Announcements

- Readings (Week 4 due Saturday 2/1)
 - Email: gquer@ucsd.edu
 - Subject line:
 - [DSC96 W20]: Week 04, Sec A/B, YourFirstName YourLastName
 - Email content:
 - Your comments/ questions/ observations on the proposed lectures
- Assignment 2:
 - By end of week 7 (more details next week)

Natural Language Processing

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; trigeminy; and AVB (Fig. 1a,b). Individual cardiologist performance and averaged cardiologist performance are plotted on the same figure. Extended Data Fig. 2 presents ROCs for all classes, showing that the model met or exceeded the averaged cardiologist performance for all rhythm classes. Fixing the specificity at the average specificity level achieved by cardiologists, the sensitivity of the DNN exceeded the average cardiologist sensitivity for all rhythm classes (Table 2). We used confusion matrices to illustrate the discordance between the DNN's predictions (Fig. 2a) or averaged cardiologist predictions (Fig. 2b) and the committee consensus. The two confusion matrices exhibit a similar pattern, highlighting those rhythm classes that were generally more problematic to classify (that is, supraventricular tachycardia (SVT) versus atrial fibrillation, junctional versus sinus rhythm, and EAR versus sinus rhythm).

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; trigeminy; and AVB

(Fig. 1a,b). Individual c server.log - N and averaged cardiolo plotted on the same fig 2 presents ROCs for a the model met or excer cardiologist performan Fixing the specificity at level achieved by card the DNN exceeded the sensitivity for all rhythn used confusion matrice discordance between t (Fig. 2a) or averaged c (Fig. 2b) and the comm confusion matrices ext highlighting those rhytl generally more probler generally more probler 2012-10-11 03:55:06,579 INFO supraventricular tachy 2012-10-11 03:55:06,579 INFO fibrillation, junctional v 2012-10-11 03:55:06,579 INFO fibrillation, junctional v 2012-10-11 03:55:06,579 INFO EAR versus sinus rhyt

epad		_10	JX
View Help			
:54:28,578	INFO	- Starting Backup Manager 5.0.0 build 18268	
:54:29,422		 Generating Self-Signed SSL Certificate (al 	-
:54:29,781	WARN	- Saved SSL Certificate (alias = cdp) to Key	/
:54:30,047	INFO	- Operating System: Windows Server 2008 R2	
:54:30,047	INFO	- Architecture: amd64	
:54:30,047	INFO	- OS version: 6.1	
:54:30,047	INFO	- Processors Detected: 1	
:54:30,063		- Max Configured Heap Memory: 483.4 MB	_
:54:30,063		- Total Physical Memory: 2.0 GB	
:54:30,063		- Free Physical Memory: 893.1 MB	
:54:30,063	INFO	- Database Service starting	
:54:33,203	INFO	- Creating embedded database 10.8.2.2 - (118	4
:54:34,141	INFO	- Database Service started	
:54:34,141		 Object-Relational Mapping Service starting 	
:54:56,126	ERROR	- Unsuccessful: create index stateIndex on R	ŧ
:54:56,126	ERROR	 Index 'STATEINDEX' already exists in Scheme 	1
:55:01,157	INFO	- Object-Relational Mapping Service started	
:55:01,157	INFO	 Message Event Service Wrapper starting 	
:55:04,626	INFO	- Message Event Service Wrapper started	
:55:04,626		- Event Service Wrapper starting	
:55:04,861	INFO	- Event Service Wrapper started	
:55:04,861		- General Service starting	
:55:06,173		 !!! missing resource message key=[Invalid 	
:55:06,579	INFO	- Product CDP3 Enterprise(win)	
:55:06,579	INFO	 License validity(true/false): true 	
:55:06,579	INFO	 valid until: 10/25/12 3:00 AM 	
:55:06,579	INFO	- Trial License - YES	
		Coperal Ferudes started	

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; trigeminy; and AVB

Minutes

plotted on the same fig 2012-10-11 03:54:28,578 INFO

(Fig. 1a,b). Individual (server.log - Notepad

and averaged cardiolo File

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; trigeminy; and AVB

(Fig. 1a,b). Individual c server log - Notepad

and averaged cardiolo

plotted on the same fig

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; tigeminy; and AVB

(Fig. 1a,b). Individual c server-log - Hotepad and averaged cardiolo Fie Est Format View Heb plotted on the same fig 2012-10-11 03:54:28,578 TNFO 2012-10-11 03:54:29,422 MARN - Generating Self-signed Ss. Certificate (all 2012-10-11 03:54:29,421 MARN - Saved Ss. Certificate (all 2012-10-11 03:54:30,047 INFO cardiologist performan 2012-10-11 03:54:30,047 INFO cardiologist performan

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; trigeminy; and AVB

plotted on the same fig 2012-10-11 03:54:28,578 INFO

(Fig. 1a,b). Individual (server.log - Notepad

and averaged cardiolo File

200000

400000

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

and averaged cardiolo File Edit Starting Backup Manager 5.0.0 build 18268 A Generating Self-Signed SSL Certificate (al Saved SSL Certificate (alias - cop) to Key Operating System: Windows Server 2008 R2 Architecture: amd64 05 Version: 6.1 plotted on the same fig 2012-10-11 03:54:28,578 INFO plotted on the same fig 2012-10-11 03:34:28,78 1/NEO 2 presents ROCs for a total the model met or excel cardiologist performan 2012-10-11 03:54:29,781 May 1 NEO 2012-10-11 03:5 3 Detected: 1 The Detected: 1
Jured Heap Memory: 483.4 MB
Jical Memory: 2.0 GB
Jical Memory: 893.1 MB
Service starting
Imbedded database 10.8.2.2 - (118
Service started
Jational Mapping Service starting
Ful: create index stateIndex on R
TISINGEY already exists in Schem
Jational Mapping Service started 1.0 0.5 Raw PPG -0.5-1.0gquer@ucsd.edu We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; trigeminy; and AVB (Fig. 1a.b). Individual cardiologist performance and averaged cardiologist performance are plotted on the ame figure. Extended Data Fig. 2 presents ROCs for all classes, showing that the model met or exceeded the averaged cardiologist performance for all rhythm classes. Fixing the specificity at the average specificity level achieved by cardiologists, the sensitivity of the DNN exceeded the average cardiologist sensitivity for all rhythm classes (Table 2). We used confusion matrices to illustrate the discordance between the DNN's predictions (Fig. 2a) or averaged cardiologist predictions (Fig. 2b) and the committee consensus. The two confusion matrices exhibit a simila 400000

Saved

We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; trigeminy; and AVB (Fig. 1a,b). Individual classes:

Send <u>A</u> (i) 🖘 😩 🔼 💲

Structured

- In a database
- Sorted and labeled with regular structure
- Proper types

Unstructured

- Just a bunch of stuff on the computer!
- Irregular and had ambiguities
- Difficult to understand using traditional programs

We plotted receiver operating characteristic curves (ROCs) and precision-recall curves for the sequence-level analyses of three example classes: atrial fibrillation; trigeminy; and AVB (Fig. 1a,b). Individual (server.log - Notepad

plotted on the same fig 2012-10-11 03:54:28,578 INFO

and averaged cardiolo File

Hutzler 571 Banana Slicer by Hutzler Manufacturing Co.

"What can I say about the 571B Banana Slicer that hasn't already been said about the wheel, penicillin, or the iPhone?"

Mrs Toledo

"Gone are the days of biting off slice-sized chunks of banana and spitting them onto a serving tray.... Next on my wish list: a kitchen tool for dividing frozen water into cube-sized chunks."

N. Krumpe

"As shown in the picture, the slices is curved from left to right. All of my bananas are bent the other way."

J. Anderson

80-90% of data is unstructured, and much of it is text. What can we do with it?

Syntax

Word segmentation

This might be easy - or it "isn't."

Lemmatization and Stemming

- Reducing the inflectional forms of each word into a common base or root

Part-of-speech tagging

- Example: noun ("the book on the table") or verb ("to book a flight");

Semantics

Named entity recognition (NER)

- Which items in text map to proper names? What type (e.g. person, location)?

Machine translation

Sentiment Analysis

Natural language understanding, Question answering, Relationship extraction, Topic segmentation and recognition, Word sense disambiguation

NLTK: natural language toolkit

Tokenize and tag some text:

```
>>> import nltk
>>> sentence = """At eight o'clock on Thursday morning
... Arthur didn't feel very good."""
>>> tokens = nltk.word_tokenize(sentence)
>>> tokens
['At', 'eight', "o'clock", 'on', 'Thursday', 'morning',
'Arthur', 'did', "n't", 'feel', 'very', 'good', '.']
>>> tagged = nltk.pos_tag(tokens)
>>> tagged[0:6]
[('At', 'IN'), ('eight', 'CD'), ("o'clock", 'JJ'), ('on', 'IN'),
('Thursday', 'NNP'), ('morning', 'NN')]
```

https://pythonprogramming.net/natural-language-toolkit-nltk-part-speech-tagging/

NLTK

Identify named entities:

NLTK

Display a parse tree:

```
>>> from nltk.corpus import treebank
>>> t = treebank.parsed_sents('wsj_0001.mrg')[0]
>>> t.draw()
```


Other NLP Tools

Commercial solutions (Google, Microsoft, Amazon, IBM, etc)

- Translation: don't DIY

SpaCy

- Similar performance to NLTK
- Many fewer options
- -~500x faster