Image Matching: Correlation COMPSCI 773 S1C

A/Prof. Patrice Delmas and Prof. Georgy Gimel'farb

① Correlation

Outline

- 2 D correlation
- § Faster matching
- 4 LS correlation (optional)
- **6** Concurrent matching (optional)

Correlation Matching: A Least Squares Technique

Given two time or spatial series of 1D signals

$$[\{t_i = t(x_i), f_i = f(x_i) : i = 1, \dots, n\}; x_1 < \dots < x_n]$$

find a "constant contrast b – offset a" transformation, f(x) = a + bt(x), minimising the sum of squared deviations

$$L(a,b) = \sum_{i=1}^{n} (f(x_i) - (a + bt(x_i)))^2 \equiv \sum_{i=1}^{n} (f_i - (a + bt_i))^2$$

	i	x_i	t_i	f_i
	1	0	0.5	-0.50
	2	0.1	1.5	0.00
	3	0.2	3.0	0.75
	4	0.3	1.0	-0.25
	5	0.4	0.0	-0.75
	6	0.5	-1.0	-1.25
	7	0.6	-3.0	-2.25
	8	0.7	-1.5	-1.50
	9	0.8	-0.5	-1.00
_		a		

Minimiser (a^*, b^*) for Matching Score L(a, b)

$$L(a,b) = \sum_{i=1}^{n} (f_i - (a+bt_i))^2$$

$$\equiv S_{ff} - 2aS_f - 2bS_{ft} + a^2n + 2abS_t + b^2S_{tt}$$

where

$$S_{ff} = \sum_{i=1}^{n} f_i^2; \quad S_{ft} = \sum_{i=1}^{n} f_i t_i; \quad S_{tt} = \sum_{i=1}^{n} t_i^2;$$

 $S_t = \sum_{i=1}^{n} t_i; \quad S_f = \sum_{i=1}^{n} f_i$

Normal equations:

$$\frac{\partial L}{\partial a} = -2S_f + 2an + 2bS_t = 0 \Rightarrow an + bS_t = S_f$$

$$\frac{\partial L}{\partial b} = -2S_{ft} + 2aS_t + 2bS_{tt} = 0 \Rightarrow aS_t + bS_{tt} = S_{ft}$$

$$\Rightarrow \begin{bmatrix} n & S_t \\ S_t & S_{tt} \end{bmatrix} \begin{bmatrix} a \\ b \end{bmatrix} = \begin{bmatrix} S_f \\ S_{ft} \end{bmatrix}$$

Solving normal equations:

$$\begin{bmatrix} a^* \\ b^* \end{bmatrix} = \frac{1}{nS_{tt} - S_t^2} \begin{bmatrix} S_{tt} & -S_t \\ -S_t & n \end{bmatrix} \begin{bmatrix} S_f \\ S_{ft} \end{bmatrix}$$

$$a^* = \frac{1}{nS_{tt} - S_t^2} (S_{tt}S_f - S_tS_{ft})$$

$$b^* = \frac{1}{nS_{tt} - S_t^2} (-S_tS_f + nS_{ft})$$

$$\Rightarrow a^* = \frac{S_f}{n} - b^* \cdot \frac{S_t}{n} \Rightarrow f^*(x) = \frac{S_f}{n} + b^* \cdot (t(x) - \frac{S_t}{n})$$

Minimum sum of squared deviations $(\bar{f} = \frac{S_f}{n}; \bar{t} = \frac{S_t}{n}$ – mean signals):

$$L(a^*, b^*) = \sum_{i=1}^n (f(x_i) - \bar{f})^2 - \frac{\left(\sum_{i=1}^n (f(x_i) - \bar{f}) (t(x_i) - \bar{t})\right)^2}{\sum_{i=1}^n (t(x_i) - \bar{t})^2}$$

Correlation Matching

Minimum sum of squared deviations, or matching distance

$$D_{ft}^* \equiv L(a^*, b^*) = n \left(\sigma_f^2 - \frac{\sigma_{ft}^2}{\sigma_t^2} \right) \equiv n \sigma_f^2 \left(1 - C_{ft}^2 \right)$$

where

- $\sigma_f^2 = \frac{1}{n} \sum_{i=1}^n \left(f(x_i) \bar{f} \right)^2$ the variance of the signals f
- $\sigma_t^2 = \frac{1}{n} \sum_{i=1}^n (t(x_i) \bar{t})^2$ the variance of the signals t
- $\bar{f} = \frac{S_f}{n}$ and $\bar{t} = \frac{S_t}{n}$ the mean signals f and t
- $\sigma_{ft}=rac{1}{n}\sum_{i=1}^{n}\left(f(x_i)-ar{f}
 ight)(t(x_i)-ar{t})$ the signal covariance
- $C_{ft} = \frac{\sigma_{ft}}{\sigma_{ft}}$; $-1 \le C_{ft} \le 1$ the correlation (matching score)

Correlation Matching: An Example

$$\Rightarrow C_{ft} = \frac{\frac{25}{9}}{\frac{2.5}{2.5}} = 1; \ D_{ft}^* = 9\frac{6.25}{9}(1-1^2) = 0$$

Correlation Matching: Probability Model of Signals

Signals f as a transformed template t corrupted by a centre-symmetric independent random noise r (e.g. the Gaussian noise)

For $i = 1, \ldots, n$,

$$f_i = a + bt_i + r_i \implies p(r_i) = \frac{1}{\sqrt{2\pi}\sigma} \exp\left(-\frac{(f_i - (a + bt_i))^2}{2\sigma^2}\right)$$

$$\Rightarrow P_{a,b}(f|t) = \prod_{i=1}^{n} p(r_i) = \frac{1}{(2\pi)^{n/2} \sigma^n} \exp\left(-\frac{\sum_{i=1}^{n} (f_i - (a + bt_i))^2}{2\sigma^2}\right)$$

Maximum likelihood of t for f in transforming parameters a and b results in the correlation matching:

$$\max_{a,b} P_{a,b}(f|t) \Rightarrow \min_{a,b} \sum_{i=1}^{n} (f_i - (a + bt_i))^2$$

Search for the Best Matching Position

- Matching a template $t=[t_i: i=1,\ldots,n]$ to a much longer data sequence $f=[f_j: j=1,\ldots,N]; \ N>n$
- Goal position j^* maximises the correlation C_{ft} (or minimises the distance D_{ft}) between t and the segment $[f_{j+i}:\ i=1,\ldots,n]$ of f

2D Correlation

2D $m \times n$ template t and $M \times N$ image f; m < M; n < N:

$$t = [t_{i'j'}: i' = 0, \dots, n-1; j' = 0, \dots, m-1]$$

 $f = [f_{ij}: i = 0, \dots, N-1; j = 0, \dots, M-1]$

An example:

Eye template t 32 \times 18 pixels: Facial image f 200 \times 200 pixels:

Moving window matching:

Search for a window position (i^*, j^*) in f such that maximises the correlation C_{ft} (minimises the distance D_{ft}) between the template t and the underlying region of the image f in the moving window

f

2D Correlation

Template $t: \mathbf{W} \to \mathbf{Q}$

• $\mathbf{W} = ((i',j'):i'=0,\ldots,n-1;\ j'=0,\ldots,m-1)$ – a fixed-size rectangular window of size $m\times n$ supporting the template

Target $f: \mathbf{R} \to \mathbf{Q}$

• $\mathbf{R} = ((i,j): i=0,1,\dots,N-1;\ j=0,1,\dots,M-1)$ – a fixed-size arithmetic lattice supporting the target

2D Correlation

Outline

Distance between the template t and the moving window in position $\left(i,j\right)$ in the image f:

$$D_{ij} = \underbrace{\sum_{i'=0}^{n-1} \sum_{j'=0}^{m-1} \tilde{f}_{i+i',j+j'}^{2}}_{\sigma_{f:[ij]}^{2}} - \underbrace{\left(\sum_{i'=0}^{n-1} \sum_{j'=0}^{m-1} \tilde{f}_{i+i',j+j'} \tilde{t}_{i',j'}\right)^{2}}_{\sum_{i=1}^{n} \tilde{t}_{i',j'}^{2}}\right\} \frac{\sigma_{ft:[ij]}^{2}}{\sigma_{t}^{2}}$$

- Centred signals: $\tilde{f}_{i+i',j+j'}=f_{i+i',j+j'}-\bar{f}_{[ij]}$ and $\tilde{t}_{i',j'}=t_{i',j'}-\bar{t}$
- Mean for the moving window: $\bar{f}_{[ij]} = \frac{1}{mn} \sum_{i'=0}^{n-1} \sum_{j'=0}^{m-1} f_{i+i',j+j'}$
- Variance for the window: $\sigma^2_{f:[ij]}=\frac{1}{mn}\sum\limits_{i'=0}^{n-1}\sum\limits_{j'=0}^{m-1}\left(f_{i+i',j+j'}-\bar{f}_{[ij]}\right)^2$

- Fixed template mean: $\bar{t} = \frac{1}{mn} \sum_{i'=0}^{n-1} \sum_{i'=0}^{m-1} t_{i',j'}$
- Fixed template variance: $\sigma_t^2 = \frac{1}{mn} \sum_{i'=0}^{n-1} \sum_{j'=0}^{m-1} \left(t_{i',j'} \bar{t}\right)^2$
- Window–template covariance:

$$\sigma_{ft:[ij]} = \frac{1}{mn} \sum_{i'=0}^{n-1} \sum_{j'=0}^{m-1} \left(f_{i+i',j+j'} - \bar{f}_{[ij]} \right) \left(t_{i',j'} - \bar{t} \right)$$

- Correlation matching: $C_{ft:[ij]} = \frac{\sigma_{ft:[ij]}}{\sigma_{f:[ij]}\sigma_t}$; $-1 \le C_{ft:[ij]} \le 1$
 - Distance: $D^*_{ft:[ij]} \equiv L(a^*,b^*) = mn\sigma^2_{f:[ij]} \left(1-C^2_{ft:[ij]}\right)$

Outline Correlation **2D correlation** Faster matching LS correlation Concurrent matching

An Aerial Stereo Pair

Note road traffic differences due to acquisition at different time; occluded walls of high buildings; varying contrast / brightness, etc.

Noise Models to Find the Matching Score

• f(i+i',j+j')=t(i',j')+r(i',j'); independent Gaussian noise r: Sum of squared distances

$$SSD(i,j) = \sum_{(i',j') \in \mathbf{W}} (f(i+i',j+j') - t(i',j')^{2})$$

• f(i+i',j+j') = t(i',j') + r(i',j'); independent symmetric noise r: Sum of absolute distances

$$SAD(i,j) = \sum_{(i',j') \in \mathbf{W}} |f(i+i',j+j') - t(i',j')|$$

• Uniform contrast/offset f(i+i',j+j')=a+bt(i',j')+r(i',j'); independent Gaussian noise r:

Cross-correlation
$$C_{ft:[ij]}$$

• Varying contrast/offset b(i, j); a(i, j): Numerical distance minimisation (e.g. by quadratic programming)

Faster Implementation of Window Based Operations

Accumulator of pixel-wise values:

Outline

$$Q_{x,y} = \sum_{i=0}^{x} \sum_{j=0}^{y} q_{i,j}; \ (x,y) \in \mathbf{R}$$

Faster Implementation of Window Based Operations

Sum of values in a window: $U_{x,y;n,m} = \sum_{i=x-n+1}^\infty \sum_{j=y-m+1}^y q_{i,j}$ $Q_{x,y}$ $Q_{x-n,y-m}$ $Q_{x,y-m}$

Using the accumulator:

Outline

$$U_{x,y;n,m} = Q_{x,y} - Q_{x-n,y} - Q_{x,y-m} + Q_{x-n,y-m}$$

Complexity of fast computation: O(MN)

• $MN = |\mathbf{R}|$ – the image size

Complexity of straightforward computation: O(mnMN)

- $mn = |\mathbf{W}|$ the window size
- Even for a small window 11×11 pixels: ≈ 120 times faster!

Accumulating Window Sums

Image 10×10 and a window 5×5 i A										Accumulator 10×10										
2	2	1	0	0	0	0	1	1	2	Γ	2	4	5	5	5	5	5	6	7	9
2	2	1	0	0	0	0	1	2	1	1	4	8	10	10	10	10	10	12	15	18
2	2	1	0	0	0	0	2	1	1	1	6	12	15	15	15	15	15	19	23	27
2	2	1	0	0	0	0	1	2	1	1	8	16	20	20	20	20	20	25	31	36
2	2	1	0	0	0	0	1	1	2	l	10	20	25	25	25	25	25	31	38	45
2	2	1	0	0	0	0	1	2	1	l	12	24	30	30	30	30	30	37	46	54
2	2	1	0	0	0	0	2	1	1	1	14	28	35	35	35	35	35	44	54	63
2	2	1	0	0	0	0	1	2	1	1	16	32	40	40	40	40	40	50	62	72
2	2	1	0	0	0	0	1	1	2	1	18	36	45	45	45	45	45	56	69	80
2	2	1	0	0	0	0	1	2	1	l	20	40	50	50	50	50	50	62	77	89
$_{j}$										•	\downarrow_y									

Straightforward summing (25 operations):

$$U_{6,5;2,2} = 0 + 0 + 0 + 1 + 2 + 0 + 0 + 0 + 1 + 1 + 0 + 0 + 0 +1 + 2 + 0 + 0 + 0 + 2 + 1 + 0 + 0 + 0 + 1 + 2 = 14$$

Summing with the use of the accumulated values (4 operations):

$$U_{6,5;2,2} = \underbrace{62}_{Q_{8,7}} - \underbrace{40}_{Q_{3,7}} - \underbrace{23}_{Q_{8,2}} + \underbrace{15}_{Q_{3,2}} = 14$$

Faster Implementation of Correlation

- To compute fast the mean signals $f_{[ij]}$: $q_{ij} \leftarrow f_{ij}$
- To compute fast the variances $\sigma_{f:[ij]}^2$:
 - $\textbf{1} \ q_{ij} \leftarrow f_{ij}^2 \ \text{to compute fast} \ S_{ff:[ij]} = \sum_{(i',j') \in \mathbf{W}} f_{i+i',j+j'}^2$
 - **2** $\sigma_{f:[ij]}^2 = \frac{1}{mn} S_{ff:[ij]} \bar{f}_{[ij]}^2$
- But the sums $S_{ft:[ij]} = \sum_{(i',j') \in \mathbf{W}} f_{i+i',j+j'} t_{i',j'}$ to compute the covariances $\sigma_{ft:[ij]}$ cannot be obtained fast so simply
- An alternative approach to use the spectral space and FFT:

$$\mathbb{F}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} f(i,j) \exp\left(-\frac{2\pi\iota}{N}u - \frac{2\pi\iota}{M}v\right)
\mathbb{T}(u,v) = \sum_{i=0}^{N-1} \sum_{j=0}^{M-1} t(i,j) \exp\left(-\frac{2\pi\iota}{N}u - \frac{2\pi\iota}{M}v\right)$$

(here and below, $\iota = \sqrt{-1}$)

Faster Implementation of Correlation

$$C_{ft:[\xi\eta]} = \sum_{i,j} f(i,j)t(i+\xi,j+\eta)$$

- Correlation in the spectral space:
 - **1** Compute the target and template spectra $\mathbb{F}(u,v)$ and $\mathbb{T}(u,v)$
 - **2** Compute the correlation spectrum $\mathbb{C}(u,v) = \mathbb{F}(u,v)\mathbb{T}^{\circ}(u,v)$
 - **3** Find the correlations $\left(C_{ft:[\xi\eta]}:\ (\xi,\eta)\in\mathbf{R}\right)$ by the inverse FFT
 - 4 Find the maximum correlation $(\xi^*, \eta^*) = \arg \max_{\xi} C_{ft:[\xi \eta]}$
- Complexity of the spectral approach: $O\left(MN(\log MN)\right)$
- The accumulator-based acceleration is used for fast correlation stereo matching (with one accumulator per disparity level)

Least Squares Correlation

Search for geometric transformations a, which maximise the cross-correlation between the template and the target:

$$C_{ft:\mathbf{a}^*} = \arg\max_{\mathbf{a}} \{C_{ft:\mathbf{a}}\}$$

Simplified case: affine transformations

$$\begin{cases} x_{\mathbf{a}} = a_1 x + a_2 y + a_3 \\ y_{\mathbf{a}} = a_4 x + a_5 y + a_6 \end{cases}$$

Combined exhaustive and directed (e.g. gradient-based) search for affine parameters:

- Exhaustion of a sparse grid of relative translations (a_3,a_6) of a fixed template t with respect to the target image f
- Directed optimisation of $C_{\mathbf{a}}$ in all $\mathbf{a} = [a_1, \dots, a_6]$ affine parameters starting from every grid point $[1, 0, a_3, 0, 1, a_6]$

Outline Correlation 2D correlation Faster matching LS correlation Concurrent matching

Affinely transformed corresponding windows

"Radius" Database (multiple images of the same scene): R. M. Haralick, 1995 M15 Transformed M28 M28 Transformed M15 M24 Transformed M25 M25 Transformed M24 M29 Transformed M30 M30 Transformed M29

Note imperfect affine transformations between M15 and M28

Soft masking of outliers

A more general noise model for the windows:

- Mixture of independent Gaussian errors and uniform outliers
- Unknown errors prior and variance
- Uniform global contrast and offset
- ⇒ Iterative cross-orrelation with soft masking of outliers

Matching a distorted image to 24 templates (MIT database)

Polynomial Contrast / Offset Deviations

Image changes under varying illumination in terms of horizontal, $\alpha_{\rm h}$, and vertical, $\alpha_{\rm v}$, angular positions of two light sources

Polynomial model: an image $p_n(x,y)t(x,y)+q_n(x,y)$ – polynomials of order n: e.g. $(a_{10}x+a_{01}y+a_{00})t(x,y)+(b_{10}x+b_{01}y+b_{00})$ for n=1 (linear deviation model)

2D correlation

Polynomial transformations of a template $\mathbf{t} = [t(x,y) : (x,y) \in \mathbf{R}]$:

$$\equiv \underbrace{(a_{10}x + a_{01}y + a_{00})t(x, y) + (b_{10}x + b_{01}y + b_{00})}_{a_{10}xt(x, y) + a_{01}yt(x, y) + a_{00}t(x, y) + b_{10}x + b_{01}y + b_{00}}$$

$$\equiv \underbrace{[a_{0}, a_{1}, a_{2}, b_{0}, b_{1}, b_{2}]}_{\mathbf{a}^{\mathsf{T}}} \underbrace{\begin{bmatrix} xt(x, y) \\ yt(x, y) \\ t(x, y) \\ x \\ y \\ 1 \end{bmatrix}}_{\mathbf{\tau}(x, y)}$$

Squared distance between an image g and the transformed template:

$$D(\mathbf{f}, \mathbf{t}) = \min_{\mathbf{a}} \sum_{(x,y) \in \mathbf{R}} (f(x,y) - \mathbf{a}^{\mathsf{T}} \boldsymbol{\tau}(x,y))^{2}$$

Least Squares Image Matching

$$\boldsymbol{\nabla}D(\mathbf{f},\mathbf{t}) = \mathbf{0} \implies \underbrace{\sum_{(x,y) \in \mathcal{R}} \boldsymbol{\tau}(x,y) \boldsymbol{\tau}^\mathsf{T}(x,y)}_{\mathbf{A}} \mathbf{a} = \underbrace{\sum_{(x,y) \in \mathcal{R}} f(x,y) \boldsymbol{\tau}(x,y)}_{\mathbf{b}}$$

The 6×6 matrix **A** and 6×1 vector **b**:

$$\mathbf{A} = \begin{bmatrix} X^2T^2 & XYT^2 & XT^2 & X^2T & XYT & XT \\ XYT^2 & Y^2T^2 & YT^2 & XYT & Y^2T & YT \\ XT^2 & YT^2 & T^2 & XT & YT & T \\ X^2T & XYT & XT & X^2 & XY & X \\ XYT & Y^2T & YT & XY & Y^2 & Y \\ XT & YT & T & X & Y & N \end{bmatrix}; \quad \mathbf{b} = \begin{bmatrix} FXT \\ FYT \\ FT \\ FX \\ FY \\ F \end{bmatrix}$$

where
$$\mathbf{X}^i\mathbf{Y}^j\mathbf{T}^k = \sum_{(x,y)\in\mathcal{R}} x^iy^jt^k(x,y); \ i,j,k\in\{0,1,2\},$$

$$\mathbf{F}\mathbf{X}^i\mathbf{Y}^j\mathbf{T}^k = \sum_{(x,y)\in\mathcal{R}} x^iy^jt^k(x,y)f(x,y), \ \text{and}$$
 $N=|\mathbf{R}|$ is the lattice cardinality (the number of pixels)

Concurrent Template Matching

- Maximiser \mathbf{a}^* the solution of the linear system $\mathbf{A}\mathbf{a} = \mathbf{b}$ with the 6×6 square symmetric matrix \mathbf{A} : $\mathbf{a}^* = \mathbf{A}^{-1}\mathbf{b}$
- Transformed template $\mathbf{T}_{[6]}=\{\mathbf{t}_k:\ k=1,\ldots,6\}$: for $(x,y)\in\mathbf{R}$,

$$t_1(x,y) = xt(x,y);$$
 $t_2(x,y) = yt(x,y);$ $t_3(x,y) = t(x,y);$ $t_4(x,y) = x;$ $t_5(x,y) = y;$ $t_6(x,y) = 1$

- Orthogonalisation of $T_{[6]} \Rightarrow$ Concurrent matching with the bank of orthonormal templates $E_{[6]} = \{e_k : k = 1, \dots, 6\}$
 - ullet Squared distance between an image ${f f}$ and the transformed ${f t}$:

$$D(\mathbf{f}, \mathbf{t}) = \min_{\mathbf{a}} \sum_{(x,y) \in \mathcal{R}} f^2(x, y) - \sum_{i=1}^{6} \left(\sum_{(x,y) \in \mathbf{R}} f(x, y) e_i(x, y) \right)^2$$

Orthonormal Templates: Modelling Illumination Changes

Orthonormal Templates: Modelling Illumination Changes

2nd-order Polynomial: Concurrent Template Matching

Bank of the 2nd-order orthonormal templates:

- Real illumination-dependent image changes are modelled only roughly with the first-order polynomial contrast / offset
- More accurate modelling with the second- or higher-order polynomial contrast / offset
 - But the number of templates grows as $(n+1)(n+2) = O(n^2)$ in the polynomial order n

2nd-order Templates: Modelling Illumination Changes

Orthonormal Templates: Modelling Illumination Changes

