

CLAIMS

What is claimed is:

1 1. A method for securing communications between a first device and a
2 second device, the method comprising:

3 mutually authenticating the first device and the second device;
4 generating an integrity check value by the first device; and
5 sending the integrity check value with a message from the first device to the
6 second device.

1 2. The method of claim 1, wherein the generating of the integrity check value
2 comprises:

3 extracting a selected number of bits from a pseudo-random data stream for use as
4 coefficients of a matrix having M rows and N columns; and
5 performing operations on both contents of the message and the coefficients of the
6 matrix to generate the integrity check value.

1 3. The method of claim 2, wherein prior to extracting the selected number of
2 bits from the pseudo-random data stream, the method comprises:

3 inputting keying material into a cipher engine performing operations in
4 accordance with a predetermined stream cipher; and
5 producing the pseudo-random data stream by the cipher engine.

1 4. The method of claim 3, wherein the predetermined stream cipher is Data
2 Encryption Standard in counter mode.

1 5. The method of claim 2, wherein the extracting of the selected number of
2 bits includes

3 assigning M bits from the selected number of bits as a first column of the matrix;
4 and

5 reiteratively assigning M unique bits from a remainder of the selected number of
6 bits for each remaining column of the matrix.

1 6. The method of claim 5, wherein the performing of the operations includes
2 performing arithmetic operations on M bits from the content of the message and
3 corresponding coefficients of the first column of the matrix to produce a first plurality of
4 resultant values; and

5 performing exclusive OR operations between each of the first plurality of
6 resultant values to produce a bit of the integrity check value.

1 7. The method of claim 6, wherein the arithmetic operations are bitwise
2 multiplication operations.

1 8. The method of claim 6, wherein the performing of the operations
2 further includes

3 performing arithmetic operations on the M bits from the content of the message
4 with corresponding coefficients for a remaining N-1 columns of the matrix to produce a
5 second plurality of resultant values associated with each of the remaining N-1 columns;
6 and

7 performing exclusive OR operations between resultant values associated with
8 each remaining N-1 column of the matrix to produce N-1 bits of the integrity check value.

1 9. The method of claim 2, wherein the extracting of the selected number of
2 bits includes
3 assigning M bits from the selected number of bits as a first column of the matrix;
4 and
5 reiteratively reassigning the M bits in accordance with a predetermined bit
6 rotation for columns of the matrix excluding the first column.

1 10. The method of claim 9, wherein the performing of the operations includes
2 multiplying M bits from the content of the message with corresponding
3 coefficients of the N columns of the matrix to produce a plurality of resultant values
4 associated with each coefficient of the matrix; and
5 performing exclusive OR operations on the plurality of resultant values along the
6 N columns of the matrix to produce N bits of the integrity check value.

1 11. The method of claim 10, wherein the performing of the operations further
2 includes:
3 reiteratively computing the integrity check value based on successive groups of
4 bits of the message.

1 12. A method comprising:
2 computing an integrity check value for an incoming message; and
3 determining whether the incoming message is valid by comparing the computed
4 integrity check value with a recovered integrity check value accompanying the incoming
5 message.

1 13. The method of claim 12, wherein prior to computing the integrity check
2 value, the method further comprises decrypting the incoming message.

1 14. The method of claim 13, wherein the decrypting of the incoming message
2 includes
3 producing a pseudo-random data stream;
4 extracting a predetermined number of bits from the pseudo-random data stream;
5 and
6 exclusively OR'ing portions of the incoming message with the predetermined
7 number of bits from the pseudo-random data stream.

1 15. The method of claim 12, wherein the computing of the integrity check
2 value includes
3 producing a pseudo-random data stream;
4 extracting a selected number of bits from the pseudo-random data stream to
5 generate a matrix having M rows and N columns where M and N are positive whole
6 numbers;
7 multiplying M bit values of the message with corresponding coefficients of the N
8 columns of the matrix to produce a plurality of resultant values; and
9 performing exclusive OR operations between resultant values associated with
10 each column of the matrix to produce N bits of the integrity check value.

1 16. The method of claim 14, wherein the computing of the integrity check
2 value includes
3 extracting a selected number of bits from the pseudo-random data stream to
4 generate a matrix having M rows and N columns;

5 multiplying M bit values of a first group of bits of the message with
6 corresponding coefficients of the N columns of the matrix to produce a plurality of
7 resultant values associated with each of the coefficients; and
8 performing exclusive OR operations between resultant values associated with
9 each of the N columns of the matrix to produce N bits of the integrity check value.

1 17. The method of claim 16, wherein the bits associated with the selected
2 number of bits differ from the bits associated with the predetermined number of bits.

1 18. An electronic system comprising:
2 a first device to generate an integrity check value and transmit the integrity check
3 value along with a message; and
4 a second device to determine whether the message has been altered by comparing
5 a newly generated integrity check value with the integrity check value recovered with the
6 message.

1 19. The electronic system of claim 18, wherein the first device is a processor
2 and the second device is a memory.

1 20. The electronic system of claim 18, wherein the first device includes an
2 integrity check value (ICV) generator to produce an integrity check value based on a
3 selected group of bits from a pseudo-random data stream and contents of the message.

1 21. A program loaded in internal memory for execution by a processor of an
2 electronic system, the program comprising:
3 code for authenticating both the first device and the second device;
4 code for generating an integrity check value by the first device; and

5 code for sending the integrity check value with a message from the first device to
6 the second device.