	Part-A (Objective Paper)		
	ver all the following Questions (5 Multiple choices & 5 Fill in the blanks). Marks: 10X1/2M=5M		
S.No		BTL	CO
1	The drawback of the decision table is that:	L1	CO3
	A. Insufficient program logic B. No clarity		
	C. Implicit relation to specification D. Low level maintainability		
2	If there are k predicates, the maximum number of possible predicate cases is	L1	CO3
	A. 2k B. 2K C. 2k-1 D. 2K-1		
3	The state graph's elements do not include	L1	CO4
	A. states B. input/output C. transitions D. State machines		
4	The first step in implementing the state graph is to	L1	CO4
	A. implementation and operation B. input encoding		
	C. output encoding D. state codes		
5	If a matrix column has two or more 1s, the matrix is said to be	L1	CO5
	A. Branch node B. Junction node C. loop D. both (a) and (b)		
6	The simplest type of reasoning is	L1	CO3
7	is a table that contains a collection of conditions as well as the actions that go with them.	L1	CO3
	<u> </u>		
8	is the process of turning characters to numbers.	L1	CO4
9	A tabular representation of a state graph is referred to as	L1	CO4
10	A relation that satisfies the reflexive, transitive, and antisymmetric qualities is	L1	CO5

	Part-A (Objective Paper)		
	all the following Questions (5 Multiple choices & 5 Fill in the blanks).		0X1/2M = 5M
S.No		BTL	СО
1	ABCD+BCD+CD+AB can be reduced to	L1	CO3
	A. CD+AB B. 1 C. CD D. AB		
2	To reduce Boolean expression, the initial step is to	L1	CO3
	A. Replace identical terms		
	B. Remove parenthesis		
	C. The term containing a variable and its		
	D. Compliment is removed		
3	Bugs that aren't Caused By State Graphs are	L1	CO4
	A. State bugs B. Output errors		
	C. Encoding bugs D. None		
4	The state graph depicts	L1	CO4
	A. Time B. Sequence		
	C. States D. None		
5	The equivalence connection does not have to be satisfied	L1	CO5
	A. reflexive B. symmetric		
	C. Lantisymmetric D. transitive		
6	gathers knowledge from knowledge repository or domain such as Engineering law into Database.	L1	CO3
7	The table translator will look forof source table and fill in the default rules.	L1	CO3
8	Two states are known as if every series of inputs from one state creates exactly the same sequence of outputs for other states.	L1	CO4
9	Under all conditions, FSM behaves in the	L1	CO4
10	In the node reduction optimization process, the node Of degree should be deleted first.	L1	CO5

Ληςινοι	all the following Questions (5 Multiple choices & 5 Fill in the blanks).	Marke: 10	0X1/2M=5M
S.No	an the following Questions (5 Muniple choices & 5 Fm in the branks).	BTL	CO
1	The number of interchanges for each combination of predicate truth values for n predicates would be	L1	CO3
	A. N(n-1)/2 B. 2n C. N^2 D. N(n-1)		
2	Boolean Algebra expression laws AB =	L1	CO3
	A. A'. B' B. A+B C. A' + B' D. (A+B)'		
3	In the case of a good state graph	L1	CO4
	A. Bugs are easy to find		
	B. sequence of inputs does not lead to initial state		
	C. Bugs are more D. both a and b		
4		T 1	GO.4
4	In a graph, the outputs and inputs are divided by	L1	CO4
	A. *(asterisk) B. /(slash)		
	C(eiphen) D. None		
5	When compared to graphs, the advantages of the node reduction approach in matrices is	L1	CO5
	A. more methodical in graphs B. error free		
	C. not necessary redrawing of graphs D. all of the above		
6	In order to assessKV charts are employed.	L1	CO3
7	AB+AC =	L1	CO3
8	Modifies the machine's state	L1	CO4
9	In state tables, each input condition of the state graph is defined in	L1	CO4
10	The matrix is the one in which A2 = A is	L1	CO5

	Part-A (Objectiv	<u> </u>		
S.No	er all the following Questions (5 Multiple choices & 5 Fill in the blanks).		Marks: 10 BTL	$\frac{X1/2M=5M}{CO}$
3.110			DIL	CO
1	ABC+BCD+CDE+EFG is in the form of		L1	CO3
	A. Sum of products B. Produc	t of additions		
	C. Reduction of sums D. Produc	t of sums		
2	In KV charts, the order of grouping should be		L1	CO3
	A. octets,islands,pairs,quads			
	B. octets, quads, pairs, islands			
	C. quads, pairs, islands, octets			
	D. islands, pairs, quads, octets			
3	The state in which no input sequence may be to as	reached Is referred	L1	CO4
	A. Dead state B. Reach	able state		
	C. Unreachable state D. Ambi	guous State		
4	In the situation ofA contradictory state occurs.	and ambiguous	L1	CO4
	A. Transaction bugs B. Enco	ding bugs		
	C. Output errors D. State	bugs		
5	When nodes of degree 3 are deleted from a node reduction optimization, total linkages are		L1	CO5
	A. reduced 1 B. not cl	nanged		
	C. increased D. reduc	eed by 2		
6	The table translator will look forof so in the default rules.	urce table and fill	L1	CO3
7	When a decision table acts as ait is us design.	ed for test case	L1	CO3
8	Two states are known as if every from one state creates exactly the same sequen other states.	-	L1	CO4
9	In termsof there is a distinction be combinational machines.	tween FSMs and	L1	CO4
10	A node's number of outlinks is referred to as_	·	L1	CO5

Compare domain and interface testing.
Define domains, path and testability.
Explain path expression with examples
a) Write the procedure for specification validationb) Describe the mean processing time of a routine with example.
a) Explain about good state and bad state graphs b) What are properties of relations? Explain. What are graph matrices and their applications? Explain in detail.
Write about nice and ugly domains and give examples to each domain.
Explain the schematic representation of domain testing.
Write short notes on following: a) Distributive laws b) Absorption rule c) Loops d) Identity elements.
Briefly explain about regular expressions and flow-anomaly detection
a) Explain about state bugs
b) Explain state testing in detail.
Explain about node reduction algorithm.
Explain the schematic representation of domain testing.
Difference between domain and interface testing.
Describe push/pop and get/return models in path testing.
Explain basic concepts of path products and path expressions.
a) Discuss about the win-runner.
b) Explain good state graph with suitable example
Elaborate node reduction algorithm with an example.
State and explain various restrictions at domain testing processes.
Explain predicates of domain testing with example.
a) Compare structured and unstructured flow graphs and illustrate with an example. b) Write rules of Boolean algebra.

Explain about regular expressions and flow-anomaly detection
What are graph matrices and their applications? Explain in detail.
Discuss about matrix representation software