Butcher tables to specify Runge-Kutta methods

Butcher tables are used to simplify the presentation of Runge-Kutta (RK) methods. RK are numerical methods for solving first-order ordinary differential equations of the form

$$[1] \frac{dy}{dx} = f(x, y)$$

A Butcher table has the general form

and is a simple memory aid device for specifying the coefficients in a Runge-Kutta method defined by

[3]
$$y_{n+1} = y_n + \sum_{i=1}^{s} b_i k_i$$

where, n is the node's running index (n=0,1,2,...), i is the index used to label stages ($1 \le i \le s$), and s is the number of stages for a given method. A stage s is a function evaluation per step of size s. To obtain a s stage Runge--Kutta method, we let

[4]
$$k_i = hf(x_n + c_i h, y_n + \sum_{j=1}^{s} a_{i,j} k_j)$$

Here, c_i (i=1,2,...,s) is defined as $\sum_{j=1}^s a_{i,j}$. The value of c_i indicates the point where within the interval h $x_n = x_0 + hc_i$ for which y_n is a good approximation to $y(x_n)$

If the method is explicit, the table [2] takes the simplified form

For explicit methods the $a_{i,j}$ values in the diagonal and above are zero (0). Entries at or above the diagonal will cause the right-hand side of equation [1] to involve y_{n+1} , and so yielding an implicit method.

The minimum number of stages s necessary for an explicit method to attain order p is still an open problem. Recall the order of a method (p) is how the order of magnitude of the global error (e.g., $\vartheta(h^p)$) changes when varying h. Calling this $s_{\min}(p)$, the present knowledge [Butcher 1987, Lambert 1991] is [6]:

р	1	2	3	4	5	6	7	8	9	10
$s_{\min}(p)$	1	2	3	4	6	7	9	11	$12 \le s_{min} \le 17$	$13 \le s_{min} \le 17$

(for a reference of the above table see: http://www.iact.ugr-csic.es/personal/julyan_cartwright/papers/rkpaper/node2.html)

Example.

The Butcher table for RK-4, which has 4 stages (i.e., s=4) is:

Comparing both tables. From the table to the left extract the parameters: c_i , $a_{i,j}$, and b_i in the same position of elements of the table to the right. Then, expand the equation [3] for s=4:

[3]
$$y_{n+1} = y_n + \sum_{i=1}^{s} b_i k_i$$

[8]
$$y_{n+1} = y_n + b_1 k_1 + b_2 k_2 + b_3 k_3 + b_4 k_4$$

where $b_1=\frac{1}{6}$; $b_2=\frac{1}{3}$; $b_3=\frac{1}{3}$; $b_4=\frac{1}{6}$, (extracted from the table) then

[9. a]
$$y_{n+1} = y_n + \frac{1}{6}k_1 + \frac{1}{3}k_2 + \frac{1}{3}k_3 + \frac{1}{6}k_4$$

Which easily simplifies to the more common

[9.b]
$$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$$

Develop the expression for each k_i by expanding [4] for i = 1:

[4]
$$k_i = hf(x_n + c_i h, y_n + \sum_{j=1}^{s} a_{i,j} k_j)$$

[10.a] $k_1 = hf(x_n + c_1 h, y_n + a_{1,1} k_1 + a_{1,2} k_2 + a_{1,3} k_3 + a_{1,4} k_4)$

For i=1, $c_1=0$, $a_{1,1}=0$, $a_{1,2}=0$, $a_{1,3}=0$, $a_{1,4}=0$, (values extracted from the table) the equation [10] yields:

[10. b]
$$k_1 = hf(x_n, y_n)$$

Similar expansions yield,

For
$$i=2$$
, $c_2=\frac{1}{2}$, $a_{2,1}=\frac{1}{2}$, $a_{2,2}=0$, $a_{2,3}=0$, $a_{2,4}=0$, yields:
$$[11] \quad k_2=hf(x_n+\left(\frac{1}{2}\right)h,y_n+\left(\frac{1}{2}\right)k_1)$$

For
$$i=3$$
, $c_3=\frac{1}{2}$, $a_{3,1}=0$, $a_{3,2}=\frac{1}{2}$, $a_{3,3}=0$, $a_{3,4}=0$, yields:
$$[12] \ k_3=hf(x_n+\left(\frac{1}{2}\right)h,y_n+\left(\frac{1}{2}\right)k_2)$$

For
$$i=4$$
, $c_4=1$, $a_{4,1}=0$, $a_{4,2}=0$, $a_{4,3}=1$, $a_{4,4}=0$, yields:
$$[13] \ k_4=hf(x_n+h,y_n+k_3)$$

Summarizing, for RK-4 method:

Butcher table:					Usual Presentation:
0 1/2 1/2 1	1/2 0 0	0 0 1/2 0 1/3	0 0 1	0 0 0 0 1/6	$y_{n+1} = y_n + \frac{1}{6}(k_1 + 2k_2 + 2k_3 + k_4)$ $k_1 = hf(x_n, y_n)$ $k_2 = hf(x_n + \left(\frac{1}{2}\right)h, y_n + \left(\frac{1}{2}\right)k_1)$ $k_3 = hf(x_n + \left(\frac{1}{2}\right)h, y_n + \left(\frac{1}{2}\right)k_2)$ $k_4 = hf(x_n + h, y_n + k_3)$

Work out some more examples:

1. Euler's explicit method:

2. Heun's method (also called RK-2)

$$\begin{array}{c|cccc}
0 & 0 & 0 \\
1 & 1 & 0 \\
\hline
& 1/2 & 1/2 \\
\end{array}$$

3. Euler's implicit method (backward Euler's)

The real reason we all go with the flow!

4. 3/8-RK fourth order method (3/8-RK-4). This method doesn't have as much notoriety as the "classical" method, but is just as classical because it was proposed in the same paper (Kutta, 1901)

For a rich list of RK methods and more examples of Butcher tables, see:

https://en.wikipedia.org/wiki/List of Runge%E2%80%93Kutta methods https://en.wikipedia.org/wiki/Runge%E2%80%93Kutta methods