MOWNiT Laboratorium 1 Precyzja zmiennoprzecinkowa

Hubert Miklas

11-03-2025

1 Wprowadzenie

Laboratorium polega na wprowadzeniu do precyzji obliczeń w operacjach zmiennoprzecinkowych w komputerze. Wszystkie zadania zostały wykonane w języku Python 3.10.12.

2 Zadanie 1

Szukamy precyzji komputerowej ϵ , czyli najmniejszej liczby, dla której komputer uznaje $1+\epsilon>1$ za prawdziwe.

2.1 Kod implementujący obliczenia

```
epsilon = 1
const = 1
while const + epsilon > const:
epsilon /= 2
epsilon *= 2
print(epsilon)
```

To daje wynik $\epsilon \approx 2.2 \times 10^{-16}$, co jest oczekiwane dla liczb zmiennoprzecinkowych z podwójną precyzją (float64).

3 Zadanie 2

Rozważamy problem ewaluacji funkcji $\sin(x)$, przy czym występuje propagacja błędu danych wejściowych (zakłócenie h w argumencie x). Zakładamy $h = 10^{-5}$.

3.1 Błąd bezwzględny

$$bb = |\sin(x+h) - \sin(x)| \approx |\cos(x)| h.$$

Maksymalny błąd bezwzględny wynosi zatem około 10^{-5} (dla $|\cos(x)| = 1$).

3.2 Błąd względny

$$bw = \frac{|\sin(x+h) - \sin(x)|}{|\sin(x)|} \approx h |\cot(x)|.$$

Błąd względny rośnie, gdy $\sin(x)$ jest bliskie zeru, czyli dla $x = k\pi, k \in \mathbb{Z}$.

3.3 Uwarunkowanie problemu

$$\operatorname{cond} \approx \left| \frac{x \cos(x)}{\sin(x)} \right| = |x \cot(x)|.$$

Problem jest bardzo czuły dla argumentów x bliskich wielokrotności π , gdzie $\sin(x) \approx 0$, natomiast lepiej uwarunkowany dla $x \approx \pi/2 + k\pi$. W szczególności, dla $x \to 0$ mamy

$$\lim_{x \to 0} \frac{\sin(x)}{x} = 1,$$

co zapewnia dobre uwarunkowanie w pobliżu zera.

3.4 Kod implementujący obliczenia

```
import math from sin, cos
def find_machine_epsilon():
    eps = 1.0
   while (1.0 + eps) > 1.0:
        eps /= 2
   return eps * 2
def absolute_error(x, h):
   return abs(sin(x + h) - sin(x))
def relative_error(x, h):
    if sin(x) == 0:
       return float('inf') # unbounded error
   return abs(h * cos(x) / sin(x))
def condition_number(x):
    if sin(x) == 0:
        return float('inf')
   return abs(x * cos(x) / sin(x))
h = 1e-5 # małe zakłócenie
precision = 4
for x in test_values:
    abs_err = absolute_error(x, h)
   rel_err = relative_error(x, h)
   cond_num = condition_number(x)
   print(f"x = {x}")
   print(f" Absolute error: {round(abs_err,precision)}")
   print(f" Relative error: {round(rel_err,precision)}")
   print(f" Condition number: {round(cond_num,precision)}")
```

3.5 Wyniki obliczeń

Poniżej przedstawiamy wartości błędów i liczby uwarunkowania dla wybranych wartości x:

x	Błąd bezwzględny	Błąd względny	Liczba uwarunkowania
0.1	9.95×10^{-6}	9.967×10^{-5}	0.9967
0.5	8.78×10^{-6}	1.83×10^{-5}	0.9152
1.0	5.40×10^{-6}	6.42×10^{-6}	0.6421

4 Zadanie 3

Funkcję $\sin(x)$ można rozwijać w szereg Maclaurina (szczególny przypadek szeregu Taylora):

$$\sin(x) = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$
 (1)

4.1 Przybliżenie pierwszym składnikiem $(\sin(x) \approx x)$

Przyjmujemy $\hat{y} = x$. Wyznaczamy błędy:

$$\Delta y = \hat{y} - \sin(x), \quad \Delta x = \arcsin(\hat{y}) - x.$$
 (2)

4.2 Kod implementujący obliczenia dla obu przypadków

```
from math import sin, asin
def progressive_error_approx1(x):
   return abs(sin(x) - x)
def progressive_error_approx2(x):
   return abs(sin(x) - (x - x**3 / 6))
def backward_error_approx1(x):
   return abs(x - asin(x))
def backward_error_approx2(x):
   return abs(x - asin(x - x**3 / 6))
def underflow_level(beta, L):
   return beta**L
test_values = [0.1, 0.5, 1.0]
precision = 4
print("Approximation 1")
for value in test_values:
   print(f"{value} & {round(backward_error_approx1(value),precision)} & {round(progressive_error_approx
print("Approximation 2")
for value in test_values:
    print(f"{value} & {round(backward_error_approx2(value),precision)} & {round(progressive_error_approx
```

4.3 Przybliżenie jednym składnikiem $(\sin(x) \approx x)$

Dla wybranych wartości x otrzymujemy:

$$\begin{array}{c|ccccc} x & \Delta y & \Delta x \\ \hline 0.1 & -1.6658 \times 10^{-4} & 1.6742 \times 10^{-4} \\ 0.5 & -2.0574 \times 10^{-2} & 2.3599 \times 10^{-2} \\ 1.0 & -1.5853 \times 10^{-1} & 5.70796 \times 10^{-1} \\ \end{array}$$

Table 1: Błędy progresywny i wsteczny dla przybliżenia $\sin(x) \approx x$

4.4 Przybliżenie dwoma składnikami ($\sin(x) \approx x - \frac{x^3}{6}$)

Przyjmujemy $\hat{y} = x - \frac{x^3}{6}$. Otrzymujemy:

$$\Delta y = \hat{y} - \sin(x), \quad \Delta x = \arcsin(\hat{y}) - x.$$
 (3)

Dla wybranych wartości x otrzymujemy:

$$\begin{array}{c|cccc} x & \Delta y & \Delta x \\ \hline 0.1 & 8.33 \times 10^{-8} & -8.37 \times 10^{-8} \\ 0.5 & 2.5887 \times 10^{-4} & -2.9496 \times 10^{-4} \\ 1.0 & 8.1377 \times 10^{-3} & -1.4889 \times 10^{-2} \\ \end{array}$$

Table 2: Błędy progresywny i wsteczny dla przybliżenia $\sin(x)\approx x-\frac{x^3}{6}$

5 Zadanie 4

Zakładamy, że mamy znormalizowany system zmiennoprzecinkowy o parametrach: $\beta=10,\,p=3,\,L=-98.$ Poziom niedomiaru (ang. Underflow level - UFL): Najmniejsza dodatnia liczba znormalizowana ma postać

UFL =
$$1.00 \times 10^{-98}$$
.

Operacja: Dla $x = 6.87 \times 10^{-97}$ oraz $y = 6.81 \times 10^{-97}$:

$$x - y = (6.87 - 6.81) \times 10^{-97} = 0.06 \times 10^{-97} = 6.0 \times 10^{-99}.$$

Ponieważ $6.0 \times 10^{-99} < \text{UFL}$, wynik operacji ulega underflow i jest reprezentowany jako 0.