Understanding Deep Neural Networks

Chapter Four

BP: An Illustrating Example

Zhang Yi, *IEEE Fellow*Autumn 2018

Outline

- ■Brief Review of Backpropagation Algorithm
- ■An Illustrating Example
- Experiments
- Assignment

Brief History of BP

CHAPTER 8

Learning Internal Representations by Error Propagation

Professor P. Werbos

Computational Model of Neural Networks

Local function defined on neuron

Local activation function *f*

Global cost function J

Global function defined on network

One Page to Understand BP

Cost function: $J(w^1, \dots, w^L)$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l}$

Relationship: $\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$

l layer i^{th} neuron

BP Functions

Cost function: $J(w^1, \dots, w^L)$

Updating rule: $w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l}$

Relationship: $\frac{\partial J}{\partial w_{ii}^l} = \delta_j^{l+1} \cdot a_i^l$

forward computing a^l

l layer i^{th} neuron

$$\delta_i^l = f(z_i^l)$$

$$\delta_i^l = \frac{\partial J}{\partial z_i^l}$$

% forward computing

function
$$fc(w^l, a^l)$$

 $for i = 1: n_{l+1}$

$$z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$$

$$a_i^{l+1} = f(z_i^{l+1})$$

end

%backpropagation

function
$$bc(w^l, \delta^{l+1})$$

for $i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$

end

The BP Algorithm

BP Algorithm:

Step 1. Input the training data set $D = \{(x, y)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For each mini-batch sample $D_m \subseteq D$

$$a^{1} \leftarrow x \in D_{m};$$

for $l = 2: L$
 $a^{l} \leftarrow fc(w^{l}, a^{l});$
end
 $\delta^{L} = \frac{\partial J}{\partial z^{L}};$
for $l = L - 1: 2$
 $\delta^{l} \leftarrow bc(w^{l}, \delta^{l+1});$
end
 $\frac{\partial J}{\partial w^{l}_{ij}} \leftarrow \frac{\partial J}{\partial w^{l}_{ij}} + \delta^{l+1}_{j} \cdot a^{l}_{i};$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l};$$

Step 5. Return to Step 3 until each w^l converge.

function $fc(w^l, a^l)$ $for i = 1: n_{l+1}$ $z_i^{l+1} = \sum_{j=1}^{n_l} w_{ij}^l a_j^l$ $a_i^{l+1} = f(z_i^{l+1})$ end

Relationship:
$$\frac{\partial J}{\partial w_{ji}^l} = \delta_j^{l+1} \cdot a_i^l$$

function
$$bc(w^l, \delta^{l+1})$$

 $for i = 1: n_l$

$$\delta_i^l = \dot{f}(z_i^l) \cdot \left(\sum_{j=1}^{n_{l+1}} w_{ji}^l \delta_j^{l+1}\right)$$
end

Outline

- ■Brief Review of Backpropagation Algorithm
- ■An Illustrating Example
- **E**xperiments
- Assignment

Handwritten digits recognition problem

Dataset: MNIST_small

MNIST is a database of handwritten digits created by "re-mixing" the samples from MNIST's original datasets. It contains digits written by high school students and employees of the United States Census Bureau. The digits have been size-normalized and centered in 28 × 28 images.

MNIST_small dataset is a subset of MNIST containing 10000 training samples and 2000 testing samples.

Download link:

MNIST http://yann.lecun.com/exdb/mnist/

MNIST_small: https://github.com/kswersky/nnet/blob/master/mnist_small.mat

mnist_small_mat lab.mat

Training set

Used for training network

☐ 10000 samples

28 100000

Data

- ☐ Used for evaluating network performance
- ☐ 2000 samples

The input image is a $28 \times 28 = 784$ dimensional vector, relatively large in some situation.

A good idea is to divide the image into some small parts.

Step 1: Prepare Data Preparation

Training set

- ☐ Used for training network
- □ 10000 samples
- each sample contains four elements

Training Data 28 10000

Training Data

Testing set

- ☐ Used for evaluating network performance
- □ 2000 samples
- each sample contains four elements

Step 2: Design Network Architecture

Network architecture design:

- 1. Number of layers
- 2. Number of neurons in each layer (external neurons and internal neurons)
- 3. Activation function

Step 2: Design Network Architecture

Step 3: Initial Weights and Learning Rate

Initialize Weight Connections

Random initialization:

Method 1: Gaussian distribution: $w_{ij}^l \sim N(0,1)$

Method 2: Uniform distribution: $w_{ij}^l \sim U(-r^l, r^l)$

$$r^l = \sqrt{\frac{6}{p^l + q^{l+1}}}$$

 p^l : number of neurons in l layer

 q^{l+1} : number of internal neurons in l+1 layer

Initialize Internal Representation of Layer 1:

$$a_i^1=0$$
,

or

$$a_i^1=1,$$

. . .

Step 3: Initialization and Learning Rate

Learning rate:

- Small: slow learning, long learning time.
- Large: fast learning, possibly not converge to minima.

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$$

$$\alpha = \cdots$$
, 0.5, 1, 2, 4, \cdots

Step 4: Define Cost Function

Step 5: Define Evaluation Index

$$Accuracy = \frac{number\ of\ correct\ prediction}{number\ of\ samples}$$

Test on training set:

- Reflect the progress of training.
- Evaluate the ability of the model to fit given data.

Test on testing set:

• Evaluate the ability of the model to generalize the knowledge.

Step 6: Train the Network

Training Data

Updating weights

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ji}^l}$$

Step 7: Test the Network

Calculating the Evaluation index

$$Accuracy = \frac{number\ of\ correct\ prediction}{2000}$$

Step 8: Store the Network Parameters

Step 9: Using Trained Network for Applications

Outline

- ■Brief Review of Backpropagation Algorithm
- ■An Illustrating Example
- **■**Experiments
- Assignment

Experiments: Data Preparation


```
% prepare the data set
load mnist_small_matlab.mat
```


Training Data

Label


```
% prepare training data
train size = 10000;
X train\{1\} = reshape(trainData(1:14,1:14,:),[],train size); % top-left
X_{train}{2} = reshape(trainData(15:28,1:14,:),[],train_size); % bottom-left
X_train{3} = reshape(trainData(15:28,15:28,:),[],train_size); % bottom-right
X_train{4} = reshape(trainData(1:14,15:28,:),[],train_size); % top-right
X_train{5} = zeros(0, train_size);
X_train{6} = zeros(0, train_size);
X_train{7} = zeros(0, train_size);
X_train{8} = zeros(0, train_size);
% prepare testing data
% . . .
                        1...14 15 ... 28
                                       1: top-left 2: bottom-left 3: bottom-right 4: top-right
                                                                                No external input here
```

Experiments: Architecture

Experiments: Initialize Weights

Gaussian distribution: $w_{ij}^l \sim N(0,1)$

```
% initialize weights
for l = 1:L-1
    w{l} = randn(layer_size(l+1,2), sum(layer_size(l,:)));
end
```

Uniform distribution: $w_{ij}^l \sim U(-r^l, r^l)$

$$r^l = \sqrt{\frac{6}{p^l + q^{l+1}}}$$

 p^{l} : number of neurons in l layer q^{l+1} : number of internal neurons in l+1 layer

Experiments: Run the Network

```
Learning rate % choose parameters
alpha = 1;
max_iter = 300;
mini_batch = 100;

Number of samples in a batch
```

```
% loop until converge
for iter = 1:max_iter
% for each mini-batch
% batch forward computation
% batch backward computation
% cumulate and update weight
end
Mini-batch BP implement
```


BP Algorithm:

Step 1. Input the training data set $D = \{(x, y)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For each mini-batch sample
$$D_m \subset D$$

$$a^{1} \leftarrow samples \ in \ D_{m}$$
for $l = 2$: L
 $a^{l} \leftarrow fc(w^{l}, a^{l});$
end
 $\delta^{L} = \frac{\partial J}{\partial z^{L}};$
for $l = L - 1$: 2
 $\delta^{l} \leftarrow bc(w^{l}, \delta^{l+1});$
end
 $\frac{\partial J}{\partial w^{l}_{ji}} \leftarrow \frac{\partial J}{\partial w^{l}_{ji}} + \delta^{l+1}_{j} \cdot a^{l}_{i};$

Step 4. Updating

$$w_{ji}^l \leftarrow w_{ji}^l - \alpha \cdot \frac{\partial J}{\partial w_{ii}^l};$$

Step 5. Return to Step 3 until each w^l converge.

Experiments: mini-batch BP

```
shuffle index
ind = randperm(train_size);
                                                                         a\{1\} a\{2\} a\{3\} a\{4\} a\{5\} a\{6\} a\{7\}
% for each mini-batch
for k = 1:ceil(train_size/mini_batch)
    % prepare internal inputs
    a{1} = zeros(layer_size(1,2),mini_batch);
    % prepare external inputs
    for 1=1:L
        x\{1\} = X_{train}\{1\}(:,ind((k-1)*mini_batch+1:min(k*mini_batch, train_size)));
    end
    % prepare labels
    y = double(trainLabels(:,ind((k-1)*mini_batch+1:min(k*mini_batch, train_size))));
    % forward computation
    % cost function and error
    % backward computation
    % update weight
                                                                       28
end
                                                                              28
                                                                                                    mini-batch
                                                                           training data
```

 $x\{1\}$ $x\{2\}$ $x\{3\}$ $x\{4\}$

Experiments: BP

```
% forward computation
for l=1:L-1
    [a\{l+1\}, z\{l+1\}] = fc(w\{l\}, a\{l\}, x\{l\});
end
% Compute delta of last layer
delta\{L\} = (a\{L\} - y).* a\{L\} .*(1-a\{L\});
% backward computation
for l=L-1:-1:2
    delta{1} = bc(w{1}, z{1}, delta{1+1});
end
% update weight
for l=1:L-1
    gw = delta\{1+1\} * [x\{1\};a\{1\}]' / mini_batch;
    w\{1\} = w\{1\} - alpha * gw;
end
```


BP Algorithm:

Step 1. Input the training data set $D = \{(x, y)\}$

Step 2. Initial each w_{ij}^l , and choose a learning rate α .

Step 3. For each mini-batch sample $D_m \subset D$

$$a^{1} \leftarrow samples \ in \ D_{m}$$

$$\text{for } l = 2 \colon L$$

$$a^{l} \leftarrow fc(w^{l}, a^{l});$$

$$\text{end}$$

$$\delta^{L} = \frac{\partial J}{\partial z^{L}};$$

$$\text{for } l = L - 1 \colon 2$$

$$\delta^{l} \leftarrow bc(w^{l}, \delta^{l+1});$$

$$\text{end}$$

$$\frac{\partial J}{\partial w^{l}_{ji}} \leftarrow \frac{\partial J}{\partial w^{l}_{ji}} + \delta^{l+1}_{j} \cdot a^{l}_{i};$$

$$\text{Step 4. Updating}$$

$$w^{l}_{ji} \leftarrow w^{l}_{ji} - \alpha \cdot \frac{\partial J}{\partial w^{l}_{ji}};$$

Step 5. Return to Step 3 until each w^l converge.

Experiments: Plotting

Cost function

$$J = \frac{1}{2} \sum_{j=1}^{n_L} (a_j^L - y_j^L)^2$$


```
% cost function
J = [J 1/2/mini_batch*sum((a{L}(:)-y(:)).^2)];
figure
plot(J);
```

Accuracy

 $Acc = \frac{number\ of\ correct\ prediction}{number\ of\ samples}$ Use max output as prediction


```
% accuary on training batch
[~,ind_train] = max(y);
[~,ind_pred] = max(a{L});
Acc= [Acc sum(ind_train == ind_pred) / mini_batch];
figure
plot(Acc);
```

Experiments: Testing

```
% test on training set
a{1} = zeros(layer_size(1,2),train_size);
for l=1:L-1
    a{1+1} = fc(w{1}, a{1}, X_train{1});
end
[~,ind_test] = max(trainLabels);
[~,ind_pred] = max(a{L});
train_acc = sum(ind_test == ind_pred)/train_size;
fprintf('Accuracy on training dataset is %f%%\n', train_acc*100);
```

```
% test on testing set
a{1} = zeros(layer_size(1,2),test_size);
for l=1:L-1
    a{1+1} = fc(w{1}, a{1}, X_test{1});
end
[~,ind_test] = max(testLabels);
[~,ind_pred] = max(a{L});
test_acc = sum(ind_test == ind_pred)/test_size;
fprintf('Accuracy on testing dataset is %f%%\n', test_acc*100);
```

Experiments: Store the Network Parameters

```
% save model
save model.mat w layer_size
```


This is very important!

Results: Learning Rate

```
% learning rate
alpha = 0.5;
```


Accuracy

- Training=98.05%
- Testing=94.40%

Accuracy

- Training=99.14%
- Testing=95.40%

Accuracy

- Training=71.02%
- Testing=69.25%

Results: Number of Layers

8 layers

Accuracy Training=98.65% Testing=95.10%

Outline

- ■Brief Review of Backpropagation Algorithm
- ■An Illustrating Example
- Experiments
- Assignment

Assignment

Implement the handwritten digits recognition by MATLAB using only one layer of external input.

