Business Analytics: Methods, Models, and Decisions

Third Edition

Chapter 4

Descriptive Statistics

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 1

Populations and Samples

- Population all items of interest for a particular decision or investigation
 - all married drivers over 25 years old
 - all subscribers to Netflix
- Sample a subset of the population
 - a list of individuals who rented a comedy from Netflix in the past year
- The purpose of sampling is to obtain sufficient information to draw a valid inference about a population.

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Understanding Statistical Notation

- We typically label the elements of a data set using subscripted variables, $x_1, x_2, ...$, and so on, where x_i represents the ith observation.
- It is common practice in statistics to use Greek letters, such as $\mu(\text{mu})$, $\sigma(\text{sigma})$, and $\pi(\text{pi})$, to represent population measures and italic letters such as by \overline{x} (called *x*-bar), *s*, and *p* to represent sample statistics.
- *N* represents the number of items in a population and *n* represents the number of observations in a sample.
- Capital Greek sigma $\sum_{i=1}^{n} x_i = x_1 + x_2 + \cdots + x_n$.
- Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

CI:4- 2

Measures of Location: Arithmetic Mean

- Population mean: $\mu = \frac{\sum_{i=1}^{N} x_i}{N}$ (4.4)
- Sample mean: $\bar{x} = \frac{\sum_{i=1}^{n} x_i}{n}$ (4.5)
- Excel function: = AVERAGE(data range)
- Property of the mean:

$$\sum_{i} (x_i - \overline{x}) = 0 \tag{4.6}$$

• Outliers can affect the value of the mean.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.14: Computing Mean Cost Per Order

Purchase Orders database

Using formula (4.5):

$$=\frac{\text{SUM}(\text{B2:B95})}{\text{COUNT}(\text{B2:B95})}$$

$$Mean = \frac{\$2,471,760}{94}$$
$$= \$26,295.32$$

1	A	В
1	Observation	Cost per order
2	x1	\$82,875.00
3	x2	\$42,500.00
4	x3	\$24,150.00
5	x4	\$22,575.00
6	x5	\$19,250.00
91	x90	\$467.50
92	x91	\$9,975.00
93	x92	\$30,625.00
94	x93	\$21,450.00
95	x94	\$68.75
96	Sum of Cost per Order	\$2,471,760.00
97	Number of observations	94
98		
99	Mean Cost per Order (=B96/B97)	\$26,295.32
100		
101	Excel AVERAGE function	\$26,295.32

Using Excel AVERAGE Function

=AVERAGE(B2:B95)

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 5

Measures of Location: Median

- The median specifies the middle value when the data are arranged from least to greatest.
 - Half the data are below the median, and half the data are above it
 - For an odd number of observations, the median is the middle of the sorted numbers.
 - For an even number of observations, the median is the mean of the two middle numbers.
- We could use the Sort option in Excel to rank-order the data and then determine the median. The Excel function =MEDIAN(data range) could also be used.
- The median is meaningful for ratio, interval, and ordinal data.
- Not affected by outliers.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.15: Finding the Median Cost Per Order

 Sort the data from smallest to largest. Since we have 90 observations, the median is the average of the 47th and 48th observation.

Median =
$$\frac{(\$15,562.50 + \$15,750.00)}{2}$$
= \\$15,656.25
=MEDIAN(B2:B94)

1	Α	В	С	D
1	Rank	Cost per order		
2	1	\$68.75		
3	2	\$82.50		
4	3	\$375.00		
5	4	\$467.50		
45	44	\$14,910.00		
46	45	\$14,910.00		
47	46	\$15,087.50		
48	47	\$15,562.50		\$15,562.50
49	48	\$15,750.00		\$15,750.00
50	49	\$15,937.50	Average	\$15,656.25
51	50	\$16,276.75		
52	51	\$16,330.00		

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 7

Measures of Location: Mode

- The mode is the observation that occurs most frequently.
- The mode is most useful for data sets that contain a relatively small number of unique values.
- You can easily identify the mode from a frequency distribution by identifying the value or group having the largest frequency or from a histogram by identifying the highest bar.
- Excel function: = MODE.SNGL(data range).
- For multiple modes: = MODE.MULT(data range)

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Purchase Orders database: A/P Terms Mode = 30 months Cost per order Mode is the group between \$0 and \$13,000. Finding the Mode Modbs Frequency Is 5 13 More of 13 More of 13 More of 13 More of 13 Months Frequency of 13 More of 13 More of 13 More of 13 Months of 13 More of 14 More of 15 More of 15 More of 14 Months of 13 More of 15 More of 15 More of 13 More of 13 More of 14 More of 14 More of 15 More of 15

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Measures of Location: Midrange

- The midrange is the average of the greatest and least values in the data set.
- Caution must be exercised when using the midrange because extreme values easily distort the result. This is because the midrange uses only two pieces of data, whereas the mean uses all the data; thus, it is usually a much rougher estimate than the mean and is often used for only small sample sizes.

Pearson

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.17: Computing the Midrange

- Purchase Orders data
- Use the Excel MIN and MAX functions or sort the data and find them easily.
- · Cost per order midrange:

=(\$68.78 + \$1127,500)/2 = \$63,784.39

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 11

Example 4.18: Quoting Computer Repair Times

The Excel file *Computer Repair Times* includes 250 repair times for customers.

- What repair time would be reasonable to quote to a new customer?
- Median repair time is 2 weeks; mean and mode are about 15 days.
- Examine the histogram.

4	Α	В							
1	Computer Repair Times								
2									
3	Sample	Repair Time (Days)							
4	1	18							
5	2	15							
6	3	17							
250	247	31							
251	248	6							
252	249	17							
253	250	13							
254									
255	Mean	14.912							
256	Median	14							
257	Mode	15							

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Measures of Dispersion

- Dispersion refers to the degree of variation in the data; that is, the numerical spread (or compactness) of the data.
- · Key measures:
 - Range
 - Interquartile range
 - Variance
 - Standard deviation

Pearson Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved Slide - 14

Measures of Dispersion: Range

- The range is the simplest and is the difference between the maximum value and the minimum value in the data set.
- In Excel, compute as
 - =MAX(data range) MIN(data range).
- The range is affected by outliers, and is often used only for very small data sets.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 15

Example 4.19: Computing the Range

- Purchase Orders data
- For the cost per order data:
 - Maximum = \$127,500
 - Minimum = \$68.78

Range = \$127,500 - \$68.78 = \$127,431.22

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Measures of Dispersion: Interquartile Range

- The interquartile range (IQR), or the midspread is the difference between the first and third quartiles, Q₃ -Q₁.
- This includes only the middle 50% of the data and, therefore, is not influenced by extreme values.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 17

Example 4.20: Computing the Interquartile Range

- Purchase Orders data
- For the Cost per order data:
 - Third Quartile = $Q_3 = $27,593.75$
 - First Quartile = $Q_1 = \$6,757.81$

Interquartile Range = \$27,593.75 - \$6,757.81 =\$20,835.94

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Measures of Dispersion: Variance

- The variance is the "average" of the squared deviations from the mean.
- For a population: $\sigma^2 = \frac{\sum\limits_{i=1}^{N}(x_i-\mu)^2}{N} \tag{4.7}$

- In Excel: = VAR.P(data range)

- For a sample: $s^2 = \frac{\sum_{i=1}^{n} (x_i \bar{x})^2}{n-1}$ (4.8)
 - In Excel: = VAR.S(data range)
- · Note the difference in denominators!
- Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 19

Example 4.21: Computing the Variance

Purchase Orders Cost per order data

1	A	В	С	D
1	Observation	Cost per order	(xi - mean)	(xi - mean)^2
2	x1	\$82,875.00	\$56,579.68	\$3,201,260,285.21
3	x2	\$42,500.00	\$16,204.68	\$262,591,681.48
4	x3	\$24,150.00	-\$2,145.32	\$4,602,394.25
5	x4	\$22,575.00	-\$3,720.32	\$13,840,774.57
6	x5	\$19,250.00	-\$7,045.32	\$49,636,521.91
91	x90	\$467.50	-\$25,827.82	\$667,076,241.99
92	x91	\$9,975.00	-\$16,320.32	\$266,352,817.12
93	x92	\$30,625.00	\$4,329.68	\$18,746,136.27
94	x93	\$21,450.00	-\$4,845.32	\$23,477,117.66
95	x94	\$68.75	-\$26,226.57	\$687,832,929.32
96	Sum of Cost per Order	\$2,471,760.00	Sum of squared deviations	\$82,825,295,365.68
97	Number of observations	94	2	
98				
99	Mean Cost per Order (=B96/B97)	\$26,295.32	Variance (=D96/(B97-1))	\$890,594,573.82
100				
101			Excel VAR.S function	\$890,594,573.82

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Measures of Dispersion: Standard Deviation

- The **standard deviation** is the square root of the variance.
 - Note that the dimension of the variance is the square of the dimension of the observations, whereas the dimension of the standard deviation is the same as the data. This makes the standard deviation more practical to use in applications.
- For a population: $\sigma = \sqrt{\frac{\sum\limits_{i=1}^{N}(x_i \mu)^2}{N}}$ (4.9)
 - In Excel: = STDEV.P(data range)
- For a sample: $s = \sqrt{\frac{\sum\limits_{i=1}^{n}(x_i \overline{x})^2}{n-1}} \tag{4.10}$
 - In Excel: = STDEV.S(data range)
- Pearson Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.22: Computing the Standard Deviation

- · Purchase Orders Cost per order data
- Using the results of Example 4.21, take the square root of the variance:

$$\sqrt{890,594,573.82} = $29,842.8312.$$

Alternatively, use the Excel function =STDEV.S(B2:B95)

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Standard Deviation as a Measure of Risk

Excel file: Closing Stock

Prices

Intel (INTC): Mean = \$18.81

Standard deviation = \$0.50

General Electric (GE):

Mean = \$16.19

Standard deviation = \$0.35

INTC is a higher risk investment than GE.

1	Α	В	C	D	Ε	F
1	Closing Stock Prices					
2						
3	Date	IBM	INTC	csco	GE	DJ Industrials Index
4	9/3/2010	\$127.58	\$18.43	\$21.04	\$15.39	10447.93
5	9/7/2010	\$125.95	\$18.12	\$20.58	\$15.44	10340.69
6	9/8/2010	\$126.08	\$17.90	\$20.64	\$15.70	10387.01
7	9/9/2010	\$126.36	\$18.00	\$20.61	\$15.91	10415.24
8	9/10/2010	\$127.99	\$17.97	\$20.62	\$15.98	10462.77
9	9/13/2010	\$129.61	\$18.56	\$21.26	\$16.25	10544.13
10	9/14/2010	\$128.85	\$18.74	\$21.45	\$16.16	10526.49
11	9/15/2010	\$129.43	\$18.72	\$21.59	\$16.34	10572.73
12	9/16/2010	\$129.67	\$18.97	\$21.93	\$16.23	10594.83
13	9/17/2010	\$130.19	\$18.81	\$21.86	\$16.29	10607.85
14	9/20/2010	\$131.79	\$18.93	\$21.75	\$16.55	10753.62
15	9/21/2010	\$131.98	\$19.14	\$21.64	\$16.52	10761.03
16	9/22/2010	\$132.57	\$19.01	\$21.67	\$16.50	10739.31
17	9/23/2010	\$131.67	\$18.98	\$21.53	\$16.14	10662.42
18	9/24/2010	\$134.11	\$19.42	\$22.09	\$16.66	10860.26
19	9/27/2010	\$134.65	\$19.24	\$22.11	\$16.43	10812.04
20	9/28/2010	\$134.89	\$19.51	\$21.86	\$16.44	10858.14
21	9/29/2010	\$135.48	\$19.24	\$21.87	\$16.36	10835.28
22	9/30/2010	\$134.14	\$19.20	\$21.90	\$16.25	10788.05
23	10/1/2010	\$135.64	\$19.32	\$21.91	\$16.36	10829.68

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 23

Chebyshev's Theorem

- For any data set, the proportion of values that lie within k(k > 1) standard deviations of the mean is at least $1 \frac{1}{k^2}$
- Examples:
 - For k = 2: at least $\frac{3}{4}$ or 75% of the data lie within two standard deviations of the mean
 - For k = 3: at least $\frac{8}{9}$ or 89% of the data lie within three standard deviations of the mean

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.23: Applying Chebyshev's Theorem

- Purchase Orders database
- A two-standard-deviation interval around the mean is [-\$33,390.34, \$85,980.98].
 - 89 of 94, or 94.7%, of the observations fall in this interval.
- A three-standard-deviation interval is [-\$63,233.17, \$115,823.81]
 - 92 of 94, or 97.9%, fall in this interval.
- Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 25

Empirical Rules

- · For many data sets encountered in practice:
 - Approximately 68% of the observations fall within one standard deviation of the mean $\overline{x} s$ and $\overline{x} + s$.
 - Approximately 95% fall within two standard deviations of the mean $\overline{x} \pm 2s$.
 - Approximately 99.7% fall within three standard deviations of the mean $\overline{x} \pm 3s$.
- These rules are commonly used to characterize the natural variation in manufacturing processes and other business phenomena.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Process Capability Index

- The process capability index (C_p) is a measure of how well a manufacturing process can achieve specifications.
- Using a sample of output, measure the dimension of interest and compute the total variation using the third empirical rule.
- Compare results to specifications using:

$$C_p = \frac{\text{Upper Specification} - \text{Lower Specification}}{\text{Total Variation}}$$
(4.11)

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Standardized Values

- A standardized value, commonly called a z-score, provides a relative measure of the distance an observation is from the mean, which is independent of the units of measurement.
- The z-score for the ith observation in a data set is calculated as follows:

$$z_i = \frac{x_i - \overline{x}}{s} \tag{4.12}$$

Excel function: = STANDARDIZE(x, mean, standard_dev).

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 29

Properties of z-Scores

$$z_i = \frac{x_i - \overline{x}}{s} \tag{4.12}$$

- The numerator represents the distance that x_i is from the sample mean; a negative value indicates that x_i lies to the left of the mean, and a positive value indicates that it lies to the right of the mean. By dividing by the standard deviation, s, we scale the distance from the mean to express it in units of standard deviations. Thus,
 - a z-score of 1.0 means that the observation is one standard deviation to the right of the mean;
 - a z-score of -1.5 means that the observation is 1.5 standard deviations to the left of the mean.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.25: Computing z-Scores

· Purchase Orders Cost per order data

4	A	В	С	D
1	Observation	Cost per order	z-score	
2	x1	\$82,875.00	1.90	=(B2-\$B\$96)/\$B\$97
3	x2	\$42,500.00	0.54	
4	x3	\$24,150.00	-0.07	
5	x4	\$22,575.00	-0.12	
6	x5	\$19,250.00	-0.24	
91	x90	\$467.50	-0.87	
92	x91	\$9,975.00	-0.55	
93	x92	\$30,625.00	0.15	
94	x93	\$21,450.00	-0.16	
95	x94	\$68.75	-0.88	
96	Mean	\$26,295.32		
97	Standard Deviation	\$29,842.83		

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 31

Coefficient of Variation

 The coefficient of variation (CV) provides a relative measure of dispersion in data relative to the mean:

$$CV = \frac{Standard Deviation}{Mean}$$
 (4.13)

- Sometimes expressed as a percentage.
- Provides a relative measure of risk to return.
- Return to risk = $\frac{1}{CV}$, is often easier to interpret, especially in financial risk analysis.
 - The Sharpe ratio is a related measure in finance.

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.26: Applying the Coefficient of Variation

- · Closing Stock Prices worksheet
- Intel (INTC) is slightly riskier than the other stocks.
- The Index fund has the least risk (lowest CV).

1	Α	В	С	D	E	F
1	Closing Stock Prices					
2						
3	Date	IBM	INTC	CSCO	GE	DJ Industrials Index
4	9/3/2010	\$127.58	\$18.43	\$21.04	\$15.39	10447.93
5	9/7/2010	\$125.95	\$18.12	\$20.58	\$15.44	10340.69
6	9/8/2010	\$126.08	\$17.90	\$20.64	\$15.70	10387.01
22	9/30/2010	\$134.14	\$19.20	\$21.90	\$16.25	10788.05
23	10/1/2010	\$135.64	\$19.32	\$21.91	\$16.36	10829.68
24	Mean	\$130.93	\$18.81	\$21.50	\$16.20	\$10,639.98
25	Standard Deviation	\$3.22	\$0.50	\$0.52	\$0.35	\$171.94
26	Coefficient of Variation	0.025	0.027	0.024	0.022	0.016

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 33

Measures of Shape: Skewness

- Skewness describes the lack of symmetry of data.
 - Distributions that tail off to the right are called positively skewed; those that tail off to the left are said to be negatively skewed.

Negatively skewed

Positively skewed

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Coefficient of Skewness

Coefficient of Skewness (CS):

$$CS = \frac{\frac{1}{N_{i=1}} \sum_{j=1}^{N} (x_{i} - \mu)^{3}}{\sigma^{3}}$$
 (4.14)

- Excel function: =SKEW(data range)
 - CS is negative for left-skewed data.
 - CS is positive for right-skewed data.
 - |CS| > 1 suggests high degree of skewness.
 - $-0.5 \le |CS| \le 1$ suggests moderate skewness.
 - |CS| < 0.5 suggests relative symmetry.
- Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 35

Example 4.27: Measuring Skewness

- Purchase Orders database
- Cost per order data: CS = 1.66 (high positive skewness)
- A/P terms data: CS = 0.60 (more symmetric)

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Measures of Shape: Kurtosis

- Kurtosis refers to the peakedness (i.e., high, narrow) or flatness (i.e., short, flat-topped) of a histogram.
- The coefficient of kurtosis (CK) measures the degree of kurtosis of a population

$$CK = \frac{\frac{1}{N} \sum_{i=1}^{N} (x_i - \mu)^4}{\sigma^4}$$
 (4.15)

- CK < 3 indicates the data is somewhat flat with a wide degree of dispersion.
- CK > 3 indicates the data is somewhat peaked with less dispersion.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 37

Excel Function for Kurtosis

- Excel computes kurtosis differently; the function KURT(data range) computes "excess kurtosis" for sample data, which is CK – 3. (Excel does not have a corresponding function for a population).
- Thus, to interpret kurtosis values in Excel, distributions with values less than 0 are more flat, while those with values greater than 0 are more peaked.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.28: Using the Descriptive Statistics Tool

Purchase Orders database

Note: Results of the Analysis Toolpak do not change when changes are made to the data.

4	Α	В	С	D
1	Cost per order		A/P Terms (Months)	
2				
3	Mean	26295.31915	Mean	30.63829787
4	Standard Error	3078.053014	Standard Error	0.702294026
5	Median	15656.25	Median	30
6	Mode	14910	Mode	30
7	Standard Deviation	29842.8312	Standard Deviation	6.808993205
8	Sample Variance	890594573.8	Sample Variance	46.36238847
9	Kurtosis	2.079637302	Kurtosis	1.512188562
10	Skewness	1.664271519	Skewness	0.599265003
11	Range	127431.25	Range	30
12	Minimum	68.75	Minimum	15
13	Maximum	127500	Maximum	45
14	Sum	2471760	Sum	2880
15	Count	94	Count	94

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Descriptive Statistics for Frequency Distributions

• Population mean:
$$\mu = \frac{\sum\limits_{i=1}^{N} f_i x_i}{N}$$
 (4.16)

• Sample mean:
$$\bar{x} = \frac{\sum_{i=1}^{n} f_i x_i}{n}$$
 (4.17)

• Population variance:
$$\sigma^2 = \frac{\sum\limits_{i=1}^{N} f_i(x_i - \mu)^2}{N}$$
 (4.18)

• Sample variance:
$$s^2 = \frac{\sum_{i=1}^{n} f_i(x_i - \bar{x})^2}{n-1}$$
 (4.19)

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 41

Example 4.29: Computing Statistical Measures from Frequency Distributions

Computer Repair Times

- 9						
	A	В	C	D	E	F
1	Frequency Dis	tribution Calcu	lations			
2						
3	A/P Terms (x)	Frequency (f)	f*x	x - Mean	(x - Mean)^2	f*(x - Mean)^2
4	15	5	75	-15.6383	244.5563603	1222.781802
5	25	12	300	-5.6383	31.7904029	381.4848348
6	30	64	1920	-0.6383	0.407424174	26.07514713
7	45	13	585	14.3617	206.258488	2681.360344
8	Sum	94	2880			4311.702128
9						
10		Mean	30.6383		Sample variance	46.36238847

$$\bar{x} = \frac{\sum_{i=1}^{n} f_i x_i}{n}$$
 $s^2 = \frac{\sum_{i=1}^{n} f_i (x_i - \bar{x})^2}{n-1}$

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Grouped Data

 If the data are grouped into k cells in a frequency distribution, we can use modified versions of the formulas to estimate the mean and variance by replacing x_i with a representative value (such as the midpoint, M) for all the observations in each cell group and summing over all groups.

$$\mu = \frac{\sum_{i=1}^{k} f_i M_i}{N}$$
 (4.20)

$$\overline{x} = \frac{\sum_{i=1}^{k} f_i M_i}{n} \tag{4.21}$$

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 43

Example 4.30: Computing Descriptive Statistics for a Grouped Frequency Distribution

	А	В	С	D	Е	F	G
1	Grouped Frequency	n Calculations	3				
2							
3	Cost/Order Group	Midpoint (x)	Frequency (f)	f*x	x - Mean	(x - Mean) ²	f*(x-Mean)^2
4	0 to 26000	13000	68	884000	-14936.17	223089180.6	15170064282
5	26000 to 52000	39000	8	312000	11063.8298	122408329.6	979266636.5
6	52000 to 78000	65000	11	715000	37063.8298	1373727478	15111002263
7	78000 to 104000	91000	4	364000	63063.8298	3977046627	15908186510
8	104000 to 130000	117000	3	351000	89063.8298	7932365776	23797097329
9		Sum	94	2626000			70965617021
10							
11			Mean	27936.2		Sample variance	763071150.8

$$\bar{x} = \frac{\sum_{i=1}^{k} f_i M_i}{n}$$

$$s^2 = \frac{\sum_{i=1}^{k} f_i (M_i - \bar{x})^2}{n-1}$$

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Descriptive Statistics for Categorical Data: The Proportion

- The proportion, denoted by p, is the fraction of data that have a certain characteristic.
- Proportions are key descriptive statistics for categorical data, such as defects or errors in quality control applications or consumer preferences in market research.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 45

Example 4.31: Computing a Proportion

Proportion of orders placed by Spacetime Technologies

$$=\frac{12}{94}=0.128$$

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Statistics in PivotTables

Value Field Settings include several statistical measures:

- Average
- Max and Min
- Product
- Standard deviation
- Variance

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 47

Example 4.32: Statistical Measures in PivotTables

- Credit Risk Data
- First, create a PivotTable.
- In the PivotTable Field List, move Job to the Row Labels field and Checking and Savings to the Values field. Then change the field settings from "Sum of Checking" and "Sum of Savings" to the averages.

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Measures of Association

- Two variables have a strong statistical relationship with one another if they appear to move together.
- When two variables appear to be related, you might suspect a cause-and-effect relationship.
- Sometimes, however, statistical relationships exist even though a change in one variable is not caused by a change in the other.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 49

Measures of Association: Covariance

- **Covariance** is a measure of the linear association between two variables, *X* and *Y*. Like the variance, different formulas are used for populations and samples.
- Population covariance:

$$cov(X, Y) = \frac{\sum_{i=1}^{N} (x_i - \mu_x)(y_i - \mu_y)}{N}$$
 (4.25)

- Excel function: = COVARIANCE.P(array1, array2)
- Sample covariance:

$$cov(X, Y) = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{n-1}$$
 (4.26)

- Excel function: = COVARIANCE.S(array1, array2)
- The covariance between *X* and *Y* is the average of the product of the deviations of each pair of observations from their respective means.
- Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.33: Computing the Covariance

 Colleges and Universities data

	Α	В	C	D	E	F
1		Graduation % (X)	Median SAT (Y)	X - Mean(X)	Y - Mean(Y)	(X - Mean(X))(Y-Mean(Y))
2		93	1315	9.755	51.898	506.2698875
3		80	1220	-3.245	-43.102	139.8617243
4		88	1240	4.755	-23.102	-109.8525614
47		86	1250	2.755	-13.102	-36.09745939
48		91	1290	7.755	26.898	208.5964182
49		93	1336	9.755	72.898	711.1270304
50		93	1350	9.755	86.898	847.698459
51	Mean	83.245	1263.102		Sum	12641.77551
52					Count	49
53					Covariance	263.3703231
54						
55	55				COVARIANCE.S	263.3703231

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 51

Measures of Association: Correlation

- Correlation is a measure of the linear relationship between two variables, X and Y, which does not depend on the units of measurement.
- Correlation is measured by the correlation coefficient, also known as the Pearson product moment correlation coefficient.
- · Correlation coefficient for a population:

$$\rho_{XY} = \frac{\text{cov}(X, Y)}{\sigma_X \sigma_Y} \tag{4.27}$$

· Correlation coefficient for a sample:

$$r_{XY} = \frac{\text{cov}(X, Y)}{s_X s_Y} \tag{4.28}$$

- The correlation coefficient is scaled between -1 and 1.
- Excel function: =CORREL(array1,array2)

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.34: Computing the Correlation Coefficient

· Colleges and Universities data

Divide the covariance by the product of the standard deviations in cell F54.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Notes on the CORREL Function

 When using the CORREL function, it does not matter if the data represent samples or populations. In other words,

 $CORREL(array1, array2) = \frac{COVARIANCE.P(array1, array2)}{STDEV.P(array1)*STDEV.P(array2)}$

and

 $CORREL(array1, array2) = \frac{COVARIANCE.S(array1, array2)}{STDEV.S(array1) * STDEV.S(array2)}$

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 55

Excel Correlation Tool

Data > Data Analysis > Correlation

 Excel computes the correlation coefficient between all pairs of variables in the *Input Range*. *Input* Range data must be in contiguous columns.

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.35: Using the Correlation Tool

Colleges and Universities data

\Box	Α	В	С	D	E	F
1		Median SAT	Acceptance Rate	Expenditures/Student	Top 10% HS	Graduation %
2	Median SAT	1				
3	Acceptance Rate	-0.601901959	1			
4	Expenditures/Student	0.572741729	-0.284254415	1		
5	Top 10% HS	0.503467995	-0.609720972	0.505782049	1	
6	Graduation %	0.564146827	-0.55037751	0.042503514	0.138612667	1

- Moderate negative correlation between acceptance rate and graduation rate, indicating that schools with lower acceptance rates have higher graduation rates.
- Acceptance rate is also negatively correlated with the median SAT and Top 10% HS, suggesting that schools with lower acceptance rates have higher student profiles.
- The correlations with Expenditures/Student suggest that schools with higher student profiles spend more money per student.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 57

Identifying Outliers

- There is no standard definition of what constitutes an outlier.
- Some typical rules of thumb:
 - z-scores greater than +3 or less than −3
 - Values more than 3*IQR to the left of Q₁ or right of Q₃ (extreme outliers)
 - Values between 1.5* IQR and 3* IQR to the left of Q₁ or right of Q₃ (mild outliers)

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.36: Investigating Outliers

Home Market Value data

- None of the z-scores exceed 3. However, while individual variables might not exhibit outliers, combinations of them might.
 - The last observation has a high market value (\$120,700) but a relatively small house size (1,581 square feet) and may be an outlier.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 59

Using Descriptive Statistics to Analyze Survey Data

- Descriptive statistics tools are extremely valuable for summarizing and analyzing survey data.
 - Frequency distributions and histograms for the ratio variables
 - Descriptive statistical measures for the ratio variables using the Descriptive Statistics tool
 - Proportions for various attributes of the categorical variables in the sample
 - PivotTables that break down the averages of ratio variables
 - Cross-tabulations
 - Z-scores for examination of potential outliers

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Statistical Thinking in Business Decisions

- Statistical Thinking is a philosophy of learning and action for improvement, based on principles that:
 - all work occurs in a system of interconnected processes
 - variation exists in all processes
 - better performance results from understanding and reducing variation
- Work gets done in any organization through processes
 — systematic ways of doing things that achieve desired results.
- Understanding business processes provides the context for determining the effects of variation and the proper type of action to be taken.
- Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 61

Example 4.37: Applying Statistical Thinking

- · Excel file Surgery Infections
 - Is month 12 simply random variation or some explainable phenomenon?

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.37 Continued

Three-standard deviation empirical rule:

 This suggests that month 12 is statistically different from the rest of the data.

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Slide - 63

Variability in Samples

- · Different samples from any population will vary.
 - They will have different means, standard deviations, and other statistical measures.
 - They will have differences in the shapes of histograms.
- Samples are extremely sensitive to the sample size the number of observations included in the samples.

Pearson

Copyright @ 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved

Example 4.38: Variation in Sample Data • Samples from Computer Repair Times data • Population statistics: $\mu = 14.91$ days, $\sigma^2 = 35.5$ days • Two samples of size 50:

 Two samples of size 25:

Pearson

Copyright © 2020, 2016, 2013 Pearson Education, Inc. All Rights Reserved