Second order linear D.E. with constant coefficients

ay"+by+cy=0, a,b,c constants.

Example / Motivation: Harmonic Oscillator:

Let y(t) be the position of the mass M at time t. Here y=0 is the stationary/rest position. (i.e. No force asserted to M from the Spring.

=> y'(t) = veloc7y y"(t) = acceleration.

Newton's 2nd Law =

F = my"

F, force & experienced by M.

To calculate the force, we use

the Hooke's Law: the force asserted to M from the spring is proportional to the position y from the rest position: $F_1 = -ky$

Hooke's constant, or spring constant. &>0.

• the assumption that the friction / damping is proportional to the velocity: $F_2 = -by'$.

To solve the 2nd order linear D.E., we use the guessing

y= est,

where S is a some constants.

$$\Rightarrow$$
 $y'=se^{st}, y''=s^2e^{st}.$

So ay'' + by' + cy = 0 is the same as $a(s^2e^{st}) + b(se^{st}) + ce^{st} = 0$

$$\Rightarrow e^{St}(as^2+bs+c)=0$$
.

$$\Rightarrow as^2 + bs + c = 0.$$

Thus est solves the 2nd order D.E. if and only if astbs+c=0 The general solutions can be found as follows: (I): If $as^2+bs+c=o$ has 2 real roots λ_1, λ_2 , then $Y(t) = k_1 e^{\lambda_1 t} + k_2 e^{\lambda_2 t}$ k_1, k_2 any constants, is the general solution. (I): If as thet c=0 has imaginary roots $\lambda = d \pm \beta i$. Then $e^{\lambda t} = e^{(d+\beta i)t}$ (choose $\lambda = d+\beta i$) = de dteißt = ext(cos pt + isin pt) (Euler & formula) = edtcospt + ista edtsingt. => Y(t)= k, ext cospt + k, ext sin pt, k, k, any constants. is the general solution. (I): If as + bs+C=0 has repeated root 2. Then Y(t)= k1e^{\parts} + k2 te^{\parts}, k1, k2 any constants, is the general solution.

Transformation to 1st order linear system:

Introduce a new variable V= y', thus

$$V' = y''$$

= $-\frac{b}{a}y' - \frac{c}{a}y$ (-: $ay'' + by' + cy = 0$)
= $-\frac{c}{a}y - \frac{b}{a}V$.

Thus the 2nd order D.E. is equivalent to the first order system

$$\int y' = V$$

$$V' = -\frac{c}{a}y - \frac{b}{a}V,$$

or

$$Y' = \begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix} Y, \quad Y = \begin{pmatrix} y \\ v \end{pmatrix}, \quad Y' = \begin{pmatrix} y' \\ v' \end{pmatrix}.$$

Simple observations:

The characteristic polynomial of
$$\left(-\frac{c}{a} - \frac{b}{a}\right)$$
 is $\det\left(-\frac{\lambda}{a} - \frac{b}{a} - \frac{\lambda}{a}\right) = \lambda(\lambda + \frac{b}{a}) + \frac{c}{a}$.

$$= \lambda^2 + \frac{1}{6}\lambda + \frac{1}{6}$$

=
$$\frac{1}{a} \left(a \lambda^2 + b \lambda + c \right)$$
.

$$\Rightarrow$$
 Roots of $as^2 + bs + c = 0$ is the eigenvalues of the matrix $\begin{pmatrix} 0 & 1 \\ -\frac{c}{a} & -\frac{b}{a} \end{pmatrix}$

(2) If
$$\lambda$$
 is an eigenvalue of $\begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$, then $\begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix} = \begin{pmatrix} -\frac{1}{2} & -\frac{1}{2} \\ -\frac{1}{2} & -\frac{1}{2} \end{pmatrix}$.

 \Rightarrow the corresponding eigenvector is $V_{\lambda} = \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix}$.

Understanding the harmonic oscillator using the phase portrait:

The equation for harmonic oscillator

my"+ by+ ky=0

is equivalent to

$$Y' = \begin{pmatrix} 0 & 1 \\ -\frac{k}{m} & -\frac{b}{m} \end{pmatrix} Y$$

the eigenvalues satisfies $m \lambda^2 + 2b \lambda + k = 0$,

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4km}}{2m}$$

Thus the phase portrait depend on the eigenvalue π . We split into several case according to the size of b, the friction.

$$V_{\lambda} = \begin{pmatrix} 1 \\ \lambda \end{pmatrix} = \begin{pmatrix} 1 \\ \sqrt{k}i \end{pmatrix} = \begin{pmatrix} 1 \\ 0 \\ \sqrt{k}i \end{pmatrix} + i \begin{pmatrix} 0 \\ \sqrt{k} \\ \sqrt{k}i \end{pmatrix}. \quad \left(s_{0} \right)$$

- Oscillate back and forth, periodic solution with period
$$T = 2\pi \sqrt{\frac{m}{k}}$$

$$\lambda = \frac{-b}{2m} \pm \sqrt{\frac{b^2 - 4km}{2m}} = \frac{-b}{2m} \pm \sqrt{\frac{4km - b^2}{2m}} \hat{i}$$

~> Sepiral sink. $V_{\lambda} = \begin{pmatrix} 1 \\ \lambda \end{pmatrix} = \begin{pmatrix} -\frac{b}{2m} \end{pmatrix} + i \begin{pmatrix} \frac{\sqrt{4km-b^2}}{2m} \end{pmatrix} = 2l + iv \begin{pmatrix} \Delta a \\ -\frac{b}{2m} \end{pmatrix}$ ~> Spiral sink.

- The mass oscillate back and forth.

- The magnitude decreases and tends to zero, but

(iii) b>0, b2>4km (Overdamped).

$$\lambda = \frac{-b \pm \sqrt{b^2 - 4km}}{2m}$$

Note $b^2 - 4km < b^2$ (as k, m > 0), so $\sqrt{b^2 - 4km} < b$.

 \rightarrow -b+ $\int_{b^{2}-4km}$ <0. And -b- $\int_{b^{2}-4km}$ <0 obviously, thus the system has 2 distinct negative eigenvalues $\lambda_{1}<\lambda_{2}<0$ (sink).

 $V_{1} = \begin{pmatrix} 1 \\ \lambda_{1} \end{pmatrix}$ $V_{1} = \begin{pmatrix} 1 \\ \lambda_{1} \end{pmatrix}$

- All solutions converges to (0), but the precise motion depends on initial conditions y(0), y'(0): e.g. We consider region (I), (II); ~ V2=(1/2) (I) y(0)>0, y(0)<0, y(0) > 2. (Interpretation: Minitially is on the right 46)>0 pushed to the left y'(0)<0, while the push is small 14'(0) (121.) Then the solution curve is: ~ (y(0), y'(0)) $V_2 = \begin{pmatrix} 1 \\ \lambda_2 \end{pmatrix}$ y(t) → 0, without crossing the rest position y=0 = y(t)

Lastly:
(iv)
$$b > 0$$
, $b^2 = 4km$ (critically damped).
 $\lambda = -\frac{b}{m}$ (repeated negative root).

Phose portrat:

- All solutions tend to 0.
- Interpretation of (I), (I'), (I') similar to (I), (I), (II) in the overdamped case.