PROYECTO DE INTERPOLACIÓN

DAMIAN OSPINA - 2201296 JEICOR FLOREZ - 2231328 DANIEL MORALES - 2200812

INTERPOLACIÓN DE DATOS PARA UNA ECUACIÓN DE ESTADO

11 DESCRIBIR LOS DATOS

02 REALIZAR LAS INTERPOLACIONES

OMPARAR GRAFICAMENTE LA INTERPOLACIÓN

GRAFICAR LOS ERRORES DE CADA METODO

CONCLUSIÓN

04

05

DESCRIBIR LOS DATOS

10 primeros datos = "sly4.dat"

	n_B[fm^{-3}]	rho[g/cm^3]	P[dyn/cm^2]
0	2.720000e-14	45.1	1.700000e+14
1	1.270000e-13	212.0	5.820000e+15
2	6.930000e-13	1150.0	1.900000e+17
3	6.295000e-12	10440.0	9.744000e+18
4	1.581000e-11	26220.0	4.968000e+19
5	3.972000e-11	65870.0	2.431000e+20
6	9.976000e-11	165400.0	1.151000e+21
7	2.506000e-10	415600.0	5.266000e+21
8	6.294000e-10	1044000.0	2.318000e+22
9	1.581000e-09	2622000.0	9.755000e+22

dataframe.describe()

	n_B[fm^{-3}]	rho[g/cm^3]	P[dyn/cm^2]
count	1.520000e+02	1.520000e+02	1.520000e+02
mean	6.912947e-01	1.992758e+15	1.332255e+36
std	7.984834e-01	2.463589e+15	1.829668e+36
min	2.720000e-14	4.510000e+01	1.700000e+14
25%	1.007325e-04	1.682500e+11	2.619750e+29
50%	7.456500e-02	1.260500e+14	5.208500e+32
75%	1.619500e+00	4.617500e+15	3.066750e+36
max	1.997000e+00	6.749000e+15	5.344000e+36

Ecuaciones de Estado

Ecuación de Estado P(rho)

Ecuación de Estado P(n_B)


```
# Interpolación con Spline cúbico natural
cs = CubicSpline(x_sc, y_sc, bc_type="natural")
x_new = np.linspace(min(x_sc), max(x_sc), 500)
y_new = cs(x_new)

plt.plot(x_sc, y_sc, marker='o', color='orange', linestyle='none', label="Datos", alpha=0.2)
plt.plot(x_new, y_new, label="Spline cúbico natural", color="green")
plt.legend()
plt.xlabel(r"$\rho\;[g/cm^3]$")
plt.ylabel(r"$\rho\;[dyn/cm^2]$")
plt.title("P vs rho Interpolación SC natural log10")
plt.show()
```

REALIZAR LAS INTERPOLACIONES

- Lagrange
- PCHIP
- Cubic Spline Natural
- Cubic Spline No Natural

Ecuación de Estado P(n_B)

Crear grupo de entrenamiento y grupo de prueba. Cómo crearon cada grupo.

```
#Grupos para la varibale independiente n_b
rng = np.random.default_rng(42) #Usamos siempre la misma semilla
n = 2 #Hay que reducir los intervalos pq son pocos datos
rango = np.linspace(x_l.min(), x_l.max(), n+1)
bin_idx = np.digitize(x_l, rango) - 1
train_mask = np.zeros(len(x_1), dtype=bool)
test_mask = np.zeros(len(x_1), dtype=bool)
porcentaje = 0.7 # 70% en entrenamiento
for b in range(n):
   idx_in_bin = np.where(bin_idx == b)[0]
   if len(idx_in_bin) == 0:
       continue
   n_train = max(1, int(np.round(len(idx_in_bin) * porcentaje)))
   sel = rng.choice(idx_in_bin, size=len(idx_in_bin), replace=False)
   train_idx = sel[:n_train]
   test_idx = sel[n_train:]
   train_mask[train_idx] = True
   test_mask[test_idx] = True
# conjuntos resultantes:
x_train_1, y_train_1 = x_1[train_mask], y_1[train_mask]
x_test_1, y_test_1 = x_1[test_mask], y_1[test_mask]
print(f"Para x, los datos de entrenamiento son: \n\n {x_train_1} \n\n y los de testeo son: \n\n {x_test_1}")
print("\n ======= \n")
```

Grupos train y test solo para P(rho) y P(n_b) solo para lagrange

```
#Grupos para la variable aleatoria
rng = np.random.default_rng(42) #Usamos siempre la misma semilla
rango = np.linspace(x_12.min(), x_12.max(), n+1)
bin_idx = np.digitize(x_12, rango) - 1
train_mask = np.zeros(len(x_12), dtype=bool)
test_mask = np.zeros(len(x_12), dtype=bool)
for b in range(n):
   idx_in_bin = np.where(bin_idx == b)[0]
   if len(idx_in_bin) == 0:
       continue
   n_train = max(1, int(np.round(len(idx_in_bin) * porcentaje)))
   sel = rng.choice(idx_in_bin, size=len(idx_in_bin), replace=False)
   train_idx = sel[:n_train]
   test_idx = sel[n_train:]
   train_mask[train_idx] = True
   test_mask[test_idx] = True
# conjuntos resultantes:
x_train_12, y_train_12 = x_12[train_mask], y_12[train_mask]
x_{test_12}, y_{test_12} = x_{12}[test_{mask}], y_{12}[test_{mask}]
print(f"Para x, los datos de entrenamiento son: \n\n {x_train_12} \n\n y los de testeo son: \n\n {x_test_12}")
                     Para x, los datos de entrenamiento son:
                      [ 2.32633586  3.06069784  6.0187005  8.51917146  13.85745312]
                      y los de testeo son:
                      [ 4.41863269 11.04139269]
```

Grupos train y test para P(rho)

```
rng = np.random.default_rng(42) #Usamos siempre la misma semilla
n = 8
rango = np.linspace(x_sc.min(), x_sc.max(), n+1)
bin_idx = np.digitize(x_sc, rango) - 1
train_mask = np.zeros(len(x_sc), dtype=bool)
test_mask = np.zeros(len(x_sc), dtype=bool)
porcentaje = 0.8 # 80% en entrenamiento
for b in range(n):
    idx_in_bin = np.where(bin_idx == b)[0]
    if len(idx in bin) == 0:
        continue
    n_train = max(1, int(np.round(len(idx_in_bin) * porcentaje)))
    sel = rng.choice(idx in bin, size=len(idx in bin), replace=False)
    train_idx = sel[:n_train]
    test idx = sel[n train:]
    train mask[train idx] = True
    test mask[test_idx] = True
# conjuntos resultantes:
x_train_sc, y_train_sc = x_sc[train_mask], y_sc[train_mask]
x_test_sc, y_test_sc = x_sc[test_mask], y_sc[test_mask]
```

Grupos train y test para P(n_b)

```
rng = np.random.default_rng(42) #Usamos siempre la misma semilla
n = 8
rango = np.linspace(x_sc2.min(), x_sc2.max(), n+1)
bin_idx = np.digitize(x_sc2, rango) - 1
train_mask = np.zeros(len(x_sc2), dtype=bool)
test mask = np.zeros(len(x sc2), dtype=bool)
porcentaje = 0.8 # 80% en entrenamiento
for b in range(n):
   idx_in_bin = np.where(bin_idx == b)[0]
   if len(idx_in_bin) == 0:
        continue
    n_train = max(1, int(np.round(len(idx_in_bin) * porcentaje)))
    sel = rng.choice(idx_in_bin, size=len(idx_in_bin), replace=False)
    train_idx = sel[:n_train]
    test_idx = sel[n_train:]
    train mask[train idx] = True
    test_mask[test_idx] = True
# conjuntos resultantes:
x_train_sc2, y_train_sc2 = x_sc2[train_mask], y_sc2[train_mask]
x_test_sc2, y_test_sc2 = x_sc2[test_mask], y_sc2[test_mask]
```

Comparar graficamente la interpolación

Ecuación de Estado P(rho)

Comparar graficamente la interpolación

Ecuación de Estado P(n_B)

Calculo de Error Cuadrático y Absoluto

Error Cuadrático P(rho)

MSE Lagrange: 2.4343 e-21

MSE Spline natural: 3.3215 e-31

MSE Spline not-a-knot: 0

MSE PCHIP: 0

Error Absoluto P(rho)

MSE Lagrange: 2.6432 e-11

MSE Spline natural: 4.674 e-31

MSE Spline not-a-knot: 0

MSE PCHIP:

Error Cuadrático P(n_b)

MSE Lagrange: 3.028 e-21

MSE Spline natural:

MSE Spline not-a-knot: 0

MSE PCHIP: 0

Error Absoluto P(rho)

MSE Lagrange: 3.4429 e-11

MSE Spline natural: (

MSE Spline not-a-knot: 0

MSE PCHIP: 0

GRAFICAR LOS ERRORES DE CADA METODO

Errores P(rho)

Errores P(n_b)

