

Problem R-02S. Infrared spectrum neat Source: Sadtler 72,963, 12/23

Problem R-02S ($C_5H_{10}O_2$). This problem requires you to determine the structure of **R-02S** from the IR spectrum and 1H and ^{13}C NMR spectra, and interpret a low temperature ^{13}C NMR spectrum (M. E. Jung, J. Gervay *Tetrahedron Lett.* **1990**, *31*, 4685).

(a) Determine the structure. Summarize important data below.

(b) Interpret the low-temperature (-121 °C) 125 MHz 13 C NMR spectrum of **R-02S** shown below. The spectrum was measured with *single frequency* 1 H decoupling at δ 1.5. Explain clearly why the spectrum is different than the noise-decoupled one on the next page. Report spectral parameters. In particular, explain the signals around δ 80.

Problem R-02S (C₅H₁₀O₂). This problem requires you to determine the structure of **R-02S** from the IR spectrum and ¹H and ¹³C NMR spectra, and interpret a low temperature ¹³C NMR spectrum (M. E. Jung, J. Gervay *Tetrahedron Lett.* **1990**, *31*, 4685).

(a) Determine the structure. Summarize important data below.

10
$$C(CH_3)_3$$
 $^{13}C \delta 28.3$, $^{1}H \delta 1.5$ Other answers $O(CH_3)_3$ $O(CH$

- (b) Interpret the low-temperature (-121 °C) 125 MHz 13 C NMR spectrum of **R-02S** shown below. The spectrum was measured with *single frequency* 1 H decoupling at δ 1.5. Explain clearly why the spectrum is different than the noise-decoupled one on the next page. Report spectral parameters. In particular, explain the signals around δ 80.
 - There are now two isomers probably two conformations in approximately a 6:1 ratio
 - The two doublets at 162.8 and 165.6 are the -C(=O)H carbons
 - as expected, the C with a gamma interaction (the s-trans conformer) is upfield by several ppm
 - $J_{\rm CH}$ = 173 for both isomers
 - At δ 80-81 are the O-CMe₃ carbons:

10

Two conformations: 4 $^3J_{\text{CH}} = 4.1 \text{ Hz}$ The larger coupling must be the s-trans rotamer, major isomer $^3J_{\text{CH}} = 4.1 \text{ Hz}$ $^3J_{\text{CH}} = 1.2 \text{ Hz}$ $^3J_{\text{CH}} = 1.2 \text{ Hz}$

Problem R-02S $(C_5H_{10}O_2)$ 125 MHz ¹³C NMR spectrum at -121°C, solvent: acetaldehyde Source: Mike Jung, 12/23 (digitized hard copy) 20774.2 $^{3}J_{\text{C-H}}$ (s-trans) = 4.1 Hz $^{3}J_{C-H}$ (s-trans) = 4.1 Hz $^{3}J_{C-H}$ (s-cis) = 1.2 Hz 167 166 165 164 163 162 161 160 81.0 80.5 80.0 140 120 100 160 80 60 40 20 ppm

PLT ex-3-2002-gq.plt