

TD3 - Représentation des entiers naturels et opérations arithmétiques

1 Représentation des entiers naturels

1.1 Codage

- ① Combien d'entiers naturels peut-on coder en binaire sur 2 octets?
- ② Combien de bits faut-il pour pouvoir représenter au moins 260000 entiers naturels différents en binaire?

Remarque: on rappelle que $\alpha^n = \exp^{n \ln \alpha}$.

1.2 Code de Gray

- Le code de Gray, également appelé binaire réfléchi, est un type de codage binaire permettant de ne modifier qu'un seul bit à la fois quand un nombre est augmenté d'une unité. Le nom du code vient de l'ingénieur américain Frank Gray qui déposa un brevet sur ce code en 1953.
- Méthode de construction basique
 - Pour passer d'une ligne à la suivante, on inverse le bit le plus à droite possible qui introduit un nombre nouveau.
 - ① Donner le code de Gray sur 3 bits en partant de 0 = 000.
- Méthode de construction par symétrie
 - Au départ, sur 1 bit, on utilise le code binaire naturel.
 - Lorsque l'on ajoute 1 bit supplémentaire, les nombres existants sont "symétrisés" comme dans un miroir (phénomène de réflexion, d'où l'autre nom : code binaire réfléchi) pour obtenir les nouveaux nombres.
 - On ajoute 0 au début des nombres existants et 1 au début des nouveaux nombres.

1 bit		2 bits		
Decimal	Gray	Decimal		Gray
0	0	0	0	$\widehat{0}$ 0
1	1	1	_1_	0/1
		2	1	$\widehat{1}$ 1
		3	0	1.0

2 Donner le code de Gray sur 4 bits.

2 Opérations arithmétiques

2.1 Addition

- ① Coder en binaire sur un octet les entiers 107 et 58, puis effectuer l'addition binaire des entiers ainsi codés. Vérifier que le résultat est correct.
- 2 Même question avec 171 et 97.

2.2 Soustraction

- ① On considère les mêmes entiers que précédemment, mais cette fois il faut effectuer la soustraction des entiers. Soit calculer 107-58;
- ② puis 165 94.
- 3 Pour finir, calculer 14-7.

2.3 Multiplication

- ① Construire la table de multiplication.
- ② Essayer de poser la multiplication de 6 par 5.
- 3 Coder en binaire les entiers 79 et 58, puis effectuer la multiplication binaire des entiers ainsi codés. Même question pour 169 et 76.