COMP5310: Principles of Data Science

W6: Hypothesis testing & evaluation

Presented byDr Ali Anaissi

School of Computer Science

Overview of Week 6

Today: Hypothesis testing and evaluation

Objective

Overview of experimental design and learn Python tools for hypothesis testing and classifier evaluation.

Lecture

- Questions: Do two populations differ?
 Which approach is better?
- Significance: pairwise t-tests, nonnormal data
- Evaluation: classifier evaluation

Readings

- Data Science from Scratch, Ch. 7
- Hypothesis testing (scipy lectures)
 http://goo.gl/HCf3nP
- Model evaluation (skleam doco)
 http://goo.gl/Avj51Y

Exercises

- scipy: statistical tests
- skleam: evaluation metrics

TODO in W6

Submit project stage 1

Goal of this lecture

- High level overview of statistical tests (not a deep dive)
- Provide some tools for selecting appropriate statistical tests for evaluating a predictive model, and justifying the choice of tool, in Assignment Stage 2
- Help you seek details of how to use a statistical method or tool in the data analytic process

Where to find more details

Some great online resources:

Hypothesis testing, power, sample sizes

– https://online.stat.psu.edu/stat415/

What does it all even mean?

– <u>https://plato.stanford.edu/entries/statistics/</u>

Imagine..

Bob is developing a new diet

- Bob tries it on a sample of friends and family
- The mean weight loss for the diet is lower than methods compared
- Bob invests his savings in his diet startup

BUT the result was not reliable

Followers of the diet report actually gaining weight!

What was Bob's mistake?

Types of Statistical Studies

Types of Statistical Studies

- Observational Study:
 - Simply observing what happens
 - Records information about subjects without applying any treatments to subjects (passive participation of researcher)
- Experimental Study:
 - Records information about subjects while applying treatments to subjects and controlling study conditions to some degree (active participation of researcher)

Observational studies

- Sample survey
 - provide information about a population based on a sample at a specific point in time. e.g.
 - Study 1: Tanning and Skin Cancer
 - The observational study involved 1,500 people.
 - Selected a group of people who had skin cancer and another group of people who did not have skin cancer
 - Asked all participants whether they used tanning beds.
 - » Wanted to see if there was an association between tanning beds and skin cancer prevalence.
 - Study 2: Average Computer Time vs Blood Pressure
 - Enroll 100 individuals in the observational study.
 - Ask them about the average computer time they spent each day.
 - Measure their blood pressure.
 - Only establish correlation not causality

Computer time
Page 9

Experimental Studies

- Strong hypotheses, sample size for desired power and controlled data collection per specified protocols
- Establish causality
- e.g. randomized control trials,
 - 100 subjects.
 - Factor Average Computer Time .
 - Treatments:
 - 1. Control group (computer time max 30 minutes)
 - 2. Treatment group (computer time of 2 hours)
 - 50 subjects randomly assigned to each treatment.
 - Response: we measure the blood pressure for each group

Definitions

Experiment design

- Between subjects:
 Each subject sees
 one and only one
 condition
- Within subjects:
 Subjects see more than one or all conditions

http://www.fhwa.dot.gov/publications/research/safety/pedbike/11035/004.cfm

Types of variables

- Dependent variable is the measure of interest
- Independent variable is manipulated to observe the effect on dependent variable
- Controlled variables are materials, measurements and methods that don't change

http://edtech2.boisestate.edu/angelacovil/506/procedure.html

Research question

- Research question (Q):
 - Asks whether the independent variable has an effect
 - "If there is a change in the independent variable, will there also be a change in the dependent variable?"
- Null hypothesis (H₀):
 - The assumption that there is no effect
 - "There is no change in the dependent variable when the independent variable changes."

Statistical significance testing

Hypothesis testing

- We use it to specify whether to accept or reject a claim about a population depending on the evidence provided by a sample of data.
- A hypothesis test examines two opposing hypotheses about a population parameter (e.g. the mean):
 - The null hypothesis
 - The alternative hypothesis
- The null hypothesis represents our initial assumption about the parameter, and we collect evidence to possibly reject the null hypothesis in favour of the alternative hypothesis
- Example: determine whether the mean of a population differs significantly (this has a special meaning) from a specific value or from the mean of another population.

Hypothesis testing

Testing reliability with p-values

Decision

_	Most tests calculate a p-value for
	measuring observation
	extremity: more extreme
	values

- Compare to significance level threshold α
 - α is the probability of (wrongly)
 rejecting H₀ given that it is true
 - aka Type I error rate (false positive)
 - Commonly use α of 5% or 1%

	Accept H ₀	Reject H ₀
H ₀ (No difference)	Right Decision	Type I error
H ₁ (Difference exists)	Type II error	Right Decision

P-value	Indicates	Reject H ₀ ?
<α	Strong evidence against the null hypothesis	Yes
>α	Weak evidence against the null hypothesis	No
=α	Marginal	NA

Not every test result is correct

- P=0.05 will erroneously reject H₀ 5% of the time
- Perform enough tests and you will get a false result (p-hacking)
- Good science:
 - Determine hypotheses before looking at data
 - Perform hypothesis-agnostic data cleaning
 - Remember that p-values do not replace common sense
- http://faculty.washington.edu/dwhm/2016/03/09/the-arbitrary-magic-of-p-0-05/

Increase the power of a significance test

- Obtain a larger sample
- Larger N means more reliable statistics
- Less likely to have errors
 - Type I: Reject true H₀
 - Type II: Fail to reject false H₀

Testing which approach is better between subjects

Scenario: Comparing visual layouts

Grid view

••••○ AT&T 중 5:08 PM 44% -+ sportsauthority.com STORES CART Q SEARCH SHOP CATEGORIES + SHOP BRANDS + Home > Athl... > Me... > Training 18 Total Items View: Sort: Top Seller: Filter Your Results > NIKE Men's Free Trainer 5.0 **Cross-Training** Shoes \$95.00 More Colors Available 会会会会会 Free Returns on Shoes!** **∧** Top

List view

https://www.nngroup.com/articles/image-vs-list-mobile-navigation/

Research question

Do users prefer grid or list view?

Data/Measurement: User ratings of layouts

Page is easy to use.

Page gives good overview.

Page gives sufficient detail.

Data/Measurement: User ratings of layouts

\mathbf{m}

Page is easy to use.

Page gives good overview.

Page gives sufficient detail.

Generate ratings data

- We assume different subject groups for each conditions.
- Each subject sees one of the layouts and is asked to rate on a 5-point Likert scale how strongly he agree or disagree with the statement:
- Question to subjects: Page gives a good overview?

1=strongly agree; 2=agree; 3=neutral; 4=disagree; 5=strongly disagree

- G_data corresponds to ratings from users that see the grid view.
- L_data corresponds to ratings from users that see the list view.

Visualise ratings data

Setup: Comparing two versions of a display

- Subjects are users of the display (or summary, interface, etc)
 - Dependent variable is user rating (or comprehension, etc)
 - Independent variable is the version of the display
- Problem: Find out which version of a display is better.
- Question: Do users prefer Grid view?
- Null hypothesis H₀: Users do not prefer Grid view.

Significance: Unpaired Student's t-test

- Tests the null hypothesis that two population means are equal
- Assumes
 - The samples are independent
 - Populations are normally distributed
 - Standard deviations are equal
- Note
 - Multiply two-tailed p-value by 0.5 for one-tailed p-value (e.g., to test A>B, rather than A>B OR A<B)
- http://docs.scipy.org/doc/scipy/reference/generated/scipy.st
 ats.ttest ind.html#scipy.stats.ttest ind

Significance: Mann-Whitney U test

- Nonparametric version of unpaired t-test
- Assumes
 - The samples are independent
- Note

The Mann-Whitney U test is a nonparametric test of the null hypothesis that the distribution underlying sample x is the same as the distribution underlying sample y. It is often used as a test of difference in location between distributions.

- N should be at least 20
- http://docs.scipy.org/doc/scipy/reference/generated/scipy.st
 ats.mannwhitneyu.html#scipy.stats.mannwhitneyu

Exercise: Comparing mobile behaviour

- Create data
 - ¬ code cell under "Create ratings data"
 - M code cell under "Visualise ratings data"
- Test for differences
 - Image: Test whether list is preferred
 - Do users prefer list view?
- Further exercises
 - p-hacking example

Testing whether groups differ

Scenario: Mobile use by generation

https://ihumanmedia.com/2015/09/14/gen-x-millennials-vs-baby-boomer-real-estate-baby-work-travel-politics-shopping/

Research question

Does mobile use differ across generations?

Data/Measurement: Survey of mobile use

- May be collected by survey or user data
- Dependent variable:
 Number of texts per day
- Independent variable:Generation {B,G,M}

Texting survey

What year were you born?

How many texts do you send per day?

Significance: Analysis of variance (ANOVA)

- Tests the null hypothesis two or more groups have the same population mean
- Assumes:
 - The samples are independent
 - Populations are normally distributed
 - Standard deviations are equal
- http://docs.scipy.org/doc/scipy/reference/generated/scipy.st
 ats.f oneway.html#scipy.stats.f oneway

Significance: Kruskall-Wallis H-test

Nonparametric version of ANOVA

- The Kruskal-Wallis H-test tests the null hypothesis that the population median of all of the groups are equal.
- The test doesn't assume your data comes from a particular distribution such as normal distribution.
- Assumes samples are independent
- It is sometimes called the one-way ANOVA on ranks
 - as the ranks of the data values are used in the test rather than the actual data
- Note:
 - Not recommended for samples smaller than 5
 - Not as statistically powerful as ANOVA
 - Both ANOVA and Kruskall-Wallis H-test are extension of the Mann-Whitney test and Unpaired Student's t-test used to compare the means of more than two populations.

Setup: Comparing behavior across groups

- Subjects are rows of data
 - Dependent variable is number of texts per day
 - Independent variable is generation {B,G,M}
- Q: Is there any difference between groups?
- H₀: Group means (or medians, for nonparametric methods) are the same

Generate generation data

- Imagine we conducted a survey of 200 baby boomers (born 1945-1960), 200 generation Xers (born 1961-1980) and 200 millennials (born 1981-1995).
- For the purposes of this exercise, let's generate some simulated samples. We assume:
 - Baby Boomers send 5 texts per day on average with standard deviation 2
 - GenXers send 12 texts per day on average with standard deviation 3
 - Millennials send 20 texts per day on average with standard deviation 5

Visualise generation data

Exercise: Comparing mobile behaviour

- Generate data
 - ¬ code cell under "Generate generation data"
 - M code cell under "Visualise generation data"
- Test for differences
 - M code cell under "Testing for differences"
 - Does the data satisfy ANOVA assumptions?
- Further exercises
 - Do millennials and generation Z differ?

Testing which approach is better within subjects

Example scenario: Comparing classifiers

http://playground.tensorflow.org/

Research question

Does my new model perform better?

Task: Spam/ham detection

- Let's assume our classifiers predict whether an email is:
 - 1 (spam)
 - 0 (ham)
- Features are words, eg:

.P.a.Y.p.a.I, bitcoin_up, iphone.14.Pro, winner, Settlement4U

Measurement: Model evaluation

- Need to measure accuracy of system output S
- Compare to gold-standard labelling G
- Define evaluation measure: score(S, G)
- http://scikitlearn.org/stable/modules/model evaluation.html#modelevaluation

Measurement: Accuracy, precision, recall, f1

	s=1	s=0
g=1	TP (true positives)	FN (false negatives)
g=0	(false positives)	TN (true negatives)

- Accuracy: (TP+TN) / N% correct over all instances
- Precision: TP/ (TP+FP)correct system predictions
- Recall: TP/ (TP+FN)correct gold labels
- F1: 2PR / (P+R)Harmonic mean of Precision and Recall

Evaluating Classifier Accuracy: Holdout & Cross-Validation Methods

- Holdout method
 - Splits the data randomly into two independent sets
 - Training set (e.g., 2/3) for model construction
 - Test set (e.g., 1/3) for accuracy estimation
 - Random sampling: a variation of holdout
 - Repeat holdout k times, accuracy = avg. of the accuracies obtained
- Cross-validation (k-fold, where k = 10 is most popular)
 - Randomly partition the data into k mutually exclusive subsets,
 each approximately equal size
 - Leave-One-Out is a particular form of cross-validation:
 - k folds where k = # of tuples, for small sized data

Data: Cross validation

Final Accuracy = Average(Round 1, Round 2, ...)

Significance: Paired Student's t-test

- Tests the null hypothesis that two population means are equal
- Assumes
 - The samples are paired (e.g. before and after a treatment)
 - Populations are normally distributed
 - Standard deviations are equal
- Note
 - Multiply two-tailed p-value by 0.5 for one-tailed p-value (to test A>B, rather than A>B OR A<B)
- http://docs.scipy.org/doc/scipy/reference/generated/scipy.st
 ats.ttest_rel.html#scipy.stats.ttest_rel

Significance: Paired tests for non-parametric data

- Nonparametric version of paired t-test
- Assumes
 - The samples are paired
- Note
 - Often used for ordinal data, e.g., Likert ratings
 - N should be large, e.g., ≥20
- http://docs.scipy.org/doc/scipy/reference/generated/scipy.st
 ats.wilcoxon.html#scipy.stats.wilcoxon

Generate gold and classifier labellings

- We generate 10,000 gold labels
 - marking a approximately 20% as spam (1) based on a random number generator and the rest as ham (0).
 - 0: 8000 and 1: 2000
- System 1 incorrectly marks 5% of ham as spam and fails to detect 20% of actual spam:
- System 2 incorrectly marks 10% of ham as spam and fails to detect 10% of actual spam:

System 1:	Predicted		cted	System 2:	Predicted		
System 1:		1	0	System 2.		1	0
Actual The University of Sydney	1 0	1600	400 7600	Actual	1	1800 800	200 7200

Page 52

Setup: Comparing classifiers

- Subjects correspond to cross-validation folds
 - Dependent variable is some measure of accuracy (precision, recall, f1, etc)
 - Independent variable is the algorithm, feature set, etc
- Q: Is my shiny, new model better?
- H₀: Accuracy is not better for new model
- http://sci2s.ugr.es/keel/pdf/algorithm/articulo/dietterich199
 8.pdf

Exercise: Compare models

- Generate data
 - M code cells under "Generate gold and classifier labellings"
 - M code cell under "Split data into folds"
- Calculate accuracy
 - Image: code cells under "Calculating classifier accuracy"
 - N code cells under "Calculate scores across folds"
- Test for differences
 - − ► code cell under "Compute significance for sys1>sys2"
 - How can we manage reliability?

Review

Today: Hypothesis testing and evaluation

Objective

Learn Python tools for exploring a new data set programmatically.

Lecture

- Questions: Do two populations differ?
 Which approach is better?
- Significance: pairwise t-tests, confidence intervals, non-normal data
- Evaluation: cluster evaluation, classifier evaluation, user evaluation

Readings

- Model evaluation (skleam doco)
 http://scikit-learn.org/stable/modules/model_evaluation.html#model-evaluation
- Hypothesis testing (scipy lectures)
 http://www.scipylectures.org/packages/statistics/index.html#hypothesistesting-comparing-two-groups

Exercises

- scipy: statistical tests
- skleam: evaluation metrics

Tips and tricks

- Statistical hypothesis testing ensures results are reliable
- Experimental design includes:
 - Formulating a research question and null hypothesis
 - Designing and running experiments
 - Analysing results using appropriate statistics
- Use textbooks and documentation to find the right stats
- Sample representatively; Report p-value; Don't hack p-value
- Report precision, recall, f-score and significance

Additional reading (not examinable)

- Your favourite statistics text book (or statistician)
- Montgomery. Design and analysis of experiments.
 http://opac.library.usyd.edu.au/record=3416341
- Robertson and Kaptein. Modern statistical methods for HCI.
 http://www.springer.com/gb/book/9783319266312
- Hartson. The UX book. Chapters 12-18.
 http://opac.library.usyd.edu.au/record=b4415045~S4
- Scott. Multi-armed bandit experiments.
 https://support.google.com/analytics/answer/2844870?hl=en

Next Time

Next week: Data Mining

Objective

Learn Python tools for data mining with a focus on clustering and association rule mining.

Lecture

Association rule mining.

Readings

Data Science from Scratch, Ch. 11, 19

Exercises

Associations from scratch (Readings)

TODO in Week 7

Start work on Assignment 2