

GO Classes

Set Theory

Understanding Set Operations

Set Operations, Venn Diagram, Set Equality

Website: https://www.goclasses.in/

GO Classes

Revision Course GATE PYOs Video Solutions Standard Resources Practice Course

Orientation Class 25th Feb 7:30 PM-9PM

Discrete Mathematics classes Free C language classes Free

Free classes: 26th Feb - 30th March

Course Duration: 25th Feb - 30th August

Timing of classes: 7:00 AM - 9:00 AM 7:30 PM - 9:30 PM

with 20% Early Bird Offer ₹ 17,600/-

Sachin Mittal (CO-Founder GOCLASSES)

Deepak Poonia (CO-Founder GOCLASSES)

MTech IISc Bangalore MTech IISc Bangalore Ex Amazon scientist GATE AIR 53: 67: 206 **GATE AIR 33**

Dr. Arjun Suresh (Mentor)

Founder GATE Overflow Ph.D. INRIA France ME IISc Bangalore Postdoc The Ohio --State University

Course Features

Quality Learning.

Summary Lectures.

Interactive Classes & Doubt Resolution.

Standard Practice Sets & Video Solutions.

ALL GATE PYQs Video Solutions.

Doubts Resolution by Faculties on Telegram.

+91-6302536274

www.goclasses.in/s/pages/schedule

AUB:

Let A,B be two sets(same or different)

A U B represents the set you get when you combine everything from A and B together

" $x \in A \cup B$ if and only if $x \in A$ or $x \in B$."

GO Classes

 $x \in AUB$ iff $x \in A$ or $x \in B$. $x \in A$ or $x \in B$ then $x \in AUB$ $x \in AUB$ then $x \in AUB$ then $x \in A$ or $x \in B$.

XEA then XEAUBL

X FAUB then rEAX

+ +

Discrete Mathematics

$$x \notin A$$
 then $x \notin A \cup B$ \times \times $A \cup B$ $A \cup B$ \times $A \cup B$ \times $A \cup B$ \times $A \cup B$ \times $A \cup B$ \setminus A \setminus $A \cup B$ \setminus A \setminus A \setminus A \setminus A \setminus A \setminus A \setminus A

(F)

\$\$\$ + +

Discrete Mathematics

$$S \cup T = \{x \mid x \in S \text{ or } x \in T \text{ (or both)}\}$$

$$S \cap T = \{x \mid x \in S \text{ and } x \in T\}$$

$$S-T=\{x\mid x\in S \text{ and } x\notin T\}$$

$$S \Delta T = \{x \mid \text{ either } x \in S \text{ and } x \notin T, \text{ or } x \notin S \text{ and } x \in T\}$$

If you know $x \in S \cup T$, you can conclude $x \in S$ or $x \in T$.

If you know $x \in S \cap T$, you can conclude $x \in S$ and $x \in T$.

If you know $x \in S - T$, you can conclude $x \in S$ and $x \notin T$.

If you know $x \in S \Delta T$, you can conclude either $x \in S$ and $x \notin T$, or $x \notin S$ and $x \in T$.

GO Classes

XESOT then XES and XET XESNT then XES W x & s then x & sn T X XES and RET then XESOTV &s then oc & snT L

$$x \in S$$
, $x \notin T$ then $x \in S - T$ $x \notin S$. Then $x \notin S - T$ $x \notin S$. Then $x \notin S - T$ $x \notin S$.

When $x \in S - T$?

iff $x \in S$ and $x \notin T$.

$$x \in T$$
 then $x \notin s-T$ $x \notin s-T$ $x \notin s-T$ $x \notin s-T$ then $x \notin s \times x$ $x \notin s-T$ iff $x \notin s$ $x \notin s$ $x \notin s$

$$A \Delta B = \begin{cases} \exists z \mid (x \in A, x \notin B) \\ \exists z \mid (x \notin A, x \in B) \end{cases}$$

$$A \Delta B = (A - B) \cup (B - A)$$

GO Classes

x & A, x & B +hen x & B-AL X & A, X & B then X & A AB XEB-A then XEB, X&A XEADB then X &A, X EB X

GO Classes

prive that

REAUB

Idea! DC EA

(OR) DC EB

Prove that x EANB

Idea:

 $x \in A$

MEB

www.goclasses.in

GO Classes

prive that $x \in A - B$ eq! x E A (AND) x & B

To Prove that DC E B- A

Idea:

 $x \in B$

GO Classes

To Prove oce ABB

Ideq!

(X & A AND X & B) W (X & A AND X & B)

B

GO Classes

To prove $x \in S \cup T$, prove that $x \in S$ or that $x \in T$.

To prove $x \in S \cap T$, prove that $x \in S$ and $x \in T$.

To prove $x \in S - T$, prove that $x \in S$ and $x \notin T$.

To prove that $x \in S \Delta T$, prove that $x \in S$ and $x \notin T$, or that $x \notin S$ and $x \in T$.

Note: let P,Q,R be sets.

- 1 If a EP then a EPUQ
- 2) If afp then a & pnq
- 3) If a & pua then a & p, a & a
- (y) If a fpnQ then a fp, afQ
- 3) If afpha them afpor afa

$$(x \in A)$$
 or $(x \in A) = True$
 $(x \in A)$ or $(x \notin A) = True$

$$a \in P - Q$$
 iff $a \in P$ and $a \in \overline{Q}$

$$a \in P - Q$$
 iff $a \in P$ and $a \notin \overline{Q}$

GO Classes

If a e p-Q then a ep and a & Q

$$x \notin P(A)$$
 then $x \notin A$
 $x \notin A$ then $x \notin P(A)$
 $x \in P(A)$ iff $x \in A$

GO Classes

19) If x & P(Q) then x & Q

 $x \in P(Q)$ iff $x \leq Q$

Whenever X EA then X E B

then

$$A - B = \overline{B} - \overline{A}$$

$$A \oplus B = (A - B) \cup (B - A)$$

$$A\Delta B = A \oplus B = (AUB) - (ADB)$$

$$(AUB)$$
- $B = 2$
 $AUB = 3, 4$
 $AUB = 2, 3, 4$
 $A = 2, 3, 4$

$$A-B=$$

If
$$A \subseteq B$$
 then $A-B=\phi$

www.goclasses.in

$$x \notin A$$

$$ff \quad x \in \overline{A} \quad (or) \quad x \in \overline{B}$$

$$x \in A \cup B \Leftrightarrow x \in A \text{ or } x \in B$$

$$x \not\in A \cup B \Leftrightarrow x \not\in A \text{ and } x \not\in B$$

$$x \in A \cap B \Leftrightarrow x \in A \text{ and } x \in B$$

$$x \notin A \cap B \Leftrightarrow x \notin A \text{ or } x \notin B$$

$$x \in A - B \Leftrightarrow x \in A \text{ and } x \notin B$$

$$x \notin A - B \Leftrightarrow x \notin A \text{ or } x \in B$$

$$x \in A \times B \Leftrightarrow x = (a, b)$$
 for some $a \in A$ and $b \in B$

$$A \subseteq B \Leftrightarrow \text{If } x \in A, \text{ then } x \in B.$$

$$A = B \Leftrightarrow A \subseteq B \text{ and } B \subseteq A.$$

