МИНОБРНАУКИ РОССИИ САНКТ-ПЕТЕРБУРГСКИЙ ГОСУДАРСТВЕННЫЙ ЭЛЕКТРОТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ «ЛЭТИ» ИМ. В.И. УЛЬЯНОВА (ЛЕНИНА) Кафедра МОЭВМ

ОТЧЕТ

по лабораторной работе №10

по дисциплине «Базы Данных»

Тема: "Реализация операторов реляционной алгебры на языке SQL"

Студент гр. 8304	 Сергеев А.Д.
Преподаватель	 Фомичева Т.Г.

Санкт-Петербург 2020

Цель работы.

- 1. Выбрать предметную область и придумать, опираясь на примеры теоретической части методических указаний, собственные примеры для реализации каждой операции. Для операций объединение, пересечение и разность использовать один общий пример. Сформулировать задачу для каждой из 8-ми операций в терминах выбранной предметной области.
 - 2. Создать структуру (определение) каждой таблицы.
 - 3. Заполнить таблицы тестовыми данными.
 - **4.** Написать SQL- код, реализующий каждую из 8-ми операций.
- **5.** Выполнить запросы и убедиться, что они реализуют соответствующие операции.

Порядок выполнения работы.

1. Объединение ($R3 = R1 \cup R2$)

Пусть в таблице R1 хранится информация о блюдах в меню ресторана, содержащих продукты животного происхождения, а в таблице R2 — о блюдах, содержащих продукты растительного происхождения. Необходимо получить данные обо всём меню ресторана.

name	▼	kkal	-	mass	-
Борщ			430		500
Шашлык с овощами			670		650
Жульен с грибами			340		300
Суши			580		560

Рисунок 1 — Таблица R1(contains_animals)

name	•	k	kal	¥	mass	*
Гороховый суп				420		470
Шашлык с овощами				670		650
Жульен с грибами				340		300
Запеканка				880		420

Рисунок 2 — Таблица R2 (contains_plants)

SQL запрос: SELECT * FROM contains_plants UNION SELECT * FROM contains_animals;

name 🔻	kkal 🕶	mass +
Борщ	430	500
Гороховый суг	420	470
Жульен с гриб	340	300
Запеканка	880	420
Суши	580	560
Шашлык с овс	670	650

Рисунок 3 — Таблица R3 (меню ресторана)

2. Пересечение ($R3 = R1 \cap R2$)

Пусть в таблице R1 хранится информация о блюдах в меню ресторана, содержащих продукты животного происхождения, а в таблице R2 — о блюдах, содержащих продукты растительного происхождения. Необходимо получить данные обо всех блюдах смешанного происхождения.

name	¥	kkal +	mass +
Борщ		430	500
Шашлык с овощами		670	650
Жульен с грибами		340	300
Суши		580	560

Рисунок 4 — Таблица R1(contains_animals)

name	~	kkal	-	mass	~
Гороховый суп			420		470
Шашлык с овощами			670		650
Жульен с грибами			340		300
Запеканка			880		420

Рисунок 5 — Таблица R2 (contains_plants)

SQL 3appoc: SELECT contains_plants.name, contains_plants.kkal, contains_plants.mass

FROM contains_plants, contains_animals

WHERE contains_plants.name=contains_animals.name And

contains_plants.kkal=contains_animals.kkal And

name	~	kkal	-	mass	~
Шашлык с овощами			670		650
Жульен с грибами			340		300

Рисунок 6 — Таблица R3 (сбалансированные блюда в меню)

3. **Разность** $(R3 = R1 \setminus R2)$

contains_plants.mass=contains_animals.mass;

Пусть в таблице R1 хранится информация о блюдах в меню ресторана, содержащих продукты животного происхождения, а в таблице R2 — о блюдах, содержащих продукты растительного происхождения. Необходимо получить данные обо всех блюдах, содержащих только блюда растительного происхождения.

name	¥	kkal	¥	mass	~
Борщ			430		500
Шашлык с овощами			670		650
Жульен с грибами			340		300
Суши			580		560

Рисунок 7— Таблица R1(contains_animals)

name	¥	kkal	-	mass	-
Гороховый суп			420		470
Шашлык с овощами			670		650
Жульен с грибами			340		300
Запеканка			880		420

Рисунок 8 — Таблица R2 (contains_plants)

SQL запрос: SELECT contains_plants.name, contains_plants.kkal, contains_plants.mass

FROM contains_plants

WHERE NOT EXISTS (SELECT * FROM contains_animals WHERE contains_plants.name = contains_animals.name AND contains_plants.kkal = contains_animals.kkal AND contains_plants.mass = contains_animals.mass);

name	¥	kkal	+	mass	*
Гороховый суп			420		470
Запеканка			880		420

Рисунок 9 — Таблица R3 (вегетарианское меню)

4. Декартово произведение ($R3 = R1 \times R2$)

Пусть в таблице R1 хранится информация об уборщиках ресторана (каждый из них должен выполнить все действия по уборке ресторана в свои дни недели в одно и то же время суток) и о том, по каким дням они работают, а в таблице R2 — о том, что конкретно и в какое время дня должно быть сделано. Необходимо получить данные о том, кто когда и что убирает.

name	v	works_on	¥
Сидоров А. И.		понедельник, четверг	
Иванова 3. К.		вторник, пятница	
Петренко В. Л.		среда, суббота	

Рисунок 10 — Таблица R1 (staff)

place	~	timing	¥
Убрать со столиков		13:45	
Вытереть пол		19:45	

Рисунок 11 — Таблица R2 (cleaning_duties)

SQL запрос: SELECT * FROM staff, cleaning_duties;

name	works_on →	place +	timing +
Сидоров А. И.	понедельник, четверг	Убрать со столиков	13:45
Сидоров А. И.	понедельник, четверг	Вытереть пол	19:45
Иванова 3. К.	вторник, пятница	Убрать со столиков	13:45
Иванова 3. К.	вторник, пятница	Вытереть пол	19:45
Петренко В. Л.	среда, суббота	Убрать со столиков	13:45
Петренко В. Л.	среда, суббота	Вытереть пол	19:45

Рисунок 12 — Таблица R3 (кто что и когда убирает)

5. Деление $(R3 = R1 \div R2)$

Пусть не все уборщики справились со своим графиком и теперь в таблице R1 хранится информация о том, кто из уборщиков что и когда успел сделать, а в таблице R2 — о том, что конкретно и в какое время нужно было сделать. Необходимо получить данные о том из уборщиков справился со своими задачами вовремя, чтобы выдать ему премию.

name	~	works_on	~	place	~	timing	-
Сидоров А. И.		понедельник, четверг		Убрать со столиков		13:45	
Сидоров А. И.		понедельник, четверг		Вытереть пол		19:58	
Иванова 3. К.		вторник, пятница		Убрать со столиков		13:45	
Иванова 3. К.		вторник, пятница		Вытереть пол		19:45	
Петренко В. Л.		среда, суббота		Убрать со столиков		13:56	
Петренко В. Л.		среда, суббота		Вытереть пол		19:45	

Рисунок 13 — Таблица R1 (actual_times)

place	·	timing	¥
Убрать со столиков		13:45	
Вытереть пол		19:45	

Рисунок 14 — Таблица R2 (cleaning_duties)

SQL 3anpoc: SELECT actual_times.name, actual_times.works_on
FROM actual_times, cleaning_duties
WHERE actual_times.timing=cleaning_duties.timing And
actual_times.place=cleaning_duties.place

GROUP BY actual_times.name, actual_times.works_on

HAVING COUNT(actual_times.place) = (SELECT COUNT(place) FROM cleaning_duties);

Рисунок 15 — Таблица R3 (кто из уборщиков справился с графиком)

6. Проекция ($R2 = \pi_{i1,i2,...,in}(R1)$)

Пусть в таблице R1 хранится информация о том, кто из уборщиков что и когда успел сделать. Необходимо получить данные о том, в какое время суток в каких частях ресторана проходила уборка (вне зависимости от дня недели).

name	~	works_on	Ŧ	place	¥	timing	¥
Сидоров А. И.		понедельник, четверг		Убрать со столиков		13:45	
Сидоров А. И.		понедельник, четверг		Вытереть пол		19:58	
Иванова 3. К.		вторник, пятница		Убрать со столиков		13:45	
Иванова 3. К.		вторник, пятница		Вытереть пол		19:45	
Петренко В. Л.		среда, суббота		Убрать со столиков		13:56	
Петренко В. Л.		среда, суббота		Вытереть пол		19:45	

Pucyнoк 16 — Таблица R1 (actual_times)

SQL запрос: SELECT place, timing FROM actual_times GROUP BY place, timing;

place	·	timing	¥
Вытереть пол		19:45	
Вытереть пол		19:58	
Убрать со столиков		13:45	
Убрать со столиков		13:56	

Рисунок 17 — Таблица R2 (в какое время дня где была уборка)

7. **Селекция** ($R2 = \sigma_F(R1)$, гдеF — условие)

Пусть в таблице R1 хранится информация о сумме заказа каждого из клиентов. Необходимо получить данные о том, кто из клиентов заказал больше, чем на 3000 рублей для того, чтобы обслужить их первыми.

name	~	price +
Вейсман А. Д.		1205
Ожегов С. И.		5907
Петрученко О.		2785
Кузищин В. И.		9638
Дворецкий И. Х.		3078
Мусселиус В.		12895

Рисунок 18 — Таблица R1 (orders)

SQL запрос: SELECT * FROM orders WHERE price>3000;

name	Ŧ	price	~
Ожегов С. И.			5907
Кузищин В. И.			9638
Дворецкий И. Х.			3078
Мусселиус В.		1	2895

Рисунок 19 — Таблица R2 (кто из клиентов заказал больше, чем на 3000)

8. Соединение ($R3 = R1 \triangleright_{i\theta j} \triangleleft R2$)

Пусть в таблице R1 хранится информация о сумме заказа каждого из клиентов, а в R2 — информация о том, начиная с какой суммы заказа какой комплимент полагается клиенту. Необходимо получить данные о том, какому из клиентов следует принести какой комплимент от ресторана.

name •	price +
Вейсман А. Д.	1205
Ожегов С. И.	5907
Петрученко О.	2785
Кузищин В. И.	9638
Дворецкий И. Х.	3078
Мусселиус В.	12895

Рисунок 20 — Таблица R1 (orders)

Рисунок 21 — Таблица R2 (compliments)

SQL запрос: SELECT orders.name, MAX(compliments.price) AS compliment_price,
LAST(compliments.compliment) AS compliment, orders.price
FROM orders INNER JOIN compliments ON orders.price>=compliments.price
GROUP BY name, orders.price;

name	₩.	compliment_price	compliment -	price +
Вейсман А. Д.		100	0 скромный	1205
Дворецкий И. Х.		100	0 скромный	3078
Кузищин В. И.		500	0 приятный	9638
Мусселиус В.		1000	0 щедрый	12895
Ожегов С. И.		500	0 приятный	5907
Петрученко О.		100	0 скромный	2785

Рисунок 22 — Таблица R2 (кому из клиентов полагается какой комплимент)

Вывод.

В ходе данной лабораторной работы были приобретены навыки написания запросов на языке SQL на примерах реализации таких операций как объединение, пересечение, разность, декартово произведение, деление, проекция, селекция, соединение.