Find the eigenvalues of A and B (easy for triangular matrices) and
$$A + B$$
:
$$A = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} \text{ and } B = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} \text{ and } A + B = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}.$$

$$A = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix} \text{ And } B = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix} \text{ and } A + B = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}.$$

Eigenvalues of A + B (are equal to)(are not equal to) eigenvalues of A plus eigen-A+B) $\lambda = 3.5$ integral.

values of B.

Find the eigenvalues and eigenvectors for both of these Markov matrices
$$A$$
 and A^{∞} . A key $\lambda = 1,0.4$ (1,2)
$$A = \begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix} \text{ and } A^{\infty} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 2/3 \end{bmatrix}.$$

$$A = \begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix} \text{ and } A^{\infty} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 2/3 \end{bmatrix}.$$

$$A^{ko}$$
 is near A^{∞} .

A 3 by 3 matrix B is known to have eigenvalues 0, 1, 2. This information is enough to find three of these (give the answers where possible):

(a) the rank of B

(b) the determinant of
$$B^TB$$

(c) the eigenvalues of B^TB

- (b) the determinant of B^TB
- (c) the eigenvalues of B^TB

you find three more eigenvectors?

- (d) the eigenvalues of $(B^2 + I)^{-1}$.
- d) Ba=0.a, Ba=1.a, Ba=4as

Find the rank and the four eigenvalues of A and C:

Find the eigenvalues of this permutation matrix P from det $(P - \lambda I) = 0$. Which

A)
$$tank(A) = 1$$
 $\longrightarrow |+|+|+|= \lambda + \delta + 0 + 0 = 4$ $\longrightarrow |+|+|+|= \lambda + \lambda + \delta + 0 = 4$

c) $tanl(c)=2 \longrightarrow |t+t| + |t| = \lambda_1 + \lambda_2 + \delta + \delta = 4$

vectors are not changed by the permutation? They are eigenvectors for
$$\lambda=1$$
. Can you find three more eigenvectors?
$$P = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}.$$

(1,-1)

Find the eigenvalues of
$$A$$
 and B (easy for triangular matrices) and $A + B$:

$$A = \begin{bmatrix} 3 & 0 \\ 1 & 1 \end{bmatrix}$$
 and $B = \begin{bmatrix} 1 & 1 \\ 0 & 3 \end{bmatrix}$ and $A + B = \begin{bmatrix} 4 & 1 \\ 1 & 4 \end{bmatrix}$. A) $\lambda = \begin{bmatrix} 3 & / & B \end{bmatrix} \lambda = \begin{bmatrix} 3 & / & B \end{bmatrix}$

Eigenvalues of
$$A + B$$
 (are equal to) (are not equal to) eigenvalues of A plus eigen $A + B$) $\lambda = 3.5$

A+B) $\lambda = 3.5$ integral values of B.

Find the eigenvalues and eigenvectors for both of these Markov matrices
$$A$$
 and A^{∞} . Explain from those answers why A^{100} is close to A^{∞} :
$$A = \begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix} \quad \text{and} \quad A^{\infty} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 2/3 \end{bmatrix}.$$

the sand eigenvectors for both of these Markov matrices
$$A$$
 and A^{∞} . A has $\lambda = 1,0.4$ (1,2)
$$A = \begin{bmatrix} .6 & .2 \\ .4 & .8 \end{bmatrix} \text{ and } A^{\infty} = \begin{bmatrix} 1/3 & 1/3 \\ 2/3 & 2/3 \end{bmatrix}.$$

$$\lambda = 1,0$$

$$\lambda = 1$$

A 3 by 3 matrix
$$B$$
 is known to have eigenvalues 0, 1, 2. This information is enough to find three of these (give the answers where possible):

(a) the rank of B

27

- (b) the determinant of B^TB
- (c) the eigenvalues of B^TB
- (d) the eigenvalues of $(B^2 + I)^{-1}$.

_ه (ا٫٦)

Find the rank and the four eigenvalues of A and C:

A)
$$tank(A) = 1$$
 $\longrightarrow |t|t|t| = \lambda + 0 + 0 + 0 = 4 \rightarrow (4,0,0,0)$

c)
$$tanli(c)=2 \longrightarrow |+|+|+|=\lambda_1+\lambda_2+0+0=4$$
.

Find the eigenvalues of this permutation matrix P from det $(P - \lambda I) = 0$. Which vectors are not changed by the permutation? They are eigenvectors for $\lambda = 1$. Can you find three more eigenvectors?

$$P = \left[\begin{array}{cccc} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{array} \right].$$

- True or false: If the columns of S (eigenvectors of A) are linearly independent, then
 - (a) A is invertible
- (b) A is diagonalizable
- (c) S is invertible S is diagonalizable.

- a) / b) true c) true / d) table

Diagonalize the Fibonacci matrix by completing S^{-1} :

$$\begin{bmatrix} 1 & 1 \\ 1 & 0 \end{bmatrix} = \begin{bmatrix} \lambda_1 & \lambda_2 \\ 1 & 1 \end{bmatrix} \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix} \begin{bmatrix} & & \\ & & \end{bmatrix}.$$

Do the multiplication $S\Lambda^kS^{-1}\begin{bmatrix} 1\\ 0\end{bmatrix}$ to find its second component. This is the kth Fibonacci number $F_k = (\lambda_1^k - \lambda_2^k)/(\lambda_1 - \lambda_2)$.

The eigenvalues of A are 1 and 9, and the eigenvalues of B are -1 and 9:

$$A = \begin{bmatrix} 5 & 4 \\ 4 & 5 \end{bmatrix}$$
 and $B = \begin{bmatrix} 4 & 5 \\ 5 & 4 \end{bmatrix}$.

AR=[21]

Find a matrix square root of A from $R = S\sqrt{\Lambda} S^{-1}$. Why is there no real matrix square root of B?

If $A = \begin{bmatrix} 1 & 0 \\ 0 & 2 \end{bmatrix}$ and AB = BA, show that $B = \begin{bmatrix} a & b \\ c & d \end{bmatrix}$ is also a diagonal matrix. B 34 has the same eigen ____ as A but different eigen ____ . These diagonal matrices B form a two-dimensional subspace of matrix space. AB - BA = 0 gives four equations for the unknowns a, b, c, d—find the rank of the 4 by 4 matrix.

- a) $(\lambda 1)^2 b^2 = 0$ if $b = 2 \longrightarrow \lambda = 1$ or 3 (a) Find a symmetric matrix $\begin{bmatrix} 1 & b \\ b & 1 \end{bmatrix}$ that has a negative eigenvalue. 7
 - (b) How do you know it must have a negative pivot?
 - b) piudo have some oigh as λ . (c) How do you know it can't have two negative eigenvalues?
- trace = $\lambda_1 + \lambda_2 = 2 \rightarrow A$ cart have two perpetive experiorlines.
- What are the eigenvalues of $A = \begin{bmatrix} 0 & b \\ -b & 0 \end{bmatrix}$? Create a 4 by 4 skew-symmetric matrix $(A^{T} = -A)$ and verify that all its eigenvalues are imaginary.

$$A = \begin{bmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -d & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & d \end{bmatrix} \quad \text{have } \quad \lambda = 1, d, -d.$$

$$A = \begin{bmatrix} 0 & d & 0 \\ d & 0 & 0 \\ 0 & 0 & 1 \end{bmatrix} \quad B = \begin{bmatrix} -d & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & d \end{bmatrix} \quad \text{have } \lambda = 1, d, -d.$$

$$\begin{bmatrix} -1 & d & 0 \\ d & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} -d & d & 0 \\ d & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} -1 & d & 0 \\ d & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ d & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ d & -1 & 0 \\ 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} = 0 \quad \begin{bmatrix} 1 & d & 0 \\ 0 \\ 0 \end{bmatrix} \begin{bmatrix} 1 & d & 0 \\ 0$$

What number b in
$$\begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}$$
 makes $A = Q \Lambda Q^{T}$ possible? What number makes $A = S \Lambda S^{-1}$ impossible? What number makes A^{-1} impossible?

$$A = Q \land Q \rightarrow \text{Symmetry} \qquad b=1$$

- repeated X if b=-1

Find the 3 by 3 matrix A and its pivots, rank, eigenvalues, and determinant:
$$\begin{bmatrix} x_1 & x_2 & x_3 \end{bmatrix} \begin{bmatrix} A \end{bmatrix} \begin{bmatrix} x_1 \\ x_2 \\ x_3 \end{bmatrix} = 4(x_1 - x_2 + 2x_3)^2.$$

$$\begin{bmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & |6 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 & -4 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 8 & -8 & |6 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 & -4 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\begin{bmatrix} 4 & -4 & 8 \\ -4 & 4 & -8 \\ 0 & 0 & 0 \end{bmatrix} \longrightarrow \begin{bmatrix} 4 & -4 & 8 \\ 0 & 0 & 0 \end{bmatrix}$$

Since A is square, squaretric,
$$\rightarrow$$
 # of eigenvalues = pints = 1.
trace A = $4+4+16=1+12+13=24$ is eigenvalues = $24,0,0$.

For what numbers c and d are A and B positive definite? Test the 3 determinants:

$$A = \begin{bmatrix} c & 1 & 1 \\ 1 & c & 1 \\ 1 & 1 & c \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 1 & 2 & 3 \\ 2 & d & 4 \\ 3 & 4 & 5 \end{bmatrix}.$$

$$A = \begin{bmatrix} 1 & c & 1 \\ 1 & 1 & c \end{bmatrix} \quad \text{and} \quad B = \begin{bmatrix} 2 & d & 4 \\ 3 & 4 & 5 \end{bmatrix}.$$

A) (C>0) and (C+>0) and (c(C-1) - (C-1)+(1-9)70 :: C>1 impossible.

In the Cholesky factorization
$$A = C^{T}C$$
, with $C^{T} = L\sqrt{D}$, the square roots of the pivots are on the diagonal of C . Find C (upper triangular) for
$$A = \begin{bmatrix} 9 & 0 & 0 \\ 0 & 1 & 2 \\ 0 & 2 & 8 \end{bmatrix} \quad \text{and} \quad A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & 2 & 2 \\ 1 & 2 & 7 \end{bmatrix}.$$

$$\theta$$
], find

d) λ>0.