March 1st

Complex Numbers

$$ax + bx + c = 0$$

$$x = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

an3+bx2+cx+d=0 also exist formulas for roots

 $ax^4+bx^3+cx^2+dx+e=0$

-in order to derive these formulas have to work with $\sqrt{}$ of negotive number introduce number i such that $i \ge -1$

 $(2i)^2 = -4$

Complex numbers: [a+bi | a,b real numbers]

1+2i, -1-5i, 12-Ti complex numbers

z,=a+bi

Z2=C+ di

Z1+Z2 = a+C+(b+d)i

Z.-Zz=(a-c)+(b-d)i

 $z_1z_2=a+bi$)(c+di)= ac+ad+bc)i-bd=(ac-bd)+(ad+bc)i

(1+2i)(3-i) = ---

properties

ヌ(25+23) = 21274 8123

Z,(Z,Z2)=(Z,Z2)Z3

$$\frac{1+2i}{3-i} = \frac{(1+2i)(3+i)}{(3-i)(3+i)} = \frac{3+7i-2}{9+1} = \frac{1+7i}{10}$$

$$\frac{a+bi}{c+di} = \frac{(a+bi)(c-di)}{(c+di)} = \frac{ac+bd+(bc-ad)i}{c^2+d^2}$$

presenting complex number graphically

Def: if z=a+bi => \(\overline{Z} = a-bi \) complex conjugate of \(\overline{Z} \) 1+2i = 1-2i3-12i =3+12 i Properties: 1) Z. = |z|2 Z=a+bi, Z=a-bi = atbi = = = a-bi ② **Z**=Z 3 \(\overline{Z}_1 + \overline{Z}_2 \)
\(\overline{Z}_1 + \overline{Z}_2 = \overline{Z}_1 - \overline{Z}_2 \) (S) Z, Z2 = Z1 Z2 Cor: | 21.21 = 21 | 21 Pf. 12,72 = 8, 72 8, 82 = 8, 22 8, 82 = |8, 1212 15.51 = 1512 1512 18 sinf Z=a+bi=|Z| (cost +isinf) 12 cost $\mathbb{Z}_1\mathbb{Z}_2=\mathbb{Z}_1$ \[\mathbb{Z}_1\]\[\text{(cos}\theta_1+i\sin(\theta_1+\theta_2)\]\[\text{(cos}\theta_1+\theta_2)+i\sin(\theta_1+\theta_2)\]