Literature Survey

Team ID	PNT2022TMID21501			
Project name	Fertilizers	Recommendation	System	For
	Disease Prediction			

Team Members:

19IT035 – Ishwarya K

19IT038 – Jayasree G (Team Leader)

19IT042 – Juhi Padmaja P

19IT077 – Reshma A

<u>**Team – Faculty Mentor:**</u> K.Indira

1. Literature Survey – 1:

 $Link: \ \underline{http://www.ijstr.org/final-print/nov2019/Fertilizers-Recommendation-System-For-Disease-Prediction-In-Tree-Leave.pdf}$

Author	Title of the Paper	Publication	Description	Advantage
Name		Year		
R.Neela,	Fertilizers	2019	After pre-processing	The proposed
P.Nithya	Recommendation		using a median filter,	SVM technique
	System For		segmentation is done by	gives a better
	Disease Prediction		Guided Active Contour	result when
	In Tree Leave		method and finally, the	compared to
			leaf disease is identified	existing CNN.
			by using Support Vector	
			Machine. The disease-	
			based similarity measure	
			is used for fertilizer	
			recommendation.	

2. Literature Survey – 2:

Link: https://www.ijraset.com/research-paper/plant-disease-detection-and-fertilizer-suggestion

Author	Title of the Paper	Publication	Description	Advantage
Name		Year		
Apurva Save,		2022	This paper proposes a	The highest
Aksham	Plant Disease		deep learning-based	training
Gupta,	Detection and		model that will be trained	accuracy is
Sarthak	Fertilizer		with photos of healthy	96.75%
Pruthi,	Suggestion		and diseased crop leaves	provided by the
Divyanjana			from a dataset. The	MobileNetV2
Nikam, Prof.			model will achieve its	architecture.
Dr. Shilpa			goal by categorizing	
Paygude			photos of leaves into	
			unhealthy categories	
			based on defect patterns.	

3. Literature Survey – 3:

Link: https://www.sciencedirect.com/science/article/pii/S0308521X1730104X

Author Name	Title of the Paper	Publication Year	Description	Advantage	
M.Donatelli	Modelling the	2017	A model that shows	This approach	
R.D.Magarey	impacts of pests		impact of pest and	took advantage	
S.Bregaglio	and diseases on		disease on crops is	of the multi-	
L.Willocquet	agricultural		developed using PDM	point features	
J.P.M.Whish	systems		(Pest and Disease	within APSIM	
S.Savary			Modelling). Applied	(the ability to	
			modelling of crop	simultaneously	
			diseases and pests has	simulate	

mostly targeted the	multiple points
development of support	
capabilities to schedule	interactions
scouting or pesticide	between them)
applications.	and the
	input/output
	features that
	simplified
	communication
	between
	multiple models.