Al Models: Definitions, Examples & Use Cases

Statistical Models:-

Linear Regression:-

Definition: Models the relationship between a dependent variable and one or more independent variables using a straight line.

Example: Predicting house prices based on square footage, number of bedrooms, and location.

Use Cases:

- Forecasting sales or revenue
- Estimating risk in insurance
- · Predicting student performance based on study hours

Logistic Regression:-

Definition: A classification algorithm that predicts the probability of a binary outcome (e.g., yes/no, true/false).

Example: Predicting whether a customer will buy a product (1) or not (0).

Use Cases:

- · Credit scoring
- Disease diagnosis (e.g., diabetes prediction)
- Email spam detection

Machine Learning Models:

Decision Tree:

Definition: A flowchart-like structure where each internal node represents a decision based on a feature, and each leaf node represents an outcome.

Example: Classifying loan applications as approved or denied based on income, credit score, and employment status.

Use Cases:

- Customer segmentation
- · Risk assessment

• Product recommendation

Random Forest

Definition: An ensemble of decision trees that aggregates their predictions to improve accuracy and reduce overfitting.

Example: Predicting employee attrition using multiple features like job satisfaction, salary, and tenure.

Use Cases:

- · Fraud detection
- Feature importance analysis
- · Medical diagnosis

Support Vector Machine (SVM)

Definition: Finds the optimal hyperplane that separates data into different classes with maximum margin.

Example: Classifying handwritten digits (0–9) from image data.

Use Cases:

- · Face recognition
- Text classification
- Bioinformatics (e.g., cancer detection)

Deep Learning Models:

Convolutional Neural Network (CNN)

- **Definition**: Specialized for processing grid-like data such as images using convolutional layers to detect patterns.
- **Example**: Identifying cats and dogs in photos.
- Use Cases:
 - Medical imaging (e.g., tumor detection)
 - Autonomous vehicles (object detection)
 - Security surveillance

Recurrent Neural Network (RNN)

• **Definition**: Designed for sequential data, where outputs depend on previous inputs using loops in the architecture.

- **Example**: Predicting the next word in a sentence.
- Use Cases:
 - Time series forecasting (e.g., stock prices)
 - Speech recognition
 - Language translation

Transformer

- **Definition**: Uses self-attention mechanisms to process sequences in parallel, enabling efficient handling of long-range dependencies.
- **Example**: Translating English to French using models like BERT or GPT.
- Use Cases:
 - Chatbots
 - Document summarization
 - Sentiment analysis

•

Generative Models:-

Generative Adversarial Networks (GANs)

- **Definition**: Comprises a generator that creates data and a discriminator that evaluates it, both trained in competition.
- **Example**: Generating realistic human faces from noise.
- Use Cases:
 - · Art and design
 - Deepfake creation
 - Data augmentation for training

Diffusion Models

- **Definition**: Generate data by reversing a noise process, producing high-quality outputs from random noise.
- **Example**: Creating photorealistic images from text prompts (e.g., DALL·E, Stable Diffusion).
- Use Cases:
 - AI-generated art
 - Scientific simulations
 - Video synthesis

Large Language Models (LLMs)

- **Definition**: Deep neural networks trained on massive text datasets to understand and generate human-like language.
- **Example**: ChatGPT writing essays or answering questions.
- Use Cases:
 - Conversational AI
 - Code generation
 - Personalized tutoring