

I MEZZI TRASMISSIVI

Barra Leonardo
Bracco Mattia
Dossetto Giuseppe
Minetti Leonardo

Introduzione

Una delle caratteristiche fondamentali di una rete è il mezzo trasmissivo impiegato per il trasferimento dei dati. La scelta del cavo da impiegare varia in base alla topologia, al protocollo e all'estensione della rete da realizzare.

Mezzo Fisico O Radio

I principali mezzi trasmissivi possono essere divisi in portanti fisici e portanti radio:

PORTANTI FISICI

- Cavo Coassiale
- Doppino Ritorto
- Cavo Dati (RJ45)
- Fibra Ottica

PORTANTI RADIO

Le Antenne

Cavo Coassiale

Composto

1 conduttore di rame posto al centro del cavo (anima) e un dielettrico (generalmente in polietilene) che separa l'anima da uno schermo esterno costituito da dei fili metallici intrecciati (maglia) o da una lamina avvolta a spirale (treccia).

Utilizzo

Questo cavo viene utilizzato per il trasporto del segnale audiovisivo (segnale TV terrestre) in questo caso prende il nome di cavo RF (Radio Frequence) in quanto il segnale è decodificato tramite frequenze radio.

VALORI

- 50 ohm trasmittenti o ricetrasmittenti Trasmissioni digitali o radioamatoriali e per segnali standard nel campo degli strumenti di misura elettronici.
- 75 ohm apparati riceventi
 Segnale video analogico, video digitale SDI, per le antenne televisive (collegamento antenna–TV / decoder) e per le connessioni Internet via cavo.

Doppino Ritorto

COMPOSTO

Chiamato semplicemente **doppino**, questo tipo di cablaggio è composto da una coppia di conduttori in rame isolati in modo da ottimizzare la compatibilità elettromagnetica e ridurre la possibilità di ricevere delle interferenze esterne.

Il doppino è un elemento essenziale della rete di accesso telefonica ed ethernet.

VALORI

Variano in base alla categoria del cavo utilizzato, arrivano ad 1 GHz nella categoria 7a.

Cavo Dati RJ45

COMPOSTO

8 cablaggi in rame disposti a coppie di conduttori incrociati (twisted pair).

UTILIZZO

Utilizzato sia per i cablaggi di rete e per la trasmissione dei dati sia per la rete telefonica (grazie all'incrocio della coppia centrale).

VALORI

Variano in base alla categoria del cavo utilizzato, ad es. il cavo CAT 5 ha velocità di 100 Mb/s mentre il CAT 7 arriva ad 1 Gb/s.

L'Inversione Nel Cablaggio

Lo schema di cablaggio più utilizzato per le porte con un'interfaccia RJ45 è lo schema "T568B". Inoltre questo schema è ammesso allo standard ANSI/TIA-568. Analizzando i numeri 3-4 si nota un'inversione: questa procedura di cablaggio ci permette di utilizzare la porta sia come presa dati che come presa telefonica avendo la coppia centrale (4-5) che coincide "blu, bianco-blu"

FIBRA OTTICA

COMPOSTO

Piccolissimi filamenti vetrosi con il diametro di 125 micrometri (dimensioni di un capello) che conducono al loro interno degli impulsi luminosi

UTILIZZO

La fibra ottica rappresenta al giorno d'oggi uno dei mezzi trasmissivi più utilizzati per le reti internet e per i segnali televisivi provenienti dall'antenna

VALORI

Con la fibra ottica è possibile raggiungere delle velocità di navigazione pari a 2,5 Gb/s Le velocità variano in base al tipo di collegamento, possiamo dividere la fibra in:

- FTTH
- FTTC
- FTTS

FTTH Fiber To The Home

DOVE ARRIVA?

La fibra ottica FTTH (Fiber To The Home) arriva fino all'abitazione dove attraverso un apposito convertitore si collega al modemrouter

VELOCITÀ?

La fibra ottica FTTH (Fiber To The Home) è la più performante e ci permette di navigare con velocità in download che superano l'1 Gb/s e di avere una velocità di upload compresa tra i 100 e i 300 Mb/s

FTTC Fiber To The Cabinet

DOVE ARRIVA?

La fibra ottica FTTC (Fiber To The Cabinet detta anche fibra mista al rame) arriva fino all' armadio o alla cabina più vicina e da lì prosegue con il classico cavo in rame utilizzato anche per l' ADSL.

VELOCITÀ?

La fibra ottica FTTC (Fiber To The Cabinet) ci permette di avere delle velocità in download compresa tra i 100 e i 200 Mb/s (è molto ridotta rispetto alla connessione FTTH ma è comunque più veloce di 5-10 volte rispetto ad una normale ADSL a 20 Mb/s.

FTTS Fiber To The Street

DOVE ARRIVA?

La fibra ottica FTTS (Fiber To The Street) arriva fino alla strada e viene utilizzata come collegamento tra la centrale e un mini distributore situato vicino alla cabina dalla quale partono i cavi in rame che raggiungono i vari civici.

VELOCITÀ?

La fibra ottica FTTS (Fiber To The Street) ci permette di avere delle velocità in download di 100 Mb/s dato che il mini distributore vicino alla cabina rappresenta un collo di bottiglia per la fibra ottica. In questo tipo di collegamento è molto importante tenere conto della distanza tra la destinazione e la cabina.

Un altro metodo di trasmissione sono i ponti radio, la loro trasmissione si basa su delle antenne costituite da un materiale

In grado di condurre elettricità (metallo) che irradiano (spediscono) onde elettromagnetiche e altre antenne dette captanti in grado di catturare le onde per poi codificarle.

Le antenne trasmittenti vengono identificate con la sigla TX mentre quelle riceventi

con RX

