## 平成18年度

## 大学院博士前期課程(修士)入学試験問題

工業熱力学

注意事項:解答用紙に指示してある問題番号,解答の仕方にしたがって記入すること.

岡山大学大学院自然科学研究科 機械システム工学専攻(機械系)

## 工業熱力学

【1】閉じた系において、質量mの理想気体が状態1から状態2まで変化するとき、可逆断熱変化とはならず、ポリトロープ指数(定数)をnとして、

 $P_1V_1^n = P_2V_2^n = -$ 定

と表されることが多い. ただし、ガス定数をR、比熱比を $\kappa$ 、状態1 における圧力、温度、容積は $P_1$ 、 $T_1$ 、 $V_1$ 、状態2 における圧力、温度、容積は $P_2$ 、 $T_2$ 、 $V_2$  として、以下の問いに、与えられた記号を使用して答えよ.

- (1) ポリトロープ変化は多方向変化とも呼ばれる. P-V線図上に,可逆断熱変化,等温変化,定圧変化,定容変化をする場合の過程をnの値とともに概略的に示せ.
- (2) 状態1から状態2までポリトロープ変化をするとき,この系が,外部に対してなす仕事および外部から得る熱量を,温度を用いて表せ.
- (3) ポリトロープ変化をするときの平均比熱を求めよ.
- 【2】ある理想気体が、状態 1 から可逆断熱圧縮されて状態 2 になり、状態 2 から等温膨張して状態 3 になる.状態 3 から状態 4 まで可逆断熱膨張し、その後、熱を放出しながら定容変化をして状態 1 まで戻る.以上のような熱機関サイクルについて、以下の問いに答えよ.ただし、状態 i における圧力、温度、容積はそれぞれ  $P_i$ 、 $T_i$ 、 $V_i$ とし、ガス質量は m、ガス定数は R、比熱比は $\kappa$ 、圧縮比 $\varepsilon=V_1/V_2$ 、容積比 $\varphi=V_3/V_2$ とする.
  - (1) P-V線図, T-S線図および T-V線図を描け.
  - (2) それぞれの状態変化において、系に出入りする熱量を求めよ、
  - (3) 理論熱効率 η εε, φ, κで表せ.
  - (4) それぞれの状態変化におけるエントロピー変化を m, R, φを用いて表せ.

- 【3】下図に示すようなランキンサイクル( $1\rightarrow 2\rightarrow 3\rightarrow 4\rightarrow 5\rightarrow 1$ )において、状態 1 における過熱蒸気の圧力  $P_1$ , 温度  $T_1$ , 比エンタルピー $h_1$ , 比エントロピー $s_1$ , 状態 4 における圧縮液の圧力  $P_4$ , 温度  $T_4$ , 比エンタルピー $h_4$ , 比エントロピー $s_4$  は既知である. 圧力  $P_1$  および  $P_2$  における飽和液および乾き飽和蒸気の比容積, 比エンタルピー, 比エントロピーを表 1 のように表す. 図 1 は装置図を、図 2 は T-s 線図をそれぞれ示している. 図中の破線は飽和限界線を表している. 以下の問いに答えよ.
  - (1) タービン出口(状態2)における乾き度x。を求めよ.
  - (2) タービン出口(状態 2) における比エンタルピー $h_2$ を求めよ.
  - (3) タービンにおいて動作流体が外部にする単位質量あたりの仕事 wt を求めよ.
  - (4) このランキンサイクルの理論熱効率 $\eta_{th}$ を求めよ.
  - (5) タービン出口(状態2)における乾き度  $x_2$ =0.9, 圧力  $P_2$ における蒸発熱がボイラおよび過熱器において供給される熱量の2分の1であったとすると,このときのランキンサイクルの理論熱効率を算出せよ.

比エンタルピー 比エントロピー 圧力 比容積 (乾き飽和蒸気) (飽和液) (乾き飽和蒸気) (飽和液) (乾き飽和蒸気) (飽和液)  $P_1$  $v_1'$  $v_1''$  $h_1'$  $h_1''$  $s_1'$  $S_1''$  $P_2$  $v_2'$ v2.  $h_2'$  $h_2''$  $s_2'$ sz

表 1 圧力基準飽和蒸気表



図 1