Physics of Semiconductor Devices

Lecture 9

Achintya Dhar

Department of Physics

Email-id: achintya.dhar@gmail.com

pn junctions

pn junctions are found in:

diodes

solar cells

LEDs

isolation

JFETs

bipolar transistors

MOSFETs

solid state lasers

7.3 I REVERSE APPLIED BIAS

$$V_{\text{total}} = V_{bi} + V_{R}$$

Figure 7.8 | A pn junction, with an applied reverse-biased voltage, showing the directions of the electric field induced by V_R and the space charge electric field.

$$W = \left\{ \frac{2\epsilon_s(V_{bi} + V_R)}{e} \left[\frac{N_a + N_d}{N_a N_d} \right] \right\}^{1/2}$$

$$\mathbf{E}_{\max} = -\left\{\frac{2e(V_{bi} + V_R)}{\epsilon_s} \left(\frac{N_a N_d}{N_a + N_d}\right)\right\}^{1/2}$$

$$E_{\text{max}} = \frac{-2(V_{bi} + V_R)}{W}$$

7.3.2 Junction Capacitance

$$C' = \frac{dQ'}{dV_R}$$

$$dQ' = eN_d dx_n = eN_a dx_p$$

For the total potential barrier, Equation (7.28) may be written as

$$x_n = \left\{ \frac{2\epsilon_s (V_{bi} + V_R)}{e} \left[\frac{N_a}{N_d} \right] \left[\frac{1}{N_a + N_d} \right] \right\}^{1/2}$$
 (7.40)

The junction capacitance can be written as

$$C' = \frac{dQ'}{dV_R} = eN_d \frac{dx_n}{dV_R} \tag{7.41}$$

so that

$$C' = \left\{ \frac{e\epsilon_s N_a N_d}{2(V_{bi} + V_R)(N_a + N_d)} \right\}^{1/2}$$
 (7.42)

in the reverse-biased voltage dV_R will uncover additional positive charges in the n region and additional negative charges in the p region. The junction capacitance is defined as

$$C' = \frac{dQ'}{dV_R} \tag{7.38}$$

where

$$dQ' = eN_d dx_n = eN_a dx_p (7.39)$$

The differential charge dQ' is in units of C/cm² so that the capacitance C' is in units of farads per square centimeter F/cm²), or capacitance per unit area.

For the total potential barrier, Equation (7.28) may be written as

$$x_n = \left\{ \frac{2\epsilon_s (V_{bi} + V_R)}{e} \left[\frac{N_a}{N_d} \right] \left[\frac{1}{N_a + N_d} \right] \right\}^{1/2}$$
 (7.40)

The junction capacitance can be written as

$$C' = \frac{dQ'}{dV_R} = eN_d \frac{dx_n}{dV_R} \tag{7.41}$$

so that

$$C' = \left\{ \frac{e\epsilon_s N_a N_d}{2(V_{bi} + V_R)(N_a + N_d)} \right\}^{1/2}$$
 (7.42)

Exactly the same capacitance expression is obtained by considering the space charge region extending into the p region x_p . The junction capacitance is also referred to as the *depletion layer capacitance*.

7.3.3 One-Sided Junctions

Consider a special pn junction called the one-sided junction. If, for example, $N_a \gg N_d$, this junction is referred to as a p⁺n junction. The total space charge width, from Equation (7.34), reduces to

$$W \approx \left\{ \frac{2\epsilon_s (V_{bi} + V_R)}{eN_d} \right\}^{1/2} \tag{7.44}$$

Considering the expressions for x_n and x_p , we have for the p⁺n junction

$$x_n \ll x_n \tag{7.45}$$

and

$$W \approx x_n \tag{7.46}$$

Almost the entire space charge layer extends into the low-doped region of the junction. This effect can be seen in Figure 7.10.

The junction capacitance of the p⁺n junction reduces to

$$C' \approx \left\{ \frac{e\epsilon_s N_d}{2(V_{bi} + V_R)} \right\}^{1/2} \tag{7.47}$$

The depletion layer capacitance of a one-sided junction is a function of the doping concentration in the low-doped region. Equation (7.47) may be manipulated to give

$$\left(\frac{1}{C'}\right)^2 = \frac{2(V_{bi} + V_R)}{e\epsilon_s N_d} \tag{7.48}$$

which shows that the inverse capacitance squared is a linear function of applied reverse-biased voltage.

Figure 7.10 | Space charge density of a one-sided p⁻n junction.

$$\left(\frac{1}{C'}\right)^2 = \frac{2(V_{bi} + V_R)}{e\epsilon_s N_d}$$

Figure 7.11 | $(1/C')^2$ versus V_R of a uniformly doped pn junction.

Figure 7.16 | Impurity concentrations of a pn junction with a nonuniformly doped p region.

Figure 7.17 | Space charge density in a linearly graded pn junction.

Figure 7.18 | Differential change in space charge width with a differential change in reverse-biased voltage for a linearly graded pn junction.

7.4 I JUNCTION BREAKDOWN

Figure 7.12 | (a) Zener breakdown mechanism in a reverse-biased pn junction; (b) avalanche breakdown process in a reverse-biased pn junction.

Figure 7.14 | Critical electric field at breakdown in a onesided junction as a function of impurity doping concentrations. (From Sze and $N_g[14]$.)

The depletion width x_n is given approximately as

$$x_n \approx \left\{ \frac{2\epsilon_s V_R}{e} \cdot \frac{1}{N_d} \right\}^{1/2} \tag{7.60}$$

where V_R is the magnitude of the applied reverse-biased voltage. We have neglected the built-in potential V_{bi} .

If we now define V_R to be the breakdown voltage V_B , the maximum electric field, E_{max} , will be defined as a critical electric field, E_{crit} , at breakdown. Combining Equations (7.59) and (7.60), we may write

$$V_B = \frac{\epsilon_s E_{\text{crit}}^2}{2eN_B} \tag{7.61}$$

where N_B is the semiconductor doping in the low-doped region of the one-sided junction. The critical electric field, plotted in Figure 7.14, is a slight function of doping.

PN Diode I-V Relation

Figure 8.1 | A pn junction and its associated energy-band diagram for (a) zero bias, (b) reverse bias, and (c) forward bias.

8.1.2 Ideal Current-Voltage Relationship

The ideal current-voltage relationship of a pn junction is derived on the basis of four assumptions. (The last assumption has three parts, but each part deals with current.) They are:

- The abrupt depletion layer approximation applies. The space charge regions have abrupt boundaries, and the semiconductor is neutral outside of the depletion region.
- The Maxwell–Boltzmann approximation applies to carrier statistics.
- The concepts of low injection and complete ionization apply.
- 4a. The total current is a constant throughout the entire pn structure.
- 4b. The individual electron and hole currents are continuous functions through the pn structure.
- 4c. The individual electron and hole currents are constant throughout the depletion region.

Table 8.1 | Commonly used terms and notation for this chapter

Term	Meaning
N_a	Acceptor concentration in the p region of the pn junction
N_d	Donor concentration in the n region of the pn junction
$n_{n0}=N_d$	Thermal-equilibrium majority carrier electron concentration in the n region
$p_{p0} = N_a$	Thermal-equilibrium majority carrier hole concentration in the p region
$p_{p0} = N_a$ $n_{p0} = n_i^2 / N_a$	Thermal-equilibrium minority carrier electron concentration in the
2 (2.7	p region
$p_{n0}=n_i^2/N_d$	Thermal-equilibrium minority carrier hole concentration in the n region
n_p	Total minority carrier electron concentration in the p region
p_n	Total minority carrier hole concentration in the n region
$n_p(-x_p)$	Minority carrier electron concentration in the p region at the space charge edge
$p_n(x_n)$	Minority carrier hole concentration in the n region at the space charge edge
$\delta n_p = n_p - n_{p0}$	Excess minority carrier electron concentration in the p region
$\delta p_n = p_n - p_{n0}$	Excess minority carrier hole concentration in the n region

$$V_{bi} = V_t \ln \left(\frac{N_a N_d}{n_i^2} \right) \qquad \frac{n_i^2}{N_a N_d} = \exp \left(\frac{-e V_{bi}}{kT} \right)$$

$$n_{n0} \approx N_d$$

$$n_{p0} \approx \frac{n_i^2}{N_a}$$

$$n_{p0} = n_{n0} \exp\left(\frac{-eV_{bi}}{kT}\right)$$

p
$$n \quad n_{p} = n_{n0} \exp\left(\frac{-e\left(V_{bi} - V_{a}\right)}{kT}\right) = n_{n0} \exp\left(\frac{-eV_{bi}}{kT}\right) \exp\left(\frac{+eV_{a}}{kT}\right)$$

$$E_{c} \qquad e(V_{bi} - V_{a})$$

$$E_{Fi} \qquad E_{Fn} \qquad n_{p} = n_{p0} \exp\left(\frac{eV_{a}}{kT}\right)$$

$$E_{v} \qquad b$$

$$E_{r} \qquad eV_{a} \qquad$$

$$n_p = n_{p0} \exp\left(\frac{eV_a}{kT}\right)$$

Figure 8.4 | Excess minority carrier concentrations at the space charge edges generated by the forward-bias voltage.

$$\frac{d^2(\delta p_n)}{dx^2} - \frac{\delta p_n}{L_p^2} = 0 \qquad (x > x_n)$$

$$\frac{d^2(\delta n_p)}{dx^2} - \frac{\delta n_p}{L_n^2} = 0 \qquad (x < x_p)$$

The boundary conditions for the total minority carrier concentrations are

$$p_n(x_n) = p_{n0} \exp\left(\frac{eV_a}{kT}\right) \tag{8.11a}$$

$$n_p(-x_p) = n_{p0} \exp\left(\frac{eV_a}{kT}\right) \tag{8.11b}$$

$$p_n(x \to +\infty) = p_{n0} \tag{8.11c}$$

$$n_p(x \to -\infty) = n_{p0} \tag{8.11d}$$

The general solution to Equation (8.9) is

$$\delta p_n(x) = p_n(x) - p_{n0} = Ae^{x/L_p} + Be^{-x/L_p} \qquad (x \ge x_n)$$
 (8.12)

and the general solution to Equation (8.10) is

$$\delta n_p(x) = n_p(x) - n_{p0} = Ce^{x/L_n} + De^{-x/L_n} \qquad (x \le -x_p)$$
 (8.13)

concentrations are then found to be, for $(x \ge x_n)$,

$$\delta p_n(x) = p_n(x) - p_{n0} = p_{n0} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right] \exp\left(\frac{x_n - x}{L_p}\right)$$
(8.14)

and, for $(x \leq -x_p)$,

$$\delta n_p(x) = n_p(x) - n_{p0} = n_{p0} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right] \exp\left(\frac{x_p + x}{L_n}\right)$$
(8.15)

Figure 8.5 | Steady-state minority carrier concentrations in a pn junction under forward bias.

$$p = p_o + \delta p = p_o$$

$$E_c$$

$$E_{F_n}$$

$$E_{F_n$$

Figure 8.6 | Quasi-Fermi levels through a forward-biased pn junction.

$$p = p_o + \delta p = n_i \exp\left(\frac{E_{Fi} - E_{Fp}}{kT}\right)$$

$$n = n_o + \delta n = n_i \exp\left(\frac{E_{Fn} - E_{Fi}}{kT}\right)$$

At the space charge edge at $x = x_n$, we can write, for low injection

$$n_o p_n(x_n) = n_o p_{no} \exp\left(\frac{V_a}{V_t}\right) = n_i^2 \exp\left(\frac{V_a}{V_t}\right)$$

$$np = n_i^2 \exp\left(\frac{E_{Fn} - E_{Fp}}{kT}\right)$$

Figure 8.7 | Electron and hole current densities through the space charge region of a pn junction.

$$J_p(x_n) = -eD_p \left. \frac{d(\delta p_n(x))}{dx} \right|_{x=x_n}$$

$$J_p(x_n) = \frac{eD_p p_{n0}}{L_p} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$

$$J_n(-x_p) = eD_n \left. \frac{d(\delta n_p(x))}{dx} \right|_{x=-x_p}$$

$$J_n(-x_p) = \frac{eD_n n_{p0}}{L_n} \left[\exp\left(\frac{eV_a}{kT}\right) - 1 \right]$$

$$J = J_p(x_n) + J_n(-x_p) = \left[\frac{eD_p p_{n0}}{L_p} + \frac{eD_n n_{p0}}{L_n}\right] \left[\exp\left(\frac{eV_a}{kT}\right) - 1\right]$$

Figure 8.8 | Ideal I-V characteristic of a pn junction diode.

Figure 8.10 | Ideal electron and hole current components through a pn junction under forward bias.