High-Level Synthesis Based Acceleration of LLaMA2 Inference on FPGA 基於高階合成的LLaMA2於FPGA推論加速設計

組別:62

組員:趙堉安、金以凡

指導教授: 陳添福 教授

INTRODUCTION

• Background:

- LLM rely heavily on matrix operations, making them ideal candidates for hardware acceleration
- While cloud GPUs are powerful, they are not ideal for embedded devices or edge deployment. FPGA gives a better solution for accelerating inference

• Our main goal:

To accelerate inference speed by offload operations to FPGA kernels

• We use:

- LLaMA2.c
- AMD Zynq UltraScale+ MPSoC ZCU106 board
- Xilinx Vitis 2024.2
- High-Level Synthesis (HLS)
- Xilinx Runtime (XRT) API

WORKFLOW

CONCEPTS

LLaMA2 model structure

What we offload is six operations

RMS Normalization

Matrix Multiplication

Rotary Positional Embedding (RoPE)

Self Attention

Residual

SwiGLU (an activation function)

- We designed and optimized the following key components for FPGA to accelerate inference:
- RMS Normalization Block

$$RMS(x) = \sqrt{\frac{1}{N}} \sum_{i=1}^{N} x_i^2$$

- Optimized approach: Using multiplication by a precomputed inverse (INV_P_DIM) instead of division by P_DIM
- Replaces a division with a faster multiplication by a constant
- Speed Up 12.7x
- Matrix Multiplication Block
- Self Attention Block

- RMS Normalization Block
- Matrix Multiplication Block
 - For example: x size: n * 1, weight size: n * m

$$o = x^T \times w$$

Need n*m non-continuous access

- Flatten the weight matrix to 1D
- Mathematically equivalent but reduce hardware access times
- Speed Up 10.6x
- Self Attention Block

- RMS Normalization Block
- Matrix Multiplication Block
- Self Attention Block

$$attention\ score = Q \times K^T / \sqrt{d_k}$$

- Optimized approach: this inverse square root value is precomputed and stored as a constant
- The expression then becomes a simple multiplication
- Speed Up 21.6x

We applied several optimizations for blocks:

- 1. Memory Access Optimization and Preloading
 - Avoid multiple DRAM accesses by preloading data into BRAM
- 2. Array Partitioning and Unrolling for Parallelism
 - Use pragma HLS ARRAY_PARTITION, HLS UNROLL
 - Combined loop unrolling and array partitioning to maximize parallel access and system performance
- 3. Pipeline for Throughput
 - Use pragma HLS PIPELINE
 - Achieved fully pipelined execution that processes one input per clock cycle

Achieved Total Speed Up: 13.4x

EXPERIMENTS

- Model we use: TinyStories 15M parameters
- Generate Stories: Once upon a time, there was a little boy named Timmy. Timmy was very brave and liked to climb trees. One day, Timmy saw a big wagon in the park. He wanted to climb on it, but he was scared ...
- Result Comparison of Inference Speed:

Model	Tokens	Time Spent (s)	Speed (toks/s)
APU	201	114.75	1.75
Logic Cells	225	25.83	8.71

-> Improved performance by around 5x

CONCLUSIONS

- FPGA Hardware Limitations
 - Limited DDR memory capacity restricts the deployment of larger LLaMA2 models
 - Resource constraints (e.g., BRAM, DSP) affect scalability when increasing layer depth or hidden dimensions
- We successfully accelerated LLaMA2 inference speed by 5 times using FPGA-based hardware optimizations
- Provided a Demonstration of the feasibility of Transformer inference on resource-constrained edge devices