MA 523: Homework 5

Carlos Salinas

October 4, 2016

CARLOS SALINAS PROBLEM 5.1

Problem 5.1

Prove that Laplace's equation $\Delta u = 0$ is rotation invariant; that is, if O is an orthogonal $n \times n$ matrix and we define $v(x) := u(Ox), x \in \mathbb{R}^n$, then $\Delta v = 0$.

SOLUTION. Let

$$O = \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$

be an orthogonal $n \times n$ matrix. We will show that $\Delta v = 0$, where v(x) = u(Ox).

First, let us compute the gradient of v:

$$Dv(x) = Du(Ox)$$

$$= Du(a_{11}x_1 + \dots + a_{1n}x_n, \dots, a_{n1}x_1 + \dots + a_{nn}x_n)$$

$$= \left(\sum_{j=1}^n a_{j1}u_{x_j}, \dots, \sum_{j=1}^n a_{jn}u_{x_j}\right)$$

$$= O^T Du(x).$$

Lastly, we compute the divergence of Dv:

$$\Delta v(x) = \operatorname{div} Dv(x)$$

$$= \operatorname{div} \left(\sum_{j=1}^{n} a_{j1} u_{x_j}, \dots, \sum_{j=1}^{n} a_{jn} u_{x_j} \right).$$

Here the partial derivatives become unwieldy so we will first examine the partial $\frac{\partial}{\partial x_1}$ of the first term and proceed from there. In this case,

$$\frac{\partial}{\partial x_1} \sum_{j=1}^n a_{j1} u_{x_j} = a_{11} \frac{\partial}{\partial x_1} u_{x_1} + a_{12} \frac{\partial}{\partial x_1} u_{x_2} + \dots + a_{1n} \frac{\partial}{\partial x_1} u_{x_n}$$

$$= a_{11} \left(a_{11} u_{x_1 x_1} + a_{21} u_{x_1 x_2} + \dots + a_{n1} u_{x_1 x_n} \right)$$

$$+ \dots + a_{1n} \left(a_{11} u_{x_1 x_n} + a_{21} u_{x_2 x_n} + \dots + a_{n1} u_{x_n x_n} \right).$$

Similarly, taking the $k^{\rm th}$ partial of the $k^{\rm th}$ entry of Dv, we have

$$\frac{\partial}{\partial x_k} \sum_{j=1}^n a_{jk} u_{x_j} = a_{k1} \left(a_{1k} u_{x_1 x_1} + \dots + a_{nk} u_{x_1 x_n} \right) + \dots + a_{kn} \left(a_{1k} u_{x_1 x_n} + \dots + a_{nk} u_{x_n x_n} \right).$$
(5.1)

Now, since O is orthogonal, we have

$$O^{T}O = \begin{bmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ \vdots & \vdots & \ddots & \vdots \\ a_{11} & a_{2n} & \dots & a_{nn} \end{bmatrix} \begin{bmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{bmatrix}$$
$$= \begin{bmatrix} a_{11}^{2} + \dots + a_{nn}^{2} \\ \vdots & \vdots & \ddots & \vdots \end{bmatrix}$$

MA 523: Homework 5 -1 of 3-

CARLOS SALINAS PROBLEM 5.2

Problem 5.2

Let n=2 and U be the halfplane $\{x_2>0\}$. Prove that

$$\sup_{U} u = \sup_{\partial U} u$$

for $u \in C^2(U) \cap C(\bar{U})$ which are harmonic in U under the additional assumption that u is bounded from above in \bar{U} . (The additional assumption is needed to exclude examples like $u=x_2$.) [Hint: Take for $\varepsilon > 0$ the harmonic function

$$u(x_1, x_2) + \varepsilon \ln \sqrt{x_1^2 + (x_2 + 1)^2}.$$

Apply the maximum principle to a region $\{x_1^2 + (x_2 + 1)^2 < a_2, x_2 > 0\}$ with large a. Let $\varepsilon \to 0$.]

Solution.

CARLOS SALINAS PROBLEM 5.3

Problem 5.3

Let $U \subset \mathbb{R}^n$ be an open set. We say $v \in C^2(U)$ is subharmonic if

$$-\Delta v \le 0$$
 in U .

(a) Let $\varphi \colon \mathbb{R}^m \to \mathbb{R}$ be smooth and convex. Assume u^1, \dots, u^m are harmonic in U and

$$v := \varphi(u_1, \dots, u_m).$$

Prove v is sub harmonic.

[Hint: Convexity for a smooth function $\varphi(z)$ is equivalent to $\sum_{j,k=1}^{m} \varphi_{z_j,z_k}(z)\xi_j\xi_j \geq 0$ for any $\xi \in \mathbb{R}^m$.]

(b) Prove $v := |Du|^2$ is subharmonic, whenever u is harmonic. (Assume that harmonic functions are C^{∞} .)

SOLUTION.