Abstract

U radu se obradjuje specijalna klasa konacnih diskretnih modela pod nazivom 'celijski automati' (eng. cellular automata) koji se baziraju na cisto lokalnoj interakciji ali proizvode uzorke koji se mogu promatrati na globalnijoj skali, te vecem nivou apstrakcije. Upravo ova cisto lokalna interakcija omogucava da se pomocu navedenih entiteta omoguci modeliranje sirokog spektra realnih pojava s obzirom da veliki broj stvari koje se pokusavaju modelirati spada upravo u ovu kategoriju.

Kroz rad se navodi nekoliko klasa, primjera i primjena celijskih automata, te se uz pomoc grafickog simulatora pokusavaju prikazati najbitniji koncepti potrebni za shvatanje nacina funkcionisanja te potencijalne primjene ovih modela. Rad sluzi kao uvod u siroku tematiku i primjene ove vrste modela.

Takodjer, ponudjen je i formalni matematicki tretman iz raznih aspekta koji ukljucuju teoriju haosa i teoriju igara, te aspekt na koji je stavljen najveci fokus – teorija kompjutacije s obzirom da se celijski automati, tacnije odredjene instance istih, mogu koristiti kao univerzalna Turingova masina sto otvara siroke primjene ove vrste sistema.

1. Uvod

U uvodnom dijelu pokusacemo razmotriti pozadinska razmatranja koja vode do izucavanja klase konacnih diskretnih modela nazvanih celijski automati.

Prvo cemo dati pregled kroz specifican primjer da se uoce neke od osnovnih karakteristika ovih sistema.

Nakon cemo pregledati histroijski koja matematicka pitanja su navela da se razmotre neke specijalne klase, te ce se nako toga obratiti paznja na unificarnje specijalni klasa, te posebno historijski pregled rada Stephena Wolframa za kojeg se moze reci da je dao jedna od najvecih doprinosa samom polju.

1.1 Pregled

Pocnimo prvo od pokusaja shvatanja kakve vrste modela predstavljaju celijski automati. Zato cemo prvo krenuti od konkretnog specificnog primjera kroz koji je moguce shvatiti osnovne odlike celijskih automata na koje cemo se kasnije nadograditi kako budemo gradili formalnu apstrakciju ovog konkretnog primjera.

Najjednostavniji takav je primjer je beskonacna dvodimenzionalna ravna ploca prekrivena kvadratima koje cemo nazvati *celije*. Kvadrati se medjusobno dodiruju stranicama, te tako svaki kvadrat ima punu vezu preko stranice sa tacno cetiri susjedne celije. Za svaku celiju kazemo da moze biti u dva stanja - on i off. Kako cemo za prikaz automata pretezno koristiti graficke interpretacije, ova dva stanja mozemo "zakodirati" bojom same celije, pa cemo tako uspostaviti konvenciju da crna prestavlja on, dok bijela prestavlja off stanje. Sva trenutna razmatranja bice formalno definisana kasnije u radu te ovaj dio razmatranja sluzi samo za intuitivni prikaz osnovnih ideja iza ovakvih vrsta modela.

// slika 1 - celija sa susjedstvom (4x4 grid)

Na slici 1 imamo prikazanu dosad opisanu celiju sa svojim susjednim celijama, te svaka od njih ima svoje definisano stanje. Celije su oznacene brojevima 1-16 radi njihovog referiranja unutar teksta, te ovi brojevi ne predstavljaju dio modela.

// slika 2 - 2D grid sa pocetnom konfiguracijom

Na slici 2 prikazan je skupe celija koje zajedno cine 2d *grid*. Primijetimo da je nemoguce simulirati beskonacni grid konacnim kompjutacionim metodama, pa se u praksi gotovo uvijek ogranicavamo na konacne dimenzije. Ovdje nastaje problem sta raditi sa rubnim celijama, te ce ta tematika biti detaljnije kasnije obradjena.

Ovakav raspored nazvacemo **konfiguracija**. U konfiguraciji, svaka celija ima svoje pocetno stanje, pa je tako za svaku celiju definisano da li je ona inicijalno on ili off – crna ili bijela. Stanje je na pocetku izabrano proizvoljno i moze se mijenjati u zavisnosti od potreba, te ce razlicita pocetna stanja dati nekada i drasticno razlicita ponasanja. Na slici 2 prikazan je primjer jednog takvog pocetnog stanja. Skup ovako organizovanih celija sa svojim pocetnim stanjima u konacnom gridu nazivamo **inicijalna konfiguracija grida**.

Naravno, dosadasnja definicija celijski automata ne bi imala nikakvog smisla, s obzirom da imamo samo pocetnu konfiguraciju i grid. Medjutim, ono sto cini celijske automate pravim modelima koji se mogu koristiti u razne svrhe je takozvana *evolucija celijskih automata*. Nakon sto se uspostavi inicijalna konfiguracija grida, ovaj sistem moze da se stavi u evoluciju. To znaci da ce svaka od celija da mijenja svoje stanje prema nekim pravilima, te ce cijelokupan sistem da se mijenja prema tim pravilima u diskretnim vremenskim intervalima.

// slika 3 – tipovi susjedstva (moore, von Neumann, custom)

Sljedece stanje svake individualne celije zavisi od njenog trenutnog stanja, kao i okolnih celija, te se prema ovim parametrima i formiraju pravila. Susjedne koje okruzuju datu celiju a uzimaju se u obzir prilikom rancunanja sljedeceg stanja kolektivno se nazivaju **susjedstvo (eng. neighborhood)**. Evidentno je da izbor susjedstva nije jedinstven. Na slici 3 prikazano je nekoliko nacina izbora susjedstva. Najpoznatija dva ovakva tipa su Moore-ovo i von Neumann-ovo susjedstvo prikazano na slici, ali nije iskljuceno i kreiranje proizvoljnog susjedstva. $\cos(2\theta) = \cos^2\theta - \sin^2\theta$

Nakon sto se izabere koje celije ucestvuju u formiranju susjsedsva, formira se i skup pravila koji govori o tome kako celija evoluira na osnovu svog stanja i stanja svojih susjeda. Kako su stanja binarna, ukoliko n predstavlja broj susjeda koji formiraju susjedstvo, tada je moguce (uz pretpostavku Moore-ovog susjedstva)

mogucih pravila za evoluciju.

1.2 Historija