

Climb or Glide?

Data Mining & Knowledge Discovery in Flight Records

Question:

What is the probability to find a thermal of certain strength on a typical cross country day?

Prof. Dr. Alfred Ultsch

Arbeitsgruppe Datenbionik

Universität Marburg

The Data

1635 Flight Records (IGC files)

Source: Online Contest (OLC) of BY, HE and TH and Coburg Competition

Recording period:

July 30th and August 8 2004

= during Coburg Gliding Competition (Bayerische Segelflugmeisterschaften der Club- und Doppelsitzerklasse)

Prof. Dr. Alfred Ultsch Area: restricted to 49.5-51.2°N / 10-12.8°E

Prof. Dr. Alfred Ultsch Datenbionik ultsch@informatik.uni-marburg.de © A. Ultsch

- competition tasks of 300-500km fulfilled by most pilots on all days

(A.Ultsch): typ. 2m/sec and more

Identification of thermals

Problems:

- noisy height due to turbulence
- •,,dolphin"- flight stile
- Minimum altitute gain as paramter (250m)

Thermal Strength

Footpoints of 9677 thermals of the total 21695 thermals in area around Coburg

Filtered for uniqueness (no two pilots in the same thermal)

ThermalCoreStrength = ThermalCoreHeightGain/ThermalCoreDuration;

Core = central 80% of thermal time

Prof. Dr. Alfred Ultsch Datenbionik ultsch@informatik.uni-marburg.de © A. Ultsch

Estimation of data density

Pareto Density Estimation (PDE) a kernel based density estimation with fixed kernel (Parzen window).

Kernel such that entopic yiel of subset is optimized

Properties of Pareto Density Estimation PDE:

- **➢Optimal density estimation of Gauss mixture models (GMM)**
- > very good to analyze overlapping
- > shows modal points
- in particular good for the detection of clusters

Applications:

- one dimensional data: PDEplot –approximation of probability density
- two dim data PDEscatter
- high dimensional data: P-Matrix

Prof. Dr. Alfred Ultsch Datenbionik ultsch@informatik.uni-marburg.de © A. Ultsch

Distribution of thermal strength

Comparison to Normal distribution:

- ⇒Definitive not a Normal (Gaussian) distribution
- \Rightarrow To many big ones, to few small ones
- ⇒Smooth and systematic deviation from Normal distribution

Gauss Mixture Model

From 1...10 Mixtures wird tried':

Best model has 4 Gaussians.

Mean	STD	Weight
1.25	0.32	0.19
1.84	0.44	0.45
2.52	0.64	0.34
3.69	1.18	0.02

4 Classes of Thermals?

Maximum likelihood decision defines 4 classes of thermals:

Weak <1.3 [m/sec]

Average 1.3 ... 2.3[m/sec]

Strong > 13 [m/sec]

Extreme > **4.3** [m/sec]

© A. Ultsch

Square root of thermal strength

Surprising fit to Normal distribution!

=> Simple model of probability to find a thermal

Probability Distribution of Thermals

Model: square root Normal distribution

<u>Discussion: What is the reason behind squre normal distribution?</u>

1) data processing: other authors (e.g. Jon Meis Lüsse 1996) used 80 m as min height gain to identify thermals in IGC files

Distribution of sqrt(CoreStrength) using this limit: n=

16,526

Prof. Dr. Alfred Ultsch Datenbionik ultsch@informatik.uni-marburg.de © A. Ultsch

Fit to sqrt-normal even better!

<u>Discussion: What is the reason behind squre normal distribution?</u>

- 2) Bias by glider pilots: they use only the strong thermals
- Distribution of all 21,695 thermals sqrt(CoreStrength)

Prof. Dr. Alfred Ultsch Datenbionik => Model fits the data!

Discussion: What is the reason behind sqare normal distribution?

3) Meteorological reasons?

 \Rightarrow Left to discuss here

Proposal:

- Nature generates thermals using a solar heating plate.
- The diameter D of this heating plate is drawn from a Normal distribution Gauss(m, s)
- The strength S of the thermal in m/sec is direct proportional to area of the heating plate:

$$S = c D^2$$
 with D from Gauss(m, s)

Application

-Compare distribution of thermals of a flight to expected distributions

e.g ¼ should be strong thermals

- give precise semantics to "weak", "average" "strong" in gliding forcasts
- model can be used for prediction

Rules of Thumb

derived rules of thumb for cross country soaring:

- Don't use thermals below 1 m/sec. The probability to find a bette one is over 90%!
- Go for thermals with at least 1.4 m/sec
- If the integrator shows less than 1.9 m/sec consider flying on. The probability to find a better thermal is > 50%

- Definitivly take thermals with 2.3 or better!
 - Use thermals < 1.3 m/sec only in difficult situations (wether/outlanding)

Future Work

1) Diurnal Distribution of Thermals

A first look at circadian distribution of occurences:

Prof. Dr. Alfred Ultsch Datenbionik ultsch@informatik.uni-marburg.de © A. Ultsch

Future Work 2: Are there Hotspots?

PDE-scatterplot, r = 0.1

Different approach than Enderle/Leykauf (DWD): Measure thermal densities (PDE scatter plots) to find

3) Are there Hotspot points in the Alps (sponsors sought)?

Summary

The empirical distribution of a large collection of thermals in typical cross county areas /weather is consistent with either

- 1) four types of thermals (small, average large, extra) or
- 2) a Sqrt-Normal Distribution

Open question: Is there a meterological law behind this findings?

(e.g.:
$$S = c D^2$$
 with D from Gauss(m, s))