I. Ellipse:

b. Standard Equation of Ellipse with Center at the Origin

Equation		Vertice s	Co- Vertice s
$\frac{x^2}{a^2} + \frac{y^2}{b^2} = 1$	Horizon tal	$(\pm a,0)$	$(0,\pm b)$
$\frac{x^2}{b^2} + \frac{y^2}{a^2} = 1$	Vertical	$(0,\pm a)$	(±b,0)

c. Foci: $c^2 = a^2 - b^2$

Monday, April 12, 2021

10:36 PM

I. Hyperbolas

Hyperbola with horizontal transverse axis

Hyperbola with vertical transverse axis

$$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$$

$$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$$

b. Standard Equation of a Hyperbola with Center at the Origin

Equation	Transverse Axis	Asymptotes	Vertices
$\frac{x^2}{a^2} - \frac{y^2}{b^2} = 1$	Horizontal	$y = \pm \frac{b}{a}x$	(±a,0)
$\frac{y^2}{a^2} - \frac{x^2}{b^2} = 1$	Vertical	$y = \pm \frac{a}{b}x$	$(0,\pm a)$

c. Foci:
$$c^2 = a^2 + b^2$$

Translating and Classifying Conic Sections

Monday, April 12, 2021 10:57 PM

- I. Translating and Classifying Conic Sessions
 - a. Standard Form of Equations of Translated Conics

Туре	Horizontal Axis	Vertical Axis
Circle	$(x-h)^2 + (y-k)^2 = r^2$	$(x-h)^2 + (y-k)^2 = r^2$
Parabola	$(y-k)^2 = 4p(x-h)$	$(y-k)^2 = 4p(x-h)$
Ellipse	$\frac{(x-h)^2}{a^2} + \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{b^2} + \frac{(y-k)^2}{a^2} = 1$
Hyperbola	$\frac{(x-h)^2}{a^2} - \frac{(y-k)^2}{b^2} = 1$	$\frac{(x-h)^2}{b^2} - \frac{(y-k)^2}{a^2} = 1$

b. Classifying Conics Using Their Equations

Discriminant	Type of Conic	
$B^2 - 4AC < 0, B = 0, A = C$	Circle	
$B^2 - 4AC < 0$ and either $B \neq 0$ or $A \neq C$	Ellipse	
$B^2 - 4AC = 0$	Parabola	
$B^2 - 4AC > 0$	Hyperbola	