REPORT

[데이터 통신 연습문제]

학 과	컴퓨터공학부	
<u> </u>	컴퓨터공학전공	
교수님	서경룡 교수님	
학 번	201911608	
이 름	김지환	
제출일	2022.05.16	

목차

1.	바이트/비트 중심 프로토콜3	
2.	흐름/오류 제어3	}
3.	N 복귀/선택적 반복 ARQ	3
4.	HDLC/PPP	.4
5.	피기백킹	.4
6.	정지-후-대기 ARQ프로토콜	.5
7.	wifi의 주파수대역, 전파적 특성	.6
8.	정지-후-대기 ARQ프로토콜	7

3. 바이트 중심과 비트 중심 프로토콜을 비교 대조하라. 과거에는 어느 범주가인기가 있었는가? 이제는 어느 범주가 널리 사용되는가? 그 이유를 설명하라.

	바이트 중심 프로토콜	비트 중심 프로토콜
설명	부호화 시스템의 8비트 문자가	프레임의 데이터 부분을 전부
['] 큰 'o'	전달되는 프로토콜이다.	bit열로 인식하는 프로토콜이다.
프레임	문자 중심 프로토콜 프레임	비트중심 프로토콜 프레임
플래그	시작과 마지막에 플래그 추가	01111110 비트 패턴 플래그
인기	과거	현재
	과거에는 텍스트만 교환해서 바 이트(문자) 중심이 인기였다.	현재는 프레임의 데이터 부분을
		전부 문자열, 그래픽, 오디오
이유		화상 등의 데이터 중 하나로 인
		식되도록 되어있는 비트열이 널
		리 사용된다.

5. 흐름 제어와 오류 제어를 비교 대조하라.

흐름제어	오류제어
수신기의 버퍼가 데이터에 의해	O로 제어도 O로타지아 O로
	오류 제어는 오류탐지와 오류 정정 두가지를 말한다.
이터 전송의 조절	성성 구시시글 걸인다.

9. N복귀 ARQ와 선택적 반복 ARQ를 비교 대조하라. (순서 번호를 위한 비트수 - m)

<u> </u>				
Go-back-N	Selective-Repeat			
1. 확인 응답을 기다리지 않고 여러패킷 전송가능, 손실되는 프레임이 발생하면 그 뒤 모든 프레임을 재전송 2. 송신창의 크기는 2 ^{m-1} , 수신창의 크기는 1이다. 3. 미닫이 창을 사용한다.	 손상(오류)된 프레임만 전송가능하다. 송신창크기, 수신창 크기는 최대 (2^m/2) 미닫이 창을 사용한다. 			

10. HDLC와 PPP를 비교 대조하라. 어느 것이 비트 중심이고 어느 것이 바이트 중심인가?

	고급 데이터링크 제어(HDLC)	점대점 연결 프로토콜(PPP)
설명	고급 데이터링크 제어(HDLC)는 점대점과 다중점 링크상에서 반이중통신과 전이중통신 모두를 지원하도록 설계된 실제 프로토콜인데 NRM과 ABM의 두가지 통상적인 전송 모드를 제공한다.	가장 널리 사용되는 점대점 연결 프로토콜은 PPP프로토콜이다. 오늘날 수백만의 인터넷 사용자들은 인터넷 서비스 제공자의 서버에 자신들의 컴퓨터를 PPP를 통해 연결한다. PPP는현재까지 가장 널리 사용되는프로토콜이다.
프로토콜	비트 중심 프로토콜	바이트 중심 프로토콜
호환성	점대점, 다중점에서 모두 사용	점대점 사용

11. 피기백킹을 정의하고 유용성을 설명하라.

피기백킹 - 양방향 전송의 효율을 향상하는데 사용한다.

한 프레임에서 B -> A로 데이터를 옮길 때 B로부터 프레임에 대한 제어정보 또한 옮긴다. 마찬가지로 반대로 한 프레임에서 A -> B로 데이터로 옮길 때 A로부터 프레임에 대한 제어정보 또한 옮긴다.

27. 정지-후-대기 ARQ 프로토콜을 사용하는 타이머 시스템이 6ms의 타임아웃 값을 가지고 있다. 왕복이동 지연이 4ms라고 하면 그림 11.11과 유사한 4개의 프레임에 대한 흐름도를 그리시오. 데이터 프레임이나 제어 프레임이 손상되거나 유실되지 않는다고 가정하시오.

각 프레임에 대한 응답이 4ms가 지나면 종료된다. 그래서 프레임 손상과 유실이 없다고 가정하면 전송에 에러가 없으며 각 프레임은 Time-out이 발생하지 않는다. 이에 따른 흐름도를 그리면 아래 그림과 같다.

28. 타임아웃이 4ms이고 왕복 이동 지연이 6ms이라고 가정하고 연습문제 15번을 반복하라.

프레임의 손상과 유실이 없다고 가정하고 정지-후-대기 ARQ 프로토콜을 이용했다. 프레임의 손상과 유실과 관계없이 Time-out이 되면 그 시점으로 부터 재시작하기 때문에 시작 프레임과 같은 프레임을 전송하게 되며 이는 이미 앞에서 처리하였기 때문에 Dicarded 되었다.

이에 대한 흐름도를 그리면 아래의 그림과 같다.

30. 어떤 시스템이 정지 후 대기 ARQ 프로토콜을 사용한다고 한다. 각 패킷이 1000비트의 데이터를 나른다면 송신자와 수신자 사이의 거리가 5000 Km이고 전파 속도가 2X108m/s라고 하면 1백만 비트의 데이터를 전송하는데 소요되는 시간은 얼마인가? 전송 지연, 대기 지연 및 처리 지연은무시하라. 데이터 프레임이나 제어 프레임이 손상되거나 유실되지 않는다고 가정한다.

데이터 프레임 전송 시간 = 1000 bits / 1,000,000 bits = 1 ms 데이터 프레임 왕복 시간 = 5000 km / 200,000 km = 25 ms ACK 전송 시간 = 0 (무시할 수 있음) ACK 왕복 시간 = 5000 km / 200,000 km = 25 ms 하나의 플레임에 대한 지연 = 1 + 25 + 25 = 51 ms. 총 지연 시간 = 1000 × 51 = 51 s