Lab 1 Report

Kartik Lakhotia (klakhoti@usc.edu)

Code: https://github.com/kartiklakhotia/EE599 klakhoti 9258459798

1. Dense Matrix-Matrix Multiplication

Implemented using rdy/valid protocol. Every multiplier/adder can be fed a new input when rdy == 1 and the output can be read when valid == 1.

The rdy/valid signals for the entire dot product computer are derived from the rdy signal of 0^{th} stage multipliers and valid signal of final stage adder.

For n input multiplication, we need n multipliers.

Adders in
$$r^{th}$$
 stage = $\frac{n}{2^r}$

For k bit inputs, bits needed to represent output = $2k + \log_2 n$ Total # adders = n-1

Clocks required to produce first output = $log_2 n$

Clocks required to multiply two $n \times n$ matrices = $n^2 + \log_2 n$ Input and output matrix values at the end of computation can be seen at the top left of the waveform below.

Inputs:

a.
$$imat1 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix}$$
, $imat2 = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix}$

Output:

2.
$$omat = imat1 * imat2 = \begin{bmatrix} 14 & 20 & 26 & 32 \\ 20 & 30 & 40 & 50 \\ 26 & 40 & 54 & 68 \\ 32 & 50 & 68 & 86 \end{bmatrix}$$

Simulation waveform (18 cycles to do 4×4 matrix multiplication):

Multiplier schematic

Adder Schematic:

Overall schematic (on next page):

SYNTHESIS Results

4×4 Matrix Multiplication

Resource Utilization – 1.2% LUTs utilized Can fit 80 such dot product units

Timing Summary: Minimum Clock period = 2.1 ns

Power Consumption – 0.123 W, dynamic = 0.03 W

8×8 Matrix Multiplication

Resource Utilization – 2.5% LUTs utilized Can fit 40 such dot product computation units

Timing Summary

Minimum Clock period = 2.17 ns

Power Consumption – 0.14 W, dynamic = 0.05 W

16×16 Matrix Multiplication

Resource Utilization – 5.1% LUTs utilized Can fit 19 such dot product computation units

Timing Summary

Minimum Clock period = 2.54 ns

Power Consumption – 0.15 W, dynamic = 0.06 W

 32×32 Matrix Multiplication

Resource Utilization – 10.2% LUTs used Can fit 9 such dot product units

Timing Summary: Minimum clock period = 2.66ns

Power Consumption – 0.184W, dynamic = 0.092W

Summary

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.184 W

Design Power Budget: Not Specified

Power Budget Margin: N/A
Junction Temperature: 27.1°C

Thermal Margin: 72.9°C (6.1 W)

Effective 9JA: 11.5°C/W

Power supplied to off-chip devices: 0 W
Confidence level: Low

Launch Power Constraint Advisor to find and fix

invalid switching activity

2. Odd-Even Transposition Sort

Simulation Results:

Input array is arr[], where arr[i] = 16 - i

Output array is opReg[] in which the elements are sorted in increasing order.

Number of clocks used to sort 16-elements = 16

Schematic:

Comparator

Full Design:

SYNTHESIS RESULTS:

16 – element Sorter

Resource Utilization – 2.26% of LUTs used

Name 1	Slice LUTs	Slice Registers	Bonded	BUFGCTRL
	(14400)	(28800)	IOB (54)	(32)
> N sort	326	137	262	1
Name ^1	Slice LUTs	Slice Registers	Bonded	BUFGCTRL
	(14400)	(28800)	IOB (54)	(32)
> N sort	2.26%	0.48%	485.19%	3.13%

Timing Summary: Minimum clock period = 4.2 ns

Clock Name	Period (ns)	Rise At (ns)	Fall At	(ns) A	dd Clock	Source Objects	Sour	ce File
clk	2.000	0.000	1	.000		[get_ports clk]	<un:< td=""><td>saved c</td></un:<>	saved c
ick to create a	Create Cloc	k constraint						
g Summary								
		Hold			Pulse Widt	th		
gative Slack (WNS):	-2.200 ns	Worst Hold Slack (W	/HS):	0.176 ns	Worst Pu	ulse Width Slack (WPWS):		0.408 ns
gative Slack (TNS):	-262.828 ns	Total Hold Slack (TH	IS):	0.000 ns	Total Pu	lse Width Negative Slack ((TPWS):	0.000 ns
of Failing Endpoints:	258	Number of Failing E	ndpoints:	0	Number	of Failing Endpoints:		0
	clk ick to create a g Summary gative Slack (WNS): gative Slack (TNS):	clk 2.000 ick to create a Create Cloc ing Summary gative Slack (WNS): -2.200 ns gative Slack (TNS): -262.828 ns	clk 2.000 0.000 ick to create a Create Clock constraint g Summary Hold gative Slack (WNS): -2.200 ns Worst Hold Slack (Waster of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack (Theorem of Slack (TNS): -262.828 ns Total Hold Slack	clk 2.000 0.000 1 ick to create a Create Clock constraint g Summary Hold gative Slack (WNS): -2.200 ns Worst Hold Slack (WHS): gative Slack (TNS): -262.828 ns Total Hold Slack (THS):	Clk 2.000 0.000 1.000	Clk 2.000 0.000 1.000	clk 2.000 0.000 1.000 [get_ports clk] ick to create a Create Clock constraint ing Summary Hold Pulse Width gative Slack (WNS): -2.200 ns Worst Hold Slack (WHS): 0.176 ns Worst Pulse Width Slack (WPWS): Total Pulse Width Negative Slack (WPWS):	clk 2.000 0.000 1.000 [get_ports clk] <unstable a="" clock="" constraint<="" create="" th="" to=""> ing Summary Hold Pulse Width gative Slack (WNS): -2.200 ns Worst Hold Slack (WHS): 0.176 ns Worst Pulse Width Slack (WPWS): gative Slack (TNS): -262.828 ns Total Hold Slack (THS): 0.000 ns Total Pulse Width Negative Slack (TPWS):</unstable>

Power Consumption: 0.251 W, dynamic power = 0.16 W

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power: 0.251 W **Design Power Budget:** Not Specified Power Budget Margin: N/A Junction Temperature: 27.9°C Thermal Margin: 72.1°C (6.0 W) Effective 9JA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: Low Launch Power Constraint Advisor to find and fix invalid switching activity

32 – element sorter

Resource Utilization – 4.3% LUTs used

Name 1	Slice LUTs	Slice Registers	Bonded	BUFGCTRL
	(14400)	(28800)	IOB (54)	(32)
> N sort	615	264	518	1
Name ^1	Slice LUTs	Slice Registers	Bonded	BUFGCTRL
	(14400)	(28800)	IOB (54)	(32)
> N sort	4.27%	0.92%	959.26%	3.13%

Timing Summary: Minimum clock period = 4.3ns

	0	- /				-					
Position	Clock Name F	Period (ns)	Rise At (n	s) Fall At (ns)	Add Clock	Source Ob	ojects	Source File	Scoped Cell	Current	Instance
1	clk	4.200	0.0	00 2.100		[get_ports	s clk]	<unsaved co<="" td=""><td></td><td></td><td></td></unsaved>			
Double cl	lick to create a C	reate Clock	constraint								
esign Ti	ming Summary										
Setup			Н	old			Pulse	Width			
Worst	: Negative Slack (\	WNS): -0.04	14 ns	Worst Hold Slack	k (WHS):	0.136 ns	Wo	orst Pulse Widt	th Slack (WPWS	i):	1.600 n
Total	Negative Slack (T	NS): -1.52	21 ns	Total Hold Slack (THS):		0.000 ns	Total Pulse Width Negative Slack (TPWS)		k (TPWS):	0.000 n	
Numb	er of Failing Endp	oints: 240		Number of Failin	g Endpoints:	0	Nu	mber of Failin	g Endpoints:		0
Total	Number of Endpo	ints: 528		Total Number of	Endpoints:	528	To	tal Number of	Endpoints:		265
Timing c	onstraints are i	not met.									

Power Consumption: 0.47W, dynamic = 0.37W

Summary

vectorless analysis. Note: these early estimates can change after implementation.

Total On-Chip Power:

Design Power Budget:

Not Specified

Power Budget Margin:

N/A

Junction Temperature:

30.4°C

Thermal Margin:

69.6°C (5.8 W)

Power estimation from Synthesized netlist. Activity

derived from constraints files, simulation files or

Effective 9JA: 11.5°C/W
Power supplied to off-chip devices: 0 W

Confidence level:

<u>Launch Power Constraint Advisor</u> to find and fix invalid switching activity

64 – element Sorter

Resource Utilization - 9.9% LUTs used

Name ^1	Slice LUTs	Slice Registers	Bonded	BUFGCTRL
	(14400)	(28800)	IOB (54)	(32)
N sort	1419	539	1030	1
Name 1	Slice LUTs	Slice Registers	Bonded	BUFGCTRL
	(14400)	(28800)	IOB (54)	(32)
N sort	9.85%	1.87%	1907.41%	3.13%

Timing Summary: Minimum clock period = 4.3 ns

Setup		н	old		Pulse \	Width		
Worst Negative Slack (WNS): -0.216 ns Total Negative Slack (TNS): -98.846 ns Number of Failing Endpoints: 496 Total Number of Endpoints: 1078 Timing constraints are not met.		-98.846 ns 496 1078	Worst Hold Slack (Total Hold Slack (Number of Failing Total Number of E	THS): 0.000 Endpoints: 0	ns Tota Num			0.000 ns 0.000 ns 0 540
Position	Clock Name	Period (ns)	Rise At (ns)	Fall At (ns)	Add Clock	Source Objects	Source	File
1	clk	4.000	0.000	2.000		[get_ports clk]	≺unsa	ved co

Power Consumption: 0.76 W, dynamic = 0.66 W

Power estimation from Synthesized netlist. Activity derived from constraints files, simulation files or vectorless analysis. Note: these early estimates can change after implementation.

0.759 W Total On-Chip Power: **Design Power Budget: Not Specified** Power Budget Margin: N/A Junction Temperature: 33.7°C Thermal Margin: 66.3°C (5.5 W) Effective 8JA: 11.5°C/W Power supplied to off-chip devices: 0 W Confidence level: Launch Power Constraint Advisor to find and fix invalid switching activity

