Типовой расчёт по дисциплине «Информатика».

Номера вариантов совпадают с номером студента в журнале преподавателя.

Задания для самостоятельной работы №1

Даны двоичное, восьмеричное, десятичное и шестнадцатеричное числа (табл. 1):

- 1) двоичное число перевести в системы с основаниями 16 и 8;
- 2) восьмеричное и шестнадцатеричное числа перевести в двоичную СС;
- 3) десятичное число перевести в шестнадцатеричную и восьмеричную СС методами деления и умножения;
- 4) двоичное, восьмеричное и шестнадцатеричное числа перевести в десятичную СС методом полинома. Результат представить в виде десятичной дроби до четвертого знака после запятой.

Таблица 1 Варианты для самостоятельной работы 1

№	Двоичное	Восьмеричное	Десятичное	Шестнадцатеричное	
п.п.	число	число	число	число	
1	10000101,01100	346,176	54,54	A2E,D58	
2	1111111,10011	245,150	72,15	C67,9C0	
3	1101100,10011	233,217	92,76	FBC,853	
4	1111111,10001	214,175	87,83	49E,E7D	
5	10000100,01001	230,151	53,13	AAD,749	
6	1101100,01101	300,152	51,53	B7F,3B9	
7	1101110,10010	173,145	91,90	DBA,648	
8	1100001,10011	215,166	76,62	D89,15C	
9	1110000,01000	307,146	98,59	94F,9F2	
10	1110100,01000	237,170	83,66	66A,F9A	
11	1110000,01011	336,223	92,69	12C,C78	
12	1110001,01111	260,162	71,45	368,E6A	
13	1110000,01000	203,163	86,50	7DE,55B	
14	1101000,01010	144,217	74,01	253,8CD	
15	1111100,10000	261,224	68,52	BEB,A66	
16	1100010,10000	364,167	74,82	BB9,4B7	
17	1111001,01000	226,164	51,53	90A,B52	
18	1110101,01011	310,222	81,81	F01,E70	
19	1011010,01101	243,144	61,58	451,294	
20	1110101,10000	254,155	62,02	FE0,195	
21	1101000,01110	304,163	67,98	AE8,E7E	
22	1101101,01001	275,164	96,48	F56,D17	
23	10001000,01011	346,173	90,65	5FF,3D7	
24	1011010,01001	212,170	65,59	10C6,961	
25	1110111,01100	241,172	80,27	974,8F2	
26	1100011,10001	261,203	68,14	1BC,DD9	
27	1100000,01110	162,160	85,55	1057,765	
28	1100010,01000	323,206	89,33	220,DD4	
29	1100001,10010	370,214	62,54	D5C,AF6	
30	1101111,01011	204,167	85,33	420,62	

Задания для самостоятельной работы №2

Десятичные числа (табл. 2) перевести в двоичную систему методом «взвешивания». Получить произведение двух чисел, используя указанный в табл. 2 метод умножения и тип сумматора.

Nº	A	В	Метод	Тип сумматора (код)	
1.	-71	93	4	йомкап	
2.	-90	-62	2	дополнительный	
3.	56	-77	2	прямой	
4.	106	-62	2	дополнительный	
5.	-66	71	3	прямой	
6.	67	-108	2	дополнительный	
7.	-87	57	1	прямой	
8.	-88	-107	2	дополнительный	
9.	107	-98	2	прямой	
10.	112	-103	2	дополнительный	
11.	72	113	4	прямой	
12.	99	-88	3	прямой	
13.	102	71	1	прямой	
14.	105	- 72	2	дополнительный	
15.	115	-69	2	дополнительный	
16.	- 53	51	4	прямой	
17.	110	-51	3	- прямой	
18.	101	-62	2	- прямой	
19.	-76	-97	2	дополнительный	
20.	- 55	-78	2	дополнительный	
21.	56	-84	2	дополнительный	
22.	-81	51	1	прямой	
23.	-62	117	4	- прямой	
24.	111	62	3	прямой	
25.	73	-108	2	прямой	
26.	-63	-103	2	дополнительный	
27.	71	-77	1	прямой	
28.	104	-65	2	дополнительный	
29.	-54	-102	2	дополнительный	
30.	-57	112	4	прямой	

Задания для самостоятельной работы №3

Разделить большее по модулю число на меньшее по модулю число (см. табл. 2). Деление провести на сумматоре обратного кода с получением результата в прямом коде для чётных вариантов и в обратном коде – для нечётных. Алгоритм деления – с восстановлением частичного остатка.

Задания для самостоятельной работы №4

Выполнить вычитание двух чисел в формате с плавающей запятой, заменив операцию вычитания сложением. В качестве операндов берутся двоичное и десятичное числа из табл. 1. Величина разрядной сетки для мантиссы — 16 разрядов, для порядка — не ограничивается. Десятичное число необходимо представить в двоичной системе с 5-ю знаками после запятой.

Результат вычитания необходимо представить в десятичной системе и вычислить его абсолютную и относительную погрешности.

Задания для самостоятельной работы №5

Выполнить умножение двух чисел в формате с плавающей запятой. В качестве операндов берутся числа из табл. 2: множимое — число A/10, множитель — число (-0.1)*B. Операнды перевести в двоичную систему с точностью до трёх знаков после запятой. Для умножения мантисс и сложения порядков использовать сумматор обратного кода. Формат мантиссы — правильные дроби со знаком. Метод умножения — 2 (умножение начинается с анализа младших разрядов множителя при сдвиге в каждом такте суммы частичных произведений). Длину разрядной сетки для операндов выбрать одинаковую.

Результат умножения необходимо представить в десятичной системе и вычислить его абсолютную погрешность.

Задания для самостоятельной работы №6

Выполнить деление двух чисел в формате с плавающей запятой. В качестве операндов берутся уменьшенные в десять раз числа из табл. 2. Операнды перевести в двоичную систему с точностью до трёх знаков после запятой. Для деления мантисс и вычитания порядков использовать сумматор дополнительного кода. Формат мантиссы – правильные дроби со знаком. Метод деления – деление без восстановления частичного остатка с получением частного в прямом коде. Длину разрядной сетки делимого и делителя выбрать самостоятельно.

Результат деления необходимо представить в десятичной системе и вычислить его абсолютную погрешность.

Задания для самостоятельной работы №7

Дана логическая функция четырёх переменных (табл. 3):

- 1. Представить исходную функцию в виде таблицы истинности.
- 2. По таблице истинности записать СДНФ, доопределив неопределённые значения функции нулями, и СКНФ функции, доопределив неопределённые значения функции единицами.
- 3. Используя метод неопределённых коэффициентов записать исходную функцию в виде полинома Жегалкина.
 - 4. Получить МКНФ и МДНФ исходной функцию с помощью карт Карно.
- 5. Получить ТДНФ исходной функции с помощью метода Квайна–Мак-Класки, доопределив неопределённые значения функции по своему усмотрению.
 - 6. Одну из МНФ, полученных в пунктах 3 и 4, записать в указанном базисе (табл. 3).
- 7. Представить исходную функцию в виде двух функциональных схем на основе микросхем серии К155, используя любые две полученных в предыдущих пунктах формулы.
- 8. Сравнить полученные в предыдущем пункте схемы по максимальному времени задержки прохождения сигнала и аппаратурным затратам.

Варианты для самостоятельной работы. Таблица 3

Вариант	Логическая функция	
1	Логическая функция $y(a,b,c,d) = \bigvee_{1} (0,1^*,2^*,4^*,5,6,7^*,9^*,10^*,11,12^*,14)$	$\{\rightarrow,\neg\}$
2	$y(a,b,c,d) = \bigwedge_{0} (0,1^*,2^*,4^*,5,6,7^*,9^*,10^*,11,12^*,14)$	{∨,¬}
3	$y(a,b,c,d) = \sqrt{(0,1^*,2^*,3,4^*,6,7^*,8,9^*,10^*,12^*,14)}$	$\{\rightarrow,\neg\}$
4	$y(a,b,c,d) = \sqrt{(1^*,2^*,3,4^*,7^*,8,9^*,10^*,11,12^*)}$	{⊕,∧}
5	$y(a,b,c,d) = \sqrt{(1^*,2^*,3,4^*,5,7^*,8,9^*,10^*,11,12^*,13)}$	{↓}
6	$y(a,b,c,d) = \bigwedge_{0} (1^*,2^*,3,4^*,5,7^*,9^*,10^*,11,12^*,14)$	$\{ \land, \lnot \}$
7	$y(a,b,c,d) = \sqrt{(1^*,2^*,3,4^*,7^*,9^*,10^*,11,12^*,13,14)}$	$\{\rightarrow,\neg\}$
8	$y(a,b,c,d) = \bigwedge_{0} (0,3,1^*,2^*,4^*,6,7^*,9^*,10^*,12^*,14)$	$\{\lor,\lnot\}$
9	$y(a,b,c,d) = \bigvee_{1} (0,1^*,2^*,4^*,5,7^*,9^*,10^*,11,12^*,13)$	$\{ \land, \lnot \}$
10	$y(a,b,c,d) = \bigwedge_{0} (0,1^*,2^*,4^*,7^*,8,9^*,10^*,12^*,13,14)$	$\{\rightarrow, \neg\}$
11	$y(a,b,c,d) = \bigvee_{1} (1^*,2^*,4^*,5,7^*,8,9^*,10^*,12^*,13,14)$	{∨,¬}
12	$y(a,b,c,d) = \bigwedge_{0} (0,1^*,2^*,4^*,6,7^*,9^*,10^*,11,12^*,13)$	$\{ \land, \lnot \}$
13	$y(a,b,c,d) = \bigvee_{1} (0,1^*,2^*,3,4^*,5,7^*,9^*,10^*,11,12^*,13)$	$\{\rightarrow,\neg\}$
14	$y(a,b,c,d) = \bigwedge_{0} (1^*,2^*,3,4^*,5,7^*,8,9^*,10^*,12^*,14)$	{∨,¬}
15	$y(a,b,c,d) = \bigvee_{1} (1^*,2^*,3,4^*,7^*,8,9^*,10^*,12^*,13,14)$	{∧,¬}
16	$y(a,b,c,d) = \bigwedge_{0} (1^*,2^*,3,4^*,5,7^*,9^*,10^*,11,12^*,13,14)$	$\{\rightarrow, \neg\}$

Вариант	Логическая функция	
17	$y(a,b,c,d) = \bigvee_{1} (1^*,3,2^*,4^*,5,7^*,9^*,10^*,11,12^*,14)$	$\{\!$
18	$y(a,b,c,d) = \bigvee_{1} (1^*,2^*,4^*,5,6,7^*,9^*,10^*,12^*,13,14)$	$\{\land,\lnot\}$
19	$y(a,b,c,d) = \sqrt{(1^*,2^*,4^*,5,6,7^*,9^*,10^*,12^*,13)}$	$\{\oplus,\wedge\}$
20	$y(a,b,c,d) = \bigwedge_{0} (0,3,1^*,2^*,4^*,6,7^*,8,9^*,10^*,12^*)$	$\{\!\vee,\neg\}$
21	$y(a,b,c,d) = \bigvee_{1} (0,1^*,2^*,4^*,6,7^*,8,9^*,10^*,11,12^*)$	$\{\rightarrow, \neg\}$
22	$y(a,b,c,d) = \bigwedge_{0} (0,1^*,2^*,4^*,7^*,8,9^*,10^*,11,12^*)$	$\{\rightarrow, \neg\}$
23	$y(a,b,c,d) = \sqrt{(1^*,2^*,3,4^*,6,7^*,8,9^*,10^*,11,12^*,14)}$	$\{\lor,\lnot\}$
24	$y(a,b,c,d) = \bigwedge_{0} (1^*,2^*,3,4^*,7^*,8,9^*,10^*,12^*,14)$	$\{ \! \wedge, \neg \! \}$
25	$y(a,b,c,d) = \sqrt{(1^*,2^*,3,4^*,7^*,8,9^*,10^*,11,12^*,14)}$	$\{\rightarrow, \neg\}$
26	$y(a,b,c,d) = \bigvee_{1} (0,1^*,2^*,4^*,5,7^*,8,9^*,10^*,11,12^*)$	$\{\oplus,\wedge\}$
27	$y(a,b,c,d) = \bigvee_{1} (0,1^*,2^*,4^*,5,6,7^*,9^*,10^*,11,12^*)$	$\{\rightarrow, \neg\}$
28	$y(a,b,c,d) = \bigwedge_{0} (0,1^*,2^*,3,4^*,6,7^*,9^*,10^*,11,12^*,13)$	$\{\land, \lnot\}$
29	$y(a,b,c,d) = \sqrt{(1^*,2^*,4^*,5,6,7^*,8,9^*,10^*,12^*,14)}$	{∨,¬}
30	$y(a,b,c,d) = \bigvee_{1} (0,1^*,2^*,3,4^*,5,6,7^*,9^*,10^*,11,12^*,15)$	{^,/}

СПИСОК РЕКОМЕНДУЕМОЙ ЛИТЕРАТУРЫ

- 1. *Савельев А.Я.* Основы информатики: учебник для вузов/А.Я. Савельев. М.: Изд-во МГТУ им. Н.Э. Баумана, 2001. 328 с.
- 2. *Григорьев В.Л.* Программирование арифметических операций в микропроцессорах/Григорьев В.Л., 3лобин В.К. М.: Высш. шк., 1991. 303 с.
- 3. *Григорьев В.Л.* Микропроцессор i486. Архитектура и программирование. Кн. 3. Устройство с плавающей точкой/ Григорьев В.Л. М.: ГРАНАЛ, 1993. 382 с.