Sprint X	Task	Day 0	1/4	1/5	1/6	1/7	1/8	1/11	1/12	1/13	1/14	1/15	
Test Hardware "1"	1-1	10	4	0	0	0	0						
Test Software "1"	1-2	15	14	12	6	0	0						
Test Hardware "2"	2-1	25	25	25	25	25	20						
Test Software "2"	2-2	5	5	5	5	5	5						
Test OS "1"	3-1	10	10	9	9	8	8						
Predicted hours		65	58	51	44	37	30	23	16	9	2	0	
Actual hours		65	58	51	45	38	33						

Expected hours/day 7

This sample demonstrates a burn down for an in-progress sprint. The tasks are tracked individually, with each day showing how many hours were predicted for each task, and how many hours were actually spent. In this case, a work day was estimated as 7 hours of productive time, and the actual work day was 5 to 7 hours, as the actual work hours fluctuate daily. The sprint is predicted to end on 1/15, as shown by the trend line (orange dotted line) which is based on the average velocity from the previous days of actual work.