Devoir maison 6 - Equations différentielles linéaires

Exercice 1

Résoudre le système différentiel :

$$\begin{cases} x' = -y - 3z + t \\ y' = -3x - 5z \\ z' = 2x + y + 5z - t \end{cases}$$

On note
$$Y = \begin{pmatrix} x \\ y \\ z \end{pmatrix}$$
, $A = \begin{pmatrix} 0 & -1 & -3 \\ -3 & 0 & -5 \\ 2 & 1 & 5 \end{pmatrix}$ et $B = \begin{pmatrix} t \\ 0 \\ -t \end{pmatrix}$; on doit résoudre

 $(L): \quad Y' = AY + B$

.

Le polynôme caractéristique de A est $\chi_A = (X-1)(X-2)^2$. Les espaces propres sont : $E_1 = \text{Vect}\{(1,2,-1)\}; E_2 = \text{Vect}\{(1,1,-1)\}.$

 $\dim(E_2) < m(2)$; la matrice A n'est pas diagonalisable, mais le polynôme caractéristique étant scindé, elle est trigonalisable dans la base (u_1, u_2, e_1) où $u_1 = (1, 2, -1)$, $u_2 = (1, 1, -1)$ et $e_1 = (1, 0, 0)$ (on vérifie aisément que ces trois vecteurs forment une famille libre, donc une base de \mathbb{R}^3 .)

 $\text{Après calculs, on obtient}: A = \begin{pmatrix} 1 & 1 & 1 \\ 2 & 1 & 0 \\ -1 & -1 & 0 \end{pmatrix} \, \begin{pmatrix} 1 & 0 & -1 \\ 0 & 2 & -1 \\ 0 & 0 & 2 \end{pmatrix} \, \begin{pmatrix} 0 & 1 & 1 \\ 0 & -1 & -2 \\ 1 & 0 & 1 \end{pmatrix} = PTP^{-1}.$

(L) est donc équivalent à $P^{-1}Y^{\prime}=TP^{-1}Y+P^{-1}B.$

On note $Z=P^{-1}Y=\begin{pmatrix} z_1\\z_2\\z3 \end{pmatrix}$ et on cherche à résoudre $Z'=TZ+P^{-1}B,$ qui s'écrit :

$$\begin{cases} z_1' = z_1 - z_3 - t & (1) \\ z_2' = 2z_2 - z_3 + 2t & (2) \\ z_3' = 2z_3 & (3) \end{cases}$$

(3) donne $z_3 = C_3 e^{2t}$ où $C_3 \in \mathbb{R}$; en remplaçant z_3 par cette expression dans (1) et (2) on est amené à résoudre des équations différentielles linaires du premier ordre.

On obtient:

$$\begin{cases} z_1 = C_1 e^t - C_3 e^{2t} + t + 1 \\ z_2 = (C_2 - C_3 t) e^{2t} - t - \frac{1}{2} \\ z_3 = C_3 e^{2t} \end{cases}$$

Enfin, on obtient
$$\begin{pmatrix} x \\ y \\ z \end{pmatrix} = PZ = \begin{cases} C_1 e^t + (C_2 - tC_3)e^{2t} + \frac{1}{2} \\ 2C_1 e^t + (C_2 - 2C_3 - tC_3)e^{2t} + t + \frac{3}{2} \\ -C_1 e^t + (C_3 t + C_3 - C_2)e^{2t} - \frac{1}{2} \end{cases}$$

Exercice 2

On considère l'équation différentielle

(L):
$$t^2y'' + 4ty' + 2y = \ln t$$

1. Résoudre sur \mathbb{R}_+^* l'équation différentielle homogène associée à (L), en cherchant des solutions sous la forme $t \mapsto t^{\alpha}$, avec $\alpha \in \mathbb{R}$.

On note (H): $t^2y'' + 4ty' + 2y = 0$

 $y:t\mapsto t^{\alpha}$ est solution de (H) sur \mathbb{R}_{+}^{*} si, et seulement si : $\forall t \in \mathbb{R}_+^*, a(a-1)t^{\alpha} + 4at^{\alpha} + 2t^{\alpha} = 0 \Leftrightarrow \alpha \in \{-1, -2\}$

On note $h_1: \left| \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ t & \mapsto & \frac{1}{t} \end{array} \right| \text{ et } h_2: \left| \begin{array}{ccc} \mathbb{R}_+^* & \to & \mathbb{R} \\ t & \mapsto & \frac{1}{t^2} \end{array} \right|;$

la famille $\{h_1, h_2\}$ est une famille libre de solutions de (H), elle forme donc une base de l'ensemble des solutions de l'équation homogène (H).

2. Résoudre (L) sur \mathbb{R}_+^* .

La solution h_2 de (H) ne s'annule pas sur \mathbb{R}_+^* ; on cherche une solution de (L) sous la forme

 y_p est solution de (L) si, et seulement si $\lambda'' = \ln t$

ce qui donne $\lambda' = t \ln t - t + C_1$.

Une intégration par parties donne : $\int t \ln t = \frac{t^2}{2} \ln t - \frac{1}{4} t^2 + C_2$

on en déduit que $\lambda=\frac{t^2}{2}\ln t-\frac{3}{4}t^2+C_1t+C_2.$ Finalement, on trouve $y_p:t\mapsto\frac{1}{2}\ln t-\frac{3}{4}+\frac{C_1}{t}+\frac{C_2}{t^2}$