Fale elektromagnetyczne 11/15

Andrzej Kapanowski http://users.uj.edu.pl/~ufkapano/

WFAIS, Uniwersytet Jagielloński w Krakowie

2019

Zjawisko indukcji elektromagnetycznej

- Dwa symetryczne przypadki:
 - (a) pętla z prądem + pole magnetyczne \Rightarrow moment siły,
 - (b) moment siły + pole magnetyczne \Rightarrow prąd w pętli.
- Istotę zjawiska indukcji elektromagnetycznej można ustalić z następujących doświadczeń:
 - (a) magnes poruszający się wzdłuż osi cewki indukuje prąd w cewce,
 - (b) cewka z prądem stałym poruszająca się względem drugiej cewki indukuje w niej prąd,
 - (c) nieruchoma cewka z prądem zmiennym indukuje prąd w drugiej nieruchomej cewce.
- Uogólnienie: zmieniający się strumień magnetyczny przenikający cewkę indukuje w niej prąd elektryczny.

Prawo indukcji Faradaya

Prawo indukcji Faradaya (pierwsza połowa XIX wieku)

Zmienny strumień magnetyczny przenikający obwód elektryczny powoduje powstanie (indukowanie) w nim siły elektromotorycznej.

Jeżeli obwód jest zamknięty, to pod wpływem SEM może popłynąć prąd w obwodzie. Ilościowo prawo Faradaya zapisujemy następująco

$$\mathcal{E} = -\frac{d\Phi_B}{dt}.\tag{1}$$

Znak minus oznacza przeciwdziałanie, co dokładniej określa reguła Lenza.

Reguła Lenza

Regula Lenza

Prąd indukowany w obwodzie płynie w takim kierunku, że pole magnetyczne wytworzone przez ten prąd przeciwdziała zmianie strumienia pola magnetycznego, która ten prąd indukuje.

- Prawo indukcji możemy wyprowadzić z zasady zachowania energii. Rozważmy prostokątną ramkę wyciąganą ze stałą prędkością \vec{v} z obszaru jednorodnego pola magnetycznego o indukcji \vec{B} .
- Strumień magnetyczny obejmujący ramkę zmniejsza się, a więc w obwodzie indukuje się SEM i płynie prąd indukcyjny o natężeniu I.
- Na ramkę działa siła F=BIL. Żeby ramka mogła przesuwać się ruchem jednostajnym, trzeba na nią działać siłą zewnętrzną o wartości F.
- Jeżeli ramka przesunie się o $\Delta x = v \Delta t$, to praca siły zewnętrznej wynosi

$$\Delta W_1 = F \Delta x = BIL\Delta x = BI\Delta S = I\Delta \Phi_B. \tag{2}$$

 Z drugiej strony prąd płynący w obwodzie wykonuje pracę (znak minus oznacza wykonanie pracy przez układ przewodników)

$$\Delta W_2 = -\mathcal{E}I\Delta t. \tag{3}$$

• Z zasady zachowania energii stwierdzamy, że praca wykonana przez siły zewnętrzne będzie równa pracy prądu elektrycznego, $\Delta W_1 = \Delta W_2$, $I\Delta \Phi_B = -\mathcal{E}I\Delta t$,

$$\mathcal{E} = -\frac{\Delta \Phi_B}{\Delta t}.\tag{4}$$

• Otrzymaliśmy prawo indukcji Faradaya.

Rozważmy dalej wartość SEM pomijając znak minus

$$\mathcal{E} = \frac{\Delta \Phi_B}{\Delta t} = \frac{BL\Delta x}{\Delta t} = BLv. \tag{5}$$

- Jeżeli w obwodzie jest opór R, to płynący prąd ma natężenie $I = \mathcal{E}/R = BLv/R$.
- Działająca siła zewnętrzna musi mieć wartość $F = BIL = B^2L^2v/R$.
- Moc działającej siły jest równa szybkości wydzielania się energii termicznej w ramce

$$P = Fv = \frac{B^2 L^2 v^2}{R} = \left(\frac{BLv}{R}\right) R = I^2 R.$$
 (6)

Indukowane pole elektryczne

- Zmienny strumień magnetyczny wytwarza indukowaną SEM, a przy zamkniętym obwodzie może płynąć prąd indukowany. Oznacza to, że w obwodzie musi istnieć pole elektryczne, które przemieszcza ładunki.
- Zmienne pole magnetyczne wytwarza pole elektryczne.
 Jest to inne sformułowanie prawa indukcji Faradaya.
- SEM w obwodzie można wyrazić jako całkę po konturze zamkniętym z pola elektrycznego

$$\mathcal{E} = \oint \vec{E} \cdot d\vec{s}. \tag{7}$$

Nowa postać prawa Faradaya

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}.$$
(8)

Cewki i indukcyjność

- Kondensator może służyć do wytworzenia pola elektrycznego o zadanej wartości natężenia E. Podobnie cewka (solenoid) może być zastosowana do wytworzenia pola magnetycznego o zadanej indukcji B.
- Jeżeli prąd o natężeniu I płynie przez cewkę o N zwojach, to wytwarza ona pole magnetyczne B. Oznaczmy strumień pola magnetycznego przenikającego jeden zwój przez Φ_B.
- Indukcyjność własną cewki L definiujemy jako $N\Phi_B=LI$.
- Jeżeli prąd w cewce zmienia się, to powstaje SEM

$$\mathcal{E} = -N \frac{d\Phi_B}{dt} = -\frac{d(N\Phi_B)}{dt} = -\frac{d(LI)}{dt} = -L \frac{dI}{dt}.$$
 (9)

Obliczanie indukcyjności cewki

- Rozważmy odcinek o długości d długiej cewki mającej n zwojów na jednostkę długości.
- Strumień pola magnetycznego przenikający tą część cewki wynosi $N\Phi_B = (nd)(BS)$, gdzie B jest indukcją w cewce, a S polem przekroju poprzecznego cewki.
- ullet Z prawa Ampere'a wiemy, że $B=\mu_0 {\it In}.$
- Indukcyjność własna cewki wynosi

$$L = \frac{N\Phi_B}{I} = \frac{ndBS}{I} = \frac{nSd(\mu_0 \ln)}{I} = \mu_0 n^2 Sd.$$
 (10)

- ullet Indukcyjność na jednostkę długości wynosi $L/d=\mu_0 n^2 S$.
- Jednostką indukcyjności w układzie SI jest henr, $1 \text{henr} = 1H = 1T \cdot m^2/A$.

Indukcja wzajemna

- Rozważmy układ dwóch cewek ustawionych w ten sposób, że strumień magnetyczny wytwarzany przez prąd płynący w jednej z nich przenika powierzchnię zwojów drugiej.
 Zmiana prądu w jednej z nich powoduje powstanie SEM indukcji w drugiej. Jest to zjawisko indukcji wzajemnej.
- Oznaczmy przez N_2 liczbę zwojów drugiej cewki, Φ_{12} strumień magnetyczny pochodzący od pierwszej cewki, przenikający jeden zwój drugiej cewki.
- Indukcyjność wzajemną między cewkami M określamy związkiem $N_2\Phi_{12}=MI_1~(M\sim N_1N_2)$.
- Jeżeli prąd w pierwszej cewce zmienia się, to w drugiej cewce powstaje SEM

$$\mathcal{E}_{2} = -N_{2} \frac{d\Phi_{12}}{dt} = -\frac{d(N_{2}\Phi_{12})}{dt} = -\frac{d(MI_{1})}{dt} = -M \frac{dI_{1}}{dt}.$$
(11)

Energia zmagazynowana w polu magnetycznym

 Rozważmy cewkę o indukcyjności L, w której płynie prąd l'. Zwiększenie prądu płynącego w cewce spowoduje powstanie SEM samoindukcji. Źródło dołączone do cewki wykona pracę

$$\Delta W = \mathcal{E}' \Delta q' = L \frac{\Delta I'}{\Delta t} \Delta q' = L I' \Delta I'. \tag{12}$$

 Praca potrzebna do zwiększenia natężenia prądu od 0 do / wynosi

$$W = \int_0^I LI'dI' = \frac{LI^2}{2}.$$
 (13)

Energia zmagazynowana w polu magnetycznym

Korzystając ze związków na L i B mamy

$$W = \frac{\mu_0 n^2 S dI^2}{2} = \frac{(\mu_0 nI)^2 S d}{2\mu_0} = \frac{B^2}{2\mu_0} S d.$$
 (14)

- Wyrażenie Sd jest objętością przestrzeni zamkniętą zwojami cewki, w której panuje jednorodne pole magnetyczne o indukcyjności B. Wyrażenie $B^2/(2\mu_0)$ jest gęstością energii magnetycznej.
- Energia cewki z prądem jest zmagazynowana w polu magnetycznym. Cewka może oddać tą energię, kiedy będziemy ją odłączać od źródła, np. na oporniku wydzieli się ciepło.

Indukowane pole magnetyczne

 Opis zjawiska indukcji magnetycznej nasunął Maxwellowi postulat, że zmienne pole elektryczne wytwarza pole magnetyczne. Ilościowo można to zapisać

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt}.$$
(15)

- Wyrażenie $\epsilon_0 d\Phi_E/dt$ ma wymiar prądu. Jest ono traktowane jako natężenie fikcyjnego prądu, zwanego prądem przesunięcia.
- Istnienie prądu przesunięcia można stwierdzić w doświadczeniu z kondensatorem ładowanym pewnym prądem. Rosnące pole elektryczne między okładkami kondensatora wytwarza pole magnetyczne.
- Jeżeli weźmiemy pod uwagę zwykłe prądy łącznie z prądem przesunięcia, to otrzymamy uogólnione prawo Ampere'a.

Równania Maxwella

Równania Maxwella zapisane przy założeniu, że nie występują materiały dielektryczne i magnetyczne.

• Prawo Gaussa dla elektryczności

$$\int \vec{E} \cdot d\vec{S} = \frac{q}{\epsilon_0}.$$
 (16)

Prawo Gaussa dla magnetyzmu

$$\int \vec{B} \cdot d\vec{S} = 0. \tag{17}$$

Prawo Faradaya

$$\oint \vec{E} \cdot d\vec{s} = -\frac{d\Phi_B}{dt}.$$
(18)

Uogólnione prawo Ampere'a

$$\oint \vec{B} \cdot d\vec{s} = \mu_0 \epsilon_0 \frac{d\Phi_E}{dt} + \mu_0 I_p. \tag{19}$$

Obwód RLC

Obwody RC

- Rozważmy obwód szeregowy RC składający się z nienaładowanego kondensatora o pojemności C (q=0 dla t=0), doskonałego źródła o SEM $\mathcal E$ i opornika o oporze R.
- Po zamknięciu obwodu następuje ładowanie kondensatora aż do momentu, gdy $q/C=\mathcal{E}.$
- Z drugiego prawa Kirchoffa $\mathcal{E} IR q/\mathcal{C} = 0$.
- Otrzymujemy równanie różniczkowe na funkcję q(t), przy czym I=dq/dt.
- Rozwiązanie to $q(t) = C\mathcal{E}[1 \exp(-t/\tau_C)]$, gdzie $\tau_C = RC$ jest pojemnościową stałą czasową obwodu o wymiarze czasu, $1\Omega \cdot 1F = 1s$.
- Prąd ładowania $I = (\mathcal{E}/R) \exp(-t/\tau_C)$.

Obwody RC

Obwody RL

- Rozważmy obwód szeregowy RL składający się z cewki o indukcyjności L, doskonałego źródła o SEM E i opornika o oporze R.
- Po zamknięciu obwodu prąd rośnie, czemu przeciwstawia się SEM samoindukcji cewki.
- Z drugiego prawa Kirchoffa $\mathcal{E} IR L(dI/dt) = 0$.
- Otrzymujemy równanie różniczkowe na funkcję I(t), przy czym I=0 dla t=0.
- Rozwiązanie to $I(t) = (\mathcal{E}/R)[1 \exp(-t/\tau_L)]$, gdzie $\tau_L = L/R$ jest indukcyjną stałą czasową obwodu o wymiarze czasu, $1H/1\Omega = 1s$.

Obwody RL

Obwody LC

- Rozważmy obwód szeregowy LC składający się z cewki o indukcyjności L i kondensatora o pojemności C.
- Z drugiego prawa Kirchoffa L(dI/dt) + q/C = 0,

$$\frac{d^2q}{dt^2} + \frac{q}{LC} = 0. ag{20}$$

Rozpoznajemy równanie oscylatora harmonicznego,

$$\omega = \frac{1}{\sqrt{LC}}, \quad T = 2\pi\sqrt{LC}. \tag{21}$$

- W obwodzie występują drgania, $q = q_m \cos(\omega t + \phi)$, $I = -\omega q_m \sin(\omega t + \phi)$
- Zachowana jest energia $LI^2/2 + q^2/(2C)$.

Drgania tłumione w obwodzie RLC

- Rozważmy obwód szeregowy RLC składający się z opornika o oporze R, cewki o indukcyjności L i kondensatora o pojemności C.
- Z drugiego prawa Kirchoffa $\mathcal{E} IR L(dI/dt) q/C = 0$,

$$L\frac{d^2q}{dt^2} + R\frac{dq}{dt} + \frac{q}{C} = \mathcal{E}.$$
 (22)

- Rozpoznajemy równanie oscylatora harmonicznego tłumionego z siłą wymuszającą (\mathcal{E}) .
- Częstość drgań swobodnych $\omega=1/\sqrt{LC}$.
- Jeżeli $\mathcal{E} = \mathcal{E}_0 \sin(\Omega t)$, to amplituda drgań będzie zależała od częstości Ω .

Drgania tłumione w obwodzie RLC

- Możemy poszukiwać warunku rezonansu (maksimum amplitudy) dla q(t) lub I(t). Należy pamiętać, że są to różne funkcje Ω i mają maksimum w innych miejscach.
- Amplituda dla prądu wynosi

$$I_m = \frac{\mathcal{E}_0}{Z} = \frac{\mathcal{E}_0}{\sqrt{R^2 + [\Omega L - 1/(\Omega C)]^2}},$$
 (23)

gdzie Z nazywamy impedancją obwodu.

- Rezonans dla prądu $\Omega_r = 1/\sqrt{LC} = \omega$.
- Prąd w obwodzie jest zwykle przesunięty w fazie w stosunku do SEM wymuszającej.

Moc w obwodach prądu zmiennego

 W obwodzie RLC chwilowa szybkość rozpraszania energii (moc chwilowa) na oporniku wynosi

$$P = I^2 R = I_m^2 R \sin^2(\Omega t - \phi).$$
 (24)

Interesuje nas zwykle moc średnia

$$P_{sr} = \frac{I_m^2 R}{2} = \left(\frac{I_m}{\sqrt{2}}\right)^2 R = I_{sk}^2 R = I_{sk} U_{sk}, \qquad (25)$$

gdzie *l_{sk}* jest wartością skuteczną natężenia prądu.

- Wartość skuteczna napięcia $U_{sk} = U_m/\sqrt{2}$.
- Przy tej samej mocy średniej mamy pewien zakres swobody (duży prąd i małe napięcie lub na odwrót).

Transformatory

- W systemie przesyłania energii elektrycznej pożądane są małe natężenia prądu, aby straty omowe I²R były jak najmniejsze.
- Transformator to urządzenie służące do podwyższania lub obniżania (transformowania) napięcia prądu zmiennego.
- Uzwojenie pierwotne o N_1 zwojach połączone jest ze źródłem prądu zmiennego U_1 . Prąd pierwotny indukuje w rdzeniu zmienny strumień magnetyczny, który przenika uzwojenie wtórne,

$$\frac{d\Phi_B}{dt} = \frac{U_1}{N_1} = \frac{U_2}{N_2}. (26)$$

- Stosunek N_2/N_1 nazywamy przekładnią transformatora.
- Transformacja napięcia $U_2 = U_1 N_2 / N_1$.
- Transformacja prądów $I_2 = I_1 N_1 / N_2$.

Transformator

Cewka Ruhmkorffa

Pole elektromagnetyczne

- Pole elektryczne i pole magnetyczne są przejawami pola elektromagnetycznego, które ujawnia swoje dwa oblicza w zależności od obranego układu odniesienia.
- Falę elektromagnetyczną można traktować jako przenoszenie drgań pola elektromagnetycznego od jednego punktu przestrzeni do drugiego.
- Fale elektromagnetyczne nie wymagają obecności ośrodka i mogą rozchodzić się również w próżni.
- Wielkim osiągnięciem Maxwella było pokazanie, że światło widzialne (400 – 700nm) jest falą elektromagnetyczną, a tym samym, że optyka jest gałęzią elektromagnetyzmu.

Widmo fal elektromagnetycznych

Płaska fala elektromagnetyczna

Płaska fala elektromagnetyczna

- Fale elektromagnetyczne są falami poprzecznymi.
 Rozchodzenie się tych fal opisują równania Maxwella.
- Wektor natężenia pola elektrycznego \vec{E} jest zawsze prostopadły do wektora indukcji pola magnetycznego \vec{B} .
- Iloczyn wektorowy $\vec{E} \times \vec{B}$ zawsze wyznacza kierunek rozchodzenia się fali.
- Oscylacje pól \vec{E} i \vec{B} są zgodne w fazie.
- ullet Biegnąca fala płaska monochromatyczna (jedno λ)

$$E = E_m \sin(kx - \omega t), \quad B = B_m \sin(kx - \omega t).$$
 (27)

Prędkość fali

$$c = \frac{\omega}{k} = \frac{1}{\sqrt{\epsilon_0 \mu_0}} = \frac{E_m}{B_m} = \frac{E}{B}.$$
 (28)

Wektor Poyntinga

Energetyczne właściwości fali elektromagnetycznej opisuje wektor Poyntinga

$$\vec{S} = \frac{1}{\mu_0} \vec{E} \times \vec{B}. \tag{29}$$

Jest to energia przenoszona przez falę w jednostce czasu przez jednostkę powierzchni prostopadłej do kierunku rozchodzenia się fali.

- Kierunek wektora Poyntinga jest w każdym punkcie kierunkiem rozchodzenia się fali i kierunkiem przepływu energii w tym punkcie.
- Wartość średnią modułu \vec{S} nazywamy natężeniem fali $I_{fali} = S_{sr} = E_m B_m/2$.
- Dla fali kulistej rozchodzącej się z punktowego źródła $I_{fali} = P_{zr}/(4\pi r^2)$.

Ciśnienie promieniowania

- Fale elektromagnetyczne przenoszą zarówno energię, jak i pęd. Oświetlając jakieś ciało wywieramy na nie ciśnienie promieniowania.
- Załóżmy, że w czasie Δt ciało uzyskało od promieniowania energię ΔU przez zaabsorbowanie promieniowania. Zmiana pędu ciała wynosi $\Delta p = \Delta U/c$.
- Jeżeli promieniowanie w całości odbiło się od ciała wzdłuż pierwotnego kierunku, to zmiana pędu wyniesie $\Delta \rho = 2\Delta U/c$.
- Ciśnienie promieniowania przy absorpcji

$$p_{a} = \frac{\Delta p}{S\Delta t} = \frac{I_{fali}S\Delta t}{S\Delta tc} = \frac{I_{fali}}{c}.$$
 (30)

• Ciśnienie promieniowania przy odbiciu $p_o = 2I_{fali}/c$.

Polaryzacja

- Polaryzacją nazywamy właściwość fali poprzecznej polegającą na zmianach kierunku oscylacji rozchodzącego się zaburzenia w określony sposób. Dla fali elektromagnetycznej określamy płaszczyznę drgań fali jako płaszczyznę, w której leżą wektory E.
- W fali spolaryzowanej liniowo jest jedna płaszczyzna drgań nie zmieniająca się w czasie.
- W fali spolaryzowanej kołowo pole \vec{E} ma stałą wartość, ale jego kierunek się zmienia. W ustalonym punkcie przestrzeni koniec wektora \vec{E} zatacza okrąg w czasie jednego okresu fali.
- Fale elektromagnetyczne emitowane przez zwykłe źródła światła (Słońce, żarówka) są niespolaryzowane, wektor E w dowolnym punkcie ma przypadkowy kierunek.

Metody polaryzacji światła

- Selektywna absorpcja. Pewne materiały mają właściwość przepuszczania tylko fali drgającej w jednej płaszczyźnie, a pochłaniania wszystkich innych fal (dichroizm).
- Podwójne załamanie. Istnieją kryształy, w których prędkość światła zależy od kierunku. Takie kryształy mają dwa współczynniki załamania. Wiązka światła niespolaryzowanego padająca na taki kryształ może rozszczepić się na dwa promienie spolaryzowane liniowo w kierunkach wzajemnie prostopadłych. Przykłady: pryzmat Nikola, ćwierćfalówka.
- Odbicie pod kątem Brewstera.
- Rozpraszanie światła, czyli absorpcja, a potem reemisja światła spolaryzowanego przez ośrodek.

Odbicie pod kątem Brewstera

Prawo Malusa

- Rozważmy światło spolaryzowane liniowo padające na polaryzator tak, że wektor \vec{E}_0 tworzy kąt θ z kierunkiem polaryzacji polaryzatora.
- Składowa przechodząca jest równa $E = E_0 \cos \theta$.
- Natężenie fali elektromagnetycznej jest proporcjonalne do kwadratu natężenia pola elektrycznego, wobec tego natężenie światła przechodzącego przez polaryzator wynosi

$$I_{fali} = I_{fali,0} \cos^2 \theta. \tag{31}$$

Jest to prawo Malusa.

 W typowym eksperymencie mamy dwa polaryzatory z kierunkami polaryzacji ustawionymi pod kątem θ.
 Pierwszy polaryzator ze światła niespolaryzowanego przygotowuje światło spolaryzowane liniowo, a drugi (analizator) sprawdza prawo Malusa.

Polaryzacja światła –prawo Malusa

