Estadistica Computacional

Analisis de datos

Temario

- Medidas de tendencia central.
- Medidas de dispersion.
- Medidas de localizacion.
- Medidas de forma.
- Medidas de asociacion de variables.
- Independencia estadistica.

Medidas de tendencia central

Media aritmetica

$$\overline{x} = rac{1}{n} \sum_{i=1}^n x_i \qquad \overline{x} = rac{1}{n} \sum_{i=1}^n f_i X_i$$

Propiedades interesantes:

- 1. $mean(\{kx_i\}) = k \cdot mean(\{x_i\})$
- 2. $mean(\{x_i + c\}) = mean(\{x_i\}) + c$

Mediana

- Para datos no agrupados ordinales o cuantitativos se deben ordenar los datos de menor a mayor y tomar el del medio. Si n es par entonces se toma el promedio de los dos centrales.
- Para datos agrupados ordinales o cuantitativos la clase mediana es aquella que acomula al menos el 50% de los datos.
- Para datos cuantitativos se puede obtener mediante una linda formula. •

Moda

- Para datos no agrupados es el dato con mayor frecuencia.
- Para datos agrupados la clase modal es aquella con mayor frecuncia absoluta.
- Para datos cuantitativos se puede obtener la mediana mediante una linda formula. •
- Unica medida para datos nomimales. 😢

Medidas de dispersion

• Indican la precision de los datos.

Varianza

$$S_n^2 = rac{1}{n} \sum_{i=1}^n (x_i - \overline{x})^2 \qquad S_n^2 = \sum_{i=1}^k f_i (X_i - \overline{x})^2$$

Una posible interpretacion es el error cuadratico medio.

Propiedades interesantes:

1.
$$var(\{kx_i\})$$
 = $k^2 \cdot var(\{x_i\})$

2.
$$var(\{x_i + c\}) = var(\{x_i\})$$

Desviacion estandar

$$S_n = \sqrt{rac{1}{n}\sum_{i=1}^n(x_i-\overline{x})^2} \qquad S_n = \sqrt{\sum_{i=1}^kf_i(X_i-\overline{x})^2}$$

Propiedades analogas se pueden inferir tomando la raiz de las propiedades de la varianza.

Desviacion media

$$MD = rac{1}{n}\sum_{i=1}^n |x_i-\overline{x}| \qquad MD = \sum_{i=1}^k f_i |X_i-\overline{x}|$$

Coeficiente de variacion

- Indica el nivel de homogeneidad de los datos
- Permite comparar dipersiones de dos distribuciones distintas.

$$CV = rac{S}{\overline{x}}$$

Medidas de localizacion

- Dividen la muestra en partes iguales.
- Permiten clasificar a un dato dentro de una determinada categoria.
- Las principales son los cuartiles y los percentiles.
- Permiten generar (o motivan) otras medidas de dispersion como el IQR (la cajita del boxplot \heartsuit).

Medidas de forma

Medidas de asimetria

Indican el grado de simetria de la distribucion de probabilidad de los datos.

Coeficiente de Asimetria de Bowley-Yule

$$IS = rac{Q_1 + Q_3 - 2Q_2}{IQR}$$

Coeficiente de asimetria de Fisher 👓

$$\gamma_1=rac{\overline{m_3}}{S^3}$$

Achatamiento

Curtosis o coeficiente de apuntamiento

Complementa la informacion que brinda la varianza

$$\gamma_2=rac{\overline{m_4}}{S^4}-3$$

De donde viene el 3 ?

Medidas de asociacion de variables

 Indican si dos variables aleatorias tienen alguna relacion y en que grado.

Covarianza

Para datos no agrupados:

$$Cov(x,y) = rac{1}{n} \sum_{i}^{n} (x_i - \overline{x})(y_i - \overline{y})$$

Para datos agrupados:

$$Cov(x,y) = \sum_i^k f_{ij} (X_i - \overline{x}) (Y_i - \overline{y})$$

Indica si existe una relacion directamente proporcional o indirectamente proporcional.

Correlacion de Pearson

- Indica el **grado de relacion lineal** entre x e y.
- Si r_{xy} es cercano a 0, hay una relacion lineal debil o no existe tal relacion.
- Si r_{xy} es cercano a 1, hay una relacion lineal fuerte directamente prorpocional.
- Si r_{xy} es cercano a -1, hay una relacion lineal fuerte indirectamente prorpocional.

$$r_{xy} = rac{Cov(x,y)}{S_x S_y}$$

Independencia estadistica

- Independencia implica covarianza (y por lo tanto correlacion) igual a 0.
- Correlacion no implica dependencia.
- x e y son independientes ssi:

$$f_r(x_i,y_j) = f_r(x_i) \cdot f_r(y_j), \ orall i,j$$

Basta que un par (i,j) no cumpla la igualdad para garantizar que **no hay** independencia.

 La ecuacion anterior (regla de oro) se puede dejar en funcion de la frecuencia absoluta.