Time-Adaptive Unit Commitment INFORMS 2019

S. Pineda R. Fernández-Blanco J. M. Morales

OASYS group, University of Málaga (Spain)

Funded by the Spanish Ministry of Economy, Industry and Competitiveness through projects ENE2016-80638-R and ENE2017-83775-P

October 20, 2019

- For given:
 - Set of generating units $g=1,\ldots,N_G$
 - ullet Set of time periods $t=1,\ldots,N_T$
 - ullet Known electricity demand d_t

- For given:
 - Set of generating units $g=1,\ldots,N_G$
 - Set of time periods $t = 1, \dots, N_T$
 - ullet Known electricity demand d_t
- The unit commitment (UC) problem determines:
 - \bullet On/off status of generating units u_{gt}
 - \bullet Power dispatch of generating units p_{gt}

- For given:
 - Set of generating units $g=1,\ldots,N_G$
 - Set of time periods $t = 1, \dots, N_T$
 - ullet Known electricity demand d_t
- The unit commitment (UC) problem determines:
 - ullet On/off status of generating units u_{gt}
 - ullet Power dispatch of generating units p_{gt}
- Mathematically, UC is formulated as a mixed-integer program (MIP):

$$\min_{u_{gt}, p_{gt}} f(u_{gt}, p_{gt})$$
s.t.
$$g_j(u_{gt}, p_{gt}, d_t) \leq 0, \quad \forall j$$

$$u_{gt} \in \{0, 1\}$$

- For given:
 - Set of generating units $g=1,\ldots,N_G$
 - Set of time periods $t = 1, \dots, N_T$
 - ullet Known electricity demand d_t
- The unit commitment (UC) problem determines:
 - ullet On/off status of generating units u_{gt}
 - ullet Power dispatch of generating units p_{gt}
- Mathematically, UC is formulated as a mixed-integer program (MIP):

$$\min_{u_{gt}, p_{gt}} f(u_{gt}, p_{gt})$$
s.t.
$$g_j(u_{gt}, p_{gt}, d_t) \leq 0, \quad \forall j$$

$$u_{gt} \in \{0, 1\}$$

- UC problem is computationally expensive
- Increasing N_G or N_T may turn UC intractable

- Traditionally: 24 hourly time periods
- Conventional hourly unit-commitment (CH-UC)

• What happens if renewable penetration increases?

• FERC Order 764: "hourly transmission scheduling protocols (...) are insufficient to provide system operators with the flexibility to manage their system effectively and efficiently"

• What about increasing time resolution to 15 minutes?

- Existing approaches with finer time resolutions
 - Pandžić et al. 2014 (15 min)
 - Deane, Drayton, and Ó Gallachóir 2014 (5, 15, 30, 60 min)
 - Kazemi et al. 2016 (5, 10, 15, 30, 60 min)
 - Bakirtzis et al. 2014; Bakirtzis and Biskas 2017 (5-60 min)
- Operating cost savings
- Increase of computational time

- What about using 24 time periods of different duration?
- Time-adaptive unit-commitment (TA-UC)

Research question

Can we determine the duration of 24 time periods to make a more efficient use of the system flexibility without increasing the computational burden of the UC?

Outline

- Proposed time-period aggregation
- Modifications of UC constraints
- Comparison: CH-UC vs. TA-UC
- Illustrative example
- Case study
- Conclusions

Original data (5-min resolution)

Original data (5-min resolution)

Compute distance between each pair of adjacent clusters

9 1 4 2 3 6 3 2 4 3 4 0 1 1 1 9 0 2 3 2 9 3 2 0 2 9 4 4 3 2 6 3 1 3 9

2 Compute distance between each pair of adjacent clusters

Merge the two closest adjacent clusters and update distances

Merge the two closest adjacent clusters and update distances

Repeat 2 and 3 until the final number of clusters is obtained

Modifications of UC constraints

- Generating unit constraints
 - Minimum output
 - Ramping limits
 - Minimum up/down times

Туре	Pmin	Ramp	Min time
Base (nuclear)	^	•	^
Medium (coal)	^	^	^
Peak (gas)	•	^	•

Modifications of UC constraints

• Ramping limits (100MW/h)

p_1	p_2	p_3
1h	1h	1h

$$|p_1 - p_2| \le 100$$

$$|p_2 - p_3| \le 100$$

$$\begin{array}{|c|c|c|c|}\hline & 2h & \boxed{0.5h \mid 0.5h} \\ \\ |p_1 - p_2| \leqslant 125 = 100 \cdot 0.5 \cdot (2 + 0.5) \\ \end{array}$$

 $p_2 = p_3$

$$|p_2 - p_3| \le 50 = 100 \cdot 0.5 \cdot (0.5 + 0.5)$$

 p_1

Modifications of UC constraints

Ramping limits (100MW/h)

p_1	p_2	p_3
1h	1h	1h

$$|p_1 - p_2| \le 100$$

$$|p_2 - p_3| \le 100$$

$$|p_1 - p_2| \le 125 = 100 \cdot 0.5 \cdot (2 + 0.5)$$

 $|p_2 - p_3| \le 50 = 100 \cdot 0.5 \cdot (0.5 + 0.5)$

Minimum up time (2h)

u_1	u_2	u_3
1h	1h	1h
0	0	0
1	1	0
0	1	1
1	1	1

u_1	u_2	u_3
2h	0.5h	0.5h
0	0	0
1	0	0
-	-	-
1	1	1

Comparison: CH-UC vs. TA-UC

Illustrative example

Technology	\underline{P}_g^G (MW)	\overline{P}_g^G (MW)	C_{gt}^{M} (\in /MWh)	# units
Base	150	200	10	4
Medium	50	100	30	1
Peak	0	50	50	1

Time period	t1	t2	t3	t4	t5	t6
Duration (h)	0.5	0.5	0.5	0.5	0.5	0.5
Demand (MW)	500	500	500	500	650	850
Solar (MW)	300	300	300	300	200	0
Net demand (MW)	200	200	200	200	450	850

- Limited flexible generation (minimum output)
- Demand increases when solar decreases

Illustrative example

Table: Conventional Hourly Unit Commitment (CH-UC) – Example

Day-ahead dispatch

t5 + t6

Time periods t1 + t2 t3 + t4

Net demand	20	00	20	00	65	50
Base	20	00	20	00	600	
Medium	()	()	5	0
Peak	()	()	0	
	Real-time operation					
Time periods	t1	t2	t3	t4	t5	t6
Net demand	200	200	200	200	450	850
Base	200	200	200	200	600	600
Medium	0	0	0	0	50	100
Peak	0	0	0	0	0	50
Load shed	0	0	0	0	0	100
Solar spillage	0	0	0	0, _	200	0

Illustrative example

Table: Time-Adaptive Unit Commitment (TA-UC) – Example

Day-ahead dispatch

t1	+ t2 -	+ t3 +	t4	t5	t6	
	20	00		450	850	
	20	00		400	800	
	()		50	50	
	()		0	0	
Real-time operation						
t1	t2	t3	t4	t5	t6	
200	200	200	200	450	850	
200	200	200	200	400	800	
0	0	0	0	50	50	
0	0	0	0	0	0	
0	0	0	0	0	0	
0	0	0	0	0_	0	
	Real- t1 200 200 0 0	$ \begin{array}{c} 20 \\ 20 \\ 0 \\ 0 \\ \end{array} $ Real-time of $ t1 $ $ t2 $ $ 200 $ $ 200 $ $ 200 $ $ 200 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $ $ 0 $	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	

- Demand is 10% of that in Spain in 2017 (3800 MW peak demand)
- Wind and solar capacity factors in Spain in 2017
- Renewable penetrations from 20% to 60%
- Start-up costs, ramp limits and minimum times of thermal units
- Three generation portfolios:

	Base (MW)	Medium (MW)	Peak (MW)
Base case	1200	1200	1500
High-flex case	-	2400	1500
Low-flex case	2400	-	1500

Table: Relative Cost Savings (%)

Wind (%)	Solar (%)	Base case	High-flex case	Low-flex case
10	10	0.01	0.00	0.27
20	0	0.01	0.01	0.30
0	20	0.12	0.07	0.53
30	30	2.35	1.04	3.49
60	0	0.56	0.08	1.02
0	60	2.56	1.43	4.76

Table: RELATIVE COST SAVINGS (%)

Wind (%)	Solar (%)	Base case	High-flex case	Low-flex case
10	10	0.01	0.00	0.27
20	0	0.01	0.01	0.30
0	20	0.12	0.07	0.53
30	30	2.35	1.04	3.49
60	0	0.56	0.08	1.02
0	60	2.56	1.43	4.76

More renewables Higher savings

Table: RELATIVE COST SAVINGS (%)

Wind (%)	Solar (%)	Base case	High-flex case	Low-flex case
10	10	0.01	0.00	0.27
20	0	0.01	0.01	0.30
0	20	0.12	0.07	0.53
30	30	2.35	1.04	3.49
60	0	0.56	0.08	1.02
0	60	2.56	1.43	4.76

- More renewables Higher savings

Table: RELATIVE COST SAVINGS (%)

Wind (%)	Solar (%)	Base case	High-flex case	Low-flex case
10	10	0.01	0.00	0.27
20	0	0.01	0.01	0.30
0	20	0.12	0.07	0.53
30	30	2.35	1.04	3.49
60	0	0.56	0.08	1.02
0	60	2.56	1.43	4.76

- More renewables Higher savings
- More solarHigher savings
- Low flexibility
 Higher savings

Summary

- The conventional-hourly UC is proven inadequate for high penetration of renewables (Duck curve)
- Finer time discretizations reduce operating costs while increasing computational time
- The proposed time-adaptive UC reduces operating costs without increasing computational time
- The cost savings increase with renewable (solar) penetration and decrease with generation flexibility

Thanks!! Questions??

website: oasys.uma.es

S. Pineda, R. Fernández-Blanco and J.M. Morales, "Time-Adaptive Unit Commitment", in IEEE Transactions on Power Systems, 34(5), 3869-3878, 2019.

References I

- Bakirtzis, Emmanouil A. and Pandelis N. Biskas (2017). "Multiple Time Resolution Stochastic Scheduling for Systems With High Renewable Penetration". In: *IEEE Transactions on Power Systems* 32.2, pp. 1030–1040.
- Bakirtzis, Emmanouil A. et al. (2014). "Multiple time resolution unit commitment for short-term operations scheduling under high renewable penetration". In: *IEEE Transactions on Power Systems* 29.1, pp. 149–159.
- Deane, J. P., G. Drayton, and B. P. Ó Gallachóir (2014). "The impact of sub-hourly modelling in power systems with significant levels of renewable generation". In: *Applied Energy* 113, pp. 152–158.
- Kazemi, Mehdi et al. (2016). "Evaluating the impact of sub-hourly unit commitment method on spinning reserve in presence of intermittent generators". In: *Energy* 113, pp. 338–354.

References II

Pandžić, Hrvoje et al. (2014). "Effect of time resolution on unit commitment decisions in systems with high wind penetration". In: 2014 IEEE PES General Meeting — Conference & Exposition. IEEE, pp. 1–5.