Введение в физику сверхпроводимости

Больгинов Виталий Валериевич

Понедельник, аудитория 420 ГЛК

Лекция 3

Кинетическая индуктивность сверхпроводников. Скин-эффект и поверхностный импеданс.

Действительная проводимость сверхпроводника

 $Adj_s/dt = E$

$$\sigma_{1n} = (n_n e^2 \tau / m) / [1 + (\omega \tau)^2]$$

$$T \rightarrow 0, \ n_n \rightarrow 0, \ \sigma_{1n} \rightarrow 0$$

$$T \to T_c n_n \to n$$
, (норм. пров.)

$$\sigma_{2s} = n_s e^2/(m\omega) = (n_s e^2 \tau/m)/\omega \tau \rightarrow \sigma /\omega \tau$$
 при $T \rightarrow 0$ $\sigma_{2s} \rightarrow 0$, $T \rightarrow T_c$

$$\sigma_{2n} = n_n e^2 (\omega \tau)^2 / m \omega [(1 + (\omega \tau)^2] \rightarrow 0$$
 при $T \rightarrow 0$

$$\sigma_{2n} = (n_n e^2 \tau / m)(\omega \tau) / m[(1 + (\omega \tau)^2] \rightarrow \sigma(\omega \tau) / [(1 + (\omega \tau)^2]$$

при $T \rightarrow T_c$

Второе уравнение Лондонов

Описывает распределение магнитного поля и тока в сверхпроводнике. Получается из минимизации внутренней энергии.

Пронкновение магнитного поля и тока в тонкую сверхпроводящую пластину

$$B(x) = B_0 ch(x/\lambda)/ch(d/2\lambda)$$

$$j_{\mathbf{v}}^{\mathbf{s}}(\mathbf{x}) = (\mathbf{B}_0/\mu_0\lambda) \, \mathbf{s}\mathbf{h}(\mathbf{x}/\lambda)/\mathbf{c}\mathbf{h}(d/2\lambda)$$

В случае тонкой пленки $(d << \lambda)$; $d/\lambda << 1$

 $ch(x/\lambda)$ u $ch(d/2\lambda) \rightarrow 1$ $B(x) \rightarrow B_0$; $sh(x/\lambda) = x/\lambda$ $j(x) = (B_0/\mu_0\lambda^2)x$;

Применение уравнений Лондонов. Распределение поля и тока в сверхпроводящей пластине с током

$$j_{SV}(x) = [I/(2\lambda)] \frac{ch}{(x/\lambda)} \frac{sh(d/2\lambda)}{d}$$

$$B_{\mathbf{z}}(x) = B_{\mathbf{I}} \frac{\sinh(x/\lambda)}{\sinh(d/2\lambda)}$$

Тон. пленка $B(x) = (\mu_0 I/dw)x$

Тон. пленка $j_{sv} = I / d$

Геометрическая индуктивность.

Перекачка энергии из электрического поля в конденсаторе в магнитное поле в соленоиде.

 $W = LI^2/2$, L - индуктивность.

Определение через магнитный поток витка.

$$\Phi = LI$$

Геометрическая индуктивность

Реактивное сопротивление

 $i\omega L$

Кинетическая индуктивность.

В сверхпроводнике важную роль играет кинетическая индуктивность, связанная с энергией, потраченной на разгон сверхпроводящих пар (запасенной в кин энергии сверхпроводящей компоненты тока) в соответствии с первым уравнением Лондонов (ур.L I):

Комплексная проводимость для гармонических сигналов

$$\sigma = \sigma_1 - i\sigma_2$$

$$\sigma_{1n} = (n_n/n)\sigma_n / [1+(\omega\tau)^2] \to 0 @ T \to 0, n_n \to 0$$

$$\sigma_{2n} = (n_n/n)\sigma_n [\omega\tau] / [(1+(\omega\tau)^2] \to 0 @ T \to 0$$

$$\sigma_{2s} = n_s e^2 / (m\omega) \to \sigma_n / \omega\tau @ T = 0$$

Cверхпроводник = индуктивность при $T << T_c$

Кинетическая индуктивность.

В сверхпроводнике важную роль играет кинетическая индуктивность, связанная с энергией, потраченной на разгон сверхпроводящих пар (запасенной в кин энергии сверхпроводящей компоненты тока) в соответствии с первым уравнением Лондонов (ур.L I):

Комплексная проводимость для гармонических сигналов

$$\sigma = \sigma_1 - i\sigma_2$$

$$\sigma_{1n} = (n_n/n)\sigma_n/[1+(\omega\tau)^2] \to 0 @ T \to 0, n_n \to 0$$

$$\sigma_{2n} = (n_n/n)\sigma_n [\omega \tau]/[(1+(\omega \tau)^2] \rightarrow 0$$
 @ T \rightarrow 0

$$\sigma_{2s} = n_s e^2/(m\omega)$$
 $\rightarrow \sigma_n / \omega \tau @ T = 0$

Cверхпроводник = индуктивность при $T << T_c$

Как перейти от удельных величин к конкретным? Как учесть форму сверхпроводника?

Кинетическая индуктивность.

Считаем кинетическую энергию, считаем полный ток и делим друг на друга.

Учитываем 2 уравнение Лондонов.

$$\begin{split} E_k &= \int n_s (m v_s^2 / 2) \; dV; \qquad j = n_s e \; v_s \; \to \; v_s = j \, / \, n_s e \\ E_k &= \int n_s (m \mathbf{j_s}^2 / 2 n_s^2 e^2) dV = (1/2) \int (m / n_s e^2) \mathbf{j_s}^2 dV \qquad \Lambda = m / (e^2 n_s) = \mu_0 \; \lambda_L^2 \end{split}$$

Интегрирование здесь ведется по объему сверхпроводника.

Учитываем 2 уравнение Лондонов.

$$L_{\mathbf{k}} = \Lambda \left(\int_{\mathbf{S}}^{2} dV \right) / I^{2}$$

$$I = \int_{S} dV$$

Кинетическая индуктивность сверхпроводящих структур (на единицу длины).

Сверхпроводящий провод с радиусом R>>\lambda.

(u длиной <math>l)

$$L_{\mathbf{k}} = \Lambda \left(\int_{\mathbf{S}}^{2} dV \right) / I^{2}$$

$$L_k = \Lambda \int (j_s^2/I^2) dV$$

Кинетическая индуктивность сверхпроводящих структур (на единицу длины).

Сверхпроводящий провод с радиусом R>>\lambda.

$$L_{\mathbf{k}} = \Lambda(\int_{\mathbf{j_s}}^{\mathbf{2}} dV) / I^{\mathbf{2}} \qquad L_{\mathbf{k}} = \mu \lambda^{2} (\int_{\mathbf{j_s}}^{\mathbf{2}} dV) / I^{\mathbf{2}}$$
$$j^{\mathbf{s}} = j^{\mathbf{s}}_{\mathbf{0}} \exp(-x/\lambda)$$

$$\int_{S} j_{s0}^{2} dV \approx \int_{S} j_{s0}^{2} e^{-2x/\lambda} l 2\pi R dx = \lambda j_{s0}^{2} l \pi R$$
 (2.18)

Полный ток:
$$\mathbf{I} = \int \mathbf{j_s} d\mathbf{S} \approx 2\pi \mathbf{R} \int \mathbf{j_s} dx = 2\pi \mathbf{R} \mathbf{j_{s0}} \lambda$$

$$L_{k} = \mu_{0} \lambda^{2} * \lambda j_{s0}^{2} l \pi R / (2\pi R j_{s0} \lambda)^{2}$$

$$L_{k}(1 \text{ m}) = \mu_{0} \lambda / 4\pi R$$
 (2.20)

Погонная кинетическая индутивность

Кинетическая индуктивность толстого сверхпроводящего бруска квадратного сечения $\mathbf{w} \times \mathbf{w}$ длиной l.

$$L_{\mathbf{k}} = \Lambda \int (j_{\mathbf{s}}^2/I^2) dV$$

$$L_{\mathbf{k}} = \Lambda \left(\int j_{\mathbf{s}}^{2} dV \right) / I^{2}$$

Кинетическая индуктивность толстого сверхпроводящего бруска квадратного сечения $\mathbf{w} \times \mathbf{w}$ длиной l.

Каждую сторону рассматриваем как сверхпроводящее полупространство.

$$j = j_0 \exp(-x/\lambda)$$

$$L_{\mathbf{k}} = \Lambda \left(\int_{\mathbf{S}}^{2} dV \right) / I^{2}$$

 $_{\infty}$ Для одной грани: 2 dV — i 2 exp(2 r/ 2) w/ dr — i 2 г 2 г 2 /2]*w*/

$$\int j_{s}^{2} dV = j_{s0}^{2} \int_{0}^{\infty} \exp(-2x/\lambda) w l dx = j_{s0}^{2} [\lambda/2] *w*l$$

Для всех граней:

$$4\int (j_s^2)dV = 4*j_0^2 [\lambda/2]*w*l$$

Полный ток:

$$I = 4 \int j_{\theta} e^{-x/\lambda} \mathbf{w} dx = 4 j_{\theta} \lambda \mathbf{w}$$

Кинетическая индуктивность:

$$L_k = [\mu_0 \lambda^2] * 4* j_0^2 [\lambda/2] * w*l / [4j_0 \lambda w]^2 = [\mu_0 \lambda/8]*[l / w]$$

Геометрическая индуктивность толстого сверхпроводящего бруска квадратного сечения w x w длиной *l*.

$$L_{\mathbf{k}} = \Lambda \int (j_{\mathbf{s}}^2 / I^2) dV$$

Полный ток:
$$I = 4 \int \boldsymbol{j_0} e^{-x/\lambda} \mathbf{w} \, dx = 4 \boldsymbol{j_0} \lambda \mathbf{w}$$

Геометрическая индуктивность толстого сверхпроводящего бруска квадратного сечения $w \times w$ длиной l.

$$L_{k} = [\mu_0 \lambda / 2] * [l / w]$$

Геометрическая индуктивность пластины (ее часть, связанная с энергией поля внутри сверхпроводника):

$$L_{\mathbf{M}}I^{2} = 4*\mu_{0} \int \mathbf{H}(\mathbf{x})^{2} d\mathbf{V} = 4*\mu_{0}[\mathbf{H}_{\mathbf{I}}^{2}] \int e^{-2x/\lambda} \mathbf{w} \boldsymbol{l} dx = 4*[\mu_{0}\lambda/2]*\mathbf{H}_{\mathbf{I}}*\mathbf{w}*\boldsymbol{l};$$

использовано: $H=H_{\mathbf{I}} e^{-x/\lambda}$

$$L_M = 4*[\mu_0 \lambda/2]*[I/4w]^2*w*l/I^2 = [\mu_0 \lambda/8]*[l/w]$$

использовано: $H_I = I / 4w$

$$L_{nonh} = L_M + L_k = [\mu_0 \lambda/4] * [l/w], \qquad L_{\square} = \mu_0 \lambda/4$$

$$L_{_{\square}}=\mu_{0}\lambda/4$$

Для типичной $\lambda \cong 75$ нм

$$L_{\Box} \cong 5 \ \Phi \Gamma$$
н.

$$\oint_{L} Hdl = \iint_{S} \left(\vec{j} + \frac{\partial D}{\partial t} \right) dS$$

Кинетическая индуктивность тонких сверхпроводящих пленок

$$L_{\square} = L_{\mathbf{M}} + L_{\mathbf{k}} = \mu_0 \lambda/4$$

Что если брусок сплющить? Индуктивность сверхпроводящей пластины.

Кинетическая индуктивность толстой пластины шириной w длиной l.

Каждую сторону рассматриваем как сверхпроводящее полупространство.

$$j = j_0 \exp(-x/\lambda)$$

Для одной грани:

$$\int j_{s}^{2} dV = j_{s0}^{2} \int_{0}^{\infty} \exp(-2x/\lambda) w l dx = j_{s0}^{2} [\lambda/2] *w*l$$

Для всех граней:

$$\int (j_s^2) dV = \frac{2}{3} j_\theta^2 [\lambda/2] w^* l$$

 $L_{\mathbf{k}} = \Lambda \int (j_{\mathbf{s}}^2 / I^2)$

Полный ток:
$$I = 2 \int \boldsymbol{j_0} e^{-x/\lambda} \mathbf{w} \, dx = 2 \boldsymbol{j_0} \lambda \mathbf{w}$$

Кинетическая индуктивность:

$$L_k = [\mu_0 \lambda^2] * 2* j_0^2 [\lambda/2] * w*l / [2j_0 \lambda w]^2 = [\mu_0 \lambda/4]*[l / w]$$

Кинетическая индуктивность тонких сверхпроводящих пленок

Геометрическая индуктивность пластины (ее часть, связанная с энергией поля внутри сверхпроводника):

$$L_{\mathbf{M}}I^{2} = 2 * \mu_{0} \int H(x)^{2} dV = 2 * \mu_{0} [H_{\mathbf{I}}^{2}] \int e^{-2x/\lambda} \mathbf{w} \mathbf{l} dx = 2 * [\mu_{0} \lambda/2] * H_{\mathbf{I}}^{*} \mathbf{w} * \mathbf{l};$$

использовано: $H=H_I e^{-x/\lambda}$

$$L_{M} = 2*[\mu_{0}\lambda/2]*[I/2w]^{2}*w*l/I^{2} = [\mu_{0}\lambda/4]*[l/w]$$

использовано: $H_I = I / 2w$

$$L_{\text{nonh}} = L_{M} + L_{k} = [\mu_0 \lambda/2] * [l/w],$$

Для типичной $\lambda \cong 75$ нм

$$L_{\scriptscriptstyle \square}$$
 $\cong 10$ фГн.

$$\oint_{L} Hdl = \iint_{S} \left(j + \frac{\partial D}{\partial t} \right) dS$$

Кинетическая индуктивность бруска и пластины

Кинетическая индуктивность тонких сверхпроводящих пленок

$$L_{\mathbf{k}} = \Lambda \int (j_{\mathbf{s}}^2 / I^2) dV$$

Сверхпроводящая пленка c d<<\\lambda:

Кинетическая индуктивность тонких сверхпроводящих пленок

$$L_{\mathbf{k}} = \Lambda \int (j_{\mathbf{s}}^2/I^2) dV$$

Сверхпроводящая пленка c d<< λ :

$$I \approx const,$$
 $j_s \approx I/wd$ $j_s/I \approx 1/wd$ на квадрат $l = w$

$$j_{s}/I \approx 1/\mathbf{w}d$$

$$L^{\Box}_{\mathbf{k}} = \mu_0 \lambda^2 \int (j_s^2 / \mathbf{I}^2) \mathbf{w} \, dx = \mu_0 \lambda^2 \int (\mathbf{I} / \mathbf{w} \, d)^2 \mathbf{w} \, dx = \mathbf{d} * \mu_0 \lambda^2 / \mathbf{d}^2 * [\mathbf{I} / \mathbf{w}]$$

$$L^{\Box}_{\mathbf{k}} = \mu_0 \lambda^2 / \mathbf{d} = \mu_0 \lambda^* (\lambda / \mathbf{d})$$

С уменьшением толщины кинетическая индуктивность повышается $\beta \lambda/d$ раз из-за ослабления экранировки.

Для типичной $\lambda \cong 75$ нм и толщины d=10 нм: $L_k^{\Box} \cong 7*10^{-13}$ $\Gamma_H = 0.7$ п Γ_H .

Геометрическая индуктивность тонких сверхпроводящих пленок

$$L_{\mathbf{k}} = \mu_0 \int H^2 dV / I^2$$

Геометрическая индуктивность тонких сверхпроводящих пленок

$$L_{\mathbf{k}} = \mu_0 \int H^2 dV / I^2$$

Сверхпроводящая пленка c d<< λ :

$$H_I = 2I / w$$
, $H(x) \approx 2xH_I / d = 4xI/wd$

$$L_{\rm H} = \mu_0 \int (4xI/wd)^2 \, \mathbf{w} \, \mathbf{l} \, dx / I = \mu_0 (4/wd)^2 \, \mathbf{w} \, \mathbf{l} \, \int \mathbf{x}^2 dx = (\mathbf{d}^3/12) * \mu_0 (4/d)^2 * [\mathbf{l} / \mathbf{w}]$$

$$L_{\rm H} = (4/3) \mu_0 d$$

Для типичной толщины d=10 нм: $L_{\rm H}^{\ \square} \approx 1.67*10^{-14} \, \Gamma_{\rm H} \cong 0.02 \, \Pi \Gamma_{\rm H}$.

$$L_{\rm H}^{\Box} = 0.03 L_{\rm K}^{\Box}$$

Кинетическая индуктивность сверхпроводящих пленок

Индуктивность толстой сверхпроводящей пленки над сверхпроводящим экраном.

Сверхпроводящая пластина из ниобия с током I расположена на расстоянии b над полубесконечным сверхпроводящим экраном из свинца

Индуктивность толстой сверхпроводящей пленки над сверхпроводящим экраном.

Сверхпроводящая пластина с током I расположена на расстоянии b над полубесконечным сверхпроводящим экраном

Поле $H_0 = 2H_I = I/w$ "заперто" в "магнитном" зазоре $t_M = \lambda_1 + b + \lambda_2$, сверхток течет по внутренней поверхности пленки и экрана.

Индуктивность пленки на квадрат = $\mu_0 \lambda_1$

Индуктивность изображения на квадрат = $\mu_0 \lambda_2$

Индуктивность, связанная с полем в помежутке b:

$$L_H^{\Box} = \mu_0 (2H_I)^2 w^2 b / I^2 = \mu_0 (2I/2w)^2 w^2 b / I^2$$

$$L_H^{\square} = \mu_0 b$$
.

$$H_{\mathbf{I}} = I/2\mathbf{w}, I = H_{I}*\mathbf{w}$$

Полная индуктивность на квадрат: $L^{\square}_{total} = \mu_0 (\lambda_1 + \lambda_2 + b)$ (2.22)

Индуктивность сверхпроводящей петли над сверхпроводящим экраном

уменьшение индуктивности, возникающее при размещении сверхпроводящего элемента (петли) над сверхпроводящей экранирующей плоскостью ("ground plane")

Индуктивность такой петли в норм состоянии (из справочника):

$$L_{\mathbf{n}} = R\mu_0 \left[\ln(16 \ R/w) - 2 \right]$$
 (2.23)
R=100 мкм, $w = 10$ мкм дают $L_{\mathbf{n}} \cong 4*10^{\textbf{-10}}$ Гн

Если сверхпроводящаяи петля расположена над сверхпроводящей экранирующей плоскостью, ее индуктивность равна:

$$L_{s} = (2\pi R/w) \mu_{0}(\lambda_{1} + \lambda_{2} + b);$$
 (2 $\pi R/w$ - число квадратов) (2.24)

Оценки по формулам ур.(2.23 и 2.24) дают для $\lambda \cong 40$ нм и b=200 нм : $L_{\rm s} \cong 2^*10^{-11}$ Гн,

т.е. *индуктивность упала в 20 раз !*

Размещение сверхпроводящего элемента (петли) над сверхпроводящей экранирующей плоскостью ("ground plane")

Размещение сверхпроводящего элемента (петли) над сверхпроводящей экранирующей плоскостью ("ground plane")

Размещение сверхпроводящего элемента (петли) над сверхпроводящей экранирующей плоскостью ("ground plane")

Скин-эффект в сверхпроводниках.

Нормальный скин-эффект.

Пусть на сверхпроводящее полупространство падает электромагнитная волна

Нормальный скин-эффект.

Пусть на сверхпроводящее полупространство падает электромагнитная волна

Плоская, гармоническая

E, **H**,
$$\mathbf{j}_{s}$$
, $\mathbf{j}_{n} = \operatorname{const}^{*} \sin (kx + \omega t)$

- 1. Легко реализуемы экспериментально.
- 2. Удобно использовать при анализе дифференциальных уравнений.
- 3. Негармонические периодические сигналы могут быть разложены в ряд Фурье по гармониками sin(kωt) или cos(kωt).
- 4. Непериодические сигналы могут быть разложены в интеграл Фурье по частотам.

Гармонические сигналы

$$\mathbf{E}, \mathbf{j}_{s}, \mathbf{j}_{n} = \operatorname{const*sin}(\omega t)$$

$$\mathbf{E}, \, \mathbf{j}_{s}, \, \mathbf{j}_{n} = \mathrm{const}^{*} \, \mathbf{e}^{i\omega t} = \mathrm{cos}(\omega t) + i^{*}\mathrm{sin}(\omega t)$$

$$d \, \{ \mathbf{e}^{i\omega t} \} / dt = i\omega^{*}\mathbf{e}^{i\omega t}$$

$$\Lambda d\mathbf{j}_{s} / dt = E(t) \quad \rightarrow \quad \Lambda d\{ \sigma_{s} \, E(t) \} / dt = E(t) \quad @ \quad \mathbf{j}_{s} = \sigma_{s} E(t)$$

$$\Lambda \, \sigma_{s} \, dE(t) / dt = E(t) \quad = > \quad \Lambda \, \sigma_{s} \, i\omega \, E(t) = E(t) \quad = > \quad \Lambda \sigma_{s} i\omega = 1$$

$$\sigma_{s} = 1 / i \Lambda \omega = -i / \mu_{0} \lambda_{L}^{2} \omega$$

Плоская волна:
$$E(x,t) = E_0 \exp(-ikx) * exp(i\omega t) = E_0 \exp(-ikx + i\omega t)$$
 $k = 2\pi/\lambda$

He nymamb!!!

$$\partial E(x,t)/\partial x = -ik*E(x,t)$$
 $\partial E(x,t)/\partial t = -i\omega*E(x,t)$

Жонглирование мнимой единицей

$$i^2 = -1$$
 $1/i = i/i^2 = -i$ $1/(1+i) = (1-i)/\{(1+i)^*(1-i)\} = (1-i)/\{(1-i^2)\} = (1-i)/2$ $1/(1+i\omega\tau) = (1-i\omega\tau)/\{(1+i\omega\tau)^*(1-i\omega\tau)\} = (1-i\omega\tau)/\{1-(i\omega\tau)^2\} = (1-i\omega\tau)/\{1+(\omega\tau)^2\}$

Умножение (1 -
$$i$$
) на мнимую единицу = комплексное сопряжение (1 - i)* $i = i - i^2 = I + i$

Мнимая единица под квадратным корнем

$$\pm 2i = 1 \pm 2i - 1 = 1 \pm 2i + i^2 = (1 \pm i)^2$$
 — можно извлечь квадратный корень

Нормальный скин-эффект.

Система уравнений Максвелла в интегральной форме

$$\oint_{L} Edl = -\int_{S} \frac{\partial B}{\partial t} dS$$

$$\oint_{S} BdS = 0$$

$$\oint_{S} Hdl = \int_{S} \left(\vec{j} + \frac{\partial D}{\partial t} \right) dS$$

$$\oint_{L} DdS = \int_{V} \rho dV$$

Как получить уравнение для микроволнового поля в металле?

Нормальный скин-эффект.

 $j = \sigma E$

Уравнения Максвелла в дифференциальной форме

$$rotE = -\frac{\partial B}{\partial t}$$

$$divB = 0$$

$$rotH = j + \frac{\partial D}{\partial t}$$

$$divD = \rho$$

Система уравнений Максвелла в интегральной форме

$$\oint_{L} Edl = -\int_{S} \frac{\partial B}{\partial t} dS$$

$$\oint_{S} BdS = 0$$

$$\oint_{S} Hdl = \int_{S} \left(\vec{j} + \frac{\partial D}{\partial t} \right) dS$$

$$\oint_{L} DdS = \int_{V} \rho dV$$

Нормальный скин-эффект.

поверхность проводящего полупространства: отношение E/H в электромагнитной волне, взаимодействующей со сверхпроводником, однородно вдоль поверхности сверхпроводника (x=0).

Уравнения Максвелла в дифференциальной форме

$$rot E = -rac{\partial B}{\partial t}$$
 $div B = 0$
 $rot H = j + rac{\partial D}{\partial t}$
 $div D =
ho$

Из уравнений Максвелла, связывающих **Е** и **H**:

rot
$$\mathbf{H} = \mathbf{j} = \sigma \mathbf{E}$$
; (a)

rot | rot
$$\mathbf{H} = \mathbf{\sigma} \mathbf{E}$$
 (b)

rot rot
$$\mathbf{H} = \sigma \operatorname{rot} \mathbf{E}$$

rot
$$\mathbf{E} = -\partial \mathbf{B} / \partial t = -\mu_0 \partial \mathbf{H} / \partial t$$
; (b)

rot rot
$$\mathbf{H} = -\mu_0 \mathbf{\sigma} \partial \mathbf{H} / \partial t$$

Жонглирование оператором Гамильтона

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$

Градиент скалярной функции (направление наибольшего возрастания).

grad
$$u = \frac{\partial u}{\partial x}i + \frac{\partial u}{\partial y}j + \frac{\partial u}{\partial z}k$$
 grad $u(\mathbf{r}) = \nabla u(\mathbf{r});$

Дивергенция вектора (наличие источников и стоков силовых линий векторного поля)

Ротор (вихрь) векторного поля \overrightarrow{a}

$$rot \overrightarrow{a} = \begin{vmatrix} \overrightarrow{i} & \overrightarrow{j} & \overrightarrow{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_x & a_y & a_z \end{vmatrix} =$$

$$= \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right) \vec{i} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right) \vec{j} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right) \vec{k}$$

$$\operatorname{div} \vec{u} = \vec{\nabla} \vec{u} = \frac{\partial u_x}{\partial x} + \frac{\partial u_y}{\partial y} + \frac{\partial u_z}{\partial z}$$

Завихренность векторного поля.

$$rot \mathbf{a} = [\mathbf{\nabla} \times \mathbf{a}]$$

Двойное векторное произведение

rot rot
$$\mathbf{H} = [\nabla x [\nabla x \mathbf{H}]]$$

$$\nabla = \mathbf{i} \frac{\partial}{\partial x} + \mathbf{j} \frac{\partial}{\partial y} + \mathbf{k} \frac{\partial}{\partial z}$$

$$\vec{a} \times \left(\vec{b} \times \vec{c} \right) = \vec{b} \cdot (\vec{a} \cdot \vec{c}) - \vec{c} \cdot \left(\vec{a} \cdot \vec{b} \right)$$

$$\mathbf{a},\,\mathbf{b}=\nabla ,\,\mathbf{c}=\mathbf{H}$$
 \longrightarrow

 $\mathbf{a}, \mathbf{b} = \nabla, \mathbf{c} = \mathbf{H} \rightarrow \text{rot rot } \mathbf{H} = \text{grad div} \mathbf{H} - \nabla^2 \mathbf{H}$

$$\operatorname{div} \mathbf{H} = \partial H_{x} / \partial x + \partial H_{y} / \partial y + \partial H_{z} / \partial z$$

grad
$$u = \frac{\partial u}{\partial x}i + \frac{\partial u}{\partial y}j + \frac{\partial u}{\partial z}k$$

grad div
$$\mathbf{H} = \mathbf{i} (\partial^2 H_x / \partial x^2 + \partial^2 H_x / \partial x \partial y + \partial^2 H_x / \partial x \partial z + ...)$$

+ ...

Ротор (вихрь) векторного поля \overrightarrow{a}

$$\nabla^2 = (\nabla \nabla) = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}$$

$$rot\vec{a} = \begin{vmatrix} \vec{i} & \vec{j} & \vec{k} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ a_x & a_y & a_z \end{vmatrix} =$$

$$\nabla^2 \mathbf{H} = i^* \nabla^2 H_x + j^* \nabla^2 H_y + k^* \nabla^2 H_z$$

$$= \left(\frac{\partial a_z}{\partial y} - \frac{\partial a_y}{\partial z}\right)\vec{i} + \left(\frac{\partial a_x}{\partial z} - \frac{\partial a_z}{\partial x}\right)\vec{j} + \left(\frac{\partial a_y}{\partial x} - \frac{\partial a_x}{\partial y}\right)\vec{k}$$

Нормальный скин-эффект.

Из уравнений Максвела: $div \mathbf{H} = \mathbf{0}$

$$H(x,t) = H_{\omega} \exp(-\{i\mathbf{k}x + i\omega t\}) = H_{\omega} \exp(-ikx) * \exp(-i\omega t)$$

Скин-эффект в нормальном металле.

Из уравнений Максвела: $div \mathbf{H} = \mathbf{0}$

$$d^2H/dx^2 = -\mu_0\sigma\partial H/\partial t$$

Волна **H** распространяется вглубь проводника (вдоль x).

$$H^{(\omega)}(x,t) = H_0 \exp(-\{ikx + i\omega t\}) = H_0 \exp(-ikx) * exp(-i\omega t)$$

$$\kappa^{2} H^{(\omega)}(x,t) = -i \mu_{0} \sigma \omega H^{(\omega)}(x,t)$$

Выражение для волнового вектора: $\kappa^2 = -i \sigma \mu_0 \omega = -2i/\delta^2$,

$$\delta = (2/\mu_0 \sigma \omega)^{1/2}$$

$$\kappa = (1 - i)/\delta$$
 (2.32), поскольку $-2i = 1-2i + i^2 = (1-i)^2$

$$H_{x}^{(\omega)} = H_{0}^{(\omega)} \exp(-x/\delta) \exp\{-i(x/\delta - \omega t)\}$$

где
$$\delta=(2/\mu_0\sigma\omega)^{1/2}$$
 – скин-глубина

Электромагнитная волна

Mеталл: k_x – комплексный, $Re(k_x) = Im(k_x)$:

Скин-эффект в *сверхпроводниках*.

$$\kappa = (1 - i)/\delta \qquad (2.32)$$

$$\delta = (2/\sigma \; \mu_0 \omega)^{1/2}$$

$$\sigma = \sigma_1 - i\sigma_2$$

$$\sigma_1 - i\sigma_2 \qquad \sigma_1 = \frac{n_n}{n_s} \frac{\tau}{\Lambda} \frac{1}{1 + (\omega \tau)^2},$$

$$\Lambda = m/(e^2 n_s) = \mu_0 \lambda^2$$

$$\sigma_2 = \frac{1}{\Lambda\omega} \left[1 + \frac{n_n}{n_s} \frac{(\omega\tau)^2}{1 + (\omega\tau)^2} \right]$$

$$\omega * \tau = 2\pi \tau / T$$

Для T не слишком близких к T_c , не слишком высоких частот и не слишком чистого (лондоновского) сверхпроводника: $n_{r}/n_{s} << 1$ и $\omega \tau << 1$. В этом приближении

$$\sigma \cong n_n \tau / (n_s \Lambda) - i / (\Lambda \omega),$$

Скин-слой в сверхпроводниках. Проводимость

$$\kappa = (1-i)/\delta \qquad (2.32)$$

$$\delta = (2/\sigma \mu_0 \omega)^{1/2}$$

$$\sigma = \sigma_1 - i\sigma_2$$

$$\sigma \cong n_n \tau / (n_s \Lambda) - i / (\Lambda \omega),$$

$$\sigma \cong (1/\Lambda_{\omega})\{(n_n/n_s)\omega \tau - i\}$$

$$\sigma \cong (1/\mu_0 \lambda^2 \omega) \{ (n_n/n_s) \omega \tau - i \}$$

$$\mu_0 \omega \sigma = (\{n_n/n_s\} \omega \tau - i)/\lambda^2 \approx -i/\lambda^2$$

Проводимость мнимая!

Для Т не слишком близких к Т_с!

Скин-слой в сверхпроводниках.

$H_0 \exp(-ikx) exp(i\omega t)$

$$\kappa = (1 - i)/\delta \qquad (2.32)$$

$$\Lambda = m/(e^2 n_s) = \mu_0 \lambda^2$$

$$\delta = (2/\mu_0 \sigma \omega)^{1/2}$$

$$\sigma \cong (1/\mu_0 \lambda^2 \omega) \{ (n_n/n_s) \omega \tau - i \}$$

$$\mu_0 \omega \sigma \approx -i / \lambda^2$$

*M*₃ (2.31):
$$\delta = \sqrt{2/[-i/\lambda^2]^{1/2}} \cong \lambda \sqrt{-2/(i)} = \lambda \sqrt{2}i$$

$$\delta = \lambda(1+\boldsymbol{i})$$

$$m.\kappa.$$
 $1/(-i) = i$ и $2i = (1+i)^2$

$$2i = (1+i)^2$$

Комплексная глубина скин-слоя

 $Re(\delta) = Im(\delta)$

Волновое число:

$$M_3(2.32)$$
: $\kappa = (1/\lambda)(1-i)/(1+i) = (1/\lambda)*(1-i)^2/2 = -2i/2\lambda = -i/\lambda$

$$H^{(\omega)}(x,t) = H_0 \exp(-\{i\mathbf{k}x + i\omega t\})$$

$$H^{(\omega)} = H_0 * \exp(-x/\lambda) * \exp\{i\omega t\}$$

Скин-слой в сверхпроводниках.

$$H_x^{(\omega)} = H_0^{(\omega)} \exp(-x/\delta) \exp\{-ix/\delta\} \exp\{-i\omega t\}$$

$$H^{(\omega)} = H_0 * \exp(-x/\lambda) * \exp\{i\omega t\}$$

Затухание волны на длине λ .

Нет изменения фазы осцилляций – монотонное затухание.

Причина – пренебрегаем откликом нормальных электронов.

Более точный расчет – осцилляции амплитуды с большим периодом.

При сверхвысоких частотах (ГГц) скин-глубина может быть $<\lambda$!

Поверхностный импеданс

$$Z = -E/H$$

?????

На квадрат поверхности

$$R = \frac{\rho \cdot l}{S}$$

$$R = \rho L/wd$$

$$R_{\square} = R/N, \quad N = L/w$$

 $R_{\Box} = \rho / d$

$$R = U/I = EL/jwd = (E/j)(N/d)$$

$$R = (E/jd)N$$

$$E = \rho j$$
 $R = (\rho/d)N = R_{\square} N$

$$z = U/I$$

$$rot \mathbf{H} = \mathbf{j}$$

$$H^{(\omega)} = H_0 * \exp(-x/\lambda) * \exp\{i\omega t\}$$

Уравнения Максвелла в дифференциальной форме

$$rotE = -\frac{\partial B}{\partial t}$$

$$divB = 0$$

$$rotH = j + \frac{\partial D}{\partial t}$$

$$divD = \rho$$

 \pmb{H} -вдоль оси z, \pmb{E} - вдоль y, тогда

$$j_{y}(x) = dH_{z}/dx$$

Полный поверхностный ток:

$$I_{noe} = \mathbf{w} \int_{0}^{\infty} j(x) dx = \mathbf{w} \int_{0}^{\infty} (-dH_{z}/dx) dx =$$

$$= -\mathbf{w} \int_{H}^{0} dH_{z} = H(0)\mathbf{w}$$

$$z = U/I$$

$$H^{(\omega)} \sim \exp(-x/\lambda)$$

$$z = E(0)L/H(0)w = \{E(0)/H(0)\}\{L/w\} = ZN$$

$$Z = E(0)/H(0)$$

Уравнения Максвелла в дифференциальной форме

H-вдоль оси z, E - вдоль y, тогда

$$rotE = -\frac{\partial B}{\partial t}$$

$$divB = 0$$

$$rotH = j + \frac{\partial D}{\partial t}$$

$$j_{y}(x) = dH_{z}/dx = -H(x,t)/\lambda$$

$$H^{(\omega)} = H_{0} * \exp(-x/\lambda) * \exp\{i\omega t\}$$

$$j_{\mathbf{y}}(0) = -H(0)/\lambda, \qquad H(0) = -j_{\mathbf{y}}(0) \lambda$$

$$\mathbf{Z} = -E(0)/H(0) = E(0)/j_y(0)\lambda = (E(0)/j_y(0))/\lambda$$

$$Z = \rho/\lambda \longleftrightarrow R_{\Box}, z_{\Box}$$

$$divD = \rho$$

$$\rho = \rho$$

Уравнения Максвелла в дифференциальной форме

 $divD = \rho$

$$rotE = -\frac{\partial B}{\partial t}$$

$$divB = 0$$

$$rotH = j + \frac{\partial D}{\partial t}$$

$$\mathbf{Z} = E(0)/H(0)$$

$$H(x,t) = H_{\omega} \exp(-\{ikx + i\omega t\})$$

$$E(x,t) = E_{\omega} \exp(-\{ikx + i\omega t\})$$

rot
$$\mathbf{H}(\mathbf{x},t) = \sigma \mathbf{E}(\mathbf{x},t)$$

H-вдоль оси z, E - вдоль y, тогда

$$\partial H_z(x,t)/\partial \mathbf{x} = \sigma E_y(x,t)$$

$$-ikH_z(x,t) = \sigma E_v(x,t)$$

$$Z = E(x,t)/H(x,t) = ik/\sigma$$

$$Z = ik/\sigma = const(x,t)$$

Случай нормального металла

$$Z = ik/\sigma$$

$$\kappa = (1-i)/\delta$$

$$\delta = (2/\mu_0 \sigma \omega)^{1/2}$$

Комплексное волновое число $Re(\delta) = Im(\delta)$

Действительная толщина скин-слоя $Im(\delta) = 0$

Считаем Z

$$Z = i (1-i)/(\delta\sigma) = (1+i)/(\delta\sigma) = \sqrt{(1+i)^2}/(\delta\sigma) = \sqrt{2i}/(\delta\sigma)$$

Подставив
$$\delta = (2/\sigma \; \mu_0 \omega)^{1/2}$$
 из (2.31) получим $Z = (i\omega \mu_0/\sigma)^{1/2}$ или

$$Z=R_{\square}+iX_{\square}$$
, где $R_{\square}=X_{\square}=(\omega\mu_0/2\,\sigma)^{1/2}$

Поверхностный импеданс сверхпроводников

$$Z = (i\omega\mu_0/\sigma)^{1/2}$$
 $\sigma \cong (\omega\tau n_n/n_s - i)/\omega \mu_0 \lambda^2$
 $Z = R_{\Box} + iX_{\Box}$

$$\sigma \cong (\boldsymbol{\omega} \tau n_{n}/n_{s} - \boldsymbol{i})/\boldsymbol{\omega} \mu_{0} \lambda^{2} \longrightarrow \sigma \cong -\boldsymbol{i}(-\boldsymbol{\omega} \tau n_{n}/in_{s} + \boldsymbol{I})/\boldsymbol{\omega} \mu_{0} \lambda^{2}$$

$$\sigma \cong -\boldsymbol{i}(\boldsymbol{i} \boldsymbol{\omega} \tau n_{n}/n_{s} + \boldsymbol{I})/\boldsymbol{\omega} \mu_{0} \lambda^{2} \longrightarrow \boldsymbol{i}/\sigma \cong -\boldsymbol{\omega} \mu_{0} \lambda^{2}/(1 + \boldsymbol{i} \boldsymbol{\omega} \tau n_{n}/n_{s})$$

$$Z = (-\boldsymbol{\omega} \mu_{0} \lambda^{2} \boldsymbol{\omega} \mu_{0})^{1/2} [\boldsymbol{I} + \boldsymbol{i}(n_{n}/n_{s}) \boldsymbol{\omega} \tau]^{-1/2} = \boldsymbol{i} \boldsymbol{\omega} \mu_{0} \lambda [\boldsymbol{I} + \boldsymbol{i}(n_{n}/n_{s}) \boldsymbol{\omega} \tau]^{-1/2}$$

Раскладываем $(1+x)^n$ в ряд тейлора в окрестности x = 0:

$$Z = i\omega\mu_0\lambda \left[1 - (1/2)i(n_n/n_s) \omega\tau\right] = (n_n/2n_s)\mu_0\lambda\omega^2\tau + i\omega\mu_0\lambda$$

Поверхностный импеданс сверхпроводников

$$Z = (n_{n}/2n_{s})\mu_{0}\lambda\omega^{2}\tau + i\omega\mu_{0}\lambda = R_{\square} + iX_{\square}$$

Реактивная (индуктивная) часть импеданса:

$$X_{\square} = \omega \mu_0 \lambda$$

$$L_k = \mu_0 \lambda / 2$$

$$L_M = \mu_0 \lambda / 2$$

$$L^{\square}_{nonh} = L_{M}^{\square} + L_{k}^{\square} = \mu_0 \lambda.$$

$$X_{\square} = \omega \mu_0 \lambda = \omega L^{\square}_{nonh}$$

R - активная часть поверхностного импеданса (в расчете на квадрат):

$$R_{//} = \omega^2 \tau \mu_0 \lambda_L (n_n/2n_s)$$

$$\lambda_L^2 = m/n_s e^2$$

$$\sigma_n = ne^2 \tau / m$$

$$R_{\Box} = \omega^2 \mu_0^2 \lambda^3 \sigma_n (n_n/n)/2$$

Асимптотики поверхностного импеданса при низких температурах

Измерение поверхностного импеданса – метод определения λ и n_s

$$\lambda_{\rm L} = [m/(\mu_0 \, n_{\rm s} \, e^2)]^{1/2}$$

Нагревание. Реактанс.

Расходимость X_{\square} (T) = $\omega \mu_0 \lambda$ (T) обрезается при λ (T) = δ_n , m.e. при выходе на нормальную скин-глубину.

Дальнейшее падение X_□ (T) связано с исчезновением вклада, обязанного реактивным токам сверхпроводящих пар:

$$\sigma_1 = \frac{n_n}{n_s} \frac{\tau}{\Lambda} \frac{1}{1 + (\omega \tau)^2},$$

$$\sigma_2 = \frac{1}{\Lambda \omega} \left[1 + \frac{n_n}{n_s} \frac{(\omega \tau)^2}{1 + (\omega \tau)^2} \right]$$

Активный импеданс около Тс

$$T \rightarrow T_c, n_s \rightarrow 0, n_n \rightarrow n$$

Двухжидкостная модель Гортер-Казимира (1934 г.): $n=n_s(T)+n_n(T)$

Измерения реактанса

$$X(T) = \omega \mu_0 \lambda(T)$$

температурная зависимость лондоновской длины

