Chapter 3: Elements of Point Set Topology

Author: Meng-Gen Tsai Email: plover@gmail.com

Compact subsets of a metric space

Prove each of the following statements concerning an arbitrary metric space (M,d) and subsets S, T of M.

Exercise 3.39. If S is closed and T is compact, then $S \cap T$ is compact.

Proof (On topological spaces). Let \mathscr{F} be an open covering of $S \cap T$, say $S \cap T \subseteq \bigcup_{A \in \mathscr{F}} A$. We will show that a finite number of the sets A cover $S \cap T$. Since S is closed its complement \widetilde{S} in M is open, so $\mathscr{F} \cup \{\widetilde{S}\}$ is an open covering of T. Since T is compact, so this covering contains a finite subcovering which we can assume includes \widetilde{S} . Therefore,

$$T \subseteq A_1 \cup \cdots \cup A_p \cup \widetilde{S}$$
.

This subcovering also covers $S \cap T$ and, since \widetilde{S} contains no points of S, we can delete the set \widetilde{S} for the subcovering and still covers $S \cap T$. Thus

$$S \cap T \subseteq A_1 \cup \cdots \cup A_p$$

so $S \cap T$ is compact. \square

Proof (Theorem 3.39).

T is compact in (M, d)

 $\Longrightarrow T$ is compact in (T, d) (Exercise 3.38)

 $\Longrightarrow S \cap T$ is compact in (T,d) $(S \cap T)$: closed in (T,d), Theorem 3.38)

 $\Longrightarrow S \cap T$ is compact in (M, d). (Exercise 3.38)

Exercise 3.41. The union of a finite number of compact subsets of M is compact.

Proof (On topological spaces). Let K_1, \ldots, K_n be compact subsets of M. Let \mathscr{F} be an open covering of $K_1 \cup \cdots \cup K_n$, say

$$K_1 \cup \cdots \cup K_n \subseteq \bigcup_{A \in \mathscr{F}} A.$$

We will show that a finite number of the sets A cover $K_1 \cup \cdots \cup K_n$. Clearly \mathscr{F} is an open covering of every K_i . Since K_i is compact, this covering contains a finite subcovering \mathscr{F}_i , say

$$K_i \subseteq A_{1(i)} \cup \cdots \cup A_{p(i)}$$
.

Union all finite subcovering \mathscr{F}_i to get a finite subcovering of $K_1 \cup \cdots \cup K_n$, say

$$K_1 \cup \cdots \cup K_n \subseteq \bigcup_{A \in \bigcup_{1 < i < n} \mathscr{F}_i} A.$$

Supplement (Zariski topology). Let A be a ring and let X be the set of all prime ideals of A. For each subset E of A, let V(E) denote the set of all prime ideals of A which contain E. The sets V(E) satisfy the axioms for closed sets in a topological space. The resulting topology is called the Zariski topology. The topological space X is called the prime spectrum of A, and is written Spec(A).

For each $f \in A$, let X_f denote the complement of V(f) in X = Spec(A). The sets X_f are open. Show that they form a basis of open sets for the Zariski topology, and that

- (1) Each X_f is quasi-compact (compact), that is, every open covering of X has a finite subcovering.
- (2) An open subset of X is quasi-compact if and only if it is a finite union of sets X_f .

By Exercise 3.41, we know that X is quasi-compact if X is a finite union of quasi-compact sets X_f .