Proiect de lecție

Clasa: a X-a

Disciplina: Informatică

Subiectul lecției: Aplicații cu vectori

Unitatea de învățare: Tablouri unidimensionale

Competențe specifice:

- identificarea necesității structurării datelor în tablouri

- prelucrarea datelor structurate în tablouri

- utilizarea fișierelor text pentru introducerea datelor și extragerea rezultatelor

Obiective operaționale:

O1. să identifice situațiile în care utilizarea tablourilor unidimensionale în anumite probleme propuse este necesară și situațiile în care nu este necesară utilizarea vectorilor

O2. să citească/scrie elementele unui vector din/în fișiere text

O3 .să utilizeze eficient structurile de control studiate în aplicațiile cu tablouri unidimensionale

Strategia didactică

- a) Tipul experienței de învățare
 - legarea teoriei de practică
 - formarea temeinică a cunoștințelor
 - accesibilă, individualizată
- b) Metode și procedee
 - metode de comunicare: explicații, problematizare, conversația
 - metode de acțiune: exerciții, experimentarea

- c) Mijloace de învățământ
 - mijloace vizuale: manual, computer, videoproiector/tablă, medii de programare
- d) Forme de organizare
 - individual: realizarea de sarcini practice
 - frontal: lecția

1. Moment organizatoric

Continut:

- verificarea prezenței
- pregătirea computerelor

2. Captarea atenției

Conținut:

- elevii vor căuta pe grupe diverse aplicații în lumea reală a utilizării vectorilor (ex. ordonarea unor obiecte după o anumită trăsătură), la final urmând să fie discutate cu restul clasei

Metode și procedee didactice:

- metode de comunicare: conversația
- metoda brainstormingului

Forma de organizare:

- frontală
- în grup

Mijloace didactice:

- computer
- internet

3. Anunțarea subiectului lecției și a obiectivelor

Continut:

- se vor anunța obiectivele lecției într-un mod accesibil elevilor

4. Reactualizarea cunoștințelor anterioare

Continut:

- se reamintește maniera de declarare a unui tablou unidimensional și elementele/variabilele care permit gestionarea/prelucrarea unui vector
- se reamintesc cele 2 moduri în care se poate citi un vector dintr-un fișier: cel în care fișierul conține dimensiunea reală a vectorului și cel în care fișierul nu conține acest număr
- se verifică tema, iar dacă este cazul se reiau exercițiile din tema

Metode și procedee didactice:

- metode de comunicare: conversația
- metode de acțiune: exercițiu

Forma de organizare:

- frontală

Mijloace didactice:

- computer

5. Dirijarea învățării

Conținut

- elevii vor rezolva, în grupe de 2-3 persoane următoarele probleme

Exercițiu	Enunț	Rezolvare
1 O2	Fișierul text "intrare.txt" conține pe mai	#include <iostream></iostream>
	multe linii, cel mult 100 de valori reale	#include <fstream></fstream>
	separate prin spații. Determinați pozițiile	using namespace std;
	din şirul de valori pe care se află valoarea	int main()
	maximă din şir (pentru construirea şirului	{
	se parcurg liniile fișierului de la stânga la	float x[100];
	dreapta și de sus în jos iar elementele	int n=0,i;
	acestuia vor fi numerotate de la 1).	ifstream f("intrare.txt");
	Rezultatele se vor scrie în fișierul text	while(f>>x[n])
	"iesire.txt", pe prima linie a acestuia,	n++;
	separate prin câte un spațiu.	f.close();
		float maxim=x[0];
	Exemplu:	$for(i=1;i \le n-1;i++)$
	intrare.txt conține:	if(x[i]>maxim)
	3 4 1 4 2 3 4	maxim=x[i];
	ieșire.txt va conține:	ofstream g("iesire.txt");
	2 4 7	$for(i=0;i \le n-1;i++)$
		if(x[i]==maxim)
		g< <i+1<<' ';<="" td=""></i+1<<'>
		g.close();
		return 0;
		}
	Fişierul text "intrare.txt" conţine pe prima	#include <iostream></iostream>
	linie două valori naturale nenule n și k	#include <fstream></fstream>
	(1≤k≤n≤20). Pe a doua linie a fișierului	using namespace std;
	sunt scrise n valori întregi. Scrieți în	int main()
	fișierul text "iesire.txt", pe prima linie a	\ \
	acestuia, toate elementele de pe a doua	int n,i,k;
	linie, exceptând elementul de pe poziția k,	ifstream f("intrare.txt");
	(elementele șirului sunt numerotate de la 1)	ofstream g("iesire.txt");
	separate prin câte un spațiu.	f>>n>>k;
2 O1,O2	P 1	while(f>>x)
	Exemplu:	(3.1.1)
	intrare.txt conține:	if(k!=1)
	53	g< <x<' ';<="" td=""></x<'>
	12345	k;
	iesire.txt va conține:	} 6.1
	1 2 4 5	f.close();
	Oha Ca avalia da aa aa aa aa aa aa aa	g.close();
	Obs. Se explică de ce nu se utilizează	return 0;
	vectori (deoarece se poate parcurge o	}
	singură dată șirul este mai eficient să nu se	
	rețină un vector)	

	Fișierul text "intrare.txt" conține pe prima	#include <iostream></iostream>
3 O1,O2,O3	linie o valoare naturală nenulă n (1≤n≤50).	#include <fstream></fstream>
	Pe a doua linie a fișierului sunt scrise n	using namespace std;
	valori întregi. Verificați dacă elementele	int main()
	de pe a doua linie a fișierului text pot	{
	forma o mulţime (nu există duplicate).	int x[50],n,i,j;
	Scrieți apoi în fișierul text "iesire.txt", pe	ifstream f("intrare.txt");
	prima linie a acestuia, mesajul "multime"	f>>n;
	dacă testul este afirmativ, respectiv	for(i=0;i<=n-1;i++)
	mesajul "eroare", în caz contrar.	f>>x[i];
	mesajar eroare , m eaz contrar.	f.close();
		int test=1;
	Exemplu:	for $(i=0; i <= n-2 & test; i++)$
	intrare.txt conține:	for(j=i+1;j<=n-1 && test;j++)
	5	if(x[i]==x[j])
	12345	test=0;
		ofstream g("iesire.txt");
	iesire.txt va conține: multime	
		if(test)
	intrare.txt conține: 5	g<<"multime"; else
	12335	
		g<<"eroare";
	iesire.txt va conține:	g.close();
	eroare	return 0;
	Se dau două mulțimi A și B de numere	#include <iostream></iostream>
	reale, cu maximum 100 de elemente	#include <fstream></fstream>
	fiecare. Determinați mulțimile A reunit cu	using namespace std;
	B, A intersectat cu B și diferența lui A și	int main()
	B(A-B) . Elementele mulţimii A sunt	{
4 O1,O2,O3	scrise în fișierul "A.txt" pe mai multe linii,	float A[100], B[100];
	separate prin spaţii; elementele mulţimii B	int m,n,i,j;
	sunt scrise în fișierul "B.txt" pe mai multe	m: m;n;1,1,5, m=n=0;
	linii, separate prin spații. Elementele	ifstream f("A.txt");
	mulţimii A reunit cu B vor fi scrise în	while(f>>A[m])
	fişierul "reuniune.txt", pe prima linie a	m++;
	acestuia, separate prin câte un spațiu;	f.close();
	elementele mulțimilor A intersectat cu B	ifstream h("B.txt");
	și A-B vor fi scrise în aceeași manieră în	while(h>>B[n])
	fișierele text "intersectie.txt" respectiv	n++;
	"diferenta.txt".	h.close();
	difficientatia.	//reuniune
	Evennly	ifstream r("reuniune.txt");
	Exemplu:	for(i=0;i<=m-1;i++)
	intrare.txt conţine: 1 2 3 4 5 10	r< <a[i]<<' ';<="" td=""></a[i]<<'>
	34567	
	34307	for(i=0;i<=n-1;i++)
		{

```
reuniune.txt va conține:
                                                 int gasit=0;
                                                 for(j=0;j<=m-1 && !gasit;j++)
1 2 3 4 5 10 6 7
intersectie.txt va conține:
                                                    if(A[j]==B[i])
3 4 5
                                                      gasit=1;
diferenta.txt va conține:
                                                 if(!gasit)
1 3 10
                                                    r << B[i] << '';
                                                 }
                                                 r.close();
                                                 //intersectie
                                                 ofstream q("intersectie.txt");
                                                 for(i=0;i<=n-1;i++)
                                                    int gasit=0;
                                                    for(j=0;j<=m-1 && !gasit;j++)
                                                      if(A[i]==B[i])
                                                         gasit=1;
                                                    if(gasit)
                                                      q<<B[i]<<' ';
                                                 q.close();
                                                 //diferenta
                                                 ofstream d("diferenta.txt");
                                                 for(i=0;i<=m-1;i++)
                                                    int gasit=0;
                                                    for(j=0;j<=n-1 && !gasit;j++)
                                                      if(B[j]==A[i])
                                                         gasit=1;
                                                    if(!gasit)
                                                        d << A[i] << ' ';
                                                 d.close();
                                                 return 0;
```

Metode și procedee didactice:

```
- metode de comunicare: conversația
```

- metode de acțiune: exercițiu

Forma de organizare:

- în grup

Mijloace didactice:

- computer

6. Obținerea performanței

Continut:

- pe măsură ce exercițiile sunt rezolvate, va ieși câte o grupă la tablă (preferabil să nu iasă de mai multe ori o singură grupă, pentru a permite tuturor să prezinte câte o problemă) și va prezenta exercițiul (unde este posibil se va folosi videoproiector)
- de asemenea se discută soluțiile alternative ale celorlalte grupe

Metode și procedee didactice:

- metode de comunicare: conversația, problematizarea

Forme de organizare:

- în grup

Mijloace didactice:

- tabla

7. Asigurarea feedbackului / Evaluarea

Conținut:

- în timp ce elevii rezolvă exercițiile, profesorul va merge la fiecare grupă pentru a oferi feedback, explica enuntul ori problemele de sintaxa sau de logică
- în timp ce elevii prezintă, profesorul va coordona prezentarea, oferind feedback asupra prezentării, în același timp ghidându-i pe elevi în prezentare pentru a atinge punctele importante

8. Încheierea lecției

Conținut:

- tema va fi compusă din exercițiile rămase nerezolvate
- reamintirea obiectivelor lecției