A FIRST COURSE

IN

SDE

A FIRST COURSE

IN

SDE

MAT4500 Notebook

Prof. Sang Hu

The Chinese University of Hongkong, Shenzhen

Contents

Ackn	owledgments	vii
Notat	tions	ix
1	Week1	1
1.1	Tuesday	1
1.1.1	Analogs of deterministic differential equations	1
1.1.2	Optimal Stopping	2
1.1.3	Stochastic Control	3
1.2	Thursday	4
1.2.1	Reviewing for Probability Space	4
2	Week2	9
2.1	Tuesday	9
2.1.1	Stochastic Process	9
3	Week3	. 13
3.1	Tuesday	13
3 1 1	Uniform Integrability	13

Acknowledgments

This book is from the MAT4001 in fall semester, 2018.

CUHK(SZ)

Notations and Conventions

 \mathbb{R}^n *n*-dimensional real space \mathbb{C}^n *n*-dimensional complex space $\mathbb{R}^{m \times n}$ set of all $m \times n$ real-valued matrices $\mathbb{C}^{m \times n}$ set of all $m \times n$ complex-valued matrices *i*th entry of column vector \boldsymbol{x} x_i (i,j)th entry of matrix \boldsymbol{A} a_{ij} *i*th column of matrix *A* \boldsymbol{a}_i $\boldsymbol{a}_{i}^{\mathrm{T}}$ *i*th row of matrix **A** set of all $n \times n$ real symmetric matrices, i.e., $\mathbf{A} \in \mathbb{R}^{n \times n}$ and $a_{ij} = a_{ji}$ \mathbb{S}^n for all *i*, *j* \mathbb{H}^n set of all $n \times n$ complex Hermitian matrices, i.e., $\mathbf{A} \in \mathbb{C}^{n \times n}$ and $\bar{a}_{ij} = a_{ji}$ for all i, j $\boldsymbol{A}^{\mathrm{T}}$ transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{\mathrm{T}}$ means $b_{ji} = a_{ij}$ for all i,jHermitian transpose of \boldsymbol{A} , i.e, $\boldsymbol{B} = \boldsymbol{A}^{H}$ means $b_{ji} = \bar{a}_{ij}$ for all i,j A^{H} trace(A)sum of diagonal entries of square matrix A1 A vector with all 1 entries 0 either a vector of all zeros, or a matrix of all zeros a unit vector with the nonzero element at the *i*th entry e_i C(A)the column space of \boldsymbol{A} $\mathcal{R}(\boldsymbol{A})$ the row space of \boldsymbol{A} $\mathcal{N}(\boldsymbol{A})$ the null space of \boldsymbol{A}

 $\operatorname{Proj}_{\mathcal{M}}(\mathbf{A})$ the projection of \mathbf{A} onto the set \mathcal{M}

Chapter 3

Week3

3.1. Tuesday

3.1.1. Uniform Integrability

Definition 3.1 [L_1 -convergence] We say $f_n \to f$ in L^1 if

$$\lim_{n\to\infty}\int_{S}|f_n-f|\,\mathrm{d}\mu=0$$

The **uniform integrability** for a family of integrable random variables is used to handle the convergence of random variables in L^1 .

Proposition 3.1 If a random variable X is integrable, i.e., $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, then for any given $\varepsilon > 0$, there exists $\delta > 0$ such that for any $F \in \mathcal{F}$ with $\mathbb{P}(F) < \delta$, we have

$$\mathbb{E}[|X|;F] := \mathbb{E}[|X|1_F] = \int_F |X| \, \mathrm{d}\mathbb{P} < \varepsilon$$

Proof. Suppose the conclusion is false, then there exists some $\varepsilon_0 > 0$, and a sequence of $\{F_n\}$ with each $F_n \in \mathcal{F}$ such that

$$\mathbb{P}(F_n) < \frac{1}{2^n}, \qquad \mathbb{E}[|X|; F_n] \ge \varepsilon_0.$$

Let $H := \lim_{n \to \infty} \sup F_n$. Note that $\sum_n \mathbb{P}(F_n) < \sum_{n \to \infty} \frac{1}{2^n} < \infty$.

By applying the Borel-Centelli lemma, we have $\mathbb{P}(H) = 0$.

However, with the reverse fatou's lemma, since $1_H(w) = \lim_{n \to \infty} \sup 1_{F_n}(w)$,

$$\int |X| 1_H d\mathbb{P} \ge \limsup \int |X| 1_{F_n} d\mathbb{P}$$

since $\{|X|1_{F_n}\}$ is dominated by the integrable random variable |X|.

Therefore,

$$\mathbb{E}[|X|;H] \ge \limsup \mathbb{E}[|X|;F_n] \ge \varepsilon_0$$

which contradicts with $\mathbb{P}(H) = 0$.

Corollary 3.1 Suppose $X\in L^1(\Omega,\mathcal{F},\mathbb{P})$. Then for any given $\varepsilon>0$, there exists $K\geq 0$, such that $\mathbb{E}[|X|;|X|>K]:=\int_{|X|>K}|X|\,\mathrm{d}\mathbb{P}<\varepsilon.$

Proof. Note that

$$\begin{split} \mathbb{E}[|X|] &= \mathbb{E}[|X|;|X| > K] + \mathbb{E}[|X|;|X| \le K] \\ &\geq \mathbb{E}[K;|X| > K] = K\mathbb{E}[1_{|X| > K}] \\ &= K\mathbb{P}(|X| > K) \end{split}$$

Therefore, we imply

$$\mathbb{P}(|X| > K) \le \frac{\mathbb{E}|X|}{K}$$

Applying Proposition (3.1), we choose *K* large enough such that $\frac{\mathbb{E}|X|}{K} < \delta$.

Therefore, $\mathbb{P}(|X| > K) < \delta$, which implies

$$\int_{|X|>K} |X| \, \mathrm{d}\mathbb{P} < \varepsilon.$$

 $\textbf{Definition 3.2} \quad \text{A class } \mathcal{C} \text{ of random variables are called } \textbf{uniform integrable} \text{ if and only}$

if for any given $\varepsilon > 0$, there exists $K \ge 0$ such that

$$\mathbb{E}[|X|;|X|>K]<\varepsilon, \qquad \forall X\in\mathcal{C}$$

Note that for such uniform integrable class C, we choose $\varepsilon_1 = 1$, then there exists $K_1 \ge 0$ such that

$$\forall X \in \mathcal{C}, \ \mathbb{E}[|X|] = \mathbb{E}[|X|;|X| > K_1] + \mathbb{E}[|X|;X \le K_1]$$
$$< \varepsilon_1 + K_1 = 1 + K_1,$$

i.e., class C is uniformly bounded in L^1 .

The reverse is not true:

■ Example 3.1 Take $(\Omega, \mathcal{F}, \mathbb{P}) = ([0,1], \mathcal{B}[0,1], \mathsf{Leb})$ Let $E_n := (0, \frac{1}{n})$, and set

$$X_n(\omega) = n1_{E_n}(\omega) = \begin{cases} n, & \text{if } \omega \in E_n \\ 0, & \text{if } \omega \notin E_n \end{cases}$$

Then $\mathbb{E}[X_n] = 1, \forall n$, which implies that $\{X_n\}$ are uniformly bounded in L^1 .

However, for any $K \ge 0$, as long as n > K,

$$\mathbb{E}[|X_n|;|X_n|>K]=1$$

Therefore, X_n 's are not uniformly integrable.

Ovserve that $X_n \to 0$ a.s., but $1 = \mathbb{E}|X_n|$ not converging to 0.

Question: what about L^p -boundness for p > 1?

Theorem 3.1 Suppose a class C of random variables are uniformly bounded in L^p

$$(p > 1)$$
:

$$\exists A > 0$$
, s.t. $\mathbb{E}[|X|^p] < A, \forall x \in \mathcal{C}$

Then the class C is uniformly integrable (UI).

Proof. Note that

$$\mathbb{E}[|X|;|X| > K] = \int_{|X| > K} |X| \, d\mathbb{P} \le \int_{|X| > K} \frac{|X|^p}{K^{p-1}} \, d\mathbb{P} = \frac{1}{K^{p-1}} \int_{|X| > K} |X|^p \, d\mathbb{P}$$

$$\le \frac{1}{K^{p-1}} \int_{\Omega} |X|^p \, d\mathbb{P}$$

$$\le \frac{1}{K^{p-1}} A, \quad \forall x \in \mathcal{C}$$

If X > K, then $X^p > K^{p-1}X$.

Therefore, for any given $\varepsilon > 0$, choose K to be such that $\frac{A}{K^{p-1}} \le \varepsilon$.

Theorem 3.2 Suppose that a class C of random variables are dominated by an integrable random variable Y:

$$|X(\omega)| \le Y(\omega), \quad \forall \omega \in \Omega, \forall X \in \mathcal{C}, \mathbb{E}|Y| < \infty$$

then the class C is UI.

Proof. Note that since $|X(\omega)| \leq Y(\omega), \forall \omega$, then

$$\{\omega \mid |X(\omega) > K|\} \subset \{\omega \mid |Y(\omega)| > K\}$$

Therefore,

$$\int_{|X|>K} |X| \, \mathrm{d}\mathbb{P} \le \int_{|Y|>K} |X| \, \mathrm{d}\mathbb{P} \le \int_{|Y|>K} |Y| \, \mathrm{d}\mathbb{P}$$

Since *Y* is integrable, by Corollary 2.5.2, for any given $\varepsilon > 0$, there exists $K \ge 0$ such that

$$\int_{|Y|>K} |Y| \, \mathrm{d}\mathbb{P} < \varepsilon.$$

This implies that $\forall X \in \mathcal{C}$,

$$\int_{|X|>K} |X| \, \mathrm{d}\mathbb{P} < \varepsilon.$$

Theorem 3.3 Let $X \in L^1(\Omega, \mathcal{F}, \mathbb{P})$, and $\{\mathcal{G}_{\alpha}\}_{\alpha \in \mathcal{A}}$ be a sequence of sub- σ -algebra of f. Denote the class

$$\mathcal{C} := \{ \mathbb{E}[X \mid G_{\alpha}] \}_{\alpha \in \mathcal{A}}$$

Then the class $\ensuremath{\mathcal{C}}$ is UI.

17