### Testing your hypotheses in R!



Brendan Reid Philippines PIRE post-Omics workshop 7/12/22

### A refresher on frequentist statistics

- We have our observed data
  - Response/dependent variable
    - Variable we are interested
    - Usually plotted on y axis
  - Predictor/independent variable(s)
    - Variables that we think might be associated with or have an effect on the response variable
    - Usually plotted on x axis
- There will usually be some correlation between response and predictor
- How often would would we observe a similar relationship between a random predictor variable and our response?



### Types of variables

- Quantitative
  - Continuous or discrete
  - Ordered
- Categorical
  - Binary (true/false or 0/1)
  - Nonimal (unordered)
  - Ordinal (ordered!)



# Statistical tests!



#### Linear regression

- Response/dependent variable and predictor/independent variables are both continuous
- Find the linear model that fits the data best
  - Remember y = mx + b ...
  - $Y = \beta_0 + \beta_1 x + \epsilon$
  - $\beta_0$  is the intercept
  - $\beta_1$  is the coefficient associated with x
  - ε is error



#### Statistical Distributions

#### Arrangement of values of a variable showing their frequency of occurrence





## Fitting a linear regression



#### ANOVA

 Response/independent variable is continuous, predictor/dependent variable is categorical



### Hypotheses

- Null hypothesis
- Alternate hypothesis (or hypotheses)



#### Statistical tests and p-values

- F-statistic: based on difference between means and the variances
- F can be used with degrees of freedom to calculate a p-value (probability of obtaining similar results if the null hypothesis is true)
- Statistical significance:  $p < \alpha$  (usually 0.05)



#### Running linear regression and ANOVA in R

- lm(<formula>,<data>,...)
- Formula syntax = dependent variable ~ independent variable(s)
- Both dependent and independent variables should be columns in a data frame <data>

#### Fitting Linear Models

#### **Description**

1m is used to fit linear models, including multivariate ones. It can be used to carry out regression, single stratum analysis of variance and analysis of covariance (although <u>aov</u> may provide a more convenient interface for these).

#### Usage

```
lm(formula, data, subset, weights, na.action,
method = "qr", model = TRUE, x = FALSE, y = FALSE, qr = TRUE,
singular.ok = TRUE, contrasts = NULL, offset, ...)
```

#### Assumptions and diagnostics

- Assumptions
  - Normality
  - Equal variance among groups
  - Independence
  - Linearity (for regression
- How do we test these assumptions?
  - Q-Q plot

### Plotting regression results

- Scatter plots
- Confidence bands

#### R exercise

#### PSMC data