Modeling

Modeling is the process of representing a real-world problem in a way that a computer can understand and solve it, in order to find information or make predictions in data.

This models are created using **Machine Learning** algorithms. In traditional programming, we give to the computer an input and a program, and it returns an output. In Machine Learning, we give to the computer an **input and an output**, and it returns a program.

- **Predictive Models**: predict the value of a variable of interest based on other variables; **Classifiers** and **Predictors**;
- **Descriptive Models**: describe the relationship between variables in data in a way that is interpretable by humans; **Patterns/Rules** and **Data Partition**;

We can distinguish three **learning techniques**:

- Supervised Learning: the model is trained using a set of labeled examples, and then it is used to predict the label of new examples;
- Semi-supervised Learning: the model is trained using a set of labeled
 and unlabeled examples, and then it is used to predict the label of new
 examples;
- Unsupervised Learning: the model is trained using a set of unlabeled examples, and then it is used to find patterns in new examples;

According to this categorization, we can present a very simple taxonomy for the most famous **machine learning techniques**:

- Supervised/Semi-supervised Learning:
 - Classification;
 - Forecasting;
- Unsupervised Learning:
 - Clustering;
 - Pattern Mining.

Anomaly Detection is a fifth task that can not be classified in this taxonomy, because it can be used in both supervised and unsupervised learning.

Classification

Concept is something conceived in the mind, an abstract/generic idea generalized from particular instances.

Classification is the task of automatically learning concepts.

- A **class** is a set of objects that share common properties;
 - This is our concept to be learned the target;
- The dataset is described by a set of variables;
- A **labeled dataset** is a dataset where each object is associated with a class, to be used in **supervised learning**; This dataset can be seen as a matrix:

A_1	A_2	 A_d	C
x_{11}	x_{12}	 x_{1d}	c_1
x_{21}	x_{22}	 x_{2d}	c_2
x_{n1}	x_{n2}	 x_{nd}	c_n

The model or classifier is a function that maps the input to the output:

$$f: A_1 \times A_2 \times ... \times A_d \to C$$

- To learn a model is to estimate the function f;
- This is done by using ML algorithms, given a labeled dataset training set:
- This means that the algorithm tries to find the function that **minimizes** the error between the **predicted** and the actual values.

Classification Tribes

- Analogizers classify an object by comparing it to similar known objects learning by analogy;
 - The most famous algorithms are k-Nearest Neighbors and Support Vector Machines;
- Bayesians classify an object by computing the **probability** of each class given the object learning by **probabilistic inference**;
 - The most famous algorithms are Naive Bayes and Bayesian Networks:
- **Symbolists** classify an object by inferring a set of **logical rules** learning by **logic inference**;
 - The most famous algorithms are Decision Trees and Rule-based Classifiers;
- Connectionists classify an object by using a **neural network** learning by **optimization**;
 - The most famous algorithms are Multilayer Perceptrons and Deep Learning;
- Evolutionaries classify an object by using an evolutionary algorithm learning by evolution;
 - The most famous algorithms are Genetic Algorithms and Genetic Programming.

Evaluation Metrics

- Objective: evaluate the performance of a model;
- Criteria:
 - Accuracy;
 - Simplicity and Interpretability;

Occam's Razor: the simplest explanation is usually the correct one.

- The goal is to minimize the error rate error minimization;
- Generalization Error is the error rate of the model in unseen data and is expected to decrease as the model is trained with more data;

- However, if the model is **overfitted**, the generalization error will increase;
- This component can be decomposed into bias and variance, that are inversely proportional;
- Bias is the difference between the predicted and the actual values;
- Variance is the variability of the predicted values;
- Underfitting is when the model is too simple and does not capture the data High bias and low variance;
- Overfitting is when the model is too complex and captures the noise
 Low bias and high variance;
 - Model starts to memorize the training data instead of learning the concept;
 - Training error decreases;
 - Test error increases.

Confusion Matrix is a matrix that shows the number of correct and incorrect predictions for each class.

	Actual Positives	Actual Negatives	
Predicted Positives	True Positives	False Positives	
Predicted Negatives	False Negatives	True Negatives	

$$\mathrm{accuracy} = \frac{\mathrm{TP} + \mathrm{TN}}{\mathrm{All}}$$

$$error \ rate = 1 - accuracy = \frac{FP + FN}{All}$$

Accuracy and error rate are global metrics. We can also use local metrics: Recall/Coverage is the proportion of actual positives that was correctly identified. Also known as TP rate, sensitivity, hit rate, or true positive rate:

$$\mathrm{recall} = \frac{\mathrm{TP}}{\mathrm{TP} + \mathrm{FN}}$$

Precision is the proportion of predicted positives that was correctly identified. Also known as positive predictive value:

$$precision = \frac{TP}{TP + FP}$$

F-measure is the harmonic mean of recall and precision:

$$F\text{-measure} = \frac{2 \times \text{recall} \times \text{precision}}{\text{recall} + \text{precision}}$$

Specificity is the opposite of recall, and is the proportion of actual negatives that was correctly identified. Also known as selectivity, true negative rate, or TN rate:

$$specificity = \frac{TN}{TN + FP}$$

$$FP \text{ rate} = 1 - \text{specificity}$$

ROC (Receiver Operating Characteristic) charts are used to evaluate the performance of a classifier, by plotting the TP rate against the FP rate.

• The area under the curve (AUC) is a global metric that measures the overall performance of the classifier - higher is better;

Training Strategies

There are several strategies to train a model:

- For several thousand records, we can use **holdout**;
 - The dataset is **randomly divided** into two subsets: **training set** (70%) and **test set** (30%);
 - The model is trained using the training set, and then it is evaluated using the test set;
 - Validation dataset is a third dataset used to tune the parameters of the model;
- For few thousand records, we can use **cross-validation**;
 - The dataset is **randomly divided** into k subsets of **equal size**;
 - The model is trained using k-1 subsets, and then it is evaluated using the remaining subset;
 - This process is repeated k times, and the results are averaged;
- For few records, we can use **leave-one-out**;
 - One record is used for testing, and the others are used for training.

Forecasting

Forecasting is the task of automatically learning a function that predicts the value of a variable of interest based on other variables.

- Usually, the data to be forecasted is time-dependent, and are called time series:
- Against classification, the target is a continuous variable, and not a class - the result information is called predictor;
- After training the predictor, we can apply it to predict the value of the target in **future time steps**;
- Considering a function f that maps the **input** to the **output**, and a function \hat{f} that maps the **input** to the **predicted output**;
 - The best estimation of \hat{f} is the one closest to f minimizes the square error;
 - $-MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i \hat{y}_i)^2;$

There are several different families of forecasting approaches:

- **Regression** the predictor is a **linear function** of the input variables;
 - The most famous algorithms are Linear Regression and Logistic Regression;
- Extrapolation the predictor is a polynomial function of the input variables;
 - The most famous algorithms are Polynomial Regression and Support Vector Regression;
- Markov Models the predictor is a probabilistic function of the input variables;
 - The most famous algorithms are Hidden Markov Models and Markov Chains;
- Neural Networks the predictor is a neural network;
 - The most famous algorithms are Multilayer Perceptrons and Deep Learning.