(19) Weltorganisation für geistiges Eigentum Internationales Büro

(43) Internationales Veröffentlichungsdatum 7. April 2005 (07.04.2005)

PCT

(10) Internationale Veröffentlichungsnummer WO 2005/030250 A2

(51) Internationale Patentklassifikation7: A61K 39/395

ktenzeichen: PCT/EP2004/010697

(21) Internationales Aktenzelchen:(22) Internationales Anmeldedatum:

1 (31)111 200 (70)100,57

2.7

23. September 2004 (23.09.2004)

(25) Einreichungssprache:

Deutsch

(26) Veröffentlichungssprache:

Deutsch

(30) Angaben zur Priorität: 103 44 799.7 26. September 2003 (26.09.2003) DE

- (71) Anmelder (für alle Bestimmungsstaaten mit Ausnahme von US): GANYMED PHARMACEUTICALS AG [DII/DII]; Freiligrathstr. 12, 55131 Mainz (DII).
- (72) Erfinder; und
- (75) Erfinder/Anmelder (nur für US): TÜRECI, Özlem

[DIVIDE]; Philipp von Zabern Platz 1, 55116 Mainz (DE), SAHIN, Ugur [TR/DE]; Philipp von Zabern Platz 1, 55116 Mainz (DE), HELFTENBEIN, Gerd [DIVIDE]; Nieder-Ohmener Str. 16, 35329 Gemünden (Felda) (DE), SCHLÜTER, Volker [DIVIDE]; Gilmstrasse 64, 81377 München (DE).

- (74) Anwälte: VOSSUS, Volker usw.; Geibelstrasse 6, 81679 München (DE).
- (81) Bestimmungsstaaten (soweit nicht anders angegeben, für jede verfügbare nationale Schutzrechtsart): AE, AG, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BW, BY, BZ, CA, CH, CN, CO, CR, CU, CZ, DE, DK, DM, DZ, EC, EE, EG, ES, FI, GB, GD, GE, GH, GM, HR, HU, HD, HL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA, MD, MG, MK, MN, MW, MX, MZ, NA, NI, NO, NZ, OM, PG, PH, PL, PT, RO, RU, SC, SD, SE, SG, SK, SL, SY, TI, TM,

[Fortsetzung auf der nächsten Seite]

(54) Title: IDENTIFICATION OF TUMOUR-ASSOCIATED CELL SURFACE ANTIGENS FOR DIAGNOSIS AND THERAPY

(54) Bezeichnung: IDENTIFIZHRUNG VON TUMORASSOZHERTEN ZEILLOBERFLÄCHUN-ANTIGENEN FÜR DIE DIAGNOSE UND THERAPIE

A ACTIVATION X

D TESTICLE

B SKIN

C MELANOMA

(57) Abstract: According to the invention, tumour-associated gene products and nucleic acids coding therefor were identified. The present invention relates to the therapy and diagnosis of diseases wherein said tumour-associated gene products are expressed abstractly. The invention also relates to proteins, polypeptides and peptides which are expressed in a tumour-associated manner and the nucleic acids coding therefor.

WO 2005/03025

- TN, TR, TT, TZ, UA, UG, US, UZ, VC, VN, YU, ZA, ZM, ZW.
- (84) Bestimmungsstanten (soweit nicht anders angegeben, für jede verfügbare regionale Schutzrechtsart): ARIPO (BW, GII, GM, KE, LS, MW, MZ, NA, SD, SL, SZ, TZ, UG, ZM, ZW), eurasisches (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), curopäisches (AT, BE, BG, CII, CY, CZ, DE, DK, EB, ES, FI, FR, GB, GR, HU, IB, FT, LU, MC, NL, PL, PT, RO, SE, SI, SK, TR), OAPI (BF, BJ, CF, CG, CI, CM, GA, GN, GQ, GW, ML, MR, NE, SN, TD, TG).

Veröffentlicht:

ohne internationalen Recherchenbericht und erneut zu veröffentlichen nach Erhalt des Berichts

Zur Erklärung der Zweibuchstaben Codes und der anderen Ab kürzungen wird auf die Erklärungen ("Guidance Notes on Codes and Abbreviations") am Anfang jeder regulären Ausgabe der PCT-Gazette verwiesen.

⁽⁵⁷⁾ Zusammenfassung: Erfindungsgemäß wurden Tumor-assoziierte Genprodukte und die dafür kodierenden Nukleinsäuren identifiziert. Die vorliegende Erfindung betrifft die Therapie und Diagnose von Erkrankungen, bei denen diese Tumor-assoziierten Genprodukte aberrant exprimiert werden. Des weiteren betrifft die Erfindung Proteine, Polypeptide und Peptide, die Tumorassoziiert exprimiert werden und die dafür kodierenden Nukleinsäuren.

WO 2005/030250 PCT/EP2004/010697

Identifizierung von tumorassoziierten Zelloberflächen-Antigenen für die Diagnose und Therapie

5

10

15

20

Trotz interdisziplinärer Ansätze und Ausreizung klassischer Therapiemodalitäten gehören Krebserkrankungen weiterhin zu den führenden Todesursachen. Neuere therapeutische Konzepte zielen darauf ab, das patienteneigene Immunsystem durch Einsatz von rekombinanten Tumorvakzinen und anderen spezifischen Maßnahmen wie Antikörpertherapie in das therapeutische Gesamtkonzept mit einzubeziehen. Voraussetzung für den Erfolg einer solchen Strategie ist die Erkennung von Tumor-spezifischen oder Tumor-assoziierten Antigenen bzw. Epitopen durch das Immunsystem des Patienten, dessen Effektorfunktionen interventionell verstärkt werden sollen. Tumorzellen unterscheiden sich biologisch wesentlich von ihren nichtmalignen Ursprungszellen. Diese Differenzen sind durch während der Tumorentwicklung erworbene genetische Veränderungen bedingt und führen u.a. auch zur der Bildung qualitativ oder quantitativ veränderter molekularer Strukturen in den Krebszellen. Werden solche Tumor-assoziierten Strukturen vom spezifischen Immunsystem des tumortragenden Wirtes erkannt, spricht man von Tumor-assoziierten Antigenen.

An der spezifischen Erkennung von Tumor-assoziierten Antigenen sind zelluläre und humorale Mechanismen beteiligt, die zwei miteinander funktionell vernetzte Einheiten darstellen: CD4⁺ und CD8⁺ T-Lymphozyten erkennen prozessierte Antigene, die auf den Molekülen der MHC- (Major Histocompatibility complex = Histokompatibilitäts-Antigene) Klassen II bzw. I präsentiert werden, während B-Lymphozyten zirkulierende Antikörpermoleküle produzieren, die direkt an unprozessierte Antigene binden.

Die potentielle klinisch-therapeutische Bedeutung von Tumor-assoziierten Antigenen ergibt sich aus der Tatsache, dass die Erkennung von Antigenen auf neoplastischen Zellen durch das Immunsystem zur Initiierung von cytotoxischen Effektormechanismen führt und bei Vorhandensein von T-Helferzellen die Elimination der Krebszellen bewirken kann (Pardoll, Nat. Med. 4:525-31, 1998). Entsprechend ist es eine zentrale Zielsetzung der Tumorimmunologie, diese Strukturen molekular zu definieren. Die molekulare Natur dieser Antigene blieb lange enigmatisch. Erst als entsprechende Klonierungstechniken entwickelt wurden, gelang es, durch Analyse der Zielstrukturen von cytotoxischen T-Lymphozyten (CTL) (van der Bruggen et al., Science 254:1643-7, 1991) bzw. mit zirkulierenden Autoantikörpern (Sahin et al., Curr. Opin. Immunol. 9:709-16, 1997) als Sonden cDNA-

Expressionbanken von Tumoren systematisch auf Tumor-assoziierte Antigene zu screenen. Hierzu wurden cDNA-Expressionsbanken aus frischem Tumorgewebe hergestellt und in geeigneten Systemen als Proteine rekombinant exprimiert. Aus Patienten isolierte Immuneffektoren, nämlich CTL-Klone mit Tumor-spezifischem Lysemuster, oder zirkulierende Autoantikörper wurden genutzt, um die respektiven Antigene zu klonieren.

Durch diese Ansätze sind in den letzten Jahren eine Vielzahl von Antigenen in verschiedenen Neoplasien definiert worden. Von großem Interesse ist dabei die Klasse der Cancer/Testis-Antigene (CTA). CTA und sie kodierende Gene (Cancer/Testis-Gene oder CTG) sind durch ihr charakteristisches Expressionsmuster definiert (Tureci et al, *Mol. Med. Today* 3:342-9, 1997). Sie finden sich nicht in Normalgeweben bis auf Testis bzw. Keimzellen, werden jedoch in einer Reihe von humanen Malignomen exprimiert und zwar nicht tumortypspezifisch, sondern mit unterschiedlicher Häufigkeit in Tumorentitäten ganz unterschiedlicher Herkunft (Chen & Old, *Cancer J. Sci. Am.* 5:16-7, 1999). Auch Serumreaktivitäten gegen CTA finden sich nicht in gesunden Kontrollen, sondern lediglich in Tumorpatienten. Insbesondere aufgrund ihrer Gewebeverteilung ist diese Antigenklasse von besonderem Wert für immuntherapeutische Vorhaben und wird in derzeit laufenden klinischen Patientenstudien getestet (Marchand et al., *Int. J. Cancer* 80:219-30, 1999; Knuth et al., *Cancer Chemother. Pharmacol.* 46: S46-51, 2000).

20

25

30

5

10

15

Allerdings nutzen die oben dargestellten klassischen Verfahren zur Antigenidentifizierung Immuneffektoren (zirkulierende Autoantikörper oder CTL-Klone) aus Patienten mit in der Regel bereits fortgeschrittenem Krebs als Sonden. Aus einer Reihe von Daten geht hervor, dass Tumore z.B. zur Tolerisierung und Anergisierung von T-Zellen führen können und dem diejenigen Spezifitäten aus Verlauf der Erkrankung gerade im Immuneffektorenrepertoire verloren gehon, die eine effektive Immunerkennung bewirken könnten. Aus laufenden Patientenstudien hat sich noch kein gesicherter Beweis für eine tatsächliche Wirkung der bisher entdeckten und genutzten Tumor-assoziierten Antigene ergeben. Entsprechend kann nicht ausgeschlossen werden, dass spontane Immunantworten evozierende Proteine die falschen Zielstrukturen sind.

Es war die Aufgabe der vorliegenden Erfindung Zielstrukturen für eine Diagnose und Therapie von Krebserkrankungen bereitzustellen. Diese Aufgabe wird erfindungsgemäß durch den Gegenstand der Patentansprüche gelöst.

5

10

15

20

30

Erfindungsgemäß wurde eine Strategie für eine Identifizierung und Bereitstellung Tumorassoziiert exprimierter Antigene und der dafür kodierenden Nukleinsäuren verfolgt. Diese Strategie beruht auf der Auswertung humaner Protein- und Nukleinsäuredatenbanken im Hinblick auf potenzielle, auf der Zelloberfläche zugängliche, krebsspezifische Antigene. Die Definition der dafür notwendigen Filterkriterien zusammen mit einer Hochdurchsatz-Methodik zur Analyse möglichst aller Proteine bilden den zentralen Bestandteil der Erfindung. Durch Datamining wird zunächst eine möglichst komplette Liste aller bekannter Gene aufgestellt, die dem Grundprinzip Gen zu mRNA zu Protein folgend auf das Vorhandensein einer oder mehrerer Transmembrandomänen hin untersucht werden. Hieran schließen sich eine Homologiesuche, eine Einteilung der Treffer in gewebsspezifische Gruppen (u.a. Tumorgewebe) und eine Überprüfung der realen Existenz der mRNA an. Schließlich werden die so identifizierten Proteine z.B. durch Expressionsanalysen und proteinchemische Verfahren auf ihre aberrante Aktivierung in Tumoren evaluiert.

Datamining ist ein bekanntes Verfahren zur Identifizierung von Tumor-assoziierten Genen. Bei den herkömmlichen Strategien werden allerdings in der Regel Transkriptome von Normalgewebebanken elektronisch von Tumorgewebsbanken subtrahiert unter der Annahme, dass die verbleibenden Gene Tumor-spezifisch sind (Schmitt et al., *Nucleic Acids Res.* 27:4251-60, 1999; Vasmatzis et al., *Proc. Natl. Acad. Sci. USA.* 95:300-4, 1998; Scheurle et al., *Cancer Res.* 60:4037-43, 2000).

Das erfindungsgemäße Konzept beruht jedoch darauf, Datamining zur elektronischen Extraktion aller Gene, die für auf der Zelloberfläche zugängliche, krebsspezifische Antigene kodieren, zu nutzen und diese sodann auf ektope Expression in Tumoren zu evaluieren.

Somit betrifft die Erfindung in einem Aspekt eine Strategie zur Identifizierung von differentiell in Tumoren exprimierten Genen. Diese kombiniert Datamining von öffentlichen Sequenzbanken ("in silico") mit darauffolgenden evaluierenden labor-experimentellen ("wet bench") Untersuchungen.

Eine kombinierte Strategie basierend auf unterschiedlichen bioinformatischen Skripten ermöglichte erfindungsgemäß die Identifizierung von Genen, die für auf der Zelloberfläche

zugängliche, krebsspezifische Antigene kodieren. Die Identifizierung und Bereitstellung dieser Tumor-assoziierten Gene und der dadurch kodierten Genprodukte erfolgte erfindungsgemäß unabhängig von einer immunogenen Wirkung.

5

10

15

20

25

30

Antigene weisen eine Tumor-assoziierten erfindungsgemäß identifizierten Die Aminosäuresequenz auf, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist, bestehend aus (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon, (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert, (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist. In einer bevorzugten Ausführungsform weist ein erfindungsgemäß identifiziertes Tumorassoziiertes Antigen eine Aminosäuresequenz auf, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls. In einer weiteren bevorzugten Ausführungsform umfasst ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen eine Aminosäuresequenz, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einem Teil oder Derivat davon.

Die vorliegende Erfindung betrifft allgemein die Verwendung von erfindungsgemäß identifizierten Tumor-assoziierten Antigenen oder von Teilen davon, von dafür kodierenden Nukleinsäuren oder von Nukleinsäuren, die gegen die kodierenden Nukleinsäuren gerichtet sind, oder von Antikörpern, die gegen die erfindungsgemäß identifizierten Tumor-assoziierten

Antigene oder Teile davon gerichtet sind, für die Therapie und Diagnose. Diese Nutzung kann einzelne, aber auch Kombinationen von mehreren dieser Antigene, funktionalen Fragmente, Nukleinsäuren, Antikörper etc. betreffen, in einer Ausführungsform auch in Kombination mit anderen Tumor-assoziierten Genen und Antigenen für eine Diagnose, Therapie und Verlaufskontrolle.

5

1. C

15

25

30

Die Eigenschaft der erfindungsgemäß identifizierten Tumor-assoziierten Antigene, dass sie auf oder an der Zelloberfläche lokalisiert sind, qualifiziert sie als geeignete Ziele oder Mittel für die Therapie und Diagnose. Besonders geeignet hierfür ist ein Teil der erfindungsgemäß nicht-Transmembrananteil. Tumor-assoziierten Antigene, dem der identifizierten insbesondere dem extrazellulären Anteil der Antigene entspricht oder davon umfasst wird. Somit ist erfindungsgemäß ein Teil der erfindungsgemäß identifizierten Tumor-assoziierten Antigene, der dem nicht-Transmembrananteil der Antigene entspricht oder davon umfasst ist, oder ein entsprechender Teil der für die erfindungsgemäß identifizierten Antigene kodierenden Nukleinsäuren für eine Therapie oder Diagnose bevorzugt. Ähnlich ist die Verwendung von Antikörpern bevorzugt, die gegen einen Teil der erfindungsgemäß gerichtet nicht-Tumor-assoziierten Antigene sind. der dem identifizierten Transmembrananteil der Antigene entspricht oder davon umfasst ist.

Bevorzugte Erkrankungen für eine Therapie und/oder Diagnose sind solche, bei denen eine selektive Expression oder abnormale Expression von einem oder mehreren der erfindungsgemäß identifizierten Tumor-assoziierten Antigenen vorliegt.

Die Erfindung betrifft auch Nukleinsäuren und Genprodukte, die tumorzellassoziiert exprimiert werden und die durch verändertes Spleißen (Spleißvarianten) von Genen bzw. durch veränderte Translation unter Nutzung alternativer offener Leserahmen entstehen. Diese Nukleinsäuren umfassen die Sequenzen gemäß SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls. Ferner umfassen die Genprodukte alle Sequenzen gemäß SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224,

228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls. Die erfindungsgemäßen Spleißvarianten sind erfindungsgemäß als Targets für die Diagnostik und Therapie von Tumorerkrankungen verwendbar.

- Für die Entstehung von Spleißvarianten können verschiedenste Mechanismen ursächlich sein, beispielsweise
 - die Nutzung variabler Transkriptionsinitiationsstellen
 - die Nutzung zusätzlicher Exons
 - vollständiges oder unvollständiges Ausspleißen von einzelnen oder mehreren Exons,
- über Mutation veränderte Spleißregulatorsequenzen (Deletion bzw. Schaffung neuer Donor/Acceptorsequenzen),
 - die unvollständige Elimination von Intronsequenzen.

Das veränderte Spleißen eines Gens führt zu einer veränderten Transkriptsequenz (Spleißvariante). Wird eine Spleißvariante im Bereich ihrer veränderten Sequenz translatiert, resultiert ein verändertes Protein, welches sich von dem ursprünglichen in Struktur und Funktion deutlich unterscheiden kann. Bei tumorassoziierten Spleißvarianten können tumorassoziierte Transkripte und tumorassoziierte Proteine/Antigene entstehen. Diese können als molekulare Marker sowohl zum Nachweis von Tumorzellen als auch zum therapeutischen Targeting von Tumoren genutzt werden. Die Detektion von Tumorzellen z.B. im Blut, Serum, Knochenmark, Sputum, Bronchial-Lavage, Körpersekreten und Gewebsbiopsien kann erfindungsgemäß z.B. nach Extraktion von Nukleinsäuren durch PCR-Amplifikation mit Spleißvarianten-spezifischen Oligonukleotiden erfolgen.

Zum Nachweis eignen sich erfindungsgemäß alle Sequenz-abhängigen Detektionssysteme. Neben der PCR sind diese z.B. Genchip-/Microarraysysteme, Northern-Blot, RNAse protection assays (RDA) und andere. Allen Detektionssystemen ist gemeinsam, dass die Detektion auf einer spezifischen Hybridisierung mit mindestens einer Spleißvariantenspezifischen Nukleinsäuresequenz basiert. Die Detektion von Tumorzellen kann jedoch auch erfindungsgemäß durch Antikörper erfolgen, die ein durch die Spleißvariante kodiertes spezifisches Epitop erkennen. Für die Herstellung der Antikörper können Peptide zur Immunisierung verwendet werden, die für diese Spleißvariante spezifisch sind. Für die Immunisierung eignen sich besonders die Aminosäuren, die deutliche Epitopunterschiede zu der/den Variante(n) des Genprodukts aufweisen, welche bevorzugt in gesunden Zellen

gebildet wird/werden. Der Nachweis der Tumorzellen mit Antikörper kann dabei an einer vom Patienten isolierten Probe oder als Imaging mit intravenös applizierten Antikörpern erfolgen.

Neben der diagnostischen Nutzbarkeit stellen Spleißvarianten, die neue oder veränderte 5 Epitope aufweisen, attraktive Targets für die Immuntherapie dar. Die erfindungsgemäßen Epitope können zum Targeting von therapeutisch wirksamen monoklonalen Antikörpern oder T-Lymphozyten genutzt werden. Bei der passiven Immuntherapie werden hierbei Antikörper oder T-Lymphozyten adoptiv transferiert, die Spleißvarianten-spezifische Epitope erkennen. Die Generierung von Antikörpern kann wie bei anderen Antigenen auch unter Nutzung von 10 Standardtechnologien (Immunisierung von Tieren, Panningstrategien zur Isolation von rckombinanten Antikörpern) unter Nutzung von Polypeptiden, die diese Epitope beinhalten, erfolgen. Alternativ können zur Immunisierung Nukleinsäuren genutzt werden, die für Oligooder Polypeptide kodieren, die diese Epitope beinhalten. Verschiedene Techniken zur in vitro oder in vivo Generierung von epitopspezifischen T-Lymphozyten sind bekannt und 15 ausführlich beschrieben z.B. (Kessler JH, et al. 2001, Sahin et al., 1997) und basieren ebenfalls auf der Nutzung von Oligo- oder Polypeptide, die die Spleißvarianten-spezifischen Epitope beinhalten, oder Nukleinsäuren, die für diese kodieren. Oligo- oder Polypeptide, die die Spleißvarianten-spezifischen Epitope beinhalten, oder Nukleinsäuren, die für diese Polypeptide kodieren, sind auch für die Nutzung als pharmazeutisch wirksame Substanzen bei 20 der aktiven Immuntherapie (Vakzinierung, Vakzintherapie) verwendbar.

Die aberrante Expression von Genen in Tumorzellen kann auf veränderte Methylierungsmuster ihrer Promotoren beruhen (De Smet C et al., Mol Cell Biol. 24(11):4781-90, 2004; De Smet C et al., Mol Cell Biol. 19(11):7327-35, 1999; De Smet C et al., Proc Natl Acad Sci U S A. 93(14):7149-53, 1996) Diese Methylierungsunterschiede können als indirekter Marker für den im Tumor veränderten Zustand des entsprechenden Gens genutzt werden. Dementsprechend können die Zunahme oder Abnahme von Basenmethylierungen im Promotorbereich für diagnostische Zwecke genutzt werden.

In einem Aspekt betrifft die Erfindung eine pharmazeutische Zusammensetzung, umfassend ein Mittel, das das erfindungsgemäß identifizierte Tumor-assoziierte Antigen erkennt und vorzugsweisc selektiv für Zellen ist, die eine Expression oder abnormale Expression eines erfindungsgemäß identifizierten Tumor-assoziierten Antigens aufweisen. Das Mittel kann in

35

bestimmten Ausführungsformen die Induktion des Zelltods, die Reduktion Zellwachstums, die Schädigung der Zellmembran oder die Sekretion von Zytokinen bewirken und weist vorzugsweise eine tumorhemmende Aktivität auf. In einer Ausführungsform ist das Mittel eine Antisense-Nukleinsäure, die selektiv mit der Nukleinsäure hybridisiert, die für das Tumor-assoziierte Antigen kodiert. In einer weiteren Ausführungsform ist das Mittel ein Antikörper, der selektiv an das Tumor-assoziierte Antigen bindet, insbesondere ein komplementaktivierter Antikörper, der selektiv an das Tumor-assoziierte Antigen bindet. In einer weiteren Ausführungsform umfasst das Mittel mehrere Mittel, die jeweils selektiv verschiedene Tumor-assoziierte Antigene erkennen, wobei mindestens eines der Tumorassoziierten Antigene ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen ist. Die Erkennung muss nicht direkt mit einer Hemmung von Aktivität oder Expression des Antigens einhergehen. In diesem Aspekt der Erfindung dient das selektiv auf Tumoren beschränkte Antigen vorzugsweise als Markierung zur Rekrutierung von Effektormechanismen an diesen spezifischen Ort. In einer bevorzugten Ausführungsform ist das Mittel ein cytotoxischer T-Lymphozyt, der das Antigen auf einem HLA-Molekül erkennt und die derartig markierte Zelle lysiert. In einer weiteren Ausführungsform ist das Mittel ein Antikörper, der selektiv an artifizielle Tumor-assoziierte Antigen bindet und somit natürliche oder das Effektormechanismen zu dieser Zelle rekrutiert. In einer weiteren Ausführungsform ist das Mittel ein Helfer-T-Lymphozyt, der Effektorfunktionen von anderen Zellen, die spezifisch dieses Antigen erkennen, stärkt.

10

15

20

25

30

In einem Aspekt betrifft die Erfindung eine pharmazeutische Zusammensetzung, umfassend ein Mittel, das die Expression oder Aktivität eines erfindungsgemäß identifizierten Tumorassoziierten Antigens hemmt. In einer bevorzugten Ausführungsform ist das Mittel eine Antisense-Nukleinsäure, die selektiv mit der Nukleinsäure hybridisiert, die für das Tumorassoziierte Antigen kodiert. In einer weiteren Ausführungsform ist das Mittel ein Antikörper, der selektiv an das Tumorassoziierte Antigen bindet. In einer weiteren Ausführungsform umfasst das Mittel mehrere Mittel, die jeweils selektiv die Expression oder Aktivität verschiedener Tumorassoziierter Antigene hemmen, wobei mindestens eines der Tumorassoziierten Antigene ein erfindungsgemäß identifiziertes Tumorassoziiertes Antigen ist.

Die Aktivität eines erfindungsgemäß identifizierten Tumor-assoziierten Antigens kann eine jegliche Aktivität eines Proteins oder Peptids sein. Somit können die erfindungsgemäßen

Therapie- und Diagnosverfahren auch auf Hemmung oder Reduktion dieser Aktivität oder auf ein Testen dieser Aktivität abzielen.

Des weiteren betrifft die Erfindung eine pharmazeutische Zusammensetzung, die ein Mittel umfasst, das bei einer Verabreichung selektiv die Menge an Komplexen zwischen einem HLA-Molekül und einem Peptidepitop aus dem erfindungsgemäß identifizierten Tumorassoziierten Antigen erhöht. Das Mittel umfasst in einer Ausführungsform einen oder mehrere Bestandteile, die aus der Gruppe ausgewählt sind bestehend aus (i) dem Tumor-assoziierten Antigen oder einem Teil davon, (ii) einer Nukleinsäure, die für das Tumor-assoziierte Antigen oder einen Teil davon kodiert, (iii) einer Wirtszelle, die das Tumor-assoziierte Antigen oder einen Teil davon exprimiert, und (iv) isolierten Komplexen zwischen Peptidepitopen aus dem Tumor-assoziierten Antigen und einem MHC-Molekül. In einer Ausführungsform umfasst das Mittel mehrere Mittel, die jeweils selektiv die Menge an Komplexen zwischen MHC-Molekülen und Peptidepitopen verschiedener Tumor-assoziierter Antigene erhöhen, wobei mindestens eines der Tumor-assoziierten Antigene ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen ist.

10

1.5

20

25

Des weiteren betrifft die Erfindung eine pharmazeutische Zusammensetzung, die einen oder mehrere Bestandteile umfasst, die aus der Gruppe ausgewählt sind bestehend aus (i) einem erfindungsgemäß identifizierten Tumor-assoziierten Antigen oder einem Teil davon, (ii) einer Nukleinsäure, die für ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen oder einen Teil davon kodiert, (iii) einem Antikörper, der an ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen oder einen Teil davon bindet, (iv) einer Antisense-Nukleinsäure, die spezifisch mit einer Nukleinsäure, die für ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen kodiert, hybridisiert, (v) einer Wirtszelle, die ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen oder einen Teil davon exprimiert, und (vi) isolierten Komplexen zwischen einem erfindungsgemäß identifizierten Tumor-assoziierten Antigen oder einem Teil davon und einem HLA-Molekül.

Eine Nukleinsäure, die für ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen oder einen Teil davon kodiert, kann in der pharmazeutische Zusammensetzung in einem Expressionsvektor vorliegen und funktionell mit einem Promotor verbunden sein.

Eine in einer erfindungsgemäßen pharmazeutischen Zusammensetzung enthaltene Wirtszelle kann das Tumor-assoziierte Antigen oder den Teil davon sekretieren, auf der Oberfläche exprimieren oder kann zusätzlich ein HLA-Molekül exprimieren, das an das Tumor-assoziierte Antigen oder den Teil davon bindet. In einer Ausführungsform exprimiert die Wirtszelle das HLA-Molekül endogen. In einer weiteren Ausführungsform exprimiert die Wirtszelle das HLA-Molekül und/oder das Tumor-assoziierte Antigen oder den Teil davon rekombinant. Vorzugsweise ist die Wirtszelle nicht-proliferativ. In einer bevorzugten Ausführungsform ist die Wirtszelle eine Antigen-präsentierende Zelle, insbesondere eine dendritische Zelle, ein Monozyt oder ein Makrophage.

10

15

20

25

Ein in einer erfindungsgemäßen pharmazeutischen Zusammensetzung enthaltener Antikörper kann ein monoklonaler Antikörper sein. In weiteren Ausführungsformen ist der Antikörper ein chimärer oder humanisierter Antikörper, ein Fragment eines natürlichen Antikörpers oder ein synthetischer Antikörper, die durch kombinatorische Techniken hergestellt werden können. Der Antikörper kann mit einem therapeutisch oder diagnostisch nützlichen Mittel gekoppelt sein.

Eine in einer erfindungsgemäßen pharmazeutischen Zusammensetzung enthaltene Antisense-Nukleinsäure kann eine Sequenz von 6-50, insbesondere 10-30, 15-30 oder 20-30 zusammenhängenden Nukleotiden aus der Nukleinsäure, die für das erfindungsgemäß identifizierte Tumor-assoziierte Antigen kodiert, umfassen.

In weiteren Ausführungsformen bindet ein durch eine erfindungsgemäße pharmazeutische Zusammensetzung entweder direkt oder durch die Expression einer Nukleinsäure bereitgestelltes Tumor-assoziiertes Antigen oder ein Teil davon an MHC-Moleküle auf der Oberfläche von Zellen, wobei die Bindung vorzugsweise eine cytolytische Reaktion hervorruft und/oder eine Zytokinausschüttung induziert.

30

Eine erfindungsgemäße pharmazeutische Zusammensetzung kann einen pharmazeutisch verträglichen Träger und/oder ein Adjuvans umfassen. Das Adjuvans kann aus Saponin, GM-CSF, CpG-Oligonukleotiden, RNA, einem Zytokin oder einem Chemokin ausgewählt sein. Eine erfindungsgemäße pharmazeutische Zusammensetzung wird vorzugsweise zur Behandlung einer Erkrankung eingesetzt, die sich durch die selektive Expression oder

abnormale Expression eines Tumor-assoziierten Antigens auszeichnet. In einer bevorzugten Ausführungsform ist die Erkrankung Krebs.

Des weiteren betrifft die Erfindung Verfahren zur Behandlung, Diagnose oder Überwachung, d.h. Bestimmung der Regression, des Verlaufs und/oder des Ausbruchs, einer Erkrankung, die sich durch die Expression oder abnormale Expression eines oder mehrerer Tumor-assoziierter Antigene auszeichnet.

In einer Ausführungsform umfassen die erfindungsgemäßen Behandlungsverfahren die Verabreichung einer erfindungsgemäßen pharmazeutischen Zusammensetzung.

Die erfindungsgemäßen Diagnoseversahren und/oder Versahren zur Überwachung betreffen allgemein die Verwendung von Mitteln für den Nachweis und/oder die Bestimmung bzw. Überwachung der Menge (i) einer Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder eines Teils davon und/oder (ii) des Tumor-assoziierten Antigens oder eines Teils davon, und/oder (iii) eines Antikörpers gegen das Tumor-assoziierte Antigen oder einen Teil davon und/oder (iv) von cytotoxischen oder Helfer-T-Lymphozyten, die für das Tumor-assoziierte Antigen oder einen Teil davon spezifisch sind, in einer aus einem Patienten isolierten biologischen Probe.

20

25

30

15

5

In einem Aspekt betrifft die Erfindung ein Verfahren zur Diagnose einer Erkrankung, die sich durch die Expression oder abnormale Expression eines erfindungsgemäß identifizierten Tumor-assoziierten Antigens auszeichnet. Das Verfahren umfasst (i) den Nachweis einer Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder eines Teils davon und/oder (ii) den Nachweis des Tumor-assoziierten Antigens oder eines Teils davon, und/oder (iii) den Nachweis eines Antikörpers gegen das Tumor-assoziierte Antigen oder einen Teil davon und/oder (iv) den Nachweis von cytotoxischen oder Helter-T-Lymphozyten, die für das Tumor-assoziierte Antigen oder einen Teil davon spezifisch sind in einer aus einem Patienten isolierten biologischen Probe. In bestimmten Ausführungsformen umfasst der Nachweis (i) die Kontaktierung der biologischen Probe mit einem Mittel, das spezifisch an die Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder den Teil davon, an das Tumor-assoziierte Antigen oder den Teil davon, an den Antikörper oder an cytotoxische oder Helfer-T-Lymphozyten, die für das Tumor-assoziierte Antigen oder Teile davon spezifisch sind, bindet und (ii) den Nachweis der Komplexbildung zwischen dem Mittel und der

Nukleinsäure oder dem Teil davon, dem Tumor-assoziierten Antigen oder dem Teil davon, dem Antikörper oder den cytotoxischen oder Helfer-T-Lymphozyten. In einer Ausführungsform zeichnet sich die Erkrankung durch die Expression oder abnormale Expression mehrerer verschiedener Tumor-assoziierter Antigene aus und der Nachweis umfasst einen Nachweis mehrerer Nukleinsäuren, die für die mehreren verschiedenen Tumor-assoziierten Antigene kodieren, oder von Teilen davon, den Nachweis der mehreren verschiedenen Tumor-assoziierten Antigene oder von Teilen davon, den Nachweis mehrerer Antikörper, die an die mehreren verschiedenen Tumor-assoziierten Antigene oder an Teile davon binden, oder den Nachweis mehrerer cytotoxischer oder Helfer-T-Lymphozyten, die für die mehreren verschiedenen Tumor-assoziierten Antigene spezifisch sind. In einer weiteren Ausführungsform wird die isolierte biologische Probe aus dem Patienten mit einer vergleichbaren normalen biologischen Probe verglichen.

10

15

20

30

Die erfindungsgemäßen Diagnoseverfahren können auch veränderte Methylierungsmuster des Promotorbereiches des jeweiligen Tumor-assoziierten Genproduktes nutzen. Der Nachweis solcher Methylierungsmuster kann unter Nutzung von PCR-basierenden Verfahren, mit Hilfe von Restriktionsenzymen oder durch Sequenzierung erfolgen. Ein dazu geeignetes Test kann dabei folgendermaßen aufgebaut sein: (1) Extraktion von DNA aus Gewebeproben von Patienten z.B. unter Nutzung von paraffineingebettetem Material, (2) Behandlung der DNA mit Bisulfit-haltigen Reagenzien (z.B. wie beschrieben in Clark SJ et al., Nucleic Acids Res. 22(15):2990-7, 1994), (3) Amplifikation von DNA mit PCR, und (4) Analyse durch Bestimmung der Menge sequenzspezifischer Amplifikationsprodukte (z.B. durch quantitative PCR, Hybridisierungsverfahren wie Microarrayverfahren).

Die erfindungsgemäßen Diagnoseverfahren können auch eine Nutzung der erfindungsgemäß identifizierten Tumor-assoziierten Antigene als prognostische Marker betreffen, um eine Metastatisierung z.B. durch Testen des Migrationsverhalten von Zellen und daher einen verschlechterten Krankheitsverlauf zu prädizieren, wodurch unter anderem die Planung einer aggressiveren Therapie ermöglicht wird.

In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Bestimmung der Regression, des Verlaufs oder des Ausbruchs einer Erkrankung, die sich durch die Expression oder abnormale Expression eines erfindungsgemäß identifizierten Tumor-assoziierten Antigens auszeichnet, umfassend die Überwachung einer Probe aus einem Patienten, der die

Erkrankung aufweist oder in Verdacht steht, an der Erkrankung zu erkranken in Bezug auf einen oder mehrere Parameter, die aus der Gruppe ausgewählt sind bestehend aus (i) der Menge der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder eines Teil davon, (ii) der Menge des Tumor-assoziierten Antigens oder eines Teils davon, (iii) der Menge an Antikörpern, die an das Tumor-assoziierte Antigen oder einen Teil davon binden, und (iv) der Menge an cytolytischen T-Zellen oder Helfer-T-Zellen, die für einen Komplex zwischen dem Tumor-assoziierten Antigen oder einem Teil davon und einem MHC-Molekül spezifisch sind. Vorzugsweise umfasst das Verfahren die Bestimmung des oder der Parameter zu einem ersten Zeitpunkt in einer ersten Probe und zu einem zweiten Zeitpunkt in einer weiteren Probe, wobei durch einen Vergleich der beiden Proben der Verlauf der Erkrankung ermittelt wird. In bestimmten Ausführungsformen zeichnet sich die Erkrankung durch die Expression oder abnormale Expression mehrerer verschiedener Tumor-assoziierter Antigene aus und die Überwachung umfasst eine Überwachung (i) der Menge mehrerer Nukleinsäuren, die für die mehreren verschiedenen Tumor-assoziierten Antigene kodieren, oder von Teilen davon und/oder (ii) der Menge der mehreren verschiedenen Tumor-assoziierten Antigene oder von Teilen davon und/oder (iii) der Menge mehrerer Antikörper, die an die mehreren verschiedenen Tumor-assoziierten Antigene oder an Teile davon binden, und/oder (iv) der Menge mehrerer cytolytischer T-Zellen oder Helfer-T-Zellen, die für Komplexe zwischen den mehreren verschiedenen Tumor-assoziierten Antigenen oder von Teilen davon und MHC-Molekülen spezifisch sind.

5

10

15

20

25

Ein Nachweis einer Nukleinsäure oder eines Teils davon oder eine Bestimmung bzw. Überwachung der Menge einer Nukleinsäure oder eines Teils davon kann erfindungsgemäß mit einer Polynukleotid-Sonde erfolgen, die spezifisch mit der Nukleinsäure oder dem Teil davon hybridisiert, oder kann durch selektive Amplifikation der Nukleinsäure oder des Teils davon erfolgen. In einer Ausführungsform umfasst die Polynukleotid-Sonde eine Sequenz von 6-50, insbesondere 10-30, 15-30 oder 20-30 zusammenhängenden Nukleotiden aus der Nukleinsäure.

In bestimmten Ausführungsformen der erfindungsgemäßen Diagnoseverfahren erfolgt eine selektive Amplifikation des Promotorbereichs oder eines Teils davon einer Nukleinsäure, die für ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen kodiert und in Form von genomischer DNA vorliegt, nach Behandlung mit einem bisulfithaltigen Reagenz. Die Nukleinsäure wird vorzugsweise vor einer Behandlung mit dem bisulfithaltigen Reagenz aus

einer Probe eines zu untersuchenden Patienten isoliert. Die bei einer solchen Amplifikation verwendeten Oligonukleotide weisen vorzugsweise eine Sequenz auf, die an die mit dem bisulfithaltigen Reagenz behandelte Nukleinsäure binden, vorzugsweise dazu vollständig komplementär sind. Vorzugsweise sind die Oligonukleotide einem unterschiedlichen Grad einer Methylierung der Nukleinsäure angepaßt und bedingen differenzierbare Amplifikationsprodukte.

Ein Nachweis eines Tumor-assoziierten Antigens oder eines Teils davon oder eines Bestimmung bzw. Überwachung der Menge eines Tumor-assoziierten Antigens oder eines Teils davon kann erfindungsgemäß mit einem Antikörper erfolgen, der spezifisch an das Tumor-assoziierte Antigen oder den Teil davon bindet.

In bestimmten Ausführungsformen liegt das nachzuweisende Tumor-assoziierte Antigen oder der Teil davon in einem Komplex mit einem MHC-Molekül, insbesondere einem HLA-Molekül vor.

Ein Nachweis eines Antikörpers oder die Bestimmung bzw. Überwachung der Menge an Antikörpern kann erfindungsgemäß mit einem Protein oder Peptid erfolgen, das spezifisch an den Antikörper bindet.

20

25

30

5

10

15

Ein Nachweis von cytolytischen T-Zellen oder Helfer-T-Zellen oder die Bestimmung bzw. Überwachung der Menge an cytolytischen T-Zellen oder Helfer-T-Zellen, die für Komplexe zwischen einem Antigen oder einem Teil davon und MHC-Molekülen spezifisch sind, kann erfindungsgemäß mit einer Zelle erfolgen, die den Komplex zwischen dem Antigen oder dem Teil davon und einem MHC-Molekül präsentiert.

Die für einen Nachweis oder für eine Bestimmung bzw. Überwachung verwendete Polynukleotid-Sonde, der Antikörper, das Protein oder Peptid oder die Zelle sind vorzugsweise nachweisbar markiert. In bestimmten Ausführungsformen ist der nachweisbare Marker ein radioaktiver Marker oder ein Enzymmarker. Der Nachweis von T-Lymphozyten kann zusätzlich durch Nachweis ihrer Proliferation, ihrer Zytokinproduktion, sowie ihrer cytotoxischen Aktivität erfolgen, die durch die spezifische Stimulation mit dem Komplex aus MHC und Tumor-assoziiertem Antigen oder Teilen davon ausgelöst wird. Der Nachweis von T-Lymphozyten kann ferner durch ein rekombinantes MHC-Molekül oder auch einen

Komplex aus mehreren MHC-Molekülen, die mit dem jeweiligen immunogenen Fragment aus einem oder mehreren der Tumor-assoziierten Antigene beladen sind, und durch Kontaktierung des spezifischen T-Zell-Rezeptors erfolgen, der spezifische T-Lymphozyten identifizieren kann.

5

10

30

In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Behandlung, Diagnose oder Überwachung einer Erkrankung, die sich durch die Expression oder abnormale Expression eines erfindungsgemäß identifizierten Tumor-assoziierten Antigens auszeichnet, umfassend die Verabreichung eines Antikörpers, der an das Tumor-assoziierte Antigen oder einen Teil davon bindet und mit einem therapeutischen oder diagnostischen Mittel gekoppelt ist. Der Antikörper kann ein monoklonaler Antikörper sein. In weiteren Ausführungsformen ist der Antikörper ein chimärer oder humanisierter Antikörper oder ein Fragment eines natürlichen Antikörpers.

Die Erfindung betrifft auch ein Verfahren zur Behandlung eines Patienten mit einer Erkrankung, die sich durch die Expression oder abnormale Expression eines erfindungsgemäß identifizierten Tumor-assoziierten Antigens auszeichnet, umfassend (i) die Entfernung einer Probe mit immunreaktiven Zellen aus dem Patienten, (ii) die Kontaktierung der Probe mit einer Wirtszelle, die das Tumor-assoziierte Antigen oder einen Teil davon exprimiert, unter Bedingungen, die eine Produktion cytolytischer T-Zellen gegen das Tumor-assoziierte Antigen oder einen Teil davon begünstigen, und (iii) das Einbringen der cytolytischen T-Zellen in den Patienten in einer Menge, die geeignet ist, Zellen zu lysieren, die das Tumor-assoziierte Antigen oder einen Teil davon exprimieren. Die Erfindung betrifft ebenfalls die Klonierung des T-Zell-Rezeptors von cytolytischen T-Zellen gegen das Tumor-assoziierte Antigen. Dieser kann in andere T-Zellen transferiert werden, die damit die erwünschte Spezifität erhalten und wie unter (iii) in den Patienten eingebracht werden können.

In einer Ausführungsform exprimiert die Wirtszelle ein HLA-Molekül endogen. In einer weiteren Ausführungsform exprimiert die Wirtszelle ein HLA-Molekül und/oder das Tumorassoziierte Antigen oder den Teil davon rekombinant. Vorzugsweise ist die Wirtszelle nichtproliferativ. In einer bevorzugten Ausführungsform ist die Wirtszelle eine Antigenpräsentierende Zelle, insbesondere eine dendritische Zelle, ein Monozyt oder ein Makrophage.

In einem weiteren Aspekt betrifft die Erfindung ein Verfahren zur Behandlung eines Patienten mit einer Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumorassoziierten Antigens auszeichnet, umfassend (i) die Identifizierung einer für ein erfindungsgemäß identifiziertes Turnor-assoziiertes Antigen kodierenden Nukleinsäure, die von Zellen exprimiert wird, die mit der Erkrankung assoziiert sind, (ii) die Transfektion einer Wirtszelle mit der Nukleinsäure oder einem Teil davon, (iii) die Kultivierung der transfizierten Wirtszelle für eine Expression der Nukleinsäure (dies ist bei Erreichen einer hohen Transfektionsrate nicht obligat) und (iv) das Einbringen der Wirtszellen oder eines Extrakts davon in den Patienten in einer Menge, die geeignet ist, die Immunreaktion gegen die Zellen des Patienten, die mit der Erkrankung assoziiert sind, zu erhöhen. Das Verfahren kann ferner die Identifizierung eines MHC-Moleküls, das das Tumor-assoziierte Antigen oder einen Teil davon präsentiert, umfassen, wobei die Wirtszelle das identifizierte MHC-Molekül exprimiert und das Tumor-assoziierte Antigen oder einen Teil davon präsentiert. Die Immunreaktion kann eine B-Zellen-Reaktion oder eine T-Zellen-Reaktion umfassen. Des weiteren kann eine T-Zellen-Reaktion die Produktion von cytolytischen T-Zellen und/oder Helfer-T-Zellen umfassen, die spezifisch für die Wirtszellen sind, die das Tumor-assoziierte Antigen oder einen Teil davon präsentieren oder spezifisch für Zellen des Patienten sind, die das Tumor-assoziierte Antigen oder einen Teil davon exprimieren.

5

10

15

30

Die Erfindung betrifft auch ein Verfahren zur Behandlung einer Erkrankung, die sich durch die Expression oder abnormale Expression eines erfindungsgemäß identifizierten Tumorassoziierten Antigens auszeichnet, umfassend (i) die Identifikation von Zellen aus dem Patienten, die abnormale Mengen des Tumor-assoziierten Antigens exprimieren, (ii) die Isolierung einer Probe der Zellen, (iii) die Kultivierung der Zellen und (iv) das Einbringen der Zellen in den Patienten in einer Menge, die geeignet ist, eine Immunreaktion gegen die Zellen auszulösen.

Vorzugsweise sind die erfindungsgemäß verwendeten Wirtszellen nicht-proliferativ oder werden nicht-proliferativ gemacht. Eine Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumor-assoziierten Antigens auszeichnet, ist insbesondere Krebs.

Des weiteren betrifst die vorliegende Erfindung eine Nukleinsäure, die aus der Gruppe ausgewählt ist bestehend aus (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst,

die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon, (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert, (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist. Des weiteren betrifft die Erfindung eine Nukleinsäure, die für ein Protein oder Polypeptid kodiert, das eine Aminosäuresequenz umfasst, ausgewählt aus der Gruppe, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einem Teil oder Derivat davon.

5

10

1.5

20

In einem weiteren Aspekt betrifft die Erfindung Promotorsequenzen von erfindungsgemäßen Nukleinsäuren. Diese können funktionell mit einem anderen Gen vorzugsweise in einem Expressionsvektor verbunden werden, und somit die selektive Expression dieses Gens in entsprechenden Zellen gewährleisten.

In einem weiteren Aspekt betrifft die Erfindung ein rekombinantes Nukleinsäuremolekül, insbesondere DNA- oder RNA-Molekül, das eine erfindungsgemäße Nukleinsäure umfasst.

Die Erfindung betrifft auch Wirtszellen, die eine erfindungsgemäße Nukleinsäure oder ein rekombinantes Nukleinsäuremolekül, das eine erfindungsgemäße Nukleinsäure umfasst, enthalten.

Die Wirtszelle kann ferner eine Nukleinsäure umfassen, die für ein HLA-Molekül kodiert. In einer Ausführungsform exprimiert die Wirtszelle das HLA-Molekül endogen. In einer weiteren Ausführungsform exprimiert die Wirtszelle das HLA-Molekül und/oder die erfindungsgemäße Nukleinsäure oder einen Teil davon rekombinant. Vorzugsweise ist die Wirtszelle nicht-proliferativ. In einer bevorzugten Ausführungsform ist die Wirtszelle eine

Antigen-präscntierende Zelle, insbesondere eine dendritische Zelle, ein Monozyt oder ein Makrophage.

In einer weiteren Ausführungsform betrifft die Erfindung Oligonukleotide, die mit einer erfindungsgemäß identifizierten Nukleinsäure hybridisieren und als genetische Sonden oder als "Antisense"-Moleküle verwendet werden können. Nukleinsäuremoleküle in der Form von Oligonukleotid-Primern oder kompetenten Proben, die mit einer erfindungsgemäß identifizierten Nukleinsäure oder Teilen davon hybridisieren, können zum Auffinden von Nukleinsäuren verwendet werden, die zu der erfindungsgemäß identifizierten Nukleinsäure homolog sind. PCR-Amplifikation, Southern- und Northern-Hybridisierung können zum Auffinden homologer Nukleinsäuren eingesetzt werden. Die Hybridisierung kann unter niedrig-, besser unter mittel- und am besten unter hoch-stringenten Bedingungen erfolgen. Der Begriff "stringente Bedingungen" betrifft erfindungsgemäß Bedingungen, die eine spezifische Hybridisierung zwischen Polynukleotiden erlauben.

15

20

25

3C

10

5

In einem weiteren Aspekt betrifft die Erfindung ein Protein oder Polypeptid, das von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon, (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert, (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist. In einer bevorzugten Ausführungsform betrifft die Erfindung ein Protein oder Polypeptid, das eine Aminosäuresequenz umfasst, ausgewählt aus der Gruppe, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einem Teil oder Derivat davon.

In einem weiteren Aspekt betrifft die Erfindung ein immunogenes Fragment eines erfindungsgemäß identifizierten Tumor-assoziierten Antigens. Das Fragment bindet vorzugsweise an einen menschlichen HLA-Rezeptor oder menschlichen Antikörper. Vorzugsweise umfasst ein erfindungsgemäßes Fragment eine Sequenz von mindestens 6, insbesondere mindestens 8, mindestens 10, mindestens 12, mindestens 15, mindestens 20, mindestens 30 oder mindestens 50 Aminosäuren.

In einem weiteren Aspekt betrifft die Erfindung ein Mittel, das an ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen oder an einen Teil davon bindet. In einer bevorzugten Ausführungsform ist das Mittel ein Antikörper. In weiteren Ausführungsformen ist der Antikörper ein chimärer, ein humanisierter oder mit kombinatorischen Techniken hergestellte Antikörper oder ein Fragment eines Antikörpers. Des weiteren betrifft die Erfindung einen Antikörper, der selektiv an einen Komplex aus (i) einem crfindungsgemäß identifizierten Tumor-assoziierten Antigen oder einem Teil davon und (ii) einem MHC-Molekül bindet, an das das erfindungsgemäß identifizierte Tumor-assoziierte Antigen oder der Teil davon bindet, wobei der Antikörper nicht alleine an (i) oder (ii) bindet. Ein erfindungsgemäßer Antikörper kann ein monoklonaler Antikörper sein. In weiteren Ausführungsformen ist der Antikörper ein chimärer oder humanisierter Antikörper oder ein Fragment eines natürlichen Antikörpers.

20

25

15

5

10

Des weiteren betrifft die Erfindung ein Konjugat zwischen einem erfindungsgemäßen Mittel, das an ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen oder an einen Teil davon bindet, oder einem erfindungsgemäßen Antikörper und einem therapeutischen oder diagnostischen Mittel. In einer Ausführungsform ist das therapeutische oder diagnostische Mittel ein Toxin.

In einem weiteren Aspekt betrifft die Erfindung einen Kit zum Nachweis der Expression oder abnormalen Expression eines erfindungsgemäß identifizierten Tumor-assoziierten Antigens, umfassend Mittel zum Nachweis (i) der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder eines Teils davon, (ii) des Tumor-assoziierten Antigens oder eines Teils davon, (iii) von Antikörpern, die an das Tumor-assoziierte Antigen oder einen Teil davon binden, und/oder (iv) von T-Zellen, die für einen Komplex zwischen dem Tumor-assoziierten Antigen oder einem Teil davon und einem MHC-Molekül spezifisch sind. In einer Ausführungsform

sind die Mittel zum Nachweis der Nukleinsäure oder des Teils davon Nukleinsäuremoleküle

WO 2005/030250 PCT/EP2004/010697 20

für die selektive Amplifikation der Nukleinsäure, die insbesondere eine Sequenz von 6-50, insbesondere 10-30, 15-30 oder 20-30 zusammenhängenden Nukleotiden aus der Nukleinsäure umfassen.

5

Detaillierte Beschreibung der Erfindung

Erfindungsgemäß werden Gene beschrieben, die in Tumorzellen selektiv exprimiert oder aberrant exprimiert werden und Tumor-assoziierte Antigene darstellen.

5

Erfindungsgemäß sind diese Gene oder ihre Derivate bevorzugte Zielstrukturen für therapeutische Ansätze. Konzeptionell können die therapeutischen Ansätze auf eine Hemmung der Aktivität des selektiv exprimierten Tumor-assoziierten Genproduktes zielen. Dies ist dann sinnvoll, wenn die aberrante respektive selektive Expression funktionell von tumorpathogenetischer Bedeutung ist und ihre Unterbindung mit einer selektiven Schädigung der entsprechenden Zellen einhergeht. Andere therapeutische Konzepte betrachten Tumor-assoziierte Antigene als Markierungen, die Effektormechanismen mit zellschädigendem Potential selektiv zu Tumorzellen rekrutieren. Hierbei ist die Funktion des Zielmoleküls selbst und seine Rolle bei der Tumorentstehung vollkommen unerheblich.

15

20

25

10

Mit "Derivat" einer Nukleinsäure ist erfindungsgemäß gemeint, dass einzelne oder multiple Nukleotidsubstitutionen, -deletionen und/oder -additionen in der Nukleinsäure vorliegen. Weiterhin umfasst der Begriff "Derivat" auch eine chemische Derivatisierung einer Nukleinsäure an einer Base, einem Zucker oder Phosphat eines Nukleotids. Der Begriff "Derivat" umfasst auch Nukleinsäuren, die nicht in der Natur vorkommende Nukleotide und Nukleotidanaloga enthalten.

Eine Nukleinsäure ist erfindungsgemäß vorzugsweise Desoxyribonukleinsäure (DNA) oder Ribonukleinsäure (RNA). Nukleinsäuren umfassen erfindungsgemäß genomische DNA, cDNA, mRNA, rekombinant hergestellte und chemisch synthetisierte Moleküle. Eine Nukleinsäure kann erfindungsgemäß als einzelsträngiges oder doppelsträngiges und lineares oder kovalent kreisförmig geschlossenes Molekül vorliegen.

Die erfindungsgemäß beschriebenen Nukleinsäuren sind vorzugsweise isoliert. Der Begriff "isolierte Nukleinsäure" bedeutet erfindungsgemäß, dass die Nukleinsäure (i) in vitro amplifiziert wurde, zum Beispiel durch Polymerase-Kettenreaktion (PCR), (ii) rekombinant durch Klonierung produziert wurde, (iii) gereinigt wurde, zum Beispiel durch Spaltung und gelelektrophoretische Auftrennung, oder (iv) synthetisiert wurde, zum Beispiel durch

chemische Synthese. Eine isolierte Nukleinsäure ist eine Nukleinsäure, die für eine Manipulierung durch rekombinante DNA-Techniken zur Verfügung steht.

5

10

15

20

25

30

Eine Nukleinsäure ist dann zu einer anderen Nukleinsäure "komplementär", wenn die beiden Sequenzen miteinander hybridisieren und ein stabiles Duplexmolekül eingehen können, wobei die Hybridisierung vorzugsweise unter Bedingungen erfolgt, die eine spezifische Hybridisierung zwischen Polynukleotiden erlauben (stringente Bedingungen). Stringente Bedingungen sind beispielsweise in Molecular Cloning: A Laboratory Manual, J. Sambrook et al., Hrsg., 2. Auflage, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, 1989, oder Current Protocols in Molecular Biology, F.M. Ausubel et al., Hrsg., John Wiley & Sons, Inc., New York beschrieben und betreffen beispielsweise die Hybridisierung bei 65°C in Hybridisierungspuffer (3,5 x SSC, 0,02% Ficoll, 0,02% Polyvinylpyrrolidon, 0,02% Rinderserumalbumin, 2,5 mM NaH₂PO₄ (pH 7), 0,5% SDS, 2 mM EDTA). SSC ist eine Lösung mit jeweils 0,15 M Natriumchlorid und Natriumcitrat, pH 7. Nach der Hybridisierung wird die Membran, auf die die DNA übertragen wurde, beispielsweise in 2 x SSC bei Raumtemperatur und sodann in 0,1 - 0,5 x SSC / 0,1 x SDS bei Temperaturen bis 68°C gewaschen.

Komplementäre Nukleinsäuren weisen erfindungsgemäß mindestens 40%, insbesondere mindestens 50%, mindestens 60%, mindestens 70%, mindestens 80%, mindestens 90% und vorzugsweise mindestens 95%, mindestens 98% oder mindestens 99% Identität der Nukleotide auf.

Nukleinsäuren, die für Tumor-assoziierte Antigene kodieren, können erfindungsgemäß alleine oder in Kombination mit anderen Nukleinsäuren, insbesondere heterologen Nukleinsäuren, vorliegen. In bevorzugten Ausführungsformen liegt eine Nukleinsäure funktionell in Verbindung mit Expressionskontrollsequenzen oder regulatorischen Sequenzen vor, die in Bezug zu der Nukleinsäure homolog oder heterolog sein können. Eine kodierende Sequenz und eine regulatorische Sequenz sind dann "funktionell" miteinander verbunden, falls sie derart kovalent miteinander verknüpft sind, dass die Expression oder Transkription der kodierenden Sequenz unter der Kontrolle oder unter dem Einfluss der regulatorischen Sequenz steht. Falls die kodierende Sequenz in ein funktionelles Protein translatiert werden soll, führt bei einer funktionellen Verbindung einer regulatorischen Sequenz mit der kodierenden Sequenz eine Induktion der regulatorischen Sequenz zu einer Transkription der

WO 2005/030250 PCT/EP2004/010697

kodierenden Sequenz, ohne dass es zu einer Leserasterverschiebung in der kodierenden Sequenz oder zu einem Unvermögen der kodierenden Sequenz kommt, in das gewünschte Protein oder Peptid translatiert zu werden.

Der Begriff "Expressionskontrollsequenz" oder "regulatorische Sequenz" umfasst erfindungsgemäß Promotoren, Enhancer und andere Kontrollelemente, die die Expression eines Gens steuern. In bestimmten erfindungsgemäßen Ausführungsformen sind die Expressionskontrollsequenzen regulierbar. Die genaue Struktur von regulatorischen Sequenzen kann speziesabhängig oder zelltypusabhängig variieren, umfasst jedoch im allgemeinen 5'-nicht-transkribierte und 5'-nicht-translatierte Sequenzen, die an der Initiation der Transkription bzw. Translation beteiligt sind wie TATA-Box, Capping-Sequenz, CAAT-Sequenz und ähnliches. Insbesondere umfassen 5'-nicht-transkribierte Regulationssequenzen eine Promotorregion, die eine Promotorsequenz für eine transkriptionelle Kontrolle des funktionell verbundenen Gens einschließt. Regulatorische Sequenzen können auch Enhancer-Sequenzen oder stromaufwärts gelegene Aktivatorsequenzen umfassen.

Zum einen können also die hier dargestellten Tumorassoziierten Antigene mit beliebigen Expressionskontrollsequenzen und Promotoren kombiniert werden. Zum anderen aber können erfindungsgemäß die Promotoren der hier dargestellten Tumor-assoziierten Genprodukte mit beliebigen anderen Genen kombiniert werden. Dies erlaubt, die selektive Aktivität dieser Promotoren zu nutzen.

Des weiteren kann eine Nukleinsäure erfindungsgemäß in Verbindung mit einer anderen Nukleinsäure vorliegen, die für ein Polypeptid kodiert, das eine Sekretion des durch die Nukleinsäure kodierten Proteins oder Polypeptids aus einer Wirtszelle steuert. Auch kann eine Nukleinsäure erfindungsgemäß in Verbindung mit einer anderen Nukleinsäure vorliegen, die für ein Polypeptid kodiert, das eine Verankerung des kodierten Proteins oder Polypeptids auf der Zellmembran der Wirtszelle oder seine Kompartimentalisierung in bestimmte Organellen dieser Zelle herbeiführt.

30

25

20

In einer bevorzugten Ausführungsform ist ein rekombinantes DNA-Molekül erfindungsgemäß ein Vektor, gegebenenfalls mit einem Promotor, der die Expression einer Nukleinsäure, z.B. einer Nukleinsäure, die für eine erfindungsgemäßes Tumor-assoziiertes Antigen kodiert, steuert. Der Begriff "Vektor" wird dabei in seiner allgemeinsten Bedeutung verwendet und

umfasst jegliche intermediären Vehikel für eine Nukleinsäure, die es z.B. ermöglichen, die Nukleinsäure in prokaryontische und/oder in eukaryontische Zellen einzubringen und gegebenenfalls in ein Genom zu integrieren. Solche Vektoren werden vorzugsweise in der Zelle repliziert und/oder exprimiert. Ein intermediäres Vehikel kann z.B. für den Gebrauch bei der Elektroporation, beim Mikroprojektilbeschuss, bei der liposomalen Verabreichung, beim Transfor mit Hilfe von Agrobakterien oder bei der Insertion über DNA- oder RNA-Viren angepasst sein. Vektoren umfassen Plasmide, Phagemide, Bacteriophage oder Virusgenome.

5

30

Die Nukleinsäuren, die für ein erfindungsgemäß identifiziertes Tumor-assoziiertes Antigen 10 kodieren, können für eine Transfektion von Wirtszellen eingesetzt werden. Mit Nukleinsäuren ist dabei sowohl rekombinante DNA wie auch RNA gemeint. Rekombinante RNA kann durch in vitro-Transkription von einer DNA-Matritze bergestellt werden. Sie kann des weiteren vor Applikation durch stabilisierende Sequenzen, Capping und Poly-Adenylierung modifiziert werden. Der Begriff "Wirtszelle" betrifft erfindungsgemäß jede Zelle, die mit einer exogenen 15 Nukleinsäure transformierbar oder transfizierbar ist. Der Begriff "Wirtszellen" umfasst erfindungsgemäß prokaryontische (z.B. E. coli) oder eukaryontische (z.B. dendritische Zellen, B-Zellen, CHO-Zellen, COS-Zellen, K562-Zellen, Hefezellen und Insektenzellen). Besonders bevorzugt sind Säugerzellen wie Zellen aus Mensch, Maus, Hamster, Schwein, Ziege und Primaten. Die Zellen können aus einer Vielzahl von Gewebetypen abgeleitet sein und 20 umfassen primäre Zellen und Zelllinien. Spezifische Beispiele umfassen Keratinozyten, periphere Blutleukozyten, Stammzellen des Knochenmarks und embryonale Stammzellen. In weiteren Ausführungsformen ist die Wirtszelle eine Antigen-präsentierende Zelle, insbesondere eine dendritische Zelle, ein Monozyt oder Makrophage. Eine Nukleinsäure kann in der Wirtszelle in einer einzigen oder in mehreren Kopien vorliegen und wird in einer 25 Ausführungsform in der Wirtszelle exprimiert.

Der Begriff "Expression" wird erfindungsgemäß in seiner allgemeinsten Bedeutung verwendet und umfasst die Produktion von RNA oder von RNA und Protein. Er umfasst auch eine teilweise Expression von Nukleinsäuren. Des weiteren kann die Expression transient oder stabil erfolgen. Bevorzugte Expressionssysteme in Säugerzellen umfassen pcDNA3.1 und pRc/CMV (Invitrogen, Carlsbad, CA), die einen selektierbaren Marker enthalten wie ein Gen, das eine Resistenz gegenüber G418 verleiht (und somit eine Selektion stabil

transfizierter Zelllinien ermöglicht), und die Enhancer-Promotor-Sequenzen von Cytomegalovirus (CMV).

5

10

15

20

25

30

In den Fällen der Erfindung, in denen ein HLA-Molekül ein Tumor-assoziiertes Antigen oder einen Teil davon präsentiert, kann ein Expressionsvektor auch eine Nukleinsäuresequenz umfassen, die für das HLA-Molekül kodiert. Die Nukleinsäuresequenz, die für das HLA-Molekül kodiert, kann auf demselben Expressionsvektor wie die Nukleinsäure, die für das Tumor-assoziierte Antigen oder den Teil davon kodiert, vorliegen oder beide Nukleinsäuren können auf verschiedenen Expressionsvektoren vorliegen. Im letzteren Fall können die beiden Expressionsvektoren in eine Zelle cotransfiziert werden. Falls eine Wirtszelle weder das Tumor-assoziierte Antigen oder den Teil davon noch das HLA-Molekül exprimiert, werden beide dafür kodierenden Nukleinsäuren entweder auf demselben Expressionsvektor oder auf verschiedenen Expressionsvektoren in die Zelle transfiziert. Falls die Zelle bereits das HLA-Molekül exprimiert, kann nur die Nukleinsäuresequenz, die für das Tumor-assoziierte Antigen oder den Teil davon kodiert, in die Zelle transfiziert werden.

Erfindungsgemäß umfasst sind Kits zur Amplifikation einer Nukleinsäure, die für ein Tumorassoziiertes Antigen kodiert. Solche Kits umfassen beispielsweise ein Paar von Amplifikationsprimern, die an die Nukleinsäure hybridisieren, die für das Tumorassoziierte Antigen kodiert. Die Primer umfassen vorzugsweise eine Sequenz von 6-50, insbesondere 10-30, 15-30 oder 20-30 zusammenhängenden Nukleotiden aus der Nukleinsäure und sind nicht-überlappend, um die Bildung von Primer-Dimeren zu vermeiden. Einer der Primer wird an einen Strang der Nukleinsäure hybridisieren, die für das Tumor-assoziierte Antigen kodiert, und der andere Primer wird an den komplementären Strang in einer Anordnung hybridisieren, die eine Amplifikation der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, erlaubt.

"Antisense"-Moleküle oder "Antisense"-Nukleinsäuren können zur Regulierung, insbesondere der Reduktion der Expression einer Nukleinsäure verwendet werden. Der Begriff "Antisense-Molekül" oder "Antisense-Nukleinsäure" betrifft erfindungsgemäß ein Oligonukleotid, das ein Oligoribonukleotid, Oligodesoxyribonukleotid, modifiziertes Oligoribonukleotid oder modifiziertes Oligodesoxyribonukleotid ist und das unter physiologischen Bedingungen an DNA, die ein bestimmtes Gen umfasst, oder mRNA dieses Gens hybridisiert, wodurch die Transkription dieses Gens und/oder die Translation dieser

mRNA gehemmt wird. Ein "Antisense-Molekül" umfasst erfindungsgemäß auch ein Konstrukt, das eine Nukleinsäure oder einen Teil davon in reverser Orientierung in Bezug auf ihren natürlichen Promotor enthält. Ein Antisense-Transkript einer Nukleinsäure oder eines Teils davon kann ein Duplexmolekül mit der natürlich vorkommenden mRNA, die das Enzym spezifiziert, eingehen und so eine Akkumulation von oder die Translation der mRNA in das aktive Enzym verhindern. Eine weitere Möglichkeit ist die Verwendung von Ribozymen zur Inaktivierung einer Nukleinsäure. Bevorzugte erfindungsgemäße Antisense-Oligonukleotide weisen eine Sequenz von 6-50, insbesondere 10-30, 15-30 oder 20-30 zusammenhängenden Nukleotiden aus der Ziel-Nukleinsäure auf und sind vorzugsweise vollständig zu der Ziel-Nukleinsäure oder einem Teil davon komplementär.

5

10

15

20

25

30

In bevorzugten Ausführungsformen hybridisiert das Antisense-Oligonukleotid mit einer N-terminalen oder 5'-stromaufwärts gelegenen Stelle wie einer Translationsinitiations-, Transkriptionsinitiations- oder Promotorstelle. In weiteren Ausführungsformen hybridisiert das Antisense-Oligonukleotid mit einer 3'-nicht-translatierten Region oder mRNA-Spleiß-Stelle.

In einer Ausführungsform besteht ein erfindungsgemäßes Oligonukleotid aus Ribonukleotiden, Desoxyribonukleotiden oder einer Kombination davon. Dabei sind das 5'-Ende eines Nukleotids und das 3'-Ende eines anderen Nukleotids durch eine Phosphodiesterbindung miteinander verknüpft. Diese Oligonukleotide können in herkömmlicher Weise synthetisiert oder rekombinant produziert werden.

In bevorzugten Ausführungsformen ist ein erfindungsgemäßes Oligonukleotid ein "modifiziertes" Oligonukleotid. Dabei kann das Oligonukleotid, um beispielsweise seine Stabilität oder therapeutische Wirksamkeit zu erhöhen, auf verschiedenste Art und Weise modifiziert sein ohne dass seine Fähigkeit, an sein Ziel zu binden, beeinträchtigt wird. Der Begriff "modifiziertes Oligonukleotid" bedeutet erfindungsgemäß ein Oligonukleotid, bei dem (i) mindestens zwei seiner Nukleotide durch eine synthetische Internukleosidbindung (d.h. eine Internukleosidbindung, die keine Phosphodiesterbindung ist) miteinander verknüpft sind und/oder (ii) eine chemische Gruppe kovalent mit dem Oligonukleotid verbunden ist, die synthetische Bevorzugte austritt. Nukleinsäuren normalerweise nicht bei Internukleosidbindungen sind Phosphorothioate, Alkylphosphonate, Phosphorodithioate, Phosphatester, Alkylphosphonothioate, Phosphoramidate, Carbamate, Carbonate, Phosphattriester, Acetamidate, Carboxymethylester und Peptide.

Der Begriff "modifiziertes Oligonukleotid" umfasst auch Oligonukleotide mit einer kovalent modifizierten Base und/oder Zucker. "Modifizierte Oligonukleotide" umfassen beispielsweise Oligonukleotide mit Zuckerresten, die kovalent an organische Gruppen mit einem geringen Molekulargewicht gebunden sind, die keine Hydroxylgruppe an der 3'-Position und keine Phosphatgruppe an der 5'-Position sind. Modifizierte Oligonukleotide können beispielsweise einen 2'-O-alkylierten Riboserest oder einen anderen Zucker anstelle von Ribose wie Arabinose umfassen.

5

10

15

20

30

Die erfindungsgemäß beschriebenen Proteine und Polypeptide sind vorzugsweise isoliert. Die Begriffe "isoliertes Protein" oder "isoliertes Polypeptid" bedeuten, dass das Protein oder Polypeptid von seiner natürlichen Umgebung getrennt ist. Ein isoliertes Protein oder Polypeptid kann in einem im wesentlichen aufgereinigten Zustand vorliegen. Der Begriff "im wesentlichen aufgereinigt" bedeutet, dass das Protein oder Polypeptid im wesentlichen frei von anderen Substanzen vorliegt, mit denen es in der Natur oder *in vivo* vorliegt.

Solche Proteine und Polypeptide dienen beispielsweise der Herstellung von Antikörpern und sind in einem immunologischen oder diagnostischen Assay oder als Therapeutika einsetzbar. Erfindungsgemäß beschriebene Proteine und Polypeptide können aus biologischen Proben wie Gewebe- oder Zellhomogenaten isoliert werden und können auch rekombinant in einer Vielzahl pro- oder eukaryontischer Expressionssysteme exprimiert werden.

25 "Derivate" eines Proteins oder Polypeptids oder einer Aminosäuresequenz im Sinne dieser Erfindung umfassen Aminosäure-Insertionsvarianten, Aminosäure-Deletionsvarianten und/oder Aminosäure-Substitutionsvarianten.

Aminosäure-Insertionsvarianten umfassen amino- und/oder carboxyterminale Fusionen, sowie Insertionen von einzelnen oder mehreren Aminosäuren in einer bestimmten Aminosäuresequenz. Bei Aminosäure-Sequenzvarianten mit einer Insertion werden ein oder mehrere Aminosäurereste in eine vorbestimmte Stelle in einer Aminosäuresequenz eingebracht, obwohl eine zufällige Insertion mit geeignetem Screening des resultierenden Produkts auch möglich ist. Aminosäure-Deletionsvarianten sind durch das Entfernen von

einer oder mehreren Aminosäuren aus der Sequenz charakterisiert. Aminosäure-Substitutionsvarianten zeichnen sich dadurch aus, dass wenigstens ein Rest in der Sequenz entfernt und ein anderer Rest an dessen Stelle eingefügt wird. Vorzugsweise befinden sich die Modifikationen an Positionen in der Aminosäuresequenz, die zwischen homologen Proteinen oder Polypeptiden nicht konserviert sind. Vorzugsweise werden Aminosäuren durch audere mit ähnlichen Eigenschaften, wie Hydrophobizität, Hydrophilizität, Elektronegativität, Volumen der Seitenkette und ähnliches, ersetzt (konservative Substitution). Konservative Substitutionen betreffen beispielsweise den Austausch einer Aminosäure durch eine andere, wobei beide Aminosäuren in derselben nachstehenden Gruppe aufgeführt sind:

10

5

- 1. kleine aliphatische, nicht-polare oder leicht-polare Reste: Ala, Ser, Thr (Pro, Gly)
- 2. negativ geladene Reste und ihre Amide: Asn, Asp, Glu, Gln
- 3. positiv geladene Reste: His, Arg, Lys
- 4. große aliphatische, nicht-polare Reste: Met, Leu, Ile, Val (Cys)
- 5. große aromatische Reste: Phe, Tyr, Trp.

Drei Reste sind aufgrund ihrer besonderen Rolle für die Proteinarchitektur in Klammern gesetzt. Gly ist der einzige Rest ohne eine Seitenkette und verleiht der Kette somit Flexibilität. Pro besitzt eine ungewöhnliche Geometrie, die die Kette stark einschränkt. Cys kann eine Disulfidbrücke bilden.

Die oben beschriebenen Aminosäure-Varianten können leicht mit Hilfe von bekannten Peptidsynthesetechniken wie z.B. durch "Solid Phase Synthesis" (Merrifield, 1964) und ähnliche Verfahren oder durch rekombinante DNA-Manipulation hergestellt werden. Techniken, um Substitutionsmutationen an vorbestimmten Stellen in DNA einzubringen, die eine bekannte oder teilweise bekannte Sequenz besitzt, sind gut bekannt und umfassen z.B. M13-Mutagenese. Die Manipulation von DNA-Sequenzen zur Herstellung von Proteinen mit Substitutionen, Insertionen oder Deletionen ist z.B. in Sambrook et. al. (1989) ausführlich beschrieben.

30

25

20

"Derivate" von Proteinen oder Polypeptiden umfassen erfindungsgemäß auch einzelne oder multiple Substitutionen, Deletionen und/oder Additionen jeglicher Moleküle, die mit dem Enzym assoziiert sind, wie Kohlenhydrate, Lipide und/oder Proteine oder Polypeptide. Ferner erstreckt sich der Begriff "Derivat" auch auf alle funktionellen chemischen Äquivalente der Proteine oder Polypeptide.

Ein Teil oder Fragment eines Tumor-assoziierten Antigens weist erfindungsgemäß eine funktionelle Eigenschaft des Polypeptids auf, aus dem es abgeleitet ist. Solche funktionellen Eigenschaften umfassen die Interaktion mit Antikörpern, die Interaktion mit anderen Polypeptiden oder Proteinen, die selektive Bindung von Nukleinsäuren und eine enzymatische Aktivität. Eine bedeutende Eigenschaft ist die Fähigkeit, einen Komplex mit HLA einzugehen und gegebenenfalls eine Immunreaktion zu erzeugen. Diese Immunreaktion kann auf Stimulation von cytotoxischen oder Helfer-T-Zellen beruhen. Vorzugsweise umfasst ein erfindungsgemäßer Teil oder Fragment eines Tumor-assoziierten Antigens eine Sequenz von mindestens 6, insbesondere mindestens 8, mindestens 10, mindestens 12, mindestens 15, mindestens 20, mindestens 30 oder mindestens 50 aufeinanderfolgenden Aminosäuren aus dem Tumor-assoziierten Antigen. Ein Teil oder Fragment eines Tumor-assoziierten Antigens ist vorzugsweise ein Teil des Tumor-assoziierten Antigens, der dem nicht-Transmembrananteil, insbesondere dem extrazellulären Anteil des Antigens entspricht oder davon umfasst wird.

Ein Teil oder ein Fragment einer Nukleinsäure, die für ein Tumor-assoziiertes Antigen kodiert, betrifft erfindungsgemäß den Teil der Nukleinsäure, der zumindest für das Tumor-assoziierte Antigen und/oder für einen Teil oder ein Fragment des Tumor-assoziierten Antigens wie vorstehend definiert kodiert. Vorzugsweise ist ein Teil oder Fragment einer Nukleinsäure, die für ein Tumor-assoziiertes Antigen kodiert, derjenige Teil, der dem offenen Leserahmen, insbesondere wie im Sequenzprotokoll angegeben entspricht.

25

30

5

10

15

20

Die Isolierung und Identifizierung von Genen, die für Tumor-assoziierte Antigene kodieren, ermöglicht auch die Diagnose einer Erkrankung, die sich durch die Expression von einem oder mehreren Tumor-assoziierten Antigenen auszeichnet. Diese Verfahren umfassen die Bestimmung einer oder mehrerer Nukleinsäuren, die für ein Tumor-assoziiertes Antigen kodieren, und/oder die Bestimmung der kodierten Tumor-assoziierten Antigene und/oder von davon abgeleiteten Peptiden. Eine Bestimmung der Nukleinsäure kann in herkömmlicher Weise erfolgen, einschließlich durch Polymerase-Kettenreaktion oder Hybridisierung mit einer markierten Sonde. Eine Bestimmung von Tumor-assoziierten Antigenen oder davon abgeleiteten Peptiden kann durch ein Screening von Patienten-Antiseren in Bezug auf eine

Erkennung des Antigens und/oder der Peptide erfolgen. Sie kann auch durch ein Screening von T-Zellen des Patienten auf Spezifität für das entsprechende Tumor-assoziierte Antigen erfolgen.

- Die vorliegende Erfindung ermöglicht auch die Isolierung von Proteinen, die an hier beschriebene Tumor-assoziierte Antigene binden, einschließlich Antikörper und zelluläre Bindepartner der Tumor-assoziierten Antigene.
- Erfindungsgemäß werden auch in bestimmten Ausführungsformen "dominant negative" Polypeptide bereitgestellt, die von Tumor-assoziierten Antigenen abgeleitet sind. Ein 10 dominant negatives Polypeptid ist eine inaktive Variante eines Proteins, die durch Interaktion mit der zellulären Maschinerie ein aktives Protein von seiner Interaktion mit der zellulären Maschinerie verdrängt oder mit dem aktiven Protein kompetitiert, wodurch die Wirkung des aktiven Proteins verringert wird. Zum Beispiel kann ein dominant negativer Rezeptor, der einen Liganden bindet, jedoch kein Signal in Reaktion auf die Bindung des Liganden erzeugt, 15 die biologische Wirkung des Liganden verringern. In ähnlicher Weise kann eine dominant negative katalytisch-inaktive Kinase, die normalerweise mit Zielproteinen interagiert, jedoch die Zielproteine nicht phosphoryliert, die Phosphorylierung der Zielproteine in Reaktion auf ein zelluläres Signal verringern. In ähnlicher Weise kann ein dominant negativer Transkriptionsfaktor, der an eine Promotorstelle in der Kontrollregion eines Gens bindet, 20 jedoch die Transkription des Gens nicht erhöht, die Wirkung eines normalen Transkriptionsfaktors durch die Besetzung von Promotorbindestellen ohne eine Erhöhung der Transkription verringern.
- Das Ergebnis der Expression eines dominant negativen Polypeptids in einer Zelle ist eine Verringerung der Funktion aktiver Proteine. Der Fachmann kann dominant negative Varianten eines Proteins beispielsweise durch herkömmliche Mutageneseverfahren und Bewerten der dominant negativen Wirkung des Varianten-Polypeptids herstellen.
- Erfindungsgemäß umfasst sind auch Stoffe wie Polypeptide, die an Tumor-assoziierte Antigene binden. Solche Bindestoffe können z.B. in Screening-Assays für einen Nachweis von Tumor-assoziierten Antigenen und Komplexen von Tumor-assoziierten Antigenen mit ihren Bindepartnern sowie bei einer Aufreinigung der Tumor-assoziierten Antigene und von Komplexen davon mit ihren Bindepartnern Verwendung finden. Solche Stoffe können auch

٠ţ.

für eine Hemmung der Aktivität Tumor-assoziierter Antigene beispielsweise durch Bindung an solche Antigene Verwendung finden.

Erfindungsgemäß umfasst sind daher Bindestoffe wie z.B. Antikörper oder Antikörperfragmente, die die Fähigkeit aufweisen, selektiv an Tumor-assoziierte Antigene zu binden. Antikörper umfassen polyklonale und monoklonale Antikörper, die in herkömmlicher Weise hergestellt werden.

Es ist bekannt, dass nur ein kleiner Teil eines Antikörpermoleküls, das Paratop, an der Bindung des Antikörpers an sein Epitop beteiligt ist (vgl. Clark, W.R. (1986), The Experimental Foundations of Modern Immunology, Wiley & Sons, Inc., New York; Roitt, I. (1991), Essential Immunology, 7. Auflage, Blackwell Scientific Publications, Oxford). Die pFc'- und Fc-Regionen sind z.B. Effektoren der Komplementkaskade, sind jedoch nicht an der Antigenbindung beteiligt. Ein Antikörper, von dem die pFc'-Region enzymatisch abgespalten wurde oder der ohne die pFc'-Region hergestellt wurde, bezeichnet als F(ab')2-Fragment, trägt beide Antigenbindestellen eines vollständigen Antikörpers. In ähnlicher Weise trägt ein Antikörper, von dem die Fc-Region enzymatisch abgespalten wurde oder der ohne die Fc-Region hergestellt wurde, bezeichnet als Fab-Fragment, eine Antigenbindestelle eines intakten Antikörpermoleküls. Des weiteren bestehen Fab-Fragmente aus einer kovalent gebundenen leichten Kette eines Antikörpers und einem Teil der schweren Kette des Antikörpers, bezeichnet als Fd. Die Fd-Fragmente sind die Haupt-Determinanten der Antikörper-Spezifität (ein einzelnes Fd-Fragment kann mit bis zu zehn verschiedenen leichten Ketten assoziiert werden, ohne die Spezifität des Antikörpers zu verändern) und Fd-Fragmente behalten bei einer Isolierung die Fähigkeit, an ein Epitop zu binden.

25

30

5

10

15

20

Innerhalb des Antigen-bindenden Teils eines Antikörpers befinden sich komplementaritätsbestimmende Regionen (CDRs), die direkt mit dem Epitop des Antigens wechselwirken, und Gerüstregionen (FRs), die die Tertiärstruktur des Paratops aufrechterhalten. Sowohl in dem Fd-Fragment der schweren Kette als auch in der leichten Kette von IgG-Immunglobulinen befinden sich vier Gerüstregionen (FR1 bis FR4), die jeweils durch drei komplementaritätsbestimmende Regionen (CDR1 bis CDR3) getrennt sind. Die CDRs und insbesondere die CDR3-Regionen und noch mehr die CDR3-Region der schweren Kette sind größtenteils für die Antikörper-Spezifität verantwortlich.

Man weiß, dass die Nicht-CDR-Regionen eines Säuger-Antikörpers durch ähnliche Regionen von Antikörpern mit der gleichen oder einer anderen Spezifität ersetzt werden können, wobei die Spezifität für das Epitop des ursprünglichen Antikörpers erhalten bleibt. Dies ermöglichte die Entwicklung sogenannter "humanisierter" Antikörper, bei denen nicht-menschliche CDRs kovalent mit menschlichen FR- und/oder Fc/pFc'-Regionen für die Herstellung eines funktionellen Antikörpers verbunden sind.

5

10

15

20

25

30

Zum Beispiel beschreibt die WO 92/04381 die Herstellung und Verwendung von humanisierten RSV-Antikörpern aus Maus, bei denen mindestens ein Teil der FR-Regionen aus Maus durch FR-Regionen eines menschlichen Ursprungs ersetzt wurden. Solche Antikörper, einschließlich Fragmente intakter Antikörper mit einer Antigen-Bindefähigkeit werden oft als "chimäre" Antikörper bezeichnet.

Erfindungsgemäß werden auch F(ab')₂-, Fab-, Fv- und Fd-Fragmente von Antikörpern, chimäre Antikörper, bei denen die Fc- und/oder FR- und/oder CDR1- und/oder CDR2- und/oder leichte Kette-CDR3-Regionen durch homologe menschliche oder nicht-menschliche Sequenzen ersetzt wurden, chimäre F(ab')₂-Fragment-Antikörper, bei denen die FR- und/oder CDR1- und/oder CDR2- und/oder leichte Kette-CDR3-Regionen durch homologe menschliche oder nicht-menschliche Sequenzen ersetzt wurden, chimäre Fab-Fragment-Antikörper, bei denen die FR- und/oder CDR1- und/oder CDR2- und/oder leichte Kette-CDR3-Regionen durch homologe menschliche oder nicht-menschliche Sequenzen ersetzt wurden, und chimäre Fd-Fragment-Antikörper, bei denen die FR- und/oder CDR1- und/oder CDR2-Regionen durch homologe menschliche oder nicht-menschliche Sequenzen ersetzt wurden, bereitgestellt. Erfindungsgemäß umfasst sind auch sogenannte einzelkettige Antikörper.

Vorzugsweise ist ein erfindungsgemäß verwendeter Antikörper gegen eine der Sequenzen gemäß SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einen Teil oder ein Derivat davon, insbesondere eine Sequenz gemäß SEQ ID NOs: 281 bis 308 des Sequenzprotokolls gerichtet und/oder kann durch Immunisierung mit diesen Peptiden erhalten werden.

Erfindungsgemäß umfasst sind auch Polypeptide, die spezifisch an Tumor-assoziierte Antigene binden. Beispielsweise können solche Polypeptid-Bindestoffe durch degenerierte Peptid-Bibliotheken bereitgestellt werden, die einfach in Lösung in einer immobilisierten Form oder als Phagen-Display-Bibliotheken hergestellt werden können. Kombinatorische Bibliotheken aus Peptiden mit einer oder mehreren Aminosäuren können ebenfalls hergestellt werden. Ferner können Bibliotheken aus Peptoiden und nicht-peptidischen synthetischen Resten hergestellt werden.

5

10

15

20

25

3C

Phagen-Display kann besonders wirksam bei der Identifizierung erfindungsgemäßer Bindepeptide sein. Dabei wird beispielsweise eine Phagen-Bibliothek (durch Verwendung beispielsweise des m13-, fd- oder lambda-Phagen) hergestellt, die Inserts einer Länge von 4 bis etwa 80 Aminosäureresten präsentiert. Es werden sodann Phagen ausgewählt, die Inserts tragen, die an das Tumor-assoziierte Antigen binden. Dieser Prozess kann über mehrere Zyklen einer Rückselektion von Phagen wiederholt werden, die an das Tumor-assoziierte Antigen binden. Wiederholte Runden führen zu einer Anreicherung von Phagen, die bestimmte Sequenzen tragen. Es kann eine Analyse von DNA-Sequenzen erfolgen, um die Sequenzen der exprimierten Polypeptide zu identifizieren. Der kleinste lineare Anteil der Sequenz, der an das Tumor-assoziierte Antigen bindet, kann bestimmt werden. Das "twohybrid-System" aus Hefe kann auch für die Identifizierung von Polypeptiden eingesetzt werden, die an ein Tumor-assoziiertes Antigen binden. Erfindungsgemäß beschriebene Tumor-assoziierte Antigene oder Fragmente davon können für ein Screening von Peptid-Bibliotheken, einschließlich Phagen-Display-Bibliotheken, eingesetzt werden, um Peptid-Bindepartner der Tumor-assoziierten Antigene zu identifizieren und selektieren. Solche Moleküle können beispielsweise für Screening-Assays, Aufreinigungsprotokolle, für eine Interferenz mit der Funktion des Tumor-assoziierten Antigens und für andere Zwecke, die dem Fachmann bekannt sind, verwendet werden.

Die vorstehend beschriebenen Antikörper und andere Bindemoleküle können beispielsweise für die Identifizierung von Gewebe verwendet werden, das ein Tumor-assoziiertes Antigen exprimiert. Antikörper können auch an spezifische diagnostische Stoffe für eine Darstellung von Zellen und Geweben gekoppelt werden, die Tumor-assoziierte Antigene exprimieren. Sie können ferner an therapeutisch nützliche Stoffe gekoppelt werden. Diagnostische Stoffe umfassen in nicht begrenzender Weise Bariumsulfat, Iocetaminsäure, Iopansäure, Calcium-

Ipodat, Natrium-Diatrizoat, Meglumin-Diatrizoat, Metrizamid, Natrium-Tyropanoat und Radiodiagnostika, einschließlich Positronen-Emitter wie Fluor-18 und Kohlenstoff-11, gamma-Emitter wie Iod-123, Technetium-99m, Iod-131 und Indium-111, Nuklide für magnetische Kernresonanz wie Fluor und Gadolinium. Der Begriff "therapeutisch nützlicher Stoff" meint erfindungsgemäß jedes therapeutische Molekül, das wunschgemäß selektiv zu einer Zelle geführt wird, die ein oder mehrere Tumor-assoziierte Antigene exprimiert, einschließlich Antikrebsmittel, mit radioaktivem Iod versehene Verbindungen, Toxine, cytostatische oder cytolytische Arzneistoffe, usw. Antikrebsmittel umfassen beispielsweise Aminoglutethimid, Azathioprin, Bleomycinsulfat, Busulfan, Carmustin, Chlorambucil, Cyclophosphamid, Cyclosporin, Cytarabin, Dactinomycin, Dacarbazin, Cisplatin. Daunorubin, Doxorubicin, Taxol, Etoposid, Fluoruracil, Interferon-a, Lomustin, Mercaptopurin, Methotrexat, Mitotan, Procarbazin-HCl, Thioguanin, Vinblastinsulfat und Vincristinsulfat. Weitere Antikrebsmittel sind beispielsweise in Goodman und Gilman, "The Pharmacological Basis of Therapeutics", 8. Auflage, 1990, McGraw-Hill, Inc., insbesondere Kapitel 52 (Antineoplastic Agents (Paul Calabresi und Bruce A. Chabner)) beschrieben. Toxine können Proteine wie Pokeweed-antivirales Protein, Choleratoxin, Pertussistoxin, Ricin, Gelonin, Abrin, Diphtherie-Exotoxin oder Pseudomonas-Exotoxin sein. Toxinreste können auch Hochenergie-emittierende Radionuklide wie Kobalt-60 sein.

5

10

15

- Der Begriff "Patient" bedeutet erfindungsgemäß Mensch, nicht menschlicher Primat oder ein anderes Tier, insbesondere Säugetier wie Kuh, Pferd, Schwein, Schaf, Ziege, Hund, Katze oder Nagetier wie Maus und Ratte. In einer besonders bevorzugten Ausführungsform ist der Patient ein Mensch.
- Der Begriff "Erkrankung" betrifft erfindungsgemäß jeden pathologischen Zustand, bei dem Tumor-assoziierte Antigene exprimiert oder abnormal exprimiert werden. "Abnormale Expression" bedeutet erfindungsgemäß, dass die Expression gegenüber dem Zustand bei einem gesunden Individuum verändert, vorzugsweise erhöht ist. Eine Erhöhung der Expression betrifft eine Erhöhung um mindestens 10%, insbesondere mindestens 20%, mindestens 50% oder mindestens 100%. In einer Ausführungsform wird das Tumorassoziierte Antigen nur in Gewebe eines erkrankten Individuums exprimiert, während die Expression bei einem gesunden Individuum reprimiert ist. Ein Beispiel einer solchen Erkrankung ist Krebs, insbesondere Seminome, Melanome, Teratome, Gliome, Colon, Rektal-, Nieren-, Brust-, Prostata-, Gebärmutter-, Ovarial-, Endometrial-, Speiseröhren-

Blut-, Leber-, Pankreas-, Haut-, Gehirn- und Lungenkrebs, Lymphome und Neuroblastome. Beispiele hierfür sind Lungen-, Brust-, Prostata-, Colontumor, Nierenzell-, Zervix-, Colonund Mammakarzinom oder Metastasen der vorstehenden Krebsarten oder Tumore.

Eine biologische Probe kann erfindungsgemäß eine Gewebe- und/oder zelluläre Probe sein und kann für eine Verwendung in den verschiedenen, hier beschriebenen Verfahren in herkömmlicher Weise gewonnen werden, wie durch Gewebebiopsie, einschließlich Stanzbiopsie, und Entnahme von Blut, Bronchialaspirat, Urin, Fäces oder anderen Körperflüssigkeiten.

10

15

20

25

30

Der Begriff "immunreaktive Zelle" bedeutet erfindungsgemäß eine Zelle, die in eine Immunzelle (wie B-Zelle, Helfer-T-Zelle oder cytolytische T-Zelle) bei geeigneter Stimulierung reifen kann. Immunreaktive Zellen umfassen CD34⁺ hämatopoietische Stammzellen, unreife und reife T-Zellen sowie unreife und reife B-Zellen. Falls die Herstellung cytolytischer oder Helfer-T-Zellen, die ein Turnor-assoziiertes Antigen erkennen, gewünscht ist, wird die immunreaktive Zelle mit einer Zelle, die ein Turnor-assoziiertes Antigen exprimiert, unter Bedingungen in Kontakt gebracht, die eine Produktion, Differenzierung und/oder Selektion von cytolytischen sowie Helfer-T-Zellen begünstigen. Die Differenzierung von T-Zell-Vorläufern in eine cytolytische T-Zelle bei einer Exposition gegenüber einem Antigen ist ähnlich zur klonalen Selektion des Immunsystems.

Manche therapeutische Verfahren beruhen auf einer Reaktion des Immunsystems eines Patienten, die zu einer Lyse Antigen-präsentierender Zellen führt, wie Krebszellen, die ein oder mehrere Tumor-assoziierte Antigene präsentieren. Dabei werden beispielsweise autologe cytotoxische T-Lymphozyten, die für einen Komplex aus einem Tumor-assoziierten Antigen und einem MHC-Molekül spezifisch sind, an einen Patienten mit einer Zellabnormalie verabreicht. Die Produktion solcher cytotoxischer T-Lymphozyten in vitro ist bekannt. Ein Beispiel für ein Verfahren zur Differenzierung von T-Zellen findet sich in der WO-A-96/33265. Im Allgemeinen wird eine Probe mit Zellen wie Blutzellen aus dem Patienten entnommen und die Zellen werden mit einer Zelle in Kontakt gebracht, die den Komplex präsentiert und eine Vermehrung von cytotoxischen T-Lymphozyten auslösen kann (z.B. dendritische Zellen). Die Zielzelle kann eine transfizierte Zelle wie eine COS-Zelle sein. Diese transfizierten Zellen präsentieren den gewünschten Komplex auf ihrer Oberfläche und stimulieren bei einer Kontaktierung mit cytotoxischen T-Lymphozyten deren Vermehrung.

Die klonal expandierten autologen cytotoxischen T-Lymphozyten werden sodann an den Patienten verabreicht.

5

10

15

30

Bei einem anderen Verfahren zur Selektion Antigen-spezifischer cytotoxischer T-Lymphozyten werden fluorogene Tetramere von MHC-Klasse I-Molekül/Peptid-Komplexen für einen Nachweis spezifischer Klone von cytotoxischen T-Lymphozyten verwendet (Altman et al., Science 274:94-96, 1996; Dunbar et al., Curr. Biol. 8:413-416, 1998). Lösliche MHC-Klasse I-Moleküle werden in vitro in Gegenwart von β2-Mikroglobulin und eines Peptid-Antigens, das an das Klasse I-Molekül bindet, gefaltet. Nach Aufreinigung der MHC/Peptid-Komplexe werden diese mit Biotin markiert. Tetramere werden durch Mischen der biotinylierten Peptid-MHC-Komplexe mit markiertem Avidin (z.B. Phycoerythrin) bei einem molaren Verhältnis von 4:1 gebildet. Tetramere werden sodann mit cytotoxischen T-Lymphozyten wie peripherem Blut oder Lymphknoten in Kontakt gebracht. Die Tetramere binden an cytotoxische T-Lymphozyten, die den Peptid-Antigen/MHC-Klasse I-Komplex erkennen. Zellen, die an die Tetramere gebunden werden, können durch Fluoreszenzgesteuerte Zellsortierung für eine Isolierung reaktiver cytotoxischer T-Lymphozyten sortiert werden. Die isolierten cytotoxischen T-Lymphozyten können sodann in vitro vermehrt werden.

Bei einem therapeutischen Verfahren, das als adoptiver Transfer bezeichnet wird (Greenberg, J. Immunol. 136(5):1917, 1986; Riddel et al., Science 257:238, 1992; Lynch et al., Eur. J. Immunol. 21:1403-1410, 1991; Kast et al., Cell 59:603-614, 1989), werden Zellen, die den gewünschten Komplex präsentieren (z.B. dendritische Zellen), mit cytotoxischen T-Lymphozyten des zu behandelnden Patienten kombiniert, was zu einer Vermehrung spezifischer cytotoxischer T-Lymphozyten führt. Die vermehrten cytotoxischen T-Lymphozyten werden sodann an einen Patienten mit einer zellulären Abnormalie verabreicht, die sich durch bestimmte abnormale Zellen auszeichnet, die den spezifischen Komplex präsentieren. Die cytotoxischen T-Lymphozyten lysieren sodann die abnormalen Zellen, wodurch eine gewünschte therapeutische Wirkung erreicht wird.

Oft lassen sich aus dem T-Zell-Repertoire eines Patienten lediglich niedrig-affine T-Zellen gegen einen solchen spezifischen Komplex vermehren, da die hochaffinen durch Toleranzentwicklung ausgelöscht worden sind. Eine Alternative kann hier ein Transfer des T-Zell-Rezeptors selbst sein. Hierfür werden ebenfalls Zellen, die den gewünschten Komplex

präsentieren (z.B. dendritische Zellen), mit cytotoxischen T-Lymphozyten von Gesunden kombiniert. Dies führt zu einer Vermehrung hochaffiner spezifischer cytotoxischer T-Lymphozyten, wenn der Spender mit dem spezifischen Komplex bisher keinen Kontakt hatte. Der hochaffine T-Zell-Rezeptor aus diesen vermehrten spezifischen T-Lymphozyten wird kloniert und kann durch Gentransfer z.B. mit retroviralen Vektoren beliebig in T-Zellen von anderen Patienten transduziert werden. Adoptiver Transfer erfolgt dann mit diesen genetisch veränderten T-Lymphozyten (Stanislawski et al., *Nat. Immunol.* 2:962-70, 2001; Kessels et al., *Nat. Immunol.* 2:957-61, 2001).

5

20

25

30

Die vorstehenden therapeutischen Aspekte gehen davon aus, dass zumindest manche der abnormalen Zellen des Patienten einen Komplex aus einem Tumor-assoziierten Antigen und einem HLA-Molekül präsentieren. Eine Identifizierung solcher Zellen kann in an sich bekannter Weise erfolgen. Sobald Zellen, die den Komplex präsentieren, identifiziert wurden, können sie mit einer Probe aus dem Patienten, die cytotoxische T-Lymphozyten enthält, kombiniert werden. Falls die Zellen, die den Komplex präsentieren, durch die cytotoxischen T-Lymphozyten lysiert werden, kann angenommen werden, dass ein Tumor-assoziiertes Antigen präsentiert wird.

Der adoptive Transfer ist nicht die einzige Therapieform, die erfindungsgemäß anwendbar ist. Cytotoxische T-Lymphozyten können auch in vivo in an sich bekannter Weise erzeugt werden. Bei einem Verfahren werden nicht-proliferative Zellen verwendet, die den Komplex exprimieren. Die Zellen, die dabei verwendet werden, werden diejenigen sein, die normalerweise den Komplex exprimieren, wie bestrahlte Tumorzellen oder Zellen, die mit einem oder beiden Genen transfiziert wurden, die für eine Präsentation des Komplexes notwendig sind (d.h. das Antigen-Peptid und das präsentierende HLA-Molekül). Verschiedene Zelltypen können eingesetzt werden. Des weiteren können Vektoren verwendet werden, die eines oder beide der interessierenden Gene tragen. Virale oder bakterielle Vektoren sind besonders bevorzugt. Zum Beispiel können Nukleinsäuren, die für ein Tumorassoziiertes Antigen oder einen Teil davon kodieren, funktionell mit Promotor- und Enhancersequenzen verknüpft werden, die eine Expression des Tumor-assoziierten Antigens oder eines Fragments davon in bestimmten Geweben oder Zelltypen steuern. Die Nukleinsäure kann in einen Expressionsvektor eingebaut werden. Expressionsvektoren können nicht-modifizierte extrachromosomale Nukleinsäuren, Plasmide oder virale Genome sein, in die eine Insertion exogener Nukleinsäuren möglich ist. Nukleinsäuren, die für ein Tumor-assoziiertes Antigen kodieren, können auch in ein retrovirales Genom inseriert werden, wodurch die Integration der Nukleinsäure in das Genom des Zielgewebes oder der Zielzelle ermöglicht wird. Bei diesen Systemen trägt ein Mikroorganismus wie Vacciniavirus, Poxvirus, Herpes simplex-Virus, Retrovirus oder Adenovirus das interessierende Gen und "infiziert" de facto Wirtszellen. Eine weitere bevorzugte Form ist die Einbringung des Tumor-assoziierten Antigens in Form von rekombinanter RNA. Diese kann z.B. durch liposomalen Transfer oder durch Elektroporation in Zellen eingebracht werden. Die resultierenden Zellen präsentieren den interessierenden Komplex und werden von autologen cytotoxischen T-Lymphozyten erkannt, die sich sodann vermehren.

10

15

20

25

30

Eine ähnliche Wirkung kann durch Kombination des Tumor-assoziierten Antigens oder eines Fragments davon mit einem Adjuvans erreicht werden, um einen Einbau in Antigenpräsentierende Zellen in vivo zu ermöglichen. Das Tumor-assoziierte Antigen oder ein Fragment davon können als Protein, als DNA (z.B. innerhalb eines Vektors) oder als RNA repräsentiert sein. Das Tumor-assoziierte Antigen wird prozessiert, um einen Peptidpartner für das HLA-Molekül zu ergeben, während ein Fragment davon präsentiert werden kann, ohne dass eine weitere Prozessierung erforderlich ist. Letzteres ist insbesondere der Fall, wenn diese an HLA-Moleküle binden können. Verabreichungsformen, bei denen das Gesamt-Antigen in vivo von einer dendritischen Zelle prozessiert wird, sind bevorzugt, da hier auch Helfer-T-Zell-Antworten entstehen können. Eine effektive Immunantwort benötigt diese (Ossendorp et al., Immunol. Lett. 74:75-9, 2000; Ossendorp et al., J. Exp. Med. 187:693-702, 1998). Im allgemeinen kann eine wirksame Menge des Tumor-assoziierten Antigens an einen Patienten z.B. durch eine intradermale Injektion verabreicht werden. Die Injektion kann aber auch intranodal in einen Lymphknoten erfolgen (Maloy et al., Proc. Natl. Acad. Sci. USA 98:3299-303, 2001). Sie kann auch in Kombination mit Reagenzien erfolgen, die eine Aufnahme in dendritische Zellen erleichtern. Bevorzugte Tumor-assoziierte Antigene umfassen diejenigen, die mit allogenen Krebs-Antiseren oder mit T-Zellen vieler Krebs-Patienten reagieren. Von besonderem Interesse sind aber auch solche, gegen die keine spontanen Immunantworten vorbestehen. Gegen diese können nachweislich Immunantworten induziert werden, die Tumoren lysieren können (Keogh et al., J. Immunol. 167:787-96, 2001; Appella et al., Biomed. Pept. Proteins Nucleic Acids 1:177-84, 1995; Wentworth et al., Mol. Immunol. 32:603-12, 1995).

Die erfindungsgemäß beschriebenen pharmazeutischen Zusammensetzungen können auch als Vakzinen für die Immunisierung eingesetzt werden. Die Begriffe "Immunisierung" oder "Vakzinierung" bedeuten erfindungsgemäß eine Erhöhung oder Aktivierung einer Immunreaktion gegenüber einem Antigen. Tiermodelle können für ein Testen einer immunisierenden Wirkung gegenüber Krebs durch Verwendung eines Tumor-assoziierten Antigens oder einer dafür kodierenden Nukleinsäure eingesetzt werden. Zum Beispiel können menschliche Krebszellen in eine Maus für die Schaffung eines Tumors eingebracht werden und eine oder mehrere Nukleinsäuren, die für Tumor-assoziierte Antigene kodieren, können verabreicht werden. Die Wirkung auf die Krebszellen (beispielsweise Verringerung der Tumorgröße) kann als Maß für die Wirksamkeit einer Immunisierung durch die Nukleinsäure gemessen werden.

5

10

15

20

25

30

Als Teil der Zusammensetzung für eine Immunisierung werden eines oder mehrere Tumorassoziierte Antigene oder stimulierende Fragmente davon mit einem oder mehreren Adjuvanzien für eine Induktion einer Immunreaktion oder eine Erhöhung einer Immunreaktion verabreicht. Ein Adjuvans ist eine Substanz, die in das Antigen eingebaut oder gemeinsam mit diesem verabreicht wird und die Immunrcaktion verstärkt. Adjuvanzien können die Immunreaktion durch Bereitstellen eines Antigen-Reservoirs (extrazellulär oder in Makrophagen), Aktivierung von Makrophagen und Stimulierung bestimmter Lymphozyten verstärken. Adjuvanzien sind bekannt und umfassen in nicht begrenzender Weise Monophosphoryl-Lipid-A (MPL, SmithKline Beecham), Saponine wie QS21 (SmithKline Beecham), DQS21 (SmithKline Beecham; WO 96/33739), QS7, QS17, QS18 und QS-L1 (So et al., Mol. Cells 7:178-186, 1997), unvollständiges Freundsches Adjuvans, vollständiges Feundsches Adjuvans, Vitamin E, Montanid, Alaun, CpG-Oligonukleotide (vgl. Krieg et al., Nature 374:546-9, 1995) und verschiedene Wasser-in-Öl-Emulsionen, die aus biologisch abbaubaren Ölen wie Squalen und/oder Tocopherol hergestellt werden. Vorzugsweise werden die Peptide in einer Mischung mit DQS21/MPL verabreicht. Das Verhältnis von DQS21 zu MPL beträgt typischerweise etwa 1:10 bis 10:1, vorzugsweise etwa 1:5 bis 5:1 und insbesondere etwa 1:1. Für eine Verabreichung an den Menschen sind DQS21 und MPL typischerweise in einer Vakzine-Formulierung in einem Bereich von etwa 1 µg bis etwa 100 ug vorhanden.

Andere Stoffe, die eine Immunreaktion des Patienten stimulieren, können auch verabreicht werden. Zum Beispiel sind Zytokine bei einer Vakzinierung aufgrund ihrer regulatorischen

Eigenschaften auf Lymphozyten verwendbar. Solche Zytokine umfassen z.B. Interleukin-12 (IL-12), von dem gezeigt wurde, dass es die schützenden Wirkungen von Vakzinen verstärkt (vgl. Science 268:1432-1434, 1995), GM-CSF und IL-18.

- Es gibt eine Reihe von Verbindungen, die eine Immunreaktion verstärken und die daher bei einer Vakzinierung eingesetzt werden können. Diese umfassen co-stimulierende Moleküle, die in Form von Proteinen oder Nukleinsäuren bereitgestellt werden. Solche co-stimulierenden Moleküle sind beispielsweise B7-1 und B7-2 (CD80 bzw. CD86), die auf dendritischen Zellen (DC) exprimiert werden und mit dem auf den T-Zellen exprimierten CD28-Molekül interagieren. Diese Interaktion stellt eine Co-Stimulierung (Signal 2) für eine Antigen/MHC/TCR-stimulierte (Signal 1) T-Zelle bereit, wodurch die Vermehrung der T-Zelle und die Effektorfunktion verstärkt wird. B7 interagiert auch mit CTLA4 (CD152) auf T-Zellen und Untersuchungen, die CTLA4- und B7-Liganden einbeziehen, zeigen, dass die B7-CTLA4-Interaktion eine Antitumor-Immunität und CTL-Vermehrung verstärken kann (Zheng, P. et al., Proc. Natl. Acad. Sci. USA 95(11):6284-6289 (1998)).
- B7 wird typischerweise nicht auf Tumorzellen exprimiert, so dass diese keine wirksamen Antigen-präsentierenden Zellen (APCs) für T-Zellen sind. Eine Induktion der B7-Expression würde ermöglichen, dass Tumorzellen wirksamer eine Vermehrung von cytotoxischen T-20 Lymphozyten und eine Effektorfunktion stimulieren. Eine Co-Stimulierung durch eine Kombination von B7/IL-6/IL-12 zeigte eine Induktion des IFN-gamma- und Th1-Zytokin-Profils in einer T-Zell-Population, was zu einer weiter verstärkten T-Zell-Aktivität führt (Gajewski et al., J. Immunol. 154:5637-5648 (1995)).
- Eine vollständige Aktivierung von cytotoxischen T-Lymphozyten und eine vollständige Effektorfunktion erfordert eine Mitwirkung von T-Helferzellen durch die Interaktion zwischen dem CD40-Liganden auf den T-Helferzellen und dem CD40-Molekül, das von dendritischen Zellen exprimiert wird (Ridge et al., Nature 393:474 (1998), Bennett et al., Nature 393:478 (1998), Schönberger et al., Nature 393:480 (1998)). Der Mechanismus dieses co-stimulierenden Signals betrifft wahrscheinlich die Steigerung der B7- und assoziierten IL-6/IL-12-Produktion durch die dendritischen Zellen (Antigen-präsentierenden Zellen). Die CD40-CD40L-Interaktion komplementiert so die Interaktionen des Signals 1 (Antigen/MHC-TCR) und des Signals 2 (B7-CD28).

Die Verwendung von anti-CD40-Antikörpern für eine Stimulierung von dendritischen Zellen würde erwartungsgemäß direkt eine Reaktion gegenüber Tumor-Antigenen verstärken, die normalerweise außerhalb des Bereichs einer entzündlichen Reaktion liegen oder von nicht-professionellen Antigen-präsentierenden Zellen (Tumorzellen) präsentiert werden. In diesen Situationen werden T-Helfer- und B7-co-stimulierende Signale nicht bereitgestellt. Dieser Mechanismus könnte im Zusammenhang mit Therapien verwendet werden, die auf Antigengepulsten dendritischen Zellen basieren, oder in Situationen, bei denen T-Helfer-Epitope nicht in bekannten TRA-Vorläufern definiert wurden.

5

25

30

Erfindungsgemäß vorgesehen ist auch eine Verabreichung von Nukleinsäuren, Polypeptiden 10 oder Peptiden. Eine Verabreichung von Polypeptiden und Peptiden kann in an sich bekannter Weise erfolgen. In einer Ausführungsform erfolgt die Verabreichung von Nukleinsäuren durch ex vivo-Verfahren, d.h. durch Entfernung von Zellen aus einem Patienten, genetische Veränderung der Zellen, um ein Tumor-assoziiertes Antigen einzubauen, Wiedereinbringung der veränderten Zellen in den Patienten. Dies umfasst im Allgemeinen das 15 Einbringen einer funktionellen Kopie eines Gens in die Zellen eines Patienten in vitro und die Rückführung der genetisch veränderten Zellen in den Patienten. Die funktionelle Kopie des Gens steht unter funktioneller Kontrolle von regulatorischen Elementen, die eine Expression des Gens in den genetisch veränderten Zellen erlauben. Transfektions- und Transduktionsverfahren sind dem Fachmann bekannt. Erfindungsgemäß vorgesehen ist auch 20 eine Verabreichung von Nukleinsäuren in vivo durch die Verwendung von Vektoren wie Viren und zielgesteuerten Liposomen.

In einer bevorzugten Ausführungsform ist ein viraler Vektor für die Verabreichung einer Nukleinsäure, die für ein Tumor-assoziiertes Antigen kodiert, aus der Gruppe ausgewählt bestehend aus Adenoviren, Adeno-assoziierten Viren, Poxviren, einschließlich Vacciniavirus und attenuierten Poxviren, Semliki-Forest-Virus, Retroviren, Sindbis-Virus und Ty-Virus-ähnlichen Partikeln. Besonders bevorzugt sind Adenoviren und Retroviren. Die Retroviren sind üblicherweise replikationsdefizient (d.h. sie sind unfähig, infektiöse Partikel zu erzeugen).

Verschiedene Verfahren können eingesetzt werden, um erfindungsgemäß Nukleinsäuren in Zellen in vitro oder in vivo einzubringen. Solche Verfahren umfassen die Transfektion von Nukleinsäure-Kalziumphosphat-Präzipitaten, die Transfektion von Nukleinsäuren, die mit

DEAE assoziiert sind, die Transfektion oder Infektion mit den vorstehenden Viren, die die interessierenden Nukleinsäuren tragen, die Liposomen-vermittelte Transfektion und ähnliches. In bestimmten Ausführungsformen ist eine Steuerung der Nukleinsäure an bestimmte Zellen bevorzugt. In solchen Ausführungsformen kann ein Träger, der für die Verabreichung einer Nukleinsäure an eine Zelle (z.B. ein Retrovirus oder ein Liposom) eingesetzt wird, ein gebundenes Zielsteuerungsmolekül aufweisen. Zum Beispiel kann ein Molekül wie ein Antikörper, der für ein Oberflächenmembran-Protein auf der Zielzelle spezifisch ist, oder ein Ligand für einen Rezeptor auf der Zielzelle in den Nukleinsäureträger eingebaut oder daran gebunden werden. Bevorzugte Antikörper umfassen Antikörper, die selektiv ein Tumor-assoziiertes Antigen binden. Falls eine Verabreichung einer Nukleinsäure durch Liposomen erwünscht ist, können Proteine, die an ein Oberflächenmembran-Protein binden, das mit der Endozytose assoziiert ist, in die Liposomenformulierung eingebaut werden, um eine Zielsteuerung und/oder Aufnahme zu ermöglichen. Solche Proteine umfassen Kapsid-Proteine oder Fragmente davon, die für einen bestimmten Zelltyp spezifisch sind, Antikörper gegen Proteine, die internalisiert werden, Proteine, die eine intrazelluläre Stelle ansteuern, und ähnliches.

5

10

15

20

Die erfindungsgemäßen therapeutischen Zusammensetzungen können in pharmazeutisch verträglichen Zubereitungen verabreicht werden. Solche Zubereitungen können gewöhnlich pharmazeutisch verträgliche Konzentrationen von Salzen, Pufferstoffen, Konservierungsstoffen, Trägern, ergänzenden immunitätssteigernden Stoffen wie Adjuvanzien (z.B. CpG-Oligonukleotide) und Zytokine und gegebenenfalls andere therapeutische Wirkstoffe enthalten.

Die erfindungsgemäßen therapeutischen Wirkstoffe können auf jedem herkömmlichen Weg verabreicht werden, einschließlich durch Injektion oder durch Infusion. Die Verabreichung kann beispielsweise oral, intravenös, intraperitoneal, intramuskulär, subkutan oder transdermal erfolgen. Eine therapeutische Verabreichung von Antikörpern erfolgt vorzugsweise durch ein Lungenaerosol. Die Verabreichung von Antisense-Nukleinsäuren erfolgt vorzugsweise durch langsame intravenöse Verabreichung.

Die erfindungsgemäßen Zusammensetzungen werden in wirksamen Mengen verabreicht. Eine "wirksame Menge" betrifft die Menge, die alleine oder zusammen mit weiteren Dosen eine gewünschte Reaktion oder eine gewinschte Wirkung erzielt. Im Fall einer Behandlung einer

bestimmten Erkrankung oder eines bestimmten Zustands, der sich durch die Expression eines oder mehrerer Tumor-assoziierter Antigene auszeichnet, betrifft die gewünschte Reaktion die Hemmung des Krankheitsverlaufs. Dies umfasst die Verlangsamung des Fortschreitens der Erkrankung und insbesondere eine Unterbrechung des Fortschreitens der Erkrankung. Die gewünschte Reaktion bei einer Behandlung einer Erkrankung oder eines Zustands kann auch die Verzögerung des Ausbruchs oder eine Verhinderung des Ausbruchs der Erkrankung oder des Zustands sein.

Eine wirksame Menge einer erfindungsgemäßen Zusammensetzung wird von dem zu behandelnden Zustand, der Schwere der Krankheit, den individuellen Parametern des Patienten, einschließlich Alter, physiologischer Zustand, Größe und Gewicht, der Dauer der Behandlung, der Art einer begleitenden Therapie (falls vorhanden), dem spezifischen Verabreichungsweg und ähnlichen Faktoren abhängen.

Die erfindungsgemäßen pharmazeutischen Zusammensetzungen sind vorzugsweise steril und enthalten eine wirksame Menge der therapeutisch wirksamen Substanz für die Erzeugung der gewünschten Reaktion oder der gewünschten Wirkung.

Die Dosen der erfindungsgemäßen Zusammensetzungen, die verabreicht werden, können von verschiedenen Parametern wie der Verabreichungsart, dem Zustand des Patienten, dem gewünschten Verabreichungszeitraum, usw. abhängen. Für den Fall, dass eine Reaktion bei einem Patienten bei einer anfänglichen Dosis unzureichend ist, können höhere Dosen (oder effektiv höhere Dosen, die durch einen anderen, stärker lokalisierten Verabreichungsweg erzielt werden) eingesetzt werden.

25

30

20

5

Im Allgemeinen werden für eine Behandlung oder für eine Erzeugung oder Erhöhung einer Immunreaktion Dosen des Tumor-assoziierten Antigens von 1 ng bis 1 mg, vorzugsweise von 10 ng bis 100 µg formuliert und verabreicht. Falls die Verabreichung von Nukleinsäuren (DNA sowie RNA), die für Tumor-assoziierte Antigene kodieren, erwünscht ist, werden Dosen von 1 ng bis 0,1 mg formuliert und verabreicht.

Die erfindungsgemäßen pharmazeutischen Zusammensetzungen werden im Allgemeinen in pharmazeutisch verträglichen Mengen und in pharmazeutisch verträglichen Zusammensetzungen verabreicht. Der Begriff "pharmazeutisch verträglich" betrifft ein nicht-

toxisches Material, das nicht mit der Wirkung des aktiven Bestandteils der pharmazeutischen Zusammensetzung wechselwirkt. Solche Zubereitungen können gewöhnlich Salze, Pufferstoffe, Konservierungsstoffe, Träger und gegebenenfalls andere therapeutische Wirkstoffe enthalten. Bei einer Verwendung in der Medizin sollten die Salze pharmazeutisch verträglich sein. Nicht-pharmazeutisch verträgliche Salze können jedoch für die Herstellung pharmazeutisch verträglicher Salze davon verwendet werden und sind erfindungsgemäß umfasst. Solche pharmakologisch und pharmazeutisch verträglichen Salze umfassen in nicht begrenzender Weise diejenigen, die aus den nachstehenden Säuren hergestellt werden: Chlorwasserstoff-, Bromwasserstoff-, Schwefel-, Salpeter-, Phosphor-, Malein-, Essig-, Salicyl-, Citronen-, Ameisen-, Malon-, Bernsteinsäure und ähnliches. Pharmazeutisch verträgliche Salze können auch als Alkalimetall- oder Erdalkalimetallsalze wie Natrium-, Kalium- oder Calciumsalze hergestellt werden.

5

10

15

20

30

Eine erfindungsgemäße pharmazeutische Zusammensetzung kann einen pharmazeutisch verträglichen Träger umfassen. Der Begriff "pharmazeutisch verträglicher Träger" betrifft erfindungsgemäß einen oder mehrere kompatible feste oder flüssige Füllstoffe, Verdünnungsmittel oder Kapselsubstanzen, die für eine Verabreichung an einen Menschen geeignet sind. Der Begriff "Träger" betrifft einen organischen oder anorganischen Bestandteil, natürlicher oder synthetischer Natur, in dem der aktive Bestandteil kombiniert wird, um eine Anwendung zu erleichtern. Die Bestandteile der erfindungsgemäßen pharmazeutischen Zusammensetzung sind gewöhnlich derart, dass keine Interaktion auftritt, die die gewünschte pharmazeutische Wirksamkeit wesentlich beeinträchtigt.

Die erfindungsgemäßen pharmazeutischen Zusammensetzungen können geeignete 25 Pufferstoffe wie Essigsäure in einem Salz, Citronensäure in einem Salz, Borsäure in einem Salz und Phosphorsäure in einem Salz enthalten.

Die pharmazeutischen Zusammensetzungen können auch gegebenenfalls geeignete Konservierungsstoffe wie Benzalkoniumchlorid, Chlorbutanol, Parabene und Thimerosal enthalten.

Die pharmazeutischen Zusammensetzungen werden gewöhnlich in einer einheitlichen Dosisform dargeboten und können in an sich bekannter Weise hergestellt werden. Erfindungsgemäße pharmazeutische Zusammensetzungen können beispielsweise in Form von

WO 2005/030250 PCT/EP2004/010697

Kapseln, Tabletten, Lutschpastillen, Lösungen, Suspensionen, Sirupen, Elixieren oder als Emulsion vorliegen.

Zusammensetzungen, die für eine parenterale Verabreichung geeignet sind, umfassen gewöhnlich eine sterile wässrige oder nicht-wässrige Zubereitung des Wirkstoffs, die vorzugsweise mit dem Blut des Empfängers isotonisch ist. Verträgliche Träger und Lösungsmittel sind beispielsweise Ringer-Lösung und isotonische Natriumchloridlösung. Zusätzlich werden gewöhnlich sterile, fixierte Öle als Lösungs- oder Suspensionsmedium eingesetzt.

10

15

5

Die vorliegende Erfindung wird durch die nachstehenden Abbildungen und Beispiele ausführlich beschrieben, die ausschließlich der Erläuterung dienen und nicht begrenzend zu verstehen sind. Dem Fachmann sind aufgrund der Beschreibung und der Beispiele weitere Ausführungsformen zugänglich, die ebenfalls erfindungsgemäß umfasst sind.

Abbildungen:

5

10

15

Abb.1: qPCR Analyse der SEQ ID NO: 1 in Melanomen

Quantitative Expressionsanalyse der SEQ ID NO: 1 in gesundem Hautgewebe, in der Testis und in Melanomen. Logarithmische Darstellung der relativen Expression (-fache Aktivierung).

Abb.2: konventionelle RT-PCR Analyse der SEQ ID NO: 1 in Melanomen

RT-PCR Expressions analyse von SEQ ID NO: 1 in Melanomen (n=14) und Melanomzelllinien (n=4) im Vergleich zur gesunden Haut (n=4) und zur Testis (n=3).

Abb.3: qPCR Analyse der SEQ ID NO: 5 in gesundem Gewebe und in Tumorenproben Quantitative Expressionsanalyse der SEQ ID NO: 5 in Normalgeweben (linke Seite) und in verschiedenen Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechte Seite). A Logarithmische Darstellung der relativen Expression (fache Aktivierung). B Bild nach gelelektrophoretischer Auftrennung der amplifizierten Fragmente.

Abb.4: Detailanalyse der SEQ ID NO: 5-spezifischen Expression

A Quantitative Expressionsanalyse der SEQ ID NO: 5 in verschiedenen HNO-, Nieren- und Uterustumoren im Vergleich zur Expression in den zugehörigen Normalgeweben. Logarithmische Darstellung. **B** Bild nach gelelektrophoretischer Auftrennung der amplifizierten Fragmente.

Abb.5: Northern blot Analyse mit einer SEQ ID NO: 5-spezifischen Sequenz

Hybridisierung einer DIG-markierten DNA-Sonde, die durch PCR-Amplifikation mit den Primern gemäß SEQ ID NO: 7 und 8 hergestellt wurde, mit Testis-spezifischer RNA. Spur 1:
 2 μg Testis-spezifische RNA; Spur 2: 1 μg Testis-spezifische RNA

Abb.6: qPCR Analyse von LOC203413

Quantitative Expressionsanalyse von LOC203413 in gesunden Geweben (links) und in Tumorproben (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). A Logarithmische Darstellung der Expression (fache Aktivierung). B Resultat nach gelelektrophoretischer Auftrennung.

WO 2005/030250 PCT/EP2004/010697

Abb. 7: Detailanalyse der LOC203413-spezifischen Expression in Magenkarzinomen

Quantitative Expressionsanalyse von LOC203413 in verschiedenen Magentumorproben (n=10) im Vergleich zur Expression im gesunden Magen (n=6). A Lineare Darstellung der relativen Expression. B Bild nach gelelektrophoretischer Auftrennung der Amplifikate

5

Abb.8: qPCR Analyse der LOC90625 -spezifischen Expression

Quantitative Expressionsanalyse von LOC90625 in Normalgeweben (links) und Tumorgeweben (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung).

10

15

20

25

Abb.9: Detailanalyse der LOC90652-spezifischen Expression in verschiedenen Tumortypen

Quantitative Expressionsanalyse von LOC90625 in Ösophagus- (n=8), Pankreas- (n=5) und Prostatakarzinomproben (n=10) im Vergleich zum jeweiligen gesunden Gewebe (n=3/4); Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.10: qRT-PCR Analyse von FAM26A in verschiedenen Tumortypen

Quantitative RT-PCR Expressionsanalyse von FAM26A in A Ovarial-, B Magen-, Ösophagus-, Pankreas- und Leberkarzinomen im Vergleich zum jeweiligen gesunden Gewebe. Lineare Darstellung der relativen Expression (fache Aktivierung).

Abb.11: Charakterisierung FAM26A-spezifischer Antikörper

Westernblot-Analyse der Antiseren, die durch Immunisierung mit einem Peptid der SEQ ID NO: 291 (A) bzw. der SEQ ID NO: 292 (B) generiert wurden. Analysiert wurden Extrakte von CHO-Zellen nach Transfektion mit jeweils Epitop-spezifischen (A 1, 3; B 2, 4) bzw. jeweils Epitop-unspezifischen (A2, 4; B 1, 3) Plasmiden. Der Pfeil bezeichnet die spezifischen Fragmente.

Abb.12: Analyse des FAM26A-Proteins in Tumoren

Nachweis von FAM26A in Zervix-, Ovarial- und Pankreastumoren mittels FAM26A-spezifischen Antikörpern (SEQ ID NO: 292).

Abb.13: Analyse des FAM26A-Proteins in Zelllinien

Analyse des FAM26A-Proteins in Zelllinien mit Hilfe von SEQ ID NO: 291-spezifischen Antikörpern. A Westernblot Analyse mit Präimmunserum als Spezifitätskontrolle (Spuren 1-5) und FAM26A-spezifischen Antikörpern. B Immunfluoreszenz Analyse von SW480 Zellen.

5

25

30

Abb.14: Immunhistochemischer Nachweis von FAM26A in der Testis

Immunhistochemische Analyse des FAM26A-Proteins in der gesunden Testis mit Hilfe des SEQ ID NO: 292-spezifischen Antiserums in unterschiedlichen Verdünnungen (A-C)

10 Abb.15: Immunhistochemische Analyse von FAM26A in Tumoren

Immunhistochemische Analyse des FAM26A-Proteins in Karzinomproben (40-fache Vergrößerung, Verdünnung 1:300) mit Hilfe des SEQ ID NO 292-spezifischen Antiserums. A papilläres ovariales Zystadenokarzinom. B Plattenepithelkarzinom der Zervix

15 Abb.16: qRT-PCR Analyse der SEMA5B-spezifischen Expression

Quantitative Expressionsanalyse von SEMA5B in Normalgeweben (links) und Tumorproben (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung).

20 Abb.17: Detailanalyse der SEMA5B-spezifischen Expression in Nierenzelkarzinomproben

Quantitative Expressionsanalyse von SEMA5B in A Nierenzellkarzinomproben (n=12) im Vergleich zu gesundem Nierengewebe (N=3) und in B Mammakarzinomen (N=12) im Vergleich zu gesundem Brustgewebe (N=3); Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.18: qRT-PCR Analyse der GJB5-spezifischen Expression

Quantitative Expressionsanalyse von GJB5 in gesunden Gewebeproben (links) und Karzinomen (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung).

Abb.19: Detailanalyse der GJB5-spezifischen Expression in verschiedenen Tumortypen

Quantitative Expressionsanalyse von GJB5 in A Kolonkarzinomproben (n=12) B

Ösophagustumoren (n=8), C Magenkarzinomen (n=10) und D Pankreastumoren (n=5) im

Vergleich zu jeweils gesunden Gewebeproben; Logarithmische (A, C) bzw. Lineare (B, D) Darstellung der relativen Expression (fache Aktivierung).

Abb.20: qRT-PCR Analyse der KLK5-spezifischen Expression

Quantitative Expressionsanalyse von KLK5 in gesunden Gewebeproben (links) und Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung).

Abb.21: Detailanalyse der KLK5-spezifischen Expression in verschiedenen Tumortypen

Quantitative Expressionsanalyse von KLK5 in Ösophagustumoren (n=8), in HNO-Karzinomen (n=5) und in Zervixtumoren (n=4) im Vergleich zu den jeweiligen gesunden Gewebeproben; Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.22: qRT-PCR Analyse der LOC352765-spezifischen Expression

Quantitative Expressionsanalyse von LOC352765 in gesunden Gewebeproben (links) und Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.23: Detailanalyse der LOC352765-spezifischen Expression in verschiedenen

20 Tumortypen

Quantitative Expressionsanalyse von LOC352765 in Kolonkarzinomen (n=8), in Mammakarzinomen (n=5) und in HNO-Tumoren (n=4) im Vergleich zu jeweiligen gesunden Gewebeproben; Logarithmische Darstellung der relativen Expression (fache Aktivierung).

25 Abb.24: qRT-PCR Analyse der SVCT1-spezifischen Expression

Quantitative Expressionsanalyse von SVCT1 in gesunden Gewebeproben (links) und Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

30 Abb.25: Detailanalyse der SVCT1-spezifischen Expression in verschiedenen Tumortypen

Quantitative Expressionsanalyse von SVCT1 in A Nierenkarzinomen (n=8), B Ösophagialtumoren (n=5) und HNO-Tumoren (n=4) im Vergleich zu jeweils gesunden Gewebeproben; Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.26: qRT-PCR Analyse der LOC199953-spezifischen Expression in Nierenzellkarzinomen und in HNO-Tumoren

Quantitative Expressionsanalyse von LOC199953 in Nierenzellkarzinomen (n=12) und HNO-Tumoren (n=5) im Vergleich zu gesunden Nieren- und Haut-spezifischen Gewebeproben; Lineare Darstellung der relativen Expression (fache Aktivierung).

Abb.27: qRT-PCR Analyse der TMEM31-spezifischen Expression

Quantitative Expressionsanalyse von TMEM31 in gesunden Gewebeproben (links) und Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.28: Detailanalyse der TMEM31-spezifischen Expression in verschiedenen Tumortypen

Quantitative Expressionsanalyse von TMEM31 in A Magenkarzinomen (n=10) und B Mammakarzinomen (n=12) im Vergleich zu jeweils gesunden Gewebeproben; Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.29: qRT-PCR Analyse der FLJ25132-spezifischen Expression in Ovarialtumoren und in Prostatakarzinomen

Quantitative Expressionsanalyse von FLJ25132 in Ovarialtumoren (n=8) und in Prostatakarzinomen (n=10) im Vergleich zu jeweils gesunden Gewebeproben; Lincare Darstellung der relativen Expression (fache Aktivierung).

25 Abb.30: qRT-PCR Analyse der SEQ ID NO: 57-spezifischen Expression

20

Quantitative Expressionsanalyse der SEQ ID NO: 57 in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung).

30 Abb.31: Detailanalyse der SEQ ID NO: 57-spezifischen Expression in verschiedenen Tumortypen

Quantitative Expressionsanalyse der SEQ ID NO: 57 in A Ösophagustumoren (n=8), B Leberkarzinomen (n=8), C Nierenkarzinomen und D Zervix- und HNO-Tumoren im

Vergleich zu jeweils gesunden Gewebeproben; Lineare (A, C, D) bzw. Logarithmische (B) Darstellung der relativen Expression (fache Aktivierung).

Abb.32: qRT-PCR Analyse der LOC119395-spezifischen Expression

10

1.5

20

25

Quantitative Expressionsanalyse von LOC119395 in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung).

Abb.33: Detailanalyse der LOC119395-spezifischen Expression in verschiedenen Tumortypen

Quantitative Expressionsanalyse von LOC119395 in A Brustumoren (n=12), B Ösophaguskarzinomen (n=8) und C Kolon- und Magenkarzinomen im Vergleich zu jeweils gesunden Gewebeproben; Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.34: qRT-PCR Analyse der LOC121838-spezifischen Expression

A Quantitative Analyse der LOC121838-spezifischen Expression in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung). B Detailanalyse von LOC121838-spezifischer RNA in Ovarialgeweben, logarithmische Darstellung.

Abb.35: qRT-PCR Analyse der LOC221103-spezifischen Expression

Quantitative Expressionsanalyse von LOC221103-RNA in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung).

Abb.36: Detaillierte qRT-PCR Analyse der LOC221103-spezifischen Expression in Leberproben

Quantitative Expressionsanalyse von LOC221103-RNA in Lebertumoren (n=8) und in einer gesunden Leberprobe. Lineare Darstellung der relativen Expression (fache Aktivierung).

Abb.37: qRT-PCR Analyse der LOC338579-spezifischen Expression

Quantitative Expressionsanalyse von LOC338579-spezifischer RNA in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

5

Abb.38: qRT-PCR Analyse der LOC90342-spezifischen Expression

Quantitative Expressionsanalyse von LOC90342-spezifischer RNA in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

10

Abb.39: qRT-PCR Analyse der LRFN1-spezifischen Expression

Quantitative Expressionsanalyse von LRFN1-spezifischer RNA in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

15

20

25

Abb.40: qRT-PCR Analyse der LOC285916-spezifischen Expression

A Quantitative Analyse der LOC285916-spezifischen Expression in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung). B Detailanalyse von LOC285916-spezifischer RNA in Nierengeweben und in HNO-Tumoren, logarithmische Darstellung.

Abb.41: qRT-PCR Analyse der MGC71744-spezifischen Expression

A Quantitative Analyse der MGC71744-spezifischen Expression in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung). B Detailanalyse von MGC71744-spezifischer RNA in verschiedenen Nierengeweben, logarithmische Darstellung.

Abb.42: qRT-PCR Analyse der LOC342982-spezifischen Expression

Quantitative Expressionsanalyse von LOC342982-spezifischer RNA in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.43: qRT-PCR Analyse der LOC343169-spezifischen Expression

A Quantitative Analyse der LOC343169-spezifischen Expression in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung). B Detailanalyse von LOC343169-spezifischer RNA in verschiedenen Ovarialgeweben, logarithmische Darstellung.

Abh.44: qRT-PCR Analyse der LOC340204-spezifischen Expression

5

10

1,5

20

25

A Quantitative Analyse der LOC340204-spezifischen Expression in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung). B Gelbild ausgewählter Gewebeproben nach geleiektrophoretischer Auftrennung.

Abb.45: qRT-PCR Analyse der LOC340067-spezifischen Expression

Quantitative Expressionsanalyse von LOC340067-spezifischer RNA in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.46: qRT-PCR Analyse der LOC342780-spezifischen Expression

Quantitative Expressionsanalyse von LOC342780-spezifischer RNA in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Logarithmische Darstellung der relativen Expression (fache Aktivierung).

Abb.47: qRT-PCR Analyse der LOC339511-spezifischen Expression

A Quantitative Analyse der LOC339511-spezifischen Expression in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung). B Detailanalyse von LOC339511-spezifischer RNA in verschiedenen Leber-spezifischen Geweben, lineare Darstellung.

Abb.48: qRT-PCR Analyse der C14orf37-spezifischen Expression

Quantitative Expressionsanalyse von C14orf37 in gesunden Gewebeproben (links) und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben, rechts). Lineare Darstellung der relativen Expression (fache Aktivierung).

WO 2005/030250 PCT/EP2004/010697 54

Abb.49: qRT-PCR Analyse der ATP1A4-spezifischen Expression

5

A Quantitative Expressionsanalyse von ATP1A4 in gesunden Gewebeproben und in Tumoren (Pools bestehend aus jeweils 3-5 Einzelproben). Logarithmische Darstellung der relativen Expression (fache Aktivierung). B Detailanalyse von ATP1A4-spezifischer RNA in verschiedenen Brust-spezifischen Geweben, logarithmische Darstellung.

Beispiele:

Material und Methoden

Die Begriffe "in silico", und "elektronisch" beziehen sich rein auf die Nutzung von auf Datenbanken beruhenden Verfahren, mit denen auch Labor-experimentelle Vorgänge simuliert werden können.

Alle anderen Begriffe und Termini sind, falls nicht explizit anders definiert, so verwendet, wie sie der Fachmann versteht. Die genannten Techniken und Verfahren erfolgen in an sich bekannter Weise und sind z.B. in Sambrook et al., Molecular Cloning: A Laboratory Manual, 2. Auflage (1989), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y. beschrieben. Alle Verfahren, die die Verwendung von Kits und Reagenzien einschließen, sind entsprechend den Angaben der Hersteller durchgeführt.

15

20

Beispiel 1:

Datamining-basierte Strategie zur Identifizierung von Tumor-assoziierten Antigenen

Erfindungsgemäß wurden öffentliche humane Protein- und Nukleinsäuredatenbanken im Hinblick auf krebsspezifische Antigene untersucht, die auf der Zelloberfläche zugänglich sind. Die Definition der dafür notwendigen Filterkriterien zusammen mit einer Hochdurchsatz-Methodik zur Analyse möglichst aller Proteine bildeten den zentralen Bestandteil dieser Strategie.

Den Ausgangspunkt bildeten die hauptsächlich aus dem humanen Genomprojekt vorhergesagten potenziellen Gene, die in der "RefSeq" Datenbank (Pruitt et al., Trends Genet. Jan;16(1):44-47, 2000) des "National Center for Biotechnology Information" (NCBI) als rein modellhafte Protein- (XP-) bzw. mRNA-Einträge (XM-) abgelegt sind. In einem weiteren Ansatz wurden auch die validierten Proteineinträge (NP-) bzw. die korrespondierenden mRNAs (NM-) derselben Datenbank in gleicher Weise analysiert. Dem Grundprinzip (hypothetisches) Gen zu mRNA zu Protein folgend wurden die Proteine unter Kombination mehrerer Prädiktionsprogramme für Proteinanalyse zunächst auf das Vorhanden sein von Transmembrandomänen hin untersucht. Aus der humanen XP-Fraktion der "RefSeq" Datenbank wurden insgesamt 19.544 Einträge analysiert, wobei 2.025 hypothetische Proteine

den Filterkriterien genügten. Die humane NP-Fraktion lieferte insgesamt 19.110 Einträge mit einem Anteil von 4.634 gefilterten Proteinen.

Die korrespondierende mRNA jedes dieser 2.025 bzw. 4.634 Proteine wurde anschließend einer Homologiesuche in der EST-Datenbank (Boguski et al., Nat. Genet. 4(4):332-333, 1993) des NCBI mit Hilfe des "BLAST" Algorithmus (Altschul et al., Nucleic Acids Res.25:3389-3402, 1997) unterzogen. Die Filterkriterien wurden bei dieser Suche stringent eingestellt. Insgesamt 1.270 hypothetische mRNAs erzielten dabei mindestens einen Treffer in der EST-Datenbank, wobei die Anzahl der Treffer in Einzelfällen mehr als 1.000 betrug.

10

15

20

25

Für jeden Einzelnen dieser validen Treffer wurde anschließend die gewebsspezifische Herkunft der zugrunde liegenden cDNA Bibliothek sowie der Name der Bibliothek ermittelt. Die daraus resultierenden Gewebe wurden in vier verschiedene Gruppen eingeteilt, die von dispensiblen Organen (Gruppe 3) bis hin zu absolut lebensnotwendigen Organen reichten (Gruppe 0). Eine weitere Gruppe 4 bildeten alle Proben, die aus Krebsgewebe gewonnen wurden. Die Verteilung der Treffer auf die fünf Gruppen wurde in einer Tabelle festgehalten, die nach dem besten Verhältnis der Summe der Gruppen 3 und 4 gegenüber der Summe der Gruppen 0-2 sortiert wurde. Dabei erreichten diejenigen mRNAs einen Spitzenplatz, deren EST Treffer ausschließlich Krebsgewebe entstammten, gefolgt von denjenigen, die darüber hinaus noch in Geweben dispensibler Organe der Gruppe 3 zu finden sind.

Da es sich bei den im ersten Ansatz ermittelten Transkripten und den korrespondierenden Proteinen zunächst um hypothetische Konstrukte handelt, wurden noch weitere Filterkriterien hinzugezogen, die die reale Existenz der mRNAs und damit auch der Proteine belegen sollten. Dazu wurde jede mRNA mit dem vorhergesagten Genlokus verglichen. Nur diejenigen Transkripte, die mindestens einen Spleißvorgang aufweisen, d.h. die sich auf mindestens 2 Exons verteilen, wurden für weitergehende Analysen verwendet.

3 C

Die sequenzielle Anwendung aller genannten Filter führte zu den erfindungsgemäßen Tumorassoziierten Antigenen, die aufgrund einer vorhergesagten Transmembrandomäne und der damit verbundenen Topologie als von extrazellulär zugänglich anzusehen sind. Das aus den EST-Daten abgeleitete Expressionsprofil weist in allen Fällen auf eine krebsspezifische Expression hin, die sich höchstens noch auf dispensible Organe erstrecken kann.

Beispiel 2:

Validierungsstrategie der durch in silico Analyse identifizierten Tumor-assoziierten Antigene

7 Zur Nutzung der Targets für immuntherapeutische Zwecke (Antikörpertherapie mittels monoklonaler Antikörper, Vakzinierung, T-Zell Rezeptor-vermittelte therapeutische Ansätze; vgl. EP-B-0 879 282) oder andere zielgerichtete Ansätze (small compounds, siRNA etc.) bei der Krebstherapie sowie für diagnostische Fragestellungen ist die Validierung der erfindungsgemäß identifizierten Targets von zentraler Bedeutung. Die Validierung erfolgt dabei durch Expressionsanalyse sowohl auf RNA als auch auf Proteinebene.

1. Untersuchung der RNA Expression

Die erste Validierung der identifizierten Tumorantigene erfolgt mit Hilfe von RNA, die aus verschiedenen Geweben bzw. aus gewebespezifischen Zelllinien gewonnen wird. Weil das differentielle Expressionsmuster aus gesundem Gewebe im Vergleich zu Tumorgewebe eine entscheidende Bedeutung für die spätere therapeutische Anwendung hat, erfolgt die Charakterisierung der Zielgene bevorzugt mit Hilfe dieser Gewebeproben.

- Die Isolierung von Gesamt-RNA aus nativen Gewebeproben oder aus Tumorzelllinien erfolgt mit Verfahren, die in der Molekularbiologie Standard sind. Zum Beispicl kann die Isolierung mit Hilfe des RNeasy Maxi Kits (Qiagen, Kat. Nr. 75162) nach Vorschrift durch den Hersteller erfolgen. Dieses Isolierungsverfahren beruht auf der Verwendung von Guanidiniumisothiocyanat als chaotropes Reagenz. Alternativ kann die Isolierung mit saurem Phenol durchgeführt werden (Chomczynski & Sacchi, Anal. Biochem. 162: 156-159, 1987). Nach Aufarbeitung des Gewebes mittels Guanidiniumisothiocyanat wird die RNA mit saurem Phenol extrahiert, anschließend die RNA mit Isopropanol gefällt und in DEPC-behandeltes Wasser aufgenommen.
- 2-4 µg der so isolierten RNA werden anschließend z.B. mittels Superscript II (Invitrogen) entsprechend dem Protokoll des Herstellers in cDNA umgeschrieben. Das Priming der cDNA Synthese erfolgt dabei mit Hilfe von zufälligen Hexameren (z.B. Roche Diagnostics) nach Standardprotokollen des jewciligen Herstellers. Zur Qualitätskontrolle werden die cDNAs mit

Primern in 30 Zyklen amplifiziert, die spezifisch für das nur gering exprimierte p53 Gen sind. Nur p53 positive cDNA Proben werden für die weiteren Reaktionsschritte verwendet.

Zur detaillierten Analyse der Targets wird auf Basis eines cDNA-Archivs, das aus verschiedenen Normal- und Tumorgeweben sowie aus Tumorzelllinien isoliert wurde, eine Expressionsanalyse mittels PCR bzw. quantitativer PCR (qPCR) durchgeführt. Dazu werden 0,5 µl cDNA aus dem obigen Ansatz mit einer DNA-Polymerase (z.B. 1 U HotStarTaq DNA-Polymerase, Qiagen) analog den Protokollen des jeweiligen Herstellers amplifiziert (Gesamtvolumen des Ansatzes: 25-50 µl). Neben der Polymerase enthält der Amplifikationsansatz 0,3 mM dNTPs, Reaktionsbuffer (Endkonzentration 1 x, abhängig vom Hersteller der DNA-Polymerase) und je 0,3 mM des gen-spezifischen forward und reverse Primers.

5

10

15

20

25

30

Die spezifischen Primer des Zielgens werden, soweit möglich, so ausgewählt, das sie in zwei unterschiedlichen Exons liegen und somit genomische Kontaminationen nicht zu falsch positiven Ergebnissen führen. Bei einer nicht quantitativen Endpunkt-PCR wird die cDNA typischerweise 15 Minuten bei 95°C inkubiert, um die DNA zu denaturieren und um das Hot-Start-Enzyms zu aktivieren. Anschließend wird die DNA in 35 Zyklen amplifiziert (1 min 95°C, 1 min Primer spezifische Hybridisierungstemperatur (ca. 55-65°C), 1 min 72°C zur Elongation der Amplifikate). 10 μl des PCR Ansatzes werden anschließend auf Agarosegelen aufgetragen und im elektrischen Feld aufgetrennt. Durch Färben mit Ethidiumbromid wird die DNA in den Gelen sichtbar gemacht und das Ergebnis der PCR durch ein Foto dokumentiert.

Alternativ zur konventionellen PCR kann die Expressionsanalyse eines Zielgens auch durch quantitative real time PCR erfolgen. Zu dieser Analyse sind inzwischen verschiedene Analysesysteme erhältlich, die bekanntesten sind das ABI PRISM Sequence detection system (TaqMan, Applied Biosystems), der iCycler (Biorad) sowie der Light cycler (Roche Diagnostics). Wie oben beschrieben wird ein spezifischer PCR Ansatz einem Lauf in den real time Geräten unterzogen. Durch Zusatz eines DNA interkalierenden Farbstoffes (z.B Ethidiumbromid, CybrGreen) wird die neu synthetisierte DNA durch spezifische Lichtanregung (nach Angaben der Farbstoffhersteller) sichtbar gemacht. Durch eine Vielzahl von Messpunkten während der Amplifikation kann der gesamte Prozess verfolgt und eine quantitative Bestimmung der Nukleinsäurekonzentration des Zielgens durchgeführt werden. Die Normalisierung des PCR Ansatzes erfolgt durch Messung eines "housekeeping Gens"

(z.B. 18S RNA, \(\beta\)-Actin). Alternative Strategien über Fluoreszenz- markierte DNA-Sonden erlauben ebenfalls die quantitative Bestimmung des Zielgens aus einer spezifischen Gewebeprobe (siehe TaqMan Applikationen der Fa. Applied Biosystems).

5 2. Klonierung

Die Klonierung des gesamten Zielgens, die für die weitere Charakterisierung des Tumorantigens notwendig ist, erfolgt nach gängigen molekularbiologischen Verfahren (z.B. in "Current Protocols in Molecular Biology", John Wiley & Sons Ltd., Wiley InterScience). Zur Klonierung bzw. Scquenzanalyse des Zielgens wird dieses zunächst mit einer DNA-Polymerase mit "proof reading Funktion" (z.B. pfu, Roche Diagnostics) amplifiziert. Das Amplifikat wird anschließend mit Standardverfahren in einen Klonierungsvektor ligiert. Positive Klone werden durch Sequenzanalyse identifiziert und anschließend mit Hilfe von Prädiktionsprogrammen und bekannten Algorithmen charakterisiert.

15

20

25

30

10

3. Prädiktion des Proteins

Viele erfindungsgemäß gefundene Gene (insbesondere aus der XM Domäne der RefSeq) sind Gen-Neuentdeckungen, für die das Volllänge Gen kloniert, das offene Leseraster ermittelt und die Proteinsequenz abgeleitet und analysiert werden muss.

Für die Volllängeklonierung der Sequenz haben wir gängige Protokolle zur "Rapid amplification of cDNA ends", sowie Screening von cDNA Expressionsbanken mit genspezifischen Sonden verwendet (Sambrook et al., Molecular Cloning: A Laboratory Manual, 2. Auflage (1989), Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.).

Nach Zusammensetzung der so gefundenen Fragmente wurden potentielle Offene Leseraster (ORF) durch gängige Prädiktionsprogramme prädiziert. Da durch die Position des PolyA-Schwanzes und Polyadenylierungs-Motiven die Orientierung des potentiellen Genproduktes vorgegeben wird, verbleiben von möglichen 6 Leserastern nur noch die 3 der jeweiligen Orientierung. Oft ergibt sich aus diesen nur ein hinreichend großes offenes Leseraster, das für ein Protein kodieren kann, während die anderen Leseraster zu viele Stop-Codons aufweisen und für kein realistisches Proteine kodieren würden. Bei alternativen offenen Leserastern unterstützt die Berücksichtigung der Kozak-Kriterien für optimale Transkriptions-Initierung sowie die Analyse der sich potentiell ergebenden abgeleiteten Proteinsequenzen die Identifizierung des authentischen ORF. Dies wird weiter verifiziert durch Generierung von

Immunseren gegen abgeleitete Proteine der potentiellen ORFs und ihre Analyse auf Erkennung eines realen Proteins in Geweben und Zeltlinien.

4. Gewinnung von Antikörpern

5

10

1.5

20

25

30

Die Charakterisierung der erfindungsgemäß identifizierten Tumor-assoziierten Antigene erfolgt beispielsweise durch die Verwendung von Antikörpern. Ferner umfasst die Erfindung die diagnostische oder therapeutische Verwendung von Antikörpern. Dabei können Antikörper Proteine in nativem und/oder denaturierten Zustand erkennen (Anderson et al., J. Immunol. 143: 1899-1904, 1989; Gardsvoll, J. Immunol. Methods 234: 107-116, 2000; Kayyem et al., Eur. J. Biochem. 208: 1-8, 1992; Spiller et al., J. Immunol. Methods 224: 51-60, 1999).

Antiseren, die spezifische Antikörper enthalten, die an das Zielprotein spezifisch binden, können über verschiedene Standardverfahren hergestellt werden; vgl. beispielsweise "Monoclonal Antibodies: A Practical Approach" von Philip Shepherd, Christopher Dean ISBN 0-19-963722-9, "Antibodies: A Laboratory Manual" von Ed Harlow, David Lane ISBN: 0879693142 und "Using Antibodies: A Laboratory Manual: Portable Protocol NO" von Edward Harlow, David Lane, Ed Harlow ISBN: 0879695447. Dabei ist auch möglich, affine und spezifische Antikörper zu generieren, die komplexe Membranproteine in ihrer nativen Form erkennen (Azorsa et al., J. Immunol. Methods 229: 35-48, 1999; Anderson et al., J. Immunol. 143: 1899-1904, 1989; Gardsvoll, J. Immunol. Methods. 234: 107-116, 2000). Dies ist vor allem für die Herstellung von Antikörpern von Bedeutung, die therapeutisch eingesetzt werden sollen, aber auch für viele diagnostische Anwendungen. Dazu kann sowohl mit dem gesamten Protein als auch mit extrazellulären Teilsequenzen immunisiert werden.

Immunisierung und Gewinnung von polyklonalen Antikörpern

Eine Spezies (z.B. Kaninchen, Mäuse) wird durch eine erste Injektion des gewitnschten Zielproteins immunisiert. Durch eine zweite oder dritte Immunisierung innerhalb eines definierten Zeitraums (ca. 2-4 Wochen nach der letzten Immunisierung) lässt sich die Immunantwort des Tieres gegen das Immunogen verstärken. Wiederum nach verschiedenen definierten Zeitabständen (1. Blutung nach 4 Wochen, anschließend alle 2-3 Wochen bis zu 5 Entnahmen) wird den Tieren Blut entnommen und Immunserum gewonnen. Die so entnommenen Immunseren enthalten polyklonalen Antikörper, mit denen das Zielprotein im

Western blot, durch die Durchflusszytometrie, Immunfluoreszenz oder Immunhistochemie nachgewiesen und charakterisiert werden kann.

Die Immunisierung der Tiere erfolgt in der Regel über eines von vier gut etablierten Verfahren, wobei auch andere Verfahren existieren. Immunisiert werden kann dabei mit für das Zielprotein spezifischen Peptiden, dem gesamten Protein, mit extrazellulären Teilsequenzen eines Proteins, das experimentell oder über Prädiktionsprogramme identifiziert werden kann. Da die Prädiktionsprogramme nicht immer fehlerfrei arbeiten wird u.U. auch mit zwei Domänen gearbeitet, die voneinander durch eine Transmembrandomäne getrennt sind. Eine der beiden Domänen muss dann extrazellulär sein, was dann experimentell belegt werden kann (siehe nachstehend).

5

10

15

- (1) Im ersten Fall werden Peptide (Länge: 8-12 Aminosäuren) über in vitro Verfahren synthetisiert (durch einen kommerziellen Service möglich) und diese Peptide zur Immunisierung verwendet. In der Regel erfolgen 3 Immunisierungen (z.B. mit einer Konzentration von 5-100 μg/Immunisierung). Die Durchführung der Immunisierung kann auch als Service von Dienstleistern erfolgen.
- (2) Alternativ kann die Immunisierung durch rekombinante Proteine erfolgen. Dazu wird die klonierte DNA des Zielgens in einen Expressionsvektor kloniert und das 20 Zielprotein analog den Bedingungen des jeweiligen Herstellers (z.B. Roche Diagnostics, Invitrogen, Clontech, Qiagen) z.B. zellfrei in vitro, in Bakterien (z.B. E. coli), in Hefe (z.B. S. pombe), in Insektenzellen oder in Säugetierzellen synthetisiert. Dabei ist auch die Synthese des Zielproteins mit Hilfe von viralen Expressionssystemen möglich (z.B. Baculovirus, Vacciniavirus, Adenovirus). Nach 25 Synthese in einem der Systeme wird das Zielprotein aufgereinigt. Die Aufreinigung erfolgt dabei in der Regel über chromatographische Verfahren. Dabei können auch Proteine für die Immunisierung verwendet werden, die über einen molekularen Anker als Hilfsmittel zur Reinigung verfügen (z.B. His-Tag, Qiagen; FLAG-Tag, Roche Diagnostics; GST-Fusionsproteine). Eine Vielzahl von Protokollen befinden sich z.B. 30 in den "Current Protocols in Molecular Biology", John Wiley & Sons Ltd., Wiley InterScience. Nach Reinigung des Zielproteins erfolgt eine Immunisierung wie vorstehend beschrieben.

(3) Falls eine Zelllinie zur Verfügung steht, die das gewünschte Protein endogen synthetisiert, kann auch diese Zelllinie direkt zur Herstellung des spezifischen Antiserums verwendet werden. Die Immunisierung erfolgt dabei in 1-3 Iujektionen mit ieweils ca. 1-5 x 10⁷ Zellen.

5

(4) Die Immunisierung kann auch durch Injektion von DNA (DNA-Immunisierung) erfolgen. Dazu wird das Zielgen zunächst in einen Expressionsvektor kloniert, so dass die Zielsequenz unter der Kontrolle eines starken eukaryontischen Promotors steht (z.B. CMV-Promotor). Anschließend wird DNA (z.B. 1-10 μg pro Injektion) als Immunogen mit einer "gene gun" in stark durchblutete, kapillare Bereiche eines Organismus transferiert (z.B. Maus, Kaninchen). Die transferierte DNA wird von Zellen des Tieres aufgenommen, das Zielgen wird exprimiert und das Tier entwickelt schließlich eine Immunantwort gegen das Zielprotein (Jung et al., *Mol. Cells* 12: 41-49, 2001; Kasinrerk et al., *Hybrid Hybridomics* 21: 287-293, 2002).

15

20

25

10

Gewinnung monoklonaler Antikörper

Monoklonale Antikörper werden traditionell mit Hilfe der Hybridoma Technologie hergestellt (Technische Details: siehe "Monoclonal Antibodies: A Practical Approach" von Philip Shepherd, Christopher Dean ISBN 0-19-963722-9; "Antibodies: A Laboratory Manual" von Ed Harlow, David Lane ISBN: 0879693142, "Using Antibodies: A Laboratory Manual: Portable Protocol NO" von Edward Harlow, David Lane, Ed Harlow ISBN: 0879695447). Als ein neues Verfahren wird auch die so genannte "SLAM" Technologie eingesetzt. Hierbei werden B-Zellen aus Vollblut isoliert und die Zellen monoklonalisiert. Anschließend wird der Überstand der vereinzelten B-Zelle auf ihre Antikörperspezifität hin analysiert. Im Gegensatz zur Hybridomatechnologie wird anschließend die variable Region des Antikörpergens durch eine Einzelzell-PCR amplifiziert und in einen geeigneten Vektor kloniert. Auf diese Art und Weise wird die Gewinnung von monoklonalen Antikörpern beschleunigt (de Wildt et al. J. Immunol. Methods 207:61-67, 1997).

30 5. Validierung der Targets mit proteinchemischen Verfahren unter Verwendung von Antikörpern

Mit den Antikörpern, die wie vorstehend beschrieben herstellbar sind, lassen sich eine Reihe von wichtigen Aussagen zu dem Targetprotein troffen. Im Einzelnen sind die nachstehenden Analysen zur Validierung des Zielproteins sinnvoll:

5 Spezifität des Antikörpers

10

15

20

25

30

Um zu zeigen, dass ein Antikörper spezifisch nur an das gewünschte Zielprotein bindet, eignen sich am besten auf Zellkultur-basierende Tests mit anschließendem Western blot (verschiedene Variationen sind z.B. in "Current Protocols in Proteinchemistry", John Wiley & Sons Ltd., Wiley InterScience, beschrieben). Für den Nachweis werden Zellen mit einer cDNA für das Zielprotein transfiziert, die unter Kontrolle eines starken eukaryontischen Promotors steht (z.B. Cytomegalievirus-Promotor; CMV). Zur Transfektion von Zelllinien mit DNA sind die verschiedensten Verfahren (z.B. Elektroporation, auf Liposomen basierende Transfektion, Kalziumphosphatpräzipitation) gut etabliert (z.B. Lemoine et al., Methods Mol. Biol. 75: 441-7, 1997). Alternativ können auch Zelllinien verwendet werden, die das Zielgen endogen exprimieren (Nachweis über Zielgen-spezifische RT-PCR). Zur Kontrolle werden im Experiment im Idealfall homologe Gene mit transfiziert, um im folgenden Western blot die Spezifität des analysierten Antikörpers nachweisen zu können.

Im anschließenden Western blot werden Zellen aus Zellkultur oder Gewebeproben, die das Zielprotein enthalten könnten, in einer 1%igen SDS Lösung lysicrt und die Proteine dabei denaturiert. Die Lysate werden auf 8-15%igen denaturierenden Polyacrylamidgelen (enthalten aufgetrennt (SDS-Polyacrylamid nach elekrophoretisch 1% SDS) der Größe Gelelektrophorese, SDS-PAGE). Anschließend werden die Proteine durch eines von mehreren Blotting Verfahren (z.B. semi-dry Elektroblot; Biorad) auf eine spezifische Membran transferiert (z.B. Nitrozellulose, Schleicher & Schüll). Auf dieser Membran kaun das gewünschte Protein sichtbar gemacht werden. Dazu wird die Membran zunächst mit dem Antikörper, der das Zielprotein erkennt (Verdünnung ca. 1:20-1:200, je nach Spezifität des Antikörpers), für 60 Minuten inkubiert. Nach einem Waschschritt wird die Membran mit einem zweiten, mit einem Marker (z.B. Enzyme wie Peroxidase oder alkalische Phosphatase) gekoppelten Antikörper inkubiert, der den ersten Antikörper erkennt. In einer Farb- oder chemilumineszenten Reaktion kann anschließend das Zielprotein auf der Membran sichtbar gemacht werden (z.B. ECL, Amersham Bioscience). Ein Antikörper mit einer hohen Spezifität für das Zielprotein sollte im Idealfall nur das gewünschte Protein selbst erkennen.

Lokalisation des Zielproteins

5

10

Zur Bestätigung der im in silico Ansatz identifizierten Membranlokalisation des Zielproteins werden verschiedene Verfahren verwendet. Ein wichtiges und gut etabliertes Verfahren unter Verwendung der vorstehend beschriebenen Antikörper ist die Immunfluoreszenz (IF). Dazu werden Zellen etablierter Zelllinien benutzt, die entweder das Zielprotein synthetisieren (Nachweis der RNA in der RT-PCR oder des Proteins im Western blot) oder aber mit Plasmid-DNA transfiziert worden sind. Zur Transfektion von Zelllinien mit DNA sind die verschiedensten Verfahren (z.B. Elektroporation, auf Liposomen basierende Transfektion, Kalziumphosphatpräzipitation) gut etabliert (z.B. Lernoine et al., Methods Mol. Biol. 75: 441-7, 1997). Das in die Zellen transfizierte Plasmid kann bei der Immunfluoreszenz das ummodifizierte Protein kodieren oder aber auch unterschiedliche Aminosäuremarker an das Zielprotein koppeln. Die wichtigsten Marker sind z.B. das fluoreszierende "green fluorescent protein" (GFP) in seinen verschiedenen differentiell fluoreszierenden Formen, kurze Peptidsequenzen von 6-12 Aminosäuren, für die hoch affine und spezifische Antikörper zur Verfügung stehen, oder die kurze Aminosäurescquenz Cys-Cys-X-X-Cys-Cys, die über ihre 15 Cysteine spezifische fluoreszierende Substanzen binden kann (Invitrogen). Zellen, die das Zielprotein synthetisieren, werden z.B. mit Paraformaldehyd oder Methanol fixiert. Anschließend können die Zellen bei Bedarf durch Inkubation mit Detergenzien (z.B. 0,2% Triton X-100) permeabilisiert werden. Anschließend werden die Zellen mit einem primären Antikörper inkubiert, der gegen das Zielprotein oder gegen einen der gekoppelten Marker 20 gerichtet ist. Nach einem Waschschritt wird der Ansatz mit einem zweiten, mit einem fluoreszierenden Marker (z.B. Fluorescin, Texas Red, Dako) gekoppelten Antikörper inkubiert, der an den ersten Antikörper bindet. Anschließend werden die so markierten Zellen mit Glycerin überschichtet und mit Hilfe eines Fluoreszenzmikroskops nach den Angaben des Herstellers analysiert. Spezifische Fluoreszenzemissionen werden dabei, abhängig von den 25 eingesetzten Substanzen, durch spezifische Anregung erreicht. Die Analyse erlaubt in der Regel die sichere Lokalisation des Zielproteins, wobei zur Bestätigung der Antikörperqualität und des Zielproteins in Doppelfärbungen zusätzlich zum Zielprotein auch die gekoppelten Aminosäuremarker oder andere Markerproteine angefärbt werden, deren Lokalisation bereits in der Literatur beschrieben ist. Ein Sonderfall stellt das GFP und seine Derivate dar, die 30 direkt angeregt werden können und selbst fluoreszieren. Die Membranpermeabilität, die durch den Einsatz von Detergenzien gesteuert werden kann, erlaubt in der Immunfluoreszenz die Demonstration, ob ein immunogenes Epitop innerhalb oder außerhalb der Zelle lokalisiert ist. Die Prädiktion der ausgewählten Proteine kann so experimentell untermauert werden. Alternativ kann der Nachweis von extrazellulären Domänen mittels Durchflusszytometrie erfolgen. Dazu werden Zellen unter nicht permeabilisierenden Bedingungen (z.B. mit PBS/Na-Azid/2% FCS/ 5 mM EDTA) fixiert und im Durchflusszytometer nach Angaben des Herstellers analysiert. Nur extrazelluläre Epitope können bei diesem Verfahren von dem zu analysierenden Antikörper erkannt werden. Im Unterschied zu Immunfluoreszenz kann durch Verwendung von z.B. Propidiumiodid oder Trypanblau zwischen toten und lebenden Zellen unterschieden werden und damit falsch positive Ergebnisse vermieden werden.

5

10

15

20

Ein weiterer wichtiger Nachweis erfolgt durch die Immunhistochemie (IHC) an spezifischen Gewebeproben. Ziel dieses Verfahrens ist es, die Lokalisation eines Proteins in einem funktionell intakten Gewebeverband zu identifizieren. Die IHC dient im einzelnen dazu, um (1) die Menge an Zielprotein in Tumor- und Normalgeweben abschätzen zu können, (2) zu analysieren, wie viele Zellen in Tumor- und gesundem Gewebe das Zielgen synthetisieren, und (3) den Zelltyp in einem Gewebe (Tumor, gesunde Zellen) zu definieren, in dem das Zielprotein nachweisbar ist. Alternativ können die Proteinmengen eines Zielgens durch Gewebsimmunfluoreszenz mittels Digitalkamera und geeigneter Software (z.B. Tillvision, Till-photonics, Deutschland) quantifiziert werden. Die Technologie ist häufig publiziert worden, Details für Färbung und Mikroskopie sind daher z.B. "Diagnostic Immunohistochemistry" von David J., MD Dabbs ISBN: 0443065667 oder in "Microscopy, Immunohistochemistry, and Antigen Retrieval Methods: For Light and Electron Microscopy, ISBN: 0306467704 zu entnehmen. Zu beachten ist, dass aufgrund der Eigenschaften von Antikörpern unterschiedliche Protokolle verwendet werden müssen (nachstehend ist ein Beispiel beschrieben), um zu einem aussagekräftigen Ergebnis zu kommen.

- In der Regel werden histologisch definierte Tumorgewebe und als Referenz vergleichbare gesunde Gewebe in der IHC eingesetzt. Als Positiv- und Negativkontrollen können dabei auch Zelllinien dienen, bei denen die Präsenz des Zielgens durch RT-PCR Analysen bekannt ist. Eine Hintergrundkontrolle ist immer mitzuführen.
- Formalin-fixierte (ein anderes Fixierungsverfahren mit z.B. Methanol ist auch möglich) und in Paraffin eingebettete Gewebestücke mit einer Dicke von 4µm werden auf einem Glasträger aufgebracht und z.B. mit Xylol deparaffiniert. Die Proben werden mit TBS-T gewaschen und in Serum blockiert. Anschließend erfolgt die Inkubation mit dem ersten Antikörper (Verdünnung: 1:2 bis 1:2000) für 1-18 Stunden, wobei in der Regel affinitätsgereinigete

Antikörper verwendet werden. Nach einem Waschschritt erfolgt eine ca. 30-60 minütige Inkubation mit einem zweiten Antikörper, der mit einer Alkalischen Phosphatase (alternativ: z.B. Peroxidase) gekoppelt und gegen den ersten Antikörper gerichtet ist. Anschließend erfolgt eine Farbreaktion unter Verwendung der Alkalischen Phosphatase (vgl. beispielsweise Shi et al., J. Histochem. Cytochem. 39: 741-748, 1991; Shin et al., Lab. Invest. 64: 693-702, 1991). Zum Nachweis der Antikörper-Spezifität kann die Reaktion durch vorherige Zugabe des Immunogens kompetitiert werden.

Analyse von Proteinmodifikationen

5

20

25

Sekundäre Proteinmodifikationen wie zum Beispiel N- und O-Glykosylierungen oder Myristilierungen können die Zugänglichkeit von immunogenen Epitopen behindern oder sogar ganz verhindern und damit die Wirksamkeit von Antikörpertherapien in Frage stellen. Zudem konnte vielfach nachgewiesen werden, dass sich Art und Menge der sekundären Modifikationen in Normal- und Tumorgewebe unterscheiden (z.B. Durand & Seta, 2000;
 Clin. Chem. 46: 795-805; Hakomori, 1996; Cancer Res. 56: 5309-18). Die Analyse dieser Modifikationen ist daher essentiell für den Therapieerfolg eines Antikörpers. Potentielle Bindestellen lassen sich durch spezifische Algorithmen prädizieren.

Die Analyse von Proteinmodifikationen erfolgt in der Regel im Western blot (siche vorstehend). Vor allem Glykosylierungen, die in der Regel eine Größe von mehreren kDa haben, führen zu einer größeren Gesamtmasse des Zielproteins, die sich in der SDS-PAGE außtrennen lässt. Zum Nachweis von spezifischen O- und N-glycosidischen Bindungen werden Proteinlysate vor der Denaturierung durch SDS mit O- oder N- Glykosylasen inkubiert (nach Angaben des jeweiligen Herstellers, z.B. PNgase, Endoglykosidase F, Endoglykosidase H, Roche Diagnostics). Anschließend erfolgt ein Western blot wie vorstehend beschrieben. Bei Verringerung der Größe eines Zielproteins kann so nach Inkubation mit einer Glykosidase eine spezifische Glykosylierung nachgewiesen und auf diesem Weg auch die Tumorspezifität einer Modifikation analysiert werden.

30 Funktionsanalyse des Zielgens

Die Funktion des Targetmoleküls kann entscheidend für seinen therapeutischen Nutzen sein, so dass funktionelle Analysen ein wichtiger Baustein bei der Charakterisierung von therapeutisch nutzbaren Molekülen sind. Die Funktionsanalyse kann entweder in Zellen in Zellkulturexperimenten oder aber in vivo mit Hilfe von Tiermodellen erfolgen. Dabei wird

das Gen des Zielmoleküls entweder durch Mutation ausgeschaltet ("knockout") oder aber die Zielsequenz in die Zelle bzw. den Organismus eingefügt ("knockin"). Man kann so funktionelle Veränderungen im zellulären Kontext einerseits durch den Funktionsverlust des zu analysierenden Genes ("loss of function") analysieren. Im zweiten Fall lassen sich Veränderungen analysieren, die durch die Ergänzung des analysierten Genes verursacht werden ("gain of function").

a. Funktionsanalyse in Zellen

5

10

15

20

25

30

Transfektion. Zur Analyse des "gain of function" muss das Gen des Zielmoleküls in die Zelle transferiert werden. Dazu werden Zellen mit einer DNA transfiziert, die die Synthese des Zielmoleküls erlauben. In der Regel steht das Gen des Zielmoleküls dabei unter Kontrolle eines starken eukaryontischen Promotors (z.B. Cytomegalievirus-Promotor; CMV). Zur Transfektion von Zelllinien mit DNA sind die verschiedensten Verfahren (z.B. Elektroporation, auf Liposomen basierende Transfektion, Kalziumphosphatpräzipitation) gut etabliert (z.B. Lemoine et al., *Methods Mol. Biol.* 75: 441-7, 1997). Das Gen kann dabei entweder ohne genomische Integration transient oder aber mit genomischer Integration nach Selektion mit z.B. Neomycin stabil synthetisiert werden.

RNA interference (siRNA). Eine Expressionsinhibition des Zielgens, die unter Umständen einen vollständigen Funktionsverlust des Zielmoleküls in Zellen induziert, kann durch die "RNA interference" (siRNA) Technologie in Zellen erzeugt werden (Hannon, GJ. 2002. RNA interference. Nature 418: 244-51; Czauderna et al. 2003. Nucl. Acid Res. 31: 670-82). Dazu werden Zellen mit kurzen, ca. 20-25 Nuklcotide langen, doppelsträngigen RNA Molekülen transfiziert, die für das Zielmolekül spezifisch sind. Ein enzymatischer Prozess führt anschließend zum Abbau der spezifischen RNA des Zielgens und damit zu einer Funktionsinhibition des Zielproteins und ermöglicht damit die Analyse des Zielgens.

Zelllinien, die mittels Transfektion oder siRNA modifiziert wurden, können anschließend auf unterschiedliche Art und Weise analysiert werden. Nachstehend sind die geläufigsten Beispiele aufgeführt.

1. Proliferation und Zellzyklusverhalten

Eine Vielzahl von Verfahren sind zur Analyse der Zellproliferation etabliert und werden von verschiedenen Unternehmen kommerziell angeboten (z.B. Roche Diagnostics, Invitrogen,

Details zu den Testverfahren sind in den zahlreichen Applikationsprotokollen beschrieben). Die Zellzahl in Zellkulturexperimenten lässt sich durch einfaches Auszählen oder durch kolometrische Tests ermitteln, die die metabolische Aktivität der Zellen messen (z.B. wst-1, Roche Diagnostics). Metabolische Testverfahren messen indirekt über enzymatische Marker die Zellzahl in einem Experiment. Direkt kann die Zellproliferation durch Analyse der DNA Syntheserate z.B. durch Zugabe von Bromdesoxyuridin (BrdU) gemessen werden, der Nachweis des integrierten BrdU erfolgt über spezifische Antikörper kolometrisch.

2. Apoptose und Zytotoxizität

Eine große Anzahl von Testsystemen zum Nachweis von zellulärer Apoptose und von Zytotoxizität sind verfügbar. Ein entscheidendes Charakteristikum ist die spezifische, enzymabhängige Fragmentierung der genomischen DNA, die irreversibel ist und sicher zum Tod der Zelle führt. Verfahren zum Nachweis dieser spezifischen DNA Fragmente sind kommerziell crhältlich. Als zusätzliches Verfahren steht der "TUNEL assay" zur Verfügung, der DNA Einzelstrangbrüche auch in Gewebeschnitten nachweisen kann. Zytotoxizität wird vor allem über eine veränderte Zellpermeabilität nachgewiesen, die als Marker für den Vitalitätszustand von Zellen dient. Dazu werden entweder im Zellkulturüberstand Marker analysiert, die normalerweise intrazellulär zu finden sind. Alternativ kann auch die Aufnahmefähigkeit von Farbmarkern analysiert werden, die von intakten Zellen nicht aufgenommen werden. Die bekanntesten Beispiele für Farbmarker sind Trypanblau und Propidiumiodid, ein üblicher intrazellulärer Marker ist die Laktatdehydrogenase, die im Überstand enzymatisch nachgewiesen werden kann. Unterschiedliche Testsysteme stehen von verschiedenen kommerziellen Anbietern (z.B. Roche Diagnostics, Invitrogene) zur Verfügung.

25

30

20

5

10

15

3. Migrationsassay

Die Fähigkeit von Zellen zur Migration wird in einem spezifischen Migrationstest vorzugsweise mit Hilfe einer Boyden Kammer (Corning Costar) analysiert (Cinamon G., Alon R. J. Immunol. Methods. 2003 Feb; 273(1-2):53-62; Stockton et al. 2001. Mol. Biol. Cell. 12: 1937-56). Dazu werden Zellen auf einem Filter mit spezifischer Porengröße kultiviert. Zellen, die migrieren können, sind in der Lage, durch diesen Filter in ein weiteres darunter liegendes Kulturgefäß zu wandern. Eine anschließende mikroskopische Analyse erlaubt dann die Bestimmung eines möglicherweise veränderten Migrationsverhaltens, dass durch den "gain of function" bzw. "loss of function" des Zielmoleküls induziert wurde.

WO 2005/030250 PCT/EP2004/010697

b. Funktionsanalyse in Tiermodellen

Alternativ zu Zellkulturexperimenten bieten sich zur Analyse der Zielgenfunktion aufwendige in vivo Experimente in Tiermodellen an. Diese Modelle haben im Vergleich zu den zellbasierenden Verfahren den Vorteil, dass sie Fehlentwicklungen bzw. Krankheiten nachweisen können, die erst im Kontext des gesamten Organismus nachweisbar sind. Eine Vielzahl von Modellen für humane Erkrankungen sind inzwischen verfügbar (Abate-Shen & Shon. 2002. Trends in Genetics S1-5; Matsusue et. al. 2003. J. Clin. Invest. 111:737-47). Verschiedene Tiermodelle wie zum Beispiel Hefe, Nematoden oder Zebrafische sind inzwischen intensiv charakterisiert worden. Bevorzugte Modelle sind aber im Vergleich zu anderen Spezies mammale Tiermodelle wie zum Beispiel die Maus (Mus musculus), weil sie die biologischen Prozesse im humanen Kontext am besten abbilden können. Für Mäuse sind in den letzten Jahren sowohl transgene Verfahren etabliert worden, die neue Gene in das Mausgenom integrieren ("gain of function"; Jegstrup I. et al. 2003. Lab Anim. 2003 Jan.;37(1):1-9). Alternativ werden durch andere methodische Ansätze Gene im Mausgenom ausgeschaltet und so ein Funktionsverlust eines gewünschten Gens induziert (knockout Modelle, "loss of function"; Zambrowicz BP & Sands AT. 2003. Nat. Rev. Drug Discov. 2003 Jan;2(1):38-51; Niwa H. 2001. Cell Struct. Funct. 2001 Jun;26(3):137-48.); technische Details sind vielfältig publiziert.

20

25

15

10

Nach Genericrung der Mausmodelle können Veränderungen, die durch das Transgen bzw. durch den Funktionsverlust eines Gens induziert wurden, im Kontext des Gesamtorganismus analysiert werden (Balling R, 2001. Ann. Rev. Genomics Hum. Genet. 2:463-92). So sind zum Beispiel Verhaltenstests genauso wie biochemische Untersuchen etablierter Blutparameter möglich. Histologische Analysen, Immunhistochemie oder die Elektronenmikroskopie ermöglichen die Charakterisierung von Veränderungen auf zellulärer Ebene. Das spezifische Expressionsmuster eines Genes kann durch eine in situ Hybridisierung nachgewiesen werden (Peters T, et. al. 2003. Hum. Mol. Genet 12: 2109-20).

Beispiel 3: Identifizierung der SEQ ID NO: 1/2 als diagnostisches und therapeutisches Krebs-Target

Die SEQ ID NO: 1 (Nukleinsäurescquenz) wird von einem neuen Gen auf Chromosom 6 (6q26-27) kodiert und repräsentiert die abgeleitete Proteinsequenz (SEQ ID NO: 2). Ein alternatives offenes Leseraster dieses Genlocus ist SEQ ID NO: 267 die für die abgeleitete

Proteinsequenz SEQ ID NO: 268 kodiert. Beide Proteinsequenzen zeigen keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 3 und 4) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. Das Transkript ließ sich in keiner der analysierten Normalgewebe nachweisen. Überraschend detektierten wir ganz spezifisch substantielle Mengen dieses Transkripts in fast allen untersuchten Melanomproben, obwohl das Gen in normaler Haut als Ursprungsgewebe nicht exprimiert ist (Abb. 1). Durch eine konventionelle RT-PCR wurde die Selektivität dieses Markers für Melanome bestätigt (Abb.

5

30

- 2). Überraschend amplifizierten wir dabei zwei Fragmente, die genspezifische Varianten (wahrscheinlich SEQ ID NO: 1 und SEQ ID NO: 267) widerspiegeln.
 - Wir zeigen damit, dass dieses Gen ein absolut spezifischer Marker für Melanomzellen ist und durch sein fehlen in jedem untersuchten Normalgewebe für zielgerichtete Therapie- und Diagnostik Ansätze als Biomarker geeignet ist.
- Insbesondere extrazelluläre Anteile von SEQ ID NO: 2 bzw. 268 können erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden. Dies betrifft u.a. folgende Epitope: Aminosäuren 1-50, bezogen auf die SEQ ID NO: 2; Aminosäuren 1-12, bezogen auf die SEQ ID NO: 268, Aminosäuren 70-88 bezogen auf die SEQ ID NO: 2, Aminosäuren 33-129 bezogen auf die SEQ ID NO: 268, sowie SEQ ID NO: 281.
- Erfindungsgemäß sind therapeutisch auch andere zielorientierte Ansätze wie Vakzine und Therapien mit "small compounds" denkbar, die nur dieses Gen als Zielstruktur haben und somit keine gesunden Zellen betreffen. Auch diagnostisch kann dieses Gen aufgrund seiner Selektivität für Tumorzellen genutzt werden.

Beispiel 4: Identifizierung der SEQ ID NO: 5/6 als diagnostisches und therapeutisches Krebs-Target

Die SEQ ID NO: 5 (Nukleinsäuresequenz) wird von einem neuen Gen auf Chromosom 11 (11q12.1) kodiert und repräsentiert die abgeleitete Proteinsequenz (SEQ ID NO: 6). Ein alternatives offenes Leseraster dieses Genlokus ist SEQ ID NO: 269 die für die abgeleitete Proteinsequenz SEQ ID NO: 270 kodiert. Beide Proteinsequenzen zeigen keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer genspezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 7 und 8) die Menge der genspezifischen Transkript in gesundem Gewebe und in Karzinomproben (jeweils Pool von Proben) untersucht. Spezifische RNA

detektierten wir mit Ausnahme von Testis gar nicht oder aber nur in geringen Mengen in den von uns untersuchten gesunden Geweben (Abb. 3; A quantitative RT-PCR; B Gelbild). Der Lokus exprimiert demnach mit hoher Wahrscheinlichkeit ein keimzellspezifisches Genprodukt. Allerdings ist das Gen in viclen Tumorproben aktiviert, spezifische RNA war in substantiellen Mengen nachweisbar (Abb.3). Die höchste Prävalenz und Expressionshöhe fanden wir in Nierenzelltumoren. Aber auch in Magen-, Pankreas-, HNO- und Lungentumoren waren spezifische Transkripte nachweisbar (Abb. 4; A quantitative RT-PCR; B Gelbild). Auch wiederholte Untersuchungen der korrespondierenden Normalgewebe waren gen-spezifische Transkripte nicht detektierbar. Um die Expression von diesem Genlokus zusätzlich zu belegen wurde zusätzlich ein Northern blot durchgeführt. Dazu wurde eine Sonde in einer spezifischen PCR der Primer SEQ ID NO: 7 und 8 unter Einbau von Digoxygenin-dUTP (Roche Diagnostics) nach Angaben des Herstellers hergestellt. Die Sonde wurde anschließend mit 2µg (Abb. 5, Spur 1) bzw. 1 µg (Abb. 5, Spur 2) Gesamt-RNA aus Testisgewebe hybridisiert und das Digoxygenin der Sonde anschließend in einer spezifischen Farbreaktion nachgewiesen. Ein ca. 3,1 kB großes, Gen-spezifisches Fragment konnte in dem Experiment nachgewiesen werden (Abb. 5), und bestätigte somit zusätzlich die Expression dieses Lokus.

10

1.5

20

25

30

Der Genlokus ist somit ein typischer Vertreter der Klasse der sog. Cancer/Testis-Antigene, die in Normalgeweben fast ausschließlich in den Keimzellen der Testis exprimiert sind. In Tumoren jedoch werden Cancer/Testis-Antigene häufig eingeschaltet, obwohl sie in den zugrunde liegenden somatischen Normalgewebszellen nicht exprimiert werden. Mehrere Mitglieder dieser funktionell und strukturell heterogenen Klasse werden aufgrund ihrer attraktiven selektiven Gewebsverteilung bereits für spezifische immuntherapeutischen Ansätze bei Krebserkrankungen in Phase I/II Studien getestet (z.B. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. 2002. Immunol Rev. 2002 Oct; 188: 22-32).

Zur Herstellung von Antikörpern können die Peptide gemäß SEQ ID NO: 282 und 283 genutzt werden. Insbesondere die extrazellulären Domänen der SEQ ID NO: 6 bzw. SEQ ID NO: 270 können erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden.

Beispiel 5: Identifizierung von LOC203413 als diagnostisches und therapeutisches Krebs-Target

Das Gen bzw. Protein des Genlokus LOC203413 (Nukleinsäuresequenz: SEQ ID NO: 9; Aminosäuresequenz: SEQ ID NO: 10) ist ein bisher nicht charakterisiertes Gen auf dem X-

Chromosom (Xq24). Es hat außer einer Transmembrandomäne keine weiteren funktionellen Motive und keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer LOC203413-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 11 und 12) die Menge des Transkripts in gesundem Gewebe und in Karzinomproben (Pool von Proben, die Anzahl ist in der Abb. angegeben) untersucht (Abb. 6; A: quantitative Auswertung, B: Bild nach gelelektrophoretischer Auftrennung). LOC203413-spezifische RNA lässt sich mit Ausnahme von Testis in keinem der von uns untersuchten gesunden Gewebe nachweisen. LOC203413 ist demnach mit hoher Wahrscheinlichkeit ein keimzellspezifisches Genprodukt. Wie Abb. 6 zeigt, waren LOC203413-spezifische Transkripte in Magen-, Pankreas-, Ösophagus-, Mamma-, Ovarialund Prostatakarzinomen nachweisbar, insbesondere in Magen- und Mammakarzinomen war eine hohe Expression zu beobachten. Um die Analyse zu vertiefen wurden zusätzlich gesunde Magenproben sowie Magenkarzinomproben in einer quantitativen RT-PCR charakterisiert (Abb. 7A). In 70% der Karzinome war LOC203413 exprimiert, wogegen in keiner der gesunden Magenproben eine signitikante Expression nachweisbar war. Auch die Zelllinie MKN45, deren Ursprung ein Magenkarzinom ist, exprimiert LOC203413. Zusätzlich konnte eine spezifische Expression in 2/3 der untersuchten Pankreastumoren und in 40% der Leberkarzinome nachgewiesen werden (Abb. 7B).

10

15

20

25

30

LOC203413 ist somit ein typischer Vertreter der Klasse der sog. Cancer/Testis-Antigene, die in Normalgeweben ausschließlich in den Keimzellen der Testis exprimiert sind. In Tumoren jedoch werden Cancer/Testis-Antigene häufig eingeschaltet, obwohl sie in den zugrunde liegenden somatischen Normalgewebszellen nicht exprimiert werden. Mehrere Mitglieder dieser funktionell und struktureli heterogenen Klasse werden aufgrund ihrer attraktiven selektiven Gewebsverteilung bereits für spezifische immuntherapeutischen Ansätze bei Krebserkrankungen in Phase I/II Studien getestet (z.B. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. 2002. Immunol Rev. 2002 Oct; 188: 22-32).

Insbesondere die extrazelluläre Domäne von LOC203413 kann erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden. So sind die Aminosäuren 22-113 (SEQ ID NO: 284) als Epitope interessant. In der Sequenz sind bezogen auf die SEQ ID NO: 10 an den Aminosäureposition 34 und 83 konservierte N-Glycosylierungsmotive lokalisiert, die sich unter Umständen besonders für die Herstellung von tumorspezifischen Antikörpern eignen. Zur Herstellung von LOC203413-spezifischen Antikörpern wurden die unter SEQ ID NO: 285 und 286 aufgeführten Peptide verwendet.

Erfindungsgemäß sind therapeutisch auch andere zielorientierte Ansätze wie Vakzine und Therapien mit "small compounds" denkbar, die nur dieses Gen als Zielstruktur haben und somit keine gesunden Zellen betreffen. Auch diagnostisch kann dieses Gen aufgrund seiner

Selektivität für Tumorzellen genutzt werden.

5

10

1.5

Beispiel 6: Identifizierung von LOC90625 als diagnostisches und therapeutisches Krebs-Target

Das Gen LOC90625 (Nukleinsäuresequenz: SEQ ID NO: 13) ist ein bisher nicht charakterisiertes Gen auf Chromosom 21 (21q22.3). Es kodiert für ein Protein (Aminosäuresequenz: SEQ ID NO: 14) mit einer Transmembrandomäne aber ansonsten keinerlei Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer LOC90625-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 15 und 16) die Menge an genspezifischen Transkripten in gesundem Gewebe und in Karzinomproben (Pool von Proben, die Anzahl ist in der Abb. angegeben) untersucht (Abb. 8). LOC90625 ist in gesundem Gewebe sehr selektiv exprimiert, spezifische Transkripte sind vor allem in der Testis nachweisbar. Gering oder gar nicht nachweisbar war die LOC90625-spezifische Expression in allen anderen analysierten gesunden Geweben (Abb. 8). Überraschenderweise detektierten wir LOC90625-spezifische Überexpression in einigen Tumortypen. Insbesondere in Prostata-, Ösophagus- und

Pankreaskarzinomen war LOC90625 im Vergleich zu den jeweiligen gesunden Gewebeproben stark überexprimiert (Abb. 8 und 9A)

LOC90625 ist ein selektiv exprimiertes Antigen, das offensichtlich in proliferierenden Geweben verstärkt exprimiert wird. Es ist somit eine selektive Überexpression in Tumoren zu beobachten, die therapeutisch nutzbar ist.

Insbesondere die extrazelluläre Domäne von LOC90625 kann erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden. Dies können z.B. 1-19 (SEQ ID NO: 287 oder aber die Aminosäuren 40-160 (SEQ ID NO: 288) sein. Zur Herstellung von LOC203413-spezifischen Antikörpern wurden die Peptide gemäß SEQ ID NO: 289 und 290 verwendet.

30

Beispiel 7: Identifizierung des Proteins FAM26A als diagnostisches und therapeutisches Krebs-Target

Das Gen FAM26A (SEQ ID NO: 17; NM_182494), das auf Chromosom 10 (10q24) lokalisiert ist, kodiert das Genprodukt der SEQ ID NO: 18 (NP_872300). FAM26A besitzt

mehrere Transmembran-Domänen, an Aminosäureposition 142 ist ein Motiv für eine N-Glykosylierung lokalisiert. Die abgeleitete Proteinsequenz zeigt eine entfernte Homologie zu der PMP/Claudin Familie.

Erfindungsgemäß wurde nach der Etablierung einer FAM26A-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 19 und 20) die Menge der genspezifischen Transkripte in gesundem Geweben und in Tumorproben untersucht (Abb. 10). Überraschend konnten wir die Überexpression von FAM26A in verschiedenen Tumoren nachweisen. Insbesondere in Ovarial-, Magen-, Ösophagus-, Pankreas- und Lebertumoren war FAM26A im Vergleich zum dazugehörenden gesunden Gewebe deutlich stärker exprimiert. Die selektiv hohe Expression von FAM26A in verschiedenen Tumorgeweben kann erfindungsgemäß für molekulare diagnostische Verfahren wie z.B. RT-PCR zum Nachweis von Tumorzellen in Gewebebiopsien genutzt werden.

10

15

20

25

30

Um die Expressionsdaten weiter zu verifizieren wurden FAM26A-spezifische Antikörper durch Immunisierung von Tieren hergestellt. Zur Herstellung von polyklonalen Antikörpern wurden die unter SEO ID NO: 291 und 292 aufgeführten Peptide verwendet. Die Spezifität der Antikörper wurde durch Western blot-Analyse nachgewiesen (Abb. 11A: SEQ ID NO: 291; B: SEQ ID NO: 292). Dazu wurden COS-Zellen mit einem FAM26-Fragmentkodierenden Plasmidkonstrukt transfiziert. Der Western blot zeigte mit beiden Antikörpern ein spezifisches Signal, das in den jeweiligen Kontrollen nicht nachweisbar war (Abb. 11). Wir wiesen mit einem SEQ ID NO: 292-spezifischen Antikörper FAM26A auch in verschiedenen Zervix-, Ovarial- und Pankreastumoren nach (Abb. 12), wie auch mit einem SEQ ID NO: 291-spezifischen Antikörper in den Zelllinien SW480, EFO 27 und SNU 16, die jeweils RT-PCR positiv waren (Abb. 13A). Dabei fanden wir neben einer ca. 50 kDa großen spezifischen Bande auch eine schwächere bei ca. 40 kDa. Letztere entspricht etwa der erwarteten Größe. Das Hauptfragment bei 50 kDa repräsentiert ein posttranslational modifiziertes Protein. Das endogene FAM26A Protein wurde außerdem in SW480-Zellen mittels Immunfluoreszenz unter Verwendung eines SEQ ID NO: 292-spezifischen Antikörpers nachgewiesen. Die Analyse zeigt eine Lokalisation in der Plasmamembran (Abb. 13B). Um die Lokalisation von FAM26A in einem Gewebeverband zu analysieren, wurden gesunde Testisproben immunhistologisch charakterisiert. In der Testis konnte das FAM26A-Protein spezifisch in der Membran von Spermatozyten nachgewiesen werden, eine Membranlokalisation von FAM26A erscheint aufgrund der Ergebnisse wahrscheinlich (Abb. 14). Dies konnte auch in Tumorproben bestätigt werden (Abb. 15).

Insbesondere die extrazellulären Domänen von FAM26A können erfindungsgemäß als Zielstrukturen von monoklonalen Antikörpern genutzt werden. Dies sind bezogen auf die SEQ ID NO: 17 die Aminosäuren 38-48 (SEQ ID NO: 293) sowie die Aminosäuren 129-181 (SEQ ID NO: 294). Alternativ können auch die C-terminalen Aminosäuren 199-334 (SEQ ID NO: 295) bevorzugte Epitope für die Herstellung von Antikörpern für diagnostische oder therapeutische Zwecke sein. Zusätzlich kann das N-Glykosylierungsmotiv an Position 142 ein interessanter Angriffspunkt für therapeutische Antikörper sein.

5

10

15

20

25

Beispiel 8: Identifizierung von SEMA5B als diagnostisches und therapeutisches Krebs-Target

Das Gen Semaphorin 5B (SEMA5B; SEQ ID NO: 21), das das Protein der SEQ ID NO: 22 kodiert, ist auf Chromosom 3 (3q21.1) lokalisiert. SEMA5B ist ein Typ-I-Transmembranprotein und gehört zur Familie der Semaphorine.

Erfindungsgemäß wurde nach der Etablierung einer SEMA5B-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 23 und 24) die Menge an genspezifischen Transkripten in gesundem Gewebe und in Karzinomproben (Pool von Proben, die Anzahl ist in der Abb. angegeben) untersucht (Abb. 16). Wir fanden SEMA5B in gesundem Gewebe sehr selektiv auf Testis und Haut beschränkt. Gering oder gar nicht nachweisbar war die SEMA5B-spezifische Expression in allen anderen analysierten gesunden Geweben (Abb. 16). Überraschend fanden wir dagegen in einigen Tumortypen, insbesondere in Nierenkarzinomen und Brusttumoren, eine SEMA5B-spezifische Überexpression (Abb. 17A und B) im Vergleich zu den jeweiligen gesunden Geweben.

Die selektive Überexpression in Tumoren ist therapeutisch nutzbar.

Insbesondere die extrazelluläre Domäne von SEMA5B (As 20-1035; SEQ ID NO: 296) kann erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden. SEMA5B ist ein Typ-I-Transmembrandomänenprotein (TM As 1035-1057), dessen C-Terminus im Inneren der Zelle lokalisiert ist (As 1058-1151). Zur Herstellung SEMA5B-spezifischer Antikörper wurden die Peptide gemäß SEQ ID NO: 297 und 298 verwendet.

30 Beispiel 9: Identifizierung von GJB5 als diagnostisches und therapeutisches Krebs-Target

Das Protein GBJ5 (Nukleinsäuresequenz: SEQ ID NO: 25; Aminosäuresequenz: SEQ ID NO: 26) ist ein Mitglied der Connexin-Familie. Das Gen besteht aus zwei Exons und liegt auf Chromosom 1 (1p35.1). Die abgeleitete Aminosäuresequenz kodiert für ein Protein mit 273

Aminosäuren. Connexine haben eine wichtige Funktion bei Zell-Zell-Kontakten über sogenannte "Gap Junctions", die dem Austausch von kleinen cytoplasmatischen Molekülen, Ionen und Sekundärtransmittern dienen und somit die Kommunikation zwischen bestehen aus mehreren individuellen ermöglichen. Gap Junctions Zellen Connexinuntereinheiten, die einen Membrankanal ausbilden. Bisher wurden 11 verschiedene Mitglieder der Connexine beschrieben, die alle in einem Genkluster auf Chromosom 1 lokalisiert sind (Richard, G.; Nature Genet. 20: 366-369, 1998). GBJ5 hat vier Transmembrandomänen, der N- und C-Terminus des Proteins sind im Innern der Zelle lokalisiert.

5

Brfindungsgemäß wurde nach Etablierung einer GBJ5-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 27, 28) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht (Pool von Proben, die Anzahl ist in der Abb. angegeben). Unsere Untersuchungen zeigen eine differentielle Verteilung der Expression in Normalgeweben. GBJ5 Transkripte fanden wir fast ausschließlich im Ösophagus und in der Haut exprimiert, in allen anderen analysierten Geweben ist eine Transkription sehr schwach oder nicht nachweisbar (Abb. 18). In Ösophagus-, Kolon-, Magen-, und Pankreaskarzinomen konnte eine sehr starke tumorspezifische Überexpression beobachtet werden (Abb.18). Dies konnte durch die Analyse von Einzelproben der vier Karzinome bestätigt werden (Abb.19 A-D). Zusätzlich lässt sich das GBJ5-spezifische Transkript in den etablierten Zelllinien LoVo,

MKN45 und NCI-N87 deutlich nachweisen (Abb.19 A-D).

Insbesondere die extrazellulären Domänen von GBJ5 können erfindungsgemäß als Zielstruktur von therapeutischen Antikörpern genutzt werden. Bezogen auf die SEQ ID NO: 26 sind die Aminosäuren 41-75 (SEQ ID NO: 299) sowie der Bereich zwischen den Aminosäuren 150 und 187 (SEQ ID NO: 300) extrazellulär lokalisiert. Zur Herstellung von GJB5-spezifischen Antikörpern wurden die Peptide gemäß SEQ ID NO: 301 und 302 verwendet.

Beispiel 10: Identifizierung von KLK5 als diagnostisches und therapeutisches Krebs-Target

Das Gen KLK5 (SEQ ID NO: 29) und sein Translationsprodukt (SEQ ID NO: 30) ist ein Mitglied der Kallikrein Familie, einer Gruppe von Serinproteasen mit unterschiedlichsten physiologischen Funktionen. Das Gen liegt auf Chromosom 19 (19q13.3-13.4) und kodiert für eine Serinprotease. KLK5 wird als Proform synthetisiert und im Stratum Corneum durch Proteolyse aktiviert (Brattsand, M et al; J. Biol. Chem. 274: 1999). Die aktive Protease (As

67-293) wird sekretiert und ist im Prozess der Hautabschilferung beteiligt. Das Propeptid (As 30-67) verbleibt über die Transmembrandomäne (As 1-29) an der Zelloberfläche gebunden (Ekholm, E et al; *Jour Investigative Dermatol*, 114; 2000).

5

10

15

20

25

30

Erfindungsgemäß wurde nach Etablierung einer KLK5-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 31, 32) die Verteilung von KLK5-spezifischen Transkripten in gesundem Gewebe und in Karzinomproben untersucht (Abb. 20). In den meisten Normalgeweben ist KLK5 sehr gering bis gar nicht exprimiert, eine moderate Expression von KLK5 fanden wir lediglich in Testis, Ösophagus, Haut und Prostata. Eine signifikante Überexpression von KLK5 im Vergleich zu den entsprechenden normalen Herkunftsgeweben detektierten wir in Ösophaguskarzinomen, Zervix- sowie in HNO-Tumoren (Abb. 20, 21). Eine deutliche schwächere, aber nachweisbare KLK5-spezifische Expression konnte zudem in einigen Tumoren anderer Gewebe nachgewiesen werden (z.B. in Magen- und Pankreaskarzinomen).

Insbesondere die extrazelluläre Domäne von KLK5 kann erfindungsgemäß als Zielstruktur von therapeutischen Antikörpern genutzt werden (SEQ ID NO: 303). Besonders geeignet ist hierfür der Bereich des Propeptids (Aminosäure 30 bis 67). Zur Herstellung von KLK5-spezifischen Antikörpern wurden das unter SEQ ID NO: 304 aufgeführte Peptid verwendet.

Beispiel 11: Identifizierung von LOC352765 als diagnostisches und therapeutisches Krebs-Target

Der Genlokus LOC352765 ist auf Chromosom 9 (9q34.12) lokalisiert. Das Gen (SEQ ID NO: 33) kodiert das Genprodukt der SEQ ID NO: 34. Das LOC352765-Protein besitzt eine Transmembrandomäne am N-Terminus. Das hypothetische Protein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer LOC352765-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 35 und 36) die Menge an genspezifischen Transkripten in gesundem Gewebe und in Karzinomproben (Pool von Proben) untersucht (Abb. 22). LOC352765 ist in gesundem Gewebe sehr selektiv exprimiert, spezifische Transkripte fanden wir lediglich in der Testis, der Haut und der Blase nachweisbar. Dagegen konnte in einigen Tumortypen eine LOC352765-spezifische Überexpression nachgewiesen werden. Insbesondere in Brusttumoren lag die Expression über der des am stärksten exprimierenden Normalgewebes. Auch in Kolon- und Ovarialkarzinomen und in HNO-Tumoren fanden wir LOC352765 deutlich überexprimiert (Abb. 22, 23).

LOC352765 ist aufgrund seiner selektiven Überexpression in Tumoren therapeutisch nutzbar.

Insbesondere die extrazelluläre Domäne von LOC352765 (Aminosäuren 44-211, SEQ ID NO:34) kann erfindungsgemäß als Zielstruktur von Antikörpern und anderen zielgerichteten Therapieformen genutzt werden. Zur Herstellung von spezifischen Antikörpern wurde die Peptide gemäß SEQ ID NO: 305 und 306 verwendet.

5

10

15

20

Beispiel 12: Identifizierung von SVCT1 als diagnostisches und therapeutisches Krebs-Target

Das Gen SVCT1 (SEQ ID NO: 37) ist auf Chromosom 7 (7q33) lokalisiert und kodiert für das Genprodukt der SEQ ID NO: 38. Das SVCT1 Protein hat vier Transmembrandomänen und zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer SVCT1-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 39 und 40) die Menge an genspezifischen Transkripten in gesundem Gewebe und in Karzinomproben (Pool von Proben) untersucht (Abb. 24). SVCT1 ist in gesundem Gewebe selektiv auf Niere, Testis, Thymus und Brustdrüse beschränkt.

Überraschend konnte dagegen in einigen Tumortypen eine SVCT1-spezifische Überexpression nachgewiesen werden. Insbesondere in Nieren-, Ösophagus- und Pankreaskarzinomen und in HNO-Tumoren ist SVCT1 stark überexprimiert (Abb. 24, 25) und zwar nicht nur im Vergleich zum entsprechenden gesunden Herkunftsgewebe, sondern auch im Bezug auf das am stärksten exprimierende Normalgewebe überhaupt.

SVCT1 ist aufgrund seiner selektiven Überexpression in Tumoren therapeutisch nutzbar. Insbesondere die extrazellulären Domänen von SVCT1 können erfindungsgemäß als Zielstruktur von Antikörpern oder für andere zielgerichtete Therapieformen genutzt werden. Zur Herstellung spezifischer Antikörper wurden die Peptide gemäß SEQ ID NO: 307 und 308 verwendet.

25

30

Beispiel 13: Identifizierung von LOC199953 als diagnostisches und therapeutisches Krebs-Target

Das Gen bzw. Protein des Genlokus LOC199953 (Nukleinsäuresequenz: SEQ ID NO: 41; Aminosäuresequenz: SEQ ID NO: 42) ist auf Chromosom 1 (1q36.22) lokalisiert. Das Protein besitzt mehrere Transmembrandomänen. Alternative offene Leserahmen dieses Genlokus stellen die SEQ ID NO: 271 mit ihrem Genprodukt SEQ ID NO: 272 und die SEQ ID NO: 273 mit dem dazugehörigen Genprodukt SEQ ID NO: 274 dar. Darüber hinaus zeigt das hypothetische Protein keine weiteren Homologien zu bereits bekannten Proteindomänen.

Erfindungsgemäß wurde nach der Etablierung einer LOC199953-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 43 und 44) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. LOC199953 ist in gesunden Geweben selektiv exprimiert und in einigen Tumoren überexprimiert. Insbesondere konnte in HNO-und Nierenkarzinomen (Abb. 26) in ca. 50% der Tumorproben eine Überexpression im Vergleich zu Normalgeweben identifiziert werden.

5

15

20

25

30

Die extrazellulären Domänen von LOC199953 können erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Beispiel 14: Identifizierung von TMEM31 als diagnostisches und therapeutisches Krebs-Target

Das Gen TMEM31 (SEQ ID NO: 45) des Genlokus LOC203562 ist auf Chromosom X (Xq22.2) lokalisiert. Das Gen kodiert für das Protein der SEQ ID NO: 46. Das Protein hat zwei Transmembrandomänen und zeigt sonst keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer TMEM31-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 47 und 48) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. TMEM31 ist in gesunden Geweben sehr selektiv vor allem auf Testis beschränkt (Abb. 27). Überraschenderweise fanden wir auch Expression in einigen Tumortypen, während in den korrespondierenden Normalgeweben keine Expression feststellbar war. Dies sind insbesondere Nieren-, Kolon-, Magen-, Brust-, Leber-, Lungen- und HNO-Karzinome (Abb. 27, 28).

TMEM31 ist somit ein typischer Vertreter der Klasse der sog. Cancer/Testis-Antigene, die in Normalgeweben ausschließlich in den Keimzellen der Testis exprimiert sind. In Tumoren jedoch werden Cancer/Testis-Antigene häufig eingeschaltet, obwohl sie in den zugrunde liegenden somatischen Normalgewebszellen nicht exprimiert werden. Mehrere Mitglieder dieser funktionell und strukturell heterogenen Klasse werden aufgrund ihrer attraktiven selektiven Gewebsverteilung bereits für spezifische immuntherapeutischen Ansätze bei Krebserkrankungen in Phase I/II Studien getestet (z.B. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. 2002. Immunol Rev. 2002 Oct; 188: 22-32).

Die extrazellulären Domänen von TMEM31 können erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Beispiel 15: Identifizierung von FLJ25132 als diagnostisches und therapeutisches Krebs-Target

Das Gen/Protein FLJ25132 (Nukleinsäuresequenz: SEQ ID NO: 49; Aminosäuresequenz: SEQ ID NO: 50) ist auf Chromosom 17 (17q25.3) lokalisiert. FLJ25132 besitzt eine Transmembrandomäne, sonst zeigen sich keine Homologien zu bereits bekannten Proteinen. Erfindungsgemäß wurde nach der Etablierung einer FLJ25132-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 51 und 52) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. FLJ25132 ist in den von uns untersuchten Karzinomproben im Vergleich zum gesunden Gewebe teilweise überexprimiert (Abb. 29). Insbesondere in Ovarial- und in Prostatakarzinomen konnte eine deutliche Überexpression von FLJ25132 nachgewiesen werden.

Die extrazellulären Domänen von FLJ25132 können erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Beispiel 16: Identifizierung von LOC143724, LOC284263, LOC283435 und LOC349260 als diagnostisches und therapeutisches Krebs-Targets

Die Genloci (mit den entsprechend kodierten Genen und Genprodukten) LOC143724, LOC284263, LOC283435 und LOC349260 sind aufgrund ihres ähnlichen Profils zusammengefasst.

- Das im Genlokus LOC143724 enthaltene Gen mit der SEQ ID NO: 53 auf Chromosom 11 (11q13.1) kodiert als Genprodukt die SEQ ID NO: 54. Ein alternatives offenes Leseraster dieses Genlokus ist durch die SEQ ID NO: 275 mit ihrem Genprodukt SEQ ID NO: 276 repräsentiert und stellt entweder ein eigenständiges Transkript oder eine Spleissvariante von SEQ ID NO: 53 dar. Für die genspezifische Amplifikation des Gens wurden die Primer gemäß SEQ ID NO: 55 und 56 verwendet.
 - Das im Genlokus LOC284263 enthaltene Gen mit der SEQ ID NO: 89 auf Chromosom 18 (18q21.1) kodiert das Genprodukt mit der SEQ ID NO: 90. Für die genspezifische Amplifikation des Gens wurden die Primer gemäß SEQ ID NO: 91 und 92 verwendet.

Das im Genlokus LOC283435 enthaltene Gen mit der SEQ ID NO: 117 auf Chromosom 12 (12q24.32) kodiert das Genprodukt mit der SEQ ID NO: 118. Für die genspezifische Amplifikation des Gens wurden die Primer gemäß SEQ ID NO: 119 und 120 verwendet.

Das im Genlokus LOC349260 enthaltene Gen mit der SEQ ID NO: 121 auf Chromosom 9

(9q11.2) kodiert das Genprodukt mit der SEQ ID NO: 122. Für die genspezifische Amplifikation des Gens wurden die Primer gemäß SEQ ID NO: 123 und 124 verwendet.

Alle Proteine besitzen Transmembrandomänen und zeigen zusätzlich keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung von spezifischen quantitativen RT-PCR-Analysen die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. Alle vier Gene lassen sich mit Ausnahme von Testis in keinem der von uns untersuchten gesunden Gewebe nachweisen. Die Gene sind demnach mit hoher Wahrscheinlichkeit keimzellspezifisch. Überraschenderweise findet man aber signifikante Expression in verschiedenen Tumorproben.

5

10

15

25

30

Die vier Gene sind somit typische Vertreter der Klasse der sog. Cancer/Testis-Antigene, die in Normalgeweben ausschließlich in den Keimzellen der Testis exprimiert sind. In Tumoren jedoch werden Cancer/Testis-Antigene häufig eingeschaltet, obwohl sie in den zugrunde liegenden somatischen Normalgewebszellen nicht exprimiert werden. Mehrere Mitglieder dieser funktionell und strukturell heterogenen Klasse werden aufgrund ihrer attraktiven selektiven Gewebsverteilung bereits für spezifische immuntherapcutischen Ansätze bei Krebserkrankungen in Phase I/II Studien getestet (z.B. Scanlan MJ, Gure AO, Jungbluth AA, Old LJ, Chen YT. 2002. Immunol Rev. 2002 Oct; 188: 22-32).

Die extrazellulären Domänen der vier Gene können erfindungsgemäß als Zielstrukturen von Antikörpern genutzt werden.

20 Beispiel 17: Identifizierung der Sequenz gemäß SEQ ID NO: 57 als diagnostisches und therapeutisches Krebs-Target

Die Sequenz gemäß SEQ ID NO: 57 ist von einem Gen auf Chromosom 1 (1p21.3) abgeleitet und kodiert die Proteinsequenz gemäß SEQ ID NO: 58. Ein alternatives Transkript des Genlokus ist durch die SEQ ID NO: 277 mit seinem Genprodukt SEQ ID NO: 278 repräsentiert. Das Transmembranprotein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 59 und 60) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. Die SEQ ID NO: 57 ist in den von uns untersuchten gesunden Geweben selektiv exprimiert (Abb. 30). Spezifische Transkripte waren in fast allen analysierten Tumortypen nachweisbar und insbesondere in Leber-, HNO- und Nierentumoren überexprimiert. Dies konnte bei der Analyse einzelner Tumorproben im Vergleich zu gesunden Gewebeproben bestätigt werden (Abb. 31).

Die extrazellulären Domänen der Sequenz gemäß SEQ ID NO: 58 können erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden, insbesondere die Aminosäuren 20-38 und 90-133 sind extrazellulär lokalisiert.

5 Beispiel 18: Identifizierung von LOC119395 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC119395 auf Chromosom 17 (17q25.3) enthaltene Gen mit der SEQ ID NO: 61 kodiert ein Genprodukt mit der SEQ ID NO: 62. Das Transmembranprotein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer LOC119395-spezifischen quantitativen 10 RT-PCR (Primerpaar SEQ ID NO: 63 und 64) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht (Abb. 32). LOC119395 ist in den von uns untersuchten gesunden Geweben sehr selektiv exprimiert und nur in wenigen Geweben nachweisbar (Abb. 32). Dagegen waren LOC119395-spezifische Transkripte in fast allen analysierten Turnortypen nachweisbar. Insbesondere in Magen-, Ovarial-15 Prostatakarzinomen war eine zum Teil deutliche tumorselektive Überexpression von LOC119395 zu beobachten. Dies konnte bei der Analyse einzelner Tumorproben im Vergleich zu gesunden Gewebeproben bestätigt werden (Abb. 33). Im Vergleich zum Gewebe war eine Überexpression von LOC119395 in ieweiligen gesunden Mammakarzinomen und Ösophagustumoren nachzuweisen. Eine tumorselektive Expression 20 konnte in Kolon- und in Magenkarzinomen identifiziert werden (Abb. 33).

Die extrazelluläre Domäne von LOC119395 (Aminosäuren 44-129) kann erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Beispiel 19: Identifizierung von LOC121838 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC121838 auf Chromosom 13 (13q14.11) lokalisierte Gen mit dem Transkript der SEQ ID NO: 65 kodiert das Protein mit der SEQ ID NO: 66. Das Transmembranprotein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer LOC121838-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 67 und 68) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht (Abb. 34A). LOC121838 ist in den von uns untersuchten gesunden Geweben sehr selektiv exprimiert und nur in wenigen Geweben nachweisbar (Abb. 34A und B). Dagegen waren LOC121838-spezifische

Transkripte in vielen analysierten Tumortypen nachweisbar. Insbesondere in Ovarial- und Ösophaguskarzinomen fanden wir eine deutliche tumorselektive Überexpression von LOC121838.

Die extrazellulären Domänen von LOC121838 können erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Beispiel 20: Identifizierung von LOC221103 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC221103 auf Chromosom 11 (11q12.3) lokalisierte Gen mit dem 10 Transkript der SEQ ID NO: 69 kodiert das Protein mit der SEQ ID NO: 70. Das Transmembranprotein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer LOC221103-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 71 und 72) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. LOC221103 ist in den von uns untersuchten gesunden Geweben lediglich in der Leber exprimiert und ansonsten nicht nachweisbar (Abb. 35). Überraschenderweise sind LOC221103-spezifische Transkripte in Leberkarzinomen überexprimiert (Abb. 36).

Die extrazellulären Domänen von LOC221103 können erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

20

25

15

5

Beispiel 21: Identifizierung von LOC338579 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC338579 auf Chromosom 10 (10q11.21) lokalisierte Gen mit dem Transkript der SEQ ID NO: 73 kodiert das Protein mit der SEQ ID NO: 74. Das Transmembranprotein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer LOC338579-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 75 und 76) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. Expression fanden wir in gesunden Geweben ausschließlich in Testis und schwächer in der Leber und im Thymus.

30 Überraschenderweise fanden wir eine Überexpression von LOC338579 in Kolon- und Leberkarzinomen im Vergleich zum gesunden Gewebe (Abb. 37).

Die extrazellulären Domänen von LOC338579 können erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Beispiel 22: Identifizierung von LOC90342 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC90342 auf Chromosom 2 (2q11.2) lokalisierte Gen mit dem Transkript der SEQ ID NO: 77 kodiert das Protein mit der SEQ ID NO: 78. Das Transmembranprotein enhält ein in Proteinkinase C und in verschiedenen Phospholipasen konserviertes calciumbindendes Motiv (CalB).

Erfindungsgemäß wurde nach der Etablierung einer LOC90342-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 79 und 80) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht (Abb. 38). LOC90342 fanden wir nur in einer kleinen Anzahl gesunder Geweben, von denen die meisten wenig toxizitätsrelevant sind (Abb. 38). Dagegen fanden wir LOC90342-spezifische Transkripte in einer Vielzahl der analysierten Tumortypen. Insbesondere in Magen-, Leber-, Pankreas-, Prostata-, Ovarial- und Lungenkarzinomen war eine zum Teil deutlich tumorselektive Überexpression von LOC90342 zu beobachten.

Das Membranprotein besitzt eine einzige Transmembrandomäne (As 707-726). Die extrazelluläre Domäne von LOC90342 kann erfindungsgemäß als Zielstruktur von therapeutischen Antikörpern genutzt werden.

Beispiel 23: Identifizierung von LRFN1 als diagnostisches und therapeutisches Krchs-Target

20

25

30

LRFN1 (SEQ ID NO: 81) ist ein Gen, das auf Chromosom 19 (19q13.2) lokalisiert ist. Das Gen kodiert für das Protein der SEQ ID NO: 82 Das Protein enthält eine Transmembrandomäne und zeigt Homologien zur Myb-DNA-Bindungsdomäne und zu einer Immunglobulindomäne vom C2-Typ.

Erfindungsgemäß wurde nach der Etablierung einer LRFN1-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 83 und 84) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. LRFN1 ist in den meisten untersuchten Normalgeweben bis auf aktivierte PBMC und Hirn sehr schwach exprimiert. (Abb. 39). Dagegen fanden wir LRFN1-spezifische Transkripte in einigen der analysierten Tumortypen verstärkt nachweisbar. Insbesondere in Magen-, Pankreas-, Ösophagus- und Brustkarzinomen fanden wir eine deutliche tumorselektive Überexpression von LRFN1 im Vergleich zu den dazugehörigen Normalgeweben.

Das Protein enthält eine Transmembrandomäne (As 448-470). Die extrazellulären Domänen von LFRN1 können erfindungsgemäß als Zielstruktur von therapeutischen Antikörpern genutzt werden.

Beispiel 24: Identifizierung von LOC285916 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC285916 auf Chromosom 7 (7p22.3) lokalisierte Gen mit dem Transkript der SEQ ID NO: 85 kodiert das Protein mit der SEQ ID NO: 86. Das Transmembranprotein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer LOC285916-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 87 und 88) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. LOC285916 ist in den von uns untersuchten gesunden Geweben selektiv in Testis exprimiert, in allen anderen untersuchten Geweben konnten wir keine oder nur geringe Expression nachweisen (Abb. 40A).

Überraschenderweise fanden wir LOC285916-spezifische Transkripte in allen getesteten Tumortypen. Insbesondere in Brust-, Ösophagus-, Nieren-, HNO- und Lungenkarzinomen war eine deutliche tumorspezifische Überexpression nachweisbar (Abb. 40A und B).

Die extrazellulären Domänen von LOC285916 (Aminosäuren 42 bis 93) können erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Beispiel 25: Identifizierung von MGC71744 als diagnostisches und therapeutisches Krebs-Target

25

30

Das Gen MGC71744 mit der SEQ ID NO: 93 auf Chromosom 17 (17p13.2) kodiert das Protein mit der SEQ ID NO: 94. Das Transmembranprotein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer MGC71744-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 95 und 96) die Menge an genspezifischen Transkripten in gesundem Gewebe und in Karzinomproben (Pool von Proben) untersucht (Abb. 41). MGC71744 ist in gesundem Gewebe kaum exprimiert. Geringe Mengen spezifischer Transkripte fanden wir lediglich in der Lunge und in der Milz. Gering oder gar nicht nachweisbar war die MGC71744-spezifische Expression in allen anderen analysierten gesunden Geweben (Abb. 41A). Überraschend fanden wir dagegen in einigen Tumortypen, insbesondere in Nierenkarzinomen, eine MGC71744-spezifische Überexpression (Abb. 41 A & B) im Vergleich zu gesundem Gewebe.

Insbesondere die extrazelluläre Domäne von MGC71744 (N-Terminus, As 67-85) kann erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Beispiel 26: Identifizierung von LOC342982 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC342982 auf Chromosom 19 (19p13.13) lokalisierte Gen mit dem Transkript der SEQ ID NO: 97 kodiert das Protein mit der SEQ ID NO: 98. Das Transmembranprotein zeigt Homologien zur Kohleuhydratbindungsdomäne des C-Typ der Lektine.

Erfindungsgemäß wurde nach der Etablierung einer LOC342982-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 99 und 100) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben (Pool von Proben) untersucht. LOC342982-spezifische RNA ist selektiv exprimiert, in vielen analysierten Normalgeweben war nur eine geringe oder keine Expression nachweisbar (Abb. 42). Hingegen zeigten fast alle der getesteten Tumorklassen eine zum Teil tumorspezifische Überexpression. Hauptsächlich Pankreas-, Nieren-, Lungen- und Brustkarzinome zeigen eine sehr starke Expression der LOC342982-spezifischen RNA (Abb. 42).

Insbesondere die extrazelluläre Domäne von LOC342982 (Aminosäuren 178-339) kann erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden.

20

25

30

Beispiel 27: Identifizierung von LOC343169/OR6F1 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC343169 auf Chromosom 1 (1q44) lokalisierte Gen OR6F1 mit dem Transkript der SEQ ID NO: 101 kodiert das Protein mit der SEQ ID NO: 102. OR6F1 hat mehrere Transmembrandomänen und gehört zur Familie der olfaktorischen Rezeptoren und somit zur großen Familie der G-Protein-gekoppelten Rezeptoren.

Erfindungsgemäß wurde nach der Etablierung einer LOC343169/OR6F1-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 103 und 104) die Menge an genspezifischen Transkripten in gesundem Gewebe und in Karzinomproben (Pool von Proben) untersucht (Abb. 43A). LOC343169/OR6F1 ist in gesundem Gewebe schr selektiv exprimiert, spezifische Transkripte sind vor allem in Testis und Milz nachweisbar. Gering oder gar nicht nachweisbar war die LOC343169/OR6F1-spezifische Expression in allen anderen analysierten gesunden Geweben (Abb. 43A). Überraschend konnte dagegen in einigen Tumortypen eine LOC343169/OR6F1-spezifische Überexpression nachgewiesen werden.

Insbesondere in Brust-, Ovarial-, Nieren-, Prostata-, Pankreas- und Leberkarzinomen zeigt sich eine tumorspezifische Überexpression von LOC343169/OR6F1 (Abb. 43A). Durch Analyse von Einzelproben konnte die Überexression in Ovarialkarzinomen bestätigt werden. LOC343169/OR6F1 ist ein selektiv exprimiertes Antigen, das offensichtlich in proliferierenden Geweben verstärkt exprimiert wird. Es ist somit eine selektive Überexpression in Tumoren zu beobachten, die therapeutisch nutzbar ist. insbesondere die extrazellulären Domänen können erfindungsgemäß als Zielstrukturen von monoklonalen Antikörpern genutzt werden.

5

15

20

25

30

10 Beispiel 28: Identifizierung von LOC340204 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC340204 auf Chromosom 6 (6p21.31) lokalisierte Gen mit dem Transkript der SEQ ID NO: 105 kodiert das Protein mit der SEQ ID NO: 106. Das Protein besitzt eine Transmembrandomäne. Darüber zeigt das Protein eine starke Homologie zu einer "Colipase" Domäne. Der Colipase wird eine Funktion als Kofaktor für die pankreatische Lipase zugeschrieben. Ein alternatives Transkript des Genlokus ist durch SEQ ID NO: 279 mit ihrem Genprodukt SEQ ID NO: 280 repräsentiert und könnte sowohl ein eigenständiges Transkript als auch eine Spleissvariante der SEQ ID NO: 105 darstellen.

Erfindungsgemäß wurde nach der Etablierung einer LOC340204-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 107 und 108) die Menge der genspezifischen Transkripte in gesundern Gewebe und in Karzinomproben untersucht. LOC340204 ist in gesunden Geweben selektiv exprimiert und in einigen Tumorcn stark überexprimiert. Insbesondere in Magen-, Pankreas-, Ovarial-, Lungen- und Ösophaguskarzinomen (Abb. 44) konnte eine deutliche Überexpression in Tumorproben im Vergleich zu verschiedenen Normalgeweben nachgewiesen werden.

Die extrazellulären Domänen von LOC340204 können erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden.

Beispiel 29: Identifizierung von LOC340067 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC340067 auf Chromosom 5 (5q22.3) lokalisierte Gen mit dem Transkript der SEQ ID NO: 109 kodiert das Protein mit der SEQ ID NO: 110. Das Transmembranprotein zeigt keine Homologien zu anderen Proteindomänen.

Erfindungsgemäß wurde nach der Etablierung einer für die LOC340067-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 111 und 112) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. LOC340067 ist in gesunden Geweben selektiv exprimiert und in einigen Tumoren stark überexprimiert (Abb. 45). Insbesondere in Pankreas-, Mamma-, Leber-, Ovarial-, Lungen- und Nierenkarzinomen konnte eine deutliche Überexpression in Tumorproben im Vergleich zu verschiedenen gesunden Geweben nachgewiesen werden.

Die extrazelluläre Domäne von LOC340067 kann erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden.

10

15

20

25

30

Beispiel 30: Identifizierung von LOC342780 als diagnostisches und therapeutisches Krebs-Target

Das im Genlokus LOC342780 auf Chromosom 18 (18q21.32) lokalisierte Gen mit dem Transkript der SEQ ID NO: 309 kodiert das Protein mit der SEQ ID NO: 310. Das Transmembranprotein enthält eine Acyltransferase-Domäne, die in vielen bisher nicht weiter charakterisierten Proteinen aus C. elegans vorkommt.

Erfindungsgemäß wurde nach der Etablierung einer LOC342780-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 311 und 312) die Menge an genspezifischen Transkripten in gesundem Gewebe und in Karzinomproben (Pool von Proben, die Anzahl ist in der Abb. angegeben) untersucht. LOC342780 ist in gesundem Gewebe sehr selektiv exprimiert, spezifische Transkripte sind vor allem in Prostata, Magen, Testis, Lunge und der Brustdrüse, nachweisbar (Abb. 46). Überraschend konnte dagegen in allen analysierten Tumorarten eine LOC342780-spezifische Expression nachgewiesen werden. Insbesondere in Brust-, Ovarial-, Nieren- und Leberkarzinomen zeigt sich eine tumorspezifische Überexpression von LOC342780 (Abb. 46).

LOC342780 ist ein selektiv exprimiertes Antigen das offensichtlich in proliferierenden Geweben verstärkt exprimiert wird. Es ist somit eine selektive Überexpression in Tumoren zu beobachten, die therapeutisch nutzbar ist. Die extrazellulär lokalisierten Aminosäuren 76-89, 316-345, 399-493 sowie 650-665 (bezogen auf SEQ ID NO: 310) können erfindungsgemäß als Zielstrukturen von monoklonalen Antikörpern genutzt werden.

Beispiel 31: Identifizierung von LOC339511 als diagnostisches und therapeutisches Krebs-Target

Die Sequenz gemäß SEQ ID NO: 113 ist von einem Gen abgeleitet, das auf Chromosom 1 (1q23.1) lokalisiert ist. Das Gen kodiert das Protein der SEQ ID NO: 114. Das Transmembranprotein zeigt Homologien zur Gruppe der olfaktorischen 7-Transmembranrezeptoren.

5

10

Erfindungsgemäß wurde nach der Etablierung einer für LOC339511-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 115 und 116) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. LOC339511 ist in gesunden Geweben selektiv in der Leber exprimiert (Abb. 47A). In den Karzinomproben konnten LOC339511-spezifische Transkripte in Lebertumoren identifiziert werden, außerdem war eine schwache Expression in Kolon-, Mamma- und Lungenkarzinomen nachweisbar. Beim Vergleich der leberspezifischen Expression in Tumor und in gesundem Gewebe konnte in einigen Tumorproben eine erhöhte Expression nachgewiesen werden (Abb. 47B).

Die extrazellulären Domänen der SEQ ID NO: 113 können erfindungsgemäß als Zielstrukturen von monoklonalen Antikörpern genutzt werden. Insbesondere die extrazellulär lokalisierten Aminosäurereste 1-23, 82-100, 167-175 und 226-236 eignen sich daher besonders zur Herstellung von monoklonalen Antikörpern.

20 Beispiel 32: Identifizierung von C14orf37 als diagnostisches und therapeutisches Krebs-Target

CI4orf37 (SEQ ID NO: 125) ist ein auf Chromosom 14 (14q22.3) lokalisiertes Gen, das das Genprodukt mit der SEQ ID NO: 126 kodiert. Das Transmembranprotein zeigt keine Homologien zu bereits bekannten Proteinen.

Erfindungsgemäß wurde nach der Etablierung einer für die C14orf37-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 127 und 128) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. C14orf37 ist in verschiedenen gesunden Geweben und am stärksten in der Testis exprimiert (Abb. 48). Insbesondere in Nierenkarzinomen konnte eine deutliche Überexpression im Vergleich zu verschiedenen gesunden Geweben nachgewiesen werden.

Die extrazelluläre Domäne der SEQ ID NO: 126 kann erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden.

Beispiel 33: Identifizierung von ATP1A4 als diagnostisches und therapeutisches Krebs-Target

Das Gen ATP1A4 (SEQ ID NO: 129) ist auf Chromosom 1 (1q21-23) lokalisiert. Das Gen kodiert für ein Protein mit der SEQ ID NO: 130. ATP1A4 ist ein integrales Transmembranprotein mit acht Transmembrandomänen, das in der Plasmamembran lokalisiert ist. ATP1A4 ist Teil eines Proteinkomplexes, wobei der katalytische Teil der Natrium/Kalium ATPase N-terminal gelegen ist (Woo et al. J. 2000. Biol Chem. 275, 20693-99). ATP1A4 zeigt starke Homologien zu zahlreichen anderen Vertretern der Kation-ATPase Familie.

Erfindungsgemäß wurde nach der Etablicrung einer ATP1A4-spezifischen quantitativen RT-PCR (Primerpaar SEQ ID NO: 131 und 132) die Menge der genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. ATP1A4 ist in gesunden Geweben selektiv vor allem in der Testis exprimiert (Abb. 49). In einigen Tumorproben konnte eine im Vergleich zum jeweiligen gesunden Gewebe starke Überexpression von ATP1A4 nachgewiesen werden. Insbesondere in Pankreas-, Brust-, Leber- und Nierenkarzinomen (Abb. 49) konnte eine deutliche Überexpression in Tumorproben im Vergleich zu gesunden Geweben nachgewiesen werden, insgesamt sehr hoch war die Expression in Pankreas- und Brustkarzinomen.

Die extrazellulären Domänen von ATP1A4 können erfindungsgemäß als Zielstruktur von monoklonalen Antikörpern genutzt werden. Die folgenden Aminosäurereste in Bezug auf die SEQ ID NO: 130 sind extrazellulär lokalisiert: Aminosäurereste 129-137, 321-329, 816-857, und 977-990.

20

25

Beispiel 34: Identifizierung der SEQ ID NO: 133 bis 264 als diagnostische und therapeutische Krebs-Targets

Bei den Sequenzen gemäß SEQ ID NO: 133-266 handelt es sich um 33 Gene (Nukleinsäuresequenz, Aminosäuresequenz), zusammen mit den jeweiligen PCR-Primern für spezifische RT-PCR-Reaktionen. Alle Proteine verfügen über eine oder mehrere Transmembrandomänen, über Homologien zu Proteindomänen ist wenig bekannt.

Erfindungsgemäß wurden für diese Gene in spezifischen quantitativen RT-PCR-Reaktionen die Menge der jeweiligen genspezifischen Transkripte in gesundem Gewebe und in Karzinomproben untersucht. Für alle Gene konnte in Tumorproben eine im Vergleich zum jeweiligen gesunden Gewebe zum Teil starke Überexpression nachgewiesen werden.

WO 2005/030250 PCT/EP2004/010697 91

Alle Gene dieser Gruppe sind therapeutisch und diagnostisch nutzbar. Die extrazellulären Domänen können dabei erfindungsgemäß als Zielstruktur von Antikörpern genutzt werden.

Patentansprüche

I. Pharmazeutische Zusammensetzung, umfassend ein Mittel, das die Expression oder Aktivität eines Tumor-assoziierten Antigens hemmt, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist, bestehend aus:

- (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149,
- 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
- 15 (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
- 2. Pharmazeutische Zusammensetzung, umfassend ein Mittel mit tumorhemmender Aktivität, das selektiv ist für Zellen, die eine Expression oder abnormale Expression eines tumorassoziierten Antigens aufweisen, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist, bestehend aus
- (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
- 30 (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.

Pharmazeutische Zusammensetzung nach Auspruch 2, wobei das Mittel die Induktion 3. des Zelltods, die Reduktion des Zellwachstums, eine Schädigung der Zellmembran oder eine Sekretion von Zytokinen bewirkt.

5

- Pharmazeutische Zusammensetzung nach Anspruch 1 oder 2, wobei das Mittel eine 4. Antisense-Nukleinsäure ist, die selektiv mit der Nukleinsäure hybridisiert, die für das Tumorassoziierte Antigen kodiert.
- Pharmazeutische Zusammensetzung nach Anspruch 1 oder 2, wobei das Mittel ein 10 5. Antikörper ist, der selektiv an das Tumor-assoziierte Antigen bindet.
- 6. Pharmazeutische Zusammensetzung nach Anspruch 2, wobei das Mittel ein komplementaktivierender Antikörper ist, der selektiv an das Tumor-assoziierte Antigen 15 bindet.
 - Pharmazeutische Zusammensetzung, umfassend ein Mittel, das bei einer 7. Verabreichung selektiv die Menge an Komplexen zwischen einem HLA-Molekül und einem Tumor-assoziierten Antigen oder einem Teil davon erhöht, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
 - (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149,
- 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 25 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
- (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, 30
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.

- 8. Pharmazeutische Zusammensetzung nach Anspruch 7, wobei das Mittel einen oder mehrere Bestandteile umfasst, die aus der Gruppe ausgewählt sind bestehend aus:
- (i) dem Tumor-assoziierten Antigen oder einem Teil davou,
- (ii) einer Nukleinsäure, die für das Tumor-assoziierte Antigen oder einen Teil davon kodiert,
- 5 (iii) einer Wirtszelle, die das Tumor-assoziierte Antigen oder einen Teil davon exprimiert, und
 - (iv) isolierten Komplexen zwischen dem Tumor-assoziierten Antigen oder einem Teil davon und einem HLA-Molekül.
- 9. Pharmazeutische Zusammensetzung nach Anspruch 1, 2 oder 7, wobei das Mittel mehrere Mittel umfasst, die jeweils selektiv die Expression oder Aktivität verschiedener Tumor-assoziierter Antigene hemmen, jeweils selektiv für Zellen sind, die verschiedene Tumor-assoziierte Antigene exprimieren oder die Menge an Komplexen zwischen HLA-Molekülen und verschiedenen Tumor-assoziierten Antigenen oder Teilen davon erhöhen,
- wobei mindestens eines der Tumor-assoziierten Antigene eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist, bestehend aus:
 - (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149,
- 20 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
- 25 (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
- 10. Pharmazeutische Zusammensetzung umfassend einen oder mehrer Bestandteile, die
 30 aus der Gruppe ausgewählt sind bestehend aus:
 - (i) einem Tumor-assoziierten Antigen oder einem Teil davon,
 - (ii) einer Nukleinsäure, die für ein Tumor-assoziiertes Antigen oder einen Teil davon kodiert,
 - (iii) einem Antikörper, der an ein Tumor-assoziiertes Antigen oder einen Teil davon bindet,

- (iv) einer Antischse-Nukleinsäure, die spezifisch mit einer Nukleinsäure, die für ein Tumorassoziiertes Antigen kodiert, hybridisiert,
- (v) einer Wirtszelle, die ein Tumor-assoziiertes Antigen oder einen Teil davon exprimiert, und
- (vi) isolierten Komplexen zwischen einem Tumor-assoziierten Antigen oder einem Teil davon und einem HLA-Molekül,

- wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
- (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65,
- 10 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279; 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
- (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
- 20 11. Pharmazeutische Zusammensetzung nach Anspruch 8 oder 10, wobei die Nukleinsäure unter (ii) in einem Expressionsvektor vorliegt.
 - 12. Pharmazeutische Zusammensetzung nach Anspruch 8 oder 10, wobei die Nukleinsäure unter (ii) funktionell mit einem Promotor verbunden ist.
 - 13. Pharmazeutische Zusammensetzung nach Anspruch 8 oder 10, wobei die Wirtszelle das Tumor-assoziierte Antigen oder den Teil davon sekretiert.
- 14. Pharmazeutische Zusammensetzung nach Anspruch 8 oder 10, wobei die Wirtszelle
 30 zusätzlich ein HLA-Molekül exprimiert, das an das Tumor-assoziierte Antigen oder den Teil davon bindet.

- 15. Pharmazeutische Zusammensetzung nach Anspruch 14, wobei die Wirtszelle das HLA-Molekül und/oder das Tumor-assoziierte Antigen oder den Teil davon rekombinant exprimiert.
- 5 16. Pharmazeutische Zusammensetzung nach Anspruch 14, wobei die Wirtszelle das HLA-Molekül endogen exprimiert.
 - 17. Pharmazeutische Zusammensetzung nach Anspruch 8, 10, 14 oder 16, wobei die Wirtszelle eine Antigen-präsentierende Zelle ist.
 - 18. Pharmazeutische Zusammensetzung nach Anspruch 17, wobei die Antigenpräsentierende Zelle eine dendritische Zelle, ein Monozyt oder Makrophage ist.

- 19. Pharmazeutische Zusammensetzung nach einem der Ansprüche 8, 10 und 13-18, wobei die Wirtszelle nicht-proliferativ ist.
 - Pharmazeutische Zusammensetzung nach Anspruch 5 oder 10, wobei der Antikörper ein monoklonaler Antikörper ist.
- 20 21. Pharmazeutische Zusammensetzung nach Anspruch 5 oder 10, wobei der Antikörper ein chimärer oder humanisierter Antikörper ist.
 - 22. Pharmazeutische Zusammensetzung nach Anspruch 5 oder 10, wobei der Antikörper ein Fragment eines natürlichen Antikörpers ist.
 - 23. Pharmazeutische Zusammensetzung nach Anspruch 5 oder 10, wobei der Antikörper mit einem therapeutischen oder diagnostischen Mittel gekoppelt ist.
- 24. Pharmazeutische Zusammensetzung nach Anspruch 4 oder 10, wobei die Antisense-30 Nukleinsäure eine Sequenz von 6-50 zusammenhängenden Nukleotiden aus der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, umfasst.
 - 25. Pharmazeutische Zusammensetzung nach einem der Ansprüche 8 und 10-13, wobei das durch die pharmazeutische Zusammensetzung bereitgestellte Tumor-assoziierte Antigen

- oder der Teil davon an MHC-Molektile auf der Oberfläche von Zellen bindet, die eine abnormale Menge des Tumor-assoziierten Antigens oder eines Teils davon exprimieren.
- 26. Pharmazeutische Zusammensetzung nach Anspruch 25, wobei die Bindung eine cytolytische Reaktion hervorruft und/ oder eine Zytokinausschüttung induziert

25

- 27. Pharmazeutische Zusammensetzung nach einem der Ansprüche 1-26, ferner umfassend einen pharmazeutisch verträglichen Träger und/oder ein Adjuvans.
- 28. Pharmazeutische Zusammensetzung nach Anspruch 27, wobei das Adjuvans Saponin, GM-CSF, ein CpG-Oligonukleotid, Zytokin oder Chemokin ist.
- 29. Pharmazeutische Zusammensetzung nach einem der Ansprüche 1-28, die zur Behandlung einer Erkrankung eingesetzt werden kann, die sich durch die Expression oder abnormale Expression eines Tumor-assoziierten Antigens auszeichnet.
 - 30. Pharmazeutische Zusammensetzung nach Anspruch 29, wobei die Erkrankung Krobs ist.
- 31. Pharmazeutische Zusammensetzung nach Anspruch 29, wobei die Erkrankung ein Colon-, Rektal-, Nieren-, Brust-, Prostata-, Gebärmutter-, Ovarial-, Endometrial-, Speiseröhren-, Blut-, Leber-, Pankreas-, Haut-, Gehirn- oder Lungenkrebs, ein Lymphom oder Neuroblastom, ein Lungen-, Brust-, Prostata-, Colontumor, Nierenzell-, Zervix-, Colon- oder Mammakarzinom oder Metastasen der vorstehenden Krebsarten oder Tumore ist.

32. Pharmazeutische Zusammensetzung nach einem der Ansprüche 1-31, wobei das Tumor-assoziierte Antigen eine Aminosäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308,

310 des Sequenzprotokolls, einem Teil oder Derivat davon.

- 33. Verfahren zur Diagnose einer Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumor-assoziierten Antigens auszeichnet, umfassend
- (i) den Nachweis einer Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder eines Teils davon, und/oder
- 5 (ii) den Nachweis des Tumor-assoziierten Antigens oder eines Teils davon, und/oder
 - (iii) den Nachweis eines Antikörpers gegen das Tumor-assoziierte Antigen oder eines Teils davon und/oder
 - (iv) den Nachweis von cytotoxischen oder Helfer-T-Lymphozyten, die für das Tumorassoziierte Antigen oder einen Teil davon spezitisch sind, in einer aus einem Patienten isolierten biologischen Probe, wobel
 - das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
 - (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65,
- 15 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
- (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) 20 hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
- 25 34. Verfahren nach Anspruch 33, wobei der Nachweis

- (i) die Kontaktierung der biologischen Probe mit einem Mittel, das spezifisch an die Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder den Teil davon, an das Tumor-assoziierte Antigen oder den Teil davon, an den Antikörper oder an die cytotoxischen oder Helfer-T-Lymphozyten bindet, und
- (ii) den Nachweis der Komplexbildung zwischen dem Mittel und der Nukleinsäure oder dem Teil davon, dem Tumor-assoziierten Antigen oder dem Teil davon, dem Antikörper oder den cytotoxischen oder Helfer-T-Lymphozyten umfasst.

- 35. Verfahren nach Anspruch 33 oder 34, wobei der Nachweis mit dem Nachweis in einer vergleichbaren normalen biologischen Probe verglichen wird.
- 36. Verfahren nach einem der Ansprüche 33-35, wobei sich die Erkrankung durch die Expression oder abnormale Expression mehrerer verschiedener Tumor-assoziierter Antigene auszeichnet und der Nachweis einen Nachweis mehrerer Nukleinsäuren, die für die mehreren verschiedenen Tumor-assoziierten Antigene kodieren, oder von Teilen davon, den Nachweis der mehreren verschiedenen Tumor-assoziierten Antigene oder von Teilen davon, den Nachweis mehrerer Antikörper, die an die mehreren verschiedenen Tumor-assoziierten Antigene oder an Teile davon binden, oder den Nachweis mehrerer cytotoxischer oder Helfer-T-Lymphozyten, die für die mehreren verschiedenen Tumor-assoziierten Antigene spezifisch sind, umfasst.
- 37. Verfahren nach einem der Ansprüche 33-36, wobei der Nachweis der Nukleinsäure
 15 oder des Teils davon mit einer Polynukleotid-Sonde erfolgt, die spezifisch mit der Nukleinsäure oder dem Teil davon hybridisiert.
 - 38. Verfahren nach Anspruch 37, wobei die Polynukleotid-Sonde eine Sequenz von 6-50 zusammenhängenden Nukleotiden aus der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, umfasst.

25

- 39. Verfahren nach einem der Ansprüche 33-36, wobei der Nachweis der Nukleinsäure oder des Teils davon durch selektive Amplifikation der Nukleinsäure oder des Teils davon erfolgt.
- 40. Verfahren nach einem der Ansprüche 33-36, wobei das nachzuweisende Tumor-assoziierte Antigen oder der Teil davon in einem Komplex mit einem MHC-Molekül vorliegt.
- 41. Verfahren nach Anspruch 40, wobei das MHC-Molekül ein HLA-Molekül ist.
- 42. Verfahren nach einem der Ansprüche 33-36 und 40-41, wobei der Nachweis des Tumor-assoziierten Antigens oder des Teils davon mit einem Antikörper erfolgt, der spezifisch an das Tumor-assoziierte Antigen oder den Teil davon bindet.

- 43. Verfahren nach einem der Ansprüche 33-36, wobei der Nachweis des Antikörpers mit einem Protein oder Peptid erfolgt, das spezifisch an den Antikörper bindet.
- 44. Verfahren zur Bestimmung der Regression, des Verlaufs oder des Ausbruchs einer Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumorassoziierten Antigens auszeichnet, umfassend die Überwachung einer Probe aus einem Patienten, der die Erkrankung aufweist oder in Verdacht steht, an der Erkrankung zu erkranken, in Bezug auf einen oder mehrere Parameter, ausgewählt aus der Gruppe bestehend aus:
- (i) der Menge der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder eines Teils davon,
 - (ii) der Menge des Tumor-assoziierten Antigens oder eines Teils davon,
 - (iii) der Menge an Antikörpern, die an das Tumor-assoziierte Antigen oder einen Teil davon binden, und
- (iv) der Menge an cytolytischen oder Zytokin-ausschüttenden T-Zellen, die für einen Komplex zwischen dem Tumor-assoziierten Antigen oder einem Teil davon und einem MHC-Molekül spezifisch sind, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
- (a) ciner Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
- 25 (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.

45. Verfahren nach Anspruch 44, wobei das Verfahren die Bestimmung des oder der Parameter zu einem ersten Zeitpunkt in einer ersten Probe und zu einem zweiten Zeitpunkt in einer weiteren Probe umfasst und durch einen Vergleich der beiden Proben der Verlauf der Erkrankung ermittelt wird.

- 46. Verfahren nach Anspruch 44 oder 45, wobei die Erkrankung sich durch die Expression oder abnormale Expression mehrerer verschiedener Tumor-assoziierter Antigene auszeichnet und die Überwachung eine Überwachung
- 5 (i) der Menge mehrerer Nukleinsäuren, die für die mehreren verschiedenen Tumorassoziierten Antigene kodieren, oder von Teilen davon,
 - (ii) der Menge der mehreren verschiedenen Tumor-assoziierten Antigene oder von Teilen davon,
 - (iii) der Menge mehrerer Antikörper, die an die mehreren verschiedenen Tumor-assoziierten Antigene oder an Teile davon binden, und/oder

25

- (iv) der Menge mehrerer cytolytischer oder Zytokine-ausschüttender T-Zellen, die für Komplexe zwischen den mehreren verschiedenen Tumor-assoziierten Antigenen oder von Teilen davon und MHC-Molekülen spezifisch sind, umfasst.
- 15 47. Verfahren nach einem der Ansprüche 44-46, wobei die Überwachung der Menge der Nukleinsäure oder des Teils davon mit einer Polynukleotid-Sonde erfolgt, die spezifisch mit der Nukleinsäure oder dem Teil davon hybridisiert.
- 48. Verfahren nach Anspruch 47, wobei die Polynukleotid-Sonde eine Sequenz von 6-50 zusammenhängenden Nukleotiden aus der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, umfasst.
 - 49. Verfahren nach einem der Ansprüche 44-46, wobei die Überwachung der Menge der Nukleinsäure oder des Teils davon durch selektive Amplifikation der Nukleinsäure oder des Teils davon erfolgt.
 - 50. Verfahren nach einem der Ausprüche 44-46, wobei die Überwachung der Menge des Tumor-assoziierten Antigens oder des Teils davon mit einem Antikörper erfolgt, der spezifisch an das Tumor-assoziierte Antigen oder den Teil davon bindet.
 - 51. Verfahren nach einem der Ansprüche 44-46, wobei die Überwachung der Menge an Antikörpern mit einem Protein oder Peptid erfolgt, das spezifisch an den Antikörper bindet.

- 52. Verfahren nach einem der Ansprüche 44-46, wobei die Überwachung der Menge an cytolytischen oder Zytokin-aussschüttenden T-Zellen mit einer Zelle erfolgt, die den Komplex zwischen dem Tumor-assoziierten Antigen oder dem Teil davon und einem MHC-Molekül präsentiert.
- 53. Verfahren nach einem der Ansprüche 37-38, 42-43, 47-48 und 50-52, wobei die Polynukleotid-Sonde, der Antikörper, das Protein oder Peptid oder die Zelle nachweisbar markiert sind.

15

20

- 10 54. Verfahren nach Anspruch 53, wobei der nachweisbare Marker ein radioaktiver Marker oder ein Enzymmarker ist.
 - 55. Verfahren nach einem der Ansprüche 33-54, wobei die Probe Körperflüssigkeit und/oder Körpergewebe umfasst.
 - 56. Verfahren zur Behandlung einer Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumor-assoziierten Antigens auszeichnet, umfassend die Verahreichung einer pharmazeutischen Zusammensetzung nach einem der Ansprüche 1-32, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
 - (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223,
- 25 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist,
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
 - 57. Verfahren zur Behandlung, Diagnose oder Überwachung einer Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumor-assoziierten Antigens

- auszeichnet, umfassend die Verabreichung eines Antikörpers, der an das Tumor-assoziierte Antigen oder einen Teil davon bindet und mit einem therapeutischen oder diagnostischen Mittel gekoppelt ist, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
- (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des
 Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
- 15 (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
 - 58. Verfahren nach Anspruch 42, 50 oder 57, wobei der Antikörper ein monoklonaler Antikörper ist.
- 20 59. Verfahren nach Anspruch 42, 50 oder 57, wobei der Antikörper ein chimärer oder humanisierter Antikörper ist.
 - 60. Verfahren nach Anspruch 42, 50 oder 57, wobei der Antikörper ein Fragment eines natürlichen Antikörpers ist.
 - 61. Verfahren zur Behandlung eines Patienten mit einer Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumor-assoziierten Antigens auszeichnet, umfassend:
 - (i) die Entfernung einer Probe mit immunreaktiver Zellen aus dem Patienten,

(ii) die Kontaktierung der Probe mit einer Wirtszelle, die das Tumor-assoziierte Antigen oder einen Teil davon exprimiert, unter Bedingungen, die eine Produktion cytolytischer oder Zytokine-ausschüttender T-Zellen gegen das Tumor-assoziierte Antigen oder einen Teil davon begünstigen, und

- (iii) das Einbringen der cytolytischen oder Zytokine-ausschüttenden T-Zellen in den Patienten in einer Menge, die geeignet ist, Zellen zu lysieren, die das Tumor-assoziierte Antigen oder einen Teil davon exprimieren, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
- 5 (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
- 15 (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
 - 62. Verfahren nach Anspruch 61, wobei die Wirtszelle ein HLA-Molekül rekombinant exprimiert, das an das Tumor-assoziierte Antigen oder einen Teil davon bindet.
- 20 63. Verfahren nach Anspruch 62, wobei die Wirtszelle ein HLA-Molekül endogen exprimiert, das an das Tumor-assoziierte Antigen oder einen Teil davon bindet.

- 64. Verfahren zur Behandlung eines Patienten mit einer Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumor-assoziierten Antigens auszeichnet, umfassend:
- (i) die Identifizierung einer Nukleinsäure, die von Zellen exprimiert wird, die mit der Erkrankung assoziiert sind, wobei die Nukleinsäure aus der Gruppe ausgewählt ist bestehend aus:
- (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,

- (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
- (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
- 5 (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist,
 - (ii) die Transfektion einer Wirtszelle mit der Nukleinsäure oder einem Teil davon,
 - (iii) die Kultivierung der transfizierten Wirtszelle für eine Expression der Nukleinsäure, und
 - (iv) das Einbringen der Wirtszellen oder eines Extrakts davon in den Patienten in einer Menge, die geeignet ist, die Immunreaktion gegen die Zellen des Patienten, die mit der Erkrankung assoziiert sind, zu erhöhen.
 - 65. Verfahren nach Anspruch 64, ferner umfassend die Identifizierung eines MHC-Moleküls, das das Tumor-assoziierte Antigen oder einen Teil davon präsentiert, wobei die Wirtszelle das identifizierte MHC-Molekül exprimiert und das Tumor-assoziierte Antigen oder einen Teil davon präsentiert.
 - 66. Verfahren nach Anspruch 64 oder 65, wobei die Immunreaktion eine B-Zellen-Reaktion oder eine T-Zellen-Reaktion umfasst.
- 20 67. Verfahren nach Anspruch 66, wobei die Immunreaktion eine T-Zellen-Reaktion ist, umfassend die Produktion cytolytischer oder Zytokine-ausschüttender T-Zellen, die spezifisch für die Wirtszellen sind, die das Tumor-assoziierte Antigen oder einen Teil davon präsentieren oder spezifisch für Zellen des Patienten sind, die das Tumor-assoziierte Antigen oder einen Teil davon exprimieren.
- Verfahren nach einem der Ansprüche 61-67, wobei die Wirtszellen nicht-proliferativ sind.
- 69. Verfahren zur Behandlung einer Erkrankung, die sich durch die Expression oder abnormale Expression eines Tumor-assoziierten Antigens auszeichnet, umfassend:
 - (i) die Identifikation von Zellen aus dem Patienten, die abnormale Mengen des Tumorassoziierten Antigens exprimieren,
 - (ii) die Isolierung einer Probe der Zellen,
 - (iii) die Kultivierung der Zellen, und

- (iv) das Einbringen der Zellen in den Patienten in einer Menge, die geeignet ist, eine Immunreaktion gegen die Zellen auszulösen, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
- (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des
 Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
- 15 (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
 - 70. Verfahren nach einem der Ansprüche 33-69, wobei die Erkrankung Krebs ist.
- 71. Verfahren zur Hemmung der Entwicklung von Krebs bei einem Patienten, umfassend die Verabreichung einer wirksamen Menge einer pharmazeutischen Zusammensetzung nach einem der Ansprüche 1-32.
- 72. Verfahren nach einem der Ansprüche 33-71, wobei das Tumor-assoziierte Antigen eine Aminosäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einem Teil oder Derivat davon.
 - 73. Nukleinsäure, die aus der Gruppe ausgewählt ist bestehend aus:

(a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149,

- 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
- (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
- (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
- (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.

5

- 74. Nukleinsäure, die für ein Protein oder Polypeptid kodiert, das eine Aminosäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einem Teil oder Derivat davon.
 - 75. Rekombinantes DNA- oder RNA-Molekül, das eine Nukleinsäure nach Anspruch 73 oder 74 umfasst.
 - 76. Rekombinantes DNA-Molekül nach Anspruch 75, wobei das rekombinante DNA-Molekül ein Vektor ist.
- 77. Rekombinantes DNA-Molekül nach Auspruch 76, wobei der Vektor ein viraler Vektor oder ein Bakteriophage ist.
 - 78. Rekombinantes DNA-Molekül nach einem der Ansprüche 75-77, das ferner Expressionskontrollsequenzen umfasst, die die Expression der Nukleinsäure steuern.
- 30 79. Rekombinantes DNA-Molekül nach Anspruch 78, wobei die Expressionskontrollsequenzen homo- oder heterolog zu der Nukleinsäure sind.
 - 80. Wirtszelle, die eine Nukleinsäure nach Anspruch 73 oder 74 oder ein rekombinantes DNA-Molektil nach einem der Ansprüche 75-79 umfasst.

- 81. Wirtszelle nach Anspruch 80, die ferner eine Nukleinsäure umfasst, die für ein HLA-Molekül kodiert.
- 5 82. Protein oder Polypoptid, das von einer Nukleinsäure nach Anspruch 73 kodiert wird.
 - 83. Protein oder Polypeptid, das eine Aminosäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einem Teil oder Derivat davon.
 - 84. Immunogenes Fragment des Proteins oder Polypeptids nach Anspruch 82 oder 83.
 - 85. Fragment des Proteins oder Polypeptids nach Anspruch 82 oder 83, das an einen menschlichen HLA-Rezeptor oder menschlichen Antikörper bindet.
- 86. Mittel, das spezifisch an ein Protein oder Polypeptid oder an einen Teil davon bindet, wobei das Protein oder Polypeptid von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
 - (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149,
- 25 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
- 30 (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
 - (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.

- 87. Mittel nach Anspruch 86, wobei das Protein oder Polypeptid eine Aminosäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einem Teil oder Derivat davon.
- 88. Mittel nach Anspruch 86 oder 87, wobei das Mittel ein Antikörper ist.
- 89. Mittel nach Anspruch 88, wobei der Antikörper ein monoklonaler, chimärer oder humanisierter Antikörper oder ein Fragment eines Antikörpers ist.
 - 90. Antikorper, der selektiv an einen Komplex aus:

- 15 (i) einem Protein oder Polypeptid oder einem Teil davon und
 - (ii) einem MHC-Molekül bindet, an das das Protein oder Polypeptid oder der Teil davon bindet, wobei der Antiköper nicht alleine an (i) oder (ii) bindet und das Protein oder Polypeptid von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
- (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des
- 25 Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
- 30 (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
 - 91. Antikörper nach Anspruch 90, wobei das Protein oder Polypeptid eine Aminosäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98,

102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls, einem Teil oder Derivat davon.

- 5
- 92. Antikörper nach Anspruch 90 oder 91, wobei der Antikörper ein monoklonaler, chimärer oder humanisierter Antikörper oder ein Fragment eines Antikörpers ist.
- 93. Konjugat zwischen einem Mittel nach einem der Ansprüche 86-89 oder einem 10 Antikörper nach einem der Ansprüche 90-92 und einem therapeutischen oder diagnostischen Mittel.
 - 94. Konjugat nach Anspruch 93, wobei das therapeutische oder diagnostische Mittel ein Toxin ist.

15

- 95. Kit zum Nachweis der Expression oder abnormalen Expression eines Tumorassoziierten Antigens, umfassend Mittel zum Nachweis
- (i) der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder eines Teils davon,
- (ii) des Tumor-assoziierten Antigens oder eines Teils davon,
- 20 (iii) von Antikörpern, die an das Tumor-assoziierte Antigen oder einen Teil davon binden, und/oder
 - (iv) von T-Zellen, die für einen Komplex zwischen dem Tumor-assoziierten Antigen oder einem Teil davon und einem MHC-Molekül spezifisch sind, wobei das Tumor-assoziierte Antigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird, die aus der Gruppe ausgewählt ist bestehend aus:
 - (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223,
- 30 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,

- WO 2005/030250 PCT/EP2004/010697
- (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist, und
- (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
- 5 96. Kit nach Anspruch 95, wobei die Mittel zum Nachweis der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, oder eines Teils davon Nukleinsäuremoleküle für die selektive Amplifikation der Nukleinsäure sind.
- 97. Kit nach Anspruch 96, wobei die Nukleinsäuremoleküle für die selektive Amplifikation der Nukleinsäure eine Sequenz von 6-50 zusammenhängenden Nukleotiden aus der Nukleinsäure, die für das Tumor-assoziierte Antigen kodiert, umfassen.
- 98. Rekombinantes DNA-Molektil, umfassend eine Promotorregion, die von einer Nukleinsäure abgeleitet ist, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des Sequenzprotokolls.

- 99. Pharmazeutische Zusammensetzung, umfassend ein Mittel, das die Expression oder Aktivität der Tumorantigene gemäß SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls hemmt.
- 100. Antikörper, der an die extrazellulären Bereiche von Proteinen umfassend eine Sequenz gemäß SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 30 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240, 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls bindet.

- 101. Pharmazeutische Zusammensetzung nach Anspruch 99, wobei das Mittel eine Autisense-Nukleinsäure ist, die selektiv mit der Nukleinsäure hybridisiert, die für die Tumorantigene kodiert.
- 5 102. Pharmazeutische Zusammensetzung nach Anspruch 101, wobei die Antisense-Nukleinsäure eine Sequenz von 6-50 zusammenhängenden Nukleotiden aus den Nukleinsäuren, die für die Tumorantigene kodieren, umfasst.
- 103. Pharmazeutische Zusammensetzung nach Anspruch 99, wobei das Mittel RNA10 Interferenz (RNAi) ist.
 - 104. Pharmazeutische Zusammensetzung nach Anspruch 103, wobei die RNAi eine sog. short hairpin Struktur (shRNA) enthält.
- 15 105. Pharmazeutische Zusammensetzung nach Anspruch 104, wobei shRNA durch Transkription nach Transfektion mit Expressionsvektoren entstehen.

- 106. Pharmazeutische Zusammensetzung nach Anspruch 104, wobei shRNA durch Transkription von Retroviren entsteht
- 107. Pharmazeutische Zusammensetzung nach Anspruch 104, wobei shRNA durch lentivirale Systeme vermittelt wird.
- 108. Pharmazeutische Zusammensetzung nach Anspruch 99, wobei das Mittel ein kleines chemisches Molekül ist.
 - 109. Pharmazcutische Zusammensetzung nach Anspruch 108, wobei die kleinen chemischen Moleküle an die Tumorantigene binden
- 110. Pharmazcutische Zusammensetzung nach Anspruch 109, wobei die kleinen chemischen Moleküle an die extrazellulären Bereiche von Proteinen umfassend eine Sequenz gemäß SEQ ID NOs: 2, 6, 10, 14, 18, 22, 26, 30, 34, 38, 42, 46, 50, 54, 58, 62, 66, 70, 74, 78, 82, 86, 90, 94, 98, 102, 106, 110, 114, 118, 122, 126, 130, 134, 138, 142, 146, 150, 154, 158, 162, 166, 170, 174, 176, 180, 184, 188, 192, 196, 200, 204, 208, 212, 216, 220, 224, 228, 232, 236, 240,

WO 2005/030250 PCT/EP2004/010697

- 244, 248, 252, 256, 260, 264, 268, 270, 272, 274, 276, 278, 280 bis 308, 310 des Sequenzprotokolls binden.
- 111. Verfahren zur Behandlung Diagnose oder Überwachung eines metastasierenden Tumors, der sich durch die Expression oder abnormaler Expression mindestens eines Tumorantigenes auszeichnet, umfassend die Verabreichung eines Antikörpers, der an mindestens eines der Tumorantigene oder einen Teil davon bindet und mit einem therapeutischen oder diagnostischen Mittel gekoppelt ist, wobei das mindestens eine Tumorantigen eine Sequenz aufweist, die von einer Nukleinsäure kodiert wird bestehend aus:
- (a) einer Nukleinsäure, die eine Nukleinsäuresequenz umfasst, die aus der Gruppe ausgewählt ist, bestehend aus SEQ ID NOs: 1, 5, 9, 13, 17, 21, 25, 29, 33, 37, 41, 45, 49, 53, 57, 61, 65, 69, 73, 77, 81, 85, 89, 93, 97, 101, 105, 109, 113, 117, 121, 125, 129, 133, 137, 141, 145, 149, 153, 157, 161, 165, 169, 173, 175, 179, 183, 187, 191, 195, 199, 203, 207, 211, 215, 219, 223, 227, 231, 235, 239, 243, 247, 251, 255, 259, 263, 267, 269, 271, 273, 275, 277, 279, 309 des
 Sequenzprotokolls, einem Teil oder Derivat davon,
 - (b) einer Nukleinsäure, die unter stringenten Bedingungen mit der Nukleinsäure unter (a) hybridisiert,
 - (c) einer Nukleinsäure, die in Bezug auf die Nukleinsäure unter (a) oder (b) degeneriert ist
- 20 (d) einer Nukleinsäure, die zu der Nukleinsäure unter (a), (b) oder (c) komplementär ist.
 - 112. Verfahren nach Anspruch 111, wobei der Antikörper ein monoklonaler Antikörper ist.
- 113. Verfahren nach Anspruch 111, wobei der Antikörper ein chimärer oder humanisierter25 Antikörper ist.
 - 114. Verfahren nach Anspruch 111, wobei der Antikörper ein Fragment eines natürlichen Antikörpers ist.

ð

12

₹ S

100bp

gen. DNA

NTC

empty

100bp

100bp

Abb. 2

 $\boldsymbol{\varpi}$

×	Lungen TI-4	÷	Kalon TI-4		iviageniN	N	GehiraN
	Lungen TI-4	· · · · · · · · · · · · · · · · · · ·	Kalon TI-4		MagenN		GehimN
	Lungen Tü-8		Kalon T5-8		KolonN		HerzN
			Kalon 75-8		KoloniV	N.	HetzN
	Langer TS-12		Kolon T9-12		Lymphkn.N	· · · · · · · · · · · · · · · · · · ·	LebeiN
	Lungen T9-12		Kolon T9-12		Lymphkn.N		LebeiN
	Piostata TI-4		Magen T14		UierusN		FankreasN
	Piostala TI-4		Magen T14		UlerusN		PankreasN
4	Piostala T5-8		Magen T§-8		ÖsopkagurN	C.	PBMC
أعطاره وأيد مها دويايها	Piostata T5-8	-	Magen T5-8		ÖsophagusN		PBMC
E.	HNO 71-5	-	Pankreas TI-5		HautN		PBMC akt
	HNO TI-5		Pankreas 71-5		HautN		PBMC akt
	Nieren TI-4	-	Leber 11-4		ThymusN	la l	LungeN
	Nigren T1-4		Leber TI-4		ThymusiN		Lungeiv
	Merea T5-8		Leber T5-8	1.	Elaseiv		OvarN
	Meren T5-8		Leber T5-8		BlaseN		OvarN
	genom. DNA		Mamma TI-4		MuskelN		MereN
	genom, DNA	_	Mamma TI-4		MuskelM		NieteN
Color	Interne Kont.		Mamma T5-8		Neg.K.		TestisN
- · · · · ·	interne Kont.		Mamma T5-8		Neg.K.		TestisN
			Ovarial T14		Leet		MilzN
			Ovarial T14		reet		MilzN
		100	Ovarial T5-8			- C.	Leer
		- Sarries	Ovarial T5-8				Leer

 \mathbf{w} Magen N7 600 700 500 **400** 200 9 Wagen Na Magen T1 Nagen No Magen T2 Nagen Na Magen T3 Wagen No. Magen T4 Leber T1 Magen T5 Leber T2 Magen T6 Leber T3 Magen 77 Magen 77 Leber T4 Magen 13 Magen T8 Leber T5 Magen T9 Leber T6 Magen T10 Maden 74 Leber T7 Nagen 7's Leber T8 Pankreas T1 Nagen Te Leber T9 Pankreas T2 1,449 Magen >> Leber T10 Pankreas T3 Maden To Pankroas T4 Maden To Parkreas T5 Magen Tro 1,000 Pankroas T6

Abb. S

 \square

Þ

14/50

 \mathbf{w}

Brust N (1723) 100 Brust Ty Brust T2 Brust T3 Brust Ta Bruse T5 CONTRACTOR OF THE Brust To Brust Ty EXAMPLE OF THE Brust Ta AVE. 18 AVE. 1 Brust To Brust 770 Brust 717 Brust 712

 \triangleright

 \Box

HNO TZ

HNO 73

HNO TA

HNO TS

100000 10000 Niere N (nes) 8 Niero Ty Niere 72 Niere T3 Niero T4 Niere Ts Niere Te Niere >> Niere Ta N_{lore} Tg Niere 770 Niero T11 Niere T12

 \triangleright

 \Box

10000 1000 Mamma N 200 5 Mamma 7 Mannna 2 Mannna 3 Mamma 4 Mannna S Mamma 6 Mamma > Mannna 8 **主义的**多数是1990年至 Mannna 9 Namma 10 **E** Mamma 17 Mamma 12 200

Niera N7 Niere NZ

Niero N3

Nieren 77

Nieren 72

Nieren 73

Nioren 74

Nieren Ts Nieren Té Nieren >>

Nieron Te Nieren To

Nieron 710

Nieren 777

Nieren Ttz

MO77

HNO TZ MNO 73 MNO TA HNO TS \Box

1000,0

100,0

10,0

ALCOHOLD STREET

बर्ग सहस्त्रा

O TOO A SHE'LL

PERSONAL PROPERTY OF THE PERSON NAMED IN COLUMN TWO IS NOT THE PERSON NAMED IN COLUMN TO THE PER

45.00

140 160 100 120 Genira 40 60 80 20 0 THE PROPERTY OF THE PROPERTY O 20342 e e THE TELET Ly be sold the sold t रसङ्ख gesundes Gewebe SOSO Tumoren DE VE March altrate on the beauty \$28' been - E CHECK CANA man year of a pictor of the first F. 6-10-เมระจะสะบายสหรรมเส

W

D

 \Box 10000,0 1000,0 100,0 10fbp Magen Tra Magen Magen N Pallkreas Pankreas 71-5 Pankreas N Ovarial Try Ovarial 75-8 Magen T1-4 Lungen Tig Lungen 75-8 Normalgewebe Tumoren mit zug. Magen T5-8 Osophagus 714 Pankreas T1-5 Lunge N Herz Kolon Winday P Lymphkn. Lungen T1-4 gesundes Gewebe Uterus Haus Thymus Lungen T5-S Musker Niere Lungen T9-12 Testis MIL

Abb. 47

 ϖ

 \triangleright

342-10PCT.txt SEQUENZPROTOKOLL

<110> Ganymed Pharmaceuticals AG <120> Identifizierung von tumorassoziierten zelloberflächen-Antigenen für die Diagnose und Therapie <130> 342-10PCT · <150> DE 103 44 799.7 2003-09-26 <151> <160> 312 <170> PatentIn Version 3.1 <210> <21.1> 920 <212> DNA <213> Homo sapiens <400> 1 tctgtagagg ggaatggctg ctgtgtcatg ggggtgcatg agcagcccag tggagaggtg 60 cacttggtga gaaaccgatg cctctgccaa ccacctgcac taacctgctg ggtctgagac 120 tgagccactt tggaagctga tcttggagca ccagtcaagc ccttagctgg ctgcagccac 180 agccaacaac aagactgcaa cctcctgggg gatcctgagc cagaatcccc tggctaaatt 240 gctccttgat tcttaaccca cagaaattgt gtaagacctc catcaggtgt cgacaaggaa 300 gatcccagta gggcaggaga caggagcacc tctgctgtgg ccaatgcagg aatgctggcc 360 atcattgctt ctgctgggcg actgagaagc atcacccact tccccagaac cttttttacg 420 tggagtgaaa actttaaggg gctgtccagc taaacctcca acctccagat cccatgccaa 480 tttctctgct tctgcaaaag gacttcaagt gaaagacatc tgcagctgtg aacgggggta 540 600 aaaccctccc tgccccaggc cccaagcaag gatttcccta gcggggagga aggtagaatc 660 gagagacctc taaccctggg agaggaggga gggaaatctc cgaggaccag ggttatgcaa 720 caacacaagg gaagtacctg ctgggttctg ggggttgggg aaggaaaatc cctactgccc 780 caagagccag ccccgaaccc aaggcacagc ttatactggc cccggggcct gggggggcac gaaaaccttg aaaaaggggc gccttcccag cttccccggg ggtaagggct ttacccccca 840 gaggggggg gaaaaatccg agtgggatct ttcccaaccg ccgaagacta aaacctttaa 900 920 accccaaag aaaccttcta <210> 7

<210> 2 <211> 88

<212> PRT <213> Homo sapiens

<400> 2

arg Arg Phe Leu Trp Gly Phe Lys Gly Phe Ser Leu Arg Arg Leu Gly 1 5 10

Lys Ile Pro Leu Gly Phe Phe Pro Pro Pro Leu Gly Gly Lys Ala Leu 20 25 30

342-10PCT.txt

Thr Pro Gly Glu Ala Gly Lys Ala Pro Leu Phe Gln Gly Phe Arg Ala 35 40 45

Pro Pro Gly Pro Gly Ala Ser Ile Ser Cys Ala Leu Gly Ser Gly Leu 50 60

Ala Leu Gly Ala Val Gly Ile Phe Leu Pro Gln Pro Pro Glu Pro Ser 65 70 75 80

Arg Tyr Phe Pro Cys Val Val Ala 85

<210> 3 22 <211> <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 3 gcagccacag ccaacaacaa ga 22 <210> 25 <211> <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 4 25 acagcagagg tgctcctgtc tcctg <210> 2856 <211> <212> DNA Homo sapiens atggccaaaa gaaatctcag cactgtgaca gagttcattc ttgtagtctt cacagatcac 60 cctgaactgg cagttccact cttcctagtg tttctcagtt tctatcttgt cacttttctg 120 180 gggaatgggg ggatgatcat tctaatccaa gtggatgccc aactccacac ccccgtgtac 240 ttcttcctga gccaccttgc tttcctggat gcctgctgtg cctcagtaat cacccctcag attotggcca cactggccac agacaagaca gttatotoot atggctgccg tgctgtgcag 300 360 ttctctttct tcaccatatg tgcaggcaca gagtgttacc tgctgtcagt gatggcctat 420 gaccgctttg ttgccattag caatccactg cactgtaaca tgaccatgac tccaggtacc 480 tgcagggtct ttttggccag tgccttcatc tgtggggtgt caggggccat tctgcatacc 540 acgtgcacct tcaccctctc cttctgttgt gacaatcaga tcaacttctt cttctgtgac

ctcccaccc tgctgaagct cgcctgcagc agcatgacac aaactgagat tgtcattctc

600

ctttgtgcaa aat	gcatgtt cct	agccaat	342-10PCT.gtcatggtta	txt tcctgatctg	ctacatgctc	660
attatcagag cca	ttttgag ggt	gaagtcg	gcaggaggcc	tcctgatagc	atctgctcat	720
ttcgatgcat atg	tatatga gac	aggcatc	aactacaaca	cagtttatgg	ctcaggaaag	780
gcagtagggt ggt	cctggag gag	cctgcgg	gaaaccaacc	acatgagacc	aggaaatact	840
tcaaaacact cag	cagccca gct	gcatcaa	tgcctcatcc	agcaagttgg	caggtggccc	900
ttgcagagca tgc	ccttccc cgt	ttctgca	gggccacctt	ataagtcagt	gcagcctctc	960
cctggagacc ccc	ggcctct cct	gtgcatc	accggattat	ttctgacttt	gaagatgatg	1020
gggtgtgggc cca	ggaggcc cag	ıggacagg	aagtctgact	tcttcataaa	cacagaccct	1080
ggtgcagggt cac	cagaaga aca	igaggtgt	ggatgggaag	ggcatccttc	ccactcctat	1140
accctggggc tgt	ctctgcc agt	caacttc	ggcctgaaat	gtccatggtg	gacactatct	1200
ggacccccag cta	cctgcca acg	tccagac.	ctgcagacac	cttctccacc	aaaggagata	1260
tgttcatccg ggt	tgcgacc cct	tacacac	agcgctggac	cagacagaag	tcaagttcca	1320
gcagcctccg gag	cagccac tat	gctgaca	aaggggctgc	ccgacatcac	tgtgggactg	1380
cagatttatg act	cctgcat cto	agggatc	caggctctgg	ggagcaccct	ggccctgctg	1440
tccaatcagc tto	cacccac aac	caactat	gcttgtggct	cccagcaaca	tctcctgggc	1500
gtggttggag gga	tgacctt cct	ggagtca	gagcccatgt	ctgagctgct	ctccatctac	1560
agagtccctc agg	gccaaag act	caccaaa	aactttgaag	taaaagaact	tgtctgcaca	1620
tatctggtag gad	agcttcc tta	ntggcctg	gtcagttatg	acaacagcaa	ctttgagtgg	1680
ctggatcagc ago	rtgcagaa gca	agatcggg	ggcgagggac	ttcctgttgg	cgctgcgccc	1 740
agccgtgtag cca	aggcaaca gto	tgatgag	gaagctgtgg	gaggagtgca	gggatacagg	1800
tggtctggat tag	ggggcttc cat	tccaaagt	gccagagaag	gggcttggca	tcgcacaggg	1860
ctggagaaca tga	accactgo cca	acctgtct	gccttcaaac	ttcctgatct	aactgccact	1920
taccaageet acc	tggcagc caa	agccctg	tgggttgcct	atcagaactt	gatgtcctgc	1980
tctgagagag agg	ggaccatt cct	tgggaggc	acgtatgcca	atgcatggga	agccaggctt	2040
tctcaggtta act	ttcaccac caa	aagcccaa	gaagaggttt	tcttcgccaa	agatggggaa	2100
gtgctgacaa cg	tttgacat taa	aaacatc	tatgttctcc	cagacctgtc	aggacagaca	2160
gccattgttg gad	cactttga cti	tcagagca	ccttctggaa	aagagcttct	gttggatgac	2220
agcgcaattg to	tgggcaga agg	gaccctta	aagattagag	ctgagagaac	cctaagaacc	2280
aagaccacac age	cacctctc aca	atcccaag	ctccaggagt	cccttcctct	gtctgcaacg	2340
aaaaacgtcc tg	tggaaacc agg	gaagtcaa	ccctatttga	gaagtcaaaa	tgctgctaca	2400
aaagccttcc ctg	gacccaga aga	agaaatcg	caatgtcacc	agtttctctt	tctcccttca	2460
gatagtgttg ca	tgtcagaa gtg	gctctgac	aaccagtggc	ccaatgtgca	gaagggcgag	2520
tgcatcccca aaa	accettga eti	tcttgttc	tatcacaagc	cccttgacac	agcgttggct	2580
gtctgcacag cc	ctgctctt tc1	tccttgcc	ctggccatct	taggcatctt	ccatgttgtc	2640

2700

2760

2820 2856

342-10PCT.txt tgctcctgtg tctgggtgtc cttcatacct gcccacatgc atgcccacag caaagacacc atggccatgg aggtctttgt catcttggca tcagcaggag gcctcatgtc ctccctcttc ttttccaaat gctacatcat ccttctccat cctgaaaaga acacaaaaga ccaaatgttt ggccggcatc atcgcaagtg ggaaaaactg aagtga <210> 951 PRT Homo sapiens <400> Met Ala Lys Arg Asn Leu Ser Thr Val Thr Glu Phe Ile Leu Val Val 10 15 Phe Thr Asp His Pro Glu Leu Ala Val Pro Leu Phe Leu Val Phe Leu 20 25 30 Ser Phe Tyr Leu Val Thr Phe Leu Gly Ash Gly Gly Met Ile Ile Leu 35 40 Ile Gln Val Asp Ala Gln Leu His Thr Pro Val Tyr Phe Phe Leu Ser His Leu Ala Phe Leu Asp Ala Cys Cys Ala Ser Val Ile Thr Pro Gln 65 70 80 Ile Leu Ala Thr Leu Ala Thr Asp Lys Thr Val Ile Ser Tyr Gly Cys
85 90 95 Arg Ala Val Gln Phe Ser Phe Phe Thr Ile Cys Ala Gly Thr Glu Cys
100 105 110 Tyr Leu Leu Ser Val Met Ala Tyr Asp Arg Phe Val Ala Ile Ser Asn 115 120 125 Pro Leu His Cys Asn Met Thr Met Thr Pro Gly Thr Cys Arg Val Phe 130 135 140 Leu Ala Ser Ala Phe Ile Cys Gly Val Ser Gly Ala Ile Leu His Thr 145 150 155 160 Thr Cys Thr Phe Thr Leu Ser Phe Cys Cys Asp Asn Gln Ile Asn Phe 165 170 175 Phe Phe Cys Asp Leu Pro Pro Leu Leu Lys Leu Ala Cys Ser Ser Met 180 185 190

Thr Gln Thr Glu Ile Val Ile Leu Leu Cys Ala Lys Cys Met Phe Leu 195 200 205

Ala Asn Val Met Val Ile Leu Ile Cys Tyr Met Leu Ile Ile Arg Ala 210 215 220 Ile Leu Arg Val Lys Ser Ala Gly Gly Leu Leu Ile Ala Ser Ala His 225 230 235 Phe Asp Ala Tyr Val Tyr Glu Thr Gly Ile Asn Tyr Asn Thr Val Tyr 245 250 255 Gly Ser Gly Lys Ala Val Gly Trp Ser Trp Arg Ser Leu Arg Glu Thr 260 265 270 Asn His Met Arg Pro Gly Asn Thr Ser Lys His Ser Ala Ala Gln Leu 275 280 285 His Gln Cys Leu Ile Gln Gln Val Gly Arg Trp Pro Leu Gln Ser Met 290 295 300 Pro Phe Pro Val Ser Ala Gly Pro Pro Tyr Lys Ser Val Gln Pro Leu 305 310 315 320 Pro Gly Asp Pro Arg Pro Leu Leu Cys Ile Thr Gly Leu Phe Leu Thr 325 330 335 Leu Lys Met Met Gly Cys Gly Pro Arg Arg Pro Arg Asp Arg Lys Ser 340 345 Asp Phe Phe Ile Asn Thr Asp Pro Gly Ala Gly Ser Pro Glu Glu Gln 355 360 365 Arg Cys Gly Trp Glu Gly His Pro Ser His Ser Tyr Thr Leu Gly Leu 370 380 Ser Leu Pro Val Asn Phe Gly Leu Lys Cys Pro Trp Trp Thr Leu Ser 385 390 395 Gly Pro Pro Ala Thr Cys Gln Arg Pro Asp Leu Gln Thr Pro Ser Pro 405 415 Pro Lys Glu Ile Cys Ser Ser Gly Leu Arg Pro Leu Thr His Ser Ala 420 425 430 Gly Pro Asp Arg Ser Gln Val Pro Ala Ala Ser Gly Ala Ala Thr Met 435 440 445 Leu Thr Lys Gly Leu Pro Asp Ile Thr Val Gly Leu Gln Ile Tyr Asp 450 455 460 Ser Cys Ile Ser Gly Ile Gln Ala Leu Gly Ser Thr Leu Ala Leu Leu 465 470 475 480

Ser Asn Gln Leu Pro Pro Thr Thr Asn Tyr Ala Cys Gly Ser Gln Gln 485

His Leu Leu Gly Val Val Gly Gly Met Thr Phe Leu Glu Ser Glu Pro 500

Met Ser Glu Leu Leu Ser Ile Tyr Arg Val Pro Gln Gly Gln Arg Leu 515 520 525

Thr Lys Asn Phe Glu Val Lys Glu Leu Val Cys Thr Tyr Leu Val Gly 530 540

Gln Leu Pro Tyr Gly Leu Val Ser Tyr Asp Asn Ser Asn Phe Glu Trp 545 550 560

Leu Asp Gln Gln Leu Gln Lys Gln Ile Gly Gly Glu Gly Leu Pro Val 565 570 575

Gly Ala Ala Pro Ser Arg Val Ala Arg Gln Gln Ser Asp Glu Glu Ala 580 585 590

Val Gly Gly Val Gln Gly Tyr Arg Trp Ser Gly Leu Gly Ala Ser Ile 595 600 605

Gln Ser Ala Arg Glu Gly Ala Trp His Arg Thr Gly Leu Glu Asn Met $610 \hspace{1.5cm} 620$

Thr Thr Ala His Leu Ser Ala Phe Lys Leu Pro Asp Leu Thr Ala Thr 625 630 635 640

Tyr Gln Ala Tyr Leu Ala Ala Lys Ala Leu Trp Val Ala Tyr Gln Asn 645 650 655

Leu Met Ser Cys Ser Glu Arg Glu Gly Pro Phe Leu Gly Gly Thr Tyr 660 665 670

Ala Asn Ala Trp Glu Ala Arg Leu Ser Gln Val Asn Phe Thr Thr Lys 675 680 685

Ala Gln Glu Glu Val Phe Phe Ala Lys Asp Gly Glu Val Leu Thr Thr 690 695 700

Phe Asp Ile Lys Asn Ile Tyr Val Leu Pro Asp Leu Ser Gly Gln Thr 705 710 715 720

Ala Ile Val Gly His Phe Asp Phe Arg Ala Pro Ser Gly Lys Glu Leu 725 730 735

Leu Leu Asp Asp Ser Ala Ile Val Trp Ala Glu Gly Pro Leu Lys Ile 740 745 750

342-10PCT.txt
Arg Ala Glu Arg Thr Leu Arg Thr Lys Thr Thr Gln His Leu Ser His
755 760 765

Pro Lys Leu Gln Glu Ser Leu Pro Leu Ser Ala Thr Lys Asn Val Leu 770 780

Trp Lys Pro Gly Ser Gln Pro Tyr Leu Arg Ser Gln Asn Ala Ala Thr 785 790 795 800

Lys Ala Phe Pro Asp Pro Glu Glu Lys Ser Gln Cys His Gln Phe Leu 805 810 815

Phe Leu Pro Ser Asp Ser Val Ala Cys Gln Lys Cys Ser Asp Asn Gln 820 825 830

Trp Pro Asn Val Gln Lys Gly Glu Cys Ile Pro Lys Thr Leu Asp Phe 835 840 845

Leu Phe Tyr His Lys Pro Leu Asp Thr Ala Leu Ala Val Cys Thr Ala 850 860

Leu Leu Phe Leu Leu Ala Leu Ala Ile Leu Gly Ile Phe His Val Val 865 870 880

Cys Ser Cys Val Trp Val Ser Phe Ile Pro Ala His Met His Ala His 885 890 895

Ser Lys Asp Thr Met Ala Met Glu Val Phe Val Ile Leu Ala Ser Ala 900 905 910

Gly Gly Leu Met Ser Ser Leu Phe Phe Ser Lys Cys Tyr Ile Ile Leu 915 920

Leu His Pro Glu Lys Asn Thr Lys Asp Gln Met Phe Gly Arg His His 930 935

Arg Lys Trp Glu Lys Leu Lys 945 950

<210> 7 <211> 22 <212> DNA

<213> künstliche Sequenz

<220> <223> Oligonukleotid

<400> 7

aggtggtgtg acgctgctgc ta

<210> 22

DNA künstliche Sequenz 342-10PCT.txt

								r z 1.	,, ,,	LAL					
<220> <223>	olig	onuk'	Teot	id											
<400> tcttct	8 tggg	cttt	ggtg	gt g:	3	•									22
<210> <211> <212> <213>	9 543 DNA Homo	sap	iens	•											
<400>	9		60.60 .		adah a										- 60
ataaag						-							•		
aaatcc							_						_	_	
gaaggg							_					•		_	i
ctgtgt			-				_	_					_•		
tcatca															
aataca															
cactca	atag	ccag	gcaga	aa g	cgaa [,]	tatt	ggt	aaac	ctca	gta	tggt	gga	aaac	aagcto	g 420
gttgaa					-										
tccacc	taaa	agcg.	taca	gg a	tgta	atgc	c ag	tggti	ggaa	atca	atta	aag	acac:	tttgag	540
tag						·									543
<210> <211> <212> <213>	10 113 PRT Homo	sap ⁻	i en s												
<400>	10														
Met As 1	n Phe	Tyr	Leu 5	Leu	Leu	Ala	Ser	Ser 10	Ile	Leu	Cys	Ala	Leu 15	Ile	
Val Ph	е Тгр	Lys 20	Туr	Arg	Arg	Phe	Gln 25	Arg	Asn	Thr	GТу	Gไ u 30	Met	Ser	
Ser As	n Ser 35	Thr	Ala	Leu	Ala	Leu 40	val	Arg	Pro	Ser	Ser 45	Ser	Gly	Leu	
Ile As 50	n Ser	Asn	Thr	Asp	Asn 55	Asn	Leu	Ala	Va'l	туг 60	Asp	Leu	Ser	Arg	
Asp I1 65	e Leu	Asn	Asn	Phe 70	Pro	His	Ser	Ile	Ala 75	Arg	Gln	Lys	Arg	Ile 80	
Leu Va	l Asn	Leu	Ser 85	Met	٧al	Glu	Asn	Lys 90	Leu	∨al	G∏u	Leu	G] u 95	His	
Thr Le	u Leu	Ser 100	Lys	GТу	Phe	Arg	Gly 105	Ala	Ser	Pro	His	Arg 110	Lys	Ser	

342-10PCT.txt

Thr

<210> 11 <211> 22 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 11 gtgtgccttg attgtcttct gg	22
<210> 12 <211> 19 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 12 cctggctatt gagtgtggg	19
<210> 13 <211> 2761 <212> DNA <213> Homo sapiens	
<400> 13 ctaggcctca gtctgtctgc atccaggtgc ttattaaaac agtgtgttgc to	ccacaccgc 60
ctcgtgttgt ctgttggcgc gctctccggg ttccaaccaa tgcaagagcc t	_
ccctgaaacc tgcgaggggc ttccgtccac gtccccagtg gacctaccac co	
gggaaagcag gccacagcag ccggacaaag gaagctcctc agcctctagt c	
tgcatgcaca tcggtcactg atctcgccta ctggcacaga cgtgtttatc gg	gccaaactg 300
acceteacaa aaagetacca eegaagtgga eaggeeecta eactgtgata e	tcagcacac 360
caactgcagt gagagtccga ggactcccca actggatcca tcgcaccagg gt	tcaagctca 420
cccccaaggc agcttcttcc tccaaaacat taacagctaa gtgtttgtct gg	ggccaattt 480
ctcctaccaa gtttaaatta accaacattt ttttcttaaa accaaaacac aa	aggaagact 540
aaccacgtgc ttccaggaat ggcctgtatc tacccaacca ctttctatac ct	tctcttcca 600
accaaaagtc ttaatatggg aatatccctc accacgatcc taatactgtc ag	gtagctgtc 660
ctgctgtcca cagcagcccc tccgagctgc cgtgagtgtt atcagtcttt gc	cactacaga 720
ggggagatgc aacaatactt tacttaccat actcatatag aaagatcctg tt	tatggaaac 780
ttaatcgagg aatgtgttga atcaggaaag agttattata aagtaaagaa to	ctaggagta 840
tgtggcagtc gtaatggggc tatttgcccc agagggaagc agtggctttg ct	ttcaccaaa 900
attggacaat ggggagtaaa cactcaggtg cttgaggaca taaagagaga ac	cagattata 960

WO 2005/030250 PCT/EP2004/010697 10/223

			10/223			
gccaaagcca	aagcctcaaa	accaacaact	342-10PCT.		gcatttccat	1020
tcctttatac	aaaaactata	agcagatgca	tcccttccta	agccaggaaa	aaatctgttt-	1080
gtagatctag	gagaaccatt	gtgcttacca	tgaatgtgtc	caattgttgg	gtatgcgggg	1140
gagctttatg	agtgaacagt	ggctgtggga	cgggatagac	attccccctt	acttacaggc	1200
atcccaaaac	cccagactca	ctttcactcc	tcaggaatgc	ccgcagtcct	ggacacttac	1260
caacccagta	tgagggacgg	tgtgcatatc	ccgcaagtgg	actgataaaa	cccatcgcgc	1320
cgtaggtgaa	aacccgtcac	caaaccctaa	cagtcaatgc	ctccatagct	gagtggtggc	1380
caaggttacc	ccctggagcc	tggtctcctt	ctaacttaag	ctacctcaat	tgtgtcttgt	1440
caaaaaaggc	ctggtactgt	acgaacacca	ctaaccc tta	tgccgcatac	ctccgcctaa	1500
gtgtactatg	cgacaatcct	aggaacacca	gctgacaatg	gactgccact	gacggattcc	1560
tgtggatatg	gggaacccag	gcttactcac	agctacctta	tcactggcaa	ggtacttgct	1620
tcctaggcac	aattcaacct	ggattctttt	tacttccgaa	gcaggcgggc	aacaccctca	1680
gagtccctgt	gtatgataac	cagagaaaaa	tgatccttgg	aggtaggagg	gagccaaaga	1740
ttgtgagagg	acgagtggcc	tctgcaacgg	atcattgaat	actatggtcc	tgccacttgg	1800
gcagaggatg	gttcatgggg	ttatcgcact	cccatatata	tgccaaatag	agcgattaga	1860
ctacaagctg	ttctagagat	aatcactaac	caaactgcct	cagccctaga	aatgctcgcg	1920
caacaacaaa	accaaatgcg	cgcggcaatt	tatcaaaaca	ggctggccct	agactactta	1980
ttagcagaag	agggtgcggg	ctgtggtaag	tttaacatct	ccaattgctg	tcttaacata	2040
ggcaataatg	gagaagaggt	tctggaaatc	gcttcaaaca	tcagaaaagt	agcccgtgta	2100
ccagtccaaa	cctgggaggg	atgggaccca	gcaaaccttc	taggagggtg	gttctctaat	2160
ttaggaggat	ttaaaatgct	ggtggggaca	gtcattttca	tcactggggt	cctcctgttt	2220
ctcccctgtg	gtatcccatt	aaaactcttg	ttgaaactac	agttaacctc	ctgacaatcċ	2280
agatgatgct	cctgctacag	cggcacgatg	gataccaacc	cgtctctcaa	gaatacccca	2340
aaaattaagt	ttttctttt	ccaaggtgcc	cacgccaccc	ctatgtcacg	cctgaagtag	2400
ttattgagaa	agtcgtccct	ttcccctttt	ctataaccaa	atagacagga	atggaagatt	2460
ctcctcgggg	cctgaaagct	tgcgggatga	ataactcctc	ctcctcaggc	ccagtcccaa	2520
ggtacaaact	tgcaccagca	gcaagatagc	agaggcagga	agagagctgg	ctggaagaca	2580
cgtaccccct	gaagatcaag	a g gga gg tcg	ccctggtact	acatagcagt	cacgttaggc	2640
tgggacaatt	cctgtttaca	gaggactata	aaacccctgc	cccatcctca	cttggggctg	2700
atgccatttt	aggcctcagc	ctgtctgcat	gcaggcgctc	attaaaacag	catgttgctc	2760
С						2761

<210> 14 <211> 160 <212> PRT <213> Homo sapiens

342-10PCT.txt

<400> 14

Met Ala Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr Lys
1 10 15

Ser Leu Ásn Met Gly Ile Ser Leu Thr Thr Ile Leu Ile Leu Ser Val 20 30

Ala Val Leu Leu Ser Thr Ala Ala Pro Pro Ser Cys Arg Glu Cys Tyr 35 40

Gln Ser Leu His Tyr Arg Gly Glu Met Gln Gln Tyr Phe Thr Tyr His 50 60

Thr His Tle Glu Arg Ser Cys Tyr Gly Asn Leu Ile Glu Glu Cys Val 65 70 80

Glu Ser Gly Lys Ser Tyr Tyr Lys Val Lys Asn Leu Gly Val Cys Gly 85 90 95

Ser Arg Asn Gly Ala Ile Cys Pro Arg Gly Lys Gln Trp Leu Cys Phe 100 110

Thr Lys Ile Gly Gln Trp Gly Val Asn Thr Gln Val Leu Glu Asp Ile $\frac{115}{125}$ 120 125

Lys Arg Glu Gln Ile Ile Ala Lys Ala Lys Ala Ser Lys Pro Thr Thr 130 140

Pro Pro Glu Asn Arg Pro Arg His Phe His Ser Phe Ile Gln Lys Leu 145 150 155

<210>

<211> 21

<212> DNA

<213> künstliche Sequenz

<220> <223> Oligonukleotid

<400> 1.5

cctctagtcg cctctctgtg c

21

. 17

<210> 16 <211> 17 <212> DNA

<213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 16

accctggtgc gatggat

<210> 17 <211> 1635

342-10PCT.txt

< 212>	UNA	
<213>	Homo	sapiens

1220	0 5ap (2					
<400> 17 gcctgtccct	gccttaagtg	cctactggat	cccgggagcc	tgggctgggg	cctgggcact	60
gcttcctcct	tggcccctca	ggcccttgga	agc agagaga	gaacctcttg	cagatcccag	120
gctcgtcccc	agcacagcag	acaccaggaa	ggtggccaga	gcctcactga	gccgaaccga	180
cggccgccca	cccacccagg	ctggagccat	ggataaattc	cgcatgctct	tccagcactt	240
ccagtcaagc	tcggagtcgg	tgatgaatgg	catctgcctg	ctgctggctg	cggtcaccgt	300
caagctgtac	tcctcctttg	acttcaactg	tccctgcctg	gtgcactaca	atgcactcta	360
cggcctgggc	c tgctgctga	cgcccccgct	cgccctgttt	ctctgcggcc	tcctcgccaa	420
ccggcagtct	gtggtgatgg	tcgaggagtg	gcgccggccc	gcagggcacc	ggaggaagga	480
cccaggcatc	atcaggtaca	tgtgctcctc	tgtgctgcag	agggcgctgg	ccgcccccct	540
ggtctggatc	ctgctggccc	tccttgacgg	gaagtgcttc	gtgtgtgcct	tcagcagctc	600
tgtggaccct	gagaagtttc	tggactttgc	caacatgacc	cccagccagg	tacagctctt	660
cctggccaag	gttccctgca	aggaggatga	gctggtcagg	gatagccctg	ctcggaaggc	720
agtgtctcgc	tacctgcggt	gcctgtcaca	ggccatcggc	tggagcgtca	ccctgctgct	780
gatcatcgcg	gccttcctgg	cccgctgcct	gaggccctgc	ttcgaccaga	cagtcttcct	840
gcagcgcaga	t ac tggagca	actacgtgga	cctggagcag	aagctcttcg	acgagacctg	900
ctgtgagcat	gcgcgggact	tcgcgcaccg	ctgcgtgctg	cacttctttg	ccagcatgcg	960
gagtgagctg	caggcgcggg	ggctgcgccg	gggcaatgca	ggcaggagac	tcgagctccc	1020
cgcagtgcct	gagcccccag	aaggcctgga	tagtggaagt	gggaaggccc	acctgcgcgc	1080
aatctccagc	cgggagcagg	tggaccgcct	cctaagcacg	tggtactcca	gcaagccgcc	1140
gctggacctg	gctgcatccc	ccgggctctg	cgggggtggc	cttagccacc	gcgcccctac	1200
cttggcactg	ggcacgaggc	tgtcacaaca	caccgacgtg	tagggtcctg	gccaggcttg	1260
aagcggcagt	gttcgcaggt	gaaatgccgc	gctgacaaag	ttctggagtc	tttccaggcc	1320
gtggggaccc	cacggcaggc	accctaagtc	ttgttagcct	cctttttaaa	gtagcccaat	1380
ctctgcctag	tttctgggtg	tggcctccag	cgcgcttcac	aaactttaat	gtggactcgg	1440
ttcaccgagg	gccttgttaa	atacaggttc	agacagtgta	gccaggaccg	agtctgagat	1500
tctgcatttt	aaacaagctc	ctggaggctg	atgtgctttt	ggtcagtgaa	ccaaactttg	1560
agtagcaaga	atctaagtaa	atctgccatg	ggttctgggt	tctagatgtc	aattctaaat	1620
aataataatg	acctt					1635

<210> 18 <211> 344 <212> PRT <213> Homo sapiens

<400> 18

PCT/EP2004/010697

Met Asp Lys Phe Arg Met Leu Phe Gln His Phe Gln Ser Ser Glu 10 15 Ser Val Met Asn Gly Ile Cys Leu Leu Leu Ala Ala Val Thr Val Lys 20 25 30 Leu Tyr Ser Ser Phe Asp Phe Asn Cys Pro Cys Leu Val His Tyr Asn 35 40 45 Ala Leu Tyr Gly Leu Gly Leu Leu Leu Thr Pro Pro Leu Ala Leu Phe 50 60 Leu Cys Gly Leu Leu Ala Asn Arg Gln Ser Val Val Met Val Glu Glu 65 70 75 Trp Arg Arg Pro Ala Gly His Arg Arg Lys Asp Pro Gly Ile Ile Arg 85 90 95 Tyr Met Cys Ser Ser Val Leu Gln Arg Ala Leu Ala Ala Pro Leu Val Trp Ile Leu Leu Ala Leu Leu Asp Gly Lys Cys Phe Val Cys Ala Phe 115 120 125 Ser Ser Ser Val Asp Pro Glu Lys Phe Leu Asp Phe Ala Asn Met Thr 130 140 Pro Ser Gln Val Gln Leu Phe Leu Ala Lys Val Pro Cys Lys Glu Asp 145 150 155 Glu Leu Val Arg Asp Ser Pro Ala Arg Lys Ala Val Ser Arg Tyr Leu 165 170 175 Arg Cys Leu Ser Gln Ala Ile Gly Trp Ser Val Thr Leu Leu Leu Ile 180 185 Ile Ala Ala Phe Leu Ala Arg Cys Leu Arg Pro Cys Phe Asp Gln Thr 195 200 205 Val Phe Leu Gln Arg Arg Tyr Trp Ser Asn Tyr Val Asp Leu Glu Gln 210 220 Lys Leu Phe Asp Glu Thr Cys Cys Glu His Ala Arg Asp Phe Ala His 225 230 235 240 Arg Cys Val Leu His Phe Phe Ala Ser Met Arg Ser Glu Leu Gln Ala 245 250 255 Arg Gly Leu Arg Arg Gly Asn Ala Gly Arg Arg Leu Glu Leu Pro Ala 265 270

342-10PCT.txt Val Pro Glu Pro Pro Glu Gly Leu Asp Ser Gly Ser Gly Lys Ala His 275 280 285							
Leu Arg Ala Ile Ser Ser Arg Glu Gln Val Asp Arg Leu Leu Ser Thr 290 295 300							
Trp Tyr Ser Ser Lys Pro Pro Leu Asp Leu Ala Ala Ser Pro Gly Leu 305 310 320							
Cys Gly Gly Leu Ser His Arg Ala Pro Thr Leu Ala Leu Gly Thr							
Arg Leu Ser Gln His Thr Asp Val 340							
<210> 19 <211> 20 <212> DNA <213> künstliche Sequenz							
<220> <223> Oligonukleotid							
<400> 19 gaggaaggac ccaggcatca	20						
<210> 20 <211> 20 <212> DNA <213> künstliche Sequenz							
<220> <223> Oligonukleotid							
<400> 20 gaaggcacac acgaagcact	20						
<210> 21 <211> 4556 <212> DNA <213> Homo sapiens							
<400> 21 gcggccgccc cattcccaga ccggccgcca gcccatctgg ttagctcccg ccgctccgcg	60						
ccgcccggga gtcggggagcc gcgggggaacc gggcacctgc acccgcctct gggagtgagt	120						
ggttccagct ggtgcctggc ctgtgtctct tggatgccct gtggcttcag tccgtctcct	180						
gttgcccacc acctcgtccc tgggccgcct gataccccag cccaacagct aaggtgtgga	240						
tggacagtag ggggctggct tctctcactg gtcaggggtc ttctcccctg tctgcctccc	300						
ggagctagga ctgcagaggg gcctatcatg gtgcttgcag gccccctggc tgtctcgctg	360						
ttgctgccca gcctcacact gctggtgtcc cacctctcca gctcccagga tgtctccagt	420						
gagcccagca gtgagcagca gctgtgcgcc cttagcaagc accccaccgt ggcctttgaa	480						
gacctgcagc cgtgggtctc taacttcacc taccctggag cccgggattt ctcccagctg	540						

342-10PCT.txt 600 gctttggacc cctccgggaa ccagctcatc gtgggagcca ggaactacct cttcagactc agcettgeca atgtetetet tetteaggee acagagtggg cetecagtga ggacacgege 660 cgctcctgcc aaagcaaagg gaagactgag gaggagtgtc agaactacgt gcgagtcctg 720 atcgtcgccg gccggaaggt gttcatgtgt ggaaccaatg ccttttcccc catgtgcacc 780 agcagacagg tggggaacct cagccggact attgagaaga tcaatggtgt ggcccgctgc 840 900 ccctatgacc cacgccacaa ctccacagct gtcatctcct cccaggggga gctctatgca 960 gccacggtca tcgacttctc aggtcgggac cctgccatct accgcagcct gggcagtggg 1.020 ccaccgcttc gcactgccca atataactcc aagtggctta atgagccaaa cttcgtggca gcctatgata ttgggctgtt tgcatacttc ttcctgcggg agaacgcagt ggagcacgac 1080 1140 tgtggacgca ccgtgtactc tcgcgtggcc cgcgtgtgca agaatgacgt ggggggcC9A 1200 ttcctgctgg aggacacatg gaccacattc atgaaggccc ggctcaactg ctcccgcccg 1260 ggcgaggtcc ccttctacta taacgagctg cagagtgcct tccacttgcc ggagcaggac 1320 ctcatctatg gagttttcac aaccaacgta aacagcatcg cggcttctgc tgtctgcgcc 1380 ttcaacctca gtgctatctc ccaggctttc aatggcccat ttcgctacca ggagaacccc 1440 agggctgcct ggctccccat agccaacccc atccccaatt tccagtgtgg caccctgcct 1500 gagaccggtc ccaacgagaa cctgacggag cgcagcctgc aggacgcgca gcgcctcttc 1560 ctgatgagcg aggccgtgca gccggtgaca cccgagccct gtgtcaccca ggacagcgtg 1620 cgcttctcac acctcgtggt ggacctggtg caggctaaag acacgctcta ccatgtactc 1680 tacattggca ccgagtcggg caccatcctg aaggcgctgt ccacggcgag ccgcagcctc 1740 cacggctgct acctggagga gctgcacgtg ctgccccccg ggcgccgcga gcccctgcgc 1800 agcctgcgca tcctgcacag cgcccgcgcg ctcttcgtgg ggctgagaga cggcgtcctg cgggtcccac tggagaggtg cgccgcctac cgcagccagg gggcatgcct gggggcccgg 1860 1920 gacccgtact gtggctggga cgggaagcag caacgttgca gcacactcga ggacagctcc 1980 aacatgagcc totggaccca gaacatcacc gcctgtcctg tgcggaatgt gacacgggat 2040 gggggcttcg gcccatggtc accatggcaa ccatgtgagc acttggatgg ggacaactca 2100 ggctcttgcc tgtgtcgagc tcgatcctgt gattcccctc gaccccgctg tgggggcctt 2160 gactgcctgg ggccagccat ccacatcgcc aactgctcca ggaatggggc gtggaccccg tggtcatcgt gggcgctgtg cagcacgtcc tgtggcatcg gcttccaggt ccgccagcga 2220 2280 agttgcagca accordated ecgcacggg ggccgcatet gcgtgggcaa gagccgggag gaacggttct gtaatgagaa cacgccttgc ccggtgccca tcttctgggc ttcctggggc 2340 tcctggagca agtgcagcag caactgtgga gggggcatgc agtcgcggcg tcgggcctgc 2400 2460 gagaacggca actoctgcct gggctgcggc gtggagttca agacgtgcaa ccccgagggc 2520 tgccccgaag tgcggcgcaa caccccctgg acgccgtggc tgcccgtgaa cgtgacgcag 2580 ggcggggcac ggcaggagca gcggttccgc ttcacctgcc gcgcgcccct tgcagacccg

342-10PCT.txt

cacggcctgc	agttcggcag	gagaaggacc	gagacgagga		ggacggctcc	2640
ggctcctgcg	acaccgacgc	cctggtggag	gtcctcctgc	gcagcgggag	cacctccccg	2700
cacacggtga	gcgggggctg	ggccgcctgg	ggcccgtggt	cgtcctgctc	ccg ggactgc	2760
gagctgggct	tccgcgtccg	caagagaacg	tgcactaacc	cggagccccg	caacgggggc	2820
ctgccctgcg	tgggcgatgc	tgccgagtac	caggactgca	acccccaggc	ttgcccagtt	2880
cggggtgctt	ggtcctgctg	gacctcatgg	tctccatgct	cagcttcctg	tggtgggggt	2940
cactatcaac	gcacccgttc	ctgcaccagc	cccgcaccct	ccccaggtga	ggacatctgt	3000
ctcgggctgc	acacggagga	ggcactatgt	gccacacagg	cctgcccaga	ag gc tggtcg	3060
ccctggtctg	agtggagtaa	gtgcactgac	gacggagccc	agagccgaag	ccggcactgt	3120
gaggagctcc	tcccagggtc	cagcgcctgt	gctggaaaca	gcagccagag	ccgcccctgc	3180
ccctacagcg	agattcccgt	catcctgcca	gcctccagca	tggaggaggc	caccgactgt	3240
gcagggttca	atctcatcca	cttggtggcc	acgggcatct	cctgcttctt	gggctctggg	3300
ctcctgaccc	tagcagtgta	cctgtcttgc	cagcactgcc	agcgtcagtc	ccaggagtcc	3360
acactggtcc	atcctgccac	ccccaaccat	ttgcactaca	agggcggagg	caccccgaag	3420
aatgaaaagt	acacacccat	ggaattcaag	accctgaaca	agaataactt	gatccctgat	3480
gacagagcca	acttctaccc	attgcagcag	accaatgtgt	acacgactac	ttactaccca	3540
agccccctga	acaaacacag	cttccggccc	gaggcctcac	ctggacaacg	gtgcttcccc	3600
aacagctgat	accgccgtcc	tggggacttg	ggcttcttgc	cttcataagg	cacagagcag	3660
atggagatgg	gacagtggag	ccagtttggt	tttctccctc	tgcactaggc	caagaacttg	3720
ctgccttg cc	tgtggggggt	cccatccggc	ttcagagagc	tctggctggc	attgaccatg	3780
ggggaaaggg	ctggtttcag	gctgacatat	ggccgcaggt	ccagttcagc	ccaggtctct	3840
catggttatc	ttccaaccca	ctgtcacgct	gacactatgc	tgccatgcct	gggctgtgga	3900
cctactgggc	atttgaggaa	ttggagaatg	gagatggcaa _.	gagggcaggc	ttttaagttt	3960
gggttggaga	caacttcctg	tggcccccac	aagctgagtc	tggccttctc	cagctggccc	4020
caaaaaaggc	ctttgctaca	tcctgattat	ctctgaaagt	aatcaatcaa	gtggctccag	4080
tagctctgga	ttttctgcca	gggctgggcc	attgtggtgc	tgccccagta	tgacatggga	4140
ccaaggccag	cgcaggttat	ccacctctgc	ctggaagtct	atactctacc	cagggcatcc	4200
ctctggtcag	aggcagtgag	tactgggaac	tggaggctga	cctgtgctta	gaagtccttt	4260
aatctgggct	ggtacaggcc	tcagccttgc	cctcaatgca	cgaaaggtgg	cccaggagag	4320
aggatcaatg	ccataggagg	cagaagtctg	gcctctgtgc	ctctatggag	actatcttcc	4380
agttgctgct	caacagagtt	gttggctgag	acctgcttgg	gagtctctgc	tggcccttca	4440
tctgttcagg	aacacacaca	cacacacact	cacacacgca	cacacaatca	caatttgcta	4500
cagcaacaaa	aaagacattg	ggctgtggca	ttattaatta	aagatgatat	ccagtc	4556

<211> 1151

<212> PRT

<213> Homo sapiens

<400> 22

Met Pro Cys Gly Phe Ser Pro Ser Pro Val Ala His His Leu Val Pro 10 15

Gly Pro Pro Asp Thr Pro Ala Gln Gln Leu Arg Cys Gly Trp Thr Val
20 25 30

Gly Gly Trp Leu Leu Ser Leu Val Arg Gly Leu Leu Pro Cys Leu Pro 35 40 45

Pro Gly Ala Arg Thr Ala Glu Gly Pro Ile Met Val Leu Ala Gly Pro 50 60

Leu Ala Val Ser Leu Leu Leu Pro Ser Leu Thr Leu Leu Val Ser His 65 70 75 80

Leu Ser Ser Gln Asp Val Ser Ser Glu Pro Ser Ser Glu Gln Gln 85 90 95

Leu Cys Ala Leu Ser Lys His Pro Thr Val Ala Phe Glu Asp Leu Gln
100 105 110

Pro Trp Val Ser Asn Phe Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln 115 125

Leu Ala Leu Asp Pro Ser Gly Asn Gln Leu Ile Val Gly Ala Arg Asn 130 135 140

Tyr Leu Phe Arg Leu Ser Leu Ala Asn Val Ser Leu Leu Gln Ala Thr 145 150 155 160

Glu Trp Ala Ser Ser Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gly 165 170 175

Lys Thr Glu Glu Glu Cys Gln Asn Tyr Val Arg Val Leu Ile Val Ala 180 185 190

Gly Arg Lys Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pro Met Cys 195 200

Thr Ser Arg Gln Val Gly Asn Leu Ser Arg Thr Ile Glu Lys Ile Asn 210 215 220

Gly Val Ala Arg Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala Val 225 230 235 240

Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Thr Val Ile Asp Phe Ser 245 250 255

Gly Arg Asp Pro Ala Ile Tyr Arg Ser Leu Gly Ser Gly Pro Pro Leu 260 265 270 Arg Thr Ala Gln Tyr Asn Ser Lys Trp Leu Asn Glu Pro Asn Phe Val 275 280 285 Ala Ala Tyr Asp Ile Gly Leu Phe Ala Tyr Phe Phe Leu Arg Glu Asn 290 295 300 Ala Val Glu His Asp Cys Gly Arg Thr Val Tyr Ser Arg Val Ala Arg 305 310 315 Val Cys Lys Asn Asp Val Gly Gly Arg Phe Leu Leu Glu Asp Thr Trp 325 330 335 Thr Thr Phe Met Lys Ala Arg Leu Asn Cys Ser Arg Pro Gly Glu Val 340 345 350Pro Phe Tyr Tyr Asn Glu Leu Gln Ser Ala Phe His Leu Pro Glu Gln 355 360 365 Asp Leu Ile Tyr Gly Val Phe Thr Thr Asn Val Asn Ser Ile Ala Ala 370 380 Ser Ala Val Cys Ala Phe Asn Leu Ser Ala Ile Ser Gln Ala Phe Asn 385 390 395 400 Gly Pro Phe Arg Tyr Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro Ile 405 410 Ala Asn Pro Ile Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Thr Gly 420 425 Pro Asn Glu Asn Leu Thr Glu Arg Ser Leu Gln Asp Ala Gln Arg Leu 435 440 445 Phe Leu Met Ser Glu Ala Val Gln Pro Val Thr Pro Glu Pro Cys Val 450 460 Thr Gln Asp Ser Val Arg Phe Ser His Leu Val Val Asp Leu Val Gln 465 470 475 Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Ile Gly Thr Glu Ser Gly 485 490 495 Thr Ile Leu Lys Ala Leu Ser Thr Ala Ser Arg Ser Leu His Gly Cys 500 505 Tyr Leu Glu Glu Leu His Val Leu Pro Pro Gly Arg Arg Glu Pro Leu 515 520 525

Arg Ser Leu Arg Ile Leu His Ser Ala Arg Ala Leu Phe Val Gly Leu 530 540 Arg Asp Gly Val Leu Arg Val Pro Leu Glu Arg Cys Ala Ala Tyr Arg 545 550 560 Ser Gln Gly Ala Cys Leu Gly Ala Arg Asp Pro Tyr Cys Gly Trp Asp 565 570 575 Gly Lys Gln Gln Arg Cys Ser Thr Leu Glu Asp Ser Ser Asn Met Ser 580 585 590Leu Trp Thr Gln Asn Ile Thr Ala Cys Pro Val Arg Asn Val Thr Arg 595 600 Asp Gly Gly Phe Gly Pro Trp Ser Pro Trp Gln Pro Cys Glu His Leu 610 620 Asp Gly Asp Asn Ser Gly Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp 625 635 640 Ser Pro Arg Pro Arg Cys Gly Gly Leu Asp Cys Leu Gly Pro Ala Ile 645 650 His Ile Ala Asn Cys Ser Arg Asn Gly Ala Trp Thr Pro Trp Ser Ser 660 665 Trp Ala Leu Cys Ser Thr Ser Cys Gly Ile Gly Phe Gln Val Arg Gln 675 680 685 Arg Ser Cys Ser Asn Pro Ala Pro Arg His Gly Gly Arg Ile Cys Val 690 695 700 Gly Lys Ser Arg Glu Glu Arg Phe Cys Asn Glu Asn Thr Pro Cys Pro 705 710 715 Val Pro Ile Phe Trp Ala Ser Trp Gly Ser Trp Ser Lys Cys Ser Ser 735 Asn Cys Gly Gly Met Gln Ser Arg Arg Arg Ala Cys Glu Asn Gly 740 750 Asn Ser Cys Leu Gly Cys Gly Val Glu Phe Lys Thr Cys Asn Pro Glu 755 760 765 Gly Cys Pro Glu Val Arg Arg Asn Thr Pro Trp Thr Pro Trp Leu Pro 770 780 Val Asn Val Thr Gln Gly Gly Ala Arg Gln Glu Gln Arg Phe Arg Phe 785 795 800

Thr Cys Arg Ala Pro Leu Ala Asp Pro His Gly Leu Gln Phe Gly Arg 805 810 815

Arg Arg Thr Glu Thr Arg Thr Cys Pro Ala Asp Gly Ser Gly Ser Cys 820 825

Asp Thr Asp Ala Leu Val Glu Val Leu Leu Arg Ser Gly Ser Thr Ser 845

Pro His Thr Val Ser Gly Gly Trp Ala Ala Trp Gly Pro Trp Ser Ser 850 860

Cys Ser Arg Asp Cys Glu Leu Gly Phe Arg Val Arg Lys Arg Thr Cys 865 870 875 880

Thr Asn Pro Glu Pro Arg Asn Gly Gly Leu Pro Cys Val Gly Asp Ala 885 890 895

Ala Glu Tyr Gln Asp Cys Asn Pro Gln Ala Cys Pro Val Arg Gly Ala 900 905 910

Trp Ser Cys Trp Thr Ser Trp Ser Pro Cys Ser Ala Ser Cys Gly 915 920 925

Gly His Tyr Gln Arg Thr Arg Ser Cys Thr Ser Pro Ala Pro Ser Pro 930 940

Gly Glu Asp Ile Cys Leu Gly Leu His Thr Glu Glu Ala Leu Cys Ala 945 950 955 960

Thr Gln Ala Cys Pro Glu Gly Trp Ser Pro Trp Ser Glu Trp Ser Lys 965 970 975

Cys Thr Asp Asp Gly Ala Gln Ser Arg Ser Arg His Cys Glu Glu Leu 980 985 990

Leu Pro Gly Ser Ser Ala Cys Ala Gly Asn Ser Ser Gln Ser Arg Pro 995 1000

Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu Pro Ala Ser Ser Met 1010 1020

Glu Glu Ala Thr Asp Cys Ala Gly Phe Asn Leu Ile His Leu Val 1025 1030 1035

Ala Thr Gly Ile Ser Cys Phe Leu Gly Ser Gly Leu Leu Thr Leu 1040 1050

Ala Val Tyr Leu Ser Cys Gln His Cys Gln Arg Gln Ser Gln Glu 1055 1060

Ser Thr Leu Val His Pro Ala Thr Pro Asn His Leu His Tyr Lys 1070 1075 1080	
Gly Gly Gly Thr Pro Lys Asn Glu Lys Tyr Thr Pro Met Glu Phe 1085 1090 1095	
Lys Thr Leu Asn Lys Asn Asn Leu Ile Pro Asp Asp Arg Ala Asn 1100 1105 1110	
Phe Tyr Pro Leu Gln Gln Thr Asn Val Tyr Thr Thr Thr Tyr Tyr 1115 1120 1125	
Pro Ser Pro Leu Asn Lys His Ser Phe Arg Pro Glu Ala Ser Pro 1130 1135 1140	
Gly Gln Arg Cys Phe Pro Asn Ser 1145 1150	
<210> 23 <211> 21 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 23 tgcagcacgt cctgtggcat c	21
<210> 24 <211> 21 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 24 gttgcacgtc ttgaactcca c	21
<210> 25 <211> 1299 <212> DNA <213> Homo sapiens	
<400> 25 atgaaattca agctgcttgc tgagtcctat tgccggctgc tgggagccag gagagccctg	60
aggagtagtc actcagtagc agctgacgcg tgggtccacc atgaactgga gtatctttga	120
gggactcctg agtggggtca acaagtactc cacagccttt gggcgcatct ggctgtctct	180
ggtcttcatc ttccgcgtgc tggtgtacct ggtgacggcc gagcgtgtgt ggagtgatga	240
ccacaaggac ttcgactgca atactcgcca gcccggctgc tccaacgtct gctttgatga	300
gttcttccct gtgtcccatg tgcgcctctg ggccctgcag cttatcctgg tgacatgccc	360

WO 2005/030250 PCT/EP2004/010697 22/223

342-10PCT.txt

ctcactgctc	gtggtcatgc	acgtggccta	ccgggaggtt	caggagaaga	ggcaccgaga	420
agccca tgg g	gagaacagtg	ggcgcctcta	cctgaacccc	ggcaagaagc	ggggtgggct	480
ctggtggaca	tatgtctgca	gcctagtgtt	caaggcgagc	gtggacatcg	cctttctcta	540
tgtgttccac	tcattctacc	ccaaatatat	cctccctcct	gtggtcaagt	gccacgcaga	600
tccatgtccc	aatatagtgg	actgcttcat	ctccaagccc	tcagagaaga	acattttcac	660
cctct tcat g	gtggccacag	ctgccatctg	catcctgctc	aacctcgtgg	agctcatcta	720
cctggtgagc	aagagatgcc	acgagtgcct	ggcagcaagg	aaagc tc aag	ccatgtgcac	780
aggtcatcac	ccccacggta	ccacctcttc	ctgcaaacaa	gacgacctcc	tttcgggtga	840
cctcatcttt	ctgggctcag	acagtcatcc	tcctctctta	ccagaccgcc	cccgagacca	900
tgtgaagaaa	accatcttgt	gaggggctgc	ctggactggt	ctggcaggtt	gggcctggat	960
ggggaggctc	tagcatctct	cataggtgca	acctgagagt	gggggagcta	agccatgagg	1020
taggggcagg	caagagagag	gattcagacg	ctctgggagc	cagttcctag	tcctcaactc	1080
cagccacctg	ccccagctcg	acggcactgg	gccagttccc	cctctgctct	gcagctcggt	1140
ttccttttct	agaatggaaa	tagtgagggc	caatgcccag	ggttggaggg	aggagggcgt	1200
tcatagaaga	acacacatgc	gggcaccttc	atcgtgtgtg	gcccactgtc	agaacttaat	1260
aaaagtcaac	tcatttgctg	gaaaaaaaaa	aaaaaaaaa			1299

<210> 26

<400> 26

Met Asn Trp Ser Tle Phe Glu Gly Leu Leu Ser Gly Val Asn Lys Tyr $1 \hspace{1cm} 15$

Ser Thr Ala Phe Gly Arg Ile Trp Leu Ser Leu Val Phe Ile Phe Arg 20 25 30

Val Leu Val Tyr Leu Val Thr Ala Glu Arg Val Trp Ser Asp Asp His 35 40

Lys Asp Phe Asp Cys Asn Thr Arg Gln Pro Gly Cys Ser Asn Val Cys 50 60

Phe Asp Glu Phe Phe Pro Val Ser His Val Arg Leu Trp Ala Leu Gln 65 70 75 80

Leu Ile Leu Val Thr Cys Pro Ser Leu Leu Val Val Met His Val Ala 85 90 95

Tyr Arg Glu Val Gln Glu Lys Arg His Arg Glu Ala His Gly Glu Asn 100 105 110

²⁷³ PRT

Homo sapiens

WO 2005/030250 PCT/EP2004/010697

23/223

Ser Gly Arg Leu Tyr Leu Asn Pro Gly Lys Lys Arg Gly Gly Leu Trp 115 120 125

Trp Thr Tyr Val Cys Ser Leu Val Phe Lys Ala Ser Val Asp Ile Ala 130 140

Phe Leu Tyr Val Phe His Ser Phe Tyr Pro Lys Tyr Ile Leu Pro Pro 145 150 160

Val Val Lys Cys His Ala Asp Pro Cys Pro Asn Ile Val Asp Cys Phe 165 170 175

Ile Ser Lys Pro Ser Glu Lys Asn Ile Phe Thr Leu Phe Met Val Ala 180 185 190

Thr Ala Ala Ile Cys Ile Leu Leu Asn Leu Val Glu Leu Ile Tyr Leu 195 200 205

Val Ser Lys Arg Cys His Glu Cys Leu Ala Ala Arg Lys Ala Gln Ala 210 215 220

Met Cys Thr Gly His His Pro His Gly Thr Thr Ser Ser Cys Lys Gln 225 235 240

Asp Asp Leu Leu Ser Gly Asp Leu Ile Phe Leu Gly Ser Asp Ser His 245 250 255

Pro Pro Leu Leu Pro Asp Arg Pro Arg Asp His Val Lys Lys Thr Ile 260 265 270

Leu

<210> 27

<211> 22

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 27

ggagtagtca ctcagtagca gc

<210> 28

<211> 19

<212> DNA

<213> künstliche Seguenz

<220>

<223> Oligonukleotid

<400> 28

gaactcatca aagcagacg

19

22

-210	20			342-10PCT.	txt		
<210> <211> <212> <213>	29 1528 DNA Homo	sapiens					
<400> ggaaggo	29 caca	ggcctgagaa	gtctgcggct	gagctgggag	caaatccccc	accccctacc	60
tggggg	acag	ggcaagtgag	acctggtgag	ggtggctcag	caggaaggga	aggagaggtg	120
tctgtg	cgtc	ctgcacccac	atctttctct	gtcccctcct	tgccctgtct	ggaggctgct	180
agactc	ctat	cttctgaatt	ctatagtgcc	tgggtctcag	cgcagtgccg	atggtggccc	240
gtccttg	gtgg	ttcctctcta	cctggggaaa	taaggtgcag	cggccatggc	tacagcaaga	300
cccccct	tgga	tgtgggtgct	ctgtgctctg	atcacagcct	tgcttctggg	ggtcacagag	360
catgtte	ctcg	ccaacaatga	tgtttcctgt	gaccacccct	ctaacaccgt	gccctctggg	420
agcaac	cagg	acctgggagc	tggggccggg	gaagacgccc	ggtcggatga	cagcagcagc	480
cgcatca	atca	atggatccga	ctgcgatatg	cacacccagc	cgtggcaggc	cgcgctgttg	540
ctaagg	ccca	accagctcta	ctgcggggcg	gtgttggtgc	atccacagtg	gctgctcacg	600
gccgccc	cact	gcaggaagaa	agttttcaga	gtccgtctcg	gccactactc	cctgtcacca	6 60
gtttatg	gaat	ctgggcagca	gatgttccag	ggggtcaaat	ccatccccca	ccctggctac	720
tcccac	cctg	gccactctaa	cgacctcatg	ctcatcaaac	tgaacagaag	aattcgtcc c	780
actaaag	gatg	tcagacccat	caacgtctcc	tctcattgtc	cctctgctgg	gacaaagtgc	840
ttggtg	tctg	gctgggggac	aaccaagagc	ccccaagtgc	acttccctaa	ggtcctccag	900
tgcttg	aata	tcagcgtgct	aagtcagaaa	aggtgcgagg	atgcttaccc	gagacagata	960
gatgaca	acca	tgttctgcgc	cggtgacaaa	gcaggtagag	actcctgcca	gggtgattct	1020
9999999	cctg	tggtctgcaa	tggctccctg	cagggactcg	tgtcctgggg	agattaccct	1080
tgtgcc	cggc	ccaacagacc	gggtgtctac	acgaacctct	gcaagttcac	caagtggatc	1140
caggaaa	acca	tccaggccaa	ctcctgagtc	atcccaggac	tcagcacacc	ggcatcccca	1200
cctgct	gcag	ggacagccct	gacactcctt	tcagaccctc	attccttccc	agagatgttg	126 0
agaatg	ttca	tctctccagc	ccctgacccc	atgtctcctg	gactcagggt	ctgcttcccc	1320
cacatt	gggc	tgaccgtgtc	tctctagttg	aaccctggga	acaatttcca	aaactgtcca	1380
gggcgg	gggt	tgcgtctcaa	tctccctggg	gcactttcat	cctcaagctc	agggcccatc	1440
ccttct	ctgc	agctctgacc	caaatttagt	cccagaaata	aactgagaag	tggaaaaaaa	1500
aaaaaa	aaaa	aaaaaaaaaa	aaaaaaa				1528

<210> 30 <211> 293 <212> PRT <213> Homo sapiens

<400> 30

Met Ala Thr Ala Arg Pro Pro Trp Met Trp Val Leu Cys Ala Leu Ile 1 5 10 15

Thr Ala Leu Leu Gly Val Thr Glu His Val Leu Ala Asn Asn Asp 20 25 30 Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln
35 40 45 Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp Asp Ser Ser 50 60 Ser Arg Ile Ile Asn Gly Ser Asp Cys Asp Met His Thr Gln Pro Trp 65 70 75 Gln Ala Ala Leu Leu Leu Arg Pro Asn Gln Leu Tyr Cys Gly Ala Val 85 90 95 Leu Val His Pro Gln Trp Leu Leu Thr Ala Ala His Cys Arg Lys Lys 100 105 110 Val Phe Arg Val Arg Leu Gly His Tyr Ser Leu Ser Pro Val Tyr Glu 115 120 125 Ser Gly Gln Gln Met Phe Gln Gly Val Lys Ser Ile Pro His Pro Gly 130 140 Tyr Ser His Pro Gly His Ser Asn Asp Leu Met Leu Ile Lys Leu Asn 145 150 155 Arg Arg Ile Arg Pro Thr Lys Asp Val Arg Pro Ile Asn Val Ser Ser 165 170 175 His Cys Pro Ser Ala Gly Thr Lys Cys Leu Val Ser Gly Trp Gly Thr 180 185 190Thr Lys Ser Pro Gln Val His Phe Pro Lys Val Leu Gln Cys Leu Asn 195 200 205 Ile Ser Val Leu Ser Gln Lys Arg Cys Glu Asp Ala Tyr Pro Arg Gln 210 220 Ile Asp Asp Thr Met Phe Cys Ala Gly Asp Lys Ala Gly Arg Asp Ser 225 230 235 Cys Gln Gly Asp Ser Gly Gly Pro Val Val Cys Asn Gly Ser Leu Gln 245 250 255 Gly Leu Val Ser Trp Gly Asp Tyr Pro Cys Ala Arg Pro Asn Arg Pro 260 265 270Gly Val Tyr Thr Asn Leu Cys Lys Phe Thr Lys Trp Ile Gln Glu Thr 275 280 285

Ile Gln Ala Asn Ser 290					
<210> 31 <211> 19 <212> DNA <213> künstliche Sequenz					
<220> <223> Oligonukleotid					
<400> 31 cagaaaaggt gcgaggatg	19				
<210> 32 <211> 21 <212> DNA <213> künstliche Sequenz					
<220> <223> Oligonukleotid					
<400> 32 ctgggatgac tcaggagttg g	21				
<210> 33 <211> 636 <212> DNA <213> Homo sapiens					
<400> 33 atgacagaag cagcatcgct tgtccctaag aggccaagga ggctcagagg cagccacaag	60				
ctgcgagttc tggcatggcc agtggtcgtg gtggtgaact ttgtttggca gtgcaacggc	120				
agcattgctc acaccttcct ggagctaagc ttcgcctgcc ctggaggaag gtacgcaggc	180				
agtcgcccag ccccggttgc agggatggac cgcgaccagc agagggcaga aagtgcctgt	240				
gtccccatt ctcgatcccg gggccccaac ctcccatcgg ctcagtcccc cgcccaatct	300				
ctgccaggcc cggagctttc ccagacccct cacccacact ccaggctcac tccccgttcc	360				
tgggcctggg ccccccttgc acgagtccag ggccagccgt cctcgccttc tgcccgcccc	420				
cgtccttcgt tcctgggagc cggccctctc cgcggaccaa gcggccccga gcaggcgccg	480				
CCgccCgggg gactccgact cagcccccgc gacctacctc ggccgacagt cgggggttcc	540				
caageggeea eteceggeeg gegeegteee etggeggage egeegegete cetgeegtee	600				
gcgcagtctg gcctcgctcg gggccactcc tcgtag	636				
<210> 34 <211> 211 <212> PRT <213> Homo sapiens					
<400> 34					
Met Thr Glu Ala Ala Ser Leu Val Pro Lys Arg Pro Arg Arg Leu Arg 10 15					

Gly Ser His Lys Leu Arg Val Leu Ala Trp Pro Val Val Val Val Val 20 25 30

Asn Phe Val Trp Gln Cys Asn Gly Ser Ile Ala His Thr Phe Leu Glu 35 40

Leu Ser Phe Ala Cys Pro Gly Gly Arg Tyr Ala Gly Ser Arg Pro Ala 50 55

Pro Val Ala Gly Met Asp Arg Asp Gln Gln Arg Ala Glu Ser Ala Cys 65 70 75 80

Val Pro His Ser Arg Ser Arg Gly Pro Asn Leu Pro Ser Ala Gln Ser 85 90 95

Pro Ala Glm Ser Leu Pro Gly Pro Glu Leu Ser Glm Thr Pro His Pro 100 105 110

His Ser Arg Leu Thr Pro Arg Ser Trp Ala Trp Ala Pro Leu Ala Arg 115 120 125

Val Gln Gly Gln Pro Ser Ser Pro Ser Ala Arg Pro Arg Pro Ser Phe 130 140

Leu Gly Ala Gly Pro Leu Arg Gly Pro Ser Gly Pro Glu Gln Ala Pro 145 150 155

Pro Pro Gly Gly Leu Arg Leu Ser Pro Arg Asp Leu Pro Arg Pro Thr 165 170

Val Gly Gly Ser Gln Ala Ala Thr Pro Gly Arg Arg Pro Leu Ala 180 185

Glu Pro Pro Arg Ser Leu Pro Ser Ala Gln Ser Gly Leu Ala Arg Gly 195 200 205

21

His Ser Ser 210

<210> 35 <211> 21

<212> <213> DNA

künstliche Sequenz

<220> <223> Oligonukleotid

<400> 35

tgctctcact gtggtcctca g

<210> <211>

342-10PCT.txt	
<212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 36 tttgtaaagc tccagcgcta c	21
<210> 37 <211> 969 <212> DNA <213> Homo sapiens	
<400> 37 atgaaggact gtaggaacaa tggcaaggat tgtcaaagtg cccctgcaac acgtaggcac	60
ctcttctctg aagctgccct gcccccttat cgtctttccc aagggcactt cctcacagcc	120
ctggggggcc tcatggcggt gccattcatc ctggccaagg acctgtgcct gcagcaggac	180
cccctgacac agagetacct catcageace attiteting etecageate igeatgetee	240
tgcaagctgc ccartcccca gggaggtacg trtgcttttg tggtaatttc tctggccatg	300
ctctcccttc cctcctggaa ttgccctgag tggacactca gtgccagcca ggtgaacacc	360
aactttccag aattcactca gaaatggcag aagaggatcc aagagggtgc tatcatggtc	420
acticcigig teeggaiget ggigggette teaggeetga eiggetitet caigggitte	480
atctgctcct tggccgttgc tccaactaac tgcctagtgg ccctgcccct cttggattct	540
gcaggcaata atgccgggat ccagtggggg atttctgcca tgtattgctt cgtgttgcgt	600
cttcgcaagg atgagctctg gccatttggt tctccacggc tgcgtttgcc accatcccca	660
ccccgtgatc ggaggcatgt ccccaccccc gtgatcggag gcatgaccct gtttggggtc	720
atcactgccg tggggatctc caatctgcag tacgtggaca tgaacttgtc caggagcctc	780
ttcgcctttg gcttctccat ctactgtggg ctcaccattc ccaaccgggt gagcaaaaac	840
cccgagatgc tecagacagg gattetecag eeggaccagg ttgtteagat getgetgace	900
atgggcatgt tcatcagtgg atttctgggt tttcttctag acaacaccat ccccgagctc	960
cttcaataa	969
<210> 38 <211> 322 <212> PRT <213> Homo sapiens	
<400> 38	
Met Lys Asp Cys Arg Asn Asn Gly Lys Asp Cys Gln Ser Ala Pro Ala 1 5 10 15	
Thr Arg Arg His Leu Phe Ser Glu Ala Ala Leu Pro Pro Tyr Arg Leu 20 25 30	

Ser Gln Gly His Phe Leu Thr Ala Leu Gly Gly Leu Met Ala Val Pro 35 40

342-10PCT.txt

Phe Ile Leu Ala Lys Asp Leu Cys Leu Gln Gln Asp Pro Leu Thr Gln 50 60 Ser Tyr Leu Ile Ser Thr Ile Phe Phe Ala Pro Ala Ser Ala Cys Ser 65 70 75 80 Cys Lys Leu Pro Ile Pro Gln Gly Gly Thr Phe Ala Phe Val Val Ile 85 90 95 Ser Leu Ala Met Leu Ser Leu Pro Ser Trp Asn Cys Pro Glu Trp Thr 100 105 Leu Ser Ala Ser Gln Val Asn Thr Asn Phe Pro Glu Phe Thr Gln Lys 115 120 Trp Gln Lys Arg Ile Gln Glu Gly Ala Ile Met Val Thr Ser Cys Val 130 135 140 Arg Met Leu Val Gly Phe Ser Gly Leu Thr Gly Phe Leu Met Gly Phe 145 150 155 Ile Cys Ser Leu Ala Val Ala Pro Thr Asn Cys Leu Val Ala Leu Pro 165 170 1.75 Leu Leu Asp Ser Ala Gly Asn Asn Ala Gly Ile Gln Trp Gly Ile Ser 180 185 190 Ala Met Tyr Cys Phe Val Leu Arg Leu Arg Lys Asp Glu Leu Trp Pro 195 200 205 Phe Gly Ser Pro Arg Leu Arg Leu Pro Pro Ser Pro Pro Arg Asp Arg 210 220 Arg His Val Pro Thr Pro Val Ile Gly Gly Met Thr Leu Phe Gly Val 225 230 235 Ile Thr Ala Val Gly Ile Ser Asn Leu Gln Tyr Val Asp Met Asn Leu 250 255 Ser Arg Ser Leu Phe Ala Phe Gly Phe Ser Ile Tyr Cys Gly Leu Thr 260 265 270 Ile Pro Asn Arg Val Ser Lys Asn Pro Glu Met Leu Gln Thr Gly Ile 275 280 285 Leu Gln Pro Asp Gln Val Val Gln Met Leu Leu Thr Met Gly Met Phe 290 295 300 Ile Ser Gly Phe Leu Gly Phe Leu Leu Asp Asn Thr Ile Pro Glu Leu 305 315 320

Leu Gln

<210> <211> <212> <213>	39 20 DNA künstliche Sequ	Jenz		·		
<220> <223>	Oligonukleotid					
<400> atggcg	39 gtgc cattcatcct					20
<210> <211> <212> <213>	40 20 DNA künstliche Seq	uenz				
<220> <223>	Oligonukleotid					
<400> caggag	40 ggaa gggagagcat					20
<210> <211> <212> <213>	41 1679 DNA Homo sapiens					
<400>	41 gcgc gcgtcgccgc	cccgcgtccc	gcctgcggcc	cgcgcccccg	gcgtcaccgc	60
	cccg cctgcccgcc					120
	cctg ccggcctgcc					180
gctggc	ccgc tg cccc acgg	ccggcctggc	cggcggcctg	ggggtcacgg	cgtgcgccgc	240
ggccgg	cgtg ttgctctacc	ggatcgcgcg	gaggatgaag	ccaacgcaca	cgatggtcaa	300
ctgctg	gttc tgcaaccagg	atacgctggt	gccctatggg	aaccgcaact	gctgggactg	360
tcccca	ctgc gagcagtaca	acggcttcca	ggagaacggc	gactacaaca	agccgatccc	420
cgccca	gtac ttggagcacc	tgaaccacgt	ggtgagcagc	gcgcccagcc	tgcgcgaccc	480
ttcgca	gccg cagcagtggg	tgagcagcca	agtcctgctg	tgcaagaggt	gcaaccacca	540
ccagao	cacc aagatcaagc	agctggccgc	cttcgctccc	cgcgaggagg	gcaggtatga	600
cgagga	iggtc gaggtgtacc	ggcatcacct	ggagcagatg	tacaagctgt	gccggccgtg	660
ccaago	ggct gtggagtact	acatcaagca	ccagaaccgc	cagctgcgcg	ccctgttgct	720
cageca	ccag ttcaagcgcc	gggaggccga	ccagacccac	gcacagaact	tctcctccgc	780
cgtgaa	gtcc ccggtccagg	tcatcctgct	ccgtgccctc	gccttcctgg	cctgcgcctt	840
cctact	gacc accgcgctgt	atggggccag	cggacacttc	gccccaggca	ccactgtgcc	900
cctgg	cctg ccacctggtg	gcaatggctc	agccacacct	gacaatggca	ccacccctgg	960

31/223	
342-10PCT.txt ggccgagggc tggcggcagt tgctgggcct actccccgag cacatggcgg agaagctgtg	1020
tgaggcctgg gcctttgggc agagccacca gacgggcgtc gtggcactgg gcctactcac	1080
Ctgcctgctg gcaatgctgc tggctggccg catcaggctc cggaggatcg atgccttctg	1140
cacctgcctg tgggccctgc tgctggggct gcacctggct gagcagcacc tgcaggccgc	1200
ctcgcctagc tggctagaca cgctcaagtt cagcaccaca tctttgtgct gcctggttgg	1260
cttcacggcg gctgtggcca caaggaaggc aacgggccca cggaggttcc ggccccgaag	1320
gtcagagaag cagccatgac tgcgggggga ggacacacgg atgctcaggc ccaggctttg	1380
ccaggtccga agcgggcccc tctctgtcct gcctcttttc acctgctcac gccctcccac	1440
ccccacccta cagccccagg tectggccca gtccctccac tgcctcgaag agtcagtctg	1500
ccctgccttt tcctttcggg caccaccagc catccccgag tgccctgtag ccactcacca	1560
ctgctgccac ctctctggcc aatggccctt tcactggcct ggtgactgga atgtgggcag	1620
cgcccacaca ggctctggcc catggcttcc tactggcagc tccaggcacc cccctctca	1679
<210> 42 <211> 392 <212> PRT <213> Homo sapiens	
<400> 42	
Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr Ala Gly Leu 1 10 15	٠
Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Ala Gly Val Leu Leu 20 25 30	
Tyr Arg Ile Ala Arg Arg Met Lys Pro Thr His Thr Met Val Asn Cys 35 40 45	
Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr Gly Asn Arg Asn Cys 50 60	
Trp Asp Cys Pro His Cys Glu Gln Tyr Asn Gly Phe Gln Glu Asn Gly 65 70 75 80	
Ach Tun Ach Luc Bro Tla Bro Ale Cln Tun Lau Clu Hic Lau Ach Nic	

Asp Tyr Asn Lys Pro Ile Pro Ala Gln Tyr Leu Glu His Leu Asn His 85 90 95

Val Val Ser Ser Ala Pro Ser Leu Arg Asp Pro Ser Gln Pro Gln Gln 100 105 110

Trp Val Ser Ser Gln Val Leu Leu Cys Lys Arg Cys Asn His His Gln 115 120 125

Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe Ala Pro Arg Glu Glu Gly 130 140

342-10PCT.txt

Arg Tyr Asp Glu Glu Val Glu Val Tyr Arg His His Leu Glu Gln Met
145 150 155 160

Tyr Lys Leu Cys Arg Pro Cys Gln Ala Ala Val Glu Tyr Tyr Ile Lys 165 170 175

His Gln Asn Arg Gln Leu Arg Ala Leu Leu Leu Ser His Gln Phe Lys 180 185 190

Arg Arg Glu Ala Asp Gln Thr His Ala Gln Asn Phe Ser Ser Ala Val

Lys Ser Pro val Gln Val Ile Leu Leu Arg Ala Leu Ala Phe Leu Ala 210 215 220

Cys Ala Phe Leu Leu Thr Thr Ala Leu Tyr Gly Ala Ser Gly His Phe 225 230 235 240

Ala Pro Gly Thr Thr Val Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly 245 250 255

Ser Ala Thr Pro Asp Asn Gly Thr Thr Pro Gly Ala Glu Gly Trp Arg 260 265 270

Gln Leu Leu Gly Leu Leu Pro Glu His Met Ala Glu Lys Leu Cys Glu 275 280 285

Ala Trp Ala Phe Gly Gln Ser His Gln Thr Gly Val Val Ala Leu Gly 290 295 300

Leu Leu Thr Cys Leu Leu Ala Met Leu Leu Ala Gly Arg Ile Arg Leu 305 \$310\$ 315 320

Arg Arg Ile Asp Ala Phe Cys Thr Cys Leu Trp Ala Leu Leu Gly 325 330 335

Leu His Leu Ala Glu Gln His Leu Gln Ala Ala Ser Pro Ser Trp Leu 340 345 350

Asp Thr Leu Lys Phe Ser Thr Thr Ser Leu Cys Cys Leu Val Gly Phe 355 360 365

Thr Ala Ala Val Ala Thr Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg 370 375 380

Pro Arg Arg Ser Glu Lys Gln Pro 385

<210> 43

<211> 23

<213> künstliche Sequenz

342-10PCT.txt

<220> <223> Oligonukleotid	
<400> 43 ctacatcaag caccagaacc gcc	23
<210> . 44 <211> 19 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 44 ggacttcacg gcggaggag	19
<210> 45 <211> 727 <212> DNA <213> Homo sapiens	
<400> 45 aggcagttgc gggttgcagg agttcaggaa aggaggtggg actagagtca acctggaata	60
gctctacagt aacaatggca gcctttttgt tgctgggaca tccatacagg caacttagct	120
ggtgaaagga ctctggattg gttggcagtc tgcttlttt tttccaaggt gatcacttta	180
ctgtagaaga aatgaggtta acagaaaaga gtgagggaga acaacaactc aagcccaaca	240
actctaatgc acccaatgaa gatcaagaag aagaaatcca acagtcagaa cagcatactc	300
cagcaaggca gcgaacacaa agagcagaca cacagccatc cagatgtcga ttgccttcac	360
gtaggacacc tacaacatcc agcgacagaa cgatcaacct tcttgaagtc cttccgtggc	420
ctactgagtg gattttcaac ccctatcgat tgcctgctct ttttgagctt tatcctgaat	480
ttcttctggt gtttaaagaa gccttccatg acatatccca ttgtctgaaa gcccagatgg	540
aaaagatcgg actgcccatc atactccacc tcttcgcact ctccaccctc tacttctaca	600
agtitticct tectacaatt etticeetti etticittat tettetigta ettetgette	660
tgctttttat tattgtcttc attctgatct tcttctgatt cttttgtttc aataaacagc	720
aatgagc	727
<210> 46 <211> 168 <212> PRT <213> Homo sapiens <400> 46 Mot Ang Low The Cluster Sor Cluster Cluster Cluster Sor Cluster Clus	
Met Arg Leu Thr Glu Lys Ser Glu Gly Glu Gln Gln Leu Lys Pro Asn	

Met Arg Leu Thr Glu Lys Ser Glu Gly Glu Gln Gln Leu Lys Pro Asr 1 5 10

Asn Ser Asn Ala Pro Asn Glu Asp Gln Glu Glu Glu Ile Gln Gln Ser 20 25 30

342-10PCT.txt Glu Gln His Thr Pro Ala Arg Gln Arg Thr Gln Arg Ala Asp Thr Gln
35
40

Pro Ser Arg Cys Arg Leu Pro Ser Arg Arg Thr Pro Thr Thr Ser Ser 50 60

Asp Arg Thr Ile Asn Leu Leu Glu Val Leu Pro Trp Pro Thr Glu Trp 65 70 80

The Phe Asn Pro Tyr Arg Leu Pro Ala Leu Phe Glu Leu Tyr Pro Glu 85 90 95

Phe Leu Leu Val Phe Lys Glu Ala Phe His Asp Ile Ser His Cys Leu 100 105 110

Lys Ala Gln Met Glu Lys Ile Gly Leu Pro Ile Ile Leu His Leu Phe 115 120

Ala Leu Ser Thr Leu Tyr Phe Tyr Lys Phe Phe Leu Pro Thr Ile Leu 130 135 140

Ser Leu Ser Phe Phe Ile Leu Leu Val Leu Leu Leu Leu Leu Phe Ile 145 150 155 160

Ile Val Phe Ile Leu Ile Phe Phe

<210> 47 20

<211> <212> DNA

künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 47

gctggtgaaa ggactctgga

20

<210> 48

<211> 20

<212> DNA

künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 48

tcgctggatg ttgtaggtgt

20

<210>

950 <211>

<212> DNA

<213> Homo sapiens

gcgagcccga gcaggcagac gcgcggccgg cggtctgggg gcgcgccgcc tcccggtccc

60

WO 2005/030250 PCT/EP2004/010697

			342-10PCT.	txt		
caaaatgtga	agcggggagg	gcggagacgc			ccctcgccgc	120
cctccggcag	ccgcgccgct	ccctccgctg	cacgcccagg	cctgagcagc	gaggccaccg	180
ggccgcgcgc	tcccagcttc	gctcggacgc	ggcttcggcc	cgcagagggt	tcgtggcccg	240
gacgcggcga	gagctgggcc	caggacggtg	cgtccggcct	cgcccgcggc	tgctcgcacc	300
aacaagtttg	aacaatgatc	accgtcaacc	ccgatgggaa	gataatggtc	agaagatgcc	360
tggtcaccct	gagacccttt	cggctttttg	tcctgggcat	cggcttcttc	actctctgct	420
tcctgatgac	gtctctggga	ggccagttct	cggcccggcg	cctgggggac	tcgccattca	480
ccatccgcac	agaagtgatg	gggggccccg	agtcccgcgg	cgtcctgcgc	aagatgagcg	540
acctgctgga	gctgatggtg	aagcgcatgg	acgcactggc	caggctggag	aacagcagtg	600
agctgcaccg	ggccggcggc	gacctgcact	ttcccgcaga	caggatgccc	cctggggccg	660
gcctcatgga	gcggatccag	gctattgccc	agaacgtctc	cgacatcgct	gtgaaggtgg	720
accagatcct	gcgccacagt	ctgctcctgc	acagcaaggt	gtcagaaggc	cggcgggacc	780
agtgtgaggc	acccagtgac	cccaagttcc	ctgactgctc	agggaaggtg	gcagtggatg	840
cgtgcccgct	ggacctctga	ccctgctac	gccttctttg	gggtggacgg	caccgagtgc	900
tccttcctca	tctacctcag	tgaggtcgag	tggttctgcc	ccccgctgcc		950

<210> 50 <211> 181

~211> 181 <211> 181

<213> Homo sapiens

<400> 50

Met Ile Thr Val Asn Pro Asp Gly Lys Ile Met Val Arg Arg Cys Leu 1 10 15

Val Thr Leu Arg Pro Phe Arg Leu Phe Val Leu Gly Ile Gly Phe Phe 20 25 30

Thr Leu Cys Phe Leu Met Thr Ser Leu Gly Gly Gln Phe Ser Ala Arg 40 45

Arg Leu Gly Asp Ser Pro Phe Thr Ile Arg Thr Glu Val Met Gly Gly 50 60

Pro Glu Ser Arg Gly Val Leu Arg Lys Met Ser Asp Leu Leu Glu Leu 65 70 75 80

Met Val Lys Arg Met Asp Ala Leu Ala Arg Leu Glu Asn Ser Ser Glu 85 90 95

Leu His Arg Ala Gly Gly Asp Leu His Phe Pro Ala Asp Arg Met Pro 100 105

Pro Gly Ala Gly Leu Met Glu Arg Ile Gln Ala Ile Ala Gln Asn Val 115 120 125

342-10PCT.txt

Ser Asp Ile Ala Val Lys Val Asp Gln Ile Leu Arg His Ser Leu Leu 130 135 140	
Leu His Ser Lys Val Ser Glu Gly Arg Arg Asp Gln Cys Glu Ala Pro 145 150 155 160	
Ser Asp Pro Lys Phe Pro Asp Cys Ser Gly Lys Val Ala Val Asp Ala 165 170 175	
Cys Pro Leu Asp Leu 180	
<210> 51 <211> 21 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 51 agatgcctgg tcaccctgag a 23	1
<210> 52 <211> 20 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 52 ggccccccat cacttctgtg 20	0
<210> 53 <211> 396 <212> DNA <213> Homo sapiens	
<400> 53 ctgcaagacc gcatcgccac gttcttcttc ccaaaaggca tgatgctcac cacggctgcg 60	0
ctgatgctct tcttcttaca cctgggcatc ttcatcagag acgtgcacaa cttctgcatc 120	D
acctaccact atgaccacat gagetttcac tacacggtcg tectgatgtt eteccaggtg 180	0
atcagcatct gctgggctgc catggggtca ctctatgctg agatgacaga aaacaatgct 240	0
caacggagcc atgttcttca accgcctgtc cttggagttt ctggccatcg agtaccggga 30	0
ggagcaccac tgaggcctgg ggagtcggaa cagggctaag gagggggaag caaaaggctg 36	0
cctcgggtgt tttaataaag ttgttgttta tttcca 39	6
<210> 54 <211> 99 <212> PRT <213> Homo sapiens	

<213> Homo sapiens

342-10PCT.txt <400> 54

Met Met Leu Thr Thr Ala Ala Leu Met Leu Phe Phe Leu His Leu Gly 10 15

Ile Phe Ile Arg Asp Val His Asm Phe Cys Ile Thr Tyr His Tyr Asp 20 25 30

His Met Ser Phe His Tyr Thr Val Val Leu Met Phe Ser Gln Val Ile 35 40 45

Ser Ile Cys Trp Ala Ala Met Gly Ser Leu Tyr Ala Glu Met Thr Glu
50 60

Asn Asn Ala Gln Arg Ser His Val Leu Gln Pro Pro Val Leu Gly Val 65 70 75 80

Ser Gly His Arg Val Pro Gly Gly Ala Pro Leu Arg Pro Gly Glu Ser 85 90 95

Glu Gln Gly

<210> 55 22 <211> <212> DNA künstliche Sequenz <220> Oligonukleotid <223> <400> 55 22 ccgttgagca ttgttttctg tc <210> 56 <211> 22 <212> DNA künstliche Sequenz <213> <220> <223> Oligonukleotid <400> 56 22 tgctcttctt cttacacctg gg <211> 539 DNA Homo sapiens <400> 57 ggtgccttaa tgtttgtggc atggatgact actgttagca taggtgtact ggttgcccgg 60 ttcttcaagc cagtttggtc aaaagctttc ttgcttggtg aagcagcttg gtttcaggtg 120

catcggatgc tcatgttcac cacaactgtc ctcacctgca ttgcttttgt tatgccgttt atatacaggg gaggctggag taggcatgca ggttaccacc catacctcgg ctgtatagtg

180

240

			38/223			
atgactttgg (cagttcttca	gcctcttctg	342-10PCT. gcagtcttca		acatgaccca	300
agaaggcaaa	tgtttaactg	gactcattgg	agtatgggaa	cagctgctag	aataatagca	360
gacttaaaac a	aatctggaaa	atgtgggtgc	atctctttta	aggattggta	gattacgcag	420
ccataaaaaa	gaatgaagtc	atgtcttttg	tagcaacatg	gatgctgctg	gaagtgatta	480
tcctacatga a	attaatgcag	aaacagaaaa	tcacatacca	catgttctca	cttataaat	539
<210> 58 <211> 133 <212> PRT <213> Homo	sapiens					
<400> 58						
Met Phe Val	Ala Tro Me	et Thr Thr V	al Ser Ile	Glv Val Lei	u Val Ala	

Met Phe Val Ala Trp Met Thr Thr Val Ser Ile Gly Val Leu Val Ala 1 5 10 15

Arg Phe Phe Lys Pro Val Trp Ser Lys Ala Phe Leu Leu Gly Glu Ala 20 25 30

Ala Trp Phe Gln Val His Arg Met Leu Met Phe Thr Thr Val Leu 35 40 45

Thr Cys Ile Ala Phe Val Met Pro Phe Ile Tyr Arg Gly Gly Trp Ser 50 60

Arg His Ala Gly Tyr His Pro Tyr Leu Gly Cys Ile Val Met Thr Leu 65 70 75 80

Ala Val Leu Gln Pro Leu Leu Ala Val Phe Arg Pro Pro Leu His Asp 85 90 95

Pro Arg Arg Gln Met Phe Asn Trp Thr His Trp Ser Met Gly Thr Ala 100 105 110

Ala Arg Ile Ile Ala Asp Leu Lys Gln Ser Gly Lys Cys Gly Cys Ile 115 120 125

Ser Phe Lys Asp Trp 130

<210> 59

<211> 20

-212- DNA

<213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 59

ttgtggcatg gatgactact

20

<210> 60 <211> 20

342-10PCT.t	ext
<212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 60 catcactata cagccgaggt	20
<210> 61 <211> 3317 <212> DNA <213> Homo sapiens	
<400> 61 acactgcgtc cccatcagct caaagaatac gcatggggac a	aagcctgggg ggccgtctga 60
gagtccccca accetggate cccaeggeag eccecaetgt 1	tgggtttttc agtggctggt 120
gtgccctggg ctggtcacct ctgcattttg ctctgctggg a	agtttgctcc tggccctcca 180
acagcgcctc ctctgtgagg aggaactcct gttcccgtgg	ctctgctggc tctggaggct 240
ggagttcccg tgctgggccc tcctgggcgg gttctctctt g	gctgccgcca gtaccctgcc 300
cctctcgtcc tcctgggtag cctgggagga atggcagaag a	aaagcagtga agccaggtag 360
cagtageceg gecaceceae caggetetge tgtaggetgg g	gctctcaagg cagctgctcc 420
aggaggggcc ccctaggaag ggactgccac actcctggga	gcgttcctgg ccccctccag 480
tgcaaatgac cctgggcccc aaggctccga acacccgccc	ctctgctcca ggctagcttg 540
gctgagcccg atgcttctca aggtgaggag ggcgtccttg a	aagcctccgg ccaccccaca 600
ccaaggagct ttcagggcag gaaatgtgat cgggcagctg a	atttatctcc ttacctggtc 660
tttgttcaca gcctggctcc ggcccccac cctgctgcag g	ggcccgagga cgtctcccca 720
ggggtcccca cctcggtctc cttgggggga ctgtgctgag	cccagctgcc tctgtgagat 780
gaagataaga aggcgaagac atgaagggcc tgcctggggg	cagtctggct ttcttgcagg 840
ggggctgcac ctggttccct cctcctctc gctggcagcc	tgcggggtgg tgaggatgaa 900
ggggctgtgg ggccggggtg cagggattag agggaggtga	ctgccatctc ttcctcctca 960
tcgtgttttt cacctcttaa gtcaacttta gattctcgga	ctcagagttc tctcctgacg 1020
gtggcagggt cctcagatca ccggtgcaga cagggccaga	cagggccaat gtggggaccc 1080
actcagcctg tggcctctgc aggagggagg tcggaggcct	cagcagccac cccggccacc 1140
tectgaaaca gtgaatgtee tteattttea getggcaage 1	tctgatctta caacgaggta 1200
tggaactgtt cagaaaactt tcagcagacg ttcgagggaa a	aacagctcag cttcccatgc 1260
ccccacctc tgccaggagc gaccccatat cccccaaaca	gaattctggt agcccgggac 1320
cacagggtct tcctgtgcct cccctgccag ctctgcatga	ctttgtcacg tacttgagtg 1380
ctggctgaga tgatgctacc gctaccaaac aggtgggagg	ccagccccag ccccagcccc 1440
agccccaccg gggccggagc tcccggtgaa gaagcgtctg	cctggttcgc aggtgtccag 1500
gacacaccag tcgcctgact cccggtcagg caaacgcaca	catcaagttc ttgcaagcca 1560

WO 2005/030250 PCT/EP2004/010697

40/223 342-10PCT, txt

			342-10PCT.	txt		
	ggcatcttca					1620
aacaggagga	gttacaaact	cggcttcctg	gggggcatcg	tggggtgtgc	tgcctgccag	1680
gagaccccac	tcctggtcac	ggggttccgt	cccacacagt	ggcaggagcc	atgcatgatt	1740
cttggctgaa	gaagaacccg	cacagctatg	tggtctgccg	cccagcaggg	aagcccccac	1800
atcagcccta	agggaacttc	ccaaagctca	gcaggtgcct	cttcctgcca	tccgctaggt	1860
cttctcttgg	cccctctccc	aagccttgac	c catagctga	cacttctaga	aaagtcttta	1920
ccgagaaacg	g a ccgg ctgc	atgggtggtg	aggagggcag	ttgcccaggg	cctggcatca	1980
gaggggcctg	tggctaaggc	tgtcctgaaa	ttcttaatca	ttttacctct	gaacttgcgg	2040
gtttttgttg	ttgttttttg	aggcagagtc	ttgctctgtc	acccaggctg	gagtgcagtg	2100
gtgcgatctt	ggcttactgc	aacttccgac	tcccaggttc	aagcgattct	cctgcctcag	2160
cctcccgagt	agctgggact	acagaagtgc	accaccacac	ccggttaatt	tttgtatttt	2220
tagtagagac	ggggtttcac	catgttggcc	aggctgatct	caaactcctg	atacacccgc	2280
ctcggcctct	caaagcactg	ggattacagg	tgtgagccac	cgcgcccggc	ccttrtcctg	2340
cctcctaaac	aagtggccag	gaattctcct	cctgcaccgg	gtccccagat	tgtgtggcaa ·	2400
gccctgcaga	tggcacaggg	gactggttct	tcctcgtgga	aagccaggcc	cggacacctc	2460
tcgggcatcg	cctgttgggg	tgaccctccc	acacccagcc	tggaacccta	gccagctcag	2520
cctccgtccg	ctgagaaatc	aaggtgacct	tgtggctcag	ccctcagggg	gcactcacca	2580
cacaagagtt	ccctttcaag	accccctgtt	cggggctggg	gcccccagga	acggttgggg	2640
caccttcctg	gggccctgtt	tttccccagg	agcggggcct	gggagctgag	ggcgtctcat	2700
ctccccacag	gcatctgctg	ctgctcctgg	ctgccactca	cccctgtgag	atgctgaggg	2760
caggatacct	gtctgtgcgg	ggcgtgggaa	aaagggagaa	agcctggcag	agggttgggg	2820
gctaagaagc	aaagggcgtg	gaagggccac	cgtgcacttt	tgaagtctct	acttgccagt	2880
ggccacccca	cctctccctg	ccctcatcca	aggacggaca	ggcctggcag	gtggaccgga	2940
gctgtggggc	agaagcatcc	caggcctggc	ctcagaggag	ggaggccatg	gtgaaagtgg	3000
aggctgtctg	catccacctc	cccagccttt	gtcaccggga	cctcagcctg	accccaggcc	3060
caccccaggc	tgctcaccga	ggtgggtacc	ctgcccaccg	ccagctcaga	tgcggtgtgt	3120
ggactccctt	ctctctgggg	gtgagcggga	gttccctccc	ctccacatca	ggagctgggg	3180
gagagctgga	gggccctggg	atccccttga	ccctggtcat	cagccccagc	cctgacaggc	3240
cctgcgtgtg	ccatgtgtgg	cctgggtttg	gagctcagca	ccctgcggga	attctattaa	3300
atctccgatt	ttatctg					3317

<210> 62 <211> 129 <212> PRT <213> Homo sapiens

<400> 62

PCT/EP2004/010697

WO 2005/030250 41/223 342-10PCT.txt Met Leu Leu Lys Val Arg Arg Ala Ser Leu Lys Pro Pro Ala Thr Pro 10 15 His Gln Gly Ala Phe Arg Ala Gly Asn Val Ile Gly Gln Leu Ile Tyr 20 25 30 Lev Leu Thr Trp Ser Leu Phe Thr Ala Trp Leu Arg Pro Pro Thr Leu 35 40 45 Leu Gln Gly Pro Arg Thr Ser Pro Gln Gly Ser Pro Pro Arg Ser Pro 50 60 Trp Gly Asp Cys Ala Glu Pro Ser Cys Leu Cys Glu Met Lys Ile Arg 65 70 75 80 Arg Arg Arg His Glu Gly Pro Ala Trp Gly Gln Ser Gly Phe Leu Ala 85 90 95 Gly Gly Leu His Leu Val Pro Ser Ser Leu Ser Leu Ala Ala Cys Gly 100 105 Val Val Arg Met Lys Gly Leu Trp Gly Arg Gly Ala Gly Ile Arg Gly 115 120 125 Arg <210> 63 20 <211> <212> DNA <213> künstliche Sequenz <220> Oligonukleotid <223> <400> 63 20 ccccaaggct ccgaacaccc <210> 64 20 <211> <212> DNA künstliche Sequenz <213> <220> <223> Oligonukleotid <400> 64 cccgatcaca tttcctgccc 20 <210> 65 3338 <211> <212>

DNA Homo sapiens <400> 65 gtaggaagta tatgggtagg gtcagataat atttctgaaa ggaaacaccc aggagtatcc 60

342-10PCT.txt caagttaatg acattttaga ccctccaaca accacacaag tcagctcctt ggaaagactc 120 tggttacttt tacaaagcaa accaggagaa ttttcataat acctgataac tatgtaagac 180 ttggaatatt tgaatttcta ggacatggga ttgtgcaacc attcatttta tcccataata 240 ttgaaatctc cctcagataa gcctctcggc acctaataga gttttcttag tgaagggcta 300 cctttctgtg ggtaacaggg aagggcaaaa taaacaacca aataatatca taatcacgag 360 tgtcaatgat tgctggaaca ggtgggggtt ggtcattaaa ttctagttgt ttccactatt 420 ccagtaggag tigiggaat gttagcaaaa gaccagggtg ttacgatctg actgtgtttc 480 atcaattgcc ttgacttttg gatgaaatgc gatttgagga catatcatta ttagatttgc 540 cacagattcc aatttttttc tctaatatga ggctaaccat gatgtccttt cccaggaagg 600 acaatctctc ctttatcagg gaaaaatcag taggggcttc ctcaattttc tccttcatcc 660 ccaccacaga gtcatagagg tcaagtcctt ttcttgtgaa acctaaaaaa tgcaaattcc 720 aaggttgctg ctatggtgta ctaattttgt cacagtgaca tgccctgtca cagggcgtat 780 gtgttctgtt atacagttga aatattggtt atactattga aatgtttttg tactattgaa 840 atcccaaata aacttaattc taaaagaagc atgacctcaa cagcctcaca cctacttata 900 tcttgtagtt ctttctgtct aatgctggca atctaagcat gttccaggca agcaacattc 960 aatagcgttt tactgctcca ataagttggt tcaattagca atgtcaaagg cagtcactaa 1020 atagatagtg tataaccttc atacaatctc gtattatttt ccactaatta ctatagaaaa 1080 atcgatgaag titcattaca atggaataac ttcaatcaca cttcaaaaac tacatacgga 1140 agatagccac aacttgctgc tctcaaaaaa cacagagatg gcatctttac tttgtttcaa 1200 atccccaacc ctggtggcgg tccaaagtta tggcagttat aaccccttat gtcattataa 1260 ggaggaaggg taaatattaa gtcaacatcc tttaaagcta agagtatgac tacagtgggg 1320 tggaatttgg gacttcatgc ccactccctg tttctgttct attttacctt tcctgacctc 1380 taagccaaca ggagaggggg aagggccaca cttttgtgac ccttgttaaa gaattgtgag 1440 tttaggaaac aaagatggac ttctgagggg gtagttgagg atgggctgaa ggcacagaag 1500 aaaccagctg gtgtgcccct ctccccacta gcagaccctt cttcctcatt ggttcagggc 1560 aaacaatccc ccaaaaattc aagaaaacta acttagagtt attttctgtt atttctcttt 1620 tccttgatct ggagccaatg cagaaagaaa tctaaaggtg aaggaaaggc agcgttcagc 1680 actgagcaag tccatgttgg agaaagttca cagggaattg gaaatccttg tcttcgtggt 1740 tcctggctca gcaggacccc tgtggggcct ctcctctct tgggaaagag attgctctag 1800 aaggtttact acaccagtga ggagaagatg agcgcaaggg ggattggccg gctgagggcg 1860 aaatcaagac tggagccaag tgcgctgagc tctcacatga ggtcctttgc tcctgttccc 1920 tggaggcata agtggctggg gtagagagaa gcaggggtat ttcttctgtc ctttcttgct 1980 tagggattgg gggtggaaat ctccccgcat ctaaggaaat ttgaaaagac aaactatggc 2040 tgcttcttca agcaaaccac ctcaccacac tatccagggg ataaaacccg cttgctgctg 2100

			342-10PCT	tv+		
ctaaattatg	ccaagagaga	acattctgat	atttctcctc	aattctaggc	atgacagcgt	2160
gacttggtgc	ttaaaggcat	ggagttttga	gttgcagacc	taggtttgag	tgctgaatct	2220
actagcttca	gggtgttaaa	aaagtttctt	aatctctcta	aaccttattt	ttctcaaaga	2280
taaaaaactg	ggtgtagttg	tgagtatagt	gaatgcacat	agtatgtgcc	tttggcatgt	2340
taattcacta	ttattctgga	cataatttct	cctaagaaaa	aggatgaact	aattgcaggg	2400
cctagcctaa	gctctgagaa	gtcattcgtt	atagcatttc	agtccatagt	aaacaagaag	2460
aaatgaggta	aagagtttaa	accagggaag	gcatagctgt	ggtcaccaaa	caacctgtta	2520
aaggcgagct	gtaggcacca	aaaaacctat	tatggactga	attgtgttcc	tcaaattcat	2580
atgttgaagt	gctaacccca	agtaccaaat	gtgactgtat	ttggggatag	ggtccctgaa	2640
gaagtcactc	agctggaagg	agtcatattg	gattaggtgt	tgggaattgg	ctggccaagg	2700
gagaaatcaa	ggc tggaacc	aagtgctgaa	ctctcacatc	aggtcctttg	ctcctgttcc	2760
ctggacccta	atccaatatg	actggcatct	ttatatgaag	aggaagaggc	accagagggt	2820
acacacgcag	agaaaaggcc	atgtgtggac	acagtaagat	gacggacatc	tgtaagccaa	2880
ggagggaaac	ctcagaagaa	accagccttg	cctgcacctt	gatcttggag	gtccagtctc	2940
cagaactgtg	aaaaaaatga	actggtgttg	tttaaatccc	ccagtcgtgg	tattttgtca	3000
tggtggccct	agaagacaat	atacaaccca	aaggaatatt	ctttccactt	tctccctctt	3060
ccactttata	gttttttctc	cttcgtttct	ttctttttct	cttttacttt	ccttttcttc	3120
tcttctcttt	cctctggttt	ttaattttaa	ttttaatttt	tggccttcct	atacctccat	3180
ttgcctctcc	aggaagctga	attccagaca	attaatcatt	catctcatca	gttcagcaaa	3240
gcaaatgccc	tcaatggttt	cttttgtgat	tcgattatta	tgggatcaga	atgtatctta	3300
ttcctctggg	aaaaatgaaa	cataaaaatt	tcagaaat			3338

```
66
```

<400> 66

Met Asn Trp Cys Cys Leu Asn Pro Pro Val Val Phe Cys His Gly 10 15

Gly Pro Arg Arg Gln Tyr Thr Thr Gln Arg Asn Ile Leu Ser Thr Phe 20 25 30

Ser Leu Phe His Phe Ile Val Phe Ser Pro Ser Phe Leu Ser Phe Ser 40 45

Leu Leu Ser Phe Ser Ser Leu Leu Phe Pro Leu Val Phe Asn Phe 50 60

Asn Phe Asn Phe Trp Pro Ser Tyr Thr Ser Ile Cys Leu Ser Arg Lys 65 70 75 80

¹²²

PRT

Homo sapiens

WO 2005/030250 PCT/EP2004/010697

44/223 342-10PCT.txt

Leu Asn Ser Arg Gln Leu Ile Ile His Leu Ile Ser Ser Ala Lys Gln Met Pro Ser Met Val Ser Phe Val Ile Arg Leu Leu Trp Asp Gln Asn 100 105 110 Val Ser Tyr Ser Ser Gly Lys Asn Glu Thr 115 <210> 19 <211> <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 67 ctaaaggtga aggaaaggc 19 <210> 68 <211> 17 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 68 cgctcatctt ctcctca 17 <210> . 69 1119 <211> <212> DNA <213> Homo sapiens <400> 69 tcaccctcct ggccaattgt gttgcacctt gggcactgaa tcacatgagc cgtcgactaa 60 gccagatgct totcatgtto ctactggcaa cotgcottot ggccatcata tttgtgcoto 120 aagaaatgca gaccctgcgt gtggttttgg caaccctggg tgtgggagct gcttctcttg 180 gcattacctg ttctactgcc caagaaaatg aactaattcc ttccataatc aggtacaaaa 240 gtttatgtgt gctctgtcat tctcaaaatg gacctgtctc aaccaattga cacttaacaa 300 gggaaaaaaa tccaagacaa gttagttaaa aaacaatcaa atgtaatagt cataaaaaca 360

acaaattaca gcccaagttt atatcaagct gactttgttc cagacgctgc attaagtctt

ttaatgcagt atcccatgta ccttctgaac cacctgaaag gttgatgtta aggaaaatag

cattttgtaa atgataaaaa tgtgtctaat tcacttgtga atctaaaata aattgctagc

aaataagaga aaatttcaaa agcaagagta tgttatcacc tccatgtgtt taagtgctca

tccataatca cagcaaaatg ataaatcaca aattatatgt atgatttta acaacttttc

ctctgttgct gtttttactc caaggggaag agctactgga atcactggaa actttgctaa

420

480

540

600

660

720

45/223 342-100CT +V+

tattqqqqqa	accetaactt	ccctcatgat	gatectaage	txt	nacccetoce	790
						780
ctggatcatc	tatggagtct	ttgccatcct	ctctggçctt	gttgtcctcc	tccttcctga	840
aaccaggaac	cagcctcttc	ttgacagcat	ccaggatgtg	gaaaatgagg	gagtaaatag	900
cctagctgcc	cctcagagga	gctctgtgct	ataggtctgt	gctgaggaaa	gcaaaacacc	960
atttagggct	accatccccc	aaaaaggctt	agatctgggc	tattcccatg	tagtcagtgc	1020
ctttgccttt	ggtgtatcct	catcccttcc	acagtgacct	catacatccc	ctgagcctca	1080
ctagatcaca	cagaccatct	ctgcccagcc	tgtccagga			1119

<210> 70 <211> 97 <212> PRT

Homo sapiens

<400> 70

Met Ile Phe Asn Asn Phe Ser Ser Val Ala Val Phe Thr Pro Arg Gly 1. 10 15

Arg Ala Thr Gly Ile Thr Gly Asn Phe Ala Asn Ile Gly Gly Ala Leu 20 25 30

Ala Ser Leu Met Met Ile Leu Ser Ile Tyr Ser Arg Pro Leu Pro Trp 35 40 45

Ile Ile Tyr Gly Val Phe Ala Ile Leu Ser Gly Leu Val Val Leu Leu 50 60

Leu Pro Glu Thr Arg Asn Gln Pro Leu Leu Asp Ser Ile Gln Asp Val 80

Glu Asn Glu Gly Val Asn Ser Leu Ala Ala Pro Gln Arg Ser Ser Val 85 90 95

Leu

<210> 71 <211> 21

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 71

ttctggccat catatttgtg c

<210>

<211> 21 <212> DNA

künstliche Sequenz

<220>

21

WO 2005/030250 PCT/EP2004/010697

46/223 342-100CT +v

<223> Oligonukleotid 342-10PCT.txt	
<400> 72 agtgattccc agtagctctt c	21
<210> 73 <211> 2837	
<212> DNA <213> Homo sapiens	
<400> 73	
atatcacctc ctaggaaata tgcagtaaga tggattgtgt gtctaaaggt taaactcttt	60
ttccaacaga tggatctagg ccgtatggag gattcactgc ttctcatacc tccagtgaag	120
atgcagataa agtgggatgt tgtaaatgta cttcatttta atcaggaaga agctgctatg	180
gtgaatttaa aacttgtaat gccattagat gagcttctag cacagtttca gtcatgttac	240
catgaggatt ggtgtgacct gttccatatt ccgtggtcca ttatttggtg ctgaaagaga	300
ccatctacct cctagaagtg tgtggtgggt ctcttccaaa tactcctgaa ggaaacttta	360
cttctcctgg ctatgatgga gtcaggaatt actcgagaaa cctaaactgt gaatggactc	420
tcagcaatcc aaatcaggga aattcatcta tttatattca ttttgaagat ttttacctag	480
aaagtcacca agactgtcaa tttgatgtcc ttgagtttcg agtgggtttg ttaagagcct	540
ggtaagaagt gcaagattga caaaggtaag gttagtagcg gaggtaagtg aaagcttgaa	600
tataggaaac cttggaccac ttgccattgc agtggataaa attttcaaga tttcgttgaa	660
tttgaaagtc aaagattcca ttttaaagcc attgactacc attgtccagt cgctattggg	720
gccaggccat gttacaaagg atattgaacg tttgggctta atgtgagggc ttgtgaccta	780
gagtctggag gttgcaaggg agacagccaa gtgatgtgtc atggggaaac cttcttcagg	840
tggattttga ggcttcactg caatactagc ttcctgttgc tgctgcaaca aattattatt	900
attattatta ttattattat tattattatt ttcagatgga gtctcgctct gtcactcagg	960
ctggagtgca gtggtgcgat ctcagctcgt tgcaagctcc gccttgtggg ttcatgccat	1020
tctcgtgcct cagcctccca agtagctggg actacaggaa cccgccacca cacctggcta	1080
atgtttcgta tttttagtag aggtggggtt tcatcgtgtt agccaggatg gtctcggtct	1140
cctgacctag tgattcacct gtcttggcct cccaaagttc tgggattaca ggcgtgagcc	1200
acacacttag tgtctttaaa caacatatat gtattctctc acagttctgg aggccagaat	1260
tctaaattcc ctcccactga gtcaaggtgg gagcagggca agtgccttcg gaggctctgt	1320
gggagaatcc atttcctggc tctggaggca gcctgcactc ctcgactttt gatgccctcc	1380
ttgaatgact ccaatttctc gcttccatca ctacacctcc caccactctc ccatcacctg	1440
ctctgctctt acaaggatca gtgagtacat caacttgcca cctaaagaag ccgggataat	1500
cttccctgcc aaaggtcctt aacttcatta catctgcaaa gcttctttta ccatataagg	1560
tgcaccgggt acttcttgag cattgggatg atctgcttca cctccagtca cacagcttcc	1620
aggcactggg agtggtcctc ctgcaggatg ttcagcttcg acttggccag agaaatggaa	1680
	~000

PCT/EP2004/010697 WO 2005/030250 47/223

342-10PCT.txt tggttgcatc acttatctac gtaaacaatt gaagaattgt ctgaaagaaa agcagaagga 1740 acatctgaag gaacacctga tgaggctgca cccttggcgg aaagaacacc tgacatggct 1800 gaaagcttgg tggaaaaacc acctgatgag gctgcaccct tggtggaggg aacagctgac 1860 aaaattcaat gtttggggaa agcaacatct ggaaagtttg aacagtcagc agaagaaaca 1920 cctaagaaaa ttatgaggac tgcaaaagaa acatctaaga aatttgcatg gccagcaaaa 1980 gaaagaccta ggaagatcac atgggaggaa aaataaacat ctgtaaagac tgaatgcgtg 2040 gcaggagtaa tacctaataa aactgaagtt ttggaaaaag gaacatctaa gatgctcacg 2100 tgtcctacaa aagaaacatc tacaaaagca agtacaaatg tggatgtgag ttctgtagag 2160 tctatattca gagtctcacc ctgtcaccca ggctggaatg caatggcacg atctcggctc 2220 actgcaacct ccacctccca gaaggaagca acaaagacag caactgaaca acaagaaaat 2280 gatattggaa ttattgaatg agcgccataa gatctaacaa ataagatgcc cacatcagag 2340 tcaggacaaa aagaagatac gaaatcacct tcagtttctg aggtcacagc tatggatgtg 2400 gaagagatag gaaaggcctc accacttaag atagaagcag cagctgcata gtggtaacag 2460 caatgagtgg atgtcaaaag acagattcaa ctagcctatc aatattcttg ggtgcagttc 2520 cttctcatga aagagcaagg gaacttaaaa aatatcactg tgaacaactt acagcaaaaa 2580 taaaacaaat gaaaaataag ttttgggtac tacaaaagga actatcagaa gcaaaaataa 2640 aattgcagta agtgaatcaa aaggttaaat gggaacaaga gctctgcagt gtgagcttgg 2700 aatgaagttg ataatagtga gaccttgttg gtacaagact atgtaacaca acctgcactt 2760 ctcaacaaaa aattgctttt ctgacttctg cactcagtag gtatctttgg aaaataatct 2820 cctattggta ctgaggc 2837

74 102 <212> PRT <213> Homo sapiens

<400> 74

Met Cys His Gly Glu Thr Phe Phe Arg Trp Ile Leu Arg Leu His Cys 1 5 10 15

Asn Thr Ser Phe Leu Leu Leu Gln Gln Ile Ile Ile Ile Ile Ile 20 25 30

Ile Ile Ile Ile Ile Ile Phe Arg Trp Ser Leu Ala Leu Ser Leu 35 40 45

Arg Leu Glu Cys Ser Gly Ala Ile Ser Ala Arg Cys Lys Leu Arg Leu 50 60

Val Gly Ser Cys His Ser Arg Ala Ser Ala Ser Gln Val Ala Gly Thr 65 75 80

21

21

840

900

48/223

342-10PCT.txt Thr Gly Thr Arg His His Thr Trp Leu Met Phe Arg Ile Phe Ser Arg

Gly Gly Val Ser Ser Cys

<210> 75 21 <211> <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 75

catctacctc ctagaagtgt g

<210> 76 <211> 21 <212> DNA

künstliche Sequenz <213> <220>

Oligonukleotid

<400> 76

cactogaaac toaaggacat c

<210> 77 <211> 5868 <212> DNA <213> Homo sapiens

<223>

60 gatetetec atgaagtgae caggatagag aageaccaga acegecaaaa gtatgggetg tgcgtcatct tcctttcctg taccatgatg cccaacttta aagagctgat ccatttcgag . 120 180 gtcagcatcg gtcactatgg gaacaagatg gacctgaatt acaagcctct agtctcaagc acaccgtaca gcccagtgat atatgatggg aacatctacc attatgtgcc ctggtacaac 240 300 accaagectg tegtggeegt gaeetecaae tgggaggaeg teagetteeg catgaactge 360 ctcaacctcc tccacttcac tcgggaccgc ctgaaagcca acctggacac cctgaaatcc 420 acgcqqaatc cgaaggatcc agctctcctc taccagtggg agaaactgct gagggagctg 480 gcagaggact gcaagcgccc tctgccctgc atgacctatc agcccaaagc caccagcctg 540 gacaggaaga ggtggcagct ccgcagcctc ctcctgcagg aactggccca aaaggccaag 600 caagccaagc ccaaggacat ggtggccaca gcggaggact ggctgtaccg cctcaacacc 660 gtgctccctg agccccagat gggcctccct gacgtgatga tttggctggt ggccaaggag 720 cagcgagtgg cctatgcaca gtacccagag ggtgaaggac agaaggatgt gctcccagct 780 cacctccggg tctgcatgtg gcttggcaat gtcacagaca gcaaggacct gcagctgctc

cgccagggtg acacagcggt gtacgccgag atggtgagtg tatgagaatc aggccaagta taaagaccag tgggggcagc aggggctgta tcactgcccc aacttctcgg atgtcatggg WO 2005/030250 PCT/EP2004/010697

gaacaagacc	ctccccatga	cggatttcca	342-10PCT.	txt ggatggcact	ggcaggacag	960
ctggacagtg	gaacctcaga	gaaggctcct	cctggacata	gacatcaaca	agagccaggt	1020
gctggaggag	gtatatgaga	accagggccg	tgacaccaga	ggggcctggg	ggcctgccgc	1080
catcccaaac	acagacgtga	atggacagcc	catggaggcc	cgggagaacg	tgaagtgccc	1140
ccaaggctgg	cactttaaga	aggactgggt	ggtggagctg	aaccacgcag	tggacagtaa	1200
gggctgggag	tatggagtgg	ggatcccacc	gtcgggcctg	ccccaggtct	ggagcccggt	1260
ggagaagacc	taccactcgt	gccgccgccg	gcgctgggcg	cgtgtgcgct	tcaggaacca	1320
tggggagctg	agccacgagc	aggagaccct	ctccttcctg	cagctgggcc	tggccaaggg	1380
cgaggaggag	ggctgggagt	atgacacctt	cggctccaag	ttccacctca	accctcagcc	1440
ccagagccgg	ttccgccgcc	gctgctggcg	ccgcaggctg	gccccaaca	aggacaaggg	1500
catcgcgccc	atattcctcc	tggaggggtc	cttggctatg	gatctgaaat	accacgctgg	1560
gaaggaagag	gacagcaaga	catggccatg	gggtctggac	agacagttca	gggaccccca	1620
gaggcaggac	acccggcccc	ccaacttgcc	cttcatctac	tgcaccttca	ataagcccca	1680
ctactaccag	ctcttctgct	acatctacca	ggcccggaac	ctggtgtcca	atcagatcct	1740
gacattccaa	gggcccttca	ttcgggtggt	cttcctgaac	cacagccagt	gcacccaaac	1800
cctgaggagc	tctgcaggcc	ccacatgggc	ccagacactc	atcttccagc	acctccttct	1860
gtacgagaac	ccacaggaca	ccaaagagag	cccaccgctt	gtggtgctgg	agctgtggca	1920
gcgtgacttc	tggggcaagg	agagcttgtg	gggacggagc	gtgtggcccc	caatggtctg	1980
gctggatctc	caggaccgga	tcctgccccc	catgaggtg g	catccccttg	taaaggagtt	2040
ggggaaggaa	gagggcgaga	tcttggcatc	ctgtgagctg	atcctccaga	ctgagaagct	2100
tggagagaag	cagctgccta	tcttaagcgt	tccctggaag	aatggggcat	acacactccc	2160
caagagcatc	cagcccacga	taaagaggat	ggccattgag	gtgctggcga	tgtgggatgg	2220
ggacggtggg	caggacaggc	gggggtggtc	tggagtgcgc	tgcagccttc	tgctggtcct	2280
ccctgactac	tggatccaaa	gctcacaccc	cgaaaaagac	tacctgggag	gtggagggag	2340
acaggagaga	aacgaagagg	ttctggtg ta	acactggaaa	tcattttacc	acaaacctct	2400
gcagtgagga	gtaggcaaag	ggctgtagca	tgcatgatca	cttgtgggac	tcacgctgcc	2460
cctgcgcagt	agcaactact	ttgcagagaa	ggaaatagag	gctccaagag	ataacacatt	2520
ccacgcacag	tgatgcaggg	actaactgac	agggccattt	aggcccagcc	ctgtctgact	2580
gcagatgcca	ggatgttgct	cacctctctt	ctgagagtag	catgagggtc	ctcattcaga	2640
agctgtgtgc	cctgccgcaa	atgtggcaaa	gagcacaaga	cggtcaggcc	tctgggactg	2700
			ggttcccgct			2760
			tgccaggtca			2820
			aaatccaggc			2880
tcagaggcag	tcggcttcag	gaactcctac	ctgagaactg	atgaggccag	acaaggcagc	2940

gggtgaggag	gggcaatgcc	tgcgggctat	342-10pcT. ggaggtcagt		gccagtggcc	3000
agaggtcacc	tccctcatgg	gttgggggac	agcgtcccag	ccccgagggc	aagcactgat	3060
ccctcacagg	acggggaagc	ctgtccttgt	gcgccttcag	acactggctc	ctctgcagcc	3120
ccattccctg	gccctgcagg	ctcctgctgc	accgctattg	cccctcagcc	cccttctctg	3180
gccaggaccc	cattacagag	gcgctgcctg	ccccttgtcc	tgccctcctt	ctttgttctg	3240
gtagatcctg	gcctggggcc	ttcggaacat	gaagaaggcg	agctccccc	agctcctggt	3300
ggaattcggg	gaagagtccc	tgaggacaga	acccatcagg	gactttcaga	ccaaccccaa	3360
cttccccgag	tctgagtctg	tcctagtcct	cacagtgctc	atgccgacgg	aggaggccta	3420
tgcactgccc	ctcgtggtga	aggtggtaga	caactgggcc	ttcggccagc	agaccgtgac	3480
gggccaggcc	aacatcgact	tcctccagcc	ctacttctgt	gacccctggg	ctcaagacta	3540
tatgcaccca	aagcttccaa	cgctgtctga	gaagaagcac	caagacttcc	taggctacct	3600
ctacagaaag	ttctggttca	agtccagtaa	agcagaggat	gagtatgagc	atgaggtgga	3660
ctggtggagc	aagctgttct	gggccacaga	tgagcacaag	tccctgaagt	acaagtacaa	3720
agactaccac	accctcaagg	tgtatgagtg	tgagctggag	gccgtgccag	ccttccaggg	3780
cctgcaggac	ttctgccaga	ccttcaaact	ctaccaggag	cagcccaagt	tggacagccc	3840
cgtggtaggg	gagttcaagg	gccttttccg	catctacccc	tttcctgaga	atccagaagc	3900
cccaaagccc	ccgctgcagt	tcttggtttg	gccagagaga	gaggacttcc	cccagccgtg	3960
cttggtgcgg	gtgtacatgg	tacgagccat	caacctgcag	ccccaggact	acaatggcct	4020
gtgtgaccct	tatgtgatcc	tgaaactggg	caagacagag	cttggcaacc	gggacatgta	4080
ccagcccaac	actctggatc	ccatctttgg	catgatgttt	gaactcacct	gcaacatacc	4140
cctggagaag	gacctagaga	tccagctcta	tgacttcgac	ctattttcac	ctgatgataa	4200
gataggaacc	acagtcatcg	accttgaaaa	ccgactccta	tctggctttg	gagctcattg	4260
tgggctctcc	aaatcctact	gccagtcagg	gccctttaga	tggcgggatc	agatgccccc	4320
aagctacctc	ctagaacgct	atgccaagcg	gaaagggcta	cctccgcctc	tgttcagtcc	4380
tgaggaagat	gctgttttct	ataatgggaa	aaagttcaag	ctgcaaagct	ttgagcccaa	4440
aacccctact	gttcatggtt	tgggacccaa	gaaggaacgc	cttgcactgt	acctcctgca	4500
cacccagggg	ctggtacctg	agcacgtgga	gacccgcaca	ctgtacagcc	acagccagcc	4560
aggcatcgac	cagggaaagg	tgcaaatgtg	ggtggacatc	ttccccaaga	agctggggcc	4620
tcctggcccc	caagtcaaca	tcaaccccag	aaagcctaaa	cggtatgagc	tgcgatgcat	4680
catctggaag	actgccaatg	tggacctggt	ggatgacaat	ttaagtagag	agaagacgag	4740
cgacatctac	atcaaagggt	ggttatacgg	gctggagaag	gacatgcaga	agacagacat	4800
ccactaccac	tcgctgactg	gggaggccga	cttcaactgg	cggttcatct	ttaccatgga	4860
ctacctggcg	gcggagcgca	cgtgtgtcca	gagccagaag	gattacatat	ggagcctgga	4920
tgccacgtcc	atgaagttcc	cagcccgact	tatcatccag	gtctgggaca	atgacatctt	4980

342-10PCT.txt ctccccgac gacttcctag gggtcctgga gctggatttg tctgacatgc ccctcccggc 5040 tcggcacgcc aagcagtgct ccatcaggat gatggacgcc gaccccaagt ggccctattt 5100 5160 catccaatac aagcactict ccctctttaa gaagaagact gtgactggct ggtggccttg ccaggtcctc gatggtggca aatggcgctt gtcgggcaag gtgaagatga gcctggagat 5220 5280 tctgtcagag aaggaagcct taatcaagcc agccgggcga ggccagtcgg aacccaacca 5340 gtaccccaca cttcatcctc ccctacgcac caacacctct ttcacgtggc tgcggtcacc 5400 agttcaaaac ttctgctata ttttctggaa acgctatcgc ttcaaactca tagcctttat 5460 ggtcatatcg attatagcac tratgctgtt taacttcatc tattcagctc cgcactattt 5520 ggccatgagc tggatcaaac ctcaacttca gctgtatcct cccattaaaa tattcaatat 5580 catcaattca ctaaacacca gcaacgccag ctcttccatc cttcccaccc aggatccaaa 5640 cctaaagcct acaatagacc atgagtggaa actccaccca ggacccacaa atcacctgag 5700 tgatattttc ccagaacttc cagccccagg agactaatta gtccatgctg cctggctttc ctcctgctac caacagccct ccccttgggc tggctaccag ttctttgttt ctatcttcta 5760 gaatatatgc aagatgctag gaatattctg gctattgtgt tcagaaatca ctttcaacaa 5820 5868 gacgagcaga gctgtaattt tccactgaaa taaacaagtt ctataaca

<210> 78 <211> 802 <212> PRT <213> Homo sapiens

<400> 78

Met Lys Lys Ala Ser Ser Pro Gln Leu Leu Val Glu Phe Gly Glu Glu 10 15

Ser Leu Arg Thr Glu Pro Ile Arg Asp Phe Gln Thr Asn Pro Asn Phe 20 25 30

Pro Glu Ser Glu Ser Val Leu Val Leu Thr Val Leu Met Pro Thr Glu 35 40 45

Glu Ala Tyr Ala Leu Pro Leu Val Val Lys Val Val Asp Asn Trp Ala 50 60

Phe Gly Gln Gln Thr Val Thr Gly Gln Ala Asn Ile Asp Phe Leu Gln 65 70 75 80

Pro Tyr Phe Cys Asp Pro Trp Ala Gln Asp Tyr Met His Pro Lys Leu 85 90 95

Pro Thr Leu Ser Glu Lys Lys His Gln Asp Phe Leu Gly Tyr Leu Tyr 100 105 110

Arg Lys Phe Trp Phe Lys Ser Ser Lys Ala Glu Asp Glu Tyr Glu His
115 . 120 125

Glu Val Asp Trp Trp Ser Lys Leu Phe Trp Ala Thr Asp Glu His Lys 130 140 Ser Leu Lys Tyr Lys Tyr Lys Asp Tyr His Thr Leu Lys Val Tyr Glu 145 150 155 160 Cys Glu Leu Glu Ala Val Pro Ala Phe Gln Gly Leu Gln Asp Phe Cys
165 170 175 Gln Thr Phe Lys Leu Tyr Gln Glu Gln Pro Lys Leu Asp Ser Pro Val 180 185 Val Gly Glu Phe Lys Gly Leu Phe Arg Ile Tyr Pro Phe Pro Glu Asn 195 200 205 Pro Glu Ala Pro Lys Pro Pro Leu Gln Phe Leu Val Trp Pro Glu Arg 210 220 Glu Asp Phe Pro Gln Pro Cys Leu Val Arg Val Tyr Met Val Arg Ala 225 230 235 240 Ile Asn Leu Gln Pro Gln Asp Tyr Asn Gly Leu Cys Asp Pro Tyr Val 245 250 255 Ile Leu Lys Leu Gly Lys Thr Glu Leu Gly Asn Arg Asp Met Tyr Gln 265 270 Pro Asn Thr Leu Asp Pro Ile Phe Gly Met Met Phe Glu Leu Thr Cys 275 280 285 Asn Ile Pro Leu Glu Lys Asp Leu Glu Ile Gln Leu Tyr Asp Phe Asp 290 5 295 300 Leu Phe Ser Pro Asp Asp Lys Ile Gly Thr Thr Val Ile Asp Leu Glu 305 310 315 Asn Arg Leu Leu Ser Gly Phe Gly Ala His Cys Gly Leu Ser Lys Ser 325 330 335 Tyr Cys Gln Ser Gly Pro Phe Arg Trp Arg Asp Gln Met Pro Pro Ser 340 345 350 Tyr Leu Leu Glu Arg Tyr Ala Lys Arg Lys Gly Leu Pro Pro Leu 355 360 365 Phe Ser Pro Glu Glu Asp Ala Val Phe Tyr Asn Gly Lys Lys Phe Lys 370 380 Leu Gln Ser Phe Glu Pro Lys Thr Pro Thr Val His Gly Leu Gly Pro 385 390 395 400

Lys Lys Glu Arg Leu Ala Leu Tyr Leu Leu His Thr Gln Gly Leu Val 405 415 Pro Glu His Val Glu Thr Arg Thr Leu Tyr Ser His Ser Gln Pro Gly
420 425 430 Ile Asp Gln Gly Lys Val Gln Met Trp Val Asp Ile Phe Pro Lys Lys 435 440 445 Leu Gly Pro Pro Gly Pro Gln Val Asn Ile Asn Pro Arg Lys Pro Lys 450 450 Arg Tyr Glu Leu Arg Cys Ile Ile Trp Lys Thr Ala Asn Val Asp Leu 465 470 475 480 Val Asp Asp Asn Leu Ser Arg Glu Lys Thr Ser Asp Ile Tyr Ile Lys 485 490 495 Gly Trp Leu Tyr Gly Leu Glu Lys Asp Met Gln Lys Thr Asp Ile His 500 505 Tyr His Ser Leu Thr Gly Glu Ala Asp Phe Asn Trp Arg Phe Ile Phe 515 525 Thr Met Asp Tyr Leu Ala Ala Glu Arg Thr Cys Val Gln Ser Gln Lys 530 540 Asp Tyr Ile Trp Ser Leu Asp Ala Thr Ser Met Lys Phe Pro Ala Arg 545 550 560 Leu Ile Ile Gln Val Trp Asp Asn Asp Ile Phe Ser Pro Asp Asp Phe 565 570 Leu Gly Val Leu Glu Leu Asp Leu Ser Asp Met Pro Leu Pro Ala Arg 580 585 590 His Ala Lys Gln Cys Ser Ile Arg Met Met Asp Ala Asp Pro Lys Trp 595 600 Pro Tyr Phe Ile Gln Tyr Lys His Phe Ser Leu Phe Lys Lys Lys Thr 610 615 620 Val Thr Gly Trp Trp Pro Cys Gln Val Leu Asp Gly Gly Lys Trp Arg 625 635 640 Leu Ser Gly Lys Val Lys Met Ser Leu Glu Ile Leu Ser Glu Lys Glu 650 655 Ala Leu Ile Lys Pro Ala Gly Arg Gly Gln Ser Glu Pro Asn Gln Tyr
660 665 670

Pro Thr Leu His Pro Pro Leu Arg Thr Asn Thr Ser Phe Thr Trp Leu 675 685 .

Arg Ser Pro Val Gln Asn Phe Cys Tyr Ile Phe Trp Lys Arg Tyr Arg 690 700

Phe Lys Leu Ile Ala Phe Met Val Ile Ser Ile Ile Ala Leu Met Leu 705 710 715 720

Phe Asn Phe Ile Tyr Ser Ala Pro His Tyr Leu Ala Met Ser Trp Ile 725 730 735

Lys Pro Gln Leu Gln Leu Tyr Pro Pro Ile Lys Ile Phe Asn Ile Ile 740 745

Asn Ser Leu Asn Thr Ser Asn Ala Ser Ser Ser Ile Leu Pro Thr Gln 755 760 765

Asp Pro Asn Leu Lys Pro Thr Ile Asp His Glu Trp Lys Leu His Pro 770 780

Gly Pro Thr Asn His Leu Ser Asp Ile Phe Pro Glu Leu Pro Ala Pro 785 790 795

Gly Asp

<210> 79

<211> 21 <212> DNA

<213> künstliche Sequenz

<220> <223> Oligonukleotid

<400> 79

tgttcagtcc tgaggaagat g

80

<210> <211> <212> 21

DNA

<213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 80

atgatgcatc gcagctcata c

<210>

3170 <211>

<212> DNA

<213> Homo sapiens

<400> 81

21

60	atgaccagcc		342-10PCT. gccgccgaga	gccgccgtgc	caacttcatc	ggctcaccga
120	gccttcgccg	ggcagctggc	tcggccaggt	cggaacacca	cactctctcc	tggtgcacct
180	gtgcgcggcg	cctggcggag	acagcaaccg	ctgcacctgg	cctccgggcc	acctgcgtgc
240	cagatccgcc	tggaaacaac	acctgatcct	aacctccgcc	cggcctgggc	accagctccg
300	gatctgtcct	ggaggacctg	tgtccaccgt	gacgccttcc	ggcggccttt	gggtggagtc
360	ctaaacaccc	gatggtgaac	cggtgggcca	ccgtgggagg	ggaggccctg	acaacaacct
420	cagcttcaca	gaccttcgtg	tcgcggaggg	atcgaccaca	ccacaacctc	tcacgctgga
480	gacgggctct	actcccgccc	gcctgcataa	acctccaacc	tctggacatg	agctggtccg
540	agcttcggcg	gctgaccgtc	cgcccacccc	gggcccaagc	gcagggcacc	tcctgaggtc
600	cgcgaggacg	gcggctgacc	tctggctgcg	tgcgagctgc	gcactgcaac	gcaaccccct
660	tccatccccg	ctacttctgg	tcaccgaccg	cccgaacacc	ctgcgccacg	acttagagac
720	cgggccctgg	ggcggggggc	tcacacggca	cccccgctga	cctgtgtgag	aggaggagtt
780	gagccggtgg	gggtgacccc	gccgagcggt	agcctgcgct	ccaggcggtg	tggtggaagg
840	cgggtccggg	cagccggacc	tggggaactc	gggcggctgc	ggcacctgat	tgcactgggt
900	ttcacttgta	cagtggcacc	ccttgaggga	accatcacca	gctggatgtg	gggacgggac
960	gtacctctgc	ggtgtgcgtg	cgcccgtgga	gaagcgacgg	tgctgctggg	tcgcctccaa
1020	tcctctgaca	cgagcccggc	cgcctctcac	gctgccccgc	acccccgccg	ctctgatggc
1080	ctcgtggcag	tgagcgtcgg	artctgcggc	ggtgccaacg	gggcagacca	tcgccacgcc
1140	gtgcccggaa	ccagaggcct	gctggccagc	gtgctcatcc	ctcgaactcc	ccgagctcac
1200	tacaggatga	ctccctcgtc	ccgttgatga	tacaacagtt	ccaggttcag	tacgcatgta
1260	gcctacgact	ggcgggccgt	atgacctggc	ttcctggtga	cagtcagacc	tcccgtccac
1320	cgagtggtgg	gccggcaacg	ccacagcgct	gacgacgggg	ggcggtctac	tgtgcgtgct
1380	agggcccatt	ccgcccgctg	cggcgccctg	gctggggatc	gttcaccacc	gctgtgtaca
1440	gtcctcgtct	cgtcgcctcg	ggggcgtcat	atcgccatcg	caccatgatc	tcttgggcgg
1500	cgccgcgtca	cggggacagc	tgtatggcga	cgctataagg	gctcatgatc	tcatcgttct
1560	ggcgcaggca	gcagaccaac	acgtgtgctc	cgggtcagcc	gtcgctcccg	agggctccag
1620	ctgcgcgagg	ctacgaggcg	cccaggacca	gccctgccgg	acaggccccg	caggcgcggc
1680	gccgagacgg	ggccatggag	tcgaggccaa	gccgtcgccg	ggctgccccc	tggagtccca
1740	acctcgctgt	cggctcggcc	gttctctggg	gtccttggac	gccggaggtg	catccgcgga
1800	ggccctcgaa	ggccgcggtg	aggagtctcg	acttccgggg	atccgaggaa	gcctgctgcc
1860	gctctagttc	ccctactcta	cctcggcgcc	gagccaccaa	cggcgccctg	ggagccgatc
1920	ggggactacg	ttcgttcgac	agcagcgcta	ccgaggccgc	cgcggcccgg	ctgggggagc
1980	cgccaccggt	gcggacaaag	gccgcgcccg	agttacccgc	ccagagccac	gggcactatt
2040	gacctggggc	ggaggatgga	gcgcggccgg	gctggagggg	cctggacggg	ccacgccgca

tgggctccgc	: cagggcgtgc	ctggctttca	342-10PCT ccagcaccga	.txt gtggatgctg	gagagtaccg	2100
	gggcgggcgc					2160
ggacgctggg	gcgggactgg	gagaaagcgc	agcgccaaga	cattggacca	gagtggagac	2220
gcgcccttgt	ccccgggagg	gggcggggca	gcctcgggct	gcggctcgag	gccacgcccc	2280
cgtgcccagg	gcggggttcg	gggaccggct	gccggcctcc	cttcccctat	ggactcctcg	2340
acccccctcc	tacccctccc	ctcgcgcgct	cgcggacctc	gctggagccg	gtgccttaca	2400
cagcgaagcg	cggggagggg	cagggccccc	tgacactgca	gcactgagac	acgagecece	2460
tcccccagcc	cgtcacccgg	ggccggggcg	aggggcccat	ttcttgtatc	tggctggact	2520
agatcctatt	ctgtcccgcg	gcggcctcca	aagcctccca	ccccacccca	cgcacattcc	2580
tggtccggtc	gggtctggct	tggggtcccc	ctttctctgt	ttccctcgtt	tgtctctatc	2640
ccgccctctt	gtcgtctctc	tgtagtgcct	gtctttccct	atttgcctct	cctttctctc	2700
tgtcctgtcg	tctcttgtcc	ctcggccctc	cctggttttg	tctagtctcc	ctgtctctcc	2760
tgatttcttc	tctttactca	ttctcccggg	caggtcccac	tggaaggacc	agactctccc	2820
aaataaatcc	ccacacgaac	aaaatccaaa	accaaatccc	cctccctacc	ggagccggga	2880
ccctccgccg	cagcagaatt	aaacttttt	ctgtgtctga	ggccctgctg	acctgtgtgt	2940
gtgtctgtat	gtgtgtccgc	gtgtagtgtg	tgtgtgtgtg	tgtgtgtgtg	tgtgtgtgtg	3000
tgtgtgttgg	gggagggtga	cctagattgc	agcataagga	ctctaagtga	gactgaagga	3060
agatgggaag	atgacta act	ggggccggag	gagactggca	gacaggcttt	tatcctctga	3120
gagacttaga	ggtggggaat	aatcacaaaa	ataaaatgat	cataatagct		3170 .
<210> 82						

684

PRT

Homo sapiens

Met Thr Ser Leu Val His Leu Thr Leu Ser Arg Asn Thr Ile Gly Gln 10 15

Val Ala Ala Gly Ala Phe Ala Asp Leu Arg Ala Leu Arg Ala Leu His 20 25 30

Leu Asp Ser Asm Arg Leu Ala Glu Val Arg Gly Asp Glm Leu Arg Gly 35 40

Leu Gly Asn Leu Arg His Leu Ile Leu Gly Asn Asn Gln Ile Arg Arg 50 60

Val Glu Ser Ala Ala Phe Asp Ala Phe Leu Ser Thr Val Glu Asp Leu 65 75 80

Asp Leu Ser Tyr Asn Asn Leu Glu Ala Leu Pro Trp Glu Ala Val Gly 85 90 95

Gln Met Val Asn Leu Asn Thr Leu Thr Leu Asp His Asn Leu Ile Asp 100 105 110 His Ile Ala Glu Gly Thr Phe Val Gln Leu His Lys Leu Val Arg Leu 115 120 125 Asp Met Thr Ser Asn Arg Leu His Lys Leu Pro Pro Asp Gly Leu Phe 130 140 Leu Arg Ser Gln Gly Thr Gly Pro Lys Pro Pro Thr Pro Leu Thr Val 145 150 155 160 Ser Phe Gly Gly Asn Pro Leu His Cys Asn Cys Glu Leu Leu Trp Leu 165 170 175 Arg Arg Leu Thr Arg Glu Asp Asp Leu Glu Thr Cys Ala Thr Pro Glu 180 185 His Leu Thr Asp Arg Tyr Phe Trp Ser Ile Pro Glu Glu Glu Phe Leu 195 200 Cys Glu Pro Pro Leu Ile Thr Arg Gln Ala Gly Gly Arg Ala Leu Val 210 220 Val Glu Gly Gln Ala Val Ser Leu Arg Cys Arg Ala Val Gly Asp Pro 225 230 240 Glu Pro Val Val His Trp Val Ala Pro Asp Gly Arg Leu Leu Gly Asn 245 250 255 Ser Ser Arg Thr Arg Val Arg Gly Asp Gly Thr Leu Asp Val Thr Ile 260 265 . 270 Thr Thr Leu Arg Asp Ser Gly Thr Phe Thr Cys Ile Ala Ser Asn Ala 275 280 285 Ala Gly Glu Ala Thr Ala Pro Val Glu Val Cys Val Val Pro Leu Pro 290 295 300 Leu Met Ala Pro Pro Pro Ala Ala Pro Pro Pro Leu Thr Glu Pro Gly 305 310 315 Ser Ser Asp Ile Ala Thr Pro Gly Arg Pro Gly Ala Asn Asp Ser Ala 325 330 335 Ala Glu Arg Arg Leu Val Ala Ala Glu Leu Thr Ser Asn Ser Val Leu 340 345Ile Arg Trp Pro Ala Gln Arg Pro Val Pro Gly Ile Arg Met Tyr Gln 365

val Gln Tyr Asn Ser Ser Val Asp Asp Ser Leu Val Tyr Arg Met Ile 370 380 Pro Ser Thr Ser Gln Thr Phe Leu Val Asn Asp Leu Ala Ala Gly Arg 385 390 395 400 Ala Tyr Asp Leu Cys Val Leu Ala Val Tyr Asp Asp Gly Ala Thr Ala 405 410 Leu Pro Ala Thr Arg Val Val Gly Cys Val Gln Phe Thr Thr Ala Gly 420 425 430 Asp Pro Ala Pro Cys Arg Pro Leu Arg Ala His Phe Leu Gly Gly Thr 435 440 445 Met Ile Ile Ala Ile Gly Gly Val Ile Val Ala Ser Val Leu Val Phe 450 460 Ile Val Leu Leu Met Ile Arg Tyr Lys Val Tyr Gly Asp Gly Asp Ser 465 470 475 Arg Arg Val Lys Gly Ser Arg Ser Leu Pro Arg Val Ser His Val Cys 485 490 495 Ser Gln Thr Asn Gly Ala Gly Thr Gly Ala Ala Gln Ala Pro Ala Leu 500 510 Pro Ala Gln Asp His Tyr Glu Ala Leu Arg Glu Val Glu Ser Gln Ala 515 520 525 Ala Pro Ala Val Ala Val Glu Ala Lys Ala Met Glu Ala Glu Thr Ala 530 540 Ser Ala Glu Pro Glu Val Val Leu Gly Arg Ser Leu Gly Gly Ser Ala 545 550 560 Thr Ser Leu Cys Leu Leu Pro Ser Glu Glu Thr Ser Gly Glu Glu Ser 575 Arg Ala Ala Val Gly Pro Arg Arg Ser Arg Ser Gly Ala Leu Glu Pro 580 585 Pro Thr Ser Ala Pro Pro Thr Leu Ala Leu Val Pro Gly Gly Ala Ala 595 600 Ala Arg Pro Arg Pro Gln Gln Arg Tyr Ser Phe Asp Gly Asp Tyr Gly
610 615 620 Ala Leu Phe Gln Ser His Ser Tyr Pro Arg Arg Ala Arg Arg Thr Lys 625 630 640

342-10PCT.txt

Arg His Arg Ser Thr Pro His Leu Asp Gly Ala Gly Gly Gly Ala Ala 645 650 655 Gly Glu Asp Gly Asp Leu Gly Leu Gly Ser Ala Arg Ala Cys Leu Ala 660 665 670 Phe Thr Ser Thr Glu Trp Met Leu Glu Ser Thr Val 675 83 17 <210> <211> <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 83 cgaactccgt gctcatc 17 <210> 84 <211> 17 <212> DNA <21.3> künstliche Sequenz <220> <223> Oligonukleotid <400> 84 cgcacaagtc gtaggca 17 <210> 85 2206 <211> <212> DNA Homo sapiens <400> 85 cgacaacgtc acccgcagac cggccaatcc cgccaggccg cggcccagtg gcgccggcgc 60 acaccgaaga cgacaccago catooggoca atooogocoo googogocoo goaggocogo 120 ccactcctcg cttctccact tcccttctcg aagtgtccgg tcgcttctcg caggcggcgc 180 gcttgctggg tcacagtgag gcggctccgc gcaggcgcag ccgggcgggc gaggagcggg 240 gaagctgact cagggctgcg gccggggtcc tgcggggtag gagcgcgagg ccggcctgag 300 ggaggaggcc tagcgaccca tccggcycct cccgccccgg gcacccgccc gcggccgcgc 360 atcctgcggg ccccaggagg cctccatctc aaaacaacgt gtttttagga tctcatccac 420 tatcacagtt tcagctttcc ccaaactgga atgtgtcttt gcagacgccc atccttatta 480

aagggcaaag acttctcata cacctaggat ggatcttata ttcttggcgg gactgcagag aaggtgccgt gtcctgagtc ctcatgtcag ggcacaggct tccagccagt tctacctggg

ttatgtttat ctcaattccc tggtggtatt ggtgtctgct gggttttgcc agaatgaaga

caccgtgttt tcatttgtca gttgattcgt attttccagg aagacattct gagattacag

540

600

660

WO 2005/030250 PCT/EP2004/010697

•					
cattgtctta gtcaaggtg	c tgcagaagga	342-10PCT.	txt aggatatatg	tacatatgaa	780
agaaagttta tgaagaact					840
tgcaagctga ggagcgagg	a agccagcagt	ggc tcagccg	gagtccaaca	gcctcaaacg	900
gaatccaaca gttcaggct	t cagtctgtgg	ccaaatgccc	agagaccccg	gaaagctact	960
ggtgttagtc ccagagccg	g aaggccaaag	aacctggagt	gtgatgtcca	agggcaggag	1020
gaatggacag aagcatcca	g catggggtaa	agacgaaagc	cagaagactc	agcaagctag	1080
cttacctact ttcttctgc	c tgccttgttc	tagccgcgct	ggcagccggt	tggagggtgc	1140
ccaccccac tgagggtgg	a tcttcctctc	ctagtccact	gactcaaatt	tcagtctctc	1200
tgggagcacc atcacacca	g aaacaatacc	agccatctag	ccacccttca	gttcaccatc	1260
acaaccattg tcttattca	t gaaacttctg	cagacccacc	ttaacctcca	tcggtgactt	1320
ctacctgaag ccctctgat	t gttgcccagt	ggtgcttttt	aaaataattt	ccatagtttc	1380
ttctacacct ttagttggd	a ttctactgta	aaggagagat	tttattttct	tactcattta	1440
tttgttagtt tatagtcac	c accatatgga	tgcagagttc	tgtctcattc	actgggaagt	1500
attctattgc agtcatgat	t tattttgatg	ttcacatccc	agagttggtg	agtgagcgcc	1560
ccttcacgct ggctcccga	g tgctgacgtg	tccccgtcct	tctctgcact	tttccttacc	1620
tcctggcctc agatattc	a gggtcatttg	ttctctccct	gctccaaccc	tgcagtcagc	1680
catctcccta gggacgttg	g ttcctttatg	gaaggtggca	tttagaagcc	aggatttggg	1740
ctgagcactg tggctcatg	c ttgtaatccc	agcacttggg	gaggccgaag	tgggcggatc	1800
gctggaggcc aagagtctg	a gaccagectg	gctaacatgg	tgaaaccctt	ccccgtctct	1860
actacaaata aaaaattag	ıc tgggtgtgtt	ggcacgtgcc	tgtaatccca	gttactcagg	1920
aggetgaage accagaate	t cttgaaccca	ggaggccgag	gttgcagtga	gccaagattg	1980
caccactgca ctacagct	g ggtgacagcg	cgagacaccg	tctcaaaaag	gataataatt	2040
taaaaaacag caggatttg	g gtgagcagtg	cgctcattgc	ttctgggctc	tctcggtgga	2100
cataggctag gaatgtaag	a tgtatgtgcc	tgtgtatata	cacacgtctg	tagctatgtc	2160
tatgttgcat acatgtgt	t ttccaaaaac	caaatccata	accatg		. 2206

<210> 86

Met Asp Arg Ser Ile Gln His Gly Val Lys Thr Lys Ala Arg Arg Leu 1 5 10 15

Ser Lys Leu Ala Tyr Leu Leu Ser Ser Ala Cys Leu Val Leu Ala Ala 20 25 30

Leu Ala Ala Gly Trp Arg Val Pro Thr Pro Thr Glu Gly Gly Ser Ser 35 40 45

<211> 93 <212> PRT <213> Homo sapiens

<400> 86

342-10PCT.txt

Ser Pro Ser Pro Leu Thr Gin Ile Ser Val Ser Leu Gly Ala Pro Ser His Gln Lys Gln Tyr Gln Pro Ser Ser His Pro Ser Val His His 65 70 75 80 Asn His Cys Leu Ile His Glu Thr Ser Ala Asp Pro Pro 85 90 <210> 87 <211> 21 <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 87 aaactacgtg tggccaggat c 21 <210> 88 <21.1> 21 <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 88 cgacatgagg actcaggaca c 21 <210> 89 <211> 455 <212> DNA <213> Homo sapiens <400> 89 gtgaagacag ggagctcaag tgacctcctc cagggtatat agctgtggtg tgggaagcat 60 catgagaaca cggtctttga tggggataat tactctgaat ctaccaggct gattaagcca 120 cagcagatca gcaggtgaga attcaactgt ccagatagaa aggtggacat ggaaaaattg 1.80 ggctttgcaa atggtcaccc aattcttgcc ttcctggtct ccagatcacc cttcctatac 240 cgccactctg gagaaagaag tacagaacgc taacaaggat ggcttggagt tgcagtggtc 300 acctcagatc ttaaggtcac tttggagatg gaacccctgt gactaggaat ggcagaagag 360 aaaggtagaa agagattgag tootggggat gtggcagago accatootag coccgtactg 420 Cgtacttctg gacttccttt aaattgagag aaaca 455 <210> 90 <211> 61 <212> PRT Homo sapiens

<400> 90

342-10PCT.txt Cys Phe Ser Gln Phe Lys Gly Ser Pro Glu Val Arg Ser Thr Gly Leu
10 15 Gly Trp Cys Ser Ala Thr Ser Pro Gly Leu Asn Leu Phe Leu Pro Phe 20 30 Ser Ser Ala Ile Pro Ser His Arg Glý Ser Ile Ser Lys Val Thr Leu 35 40 45 Arg Ser Glu Val Thr Thr Ala Thr Pro Ser His Pro Cys 50 60 <210> 91 <211> 20 <212> DNA künstliche Sequenz <213> <220> <223> Oligonukleotid <400> 91 gaacacggtc tttgatgggg 20. <210> 92 <211> 21 <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 92 gccatccttg ttagcgttct g 21 <210> 93 1230 <211> <212> DNA Homo sapiens <400> 93 aggggcagag gggtcttccc aaccctaccc ctattttcgg tgatttttgt gtgagaatat 60 taatattaaa aataaacgga gaaaaaaaat cctgtttcgc taacggctgg tggtagcagg 120 ttgagtaccg ggagggctgc aagaccgtga ttgatgggga ggactgcgca gaccctggcg 180 agggtgagcc cctccccgga ggcgcctgtg gaatgtccag ggctctggtc cgctcctcgg 240 gatggggggt gcctaatcct agagccgcat tccaggataa ggggggtggg gagaggctgg 300 gccgggggag gggcaggaaa gagggctata agggcagcgg cccaggcggg cgggatccag 360 gcgggccatg gcggatgtcc ccggggcaca gcgagcggtt cctggtgacg gcccagagcc 420 ccgggacccc ctggactgtt gggcctgcgc tgttcttgta acagcccaga atctgctggt 480 ggctgccttc aatcttctcc tgctggtgct ggtgctaggg accatcttgc tacccgctgt 540 caccatgctg ggcttcggct tcctctgcca ctctcagttc ctgcgctccc aggcaccccc 600 ttgcaccgcg cacctgcggg accccggttt cacggcccta ctggtcaccg gattcctgct 660

342-10PCT.txt
cetegtgeeg etgetegtge ttgetetgge cagetacege egectetgee tgegeeteeg
cctagccgat tgcctcgtgc cctacagccg agccctttat cggcgtcggc gcgccccgca
gccgcggcaa atccgggcct caccagggtc ccaggccgtt cccacatcag gaaaggtctg
ggtctaatga ccctcgagtc aagaacaacc ctgacggctg ccctcctct tattcggccc
aaggacttga agcccggcat cttccgacct gccctgcccc cacccctgcc tgagcggagt
cctagcatec ccttgggagc agcagcgtca gtggacccag tgctgagaaa agcccccaca
tcccggaaaa cccactttcc tttcacgacc cacatctcaa tcctgaacat ctaggctgga
acctgcacac ctccccctca gctccgtcgt gaatgggaca acaatctcgt gccctcgttt
tatggtgcag cttctctagt atttctgggg ctgggggggg gggctggagg ggaaggagtg
tccacgcatc aataaagatt taacgaactg
.210
<210> 94 <211> 159
<212> PRT <213> Homo sapiens
<400> 94
Met Ala Asp Val Pro Gly Ala Gln Arg Ala Val Pro Gly Asp Gly Pro
1 5 10 15
Glu Pro Arg Asp Pro Leu Asp Cys Trp Ala Cys Ala Val Leu Val Thr
20 25 30
Ala Gln Asn Leu Leu Val Ala Ala Phe Asn Leu Leu Leu Val Leu
35 40 45
Val Leu Gly Thr Ile Leu Leu Pro Ala Val Thr Met Leu Gly Phe Gly
50 55 60
Phe Leu Cys His Ser Gln Phe Leu Arg Ser Gln Ala Pro Pro Cys Thr
65 70 75 80
Ala His Leu Arg Asp Pro Gly Phe Thr Ala Leu Leu Val Thr Gly Phe
85 90 95
Leu Leu Leu Val Pro Leu Leu Val Leu Ala Leu Ala Ser Tyr Arg Arg
100 105 110 Arg Arg
Leu Cys Leu Arg Leu Arg Leu Ala Asp Cys Leu Val Pro Tyr Ser Arg
115 120 125
Ala Leu Tyr Arg Arg Arg Arg Ala Bro Gla Dan Gl
Ala Leu Tyr Arg Arg Arg Ala Pro Gln Pro Arg Gln Ile Arg Ala 130 140
Ser Dro Gly Son Cln Ala val Bas who days at
Ser Pro Gly Ser Gln Ala val Pro Thr Ser Gly Lys val Trp Val 145 150 155

				342-10PCT	+v+		
<210> <211>	95 21			J-Y-TOPCI	. (X)		
<212> <213>	DNA						
	кип	stliche Seq	uenz				
<220> <223>	oli	gonukleotid					
<400>	95						
LECCTC	cgcc	actctcagtt	C				21
<210>	96						
<211> <212>	21 DNA						
<213>	kün	stliche Seq	uenz				
<220> <223>	iro	gonukleotid					
<400>	96						
cgataaa	aggg	ctcggctgta	g				21
<210>	97	_					
<211> <212>	1020 DNA						
<213>	Homo	sapiens					
<400> atggagg	97 Jagg	aggaggagga	tgatgactat	gagaactcaa	cacctcccta	caaggacctt	60
cctccca	aagc	cagggaccat	ggaggaggag	gaggaggatg	atgactatga	gaactcaaca	120
cctccct	taca	aggaccttcc	tcccaagcca	gggaccatgg	aggaggagga	ggaggatgat	180
gactato	gaga	actcaacacc	tccctacaag	gaccttcctc	ccaagccagg	ttcaagtgct	240
ccaccaa	agac	ctccaagg gc	agcaaaggaa	acagagaaac	ccccacttcc	ttgcaagccc	300
cggaaca	itga	caggcctgga	cctcgccgct	<pre>gtcacctgtc</pre>	cacctcctca	actggctgtg	360
aatcttg	jagc	cttctccatt	gcagccatcc	ctggccgcaa	ctccagtccc	ctggctcaat	420
cagaggt	ctg	gaggtcctgg	ctgctgccag	aagaggtgga	tggtgtacct	gtgtctgctg	480
gtggtga	ıctt	ccctgttcct	gggctgcctt	ggtctcactg	tgaccctgat	taagttgact	540
ggcatgg	ıcag	ggctagctgg	cctgaagcat	gacattgccc	gtgtaagagc	tgacaccaac	600
cagtccc	tgg	tggaactttg	gggcttatta	gactgccgcc	gaattacctg	tcctgaaggc	660
tggctgc	cct	ttgagggcaa	gtgttactac	ttctccccaa	gcaccaagtc	atgggatgag	720
gcccgga	tgt	tctgccagga	gaattactct	cacttggtca	tcatcaatag	ctttgctgag	780
cacaatt	ttg	tggccaaggc	ccatggctct	ccacgggtgt	actggctggg	gctgaa tg ac	840
agggccc	agg	aaggggactg	gaggtggctg	gatgggtctc	ctgtgacatt	aaggcaacca	900
gaggaac	cca	ataacatcca	cgatgaggac	tgtgctacca	tgaacaaagg	tggcacctgg	960
aatgato	tct	cttgctacaa	aactacgtat	tggatttgtg	agcggaaatg	ttcctgttga	1020
	98 339						

<210> 98 <211> 339 <212> PRT

PCT/EP2004/010697

<213> Homo sapiens

<400> 98

Met Glu Glu Glu Glu Asp Asp Asp Tyr Glu Asn Ser Thr Pro Pro . 1 5 10 15

Tyr Lys Asp Leu Pro Pro Lys Pro Gly Thr Met Glu Glu Glu Glu Glu Glu 20

Asp Asp Asp Tyr Glu Asn Ser Thr Pro Pro Tyr Lys Asp Leu Pro Pro 35 40

Lys Pro Gly Thr Met Glu Glu Glu Glu Glu Asp Asp Tyr Glu Asn 50 60

Ser Thr Pro Pro Tyr Lys Asp Leu Pro Pro Lys Pro Gly Ser Ser Ala 65 70 75

Pro Pro Arg Pro Pro Arg Ala Ala Lys Glu Thr Glu Lys Pro Pro Leu 85 90 95

Pro Cys Lys Pro Arg Asn Met Thr Gly Leu Asp Leu Ala Ala Val Thr 100 105 110

Cys Pro Pro Pro Gln Leu Ala Val Asn Leu Glu Pro Ser Pro Leu Gln 115 125

Pro Ser Leu Ala Ala Thr Pro Val Pro Trp Leu Asn Gln Arg Ser Gly 130 140

Gly Pro Gly Cys Cys Gln Lys Arg Trp Met Val Tyr Leu Cys Leu Leu 145 155 160

Val Val Thr Ser Leu Phe Leu Gly Cys Leu Gly Leu Thr Val Thr Leu 165 170 175

Ile Lys Leu Thr Gly Met Ala Gly Leu Ala Gly Leu Lys His Asp Ile 180 185 190

Ala Arg Val Arg Ala Asp Thr Ash Gln Ser Leu Val Glu Leu Trp Gly
195 200 205

Leu Asp Cys Arg Arg Ile Thr Cys Pro Glu Gly Trp Leu Pro Phe 210 220

Glu Gly Lys Cys Tyr Tyr Phe Ser Pro Ser Thr Lys Ser Trp Asp Glu 225 230 235 240

Ala Arg Met Phe Cys Gln Glu Asn Tyr Ser His Leu Val Ile Ile Asn 245 250 255

Ser Phe Ala Glu His Asn Phe Val Ala Lys Ala His Gly Ser Pro Arg 260 265 270 Val Tyr Trp Leu Gly Leu Asn Asp Arg Ala Gln Glu Gly Asp Trp Arg 275 280 285 Trp Leu Asp Gly Ser Pro Val Thr Leu Arg Gln Pro Glu Glu Pro Asn 290 295 300 Asn Ile His Asp Glu Asp Cys Ala Thr Met Asn Lys Gly Gly Thr Trp 305 310 315 Asn Asp Leu Ser Cys Tyr Lys Thr Thr Tyr Trp Ile Cys Glu Arg Lys 325 330 335 Cys Ser Cys <210> 99 21 künstliche Sequenz <220> <223> Oligonukleotid <400> 99 atagctttgc tgagcacctt c 21 <210> 100 <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 100 aagagacact cagatatgga c 21 <210> 101 1680 <212> DNA Homo sapiens <400> 101 atggccaatg tcaccttggt gacaggattt cttcttatgg ggttttctaa tatccagaag 60 ctgcggattt tatatggtgt gctcttccta ctgatttacc tggcagccct aatgagtaac 120 cttctcatca ttactctcat taccctggac gtaaagctcc aaacacccat gtacttcttc 180 ctgaagaact tatccttttt ggatgtcttc ctggtgtctg ttccaatccc aaaattcatt 240 gtcaacaacc taacccacaa caattccatt tccattctag gatgtgcctt ccagctactt 300 ttaatgactt ccttctcagc aggagagata tttatcctca ctgccatgtc ctatgaccgc 360 tatgtagcca tctgctgtcc cctgaactac gaggtaatca tgaatactgg agtctgtgtg 420

ttaatggcaa	gtgtttcctg	ggccattgga	342-10PCT. gggctctttg		cacagetgge	480
	tgcctttctg		•			540
tcattactaa	ggatttcctg	ttctgaaaca	ctaatggtaa	tttatgcagg	tattggagtt	600
ggtgcatgtt	taagcatttc	ttgtttcatc	tgtattgtga	tctcttacat	ttatatcttc	660
tccactgtac	tgaagatccc	taccactaaa	ggactgtgtg	attgggttaa	agggctcagt	720
gcggggactc	tgttttctgg	tttcagtacc	acaatggaca	caggcaacaa	aactctgccc	780
caggactttc	tcttactggg	ctttcctggt	tctcaaactc	ttcagctctc	tctctttatg	840
ctttttctgg	tgatgtacat	cctcacagtt	agtggtaatg	tggctatctt	gatgttggtg	900
agcacctccc	atcagttgca	tacccccatg	tacttctttc	tgagcaacct	ctccttcctg	960
gagatttggt	ataccacagc	agcagtgccc	aaagcactgg	ccatcctact	ggggagaagt	1020
cagaccatat	catttacaag	ctgtcttttg	cagatgtact	ttgttttctc	attaggctgc	1080
acagagtact	tcctcctggc	agccatggct	tatgaccgct	gtcttgccat	ctgctatcct	1140
ttacactacg	gagccatcat	gagtagcctg	ctctcagcgc	agctggccct	gggctcctgg	1200
gtgtgtggtt	tcgtggccat	tgcagtgccc	acagccctca	tcagtggcct	gtccttctgt	1260
ggcccccgtg	ccatcaacca	cttcttctgt	gacattgcac	cctggattgc	cctggcctgc	1320
accaacacac	aggcagtaga	gcttgtggcc	tttgtgattg	ctgttgtggt	tatcctgagt	1380
tcatgcctca	tcacctttgt	ctcctatgtg	tacatcatca	gcaccatcct	caggatcccc	1440
tctgccagtg	gccggagcaa	agccttctcc	acgtgctcct	cgcatctcac	cgtggtgctc	1500
atttggtatg	ggtccacagt	tttccttcac	gtccgcacct	ctatcaaaga	tgccttggat	1560
ctgatcaaag	ctgtccacgt	cctgaacact	gtggtgactc	cagttttaaa	ccccttcatc	1620
tatacgcttc	gtaataagga	agtaagagag	actctgctga	agaaatggaa	gggaaaataa	1680

<400> 102

Met Ala Asn Val Thr Leu Val Thr Gly Phe Leu Leu Met Gly Phe Ser $1 \hspace{1cm} 5 \hspace{1cm} 15$

Asn Ile Gln Lys Leu Arg Ile Leu Tyr Gly Val Leu Phe Leu Leu Ile $20 \hspace{1cm} 25 \hspace{1cm} 30$

Tyr Leu Ala Ala Leu Met Ser Asn Leu Leu Ile Ile Thr Leu Ile Thr 35 40

Leu Asp Val Lys Leu Gln Thr Pro Met Tyr Phe Phe Leu Lys Asn Leu 50 60

Ser Phe Leu Asp Val Phe Leu Val Ser Val Pro Ile Pro Lys Phe Ile 65 70 75 80

<210> 102 <211> 559 <212> PRT <213> Homo sapiens

342-10PCT.txt

Val Asn Asn Leu Thr His Asn Asn Ser Ile Ser Ile Leu Gly Cys Ala 85 90 95

Phe Gln Leu Leu Met Thr Ser Phe Ser Ala Gly Glu Ile Phe Ile 100 105

Leu Thr Ala Met Ser Tyr Asp Arg Tyr Val Ala Ile Cys Cys Pro Leu 115 120 125

Asn Tyr Glu Val Ile Met Asn Thr Gly Val Cys Val Leu Met Ala Ser 130 140

Val Ser Trp Ala Ile Gly Gly Leu Phe Gly Thr Ala Tyr Thr Ala Gly 145 150 155

Thr Phe Ser Met Pro Phe Cys Gly Ser Ser Val Ile Pro Gln Phe Phe 165 170 175

Cys Asp Val Pro Ser Leu Leu Arg Ile Ser Cys Ser Glu Thr Leu Met 180 185 190

Val Ile Tyr Ala Gly Ile Gly Val Gly Ala Cys Leu Ser Ile Ser Cys 195 200 205

Phe Ile Cys Ile Val Ile Ser Tyr Ile Tyr Ile Phe Ser Thr Val Leu 210 220

Lys Ile Pro Thr Thr Lys Gly Leu Cys Asp Trp Val Lys Gly Leu Ser 225 230 235 240

Ala Gly Thr Leu Phe Ser Gly Phe Ser Thr Thr Met Asp Thr Gly Asn 245 250 255

Lys Thr Leu Pro Gln Asp Phe Leu Leu Gly Phe Pro Gly Ser Gln 260 265 270

Thr Leu Gln Leu Ser Leu Phe Met Leu Phe Leu Val Met Tyr Ile Leu 275 280 285

Thr Val Ser Gly Asn Val Ala Ile Leu Met Leu Val Ser Thr Ser His 290 295 300

Gln Leu His Thr Pro Met Tyr Phe Phe Leu Ser Asn Leu Ser Phe Leu 305 310 315 320

Glu Ile Trp Tyr Thr Thr Ala Ala Val Pro Lys Ala Leu Ala Ile Leu 325 330 335

Leu Gly Arg Ser Gln Thr Ile Ser Phe Thr Ser Cys Leu Leu Gln Met 340 345 350

Tyr Phe Val Phe Ser Leu Gly Cys Thr Glu Tyr Phe Leu Leu Ala Ala 355 360 365

Met Ala Tyr Asp Arg Cys Leu Ala Ile Cys Tyr Pro Leu His Tyr Gly 370 380

Ala Ile Met Ser Ser Leu Leu Ser Ala Gln Leu Ala Leu Gly Ser Trp 385 390 395 400

Val Cys Gly Phe Val Ala Ile Ala Val Pro Thr Ala Leu Ile Ser Gly 405 410 415

Leu Ser Phe Cys Gly Pro Arg Ala Ile Asn His Phe Phe Cys Asp Ile 420 425 430

Ala Pro Trp Ile Ala Leu Ala Cys Thr Asn Thr Gln Ala Val Glu Leu 435 440 445

Val Ala Phe Val Ile Ala Val Val Val Ile Leu Ser Ser Cys Leu Ile 450 455 460

Thr Phe Val Ser Tyr Val Tyr Ile Ile Ser Thr Ile Leu Arg Ile Pro 465 470 475 480

Ser Ala Ser Gly Arg Ser Lys Ala Phe Ser Thr Cys Ser Ser His Leu 485 490 495

Thr Val Val Leu Ile Trp Tyr Gly Ser Thr Val Phe Leu His Val Arg
500 505 510

Thr Ser Ile Lys Asp Ala Leu Asp Leu Ile Lys Ala Val His Val Leu 515

Asn Thr Val Val Thr Pro Val Leu Asn Pro Phe Ile Tyr Thr Leu Arg 530 535 540

25

Asn Lys Glu Val Arg Glu Thr Leu Leu Lys Lys Trp Lys Gly Lys 545 550 555

<210> 103

<211> 25

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 103

catttcttgt ttcatctgta ttgtg

<210> 104 <211> 20

<212>							34	2-10	PCT.	txt					
<213>	DNA küns	tlic	ne se	equer	nz										
<220> <223>	olig	onuk ⁻	leoti	id											
<400> tgttgc	J.04 ctgt	gtcca	attgi	tg											20
<210> <211> <212> <213>	105 499 DNA Homo	sap ⁻	iens												
<400> acaccc	105 acat	ggtc	ggcgt	tg ca	aggat	tatti	t cgo	ctaga	accc	taga	aaaa	acc a	acca	cgacct	: 60
gtgggc										_		_		_	
cctcct	cacc	aggg	gctca	ac ti	ttct	caa	aaa	aata	caac	ctti	ttgga	agc ·	tcaa	ggagto	180
ttgcat	ccgg a	aacca	aggad	ct go	gaga	actg	g cto	gctg	ccaa	cgt	gctc	cag a	acaat	ttgcga	a 240
gtcgca	ctgc (gcgga	agaag	gg gg	gtcc	gaggg	cag	gtct	gtgt	caaa	acgca	agg :	tgtt	tttgg	300
ccaata	taga 🤉	gcgtg	gtcc	ct go	ctg	eggaa	a cci	tgact	ttgt	ata	tatt	caa a	agaat	tgagaa	a 360
atggct	tagc a	atcge	cta	tg go	ccgti	tgtca	a gaa	aati	tgga	agge	caga	agt :	tggci	taagaa	420
aatgtt	cttc	tagt	gctc	c to	ctt	ttg	t tg	cctc	ctcc	tcc	tcca	cct	gctci	tcctcc	480
ctaccc	agag (ctct	gtgti	t											499
<210> <211> <212> <213>	106 121 PRT Homo	sap	iens												
<211> <212>	121 PRT	sapt	iens												
<211> <212> <213>	121 PRT Homo			Тгр	Leu	Leu	Leu	Leu 10	Phe	Leu	Leu	Phe	Phe 15	Phe	
<211> <212> <213> <400> Met Me	121 PRT Homo 106	Pro	Gln 5	·				10					15		
<211> <212> <213> <400> Met Met 1	121 PRT Homo 106 t Leu	Pro Leu 20	Gln 5 Thr	Arg	Gly	Ser	Leu 25	10 Ser	Pro	Thr	Lys	Туг 30	15 Asn	Leu	
<211> <212> <213> <400> Met Me 1	121 PRT Homo 106 t Leu e Leu 35	Pro Leu 20 Lys	Gln 5 Thr Glu	Arg	Gly Cys	Ser Ile 40	Leu 25 Arg	10 Ser Asn	Pro Gln	Thr Asp	Lys Cys 45	Tyr 30 Glu	15 Asn Thr	Leu Gly	
<211> <212> <213> <400> Met Met 1 Leu Pho	121 PRT Homo 106 t Leu e Leu 35	Pro Leu 20 Lys	Gln 5 Thr Glu Ala	Arg Ser Pro	Gly Cys Asp 55	Ser Ile 40 Asn	Leu 25 Arg Cys	Ser Asn Glu	Pro Gln Ser	Thr Asp His 60	Lys Cys 45 Cys	Tyr 30 Glu Ala	Asn Thr	Leu Gly Lys	
<211> <212> <213> <400> Met Met 1 Leu Photo Leu Glo Cys Cys 50 Gly Sea	121 PRT Homo 106 t Leu e Leu 35 s Gln	Pro Leu 20 Lys Arg	Gin 5 Thr Giu Ala Ser	Arg Ser Pro Leu 70	Gly Cys Asp 55 Cys	ser Ile 40 Asn	Leu 25 Arg Cys	10 Ser Asn Glu	gin Ser Val	Thr Asp His 60	Lys Cys 45 Cys Phe	Tyr 30 Glu Ala Gly	Asn Thr Glu	Leu Gly Lys Tyr 80	

342-10PCT.txt

Glm Lys Leu Ala Lys Lys Met Phe Phe 115 120	
<210> 107 <211> 17 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 107 tgtgtcaaac gcaggtg	17
<210> 108 <211> 20 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 108 ggagggagca ctagaagaac	20
<210> 109 <211> 659 <212> DNA <213> Homo sapiens	
<400> 109 agcaaattac accattaatg tcatcctggc gaatgaaaca agagaatagt atttatcaga	60
gaaagtctgg tgagttgaag tccaagaccc caggaaacaa ctagccctgc tgggctgccc	
ctccttcgga gtgggactat atgatcctca tcaggccaat ccacgtcaca gaatggtcta	180
ggcattggat gagtgcctca atctgagcca atgaaggtca ttgctgagac attttactgg	240
ttgccaggct gcaggcatcc caggcttcct gctgccctca tgtctacaac ctgtcgtctg	300
gaacattcca ggagccactt ttatcacttg cagcaatctt cttcagtgag ttccccagga	
cttgatttca tcttacaatc tgattccatg tgtctcccat attttaagga ttctttatta	420
tttctggctt acagagaaca aacattattt tttgctttcc tggtctgttc tagattttca	480
aaaataactc tgtcacttct gttatatggt atcattgctt gtaattatct atttacttat	540
ctgtctctgg actggactct ttacagacag gcaataacta attatctgtc tgtctggcat	600
ttggtagtca ctcataaatc gtttattgca ttactaacta aataaaaaag ttgaccttg	659
<210> 110 <211> 144 <212> PRT <213> Homo sapiens	
<400> 110	
Met Lys Val Ile Ala Glu Thr Phe Tyr Trp Leu Pro Gly Cys Arg His 10 15	

342-10PCT.txt

Pro Arg Leu Pro Ala Ala Leu Met Ser Thr Thr Cys Arg Leu Glu His 20 25 30

Ser Arg Ser His Phe Tyr His Leu Gln Gln Ser Ser Ser Val Ser Ser 40

Pro Gly Leu Asp Phe Ile Leu Gln Ser Asp Ser Met Cys Leu Pro Tyr 50 60

Phe Lys Asp Ser Leu Leu Phe Leu Ala Tyr Arg Glu Gln Thr Leu Phe 65 70 75 80

Phe Ala Phe Leu Val Cys Ser Arg Phe Ser Lys Ile Thr Leu Ser Leu 85 90 95

Leu Leu Tyr Gly Ile Ile Ala Cys Asn Tyr Leu Phe Thr Tyr Leu Ser 100 105 110

Leu Asp Trp Thr Leu Tyr Arg Gln Ala Ile Thr Asn Tyr Leu Ser Val 115 120 125

Trp His Leu Val Val Thr His Lys Ser Phe Ile Ala Leu Leu Thr Lys
130 140

<210> 111

<211> 25 <212> DNA

<213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 111

atcctggcga atgaaacaag agaat

25

<210> 112

<211> 26

<212> DNA

künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 112

gcaaccagta aaatgtctca gcaatg

26

113

831

<212> DNA

<213> Homo sapiens

<400> 113

atgcgaagaa agaacctcac agaggtaaca gagtttgttt tcctgggatt ctccagattc 60

cacaaacatc acatcactct ctttgtggtt tttctcatcc tgtacacatt aactgtggct

WO 2005/030250 PCT/EP2004/010697

342-10pct.txt
ggcaatgcca tcatcatgac catcatctgc attgaccgtc acctccacac tcccatgtac
ttcttcctga gcatgctggc tagctcaaag acagtgtaca cactgttcat cattccacag
atgctctcca gcttcgtaac ccagacccag ccaatctccc tagcaggttg taccacccaa
acgtictict tigtiaccit ggccatcaac aatigctici igcicacagi gaigggciai
gaccactata tggccatctg caatcccttg agatacaggg tcattacgag caagaaggtg
tgtgtccagc tggtgtgtgg agcctttagc attggcctgg ccatggcagc tgtccaggta
acatccatat ttaccttacc tittigtcac acggigging gicatticit cigigacatc
ctccctgtca tgaaactctc ctgtattaat accactatca atgagataat caattttgtt
gtcaggttat ttgtcatcct ggtccccatg ggtctggtct
atctccactg tcctcaagat tgcctcagct gagggttgga agaagacctt tgccacctgt
gccttccacc tcactgtggt cattgtccat tatggctgtg cttccattgc ctacctcatg
cccaagtcag aaaactctat agaacaagac ctccttctct cagtgaccta a
<210> 114 <211> 276 <212> PRT <213> Homo sapiens
<400> 11 4
Met Arg Arg Lys Asn Leu Thr Glu Val Thr Glu Phe Val Phe Leu Gly 1 10 15
Phe Ser Arg Phe His Lys His His Ile Thr Leu Phe Val Val Phe Leu 20 25 30
Ile Leu Tyr Thr Leu Thr Val Ala Gly Asn Ala Ile Ile Met Thr Ile 35 40 45
Ile Cys Ile Asp Arg His Leu His Thr Pro Met Tyr Phe Phe Leu Ser
Met Leu Ala Ser Ser Lys Thr Val Tyr Thr Leu Phe Ile Ile Pro Gln 65 70 80
Met Leu Ser Ser Phe Val Thr Gln Thr Gln Pro Ile Ser Leu Ala Gly 85 90 95
Cys Thr Thr Gln Thr Phe Phe Phe Val Thr Leu Ala Ile Asn Asn Cys 100 110
Phe Leu Leu Thr Val Met Gly Tyr Asp His Tyr Met Ala Ile Cys Asn 115 120 125
Pro Leu Arg Tyr Arg Val Ile Thr Ser Lys Lys Val Cys Val Gln Leu 130 135 140

Val Cys Gly Ala Phe Ser Ile Gly Leu Ala Met Ala Ala Val Gln Val 145 150 155 160

Thr Ser Ile Phe Thr Leu Pro Phe Cys His Thr Val Val Gly His Phe 165 170 175

Phe Cys Asp Ile Leu Pro Val Met Lys Leu Ser Cys Ile Asn Thr Thr 180 185 190

Ile Asn Glu Ile Ile Asn Phe Val Val Arg Leu Phe Val Ile Leu Val 195 200 205

Pro Met Gly Leu Val Phe Ile Ser Tyr Val Leu Ile Ile Ser Thr Val 210 220

Leu Lys Ile Ala Ser Ala Glu Gly Trp Lys Lys Thr Phe Ala Thr Cys 235 235 240

Ala Phe His Leu Thr Val Val Ile Val His Tyr Gly Cys Ala Ser Ile 245 250 255

Ala Tyr Leu Met Pro Lys Ser Glu Asn Ser Ile Glu Gln Asp Leu Leu 260 265 270

Leu Ser Val Thr 275

<210> 115

<211> 18

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonuklegtid

<400> 115

cttcgtaacc cagaccca

18

<210> 116

<211> 18

<212> DNA

<213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 116

cttgctcgta atgaccct

18

<210> 117

<211> 1233 <212> DNA

<213> Homo sapiens

<400> 117

gaagcagcca ccaccatctt gggagctctg ggagcaagga cccctgtaac acattcatcc

342-10PCT.txt ttgaatgaca aaatgtctgg tccagcatgg tattataaca taaacatgaa gaggaagaga 1.20 catgagagat acgcacagtg aagagaccaa gctgggacac agtacgaagg tggcatctgc 180 acgccaagca gagggacctc agaagaaact gagccagcca gcaccccacc ttcgtctttg 240 acctccagcc tccagaacta aggatagagc tcttcatctc tgttagaaac gaccatcaaa 300 aagatacatc aattcattag aatcaaaagg acatgagtta tcagaattct ttctcctgaa 360 agaaagtgga gatcaaaggt aaaacttcta gagaatgaga tgaaggcaga tgaaagaagt 420 taacaagaca ttacatgact tgataatatt gcatgtatgc aaaaacctta tgaaatcaac 480 tgtgttctag cgaccacttg tttttctttt tgtcataata ctttttattc tcttgcaatg 540 atattgattc atctgcacct gacatcaact ctgcatttgt agaaggtgat aagaatacag 600 ggaaatggaa taagtggctt tgcctgcaat cccgcagcag cagaaatgtc catttcctct 660 ctcctgaata atactacatt ctccactggg ttccacaagt ttcgaggtaa aagcatgaac 720 atacacgaag tcaccatcac taccctcacc accaccacca ttattccac catattcacc 780 cttttaatac gcaaacttcc tccaaggctt cctgaagtca cccagaaatg catttcccca 840 agagtgagtt gtgctaacat tgtatcctat ggaactctgg gaagctaccc agatcctcaa 900 ctcltggagt cttgctgact gcatgttcca ggctccacat ttaagctcca gtgactgctg 960 atgactgcat gacctaacac atgtcctcaa tcctttcttg gcctcagttt cttcaccagt 1020 gaattctgaa tgctggaatt ggcaatattt caggttcttt ccaactggaa atacccatgc 1080 taataatttt agtaagtcaa tagccataga aacctactga caaaatgagt attttaacag 1140 agacagttgt actiticitaa tittitagcag aagggaatgc atatgtataa tatctatgtt 1200 gccttctatg tgtaaaaata aatacacaga cac 1233

<210> 118

<211> 90

<212> PRT <213> Homo sapiens

<400> 118

Met Ser Ile Ser Ser Leu Leu Asn Asn Thr Thr Phe Ser Thr Gly Phe 10 15

His Lys Phe Arg Gly Lys Ser Met Asn Ile His Glu Val Thr Ile Thr 20 25 30

Thr Leu Thr Thr Thr Ile Ile Ser Thr Ile Phe Thr Leu Leu Ile 35 40 45

Arg Lys Leu Pro Pro Arg Leu Pro Glu Val Thr Gln Lys Cys Ile Ser 50 60

Pro Arg Val Ser Cys Ala Asn Ile Val Ser Tyr Gly Thr Leu Gly Ser 65 70 75 80

342-10PCT.txt Tyr Pro Asp Pro Gln Leu Leu Glu Ser Cys 85 90	
<210> 119 <211> 19 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 119 caccccacct tcgtctttg	19
<210> 120 <211> 24 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 120 gttttacctt tgatctccac tttc	24
<210> 121 <211> 4209 <212> DNA <213> Homo sapiens	
<400> 121 agttgcttga aagcaacgtg cctattcaca tggagaatct tccctttcct ttaaaattac	60
ttagtgcctc atcgctaaac gcccccagct ccacaccatg ggtgttggat atcttcctca	120
ccttggtgtt tgccctgggg ttcttcttcc tattactccc ctacttatct tacttccatt	180
gtgatgaccc accctcacca tcgcctggga agagaaagtg tccagtaggg cggaggcgga	240
ggcccagagg caggatgaaa aaccacagtc tgagagctgg tagagagtgc ccgagaggcc	300
tggaggagac ttcggacctt ctttcacaac tgcagagcct cctggggcca caccttgaca	360
aaggtgactt tggtcagctc tccggtccag accccccagg tgaggtgggc gaaagagcac	420
ctgatggagc ctcccagtcc tctcatgagc ctatggaaga tgctgctccc attctctcc	480
cgttagcttc cccggatcct caagccaagc atcctcagga tctggcctcc accccatcac	540
caggeceaat gaecacetea gteteeteec taagtgeete ecagecacea gaacetteee	600
ttcccctaga acacccctca cccgagccac ctgcactttt ccctcaccca ccacacaccc	660
ctgatcctct ggcctgctct ccgcctcctc caaaaggctt cactgctcct cccctgcggg	720
actccacact gataactcca tctcactgtg actcagtggc acttccactg ggcaccgtcc	780
ctcaaagctt gtctccacat gaggatttgg tggcttctgt cccagccatc tcaggccttg	840
gtggctcaaa cagtcatgtt tctgcctcct cccggtggca ggagactgcc agaacctcgt	900
gcgcctttaa ctcatcagtc cagcaagatc ctctttcccg ccacccacca gagacctgtc	960
agatggaagc tggtagcctg tttttgctca gctctgatgg ccagaatgtc gtggggatac	1020

WO 2005/030250 PCT/EP2004/010697

			342-10PCT.	txt		
aagtcacaga	aacagccaag	gtcaacattt	gggaagaaaa	agaaaatgtt	ggatcattta	1080
caaatcaaat	gaccccagaa	aagcacttaa	attctttggg	gaatttggct	aaatcattgg	1140
atgctgagca	ggacaccaca	aacccaaaac	ccttctggaa	catgggagag	aactcgaaac	1200
agctgcccgg	acctcagaag	tgctcagatc	ctaggctctt	gcaggaaagt	ttttggaaga	1260
attatagcca	gcttttctgg	ggcctcccct	ctctgcacag	cgagtccctg	gtggctaacg	1320
cctgggtaac	tgacaggtct	tatactttac	agtctcctcc	tttcttgttc	aatgaaatgt	1380
ccaatgtctg	cccaattcaa	agggagacta	caatgtcccc	actgcttttc	caggcccagc	1440
ccctgtccca	ccgccaaccc	tttatttcat	ccacacccca	attcctgccc	acacctatgg	1500
ctcaggccga	ggctcaggcc	catcttcagt	cttctttccc	agtcctatct	cctgcttttc	1560
catccctgat	taagaacact	ggagtagctt	gccctgcatc	gcagaataaa	gtgcaagctc	1620
tctccctacc	tgaaactcag	caccctgaat	ggcctttgtt	gaggaaacaa	ctagaaggta	1680
ggttggcttt	accctctagg	gtccaaaaat	ctcaggacgt	ctttagtgtc	tccactccta	1740
accttcccca	ggaaagtttg	acatccattc	tgcctgagaa	ctttccagtc	agtcctgaac	1800
tccggagaca	actggagcaa	cacataaaaa	agtggatcat	ccaacactgg	ggcaacctgg	1860
gaaggatcca	agagtctctg	gatctgatgc	agcttcggga	cgaatcacca	gggacaagtc	1920
aggccaaggg	caaacccagt	ccctggcagt	cctccacgtc	cacaggtgaa	agcagcaagg	1980
aggcacagaa	ggtgaagttc	cagctagaga	gggacctgtg	cccacatctg	gggcaaattc	2040
tgggtgagac	cccacaaaat	ctatccaggg	acatgaaaag	cttcccacgg	aaggttctgg	2100
gggtgacttc	tgaggagtcg	gaaaggaact	tgaggaagcc	cttgaggagt	gactcgggaa	2160
gtgatttatt	aagatgca c a	gagaggactc	atatagaaaa	catcctgaaa	gcccacatgg	2220
gcaggaactt	gggccagacc	aacgagggct	tgatccccgt	gcgtgtgcgt	cgatcctggc	2280
ttgctgtcaa	ccaggctctt	cccgtgtcca	acacccatgt	gaaaaccagc	aatctagcag	2340
ccccgaaaag	tgggaaagcc	tgtgtgaaca	cagcccaggt	gctttccttc	ctcgagccgt	2400
gtactcagca	ggggttggga	gcccatattg	tgaggttttg	ggccaaacac	aggtggggtc	2460
tacccctcag	ggtcctcaag	cccattcagt	gctttaaact	ggaaaag gt t	tcatccttgt	2520
cccttacgca	gcttgctggt	ccctcctcag	ccacctgtga	atctggggct	ggctcagaag	2580
ttgaggtgga	catgttcctt	agaaagccac	caatggcaag	tctgagaaag	caggtgctga	2640
ccaaagcatc	tgatcacatg	ccagagagtc	ttctggcctc	ctcacctgca	tggaagcagt	2700
tccagagggc	accgcgagga	atcccatctt	ggaatgatca	tgggcccttg	aagcctcctc	2760
cagctggaca	ggagggcagg	tggccatcta	agcccctcac	gtacagcctc	acaggcagca	2820
cccagcagag	caggagctta	ggagcccaat	cttcaaaggc	tggagagaca	agggaggcag	2880
tgccacaatg	cagagtcccc	ttggaaacct	gtatgctggc	aaacctccaa	gccacaagtg	2940
aggatgtgca	tggtttcgag	gctccaggga	ccagcaaaag	ctctctacac	cctagagtgt	3000
ctgtctccca	agatccaaga	aagctgtgtc	ttatggagga	ggttgttagt	gaatttgagc	3060

	342-10PCT.	txt		
ctggaatggc cacaaagtca gagacccagc			gtgctccttc	3120
cagatgggca agcatctgtt gtgccccacg	cttcagagaa	tttggtttct	caagtgcccc	3180
agggccatct ccagagcatg cctactggga	acatgcgggc	ttcccaggag	ctacatgacc	3240
tcatggcagc cagaaggagc aaactggtgc	aagaggagcc	cagaaaccca	aactgt c aag	3300
gctcatgcaa gagccaaagg ccaatgtttc	cccctattca	caagagtgag	aagtctagga	3360
agcccaactt agaaaaacat gaagaaaggc	ttgaaggatt	gaggactcct	caacttaccc	3420
cagtcaggaa aacagaagac acccatcagg	atgaaggcgt	ccagctactg	ccatcaaaga	3480
aacagcctcc ttcagtaagc cactttggag	aaaacatcaa	gcaattttt	cagtggattt	3540
tttcaaagaa aaaaagcaag ccagcaccag	tcactgctga	gagccaaaaa	acagtaaaaa	3600
acagatcatg tgtgtacagc agcagtgctg	aagctcaggg	tctcatgacg	gcagttggac	3660
aaatgctgga caagaaaatg tcactttgcc	atgcgcacca	tgcctcgaag	gtaaatcagc	3720
acaaacagaa gtttcaagcc ccagtctgtg	ggtttccctg	caaccacagg	cacctcttct	3780
actcagaaca tggcagaata ctgagctatg	cagccagcag	tcaacaagcc	actctcaaga	3840
gccagggttg tcccaacaga gacaggcaaa	tcagaaatca	acagecettg	aaaagtgtgc	3900
ggtgcaacaa tgagcaatgg ggcctgcgac	atccccaaat	cttgcacccc	aagaaagctg	3960
tatccccagt cagtcccct cagcactggc	cgaagacatc	cggtgcctct	agccaccatc	4020
accactgtcc aaggcactgt cttctttggg	aaggtatctg	atttggtcag	tcacaaattc	4080
ttttttagcc ttccctggag aaaaacaagt	ccccaagaaa	aaattcactc	tatgtagaga	4140
aaaaatattt tctctcatgt tagtaaatgc	agaacattta	atattccaca	atatatatgg	4200
tttttatt				4209

<210> 122 <211> 1343 <212> PRT

<213> Homo sapiens

Met Glu Asn Leu Pro Phe Pro Leu Lys Leu Leu Ser Ala Ser Ser Leu 1 5 10 15

Asn Ala Pro Ser Ser Thr Pro Trp Val Leu Asp Ile Phe Leu Thr Leu 20 30

Val Phe Ala Leu Gly Phe Phe Phe Leu Leu Leu Pro Tyr Leu Ser Tyr 35 40 45

Phe His Cys Asp Asp Pro Pro Ser Pro Ser Pro Gly Lys Arg Lys Cys 50 55

Pro Val Gly Arg Arg Arg Pro Arg Gly Arg Met Lys Asn His Ser 65 70 75

WO 2005/030250 PCT/EP2004/010697 79/223

342-10PCT.txt Leu Arg Ala Gly Arg Glu Cys Pro Arg Gly Leu Glu Glu Thr Ser Asp 85 90 95 Leu Leu Ser Gln Leu Gln Ser Leu Leu Gly Pro His Leu Asp Lys Gly $100 \hspace{1cm} 105 \hspace{1cm} 110$ Asp Phe Gly Gln Leu Ser Gly Pro Asp Pro Pro Gly Glu Val Gly Glu 115 120 125 Arg Ala Pro Asp Gly Ala Ser Gln Ser Ser His Glu Pro Met Glu Asp 130 140 Ala Ala Pro Ile Leu Ser Pro Leu Ala Ser Pro Asp Pro Gln Ala Lys 145 150 155 160 His Pro Gln Asp Leu Ala Ser Thr Pro Ser Pro Gly Pro Met Thr Thr 165 170 175 Ser Val Ser Ser Leu Ser Ala Ser Gln Pro Pro Glu Pro Ser Leu Pro 180 185 190 Leu Glu His Pro Ser Pro Glu Pro Pro Ala Leu Phe Pro His Pro Pro 195 200 205 His Thr Pro Asp Pro Leu Ala Cys Ser Pro Pro Pro Pro Lys Gly Phe 210 220 Thr Ala Pro Pro Leu Arg Asp Ser Thr Leu Ile Thr Pro Ser His Cys 235 230 Asp Ser Val Ala Leu Pro Leu Gly Thr Val Pro Gln Ser Leu Ser Pro 245 250 255 His Glu Asp Leu Val Ala Ser Val Pro Ala Ile Ser Gly Leu Gly Gly 260 265 270 Ser Asn Ser His Val Ser Ala Ser Ser Arg Trp Gln Glu Thr Ala Arg 275 280 285 Thr Ser Cys Ala Phe Asn Ser Ser Val Gln Gln Asp Pro Leu Ser Arg 290 295 300 His Pro Pro Glu Thr Cys Gln Met Glu Ala Gly Ser Leu Phe Leu Leu 305 310 320 Ser Ser Asp Gly Gln Asn Val Val Gly Ile Gln Val Thr Glu Thr Ala 325 330 335 Lys Val Asn Ile Trp Glu Glu Lys Glu Asn Val Gly Ser Phe Thr Asn 340 350

Gln Met Thr Pro Glu Lys His Leu Asn Ser Leu Gly Asn Leu Ala Lys 355 360 365

Ser Leu Asp Ala Glu Gln Asp Thr Thr Asn Pro Lys Pro Phe Trp Asn 370 380

Met Gly Glu Asn Ser Lys Gln Leu Pro Gly Pro Gln Lys Cys Ser Asp 385 390 395 400

Pro Arg Leu Leu Gln Glu Ser Phe Trp Lys Asn Tyr Ser Gln Leu Phe 405 410 415

Trp Gly Leu Pro Ser Leu His Ser Glu Ser Leu Val Ala Asn Ala Trp 420 425 430

Val Thr Asp Arg Ser Tyr Thr Leu Gln Ser Pro Pro Phe Leu Phe Asn 435 440 445

Glu Met Ser Asn Val Cys Pro Ile Gln Arg Glu Thr Thr Met Ser Pro 450 460

Leu Leu Phe Gln Ala Gln Pro Leu Ser His Arg Gln Pro Phe Ile Ser 465 470 475 480

Ser Thr Pro Gln Phe Leu Pro Thr Pro Met Ala Gln Ala Glu Ala Gln 485 490 495

Ala His Leu Gln Ser Ser Phe Pro Val Leu Ser Pro Ala Phe Pro Ser 500 505 510

Leu Ile Lys Asn Thr Gly Val Ala Cys Pro Ala Ser Gln Asn Lys Val 515 520 525

Gln Ala Leu Ser Leu Pro Glu Thr Gln His Pro Glu Trp Pro Leu Leu 530 540

Arg Lys Gln Leu Glu Gly Arg Leu Ala Leu Pro Ser Arg Val Gln Lys 545 550 555 560

Ser Gln Asp Val Phe Ser Val Ser Thr Pro Asn Leu Pro Gln Glu Ser 565 570

Leu Thr Ser Ile Leu Pro Glu Asn Phe Pro Val Ser Pro Glu Leu Arg 580 585 590

Arg Gln Leu Glu Gln His Ile Lys Lys Trp Ile Ile Gln His Trp Gly
595 600 605

Asn Leu Gly Arg Ile Gln Glu Ser Leu Asp Leu Met Gln Leu Arg Asp 610 620

342-10PCT.txt
Glu Ser Pro Glý Thr Ser Gln Ala Lys Gly Lys Pro Ser Pro Trp Gln
625 630 635 640 Ser Ser Thr Ser Thr Gly Glu Ser Ser Lys Glu Ala Gln Lys Val Lys 645 655 Phe Gln Leu Glu Arg Asp Leu Cys Pro His Leu Gly Gln Ile Leu Gly 660 665 Glu Thr Pro Gln Asn Leu Ser Arg Asp Met Lys Ser Phe Pro Arg Lys 675 680 685 Val Leu Gly Val Thr Ser Glu Glu Ser Glu Arg Asn Leu Arg Lys Pro 690 700 Leu Arg Ser Asp Ser Gly Ser Asp Leu Leu Arg Cys Thr Glu Arg Thr 705 710 720 His Ile Glu Asn Ile Leu Lys Ala His Met Gly Arg Asn Leu Gly Gln 725 730 735 Thr Asn Glu Gly Leu Ile Pro Val Arg Val Arg Ser Trp Leu Ala 740 745 Val Asn Gln Ala Leu Pro Val Ser Asn Thr His Val Lys Thr Ser Asn 755 760 765 Leu Ala Ala Pro Lys Ser Gly Lys Ala Cys Val Asn Thr Ala Gln Val 770 780 Leu Ser Phe Leu Glu Pro Cys Thr Gln Gln Gly Leu Gly Ala His Ile 785 790 800 Val Arg Phe Trp Ala Lys His Arg Trp Gly Leu Pro Leu Arg Val Leu 805 815 Lys Pro Ile Gln Cys Phe Lys Leu Glu Lys Val Ser Ser Leu Ser Leu 820 825 830 Thr Gln Leu Ala Gly Pro Ser Ser Ala Thr Cys Glu Ser Gly Ala Gly 835 840 845 Ser Glu Val Glu Val Asp Met Phe Leu Arg Lys Pro Pro Met Ala Ser 850 860 Leu Arg Lys Gln Val Leu Thr Lys Ala Ser Asp His Met Pro Glu Ser 865 870 880 Leu Leu Ala Ser Ser Pro Ala Trp Lys Gln Phe Gln Arg Ala Pro Arg 885 890 895

Gly Ile Pro Ser Trp Asn Asp His Gly Pro Leu Lys Pro Pro Pro Ala 900 905 910

Gly Gln Glu Gly Arg Trp Pro Ser Lys Pro Leu Thr Tyr Ser Leu Thr 915 920 925

Gly Ser Thr Gln Gln Ser Arg Ser Leu Gly Ala Gln Ser Ser Lys Ala 930 940

Gly Glu Thr Arg Glu Ala Val Pro Gln Cys Arg Val Pro Leu Glu Thr 945 950 955 960

Cys Met Leu Ala Asn Leu Gln Ala Thr Ser Glu Asp Val His Gly Phe 965 970 975

Glu Ala Pro Gly Thr Ser Lys Ser Ser Leu His Pro Arg Val Ser Val $980 \hspace{1.5cm} 985 \hspace{1.5cm} 990$

Ser Gln Asp Pro Arg Lys Leu Cys Leu Met Glu Glu Val Val Ser Glu 995 1000 · 1005

Phe Glu Pro Gly Met Ala Thr Lys Ser Glu Thr Gln Pro Gln Val 1010 1015 1020

Cys Ala Ala Val Val Leu Leu Pro Asp Gly Gln Ala Ser Val Val 1025 1030 1035

Pro His Ala Ser Glu Asn Leu Val Ser Gln Val Pro Gln Gly His 1040 1045 1050

Leu Gln Ser Met Pro Thr Gly Asn Met Arg Ala Ser Gln Glu Leu 1055 1060 1065

His Asp Leu Met Ala Ala Arg Arg Ser Lys Leu Val Gln Glu Glu 1070 1080

Pro Arg Asn Pro Asn Cys Gln Gly Ser Cys Lys Ser Gln Arg Pro 1085 1090 1095

Met Phe Pro Pro Ile His Lys Ser Glu Lys Ser Arg Lys Pro Asn 1100 1105 1110

Leu Glu Lys His Glu Glu Arg Leu Glu Gly Leu Arg Thr Pro Gln 1115 1120

Leu Thr Pro Val Arg Lys Thr Glu Asp Thr His Gln Asp Glu Gly 1130 1140

Val Gln Leu Leu Pro Ser Lys Lys Gln Pro Pro Ser Val Ser His 1145 1150 1155

342-10PCT.txt Phe Gly Glu Asn Ile Lys Gln Phe Phe Gln Trp Ile Phe Ser Lys 1160 1170

Lys Lys Ser Lys Pro Ala Pro Val Thr Ala Glu Ser Gln Lys Thr 1175 1180 1185

Val Lys Asn Arg Ser Cys Val Tyr Ser Ser Ser Ala Glu Ala Gln 1190 1200

Gly Leu Met Thr Ala Val Gly Gln Met Leu Asp Lys Lys Met Ser 1205 1215

Leu Cys His Ala His His Ala Ser Lys Val Asn Gln His Lys Gln 1220 1230

Lys Phe Gln Ala Pro Val Cys Gly Phe Pro Cys Asn His Arg His 1235 1240 1245

Leu Phe Tyr Ser Glu His Gly Arg Ile Leu Ser Tyr Ala Ala Ser 1250 1260

Ser Gln Gln Ala Thr Leu Lys Ser Gln Gly Cys Pro Asn Arg Asp 1265 1270 1275

Arg Gln Ile Arg Asn Gln Gln Pro Leu Lys Ser Val Arg Cys Asn 1280 1290

Asn Glu Gln Trp Gly Leu Arg His Pro Gln Ile Leu His Pro Lys 1295 1300 1305

Lys Ala Val Ser Pro Val Ser Pro Pro Gln His Trp Pro Lys Thr 1310 1320

Ser Gly Ala Ser Ser His His His Cys Pro Arg His Cys Leu 1325 1330 1335

Leu Trp Glu Gly Ile 1340

<210> 123 <211> 24

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 123

ctattactcc cctacttatc ttac

<210> 124

<211> 18

<212> DNA <213> künstliche Sequenz

342-10PCT.txt

<220> <223> Oligonukleotid					
<400> 124 tttcgcccac ctcacctg					18
<210> 125 <211> 3136 <212> DNA <213> Homo sapiens					
<400> 125 gtcgccgcg ctaccgccgc	cgccgccgca	gggcccgccg	ctgggatgcc	gagcgcccgc	60
gccgccgctg cctctgtcct	ccgcgcgctg	ctcagctgaa	ggcgcacagg	attcaattac	120
tggacttgtc aactctgcca	gtgtacgtgc	catttctctt	ccactatgag	aggaccgatt	180
gtattgcaca tttgtctggc	tttctgtagc	cttctgcttt	tcagcgttgc	cacacaatgt	240
ctggccttcc ccaaaataga	aaggaggagg	gagatagcac	atgttcatgc	ggaaaaaggg	300
cagtccgata agatgaacac	cgatgaccta	gaaaatagct	ctgttacctc	aaagcagact	360
ccccaactgg tggtctctga	agatccaatg	atgatgtcag	cagtaccatc	ggcaacatca	420
ttaaataaag cattctcgat	taacaaagaa	acccagcctg	gacaagctgg	gctcatgcaa	480
acagaacgcc ctggtgtttc	cacacctact	gagtcaggtg	tcccctcagc	tgaagaagta	540
tttggttcca gccagccaga	gagaatatct	cctgaaagtg	gacttgccaa	ggccatgtta	600
accattgcta tcactgcgac	tccttctctg	actgttgatg	aaaaggagga	actccttaca	660
agcactaact ttcagcccat	tgtagaagag	atcacagaaa	ccacaaaagg	ttttctgaag	720
tatatggata atcaatcatt	tgcaactgaa	agtcaggaag	gagttggttt	gggacattca	780
ccttcatcct atgtgaatac	taaggaaatg	ctaaccacca	atccaaagac	tgagaaattt	840
gaagcagaca cagaccacag	gacaacttct	tttcctggtg	ctgagtccac	agcaggcagt	900
gagcctggaa gcctcacccc	tgataaggag	aagccttcgc	agatgacagc	tgataacacc	960
caggctgctg ccaccaagca	accactcgaa	acttccgagt	acaccctgag	tgttgagcca	1020
gaaactgata gtctgctggg	agccccagaa	gtcacagtga	gtgtcagcac	agctgttcca	1080
gctgcctctg ccttaagtga	tgagtgggat	gacaccaaat	tagagagtgt	aagccggata	1140
aggaccccca agcttggaga	caatgaagag	actcaggtga	gaacggagat	gtctcagaca	1200
gcacaagtaa gccatgaggg	tatggaagga	ggccagcctt'	ggacagaggc	tgcacaggtg	1260
gctctggggc tgcctgaagg	ggaaacacac	acgggcacag	ccctgctaat	agcgcatggg	1320
aatgagagat cacctgcttt	cactgatcaa	agttccttta	ccccacaag	tctgatggaa	1380
gacatgaaag tttccattgt	gaacttgctc	caaagtacgg	gagacttcac	ggaatccacc	1440
aaggaaaacg atgccctgtt	tttcttagaa	accactgttt	ctgtctctgt	atatgagtct	1500
gaggcagacc aactgttggg	aaatacaatg	aaagacatca	tcactcaaga	gatgacaaca	1560
gctgttcaag agccagatgc	cactttatcc	atggtgacac	aagagcaggt	tgctaccctc	1 62 0

		342-10PCT.	txt		
gagcttatca gagacagtgg	caagactgag	gaagaaaagg	aggacccctc	tcctgtgtct	1680
gacgttcctg gtgttactca	gctgtcaaga	agatgggagc	ctctggccac	tacaatttca	1740
actacagtcg tccctttgtc	ttttgaagtt	actcccactg	tggaagaaca	aatggacaca	1800
gtcacagggc caaatgagga	gttcacacca	gttctgggat	ctccagtgac	acctcctgga	1860
ataatggtgg gggaacccag	catttcccct	gcacttcctg	ctttggaggc	atcctctgag	1920
agaagaactg ttgttccatc	tattactcgt	gttaatacag	ctgcctcata	tggcctggac	1980
caacttgaat ctgaagaggg	acaagaagat	gaggatgaag	aggatgaaga	agatgaagat	2040
gaagaagagg aagatgagga	agaagatgag	gaagataaag	atgcagactc	gctggatgag	2100
ggcttggatg gtgacactga	gctgccaggt	tttaccctcc	ctggtatcac	atcccaggaa	2160
ccaggcttag aggagggaaa	catggacctg	ttggagggag	ctacctacca	ggtgccagat	2220
gccctcgagt gggaacagca	gaatcaaggc	ctggtgagaa	gctggatgga	aaaattaaaa	2280
gacaaggetg gttacatgte	tgggatgctg	gtgcctgtag	gggttgggat	agctggagcc	2340
ttgttcatct tgggagccct	ctacagcatt	aaggttatga	atcgccgaag	gagaaatggc	2400
ttcaaaaggc ataaaagaaa	gcagagagaa	ttcaacagca	tgcaagatcg	agtaatgctc	2460
ttagccgaca gctctgaaga	tgaattttga	attggactgg	gttttaattg	ggatattcaa	2520
cgatgctact attctaattt	ttattttgga	gcagaaaaaa	a aaaag a aca	acctgccaca	2580
ttgctgctat caggccgtta	gtcctagtgt	ctgctgggtg	ctgggtagta	gatttttctt	2640
gtactgagca gaaatggcat	gttgtatact	aaacgtat c a	tgcagtattt	ggttttattc	2700
tgtagtgaat tttccacaac	cgtgggctac	aactcataaa	tatgcaacat	atatgttttt	2760
cagtaggagt tgctacatta	ggcagagtaa	atattttgta	gttttccaca	gtgtcttttc	2820
cttggtttga attacctgca	ttgagaataa	tgattgttgc	caccaaggca	tgcttgactc	2880
tgagatataa atcttaacaa	agaataactt	ctcaagatat	actctaccta	cttgaaacca	2940
cagggttgtg ggccatggta	catactgcat	ttgcatcaaa	ctagcagtaa	ctcagaatga	3000
aatcattttc attaagaagc	tctctcagca	tattaggatt	atatgtagat	ttgtatgtat	3060
tttgcattat gtacttcagt	ctcctagttt	tattattctc	accttccgtt	ttattcttgg	3120
cgaggaaaaa aatgca					3136

```
<210> 126
<211> 774
<212> PRT
<213> Homo sapiens
```

Met Arg Gly Pro Ile Val Leu His Ile Cys Leu Ala Phe Cys Ser Leu $1 \hspace{1cm} 15$

Leu Leu Phe Ser Val Ala Thr Gln Cys Leu Ala Phe Pro Lys Ile Glu 25 30

<400> 126

342-10PCT.txt
Arg Arg Glu Ile Ala His Val His Ala Glu Lys Gly Gln Ser Asp
35 40 45

Lys Met Asn Thr Asp Asp Leu Glu Asn Ser Ser Val Thr Ser Lys Gln 50 60

Thr Pro Gln Leu Val Val Ser Glu Asp Pro Met Met Ser Ala Val 65 70 7S 80

Pro Ser Ala Thr Ser Leu Asn Lys Ala Phe Ser Ile Asn Lys Glu Thr 85 90 95

Gln Pro Gly Gln Ala Gly Leu Met Gln Thr Glu Arg Pro Gly Val Ser 100 105

Thr Pro Thr Glu Ser Gly Val Pro Ser Ala Glu Glu Val Phe Gly Ser 115 120 125

Ser Gln Pro Glu Arg Ile Ser Pro Glu Ser Gly Leu Ala Lys Ala Met 130 140

Leu Thr Ile Ala Ile Thr Ala Thr Pro Ser Leu Thr Val Asp Glu Lys 145 150 155 160

Glu Glu Leu Leu Thr Ser Thr Asn Phe Gln Pro Ile Val Glu Glu Ile 165 170

Thr Glu Thr Thr Lys Gly Phe Leu Lys Tyr Met Asp Asn Gln Ser Phe 180 185 190

Ala Thr Glu Ser Gln Glu Gly Val Gly Leu Gly His Ser Pro Ser Ser 195 200 205

Tyr Val Asn Thr Lys Glu Met Leu Thr Thr Asn Pro Lys Thr Glu Lys 210 220

Phe Glu Ala Asp Thr Asp His Arg Thr Thr Ser Phe Pro Gly Ala Glu 225 230 240

Ser Thr Ala Gly Ser Glu Pro Gly Ser Leu Thr Pro Asp Lys Glu Lys 245 250 255

Pro Ser Gln Met Thr Ala Asp Asn Thr Gln Ala Ala Ala Thr Lys Gln 260 265 270

Pro Leu Glu Thr Ser Glu Tyr Thr Leu Ser Val Glu Pro Glu Thr Asp 275 280 285

Ser Leu Leu Gly Ala Pro Glu Val Thr Val Ser Val Ser Thr Ala Val 290 295 300

Pro Ala Ala Ser Ala Leu Ser Asp Glu Trp Asp Asp Thr Lys Leu Glu 305 310 315 320

Ser Val Ser Arg Ile Arg Thr Pro Lys Leu Gly Asp Asn Glu Glu Thr 325 330 335

Gln Val Arg Thr Glu Met Ser Gln Thr Ala Gln Val Ser His Glu Gly 340 345

Met Glu Gly Gly Gln Pro Trp Thr Glu Ala Ala Gln Val Ala Leu Gly 355 360 365

Leu Pro Glu Gly Glu Thr His Thr Gly Thr Ala Leu Leu Ilc Ala His 370 375 380

Gly Asn Glu Arg Ser Pro Ala Phe Thr Asp Gln Ser Ser Phe Thr Pro 385 390 395

Thr Ser Leu Met Glu Asp Met Lys Val Ser Ile Val Asn Leu Leu Gln 405 410 415

Ser Thr Gly Asp Phe Thr Glu Ser Thr Lys Glu Asn Asp Ala Leu Phe 420 425 430

>he Leu Glu Thr Thr Val Ser Val Ser Val Tyr Glu Ser Glu Ala Asp 435
440
45

31n Leu Leu Gly Asn Thr Met Lys Asp Ile Ile Thr Gln Glu Met Thr 450 455 460

Thr Ala Val Glu Glu Pro Asp Ala Thr Leu Ser Met Val Thr Glu 480 475 480

iln Val Ala Thr Leu Glu Leu Ile Arg Asp Ser Gly Lys Thr Glu Glu 485 490 495

ilu Lys Glu Asp Pro Ser Pro Val Ser Asp Val Pro Gly Val Thr Gln 505 510

eu Ser Arg Arg Trp Glu Pro Leu Ala Thr Thr Ile Ser Thr Thr Val 515 520 525

al Pro Leu Ser Phe Glu Val Thr Pro Thr Val Glu Glu Gln Met Asp 530 540

hr Val Thr Gly Pro Ash Glu Glu Phe Thr Pro Val Leu Gly Ser Pro 45 555 560

al Thr Pro Pro Gly Ile Met Val Gly Glu Pro Ser Ile Ser Pro Ala 565 570 575

342-10PCT.txt
Leu Pro Ala Leu Glu Ala Ser Ser Glu Arg Arg Thr Val Val Pro Ser
580 585 590

Ile Thr Arg Val Asn Thr Ala Ala Ser Tyr Gly Leu Asp Gln Leu Glu 595 605

Ser Glu Glu Gly Gln Glu Asp Glu Asp Glu Glu Asp Glu Glu Asp Glu 610 620

Asp Glu Glu Glu Asp Glu Glu Glu Asp Glu Glu Asp Lys Asp Ala 625 630 635

Asp Ser Leu Asp Glu Gly Leu Asp Gly Asp Thr Glu Leu Pro Gly Phe 645 650 655

Thr Leu Pro Gly Ile Thr Ser Gln Glu Pro Gly Leu Glu Glu Gly Asn 660 670

Met Asp Leu Leu Glu Gly Ala Thr Tyr Gln Val Pro Asp Ala Leu Glu 675 680 685

Trp Glu Gln Gln Asn Gln Gly Leu Val Arg Ser Trp Met Glu Lys Leu 690 700

Lys Asp Lys Ala Gly Tyr Met Ser Gly Met Leu Val Pro Val Gly Val 705 710 715 720

Gly Ile Ala Gly Ala Leu Phe Ile Leu Gly Ala Leu Tyr Ser Ile Lys 725 730 735

Val Met Asn Arg Arg Arg Arg Asn Gly Phe Lys Arg His Lys Arg Lys 740 745 750

Gln Arg Glu Phe Asn Ser Met Gln Asp Arg Val Met Leu Leu Ala Asp 755 760 765

Ser Ser Glu Asp Glu Phe 770

<210> 127

<211> 18

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 127

ccctccctgg tatcacat

<210> 128

<211> 18

<212> DNA <213> künstliche Sequenz

342-10PCT.txt <220> <223> oligonukleotid <400> 128 18 caccagcatc ccagacat <210> 129 3627 <211> DNA Homo sapiens <213> <400> 129 gggactgggg ggttcccaga tccttgaagc tcactccgcc tcctcactct cactgcattt 60 cccaccttcc tgtgggcctt gcggcatctt catcactgag gcacctggtt acgcttcacc 120 180 tottgtttcc tgccctcact gcattccctc acctctacct ttttatcctt ccaccctagg 240 cttctctcct ccctcttccc tcactcctga ctcttcctct tcccagcgga cggctggagg 300 acceptcagt ctctcctctc tcacttccct tcctctctct caccttcacc acccaacacc tecetecety cetetteett tetgeteeet cattetetee ecaecaetet ettetegtgg 360 coccettgee egegegeect ettecettee cettgeetea eteteteage tttetteeca 420 cagttgagct cgggcagctc tttctgggga tagctatggg gctttggggg aagaaaggga 480 cagtggctcc ccatgaccag agtccaagac gaagacctaa aaaagggctt atcaagaaaa 540 aaatggtgaa gagggaaaaa cagaagcgca atatggagga actqaagaaq gaagtggtca 600 660 tggatgatca caaattaacc ttggaagagc tgagcaccaa gtactccgtg gacctgacaa 720 agggccatag ccaccaaagg gcaaaggaaa tcctgactcg aggtggaccc aatactgtta 780 ccccacccc caccactcca gaatgggtca aattctgtaa gcaactgttc ggaggcttct 840 ccctcctact atggactggg gccattctct gctttgtggc ctacagcatc cagatatatt tcaatgagga gcctaccaaa gacaacctct acctgagcat cgtactgtcc gtcgtggtca 900 960 tegteactgg etgettetee tattateagg aggeeaagag etceaagate atggagtett ttaagaacat ggtgcctcag caagctctgg taattcgagg aggagagaag atgcaaatta 1020 atgtacaaga ggtggtgttg ggagacctgg tggaaatcaa gggtggagac cgagtccctg 1080 ctgacctccg gcttatctct gcacaaggat gtaaggtgga caactcatcc ttgactgggg 1140 agtcagaacc ccagagccgc tcccctgact tcacccatga gaaccctctg gagacccgaa 1200 acatetgett ettttecace aactgtgtgg aaggaacege eeggggtatt gtgattgeta 1260 egggagaete caeagtgatg ggeagaattg cetecetgae gteaggeetg geggttggee 1320 1380 agacacctat cgctgctgag atcgaacact tcatccatct gatcactgtg gtggccgtct tccttggtgt cactttttt gcgctctcac ttctcttggg ctatggttgg ctggaggcta 1440 1500 tcatttttct cattggcatc attgtggcca atgtgcctga ggggctgttg gccacagtca ctgtgtgcct gaccctcaca gccaagcgca tggcgcggaa gaactgcctg gtgaagaacc 1560 tggaggcggt ggagacgctg ggctccacgt ccaccatctg ctcagacaag acgggcaccc 1620

342-10PCT.txt

90/223

tcacccagaa	ccgcatgacc	gtcgcccaca	tgtggtttga		tatgaggccg	1680
acaccactga	agaacagact	ggaaaaacat	ttaccaagag	ctctgatacc	tggtttatgc	1740
tggcccgaat	cgctggcctc	tgcaaccggg	ctgactttaa	ggctaatcag	gagatcctgc	1800
ccattgctaa	gagggccaca	acaggtgatg	cttccgagtc	agccctcctc	aagttcatcg	1860
agcagtctta	cagctctgtg	gcggagatga	gagagaaaaa	ccccaaggtg	gcagagattc	1920
cctttaattc	taccaacaag	taccagatgt	ccatccacct	tcgggaggac	agctcccaga	1980
cccacgtact	gatgatgaag	ggtgctccgg	agaggatctt	ggagttttgt	tctacctttc	2040
ttctgaatgg	gcaggagtac	tcaatgaacg	atgaaatgaa	ggaagccttc	caaaatgcct	2100
acttagaact	gggaggtctg	ggggaacgtg	tgctaggctt	ctgcttcttg	aatctgccta	2160
gcagcttctc	caagggattc	ccatttaata	cagatgaaat	aaatttcccc	atggacaacc	2220
tttgttttgt	gggcctcata	tccatgattg	accctccccg	agctgcagtg	cctgatgctg	2280
tgagcaagtg	tcgcagtgca	ggaattaagg	tgatcatggt	aacaggagat	catcccatta	2340
cagctaaggc	cattgccaag	ggtg tgggca	tcatctcaga	aggcactgag	acggcagagg	2400
aagtcgctgc	ccggcttaag	atccctatca	gcaaggtcga	tgccagtgct	gccaaagcca	2460
ttgtggtgca	tggtgcagaa	ctgaaggaca	tacagtccaa	gcagcttgat	cagatectec	2520
agaaccaccc	tgagatcgtg	tttgctcgga	cctcccctca	gcagaagctc	atcattgtcg	2580
agggatgtca	gaggctggga	gccgttgtgg	ccgtgacagg	tgacggggtg	aacgactccc	2640
ctgcgctgaa	gaaggctgac	attggcattg	ccatgggcat	ctctggctct	gacgtctcta	2700
agcaggcagc	cgacatgatc	ctgctggatg	acaactttgc	ctccatcgtc	acgggggtgg	2760
aggagggccg	cctgatcttt	gacaacctga	agaaatccat	catgtacacc	ctgaccagca	2820
acatccccga	gatcacgccc	ttcctgatgt	tcatcatcct	cggtataccc	ctgcctctgg	2880
gaaccataac	catcctctgc	attgatctcg	gcactgacat	ggtccctgcc	atctccttgg	2940
cttatgagtc	agctgaaagc	gacatcatga	agaggcttcc	aaggaaccca	aagacggata	3000
atctggtgaa	ccaccgtctc	attggcatgg	cctatggaca	gattgggatg	atccaggctc	3060
tggctggatt	ctttacctac	tttgtaatcc	tggctgagaa	tggttttagg	cctgttgatc	3120
tgctgggcat	ccgcctccac	tgggaagata	aatacttgaa	tgacctggag	gacagctacg	3180
gacagcagtg	gacctatgag	caacgaaaag	ttgtggagtt	cacatgccaa	acggcctttt	3240
ttgtcaccat	cgtggttgtg	cagtgggcgg	atctcatcat	ctccaagact	cgccgcaact	3300
cacttttcca	gcagggcatg	agaaacaaag	tcttaatatt	tgggatcctg	gaggagacac	3360
tcttggctgc	atttctgtcc	tacactccag	gcatggacgt	ggccctgcga	atgtacccac	3420
tcaagataac	ctggtggctc	tgtgccattc	cctacagtat	tctcatcttc	gtctatgatg	3480
aaatcagaaa	actcctcatc	cgtcagcacc	cggatggctg	ggtggaaagg	gagacgtact	3540
actaaactca	gcagatgaag	agcttcatgt	gacacagggg	tgttgtgaga	gctgggatgg	3600
ggccagagat	tataagtttg	acacaac				3627

PCT/EP2004/010697

342-10PCT.txt

<210> 130 <211> 1029

<213> Homo sapiens

<400> 130

Met Gly Leu Trp Gly Lys Lys Gly Thr Val Ala Pro His Asp Gln Ser 1 10 15

Pro Arg Arg Pro Lys Lys Gly Leu Ile Lys Lys Met Val Lys 20 25 30

Arg Glu Lys Gln Lys Arg Asn Met Glu Glu Leu Lys Lys Glu Val Val 45

Met Asp Asp His Lys Leu Thr Leu Glu Glu Leu Ser Thr Lys Tyr Ser 50 60

Val Asp Leu Thr Lys Gly His Ser His Gln Arg Ala Lys Glu Ile Leu 65 70 75 80

Thr Arg Gly Gly Pro Asn Thr Val Thr Pro Pro Pro Thr Thr Pro Glu 85 90 95

Trp Val Lys Phe Cys Lys Gln Leu Phe Gly Gly Phe Ser Leu Leu Leu 100 105 110

Trp Thr Gly Ala Ile Leu Cys Phe Val Ala Tyr Ser Ile Gln Ile Tyr 115 125

Phe Asn Glu Glu Pro Thr Lys Asp Asn Leu Tyr Leu Ser Ile Val Leu 130 140

Ser Val Val Ile Val Thr Gly Cys Phe Ser Tyr Tyr Gln Glu Ala 145 150 155 160

Lys Ser Ser Lys Ile Met Glu Ser Phe Lys Asn Met Val Pro Gln Gln 165 170 175

Ala Leu Val Ile Arg Gly Gly Glu Lys Met Gln Ile Asn val Gln Glu 180 185 190

Val Val Leu Gly Asp Leu Val Glu Ile Lys Gly Gly Asp Arg Val Pro 195 200 205

Ala Asp Leu Arg Leu Ile Ser Ala Gln Gly Cys Lys Val Asp Asn Ser 210 220

Ser Leu Thr Gly Glu Ser Glu Pro Gln Ser Arg Ser Pro Asp Phe Thr 225 235 240 His Glu Asn Pro Leu Glu Thr Arg Asn Ile Cys Phe Phe Ser Thr Asn 245 250 255

Cys Val Glu Gly Thr Ala Arg Gly Ile Val Ile Ala Thr Gly Asp Ser 260 265 270

Thr Val Met Gly Arg Ile Ala Ser Leu Thr Ser Gly Leu Ala Val Gly 275 280 285

Gln Thr Pro Ile Ala Ala Glu Ile Glu His Phe Ile His Leu Ile Thr 290 295 300

Val Val Ala Val Phe Leu Gly Val Thr Phe Phe Ala Leu Ser Leu Leu 305 310 315 320

Leu Gly Tyr Gly Trp Leu Glu Ala Ile Ile Phe Leu Ile Gly Ile Ile 325 330 335

Val Ala Asn Val Pro Glu Gly Leu Leu Ala Thr Val Thr Val Cys Leu 340 350

Thr Leu Thr Ala Lys Arg Met Ala Arg Lys Asn Cys Leu Val Lys Asn 355 360 365

Leu Glu Ala Val Glu Thr Leu Gly Ser Thr Ser Thr Ile Cys Ser Asp 370 375 380

Lys Thr Gly Thr Leu Thr Gln Asn Arg Met Thr Val Ala His Met Trp 385 390 395 400

Phe Asp Met Thr Val Tyr Glu Ala Asp Thr Thr Glu Glu Gln Thr Gly 405 410 415

Lys Thr Phe Thr Lys Ser Ser Asp Thr Trp Phe Met Leu Ala Arg Ile 420 425 430

Ala Gly Leu Cys Asn Arg Ala Asp Phe Lys Ala Asn Gln Glu Ile Leu 435 440 445

Pro Ile Ala Lys Arg Ala Thr Thr Gly Asp Ala Ser Glu Ser Ala Leu 450 450

Leu Lys Phe Ile Glu Gln Ser Tyr Ser Ser Val Ala Glu Met Arg Glu 465 470 475 480

Lys Asn Pro Lys Val Ala Glu Ile Pro Phe Asn Ser Thr Asn Lys Tyr 485 490 495

Gln Met Ser Ile His Leu Arg Glu Asp Ser Ser Gln Thr His Val Leu 500 510

342-10PCT.txt
Met Met Lys Gly Ala Pro Glu Arg Ile Leu Glu Phe Cys Ser Thr Phe
515 520 525

Leu Leu Asn Gly Gln Glu Tyr Ser Met Asn Asp Glu Met Lys Glu Ala 530 540

Phe Gln Asn Ala Tyr Leu Glu Leu Gly Gly Leu Gly Glu Arg Val Leu 545 550 555

Gly Phe Cys Phe Leu Asn Leu Pro Ser Ser Phe Ser Lys Gly Phe Pro 565 570 575

Phe Asn Thr Asp Glu Ile Asn Phe Pro Met Asp Asn Leu Cys Phe Val 580 585 590

Gly Leu Ile Ser Met Ile Asp Pro Pro Arg Ala Ala Val Pro Asp Ala 595 600 605

Val Ser Lys Cys Arg Ser Ala Gly Ile Lys Val Ile Met Val Thr Gly 610 620

Asp His Pro Ile Thr Ala Lys Ala Ile Ala Lys Gly Val Gly Ile Ile 625 630 635

Ser Glu Gly Thr Glu Thr Ala Glu Glu Val Ala Ala Arg Leu Lys Ile 645 650 655

Pro Ile Ser Lys Val Asp Ala Ser Ala Ala Lys Ala Ile Val Val His

Gly Ala Glu Leu Lys Asp Ile Gln Ser Lys Gln Leu Asp Gln Ile Leu 675 680 685

Gln Asn His Pro Glu Ile Val Phe Ala Arg Thr Ser Pro Gln Gln Lys 690 695 700

Leu Ile Ile Val Glu Gly Cys Gln Arg Leu Gly Ala Val Val Ala Val 705 710 715 720

Thr Gly Asp Gly Val Asn Asp Ser Pro Ala Leu Lys Lys Ala Asp Ile 725 730 735

Gly Ile Ala Met Gly Ile Ser Gly Ser Asp Val Ser Lys Gln Ala Ala 740 750

Asp Met Ile Leu Leu Asp Asp Asn Phe Ala Ser Ile Val Thr Gly Val 755 760 765

Glu Glu Gly Arg Leu Ile Phe Asp Asn Leu Lys Lys Ser Ile Met Tyr 770 780

WO 2005/030250 PCT/EP2004/010697

Thr Leu Thr Ser Asn Ile Pro Glu Ile Thr Pro Phe Leu Met Phe Ile 785

Ile Leu Gly Ile Pro Leu Pro Leu Gly Thr Ile Thr Ile Leu Cys Ile 805 810 815

Asp Leu Gly Thr Asp Met Val Pro Ala Ile Ser Leu Ala Tyr Glu Ser 820 825 830

Ala Glu Ser Asp Ile Met Lys Arg Leu Pro Arg Asn Pro Lys Thr Asp 835 840 845

Asn Leu Val Asn His Arg Leu Ile Gly Met Ala Tyr Gly Gln Ile Gly 850 860

Met Ile Gln Ala Leu Ala Gly Phe Phe Thr Tyr Phe Val Ile Leu Ala 865 870 875 880

Glu Asn Gly Phe Arg Pro Val Asp Leu Leu Gly Ile Arg Leu His Trp 885 890 895

Glu Asp Lys Tyr Leu Asn Asp Leu Glu Asp Ser Tyr Gly Gln Gln Trp 900 905 910

Thr Tyr Glu Gln Arg Lys Val Val Glu Phe Thr Cys Gln Thr Ala Phe 915 925

Phe Val Thr Ile Val Val Gln Trp Ala Asp Leu Ile Ile Ser Lys 930 935

Thr Arg Arg Asn Ser Leu Phe Gln Gln Gly Met Arg Asn Lys Val Leu 945 950 955 960

Ile Phe Gly Ile Leu Glu Glu Thr Leu Leu Ala Ala Phe Leu Ser Tyr 965 970 975

Thr Pro Gly Met Asp Val Ala Leu Arg Met Tyr Pro Leu Lys Ile Thr 980 985 990

Trp Trp Leu Cys Ala Ile Pro Tyr Ser Ile Leu Ile Phe Val Tyr Asp 995 1000 1005

Glu Ile Arg Lys Leu Leu Ile Arg Gln His Pro Asp Gly Trp Val 1010 1020

Glu Arg Glu Thr Tyr Tyr 1025

<210> 131

<211> 21 <212> DNA

<213> künstliche Sequenz

342-10PCT.txt

<220> <223> Oligonukleotid	
<400> 131 tgtaatcctg gctgagaatg g	21
<210> 132 <211> 18 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 132 aagtgagttg cggcgagt	18
<210> 133 <211> 279 <212> DNA <213> Homo sapiens	
<400> 133 atgtatgtaa aaattgcaaa acatctcaat gatgtttatg ccccccagaa ggtactgtgt	60
cacgggatet catatattet ggetgteatt gteataataa geeactettg gteatatgga	120
aaagcattca gctgctccct gcctttgctc acagcgtgtg gtactctctt agaagctatt	180
cctgtcctat traggcagtt attcctgctt cttgtgttgg acctgaagtc aacagggcca	240
gcaatagaga agaaagatga tgtgaaggag agcaactga	279
<210> 134 <211> 92 <212> PRT <213> Homo sapiens	
<400> 134	
Met Tyr Val Lys Ile Ala Lys His Leu Asn Asp Val Tyr Ala Pro Gln 1 10 15	
Lys Val Leu Cys His Gly Ile Ser Tyr Ile Leu Ala Val Ile Val Ile 20 25 30	
Ile Ser His Ser Trp Ser Tyr Gly Lys Ala Phe Ser Cys Ser Leu Pro 35 40 45	
Leu Leu Thr Ala Cys Gly Thr Leu Leu Glu Ala Ile Pro Val Leu Phe 50	
Arg Gln Leu Phe Leu Leu Leu Val Leu Asp Leu Lys Ser Thr Gly Pro 65 70 75 80	
Ala Ile Glu Lys Lys Asp Asp Val Lys Glu Ser Asn 85 90	

<210> 135	
<211> 20 <212> DNA	
<213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 135 tgctccctgc ctttgctcac	20
<210> 136 <211> 24 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 136 ggtacttggt ctcgaacgat gatc	24
<210> 137 <211> 1569 <212> DNA <213> Homo sapiens	
<400> 137	
atgcctgtag ggggtggccc tgagagtgtg ggcaggtgca atggctgtca atgccacata	60
aayggcaagg ggatctacat cctaaacagt gaaagaccag tgcccggaga ctacatctac	120
atcaggaaga agaagcagca aaattctgac ccacagccca agaggggtcg gggcagcaga	180
acctcagcca cagccaatca cagcggggtc cttcggggag gggcgtggcc tgacaacttc	240
ggcgacgcgg ctggaccaat ccggacggag gagagcgaag ctcctctgca ctgggcccag	300
gtgcgctcct cagcgtctcc gggtggcggg gcgcgcggga tggaggagtc ttgggaggct	360
· · · · · · · · · · · · · · · · · · ·	420
acgctggagc agccgcaggt gcccgcgaag gtgcgacaac ctgaaggtcc cgaaagcagc	480
ccaagtccgg ccggggccgt ggagaaggcg gcgggcgcag gcctggagcc ctcgagcaag	540
aaaaagccgc cttcgcctcg ccccgggtcc ccgcgcgtgc cgccgctcag cctgggctac	600
ggggtctgcc ccgagccgcc gtcaccgggc cctgccttgg tcaagctgcc ccggaatggc	660
gaggcgcccg gggctgagcc tgcgcccagc gcctgggcgc ccatggagct gcaggtagat	720
gtycgcgtga agcccgtggg cgcggccggt ggcagcagca cgccatcgcc caggccctcc	780
acgcgcttcc tcaaggtgcc ggtgcccgag tcccctgcct tctcccgcca cgcggacccg	840
gcgcaccage teetgetgeg egeaccatee cagggeggea egtggggeeg eegetegeeg	90 0
ctggctgcag cccggacgga gagcggctgc gacgcagagg gccgggccag ccccgcggaa	96Q
ggaagcgccg gctccccggg ctcccccacg tgctgccgct gcaaggagct ggggctggag 1	020
aaggaggatg cggcgctgtt gccccgcgcg gggttggacg gcgacgagaa gctgccccgg 10	080
gccgtaacgc ttacggggct acccatgtac gtgaagtccc tgtactgggc cctggcgttc 13	140

342-10PCT.txt

atggctgtgc	tcctggcagt	ctctggggtt	gtcattgtgg	tcctggcctc	aagagcagga	1200
gccagatgcc	agcagtgccc	cccaggctgg	gtgttgtccg	aggagcactg	ttactacttc	1260
tctgcagaag	cgcaggcctg	ggaagccagc	caggctttct	gctcagccta	ccacgctacc	1320
ctcccctgc	taagccacac	ccaggacttc	ctgggcagat	<pre>acccagtctc</pre>	caggcactcc	1380
tgggtggggg	cctggcgagg	ccccagggc	tggcactgga	tcgacgaggc	cccactcccg	1440
ccccagctac	tccctgagga	cggcgaggac	aatctggata	tcaactgtgg	ggccctggag	1500
gaaggcacgc	tggtggctgc	aaactgcagc	actccaagac	cctgggtctg	tgccaagggg	1560
acccagtga						1569

<210> 138 <211> 522

<212> PRT

<213> Homo sapiens

<400> 138

Met Pro Val Gly Gly Gly Pro Glu Ser Val Gly Arg Cys Asn Gly Cys 10 15

Gln Cys His Ile Lys Gly Lys Gly Ile Tyr Ile Leu Asn Ser Glu Arg 20 25 30

Pro Val Pro Gly Asp Tyr Ile Tyr Ile Arg Lys Lys Gln Gln Asn 40 45

Ser Asp Pro Gln Pro Lys Arg Gly Arg Gly Ser Arg Thr Ser Ala Thr 50 60

Ala Asn His Ser Gly Val Leu Arg Gly Gly Ala Trp Pro Asp Asn Phe 65 70 75 80

Gly Asp Ala Ala Gly Pro Ile Arg Thr Glu Glu Ser Glu Ala Pro Leu 85 90 95

His Trp Ala Gin Val Arg Ser Ser Ala Ser Pro Gly Gly Ala Arg 100 105 110

Gly Met Glu Glu Ser Trp Glu Ala Ala Pro Gly Gly Gln Ala Gly Ala 115 120 125

Glu Leu Pro Met Glu Pro Val Gly Ser Leu Val Pro Thr Leu Glu Gln 130 140

Pro Gln Val Pro Ala Lys Val Arg Gln Pro Glu Gly Pro Glu Ser Ser 145 150 155 160

Pro Ser Pro Ala Gly Ala Val Glu Lys Ala Ala Gly Ala Gly Leu Glu 165 170 175 WO 2005/030250 PCT/EP2004/010697

Pro Ser Ser Lys Lys Lys Pro Pro Ser Pro Arg Pro Gly Ser Pro Arg 180

Val Pro Pro Leu Ser Leu Gly Tyr Gly Val Cys Pro Glu Pro Pro Ser 195 200. 205

Pro Gly Pro Ala Leu Val Lys Leu Pro Arg Asn Gly Glu Ala Pro Gly 210 215 220

Ala Glu Pro Ala Pro Ser Ala Trp Ala Pro Met Glu Leu Gln Val Asp 225 230 235 240

Val Arg Val Lys Pro Val Gly Ala Ala Gly Gly Ser Ser Thr Pro Ser 245 250 255

Pro Arg Pro Ser Thr Arg Phe Leu Lys Val Pro Val Pro Glu Ser Pro 260 270

Ala Phe Ser Arg His Ala Asp Pro Ala His Gln Leu Leu Leu Arg Ala 275 280 285

Pro Ser Gln Gly Gly Thr Trp Gly Arg Arg Ser Pro Leu Ala Ala Ala 290 295 300

Arg Thr Glu Ser Gly Cys Asp Ala Glu Gly Arg Ala Ser Pro Ala Glu 305 310 315 320

Gly Ser Ala Gly Ser Pro Gly Ser Pro Thr Cys Cys Arg Cys Lys Glu 325 330 335

Leu Gly Leu Glu Lys Glu Asp Ala Ala Leu Leu Pro Arg Ala Gly Leu 340 350

Asp Gly Asp Glu Lys Leu Pro Arg Ala Val Thr Leu Thr Gly Leu Pro 355 360

Met Tyr Val Lys Ser Leu Tyr Trp Ala Leu Ala Phe Met Ala Val Leu 370 380

Leu Ala Val Ser Gly Val Val Ile Val Val Leu Ala Ser Arg Ala Gly 385 390 400

Ala Arg Cys Gln Gln Cys Pro Pro Gly Trp Val Leu Ser Glu Glu His 405 410

Cys Tyr Tyr Phe Ser Ala Glu Ala Gln Ala Trp Glu Ala Ser Gln Ala 420 425 430

Phe Cys Ser Ala Tyr His Ala Thr Leu Pro Leu Leu Ser His Thr Gln 435

342-10PCT.txt Asp Phe Leu Gly Arg Tyr Pro Val Ser Arg His Ser Trp Val Gly Ala Trp Arg Gly Pro Gln Gly Trp His Trp Ile Asp Glu Ala Pro Leu Pro 465 470 475 Pro Gln Leu Leu Pro Glu Asp Gly Glu Asp Asn Leu Asp Ile Asn Cys 485 490 495 Gly Ala Leu Glu Glu Gly Thr Leu Val Ala Ala Asn Cys Ser Thr Pro
500 505 Arg Pro Trp Val Cys Ala Lys Gly Thr Gln 515 <210> 139 <211> <212> 18 DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 139 18 gagaaggagg atgcggcg <210> 140 <211> 21 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 140 21 ggaccacaat gacaacccca g <210> 141 2217 <212> DNA Homo sapiens <213> <400> 141 60 atggtttgca cgttcgattc tgagcttctg aattgtcaaa ggaaagatga atataatcag 120 ttccagactt atcgggccca taaaataaaa gccaaaagaa gcatagccac tcctgaaaac 180 ctgaagaaat tattgccacg tgttcccaaa aacagtgccc tgagtgatga aatgacaaag cttcacaaag gagctaagcc atgcaaatca aatacatttg gatgttttcc tattcatcag 240 300 gctgtacttt caggttccaa agaatgcatg gaaataatat tgaagtttgg tgaagagcac 360 gggtacagca gacagtgtca catcaacttt gtggataacg ggaaagccag ccctctccat 420 ctggctgtgc aaaatggtga cttggaaatg atgaaaatgt gcctggacaa tggtgtacaa 480 atagacctag tggagatgca acagatcaaa gagctggtaa tggatgaaga caacgatggg tgtactcctc tacattatgc atgtagacag gggggccctg gttctgtaaa taacctactt 540

	•					
ggctttaatg	tgtccattca	ttccaaaagc	342-10PCT. aaagataaga		gcattttgca	600
gccagttatg	ggcgtatcaa	tacctgtcag	aggctcctac	aagacataag	tgatacgagg	660
cttctgaatg	aaggggacct	tcatggaatg	actcctctcc	atctggcagc	aaagaatgga	720
catgataaag	tagttcagct	tcttctgaaa	aaaggtgcat	tgtttctcag	atgggatgaa	780
tgtcttaagg	tttttagtca	ttattctcca	aacaataaat	gtccaatttt	ggaaatgatc	840
gaatacctcc	ctgaatgcat	gaagaaagtt	ctacccttct	tttctaatgt	tcacgtaaga	900
cctgctccaa	accagaatca	aataaaccat	ggagaacaca	ggttggctta	cggatttata	960
gcccatatga	taaatctagg	attttactgt	cttggtctca	taccaatgac	ctttcttgtt	1020
gtcagaataa	aaccaggaat	ggctttcaac	tctgctggaa	tcatcaataa	aactagtgat	1080
cattcagaaa	tactagataa	catgaattca	agtctaataa	caatttgtat	gattttagtt	1140
ttttgctcaa	gtatattagg	gtatgtcaaa	gaagtggttc	aaattttcca	acagaaaagg	1200
aattacttta	tggatattag	cagtagtact	gaatggatta	tcaacacgat	gggccccatt	1260
ttagtgctgc	ccttgttcac	tgaaatagca	gcccatctgc	aatttgagaa	ttgtggaatt	1320
ttcattgtta	tattggaggt	aatttttaaa	actttgttga	ggtctgcagt	tgtatttttc	1380
ttccttcttt	tggcttttgg	actcagcttt	tacgtcctcc	tgaatttaca	gtccttccta	1440
gaaccatttc	tgaagaataa	attggcacat	ccagttctgt	cctttgcaca	gcttatttcc	1500
ttcacagtat	ttgccccaat	tgtcctcatg	aatttactta	ttggtttggc	agttggtgac	1560
attgctgagg	tccagaaaca	tgcatcattg	aagaggatag	ctatgcagaa	gctgccatgc	1620
tgttgcatac	gc aaagtg ga	tcggaaatcc	accgccgtat	gtcccaacaa	acccagatgt	1680
gatgggacat	tatttcaagt	cctactcgct	ctaggccccc	tacccctaga	agaaaataga	1740
aacataaaaa	gttttcttcc	tactgagatc	actgttaaga	ggactcacga	acaccttcct	1800
tctgcaggtt	ttggtcatca	tgggaaacat	accttgtcct	tgcttttggt	agaagagtgg	1860
cttcctctga	atgtagtaca	ctcctcttgc	tctgccttca	gagtggttgg	ccagatcttt	1920
cccattagac	attttcagtg	gattcatgtg	a atgagccg c	acactggcaa	tttaaaagag	1980
aaattggctg	ctccatacat	cactcaccag	atcaagccat	tcttgcgagc	agctggtttt	2040
tgcacagtga	aggtggtcca	gagagatgac	atctctgtgt	ggagtytgga	tttcaggtgg	2100
ctcaatgcat	gggaagcagc	gattcgaaag	cagtctctca	gacaatctga	gatggaggaa	2160
ctgagctgct	cgctgctgct	gcgtgtcact	gatgtgcaca	caagaagctt	gtattag	2217

<210> 142 <211> 738 <212> PRT <213> Homo sapiens

<400> 142

Met Val Cys Thr Phe Asp Ser Glu Leu Leu Asn Cys Gln Arg Lys Asp 1 10 15

342-10PCT.txt Glu Tyr Asn Gln Phe Gln Thr Tyr Arg Ala His Lys Ile Lys Ala Lys 20 25 30 Arg Ser Ile Ala Thr Pro Glu Asn Leu Lys Lys Leu Leu Pro Arg Val Pro Lys Asn Ser Ala Leu Ser Asp Glu Met Thr Lys Leu His Lys Gly 50 60 Ala Lys Pro Cys Lys Ser Asn Thr Phe Gly Cys Phe Pro Ile His Gln 65 70 75 80 Ala Val Leu Ser Gly Ser Lys Glu Cys Met Glu Ile Ile Leu Lys Phe 85 90 95 Gly Glu Glu His Gly Tyr Ser Arg Gln Cys His Ile Asn Phe Val Asp 100 105 Asn Gly Lys Ala Ser Pro Leu His Leu Ala Val Gln Asn Gly Asp Leu 115 120 125 Glu Met Met Lys Met Cys Leu Asp Asn Gly Val Gln Ile Asp Leu Val 130 140 Glu Met Gln Gln Ile Lys Glu Leu Val Met Asp Glu Asp Asn Asp Gly 145 150 160 Cys Thr Pro Leu His Tyr Ala Cys Arg Gln Gly Gly Pro Gly Ser Val 165 170 175 Asn Asn Leu Leu Gly Phe Asn Val Ser Ile His Ser Lys Ser Lys Asp 180 185 190 Lys Lys Ser Pro Leu His Phe Ala Ala Ser Tyr Gly Arg Ile Asn Thr 195 200 205 Cys Gln Arg Leu Leu Gln Asp Ile Ser Asp Thr Arg Leu Leu Asn Glu 210 220 Gly Asp Leu His Gly Met Thr Pro Leu His Leu Ala Ala Lys Asn Gly 225 230 235 240 His Asp Lys Val Val Gln Leu Leu Leu Lys Lys Gly Ala Leu Phe Leu 245 250 255 Arg Trp Asp Glu Cys Leu Lys Val Phe Ser His Tyr Ser Pro Asn Asn 260 265 270 Lys Cys Pro Ile Leu Glu Met Ile Glu Tyr Leu Pro Glu Cys Met Lys 275 280 285 Lys Val Leu Pro Phe Phe Ser Asn Val His Val Arg Pro Ala Pro Asn 290 295 300

Gln Asn Gln Ile Asn His Gly Glu His Arg Leu Ala Tyr Gly Phe Ile 305 310 315 320

Ala His Met Ile Asn Leu Gly Phe Tyr Cys Leu Gly Leu Ile Pro Met 325 330 335

Thr Phe Leu Val Val Arg Ile Lys Pro Gly Met Ala Phe Asn Ser Ala 340 345 350

Gly I'le Ile Asn Lys Thr Ser Asp His Ser Glu Ile Leu Asp Asn Met 355 360 365

Asn Ser Ser Leu Ile Thr Ile Cys Met Ile Leu Val Phe Cys Ser Ser 370 380

Ile Leu Gly Tyr Val Lys Glu Val Val Gln Ile Phe Gln Gln Lys Arg 385 390 395 400

Asn Tyr Phe Met Asp Ile Ser Ser Ser Thr Glu Trp Ile Ile Asn Thr 405 410 415

Met Gly Pro Ile Leu Val Leu Pro Leu Phe Thr Glu Ile Ala Ala His 420 425 430

Leu Gln Phe Glu Asn Cys Gly Ile Phe Ile Val Ile Leu Glu Val Ile 435 440 445

Phe Lys Thr Leu Leu Arg Ser Ala Val Val Phe Phe Leu Leu Leu 450 460

Ala Phe Gly Leu Ser Phe Tyr Val Leu Leu Asn Leu Gln Ser Phe Leu 465 470 475 480

Glu Pro Phe Leu Lys Asn Lys Leu Ala His Pro Val Leu Ser Phe Ala 485 490 495

Gln Leu Ile Ser Phe Thr Val Phe Ala Pro Ile Val Leu Met Asn Leu 500 505

Leu Ile Gly Leu Ala Val Gly Asp Ile Ala Glu Val Gln Lys His Ala 515 525

Ser Leu Lys Arg Ile Ala Met Gln Lys Leu Pro Cys Cys Cys Ile Arg 530 540

Lys Val Asp Arg Lys Ser Thr Ala Val Cys Pro Asn Lys Pro Arg Cys 545 550 555

342-10PCT.txt Asp Gly Thr Leu Phe Gln Val Leu Leu Ala Leu Gly Pro Leu 565 570 575

Glu Glu Asn Arg Asn Ile Lys Ser Phe Leu Pro Thr Glu Ile Thr Val 580 585 590

Lys Arg Thr His Glu His Leu Pro Ser Ala Gly Phe Gly His His Gly 595 600 605

Lys His Thr Leu Ser Leu Leu Leu Val Glu Glu Trp Leu Pro Leu Asn 610 620

Val Val His Ser Ser Cys Ser Ala Phe Arg Val Val Gly Gln Ile Phe 625 635 640

Pro Ile Arg His Phe Gln Trp Ile His Val Asn Glu Pro His Thr Gly 655 655

Asn Leu Lys Glu Lys Leu Ala Ala Pro Tyr Ile Thr His Gln Ile Lys 660 665 670

Pro Phe Leu Arg Ala Ala Gly Phe Cys Thr Val Lys Val Val Gln Arg 675 680 685

Asp Asp Ile Ser Val Trp Ser Val Asp Phe Arg Trp Leu Asm Ala Trp 690 695 700

Glu Ala Ala Ile Arg Lys Gln Ser Leu Arg Gln Ser Glu Met Glu Glu 705 710 715 720

Leu Ser Cys Ser Leu Leu Leu Arg Val Thr Asp Val His Thr Arg Ser 725 730 735

20

Leu Tyr

143 20 <210>

<211> <212> DNA

künstliche Sequenz

<220>

<223> oligonukleotid

<400> 143

ttccttactc tccgctttcc

<210> 144

<211> <212> 20 DNA

künstliche Sequenz

<223> Oligonukleotid

342-10PCT.txt <400> 144	
aactttgtgg ataacgggaa	20
<210> 145 <211> 1155 <212> DNA <213> Homo sapiens	
<400> 145 atgcagtctc tcatctcgcc ggtgaccaag gcgatcctgg tggccctctt catcttcgcc	60
atcctcctca tcctctacgt gatcctctgg gacgcaccgg ggagagcggg tgagtgcgct	120
cgtgcgggcg ctttgggggg ccacggttgg ggagccccaa cttcggggag gacgcggaat	180
ccggacgcgg gactgaaccc gaggattcac ggagcccggg gctcccctat ggggcacggg	240
aagcggcaga tgcgcgtgca gagaggtccg tcccacccac cccctgggcg ccttgggtcc	300
aaggogcata ggogotocog ootgtggoog ocacoggtgo agcagaacgo gggototogg	360
gtgggtccaa tgcgctatgg cacaccaggc gctatcgggt ccctagccct ctgctccggc	420
ggtggggacc ccgcactcaa gttccctata acctccatgg acaaacacgg aaaaatcatg	480
tcttggaaga acagcatcgc cctacagata cagactaggc actttgcaca tgaaacaaga	540
gtcccagaaa tttctagaag caaatctcgc attcgtgacc gccagaccta cgggatgtac	600
cactttggga attttggaga agaaagaata aaggcagaaa tgaggataca gaaagcatgt	660
cacttgaaga tcaagaagtc aagcttggat gccaatggta aagtggatga tggtgaggat	720
gatgatggtg aggatgatga tggtgaggat gatgatggtg atgatgatgg tgaggatgat	780
gatggtgagg atgatgatgg tgaggatgat gatggtgagg atgatggtga ggatgatgat	840
ggtgatgatg atggtgagga tgatgatggt gatgatgatg gtgatgatga tggtgaggat	900
gatgatggtg aggatgatga tggtgacagt gaggatgatg gtgaggatgg tgatgatgat	960
ggtgaggatg atgatggtga cagtgaggat gatggcgatg atggtgatga tgatggtgag	1020
gatgatgatc atggtgatga tgtgaggatg atgatgatga tggtgatgac agtgacgatg	1080
atgaagaatg ttgttggtaa ttacagactt cctgagctac caacttggac atctgtacaa	1140
cgatacaaat tttga	1155
246	
<210> 146 <211> 384 <212> PRT	
<212> PRT <213> Homo sapiens	
<400> 146	
Met Gln Ser Leu Ile Ser Pro Val Thr Lys Ala Ile Leu Val Ala Leu 1 10 15	
Phe Ile Phe Ala Ile Leu Leu Ile Leu Tyr Val Ile Leu Trp Asp Ala 20 25 30	

Pro Gly Arg Ala Gly Glu Cys Ala Arg Ala Gly Ala Leu Gly Gly His

342-10PCT.txt

Gly Trp Gly Ala Pro Thr Ser Gly Arg Thr Arg Asn Pro Asp Ala Gly 50 60 Leu Asn Pro Arg Ile His Gly Ala Arg Gly Ser Pro Met Gly His Gly 65 70 75 80 Lys Arg Glm Met Arg Val Glm Arg Gly Pro Ser His Pro Pro Pro Gly 90 95 Arg Leu Gly Ser Lys Ala His Arg Arg Ser Arg Leu Trp Pro Pro Pro 100. 105 110 val Gln Gln Asn Ala Gly Ser Arg Val Gly Pro Met Arg Tyr Gly Thr Pro Gly Ala Ile Gly Ser Leu Ala Leu Cys Ser Gly Gly Gly Asp Pro 130 135 Ala Leu Lys Phe Pro Ile Thr Ser Met Asp Lys His Gly Lys Ile Met 145 150 155 160 Ser Trp Lys Asn Ser Ile Ala Leu Gln Ile Gln Thr Arg His Phe Ala 165 170 175 His Glu Thr Arg Val Pro Glu Ile Ser Arg Ser Lys Ser Arg Ile Arg 180 185 Asp Arg Gln Thr Tyr Gly Met Tyr His Phe Gly Asn Phe Gly Glu Glu 195 200 205 Arg Ile Lys Ala Glu Met Arg Ile Gln Lys Ala Cys His Leu Lys Ile 210 220 Lys Lys Ser Ser Leu Asp Ala Asn Gly Lys Val Asp Asp Gly Glu Asp 225 235 240 Asp Asp Gly Glu Asp Asp Asp Gly Glu Asp Asp Asp Asp Asp Asp 255 Gly Glu Asp Asp Gly Glu Asp Asp Gly Glu Asp Asp Gly 260 270 Glu Asp Asp Gly Glu Asp Asp Gly Asp Asp Gly Glu Asp Asp 275 280 285 Asp Gly Asp Asp Gly Asp Asp Gly Glu Asp Asp Gly Glu 290 300 Asp Asp Asp Gly Asp Ser Glu Asp Asp Gly Glu Asp Gly Asp Asp Asp 310 315

342-10PCT.txt

Gly Glu Asp Asp Asp Gly Asp Ser Glu Asp Asp Gly Asp Gly Asp 335	
Asp Asp Gly Glu Asp Asp Asp His Gly Asp Asp Val Arg Met Met Met 340 350	
Met Met Val Met Thr Val Thr Met Met Lys Asn Val Val Gly Asn Tyr 355 360 365	
Arg Leu Pro Glu Leu Pro Thr Trp Thr Ser Val Gln Arg Tyr Lys Phe 370 380	
<210> 147 <211> 21 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 147 tccatgctgc cagcttcata c	21
<210> 148 <211> 21 <212> DNA <213> künstliche Sequenz	
<220> <223>. Oligonukleotid	
<400> 148 ctcacaagtg atgagattga g	21
<210> 149 <211> 4384 <212> DNA <213> Homo sapiens	
<400> 149 aaacagacgc ataactgtgc attgttcttt gggattttga gagccttcat ctcaatttca	60
actttaaagc agcttaatct ttaaggaaca tatctctgat ctgggtaatt tgtagaactt	120
aatttgaggg tcattacatg tgaggatagc aggagttgaa gatgccaagg acctgaaggg	180
ctactggagg gacaggtgaa gtgatttgaa gatgtagcat tttgaatctc tttctggccc	240
atcctctgct tcacaccaga atcattgtga cctgtagacc tgcaaaacaa aggaccaaag	300
gttagcatgc agaagtgaaa gtgtcaataa taaccaaacc actccatcaa gttaggtctg	360
gggaaaagca gcagcaaaaa tgagttctta cttctgggca caaaatgaaa gtaacagacc	420
tgatttactc tgcgggcagc cagctgacta ccttgttgaa gagaaacatt tcacaacgct	480
tgtatgcttc attgttgttt tgggagggct tttgaagatg tgtttaaaga attgtgaagt	540
cattgttttg acgattcttt ctctatcagg attcgtgata ggacacatgg cctacaattc	600

tgttgaggtg	caccaaattg	tctaccctct	342-10PCT. tctaagaaca		cactttattc	660
tracttttca	cctttaatta	tatttatggt	tgctttggat	gtagaatttt	atacactcaa	720
gaaaatgttt	tggcaggtct	tgttaactgg	attaattagc	ttttctacag	caagcatcat	780
aattggatat	gtcgttataa	aattcaataa	agattcatgg	gatttgcaat	cttgcctact	840
ctttagcatc	acccttggca	ttatagatcc	tcttcgttct	gtgaattcac	taaaaactat	900
tggcatttct	aaaatataca	ttgatctcat	tagaggagaa	tcattgatca	tttgtagcat	960
cgcatcaatt	ttttttggaa	attttcgggg	caacagaatc	cacttttcta	tttttagaga	1020
tttacatgta	ggcattgaac	tcagctatga	cattttggga	agcataatat	ttggatattg	1080
gtgtgcaaaa	atcattcagt	gtatattggc	tgacgttttt	agcaatatgc	tgactaatat	1140
cattctctgc	ttttcaatgg	tgtacatgac	tttctatatt	gtggaatttt	taggaatgtc	1200
aggcactctt	gccttagccg	ctgtaggact	gaatttagat	tctttaactt	ttaaaccgaa	1260
gatcgaactt	gtaattacta	agttcttaag	aatttttca	tctgtatatg	aacatttaat	1320
atatgctttc	tttggcattg	tgattggatg	tggagaactc	agccactatg	aatttcacac	1380
tatacctttc	atattcattt	tatttacaac	agtgaatttg	gtaaggttgc	ttactatttt	1440
gttagtgagc	cctattttga	tgcattcaaa	ttatgaatat	aattggcgat	ggggagttgt	1500
aatcacgtgg	tctggaatta	aaggagtttt	taatttactc	tgggctcctg	atgtttataa	1560
tctcgctgaa	cgaaaagtgg	aagtaccaca	aatgtttata	ctctatgtac	aagtaatatc	1620
attattgaca	atgggaataa	attcatacgt	gatgactcag	tcagccagga	agttagattt	1680
gtgtgttctt	tccctcccaa	gacaaatgat	cttgcaaaat	gccactcagc	acatacagga	1740
gatagtacag	aacacaataa	ctttatttaa	aacagaaaaa	attttgacaa	atgttaactg	1800
gaccttagta	gaagataaaa	cgaggatcga	atacattcct	ttttcccacg	tttcacataa	1860
tgatatgaag	acagaatcca	caacagatga	agctttaatg	gaggaagcca	gattgcat gt	1920
agctgcaata	caaatgagta	gctttgaaaa	acagcgtaac	aatggaattc	ttgaaataga	1.980
ggcagcccgg	atattaattg	gtgcagcaaa	atgctattac	tccatccaag	gaaaattcat	2040
gagtatttat	gatgtttcaa	cttatatgag	aactagaagt	tggcttataa	agtttaaaaa	2100
tgttttaact	ttcttggaat	attgtataga	aaagatacat	tttattccac	ctgagagtaa	2160
tacatttctg	acttttatat	ttcacatagt	attttctgaa	gaatttgaat	atacaggaca	2220
gattataaat	ttgatatata	tttatcctat	gataatacat	ctgtggccaa	tggcaagagg	2280
tttaaatgta	tcagcactga	tatcaataaa	ctactatttt	atgtttttat	atgtattaga	2340
atcaacattg	aagataataa	ttttgaaaag	gaaatatttt	caacaatgtt	ggaatacttt	2400
ggaattttt	atcctggtta	ttggaatcat	tgatatcttt	tgtgtatact	ttgtgaaatt	2460
gagaccagac	aacttggctc	ttatacagct	tacagtaata	atgggatatt	taagaataat	2520
taggtttctt	cctctcttca	agataatagt	accaatactg	ataagaattg	cagatgtgca	2580
gatcaaaaag	cgcctcagct	tgatgtatag	tattacaaaa	ggctatatca	aaagtcaaga	2640

agatgccaaa	cttctaataa	aacaaatagc	342-10PCT. tgtctgtgaa	~	agaaactatg	2700
tgaaattttg	gaaaccaaca	aacaggatg c	tgtcaaagaa	ttagtactca	tggagcatga	2760
gggtcgtgat	gttgtcattg	ctttgaagac	taaacaggca	atccggaatg	tgattgctaa	2820
agctctaaaa	aatctcacct	tcctttgttc	aagaggcatt	attgataagc	atgaagtcat	2880
tgagataaat	aaggtacttc	ttaaaaaatt	aaaagc acta	aataactttc	caaaggcaat	2940
cccaccccca	actcctgaca	tataccttca	caacatcatt	tggctggaag	gtaaagatgt	3000
tctcattgac	ttcttcaagg	aaagagccaa	acttgcctgt	tttgactctg	gagataccat	3060
ttgtaaagga	ggtgaaatgc	cacaaggaat	ctacttaatt	atttcaggaa	tggcaatttt	3120
gcatagttta	tctcctacct	ttggaataga	gagtaatcaa	aggtgtgata	gagggtccag	3180
agacatgttt	acagagttct	gtactactgg	ggacataatt	ggagagctaa	gctgtctgct	3240
taagcgtgaa	attgaatata	ccgtcatctg	tgaaactagt	ttacaggcct	gctttatctc	3300
cctggaggat	ttatatgaag	gctttgatgc	cttctggcca	tctctggaat	ataaaatatg	3360
gctaaagctt	gctctcagta	ctgcctatca	gtattttgaa	tcaagt <i>c</i> tta	ttgatgagga	3420
cttaaggttt	cagaactgtg	tgatgttcaa	tcaagcatat	gtggaaactt	tatcaagcta	3480
tagtgacatg	attattgata	atatgaccat	gaaatttgtt	atcatt g tgt	atggcagtgt	3540
aattgatact	aagacagagg	aaccatattt	tg cac c ttg c	attataccta	caacctgtga	3600
gcaggttcag	ggaacttctg	atttaagcaa	gctgctgata	atccaagcat	ctgagcttac	3660
ccaaagaaat	agtaacacca	atgtcatggc	ctcagtcaac	acggtctttg	aacaaccagg	3720
aaagaatata	aatggaagac	aaaagatgag	ttgaaaactg	gataccattt	tagaaaaggg	3780
tattaatgat	acaaatatga	tgtgtggagt	caggttaaag	accaaactac	tttcctcgct	3840
caaatactaa	aggattatct	gcaaggagtt	tacttagaag	ctactgaaac	aggttactgc	3900
tgcatttagt	ttataagcaa	tggatggact	tctgtaaaac	ttcttaattt	taagtagttg	3960
cattatattt	gg <mark>ga</mark> tgttaa	aaaagtcttc	aggataatat	aaaatacact	gaaacatatg	4020
tcctaccaaa	tgaaaccctg	tttccagcta	a gagcaaatt	ttaacatagt	gcattataaa	4080
aagtgttgta	taactgatat	gttactctct	aaagcataga	acctgtaatt	ttcatttgtg	4140
_		tccctaatat				4200
agtttggtaa	atattgaaaa	acagaattat	attccacaat	cttagtaact	ttcagtaagt	4260
		gaaatttagg				4320
tgtttgatgt	cacctttcat	tttattttta	aaaatcaaat	aaagttgagt	tttatggttg	4380
tcta						4384

<210> 150 <211> 1124 <212> PRT <213> Homo sapiens

<400> 150

342-10PCT.txt
Met Ser Ser Tyr Phe Trp Ala Gln Asn Glu Ser Asn Arg Pro Asp Leu
1 5 10 15

Leu Cys Gly Gln Pro Ala Asp Tyr Leu Val Glu Glu Lys His Phe Thr 20 25 30

Thr Leu Val Cys Phe Ile Val Val Leu Gly Gly Leu Leu Lys Met Cys
35 40 45

Leu Lys Asn Cys Glu Val Ile Val Leu Thr Ile Leu Ser Leu Ser Gly 50 60

Phe Val Ile Gly His Met Ala Tyr Asn Ser Val Glu Val His Gln Ile 65 70 75 80

Val Tyr Pro Leu Leu Arg Thr Ser Ser Phe Ser Leu Tyr Ser Tyr Phe
85 90 95

Ser Pro Leu Ile Ile Phe Met Val Ala Leu Asp Val Glu Phe Tyr Thr 100 105 110

Leu Lys Lys Met Phe Trp Gln Val Leu Leu Thr Gly Leu Ile Ser Phe 115 125

Ser Thr Ala Ser Ile Ile Ile Gly Tyr Val Val Ile Lys Phe Asn Lys 130 140

Asp Ser Trp Asp Leu Gln Ser Cys Leu Leu Phe Ser Ile Thr Leu Gly 145 155 160

The The Asp Pro Leu Arg Ser Val Asm Ser Leu Lys Thr The Gly The 165 170 175

Ser Lys Ile Tyr Ile Asp Leu Ile Arg Gly Glu Ser Leu Ile Ile Cys 180 185 190

Ser Ile Ala Ser Ile Phe Phe Gly Asn Phe Arg Gly Asn Arg Ile His 195 200 205

Phe Ser Ile Phe Arg Asp Leu His Val Gly Ile Glu Leu Ser Tyr Asp 210 220

Ile Leu Gly Ser Ile Ile Phe Gly Tyr Trp Cys Ala Lys Ile Ile Gln 225 235 240

Cys Ile Leu Ala Asp Val Phe Ser Asn Met Leu Thr Asn Ile Ile Leu 245 250 255

Cys Phe Ser Met Val Tyr Met Thr Phe Tyr Ile Val Glu Phe Leu Gly 260 265 270

WO 2005/030250 PCT/EP2004/010697 110/223

342-10PCT.txt Met Ser Gly Thr Leu Ala Leu Ala Ala Val Gly Leu Asn Leu Asp Ser 275 280 285 Thr Phe Lys Pro Lys Ile Glu Leu Val Ile Thr Lys Phe Leu Arg 290 295 300 Ile Phe Ser Ser Val Tyr Glu His Leu Ile Tyr Ala Phe Phe Gly Ile 305 310 315Val Ile Gly Cys Gly Glu Leu Ser His Tyr Glu Phe His Thr Ile Pro 325 330 335 Phe Ile Phe Ile Leu Phe Thr Thr Val Asn Leu Val Arg Leu Leu Thr 340 345 350Tle Leu Leu Val Ser Pro Ile Leu Met His Ser Asn Tyr Glu Tyr Asn 355 360 365 Trp Arg Trp Gly Val Val Ile Thr Trp Ser Gly Ile Lys Gly Val Phe 370 380 Asn Leu Leu Trp Ala Pro Asp Val Tyr Asn Leu Ala Glu Arg Lys Val 385 390 395 400 Glu Val Pro Gln Met Phe Ile Leu Tyr Val Gln Val Ile Ser Leu Leu 405 410 415 Thr Met Gly Ile Asn Ser Tyr Val Met Thr Gln Ser Ala Arg Lys Leu 420 425 430 Asp Leu Cys Val Leu Ser Leu Pro Arg Gln Met Ile Leu Gln Asn Ala 445 445 Thr Gln His Ile Gln Glu Ile Val Gln Asn Thr Ile Thr Leu Phe Lys 450 460 Thr Glu Lys Ile Leu Thr Asn Val Asn Trp Thr Leu Val Glu Asp Lys 465 470 475 480 Thr Arg Ile Glu Tyr Ile Pro Phe Ser His Val Ser His Asn Asp Met 485 490 . 495Lys Thr Glu Ser Thr Thr Asp Glu Ala Leu Met Glu Glu Ala Arg Leu 500 510 His Val Ala Ala Ile Gln Met Ser Ser Phe Glu Lys Gln Arg Asn Asn 515 520 Gly Ile Leu Glu Ile Glu Ala Ala Arg Ile Leu Ile Gly Ala Ala Lys 530 540

342-10PCT.txt
Cys Tyr Tyr Ser Ile Gln Gly Lys Phe Met Ser Ile Tyr Asp Val Ser
545 550 555 560 Thr Tyr Met Arg Thr Arg Ser Trp Leu Ile Lys Phe Lys Asn Val Leu 565 570 Thr Phe Leu Glu Tyr Cys Ile Glu Lys Ile His Phe Ile Pro Pro Glu 580 585 590 Ser Asn Thr Phe Leu Thr Phe Ile Phe His Ile Val Phe Ser Glu Glu 595 600 Phe Glu Tyr Thr Gly Gln Ile Ile Asn Leu Ile Tyr Ile Tyr Pro Met 610 620 Ile Ile His Leu Trp Pro Met Ala Arg Gly Leu Asn Val Ser Ala Leu 625 630 635 Ile Ser Ile Asn Tyr Tyr Phe Met Phe Leu Tyr Val Leu Glu Ser Thr 645 650 655 Leu Lys Ile Ile Leu Lys Arg Lys Tyr Phe Gln Gln Cys Trp Asn 660 665 670 Thr Leu Glu Phe Phe Ile Leu Val Ile Gly Ile Ile Asp Ile Phe Cys 675 680 685 Val Tyr Phe Val Lys Leu Arg Pro Asp Asn Leu Ala Leu Ile Gln Leu 690 700 Thr Val Ile Met Gly Tyr Leu Arg Ile Ile Arg Phe Leu Pro Leu Phe 705 710 715 720 Lys Ile Ile Val Pro Ile Leu Ile Arg Ile Ala Asp Val Gln Ile Lys 725 730 735 Lys Arg Leu Ser Leu Met Tyr Ser Ile Thr Lys Gly Tyr Ile Lys Ser 740 745 750 Gln Glu Asp Ala Lys Leu Leu Ile Lys Gln Ile Ala Val Cys Glu Ser 760 765 Ile Tyr Gln Lys Leu Cys Glu Ile Leu Glu Thr Asn Lys Gln Asp Ala 770 780 Val Lys Glu Leu Val Leu Met Glu His Glu Gly Arg Asp Val Val Ile 785 790 795 800 Ala Leu Lys Thr Lys Gln Ala Ile Arg Asn Val Ile Ala Lys Ala Leu 805 810 815

342-10PCT.txt
Lys Asn Leu Thr Phe Leu Cys Ser Arg Gly Ile Ile Asp Lys His Glu
820 825 830

Val Ile Glu Ile Asn Lys Val Leu Leu Lys Lys Leu Lys Ala Leu Asn 835 840 845

Asn Phe Pro Lys Ala Ile Pro Pro Pro Thr Pro Asp Ile Tyr Leu His 850 855 860

Asn Ile Ile Trp Leu Glu Gly Lys Asp Val Leu Ile Asp Phe Phe Lys 865 870 875

Glu Arg Ala Lys Leu Ala Cys Phe Asp Ser Gly Asp Thr Ile Cys Lys 885 890 895

Gly Gly Glu Met Pro Gln Gly Ile Tyr Leu Ile Ile Ser Gly Met Ala 900 905

Ile Leu His Ser Leu Ser Pro Thr Phe Gly Ile Glu Ser Asn Gln Arg 915 920 925

Cys Asp Arg Gly Ser Arg Asp Met Phe Thr Glu Phe Cys Thr Thr Gly 930 940

Asp Ile Ile Gly Glu Leu Ser Cys Leu Leu Lys Arg Glu Ile Glu Tyr 945 950 955 960

Thr Val Ile Cys Glu Thr Ser Leu Gln Ala Cys Phe Ile Ser Leu Glu 965 970 975

Asp Leu Tyr Glu Gly Phe Asp Ala Phe Trp Pro Ser Leu Glu Tyr Lys 980 985 990

Ile Trp Leu Lys Leu Ala Leu Ser Thr Ala Tyr Gln Tyr Phe Glu Ser 995 1000 1005

Ser Leu Ile Asp Glu Asp Leu Arg Phe Gln Asn Cys Val Met Phe 1010 1015 1020

Asn Gln Ala Tyr Val Glu Thr Leu Ser Ser Tyr Ser Asp Met Ile 1025 1030 1035

Ile Asp Asn Met Thr Met Lys Phe Val Ile Ile Val Tyr Gly Ser 1040 1045

Val Ile Asp Thr Lys Thr Glu Glu Pro Tyr Phe Ala Pro Cys Ile 1055 1060 1065

Ile Pro Thr Thr Cys Glu Gln Val Gln Gly Thr Ser Asp Leu Ser 1070 1075 1080

342-10PCT.txt Lys Leu Leu Ile Ile Gln Ala Ser Glu Leu Thr Gln Arg Asn Ser 1085 1090 1095	
Asn Thr Asn Val Met Ala Ser Val Asn Thr Val Phe Glu Gln Pro 1100 1105 1110	
Gly Lys Asn Ile Asn Gly Arg Gln Lys Met Ser 1115 1120	
<210> 151 <211> 21 <21.2> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 151 ctacaacctg tgagcaggtt c	21
<210> 152 <211> 21 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 152 cctgtttcag tggcttctaa g	21
<210> 153 <211> 1189 <212> DNA <213> Homo sapiens	
<400> 153 ctatgccttc tgaccccgtc ttggacttca actgggagaa tgtggagcca tttgaacagg	60
ctcctcttct ggagcatatt ttcttctgtc acttgtagaa aagctgtatt ggattgtgag	120
gcaatgaaaa caaatgaatt cccttctcca tgtttggact caaagactaa ggtggttatg	180
aagggtcaaa atgtatctat gttttgttcc cataagaaca aatcactgca gatcacctat	240
tcattgtttc gacgtaagac acacctggga acccaggatg gaaaaggtga acctgcgatt	300
tttaacctaa gcatcacaga agcccatgaa tcaggcccct acaaatgcaa agcccaagtt	360
accagctgtt caaaatacag tcgtgacttc agcttcacga ttgtcgaccc ggtgacttcc	420
ccagtgctga acattatggt cattcaaaca gaaacagacc gacatataac attacattgc	480
ctctcagtca atggctcgct gcccatcaat tacactttct ttgaaaacca tgttgccata	540
tcaccagcta tttccaagta tgacagggag cctgctgaat ttaacttaac	600
cctggagaag aggaagagta taggtgtgaa gctaaaaaca gattgcctaa ctatgcaaca	660
tacagtcacc ctgtcaccat gccctcaaca ggcggagaca gctgtccttt ctgtctgaag	720
ctactacttc cagggttatt actgttgctg gtggtgataa tcctaattct ggctttttgg	780

114/223
342-10PCT.txt
glactgccca aatacaaaac aagaaaagct atgagaaata atgtgcccag ggaccgtgga
gacacagcca tggaagttgg aatctatgca aatatccttg aaaaacaagc aaaggaggaa
tctgtgccag aagtgggatc caggccgtgt gtttccacag cccaagatga ggccaaacac
tcccaggagc tacagtatgc caccccgtg ttccaggagg tggcaccaag agagcaagaa
gcctgtgatt cttataaatc tggatatgtc tattctgaat cctgacctca gatgatctgc
ctgcctcggc ctcccaaagt gctggaacta caagcctgag ccaccgtgcc cggccctgaa
tcgctttagt aaataaaggg tctccaagaa taaattcatc cgaacatgc
<210> 154 <211> 341 <212> PRT <213> Homo sapiens <400> 154
Met Trp Ser His Leu Asn Arg Leu Leu Phe Trp Ser Ile Phe Ser Ser 1 10 15
Val Thr Cys Arg Lys Ala Val Leu Asp Cys Glu Ala Met Lys Thr Asn 20 25 30
Glu Phe Pro Ser Pro Cys Leu Asp Ser Lys Thr Lys Val Val Met Lys 45
Gly Gln Asn Val Ser Met Phe Cys Ser His Lys Asn Lys Ser Leu Gln 50 60
Ile Thr Tyr Ser Leu Phe Arg Arg Lys Thr His Leu Gly Thr Gln Asp 65 70 75 80
Gly Lys Gly Glu Pro Ala Ile Phe Ash Leu Ser Ile Thr Glu Ala His
85 90 95
Glu Ser Gly Pro Tyr Lys Cys Lys Ala Gln Val Thr Ser Cys Ser Lys
100 105 110
Tyr Ser Arg Asp Phe Ser Phe Thr Ile Val Asp Pro Val Thr Ser Pro
115 120 125
was the same the week well the clarent clarent are Are His Ile Thr
Val Leu Asn Ile Met Val Ile Gln Thr Glu Thr Asp Arg His Ile Thr 130 135 140
Leu His Cys Leu Ser Val Asn Gly Ser Leu Pro Ile Asn Tyr Thr Phe 145 150 155 160
Phe Glu Asn His Val Ala Ile Ser Pro Ala Ile Ser Lys Tyr Asp Arg 170 175

Glu Pro Ala Glu Phe Asn Leu Thr Lys Lys Asn Pro Gly Glu Glu Glu 180

342-10PCT.txt

Glu Tyr Arg Cys Glu Ala Lys Asn Arg Leu Pro Asn Tyr Ala Thr Tyr 195 200

Ser His Pro Val Thr Met Pro Ser Thr Gly Gly Asp Ser Cys Pro Phe 210 220

Cys Leu Lys Leu Leu Leu Pro Gly Leu Leu Leu Leu Leu Val Val Ile 235 235 240

Ile Leu Ile Leu Ala Phe Trp Val Leu Pro Lys Tyr Lys Thr Arg Lys 245 250 255

Ala Met Arg Asn Asn Val Pro Arg Asp Arg Gly Asp Thr Ala Met Glu 260 265 270

Val Gly Ile Tyr Ala Asn Ile Leu Glu Lys Gln Ala Lys Glu Glu Ser 275 280 285

Val Pro Glu Val Gly Ser Arg Pro Cys Val Ser Thr Ala Gln Asp Glu 290 295 300

Ala Lys His Ser Gln Glu Leu Gln Tyr Ala Thr Pro Val Phe Gln Glu 305 310 315 320

Val Ala Pro Arg Glu Gln Glu Ala Cys Asp Ser Tyr Lys Ser Gly Tyr 325 330 335

Val Tyr Ser Glu Ser 340

<210> 155 <211> 21

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 155

gaggaatctg tgccagaagt g

21

<210> 156

<211> 21

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

acagagtgag actccatcct g

21

<210> 157 <211> 2713

342-10PCT.txt

<212> DNA <213> Homo sapiens

<400> 157 60 gggcttggct ggggtgctca gcccaatttt ccgtgtaggg agcgggcggc ggcgggggag gcagaggcgg aggcggagtc aagagcgcac cgccgcgccc gccgtgccgg gcctgagctg 120 gagecgggeg tgagtegeag caggageege ageeggagte acageegeag ecagageege 180 agccaaagcc tcagagagca ggagttggag cgcaggccct gctggatccg cgcctagctc 240 300 gccgccaggc accggccgga ggacgggccg tggtgtcagc tcactgcccg ggcgctgtgg 360 qaqqcaqcqa qcccqcqacc ccccgggccq qqcaccgcca ggcqcgqagc ccagatcgcc 420 cccctgccag gcctggtcac ggccagagca cgcaggagtt cccagggtct ggatctgcgc gcaccctaat gacctgggga ctgaagagaa aaaaggaacg aggatttcat ctaaaagcat 480 540 aacgtgggca ctaggcgagg aggaaagtgg agaccacctg gcacggggca gaggtgcctg gagcccacgc ttgagcatcg gagaccctgg catcctagca gccgcgacct tggctctgcc 600 660 ctgtctgagc tggaaacaca gcttagcttc tagacatcgc tygcacaggc ctggcacaag 720 taagcagtgt cctcacctgt ctgaaacggg acacggggtc ggaggaacca ggatctagcc 780 tggccccaag cggaactete tggtggccca gaggtcgtca ctggggagcc cgcctcctgc 840 cctagcctca ctggtgcgga tgtgccgctg cccgccggag caccatgatg gcaggatgac 900 ctcaqccqaa qtaqqaqcag cagctggtgg tgctcaggcg gctgggcccc ccgagtggcc 960 ccctggcagc cctcaggccc tccggcagcc tggccgggcc cgagtggcca tggcagcact ggtgtggctg ctggcgggag ccagcatgtc aagcctcaac aagtggatct tcacagtgca 1020 1080 cggctttggg cggcccctgc tgctgtcggc cctgcacatg ctggtggcag ccctggcatg 1140 ccaccggggg gcacggcgcc ccatgccagg cggcactcgc tgccgagtcc tactgctcag 1200 tctcaccttt ggcacgtcca tggcctgcgg caacgtgggc ctaagggctg tgcccctgga 1260 cctggcacaa ctggttacta ccaccacacc tctgttcacc ctggccctgt cggcgctgct 1320 gctgggccgc cgccaccacc cacttcagtt ggccgccatg ggtccgctct gcctgggggc 1380 cgcctgcagc ctggctggag agttccggac accccctacc ggctgtggct tcctgctcgc agccacctgc ctccgcggac tcaagtcggt tcagcaaagt gccctgctgc aggaggagag 1440 1500 gctggacgcg gtgaccctgc tttacgccac ctcgctgccc agcttctgcc tgctggcggg tgcagccctg gtgctggagg ctggcgttgc cccaccgccc actgctggcg actctcgcct 1.560 1620 ctgggcctgc atcctgctca gctgcctcct gtctgttctc tataacctgg ccagcttctc cctgctggcc ctcacctctg ccctcaccgt ccacgtcctg ggcaacctca ccgtggtggg 1680 caacctcatc ctgtcccggc tgttgtttgg cagccgcctc agtgccctca gctacgtggg 1740 1800 catcgcactc actctttcag gaatgttcct ttaccacaac tgcgagttcg tggcctcctg 1860 1920 ggatctcagg agccacctgg gatggccctg gcctgaatcc agcctccgct gtggccatag

342-10PCT.txt aaggaatgga gaacagggct gggcatggtg gctcacgcct ataatcccag cacttccaga 1980 gtccgaggtg gqtqqatcac ctgaggccag gagttcqaqa ccagcctggc taacatqqca 2040 aaacctcatc tctactaaaa afagaaaaat tagctgggca tqgtggcgcg tgcctatagt 2100 2160 cccagctaca tgggaggcta aggtgggagg atcacttqag ccctggagat cgaggctgca gtaagccaag atcgcatgct actgcactcc agcctgggag acagagcgag acgctgtctc 2220 2280 aattaaaaaa aaaaaaagt ggagaactgg cagtgacctc tactgggggc catggcaggg aggggagcct tctggaaggg ctgccttgga gattggaatg gggactccca gggagacctg 2340 2400 egitecated etgeetgeet cacceetgee acagactetg cacaccactg gatggtgggt ccaagcctgg cacagtccct gtgcttgtca gagtcattat tatgattaat atcaattacg 2460 atgecaaaaa ttgetgggea aactttgaag aceteaactt gttacaatga egatgatgat 2520 gattettigge ggttacacaa teetteetee tgggggggag geagetagga ggeecageag 2580 gggggcttct atgctgctgg gctcccctag ggagttgggg tagtctgtgc caactccagg 2640 cagctgctgt ggcctcaccc ctgggccccc caattttggg tcatccatcc tcaaatacac 2700 tatttttgct tgt 2713 <210> 158

<211> 350

<212> PRT

<213> Homo sapiens

<400> 158

Met Cys Arg Cys Pro Pro Glu His His Asp Gly Arg Met Thr Ser Ala 1 5 10 15

Glu Val Gly Ala Ala Gly Gly Ala Gln Ala Ala Gly Pro Pro Glu 20 25 30

Trp Pro Pro Gly Ser Pro Gln Ala Leu Arg Gln Pro Gly Arg Ala Arg

val Ala Met Ala Ala Leu Val Trp Leu Leu Ala Gly Ala Ser Met Ser 50 55 60

Ser Leu Asn Lys Trp Ile Phe Thr Val His Gly Phe Gly Arg Pro Leu 65 70 75 80

Leu Leu Ser Ala Leu His Met Leu Val Ala Ala Leu Ala Cys His Arg 85 90 95

Gly Ala Arg Arg Pro Met Pro Gly Gly Thr Arg Cys Arg Val Leu Leu 100 105 110

Leu Ser Leu Thr Phe Gly Thr Ser Met Ala Cys Gly Asn Val Gly Leu 115 120 125 WO 2005/030250 PCT/EP2004/010697

118/223

342-10PCT.txt Arg Ala Val Pro Leu Asp Leu Ala Gln Leu Val Thr Thr Thr Pro 130 140

Leu Phe Thr Leu Ala Leu Ser Ala Leu Leu Leu Gly Arg Arg His His 145 150 155 160

Pro Leu Gln Leu Ala Ala Met Gly Pro Leu Cys Leu Gly Ala Ala Cys 165 170 175

Ser Leu Ala Gly Glu Phe Arg Thr Pro Pro Thr Gly Cys Gly Phe Leu 180 185 190

Leu Ala Ala Thr Cys Leu Arg Gly Leu Lys Ser Val Gln Gln Ser Ala 195 200 205

Leu Leu Gln Glu Glu Arg Leu Asp Ala Val Thr Leu Leu Tyr Ala Thr 210 220

Ser Leu Pro Ser Phe Cys Leu Leu Ala Gly Ala Ala Leu Val Leu Glu 225 230 240

Ala Gly Val Ala Pro Pro Pro Thr Ala Gly Asp Ser Arg Leu Trp Ala 245 250 255

Cys Ile Leu Leu Ser Cys Leu Leu Ser Val Leu Tyr Asn Leu Ala Ser 260 265 270

Phe Ser Leu Leu Ala Leu Thr Ser Ala Leu Thr Val His Val Leu Gly 275 280 285

Asn Leu Thr Val Val Gly Asn Leu Ile Leu Ser Arg Leu Leu Phe Gly 290 295 300

Ser Arg Leu Ser Ala Leu Ser Tyr Val Gly Ile Ala Leu Thr Leu Ser 305 310 315

Gly Met Phe Leu Tyr His Asn Cys Glu Phe Val Ala Ser Trp Ala Ala 325 330 335

Arg Arg Gly Leu Trp Arg Arg Asp Gln Pro Ser Lys Gly Leu 340 345

¹⁵⁹ 21

DNA

künstliche Sequenz

<220> <223>

Oligonukleotid

<400> 159

caagtcggtt cagcaaagtg c

119/223 342-10PCT. txt

	342-10PCT.txt	
<210> <211> <212> <213>	DNA	
<220> <223>		
<400> cctgaa	160 aagag tgagtgcgat g	21
<210> <211> <212> <213>	161 963 DNA	
<400> gactac	161 çacaa ggactgaacc agaaggaaga ggacagagca aagccatgaa catcat	ccta 60
gaaatc	ccttc tgcttctgat caccatcatc tactcctact tggagtcgtt ggtgaa	agttt 120
ttcatt	tcctc agaggagaaa atctgtggct ggggagattg ttctcattac tggago	tggg 180
catgga	aatag gcaggcagac tacttatgaa titgcaaaac gacagagcat attggt	ttctg 240
tgggata	tatta ataagcgcgg tgtggaggaa actgcagctg agtgccgaaa actagg	gcgtc 300
actgcg	gcatg cgtatgtggt agactgcagc aacagagaag agatctatcg ctctct	aaat 360
caggtg	gaaga aagaagtggg tgatgtaaca atcgtggtga ataatgctgg gacagt	atat 420
ccagcc	cgatc ttctcagcac caaggatgaa gagattacca agacatttga ggtcaa	acatc 480
ctagga	acatt tttggatcac aaaagcactt cttccatcga tgatggagag aaatca	tggc 540
cacato	cgtca cagtggcttc agtgtgcggc cacgaaggga ttccttacct catcco	atat 600
tgttcca	cagca aatttgccgc tgttggcttt cacagaggtc tgacatcaga acttca	aggcc 660
ttgggaa	aaaaa ctggtatcaa aacctcatgt ctctgcccag tttttgtgaa tactgg	gttc 720
accaaa	aaatc caagcacaag attatgycct gtattggaga cagatgaagt cgtaag	jaagt 780
ctgata	agatg gaatacttac caataagaaa atgatttttg ttccatcgta tatcaa	itatc 840
tttctg	gagac tacagaatcc tgataatatt aaaaacattg gtttggcact agcago	agtc 900
aaacgaa	aacaa gattaattac ctgtcttcct gtttctcaag aatatttacg tagttt	ttca 960
tag		963
<210> <211> <212> <213>	305 PRT Homo sapiens	
<400>		
Met Asr	sn Ile Ile Leu Glu Ile Leu Leu Leu Leu Ile Thr Ile Ile T	'yr

Met Asn Ile Ile Leu Glu Ile Leu Leu Leu Leu Ile Thr Ile Ile Tyr 10 15

Ser Tyr Leu Glu Ser Leu Val Lys Phe Phe Ile Pro Gln Arg Arg Lys 20 25 30

PCT/EP2004/010697 120/223

342-10PCT.txt
Ser Val Ala Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile
35 40 45

Gly Arg Gln Thr Thr Tyr Glu Phe Ala Lys Arg Gln Ser Ile Leu Val 50 60

Leu Trp Asp Ile Asn Lys Arg Gly Val Glu Glu Thr Ala Ala Glu Cys 65 70 75

Arg Lys Leu Gly Val Thr Ala His Ala Tyr Val Val Asp Cys Ser Asn 90 95

Arg Glu Glu Ile Tyr Arg Ser Leu Asn Gln Val Lys Lys Glu Val Gly 100 105 110

Asp Val Thr Ile Val Val Asn Asn Ala Gly Thr Val Tyr Pro Ala Asp 115 125

Leu Leu Ser Thr Lys Asp Glu Glu Ile Thr Lys Thr Phe Glu Val Asn 130 140

Ile Leu Gly His Phe Trp Tle Thr Lys Ala Leu Leu Pro Ser Met Met 145 150 160

Glu Arg Asn His Gly His Ile Val Thr Val Ala Ser Val Cys Gly His 165 170

Glu Gly Ile Pro Tyr Leu Ile Pro Tyr Cys Ser Ser Lys Phe Ala Ala 180 185 190

val Gly Phe His Arg Gly Leu Thr Ser Glu Leu Gln Ala Leu Gly Lys 195 200 205

Thr Gly Ile Lys Thr Ser Cys Leu Cys Pro Val Phe Val Asn Thr Gly 210 220

Phe Thr Lys Asn Pro Ser Thr Arg Leu Trp Pro Val Leu Glu Thr Asp 225 235 240

Glu Val Val Arg Ser Leu Ile Asp Gly Ile Leu Thr Asn Lys Lys Met 245 255

Ile Phe Val Pro Ser Tyr Ile Asn Ile Phe Leu Arg Leu Gln Asn Pro 260 270

Asp Asn Ile Lys Asn Ile Gly Leu Ala Leu Ala Ala Val Lys Arg Thr 275 280 285

Arg Leu Ile Thr Cys Leu Pro Val Ser Gln Glu Tyr Leu Arg Ser Phe 290 295 300

121/223 342-10PCT.txt

342-10PCT.txt							
305							
.210.							
<210> <211>	163 21						
<212> <213>	DNA künstliche S e qu	ienz					
<220>							
<223>							
<pre><400> 163 ggtctgacat cagaacttca g 21</pre>							
<210> <211>	164 21						
<212> <213>	DNA künstliche Sequ	ie n z					
<220>							
<223>	Oligonukleotid						
<400>	164	~				21	
Lycaca	catc tctggct <mark>gg</mark> a	9				7.1.	
<21.0>	165						
<211> <212>	6014 DNA						
<213>	Homo sapiens						
<400> cacccg	165 gaag gagcggtgtg	agcggtccaa	ggagccccgc	aggtttgcct	cggagatgaa	60	
gcagtg	tgtc cggctgacgg	tccatcccaa	caatatctcc	gtctctcagt	acaacgtgct	120	
gctggt	cctg gagacgtaca	atgtcccgga	gctgtcagct	ggcgtcaact	gcacctttga	180	
ggacct	gtca gagatggatg	ggctggtcgt	gggcaatcag	atccagtgct	actcccctgc	240	
agccaa	ggag gtgccccgga	tcatcacaga	gaatggggac	caccatgtcg	tacagcttca	300	
gctcaa	atca aaggagaccg	gcatgacctt	cgccagcacc	agctttgtct	tctacaattg	360	
cagcgt	ccac aattcgtgcc	tgtcctgcgt	ggagagtcca	taccgctgcc	actggtgtaa	420	
ataccg	gcat gtctgcaccc	atgaccccaa	gacctgctcc	ttccaggaag	gccgagtgaa	480	
gctgcc	cgag gactgccccc	agctgctgcg	agtggacaag	atcctggtgc	ccgtggaggt	540	
gatcaa	gcct atcacgctga	aggccaagaa	cctcccccag	ccccagtctg	ggcagcgtgg	600	
ctacga	atgc atcctcaaca	ttcagggcag	cgagcagcga	gtgcccgccc	tgcgcttcaa	660	
cagctc	cagc gtacagtgcc	agaacacctc	ttattcctat	gaagggatgg	agatcaacaa	720	
cctgcc	cgtg gagttgacag	tcgtgtggaa	tgggcacttc	aacattgaca	acccagctca	780	
	agtt cacctctaca					840	
	ccca gacttcgcat					900	
	ccct gcccaggaga					960	
	ccgc atcacagaga					1020	
	· · ·						

342-10PCT.txt cactatccga ggggagaacc tgggcctgga atttcgcgac atcgcctccc atgtcaaggt 1080 tgctggcgtg gagtgcagcc ctttagtgga tggttacatc cctgcagaac agatcgtgtg 1140 1200 tgagatgggg gaggccaagc ccagccagca tgcaggcttc gtggagatct gcgtggctgt 1260 gtgtcggcct gaattcatgg cccggtcctc acagctctat tacttcatga cactgactct. 1320 ctcagatctg aagcccagcc gggggcccat gtccggaggg acccaagtga ccatcacagg caccaacctg aatgccggaa gcaacgtggt ggtgatgttt ggaaagcagc cctgtctctt 1380 ccacaggega tetecateet acattgtetg caacaccaca teeteagatg aggtgetaga 1440 1500 gatgaaggtg tcggtgcagg tggacagggc caagatccac caggacctgg tctttcagta 1560 tgtggaagac cccaccatcg tgcggattga gccagaatgg agcattgtca gtggaaacac 1620 acccatcgcc gtatggggga cccacctgga cctcatacag aacccccaga tccgtgccaa 1680 gcatggaggg aaggagcaca tcaatatctg tgaggttctg aacgctactg agatgacctg 1.740 traggegece gecetegete tgggteetga ceaccagtea gaeetgaeeg agaggeeega ggagtttggc ttcatcctgg acaacgtcca gtccctgctc atcctcaaca agaccaactt 1800 1860 cacctactat cccaacccgg tgtttgaggc ctttggtccc tcaggaatcc tggagctcaa 1920 gcctggcacg cccatcatcc taaagggcaa gaacctgatc ccgcctgtgg ctgggggcaa 1980 cgtgaagctg aactacactg tgctggttgg ggagaagccg tgcaccgtga ccgtgtcaga 2040 tgtccagctg ctctgcgagt cccccaacct catcggcagg cacaaagtga tggcccgtgt 2100 cggtggcatg gagtactccc cggggatggt gtacattgcc ccggacagcc cgctcagcct 2160 gcccgccatc gtcagcatcg cagtggctgg cggcctcctc atcattttca tcgtggccgt gctcattgcc tataaacgca agtcccgcga aagtgacctc acgctgaagc ggctgcagat 2220 2280 gcagatggac aacctggagt cccgtgtggc cctggagtgc aaggaaggta ctgagtggcc 2340 ccatgctgga ggccatgtgt gtgtgcgtgt gtgcatatgt gtgtgcatgc acatctgtgt 2400 atgtgtatgc atatgtttca tatacaaaca agcaggctgg gcagcagtgg gcagtgctgg aggctggcgg tgtgtgtgtc tgtgcgaatg tgtgtgtgtg catgtgtgtg tgtgcacatc 2460 tgtatgtata tatgtttcat atacaagcaa gcaggccggg cagcagtgag cagtgctgga 2520 2580 ggctgtatat gtgtctgtgt gcgtgcgcat ctgtgtatgt gtatatgttt catgtacaag 2640 caagcaggcc gggcagcagt gggcagtgct ggaggctctg tgtgtgcgtg tgcatgtgtg 2700 tgtatgtatg tgtatgtgtt ccatttacaa gcaagcaggc caggcaactg tgagcagtgc tggaggctgt gtgcgcgtgt gtgtgtgtat gtgtatgtgt ttcatttaca agcaagcagg 2760 2820 ccaggcagct gtgagcagtg ctggaggctg tgtgtgtgtg tgtgtgagca cgcacgtgtg tgagcacgca cgtgtatgtg tatgtgtgtc atttacaagc aagcaggcca ggcagctgtg 2880 2940 3000 gtatgtgttt catttacaag caagcaggcc aggcagctgt gggcagtgct ggaggctgtg 3060 tgtgtgtgca cgtgtgtgta tgcgtatgtg tttcatttac aagcaagcag gccaggcagc

342-10PCT.txt 3120 tgtgggcagt gctggaggct gtgtgtgtgt gtgtgtgtgt gtgtgtgtat atatgtgtat 3180 qtqtatqtgt ttcatttaca agcaagcagc ccaggcagct gtgggcagtg Ctggaggctg 3240 tgtgtgtgtg tgtgtgtgtg tgtgtatgtg tttcatttac aagtgtgtgt gtgtgtgtgt atgtgtatgt gtatgtgttt catttacaag caagcaggcc aggcagctgt gggcaatgct 3300 ggaggcrgtg catcctacct gcatacctgc aaagcctctc actctatagt ccctatgcct 3360 3420 gtgtcccaga ccacacccat acccaagcag gccccaccct ggcaacacca gagaggccaa ggtctccttg ccctctcctt gaaggtgtag tgattagaat ctcttttatg tgtggcaggc 3480 acacagettt qaatgttgga ggegettggt gaettaaagg aaagetgeag aetgataaaa 3540 3600 agccaactcc ctccttctgc tccctgtggg ccgagcaccc caactgggag ggggcagccg 3660 aggggagete ceaeceagga ttgtcacett caccecacta gagcacette accecactag 3720 aqcagcetcc atacctggan tcctggttga gtgggttttg cactctactc gaggggaggt 3780 ctgggggtgt cttaacatga cgcatttcag caatctccag ctttcttcct ctagcaggaa 3840 ggtaaggctg tagggctgat ctgtgattta gaaggaaggg tgtttcaaag cttgtattaa 3900 aaaaattaca aacaccacca taaagtgaaa tcagctgcac taaatccaag aaggaaattt aggagtcaga ctcttgtaac ccccaggata tcattttgtg actcatcctg ggaggatctg 3960 4020 agctggttct ttgctgtaga tttgtacatg gagtaaatcc ggccccatac ctggggctct cacttcacac cgattcccac cagggcagcc acggctcttt ttgatgggga agtggatcca 4080 4140 ttccatcccc tctctacatc cttcagctgt caacacagca tccgccttgt gggactgtta attactgcct tttattatat ttacgctgct taattttttt ctccgcaarg tactctttcc 4200 4260 tctaattagg tgtagtgatt agaatctctt ttatgtgtgg caggcacgca gctttgaatg 4320 ttggaggcgc ttggtgactt aaaggaaagc tgcagactga taaaaagcca acaccctcct 4380 tctgctccct gtgggccgag caccccaact gggagggagc agccgatggg agctcccacc 4440 caggattgtc agctgaggcc ccaggaggaa accttggctt cagactttag gggcgagcta 4500 tgctgtgcac gtaggaagaa ggggtcttac agcaaaggac ttgtcagact agccacagag 4560 gcactttgca gcttgcccag agccagccac tgaacgttta cagggctgca ctggcccaag 4620 ccaaggggtc tccttgaaga cttcacagca agccaggacg tcctctacac aaactcagaa 4680 gacacccage tgggcccttc atgggcctaa gcttctgata tataaacata cccgtgtatt 4740 tacaaacact cccacacagg cccacacacc ctcactgaca tacactcatg gactcacaca tacactcaca tgcacacatg catgcacact cacatacact cactcgtgca ctcacacata 4800 4860 catgcccaca catagtgaca tgctcacaca ctcatgcttt cacatacata cactcactga catacactca tgtgctcaca cgctcatgta ctcacattcg tacacacaca ctgacatata 4920 4980 cttacacact cacacttgca catgcataca catgcactca catgcacaca tgcatgcaca 5040 ctcatacact cacgcactca acttgcaggc gtgcacacac atgcccacat actcatgcac 5100 tcacattcac acatgcgtgc acacatagac gcatgcactc acacatgcat acacacagac

342-10PCT.txt atacacatgo actoacatto gtacttgoat acacaccaac acacatatgo acactoacac 5160 tgacaagcat acacacacac tcatgcactc acacccacgc aggcactcac attcacacac 5220 atacacacte attgacatac atteatteac atecatgeac teacatteac acatgeatae 5280 acactgacat teacacttge acatgeetae acacteactg acatacacae acacatgeag 5340 5400 teatacacae tecetgacat geteacacae tgteatacte acacaetece tgacatgete 5460 acacactgtc acactcacac actcacatac actccctgac atacacactc agacaagtgc 5520 ccatgcaccc acacctatgc tcatgcacat gttcccacac tctcttataa gcatacacac 5580 ccatgttcct cactcaggac acacatgaat gttccccagg gcatcatgtg acatcgcaga 5640 ggacagatgg tggaaaagac atgagcaacc taatgggaag aggaaaatgg gaaacaatgc 5700 attggaagag gaagaaaaa aataaataac caaaggtttt ggcaagtgca gtaccaggtg gagaagettg acttttctat ccttgatcat tttattccct cccaagaagt cagtcacagg 5760 acctggaagg ccagaaaggg tacatgtggg agacggtctg aggaagtacc tcggtcacta 5820 5880 caatattitt qcacatataa agggttgggg aggaaagaga cacaaacgta titaacacag atttgctgga tggaagctgc gtgtgtgaac gtgtgtatga gtgagtgcat tttgattttt 5940 6000 ttttttttt tttgcacagt taagagaaaa aatcaaacaa gcagaaaaaa aaaagaaaaa 5014 agacttatca cggt

<210> 166

<211> 817 <212> PRT

<213> Homo sapiens

<400> 166

Met Lys Gln Cys Val Arg Leu Thr Val His Pro Asn Asn Ile Ser Val 1 5 10 15

Ser Gln Tyr Asn Val Leu Leu Val Leu Glu Thr Tyr Asn Val Pro Glu 20 25 30

Leu Ser Ala Gly Val Asn Cys Thr Phe Glu Asp Leu Ser Glu Met Asp 35 40

Gly Leu Val Val Gly Asn Gln Ile Gln Cys Tyr Ser Pro Ala Ala Lys 50 55 60

Glu val Pro Arg Ile Ile Thr Glu Asn Gly Asp His His Val Val Gln 65 70 75

Leu Gln Leu Lys Ser Lys Glu Thr Gly Met Thr Phe Ala Ser Thr Ser 85 90 95

Phe Val Phe Tyr Asn Cys Ser Val His Asn Ser Cys Leu Ser Cys Val

Glu Ser Pro Tyr Arg Cys His Trp Cys Lys Tyr Arg His Val Cys Thr 115 120 125

His Asp Pro Lys Thr Cys Ser Phe Gln Glu Gly Arg Val Lys Leu Pro 130 140

Glu Asp Cys Pro Gln Leu Leu Arg Val Asp Lys Ile Leu Val Pro Val 145 150 160

Glu Val Ile Lys Pro Ile Thr Leu Lys Ala Lys Asn Leu Pro Gln Pro 165 170 175

Gln Ser Gly Gln Arg Gly Tyr Glu Cys Ile Leu Asn Ile Gln Gly Ser 180 185 190

Glu Gln Arg Val Pro Ala Leu Arg Phe Asn Ser Ser Ser Val Gln Cys 195 200 205

Gln Asn Thr Ser Tyr Ser Tyr Glu Gly Met Glu Ile Asn Asn Leu Pro 210 215 220

Val Glu Leu Thr Val Val Trp Asn Gly His Phe Asn Ile Asp Asn Pro 225 230 235 240

Ala Gln Asn Lys Val His Leu Tyr Lys Cys Gly Ala Met Arg Glu Ser 245 250 255

Cys Gly Leu Cys Leu Lys Ala Asp Pro Asp Phe Ala Cys Gly Trp Cys 265 270

Gln Gly Pro Gly Gln Cys Thr Leu Arg Gln His Cys Pro Ala Gln Glu 275 280 285

Ser Gln Trp Leu Glu Leu Ser Gly Ala Lys Ser Lys Cys Thr Asn Pro 290 295 300

Arg Ile Thr Glu Ile Ile Pro Val Thr Gly Pro Arg Glu Gly Gly Thr 305 310 315

Lys val Thr Ile Arg Gly Glu Asn Leu Gly Leu Glu Phe Arg Asp Ile 325 330 335

Ala Ser His Val Lys Val Ala Gly Val Glu Cys Ser Pro Leu Val Asp 340 345

Gly Tyr Ile Pro Ala Glu Gln Ile Val Cys Glu Met Gly Glu Ala Lys 355 360 365

Pro Ser Gln His Ala Gly Phe Val Glu Ile Cys Val Ala Val Cys Arg 370 380

342-10PCT.txt
Pro Glu Phe Met Ala Arg Ser Ser Gln Leu Tyr Tyr Phe Met Thr Leu
385 390 395 400

Thr Leu Ser Asp Leu Lys Pro Ser Arg Gly Pro Met Ser Gly Gly Thr 405 410 415

Gln Val Thr Ile Thr Gly Thr Asn Leu Asn Ala Gly Ser Asn Val Val 420 425 430

val Met Phe Gly Lys Gln Pro Cys Leu Phe His Arg Arg Ser Pro Ser 435 440 445

Tyr Ile Val Cys Asn Thr Thr Ser Ser Asp Glu Val Leu Glu Met Lys 450 460

Val Ser Val Gln Val Asp Arg Ala Lys Ile His Gln Asp Leu Val Phe 465 470 475

Gln Tyr Val Glu Asp Pro Thr Ile Val Arg Ile Glu Pro Glu Trp Ser 485 490 495

Ile Val Ser Gly Asn Thr Pro Ile Ala Val Trp Gly Thr His Leu Asp 500 505 510

Leu Ile Gln Asn Pro Gln Ile Arg Ala Lys His Gly Gly Lys Glu His 515 520 525

Ile Asn Ile Cys Glu Val Leu Asn Ala Thr Glu Met Thr Cys Gln Ala 530 540

Pro Ala Leu Ala Leu Gly Pro Asp His Gln Ser Asp Leu Thr Glu Arg 545 550 556

Pro Glu Glu Phe Gly Phe Ile Leu Asp Asn Val Gln Ser Leu Leu Ile 565 570 575

Leu Asn Lys Thr Asn Phe Thr Tyr Tyr Pro Asn Pro Val Phe Glu Ala 580 585 590

Phe Gly Pro Ser Gly Ile Leu Glu Leu Lys Pro Gly Thr Pro Ile Ile 595 600 605

Leu Lys Gly Lys Asn Leu Ile Pro Pro Val Ala Gly Gly Asn Val Lys
610 620

Leu Asn Tyr Thr Val Leu Val Gly Glu Lys Pro Cys Thr Val Thr Val 625 635 640

Ser Asp Val Gln Leu Leu Cys Glu Ser Pro Asn Leu Ile Gly Arg His 655

WO 2005/030250 PCT/EP2004/010697

127/223

342-10PCT.txt
Lys Val Met Ala Arg Val Gly Gly Met Glu Tyr Ser Pro Gly Met Val
660 665 670

Tyr Ile Ala Pro Asp Ser Pro Leu Ser Leu Pro Ala Ile Val Ser Ile 675 680 685

Ala Val Ala Gly Gly Leu Leu Ile Ile Phe Ile Val Ala Val Leu Ile 690 695 700

Ala Tyr Lys Arg Lys Ser Arg Glu Ser Asp Leu Thr Leu Lys Arg Leu 705 715 720

Gln Met Gln Met Asp Asn Leu Glu Ser Arg Val Ala Leu Glu Cys Lys 725 730 735

Glu Gly Thr Glu Trp Pro His Ala Gly Gly His Val Cys Val Arg Val 740 745 750

Cys Ile Cys Val Cys Met His Ile Cys Val Cys Val Cys Ile Cys Phe 755 760 765

Ile Tyr Lys Gln Ala Gly Trp Ala Ala Val Gly Ser Ala Gly Gly Trp
770 780

Arg Cys Val Cys Leu Cys Glu Cys Val Cys Val His Val Cys Val Cys 785 790 795 800

Thr Ser Val Cys Ile Tyr Val Ser Tyr Thr Ser Lys Gln Ala Gly Gln 805 810 815

Gln

<210> 167

<211> 21

<212> DNA

<213> künstliche Sequenz

<220>

223> Oligonukleotid

<400> 167

gcaccaaggt cactatccga g

21.

<210> 168

<211> 21

<212> DNA

<213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 168

tctgagagag tcagtgtcat g

21

342-10PCT.txt

<210> 169 2565 DNA Homo sapiens <400> 1.69 actgcgacgg taccggggcg gcggggaagg accgagaggc gggaggagca gcggctcagg 60 cqcctqcaaa ctqqtqqcct qaacqaqqta qaccatqact gtqqtttcag tggcgtcact 120 180 egetgggetg etetteetga ggtttteeta agecateeee tggeggaace geecceagta 240 tggactccaa ttgccttgac agtgttttta gtggctgttg caacattatg taaagaacaa qqaataacaq ttqtaqqaat ttqctqtqtq tatqaaqtqt ttattqccca ggggtatact 300 ttgccattac tatgtactac tgctggacag tttctccgtg gaaagggtag cattccattt 360 tctatgctgc agacactagt aaaactcatt gtcttgatgt tcagtacatt attacttgtt 420 480 gtgattagag tccaggttat tcaatcccaa cttccagtat tcaccaggtt tgataaccca gctgctgtaa gcccaactcc tacaaggcaa ctaactttta actacctcct tcctgtgaat 540 gcttggttgt tattaaatcc ttcagagctc tgctgtgatt ggaccatggg aacaatacca 600 cttatagagt cattactaga tattcgaaat ctggccacat ttactttctt ttgttttctg 660 gggatgttgg gagtattcag tatcagatac tctggtgatt cctccaagac tgttttaatg 720 780 ttgcctgcta aaactgacat gggtcaaaaa tttgagaaaa gtagtgaaga ttcaaagcag 840 tcaagaagag tggaaggaac tttccagaga aacctagaaa tcccaaacag tcttaaggat aaatttgaac ttggtgctca tgcttttatg acagtattaa tctgttcagc tttgggactt 900 tctctagcag tgcgttgcca ctctgttgga tttgttgttg ccgagcgagt attatatgtt 960 cccagcatgg ggttctgtat tttggtagcc catggatggc agaaaatatc aacaaaaagt 1020 1080 gtatttaaaa agctatcctg gatttgtctg tctatggtga tactcactca ttccttaaaa acattccaca gaaattggga ttgggagtct gaatatacat tgtttatgtc agccttgaag 1140 1200 gtaaataaaa ataatgccaa actttggaat aatgtgggtc atgctctgga aaatgaaaag 1260 aactttgaga gagctttgaa atacttctta caggctaccc atgttcagcc agatgatatt 1320 ggtgcccata tgaatgtagg aagaacttat aaaaatttaa atagaaccaa agaagctgaa gaatcttaca tgatggctaa atcactgatg cctcaaatta ttcctggtaa aaaatatgca 1380 gccagaattg cccctaacca cctaaatgtt tatatcaatc tggctaacct gatccgagca 1440 1500 aatgagtccc gactggaaga agcagatcag ctgtaccgtc aagcaataag catgaggccc gacttcaagc aggcttacat tagcagagga gaattgcttt taaaaaatgaa taaacctctt 1560 1620 aaagcaaagg aagcatatct taaagcacta gagctggaca gaaataatgc agatctttgg tacaacttgg caattgtaca tattgaactt aaagaaccaa atgaagccct aaaaaacttt 1680 aatcgtgctc tggaactaaa tccaaagcat aaactagcat tattcaactc tgctatagta 1740 1800 atgcaagaat caggtgaggt taaactcaga cctgaagcta gaaaacgact tctaagttat ataaatgaag agccactaga tgctaatggg tatttcaatt tgggaatgct tgccatggat 1860 342-10PCT.txt

gacaaaaagg	acaatgaagc	agagatttgg	atgaagaaag	ccataaagtt	acaagccgac	1920
ttccgaagtg	ctttgtttaa	tctggctctc	ctgtattccc	agactgcaaa	ggaattaaag	1980
gctttgccaa	ttttggagga	gttactcaga	tactaccctg	atcatatcaa	gggcctcatt	2040
ttaaaaggag	acattctgat	gaatcaaaag	aaagatatac	taggagcaaa	aaaatgtttt	2100
gaaaggattt	tggagatgga	tccaagcaat	gtgcaaggaa	aacacaatct	ttgtgttgtt	2160
tattttgaag	aaaaagactt	attaaaagct	gaaagatgcc	ttcttgaaac	actggcatta	2220
gcaccacatg	aagaatatat	tcagcgccat	ttgaatatag	tcagggataa	gatttcctca	2280
tctagtttta	tagagccaat	attcccaacc	agtaagattt	caagtgtgga	aggaaagaaa	2340
attccaactg	aaagtgtaaa	agaaattaga	ggtgaatcca	gacaaacaca	aatagtaaaa	2400
acaagtgata	ataaaagtca	gtctaaatcc	aacaaacaat	taggaaaaaa	tggagacgaa	2460
gagacacccc	acaaaacaac	aaaagacatc	aaagaaattg	agaagaaaag	agttgctgct	2520
ttaaaaagac	tagaagagat	tgaacgtatt	ttaaatggtg	aataa		2565

<210> 170

<211> 733

<213> Homo sapiens

<400> 170

Met Leu Gln Thr Leu Val Lys Leu Ile Val Leu Met Phe Ser Thr Leu 1 5 10 15

Leu Leu Val Val Ile Arg Val Gln Val Ile Gln Ser Gln Leu Pro Val 20 25 30

Phe Thr Arg Phe Asp Asn Pro Ala Ala Val Ser Pro Thr Pro Thr Arg 35 40 45

Gln Leu Thr Phe Asn Tyr Leu Leu Pro Val Asn Ala Trp Leu Leu Leu 50 55 60

Asn Pro Ser Glu Leu Cys Cys Asp Trp Thr Met Gly Thr Ile Pro Leu 65 70 75 80

The Glu Ser Leu Leu Asp Ile Arg Asn Leu Ala Thr Phe Thr Phe Phe 90° 95

Cys Phe Leu Gly Met Leu Gly Val Phe Ser Ile Arg Tyr Ser Gly Asp $100 \hspace{1cm} 105 \hspace{1cm} 110$

Ser Ser Lys Thr Val Leu Met Leu Pro Ala Lys Thr Asp Met Gly Gln 115 120 125

Lys Phe Glu Lys Ser Ser Glu Asp Ser Lys Gln Ser Arg Arg Val Glu 130 140

Gly Thr Phe Gln Arg Asn Leu Glu Ile Pro Asn Ser Leu Lys Asp Lys 145 150 155 160 Phe Glu Leu Gly Ala His Ala Phe Met Thr Val Leu Ile Cys Ser Ala 165 170 175 Leu Gly Leu Ser Leu Ala Val Arg Cys His Ser Val Gly Phe Val Val 180 185 190 Ala Glu Arg Val Leu Tyr Val Pro Ser Met Gly Phe Cys Ile Leu Val 195 200 205 Ala His Gly Trp Gln Lys Ile Ser Thr Lys Ser Val Phe Lys Lys Leu 210 220Ser Trp Ile Cys Leu Ser Met Val Ile Leu Thr His Ser Leu Lys Thr 225 230 235 240 Phe His Arg Asn Trp Asp Trp Glu Ser Glu Tyr Thr Leu Phe Met Ser 250 255 Ala Leu Lys Val Asn Lys Asn Asn Ala Lys Leu Trp Asn Asn Val Gly 260 270 His Ala Leu Glu Asn Glu Lys Asn Phe Glu Arg Ala Leu Lys Tyr Phe 275 280 285 Gln Ala Thr His Val Gln Pro Asp Asp Ile Gly Ala His Met Asn 290 295 300 Val Gly Arg Thr Tyr Lys Asn Leu Asn Arg Thr Lys Glu Ala Glu Glu 305 310 315 Ser Tyr Met Met Ala Lys Ser Leu Met Pro Gln Ile Ile Pro Gly Lys 325 330 335 Lys Tyr Ala Ala Arg Ile Ala Pro Asn His Leu Asn Val Tyr Ile Asn 340 345 350 Leu Ala Asn Leu Ile Arg Ala Asn Glu Ser Arg Leu Glu Glu Ala Asp 355 365Gln Leu Tyr Arg Gln Ala Ile Ser Met Arg Pro Asp Phe Lys Gln Ala 370 380 Tyr Ile Ser Arg Gly Glu Leu Leu Leu Lys Met Asn Lys Pro Leu Lys 385 390 395 Ala Lys Glu Ala Tyr Leu Lys Ala Leu Glu Leu Asp Arg Asn Asn Ala 405 410 415

342-10PCT.txt
Asp Leu Trp Tyr Asn Leu Ala Ile Val His Ile Glu Leu Lys Glu Pro
420 425 430 Asn Glu Ala Leu Lys Asn Phe Asn Arg Ala Leu Glu Leu Asn Pro Lys 435 440 445 His Lys Leu Ala Leu Phe Asn Ser Ala Ile Val Met Gln Glu Ser Gly
450 460 Glu Val Lys Leu Arg Pro Glu Ala Arg Lys Arg Leu Leu Ser Tyr Ile 465 475 480 Asn Glu Glu Pro Leu Asp Ala Asn Gly Tyr Phe Asn Leu Gly Met Leu 485 490 495 Ala Met Asp Asp Lys Lys Asp Asn Glu Ala Glu Ile Trp Met Lys Lys 500 505 510 Ala Ile Lys Leu Gln Ala Asp Phe Arg Ser Ala Leu Phe Asn Leu Ala 515 520 525 Leu Leu Tyr Ser Gln Thr Ala Lys Glu Leu Lys Ala Leu Pro Ile Leu 530 540 Glu Glu Leu Leu Arg Tyr Tyr Pro Asp His Ile Lys Gly Leu Ile Leu 545 550 560 Lys Gly Asp Ile Leu Met Asn Gln Lys Lys Asp Ile Leu Gly Ala Lys 565 570 575 Lys Cys Phe Glu Arg Ile Leu Glu Met Asp Pro Ser Asn Val Gln Gly 580 585 Lys His Asn Leu Cys Val Val Tyr Phe Glu Glu Lys Asp Leu Leu Lys 595 600 605 Ala Glu Arg Cys Leu Leu Glu Thr Leu Ala Leu Ala Pro His Glu Glu 610 620 Tyr Ile Gln Arg His Leu Asn Ile Val Arg Asp Lys Ile Ser Ser Ser 625 635 640 Ser Phe Ile Glu Pro Ile Phe Pro Thr Ser Lys Ile Ser Ser Val Glu 645 650 655 Gly Lys Lys Ile Pro Thr Glu Ser Val Lys Glu Ile Arg Gly Glu Ser 660 665 670 Arg Gln Thr Gln Ile Val Lys Thr Ser Asp Asn Lys Ser Gln Ser Lys 675 680

342-10PCT.txt Ser Asn Lys Gln Leu Gly Lys Asn Gly Asp Glu Glu Thr Pro His Lys 690 695 700 Thr Thr Lys Asp Ile Lys Glu Ile Glu Lys Lys Arg Val Ala Ala Leu 705 710 715 Lys Arg Leu Glu Glu Ile Glu Arg Ile Leu Asn Gly Glu 725 730 <210> 171 <211> <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 171 aggettacat tagcagagga g 21 <210> 172 <211> 21 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 172 21 cgttttctag cttcaggtct g <210> 173 <211> 3296 DNA <213> Homo sapiens <400> 173 tgaattcaaa acagttactc tgaatggtct ttgctaagaa caatttaatg attaagtaag 60 120 gtcagtgtcc ttggaagtcc aaactctagc cagatttccc tggtctacac ccctagggat 180 aaqqtaaatg tttaagcaca cagtgaactt cctgaggccc ccaaatctaa tggaactagc 240 tattgagggc taaaagagga tggttttttt agaaaactcg aagcaaatct ctcaggctgg 300 ggatattica aagactacta ctattattat taataacaat tgcaatatti gitgagtccc 360 taaatgaagc taaaactttg ttctaataaa tttaatcttt acagcaacct atgaggtaga 420 taatatigto attoccatga gggagotaag gatoagagaa ggtaagtoac tigtotaagg 480 tcacatagct agcatgttat gcaatcagga gtcaaacctg gtttgtctga atctgaagtc 540 catctgctct gtgcactttt ataccgtctg ctttttcctt tattcctaac cttcttccat 600 tctgattccc actgagtagt ggacaggaac cactgaagtt tgcctgacac catcaaccag gccctagtca cctggctttg cctttgccct gctgtgtgat cttagctccc tgcccaggcc 660

cacagecatg gecatggece agaaacteag ceaceteetg ecgagtetge ggcaggteat

ccaggagect cagetatete tgeagecaga geetgtette aeggtggate gagetgaggt

720 780 133/223 342-10PCT.txt

accaccact	- trationson	- catacatat	342-10РСТ	.txt		
					atcagacctg	840
					tctggaccca	900
					ccgtggactt	960
					tcacctacct	1020
ctccttcagt	gccttggct	acctcctgca	ggccaagtct	gagttctggc	attacagctt	1080
cttcttcctg	gactatgtgg	g gggtggccgt	gtaccagttt	ggcagtgcct	tggcacactt	1140
ctactatgct	atcgagcccg	cctggcatgo	: ccaggtgcag	gctgttttt	tgcccatggc	1200
tgcctttctc	gcctggcttt	cctgcattgg	ctcctgctat	aacaagtaca	tccagaaacc	1260
aggcctgctg	ggccgcacat	gccaggaggt	gccctccgtc	ctggcctacg	cactggacat	1320
tagtcctgtg	gtgcatcgta	tcttcgtgtc	ctccgacccc	accacggatg	atccagctct	1380
tetetaccae	aagtgccagg	tggtcttctt	tctgctggct	gctgccttct	tctctacctt	1440
catgcccgag	cgctggttcc	ctggcagctg	ccatgtcttc	gggcagggcc	accaactttt	1500
ccacatcttc	ttggtgctgt	gcacgctggc	tcagctggag	gctgtggcac	tggactatga	1560
ggcccgacgg	cccatctatg	agcctctgca	cacgcactgg	cctcacaact	tttctggcct	1620
cttcctgctc	acggtgggca	gcagcatcct	cactgcattc	ctcctgagcc	agctggtaca	1680
gcgcaaactt	gatcagaaga	ccaagtgaag	ggggatggca	tctggtaggg	agggaggtat	1740
agttggggga	caggggtctg	ggtttggctc	caggtgggaa	caaggcctgg	taaagttgtt	1800
tgtgtctggc	ccacagtgac	tctctgtgca	cgactcaact	gccaagggca	tcactggcca	1860
attcttggat	ttagggattg	gctaggagtt	gctggggtcc	actcctgggc	ctgccccagc	1920
tccttgccca	gggagaggga	aagagttaac	ggtgtgggcc	actccagctt	gcccttccac	1980
tgccactcac	tggggtgagg	ctgggggtca	gcttggtgag	gattggggct	tctagattgt	2040
ctaggcagga	ggtgaaactt	aggccagagt	cagatttgag	ctgagccagg	ggaggccttg	2100
gcaacctact	tctactcaga	tttcattgct	ggatgcggaa	ggggtaggcc	caaaatatat	2160
acaggatett	actgtccctt	gaagcccagc	cacaagtgtt	ggagctgcag	agagacccca	2220
aaggtagtag	attgtgccag	atacaaatgg	gtcccatcca	gtgcttcata	ctccttcagt	2280
cactatccca	gacagtgagc	cccagatctc	ctagctctgg	cttctgtgtc	ccacacggcc	2340
tgttcccagc	ttctctcctg	gttcccttgt	tacggattca	tttatccatt	cagtgtttcc	2400
tgggcctctg	ctcagaggca	ggtcaccact	gggccctgtg	gatcaatgca	agatgacaaa	2460
ggctttttt	tttttttt	tttttttt	ttttgaggag	tttcgctctt	gttggctagg	2520
ctggagtaaa	atggtgcgat	ctcggctcac	tgcacctccg	cctcccaggt	tcaagcgatt	2580
ttcctgcctc	agcctcccga	gtagctgggg	ttacaggcat	gcaccaccat	gcctggctaa	2640
ttttctgtat	ttttagtaga	gacggggttt	ctccatgttg	gtcaggctgg	tcttgaactc	2700
ctgacctcag	gtgatctgcc	cgtctcggcc	tcccaaagtg	ctgggattac	cggcatgagc	2760
cactgcgcct	ggccgacaaa	ggctttgata	tcagaatgaa	ctgtcaaggg	aggtgctgga	2820

342-10PCT.txt
gagggattaa cctgtgctgc ctgggaccct cagggtctta ggttggggag tgtgaatagg
agtttgcaga tggagaatag gaagggcatt ccaggcagag ggaaacctgt gcagagacca
agaggtgtgg aaggaaaagt ggggttgggg ctgggtggtc tggattatgg cctggatgca
ataaagtact gtgacagtag ccacctcttt gttttttgtc tcctgtttcc gggaggggcc
cctgctcaca ttactggagg ttttccggag gaagctgggg cccctgggag tggacacagg
gtgcagggag cagttcttgt tttatctttg ctgggggatg gggttggggc cttatatacc
atatctatat atacaaaatt tgtttggcaa gggagtgggc ggcagtttta ttactaaagt
tttataagta gttaaaataa tgtgtttaaa atatgataat cccactttat gatctg
<210> 174 <211> 346 <212> PRT <213> Homo sapiens <400> 174
Met Ala Met Ala Gln Lys Leu Ser His Leu Leu Pro Ser Leu Arg Gln
1 5 10 15
Val Ile Gln Glu Pro Gln Leu Ser Leu Gln Pro Glu Pro Val Phe Thr 20 25 30
Val Asp Arg Ala Glu Val Pro Pro Leu Phe Trp Lys Pro Tyr Ile Tyr 35 40 45
Ala Gly Tyr Arg Pro Leu His Gln Thr Trp Arg Phe Tyr Phe Arg Thr 50 60
Leu Phe Gln Gln His Asn Glu Ala Val Asn Val Trp Thr His Leu Leu 65 70 75 80
Ala Ala Leu Val Leu Leu Arg Leu Ala Leu Phe Val Glu Thr Val 85 90 95
Asp Phe Trp Gly Asp Pro His Ala Leu Pro Leu Phe Ile Ile Val Leu 100 105 110
Ala Ser Phe Thr Tyr Leu Ser Phe Ser Ala Leu Ala His Leu Leu Gln 115 120 125
Ala Lys Ser Glu Phe Trp His Tyr Ser Phe Phe Phe Leu Asp Tyr Val 130 135 140
Gly Val Ala Val Tyr Gln Phe Gly Ser Ala Leu Ala His Phe Tyr Tyr 145 150 160
Ala Ile Glu Pro Ala Trp His Ala Gln Val Gln Ala Val Phe Leu Pro 165 170 175

PCT/EP2004/010697 WO 2005/030250

342-10PCT.txt
Met Ala Ala Phe Leu Ala Trp Leu Ser Cys Ile Gly Ser Cys Tyr Asn
1.80 185 190

Lys Tyr Ile Gln Lys Pro Gly Leu Leu Gly Arg Thr Cys Gln Glu Val 195 200 205

Pro Ser Val Leu Ala Tyr Ala Leu Asp Ile Ser Pro Val Val His Arg 210 . 220

Ile Phe Val Ser Ser Asp Pro Thr Thr Asp Asp Pro Ala Leu Leu Tyr 225 230 235 240

His Lys Cys Gln Val Val Phe Phe Leu Leu Ala Ala Ala Phe Phe Ser 245 250 255

Thr Phe Met Pro Glu Arg Trp Phe Pro Gly Ser Cys His Val Phe Gly 260 265 270

Gln Gly His Gln Leu Phe His Ile Phe Leu Val Leu Cys Thr Leu Ala 275 280 285

Gln Leu Glu Ala Val Ala Leu Asp Tyr Glu Ala Arg Arg Pro Ile Tyr 290 295 300

Glu Pro Leu His Thr His Trp Pro His Asn Phe Ser Gly Leu Phe Leu 305 310 315

Leu Thr Val Gly Ser Ser Ile Leu Thr Ala Phe Leu Leu Ser Gln Leu 325 330

Val Gln Arg Lys Leu Asp Gln Lys Thr Lys 340 345

DNA

Homo sapiens

<400> 175

60 agtggcgggg aagcaaagca caggagcgct gtggtgccag cggccgggct agggacgact 120 ggcgggtttg cgctggaccc gaccccgagg gcgggcgcaa gggggcgggc gctgccgtac 180 tcaggccgcg gggccagggc gggccggccg gcggggcatt taaaccccgc tgacagccag 240 tecagecegg gacaegegee cageteetgta genteeteeg tegacteage ettaggtace 300 ggtcaggcaa aatgcggtcc tccctggctc cgggagtctg gttcttccgg gccttctcca 360 gggacagetg gtteegagge eteateetge tgetgaeett eetaatttae geetgetate 420 acatgtccag gaagcctatc agtatcgtca agagccgtct gcaccagaac tgctcggagc 480 agatcaaacc catcaatgat actcacagtc tcaatgacac catgtggtgc agctgggccc catttgacaa ggacaactat aaggagttac tagggggcgt ggacaacgcc ttcctcatcg 540

:

•						
cctatgccat	cggcatgttc	atcagtgggg	342-10PCT. tttttgggga		ctccgttact	600
acctctcagc	tggaatgctg	ctcagtggcc	ttttcacctc	gctctttggc	ctgggatatt	660
tctggaacat	ccacgagctc	tggtactttg	tggtcatcca	ggtctgtaat	ggactcgtcc	720
agaccacagg	ctggccctct	gtggtgacct	gtgttggcaa	ctggttcggg	aaggggaagc	780
gggggttcat	catgggcatc	tggaattccc	acacatctgt	gggcaacatc	ctgggctccc	840
tgatcgccgg	catctgggtg	aacgggcagt	ggggcctgtc	gttcatcgtg	cctggcatca	900
ttactgccgt	catgggcgtc	atcaccttcc	tcttcctcat	cgaacaccca	gaagatgtgg	960
actgcgcccc	tcctcagcac	cacggtgagc	cagctgagaa	ccaggacaac	cctgaggacc	1020
ctgggaacag	tccctgctct	atcagggaga	gcggccttga	gactgtggcc	aaatgctcca	1080
aggggccatg	cgaagagcct	gctgccatca	gcttctttgg	ggcgctccgg	atcccaggcg	1140
tggtcgagtt	ctctctgtgt	ctgctgtttg	ccaagctggt	cagttacacc	ttcctctact	1200
ggctgcccct	ctacatcgcc	aatgtggctc	actttagtgc	caaggaggct	ggggacctgt	1260
ctacactctt	cgatgttggt	ggcatcatag	gcggcatcgt	ggcagggctc	gtctctgact	1320
acaccaatgg	cagggccacc	acttgctgtg	tcatgctcat	cttggctgcc	cccatgatgt	1380
tcctgtacaa	ctacattggc	caggacggga	ttgccagctc	catagtgatg	ctgatcatct	1440
gtgggggcct	ggtcaatggc	ccatacgcgc	tcatcaccac	tgctgtctct	gctgatctgg	1500
ggactcacaa	gagcctgaag	ggcaacgcca	aagccctgtc	cacggtcacg	gccatcattg	1560
acggcaccgg	ctccataggt	gcggctctgg	ggcctctgct	ggctgggctc	atctcccca	1620
cgggctggaa	caatgtcttc	tacatgctca	tctctgccga	cgtcctagcc	tgcttgctcc	1680
tttgccggtt	agtatacaaa	gagatctt g g	cctggaaggt	gtccctgagc	agaggcagcg	1740
ggtataaaga	aatatgaggc	cccaattgga	acagcagcat	ggagggtccc	agttgggtcc	1800
ccaacgtgct	ccccatgggc	aagacaatgg	aaacttccac	aagcagggaa	ggcaaaccct	1860
ctttattgaa	cattagccag	cccagcccag	accccagggc	tgcctaagga	cacagagatt	1920
ctccatggga	aggg gactg c	caagcatgag	gaaatagaag	attcaggggc	ctgagctctg	1980
gaagctgcaa	gcaaaaggga	tgggactagg	gctgagttgt	gtctccattt	tgataaggaa	2040
aggatatgct	cagactcttg	cttgttcaga	ttccaagaca	gaaggcttca	caaggccaac	2100
gcctggaaaa	tgggcatctc	tccttcccat	gttaagcttt	aacctctgta	atctgcctgt	2160
atctataggt	gggcatctca	ctccaccaaa	ggagcccagc	ctctctttgt	ccctctatcc	2220
atgcaacagt	cttctctgtg	catttcccca	agctgggccc	tcttctactc	tccatttagg	2280
cctgttgata	actccattac	ccgcccatca	ctgctgttcc	tccagggcca	gcactcgggc	2340
gaggcagggg	agctgccttc	ggtacataat	ttgaaggggc	actccctctt	gggcacatgc	2400
cggccctgag	tgcctccctt	gcctcactct	gatcctggcc	ccataatgtc	ctcagtggaa	2460
ggtgatgggg	gccggtgctg	tggggagagt	agaaagaggg	gttggcatga	ctaaaaatac	2520
cagtatgtgt	attaagtatt	ttgagaatga	aatgccaagg	agtgcctact	atatgccagc	2580

342-10PCT.txt

tctaggaatg	gagtagacag	tggacacaag	aaggacttac	gccctgagca	caggtgccaa	2640
tggtgacaag	actggcaaga	cgtgagggca	tgaatggttc	attcaggcag	ctgctgcaga	2700
tgtggtcacc	tggtgccatc	tgctgctccc	ttttccactt	ttctatgtcc	tccttccacc	2760
ccaagtcccg	gatcactcgc	tgttttctgg	ctagetettg	gcatctccat	ctgagcctaa	2820
agttgcccac	tggcaccaat	agattctgtt	tgacctgc	,		2858

<210> 176 <211> 501 <212> PRT

<213> Homo sapiens

<400> 176

Met Arg Ser Ser Leu Ala Pro Gly Val Trp Phe Phe Arg Ala Phe Ser 1 10 15

Arg Asp Ser Trp Phe Arg Gly Leu Ile Leu Leu Leu Thr Phe Leu Ile 20 30

Tyr Ala Cys Tyr His Met Ser Arg Lys Pro Ile Ser Ile Val Lys Ser 35 40 45

Arg Leu His Gln Asn Cys Ser Glu Gln Ile Lys Pro Ile Asn Asp Thr 50 60

His Ser Leu Asn Asp Thr Met Trp Cys Ser Trp Ala Pro Phe Asp Lys 65 70 75 80

Asp Asn Tyr Lys Glu Leu Leu Gly Gly Val Asp Asn Ala Phe Leu Ile 85 90 95

Ala Tyr Ala Ile Gly Met Phe Ile Ser Gly Val Phe Gly Glu Arg Leu 100 105 110

Pro Leu Arg Tyr Tyr Leu Ser Ala Gly Met Leu Leu Ser Gly Leu Phe 115 120 125

Thr Ser Leu Phe Gly Leu Gly Tyr Phe Trp Asn Ile His Glu Leu Trp 130 140

Tyr Phe Val Val Ile Gln Val Cys Asn Gly Leu Val Gln Thr Thr Gly 145 150 155 160

Trp Pro Ser Val Val Thr Cys Val Gly Asn Trp Phe Gly Lys Gly Lys 165 170

Arg Gly Phe Ile Met Gly Ile Trp Asn Ser His Thr Ser Val Gly Asn 180 185 190

Ile Leu Gly Ser Leu Ile Ala Gly Ile Trp Val Asn Gly Gln Trp Gly 195 200 205

342-10PCT.txt

Leu Ser Phe Ile Val Pro Gly Ile Ile Thr Ala Val Met Gly Val Ile 210 215 220 Thr Phe Leu Phe Leu Ile Glu His Pro Glu Asp Val Asp Cys Ala Pro 225 235 240 Pro Gin His His Gly Glu Pro Ala Glu Asn Gin Asp Asn Pro Glu Asp 245 250 255 Pro Gly Asn Ser Pro Cys Ser Ile Arg Glu Ser Gly Leu Glu Thr Val 260 265 270 Ala Lys Cys Ser Lys Gly Pro Cys Glu Glu Pro Ala Ala Ile Ser Phe 275 280 285 Phe Gly Ala Leu Arg Ile Pro Gly Val Val Glu Phe Ser Leu Cys Leu 290 300 Leu Phe Ala Lys Leu Val Ser Tyr Thr Phe Leu Tyr Trp Leu Pro Leu 305 310 315 Tyr Ile Ala Asn Val Ala His Phe Ser Ala Lys Glu Ala Gly Asp Leu 325 330 335 Ser Thr Leu Phe Asp Val Gly Gly Ile Ile Gly Gly Ile Val Ala Gly 340 350 Leu Val Ser Asp Tyr Thr Asn Gly Arg Ala Thr Thr Cys Cys Val Met 355 360 365 Leu Ile Leu Ala Ala Pro Met Met Phe Leu Tyr Asn Tyr Ile Gly Gln 370 380 Asp Gly Ile Ala Ser Ser Ile Val Met Leu Ile Ile Cys Gly Gly Leu 385 390 400 Val Asn Gly Pro Tyr Ala Leu Ile Thr Thr Ala Val Ser Ala Asp Leu 405 410 415 Gly Thr His Lys Ser Leu Lys Gly Asn Ala Lys Ala Leu Ser Thr Val 420 425 430 , Thr Ala Ile Ile Asp Gly Thr Gly Ser Ile Gly Ala Ala Leu Gly Pro
435 440 445 Leu Leu Ala Gly Leu Ile Ser Pro Thr Gly Trp Asn Asn Val Phe Tyr 450 460 Met Leu Ile Ser Ala Asp Val Leu Ala Cys Leu Leu Leu Cys Arg Leu 465 470 475 480

342-10PCT.txt

val Tyr Lys Glu Ile Leu Ala Trp Lys Val Ser Leu Ser Arg Gly Ser Gly Tyr Lys Glu Ile 177 <210> <211> 21 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> tctacatcgc caatgtggct c 21 <210> 178 21 <211> künstliche Sequenz <220> Oligonukleotid <223> <400> 178 21 cagatgatca gcatcactat g <210> 179 4892 <211> <212> DNA <213> Homo sapiens <400> 179 atagaaacct taaaagggca acacaaagtt ttgaatagaa gaggccaagc agcctcgccc 60 120 agaagctgat gtttgtgaat gtactgggcc ttctaaaagcg gcgcttcaca caccttttca 180 cttcttggca caggtaggaa aggatgatat tacaagggtc aaaatggggg taaacagaag aggctgctcc tgcagaaggc ttcctgcaga agcccttgca cttggagggc tgggaagacc 240 300 catgotgtat otgcatecot greattegtt teaeggeate cagttgggaa getetgetta aagctttgtc tggcacgttt tcttagctac atttttccac tccagctgag actgcctcac 360 tgagttgtca acacttggtc ttcttcagca gtgaggaacc aacaagacag gaggctgggt 420 480 caatactcaa cttggcaaac tccaggaaat ggtgcttaaa acgtttggct tcttgaatgg aattcatggt actgctccca gcctgcacct gggttctcca acttgagaca atttctcccc 540 600 gcatccccc accettecet ggettteact cactageaag tgggetgett etaetttett tctcacattc atttcttagg tccattctca gagcggttag gattactgtt taattagcct 660 cataatcata totatgatgg caaaatcaag aaacaattta aacatgatto ttaaaagtaa 720 ggagataaat accagagaca tagaaggtga aagaatttgc ctctaggaag caggaattta 780 840

			140/220			
cttttctttt	ttttttattt	ttaagataga	342-10PCT. gtctcactct		ctggagtgca	900
gtggcatgat	cttggctcac	tgcaacctct	gcctccttcg	ttcaagcgat	tctcccacct	960
cagcctccct	agtaactggg	attacaagtg	actgccacta	tgcccagcta	attttgtatt	1020
tttagtagag	acgaggtttc	accatgttgg	ccaggctggt	ctcgaactcc	tgacctcagg	1080
ggatccgccc	agctcagcct	cccaaagtgc	taggattcca	ggcgtgagcc	actgcacctg	1140
gcggaatcta	gtccattttc	cactttgcta	ccacacatct	gcagggtttc	ttgcttgctt	1200
aaaagctttc	attggctccc	aatctctgat	aatatcaaga	gcaagttcct	gaacaactca	1260
ttcaagaccc	atcacccctc	gcatctgtca	actctgcccc	ttgaatatta	cacctcattt	1320
tactacacca	catctagttc	cctgaatatg	caaacagatt	tcatacattt	gcacctttat	1380
acatgttatt	gcttttgcct	gggagagtat	tctcttgctg	ctataataat	agctaatgac	1440
actgtgctaa	gtactttctg	tgatttataa	ctgttaattc	ttacatcaac	cctatggtaa	1500
atgttactgt	tatctccatt	ttataaacaa	gaaaactaag	acttaaagag	tttaagtgat	1560
ttgcagaaat	atgtagtatt	tggtgaggct	aaatttgaac	ccagcaatct	gactccagga	1620
ctaacataat	attacctatt	catccttcta	aaatgtttcc	cagacactaa	atttgaacag	1680
gattaaaaga	tttaaatgtt	tttaagtctt	aaaagggcaa	ggagaaaata	caagtgaatt	1740
gcttttaatc	tcaaactaag	catgaaacaa	cggctgaaat	tacaaaggaa	aagtgacaga	1800
tctgactgtt	gaacttttaa	cttcttttat	ссаааааааа	accccataga	ataaaattta	1860
aaaacaagta	aaaattacaa	aaaatttgca	atatacatga	cagataagca	taacattaaa	1920
gagaacttag	aaagaaaaaa	tagcctacta	aaaatgagca	aaatgcaaat	tcgtcatcat	1980
gagagaaaaa	tgtaaatggc	caaacatttt	taagagaagt	aaaaacttaa	aacgataatg	2040
caccatcaaa	ttgagaataa	aataatactc	agagctagta	atttgggcca	gtgacccttg	2100
gagtaggatg	tatagcaact	aaagaaactc	atacattact	gagaagggtg	taaattggct	2160
caacgattct	ggagagcaat	ttgacagaat	gtagtgaaag	cgtcaaaaat	gttcacacac	2220
tttgacttaa	aaattacatt	cctggaaatt	tataatacaa	acattttcta	taaaaggtca	2280
gatggcaaat	actttgggct	ttgaaggcca	catatgtctc	tgtggctttt	cttttgtgtg	2340
tgtgtttaaa	aaaaaaaaaa	actgccccc	ctcccccac	ccttgttagg	ccattcttgc	2400
attactataa	agaaatacct	gaggctggtt	aatttatatg	aaaagaggtt	taactggctc	2460
atggttctgc	aggctgtaca	ggaagcataa	tgccatctgc	ttctgggggg	gcctcaggaa	2520
gcttccaatc	atgctggaag	gtgatgggga	gcagatgtct	cacatggtga	gaacgggagc	2580
aagaaggagt	tgggggggag	gagccacata	aacaatgaga	tccctgtgag	ctcagagtga	2640
gagcacactt	atcaccaagg	agatggccca	agctattcat	gagggatccg	cccctatgat	2700
ccaaacacct	cccaccaggc	tccacctcca	acactggaga	ttatatctca	acatgaaatt	2760
tgaatgggac	atccaaactg	tatcaccccc	aaaatgtaaa	gtctcatcac	agtacatttg	2820
gtaatggcca	aaagagaaac	caaactaaat	gtccgagaat	aaaaattagt	tacaactaga	2880

tacacggagg caagttttt	ı aaaagtgtta	342-10PCT. aaattttaaa		atggtatcta	2940
ttggataaaa tagtattta	gatttattaa	gtggaaaata	cagtttacaa	aataatatgg	3000
tgtgatcccg aaaacaaca	aatcatgtgt	gtataaatgc	atagaaaaaa	atctggaaag	3060
atataaacag atatttatag	tggtctaggg	caggggatgg	aattgtagat	atttgctttt	3120
tgttttatgt atatgtttc	cataatgaaa	tgtattgttt	atataattaa	aaaatatacg	3180
aaactttgct tgggggacaa	caaagcacct	catttgttaa	tttgggaaaa	tcttttatta	3240
caatctctgt aaggagttg	ttgctctctc	ttctgtactc	cctgattaca	taatgctctt	3300
ctgagcactt ttatttaata	gcagaatggt	tgatatcatt	atttagttaa	ggtttcctct	3360
attatcgaac atctgagtte	ccagtacact	agtctcccct	tatctgtggt	tttgcttcca	3420
aggtttcagt tatgatcaa	caagatctga	aaatattaaa	tgaaaaattc	cagaaataaa	3480
acaattcata agttttaca	tgtgcaccat	cctgctgtat	cctgtccagg	ccatgggtca	3540
tccctcttgt tcagtgtgtc	cacactgtag	atgctcccct	gtctgttagt	cactttgtag	3600
ttggcttggt tgtcagacct	actgtcaagg	tattgcagta	cttatgtcca	agtaacactt	3660
atttaactta ataatggcc	ctaaacacaa	gagtagtaat	gttggcaatt	tgggtatgcc	3720
aaagaaaagt cataaagtg	ttcttttaag	tgaaaaccca	aaagtttttg	aattagtaag	3780
gaaagaaaaa aatccatat	ctgaggtcgc	taagatctat	gataagaatg	aatcttctac	3840
ctgtgaaatt gtgaaggaaa	ı aagaaattca	cgttagtttt	gctgttgtac	ctcaaactgc	3900
aaaagttatg gccacagtg	ataactttta	ttaaaatata	tttgtataac	tgttcttatt	3960
ttacttttct gttttattt	: tagagacagg	gcttcattct	gtcacccagg	ctggagtgca	4020
aaggtgcaat catagctca	tgcagcctca	aactctttgg	ctcaagtgat	cttcctgcct	4080
cagcctccca agtagctggg	actgcaggtg	tgcatcacta	cgcccagcta	atttttaat	4140
tttttgtgca gatggagtc	gactctgttg	cccaggaact	cctggcctca	agtaatcctc	4200
ccgcctcggt tttccaaaga	gctgggatta	caggcatgag	ccactgtgcc	tggctattct	4260
attttattag cagtaattg	: tgttaatctc	ttattgtgcc	ttatttatat	taataactta	4320
atcatagata gatatgtata	ı ggaaaaaaca	ttgtatataa	agggttcagt	actatctgca	4380
gtttcagata tccatgaggg	j gtcttgaaac	gtatccccca	caggtaaggg	gggacttgta	4440
tttctctgtt ataaatatg	tggttattct	ccacttgttg	tgttttagtg	ccatcttctg	4500
ctcttctctg ctagactctg	j tgcctcagaa	ggtggaattt	ttcataaact	attccagctg	4560
gggtctcatg ccagttggt	ttgaccaatg	ggtaacacca	tcagtagatt	ggaggatgga	4620
aaaggaaaaa aggttagga	: atgtttcacc	acctcttttc	ctgcttctgg	ctgggttctg	4680
atggtggctt tgtcccttga	aggctcctcc	tgcaaggcag	ccctgctcca	ctgtgccagc	4740
cttcactggg ctctactaa	gtgattccct	ccccttattt	cttcaggcct	agctgtgcta	4800
actcctaggt acctccatg	ttcttgtttc	ctttcatcca	accctaaccc	taacttctat	4860
aaatagttcc cgcaataaa	; tctcttcagc	tg			4892

342-10PCT.txt

```
<210>
       180
       95
<211>
<212>
       PRT
      Homo sapiens
<400>
       180
Met Arg Gly Leu Glu Thr Tyr Pro Pro Gln Val Arg Gly Asp Leu Tyr 1 5 10 15
Phe Ser Val Ile Asn Met Leu Val Ile Leu His Leu Leu Cys Phe Ser 20 25 30
Ala Ile Phe Cys Ser Ser Leu Leu Asp Ser Val Pro Gln Lys Val Glu 35
Phe Phe Ile Asn Tyr Ser Ser Trp Gly Leu Met Pro Val Gly Phe Asp 50 55
Gln Trp Val Thr Pro Ser Val Asp Trp Arg Met Glu Lys Glu Lys Arg 65 70 75 80
Leu Gly Tyr Val Ser Pro Pro Leu Phe Leu Leu Ala Gly Phe 85 90 95
<210>
       181
      15
<211>
<212>
<213> künstliche Sequenz
<220>
      Oligonukleotid
<223>
<400> 181
gctcaacgat tctgg
                                                                           15
<210>
       182
<211> 15
<212> DNA
<213> künstliche Sequenz
<220>
<223> Oligonukleotid
<400> 182
atgtggcctt caaag
                                                                          • 15
<210> 183
<211>
<212>
       501
       DNA
<213>
      Homo sapiens
<400> 183
atgaacagaa gcatctatga ccgacagttg ctctgtgtcc ttctagcctc gcaggagttt
                                                                           60
ccagctcatg agggcagagg agatgaagag aggccgatcg acgtgagggt tgtgcaggcg
                                                                          120
                                                                          180
gcccctctga ggtgtgactc cactcctcct gagggtgctg taggagacat ctgcaaaaaa
```

240

300

360

420 480 501

143/223

gaagatgctg	acastatu(c atcaac	ctca		2-10P			cect	ga a	atqq	ctcac
	=										
ttcctgagga											
gaaggagcat											
gtcccattag	tacaggtat	c tccgaa	tgct	cca	ctct	tcc	atta	catt	ga g	tcaa	ttgct
catgaccttg	ggcctccaa	it tggggc	tatt	ttc	ctgc	tat	ccat	ctcc	tg g	tcta	tagta
aaagagccaa	tgagcagat	ta a									
<210> 184 <211> 166 <212> PRT <213> Homo	sapiens										
<400> 184											•
Met Asn Arg 1	ser ile 5	Tyr Asp	Arg	Gln	Leu 10	Leu	Cys	٧a٦	Leu	Leu 15	Ala
ser Gln Glu	Phe Pro 20	Ala His	Glu	Gly 25	Arg	G] y	Asp	Glu	G] u 30	Arg	Pro
Ile Asp Va	Arg Val	val Gln	A7a 40	Ala	Pro	Leu	Arg	Cys 45	Asp	Ser	Thr
Pro Pro Gli 50	ı Gly Ala	val Gly 55	Asp	I₹e	Cys	Lys	Lys 60	Glu	Asp	Ala	Gly
Asn Met Pro 65	Ser Thr	ser Glu 70	Gly	Ser	Ile	ту г 75	Pro	Glu	Met	Ala	หาร 80
Phe Leu Ar	g Asn Lys 85	Leu Ala	Gly	Ser	ser 90	Val	Arg	Lys	Pro	Asp 95	Ser
Gly Phe Le	Trp Glu 100	Gly Ala	Leu	Arg 105	Ala	Trp	Leu	Phe	Leu 110	Ile	Leu
Ile Val Le 11		Ile Met	Trp 120	Val	Pro	Leu	val	Gln 125	∨al	Ser	Pro
Asn Ala Pr 130	o Leu Phe	His Tyr 135	Ile	Glu	Ser	Ile	А]а 140	His	Asp	Leu	Gly
Pro Pro Il 145	e Gly Ala	Ile Phe 150	Leu	Leu	Ser	I]e 155	Ser	Trp	Ser	Ile	val 160
Lys Glu Pr	o Met Ser 165										

<210> 185 <211> 20 <212> DNA <213> künstliche Sequenz

WO 2005/030250 PCT/EP2004/010697

144/223 342-10PCT.txt

			242-10PC1.	LXL		
<220> <223> Oli	gonukleotid					
<400> 185 ctgagggtgc	tgtaggagac					20
<210> 186 <211> 15 <212> DNA <213> kün		uenz				
<220>· <223> Oli	gonukleotid				•	
<400> 186 ggcccgtaat						15
<210> 187 <211> 397 <212> DNA <213> Hom	8					
<400> 187	cgagtttgga	gcaagtaact	gtcagtgagg	ttgcagttgg	tctgggctgt	60
	gcgaaatagc					120
ctgaggctcc	ggatgattca	gatggactgt	gaaaaacaac	aagatggatg	atcatatgga	180
gattgcttct	aacataaatc	tgcataaaaa	tttttctgaa	acatggctgg	aatatttaag	240
gagtttttt	tcagtactga	ggacctccct	gaagtcattc	taacattgtc	tttgatcagc	300
tccattggag	catttttgaa	ccggcacttg	gaagactttc	caattcctgt	ccctgtgata	360
ttatttttac	ttggatgcag	ttttgaagta	ttaagcttta	catcttcaca	ggtccaaaga	420
tacgcaaacg	ccatacaatg	gatgagtcca	gacttatttt	ttcgtatatt	tacaccagta	480
gttttcttta	ctactgcatt	tgacatggat	acgtacatgc	ttcaaaagtt	attttggcag	540
atacttttaa	tttcaattcc	cggctttttg	gttaattata	tcttagttct	ttggcatctg	600
gcatctgtaa	atcaattact	tttgaagcct	acccaatggt	tattattttc	agctatcctt	660
gtgagttcag	atcccatgct	aaccgcagct	gctataagag	accttgggct	ttctagaagc	720
ctcatcagtt	taattaatgg	agaaagtctg	atgacctctg	ttatatcatt	aattacattt	780
actagtatta	tggattttga	ccaaagacta	caaagtaaaa	gaaaccatac	cttagctgaa	840
gagatcgtgg	gtggaatttg	ttcatatatt	atagcaagtt	tcttgtttgg	aattctaagt	900
tcaaaactga	ttcaattttg	gatgtcaact	gtttttggtg	atgatgtcaa	tcatataagt	960
ctcatctttt	caattctgta	tctcatcttt	tatatttgtg	agttagttgg	aatgtcagga	1020
atatttacto	tggccattgt	gggacttctt	ttaaattcta	caagttttaa	agcagcaatt	1080
gaagaaacac	ttcttcttga	atttctgacc	cttcttttaa	taagccctgt	tttgtctcga	1140
gttggtcatg	agttcagttg	gcgctggata	ttcataatgg	tctgtagtga	aatgaagggg	1200
atgcctaata	taaacatggc	ccttctgctt	gcctactctg	atctttattt	tggatctgac	1260

aaagaaaaat	ctcaaatatt	atttcatgga	342-10PCT. gtgttagtat		ccttgttgtc	1320
aatagattta	ttttgccagt	ggcagttact	atactaggtc	ttcgtgatgc	cacatcaaca	1380
aaatataaat	cggtttgttg	cacatttcaa	ca ctttcaag	agctaaccaa	gtctgcagcc	1440
tctgccctta	aatttgacaa	agatcttgct	aatgctgatt	ggaacatgat	tgagaaagca	1500
attacacttg	aaaacccata	catgttgaac	gaagaagaaa	caacagaaca	tcagaaggtg	1560
aaatgtccac	actgtaacaa	ggaaatagat	gagatcttta	acactgaagc	aatggagctg	1620
gccaacaggc	gtctcttgtc	agcacaaata	gcaagctacc	agagacaata	caggaatgag	1680
attctgtccc	agagtgctgt	ccaggtgttg	gttggtgcag	cagaaagttt	tggtgagaag	1740
aagggaaaat	gtatgagtct	tgatacaata	aagaattatt	ctgaaagcca	aaaaacagtt	1800
acctttgcta	gaaaactact	acttaattgg	gtgtataata	ccagaaagga	aaaagagggc	1860
ccatcaaaat	acttcttttt	tcgtatatgc	catacaatag	tatttactga	ggaatttgaa	1920
catgttggat	accttgtgat	attaatgaat	atatttccct	ttataatctc	ttggatatcc	1980
cagttaaatg	taatctacca	cagcgaatta	aaacacacta	actactgttt	tcttacactt	2040
tatattctag	aggcactact	taagatagca	gcaatgagga	aggacttttt	ttcacatgcc	2100
tggaacatat	tcgagttagc	aattacatta	attggcatct	tacatgtaat	acttattgaa	2160
ataga c acca	ttaagtatat	ttttaatgag	actgaagtaa	tagtctttat	aaaagttgtt	2220
caattttttc	gtatactacg	cattttcaag	ctcatagcac	caaagttgct	gcaaataata	2280
gataaaagaa	tgagtcatca	gaagaccttt	tggtatggaa	tactaaaagg	ctatgtccaa	2340
ggcgaagcag	acataatgac	cataattgat	cagattacaa	gttctaaaca	gattaaacag	2400
atgttattaa	agcaagtgat	aaggaatatg	gaacatgcta	taaaagagct	aggctactta	2460
gagtatgatc	acccagaaat	tgctgtcact	gtgaaaacaa	aggaagaaat	taatgttatg	2520
ctcaatatgg	ctacagaaat	tcttaaggct	tttggcttaa	aaggaattat	tagtaaaact	2580
gaaggtgctg	gaattaataa	gttaatcatg	gccaaaaaga	aagaggtgct	tgattctcaa	2640
tctattatca	ggcctcttac	tgttgaagaa	gttctatatc	atattccgtg	gctagataaa	2700
aacaaagatt	atataaactt	cattcaggaa	aaagccaaag	ttgtaacatt	tgattgtgga	2760
aatgatatat	ttgaagaagg	tgatgagccc	aaaggaatct	atatcattat	ttcaggcatg	2820
gtaaagcttg	aaaaatcaaa	gccaggttta	gggattgatc	aaatggtgga	gtcaaaggag	2880
aaagattttc	cgataattga	cacagactat	atgctcagtg	gagaaataat	aggagagata	2940
aactgcttaa	ctaatgaacc	tatgaaatat	tctgccacct	gcaaaactgt	agtggagaca	3000
tgttttattc	ccaaaactca	cttgtatgat	gcttttgagc	aatgctctcc	tctcattaaa	3060
caaaaaatgt	ggctaaaact	tggactcgct	attacagcca	gaaaaatcag	agaacactta	3120
tcttatgagg	attggaacta	caatatgcaa	ctaaagctct	ctaatattta	tgtagtagat	3180
ataccaatga	gtaccaaaac	tgatatttat	gatgaaaatc	taatctatgt	tatcctcata	3240
catggagctg	tagaagattg	tctgttacga	aaaacttata	gagcaccttt	cttaattcct	3300

342-10PCT.txt ataacatgcc atcagataca aagtattgaa gatttcacaa aagtagtgat tattcaaact. 3360 3420 ccgattaaca tgaaaacatt cagaaggaat attagaaagt ttgttcctaa acataaaagt tatcttacac caggattaat aggttcagtt ggaacattgg aagaaggcat tcaagaagaa 3480 agaaatgtta aggaggatgg agcacacagt gccgccactg ccaggagtcc ccagccttgc 3540 tccctgctgg ggacaaagtt caactgtaag gagtccccta gaataaacct aaggaaagtc 3600 aggaaagagt aagactgtta agaagaccga agcatgtatt aatgctgtgg ctatgagagg 3660 3720 cctcctgctg cagaaacaca cttccctaca tcaagaagga gtaacttcag gttggatcct 3780 gtgtggatga tcttggtgct aagcagaaaa gaaatttgga ccttgaaacc agcagttcaa 3840 catatatact ttttgcaaaa tttccttgat ttaaaatatt tgttatttta aatatacaaa 3900 acattttaga aaatcttaga gtaaatttta gtcttaaagc cagaaaataa gtttatagcc 3960 atctagatat tttgcatatt gctcttacag caataatggt ttggttcact ttatgaaaaa 3978 taaaatgtat taaaatat <210> 188 1129 PRT Homo sapiens <400> 188 met Ala Gly Ile Phe Lys Glu Phe Phe Phe Ser Thr Glu Asp Leu Pro 1 5 10 15 Glu Val Ile Leu Thr Leu Ser Leu Ile Ser Ser Ile Gly Ala Phe Leu 20 25 30 Asn Arg His Leu Glu Asp Phe Pro Ile Pro Val Pro Val Ile Leu Phe 35 40 45 Leu Leu Gly Cys Ser Phe Glu Val Leu Ser Phe Thr Ser Ser Gln Val 50 60 Gln Arg Tyr Ala Asn Ala Ile Gln Trp Met Ser Pro Asp Leu Phe Phe 65 70 80 Arg Ile Phe Thr Pro Val Val Phe Phe Thr Thr Ala Phe Asp Met Asp 90 95

Thr Tyr Met Leu Gln Lys Leu Phe Trp Gln Ile Leu Leu Ile Ser Ile 100 105 110

Pro Gly Phe Leu Val Asn Tyr Ile Leu Val Leu Trp His Leu Ala Ser 115 120 125

Val Asn Gln Leu Leu Lys Pro Thr Gln Trp Leu Leu Phe Ser Ala 130 135 140 WO 2005/030250 PCT/EP2004/010697

Ile Leu Val Ser Ser Asp Pro Met Leu Thr Ala Ala Ala Ile Arg Asp 145 150 155 160

Leu Gly Leu Ser Arg Ser Leu Ile Ser Leu Ile Asn Gly Glu Ser Leu 165 170 175

Asp Gln Arg Leu Gln Ser Lys Arg Asn His Thr Leu Ala Glu Glu Ile 195 200 205

Val Gly Gly Ile Cys Ser Tyr Ile Ile Ala Ser Phe Leu Phe Gly Ile 210 220

Leu Ser Ser Lys Leu Ile Gln Phe Trp Met Ser Thr Val Phe Gly Asp 225 230 235 240

Asp Val Asn His Ile Ser Leu Ile Phe Ser Ile Leu Tyr Leu Ile Phe 245 250 255

Tyr Ile Cys Glu Leu Val Gly Met Ser Gly Ile Phe Thr Leu Ala Ile 260 265 270

Val Gly Leu Leu Asn Ser Thr Ser Phe Lys Ala Ala Ile Glu Glu 275 280 285

Thr Leu Leu Leu Glu Phe Leu Thr Leu Leu Leu Ile Ser Pro Val Leu 290 300

Ser Arg Val Gly His Glu Phe Ser Trp Arg Trp Ile Phe Ile Met Val 305 310 315

Cys Ser Glu Met Lys Gly Met Pro Asn Ile Asn Met Ala Leu Leu Leu 325 330 335

Ala Tyr Ser Asp Leu Tyr Phe Gly Ser Asp Lys Glu Lys Ser Gln Ile 340 345 350

Leu Phe His Gly Val Leu Val Cys Leu Ile Thr Leu Val Val Asn Arg 355 360 365

Phe Ile Leu Pro Val Ala Val Thr Ile Leu Gly Leu Arg Asp Ala Thr 370 380

Ser Thr Lys Tyr Lys Ser 'Val Cys Cys Thr Phe Gln His Phe Gln Glu 385 390 395 400

Leu Thr Lys Ser Ala Ala Ser Ala Leu Lys Phe Asp Lys Asp Leu Ala 405 410 415

Asn Ala Asp Trp Asn Met Ile Glu Lys Ala Ile Thr Leu Glu Asn Pro 420 425 430

Tyr Met Leu Asn Glu Glu Glu Thr Thr Glu His Gln Lys Val Lys Cys 435 440 445

Pro His Cys Asn Lys Glu Ile Asp Glu Ile Phe Asn Thr Glu Ala Met 450 460

Glu Leu Ala Asn Arg Arg Leu Leu Ser Ala Gln Ile Ala Ser Tyr Gln 480 475 480

Arg Gln Tyr Arg Asn Glu Ile Leu Ser Gln Ser Ala Val Gln Val Leu 485 490 495

Val Gly Ala Ala Glu Ser Phe Gly Glu Lys Lys Gly Lys Cys Met Ser 500 505 510

Leu Asp Thr Ile Lys Asn Tyr Ser Glu Ser Gln Lys Thr Val Thr Phe 515 525

Ala Arg Lys Leu Leu Leu Asn Trp Val Tyr Asn Thr Arg Lys Glu Lys 530 540

Glu Gly Pro Ser Lys Tyr Phe Phe Phe Arg Ile Cys His Thr Ile Val 545 550 560

Phe Thr Glu Glu Phe Glu His Val Gly Tyr Leu Val Ile Leu Met Asn 565 570 575

Ile Phe Pro Phe Ile Ile Ser Trp Ile Ser Gln Leu Asn Val Ile Tyr 580 585 590

His Ser Glu Leu Lys His Thr Asn Tyr Cys Phe Leu Thr Leu Tyr Ile 595 600 605

Leu Glu Ala Leu Leu Lys Ile Ala Ala Met Arg Lys Asp Phe Phe Ser 610 620

His Ala Trp Asn Ile Phe Glu Leu Ala Ile Thr Leu Ile Gly Ile Leu 625 630 635 640

His Val Ile Leu Ile Glu Ile Asp Thr Ile Lys Tyr Ile Phe Asn Glu 645 655

Thr Glu Val Ile Val Phe Ile Lys Val Val Gln Phe Phe Arg Ile Leu 660 665 670

Arg Ile Phe Lys Leu Ile Ala Pro Lys Leu Leu Gln Ile Ile Asp Lys 675 685

Arg Met Ser His Gln Lys Thr Phe Trp Tyr Gly Ile Leu Lys Gly Tyr 690 695 700

Val Gln Gly Glu Ala Asp Ile Met Thr Ile Ile Asp Gln Ile Thr Ser 705 710 715 720

Ser Lys Gln Ile Lys Gln Met Leu Lys Gln Val Ile Arg Asn Met 725 730 735

Glu His Ala Ile Lys Glu Leu Gly Tyr Leu Glu Tyr Asp His Pro Glu 740 745 750

Ile Ala Val Thr Val Lys Thr Lys Glu Glu Ile Asn Val Met Leu Asn 755 760 765

Met Ala Thr Glu Ile Leu Lys Ala Phe Gly Leu Lys Gly Ile Ile Ser 770 780

Lys Thr Glu Gly Ala Gly Ile Asn Lys Leu Ile Met Ala Lys Lys 800

Glu Val Leu Asp Ser Gln Ser Ile Ile Arg Pro Leu Thr Val Glu Glu 805 810 815

Val Leu Tyr His Ile Pro Trp Leu Asp Lys Asn Lys Asp Tyr Ile Asn 820 830

Phe Ile Gln Glu Lys Ala Lys Val Val Thr Phe Asp Cys Gly Asn Asp 845

Ile Phe Glu Glu Gly Asp Glu Pro Lys Gly Ile Tyr Ile Ile Ile Ser 850 860

Gly Met Val Lys Leu Glu Lys Ser Lys Pro Gly Leu Gly Ile Asp Gln 865 870 875

Met Val Glu Ser Lys Glu Lys Asp Phe Pro Ile Ile Asp Thr Asp Tyr 885 890 895

Met Leu Ser Gly Glu Ile Ile Gly Glu Ile Asn Cys Leu Thr Asn Glu 900 905 910

Pro Met Lys Tyr Ser Ala Thr Cys Lys Thr Val Val Glu Thr Cys Phe 915 920 925

Ile Pro Lys Thr His Leu Tyr Asp Ala Phe Glu Gln Cys Ser Pro Leu 930 940

Ile Lys Gln Lys Met Trp Leu Lys Leu Gly Leu Ala Ile Thr Ala Arg 945 950 955 . 960

342-10PCT.txt Lys Ile Arg Glu His Leu Ser Tyr Glu Asp Trp Asn Tyr Asn Met Gln 975

Leu Lys Leu Ser Asn Ile Tyr Val Val Asp Ile Pro Met Ser Thr Lys 980 985 990

Thr Asp Tle Tyr Asp Glu Asn Leu | Ile Tyr Val Ile Leu | Ile His Gly | 995 | 1000 | 1005

Ala Val Glu Asp Cys Leu Leu Arg Lys Thr Tyr Arg Ala Pro Phe 1010 1015 1020

Leu Ile Pro Ile Thr Cys His Gln Ile Gln Ser Ile Glu Asp Phe 1025 1030 1035

Thr Lys Val Val Tle Ile Gln Thr Pro Ile Asn Met Lys Thr Phe 1040 1045 1050

Arg Arg Asn Ile Arg Lys Phe Val Pro Lys His Lys Ser Tyr Leu 1055 1060 1065

Thr Pro Gly Leu Ile Gly Ser val Gly Thr Leu Glu Glu Gly Ile 1070 1080

Gln Glu Glu Arg Asn Val Lys Glu Asp Gly Ala His Ser Ala Ala 1085 1090 1095

Thr Ala Arg Ser Pro Gln Pro Cys Ser Leu Leu Gly Thr Lys Phe 1100 1105

Asn Cys Lys Glu Ser Pro Arg Ile Asn Leu Arg Lys Val Arg Lys 1115 1120 1125

17

Glu

<210> 189
<211> 17 189

<212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 189

tttgaaccgg cacttgg

<210> 190

<210> 23
<211> 23
<212> DNA
<213> künstliche Sequenz

<220> <223> Oligonukleotid

342-10PCT.txt	
<400> 190 tcaaatgcag tagtaaagaa aac	23
<210> 191 <211> 2898	
<212> DNA <213> Homo sapiens	
<400> 191	
atgtgggtgc ggtgtgcact cctggttgca cgcgactgtg gctgtgctga gcgcgtgtgc	60
ccgtctgtgg tgcgtgaccg cgtgtgtgtt gtgggggggg ggaaaattca tacaaaagaa	120
aaaaatatag cacatctctt ggaaatgaaa tacttcaagt ttaatatctc tcttgctaat	180
gcagaattta tcagccaaga cagctggctg gcctgggtgg ggtttgttaa agttgtcaag	240
tataaggcct actgtaagag ataccaagtg acttttagaa gacagtgtga gggtaaaact	300
gattactatg cttggaaaca cttagtggta caggataaaa ataagtctaa cacacacaaa	360
tacagaatga ttatttgtgt gataaataca gataccattt gtgagatggc ttatgcccat	420
atagaatggg acatgatagt ctgtgcagct tatgcacacg aacttccaaa atacggtgta	480
aaggttggcc tgacaaatga tgctgcagca tgttgtactg gcctgctgct ggcatgcagg	540
Cttctcagta ggtttggcat ggacaagatc tataaaggcc aagtggaggt aaccagagat	600
gaatacaacg tgggaagcac tgatggtcag ccaggtgcct ttacctgctg tttggatgca	660
ggccttgcca gaaccaccac tgacaataaa gtttttgggg ctctgagagt gctgtggatg	720
gaggtttctc tatccctcac agtgcctaac gattccctga gtaaagggaa gcctggcccc	780
aggaaggagc agctgcctgc aagagggagc ctgagccgtg gagtcctggg agcctttgag	840
gtgggcagcc agggcgtgga ggcagcagca agcccaaacg gtcaatacgg gcccagctgg	900
ggcctggcgg cggagggcac ggagggagct aggccacagg caccaaagcg ggatttgtcc	960
tatagcagga ctgactctca cagagactgt tctcctgtct gtcacaacat gtccctgagg	1020
ggtcaccttg tccccaagaa gccctcaaag gagaagcagg gacagcagaa actggacagc	1080
aagttttatg agagctgggc cacagccttg ctcacagcta tattcccggt gcttggcatc	1140
ttggtgcttg ttgaatcttt gctgatgaat gacccaatgc gtgaatgcat cctcagcacc	1200
tctggcttct cagggcctcg cgccaggctc ctgggggtcc tggccctggg cgggcttcct	1260
ctccatcttg gtgcacctgt tattgtaatg gcgtggattg tccttgcttt gctattcaca	1320
cggagcagga ccagggctga tcctgcagac gtgctgcccc ctggtgcatt tgagaagact	1380
cgcatgcatg cactgccccc gcctcttggt ttgactttag atgacggtga agtgatcacc	1440
acaagattgc tcactgatgc ttctgtgcaa aaagtcgtgg tccggatatc tgaatcctcc	1500
tcctgcctcc acaatgggct gctatccggt aacggctgtg aggtccatta ccgcagggcg	1560
aggetettee aggaegetea gatgeetget cagageecag ettategggg ggatetgega	1620
gctcctgtca acgccctgag aattcagaac cggagtcagc tcagcccagg tggaaagatc	1680
aagtggcggc agcacaggca gctggaaggt acccacagaa agaaatcgag cactatgttc	1740

342-10PCT.txt agaaagatcc actccatctt taactccagc ccacagagaa agacggcggc cgagagcccc 1800 ttctacgaag gagccagccc cgcagtgaag ctgattcgaa gcagttccat gtatgtggtc 1860 ggggaccacg gggagaaatt cagcgagtcc ttaaagaagt acaaaagcac cagtagcatg 1920 gacaccagcc tgtactacct gcggcaggag gaggaccggg cgtggatgta ttcgcgcacc 1980 caggactgcc tgcagtacct gcaggagctg ctggccttgc gcaaaaaata tctcagcagc 2040 ttcagtgatc tgaagcccca ccgcacccag gggatttcct caacctcctc caaatcctcc 2100 aagggaggga aaaagactcc tgtccggtct actcccaaag aaataaagaa agcaacccca 2160 aagaaatact cgcagttcag tgctgatgtg gccgaggcca ttgccttctt tgactccatc 2220 attgcagago tggatacaga gagacgacco ogggotgotg aggocagoot gocaaatgaa 2280 gatgtggact ttgacgtggc caccagctcc agggagcaca gcttqcattc taactgqatc 2340 ctgcgggcac cgcgcagaca ctccgaggat atcgctgccc acactgtgca tactgtagac 2400 ggccagtttc gaaggagcac cgagcacagg accgtgggca ctcagaggag actcgagagg 2460 caccccattt atttgcccaa ggctgtggaa ggggccttca acacctggaa atttaagccc 2520 aaagcctgca aaaaagacct ggggagctcc agacagatcc ttttcaactt ctcaggagaa 2580 gatatggagt gggatgcaga gctctttgcg ttggagcccc agttgtctcc tggggaggac 2640 2700 tactatgaga cagagaaccc caaaggacag tggctgcttc gagaaagact ttgggagcgg acgactgggt ccctgagaag ctgtccgctt tcagcgcagc atgaggtatt tggtagagtt 2760 gaaaatgcca attgtaacac agtcaaccca ctcagcacac tgcctgctgg tgccgtgcca 2820 gtgccaaaca gacctgtggc ttcccagggg acaggtctca ggacactctc aqaqcttgaq 2880 tttctctgcg tgggctga 2898

<210> 192 <211> 965

<212> PRT

<213> Homo sapiens

<400> 192

Met Trp Val Arg Cys Ala Leu Leu Val Ala Arg Asp Cys Gly Cys Ala 1 10 15

Glu Arg Val Cys Pro Ser Val Val Arg Asp Arg Val Cys Val Val Gly 20 25 30

Ala Gly Lys Ile His Thr Lys Glu Lys Asn Ile Ala His Leu Leu Glu 35 40 45

Met Lys Tyr Phe Lys Phe Asn Ile Ser Leu Ala Asn Ala Glu Phe Ile 50 60

Ser Gln Asp Ser Trp Leu Ala Trp Val Gly Phe Val Lys Val Val Lys 65 70 75 80

342-10PCT.txt
Tyr Lys Ala Tyr Cys Lys Arg Tyr Gln Val Thr Phe Arg Arg Gln Cys
85 90 95 Glu Gly Lys Thr Asp Tyr Tyr Ala Trp Lys His Leu Val Val Gln Asp 100 105 110 Lys Asn Lys Ser Asn Thr His Lys Tyr Arg Met Ile Ile Cys Val Ile 115 120 Asn Thr Asp Thr Ile Cys Glu Met Ala Tyr Ala His Ile Glu Trp Asp 130 140 Met Ile Val Cys Ala Ala Tyr Ala His Glu Leu Pro Lys Tyr Gly Val 145 150 155 Lys Val Gly Leu Thr Asn Asp Ala Ala Cys Cys Thr Gly Leu Leu 165 170 175 Leu Ala Cys Arg Leu Leu Ser Arg Phe Gly Met Asp Lys Ile Tyr Lys 180 185 Gly Gln Val Glu Val Thr Arg Asp Glu Tyr Asn Val Gly Ser Thr Asp 195 200 205 Gly Gln Pro Gly Ala Phe Thr Cys Cys Leu Asp Ala Gly Leu Ala Arg 210 220 Thr Thr Thr Asp Asn Lys Val Phe Gly Ala Leu Arg Val Leu Trp Met 225 230 240 Glu Val Ser Leu Ser Leu Thr Val Pro Asn Asp Ser Leu Ser Lys Gly 245 250 255 Lys Pro Gly Pro Arg Lys Glu Gln Leu Pro Ala Arg Gly Ser Leu Ser 260 265 270 Arg Gly Val Leu Gly Ala Phe Glu Val Gly Ser Gln Gly Val Glu Ala · 275 280 285 Ala Ala Ser Pro Asn Gly Gln Tyr Gly Pro Ser Trp Gly Leu Ala Ala 290 295 300 Glu Gly Thr Glu Gly Ala Arg Pro Gln Ala Pro Lys Arg Asp Leu Ser 305 310 315 Tyr Ser Arg Thr Asp Ser His Arg Asp Cys Ser Pro Val Cys His Asn 325 330 Met Ser Leu Arg Gly His Leu Val Pro Lys Lys Pro Ser Lys Glu Lys 340 350

342-10PCT.txt
Gln Gly Gln Gln Lys Leu Asp Ser Lys Phe Tyr Glu Ser Trp Ala Thr
355 360 365 Ala Leu Leu Thr Ala Ile Phe Pro Val Leu Gly Ile Leu Val Leu Val 370 380 Glu Ser Leu Leu Met Asn Asp Pro Met Arg Glu Cys Ile Leu Ser Thr 385 390 395 400 Ser Gly Phe Ser Gly Pro Arg Ala Arg Leu Leu Gly Val Leu Ala Leu 415 Gly Gly Leu Pro Leu His Leu Gly Ala Pro Val Ile Val Met Ala Trp 420 430 Ile Val Leu Ala Leu Leu Phe Thr Arg Ser Arg Thr Arg Ala Asp Pro 435 440 445 Ala Asp Val Leu Pro Pro Gly Ala Phe Glu Lys Thr Arg Met His Ala 450 460 Leu Pro Pro Pro Leu Gly Leu Thr Leu Asp Asp Gly Glu Val Ile Thr 465 470 475 480 Thr Arg Leu Leu Thr Asp Ala Ser Val Gln Lys Val Val Val Arg Ile 485 490 495 Ser Glu Ser Ser Cys Leu His Asn Gly Leu Leu Ser Gly Asn Gly 500 505 510 Cys Glu Val His Tyr Arg Arg Ala Arg Leu Phe Gln Asp Ala Gln Met 515 525 Pro Ala Gln Ser Pro Ala Tyr Arg Gly Asp Leu Arg Ala Pro Val Asn 530 540 Ala Leu Arg Ile Gln Asn Arg Ser Gln Leu Ser Pro Gly Gly Lys Ile 545 550 560Lys Trp Arg Gln His Arg Gln Leu Glu Gly Thr His Arg Lys Lys Ser 565 575 Ser Thr Met Phe Arg Lys Ile His Ser Ile Phe Asn Ser Ser Pro Gln 580 585Arg Lys Thr Ala Ala Glu Ser Pro Phe Tyr Glu Gly Ala Ser Pro Ala 595 600 Val Lys Leu Ile Arg Ser Ser Ser Met Tyr Val Val Gly Asp His Gly 610 620

Glu Lys Phe Ser Glu Ser Leu Lys Lys Tyr Lys Ser Thr Ser Ser Met 625 630 635 Asp Thr Ser Leu Tyr Tyr Leu Arg Gln Glu Glu Asp Arg Ala Trp Met 645 655 Tyr Ser Arg Thr Gln Asp Cys Leu Gln Tyr Leu Gln Glu Leu Leu Ala 660 665 670 Leu Arg Lys Lys Tyr Leu Ser Ser Phe Ser Asp Leu Lys Pro His Arg 675 680 685 Thr Gln Gly Ile Ser Ser Thr Ser Ser Lys Ser Ser Lys Gly Gly Lys 690 700 Lys Thr Pro Val Arg Ser Thr Pro Lys Glu Ile Lys Lys Ala Thr Pro 705 710 715 Lys Lys Tyr Ser Gln Phe Ser Ala Asp Val Ala Glu Ala Ile Ala Phe 725 730 735 Phe Asp Ser Ile Ile Ala Glu Leu Asp Thr Glu Arg Arg Pro Arg Ala 740 745 750 Ala Glu Ala Ser Leu Pro Asn Glu Asp Val Asp Phe Asp Val Ala Thr 765 765 Ser Ser Arg Glu His Ser Leu His Ser Asn Trp Ile Leu Arg Ala Pro 770 780 Arg Arg His Ser Glu Asp Ile Ala Ala His Thr Val His Thr Val Asp 785 795 800 Gly Gln Phe Arg Arg Ser Thr Glu His Arg Thr Val Gly Thr Gln Arg 805 815 Arg Leu Glu Arg His Pro Ile Tyr Leu Pro Lys Ala Val Glu Gly Ala 820 825 830 Phe Asn Thr Trp Lys Phe Lys Pro Lys Ala Cys Lys Lys Asp Leu Gly 835 840 845 Ser Ser Arg Gln Ile Leu Phe Asn Phe Ser Gly Glu Asp Met Glu Trp 850 860 Asp Ala Glu Leu Phe Ala Leu Glu Pro Gln Leu Ser Pro Gly Glu Asp 865 870 880 Tyr Tyr Glu Thr Glu Asn Pro Lys Gly Gln Trp Leu Leu Arg Glu Arg 885 890 895

342-10PCT.txt Leu Trp Glu Arg Thr Thr Gly Ser Leu Arg Ser Cys Pro Leu Ser Ala 900 905 910	
Gln His Glu Val Phe Gly Arg Val Glu Asn Ala Asn Cys Asn Thr Val 915 920 925	
Asn Pro Leu Ser Thr Leu Pro Ala Gly Ala Val Pro Val Pro Asn Arg 930 935 940	
Pro Val Ala Ser Gin Gly Thr Gly Leu Arg Thr Leu Ser Glu Leu Glu 945 950 955 960	
Phe Leu Cys Val Gly 965	
<210> 193 <211> 22 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 193 cgagaggcac cccatttatt tg	22
<210> 194 <211> 26 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
. <400> 194 ttctctgtct catagtagtc ctcccc	26
<210> 195 <211> 1363 <212> DNA <213> Homo sapiens	
<400> 195 aacaggcccc atgctgctct ggacggctgt gctgctcttt ggtaagtcaa cgagcatggg	60
catcccctct tggagcacta aggaccttcc ctgtgttggg aaaactgtct ggctgtacct	120
ccaageetgg ccaaaceetg tgtttgaagg agatgeeetg actetgegat gtcagggatg	180
gaagaataca ccactgtctc aggtgaagtt ctacagagat ggaaaattcc ttcatttctc	240
taaggaaaac cagactctgt ccatgggagc agcaacagtg cagagccgtg gccagtacag	300
ctgctctggg caggtgatgt atattccaca gacattcaca caaacttcag agactgccat	360
ggttcaagtc caagagctgt ttccacctcc tgtgctgagt gccatcccct ctcctgagcc $\stackrel{\sim}{\sim}$	420
ccgagagggt agcctggtga ccctgagatg tcagacaaag ctgcaccccc tgaggtcagc	480
cttgaggctc cttttctcct tccacaagga cggccacacc ttgcaggaca ggggccctca	540

			342-10PCT.	txt		
cccagaactc	tgcatcccgg	gagccaagga			ggtgtgaggt	600
ggcccctgag	ggtggccagg	tccagaagca	gagcccccag	ctggaggtca	gagtgcaggc	660
tcctgtatcc	cgtcctgtgc	tcactctgca	ccacgggcct	gctgaccctg	ctgtggggga	720
catggtgcag	ctcctctgtg	aggcacagag	gggctcccct	ccgatcctgt	attectteta	780
ccttgatgag	aagattgtgg	ggaaccactc	agctccctgt	ggtggaacca	cctccctcct	840
cttcccagtg	aagtcagaac	aggatgctgg	gaactactcc	tgcgaggctg	agaacagtgt	900
ctccagagag	aggagtgagc	ccaagaagct	gtctctgaag	ggttctcaag	tcttgttcac	960
tcccgccagc	aactggctgg	ttccttggct	tcctgcgagc	ctgcttggcc	tgatggttat	1020
tgctgctgca	cttctggttt	atgtgagatc	ctggagaaaa	gctgggcccc	ttccatccca	1080
gataccaccc	acagctccag	gtggagagca	gtgcccacta	tatgccaacg	tgcatcacca	1140
gaaagggaaa	gatgaaggtg	ttgtctactc	tgtggtgcat	agaacctcaa	agaggagtga	1200
agccaggt c t	gctgagttca	ccgtggggag	aaagcacaaa	gcttcaccca	aattccaccc	1260
caccctggat	ctccacacca	agcggctcag	ggttaatggt	cgagttcagg	aagcttatgt	1320
ggccttggtc	aacacctgct	ccctcacccc	cagcctgaag	tga		1363

<210> 196 <211> 450

<212> PRT

<213> Homo sapiens

<400> 196

Met Leu Leu Trp Thr Ala Val Leu Leu Phe Gly Lys Ser Thr Ser Met 1 5 10 15

Gly Ile Pro Ser Trp Ser Thr Lys Asp Leu Pro Cys Val Gly Lys Thr 20 25 30

Val Trp Leu Tyr Leu Gln Ala Trp Pro Asn Pro Val Phe Glu Gly Asp 35 40 45

Val Lys Phe Tyr Arg Asp Gly Lys Phe Leu His Phe Ser Lys Glu Asn 65 70 75 80

Gln Thr Leu Ser Met Gly Ala Ala Thr Val Gln Ser Arg Gly Gln Tyr 85 90 95

Ser Cys Ser Gly Gln Val Met Tyr Ile Pro Gln Thr Phe Thr Gln Thr 100 105 110

Ser Glu Thr Ala Met Val Gln Val Gln Glu Leu Phe Pro Pro Pro Val 115 120 125

342-10PCT.txt Leu Ser Ala Ile Pro Ser Pro Glu Pro Arg Glu Gly Ser Leu Val Thr 130 135 140

Leu Arg Cys Gln Thr Lys Leu His Pro Leu Arg Ser Ala Leu Arg Leu 145 150 155 160

Leu Phe Ser Phe His Lys Asp Gly His Thr Leu Gln Asp Arg Gly Pro 165 170 175

His Pro Glu Leu Cys Ile Pro Gly Ala Lys Glu Gly Asp Ser Gly Leu 180 185

Tyr Trp Cys Glu Val Ala Pro Glu Gly Gly Gln Val Gln Lys Gln Ser 195 200 205

Pro Gln Leu Glu Val Arg Val Gln Ala Pro Val Ser Arg Pro Val Leu 210 215 220

Thr Leu His His Gly Pro Ala Asp Pro Ala Val Gly Asp Met Val Gln 225 230 235 240

Leu Leu Cys Glu Ala Gln Arg Gly Ser Pro Pro Ile Leu Tyr Ser Phe 245 250 255

Tyr Leu Asp Glu Lys Ile Val Gly Asn His Ser Ala Pro Cys Gly Gly 260 .265 270

Thr Thr Ser Leu Leu Phe Pro Val Lys Ser Glu Gln Asp Ala Gly Asn 275 280 285

Tyr Ser Cys Glu Ala Glu Ash Ser Val Ser Arg Glu Arg Ser Glu Pro 290 295 300

Lys Lys Leu Ser Leu Lys Gly Ser Gln Val Leu Phe Thr Pro Ala Ser 305 310 315

Asn Trp Leu Val Pro Trp Leu Pro Ala Ser Leu Leu Gly Leu Met Val 325 330 335

Ile Ala Ala Leu Leu Val Tyr Val Arg Ser Trp Arg Lys Ala Gly 340 345 350

Pro Leu Pro Ser Gln Ile Pro Pro Thr Ala Pro Gly Glu Gln Cys 355 360 365

Pro Leu Tyr Ala Asm Val His His Gln Lys Gly Lys Asp Glu Gly Val 370 380

Val Tyr Ser Val Val His Arg Thr Ser Lys Arg Ser Glu Ala Arg Ser 385 395 400

342-10PCT.txt Ala Glu Phe Thr Val Gly Arg Lys His Lys Ala Ser Pro Lys Phe His Pro Thr Leu Asp Leu His Thr Lys Arg Leu Arg Val Asn Gly Arg Val 420 425 430 Gln Glu Ala Tyr Val Ala Leu Val Asn Thr Cys Ser Leu Thr Pro Ser Leu Lys 450 <210> 197 <211> 1.9 <212> DNA künstliche Seauenz <220> <223> Oligonukleotid <400> 197 gtcagggatg gaagaatac 19 <210> 198 <211> 18 <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 198 acaggaggtg gaaacagc 18 <210> 199 <211> 534 <212> DNA <213> Homo sapiens <400> 199 acaattgtgt cttcttccag atgtcatcgc tataaggagt ggggctttca tcacctcctt 60 gacgtaggat gtgtacatgg ctctccaggt cagagttgct ccaagcaagg ttgttttgca 120 gaagtticti ctatgigica tictiticta cactgigiac tatgigiccc igagcatggg 180 ctgcgtgatg tttgaggtgc atgagttgaa tqtcctggct ccatttgatt tcaaaacaaa 240 teceteatgg eteaacataa actataaagt tettttagtt teaacagagg teaectaett 300 tgtttgtgga ttgttttttg ttccagttgt ggaagaatgg gtttgggatt atgctatttc 360 agtcactatt cttcatgttg ccatcacttc aactgttatg ttggaattcc ccttgacatc 420 acattggtgg gctgctttag gtatatcaaa attgcttgtt tagattctct aatgcacaga 480 aataatgtta aatagaataa ctgtggaaat atattttatt ttctcataga tttt 534 · <210> 200 <211> 128

160/223 342-10PCT.txt <213> Homo sapiens <400> Met Ala Leu Gln Val Arg Val Ala Pro Ser 1.ys Val Val Leu Gln Lys 1 10 15 Phe Leu Cys Val Ile Leu Phe Tyr Thr Val Tyr Tyr Val Ser Leu 20 30 Ser Met Gly Cys Val Met Phe Glu Val His Glu Leu Asn Val Leu Ala 35 40 45 Pro Phe Asp Phe Lys Thr Asn Pro Ser Trp Leu Asn Ile Asn Tyr Lys
50 60 Val Leu Leu Val Ser Thr Glu Val Thr Tyr Phe Val Cys Gly Leu Phe 65 70 75 80 Phe Val Pro Val Val Glu Glu Trp Val Trp Asp Tyr Ala Ile Ser Val 85 90 95 Thr Ile Leu His Val Ala Ile Thr Ser Thr Val Met Leu Glu Phe Pro 100 105 110 Leu Thr Ser His Trp Trp Ala Ala Leu Gly Ile Ser Lys Leu Leu Val 115 120 <210> 201 <211> 20 <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 201 tcaaacatca cgcagcccat 20 <210> 202 <211> 22 202 <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 202 tggggctttc atcacctcct tg 22

<210> 203
<211> 615
<212> DNA
<213> Homo sapiens
<400> 203
ggggatgtga tgtcaggctt gattgtgggc atattattgg tgccccagtc cattgcttat 60

WO 2005/030250 PCT/EP2004/010697

			342-10PCT.	txt		
tccctgctgg	ctggccaaga	acctgtctat	ggtctgtaca	catctttttt	tgccagcatc	120
atttattttc	tcttgggtac	ctcccgtcac	atctctgtgg	gcatttttgg	agtactgtgc	180
cttatgattg	gtgagacagt	tgaccgagaa	ctacagaaag	ctggctatga	caatgcccat	240
agtgctcctt	ccttaggaat	ggtttcaaat	gggagcacat	tattaaatca	tacatcagac	300
aggatatgtg	acaaaagttg	ctatgcaatt	atggttggca	gcactgtaac	ctttatagct	360
ggagtttatc	agtgattgtt	ttgttaatgt	ggaagcaaca	ttttctatga	ttaatctgct	420
gttacctgtt	ttgactgagc	tactacaaaa	agaaaaatca	ctgaattgct	atgggtttct	480
gaaatatcca	aaaaattaac	ctgaagcagg	gggaaaaatg	acatcacacc	attagcaggt	540
attgtgtgaa	acttctaaaa	atgaaactga	catttatctg	acttattagg	aataaatact	600
ctctaatgaa	ctctc					615

<210> 204

121

PRT

Homo sapiens

<400> 204

Met Ser Gly Leu Ile Val Gly Île Leu Leu Val Pro Gln Ser Île Ala 1 10 15

Tyr Ser Leu Leu Ala Gly Gln Glu Pro Val Tyr Gly Leu Tyr Thr Ser 20 25 30

Phe Phe Ala Ser Ile Ile Tyr Phe Leu Leu Gly Thr Ser Arg His Ile 35 40 45

Ser Val Gly Ile Phe Gly Val Leu Cys Leu Met Ile Gly Glu Thr Val 50 60

Asp Arg Glu Leu Gln Lys Ala Gly Tyr Asp Asn Ala His Ser Ala Pro 65 70 75

Ser Leu Gly Met Val Ser Asn Gly Ser Thr Leu Leu Asn His Thr Ser 90 95

Asp Arg Ile Cys Asp Lys Ser Cys Tyr Ala Ile Met Val Gly Ser Thr $100 \\ 105 \\ 110$

Val Thr Phe Ile Ala Gly Val Tyr Gln 115 120

<210> 205

20

<212> DNA künstliche Sequenz

<220>

<223> Oligonukleotid

102,220	
<pre>342-10PCT.txt <400> 205 taaatcatac atcagacagg</pre>	20
<210> 206 <211> 20 <212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 206 aaaacaggta acagcagatt	20
<210> 207 <211> 513 <212> DNA <213> Homo sapiens	
<400> 207 atggcggcgg ccgctctcgc gagaattcgg cccgtcgggc tccaagcccg gcgcctggcg	60
tcggagggaa agactcgagc cgaaagcccc atctctgacc ctagcaactc atacccttct	120
ggcttccctt tagcaaagcg cctggacgtc atcccctctt cagatacccc aggcctcgtc	180
ctggccactg gcttgactat tgcaggagag cctgataaga tgggacacgg ctccaccttg	240
cattcagcaa gtcgttatcc tgcaactacg atgcaccagg aagaggatgt ggtgaggcca	300
gcttttccat atgcagttag gcatcgaagg gaagatctgc tgtacctaag tggggtgggc	360
atticatiti tagggaccgi cittgitaaa ataatitggg accicataaa gcciccagcc	420
attectgate aggacatage ttacaacage ageetggtge ceataacetg gacageetgg	480
agtgaagtca cactcccaga cttgatgttc taa	513
<210> 208 <211> 170 <212> PRT <213> Homo sapiens	
<400> 208	
Met Ala Ala Ala Leu Ala Arg Ile Arg Pro Val Gly Leu Gln Ala 1 10 15	
Arg Arg Leu Ala Ser Glu Gly Lys Thr Arg Ala Glu Ser Pro Ile Ser 20 25 30	
Asp Pro Ser Asn Ser Tyr Pro Ser Gly Phe Pro Leu Ala Lys Arg Leu 35 40 45	
Asp Val Ile Pro Ser Ser Asp Thr Pro Gly Leu Val Leu Ala Thr Gly 50 60	
Leu Thr Ile Ala Gly Glu Pro Asp Lys Met Gly His Gly Ser Thr Leu 65 70 80	

WO 2005/030250 PCT/EP2004/010697

163/223

342-10PCT.txt
His Ser Ala Ser Arg Tyr Pro Ala Thr Thr Met His Gln Glu Glu Asp
85 90 95 Val Val Arg Pro Ala Phe Pro Tyr Ala Val Arg His Arg Arg Glu Asp 100 105 110 Leu Leu Tyr Leu Ser Gly Val Gly Ile Ser Phe Leu Gly Thr Val Phe 115 120 Val Lys Ile Ile Trp Asp Leu Ile Lys Pro Pro Ala Ile Pro Asp Gln 130 140 Asp Ile Ala Tyr Asn Ser Ser Leu Val Pro Ile Thr Trp Thr Ala Trp 145 150 155 160 Ser Glu Val Thr Leu Pro Asp Leu Met Phe 165 170 <210> 209 <211> 20 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 209 20 tgagccctag atatacttgg <210> 210 <211> 18 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 210 18 cagtcagcct ccatttct <21.0> 211 508 <211> <212> DNA Homo sapiens <400> 211 60 tgagccctag atatacttgg cttgcattta ggggccatga tgtttagaga tgaataatgc 120 cttacatgct ggagtcaccc tcagtttgtc aaagtgttca cactgtgaga ggctcacaga 180 aatggaggct gactgaagga agagcagatt cacatctttc atcccttctt tatgctcatg 240 cttctaattt ttgttcccat gttttcttgc ccctcctctt cttagcattt attttgtctg 300 tttctctttc ccctcttctg gctccctctc catctctcct gagcacagaa atgcggctac 360 tgtatttaat ccacagtggc cccctctggc cccctctttg tgtctcctga gcacaggccc tggccccctc tccatctctc ctgacctcct gatccgccca cctcggccag ttattgctgt 420 WO 2005/030250 PCT/EP2004/010697

164/223 342-10PCT.txt

tttataagga aaatgttttc tagtaccaca cttgtctccc tggaagggat agaagaagga 480

gggaaggaag tagggaggca gggaagag

508

<210> 212

<211> 97 <212> PRT

<213> Homo sapiens

<400> 212

Met Pro Tyr Met Leu Glu Ser Pro Ser Val Cys Gl π Ser Val His Thr 1 5 10 15

Val Arg Gly Ser Gln Lys Trp Arg Leu Thr Glu Gly Arg Ala Asp Ser 20 25 30

His Leu Ser Ser Leu Leu Tyr Ala His Ala Ser Asn Phe Cys Ser His 35 40

Val Phe Leu Pro Leu Leu Phe Leu Ala Phe Ile Leu Ser Val Ser Leu 50 60

Ser Pro Leu Leu Ala Pro Ser Pro Ser Leu Leu Ser Thr Glu Met Arg 65 70 75 80

Leu Leu Tyr Leu Ile His Ser Gly Pro Leu Trp Pro Pro Leu Cys Val 85 90 95

Ser

<210> 21.3

<211> 25

<212> DNA

<213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 213

ctgtatttaa tccacagtgg ccccc

25

<210> 214 <211> 27

<212> DNA

<213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 214

tccctacttc cttccctcct tcttcta

27

<210> 215

<211> 1321

<212> DNA

<213> Homo sapiens

342-10PCT.txt

<400> 215						
	gcaagcccag	gagttgacat	ttctctgccc	agccatgggc	ctcaccctgc	60
tcttgctgct	gctcctggga	ctagaaggtc	agggcatagt	tggcagcctc	cctgaggtgc	120
tgcaggcacc	cgtgggaagc	tccattctgg	tgcagtgcca	ctacaggctc	caggatgtca	180
aagctcagaa	ggtgtggtgc	cggttcttgc	cggaggggtg	ccagcccctg	gtgtcctcag	240
ctgtggatcg	cagageteca	gcgggcaggc	gtacgtttct	cacagacctg	ggtgggggcc	300
tgctgcaggt	ggaaatggtt	accctgcagg	aagaggatgc	tggcgagtat	ggctgcatgg	360
tggat gg ggc	cagggggccc	cagattttgc	acagagtctc	tctgaacata	ctgcccccag	420
aggaagaaga	agagacccat	aagattggca	gtctggctga	gaacgcattc	tcagaccctg	480
caggcagtgc	caaccctttg	gaacccagcc	aggatgagaa	gagcatcccc	ttgatctggg	540
gtgctgtgct	cctggtaggt	ctgctggtgg	cagcggtggt	gctgtttgct	gtgatggcca	600
agaggaaaca	agggaacagg	cttggtgtct	gtggccgatt	cctgagcagc	agagtttcag	660
gcatgaatcc	ctcctcagtg	gtccaccacg	tcagtgactc	tggaccggct	gctgaattgc	720
ctttggatgt	accacacatt	aggcttgact	caccaccttc	atttgacaat	accacctaca	780
ccagcctacc	tcttgattcc	ccatcaggaa	aaccttcact	cccagctcca	tcctcattgc	840
cccctctacc	tcctaaggtc	ctggtctgct	ccaagcctgt	gacatatgcc	acagtaatct	900
tcccgggagg	gaacaagggt	ggagggacct	cgtgtgggcc	agcccagaat	ccacctaaca	960
atcagactcc	atccagctaa	gctgctcatc	acactttaaa	ctcatgagga	ccatccctag	1020
gggttctgtg	catccatcca	gccagctcat	gccctaggat	ccttaggata	tctgagcaac	1080
cagggacttt	aagatctaat	ccaatgtcct	aactttacta	gggaaagtga	cgctcagaca	1140
tgactgagat	gtcttgggga	agacctccct	gcacccaact	ccccactgg	ttcttctacc	1200
attacacact	gggctaaata	aaccctaata	atgatgtgca	aactcttaat	ggctgaatgg	1260
gaaaggaaac	tgcccaagtt	tgactaattg	cttggcctgt	gaatggaaaa	gactctggtc	1320
t						1321

Met Gly Leu Thr Leu Leu Leu Leu Leu Leu Leu Gly Leu Glu Gly Gln $1 \\ 0 \\ 15$

Gly Ile Val Gly Ser Leu Pro Glu Val Leu Gln Ala Pro Val Gly Ser 20 25 30

Ser Ile Leu Val Gln Cys His Tyr Arg Leu Gln Asp Val Lys Ala Gln 40 45

<210> 216 <211> 311 <212> PRT <213> Homo sapiens

<400> 216

342-10PCT.txt
Lys Val Trp Cys Arg Phe Leu Pro Glu Gly Cys Gln Pro Leu Val Ser
50 55 60 Ser Ala Val Asp Arg Arg Ala Pro Ala Gly Arg Arg Thr Phe Leu Thr 65 70 75 80 Asp Leu Gly Gly Leu Leu Gln Val Glu Met Val Thr Leu Gln Glu 85 90 95 Glu Asp Ala Gly Glu Tyr Gly Cys Met Val Asp Gly Ala Arg Gly Pro 100 110 Gln Ile Leu His Arg Val Ser Leu Asn Ile Leu Pro Pro Glu Glu Glu 115 120 125 Glu Glu Thr His Lys Ile Gly Ser Leu Ala Glu Asn Ala Phe Ser Asp 130 140 Pro Ala Gly Ser Ala Asn Pro Leu Glu Pro Ser Gln Asp Glu Lys Ser 145 150 155 160 Ile Pro Leu Ile Trp Gly Ala Val Leu Leu Val Gly Leu Leu Val Ala 165 170 175 Ala Val Val Leu Phe Ala Val Met Ala Lys Arg Lys Gln Gly Asn Arg 180 185 190 Leu Gly Val Cys Gly Arg Phe Leu Ser Ser Arg Val Ser Gly Met Asn 195 200 205 Pro Ser Ser Val Val His His Val Ser Asp Ser Gly Pro Ala Ala Glu . 210 220 Leu Pro Leu Asp Val Pro His Ile Arg Leu Asp Ser Pro Pro Ser Phe 225 230 235 240 Asp Asn Thr Tyr Thr Ser Leu Pro Leu Asp Ser Pro Ser Gly Lys 245 250 255 Pro Ser Leu Pro Ala Pro Ser Ser Leu Pro Pro Leu Pro Pro Lys Val 260 265 270 Leu Val Cys Ser Lys Pro Val Thr Tyr Ala Thr Val Ile Phe Pro Gly 275 280 285 Gly Asn Lys Gly Gly Gly Thr Ser Cys Gly Pro Ala Gln Asn Pro Pro 290 295 300

Asn Asn Gln Thr Pro Ser Ser 305 310

342-10PCT.txt

				342-10PCT.1	txt			
<210><211><212><213>	217 18 DNA küns	tliche Sequ	enz					
<220> <223> Oligonukleotid								
<400> aggaag	217 aaga	agagaccc					18	
<210> <211> <212> <213>	218 18 DNA küns	tliche Sequ	ienz					
<220> <223>	Olig	onukleotid						
<400> catcac	218 agca	aacagcac					18	
<210> <211> <212> <213>	219 3874 DNA Homo	sapiens						
<400> gagaac	219 tggg	gcggcgcggc	gcggcgcggt	gcatttccag	gcgctgctct	ccgtcgcaga	60	
gaaccc	tgag	ctcggcgcgc	cgagagtccc	agcagggcaa	gggggcgcgg	cgtcctggtc	120	
			gcgcatgggc				180	
			ctgcggcgac				240	
			agcccagcgc				300	
			taccttcgtg				360	
			gctcagcata				420	
			ccgcgggaag				480	
			catcagccgc				540	
						tcagacctgg	600	
			ggaaagcaag				660	
			gacctttacc				720	
			ggcacacact				780	
			cggggactgt				840	
-			gttgcagggc				900	
						gcacctacag	960	
						tgtgtcagac	1020	
						gactgtgcct	1080	
						ggtgatcaga	1140	
gryadi	juayy	ggerggarer	3~~~~~~~~~	-5	-99-9	20 2 4		

168/223 342-10PCT.txt

gtgcacttgc	tggaggcaga	gcagctggcc	cagaaggaca		gctccgaggc	1200
aagtcagatc	cctacgccaa	ggtgagcatc	ggcctacagc	atttccggag	taggaccatc	1260
tacaggaacc	tgaaccccac	ctggaacgaa	gtgtttgagt	tcatggtgta	cgaagtccct	1320
ggacaggacc	tggaggtaga	cctgtatgat	gaggataccg	acagggatga	cttcctgggc	1380
agcctgcaga	tctgccttgg	agatgtcatg	accaacagag	tggtggatga	gtggtttgtc	1440
ctgaatgaca	caaccagcgg	gcggctgcac	ctgcggctgg	agtggctt tc	attgcttact	1500
gaccaagaag	ttctgactga	ggaccatggt	ggcctttcca	ctgccattct	cgtggtcttc	1560
ttggagagtg	cctgcaactt	gccgagaaac	ccttttgact	acctgaatgg	tgaatatcga	1620
gccaaaaaaac	tctccaggtt	tgccagagtg	aaacaaggtc	agcaaagacc	cttcttccta	1680
tgtcaaacta	tctgtaggca	agaagacaca	tacaagtaag	acctgtcccc	acaacaagga	1740
ccctgtgtgg	agccaggtgt	tctccttctt	tgtgcacaat	gtggccactg	agcggctcca	1800
tctgaaggtt	tgatggaaga	agggctcttg	aaacagagtt	aagaggtttt	taagccaggc	1860
gggctgggaa	gcttgaagtg	caccttgagc	aggtictcct	ggcagcgttt	aaagtcagcc	1920
ccttgtatgt	aagagaggac	actgaggccc	cacaaggcct	catctcctta	aggctagt gc	1980
ctgaggtcac	tgtatagggg	gatgtgggag	gataaatcct	caagtccctt	gactttccct	2040
gcaaaagggt	ctttatattt	gctacacagt	acccagagca	gcctatctac	acaggacatt	2100
aataatggtg	tactttaaaa	aatatatgtt	tcatttaatc	ttcacaaaag	atctgtagag	2160
taagcaaaga	gaggcaaaaa	caatgtcttg	tccaagatct	catgaccaac	aagtggtgga	2220
gctgggatct	tttagggccc	tgagccctgc	ctggagagca	gcacagctca	tcagtcccca	2280
aagccccctg	gctctgggca	tttgacagac	tagctcatac	agatcataat	tgcctctact	2340
ctgagtcact	atcttccctg	acagaagaca	aggaccaggt	ctggcctgat	cccattctag	2400
ttttcagaat	aggaccagat	gcccatagaa	gcacagtaca	g actgaagta	aacccaaact	2460
tggctggggc	tcagatacta	gtagtggagt	ggtggggctt	ggttatcctc	ttgttttgtg	2520
actggaccac	tgcccaggtg	cttgatgatg	accaggagtg	tgctctggga	atgctggagg	2580
tccccctgtg	ccagatcctc	ccctatgctg	acctcactct	tgagcagcgc	tttcagctgg	2640
accactcagg	cctggacagc	ctcatctcca	tgaggctggt	gcttgcagtt	cctgcaagtg	2700
gaggaacgag	agctggggag	cccatacaca	ggacctgaag	ccctaaagaa	aggccctctg	2760
ctcatcaaga	aagtggctac	caaccagggt	cccaaagccc	aacctcagga	agaaggccct	2820
acagatttgc	catgtccccc	agaccctgct	tctgatacta	aggacgtatc	caggagtacc	2880
acaaccacca	ccagtgctac	caccgttgcc	actgagccca	catcccaaga	gacaggccca	2940
gagcctaaag	gcaaggacag	tgccaaaagg	ttctgtgagc	ccatcgggga	gaagaagagt	3000
ccagccacca	tcttcctgac	tgtcccaggt	ccccactctc	cagggcccat	caagtcaccc	3060
agacccatga	aatgccctgc	ctccccattc	gcatggccgc	ccaagaggct	ggctcccagc	3120
atgtcctcgc	tcaactcctt	ggcctcttct	tgctttgacc	tggcagatat	cagcctcaac	3180

342-10PCT.txt attgagtatg cacctctctg cttaatcttt tctaaaatcg cctgtatgaa aaatacctcg 3240 ctggatggaa aagtagatat gaacttacat ttctgtgcaa gttgtttttt cacaaaatat 3300 cttcctaaga ggcagcatgg tgtggtagaa agaacacagg acaagggaga gagagccaaa 3360 caggotgttt atggotctag ctgcgtactg actataaaat agatgctgga ctctggttga 3420 ggtggggacc tcaggcgacg gcagctgggt gagattcagc tcacagtgcg ctatgtgtgt 3480 ctgcggcgct gcctcagcgt gctaatcaat ggctgcagaa acctaacacc atgtaccagc 3540 agrggagctg atccctacgt ccgtgtctac ttgttgccag aaaggaagtg ggcatgtcgt +3600aagaagactt cagtgaagcg gaagaccttg gaacccctgt ttgatgagac atttgaattt 3660 tttgttccca tggaagaagt aaagaagagg tcactagatg ttgcaqtgaa aaatagtagg 3720 ccacttggct cacacagaag aaaggagtta ggaaaagtac tgattgactt atcaaaagaa 3780 gatctgatta agggcttttc acaatggtaa gtgtgccctt tcattttatc actgttatcc 3840 tgctattcaa gacagttttc ccttttcagt actg 3874

<210> 220 <211> 501 <212> PRT

<213> Homo sapiens

<400> 220

Met Arg Ala Glu Glu Pro Cys Ala Pro Gly Ala Pro Ser Ala Leu Gly 1 10 15

Ala Gln Arg Thr Pro Gly Pro Glu Leu Arg Leu Ser Ser Gln Leu Leu 20 25 30

Pro Glu Leu Cys Thr Phe Val Val Arg Val Leu Phe Tyr Leu Gly Pro 35 40 45

Val Tyr Leu Ala Gly Tyr Leu Gly Leu Ser Ile Thr Trp Leu Leu Leu 50 60

Gly Ala Leu Leu Trp Met Trp Trp Arg Arg Asn Arg Arg Gly Lys Leu 70 75 80

Gly Arg Leu Ala Ala Ala Phe Glu Phe Leu Asp Asn Glu Arg Glu Phe 85 90 95

Ile Ser Arg Glu Leu Arg Gly Gln His Leu Pro Ala Trp Ile His Phe 100 105 110

Pro Asp Val Glu Arg Val Glu Trp Ala Asn Lys Ile Ile Ser Gln Thr 115 120 125

Trp Pro Tyr Leu Ser Met Ile Met Glu Ser Lys Phe Arg Glu Lys Leu 130 140 Glu Pro Lys Ile Arg Glu Lys Ser Ile His Leu Arg Thr Phe Thr Phe 145 150 155 160 Thr Lys Leu Tyr Phe Gly Gln Lys Cys Pro Arg Val Asn Gly Val Lys 165 170 175 Ala His Thr Asn Thr Cys Asn Arg Arg Val Thr Val Asp Leu Gln 180 185 Ile Cys Tyr Ile Gly Asp Cys Glu Ile Ser Val Glu Leu Gln Lys Ile 195 200 205 Gln Ala Gly Val Asn Gly Ile Gln Leu Gln Gly Thr Leu Arg Val Ile 210 215 220 Leu Glu Pro Leu Leu Val Asp Lys Pro Phe Val Gly Ala Val Thr Val 225 230 240 Phe Phe Leu Gln Lys Gln His Leu Gln Ile Asn Trp Thr Gly Leu Thr 245 250 Asn Leu Leu Asp Ala Pro Gly Ile Asn Asp Val Ser Asp Ser Leu Leu 260 265 270 Glu Asp Leu Ile Ala Thr His Leu Val Leu Pro Asn Arg Val Thr Val 275 280 285 Pro Val Lys Lys Gly Leu Asp Leu Thr Asn Leu Arg Phe Pro Leu Pro 290 295 300 Cys Gly Val Ile Arg Val His Leu Leu Glu Ala Glu Gln Leu Ala Gln 305 310 320 Lys Asp Asn Phe Leu Gly Leu Arg Gly Lys Ser Asp Pro Tyr Ala Lys 325 330 335 Val Ser Ile Gly Leu Gln His Phe Arg Ser Arg Thr Ile Tyr Arg Asn 340 350 Leu Asn Pro Thr Trp Asn Glu Val Phe Glu Phe Met Val Tyr Glu Val 355 360 365 Pro Gly Gln Asp Leu Glu Val Asp Leu Tyr Asp Glu Asp Thr Asp Arg 370 380 Asp Asp Phe Leu Gly Ser Leu Gln Ile Cys Leu Gly Asp Val Met Thr 385 390 400 Asn Arg Val Val Asp Glu Trp Phe Val Leu Asn Asp Thr Thr Ser Gly 405 415

WO 2005/030250 PCT/EP2004/010697

171/223

342-10PCT.txt Arg Leu His Leu Arg Leu Glu Trp Leu Ser Leu Leu Thr Asp Gln Glu Val Leu Thr Glu Asp His Gly Gly Leu Ser Thr Ala Ile Leu Val Val 435 Phe Leu Glu Ser Ala Cys Asn Leu Pro Arg Asn Pro Phe Asp Tyr Leu 450 460 Asn Gly Glu Tyr Arg Ala Lys Lys Leu Ser Arg Phe Ala Arg Val Lys 465 470 475 480 Gln Gly Gln Gln Arg Pro Phe Phe Leu Cys Gln Thr Ile Cys Arg Gln 485 490 495 Glu Asp Thr Tyr Lys 500 <210> 221 <211> 20 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 221 tggggcctgt ctacctaqct 20 <210> 222 <211> 19 <212> DNA <213> künstliche Sequenz <220> <223> Oligonukleotid <400> 222 tcttgttggc ccactcgac 19 <210> 1020 <212> DNA <213> Homo sapiens <400> 223 agacacagga cctgctgggc cacagaaagg aggctctggg tagacgcact agattactgg 60 ataaatcact tcaatttccc aatgaatttt atattgttta tttttatacc tggagtttt 120 tccttaaaaa gtagcacttt gaagcctact attgaagcat tgcctaatgt gctaccttta 180 aatgaagatg ttaataagca ggaagaaaag aatgaagatc atactcccaa ttatgctcct 240 300 aatccaaatg gcactgagtc tgaaatatct gtgagagcca caactgacct gaattttgct 360 ctaaaaaacg ataaaactgt caatgcaact acatatgaaa aatccaccat tgaagaagaa 420

342-10PCT.txt acaactacta gcgaaccctc tcataaaaat attcaaagat caaccccaaa cgtgcctgca 480 ttttggacaa tgttagctaa agctataaat ggaacagcag tggtcatgga tgataaagat 540 600 caattatttc acccaattcc agagtctgat gtgaatgcta cacagggaga aaatcagcca gatctagagg atctgaagat caaaataatg ctgggaatct cgttgatgac cctcctcctc 660 tttgtggtcc tcttggcatt ctgtagtgct acactgtaca aactgaggca tctgagttat 720 780 aaaagttgtg agagtcagta ctctgtcaac ccagagctgg ccacgatgtc ttactttcat 840 ccatcagaag gtgtttcaga tacatccttt tccaagagtg cagagagcag cacatttttg 900 ggtaccactt cttcagatat gagaagatca ggcacaagaa catcagaatc taagataatg 960 acggatatca tttccatagg ctcagataat gagatgcatg aaaacgatga gtcggttacc 1020 cggtgaagaa atcaaggaac ccggtgaaga aatcttattg atgaataaat aactttaatt

<210> 224 294

PRT

Homo sapiens

<400>

Met Asn Phe Ile Leu Phe Ile Phe Ile Pro Gly Val Phe Ser Leu Lys 1 5 10 15

Ser Ser Thr Leu Lys Pro Thr Ile Glu Ala Leu Pro Asn Val Leu Pro 20 25 30

Leu Asn Glu Asp Val Asn Lys Gln Glu Glu Lys Asn Glu Asp His Thr 35 40 45

Pro Asn Tyr Ala Pro Ala Asn Glu Lys Asn Gly Asn Tyr Tyr Lys Asp 50 60 .

Ile Lys Gln Tyr Val Phe Thr Thr Gln Asn Pro Asn Gly Thr Glu Ser 65 70 75

Glu Ile Ser Val Arg Ala Thr Thr Asp Leu Asn Phe Ala Leu Lys Asn 90 95

Asp Lys Thr Val Asn Ala Thr Thr Tyr Glu Lys Ser Thr Ile Glu Glu 100 105 110

Glu Thr Thr Ser Glu Pro Ser His Lys Asn Ile Gln Arg Ser Thr 115 120 125

Pro Asn Val Pro Ala Phe Trp Thr Met Leu Ala Lys Ala Ile Asn Gly 130 140

Thr Ala Val Val Met Asp Asp Lys Asp Gln Leu Phe His Pro Ile Pro 145 150 155 160

342-10PCT.txt Glu Ser Asp val Asn Ala Thr Gln Gly Glu Asn Gln Pro Asp Leu Glu 165 170 175

Asp Leu Lys Ile Lys Ile Met Leu Gly Ile Ser Leu Met Thr Leu Leu 180 $$185\$

Leu Phe Val Val Leu Leu Ala Phe Cys Ser Ala Thr Leu Tyr Lys Leu 195 200 205

Arg His Leu Ser Tyr Lys Ser Cys Glu Ser Gln Tyr Ser Val Asn Pro 210 215 220

Glu Leu Ala Thr Met Ser Tyr Phe His Pro Ser Glu Gly Val Ser Asp 225 230 235 240

Thr Ser Phe Ser Lys Ser Ala Glu Ser Ser Thr Phe Leu Gly Thr Thr 245 250 255

Ser Ser Asp Met Arg Arg Ser Gly Thr Arg Thr Ser Glu Ser Lys Ile 260 265 270

met Thr Asp Ile Ile Ser Ile Gly Ser Asp Asn Glu Met His Glu Asn 275 280 285

Asp Glu Ser Val Thr Arg

<210> 225 <211> 24 <212> DNA <213> künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 225

tgaatgctac acagggagaa aatc

24

<210> 226

<211> 21

<212> DNA

künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 226

tgaaagtaag acatcgtggc c

21

<210> 227

<211> 309

DNA

Homo sapiens

<400> 227

atgaccacag ccacccctct gggggatacc accttcttct cactgaacat gaccaccagg

60

342-10PCT.txt ggagaagact tcctgtataa gagttctgga gccattgttg ctgccgttgt ggtggttytc 120 180 atcatcatct tcaccgtggt tctgatcctg ctgaagatgt acaacaggaa aatgaggacg 240 aggcgggaac tagagcccaa gggccccaag ccaaccgccc cttctgccgt gggcccaaac 300 agcaacggca gccaacaccc agcaactgtg accttcagtc ctgttgacgt ccaggtggag 309 acgcgatga <210> 228 102 <211> <212> PRT <213> Homo sapiens <400> 228 Met Thr Thr Ala Thr Pro Leu Gly Asp Thr Thr Phe Phe Ser Leu Asn 1 5 10 15 Met Thr Thr Arg Gly Glu Asp Phe Leu Tyr Lys Ser Ser Gly Ala Ile 20 25 30 val Ala Ala val val val val Ile Ile Ile Phe Thr val val Leu 35 40 45 Ile Leu Leu Lys Met Tyr Asn Arg Lys Met Arg Thr Arg Arg Glu Leu 50 60 Glu Pro Lys Gly Pro Lys Pro Thr Ala Pro Ser Ala Val Gly Pro Asn 65 70 75 Ser Asn Gly Ser Gln His Pro Ala Thr Val Thr Phe Ser Pro Val Asp 85 90 95 val Gln Val Glu Thr Arg <210> 229 <211> 19 <21.2> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 229 19 ggggatacca ccttcttct <210> 230 18 <211> <212> DNA künstliche Sequenz <213> <220> oligonukleotid <223> <400> 230

agttgctggg tgttggct

18

342-10PCT.txt

<210> 231 <211> 2510 <212> DNA <213> Homo sapiens <400> 231 gactttttaa taatagtc

60 gactttttaa taatagtcgt tctgactgat gtgaaatgga gtctctttgt ggttctgatt tgcatctctg atgatgcatg atgttgacca gtttttaata tgtttgttga ctgcttgtat 120 180 qtcttctttt aagaagtgtc tgttcatatc ctttgccctt tcgcttctat gcaccaataa cacccaggct gagagtcaaa ccaagaacac aatcctgact acagtagcca taaagaaaat 240 300 gaaatacctg ggaatacacc taatcaaaaa catgaaagca ctctctagag ggagaactac 360 aaaacattqc tqaaagaaat caqagatgat tctctgaaaa agaagtcaga ttagaaatga 420 ttctctqaaa aaqaaatcat ctctgatttc tttcagcagt gtgttttttg tttgtttgtt 480 tgttttgaga cagagtcttg ctctgtcgcc aaggctggag ggcaatggca tgatttcagc tcactacaac ctcctgctcc tgggttcgag cgattctcct acctcagcct cccgagtagc 540 600 tgggattaca ggaggctgag aaaatgttag aaattggggg agacaagttt cccttagaga 660 gcaggaagtt actaagtagt cctggaaaga acatcagttg cagatgtgac ccctctgaga 720 ttaatatatc tgatgaaatg cctaaaacta cagtttggaa agctctcagt atgaattctg 780 gaaatgcaaa ggaaaagagt ctcttcaact aagagtcttt gctgggatgg aagatttggg ccgtgtggtg cctcagggaa gttctggtta cagagaaaat ggcgagtctc tcagagaaga 840 agcaagacca agtctggccc tgtccttggt catctcaaag ccatgccgaa gcattcagtt 900 960 attottggtg tgcattggaa ggcatccagc tatccccata ccagcagcca gtcaccagat 1020 gtgaatgtgg aagcagaaga ccacctcctg ttggttcttc tcctcttcct tcttttctc 1080 tttagaacqq ccaccattqa agacctagct tcccattttc cagacgtttt ctctgaaatt ctctgctggc ctgccaagcc atatggattc attctgccac tgaggagtcc ttcagtgagg 1140 1200 tccctcttcc taaaggacag agtggggagt aggaggggaa cagagaggac atcctctctg 1260 qctctccaqt qctcttagtg tctacaggct cctaggcagc cctgggcctt ggtttgatta cctccctgg gggatgctgg tcagacccag aggttgtcag gaggtcagct accaggaaga 1320 tccatgatct gggcattggc agtgcctgcc accacagcca ggaagatgcc tctgacctgg 1380 1440 gtgcatctcc atcactcctt agcagcagcc tgcataactg gcaagaatct tggatgatac 1500 aagagccaag aagggacatt tgagttgtgt cgcttagata ggaaagggat ccagggaaaa 1560 tcaacagtaa gtgaggatga gcagtgtctc ttggttttca ttgaggatag agtaagagat 1620 tgagtttaga ttgcaacaga aggaattagt ttagatacca ggaagaactt cctagcctga 1680 agatttgtca tagtgtctgc tttctagata tctgggaaag atttgataat agttgtttgt gaatagaaag gaggatatga tgtttttatt ggccattttg cgggactctt cgacttcttg 1740 1800 ctgctgtctc ttgaggatac attccaattc catcctggcg agatccaagt gcttacgtac

WO 2005/030250 PCT/EP2004/010697 176/223

	342-10PCT.txt								
tgtctcctta gctgccttag agtaaacgat	•								
gccatgtggt trcttcatca tcatggattt	cttttggttg acaaacattc tggctctcag								
atgcaaaaag tcacactggg aaatgaactg	taagtggtga aattagtttt ggtatttaat								
ttaaaactac atttatagtt tttctcttct	cttctatgtt gcaatgaatg taaagtattt								
gggatccagt gcttataaac ctttccttcc	tttgtgcaca gaatgtaact agcaagccca								
ttagcaccca gataattcta tcatgttagt	ttcccatcct ggaaaatctt tgtacagtgg								
gaagttcccc gatgtgtttt tctttcttag	gtgaagggtt ggctatatca ctttattgaa								
ttttgcattc cttagacttt taaaatatac	taatgtattc tagtcttact ctaaagacct								
ttgatgttaa aggaatcctt catttatttc	atattcccta tctcataggg ccacaattat								
tttaatacag agatgatttt caaaatattt	taacaactgg tacaggacag atgccagcca								
ctcagaaggg atgcctgctg taaacaagca	gtatgtatgg ttgtaccaat gcctattggc								
tgaacattat gctactttca gatattaaaa	tggtgttcct ttgaatcgtg								
<210> 232 <211> 164 <212> PRT <213> Homo sapiens									
<400> 232									
Met Gln Arg Lys Arg Val Ser Ser T 1 5	hr Lys Ser Leu Cys Trp Asp Gly 10								
Arg Phe Gly Pro Cys Gly Ala Ser G 20	ily Lys Phe Trp Leu Gln Arg Lys 5 30								
Trp Arg Val Ser Gln Arg Arg Ser L	ys Thr Lys Ser Gly Pro Val Leu 45								
Gly His Leu Lys Ala Met Pro Lys H 50 55	is Ser Val Ile Leu Gly Val His 60								
Trp Lys Ala Ser Ser Tyr Pro His T 65 70	hr Ser Ser Gln Ser Pro Asp Val 75								
Asn Val Glu Ala Glu Asp His Leu L 85	eu Leu Val Leu Leu Phe Leu 90 95								
Leu Phe Leu Phe Arg Thr Ala Thr I	le Glu Asp Leu Ala Ser His Phe 05 110								
Pro Asp Val Phe Ser Glu Ile Leu C	ys Trp Pro Ala Lys Pro Tyr Gly 125								

Phe Ile Leu Pro Leu Arg Ser Pro Ser Val Arg Ser Leu Phe Leu Lys 130 140

342-10PCT.txt Asp Arg Val Gly Ser Arg Arg Gly Thr Glu Arg Thr Ser Ser Leu Ala 145 150 155 160								
Leu Gln Cys Ser								
<210> 233 <211> 20 <212> DNA <213> künstliche Sequenz								
<220> <223> Oligonukleotid								
<400> 233 gaggctgaga aaatgttaga	20							
<210> 234 <211> 18 <212> DNA <213> künstliche Sequenz								
<220> <223> Oligonukleotid								
<400> 234 tccatcccag caaagact	18							
<210> 235 <211> 1977 <212> DNA <213> Homo sapiens								
<pre><400> 235 cgtgggcttg aggacctgga gagagtagat cctgaagaac tttttcagtc tgctgaagag</pre>	60							
cttggaagac tggagacaga aggcagagtc tcaggctctg aaggtataag gagtgtgagt	120							
tcctgtgaga aacactcatt tgattgtgaa aagacttgaa ttctatgcta agcagggtto	180							
caagtagcta aatgaatgat ctcagcaagt ctctcttgct gctgctgcta ctcgtttaca	240							
tttattgatt acttacgatg attcaggtac tgttgtaagt gctttacatg ctgttatacg	300							
agactcttgg gagaaatcac tttaatgaag cttgagacac atggcattgc catgcaatga	360							
tttttccccc ctcttcacgg gatcagaggg aactaataga atgtgacaat gattctttag	420							
cagggactgc tgaggcttct ggttcctttt taagatctgc agtgaaagaa gatgagaaac	480							
atggatatgc cottottttg gtccccctct tcctttattt gatctctact tccttctata	540							
aatatattag ggctacattg tccctttgta tttcaaacaa ggcaaaaaga ggttgtaatt	600							
acactttact gcaatcctca gtttctccag ggaacaggaa tgcaaaggct ttgaaggcct	660							
ctctatttgc tgacatggtc agctgggtgc catgggccaa gtccttctgt tgccctcctc	720							
tgtcaccaag taagctaggt cctttctgag gctcaggttt gctgtgatga tgatcacttt	780							
taggcagaag gttagaggcc tcatgagtgc tatatggact ttattaggct ttagatttga	840							
tggggaataa gggatgtgat ttgtcttttg ggaactcatc tttgattcat cattgtctct	900							

342-10PCT.txt 960 tggtatcttg gaatttccat gtcattacag tctacagaat gaaagagtaa cctgtcccag 1020 aggagaggca ggtgaaagac tccacagcat gctcattctc attctgtctt ctcagtgaca 1080 ccgaggttta ctgagtgccc actatgtgcc aagcactgtg ctcagggctt tctttgtatg 1140 catgatetea gtgaatetea ecaageetea tetggaaaac ggggacaaat taacaacagg 1200 atggcaaatt gaaaaacacg taaccatgtt ctacagatgg aaaggggtgc ttggttatta 1260 tgaaggcccc ctcgcaagcg tgtgggacat gggtgtgttc tctgggttgt actgatcaga 1320 tcaaggacct cocccaccct totcacacte tgcccacttc cgccctttgc ttatcagacc 1380 cttagccagt gactcattcc agaaccagaa ccttggtgaa atctcaaccg acaccagaga tcggtgtctt cagtcctaga ctgatggaga aaatccagaa tatatactag aagctccaaa 1440 1500 tgctctgggt ttcagctcct ctgtgctgtg gacactgact ttggctcaga actccgattt 1560 agtacaaaag gctcattttt atttcagggg cactcttcct aaagcaaacc taataaatga 1620 aatatggaat tcacagatac acacacacat taaaaaaatta acctagtgta tctgtgagga 1680 qtaqqcagaa attcactgta taaaagaatg cttcatttca tagagaattt gtgttaagat 1740 tocattagat agtacattto toaaagattt ttgaggttgt atttgcttta ccaaaacttg 1800 gtttatgtaa gtggaaaaag catgttgcaa aataacttgg tgtctatgat tcagtttatg 1860 taaaataata aatgtatgta ggaatacgtg tgttgaaaga tgtacatcaa tttgctaaca atggttatct ctgacgtggt gggatttgag atgtgttttt ctttttggtt gtattttct 1920 1977 ctattgtttg acttaacaca gaacatgttt ggttacaaca ataaagttat tgaagac

<210> 236 <211> 130

<212> PRT

<213> Homo sapiens

<400> 236

Met Ile Phe Pro Pro Ser Ser Arg Asp Gln Arg Glu Leu Ile Glu Cys 1 5 10 15

Asp Asn Asp Ser Leu Ala Gly Thr Ala Glu Ala Ser Gly Ser Phe Leu 20 25 30

Arg Ser Ala Val Lys Glu Asp Glu Lys His Gly Tyr Ala Leu Leu Leu 40 45

Val Pro Leu Phe Leu Tyr Leu Ile Ser Thr Ser Phe Tyr Lys Tyr Ile 50 60

Arg Ala Thr Leu Ser Leu Cys Ile Ser Asn Lys Ala Lys Arg Gly Cys 65 70 75

Asn Tyr Thr Leu Leu Gln Ser Ser Val Ser Pro Gly Asn Arg Asn Ala 85 90 95

Lys Ala	ı Leu	Lys 100	Ala	Ser	Leu	Phe			PCT. Met		Ser	⊤rp 110	٧a٦	Pro	
Trp Ala	Lys 115	Ser	Phe	Cys	Cys	Pro 120	Pro	Leu	ser	pro	Ser 125	Ly5	Leu	Gly	
Pro Phe 130			,												
<210> <211> <212> <213>	237 18 DNA küns	tlicl	ne S	equ e :	nz										
<220> <223>	olig	onuk [*]	l eot	id											
<400> atgatto	237 cttt	agca	ggga												18
<210> <211> <212> <213>	238 18 DNA küns	tlic	he S	eque	nz					١					
<220> <223>	olig	onuk	leot	id											
<400> ctcttt	238 ttgc	cttg	tttg												18
<210> <211> <212> <213>	239 1293 DNA Homo	sap	iens												
<400> aggccga	239 aggg	gttc	ggcg	ac g	cgga	ggga	g gg	agag	tctg	ggc	cgcg	cgg	gagc	cgcag	g 60
gcgccc.	tagc	cttc	gcag	aa a	cgat	ggcg	g ag	gaag	aagg	acc	acct	gta	gagc	tg c gc	c 120
aaagaa	aaaa	gcca	aagt	ct t	caga	aaat	a ag	gaat	ctgc	caa	ag a a	gag	aaaa	tcagt	g 180
acattc	caat	tcct	gaaa	ga g	ctcc	aaaa	c at	gtat	tatt	tca	acgo	ttt	gcaa	agatt	t 240
tcattg	gctg	tctt	gcag	cg g	ttac	tagt	g gt	atga	tgta	tgc	tctc	tac	ttat	cagca	at 300
accatg	aacg	gaaa	ttct	gg t	tttc	caac	a gg	cagg	agct	tga	acgg	gaa	atca	cgttt	c 360
agggtg	acag	tgcc	attt	at t	acto	ctat	t at	aaag	atat	gtt	aaag	gca	cctt	cattt	g 420
aaagag	gtgt	ttac	gaac	tg a	caca	.caat	a ac	aaaa	ctgt	ato	tctg	aag	acta	taaat	g 480
cagtgc	agca	aatg	tctc	tg t	atco	ggaa	c tt	attg	ctag	cat	ttta	tat	caag	ccact	g 540
gtagca	atga	gatt	attg	ag c	cagt	gtat	t tc	tata	ttgg.	cat	tgtt	ttt	ggat	tgcaa	ag 600
gaatat	atgt	tact	gctt	ta t	ttgt	taca	a gt	tggc	ttat	gag	tgga	.aca	tggc	tagca	ag 660
gaatgc	ttac	tgtt	gcgt	gg t	tcgt	tatt	a ac	agtt	gcac	aga	cccc	tgg	taca	gtgtg	gg 720
gaggtg	acaa	caca	ggat	at t	aata	ccag	g ag	gcag	gaat	cat	tggg	acc	gtct	tggag	gg 780

342-10PCT.txt ctggctacca cattcaatta actttgctat taatttcatg taatccctat atctgtcttc 840 atatttgaag aggaaaagat actttctcat gtaaacataa tggttttaaa gaataagact 900 ctcttatgct acttaaacaa aagaataaga ctctctttag agatcttagt gagaattgta 960
acacegung aggacungae accessors granteen egg
ctcttatgct acttaaacaa aagaataaga ctctctttag agatcttagt gagaattgta 960
"
agaaataaaa taaacagaag tctgactgcc ttatttgatg tcactgatgt atgttgtatt 1020
gctggagtag aagttaaata gaaaaattga cctggtatat tctactcaaa tgtatctttt 1080
gacaattgaa atgttcttaa tagctaagtt ttaaaaaatg cgtttgtttg ctttttgttt 1140
atattttatt ggtatgtatc ttgtactgca aaatacattt taatgccatg aaagaatatg 1200
ctgtctcttt attcatcagc tttatagctt ttatttatat atgacttctt agaaaagtat 1260
aaaaagatat taaagtcatt ccattatatt atg . 129
<210> 240 <211> 219 <212> PRT <213> Homo sapiens <400> 240

Met Ala Glu Glu Glu Gly Pro Pro Val Glu Leu Arg Gln Arg Lys Lys 10 15

Pro Lys Ser Ser Glu Asn Lys Glu Ser Ala Lys Glu Glu Lys Ile Ser 20 25 30

Asp Ile Pro Ile Pro Glu Arg Ala Pro Lys His Val Leu Phe Gln Arg 35 40 45

Phe Ala Lys Ile Phe Ile Gly Cys Leu Ala Ala Val Thr Ser Gly Met 50 55

Met Tyr Ala Leu Tyr Leu Ser Ala Tyr His Glu Arg Lys Phe Trp Phe 65 70 75 80

Ser Asn Arg Gln Glu Leu Glu Arg Glu Ile Thr Phe Gln Gly Asp Ser 85 90 95

Ala Ile Tyr Tyr Ser Tyr Tyr Lys Asp Met Leu Lys Ala Pro Ser Phe 100 105 110

Glu Arg Gly Val Tyr Glu Leu Thr His Asn Asn Lys Thr Val Ser Leu 115 120 125

Lys Thr Ile Asn Ala Val Gln Gln Met Ser Leu Tyr Pro Glu Leu Ile 130 140

Ala Ser Ile Leu Tyr Gln Ala Thr Gly Ser Asn Glu Ile Ile Glu Pro 145 150 160

Val Tyr Phe Tyr Ile Gly Ile Val Phe Gly Leu Gln Gly Ile Tyr Val . 165 170 175

342-10PCT.txt

Thr Ala Leu Phe Val Thr Ser Trp Leu Met Ser Gly Thr Trp Leu Ala Gly Met Leu Thr Val Ala Trp Phe Val Ile Asn Ser Cys Thr Asp Pro 195 200 205 Trp Tyr Ser Val Gly Gly Asp Asn Thr Gly Tyr 210 215 <210> 241 19 <211> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 241 19 accgctgcaa gacagccaa 242 <210> <211> 20 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 242 20 gcagaaacga tggcggagga <210> 243 1291 <211> <212> DNA <213> Homo sapiens <400> 243 60 atcatgtatt ccattgccac tggaggcttg gttttgatgg cagtgtttta tacacagaaa 120 gacagctgca tggaaaacaa aattctgctg ggagtaaatg gaggcctgtg cctgcttata 180 tcattggtag ccatctcacc ctgggtccaa aatcgacagc cacactcggg gctcttacaa 240 traggggtra taagetgeta tgtracetar ctracettet ragetrigte ragraaacet 300 gcagaagtag ttctagatga acatgggaaa aatgttacaa tctgtgtgcc tgactttggt caagacctgt acagagatga aaacttggtg actatactgg ggaccagcct cttaatcgga 360 420 tgtatcttgt attcatgttt gacatcaaca acaagatcga gttctgacgc tctgcagggg cgatacgcag ctcctgaatt ggagatagct cgctgttgtt tttgcttcag tcctggtgga 480 gaggacactg aagagcagca gccggggaag gagggaccac gggtcattta tgacgagaag 540 aaaggcaccg tctacatcta ctcctacttc cacttcgtgt tcttcctagc ttccctgtat 600

qtqatqatqa ccqtcaccaa ctqqttcaac tacgaaagtg ccaacatcga gagcttcttc

agcgggagct ggtccatctt ctgggtcaag atggcctcct gctggatatg cgtgctgttg

660

720

WO 2005/030250 PCT/EP2004/010697 182/223

1291

342-10PCT.txt tacctgtgta cgctggtcgc tcccctctgc tgccccaccc gggagttctc tgtgtgatga 780 tatcggcggt cccctgggct ttgtgggcct acagcctgga aagtgccatc ttttgaacag 840 tgtccccggg gcagggactg gcgccctgtg cctgagtggg tctgaaaaag ctttgagaga 900 gaaaaaaaaa aatctcctga ttagcttttt acttttgaaa ttcaaaaaga aactaccagt 960 1020 ttgtcccaaa ggaattgaaa ttttcaacca aactgatcat ggttgaaata tcttacccct aggaactgga taccagttat gttgacttcc ttctgcatgt ttttgccaaa acagaatttg 1080 1140 gggcacagca tottttcaca gggataaaaa tatottgtgg ggccagtcat totcatooto 1200 ggaatagaaa aacatgccaa aatcttgagt ccccagcgcc taacagaatc cagacccctc 1260 teacteactt eegeetetta gageettgte eecaggggge tttqaggaca ggaeteagee

<210> 244 <211> 257 <212> PRT <213> Homo sapiens

<400> 244

tgcagggccc ctggtattta tagggtccaa g

Met Tyr Ser Ile Ala Thr Gly Gly Leu Val Leu Met Ala Val Phe Tyr 1 10 15

Thr Gln Lys Asp Ser Cys Met Glu Asn Lys Ile Leu Leu Gly Val Asn 20 25 30

Gly Gly Leu Cys Leu Leu Ile Ser Leu Val Ala Ile Ser Pro Trp Val 40 45

Gln Asn Arg Gln Pro His Ser Gly Leu Leu Gln Ser Gly Val Ile Ser 50 60

Cys Tyr Val Thr Tyr Leu Thr Phe Ser Ala Leu Ser Ser Lys Pro Ala 65 70 75 80

Glu Val Val Leu Asp Glu His Gly Lys Asn Val Thr Ile Cys Val Pro 85 90 95

Asp Phe Gly Gln Asp Leu Tyr Arg Asp Glu Asn Leu Val Thr Ile Leu 100 105

Gly Thr Ser Leu Leu Ile Gly Cys Ile Leu Tyr Ser Cys Leu Thr Ser 125

Thr Thr Arg Ser Ser Ser Asp Ala Leu Gln Gly Arg Tyr Ala Ala Pro 130 140

Glu Leu Glu Ile Ala Arg Cys Cys Phe Cys Phe Ser Pro Gly Glu 145 150 155 160

342-10PCT.txt Asp Thr Glu Glu Gln Gln Pro Gly Lys Glu Gly Pro Arg Val Ile Tyr
165 170 175 Asp Glu Lys Lys Gly Thr Val Tyr Ile Tyr Ser Tyr Phe His Phe Val 180 185 190 Phe Phe Leu Ala Ser Leu Tyr Val Met Met Thr Val Thr Asn Trp Phe 195 200 205 Asn Tyr Glu Ser Ala Asn Ile Glu Ser Phe Phe Ser Gly Ser Trp Ser 210 215 220 Ile Phe Trp Val Lys Met Ala Ser Cys Trp Ile Cys Val Leu Leu Tyr 225 230 240 Leu Cys Thr Leu Val Ala Pro Leu Cys Cys Pro Thr Arg Glu Phe Ser 250 255 Val <210> 245 <211> 18 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 245 agtcaggcac acagattg 18 246 <210> <211> 18 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 246 ttctgctggg agtaaatg 18 <210> 247 <211> 2412 <212> DNA <213> Homo sapiens <400> 247 gaacccaggc atcctgggct ccagctgaaa ccattgcatg tggctttccc catccctggc 60 cccgtgactc agtccctctg aagggagcag ccctctttt tggcaatcac cagggaggtg 120 180 gggggaggag gaggggagct aggtggtgac atcacagtcg aaggttataa aagcttccag ccaaacggca ttgaagttga agatacaacc tgacagcaca gcctgagatc ttggggatcc 240 ctcagcctaa cacccacaga cgtcagctgg tggattcccg ctgcatcaag gcctacccac 300 WO 2005/030250 PCT/EP2004/010697
184/223

tgtctccatg ctgggctctc cctgccttct gtggctcctg gccgtgacct tcttggttcc 360

420 cagageteag ecettggeee etcaagaett tgaagaagag gaggeagatg agaetgagae 480 ggcgtggccg cctttgccgg ctgtcccctg cgactacgac cactgccgac acctgcaggt 540 gccctgcaaq gaqctacaga gggtcgggcc ggcggcctqc ctgtgcccag gactctccag 600 ccccgcccag ccgcccgacc cgccgcgcat gggagaagtg cgcattgcgg ccgaagaggg ccgcgcagtg gtccactggt gtgccccctt ctccccggtc ctccactact ggctgctgct 660 720 ttgggacggc agcgaggctg cgcagaaggg gcccccgctg aacgctacgg tccgcagagc 780 cgaactgaag gggctgaagc cagggggcat ttatgtcgtt tgcgtagtgg ccgctaacga ggccggggca agccgcgtgc cccaggctgg aggagagggc ctcgaggggg ccgacatccc 840 900 tgccttcggg ccttgcagcc gccttgcggt gccgcccaac ccccgcactc tggtccacgc 960 ggccgtcggg gtgggcacgg ccctggccct gctaagctgt gccgccctgg tgtggcactt ctgcctgcgc gatcgctggg gctgcccgcg ccgagccgcc gcccgagccg caggggcgct 1020 1080 ctgaaagggg cctgggggca tctcgggcac agacagcccc acctggggcg ctcagcctgg 1140 cccccgggaa agaggaaaac ccgctgcctc cagggagggc tggacggcga gctgggagcc agccccaggc tccagggcca cggcggagtc atggttctca ggactgagcg cttgtttagg 1200 tccggtactt ggcgctttgt ttcctggctg aggtctggga aggaatagaa aggggccccc 1260 1320 aattttttt taageggeea garaataaat aatgtaacet ttgeggttta agaggataaa 1380 atggaggata ttattatgtg ggtatttata tgacctttgt aaccatttaa aaatgtaaaa 1440 acgacctgac ttagtaatgc gaacctatag tagcagctac tccagaggct gaaatgggag gatetettga geecaggagt tggagteeag tecagecagg geaacacage cagaegeeet 1500 1560 tgttttttat tttgttttgt tttggttttt tgttttttga ggagtttccc tctgtcacac aagctggagg gcaatggcgc catctcagct cactgcaacg tccacctcct gggttcaagc 1620 gattctcctg cctcagcatc ctaattagtt gggattacag gcgcccacca ccatgcccgg 1.680 1740 ctaatttttg tgttttttta gtagagacgg ggtttcacca tgttgtcagg ctggtctcaa 1800 actectgace teaggtacte caccegeett ggteteteaa agtgetggga ttacaggeat 1860 aagccactgt gcccaggcag accccttct ttaaagatgt aaaacccggc cgggcgcggt 1920 ggctcacgcc tgtaatccca gcactttggg aggctgaggc gggcagatca cgaagtcagg agatcgagac catcctggct aacacggtga aaccccgtct ctactaaaaa tacaaaaatt 1980 2040 agccgggcat ggtggtgggt acctgtagtc ccagctactc cggaggctga ggcaggagaa 2100 tggcgtgaac ccgggaggcg gatcttgcag tgagcggaga ttgcaccact gcactccagc 2160 ctgggtgaca gagcaagact ccctctcaaa agaaaaagaa aaaagatgta aaaaccattc 2220 ttagtttgtg ggccttacaa atcaggccac tggcccattg cttgtagtta gttgatccat 2280 gtcatgcacc ctaaaaatgg ctctgtcact gtgagtggct tcagtaggat tttgagaata 2340 agtttatatt cttgctaggt aaaacaaaac aaaaacgaca gtaataccaa ggaatctccc

2400 2412

342-10PCT.txt ccccctttta ccctccattt gtgtttattg catatccact ataacaacat taaaggacct ttaaaaggaa gt <210> 248 238 <213> Homo sapiens <400> 248 Met Leu Gly Ser Pro Cys Leu Leu Trp Leu Leu Ala Val Thr Phe Leu 1 5 10 15 Val Pro Arg Ala Gln Pro Leu Ala Pro Gln Asp Phe Glu Glu Glu Glu 25 30 Ala Asp Glu Thr Glu Thr Ala Trp Pro Pro Leu Pro Ala Val Pro Cys
40
45 Asp Tyr Asp His Cys Arg His Leu Gln Val Pro Cys Lys Glu Leu Gln 50 60 Arg Val Gly Pro Ala Ala Cys Leu Cys Pro Gly Leu Ser Ser Pro Ala 65 70 75 80 Gln Pro Pro Asp Pro Pro Arg Met Gly Glu Val Arg Ile Ala Ala Glu 85 90 95 Glu Gly Arg Ala Val Val His Trp Cys Ala Pro Phe Ser Pro Val Leu 100 105 110 His Tyr Trp Leu Leu Leu Trp Asp Gly Ser Glu Ala Ala Gln Lys Gly 125 Pro Pro Leu Asn Ala Thr Val Arg Arg Ala Glu Leu Lys Gly Leu Lys 130 135 140 Pro Gly Gly Ile Tyr Val Val Cys Val Val Ala Ala Asn Glu Ala Gly 145 150 155 Ala Ser Arg Val Pro Gln Ala Gly Gly Glu Gly Leu Glu Gly Ala Asp 165 170 175 Ile Pro Ala Phe Gly Pro Cys Ser Arg Leu Ala Val Pro Pro Asn Pro 180 185 190 Arg Thr Leu Val His Ala Ala Val Gly Val Gly Thr Ala Leu Ala Leu 195 200 205 Leu Ser Cys Ala Ala Leu Val Trp His Phe Cys Leu Arg Asp Arg Trp 210 220

342-10PCT.txt Gly Cys Pro Arg Ala Ala Ala Arg Ala Gly Ala Leu 225 230									
<210> 249 <211> 18 <21.2> DNA <213> künstliche Sequenz									
<220> <223> Oligonukleotid									
<400> 249 atccctcagc ctaacacc	18								
<210> 250 <211> 18 <212> DNA <213> künstliche Sequenz									
<220> <223> Oligonukleotid									
<400> 250 gccgtctcag tctcatct	1.8								
<210> 251 <211> 1024 <212> DNA <213> Homo sapiens									
<400> 251 gagcgccagg ggttccagct gcacgtccca ggctctccag cgcgcggcag gccggggcgg	60								
gacgaggaga gctgcgggga caacgcctgt ggctgggtcc ggaggtgcgg gtgcggcgcg	120								
ggacaagcgg gcagcatgct cagggcggtc gggagcctac tgcgccttgg ccgcgggcta	180								
acagtccgct gcggccccgg ggcgcctctc gaggccacgc gacggcccgc accggctCtt	240								
ccgccccggg gtctcccctg ctactccagc ggcggggccc ccagcaattc tgggccccaa	300								
ggtcacgggg agattcaccg agtccccacg cagcgcaggc cttcgcagtt cgacaagaaa	360								
atcctgctgt ggacagggcg tttcaaatcg atggaggaga tcccgcctcg gatcccgcca	420								
gaaatgatag acaccgcaag aaacaaagct cgagtgaaag cttgttacat aatgattgga	480								
ctcacaatta tcgcctgctt tgctgtgata gtgtcagcca aaagggctgt agaacgacat	540								
gaatccttaa caagttggaa cttggcaaag aaagctaagt ggcgtgaaga agctgcattg	600								
gctgcacagg ctaaagctaa atgatattct aagtgacaaa gtgttcacct gaataccatc	660								
cctgtcatca gcaacagtag aagatgggaa aaatagaata tttaccaaaa tatctgccat	720								
ggttttattt tggtaacaag aagcacaatg tctttttat ttttatttt tagtaaactt	780								
ttactgaagt ataccatgca ttcaaaaagt ggacaaaact gtatacagtc tgatagatat	840								
ttatgtcgtg aacacctgtg taaccactgc caaagtgaag atgtagaata ttggcaacac	900								
ttcacagcct cattcctgcc ttttctcagc cattacctcc caaacatagc agtttttctg	960								
agtttcatca cctttgattc attttgcctg tttttgaact ttatataaat ggatttatac	1020								

342-10PCT.txt atta 1024

<210> 252 <211> 162

<212> PRT <213> Homo sapiens

<400> 252

Met Leu Arg Ala Val Gly Ser Leu Leu Arg Leu Gly Arg Gly Leu Thr $1 \hspace{1cm} 5 \hspace{1cm} 10$

Val Arg Cys Gly Pro Gly Ala Pro Leu Glu Ala Thr Arg Arg Pro Ala 20 25 30

Pro Ala Leu Pro Pro Arg Gly Leu Pro Cys Tyr Ser Ser Gly Gly Ala 35 40

Pro Ser Asn Ser Gly Pro Gln Gly His Gly Glu Ile His Arg Val Pro 50 55 60

Thr Gln Arg Arg Pro Ser Gln Phe Asp Lys Lys Ile Leu Leu Trp Thr 65 70 75 80

Gly Arg Phe Lys Ser Met Glu Glu Ile Pro Pro Arg Ile Pro Pro Glu 85 90 95

Met Ile Asp Thr Ala Arg Asn Lys Ala Arg Val Lys Ala Cys Tyr Ile 100 105 110

Met Ile Gly Leu Thr Ile Ile Ala Cys Phe Ala Val Ile Val Ser Ala 115 120 125

Lys Arg Ala Val Glu Arg His Glu Ser Leu Thr Ser Trp Asn Leu Ala 130 140

Lys Lys Ala Lys Trp Arg Glu Glu Ala Ala Leu Ala Ala Gln Ala Lys 145 150 155 160

19

Ala Lys

<210> 253

<211> 19

<212> DNA <213> künstliche Sequenz

<220> <223> Oligonukleotid

<400> 253

attatcgcct gctttgctg

<210> 254 <211> 22 342-10PCT.txt

342-10PCT.txt	
<212> DNA <213> künstliche Sequenz	
<220> <223> Oligonukleotid	
<400> 254 ttcccatctt ctactgttgc tg	22
<210> 255 <211> 852 <212> DNA <213> Homo sapiens	
<pre><400> 255 ttagggcgag tttaaggcac tgtggcagct gtgagataaa gtctggttcc tccccagctg</pre>	60
gctcaggaaa tgttcgcgga tacaacggcg gccccctctg ggcatacctg cctgtggagc	120
ggagagtgga cggtgtgagg gggaccggga gaggcaccaa atctggcctg ggggcccgag	180
aagcttcctc tcagtgacca caatatgaat gggaacagca agatggcaaa agcttgctga	240
gtggtacagc gccagcctgg gtagtggcct ccccagcaag ttgcatgtca ctagcttcct	300
gtggctgtca ctcctgggcc caggcacctc cgaagatcag cacctcctca tgggctcaag	360
cgaggacagg agcccgtcac ccatgagctc tcaagggcag agccactgtc ctgtctcgat	420
ggctccaccg tgactccagt ggactttgga cagtggggag caggcccaac agggccactc	480
ggatgtggtc actctggatt tgggtggatc agcaccaagc tagactcatc cccagccccc	540
aggtgctgtt gctgctcctg cgtgaggccc catccacagc tgcagctgtg gcagggtggc	600
tagtggtggc cagcatggcc ctgctgcagc tccacgctgt ggggggcgtg gccctgacca	660
gcagccaccc ctccatgtgg gccacagggg aggagcttag gaagccgcct tggcaaggtt	720
ccgcaggctc tgcgtctggt gtggaagagc tcacggggaa gcactcctgc ccaggacccg	780
aggagccggc caccgttcag aaggccccag cttgaaggcc tggagagccg cccagcagca	840
caacacaggg aa	852
<210> 256 <211> 110 <212> PRT <213> Homo sapiens	
<400> 256	
Met Trp Ser Leu Trp Ile Trp Val Asp Gln His Gln Ala Arg Leu Ile 1 15	
Pro Ser Pro Gln Val Leu Leu Leu Leu Leu Arg Glu Ala Pro Ser Thr 20 25 30	
Ala Ala Ala Val Ala Gly Trp Leu Val Val Ala Ser Met Ala Leu Leu 35 40 45	

Gln Leu His Ala val Gly Gly Val Ala Leu Thr Ser Ser His Pro Ser 50 60

342-10PCT.txt

Met Trp Ala Thr Gly Glu Glu Leu Arg Lys Pro Pro Trp Gln Gly Ser 65 70 75 80 Ala Gly Ser Ala Ser Gly Val Glu Glu Leu Thr Gly Lys His Ser Cys 85 90 95 Pro Gly Pro Glu Glu Pro Ala Thr Val Gln Lys Ala Pro Ala 100 105 110 257 <210> 18 <211> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 257 18 ttqctqttcc cattcata 258 <210> <211> 19 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 258 19 gataaagtct ggttcctcc 259 <210> 4231 <21.1.> DNA <212> <213> Homo sapiens <400> 60 gcggccgcct ttgcaaggtt gctggacaga tggaactgga agggcagccg tctgccgccc acgaacacct tctcaagcac tttgagtgac cacggcttgc aagctggtgg ctggcccccc 120 gagtcccggg ctctgaggca cggccgtcga cttaagcgtt gcatcctgtt acctggagac 180 240 cctctgagct ctcacctgct acttctgccg ctgcttctgc acagagcccg ggcgaggacc 300 cctccaggat gcaggtcccg aacagcaccg gcccggacaa cgcgacgctg cagatgctgc 360 ggaacccggc gatcgcggtg gccctgcccg tggtgtactc gctggtggcg gcggtcagca 420 tcccgggcaa cctcttctct ctgtgggtgc tgtgccggcg catggggccc agatccccgt 480 cggtcatctt catgatcaac ctgagcgtca cggacctgat gctggccagc gtgttgcctt 540 tccaaatcta ctaccattgc aaccgccacc actgggtatt cggggtgctg ctttgcaacg tggtgaccgt ggccttttac gcaaacatgt attccagcat cctcaccatg acctgtatca 600 660 gcgtggagcg cttcctgggg gtcctgtacc cgctcagctc caagcgctgg cgccgccgtc gttacgcggt ggccgcgtgt gcagggacct ggctgctgct cctgaccgcc ctgtccccgc 720

tggcgcgcac	cgatctcacc	tacccggtgc	342-10PCT. acgccctggg		tgcttcgacg	780
tcctcaagtg	gacgatgctc	cccagcgtgg	ccatgtgggc	cgtgttcctc	trcaccatct	840
tcatcctgct	gttcctcatc	ccgttcgtga	tcaccgtggc	ttgttacacg	gccaccatcc	900
tcaagctgtt	gcgcacggag	gaggcgcacg	gccgggagca	gcggaggcgc	gcggtgggcc	960
tggccgcggt	ggtcttgctg	gcctttgtca	cctgcttcgc	ccccaacaac	ttcgtgctcc	1020
tggcgcacat	cgtgagccgc	ctgttctacg	gcaagagcta	ctaccacgtg	tacaagctca	1080
cgctgtgtct	cagctgcctc	aacaactgtc	tggacccgtt	tgtttattac	tttgcgtccc	1140
gggaattcca	gctgcgcctg	cgggaatatt	tgggctgccg	ccgggtgccc	agagacaccc	1200
tggacacgcg	ccgcgagagc	ctcttctccg	ccaggaccac	gtccgtgcgc	tccgaggccg	1260
gtgcgcaccc	tgaagggatg	gagggagcca	ccaggcccgg	cctccagagg	caggagagtg	1320
tgttctgagt	cccgggggcg	cagcttggag	agccgggggc	gcagcttgga	gatccagggg	1380
cgcatggaga	ggccacggtg	ccagaggttc	agggagaaca	gctgcgttgc	tcccaggcac	1440
tgcagaggcc	cggtggggaa	gggtctccag	gctttattcc	tcccaggcac	tgcagaggca	1500
ccggtgagga	agggtctcca	ggcttcactc	agggtagaga	aacaagcaaa	gcccagcagc	1560
gcacagggtg	cttgttatcc	tgcagagggt	gcctctgcct	ctctgtgtca	ggggacagct	1620
tgtgtcacca	cgcccggcta	atttttgtat	tttttttagt	agagctgggc	tgtcaccccc	1680
gagctcctta	gacactcctc	acacctgtcc	atacccgagg	gtggatattc	aaccagcccc	1740
accgcctacc	cgactcggtt	tctggatatc	ctccgtgggc	gaactgcgag	ccccattccc .	1800
agctcttctc	cctgctgaca	tcgtccctta	gttgtggttc	tggccttctc	cattctcctc	1860
caggggttct	ggtctccgta	gcccggtgca	cgccgaaatt	tctgtttatt	tcactcaggg	1920
gcactgtggt	tgctgtggtt	ggaattcttc	tttcagagga	gcgcctgggg	ctcctgcaag	1980
tcagctactc	tccgtgccca	cttcccccca	cacacacacc	ccaccctgtt	gctgaccaag	2040
gtgatttttg	gcacatttgt	tctggcctgg	cttggtggga	ccccacccct	attctgcttc	2100
tgtgagtccc	tgatagagaa	ggaggtccca	tcaggcccct	ggaacacact	caggcttccc	2160
tgactcagga	caaggaccac	gggaggccca	ggtgcggaaa	ggaggctccg	tgagatgggg	2220
tccagcccat	cccaacacaa	gggtgcagct	tgattcggga	gttccccacc	tcctgcccat	2280
tctccgcgtc	cttttacccc	atggagagcc	tcagccatgg	caagtccatc	tggagtccag	2340
gaagcaggca	actggcctga	cccatgagac	cgtttggaga	ccaagcagca	gatgcaggtg	2400
tggacccca g	gaacctacag	gggtgtcagc	cgctgagccc	cctccctgct	gtgtgggtgg	2460
tgagcaggct	gggtctttgt	ctgtcttctt	ctacacggca	tgtgcctgca	ccagccccaa	2520
cacctgagct	ggtttagcgc	aaagaagagc	tctgactctc	caggggtgct	gggacatcac	2580
gtggaattgg	atcccaggct	ctcttgggcg	agaaagacca	ttctggaggt	gggagtggga	2640
gagctgcctg	tctgcccacg	ggctctgcgt	ctccgcagtg	ggtggccttg	gatgcccggc	2700
ccctcccttt	ctgtgcactg	gggacgctga	tggaggctga	agctgctgtt	cggaggccct	2760

ctattggtgc	ctctctcctg	ccgtcatcac	342-10PCT. tatggcagga		ggtttagtaa	2820
tgaattatca	ttcccaaacc	cgtgtccacc	tggaacatca	ggatgggacc	atgtttgaaa	2880
atcgggtctt	tccaaatgta	attaagtaag	gcgaggccat	actgcattta	caatgggccc	2940
aatccagtgt	ccctatgaga	gacggaagag	gagacacaga	cacaaagcag	gaggccacat	3000
aaagacagag	gcagagactg	aagtgatgct	gccccaagcc	cagggatgcc	tggagtcccc	3060
aggagctggg	agaggcagga	aggaccctcc	cctagagtct	ctggagggaa	ctggatacaa	3120
ttgcagagtg	cactaaacag	ttgccccaga	aagacatgtc	ttgttttaaa	gcccagaacc	3180
tgaaattatt	atagatttta	ttcggtaata	aggaactttg	catgtgtaat	tacttaagga	3240
tatgaagatg	agattgtgct	ggattattaa	gcaccctaaa	tgccatgaca	ggtgtccttc	3300
caagagacag	aagaggagac	acagacacag	agcaggagga	cacgtggaga	cagaggcaga	3360
ctggagtgat	gcggccacaa	gcccagggac	acctggagcc	cccaggagct	gggagaggca	3420
ggaaggatcc	tcccctagag	cctccagggg	gaactggagg	atgcgtaaga	gacccagaac	3480
ttccacagaa	ggaggaaaat	taacctcctg	cttctctaga	ctgttccaaa	gctgaaccct	3540
agaaagcaaa	gctgatacag	aagcatccag	gctgcaggag	tacaggtcgc	aagtgctgag	3600
cgtgggcctt	gggtgtgtct	catgggggaa	aaaaaactgt	gaaaaacctc	agagtagcat	3660
cttcacagta	acgcacggac	gatccctaaa	ctgccttgta	aacaaaaatg	agagcttgag	3720
tcagaggaag	ccgagacaat	atccttcctc	gacaacgtgc	gagaaccctg	acgtccccca	3780
gcaaaggaag	acgttgcaag	caggcaaaat	gcgtcgattt	tttttttttg	tcagtatgat	3840
gatttttgca	gccacttggc	tatggagagc	agccgacacc	ccctcttaca	gccgtggatg	3900
tttcctggaa	gctgactcag	tctgttcact	ggttgagctt	tgagtgaaaa	gataacacag	3960
gtctattgac	tcacacacat	gttttaagat	ggaaaacttt	acttctgttc	ttggcaggac	4020
atggagagag	ggagggattc	caaaaagtct	cagcctccat	caaggcgtgg	cagctcatgc	4080
cggtaatctc	agcactttgg	gaggctcagg	cgggaggact	gattgagtcc	gggtgttcaa	4140
gggccaacct	aggcaacaca	gtgagaactc	atctctgtaa	aaaataaaaa	taaaacatta	4200
aaaaaaaaca	tgagctttga	agtgcacagg	g			4231

Met Gln Val Pro Asn Ser Thr Gly Pro Asp Asn Ala Thr Leu Gln Met 1 5 10 15

Leu Arg Asn Pro Ala Ile Ala Val Ala Leu Pro Val Val Tyr Ser Leu 20 25 30

Val Ala Ala Val Ser Ile Pro Gly Asn Leu Phe Ser Leu Trp Val Leu 35 40 45

<210> 260 <211> 359 <212> PRT <213> Homo sapiens

342-10PCT.txt

Cys Arg Arg Met Gly Pro Arg Ser Pro Ser Val Ile Phe Met Ile Asn 50 55 Leu Ser Val Thr Asp Leu Met Leu Ala Ser Val Leu Pro Phe Gln Ile 65 70 75 80 Tyr Tyr His Cys Asn Arg His His Trp Val Phe Gly Val Leu Leu Cys 85 90 95 Asn Val Val Thr Val Ala Phe Tyr Ala Asn Met Tyr Ser Ser Ile Leu 100 105 110 Thr Met Thr Cys Ile Ser Val Glu Arg Phe Leu Gly Val Leu Tyr Pro 115 120 125 Leu Ser Ser Lys Arg Trp Arg Arg Arg Tyr Ala Val Ala Ala Cys 130 135 140 Ala Gly Thr Trp Leu Leu Leu Leu Thr Ala Leu Ser Pro Leu Ala Arg 145 150 160 Thr Asp Leu Thr Tyr Pro Val His Ala Leu Gly Ile Ile Thr Cys Phe 165 170 175 Asp Val Leu Lys Trp Thr Met Leu Pro Ser Val Ala Met Trp Ala Val 180 185 190 Phe Leu Phe Thr Ile Phe Ile Leu Leu Phe Leu Ile Pro Phe Val Ile 195 200 205 Thr Val Ala Cys Tyr Thr Ala Thr Ile Leu Lys Leu Leu Arg Thr Glu 210 215 220 Glu Ala His Gly Arg Glu Gln Arg Arg Ala Val Gly Leu Ala Ala 225 230 235 240 Val Val Leu Leu Ala Phe Val Thr Cys Phe Ala Pro Asn Asn Phe Val 245 250 255 Leu Leu Ala His Ile Val Ser Arg Leu Phe Tyr Gly Lys Ser Tyr Tyr 260 265 270 His Val Tyr Lys Leu Thr Leu Cys Leu Ser Cys Leu Asn Asn Cys Leu 275 280 285 Asp Pro Phe Val Tyr Tyr Phe Ala Ser Arg Glu Phe Gln Leu Arg Leu 290 295 300 Arg Glu Tyr Leu Gly Cys Arg Arg Val Pro Arg Asp Thr Leu Asp Thr 305 310 320

342-10PCT.txt

Arg Arg Glu Ser Leu Phe Ser Ala Arg Thr Thr Ser Val Arg Ser Glu 325 330 335

Ala Gly Ala His Pro Glu Gly Met Glu Gly Ala Thr Arg Pro Gly Leu 340 350

Gln Arg Gln Glu Ser Val Phe 355

<210> 261 <211> 19 <212> DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 261 cctgttacct ggagaccct <210> 262 <211> 18 DNA künstliche Sequenz <220> <223> Oligonukleotid <400> 262

<400> 262
accagcgagt acaccacg 18

19

<210> 263 <211> 717 <212> DNA <213> Homo sapiens

<400> 263 ggccgggctg gggcttcagc gggaggcagc agaggggaag tggtcagcgt ggcgaatgac 60 ggaagaaact cgcattgtct actggatcaa ggacagacag ctcaccaacc gtgacagcac 120

catactggaa cttcaaaaag ttctgaaaac atgttgtgct cagagcatga aaattttctg 180 ctgtctttgg aactttgtct acaaacagtt agaagatgca gcccaagggc tcaccatggg 240

tggcgatgtt gaagaacatg aagaccttac tgctgatagc accatcttca aatttgtgga 300 agcttataca gagtgggagg tgaagaggtg gtcagacaac aatctgataa tgaaacaaac 360

aaatgtgaag agaagacgct tagatgatgt tggccctgaa ttggaaaagg ctgtctggga 420 gctcggctgc ccacccagca ttcagtgtct gctacctcct gtctgttatg cttgtgtctg 480

gttttttcaa gttttaattt ttttttaat tcttagtttt tgtgggtaca tagtaggtgt 540

atatattat gggttacatg agatgttttg atacaggcat gcaatatgta ataatcacct 600

catggagaat ggggtaccca tcacatcaag catttatcct ttgtgttaca aacggtccag 660 ttagactctt ttagttatta ttaaaatgta caattaaatt atttttgact atagtca 717

342-10PCT.txt

<210>

<211> 171 <212> PRT

<213> Homo sapiens

<400> 264

Met Thr Glu Glu Thr Arg Ile Val Tyr Trp Ile Lys Asp Arg Gln Leu 1 5 10 1.5

Thr Asn Arg Asp Ser Thr Ile Leu Glu Leu Gln Lys Val Leu Lys Thr 20 25 30

Cys Cys Ala Gln Ser Met Lys Ile Phe Cys Cys Leu Trp Asn Phe Val

Tyr Lys Gln Leu Glu Asp Ala Ala Gln Gly Leu Thr Met Gly Gly Asp 50 60

val Glu Glu His Glu Asp Leu Thr Ala Asp Ser Thr Ile Phe Lys Phe 65 70 . 80

val Glu Ala Tyr Thr Glu Trp Glu Vàl Lys Arg Trp Ser Asp Asn Asn 85 90 95

Leu Ile Met Lys Gln Thr Asn Val Lys Arg Arg Arg Leu Asp Asp Val 100 105

Gly Pro Glu Leu Glu Lys Ala Val Trp Glu Leu Gly Cys Pro Pro Ser 115 120 125

Gln Val Leu Ile Phe Phe Leu Ile Leu Ser Phe Cys Gly Tyr Ile Val 145 150 155 160

18

Gly Val Tyr Ile Tyr Gly Leu His Glu Met Phe 165

<210> 265

<211> 18

<212> DNA <213> künstliche Sequenz

<220> <223> Oligonukleotid

<400> 265

ttcaacatcg ccacccat

266 20

<210> <211>

<212>

<213> künstliche Sequenz

342-10PCT.txt

		ZOT CTT CKC	
<220> <223> Oligonukled	otid		
<400> 266 cagcagaggg gaagtgg	gtca		20
<210> 267 <211> 390 <212> DNA <213> Homo sapie	ns		
<400> 267	cada caaacctcad dtad	patgcac tggcctttct agc1	tactatc 60
		ttgcag aagcagagaa attg	5 0
		ttaaag ttttcactcc acg	
-		ccagca gaagcaatga tgg	
tcctgcattg gccaca	gcag agatctctgc tgct	acactg ctcagaccct cata	aatctcc 300
tacacatcaa atggtc	tttc tcctttagca acto	caccet tecaccetat tect	tggaaac 360
tgctacgaca gtgttg	atta taaaatatag		390
<210> 268 <211> 129 <212> PRT <213> Homo sapie	ns		
<400> 268			
Met Glu Val Ile L 1		Sin Val Asp Ala Leu Ala 15	a Phe
Leu Ala Ala Val Ti 20	hr Met Leu Trp Ile 1 25	Thr Leu Pro Met Ser Pro 30	o Phe
Ala Glu Ala Glu E 35	ys Leu Ala Trp Asp t 40	eu Glu Val Gly Gly Len 45	u Ala
Gly Gln Pro Leu L 50	ys Val Phe Thr Pro A 55	arg Lys Lys Gly Ser Gly 60	y Glu
Val Gly Asp Ala S 65	er Gln Ser Pro Ser A 70	arg Ser Asn Asp Gly Gl 75	n His 80
Ser Cys Ile Gly H 8		Cys Cys Tyr Thr Ala Gl 90 95	n Thr
Leu Ile Ile Ser T 100	yr Thr Ser Asn Gly (105	eu Ser Pro Leu Ala Th 110	r Pro
Pro Phe His Pro I 115	le Pro Gly Asn Cys 1 120	Tyr Asp Ser Val Asp Ty 125	r Lys

196/223 342-10PCT.txt

Ile

<210> 269 2856 DNA Homo sapiens <400> 269 atggccaaaa gaaatctcag cactgtgaca gagttcattc ttgtagtctt cacagatcac 60 cctgaactgg cagttccact cttcctagtg tttctcagtt tctatcttgt cacttttctg 120 gggaatgggg ggatgatcat tctaatccaa gtggatgccc aactccacac ccccgtgtac 180 240 ttcttcctga gccaccttgc tttcctggat gcctgctgtg cctcagtaat cacccctcag attotggcca cactggccac agacaagaca gttatctcct atggctgccg tgctgtgcag 300 360 ttctctttct tcaccatatg tgcaggcaca gagtgttacc tgctgtcagt gatggcctat 420 gaccgctttg ttgccattag caatccactg cactgtaaca tgaccatgac tccaggtacc 480 tgcagggtct ttttggccag tgccttcatc tgtggggtgt caggggccat tctgcatacc acqtgcacct tcaccctctc cttctgttgt gacaatcaga tcaacttctt cttctgtgac 540 600 ctcccacccc tgctgaagct cgcctgcagc agcatgacac aaactgagat tgtcattctc 660 ctttqtqcaa aatqcatqtt cctaqccaat gtcatggtta tcctgatctg ctacatgctc 720 attatcagag ccattttgag ggtgaagtcg gcaggaggcc tcctgatagc atctgctcat 780 ttcgatgcat atgtatatga gacaggcatc aactacaaca cagtttatgg ctcaggaaag 840 gcagtagggt ggtcctggag gagcctgcgg gaaaccaacc acatgagacc aggaaatact 900 tcaaaacact cagcagccca gctgcatcaa tgcctcatcc agcaagttgg caggtggccc ttgcagagca tgcccttccc cgtttctgca gggccacctt ataagtcagt gcagcctctc 960 1020 cotggagace ecoggeetet cotgtgcate accggattat tictgactit gaagatgatg 1080 ggqtgtgggc ccaggaggcc cagggacagg aagtctgact tcttcataaa cacagaccct ggtgcagggt caccagaaga acagaggtgt ggatgggaag ggcatccttc ccactcctat 1140 1200 accetgggge tgtctctgcc agtcaactte ggcctgaaat gtccatggtg gacactatet 1260 qqaccccaq ctacctgcca acgtccagac ctgcagacac cttctccacc aaaggagata tgttcatccg ggctgcgacc ccttacacac agcgctggac cagacagaag tcaagttcca 1320 1380 gcagcctccg gagcagccac tatgctgaca aaggggctgc ccgacatcac tgtgggactg 1440 cagatttatg actoctgcat ctcagggatc caggctctgg ggagcaccct ggccctgctg 1500 tocaatcago ttocacccac aaccaactat gottgtggct cocagcaaca totoctgggc 1560 gtggttggag ggatgacctt cctggagtca gagcccatgt ctgagctgct ctccatctac 1620 agagtccctc agggccaaag actcaccaaa aactttgaag taaaagaact tgtctgcaca 1680 tatctqqtaq qacaqcttcc ttatqqcctq gtcagttatg acaacagcaa ctttgagtgg ctggatcagc agctgcagaa gcagatcggg ggcgagggac ttcctgttgg cgctgcgccc 1740

197/223 342-10PCT.txt agccgtgtag ccaggcaaca gtctgatgag gaagctgtgg gaggagtgca gggatacagg 1800 tgqtctggat taggggcttc catccaaagt gccagagaag gggcttggCa tcgCacaggg 1860 ctggagaaca tgaccactgc ccacctgtct gccttcaaac ttcctgatct aactgccact 1920 1980 taccaagect acctggcage caaagecetg tgggttgeet atcagaactt gatgteetge 2040 tctgagagag agggaccatt cctgggaggc acgtatgcca atgcatggga agccaggctt 2100 teteaggtta aetteaceae caaageeeaa gaagaggttt tettegeeaa agatggggaa 2160 gtgctgacaa cgtttgacat taaaaacatc tatgttctcc cagacctgtc aggacagaca qccattgttq gacactttqa cttcagagca ccttctggaa aagagcttct gttggatgac 2220 2280 agegeaattg tetgggeaga aggaeeetta aagattagag etgagagaac eetaagaace 2340 aagaccacac agcacctctc acatcccaag ctccaggagt cccttcctct gtctgcaacg 2400 aaaaacgtcc tgtggaaacc aggaagtcaa ccctatttga gaagtcaaaa tgctgctaca 2460 aaagccttcc ctgacccaga agagaaatcg caatgtcacc agtttctctt tctcccttca 2520 gatagtqttg catqtcagaa qtqctctgac aaccagtggc ccaatgtgca gaagggcgag 2580 tgcatcccca aaacccttga cttcttgttc tatcacaagc cccttgacac agcgttggCt 2640 gtctgcacag ccctgctctt tctccttgcc ctggccatct taggcatctt ccatgttgtc 2700 tgctcctgtg tctgggtgtc cttcatacct gcccacatgc atgcccacag caaagacacc

<210> 270 <211> 951 <212> PRT <213> Homo sapiens

<400> 270

ggccggcatc atcgcaagtg ggaaaaactg aagtga

Met Ala Lys Arg Asn Leu Ser Thr Val Thr Glu Phe Ile Leu Val Val 1 5 10 15

atggccatgg aggtctttgt catcttggca tcagcaggag gcctcatgtc ctccctcttc

tittccaaat gctacatcat ccttctccat cctgaaaaga acacaaaaga ccaaatgttt

2760 2820

2856

Phe Thr Asp His Pro Glu Leu Ala Val Pro Leu Phe Leu Val Phe Leu 20 25 30

Ser Phe Tyr Leu Val Thr Phe Leu Gly Asn Gly Gly Met Ile Ile Leu 35 40 45

Ile Gln Val Asp Ala Gln Leu His Thr Pro Val Tyr Phe Phe Leu Ser 50 60

His Leu Ala Phe Leu Asp Ala Cys Cys Ala Ser Val Ile Thr Pro Gln 65 70 75 80

Ile Leu Ala Thr Leu Ala Thr Asp Lys Thr Val Ile Ser Tyr Gly Cys $90 \hspace{1cm} 95$

Arg Ala Val Gln Phe Ser Phe Phe Thr Ile Cys Ala Gly Thr Glu Cys

Tyr Leu Leu Ser Val Met Ala Tyr Asp Arg Phe Val Ala Ile Ser Asn 115 120 125

Pro Leu His Cys Asn Met Thr Met Thr Pro Gly Thr Cys Arg Val Phe 130 140

Leu Ala Ser Ala Phe Ile Cys Gly Val Ser Gly Ala Ile Leu His Thr 145 150 155 160

Thr Cys Thr Phe Thr Leu Ser Phe Cys Cys Asp Asn Gln Ile Asn Phe 165 170 175

Phe Phe Cys Asp Leu Pro Pro Leu Leu Lys Leu Ala Cys Ser Ser Met 180 185

Thr Gln Thr Glu Ile Val Ile Leu Leu Cys Ala Lys Cys Met Phe Leu 195 200 205

Ala Asn val Met val ile Leu ile Cys Tyr Met Leu ile ile Arg Ala 210 215 220

Ile Leu Arg Val Lys Ser Ala Gly Gly Leu Leu Ile Ala Ser Ala His 225 230 235 240

Phe Asp Ala Tyr Val Tyr Glu Thr Gly Ile Asn Tyr Asn Thr Val Tyr 245 250 255

Gly Ser Gly Lys Ala Val Gly Trp Ser Trp Arg Ser Leu Arg Glu Thr 260 265 270

Asn His Met Arg Pro Gly Asn Thr Ser Lys His Ser Ala Ala Gln Leu 275 280 285

His Gln Cys Leu Ile Gln Gln Val Gly Arg Trp Pro Leu Gln Ser Met 290 295 300

Pro Phe Pro Val Ser Ala Gly Pro Pro Tyr Lys Ser Val Gln Pro Leu 305 310 315 320

Pro Gly Asp Pro Arg Pro Leu Leu Cys Ile Thr Gly Leu Phe Leu Thr 325 330 335

Leu Lys Met Met Gly Cys Gly Pro Arg Arg Pro Arg Asp Arg Lys Ser 340 350

Asp Phe Phe Ile Asn Thr Asp Pro Gly Ala Gly Ser Pro Glu Glu Gln 355 360 365

342-10PCT.txt

Arg Cys Gly Trp Glu Gly His Pro Ser His Ser Tyr Thr Leu Gly Leu 370 380 Ser Leu Pro Val Asn Phe Gly Leu Lys Cys Pro Trp Trp Thr Leu Ser 385 390 395 400 Gly Pro Pro Ala Thr Cys Gln Arg Pro Asp Leu Gln Thr Pro Ser Pro
405 410 41.5 Pro Lys Glu Ile Cys Ser Ser Gly Leu Arg Pro Leu Thr His Ser Ala 420 425 430 Gly Pro Asp Arg Ser Gln Val Pro Ala Ala Ser Gly Ala Ala Thr Met 435 440 445 Leu Thr Lys Gly Leu Pro Asp Ile Thr Val Gly Leu Gln Ile Tyr Asp 450 455 Ser Cys Ile Ser Gly Ile Gln Ala Leu Gly Ser Thr Leu Ala Leu Leu 465 470 480 Ser Asn Gln Leu Pro Pro Thr Thr Asn Tyr Ala Cys Gly Ser Gln Gln
485 490 495 His Leu Leu Gly Val Val Gly Gly Met Thr Phe Leu Glu Ser Glu Pro 500 505 510 Met Ser Glu Leu Ser Ile Tyr Arg Val Pro Gln Gly Gln Arg Leu 515 525 Thr Lys Asn Phe Glu Val Lys Glu Leu Val Cys Thr Tyr Leu Val Gly 530 540 Gln Lcu Pro Tyr Gly Leu Val Ser Tyr Asp Asn Ser Asn Phe Glu Trp 545 550 560 Leu Asp Gln Gln Leu Gln Lys Gln Ile Gly Gly Glu Gly Leu Pro Val 565 575 Gly Ala Ala Pro Ser Arg Val Ala Arg Gln Gln Ser Asp Glu Glu Ala
580 585 590 Val Gly Gly Val Gln Gly Tyr Arg Trp Ser Gly Leu Gly Ala Ser Ile 595 600 Gln Ser Ala Arg Glu Gly Ala Trp His Arg Thr Gly Leu Glu Asn Met 610 620 Thr Thr Ala His Leu Ser Ala Phe Lys Leu Pro Asp Leu Thr Ala Thr 625 630 635

342-10PCT.txt

Tyr Gln Ala Tyr Leu Ala Ala Lys Ala Leu Trp Val Ala Tyr Gln Asn 645 650 655 Leu Met Ser Cys Ser Glu Arg Glu Gly Pro Phe Leu Gly Gly Thr Tyr 660 665 Ala Asn Ala Trp Glu Ala Arg Leu Ser Gln Val Asn Phe Thr Thr Lys 675 680 685 Ala Gln Glu Glu Val Phe Phe Ala Lys Asp Gly Glu Val Leu Thr Thr 690 695 700 Phe Asp Ile Lys Asn Ile Tyr Val Leu Pro Asp Leu Ser Gly Gln Thr 705 710 715 720 Ala Ile Val Gly His Phe Asp Phe Arg Ala Pro Ser Gly Lys Glu Leu 725 730 735 Leu Leu Asp Asp Ser Ala Ile Val Trp Ala Glu Gly Pro Leu Lys Ile 740 745 750 Arg Ala Glu Arg Thr Leu Arg Thr Lys Thr Thr Gln His Leu Ser His 755 760 765 Pro Lys Leu Gln Glu Ser Leu Pro Leu Ser Ala Thr Lys Asn Val Leu 770 780 Trp Lys Pro Gly Ser Gln Pro Tyr Leu Arg Ser Gln Asn Ala Ala Thr 785 790 795 Lys Ala Phe Pro Asp Pro Glu Glu Lys Ser Gln Cys His Gln Phe Leu 805 810 815 Phe Leu Pro Ser Asp Ser Val Ala Cys Gln Lys Cys Ser Asp Asn Gln 820 825 830 Trp Pro Asn Val Gln Lys Gly Glu Cys Ile Pro Lys Thr Leu Asp Phe 835 840 845 Leu Phe Tyr His Lys Pro Leu Asp Thr Ala Leu Ala Val Cys Thr Ala 850 860 Leu Leu Phe Leu Leu Ala Leu Ala Ile Leu Gly Ile Phe His Val Val 865 870 875 Cys Ser Cys Val Trp Val Ser Phe Ile Pro Ala His Met His Ala His 885 890 895 Ser Lys Asp Thr Met Ala Met Glu Val Phe Val Ile Leu Ala Ser Ala 900 910

342-10PCT.txt

Gly Gly Leu Met Ser Ser Leu Phe Phe Ser Lys Cys Tyr Ile Ile Leu 915 920 925

Leu His Pro Glu Lys Asn Thr Lys Asp Gln Met Phe Gly Arg His His 930 940

Arg Lys Trp Glu Lys Leu Lys

<210> 271 <211> 956

<212> DNA Homo sapiens

<400> 271

60 gccgcgctgt atggggccag cggacacttc gccccaggca ccactgtgcc cctggccctg ccacctggtg gcaatggctc agccacacct gacaatggca ccaccctgg ggccgagggc 120 tggcggcagt tgctgggcct actccccgag cacatggcgg agaagctgtg tgaggcctgg 180 240 gcctttgggc agagccacca gacgggcgtc gtggcactgg gcctactcac ctgcctgctg 300 gcaatgctgc tggctggccg catcaggctc cggaggatcg atgccttctg cacctgcctg 360 tgggccctgc tgctggggct gcacctggct gagcagcacc tgcaggccgc ctcgcctagc 420 togctagaca coctcaagtt cagcaccaca tetttgtget geetggttgg ettcacggeg gctgtggcca caaggaaggc aacgggccca cggaggttcc ggccccgaag gttcttccca 480 540 ggagactctg ccggcctttt ccccaccagc cccagcttgg ccatccctca cccgagtgtc 600 ggaggetete cagegtetet gtteatecee agecegeeca getteetgee cetegecaae caagcagete tteeggtete etegaeggae eteaecetee teatttgeet ggeegeetea 660 gccgggccct ctctctggga accataccct ctctgactcg agcagactcc ggctatctgt 720 tcagcggtag ccgcccacca tctcaggtgt ctcgatctgg gggagtttcc tgttttcaga 780 840 ttacttctct cttcttgtcg gggaagctgc ccctccgtcc catcctttcc cagggccttc 900 cgggggcggc tcggtgggcc tccagtccgg ctctctggcc acgggaggcc ctcatcagcc 956 tgccggtcaa cctgagggac gaagtgtgtt gtccggcacc cctggagagg cccaaa

272 <210> 231

PRT

<213> Homo sapiens

<400> 272

Ala Ala Leu Tyr Gly Ala Ser Gly His Phe Ala Pro Gly Thr Thr Val 1 10 15

Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly Ser Ala Thr Pro Asp Asn 25 30

202,7

Gly Thr Thr Pro Gly Ala Glu Gly Trp Arg Gln Leu Leu Gly Leu Leu 35

Pro Glu His Met Ala Glu Lys Leu Cys Glu Ala Trp Ala Phe Gly Gln 50 60

Ser His Gln Thr Gly Val Val Ala Leu Gly Leu Leu Thr Cys Leu Leu 65 70 75 80

Ala Met Leu Leu Ala Gly Arg Ile Arg Leu Arg Ile Asp Ala Phe 85 90 95

Cys Thr Cys Leu Trp Ala Leu Leu Leu Gly Leu His Leu Ala Glu Gln
100 105 110

His Leu Gln Ala Ala Ser Pro Ser Trp Leu Asp Thr Leu Lys Phe Ser 115 120 125

Thr Thr Ser Leu Cys Cys Leu Val Gly Phe Thr Ala Ala Val Ala Thr 130 135 140

Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg Pro Arg Arg Phe Pro 145 150 155

Gly Asp Ser Ala Gly Leu Phe Pro Thr Ser Pro Ser Leu Ala Ile Pro 165 170 175

His Pro Ser Val Gly Gly Ser Pro Ala Ser Leu Phe Ile Pro Ser Pro 180 185 190

Pro Ser Phe Leu Pro Leu Ala Asn Gln Ala Ala Leu Pro Val Ser Ser 195 200 205

Thr Asp Leu Thr Leu Leu Tle Cys Leu Ala Ala Ser Ala Gly Pro Ser 210 220

Leu Trp Glu Pro Tyr Pro Leu 225 230

<210> 273 <211> 1806

<212> DNA

<213> Homo sapiens

<400> 273

gaggaggege gegtegeege eeegegteee geetgeggee egegeeeeeg gegteaeege 60
cteetgeeeg cetgeeegee tgeeegeetg eeegeetaee egeetaeeeg ectaeeegee 120
tacceeetg eeggeetgee gteetteeae geggagagee atggagggag tgagegeget 180
getggeeege tgeeeeaegg eeggeetgge eggeggeetg ggggteaegg egtgegeege 240
ggeeggegtg ttgetetaee ggategeegg gaggatgaag ceaaegeaea egatggteaa 300

			342-10PCT.	tyt		
ctgctggttc	tgcaaccagg	atacgctggt			gctgggactg	360
tccccactgc	gagcagtaca	acggcttcca	ggagaacggc	gactacaaca	agccgatccc	420
cgcccagtac	ttggagcacc	tgaaccacgt	ggtgagcagc	gcgcccagcc	tgcgcgaccc	480
ttcgcagccg	cagcagtggg	tgagcagcca	agtcctgctg	tgcaagaggt	gcaaccacca	540
ccagaccacc	aagatcaagc	agctggccgc	cttcgctccc	cgcgaggagg	gcaggtatga	600
cgaggaggtc	gaggtgtacc	ggcatcacct	ggagcagatg	tacaagctgt	gccggccgtg	660
ccaagcggct	gtggagtact	acatcaagca	ccagaaccgc	cagctgcgcg	ccctgttgct	720
cagccaccag	ttcaagcgcc	gggaggccga	ccagacccac	gcacagaact	tctcctccgc	780
cgtgaagtcc	ccggtccagg	tcatcctgct	ccgtgccctc	gccttcctgg	cctgcgcctt	840
cctactgacc	accgcgctgt	atggggccag	cggacacttc	gccccagg ca	ccactgtgcc	900
cctggccctg	ccacctggtg	gcaatggctc	agccacacct	gacaatggca	ccacccctgg	960
ggccgagggc	tggcggcagt	tgctgggcct	actccccgag	cacatggcgg	agaagctgtg	1020
tgaggcctgg	gcctttgggc	ag agc c acca	gacgggcgtc	gtggcactgg	gcctactcac	1080
ctgcctgctg	gcaatgctgc	tggctggccg	catcaggctc	cggaggatcg	atgccttctg	1140
cacctgcctg	tgggccctgc	tgctggggct	gcacctggct	gagcagcacc	tgcaggccgc	1200
ctcgcctagc	tggctagaca	cgctcaagtt	cagcaccaca	tctttgtgct	gcctggttgg	1260
cttcacggcg	gctgtggcca	caaggaaggc	aacgggccca	cggaggttcc	ggccccgaag	1320
gttcttccca	ggagactctg	ccggcctttt	ccccaccagc	cccagcttgg	ccatccctca	1380
cccgagtgtc	ggaggctctc	cagcgtctct	gttcatcccc	agcccgccca	gcttcctgcc	1440
cctcgccaac	caagcagctc	ttccggtctc	ctcgacggac	ctcaccctcc	tcatttgcct	1500
ggccgcctca	gccgggccct	ctctctggga	accataccct	ctctgactcg	agcagactcc	1560
ggctatctgt	tcagcggtag	ccgcccacca	tctcaggtgt	ctcgatctgg	gggagtttcc	1620
tgttttcaga	ttacttctct	cttcttgtcg	gggaagctgc	ccctccgtcc	catcctttcc	1680
cagggccttc	cgggggcggc	tcggtgggcc	tccagtccgg	ctctctggcc	acgggaggcc	1740
ctcatcagcc	tgccggtcaa	cctgagggac	gaagtgtgtt	gtccggcacc	cctggagagg	1800
cccaaa						1806

<21.0> 274 <211> 461 <212> PRT <213> Homo sapiens

Met Glu Gly Val Ser Ala Leu Leu Ala Arg Cys Pro Thr Ala Gly Leu 1 5 10 15

Ala Gly Gly Leu Gly Val Thr Ala Cys Ala Ala Gly Val Leu Leu 20 30

<400> 274

342-10PCT.txt
Tyr Arg Ile Ala Arg Arg Met Lys Pro Thr His Thr Met Val Asn Cys
35 40 45 Trp Phe Cys Asn Gln Asp Thr Leu Val Pro Tyr Gly Asn Arg Asn Cys 50 60 Trp Asp Cys Pro His Cys Glu Gln Tyr Asn Gly Phe Gln Glu Asn Gly 65 Asp Tyr Asn Lys Pro Ile Pro Ala Gln Tyr Leu Glu His Leu Asn His 85 90 95 Val Val Ser Ser Ala Pro Ser Leu Arg Asp Pro Ser Gln Pro Gln Gln 100 105 110 Trp Val Ser Ser Gln Val Leu Leu Cys Lys Arg Cys Asn His His Gln
115 120 125 Thr Thr Lys Ile Lys Gln Leu Ala Ala Phe Ala Pro Arg Glu Glu Gly 130 140 Arg Tyr Asp Glu Glu Val Glu Val Tyr Arg His His Leu Glu Gln Met 145 150 155 Tyr Lys Leu Cys Arg Pro Cys Gln Ala Ala Val Glu Tyr Tyr Ile Lys 165 170 His Gln Asn Arg Gln Leu Arg Ala Leu Leu Leu Ser His Gln Phe Lys 180 185 Arg Arg Glu Ala Asp Gln Thr His Ala Gln Asn Phe Ser Ser Ala Val 195 200 205 Lys Ser Pro Val Gln Val Ile Leu Leu Arg Ala Leu Ala Phe Leu Ala 210 220 Cys Ala Phe Leu Leu Thr Thr Ala Leu Tyr Gly Ala Ser Gly His Phe 225 230 235 Ala Pro Gly Thr Thr Val Pro Leu Ala Leu Pro Pro Gly Gly Asn Gly 245 250 255 Ser Ala Thr Pro Asp Asn Gly Thr Thr Pro Gly Ala Glu Gly Trp Arg 260 265 270 Gln Leu Leu Gly Leu Leu Pro Glu His Met Ala Glu Lys Leu Cys Glu 275 280 285

Ala Trp Ala Phe Gly Gln Ser His Gln Thr Gly Val Val Ala Leu Gly 290 295

342-10PCT.txt Leu Leu Thr Cys Leu Leu Ala Met Leu Leu Ala Gly Arg Ile Arg Leu 305 310 315

Arg Arg Ile Asp Ala Phe Cys Thr Cys Leu Trp Ala Leu Leu Leu Gly 325 330

Leu His Leu Ala Glu Gln His Leu Gln Ala Ala Ser Pro Ser Trp Leu 340 345 350

Asp Thr Leu Lys Phe Ser Thr Thr Ser Leu Cys Cys Leu Val Gly Phe 355 365

Thr Ala Ala Val Ala Thr Arg Lys Ala Thr Gly Pro Arg Arg Phe Arg 370 380

Pro Arg Arg Phe Phe Pro Gly Asp Ser Ala Gly Leu Phe Pro Thr Ser 385 390 395 400

Pro Ser Leu Ala Ile Pro His Pro Ser Val Gly Gly Ser Pro Ala Ser 405 410 415

Leu Phe Ile Pro Ser Pro Pro Ser Phe Leu Pro Leu Ala Asn Gln Ala

Ala Leu Pro Val Ser Ser Thr Asp Leu Thr Leu Leu Ile Cys Leu Ala 435 440 445

Ala Ser Ala Gly Pro Ser Leu Trp Glu Pro Tyr Pro Leu 450 460

<210> 275 <211> 600

<212> DNA

<213> Homo sapiens

<220>

<221> misc_feature <222> (460)..(461) <223> any

<220>

<221> misc_feature
<222> (530)..(531)
<223> any

<220>
<221> misc_feature
<222> (574)..(575)
<223> any

<220>

<221> misc_feature <222> (577)..(578)

<223> any

206/223 342-10PCT.txt

<400> 2	7 5						
tcaagtct	ga	cttgcatcta	cactgcgggc	aagatgcggc	tgcaagaccg	catcgccacg	60
ttcttctt	cc	caaaaggcat	gatgctcacc	acggctgcgc	tgatgctctt	cttcttacac	120
ctgggcat	ct	tcatcagaga	cgtgcacaac	ttctgcatca	cctaccacta	tgaccacatg	180
agctttca	ct	acacggtcgt	cctgatgttc	tcccaggtga	tcagcatctg	ctgggctgcc	240
atggggtc	ac	tctatgctga	gatgacagaa	aacaagtacg	tctgcttctc	cgccctgacc	300
atcctgag	tg	agtggca gg a	gggggagggt	gcaagaggga	gcggggagct	ttggaaccct	360
gagatgtg	gc	aaggagtagc	cagggaaggg	tactggggct	catggggggc	tctgtccccc	420
gcccagtg	ct	caacggagcc	atgctcttca	accgcctgtn	cttggagttt	ctggccatcg	480
agtaccgg	ıga	ggagcaccac	tgaggcctgg	ggagtcggaa	cagggctaan	gagggggaag	540
caaaaggc	:tg	cctcgggtgt	tttaataaag	ctgntgntta	tttccaaaaa	аадааааааа	600

```
<210>
      276
       174
```

<211> PRT <212>

<213> Homo sapiens

<220>

<221> MISC_FEATURE
<222> (128)..(129)
<223> i

<220>

<221> MISC_FEATURE <222> (151)..(152) <223> any

<220>

<221> MISC_FEATURE <222> (166)..(168)

<223>

<400> 276

Met Met Leu Thr Thr Ala Ala Leu Met Leu Phe Phe Leu His Leu Gly $10 \ 15$

Ile Phe Ile Arg Asp Val His Asn Phe Cys Ile Thr Tyr His Tyr Asp 20 25 30

His Met Ser Phe His Tyr Thr Val Val Leu Met Phe Ser Gln Val Ile 35 40 45

Ser Ile Cys Trp Ala Ala Met Gly Ser Leu Tyr Ala Glu Met Thr Glu 50 60

Asn Lys Tyr Val Cys Phe Ser Ala Leu Thr Ile Leu Ser Glu Trp Gln 65 70 75

Glu Gly Glu Gly Ala Arg Gly Ser Gly Glu Leu Trp Asn Pro Glu Met 85 90 95

Trp Gln Gly Val Ala Arg Glu Gly Tyr Trp Gly Ser Trp Gly Ala Leu 100 105

Ser Pro Ala Gln Cys Ser Thr Glu Pro Cys Ser Ser Thr Ala Cys Xaa 115 120 125

Trp Ser Phe Trp Pro Ser Ser Thr Gly Arg Ser Thr Thr Glu Ala Trp 130 140

Gly Val Gly Thr Gly Leu Xaa Arg Gly Lys Gln Lys Ala Ala Ser Gly 145 150 160

Val Leu Ile Lys Leu Xaa Xaa Ile Ser Lys Lys Lys Lys Lys 165

<210> 277

<211> 457

<212> DNA <213> Homo sapiens

<400> 277

60 aaacactgca ggctacgaat cggtcattgc ataggttttc catgaatcag gaagattcag 120 tcctggtaaa ttcattccca ggaacatcgc tgccactgct attattctag cagctgttcc 180 catactccaa tgagtccagt taaacatttg ccttcttggg tcatgtaaag gtggcctgaa gactgccaga agaggctgaa gaactgccaa agtcatcact atacagccga ggtatgggtg 240 300 gtaacctgca tgcctactcc agcctcccct gtatataaac ggcataacaa aagcaatgca 360 ggtgaggaca gttgtggtga acatgagcat ccgatgcacc tgaaaccaag ctgcttcacc 420 aagcaagaaa gcttttgacc aaactggctt gaagaaccgg gcaaccagta cacctatgct 457 aacagtagtc atccatgcca caaacattaa ggcacca

<210> 278

<211> 144

<212> PRT

<213> Homo sapiens

<400> 278

Met Phe Val Ala Trp Met Thr Thr Val Ser Ile Gly Val Leu Val Ala 1 10 15

Arg Phe Phe Lys Pro Val Trp Ser Lys Ala Phe Leu Leu Gly Glu Ala 20 25 30

Ala Trp Phe Glm Val His Arg Met Leu Met Phe Thr Thr Thr Val Leu 35 40

Thr Cys Ile Ala Phe Val Met Pro Phe Ile Tyr Arg Gly Gly Trp Ser 50 60

								•	_ 10							
Arg 65	ніѕ	Αla	Gly	туr	His 70	Pro	туг	Leu	Gly	Cys 75	Ile	val	Met	Thr	Leu 80	
Аlа	Val	Leu	G ln	Pro 85	Leu	Leu	Ala	۷al	Phe 90	Arg	Pro	Pro	Leu	ніs 95	Asp	
Pro	Arg	Arg	Gln 100	Met	Phe	ASN	Trp	Thr 105	His	Trp	Ser	мет	Gly 110	Thr	Ala	
Ala	Arg	Ile 115	Ile	Ala	۷al	Ala	Ala 120	Met	Phe	Leu	GJA	Met 125	Asn	Leu	Pro	
GТу	Leu 130	Asn	Leu	Pro	Asp	ser 135	Trp	Lys	Thr	Туr	Ala 140	Met	Thr	Asp	Ser	
<21 <21 <21 <21	1> 2>	279 293 DNA Homo	sap	iens												
<40	0>	279				_*				cat	n † n :	+++~	tra	tass	trcaaa	a 60
															tccaaa	
_															ctctt	_
_	-														gaagge ++c+c	
															ttctc	293
gcg	cagt	gcg	actc	gcaa	tt g	tctg	gagc	a cg	ttgg	cagc	agc	CCTC	gtg	ccg		293
<21 <21 <21 <21	.1> .2>	280 45 PRT Homo	sap	i e ns												
<40	00>	280				,										
Ar <u>c</u> 1	; His	G Tu	Gly	Cys 5	Cys	Gln	Arg	ı Ala	Pro 10	Asp	ASN	Cys	G]u	Ser 15	His	
Cys	s Ala	ı Glu	Lys 20	: Gly	Ser	Gไน	Gly	⁄ Ser 25	. Len	Cys	G]n	Thr	• G]r 30	n Leu	Pro	
Α٦a	a Thr	9 Pro	Cys	: Phe	Leu	Pro	Ser 40	- Asr	Thr	· ∨a∃	l Arg	7hr 45	•			
<2: <2:	10> 11> 12> 13>		o sap	o'i ens	;											
	00>	281					_	_	. =			_	. 67	*	1	
Су 1	s Gl	n Lys	s Gla	arg 5) Asr	ı Trp	Hi:	s Gly	y Ile 10	≘ Trį	o Ari	j Lei	u Gi	u Va 15	ı	

```
<210> 282
<211> 13
<212> PRT
<213> Homo sapiens
<400> 282
Met Ala Lys Gln Gly Glu Met Asn Thr Ser Thr Ser Cys 1 	 5
<210> 283
<211> 13
<212> PRT
<213> Homo sapiens
<400> 283
Pro Lys Arg Gly Gly Arg Ala Gly Arg Glu His Ser Cys 1 5
<210> 284
<211> 91
<212> PRT
<213> Homo sapiens
<400> 284
Arg Phe Gln Arg Asn Thr Gly Glu Met Ser Ser Asn Ser Thr Ala Leu 1 5 10 15
Ala Leu Val Arg Pro Ser Ser Ser Gly Leu Ile Asn Ser Asn Thr Asp 20 25 30
Asn Asn Leu Ala Val Tyr Asp Leu Ser Arg Asp Ile Leu Asn Asn Phe 35 40
Pro His Ser Ile Ala Arg Gln Lys Arg Ile Leu Val Asn Leu Ser Met 50 55
Val Glu Asn Lys Leu Val Glu Leu Glu His Thr Leu Leu Ser Lys Gly 75 80
Phe Arg Gly Ala Ser Pro His Arg Lys Ser Thr 85 90
<210> 285
<211> 15
<212> PRT
<213> Homo sapiens
<400> 285
Cys Lys Tyr Arg Arg Phe Gln Arg Asn Thr Gly Glu Met Ser Ser
1 10 15
<210>
<211>
         286
```

<213> Homo sapiens

<400> 286

Cys Lys Gly Phe Arg Gly Ala Ser Pro His Arg Lys Ser Thr 1 10

<210> 287

<211> 19

<212> PRT

<213> Homo sapiens

<400> 287

Met Ala Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr Lys 10 15

Ser Leu Asn

<210> 288

<211> 121 <212> PRT

<213> Homo sapiens

<400> 288

Ala Pro Pro Ser Cys Arg Glu Cys Tyr Gln Ser Leu His Tyr Arg Gly 1 10 15

Glu Met Gln Gln Tyr Phe Thr Tyr His Thr His Ile Glu Arg Ser Cys 20 25 30

Tyr Gly Asn Leu Ile Glu Glu Cys Val Glu Ser Gly Lys Ser Tyr Tyr 35 40

Lys Val Lys Asn Leu Gly Val Cys Gly Ser Arg Asn Gly Ala Ile Cys 50 60

Pro Arg Gly Lys Gln Trp Leu Cys Phe Thr Lys Ile Gly Gln Trp Gly 65 70 75

Val Asn Thr Gln Val Leu Glu Asp Ile Lys Arg Glu Gln Ile Ile Ala 85 90

Lys Ala Lys Ala Ser Lys Pro Thr Thr Pro Pro Glu Asn Arg Pro Arg 100 105

His Phe His Ser Phe Ile Gln Lys Leu 115 120

<210> 289

<211> 15

<212> PRT <213> Homo sapiens

<400> 289

```
Cys Glu Asn Arg Pro Arg His Phe His Ser Phe Ile Gln Lys Leu
1 5 10 15
       290
<210>
       13
<211>
<212>
       PRT
      Homo sapiens
<213>
<400> 290
Cys Ile Tyr Pro Thr Thr Phe Tyr Thr Ser Leu Pro Thr 10
<210>
<211>
      291
        14
        PRT
<212>
       Homo sapiens
<2.1.3>
<400> 291
Cys Lys Glu Asp Glu Leu Val Arg Asp Ser Pro Ala Arg Lys . 1
        292
12
<210>
 <211>
 <212> PRT
 <213> Homo sapiens
 <400> 292
 Ala Leu Gly Thr Arg Leu Ser Gln His Thr Asp Val
 <210> 293
 <211> 11
<212> PRT
        PRT
 <213> Homo sapiens
 <400> 293
 Asp Phe Asn Cys Pro Cys Leu Val His Tyr Asn
1 10
 <210> 294
 <211> 53
<212> PRT
<213> Homo sapiens
 <400> 294
 Ser Ser Ser Val Asp Pro Glu Lys Phe Leu Asp Phe Ala Asn Met Thr 10 15
 Pro Ser Gln Val Gln Leu Phe Leu Ala Lys Val Pro Cys Lys Glu Asp 20 25
 Glu Leu Val Arg Asp Ser Pro Ala Arg Lys Ala Val Ser Arg Tyr Leu
35 40 45
```

Arg Cys Leu Ser Gln 50

<210> 295

<211> 146 <212> PRT

<213> Homo sapiens

<400> 295

Arg Cys Leu Arg Pro Cys Phe Asp Gln Thr Val Phe Leu Gln Arg Arg 1 5 10 15

Tyr Trp Ser Asn Tyr Val Asp Leu Glu Gln Lys Leu Phe Asp Glu Thr 20 25 30

Cys Cys Glu His Ala Arg Asp Phe Ala His Arg Cys Val Leu His Phe 35 40 45

Phe Ala Ser Met Arg Ser Glu Leu Gln Ala Arg Gly Leu Arg Arg Gly 50 55

Asn Ala Gly Arg Arg Leu Glu Leu Pro Ala Val Pro Glu Pro Pro Glu 65 70 75 80

Gly Leu Asp Ser Gly Ser Gly Lys Ala His Leu Arg Ala Ile Ser Ser 85 90 95

Arg Glu Gln val Asp Arg Leu Leu Ser Thr Trp Tyr Ser Ser Lys Pro 100 105 110

Pro Leu Asp Leu Ala Ala Ser Pro Gly Leu Cys Gly Gly Leu Ser 115 120 125

His Arg Ala Pro Thr Leu Ala Leu Gly Thr Arg Leu Ser Gln His Thr 130 140

Asp Val 145

<210> 296

<211> 1035

<212> PRT

<213> ното sapiens

<400> 296

Met Pro Cys Gly Phe Ser Pro Ser Pro Val Ala His His Leu Val Pro 10 15

Gly Pro Pro Asp Thr Pro Ala Gln Gln Leu Arg Cys Gly Trp Thr Val 20 25 30

Gly Gly Trp Leu Leu Ser Leu Val Arg Gly Leu Leu Pro Cys Leu Pro 35 40 45

Pro Gly Ala Arg Thr Ala Glu Gly Pro Ile Met Val Leu Ala Gly Pro 50 60 Leu Ala Val Ser Leu Leu Leu Pro Ser Leu Thr Leu Leu Val Ser His 55 70 75 80 Leu Ser Ser Gln Asp Val Ser Ser Glu Pro Ser Ser Glu Gln Gln 85 90 95 Leu Cys Ala Leu Ser Lys His Pro Thr Val Ala Phe Glu Asp Leu Gln 100 105 110Pro Trp Val Ser Asn Phe Thr Tyr Pro Gly Ala Arg Asp Phe Ser Gln 115 120 125 Leu Ala Leu Asp Pro Ser Gly Asn Gln Leu Ile Val Gly Ala Arg Asn 130 140 Tyr Leu Phe Arg Leu Ser Leu Ala Asn Val Ser Leu Leu Gln Ala Thr 145 150 160 Glu Trp Ala Ser Ser Glu Asp Thr Arg Arg Ser Cys Gln Ser Lys Gly
165 170 175 Lys Thr Glu Glu Cys Gln Asn Tyr Val Arg Val Leu Ile Val Ala 180 185 190 Gly Arg Lys Val Phe Met Cys Gly Thr Asn Ala Phe Ser Pro Met Cys 195 200 205 Thr Ser Arg Gln Val Gly Asn Leu Ser Arg Thr Ile Glu Lys Ile Asn 210 220 Gly Val Ala Arg Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala Val 225 230 235 Ile Ser Ser Gln Gly Glu Leu Tyr Ala Ala Thr Val Ile Asp Phe Ser 245 250 Gly Arg Asp Pro Ala Ile Tyr Arg Ser Leu Gly Ser Gly Pro Pro Leu 260 265 270 Arg Thr Ala Glm Tyr Asm Ser Lys Trp Leu Asm Glu Pro Asm Phe Val 275 280 285 Ala Ala Tyr Asp Ile Gly Leu Phe Ala Tyr Phe Phe Leu Arg Glu Asn 290 295 300 Ala Val Glu His Asp Cys Gly Arg Thr Val Tyr Ser Arg Val Ala Arg 305 310 315

342-10PCT.txt

Val Cys Lys Asn Asp Val Gly Gly Arg Phe Leu Leu Glu Asp Thr Trp 325 330 335 Thr Thr Phe Met Lys Ala Arg Leu Asn Cys Ser Arg Pro Gly Glu Val 340 345 Pro Phe Tyr Tyr Asn Glu Leu Gln Ser Ala Phe His Leu Pro Glu Gln 355 360 365 Asp Leu Ile Tyr Gly Val Phe Thr Thr Asn Val Asn Ser Ile Ala Ala 370 380 Ser Ala Val Cys Ala Phe Asn Leu Ser Ala Ile Ser Gln Ala Phe Asn 385 390 400 Gly Pro Phe Arg Tyr Gln Glu Asn Pro Arg Ala Ala Trp Leu Pro Ile 405 410 415Ala Asn Pro Ile Pro Asn Phe Gln Cys Gly Thr Leu Pro Glu Thr Gly 420 425 430 Pro Asn Glu Asn Leu Thr Glu Arg Ser Leu Gln Asp Ala Gln Arg Leu 435 440 Phe Leu Met Ser Glu Ala Val Gln Pro Val Thr Pro Glu Pro Cys Val 450 455 460 Thr Gln Asp Ser Val Arg Phe Ser His Leu Val Val Asp Leu Val Gln 465 470 475 480 Ala Lys Asp Thr Leu Tyr His Val Leu Tyr Ile Gly Thr Glu Ser Gly
485 490 495 Thr Ile Leu Lys Ala Leu Ser Thr Ala Ser Arg Ser Leu His Gly Cys 500 505Tyr Leu Glu Glu Leu His Val Leu Pro Pro Gly Arg Arg Glu Pro Leu 515 520 525 Arg Ser Leu Arg Ile Leu His Ser Ala Arg Ala Leu Phe Val Gly Leu 530 540 Arg Asp Gly Val Leu Arg Val Pro Leu Glu Arg Cys Ala Ala Tyr Arg 545 550 555 560 Ser Gln Gly Ala Cys Leu Gly Ala Arg Asp Pro Tyr Cys Gly Trp Asp 565 575 Gly Lys Gln Gln Arg Cys-Ser Thr Leu Glu Asp Ser Ser Asn Met Ser . 580 585 590

215/223 342-10PCT.txt

Leu Trp Thr Gln Asn Ile Thr Ala Cys Pro Val Arg Asn Val Thr Arg 595 600 605

Asp Gly Gly Phe Gly Pro Trp Ser Pro Trp Gln Pro Cys Glu His Leu 610 620

Asp Gly Asp Ash Ser Gly Ser Cys Leu Cys Arg Ala Arg Ser Cys Asp 625 630 635

Ser Pro Arg Pro Arg Cys Gly Gly Leu Asp Cys Leu Gly Pro Ala Ile 645 650 655

His Ile Ala Asm Cys Ser Arg Asm Gly Ala Trp Thr Pro Trp Ser Ser 660 665 670

Trp Ala Leu Cys Ser Thr Ser Cys Gly Ile Gly Phe Gln Val Arg Gln 675 680 685

Arg Ser Cys Ser Asn Pro Ala Pro Arg His Gly Gly Arg Ile Cys Val 690 695 700

Gly Lys Ser Arg Glu Glu Arg Phe Cys Asn Glu Asn Thr Pro Cys Pro 705 710 715 720

val Pro Ile Phe Trp Ala Ser Trp Gly Ser Trp Ser Lys Cys Ser Ser 725 730 735

Asn Cys Gly Gly Met Gln Ser Arg Arg Arg Ala Cys Glu Asn Gly
740 745 750

Asn Ser Cys Leu Gly Cys Gly Val Glu Phe Lys Thr Cys Asn Pro Glu 755 760 765

Gly Cys Pro Glu Val Arg Arg Asn Thr Pro Trp Thr Pro Trp Leu Pro 770 780

Val Asn Val Thr Gln Gly Gly Ala Arg Gln Glu Gln Arg Phe Arg Phe 785 795 795

Thr Cys Arg Ala Pro Leu Ala Asp Pro His Gly Leu Gln Phe Gly Arg 805 810 815

Arg Arg Thr Glu Thr Arg Thr Cys Pro Ala Asp Gly Ser Gly Ser Cys 820 825 830

Asp Thr Asp Ala Leu Val Glu Val Leu Leu Arg Ser Gly Ser Thr Ser 835 840 845

Pro His Thr Val Ser Gly Gly Trp Ala Ala Trp Gly Pro Trp Ser Ser 850 860

Cys Ser Arg Asp Cys Glu Leu Gly Phe Arg Val Arg Lys Arg Thr Cys 865 870 880

Thr Asn Pro Glu Pro Arg Asn Gly Gly Leu Pro Cys Val Gly Asp Ala 885 890 895

Ala Glu Tyr Gln Asp Cys Asn Pro Gln Ala Cys Pro Val Arg Gly Ala 900 905 910

Trp Ser Cys Trp Thr Ser Trp Ser Pro Cys Ser Ala Ser Cys Gly Gly 915 920 925

Gly His Tyr Gln Arg Thr Arg Ser Cys Thr Ser Pro Ala Pro Ser Pro 930 940

Gly Glu Asp Ile Cys Leu Gly Leu His Thr Glu Glu Ala Leu Cys Ala 945 950 960

Thr Gln Ala Cys Pro Glu Gly Trp Ser Pro Trp Ser Glu Trp Ser Lys 965 970 975

Cys Thr Asp Asp Gly Ala Gln Ser Arg Ser Arg His Cys Glu Glu Leu 980 985

Leu Pro Gly Ser Ser Ala Cys Ala Gly Asn Ser Ser Gln Ser Arg Pro 995 1000 1005

Cys Pro Tyr Ser Glu Ile Pro Val Ile Leu Pro Ala Ser Ser Met 1010 1015 1020

Glu Glu Ala Thr Asp Cys Ala Gly Phe Asn Leu Ile 1025 1030

<210> 297 <211> 16 <212> PRT <213> Homo sapiens

<400>

Cys Pro Tyr Asp Pro Arg His Asn Ser Thr Ala Val Ile Ser Ser Gln 1 5 10 15

<210> 298 <211> 11 <212> PRT <213> Home Homo sapiens

<400> 298

Cys Pro Glu Val Arg Arg Asn Thr Pro Trp Thr 1 5 10

<210> 299

<211> 35 <212> PRT <213> Homo sapiens

<400> 299

Glu Arg Val Trp Ser Asp Asp His Lys Asp Phe Asp Cys Asn Thr Arg 1 5 10 15

Gln Pro Gly Cys Ser Asn Val Cys Phe Asp Glu Phe Phe Pro Val Ser 20 25 30

His Val Arg

<210> 300 <211> 38 <212> PRT <213> Homo sapiens

<400> 300

His Ser Phe Tyr Pro Lys Tyr Ile Leu Pro Pro Val Val Lys Cys His 10 15

Ala Asp Pro Cys Pro Asn Ile Val Asp Cys Phe Ile Ser Lys Pro Ser 20 25 30

Glu Lys Asm Ile Phe Thr 35

<210> 301 <211> 15 <212> PRT <213> Homo sapiens

<400> 301

Cys Leu Pro Asp Arg Pro Arg Asp His Val Lys Lys Thr Ile Leu 1 10 15

<210> 302 <211> 13 <212> PRT <213> Homo sapiens

<400> 302

Glu Arg Val Trp Ser Asp Asp His Lys Asp Phe Asp Cys 1 10

<210> 303 <211> 38 <212> PRT <213> Homo sapiens

<400> 303

Asn Asn Asp Val Ser Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly

```
342-10PCT.txt
  1
                                                                         15
 Ser Asn Gln Asp Leu Gly Ala Gly Ala Gly Glu Asp Ala Arg Ser Asp 20 25 30
 Asp Ser Ser Ser Arg Ile
35
 <210> 304
<211> 15
<212> PRT
 <213> Homo sapiens
 <400> 304
 Cys Asp His Pro Ser Asn Thr Val Pro Ser Gly Ser Asn Gln Asp 10 15
<210> 305
<211> 12
<212> PRT
 <213> Homo sapiens
 <400> 305
Cys Val Pro His Ser Arg Ser Arg Gly Pro Asn Leu
1 10
<210> 306
<211> 12
<212> PRT
<213> Homo sapiens
<400> 306
Cys Glu Leu Ser Gln Thr Pro His Pro His Ser Arg 10
<210> 307
<211> 14
<212> PRT
<213> Homo sapiens
Cys Leu Asp Ser Ala Gly Asn Asn Ala Gly Ile Gln Trp Gly

1 10
<210> 308
<211> 14
<212> PRT
<213> Homo sapiens
<400> 308
Cys Asn Arg Val Ser Lys Asn Pro Glu Met Leu Gln Thr Gly 10
<210> 309
<211> 2115
```

<212> DNA 342-10PCT.txt

<213> Homo sapiens <400> 309 atgcgtatat gttatgaatg ccaaaatgaa agaacattgt ggcgatgtgt ttcccaggat 60 ggggctgact acagtgtggg cgtgtgtgtc cctgattctt qtqctqaaqa qqatqtqact 120 ctgatgtctc ggctggatac tttaagattc agaaatactt catttttggc cccttccctc 180 tttcttttta caataaattc ttcctccttg tctggtggga gtgtgaccag atgtgctgct 240 ggaaagatcc ccctggacac atttgctgcc gtatgtctgt tcatcacctt gctgggtctc 300 atcctccctc cggctggaac agtctgcgtg gcagctaggg aatgggggtc agcctgcagg 360 acatcgcggg aacacgggga acctctggcc acttacggga gtctgccact gagcgaggcg 420 gagagcaatg aacaaagaag cagaatccca cggacacact gccgggcaca tctcctcctg 480 tcagcagcct ccagcagagg aaaaaggttt ctaggagccg tggctcatgc tctggagtgc 540 ttttcttggc agaagaatgt gccagccatc tggactacaa aggcaccagg tggcacctgc 600 tctgcactga atggcattcg tgtcttgagt cttctttgga tcatctcggg acacaccagt 660 cagatgactg catggctgtc tttgggatgg aaagatggag ggcacgaaag gccactggtc 720 atgtctgggc catcagtggg aatcggagac accagagaag ccacgagtgg ttggttaagt 780 gcaagttcgt ttttaaagat gcatcagaat tcagacaaag gaataacccc caaaggcata 840 ctcagatact ttctcagtca cctggtaagg ttgcagcctc ttcacctgta ttcaatgtgc 900 tigitggitg gacigitete ictigiteee tggggaeeig ictgggaaai geeeaaaite 960 cactgggata actgccggca agcatggtgg acgaatctgc tgttgctaaa taactttgtg 1020 tcggtcaaga atgcgtgcaa tggctggacc tggtaccttg ccaatgactt ccagttccac 1080 ctcaccacac cagtgattat cttcatccat gtaaagagta cacagatcct catcctcctt 1140 ggggccatgc tgttcttggc atctttcaca gccactgctc tgatcacctt ggcatataaa 1200 cttcctgtcg tggctccatc agaaaccagg acttcccggg gagggctgct gaatgccagg 1260 ctgttcaccc tgtgcccttt ggttcatgga aaaagtgggt atgaaacttt tggtctgoat 1320 gggaaagctg attgccttct tgcttccaaa cttctgaacc tttcaacctg cactggaaat 1380 gaacaagtgt gccctaaatg tacctttggg cttgctgatt attccaatgg acatctcagg 1440 gatttggatt ccctttgcca tgtccagatc aaacataaca ttttggctta tttccttgta 1500 tttttcagtg aagaggcgat tgtattgtat ttcgtggagt actacacaaa gccctactgc 1560 cgatttgggc cagttcttgt gggcctcttt ctgagcattt acatgcacca aaaccaccag 1620 gaaaacattc tcagaaccaa gctgcagctc tctaccaagc cctccaccgg accctgtggg 1680 cggcggctgt gggctgagtc ctctttgcgt gccacggagg atatggaggt atggaagcgg 1740 ctccaggctt tgctgtcggg ttcacaccct gttcctttaa aggtgacaaa tcgaacacac 1800 aggagagcca agcagataaa aggcttcaat ggaaaagaat cttctccagg tctggtgaac 1860 cgtgtgcttt cttgggacat ctggagtttc ctgtccagca tcagttatgc tcgctacttg 1920

1980

2040

2100

2115

342-10PCT.txt gtgcatccga ttctgatcat cctttacaat ggccttcagg aaacacttat tcaccacact
gacaccaaca tgttctatct tttctctgga caccgtgtgc tgaccttcgt cactgggctg
gccctgacgc tgttcattga gaaaccatgt caggaactga agcagcacct gctgggccat
gaatgttctg gttaa
guary cross great
<210> 310 <211> 704 <212> PRT <213> Homo sapiens
<400> 310
Met Arg Ile Cys Tyr Glu Cys Gln Asn Glu Arg Thr Leu Trp Arg Cys 1 10 15
Val Ser Gln Asp Gly Ala Asp Tyr Ser val Gly Val Cys Val Pro Asp 25 30
Ser Cys Ala Glu Glu Asp Val Thr Leu Met Ser Arg Leu Asp Thr Leu 35 40 45
Arg Phe Arg Asn Thr Ser Phe Leu Ala Pro Ser Leu Phe Leu Phe Thr 50 55 60
The Asn Ser Ser Ser Leu Ser Gly Gly Ser Val Thr Arg Cys Ala Ala 65 70 75 80
Gly Lys Ile Pro Leu Asp Thr Phe Ala Ala Val Cys Leu Phe Ile Thr 85 90 95
Leu Leu Gly Leu Ile Leu Pro Pro Ala Gly Thr Val Cys Vai Ala Ala 100 105 110
Arg Glu Trp Gly Ser Ala Cys Arg Thr Ser Arg Glu His Gly Glu Pro 115 120 125
Leu Ala Thr Tyr Gly Ser Leu Pro Leu Ser Glu Ala Glu Ser Asn Glu 130 135 140
Gln Arg Ser Arg Ile Pro Arg Thr His Cys Arg Ala His Leu Leu 145 150 155 160
Ser Ala Ala Ser Ser Arg Gly Lys Arg Phe Leu Gly Ala Val Ala His 165 170 175
Ala Leu Glu Cys Phe Ser Trp Gln Lys Asn Val Pro Ala Ile Trp Thr 180 185 190
Thr Lys Ala Pro Gly Gly Thr Cys Ser Ala Leu Asn Gly Ile Arg Val 195 200 205

342-10PCT.txt Leu Ser Leu Leu Trp Ile Ile Ser Gly His Thr Ser Gln Met Thr Ala 210 215 220

Trp Leu Ser Leu Gly Trp Lys Asp Gly Gly His Glu Arg Pro Leu Val 225 230 235

Met Ser Gly Pro Ser Val Gly Ile Gly Asp Thr Arg Glu Ala Thr Ser 250 255

Gly Trp Leu Ser Ala Ser Ser Phe Leu Lys Met His Gln Asn Ser Asp 260 265 270

Lys Gly Ile Thr Pro Lys Gly Ile Leu Arg Tyr Phe Leu Ser His Leu 275 280 285

Val Arg Leu Gln Pro Leu His Leu Tyr Ser Met Cys Leu Leu Val Gly 290 295 300

Leu Phe Ser Leu Val Pro Trp Gly Pro Val Trp Glu Met Pro Lys Phe 305 310 315 320

His Trp Asp Asn Cys Arg Gln Ala Trp Trp Thr Asn Leu Leu Leu Leu 325 330 335

Asn Asn Phe Val Ser Val Lys Asn Ala Cys Asn Gly Trp Thr Trp Tyr 340 345 350

Leu Ala Asn Asp Phe Gln Phe His Leu Thr Thr Pro Val Ile Ile Phe 355 360 365

Ile His Val Lys Ser Thr Gln Ile Leu Ile Leu Gly Ala Met Leu 370 380

Phe Leu Ala Ser Phe Thr Ala Thr Ala Leu Ile Thr Leu Ala Tyr Lys 385 390 395 400

Leu Pro Val Val Ala Pro Ser Glu Thr Arg Thr Ser Arg Gly Gly Leu
405 410 415

Leu Asn Ala Arg Leu Phe Thr Leu Cys Pro Leu Val His Gly Lys Ser 420 425 430

Gly Tyr Glu Thr Phe Gly Leu Asp Gly Lys Ala Asp Cys Leu Leu Ala 435 440 445

Ser Lys Leu Leu Asn Leu Ser Thr Cys Thr Gly Asn Glu Gln Val Cys 450 455 460 .

Pro Lys Cys Thr Phe Gly Leu Ala Asp Tyr Ser Asn Gly His Leu Arg 465 470 475 480

342-10PCT.txt Asp Leu Asp Ser Leu Cys His Val Gln Ile Lys His Asn Ile Leu Ala 485 490

Tyr Phe Leu Val Phe Phe Ser Glu Glu Ala Ile Val Leu Tyr Phe Val 500 505

Glu Tyr Tyr Thr Lys Pro Tyr Cys Arg Phe Gly Pro Val Leu Val Gly
515 520 525

Leu Phe Leu Ser Ile Tyr Met His Gln Asn His Gln Glu Asn Ile Leu 530 540

Arg Thr Lys Leu Gln Leu Ser Thr Lys Pro Ser Thr Gly Pro Cys Gly 545 550 555

Arg Arg Leu Trp Ala Glu Ser Ser Leu Arg Ala Thr Glu Asp Met Glu 565 575

Val Trp Lys Arg Leu Gln Ala Leu Leu Ser Gly Ser His Pro Val Pro 580 580 590

Leu Lys Val Thr Asn Arg Thr His Arg Arg Ala Lys Gln Ile Lys Gly
595 600 605

Phe Asn Gly Lys Glu Ser Ser Pro Gly Leu Val Asn Arg Val Leu Ser 610 615 620

Trp Asp Ile Trp Ser Phe Leu Ser Ser Ile Ser Tyr Ala Arg Tyr Leu 625 630 635

Val His Pro Ile Leu Ile Ile Leu Tyr Ash Gly Leu Gln Glu Thr Leu 645 650

The His His Thr Asp Thr Ash Met Phe Tyr Leu Phe Ser Gly His Arg 660 665 670

Val Leu Thr Phe Val Thr Gly Leu Ala Leu Thr Leu Phe Ile Glu Lys 675 680 685

Pro Cys Gln Glu Leu Lys Gln His Leu Leu Gly His Glu Cys Ser Gly 690 700

311 21 <210>

<211> <212>

DNA

künstliche Sequenz

<220>

<223> Oligonukleotid

<400> 311

aaccgtgtgc tttcttggga c

WO 2005/030250 PCT/EP2004/010697

223/223

342-10PCT.txt

<210> 312 <211> 19 <212> DNA <213> künstliche Sequenz

<220> <223> Oligonukleotid

<400> 312 acattcatgg cccagcagg

19