Q1~Q10

Q1

Round		1's action	2's action	1's belief	2's belief	1's payoff	2's payoff		
Round	1	2	2	[1. 2.]	[1. 2.]	[1. 6.]	[1. 6.]	(0.33, 0.67)	(0.33, 0.67)
Round	2	2	2	[1. 3.]	[1. 3.]	[2. 9.]	[2. 9.]	(0.25, 0.75)	(0.25, 0.75)
Round	3	2	2	[1. 4.]	[1. 4.]	[3. 12.]	[3. 12.]	(0.20, 0.80)	(0.20, 0.80)
Round	4	2	2	[1. 5.]	[1. 5.]	[4. 15.]	[4. 15.]	(0.17, 0.83)	(0.17, 0.83)
Round	5	2	2	[1. 6.]	[1. 6.]	[5. 18.]	[5. 18.]	(0.14, 0.86)	(0.14, 0.86)
Round	6	2	2	[1. 7.]	[1. 7.]	[6. 21.]	[6. 21.]	(0.12, 0.88)	(0.12, 0.88)
Round	7	2	2	[1. 8.]	[1. 8.]	[7. 24.]	[7. 24.]	(0.11, 0.89)	(0.11, 0.89)
Round	8	2	2	[1. 9.]	[1. 9.]	[8. 27.]	[8. 27.]	(0.10, 0.90)	(0.10, 0.90)
Round	9	2	2	[1. 10.]	[1. 10.]	[9. 30.]	[9. 30.]	(0.09, 0.91)	(0.09, 0.91)
Round	10	2	2	[1. 11.]	[1. 11.]	[10. 33.]	[10. 33.]	(0.08, 0.92)	(0.08, 0.92)
Round	11	2	2	[1. 12.]	[1. 12.]	[11. 36.]	[11. 36.]	(0.08, 0.92)	(0.08, 0.92)
Round	38	2	2	[1. 39.]	[1. 39.]	[38. 117.]	[38. 117.]	(0.03, 0.97)	(0.03, 0.97)
Round	39	2	2	[1. 40.]	[1. 40.]	[39. 120.]	[39. 120.]	(0.02, 0.98)	(0.02, 0.98)
Round	40	2	2	[1. 41.]	[1. 41.]	[40. 123.]	[40. 123.]	(0.02, 0.98)	(0.02, 0.98)
Round	41	2	2	[1. 42.]	[1. 42.]	[41. 126.]	[41. 126.]	(0.02, 0.98)	(0.02, 0.98)
Round	42	2	2	[1. 43.]	[1. 43.]	[42. 129.]	[42. 129.]	(0.02, 0.98)	(0.02, 0.98)
Round	43	2	2	[1. 44.]	[1. 44.]	[43. 132.]	[43. 132.]	(0.02, 0.98)	(0.02, 0.98)
Round	44	2	2	[1. 45.]	[1. 45.]	[44. 135.]	[44. 135.]	(0.02, 0.98)	(0.02, 0.98)
The gam	e conver	rges in round	44						

Yes, it converges to (2, 2). The players both choose strategy 2 at the last several rounds.

By this figure, it is also clear that it converges to the pure-strategy Nash equilibrium. Note that the x-axis means i-th round and the y-axis represents the first player's belief history for the first strategy.

Q2

case1: converges to (2, 2)

Round		1's action	2's action	1's belief	2's belief	1's payoff	2's payoff		
Round	1	2	2	[1. 2.]	[1. 2.]	[4. 6.]	[4. 6.]	(0.33, 0.67)	(0.33, 0.67)
Round	2	2	2	[1. 3.]	[1. 3.]	[5. 9.]	[5. 9.]	(0.25, 0.75)	(0.25, 0.75)
Round	3	2	2	[1. 4.]	[1. 4.]	[6. 12.]	[6. 12.]	(0.20, 0.80)	(0.20, 0.80)
Round	4	2	2	[1. 5.]	[1. 5.]	[7. 15.]	[7. 15.]	(0.17, 0.83)	(0.17, 0.83)
Round	5	2	2	[1. 6.]	[1. 6.]	[8. 18.]	[8. 18.]	(0.14, 0.86)	(0.14, 0.86)
Round	6	2	2	[1. 7.]	[1. 7.]	[9. 21.]	[9. 21.]	(0.12, 0.88)	(0.12, 0.88)
Round	7	2	2	[1. 8.]	[1. 8.]	[10. 24.]	[10. 24.]	(0.11, 0.89)	(0.11, 0.89)
Round	8	2	2	[1. 9.]	[1. 9.]	[11. 27.]	[11. 27.]	(0.10, 0.90)	(0.10, 0.90)

Round	307	2	2	[1. 308.]	[1.	308.]	[310. 924.]	[310. 924.]	(0.00, 1.00)	(0.00, 1.00)
Round	308	2	2	[1. 309.]	[1.	309.]	[311. 927.]	[311. 927.]	(0.00, 1.00)	(0.00, 1.00)
Round	309	2	2	[1. 310.]	[1.	310.]	[312. 930.]	[312. 930.]	(0.00, 1.00)	(0.00, 1.00)
Round	310	2	2	[1. 311.]	[1.	311.]	[313. 933.]	[313. 933.]	(0.00, 1.00)	(0.00, 1.00)
Round	311	2	2	[1. 312.]	[1.	312.]	[314. 936.]	[314. 936.]	(0.00, 1.00)	(0.00, 1.00)
Round	312	2	2	[1. 313.]	[1.	313.]	[315. 939.]	[315. 939.]	(0.00, 1.00)	(0.00, 1.00)
Round	313	2	2	[1. 314.]	[1.	314.]	[316. 942.]	[316. 942.]	(0.00, 1.00)	(0.00, 1.00)
Round	314	2	2	[1. 315.]	[1.	315.]	[317. 945.]	[317. 945.]	(0.00, 1.00)	(0.00, 1.00)
Round	315	2	2	[1. 316.]	[1.	316.]	[318. 948.]	[318. 948.]	(0.00, 1.00)	(0.00, 1.00)
The gan	ne converge	s in roun	d 315									

case1: converges to (1, 1)

Round		1's action	2's action	1's bel	.ief	2's be	lief	1's pa	ıyoff	2's pa	yoff				
Round	1	1	2	[1. 2.]		[2. 1.]	[4. 6.]	[5. 3.]	(0.33,	0.67)	(0.67,	0.33)
Round	2	2	1	[2. 2.]		[2. 2.]	[6. 6.]	[6. 6.]	(0.50,	0.50)	(0.50,	0.50)
Round	3	1	1	[3. 2.]		[3. 2.]	[8. 6.]	[8. 6.]	(0.60,	0.40)	(0.60,	0.40)
Round	4	1	1	[4. 2.]		[4. 2.]	[10.	6.]	[10.	6.]	(0.67,	0.33)	(0.67,	0.33)
Round	5	1	1	[5. 2.]		[5. 2.]	[12.	6.]	[12.	6.]	(0.71,	0.29)	(0.71,	0.29)
Round	6	1	1	[6. 2.]		[6. 2.]	[14.	6.]	[14.	6.]	(0.75,	0.25)	(0.75,	0.25)
Round	440	1	1	[440.	2.]	[440.	2.]	[882.	6.]	[882.	6.]	(1.00,	0.00)	(1.00,	0.00)
Round	441	1	1	[441.	2.]	[441.	2.]	[884.	6.]	[884.	6.]	(1.00,	0.00)	(1.00,	0.00)
Round	442	1	1	[442.	2.]	[442.	2.]	[886.	6.]	[886.	6.]	(1.00,	0.00)	(1.00,	0.00)
Round	443	1	1	[443.	2.]	[443.	2.]	[888.	6.]	[888.	6.]	(1.00,	0.00)	(1.00,	0.00)
Round	444	1	1	[444.	2.]	[444.	2.]	[890.	6.]	[890.	6.]	(1.00,	0.00)	(1.00,	0.00)
Round	445	1	1	[445.	2.]	[445.	2.]	[892.	6.]	[892.	6.]	(1.00,	0.00)	(1.00,	0.00)
Round	446	1	1	[446.	2.]	[446.	2.]	[894.	6.]	[894.	6.]	(1.00,	0.00)	(1.00,	0.00)
The gar	ne conve	erges in round	446												

Yes, it can converge to the both of the pure-strategy Nash equilibria. In both cases, the players both choose (2, 2) and (1, 1) at the last several rounds. The figures also show it.

The only thing we have to do is run this code a few times, and because of the randomness, it converges to one of these two results.

1	`	2
l	J	J

Round		1's action	2's action	1's belief	2's belief	1's payoff	2's payoff	
Round	1	1	1	[2. 1.]	[2. 1.]	[2. 0.]	[2. 0.]	(0.67, 0.33) (0.67, 0.33)
Round	2	1	1	[3. 1.]	[3. 1.]	[3. 0.]	[3. 0.]	(0.75, 0.25) (0.75, 0.25)
Round	3	1	1	[4. 1.]	[4. 1.]	[4. 0.]	[4. 0.]	(0.80, 0.20) (0.80, 0.20)
Round	4	1	1	[5. 1.]	[5. 1.]	[5. 0.]	[5. 0.]	(0.83, 0.17) (0.83, 0.17)
Round	5	1	1	[6. 1.]	[6. 1.]	[6. 0.]	[6. 0.]	(0.86, 0.14) (0.86, 0.14)
Round	6	1	1	[7. 1.]	[7. 1.]	[7. 0.]	[7. 0.]	(0.88, 0.12) (0.88, 0.12)
Round	7	1	1	[8. 1.]	[8. 1.]	[8. 0.]	[8. 0.]	(0.89, 0.11) (0.89, 0.11)
Round	990	1	1	[991. 1.]	[991. 1.]	[991. 0.]	[991. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	991	1	1	[992. 1.]	[992. 1.]	[992. 0.]	[992. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	992	1	1	[993. 1.]	[993. 1.]	[993. 0.]	[993. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	993	1	1	[994. 1.]	[994. 1.]	[994. 0.]	[994. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	994	1	1	[995. 1.]	[995. 1.]	[995. 0.]	[995. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	995	1	1	[996. 1.]	[996. 1.]	[996. 0.]	[996. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	996	1	1	[997. 1.]	[997. 1.]	[997. 0.]	[997. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	997	1	1	[998. 1.]	[998. 1.]	[998. 0.]	[998. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	998	1	1	[999. 1.]	[999. 1.]	[999. 0.]	[999. 0.]	(1.00, 0.00) (1.00, 0.00)
Round	999	1	1	[1000. 1.]	[1000. 1.]	[1000. 0.]	[1000. 0.]	(1.00, 0.00) (1.00, 0.00)
The gam	ne conver	ges in round	999					

It can only converge to (1, 1). Although (2, 2) is also a pure-strategy Nash equilibria, it will never be chosen by the players. The reason is that no player will choose strategy 2 when strategy 1 is chosen by another player, or the payoff will be 0.

Q4

Round	4954	1	2	[2465. 2491.]	[3930. 1026.]	[4982. 4930.]	[3930. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4955	1	2	[2465. 2492.]	[3931. 1026.]	[4984. 4930.]	[3931. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4956	1	2	[2465. 2493.]	[3932. 1026.]	[4986. 4930.]	[3932. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4957	1	2	[2465. 2494.]	[3933. 1026.]	[4988. 4930.]	[3933. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4958	1	2	[2465. 2495.]	[3934. 1026.]	[4990. 4930.]	[3934. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4959	1	2	[2465. 2496.]	[3935. 1026.]	[4992. 4930.]	[3935. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4960	1	2	[2465. 2497.]	[3936. 1026.]	[4994. 4930.]	[3936. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4961	1	2	[2465. 2498.]	[3937. 1026.]	[4996. 4930.]	[3937. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4962	1	2	[2465. 2499.]	[3938. 1026.]	[4998. 4930.]	[3938. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4963	1	2	[2465. 2500.]	[3939. 1026.]	[5000.4930.]	[3939. 4104.]	(0.50, 0.50)	(0.79, 0.21)
Round	4964	1	2	[2465. 2501.]	[3940. 1026.]	[5002. 4930.]	[3940.4104.]	(0.50, 0.50)	(0.79, 0.21)
The ga	me converges	in round 49	64						

Yes. It can converge to the mixed-strategy in some cases though the probability is not exactly the same as (0.8, 0.2) and (0.5, 0.5). However, if we keep playing for more rounds, it will surely converge to (0.8, 0.2) and (0.5, 0.5).

In the above figure, it has a zigzag like feature, which is not that similar with previous pure strategy ones. That's because the players alternate back and forth between playing strategy 1 and 2.

Q5

Round	4991	1	2	[2460. 2533.]	[2486. 2507.]	[2533. 2460.]	[2486. 2507.]	(0.49, 0.51)	(0.50, 0.50)
		-	_					. , ,	
Round	4992	1	2	[2460. 2534.]	[2487. 2507.]	[2534. 2460.]	[2487. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	4993	1	2	[2460. 2535.]	[2488. 2507.]	[2535. 2460.]	[2488. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	4994	1	2	[2460. 2536.]	[2489. 2507.]	[2536. 2460.]	[2489. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	4995	1	2	[2460. 2537.]	[2490. 2507.]	[2537. 2460.]	[2490. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	4996	1	2	[2460. 2538.]	[2491. 2507.]	[2538. 2460.]	[2491. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	4997	1	2	[2460. 2539.]	[2492. 2507.]	[2539. 2460.]	[2492. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	4998	1	2	[2460. 2540.]	[2493. 2507.]	[2540. 2460.]	[2493. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	4999	1	2	[2460. 2541.]	[2494. 2507.]	[2541. 2460.]	[2494. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	5000	1	2	[2460. 2542.]	[2495. 2507.]	[2542. 2460.]	[2495. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	5001	1	2	[2460. 2543.]	[2496. 2507.]	[2543. 2460.]	[2496. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	5002	1	2	[2460. 2544.]	[2497. 2507.]	[2544. 2460.]	[2497. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	5003	1	2	[2460. 2545.]	[2498. 2507.]	[2545. 2460.]	[2498. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	5004	1	2	[2460. 2546.]	[2499. 2507.]	[2546. 2460.]	[2499. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	5005	1	2	[2460. 2547.]	[2500. 2507.]	[2547. 2460.]	[2500. 2507.]	(0.49, 0.51)	(0.50, 0.50)
Round	5006	1	2	[2460. 2548.]	[2501. 2507.]	[2548. 2460.]	[2501. 2507.]	(0.49, 0.51)	(0.50, 0.50)
The ga	me converges	in r	ound 5006						

Yes. It can converge to the mixed-strategy Nash equilibrium. For both of the players, the probability to choose each strategy is approximately 0.5 according to the result. That's because the players alternate back and forth between playing strategy 1 and 2.

Q6

For pure-strategy Nash equilibria

case1: (2,	2)					
Round Round 1 Round 2 Round 3 Round 4 Round 5 Round 6	1's action 2 2 2 2 2 2 2 2	2's action 2 2 2 2 2 2 2 2	[1. 2.] [1. 3.] [1. 4.] [1. 5.] [1. 6.] [1. 7.]	2's belief [1. 2.] [1. 3.] [1. 4.] [1. 5.] [1. 6.] [1. 7.]	1's payoff [10. 20.] [10. 30.] [10. 40.] [10. 50.] [10. 60.] [10. 70.]	2's payoff [10. 20.] (0.33, 0.67) (0.33, 0.67) [10. 30.] (0.25, 0.75) (0.25, 0.75) [10. 40.] (0.20, 0.80) (0.20, 0.80) [10. 50.] (0.17, 0.83) (0.17, 0.83) [10. 60.] (0.14, 0.86) (0.14, 0.86) [10. 70.] (0.12, 0.88) (0.12, 0.88)
Round 92 Round 93 Round 94 Round 95 Round 96 Round 97 Round 98 Round 99	2 2 2 2 2 2 2 2 2 2 2 erges in round	2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	[1. 8.] [1. 93.] [1. 94.] [1. 95.] [1. 96.] [1. 97.] [1. 98.] [1. 99.] [1. 100.]	[1. 8.] [1. 93.] [1. 94.] [1. 95.] [1. 96.] [1. 97.] [1. 98.] [1. 99.] [1. 100.]	[10. 80.] [10. 930.] [10. 940.] [10. 950.] [10. 950.] [10. 980.] [10. 980.] [10. 1000.]	[10. 80.] (0.11, 0.89) (0.11, 0.89) [10. 930.] (0.01, 0.99) (0.01, 0.99) [10. 940.] (0.01, 0.99) (0.01, 0.99) [10. 950.] (0.01, 0.99) (0.01, 0.99) [10. 960.] (0.01, 0.99) (0.01, 0.99) [10. 970.] (0.01, 0.99) (0.01, 0.99) [10. 980.] (0.01, 0.99) (0.01, 0.99) [10. 990.] (0.01, 0.99) (0.01, 0.99) [10. 1000.] (0.01, 0.99) (0.01, 0.99)
case2: (1,	1)					
Round Round 1 Round 2 Round 3 Round 4 Round 5 Round 6 Round 7 Round 8 Round 9 Round 10 Round 11 Round 11 Round 12 Round 13	1's action 1 2 1 1 1 1 1 1 1 1 1 1 1 1	2's action 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1's belief [1. 2.] [2. 2.] [3. 2.] [4. 2.] [5. 2.] [6. 2.] [7. 2.] [8. 2.] [9. 2.] [10. 2.] [11. 2.] [12. 2.]	2's belief [2. 1.] [2. 2.] [3. 2.] [4. 2.] [5. 2.] [6. 2.] [7. 2.] [8. 2.] [9. 2.] [10. 2.] [11. 2.] [12. 2.]	1's payoff [10. 20.] [20. 20.] [30. 20.] [40. 20.] [60. 20.] [70. 20.] [80. 20.] [90. 20.] [110. 20.] [120. 20.] [130. 20.]	2's payoff [20. 10.] (0.33, 0.67) (0.67, 0.33) [20. 20.] (0.50, 0.50) (0.50, 0.50) [30. 20.] (0.60, 0.40) (0.60, 0.40) [40. 20.] (0.67, 0.33) (0.67, 0.33) [50. 20.] (0.71, 0.29) (0.71, 0.29) [60. 20.] (0.75, 0.25) (0.75, 0.25) [70. 20.] (0.78, 0.22) (0.78, 0.22) [80. 20.] (0.80, 0.20) (0.80, 0.20) [90. 20.] (0.82, 0.18) (0.82, 0.18) [100. 20.] (0.83, 0.17) (0.83, 0.17) [110. 20.] (0.85, 0.15) (0.85, 0.15) [120. 20.] (0.86, 0.14) (0.86, 0.14) [130. 20.] (0.87, 0.13) (0.87, 0.13)
Round 129 Round 130 Round 131 Round 133 Round 134 Round 135 Round 136 Round 137 Round 138 Round 139 Round 140 The game conv.	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	[129. 2.] [130. 2.] [131. 2.] [132. 2.] [133. 2.] [134. 2.] [135. 2.] [136. 2.] [137. 2.] [138. 2.] [139. 2.] [140. 2.]	[129. 2.] [130. 2.] [131. 2.] [132. 2.] [133. 2.] [135. 2.] [136. 2.] [137. 2.] [138. 2.] [139. 2.]	[1290. 20.] [1300. 20.] [1310. 20.] [1320. 20.] [1330. 20.] [1340. 20.] [1350. 20.] [1360. 20.] [1370. 20.] [1380. 20.] [1390. 20.] [1400. 20.]	[1290. 20.] (0.98, 0.02) (0.98, 0.02) [1300. 20.] (0.98, 0.02) (0.98, 0.02) [1310. 20.] (0.98, 0.02) (0.98, 0.02) [1310. 20.] (0.99, 0.01) (0.99, 0.01) [1330. 20.] (0.99, 0.01) (0.99, 0.01) [1340. 20.] (0.99, 0.01) (0.99, 0.01) [1350. 20.] (0.99, 0.01) (0.99, 0.01) [1360. 20.] (0.99, 0.01) (0.99, 0.01) [1370. 20.] (0.99, 0.01) (0.99, 0.01) [1370. 20.] (0.99, 0.01) (0.99, 0.01) [1380. 20.] (0.99, 0.01) (0.99, 0.01) [1390. 20.] (0.99, 0.01) (0.99, 0.01) [1390. 20.] (0.99, 0.01) (0.99, 0.01) [1400. 20.] (0.99, 0.01) (0.99, 0.01)

For mixed-strategy Nash equilibrium

(set initial belief to [1, 1.5], [1.5, 1])

```
(0.50, 0.50)
                                          [496, 495,5]
                                                            [495.5 496. ]
                                                                            [4960, 4955,]
                                                                                              [4955, 4960,]
                                                                                                               (0.50, 0.50)
Round
        989
                                                                             [4960. 4965.]
                                                                                              [4965. 4960.]
Round
        990
                                          [496.
                                                 496.5]
                                                            [496.5 496. ]
                                                                                                               (0.50, 0.50)
                                                                                                                              (0.50, 0.50)
Round
        991
                                          [497.
                                                 496.5]
                                                            [496.5 497.
                                                                             [4970. 4965.]
                                                                                              [4965. 4970.]
                                                                                                               (0.50, 0.50)
                                                                                                                              (0.50, 0.50)
Round
        992
                                          [497.
                                                 497.5]
                                                            [497.5 497.
                                                                             [4970. 4975.
                                                                                              [4975. 4970.]
                                                                                                               (0.50, 0.50)
                                                                                                                              (0.50, 0.50)
                                                 497.51
                                                            [497.5 498.
                                                                             [4980. 4975.
                                                                                              [4975, 4980, ]
Round
        993
                                          Γ498.
                                                                                                               (0.50, 0.50)
                                                                                                                              (0.50, 0.50)
        994
                                          [498.
                                                 498.5]
                                                            [498.5 498.
                                                                             [4980. 4985.]
                                                                                              [4985. 4980.]
                                                                                                               (0.50, 0.50)
                                                                                                                              (0.50, 0.50)
Round
                                          [499.
                                                 498.5]
                                                            [498.5 499.
                                                                             [4990. 4985.]
                                                                                              [4985. 4990.]
                                                                                                               (0.50, 0.50)
Round
                                                                                                                              (0.50, 0.50)
Round
        996
                                          [499.
                                                 499.5]
                                                            -
[499.5 499.
                                                                             [4990. 4995.
                                                                                              [4995.4990.]
                                                                                                               (0.50, 0.50)
                                                                                                                              (0.50, 0.50)
Round
        997
                                          [500.
                                                 499.5]
                                                            [499.5 500.
                                                                             [5000, 4995,
                                                                                              [4995. 5000.]
                                                                                                               (0.50, 0.50)
                                                                                                                              (0.50, 0.50)
                                                            [500.5 500.]
                                                                                              [5005. 5000.]
                                                                                                               (0.50, 0.50)
(0.50, 0.50)
        998
                                          [500.
                                                 500.51
                                                                             [5000. 5005.]
                                                                                                                              (0.50, 0.50)
Round
        999
                                          [501.
                                                 500.5]
                                                            [500.5 501.]
                                                                             [5010. 5005.]
                                                                                              [5005. 5010.]
                                                                                                                              (0.50, 0.50)
Round
Round
       1000
                                          [501.
                                                 501.5]
                                                            [501.5 501.]
                                                                            [5010. 5015.]
                                                                                              [5015. 5010.]
                                                                                                               (0.50, 0.50)
                                                                                                                              (0.50, 0.50)
```


Yes. It can converge to three of the Nash equilibrium. It can be seen from the screenshots and figure above.

Q7

case1: (2, 1)

For pure-strategy Nash equilibria

	` '	,						
Round		1's action	2's action	1's belief	2's belief	1's payoff	2's payoff	
Round	1	2	1	[2. 1.]	[1. 2.]	[1. 2.]	[2. 1.]	(0.67, 0.33) (0.33, 0.67)
Round	2	2	1	[3. 1.]	[1. 3.]	[1. 3.]	[3. 1.]	(0.75, 0.25) (0.25, 0.75)
Round	3	2	1	[4. 1.]	[1. 4.]	[1. 4.]	[4. 1.]	(0.80, 0.20) (0.20, 0.80)
Round	4	2	1	[5. 1.]	[1. 5.]	[1. 5.]	[5. 1.]	(0.83, 0.17) (0.17, 0.83)
Round	5	2	1	[6. 1.]	[1. 6.]	[1. 6.]	[6. 1.]	(0.86, 0.14) (0.14, 0.86)
Round	6	2	1	[7. 1.]	[1. 7.]	[1. 7.]	[7. 1.]	(0.88, 0.12) (0.12, 0.88)
Round	7	2	1	[8. 1.]	[1. 8.]	[1. 8.]	[8. 1.]	(0.89, 0.11) (0.11, 0.89)
Round	8	2	1	[9. 1.]	[1. 9.]	[1. 9.]	[9. 1.]	(0.90, 0.10) (0.10, 0.90)
Round	92	2	1	[93. 1.]	[1. 93.]	[1. 93.]	[93. 1.]	(0.99, 0.01) (0.01, 0.99)
Round	93	2	1	[94. 1.]	[1. 94.]	[1. 94.]	[94. 1.]	(0.99, 0.01) (0.01, 0.99)
Round	94	2	1	[95. 1.]	[1. 95.]	[1. 95.]	[95. 1.]	(0.99, 0.01) (0.01, 0.99)
Round	95	2	1	[96. 1.]	[1. 96.]	[1. 96.]	[96. 1.]	(0.99, 0.01) (0.01, 0.99)
Round	96	2	1	[97. 1.]	[1. 97.]	[1. 97.]	[97. 1.]	(0.99, 0.01) (0.01, 0.99)
Round	97	2	1	[98. 1.]	[1. 98.]	[1. 98.]	[98. 1.]	(0.99, 0.01) (0.01, 0.99)
Round	98	2	1	[99. 1.]	[1. 99.]	[1. 99.]	[99. 1.]	(0.99, 0.01) (0.01, 0.99)
Round	99	2	1	[100. 1.]	[1. 100.]	[1. 100.]	[100. 1.]	(0.99, 0.01) (0.01, 0.99)

case2: (1, 2)

The game converges in round 99

Round		1's action	2's action	1's belief	2's belie f	1's payoff	2's payoff		
Round	1	1	2	[1. 2.]	[2. 1.]	[2. 1.]	[1. 2.]	(0.33, 0.67)	(0.67, 0.33)
Round	2	1	2	[1. 3.]	[3. 1.]	[3. 1.]	[1. 3.]	(0.25, 0.75)	(0.75, 0.25)
Round	3	1	2	[1. 4.]	[4. 1.]	[4. 1.]	[1. 4.]	(0.20, 0.80)	(0.80, 0.20)
Round	4	1	2	[1. 5.]	[5. 1.]	[5. 1.]	[1. 5.]	(0.17, 0.83)	(0.83, 0.17)
Round	5	1	2	[1. 6.]	[6. 1.]	[6. 1.]	[1. 6.]	(0.14, 0.86)	(0.86, 0.14)
Round	6	1	2	[1. 7.]	[7. 1.]	[7. 1.]	[1. 7.]	(0.12, 0.88)	(0.88, 0.12)
Round	7	1	2	[1. 8.]	[8. 1.]	[8. 1.]	[1. 8.]	(0.11, 0.89)	(0.89, 0.11)
Round	8	1	2	[1. 9.]	[9. 1.]	[9. 1.]	[1. 9.]	(0.10, 0.90)	(0.90, 0.10)

Round	91	1	2	[1. 92.]	[92. 1.]	[92. 1.]	[1. 92.]	(0.01, 0.99)	(0.99, 0.01)
Round	92	1	2	[1. 93.]	[93. 1.]	[93. 1.]	[1. 93.]	(0.01, 0.99)	(0.99, 0.01)
Round	93	1	2	[1. 94.]	[94. 1.]	[94. 1.]	[1. 94.]	(0.01, 0.99)	(0.99, 0.01)
Round	94	1	2	[1. 95.]	[95. 1.]	[95. 1.]	[1. 95.]	(0.01, 0.99)	(0.99, 0.01)
Round	95	1	2	[1. 96.]	[96. 1.]	[96. 1.]	[1. 96.]	(0.01, 0.99)	(0.99, 0.01)
Round	96	1	2	[1. 97.]	[97. 1.]	[97. 1.]	[1. 97.]	(0.01, 0.99)	(0.99, 0.01)
Round	97	1	2	[1. 98.]	[98. 1.]	[98. 1.]	[1. 98.]	(0.01, 0.99)	(0.99, 0.01)
Round	98	1	2	[1. 99.]	[99. 1.]	[99. 1.]	[1. 99.]	(0.01, 0.99)	(0.99, 0.01)
Round	99	1	2	[1. 100.]	[100. 1.]	[100. 1.]	[1. 100.]	(0.01, 0.99)	(0.99, 0.01)
The gam	e convei	rges in round	99						

For mixed-strategy Nash equilibrium

(set initial belief to [1, 1.5], [1, 1.5])

```
Round
        989
                                          [496.
                                                495.5]
                                                          [496.
                                                                 495.5]
                                                                           [495.5 496.]
                                                                                            [495.5 496.]
                                                                                                             (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
Round
        990
                                          Γ496.
                                                496.51
                                                           Γ496.
                                                                 496.51
                                                                           [496.5 496.
                                                                                            [496.5 496.
                                                                                                             (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
                                                                                            [496.5 497.]
        991
                                         [497.
                                                          [497.
                                                                 496.5]
                                                                           [496.5 497.
                                                                                                             (0.50, 0.50)
                                                496.5]
                                                                                                                           (0.50, 0.50)
Round
Round
                                         [497.
                                                497.5]
                                                                 497.5]
                                                                           [497.5 497.
                                                                                            [497.5 497.]
                                                                                                             (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
Round
        993
                                         [498.
                                                497.5]
                                                           [498.
                                                                 497.5]
                                                                           [497.5 498.
                                                                                            [497.5 498.
                                                                                                             (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
                                         [498.
[499.
Round
        994
                                                498.5]
                                                          Γ498.
                                                                 498.51
                                                                           [498.5 498.
                                                                                            [498.5 498.
                                                                                                             (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
                                                                                            [498.5 499.]
        995
                                                                           [498.5 499.
                                                498.51
                                                          [499.
                                                                 498.51
                                                                                                             (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
Round
                                                                           [499.5 499.
                                                                                            [499.5 499.
                                         [499.
                                                499.5]
                                                          [499.
                                                                 499.5]
                                                                                                             (0.50, 0.50)
Round
                                                                                                                           (0.50, 0.50)
                                         [500.
                                                499.5]
                                                          [500.
                                                                 499.5]
                                                                           [499.5 500.
                                                                                            [499.5 500.
                                                                                                             (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
Round
        998
                                          [500.
                                                500.5]
                                                           [500.
                                                                 500.5]
                                                                           [500.5 500.
                                                                                            [500.5 500.
                                                                                                             (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
Round
        999
                                          Γ501.
                                                500.51
                                                          Γ501.
                                                                 500.51
                                                                           [500.5 501.
                                                                                            [500.5 501.]
                                                                                                            (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
                                                                           [501.5 501.]
                                                                                            [501.5 501.]
Round
                                         [501.
                                                501.5]
                                                          [501.
                                                                 501.5]
                                                                                                            (0.50, 0.50)
                                                                                                                           (0.50, 0.50)
```

With carefully picking the initial belief, it can converge to three of the Nash equilibrium. It can be seen from the screenshots above. In the pure-strategy case, it can correctly converge to (1, 2) and (2, 1). In the mixed-strategy case, it can converge to the same as the question statement.

Q8

For pure-strategy Nash equilibria

case1: (1, 1)										
Round	535	1	1	[534. 3.]	[535. 2.]	[1602. 6.	[1070.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	536	1	1	[535. 3.]	[536. 2.]	[1605. 6.	[1072.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	537	1	1	[536. 3.]	[537. 2.]	[1608. 6.	[1074.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	538	1	1	[537. 3.]	[538. 2.]	[1611. 6.	[1076.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	539	1	1	[538. 3.]	[539. 2.]	[1614. 6.	[1078.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	540	1	1	[539. 3.]	[540. 2.]	[1617. 6.	[1080.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	541	1	1	[540. 3.]	[541. 2.]	[1620. 6.	[1082.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	542	1	1	[541. 3.]	[542. 2.]	[1623. 6.	[1084.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	543	1	1	[542. 3.]	[543. 2.]	[1626. 6.	[1086.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	544	1	1	[543. 3.]	[544. 2.]	[1629. 6.	[1088.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	545	1	1	[544. 3.]	[545. 2.]	[1632. 6.	[1090.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	546	1	1	[545. 3.]	[546. 2.]	[1635. 6.	[1092.	6.]	(0.99, 0.01)	(1.00, 0.00)
Round	547	1	1	[546. 3.]	[547. 2.]	[1638. 6.	[1094.	6.]	(0.99, 0.01)	(1.00, 0.00)
The ga	me conve	erges in roun	id 547							
case2	2: (2,	2)								
Round	536	2	2	[2.536.]	[3. 535.]	[6. 1072.]	[6.16	05.1	(0.00, 1.00)	(0.01, 0.99)
Round	537	2	2	[2. 537.]	[3.536.]	[6. 1074.]	6.16	-		0.01, 0.99)
Round	538	2	2	[2. 538.]	[3. 537.]	6. 1076.]	6. 16	11.		0.01, 0.99)
Round	539	2	2	[2. 539.]	[3. 538.]	[6. 1078.]	6. 16	14.	(0.00, 1.00)	(0.01, 0.99)
Round	540	2	2	[2.540.]	[3.539.]	[6. 1080.]	[6. 16	17.]	(0.00, 1.00)	(0.01, 0.99)
Round	541	2	2	[2.541.]	[3.540.]	[6. 1082.]	[6. 16	20.]	(0.00, 1.00)	(0.01, 0.99)
Round	542	2	2	[2.542.]	[3.541.]	[6. 1084.]	[6.16	23.]	(0.00, 1.00)	(0.01, 0.99)
Round	543	2	2	[2.543.]	[3.542.]	[6. 1086.]	[6.16	26.]	(0.00, 1.00)	(0.01, 0.99)
Round	544	2	2	[2.544.]	[3.543.]	[6. 1088.]	[6.16	29.]	(0.00, 1.00)	(0.01, 0.99)
Round	545	2	2	[2.545.]	[3.544.]	[6.1090.]	[6.16	32.]	(0.00, 1.00)	(0.01, 0.99)
Round	546	2	2	[2.546.]	[3.545.]	[6. 1092.]	[6.16	35.]	(0.00, 1.00)	(0.01, 0.99)
Round	547	2	2	[2.547.]	[3.546.]	[6. 1094.]	[6.16	38.]	(0.00, 1.00)	(0.01, 0.99)
The ga		erges in roun	1 5 4 7							

For mixed-strategy Nash equilibrium

(set initial belief to [1.25, 1], [1, 1.25])

```
(0.40, 0.60)
                                                [398.25 598.
[399.25 598.
                                                                            398.25] [1194.75 1196.
399.25] [1197.75 1196.
                                                                                                                                          (0.40, 0.60)
(0.40, 0.60)
                                                                                                                                                           (0.60, 0.40)
(0.60, 0.40)
Round
         994
                                                                   Γ598.
                                                                                                                   Γ1196.
                                                                                                                             1194.751
Round
         995
                                                                   [598.
                                                                                                                  [1196.
                                                                                                                             1197.75]
Round
         996
                                                [399.25 599.
                                                                   Γ599.
                                                                            399.251
                                                                                      [1197.75 1198.
                                                                                                                   [1198.
                                                                                                                             1197.751
                                                                                                                                           (0.40, 0.60)
                                                                                                                                                            (0.60,
                                                                                                                                                                   0.40)
         997
                                                [400.25 599.
                                                                   [599.
                                                                                                                             1200.75]
                                                                            400.25] [1200.75 1198.
                                                                                                                  [1198.
                                                                                                                                           (0.40, 0.60)
                                                                                                                                                           (0.60, 0.40)
Round
         998
999
                                               [400.25 600.
[400.25 601.
Round
                                                                   [600.
                                                                            400.25] [1200.75 1200.
                                                                                                                  [1200.
                                                                                                                             1200.75]
                                                                                                                                           (0.40, 0.60)
                                                                                                                                                            (0.60, 0.40)
Round
                                                                   Γ601.
                                                                            400.25] [1200.75 1202.
                                                                                                                  Γ1202.
                                                                                                                             1200.751
                                                                                                                                           (0.40, 0.60)
                                                                                                                                                           (0.60, 0.40)
Round
                                               [401.25 601.
                                                                ] [601.
                                                                            401.25] [1203.75 1202.
                                                                                                                  [1202.
                                                                                                                             1203.75]
                                                                                                                                          (0.40, 0.60)
```


With carefully picking the initial belief, it can converge to three of the Nash equilibrium. It can be seen from the screenshots and figure above. In the pure-strategy case, it converges to (1, 1) and (2, 2). In the mixed-strategy case, it can converge to (0.6, 0.4) and (0.4, 0.6).

Q9

For pure-strategy Nash equilibria

case1	I: (1, 1)										
Round	126	1	1	[126.	2.]	[126.	2.]	[378. 254.]	[378. 254.]	(0.98, 0.02)	(0.98, 0.02)
Round	127	1	1	[127.	2.]	[127.	2.]	[381. 256.]	[381. 256.]	(0.98, 0.02)	(0.98, 0.02)
Round	128	1	1	[128.	2.]	[128.	2.]	[384. 258.]	[384. 258.]	(0.98, 0.02)	(0.98, 0.02)
Round	129	1	1	[129.	2.]	[129.	2.]	[387. 260.]	[387. 260.]	(0.98, 0.02)	(0.98, 0.02)
Round	130	1	1	[130.	2.]	[130.	2.]	[390. 262.]	[390. 262.]	(0.98, 0.02)	(0.98, 0.02)
Round	131	1	1	[131.	2.]	[131.	2.]	[393. 264.]	[393. 264.]	(0.98, 0.02)	(0.98, 0.02)
Round	132	1	1	[132.	2.]	[132.	2.]	[396. 266.]	[396. 266.]	(0.99, 0.01)	(0.99, 0.01)
Round	133	1	1	[133.	2.]	[133.	2.]	[399. 268.]	[399. 268.]	(0.99, 0.01)	(0.99, 0.01)
Round	134	1	1	[134.	2.]	[134.	2.]	[402. 270.]	[402. 270.]	(0.99, 0.01)	(0.99, 0.01)
Round	135	1	1	[135.	2.]	[135.	2.]	[405. 272.]	[405. 272.]	(0.99, 0.01)	(0.99, 0.01)
Round	136	1	1	[136.	2.]	[136.	2.]	[408. 274.]	[408. 274.]	(0.99, 0.01)	(0.99, 0.01)
Round	137	1	1	[137.	2.]	[137.	2.]	[411. 276.]	[411. 276.]	(0.99, 0.01)	(0.99, 0.01)
Round	138	1	1	[138.	2.]	[138.	2.]	[414. 278.]	[414. 278.]	(0.99, 0.01)	(0.99, 0.01)
Round	139	1	1	[139.	2.]	[139.	2.]	[417. 280.]	[417. 280.]	(0.99, 0.01)	(0.99, 0.01)
Round	140	1	1	[140.	2.]	[140.	2.]	[420. 282.]	[420. 282.]	(0.99, 0.01)	(0.99, 0.01)

case2: (2, 2)

Round	85	2	2	[1. 86.]	[1. 86.]	[3. 88.]	[3. 88.]	(0.01, 0.99)	(0.01, 0.99)
Round	86	2	2	[1. 87.]	[1. 87.]	[3. 89.]	[3. 89.]	(0.01, 0.99)	(0.01, 0.99)
Round	87	2	2	[1. 88.]	[1. 88.]	[3. 90.]	[3. 90.]	(0.01, 0.99)	(0.01, 0.99)
Round	88	2	2	[1. 89.]	[1. 89.]	[3. 91.]	[3. 91.]	(0.01, 0.99)	(0.01, 0.99)
Round	89	2	2	[1. 90.]	[1. 90.]	[3. 92.]	[3. 92.]	(0.01, 0.99)	(0.01, 0.99)
Round	90	2	2	[1. 91.]	[1. 91.]	[3. 93.]	[3. 93.]	(0.01, 0.99)	(0.01, 0.99)
Round	91	2	2	[1. 92.]	[1. 92.]	[3. 94.]	[3. 94.]	(0.01, 0.99)	(0.01, 0.99)
Round	92	2	2	[1. 93.]	[1. 93.]	[3. 95.]	[3. 95.]	(0.01, 0.99)	(0.01, 0.99)
Round	93	2	2	[1. 94.]	[1. 94.]	[3. 96.]	[3. 96.]	(0.01, 0.99)	(0.01, 0.99)
Round	94	2	2	[1. 95.]	[1. 95.]	[3. 97.]	[3. 97.]	(0.01, 0.99)	(0.01, 0.99)
Round	95	2	2	[1. 96.]	[1. 96.]	[3. 98.]	[3. 98.]	(0.01, 0.99)	(0.01, 0.99)
Round	96	2	2	[1. 97.]	[1. 97.]	[3. 99.]	[3. 99.]	(0.01, 0.99)	(0.01, 0.99)
Round	97	2	2	[1. 98.]	[1. 98.]	[3. 100.]	[3. 100.]	(0.01, 0.99)	(0.01, 0.99)
Round	98	2	2	[1. 99.]	[1. 99.]	[3. 101.]	[3. 101.]	(0.01, 0.99)	(0.01, 0.99)
Round	99	2	2	[1. 100.]	[1. 100.]	[3. 102.]	[3. 102.]	(0.01, 0.99)	(0.01, 0.99)
The gam	e converge	s in rou	nd 99						

For mixed-strategy Nash equilibrium

(set initial belief to [1.25, 1], [1, 1.25])

```
1479.25]
         984
                                              [493.25 493.
                                                                          493.25] [1479.75 1479.5
                                                                                                               [1479.
                                                                                                                                       (0.50, 0.50)
                                                                                                                                                       (0.50, 0.50)
Round
                                                                 [493.
                                              [493.25 494.
[494.25 494.
Round
                                                                 [494.
                                                                                    [1479.75 1480.5
                                                                                                                1482.
                                                                                                                          1481.25
                                                                          494.251
                                                                                   [1482.75 1482.5
Round
         986
                                                                 Γ494.
                                                                                                                Γ1482.
                                                                                                                          1482.25
                                                                                                                                       (0.50, 0.50)
                                                                                                                                                       (0.50, 0.50)
                                               [494.25 495.
                                                                                    [1482.75 1483.5
                                                                                                                [1485.
                                                                                                                          1484.25
                                                                                                                                       (0.50, 0.50)
Round
Round
         988
                                               [495.25 495.
                                                                 Γ495.
                                                                          495,251
                                                                                   [1485.75 1485.5
                                                                                                                Γ1485.
                                                                                                                          1485.25
                                                                                                                                       (0.50, 0.50)
                                                                                                                                                       (0.50, 0.50)
                                                                                                                                       (0.50, 0.50)
Round
Round
         990
                                               [496.25 496.
                                                                 Γ496.
                                                                          496.251
                                                                                   [1488.75 1488.5
                                                                                                                -
[1488.
                                                                                                                          1488.25
                                                                                                                                       (0.50, 0.50)
(0.50, 0.50)
                                                                                                                                                        (0.50, 0.50)
                                               [496.25 497.
                                                                                                                [1491.
                                                                                                                          1490.25
                                                                                                                                                       (0.50, 0.50)
         991
                                                                 [497.
                                                                          496.25]
                                                                                   [1488.75 1489.5
Round
                                                                                                                                       (0.50, 0.50)
(0.50, 0.50)
Round
         992
                                               [497.25 497.
                                                                 497.
                                                                          497.251
                                                                                   [1491.75 1491.5
                                                                                                                .
[1491.
                                                                                                                          1491.25
                                                                                                                                                        (0.50, 0.50)
                                               [497.25 498.
                                                                                                                [1494.
                                                                 [498.
                                                                          497.25]
                                                                                   [1491.75 1492.5
                                                                                                                          1493.25]
                                                                                                                                                       (0.50, 0.50)
Round
         993
                                              [498.25 498.
[498.25 499.
                                                                                                                [1494.
[1497.
                                                                                                                          1494.25]
1496.25]
Round
         994
                                                                 498.
                                                                          498.251
                                                                                   [1494.75 1494.5
                                                                                                                                       (0.50, 0.50)
                                                                                                                                                        (0.50, 0.50)
                                                                                   [1494.75 1495.5
                                                                 [499.
         995
                                                                          498.25]
                                                                                                                                       (0.50, 0.50)
                                                                                                                                                       (0.50, 0.50)
Round
                                               [499.25 499.
[499.25 500.
                                                                                                                                       (0.50, 0.50)
(0.50, 0.50)
Round
                                                                 499.
                                                                          499.25]
                                                                                   [1497.75 1497.5
                                                                                                                1497.
                                                                                                                          1497.25
                                                                                                                                                        (0.50, 0.50)
                                                                                   [1497.75 1498.5
Round
         997
                                                                 ſ500.
                                                                          499.251
                                                                                                                Γ1500.
                                                                                                                          1499.25
                                                                                                                                                       (0.50, 0.50)
                                                                 [500.
                                                                                   [1500.75 1500.5
                                                                                                                [1500.
                                                                                                                          1500.25]
                                                                                                                                       (0.50, 0.50)
Round
         999
                                               [500.25 501.
                                                                 Γ501.
                                                                          500.25] [1500.75 1501.5
                                                                                                                Γ1503.
                                                                                                                          1502.25
                                                                                                                                       (0.50, 0.50)
                                                                                                                                                       (0.50, 0.50)
Round
                                              [501.25 501.
                                                                          501.25] [1503.75 1503.5
                                                                                                                [1503.
                                                                                                                                       (0.50, 0.50)
```


With carefully picking the initial belief, it can converge to three of the Nash equilibrium. It can be seen from the screenshots and figure above. In the pure-strategy case, it can correctly converge to (1, 1) and (2, 2). In the mixed-strategy case, it can converge to the same as the question statement.

Q10

No. Take the rock-paper-scissors game for example. Let's consider the game matrix below:

	R	S	Р
R	0, 0	1, 0	0, 1
S	0, 1	0, 0	1, 0
Р	1, 0	0, 1	0, 0

And setting the initial belief to [0, 1, 0], [1, 0, 0], maximum round to 3000, threshold to 0.0001.

We can see that even though the game is played for 3000 rounds, it still can't converge. The game will go into an infinite cycle. It can be observed by the figure below, which behaves pretty much differently to the previous games.

Note that from the screenshots in the previous ten questions, the probability for pure-strategy sometimes doesn't be exactly (0.00, 1.00) or (1.00, 0.00). However, it is obvious that if the games keep playing, the results will eventually be like that.

Code explanation

The class **FictiousPlay** contains information about each game, including number of the players, number of the actions (default to 2 in this case), current payoff, current belief, game matrix and current action.

```
class FictiousPlay:
    # Assume it always have only 2 players in this assignment
    # Then we can take advantages of it when implementing the code
    def __init__(self, matrix, player_num = 2, action_num = 2):
        self.matrix = matrix
        self.player_num = player_num
        self.action_num = action_num
        self.action_name = [i for i in range(action_num)]
        self.players_payoff = np.zeros(shape = (player_num, action_num))
        self.players_belief = np.ones(shape = (player_num, action_num))
        self.players_action = ["NA" for i in range(player_num)]
```

The function **calculate_payoff()** will calculate payoff depending on the current belief and game matrix. After the result is computed, it will also be updated to the game instance.

In the function **take_action()**, players will choose one strategy and the belief will be updated. If a player has more than one best response in each round, then the player will randomly pick one action.

The **play()** function is one of the important parts in this assignment. For each round, two players will calculate the payoff and decide one strategy. After that, the row, which includes current round information, will be printed.

```
# play the game for n round or less when converge
def play(self, round = 1000, threshold = 0.005, plot = False):
            print("Round\t\t1's action 2's action\t1's belief\t2's belief\t1's payoff\t2's payoff\t2's payoff
           history = []
            for i in range(round):
                         self.calculate_payoff()
                         self.take_action()
                         self.calculate_payoff()
                        player1_total = sum(self.players_belief[0])
                         player2_total = sum(self.players_belief[1])
                         prob1_1 = self.players_belief[0][0] / player1_total
                         prob1_2 = self.players_belief[0][1] / player1_total
                         prob2\_1 = self.players\_belief[1][0] / player2\_total
                         prob2_2 = self.players\_belief[1][1] / player2\_total
                         \verb|history.append(prob1_1)|\\
                         y.append(i+1)
                          print("Round {::>5d}\t{::>8d}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{::10s}\t{:10s}\t{:10s}\t{:10s}\t{::10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:10s}\t{:1
                                                                                    self.players_action[0], self.players_action[1],
```

Note that for the last two columns in the output, it means the percentage of player1 and player2 belief.

```
change1 = abs(prob1_1 - prev1)
  change2 = abs(prob2_1 - prev2)
  if change1 <= threshold and change2 <= threshold:
      print("The game converges in round {}".format(i+1))
      break
  prev1 = prob1_1
  prev2 = prob2_1
  if plot:
    plt.plot(y, history)
    plt.show()</pre>
```

At the end, the function will compute the difference between current belief percentage and the previous one. If the difference is smaller than the threshold, the game stops.

This function also has another parameter called plot. When the parameter plot equals True, at the end of the function, the curve of player1's belief history will be printed. Therefore, we can observe if the game converges or not.

For each game, we can easily initialize it with the game matrix. Then, call the play() function to start the game.

By default, the initial belief is an all one's array. We can also set beliefs using the set_belief() function to change the initial setting.