Теория для РК2 по ЛАиФНП

ИУ6-25Б

2024

1. Дать определение окрестности и открытого множества в \mathbb{R}^{n} .

Опр. ε -окрестностью точки $a \in \mathbb{R}^n$ называется множество $U_{\varepsilon}(a)$ всех точек $x \in \mathbb{R}^n$, расстояние от которых до точки a меньше ε .

To ecte $U_{\varepsilon}(a) = \{x \in \mathbb{R}^n \mid \rho(x, a) < \varepsilon\}$

Для проколотой: $U_{\varepsilon}(a) = \{x \in \mathbb{R}^n \mid 0 < \rho(x, a) < \varepsilon\}$

Опр. Множество $A \subset \mathbb{R}^n$ называется открытым, если все его точки внутренние.

2. Дать определение предельной точки, граничной точки множества и замкнутого множества в \mathbb{R}^n .

Опр. Точка $a \in \mathbb{R}^n$ называется граничной точкой множества $A \subset \mathbb{R}^n$, если любая окрестность $U_{\varepsilon}(a)$ содержит и точки из A, и точки из $\mathbb{R}^n \setminus A$.

Опр. Точка $a \in \mathbb{R}^n$ называется предельной точкой множества $A \subset \mathbb{R}^n$, если $\forall \mathring{U}_{\varepsilon}(a)$ содержит точки множества A.

Опр. Множество $A \subset \mathbb{R}^n$ называется замкнутым, если оно содержит все свои граничные точки.

3. Дать определение ограниченного и связного множества в \mathbb{R}^{n} .

Опр. Множество $A \subset \mathbb{R}^n$ называется ограниченным, если $\exists U_{\varepsilon}((0,0,\ldots,0))$ точки 0, целиком содержащая множество A.

Опр. Множество $A \subset \mathbb{R}^n$ называется линейно связным, если любые две его точки можно соединить непрерывной кривой.

4. Дать определение предела $\Phi H\Pi$ по множеству и непрерывной $\Phi H\Pi$.

Опр. Пусть задана функция $f: \mathbb{R}^n \to \mathbb{R}^m$, множество $A \subset D(f) \subset \mathbb{R}^n$ и a - предельная точка множества A. Тогда $b \in \mathbb{R}^m$ называется пределом функции f(x) в точке a по множеству A, если

- $\forall U_{\varepsilon}(b) \; \exists \mathring{U}_{\delta}(a) \;$ такая, что $\forall x \in \mathring{U}_{\delta}(a) \cap A \; f(x) \in U_{\varepsilon}(b)$ (определение по Коши)
- для любой последовательности $\{a_k\}$, $a_k \neq a$, сходящейся к точке a и $a_k \in A \ \forall k$ последовательность значений $\{b_k\} = \{f(a_k)\}$ сходится к точке b (определение по Гейне)

Опр. Функция нескольких переменных $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ называется непрерывной в точке $a\in A$, предельной для множества A, если:

$$1) \; \exists \lim_{\substack{x \to a \\ A}} f(x)$$

$$2) \lim_{\substack{x \to a \\ A}} f(x) = f(a)$$

Опр. Функция нескольких переменных $f:A\subset\mathbb{R}^n\to\mathbb{R}^m$ называется непрерывной на множестве A, если она непрерывна во всех точках множества A.

5. Дать определение частной производной ФНП в точке.

Опр. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}^m$ определена в некоторой δ -окрестности точки $U_\delta(a)$ точки $a = (a_1, \dots, a_n) \in \mathbb{R}^n$

Пусть Δx_i - любое приращение i-ой переменной функции $f(x_1,\ldots,x_n)$ такое, что точка $(a_1,\ldots,a_{i-1},a_i+\Delta x_i,a_{i+1},\ldots,a_n)\in U_\delta(a)$

Частным приращением функции f по переменной x_i в точке a называется разность $\Delta_i f(a) = f(a_1, \ldots, a_{i-1}, a_i + \Delta x_i, a_{i+1}, \ldots, a_n) - f(a_1, \ldots, a_{i-1}, a_i, a_{i+1}, \ldots, a_n)$

Частной производной функции f по переменной x_i в точке a называется предел(если он существует)

$$\lim_{\Delta x_i \to 0} \frac{\Delta_i f(a)}{\Delta x_i}$$

Обоз. $\frac{\partial f(a)}{\partial x_i}$ или $f'_{x_i}(a)$

6. Дать определение ФНП, дифференцируемой в точке.

Опр. Функция f называется дифференцируемой в точке x, если её полное приращение в некоторой окрестности точки x можно представить в виде:

$$\Delta f(x) = A \cdot \Delta x + \alpha(\Delta x) \cdot |\Delta x|,$$

где A - матрица $m \times n$, элементы которой не зависят от $\Delta x, \ \alpha(\Delta x): \mathbb{R}^n \to \mathbb{R}^m$ - бесконечно малая функция при $\Delta x \to 0$

7. Записать формулы для вычисления частных производных сложной функции вида z = f(u(x,y),v(x,y)).

$$z'_x = z'_u \cdot u'_x + z'_v \cdot v'_x$$

$$z'_y = z'_u \cdot u'_y + z'_v \cdot v'_y$$

или

$$\frac{\partial z}{\partial x} = \frac{\partial z}{\partial u} \cdot \frac{\partial u}{\partial x} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial x}$$
$$\frac{\partial z}{\partial y} = \frac{\partial z}{\partial y} \cdot \frac{\partial u}{\partial y} + \frac{\partial z}{\partial v} \cdot \frac{\partial v}{\partial y}$$

8. Записать формулу для вычисления производной сложной функции вида u=f(x(t),y(t),z(t)).

$$\frac{\partial u}{\partial t} = \frac{\partial u}{\partial x} \cdot \frac{\partial x}{\partial t} + \frac{\partial u}{\partial y} \cdot \frac{\partial y}{\partial t} + \frac{\partial u}{\partial z} \cdot \frac{\partial z}{\partial t}$$

9. Записать формулы для вычисления частных производных неявной функции z(x,y), заданной уравнением F(x,y,z)=0.

$$\frac{\partial z}{\partial x} = -\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial z}\right)}$$

$$\frac{\partial z}{\partial y} = -\frac{\left(\frac{\partial F}{\partial y}\right)}{\left(\frac{\partial F}{\partial z}\right)}$$

10. Сформулировать теорему о связи непрерывности и дифференцируемости ФНП.

Теорема. Если функция $f: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируема в точке $x \in \mathbb{R}^n$, то она непрерывна в точке x.

Следствие. Если функция $f: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируема в области $X \in \mathbb{R}^n$, то она непрерывна в области X.

11. Сформулировать теорему о необходимых условиях дифференцируемости ФНП.

Теорема. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}^m$ дифференцируема в точке $x \in \mathbb{R}^n$. Тогда в точке x существуют частные производные функции f по всем переменным, то есть определена матрица Якоби f'(x), причём матрица A из опр. дифференцируемой функции и матрица Якоби f'(x) равны, то есть $a_{ij} = \frac{\partial f_j(x)}{\partial x_i}$

12. Сформулировать теорему о достаточных условиях дифференцируемости $\Phi H\Pi$.

Теорема. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}^m$ имеет матрицу Якоби в некоторой окрестности U(a) точки $a \in \mathbb{R}^n$ и все элементы $\frac{\partial f_j}{\partial x_i}$ матрицы Якоби непрерывны в точке $a \in \mathbb{R}^n$. Тогда функция f дифференцируема в точке a.

13. Сформулировать теорему о неявной функции.

Теорема. (формулировка очень большая, здесь очень сильно упрощённый вариант из семинаров)

Дано уравнение F(x,y,z)=0. Пусть оно разрешимо относительно z, тогда существует неявно заданная функция z=z(x,y), при подстановке которой в уравнение оно обращается в верное равенство, причём дифференцируемая. Её частные производные:

$$\frac{\partial z}{\partial x} = -\frac{\left(\frac{\partial F}{\partial x}\right)}{\left(\frac{\partial F}{\partial z}\right)}$$

И

$$\frac{\partial z}{\partial y} = -\frac{\left(\frac{\partial F}{\partial y}\right)}{\left(\frac{\partial F}{\partial z}\right)}$$

14. Дать определение (полного) первого дифференциала ФНП.

Опр. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}^m$ определена в некоторой окрестности U(x) точки $x=(x_1,\ldots,x_n)\in \mathbb{R}^n$ и дифференцируема в точке x. Полным (первым) дифференциалом функции f в точке x называется линейная относительно $\Delta x=(\Delta x_1,\ldots,\Delta x_n)$ часть приращения $\Delta f(x)$ функции f в точке x.

Обоз.
$$df(x) = f'(x) \cdot \Delta x$$

15. Сформулировать теорему о необходимых и достаточных условиях того, чтобы выражение P(x,y)dx + Q(x,y)dy было полным дифференциалом.

Теорема. Выражение P(x,y)dx+Q(z,y)dy является полным дифференциалом некоторой функции $u(x,y)\iff$

1. функции $P(x,y),Q(x,y), \frac{\partial P(x,y)}{\partial y}, \frac{\partial Q(x,y)}{\partial x}$ непрерывны в некоторой области $G\subset \mathbb{R}^2$

2.
$$\frac{\partial P(x,y)}{\partial y} = \frac{\partial Q(x,y)}{\partial x} \ \forall (x,y) \in G$$

16. Дать определение второго дифференциала $\Phi H\Pi$ и матрицы Гессее.

Опр. Пусть функция $f: \mathbb{R}^n \to \mathbb{R}^m$ определена и дифференцируема в некоторой окрестности U(x) точки $x = (x_1, \dots, x_n) \in \mathbb{R}^n$ и её первый дифференциал df(x) дифференцируем в точке x. Вторым дифференциалом функции f(x) в точке x называется дифференциал 1-ого порядка дифференциала функции f(x)

Обоз.
$$d^2 f(x) = d(df(x))$$

Опр. Матрицей Гессе функции f называется матрица из частных производных второго порядка этой функции:

$$\begin{pmatrix} f''_{x_1x_1}(x) & \dots & f''_{x_1x_n}(x) \\ \vdots & & & \vdots \\ f''_{x_nx_1}(x) & \dots & f''_{x_nx_n}(x) \end{pmatrix}$$

17. Сформулировать теорему о независимости смешанных частных производных от порядка дифференцирования.

Теорема. Пусть скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ имеет в некоторой окрестности U(a) точки $a \in \mathbb{R}^n$ смешанные частные производные $f''_{xy}(x)$ и $f''_{yx}(x)$, которые непрерывны в точке a. Тогда $f''_{xy}(a) = f''_{yx}(a)$

18. Дать определение градиента $\Phi H\Pi$ и производной $\Phi H\Pi$ по направлению.

Опр. Градиентом функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке $x \in \mathbb{R}^n$ называется вектор из частных производных $\operatorname{grad} f(x) = \left(\frac{\partial f(x)}{\partial x_1}, \dots, \frac{\partial f(x)}{\partial x_n}\right)$, если все частные производные существуют.

Опр. Производной функции $f: \mathbb{R}^n \to \mathbb{R}$ в точке $a \in \mathbb{R}^n$ по направлению вектора \vec{n} называется число, равное пределу(если он существует):

$$\frac{\partial f(a)}{\partial \vec{n}} = \lim_{s \to +0} \frac{f(a+s\vec{n}) - f(a)}{s}$$

19. Перечислить основные свойства градиента ФНП.

Свойства градиента функции и производной по направлению:

- 1. Если скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $a \in \mathbb{R}^n$, то $\frac{\partial f(a)}{\partial \vec{n}} = \vec{n} \mathrm{grad} f(x)$ проекция градиента на направление вектора
- 2. Если скалярная функция $f:\mathbb{R}^n\to\mathbb{R}$ дифференцируема в точке $a\in\mathbb{R}^n$ и $\vec{n}=\mathrm{grad} f$, то $\frac{\partial f(a)}{\partial \vec{n}}=|\mathrm{grad} f(a)|$
- 3. Если скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $a \in \mathbb{R}^n$, то в этой точке вектор $\operatorname{grad} f(a)$ указывает направление наибольшего роста функции
- 4. Если скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $a \in \mathbb{R}^n$, то в этой точке вектор $-\operatorname{grad} f(a)$ указывает направление наибольшего убывания функции
- 5. Если скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ дифференцируема в точке $a \in \mathbb{R}^n$, то наибольшая скорость возрастания(убывания) функции в точке a равна $|\operatorname{grad} f(a)|$ $(-|\operatorname{grad} f(a)|)$

20. Записать формулу для вычисления производной ФНП по направлению.

Производная функции f по направлению вектора \vec{n} находится как скалярное произведение вектора \vec{n} и градиента функции $\operatorname{grad} f(a)$ в точке a ($\vec{n_0}$ - нормированный вектор \vec{n}):

$$\frac{\partial f(a)}{\partial \vec{n}} = (\operatorname{grad} f(a), \vec{n_0})$$

21. Записать уравнения касательной и нормали к поверхности F(x,y,z)=0 в точке (x_0,y_0,z_0) .

Касательная к графику функции F(x, y, z) = 0 в точке (x_0, y_0, z_0) :

$$F_x'(x-x_0) + F_y'(y-y_0) + F_z'(z-z_0) = 0$$

Нормаль к графику функции F(x, y, z) = 0 в точке (x_0, y_0, z_0) :

$$\frac{x - x_0}{F_x'} = \frac{y - y_0}{F_y'} = \frac{z - z_0}{F_z'}$$

22. Сформулировать теорему Тейлора для функции двух переменных.

Теорема. (остаточный член в форме Лагранжа)

Пусть скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ имеет в некоторой окрестности $U_{\delta}(x_0)$ точки $x_0 \in \mathbb{R}^n$:

- 1. все частные производные до порядка m+1
- 2. непрерывные в окрестности $U_{\delta}(x_0)$

Тогда $\forall x \in U_{\delta}(x_0) \exists \theta \in (0,1)$:

$$f(x) = f(x_0) + \sum_{k=1}^{m} \frac{d^k f(x_0)}{k!} + \frac{d^{m+1} f(x_0 + \theta(x - x_0))}{(m+1)!}$$

Теорема. (остаточный член в форме Пеано)

Пусть скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ имеет в некоторой окрестности $U_{\delta}(x_0)$ точки $x_0 \in \mathbb{R}^n$:

- 1. все частные производные до порядка m+1
- 2. причём все частные производные до порядка m непрерывны в окрестности $U_{\delta}(x_0)$
- 3. а все частные производные порядка m+1 непрерывны в точке x_0

Тогда $\forall x \in U_{\delta}(x_0)$:

$$f(x) = f(x_0) + \sum_{k=1}^{m} \frac{d^k f(x_0)}{k!} + o(|x - x_0|^m)$$

23. Дать определение (обычного) экстремума (локального максимума и минимума) ФНП.

Опр. Пусть скалярная функция $f:\mathbb{R}^n \to \mathbb{R}$ определена в некоторой окрестности точки $a \in \mathbb{R}^n$. Точка a называется точкой локального максимума (минимума) функции f(x), если $\exists \mathring{U}(a)$ такая, что $\forall x \in \mathring{U}(a)$ $f(x) \leq f(a)$ $(f(x) \geq f(a))$. Точки локального максимума и локального минимума называются точками локального экстремума функции.

24. Сформулировать необходимые условия экстремума ФНП.

Теорема. Пусть для скалярной функции $f: \mathbb{R}^n \to \mathbb{R}$

- 1. точка $a \in \mathbb{R}^n$ является точкой экстремума
- 2. и существует частная производная $f'_{x_i}(a)$ для некоторого $i=\overline{1,n}$

Тогда $f'_{x_i} = 0$

Следствие 1. Если $\exists \operatorname{grad} f(a)$, то $\operatorname{grad} f(a) = 0$

Следствие 2. Если функция дифференцируема в точке a, то df(a) = 0

25. Сформулировать достаточные условия экстремума ФНП.

Теорема. Пусть скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$

- 1. дважды непрерывно дифференцируема в некоторой окрестности
- 2. $\operatorname{grad} f(a) = 0$
- 3. квадратичная форма $d^2f(a)$
 - (a) положительно определена, тогда в точке a функция f(x) имеет строгий локальный минимум
 - (b) отрицательно определена, тогда в точке a функция f(x) имеет строгий локальный максимум
 - (c) знакопеременна, тогда в точке a функция f(x) не имеет экстремума

26. Дать определение условного экстремума ФНП.

Опр. Пусть скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ и векторная функция $\varphi: \mathbb{R}^n \to \mathbb{R}^m$ (m < n) определены в некоторой окрестности точки $a \in \mathbb{R}^n$ $\varphi(x) = \vec{0}$ - некоторое условие

Точка a называется точкой условного локального максимума (минимума) функции f(x), если существует проколотая окрестность $\mathring{U}(a)$: $\forall x \in \mathring{U}(a)$, удовлетворяющих условию $\varphi(x) = 0$, $f(x) \leq f(a)$ ($f(x) \geq f(a)$).

Точки условного максимума и условного минимума называются точками условного локального экстремума.

27. Сформулировать необходимые условия условного экстремума $\Phi H\Pi$.

Теорема. Пусть

- 1. скалярная функция $f:\mathbb{R}^n\to\mathbb{R}$ и векторная функция $\varphi:\mathbb{R}^n\to\mathbb{R}^m$ (m< n) непрерывно дифференцируемы в некоторой окрестности точки $a\in\mathbb{R}^n$
- 2. точка a является точкой условного экстремума функции f(x) при условиях связи $\varphi=0$
- 3. ранг матрицы Якоби $\varphi'(a)$ функции $\varphi(x)$ в точке a равен m, то есть гд $\varphi'(a)=m$

Тогда существуют множители Лагранжа $\lambda_1, \ldots, \lambda_m$:

$$\begin{cases} L'_{x_1}(a,\lambda) = 0 \\ \dots \\ L'_{x_n}(a,\lambda) = 0 \\ L'_{\lambda_1}(a,\lambda) = 0 \\ \dots \\ L'_{\lambda_m}(a,\lambda) = 0 \end{cases}$$

Решения системы являются стационарными точками функции Лагранжа.

28. Сформулировать достаточные условия условного экстремума $\Phi H \Pi$.

Теорема. Пусть

- 1. скалярная функция $f: \mathbb{R}^n \to \mathbb{R}$ и векторная функция $\varphi: \mathbb{R}^n \to \mathbb{R}^m \ (m < n)$ дважды непрерывно дифференцируемы в некоторой окрестности точки $a \in \mathbb{R}^n$
- 2. $\varphi(a) = \vec{0}$, rg $\varphi'(a) = m$
- 3. координаты точки $(a_1, \dots, a_n, \lambda_1, \dots, \lambda_m) \in \mathbb{R}^{(m+n)}$ являются решением системы уравнений:

$$\begin{cases} L'_{x_1}(a,\lambda) = 0 \\ \dots \\ L'_{x_n}(a,\lambda) = 0 \\ L'_{\lambda_1}(a,\lambda) = 0 \\ \dots \\ L'_{\lambda_m}(a,\lambda) = 0 \end{cases}$$

- 4. для функции $L(x)=L(x,\lambda_a)$ и подпространства $H=\{dx_1,\dots,dx_n\mid d\varphi(a)=0\}$ квадратичная форма $d^2L(a)|_H$
 - (a) положительно определённая, тогда функция f(x) в точке a имеет строгий локальный минимум при условии $\varphi(x)=0$
 - (b) отрицательно определённая, тогда функция f(x) в точке a имеет строгий локальный максимум при условии $\varphi(x)=0$
 - (c) знакопеременная, тогда функция функция f(x) в точке a не имеет условного экстремума при условии $\varphi(x)=0$

29. Дать определение функции Лагранжа и множителей Лагранжа задачи на условный экстремум ФНП.

```
Опр. Функцией Лагранжа для задачи на условный экстремум f(x) \to \text{extr} \varphi_1(x) = 0 ... \varphi_m(x) = 0 называется функция L(x,\lambda) = f(x) + \lambda_1 \varphi_1(x) + \dots + \lambda_m \varphi_m(x). Числа \lambda_1,\dots,\lambda_n называются множителями Лагранжа.
```