Diszkrét Matematika 1. Írásbeli vizsga, 2015. január 8. (90 perc)

NÉV: NEPTUN kód: (Leendő) szakirány:	
1.	Alapvető fontosságú fogalmak
A kö	vetkező hat kérdésre 1-1 pont kapható. Ebből legalább 4 pontot kell szerezni.
1.	Adja meg egy általános $a+bi$ algebrai alakú (nem nulla) szám reciprokának képletét algebrai alakban, illetve konkrétan a $3-4i$ szám reciprokát.
2.	Sorolja fel a kvantorokat és jelentésüket.
3.	Antiszimmetrikus-e az "osztója" reláció a természetes, illetve az egész számok halmazán?
4.	Hány különböző 5 hosszú sorozat képezhető 2 darab A, 1 darab B és 2 darab C betű felhasználásával?
5.	Húzza alá a megoldható kongruenciákat: $3x \equiv 4 \pmod 5$; $30x \equiv 4 \pmod 5$; $14x \equiv 4 \pmod 10$; $13x \equiv 1 \pmod 1299$
6.	Definiálja a felbonthatatlan szám fogalmát a természetes számok körében.

2. Definíciók, tételkimondások

A következő nyolc kérdésre 1-1 pont kapható.

1. Mondja ki a szorzásra és az osztásra vonatkozó Moivre-azonosságokat.

2. Mikor nevezünk trichotomnak egy relációt?

3. Definiálja a felső határ (szuprémum) fogalmát.

4. Mikor nevezünk szigorúan monoton növőnek egy $f:X\to Y$ függvényt? Milyen X,Y halmazok esetén beszélhetünk erről?

5.	Hányféle különböző dobás lehetséges 10 dobókockával, ha a kockákat nem tudjuk megkülönböztetni (nem kell konkrét szám, csak a képlet)?
6.	Írja fel a Pascal-háromszög első 8 sorát.
7.	Mikor mondjuk az egészek körében, hogy a és b kongruensek modulo m ? Hogy jelöljük?
8	Ismertesse az euklideszi algoritmus alapváltozatát.
0.	isincrosse az camiquiszi aigoritmas aiapvarozatat.

3. Bizonyítások

A következő három bizonyításra 3-3 pont kapható. Ebből legalább 3 pontot el kell érni (tételkimondásért nem jár pont). Az összpontszám alapján a ponthatárok: 10-től 2-es, 14-től 3-as, 18-tól szóbelizhet a 4-es, illetve 5-ös osztályzatért.

- 1. Mondja ki és bizonyítsa be a komplex n-edik gyökvonásról szóló állítást (Moivre-képlet).
- 2. Mondja ki és igazolja a binomiális tételt.
- 3. Bizonyítsa be, hogy az egészek körében a prímtulajdonság és a felbonthatatlanság ekvivalens.

4. Szóbeli kiváltását lehetővé tevő opcionális tétel

Ez a feladat maximálisan 5 pontot ér. Ha ebből legalább 3 pont megvan, és az összpontszám eléri a 20, illetve 24 pontot, akkor 4-es, illetve 5-ös érdemjegyet ajánlunk.

- 1. Azon a+bi alakú komplex számok halmazát, melyeknél a is, b is egész, Gauss-egészeknek nevezzük, és G-vel jelöljük. Hasonlóan az egészekhez, azt mondjuk, hogy a osztója b-nek (jele: $a \mid b$), ha $\exists c \in G : ac = b$. Ha a, b nem nulla, akkor ez azt jelenti, hogy a komplex b/a hányados G eleme. Igaz-e, hogy $(1+i) \mid (7+i)$?
- 2. Húzza alá azon Gauss-egészeket, melyek oszthatók (1+i)-vel: 4+3i, 5-2i, 2+6i, 7+2i.
- 3. Igaz-e, hogy egy a+bi Gauss-egészről pusztán a+b ismeretében eldönthető, hogy osztható-e (1+i)-vel? Indokoljuk a választ: igennél mondjuk meg, hogyan, nem esetén mutassunk ellenpéldát.
- 4. Az egész számoknál látottak mintájára definiáljuk a modulo (1+i) vett kongruenciát a Gauss-egészek körében.
- 5. Határozzuk meg a megoldásait a Gauss-egészek körében: $(3+2i)x \equiv 5 \pmod{(1+i)}$.