INSTRUCTIONS: Books, notes, and electronic devices are <u>not</u> permitted. Write (1) **your name**, (2) **1350/Final**, (3) <u>lecture number/instructor name</u> and (4) **SPRING 2016** on the front of your bluebook. Also make a **grading table** with room for <u>5 problems</u> and a total score. **Start each problem on a new page.** <u>Box</u> **your answers.** A correct answer with incorrect or no supporting work may receive no credit, while an incorrect answer with relevant work may receive partial credit. **Justify your answers, show all work.**

- 1. (a)(8 pts) At what point on the curve $y = 1 + 2e^x 3x$ is the tangent line parallel to the line 3x y = 5? Specify both the x and y coordinates.
 - (b)(8 pts) Use the Squeeze Theorem to evaluate the following limit: $\lim_{x\to 0^+} \sqrt{x}e^{\sin(\pi/x)}$.
 - (c)(8 pts) Find the absolute extrema of $g(x) = \ln(x^2 + x + 1)$ for $-1 \le x \le 1$. Specify both the x and y coordinates of all extrema.
 - (d)(6 pts) Which of the five choices given below is equivalent to y' if $y = (\sin x)^{\ln(x)}$? Pick only one answer, no justification necessary be sure to copy down the <u>entire answer</u>, don't just write down the roman numeral of your choice:
 - (i) $\ln(x)\sin(x)^{\ln(x)-1}$ (ii) $-\sin(x)^{\ln(x)}\cos(x)^{1/x}$ (iii) $\sin(x)^{\ln(x)}\left[\frac{\ln(\sin x)}{x} + \ln(x)\tan(x)\right]$ (iv) $\sin(x)^{\ln(x)}\left[\frac{\ln(\sin(x))}{x} + \ln(x^{\cot x})\right]$ (v) $\frac{\ln(\sin(x))}{x} + \ln(x)\tan(x)$
- 2. (a)(10 pts) Find the linearization of $f(x) = e^{-2x}$ at a = 0 and use it to approximate $e^{0.1}$.
 - (b)(10 pts) Is $f(x) = \begin{cases} e^x + 1, & x < 0 \\ \log_2(x+1) + 2\cosh(x), & x \ge 0 \end{cases}$ continuous at x = 0? Use limits to answer this question.
 - (c)(10 pts) If a snowball melts so that its surface area decreases at a rate of 1 cm²/min, find the rate at which the diameter changes when the diameter is 10 cm. (Recall that if r is the radius then the surface area is $SA = 4\pi r^2$.)
- 3. (a)(10 pts) Water leaks slowly from the bottom of a large storage tank at a rate of $r(t) = 100 e^{2t}$ gallons per minute for t > 0. Find the amount of water that leaks from the tank during the first 10 minutes.
 - (b)(10 pts) Find the area of the region bounded by the curve $y = \frac{x+1}{x^2+1}$ and the x-axis for $0 \le x \le \sqrt{3}$.
 - (c)(10 pts) Evaluate the definite integral $\int_0^3 |x^2 4x + 3| dx$.

- 4. (a)(10 pts) Evaluate the limit: $\lim_{x\to\infty} (e^x + x)^{1/x}$.
 - (b)(10 pts) Use logarithmic differentiation to find the derivative of $y = \frac{\sqrt{x}e^{x^2}}{(x^2+1)^{10}}$.

(c)(10 pts) Suppose
$$f(x) = \int_{e}^{2x} e^{t} \ln(t+2) dt$$
, for $x > 0$. Find $(f^{-1})'(0)$.

- (d)(5 pts) In your blue book clearly sketch the graph of a function h(x) that satisfies <u>all</u> the following properties (label all <u>extrema</u>, inflection points and asymptotes):
 - h(x) is odd, h(0) = 0 and $\lim_{x \to \infty} h(x) = -2$
 - h'(x) < 0 if 0 < x < 2 and h'(x) > 0 if x > 2,
 - h''(x) > 0 if 0 < x < 3 and h''(x) < 0 if x > 3.
- 5. (25 pts) Answer either **ALWAYS TRUE** or **FALSE**. You do <u>NOT</u> need to justify your answer. (*Don't just write down "A.T." or "F"*, completely write out the words "ALWAYS TRUE" or "FALSE" depending on your answer.)
 - (a)(5 pts) If we use a Riemann Sum with right endpoints and subintervals of equal length then

$$\int_0^1 x^2 + x \, dx = \lim_{n \to \infty} \frac{1}{n^3} \sum_{i=1}^n (i^2 + in)$$

- (b)(5 pts) A bacteria culture initially contains 140 cells and grows at a rate proportional to its size and, after an hour, the population is 420. Based on this information the population will be 2800 bacteria at $t = \log_3(20)$ hours.
- (c)(5 pts) According to the limit definition of the derivative $\frac{d}{dx}3^x = \lim_{h\to 0} \frac{3^x(3^h-1)}{h}$.

(d)(5 pts)
$$\sum_{n=1}^{4} \frac{1}{5} \left(\frac{1}{2}\right)^n = \frac{3}{8}$$
.

(e)(5 pts) Suppose a particle moves on a vertical line so that its coordinate at time t is $y = t^3 - 12t + 3$ for $t \ge 0$ then the particle starts moving upward after 1 seconds.

THE LIST OF APPM 1350 LECTURE NUMBERS/INSTRUCTOR NAMES FOR THE FRONT OF YOUR BLUE BOOK:

Lecture #	Instructor	Class Time	Location
120	Murray Cox	MWF 9-9:50	EDUC 220
130	Brendan FRY	MWF 10-10:50	ECCR 200
150	Brendan FRY	MWF 12-12:50	FLMG 102
170	Sujeet Bhat	MWF 2-2:50	ECCR 245
180	Sujeet Bhat	MWF 3-3:50	ECCR 116
340R	Ann DeFranco	MWF 8:30-9:20	WVN 181A
801	Sandra Williams	MWF 2-2:50	LRVN N101