Linear Control and Estimation Matrices

Sivakumar Balasubramanian

Department of Bioengineering Christian Medical College, Bagayam Vellore 632002

References

- ► S Boyd, Applied Linear Algebra: Chapters 6, 7, 8, 10 and 11.
- ▶ G Strang, Linear Algebra: Chapters 1 and 2.

Matrices

► Matrices are rectangular array of numbers. $\begin{bmatrix} 1.1 & -24 & \sqrt{2} \\ 0 & 1.12 & -5.24 \end{bmatrix}$

 $\hbox{$\blacktriangleright$ Consider a matrix A with n rows and m columns.} \begin{cases} \hbox{${\bf Tall/Skinny}} & n>m \\ \hbox{${\bf Square}} & n=m \\ \hbox{${\bf Wide/Fat}} & n< m \end{cases}$

Matrices

- \blacktriangleright n-vectors can be interpreted as $n \times 1$ matrices. These are called *column vectors*.
- A matrix with only one row is called a *row vector*, which can be referred to as n-row-vector. $\mathbf{x} = \begin{bmatrix} 1.45 & -3.1 & 12.4 \end{bmatrix}$
- ▶ Block matrices & Submatrices: $A = \begin{bmatrix} B & C \\ D & E \end{bmatrix}$. What are the dimensions of the different matrices?
- ▶ Matrices are also compact way to give a set of indexed column n-vectors, $\mathbf{x}_1, \mathbf{x}_2, \mathbf{x}_3 \dots \mathbf{x}_m$.

$$\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \mathbf{x}_2 & \mathbf{x}_3 & \dots & \mathbf{x}_m \end{bmatrix}$$

▶ Zero matrix=
$$\mathbf{0}_{n \times m} = \begin{bmatrix} 0 & 0 & \dots & 0 \\ 0 & 0 & \dots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \dots & 0 \end{bmatrix}$$

Matrices

▶ Identity matrix is a square $n \times n$ matrix with all zero elements, except the diagonals where all elements are 1.

$$\mathbf{I}_{ij} = egin{bmatrix} 1 & i=j \ 0 & i
eq j \end{pmatrix} \quad \mathbf{I}_3 = egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ 0 & 0 & 1 \end{bmatrix} = egin{bmatrix} \mathbf{e}_1 & \mathbf{e}_2 & \mathbf{e}_3 \end{bmatrix}$$

Diagonal matrices is a square matrix with non-zero elements on its diagonal.

$$\begin{bmatrix} 0.4 & 0 & 0 & 0 \\ 0 & -11 & 0 & 0 \\ 0 & 0 & 21 & 0 \\ 0 & 0 & 0 & 9.3 \end{bmatrix} = \mathbf{diag} (0.4, -11, 21, 9.3)$$

▶ **Triangular matrices**: Are square matrices. *Upper triangular* $a_{ij} = 0, \forall i > j$; *Lower triangular* $a_{ij} = 0, \forall i < j$.

Matrix operations

▶ Transpose switches the rows and columns of a matrix. A is a $n \times m$ matrix, then its transpose is represented by \mathbf{A}^T , which is a $m \times n$ matrix.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} \\ a_{21} & a_{22} & a_{23} \end{bmatrix} \implies \mathbf{A}^T = \begin{bmatrix} a_{11} & a_{21} \\ a_{12} & a_{22} \\ a_{13} & a_{23} \end{bmatrix}$$

Transpose converts between column and row vectors.

What is the transpose of a block matrix? $\mathbf{A} = \begin{bmatrix} \mathbf{B} & \mathbf{C} \\ \mathbf{D} & \mathbf{E} \end{bmatrix}$

▶ **Matrix addition** can only be carried out with matrices of same size. Like vectors we perform element wise addition.

$$\begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} + \begin{bmatrix} b_{11} & b_{12} \\ b_{21} & b_{22} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} \\ a_{21} + b_{21} & a_{22} + b_{22} \end{bmatrix}$$

Matrix operations

- Properties of matrix addition:
 - ightharpoonup Commutative: A + B = B + A
 - Associative: $(\mathbf{A} + \mathbf{B}) + \mathbf{C} = \mathbf{A} + (\mathbf{B} + \mathbf{C})$
 - ► Addition with zero matrix: $\mathbf{A} + \mathbf{0} = \mathbf{0} + \mathbf{A} = \mathbf{A}$ ► Transpose of sum: $(\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$
- **Scalar multiplication** Each element of the matrix gets multiplied by the scalar.

$$\alpha \begin{bmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{bmatrix} = \begin{bmatrix} \alpha a_{11} & \alpha a_{12} \\ \alpha a_{21} & \alpha a_{22} \end{bmatrix}$$

- ▶ We will mostly only deal with matrices with real entries. Such matrices are elements of the set $\mathbb{R}^{n \times m}$.
- Given the aforementioned matrix operations and their properties, is $\mathbb{R}^{n\times m}$ a vector space?

- It is possible to *multiply* two matrices $\mathbf{A} \in \mathbb{R}^{n \times p}$ and $\mathbf{B} \in \mathbb{R}^{p \times m}$ through *matrix multiplication* procedure.
- ▶ There is a product matrix $\mathbf{C} \coloneqq \mathbf{AB} \in \mathbb{R}^{n \times m}$, if the number of columns of \mathbf{A} is equal to the number of rows of \mathbf{B} .

$$c_{ij} := \sum_{k=1}^{p} a_{ik} b_{kj} \quad \forall i \in \{1, \dots n\} \quad \& \ j \in \{1 \dots m\}$$

▶ Inner product is a special case of matrix multiplication between a row vector and a column vector.

$$\mathbf{x}^T \mathbf{y} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \begin{bmatrix} x_1 & x_2 & \dots & x_n \end{bmatrix} \begin{bmatrix} y_1 \\ y_2 \\ \vdots \\ y_n \end{bmatrix} = \sum_{i=1}^n x_i y_i$$

Consider a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$ and a m-vector $\mathbf{x} \in \mathbb{R}^m$. We can multiply \mathbf{A} and \mathbf{x} to obtain $\mathbf{y} = \mathbf{A}\mathbf{x} \in \mathbb{R}^n$.

$$\mathbf{y} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix} = \begin{bmatrix} \tilde{\mathbf{a}}_1^T \\ \tilde{\mathbf{a}}_2^T \\ \vdots \\ \tilde{\mathbf{a}}_n^T \end{bmatrix} x = \begin{bmatrix} \tilde{\mathbf{a}}_1^T x \\ \tilde{\mathbf{a}}_2^T x \\ \vdots \\ \tilde{\mathbf{a}}_n^T x \end{bmatrix} = \begin{bmatrix} \sum_{i=1}^m a_{1i} x_i \\ \sum_{i=1}^m a_{2i} x_i \\ \vdots \\ \sum_{i=1}^m a_{2i} x_i \end{bmatrix}$$

$$\mathbf{y} = \sum_{i=1}^m x_i \begin{bmatrix} a_{1i} \\ a_{2i} \\ \vdots \\ a_{n-1} \end{bmatrix} = x_1 \begin{bmatrix} a_{11} \\ a_{21} \\ \vdots \\ a_{n-1} \end{bmatrix} + x_2 \begin{bmatrix} a_{12} \\ a_{22} \\ \vdots \\ a_{n-2} \end{bmatrix} + \dots + x_m \begin{bmatrix} a_{1m} \\ a_{2m} \\ \vdots \\ a_{n-m} \end{bmatrix}$$

▶ Multiplying a matrix **A** by a column vector **x** produces a linear combination of the columns of matrix **A**. The column mixture is provided by **x**.

We see a similar process in play when we multiply a row vector $\mathbf{x}^T \in \mathbb{R}^n$ by a matrix $\mathbf{A} \in \mathbb{R}^{n \times m}$.

$$\mathbf{y} = \mathbf{x}^T \mathbf{A} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix}^T \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{bmatrix} = \mathbf{x}^T \begin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \dots & \mathbf{a}_m \end{bmatrix}$$

$$\mathbf{y} = \begin{bmatrix} \mathbf{x}^T \mathbf{a}_1 & \mathbf{x}^T \mathbf{a}_2 & \dots & \mathbf{x}^T \mathbf{a}_m \end{bmatrix} = \sum_{i=1}^n x_i \begin{bmatrix} a_{i1} & a_{i2} & \dots & a_{im} \end{bmatrix}$$

▶ Multiplying a row vector **x** by a matrix **A** produces a linear combination of the row of matrix **A**. The row mixture is provided by **x**.

lacktriangle Multiplying two matrices $\mathbf{A}\in\mathbb{R}^{n imes p}$ and $\mathbf{B}\in\mathbb{R}^{p imes m}$, we have $\mathbf{C}\in\mathbb{R}^{n imes m}$,

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1p} \\ a_{21} & a_{22} & \dots & a_{2p} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{np} \end{bmatrix} \begin{bmatrix} b_{11} & b_{12} & \dots & b_{1m} \\ b_{21} & b_{22} & \dots & b_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ b_{p1} & b_{p2} & \dots & b_{pm} \end{bmatrix} = \begin{bmatrix} c_{11} & c_{12} & \dots & c_{1m} \\ c_{21} & c_{22} & \dots & c_{2m} \\ \vdots & \vdots & \ddots & \vdots \\ c_{p1} & c_{n2} & \dots & c_{nm} \end{bmatrix}$$

- ▶ Inner product interpretation: $c_{ij} = \tilde{\mathbf{a}}_i^T \mathbf{b}_j, i \in \{1 \dots n\}, j \in \{1 \dots m\}$
- ▶ Column interpretation: $\mathbf{C} = \mathbf{A} \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \dots & \mathbf{b}_m \end{bmatrix} = \begin{bmatrix} \mathbf{A}\mathbf{b}_1 & \mathbf{A}\mathbf{b}_2 & \dots & \mathbf{A}\mathbf{b}_m \end{bmatrix}$

$$\begin{tabular}{|c|c|c|c|c|} \hline \textbf{P} & \textbf{Row interpretation} : \mathbf{C} = \begin{bmatrix} \tilde{\mathbf{a}}_1^T \\ \tilde{\mathbf{a}}_2^T \\ \vdots \\ \tilde{\mathbf{a}}_n^T \end{bmatrix} \mathbf{B} = \begin{bmatrix} \tilde{\mathbf{a}}_1^T \mathbf{B} \\ \tilde{\mathbf{a}}_2^T \mathbf{B} \\ \vdots \\ \tilde{\mathbf{a}}_n^T \mathbf{B} \end{bmatrix}$$

▶ Outer product interpretation Consider two *n*-vectors $\mathbf{x}, \mathbf{y} \in \mathbb{R}^n$. The *outer product* is defined as,

$$\mathbf{x}\mathbf{y}^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ x_{3} \\ \vdots \\ x_{n} \end{bmatrix} \begin{bmatrix} y_{1} & y_{2} & y_{3} & \dots & y_{n} \end{bmatrix} = \begin{bmatrix} x_{1}y_{1} & x_{1}y_{2} & x_{1}y_{3} & \dots & x_{1}y_{n} \\ x_{2}y_{1} & x_{2}y_{2} & x_{2}y_{3} & \dots & x_{2}y_{n} \\ x_{3}y_{1} & x_{3}y_{2} & x_{3}y_{3} & \dots & x_{3}y_{n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ x_{n}y_{1} & x_{n}y_{2} & x_{n}y_{3} & \dots & x_{n}y_{n} \end{bmatrix}$$

▶ We can represent the product between two matrices as the sum of outer products between the columns and A and rows of B.

$$\mathbf{A}\mathbf{B} = egin{bmatrix} \mathbf{a}_1 & \mathbf{a}_2 & \mathbf{a}_3 & \dots & \mathbf{a}_p \end{bmatrix} egin{bmatrix} \mathbf{b}_1^t \ \mathbf{ ilde{b}}_2^T \ \mathbf{ ilde{b}}_3^T \ \vdots \ \mathbf{ ilde{b}}_n^T \end{bmatrix} = \sum_{i=1}^p a_i \tilde{b}_i^T \ \end{bmatrix}$$

Properties of matrix multiplication

- ▶ Not commutative: $AB \neq BA$ The product of two matrices might not always be defined. When it is defined, AB and BA need not match.
- $\qquad \qquad \textbf{Distributive:} \ \ \mathbf{A}\left(\mathbf{B}+\mathbf{C}\right) = \mathbf{AB} + \mathbf{BC} \ \text{and} \ \left(\mathbf{A}+\mathbf{B}\right)\mathbf{C} = \mathbf{AC} + \mathbf{BC} \\$
- **Associative**:**A**(**BC**) = (**AB**)**C**
- $\qquad \qquad \mathbf{Transpose:} \ \left(\mathbf{AB}\right)^T = \mathbf{B}^T \mathbf{A}^T$
- ► Scalar product: α (AB) = (α A) B = A (α B)

► Matrices present a compact way to represent a set of linear equations. Consider the

 Matrices present a compact way to represent a set of linear equations. Consider the following,

$$\begin{vmatrix} a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1 \\ a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2 \\ a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = b_3 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = b_m \end{vmatrix} \longrightarrow \mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{b} \in \mathbb{R}^m$$

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & a_{13} & \dots & a_{1n} \\ a_{21} & a_{22} & a_{23} & \dots & a_{2n} \\ \vdots & \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & a_{m3} & \dots & a_{mn} \end{bmatrix} \quad \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_n \end{bmatrix} \quad \mathbf{b} = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_m \end{bmatrix}$$

Geometry of linear equations

$$\begin{vmatrix} x_1 + 2x_2 = -1 \\ x_1 + x_2 = 1 \end{vmatrix} \longrightarrow \begin{bmatrix} 1 & 2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$$

Two ways to view this: row view and the column view.

Solving linear equations

$$\mathbf{A}\mathbf{x} = \mathbf{b}, \ \mathbf{A} \in \mathbb{R}^{m \times n}, \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{b} \in \mathbb{R}^m$$

- ► Three possible situations: No solution, Infinitely many solutions, or Unique Solution.
- ▶ When do have infinitely many or no solutions? In \mathbb{R}^3 , we can visualize the different situations.

Solving linear equations: Gaussian Elimination

$$a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1 : E_1$$

$$a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2 : E_2$$

$$a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = b_3 : E_3$$

$$\vdots$$

$$a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = b_m : E_m$$

- Gaussian elimination is a systematic way of simplifying the above equations to an equivalent system that can be easily solved.
- ► Three simple operations are repeatedly performed:
 - ▶ Interchanging of equations E_i and E_j .
 - ▶ Replacing equation E_i by αE_i , $\alpha \neq 0$.
 - ▶ Replacing equation E_j by $E_j + \alpha E_i$, $\alpha \neq 0$.
- ▶ These three operations do not change the solution of the given linear system.

Solving linear equations: Gaussian Elimination

 $\textbf{Augmented matrix} : \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$

- ▶ We can work with the augmented matrix instead of the equations.
- Gaussian elimination is carried out on the entire matrix.
- ▶ The matrix is simplified to a point, from where one can easily:
 - find out the nature of the solutions for the system of equations; and
 - find the solution (with a bit of extra work), if they exist.

Solving linear equations: Gaussian Elimination

Gaussian Elimination

$$\begin{bmatrix} \frac{1}{2} & 2 & -1 & 1 \\ 2 & 3 & 4 & 4 \\ -2 & -4 & 1 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{2} & 2 & -1 & 1 \\ 0 & -1 & 6 & 2 \\ -2 & -4 & 1 & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{2} & 2 & -1 & 1 \\ 0 & \frac{-1}{2} & 6 & 2 \\ 0 & 0 & \frac{-1}{2} & -1 \end{bmatrix}$$

Now, we can perform back substitution on this triangularized system of linear equations,

$$x_3 = 1; \ x_2 = 4; \ x_1 = -6$$

We can continue the simplification process through the **Gauss-Jordan** method.

Solving linear equations: Gauss-Jordan Method

Continue the elimination upwards until all elements, except the ones in the main diagonal, are zero.

$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 6 & 2 \\ 0 & 0 & -1 & -1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & -1 & 0 & -4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & -1 & 1 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix}$$
$$\begin{bmatrix} 1 & 2 & 0 & 2 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & 1 & 0 & 4 \\ 0 & 0 & 1 & 1 \end{bmatrix} \Longrightarrow x_1 = -6; \ x_2 = 4; \ x_3 = 1;$$

Everything worked out well without any problems. What can go wrong here?

Try solving the these systems,
$$\begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 3 & 4 & 4 \\ -2 & -4 & 2 & -3 \end{bmatrix}$$
, $\begin{bmatrix} 1 & 2 & -1 & 1 \\ 2 & 3 & 4 & 4 \\ -2 & -4 & 2 & -2 \end{bmatrix}$

What is the difference between these two systems?

Solving linear equations: Rectangular systems and Row Echelon Form

$$\begin{bmatrix} a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = b_1 : E_1 \\ a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = b_2 : E_2 \\ a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = b_3 : E_3 \\ \vdots \\ a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = b_m : E_m \end{bmatrix}$$

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix}$$

Consider the following example,

Solving linear equations: Rectangular systems and Row Echelon Form

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{*}{2} & * & * & * & * & * & * \\ 0 & 0 & \frac{*}{2} & * & * & * & * \\ 0 & 0 & 0 & \frac{*}{2} & * & * & * & * \\ 0 & 0 & 0 & 0 & \frac{*}{2} & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & \frac{*}{2} \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

Things to notice about the echelon form:

- ▶ If a particualr row consists entirely of zeros, then all rows below that row also contain entirely of zeros.
- ▶ If the first non-zero entry in the i^{th} row occurs in the j^{th} position, then all elements below the i^{th} row are zero from columns 1 to j.

Columns containing pivot are called the **basic columns**.

Rank of a matrix ${\bf A}$ is defined at the number of basic columns in the row echelon form of the matrix ${\bf A}$.

Solving linear equations: Reduced Row Echelon Form

$$\begin{bmatrix} \frac{*}{0} & * & * & * & * & * & * & * \\ 0 & 0 & \frac{*}{2} & * & * & * & * & * \\ 0 & 0 & 0 & \frac{*}{2} & * & * & * & * \\ 0 & 0 & 0 & 0 & 0 & \frac{*}{2} & * & * & * \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix} \xrightarrow{\text{Gauss-Jordan}} \begin{bmatrix} \frac{1}{0} & * & 0 & 0 & 0 & * & 0 \\ 0 & 0 & \frac{1}{1} & 0 & 0 & * & 0 \\ 0 & 0 & 0 & \frac{1}{1} & 0 & * & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{1} & * & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{1} & * & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{1} & * & 0 \\ 0 & 0 & 0 & 0 & \frac{1}{1} & * & 0 \\ 0 & 0 & 0 & 0 & 0 & \frac{1}{1} & * & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} \frac{1}{0} & -2 & 1 & 0 & 1 & 1 \\ 0 & 0 & \frac{1}{1} & -1 & -4 & 0 \\ 0 & 0 & 0 & -1 & -5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{0} & -2 & 0 & -1 & -3 & 1 \\ 0 & 0 & \frac{1}{1} & 1 & 4 & 0 \\ 0 & 0 & 0 & -1 & -5 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} \frac{1}{0} & -2 & 0 & 0 & 2 & 1 \\ 0 & 0 & \frac{1}{1} & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 0 \end{bmatrix}$$

- All non-basic columns can be represented as a linear combination of the basic columns.
- A non-basic columns is a linear combination of only the columns before it.
- Scaling factors for each basic comlumns is determined by the corresponding elements of the non-basic columns.

The reduced row echelon form reveals structure in the original matrix A.

Solving linear equations: Homogenous Systems

$$\begin{array}{c}
a_{11}x_1 + a_{12}x_2 \dots + a_{1n}x_n = 0 \\
a_{21}x_1 + a_{22}x_2 \dots + a_{2n}x_n = 0 \\
a_{31}x_1 + a_{32}x_2 \dots + a_{3n}x_n = 0 \\
\vdots \\
a_{m1}x_1 + a_{m2}x_2 \dots + a_{mn}x_n = 0
\end{array}$$

$$\begin{bmatrix}
a_{11} & a_{12} & \cdots & a_{1n} & 0 \\
a_{21} & a_{22} & \cdots & a_{2n} & 0 \\
a_{31} & a_{32} & \cdots & a_{3n} & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
a_{m1} & a_{m2} & \cdots & a_{mn} & 0
\end{bmatrix}$$

Consider the following case,

$$\left[\begin{array}{cccc|cccc} 1 & -2 & 1 & 0 & 1 & 0 \\ 2 & -4 & 1 & -1 & -2 & 0 \\ -1 & 2 & 1 & 1 & 2 & 0 \end{array}\right] \longrightarrow \left[\begin{array}{ccccccccc} 1 & -2 & 0 & 0 & 2 & 0 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 0 \end{array}\right]$$

Solving linear equations: Homogenous Systems

$$\begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \\ x_5 \end{bmatrix} = x_2 \begin{bmatrix} 2 \\ 1 \\ 0 \\ 0 \end{bmatrix} + x_5 \begin{bmatrix} -2 \\ 0 \\ 1 \\ -5 \\ 1 \end{bmatrix}$$
 represents the general solution of the system of equations.

▶ In general, any system $[\mathbf{A} \mid \mathbf{0}]$ with $rank(\mathbf{A}) = r$ and m < n has the general solution of the form,

$$\mathbf{x} = x_{f_1} \mathbf{h}_1 + x_{f_2} \mathbf{h}_2 + \ldots + x_{f_{n-r}} \mathbf{h}_{n-r}$$

where, the variables $x_{f_1}, x_{f_2}, \dots, x_{f_{n-r}}$ are called the **free variables**.

- ► Free variables are the one corresponding to the non-basic columns; the variable variables corresponding to the basic columns are the **basic variables**.
- ▶ When does a homogenous system have a unique solution solution? $\longrightarrow rank(\mathbf{A}) = m$.

Solving linear equations: Non-homogenous Systems

$$a_{11}x_{1} + a_{12}x_{2} \dots + a_{1n}x_{n} = b_{1}$$

$$a_{21}x_{1} + a_{22}x_{2} \dots + a_{2n}x_{n} = b_{2}$$

$$a_{31}x_{1} + a_{32}x_{2} \dots + a_{3n}x_{n} = b_{3} \longrightarrow [\mathbf{A} \mid \mathbf{b}]$$

$$\vdots$$

$$a_{m1}x_{1} + a_{m2}x_{2} \dots + a_{mn}x_{n} = b_{m}$$

Consider the following case,

$$\left[\begin{array}{ccc|ccc|c} 1 & -2 & 1 & 0 & 1 & 1 \\ 2 & -4 & 1 & -1 & -2 & 2 \\ -1 & 2 & 1 & 1 & 2 & -1 \end{array}\right] \longrightarrow \left[\begin{array}{cccc|c} 1 & -2 & 0 & 0 & 2 & 1 \\ 0 & 0 & 1 & 0 & -1 & 0 \\ 0 & 0 & 0 & 1 & 5 & 0 \end{array}\right]$$

The general solution of a non-homogenous system is sum of the particular solution and the general solution of the associated homogenous system.

Solving linear equations: Non-homogenous Systems

▶ The general solution for $[A \mid 0]$ with rank(A) = r,

$$\mathbf{x} = \mathbf{p} + x_{f_1} \mathbf{h}_1 + x_{f_2} \mathbf{h}_2 + \ldots + x_{f_{n-r}} \mathbf{h}_{n-r}$$

where, ${f p}$ is the particular solution and $x_{f_1}, x_{f_2}, \ldots, x_{f_{n-r}}$ are the free variables.

- ▶ When do we have a unique solution to this system? $\longrightarrow rank(\mathbf{A}) = m$.
- ▶ What about the case when there are no solutions? When does that happen? → When the system is not consistent.

$$\begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} & b_1 \\ a_{21} & a_{22} & \cdots & a_{2n} & b_2 \\ a_{31} & a_{32} & \cdots & a_{3n} & b_3 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} & b_m \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & * & 0 & 0 & 0 & * & c_1 \\ 0 & 0 & 1 & 0 & 0 & * & c_2 \\ 0 & 0 & 0 & 1 & 0 & * & c_3 \\ 0 & 0 & 0 & 0 & 1 & * & c_4 \\ \vdots & \vdots & \vdots & \vdots & \vdots & \vdots & \vdots \\ 0 & 0 & 0 & 0 & 0 & 0 & c_m \end{bmatrix}$$

There is a problem when $c_m \neq 0$

- ightharpoonup The augmented matrix $[A \mid b]$ has the same number of basic columns as A.
- ▶ $[A \mid b] \rightarrow [E \mid c]$: c is a non-basic column.
- $ightharpoonup rank(\mathbf{A}) = rank([\mathbf{A} \mid \mathbf{b}])$

LU Factorization of a Matrix

- ▶ A major theme of matrix algebra is to decompose matrices into simpler components that provide insights into the nature of the matrix.
- ightharpoonup A full rank square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$ can be decomosed into the product of a lower triangular and an upper triangular matrix.
- ▶ Matrices associated with the three elementary operations:

Inter-changing	Scaling	Adding a multiple of
rows 2 and 4	row 2	row 2 to row 3
$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 1 & 0 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$\begin{bmatrix} 0 & \alpha & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 1 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & \alpha & 1 & 0 \end{bmatrix}$
$\begin{bmatrix} 0 & 1 & 0 & 0 \end{bmatrix}$	$\begin{bmatrix} 0 & 0 & 0 & 1 \end{bmatrix}$	$[0 \ 0 \ 0 \ 1]$

LU Factorization of a Matrix

- ► Consider the case: $\mathbf{A} = \begin{bmatrix} 1 & -1 & 2 \\ 2 & 0 & 2 \\ 4 & 2 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 4 & 3 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1 & 2 \\ 0 & 2 & -2 \\ 0 & 0 & -1 \end{bmatrix} = \mathbf{LU}$
- elimination process.

 ▶ Ax = b becomes LUx = b: This is decomposed into two triangular systems, Ux = y, Ly = b.

LU factorization can be done only when no zero pivot is encountered during the Guassian

- Ax = b becomes $\mathbf{L}\mathbf{U}\mathbf{x} = \mathbf{b}$: This is decomposed into two triangular systems, $\mathbf{U}\mathbf{x} = \mathbf{y}$, $\mathbf{L}\mathbf{y} = \mathbf{b}$. First solve $\mathbf{L}\mathbf{y} = \mathbf{b}$ and then solve $\mathbf{U}\mathbf{x} = \mathbf{y}$
- Properties:
 - ▶ Diagonal elements of L are 1, and U are not equal to zero.
 - ▶ U is the final result of Guassian elimination, and L is the matrix that reverses this process.
 - ▶ Element l_{ij} of **L** is the multiple of row j used to eliminate the a_{ij} element of **A**.
- Uses of the LU factorization:
 - ▶ Solving $Ax = b_i$ for several b_i s. LU need to be calculated only once.
 - ▶ Factorization requires not extra space.

$\mathbf{PA} = \mathbf{LU}$ Factorization of a Matrix

- ► Consider the case: $\mathbf{A} = \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 2 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \neq \mathbf{LU}$
- ▶ It turns out the second pivot become zero after the first elimination step, so LU factorization cannot be done on A.
- ► The following however fixes this issue,

$$PA = LU$$

where, P is the permunation matrix, which is the elementary matrix for row exchanges.

▶ In the current example, the following allows matrix factorization.

$$\mathbf{PA} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 2 & 2 & 1 \\ 3 & 4 & 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 2 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & 1 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix} = \mathbf{LU}$$

Linear transformations

lackbox We had earlier seen linear functions of the form $f:\mathbb{R}^n\mapsto\mathbb{R}$, which could be expressed as,

$$y = f(\mathbf{x}) = \mathbf{w}^T \mathbf{x}; \ \mathbf{w}, \mathbf{x} \in \mathbb{R}^n, \ y \in \mathbb{R}$$

▶ A general version is when the range of the function is not in \mathbb{R} but in \mathbb{R}^m :

$$\mathbf{y} = f(\mathbf{x}); \ \mathbf{x} \in \mathbb{R}^n, \ \mathbf{y} \in \mathbb{R}^m$$

- ▶ Such a function has a natural representation of the form y = Ax, $A \in \mathbb{R}^{m \times n}$.
- ▶ Any linear transformation can be expressed as y = Ax.
- ▶ Matrices can be thought of as representing a particular linear transformation.

Another look at matrix multiplication

Why does matrix multiplication have this strange definition?

Consider the following two functions,

$$\mathbf{y} = f(\mathbf{x}) = \mathbf{A}\mathbf{x} \longrightarrow \begin{bmatrix} y_1 \\ y_2 \end{bmatrix} = f\begin{pmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} ax_1 + bx_2 \\ cx_1 + dx_2 \end{bmatrix} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$$

$$\mathbf{v} = g(\mathbf{u}) = \mathbf{B}\mathbf{u} \longrightarrow \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} = g\begin{pmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} \alpha u_1 + \beta u_2 \\ \gamma u_1 + \delta u_2 \end{bmatrix} = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\mathbf{z} = h(\mathbf{u}) = f(g(\mathbf{u})) = f\begin{pmatrix} \begin{bmatrix} \alpha u_1 + \beta u_2 \\ \gamma u_1 + \delta u_2 \end{bmatrix} \end{pmatrix} = \begin{bmatrix} a\alpha u_1 + a\beta u_2 + b\gamma u_1 + b\delta u_2 \\ c\alpha u_1 + c\beta u_2 + d\gamma u_1 + d\delta u_2 \end{bmatrix}$$

$$= \begin{bmatrix} (a\alpha + b\gamma) u_1 + (a\beta + b\delta) u_2 \\ (c\alpha + d\gamma) u_1 + (c\beta + d\delta) u_2 \end{bmatrix} = \begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix} \begin{bmatrix} u_1 \\ u_2 \end{bmatrix}$$

$$\mathbf{z} = \mathbf{A}(\mathbf{B}\mathbf{u}) = (\mathbf{A}\mathbf{B}) \mathbf{u} \implies \mathbf{A}\mathbf{B} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \begin{bmatrix} a\alpha + b\gamma & a\beta + b\delta \\ c\alpha + d\gamma & c\beta + d\delta \end{bmatrix}$$

This definition of matrix multiplication is the most natural for dealing with composition of linear transformations.

Four Fundamental Subspaces

 $ightharpoonup C(\mathbf{A})$: Column Space of \mathbf{A} – the span of the columns of \mathbf{A} .

$$C(\mathbf{A}) = {\mathbf{A}\mathbf{x} \mid \mathbf{x} \in \mathbb{R}^n} \subseteq \mathbb{R}^m$$

▶ $N(\mathbf{A})$: Nullspace of \mathbf{A} – the set of all $\mathbf{x} \in \mathbb{R}^n$ that are mapped to zero by \mathbf{A} .

$$N\left(\mathbf{A}\right) = \left\{\mathbf{x} \mid \mathbf{A}\mathbf{x} = \mathbf{0}\right\} \subseteq \mathbb{R}^n$$

▶ $C(\mathbf{A}^T)$: Row Space of \mathbf{A} – the span of the rows of \mathbf{A} .

$$C\left(\mathbf{A}^{T}\right) = \left\{\mathbf{A}^{T}\mathbf{y} \mid \mathbf{y} \in \mathbb{R}^{m}\right\} \subseteq \mathbb{R}^{n}$$

▶ $N(\mathbf{A}^T)$: Nullspace of \mathbf{A}^T – the set of all $\mathbf{y} \in \mathbb{R}^m$ that are mapped to zero by \mathbf{A}^T .

$$N\left(\mathbf{A}^{T}\right) = \left\{\mathbf{y} \mid \mathbf{A}^{T}\mathbf{y} = \mathbf{0}\right\} \subseteq \mathbb{R}^{m}$$

This is also called the **left nullspace** of **A**.

Linear Independence

- ▶ Given a set of vectors $\{\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_n\}$, $\mathbf{v}_i \in \mathbb{R}^m$, how can we determine if this set is linear independent?
- We need to verify, $a_1\mathbf{v}_1 + a_2\mathbf{v}_2 + \cdots + a_n\mathbf{v}_n = 0$

$$\begin{bmatrix} \mathbf{v}_1 & \mathbf{v}_2 & \cdots & \mathbf{v}_n \end{bmatrix} \begin{bmatrix} a_1 \\ a_2 \\ \vdots \\ a_n \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ \vdots \\ 0 \end{bmatrix} = \mathbf{Va} = \mathbf{0}$$
 $N(\mathbf{V}) = \{\mathbf{0}\}, \ rank(\mathbf{V}) = n$

- ▶ This is also equivalent to saying that when the $rank(\mathbf{A}) = n \implies$ the columns of \mathbf{A} form an independent set of vectors.
- ▶ When do the rows of A form an independent set?
- What about both rows and columns? When does that happen?

- Now solve the above for a different $\mathbf{b} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.
- $\begin{bmatrix}
 2 & -1 & 0 \\
 4 & 3 & 1 \\
 6 & -2 & 5 \\
 2 & 3 & 0
 \end{bmatrix}
 \begin{bmatrix}
 x_1 \\
 x_2 \\
 x_3
 \end{bmatrix} = \begin{bmatrix}
 -2 \\
 13 \\
 -17 \\
 14
 \end{bmatrix}$
- Now solve the above for a different $\mathbf{b} = \begin{bmatrix} 1 & 1 & 1 \end{bmatrix}^T$.

$$\begin{bmatrix}
2 & -1 & -2 \\
4 & 3 & 1
\end{bmatrix} \begin{vmatrix}
x_1 \\
x_2 \\
x_3
\end{vmatrix} = \begin{bmatrix}
1 \\
-2
\end{bmatrix}$$

- Now solve the above for a different $\mathbf{b} = \begin{bmatrix} 1 & 1 \end{bmatrix}^T$.
- Reduce this to the row echelon form:

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -4 & 1 \\ -1 & 2 & 2 \end{bmatrix}$$

Dimension and basis of the four fundamental subspaces

$$\mathbf{A} = \begin{bmatrix} 1 & -2 & 1 \\ 2 & -4 & 1 \\ -1 & 2 & 2 \end{bmatrix}; \ \mathbf{E}\mathbf{A} = \mathbf{R}$$

$$\underbrace{\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ -5 & 3 & 1 \end{bmatrix}}_{\mathbf{R}} \mathbf{A} = \underbrace{\begin{bmatrix} 1 & -2 & 1 \\ 0 & 0 & -1 \\ 0 & 0 & 0 \end{bmatrix}}_{\mathbf{R}}$$

Pivot cols of A:
$$\left\{ \begin{bmatrix} 1\\2\\-1 \end{bmatrix}, \begin{bmatrix} 1\\1\\2 \end{bmatrix} \right\}$$
 $N(\mathbf{A})$: $x_2 \begin{bmatrix} 2\\1\\0 \end{bmatrix}$

We can restructure
$$\mathbf{E}\mathbf{A}=\mathbf{R} oegin{bmatrix}\mathbf{E}_1\\\mathbf{E}_2\end{bmatrix}\mathbf{A}=egin{bmatrix}\mathbf{R}_1\\\mathbf{0}\end{bmatrix}$$

- **Column space** $C(\mathbf{A})$
 - $ightharpoonup \dim C(\mathbf{A}) = rank(\mathbf{A}) = r$
 - ▶ Basis of $C(\mathbf{A})$ = Pivot colums of \mathbf{A} .
- ightharpoonup Nullspace $N(\mathbf{A})$
 - $ightharpoonup \dim N(\mathbf{A}) = n r$
 - $\blacktriangleright \text{ Basis of } N(\mathbf{A}) = \{\mathbf{h}_1, \mathbf{h}_2 \dots \mathbf{h}_{n-r}\}.$
- **Proof** Row space $C(\mathbf{A}^T)$
 - $ightharpoonup \dim C(\mathbf{A}^T) = rank(\mathbf{A}^T) = rank(\mathbf{A}) =$
 - ▶ Basis of $C(\mathbf{A}^T)$ = Colums of \mathbf{R}_1^T .
- ▶ Left Nullspace $N(\mathbf{A}^T)$
 - $ightharpoonup \dim N(\mathbf{A}^T) = m r$
 - ▶ Basis of $N(\mathbf{A}^T) = \text{Colums of } \mathbf{E}_2^T$

Matrix Inverse

- ► Consider the square matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$. $\mathbf{B} \in \mathbb{R}^{n \times n}$ is the inverse of \mathbf{A} , if $\mathbf{A}\mathbf{B} = \mathbf{B}\mathbf{A} = \mathbf{I}_n$, and \mathbf{B} is represented as \mathbf{A}^{-1} .
- Not all matrices have inverses. A matrix with an inverse is called **non-singular**, otherwise it is called **singular**.
- ▶ For a non-singular matrix A, A^{-1} is unique. A^{-1} is both the left and right inverse.
- lacktriangle A matrix f A has an inverse, if and only if f A is full rank, i.e. $rank\left({f A}
 ight) = n$
- ▶ The inverse of a non-signular matrix can be determined through Gauss-Jordan method.

$$[\mathbf{A}|\mathbf{I}] \xrightarrow{\mathsf{Gauss-Jordan}} [\mathbf{I}|\mathbf{A}^{-1}]. \text{ Lets try: } \begin{bmatrix} 1 & -2 & 2 \\ 2 & 1 & 0 \\ 1 & 1 & -1 \end{bmatrix}$$

- ightharpoonup Ax = b can be solved as follows, $x = A^{-1}b$. It is never solved like this in practiwee.
- ▶ Inverse of product of matrices, $(\mathbf{AB})^{-1} = \mathbf{B}^{-1}\mathbf{A}^{-1}$.
- $(\mathbf{A}^{-1})^{-1} = \mathbf{A} \text{ and } (\mathbf{A}^{-1})^T = (\mathbf{A}^T)^{-1}$