1891번 - 사분면

시간 제한	메모리 제한	제출	정답	맞은 사람	정답 비율
2 초	128 MB	232	46	34	22.819%

문제

하나의 좌표평면은 다음과 같이 네 개의 사분면으로 나뉜다.

2	1
3	4

그러면, 각각의 사분면을 다시 사분면으로 나누어 번호를 붙여 보면 어떨까? 예를 들어 1번 사분면의 1번 사분면은 11번 사분면, 3번 사분면의 2번 사분면은 32번 사분면이라고 하면 좋지 않을까? 물론 한 번 더 나눠 볼 수도 있겠다. 3번 사분면의 4번 사분면의 1번 사분면은 341번 사분면이다.

	2			11	
2	<u>,</u>				
32				4	
		341	4		

사분면의 번호 길이가 길어짐에 따라 각각의 사분면의 크기는 급격히 작아지며, 그 개수는 기하급수적으로 증가한다.

사분면에 번호를 붙이는 이러한 규칙을 상정하고서, 어떤 사분면 조각을 이동시켰을 때, 그 조각이 위치하게 되는 사분면의 번호가 궁금하다. 예를 들어, 341번 사분면을 오른쪽으로 두 번, 위쪽으로 한 번 이동시키면 424번 사분면에 온다.

6)			11
	<u>د</u>			
32			424	
		341		

하나의 사분면 조각을 이동시켰을 때, 그 조각이 도착한 사분면의 번호를 알아내는 프로그램을 작성하라.

입력

첫 줄에 이동시키려는 사분면 조각 번호의 자릿수를 나타내는 정수 d와, 그 사분면 조각의 번호가 주어진다. (1≤d≤50) 둘째 줄에는 이동의 내용을 나타내는 두 정수가 x, y가 주어진다. (|x|, |y|≤2^50) 오른쪽으로 이동한 경우 x가 양수, 왼쪽으로 이동한 경우 음수이며, 그 절대값은 오른쪽 왼쪽 방향 이동 횟수를 나타낸다. 위쪽으로 이동한 경우 y가 양수, 아래쪽으로 이동한 경우 음수이며, 역시 그 절대값은 아래위 방향 이동 횟수를 나타낸다.

출력

첫 줄에 도착한 사분면의 번호를 출력한다. 만약, 존재하지 않는 사분면인 경우에는 -1을 출력한다.

예제 입력 1 복사

3 341

2 1

예제 출력 1 복사

424

출처

• 문제를 만든 사람: author10 (/user/author10)