Derivation of Lasso, Ridge, and Elastic Net Regression Equations

Mohamed Hozien (202201507) Youssef Tarek (202201545) Ziad Moataz (202201252)

December 10, 2024

Contents

1	Las	so Regression	2	
	1.1	1. Hypothesis Function	2	
	1.2	2. Cost Function	2	
	1.3	3. Gradient Descent	2	
2	Ridge Regression 3			
	2.1	1. Objective of Linear Regression	3	
	2.2	2. Ridge Regression Objective	3	
	2.3	3. Regularized Normal Equation		
3	Elastic Net Regression			
	3.1	1. Hypothesis Function	4	
	3.2	2. Cost Function	4	
	3.3		4	
	3.4		5	
	3.5	5. Update Rules	5	
	3.6	6. Key Equations Summary		

1 Lasso Regression

Mohamed Hozien

1.1 1. Hypothesis Function

The hypothesis function models the linear relationship between the input features X and the target y. It is defined as:

$$\hat{y} = Xw + b$$

Where:

- X is the feature matrix of size $m \times n$, where m is the number of samples and n is the number of features.
- w is the weight vector of size $n \times 1$.
- b is the bias term, which can be included as part of w if a column of ones is appended to X.

1.2 2. Cost Function

The cost function for Lasso Regression combines the Mean Squared Error (MSE) with an L1 regularization penalty. It is defined as:

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 + \lambda \sum_{j=1}^{n} |w_j|$$

1.3 3. Gradient Descent

The total gradient of the cost function J(w) with respect to w is:

$$\nabla_w J = \frac{1}{m} X^T (\hat{y} - y) + \lambda \operatorname{sign}(w)$$

Using gradient descent, the weight w is updated as:

$$w = w - \alpha \nabla_w J$$

2 Ridge Regression

Youssef Tarek

2.1 1. Objective of Linear Regression

The objective of standard linear regression is to minimize the cost function:

$$J(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2$$

Where:

- X is the input matrix of size $n \times m$ (n samples, m features)
- **y** is the target vector of size $n \times 1$
- w is the weight vector of size $m \times 1$

2.2 2. Ridge Regression Objective

Ridge regression modifies the linear regression cost function by adding an L_2 -norm regularization term:

$$J_{\text{ridge}}(\mathbf{w}) = \frac{1}{2} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|^2 + \frac{\lambda}{2} \|\mathbf{w}\|^2$$

2.3 3. Regularized Normal Equation

The ridge regression solution is derived by setting the gradient of the cost function to zero:

$$\mathbf{w} = (\mathbf{X}^T \mathbf{X} + \lambda \mathbf{I})^{-1} \mathbf{X}^T \mathbf{y}$$

3 Elastic Net Regression

Ziad Moataz

3.1 1. Hypothesis Function

The hypothesis function models the linear relationship between the input features X and the target y. It is defined as:

$$\hat{y} = Xw + b$$

Where:

- X is the feature matrix of size $m \times n$, where m is the number of samples and n is the number of features.
- w is the weight vector of size $n \times 1$.
- \bullet b is the bias term.

3.2 2. Cost Function

The cost function for Elastic Net combines the Mean Squared Error (MSE) with L1 (Lasso) and L2 (Ridge) regularization penalties. It is defined as:

$$J(w) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i - y_i)^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2$$

Where:

- $||w||_1 = \sum_{j=1}^n |w_j|$ is the L1 norm of w
- $||w||_2^2 = \sum_{j=1}^n w_j^2$ is the squared L2 norm of w
- λ_1 and λ_2 are hyperparameters controlling the L1 and L2 penalties, respectively

3.3 3. Gradient of Cost Function

The gradient of the cost function with respect to w is:

$$\frac{\partial J}{\partial w} = \frac{1}{m} X^T (\hat{y} - y) + \lambda_1 \operatorname{sign}(w) + 2\lambda_2 w$$

3.4 4. Gradient of Cost Function with Respect to b

The gradient with respect to b is:

$$\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i - y_i)$$

3.5 5. Update Rules

The weights w and bias b are updated using gradient descent as follows:

$$w = w - \alpha \frac{\partial J}{\partial w}$$

$$b = b - \alpha \frac{\partial J}{\partial b}$$

Where α is the learning rate.

3.6 6. Key Equations Summary

- Hypothesis Function: $\hat{y} = Xw + b$
- Cost Function: $J(w) = \frac{1}{2m} \sum_{i=1}^{m} (\hat{y}_i y_i)^2 + \lambda_1 ||w||_1 + \lambda_2 ||w||_2^2$
- Gradient of Cost w.r.t. w: $\frac{\partial J}{\partial w} = \frac{1}{m} X^T (\hat{y} y) + \lambda_1 \operatorname{sign}(w) + 2\lambda_2 w$
- Gradient of Cost w.r.t. b: $\frac{\partial J}{\partial b} = \frac{1}{m} \sum_{i=1}^{m} (\hat{y}_i y_i)$