 & 1 \end{bmatrix} \in \mathbb{R}^{3 \times 3}.$$
 (2.16)

Matriz Cuadrada

Definicion

Una matriz es cuadrada si tiene igual numero de filas y columnas.

Ejemplo

Matriz de 3×3

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 6 & 7 \\ 8 & 9 & 0 \end{bmatrix}$$

Matriz de 4×4

$$B = \begin{bmatrix} 1 & 6 & 4 & 8 \\ 2 & -3 & 5 & 9 \\ 7 & 4 & 0 & 1 \\ 3 & 2 & 1 & 0 \end{bmatrix}$$

Matriz Rectangular

Definición

Una matriz es rectangular si tiene distinto número de filas que de columnas.

Ejemplo

 $\text{Matriz de } 3\times 4$

$$A = \begin{bmatrix} 1 & 6 & 4 & 8 \\ 2 & -3 & 5 & 9 \\ 7 & 4 & 0 & 1 \end{bmatrix}$$

Matriz de 5×2

$$B = \begin{bmatrix} 1 & 2 \\ 3 & 4 \\ 5 & 6 \\ 7 & 8 \\ 9 & 0 \end{bmatrix}$$

Matriz Diagonal

Definición

Una matriz diagonal, es una matriz cuadrada cuyos elementos ubicados en la diagonal principal son diferentes de cero y el resto son todos nulos (NumPy: función diag).

Ejemplo

Matriz diagonal de 5×5

$$D = \begin{bmatrix} 2 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & -1 & 0 & 0 \\ 0 & 0 & 0 & -2 & 0 \\ 0 & 0 & 0 & 0 & -5 \end{bmatrix}$$

Matriz diagonal de 2×2

$$G = \begin{bmatrix} 2 & 0 \\ 0 & 1 \end{bmatrix}$$

Útiles en ciertas aplicaciones de IA: Reducción de Dimensionalidad, Regularización de algoritmos, Redes Recurrentes.

Matrices Triangulares: Superior e Inferior

Definición

Una **matriz triangular** es un tipo especial de matriz cuadrada cuyos elementos por encima o por debajo de su diagonal principal son cero. (NumPy: funciones *triu* - superior y *tril* - inferior).

Ejemplo

Matriz triangular superior de 3×3

$$U = \begin{bmatrix} 1 & 7 & -2 \\ 0 & -3 & 4 \\ 0 & 0 & 2 \end{bmatrix}$$

Matriz triangular inferior de 3×3

$$U = \begin{bmatrix} 2 & 0 & 0 \\ 1 & 2 & 0 \\ 3 & 5 & 6 \end{bmatrix}$$

Matriz Identidad

Definición

Una **matriz identidad** es una matriz I_n diagonal en la que los elementos de la diagonal principal son iguales a 1 y todos los demás son 0. (NumPy: función $\it eye$).

Ejemplo

Matriz identidad de 3×3

$$I_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

Matriz identidad de 4×4

$$I_4 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Matriz Simétrica

Definicion

Una matriz es **simétrica** si es una matriz cuadrada, la cual tiene la característica de ser igual a su traspuesta.

Ejemplo

Matriz simétrica de 3×3

$$S = \begin{bmatrix} -8 & -1 & 3\\ -1 & 7 & 4\\ 3 & 4 & 9 \end{bmatrix}$$

Matriz simétrica de 5×5

$$S = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 1 & 2 & 3 & 4 \\ 3 & 2 & 1 & 2 & 3 \\ 4 & 3 & 2 & 1 & 2 \\ 5 & 4 & 3 & 2 & 1 \end{bmatrix}$$

Operaciones

Determinante

Definición

El determinante de una matriz brinda información importante acerca de una matriz. Por ejemplo, resolver sistemas de ecuaciones lineales. (NumPy: función linalg.det())

Determinante de una matriz de 2×2

$$A = \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix}$$

$$\det A = a_{11}a_{22} - a_{12}a_{21}$$

Determinante de una matriz de 3×3

$$A = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \\ a_{31} & a_{32} & a_{33} \end{bmatrix}$$

 $\det A = a_{11}(a_{22}a_{33} - a_{23}a_{32}) - a_{12}(a_{21}a_{33} - a_{23}a_{31}) + a_{13}(a_{21}a_{32} - a_{22}a_{31}) \quad \text{(Sarrus)}$

Determinante de un Matriz (Extensión de Laplace)

Determinante de una matriz $n \times n$

Menor

Sea A una matriz de $n \times n$ y sea M_{ij} la matriz de $(n-1) \times (n-1)$ que se obtiene de A eliminando la fila i y la columna j. M_{ij} se llama el **menor** ij de A.

Cofactor

Sea A una matriz de $n \times n$. El **cofactor** ij de A, denotado por A_{ij} , está dado por:

$$A_{ij} = (-1)^{i+j} |M_{ij}|$$

Determinante $n \times n$

Sea A una matriz de $n \times n$. Entonces el determinante de A, denotado por $\det A$ o |A|, está dado por:

$$\det A = a_{11}A_{11} + a_{12}A_{12} + a_{13}A_{13} + \dots + a_{1n}A_{1n}$$
$$= \sum_{k=1}^{n} a_{1k}A_{1k}$$

Determinante de un Matriz

Ejemplo

Dado
$$B = \begin{bmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{bmatrix}$$
, Hallar $\det(B)$ usando el método de extensión de Laplace

$$\begin{vmatrix} 1 & 2 & 3 \\ 3 & 1 & 2 \\ 0 & 0 & 1 \end{vmatrix} = (-1)^{1+1} \cdot 1 \begin{vmatrix} 1 & 2 \\ 0 & 1 \end{vmatrix}$$
$$+ (-1)^{1+2} \cdot 2 \begin{vmatrix} 3 & 2 \\ 0 & 1 \end{vmatrix} + (-1)^{1+3} \cdot 3 \begin{vmatrix} 3 & 1 \\ 0 & 0 \end{vmatrix}$$

$$\det(\mathbf{A}) = 1(1-0) - 2(3-0) + 3(0-0) = -5.$$

Determinante de un Matriz

Ejemplo 2:

Dado
$$Q=egin{bmatrix}1&3&5\\2&4&6\\0&2&4\end{bmatrix}$$
 , Hallar $\det(Q)$ usando el método de extensión de Laplace

Matriz Traspuesta

Definición

La matriz traspuesta denotada por A^t o A' es el resultado de intercambiar la filas por las columnas de la matriz original.

$$\mathsf{Si}\; A = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{11} & a_{12} & \cdots & a_{1n} \\ \vdots & \vdots & & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}, \; \mathsf{Entonces}\; A' = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

Ejemplo

Sea
$$B = \begin{bmatrix} 2 & 3 & 1 \\ -1 & 4 & 6 \end{bmatrix}$$
 Entonces $B' = \begin{bmatrix} 2 & -1 \\ 3 & 4 \\ 1 & 6 \end{bmatrix}$

Matriz fundamental para transformaciones, ajustes de dimensiones, y manipulación de datos)

Matriz Adjunta

Definición

La **adjunta** de una matriz A de $n \times n$ denotada por adj(A), es la matriz transpuesta de sus cofactores.

Sea B la matriz de cofactores de A:

$$B = \begin{bmatrix} A_{11} & A_{12} & \cdots & A_{1n} \\ A_{21} & A_{22} & \cdots & A_{2n} \\ \vdots & \vdots & & \vdots \\ A_{n1} & A_{n2} & \cdots & A_{nn} \end{bmatrix}$$

Entonces:
$$adj(A) = B' = \begin{bmatrix} A_{11} & A_{21} & \cdots & A_{n1} \\ A_{12} & A_{22} & \cdots & A_{n2} \\ \vdots & \vdots & & \vdots \\ A_{1n} & A_{2n} & \cdots & A_{nn} \end{bmatrix}$$

Matriz Inversa

Definición

Sean A y B dos matrices de $n \times n$. Suponer que

$$AB = BA = I$$

Entonces B se llama la inversa de A y se denota por A^{-1} . Entonces se tiene:

$$AA^{-1} = A^{-1}A = I$$

$$A^{-1} = \frac{(Adj(A))^T}{|A|}$$

Matriz clave en el desarrollo de algoritmos de ML (optimización, ajuste de parámetros, solución de ecuaciones)

Matriz Inversa

Ejemplo

Encontrar la matriz inversa de la siguiente matriz: $C = \begin{bmatrix} 1 & 2 \\ 2 & -1 \end{bmatrix}$

Calculamos los elementos de la matriz adjunta de C:

$$adj_{1,1} = (-1)^{1+1} \cdot \det([-1]) = -1 \qquad adj_{1,2} = (-1)^{1+2} \cdot \det([+2]) = -2$$
$$adj_{2,1} = (-1)^{2+1} \cdot \det([+2]) = -2 \qquad adj_{2,2} = (-1)^{2+2} \cdot \det([+1]) = 1$$

- ② La matriz adjunta de C es $adj(C) = \begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix}$, Cuya transpuesta es igual y su determinante es $\det(C) = (1) \cdot (-1) (2) \cdot (-2) = -5$
- $\textbf{ A partir de ambos, se forma la inversa así: } inv(C) = \frac{\begin{bmatrix} -1 & -2 \\ -2 & 1 \end{bmatrix}}{-5} = \begin{bmatrix} 1/5 & 2/5 \\ 2/5 & -1/5 \end{bmatrix}$

Rango de una Matriz

Definición

El **rango** de una matriz A denotado por $\rho(A)$ es el número de filas linealmente independientes de A.

Ejemplo

$$A = \begin{bmatrix} 1 & 2 & 3 \end{bmatrix} \quad \rho(A) = 1$$

$$B = \begin{bmatrix} 1 & 2 & 3 \\ 5 & 10 & 15 \end{bmatrix} \quad \rho(A) = 1$$

La Fila 2 es igual a a la Fila 1 multiplicado por 5 ($F_2=5F_1$). Por lo tanto, sólo hay una fila linealmente independiente.

Referencias

Stanley I Grossman.

Álgebra lineal.

McGraw Hill Educación, 2008.

https://cs231n.github.io/python-numpy-tutorial/