

Dpto. Teoría de la Señal, Telemática y Comunicaciones

E.T.S. Ingeniería Informática y de Telecomunicación C/ Periodista Daniel Saucedo Aranda, S/N 18071- Granada

FUNDAMENTOS DE REDES 5 de febrero de 2018 - Examen de teoría

Apellidos y nombre:	 Grupo:_	

- 1. (1.25 ptos). Describa el funcionamiento de los protocolos POP3 e IMAP, para qué son utilizados y las diferencias de funcionamiento entre ellos.
- **2.** (1,25 ptos) Suponga que el cliente H1 acaba de iniciarse, tiene vacía la tabla ARP, pero conoce su default GW, y su IP (150.150.150.150) y su servidor DNS, así como su IP (100.100.100.100). Suponga que los servidores y los routers tienen toda la información necesaria. Haga las suposiciones que estime necesarias y rellene la siguiente tabla, mostrando **TODO** el tráfico que aparecería en esa red desde que H1 solicita el fichero indext.html del servidor HTTP www.servidor.org hasta que es servido.

MAC origen	MAC destino	IP Origen	IP Destino		FLAGS TCP	Mensaje/cabecera de Aplicación

- **3.** (1.25 ptos) Al inicio de una conexión TCP, en una línea sin congestión con 18 ms de tiempo de propagación y 1 Mbps de velocidad de transmisión,
 - a) Realice el diagrama de tiempos de la transmisión.
 - b)¿Cuánto tiempo se emplea en enviar y recibir confirmación de 32 KB con las siguientes asunciones? (añada cualquier otra adicional que crea conveniente)
 - a) Ventana ofertada de control de flujo de 20 KB constante.
 - b) Todos los segmentos se ajustan a un MSS (Maximum segment Size) de 2 KB
 - c) Umbral de congestión de 10 KB
 - d) Respuesta ACK retardada en el receptor de acuerdo a la teoría.
- **4.** (1.25 ptos) En la red mostrada en el gráfico siguiente:
 - a) Señale las subredes que encuentre en la topología mostrada
 - b) Asigne las direcciones privadas que sean necesarias
 - c) Especifique la tabla de encaminamiento para el router R1 de forma tal que se minimicen el número de entradas en la misma.

1.-Solución en los apuntes de teoría y Bibliografía recomendada

2.-

MAC origen	MAC destino	IP Origen	IP Destino	Puerto Origen	Puerto Destino	FLAGS TCP	Mensaje/cabecera deAplicación
MAC-H1	BROADCAST	150.150.150.150	150.150.150.1	X	X	ARP	WHO IS 150.150.150.1?
MAC-R1I	МАС-Н1	150.150.150.1	150.150.150.150	X	X	ARP	RESPONSE MAC= MAC-R1I
МАС-Н1	MAC-R1I	150.150.150.150	100.100.100.100	40000	53	UDP	REQ. IP WWW.SERVIDOR.ORG
MAC- R1N	MAC-DNS	150.150.150.150	100.100.100.100	40000	43	UDP	REQ. IP WWW.SERVIDOR.ORG
MAC- DNS	MAC-R1N	100.100.100.100	150.150.150.150	53	40000	UDP	RESPONSE IP=200.200.200.200
MAC.R1I	МАС-Н1	100.100.100.100	150.150.150.150	53	40000	UDP	RESPONSE IP=200.200.200.200
МАС-Н1	MAC-R1I	150.150.150.150	200.200.200.200	40001	80	SYN	INICIO CONEX. TCP SEQ=A
MAC- R1D	МАС-НТТР	150.150.150.150	200.200.200.200	40001	80	SYN	INICIO CONEX. TCP SEQ=A
MAC- HTTP	MAC-RID	200.200.200.200	150.150.150.150	80	40001	ACK,SYN	SEQ=B, ACK=A+1
MAC-R1I	MAC-H1	200.200.200.200	150.150.150.150	80	40001	ACK,SYN	SEQ=B, ACK=A+1
MAC-H1	MAC-R1I	150.150.150.150	200.200.200.200	40001	80	ACK	SEQ=A+1, ACK=B+1
MAC- R1D	MAC-HTTP	150.150.150.150	200.200.200.200	40001	80	ACK	SEQ=A+1, ACK=B+1
МАС-Н1	MAC-R1I	150.150.150.150	200.200.200.200	40001	80	ACK	SEQ=A+1, ACK=B+1, HTTP REQ.
MAC- R1D	MAC-HTTP	200.200.200.200	150.150.150.150	80	40001	ACK	SEQ=A+1, ACK=B+1, HTTP REQ.
MAC- HTTP	MAC-RID	200.200.200.200	150.150.150.150	80	40001	ACK	ACK=A+1+TAM_REQ. SEQ=B+1, HTTP RESPONSE (INDEX.HTML)
MAC-R1I	МАС-Н1	200.200.200.200	150.150.150.150	80	40001	ACK	ACK=A+1+TAM_REQ. SEQ=B+1, HTTP RESPONSE (INDEX.HTML)

$$t_{prop.} = 18 \text{ ms.}$$

$$t_t = \frac{1MSS}{V_t} = \frac{2 \cdot 1024 \cdot 8}{10^6} = 16,4 \ ms.$$

$$Num_segmentos = \frac{Tamaño\ mensaje}{Tamaño\ MSS} = \frac{32KB}{2KB} = 16\ segmentos$$

Formalmente:

Tabla R1 reducida:

Red Destino	Mascara	Siguiente Salto
200.200.200.0	/30	
192.168.0.0	/24	
0.0.0.0	/0	200.200.200.2
192.168.0.0	/21	192.168.0.2 (R2)
192.168.6.0	/23	192.168.0.3 (R3)
192.168.8.0	/22	192.168.0.4 (R4)

- **3.** (1.25 ptos) Al inicio de una conexión TCP, en una línea sin congestión con 18 ms de tiempo de propagación y 1 Mbps de velocidad de transmisión,
 - a) Realice el diagrama de tiempos de la transmisión.
 - b)¿Cuánto tiempo se emplea en enviar y recibir confirmación de 32 KB con las siguientes asunciones? (añada cualquier otra adicional que crea conveniente)
 - a) Ventana ofertada de control de flujo de 20 KB constante.
 - b) Todos los segmentos se ajustan a un MSS (Maximum segment Size) de 2 KB
 - c) Umbral de congestión de 10 KB
 - d) Respuesta ACK retardada en el receptor de acuerdo a la teoría.

MAC origen	MAC destino	IP Origen	IP Destino		Puerto Destino	FLAGS TCP	Mensaje/cabecera de Aplicación
MACLE	A BROA	40CA5T	<u> </u>	50 4	50,1 >	< ×	WH0 15

MAC-H1	BROADCAST	450.450	250,1 × × who 15
MAC-RII	MAC-HZ	150.1	150.150 × × MAC-R1
MAC-HY	MAC-RII	150.150	100.100 (4) 1 53 ONS Request
MAC-RAN	MAC-DNS	150.150	100.100 (4)1 53 ONS Request
MAC-DNS	MAC-RAN	100.100	150.150 53 (A)1 DNS Response
MAC-RAI	MAC-HI	700 J00	150.150 53 (*) 1 OU Response
MAC-HJ	MAC-RAI	150.150	500.500 (4) S 80 SAN
NAC-RAD	MAC-HTTP	150.150	500.500 (45 80 211)
MAC-HTTP	UAC-RYD	200.200	150.150 80 (AZ 54N, ACK
MAC-RAI	MAC-HI	200.200	150.150 80 (4) 2 SW, ACK
LH-JAM	MAC-RAI	150.150	200.200 (A) = 80 ACK
NAC-RYD	MAC-HTTP	150.150	200.200 (A2 80 ACK
MAC-HJ	MAC-RAT	150.150	200.200 (A) & 80 GET INDEX.HTML
NAC-R7C) MAC-HTTP	150.150	200,200 (A2 80 GET INDEX. HALL
MAC-HTTF	.1.05010		150.150 80 (≥2 RESPONSE
MAC-RA	LH-JAM I	200.200	150.150 80 (A) 2 RESPONSE

En este ejemplo nos interesa primero asignar las de la derecha porque de esa forma se pueden agrupar como 192.168.0.0 /23 (es decir, que vayan seguidas nos facilita las cosas). Si hubiésemos asignado de la más grande a la más chica, la de 200 del otro router sería la 192.168.1.0 /24 y entonces entraría dentro del agrupamiento anterior. Igualmente esto no da problemas porque en la tabla de encaminamiento primero se miran las entradas con máscara más restrictiva. Sin embargo, lo primero mencionado facilita mucho las cosas a la hora de hacer agrupamientos (es decir, ir asignando las redes que están conectadas a un mismo router, independientemente de su tamaño), pero al no ir asignando de la más grande a la más chica, hay que tener mucho cuidado con que las redes y sus direcciones no se solapen