K- means, GMM and PCA

In this Assignment we have to perform K-means and Gaussian mixture models, also we have to visualize the clusters by dimensionality reduction using PCA.

Datasets:

For this Assignment, I have used two datasets which are Wine and Iris Dataset can be found at Kaggle Links provided below:

- 1. Wine Dataset: https://www.kaggle.com/harrywang/wine-dataset-for-clustering.
- 2. Iris Dataset: https://www.kaggle.com/rutujavaidva/iris-dataset.
- 3. A small dataset was created using the make_blobs function provided by the sklearn library.

Functions created and used:

1. For Kmeans finding the best cluster using silhouette score: I have created a function kmeans_clustering_find_clusters which uses the KMeans function defined in sklearn and also uses the silhouette_score function to calculate the scores of different clusters and the best score is selected and the respective cluster is used.

Like in the above-plotted graph best score is 0.28 for 3 clusters hence 3 clusters are used.

2. **Kmeans:** final_kmeans(scaled_features,plot_x,plot_y,cluster=2) is used to find the kmeans and do the plotting

3. Kmenas using PCA: kmeans_pca(scaled_features,cluster=2) is used to find the kmeans after the data is reduced using PCA.

K-means clustering on the dataset (PCA-reduced data) Centroids are marked with white +

4. **GMM**:

gausianmixturemodel (scaled_features,plot_x,plot_y,cluster=2) is used for performing the GMM on the data it performs GMM using the means generated by kmenas and also uses different covariance matrices.

5. GMM using PCA: gmm_pca(scaled_features,cluster=2) is used to perform GMM on the data reduced by PCA then Plot the data.

GMM on the dataset (PCA-reduced data) Centroids are marked with white +

Description:

In the above functions, cluster means the best cluster on a dataset, as the dataset is multi-dimensional except for PCA plot_x and plot_y are used to provide the features which you want to plot of this multidimensional dataset.

Experiments conducted:

- 1. Full, Diagonal, and Identity covariance matrices:
 - In this, there is not much difference between the output of GMM for the three matrices except for the changes in the values of cluster centers.
- **2. For Overlapping examples:** In the case of the Iris dataset the examples are overlapping this can find out easily since the target variable has 3 unique labels but according to silhouette scores 2 clusters are found for the best performance hence we can say there are overlapping examples.
 - In this case for Iris dataset i have used 3 clusters.