EXHIBIT B

Brooks, Jeff

Volume 1 - 01/23/2020

Summary Proceeding with Highlighted Clips Printed 05/23/2021 01:38AM CDT

CONFIDENTIAL

P counter-counters
(Runtime - 00h:08m:25s)

Defense Counters
(Runtime - 00h:51m:52s)

Plaintiffs Designation (Runtime - 00h:18m:31s)

Defense Objections (Runtime - 00h:01m:33s)

Plaintiffs Objections (Runtime - 00h:10m:49s)

Page	00007

01:	THE VIDEOGRAPHER: This begins the video
02:	deposition of Jeff Brooks as PMK for Chart, Inc.,
03:	being taken in the matter of Pacific In Re:
04:	Pacific Fertility Center Litigation. Today's date
Plaintiffs	Objections Objection starts with "The time":
05:	is January 23rd, 2020. The time on the record is
06:	9:19 a.m. My name is Brandyon Brantley. I'm the
07:	videographer. The court reporter is Laura MacKay.

Page 00008

10:	Could you please state your full name for
11:	the record.
12:	A. Jeffrey Steven Brooks.

Page 00009

Luge occop	
13:	Mr. Brooks, do you understand that today
14:	Chart, Inc., has designated you to testify on its
15:	behalf?
16:	A. Yes.
17:	Q. Okay. And are you willing to testify on
18:	Chart's behalf today?
19:	A. Yes.
20:	Q. And in addition, we've also noticed your
21:	deposition in your individual capacity. For
22:	purposes of today the majority of our questions I
23:	think will be to you as Chart's witness, and you
24:	should assume the questions are directed at Chart,
25:	unless indicated otherwise, as a means of

(continued page 00010)

(00::02::u0u Fu30 00020)		
0010		
01:	differentiating between Chart and your individual	
02:	testimony.	

Plaintiffs	Objections 402/403 - relevance, waste of time:
03:	MR. SMITH: I'll just object to that to the
04:	extent it's not clear. I'll make an objection at
05:	the time.
06:	BY MS. ZEMAN:
07:	Q. Mr. Brooks, what did you do to prepare for
08:	your deposition today?
09:	A. I looked at several binders full of emails
10:	and other documents.

Page 00013

1430 00010	
02:	Q. Mr. Brooks, do you have a college degree?
03:	A. I do.
04:	Q. And what is that degree?
05:	A. It's a bachelor of science in mechanical
06: eng	ineering technology.

11:	Q. And who is your current employer?
12:	A. Chart, Incorporated.
13:	Q. And what's your position with Chart,
14: I:	ncorporated?
15:	A. I am currently titled innovation engineer.
16:	Q. And what is an innovation engineer?
17:	A. We do new product development.
18:	Q. And how long have you been an innovation
19: e:	ngineer?
20:	A. About six years.
21:	Q. Were you with Chart before then?
22:	A. Yes.
23:	Q. What was your position with Chart before
24: t.	ne innovation engineer?
25:	A. Sustaining engineer.

(continued page 00014)

	page outli
0014	
01:	Q. And what does a sustaining engineer do?
02:	A. Sustaining engineer does continuous
03:	improvement on the product and maintaining
04:	documentation like bills of material and drawings
05:	and such.
06:	Q. Did you work with the MVE 808 in that
07:	position?
08:	A. Yes.
09:	Q. In what ways?
10:	A. As the sustaining engineer in product
11:	engineering.
12:	Q. What did you do specifically regarding the
13:	MVE 808 as a sustaining engineer?
14:	MR. SMITH: Overbroad.
15:	BY MS. ZEMAN:
16:	Q. You can answer.
17:	A. It was mainly sustaining activity:
18:	maintaining bills of material and drawings.
19:	Q. Did you make any changes to the drawings?
20:	A. There were changes to drawings, yes.
21:	Q. What sort of changes did you make to the
22:	drawings of the MVE 808?
23:	A. Miscellaneous, you know, sometimes to
24:	clarify material requirements or assembly
25:	requirements.

(continued page 00015)

	0015	
01:		Q. So assembly requirements. What did you say
02:	for	that?

Brooks, Jeff ase 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 6 of 45 Prooks, Jeff as 1-01/23/2020

_	
03:	A. Material requirements.
04:	Q. What sort of material requirements changed?
05:	A. Sometimes it would be material length.
06:	Sometimes width. I mean, just minor size changes,
07:	typically. It's mature product, and very little
08:	maintenance was actually done to it.
09:	Q. What do you mean by a "mature product"?
10:	A. It was developed in the '80s or the '70s,
11:	probably, and no substantial changes have been done
12:	to it since that time.
13:	Q. Can you give me some examples of the
14:	changes that have been made to it?
15:	A. The only significant change would be the
16:	addition of annular lines for to allow the use of
17:	differential pressure censor for the controller.
18:	Q. When were those added?
19:	A. That would have been in the mid-'90s.
20:	Q. And the tank has two annular lines,
21:	correct?
22:	A. Correct.
23:	Q. Were both of the lines added in the
24:	mid-'90s?
25:	A. Yes.

(continued page 00016)

0016	
01:	Q. And you referred to continuous
02:	improvements. What does that mean?
03:	A. That generally means minor changes that
04:	would allow production to produce the the product
05:	easier, quicker, or to improve the user interface.
06:	Q. Would the addition of the annular lines be

Brooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 7 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 7 of 45

07:	considered a continuous improvement?
08:	A. Yes.
09:	Q. And were there any other significant
10:	changes to the MVE 808?
11:	A. None that I recall.
12:	Q. Have the materials used to construct the
13:	MVE 808 changed?
14:	A. No.
15:	Q. Not since it was initially designed in the
16:	'70s or '80s?
17:	A. Not since I've became involved with the
18:	product in the early '90s. I can't speak to what
19:	might have happened before I became involved with
20:	the product.
Plaint	iffs Objections 402/403 - relevance, waste of time: Q. Okay. And during what time period were you
22:	assisting engineer?
23:	A. Could you restate that, please.
24:	Q. During what time period did you serve as a
25:	sustaining engineer at Chart?

(continued page 00017)

0017	
01:	A. I don't remember years very well anymore.
02:	They all kind of run together. But I was sustaining
03:	engineer for about five or six years before I became
04:	an innovation engineer, and that was so it was
05:	probably 10 or 15 years ago. Probably closer to 15,
06:	when I became a sustaining engineer became my
07:	title.
08:	Q. Okay. And were you with Chart before you
09:	were a sustaining engineer?
10:	A. I was.

Brooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks, Jeff as 3:18-cv-01586-JSC Document 814-2 Filed 05/23/21 Page 8 of 45 Prooks P

11:	Q. Okay. And what was your position?
12:	A. Product engineer.
13:	Q. And how long were you a product engineer?
14:	A. Probably ten years.
15:	Q. And what did you do as a product engineer?
16:	A. The same thing as I did as a sustaining
17:	engineer. That was that title change was not a
18:	job change. It was just a title change.
19:	Q. Okay. Is that true for your entire period
20:	as a product engineer, that the work is comparable
21:	to what you did as a sustaining engineer?
22:	A. Yes.
23:	Q. And were you with Chart before you were a
24:	product engineer?
25:	A. Yes.

(continued page 00018)

(a page could,
0018	
01:	Q. What were you before a product engineer?
02:	A. I was a lab technician.
03:	Q. How long were you a lab technician?
04:	A. Probably five years. Well, make that
05:	three.
06:	Q. And what did you do as a lab technician?
07:	A. Testing of materials and finished product
08:	and components that go into the product.

Plaintiffs Obje	ctions 402 relevance; 403 waste of time :
22:	Q. Okay. And were you with Chart before you
23: were	a lab technician?
24:	A. No.
25:	Q. When did you start with Chart?

(continued page 00019)

0019	
01:	A. I started at this location before it became
02:	Chart in 1989.
03:	Q. Were you with MVE?
04:	A. I was with CSI Cryogenic Services.
05:	Q. How did CSI come to be a Chart location?
06:	A. MVE purchased CSI two years after I went to
07:	work there, about two years after I went to work
08:	there, and then Chart purchased MVE in the mid to
09:	late '90s.
10:	Q. So you started with CSI in 1989?
11:	A. Correct.
12:	Q. And, then, CSI was purchased by MVE in
13:	maybe 1991 or so?
14:	A. Yes.
15:	Q. Okay. And then mid to late '90s, CSI was
16:	purchased by Chart?
17:	A. Yes.
18:	Q. MVE was purchased by Chart.
19:	A. Yes.
20:	Q. Okay. And what was your position with CSI
21:	when you started in 1989?
22:	A. Lab technician.
23:	Q. Is that the lab technician position that
24:	you described earlier?
25:	A. Yes.

```
Plaintiffs Objections 402/403 - relevance, waste of time, cumulative:

12: Q. The MVE 808 is a vacuum-insulated freezer,

13: correct?
```

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 10 of 45

14:	A. Correct.
15:	Q. Can you describe what that means?
16:	A. That means that it has an inner and outer
17:	wall that is sealed and evacuated to provided
18:	insulation, thermal insulation.
19:	Q. Does that mean the vacuum space provides
20:	the insulation?
21:	A. The vacuum space provides the bulk of the
22:	insulation, yes.
23:	Q. What else provides the insulation?
24:	A. There's a multi-layer insulation system
25:	wrapped around the inner container before it is

(continued page 00021)

(Continued)	page ooder,
0021	
01:	placed in the outer container.
02:	Q. Does that insulation reside inside the
03:	vacuum space?
04:	A. It does.
05:	Q. So the vacuum plus the insulation accounts
06:	for the insulation of the of the maintenance of
07:	the cold temperatures in the freezer?
08:	A. Yes.
09:	Q. And do the annular lines go through the
10:	vacuum space?
11:	A. They do.
12:	Q. Is there anything other than insulation in
13:	the vacuum space let me rephrase that.
14:	Is there anything other than insulation and
15:	the annular lines inside the vacuum space?
16:	A. Yes.
17:	Q. What else?

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 11 of 45

18:	A. There is a gettering system that absorbs
19:	gas molecules that enter into the vacuum space after
20:	it is sealed off.
21:	Q. Is there anything else in the vacuum space?
22:	A. No.
23:	Q. And did you say that the gettering system
24:	would collect molecules that enter the vacuum space
25:	after it's been sealed?

(continued page 00022)

	page 00022)
0022	
01:	A. Yes.
02:	Q. How would anything enter the vacuum space
03:	after it's been sealed?
04:	A. There are multiple ways. The stainless
05:	steel material used for the inner and outer wall out
06:	gases molecules throughout the life of the
07:	container, and small gas molecules can migrate
08:	through the walls over time.
09:	Q. Any other methods for molecules to get into
10:	the vacuum space?
11:	A. Molecules mainly make their way through
12:	small molecular-size openings throughout the
13:	assembly over time.
14:	Q. Even with the vacuum in place?
15:	A. Yes.
16:	Q. What types of molecules does the stainless
17:	steel outgas?
18:	A. Mostly hydrogen.
19:	Q. And what type of molecules would migrate
20:	through the stainless steel over time?
21:	A. Any molecule of gas that is in the

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 12 of 45

22:	atmosphere can migrate through the structure.
23:	Q. And as for the stainless steel off-gassing
24:	throughout its life, you said mostly hydrogen.
25:	Is there something other than hydrogen that

0023	page 00023)
01:	it would off gas?
02:	A. None that I'm aware of. As far as I know,
03:	hydrogen is the is the molecule that outgasses
04:	from the material.
05:	Q. And it would off-gas the hydrogen in a gas
06:	format?
07:	A. Yes. I mean, it releases molecules, and
08:	the pressures are low enough that it's in the
09:	gaseous state. The temperature is warm enough that
10:	it's in a gaseous state.
11:	Q. What other state could hydrogen be in?
12:	A. Hydrogen can be in a liquid state. If you
13:	get cold enough, it could be in a solid state, but
14:	that generally does not happen here. Some other
15:	planet in the system where it's colder than you can
16:	get it here might freeze it.
17:	Q. So for hydrogen to be in a solid state, it
18:	would have to be at a level of cold that is not
19:	reasonably possible?
20:	A. Correct.
21:	Q. How does the volume of the molecule of
22:	hydrogen in a gaseous compare to its volume in a
23:	liquid state?
24:	A. I do not know that off the top of my head.
25:	Q. Do you have any opinion on the comparison?

(continued page 00024)

0024	
01:	A. Well, at the molecular level, there's no
02:	there's no difference. The molecule size is
03:	consistent whether it be in a gaseous or a liquid
04:	state. When the molecules come together in
05:	insufficient quantity at the right pressure it's a
06:	liquid. Otherwise it's a gas.
07:	Q. And the annular lines pass through the
08:	vacuum space and then open into the inner vessel,
09:	correct?
10:	A. Correct.
11:	Q. And where is that opening?
12:	A. It is near the bottom of the shell of the
13:	inner container, just above the inner bottom head of
14:	the container. Probably an inch or so above the
15:	head. Probably two inches above the ultimate bottom
16:	of the container.
17:	Q. And why are they in that location?
18:	A. To measure the weight of the liquid column
19:	that is in the freezer to determine what the liquid
20:	level in the freezer is. You want the entry port to
21:	be as close to the bottom of the container as
22:	possible.
23:	Q. When it reads the level, is it reading just
24:	from the level of that port opening?
25:	A. It does read from the weight of the liquid

(continued page 00025)

0025		
01:	column that's above the port.	

Page 0002!	5
08:	Q. When the annular lines were added to the
09:	design, was there any testing done of the tank at
10:	that time?
11:	MR. SMITH: Vague.
12:	A. There was no testing done.
13:	BY MS. ZEMAN:
14:	Q. Was there any quality assessment done?
15:	A. No.
16:	Q. Was there any risk analysis done?
17:	A. No.
18:	Q. Does the MVE 808 have a false bottom?
19:	A. Yes.
20:	Q. And what does that mean?
21:	A. It's just an aluminum disk that is placed
22:	in the bottom to provide a level surface for the
23:	inventory system to be placed on. The bottom head
24:	is not flat, so a level surface is required for the
25:	inventory system, so a false bottom is installed to

(continued page 00026)

0026	
01:	provide that.
02:	Q. How much space is below the false bottom?
03:	A. Perhaps an inch, but I do not know for
04:	certain.
05:	Q. And would it be a uniform inch?
06:	A. No.
07:	Q. Why not?
08:	A. The inner bottom head being having flat
09:	surfaces, when a vacuum is pulled on the back side
10:	of it, it deforms and becomes not flat. So at the
11:	outer edges where it connects to the inner shell,

12:	the distance between the false bottom and the head
13:	would be smaller than it would be as you approach
14:	the center.
15:	Q. So when you say about an inch below, would
16:	that be your estimate for the deepest gap, the
17:	biggest gap between the false bottom and the head?
18:	A. Yes.
19:	Q. Do you know what the volume of space is
20:	below the false bottom?
21:	A. I do not.
22:	Q. What is the proper process to fill an MVE
23:	808 with liquid nitrogen?
24:	MR. SMITH: Vague. Outside the scope.
25:	BY MS. ZEMAN:

(continued page 00027)

0027	
01:	Q. Go ahead.
02:	A. So there's two different processes. One
03:	applies to a freezer with the autofill assembly
04:	installed, and another applies to the freezer that
05:	does not have an autofill system installed.
06:	Which system do you want?
07:	BY MS. ZEMAN:
08:	Q. Let's start with the autofill.
09:	A. With an autofill system, you would connect
10:	a transfer hose from a liquid supply to the inlet
11:	connection to the plumbing assembly, and then open
12:	the supply valve at the liquid source, plug the
13:	power supply in; and the controller, after it boots
14:	up, will open the fill valves and allow liquid
15:	nitrogen to pass into the freezer. It will then

16:	monitor the level during that fill proceeds, and
17:	close the valves and stop the flow of liquid
18:	nitrogen into the freezer when the level reaches to
19:	a programmed high fill setting.
20:	Q. And if the tank were being put into service
21:	for the first time, would it start that process at
22:	room temperature?
23:	A. Yes.
24:	Q. Does Chart provide instructions for end
25:	users to initiate a fill?

(continued page 00028)

(continued r	page 00028)
0028	
01:	A. Yes.
02:	Q. And to initiate a fill for an empty tank?
03:	A. Just as I've just described.
04:	Q. Where are those instructions?
05:	A. There is a quick start guide that is
06:	provided the freezer, and there is a technical
07:	manual that is available for the freezer.
08:	Q. Is the quick start guide physically
09:	provided with the freezer?
10:	A. Yes.
11:	Q. And what would be the procedure without an
12:	autofill?
13:	A. You would connect the liquid transfer hose
14:	to the liquid supply, stall a face separator at the
15:	other end of the transfer hose, place that face
16:	separator inside the freezer, and open the valve to
17:	supply liquid from the supply.
18:	Q. And that procedure, again, would be
19:	starting at room temperature?

20:	A. If if the freezer is if it's the
21:	first fill, yes, it would be starting from room
22:	temperature.
23:	Q. You mentioned that the vacuum space on the
24:	MVE 808 contains insulation.
25:	A. Yes.

(continued page	e 00029)
0029	
01:	Q. What is that insulation?
02:	A. It's a multi-layer insulation. There is a
03: laye	er of foil and a layer of what's called paper,
04: which	ch is a fiberglass-based paper that are
05: inte	erleaved, and there's 30 layers of this
06: alte	ernating material.
07:	Q. The first layer that you referred to, did
08: you	say full?
09:	A. Foil, aluminum foil.
10:	Q. So the first layer is aluminum foil?
11:	A. One of the layers is aluminum foil, yes.
12:	Q. And then the aluminum foil alternates with
13: the	fiberglass-based paper?
14:	A. Yes.
15:	Q. And is it 30 layers total?
16:	A. Yes. Well, there would be 30 layers of
17: each	n material.
18:	Q. So a total of 60 layers.
19:	A. Correct.
20:	Q. What's the outer layer?
21:	A. Well, it does not matter which layer is the
22: oute	er as long as the inner layer and the outer layer
23: are	not the same material.

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 18 of 45

24:	Q.	How much insulation is inside a single MVE
25: 80	08?	

(continued page 00030)

(60	ontinued page 00030)
	0030
01:	A. I other than, you know, 30 total layers
02:	of each material, I couldn't say how much it is.
03:	That information is available in our system, but I
04:	don't know it off the top of my head.
05:	Q. Where in your system is that information?
06:	A. It's on the bill of material.
07:	Q. What's the bill of material?
08:	A. Bill of material, that that's the
09:	essentially a list of the material that the part
10:	numbers and quantities of materials that are used to
11:	build the freezer.
12:	Q. Would the bill of material for the MVE 808
13:	essentially list the materials and quantities needed
14:	to build a single MVE 808 freezer?
15:	A. Yes.
16:	Q. And that document would be titled just bill
17:	of material?
18:	A. Yes.

Plaintiffs	Objections 402 relevance; 403 waste of time :
08:	Q. Is the insulation absorbant?
09:	A. No.
10:	Q. Has the insulation material changed on the
11:	MVE 808?
12:	A. No.
13:	Q. It's been the same since it was originally
14:	designed?

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 19 of 45

15:	Α.	It has been the same since I became
16:	involved	with the product.
17:	Q.	And when was that again?
18:	Α.	The mid-'90s.

Page 00032

Page 00032	
16:	Q. And does the MVE 808 contain a molecular
17: sie	ve material?
18:	A. It did contain a molecular sieve.
19:	Q. And what is that material?
20:	A. The name of it is Cryo-Sieve. What the
21: act	ual material is, I don't know.
Plaintiffs Obje	ections 403 waste of time :
22:	Q. Is Cryo-Sieve a brand?
23:	A. It is a brand.
24:	Q. And who produces?
25:	A. Arkema, A-r-k-e-m-a.

(continued page 00033)

(00110111404	Fage of	
0033		
01:	Q.	And has Cryo-Sieve been the molecular
02:	material	for the MVE 808 since the '90s?
03:	Α.	Yes.
04:	Q.	And are there any other terms used within
05:	Chart fo	r the sieve material?
06:	Α.	No.
07:	Q.	Is it sometimes referred to as getter?
08:	Α.	Yes.
09:	Q.	Any other terms like that?
10:	Α.	No.
11:	Q.	So sieve or getter would be the only terms
12:	used to	refer to it other than, perhaps, Cryo-Sieve?
13:	Α.	Yes.

14:	Q. Can you describe that material?
15:	A. It is a small pellet, about a 16th-inch
16:	diameter, that is very porous.
17:	Q. Did you say you don't know the exact
18:	material?
19:	A. Correct, I do not.
20:	Q. What do you mean by "very porous"?
21:	A. It's an actual the actual surface area
22:	that's exposed to the vacuum space is several
23:	hundred times larger than what you would expect of a
24:	1/16th-inch pellet. It probably has at least as
25:	much void area in it as it has actual sieve

(continued page 00034)

(continued page 00034)
0034
01: material.
02: Q. What is the purpose of that void area?
03: A. To allow gas molecules to enter into the
04: pellet.
Plaintiffs Objections 602 speculation; incomplete hypothetical:
05: Q. What happens once the gas molecules get
06: into the pellet?
07: MR. SMITH: Incomplete hypothetical.
08: A. It captures the molecule. The molecule is
09: captured by the pellet and kept there.
10: BY MS. ZEMAN:
11: Q. That means the molecule is unable to escape
12: the pellet?
13: MR. SMITH: Same objection.
14: A. The pellet absorbs it captures molecules
15: more efficiently as it gets colder. When the pellet
16: warms up, it will release that molecule.
17: BY MS. ZEMAN:

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 21 of 45

18:	Q. How much does it have to warm up to release
19:	the molecule?
20:	MR. SMITH: Incomplete hypothetical.
21:	A. There's a linear relationship there. As it
22:	warms up, it releases more and more material as it
23:	gets warmer and warmer.

Page 00037

Q. Okay. And the first item under on the 11: parts list is described as "SIEVE MOLECULAR 12: CRYOSIEVE 1/16th PALLADIUM OXIDE 76-80%-40 Mesh"; is 13: that correct? 14: A. No. The first item is "SIEVE MOLECULE 15: CRYOSIEVE 1/16th". The second item is "PALLADIUM 16: OXIDE 76-80%-40 MESH." Those are two part numbers. 17: Q. Okay. And what's the difference between 18: those two parts? 19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the 25: gettering system?	Page 0003/	
12: CRYOSIEVE 1/16th PALLADIUM OXIDE 76-80%-40 Mesh"; is 13: that correct? 14: A. No. The first item is "SIEVE MOLECULE 15: CRYOSIEVE 1/16th". The second item is "PALLADIUM 16: OXIDE 76-80%-40 MESH." Those are two part numbers. 17: Q. Okay. And what's the difference between 18: those two parts? 19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	10:	Q. Okay. And the first item under on the
13: that correct? 14: A. No. The first item is "SIEVE MOLECULE 15: CRYOSIEVE 1/16th". The second item is "PALLADIUM 16: OXIDE 76-80%-40 MESH." Those are two part numbers. 17: Q. Okay. And what's the difference between 18: those two parts? 19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	11:	parts list is described as "SIEVE MOLECULAR
A. No. The first item is "SIEVE MOLECULE 15: CRYOSIEVE 1/16th". The second item is "PALLADIUM 16: OXIDE 76-80%-40 MESH." Those are two part numbers. 17: Q. Okay. And what's the difference between 18: those two parts? 19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	12:	CRYOSIEVE 1/16th PALLADIUM OXIDE 76-80%-40 Mesh"; is
15: CRYOSIEVE 1/16th". The second item is "PALLADIUM 16: OXIDE 76-80%-40 MESH." Those are two part numbers. 17: Q. Okay. And what's the difference between 18: those two parts? 19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	13:	that correct?
16: OXIDE 76-80%-40 MESH." Those are two part numbers. 17: Q. Okay. And what's the difference between 18: those two parts? 19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	14:	A. No. The first item is "SIEVE MOLECULE
17: Q. Okay. And what's the difference between 18: those two parts? 19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	15:	CRYOSIEVE 1/16th". The second item is "PALLADIUM
those two parts? 19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. Q. What are all of the elements of the	16:	OXIDE 76-80%-40 MESH." Those are two part numbers.
19: A. The they are both part of the gettering 20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	17:	Q. Okay. And what's the difference between
20: system. The molecular sieve is what we've discussed 21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	18:	those two parts?
21: already. The palladium oxide reacts with hydrogen 22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	19:	A. The they are both part of the gettering
22: and converts it to water, and the water vapor is 23: then absorbed by the molecular sieve. 24: Q. What are all of the elements of the	20:	system. The molecular sieve is what we've discussed
then absorbed by the molecular sieve. Q. What are all of the elements of the	21:	already. The palladium oxide reacts with hydrogen
24: Q. What are all of the elements of the	22:	and converts it to water, and the water vapor is
	23:	then absorbed by the molecular sieve.
25: gettering system?	24:	Q. What are all of the elements of the
	25:	gettering system?

(continued page 00038)

0038	
01:	A. Those two are it.
02:	Q. When you refer to the palladium oxide
03:	reacting with hydrogen and converting it to water,
04:	is it converting it to liquid water or gaseous
05:	water?
06:	A. It would be gaseous water.

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 22 of 45

07:	Q. And where is that hydrogen coming from that
08:	it's converting?
09:	A. Hydrogen is out-gassed from the stainless
10:	steel material of the container, and it can also
11:	migrate through the material over time.
12:	Q. Does the palladium oxide convert anything
13:	other than hydrogen?
14:	A. Not to my knowledge.
15:	Q. And does the molecular sieve absorb
16:	anything other than gas molecules?
17:	A. No.
18:	Q. And what gases other than hydrogen are you
19:	familiar with being inside the vacuum space of a
20:	freezer?
21:	A. Any gas molecule that's found in the
22:	atmosphere.

11:	Q. Where are the molecular sieve and the
12:	palladium oxide located inside the MVE 808?
13:	A. The molecular sieve is is contained in a
14:	depression that is formed in the inner bottom head.
	The palladium oxide is in a packet form that is just
16:	placed inside the vacuum space.
17:	Q. Where inside the vacuum space?
18:	A. Typically they would place it on the
19:	insulation that covers the inner bottom head before
20:	the outer vessel is installed.
21:	Q. How big is the packet?
22:	A. Couple inches long, maybe a quarter inch in
23:	diameter.
24:	Q. And is it just a single packet of palladium

25: oxide in each MVE 808?

(continued page 00040)

```
0040
01: A. I believe so, yes.
```

Page 00040

rage coord	
14:	Q. Is the sieve material placed in some sort
15:	of pan?
16:	A. In the case of the 808, there is a
17:	depression formed in the inner bottom head so that
18:	the pan is not required. It is captured in that
19:	depression by a sheet of stainless that is placed
20:	over it and tack welded to the inner bottom head.

Page 00042

11:	Q. Why does the MVE 808 contain molecular
12:	sieve and palladium oxide?
13:	MR. SMITH: Asked and answered.
14:	A. It it is there to capture molecules of
15:	gas that enter the vacuum space after it is
16:	evacuated and sealed off.
17:	BY MS. ZEMAN:
18:	Q. Why is it necessary to do that?
19:	A. Because gas is gaseous molecules are
20:	entering the vacuum space continuously from the time
21:	it is sealed off.
22:	Q. Why do they need to be captured? Why can't
23:	they just stay in the vacuum space?
24:	A. The major part of the insulation that
25:	allows it to contain in cryogenic liquid without

(continued page 00043)

0043	
01:	substantial evaporation of the cryogenic liquid and

02:	condensation or ice on the exterior, that requires a
03:	vacuum, and if enough molecules enter the vacuum
04:	space, there's no longer a vacuum and that vacuum
05:	insulation no longer exists.
06:	Q. Why would the presence of gas molecules
07:	cause there to not be a vacuum?
08:	A. The definition of a vacuum is the absence
09:	of stuff. So those molecules, when they enter
10:	you know, if they fill up the vacuum space, it's no
11:	longer a vacuum.

Page 00049

Defense Obje	ections Inadmissible other occurrence evidence not
previously i	ruled on; not substantially similar; FRE 403/802/803:
13:	Q. And how did you determine that the sieve
14:	material had released molecules?
15:	A. Because the pressure in the vacuum space
16:	increased above ambient.
17:	Q. Could anything else have caused the
18:	increase in pressure other than a release of
19:	molecules from the sieve?
20:	A. If liquid nitrogen had entered the vacuum
21:	space, it could cause the pressure to increase above
22:	ambient.
23:	Q. How would that occur?
24:	MR. SMITH: Incomplete hypothetical.
25:	A. In its liquid form, it is much more dense

(continued page 00050)

0050	
01:	than in its gaseous perform. So when it enters the
02:	vacuum space, it is no longer insulated from ambient
03:	temperatures. It will evaporate at a higher rate
04:	and its volume dramatically increases, thus
05:	dramatically increasing its pressure, thus it

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 25 of 45

```
06:
                could -- that pressure could increase to a pressure
07:
                above ambient pressure.
```

Page 00056

23:	Q.	How is the vacuum space sealed on an MVE
24:	808?	
25:	Α.	Well, the

(continued :	page 00057)
0057	
01:	MR. SMITH: Let me just object. Vague and
02:	overbroad. Go ahead.
03:	A. The the weld seams where the heads and
04:	shelves and neck are welded together are a sealing
05:	point, as is the evacuation port where the vacuum
06:	space is evacuated to create the vacuum is sealed
07:	with a plug with O-rings.
08:	Q. Other than at the evacuation port, is the
09:	vacuum space sealed by a weld?
10:	A. Other than at the evacuation port, yes, all
11:	of the other welds make all the other seals in the
12:	system.
13:	Q. And what material is used to form a weld?
14:	A. Typically it's a 308 stainless steel
15:	material. That is what is commonly used when
16:	welding 304 stainless.
17:	Q. Is it machine-welded or hand-welded?
18:	A. The 808 specifically?
19:	Q. Correct.
20:	A. To my knowledge, it's all hand-welded.

13:	Q. Are there quality assurance measures in
14: place	e to ensure the welds are done properly?

15:	A. Yes.
16:	Q. What are those measures?
17:	A. There is a visual inspection for the
18:	cosmetic appearance, and the heated mass
19:	spectrometer test is done to identify any ingress
20:	points that would need to be corrected before it is
21:	evacuated.
22:	Q. Are the quality assurance measures applied
23:	for every single tank?
24:	A. Yes.
25:	Q. So I think you had identified a visual

(continued page 00062)

0062	
01:	inspection and the mass spec test. Are there any
02:	others?
03:	A. For welding?
04:	Q. Correct.
05:	A. Those are the tests that you know, the
06:	inspections that are done prior to evacuation.
07:	After evacuation, there is a warm vacuum check that
08:	is done to measure the vacuum, which is another
09:	indicator that any ingress points larger than what
10:	mass spec is looking for do not exist after it has
11:	been evacuated and sealed off.
12:	Q. What is a warm vacuum check?
13:	A. It's simply measuring the vacuum pressure
14:	in the vacuum space of the individual unit after it
15:	has been evacuated on by the main vacuum
16:	manifold.
17:	Q. It's checking the pressure within the
18:	vacuum space?

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 27 of 45

19:	A. Yes.
20:	Q. How does it do that?
21:	A. There is a fixture that attaches to the
22:	evacuation port of the individual unit, and it has
23:	an operator that can remove the plug that seals the
24:	vacuum port. And on the other end of it, it has an
25:	evacuation port identical to the one that's on the

(continued page 00063)

(60	ntinued page 00063)
	0063
01:	unit that will allow that the volume of that
02:	fixture to be evacuated.
03:	There is a gauge port for measuring the
04:	vacuum pressure inside that volume attached to it,
05:	and they attach it to the unit, evacuate that
06:	volume, seal off the port at the evacuation port
07:	of the fixture at that end, and then open the plug
08:	to the vacuum space of the unit so that the volume
09:	of the fixture is at the same pressure as the volume
10:	of the vacuum space for the unit, and read that
11:	pressure. Once that pressure is read, they seal off
12:	the vacuum space for the unit and remove that
13:	fixture.
14:	Q. So prior to evacuation, the quality
15:	assurance measures for the welds would be a visual
16:	inspection and the mass spec test, and then after
17:	the vacuum is evacuated, it would be the warm vacuum
18:	check?
19:	A. Yes.

22:	Q. Okay. And what quality assurance is there
23:	completed for the tank overall?

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 28 of 45

24:	A. There is, again, a visual inspection for
25: cle	anliness and to make sure that all required

(continued page 00064)

0064	page occurry
01:	components are installed, and then there's a
02:	complete function test on all units that have an
03:	autofill system installed.
04:	Q. So a visual inspection and then a complete
05:	function test for the units with autofill?
06:	A. Yes.
07:	Q. Anything else?
08:	A. There is a normal evaporation test that is
09:	done on a on a on a sample basis. It is
10:	not not all units get that test. It's a sample
11:	inspection.
12:	Q. How many units get the NER test?
13:	A. One per model per month.
14:	Q. And how is that tank selected?
15:	A. Typically it would be the first a unit
16:	from the first work order of a particular model
17:	built each month chosen at random from that from
18:	that batch.
19:	Q. So for the tank, overall, the quality
20:	assurance measures are visual inspection, the
21:	complete function test for those units with
22:	autofill, and the NER test on a sample basis?
23:	A. Yes.

01:	Q. And how is the NER test done?
02:	A. They would fill it with liquid nitrogen to
03:	a level prescribed by the work instruction. I

04:	don't I couldn't quote that value off the top of
05:	my head. I know the general process. And then it
06:	would be set aside and allowed to cool down the mass
07:	of the inner container to reach a state of thermal
08:	equilibrium.
09:	It would then they would then take a
10:	weight with a scale recording the date and time and
11:	the weight, and then they would set it aside again
12:	for a prescribed amount of time prescribed by the
13:	work instruction, at which point a second weight
14:	would be taken and recording the weight, date and
15:	time. And those values would be used to calculate
16:	an evaporation rate in liters per day. That number
17:	would be compared to the allowable value that's in
18:	the work instruction as a pass/fail criteria.

Page 00065

21:	Q. For the three quality assurance measures
22:	you identified for the welds, are those done for
23:	every single tank?
24:	A. Yes.
25:	Q. And is the material used for the welds on

(continued page 00066)

	0066	
01:	the	MVE 808 supplied from the same supplier for all
02:	MVE	808s?
03:		A. Yes.

08: Q. Are you aware of weld failures occurring on
09: Chart tanks?
10: MR. SMITH: Vague.
11: A. What do you mean by "weld failure"?

12:	BY MS. ZEMAN:
13:	Q. The weld failing to seal.
14:	A. I am aware that on occasion welds do fail
15:	to seal, but those failures to seal would be
16:	normally detected by the mass spec process and would
17:	be corrected before evacuation. Any that weren't
18:	found in the mass spec process should be indicated
19:	by an elevated pressure at the warm vacuum test,
20:	which would cause it to be rerouted back into
21:	production to to locate any ingress points that
22:	are you know, that have gone above what the mass
23:	spec test is looking for and, again, correct it, and
24:	it would go back through evacuation.
25:	Q. Are you aware of any weld failures being

(continued page 00068)

,	
00	068
01:	detected in the field?
02:	A. I can't say that I do, no.
03:	Q. Are you aware of any instance where a crack
04:	has been detected in a weld on a Chart stainless
05:	steel freezer?
06:	A. I can't say that I recall hearing of that.

rage 0007	•
10:	Does Chart recommend that its stainless
11:	steel freezers be fully thawed at any point?
12:	A. Yes.
13:	Q. Where does Chart recommend that?
14:	A. It is I believe it is in the technical
15:	manual. I do not know if it is in any other
16:	document, but I believe it is in the technical
17:	manual.

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 31 of 45

18:	Q. And what are the circumstances under which
19:	Chart recommends a tank be thawed?
20:	MR. SMITH: Vague. Best evidence.
21:	A. It is recommended that it be taken out of
22:	service and warmed up to get all of the moisture out
23:	of it at some interval. I do not recall what that
24:	interval is at this point. But ice does accumulate
25:	inside of a freezer over time, and it should be

(continued page 00071)

	(Concinced)	page 00071)
	0071	
	01:	taken out of service at some interval to remove that
	02:	moisture from the container.
	03:	BY MS. ZEMAN:
	04:	Q. And is the expectation that the freezer
	05:	would be put back in service after doing this thaw?
1	06:	A. Yes.

06:	Q. How is the vacuum drawn on an MVE 808?
07:	A. There is a manifold, which is a long pipe,
08:	that is evacuated by a vacuum pump, and that pipe
09:	has ports along its length with valves to seal those
10:	ports off. A hose is connected between the
11:	those a valve at the port to the evacuation port
12:	on the individual unit, and the valve at the port on
13:	the manifold is opened to allow gas to be drawn from
14:	the vacuum space of the individual unit to evacuate
15:	it.
16:	Q. And how is the plug put in place?
17:	A. There's a fixture, cylindrical fixture,
18:	with a pipe coming out the side that the hose is
19:	connected to. There is a plunger that is threaded

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 32 of 45

20:	at one end to fit the threads in the center of the
21:	plug, and that that plunger has a T handle at the
22:	top. And before the fixture is attached to the
23:	unit, the plunger is threaded into the plug, and the
24:	plug is retracted back up into the fixture, and the
25:	fixture is placed on the evacuation port on the

(continued page 00076)

(COIICIIIdea	page 00076)
0076	
01:	freezer.
02:	Once the once the evacuation is
03:	complete, that plunger is used to push the plug down
04:	into the body of the evacuation port, and it's
05:	threaded back out of the plug and the fixture
06:	removed from the unit.
07:	Q. How do you know the evacuation is complete?
08:	A. The pressure of the complete manifold is
09:	monitored throughout the evacuation process. And
10:	when the vacuum pressure in the manifold drops below
11:	a value prescribed in the work instruction, then it
12:	is assumed that all of the units connected to the
13:	manifold have been evacuated below that vacuum
14:	pressure as well, and they are then sealed off, and
15:	they go to the warm vacuum check station to confirm
16:	the vacuum level in the individual unit.

13:	Q. And when is the getter placed inside the
14:	unit in relation to drawing the vacuum?
15:	A. It is installed during the assembly
16:	process. The sieve is attached, you know is
17:	either in that depression, in the case of the 808,
18:	or in other freezers. It's there's a pan for

19:	that. But that is part of the inner vessel
20:	assembly. It is attached, and the sieve is put in
21:	place before the multi-layer insulation wrap is
22:	applied.
Plaintiffs	Objections 602 speculation:
23:	So I don't know how to place that relative
24:	to the evacuation, but that's probably about halfway
25:	through the assembly process prior to evacuation.

Page 00078

rage 00070	
21:	Q. The depression that the sieve material sits
22:	in, is that depression in the inner vessel or the
23:	outer vessel?
24:	A. It is the inner vessel. The sieve needs to
25:	get cold to absorb as much material as it can. The

(continued page 00079)

0079	
01:	sieve would be ineffective attached to the outer.
02:	Q. The sieve is not in the inner vessel in the
03:	sense of being exposed to liquid nitrogen when the
04:	tank is in use, correct?
05:	A. Correct, it is not in the inner vessel. It
06:	is on the vacuum side of the inner vessel.
07:	Q. And is the stainless steel sheet that you
08:	referred to tacked to the bottom of the inner
09:	vessel?
10:	A. Yes.

19:	Q. What is an annular line?
20:	A. Well, it is line that passes through the
21:	vacuum space, generally speaking. It is called an
22:	annular line because the vacuum space is technically

23:	referred to as the anulus.
24:	Q. What is the purpose of those two annular
25:	lines?

(contin	nued page 00095)
0095	
01:	A. One is to allow a pressure reading to
02:	measure the level of liquid nitrogen in the freezer.
03:	The other is used for introducing more liquid
04:	nitrogen into the freezer for filling.
05:	Q. So one is a fill line and the other one is
06:	a level reading line?
07:	A. Level sensor line.
08:	Q. Level sensor line. How does the level
09:	sensor line function?
10:	MR. SMITH: Asked and answered.
11:	A. The weight of the liquid nitrogen above the
12:	port in the freezer has a pressure associated with
13:	it that is greater than ambient pressure,
14:	differential pressure. That the top end of that
15:	tube is connected through the plumbing to the
16:	differential pressure sensor inside the controller,
17:	and it monitors that pressure and calculates the
18:	liquid level in the freezer based on that pressure,
19:	and displays it, and also uses it to determine when
20:	it needs to fill initiate a fill and to end a
21:	fill.
22:	Q. Did you say that the level it calculates is
23:	displayed on the controller?
24:	A. Yes.
25:	Q. Does the level calculated always match the

0096	
01:	actual liquid nitrogen level in the tank?
02:	MR. SMITH: Incomplete hypothetical.
03:	A. Well, it is difficult to physically measure
04:	the level that's actually in the freezer. So, you
05:	know, we provide a level measurement stick to be
06:	used to take a manual measurement. Everyone reads
07:	that measurement differently because it causes the
08:	liquid to boil when you put the stick in it, which
09:	causes the frost line to be above the actual liquid
10:	level in the freezer. And everyone that I have ever
11:	seen use that method to measure interprets that
12:	level differently. Some add, some subtract to the
13:	frost line.
14:	So it can be made to agree exactly with an
15:	individual's measurement with the measuring stick.
16:	But the next person that throws the measuring stick
17:	in there might read that stick differently and
18:	decide that what's on the display doesn't agree with
19:	it.

Page 00103

21:	Q. When the tank is filled through the annular
22:	fill line, does that line expand or contract as the
23:	liquid nitrogen goes through it?
24:	A. When it's cooled, it will contract.
25:	Q. Is that to say that when liquid nitrogen

(continued page 00104)

(COLLCELLACA)	page tololy
0104	
01:	first starts to go through the fill line, the line
02:	would contract?
03:	A. As it is cooled, it will contract. It will

04:	not initially come down to liquid nitrogen
05:	temperature when you first start flowing liquid
06:	nitrogen through it. There's a time delay before
07:	the material actually begins to cool down. But once
08:	it does begin to cool down, it will contract.
09:	BY MS. ZEMAN:
10:	Q. Prior to a fill, would the annular fill
11:	line be at ambient temperature?
12:	A. On the initial fill it would. On
13:	subsequent fills, the top end where it enters the
14:	head would be near ambient temperature. The bottom
15:	end of the tube where it enters the inner vessel
16:	would be near liquid nitrogen temperature.
17:	Q. And in either instance, as you started to
18:	fill, it would begin to cool as liquid nitrogen runs
19:	through the tube?
20:	MR. SMITH: Vague. Asked and answered.
21:	A. It would.
22:	BY MS. ZEMAN:
23:	Q. And would that process where that annular
24:	line is contracting as it cools, would that put any
25:	stress on the weld line at the inner vessel?

(continued page 00105)

0105	
01:	MR. SMITH: Outside the scope. Calls for
02:	expert opinion. Incomplete hypothetical.
03:	A. From my perspective, yes, it would
04:	introduce stress, but the material is capable of
05:	handling an amount of stress. I don't know the
06:	value off the top of my head. But that stress would
07:	not come anywhere near enough stress to deform the

08:	material.
09:	Q. Has any testing been done to evaluate the
10:	stress put on the weld?
11:	A. No.
12:	Q. By Chart or by MVE?
13:	A. Not to my knowledge.
14:	Q. Do you know why no testing has been done?
15:	A. It was not believed that it was necessary.
16:	Q. At what angle does the fill line enter the
17:	inner vessel?
18:	A. The fill line itself is vertical. It makes
19:	a 90-degree turn in the elbow. And the elbow, you
20:	know, the liquid enters horizontally into the inner
21:	vessel.
22:	Q. And does the sensor line connect with the
23:	90-degree elbow?
24:	A. Yes.
25:	Q. Is it the same elbow construction?

(continued page 00106)

0106	
01:	A. It is the same part number. It is the same
02:	elbow.

Page 00107

24:	Q. Well, what would you where does Chart
25:	manufacture stainless steel freezers?

(continued page 00108)

0108	
01:	A. Ball Ground, Georgia.

11:	Q.	Is the MVE 808 manufactured in Ball Ground?
12:	Α.	It is.

13:	Q.	How long has it been manufactured there?
14:	A.	Sometime in the mid-'90s. Previously, MVE

Page 00110

07:	Q. What is the expected service life for the
08:	MVE 808?
09:	A. I believe it's ten years.
10:	Q. Do you know how that was determined?
11:	A. I do not.
12:	Q. Do you know what tests or other analysis
13:	was done to identify ten years?
14:	A. I do not.
15:	Q. What does expected service life mean?
16:	A. It means that it would it should perform
17:	similar to new for that period of time.

Page 00113

22:	Q.	Does failure mode effects and effects
23:	analysis	sound familiar?
24:	Α.	Yeah, that's it.
25:	Q.	That's what FMEA analysis is?

(continued page 00114)

0114	
01:	A. Yeah.
02:	Q. And is that the same thing as risk
03:	analysis?
04:	MR. SMITH: Vague.
05:	A. It is similar. The analysis that we did
06:	for regulatory compliance was a risk analysis and
07:	but the label on it is the FMEA.
08:	(Plaintiffs' Exhibit 159 marked.)
09:	BY MS. ZEMAN:
10:	Q. And I am going to hand you a document

11:	that's been marked as Exhibit 159. If you could
12:	take a look at that.
13:	A. Okay.
14:	Q. Mr. Brooks, do you recognize what this
15:	document is?
16:	A. I do.
17:	Q. What is this?
18:	A. It is the DFMECA analysis for Chart's
19:	cryogenic freezers.
20:	Q. And what is DFMECA analysis?
21:	A. Design failure mode I can't remember
22:	what all of the letters stand for. Maybe it's in
23:	here somewhere.
24:	Q. Is it failure modes and effects criticality
25:	analysis?

(continued page 00115)

0115	
01:	A. Yeah, that sounds right.
02:	Q. And what is this used for at Chart?
03:	A. It is required for compliance to the
04:	European Medical Device Directive, and the intent is
05:	to look at all of the characteristics and features
06:	of a product and make some assumptions about what
07:	types of malfunctions could occur, and grade them
08:	for frequency of occurrence, severity of occurrence,
09:	and the risk involved.

23:	Q. Does any failure mode in this dewar section
24:	involve the release of absorbed molecules from the
25:	molecular sieve?

(continued	page	00129)
0129		

0129	
01:	A. Well, whenever whenever the inner vessel
02:	warms up, molecules will be released from the sieve.
03:	So if if, as a result of any of those modes, the
04:	inner vessel were to warm up, then it would release
05:	molecules from the sieve.
06:	Q. Is that identified, though, in this DFMECA
07:	document?
08:	A. I would have to read through it to
09:	determine that. DEW-12, dewar sieve.
10:	Q. That failure mode refers to the sieve
11:	becoming saturated, correct?
12:	A. Correct.
13:	Q. Where does it refer to the sieve releasing
14:	molecules?
15:	A. It doesn't specifically, but once it is
16:	saturated, and there's a vacuum failure, then it
17:	would warm up and potentially release molecules from
18:	the sieve.
19:	Q. Why do you say "potentially"?
20:	A. Well, I mean, all of this is really the
21:	group speculating what could happen. And, yeah, if
22:	the sieve is indeed saturated, holding all of the
23:	molecules that it can hold, then any warmup of the
24:	sieve would release it doesn't say it
25:	specifically there, but that's the only line item

(continued page 00130)

	, ,
0130	
that I	saw that referred to the sieve.
ciiac i	saw that referred to the sieve.

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 41 of 45

02:	Q. What would you need to know to determine
03:	how quickly 14 inches of liquid nitrogen would burn
04:	off of an MVE 808?
05:	MR. SMITH: Outside the scope. Calls for
06:	speculation. Incomplete hypothetical.
07:	A. If I knew the actual evaporation rate test
08:	result and the and I knew that the freezer was
09:	left undisturbed, an estimate an estimation could
10:	be made using that consumption rate, evaporation
11:	rate, and the estimate of the actual level in the
12:	freezer. All of our tests are done static with
13:	nobody disturbing the freezer in any way and with
14:	with nothing stored in the freezer.
15:	So, you know, to be as accurate as possible
16:	would have to have an evaporation test done with
17:	some you know, whatever they're storing stored
18:	in the freezer so that the impact of that on the
19:	consumption rate would be known.
20:	So, you know, the original test value from
21:	the production test would not apply to a freezer
22:	that has something stored in it because that
23:	inventory and the inventory system it's stored in
24:	has an impact on the consumption rate.

Page 00138

rage ourse	
11:	Q. Does Chart recommend that end users monitor
12:	liquid nitrogen usage?
13:	A. They do recommend that they monitor the
14:	usage that is calculated and displayed by the
15:	controller.

Page 00139

19: Q. What are the signs of vacuum failure on a

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 42 of 45

20:	cryogenic tank?
21:	MR. SMITH: Overbroad. Outside the scope.
22:	A. Increased consumption can be an indicator
23:	of vacuum degradation. Condensation or frost on the
24:	outside surface of a freezer where it normally would
25:	not occur can be an indication of vacuum

(continued page 00140)

(COLLC ILLUCA	page outio,
0140	
01:	degradation. Those are the main things that come to
02:	mind.
03:	Q. So increased consumption of liquid
04:	nitrogen, condensation and frost?
05:	A. Yes.
06:	Q. Why would frost occur?
07:	A. When the insulation system degrades, then
08:	heat transfer allows the outside surface to be
09:	cooled by the liquid that is inside, and that can
10:	become cool enough to cause frost to accumulate if
11:	there is moisture in the air.

14:	Q. At the bottom of this email from Ramon
15:	it's on the next page
16:	A. Uh-huh.
17:	Q last paragraph says, "We should plan to
18:	take action immediately as we have just experienced
19:	another 10 or so controllers that failed because the
20:	SN is showing '0.'"
21:	Do you see that?
22:	A. I see that.
23:	Q. Okay. Chart did not take action
24:	immediately, correct?

25: MR. SMITH: Asked and answered.

(continued page 00204)

(COLICILIAEC	page 00204)
0204	
01:	A. They they did not take action on the
02:	hardware implementation.
03:	BY MR. WOLF:
04:	Q. So this was written in February of 2016.
05:	A. Okay.
06:	Q. Did Chart take action immediately with
07:	regard to this issue in any way?
08:	MR. SMITH: Vague.
09:	A. There there may have been you know,
10:	the electronics guys may have looked into
11:	alternative methods, but I can't say what they might
12:	have considered his response to this. I don't know.
13:	BY MR. WOLF:
14:	Q. Okay. As you sit here today speaking for
15:	Chart, can you list for me any actions that Chart
16:	took immediately with regard to this issue from
17:	February 29th, 2016?
18:	A. I couldn't tell you.
19:	Q. Okay. Two paragraphs up from that, Ramon
20:	writes, "We should modify the technical manual to
21:	update the customer to be sure to use shielded
22:	network cables."
23:	Chart did not do that, correct?
24:	A. I cannot answer that. I do not know.
25:	Q. Okay. Let me ask the question differently.

(continued page 00205)

(COLLCILLACA	page cozos,
0205	
01:	You have no knowledge that Chart did that, correct?

02:	A. That is correct.
03:	Q. Okay. And not just about updating the
04:	manual. You have no information that Chart told its
05:	customers, in any way, to be sure to use shielded
06:	network cables for their TEC300s, correct?
07:	A. That's correct.
08:	MR. SMITH: Calls for speculation.
09:	BY MR. WOLF:
10:	Q. He then writes, "We also need to modify our
11:	existing OFAF Master cable and Daisy Chain Kits to
12:	be sure they use shielded cables."
13:	Do you see that?
14:	A. I see that.
15:	Q. Okay. You have no knowledge that Chart did
16:	that, too, right?
17:	A. Correct.
18:	Q. What's an OFAF?
19:	A. One Fill All Fill.
20:	Q. Okay. What is an OFAF Master cable?
21:	A. That is the cable that can connects between
22:	two controllers to enable the One Fill All Fill
23:	system to function.
24:	Q. And what's a Daisy Chain Kit?
25:	A. That is a cable, and basically it's an RJ45

(continued page 00206)

,	I J - · · · - · · /
0206	
01:	network-type cable and a jack splitter, a jack T,
02:	that allows more than one table to be connected to a
03:	single RJ45 modular jack.

Brooks, Jeff - Volume I - 01/23/2020 Filed 05/23/21 Page 45 of 45

16:	Q. Okay. You said you have seen people
17:	manually measure liquid nitrogen in a freezer,
18:	right?
19:	A. Yes.
20:	Q. Okay. And I think what you said is that
21:	some people add or subtract to the ruler's frost
22:	line to get what they believe is the accurate liquid
23:	nitrogen measurements, right?
24:	A. Yes.
25:	Q. Okay. What's the range of how much people

(continued page 00267)

add to and subtract from the ruler's frost line?
MR. SMITH: Calls for wild speculation and
incomplete hypothetical.
MR. WOLF: You know, it actually doesn't
because he's seen it.
MR. SMITH: You said all people.
A. I don't know what the range is. You know,
I've seen people add an inch, add a half inch,
subcontract an inch, subtract a half inch.
BY MR. WOLF:
Q. Okay. In that range.
A. Sure.