Modeling development with Cellular Potts Model

Renske Vroomans

Master's and PhD in Utrecht

T cell migration
Plant hormones in fruit development
Evo-devo of animal segmentation
Tcell receptor sequences in database

Currently: EmbryoMaker

Epithelial morphologies

Acknowledgments

My CPM teachers and mentors: Paulien Hogeweg Joost Beltman Stan Marée Ramiro Magno Roeland Merks

My guinea pigs: Marie Müller Vilma Väänänen Aida Kaffash Hoshiar

Why do we make models

to inform the next experiment to test difficult hypotheses to identify gaps in our knowledge to understand mechanism and process to be surprised

lower-level properties <-> higher-level phenomena

(C) John Reid and Bastiaan Geleijnse

What should a model of cells capture?

short answer: that depends on the question

CPM is suitable for mesoscale cell modeling: between cells as points and cells as complex machines

What should a mesoscale model of cells capture?

Cells have a size and shape Cells can be more or less stiff They experience 'spontaneous' membrane fluctuations They can be more or less motile

Cells can interact and adhere

taken from http://pathmicro.med.sc.edu/lecture/hiv7.htm

divide or cleave, grow and die They have a gene expression state

Basic CPM •oooooooo

The CPM as a mesoscale cell model

Each cell is a distinct unit \rightarrow cell id σ Cells can have a type (τ)

The heart of CPM: the Hamiltonian

Dynamics due to energy minimisation and random fluctuations The Hamiltonian, H, describes the total energy of the system Monte Carlo step: consider for each pixel whether a neighbour will copy into it: probability determined by change in H

$$P_{1->2} = \begin{cases} 1, & \text{if } \Delta H \le 0. \\ e^{\frac{-\Delta H}{I}}, & \text{if } \Delta H > 0. \end{cases}$$
 (1)

The energies in basic CPM

intracellular pressure: deviations from resting volume energy from the interface between cells: adhesion-driven membrane tension

Capturing cell volume preservation in CPM

$$H = \lambda (a - A)^2$$

For all cells:

$$H = \sum \lambda (a_{\sigma} - A_{\tau(\sigma)})^2$$

Capturing adhesive cell interactions in CPM

Whether cells adhere depends on the interaction energy J, defined per unit contact length.

J values are typically defined between cell types touching medium also has an associated energy

Capturing adhesive cell interactions in CPM

$$H = \sum_{\sigma} \lambda (a_{\sigma} - A_{\tau(\sigma)})^2 + \sum_{\textit{all } \sigma, \sigma'} rac{J_{\sigma, \sigma'}}{2} + \sum_{\textit{all } \sigma. \textit{medium}} J_{\sigma. \textit{medium}}$$
 (2)

To stick or not to stick

Energy minimisation leads to ball shape of entire tissue

Differential adhesion hypothesis

Hypothesis: tissues behave like immiscible fluids How to test this with CPM?

Commands

```
sudo dpkg-reconfigure
keyboard-configuration
copy directory from USB stick to your home directory
cd practicum
evince exercises.pdf
```

Before starting the exercises:

```
cd pkgs
sudo dpkg -i *.deb (this may take some time)
cd ../cpmcode
make
```

to run code:

./bin/CPM -d DIRNAME -s SEED parfile.cfg