

Algún warning.

- 🕨 🤑 Sagemaker 🤑
- 🕨 🐍 Python 🐍
- Arquitecturas
- K Ingeniería de Machine Learning K

Qué vamos a ver.

Cómo gestionar tu modelo de R en Sagemaker

El equipo.

Bea Hernández
ML Engineer
twitter.com/chucheria
qithub.com/chucheria

Ángel Delgado
ML Engineer
twitter.com/thinbaker

María López

Data Scientist

linkedin.com/in/maria-lopez
-a67796199/

Alejandro Hernández

Data Scientist

linkedin.com/in/alejandrohd
ez/

Gracias.

Antes de nada...

A R-Ladies Madrid y Kairos por invitarme

A Paradigma Digital por darme el tiempo

R en Sagemaker

Las bases

• • • R en Sagemaker

Las bases

ML Engineering.

ML Engineering.

Tres fases principales del proceso

Comprensión del problema de negocio y su solución

Desarrollo de una solución con un modelo de ML

Puesta en producción y

mantenimiento

automático

Referencia

• • • R en Sagemaker

Las bases

Sagemaker.

De la idea al producto.

- Exploración de datos
- Desarrollo del modelo
- Entrenamiento
- Producción
- Monitorización

Cómo lo consigue Sagemaker.

Producción

Studio

S3

CloudWatch

Pipeline

Feature Store

Processing Job

Python

Training Job

Algorithm market

Jupyter Notebook

Clarify

Versionado

ECR

Canvas

SDK

• • R en Sagemaker

El planteamiento.

• • • R en Sagemaker

El planteamiento

El problema.

Premisas.

Negocio.

Tenemos un problema a resolver con un modelo. El problema puede venir de una necesidad de negocio, de nuestro proyecto, para resolver un concurso, ...

Entorno.

El entorno de trabajo es local, está fuera de Sagemaker. Es el entorno que tenemos predefinido y no lo vamos a cambiar.

Modelo.

El problema resuelto es el famoso Abalone. Lo que se busca es la predicción del número de anillos del molusco.

• • • R en Sagemaker

El planteamiento

La solución.

El truqui.

Sagemaker

Sagemaker me ofrece unos servicios y una manera de usarlos.

Mi Sagemaker

El servicio es lo suficientemente flexible para que cubra mi solución.

Arquitectura de la solución.

🕨 🔸 💎 R en Sagemaker

El modelo.

Arquitectura de la solución.

Procesamiento de datos.

```
# Read data
data <- read_csv(FILE_DATA, col_names = FALSE)
names(data) <- c("sex", "length", "diameter", "height", "whole_weight",
                 "shucked_weight", "viscera_weight", "shell_weight", "rings")
# Wrangle
data$sex <- as.factor(data$sex)
abalone <- data %>%
    mutate(female = as.integer(ifelse(sex == "F", 1, 0)),
           male = as.integer(ifelse(sex == "M", 1, 0)),
          infant = as.integer(ifelse(sex == "I", 1, 0))) %>%
    select(-sex)
abalone <- abalone %>%
    filter(height != 0)
train <- abalone %>%
    sample_frac(size = 0.7)
abalone <- anti_join(abalone, train)
test <- abalone %>%
    sample_frac(size = 0.5)
validation <- anti_join(abalone, test) %>%
    select(-rings)
# Write data
write_csv(train, FILE_TRAIN)
write csv(test, FILE TEST)
write_csv(validation, FILE_VALIDATION)
```

Entrenamiento del modelo.

```
# Train model
train_data <- read_csv(FILE_TRAIN)
xg <- boost_tree(trees = 200) %>%
    set_engine("xgboost") %>%
    set_mode("regression") %>%
    fit(rings ~ ., data = train_data)

saveRDS(xg, MODEL_PATH)

# Test model
test_data <- read_csv(FILE_TEST)
x <- test_data %>%
    select(-rings)
y <- test_data %>%
    select(rings)
```

Inferencia.

Arquitectura de la solución.

Métricas de entrenamiento.

```
# Test model
test_data <- read_csv(FILE_TEST)
x <- test data %>%
    select(-rings)
y <- test_data %>%
    select(rings)
pred <- predict(xg, x, type = "raw") %>%
    bind_cols(test_data)
mae <- pred %>%
    mae(truth = rings, estimate = ...1) %>%
    select/ estimate)
cat(paste0('MAE=', mae, '\n'))
mape <- pred %>%
    mape(truth = rings, estimate = ...1) %>%
    select( estimate)
cat(paste0('MAPE=', mape, '\n'))
rmse <- pred %>%
    rmse(truth = rings, estimate = ...1) %>%
    select( estimate)
cat(paste0('RMSE=', rmse, '\n'))
```

🕨 🔸 💎 R en Sagemaker

El contenedor.

Docker.

Lo usamos para contenerizar software.

¿Qué significa?

Creamos un paquete estándar que incluye los requisitos mínimos para ejecutar el software.

Arquitectura de la solución.

Dockerfile.

```
FROM r-base: latest
# Install dependencies
RUN apt-get -y update && \
    apt-get install -y --no-install-recommends \
    wget \
    apt-transport-https \
    ca-certificates \
    libcurl4-openssl-dev \
    libsodium-dev
# Copy project and install packages
COPY ./src /home
WORKDIR /home
RUN Rscript install.R
# Create alias
RUN echo "#!/bin/bash\n/usr/bin/Rscript /home/preprocess.R" > /usr/bin/processing
RUN echo "#!/bin/bash\n/usr/bin/Rscript /home/train.R" > /usr/bin/train
RUN echo "#!/bin/bash\n/usr/bin/Rscript /home/serve.R" > /usr/bin/serve
# RUN echo "#!/bin/bash\n/usr/bin/Rscript /home/explain/main.R" > /usr/bin/explain
RUN chmod +x /usr/bin/processing
RUN chmod +x /usr/bin/train
RUN chmod +x /usr/bin/serve
# RUN chmod +x /usr/bin/explain
```

Instalar paquetes.

```
install.packages("remotes")
library("remotes")

install_version("xgboost", "1.5.2.1")
install_version("tidymodels", "0.1.4")
install_version("readr", "2.1.2")
install_version("dplyr", "1.0.8")
install_version("plumber", "1.1.0")
```

Amazon ECR.

Amazon Elastic Container Registry.

- Otro servicio
- Todas las imágenes que empiecen por sagemaker- se pueden gestionar desde ahí

Amazon ECR.

```
image="sagemaker-rladies"
fullname="${account}.dkr.ecr.${region}.amazonaws.com/${image}:latest"

#aws ecr create-repository --repository-name "${image}" > /dev/null

aws ecr get-login-password --region "${region}" | docker login --username AWS --password-stdin "${account}".dkr.ecr."${region}".amazonaws.com

docker tag ${image} ${fullname}
```

🕨 🔸 💎 R en Sagemaker

El pipeline.

Arquitectura de la solución.

• • • R en Sagemaker ————

Sagemaker SDK.

El pipeline

Sagemaker SDK.

Software development kit.

Librería o recursos que te permiten usar una herramienta dentro de un desarrollo software.

Lenguaje.

El SDK de Sagemaker está escrito en Python. Se puede acceder a él mediante reticulate.

Ventajas.

Nos permite acceder a los recursos de Sagemaker fuera de la herramienta e incluirla a nuestro desarrollo.

Saber más.

Documentación

Procesamiento.

```
s_processing = ProcessingStep(
    name='processing-{}'.format(name),
   processor=Processor(
        image_uri=image,
        role=role,
                                                                                           RUN echo "#!/bin/bash\n/usr/bin/Rscript /home/preprocess.R" > /usr/bin/processing
        entrypoint=['processing'],
        instance_count=1,
        instance_type=instance,
        env=env
   inputs=[
        ProcessingInput(
            source='s3://sagemaker-pipelines-r/data/abalone.csv',
                                                                                            # Read data
            destination='/opt/ml/processing/input/',
                                                                                            data <- read_csv(FILE_DATA, col_names = FALSE)
            input_name='input_data',
    ],
   outputs=[
        ProcessingOutput(
                                                                                             # Write data
            source='/opt/ml/processing/output/',
                                                                                             write_csv(train, FILE_TRAIN)
            destination='s3://sagemaker-pipelines-r/data/processing/output'
                                                                                             write_csv(test, FILE_TEST)
            output_name='output_data',
                                                                                             write_csv(validation, FILE_VALIDATION)
   code=None #This is treaky
```

Entrenamiento.

```
s_training = TrainingStep(
    name='train-{}'.format(name),
    estimator=Estimator(
        image_uri=image,
        instance_type=instance,
        instance_count=1,
       output_path='s3://sagemaker-pipelines-r/train/',
        role=role,
        environment=env.
                                                                                                  mae <- pred %>%
        disable_profiler=True,
        metric_definitions=[
                "Name": "train:mae",
                "Regex": "MAE=(.*)"
                "Name": "train:mape",
                "Regex": "MAPE=(.*)"
                "Name": "train:rmse",
                "Regex": "RMSE=(.*)"
            },
        enable_sagemaker_metrics=True,
   inputs=TrainingInput(
        s3_data=s_processing.properties.ProcessingOutputConfig.Outputs[
            "output_data"].S30utput.S3Uri
```

mae <- pred %>%
 mae(truth = rings, estimate = ...1) %>%
 select(.estimate)
cat(paste0('MAE=', mae, '\n'))
mape <- pred %>%
 mape(truth = rings, estimate = ...1) %>%
 select(.estimate)
cat(paste0('MAPE=', mape, '\n'))

rmse <- pred %>%
 rmse(truth = rings, estimate = ...1) %>%
 select(.estimate)
cat(paste0('RMSE=', rmse, '\n'))

Inferencia.

```
s_batch_predict = TransformStep(
    name='predict-{}'.format(name),
    transformer=Transformer(
        model_name=s_create_model.properties.ModelName,
        instance_type=instance,
        instance_count=1,
        output_path="s3://sagemaker-pipelines-r/data/inference",
        env=env
),
    inputs=TransformInput(
        data="s3://sagemaker-pipelines-r/data/processing/output/validation.csv",
        content_type='text/csv')
)
```


Arquitectura de la solución.

Registrar modelo.

```
s_create_model = CreateModelStep(
    name='create-{}'.format(name),
    model=Model(
        image uri=image,
        model_data=s_training.properties.ModelArtifacts.S3ModelArtifacts,
        role=role,
        sagemaker session=session
    ),
    inputs= CreateModelInput(
        instance_type=instance
    ),
steps.append(s_create_model)
s_register = RegisterModel(
    name='register-{}'.format(name),
    estimator=s_training.estimator,
    model_data=s_training.properties.ModelArtifacts.S3ModelArtifacts,
    content_types=["text/csv"],
    response_types=["text/csv"],
    inference instances=[instance],
    transform_instances=[instance],
    approval status="Approved",
    model_package_group_name= "test-rladies",
    description="Model group for rladies Puebla - XGB for abalon dataset",
    depends_on=[s_training],
```


🕨 🔸 💎 R en Sagemaker

Conclusiones.

• • • R en Sagemaker — Conclusiones

Nuestra solución.

ML Engineering con Sagemaker.

- Sagemaker pipelines es lo suficientemente flexible como para admitir casi cualquier solución
- Tiene un escalón de aprendizaje en la parte de MLOps
- Solución completa para gestión de modelos
- Nuestra solución permite incorporar un modelo ya desarrollado haciendo pocos cambios

• • • R en Sagemaker — Conclusiones

La solución de Sagemaker.

Sagemaker Studio.

- Sagemaker Studio te facilita la integración
- Es una solución menos flexible
- Solución completa para gestión de modelos
- Sigues necesitando conocimientos para gestionar todo el flujo y conocer sus productos

Gracias.

Estamos contratando remoto o híbrido

https://www.paradigmadigital.com/empleo

