Японский: буквенные n-граммы для распознавания Контроль НИР

Куликов А.В., гр. 397 *Руководитель:* Андрианов А.И.

ABBYY-MIPT

Москва, 2016

- Japanese kanji/kana OCR.
- Существуют путающиеся символы, например:

 Цель работы: построить и сравнить различные эвристики для исправления ошибок OCR, используя буквенную n-граммную модель японского языка.

Текущие результаты

- Был выбран, получен и адаптирован корпус;
- Были получены статистики по n-граммам;
- Был разработан настраиваемый алгоритм для зашумления корпуса;
- Был определён Baseline;
- Были получены первые результаты.

Корпус

- Корпус html-страниц с различных сайтов, доступный компании ABBYY;
- Был приведён к plain-utf-8 представлению;
- Итоговый размер pprox 1.5 GB;
- Был разделён на 3 неравных подкорпуса (debug/train/test).

Корпус – исходные кодировки

Документов	Кодировка
68789	utf-8
46870	iso-8859-2
42015	shift_jis
2562	euc-jp
1575	ср932
544	ascii
436	windows-1253
256	iso-8859-7
$\approx 5\%$	ещё 6 штук

Всего около 160k документов.

Корпус – статистики по n-граммам

• Получены по train-подкорпусу ($\approx 400 MB$):

n	bins	outcomes	size $(pprox)$	time (\approx)
1-gram	5188	2283229	100 KB	2 mins
2-gram	402035	5426594	6.8 MB	50 mins
3-gram	2455307	10407170	48.7 MB	2 hrs

• Сериализованы в pickle-dump nltk.FreqDist (весьма эффективно по памяти).

Список частых ОСR-ошибок:

```
[う]
5=410
5=115
勺=175
[え]
之=2069
九=2008
大=3138
无=1688
```

• Различные стратегии замены (абсолютное/относительное значение, какой символ подставлять и т.д.).

Скоринг текста

- Текст бъётся на предложения (по пробельным символам и знакам препинания);
- Оценка предложения среднее геометрическое частот его n-грамм (больше-лучше);
- Если максимальную оценку получил этанол хорошо;
- Оценка текста процент предложений, где лидирует эталон.

Baseline

- Оценка текста по униграммной модели;
- Да, по одиночным символам;
- Зато такой Baseline легко побить!

Результаты – 1

 Замена 1 любого символа в предложении на самый частый:

```
n mean percentage
1-gram 51.688 %
2-gram 89.256 %
3-gram 88.681 %
```

Результаты – 2

 Замена 1 любого символа в предложении на случайный из возможных:

```
n mean percentage
1-gram 48.989 %
2-gram 83.741 %
3-gram 87.363 %
```

Что делать дальше?

- Экспериментировать с паттернами шума на корпусе и скорингом;
- Умный back-off для n-грамм при оценивании;
- Попробовать учитывать грамматические хвосты и варианты словного деления;
- Выкинуть хвосты распределения символов для оптимизации.

Список литературы

- Foundations of Statistical Natural Language Processing / C. D. Manning, H. Schutze.
- Efficient In-memory Data Structures for N-Grams Indexing / D. Robenek, J. Platos, V. Snasel
- Applying Conditional Random Fields to Japanese Morphological Analysis / T. Kudo, K. Yamamoto, Y. Matsumoto

Спасибо