

Rückblick

CLIQUE:

- Datenraum wird in Zellen der Breite ξ zerlegt.
- Eine Zelle ist dicht, wenn sie mind. τ Punkte enthält.
- Zusammenhängende Zellen bilden Cluster
- Unterraumsuche:
 - bottom-up (ähnlich Apriori)
 - Monotoniekriterium für dichte Zellen:
 Wenn k-dimensionale Zelle C nicht dicht, dann alle (k+1)-dimensionalen Zellen, in denen C als "Unterzelle" enthalten ist, nicht dicht

Nachfolgeverfahren: ENCLUS, MAFIA

243

Subspace Clustering

Dichte-verbundenes Subspace Clustering

Motivation:

Nachteil der gitterbasierten Ansätze

⇒ Verwende dichte-verbundenes Clustering (DBSCAN)

Rückblick: Dichte-verbundene Cluster (DBSCAN)

• Kernpunkt:

Mehr als MinPts Punkte in der ε-Nachbarschaft

MinPts = 4

Direkt dichte-erreichbar (p von q):
 q Kernpunkt und p in der ε-Nachbarschaft von q

• Dichte-erreichbar (p von q):

Es gibt eine Kette direkt dichte-erreichbaren Punkte von q nach p

245

Subspace Cluster

• Dichte-verbunden (*p* und *q*):

Es gibt Punkt o, sodass sowohl p als auch q dichte-erreichbar von o

• Dichte-verbundene Menge:

Menge von (miteinander) dichte-verbundenen Punkten

• Dichte-verbundene Cluster:

Dichte-verbundene Menge, die maximal ist bzgl. Dichte-Erreichbarkeit, d.h.

 $\forall p,q$: wenn $p \in C$ und q dichte-erreichbar von p ist, dann ist auch $q \in C$.

SUBCLU (Dichte-verbundenes Subspace Clustering) [Kailing, Kriegel, Kröger 2004]

- Berechne dichte-verbundene Subspace Cluster
- Vorteile:
 - Clusterbegriff mathematisch sauber formuliert
 - Zuordnung der (Kern-) Punkte zum Cluster eindeutig
 - Erkennen von Clustern unterschiedlicher Größe und Form
- Gesucht:
 - Effiziente Strategie, um die dichte-verbundenen Cluster in allen Unterräumen (bzgl. ε und *MinPts*) zu berechnen
 - Nutze Greedy-Ansatz wie bei CLIQUE: generiere bottom-up alle Subspace Cluster
 - Dazu notwendig: Monotoniekriterium für dichte-verbundene Cluster

247

Subspace Clustering

Monotonie dichte-verbundener Cluster

- Gilt leider nicht:
 - Sei C ein dichte-verbundener Cluster im Unterraum S
 - Sei $T \subset S$ ein Unterraum von S
 - C muss nicht mehr maximal bzgl. Dichte-Erreichbarkeit sein
 - Es kann Punkte geben, die nicht in C sind, aber im Unterraum T dichteerreichbar von einem Objekt in C sind

C ist ein dichte-verbundener Cluster im Unterraum {A,B}

 $p \notin C$ und $q \in C$

Im Unterraum {B} ist p (direkt) dichte-erreichbar von $q \in C$

Monotonie dichte-verbundener Mengen

Wenn C eine dichte-verbundene Menge im Unterraum S ist, so ist C auch eine dichte-verbunden Menge in allen Teilräumen $T \subset S$

p und q nicht dichte-verbunden in {B} und {A,B}

249

Subspace Clustering

Algorithmus

- Generiere alle 1-dimensionalen dichte-verbundenen Cluster
- Für jeden k-dimensionalen Cluster muss nun geprüft werden, ob er in einem (k+1)-dimensionalen Oberraum noch vorhanden ist:
 - Gegeben:
 - Sk: Menge der k-dimensionale Unterräume in denen Cluster existieren
 - CS: Menge der Cluster im Unterraum S
 - Ck: Menge aller Mengen von Cluster in k-dimensionalen Unterräumen $Ck = \{CS \mid S \text{ ist } k\text{-dimensionaler Unterraum}\}$
 - Vorgehen:
 - Bestimme (k+1)-dimensionale Kandidatenunterräume Cand aus Sk
 - Für einen beliebigen k-dimensionalen Unterraum $U \subset Cand$: Bestimme für alle k-dimensionalen Cluster c in U ($c \in CU$) die (k+1)-dimensionalen Fortsetzungen durch die Funktion DBSCAN(c, U, ε , MinPts)

Funktion DBSCAN(D, U, ε , MinPts) berechnet alle dichte-verbundenen Cluster bzgl. ε und MinPts einer Datenmenge D im Unterraum U

$$S1 = \{\{A\}, \{B\}\}\}$$
 $C\{A\} = \{A1, A2\}$
 $C\{B\} = \{B1, B2, B3\}$
 $C1 = \{C\{A\}, C\{B\}\}$

- Heuristische Optimierungsmöglichkeit:
 - DBSCAN(c, U, ε , MinPts) nicht für zufälligen $U \subset Cand$ aufrufen, sondern für den Unterraum U, in dem die Gesamtanzahl der Punkte in den Clustern (also der Punkte in CU) am geringsten ist (im Beispiel: $U = \{B\}$)
 - Dadurch wird die Anzahl der Range-Queries beim DBSCAN-Lauf minimiert (im Beispiel um 2)

251

Subspace Clustering

Experimente

Skalierbarkeit: superlinear in Anzahl der Dimensionen und Anzahl der Objekte

ABER: Findet mehr Cluster als CLIQUE

RIS (Ranking Interesting Subspaces) [Kailing, Kriegel, Kröger, Wanka 2003]

Probleme von SUBCLU:

 Verschiedene Cluster in einem Unterraum können verschieden dicht sein

Cluster aus verschiedenen
 Unterräumen können verschieden
 dicht sein

253

Subspace Clustering

Idee von RIS:

- Berechne nicht mehr direkt die Subspace Cluster
- Sondern: berechne nur die Unterräume, die interessante Cluster enthalten
 - Was sind interessante Cluster/Unterräume?
 - Qualitätskriterium für Unterräume
- RIS gibt eine Liste von Unterräumen aus, sortiert nach Qualität
- Die eigentlichen Cluster können durch ein beliebiges Cluster-Verfahren für die interessanten Unterräume erzeugt werden

Interessante Unterräume:

- Cluster enthalten mindestens einen Kernpunkt
 - ⇒ Unterraum, der keinen Kernpunkt enthält, kann nicht interessant sein
- Anzahl der Kernpunkte ist proportional zur
 - Anzahl der verschiedenen Cluster

und/oder

- Größe der Cluster

und/oder

- Dichte der Cluster

255

Subspace Clustering

Algorithmus RIS:

- 1. Berechne für jeden Punkt p der Datenbank die Unterräume, in denen p noch Kernpunkt ist
 - ⇒ Berechnet alle relevanten Unterräume
- 2. Sammle für jeden berechneten Unterraum statistische Informationen um über die "Interessantheit" des Unterraumes entscheiden zu können
 - ⇒ Qualität der Unterräume (z.B. Anzahl der Kernpunkte)
 - ⇒ Sortierung der Unterräume nach "Interessantheit" möglich
- 3. Entferne Unterräume, die redundante Informationen enthalten
 - \Rightarrow Cluster in einem Unterraum S sind in allen Unterräumen T \subseteq S enthalten

Schritt 1

Suche Unterräume, die mindestens einen Kernpunkt enthalten:

Monotonie der Kernpunkteigenschaft:
 Wenn p ein Kernpunkt in Featureraum S ist, dann ist p auch ein Kernpunkt in allen Unterräumen T⊆S

Wenn p in T kein Kernpunkt ist, kann p auch in allen $S \supset T$ kein Kernpunkt sein.

⇒ Suchstrategie von CLIQUE und SUBCLU wieder verwendbar

257

Subspace Clustering

Schritt 2

Qualität der gefundenen Unterräume:

- count[S] = Summe (der Anzahl) aller Punkte, die in der ε-Nachbarschaft aller Kernpunkte eines Unterraumes S liegen
- NaiveQuality(S) = count[S] Kernpunkte(S)
 - Anzahl der erwarteten Punkte in einer ε-Nachbarschaft sinkt mit steigender Dimension
 - NaiveQuality favorisiert niedrig dimensionale Unterräume
- Skalierung in Abhängigkeit der Dimensionalität:

$$\mathsf{Quality}(S) = \frac{\mathrm{count}[S] - \mathrm{Kernpunkte}(S)}{n(n-1)(\frac{2\epsilon}{\mathsf{Attr}\ \mathsf{bereich}})^{\dim(S)}}$$

- Periodische Randbedingungen um Punkte, die am Rand des Datenraumes liegen, nicht zu benachteilen

Schritt 3

Entfernen redundanter Unterräume:

- "Überflüssige" Unterräume:
 - Cluster im Raum S haben eine Projektion in Unterräumen von S
 - Durch die Hinzunahme von irrelevanten Dimensionen muss ein Cluster zunächst noch nicht verschwinden
- Pruning-Schritte:
 - Abwärts-Pruning: Wenn es einen (k-1)-dimensionalen Unterraum S mit einer höheren Qualität als ein k-dimensionaler Unterraum T ($T \subset S$) gibt, lösche T.
 - Aufwärts-Pruning:
 Wenn der Count-Wert eines echten (k-1)-dimensionaler Unterraumes von S "besonders stark" vom Mittelwert der Count-Werte aller echten (k-1)-dimensionalen Unterräume von S abweicht, lösche S

259

Subspace Clustering

Experimentelle Untersuchung

Laufzeit in Abhängigkeit von n

Laufzeit in Abhängigkeit von d

Skaliert superlinear in n und d

⇒ Random Sampling auch bei kleinen Samplegrößen hohe Qualität

Laufzeit in Abhängigkeit der Samplegröße

Diskussion

Vorteile:

- Findet alle Unterräume, in denen interessante Cluster vorhanden sind
- Erzeugen von Subspace Clustern unterschiedlicher Dichte möglich (z.B. indem man in den gefundenen Unterräumen mit OPTICS "clustert")

Nachteile:

- Problem, das Cluster in verschieden dimensionalen Unterräumen meist unterschiedlich dicht sind, ist immer noch nicht gelöst
- Trotz Dimensions-Anpassung des Qualitätskriteriums:
 ε begrenzt die Dimension der gefunden Unterräume nach oben:
 je kleiner ε desto niedriger dimensional die Unterräume, die gefunden werden

261

Subspace Clustering

SURFING (Subspaces Relevant for Clustering) [Kailing, Kriegel, Kröger (subm.)]

- Idee: Berechne interessante Unterräume
 - Unabhängigkeit von einem globalen Dichteparameter für verschiedene Cluster und verschiedene Unterräume
 - ohne die dichte-basierte Vorstellung von Clustern komplett aufzugeben
 - · OPTICS:
 - Unabhängig von einem globalen Dichteparameter
 - Dichte-basiertes Cluster-Modell
 - Kerndistanz (Distanz zum *k*-nächsten Nachbarn) und Erreichbarkeitsdistanz als Maß für lokale Dichte
 - Je kleiner Kerndistanz, desto dichter sind die Punkte lokal
 - Je größer Kerndistanz, desto weniger dicht sind die Punkte lokal

Grosse 10-nächste Nachbarn Distanz

Kleine 10-nächste Nachbarn Distanz

- Die Qualität der hierarchischen Clusterstruktur eines Unterraumes kann anhand der *k*-nn-Distanzen aller Punkte vorhergesagt werden:
 - Viele unterschiedliche k-nn-Distanzen \Rightarrow signifikante (hierarchische) Clusterstrukturen
 - Viele ähnliche k-nn-Distanzen \Rightarrow kaum (hierarchische) Clusterstrukturen

263

Subspace Clustering

Qualititätskriterium für Unterräume

- Varianz der k-nn-Distanzen in einem Unterraum:
 - Nachteil: berücksichtigt die quadrierten Differenzen zum Mittelwert
- Summe der Differenzen DIFF unterhalb des Mittelwertes:
 - Nachteil: nicht unabhängig von der Dimension
- Verhältnis aus *DIFF* zum Mittelwert μ:
 - Nachteil: Mittelwert ist nicht vollständig robust gegenüber Ausreißern und kleinen sehr dichten Clustern
 - Mittelwert wird durch einige wenige Ausreißer nach oben verschoben
 ⇒ DIFF unverhältnismäßig hoch
 ⇒ DIFF/μ unverhältnismäßig zu hoch
 - Mittelwert wird durch wenige kleine sehr dichte Cluster nach unten verschoben
 ⇒ DIFF unverhältnismäßig klein
 ⇒ DIFF/μ unverhältnismäßig zu klein
- ⇒ Skalierung mit der relativen Anzahl der Punkte, deren k-nn-Distanz unterhalb des Mittelwertes liegt (bezeichnet als *Below*)

Qualität eines Unterraums:

Quality =
$$\frac{\frac{DIFF}{\mu}}{\frac{Below}{N}} = \frac{DIFF \cdot N}{Below \cdot \mu}$$

 $\mathit{DIFF} = Summe \ der \ Differenzen \ der \ k-nn-Distanzen \ unterhalb \ von \ \mu \ zum \ Mittelwert$

 μ = Mittelwert der k-nn-Distanzen

Below = Anzahl der Punkte, die eine k-nn-Distanz unterhalb von μ haben N = Anzahl der Datensätze

265

Subspace Clustering

Algorithmus SURFING

- Qualitätskriterium ist nicht monoton!!!
- ABER: Qualität steigt, wenn relevante Attribute hinzu kommen bzw. sinkt, wenn irrelevante Attribute hinzukommen
- Bottom-up Unterraum Generierung ähnlich wie *Apriori*, aber kein Pruning bei der Kandidatengenerierung
 - ⇒ mehr Kandidaten in jeder Iteration zu Testen
- Heuristisches Pruningkriterium um möglichst viele Unterräume zu löschen (dadurch wird Anzahl der Kandidaten reduziert)
- Komplexität: $O(N^2 \cdot m)$ m = # generierter Unterräume

Parameterwahl

- SURFING hängt nur noch von k ab!!!
- Wahl von k relativ einfach:

267

Subspace Clustering

Fazit

- SURFING ist dank der Pruning-Heuristik sehr effizient (meist werden nur knapp 1% aller möglichen Unterräume erzeugt)
- SURFING ist mehr oder weniger parameterfrei (Wahl von k relativ einfach und bei großen, hochdimensionalen Daten typischerweise nicht kritisch)
- SURFING erzielt (in Zusammenarbeit mit einem hierarchischen Clustering-Algorithmus) bessere experimentelle Ergebnisse als CLIQUE, SUBCLU oder RIS, speziell wenn:
 - Cluster in stark verschieden dimensionalen Unterräumen existieren
 - Hierarchische und unterschiedlich dichte Cluster existieren

Zusammenfassung

- CLIQUE, ENCLUS, MAFIA
 - Grid-basiertes Clustermodell
 - Direkte Berechnung der Cluster
- SUBCLU
 - Dichte-verbundenes Clustermodell
 - Direkte Berechnung der Cluster
- RIS
 - Dichte-verbundenes Clustermodell
 - Ranking der Unterräume anhand ihrer Qualität (flaches Clustering)
- SURFING
 - Dichte-verbundenes Clustermodell
 - Ranking der Unterräume anhand ihrer Qualität (hierarchisches Clustering)

Globaler Dichteparameter

Lokal adaptiver Dichteparameter

269

5.5 Correlation Clustering

Clustering...

Einteilung der Punktemenge in Gruppen (Cluster), so dass...

- Maximale Ähnlichkeit der Punkte innerhalb der Cluster
- Minimale Ähnlichkeit der Punkte versch. Cluster

Korrelation...

$$y \approx 0.5 x + ...$$

(lineare) Abhängigkeit zwischen den einzelnen Attributen (Dimensionen) einer Punktemenge

Probleme der Korrelation

Rausch-Punkte

Verschiedene Teilmengen weisen unterschiedliche Korrelationen auf

→ schwache Gesamt-Korrelation

271

Probleme der Korrelation

Ziel:
Suche nach Teilmengen
von Punkten mit
einheitlicher Korrelation

Dichtebasiertes Clustering

Trennt grundsätzlich auch Correlation Cluster von Rauschpunkten

Separiert aber nicht nach unterschiedlicher Regressionslinie

273

Informelle Definition

Ein Korrelations-verbundener Cluster ist eine Punktmenge mit...

- einheitlicher Punktdichte (bzw. Dichte-Schwellwert)
- einheitlicher Korrelation (Regressionslinie)

d.h. ein Correlation-Clustering-Verfahren soll

- Punktdichte und
- Korrelation

innerhalb von Clustern maximieren zwischen separierten Clustern minimieren

Idee für Correlation Clustering Algorithmus

Erweiterung von dichtebasiertem Clustering

- DBSCAN
- OPTICS
- Oder eines anderen Verfahrens

ggf. unter Einführung neuer Parameter (Dimension der Korrelation)

Möglichkeiten, Korrelation ins Spiel zu bringen

- Adaptives Ähnlichkeitsmaß
- Fraktale Dimension
- Hough-Transformation

275

Adaptives Ähnlichkeitsmaß

[Böhm, Kailing, Kröger, Zimek: Computing Clusters of Correlation Connected Objects, subm.]

DBSCAN beruht im wesentlichen auf zwei Konzepten:

- Kernpunkte:
 Punkte, in deren ε-Umgebung sich mindestens *MinPts* Punkte befinden
- Dichte-Verbundenheit:
 Kernpunkte werden mit Nachbarn
 in der ε-Umgebung vereinigt

Idee von 4C (Computing Correlation Connected Clusters):

- Anpassung dieser Konzepte von DBSCAN, so dass nach korrelierten Punktmengen gesucht wird
- Dimension λ der Korrelation durch den Benutzer vorgegeben:
 - $\lambda = 1$ für Korrelations-Linien
 - $\lambda = 2$ für Korrelations-Ebenen usw.

Kernpunkte bei 4C

Zusätzlich zur Forderung, dass sich in der ε-Umgebung mindestens *MinPts* Nachbarn befinden müssen:

Die Punkte in der ε-Umgebung eines Kernpunktes müssen sich

- ...auf (bzw. in der Nähe) einer gemeinsamen Linie (im Fall $\lambda=1$),
- ...einer gemeinsamen Ebene (im Fall $\lambda=2$),
- ...einer gemeinsamen λ -dimensionalen Hyperebene (im Fall $\lambda > 2$)

durch den Kernpunkt befinden.

Dies lässt sich mathematsch wie folgt bestimmen:

- Berechnung Kovarianzmatrix Σ der Nachbarn
- Eigenwert-Zerlegung (Principal Components) $V \cdot E \cdot V^T = \Sigma$

Hierdurch wird jedem Kernpunkt eine Kovarianzmatrix zugeordnet

Dichte- (bzw. Korrelations-) Verbundenheit

Prinzip:

 Nur solche Punkte sollen mit einem Cluster vereinigt werden, die auch in der bisherigen Ausdehungsrichtung (d.h. nahe zur Korrelationslinie, -Ebene usw.) liegen

Wie kann dieses Ähnlichkeitsmaß erreicht werden?

• Ähnlichkeitsmaß entspricht Kovarianzmatrix: $\operatorname{dist}^{2}(P,Q) = (P-Q) \cdot \Sigma \cdot (P-Q)^{\mathrm{T}}$

Richtungen starker Varianz werden durch das Ähnlichkeitsmaß stark gewichtet.

⇒ Ansatz genau kontraproduktiv!

Dichte- (bzw. Korrelations-) Verbundenheit

• Kovarianzmatrix mit invertierten Eigenwerten:

 $dist^{2}(P,Q) = (P-Q) \cdot V \cdot E^{-1} \cdot V^{T} \cdot (P-Q)^{T}$

Anmerkung: Diagonalmatrizen werden elementweise invertiert:

$$diag(a_1,a_2,...)^{-1} = diag(1/a_1,1/a_2,...)$$

Ausrichtung des Ellipsoids nun korrekt!

Probleme:

- Was macht man mit Eigenwerten =0 (also *keine* Varianz in dieser Richtung)?
- Ausdehnung des Ellipsoids in allen Richtungen verschieden und nicht klar definiert

279

Dichte- (bzw. Korrelations-) Verbundenheit

Gewünscht: Ellipsoid mit folgenden Eigenschaften

- Ausrichtung gemäß den stärksten Eigenvektoren
- Ausdehnung ε in λ Richtungen
- Eine einheitliche, wesentlich geringere Ausdehung, die eine gewisse Toleranz erlaubt, in den verbleibenden d- λ Richtungen

Die Eigenwertmatrix wird wie folgt modifiziert:

- Die ersten λ Eigenwerte werden auf 1 gesetzt (Ellipsoid ist definiert als $\{x \mid \text{dist } (P,x) \leq \varepsilon\}$)
- Die verbleibenden d- λ Eigenwerte auf κ ($\kappa >>1$ Benutzer-definierter Wert)
- Distanzmaß mit modifiziertem E': $\operatorname{dist}^{2}(P,Q) = (P-Q) \cdot \operatorname{V} \cdot \operatorname{E}' \cdot \operatorname{V}^{\mathrm{T}} \cdot (P-Q)^{\mathrm{T}}$

Unsymmetrische Metrik

Beobachtung:

Das Abstandsmaß ist nicht symmetrisch, da immer die modifiz. Kovarianzmatrix, die einem der beiden beteiligten Kernpunkte zugeordnet ist, das Abstandsmaß definiert.

Problem:

Hierdurch wird das Clusterverfahren Reihenfolge-abhängig

Lösung:

Vereinige Punkte nur dann, wenn sie sich "gegenseitig" finden, also: $\operatorname{dist}_{P}(P,Q) \le \varepsilon$ und $\operatorname{dist}_{Q}(Q,P) \le \varepsilon$

281

Algorithmus 4C (ε , MinPts, λ)

Für alle Objekte o aus der Datenbank:

Schritt 1: Test auf Korrelations-Kernobjekt

```
berechne \varepsilon-Umgebung N_{\varepsilon}(o) von o;

Wenn |N_{\varepsilon}(o)| \geq MinPts

berechne \Sigma;

Wenn (d-\lambda) Eigenwerte \approx 0

berechne E';

berechne \varepsilon-Umgebung N'_{\varepsilon}(o) von o bzgl. E';

teste |N'_{\varepsilon}(o)| \geq MinPts;
```

Schritt 2: Expandiere Cluster

berechne alle Punkte, die korrelations-dichte-erreichbar von o sind;

- ähnlich wie DBSCAN
- benutze dabei E´ als Distanzmaß
- achte auf Symmetrie

Ergebnisse: Accuracy

284

10d Datensatz (3 Cluster + Noise)

Ergebnisse: Vergleich mit DBSCAN

285

Performanz

Komplexität ohne Indexunterstrützung:

- Für jeden (Kern-) Punkt ist das zugeordnete Ähnlichkeitsmaß (die modifizierte Kovarianzmatrix) zu ermitteln:
 - Ermittlung der Kovarianzmatrix: $O(nd^2)$
 - Eigenwert-Zerlegung der Kovarianzmatrix: $O(d^3)$
- DBSCAN wertet je eine Bereichsanfrage pro Punkt aus:
 - Auswertung mit modifizierter Kovarianzmatrix: $O(nd^2)$
- Gesamtkomplexität: $O(n^2d^2+d^3n)$

Komplexität mit Indexunterstützung:

- Bereichsanfrage reduziert sich auf $O(d^2 \log n)$
- Gesamt-Komplexität: $O(d^2n \log n + d^3n)$

Diskussion

Stärken

- Erstes Verfahren, das Teilmengen in einer Menge von Merkmalsvektoren ermittelt, die einheitliche Korrelation aufweisen (mit Ausnahme von ORCLUS, dessen "orientierte Cluster" ähnlich funktionieren)
- Wesentlich bessere Ergebnisse als ORCLUS (k-Means)

Schwächen

- Mengen müssen zusätzlich zur Korrelation auch Dichte-verbunden sein (Parameter ε)
- (zurzeit noch) nicht hierarchisch → 4C-OPTICS?
- Dimensionalität λ der Korrelation muss vorgegeben werden
- Findet nur lineare Abhängigkeiten
- Punkte können nur einem Cluster zugeordnet sein

287

Alternativ-Ansatz: Fraktale Dimension

Bei Korrelationen ergibt sich charakteristische Abhängigkeit zwischen Volumen und Anzahl eingeschlossener Punkte:

Ohne Korrelation:

 $N \sim r^2$

 $N \sim r^1$

Dieser Effekt ist unabhängig davon, ob die Abhängigkeit linear oder nicht-linear ist.

Ermittlung der fraktalen Dimension

- Auswertung einer k-Nearest-Neighbor-Query für $k = \{1, 2, ..., k_{max}\}$
- Auftragen der *k*-NN-Distanzen in doppelt logarithmischem Maßstab
- Ergibt sich annähernd eine Gerade, dann entspricht die Steigung der Gerade der fraktalen Dimension

Fazit zur fraktalen Dimension

- Klare Unterscheidung zwischen korrelierten und nicht korrelierten Punktmengen nur in der Theorie
- Für die Clustering-Anwendung als Zusatz-Kriterium evtl. brauchbar
- Idee: OPTICS-Plot um fraktale Dimension erweitern:

Hough-Transformation

Standard-Methode zur Linien-Segmentation in 2d Bildern

Bei höheren Dimensionen so nicht machbar

- zu viele freie Parameter
- Arraygröße exponentiell in Dimension

291

Modifikation des Verfahrens

- Betrachte Paare (bzw. Tripel, Quadrupel) von Punkten
 - nahe beieinander liegend
 - oder zufallsbasiert
- Transformiere in Parameterraum
- Konventionelles Clustering im transformierten Raum

Modifizierte Hough-Transformation

Merkmals-Raum:

Transformierter Raum:

293

Zusätzliche Erweiterungsmöglichkeiten

- DBSCAN durch OPTICS ersetzen, um Hierarchien von Korrelations-verbundenen Punktmengen zu ermitteln
- Oder alternative Cluster-Methoden einsetzen (eigentlich sind beliebige Shapes hier nur begrenzt erwünscht)
- Transformation in polynomialen Vektorraum, um auch nichtlineare Abhängigkeiten zu finden:
 (x,y,z) → (x,y,z,x²,y²,z²,xy,xz,yz), wie bei SVMs
- Nutzung der Algorithmen auch für Subspace-Clustering, indem man PCA durch eine Methode der Merkmals-*Selektion* ersetzt

Literatur

- C. Aggarwal and P. Yu. Finding Generalized Projected Clusters in High Dimensional Space. In Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'00), Dallas, TX, 2000.
- C. C. Aggarwal and C. Procopiuc. Fast Algorithms for Projected Clustering. In Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'99), Philadelphia, PA, 1999.
- R. Agrawal, J. Gehrke, D. Gunopulos, and P. Raghavan. Automatic Subspace Clustering of High Dimensional Data for Data Mining Applications. In Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'98), Seattle, WA, 1998.
- C.-H. Cheng, A.-C. Fu, and Y. Zhang. Entropy-Based Subspace Clustering for Mining Numerical Data. In Proc. ACM SIGKDD Int. Conf. on Knowledge Discovery in Databases (SIGKDD'99), San Diego, CA, 1999.
- S. Goil, H. Nagesh, and A. Choudhary. MAFIA: Efficient and Scalable Subspace Clustering for Very Large Data Sets. Tech. Report No. CPDC-TR-9906-010, Center for Parallel and Distributed Computing, Dept. of Electrical and Computer Engineering, Northwestern University, 1999.
- A. Hinneburg and D. Keim. Optimal Grid-Clustering: Towards Breaking the Curse of Dimensionality in High-Dimensional Clustering. In Proc. 25th Int. Conf. on Very Large Databases (VLDB'99), 1999.
- I. Joliffe. Principal Component Analysis. Springer-Verlag, New York, 1986.
- K. Kailing, H.-P. Kriegel, P. Kröger. Density-Connected Subspace Clustering for High-Dimensional Data. To appear in Proc. SIAM Int. Conf. on Data Mining (SDM'04), Orlando, FL, 2004.
- K. Kailing, H.-P. Kriegel, P. Kröger. Selecting Subspaces Relevant for Clustering High-Dimensional Data. Submitted for publication at SIGMOD Conference 2004.
- K. Kailing, H.-P Kriegel, P. Kröger, and S. Wanka. RIS: Ranking Interesting Subspaces of High Dimensional Data. In Proc. 7th Europ. Conf. On Principles and Practice of Knowledge Discovery and Data Mining (PKDD'03), Cavtat, Kroatien, 2003.
- H. Nagesh, S. Goil, and A. Choudhary. Adaptive Grids for Clustering Massive Data Sets. In 1st SIAM Int. Conf. on Data Mining, Chicago, IL, 2001.
- C. M. Procopiuc, M. Jones, P. K. Agarwal, T. M. Murali. A Monte Carlo Algorithm for Fast Projective Clustering. In Proc. ACM SIGMOD Int. Conf. on Management of Data (SIGMOD'02), Madison, WN, 2002.