Track 4.2 Efficient Al Inference and Model Serving at Scale

EFIM: Efficient Serving of LLMs for Infilling Tasks with Improved KV Cache Reuse

<u>Tianyu Guo</u>, Hande Dong, Yichong Leng, Feng Liu, Cheater Lin, Nong Xiao and Xianwei Zhang

Time: 16:20 - 16:40, August 28th, 2025

LLMs Inference Procedure & KV Cache

- LLM Inference: Autoregressive Decoding with KV cache
 - Decoding: Next token prediction based on previous tokens
 - Autoregressive: Generate token one by one
 - KV cache: Intermediate data kept for decoding

Cross-request KV Cache Reuse

- KV cache can be shared across different requests
 - KV cache depends on the preceding tokens
 - KV cache of requests with the same preceding tokens can be shared

Infilling Tasks with LLMs

- Infilling: Fill in the missing information based on the available data
 - OpenAl Canvas, GitHub Copilot
 - Prompt consists of a prefix, a middle and a suffix
 - Most of the Context (prefix or suffix) remains consistent
 - Interactive with LLMs in multi-turns


```
def fib(n):
                                              def fib(n):
                                                                          prefix
    if n == 1:
                                                  if n == 1:
                                                                          middle
                                                      return 0
        return 0
                                                                          suffix
                                                  elif n == 2:
    elif n == 2:
        re
                                                      return 1
    else:
                                                  else:
        return fib(n-1) + fib(n-2)
                                                      return fib(n-1) + fib(n-2)
```

OpenAl Canvas: Writing and Creation

FIM: Fill In the Middle

- FIM: Prompt format used in infilling scenario
 - Dataset is split into three parts: prefix, middle and suffix
 - FIM can be used in two ways denoted as PSM and SPM
 - Middle part is the missing information in LLM inference

KV Cache Reuse Inefficiency with FIM

- Common situations in infilling tasks:
 - Prefix tail growth (50%)
 - Suffix head growth (10%)
- EFIM combines the advantage of PSM and SPM
 - EFIM greatly reduce the latency of prefill computation

Subtoken Generation Capability with LLMs

- Subtoken: Incomplete word like 'pri' in 'print'
 - Current LLMs do NOT have the ability to generate subtoken
 - Infilling LLMs can generate subtoken only after special token
 - Infilling LLMs can NOT generate remaining subtoken after initial subtoken

EFIM: Efficient FIM

- We propose EFIM, the first method to transform FIM prompt format, unblocking the potential of KV cache reuse
- To enhance subtoken generation ability, we introduce a fragment tokenization training method on data processing

From FIM to EFIM

- Session pool contains users' historical prefix and suffix
 - Not hit in the session pool: Send the prompt in PSM format
 - Hit in the session pool
 - Prefix tail growth: send the prompt in EFIM format
 - Suffix head growth: send the prompt in PSM format

Fragment Tokenization Training Method

Data processing diagram between FIM and fragment tokenization

Data processing example between FIM and fragment tokenization

```
Fragment tokenization
                       prefix
def fib(n):
                                 FIM
                                             de f fib(n):
    if n == 1:
                                                 if n == 1:
                       middle
        return 0
                                                      retu rn 0
                       suffix
    elif n == 2:
                                                 elif n == 2:
        return 1
                                                      re turn 1
    else:
                                                 else:
        return fib(n-1) + fib(n-2)
                                                               ib(n-1) + fib (n-2)
                                                     return f
```

Experimental Methodology

- LLMs: Deepseek-coder-6.7B and Llama3.1-8B
- Benchmarks: HumanEval Infilling and CrossCodeEval (CCEval)
- Metrics
 - Quality: Pass@1, Exact Match (EM) and Edit Similarity (ES)
 - Speed: Latency, Throughput, Reuse Rate
- Schemes
 - Quality: oLLM/eLLM with FIM/EFIM
 - Speed: PSM w/o reuse, PSM w/ reuse, EFIM w/ reuse

Infilling and Subtoken Generation Ability

- Single-line (S) and multi-line (M) in HumanEval do NOT introduce subtoken
 - Performance of oLLM w/FIM (1st line) and oLLM w/EFIM (2nd line) remains close
- Random-span (R) in HumanEval and CCEval contains subtoken
 - Performance of oLLM w/EFIM (2nd line) drops a lot (underlined number)
- Fragment tokenization makes eLLM own subtoken generation ability
 - Performance of eLLM w/EFIM (4th line) and oLLM w/FIM (1st line) remains close

Benchmark	HumanEval Infilling						CCEval			
\mathbf{Model}	Deepseek			${f Llama}$			Deepseek		Llama	
	S	M	R	S	M	R	EM	ES	EM	ES
oLLM w/FIM	89.64	61.96	76.77	87.32	56.90	62.99	33.51	78.43	29.40	71.30
oLLM $w/EFIM$	90.03	62.25	52.44	86.35	56.54	38.35	11.19	<u>71.04</u>	<u>6.82</u>	53.44
$\mathrm{eLLM}\ \mathrm{w/FIM}$	88.48	61.62	75.12	87.12	57.73	67.20	33.27	79.24	31.51	71.15
eLLM $w/EFIM$	89.64	62.82	75.61	86.83	56.35	64.27	32.51	78.91	30.91	70.48

Inference Speedup

- EFIM achieves 52% latency reduction and 98% throughput increase
 - EFIM achieves 70%+ KV cache reuse rate far beyond 20%+ of FIM

Summary

- We identify that the efficiency of LLM inference for infilling tasks is hindered by the FIM format, as the KV cache of the prefix/suffix part is frequently invalidated by the growing suffix/prefix
- We propose EFIM, the first method to transform the FIM prompt format, unlocking the potential of KV cache reuse
- To enhance subtoken generation ability, we introduce a fragment tokenization training method on data processing
- Experiments on two pretrained LLMs show that EFIM reduces average latency by 52% and increases throughput by 98%, while preserving model capability

EFIM: Efficient Serving of LLMs for Infilling Tasks with Improved KV Cache Reuse

instinctguo/deepseek-coder-6.7b-enhance instinctguo/llama3.1-8b-train instinctguo/llama3.1-8b-enhance

<u>Tianyu Guo</u>, Hande Dong, Yichong Leng, Feng Liu, Cheater Lin, Nong Xiao and Xianwei Zhang

Thank You!

