

- 2 construction, as well as the arrangement of the parts, may
- 3 be made without departing from the principles of the present
- 4 invention as defined by the appended claims.
- Now that the invention has been described,

6

7 What is claimed is:

- 8 1. A flue gas conversion apparatus comprising in
- 9 combination:
- (a) a laser for the purpose of creating a laser beam
- (b) a catalytic conversion means, said means including
- 12 at least one fluid inlet and at least one
- 13 fluid outlet
- 14 whereby said laser beam will cause a substantial
- temperature increase of said catalytic conversion
- means.

17

- 18 2. The apparatus recited in claim 1 wherein said laser
- 19 comprises a carbon dioxide laser.

20

- 21 3. The apparatus recited in claim 2 further comprising a
- 22 plurality of said catalytic conversion means

23

- 24 4. The apparatus recited in claim 3 further including a
- means to split said laser beam into a plurality of
- 26 beams whereby at least one element of said split beam

1		can be directed to at least one of said plurality of
2		said conversion means.
3		
4	5.	The apparatus recited in claim 4 wherein said carbon
5		dioxide laser is a flowing gas carbon dioxide laser,
6		said laser including a fluid inlet and a fluid outlet,
7		whereby gaseous carbon dioxide is permitted to enter
8		said laser, flow through said laser, and exit said
9		laser.
10		
11	6.	The apparatus recited in claim 5 further comprising
12		fluid interconnection means, permitting said fluid
13		exit of said laser to interconnect with at least one
14		of said fluid inlet of at least one of said conversion
15		means, whereby said flowing gas of said laser is first
16		utilized as a medium for creating a laser beam, said
17		medium then utilized as a reactant in said catalytic
18		converter.
19		
20	7.	The apparatus recited in claim 4 further comprising a
21		chemical combining means disposed in fluid
22		communication with said gas exit ports of said
23		plurality of said catalytic conversion means wherein
24		converted gas produced in each of said catalytic

27

25

26

fuel product.

converters is chemically combined, thereby producing a

1	8.	The i	method of producing a hydrocarbon fuel from the
2		flue	gas produced from the burning of fossil fuels
3		comp	rising the steps of:
4		(a)	utilizing the carbon dioxide constituent of the
5			flue gas as a medium in a carbon dioxide laser,
6			creating a laser beam
7		(b)	heating a select catalyst within a first
8			catalytic converter with the laser beam
9		(c)	utilizing the carbon dioxide constituent exiting
10			the laser as a reactant within the first
11			catalytic converter, thereby producing carbon
12			monoxide
13		(d)	heating a select catalyst, within a second
14			catalytic converter by use of the laser beam
15		(e)	utilizing steam as a reactant within the second
16			catalytic converter, thereby producing hydrogen
17		(f)	chemically combining the produced gases
18			carbon monoxide and hydrogen, thereby producing a
19			hydrocarbon fuel product.
20			
21			
22			
23			
24			
25			
26			
27			