Translating Embeddings for Modeling Multi-relational Data (TransE)

Multi-Relational Data

Homogeneous relationship

Heterogeneous relationships

Knowledge Graph Embedding(1)

- A knowledge graph (KG) is a directed heterogeneous multigraph whose node and relation types have domain-specific semantics.
- Knowledge graph embedding is the task of completing the knowledge graphs by probabilistically inferring the missing arcs from the existing graph structure.

Eugenio

Mike

Diego

German

Translation

Affine Transform	Example	Transformation Matrix	
Translation		$egin{bmatrix} 1 & 0 & 0 \ 0 & 1 & 0 \ t_x & t_y & 1 \end{bmatrix}$	t_x specifies the displacement along the x axis t_y specifies the displacement along the y axis.
Scale		$egin{bmatrix} s_x & 0 & 0 \ 0 & s_y & 0 \ 0 & 0 & 1 \end{bmatrix}$	$m{s_x}$ specifies the scale factor along the $m{x}$ axis $m{s_y}$ specifies the scale factor along the $m{y}$ axis.
Shear		$egin{bmatrix} 1 & sh_y & 0 \ sh_x & 1 & 0 \ 0 & 0 & 1 \end{bmatrix}$	sh_x specifies the shear factor along the x axis sh_y specifies the shear factor along the y axis.
Rotation	\Diamond	$egin{bmatrix} \cos(q) & \sin(q) & 0 \ -\sin(q) & \cos(q) & 0 \ 0 & 0 & 1 \end{bmatrix}$	$oldsymbol{q}$ specifies the angle of rotation.

Relationship Pattern

Definition 1. A relation r is symmetric (antisymmetric) if $\forall x, y$

$$r(x,y) \Rightarrow r(y,x) (r(x,y) \Rightarrow \neg r(y,x))$$

A clause with such form is a symmetry (antisymmetry) pattern.

Definition 2. Relation r_1 is inverse to relation r_2 if $\forall x, y$

$$r_2(x,y) \Rightarrow r_1(y,x)$$

A clause with such form is a **inversion** pattern.

Definition 3. Relation r_1 is **composed** of relation r_2 and relation r_3 if $\forall x, y, z$

$$r_2(x,y) \wedge r_3(y,z) \Rightarrow r_1(x,z)$$

A clause with such form is a composition pattern.

TransE

 $< translation > h(entity) + r(relationship) \rightarrow t(entity)$

TransE - Algorithm

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.
  1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each \ell \in L
                       \ell \leftarrow \ell / \|\ell\| for each \ell \in L
                       \mathbf{e} \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each entity e \in E
  4: loop
           \mathbf{e} \leftarrow \mathbf{e} / \|\mathbf{e}\| for each entity e \in E
          S_{batch} \leftarrow \text{sample}(S, b) // \text{ sample a minibatch of size } b
          T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets
          for (h, \ell, t) \in S_{batch} do
              (h', \ell, t') \leftarrow \text{sample}(S'_{(h,\ell,t)}) \text{ // sample a corrupted triplet}
              T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}
          end for
11:
                                                                     \sum \qquad \nabla \big[ \gamma + d(\boldsymbol{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\boldsymbol{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \big]_{+}
           Update embeddings w.r.t.
                                                       ((h,\ell,t),(h',\ell,t')) \in T_{batch}
13: end loop
```

 $h + r \cong t \text{ when } (h, l, t) \text{ holds}$

d: Dissimilarity measure (L1 or L2 norm)

TransE - Algorithm

 Corrupted triplets: Replace either head or tail with random entity

$$S'_{(h,\ell,t)} = \{(h',\ell,t)|h' \in E\} \cup \{(h,\ell,t')|t' \in E\}$$

$$\mathcal{L} = \sum_{(h,\ell,t)\in S} \sum_{(h',\ell,t')\in S'_{(h,\ell,t)}} \left[\gamma + d(\mathbf{h} + \boldsymbol{\ell}, \boldsymbol{t}) - d(\mathbf{h'} + \boldsymbol{\ell}, \boldsymbol{t'}) \right]_{+}$$

- Loss: margin-based ranking criterion (triplet margin loss function)
- Lower dissimilarity for d(h + l, t) (= valid triplet)
- Higher dissimilarity for d(h' + l, t') (= corrupted triplet)

Algorithm 1 Learning TransE

```
input Training set S = \{(h, \ell, t)\}, entities and rel. sets E and L, margin \gamma, embeddings dim. k.

1: initialize \ell \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each \ell \in L

2: \ell \leftarrow \ell / \|\ell\| for each \ell \in L

3: e \leftarrow \text{uniform}(-\frac{6}{\sqrt{k}}, \frac{6}{\sqrt{k}}) for each entity e \in E

4: loop

5: e \leftarrow e / \|e\| for each entity e \in E

6: S_{batch} \leftarrow \text{sample}(S, b) // sample a minibatch of size b

7: T_{batch} \leftarrow \emptyset // initialize the set of pairs of triplets

8: for (h, \ell, t) \in S_{batch} do

9: (h', \ell, t') \leftarrow \text{sample}(S'_{(h, \ell, t)}) // sample a corrupted triplet

10: T_{batch} \leftarrow T_{batch} \cup \{((h, \ell, t), (h', \ell, t'))\}

11: end for

12: Update embeddings w.r.t. \sum_{((h, \ell, t), (h', \ell, t')) \in T_{batch}} \nabla [\gamma + d(h + \ell, t) - d(h' + \ell, t')]_+
```

13: end loop

Related Work

- SE (Structured Embedding)
 - Embeds relationships into two matrices L1, L2
 - $d(L_1h, L_2t)$ is large for corrupted triplets
 - L1 reproduce translation, L2 = Identity Matrix => SE is same as TransE
 - Greater expressiveness than TransE
 - Synonymous to underfitting than to better performance
- Neural Tensor Model
 - TransE with squared Euclidean distance as dissimilarity
 - $l = l_1 = -l_2 =>$ same as TransE
 - TransE has much fewer parameter
 - Simplify training and prevent underfitting

$$s(h, \ell, t) = \mathbf{h}^T \mathbf{L} \mathbf{t} + \mathbf{\ell}_1^T \mathbf{h} + \mathbf{\ell}_2^T \mathbf{t}$$
$$d(\mathbf{h} + \mathbf{\ell}, \mathbf{t}) = ||\mathbf{h}||_2^2 + ||\mathbf{\ell}||_2^2 + ||\mathbf{t}||_2^2 - 2(\mathbf{h}^T \mathbf{t} + \mathbf{\ell}^T (\mathbf{t} - \mathbf{h})).$$

Experiment

- Data sets
 - Wordnet
 - Entity: meaning of word, Relationship: lexical relation
 - Freebase
 - KB of general facts
 - 15k, 1m (entity number in dataset)

Table 2: **Statistics of the data sets** used in this paper and extracted from the two knowledge bases, Wordnet and Freebase.

DATA SET	WN	FB15K	FB1M
ENTITIES	40,943	14,951	1×10^{6}
RELATIONSHIPS	18	1,345	23,382
TRAIN. EX.	141,442	483,142	17.5×10^{6}
VALID EX.	5,000	50,000	50,000
TEST EX.	5,000	59,071	177,404

Experiment

- Evaluation Metric
 - 1. Mean Rank
 - 2. Hits@10 (%)

- Baselines
 - 1. Unstructured
 - consider data as single-relational, translation to 0
 - 2. RESCAL
 - collective matrix factorization model
 - 3. SE, SME(linear/bilinear)
 - 4. LFM
 - Energy-based models

Метнор	NB. OF PARAMETERS	ON FB15K
Unstructured [2]	$O(n_e k)$	0.75
RESCAL [11]	$O(n_e k + n_r k^2)$	87.80
SE [3]	$O(n_e k + 2n_r k^2)$	7.47
SME(LINEAR) [2]	$O(n_e k + n_r k + 4k^2)$	0.82
SME(BILINEAR) [2]	$O(n_e k + n_r k + 2k^3)$	1.06
LFM [6]	$O(n_e k + n_r k + 10k^2)$	0.84
TransE	$O(n_e k + n_r k)$	0.81

Table 3: Link prediction results. Test performance of the different methods.

DATASET	WN			FB15K				FB1M		
METRIC	MEAN	RANK	HITS@	10 (%)	MEAN	Rank	HITS@	10 (%)	MEAN RANK	HITS@10(%)
Eval. setting	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Filt.	Raw	Raw
Unstructured [2]	315	304	35.3	38.2	1,074	979	4.5	6.3	15,139	2.9
RESCAL [11]	1,180	1,163	37.2	52.8	828	683	28.4	44.1	-	-
SE [3]	1,011	985	68.5	80.5	273	162	28.8	39.8	22,044	17.5
SME(LINEAR) [2]	545	533	65.1	74.1	274	154	30.7	40.8	-	-
SME(BILINEAR) [2]	526	509	54.7	61.3	284	158	31.3	41.3	-	-
LFM [6]	469	456	71.4	81.6	283	164	26.0	33.1	-	-
TransE	263	251	75.4	89.2	243	125	34.9	47.1	14,615	34.0

Table 4: **Detailed results by category of relationship.** We compare Hits@10 (in %) on FB15k in the filtered evaluation setting for our model, TransE and baselines. (M. stands for MANY).

TASK	PREDICTING head				PREDICTING tail			
REL. CATEGORY	1-TO-1	1-то-М.	MTO-1	Мто-М.	1-TO-1	1-то-М.	MTO-1	Мто-М.
Unstructured [2]	34.5	2.5	6.1	6.6	34.3	4.2	1.9	6.6
SE [3]	35.6	62.6	17.2	37.5	34.9	14.6	68.3	41.3
SME(LINEAR) [2]	35.1	53.7	19.0	40.3	32.7	14.9	61.6	43.3
SME(BILINEAR) [2]	30.9	69.6	19.9	38.6	28.2	13.1	76.0	41.8
TransE	43.7	65.7	18.2	47.2	43.7	19.7	66.7	50.0

Table 5: **Example predictions** on the FB15k test set using TransE. **Bold** indicates the test triplet's true tail and *italics* other true tails present in the training set.

INPUT (HEAD AND LABEL)	PREDICTED TAILS
J. K. Rowling influenced by	G. K. Chesterton, J. R. R. Tolkien, C. S. Lewis, Lloyd Alexander,
	Terry Pratchett, Roald Dahl, Jorge Luis Borges, Stephen King, Ian Fleming
Anthony LaPaglia performed in	Lantana, Summer of Sam, Happy Feet, The House of Mirth,
	Unfaithful, Legend of the Guardians, Naked Lunch, X-Men, The Namesake
Camden County adjoins	Burlington County, Atlantic County, Gloucester County, Union County,
	Essex County, New Jersey, Passaic County, Ocean County, Bucks County
The 40-Year-Old Virgin nominated for	MTV Movie Award for Best Comedic Performance,
	BFCA Critics' Choice Award for Best Comedy,
	MTV Movie Award for Best On-Screen Duo,
	MTV Movie Award for Best Breakthrough Performance,
	MTV Movie Award for Best Movie, MTV Movie Award for Best Kiss,
	D. F. Zanuck Producer of the Year Award in Theatrical Motion Pictures,
	Screen Actors Guild Award for Best Actor - Motion Picture
Costa Rica football team has position	Forward, Defender, Midfielder, Goalkeepers,
	Pitchers, Infielder, Outfielder, Center, Defenseman
Lil Wayne born in	New Orleans, Atlanta, Austin, St. Louis,
	Toronto, New York City, Wellington, Dallas, Puerto Rico
WALL-E has the genre	Animations, Computer Animation, Comedy film,
	Adventure film, Science Fiction, Fantasy, Stop motion, Satire, Drama

Figure 1: **Learning new relationships with few examples**. Comparative experiments on FB15k data evaluated in mean rank (left) and hits@10 (right). More details in the text.

TransE is the fastest method to learn

-> Simplicity of TransE makes it able to generalize well, without having to modify of the already trained embeddings.

Implementation

```
@torch.no_grad()
def test(
    self,
```

```
Epoch: 324, Loss: 0.0819
Epoch: 325, Loss: 0.0812
100%
                                                                                                                                  | 17535/17535 [01:29<00:00, 194.92it/s]
(257.8840637207031, 0.3698317650413459)
Epoch: 326, Loss: 0.0809
Epoch: 327, Loss: 0.0822
Epoch: 328, Loss: 0.0821
Epoch: 329, Loss: 0.0818
Epoch: 330, Loss: 0.0825
Epoch: 331, Loss: 0.0822
Epoch: 332, Loss: 0.0820
Epoch: 333, Loss: 0.0816
Epoch: 334, Loss: 0.0821
Epoch: 335, Loss: 0.0815
Epoch: 336, Loss: 0.0810
Epoch: 337, Loss: 0.0822
Epoch: 338, Loss: 0.0817
Epoch: 339, Loss: 0.0828
Epoch: 340, Loss: 0.0814
Epoch: 341, Loss: 0.0810
Epoch: 342, Loss: 0.0808
Epoch: 343, Loss: 0.0813
Epoch: 344, Loss: 0.0805
Epoch: 345, Loss: 0.0809
Epoch: 346, Loss: 0.0800
Epoch: 347, Loss: 0.0817
Epoch: 348, Loss: 0.0808
Epoch: 349, Loss: 0.0820
Epoch: 350, Loss: 0.0814
100%
                                                                                                                                 | 17535/17535 [01:31<00:00, 191.05it/s]
(258.5716552734375, 0.3679498146564015)
Fnoch: 351, Loss: 0.0818
                                                                                                  return mean_rank, mrr, hits_at_k
```

torch_geometric.nn.kge.transe

torch_geometric.nn.kge.base

Conclusion

- Highly scalable
- Minimal parameterization for representing hierarchical relationships
- Simple!

- TransE performs well compared to other models across all setting
 - However, it is still unclear that TransE can applied to all relation types (1-Many, etc.)
 - -> Limitation for symmetric, n-ary relation