TD5 - Modes de convergence

Exercice 1. On se place sur l'espace de probabilités $\Omega = [0, 1]$ muni de la tribu des Boréliens et de la mesure de Lebesgue.

- (a) On fixe a > 0 et on pose $X_n(\omega) = n^a \mathbf{1}_{[0,1/n)}(\omega)$ pour tout $n \ge 1$. Montrer que la suite $\{X_n, n \ge 1\}$ appartient à tous les espaces \mathcal{L}_p , $p \ge 1$, converge presque sûrement vers 0 mais pas dans tous les espaces \mathcal{L}_p .
 - (b) Pour tout $i \ge 1$ et $j = 1, \dots, 2^{i-1}$, on pose

$$Y_{i,j} = i \mathbf{1}_{\{[(j-1)2^{1-i},j2^{1-i})\}}(\omega).$$

On ordonne ensuite la suite à doubles indices $\{Y_{i,j}\}$ suivant l'ordre lexicographique en posant $X_1=Y_{1,1}, X_2=Y_{2,1}, X_3=Y_{2,2}, X_4=Y_{3,1}, X_5=Y_{3,2}, \dots$ etc. Montrer que

$$\liminf_{n \to \infty} X_n = 0 \quad \text{et} \quad \limsup_{n \to \infty} X_n = \infty \quad \text{p.s}$$

et en déduire que X_n ne tend pas vers zéro p.s. alors que $X_n \to 0$ dans \mathcal{L}_p pour tout $p \ge 1$.

Exercice 2. Soit $\{X_n, n \geq 1\}$ une suite de variables aléatoires définies sur le même espace de probabilités $(\Omega, \mathcal{F}, \mathbb{P})$. On dit que cette suite est uniformément intégrable (UI) si $X_n \in \mathcal{L}_1$ pour tout $n \geq 1$ et si

$$\lim_{t \to \infty} \left(\limsup_{n \to \infty} \mathbb{E} \left[|X_n| \, \mathbf{1}_{\{|X_n| \ge t\}} \right] \right) = 0.$$

- (a) Montrer que la définition équivaut à $\lim_{t\to\infty} \sup_{n>0} \mathbb{E}\left[|X_n| \mathbf{1}_{\{|X_n|\geq t\}}\right] = 0$.
- (b) Montrer que si $|X_n| \le |Y_n|$ et si $\{Y_n, n \ge 1\}$ est UI, alors $\{X_n, n \ge 1\}$ est UI.
- (c) Montrer que si $\{X_n, n \geq 1\}, \{Y_n, n \geq 1\}$ sont UI, alors $\{X_n + Y_n, n \geq 1\}$ est UI.
- (d) Montrer que si $\sup_{n\geq 1}||X_n||_p<\infty$ pour un p>1, alors $\{X_n,\,n\geq 1\}$ est UI.
- (e) Montrer que $X_n \to X$ dans \mathcal{L}_1 si et seulement si $X_n \to X$ en probabilité et $\{X_n, n \ge 1\}$ est UI.
- (f) On suppose que $X_n, X \in \mathcal{L}_p$ pour un $p \geq 1$ et que $X_n \to X$ en probabilité. Montrer que $\{X_n, n \geq 1\}$ est UI si et seulement si $\mathbb{E}[|X_n|^p] \to \mathbb{E}[|X|^p]$.

Exercice 3. (a) Soit $\{X_n, n \ge 1\}$ une suite i.i.d. de variables aléatoires à variance finie. On pose $S_n = X_1 + \cdots + X_n$ pour tout $n \ge 1$.

(a) Montrer que pour tout $\varepsilon>0$ et tout $\alpha\in[0,1/2)$ on a

$$\mathbb{P}\left[n^{\alpha} \left| \frac{S_n}{n} - \mathbb{E}[X_1] \right| \ge \varepsilon\right] \to 0$$

1

quand $n \to \infty$. En quoi ceci améliore-t-il la loi faible des grands nombres?

(b) On suppose qu'il existe t>0 tel que $\mathbb{E}[e^{t|X_1|}]<\infty$. Montrer que pour tout $\varepsilon>0$ il existe $q\in(0,1)$ tel que

$$\mathbb{P}\left[\left|\frac{S_n}{n} - \mathbb{E}[X_1]\right| \ge \varepsilon\right] \le 2q^n$$

pour tout $n \geq 1$. En déduire la loi forte des grands nombres. En quoi l'hypothèse de départ est-elle contraignante ?