Atomic and immediate snapshots

SLR206, P3, 2019

The space of registers

- Nb of writers and readers: from 1W1R to NWNR
- Size of the value set: from binary to multi-valued
- Safety properties: safe, regular, atomic

All registers are (computationally) equivalent!

Transformations

From 1W1R binary safe to 1WNR multi-valued atomic

- From safe to regular (1W1R)
- II. From one-reader to multiple-reader (regular binary or multi-valued)
- III. From binary to multi-valued (1WNR regular)
- IV. From regular to atomic (1W1R)
- v. From 1W1R to 1WNR (multi-valued atomic)
- VI. From 1WNR to NWNR (multi-valued atomic)
- VII. From safe bit to atomic bit (optimal, coming later)

This class

- Atomic snapshot: reading multiple locations atomically
 - ✓ Write to one, read all

Atomic snapshot: sequential specification

- Each process p_i is provided with operations:
 - ✓update_i(v), returns ok
 - ✓ snapshot_i(), returns [v₁,...,v_N]

In a sequential execution:

For each $[v_1,...,v_N]$ returned by snapshot_i(), v_j (j=1,...,N) is the argument of the last update_j(.) (or the initial value if no such update)

Snapshot for free?

Code for process p_i:

initially:

shared 1WNR atomic register R_i := 0

upon snapshot()

```
[x_1,...,x_N] := scan(R_1,...,R_N) /*read R_1,...,R_N*/
return [x_1,...,x_N]
```

upon update_i(v)

 R_{i} .write(v)

Snapshot for free?

© 2019 P. Kuznetsov

Snapshot for free?

What about 2 processes?

- What about lock-free snapshots?
 - ✓ At least one correct process makes progress (completes infinitely many operations)

Lock-free snapshot

Code for process p_i (all written values, including the initial one, are unique, e.g., equipped with a sequence number)

Initially:

shared 1W1R atomic register $R_i := 0$

upon snapshot()

upon update_i(v)

$$[x_1,...,x_N] := scan(R_1,...,R_N)$$

repeat
 $[y_1,...,y_N] := [x_1,...,x_N]$
 $[x_1,...,x_N] := scan(R_1,...,R_N)$

until $[y_1,...,y_N] = [x_1,...,x_N]$

return $[x_1,...,x_N]$

Linearization

Assign a linearization point to each operation

- update_i(v)
 - ✓ R_i.write(v) if present
 - ✓ Otherwise remove the op
- snapshot_i()
 - ✓ if complete any point between identical scans
 - ✓ Otherwise remove the op

Build a sequential history S in the order of linearization points

Correctness: linearizability

S is legal: every snapshot_i() returns the last written value for every p_i

Suppose not: snapshot_i() returns $[x_1,...,x_N]$ and some x_j is not the the argument of the last update_j(v) in S preceding snapshot_i()

Let C_1 and C_2 be two scans that returned $[x_1,...,x_N]$

Correctness: lock-freedom

An update_i() operation is wait-free (returns in a finite number of steps)

Suppose process p_i executing snapshot_i() eventually runs in isolation (no process takes steps concurrently)

- All scans received by p_i are distinct
- At least one process performs an update between
- There are only finitely many processes => at least one process executes infinitely many updates

What if base registers are regular?

General case: helping?

What if an update interferes with a snapshot?

• Make the update do the work!

upon snapshot()

```
[x_1,...,x_N] := scan(R_1,...,R_N)

[y_1,...,y_N] := scan(R_1,...,R_N)

if [y_1,...,y_N] = [x_1,...,x_N] then

return [x_1,...,x_N]
```

else

let j be such that $x_j \neq y_j$ and $y_j = (u, U)$ return U

upon update_i(v)

```
S := snapshot()
R<sub>i</sub>.write(v,S)
```

If two scans
differ - some
update succeeded!
Would this work?

Not that easy!

General case: wait-free atomic snapshot

upon snapshot()

$[x_1,...,x_N]$:= scan $(R_1,...,R_N)$ while true do

$$[y_1,...,y_N] := [x_1,...,x_N]$$

$$[x_1,...,x_N] := scan(R_1,...,R_N)$$

if
$$[y_1,...,y_N] = [x_1,...,x_N]$$
 then

return $[x_1,...,x_N]$

else if moved_j and $x_j \neq y_j$ then

$$let x_j = (u,U)$$

return U

for each j: $moved_j := moved_j \ \bigvee x_j \neq y_j$

upon update_i(v)

R_i.write(v,S)

If a process moved twice: its last snapshot is valid!

Correctness: wait-freedom

Claim 1 Every operation (update or snapshot) returns in O(N²) steps (bounded wait-freedom)

snapshot: does not return after a scan if a concurrent process moved and no process moved twice

- At most N-1 concurrent processes, thus (pigeonhole), after N scans:
 - ✓ Either at least two consecutive identical scans
 - ✓Or some process moved twice!

update: snapshot() + one more step

Correctness: linearization points

update_i(v): linearize at the R_i.write(v,S) complete snapshot()

- If two identical scans: between the scans
- Otherwise, if returned U of p_j: at the linearization point of p_i's snapshot

The linearization is:

- Legal: every snapshot operation returns the most recent value for each process
- Consistent with the real-time order: each linearization point is within the operation's interval
- Equivalent to the run (locally indistinguishable)

(Full proof in the lecture notes, Chapter 6)

Quiz: atomic snapshots

- Prove that one-shot atomic snapshot satisfies self-inclusion and containment:
 - ✓ Self-inclusion: for all i: v_i is in S_i
 - ✓ Containment: for all i and j: S_i is subset of S_j or S_j
 is subset of S_i
- Show that the atomic snapshot is subject to the ABA problem (affecting correctness) in case the written values are not unique

One-shot atomic snapshot (AS)

Each process p_i : $update_i(v_i)$ $S_i := snapshot()$

$$S_i = S_i[1],...,S_i[N]$$

(one position per process)

Vectors S_i satisfy:

- Self-inclusion: for all i: v_i is in
 S_i
- Containment: for all i and j:
 S_i is subset of S_j or S_j is subset of S_i

© 2019 P. Kuznetsov 21

"Unbalanced" snapshots

Enumerating possible runs: two processes

Each process p_i (i=1,2):

update_i(v_i)

 $S_i := snapshot()$

Three cases to consider:

- (a) p₁ reads before p₂ writes
- (b) p₂ reads before p₁ writes
- (c) p₁ and p₂ go "lock-step": first both write, then both read

Topological representation: one-shot AS

Topological representation: one-shot AS

One-shot immediate snapshot (IS)

One operation: WriteRead(v)

Each process p_i:

 $S_i := WriteRead_i(v_i)$

Vectors S₁,...,S_N satisfy:

- Self-inclusion: for all i: v_i is in
 S_i
- Containment: for all i and j:
 S_i is subset of S_j or S_j is subset of S_i
- Immediacy: for all i and j: if
 v_i is in S_j, then is S_i is a subset
 of S_i

© 2019 P. Kuznetsov 26

Topological representation: one-shot IS

IS is equivalent to AS (one-shot)

- IS is a restriction of one-shot AS => IS is stronger than one-shot AS
 - ✓ Every run of IS is a run of one-shot AS
- Show that a few (one-shot) AS objects can be used to implements IS
 - ✓One-shot ReadWrite() can be implemented using a series of update and snapshot operations

IS from AS

shared variables:

 $A_1,...,A_N$ – atomic snapshot objects, initially [T,...,T]

Upon WriteRead_i(v_i)

```
 \begin{array}{l} r:=N+1\\ \text{while true do}\\  \qquad r:=r-1 \qquad /\!/ \text{ drop to the lower level}\\  \qquad A_r.\text{update}_i(v_i)\\  \qquad S:=A_r.\text{snapshot()}\\  \qquad \text{if } ISI=r \text{ then} \qquad /\!/ \text{ ISI is the number of non-T values in S}\\  \qquad \qquad return S \\  \end{array}
```

Drop levels: two processes, N>3

Correctness

The outcome of the algorithm satisfies Self-Inclusion, Snapshot, and Immediacy

 By induction on N: for all N>1, if the algorithm is correct for N-1, then it is correct for N

Base case N=1: trivial

Correctness, contd.

- Suppose the algorithm is correct for N-1 processes
- N processes come to level N
 - ✓ At most N-1 go to level N-1 or lower
 - √ (At least one process returns in level N)
 - √Why?
- Self-inclusion, Containment and Immediacy hold for all processes that return in levels N-1 or lower
- The processes returning at level N return all N values
 - ✓ The properties hold for all N processes! Why?

Iterated Immediate Snapshot (IIS)

Shared variables:

```
IS<sub>1</sub>, IS<sub>2</sub>, IS<sub>3</sub>,... // a series of one-shot IS
```

Each process p_i with input v_i:

```
r := 0
```

while true do

$$r := r + 1$$

$$v_i := IS_r.WriteRead_i(v_i)$$

Iterated standard chromatic subdivision (ISDS)

ISDS: one round of IIS

ISDS: two rounds of IIS

IIS is equivalent to (multi-shot) AS

- AS can be used to implement IIS (wait-free)
 - ✓ Multiple instances of the construction above (one per iteration)
- IIS can be used to implement multi-shot AS in the lock-free manner:
 - ✓ At least one correct process performs infinitely many read or write operations
 - ✓ Good enough for protocols solving distributed tasks!

From IIS to AS

We simulate an execution of full-information protocol (FIP) in the AS model, i.e., each process p_i runs:

```
state := input value of p<sub>i</sub>

repeat

update<sub>i</sub>(state)

state := snapshot()

until undecided(state)

Recursively, vector

of vectors
```

(the input value and the decision procedure depend on the problem being solved)

If a problem is solvable in AS, it is solvable with FIP

For simplicity, assume that the k-th written value = k ("without loss of generality" – every written value is unique)

© 2019 P. Kuznetsov

From IIS to AS: non-blocking simulation

```
Shared: IS<sub>1</sub>,IS<sub>2</sub>,... // an infinite sequence of one-shot IS
   memories
Local: at each process, c[1,...,N]=[(0,T),...,(0,T)]
Code for process p<sub>i</sub>:
   r:=0; c[i].clock:=1; // p<sub>i</sub>'s initial value
  repeat forever
           r:=r+1
           view := IS_r. WriteRead(c) // get the view in IS_r
           c := top(view) // get the top clock values
           if Icl=r then // the current snapshot completed
               if undecided(ctop) then
                       c[i].val:=ctop;
                       c[i].clock:=c[i].clock+1 // update the clock
               else
                       return decision(ctop) // return the decision
```

From IIS to AS

Each process p_i maintains a vector clock c[1,...,N]

- Each c[j] has two components:
 - √c[j].clock: the number of updates of p_j "witnessed" by p_i
 (c.clock the corresponding vector)
 - √c[j].val: the most recent value of p_j's vector clock
 "witnessed" by p_i (c.val the corresponding vector)
- To perform an update: increment c[i].clock and set c[i].val to be the "most recent" vector clock
- To take a snapshot: go through iterated memories until $|c| = \sum_{i} c[j]$.clock is "large enough",
 - ✓ i.e. lcl= r (the current round number)
 - ✓ As we'll see, lcl≥r: every process p_i begins with c[i]=1

 We say that c≥c' iff for all j, c[j].clock ≥ c' [j].clock (c observes a more recent state than c)

✓ Not always the case with c and c' of different processes

- $|c| = \sum_{i} c[j].clock$ (sum of clock values of the last seen values)
- For c = c[1],...c[N] (vector of vectors c[j]), top(c) is the vector of most recent seen values:

$$top(c) = [4 3 5]$$

From IIS to AS: correctness

Let c_r denote the vector evaluated by an undecided process p_i in round r (after computing the top function)

Lemma 1 lc_rl≥r

Proof sketch

 $c_{r+1} \ge c_r$ (by the definition of top)

Initially lc₁l≥1 (each process writes c[1].clock=1 in IS₁)

Inductively, suppose lc_rl≥r, for some round r:

- If Ic_rI=r, then c', such that Ic' I=r+1, is written in IS_{r+1}
- If $|c_r| > r$, then c', such that $c' \ge c_r$ (and thus $|c'| \ge |c_r|$) is written in in $|S_{r+1}|$

In both cases, $c_{r+1} \ge r+1$

From IIS to AS: correctness

Lemma 2 Let c_r and c_r ' be the clock vectors evaluated by processes p_i and p_j , resp., in round r. Then $|c_r| \le |c_r|$ implies $|c_r| \le |c_r|$

Proof sketch

Let S_i and S_j be the outcomes of IS_r received by p_i and p_j $c_r = top(S_i)$ and $c_r' = top(S_j)$

Either S_i is a subset of S_j or S_j is a subset of S_i (the Containment property of IS)

Suppose S_i is a subset of S_j , then each clock value seen by p_i is also seen by p_i Why?

 $=> |c_r| \le |c_r|$ and $c_r \le c_r$ Why?

From IIS to AS: correctness

Corollary 1 (to Lemma 2) All processes that complete a snapshot operation in round r, get the same clock vector c, lcl=r

Corollary 2 (to Lemmas 1 and 2) If a process completes a snapshot operation in round r with clock vector c, then for each clock vector c' evaluated in round r'≥r, we have c ≤ c'

From IIS to AS: linearization

Lemma 3 Every execution's history is linearizable (with respect to the AS spec.)

Proof sketch

Linearization

- Order snapshots based on the rounds in which they complete
- Put each update(c) just before the first snapshot that contains c (if no such snapshot – remove)
- By Corollaries 1 and 2, snapshots and updates put in this order respect the specification of AS legality
- The linearization points take place "within the interval" of k-th update and k-th snapshot of p_i between the k-th and the (k+1)-th updates of c[i].val precedence

From IIS to AS: liveness

Lemma 4 Some correct undecided process completes infinitely many snapshot operations (or every process decides).

Proof sketch

By Lemma 1, a correct process p_i does not complete its snapshot in round r only if lc_rl>r

Suppose p_i never completes its snapshot

- => c_r keeps grows without bound and
- => some process p_j keeps updating its c[j]
- => some process p_j completes infinitely many snapshots

(Chapter 9 in lecture notes)

IIS=AS for wait-free task solutions

- Suppose we simulate a wait-free protocol for solving a task:
 - ✓ Every process starts with an input
 - ✓ Every process taking sufficiently many steps (of the full-information protocol) eventually decides (and thus stops writing new values, but keeps writing the last one)
 - ✓ Outputs match inputs (we'll see later how it is defined)
- If a task can be solved in AS, then it can be solved in IIS
 - ✓ We consider IIS from this point on

Quiz

- 1. Would the (one-shot) IS algorithm be correct if we replace A_r .update_i(v_i) with $U_r[i]$.write(v_i) and A_r .snapshot() with scan($U_r[1],...,U_r[N]$)?
- 2. Would it be possible to use only one array of N registers?
- Complete the proofs of Lemma 2 and Corollaries 1 and 2