Identification of wavemaker region in swirling flows using complex network analysis

भारतीय विज्ञान संस्थान

Vivek Thazhathattil, Saarthak Gupta and Santosh Hemchandra

INTRODUCTION

Thermoacoustic instability

Precessing vortex core (PVC) oscillations in swirl nozzle flows can induce/suppress thermoacoustic instability

Motivation:

- Physics based linear stability analysis
 - Requires accurate base flow
 - Not straightforward for complex geometries
- Data-driven alternatives like complex network analysis

Investigated configuration:

Single nozzle MIT swirl combustor [2]

METHODS

Large Eddy Simulation:

- **Explicit filtering LES** [3] for compressible Navier-Stokes
- 8th order central difference (spatial), 3rd order RK in time
- Time series data sampled at 20 kHz

Linear Stability Analysis:

- Constant density, linearized Navier-Stokes eq.
- Base flow from LES
 - Axisymmetric mean flow
 - Turbulent transport model Eddy-viscosity (ν_T)
- Generalized eigenvalue problem

Inflow

NR-outlet

5D

Complex network analysis (CNA):

- Connectivity:
 - Mutual info. (MI), $M_{ij} = \sum_{i,j} p(u_{r,i}, u_{r,j}) \log_2 \left(\frac{p(u_{r,i}, u_{r,j})}{p(u_{r,i})p(u_{r,j})} \right)$
 - Correlation, $R_{ij} = \frac{Cov(u_{r,i}, u_{r,j})}{\sigma(u_{r,i})\sigma(u_{r,j})}$
- Weighted closeness centrality [4] used to rank nodes

RESULTS & DISCUSSION

t(s)

REFERENCES

1. Huang, Y., Yang, V., *Prog. in ener. and comb. sci.* (2009)

- 2. Gupta, S., Shanbhogue, S., Shimura, M., Ghoniem, A., Hemchandra, S., *J. Eng. Gas Turbines Power* (2022).
- 3. Mathew, J., Lechner, R., Foysi, H., Sesterhenn, J., Friedrich, R., *Phy. of fluids (2003)*
- 4. Opsahl, Tore, Filip Agneessens, John Skvoretz., *Social networks* (2010)
- 5. Thazhathattil, V., Gupta, S., Hemchandra, S., AIAA SciTech Forum and Expo. (2024)

CONCLUSIONS

- Linear stability and network analyses identify the PVC wavemaker region.
- MI networks fare better than correlation networks in recovering wavemaker spatial extents.
- Intermittent suppression of PVC in the centrebody case marked by reduction in closeness centrality.
- <u>Future work</u>: Use causal measures (e.g. transfer entropy) in CNA, build a theoretical framework for CNA, validate with canonical flow studies.

