On the Factorization of Polynomials of the Form

$$cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}[x]$$

Kondwani Magamba^{1,2} and John A. Ryan³

¹Mzuzu University, Mzuzu, Malawi
 ²Malawi University of Science and Technology, Thyolo, Malawi
 ³Chombe Boole Research Center, Rumphi, Malawi

Abstract

Let $n, r \geq 3$ and s be positive integers where $s \mid nr$. Also, let \mathbb{F}_{q^n} be a finite field with characteristic p. We count the number of irreducible factors of degree r in the factorization of polynomials of the form $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}[x]$ where $ad - bc \neq 0$.

1 Introduction

The polynomial $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_q[x]$ arises in different contexts. For example, in [2], normal and self-dual normal bases are constructed from the factorization of $cx^{q+1} + dx^q - ax - b$ over \mathbb{F}_q . In [9], the polynomial $F_s(x)$ crops up in the study of the set \mathcal{N}_p of positive integers which occur as the orders of non-singular derivations of finite-dimensional non-nilpotent Lie algebras of prime characteristic p. Our interest in the factorization of $F_s(x)$ stems from the enumeration of extended and non-extended irreducible Goppa codes. The factorization of polynomials of the form $F_s(x) = cx^{q^s+1} +$ $dx^{q^s} - ax - b \in \mathbb{F}_q[x]$ has been covered by a number of papers see [2], [3], [5], [6], [9], [12] and [15]. In [5], Garefalakis uses the action of the general linear group GL(2,q) on irreducible polynomials over \mathbb{F}_q to obtain an explicit formula for the number of irreducible polynomials of a given degree r in the factorization of $x^{q^s} - ax - b \in \mathbb{F}_q[x]$. In [15], Stichtenoth and Topuzoğlu obtain an asymptotic formula on the number of irreducible polynomials in the factorization of $cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_q[x]$ by exploiting the action of the projective linear group PGL(2,q) on non-linear irreducible polynomials over \mathbb{F}_q . The polynomial $cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_q[x]$ was also considered in [12] where a complete factorization is obtained using the theory of linearized polynomials.

In this paper, we count the number of irreducible factors of degree r in the factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}[x]$ where $s \mid nr$ and n and $r \geq 3$ are positive integers. The enumeration formulas in [5] only cover matrices whose eigenvalues lie in \mathbb{F}_q , our results also cover matrices with eigenvalues in \mathbb{F}_{q^2} . Now, since $\mathbb{F}_q \subset \mathbb{F}_{q^n}$ and this paper considers the factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}[x]$ we obtain a generalization of the factorization of $F_s(x)$.

2 Preliminaries

2.1 Some results from polynomial factorization

In this section we state some results from polynomial factorization which we will use.

Theorem 2.1. [7] Let $v \geq 2$ be an integer and $\beta \in \mathbb{F}_q^*$. Then the binomial $x^v - \beta$ is irreducible in $\mathbb{F}_q[x]$ if and only if the following two conditions are satisfied:

- 1. each prime factor of v divides the order e of β in \mathbb{F}_q^* but not $\frac{q-1}{e}$;
- 2. $q \equiv 1 \pmod{4}$ if $v \equiv 0 \pmod{4}$.

Theorem 2.2. [2] Let $\xi \in \mathbb{F}_q^*$ with multiplicative order v. Then the following factorization over \mathbb{F}_q is complete:

$$x^{q-1} - \xi = \prod_{j=1}^{\frac{q-1}{v}} (x^v - \beta_j)$$

where β_j runs through the distinct roots of $x^{\frac{q-1}{v}} - \xi$ in \mathbb{F}_q .

Theorem 2.3. [2] For $a, b, c, d \in \mathbb{F}_q$ with $c \neq 0$, $ad - bc \neq 0$ and $\Delta = (a - d)^2 + 4bc \neq 0$ being a quadratic residue in \mathbb{F}_q , the following factorization over \mathbb{F}_q is complete:

$$cx^{q+1} + dx^q - ax - b = (x - x_0)(x - x_1) \prod_{j=1}^{\frac{q-1}{t}} \frac{1}{1 - \beta_j} \left[(x - x_0)^t - \beta_j (x - x_1)^t \right],$$

where $x_0, x_1 \in \mathbb{F}_q$ are the two distinct roots of $cx^2 + (d-a)x - b = 0$, t is the multiplicative order of $\xi = \frac{a-cx_1}{a-cx_0}$ and β_j is a root of $x^{\frac{q-1}{t}} - \xi$ in \mathbb{F}_q .

Theorem 2.4. [2] For $a, b, c, d \in \mathbb{F}_q$ with $c \neq 0$, $ad - bc \neq 0$ and $\Delta = (a - d)^2 + 4bc \neq 0$ being a quadratic nonresidue in \mathbb{F}_q , the following factorization over \mathbb{F}_q is complete:

$$cx^{q+1} + dx^{q} - ax - b = \prod_{i=1}^{\frac{q+1}{t}} \frac{1}{1 - \beta_{j}} \left[(x - x_{0})^{t} - \beta_{j} (x - x_{1})^{t} \right],$$

where $x_0, x_1 \in \mathbb{F}_{q^2}$ are the two distinct roots of $cx^2 + (d-a)x - b = 0$, t is the multiplicative order of $\xi = \frac{a - cx_1}{a - cx_0}$ and β_j is a root of $x^{\frac{q+1}{t}} - \xi$ in \mathbb{F}_{q^2} .

Theorem 2.5. [7] Let $a \in \mathbb{F}_q$ and p be the characteristic of \mathbb{F}_q . Then the trinomial $x^p - x - a$ is irreducible in $\mathbb{F}_q[x]$ if and only if $Tr_{\mathbb{F}_q}(a) \neq 0$.

Theorem 2.6. [7] For $x^{q^{nr}} - x - \beta$, with β an element of a subfield \mathbb{F}_s of $\mathbb{F}_{q^{nr}}$ we have the following decomposition

$$x^{q^{nr}} - x - \beta = \prod_{j=1}^{q^{nr}/s} (x^s - x - \gamma_j)$$

where γ_j runs through all the distinct elements of $\mathbb{F}_{q^{nr}}$ with trace $Tr_{\mathbb{F}_{q^{nr}}/\mathbb{F}_s}(\gamma_j) = \beta$.

2.2 Elements of degree r over \mathbb{F}_{q^n}

We are interested in counting the number of irreducible factors of degree r in the factorization of $F_s(x)$, so in this section we discuss where elements of degree r lie. We begin with the following definition.

Definition 2.1. The set $\mathbb{S} = \mathbb{S}(n,r)$ is the set of all elements in $\mathbb{F}_{q^{nr}}$ of degree r over \mathbb{F}_{q^n} .

Recall that $s \mid nr$. In analysing the factorization of $F_s(x)$ we will make use of the following factorizations of n and r. We define k to be the largest divisor of n that is relatively prime to r and set $\ell_n = \frac{n}{k}$. We will also define m to be the largest divisor of r that is relatively prime to n and set $\ell_r = \frac{r}{m}$. We see that $nr = k\ell_n\ell_r m = k\ell m$ where $\ell = \ell_n\ell_r$. In addition to this, the notation k_1 will be used to mean a divisor of k and we will write $k_1 = \frac{k}{k_1}$ etc. With these factorizations of k and k we obtain the following characterization of the elements of \mathbb{S} , see [14].

Theorem 2.7. \mathbb{S} contains elements of $\mathbb{F}_{q^{nr}}$ which are roots of irreducible polynomials of degree r over $\mathbb{F}_{q^{k_1\ell_n}}$. Thus, elements of \mathbb{S} lie in subfields of $\mathbb{F}_{q^{nr}}$ of the form $\mathbb{F}_{q^{k_1\ell_n r}}$, for some k_1 , but not in any subfield of the form \mathbb{F}_{q^w} where w is not divisible by $\ell_n r$.

For convenience, we will write $n_1 = k_1 \ell_n$ and note that $\bar{n}_1 = \frac{n}{n_1} = \bar{k}_1$ and that $(\bar{n}_1, r) = 1$. With this notation we can define, more generally, $\mathbb{S}(n_1, r)$ to be the subset of $\mathbb{S}(n, r)$ of elements that are of degree r over $\mathbb{F}_{q^{n_1}}$.

Now, suppose that $F_s(\alpha) = 0$, where α is an element of order r over \mathbb{F}_{q^n} . Then $\alpha^{q^s} = \frac{a\alpha + b}{c\alpha + d}$. We see that if e is the smallest integer such that $\alpha^{q^{es}} = \alpha$, then $e = \bar{\ell}_1 \bar{m}_1$ since $s \times \bar{\ell}_1 \bar{m}_1 = k_1 \ell_1 m_1 \times \frac{\ell}{\ell_1} \times \frac{m}{m_1} = k_1 \ell m = k_1 \ell_n r = n_1 r$. A natural question that comes up at this point is the form that the right hand side of the equation $\alpha^{q^s} = \frac{a\alpha + b}{c\alpha + d}$ takes when the left hand side is $\alpha^{q^{sk}}$ where k is a positive integer. We address this in the next section.

2.3 Order of a matrix

Recall that $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}$ where $ad - bc \neq 0$. Thus we can take the coefficients $a, b, c, d \in \mathbb{F}_{q^n}$ as entries of a 2×2 non-singular matrix A over \mathbb{F}_{q^n} . That is, $A \in GL(2, q^n)$. This enables us to write $\alpha^{q^s} = \frac{a\alpha + b}{c\alpha + d}$ in the form $\alpha^{q^s} = [A](\alpha)$, where $[A](\alpha) = \frac{a\alpha + b}{c\alpha + d}$.

Now, $\alpha^{q^{2s}} = [A]([A](\alpha)) = [A^2](\alpha)$. So by induction we obtain, $\alpha^{q^{sk}} = [A^k](\alpha)$ and if D is the smallest positive integer such that $\alpha^{q^{sD}} = \alpha$ then $\alpha^{q^{sD}} = [A^D](\alpha) = \alpha = [I_2](\alpha)$, where I_2 is the 2×2 identity matrix. Thus $A^D = I_2$ and the order of $A \in GL(2, q^n)$ divides D. We claim that the order of A is D. Suppose the order of A is A, where A is a non-trivial divisor of A. Then $A^{q^{sd}} = [A^d](\alpha) = [I_2](\alpha) = \alpha$. This implies that $A \in \mathbb{F}_{q^{sd}}$ contrary to the fact that A is the least positive integer such that $A \in \mathbb{F}_{q^{sD}}$. Hence the order of A is A. From the previous section, we know that $A \in \mathbb{F}_{q^{sD}}$. We have proved the following.

Lemma 2.1. Suppose $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}$ where $ad - bc \neq 0$ and $F_s(\alpha) = 0$ where α is an element of degree r over \mathbb{F}_{q^n} . Then $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, q^n)$ of order $D = \bar{\ell}_1 \bar{m}_1$.

Clearly, matrices of a given order will play an important role in the factorization of $F_s(x)$. The following theorem gives the relationship between the order of a matrix D, the characteristic of the field and the form that A takes, see [8].

Theorem 2.8. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2, q^n)$ be of order D and $\mathbb{F}_{q^n} = \mathbb{F}_{p^{nt}}$. Then:

- i. If D = 1, then A is similar to a matrix of the form $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$.
- ii. If $D = p^i$, where $i \ge 1$, then A is similar to a matrix of the form $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$, where $b \ne 0 \in \mathbb{F}_{q^n}$.
- iii. If (p, D) = 1, $D \mid (q^n 1)$ and A is not a multiple of I_2 , then A is similar to a matrix of the form $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$, where $a \in \mathbb{F}_{q^n} \{0, 1\}$.
- iv. If (p, D) = 1 and $D \mid (q^n + 1)$ but $D \nmid (q^n 1)$, then A is similar to a matrix of the form $\begin{pmatrix} 0 & 1 \\ c & d \end{pmatrix}$ where $c, d \in \mathbb{F}_{q^n}$ and $c \neq 0$.

Corollary 2.1. The order of $A \in GL(2, q^n)$ divides $p(q^n - 1)$ or $(q^n - 1)(q^n + 1)$.

Example 2.1. Let's take q = 2, n = 5 and r = 6. Suppose we want to factorize $F_{10}(x) = cx^{2^{10}+1} + dx^{q^{10}} - ax - b$. Now, if α is a root of $F_{10}(x)$, then $\alpha^{2^{10}} = \frac{a\alpha + b}{c\alpha + d}$. We see that D = 3 and $3 \mid (2^5 + 1)$. So we may take $A = \begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix} \in GL(2, 2^5)$. Hence, we consider the factorization of $F_{10}(x) = x^{2^{10}+1} + x^{2^{10}} - 1$.

3 Factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}[x]$

In this section we consider the factorization of the polynomials $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}$ where $s = k_1 \ell_1 m_1$. We find the number of irreducible factors of degree r in the factorization of $F_s(x)$. We begin our discussion by looking at the positive integer s.

By definition $s \mid nr$ and we use $s = k_1\ell_1m_1$ to obtain all factors of nr. We want to break s into a product of factors of n and factors of r. Suppose we can find a positive integer t such that $\mathbb{F}_{q^t} = \mathbb{F}_{q^n} \cap \mathbb{F}_{q^s}$. Then $t = \text{GCD}(n, s) = \text{GCD}(k\ell_n, k_1\ell_1m_1) = k_1\text{GCD}(\ell_n, \ell_1) = k_1\ell_d$, where $\ell_d = \text{GCD}(\ell_n, \ell_1)$ and we have used the fact that $\text{GCD}(\ell_n, m_1) = 1$. As such, we can write $s = k_1\ell_1m_1 = tu$, where $t = k_1\ell_d$. If $\ell_n \mid \ell_1$ then $\ell_d = \ell_n$ and $t = k_1\ell_n$.

Recall that $D = \bar{\ell}_1 \bar{m}_1$ and that $\alpha^{q^s} = \frac{a\alpha + b}{c\alpha + d} = [A](\alpha)$ where $\alpha \in \mathbb{F}_{q^{k_1\ell_{nr}}}$. We see that if $\ell_n \mid \ell_1$ then $\ell_1 = j\ell_n$ and $D = \frac{\ell_{nr}}{\ell_1 m_1} = \frac{r}{jm_1}$ so $r = Djm_1$ and $D \mid r$. However if $\ell_n \nmid \ell_1$ and we let $\ell_n = \lambda \ell_d$ and $\ell_1 = \gamma \ell_d$, then $D = \frac{\lambda r}{\gamma m_1} = \lambda \nu$, where $\nu = \frac{r}{\gamma m_1}$. Since $\alpha = \alpha^{q^{Ds}} = [A^D](\alpha) = [I_2](\alpha)$ implies that $Ds \equiv 0 \pmod{r}$ we have that $Ds = k_1\ell_n r$. Thus $r = \frac{Ds}{k_1\ell_n} = \frac{\lambda \nu s}{k_1\ell_n} = \frac{\lambda \nu k_1\ell_1 m_1}{k_1\ell_n} = \nu u$ where $u = \gamma m_1 = \frac{\ell_1 m_1}{\ell_d}$. Now, $\ell_1 m_1 = \ell_d u$ implies that $s = k_1\ell_1 m_1 = k_1\ell_d u$. We have proved the following theorem.

Theorem 3.1. Suppose the order of A is $D = \frac{\lambda r}{\gamma m_1} = \lambda \nu$, where $\nu = \frac{r}{\gamma m_1}$. Let $P(x) \in \mathbb{F}_{q^{k_1 \ell_d}}[x]$ be a monic irreducible polynomial of degree $r \geq 3$. If P(x) divides $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b$ then

1. $r = \nu u$, and $u \in \mathbb{N}$,

2. $u \mid s$.

Remark 3.1. We can also take $s = k_1 \ell_1 m_1$ as $s = k_1 \ell_d u$ where $u = \gamma m_1 = \frac{\ell_1 m_1}{\ell_d}$.

Remark 3.2. Note that if n = 1 then $k_1 \ell_d = 1$ and $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_q[x]$. Thus the factorization of the form $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_q[x]$ considered in [2], [3], [5], [6], [12] and [15] are special cases of our work.

3.1 Factorization of $F_s(x)$ where D=1

Suppose α is a root of $F_s(x)$ and that D=1. By Theorem 2.8, we may take $A=\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. So $F_s(x)=x^{q^s}-x$. We know that the factorization of $F_s(x)=x^{q^s}-x$ contains irreducible factors of degree r if and only if $s=n_1r$. We can then use Gauss' formula,

$$\frac{1}{r} \sum_{d|r} \mu(d) q^{\frac{n_1 r}{d}},$$

to count the number of such polynomials.

3.2 Factorization of $F_s(x)$ where (p, D) = 1

3.2.1 Factorization of $F_s(x)$ where $(p,D)=1,\ D\mid (q^n-1)$ and $\ell_n\mid \ell_1$

Suppose that α is a root of $F_s(x)$ and that (p, D) = 1, $D \mid (q^n - 1)$ and $\ell_n \mid \ell_1$. We have $\alpha^{q^s} = [A](\alpha)$. If A is not a multiple of I_2 then by Theorem 2.8, A is conjugate to a matrix of the form $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ where $a \in \mathbb{F}_{q^n} \setminus \{0,1\}$ is an element of order D. As such, we have $\alpha^{q^s} = a\alpha$ and we may assume that α satisfies an equation of type

$$x^{q^s} - ax = 0. (1)$$

By Theorem 2.2 we have

$$x^{q^{s}-1} - a = \prod_{i=1}^{\frac{q^{s}-1}{D}} (x^{D} - \beta_{i})$$

where β_i runs through all the distinct roots of $x^{\frac{q^s-1}{D}}-a$ in \mathbb{F}_{q^s} . Now, all the factors in this product are irreducible over \mathbb{F}_{q^s} . Hence the corresponding q^s-1 roots lie in $\mathbb{F}_{q^{nr}}$. However, some of the roots may not lie in \mathbb{S} . If $\beta_i \in \mathbb{F}_{q^w}$ where \mathbb{F}_{q^w} is a subfield of \mathbb{F}_{q^s} and Dw = s then the roots of $x^D - \beta_i$ lie in \mathbb{S} . Now let r = Du and $u = r_1 r_2 \dots r_w$ where $r_i \neq D$ for all i. If $\beta_i \in \mathbb{F}_{q^t}$ where $t = \frac{s}{r_i}$ then the roots of $x^D - \beta_i$ lie in $\mathbb{F}_{q^{\frac{Ds}{r_i}}}$ and not in \mathbb{S} . Thus we obtain the number of roots of $x^{q^s-1} - a = 0$ which are elements of \mathbb{S} by subtracting from $q^s - 1$ the number of elements in any subfield of \mathbb{F}_{q^s} of type \mathbb{F}_{q^t} where $t = \frac{s}{r_i}$. Generally, we find that the number to be subtracted from $q^s - 1$ is

$$\sum_{1 \le i \le w} \left(q^{\frac{s}{r_i}} - 1 \right) - \sum_{1 \le i < j \le w} \left(q^{\frac{s}{r_i r_j}} - 1 \right) + \sum_{1 \le i < j < k \le w} \left(q^{\frac{s}{r_i r_j r_k}} - 1 \right) - \dots (-1)^{w+1} \left(q^{\frac{s}{r_1 \dots r_w}} - 1 \right).$$

Now if $s = k_1 \ell_1 m_1$ and r = Du where $u = r_1 r_2 \dots r_w$ then $sD = n_1 r$ and $s = n_1 u$. We have proved the following.

Theorem 3.2. Let $s = k_1 \ell_1 m_1$, $v = \bar{\ell}_1 \bar{m}_1 > 1$ and suppose (p, v) = 1 and that $v \mid (q^{n_1} - 1)$ where $n_1 = k_1 \ell_n$. Let $r = vu, u \in \mathbb{N}$ and $T(k_1, \ell_1 m_1)$ be the set of all roots of irreducible factors of degree r in the factorization of $G_s(x) = x^{q^s - 1} - \varepsilon \in \mathbb{F}_{q^n}[x]$, where $\varepsilon \in \mathbb{F}_{q^n} \setminus \{0, 1\}$ is of order v. If $r \not\equiv 0 \pmod{v}$ then $|T(k_1, \ell_1 m_1)| = 0$. Otherwise

$$|T(k_1, \ell_1 m_1)| = \frac{1}{vu} \sum_{\substack{d \mid u \ (d,v)=1}} \mu(d) \left(q^{k_1 \ell_d \frac{u}{d}} - 1\right).$$

We note that a similar result was found in [5] using the action of the general linear group GL(2,q) on irreducible polynomials over \mathbb{F}_q .

Example 3.1. Consider q=2 and n=r=6. We want to find the number of irreducible polynomials of degree 6 in the factorization of $F_{12}(x)=cx^{2^{12}+1}+dx^{2^{12}}-ax-b \in \mathbb{F}_{2^6}[x]$ where $ad-bc \neq 0$.

Here $s = k_1\ell_1m_1 = 12$, $\ell_n = 6$, $\ell_1 = 12$, $v = \bar{\ell}_1\bar{m}_1 = 3$, $r = vu = 3 \times 2$ and $\ell_n \mid \ell_1$. Using the computer algebra system MAGMA, we find that we can take $A = \begin{pmatrix} \zeta^{42} & 0 \\ 0 & 1 \end{pmatrix} \in GL(2,2^6)$ of order 3 where ζ is a primitive element of \mathbb{F}_{2^6} . Thus $F_{12}(x) = x^{4096} + \zeta^{42}x$. By Theorem 3.2, we find that there are 672 polynomials of degree 6 in the factorization of $F_{12}(x) = x^{4096} + \zeta^{42}x$ over \mathbb{F}_{2^6} .

3.2.2 Factorization of $F_s(x)$ where (p,D)=1, $D\mid (q^n-1)$ and $\ell_n\nmid \ell_1$

Suppose that α is a root of $F_s(x)$ and that (p, D) = 1, $D \mid (q^n - 1)$ and $\ell_n \nmid \ell_1$. Then we have $\alpha^{q^s} = [A](\alpha)$. By Theorem 2.8, A is conjugate to a matrix of the form $\begin{pmatrix} a & 0 \\ 0 & 1 \end{pmatrix}$ where $a \in \mathbb{F}_{q^n} \setminus \{0,1\}$ is an element of order D. As such, we have $\alpha^{q^s} = a\alpha$ and we may assume that α satisfies an equation of type

$$x^{q^s} - ax = 0. (2)$$

Note that if $\ell_n \mid \ell_1$ then $k_1\ell_n \mid k_1\ell_1m_1$ and $\operatorname{GCD}(k_1\ell_n, k_1\ell_1m_1) = k_1\ell_n$ hence $\operatorname{GCD}(q^{k_1\ell_n} - 1, q^{k_1\ell_1m_1} - 1) = q^{k_1\ell_n} - 1$. This implies that $q^{k_1\ell_n} - 1 \mid q^{k_1\ell_1m_1} - 1$ and that $D \mid q^s - 1$. However, if $\ell_n \nmid \ell_1$ we know that $\operatorname{GCD}(k_1\ell_n, k_1\ell_1m_1) = k_1\ell_d$ and that $D = \frac{\lambda r}{\gamma m_1} = \lambda \nu$, where $\nu = \frac{r}{\gamma m_1}$. Now $\frac{r}{\gamma m_1} = \frac{\ell_d\ell_r m}{\ell_1m_1} = \frac{\ell\bar{m}_1}{\ell_N} = \bar{\ell}_N\bar{m}_1$, where $\ell_N = \operatorname{lcm}(\ell_n, \ell_1)$. So if $\ell_n \nmid \ell_1$ then $D \nmid (q^s - 1)$. We will replace D by ν since if α satisfies $x^{q^s - 1} - a$ then α also satisfies $x^{q^{k\ell_N m_1 - 1}} - \varepsilon = 0$ where ε is of order $\nu = \bar{\ell}_N\bar{m}_1$ and we can show that $\nu \mid (q^s - 1)$. By Theorem 2.2 we obtain

$$x^{q^s - 1} - a = \prod_{i=1}^{\frac{q^s - 1}{\nu}} (x^{\nu} - \beta_i)$$
(3)

where β_i runs through all the distinct roots of $x^{\frac{q^s-1}{\nu}} - a$ in \mathbb{F}_{q^s} . It is shown in [14] that if $q \equiv -1 \pmod{4}$ and $k_1\ell_1m_1$ is odd and $\bar{\ell}_1\bar{m}_1$ is even then we take $D = 2\bar{\ell}_1\bar{m}_1$ otherwise we take $D = \bar{\ell}_1\bar{m}_1$. Now using an argument similar to the one in Section 3.2.1 we obtain the following theorems:

Theorem 3.3. Let $q \equiv -1 \pmod{4}$, $s = k_1 \ell_1 m_1$ be odd, $\ell_d = (\ell_n, \ell_1)$ and $v = \bar{\ell}_1 \bar{m}_1 = \lambda \nu > 1$ where v is an even integer and $\lambda = \frac{\ell_d}{\ell_n}$. Suppose (p, v) = 1 and that $2v \mid (q^{n_1} - 1)$ where $n_1 = k_1 \ell_d$. Let $r = \nu u, u \in \mathbb{N}$ and $T^*(k_1, \ell_1 m_1)$ be the set of all roots of irreducible factors of degree r in the factorization of $G_s(x) = x^{q^s - 1} - \varepsilon \in \mathbb{F}_{q^n}[x]$, where $\varepsilon \in \mathbb{F}_{q^n} \setminus \{0, 1\}$ is of order 2ν . If $r \not\equiv 0 \pmod{\nu}$ then $|T^*(k_1, \ell_1 m_1)| = 0$. Otherwise

$$|T^*(k_1, \ell_1 m_1)| = \frac{1}{\nu u} \sum_{\substack{d \mid u \\ (d, \nu) = 1}} \mu(d) \left(q^{n_1 \frac{u}{d}} - 1 \right).$$

In all other cases we have

Theorem 3.4. Let $s=k_1\ell_1m_1,\ \ell_d=(\ell_n,\ell_1)$ and $v=\bar{\ell}_1\bar{m}_1=\lambda\nu>1$ where $\lambda=\frac{\ell_n}{\ell_d}$. Suppose (p,v)=1 and that $v\mid (q^{n_1}-1)$ where $n_1=k_1\ell_d$. Let $r=\nu u,u\in\mathbb{N}$ and $T^{**}(k_1,\ell_1m_1)$ be the set of all roots of irreducible factors of degree r in the factorization of $G_s(x)=x^{q^s-1}-\varepsilon\in\mathbb{F}_{q^n}[x]$, where $\varepsilon\in\mathbb{F}_{q^n}\setminus\{0,1\}$ is of order ν . If $r\not\equiv 0\pmod{\nu}$ then $|T^{**}(k_1,\ell_1m_1)|=0$. Otherwise

$$|T^{**}(k_1, \ell_1 m_1)| = \frac{1}{\nu u} \sum_{\substack{d \mid u \\ (d, \nu) = 1}} \mu(d) \left(q^{n_1 \frac{u}{d}} - 1 \right).$$

Example 3.2. Consider q = 2 and n = r = 6. We want to find the number of irreducible polynomials of degree 6 in the factorization of $F_4(x) = cx^{2^4+1} + dx^{2^4} - ax - b \in \mathbb{F}_{2^6}[x]$ where $ad - bc \neq 0$.

We see that $s=k_1\ell_1m_1=4$, $\ell_n=6$, $\ell_1=4$, $\ell_d=3$, $\lambda=2$, $v=\bar{\ell}_1\bar{m}_1=\lambda\nu=3\times 3$, $r=\nu u=3\times 2$ and $\ell_n\nmid\ell_1$. Using the computer algebra system MAGMA, we can take $A=\begin{pmatrix}\zeta^{49}&0\\0&1\end{pmatrix}\in GL(2,2^6)$ of order 9 where ζ is a primitive element of \mathbb{F}_{2^6} . Thus $F_4(x)=x^{16}+\zeta^{49}x$. By Theorem 3.4, we find that there are 2 polynomials of degree 6 in the factorization of $F_4(x)=x^{16}+\zeta^{49}x$ over \mathbb{F}_{2^6} .

3.2.3 Factorization of $F_s(x)$ where (p, D) = 1 and $D \mid (q^n + 1)$

Suppose that α is a root of $F_s(x)$ and that (p,D)=1 and $D\mid (q^n+1)$. Then we have $\alpha^{q^s}=[A](\alpha)$. By Theorem 2.8, A is conjugate to a matrix of the form $\begin{pmatrix} 0 & 1 \\ c & d \end{pmatrix}$ where $c,d\in\mathbb{F}_{q^n}$ and $c\neq 0$. Without loss of generality, we will take $A=\begin{pmatrix} a & b \\ c & d \end{pmatrix}$ where $a,b,c,d\in\mathbb{F}_{q^n},\ ad-bc\neq 0$ and the eigenvalues of A lie in $\mathbb{F}_{q^{2n}}$. Thus we have $\alpha^{q^s}=\frac{a\alpha+b}{c\alpha+d}$ and we may assume that α satisfies an equation of type

$$cx^{q^s+1} + dx^{q^s} - ax - b = 0. (4)$$

We begin by considering the factorization of $F_s(x)$ where (p, D) = 1, $D \mid (q^n + 1)$ and D is even.

Suppose that α is a root of $F_s(x)$ and that D is even. Then we can take D=2d where d is a positive integer. Thus we have $\alpha^{q^{sD}}=[A^D](\alpha)=[I_2](\alpha)=\alpha$. So $A^{2d}=(A^d)^2=$

 $B^2=I_2$, where $B=A^d$. Now, since $B^2=I_2$, without loss of generality we can take $B=\begin{pmatrix} q-1 & 0 \\ 0 & q-1 \end{pmatrix}$ since the only elements $\zeta\in\mathbb{F}_{q^n}$ such that $\zeta^2=1$ are $\zeta=1$ and $\zeta=q-1$. Thus α satisfies an equation of the form $F_s(x)=(q-1)(x^{q^s}-x)=0$. By the argument in Section 3.1 there are no irreducible polynomials of degree r in the factorization of $F_s(x)$.

Example 3.3. Consider q=3, n=5 and r=4. There are no polynomials of degree 4 in the factorization of $F_5(x)=2x^{244}+2\in\mathbb{F}_{3^5}[x]$ where $A=\begin{pmatrix}0&1\\2&0\end{pmatrix}\in GL(2,3^5)$ is of order 4.

Next we consider the factorization of $F_s(x)$ where (p,D)=1, $D\mid (q^n+1)$ and $d\mid D$ but $d^2\nmid D$. Suppose that α is a root of $F_s(x)$ and that $d\mid D$ where 1< d< D. We have $\alpha^{q^s}=[A](\alpha)$ where A is a matrix of order D. Now, if $d\mid D$ then $\alpha^{q^{sd}}=[A^d](\alpha)=[B](\alpha)$, where $B=A^d$ and the order of B is $\frac{D}{d}$ since $\mathrm{GCD}(D,d)=d$. We see that for α to satisfy $F_{sd}(x)$, d must divide $\frac{D}{d}$. That is α satisfies $F_{sd}(x)$ provided $d^2\mid D$. We have proved the following theorem.

Theorem 3.5. Suppose α satisfies $F_s(x)$ and $d \mid D$ where 1 < d < D. If $d^2 \nmid D$ then α does not satisfy $F_{sd}(x)$.

This theorem is significant because it tells us when to expect an irreducible polynomial of degree r in the factorization of $F_{sd}(x)$ by looking at the factorization of $F_{sd}(x)$.

Next we consider when an irreducible quadratic polynomial of the form $cx^2 + (d-a)x - b \in \mathbb{F}_{q^{k_1}\ell_d}[x]$ divides $F_s(x)$.

Proposition 3.1. If $P(x) = cx^2 + (d-a)x - b \in \mathbb{F}_{q^{k_1\ell_d}}[x]$ is irreducible, then $P(x) \mid F_s(x)$ if and only if $s = 2k_1\ell_d w$.

Proof. Suppose $P(x) = cx^2 + (d-a)x - b \in \mathbb{F}_{q^{k_1\ell_d}}[x]$ is irreducible and that $P(\alpha) = 0$. Then $\alpha^{q^{2k_1\ell_d}} = \alpha$. If $s = k_1\ell_d u$ where u is even then $GCD(2, k_1\ell_d u) = 2$ and this implies that $\alpha^{q^{k_1\ell_d u}} = \alpha$. Thus $F_s(\alpha) = c\alpha^{q^s+1} + d\alpha^{q^s} - a\alpha - b = c\alpha^2 + d\alpha - a\alpha - b = 0$. So $P(x) \mid F_s(x)$. If s is odd and $P(\alpha) = 0$ then $\alpha^{q^s+1} = \alpha^{q+1}$. So $F_s(\alpha) = c\alpha^{q^s+1} + d\alpha^{q^s} - a\alpha - b = c\alpha^{q+1} + d\alpha^q - a\alpha - b = (\alpha^{q-1} - 1)(c\alpha^2 + d\alpha) + c\alpha^2 + d\alpha - a\alpha - b = 0$. We know that $c\alpha^2 + d\alpha - a\alpha - b = 0$ so $F_s(\alpha) = 0 \Leftrightarrow \alpha^{q-1} - 1 = 0$. This means $\alpha \in \mathbb{F}_q$ and P(x) is reducible.

Consequently, we will divide our analysis according to the parity of u.

Suppose that u is odd, then by Proposition 3.1 there is no quadratic factor in the factorization of $F_s(x)$. By the factorization in Theorem 2.3 we have

$$cx^{q^s+1} + dx^{q^s} - ax - b = \prod_{j=1}^{\frac{q^s+1}{\tau}} \frac{1}{1-\beta_j} \left[(x-x_0)^{\tau} - \beta_j (x-x_1)^{\tau} \right]$$
 (5)

where $x_0, x_1 \in \mathbb{F}_{q^{2k_1\ell_d}}$ are the two distinct roots of $cx^2 + (d-a)x - b = 0$, τ is the multiplicative order of $\xi = \frac{a - cx_1}{a - cx_0}$ and β_j is a root of $x^{\frac{q^s - 1}{\tau}} - \xi$ in \mathbb{F}_{q^s} . Note that $\tau = \bar{\ell}_1 \bar{m}_1$.

Now, all the factors of $G_{\tau}(x) = \frac{1}{1-\beta_j} \left[(x-x_0)^{\tau} - \beta_j (x-x_1)^{\tau} \right]$ are irreducible over \mathbb{F}_{q^s} so their corresponding $q^s + 1$ roots lie in $\mathbb{F}_{q^{s\tau}} = \mathbb{F}_{q^{k_1\ell_n r}}$. We consider three cases: $\tau = r$, $\tau = u$ and u is odd where neither $\tau = r$ nor $\tau = u$.

If s is odd and $\tau = r$ then the polynomials $G_{\tau}(x)$ are of the required degree r and the number of polynomials of degree $r = \nu u$ in the factorization of $F_s(x)$ is $\frac{q^s+1}{r}$.

Next suppose that $\tau = u$. Then $s = k_1 \ell_d u = k_1 \ell_d \tau$ and if β_j lies in $\mathbb{F}_{q^{k_1 \ell_d}}$ then all the roots of $G_{\tau}(x)$ lie in $\mathbb{F}_{q^{k_1 \ell_d \tau}} = \mathbb{F}_{q^s}$. Hence all roots of $G_{\tau}(x)$ lie in \mathbb{S} . So there are $\frac{q^s + 1}{r}$ irreducible factors of degree r in the factorization of $F_s(x)$.

Lastly we consider the more general case where s is odd and neither $\tau = r$ nor $\tau = u$. In this case if β_j lies in a subfield of \mathbb{F}_{q^s} of the form \mathbb{F}_{q^t} where $\tau \nmid \frac{s}{t}$ then the roots of $G_{\tau}(x)$ do not lie in \mathbb{S} . Now $r = \nu u$ and if we let $u = r_1 r_2 \dots r_w$ where $r_i \neq \nu$ we can use an argument similar to the one in Section 3.2.1 to show that the number roots of $F_s(x)$ which are elements of \mathbb{S} can be found by subtracting from $q^s + 1$ the number

$$\sum_{1 \le i \le w} \left(q^{\frac{s}{r_i}} + 1 \right) - \sum_{1 \le i < j \le w} \left(q^{\frac{s}{r_i r_j}} + 1 \right) + \sum_{1 \le i < j < k \le w} \left(q^{\frac{s}{r_i r_j r_k}} + 1 \right) - \dots + (-1)^{w+1} \left(q^{\frac{s}{r_1 \dots r_w}} + 1 \right).$$

We have proved the following theorem.

Theorem 3.6. The number $N_A(\nu u)$ of polynomials of degree νu in the factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b$ where s is odd and the order of A divides $q^n + 1$ is

$$N_A(\nu u) = \frac{1}{\nu u} \sum_{\substack{d \mid u \\ d \not\equiv 0 \pmod{\nu}}} \mu(d) (q^{n_1 \frac{u}{d}} + 1),$$

where $n_1 = k_1 \ell_d$.

Next suppose that u is even. Then by Proposition 3.1 there is an irreducible quadratic factor in the factorization of $F_s(x)$. By the factorization in Theorem 2.3 we have

$$cx^{q^s+1} + dx^{q^s} - ax - b = (x - x_0)(x - x_1) \prod_{j=1}^{\frac{q^s-1}{\tau}} \frac{1}{1 - \beta_j} [(x - x_0)^{\tau} - \beta_j (x - x_1)^{\tau}]$$
 (6)

where $x_0, x_1 \in \mathbb{F}_{q^s}$ are the two distinct roots of $cx^2 + (d-a)x - b = 0$, τ is the multiplicative order of $\xi = \frac{a-cx_1}{a-cx_0}$ and β_j is a root of $x^{\frac{q^s-1}{\tau}} - \xi$ in \mathbb{F}_{q^s} . Observe that if $s = 2k_1\ell_d$ then $\mathbb{F}_{q^{k_1\ell_d}}$ is a subfield of $\mathbb{F}_{q^{2k_1\ell_d}}$ and if $\beta_j \in \mathbb{F}_{q^{k_1\ell_d}}$ then the roots of $G_{\tau}(x)$ do not lie in \mathbb{S} . In this case the number of roots of $F_s(x)$ which are elements of \mathbb{S} is $q^{2k_1\ell_d} - q^{k_1\ell_d} - 2$. Thus the number of irreducible factors of degree r in the factorization of $F_s(x)$ is $\frac{1}{r}(q^{2k_1\ell_d} - q^{k_1\ell_d} - 2)$.

More generally, if $s = k_1 \ell_d u$ where u is even then there exists a subfield \mathbb{F}_{q^t} of \mathbb{F}_{q^s} such that $2t = k_1 \ell_d u$ and the roots of $G_{\tau}(x)$ over \mathbb{F}_{q^t} do not lie in \mathbb{S} . Next note that this result holds for any divisor of u that is not equal to τ . As above we obtain the following result.

Theorem 3.7. The number $N_A(\nu u)$ of polynomials of degree νu in the factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b$ where $s = k_1 \ell_d u$ and u is even and the order of A divides $q^n + 1$ is

$$N_A(\nu u) = \frac{1}{\nu u} \sum_{\substack{d \mid u \\ d \not\equiv 0 \pmod{\nu}}} \mu(d) (q^{n_1 \frac{u}{d}} - 1),$$

where $n_1 = k_1 \ell_d$.

Next we combine Theorem 3.6 and Theorem 3.7 to obtain an enumeration formula for the number of irreducible polynomials in the factorization of $F_s(x)$ where (p, D) = 1 and $D \mid (q^n + 1)$.

Theorem 3.8. The number $N_A(\nu u)$ of polynomials of degree νu in the factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b$ where the minimal polynomial of A is an irreducible quadratic polynomial over $\mathbb{F}_{q^{k_1}\ell_d}$ is

$$N_A(\nu u) = \frac{1}{\nu u} \sum_{\substack{d \mid u \\ d \not\equiv 0 \pmod{\nu}}} \mu(d) (q^{n_1 \frac{u}{d}} - (-1)^{\frac{u}{d}}),$$

where $n_1 = k_1 \ell_d$.

A similar result can be found in [11] and [13].

Note that in the discussion leading up to Theorem 3.6 and Theorem 3.7 we implicitly assumed that $\ell_n \mid \ell_1$. Thus $\nu = \bar{\ell}_1 \bar{m}_1$. However, if $\ell_n \nmid \ell_1$ then as we did in Section 3.2.2 we will replace τ in Equation 5 and Equation 6 by $\nu = \frac{r}{\gamma m_1}$.

Example 3.4. Consider q=2, n=5 and r=6. We want to find the number of irreducible polynomials of degree 6 in the factorization of $F_{10}(x)=x^{2^{10}+1}-x+1 \in \mathbb{F}_{2^5}[x]$. Suppose α satisfies $F_{10}(x)$. Then $\alpha^{2^{10}+1}-\alpha+1=0$. Thus $\alpha^{2^{10}}=\frac{\alpha-1}{\alpha}=[A](\alpha)$. So $A=\begin{pmatrix}1&-1\\1&0\end{pmatrix}\in GL(2,2^5)$. By direct computation $\alpha^{2^{30}}=\alpha=[A^3](\alpha)=[I_2](\alpha)$. Hence

A is a matrix of order 3 and we note that $5 \mid (2^5 + 1)$. Here $\nu = 3$ so $r = \nu u = 3 \times 2$.

Using Theorem 3.8, with $r = \nu u = 3 \times 2$ we obtain

$$N_A(6) = \frac{1}{6} \sum_{\substack{d \not\equiv 0 \pmod{3} \\ d \not\equiv 0 \pmod{3}}} \mu(d) (2^{5 \cdot \frac{2}{d}} - (-1)^{\frac{2}{d}})$$

$$= \frac{1}{6} (2^{10} - 2^5 - 2)$$

$$= \frac{990}{6} = 165$$

So there are 165 polynomials of degree 6 in the factorization of $F_{10}(x) = x^{2^{10}+1} + x + 1$ over \mathbb{F}_{2^5} .

Example 3.5. Consider q=5, n=3 and r=6. We want to find the number of irreducible polynomials of degree 6 in the factorization of $F_2(x) \in \mathbb{F}_{5^2}[x]$.

Here $s = k_1 \ell_d u = 2$, $\ell_1 = 1$ and $\ell_n = 3$ so $k_1 \ell_d = 1$ and u = 2. Since $\ell_n \nmid \ell_1$ we will take $\nu = 3$. We note that if α is a root of $F_2(x)$ then $\alpha^{5^2} = \frac{a\alpha + b}{c\alpha + d}$. We can take

$$A=\left(egin{array}{cc} 0 & 1 \\ 4 & \zeta^{98} \end{array}
ight)\in GL(2,5^2)$$
 of order 9 where ζ is a primitive element of \mathbb{F}_{5^2} . Thus

 $F_2(x) = 4x^{5^2+1} + \zeta^{98}x^{25} + 4$. By Theorem 3.8, with $r = \nu u = 3 \times 2$ we find that there are 3 polynomials of degree 6 in the factorization of $F_2(x) = 4x^{26} + \zeta^{98}x^{25} + 4$ over \mathbb{F}_{5^2} .

3.3 Factorization of $F_s(x)$ where GCD(D, p) = p

3.3.1 Factorization of $F_s(x)$ where D=p

Suppose that α is a root of $F_s(x)$ and that D=p. The fact that D=p implies that $s=\frac{n_1r}{p}=k_1\frac{\ell m}{p}$. Thus, we have $\alpha^{q^{k_1}\frac{\ell m}{p}}=[A](\alpha)$. By Theorem 2.8, A is conjugate to a

matrix of the form $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ where $b \neq 0 \in \mathbb{F}_{q^n}$. We will take $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$ since we can show, by direct computation, that the order of A is p. As such, we have $\alpha^{q^{k_1} \frac{\ell m}{p}} = \alpha + 1$ and we may assume that α satisfies an equation of type

$$x^{q^{k_1}\frac{\ell m}{p}} - x - 1 = 0. (7)$$

This polynomial was fully factorized in [14] and an algorithm is given which counts the number of irreducible polynomials of degree r in the factorization of $x^{q^{k_1\frac{\ell m}{p}}}-x-1$. However, we will use the methods employed in [14] to find an analytic formula for finding the number of irreducible factors of degree r in the factorization of $x^{p^{k_1\frac{\ell mj}{p}}}-x-1$ where p is the characteristic of \mathbb{F}_q and $q=p^j$. We know that

$$x^{p^{k_1}\frac{\ell m j}{p}} - x - 1 = \prod_{i=1}^{p^{k_1}\frac{\ell m j}{p} - 1} (x^p - x - \beta_i)$$
 (8)

where β_i denotes all the elements of $\mathbb{F}_{q^{k_1}\frac{\ell m}{p}}$ which have trace 1 over \mathbb{F}_p , see Theorem 2.6. By Theorem 2.5, the trinomials $x^p-x-\beta_i$ are irreducible over $\mathbb{F}_{q^{k_1}\frac{\ell m}{p}}$. Now, the $q^{k_1\frac{\ell m}{p}}$ roots of $x^{p^{k_1}\frac{\ell m}{p}}-x-1=0$ lie in $\mathbb{F}_{q^{k_1\ell m}}-\mathbb{F}_{q^{k_1}\frac{\ell m}{p}}$. However, some of the roots may not lie in \mathbb{S} . If $\beta_i\in\mathbb{F}_{q^{k_1\ell_1m_1}}$ where ℓ_1m_1 is a proper divisor of $\frac{\ell m}{p}$ then the roots of $x^p-x-\beta_i$ do not lie in \mathbb{S} . But if β_i does not lie in any such subfield then the roots of $x^p-x-\beta_i$ do lie in \mathbb{S} .

Now if $\beta_i \in \mathbb{F}_{q^w}$ where \mathbb{F}_{q^w} is a proper subfield of $\mathbb{F}_{q^{k_1}\frac{\ell m}{p}}$ then

$$Tr_{(\mathbb{F}_{q^k}, \frac{\ell m}{p}/\mathbb{F}_p)}(\beta_i) = \frac{k_1 \ell m}{pw} Tr_{(\mathbb{F}_{q^w}/\mathbb{F}_p)}(\beta_i). \tag{9}$$

So if $\operatorname{GCD}(p,\frac{k_1\ell m}{pw}) \neq 1$ then $Tr_{(\mathbb{F}_{q^{k_1}\frac{\ell m}{p}}/\mathbb{F}_p)}(\beta_i) = 0$ and if $\operatorname{GCD}(p,\frac{k_1\ell m}{pw}) = 1$ then exactly $\frac{1}{p}$ elements of \mathbb{F}_{q^w} have absolute trace equal to 1. In both cases the roots of the corresponding equations $x^p - x - \beta_i$ do not lie in \mathbb{S} . Thus we obtain the number of elements of \mathbb{S} which are roots of $x^{q^{k_1}\frac{\ell m}{p}} - x - 1 = 0$ by subtracting from $q^{k_1\frac{\ell m}{p}}$ the number of elements in any proper subfield of $\mathbb{F}_{q^{k_1}\frac{\ell m}{p}}$ of type $\mathbb{F}_{q^{k_1}\ell_1m_1}$ where ℓ_1m_1 is a divisor of $\frac{\ell m}{p}$ and $p \nmid \frac{\ell_1\bar{m}_1}{p}$. Now, let r_1,\ldots,r_w be the distinct prime factors of r where $r_i \neq p$ for any i, we can use a lattice of subfields of $\mathbb{F}_{q^{k_1}\frac{\ell m}{p}}$ to show that the number to be subtracted from $q^{k_1\frac{\ell m}{p}}$ is

$$\sum_{1 \le i \le w} q^{\frac{k_1 \ell m}{pr_i}} - \sum_{1 \le i \le j \le w} q^{\frac{k_1 \ell m}{pr_i r_j}} + \sum_{1 \le i \le j \le k \le w} q^{\frac{k_1 \ell m}{pr_i r_j r_k}} - \dots (-1)^{w+1} q^{\frac{k_1 \ell m}{pr_1 \dots r_w}}.$$

Now, if we let r=pu then $u=\frac{r}{p}$. So $k_1\frac{\ell m}{p}=k_1\frac{\ell_n\ell_r m}{p}=k_1\ell_n\frac{r}{p}=k_1\ell_nu=n_1u$. Thus, we have proved the following.

Theorem 3.9. Suppose $F_s(x) = x^{q^{k_1 \frac{\ell m}{p}}} - x - 1$ where $\bar{\ell}_1 \bar{m}_1 = p$. Let $r = pu, u \in \mathbb{N}$, $n_1 = k_1 l_n$ and $V(k_1)$ be the set of roots of irreducible factors of degree r in the factorization of $F_s(x)$. If $r \not\equiv 0 \pmod{p}$, then $|V(k_1)| = 0$. Otherwise

$$|V(k_1)| = \sum_{\substack{d|u\\ d \not\equiv 0 \pmod{p}}} \mu(d)q^{n_1u/d}.$$

Corollary 3.1. The number of irreducible factors of degree r in the factorization of $F_s(x) = x^{q^{k_1 \frac{\ell m}{p}}} - x - 1$ is

 $\frac{1}{r}|V(k_1)|.$

We note that this result was also found in [5] using the action of the general linear group GL(2,q) on irreducible polynomials over \mathbb{F}_q .

Example 3.6. Consider q = 2, n = r = 6. We want to find the number of irreducible polynomials of degree 6 in the factorization of $F_{18}(x) \in \mathbb{F}_{2^6}[x]$.

Here $k_1 = 1$, $\ell_1 = 18$, $m_1 = 1$ so $s = k_1 \ell_1 m_1 = 18$. Also $\ell_n = 6$ and $r = pu = 2 \times 3$. We will take $A = \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \in GL(2, 2^6)$ of order 2. Thus $F_{18}(x) = x^{2^{18}} - x - 1$. By Corollary

3.1, there are 43,080 polynomials of degree 6 in the factorization of $F_{18}(x) = x^{2^{18}} - x - 1$ over \mathbb{F}_{2^6} .

Now consider the factorization of $F_s(x)$ where $D=p^2$ and $p^2\mid r$. The fact that $D=p^2$ implies that $s=\frac{n_1r}{p^2}$. Thus, we have $\alpha^{q^{\frac{n_1r}{p^2}}}=[A](\alpha)$. So $\alpha^{q^{n_1r}}=[A^{p^2}](\alpha)$ and the order of A divides p^2 . By Corollary 2.1, matrices of order p^2 do not exist. So we consider matrices of order p. This gives rise to an equation of the form $x^{q^{\frac{n_1r}{p^2}}}-x-1=0$. By an argument similar to the one in Section 3.3.1, we find that all roots of this polynomial lie in $\mathbb{F}_{q^{\frac{n_1r}{p}}}-\mathbb{F}_{q^{\frac{n_1r}{p^2}}}$ and not in \mathbb{S} . We have the following theorem.

Theorem 3.10. There is no polynomial of degree r in the factorization of $F_s(x)$ if $D = p^2$ and $p^2 \mid r$.

Next suppose that $F_s(x) = x^{q^s} - ax - b \in \mathbb{F}_{q^n}$ is such that $D = pp_1$ where p_1 is some other divisor of r. That is, if $F_s(\alpha) = 0$ then $\alpha^{q^s} = [A](\alpha)$ is such that $\alpha^{q^{spp_1}} = [A^{pp_1}](\alpha) = [I_2](\alpha) = \alpha$. Then $A^{pp_1} = I_2$ and by Corollary 2.1 we know that such a matrix does not exist. Moreover, if we take $B = A^p$ of order p_1 then we have $\alpha^{q^{sp_1}} = [B^{p_1}](\alpha)$ then α satisfies Equation 1 or Equation 3. Also if we take $B = A^{p_1}$ of order p then we have $\alpha^{q^{sp}} = [B^p](\alpha)$ then α satisfies Equation 8 and this is not possible. So there is no irreducible polynomial of degree p in the factorization of p in this case.

Finally, we consider the factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}$ where $s = k_1 \ell_1 m$, $D = \bar{\ell}_1 = p^i$, i > 1 and $p^2 \nmid r$. Without loss of generality, $s = k_1 \ell_1 m = \frac{nr}{p^i}$ where $p^{i-1} \mid n$. Now, by Theorem 2.8, A is conjugate to a matrix of the form $\begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix}$ where $b \neq 0 \in \mathbb{F}_{q^n}$. So we have $\alpha^{q^{k_1 \ell_1 m}} = \alpha + b$ and we may assume that α satisfies an equation of type

$$x^{q^{k_1\ell_1 m}} - x - b = 0. (10)$$

This polynomial was fully factorized in [14] by exploiting the decomposition

$$x^{q^{\frac{nr}{p}}} - x - 1 = \prod_{i=1}^{q^{(\frac{\bar{k}_1\bar{\ell}_1}{p} - 1)k_1\ell_1m}} (x^{q^{k_1\ell_1m}} - x - \beta_i)$$
(11)

where β_i runs through all elements of $\mathbb{F}_{q^{\frac{nr}{p}}}$ such that $Tr_{\mathbb{F}_{q^{\frac{nr}{p}}}/\mathbb{F}_{q^{k_1\ell_1m}}}(\beta_i)=1$. It is shown in [14] that we obtain the cardinality of the set, $W(k_1\ell_1m)$, of roots of polynomials of degree r in the factorization of Equation 10 by subtracting from $q^{k_1\ell_1m}$ the number of elements in any proper subfield of type $\mathbb{F}_{q^{k\ell_2m_1}}$ where $p \nmid \bar{\ell}_2\bar{m}_1$ but $\bar{\ell}_2\bar{m}_1 > 1$. Furthermore, an algorithm is given in [14] which gives $|W(k_1\ell_1m)|$. We obtain the following analytic formula from the algorithm in [14].

Theorem 3.11. Suppose $F_s(x) = x^{q^{k_1\ell_1 m}} - x - b$ where $b \in \mathbb{F}_{q^{\frac{nr}{p}}}$ is such that $Tr_{\mathbb{F}_{q^{\frac{nr}{p}}}/\mathbb{F}_{q^{k_1\ell_1 m}}}(b) = 1$ and $\bar{\ell}_1\bar{m}_1 = p^i$. Let $r = pu, u \in \mathbb{N}$, $n_1 = \frac{n}{p^{i-1}}$ and $W(k_1\ell_1 m)$ be the set of roots of irreducible factors of degree r in the factorization of $F_s(x)$. If $r \not\equiv 0 \pmod{p}$, then $|W(k_1\ell_1 m)| = 0$. Otherwise

$$|W(k_1\ell_1m)| = \sum_{\substack{d \mid u \\ d \not\equiv 0 \pmod{p}}} \mu(d)q^{n_1u/d}.$$

Corollary 3.2. The number of irreducible factors of degree r in the factorization of $F_s(x) = x^{q^{k_1\ell_1 m}} - x - b$ where $b \in \mathbb{F}_{q^{\frac{nr}{p}}}$ is

$$\frac{1}{pu}|W(k_1\ell_1m)|.$$

Example 3.7. Consider q=2, n=r=6. We want find the number of irreducible polynomials of degree 6 in the factorization of $F_9(x) \in \mathbb{F}_{2^6}[x]$. Here s=9 where $k_1=1$, $\ell_1=9$ and $m_1=1$. Also $\ell_n=6$, $r=pu=2\times 3$ and $n_1=3$. We will take $A=\begin{pmatrix} 1 & \zeta^{62} \\ 0 & 1 \end{pmatrix} \in GL(2,2^6)$ where $\zeta\in\mathbb{F}_{2^6}$ is a primitive element. Thus $F_9(x)=x^{2^9}+x+\zeta^{62}$. By Theorem 3.11, there are 84 polynomials of degree 6 in the factorization of $F_9(x)=x^{2^9}+x+\zeta^{62}$.

Finally we bring together all the results we have to obtain enumeration formulas for the number of irreducible polynomials of degree r in the factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b$.

Theorem 3.12. Let $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL(2,q^n)$ be of order $D = \bar{\ell}_1 \bar{m}_1$ and $\nu = \frac{r}{\gamma m_1}$ where $\gamma = \frac{\ell_1}{\ell_n}$. Also let $N_A(r)$ be the number of irreducible factors of degree r in the factorization of $F_s(x) = cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}[x]$. Then the following hold

1. If D = 1 and $s = k_1 \ell_n r$ then

$$N_A(r) = \frac{1}{r} \sum_{d|r} \mu(d) q^{\frac{k_1 \ell_n r}{d}}.$$

2. If GCD(D,p) = 1, $D \mid (q^n - 1)$, $\ell_n \mid \ell_1$, $r = \nu u$ and $n_1 = k_1 \ell_d$ or if D is even, GCD(D,p) = 1, $D \mid (q^n - 1)$, $\ell_n \nmid \ell_1$, $q \equiv -1 \pmod{4}$, $s = k_1 \ell_1 m_1$ is odd then

$$N_A(r) = \frac{1}{r} \sum_{\substack{d | u \\ (d, \nu) = 1}} \mu(d) \left(q^{n_1 \frac{u}{d}} - 1 \right).$$

3. If (p, D) = 1 and $D \mid (q^n + 1), r = \nu u$ and $n_1 = k_1 \ell_d$ then

$$N_A(r) = \frac{1}{\nu u} \sum_{\substack{d \mid u \\ d \not\equiv 0 \pmod{\nu}}} \mu(d) (q^{n_1 \frac{u}{d}} - (-1)^{\frac{u}{d}}).$$

4. If GCD(D,p) = p, D = p, r = pu and $n_1 = k_1 \ell_n$ or if $D = p^i$ and $p^2 \nmid r$, r = pu and $n_1 = \frac{n}{n^{i-1}}$ then

$$N_A(r) = \frac{1}{r} \sum_{\substack{d \mid u \\ d \not\equiv 0 \pmod{p}}} \mu(d) q^{n_1 u/d}.$$

3.4 Counting self-reciprocal irreducible monic polynomials

It is well known that each irreducible factor of $H_s(x) = x^{q^s+1} - 1$ of degree ≥ 2 is a self-reciprocal irreducible monic (srim) polynomial of degree 2u, where $u \mid s$ and $\frac{s}{u}$ is odd, see [10]. Suppose $H_s(\alpha) = 0$, then $\alpha^{q^s+1} - 1 = 0$. So $\alpha^{q^s} = [A](\alpha)$ where $A = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \in GL(2, q^n)$ is of order 2. We obtain the following result (see [10], [1] and [4]) from Item 2 and Item 4 of Theorem 3.12.

Theorem 3.13. Let $N_A(r)$ be the number of srim polynomials of degree 2u in the decomposition of $H_s(x) = x^{q^s+1} - 1$.

$$N_A(r) = \begin{cases} \frac{1}{2u}(q^s - 1), & \text{if } q \text{ is odd and } r = 2^i \\ \frac{1}{2u} \sum_{\substack{d | s \\ d \not\equiv 0 \pmod{2}}} \mu(d) q^{s/d}, & \text{otherwise.} \end{cases}$$

4 Conclusion

In this paper we have obtained enumeration results on the number of irreducible factors of degree r in the factorization of $cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}[x]$ where $ad - bc \neq 0$. We obtained our results by enumerating the number of roots of polynomials of degree r in the factorization of $cx^{q^s+1} + dx^{q^s} - ax - b \in \mathbb{F}_{q^n}[x]$. We have also obtained a generalization of previous enumeration results which considered this polynomial.

References

- [1] L. Carlitz, Some theorems on irreducible reciprocal polynomials over a finite field, J. Reine Angew. Math. 227 (1967), pp. 212–220.
- [2] I.F. BLAKE, S. GAO AND R.C. MULLIN, Normal and Self-dual Normal Bases from Factorization of $cx^{q+1} + dx^q ax b$, Finite Fields and Their Applications 6 (2000), pp. 255–281, .
- [3] I.A.W. Bluher, $On x^{q+1} + ax + b$, Finite Fields and Their Applications, 10 (2004), pp. 285-305.
- [4] S.D. COHEN, On irreducible polynomials of certain types in finite fields, Proc. Cambridge Philos. Soc. 66 (1969), pp. 335344.
- [5] T. GAREFALAKIS, On the action of $GL_2(\mathbb{F}_q)$ on Irreducible Polynomials over \mathbb{F}_q , Journal of Pure and Applied Algebra, 215 (2011), pp. 1835-1843.
- [6] T. Helleseth and A. Kholosha, On the equation $x^{2^{l}+1} + x + a = 0$, Finite Fields and Their Applications 14 (2008), 159-176.
- [7] R.Lidl, and H. Niederreiter, *Finite Fields*, Cambridge University Press, Cambridge, 1986.
- [8] K. MAGAMBA AND J.A. RYAN, Counting Extended Irreducible Codes, Appl. Algebra Engrg. Comm. Comput. (2018) doi:10.1007/s00200-018-0375-x
- [9] S. Mattarei, The Orders of Nonsingular Derivations of Lie Algebras of Characteristic Two, J. Austral. Math. Soc. 71 (2006), pp. 299-305.
- [10] H. MEYN, On the construction of irreducible self-reciprocal polynomials over finite fields, Appl. Algebra Engrg. Comm. Comput., 1 (1990), pp. 4353.
- [11] J.F MICHON AND P. RAVACHE, On different families of invariant irreducible polynomials over \mathbb{F}_2 . Finite Fields Appl., 16(2010), pp. 163-174.
- [12] O. Ore, Contributions to the Theory of Finite Fields, Trans. Amer. Math. Soc., Vol. 36 (1934), pp. 243-247.
- [13] M. Pizzato, Some Problems Concerning Polynomials over Finite Fields, or Algebraic Divertissements, PhD Thesis, University of Trento, 2013.
- [14] J.A. Ryan, Irreducible Goppa Codes, PhD Thesis, University College Cork, 2004.
- [15] H. STICHTENOTH AND A. TOPUZOĞLU Factorization of a Class of Polynomials over Finite Fields, Finite Fields and Their Applications, 1 (2012), pp. 108-122.