This week: Summary of first three theory lectures & outlook to Kohn-Sham theory O) Motivation & Bachground Central problem of condensed morther physics: 0-0-0 e Vee e Ven Te electronic Kinstic To nuclear energies Coulomb virteractions H = Te + Tn + Vee + Ven + Vnn $= \sum_{i} \frac{P_{i}^{2}}{2m_{e}} + \sum_{i} \frac{P_{i}^{2}}{2M_{i}} + \sum_{i \neq j} \frac{e^{2}}{|\vec{r_{i}} - \vec{r_{j}}|} + \sum_{i \neq j} \frac{2^{2}e^{2}}{|\vec{R_{i}} - \vec{R_{j}}|}$ => Need to solve the Schrödliger equation HA = EA Goal of the course: Provide atheoretical background of DFT & do practical applications

Crystal symmetry is directly connected to the electronic properties of the moderial. Example 1: BaTiO3 low T high T centrosymmetric Cubic noncentrosymmetric tetragonal The inversion symmetry breaking upon cooling allows BaTiOs to obtain a femoelectric palanization, P Example 2: NiO lowT high T paramagnetic Cubic trigonal (monoclinic) andifemonagnetic

1.4 What is the reciprocal lattice? > Fourier transform of the direct (real-space) lattice, where we convert space - momentum 1.5 Blochtheorem: et woverlunctions obey periodicity of the onptal 2) Witroduction to density functional theory (DFT) HYGRE EY(F,R) 2.1 BO Appraximation (2) HB Assumption: Neuclie are worth heavier that the electrons Massme, Mydrogen 2 1836 Me =D In << Te Ansatz: Adiabadically decoupling e & nt olignees of freedom Y (F, R, t) = \(\int \chi(\bar{R}, t) \chi(\bar{R}, t) \chi(\bar{R}, t) \\
\(\text{r}, \bar{R}, t) = \(\int \chi(\bar{R}, t) \chi(\bar{R}, t) \chi(\bar{R}, t) \\
\(\text{potential} \) $= \sum_{R_0} H(r, R_1^2) = \sum_{R_0} X_R(R_1) H_{R_0} Y_R(r) =$ or aback-= 2804 (7)

2.	2	Wave	Function	nethod	<u>ko</u>				
		Use	the variati	ional p	smicif				
		<u> </u>	1H175 4175	3 &	a V	round	- Stake	energy	
A	ssur	iptian:	a ppraxin	zwig	this	will g	rive us	a goo	1
			abbearin	nation	9211	re gri	ound-	state wo	nvetunction
Ar	rsat	元:						1.1	
	a)	Hart	ira apprexi	madion	, 4	(r = {r;	$=$ (ξ, ξ)	TT \$ (i	~;) =
					7	φ _α (τ	· · · · ·	$\downarrow_{\mathcal{N}}(\vec{r}_{\mathcal{N}})$	
	(ط		e-Foch of						
		4	[= {v; }		1	φ(<u>ιζ)</u> χ	(62)	\$\(\bar{r}_N\)) \(\(\frac{1}{2} \)
				Ϋ́	J!			,	
						\$ (r̄ ₄) γ γ 1	η(g ^μ) -	- \$(7)	XMED
lt -	two	Storles	are the son	me:	7 (² √3)	2 hood 2 (΄. Έ, ε, .) => (· /=0

We now need to minimize the energy: $\langle Y_{H(\mp)} | H | Y_{H(\mp)} \rangle \equiv \varepsilon_{H(\mp)} [\phi;]$ $\frac{S \varepsilon_{H(\bar{r})} [\phi_i]}{S \phi_i(\bar{r})} = 0$ This minimization yields a new set of equations: Hartree (- Focle) equactions $\left[\frac{-\hbar^2}{2m_e}\right]^2 + V_{ext}(\vec{r}) + V_{h}(\vec{r}) \left[+ (\vec{r}) + V_{h}(\vec{r}) \right]$ (contains Ven) Harrtree potential = clanical electro-Static Contribution to the coulomb interaction $-\frac{e^2}{2} \sum_{j} S_{\chi_i \chi_{j}} \int d\vec{r} \frac{\varphi_j^*(\vec{r}') \varphi_j(\vec{r}')}{|\vec{r} - \vec{r}'|} \varphi_i(\vec{r}')$ $= \varepsilon_i \phi_i(\vec{r})$ exchange potential acting approached an result. all positions ? Overall reduces the energy or the System W/ respect to the classical

Still, we have N coupled integro-differential equations and need to solve them iteratively: (i) hitializing the of (educated guess, e.g. atomic orbitals) (ii) Compute potential energies (external, Hourtree, exchange) ((iii) Compute a new set of of from HF equation (iv) Recompute potential energies w/ new of. (V) Herate until convergence To date: Systems of 10-100 = are feasible

(Nabel pize 1998 in Chemistry for Walter Kolen) Hohenberg - Kahn theorems Theorem 1: Vext <=> no (x3) (up to additive constant) external ground-state
portential particle Musity Corollary 1: With Vext, H is completely determined are determined to system are determined Theorem 2: For any Vext I E[n], where global minimum of ElnJ gives us Eo (gs energy) AND $E[n] = \varepsilon_0 \iff n = n_0$ Corollary 2: EIn] is sufficient to Alternine Eo and no Eo = min [< 2 | Te + Vea + Vex + 14] = vnin min [<4|Te+be|T+>+ dr'n(r)Vexf(r)]
2-step
winimization

F[n] Levy-kieb functional

= $\min_{n} \left[T(n) + \int d\vec{r} n(\vec{r}) V_{ext}(\vec{r}) \right]$ E(n)Remarks: Remarks:

a) E[n] = F[n] + Sdr n(r) Vext (r)

min [(4/Te+Vee |4)] witeraction

extension witeraction w/ external paternial depends only on the type of particle b) The exact functional F[n] requires constrained search for N-particle wavefunctions v impractical "Constrained search is for understanding, not computation" c) F[n] still contains Ver, which still needs approximation Practically, approximations on explicit functional of the density are too crede.

d) Are the HK theorems trivial? Yes! Density n is a highly integrated quantity n(r,) = N Jdr, ... Jdr, 4*(r, ... r,) ((r, ... r,) Example of a surple density functional: Thomas-Femi-Dirac theory Idea: Approximate EIn3 locally by the energy of a homogeneous electron gas with $n(\vec{r})$: $E[n] = \int d\vec{r} \ n(\vec{r}) \ E[n(\vec{r})]$ Lenergy density of the homogeneous electron gas Remember/Assume: Energy or homog. et gas from Jellium model $E_{1} = E_{1}^{3} - \frac{2e^{2} k_{F}}{tT} + \left(\frac{k_{1}}{k_{F}}\right) + |\text{dartree energy}| e^{-\frac{1}{e}} e^{-\frac{1}{e}} e^{-\frac{1}{e}}$ $\frac{t^{2} k^{2}}{2me} \propto k \quad F(x) = \frac{1}{2} - \frac{1x}{4x} \ln \left|\frac{1+x}{3-x}\right| e^{-\frac{1}{e}} e^{-\frac{1}{e}}$ $\propto n^{3} \quad \text{dependent on } n$ $F(n) = C_{lin} \int dr' n'^3(r') + \frac{e^2}{2} \int dr' \int dr' \frac{n(r')n(r')}{|r'-r'|} - C_{ex} \int dr' n'^3 r'$

2.4 Kohn-Sham Theory Kohn & Sham Physical Alpiew 140 (1965)
"Self-onsistent equations including exchange and correlation exects" F[n] = min < 4 | Te + Vee 14 > = $\frac{1}{2m} = \frac{1}{2m} = \frac{1}{2m$ Havitree energy Exlin J $+ \frac{e^2}{2} \int d\vec{r} \int d\vec{r}' \frac{n(\vec{r}) n(\vec{r}')}{|\vec{r} - \vec{r}'|}$ known exactly as a Tunctional of n, largest part of the witeraction + Exc [h] Exchange - correlation energy contains all interactions beyond clanical EH (h) unknown & snall correlation = everything beyond exchange in HFapproximation