Estruturas Discretas: Relações e Funções

2019/2020

 Dois elementos a, b podem ser agrupados num par ordenado, o qual é denotado por (a, b).

- Dois elementos a, b podem ser agrupados num par ordenado, o qual é denotado por (a, b).
- Dados dois pares ordenados (x, y), (u, v), então (x, y) = (u, v) se e só se x = u e y = v

- Dois elementos a, b podem ser agrupados num par ordenado, o qual é denotado por (a, b).
- Dados dois pares ordenados (x, y), (u, v), então (x, y) = (u, v) se e só se x = u e y = v
- A noção de par ordenado pode ser estendida a tuplos de tamanho n

- Dois elementos a, b podem ser agrupados num par ordenado, o qual é denotado por (a, b).
- Dados dois pares ordenados (x, y), (u, v), então (x, y) = (u, v) se e só se x = u e y = v
- A noção de par ordenado pode ser estendida a tuplos de tamanho n
- A noção de tuplos de n elementos, permite representar conjuntos de objectos, nos quais a ordem entre os elementos é importante.

Definição: Dados dois conjuntos $A \in B$, o seu *produto cartesiano* $A \times B$ é o conjunto de todos os pares ordenados (x, y), tais que $x \in A$ e $y \in B$:

$$A \times B = \{ (x, y) \mid x \in A, y \in B \}.$$

Definição: Dados dois conjuntos $A \in B$, o seu *produto cartesiano* $A \times B$ é o conjunto de todos os pares ordenados (x, y), tais que $x \in A$ e $y \in B$:

$$A \times B = \{ (x, y) \mid x \in A, y \in B \}.$$

Um caso especial bastante útil é:

$$A^2 = A \times A = \{ (x, y) \mid x, y \in A \}.$$

Definição: Dados dois conjuntos $A \in B$, o seu *produto cartesiano* $A \times B$ é o conjunto de todos os pares ordenados (x, y), tais que $x \in A$ e $y \in B$:

$$A \times B = \{ (x, y) \mid x \in A, y \in B \}.$$

Um caso especial bastante útil é:

$$A^2 = A \times A = \{ (x, y) \mid x, y \in A \}.$$

De uma forma geral definimos: $A^1 = A$, e para $n \ge 2$

$$A^n = \{ (x_1, \ldots, x_n) \mid x_1, \ldots, x_n \in A \}.$$

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subset Y$ e $Y \subset X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$.

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subset Y$ e $Y \subset X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$.

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$.

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$. Portanto, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$,

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$. Portanto, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$, logo $(x,y) \in (A \times C) \cup (B \times C)$.

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$. Portanto, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$, logo $(x,y) \in (A \times C) \cup (B \times C)$.

Seja $(u, v) \in (A \times C) \cup (B \times C)$.

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$. Portanto, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$, logo $(x,y) \in (A \times C) \cup (B \times C)$.

Seja $(u, v) \in (A \times C) \cup (B \times C)$. Isso implica que $(u, v) \in A \times C$ ou $(u, v) \in B \times C$.

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$. Portanto, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$, logo $(x,y) \in (A \times C) \cup (B \times C)$.

Seja $(u, v) \in (A \times C) \cup (B \times C)$. Isso implica que $(u, v) \in A \times C$ ou $(u, v) \in B \times C$. No primeiro caso $u \in A$ e $v \in C$ e no segundo caso $u \in B$ e $v \in C$.

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$. Portanto, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$, logo $(x,y) \in (A \times C) \cup (B \times C)$.

Seja $(u, v) \in (A \times C) \cup (B \times C)$. Isso implica que $(u, v) \in A \times C$ ou $(u, v) \in B \times C$. No primeiro caso $u \in A$ e $v \in C$ e no segundo caso $u \in B$ e $v \in C$. Logo $u \in A \cup B$ e $v \in C$,

Proposição: $(A \cup B) \times C = (A \times C) \cup (B \times C)$

Prova: Recordemos que dois conjuntos X e Y são iguais se e só se $X \subseteq Y$ e $Y \subseteq X$.

Seja $(x,y) \in (A \cup B) \times C$, então por definição de produto cartesiano $x \in A \cup B$ e $y \in C$. Logo $x \in A$ ou $x \in B$. Se $x \in A$ então $(x,y) \in A \times C$ e se $x \in B$ então $(x,y) \in B \times C$. Portanto, $(x,y) \in A \times C$ ou $(x,y) \in B \times C$, logo $(x,y) \in (A \times C) \cup (B \times C)$.

Seja $(u, v) \in (A \times C) \cup (B \times C)$. Isso implica que $(u, v) \in A \times C$ ou $(u, v) \in B \times C$. No primeiro caso $u \in A$ e $v \in C$ e no segundo caso $u \in B$ e $v \in C$. Logo $u \in A \cup B$ e $v \in C$, o que implica que $(u, v) \in (A \cup B) \times C$.

Definição: Uma relação binária de um conjunto A num conjunto B é um subconjunto $R \subseteq A \times B$.

Definição: Uma relação binária de um conjunto A num conjunto B é um subconjunto $R \subseteq A \times B$.

Se A = B, i.e. $R \subseteq A \times A$, dizemos também que R é uma relação binária definida em A.

A relação R indica os pares (a, b) para os quais a relação representada por R é verdadeira.

Definição: Uma *relação binária* de um conjunto A num conjunto B é um subconjunto $R \subseteq A \times B$.

Se A = B, i.e. $R \subseteq A \times A$, dizemos também que R é uma relação binária definida em A.

A relação R indica os pares (a,b) para os quais a relação representada por R é verdadeira.

Por exemplo, a relação > em $\{1,2,3\}$ é:

$$>$$
 = {(2,1),(3,1),(3,2)}

Definição: Uma *relação binária* de um conjunto A num conjunto B é um subconjunto $R \subseteq A \times B$.

Se A = B, i.e. $R \subseteq A \times A$, dizemos também que R é uma relação binária definida em A.

A relação R indica os pares (a,b) para os quais a relação representada por R é verdadeira.

Por exemplo, a relação > em $\{1,2,3\}$ é:

$$>$$
 = {(2,1),(3,1),(3,2)}

Se $(a, b) \in R$, então a está em relação com b em R. Podemos também usar a notação aRb para indicar que $(a, b) \in R$.

Definição: Uma *relação binária* de um conjunto A num conjunto B é um subconjunto $R \subseteq A \times B$.

Se A = B, i.e. $R \subseteq A \times A$, dizemos também que R é uma relação binária definida em A.

A relação R indica os pares (a,b) para os quais a relação representada por R é verdadeira.

Por exemplo, a relação > em $\{1,2,3\}$ é:

$$>$$
 = {(2,1), (3,1), (3,2)}

Se $(a, b) \in R$, então a está em relação com b em R. Podemos também usar a notação aRb para indicar que $(a, b) \in R$.

Exemplos de relações matemáticas, que já vimos: <, >, \le , \ge , =, \ne , |, \equiv_n , \subset , \subseteq , etc...

Seja $A = \{1, 2, 3, 4, 5, 6\}$. Determine as relações binárias seguintes (por extensão).

(≡₄, A);

- (\equiv_4, A) ;
- (\equiv_4, \mathbb{Z}) ;

- (\equiv_4, A) ;
- $(\equiv_4, \mathbb{Z});$
- (|, *A*);

- (\equiv_4, A) ;
- $(\equiv_4, \mathbb{Z});$
- (|, A);
- $(|,\mathbb{Z});$

- (\equiv_4, A) ;
- $(\equiv_4, \mathbb{Z});$
- (|, A);
- $(|,\mathbb{Z});$
- $(\subseteq, \mathcal{P}(\{1,2,3\}))$.

- (\equiv_4, A) ;
- $(\equiv_4, \mathbb{Z});$
- (|, A);
- $(|,\mathbb{Z});$
- $(\subseteq, \mathcal{P}(\{1,2,3\}))$.

Representação de Relações

Matrizes Seja R uma relação entre $A = \{a_1, a_2, ..., a_m\}$ e $B = \{b_1, b_2, ..., b_n\}$. R pode ser representada pela matriz $M_R = \{m_{ij}\}$, onde

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{se} & (a_i,b_j) \in R \ 0 & ext{se} & (a_i,b_j)
otin R \end{array}
ight.$$

Representação de Relações

Matrizes Seja R uma relação entre $A = \{a_1, a_2, ..., a_m\}$ e $B = \{b_1, b_2, ..., b_n\}$. R pode ser representada pela matriz $M_R = \{m_{ij}\}$, onde

$$m_{ij} = \left\{ egin{array}{ll} 1 & ext{se} & (a_i,b_j) \in R \\ 0 & ext{se} & (a_i,b_j)
otin R \end{array}
ight.$$

Exemplo $R = \{(a, a), (a, b), (b, b), (b, c), (c, b), (b, c)\}$

R	а	b	С
а	1	1	0
b	1	1	1
С	0	1	1

Matrizes

Definição: Sejam $E=(e_{ij})_{m\times n}$ e $F=(f_{ij})_{m\times n}$ duas matrizes (0,1) de $m\times n$. Dizemos que E precede F e escrevemos $E\leq F$, se $e_{ij}\leq f_{ij}$ para todo $1\leq i\leq m,\ 1\leq j\leq n$.

Matrizes

Definição: Sejam $E=(e_{ij})_{m\times n}$ e $F=(f_{ij})_{m\times n}$ duas matrizes (0,1) de $m\times n$. Dizemos que E precede F e escrevemos $E\leq F$, se $e_{ij}\leq f_{ij}$ para todo $1\leq i\leq m,\ 1\leq j\leq n$.

Definição:Para $n \in \mathbb{Z}^+$, $I_n = (\delta_{ij})$ é a matriz de $n \times n$ tal que

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{se} & i = j \\ 0 & \text{se} & i \neq j \end{array} \right.$$

Definição: Sejam $E=(e_{ij})_{m\times n}$ e $F=(f_{ij})_{m\times n}$ duas matrizes (0,1) de $m\times n$. Dizemos que E precede F e escrevemos $E\leq F$, se $e_{ij}\leq f_{ij}$ para todo $1\leq i\leq m,\ 1\leq j\leq n$.

Definição:Para $n \in \mathbb{Z}^+$, $I_n = (\delta_{ij})$ é a matriz de $n \times n$ tal que

$$\delta_{ij} = \left\{ \begin{array}{ll} 1 & \text{se} & i = j \\ 0 & \text{se} & i \neq j \end{array} \right.$$

Definição: Seja $A=(a_{ij})_{m\times n}$ uma matriz (0,1). A transposta de A, escrevemos A^t , é a matriz $(a^*_{ji})_{n\times m}$ tal que $a^*_{ji}=a_{ij}$, para todo $1\leq i\leq m,\ 1\leq j\leq n$.

Seja A um conjunto com |A| = n e R uma relação em A. Se M_R é a matriz da relação R, então:

• $M_R = 0$ (a matriz com todas as posições 0) se e só se $R = \emptyset$.

- $M_R = 0$ (a matriz com todas as posições 0) se e só se $R = \emptyset$.
- $M_R = 1$ (a matriz com todas as posições 1) se e só se $R = A \times A$.

Uma relação R num conjunto A é chamada:

• reflexiva: $\forall a \in A \ (a, a) \in R$

- reflexiva: $\forall a \in A \ (a, a) \in R$
- simétrica: $\forall a, b \in A \ [(a, b) \in R \Rightarrow (b, a) \in R]$

- reflexiva: $\forall a \in A \ (a, a) \in R$
- simétrica: $\forall a, b \in A \ [(a, b) \in R \Rightarrow (b, a) \in R]$
- anti-simétrica:

$$\forall a, b \in A [(a, b) \in R \land (b, a) \in R \Rightarrow a = b]$$

- reflexiva: $\forall a \in A \ (a, a) \in R$
- simétrica: $\forall a, b \in A \ [(a, b) \in R \Rightarrow (b, a) \in R]$
- anti-simétrica: $\forall a, b \in A \ [(a, b) \in R \land (b, a) \in R \Rightarrow a = b]$
- transitiva: $\forall a, b, c \in A \ [(a, b) \in R \land (b, c) \in R \ \Rightarrow \ (a, c) \in R]$

Seja A um conjunto com |A|=n, R uma relação em A e M_R é a matriz da relação R, então:

• R é reflexiva se e só se $I_n \leq M_R$ (I_n é a matriz identidade de dimensão n).

- R é reflexiva se e só se I_n ≤ M_R (I_n é a matriz identidade de dimensão n).
- R é simétrica se e só se $M_R = M_R^t$ (onde M^t é a matriz transposta de M).

- R é reflexiva se e só se $I_n \leq M_R$ (I_n é a matriz identidade de dimensão n).
- R é simétrica se e só se $M_R = M_R^t$ (onde M^t é a matriz transposta de M).
- R é anti-simétrica se e só se $M_R \cap M_R^t \leq I_n$.

- R é reflexiva se e só se $I_n \leq M_R$ (I_n é a matriz identidade de dimensão n).
- R é simétrica se e só se $M_R = M_R^t$ (onde M^t é a matriz transposta de M).
- R é anti-simétrica se e só se $M_R \cap M_R^t \leq I_n$.
- R é transitiva se e só se $M_R \times M_R = M_R^2 \le M_R$.

Relações de equivalência

Definição: uma relação R num conjunto A é chamada relação de equivalência se é reflexiva, simétrica e transitiva.

Relações de equivalência

Definição: uma relação R num conjunto A é chamada relação de equivalência se é reflexiva, simétrica e transitiva.

Como vimos antes a relação \equiv_n em \mathbb{Z} é:

- reflexiva,
- simétrica e
- transitiva

logo é uma relação de equivalência.

Uma relação de equivalência induz uma partição dos seus elementos, em classes.

Uma relação de equivalência induz uma partição dos seus elementos, em classes.

Definição: Seja R uma relação de equivalência num conjunto A. O conjunto de todos os elementos que estão relacionados com um elemento $a \in A$ é chamado de *classe de equivalência* de a, notação R[a] ou $[a]_R$, e é definida como

Uma relação de equivalência induz uma partição dos seus elementos, em classes.

Definição: Seja R uma relação de equivalência num conjunto A. O conjunto de todos os elementos que estão relacionados com um elemento $a \in A$ é chamado de *classe de equivalência* de a, notação R[a] ou $[a]_R$, e é definida como

$$R[a] = \{b \in A : aRb\}$$

Uma relação de equivalência induz uma partição dos seus elementos, em classes.

Definição: Seja R uma relação de equivalência num conjunto A. O conjunto de todos os elementos que estão relacionados com um elemento $a \in A$ é chamado de *classe de equivalência* de a, notação R[a] ou $[a]_R$, e é definida como

$$R[a] = \{b \in A : aRb\}$$

Definição: Uma partição de um conjunto A é uma conjunto $\mathcal{X} \subseteq 2^A \setminus \{\emptyset\}$, tal que

Uma relação de equivalência induz uma partição dos seus elementos, em classes.

Definição: Seja R uma relação de equivalência num conjunto A. O conjunto de todos os elementos que estão relacionados com um elemento $a \in A$ é chamado de *classe de equivalência* de a, notação R[a] ou $[a]_R$, e é definida como

$$R[a] = \{b \in A : aRb\}$$

Definição: Uma partição de um conjunto A é uma conjunto $\mathcal{X} \subseteq 2^A \setminus \{\emptyset\}$, tal que

(a) Cada $a \in A$ pertence a algum $S \in \mathcal{X}$.

Uma relação de equivalência induz uma partição dos seus elementos, em classes.

Definição: Seja R uma relação de equivalência num conjunto A. O conjunto de todos os elementos que estão relacionados com um elemento $a \in A$ é chamado de *classe de equivalência* de a, notação R[a] ou $[a]_R$, e é definida como

$$R[a] = \{b \in A : aRb\}$$

Definição: Uma partição de um conjunto A é uma conjunto $\mathcal{X} \subseteq 2^A \setminus \{\emptyset\}$, tal que

- (a) Cada $a \in A$ pertence a algum $S \in \mathcal{X}$.
- (b) Se $S, T \in \mathcal{X}$, então ou S = T ou $S \cap T = \emptyset$.

Teorema: Seja R uma relação de equivalência num conjunto A.

Então $\{R[a] : a \in A\}$ é uma partição de A.

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a).

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b].

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b]. Se aRb, então para todo o $c \in R[a]$, por transitividade e simetria, bRc e $c \in R[b]$.

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b]. Se aRb, então para todo o $c \in R[a]$, por transitividade e simetria, bRc e $c \in R[b]$. Isto mostra que $R[a] \subseteq R[b]$.

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b]. Se aRb, então para todo o $c \in R[a]$, por transitividade e simetria, bRc e $c \in R[b]$. Isto mostra que $R[a] \subseteq R[b]$. Simetricamente demonstramos que $R[b] \subseteq R[a]$, o que implica que R[a] = R[b].

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b]. Se aRb, então para todo o $c \in R[a]$, por transitividade e simetria, bRc e $c \in R[b]$. Isto mostra que $R[a] \subseteq R[b]$. Simetricamente demonstramos que $R[b] \subseteq R[a]$, o que implica que R[a] = R[b].

Se $(a, b) \notin R$ então seja $c \in R[a]$.

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b]. Se aRb, então para todo o $c \in R[a]$, por transitividade e simetria, bRc e $c \in R[b]$. Isto mostra que $R[a] \subseteq R[b]$. Simetricamente demonstramos que $R[b] \subseteq R[a]$, o que implica que R[a] = R[b].

Se $(a,b) \not\in R$ então seja $c \in R[a]$. Se $c \in R[b]$ então aRc e bRc,

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b]. Se aRb, então para todo o $c \in R[a]$, por transitividade e simetria, bRc e $c \in R[b]$. Isto mostra que $R[a] \subseteq R[b]$. Simetricamente demonstramos que $R[b] \subseteq R[a]$, o que implica que R[a] = R[b].

Se $(a,b) \notin R$ então seja $c \in R[a]$. Se $c \in R[b]$ então aRc e bRc, o que implica, por transitividade e reflexividade, aRb, o que gera uma contradição.

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b]. Se aRb, então para todo o $c \in R[a]$, por transitividade e simetria, bRc e $c \in R[b]$. Isto mostra que $R[a] \subseteq R[b]$. Simetricamente demonstramos que $R[b] \subseteq R[a]$, o que implica que R[a] = R[b].

Se $(a,b) \notin R$ então seja $c \in R[a]$. Se $c \in R[b]$ então aRc e bRc, o que implica, por transitividade e reflexividade, aRb, o que gera uma contradição. Logo nenhum elemento de R[a] pertence a R[b] e $R[a] \cap R[b] = \emptyset$. O que mostra(b) e conclui a prova.

Teorema: Seja R uma relação de equivalência num conjunto A. Então $\{R[a]: a \in A\}$ é uma partição de A.

Prova: Seja R uma relação de equivalência em A. Como R é reflexiva então qualquer $a \in A$ pertence a R[a], o que implica (a). Sejam duas classes de equivalência R[a] e R[b]. Se aRb, então para todo o $c \in R[a]$, por transitividade e simetria, bRc e $c \in R[b]$. Isto mostra que $R[a] \subseteq R[b]$. Simetricamente demonstramos que $R[b] \subseteq R[a]$, o que implica que R[a] = R[b].

Se $(a,b) \notin R$ então seja $c \in R[a]$. Se $c \in R[b]$ então aRc e bRc, o que implica, por transitividade e reflexividade, aRb, o que gera uma contradição. Logo nenhum elemento de R[a] pertence a R[b] e $R[a] \cap R[b] = \emptyset$. O que mostra(b) e conclui a prova.

Exemplos:

Determine as propriedades da seguinte relação binária R definida em \mathbb{Z} . Se R for uma relação de equivalência determine ainda a partição de \mathbb{Z} induzida por R.

$$R = \{ (a,b) \in \mathbb{Z} \times \mathbb{Z} \mid 4 \mid (a+3b) \}$$

Exemplos:

Seja X um conjunto e Y um subconjunto de X. Determine as propriedades da seguinte relação binária S definida em $\mathcal{P}(X) = 2^X$.

$$S = \{ (A, B) \in \mathcal{P}(X) \times \mathcal{P}(X) \mid (A \cup B) \setminus (A \cap B) \subseteq Y \}$$

Exemplos:

Determine as propriedades da seguinte relação binária $\mathcal T$ definida em $\mathcal A=\mathbb Z\times\mathbb Z.$

$$T = \{ ((a,b),(c,d)) \in A \times A \mid \mathsf{mdc}(a,b) = \mathsf{mdc}(c,d) \}$$

Exemplos:

Determine as propriedades da seguinte relação binária T definida em $A = \mathbb{Z} \times \mathbb{Z}$.

$$T = \{ ((a,b),(c,d)) \in A \times A \mid \mathsf{mdc}(a,b) = \mathsf{mdc}(c,d) \}$$

Determine $[(700, 1320)]_T$.

Exemplos:

Determine as propriedades da seguinte relação binária T definida em $A = \mathbb{Z} \times \mathbb{Z}$.

$$T = \{ ((a,b),(c,d)) \in A \times A \mid \mathsf{mdc}(a,b) = \mathsf{mdc}(c,d) \}$$

Determine $[(700, 1320)]_T$.

(Nota:
$$700 = 2^2 \cdot 5^2 \cdot 7 \text{ e } 1320 = 2^3 \cdot 3 \cdot 5 \cdot 11.$$
)

Definição: Uma relação R num conjunto A é chamada de *ordem* parcial se é reflexiva, anti-simétrica e transitiva.

Definição: Uma relação R num conjunto A é chamada de *ordem* parcial se é reflexiva, anti-simétrica e transitiva. Um conjunto A juntamente com uma relação parcial R é chamado um um conjunto parcialmente ordenado, poset, e é denotado por (A, R).

Definição: Uma relação R num conjunto A é chamada de *ordem* parcial se é reflexiva, anti-simétrica e transitiva. Um conjunto A juntamente com uma relação parcial R é chamado um um conjunto parcialmente ordenado, poset, e é denotado por (A, R).

As relações \leq , \geq , e | em \mathbb{Z} , assim como a relação \subseteq em 2^A para qualquer A, são relações de ordem parcial.

Definição: Uma relação R num conjunto A é chamada de *ordem* parcial se é reflexiva, anti-simétrica e transitiva. Um conjunto A juntamente com uma relação parcial R é chamado um um conjunto parcialmente ordenado, poset, e é denotado por (A, R).

As relações \leq , \geq , e | em \mathbb{Z} , assim como a relação \subseteq em 2^A para qualquer A, são relações de ordem parcial.

Definição: Os elementos a e b de uma ordem parcial (A, R) são comparáveis se aRb ou bRa, caso contrário são incomparáveis.

Definição: Uma relação R num conjunto A é chamada de *ordem* parcial se é reflexiva, anti-simétrica e transitiva. Um conjunto A juntamente com uma relação parcial R é chamado um um conjunto parcialmente ordenado, poset, e é denotado por (A, R).

As relações \leq , \geq , e | em \mathbb{Z} , assim como a relação \subseteq em 2^A para qualquer A, são relações de ordem parcial.

Definição: Os elementos a e b de uma ordem parcial (A, R) são comparáveis se aRb ou bRa, caso contrário são incomparáveis.

Exemplo: Considere a seguinte ordem parcial $(Z^+, |)$, 3 e 9 são comparáveis?

Definição: Uma relação R num conjunto A é chamada de *ordem* parcial se é reflexiva, anti-simétrica e transitiva. Um conjunto A juntamente com uma relação parcial R é chamado um um conjunto parcialmente ordenado, poset, e é denotado por (A, R).

As relações \leq , \geq , e | em \mathbb{Z} , assim como a relação \subseteq em 2^A para qualquer A, são relações de ordem parcial.

Definição: Os elementos a e b de uma ordem parcial (A, R) são comparáveis se aRb ou bRa, caso contrário são incomparáveis.

Exemplo: Considere a seguinte ordem parcial $(Z^+, |)$, 3 e 9 são comparáveis? e 5 e 7?

Definição: Se (A, R) é uma ordem parcial e todo o par de elementos de A são comparáveis, R é chamada uma relação de ordem *total*.

Definição: Se (A, R) é uma ordem parcial e todo o par de elementos de A são comparáveis, R é chamada uma relação de ordem *total*. Um conjunto totalmente ordenada é chamado uma *cadeia*.

Definição: Se (A, R) é uma ordem parcial e todo o par de elementos de A são comparáveis, R é chamada uma relação de ordem *total*. Um conjunto totalmente ordenada é chamado uma *cadeia*.

Exemplo: (Z, \leq) é uma ordem total? e $(Z^+, |)$?

Definição: Se (A, R) é uma ordem parcial e todo o par de elementos de A são comparáveis, R é chamada uma relação de ordem *total*. Um conjunto totalmente ordenada é chamado uma *cadeia*.

Exemplo: (Z, \leq) é uma ordem total? e $(Z^+, |)$?

Definição: Uma relação R em A é uma relação de ordem *estrita* se satisfaz as duas condições:

Definição: Se (A, R) é uma ordem parcial e todo o par de elementos de A são comparáveis, R é chamada uma relação de ordem *total*. Um conjunto totalmente ordenada é chamado uma *cadeia*.

Exemplo: (Z, \leq) é uma ordem total? e $(Z^+, |)$?

Definição: Uma relação R em A é uma relação de ordem *estrita* se satisfaz as duas condições:

 Para todos a, b, c ∈ A, aRb e bRc implica aRc. (Transitividade.)

Definição: Se (A, R) é uma ordem parcial e todo o par de elementos de A são comparáveis, R é chamada uma relação de ordem *total*. Um conjunto totalmente ordenada é chamado uma *cadeia*.

Exemplo: (Z, \leq) é uma ordem total? e $(Z^+, |)$?

Definição: Uma relação R em A é uma relação de ordem *estrita* se satisfaz as duas condições:

- Para todos $a, b, c \in A$, aRb e bRc implica aRc. (Transitividade.)
- Dados a, b ∈ A, exactamente uma das seguintes afirmações se verifica (e não as outras duas): aRb, bRa, a = b.

Ao representarmos uma ordem parcial sob a forma de um grafo dirigido, não é necessário especificar todos os ramos... alguns garantidamente tem que estar presentes.

Ao representarmos uma ordem parcial sob a forma de um grafo dirigido, não é necessário especificar todos os ramos... alguns garantidamente tem que estar presentes.

Em geral devemos: desenhar o grafo dirigido da relação

Ao representarmos uma ordem parcial sob a forma de um grafo dirigido, não é necessário especificar todos os ramos... alguns garantidamente tem que estar presentes.

Em geral devemos: desenhar o grafo dirigido da relação

1. Como a relação é reflexiva: retirar os ramos de um vértice para ele mesmo

Ao representarmos uma ordem parcial sob a forma de um grafo dirigido, não é necessário especificar todos os ramos... alguns garantidamente tem que estar presentes.

Em geral devemos: desenhar o grafo dirigido da relação

- 1. Como a relação é reflexiva: retirar os ramos de um vértice para ele mesmo
- Como a relação é transitiva: retirar os ramos que podem ser obtidos por transitividade

Ao representarmos uma ordem parcial sob a forma de um grafo dirigido, não é necessário especificar todos os ramos... alguns garantidamente tem que estar presentes.

Em geral devemos: desenhar o grafo dirigido da relação

- 1. Como a relação é reflexiva: retirar os ramos de um vértice para ele mesmo
- Como a relação é transitiva: retirar os ramos que podem ser obtidos por transitividade
- Colocar os vértices de partida abaixo dos de destino e retirar a direcção dos ramos.

Exemplo

• Desenhe o diagrama de Hasse da ordem parcial $\{(a, b) : a \text{ divide } b\}$ definida em $\{1, 2, 3, 4, 6, 8, 12\}$.

Exemplo

- Desenbe o diagrama de Hasse da ordem parcial $\{(a, b) : a \text{ divide } b\}$ definida em $\{1, 2, 3, 4, 6, 8, 12\}$.
- Desenhe o diagrama de Hasse da ordem parcial $(P(S), \subseteq)$, onde $S = \{a, b, c, d\}$.

Elementos minimal e maximal

Definição: Um elemento a diz-se maximal na ordem parcial (A, R) se não existe um elemento $b \neq a$ tal que $(a, b) \in R$. Analogamente diz-se minimal se não existe um elemento $b \neq a$ tal que $(b, a) \in R$.

Elementos minimal e maximal

Definição: Um elemento a diz-se maximal na ordem parcial (A, R) se não existe um elemento $b \neq a$ tal que $(a, b) \in R$. Analogamente diz-se minimal se não existe um elemento $b \neq a$ tal que $(b, a) \in R$.

Exemplos:

- 1. Quais os elementos minimais/maximais ordem parcial 'divide' definida no conjunto {2, 4, 5, 10, 12, 20, 25}?
- 2. Seja A um conjunto. Quais os elementos minimais/maximais da ordem parcial $(P(A), \subseteq)$?

Definição: Dada uma relação R num conjunto A, e um subconjunto $S \subseteq A$, usamos R para definir uma relação em S chamada de **restrição de** R **a** S. Escrevemos $R_{|S|}$, e é definida como:

Definição: Dada uma relação R num conjunto A, e um subconjunto $S \subseteq A$, usamos R para definir uma relação em S chamada de **restrição de** R **a** S. Escrevemos $R_{|S}$, e é definida como:

$$R_{|S} = \{ (a, b) \in R \mid a, b \in S \}.$$

Definição: Dada uma relação R num conjunto A, e um subconjunto $S \subseteq A$, usamos R para definir uma relação em S chamada de **restrição de** R **a** S. Escrevemos $R_{|S}$, e é definida como:

$$R_{|S} = \{ (a, b) \in R \mid a, b \in S \}.$$

Definição: Dados três conjuntos A, B, C, e as relações $R \subseteq A \times B$, e $S \subseteq B \times C$. A **composição de** R **e** S é uma relação $T \subseteq A \times C$, definida da seguinte forma:

Definição: Dada uma relação R num conjunto A, e um subconjunto $S \subseteq A$, usamos R para definir uma relação em S chamada de **restrição de** R **a** S. Escrevemos $R_{|S}$, e é definida como:

$$R_{|S} = \{ (a, b) \in R \mid a, b \in S \}.$$

Definição: Dados três conjuntos A, B, C, e as relações $R \subseteq A \times B$, e $S \subseteq B \times C$. A **composição de** R **e** S é uma relação $T \subseteq A \times C$, definida da seguinte forma:

$$(a,c) \in T$$
 sse $\exists b \in B \ [(a,b) \in R \land (b,c) \in S].$

Definição: Dada uma relação R num conjunto A, e um subconjunto $S \subseteq A$, usamos R para definir uma relação em S chamada de **restrição de** R **a** S. Escrevemos $R_{|S}$, e é definida como:

$$R_{|S} = \{ (a, b) \in R \mid a, b \in S \}.$$

Definição: Dados três conjuntos A, B, C, e as relações $R \subseteq A \times B$, e $S \subseteq B \times C$. A **composição de** R **e** S é uma relação $T \subseteq A \times C$, definida da seguinte forma:

$$(a,c) \in T$$
 sse $\exists b \in B \ [(a,b) \in R \land (b,c) \in S].$

A composição de R e S é denotada por RS, ou em alternativa por $S \circ R$.

Definição: Dada uma relação R num conjunto A, e um subconjunto $S \subseteq A$, usamos R para definir uma relação em S chamada de **restrição de** R **a** S. Escrevemos $R_{|S}$, e é definida como:

$$R_{|S} = \{ (a, b) \in R \mid a, b \in S \}.$$

Definição: Dados três conjuntos A, B, C, e as relações $R \subseteq A \times B$, e $S \subseteq B \times C$. A **composição de** R **e** S é uma relação $T \subseteq A \times C$, definida da seguinte forma:

$$(a,c) \in T$$
 sse $\exists b \in B \ [(a,b) \in R \land (b,c) \in S].$

A composição de R e S é denotada por RS, ou em alternativa por $S \circ R$.

Matrizes - composição

Exercício: Sejam $A = \{a_1, \ldots, a_m\}$, $B = \{b_1, \ldots, b_n\}$, $C = \{c_1, \ldots, c_p\}$, $R \subseteq A \times B$ e $S \subseteq B \times C$. Considere ainda as matrizes $M_R = (\alpha_{ij})_{m \times n}$, $M_S = (\beta_{jk})_{n \times p}$, $1 \le i \le m$, $1 \le j \le n$ e $1 \le k \le p$. Mostre que $(a_i, c_k) \in RS$ se e só se $\delta_{ik} = 1$, onde

$$\delta_{ik} = \alpha_{i1} \cdot \beta_{1k} + \dots + \alpha_{in} \cdot \beta_{nk},$$

interpretando 0 e 1 como valores lógicos (correspondendo respectivamente a falso e verdadeiro) e as operações · e + como conjunção e disjunção, respectivamente.

Conclua, que
$$M_{RS} = (\delta_{ik})_{m \times p} = M_R M_S$$
.

O fecho de uma relação binária para uma propriedade

Definição: Dada uma relação binária (R, A) e uma propriedade P chamamos (se existir) ao menor conjunto $R_P \subseteq A \times A$, tal que $R \subseteq R_P$ e R_P tem a propriedade P, o fecho de R para a propriedade P.

Seja T o fecho transitivo de uma relação binária R definida num conjunto A. Então:

Seja T o fecho transitivo de uma relação binária R definida num conjunto A. Então:

• T é transitivo.

Seja T o fecho transitivo de uma relação binária R definida num conjunto A. Então:

- T é transitivo.
- T é a menor relação transitiva que contém R. (Ou seja, se U é uma relação transitiva em A e R ⊆ U, então T ⊆ U.

Seja T o fecho transitivo de uma relação binária R definida num conjunto A. Então:

- T é transitivo.
- T é a menor relação transitiva que contém R. (Ou seja, se U é uma relação transitiva em A e R ⊆ U, então T ⊆ U.

A composição de relações num mesmo conjunto A está sempre bem definida.

Seja T o fecho transitivo de uma relação binária R definida num conjunto A. Então:

- T é transitivo.
- T é a menor relação transitiva que contém R. (Ou seja, se U é uma relação transitiva em A e R ⊆ U, então T ⊆ U.

A composição de relações num mesmo conjunto A está sempre bem definida.

Dada uma relação R em A, definimos recursivamente:

Seja T o fecho transitivo de uma relação binária R definida num conjunto A. Então:

- T é transitivo.
- T é a menor relação transitiva que contém R. (Ou seja, se U é uma relação transitiva em A e R ⊆ U, então T ⊆ U.

A composição de relações num mesmo conjunto A está sempre bem definida.

Dada uma relação R em A, definimos recursivamente:

•
$$R^1 = R$$

Seja T o fecho transitivo de uma relação binária R definida num conjunto A. Então:

- T é transitivo.
- T é a menor relação transitiva que contém R. (Ou seja, se U é uma relação transitiva em A e R ⊆ U, então T ⊆ U.

A composição de relações num mesmo conjunto A está sempre bem definida.

Dada uma relação R em A, definimos recursivamente:

- $R^1 = R$
- $R^n = R^{n-1} \circ R$, para todo $n \ge 2$.

Seja T o fecho transitivo de uma relação binária R definida num conjunto A. Então:

- T é transitivo.
- T é a menor relação transitiva que contém R. (Ou seja, se U é uma relação transitiva em A e R ⊆ U, então T ⊆ U.

A composição de relações num mesmo conjunto A está sempre bem definida.

Dada uma relação R em A, definimos recursivamente:

- $R^1 = R$
- $R^n = R^{n-1} \circ R$, para todo $n \ge 2$.

Seja R uma relação binária definida em A. Mostre que:

Seja R uma relação binária definida em A. Mostre que:

1. $R \subseteq A \times A$ é transitiva se e só se $R^2 \subseteq R$, i.e. $M_R^2 \leq M_R$.

Seja R uma relação binária definida em A. Mostre que:

- 1. $R \subseteq A \times A$ é transitiva se e só se $R^2 \subseteq R$, i.e. $M_R^2 \leq M_R$.
- 2. Para todo $n \in \mathbb{N}^+$ tem-se $(x_0, x_n) \in R^n$ se e só se existem $x_1, \ldots, x_{n-1} \in A$ tal que $(x_0, x_1) \in R, \ldots, (x_{n-1}, x_n) \in R$.
- 3. A relação R⁺ definida por

$$R^+ = \cup_{i \in \mathbb{N}^+} R^i$$

é o fecho transitivo de R.

Seja R uma relação binária definida em A. Mostre que:

- 1. $R \subseteq A \times A$ é transitiva se e só se $R^2 \subseteq R$, i.e. $M_R^2 \le M_R$.
- 2. Para todo $n \in \mathbb{N}^+$ tem-se $(x_0, x_n) \in R^n$ se e só se existem $x_1, \ldots, x_{n-1} \in A$ tal que $(x_0, x_1) \in R, \ldots, (x_{n-1}, x_n) \in R$.
- 3. A relação R⁺ definida por

$$R^+ = \cup_{i \in \mathbb{N}^+} R^i$$

é o fecho transitivo de R.

4. Se |A| = n então

$$R^+ = \cup_{i=1}^n R^i$$

Seja R uma relação binária definida em A. Mostre que:

- 1. $R \subseteq A \times A$ é transitiva se e só se $R^2 \subseteq R$, i.e. $M_R^2 \le M_R$.
- 2. Para todo $n \in \mathbb{N}^+$ tem-se $(x_0, x_n) \in R^n$ se e só se existem $x_1, \ldots, x_{n-1} \in A$ tal que $(x_0, x_1) \in R, \ldots, (x_{n-1}, x_n) \in R$.
- 3. A relação R⁺ definida por

$$R^+ = \cup_{i \in \mathbb{N}^+} R^i$$

é o fecho transitivo de R.

4. Se |A| = n então

$$R^+ = \cup_{i=1}^n R^i$$

Teorema: Seja M_R uma matriz (0,1) de uma relação R num conjunto com n elementos. A matriz (0,1) da relação R^+ (fecho transitivo de R) é dada por

$$M_{R^+} = M_R \cup M_R^2 \cup M_R^3 \cup ... \cup M_R^n$$

Teorema: Seja M_R uma matriz (0,1) de uma relação R num conjunto com n elementos. A matriz (0,1) da relação R^+ (fecho transitivo de R) é dada por

$$M_{R^+} = M_R \cup M_R^2 \cup M_R^3 \cup ... \cup M_R^n$$

Exercício: Determine a matriz 0,1 do fecho transitivo da relação R com

$$M_R = \begin{array}{|c|c|c|c|c|} \hline 1 & 0 & 1 \\ \hline 0 & 1 & 0 \\ \hline 1 & 1 & 0 \\ \hline \end{array}$$

Fecho reflexivo

A relação $R = \{(1,1),(1,2),(2,1),(3,2)\}$ em $A = \{1,2,3\}$ não é reflexiva.

Problema: determinar a menor relação reflexiva contendo *R*.

Fecho reflexivo

A relação $R = \{(1,1),(1,2),(2,1),(3,2)\}$ em $A = \{1,2,3\}$ não é reflexiva.

Problema: determinar a menor relação reflexiva contendo *R*.

Resposta:

Fecho reflexivo

A relação $R = \{(1,1),(1,2),(2,1),(3,2)\}$ em $A = \{1,2,3\}$ não é reflexiva.

Problema: determinar a menor relação reflexiva contendo R.

Resposta: adicionar os pares (2,2) e (3,3).

O fecho reflexivo de uma relação R num conjunto A pode ser formado adicionando a R todos os pares da forma (a, a) com $a \in A$.

Fecho simétrico

A relação $R=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$ em $A=\{1,2,3\}$ não é simétrica.

Problema determinar a menor relação simétrica contendo R.

Fecho simétrico

A relação $R=\{(1,1),(1,2),(2,2),(2,3),(3,1),(3,2)\}$ em $A=\{1,2,3\}$ não é simétrica.

Problema determinar a menor relação simétrica contendo R.

Resposta

Fecho simétrico

A relação $R = \{(1,1), (1,2), (2,2), (2,3), (3,1), (3,2)\}$ em $A = \{1,2,3\}$ não é simétrica.

Problema determinar a menor relação simétrica contendo R.

Resposta adicionar os pares (2,1) e (1,3).

O fecho simétrico de uma relação R num conjunto A pode ser formado considerando a união da relação com o seu inverso, i.e, $R \cup R^{-1}$ é o fecho simétrico de R. $(R^{-1} = \{(b, a) : (a, b) \in R\})$

Seja A um conjunto com |A| = n, R uma relação em A e M_R é a matriz da relação R, então:

Seja A um conjunto com |A| = n, R uma relação em A e M_R é a matriz da relação R, então:

• A matriz do fecho reflexivo de R é $M_R \cup I_n$

Seja A um conjunto com |A|=n, R uma relação em A e M_R é a matriz da relação R, então:

- A matriz do fecho reflexivo de $R \in M_R \cup I_n$
- A matriz do fecho simétrico de R é $M_R \cup M_R^t$

Seja A um conjunto com |A|=n, R uma relação em A e M_R é a matriz da relação R, então:

- A matriz do fecho reflexivo de $R \in M_R \cup I_n$
- A matriz do fecho simétrico de R é $M_R \cup M_R^t$

Definição: Dados dois conjuntos A e B, uma função $f: A \rightarrow B$ é um subconjunto de $A \times B$ tal que:

Definição: Dados dois conjuntos A e B, uma função $f:A \rightarrow B$ é um subconjunto de $A \times B$ tal que:

(a) Se $x \in A$, então existe um $y \in B$ tal que $(x, y) \in f$.

Definição: Dados dois conjuntos A e B, uma função $f:A \rightarrow B$ é um subconjunto de $A \times B$ tal que:

- (a) Se $x \in A$, então existe um $y \in B$ tal que $(x, y) \in f$.
- (b) Se $(x, y) \in f$ e $(x, z) \in f$ então y = z.

Definição: Dados dois conjuntos A e B, uma função $f:A \rightarrow B$ é um subconjunto de $A \times B$ tal que:

- (a) Se $x \in A$, então existe um $y \in B$ tal que $(x, y) \in f$.
- (b) Se $(x,y) \in f$ e $(x,z) \in f$ então y = z.

Uma função é também chamada de *mapeamento*.

Definição: Dados dois conjuntos A e B, uma função $f:A \rightarrow B$ é um subconjunto de $A \times B$ tal que:

- (a) Se $x \in A$, então existe um $y \in B$ tal que $(x, y) \in f$.
- (b) Se $(x, y) \in f$ e $(x, z) \in f$ então y = z.

Uma função é também chamada de *mapeamento*.

O conjunto A é chamado de *domínio* da função e o conjunto B é chamado de *contradomínio*.

Definição: Dados dois conjuntos A e B, uma função $f: A \rightarrow B$ é um subconjunto de $A \times B$ tal que:

- (a) Se $x \in A$, então existe um $y \in B$ tal que $(x, y) \in f$.
- (b) Se $(x, y) \in f$ e $(x, z) \in f$ então y = z.

Uma função é também chamada de *mapeamento*.

O conjunto A é chamado de *domínio* da função e o conjunto B é chamado de *contradomínio*.

Uma função $f:A\to B$ é um tipo especial de relação de A em B que relaciona cada elemento $x\in A$ com exactamente um elemento $f(x)\in B$.

Dada uma função $f:A\to B$, chamamos conjunto *imagem* ao conjunto $f(A)=\{f(x):x\in A\}\subseteq B$.

Dada uma função $f:A\to B$, chamamos conjunto *imagem* ao conjunto $f(A)=\{f(x):x\in A\}\subseteq B$.

Definição: Uma função $f:A\to B$, diz-se sobrejectiva, se cada elemento de B é da forma f(x) para pelo menos um $x\in A$. Se f é sobrejectiva então f(A)=B.

Dada uma função $f:A\to B$, chamamos conjunto *imagem* ao conjunto $f(A)=\{f(x):x\in A\}\subseteq B$.

Definição: Uma função $f:A\to B$, diz-se sobrejectiva, se cada elemento de B é da forma f(x) para pelo menos um $x\in A$. Se f é sobrejectiva então f(A)=B.

Definição: Uma função $f: A \to B$ é *injectiva*, se para qualquer $x, y \in A$, f(x) = f(y) implica x = y. Ou seja, se cada elemento de B é da forma f(x) para no máximo um $x \in A$.

Dada uma função $f:A\to B$, chamamos conjunto *imagem* ao conjunto $f(A)=\{f(x):x\in A\}\subseteq B$.

Definição: Uma função $f:A\to B$, diz-se sobrejectiva, se cada elemento de B é da forma f(x) para pelo menos um $x\in A$. Se f é sobrejectiva então f(A)=B.

Definição: Uma função $f:A\to B$ é *injectiva*, se para qualquer $x,y\in A$, f(x)=f(y) implica x=y. Ou seja, se cada elemento de B é da forma f(x) para no máximo um $x\in A$.

Definição: Uma função $f:A\to B$ é *bijectiva* se é simultaneamente sobrejectiva e injectiva. Ou seja, se cada elemento de B é da forma f(x) para exactamente um $x\in A$.

Definição: Dadas duas funções $f:A\to B$ e $g:B\to C$ definimos a função *composta*, $g\circ f:A\to C$ como $(g\circ f)(x)=g(f(x))$ para todo $x\in A$.

Definição: Dadas duas funções $f:A\to B$ e $g:B\to C$ definimos a função *composta*, $g\circ f:A\to C$ como $(g\circ f)(x)=g(f(x))$ para todo $x\in A$.

Para qualquer conjunto A, a função identidade $i_A:A\to A$, é definida como $i_A(x)=x$ para todo $x\in A$.

Definição: Dadas duas funções $f:A\to B$ e $g:B\to C$ definimos a função *composta*, $g\circ f:A\to C$ como $(g\circ f)(x)=g(f(x))$ para todo $x\in A$.

Para qualquer conjunto A, a função identidade $i_A:A\to A$, é definida como $i_A(x)=x$ para todo $x\in A$.

Propriedades:

Se $f:A\to B$ é bijectiva, então a sua função *inversa* $f^{-1}:B\to A$ é definida, tal que $f^{-1}\circ f=i_A$ e $f\circ f^{-1}=i_B$.

Definição: Dadas duas funções $f:A\to B$ e $g:B\to C$ definimos a função *composta*, $g\circ f:A\to C$ como $(g\circ f)(x)=g(f(x))$ para todo $x\in A$.

Para qualquer conjunto A, a função identidade $i_A:A\to A$, é definida como $i_A(x)=x$ para todo $x\in A$.

Propriedades:

Se $f:A\to B$ é bijectiva, então a sua função *inversa* $f^{-1}:B\to A$ é definida, tal que $f^{-1}\circ f=i_A$ e $f\circ f^{-1}=i_B$.

Se $f:A\to B$ e $g:B\to C$ são bijectivas, então $g\circ f:A\to C$ é bijectiva e

Definição: Dadas duas funções $f:A\to B$ e $g:B\to C$ definimos a função *composta*, $g\circ f:A\to C$ como $(g\circ f)(x)=g(f(x))$ para todo $x\in A$.

Para qualquer conjunto A, a função identidade $i_A:A\to A$, é definida como $i_A(x)=x$ para todo $x\in A$.

Propriedades:

Se $f: A \to B$ é bijectiva, então a sua função *inversa* $f^{-1}: B \to A$ é definida, tal que $f^{-1} \circ f = i_A$ e $f \circ f^{-1} = i_B$.

Se $f:A\to B$ e $g:B\to C$ são bijectivas, então $g\circ f:A\to C$ é bijectiva e

$$(g \circ f)^{-1} = f^{-1} \circ g^{-1}.$$

Bijecções e cardinalidade

Definição: Dois conjuntos A e B têm o mesmo número de elementos se e só se existe uma bijecção $f: A \rightarrow B$.

Definição: Dois conjuntos A e B têm o mesmo número de elementos se e só se existe uma bijecção $f:A \rightarrow B$.

Podemos definir uma bijecção entre $\mathbb N$ e $\mathbb Z$?

Definição: Dois conjuntos A e B têm o mesmo número de elementos se e só se existe uma bijecção $f:A \rightarrow B$.

Podemos definir uma bijecção entre $\mathbb N$ e $\mathbb Z$? Sim

Definição: Dois conjuntos A e B têm o mesmo número de elementos se e só se existe uma bijecção $f:A \rightarrow B$.

Podemos definir uma bijecção entre $\mathbb N$ e $\mathbb Z$? Sim

Podemos definir uma bijecção entre \mathbb{Z} e \mathbb{Q} ?

Definição: Dois conjuntos A e B têm o mesmo número de elementos se e só se existe uma bijecção $f:A \rightarrow B$.

Podemos definir uma bijecção entre $\mathbb N$ e $\mathbb Z$? Sim

Podemos definir uma bijecção entre \mathbb{Z} e \mathbb{Q} ? Sim

Definição: Dois conjuntos A e B têm o mesmo número de elementos se e só se existe uma bijecção $f:A \rightarrow B$.

Podemos definir uma bijecção entre $\mathbb N$ e $\mathbb Z$? Sim

Podemos definir uma bijecção entre \mathbb{Z} e \mathbb{Q} ? Sim

Logo

 $|\mathbb{N}|$

Definição: Dois conjuntos A e B têm o mesmo número de elementos se e só se existe uma bijecção $f: A \rightarrow B$.

Podemos definir uma bijecção entre $\mathbb N$ e $\mathbb Z$? Sim

Podemos definir uma bijecção entre \mathbb{Z} e \mathbb{Q} ? Sim

Logo

$$|\mathbb{N}| = |\mathbb{Z}|$$

Definição: Dois conjuntos A e B têm o mesmo número de elementos se e só se existe uma bijecção $f: A \rightarrow B$.

Podemos definir uma bijecção entre $\mathbb N$ e $\mathbb Z$? Sim

Podemos definir uma bijecção entre \mathbb{Z} e \mathbb{Q} ? Sim

Logo

$$|\mathbb{N}|=|\mathbb{Z}|=|\mathbb{Q}|$$

Seja A um conjunto finito não vazio e seja R uma relação binária definida em A. **Justifique** se são verdadeiras ou falsas as afirmações seguintes:

 Se R é uma relação de equivalência, então o número de classes de equivalência de R não excede |A|.

- Se R é uma relação de equivalência, então o número de classes de equivalência de R não excede |A|.
- Se R é de equivalência e (x, y) ∈ R para algum (x, y) ∈ A² com x ≠ y, então o número de classes de equivalência de R é estritamente inferior a |A|.

- Se R é uma relação de equivalência, então o número de classes de equivalência de R não excede |A|.
- Se R é de equivalência e (x, y) ∈ R para algum (x, y) ∈ A² com x ≠ y, então o número de classes de equivalência de R é estritamente inferior a |A|.
- Se R é anti-simétrica então o fecho simétrico de R é $R \cap R^{-1}$.

- Se R é uma relação de equivalência, então o número de classes de equivalência de R não excede |A|.
- Se R é de equivalência e (x, y) ∈ R para algum (x, y) ∈ A² com x ≠ y, então o número de classes de equivalência de R é estritamente inferior a |A|.
- Se R é anti-simétrica então o fecho simétrico de R é $R \cap R^{-1}$.
- $\forall (x,y) \in A^2 (xR^+y \to (xR^py, p = |A|)).$
- R é transitiva se e só se $\forall x, y, z \in A(xRy \land yRz \land xRz)$.

- Se R é uma relação de equivalência, então o número de classes de equivalência de R não excede |A|.
- Se R é de equivalência e (x, y) ∈ R para algum (x, y) ∈ A² com x ≠ y, então o número de classes de equivalência de R é estritamente inferior a |A|.
- Se R é anti-simétrica então o fecho simétrico de R é $R \cap R^{-1}$.
- $\forall (x,y) \in A^2 (xR^+y \to (xR^py, p = |A|)).$
- R é transitiva se e só se $\forall x, y, z \in A(xRy \land yRz \land xRz)$.

• Se $\forall x \in A \ (\{y \in A \mid (x,y) \in R\} \neq \emptyset)$ então R é de equivalência.

- Se $\forall x \in A \ (\{y \in A \mid (x,y) \in R\} \neq \emptyset)$ então R é de equivalência.
- Se R é de equivalência, então $\forall x \in A \{ y \in A \mid (x, y) \in R \} \neq \emptyset.$

- Se $\forall x \in A \ (\{y \in A \mid (x,y) \in R\} \neq \emptyset)$ então R é de equivalência.
- Se R é de equivalência, então $\forall x \in A \{ y \in A \mid (x, y) \in R \} \neq \emptyset.$
- Se R é de equivalência então $RR^{-1} = R$.

- Se $\forall x \in A \ (\{y \in A \mid (x,y) \in R\} \neq \emptyset)$ então R é de equivalência.
- Se R é de equivalência, então $\forall x \in A \{ y \in A \mid (x, y) \in R \} \neq \emptyset.$
- Se R é de equivalência então $RR^{-1} = R$.
- Se $R^3 \subseteq R$ então $R^+ = R \cup R^2$.

- Se $\forall x \in A \ (\{y \in A \mid (x,y) \in R\} \neq \emptyset)$ então R é de equivalência.
- Se R é de equivalência, então $\forall x \in A \{ y \in A \mid (x, y) \in R \} \neq \emptyset.$
- Se R é de equivalência então $RR^{-1} = R$.
- Se $R^3 \subseteq R$ então $R^+ = R \cup R^2$.
- Se as matrizes das relações RR ∪ R e R são iguais então R é transitiva.

- Se $\forall x \in A \ (\{y \in A \mid (x,y) \in R\} \neq \emptyset)$ então R é de equivalência.
- Se R é de equivalência, então $\forall x \in A \{ y \in A \mid (x, y) \in R \} \neq \emptyset.$
- Se R é de equivalência então $RR^{-1} = R$.
- Se $R^3 \subseteq R$ então $R^+ = R \cup R^2$.
- Se as matrizes das relações RR ∪ R e R são iguais então R é transitiva.
- Se R é transitiva então as matrizes das relações RR ∪ R e R são iguais.

- Se $\forall x \in A \ (\{y \in A \mid (x,y) \in R\} \neq \emptyset)$ então R é de equivalência.
- Se R é de equivalência, então $\forall x \in A \{ y \in A \mid (x, y) \in R \} \neq \emptyset.$
- Se R é de equivalência então $RR^{-1} = R$.
- Se $R^3 \subseteq R$ então $R^+ = R \cup R^2$.
- Se as matrizes das relações RR ∪ R e R são iguais então R é transitiva.
- Se R é transitiva então as matrizes das relações RR ∪ R e R são iguais.

- Seja R uma relação no conjunto dos inteiros tal que aRb se a = b ou a = -b.
 - Mostre que *R* é uma relação de equivalência.
 - Determine a classe de equivalência de um determinado inteiro a.
- Seja R uma relação no conjunto dos números reais tal que aRb sse a – b é um inteiro. Mostre que R é uma relação de equivalência.
- Mostre que a relação "maior ou igual" (≥) é uma ordem parcial no conjunto dos inteiros.
- Mostre que a relação de divisibilidade é uma ordem parcial no conjunto dos naturais.
- Mostre que a relação \subseteq é uma ordem parcial no conjunto das partes, 2^A , de um conjunto A.