s1: Simple test-time scaling Improving Reasoning by Spending More Time at Test-Time

Authors: Based in China (DeepSeek-AI)

Paper: https://arxiv.org/pdf/2501.19393 Code: https://github.com/simplescaling/s1

Presenter: Fae Gaze

Machine Learning Researcher in Bioinformatics

Why This Paper Matters A Sample-Efficient Reasoning Model

- Problem: Most large language models (LLMs) rely on static reasoning — what they know is fixed after training.
- Goal: Can we improve a model's reasoning just by letting it think longer at test-time, without retraining?
- Solution: This paper introduces Budget Forcing, a simple and effective method to do exactly that.
- Efficiency: s1-32B is trained on only 1,000 high-quality examples, yet performs comparably to models trained on 800K+ samples.
- Significance: Fully open-source, unlike OpenAl's 01 series.
- Result: Achieves state-of-the-art performance on reasoning benchmarks like AIME and GPQA.

Motivation

- Traditional LLMs are trained once → static outputs
- Can we get better performance at test-time without retraining?
- Inspired by OpenAI's o1 series but fully open!

Key Points: Can you Run s1-32B Yourself?

- It's open weight anyone can download and use it
- But it's large needs ~6oGB VRAM (not for regular laptops)
- Alternatives:
 - Run quantized versions (4-bit) on Mac using llama.cpp
 - Use **cloud services** (e.g. Colab, Hugging Face, Replicate)
- Good for learning and research even if you can't run it fully
- Great example of accessible AI open models help everyone explore reasoning

by controlling test-time thinking duration

[Improved Reasoning]

[Limited Reasoning]

What is **51-32B**?

Inside s1-32B: A Reasoning-Optimized Language Model

Component	Description
Base Model	Qwen2.5-32B-Instruct(released by Alibaba/Qwen team)
Finetuning Samples	1,000 (s1K dataset) carefully selected question—answer pairs, each with a reasoning trace.
Distillation Source	Gemini 2.0 Flash Thinking
Finetuning Type	Supervised (next-token prediction)
Time to Train	16 NVIDIA H100 GPUs in parallel 26 minutes (7 GPU-hours)[(26*16 GPU)/(60)]=7GPU hours

Figure 1 Overview

Section	Content
	Accuracy improves with more thinking token
Figure 1 Overview	Tasks: MATH500, AIME24, GPQA Diamond
Overview	Shows that more compute = more reasoning = higher scores
	30 elite math competition problems
Figure 1 Benchmarks	500 math problems from past contests
Used	198 PhD-level science questions

Figure 1. Test-time scaling with s1-32B. We benchmark s1-32B on reasoning-intensive tasks and vary test-time compute.

Figure 2: Compared Table, S1K vs 59 vs r1 vs O1

Model	Training Data Size	Uses RL?	Compute Budget	Notes
s1K	1,000 hand-picked examples	No	26 minutes on 16×H100 GPUs	Best efficiency; curated reasoning examples; nearly matches 59K/full
59K	~59,000 examples	No	Not specified (likely a few hours on same hardware)	Good performance; brute-force data; no RL used
r1	~800,000+ examples (varies by stage); trained on 14.8 trillion tokens	Yes	Massive — multi- stage training (pretrain + SFT + RL)	State-of-the-art open model; matches o1-level performance
01	Unknown (closed)	Unknown	Unknown (assumed massive)	Closed benchmark; introduced test- time scaling; no training details

Understanding the Core Metrics

Control:

100% = perfect control ✓
< 100% = model skips or overshoots ✓</p>

- Scaling:
- Positive slope = model gets better with more compute
- A negative slope means accuracy gets worse — bad sign

Control =
$$\frac{1}{|\mathcal{A}|} \sum_{a \in \mathcal{A}} \mathbb{I}(a_{\min} \le a \le a_{\max})$$
 (1)

Scaling =
$$\frac{1}{\binom{|\mathcal{A}|}{2}} \sum_{\substack{a,b \in \mathcal{A} \\ b>a}} \frac{f(b) - f(a)}{b - a}$$
 (2)

Performance =
$$\max_{a \in \mathcal{A}} f(a)$$
 (3)

Control: Does model stay within compute budget?

- •A = different compute settings (e.g., 1000, 2000, 3000 tokens)
- a_{\min} , a_{\max} refer to a pre-specified minimum and maximum amount of test-time compute; in our case thinking tokens.
- •f(b) and f(a) = accuracy at budget b and a

Scaling: Does accuracy improve with more tokens?

Performance: Max accuracy achieved on benchmark.

Budget Forcing (BF)

- Force the model to keep thinking
- Example: append "Wait" to delay final answer and expand its reasoning.
- Simple but powerful to control test-time compute.

Comparison of Test-Time Scaling Methods (Figure 4)

	Aspect	Sequential Scaling (s1 + Budget Forcing)	Parallel Scaling (Majority Voting)
	Benchmark	AIME24 (Math) & GPQA (Science)	GPQA (Science)
	Method	Forces model to keep thinking by adding "Wait"	Runs model multiple times and picks majority output
w w	Tokens Used	1024 → 2048 → 4096 → up to 8192	2, 4, 8, 16, 32, 64 runs (total ~100K–1M output tokens)
	Mechanism	Single, deeper chain of thought	Multiple shallow thoughts
	Performance Trend	Steady improvement with more tokens	Slight improvement but plateaus
	Peak Accuracy	60% on GPQA	~52-54% on GPQA
	Strengths	Strong for logical, multi-step reasoning	Simple to implement, uses ensemble behavior
	Limitations	May hit context window limit (e.g., 8K tokens)	Can't go deeper, even with more outputs
	Example Prompt	"Let's think step-by-step Wait."	"What's the answer?" (run many times)

Models Compared of Table 1

Category	Model Examples	LLM Type	Test-Time Scaled?	Open Weights?	Open Data?	Training Size	Remarks
API Only	01, 01-mini, Gemini	Yes (LLM)	NA	NO	NO	NA	Powerful but closed. Test-time scaling results not fully public.
Open Weights	Owen2.5- 32B, r1	Yes	Qwen: No R1: Yes	Yes	NO	r1: 800K+ reasoning samples	r1 is a reasoning-optimized LLM; Qwen is general-purpose.
Open + Open Data	s1-32B, Bespoke- 32B	Yes	Yes	Yes	Yes	s1: 1K curated examples	Fully reproducible

Overview of Table 2

- Compared other training setups:
- Random 1K: Grab 1,000 questions from anywhere some easy, some useless
- Diverse 1K: Mix topics well, but not all are hard
- Longest 1K: Choose the most complicatedlooking ones
- Full 59K dataset: From the same data pool that s1K was sampled from
- s1K (hand-curated) outperformed all 1K variants
- 59K model is stronger, but much more expensive

Model	AIME 2024	MATH 500	GPQA Diamond
1K-random	36.7 [-26.7%, -3.3%]	90.6 [-4.8%, 0.0%]	52.0 [-12.6%, 2.5%]
1K-diverse	26.7	91.2	54.6
1K-longest	[-40.0%, -10.0%] 33.3	[-4.0%, 0.2%] 90.4	[-10.1%, 5.1%] 59.6
59K-full	[-36.7%, 0.0%] 53.3	[-5.0%, -0.2%] 92.8	[-5.1%, 10.1%] 58.1
J9K-Iuli	[-13.3%, 20.0%]	[-2.6%, 2.2%]	[-6.6%, 8.6%]
s1K	50.0	93.0	57.6

Figure 5 (Model Output Examples)

Benchmark	Reasoning Type	Final Answer
AIME24	Game theory	809
MATH500	Vector algebra	(16/49,)
GPQA	Quantum Physics	$h\sqrt{\frac{k}{m}}(2nx + ny + 3/2)$

Main Methods Compared (Table 3)

Method	Description
BF (Budget Forcing)	Force the model to reason longer using prompts like "Wait"
TCC (Token Conditional Control)	Stop or continue reasoning based on token count
SCC (Step Conditional Control)	Control based on number of reasoning steps
CCC (Class Conditional Control)	Condition reasoning on task class/type
RS (Rejection Sampling)	Sample multiple outputs and keep the best

Test Time Scaling Methods of Table 3

Table 3. Ablations on methods to scale test-time compute on AIME24. $|\mathcal{A}|$ refers to the number of evaluation runs used to estimate the properties; thus a higher value indicates more robustness. **Bold** indicates our chosen method and the best values. BF = budget forcing, TCC/SCC/CCC = token/step/class-conditional control, RS = rejection sampling.

Method	Control	Scaling	Performance	$ \mathcal{A} $
BF	100%	15	56.7	5
TCC	40%	-24	40.0	5
TCC + BF	100%	13	40.0	5
SCC	60%	3	36.7	5
SCC + BF	100%	6	36.7	5
CCC	50%	25	36.7	2
RS	100%	-35	40.0	5

	Method	Good at	Verdict
Budget Forcing	BF	Control, Scaling, Accuracy	Best Overall
Token Conditional Control	TCC	Nothing	Poor control, negative scaling, (Fails)
	TCC+BF	Control & Good Scaling	Still bad
Step Conditional Control	SCC	Small Scaling	Weak Scaling
	SCC+BF	Control	Still Weak
Class Conditional Control	CCC	Best Scaling	Good Scaling, Low score
Rejection Sampling	RS	Control	Inefficient(Wate s Compute)

Budget Forcing vs. Soft Budget Forcing

Model	AIME 2024	MATH 500	GPQA Diamond
No extrapolation	50.0	93.0	57.6
2x without string	50.0	90.2	55.1
2x "Alternatively"	50.0	92.2	59.6
2x "Hmm"	50.0	93.0	59.6
2x "Wait"	53.3	93.0	59.6

- "Wait" (hard BF) is best for logic-heavy tasks like AIME
- "Hmm?" and "Alternatively" (soft BF) work just as well on science/math tasks like GPQA and MATH500
- No extrapolation = the model is allowed to naturally stop thinking when it wants — no additional prompting is added to force longer reasoning.

"2x without string": You force the model to generate 2x its normal length

Why Rejection Sampling (RS) Fails

Figure 6. Rejection sampling on AIME24 with s1-32B. We sample with a temperature of 1 until all generations have less than (from left to right) 3500, 4000, 5000, 8000, and 16000 thinking tokens requiring an average of 655, 97, 8, 3, 2, and 1 tries per sample.

We keep generating responses while they are less than 3500.
 Once we get one greater than or equal to 3500, we stop.

Target Tokens (N)	Average Thinking Time (tokens)	Average Tries Per Sample
3500	3072	655 tries
4000	4096	97 tries
5000	5120	8 tries
8000	8000	3 tries
3500	16000	1 tries

Two Paths — Parallel and Sequential Scaling

Method	What It Does	What It Does	What It Does	What It Does
Parallel Scaling	Runs multiple generations in parallel, then selects the best answer	- Majority Voting - REBASE((reward- based search)	Higher accuracy Robust to noise	Expensive (multiple forward passes)
Sequential Scaling	Generates and refines answer step-by-step in a single pass	- Budget Forcing ("Wait")	More efficient Competitive accuracy	Flattens at long token lengths (e.g., 32K+)

Limits of Test-Time Scaling

- The model's architecture limits (e.g. context window)
- Lack of more reasoning paths
- Possible infinite loops when the model "waits" forever

Why Budget Forcing **Eventually Drops?** Why Doesn't More Thinking Always Help?

60

Accuracy (%)

8192

Method	Behavior with More Tokens	Accuracy Trend	Why It Drops or Flattens
Sequential Scaling	- Begins at 2048 tokens, goes up to ~32K+ - Runs reasoning in one long path	Improves until ~56–57%, then drops	 Model Saturation: Runs out of useful knowledge Context Overflow: Earlier logic gets forgotten "Wait" Trap: Model loops or stalls
Majority Voting	- Aggregates 16 reasoning paths - Slight improvement over sequential	Slight boost over Sequential	Same issues as Sequential, but more robust due to path diversity
REBASE	- Uses a reward model to score 512 reasoning paths - Picks highest- quality answer	Peaks ~60% on AIME24	Flattens after 32K due to diminishing returns — more tokens yield less gain per token

Visualization from Fig 7

Method	Behavior with More Tokens	Accuracy Trend	Why It Drops or Flattens
Sequential Scaling	- Begins at 2048 tokens, goes up to ~32K+ - Runs reasoning in one long path	Improves until ~56–57%, then drops	1. Model Saturation: Runs out of useful knowledge 2. Context Overflow: Earlier logic gets forgotten 3. "Wait" Trap: Model loops or stalls
Majority Voting	Aggregates 16reasoning pathsSlight improvementover sequential	Slight boost over Sequential	Same issues as Sequential, but more robust due to path diversity
REBASE	 Uses a reward model to score 512 reasoning paths Picks highest-quality answer 	Peaks ~60% on AIME24	Flattens after 32K due to diminishing returns — more tokens yield less gain per token

Example Workflow:

- **1. Generate 512 reasoning attempts** per question:
 - Some short, some long
 - Some correct, some incorrect
- 2. For each attempt G_i, compute:

R(G_i)=Reward model score

(High score = better alignment with expert reasoning)

3.Pick:

$G^* = argm_i axR(G_i)$

- \rightarrow This becomes the final answer.
- Why is REBASE Better?
- It selects the *best quality answer*, not just the most frequent one.
- Combines reward-guided search + aggregation
- Helps avoid:
 - Circular reasoning
 - Overconfidence in wrong answers
 - Verbose fluff from Budget Forcing

Comparison of Strategies on Same Question

Attempt	Final Answer	Reasoning Steps	Reward Score	Notes
$G_\mathtt{1}$	404	3	0.45	Fast, guessed
G_{2}	409	6	0.41	Wrong logic
G ₁₂	809	9	0.92	Correct and aligned
G ₄₅	809	20	0.75	Too long, but right

Limits of Test-Time Scaling

- Even with Budget Forcing, we hit a ceiling: performance flattens out.
- This is due to:
- The **model's architecture limits** (e.g. context window)
- Lack of more reasoning paths
- Possible infinite loops when the model "waits" forever

Scaling, Control, and Performance — The Big Picture

Metric	Why It Matters	Best Method
Scaling	Accuracy should increase with tokens	BF, CCC
Control	Keep thinking time within budget	BF, RS
Performance	Final accuracy on real benchmarks	REBASE, BF

Method	Scaling	Control	Accuracy	Notes
BF			▼ 56.7%	Efficient, simple, best all-rounder
Soft BF	▼		~56%	Good on science, weaker on logic
REBASE	₩	NA	€60%	Best accuracy, higher compute
Majority Vote		NA	▼ 58%	Simpler than REBASE
ccc	V	×	×36%	Cheats token limit
RS	×	V	× 27%	Inverse scaling, wasted compute

Core Contributions of the Paper:

- **s1-32B model** trained on only **1,000 samples**
- Introduced Budget Forcing controls test-time compute with "Wait" prompts
- Strong results on math (AIME24), science (GPQA), and algebra (MATH500)
- Defined 3 evaluation metrics: Control, Scaling,
 Performance
- Showed failures of traditional methods (RS, TCC, CCC)
- Introduced REBASE reward-based answer selection that reaches 60% AIME24 accuracy

