Atividade em Sala de Aula

Enunciado:

Pesquisar sobre exemplos práticos de automação residencial e apresente pontos positivos e negativos. Em relação a Raspberry Pico W quais as vantagens e desvantagens de usar essa placa para essas aplicações. E quais outras placas poderiam ter mais vantagens em relações a outras.

Automação Residencial: Exemplos, Vantagens e Placas

1. Exemplos práticos de automação residencial

Caso de uso	Como funciona	Pontos positivos	Pontos negativos
Iluminação inteligente	Controle por app ou voz, horários e sensores de presença	Economia de energia e conveniência – ligar antes de chegar em casa	Custo inicial das lâmpadas/switches e dependência de Wi-Fi forte
Fechaduras e câmeras smart	Destravar portas e monitorar entregas à distância	Aumenta a segurança e evita chaves físicas	Riscos de invasão se senha/Wi-Fi forem fracos
Tomadas ou plugs inteligentes	Transformam qualquer aparelho em "smart" por agendamentos ou sensores	Baixo custo, instalação DIY simples	Se a rede cai, o agendamento pode falhar
Termostato inteligente	Aprende hábitos e ajusta HVAC automaticamente	Até 10 % de economia em aquecimento/resfriamento	Alguns sistemas HVAC não são compatíveis de fábrica
Assistentes de voz como hub	Alexa/Google/NLU controlam os demais dispositivos	Acessibilidade para PCD e centralização	Privacidade (microfones sempre ativos)
Persianas / cortinas smart	Abrem/fecham por horário ou luminosidade	Melhora conforto térmico e segurança simulando presença	Motores e baterias encarecem o sistema
Eletrodomésticos com IA	Equipamentos detectam padrões e recomendam ciclos	Conveniência "hands-off" para tarefas repetitivas	Complexidade ≥ pontos de falha; assistência técnica limitada
Projeto Pico W (gás + luz + ventilação)	Pico W lê MQ-2 e LDR, aciona buzzer, relé de exaustor e luminária	Baixo custo, segurança contra vazamento de gás	Necessita integração DIY e conhecimento de eletrônica

2. Visão geral - prós e contras da automação residencial

- Vantagens principais
 - Conveniência e acessibilidade comando remoto ou por voz de qualquer lugar
 - Eficiência energética reduções típicas de 10 % (HVAC) a 20 % (carga total) com sensores e agendamento
 - Segurança ativa fechaduras, câmeras e sensores de fumaça/gás elevam a proteção
 - Personalização/rotinas sistemas aprendem padrões familiares e se ajustam automaticamente

• Desvantagens comuns

- Custo inicial (equipamentos + instalação)
- Dependência de conectividade Wi-Fi instável derruba automações
- Privacidade/cibersegurança tráfego de IoT pode revelar hábitos mesmo criptografado
- Complexidade & curva de aprendizagem; interoperabilidade nem sempre garantida

3. Raspberry Pi Pico W em automação residencial

Ponto	Vantagens	Limitações
Hardware	Dual-core RP2040, 264 kB RAM, Wi-Fi 802.11n; custo ~US\$ 6-7	Wi-Fi 2.4 GHz apenas, sem BLE Thread/Matter; memória curta para ML ou vídeo
Energia	Consumo muito baixo (ideal para bateria ou energia solar)	Sem modo deep sleep tão eficiente quanto ESP32; sem PMIC integrado
GPIO & periféricos	26 pinos, ADC 12-bit, PIO programável; ótima para relés e sensores	Sem DAC, sem Ethernet nativa; precisa de módulos externos p/ Zigbee/Thread
Software	Suporte oficial a MicroPython e SDK C/C++; grande comunidade	Não roda Linux nem Home Assistant "core"; integração via MQTT/HTTP precisa ser programada manualmente
Compliance	Módulo CYW43439 já pré-certificado, facilitando homologação	Disponibilidade local menor que ESP32 em algumas regiões

4. Alternativas populares e comparação

Placa/SoC	Vantagens sobre Pico W	Desvantagens principais	Quando escolher
ESP32-S3 / C3	Wi-Fi + BLE integrados, +RAM/flash, modos deep sleep µA, DAC/touch, preço ≈ US\$ 4	Consumo Wi-Fi ativo mais alto; documentação fragmentada; algumas variantes sem certificação local	Nós sensores/atuadores que precisam de BLE, Matter ou bateria de longa duração
ESP32-C6	Compatível com Thread/Matter; placas como ESPuno suportam até 60 V DC e RS-485	Ainda novo, ecossistema menor, preço ≥ ESP32 tradicional	Projetos futuros já mirando Matter/Thread e redes industriais
Raspberry Pi Zero 2 W / Pi 4/5	Roda Linux completo, Home Assistant ou Node-RED nativamente; USB, câmera, HDMI	Custo (US\$ 15-60) e consumo (2-7 W) bem maiores; precisa de SD/eMMC	Servidor central da casa, dashboards, automações complexas e vídeo
Home Assistant Green	Pronto-para-uso, 3 W, suporte oficial, USB para Zigbee/Matter dongle; dados locais	Menos flexível p/ outros tipos de projeto; preço > US\$ 99	Quem quer automação local robusta sem montar software/hardware
Arduino Portenta H7 / STM32 Nucleo + shield Wi-Fi	Industrial-grade, RTOS, tolerância a temperaturas e certificações CE/UL	Preço elevado e curva de aprendizado maior	Automação profissional, ambientes agressivos ou regulados

5. Resumindo

- Comece pequeno lâmpadas ou plugs inteligentes resolvem 80 % das funções iniciais.
- Escolha a placa pelo papel:
 - Pico W ótimo nó simples e barato.
 - ESP32 versátil, sem fio completo e mais memória.
 - Pi Zero 2 W/Pi 4 cérebro da casa quando precisa de Linux.
 - Home Assistant Green solução "liga-e-usa" com software já pronto.
- Planeje a infraestrutura de rede e segurança antes de espalhar dispositivos.
- Avalie privacidade e custos recorrentes (nuvem, gateways, manutenção).

REFERÊNCIAS BIBLIOGRÁFICAS

- ESPRESSIF SYSTEMS. ESP32-S3 Series Datasheet. Disponível em:
 https://www.espressif.com/sites/default/files/documentation/esp32-s3_datasheet_en.pdf. Acesso em: maio 2025.
- ESPRESSIF SYSTEMS. ESP32-C6 Overview. Disponível em: https://www.espressif.com/en/products/socs/esp32-c6. Acesso em: maio 2025.
- ESPRESSIF SYSTEMS. ESP32-WROOM Series Datasheet. Disponível em: https://www.espressif.com/sites/default/files/documentation/esp32-wroom-series_datasheet_en.pdf.

 Acesso em: maio 2025.
- HOME ASSISTANT. *Home Assistant Green Hardware Specifications*. Disponível em: https://www.home-assistant.io/green. Acesso em: maio 2025.
- IOTRANSITION. *IoT Home Automation: Top 7 Use Cases, Examples & Challenges*. Disponível em: https://www.itransition.com/blog/iot-home-automation. Acesso em: maio 2025.
- RANDOM NERD TUTORIALS. Raspberry Pi Pico: 20 Free Guides for Sensors and Modules. Disponível em: https://randomnerdtutorials.com/raspberry-pi-pico-projects/. Acesso em: maio 2025.
- RASPBERRY PI FOUNDATION. Raspberry Pi Pico W Datasheet. Disponível em: https://datasheets.raspberrypi.com/picow/pico-w-datasheet.pdf. Acesso em: maio 2025.
- SUNFOUNDER. Lesson 04: Gas Sensor Module (MQ-2) with Pico W. Disponível em: https://docs.sunfounder.com/projects/pico-w-basic-kit/en/latest/lesson4.html. Acesso em: maio 2025.
- TREND MICRO. Inside the Smart Home: IoT Device Threats and Attack Scenarios. Disponível em:
 https://documents.trendmicro.com/assets/white_papers/wp-inside-the-smart-home.pdf. Acesso em: maio
 2025.
- U.S. ENVIRONMENTAL PROTECTION AGENCY ENERGY STAR. *Bundling Energy Savings With Consumer Interest In Smart Homes*. Disponível em: https://www.energystar.gov. Acesso em: maio 2025.