$$P + Q = \{(4+3) \cdot a, (1+4) \cdot b, (3+0) \cdot c, (0+2) \cdot d\}$$
  
= \{7 \cdot a, 5 \cdot b, 3 \cdot c, 2 \cdot d\}.

## **Exercises**

- Let A be the set of students who live within one mile of school and let B be the set of students who walk to classes.
  Describe the students in each of these sets.
  - a)  $A \cap B$
- **b**)  $A \cup B$
- c) A B
- $\overrightarrow{\mathbf{d}}$ ) B-A
- **2.** Suppose that *A* is the set of sophomores at your school and *B* is the set of students in discrete mathematics at your school. Express each of these sets in terms of *A* and *B*.
  - a) the set of sophomores taking discrete mathematics in your school
  - b) the set of sophomores at your school who are not taking discrete mathematics
  - c) the set of students at your school who either are sophomores or are taking discrete mathematics
  - **d**) the set of students at your school who either are not sophomores or are not taking discrete mathematics
- **3.** Let  $A = \{1, 2, 3, 4, 5\}$  and  $B = \{0, 3, 6\}$ . Find
  - a)  $A \cup B$ .
- **b**)  $A \cap B$ .
- c) A-B.
- **d**) B-A.
- **4.** Let  $A = \{a, b, c, d, e\}$  and  $B = \{a, b, c, d, e, f, g, h\}$ . Find
  - a)  $A \cup B$ .
- **b**)  $A \cap B$ .
- c) A B.
- **d**) B-A.

In Exercises 5–10 assume that A is a subset of some underlying universal set U.

- 5. Prove the complementation law in Table 1 by showing = that A = A.
- **6.** Prove the identity laws in Table 1 by showing that
  - a)  $A \cup \emptyset = A$ .
- **b**)  $A \cap U = A$ .
- 7. Prove the domination laws in Table 1 by showing that
  - a)  $A \cup U = U$ .
- **b**)  $A \cap \emptyset = \emptyset$ .
- **8.** Prove the idempotent laws in Table 1 by showing that
  - a)  $A \cup A = A$ .
- **b**)  $A \cap A = A$ .
- 9. Prove the complement laws in Table 1 by showing that
  - a)  $A \cup \overline{A} = U$ .
- **b**)  $A \cap \overline{A} = \emptyset$ .
- 10. Show that
  - a)  $A \emptyset = A$ .
- **b**)  $\emptyset A = \emptyset$ .
- **11.** Let *A* and *B* be sets. Prove the commutative laws from Table 1 by showing that
  - a)  $A \cup B = B \cup A$ .
  - **b**)  $A \cap B = B \cap A$ .
- **12.** Prove the first absorption law from Table 1 by showing that if *A* and *B* are sets, then  $A \cup (A \cap B) = A$ .

- **13.** Prove the second absorption law from Table 1 by showing that if *A* and *B* are sets, then  $A \cap (A \cup B) = A$ .
- **14.** Find the sets A and B if  $A B = \{1, 5, 7, 8\}$ ,  $B A = \{2, 10\}$ , and  $A \cap B = \{3, 6, 9\}$ .
- **15.** Prove the second De Morgan law in Table 1 by showing that if *A* and *B* are sets, then  $\overline{A \cup B} = \overline{A} \cap \overline{B}$ 
  - a) by showing each side is a subset of the other side.
  - **b)** using a membership table.
- **16.** Let *A* and *B* be sets. Show that
  - a)  $(A \cap B) \subseteq A$ .
- **b**)  $A \subseteq (A \cup B)$ .
- c)  $A B \subseteq A$ .
- **d**)  $A \cap (B A) = \emptyset$ .
- e)  $A \cup (B A) = A \cup B$ .
- 17. Show that if  $\underline{A}$  and  $\underline{B}$  are sets in a universe  $\underline{U}$  then  $\underline{A} \subseteq \underline{B}$  if and only if  $\overline{A} \cup \underline{B} = \underline{U}$ .
- **18.** Given sets *A* and *B* in a universe *U*, draw the Venn diagrams of each of these sets.
  - $\mathbf{a)} \ A \to B = \{x \in U \mid x \in A \to x \in B\}$
  - **b)**  $A \leftrightarrow B = \{x \in U \mid x \in A \leftrightarrow x \in B\}$
- **19.** Show that if A, B, and C are sets, then  $\overline{A \cap B \cap C} = \overline{A} \cup \overline{B} \cup \overline{C}$ 
  - a) by showing each side is a subset of the other side.
  - **b**) using a membership table.
- **20.** Let A, B, and C be sets. Show that
  - a)  $(A \cup B) \subseteq (A \cup B \cup C)$ .
  - **b)**  $(A \cap B \cap C) \subseteq (A \cap B)$ .
  - c)  $(A B) C \subseteq A C$ .
  - **d**)  $(A C) \cap (C B) = \emptyset$ .
  - e)  $(B-A) \cup (C-A) = (B \cup C) A$ .
- **21.** Show that if A and B are sets, then
  - a)  $A B = A \cap \overline{B}$ .
  - **b**)  $(A \cap B) \cup (A \cap \overline{B}) = A$ .
- **22.** Show that if A and B are sets with  $A \subseteq B$ , then
  - a)  $A \cup B = B$ .
  - **b**)  $A \cap B = A$ .
- **23.** Prove the first associative law from Table 1 by showing that if A, B, and C are sets, then  $A \cup (B \cup C) = (A \cup B) \cup C$ .
- **24.** Prove the second associative law from Table 1 by showing that if A, B, and C are sets, then  $A \cap (B \cap C) = (A \cap B) \cap C$ .
- **25.** Prove the first distributive law from Table 1 by showing that if A, B, and C are sets, then  $A \cup (B \cap C) = (A \cup B) \cap (A \cup C)$ .

- **26.** Let A, B, and C be sets. Show that (A B) C =(A-C)-(B-C).
- **27.** Let  $A = \{0, 2, 4, 6, 8, 10\}, B = \{0, 1, 2, 3, 4, 5, 6\}, and$  $C = \{4, 5, 6, 7, 8, 9, 10\}$ . Find
  - a)  $A \cap B \cap C$ .
- **b**)  $A \cup B \cup C$ .
- c)  $(A \cup B) \cap C$ .
- **d**)  $(A \cap B) \cup C$ .
- 28. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
  - a)  $A \cap (B \cup C)$
- **b**)  $\overline{A} \cap \overline{B} \cap \overline{C}$
- c)  $(A B) \cup (A C) \cup (B C)$
- 29. Draw the Venn diagrams for each of these combinations of the sets A, B, and C.
  - a)  $A \cap (B C)$
- **b**)  $(A \cap B) \cup (A \cap C)$
- c)  $(A \cap \overline{B}) \cup (A \cap C)$
- **30.** Draw the Venn diagrams for each of these combinations of the sets A, B, C, and D.
  - **a)**  $(A \cap B) \cup (C \cap D)$
- **b**)  $\overline{A} \cup \overline{B} \cup \overline{C} \cup \overline{D}$
- c)  $A (B \cap C \cap D)$
- **31.** What can you say about the sets A and B if we know that
  - a)  $A \cup B = A$ ?
- **b)**  $A \cap B = A$ ?
- c) A B = A?
- **d**)  $A \cap B = B \cap A$ ?
- e) A B = B A?
- **32.** Can you conclude that A = B if A, B, and C are sets such that
  - a)  $A \cup C = B \cup C$ ?
- **b**)  $A \cap C = B \cap C$ ?
- c)  $A \cup C = B \cup C$  and  $A \cap C = B \cap C$ ?
- **33.** Let A and B be subsets of a universal set U. Show that  $A \subseteq B$  if and only if  $\overline{B} \subseteq \overline{A}$ .
- **34.** Let A, B, and C be sets. Use the identity A B = $A \cap \overline{B}$ , which holds for any sets A and B, and the identities from Table 1 to show that  $(A - B) \cap (B - C) \cap (A - C)$
- **35.** Let A, B, and C be sets. Use the identities in Table 1 to show that  $\overline{(A \cup B)} \cap \overline{(B \cup C)} \cap \overline{(A \cup C)} = \overline{A} \cap \overline{B} \cap \overline{C}$ .
- **36.** Prove or disprove that for all sets A, B, and C, we have
  - a)  $A \times (B \cup C) = (A \times B) \cup (A \times C)$ .
  - **b**)  $A \times (B \cap C) = (A \times B) \cap (A \times C)$ .
- **37.** Prove or disprove that for all sets A, B, and C, we have
  - a)  $A \times (B C) = (A \times B) (A \times C)$ .
  - **b**)  $\overline{A} \times (B \cup C) = \overline{A} \times (B \cup C)$ .

The **symmetric difference** of A and B, denoted by  $A \oplus B$ , is the set containing those elements in either A or B, but not in both A and B.

- **38.** Find the symmetric difference of  $\{1, 3, 5\}$  and  $\{1, 2, 3\}$ .
- **39.** Find the symmetric difference of the set of computer science majors at a school and the set of mathematics majors at this school.
- 40. Draw a Venn diagram for the symmetric difference of the sets A and B.
- **41.** Show that  $A \oplus B = (A \cup B) (A \cap B)$ .
- **42.** Show that  $A \oplus B = (A B) \cup (B A)$ .
- **43.** Show that if A is a subset of a universal set U, then
  - a)  $A \oplus A = \emptyset$ .
- **b**)  $A \oplus \emptyset = A$ .
- c)  $A \oplus U = \overline{A}$ .
- **d**)  $A \oplus \overline{A} = U$ .

- **44.** Show that if A and B are sets, then
  - a)  $A \oplus B = B \oplus A$ .
- **b**)  $(A \oplus B) \oplus B = A$ .
- **45.** What can you say about the sets A and B if  $A \oplus B = A$ ?
- \*46. Determine whether the symmetric difference is associative; that is, if A, B, and C are sets, does it follow that  $A \oplus (B \oplus C) = (A \oplus B) \oplus C$ ?
- \*47. Suppose that A, B, and C are sets such that  $A \oplus C =$  $B \oplus C$ . Must it be the case that A = B?
- **48.** If A, B, C, and D are sets, does it follow that  $(A \oplus B) \oplus$  $(C \oplus D) = (A \oplus C) \oplus (B \oplus D)$ ?
- **49.** If A, B, C, and D are sets, does it follow that  $(A \oplus B) \oplus$  $(C \oplus D) = (A \oplus D) \oplus (B \oplus C)$ ?
- **50.** Show that if A and B are finite sets, then  $A \cup B$  is a finite
- **51.** Show that if *A* is an infinite set, then whenever *B* is a set,  $A \cup B$  is also an infinite set.
- \*52. Show that if A, B, and C are sets, then

$$|A \cup B \cup C| = |A| + |B| + |C| - |A \cap B|$$
  
-  $|A \cap C| - |B \cap C| + |A \cap B \cap C|$ .

(This is a special case of the inclusion-exclusion principle, which will be studied in Chapter 8.)

- **53.** Let  $A_i = \{1, 2, 3, ..., i\}$  for i = 1, 2, 3, ... Find

- **55.** Let  $A_i$  be the set of all nonempty bit strings (that is, bit strings of length at least one) of length not exceeding i. Find

  - **a)**  $\bigcup_{i=1}^n A_i.$  **b)**  $\bigcap_{i=1}^n A_i.$
- **56.** Find  $\bigcup_{i=1}^{\infty} A_i$  and  $\bigcap_{i=1}^{\infty} A_i$  if for every positive integer i,
  - **a**)  $A_i = \{i, i+1, i+2, \dots\}.$
  - **b**)  $A_i = \{0, i\}.$
  - c)  $A_i = (0, i)$ , that is, the set of real numbers x with 0 < x < i.
  - **d)**  $A_i = (i, \infty)$ , that is, the set of real numbers x with x > i.
- **57.** Find  $\bigcup_{i=1}^{\infty} A_i$  and  $\bigcap_{i=1}^{\infty} A_i$  if for every positive integer i,
  - **a)**  $A_i = \{-i, -i+1, \dots, -1, 0, 1, \dots, i-1, i\}.$
  - **b**)  $A_i = \{-i, i\}.$
  - c)  $A_i = [-i, i]$ , that is, the set of real numbers x with
  - **d)**  $A_i = [i, \infty)$ , that is, the set of real numbers x with  $x \ge i$ .
- 5, 6, 7, 8, 9, 10. Express each of these sets with bit strings where the ith bit in the string is 1 if i is in the set and 0 otherwise.
  - **a**) {3, 4, 5}
  - **b**) {1, 3, 6, 10}
  - **c**) {2, 3, 4, 7, 8, 9}

- **59.** Using the same universal set as in the last exercise, find the set specified by each of these bit strings.
  - a) 11 1100 1111
  - **b**) 01 0111 1000
  - c) 10 0000 0001
- **60.** What subsets of a finite universal set do these bit strings represent?
  - a) the string with all zeros
  - b) the string with all ones
- **61.** What is the bit string corresponding to the difference of two sets?
- **62.** What is the bit string corresponding to the symmetric difference of two sets?
- **63.** Show how bitwise operations on bit strings can be used to find these combinations of  $A = \{a, b, c, d, e\}$ ,  $B = \{b, c, d, g, p, t, v\}$ ,  $C = \{c, e, i, o, u, x, y, z\}$ , and  $D = \{d, e, h, i, n, o, t, u, x, y\}$ .
  - a)  $A \cup B$
- **b**)  $A \cap B$
- c)  $(A \cup D) \cap (B \cup C)$
- $\overrightarrow{\mathbf{d}}$ )  $A \cup B \cup C \cup D$
- **64.** How can the union and intersection of *n* sets that all are subsets of the universal set *U* be found using bit strings?

The **successor** of the set *A* is the set  $A \cup \{A\}$ .

- 65. Find the successors of the following sets.
  - **a**) {1, 2, 3}
- **b**) Ø

**c**) {Ø}

- $\mathbf{d}$ )  $\{\emptyset, \{\emptyset\}\}$
- **66.** How many elements does the successor of a set with *n* elements have?
- **67.** Let *A* and *B* be the multisets  $\{3 \cdot a, 2 \cdot b, 1 \cdot c\}$  and  $\{2 \cdot a, 3 \cdot b, 4 \cdot d\}$ , respectively. Find
  - a)  $A \cup B$ .
- **b**)  $A \cap B$ .
- c) A-B.

- d) B-A.
- e) A + B.
- **68.** Assume that  $a \in A$ , where A is a set. Which of these statements are true and which are false, where all sets shown are ordinary sets, and not multisets. Explain each answer.
  - **a**)  $\{a, a\} \cup \{a, a, a\} = \{a, a, a, a, a\}$
  - **b**)  $\{a, a\} \cup \{a, a, a\} = \{a\}$
  - **c**)  $\{a, a\} \cap \{a, a, a\} = \{a, a\}$
  - **d**)  $\{a, a\} \cap \{a, a, a\} = \{a\}$
  - e)  $\{a, a, a\} \{a, a\} = \{a\}$
- **69.** Answer the same questions as posed in Exercise 68 where all sets are multisets, and not ordinary sets.
- **70.** Suppose that A is the multiset that has as its elements the types of computer equipment needed by one department of a university and the multiplicities are the number of pieces of each type needed, and B is the analogous multiset for a second department of the university. For instance, A could be the multiset  $\{107 \cdot \text{personal computers}, 44 \cdot \text{routers}, 6 \cdot \text{servers}\}$  and B could be the multiset  $\{14 \cdot \text{personal computers}, 6 \cdot \text{routers}, 2 \cdot \text{mainframes}\}$ .
  - **a)** What combination of *A* and *B* represents the equipment the university should buy assuming both departments use the same equipment?
  - **b)** What combination of *A* and *B* represents the equipment that will be used by both departments if both departments use the same equipment?

- **c)** What combination of *A* and *B* represents the equipment that the second department uses, but the first department does not, if both departments use the same equipment?
- **d)** What combination of *A* and *B* represents the equipment that the university should purchase if the departments do not share equipment?

The **Jaccard similarity** J(A, B) of the finite sets A and B is  $J(A, B) = |A \cap B|/|A \cup B|$ , with  $J(\emptyset, \emptyset) = 1$ . The **Jaccard distance**  $d_J(A, B)$  between A and B equals  $d_J(A, B) = 1 - J(A, B)$ .

- **71.** Find J(A, B) and  $d_I(A, B)$  for these pairs of sets.
  - a)  $A = \{1, 3, 5\}, B = \{2, 4, 6\}$
  - **b)**  $A = \{1, 2, 3, 4\}, B = \{3, 4, 5, 6\}$
  - c)  $A = \{1, 2, 3, 4, 5, 6\}, B = \{1, 2, 3, 4, 5, 6\}$
  - **d**)  $A = \{1\}, B = \{1, 2, 3, 4, 5, 6\}$
- **72.** Prove that each of the properties in parts (a)–(d) holds whenever *A* and *B* are finite sets.
  - **a)** J(A, A) = 1 and  $d_I(A, A) = 0$
  - **b**) J(A, B) = J(B, A) and  $d_I(A, B) = d_I(B, A)$
  - c) J(A, B) = 1 and  $d_I(A, B) = 0$  if and only if A = B
  - **d**)  $0 \le J(A, B) \le 1$  and  $0 \le d_I(A, B) \le 1$
- \*\*e) Show that if A, B, and C are sets, then  $d_J(A, C) \le d_J(A, B) + d_J(B, C)$ . (This inequality is known as the **triangle inequality** and together with parts (a), (b), and (c) implies that  $d_J$  is a **metric**.)

**Fuzzy sets** are used in artificial intelligence. Each element in the universal set U has a **degree of membership**, which is a real number between 0 and 1 (including 0 and 1), in a fuzzy set S. The fuzzy set S is denoted by listing the elements with their degrees of membership (elements with 0 degree of membership are not listed). For instance, we write  $\{0.6 \text{ Alice}, 0.9 \text{ Brian}, 0.4 \text{ Fred}, 0.1 \text{ Oscar}, 0.5 \text{ Rita}\}$  for the set F (of famous people) to indicate that Alice has a 0.6 degree of membership in F, Brian has a 0.9 degree of membership in F, Fred has a 0.4 degree of membership in F, oscar has a 0.1 degree of membership in F, and Rita has a 0.5 degree of membership in F (so that Brian is the most famous and Oscar is the least famous of these people). Also suppose that R is the set of rich people with  $R = \{0.4 \text{ Alice}, 0.8 \text{ Brian}, 0.2 \text{ Fred}, 0.9 \text{ Oscar}, 0.7 \text{ Rita}\}$ .

- **73.** The **complement** of a fuzzy set S is the set  $\overline{S}$ , with the degree of the membership of an element in  $\overline{S}$  equal to 1 minus the degree of membership of this element in S. Find  $\overline{F}$  (the fuzzy set of people who are not famous) and  $\overline{R}$  (the fuzzy set of people who are not rich).
- **74.** The **union** of two fuzzy sets S and T is the fuzzy set  $S \cup T$ , where the degree of membership of an element in  $S \cup T$  is the maximum of the degrees of membership of this element in S and in T. Find the fuzzy set  $F \cup R$  of rich or famous people.
- **75.** The **intersection** of two fuzzy sets S and T is the fuzzy set  $S \cap T$ , where the degree of membership of an element in  $S \cap T$  is the minimum of the degrees of membership of this element in S and in T. Find the fuzzy set  $F \cap R$  of rich and famous people.