Copyless Cost-Register Automata

Filip Mazowiecki

University of Warwick

Santiago 2016

Introduction

(mostly weighted automata)

$$f:\Sigma^*\to\{0,1\}$$

$$f:\Sigma^*\to\{0,1\}$$

Weighted automata

 $f:\Sigma^* o$ "some numbers"?

$$f:\Sigma^*\to\{0,1\}$$

Weighted automata

$$f: \Sigma^* \to$$
 "some numbers"? \mathbb{N} ?

 $\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$ with some axioms $s\oplus\mathbb{0}=s,\ s\odot\mathbb{1}=s,\ \dots$

$$\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$$
 with some axioms $s\oplus\mathbb{O}=s,\ s\odot\mathbb{1}=s,\ \dots$

Examples:

• $\mathbb{S} = \mathbb{N}(+,\cdot,0,1)$

Nothing fancy: $\oplus = +, \ \odot = \cdot, \ \mathbb{0} = 0, \ \mathbb{1} = 1$

$$\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$$
 with some axioms $s\oplus\mathbb{O}=s,\ s\odot\mathbb{1}=s,\ \dots$

Examples:

- $\mathbb{S} = \mathbb{N}(+,\cdot,0,1)$
- Nothing fancy: $\oplus = +, \odot = \cdot, \emptyset = 0, \mathbb{1} = 1$
- $\mathbb{S} = \mathbb{N}_{\infty}(\min, +, \infty, 0)$
- Kind of weird: $\oplus = \min, \odot = +, 0 = \infty, 1 = 0$

$$\mathbb{S}(\oplus,\odot,\mathbb{O},\mathbb{1})$$
 with some axioms $s\oplus\mathbb{O}=s,\ s\odot\mathbb{1}=s,\ \dots$

Examples:

- $\mathbb{S} = \mathbb{N}(+,\cdot,0,1)$
- Nothing fancy: $\oplus = +, \ \odot = \cdot, \ \mathbb{0} = 0, \ \mathbb{1} = 1$
- $\mathbb{S} = \mathbb{N}_{\infty}(\min, +, \infty, 0)$

Kind of weird:
$$\oplus = \min, \odot = +, 0 = \infty, 1 = 0$$

$$n \oplus \mathbb{O} = n$$
 becomes $\min(n, \infty) = n$

$$n \odot \mathbb{1} = n$$
 becomes $n + 0 = n$

$$\mathbb{S}(\oplus,\odot,\mathbb{0},\mathbb{1}) \quad \text{with some axioms} \quad s\oplus \mathbb{0} = s, \ s\odot \mathbb{1} = s, \ \dots$$

Examples:

- $\mathbb{S} = \mathbb{N}(+,\cdot,0,1)$
- Nothing fancy: $\oplus = +, \ \odot = \cdot, \ \mathbb{0} = 0, \ \mathbb{1} = 1$
- $\mathbb{S} = \mathbb{N}_{\infty}(\min, +, \infty, 0)$

Kind of weird:
$$\oplus = \min, \ \odot = +, \ \mathbb{0} = \infty, \mathbb{1} = 0$$

$$n \oplus \mathbb{0} = n$$
 becomes $\min(n, \infty) = n$
 $n \odot \mathbb{1} = n$ becomes $n + 0 = n$

- $S = \mathbb{N}_{-\infty}(\max, +, -\infty, 0)$
- $\oplus = \max, \odot = +, 0 = -\infty, 1 = 0$

Consider
$$w = bbab$$

b b a b
$$1+1+0+0=2$$

b b a b b a b b b a b
$$1+1+0+0=2$$
 $0+1+0+0=1$ $0+0+0+1=1$

Consider w = bbab

Output: $\max\{2, 1, 1\} = 2$

Consider w = bbab

Output: $\max\{2, 1, 1\} = 2$

In general: \odot transitions, \oplus accepting runs

Consider w = bbab

b b a b
$$1+1+0+0=3$$

b b a b b a b
$$1+1+0+0=2$$
 $0+1+0+0=1$

Output: $\max\{2, 1, 1\} = 2$

In general: \odot transitions, \oplus accepting runs

"longest block of b's"

b b a b
$$0+0+0+1=1$$

Bounding the number of accepting runs

Bounding the number of accepting runs

 2^{n} accepting runs for \boldsymbol{a}^{n}

Bounding the number of accepting runs

"longest block of b's"

Bounding the number of accepting runs

• "longest block of *b*'s" number of *b*'s (linear)

Bounding the number of accepting runs

- "longest block of b's" number of b's (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

Bounding the number of accepting runs

- "longest block of *b*'s" number of *b*'s (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

Bounding the number of accepting runs

- "longest block of *b*'s" number of *b*'s (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

 $|\Sigma| \ \text{(constant)}$

Bounding the number of accepting runs

- "longest block of *b*'s" number of *b*'s (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

 $|\Sigma|$ (constant)

WA

Bounding the number of accepting runs

- "longest block of *b*'s" number of *b*'s (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

 $|\Sigma|$ (constant)

WA ∪ł

polynomially ambiguous WA

Bounding the number of accepting runs

- "longest block of b's" number of b's (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \} ?$ $|\Sigma|$ (constant)

WA polynomially ambiguous WA

finitely ambiguous WA

Bounding the number of accepting runs

- "longest block of b's" number of b's (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$? $|\Sigma| \text{ (constant)}$

WA

 $\bigcup \mathsf{I}$

polynomially ambiguous WA

finitely ambiguous WA

unambiguous WA

Bounding the number of accepting runs

- "longest block of *b*'s" number of *b*'s (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

 $|\Sigma|$ (constant)

WA ∪ł

polynomially ambiguous WA

Uł

finitely ambiguous WA

儿

unambiguous WA

l)

deterministic WA

Bounding the number of accepting runs

- "longest block of b's" number of b's (linear)
- $\max_{a \in \Sigma} \{ \text{ number of } a \text{ 's } \}$?

 $|\Sigma|$ (constant)

WA ..

polynomially ambiguous WA

finitely ambiguous WA

UΙ

unambiguous WA

U

deterministic WA

Monadic second-order logic (MSO) on words

$$\varphi \ := \ a(x) \ | \ x \leq y \ | \ x \in X \ | \ \neg \varphi \ | \ (\varphi \vee \varphi) \ | \ (\varphi \wedge \varphi) \ | \ Q$$

Monadic second-order logic (MSO) on words

$$\varphi \ := \ a(x) \ | \ x \leq y \ | \ x \in X \ | \ \neg \varphi \ | \ (\varphi \vee \varphi) \ | \ (\varphi \wedge \varphi) \ | \ Q$$

where

$$Q = \exists x. \varphi \mid \forall x. \varphi \mid \exists X. \varphi \mid \forall X. \varphi$$

Monadic second-order logic (MSO) on words

$$\varphi := a(x) \mid x \leq y \mid x \in X \mid \neg \varphi \mid (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid Q$$

where

$$Q = \exists x. \varphi \mid \forall x. \varphi \mid \exists X. \varphi \mid \forall X. \varphi$$

Theorem (Büchi)

 $\mathsf{MSO} = \mathsf{finite} \ \mathsf{automata}.$

Monadic second-order logic (MSO) on words

$$\varphi := a(x) \mid x \leq y \mid x \in X \mid \neg \varphi \mid (\varphi \lor \varphi) \mid (\varphi \land \varphi) \mid Q$$

where

$$Q = \exists x. \varphi \mid \forall x. \varphi \mid \exists X. \varphi \mid \forall X. \varphi$$

Theorem (Büchi)

MSO = finite automata.

Weighted MSO (WMSO) [Droste, Gastin, Kreutzer, Riveros]

$$\theta \ := \ \varphi \ \mid \ s \ \mid \ (\theta \oplus \theta) \ \mid \ (\theta \odot \theta) \ \mid \ Q_w$$

Monadic second-order logic (MSO) on words

$$\varphi \ := \ a(x) \mid \ x \leq y \mid \ x \in X \mid \ \neg \varphi \mid \ (\varphi \vee \varphi) \mid \ (\varphi \wedge \varphi) \mid \ Q$$

where

$$Q = \exists x. \varphi \mid \forall x. \varphi \mid \exists X. \varphi \mid \forall X. \varphi$$

Theorem (Büchi)

MSO = finite automata.

Weighted MSO (WMSO) [Droste, Gastin, Kreutzer, Riveros]

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

where $\varphi \in \mathsf{MSO}$, $s \in \mathbb{S}$,

Monadic second-order logic (MSO) on words

$$\varphi \ := \ a(x) \mid \ x \leq y \mid \ x \in X \mid \ \neg \varphi \mid \ (\varphi \vee \varphi) \mid \ (\varphi \wedge \varphi) \mid \ Q$$

where

$$Q = \exists x. \varphi \mid \forall x. \varphi \mid \exists X. \varphi \mid \forall X. \varphi$$

Theorem (Büchi)

MSO = finite automata.

$$\theta \ := \ \varphi \ \mid \ s \ \mid \ (\theta \oplus \theta) \ \mid \ (\theta \odot \theta) \ \mid \ Q_w$$

where $\varphi \in \mathsf{MSO}$, $s \in \mathbb{S}$,

$$Q_w := \bigoplus x. \ \theta(x) \mid \bigcirc x. \ \theta(x) \mid \bigoplus X. \ \theta(X) \mid \bigcirc X. \ \theta(X)$$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

• $\llbracket \varphi(w) \rrbracket \in \{0, 1\}$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

- $\bullet \quad \llbracket \varphi(w) \rrbracket \in \{\mathbb{0},\mathbb{1}\}$
- $\bullet \quad [\![s(w)]\!] = s$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

- $\bullet \quad \llbracket \varphi(w) \rrbracket \in \{\mathbb{0},\mathbb{1}\}$
- $\bullet \quad \llbracket s(w) \rrbracket = s$

Example in
$$\mathbb{N}_{-\infty}(\max, +)$$

$$(0 = -\infty, \quad 1 = 0)$$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

- $\llbracket \varphi(w) \rrbracket \in \{0, 1\}$
- $\bullet \quad \llbracket s(w) \rrbracket = s$

Example in
$$\mathbb{N}_{-\infty}(\max, +)$$

$$(0=-\infty, \quad 1=0)$$

$$\theta = \sum x. \max\{b(x) + 1, 0\}$$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

- $\llbracket \varphi(w) \rrbracket \in \{0, 1\}$
- [s(w)] = s

Example in
$$\mathbb{N}_{-\infty}(\max, +)$$

$$(0=-\infty, 1=0)$$

$$\theta = \sum x \cdot \max\{\underline{b(x) + 1}, 0\}$$
$$\{-\infty, 1\}$$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

- $\llbracket \varphi(w) \rrbracket \in \{0, 1\}$
- $\bullet \quad \llbracket s(w) \rrbracket = s$

Example in
$$\mathbb{N}_{-\infty}(\max, +)$$

$$(0 = -\infty, 1 = 0)$$

$$\theta = \sum x \cdot \max\{\underline{b(x) + 1, 0}\}$$

$$\{-\infty, 1\}$$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

- $\llbracket \varphi(w) \rrbracket \in \{0, 1\}$
- $\bullet \quad \llbracket s(w) \rrbracket = s$

Example in
$$\mathbb{N}_{-\infty}(\max, +)$$

$$(0=-\infty, \quad 1=0)$$

$$\theta = \sum x. \max\{\underline{b(x)+1},0\} = \text{ "number of b's"}$$

$$\{-\infty,1\}$$

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

- $[\![\varphi(w)]\!] \in \{0, 1\}$
- $\bullet \quad \llbracket s(w) \rrbracket = s$

Example in
$$\mathbb{N}_{-\infty}(\max, +)$$

$$(\mathbb{0}=-\infty, \quad \mathbb{1}=0)$$

$$\theta = \sum x. \overline{\max\{\underline{b(x)+1,0\}}} = \text{"number of b's"}$$

$$\{-\infty,1\}$$

Theorem

A fragment of WMSO is equivalent to WA.

$$\theta := \varphi \mid s \mid (\theta \oplus \theta) \mid (\theta \odot \theta) \mid Q_w$$

- $\bullet \quad \llbracket \varphi(w) \rrbracket \in \{\mathbb{0}, \mathbb{1}\}$
- $\bullet \quad \llbracket s(w) \rrbracket = s$

Example in
$$\mathbb{N}_{-\infty}(\max, +)$$

$$(0=-\infty, \quad \mathbb{1}=0)$$

$$\theta = \sum x. \overline{\max\{\underline{b(x)+1},0\}} = \text{ "number of b's"}$$

$$\{-\infty,1\}$$

Theorem

A fragment of WMSO is equivalent to WA.

Intuition: $\bigoplus x. \bigcirc y. \theta$

Cost register automata

(the model we work with)

Deterministic automata with registers [Alur et al. 2013]

No constraints

Deterministic automata with registers [Alur et al. 2013]

No constraints

No zero tests

Deterministic automata with registers [Alur et al. 2013]

No constraints

No zero tests

Initial

$$x = 0$$

$$y = 0$$

Initial
$$b$$

$$x = 0 \qquad x = 1$$

$$y = 0 \qquad y = 0$$

Initial
$$b$$
 b $x = 0$ $x = 1$ $x = 2$ $y = 0$ $y = 0$

Initial
$$b$$
 b a b $x = 0$ $x = 1$ $y = 0$ $y = 0$

Initial -				·	Output
	b	b	a	b	·
x = 0	x = 1	x = 2	x = 0	x = 1	2
y = 0	y = 0	y = 0	y = 2	y = 2	

Deterministic automata with registers [Alur et al. 2013]

Initial -					Output
	b	b	a	b	•
x = 0	x = 1	x = 2	x = 0	x = 1	2
y = 0	y = 0	y = 0	y = 2	y = 2	
y = 0	y = 0	y = 0	y = 2	y = 2	

x current block of b's

y previous maximal block of b's

Deterministic automata with registers [Alur et al. 2013]

Initial —					Output
	b	b	a	b	·
x = 0	x = 1	x = 2	x = 0	x = 1	2
y = 0	y = 0	y = 0	y = 2	y = 2	

x current block of b's y previous maximal block of b's

"longest block of b's"

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \dots

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18} , . . . or alternatively 3, 7, 18, . . .

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18} , . . . or alternatively 3, 7, 18, . . .

Observation: 1-state CRA = CRA

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or alternatively 3, 7, 18, \ldots

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or alternatively 3, 7, 18, \ldots

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

$$x := x \cdot y + z$$

$$y := 3 \cdot z + 2$$

$$z := x + 2 \cdot y$$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3 , a^7 , a^{18} , ... or alternatively 3, 7, 18, ...

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

$$x := x \cdot y + z$$

$$y := 3 \cdot z + 2 \quad \longrightarrow$$

$$z := x + 2 \cdot y$$

$$\begin{aligned} x &:= x \cdot y + z \\ y &:= 3 \cdot z + 2 \\ z &:= x + 2 \cdot y \end{aligned} \qquad \longleftrightarrow \begin{cases} x(n+1) = x(n) \cdot y(n) + z(n) \\ y(n+1) = 3 \cdot z(n) + 2 \\ z(n+1) = x(n) + 2 \cdot y(n) \end{cases}$$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or alternatively 3, 7, 18, \ldots

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or alternatively 3, 7, 18, \ldots

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

 $\mbox{Fibonacci sequence} \quad F_{n+2} = F_{n+1} + F_n$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or alternatively 3, 7, 18, \ldots

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

Fibonacci sequence
$$F_{n+2} = F_{n+1} + F_n$$

 $f(0) = 0, g(0) = 1$

$$\begin{cases} f(n+1) = g(n) \\ g(n+1) = f(n) + g(n) \end{cases}$$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18} , . . . or alternatively 3, 7, 18, . . .

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

Fibonacci sequence
$$F_{n+2} = F_{n+1} + F_n$$

$$f(0) = 0, \ g(0) = 1$$

$$\begin{cases} f(n+1) = g(n) \\ g(n+1) = f(n) + g(n) \end{cases}$$

$$f(n) = F_n, \ g(n) = F_{n+1}$$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or alternatively 3, 7, 18, \ldots

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

Fibonacci sequence
$$F_{n+2} = F_{n+1} + F_n$$

$$a \mid x := y$$

$$f(0) = 0, \ g(0) = 1$$

$$\begin{cases} f(n+1) = g(n) \\ g(n+1) = f(n) + g(n) \end{cases}$$

$$x := 0, y := 1$$

$$\downarrow x$$

$$f(n) = F_n, \ g(n) = F_{n+1}$$

$$\Sigma = \{a\}, \quad \mathbb{S} = \mathbb{N}(+, \cdot)$$

Words: a^3, a^7, a^{18}, \ldots or alternatively 3, 7, 18, \ldots

Observation: 1-state CRA = CRA

1 state, 1 letter = 1 transition

Fibonacci sequence
$$F_{n+2} = F_{n+1} + F_n$$

$$f(0) = 0, \ g(0) = 1$$

$$\begin{cases} f(n+1) = g(n) \\ g(n+1) = f(n) + g(n) \end{cases}$$

$$x := 0, y := 1$$

$$f(n) = F_n, \ g(n) = F_{n+1}$$

$$[\![\mathcal{A}]\!](a^n) = F_n$$

 $\mathsf{Actually}\;\mathsf{WA} \subsetneq \mathsf{CRA}$

Actually WA \subseteq CRA

For example for $\mathbb{N}_{-\infty}(\max, +)$

Actually WA \subseteq CRA

For example for $\mathbb{N}_{-\infty}(\max, +)$

Actually WA \subseteq CRA

For example for $\mathbb{N}_{-\infty}(\max, +)$

Output: $2^{|w|}$

Actually WA \subsetneq CRA

For example for $\mathbb{N}_{-\infty}(\max, +)$

$$x := 1 \qquad \qquad a \mid x := x + x$$

Output: $2^{|w|}$

For WA output $\in \mathcal{O}(|w|)$

Restricted expressions

Operator \odot only with constants

Restricted expressions

Operator \odot only with constants

Keep in mind! In the semiring $\mathbb{N}_{-\infty}(\max, +)$:

- $\odot = +$
- $\oplus = \max$

Restricted expressions

Operator \odot only with constants

$$\max\{x,y\} + 3$$

Keep in mind! In the semiring $\mathbb{N}_{-\infty}(\max, +)$:

- $\odot = +$
- $\oplus = \max$

Restricted expressions

Operator \odot only with constants

$$\label{eq:max} \max\{x,y\} + 3 \qquad \qquad x+y \\ \text{GOOD} \qquad \qquad \text{BAD}$$

Keep in mind! In the semiring $\mathbb{N}_{-\infty}(\max, +)$:

- $\odot = +$
- $\oplus = \max$

Restricted expressions

Operator \odot only with constants

$$\max\{x,y\} + 3 \qquad \qquad x + y$$

$$\mathsf{GOOD} \qquad \qquad \mathsf{BAD}$$

WA = CRA(\oplus , $\odot s$) [Alur et al. 2013]

Keep in mind! In the semiring
$$\mathbb{N}_{-\infty}(\max, +)$$
: $\odot = +$ $\oplus = \max$

Restricted expressions

Operator \odot only with constants

$$\max\{x,y\} + 3 \qquad x + y$$
GOOD BAD

Keep in mind! In the semiring
$$\mathbb{N}_{-\infty}(\max, +)$$
: $\odot = +$ $\oplus = \max$

WA = CRA(
$$\oplus$$
, $\odot s$) [Alur et al. 2013]

Copyless restriction

Each register used only once

Restricted expressions

Operator \odot only with constants

$$\max\{x,y\} + 3 \qquad x + y$$
GOOD BAD

Keep in mind! In the semiring
$$\mathbb{N}_{-\infty}(\max, +)$$
: $\odot = +$ $\oplus = \max$

WA = CRA(
$$\oplus$$
, $\odot s$) [Alur et al. 2013]

Copyless restriction

Each register used only once

$$x := x + y$$
$$y := 5$$
$$GOOD$$

Restricted expressions

Operator \odot only with constants

$$\max\{x,y\} + 3 \qquad x + y$$
GOOD BAD

Keep in mind! In the semiring
$$\mathbb{N}_{-\infty}(\max, +)$$
: $\odot = +$ $\oplus = \max$

WA = CRA(
$$\oplus$$
, $\odot s$) [Alur et al. 2013]

Copyless restriction

Each register used only once

$$\begin{array}{ll} x := x + y & x := \max\{x,y\} \\ y := 5 & y := y \\ \texttt{GOOD} & \texttt{BAD} \end{array}$$

("Deterministic registers")

("Deterministic registers")

How are they related to WA?

("Deterministic registers")

How are they related to WA? Is there a logic characterization?

("Deterministic registers")

How are they related to WA? Is there a logic characterization?

In this talk

1. Function not recognizable by any Copyless CRA

("Deterministic registers")

How are they related to WA? Is there a logic characterization?

In this talk

- 1. Function not recognizable by any Copyless CRA
- 2. Copyless CRA vs WA

("Deterministic registers")

How are they related to WA? Is there a logic characterization?

In this talk

- 1. Function not recognizable by any Copyless CRA
- 2. Copyless CRA vs WA
- 3. Introduce BAC, a subclass of Copyless CRA

("Deterministic registers")

How are they related to WA? Is there a logic characterization?

In this talk

- 1. Function not recognizable by any Copyless CRA
- 2. Copyless CRA vs WA
- 3. Introduce BAC, a subclass of Copyless CRA
- 4. Logic characterization for BAC

Set $\mathbb{N}_{-\infty}(\max, +)$, and $\oplus = \max, \odot = +$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max,\ \odot=+$
$$a \mid x:=x+1 \\ y:=y$$

$$x,y:=0 \qquad \# \mid x:=\max\{x,y\} \\ y:=0 \qquad \max\{x,y\}$$

$$b \mid x:=x \\ y:=y+1$$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max$, $\odot=+$
$$a \mid x:=x+1 \\ y:=y$$

$$x,y:=0 \qquad \# \mid x:=\max\{x,y\} \\ y:=0 \qquad \max\{x,y\}$$

$$b \mid x:=x \\ y:=y+1$$

 $abababa\#aabbab^{10}a\#aab^7a\#\dots$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max,\ \odot=+$
$$a \mid \begin{array}{c} x:=x+1\\y:=y \end{array}$$

$$x,y:=0 \qquad \# \mid \begin{array}{c} x:=\max\{x,y\}\\y:=0 \end{array}$$

$$b \mid \begin{array}{c} x:=x\\y:=y+1 \end{array}$$

block 0 block 1 block 2
$$abababa#aabbab^{10}a#aab^{7}a#...$$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max,\ \odot=+$
$$a \mid \begin{array}{c} x:=x+1\\y:=y \end{array}$$

$$x,y:=0 \qquad \qquad \# \mid \begin{array}{c} x:=\max\{x,y\}\\y:=0 \end{array}$$

$$b \mid \begin{array}{c} x:=x\\y:=y+1 \end{array}$$

block 0 block 1 block 2
$$abababa \# aabbab^{10} a \# aab^7 a \# \dots$$

y: "I just keep the number of b's in a block"

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max,\ \odot=+$
$$a \mid x:=x+1 \\ y:=y$$

$$x,y:=0 \qquad \# \mid x:=\max\{x,y\}$$

$$y:=0 \qquad \max\{x,y\}$$

$$b \mid x:=x \\ y:=y+1$$

block 0 block 1 block 2
$$abababa#aabbab^{10}a#aab^{7}a#...$$

y: "I just keep the number of b's in a block"

x: "I add 1 for every a and ..."

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max$, $\odot=+$
$$a \mid x:=x+1 \\ y:=y$$

$$x,y:=0 \qquad \# \mid x:=\max\{x,y\}$$

$$b \mid x:=x \\ y:=y+1$$

block 0 block 1 block 2
$$abababa#aabbab^{10}a#aab^{7}a#...$$

$$\uparrow$$

$$x = 0$$

$$y = 0$$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max$, $\odot=+$
$$a \mid \begin{array}{c} x:=x+1 \\ y:=y \end{array}$$

$$x,y:=0 \qquad \# \mid \begin{array}{c} x:=\max\{x,y\} \\ y:=0 \end{array}$$

$$b \mid \begin{array}{c} x:=x \\ y:=y \end{array}$$

block 0 block 1 block 2
$$abababa\#aabbab^{10}a\#aab^{7}a\#\dots$$

$$x = 4$$

$$y = 3$$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max$, $\odot=+$
$$a \mid x:=x+1 \\ y:=y$$

$$x,y:=0 \qquad \# \mid x:=\max\{x,y\}$$

$$y:=0 \qquad \max\{x,y\}$$

$$b \mid x:=x \\ y:=y+1$$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max,\ \odot=+$
$$a \mid \begin{array}{c} x:=x+1\\y:=y \end{array}$$

$$x,y:=0 \qquad \# \mid \begin{array}{c} x:=\max\{x,y\}\\y:=0 \end{array}$$

$$b \mid \begin{array}{c} x:=x\\y:=y+1 \end{array}$$

block 0 block 1 block 2
$$abababa\#aabbab^{10}a\#aab^{7}a\#\dots$$

$$x = 8$$

$$y = 12$$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max,\ \odot=+$
$$a \mid \begin{array}{c} x:=x+1\\y:=y \end{array}$$

$$x,y:=0 \qquad \# \mid \begin{array}{c} x:=\max\{x,y\}\\y:=0 \end{array}$$

$$b \mid \begin{array}{c} x:=x\\y:=y+1 \end{array}$$

block 0 block 1 block 2
$$abababa\#aabbab^{10}a\#aab^7a\#\dots$$

$$\uparrow x = 12$$
 $y = 0$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max,\ \odot=+$
$$a \mid \begin{array}{c} x:=x+1\\y:=y \end{array}$$

$$x,y:=0 \qquad \# \mid \begin{array}{c} x:=\max\{x,y\}\\y:=0 \end{array}$$

$$b \mid \begin{array}{c} x:=x\\y:=y+1 \end{array}$$

block 0 block 1 block 2
$$abababa\#aabbab^{10}a\#aab^{7}a\#\dots$$

$$\uparrow x = 15$$

$$y = 7$$

Set
$$\mathbb{N}_{-\infty}(\max,+)$$
, and $\oplus=\max,\ \odot=+$
$$a \mid \begin{array}{c} x:=x+1\\y:=y \end{array}$$

$$x,y:=0 \qquad \qquad \# \mid \begin{array}{c} x:=\max\{x,y\}\\y:=0 \end{array}$$

$$b \mid \begin{array}{c} x:=x\\y:=y+1 \end{array}$$

block 0 block 1 block 2
$$abababa# aabbab^{10}a# aab^7a# \dots$$

$$x = 15$$

$$y = 0$$

The counterexample (continued)

$$f(w) = \max_{j} \left\{ m_j + \sum_{i=j+1}^{k} n_i \right\}$$

 m_i number of b's in block i n_i number of a's in block i

The counterexample (continued)

$$f(w) = \max_{j} \left\{ m_j + \sum_{i=j+1}^{k} n_i \right\}$$

 m_i number of b's in block i n_i number of a's in block i

Can we do reverse?

$$f^{R}(w) = \max_{j} \left\{ \sum_{i=0}^{j-1} n_i + m_j \right\}$$

The counterexample (continued)

$$f(w) = \max_{j} \left\{ m_j + \sum_{i=j+1}^{k} n_i \right\}$$

 m_i number of b's in block i n_i number of a's in block i

Can we do reverse?

$$f^{R}(w) = \max_{j} \left\{ \sum_{i=0}^{j-1} n_i + m_j \right\}$$

No.

Copyless CRA are not closed under reverse

Copyless CRA are not closed under reverse

ullet Observation: Copyless CRA \subseteq WA

Copyless CRA are not closed under reverse

 $\bullet \quad \text{Observation: Copyless CRA} \subseteq \text{WA} \\ \text{(Recall that WA} \subsetneq \text{CRA)}$

Copyless CRA are not closed under reverse

 $\bullet \quad \mathsf{Observation} \colon \mathsf{Copyless} \; \mathsf{CRA} \subseteq \mathsf{WA}$

(Recall that WA \subsetneq CRA)

WA are closed under reverse

Copyless CRA are not closed under reverse

 $\bullet \quad \mathsf{Observation} \colon \mathsf{Copyless} \; \mathsf{CRA} \subseteq \mathsf{WA}$

(Recall that WA \subseteq CRA)

WA are closed under reverse

 \implies copyless CRA \subsetneq WA

Copyless CRA are not closed under reverse

 Observation: Copyless CRA ⊆ WA (Recall that WA ⊊ CRA)
 WA are closed under reverse

 \implies copyless CRA \subseteq WA $\ \odot$

A logical characterization seems unlikely

What is wrong with copyless CRA?

What is wrong with copyless CRA?

Alternation – number of switches between \oplus and \odot .

What is wrong with copyless CRA?

Alternation – number of switches between \oplus and \odot .

Lets bound the alternation!

What is wrong with copyless CRA?

Alternation – number of switches between \oplus and \odot .

Lets bound the alternation!

What does it mean?

What is wrong with copyless CRA?

Alternation – number of switches between \oplus and \odot .

Lets bound the alternation!

What does it mean?

What is wrong with copyless CRA?

Alternation – number of switches between \oplus and \odot .

Lets bound the alternation!

What does it mean?

b's in one block

What is wrong with copyless CRA?

Alternation – number of switches between \oplus and \odot .

Lets bound the alternation!

What does it mean?

b's in one block

Alternation is 2

What is wrong with copyless CRA?

Alternation – number of switches between \oplus and \odot .

Lets bound the alternation!

What does it mean?

b's in one block

Alternation is 2

BAC = copyless CRA + universally bounded alternation

What is wrong with copyless CRA?

Alternation – number of switches between \oplus and \odot .

Lets bound the alternation!

What does it mean?

b's in one block

Alternation is 2

BAC = copyless CRA + universally bounded alternation $\max\left\{\ m_j + \sum_{i=j+1}^k n_i\right\}$ "simplest example" not in BAC

Maybe BAC is better?

Maybe BAC is better?

What extensions are interesting?

Maybe BAC is better?

What extensions are interesting?

Reverse

Maybe BAC is better?

What extensions are interesting?

- Reverse
- Nondeterminism [Cadilhac, Krebs, Limaye]

Maybe BAC is better?

What extensions are interesting?

- Reverse
- Nondeterminism [Cadilhac, Krebs, Limaye]
- Regular look-ahead [Alur et al.]

Consider the function

 $f(w) = \max\{\text{number of all } a \text{'s, number of } b \text{'s in the last block}\}$

Consider the function

 $f(w) = \max\{\text{number of all } a\text{'s, number of } b\text{'s in the last block}\}$

e.g. $f(aabbabba) = \max\{4,3\} = 4$

Consider the function

$$f(w)=\max\{\text{number of all }a\text{'s, number of }b\text{'s in the last block}\}$$
 e.g.
$$f(aabbabba)=\max\{4,3\}=4$$

x: a's

 $y:b^{\prime }s$ in the last block

Consider the function

 $f(w) = \max\{\text{number of all }a\text{'s, number of }b\text{'s in the last block}\}$ e.g. $f(aabbabba) = \max\{4,3\} = 4$

Plan A

The reverse f^r

 $\begin{aligned} x : a's \\ y : b's \text{ in the last block} \end{aligned}$

Consider the function

$$f(w) = \max\{\text{number of all } a\text{'s, number of } b\text{'s in the last block}\}$$
 e.g. $f(aabbabba) = \max\{4,3\} = 4$

Plan B

 $f \ \ {\rm using} \ \ {\rm unambiguous} \ \ {\rm nondeterminism}$

$$x: a's$$

 $y: b's$ in the last block

Consider the function

 $f(w) = \max\{\text{number of all } a\text{'s, number of } b\text{'s in the last block}\}$ e.g. $f(aabbabba) = \max\{4,3\} = 4$

Plan C

f using regular look-ahead

x: a's y: b's in the last block

BAC is a robust class!

One can define f without reverse, nondeterminism or regular look-ahead

BAC is a robust class!

One can define f without reverse, nondeterminism or regular look-ahead

Theorem

BAC is closed under reverse.

BAC is a robust class!

One can define f without reverse, nondeterminism or regular look-ahead

Theorem

BAC is closed under reverse.

 \implies BAC \subsetneq copyless CRA

BAC is a robust class!

One can define f without reverse, nondeterminism or regular look-ahead

Theorem

BAC is closed under reverse.

$$\implies$$
 BAC \subsetneq copyless CRA

Theorem

BAC is closed under unambiguous nondeterminism.

BAC is a robust class!

One can define f without reverse, nondeterminism or regular look-ahead

Theorem

BAC is closed under reverse.

$$\implies$$
 BAC \subsetneq copyless CRA

Theorem

BAC is closed under unambiguous nondeterminism.

Theorem

BAC is closed under regular look-ahead.

finitely ambiguous WA

WA

Ž

polynomially ambiguous WA

finitely ambiguous WA

WA ⊊ CRA

Ž

polynomially ambiguous WA

$$\mathsf{BAC} \ \subsetneq \ \mathsf{copyless} \ \mathsf{CRA}$$
 finitely ambiguous WA
$$\mathsf{WA} \ \subsetneq \ \mathsf{CRA}$$

$$\varphi$$
 polynomially ambiguous WA

Maximal Partition logic

(a different approach)

How to select intervals?

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

For example $\Sigma^*\langle b^+\rangle\Sigma^*$

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

For example $\Sigma^*\langle b^+\rangle\Sigma^*$ $\;$ in short $\langle b^+\rangle$

abbbaabbabbbaab;

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

For example $\Sigma^*\langle b^+\rangle\Sigma^*$ $\;$ in short $\langle b^+\rangle$

abbbaabbabbbaab;

How to select intervals?

With regular expressions

$$R\langle S\rangle T$$

For example $\Sigma^*\langle b^+ \rangle \Sigma^*$ in short $\langle b^+ \rangle$

abbbaabbabbbaab;

How to select intervals?

With regular expressions

For example $\Sigma^*\langle b^+\rangle\Sigma^*$ in short $\langle b^+\rangle$

abbbaabbabbbaab;

How to select intervals?

With regular expressions

For example $\Sigma^*\langle b^+ \rangle \Sigma^*$ in short $\langle b^+ \rangle$

abbbaabbabbbaaba

How to select intervals?

With regular expressions

For example $\Sigma^*\langle b^+\rangle\Sigma^*$ in short $\langle b^+\rangle$

abbbaabbabbbaaba

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is $\bigcirc R. \varphi$?

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is $\bigcirc R. \varphi$?

 $\mathbf{R}=R\langle S\rangle T$ is a regular selector

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is $\bigcirc R. \varphi$?

 $R = R\langle S \rangle T$ is a regular selector

1. Apply φ to every interval

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is $\bigcirc \mathbb{R}$. φ ?

 $\mathbf{R} = R\langle S \rangle T$ is a regular selector

- 1. Apply φ to every interval
- 2. Aggregate with ⊙

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is $\bigcirc \mathbb{R}$. φ ?

 $\mathbf{R} = R\langle S \rangle T$ is a regular selector

- 1. Apply φ to every interval
- 2. Aggregate with ⊙

$$\sum b. 1$$

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is $\bigcirc \mathbb{R}$. φ ?

 $R = R\langle S \rangle T$ is a regular selector

- 1. Apply φ to every interval
- 2. Aggregate with ⊙

"The number of b's"

$$\sum b. 1$$

$$(\odot = +)$$

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is \bigcirc R. φ ?

 $R = R\langle S \rangle T$ is a regular selector

- 1. Apply φ to every interval
- 2. Aggregate with ⊙

"The number of b's"

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is \bigcirc R. φ ?

 $\mathbf{R} = R\langle S \rangle T$ is a regular selector

- 1. Apply φ to every interval
- 2. Aggregate with ⊙

"The number of b's"

a b b b a a b b a b b b a a b a

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is \bigcirc R. φ ?

 $R = R\langle S \rangle T$ is a regular selector

- 1. Apply φ to every interval
- 2. Aggregate with ⊙

"The number of b's"

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is \bigcirc R. φ ?

 $\mathbf{R} = R\langle S \rangle T$ is a regular selector

- 1. Apply φ to every interval
- 2. Aggregate with ⊙

"The number of b's"

$$\varphi \ := \ s \ | \ (\varphi \oplus \varphi) \ | \ (\varphi \odot \varphi) \ | \ \bigoplus \mathtt{R.} \ \varphi \ | \ \bigodot \mathtt{R.} \ \varphi$$

What is \bigcirc R. φ ?

 $\mathtt{R} = R\langle S \rangle T$ is a regular selector

- 1. Apply φ to every interval
- 2. Aggregate with ⊙

"The number of b's"

$$\Sigma^*\langle b \rangle \Sigma^*$$
 $\sum b. 1$ $(\odot = +)$

MP example

"The longest block of b's"

$$\text{Max } b^+. \sum b. 1$$

MP example

"The longest block of b's"

"The longest block of b's"

a b b b a a b b a b b b a a b a

"The longest block of b's"

$$Max(3, 2, 4, 1) = 4$$

"The longest block of b's"

$$Max(3, 2, 4, 1) = 4$$

For not maximal intervals MP \nsubseteq WA

"The longest block of b's"

$$\mathrm{Max}(3,2,4,1)=4$$
 all intervals
$$\mathrm{Is}\;\mathsf{MP}\not\subset\mathsf{WA}\qquad \Sigma(\Sigma^*).1(w)=\mathcal{O}(|w|^2)$$

For not maximal intervals MP ⊈ WA

Main result

Theorem

 $\mathsf{MP}\;\mathsf{logic}=\mathsf{BAC}\;\mathsf{automata}$

What is decidable about copyless CRA?

- What is decidable about copyless CRA?
- BAC = MP logic

- What is decidable about copyless CRA?
- BAC = MP logic
- How are full CRA related with full WMSO?