

NEURAL NETWORK LEARNING RULES CHAPTER 2

ARTIFICIAL NEURAL NETWORK LEARNING

Neural Network Learning Rules

We know that, during ANN learning, to change the input/output behavior, we need to adjust the weights. Hence, a method is required with the help of which the weights can be modified. These methods are called Learning rules, which are simply algorithms or equations.

Neural Network Learning Rules

 The learning signal r in general a function of wi, x and sometimes of teacher's signal di.

$$r = r(\mathbf{w}_i, \mathbf{x}, d_i)$$

 Incremental weight vector wi at step t becomes:

$$\Delta \mathbf{w}_i(t) = cr \left[\mathbf{w}_i(t), \mathbf{x}(t), d_i(t) \right] \mathbf{x}(t)$$

Where c is a learning constant having +ve value.

Neural Network Learning Rules

- Perceptron Learning Rule -- Supervised Learning
- Hebbian Learning Rule Unsupervised Learning
- Delta Learning Rule -- Supervised Learning
- Widrow-Hoffs Learning Rule -- Supervised Learning
- > Correlation Learning Rule -- Supervised Learning
- Winner-Take-all Learning Rule -- Unsupervised Learning
- Outstar Learning Rule -- Supervised Learning

MP Neuron

 $\{0, 1\}$

$$loss = \sum_i (y_i - \hat{y_i})^2$$

Classification

Boolean output

Only one parameter, b

 $Accuracy = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}$

Perceptron Learning Rule -- Supervised Learning

 $\{0, 1\}$

$$loss = \sum_i (y_i - \hat{y_i})^2$$

Classification

Our 1st learning algorithm

Weights for every input

 $Accuracy = \frac{\text{Number of correct predictions}}{\text{Total number of predictions}}$

Data and Task

Launch (within 6 months)	0	1	1	0	0	1	0	1	1
Weight (g)	151	180	160	205	162	182	138	185	170
Screen size (inches)	5.8	6.18	5.84	6.2	5.9	6.26	4.7	6.41	5.5
dual sim	1	1	0	0	0	1	0	1	0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	1	1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	1	0	0	1	1	1	0	0	0
Battery(mAh)	3060	3500	3060	5000	3000	4000	1960	3700	3260
Price (INR)	15k	32k	25k	18k	14k	12k	35k	42k	44k
Like (y)	1	0	1	0	1	1	0	1	0

Data Preparation

Launch (within 6 months)	0	1	1	0	0	1	0	1	1
Weight (g)	151	180	160	205	162	182	138	185	170
Screen size (inches)	5.8	6.18	5.84	6.2	5.9	6.26	4.7	6.41	5.5
dual sim	1	1	0	0	0	1	0	1	0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	1	1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	1	0	0	1	1	1	0	0	0
Battery(mAh)	3060	3500	3060	5000	3000	4000	1960	3700	3260
Price (INR)	15k	32k	25k	18k	14k	12k	35k	42k	44k
Like (y)	1	0	1	0	1	1	0	1	0

	een ize
5	5.8
6	.18
5.	.84
6	5.2
5	5.9
6	.26
4	1.7
6	.41
5	5.5

Data Preparation

			4	1					5
Launch (within 6 months)	0	1	1	0	0	1	0	1	1
Weight (g)	151	180	160	205	162	182	138	185	170
Screen size (inches)	5.8	6.18	5.84	6.2	5.9	6.26	4.7	6.41	5.5
dual sim	1	1	0	0	0	1	0	1	0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	1	1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	1	0	0	1	1	1	0	0	0
Battery(mAh)	3060	3500	3060	5000	3000	4000	1960	3700	3260
Price (INR)	15k	32k	25k	18k	14k	12k	35k	42k	44k
Like (y)	1	0	1	0	1	1	0	1	0

Standardization formula

$$x' = rac{x-min}{max-min}$$

S	cree size	75-7. I
	5.8	
	6.18	
	5.84	
	6.2	
	5.9	
	6.26	
	4.7	min
	6.41	max
7	5.5	

Data Preparation

Launch (within 6 months)	0	1	1	0	0	1	0	1	1
Weight	0.19	0.63	0.33	1	0.36	0.66	0	0.70	0.48
Screen size	0.64	0.87	0.67	0.88	0.7	0.91	0	1	0.47
dual sim	1	1	0	0	0	1	0	1	0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	1	1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	1	0	0	1	1	1	0	0	0
Battery	0.36	0.51	0.36	1	0.34	0.67	0	0.57	0.43
Price	0.09	0.63	0.41	0.19	0.06	0	0.72	0.94	1
Like (y)	1	0	1	0	1	1	0	1	0

Evaluation

Training data

Launch (within 6 months)	0	1	1	0	0	1	0	1	1
Weight	0.19	0.63	0.33	1	0.36	0.66	0	0.70	0.48
Screen size	0.64	0.87	0.67	0.88	0.7	0.91	0	1	0.47
dual sim	1	1	0	0	0	1	0	1	0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	1	1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	1	0	0	1	1	1	0	0	0
Battery	0.36	0.51	0.36	1	0.34	0.67	0	0.57	0.43
Price	0.09	0.63	0.41	0.19	0.06	0	0.72	0.94	1
Like (y)	1	0	1	0	1	1	0	1	0

$$\hat{y} = (\sum_{i=1}^n w_i x_i \geq b)$$
 $loss = \sum_i \mathbf{1}_{(y_i! = \hat{y_i})}$

$$loss = \sum_i \mathbf{1}_{(y_i! = \hat{y_i})}$$

Evaluation

Training data

			U						
Launch (within 6 months)	0	1	1	0	0	1	0	1	1
Weight	0.19	0.63	0.33	1	0.36	0.66	0	0.70	0.48
Screen size	0.64	0.87	0.67	0.88	0.7	0.91	0	1	0.47
dual sim	1	1	0	0	0	1	0	1	0
Internal memory (>= 64 GB, 4GB RAM)	1	1	1	1	1	1	1	1	1
NFC	0	1	1	0	1	0	1	1	1
Radio	1	0	0	1	1	1	0	0	0
Battery	0.36	0.51	0.36	1	0.34	0.67	0	0.57	0.43
Price	0.09	0.63	0.41	0.19	0.06	0	0.72	0.94	1
Like (y)	1	0	1	0	1	1	0	1	0

$$\hat{y} = (\sum_{i=1}^n w_i x_i \geq b)$$
 $loss = \sum_i \mathbf{1}_{(y_i! = \hat{y_i})}$

$$loss = \sum_i \mathbf{1}_{(y_i! = \hat{y_i})}$$

Test data

1	0	0	1		
0.23	0.34	0.44	0.54		
0.74	0.93	0.34	0.42		
0	1	0	0		
1	0	0	0		
0	0	1	0		
1	1	1	0		
1	1	1	0		
0	0	1	0		
0	1	0	0		
0	1	1	0		

Perception Learning Rule

for the perception learning state signal is y School of Engineering the difference between the desired and actual newon's response. Thus, learning is supervised and the learning signal is equal to,

~= di-0i

where Oi = Sgn (witx) and di is the desired response.

weight adjustments in this method, swi and Dwij are obtained as follows:-

Dwi = c [di-sgn(witx)]x

Dwij = C[di - sgn (witx)] xj for j=1,2,

higo Perception learning Rule

& Technology

- 7 This rule is applicable for binary newer Engineering response. i.e hele for the binary bipola logy
- => Under Otis rule meights are adjusted if and only if Oi is in correct.
- As the desired response is +1 or -1 the weight endjust ment@reduces to,

 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \cdot 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \cdot 2 \]
 \[\Delta \omega_i = \pm 2 \cdot 2
- => where a + is applicable when diz1 and Sign (wtx)=-1

and a nuinces eign is applicable when $d_{i}^{2}=-1$ and $sgn(\omega^{\dagger}x)=1$.

- => The cert adjustment formula une not be used when di= egn (votx)
- => This is a very emportant rule for supervised learning Rules
- => The weight are enitialized at any value is this mother.

Algorithm: Perceptron Learning Algorithm

```
P \leftarrow inputs with label 1;
N \leftarrow inputs with label o;
Initialize w randomly;
while !convergence do
    Pick random \mathbf{x} \in P \cup N;
   if \mathbf{x} \in P and \sum_{i=0}^{n} w_i * x_i < o then
        \mathbf{w} = \mathbf{w} + \mathbf{x};
   end
   if \mathbf{x} \in N and \sum_{i=0}^{n} w_i * x_i \ge 0 then
     \mathbf{w} = \mathbf{w} - \mathbf{x};
   end
```

end

//the algorithm converges when all the inputs are classified correctly

For eta given network shown in fig. we the perception learning rule
$$lot$$
 adjust the weight. The set of training vectors are as-

 $\chi_1 = \begin{bmatrix} 1 \\ -2 \\ 0 \end{bmatrix}, \quad \chi_2 = \begin{bmatrix} 0 \\ 1.5 \\ -0.5 \\ -1 \end{bmatrix}, \quad \chi_3 = \begin{bmatrix} -1 \\ 0.5 \\ -1 \end{bmatrix}$
Prihal weight $w_1 = \begin{bmatrix} 1 \\ -1 \\ 0 \\ 0.5 \end{bmatrix}$

C= 0.1, d1=-1, d2=-1 and d3=1.