DNA methylation – does it matter?

Andy Read Feb. 15, 2024

Introduction

Background epigenetics/epigenomics, 3 contexts matter

A Setaria methylation mutant

What are we missing?

How dynamic is DNA methylation?

USDA-Agricultural Research Service Wheat and Oat Geneticist

Started with USDA-ARS in September 2023

My office and lab are on the UMN St. Paul campus (Borlaug Hall)

Currently just a technician and myself - but looking to grow

Something to think about:

USDA funded postdoc minimum \$64k/year Not all postdocs in USDA labs are USDA funded

My scientific journey

A few years in industry

Maize and Setaria (epi)genomes and transposon biology

PhD – Molecular warfare between rice and bacteria

What is epigenetics?

Epigenetics: Genomic modification that alter gene expression that cannot be attributed to modification of the primary DNA sequence and that are **heritable** mitotically and meiotically (**DNA methylation and histone modifications**)

Crisp et al. (2021) Current Opinion in Biotech.

DNA methylation – context matters

Why do I care?

Bacterial leaf streak of rice – major problem in Asia and emerging problem in West Africa

The plant immune system is diverse and complex – must be **highly regulated** to balance robust response to pathogens and avoid auto-immunity

How is DNA methylation related to gene expression?

Deleris et al. (2016) Annual Rev.

Transposable elements and plant immunity genes (NLRs)

Lai et al. (2020) PLoS Genet.

Setaria viridis – a model monocot

- Small C4 grass
- Short life-cycle (8-10 weeks)
- Small genome ~400 Mb
- Transformable
 A DNA methylation pathway mutant library is being built

A Setaria viridis methylation pathway mutant library

DRM

De novo methylation mCHH maintenance

mCG maintenance

mCHG maintenance

mCHH maintenance deep in transposons

Active Demethylation

The first methylation pathway mutant - ∆drm1ab

De novo methylation mCHH maintenance

CRISPR/Cas generated pre-mature stop codons – prior to motif required for activity

What do we expect to observe when we look at DNA methylation and Transposons?

Methylation changes in the ∆drm mutant

- Globally, most CHH methylation was lost
- Some sites also lost CG and CHG methylation
- Gene expression changes were limited and not predicted by mCHH changes
- Expression of some transposons was up-regulated in the mutant

No <u>major</u> growth defects in ∆drm in standard growth conditions

What will happen under stress?

Measuring DNA methylation – What are we missing?

Existing methods:

- Whole tissue homogenate
 - Signal is an average of cell types
- chemical/enzymatic conversion
- Short read sequencing
 - Challenging over repetitive areas (TEs)

- Nanopore sequencing
 - No conversion required
 - Long reads map to complex regions of the genome

Calling DNA methylation with Nanopore

Calling DNA methylation with Nanopore

Nanopore seems like a promising tool to characterize DNA methylation in future experiments

Is DNA methylation static or dynamic?

Deleris et al. (2016) Annual Rev.

Is DNA methylation static or dynamic? Mostly static

Crisp et al. (2020) PNAS

Recent work has demonstrated the utility of using DNA methylation profiles, rather than chromatin accessibility or <a href="https://doi.org/nistone.com/histone.co

Crisp et al. (2021) Current Opinion in Biotech.

Is DNA methylation static or dynamic? ...but sometimes dynamic

Williams et al. (2015) PLOS Genetics

Can we improve signal by enriching for cells experiencing stress?

Heterogeneity of immune responses

Zhang et al. (2020) Mol. Plant

INTACT allows antibody-based nuclei sorting

In humans, changes in DNA methylation are associated with cancers

Chen et al. (2022) Front Bioscience-Landmark

Take homes:

DNA methylation occurs in three contexts: CG, CHG, CHH – these have different impacts on DNA accessibility and gene expression

DNA methylation is *mostly* static – Unmethylated regions identified in a single tissue are associated with open chromatin and expression in at least one tissue type.

Some DNA methylation is dynamic, impacted by stress or developmental stage – how important is this?

DNA methylation data can highlight genomic loci that can guide breeding or engineering efforts