Package 'ELPASO'

February 21, 2022

1 Columy 21, 2022	
Type Package	
Title Ensemble LASSO for Phylogenetic Analysis of Shifts with OU	
Version 0.1.0	
Author Wensha Zhang [aut], Tobias Kenney [ctb], Lam Si Tung Ho [ctb]	
Maintainer Wensha Zhang <wn209685@dal.ca></wn209685@dal.ca>	
Description Provides tool functions for phylognetic analysis of evolutionary shifts. It uses OU process and e semble LASSO model to detect the incontinuous changes along during the evolution process.	n-
License GPL (>= 3)	
Encoding UTF-8	
LazyData true	
Depends R (>= 3.6.0), glmnet, ncvreg, phylolm, PIGShift, psych	
Imports 11ou	
Remotes khabbazian/l1ou	
RoxygenNote 7.1.2	
R topics documented: backward_selection combine_ranking_seqs ELPASO forward_backward_selection forward_selection get_prediction_likelihood get_ranking_seqs get_test_data	2 2 3 4 5 6 7 8
Index	9

backward_selection

 $backward_selection$

Description

This function provides forward selection given a variable ranking sequence

Usage

```
backward_selection(
  tree,
  Υ,
  seq,
  increasing = TRUE,
  criterion = c("BIC", "pBIC", "pBICess", "AICc", "mBIC"),
  stop = TRUE,
  maxShifts = 10,
  opt
)
```

Arguments tree

tree	ultrametric tree of class phylo with branch lengths, and edges in postorder	
Υ	Y trait vector without missing entries	
seq	A vector gives that selection order of the shifts. (For example, the ensembled rank)	
increasing	If a smaller value in param seq means more important variable, increasing = TRUE, vice versa.	
criterion	the model selection criterion	
stop	TRUE/FALSE. If the selection process will be stopped if score stops decreasing	
maxShifts	the maximum number of shifts	
opt	options for l1ou functions	

Value

s.c	The position of shifts
score	The criterion score

```
combine_ranking_seqs
```

Description

ensemble the ranking sequnces with median/arith.mean/geom.mean/quantile

Usage

```
combine_ranking_seqs(rank_seqs, method = "quantile", q = 0.25)
```

ELPASO 3

Arguments

rank_seqs A ranking sequence of all the variables

method The ensemble method "median"/"arith.mean"/"geom.mean"/"quantile"

q Required only when method is "quantile", specify the quantile value

Value

A vector (length is number of potential shift postions). The ensembled ranking sequence

ELPASO ELPASO

Description

This function is the main function of the package, the inputs of the function are the trait vector and phylogenetic tree, the outputs are the estimated positions and change values of the shifts. And the results are based on ensemble variable selection.

Usage

```
ELPASO(
    tree,
    Y,
    criterion = c("BIC", "pBIC"),
    maxShifts = 20,
    nsamples = 200,
    xtype = c("simpX", "orgX"),
    penalty = c("LASSO", "SCAD"),
    ensemble_method = "quantile",
    q = 0.25
)
```

lation results

Arguments

ultrametric tree of class phylo with branch lengths, and edges in postorder tree Υ Y trait vector without missing entries the criterion for model selection, "BIC"(default), "pBIC" criterion maxShifts The max number of shifts. Integer. nsamples The number subsamples are generated. Integer. type of design matrix, 'simpX' (simple design matrix, default) or 'orgX' (original xtype design matrix) penalty Penalty function to be applied. Either "LASSO"(default) or "SCAD" ensemble_method, the way to ensemble the ranking seqs. 'median','quantile'(default),'arith.mean','geom.mean' if using "quantile" as the ensemble method, specify the quantile value in this q, parameter. The default value is 0.25, which is a good choice given by the simu-

Value

Y input trait vector/matrix.

tree input tree.

ensemble_rank The final ensemble rank of shift positions

shifts estimated shift positions, i.e. vector of indices of edges where the estimated

shifts occur.

shift.means estimates change of the expectation of the shift values

nShifts estimated number of shifts.

alpha maximum likelihood estimate of the adaptation rate α sigma2 maximum likelihood estimate of the variance rate σ^2

fitted.values fitted values, i.e. estimated trait means.

residuals residuals.

logLik log likelihood of given model criterion The criterion for model selection

score information criterion value of the estimated shift configuration.

penalty Penalty function to be applied

Examples

```
require(11ou)
data('lizard.tree')
data('lizard.traits')
tree = lizard.tree
Y = as.vector(lizard.traits[,1])
ELMODEL = ELPASO(tree,Y)
```

forward_backward_selection

forward_backward_selection

Description

This function provides forward+bacward selection given a variable ranking sequence

Usage

```
forward_backward_selection(
   tree,
   Y,
   seq,
   increasing = TRUE,
   criterions,
   stops,
   maxShifts,
   direction = c("same", "opposite"),
   opt
)
```

forward_selection 5

Arguments

tree	ultrametric tree of class phylo with branch lengths, and edges in postorder
Υ	Y trait vector without missing entries
seq	A vector gives that selection order of the shifts. (For example, the ensembled rank)
increasing	If a smaller value in param seq means more important variable, increasing $=$ TRUE, vice versa.
criterions	A two-element vector. The model selection criterions for forward selection and backward selection respectively
stops	A two-element vector. Each element is TRUE/FALSE. If the selection process will be stopped if score stops decreasing
maxShifts	the maximum number of shifts
direction	'same' (default)/'opposite'. If the forward selection and the backward selection are produced in the same direction.
opt	options for l1ou functions

Value

s.c	The position of shifts
score	The criterion score

forward_selection forward_selection

Description

This function provides forward selection given a variable ranking sequence

Usage

```
forward_selection(
   tree,
   Y,
   seq,
   increasing = TRUE,
   criterion = c("BIC", "pBIC", "pBICess", "AICc", "mBIC"),
   stop = TRUE,
   maxShifts = 20,
   opt
)
```

Arguments

tree ultrametric tree of class phylo with branch lengths, and edges in postorder

Y Y trait vector without missing entries

seq A vector gives that selection order of the shifts. (For example, the ensembled rank)

increasing If a smaller value in param seq means more important variable, increasing =

TRUE, vice versa.

criterion the model selection criterion

stop TRUE/FALSE. If the selection process will be stopped if score stops decreasing

maxShifts the maximum number of shifts opt options for l1ou functions

Value

s.c The position of shifts score The criterion score

```
get_prediction_likelihood
```

get_prediction_likelihood

Description

This function calculates the prediction log likelihood to evaluate the accuracy of estimates

Usage

```
get_prediction_likelihood(
   tree,
   Y,
   selected_variable,
   alpha,
   test_data,
   xtype = c("simpX", "orgX")
)
```

Arguments

tree ultrametric tree of class phylo with branch lengths, and edges in postorder

Y Y trait vector without missing entries

selected_variable

The variables selected

alpha The selective rate

test_data A bunch of testing data given by the true model

xtype the type of design matrix

Value

The prediction log likelihood value

get_ranking_seqs 7

king_seqs
king_seqs

Description

This function generates subsamples of a given combination of tree and trait values, applys LASSO/SCAD on each subsample, and produces ranking sequence of each subsample

Usage

```
get_ranking_seqs(
    tree,
    Y,
    nsamples,
    size,
    replace = FALSE,
    alpha,
    sigma2,
    sigma2_error = 0,
    xtype = c("simpX", "orgX"),
    penalty = c("LASSO", "SCAD")
)
```

Arguments

tree	ultrametric tree of class phylo with branch lengths, and edges in postorder
Υ	Y trait vector without missing entries
nsamples	The number subsamples are generated. Integer.
size	The size of each subsample. Integer.
replace	if replace while subsampling, TRUE/FALSE(default)
alpha	the adaption rate (known or estimated)
sigma2	the variance of OU model (known or estimated)
sigma2_error	the variance of gaussian measurement error
xtype	type of design matrix, 'simp X '(simple design matrix, default) or 'org X '(original design matrix)
penalty	Penalty function to be applied. Either "LASSO"(default) or "SCAD"

Value

A matrix, each row is a ranking sequence of variables, each column represents the rank sets of each variable

8 get_test_data

Description

This function generates a bunch of testing data given the tree and true shifts

Usage

```
get_test_data(
    tree,
    true_variable,
    beta,
    alpha,
    n_test,
    xtype = c("simpX", "orgX")
)
```

Arguments

tree ultrametric tree of class phylo with branch lengths, and edges in postorder

true_variable The true shifts

beta The coefficients of shifts

alpha The selective rate

n_test The number of testing datasetsxtype the type of design matrix

Value

A matrix, each row is a testing dataset for the true model

Index

```
backward_selection, 2

combine_ranking_seqs, 2

ELPASO, 3

forward_backward_selection, 4
forward_selection, 5

get_prediction_likelihood, 6
get_ranking_seqs, 7
get_test_data, 8
```