8 RDM

Pas de corrigé pour cet exercice.

 $ightharpoonup \overrightarrow{F} = -F\overrightarrow{y} = -2000\overrightarrow{y};$

Poutre encastrée ★

On donne la poutre suivante.

Question 1 Exprimer l'équation de la déformée de la poutre.

L'équation de la déformée est donnée par : $EI_{GZ}y''(x) = M_{fz}(x)$.

Calcul du torseur de cohésion

La poutre est composée de 2 tronçons :

▶ 1^{er} tronçon : $\lambda \in [0, L]$

▶ 2^e tronçon : $\lambda \in [L, 2L]$

1er tronçon

► On isole la partie II.

► BAME:

• $\{\Im (I \to II)\}$

• $\{ \mathcal{T} (F \to II) \}$

▶ D'après le PFS, on a donc $\{\mathcal{T}(I \to II)\} + \{\mathcal{T}(F \to II)\} = \{0\} \text{ et donc } \{\mathcal{T}(II \to I)\} = \{\mathcal{T}(F \to II)\}.$

On a donc $\forall \lambda \in [0, L]$, $\overrightarrow{\mathcal{M}(G, F \to II)} = (L - \lambda) \overrightarrow{x} \wedge -F \overrightarrow{y} = -F(L - \lambda) \overrightarrow{z}$.

Au final, $\{\mathcal{T}(II \to I)\} = \left\{ \begin{array}{c} -F\overrightarrow{y} \\ -F(L-\lambda)\overrightarrow{z} \end{array} \right\}_G$.

2e tronçon

$$\forall \lambda \in [0, L], \{\mathcal{T}(II \to I)\} = \left\{ \begin{array}{c} \overrightarrow{0} \\ \overrightarrow{0} \end{array} \right\}_{C}.$$

Calcul de la déformée sur le premier tronçon

$$\forall x \in [L, 2L], EI_{GZ}y''(x) = -F(L-x) = -FL + Fx \text{ et en intégrant } EI_{GZ}y'(x) = -FLx + \frac{1}{2}Fx^2 + c_1 \text{ et } EI_{GZ}y(x) = -\frac{1}{2}FLx^2 + F\frac{1}{6}x^3 + c_1x + c_2.$$

La liaison en x = 0 étant une encastrement, on a y(0) = 0 et y'(0) = 0. En conséquence, $c_2 = 0$ et $c_1 = 0$.

Au final,
$$EI_{GZ}y(x) = -\frac{1}{2}FLx^2 + \frac{1}{6}Fx^3 = Fx^2\frac{x - 3L}{6}$$
.

On peut alors exprimer la flèche en $L: EI_{GZ}y(L) = -\frac{FL^3}{3}$.

Calcul de la déformée sur le second tronçon

 $\forall x \in [L, 2L], EI_{GZ}y_2''(x) = 0$ et en intégrant $EI_{GZ}y_2'(x) = c_3$ et $EI_{GZ}y_2(x) = c_3x + c_4$. On a de plus $y(L) = y_2(L)$ et $y'(L) = y_2'(L)$.

D'une part,
$$F \frac{3L^2 - 6L^2}{6} = c_3$$
 et donc $c_3 = -F \frac{L^2}{2}$

D'autre part,
$$FL^2 \frac{L-3L}{6} = -F\frac{L^2}{2}L + c_4$$
 et $c_4 = FL^2 \frac{L-3L}{6} + F\frac{L^2}{2}L = \frac{FL^3}{6}$.

Question 2 Donner la valeur de la flèche au point d'application de l'effort.

