BIOSTAT 702: Module 2 Estimation

Dr. Marissa Ashner

Department of Biostatistics and Bioinformatics

Fall 2025

Module Goals

- ▶ Understand the basics of estimating a parameter from a sample
- ▶ Understand sampling distributions and how they can be used for interval estimation and eventual inference

Resources for this Module

Textbooks

- ► ST21: Chapters 7 and 10
- ▶ ADLM: Chapter 2, Section 2

Websites

- Understanding Sampling Distributions
- ► Reeses Pieces Sampling Simulation
- ► Simulating Confidence Intervals

Motivation

Why is estimation so important in statistics?

- ▶ We rarely have access to gather data on every person in the population we are interested in drawing conclusions about
- ➤ We therefore need to take a *sample* from this population, and use their data to *estimate* what we are truly interested in
 - ▶ Hopefully this would be generalizable to the whole population

Sampling

Consider this (very simple) research question: What is the average height of all Duke students?

- ▶ *Population of Interest*: All Duke Students
- ▶ Parameter of Interest: Average height (inches) μ
- Assume the height of Duke Students (random variable Y) follows some *distribution* with mean (or expected value) $E(Y) = \mu$ and variance σ^2
- \blacktriangleright μ and σ^2 are *unknown*. We therefore must *estimate* them using *statistics* from a *sample* of the population.
- Sample: How could we draw a sample from this population? (i.e., Y_1, \dots, Y_n)
 - Primary Goal: ensure the sample is representative of the population of interest

Estimator of a Population Mean

- Estimator: a formula used to calculate an estimate from sample data
- The best estimator of a population mean is simply the sample mean: $\bar{Y} = \sum_{i=1}^{n} Y_i$
- The best estimator of the population variance is the sample variance: $s^2 = \frac{1}{n-1} \sum_{i=1}^{n} (Y_i \bar{Y})^2$
 - Why do we divide by n-1? up blasedness
- Note: When we say "best", we mean it is unbiased and is the most efficient of all estimators of that type

Statistics as Random Variables

- The estimators derived previously are called *sample statistics* and they themselves are random variables
- As you might imagine, different samples would yield different estimates
 - Also, any sample drawn would lead to an estimate that likely differs at least some from the unknown truth μ
- ► These statistics therefore have probability distributions (like all random variables) to describe the likelihood of obtaining one realization from the estimator

Sampling Distributions

- The sampling distribution of a statistic is the probability distribution from a sample of size n of that statistic
- This means that \bar{Y} and s^2 both have their own sampling distributions

Standard Error

- The standard deviation of a sampling distribution is referred to as the *standard error*
- The SE for the sampling distribution of the mean is $SE = \sigma / \pi$, estimated by $\hat{SE} = \hat{\sigma} / \pi$ $\approx S / \pi$

t/a & FVA (指述样本场)[2] 6 Standard deviation 大学 (多大学科学区的多种 $\frac{\sum (x_1 - x_1)^2}{\text{and ard Formula}}$ 样本高级程度特殊 样本均值的调动 Standard Eorror SE Trans SE= S/n standard szed Mean difference. 本流计算。专门部门 SMD = X1-X2 SMD = Spooled 想间表析

Sampling Distribution of \bar{Y}

- The *mean* of the sampling distribution is the unknown true parameter, μ
- The standard deviation is the standard error, as discussed
- ▶ But what is the actual *shape* of the sampling distribution?
 - This is important to know to make inferences about the statistics

The Central Limit Theorem

sample mean.
$$\frac{6}{3}$$
 $\frac{6}{3}$ $\frac{6}{3}$ $\frac{6}{3}$ $\frac{6}{3}$

- ➤ According to the *Central Limit Theorem* (CLT), the sampling distribution of the mean becomes normally distributed as the sample size increases, regardless of the shape of the original random variable
 - This means that the distribution of \bar{Y} will become normal as n increases, even if the distribution of Y is very skewed/non-normal
 - For smaller samples, we can use the t distribution instead if the population shape is assumed to be (close to) normal
 - Even for larger samples, when we are estimating the SE (almost always), the t distribution is more accurate as it accounts for the estimation of the SE
 - For smaller samples that aren't normal-looking, may have to consider other approaches (will talk about this more later)

Point Estimates vs. Interval Estimates

- We have talked about estimating the population mean μ using the sample mean Y
 - This is a point estimate
- We also mentioned how it is very likely for $\bar{Y} \neq \mu$, even if it's our best guess
- In order to *quantify the uncertainty* around our estimate, we can calculate an interval estimate instead
 - i.e., a Confidence Interval
 - $CI = point estimate \pm critical value * SE$
 - where the critical value depends on the assumed distribution and the confidence level to.975, df
- For a 95% CI assuming normality, the critical value is $z_{0.95} = 1.96$. For a one-sample CI like this, we usually use the t distribution

 - critical values instead, since we are always estimating the SE

Estimation More Broadly

- We can estimate many other things aside from the mean of a population, but we are using this as our starting point example
 - ➤ We will refer back to the ideas learned from this lecture as we estimate other quantities throughout the course
- So far, we have talked about point and interval estimation, but not inference, which is very related
 - This will come up in the next lecture!

