TOPIC 10.4 Carboxylic acids and its derivatives

2) Carbonation of grignard reagent

$$CH_{3}CH_{2}Br \xrightarrow{Mg} CH_{3}CH_{2}MgBr \xrightarrow{[1]CO_{2}} CH_{3}CH_{2}COOH$$

Oxidation of primary alcohol & aldehyde

Other Common oxidizing agents are:

- Hot, acidified Na₂Cr₂O₇ solution
- Hot, acidified K₂Cr₂O₇ solution
- Hot, acidified CrO₃ solution

EXERCISE 4

Show the relevant carboxylic acid in the following reaction

$$H_3C$$
— C — OH $i. KMnO_4,OH^-,\triangle$
 ii H_3O^+

$$C = O + Na_2Cr_2O_7 \xrightarrow{H_3O^+}$$

ANSWER

Show the relevant carboxylic acid in the following reaction

$$H_3C$$
 $C = O + Na_2Cr_2O_7 \xrightarrow{H_3O^+} C = O$
 HO
 $aldehyde$
 $C = O + Na_2Cr_2O_7 \xrightarrow{H_3O^+} C = O$
 $C = O$

Oxidation of Alkyl Benzene

If the alkyl group attached to the benzene ring does not contain benzylic hydrogen, therefore the alkyl benzene cannot be oxidized

CI
$$CH_3$$

Hydrolysis of Nitrile Compound

$$R-CH_2-CN \xrightarrow{H_2O,H^+} R-CH_2-COOH$$
nitrile compound carboxylic acid

Reagent

Carbonation of Grignard Reagents

R—COOH + Mg(OH)X

carboxylic acid salt

THE END

TOPIC 10.5 Carbonylic acids and its derivatives

Main reactions of carboxylic acids:

- The reaction that involves the donation of H+ from –OH group.
- The reaction that involves the substitution of —OH group.
- The reaction that involves the reduction with LiAlH₄ followed by hydrolysis to form primary alcohol.

The reaction that involves the donation of H⁺ from OH group

□ Neutralisation

 Carboxylic acids are acidic, it can react with base such as NaOH (aq) to give metal carboxylate salts,

Reaction with electropositive metals such as Na, K, Mg, Ca or Fe produces carboxylate salt and hydrogen gas

M = Metal

The reaction that involves the substitution of –OH group (to form its derivatives)

i. Acid chloride formation

Acid chloride can be prepared from the reaction of carboxylic acids with thionyl chloride, $SOCl_2$; phosphorous pentachloride, PCl_5 ; phosphorous trichloride, PCl_3

ii. Esterification

Carboxylic acids react with alcohols in the presence of mineral acid catalyst to produce esters.

CH₃CH₂·C-OH + HOCH₂CH₃
$$\stackrel{H^+}{\searrow}$$
 CH₃CH₂·C-OCH₂CH₃

propanoic acid ethanol ethyl propanoate

$$+ H_2O$$

iii. Acid anhydride formation

Acid anhydrides can be prepared from carboxylic acids in the presence of by phosphorous pentoxide, P_2O_5 .

EXERCISE 5

Complete the following reaction:

$$\begin{array}{c|c} O & O \\ || & || \\ CH_3C-OH + CH_3C-OH \xrightarrow{P_2O_5} \\ \hline \textit{heat} \end{array}$$

$$\begin{array}{c|cccc} O & O & O \\ || & || & P_2O_5 \\ \hline CH_3 C-OH + CH_3CH_2 C-OH & heat \end{array}$$

ANSWER

Complete the following reaction:

$$\begin{array}{c} O \\ CH_{3}C - OH + CH_{3}C - OH - P_{2}O_{5} \\ heat \end{array} \xrightarrow{\begin{array}{c} CH_{3} - C - O - C - CH_{3} \\ ethanoic anhydride \end{array}}$$

$$+ H_{2}O$$

ANSWER

CH₃ C-OH + CH₃CH₂ C-OH
$$\xrightarrow{P_2O_5}$$
 CH₃ C-O-C-CH₂CH₃ ethanoic propanoic anhydride

 $+ H_2O$

Acid anhydride also can be prepared by reacting carboxylic acid with acid chloride in pyridine.

iv. Amides formation

Reaction of carboxylic acids with an ammonia or amine give amide.

The reaction that involves the reduction with LiAlH₄ followed by hydrolysis to form primary alcohol

Carboxylic acid are reduced to primary alcohols by reaction with lithium aluminium hydride, LiAlH₄ followed by hydrolysis

CH₃-CH-C-OH
$$\stackrel{\text{i)}}{\underset{\text{CH}_2}{\text{LiAlH}_4}}$$
 $\stackrel{\text{CH}_3\text{-CH-CH}_2\text{OH}}{\underset{\text{CH}_2}{\text{CH}_2}}$ $\stackrel{\text{CH}_3\text{-CH-CH}_2\text{OH}}{\underset{\text{CH}_3}{\text{CH}_3}}$

Methanoic acid, HCOOH as a reducing agent

• Methanoic acid molecule, H-C-OH is a reducing agent.

 It shows reducing properties in reactions with acidified KMnO₄ or K₂Cr₂O₇ and Tollens' reagent.

$$\begin{array}{c} O \\ H-C-OH \\ \hline \\ & \begin{array}{c} \text{CO}_2 + \text{H}_2\text{O} + \text{Mn}^{2+} \\ \text{Observation:} \\ \text{purple colour of KMnO}_4 \, \text{decolourised} \\ \hline \\ & \begin{array}{c} \text{Ag} \\ \end{array} + \text{CO}_2 + \text{H}_2\text{O} \\ \hline \\ & \begin{array}{c} \text{Observation:} \\ \text{Solver mirror formed} \\ \end{array}$$

THE END

