$11a_{93} (K11a_{93})$

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{46} - u^{45} + \dots - u + 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 46 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{46} - u^{45} + \dots - u + 1 \rangle$$

(i) Arc colorings

$$a_{4} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} 1 \\ -u^{2} \end{pmatrix}$$

$$a_{5} = \begin{pmatrix} u \\ -u^{3} + u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ -u^{2} \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} u^{4} - u^{2} + 1 \\ u^{4} \end{pmatrix}$$

$$a_{11} = \begin{pmatrix} -u^{6} + u^{4} - 2u^{2} + 1 \\ -u^{6} - u^{2} \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} u^{10} - u^{8} + 2u^{6} - u^{4} - u^{2} + 1 \\ -u^{12} + 2u^{10} - 4u^{8} + 4u^{6} - 3u^{4} \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{13} - 2u^{11} + 5u^{9} - 6u^{7} + 6u^{5} - 4u^{3} + u \\ u^{13} - u^{11} + 3u^{9} - 2u^{7} + 2u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} u^{35} - 4u^{33} + \dots - 7u^{3} + 2u \\ -u^{37} + 5u^{35} + \dots - u^{3} + u \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{22} + 3u^{20} + \dots - 2u^{2} + 1 \\ -u^{22} + 2u^{20} + \dots + 4u^{4} - u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u^{22} + 3u^{20} + \dots - 2u^{2} + 1 \\ -u^{22} + 2u^{20} + \dots + 4u^{4} - u^{2} \end{pmatrix}$$

- (ii) Obstruction class = -1
- (iii) Cusp Shapes = $-4u^{44} + 4u^{43} + \cdots 4u + 2$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{46} - u^{45} + \dots - 3u + 1$
c_2	$u^{46} + 25u^{45} + \dots - u + 1$
c_3	$u^{46} - 7u^{45} + \dots + 25u + 101$
c_4, c_8	$u^{46} + u^{45} + \dots + u + 1$
c_6, c_{11}	$u^{46} + u^{45} + \dots + 11u + 2$
c_7, c_9, c_{10}	$u^{46} - 11u^{45} + \dots - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_5	$y^{46} + 25y^{45} + \dots - y + 1$
c_2	$y^{46} - 7y^{45} + \dots - 17y + 1$
c_3	$y^{46} - 19y^{45} + \dots + 139967y + 10201$
c_4, c_8	$y^{46} - 11y^{45} + \dots - y + 1$
c_6, c_{11}	$y^{46} - 39y^{45} + \dots + 239y + 4$
c_7, c_9, c_{10}	$y^{46} + 49y^{45} + \dots - 9y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = 0.926616 + 0.410566I	-0.61712 + 4.64033I	3.90866 - 6.37467I
u = 0.926616 - 0.410566I	-0.61712 - 4.64033I	3.90866 + 6.37467I
u = -0.914147 + 0.454246I	-4.39692 - 0.74190I	-1.01050 + 2.76153I
u = -0.914147 - 0.454246I	-4.39692 + 0.74190I	-1.01050 - 2.76153I
u = 0.911781 + 0.304147I	2.15395 + 4.51135I	7.09548 - 8.74151I
u = 0.911781 - 0.304147I	2.15395 - 4.51135I	7.09548 + 8.74151I
u = -0.954952 + 0.418436I	-3.69312 - 9.28862I	0.73867 + 9.25644I
u = -0.954952 - 0.418436I	-3.69312 + 9.28862I	0.73867 - 9.25644I
u = 0.930509 + 0.048833I	-1.66163 - 4.02262I	4.31758 + 3.30145I
u = 0.930509 - 0.048833I	-1.66163 + 4.02262I	4.31758 - 3.30145I
u = -0.890449 + 0.239219I	2.52825 - 0.40745I	9.12909 + 0.87770I
u = -0.890449 - 0.239219I	2.52825 + 0.40745I	9.12909 - 0.87770I
u = -0.814350 + 0.077554I	1.220450 - 0.051921I	8.69452 + 0.37904I
u = -0.814350 - 0.077554I	1.220450 + 0.051921I	8.69452 - 0.37904I
u = -0.845736 + 0.830186I	-4.84996 + 2.01035I	0 3.31970I
u = -0.845736 - 0.830186I	-4.84996 - 2.01035I	0. + 3.31970I
u = 0.871966 + 0.808985I	-3.65550 + 2.31659I	2.70777 - 2.80879I
u = 0.871966 - 0.808985I	-3.65550 - 2.31659I	2.70777 + 2.80879I
u = 0.918456 + 0.798302I	-3.51223 + 3.71082I	3.02524 - 2.42011I
u = 0.918456 - 0.798302I	-3.51223 - 3.71082I	3.02524 + 2.42011I
u = -0.851134 + 0.882685I	-8.86024 + 1.86315I	-6 - 1.106545 + 0.10I
u = -0.851134 - 0.882685I	-8.86024 - 1.86315I	-6 - 1.106545 + 0.10I
u = 0.845372 + 0.890503I	-12.13790 - 6.72244I	-4.11786 + 3.49282I
u = 0.845372 - 0.890503I	-12.13790 + 6.72244I	-4.11786 - 3.49282I
u = 0.862272 + 0.887980I	-12.90310 + 2.35522I	-5.23797 - 2.80998I
u = 0.862272 - 0.887980I	-12.90310 - 2.35522I	-5.23797 + 2.80998I
u = -0.943172 + 0.803061I	-4.55090 - 8.11388I	0. + 8.45293I
u = -0.943172 - 0.803061I	-4.55090 + 8.11388I	0 8.45293I
u = 0.640742 + 0.410350I	-1.44816 + 1.63407I	-3.46961 - 5.26360I
u = 0.640742 - 0.410350I	-1.44816 - 1.63407I	-3.46961 + 5.26360I

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.907049 + 0.844230I	-8.35989 - 3.13875I	-5.65909 + 2.64059I
u = -0.907049 - 0.844230I	-8.35989 + 3.13875I	-5.65909 - 2.64059I
u = -0.391409 + 0.635070I	-6.04130 - 3.27213I	-5.13047 + 3.47488I
u = -0.391409 - 0.635070I	-6.04130 + 3.27213I	-5.13047 - 3.47488I
u = -0.966860 + 0.834394I	-8.49402 - 8.22551I	0. + 5.24210I
u = -0.966860 - 0.834394I	-8.49402 + 8.22551I	0 5.24210I
u = 0.963540 + 0.844204I	-12.58150 + 4.05580I	-4.67518 + 0.I
u = 0.963540 - 0.844204I	-12.58150 - 4.05580I	-4.67518 + 0.I
u = -0.313493 + 0.645402I	-5.71816 + 5.39161I	-4.52962 - 3.70458I
u = -0.313493 - 0.645402I	-5.71816 - 5.39161I	-4.52962 + 3.70458I
u = 0.974549 + 0.835372I	-11.7284 + 13.1112I	0 8.32350I
u = 0.974549 - 0.835372I	-11.7284 - 13.1112I	0. + 8.32350I
u = 0.339399 + 0.599164I	-2.45150 - 0.89325I	-1.50590 + 0.29908I
u = 0.339399 - 0.599164I	-2.45150 + 0.89325I	-1.50590 - 0.29908I
u = 0.107548 + 0.462569I	-0.09670 - 1.71368I	-0.09766 + 4.16841I
u = 0.107548 - 0.462569I	-0.09670 + 1.71368I	-0.09766 - 4.16841I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_5	$u^{46} - u^{45} + \dots - 3u + 1$
c_2	$u^{46} + 25u^{45} + \dots - u + 1$
c_3	$u^{46} - 7u^{45} + \dots + 25u + 101$
c_4, c_8	$u^{46} + u^{45} + \dots + u + 1$
c_6, c_{11}	$u^{46} + u^{45} + \dots + 11u + 2$
c_7, c_9, c_{10}	$u^{46} - 11u^{45} + \dots - u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1,c_5	$y^{46} + 25y^{45} + \dots - y + 1$
c_2	$y^{46} - 7y^{45} + \dots - 17y + 1$
c_3	$y^{46} - 19y^{45} + \dots + 139967y + 10201$
c_4, c_8	$y^{46} - 11y^{45} + \dots - y + 1$
c_6, c_{11}	$y^{46} - 39y^{45} + \dots + 239y + 4$
c_7, c_9, c_{10}	$y^{46} + 49y^{45} + \dots - 9y + 1$