

cs224n: MT, Seq2Seq, Attention

자연어 심화세미나

TOBIG'S 20기 박준

Contents

Unit 01 | Machine Translation

Unit 02 | Statistical Machine Translation

Unit 03 | Neural Machine Translation

Unit 04 | Attention

Unit 01 Machine Translation

Unit 01 | Machine Translation

Source Language Sentence

X:

L'homme est né libre, et partout il est dans les fers

Target language Sentence

y:

Man is born free, but everywhere he is in chains

 $\operatorname{argmax}_{y} P(y|x)$

얼마나 주어진 x의 문장에 대해서 최고의 y를 찾는 문제.

 $= \operatorname{argmax}_{y} P(x|y) P(y)$

Translation Model

Models how words and phrases should be translated (fidelity).

Learned from parallel data.

Language Model

Models how to write good English (fluency).

Learned from monolingual data.

Bayes rule을 이용해서 두개의 문제로 나누어서 품.

x,y의 문장 사이의 단어의 일치하는 지의 변수 *가.

단순히 1:1로 대응되지 않는다. complex

단점

- 너무 복잡하고, 인간이 할 것이 많다.
- 수많은 feature engeenering.
- 계속 쌍들을 최신화 할 필요가 있음.

번역을 위해 RNN 두개를 붙인 sequence-to-sequence model

• NMT directly calculates P(y|x):

$$P(y|x) = P(y_1|x) P(y_2|y_1, x) P(y_3|y_1, y_2, x) \dots P(y_T|y_1, \dots, y_{T-1}, x)$$

Probability of next target word, given target words so far and source sentence *x*

직접 P(y/x)를 구하고, 다음 목표 단어의 조건이 주어진 x문장에 그 전 단어들까지 포함됨.

decorder에 있는 함 수를 학습하며 역전파 를 통해 encoder 끝까 지 학습 가능.

TOBIG'S 20기 박준

Multi-layer RNN

- Rnn을 여러겹 쌓으면서 좀 더 깊게 만듬.
- 더 복잡한 표현 가능->higher level features. 2~4개가 적당.
- 2층이 1층의 rnn보단 훨씬 좋지만, 3층부터는 그 향상이 적다.

탐색 방법

- 1. Greedy search.-> 그때마다의 최선을 선택. 하지만 한번 생성후에는 돌이킬 수 없기 때문에 한번 잘못 출력하면 문장 전체에 영향을 줄 수 있음.
- 2. 전체 모든 가능한 y를 전부 계산-> 계산양이 엄청나게 크다.
- 3. Beam search-> 각 단계에서 score가 높은 것들을 beam size만큼 유지하며 따라감.

$$score(y_1, ..., y_t) = log P_{LM}(y_1, ..., y_t | x) = \sum_{i=1}^t log P_{LM}(y_i | y_1, ..., y_{i-1}, x)$$

마지막 score에서 1/t를 곱해주며 정규화를 시켜준다. 길이에 따라 달라지기 때문에.

장점

- 성능이 더 좋다.
- 한번에 계산할 수 있다.
- 인간의 할 일을 줄일 수 있다. Feature engeenering.

단점

• 결과에 대한 해석이 어렵다.(이것을 관리하기와 개선하기 힘들다).

Unit 03 | How to Evaluate

BLEU(BiLingual Evaluation Understudy)

- 인간의 번역과 기계의 번역을 비교하여 그것의 유사도를 계산.
- N-gram precision + too short penalty 사용.

$$\mathrm{BP} = egin{cases} 1 & ext{if } c > r \ e^{(1-r/c)} & ext{if } c \leq r \end{cases} \ BLEU = \mathrm{BP} \cdot \exp \Big(\sum_{n=1}^N w_n \log p_n \Big)$$

문제점

• Bottleneck problem(수 많은 정보들이 하나의 벡터에 저장됨)

해결책

• 단순히 하나의 벡터로 연결되어 있는 것이 아니라 decoder에서의 한 부분과 모든 encoder의 부분 중 어느 부분이 이 부분과 유사한지 파악.

수식

$$h_1,\dots,h_N\in\mathbb{R}^h$$
 인코터의 hidden state $s_t\in\mathbb{R}^h$ t시점의 decoder hidden state $e^t=[s_t^Th_1,\dots,s_t^Th_N]\in\mathbb{R}^N$ attention score 소스문장과 같은 길이의 벡터 $lpha^t=\mathrm{softmax}(e^t)\in\mathbb{R}^N$ attention distribution $a_t=\sum_{i=1}^N lpha_i^th_i\in\mathbb{R}^h$ attention output(weighted sum) 인코터의 hidden state와 같은 크기의 벡 $[a_t;s_t]\in\mathbb{R}^{2h}$ \hat{y}

Attention의 종류

• Basic dot product attention

$$oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{h}_i \in \mathbb{R}$$

Multiplicative attention

$$oldsymbol{e}_i = oldsymbol{s}^T oldsymbol{W} oldsymbol{h}_i \in \mathbb{R}^T$$

Addictive attention

$$oldsymbol{e}_i = oldsymbol{v}^T anh(oldsymbol{W}_1oldsymbol{h}_i + oldsymbol{W}_2oldsymbol{s}) \in \mathbb{R}$$

장점.

- 더 좋은 성능을 보이고, bottleneck 문제를 극복.
- Vanishing gradient problem에서도 좋은 효과.

Reference

Stanford CS224N NLP with Deep Learning | Winter 2021 | Lecture 7 - Translation, Seq2Seq, Attention

: https://www.youtube.com/watch?v=wzfWHP6SXxY&list=PLoROMvodv4rOSH4v6133s9LFPRHjEmbmJ&index=7

https://ladun.tistory.com/71 bleu

*All Images without clarified source are retrieved on the above reference.

