Theoretical Computer Science Tutorial Week 13

Prof. Andrey Frolov

nnoborie

Agenda

Turing Machine

- TIME
- SPACE

Turing Machine

Turing thesis (Church–Turing thesis)

A function on the natural numbers can be calculated by an effective method if and only if it is computable by a Turing machine.

Turing Machine

Definition

A universal Turing machine (UTM) is a Turing machine that simulates an arbitrary Turing machine on arbitrary input.

Fact

A universal TM exists.

HALT-problem

Halting problem

Let T be a TM.

HALT is the set of all strings s such that

$$TIME(T, s) \neq \infty$$
.

Fact

HALT is a undecidable problem.

Rice theorem

Rice theorem

If P is a non-trivial property and is recognized by Turing machine M, then the language holding the property $L_p = \{\langle M \rangle \mid L(M) \in P\}$ is undecidable.

Agenda

Turing Machine

- TIME
- SPACE

Configuration

Definition

A configuration c of a TM with k-tapes is the following (k+2)-tuple:

$$c = \langle q, x \uparrow y, \alpha_1 \uparrow \beta_1, \dots, \alpha_k \uparrow \beta_k \rangle$$

where

- $q \in Q$
- $x \in (\Sigma \cup \{_\})^*$, $y = y' \cdot _$ with $y' \in \Sigma^*$
- $\alpha_r \in (\Gamma \cup \{_\})^*$ and $\beta'_r = {\beta'}_r \cdot _$ with $\beta'_r \in \Gamma^*$ and $1 \le r \le k$
- $\bullet \ \uparrow \not\in \Sigma \cup \Gamma$

Example: Language A^nB^n

$$\langle q_0, \uparrow aabb, \uparrow Z_0 \rangle \vdash \langle q_1, \uparrow aabb, Z_0 \uparrow \rangle \vdash \langle q_1, a \uparrow abb, Z_0 M \uparrow \rangle \vdash \langle q_1, aa \uparrow bb, Z_0 M M \uparrow \rangle \vdash \langle q_2, aa \uparrow bb, Z_0 M \uparrow M \rangle \vdash \langle q_2, aab \uparrow b, Z_0 \uparrow M M \rangle \vdash \langle q_2, aabb \uparrow, \uparrow Z_0 M M \rangle \vdash \langle q_F, aabb \uparrow, \uparrow Z_0 M M \rangle$$

$$c_0 \vdash c_1 \vdash c_2 \vdash c_3 \vdash c_4 \vdash c_5 \vdash c_6 \vdash c_7 = c_F$$

$$c_0 \vdash^* c_F$$

Acceptance Condition

If
$$T=\langle Q,\Sigma,\Gamma,\delta,q_0,Z_0,F
angle$$
 is a TM and $s\in\Sigma^*$, s is accepted by $T,$ if $c_0\vdash^*c_F$

where

- ① c_0 is an initial configuration defined as $c_0 = \langle q_0, \uparrow s, \uparrow Z_0, \dots, \uparrow Z_0 \rangle$ where
 - $\bullet \ \ x=\epsilon$
 - $y = s_{\perp}$
 - $\alpha_r = \epsilon$, $\beta_r = Z_0$, for any $1 \le r \le k$.
- ② c_F is a final configuration defined as $c_F = \langle q, s' \uparrow y, \alpha_1 \uparrow \beta_1, \dots, \alpha_k \uparrow \beta_k \rangle$ where
 - q ∈ F
 - x = s'

Definition

Let $T = \langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ be a TM, s be a given string. The length of sequence $c_0 \vdash^* c_F$ is called a **time**-function:

Note that if c_F does not exist then $TIME(T,s) = \infty$ (indefinitely).

Definition

Let f be a function, c be a constant. A TM is called f-time-computable, if

$$TIME(T,s) \leq c \cdot f(|s|)$$

for any s.

Definition

Let T be a deterministic TM. A TM is called P-time-computable (computable in polynomial time, polynomially computable etc.),

if it is x^n -time-computable for some n.

Definition

Let T be a non-deterministic TM. A TM is called

NP-time-computable,

if it is x^n -time-computable for some n.

Fact

$$P\subseteq \mathit{NP}$$

Problem

$$P = NP$$
?

Definition

Let T be a deterministic TM. A TM is called

EXP-time-computable,

if it is 2^{x^n} -time-computable for some n.

Fact

$$P \subseteq NP \subseteq EXP$$

NP-hard problems

Satisfiability problem (SAT)

For Boolean formula, are there variables where the formula is true?

$$a\&(\neg b\lor c)$$

NP-hard problems

From graph theory

- Hamiltonian path problem
- Graph coloring problem
- The travelling salesman problem

NP-hard problems

RegExp

Simplifications of RegExp

$$a^*bb^*a((a \mid b)b^*a \mid \epsilon)^*(a \mid b)b^* \mid a^*bb^* = a^*bb^*(a(a \mid b)b^*)^*$$

Agenda

Turing Machine

- TIME
- SPACE

Definition

Let $T=\langle Q, \Sigma, \Gamma, \delta, q_0, Z_0, F \rangle$ be a TM, s be a given string. The working space in tape for s is a **SPACE**-function:

Definition

Let f be a function, c be a constant. A TM is called f-space-computable, if

$$SPACE(T, s) \le c \cdot f(|s|)$$

for any s.

Definition

Let T be a deterministic TM. A TM is called *PSPACE*-computable, if it is x^n -space-computable for some n.

Definition

Let T be a non-deterministic TM. A TM is called NPSPACE-time-computable,

if it is x^n -space-computable for some n.

Theorem (Savitch, 1970)

$$PSPACE = NPSPACE$$

Fact

$$P \subseteq NP \subseteq PSPACE \subseteq EXP$$

Definition

A ND Turing machine that uses only the tape space occupied by the input is called a linear-bounded automaton (LBA).

Grammars, languages and automata

Chomsky hierarchy	Grammars	Languages	Minimal automaton
Туре-0	Unrestricted	Recursively enumerable	Turing machine
Type-1	Context-sensitive	Context-sensitive	LBA
Type-2	Context-free	Context-free	NDPDA
Туре-3	Regular	Regular	FSA

Thank you for your attention!