1. Conjuntos invariantes y acotación de soluciones

1.1. Definiciones

Sea $f: D \longrightarrow \mathbb{R}^d$ con $D = (a, +\infty) \times \mathbb{R}^d$ y continua. Consideramos el problema:

$$x' = f(t, x) \tag{*}$$

Definición 1. Diremos que un conjunto $B \subset \mathbb{R}^d$ es **positivamente invariante** para la ecuación (*) si $\forall x_0 \in B$ y $\forall t_0 > a$ y para toda solución $\varphi : (\alpha, \beta) \longrightarrow \mathbb{R}^d$ de

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \end{cases}$$

se verifica que $\varphi(t) \in B \ \forall t \geq t_0$. De forma análoga se puede definir un conjunto **negativamente invariante**. Diremos que un conjunto es **invariante** cuando es positiva y negativamente invariante.

Definición 2. Diremos que una solución $\varphi:(\alpha,\omega)\longrightarrow\mathbb{R}^d$ es acotada en el futuro si:

- $\omega = +\infty$
- $\exists M \geq 0 \text{ tal que } \|\varphi(t)\| \leq M \ \forall t \geq t_0 > \alpha$

Definición 3. Diremos que la ecuación diferencial (*) es estable en el sentido de Lagrange si todas sus soluciones son acotadas en el futuro.

1.2. Acotación de soluciones de EDO escalares

Consideramos el conjunto abierto $D=(a,+\infty)\times\mathbb{R}$ donde $a\geq -\infty$ y una función continua $f:D\longrightarrow\mathbb{R}$.

Proposición 4. Supongamos que la EDO x' = f(t, x) verifica la propiedad de unicidad en el futuro y sean $p_1, p_2 \in \mathbb{R}$ $(p_1 < p_2)$ tales que

$$f(t, p_1) = f(t, p_2) = 0 \quad \forall t \in (a, +\infty)$$

 $Sea \varphi : (\alpha, \beta) \longrightarrow \mathbb{R} \ una \ solución \ maximal \ de$

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \in [p_1, p_2] \end{cases}$$

Entonces $\varphi(t) \in [p_1, p_2] \ \forall t \in (t_0, \omega)$. Además $\omega = +\infty$.

Ejemplo 5. Ver página 6 tema 5.1. Importante, para que obtener la unicidad en el futuro, puedes ver que verifica la propiedad de unicidad global viendo que es localmente lipschitziana. Lo último puedes hacerlo o viendo que es continua, o haciéndolo a mano (encontrar un entorno abierto para todo punto donde puedas acotar f).

Proposición 6. Sea $\varphi:(\alpha,\beta)\longrightarrow \mathbb{R}$ una solución maximal de

$$\begin{cases} x' = f(t, x) \\ x(t_0) = x_0 \in [p_1, p_2] \end{cases}$$

Si existen $p_1, p_2 \in \mathbb{R}$ $(p_1 < p_2)$ tales que

$$f(t, p_1) > 0$$
 $f(t, p_2) < 0$ $\forall t > t_0$

Entonces $\varphi(t) \in (p_1, p_2) \ \forall t \in (t_0, \omega). \ Además \ \omega = +\infty.$

Ejemplo 7. Esta proposición hay que usarla cuando los ceros son tope tochos difíciles de encontrar. Así que es más fácil probar a mano valores hasta que salga uno positivo y uno negativo. Ver pag9. tema5.1.

1.3. Acotación de soluciones de EDO vectoriales

Consideramos el conjunto abierto $D=(a,+\infty)\times\mathbb{R}^d$ donde $a\geq -\infty$ y una función continua $f:D\longrightarrow\mathbb{R}^d$.

$$x' = f(t, x) \tag{*}$$

Vamos a denotar por $\dot{V}: D \longrightarrow \mathbb{R}$ a la función definida por $\dot{V}(t, f(t, x)) = \langle \nabla V(x), f(t, x) \rangle$.

Definición 8. Diremos que V es una función guía de la EDO (*) si $\dot{V} \leq 0 \quad \forall (t, x) \in D$ (o al menos para valores de x suficientemente grandes)

Lema 9. Sea $\varphi:(\alpha,\beta)\longrightarrow \mathbb{R}^d$ una solución de (*). Si existe $V\in \mathcal{C}^1(\mathbb{R}^d)$ tal que

$$\dot{V}(t,x) = 0 \quad \forall (t,x) \in D$$

 $y r = V(\varphi(t_0)) \text{ entonces } \varphi(t) \in S_r \quad \forall t \in (\alpha, \omega).$

Nota 10. Yo el lema 2 que aparece en la pag6.t5.2 no lo entiendo así que no me lo he mirado.

Definición 11. Diremos que una función $V : \mathbb{R} \longrightarrow \mathbb{R}$ continua es **coerciva** en \mathbb{R} si y sólo si:

$$\lim_{|x| \to +\infty} V(x) = +\infty$$

Ejemplo 12. Todos los polinomios de grado par con coeficiente principal positivo son coercivos.

Definición 13 (funciones con variables separadas). Diremos que una función $V: \mathbb{R}^2 \longrightarrow \mathbb{R}$ continua, que se expresa como $V(x,y) = V_1(x) + V_2(y)$ es coerciva si V_1 y V_2 lo son.

Nota 14. Lo anterior se puede generalizar para cualquier número de V_i .

Proposición 15. Puede pasar que V no sea de variables separadas pero sí sea cuadrática, es decir:

$$V(x,y) = ax^2 + bxy + cy^2 + dx + ey + r$$

Entonces:

$$V \ coerciva \iff a,c>0 \ b^2 < 4ac$$

Teorema 16 (acotación mediante funciones guía). Si existe $V \in C^1(\mathbb{R}^d)$ coerciva tal que $\dot{V}(t,x) \leq 0 \forall (t,x) \in D$ entonces las soluciones maximales de la EDO (*) están acotadas en el futuro.

Teorema 17. Dada $f: \mathbb{R} \times \mathbb{R}^d \longrightarrow \mathbb{R}^d$ continua, si existe $V \in \mathcal{C}^1(\mathbb{R}^2)$ coerciva tal que

$$\dot{V}(t,x) = 0 \quad \forall (t,x) \in \mathbb{R} \times \mathbb{R}^d$$

entonces las soluciones maximales de (*) están acotadas en el futuro y en el pasado.

Ejemplo 18. Importante el ejemplo en la página 6 del tema 5.3.

2. Ecuaciones diferenciales de segundo orden

(a) Ecuaciones conservativas:

$$mx'' + g(x) = 0$$

(b) Ecuaciones disipativas:

$$mx''cx' + g(x) = 0 \quad c > 0$$

Esta parte básicamente consiste en coger a g(x), integrarla, y ver si el resultado es coercivo. Por ejemlo, $x'' + x' + \sinh(x) = 0$

En este caso, $g(x) = \sinh(x)$, continua, luego:

$$G(x) = \int_0^x g(z)dx = \int_0^x \sinh(z)dz = \cosh(x) - 1$$

Como se da $\lim_{x\to -\infty} G(x)=0$, G no es coerciva, luego las soluciones de la ecuación no están acotadas en el futuro.