CONDIZIONAMENTO e STABILITÀ	
FATTORIZZAZIONE LR o LU	2
FATTORIZZAZIONE LU CON PIVOT	2
FATTORIZZAZIONE DI CHOLESKY	3
INTERPOLAZIONE	3
CHEBYSHEV	3
NUMERO DI CONDIZIONAMENTO	3
NORME	4
PUNTI DI MASSIMO E MINIMO	5
DIREZIONI E METODI DI DISCESA	5
MINIMI QUADRATI	

Floating Point

Si definisce insieme dei numeri macchina (floating-point) con t cifre significative, base β e range (L,U), l'insieme dei numeri reali definito nel modo seguente

$$\mathbb{F}(\beta, t, L, U) = \left\{0\right\} \cup \left\{x \in \mathbb{R} = \operatorname{sign}(x)\beta^{p} \sum_{i=1}^{t} d_{i}\beta^{-i}\right\}$$

ove t,β sono interi positivi con $\beta \geq 2$. Si ha inoltre

$$0 \le d_i \le \beta - 1, \quad i = 1, 2, \dots$$

$$d_1 \ne 0, \quad L \le p \le U$$

Usualmente U è positivo e L negativo.

I numeri dell'insieme $\mathbb F$ sono ugualmente spaziati tra le successive potenze di β , ma non su tutto l'intervallo.

Esempio
$$\beta = 2$$
, $t = 3$, $L = -1$, $U = 2$.

$$\mathbb{F} = \{0\} \cup \{0.100 \times 2^p, \underbrace{0.101} \times 2^p, \underbrace{0.110} \times 2^p, \underbrace{0.111} \times 2^p, \; p = -1, 0, 1, 2\}$$

dove 0.100, 0.101, 0.111, 0.111 sono tutte le possibili mantisse e p il valore dell'esponente.

- In rappresentazione posizionale un numero macchina $x \neq 0$ viene denotato con $x = \pm .d_1d_2 \dots d_t\beta^p$
- ► La maggior parte dei calcolatori ha la possibilità di operare con lunghezze diverse di t, a cui corrispondono, ad esempio, la semplice e la doppia precisione.
- \blacktriangleright E' importante osservare che l'insieme $\Bbb F$ non è un insieme continuo e neppure infinito.

Come rappresentare un numero reale positivo x in un sistema di numeri macchina $\mathbb{F}(\beta,t,L,U)$?

- Il numero x è tale che $L \le p \le U$ e $d_i = 0$ per i > t; allora x è un numero macchina ed è rappresentato esattamente.
- p ∉ [L, U]; il numero non può essere rappresentato esattamente. Se p < L, si dice che si verifica un underflow; solitamente si assume come valore approssimato del numero x il numero zero. Se p > U si verifica un overflow e solitamente non si effettua nessuna approssimazione, ma il sistema di
 calcolo dà un avvertimento più drastico, come ad esempio, l'arresto del calcolo.

Se una matrice A n imes n ha un autovettore $\lambda = 0$, allora A e' singolare.

Il costo computazionale per la risoluzione di un sitema triangolare e' di :

$$O\left(\frac{n^2}{2}\right)$$

CONDIZIONAMENTO e STABILITÀ

- Un algoritmo è stabile se l'errore algoritmico è limitato
 - o Può essere limitato da una costante c o da un'espressione
- Un <u>sistema lineare</u> è mal condizionato se l'errore relativo sul **risultato** è grande rispetto all'errore relativo sui **dati**
- Un sis. lineare è mal condizionato se il numero di condizione della matrice è grande
- Un problema è mal condizionato se ad una piccola perturbazione sui dati corrisponde una grande perturbazione sul risultato

$$K_2 = rac{
ho}{\lambda_{min}}$$

dove ho è il raggio spettrale e λ_{min} è il più piccolo degli autovalori

FATTORIZZAZIONE LR o LU

- Non è sempre possibile
 - Ad esempio se un perno per cui dividere è 0
 - Oppure se A è singolare
- Potrebbe non essere esatta se si presentano errori di arrotondamento
- Costo computazionale di $O(\frac{n^3}{2})$

FATTORIZZAZIONE LU CON PIVOT

Usando la fattorizzazione LU con pivoting (PA=LU) il sistema Ax=b si puo' risolvere risolvendo i due sistemi triangolari:

$$\begin{cases} Ly = Pb \\ Ux = y \end{cases}$$

Ogni matrice A $n \times n$ non singolare e' fattorizabile PA = LU, con P matrice di permutazione, L matrice triangolare inferiore con tutti 1 sulla diagonale e U triangolare superiore non singolare.

FATTORIZZAZIONE DI CHOLESKY

- Ogni matrice A simmetrica e definita positiva si può fattorizzare come prodotto di due matrici triangolari L e L' dove <u>L' è la trasposta di L</u>
- Costo computazionale di $O(\frac{n^3}{6})$ è minore della fattorizzazione LR

•

INTERPOLAZIONE

- Interpolando punti equispaziati l'errore di interpol. aumenta all'aumentare dei punti.
- Per ogni insieme di coppie $\{x_i, y_i\}$, con i= 0 ... n e i nodi x_i distinti tra loro, <u>esiste un</u> <u>unico poliniomio di grado \leq n, che chiamiamo polinomio interpolatore</u> degli y_i negli x_i
- Esistono infiniti polinomi di grado n che interpolano n punti
 - o ma solo uno che ne interpola n+1

Vi e' un numero arbitrario grande di funzioni matematiche che interpolano un dato insieme di punti.

CHEBYSHEV

- NON si trovano per forza in [-5, 5], ma attenzione
- Non sono equispaziati
- Scelta dei punti di Chebyshev come ascisse dei dati = interpolazione più stabile

NUMERO DI CONDIZIONAMENTO

- In generale:
 - $K(A) = ||A^{-1}|| * ||A||$ (commutativa) \rightarrow dipende solo dalla matrice
 - K(A) esiste solo per matrici quadrate non singolari
 - K (A) piccolo ~ n^p , p = 0, 1, 2, 3 \rightarrow Problema ben condizionato.
 - K (A) grande ~ 10^{n} → Problema mal condizionato
 - Es: la matrice di Hilbert $\rightarrow h_{i,j} = 1 / i+j-1$ con i, j = 1...n
 - o K(A) dipende dalla norma usata ma l'ordine di grandezza è sempre lo stesso
 - Si dimostra che per tutte le norme p, $K(A) \ge 1$
 - Si dimostra che 1/K(A) è la minima distanza tra A^{nxn} e B, dove B è la più vicina matrice appartenente all'insieme delle matrici singolari
 - Questo significa che se K(A) è alto, la matrice A si comporta <u>quasi</u>
 come una matrice singolare (il sistema non ha soluzioni) quindi, in questo caso, la soluzione è molto sensibile ai dati

NORME

• Le norme p sono tutte <u>equivalenti</u>, ovvero:

○
$$\exists c_1, c_2 > 0 \text{ tali che: } c_1^* ||x||_p \le ||x||_q \le c_2^* ||x||_p$$
 con $1 < p, q < \infty$

La classe più importante di norme vettoriali è costituita dalle norme p:

$$||x||_p = \left(\sum_{i=1}^m |x_i|^p\right)^{1/p}, \quad 1 \le p < \infty$$

Altre norme importanti sono:

NORMA	DEFINIZIONE	ESEMPIO
Norma Euclidea p=2	$ x _2 = \left(\sum_{i=1}^m x_i ^2\right)^{1/2} = x^{\mathbf{T}} x$	x = (-1, 2,3) $ x _2 = \sqrt{1^2, 2^2, 3^2} = \sqrt{14}$
Norma 1 p=1	$ x _1 = \sum_{i=1}^m x_i $	x = (-1, 2,3) x ₁ = (-1 + 2 + 3) = 6
Norma infinito	$ x _{\infty} = \max_{1 \le i \le m} x_i $	x = (-1, 2,3) $ x _{\infty} = \max(-1 , 2 , 3) = 3$

A ₁	$\max \sum_{i=1}^{m} a_{i,j} \text{ per } 1 \le j \le n$
A _∞	$\max \sum_{j=1}^{n} a_{i,j} \text{ per } 1 \le i \le n$
Norma di Frobenius	$ A _F = \left(\sum_{i=1}^m \sum_{i=1}^n a_{i,j} ^2\right)^{1/2}$
A ₂	$\sqrt{\rho \ (A \cdot A^T)}$ Dove ρ è il raggio spettrale ovvero l'autovalore massimo in modulo

Se A e' una matrice quadrata $n \times n$, allora:

$$||A||_2 = \sqrt{\max_{\lambda \in A^T A} \lambda} \qquad ||A||_2 = \rho(A^T A).$$
 $||A||_{\infty} = \max_i \sum_{j=1}^n |a_{ij}|.$

PUNTI DI MASSIMO E MINIMO

- **Teorema** (Condizioni **necessarie** del primo ordine): se x^* è un punto di minimo locale e f è differenziabile con continuità in un intorno aperto di x^* , allora $\nabla f(x^*) = 0$. Un punto x^* tale che $\nabla f(x^*) = 0$ si chiama <u>punto stazionario</u> (minimo, massimo, sella).
- **Teorema** (Condizioni **necessarie** del secondo ordine): se x^* è un punto di minimo locale di f e f è <u>due volte</u> differenziabile con continuità in un intorno aperto di x^* , allora $\nabla f(x^*) = 0$ e $\nabla^2 f(x^*)$ è <u>semidefinita positiva</u>.
- Teorema (Condizioni sufficienti del secondo ordine): se:
 - f è due volte differenziabile con continuità in un intorno aperto di x*;
 - \circ $\nabla f(x^*) = 0$ (condizione di punto stazionario);
 - o $\nabla^2 f(x^*)$ è definita positiva.

Allora x* è un punto di minimo in senso stretto di f.

- Se f è convessa un punto di minimo locale è un punto di minimo globale. In particolare:
 - o f convessa \rightarrow ogni punto di minimo locale x^* è punto di minimo globale di f.
 - \circ f strettamente convessa \rightarrow esiste un unico punto di minimo globale.
 - **■** E OGNI STAZIONARIO È MINIMO GLOBALE

DIREZIONI E METODI DI DISCESA

Definizione: Il vettore p è una direzione di discesa in f se esiste un $\alpha > 0$ tale che

$$f(x + \alpha p) < f(x) \forall \alpha \in]0, \underline{\alpha}]$$

Lemma: Sia $f \in C^1$, il vettore p è una direzione di discesa di f in x se $p^T \nabla f(x) < 0$

- ullet Un metodo di discesa garantisce $f(x_k+1) < f(x_k)$ k=0,1,2...
- Nei metodi di discesa si calcola $\mathbf{x}_{k+1} = \mathbf{x}_k + \mathbf{a}_k \mathbf{p}_k$
- Nel metodo del gradiente la dir. di discesa di f in $x_k \stackrel{.}{e} \nabla f(x_k)$
- $-\nabla f(x_k) \neq 0$) è sempre una direzione di discesa
- Un m.di discesa convergente converge al minimo locale (se str. convessa è globale)

MINIMI QUADRATI

Sia A una matrice $m \times n$, con m > n e $rg(A) = k \le n$.

Allora il problema min $||Ax - b||_2^2$

- Ammette sempre almeno una soluzione;
- Se k = n (rango massimo) il problema ha una ed una sola soluzione;
 - Si risolve con equazioni normali -> $A^T * Ax = A^Tb$
- Se k < n il problema ha infinite soluzioni ;
 - Tali soluzioni formano un sottospazio di Rⁿ di dimensione n k
 - Si risolve con scomposizione SVD (in valori singolari)
 - SVD SI PUÒ FARE SU QUALUNQUE MATRICE (anche per comprimerla)
 - Valori singolari $\sigma_1 \ge \sigma_2 \ge ... \ge \sigma_k > \sigma_{k+1} = \sigma_{k+2} = \sigma_n = 0$ dove k = rg(A) "ha esattamente r(r = rg(A)) valori singolari > 0"