SOLUCION DE ECUACIONES NO LINEALES

Dada una función continua f(x), se quiere encontrar el valor x_o de x, para el cual $f(x_o) = 0$; los x_o para los que se cumple $f(x_o) = 0$ se denominan raíces o solución de la ecuación o ceros .

Problema a resolver:

$$f(x) = 0$$

Métodos Numéricos I 2024

METODO DE ITERACION DE PUNTO FIJO

Método que se basa en la forma de la función:

$$f(x) = 0$$
 \longrightarrow $x = g(x)$

la iteración es:

$$x_{n+1} = g(x_n)$$
 $n = 0, 1, ...$

Definición: Dada g(x): $[a,b] \to R$, g continua y si $g(\alpha) = \alpha$, para algún $\alpha \in [a,b]$ entonces g(x) tiene un **punto fijo** en [a,b]

Si α es punto fijo de g(x) : α es cero de f(x)

por definición
$$x = g(x)$$

$$si \qquad f(x) = 0 \qquad g(x) = x - f(x)$$

$$si \quad x = \alpha \quad g(\alpha) = \alpha - f(\alpha) \qquad f(\alpha) = 0$$

Métodos Numéricos I 2024

Clasificación de Métodos

Ej: como definir una función de iteración

$$f(x) = x^2 - 2x + 3$$
 \Rightarrow 2 $x = x^2 + 3$
 $x = (x^2 + 3)/2$ \Rightarrow $g(x) = (x^2 + 3)/2$

$$f(x) = x^2 - 2x + 3$$
 \Rightarrow $x^2 = 2x - 3$
 $x = \sqrt{(2x-3)}$ \Rightarrow $g(x) = \sqrt{(2x-3)}$

$$f(x) = \sin x$$
 \Rightarrow $x = \sin x + x$ \Rightarrow $g(x) = \sin x + x$

$$f(x) = e^{-x} - x$$
 \Rightarrow $x = e^{-x}$ \Rightarrow $g(x) = e^{-x}$

$$x_{n+1} = g(x_n)$$
 $n = 0, 1, ...$

Iteración Convergente

Iteración no Convergente

En función de lo visto, pueden surgir algunas preguntas:

Cuantas funciones g(x) se pueden determinar dada una ecuación f(x) = 0 ?

Cuales de estas funciones de iteración van a dar una sucesión que sea convergente al cero buscado?

Teorema (Existencia y unicidad del punto fijo)

Si $g \in C_{[a,b]}$ y $g(x) \in [a,b]$ $\forall x \in [a,b]$. Si además g'(x) existe en (a,b), es continua y $\mid g'(x) \mid \leq K < 1 \ \forall \ x \in [a,b]$. Si $x_0 \in [a,b]$ entonces la sucesión definida $x_{n+1} = g(x_n)$, $n \geq 1$ converge al único punto fijo $\alpha \in [a,b]$.

Es importante interpretar, dentro de las H) del teorema:

$$-g(x) \in [a,b] \ \forall x \in [a,b]$$
?
$$-|g'(x)| \le K < 1 \ \forall x \in [a,b]$$
?

Teorema (existencia y unicidad del punto fijo)

Métodos Numéricos I 2024

Ejemplo: vale
$$f(x) = x^2 - x - 2$$

 $x_{1,2} = -1$, 2

i)
$$x = x^2 - 2$$
 $g1(x) = x^2 - 2$

- $|g_I'(x)| = 2x < 1 \text{ si } x < 1/2$ $\rightarrow g_I$ no verifica teorema

ii)
$$x^2 = x + 2$$
 $g_2(x) = (x + 2)^{1/2}$

$$|g_2'(x)| = 0.5(x+2)^{-1/2} < 1 \text{ si } x > 0$$

 $g_2(1)=1.732 \;\; y \; g_2(3)=2.236 \Longrightarrow g_2 \;\; {
m verifica \, teorema}, {
m o}$ sea genera una sucesión convergente

Métodos Numéricos | 2024

Ejemplo: $f(x) = x^2 - x - 2 = 0$

$$g_2(x)=(x+2)^{1/2}$$

Vamos usar para aproximar la raíz 2

 $x_{n+1} = g(x_n)$ n = 0, 1, ...

$$x0 = 2.1$$

it=1	$x1=(x_0+2)^{1/2}=2.0248$	e = x1 - x0 = 0.0752
it=2	$x2=(x_1+2)^{1/2}=2.0062$	$e = x_2 - x_1 = 0.0186$
It=3	$x3=(x_2+2)^{1/2}=2.0015$	$e = x_3 - x_2 = 0.0047$

 $x4=(x3+2)^{1/2}=2.0004$

Métodos Numéricos | 2024

 $e = |x_4 - x_3| = 0.0011$

Ej: $f(x) = e^x - 3x^2$

$$f(x) = e^{x} - 3x^{2}$$
 \Rightarrow $e^{x} = 3x^{2}$
 $x = ln(3x^{2})$ \Rightarrow $g_{1}(x) = ln(3x^{2})$

$$f(x) = e^{x} - 3x^{2}$$
 $e^{x} = 3x^{2}$ $x = \sqrt{e^{x}/3}$ $g_{2}(x) = \sqrt{e^{x}/3}$

Se quiere encontrar una de las raíces, cercana a 1 :

$$\left| g_1'(x) \right| = \left| 6x/3x^2 \right| = \left| 2/x \right| < 1 \implies x > 2$$

 $\left| g_2'(x) \right| = \left| 1/(2\sqrt{3})\sqrt{e^x} \right| < 1$

• Por ej. $f(x) = x^2 - 2x - 3 = 0$ x = 3, x = -1

Métodos Numéricos I 2024 11 Métodos Numéricos I 2024

$$\begin{array}{c} \mathbf{g_1(x)} & \mathbf{g_2(x)} & \mathbf{g_3(x)} \\ x_{i+1} = \sqrt{2x_i + 3} & x_{i+1} = \frac{3}{x_i - 2} & x_{i+1} = \frac{x_i^2 - 3}{2} \\ \hline \textbf{\textit{I.}} & \textbf{\textit{x}}_0 = 4 \\ 2. & \textbf{\textit{x}}_I = 3.31662 \\ 3. & \textbf{\textit{x}}_2 = 3.10375 \\ 4. & \textbf{\textit{x}}_3 = 3.03439 \\ 5. & \textbf{\textit{x}}_4 = 3.01144 \\ 6. & \textbf{\textit{x}}_5 = 3.00381 \\ \hline \\ \textbf{Converge x} = 3 & \textbf{\textit{g}}_3(\mathbf{x}) \\ \hline \textbf{\textit{x}}_{i+1} = \frac{x_i^2 - 3}{2} \\ \hline \textbf{\textit{I.}} & \textbf{\textit{x}}_0 = 4 \\ 2. & \textbf{\textit{x}}_I = 1.5 \\ 3. & \textbf{\textit{x}}_2 = -6 \\ 4. & \textbf{\textit{x}}_3 = -0.375 \\ 5. & \textbf{\textit{x}}_4 = -1.263158 \\ 6. & \textbf{\textit{x}}_5 = -0.919355 \\ 7. & \textbf{\textit{x}}_6 = -1.02762 \\ 8. & \textbf{\textit{x}}_7 = -0.990876 \\ 9. & \textbf{\textit{x}}_8 = -1.00305 \\ \hline \\ \textbf{\textit{Converge x}} = -1 \\ \hline \end{array}$$

Métodos Numéricos I 2024

(a) |g'(x)| < 1, g'(x) > 0 \Rightarrow converge, monótona (b) |g'(x)| < 1, g'(x) < 0 \Rightarrow converge, oscilante (c) |g'(x)| > 1, g'(x) > 0 \Rightarrow diverge, monótona (d) |g'(x)| > 1, g'(x) < 0 \Rightarrow diverge, oscilante

Algoritmo de Iteración de Punto Fijo

ENTRADA: x_0 ; Eps: real ;max: entero SALIDA: x_I : real o mensaje de error VARIABLES: iter: entero PASO 1: iter = $0, x_I \leftarrow x_0 + 2^*$ Eps PASO2: MIENTRAS (iter $\le \max \land |x_I - x_0| > \text{Eps}$) $x_I \leftarrow g(x_0) \\ \text{iter} \leftarrow \text{iter} + 1 \\ x_0 \leftarrow x_I$ PASO3: Si (iter $\le \max$) ENTONCES ESCRIBIR (('No converge en max iteraciones') SINO ESCRIBIR ('Raiz =', x_I) PASO4: Parar

ORDEN DE CONVERGENCIA

Definición: Supongamos que $\{x_n\}$ es una sucesión que converge a x' y que $e_n = x_n - x'$ para cada n>0 Si existen constantes positivas λ , α tal que

$$\begin{vmatrix}
|x_{n+1} - x'| & |e_{n+1}| \\
|\text{lim} ----- & |e_{n}| & |e_{n+1}| \\
|n \to \infty |x_n - x'|^{\alpha} & |n \to \infty |e_n|^{\alpha}
\end{vmatrix}$$

decimos que $\{x_n\}$ converge a x con orden α , con una constante de error asintótico λ . Por lo tanto:

 α = 1 : método lineal α = 2 : método cuadrático

ORDENES DE CONVERGENCIA

 $\alpha = 1 \begin{tabular}{ll} ∞ método de bisección método Regula Falsi iteración de punto fijo \\ \hline \end{tabular}$

 $\alpha = 1.6$ método de la secante

 $\alpha = 2$ método de Newton-Raphson

Métodos Numéricos I 2024

Newton-Raphson vs. Iteración de Punto Fijo

$$f(x) = e^{-x} - x$$

$$x_{n+1} = \frac{e^{-xn} (x_n + 1)}{(e^{-xn} + 1)}$$

i	x _i	F(xi)
0	0	1
1	0,500000000	0,10653066
2	0,566311003	0,00130451
3	0,567143165	1,9654E-07
4	0,567143290	6,4219E-10

	$x_{n+l} = e^{-xn}$	
i	x _i	F(xi)
0	0	1,00000000
1	1,000000	1,71828183
2	0,367879	1,07679312
3	0,692201	1,30590753
4	0,500473	1,14902830
5	0,606244	1,22728770
6	0,545396	1,17989546
7	0,579612	1,20573358
8	0,560115	1,19075884
9	0,571143	1,19914634
10	0,564879	1,19435590

Métodos Numéricos I 2024 18

3

Ejemplo: $f(x) = e^{-x} - x$

 $\alpha = 2$

Dado $x_0 = 0$

n	Xn	$f(x_n)$
0	0	1
1	0.5	0.1065306
2	0.566311003	0.0013045
3	0.567143165	1.965 10 ⁻⁷
4	0.567143290	6.426 10 ⁻¹⁰

Métodos Numéricos I 2024

Δ^2 DE AITKEN

Supóngase que $\{x_n\}$ converge linealmente al limite p y que, para valores suficientemente grandes de n, $(x_n - p)(x_{n+1} - p) > 0$ Entonces, la sucesión

$$\hat{x} = x_n - \frac{(\Delta x)_n^2}{(\Delta^2 x)_n} = x_n - \frac{(x_{n+1} - x_n^2)^2}{x_{n+2} - 2x_{n+1} + x_n}$$

Converge con orden cuadrático

Acelera la convergencia de cualquier sucesión de orden lineal.

Metodos Numericos I 2024

METODO DE STEFFENSEN

Se obtiene al aplicar Δ^2 de Aitken a la sucesión generada con iteración de punto fijo:

$$\hat{x}_s = x_n - \frac{(x_{n+1} - x_n)^2}{x_{n+2} - 2x_{n+1} + x_n}, \quad n = 0, 1, \dots$$

 $\begin{array}{l} \operatorname{Dado} x_0.\operatorname{Eps} \\ \operatorname{iter} = 0, x_1 \leftarrow x_0 + 2^*\operatorname{Eps} \\ \operatorname{MIENTRAS} (\operatorname{iter} \leq \max \wedge |x_1 - x_0| > \operatorname{Eps}) \\ x_1 \leftarrow g(x_0) \\ x_2 \leftarrow g(x_1) \\ \operatorname{iter} \leftarrow \operatorname{iter} + 1 \\ \underbrace{x_0 \leftarrow x_0}_{X_0} - (x_1 - x_0)^2/(x_2 - 2x_1 + x_0) \\ \operatorname{Si} \left(\operatorname{iter} > \max \right) \operatorname{ENTONCES} \\ \operatorname{ESCRIBIR} ('\operatorname{No converge en max iteraciones'}) \\ \operatorname{SINO} \\ \operatorname{ESCRIBIR}('\operatorname{Raiz} = ', x_0) \end{array}$

RAICES "DIFICILES"

CEROS DE POLINOMIOS

Dado un polinomio, de orden n, con coeficientes ai, i = 0,..., n

$$P(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Recordemos:

- $\mbox{-}\mbox{Para}$ un orden n, hay n raíces reales o complejas, no necesariamente distintas.
- •Si n es impar, hay al menos una raíz real.
- ·Si las raíces complejas existen, existe un par conjugado.

Métodos Numéricos | 2024

<u>Teorema de Acotación de Raíces</u>: Todos los ceros de un polinomio se hallan en el disco cerrado cuyo centro está en el origen del plano complejo y cuyo radio es \mathcal{P} siendo:

$$\rho = 1 + \left| a_n \right|^{-1} \max_{0 \le k \le n} \left| a_k \right|$$

Ej: si tomamos el polinomio

$$p(x) = 3x^4 - 3x^3 - 3x^2 - 3x - 6$$

Calculamos:

$$\rho = 1 + \frac{6}{3} = 3$$

En función de este valor las raíces están el intervalo (-3,3)

METODO DE HORNER

Dado un polinomio $P(x) = a_0 + a_1 x + \dots + a_{n-1} x^{n-1} + a_n x^n$ y un valor x_0

$$\mbox{Si se toman} \begin{dcases} b_n = a_n \\ b_k = a_k + b_{k+1} x_0 & (k=n-1, n-2, \ldots, l, 0) \\ \vdots & b_0 = P(x_0) \endalign{subarray}{c} \end{subarray}$$

más aun si :
$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$$

entonces
$$P(x) = (x - x_0)Q(x) + b_0$$

METODO DE HORNER

Dado que
$$P(x) = (x - x_0)Q(x) + b_0$$
 (1)

Siendo
$$Q(x) = b_n x^{n-1} + b_{n-1} x^{n-2} + \dots + b_2 x + b_1$$

Si derivamos (1)
$$P'(x) = Q(x) + (x - x_0)Q'(x)$$

Para
$$x = x_0$$
 $P'(x_0) = Q(x_0)$

Metodos Numericos 1 2024

Método de Newton Raphson

Dado el polinomio, P(x), se calcula:

$$x_{n+1} = x_n - P(x_n) / P'(x_n)$$
 $n = 0, 1, 2, 3, ...$

usando Horner para calcular $P_{(x)}$ y $P'_{(x)}$.

Mediante el proceso de **deflación** podemos calcular todos los ceros del polinomio

METODO DE HORNER

Ejemplo:

$$P(x) = (x+2)(2x^3 - 4x^2 + 5x - 7) + 10$$

$$Q(x) = P'(x)$$

METODO DE HORNER

Ejemplo:

Aplico Horner nuevamente para encontrar Q(-2)=P'(-2)

Método de Newton Raphson

Esta seria 1era iteración del método

$$x_1 = x_0 - P(x_0) / P'(x_0) = -2 - 10 / (-49) \equiv -1.796$$

Una 2da iteración seria:

Se continua las iteraciones hasta alcanzar la precisión buscada

Métodos Numéricos | 2024

Algoritmo para calcular P(x) y P'(x)

ENTRADA: n: grado de P(x), ai: coeficientes de P(x),

 x_0 : punto donde evaluar P(x)SALIDA: $y = P(x_0), z = P'(x_0)$

PASO 1: y = anPASO2: z = an

PASO 3: PARA j=n-1 , n-2, ... 1

$$y = x_0 *y + a_j$$

$$z = x_0 *z + y$$

PASO 4: $y = x_0 * y + a_0$ PASO 5: Devolver y, z

Métodos Numéricos I 2024

Método de Muller

Permite calcular las raíces del polinomio, $p_n(x)$, donde n es el orden del polinomio y las a_n son coeficientes constantes.

$$p_n(x) = a_0 + a_1 x + a_2 x^2 + \dots + a_n x^n$$

Este método es una generalización del método de la secante, trabaja con la parábola que intersecta al polinomio dado en tres puntos

Supongamos buscar las raíces de

$$p_2(x) = a(x - x_2)^2 + b(x - x_2) + c$$

Debemos conocer a, b y c

Dados P0, P1 y P2: [x_0 , $f(x_0)$], [x_1 , $f(x_1)$] y [x_2 , $f(x_2)$], planteamos el sig. sistema de ecuaciones:

$$p_2(x_0) = a(x_0 - x_2)^2 + b(x_0 - x_2) + c = f(x_0)$$

$$p_2(x_1) = a(x_1 - x_2)^2 + b(x_1 - x_2) + c = f(x_1)$$

$$p_2(x_2) = a(x_2 - x_2)^2 + b(x_2 - x_2) + c = f(x_2)$$

 $vemos que f(x_2) = c$

El sistema será: $c = f(x_2)$

$$b = \frac{(x_0 - x_2)^2 [f(x_1) - f(x_2)] - (x_1 - x_2)^2 [f(x_0) - f(x_2)]}{(x_0 - x_2)(x_1 - x_2)(x_0 - x_1)}$$

$$a = \frac{(x_1 - x_2)[f(x_0) - f(x_2)] - (x_0 - x_2)}{(x_0 - x_2)(x_1 - x_2)(x_0 - x_1)}$$

Métodos Numéricos | 2024

La nueva aproximación a la raíz será la solución de $p_2(x3)=0$ Para el cálculo de $\,$ la raíz, x_3 , debemos resolver:

$$x_3 - x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

para prevenir error de redondeo

$$x_3 = x_2 + \frac{-2c}{b \pm \sqrt{b^2 - 4ac}}$$
Cual signo hay que tomar?

En cada iteración, se recalculan los valores $\{x_0, f(x_0)\}$, $\{x_1, f(x_1)\}$ y $\{x_2, f(x_2)\}$ hasta alcanzar la raíz con la precisión deseada

Este método también permite calcular raíces complejas, se debe tomar un $\nu.i.$ complejo, y es más estable que Newton, siendo su orden de convergencia \cong 1.8.

La principal desventaja es que en cada iteración descarta una posible raíz de la parábola sin conocer sus características.

Método de Muller

Ejemplos:

$$F(x) = x^3 - 13 x - 12$$

 $x_0 = 4.5$, $x_1 = 5.5$, $x_2 = 5$

$$F(x) = x^3 - 0.5 x^2 + 4x - 2$$

 $x_0 = 0.4$, $x_1 = 0.6$, $x_2 = 0.8$

En resumen:

- Los métodos numéricos para resolver raíces se dividen en abiertos y de intervalo
- Métodos que usan intervalos, necesitan dos valores iniciales que contengan la raíz, tienen garantizada la convergencia. Pero son lentos.
- Métodos abiertos abandonan la acotación de la raíz, ganando en velocidad; pero pueden diverger. La convergencia depende de una buena elección de los valores iniciales

Métodos Numéricos | 2024