Chapitre 16. Espaces vectoriels de dimension finie.

 $\mathbb K$ désigne $\mathbb R$ ou $\mathbb C.$

Sauf mention contraire, E désigne un \mathbb{K} -espace vectoriel.

1 Familles de vecteurs

1.a Compléments sur les familles génératrices

Rappel:

Définition:

On dit qu'une famille (x_1, x_2, \dots, x_n) de vecteurs de E est une famille génératrice de E si

$$E = \operatorname{Vect}(x_1, x_2 \dots, x_n) = \left\{ \sum_{k=1}^{n} \lambda_i . x_i / (\lambda_1, \dots, \lambda_n) \in \mathbb{K}^n \right\}$$

c'est-à-dire :

Remarque : l'ordre des x_i n'a pas d'importance.

Exemples:

- ((1,0),(0,1)) est une famille génératrice de \mathbb{R}^2 car : $\forall (x,y) \in \mathbb{R}^2, (x,y) =$
- ((1,0)) n'est pas génératrice de \mathbb{R}^2 puisqu'il existe un vecteur (x,y) de \mathbb{R}^2 qui n'en soit pas combinaison linéaire : par exemple (0,1).
- Par contre, ((1,0),(0,1),(1,1)) est une autre famille génératrice de \mathbb{R}^2 car :

$$\forall (x,y) \in \mathbb{R}^2, (x,y) =$$

- Une famille génératrice de $\mathbb{K}_n[X]$, l'ensemble des polynômes à coefficients dans \mathbb{K} de degré inférieur ou égal à n, est :
- Une famille génératrice de $\mathcal{M}_{n,p}[X]$, l'ensemble des matrices à coefficients dans \mathbb{K} de taille $n \times p$, est :

Quelques règles à connaître :

- Si on adjoint d'autres vecteurs à une famille génératrice de E, cela reste une famille génératrice de E. Version savante : "Toute surfamille d'une famille génératrice est génératrice".
- En particulier : Si y est combinaison linéaire de x_1, \ldots, x_n , alors

$$Vect (x_1, \dots, x_n, y) =$$

Dans un Vect / dans une famille génératrice, on peut multiplier l'un des x_i , ou plusieurs, par des constantes non nulles; par exemple:

On peut ajouter à l'un des x_i une combinaison linéaire des autres vecteurs : par exemple,

Démonstration 1

Une méthode pour savoir si une famille (x_1, \ldots, x_n) est génératrice de E:

Prendre $x \in E$, et chercher s'il existe ou non des scalaires $\lambda_1, \ldots, \lambda_n$ tels que $x = \sum_{i=1}^n \lambda_i . x_i$ (souvent, on se ramène à un système).

Il faut qu'il y ait au moins une solution pour tout x dans E.

1.b Familles libres, familles liées

Définition:

Soit (x_1, \ldots, x_n) une famille de vecteurs de E.

- On dit que (x_1, \ldots, x_n) est <u>libre</u> si la seule combinaison linéaire $\sum_{i=1}^n \lambda_i . x_i$ qui valle 0_E est celle où tous les λ_i sont nuls, autrement dit :
- Si la famille (x_1, \ldots, x_n) n'est pas libre, on dit qu'elle est liée; autrement dit, la famille (x_1,\ldots,x_n) est liée si :

Remarque : l'ordre des x_i n'a pas d'importance.

Exemples

- ((1,0),(0,1)) est dans \mathbb{R}^2 car :
- dans \mathbb{R}^2 car : • ((1,0),(0,1),(1,1)) est
- Dans \mathbb{R}^3 , on pose $v_1 = (1, 0, 2), v_2 = (5, -1, 3), v_3 = (6, -1, 5).$ La famille (v_1, v_2, v_3) est
- Dans $\mathbb{K}_n[X]$, la famille $(1, X, X^2, \dots, X^n)$ est
- Dans \mathbb{C} vu comme un \mathbb{R} -ev, la famille (1,i) est

Retenir les méthodes suivantes :

- Pour montrer qu'une famille (x_1, \ldots, x_n) est liée :
- Pour montrer qu'une famille (x_1, \ldots, x_n) est libre :

Exercice: On prend $E = \mathcal{F}(\mathbb{R}, \mathbb{R})$. On pose $f = \cos, g : x \mapsto \cos(2x), h : x \mapsto x$. Montrer que la famille (f, g, h) est libre.

Démonstration 2

Cas particuliers importants:

Cas d'une famille avec un seul vecteur (x_1) :

$$(x_1)$$
 libre \iff

Car:

Cas d'une famille avec deux vecteurs (x_1, x_2) :

$$(x_1, x_2)$$
 libre \iff

Car:

⚠ Une erreur classique est de dire cela pour une famille de 3 vecteurs ou plus.

C'est faux!! On a vu par exemple qu'avec

$$v_1 = (1, 0, 2), v_2 = (5, -1, 3), v_3 = (6, -1, 5),$$

la famille (v_1, v_2, v_3) n'est pas libre;

pourtant, aucun vecteur n'est colinéaire à un autre!

Proposition:

Toute famille contenant une famille est également

Toute famille contenue dans une famille est également

Démonstration 3

Exemple: Une famille contenant en particulier deux vecteurs u et v colinéaires est

Proposition:

Soit $(x_1, \ldots x_n)$ une famille libre de E. Soit $x_{n+1} \in E$.

$$(x_1,\ldots,x_n,x_{n+1})$$
 liée \iff

Démonstration 4

Corollaire:

Soit $(x_1, \ldots x_n)$ une famille libre de E.

Si $u \notin \text{Vect}(x_1, \dots, x_n)$, alors la famille (x_1, \dots, x_n, u) est encore libre.

Proposition:

Soit $(e_1, \ldots, e_p, e_{p+1}, \ldots, e_q)$ une famille libre de E.

Alors en posant $F = \text{Vect}(e_1, \ldots, e_p)$ et $G = \text{Vect}(e_{p+1}, \ldots, e_q)$, les sev F et G sont en somme directe.

Exemple: Soient $e_1 = (1, 2, 3), e_2 = (1, 0, 1)$ et $e_3 = (0, 1, -1)$ des vecteurs de \mathbb{R}^3 .

On pose $P = \text{Vect}(e_1, e_2)$ et $D = \text{Vect}(e_3)$. Justifier que la somme P + D est directe.

Démonstration 6

Cas des familles de polynômes de degrés distincts

Proposition:

Toute famille (P_1, \ldots, P_n) de polynômes non nuls de $\mathbb{K}[X]$ de degrés deux à deux distincts

Démonstration 7

En particulier, c'est le cas pour toute famille (P_1, P_2, \dots, P_n) de polynômes non nuls à degrés échelonnés, c'est-à-dire si $-\infty < \deg P_1 < \deg P_2 < \cdots < \deg P_n$.

Exemples: $(X - 1, X^2 + X + 2, X^4 - X)$; $(1, X - a, (X - a)^2, (X - 3)^2, \dots, (X - a)^n)$...

Nous avons vu que la famille $(1, X, X^2, \dots, X^n)$ est génératrice de $\mathbb{K}_n[X]$. On peut maintenant dire qu'elle est composée de polynômes non nuls, à degrés échelonnés, donc elle est également libre...

1.cBases

Définition:

Soit (x_1, \ldots, x_n) une famille de vecteurs de E. On dit que (x_1, \ldots, x_n) est une base de E si elle est

Exemples:

- $(1, X, X^2, \dots, X^n)$ est donc une base de $\mathbb{K}_n[X]$, appelée base canonique de $\mathbb{K}_n[X]$.
- Dans \mathbb{R}^2 , on a vu que :

((1,0))

Plus généralement, la base canonique de \mathbb{K}^n est la famille (e_1,\ldots,e_n) définie par :

⚠ il n'y a pas unicité de la base d'un ev!

Par exemple, ((0,1),(1,1)) est aussi libre et génératrice de \mathbb{R}^2 , c'en est une base.

Théorème:

Soit (x_1, \ldots, x_n) une famille de vecteurs de E. (x_1, \ldots, x_n) est une base de E si et seulement si tout vecteur de E s'écrit de façon unique comme combinaison linéaire de x_1, \ldots, x_n , autrement dit :

$$(x_1,\ldots,x_n)$$
 base de $E \iff$

Démonstration 8

Comparer avec la définition d'une famille génératrice : la seule différence est l'unicité!

Définition:

Avec les notations du théorème ci-dessus, lorsque (x_1, \ldots, x_n) est une base de E, les scalaires $(\lambda_1, \ldots, \lambda_n)$ s'appellent les coordonnées de x dans la base (x_1, \ldots, x_n) .

${\bf Exemples}:$

• Les coordonnées de $(x,y) \in \mathbb{R}^2$ dans la base canonique de \mathbb{R}^2 sont

Les coordonnées de $(x,y) \in \mathbb{R}^2$ dans la base ((0,1),(1,1)) sont

- Plus généralement, dans \mathbb{K}^n , les coordonnées d'un vecteur $u = (u_1, \dots, u_n) \in \mathbb{K}^n$ dans la base canonique sont ce qu'on appelle communément les coordonnées du vecteur $u : (u_1, \dots, u_n) \dots$
- $P = (X-1)^4$ est dans $\mathbb{R}_6[X]$, qui a pour base canonique $(1, X, X^2, X^3, X^4, X^5, X^6)$.
- La famille $(E_{i,j})_{1 \leq i \leq n, 1 \leq j \leq p}$ des matrices élémentaires de $\mathcal{M}_{n,p}(\mathbb{K})$ est une base de $\mathcal{M}_{n,p}(\mathbb{K})$, appelée base canonique de $\mathcal{M}_{n,p}(\mathbb{K})$; les coordonnées d'une matrice sont simplement les coefficients de la matrice :

• Une autre base de $\mathcal{M}_2(\mathbb{K})$ est par exemple : $\left(\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}\right)$

Espaces vectoriels de dimension finie $\mathbf{2}$

2.a Définition d'un espace vectoriel de dimension finie

Définition:

Soit E un espace vectoriel.

On dit que E est de dimension finie

Exemples:

- \mathbb{K}^n est de dimension finie car
- $\mathcal{M}_{n,p}(\mathbb{K})$ est de dimension finie car
- $\mathbb{K}_n[X]$ est de dimension finie car
- $\mathbb{K}[X]$ n'est pas de dimension finie (on dit parfois qu'il est de dimension infinie).

Par contre, $\mathbb{K}[X]$ admet des familles génératrices infinies (sens non vu dans ce cours):

- On verra que l'ensemble $\mathbb{K}^{\mathbb{N}}$ des suites à valeurs dans \mathbb{K} , et l'ensemble de fonction $\mathcal{F}(\mathbb{R},\mathbb{K})$ (entre autres), sont des ev de dimension infinie.
- Soit E un \mathbb{K} -ev. On sait que $\{0_E\}$ est un sev de E, c'est donc un ev. Il est de dimension finie car:

2.b Extraction et complétion d'une base

Lemme:

Soit E un espace vectoriel. On suppose que (x_1, \ldots, x_m) est une famille génératrice de E, et que cette famille contient une sous-famille libre; quitte à renuméroter les vecteurs, on peut supposer que (x_1, \ldots, x_p) est libre (avec $p \leq m$).

Alors on peut compléter (x_1, \ldots, x_p) en une base de E à l'aide de vecteurs bien choisis parmi $x_{p+1},\ldots,x_m.$

Démonstration 11

Lorsque E n'est pas réduit à $\{0_E\}$, prenons une famille génératrice finie (x_1,\ldots,x_m) de E. L'un des vecteurs x_i au moins est non nul (sinon, $E = \text{Vect}(0_E, \dots, 0_E) = \{0_E\}$). Ce vecteur non nul forme alors une sous-famille libre de (x_1, \ldots, x_m) . Donc le lemme s'applique : il existe donc une base de E, extraite de (x_1, \ldots, x_m) . En résumé :

Théorème:

(de la base extraite)

Soit E un espace vectoriel de dimension finie, non réduit à $\{0_E\}$.

De n'importe quelle famille génératrice finie de E, on peut extraire une base de E.

Exemple: Dans \mathbb{R}^2 , de la famille génératrice ((1,0),(0,1),(1,1)), on peut extraire

Conséquence: Tout espace vectoriel de dimension finie non réduit à $\{0_E\}$ admet au moins une base. (Dans le cas particulier $E = \{0_E\}$, il n'y a pas de base, la seule famille génératrice (0_E) est liée...)

Théorème:

(de la base incomplète) Soit E un espace vectoriel de dimension finie. Soit (u_1, \ldots, u_p) une famille libre de E. Soit (v_1, \ldots, v_n) une famille génératrice finie de E (par exemple une base de E). On peut compléter la famille libre (u_1,\ldots,u_p) en une base de E, à l'aide de certains vecteurs bien choisis parmi (v_1, \ldots, v_n)

C'est à nouveau une conséquence du lemme, en prenant $(x_1,\ldots,x_{p+n})=(u_1,\ldots,u_p,v_1,\ldots,v_n)$ (c'est une famille génératrice de E car elle contient la famille génératrice (v_1, \ldots, v_n) .

Exemples:

- Dans \mathbb{R}^3 , la famille ((1,0,1),(1,0,-1)) est libre car On peut donc la compléter en une base en choisissant convenablement un ou des vecteur(s) parmi
- Dans $\mathbb{C}_2[X]$, la famille $((X-1)^2)$ est libre car On peut donc la compléter en une base en choisissant convenablement un ou des vecteur(s) parmi

Démonstration 12

Définition de la dimension d'un espace vectoriel de dimension finie 2.c

Proposition:

Soit E un espace vectoriel, possédant une famille génératrice à $n \in \mathbb{N}^*$ éléments. Alors toute famille de E possédant au moins n+1 vecteurs est liée; autrement dit, toute famille libre de E possède au plus n éléments.

Démonstration 13

Théorème-définition:

- Soit E un espace vectoriel de dimension finie, non réduit à $\{0_E\}$. Alors
- Par convention, on note $\dim(\{0_E\}) = 0$.

Exemples essentiels:

- $\dim \mathbb{K}^n = \operatorname{car}$
- $\dim \mathbb{K}_n[X] = \operatorname{car}$
- $\dim \mathcal{M}_{n,p}(\mathbb{K}) = \operatorname{car}$
- \mathbb{C} , vu comme \mathbb{R} -espace vectoriel, admet (1,i) comme base; donc
- Soit I un intervalle et a: I → K une fonction continue.
 On considère l'équation différentielle linéaire d'ordre 1 homogène (E₁): y'(x) + a(x)y(x) = 0.
 L'ensemble des solutions de (E₁) est un espace vectoriel de dimension 1.
- Soient a, b et c dans K avec a ≠ 0. On considère l'équation différentielle linéaire d'ordre 2 homogène à coefficients constants (E₂) : ay"(x) + by'(x) + cy(x) = 0.
 L'ensemble des solutions de (E₂) est un espace vectoriel de dimension 2.

2.d Cardinaux d'une famille libre, d'une base, d'une famille génératrice

Théorème:

Soit E un espace vectoriel de dimension n, avec $n \in \mathbb{N}^*$ (donc E n'est pas réduit à $\{0_E\}$).

a) Toute famille libre a

et c'est une base si et seulement si

b) Toute famille génératrice a

et c'est une base si et seulement si

Démonstration 16

Traduction: Dans E de dimension $n \in \mathbb{N}^*$:

a) Soit (x_1, \ldots, x_p) une famille libre. Alors

et
$$(x_1, \ldots, x_p)$$
 base \iff

Conséquence : si p > n alors (x_1, \ldots, x_p)

b) Soit (x_1, \ldots, x_m) une famille génératrice. Alors

et
$$(x_1,\ldots,x_m)$$
 base \iff

Conséquence : si m < n alors (x_1, \ldots, x_m)

Corollaire:

Soit E un espace vectoriel de dimension $n \in \mathbb{N}^*$ et (x_1, \dots, x_n) une famille de vecteurs de E.

Ainsi, pour montrer qu'une famille "qui a le bon nombre de vecteurs" est une base, il suffit de montrer, au choix, qu'elle est libre ou qu'elle est génératrice!

Utilisations:

- Dans \mathbb{R}^2 , ((1,2),(3,4),(5,6)) est
- Dans \mathbb{R}^3 , ((1,2,1),(1,0,-1)) est
- Dans \mathbb{R}^2 , ((1,2),(3,4)) ...

Remarque: On obtient aussi que dans un espace vectoriel de dimension finie, une famille libre a toujours moins d'éléments que n'importe quelle famille génératrice.

2.e Rang d'une famille de vecteurs

Soit E un espace vectoriel quelconque et (x_1, \ldots, x_p) une famille de vecteurs de E. $\operatorname{Vect}(x_1,\ldots,x_p)$ est un ev de dimension finie car il possède une famille génératrice finie : (x_1,\ldots,x_p) .

Définition:

On appelle rang de la famille
$$(x_1, \ldots, x_p)$$
 l'entier $g(x_1, \ldots, x_p) = \dim (\operatorname{Vect}(x_1, \ldots, x_p))$

Cela donne une idée de "la place que prend la famille (x_1, \ldots, x_p) ".

Proposition:

$$rg(x_1, ..., x_p) \le$$

On a égalité si et seulement si

Démonstration 17

Ainsi, le rang d'une famille libre, c'est son nombre d'éléments.

3 Dimension finie et sous-espaces vectoriels

Sous-espace vectoriel d'un espace vectoriel de dimension finie

Théorème:

Soit E un espace vectoriel de dimension finie.

Alors tout sous-espace vectoriel F de E

Proposition:

Soit E un espace vectoriel de dimension finie n, et x_1, \ldots, x_n des vecteurs de E. $rg(x_1,\ldots,x_p) \leq n$, et on a égalité si et seulement si

Démonstration 19

Vocabulaire

- Si dim F = 1, on dit que F est une droite (vectorielle) de E. C'est équivalent à dire que
- Si $\dim F = 2$, on dit que F est un plan (vectoriel) de E. C'est équivalent à dire que
- On dit que F est un hyperplan de E si $|\dim(F)| = \dim(E) 1$

Théorème:

Soit E un ev de dimension finieF et G des sev de E. alors F = G

Démonstration 20

Ce théorème est très pratique!!

Exemple d'utilisation:

Dans \mathbb{C}^4 , on pose $F = \{(x, y, z, t) \in \mathbb{C}^4 \mid x + y - z - t = 0 \text{ et } x + 2y = 0\}$ et G = Vect(u, v) avec u = (-2, 1, -2, 1) et v = (2, -1, 0, 1).

Montrer que F = G.

Démonstration 21

3.b Somme de sous-espaces, sous-espaces supplémentaires en dimension finie

Proposition:

(Formule de Grassman) Soit E un ev de dimension finie, et F, G des sev de E.

Démonstration 22

On en tire en particulier que $\dim(F+G) \leq \dim(F) + \dim(G)$.

Cette formule sert telle quelle mais aussi pour montrer une nouvelle caractérisation très pratique de la supplémentarité:

Proposition:

Soit E un ev de dimension finie et F et G des sev de E.

$$F \oplus G = E \iff$$

Démonstration 23

Exemple: Dans $E = \mathbb{R}^3$, on pose $F = \{(x, y, z) \in \mathbb{R}^3 \ / \ x + y + z = 0\}$ et G = Vect((1, 2, 1)). Montrer que F et G sont supplémentaires dans E.

Démonstration 24

Proposition:

Soit E un ev de dimension finie et F et G des sev de E.

On suppose que F et G ne sont pas réduits à $\{0_E\}$ (ce qui assure qu'ils possèdent des bases).

$$F \oplus G = E \iff$$

Démonstration 25

Cette proposition permet parfois de vérifier que l'on a des sev supplémentaires; on l'utilisera si on dispose facilement de bases \mathcal{B}_F de F et \mathcal{B}_G de G pour lesquelles c'est rapide ou déjà su que la réunion est une base de E.

Cette proposition donne surtout, en dimension finie, une méthode pour créer un supplémentaire d'un sev F non réduit à $\{0\}$ donné :

- Créer une base de E adaptée au sev F, c'est-à-dire une base (e_1, \ldots, e_n) de E dont les premiers vecteurs e_1, \ldots, e_p forment une base de F:
- On pose alors G =

G est alors un supplémentaire de F dans E!

On a montré:

Théorème:

Si E est un espace vectoriel de dimension finie, alors tout sous-espace vectoriel de E admet un supplémentaire dans E.

Exemple: Dans $E = \mathbb{C}^4$, trouver un supplémentaire de F = Vect((1, 2, 0, 1), (0, 1, 1, 0)).

Démonstration 26

La proposition peut s'utiliser pour créer de toutes pièces des sev supplémentaires. Par exemple, la famille $(1, X-2, (X-2)^2, (X-2)^3, (X-2)^4)$ est une base de $\mathbb{R}_4[X]$ (sauriez-vous le justifier?), donc $F = \text{Vect}(1, (X-2)^2, (X-2)^4)$ et $G = \text{Vect}(X-2, (X-2)^3)$ sont supplémentaires dans $\mathbb{R}_4[X]$.

Dimension finie et applications linéaires 4

Différents modes de définition 4.a

Théorème:

Soient E et F des \mathbb{K} -espaces vectoriels.

On suppose E de dimension finie $n \in \mathbb{N}^*$,

et on considère une base (e_1, \ldots, e_n) de E.

Soit (y_1, \ldots, y_n) une famille quelconque de n vecteurs de F.

Il existe une unique application linéaire u de E dans F telle que :

Autrement dit,

Démonstration 27

On savait définir les applications linéaires de la façon suivante : par exemple,

$$u: \mathbb{R}^2 \to \mathbb{R}^3$$
 (expression analytique de u)
 $(x,y) \mapsto (2x+3y,5x+4y,2x)$

Ce théorème nous donne un autre mode de définition d'une application linéaire : il suffit de dire qu'elle est bien linéaire et de donner l'image d'une base.

Exemple: Déterminer l'expression analytique de l'application linéaire $u \in \mathcal{L}(\mathbb{R}^2, \mathbb{R}^3)$ telle que u(1,0) =(3,4,5) et u(0,1)=(0,-1,2).

Démonstration 28

Il y a un troisième mode de définition d'une application linéaire à connaître :

Théorème:

Soient E et F des \mathbb{K} -espaces vectoriels.

On suppose E de dimension finie et $E = E_1 \oplus E_2$.

Une application linéaire $u \in \mathcal{L}(E, F)$ est entièrement déterminée par sa restriction à E_1 et sa restriction à E_2 .

Autrement dit, se donner $u: E \to F$ linéaire, c'est équivalent à se donner $u_1: E_1 \to F$ et $u_2: E_2 \to F$ et à poser, pour tout $x \in E$ s'écrivant $x_1 + x_2$ avec $x_1 \in E_1$ et $x_2 \in E_2$:

4.b Image d'une famille par une application linéaire

Dans cette partie, E et F désignent des \mathbb{K} -espaces vectoriels, et $u \in \mathcal{L}(E, F)$.

Vu au chapitre 14:

Proposition:

Si (e_1, \ldots, e_n) est une famille génératrice de E, alors $\operatorname{Im}(u) = \operatorname{Vect}(u(e_1), \ldots, u(e_n))$; autrement dit, $(u(e_1), \ldots, u(e_n))$ est génératrice de Im(u).

Proposition:

On suppose que (e_1, \ldots, e_n) est une base de E (ainsi E est de dimension finie $n \in \mathbb{N}^*$).

- u est surjective $\iff (u(e_1), \dots, u(e_n))$ est
- u est injective $\iff (u(e_1), \dots, u(e_n))$ est
- u est bijective $\iff (u(e_1), \dots, u(e_n))$ est

Démonstration 29

Remarques:

• Dans la démonstration, on a montré au passage que "l'image d'une famille libre par une application linéaire injective est une famille libre":

Proposition:

Si u est injective et si (e_1, \ldots, e_n) est une famille libre de E, alors $(u(e_1), \ldots, u(e_n))$ est une famille libre de F.

• Le troisième point donne une caractérisation des isomorphismes, très importante :

 $u \in \mathcal{L}(E,F)$ est un isomorphisme si et seulement si l'image d'une base de E par u est une base de F

Exemple : Soit u : $(x, y, z, t) \mapsto (x - y + t, x + z, -x - z)$

Déterminer Im(u); u est-elle injective? Surjective? Bijective?

Démonstration 30

4.c Espaces vectoriels de dimension finie isomorphes

Définition:

Deux espaces vectoriels E et F sont dits isomorphes s'il existe un isomorphisme φ de E dans F (ou de F dans E).

Théorème:

Soient E et F des \mathbb{K} -espaces vectoriels isomorphes.

Si E est de dimension finie alors :

Il s'agit d'un moyen très utile de montre qu'un ev est de dimension finie!

C'est ce qui va nous permettre de montrer le résultat connu sur les suites récurrentes linéaires :

Théorème:

Soient a et b des complexes et F l'ensemble des suites récurrente linéaire d'ordre 2 complexes d'équation caractéristique $(K): r^2 = ar + b:$

$$F = \left\{ u \in \mathbb{C}^{\mathbb{N}} / \forall n \in \mathbb{N}, \ u_{n+2} = au_{n+1} + bu_n \right\}$$

Alors F est un \mathbb{C} -espace vectoriel de dimension 2.

On peut en trouver une base de la manière suivante :

- Si (K) a deux racines distinctes r_1 et r_2 , alors
- Si (K) a une racine double r_1 , alors

Démonstration 32

Pour obtenir le même résultat sur les suites récurrentes linéaires doubles réelles, on passe par $F \cap \mathbb{R}^{\mathbb{N}}$: c'est un \mathbb{R} -espace vectoriel de dimension 2 également.

La forme de ses suites est similaire dans les cas où l'équation caractéristique admet des racines réelles (simples ou double), rappelons le résultat dans le cas de racines complexes conjuguées :

Si a, b réels, et si (K) a deux racines non réelles distinctes r_1 et r_2 , alors ces racines sont non nulles et conjuguées l'une de l'autre; on les écrit sous forme trigonométrique $\rho e^{i\theta}$ et $\rho e^{-i\theta}$, $\rho > 0$, $\theta \in \mathbb{R}$.

Théorème:

Soient E et F des \mathbb{K} -espaces vectoriels de dimension finie.

Démonstration 33

Exemple: On sait que $\mathbb{K}_n[X]$ est de dimension n+1, de même que \mathbb{K}^{n+1} . Donner un isomorphisme simple entre eux.

4.d Rang d'une application linéaire

Définition:

Soient E et F des espaces vectoriels.

Soit $u \in \mathcal{L}(E, F)$. Si Imu est de dimension finie, on définit le rang de u comme l'entier :

Proposition:

On garde les mêmes notations.

- Si F est de dimension finie p, alors $rg(u) \leq p$, égalité si et seulement si
- Si E est de dimension finie n, alors $rg(u) \leq n$, égalité si et seulement si

Démonstration 35

En particulier, si E et F sont de dimension finie, alors $rg(u) \leq min(\dim E, \dim F)$.

Proposition:

Soient E, F, G des espaces vectoriels de dimension finie, $u \in \mathcal{L}(E, F)$ et $v \in \mathcal{L}(F, G)$.

- $\operatorname{rg}(v \circ u) \leq$
- Si u est un isomorphisme alors
- \bullet Si v est un isomorphisme alors

Démonstration 36

Applications linéaires entre ev de mêmes dimension

Théorème:

Soient E et F des espaces vectoriels de dimension finie, avec $\dim E = \dim F$. Soit $u \in \mathcal{L}(E, F)$.

Démonstration 37

Corollaire:

Soit E un espace vectoriel de dimension finie, et u un endomorphisme de E.

Exemple d'application de base :

Soit f l'endomorphisme de \mathbb{R}^3 défini par f(x,y,z)=(2y+z,x+z,-x+y+z).

Montrer que f est un automorphisme.

↑ Ce n'est plus vrai en dimension infinie. Considérons par exemple :

$$\varphi: \ \mathbb{R}[X] \ \rightarrow \ \mathbb{R}[X]$$

$$P \ \mapsto \ XP$$

$$\psi: \ \mathbb{R}[X] \ \rightarrow \ \mathbb{R}[X]$$

$$P \ \mapsto \ P'$$

Démonstration 39

Exemple d'application classique : les polynômes d'interpolation de Lagrange

Soit $f: \mathbb{R} \to \mathbb{R}$ une fonction, dont on ne connaît que les valeurs y_0, \ldots, y_n en n+1 valeurs a_0, \ldots, a_n distinctes deux à deux : $\forall i \in \{0, ..., n\}, f(a_i) = y_i$

Montrer qu'il existe un unique polynôme P de degré inférieur ou égal à n tel que P coïncide avec f en $\operatorname{ces} n + 1 \text{ valeurs} : \forall i \in \{0, \dots, n\}, P(a_i) = y_i$

Démonstration 40

Rappel du chapitre 10:

Si f est une application quelconque de E dans F, avec E et F ensembles quelconques :

$$f$$
 bijective $\iff \exists g: F \to E, g \circ f = \mathrm{id}_E \text{ et } f \circ g = \mathrm{id}_F$

Dans ce cas, g est la réciproque de f. Si E = F est un ev et que $f \in \mathcal{L}(E)$, on a donc $g \in \mathcal{L}(E)$ aussi. Dans la démonstration, nous avions vu que :

- l'égalité $g \circ f = \mathrm{id}_E$ donne l'injectivité
- l'égalité $f \circ g = \mathrm{id}_F$ donne la surjectivité.

On en tire:

Théorème:

Soit E un espace vectoriel de dimension finie et $f \in \mathcal{L}(E)$.

 $f \in GL(E) \iff f$ est inversible à gauche dans $\mathcal{L}(E) \iff f$ est inversible à droite dans $\mathcal{L}(E)$ i.e. $\exists g \in \mathcal{L}(E), g \circ f = \mathrm{id}_E$ i.e. $\exists g \in \mathcal{L}(E), \ f \circ g = \mathrm{id}_E$

4.f Théorème du rang

Lemme:

(Forme géométrique du théorème du rang)

Soient E et F des espaces vectoriels et $u \in \mathcal{L}(E, F)$.

Soit H un supplémentaire de Ker(u) dans E.

L'application $v: H \rightarrow \text{Im} u$ est un isomorphisme.

$$x \mapsto u(x)$$

Théorème:

(Théorème du rang) Soient E et F des espaces vectoriels, avec E de dimension finie, et $u \in \mathcal{L}(E,F)$.

Démonstration 42

Cela se réécrit :

Moralement:

 \triangle Cela ne dit pas que Ker u et Imu sont supplémentaires dans le cas F = E!!Ce n'est pas le cas en général.

Utilisation courante : comment se simplifier la tâche...

Pour chacune des applications linéaires suivantes, déterminer une base du noyau et une base de l'image :

1°)
$$u: \mathbb{R}^4 \to \mathbb{R}^3$$

 $(x, y, z, t) \mapsto (x + y + 2z, 2x - y - t, 3y + 4z + t)$

$$2^{\circ}) \quad u: \quad \mathbb{R}^3 \quad \to \quad \mathbb{R}^3$$

$$(x, y, z) \quad \mapsto \quad (x + y + z, x + y + z, x + y + z)$$

3°)
$$u: \mathbb{R}^3 \rightarrow \mathbb{R}^2$$

$$(x, y, z) \mapsto (2x - y + z, 2x + 3y - z)$$

Plan du cours

1	Familles de vecteurs		1
	1.a	Compléments sur les familles génératrices	1
	1.b	Familles libres, familles liées	2
	1.c	Bases	5
2	Espaces vectoriels de dimension finie		7
	2.a	Définition d'un espace vectoriel de dimension finie	7
	2.b	Extraction et complétion d'une base	7
	2.c	Définition de la dimension d'un espace vectoriel de dimension finie	8
	2.d	Cardinaux d'une famille libre, d'une base, d'une famille génératrice	9
	2.e	Rang d'une famille de vecteurs	10
3	Dimension finie et sous-espaces vectoriels		10
	3.a	Sous-espace vectoriel d'un espace vectoriel de dimension finie	10
	3.b	Somme de sous-espaces, sous-espaces supplémentaires en dimension finie	11
4	Dimension finie et applications linéaires		13
	4.a	Différents modes de définition	13
	4.b	Image d'une famille par une application linéaire	14
	4.c	Espaces vectoriels de dimension finie isomorphes	14
	4.d	Rang d'une application linéaire	16
	4.e	Applications linéaires entre ev de mêmes dimension	16
	4.f	Théorème du rang	17