

AVALIAÇÃO DE INFRAESTRUTURAS DE ABASTECIMENTO DE ÁGUA E DRENAGEM DE ÁGUAS RESIDUAIS GERIDAS PELA INFRAQUINTA, E.M.

Estudo realizado para Infraquinta, E.M.

Relatório Final

Instituto Superior Técnico

Dezembro de 2014

AVALIAÇÃO DE INFRAESTRUTURAS DE ABASTECIMENTO DE ÁGUA E DRENAGEM DE ÁGUAS RESIDUAIS GERIDAS PELA INFRAQUINTA, E.M.

Estudo realizado para Infraquinta, E.M.

Equipa Técnica

Professora Dídia Isabel Cameira Covas Engenheira Valentina Marchionni Engenheira Marta Cabral

ÍNDICE DE TEXTO

ĺΝ	IDICE	DE TEXTO	i
ĺN	IDICE	DE FIGURAS	ii
ĺN	IDICE	DE QUADROS	iii
		RIO EXECUTIVO	
		rodução	
•	1.1	A INFRAQUINTA, E.M.	
	1.2	MOTIVAÇÃO DO PRESENTE ESTUDO	
2	l F	VANTAMENTO E CARACTERIZAÇÃO DAS INFRAESTRUTURAS	
_	2.1	INTRODUÇÃO	
	2.2	SISTEMA DE ABASTECIMENTO DE ÁGUA	
	2.3	SISTEMA DE DRENAGEM DE ÁGUAS RESIDUAIS	
3	ES	TIMATIVA DO VALOR DE SUBSTITUIÇÃO DAS INFRAESTRUTUI	RAS
_		ENTES	
	3.1	VALOR DE SUBSTITUIÇÃO	13
	3.2	VALOR DE SUBSTITUIÇÃO DAS INFRAESTRUTURAS DE ABASTECIMENTO DE ÁGUA	14
	3.3	VALOR DE SUBSTITUIÇÃO DAS INFRAESTRUTURAS DE DRENAGEM DE ÁGUAS RESIDUAIS	20
	3.4	SÍNTESE DE TODAS AS INFRAESTRUTURAS EXISTENTES	24
4	ES	TIMATIVA DO VALOR ATUAL DAS INFRAESTRUTURAS EXISTENTES	25
	4.1	VALOR ATUAL DE CADA ATIVO E DA INFRAESTRUTURA	
	4.2	VIDAS ÚTEIS	25
	4.3	ÍNDICE DE VALOR DA INFRAESTRUTURA	27
	4.4	ANÁLISE DE SENSIBILIDADE AO VALOR ATUAL DAS INFRAESTRUTURAS	28
5	SÍN	NTESE E RECOMENDAÇÕES FINAIS	33
6	BIF	BLIOGRAFIA CONSULTADA	34
O	DIE	3LIUGKAFIA CUNSUL I ADA	

ÍNDICE DE FIGURAS

Figura 1 – Metodologia adotada	3
Figura 2 – Planta do Reservatório Principal: duas células (R1 + R2), EE principal (EE1), EE de Pinheiros Altos (EE2) e EE de Quinta Verde (EE3)	4
Figura 3 – Sistema de distribuição de água	5
Figura 4 – Fotografias do reservatório principal: (a) célula de 3630 m³; (b) célula de 2000 m³; (c),(d) vista exterior e interior do edifício do reservatório onde está instalada a EE; (e),(f) vista interior da célula de 3630 m³	7
Figura 5 – Fotografias de EE associada ao reservatório principal	8
Figura 6 – Fotografias de EE2 de Pinheiros Altos	9
Figura 7 – Fotografias de EE3 de Quinta Verde	9
Figura 8 – Fotografia de EE4 das Salinas	9
Figura 9 – Sistema de drenagem de águas residuais	10
Figura 10 – Fotografias de EE de águas residuais: (a) EE associada à CE 4; (b) EE associada à CE 5; (c) EE associada à CE 6; (d) EE de Beira Lago; (e) EE de São Lourenço; (f) EE de Pinheiros Altos	12
Figura 11 – Síntese dos valores atuais para os diferentes valores de substituição (considerando ou não custos de investimento) e para os diferentes Cenários	31

ÍNDICE DE QUADROS

Quadro 1 – Características das estações elevatórias de abastecimento de água	6
Quadro 2 – Características das estações elevatórias de águas residuais	11
Quadro 3 – Valor de substituição da rede de distribuição em FFd	15
Quadro 4 – Valor de substituição da rede de distribuição em PVC	16
Quadro 5 – Valor de substituição da rede de distribuição em fibrocimento por condutas em PVC PN10	17
Quadro 6 – Valor de substituição dos ramais da rede de distribuição de água	18
Quadro 7 – Valor de substituição do reservatório principal	18
Quadro 8 – Valor de substituição das EE de águas de abastecimento	19
Quadro 9 – Valor de substituição da rede de coletores de águas residuais em grés	21
Quadro 10 – Valor de substituição das rede de coletores de águas residuais em PVC	22
Quadro 11 – Valor de substituição das condutas elevatórias de águas residuais	23
Quadro 12 – Valor de substituição das estações elevatórias	24
Quadro 13 – Síntese dos custos de substituição das infraestruturas existentes	24
Quadro 14 – Vidas úteis médias para os componentes de sistemas de abastecimento de água e de drenagem de águas residuais (adaptado de Alegre e Covas, 2010)	26
Quadro 15 – Vidas úteis médias para os componentes de sistemas de abastecimento de água e de drenagem de águas residuais (adaptado de Alegre e Covas, 2010)	29
Quadro 16 – Valores atuais das infraestruturas existentes para o Cenário 3	30
Quadro 17 – Síntese dos valores atuais para os diferentes valores de substituição (considerando ou não custos de investimento) e para os diferentes Cenários	31
Quadro 17 – Síntese dos IVI para os diferentes valores de substituição e para os diferentes Cenários	32

SUMÁRIO EXECUTIVO

No termos do Convite de Ajuste Direto Ref.^a AD SER 022/OUT/2014 efetuado pelo Presidente do Conselho de Administração, o Dr. Victor Faria, da Infraquinta – Empresa de Infraestruturas da Quinta do Lago, E.M., o presente projeto tem como objetivo a "Avaliação de infraestruturas de abastecimento de água e drenagem de águas residuais geridas pela Infraquinta, E.M".

O relatório a que respeita este documento contém as seguintes componentes:

- a descrição geral das infraestruturas;
- a estimativa do valor de substituição das infraestruturas existentes;
- a estimativa do valor atual das infraestruturas existentes;
- conclusões e recomendações.

Este relatório constitui um dos requisitos previstos na legislação nacional para a revisão tarifária na qual sejam considerados encargos a suportar a título de arrendamento das redes de infraestruturas, nos termos do disposto no artigo 19.º do Decreto-lei nº 194/2009, de 20 de Agosto, para a fixação da respetiva renda, segundo o qual é necessário promover uma avaliação por uma entidade independente, nos termos previstos no n.º 2 do referido artigo.

1 INTRODUÇÃO

1.1 A Infraquinta, E.M.

A Infraquinta – Empresa de Infraestruturas da Quinta do Lago, E.M. é uma empresa integrada no Sector Empresarial Local, cujo capital é detido pelo Município de Loulé (51%) e pela empresa Quinta do Lago, S.A. (49%).

O objeto social da Infraquinta, E.M. consiste na exploração de atividades de interesse geral e do desenvolvimento local do perímetro da Quinta do Lago e áreas adjacentes, designadamente a gestão dos sistemas de abastecimento de água para consumo público, de saneamento básico e de resíduos urbanos. Inclui ainda a gestão e manutenção das infraestruturas públicas municipais, designadamente a rede viária e espaços verdes e naturais.

Na área de intervenção da Infraquinta, E.M. está localizado o *resort* turístico Quinta do Lago, cujos padrões de qualidade são uma referência à escala europeia e inserido no Parque Natural da Ria Formosa, constituindo a sua prestação de serviço público a conservação e manutenção de espaços naturais adotando práticas que visem a sustentabilidade ambiental.

A Infraquinta, E.M. é titular de certificação de qualidade e ambiental no âmbito das normas ISO 9001: 2008 e ISO 14 001: 2012, respetivamente.

1.2 Motivação do presente estudo

O atual Contrato de Gestão Delegada celebrado com o Município de Loulé não prevê o pagamento de qualquer encargo ao Município pela afetação de bens municipais à prestação dos serviços pela Infraquinta, E.M., designadamente pela utilização das redes de infraestruturas de abastecimento de água e de drenagem de águas residuais propriedade do Município.

Assim, a Infraquinta, E.M. pretende promover uma revisão tarifária na qual sejam considerados encargos a suportar a título de arrendamento daquelas redes de infraestruturas, nos termos do disposto no Artigo 19.º do Decreto-lei nº 194/2009, de 20 de Agosto, para a fixação da respetiva renda torna-se necessário promover uma avaliação por uma entidade independente, nos termos previstos no nº 2 do referido artigo¹.

Neste contexto, o presente documento tem como objetivo a estimativa do valor atual das infraestruturas urbanas de serviços de água – redes de abastecimento de água e de drenagem de águas residuais – afetas aos serviços da Infraquinta, numa perspetiva de fixação de uma renda

Artigo 19.º do Decreto-lei nº 194/2009, de 20 de Agosto. Afectação de bens municipais à prestação dos serviços por empresa municipal delegatária.

^{1 –} A afectação de bens municipais à prestação dos serviços por empresa municipal delegatária é realizada mediante contrato de compra e venda, doação, arrendamento, comodato ou outra forma de cedência temporária a título gratuito ou oneroso.

^{2 –} Quando a afectação prevista no número anterior seja feita a título oneroso, o seu valor não deve ultrapassar o resultante da aplicação dos critérios valorimétricos previstos no Decreto Regulamentar n.º 2/90, de 12 de Janeiro, cabendo a uma entidade independente a realização da respectiva avaliação. [...]

anual a pagar ao Município de Loulé. Será também efetuada uma análise de sensibilidade ao valor atual face à inclusão ou não de pavimentação nos custos de construção de condutas e coletores e aos períodos de vida útil considerados para os seus ativos.

A metodologia adotada é constituída por quatro etapas principais (Figura 1):

- Etapa 1: Levantamento e caracterização das infraestruturas existentes;
- Etapa 2: Estimativa do valor de substituição das infraestruturas existentes;
- Etapa 3: Estimativa e análise de sensibilidade ao valor atual das infraestruturas existentes;

Com base nos resultados obtidos, serão tecidas considerações quanto ao valor patrimonial das infraestruturas face à incerteza na vida útil dos seus componentes.

Figura 1 - Metodologia adotada

2 LEVANTAMENTO E CARACTERIZAÇÃO DAS INFRAESTRUTURAS

2.1 Introdução

Conforme referido a Infraquinta, E.M. gere os sistemas de abastecimento de água para consumo público, de saneamento básico e de resíduos urbanos. As infraestruturas objeto do presente estudo são o sistema de abastecimento de água e o sistema de drenagem de águas residuais, que se passam a descrever nas secções seguintes.

Para além das características físicas das infraestruturas de águas e águas residuais, é efetuado o levantamento dos anos de instalação dos componentes e das principais intervenções de reabilitação realizadas.

2.2 Sistema de abastecimento de água

O sistema de abastecimento de água gerido pela Infraquinta é constituído pela rede de distribuição (condutas e ramais), por um reservatório principal com duas células e por quatro estações elevatórias (EE). O reservatório principal e três das EE estão no mesmo recinto conforme ilustrado **Figura 2**, em que a estação elevatória associado ao reservatório principal está localizada na casa das bombas. Na **Figura 3** apresenta-se o esquema da rede de distribuição de água.

Figura 2 – Planta do Reservatório Principal: duas células (R1 + R2), EE principal (EE1), EE de Pinheiros Altos (EE2) e EE de Quinta Verde (EE3)

Figura 3 – Sistema de distribuição de água

Conforme informação fornecida pela equipa técnica da Infraquinta, E.M., as infraestruturas urbanas de abastecimento de água são constituídas por:

- um reservatório composto por duas células:
 - o uma célula com uma capacidade de 3630 m³ construída em 1972 (Figura 4a);
 - o outra célula de 2000 m³ construída em 2012 (Figura 4b);
 - o um edifício adjacente (Figura 4c,d);
- quatro estações elevatórias (EE) cujas características se apresentam no Quadro 1:
 - a EE1 associada ao reservatório principal, constituída por 7 grupos electrobomba
 (3+1 reserva; 2+1 reserva), localizada no edifício do reservatório (Figura 5);
 - a EE2 de Pinheiros Altos, localizada em edifício autónomo dentro recinto do reservatório, constituída por quatro grupos eletrobomba (3+1 reserva) (Figura 6);
 - a EE3 de Quinta Verde, localizada em edifício autónomo dentro recinto do reservatório, constituída por quatro grupos eletrobomba (3+1 reserva) (Figura 7);
 - o a EE4 das Salinas fora do recinto do reservatório (Figura 8);
- 68.91 km de condutas de rede distribuição de água, distribuídas pelos seguinte materiais:
 - o 1.57 km de tubagens são em ferro fundido dúctil (1996 e 2001);
 - o 31.14 km corresponde a tubagem em fibrocimento (1972 e 1996);
 - o 36.20 km corresponde tubagem em policloreto de vinilo (1972 e 2012);
- 1844 ramais domiciliários em PVC DN50;
- um conjunto de órgãos e acessórios 285 válvulas de seccionamento, 13 ventosas, 121 válvulas de descargas de fundo, 85 marcos de incêndio, 650 bocas de incêndio e 1949 contadores de água.

Foi efetuada uma visita técnica pela equipa do IST para reconhecer as infraestruturas e avaliar o ser estado de conservação, apresentando-se nas figuras que se seguem as principais infraestruturas.

Quadro 1 - Características das estações elevatórias de abastecimento de água

ID	Estação elevatória	N.º de grupos	Q (I/s)	H (m)	P _e (kW)	Ano de instalação
EE1	Associada ao reservatório principal	(2+1) + (3+1)	100.0	37.6	36.9	2001
EE2	Pinheiros Altos	3+1	37.5	38.7	14.24	2012 (edif.) 2014 (equip.)
EE3	Quinta Verde	2+1	18.33	54.95	9.88	2004
EE4	Salinas	1+1	12.5	59.4	7.28	1994 (edif.) 2009 (equip.)

Figura 4 – Fotografias do reservatório principal: (a) célula de 3630 m³; (b) célula de 2000 m³; (c),(d) vista exterior e interior do edifício do reservatório onde está instalada a EE; (e),(f) vista interior da célula de 3630 m³

Figura 5 – Fotografias de EE associada ao reservatório principal

Figura 6 – Fotografias de EE2 de Pinheiros Altos

(a)

Figura 7 – Fotografias de EE3 de Quinta Verde

Figura 8 – Fotografia de EE4 das Salinas

2.3 Sistema de drenagem de águas residuais

O sistema de drenagem de águas residuais é composto pela rede de águas residuais doméstica constituía por uma rede de coletores gravíticos e condutas elevatórias e por um conjunto de estações elevatórias de águas residuais, como apresentado esquematicamente na **Figura 9**.

Figura 9 – Sistema de drenagem de águas residuais

O sistema de drenagem de águas residuais é composto por:

- **61.7 km rede de coletores** de águas residuais domésticas:
 - o 16 km (26%) em Grés;
 - o 45.7 km (74%) em PVC;
- 4 km de condutas elevatórias (CE):
 - o 0.75 km (20%) em Grés;
 - o 3.17 km (80%) em PVC;
- **1450 ramais domiciliários** com DN160;
- 12 estações elevatórias cujas características são apresentadas no Quadro 2.

Na Figura 10 apresentam-se algumas fotografias das estações elevatórias de águas residuais.

Quadro 2 - Características das estações elevatórias de águas residuais

Designação	Descrição da estação elevatória	N.º de grupos	Q (I/s)	H (m)	P _{escoamento} (kW)	Ano de construção edifício	Ano de instalação do equipamento
C.E. 6	 EE de potência superior a 2 kW 	2+1	85.8	20.5	17.26	1996	2004
C.E. 4	= EE com edifício exterior.	1+1	45.8	22	9.89	1972	1995**
C.E. 5	 Grupos submersíveis 	1+1	14.0	21	2.88	1993	2004
Pinheiros Altos	instalados em poço seco.	1+1	20.0	14.0	2.75	1988	2010
Palmeiras		1	16.0	5.4	0.85	1985	1990*
P.B.1 São Lourenço	 EE de baixa potência 	1	16.0	5.4	0.85	1996	1996
P.B.2 São Lourenço	instalada (inferior a 1 kW)	1+1	9.0	6.9	0.61	1996	1996
P.B.1 Beira Lago	 Poço de bombagem (sem edifício exterior). 	1	16.0	5.4	0.85	1985	1995**
P.B.2 Beira Lago	 Grupos submersíveis instalados dentro do poço de bombagem. 	1	16.0	5.4	0.85	1985	2003
GIGI		1	16.0	5.4	0.85	1993	2004
Valverde	. ,	1+1	6.5	4.4	0.28	1981	2004
Salinas		1	11.5	8.5	0.96	1994	2009

 $^{^{\}star}$ Valor aproximado: mais do que 20 anos; ** Valor aproximado: mais do que 15 anos

Figura 10 – Fotografias de EE de águas residuais: (a) EE associada à CE 4; (b) EE associada à CE 5; (c) EE associada à CE 6; (d) EE de Beira Lago; (e) EE de São Lourenço; (f) EE de Pinheiros Altos

O sistema de drenagem de águas pluviais não será analisado no presente estudo uma vez que não será tido em conta na fixação de uma renda anual a pagar ao Município de Loulé.

3 ESTIMATIVA DO VALOR DE SUBSTITUIÇÃO DAS INFRAESTRUTURAS EXISTENTES

3.1 Valor de substituição

A avaliação das infraestruturas existentes terá por base o custo de substituição. O custo de substituição (*current replacement cost*) é o custo de substituir o bem por outro com as mesmas características. Embora o custo de substituição possa ser calculado de diferentes formas, USEPA (2005) refere que a forma mais adequada é através da metodologia *Modern Equivalent Engineering Replacement Asset*, que se baseia na análise pormenorizada de custos *in situ* (Alegre e Covas, 2010).

Nas situações de rápida evolução tecnológica, em que o ativo a valorizar pode já não se encontrar no mercado (como é o caso das condutas em fibrocimento), a USEPA (2005) recomenda a utilização da metodologia *Modern Equivalent Asset*, de acordo com a qual, os ativos são valorizados com base no preço que a empresa teria que pagar para os trocar por um ativo equivalente que utilize uma tecnologia de mercado mais moderna. Se o ativo equivalente engloba uma funcionalidade não existente no ativo da entidade gestora, o valor desta funcionalidade deverá ser deduzido. Por outro lado, o ativo equivalente poderá ter uma esperança de vida útil diferente, bem como custos de manutenção, de reparação e de operação também diferentes, o que implica ajustamentos no cálculo das depreciações anuais que lhes correspondem. Estes ajustamentos revestem-se de alguma subjetividade, o que confere a este método alguma complexidade e torna necessário justificar e documentar todo processo de valorização de ativos.

De um ponto de vista prático, podem ser adotadas duas abordagens para a estimativa do valor de substituição. A primeira (**Abordagem 1**) é a adoção de **valores de substituição de referência** estabelecidos em termos de custos unitários. Por exemplo, para condutas, valores unitários definidos em função do material, diâmetro, profundidade e tipo de pavimentação a repor.

Outra forma de obter custos de substituição (Abordagem 2) é pela conversão a preços constantes do valor de aquisição dos diversos componentes, se existir histórico credível desta informação. Em geral, esta via é mais difícil de operacionalizar dado nem sempre existir um valor de aquisição registado no património. Mesmo quando existe registo do valor de aquisição nem sempre corresponde aos ativos efetivamente em funcionamento, por não incorporar adequadamente as parcelas que concorreram para os colocarem na localização e na condição necessária ao funcionamento pretendido, ou por não se poder assegurar que os abates foram efetuados adequadamente quando ocorreram intervenções de substituição.

No presente estudo, recorre-se à **Abordagem 1**, em que os custos de substituição das infraestruturas existentes serão determinados tendo por base os custos unitários determinados em estudos anteriores e em curso no Instituto Superior Técnico, para os diferentes componentes das infraestruturas em função de variáveis características de natureza hidráulica (e.g., caudal, carga, potência) e/ou infraestrutural (e.g., volume, diâmetro/material/profundidade, área). Sempre que possível serão divididos em custos de construção civil e equipamento (IST, 2014; Lopes, 2014; Lopes *et al.*, 2014; Lopes *et al.*, 2013). Os custos unitários de construção dos componentes foram determinados com base em contratos de construção de infraestruturas urbanas de água realizados entre 2005 e 2014, provenientes do grupo AdP ou externos ao grupo cofinanciados pela Autoridade de Gestão do Programa Operacional Temático de Valorização do Território (POVT). Os custos de construção foram

atualizados ao ano de 2014 e não incluem IVA, nem custos de planeamento e projecto, nem custos de fiscalização.

Sempre que existam registos históricos de empreitadas de construção, as mesmas são utilizadas para a estimativa do valor de substituição (e.g., será o caso dos ramais domiciliários) (**Abordagem 2**), ou para validação dos custos estimados (e.g., caso dos reservatórios ou estações elevatórias)

3.2 Valor de substituição das infraestruturas de abastecimento de água

As infraestruturas de abastecimento de água são constituídas pelos seguintes componentes: redes de distribuição e ramais; um reservatório principal com duas células; e quatro estações elevatórias.

Condutas e ramais

As **redes de distribuição** são constituídas por três materiais distintos – ferro fundido dúctil (FFd), policloreto de vinilo (PVC) e fibrocimento (FC).

- O FFd instalado tem um único diâmetro (DN 300), é relativamente recente (i.e., instalado em 2010 e 2014) e tem uma extensão de 1.57 km. Está instalado nas condutas elevatórias à entrada da rede de distribuição.
- O PVC PN10 é o material mais utilizado desde 1980 até à atualidade, tem diâmetros variáveis entre 63 e 400 mm e uma extensão total de 36.2 km.
- O fibrocimento é o material mais antigo, foi instalado entre 1972 e 1988, com diâmetros entre 60 e 350 mm e com uma extensão total de 31.14 km, não sendo atualmente um material utilizado neste tipo de componentes. O seu valor de substituição será calculado para o PVC PN10 que é um dos materiais mais utilizados para redes de distribuição e que a entidade gestora tem em grande parte da sua rede. O polietileno de alta densidade (PEAD) é uma das alternativas de substituição do FC, no entanto é mais caro do que o PVC e não é atualmente utilizado nas infraestruturas da Infraquinta, E.M..

Na estimativa do valor de substituição das condutas consideram-se os seguintes pressupostos:

- As condutas de FFd e PVC s\u00e3o substitu\u00eddas por outras do mesmo material, classe e di\u00e1metro; e as condutas de FC s\u00e3o substitu\u00eddas por condutas de PVC PN10 de di\u00e1metro interno equivalente.
- Os custos unitários são função do material e do diâmetro nominal das condutas.
- Os custos unitários de substituição correspondem aos custos de construção em novo.

Do **Quadro 3** ao **Quadro 5** apresentam-se as características das condutas – material, ano de instalação, diâmetro nominal (DN) e comprimento (L) – assim como os custos unitários de condutas de redes de distribuição e os custos totais de cada elemento.

De salientar que a rede inclui ainda um conjunto de acessórios (e.g. 285 válvulas de seccionamento, 13 ventosas, 121 válvulas de descargas de fundo, 85 marcos de incêndio, 650 bocas de incêndio e 1949 contadores de água) cujo custo já se encontra já contabilizado no custo unitário das tubagens e dos ramais.

Os custos unitários de substituição são calculados para três situações distintas:

- Caso A: sem incluir pavimentação;
- Caso B: incluindo pavimentação de betume asfáltico em estada municipal ou calçada de cubos a 13 €/m² (valor de referência de acordo com estudo efetuado por IST, 2014);
- Caso C: incluindo pavimentação de betume asfáltico em estada municipal ou calçada de cubos a 18 €/m² (histórico recente de aquisições efetuadas pela Infraquinta em 2014).

No cálculo do custo de pavimentação assumiu-se uma largura de pavimentação igual á largura de vala acrescido o valor de 0.4 m, sendo a largura de vala a soma do diâmetro exterior da tubagem com 0.5 m para diâmetros nominais até 0.5 m (de acordo com o DR 23/95 de 23 de agosto).

O custo da pavimentação nas condutas de FFD tem pouca expressão, representando 7 a 11% do custo de instalação sem pavimentação (cf. Quadro 3)

No caso das condutas de FC e PVC, o mesmo já não acontece, representando a pavimentação um acréscimo de custo entre 27 e 43% (cf. Quadro 4 e Quadro 5).

No **Quadro 3** apresenta-se o valor do custo do FFd obtido numa empreitada real sem custos de pavimentação, observando-se que o mesmo é praticamente igual ao estimado; de salientar que ambos não incluem pavimentação.

Quadro 3 - Valor de substituição da rede de distribuição em FFd

DN (mm)	Ano de insta- lação	L (m)	Custo unitário sem pavimen- tação (€/m)	Custo unitário da pavimen- tação a 13 €/m² (€/m)	Custo unitário da pavimen- tação a 18 €/m² (€/m)	Custo total estimado sem pavimen- tação (€)	Custo total estimado com pavimen- tação a 13 €/m² (€)	Custo total estimado com pavimen- tação a 18 €/m² (€)
			Caso A	Caso B	Caso C	Caso A	Caso B	Caso C
300	2014	123	200.92	15.60	21.60	24 713	26 632	27 370
300	2014	752	200.92	15.60	21.60	151 090 (*)	162 822	167 334
300	2010	700	200.92	15.60	21.60	140 643	151 563	155 763
Total		1 575				316 444	341 016	350 466
Custo incluindo pavimentação / Custo sem pavimentação 1 1.07 1.1							1.11	

^(*) O custo real do contrato de instalação da tubagem e da obra perfuração horizontal sem pavimentação foi de 148 652€

Quadro 4 – Valor de substituição da rede de distribuição em PVC

DN (mm)	Ano de instalação	L (m)	Custo unitário sem pavimen- tação (€/m)	Custo unitário da pavimen- tação a 13 €/m² (€/m)	Custo unitário da pavimen- tação a 18 €/m² (€/m)	Custo total estimado sem pavimen- tação (€)	Custo total estimado com pavimentação a 13 €/m²	Custo total estimado com pavimen- tação a 18 €/m²
			Caso A	Caso B	Caso C	Caso A	Caso B	Caso C
63	1980	1585	25.27	12.52	17.33	40 054	59 896	67 528
90	1983	1122	31.28	12.87	17.82	35 094	49 534	55 088
90	1988	1025	31.28	12.87	17.82	32 060	45 252	50 325
90	1989	2605	31.28	12.87	17.82	81 479	115 006	127 900
90	1996	273	31.28	12.87	17.82	8 539	12 052	13 404
90	2000	296	31.28	12.87	17.82	9 258	13 068	14 533
110	1990	1197	33.50	13.00	18.18	40 103	55 664	64 528
110	1983	2736	35.73	13.13	18.18	97 752	133 675	147 492
110	1985	525	35.73	13.13	18.18	18 757	25 650	28 302
110	1986	3838	35.73	13.13	18.18	137 124	187 517	206 899
110	1994	397	35.73	13.13	18.18	14 184	19 397	21 401
110	1996	617	35.73	13.13	18.18	22 044	30 145	33 261
110	2000	490	35.73	13.13	18.18	17 507	23 940	26 415
110	2002	730	35.73	13.13	18.18	26 081	35 666	39 353
125	1986	713	39.07	13.33	18.45	27 854	37 354	41 009
125	1988	260	39.07	13.33	18.45	10 157	13 622	14 954
125	1990	704	39.07	13.33	18.45	27 502	36 883	40 491
125	1996	1721	39.07	13.33	18.45	67 232	90 164	98 984
125	2004	675	39.07	13.33	18.45	26 369	35 364	38 823
125	2005	285	39.07	13.33	18.45	11 134	14 931	16 392
125	2009	1090	39.07	13.33	18.45	42 581	57 106	62 692
150	1990	911	44.63	13.65	18.90	40 656	53 091	57 874
150	2011	442	44.63	13.65	18.90	19 726	25 759	28 079
160	1983	247	46.85	13.78	19.08	11 573	14 976	16 285
160	1984	494	46.85	13.78	19.08	23 145	29 953	32 571
160	1985	1072	46.85	13.78	19.08	50 226	64 999	70 680
160	1988	107	46.85	13.78	19.08	5 013	6 488	7 055
160	1989	1410	46.85	13.78	19.08	66 063	85 493	92 966
160	1996	1045	46.85	13.78	19.08	48 961	63 361	68 900
160	2000	1096	46.85	13.78	19.08	51 351	66 454	72 263
160	2004	430	46.85	13.78	19.08	20 147	26 072	28 351
160	2014	1196	46.85	13.78	19.08	56 036	72 517	78 856
250	1990	433	66.88	14.95	20.70	28 958	35 432	37 921
250	1996	524	66.88	14.95	20.70	35 044	42 878	45 891
250	2009	686	66.88	14.95	20.70	45 878	56 134	60 079
315	1985	130	81.34	15.80	21.87	10 574	12 628	13 417
315	2005	859	81.34	15.80	21.87	69 871	83 439	88 658
315	2011	1080	81.34	15.80	21.87	87 848	104 906	111 467
400	2012	1158	100.25	16.90	23.40	116 093	135 663	143 190
Total		36 204				1 580 030	2 072 130	2 264 278
Custo ii	ncluindo pavi	mentação	/ Custo sem p	avimentação		1	1.31	1.43

Quadro 5 – Valor de substituição da rede de distribuição em fibrocimento por condutas em PVC PN10

FC DN (mm) (instalado)	PVC DN (mm) (subs- tituição)	Ano de instalação	L (m)	Custo unitário sem pavimen- tação (€/m)	Custo unitário da pavimen- tação a 13 €/m² (€/m) Caso B	Custo unitário da pavimen- tação a 18 €/m² (€/m) Caso C	Custo total estimado sem pavimen- tação (€) Caso A	Custo total estimado com pavimen- tação a 13 €/m² (€)	Custo total estimado com pavimen- tação a 18 €/m² (€)
60	75	1983	491	27.94	12.68	17.55	13 719	19 942	22 336
60	75	1985	319	27.94	12.68	17.55	8 913	12 956	14 511
60	75	1986	207	27.94	12.68	17.55	5 784	8 407	9 417
60	75	1988	90	27.94	12.68	17.55	2 515	3 655	4 094
80	90	1972	1263	31.28	12.87	17.82	39 504	55 759	62 011
80	90	1983	172	31.28	12.87	17.82	5 380	7 593	8 445
80	90	1985	115	31.28	12.87	17.82	3 597	5 077	5 646
80	90	1988	1099	31.28	12.87	17.82	34 375	48 519	53 959
100	110	1972	3179	35.73	13.13	18.18	113 579	155 320	171 374
100	110	1974	1122	35.73	13.13	18.18	40 087	54 819	60 485
100	110	1980	749	35.73	13.13	18.18	26 760	36 595	40 377
100	110	1983	201	35.73	13.13	18.18	7 181	9 820	10 836
100	110	1987	5217	35.73	13.13	18.18	186 393	254 892	281 238
100	110	1988	1665	35.73	13.13	18.18	59 487	81 349	89 757
100	110	1993	421	35.73	13.13	18.18	15 041	20 569	22 695
100	110	1996	41	35.73	13.13	18.18	1 465	2 003	2 210
100	110	2002	172	35.73	13.13	18.18	6 145	8 404	9 272
125	140	1972	2031	42.40	13.52	18.72	86 120	113 580	124 141
125	140	1983	496	42.40	13.52	18.72	21 032	27 738	30 317
150	160	1972	340	46.85	13.78	19.08	15 930	20 615	22 417
150	160	1985	365	46.85	13.78	19.08	17 101	22 131	24 066
150	160	1987	375	46.85	13.78	19.08	17 570	22 737	24 725
200	250	1972	1714	66.88	14.95	20.70	114 629	140 253	150 109
200	250	1983	1363	66.88	14.95	20.70	91 155	111 532	119 369
200	250	1987	491	66.88	14.95	20.70	32 837	40 178	43 001
200	250	1988	1901	66.88	14.95	20.70	127 135	155 555	166 486
250	315	1972	1072	81.34	15.80	21.87	87 197	104 129	110 642
300	315	1972	712	81.34	15.80	21.87	57 914	69 160	73 486
300	315	1985	248	81.34	15.80	21.87	20 172	24 090	25 596
300	315	1987	366	81.34	15.80	21.87	29 771	35 552	37 775
350	400	1972	1057	100.25	16.90	23.40	105 967	123 831	130 701
350	400	1985	2092	100.25	16.90	23.40	209 729	245 084	258 682
Total			31 146				1 604 186	2 041 844	2 210 174
Custo inclu	indo pavir	nentação / Cu	sto sem p	avimentação			1	1.27	1.38

No **Quadro 6** apresentam-se as características e os custos unitários estimados e reais dos ramais. Observa-se que os custo unitário real é ligeiramente mais elevado do que o estimado. Sendo o custo unitário real proveniente do histórico da empresa, será o mesmo considerado para a estimativa do custo de substituição (i.e., custo total de construção) dos ramais.

Quadro 6 - Valor de substituição dos ramais da rede de distribuição de água

Material	DN (mm)	Quantidade	Custo unitário estimado (€/unid)	Custo unitário real (€/unid)	Custo total (€) (*)
PVC	50	1884	324	400	737 600

^(*) O custo total considerado corresponde ao custo unitário real

Reservatório

O **reservatório** é constituído por duas células, uma de 3630 m³ construída em 1972 e outra célula de 2000 m³ construída em 2012. O custo de cada célula será calculado em separado, sendo consideradas duas rubricas de custo: a construção civil e o equipamento eletromecânico e instalações elétricas.

Consideram-se os seguintes pressupostos:

- Os custos de substituição do reservatório são expressos em função do volume de cada célula e do número de células.
- Os custos de substituição do reservatório correspondem aos dos reservatórios constituídos por uma única célula, dado que cada célula foi construída em diferentes instâncias.
- Os custos da componente de construção civil incluem arranjos exteriores no recinto do reservatório (e.g., pavimentos e passeios, espécies arbustivas, vedação ou muros, redes exteriores).
- Os custos de substituição do reservatório correspondem aos custos de construção em novo.

No **Quadro 7** apresentam-se as características de cada célula (volume e ano de construção), os custos unitários considerados e os custos totais de cada elemento.

No mesmo quadro apresenta-se o valor de construção da segunda célula (280 091€), valor este muito semelhante ao estimado no presente estudo (282 317€), embora o primeiro não inclua arranjos exteriores. De qualquer forma os arranjos exteriores representam, em média, 10 a 15% da componente de construção civil do reservatório.

Quadro 7 – Valor de substituição do reservatório principal

Componente	Volume de cada célula (m³)	célula construção civil eletromecânico		Custo total estimado (€)	Custo total real atualizado (€)
Reservatório Principal (Fase 1)	3 630	284 879	65 997	350 875	-
Reservatório Principal (Fase 2)	2 000	220 730	61 588	282 317**	280 091*
Total		505 609	127 585	633 193	

^{*}Não inclui arranjos exteriores; ** Inclui arranjos exteriores

Estações elevatórias

No sistema de abastecimento de água, existem **quatro estações elevatórias**. O custo de construção de cada uma é dividido em custo de construção civil e custo de equipamento eletromecânico e instalações elétricas. Cada uma destas componentes é calculado em função da potência hidráulica de escoamento P_a descrita por:

$$P_{a} = gQH$$

sendo γ , o peso volúmico da água (N/m³), Q, caudal nominal máximo elevado correspondente à soma de caudais nominais dos grupos eletrobomba instalados em paralelo (excluindo o grupo de reserva), e H, altura de elevação de cada grupo em paralelo.

Assumiram-se os seguintes pressupostos:

- Em cada estação elevatória, existe sempre um grupo de reserva e os grupos estão instalados em paralelo. A exceção é a EE1 que tem dois grupos de reserva.
- Os custos de construção civil e de equipamento da EE que está associada ao reservatório principal (EE1), apesar de existirem dois conjuntos de grupos instalados em paralelo, são calculados como se de uma única EE se tratasse com uma potência de escoamento igual à soma das potências parciais de cada uma das EE.
- Os custos de construção civil das EEs existentes no recinto do reservatório não incluem arranjos exteriores.
- O custo de construção civil da EE4 inclui arranjos exteriores.

No **Quadro 8** apresentam-se os custos de substituição parciais (construção civil e equipamento eletromecânico e instalações elétricas) e totais de cada uma das estações elevatórias. Para a EE2, os custos de substituição estimados são comparados com os custos reais. Verifica-se que o custo estimado para a componente de construção civil é praticamente o mesmo do custo real, no entanto o custo estimado para o equipamento é 70% superior ao valor real. Esta diferença não tem influencia no valor global da infraestrutura de abastecimento de água.

Quadro 8 - Valor de substituição das EE de águas de abastecimento

ID	Estação elevatória	N.º de grupos	Q (l/s)	H (m)	P _e (kW)	Custo de construção civil (€) (*)	Custo do equipamento e instalações elétricas (€)	Custo total estimado (€)
EE1	Associadas ao reservatório principal	(2+1) + (3+1)	100.0	37.6	36.9	52 607	155 505	208 112
EE2	Pinheiros Altos	3+1	37.5	38.7	14.24	32 020* (32 789**)	81 135* (46 606**)	113 155* (79 396**)
EE3	Quinta Verde	2+1	18.33	54.95	9.88	26 465	63 208	89 673
EE4	Salinas	1+1	12.5	59.4	7.28	33 647	103 250	136 898
Total								547 839

^{*} Não inclui arranjos exteriores; ** Custo real de construção

3.3 Valor de substituição das infraestruturas de drenagem de águas residuais

As infraestruturas de drenagem de águas residuais são constituídas pelo seguinte componentes: redes de coletores e ramais; condutas elevatória; e estações elevatórias.

Coletores gravíticos (e ramais)

As **redes de coletores** são constituídas por dois materiais distintos – grés e policloreto de vinilo (PVC) – com diâmetros variáveis entre 200 e 300 mm e entre 160 e 500 mm, respetivamente.

- O grés foi instalado entre 1972 e 1996, não sendo atualmente um material comummente utilizado neste tipo de componentes. Assim, o seu valor de substituição será calculado para o PVC que é um dos materiais mais utilizados para coletores e que a entidade gestora tem em grande parte da sua rede. O PPc é uma das alternativas de substituição do grés, no entanto é mais caro do que o PVC e não foi ainda utilizado nas infraestruturas da Infraquinta, E.M..
- O PVC é o material mais utilizado desde 1972 até à atualidade.

No **Quadro 9** e no **Quadro 10**, apresentam-se as características dos coletores gravíticos, os respetivos custos unitários e os custos totais estimados. Os custos unitários são função do material e do diâmetro nominal.

Tal como as condutas de distribuição de água, os custos unitários de substituição são calculados para três situações distintas:

- Caso A: sem incluir pavimentação;
- Caso B: incluindo pavimentação de betume asfáltico em estada municipal ou calçada de cubos a 13 €/m² (valor de referência de acordo com estudo efetuado por IST, 2014);
- Caso C: incluindo pavimentação de betume asfáltico em estada municipal ou calçada de cubos a 18 €/m² (histórico recente de aquisições efetuadas pela Infraquinta, E.M. em 2014).

O sistema tem ainda 1450 os ramais domiciliários de DN160 e DN200, cujo custo unitário é respetivamente 260€/unid. e 345€/unid. Considerando um custo unitário médio 304€/unid, o custo total de substituição dos ramais é 437 900€.

Quadro 9 - Valor de substituição da rede de coletores de águas residuais em grés

DN (mm)	Ano de instalação	L (m)	Custo unitário sem pavimen- tação (€/m)	Custo unitário da pavimen- tação a 13 €/m² (€/m)	Custo unitário da pavimen- tação a 18 €/m² (€/m)	Custo total estimado sem pavimen- tação (€)	Custo total estimado com pavimen- tação a 13 €/m²	Custo total estimado com pavimen- tação a 18 €/m²
			Caso A	Caso B	Caso C	Caso A	Caso B	Caso C
200	1972	6047	35.84	14.30	19.80	216 731	303 203	336 461
200	1974	1165	35.84	14.30	19.80	41 755	58 414	64 822
200	1980	1725	35.84	14.30	19.80	61 826	86 493	95 981
200	1983	1486.5	35.84	14.30	19.80	53 278	74 535	82 710
200	1984	318	35.84	14.30	19.80	11 397	15 945	17 694
200	1985	92	35.84	14.30	19.80	3 297	4 613	5 119
200	1986	1009	35.84	14.30	19.80	36 164	50 592	56 142
200	1988	661	35.84	14.30	19.80	23 691	33 143	36 779
200	1996	124	35.84	14.30	19.80	4 444	6 217	6 899
250	1972	431	41.47	14.95	20.70	17 874	24 317	26 796
250	1983	383	41.47	14.95	20.70	15 883	21 609	23 811
250	1985	38	41.47	14.95	20.70	1 576	2 144	2 362
300	1972	944	48.79	15.60	21.60	46 058	60 784	66 448
300	1983	1263	48.79	15.60	21.60	61 622	81 325	88 903
300	1996	279	48.79	15.60	21.60	13 612	17 965	19 639
Total		15 966				609 207	841 300	930 566
Custo inc	luindo pavime	ntação / Cus		1	1.38	1.53		

Quadro 10 - Valor de substituição das rede de coletores de águas residuais em PVC

DN (mm)	Ano de instalação	L (m)	Custo unitário sem pavimen- tação (€/m)	Custo unitário da pavimen- tação a 13 €/m² (€/m)	Custo unitário da pavimen- tação a 18 €/m² (€/m)	Custo total estimado sem pavimen- tação (€)	Custo total estimado com pavimen- tação a 13 €/m²	Custo total estimado com pavimen- tação a 18 €/m²
			Caso A	Caso B	Caso C	Caso A	Caso B	Caso C
160	1985	367	30.00	13.78	19.08	11 010	16 067	18 012
160	1988	104	30.00	13.78	19.08	3 120	4 553	5 104
200	1972	814	35.84	14.30	19.80	29 175	40 815	45 292
200	1974	43	35.84	14.30	19.80	1 541	2 156	2 393
200	1983	4866	35.84	14.30	19.80	174 402	243 986	270 749
200	1984	1146	35.84	14.30	19.80	41 074	57 462	63 765
200	1985	1169	35.84	14.30	19.80	41 898	58 615	65 044
200	1986	2670	35.84	14.30	19.80	95 695	133 876	148 561
200	1987	6446	35.84	14.30	19.80	231 031	323 209	358 662
200	1988	7665	35.84	14.30	19.80	274 721	384 331	426 488
200	1989	1824	35.84	14.30	19.80	65 374	91 457	101 489
200	1990	1448	35.84	14.30	19.80	51 898	72 604	80 568
200	1993	368	35.84	14.30	19.80	13 189	18 452	20 476
200	1994	581	35.84	14.30	19.80	20 824	29 132	32 327
200	1996	5176	35.84	14.30	19.80	185 513	259 530	287 998
200	2000	2884	35.84	14.30	19.80	103 365	144 607	160 469
200	2002	907	35.84	14.30	19.80	32 508	45 478	50 466
200	2004	800	35.84	14.30	19.80	28 673	40 113	44 513
200	2005	275	35.84	14.30	19.80	9 856	13 789	15 301
200	2006	370	35.84	14.30	19.80	13 261	18 552	20 587
200	2009	1000	35.84	14.30	19.80	35 841	50 141	55 641
250	1985	926	41.47	14.95	20.70	38 402	52 246	57 570
250	1987	811	41.47	14.95	20.70	33 633	45 757	50 421
250	1990	171	41.47	14.95	20.70	7 092	9 648	10 631
315	2011	1300	48.79	15.80	21.87	63 427	83 961	91 858
500	2005	1654	124.43	18.20	25.20	205 802	235 905	247 483
Total		45 785				1 812 326	2 476 441	2 731 869
Custo inc	luindo pavimer	ntação / Cu	sto sem pavim	nentação		1	1.30	1.42

Condutas elevatórias

As **condutas elevatórias** são constituídas por PVC, variando os seus diâmetros nominais entre 110 e 250 mm. Apresenta-se os respetivos custos de substituição no **Quadro 11**.

Quadro 11 - Valor de substituição das condutas elevatórias de águas residuais

DN (mm)	Ano de instalação	L (m)	Custo unitário sem pavimen- tação (€/m)	Custo unitário da pavimen- tação a 13 €/m² (€/m)	Custo unitário da pavimen- tação a 18 €/m² (€/m)	Custo total estimado sem pavimen- tação (€)	Custo total estimado com pavimen- tação a 13 €/m²	Custo total estimado com pavimen- tação a 18 €/m²
			Caso A	Caso B	Caso C	Caso A	Caso B	Caso C
110	1996	114	22.28	13.13	18.18	2 540	4 037	4 612
110	1996	183	22.28	13.13	18.18	4 077	6 480	7 404
200	1996	1062	35.84	1.10	1.10	38 064	39 232	39 232
160	1993	319	29.81	13.78	19.08	9 510	13 906	15 597
160	1985	61	29.81	13.78	19.08	1 819	2 659	2 982
250	1972	751	40.00	14.95	20.70	30 040	41 267	45 586
110	1985	120	22.28	13.13	18.18	2 673	4 249	4 855
110	1985	48	22.28	13.13	18.18	1 069	1 700	1 942
160	1988	683	29.81	13.78	19.08	20 363	29 774	33 394
110	1993	470	22.28	13.13	18.18	10 471	16 642	19 015
110	1981	20	22.28	13.13	18.18	446	708	809
110	1994	90	22.28	13.13	18.18	2 005	3 187	3 641
Total						123 076	163 841	179 070
Custo in	cluindo pavim	entação / Cu	sto sem pavin	nentação		1	1.33	1.45

Estações elevatórias

No sistema de águas residuais, existem **12 estações elevatórias** de características muito variadas. O custo de construção de cada uma é dividido em custo de construção civil e custo de equipamento eletromecânico e instalações elétricas. Cada uma destas componentes é calculado em função da potência hidráulica de escoamento.

Assumiram-se os seguintes pressupostos:

- Em cada estação elevatória, existe sempre um grupo de reserva e os grupos estão instalados sempre em paralelo.
- Os custos de construção civil incluem sempre arranjos exteriores.

No Quadro 12 apresentam-se os custos da EE de águas residuais separados por componente.

Quadro 12 - Valor de substituição das estações elevatórias

EE	N. de grupos	Q (I/s)	H (m)	P _e (kW)	Custo de construção civil (€)	Custo do equipamento e instalações elétricas (€)	Custo total estimado (€)
C.E.6	2+1	85.8	20.5	17.26	173 054	244 155	417 209
C.E.4	1+1	45.8	22	9.89	61 607	123 720	185 327
C.E.5	1+1	14.0	21	2.88	19 349	29 918	49 268
Pinheiros Altos	1+1	20.0	14.0	2.75	19 319	29 878	49 197
Palmeiras	1	16.0	5.4	0.85	18 599	28 913	47 512
P.B.1 São Lourenço	1	16.0	5.4	0.85	18 599	28 913	47 512
P.B.2 São Lourenço	1+1	9.0	6.9	0.61	18 401	28 648	47 049
P.B.1 Beira Lago	1	16.0	5.4	0.85	18 599	28 913	47 512
P.B.2 Beira Lago	1	16.0	5.4	0.85	18 599	28 913	47 512
GIGI	1	16.0	5.4	0.85	18 599	28 913	47 512
Valverde	1+1	6.5	4.4	0.28	17 946	28 035	45 981
Salinas	1	11.5	8.5	0.96	18 673	29 013	47 686
Total							1 079 277

3.4 Síntese de todas as infraestruturas existentes

Apresenta-se no **Quadro 13** a síntese dos custos de substituição dos componentes das infraestruturas de águas e de águas residuais estimados com base em estudos anteriores e considerando um acréscimo de 5% do valor total para custos de projeto.

Quadro 13 - Síntese dos custos de substituição das infraestruturas existentes

Componente	Quantidade	Custo de substituição estimado sem pavimentação	Custo de substituição estimado com pavimentação a 13 €/m²	Custo de substituição estimado com pavimentação a 18 €/m²
		Caso A	Caso B	Caso C
Sistema de abastecimento				
Rede de distribuição de água				
Condutas em FFd	1575 m	316 446 €	341 016 €	350 466 €
Condutas em PVC PN10	36 204 m	1 582 693 €	2 074 949 €	2 264 278 €
Condutas em fibrocimento (PVC PN10)	31 146 m	1 604 186 €	2 041 844€	2 210 174 €
Ramais de distribuição de água	1 884 unid	737 600 €	737 600 €	737 600 €
Reservatório principal	2 células	633 193 €	633 193 €	633 193 €
Estações elevatórias	4 EE	547 839 €	547 839 €	547 839 €
Parcial		5 421 957 €	6 376 441 €	6 743 550 €
Sistema de drenagem de águas				
Rede de coletores				
Coletores em PVC	45 785 m	1 812 326 €	2 476 441 €	2 731 869 €
Coletores em grés	15 966 m	609 207 €	841 300 €	930 566 €
Ramais domiciliários	1 450 unid	437 900 €	437 900 €	437 900 €
Condutas elevatórias	3 921 m	123 076 €	163 841 €	179 070 €
Estações elevatórias	12 EE	1 079 277 €	1 079 277 €	1 079 277 €
Parcial		4 061 786 €	4 998 758 €	5 358 682 €
Total (só construção)		9 483 744 €	11 375 199 €	12 102 232 €
Total (incluindo projeto, +5%)		9 957 931 €	11 943 959 €	12 707 344 €

4 ESTIMATIVA DO VALOR ATUAL DAS INFRAESTRUTURAS EXISTENTES

4.1 Valor atual de cada ativo e da infraestrutura

O valor atual real de um ativo deverá ter em conta a sua depreciação, sendo o valor de cada ativo o correspondente ao valor de substituição deduzido da amortização acumulada. Esta diferença equivale ao valor residual.

A estimativa do valor atual (ou valor residual) de uma infraestrutura deverá terá por base o valor de substituição, a vida útil técnica e ano de instalação de cada componente. Recomenda-se que, de um ponto de vista prático, o **valor atual de cada ativo** seja calculado do seguinte modo (Alegre e Covas, 2010):

- (i) atribuir uma vida útil técnica média a cada tipo de ativo;
- (ii) calcular o valor da amortização anual dado pela razão entre o custo de substituição e a vida útil técnica média;
- (iii) calcular a vida útil residual em função da idade;
- (iv) corrigir a vida útil residual (majorada ou minorada) em função do estado de conservação ou de intervenções de reabilitação efetuadas (caso se justifique e haja informação credível);
- (v) calcular o valor atual do ativo pelo produto do valor da amortização anual pela vida útil residual corrigida.

O valor atual da infraestrutura é dado pela soma do valor residual de todos os componentes.

4.2 Vidas úteis

As vidas úteis dos componentes de uma infraestrutura são difíceis de avaliar, havendo diversos conceitos associados, que importa clarificar, nomeadamente o de vida total, de vida útil técnica, de vida útil contabilística e de vida útil económica.

- A vida total é o período que medeia desde a instalação e entrada em funcionamento até à desactivação final.
- A vida útil técnica corresponde ao período após a instalação durante o qual o componente cumpre a função a que se destina.
- A vida útil contabilística é definida pelo período de amortização fiscal, em geral fixo para cada classe de componente. O Decreto Regulamentar n.º 2/90, de 12 de janeiro, atualizado pelo Decreto Regulamentar n.º 25/2009, de 14 de setembro, estabelece taxas específicas de amortização para diferentes tipos de ativos, entre os quais os principais componentes dos sistemas de abastecimento de água.

As vidas úteis dependem do tipo e da natureza do componente. Apresentam-se no **Quadro 14** valores indicativos médios de vidas úteis contabilísticas e técnicas para diferentes componentes. Note-se que as vidas úteis técnicas geralmente aceites nos EUA, na Europa Central e do Norte e na Austrália

tendem a ser superiores às consideradas em Portugal, uma vez que nestes países existem boas práticas de operação e manutenção das suas infraestruturas. O quadro reproduz, a título exemplificativo, os valores recomendados pela *United States Environmental Protection Agency* (USEPA, 2005) e pela *New South Wales Government* (NSW, 2014).

Quadro 14 – Vidas úteis médias para os componentes de sistemas de abastecimento de água e de drenagem de águas residuais (adaptado de Alegre e Covas, 2010)

Tipo de componente	Vida útil contabilística (DR 25/2009, Art. 3.º)	Vida útil técnica				
	Valor mínimo (tabelado)	Média em Portugal	Recomendada pela USEPA*	Recomendado pela NSW**		
Construção civil						
Edifícios (geral)	25	40-50	60-75	-		
Reservatórios Apoiados ou elevados Subterrâneos	25 40	50	60-75	100 (edifício) 40 (cobertura)		
Estações elevatórias Águas abastecimento Águas residuais	-	-	-	50 70		
Condutas (geral) Ferro fundido dúctil e aço Betão Policloreto de vinilo (PVC) Polietileno (PE) Fibrocimento (FC) Grés Condutas com entubamento Instalações de tratamento Águas abastecimento Águas residuais	- 20 20 - - - 16 20 -	40 60 50 45 45 30 50-60	60 - - - - - - -	80 (novas); 50 (entub.) 40 45 70 70 45 70 50		
Equipamento						
Equipamento eletromecânico Válvulas Instalações elétricas Equipamento de medida e de controlo	8 8 8 8	20 20 15 15	35-40 30 35 25	25 30 30 30		
Equipamento de tratamento	9	15-20	25	20-30		

^{*} Fonte: USEPA GHD Asset Management Training Workshops 2006, www.epa.gov

As vidas úteis apresentadas são apenas indicativas, podendo ser muito afetadas pela qualidade de produção dos materiais, condições de transporte e armazenamento, forma de instalação, adequação às condições locais e ao uso e forma de operação e manutenção. Acresce que a capacidade de regeneração difere entre tipos de componente.

Por exemplo, os reservatórios podem ter, teoricamente, vidas úteis infinitas desde que sujeitos a manutenção sistemática, que inclui em geral reparações de fissuras e juntas, impermeabilização, pintura e manutenção dos equipamentos associados. Por oposição, a vida útil das condutas tende a ser limitada no tempo, embora possa ser prolongada se as reparações forem feitas de modo cuidado e com o devido controlo de qualidade. Nos equipamentos eletromecânicos, uma adequada manutenção também pode prolongar indefinidamente a vida útil destes componentes, já que envolve a substituição de elementos sujeitos a desgaste ou avaria. No entanto, a vida útil acaba frequentemente por ser limitada por questões de obsolescência.

^{**} Fonte NSW Reference Rates Manual - Valuation of Water Supply, Sewerage and Stormwater Assets, 2014 (www.water.nsw.gov.au)

Assim, a vida útil técnica dos ativos poderá ser corrigida sempre que se verifique que o seu estado de conservação o justifica ou que tenham sido efetuadas intervenções de reabilitação na infraestrutura.

Neste contexto, foi solicitado à entidade gestora Infraquinta a lista de intervenções efetuadas nos seus componentes nos últimos 10 anos que se apresenta de seguida:

- Substituição de válvulas de seccionamento na rede (entre 2010-2014): custo 50 000€;
- Reabilitação estrutural e execução de laje no reservatório principal (2012): 76 750€;
 - Alteração do centro de comando dos grupos de bombagem do reservatório principal: 8 000€.

Foi solicitado igualmente os índice de perdas de água relativos a 2014 obtidos até mês de novembro (incluído), tendo-se:

Os índices de perdas indicam que as redes de distribuição de água têm poucas perdas de água e que apesar de muitas condutas terem sido construídas há 40 anos, a rede na globalidade quer pela forma como foi construída, quer como operada e mantida, encontra-se em muito bom estado de conservação, podendo as vidas úteis médias das condutas da rede de distribuição consideradas em Portugal ser estendidas a valores mais elevados, como os praticados nos Estados Unidos da América, no Norte da Europa ou na Austrália, onde existem boas práticas de operação e manutenção dos sistema.

Para além desta informação, efetuou-se uma visita técnica ao reservatório principal e EE de águas localizadas no recinto do mesmo, assim como de três EE de águas residuais. Observou-se que todos os componentes se encontravam em muito bom estado de conservação e que, também neste caso, as vidas úteis poderiam ser estendidas, o que corrobora da conclusão anterior.

4.3 Índice de valor da infraestrutura

O índice de valor da infraestrutura (*infrastructure index value*, IVI) é uma medida que traduz o grau de juventude, de maturidade ou de envelhecimento de uma infraestrutura. É dado pela razão entre o valor actual da infraestrutura e o respectivo valor de substituição. É uma medida adequada para definir metas relativas a critérios de sustentabilidade infraestrutural.

Se se dividir o valor atual dos ativos pelo valor de substituição correspondente obtém-se um índice, que se designa por índice de valor da infraestrutura e que se calcula de acordo com:

$$IVI(t) = \frac{\sum_{i=1}^{N} \left(c \, \varsigma_{,t} \cdot \frac{v \, f_{,t}}{v \, y} \right)}{\sum_{i=1}^{N} c \, \varsigma_{,t}}$$

em que:

t: ano em que se está a fazer a avaliação [ano];

IVI(t): indice de valor da infra-estrutura no ano t [-];

N: n.º total de ativos [-];

 $cs_{i,t}$: custo de substituição do ativo i no ano $t \in]$;

 $vr_{i,t}$: vida útil residual do ativo i no ano t [ano];

vu_i: vida útil técnica total do ativo *i* [ano].

Para um componente único, o índice de valor da infraestrutura representa a razão entre a vida residual e a vida útil, ou seja, a percentagem de vida útil que o componente ainda tem.

O IVI apresenta valores da ordem dos 0,50² (0,40-0,60) para situações de infraestruturas estabilizadas, em que o que se investe em reabilitação num dado período corresponde, em média, à depreciação da infraestrutura no mesmo período.

Valores muito acima dos 0,50 indiciam que se trata de uma das seguintes situações:

- infraestruturas jovens, ainda n\u00e3o estabilizadas (e.g., atuais sistemas multimunicipais de primeira gera\u00e7\u00e3o);
- infraestruturas que, embora já antigas, atravessam uma fase de crescimento;
- infraestruturas onde se está a sobreinvestir em reabilitação.

Valores baixos de IVI (*i.e.*, IVI < 0,40) indicam que a infraestrutura se encontra envelhecida e necessita de investimentos significativos em reabilitação.

4.4 Análise de sensibilidade ao valor atual das infraestruturas

Dada a incerteza associada à vida útil de cada componente das infraestruturas, efetuou-se uma análise de sensibilidade do valor atual das infraestruturas de águas e de águas residuais para diferentes cenários:

- Cenário 1: valor mínimo de vida útil contabilística recomendada no Art. 3.º do DR 25/2009 (Anexos I e II).
- Cenário 2: valor máximo de vida útil contabilística recomendada Art. 3.º do DR 25/2009 (correspondente a duas vezes a vida útil mínima).
- Cenário 3: vida útil técnica média em Portugal.
- Cenário 4: vida útil técnica recomendada pela USEPA.
- Cenário 5: vida útil técnica recomendada pela NSW (2014).
- Cenário 6: vida útil técnica média em Portugal corrigida de acordo com o estado de conservação das infraestruturas de Infraquinta.

Para cada um destes cenários foram consideradas as vidas úteis apresentadas no Quadro 15.

_

² O mesmo será dizer que o valor atual da infraestrutura é 50% do valor de substituição da mesma.

Quadro 15 – Vidas úteis médias para os componentes de sistemas de abastecimento de água e de drenagem de águas residuais (adaptado de Alegre e Covas, 2010)

Tipo de componente		ontabilística 009, Art. 3.º)	Vida útil técnica			
	Valor mínimo (tabelado)	Valor máximo (2x valor mínimo)	Média em Portugal	Recomendada pela USEPA*	Recomendada pela NSW**	Média em Portugal corrigida
	Cenário 1	Cenário 2	Cenário 3	Cenário 4	Cenário 5	Cenário 6
Construção civil						
Edifícios e reservatórios						
Apoiados ou elevados	25	50	50	60-75	70	50+10 ⁽¹⁾
Subterrâneos	40	80				
Condutas (geral)	20	40	40	60	-	-
Ferro fundido dúctil e aço	20	40	60	-	80	60
Policloreto de vinilo (PVC)	-	-	45	-	70	45+5 ⁽²⁾
Fibrocimento (FC)	16	32	30	-	45	30+10 ^{(2),(3)}
Grés	20	40	60	-	70	60+10 ⁽⁴⁾
Equipamento						
Grupos electrobomba	8	16	20	35-40	25	20
Válvulas	8	16	20	30	30	20
Instalações eléctricas	8	16	15	35	30	15+5 ⁽⁵⁾
Equipamento de medida e de controlo	8	16	15	25	30	15+5 ⁽⁵⁾

^{*} Fonte: USEPA GHD Asset Management Training Workshops 2006, www.epa.gov

Cada um destes cenários foi combinado com os custos de substituição das infraestruturas excluindo e incluindo custos de pavimentação.

A título de exemplo, apresenta-se no **Quadro 16** a síntese dos valores de substituição e valores atuais assim como o IVI dos componentes das infraestruturas de águas e de águas residuais, para a situação em que não se incluem custos de pavimentação e para o Cenário 3.

^{**} Fonte NSW Reference Rates Manual - Valuation of Water Supply, Sewerage and Stormwater Assets, 2014 (www.water.nsw.gov.au)

⁽¹⁾ Aumento da vida útil decorrente de reabilitação estrutural e execução de laje no reservatório principal recente (em 2012).

⁽²⁾ Aumento da vida útil nas condutas de água (PVC e FC) decorrente dos índices de perdas serem indicativos do bom estado de conservação das mesmas.

⁽³⁾ Aumento da vida útil decorrente de muitas condutas de FC existentes terem tempos de funcionamento iguais ou superiores a 40 anos (muitas condutas instaladas em 1972 ainda se encontram em funcionamento).

⁽⁴⁾ Aumento da vida útil decorrente da experiência em Portugal de que os coletores de grés desde que não tenham intervenções em zonas adjacentes podem ter uma vida útil muito longa que poderá estender-se até aos 100 anos.

⁽⁵⁾ Aumento da vida útil decorrente da experiência da Infraquinta e de uma visita técnica realizada que mostrou o excelente estado de conservação das infraestruturas.

Quadro 16 - Valores atuais das infraestruturas existentes para o Cenário 3

Componente	Quantidade	Valor de substituição (€)	Idade média (anos)	Valor atual	IVI (-)
		Caso A	Cenário 3	(€)	,,
Sistema de abastecimento					
Rede de distribuição de água					
Condutas em FFd	1575 m	316 444 €	2	306 218 €	0.98
Condutas em PVC PN10	36 204 m	1 582 693 €	18	172 379 €	0.58
Condutas em fibrocimento (substituídas PVC)	31 146 m	1 604 186 €	34	859 430 €	0.08
Ramais de distribuição de água	1884 unid	737 600 €	19	387 240 €	0.58
Reservatório principal	2 células	633 193 €	24	285 340 €	0.51
Estações elevatórias	4 EE	547 839 €	11	270 085 €	0.64
Total		5 421 957 €		2 280 692 €	0.56
Sistema de drenagem de águas residuais					
Rede de coletores					
Coletores em PVC	45 785 m	1 812 326 €	22	136 251€	0.52
Coletores em grés	15 966 m	609 207 €	36	966 065 €	0.40
Ramais domiciliários	1 450 unid	437 900 €	25	191 774 €	0.44
Condutas elevatórias	3 921 m	123 076 €	26	53 337 €	0.42
Estações elevatórias	12 EE	1 079 277 €	17	431 105 €	0.42
Total		4 061 786 €		15 88 757	0.46
Total (só construção)	-	9 483 744 €	-	3 718 359 €	0.44
Total (incluindo projeto, +5%)	-	9 957 931 €	-	3 904 277€	-
		Caso B			
Total incluindo pavimentação 13 €/m² (só construção)	-	11 375 199 €	-	4 967 525 €	0,44
Total (incluindo projeto, +5%)	-	11 943 959 €	-	5 215 901 €	-
		Caso C			
Total incluindo pavimentação 18 €/m² (só construção)	-	12 102 232 €	-	5 257 167 €	0,43
Total (incluindo projeto, +5%)	-	12 707 344 €	-	5 520 025 €	-

Nota: Azul IVI≥0.60; Verde IVI=0.45-0.60; amarelo IVI=0.3-0.45; vermelho IVI 0.3

Apresenta-se no **Quadro 17** e na **Figura 11** a síntese de todas as combinações de valores de substituição – incluindo ou não pavimentação (Casos A, B e C) – com e sem custos de projeto (+5%) e com diferentes as vidas úteis dos seus componentes (Cenários 1 a 6).

Quadro 17 – Síntese dos valores atuais para os diferentes valores de substituição (considerando ou não custos de investimento) e para os diferentes Cenários

	Cenário 1	Cenário 2	Cenário 3	Cenário 4	Cenário 5	Cenário 6
Caso A	1 710 946 €	3 817 731 €	4 213 753 €	5 743 410 €	5 337 782 €	4 473 928 €
Caso A (+5%)	1 796 493 €	4 008 617 €	4 424 441 €	6 030 581 €	5 604 671 €	4 697 624 €
Caso B	1 922 204 €	4 447 896 €	4 967 525 €	6 814 004 €	6 297 931 €	5 363 616 €
Caso B (+5%)	2 018 314 €	4 670 291 €	5 215 901 €	7 154 704 €	6 612 827 €	5 631 797 €
Caso C	2 003 413 €	4 690 020 €	5 257 167 €	7 225 456 €	6 666 885 €	5 705 517 €
Caso C (+5%)	2 103 583 €	4 924 521 €	5 520 025 €	7 586 729 €	7 000 229 €	5 990 793 €

Figura 11 – Síntese dos valores atuais para os diferentes valores de substituição (considerando ou não custos de investimento) e para os diferentes Cenários

Os resultados mostram que:

- Os valores atuais mais baixos estão associados à vida útil contabilística mínima (Cenário 1) e máxima sem intervenções de reabilitação (Cenário 2), estabelecidas no Art. 3.º do DR 25/2009. Os Cenários 1 e 2 são tipicamente utilizados para efeitos fiscais em que se pretendam deduzir as amortizações dos investimentos nas receitas, não se recomendando a sua utilização para efeitos de valorização técnica das infraestruturas.
- Os valores atuais mais elevados estão associados às vidas úteis recomendadas pela USEPA nos EUA (Cenário 4) e NSW na Austrália (Cenário 5), uma vez que nestes países são reconhecidas as boas práticas de O&M das infraestruturas, o que permite estender as vidas

úteis dos componentes a valores bastante mais elevados do que as vidas úteis médias em Portugal.

- Os valores atuais obtidos com as vidas úteis médias em Portugal (Cenário 3) são bastante conservativos, conduzindo a valores intermédios entre os valores contabilísticos (Cenários 1 e 2) e os correspondentes a boas práticas nos EUA, Europa Central e do Norte e Austrália (Cenários 4 e 5). No entanto, estes valores, no caso da Infraquinta, cujas infraestruturas são mantidas em muito bom estado de conservação dada a zona de elite abastecida a Quinta do Lago são penalizadores em excesso das infraestruturas de águas e de águas residuais. Pelos reduzidos níveis de perdas da rede de distribuição e pelo muito bom estado de estado de conservação das infraestruturas, justiça-se claramente o incremento (mínimo) da vida útil médias em Portugal em 5 a 10 anos (dependendo do tipo de componente).
- O Cenário 6 correspondentes às vidas úteis médias em Portugal corrigidas é o que traduz de uma forma mais justa e adequada a realidade das infraestruturas de abastecimento de água e de drenagem de águas residuais da Infraquinta, E.M..

Relativamente à pavimentação, considera-se que mesma deve ser incluída no valor atual das infraestruturas. O Caso B corresponde aos valores medianos obtidos num estudo autónomo de custos de referência (IST, 2014) e o Caso C aos valores históricos recentes registados pela entidade gestora para o betume asfáltico e calçada de cubos.

Devem ser acrescidos aos custos de construção outros custos, como sejam custos de concepção/projecto, custos de fiscalização, custos de inspeção, que poderão variar, consoante o tipo de componente entre 3 e 15%. No presente caso, considerou-se um valor médio de 5%.

Apresentam-se no Quadro 18 os valores dos IVI das infraestrutura de águas de abastecimento e de águas residuais para os diferentes cenários analisados. Incluir ou não os custos extraordinários de projecto não altera o IVI. Observa-se que, de acordo com os cenários 4, 5 e 6 a infraestrutura está estabilizada e muitos dos seus componente são relativamente novos (e.g., reservatório, EE de águas, condutas de água). De acordo com o Cenário 1, a infraetestrutura já se encontraria quase amortizada na totalidade, uma vez que o seu IVI é inferior a 0.20..

Quadro 18 - Síntese dos IVI para os diferentes valores de substituição e para os diferentes Cenários

	Cenário 1	Cenário 2	Cenário 3	Cenário 4	Cenário 5	Cenário 6
Caso A	0.18	0.40	0.44	0.61	0.56	0.47
Caso B	0.17	0.39	0.44	0.60	0.55	0.47
Caso C	0.17	0.39	0.43	0.60	0.55	0.47

Nota: Azul IVI≥0.60; Verde IVI=0.45-0.60; amarelo IVI=0.3-0.45; vermelho IVI 0.3

5 SÍNTESE E RECOMENDAÇÕES FINAIS

A análise efetuada incidiu nos sistemas de abastecimento de água e de drenagem de águas residuais da Infraquinta. Consideram-se os seguintes pressupostos:

- Os custos de substituição considerados não incluem fiscalização, nem custos de operação e manutenção. Não incluem IVA. Referem-se à construção de sistemas novos e não a intervenções de reabilitação.
- Os custos de conceção/dimensionamento, fiscalização e inspeção são calculados à parte como uma percentagem do valor de construção. No presente caso, adotou-se um valor de 5%.
- Dado que o peso da pavimentação pode ser significativo, o mesmo foi calculado em separado.
 Foram considerados dois custos de remoção e reposição de pavimentos (13 e 18 €/m²).
 Analisaram-se três casos diferentes (Casos A a C).
- Dada a grande incerteza quanto à vida útil técnica dos diferentes componentes da infraestrutura, consideram-se seis cenários (Cenários 1 a 6) correspondentes a diferentes vidas úteis recomendadas por diferentes entidades ou adotadas na presente análise.

Uma visita técnica às infraestruturas permitiu verificar que as mesmas se encontram em muito bom estado de conservação e que têm sido feitas várias intervenções de reabilitação (e.g., no reservatório, nas válvulas, e nas EE), o que permite estender as vidas úteis técnicas médias consideradas em Portugal. Adicionalmente os níveis de perdas do sistema de abastecimento de águas são relativamente reduzidos, o que corroboram a decisão anterior.

Recomenda-se que se utilizem as vidas úteis propostas no **Cenário 6** e que o valor das infraestruturas corresponda ao **Caso C** (custo de pavimentação com base no histórico da Infraquinta). Apesar deste (18 €/m²) ser superior ao valor mediano obtido no estudo dos custos de referência (13 €/m2), este estudo tem por base custos de construção de empreitadas de valor superior a 50 000€, valor este que é muitas vezes superior ao custo das empreitadas de construção de condutas da Infraquinta. Assim, será de prever que em empreitadas menores os custos de pavimentação se tornem mais significativos.

Em suma, o valor atual das infraestruturas de abastecimento de água e de drenagem de águas residuais da Infraquinta deverá variar entre os 5.5 e os 6.0 M€, recomendando-se que, para efeitos de cálculo de renda anual, seja considerado um valor nesta gama de valores.

6 BIBLIOGRAFIA CONSULTADA

- [1] AdP, SGPS, S.A. (2008). Planos Diretores para a Criação dos Sistemas Multimunicipais de Baixa de Abastecimento de Água e de Saneamento de Águas Residuais do Norte, Centro e Sul. Critérios de Concepção de Soluções e Estimativa de Investimentos e Custos Operacionais.
- [2] AdP Serviços, S.A. Direcção de Engenharia (2004). Análise de Custos de Investimento de Instalações de Tratamento de Águas Residuais.
- [3] AdP Serviços, S.A. Direcção de Engenharia (2005). Análise de Preços Unitários em Sistemas Multimunicipais de Abastecimento de Água e de Saneamento.
- [4] AdP Serviços, S.A. Direcção de Engenharia (2007). Análise de Preços Unitários em Sistemas Multimunicipais de Abastecimento de Água e de Saneamento (Regional).
- [5] Alegre, H.; Covas, D. (2010). Gestão Patrimonial de Infra-estruturas de Abastecimento de Água. Uma Abordagem Centrada na Reabilitação. Série Guias Técnicos N.º 16. Entidade Reguladora dos Serviços de Águas e Resíduos. Laboratório Nacional de Engenharia Civil. Instituto Superior Técnico. Lisboa.
- [6] Decreto Regulamentar N.º 23/95, de 23 de Agosto. Regulamento Geral dos Sistemas Públicos e Prediais de Distribuição de Água e de Drenagem de Águas Residuais.
- [7] GAO United States General Accounting Office (2004). Water Infrastructure. Comprehensive Asset Management Has Potential to Help Utilities Better Identify Needs and Plan Future Investments. Report to the Ranking Minority Member, Committee on Environment and Public Works, U.S. Senate.
- [8] Geem, Z. W. (2006). Optimal Cost Design of Water Distribution Networks Using Harmony Search. Engineering Optimization, 38: 3, 259-280.
- [9] Green, C. H. (2003). Handbook of Water Economics: Principles and Pratice. John Wiley & Sons Ltd.
- [10] Grigg, N. S. (2003). Water, Wastewater, and Stormwater Infrastructure Management. Lewis Publishers.
- [11] ISO 15686-5:2008. Buildings and Constructed Assets Service Life Planning Part 5: Life Cycle Costing
- [12] Lencastre, A.; Carvalho, J.; Gonçalves, J.; Piedade, M. (1995). Gestão de Sistemas de Saneamento Básico. Volume 9. Custos de Construção e Exploração. Direcção Geral do Ambiente do Ministério do Ambiente e Recursos Naturais. Laboratório Nacional de Engenharia Civil. Lisboa.
- [13] Lopes, N., Pena, J., Mamouros, L., Mendes, D. (2014). Funções de custo para sistemas de abastecimento/distribuição de água, em ambiente urbano. Relatório desenvolvido no âmbito da atividade da AdP Servições, confidencial.
- [14] Lopes, S. (2014). Análise de Funções de Custo de Componentes de Construção Civil e de Equipamentos de Serviços Públicos de Água. Dissertação para obtenção do Grau de Mestre em Engenharia Civil. Instituto Superior Técnico
- [15] Lopes, S.; Covas, D.; Lopes, N.; Mamouros, L.; Brôco, N. (2013). Cost Functions for Different Water Supply Systems Assets: the Portuguese Case Study. Em: LESAM 2013 Proceedings of the Leading-Edge Strategic Asset Management Conference, 10-12 Setembro, Sydney, Austrália.
- [16] Marchionni, V., Lopes, S., Lopes, N., Mamouros, L., Brôco, N., Covas, D. (2014). "Cost functions for different water supply and wastewater systems assets "In: IWA World Water Congress, 21-25 September, Lisbon. (poster presentation)

- [17] Marchionni, V.; Lopes, S.; Lopes, N.; Mamouros, L.; Brôco, N.; Covas, D. Urban Water Infrastructure Cost Development Using Regression Models. Em: Journal of Water Resources Planning and Management (submetido em Junho de 2014).
- [18] Marchionni, V., Lopes, N., Mamouros, L., Covas, D. (2014) Modelling Sewer Systems Costs with Multiple Linear Regression. Water Resources Management 28, 4415–4431.
- [19] Mays, L. W. (2000). Water Distribution Systems Handbook. McGraw-Hill.
- [20] Mays, L. W. (2004). Hydraulic Design Handbook. McGraw-Hill.
- [21] Mays, L. W. (2004). Urban Water Supply Handbook. McGraw-Hill Handbooks.
- [22] IST (2014)
- [23] Quintela, A. C. (1998). Hidráulica. 6.ª Edição. Fundação Calouste Gulbenkian. Lisboa.
- [24] Raftelis, G. A. (2005). Water and Wastewater Finance and Pricing: a Comprehensive Guide. 3.ª Edição. Taylor & Francis.
- [25] Swamee, P. K.; Sharma, A. K. (2008). Design of Water Supply Pipe Networks. John Wiley & Sons, Inc.