Московский физико-технический институт (госудраственный университет)

Лабораторная работа по термодинамике

Определение $\frac{C_p}{C_v}$ методом изобарического расширения газа [2.1.2]

Талашкевич Даниил Александрович Группа Б01-009

Долгопрудный 12.04.2021

Содержание

1	Ан	нотация							
	1.1	Цель и оборудование							
	1.2	Теоретическое введение							
	1.3	Эксперементальная установка							
2	Ход работы								
	2.1	Снятие данных							
	2.2	Аппроксимация полученных данных							
	2.3	Заключение							
3	Гра	фики и таблицы							
4	Сп	исок используемой литературы							

1 Аннотация

1.1 Цель и оборудование

- 1. **Цель работь:** определение отношения C_p/C_v для воздуха или углекислого газа по измерению давления в стеклянном сосуде. Измерения производятся сначала после адиабатического расширения газа, а затем после нагревания сосуда и газа до комнатной температуры.
- 2. **В работе используются:** стеклянный сосуд; U-образный жидкостный манометр; резиновая груша; газгольдер с углекислым газом.

1.2 Теоретическое введение

Рис. 1: Диаграмма, характеризующая процессы, производимые над воздухом, заключенным в объеме ΔV

С помощью резиновой груши, соединённой трубкой с краном K_1 , в сосуде создаётся заданное избыточное давление p_1 воздуха. При этом газ оказывается перегретым, так как совершается работа над газом, соответственно, его внутренняя энергия увеличивается, соответственно, температура тоже увеличивается.

Мысленно выделим в сосуде некоторый объем ΔV воздуха. Будем следить за изменением его состояния. Вследствие теплообмена со стенками сосуда через некоторое время газ остынет до комнатной температуры T_0 (изохорное охлаждение, процесс $1\longrightarrow 2$ на рис. 2). При этом давление воздуха понизится до $p_0+\Delta p_1$, где

$$\Delta p_1 = \rho g \Delta h_1. \tag{1}$$

Откроем кран K. За время Δt порядка 0,5 с произойдёт адиабатическое расширение газа $(2\longrightarrow 3)$, и его температура окажется ниже комнатной. Далее газ будет изобарически нагреваться (процесс $3\longrightarrow 4$). Зададим время τ , в течение которого кран K остается открытым, таким чтобы можно было пренебречь временем Δt адиабатического расширения воздуха. После закрытия крана газ станет изохорически нагревается до комнатной температуры (процесс $4\longrightarrow 5$), причём давление внутри возрастет до $p_0+\Delta p_2$, где

$$\Delta p_2 = \rho q \Delta h_2. \tag{2}$$

Наибольший интерес представляет исследование зависимости отношения перепадов давления $\frac{\Delta p_1}{\Delta p_2}$ от времени $\tau.$

С хорошей точностью мы можем считать воздух в идеальным газом. Рассмотрим изобарическое расширение воздуха. Для этого запишем уравнение теплового баланса для изменяющейся со временем массы газа $m=\frac{p_0V_0}{RT}\mu$:

$$c_p m dT = -\alpha (T - T_0) dt,$$

где c_p — удельная теплоемкость воздуха при постоянном давлении, α — положительный постоянный коэффициент, характеризующий теплообмен, V_0 — объем сосуда.

$$c_p \frac{p_0 V_0}{RT} \mu dT = -\alpha (T-T_0) dt \qquad \text{или} \qquad \frac{dT}{T(T-T_0)} = -\frac{\alpha dt}{c_p \frac{p_0 V_0}{D} \mu}.$$

Заметим, что
$$\frac{1}{T(T-T_0)} = -\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T-T_0} \right)$$
. Тогда $\left(m_0 = \frac{p_0 V_0}{R T_0} \mu \right)$:

$$\frac{1}{T_0} \left(\frac{1}{T} - \frac{1}{T - T_0} \right) dT = \frac{\alpha dt}{c_p m_0 T_0}.$$

После сокращения на T_0 выполним интегрирование:

$$\int_{T_1}^{T_2} \left(\frac{1}{T} - \frac{1}{T - T_0} \right) dT = \frac{\alpha}{c_p m_0} \int_{0}^{\tau} dt,$$

откуда ($\Delta T_1 = T_1 - T_0$, $\Delta T_2 = T_2 - T_0$):

$$\ln\left(\frac{T_2}{T_1}\right) - \ln\left(\frac{T_2 - T_0}{T_1 - T_0}\right) = \frac{\alpha}{c_p m_0} \tau \qquad \text{или} \qquad \ln\left(\frac{T_2}{T_1} \frac{\Delta T_1}{\Delta T_2}\right) = \frac{\alpha}{c_p m_0} \tau.$$

Наконец,

$$\frac{\Delta T_1}{T_1} = \frac{\Delta T_2}{T_2} \exp\left(\frac{\alpha}{c_p m_0} \tau\right). \tag{3}$$

Для адиабатического расширения (процесс $2\longrightarrow 3$) справедливо данное соотношение: $T^{\gamma}=const\cdot p^{\gamma-1}$ (здесь $\gamma=\frac{C_p}{C_v}$). После взятия логарифмических производных получим:

$$\gamma \frac{dT}{T} = (\gamma - 1) \frac{dp}{p}$$
 или $\frac{dT}{T} = \frac{(\gamma - 1)}{\gamma} \frac{dp}{p}$

Переходя к конечным приращениям найдём:

$$\frac{\Delta T_1}{T_1} = \frac{(\gamma - 1)}{\gamma} \frac{\Delta p_1}{p_0}.$$
 (4)

При изохорическом нагреве газа выполняется соотношение: $\frac{p}{T}=const.$ Возьмём от этого выражения логарифмическую производную: $\frac{dp}{p}=\frac{dT}{T}.$ В конечных приращениях

$$\frac{\Delta T_2}{T_2} = \frac{\Delta p_2}{p_0}. (5)$$

После подстановки (4) и (5) в (3) получим:

$$\frac{(\gamma - 1)}{\gamma} \frac{\Delta p_1}{p_0} = \frac{\Delta p_2}{p_0} \exp\left(\frac{\alpha}{c_p m_0} \tau\right).$$

Наконец, подставив в это уравнение выражения (1) и (2), получим:

$$\frac{(\gamma-1)}{\gamma}\Delta h_1 = \Delta h_2 \exp\left(\frac{\alpha}{c_p m_0}\tau\right) \quad \text{ или } \quad \frac{\Delta h_1}{\Delta h_2} = \frac{\gamma}{\gamma-1} \exp\left(\frac{\alpha}{c_p m_0}\tau\right).$$

Следовательно:

$$\ln\left(\frac{\Delta h_1}{\Delta h_2}\right) = \ln\left(\frac{\gamma}{\gamma - 1}\right) + \left(\frac{\alpha}{c_p m_0}\right) \tau. \tag{6}$$

Из графика зависимости $\ln\left(\frac{\Delta h_1}{\Delta h_2}\right)$ от τ определим $\gamma.$

1.3 Эксперементальная установка

Экспериментальная установка состоит из стеклянного сосуда A, снабжённого краном K_1 , и U-образного жидкостного манометра, измеряющего избыточное давление газа в сосуде. Схема установки показана на рис. 2.

Рис. 2: Установка для определения $\frac{C_p}{C_v}$ методом адиабатического расширения газа

2 Ход работы

2.1 Снятие данных

На первом этапе будем открывать кран K_1 и заполнять сосуд CO_2 так, чтобы разность уровней жидкости в манометре составлял 10см, т. к. для большей разницы мощности газгольдера хватать не будет.

Далее закроем K_1 , после установления состояния равновесия измерим Δh_1 и занесем в таблицу.

Потом откроем K_2 на время $\tau=5$ с. После того, как давление в сосуде перестанет менятся измерим и занесем в таблицу Δh_2 .

Теперь востановим атмосферное давление в сосуде, открыв краны K_1 и K_2 на 3-4 минуты.

И повторим так 7 раз, увеличивая время открытия крана K_2 до $35\mathrm{c}$

Теперь построим график $ln\frac{\Delta h_1}{\Delta h_2}(\tau)$ и по нему найдем γ

Полученный график (построенный в МАТLAB) приведенен в конце.

2.2 Аппроксимация полученных данных

Проведем апроксимирующую прямую $(y = k \cdot x + b)$ в программе MATLAB и найдем b. Полученное уравнение имеет вид:

$$y = 0.0529 \cdot x + 1.3379 \tag{1}$$

$$b = \ln\left(\frac{\gamma}{\gamma - 1}\right) \Rightarrow \gamma = \frac{e^b}{e^b - 1} = 1 + \frac{1}{e^b - 1} \Rightarrow \gamma = 1.36 \tag{2}$$

Рассчитаем погрешности полученной величины в программе MATLAB с помощью формулы:

$$\sigma_b = \sqrt{\frac{1}{n} \cdot \left\langle \left(\ln \frac{\Delta h_1}{\Delta h_2} \right)^2 \right\rangle - \left(\left\langle \ln \left(\frac{\Delta h_1}{\Delta h_2} \right) \right\rangle \right)^2 - k^2 (\langle \tau^2 \rangle - \langle \tau \rangle^2)} \Rightarrow \sigma_b = 0.0136$$
(3)

Найдем погрешность b:

$$\varepsilon_b = \frac{\sigma_b}{b} \cdot 100\% = \frac{0.0138}{1.3379} \cdot 100\% = 1.03\%$$
 (4)

Теперь используя погрешность b, найдем погрешность требуемой величины:

$$\sigma_{\gamma} = \gamma \cdot \frac{\sigma_b}{b} = 0,02. \tag{5}$$

Найдем относительную погрешность показателя адиабаты для воздуха:

$$\varepsilon_{\gamma} = \frac{\sigma_{\gamma}}{\gamma} = \frac{0.02}{1.36} \cdot 100\% = 1.46\%.$$
 (6)

2.3 Заключение

Итогом работы стало получение показателя адиабаты:

$$\gamma = 1.38 \pm 0.02; \varepsilon_{\gamma} = 1,46\%$$
 (7)

Теперь сравним с табличным значением. Согласно Wikipedia, показатель адиабаты воздуха при $20^{\circ}C$ равен 1.40, что входит в диапазон погрешности. Это говорит о применимости данного метода для получения показателя адиабаьы воздуха

3 Графики и таблицы

Таблица 1: Экспериментальные данные

$h_{1\kappa}$, MM	h_{1H} , MM	Δh_1 , mm	$h_{2\kappa}$, MM	h_{2H} , MM	Δh_2 , mm	τ , c	$\frac{\Delta h_1}{\Delta h_2}$	$ln\frac{\Delta h_1}{\Delta h_2}$
22.3	14.8	7.5	18.8	17.2	1.6	5	4.69	1.54
22.8	13.1	9.7	18.7	17.3	1.4	10	6.93	1.94
22.6	13.2	9.4	18.6	17.4	1.2	15	7.83	2.06
22.6	13.1	9.5	18.4	17.6	0.8	20	11.88	2.47
22.4	13.3	9.1	18.3	17.7	0.6	25	15.17	2.72
22.2	13.5	8.7	18.2	17.7	0.5	30	17.40	2.86
22.7	13.1	9.6	18.2	17.8	0.4	35	24.00	3.18

4 Список используемой литературы

- \bullet Гладун А. Д. Лабораторный практикум по общей физике. Термодинамика и молекулярная физика
 - Описание лабораторных работ на кафедре общей физики МФТИ