Blue Midnight Wish (BMW) A SHA-3 Hash Competition Candidate

Daniel Schliebner

29. Juli 2010

Overview

Introduction

The Algorithm

Algorithm

Preprocessing

Hash computation

Finalisation

Cryptanalysis

Cornerstones

Claims

Auxiliary

- Authors: Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog.
- ▶ Classification:
 - Merkle-Damgård construction,
 - wide-pipe hash.
- ▶ Variants: BMW224, BMW256, BMW384, BMW512.

- Authors: Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog.
- Classification:
 - Merkle-Damgård construction,
 - wide-pipe hash.
- ▶ Variants: BMW224, BMW256, BMW384, BMW512.

- Authors: Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog.
- Classification:
 - Merkle-Damgård construction,
 - wide-pipe hash.
- ▶ **Variants**: BMW224, BMW256, BMW384, BMW512.

- Authors: Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog.
- Classification:
 - Merkle-Damgård construction,
 - wide-pipe hash.
- Variants: BMW224, BMW256, BMW384, BMW512.

The Child Gets A Name

- First working name: Blue Wish.
- Problem: Blue Wish is a reg. trademark for towels.
- A version that was produced in the midnight had the best characteristics. This led to the final name.

The Child Gets A Name

- First working name: Blue Wish.
- Problem: Blue Wish is a reg. trademark for towels.
- A version that was produced in the midnight had the best characteristics. This led to the final name.

The Child Gets A Name

- First working name: Blue Wish.
- Problem: Blue Wish is a reg. trademark for towels.
- ➤ A version that was produced in the midnight had the best characteristics. This led to the final name.

Notation

Definition

To this end let

- ▶ M be the message to be hashed of length ℓ bits;
- n bits be the length of the hash output.
- m the block size used inside the Merkle-Damgård construction.
- N the number of blocks in the padded message.
- $ightharpoonup \mathcal{M}^{(i)}$ the *i*-th *m*-bit block of \mathcal{M} .
- $ightharpoonup \mathcal{M}_{j}^{(i)}$ the j-th word of the i-th message block.

Notation (cont.)

Definition

We write

- ightharpoonup SHL^r(x) for a shift left operation,
- ▶ $SHR^r(x)$ for a shift right operation,
- ▶ $ROTL^r(x)$ for a circular left shift operation,
- \blacktriangleright + and for addition/substraction modulo $2^{32}/2^{64}$,
- ▶ ⊕ for a bitwise logic word XOR-operation,

where x is in general a 32- or 64-bit word.

Merkle-Damgård Construction

- ▶ JOUX [Joux04] found a generic multi-collision attack against iterated hash functions.
- ▶ K-collisions in time $O(\log(K) \cdot 2^{n/2})$ (instead of $\Omega(2^{(K-1)n/K})$):
- ▶ Idea: for $K=2^N$ compute N local collisions $\mathcal{M}_0^{(i)}=M_1^{(i)}$ with $f(H^{(i-1)},\mathcal{M}_0^{(i)})=f(H^{(i-1)},\mathcal{M}_1^{(i)}).$
- ► Thus, LUCKS [SLuck04] proposes to "widen" the internal pipe.

- ▶ JOUX [Joux04] found a generic multi-collision attack against iterated hash functions.
- ► K-collisions in time $O(\log(K) \cdot 2^{n/2})$ (instead of $\Omega(2^{(K-1)n/K})$):
- ▶ Idea: for $K=2^N$ compute N local collisions $\mathcal{M}_0^{(i)}=M_1^{(i)}$ with $f(H^{(i-1)},\mathcal{M}_0^{(i)})=f(H^{(i-1)},\mathcal{M}_1^{(i)}).$
- ► Thus, LUCKS [SLuck04] proposes to "widen" the internal pipe.

- ▶ JOUX [Joux04] found a generic multi-collision attack against iterated hash functions.
- ► K-collisions in time $O(\log(K) \cdot 2^{n/2})$ (instead of $\Omega(2^{(K-1)n/K})$):
- ▶ Idea: for $K=2^N$ compute N local collisions $\mathcal{M}_0^{(i)}=M_1^{(i)}$ with $f(H^{(i-1)},\mathcal{M}_0^{(i)})=f(H^{(i-1)},\mathcal{M}_1^{(i)}).$
- ► Thus, LUCKS [SLuck04] proposes to "widen" the internal pipe.

- ▶ JOUX [Joux04] found a generic multi-collision attack against iterated hash functions.
- ► K-collisions in time $O(\log(K) \cdot 2^{n/2})$ (instead of $\Omega(2^{(K-1)n/K})$):
- ▶ Idea: for $K=2^N$ compute N local collisions $\mathcal{M}_0^{(i)}=M_1^{(i)}$ with $f(H^{(i-1)},\mathcal{M}_0^{(i)})=f(H^{(i-1)},\mathcal{M}_1^{(i)}).$
- ► Thus, LUCKS [SLuck04] proposes to "widen" the internal pipe.

▶ Extend internal pipe in MD from n bit to $\omega \ge 2n$ bit.

- ▶ Use two compression functions \widetilde{f} and T.
- $ightharpoonup \widetilde{H}^{(N)}$ is called the *intermediate hash*.

LUCKS [SLuck04] proved:

Theorem

To ensure that a wide-pipe iterated hash with an internal pipe size ω is (asymptotically) as secure against multi-collision attacks as an ideal hash, $\omega \geq 2n$ is sufficient in the random oracle model.

and even more:

Theorem

A wide-pipe iterated hash with an internal pipe size $\omega \geq 2n$ is secure against all generic attacks (i.e. they are asymptotically as secure as an ideal hash).

LUCKS [SLuck04] proved:

Theorem

To ensure that a wide-pipe iterated hash with an internal pipe size ω is (asymptotically) as secure against multi-collision attacks as an ideal hash, $\omega \geq 2n$ is sufficient in the random oracle model.

and even more:

Theorem

A wide-pipe iterated hash with an internal pipe size $\omega \geq 2n$ is secure against all generic attacks (i.e. they are asymptotically as secure as an ideal hash).

Overview

Introduction

The Algorithm

Algorithm

Preprocessing
Hash computation
Finalisation

Cryptanalysis

Cornerstones
Claims
Auxiliary

Variants

All BMW-variants for $n \in \{224, 256, 384, 512\}$:

Algorithm abbrev.	Message size ℓ	Block size \boldsymbol{m}	Word size \boldsymbol{w}	Digest size n
BMW224	$< 2^{64}$	512	32	224
BMW256	$< 2^{64}$	512	32	256
BMW384	$< 2^{64}$	1024	64	384
BMW512	$< 2^{64}$	1024	64	512

Note:

BMW uses little-endian at byte-level and big-endian at bit-level.

Input: message \mathcal{M} with $|\mathcal{M}| = \ell$, hash size n.

1. Preprocessing

- (a) Pad the message M.
- (b) Parse the padded message into N, m-bit message blocks $M^{(1)}, \ldots, M^{(N)}$.
- (c) Set initial value $H^{(0)}$ (m-bit).

Hash computation

```
\begin{array}{l} \text{ or } i=1 \text{ to } N \\ Q_a^{(i)} = f_0(M^{(i)}, H^{(i-1)}); \\ Q_b^{(i)} = f_1(M^{(i)}, H^{(i-1)}, Q_a^{(i)}); \\ H^{(i)} = f_2(M^{(i)}, Q_a^{(i)}, Q_b^{(i)}); \\ \text{ndfor} \end{array}
```

Finalisation

$$\begin{aligned} &Q_a^{\text{inal}} = f_0(H^N, \text{F_CONST}); \\ &Q_b^{\text{final}} = f_1(H^N, \text{F_CONST}, Q_a^{\text{final}}) \\ &H^{\text{final}} = f_2(H^N, Q_a^{\text{final}}, Q_b^{\text{final}}); \end{aligned}$$

4. Output: n-LSB (H^{final}) $(=H_8^N||\dots||H_{15}^N)$.

Input: message \mathcal{M} with $|\mathcal{M}| = \ell$, hash size n.

1. Preprocessing

- (a) Pad the message \mathcal{M} .
- (b) Parse the padded message into N, m-bit message blocks $M^{(1)}, \ldots, M^{(N)}$.
- (c) Set initial value $H^{(0)}$ (m-bit).

2. Hash computation

```
\begin{array}{l} \text{for } i=1 \text{ to } N \\ Q_a^{(i)} = f_0(M^{(i)}, H^{(i-1)}); \\ Q_b^{(i)} = f_1(M^{(i)}, H^{(i-1)}, Q_a^{(i)}); \\ H^{(i)} = f_2(M^{(i)}, Q_a^{(i)}, Q_b^{(i)}); \\ \text{endfor} \end{array}
```

Finalisation

$$\begin{aligned} & Q_a^{\text{final}} = f_0(H^N, \text{F_CONST}); \\ & Q_b^{\text{final}} = f_1(H^N, \text{F_CONST}, Q_a^{\text{final}}) \\ & H^{\text{final}} = f_2(H^N, Q_a^{\text{final}}, Q_b^{\text{final}}); \end{aligned}$$

4. Output: n-LSB (H^{final}) $(=H_8^N||\dots||H_{15}^N)$.

Input: message \mathcal{M} with $|\mathcal{M}| = \ell$, hash size n.

1. Preprocessing

- (a) Pad the message M.
- (b) Parse the padded message into N, m-bit message blocks $M^{(1)}, \ldots, M^{(N)}$.
- (c) Set initial value $H^{(0)}$ (m-bit).

2. Hash computation

$$\begin{array}{l} \text{for } i=1 \text{ to } N \\ Q_a^{(i)} = f_0(M^{(i)}, H^{(i-1)}); \\ Q_b^{(i)} = f_1(M^{(i)}, H^{(i-1)}, Q_a^{(i)}); \\ H^{(i)} = f_2(M^{(i)}, Q_a^{(i)}, Q_b^{(i)}); \\ \text{endfor} \end{array}$$

3. Finalisation

$$\begin{aligned} &Q_a^{\text{final}} = f_0(H^N, \text{F_CONST}); \\ &Q_b^{\text{final}} = f_1(H^N, \text{F_CONST}, Q_a^{\text{final}}); \\ &H^{\text{final}} = f_2(H^N, Q_a^{\text{final}}, Q_b^{\text{final}}); \end{aligned}$$

4. Output: n-LSB $(H^{\text{final}}) (= H_8^N || \dots || H_{15}^N)$.

Input: message \mathcal{M} with $|\mathcal{M}| = \ell$, hash size n.

1. Preprocessing

- (a) Pad the message M.
- (b) Parse the padded message into N, m-bit message blocks $M^{(1)}, \ldots, M^{(N)}$.
- (c) Set initial value $H^{(0)}$ (m-bit).

2. Hash computation

$$\begin{array}{l} \text{for } i=1 \text{ to } N \\ Q_a^{(i)} = f_0(M^{(i)}, H^{(i-1)}); \\ Q_b^{(i)} = f_1(M^{(i)}, H^{(i-1)}, Q_a^{(i)}); \\ H^{(i)} = f_2(M^{(i)}, Q_a^{(i)}, Q_b^{(i)}); \\ \text{endfor} \end{array}$$

3. Finalisation

$$\begin{aligned} &Q_a^{\text{final}} = f_0(H^N, \text{F_CONST}); \\ &Q_b^{\text{final}} = f_1(H^N, \text{F_CONST}, Q_a^{\text{final}}); \\ &H^{\text{final}} = f_2(H^N, Q_a^{\text{final}}, Q_b^{\text{final}}); \end{aligned}$$

4. **Output:**
$$n\text{-LSB}(H^{\text{final}}) \ (= H_8^N || \dots || H_{15}^N).$$

Overview

Introduction

The Algorithm

Algorithm

Preprocessing

Hash computation Finalisation

Cryptanalysis

Cornerstones
Claims
Auxiliary

1. Preprocessing

ad (a): pad message to

$$\mathcal{M}||1||\underbrace{00 \dots 00}_{k \text{ times}}||\operatorname{bin}(\ell),$$

where
$$\ell + k + 1 \equiv_{512} 448$$
 (or $\ell + k + 1 \equiv_{1024} 960$).

- ▶ ad (b): parse padded message into N, m-bit blocks $M^{(i)}$, i = 1, ..., N.
- ▶ ad (c): m-bit initial value $H^{(0)}$ depends on $n \in \{224, 256, 384, 512\}$.
 - n = 224: parse $0 \times 00 \dots 0 \times 3F$ to sixteen 32-bit words.
 - ▶ n = 256: parse 0x40...0x7F to sixteen 32-bit words.
 - ▶ n = 384: parse 0x00...0x7F to sixteen 64-bit words.
 - ▶ n = 512: parse 0x80...0xFF to sixteen 64-bit words.

1. Preprocessing

ad (a): pad message to

$$\mathcal{M}||1||\underbrace{00 \dots 00}_{k \text{ times}}||\operatorname{bin}(\ell),$$

where $\ell + k + 1 \equiv_{512} 448$ (or $\ell + k + 1 \equiv_{1024} 960$).

- ▶ ad (b): parse padded message into N, m-bit blocks $M^{(i)}$, i = 1, ..., N.
- ▶ ad (c): m-bit initial value $H^{(0)}$ depends on $n \in \{224, 256, 384, 512\}$.
 - n = 224: parse $0 \times 00 \dots 0 \times 3F$ to sixteen 32-bit words.
 - ▶ n = 256: parse 0x40...0x7F to sixteen 32-bit words.
 - ▶ n = 384: parse 0x00...0x7F to sixteen 64-bit words.
 - ▶ n = 512: parse 0x80...0xFF to sixteen 64-bit words.

1. Preprocessing

ad (a): pad message to

$$\mathcal{M}||1||\underbrace{00\ldots 00}_{k \text{ times}}||\operatorname{bin}(\ell),$$

where $\ell + k + 1 \equiv_{512} 448$ (or $\ell + k + 1 \equiv_{1024} 960$).

- ▶ ad (b): parse padded message into N, m-bit blocks $M^{(i)}$, i = 1, ..., N.
- ▶ ad (c): m-bit initial value $H^{(0)}$ depends on $n \in \{224, 256, 384, 512\}$.
 - ▶ n = 224: parse 0x00...0x3F to sixteen 32-bit words.
 - ▶ n = 256: parse 0x40...0x7F to sixteen 32-bit words.
 - ▶ n = 384: parse 0x00...0x7F to sixteen 64-bit words.
 - ▶ n = 512: parse 0x80...0xFF to sixteen 64-bit words.

Overview

Introduction

The Algorithm

Algorithm

Hash computation

Tiasii computatio

Finalisation

Cryptanalysis

Cornerstones

Claims

Auxiliary

2. Hash computation

Fig.: The BMW algorithm

Compression function splits into:

$$f_0: \{0,1\}^{2m} \longrightarrow \{0,1\}^m$$

$$f_0 : \{0,1\}^{2m} \longrightarrow \{0,1\}^m$$

 $f_1 : \{0,1\}^{3m} \longrightarrow \{0,1\}^m$

$$f_2: \{0,1\}^{3m} \longrightarrow \{0,1\}^m$$

- ▶ Define $f_0(M^{(i)}, H^{(i-1)}) := Q_a^{(i)}$, where $Q_a^{(i)} := A_2(A_1(M^{(i)} \oplus H^{(i-1)})) + \mathrm{ROTL}^1(H^{(i-1)})$
- ▶ $A_1 \in \{0,1,-1\}^{16 \times 16}$ is obtained by a matrix $A_1' \in \mathbb{F}_2^{16 \times 16}$ by randomly turning some values '1' to '-1' so that $\det A_1 \in \mathbb{Z}_{2^w}^{\times}$.
- ▶ Let $W^{(i)} := A_1(M^{(i)} \oplus H^{(i-1)})$. Then $A_2(W^{(i)}_j) := s_{j \bmod 5}(W^{(i)}_j) + H^{(i-1)}_{(j+1) \bmod 16}$
- ▶ s_0, s_1, s_2, s_3, s_4 are transformations based on ROTL, SHL, SHR (see handout).

- ▶ Define $f_0(M^{(i)}, H^{(i-1)}) := Q_a^{(i)}$, where $Q_a^{(i)} := A_2(A_1(M^{(i)} \oplus H^{(i-1)})) + \mathrm{ROTL}^1(H^{(i-1)})$
- ▶ $A_1 \in \{0,1,-1\}^{16 \times 16}$ is obtained by a matrix $A_1' \in \mathbb{F}_2^{16 \times 16}$ by randomly turning some values '1' to '-1' so that $\det A_1 \in \mathbb{Z}_{2^w}^{\times}$.
- ▶ Let $W^{(i)}:=A_1(M^{(i)}\oplus H^{(i-1)})$. Then $A_2(W^{(i)}_j):=s_{j\bmod 5}(W^{(i)}_j)+H^{(i-1)}_{(j+1)\bmod 10}$
- ▶ s_0, s_1, s_2, s_3, s_4 are transformations based on ROTL, SHL, SHR (see handout).

- ▶ Define $f_0(M^{(i)}, H^{(i-1)}) := Q_a^{(i)}$, where $Q_a^{(i)} := A_2(A_1(M^{(i)} \oplus H^{(i-1)})) + \mathrm{ROTL}^1(H^{(i-1)})$
- ▶ $A_1 \in \{0,1,-1\}^{16 \times 16}$ is obtained by a matrix $A_1' \in \mathbb{F}_2^{16 \times 16}$ by randomly turning some values '1' to '-1' so that $\det A_1 \in \mathbb{Z}_{2^w}^{\times}$.
- ▶ Let $W^{(i)}:=A_1(M^{(i)}\oplus H^{(i-1)})$. Then $A_2(W^{(i)}_j):=s_{j\bmod 5}(W^{(i)}_j)+H^{(i-1)}_{(j+1)\bmod 16}$
- ▶ s_0, s_1, s_2, s_3, s_4 are transformations based on ROTL, SHL, SHR (see handout).

- ▶ Define $f_0(M^{(i)}, H^{(i-1)}) := Q_a^{(i)}$, where $Q_a^{(i)} := A_2(A_1(M^{(i)} \oplus H^{(i-1)})) + \mathrm{ROTL}^1(H^{(i-1)})$
- ▶ $A_1 \in \{0,1,-1\}^{16 imes 16}$ is obtained by a matrix $A_1' \in \mathbb{F}_2^{16 imes 16}$ by randomly turning some values '1' to '-1' so that $\det A_1 \in \mathbb{Z}_{2^w}^{ imes}$.
- ▶ Let $W^{(i)}:=A_1(M^{(i)}\oplus H^{(i-1)})$. Then $A_2(W^{(i)}_j):=s_{j\bmod 5}(W^{(i)}_j)+H^{(i-1)}_{(j+1)\bmod 16}$
- ▶ s₀, s₁, s₂, s₃, s₄ are transformations based on ROTL, SHL, SHR (see handout).

Hash computation

2. Hash computation (cont.)

Definition of f_0

```
    Bijective transform of M<sup>(i)</sup> ⊕ H<sup>(i-1)</sup>:

                                        = (M_5^{(i)} \oplus H_5^{(i-1)}) - (M_7^{(i)} \oplus H_7^{(i-1)}) + (M_{10}^{(i)} \oplus H_{10}^{(i-1)}) + (M_{13}^{(i)} \oplus H_{13}^{(i-1)})
                                         =(M_{\epsilon}^{(i)} \oplus H_{\epsilon}^{(i-1)}) - (M_{\epsilon}^{(i)} \oplus H_{\epsilon}^{(i-1)}) + (M_{11}^{(i)} \oplus H_{11}^{(i-1)}) + (M_{11}^{(i)} \oplus H_{11}^{(i-1)})
                                        = (M_0^i \oplus H_0^i)^- - (M_1 \oplus H_1^i)^- + (M_2^{(i)} \oplus H_2^{(i-1)})^- + (M_0^{(i)} \oplus H_0^{(i-1)})^-
= (M_3^{(i)} \oplus H_3^{(i-1)})^- - (M_2^{(i)} \oplus H_2^{(i-1)})^- + (M_{10}^{(i)} \oplus H_0^{(i-1)})^-
                                                                                                                        -(M_0^{(i)} \oplus H_0^{(i-1)}) - (M_3^{(i)} \oplus H_3^{(i-1)})
                                         =(M_{\epsilon}^{(i)} \oplus H_{\epsilon}^{(i-1)}) - (M_{\epsilon}^{(i)} \oplus H_{\epsilon}^{(i-1)}) - (M_{\epsilon}^{(i)} \oplus H_{\epsilon}^{(i-1)})
                                                                                                                      -(M_6^{(i)} \oplus H_5^{(i-1)}) - (M_6^{(i)} \oplus H_6^{(i-1)})
                                         = (M_a^{(i)} \oplus H_a^{(i-1)}) - (M_a^{(i)} \oplus H_a^{(i-1)}) + (M_a^{(i)} \oplus H_a^{(i-1)}) -
                                        =(M_{4}^{(i)} \oplus H_{8}^{(i-1)}) - (M_{1}^{(i)} \oplus H_{1}^{(i-1)}) - (M_{4}^{(i)} \oplus H_{4}^{(i-1)}) - (M_{7}^{(i)} \oplus H_{7}^{(i-1)})
                                         =(M_8^{(i)} \oplus H_8^{(i-1)}) - (M_0^{(i)} \oplus H_0^{(i-1)}) - (M_2^{(i)} \oplus H_2^{(i-1)}) - (M_8^{(i)} \oplus H_8^{(i-1)})
                                        =(M_1^{(i)} \oplus H_1^{(i-1)}) + (M_3^{(i)} \oplus H_3^{(i-1)}) - (M_6^{(i)} \oplus H_6^{(i-1)})
                                        = (M_2^{(i)} \oplus H_2^{(i-1)}) + (M_4^{(i)} \oplus H_4^{(i-1)}) + (M_2^{(i)} \oplus H_2^{(i-1)}) + (M_{10}^{(i)} \oplus H_{10}^{(i-1)}) + (M_{11}^{(i)} \oplus H_{11}^{(i-1)})
                                        = (M_{33}^{(l)} \oplus H_{3}^{(l-1)}) - (M_{4}^{(l)} \oplus H_{3}^{(l-1)}) + (M_{4}^{(l)} \oplus H_{3}^{(l-1)}) - (M_{11}^{(l)} \oplus H_{11}^{(l-1)}) - (M_{12}^{(l)} \oplus H_{12}^{(l-1)}) - (M_{12}^{(l)} \oplus H_{12}^{(l-1)}) - (M_{12}^{(l)} \oplus H_{12}^{(l-1)}) - (M_{12}^{(l)} \oplus H_{12}^{(l-1)}) + (M_{13}^{(l)} \oplus H_{12}^{(l-1)}) + (M_{13}^{(l)} \oplus H_{12}^{(l-1)}) + (M_{13}^{(l)} \oplus H_{12}^{(l-1)})

 Further bijective transform of W<sub>i</sub><sup>(i)</sup>, j = 0,..., 15:

               \begin{array}{lll} Q_0^{(0)} = s_0(W_0^{(0)}) + H_0^{(i-1)}, & Q_1^{(i)} = s_1(W_1^{(i)}) + H_2^{(i-1)}, & Q_2^{(i)} = s_2(W_2^{(i)}) + H_2^{(i-1)}, & Q_3^{(i)} = s_3(W_3^{(i)}) + H_4^{(i-1)}, & Q_3^{(i)} = s_3(W_3^{(i)}) + H_2^{(i-1)}, & Q_3^{(i)} = s_3(W_3^{(i)}) + H_2^{(i-1)}, & Q_3^{(i)} = s_3(W_3^{(i)}) + H_2^{(i-1)}, & Q_3^{(i)} = s_3(W_3^{(i)}) + H_3^{(i-1)}, & Q_3^{(i)} = s_3(W_3^{(i)}) + H_3^{(i)}, & Q_3^{(i)} = s_3(W_3^{(i)}) + H_3^{(i)}, & Q_3^{(i)} = s_3(W
```


Definition of f_1

▶ Compute:

for
$$ii=0$$
 to $\operatorname{ExpandRounds}_1$ - 1 $Q_{ii+16}^{(i)}=\operatorname{expand}_1(ii+16);$ for $ii=\operatorname{ExpandRounds}_1$ to $\operatorname{ExpandRounds}_1$ + $\operatorname{ExpandRounds}_2$ - 1 $Q_{ii}^{(i)}=\operatorname{expand}_1(ii+16);$

- ightharpoonup expand₁ uses s_k , expand₂ more simple rotations r_k (see handout).
- ► ExpandRounds₁ = 2, ExpandRounds₂ = 14 is default (best secure-speed ratio).

Definition of f_1

$$lacksquare f_1(M^{(i)},H^{(i-1)},Q_a^{(i)}):=Q_b^{(i)} ext{ with } Q_b^{(i)}=(Q_{16}^{(i)},\dots,Q_{31}^{(i)})$$

Compute:

for
$$ii=0$$
 to $\operatorname{ExpandRounds}_1$ - 1 $Q_{ii+16}^{(i)}=\operatorname{expand}_1(ii+16);$ for $ii=\operatorname{ExpandRounds}_1$ to $\operatorname{ExpandRounds}_2$ + $\operatorname{ExpandRounds}_2$ - 1 $Q_{ii+16}^{(i)}=\operatorname{expand}_2(ii+16);$

- expand₁ uses s_k , expand₂ more simple rotations r_k (see handout).
- ▶ ExpandRounds $_1 = 2$, ExpandRounds $_2 = 14$ is default (best secure-speed ratio).

Definition of f_1

$$lacksquare f_1(M^{(i)},H^{(i-1)},Q_a^{(i)}):=Q_b^{(i)} ext{ with } Q_b^{(i)}=(Q_{16}^{(i)},\dots,Q_{31}^{(i)})$$

Compute:

$$\begin{aligned} &\textbf{for} \ ii = 0 \ \textbf{to} \ \mathsf{ExpandRounds}_1 \ \textbf{-1} \\ &Q_{ii+16}^{(i)} = \mathrm{expand}_1(ii+16); \\ &\textbf{for} \ ii = &\mathsf{ExpandRounds}_1 \ \textbf{to} \ \mathsf{ExpandRounds}_1 \ \textbf{+} \\ &\mathsf{ExpandRounds}_2 \ \textbf{-1} \end{aligned}$$

 $Q_{ii+16}^{(i)} = \text{expand}_2(ii+16);$

- \triangleright expand₁ uses s_k , expand₂ more simple rotations r_k (see handout).
- **ExpandRounds**₁ = 2, ExpandRounds₂ = 14 is default (best δ

Definition of f_1

$$lacksquare f_1(M^{(i)},H^{(i-1)},Q_a^{(i)}):=Q_b^{(i)} ext{ with } Q_b^{(i)}=(Q_{16}^{(i)},\dots,Q_{31}^{(i)})$$

Compute:

for
$$ii=0$$
 to ExpandRounds₁ - 1 $Q_{ii+16}^{(i)}=\mathrm{expand}_1(ii+16);$

 $\begin{aligned} & \textbf{for} \ ii = & \texttt{ExpandRounds}_1 \ \textbf{to} \ \texttt{ExpandRounds}_1 \ \textbf{+} \\ & \texttt{ExpandRounds}_2 \ \textbf{-} \ \textbf{1} \end{aligned}$

$$Q_{ii+16}^{(i)} = \text{expand}_2(ii+16);$$

- expand₁ uses s_k , expand₂ more simple rotations r_k (see handout).
- ▶ ExpandRounds₁ = 2, ExpandRounds₂ = 14 is default (best secure-speed ratio).

Hash computation

2. Hash computation (cont.)

Definition of f_2

$$f_2(M^{(i)}, Q_a^{(i)}, Q_b^{(i)}) := H^{(i)}$$

Definition of f_2

```
    Compute the cumulative temporary variables XL and XH.

                                           XL = Q_{16}^{(i)} \oplus Q_{17}^{(i)} \oplus \dots \oplus Q_{23}^{(i)}

XH = XL \oplus Q_{24}^{(i)} \oplus Q_{25}^{(i)} \oplus \dots \oplus Q_{31}^{(i)}

 Compute the new double pipe H<sup>(i)</sup>

                                                         \left(SHL^{5}(XH) \oplus SHR^{5}(O_{12}^{(i)}) \oplus M_{0}^{(i)}\right)
                                                                                                                                                \left(XL \oplus Q_{24}^{(i)} \oplus Q_{0}^{(i)}\right)
                                                         SHR^7(XH) \oplus SHL^8(O_{17}^{(i)}) \oplus M_1^{(i)}
                                                                                                                                                XL \oplus Q_{25}^{(i)} \oplus Q_{1}^{(i)}
                                                         SHR^{5}(XH) \oplus SHL^{5}(Q_{18}^{(i)}) \oplus M_{2}^{(i)} +
                                                                                                                                                (XL \oplus Q_{26}^{(i)} \oplus Q_{2}^{(i)})
       H_{3}^{(i)} =
                                                         SHR^{1}(XH) \oplus SHL^{5}(Q_{19}^{(i)}) \oplus M_{3}^{(i)} +
                                                                                                                                                (XL \oplus Q_{27}^{(i)} \oplus Q_{3}^{(i)})
       H_A^{(i)} =
                                                         SHR^3(XH) \oplus Q_{20}^{(i)} \oplus M_4^{(i)}
                                                                                                                                                XL \oplus Q_{28}^{(i)} \oplus Q_{4}^{(i)}
       H_a^{(i)} =
                                                         (SHL^6(XH) \oplus SHR^6(Q_{21}^{(i)}) \oplus M_{\epsilon}^{(i)})
                                                                                                                                                (XL \oplus Q_{29}^{(i)} \oplus Q_{5}^{(i)})
       H_6^{(i)} =
                                                         SHR^4(XH) \oplus SHL^6(Q_{22}^{(i)}) \oplus M_6^{(i)}
                                                                                                                                                (XL \oplus Q_{30}^{(i)} \oplus Q_{6}^{(i)})
       H_{7}^{(i)} =
                                                       \left(SHR^{11}(XH) \oplus SHL^2(Q_{23}^{(i)}) \oplus M_7^{(i)}\right)
                                                                                                                                                (XL \oplus Q_{31}^{(i)} \oplus Q_7^{(i)})
       H_o^{(i)} = ROTL^9(H_4^{(i)}) +
                                                                                                                                  (SHL^8(XL) \oplus Q_{23}^{(i)} \oplus Q_8^{(i)})
                                                                     (XH +
                                                                                                       ⊕ M<sub>8</sub><sup>(i)</sup>)
       H_0^{(i)} = ROTL^{10}(H_5^{(i)}) +
                                                                     (XH ⊕
                                                                                                   \oplus M_0^{(i)}
                                                                                                                                   \left(SHR^{6}(XL) \oplus Q_{16}^{(i)} \oplus Q_{9}^{(i)}\right)
                                                                                                                                   (SHL^{6}(XL) \oplus Q_{17}^{(i)} \oplus Q_{10}^{(i)})
       H_{10}^{(i)} = ROTL^{11}(H_6^{(i)}) +
                                                                     (XH ⊕
                                                                                                   \oplus M_{10}^{(i)}
       H_{11}^{(i)} = ROTL^{12}(H_7^{(i)}) +
                                                                                                                                   SHL^{4}(XL) \oplus Q_{18}^{(i)} \oplus Q_{11}^{(i)}
                                                                    (XH \oplus Q_{27}^{(i)})
                                                                                                   \oplus M_{11}^{(i)}
       H_{12}^{(i)} = ROTL^{13}(H_0^{(i)}) +
                                                                    (XH \oplus Q_{28}^{(i)} \oplus M_{12}^{(i)}) +
                                                                                                                                  (SHR^3(XL) \oplus Q_{19}^{(i)} \oplus Q_{12}^{(i)})
       H_{12}^{(i)} = ROTL^{14}(H_1^{(i)}) +
                                                                    (XH \oplus Q_{29}^{(i)} \oplus M_{13}^{(i)}) +
                                                                                                                                  (SHR^4(XL) \oplus Q_{20}^{(i)} \oplus Q_{13}^{(i)})
       H_{14}^{(i)} = ROTL^{15}(H_2^{(i)}) +
                                                                     (XH ⊕ Q<sub>30</sub><sup>(i)</sup>
                                                                                                                                  (SHR^7(XL) \oplus Q_{21}^{(i)} \oplus Q_{14}^{(i)})
                                                                                                   \oplus M_{14}^{(i)} +
       H_{15}^{(i)} = ROTL^{16}(H_{3}^{(i)}) +
                                                                                                                                   (SHR^2(XL) \oplus Q_{22}^{(i)} \oplus Q_{15}^{(i)})
                                                                                                       ⊕ M<sub>15</sub>(i)
                                                                     (XH \oplus
```


Overview

Introduction

The Algorithm

Algorithm
Preprocessing
Hash computation

Finalisation

Cryptanalysis

Cornerstones
Claims
Auxiliary

3. Finalisation

```
For n \in \{224, 256\} set:

F\_CONST = (0xaaaaaaa0, \dots, 0xaaaaaaaf),

For n \in \{384, 512\} set:

F\_CONST = (0xaaaaaaaaaaaaaaaaaa, \dots, 0xaaaaaaaaaaaaaaf).
```


Overview

Introduction

The Algorithm

Algorithm

Preprocessing

Hash computation

Finalisation

Cryptanalysis

Cornerstones

Claims

Auxiliary

Cornerstones

- Double pipe design.
- Heavily usage of permutations/bijections.
- ▶ Nonlinear expressions inside the f_i functions, i = 0, 1, 2.

Cornerstones

Double pipe design

Ensures **provable** security against generic attacks (i.e. attacks that are still applicatable if one replaces the compressions function against an oracle). (Theorem of LUCKS, [SLuck04]).

Permutations and bijections

The authors proved:

Theorem

- 1. When $H^{(i-1)}$ is fixed, $f_0(\cdot, H^{(i-1)})$ is a bijection.
- 2. For given $H^{(i-1)}$ the function $f_1(\cdot, H^{(i-1)}, \cdot)$ is a multipermutation.
- 3. When $Q_b^{(i)}$ and $M^{(i)}$ are fixed, $f_2(M^{(i)}, \cdot, Q_b^{(i)})$ is a bijection.
- 4. When $Q_b^{(i)}$ and $Q_a^{(i)}$ are fixed, $f_2(\cdot,Q_a^{(i)},Q_b^{(i)})$ is a bijection.

Proof: [BMW09, p. 35]

- ▶ f_i nonlinear since + and in $\mathbb{Z}_{2^{32}}$ (or $\mathbb{Z}_{2^{64}}$) are nonlinear operations in $GF(2^{32})$ (or $GF(2^{64})$).
- Preneel, Govaerts, and Vandewalle have located 12 secure schemes for constructing hash functions from block ciphers (namely PGV1-PGV12).
- ▶ PGV6: $H^{(i)} = E(H^{(i-1)}, M^{(i)} \oplus H^{(i-1)}) \oplus M^{(i)} \oplus H^{(i-1)}$.

- ▶ f_i nonlinear since + and in $\mathbb{Z}_{2^{32}}$ (or $\mathbb{Z}_{2^{64}}$) are nonlinear operations in $GF(2^{32})$ (or $GF(2^{64})$).
- Preneel, Govaerts, and Vandewalle have located 12 secure schemes for constructing hash functions from block ciphers (namely PGV1-PGV12).
- ▶ PGV6: $H^{(i)} = E(H^{(i-1)}, M^{(i)} \oplus H^{(i-1)}) \oplus M^{(i)} \oplus H^{(i-1)}$.

- ▶ f_i nonlinear since + and in $\mathbb{Z}_{2^{32}}$ (or $\mathbb{Z}_{2^{64}}$) are nonlinear operations in $GF(2^{32})$ (or $GF(2^{64})$).
- Preneel, Govaerts, and Vandewalle have located 12 secure schemes for constructing hash functions from block ciphers (namely PGV1-PGV12).
- ▶ PGV6: $H^{(i)} = E(H^{(i-1)}, M^{(i)} \oplus H^{(i-1)}) \oplus M^{(i)} \oplus H^{(i-1)}$.

Theorem

BMW hash function can be expressed as a generalized PGV6 scheme.

Fig.: PGV6 scheme (left), BMW hash function (right).

Theorem

BMW hash function can be expressed as as generalized PGV6 scheme.

Proof (scetch):

- ▶ Set $E(H^{(i-1)}, M^{(i)} \oplus H^{(i-1)}) := f_1(M^{(i)}, f_0(M^{(i)}, H^{(i-1)}))$, since $f_0(M^{(i)}, H^{(i-1)})$ generalizes $M^{(i)} \oplus H^{(i-1)}$.
- Thus, BMW can be represented as generalized PGV6 scheme such that
 H(i) = f₀(M(i) H(i-1) E(H(i-1) M(i) ⊕ H(i-1))

Theorem

BMW hash function can be expressed as as generalized PGV6 scheme.

Proof (scetch):

- ▶ Set $E(H^{(i-1)}, M^{(i)} \oplus H^{(i-1)}) := f_1(M^{(i)}, f_0(M^{(i)}, H^{(i-1)}))$, since $f_0(M^{(i)}, H^{(i-1)})$ generalizes $M^{(i)} \oplus H^{(i-1)}$.
- ► Thus, BMW can be represented as generalized PGV6 scheme such that $H^{(i)} = f_2(M^{(i)}, H^{(i-1)}, E(H^{(i-1)}, M^{(i)} \oplus H^{(i-1)})).$

Theorem

BMW hash function can be expressed as as generalized PGV6 scheme.

Proof (scetch):

- ▶ Set $E(H^{(i-1)}, M^{(i)} \oplus H^{(i-1)}) := f_1(M^{(i)}, f_0(M^{(i)}, H^{(i-1)}))$, since $f_0(M^{(i)}, H^{(i-1)})$ generalizes $M^{(i)} \oplus H^{(i-1)}$.
- Thus, BMW can be represented as generalized PGV6 scheme such that

$$H^{(i)} = f_2(M^{(i)}, H^{(i-1)}, E(H^{(i-1)}, M^{(i)} \oplus H^{(i-1)})).$$

Overview

Introduction

The Algorithm

Algorithm

Preprocessing

Hash computation

Finalisation

Cryptanalysis

Cornerstones

Claims

Auxiliary

Claim

It is infeasable to find collisions, preimages and second preimages.

- 1. PGV6 scheme is second-preimage and collision resistant, moreover the functions f_0, f_1, f_2 are nonlinear.
- 2. Compression in finalisation (namely f_2) applies another robust one-way function on the result.
- 3. It is hard to change consistently all three inputs of f_2 such that they will cancel out each other or lead to controllable changes.

Claim

It is infeasable to find collisions, preimages and second preimages.

- 1. PGV6 scheme is second-preimage and collision resistant, moreover the functions f_0 , f_1 , f_2 are nonlinear.
- 2. Compression in finalisation (namely f_2) applies another robust one-way function on the result.
- 3. It is hard to change consistently all three inputs of f_2 such that they will cancel out each other or lead to controllable changes.

Claim

It is infeasable to find collisions, preimages and second preimages.

- 1. PGV6 scheme is second-preimage and collision resistant, moreover the functions f_0 , f_1 , f_2 are nonlinear.
- 2. Compression in finalisation (namely f_2) applies another robust one-way function on the result.
- 3. It is hard to change consistently all three inputs of f_2 such that they will cancel out each other or lead to controllable changes.

Claim

It is infeasable to find collisions, preimages and second preimages.

- 1. PGV6 scheme is second-preimage and collision resistant, moreover the functions f_0 , f_1 , f_2 are nonlinear.
- 2. Compression in finalisation (namely f_2) applies another robust one-way function on the result.
- 3. It is hard to change consistently all three inputs of f_2 such that they will cancel out each other or lead to controllable changes.

Claim

Approximation of additions and subtractions with XOR is computationally to expensive.

- 1. **Problem**: approximate +/- modulo 2^n with XORs.
- 2. Computing the differential properties of addition modulo 2^n for two variables is feasible (Lipmaa/Moriai, 2001).
- 3. **But**: BMW uses a complex system of +/- with a lot more than two variables. An algorithm to solve such equations has exponential complexity, i. e. is of order $O(2^{bk})$, where b is the bit length of the variables and k is the number of equations (Paul and Preneel, 2005).

Claim

Approximation of additions and subtractions with XOR is computationally to expensive.

- 1. **Problem**: approximate +/- modulo 2^n with XORs.
- 2. Computing the differential properties of addition modulo 2^n for two variables is feasible (Lipmaa/Moriai, 2001).
- 3. **But**: BMW uses a complex system of +/- with a lot more than two variables. An algorithm to solve such equations has exponential complexity, i. e. is of order $O(2^{bk})$, where b is the bit length of the variables and k is the number of equations (Paul and Preneel, 2005).

Claim

Approximation of additions and subtractions with XOR is computationally to expensive.

- 1. **Problem**: approximate +/- modulo 2^n with XORs.
- 2. Computing the differential properties of addition modulo 2^n for two variables is feasible (Lipmaa/Moriai, 2001).
- 3. **But**: BMW uses a complex system of +/- with a lot more than two variables. An algorithm to solve such equations has exponential complexity, i. e. is of order $O(2^{bk})$, where b is the bit length of the variables and k is the number of equations (Paul and Preneel, 2005).

Claim

Approximation of additions and subtractions with XOR is computationally to expensive.

- 1. **Problem**: approximate +/- modulo 2^n with XORs.
- 2. Computing the differential properties of addition modulo 2^n for two variables is feasible (Lipmaa/Moriai, 2001).
- 3. **But**: BMW uses a complex system of +/- with a lot more than two variables. An algorithm to solve such equations has exponential complexity, i. e. is of order $O(2^{bk})$, where b is the bit length of the variables and k is the number of equations (Paul and Preneel, 2005).

Claim

Differential cryptanalysis is infeasable.

- Double pipe design has the effect that the adversary has to use twice the number of variables in the differential path than in a single pipe.
- 2. Heavily usage of diffusions: "Every one bit difference in the vector $W^{(i)}$ after Step 1 and Step 2 of the function f_0 diffuses into 5 words of the the vector Q_a , and the differences in those 5 words are minimum 1 or 2 bits difference, or minimum 3 or 4 bits difference" ([BMW09, Lemma 6]).
- Heavily usage of permutations.

Claim

Differential cryptanalysis is infeasable.

- Double pipe design has the effect that the adversary has to use twice the number of variables in the differential path than in a single pipe.
- 2. Heavily usage of diffusions: "Every one bit difference in the vector $W^{(i)}$ after Step 1 and Step 2 of the function f_0 diffuses into 5 words of the the vector Q_a , and the differences in those 5 words are minimum 1 or 2 bits difference, or minimum 3 or 4 bits difference" ([BMW09, Lemma 6]).
- Heavily usage of permutations.

Claim

Differential cryptanalysis is infeasable.

- Double pipe design has the effect that the adversary has to use twice the number of variables in the differential path than in a single pipe.
- 2. Heavily usage of diffusions: "Every one bit difference in the vector $W^{(i)}$ after Step 1 and Step 2 of the function f_0 diffuses into 5 words of the the vector Q_a , and the differences in those 5 words are minimum 1 or 2 bits difference, or minimum 3 or 4 bits difference" ([BMW09, Lemma 6]).
- Heavily usage of permutations.

Claim

Differential cryptanalysis is infeasable.

- Double pipe design has the effect that the adversary has to use twice the number of variables in the differential path than in a single pipe.
- 2. Heavily usage of diffusions: "Every one bit difference in the vector $W^{(i)}$ after Step 1 and Step 2 of the function f_0 diffuses into 5 words of the the vector Q_a , and the differences in those 5 words are minimum 1 or 2 bits difference, or minimum 3 or 4 bits difference" ([BMW09, Lemma 6]).
- Heavily usage of permutations.

Overview

Introduction

The Algorithm

Algorithm

Preprocessing

Hash computation

Finalisation

Cryptanalysis

Cornerstones

Claim

Auxiliary

- ► A near collision attack on the BMW compression function (by Thomsen, 2008).
- Attack at the Round 1 BMW hash function.
- ► Vulnerability fixed by modification of AddElement(*j*) function.
- ► Old version: AddElement $(j) = M_j^{(i)} + M_{j+3}^{(i)} - M_{j+10}^{(i)} + K_{j+16}$
- New version: AddElement $(j) = [\text{ROTL}^{(j+1)}(M_j^{(i)}) + \text{ROTL}^{(j+4)}(M_{j+3}^{(i)}) - \text{ROTL}^{(j+11)}(M_{j+10}^{(i)}) + K_{j+16}] \oplus H_{j+7}^{(i)}.$

- A near collision attack on the BMW compression function (by Thomsen, 2008).
- Attack at the Round 1 BMW hash function.
- ► Vulnerability fixed by modification of AddElement(*j*) function.
- ► Old version: AddElement $(j) = M_j^{(i)} + M_{j+3}^{(i)} - M_{j+10}^{(i)} + K_{j+16}$
- New version: AddElement $(j) = [\text{ROTL}^{(j+1)}(M_j^{(i)}) + \text{ROTL}^{(j+4)}(M_{j+3}^{(i)}) - \text{ROTL}^{(j+1)}(M_{j+10}^{(i)}) + K_{j+16}] \oplus H_{j+7}^{(i)}.$

- A near collision attack on the BMW compression function (by Thomsen, 2008).
- Attack at the Round 1 BMW hash function.
- Vulnerability fixed by modification of AddElement(j) function.
- ► Old version: AddElement $(j) = M_j^{(i)} + M_{j+3}^{(i)} - M_{j+10}^{(i)} + K_{j+16}$
- New version: AddElement $(j) = [\text{ROTL}^{(j+1)}(M_j^{(i)}) + \text{ROTL}^{(j+4)}(M_{j+3}^{(i)}) - \text{ROTL}^{(j+11)}(M_{j+10}^{(i)}) + K_{j+16}] \oplus H_{j+7}^{(i)}.$

- A near collision attack on the BMW compression function (by Thomsen, 2008).
- Attack at the Round 1 BMW hash function.
- Vulnerability fixed by modification of AddElement(j) function.
- ▶ Old version: AddElement $(j) = M_j^{(i)} + M_{j+3}^{(i)} - M_{j+10}^{(i)} + K_{j+16}$.
- ▶ New version: AddElement(j) = [ROTL^(j+1)($M_j^{(i)}$) + ROTL^(j+4)($M_{j+3}^{(i)}$) ROTL^(j+11)($M_{j+10}^{(i)}$) + K_{j+16}] $\oplus H_{j+7}^{(i)}$.

Cryptographic strength

Algorithm abbreviation	Digest size n (in bits)	Work factor for finding collision	Work factor for finding a preimage	Work factor for finding a second preimage of a message shorter than 2 ^k bits	Resistance to length- extension attacks	Resistance to multicollision attacks
BMW224	224	$\approx 2^{112}$	$\approx 2^{224}$	$\approx 2^{224-k}$	Yes	Yes
BMW256	256	$\approx 2^{128}$	$\approx 2^{256}$	$\approx 2^{256-k}$	Yes	Yes
BMW384	384	$\approx 2^{192}$	$\approx 2^{384}$	$\approx 2^{384-k}$	Yes	Yes
BMW512	512	$\approx 2^{256}$	$\approx 2^{512}$	$\approx 2^{512-k}$	Yes	Yes

- $ightharpoonup O(2^{n/2})$ hash computations for finding collisions.
- $ightharpoonup O(2^n)$ hash computations for finding preimages.
- ▶ $O(2^{n-k})$ hash computations for finding second preimages $(|\mathcal{M}| < 2^k)$.

Cryptographic strength

Algorithm abbreviation	Digest size n (in bits)	Work factor for finding collision	Work factor for finding a preimage	Work factor for finding a second preimage of a message shorter than 2 ^k bits	Resistance to length- extension attacks	Resistance to multicollision attacks
BMW224	224	$\approx 2^{112}$	$\approx 2^{224}$	$\approx 2^{224-k}$	Yes	Yes
BMW256	256	$\approx 2^{128}$	$\approx 2^{256}$	$\approx 2^{256-k}$	Yes	Yes
BMW384	384	$\approx 2^{192}$	$\approx 2^{384}$	$\approx 2^{384-k}$	Yes	Yes
BMW512	512	$\approx 2^{256}$	$\approx 2^{512}$	$\approx 2^{512-k}$	Yes	Yes

- ▶ $O(2^{n/2})$ hash computations for finding collisions.
- $ightharpoonup O(2^n)$ hash computations for finding preimages.
- ▶ $O(2^{n-k})$ hash computations for finding second preimages $(|\mathcal{M}| < 2^k)$.

- BMW requires no specific hardware.
- On NIST reference platform (64 bit version):
 - n = 224,256:7.50 cycles/byte
 - n = 384,512:3.90 cycles/byte
- Memory requirements: for one block $M^{(i)}$, BMW needs 264 bytes (n=224,256) and 528 bytes (n=384,512).
- ► Thus, BMW is one of the fastest algorithms under the 14 SHA-3 candidates.

- BMW requires no specific hardware.
- On NIST reference platform (64 bit version):
 - n = 224,256:7.50 cycles/byte
 - n = 384,512:3.90 cycles/byte
- Memory requirements: for one block $M^{(i)}$, BMW needs 264 bytes (n=224,256) and 528 bytes (n=384,512).
- ► Thus, BMW is one of the fastest algorithms under the 14 SHA-3 candidates.

- BMW requires no specific hardware.
- On NIST reference platform (64 bit version):
 - n = 224,256:7.50 cycles/byte
 - n = 384,512:3.90 cycles/byte
- Memory requirements: for one block $M^{(i)}$, BMW needs 264 bytes (n=224,256) and 528 bytes (n=384,512).
- ► Thus, BMW is one of the fastest algorithms under the 14 SHA-3 candidates.

- BMW requires no specific hardware.
- On NIST reference platform (64 bit version):
 - n = 224,256:7.50 cycles/byte
 - n = 384,512:3.90 cycles/byte
- Memory requirements: for one block $M^{(i)}$, BMW needs 264 bytes (n=224,256) and 528 bytes (n=384,512).
- ► Thus, BMW is one of the fastest algorithms under the 14 SHA-3 candidates.

Auxiliary

That's it. Thank you for your attention.

Literaturverzeichnis

[BMW09] Cryptographic Hash Function BLUE MIDNIGHT WISH

Danilo Gligoroski, Vlastimil Klima, Svein Johan Knapskog. Submission to NIST (Round 2), 2009.

[Joux04] Multicollisions in iterated hash functions, application to cascaded constructions.

A. Joux.

Crypto 04, LNCS 3152, pp. 306 - 316.

[SLuck04] Design Principles for Iterated Hash Functions. Stefan Lucks.

e-Print, University of Mannheim, Germany.

