Multidimensional

Medidas de dissimilaridade e Escalonamento

Universidade Federal do ABC

Mineração de Dados

Pré-processamento

Escalonamento Multidimensional

- ► Em diversos algoritmos precisaremos de uma medida de (dis)similaridade entre objetos
 - ► Lembra dos k vizinhos mais próximos para estimar densidade?
- Dependendo do tipo dos dados, diversas medidas são possíveis
 - Veremos apenas as mais comuns
 - ► Alguns algoritmos assumem certos tipos de medidas, quando for o caso isto será ressaltado

- Começaremos considerando medidas de dissimilaridade
 - ► Na maioria dos casos é trivial transformar os valores para similaridade

$$s = -d, s = 1 - d, s = \frac{1}{1+d}$$

► Maioria dos algoritmos é descrito assumindo que se tem acesso à uma função de dissimilaridade/distância ou à uma matriz de dissimilaridades/distâncias

 $d(\mathbf{x}_i,\mathbf{x}_j)$ dissimilaridade entre o objeto \mathbf{x}_i e \mathbf{x}_j

$$D_{N,N} = \begin{pmatrix} d(\mathbf{x}_1, \mathbf{x}_1) & \cdots & d(\mathbf{x}_1, \mathbf{x}_N) \\ \vdots & \vdots & \vdots \\ d(\mathbf{x}_N, \mathbf{x}_1) & \cdots & d(\mathbf{x}_N, \mathbf{x}_N) \end{pmatrix}$$

Função de distância

- ▶ Se $d(\mathbf{a}, \mathbf{b})$ é uma métrica, esta computa a distância entre dois pontos \mathbf{a} e \mathbf{b} , temos que:
 - \blacktriangleright $d(\mathbf{a}, \mathbf{b}) > 0, \forall \mathbf{a}, \mathbf{b}$
 - $ightharpoonup d(\mathbf{a}, \mathbf{b}) = 0$, apenas se $\mathbf{a} = \mathbf{b}$
 - $d(\mathbf{a}, \mathbf{b}) = d(\mathbf{b}, \mathbf{a})$
 - $d(\mathbf{a}, \mathbf{c}) \le d(\mathbf{a}, \mathbf{b}) + d(\mathbf{b}, \mathbf{c})$
- ► Algumas medidas de distância não obedecem todas as regras, neste caso, não são propriamente métricas

Função de distância Euclidiana

- ► A função de distância mais utilizada é a distância Euclidiana:
 - ► Sim, aquela que você já conhece :)
 - ightharpoonup Seja **a** e **b** dois vetores em \mathbb{R}^M :

$$d_{\text{EUC}}(\mathbf{a}, \mathbf{b}) = \sqrt{\sum_{m=1}^{M} (a_m - b_m)^2}$$

- ► Muitas vezes precisamos apenas da relação de ordem entre as distâncias
- ▶ Portanto, é comum considerar a distância Euclidiana ao quadrado

Função de distância Euclidiana

► Forma vetorial

$$d_{\text{EUC}}^2(\mathbf{a}, \mathbf{b}) = (\mathbf{a} - \mathbf{b})^T (\mathbf{a} - \mathbf{b})$$

$$d_{\text{EUC}}^2(\mathbf{a}, \mathbf{b}) = \mathbf{a}^T \mathbf{a} + \mathbf{b}^T \mathbf{b} - 2\mathbf{a}^T \mathbf{b}$$

- ► Em alguns contextos essa forma de descrever a distância Euclidiana é útil
 - ► Similaridade do coseno
 - ► Escalonamento multidimensional

Função de distância Manhattan

► Também chamada de city-block e taxicab

$$d_{\text{MNH}}(\mathbf{a}, \mathbf{b}) = \sum_{m=1}^{M} |a_m - b_m|$$

▶ Pensando em cidades pode ser visto como percorrendo as ruas

Comparação entre distância Euclidiana e Manhattan

▶ Basta lembrar da equação do círculo e da reta

$$(x-c)^2 + (y-c)^2 = r^2$$

 $ax + by + c = 0$

Função de distância de Mahalanobis

- ► Considera as variâncias e covariâncias (correlações) das variáveis
 - ightharpoonup E equivale a matriz de covariância dos dados
- ► Aparece na distribuição Gaussiana multivariada
- ightharpoonup Se $\Sigma = \mathbf{I}$ equivale a distância Euclidiana
 - \blacktriangleright Se Σ for diagonal (covariâncias iguais a 0) equivale a distância euclidana normalizada (pela variância)

$$d_{\text{MAH}}^2(\mathbf{a}, \mathbf{b}) = (\mathbf{a} - \mathbf{b})^T \Sigma^{-1} (\mathbf{a} - \mathbf{b})$$

Função de distância entre atributos ordinais

- ▶ O mais comum é assumir que os rankings estão em escala intervalar
 - ► Dessa forma, pode-se aplicar a distância Euclidiana/Manhattan nos rankings
- ► Por exemplo:
 - ightharpoonup Aluno 1 = [A, B, C, A, B]; Aluno 2 = [B, B, B, B, B]
 - ightharpoonup Rankings = [F = 0, D = 1, C = 2, B = 3, A = 4]

$$d_{MNH}(A1, A2) = |4-3| + |3-3| + |2-3| + |4-3| + |3-3| = 3$$

Função de distância entre atributos binários

- ► Medidas para este tipo de atributos são baseadas nas seguintes quantidades:
 - $ightharpoonup f_{00}$ número de atributos em que ${f x}$ e ${f y}$ são iguais a 0
 - $ightharpoonup f_{11}$ número de atributos em que ${f x}$ e ${f y}$ são iguais a 1
 - $ightharpoonup f_{10}$ número de atributos em que \mathbf{x} é 1 e \mathbf{y} é 0
 - ▶ f_{01} número de atributos em que \mathbf{x} é 0 e \mathbf{y} é 1
- ► Coeficiente de casamento simples:

$$s_{SMC} = \frac{f_{11} + f_{00}}{f_{01} + f_{10} + f_{11} + f_{00}}$$

$$d_{SMC} = 1 - s_{SMC}$$

Função de distância entre atributos binários

- ► E quando o 0 não é informativo?
 - ► Comparação entre matrículas de alunos
 - ► Comparação entre compras em um supermercado
- ► Coeficiente de Jaccard

$$s_J = \frac{f_{11}}{f_{01} + f_{10} + f_{11}}$$

$$d_J = 1 - J$$

▶ Qual o valor de d_{SMC} e d_J para $\mathbf{x} = (1, 0, 0, 0, 0)$ e $\mathbf{y} = (0, 1, 0, 0, 1)$?

Função de distância entre atributos nominais (caso geral)

► A mais utilizada é a de Casamento Simples

$$s_{CS} = \sum_{m=1}^{M} \mathbb{1}\{x_m = y_m\}$$

$$d_{CS} = M - s_{CS}$$

- ▶ Para algumas aplicações existem medidas mais úteis
 - ► Edit distance
 - ► Qwerty distance

Funções de distância

- ► Existem diversas medidas utilizadas para computar distância/dissimilaridade:
 - ► Baseadas em correlação (Pearson, Spearman, Kendall, etc)
 - ► Medida do coseno (muito usada em Mineração de Textos)
 - ► Medidas específicas para comparar imagens (Structural Similarity)
 - ▶ ...
- ► Alguns algoritmos assumem certas premissas sobre as distâncias/dissimilaridades
 - ► Adaptações podem ser necessárias no algoritmo
 - ▶ Pode ser necessário utilizar uma medida específica para certo algoritmo

Pré-processamento

Escalonamento Multidimensional

- ► Considere a distância Euclidiana e os seguintes dados:
 - $\mathbf{x} = (23, 2500), \mathbf{y} = (55, 3000)$
 - ► Os atributos são: idade e salário
 - ▶ Os atributos tem o mesmo peso no cálculo da distância?
 - ► Como resolver?

- \blacktriangleright Seja **z** o vetor correspondente a um atributo e z um de seus valores
- ightharpoonup Normalizar entre [0, 1]:

$$z' = \frac{z - min(\mathbf{z})}{max(\mathbf{z}) - min(\mathbf{z})}$$

► Transformar para média igual 0 e desvio padrão igual a 1

$$z' = \frac{z - \bar{z}}{\sigma_z}$$

► Quando usar um ou outro?

- ▶ Muitos algoritmos não aceitam atributos nominais
 - \blacktriangleright Podemos converter para um conjunto de atributos binários (representação $\textit{one-of-K}\xspace)$
- ► Exemplos:
 - ► Atributo Função: {Aluno, Técnico, Docente} -> {00, 01, 10}

- ▶ Pode ser necessário o caminho inverso (contínuo -> discreto)
 - ► Algoritmos que criam regras podem ser mais eficientes com atributos discretos
 - ► Essa transformação é chamada de discretização
 - Existem diversas abordagens, hoje iremos falar de duas simples:
 - ► Largura fixa
 - ► Frequência fixa

Discretização - Largura fixa

- ▶ Separar o intervalo dos dados $([min(\mathbf{z}), max(\mathbf{z})])$ em intervalos de tamanho igual especificado pelo usuário
- ► Exemplo:
 - ► Separar em intervalos de tamanho 5

$$\mathbf{z} = (32, 34, 43, 45, 51, 59, 62, 67, 68, 69, 70, 71, 72)$$

- ▶ O bucket que o valor da observação está corresponde ao novo valor do atributo
 - Limite inferior do primeiro bucket e superior do último podem ser $-\infty$ e $+\infty$

Discretização - Largura fixa

- ► Exemplo:
 - ► Separar em intervalos de tamanho 5

$$\mathbf{z} = (32, 34, 43, 45, 51, 59, 62, 67, 68, 69, 70, 71, 72)$$
$$[32, 37) = \{32, 34\} \quad [37, 42) = \{\} \quad [42, 47) = \{43, 45\}$$
$$[47, 52) = \{52\} \quad [52, 57) = \{\} \quad [57, 62) = \{\}$$
$$[62, 67) = \{62\} \quad [67, 72) = \{67, 68, 69, 70, 71\} \quad [72, 77) = \{72\}$$

Discretização - Frequência fixa

- ▶ Separar o intervalo dos dados ($[min(\mathbf{z}), max(\mathbf{z})]$) em intervalos com *aproximadamente* o mesmo número de objetos, sendo o número de intervalos especificado pelo usuário
- ► Exemplo, separar em 5 intervalos:
 - ▶ 13 itens, 5 intervalos 13/5 = 2.6, logo nem todos os intervalos vão ter o mesmo número de itens

$$\mathbf{z} = (32, 34, 43, 45, 51, 59, 62, 67, 68, 69, 70, 71, 72)$$

- ▶ O bucket que o valor da observação está corresponde ao novo valor do atributo
- ► Evita que um determinado *bucket* tenha muitos itens enquanto outros ficam vazios

Discretização - Frequência fixa

- ► Exemplo, separar em 5 intervalos:
 - ▶ 13 itens, 5 intervalos 13/5 = 2.6, logo nem todos os intervalos vão ter o mesmo número de itens

$$\mathbf{z} = (32, 34, 43, 45, 51, 59, 62, 67, 68, 69, 70, 71, 72)$$
$$[32, 45) = \{32, 34, 43\} \quad [45, 62) = \{45, 51, 59\}$$
$$[62, 69) = \{62, 67, 68\} \quad [69, 72) = \{69, 70, 71\} \quad [72, +\infty) = \{72\}$$

- ▶ O bucket que o valor da observação está corresponde ao novo valor do atributo
- ► Evita que um determinado *bucket* tenha muitos itens enquanto outros ficam vazios

Pré-processamento

Escalonamento Multidimensional

- ► Vimos como obter uma matriz de distância a partir de um conjunto de dados
- ► E se tivermos apenas a matriz de distância e quisermos visualizar os dados de forma aproximada
- ▶ Por que não teríamos os dados?
 - ► Confidencialidade
 - ► Dados intrinsicamente relacionais (distâncias obtidas de forma subjetiva)

- ▶ Para este problema podem ser utilizadas técnicas de Multidimensional Scaling
 - ► Existem várias técnicas possíveis
 - Abordaremos a mais tradicional, derivada a partir de distância Euclidiana

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1^T \\ \vdots \\ \mathbf{x}_N^T \end{bmatrix}$$

$$d_{\text{EUC}}^2(\mathbf{a}, \mathbf{b}) = \mathbf{a}^T \mathbf{a} + \mathbf{b}^T \mathbf{b} - 2\mathbf{a}^T \mathbf{b}$$
$$d_{\text{EUC}}^2(\mathbf{x}_i, \mathbf{x}_j) = \mathbf{x}_i^T \mathbf{x}_i + \mathbf{x}_j^T \mathbf{x}_j - 2\mathbf{x}_i^T \mathbf{x}_j$$

$$d_{ij}^2 = b_{ii} + b_{jj} - 2b_{ij}$$

$$B = \mathbf{X}\mathbf{X}^T \to b_{ij} = \sum_{m=1}^M x_{im} x_{jm}$$

- ightharpoonup Vamos assumir que temos a matriz $D_{N,N}$ mas não temos ${f X}$
 - \blacktriangleright Precisamos encontrar os valores da matriz Ba partir da matriz D

▶ Para restringir a solução, consideramos que os dados estão centrados na origem

$$\sum_{m=1}^{M} x_{im} = 0, \forall i \in \{1, \dots, N\}$$

► Define-se também:

$$T = \sum_{n=1}^{N} b_{nn}$$

▶ Somamos $d_{ij}^2 = b_{ii} + b_{jj} - 2b_{ij}$ sobre i, j e ambos obtendo três novas equações

$$\sum_{i=1}^{N} d_{ij}^2 = T + Nb_{jj}$$

$$\sum_{j=1}^{N} d_{ij}^2 = Nb_{ii} + T$$

$$\sum_{i=1}^{N} \sum_{j=1}^{N} d_{ij}^2 = 2NT$$

▶ Podemos definir:

$$d_{\cdot j}^{2} = \frac{1}{N} \sum_{i=1}^{N} d_{ij}^{2}$$

$$d_{\cdot \cdot}^{2} = \frac{1}{N} \sum_{j=1}^{N} d_{ij}^{2}$$

$$d_{\cdot \cdot}^{2} = \frac{1}{N^{2}} \sum_{i=1}^{N} \sum_{j=1}^{N} d_{ij}^{2}$$

$$b_{ij} = \frac{1}{2} (d_{r \cdot}^{2} + d_{\cdot \cdot s}^{2} - d_{\cdot \cdot \cdot}^{2} - d_{ij}^{2})$$

- ightharpoonup Conseguimos obter a matriz B a partir de D
 - ► Lembre-se que assumimos que $B = \mathbf{X}\mathbf{X}^T$
- ▶ Podemos decompor $B = CDC^T = (CD^{1/2})(CD^{1/2})^T$, dado que ela é simétrica
 - ► decomposição espectral
 - ightharpoonup C matriz de autovetores de B dispostos nas colunas
 - ightharpoonup D matriz diagonal de autovalores de B
- ▶ Logo, podemos aproximar $\tilde{\mathbf{X}} = CD^{1/2}$
 - ► Se vamos visualizar os dados, usamos apenas os 2 ou 3 primeiros autovetores (autovalores)
 - ightharpoonup $\tilde{\mathbf{X}}$ não é necessariamente igual a \mathbf{X} (outro sistema de coordenadas)

► Exemplo:

▶ Base de dados com a distância (euclidiana) entre as coordenadas dos centros de 6 cidades brasileiras

Ourinhos	0.0	3.4	4.8	15.1	22.3	7.2
Santo André	3.4	0.0	4.4	13.4	24.6	7.9
Florianópolis	4.8	4.4	0.0	17.7	27.0	3.6
Salvador	15.1	13.4	17.7	0.0	23.7	21.3
Manaus	22.3	24.6	27.0	23.7	0.0	28.3
Porto Alegre	7.2	7.9	3.6	21.3	28.3	0.0

ESCALONAMENTO MULTIDIMENSIONAL Exemplo MDS

Referências

P. Tan, M. Steinbach e V. Kumar, Introduction to Data Mining. **Seção 2.4**

E. Alpaydin, Introduction to Machine Learning. Seção 6.5