ASSIGNMENT 2

CS5691 Pattern Recognition and Machine Learning

CS5691 Assignment 2

Team No. 26

Team Members:

CS24M020	Grishma Karekar
CS24M046	Shreyas Rathod

Indian institute of Technology, Madras

1. DATASET 1

1.1. K-nearest Neighbors classifier:

1.1.1. Mathematical Formulation

The K Nearest Neighbor is a statistically non-parametric model that can be used for regression as well as for classification. It assumes that similar things exist in close proximity. Crucial steps in a K-Nearest Neighbor classifier are:

• A distance metric is first specified, the most commonly used metric is the Euclidean distance:

$$d = ||\overrightarrow{x_1} - \overrightarrow{x_2}||$$

where ||.|| denotes the norm function. Other commonly used distance metrics are the Manhattan distance and Cosine similarity. For our application, Euclidean distance is used.

1.1.2. Model performance across different k

The Model performance is best for value k = 5

k-value	Train Accuracy	Validation Accuracy	Test Accuracy
1	100	97.5000	96.6667
5	97.7381	99.5833	96.6667
9	97.8571	99.5833	98.3333

Table 1: Accuracy table for Dataset 1 - KNN classifier

1.1.3. Decision region plots

Figure 2: Decision region plot for k = 1, superimposed with train and test dataset on left and right respectively

Figure 3: Decision region plot for k = 5, superimposed with train and test dataset on left and right respectively

Figure 4: Decision region plot for k = 9, superimposed with train and test dataset on left and right respectively

1.2. Bayes Classifier with a Gaussian distribution for every class:

1.2.1. Accuracy table and Confusion Matrix

Condition	Train Accuracy	Validation Accuracy	Test Accuracy
$C_i = C_j$	97.8571	98.3333	99.1667
$Ci \neq C_i$	98.0952	98.3333	100

Table 2: Accuracy table for Dataset 1: Bayes Classifier

Figure 5: Confusion matrix for Gaussian Bayes classifier <u>with same covariance matrix</u>, train and test dataset on left and right respectively

Figure 6: Confusion matrix for Gaussian Bayes classifier <u>with different covariance matrix</u>, train and test dataset on left and right respectively

1.2.2. Decision Boundary Plot for Gaussian Bayes Classifier

• Decision Boundaries + Same Covariance:

Figure 7: Decision Boundary Plot for Gaussian Bayes classifier <u>with same covariance matrix</u>, without and with level curves on left and right respectively

• Decision Boundaries + Different Covariance:

Without Level curves

With Level Curves

Figure 8: Decision Boundary Plot for Gaussian Bayes classifier <u>with different covariance matrix</u>, without and with level curves on left and right respectively

2. DATASET 2

2.1. K-nearest Neighbors classifier:

2.1.1. Mathematical Formulation

Similar to subsubsection 1.1.1., K nearest neighbor classifier is used to predict class labels for dataset 2.

2.1.2. Model performance across k

The accuracy table is as follows:

k-value	Train Accuracy	Validation Accuracy	Test Accuracy
1	100	100	100
5	100	100	100
9	100	100	100

Table 3: Accuracy table for dataset 2 - KNN classifier

Since model performance is best irrespective of k, the accuracy table, <u>confusion matrix and</u> decision boundary plot are all evaluated using k = 1 as to minimize the run time.

Figure 9: Confusion matrix for k = 1, train and test dataset on left and right respectively

2.1.3. Decision Region Plot

For Training data

For Testing data

Figure **10**: Decision region plot for k = 1, superimposed with train and test dataset on left and right respectively

Figure 11: Decision region plot for k = 5, superimposed with train and test dataset on left and right respectively

2.2. K-nearest representatives' classifier: (10 representative per class)

2.2.1. Model performance across k

The accuracy table is as follows:

k-value	Train Accuracy	Validation Accuracy	Test Accuracy
1	99.9110	99.3691	99.3750
3	95.7257	94.0063	94.3750
5	84.4167	84.5426	82.5000

 Table 4: Accuracy table for dataset 2 – KNR classifier

Best Model is when k = 1, Confusion matrix and decision boundary plot are all evaluated using k = 1 as to minimize the run time.

Figure 13: Confusion matrix for k = 1, train and test dataset on left and right respectively

2.2.2. Decision Boundary Plot:

For Training data

For Testing data

Figure 14: Decision region plot for k = 1, superimposed with train and test dataset on left and right respectively

Figure **15**: Decision region plot for k = 3, superimposed with train and test dataset on left and right respectively

Figure 16: Decision region plot for k = 5, superimposed with train and test dataset on left and right respectively

2.3. Bayes Classifier with a Gaussian Distribution for every Class

2.3.1. Accuracy table and Confusion Matrix

Condition	Train Accuracy	Validation Accuracy	Test Accuracy
$C_i = C_j$	76.5806	76.3407	76.8750
$Ci \neq C_i$	76.4915	76.3407	76.8750

Table 5: Accuracy table for Dataset 2: Bayes Classifier

Figure 17: Confusion matrix for Gaussian Bayes classifier <u>with same covariance matrix</u>, train and test dataset on left and right respectively

Figure 18: Confusion matrix for Gaussian Bayes classifier <u>with different covariance matrix</u>, train and test dataset on left and right respectively

2.3.2. Decision Boundary Plot for Gaussian Bayes Classifier

• Decision Boundaries + Same Covariance:

Without Level curves

With Level Curves

Figure 19: Decision Boundary Plot for Gaussian Bayes classifier <u>with same covariance matrix</u>, without and with level curves on left and right respectively

• Decision Boundaries + Different Covariance:

Without Level curves

With Level Curves

Figure 20: Decision Boundary Plot for Gaussian Bayes classifier <u>with different covariance matrix</u>, without and with level curves on left and right respectively

2.4. Naïve-Bayes Classifier with a Gaussian Distribution for every class

2.4.1. Accuracy table and Confusion Matrix

Condition	Train Accuracy	Validation Accuracy	Test Accuracy
$C_i = C_j$	74.3544	73.1861	75
$Ci \neq C_i$	74.3544	76.5016	75

Table 6: Accuracy table for Dataset 2: Bayes Classifier

Figure 21: Confusion matrix for Naive Bayes classifier <u>with same covariance matrix</u>, train and test dataset on left and right respectively

Figure 22: Confusion matrix for Naive Bayes classifier <u>with different covariance matrix</u>, train and test dataset on left and right respectively

2.4.2. Decision Boundary Plot for Naive Bayes Classifier

• Decision Boundaries + Same Covariance:

Without Level curves

With Level Curves

Figure 23: Decision Boundary Plot for Naive Bayes classifier <u>with same covariance matrix</u>, without and with level curves on left and right respectively

Decision Boundaries + Different Covariance:

Without Level curves

With Level Curves

Figure 24: Decision Boundary Plot for Naive Bayes classifier <u>with different covariance matrix</u>, without and with level curves on left and right respectively

3. DATASET 3

3.1. K-nearest Neighbors classifier:

3.1.1. Mathematical Formulation

Similar to subsubsection 1.1.1., K nearest neighbor classifier is used to predict class labels for dataset 3.

3.1.2. Accuracy table and Confusion Matrix

The Model performance is best for value k = 15

The accuracy table and confusion matrix are:

Training Confusion Matrix

k-value	Train Accuracy	Validation Accuracy	Test Accuracy
1	100	52	50.5000
9	71.9048	55.6666	54.3336
15	66.6190	56	56.6666

Table 7: Accuracy table for Dataset 3 – KNN classifier

Testing Confusion Matrix

Predicted Label

Confusion Matrix for Training Confusion Matrix for Test True Label 2 **True Label**

Figure 25: Confusion matrix for k = 15, train and test dataset on left and right respectively

3.2. K-nearest representatives' classifier: (10 representative per class)

3.2.1. Accuracy table and Confusion Matrix

The Model performance is best for value k = 5, M = 10

k-value	Train Accuracy	Validation Accuracy	Test Accuracy
1	67.9371	54.1806	57.5960
5	59.7427	59.5318	59.9332
9	57.1701	54.1806	55.9265

 Table 8: Accuracy table for Dataset 3 – KNR classifier

Figure 26: Confusion matrix for k = 15, train and test dataset on left and right respectively

3.3. Bayes Classifier with a Gaussian Distribution for every Class

3.3.1. Accuracy Table and Confusion Matrix

Sr. No.	Train Accuracy	Validation Accuracy	Test Accuracy
1	64.7451	50.5016	49.5826

Table 9: Accuracy table for Dataset 3 - Bayes classifier

Training Confusion Matrix

Testing Confusion Matrix

Figure 27: Confusion matrix of train and test dataset on left and right respectively

3.4. Naïve-Bayes Classifier with a Gaussian Distribution for every class

3.4.1. Accuracy table and Confusion Matrix

Condition	Train Accuracy	Validation Accuracy	Test Accuracy
$C_i = C_j$	56.3130	58.1940	56.0930
$Ci \neq C_i$	59.1230	57.1910	57.4290

Table 10: Accuracy table for Dataset 3: Naïve Bayes Classifier

Figure 21: Confusion matrix for Naive Bayes classifier <u>with same covariance matrix</u>, train and test dataset on left and right respectively

Training Confusion Matrix

Testing Confusion Matrix

Figure 22: Confusion matrix for Naive Bayes classifier <u>with different covariance matrix</u>, train and test dataset on left and right respectively