Name:

Widne

Class:

12MTZ1

Teacher:

MRS WIDMER

CHERRYBROOK TECHNOLOGY HIGH SCHOOL

2009 AP4

YEAR 12 TRIAL HSC EXAMINATION

MATHEMATICS EXTENSION 2

Time allowed - 3 HOURS (Plus 5 minutes' reading time)

DIRECTIONS TO CANDIDATES:

- > Attempt all questions.
- All questions are of equal value.
- ➤ Each question is to be commenced on a new page clearly marked Question 1, Question 2, etc on the top of the page. **
- All necessary working should be shown in every question. Full marks may not be awarded for careless or badly arranged work.
- > Approved calculators may be used. Standard Integral Tables are provided.
- Your solutions will be collected in one bundle stapled in the top left corner.
 Please arrange them in order, Q1 to 8.

**Each page must show your name and your class. **

(a) Evaluate $\int_0^3 \frac{x}{\sqrt{16+x^2}} dx$

3

(b) Find $\int \frac{x^2 + x + 1}{x(x^2 + 1)} dx$.

2

(c) By using the substitution $t = tan \frac{\vartheta}{2}$, evaluate $\int_0^{\frac{\pi}{2}} \frac{d\vartheta}{2 + sin\vartheta}$.

3

(d) Find $\int xe^{-x} dx$.

2

(e) (i) If $I_n = \int_0^1 (1+x^2)^n dx$, n = 0,1,2,... show that $(2n+1) I_n = 2^n + 2n I_{n-1} \text{ for } n = 1,2,...$

3

(ii) Hence find a reduction formula for $J_m = \int_0^{\frac{\pi}{4}} \sec^{2m} x \ dx$.

2

QUESTION TWO.

(15 MARKS)

(START A NEW PAGE)

- (a) If z is such that |z| = 3 and $argz = \frac{\pi}{3}$, mark on the same Argand diagram
 - (i) z
- (ii) \bar{z}
- (iii) iz

- (iv) z^{-1}
- (b) In an Argand Diagram, the point P representing the complex number z moves so that |z (1 + i)| = 1.

1

(i) Sketch the locus of P

1

(ii) Shade the region where |z - (1+i)| = 1 and $0 < \arg(z-1) < \frac{\pi}{4}$.

Question 2 continued on next page.

QUESTION TWO CONTINUED.

MARKS

2

(c) Given $z = \cos\theta + i\sin\theta$ and for the positive integers n,

$$z^n + \frac{1}{z^n} = 2cosn\vartheta$$
 and $z^n - \frac{1}{z^n} = 2isinn\vartheta$.

(i) Expand
$$(z + \frac{1}{z})^4 + (z - \frac{1}{z})^4$$
 to show that $\cos^4 \theta + \sin^4 \theta = \frac{1}{4}(\cos 4\theta + 3)$

- (ii) By letting $x = \cos \theta$, show that the equation $8x^4 + 8(1 x^2)^2 = 7$ has roots $\pm \cos \frac{\pi}{12}$, $\pm \cos \frac{5\pi}{12}$
- (iii) Show that $cos \frac{\pi}{12} \cdot cos \frac{5\pi}{12} = \frac{1}{4}$ and

$$\cos\frac{\pi}{12} + \cos\frac{5\pi}{12} = \sqrt{\frac{3}{2}}$$

(iv) Hence or otherwise, find a surd expression for $\cos \frac{\pi}{12}$

(a) The diagram shows the graph of f(x).

Sketch on separate diagrams, the following curves, indicating clearly any turning points and asymptotes.

(i)
$$y = \left| \frac{1}{f(x)} \right|$$

2

(ii)
$$y = (f(x))^2$$

2

(iii)
$$y^2 = f(x)$$

2

(iv)
$$y = x f(x)$$

2

(b) (i) Show that the area enclosed by a parabola $x^2 = 4ay$ and its latus rectum is given by $A = \frac{8a^2}{3}$ units².

3

(ii) A solid is formed such that its base is a semicircle of radius one metre. Vertical sections parallel to the diameter are parabolas with each latus rectum being a chord of the semicircle parallel to the diameter. By using the result from (i) and the technique of slicing, find the volume of this solid.

3

(a) In the Argand diagram O, A and B represent the origin, the number p and the complex number z respectively. By rotating B about A by 90° in a clockwise direction we get the point D and by rotating B about O in an anticlockwise direction we get the point C. Let E be the midpoint of CD.

Show that ΔOEA is a right angled isosceles triangle with a right angle at E.

(b) Lines drawn from the foci S and S' of the ellipse $\frac{x^2}{a^2} + \frac{y^2}{b^2} = I$, are perpendicular to the tangent drawn at $P(a\cos\theta, b\sin\theta)$. They meet this tangent respectively at L and L'. The line parallel to the x -axis passing through P intersects the directrices at M and M' and the normal at P meets the x -axis at N.

Question 4 continued on next page.

QUESTION 4(b) CONTINUED.

MARKS

(b) (i) Show that
$$PS = a(1 - e \cos \theta)$$

2

1

(iii) Show that the equation of the tangent at
$$P$$
 is

2

$$bx\cos\theta + ay\sin\theta - ab = 0$$

2

(iv) Find the distances
$$SL$$
 and $S'L'$ from the foci S and S' to the tangent at P .

Hence, or otherwise, show that PN bisects $\angle SPS'$.

3

(vi) Show that
$$\frac{PS}{NS} = \frac{PS'}{NS'}$$

QUESTION FIVE.

(v)

(vi)

(15 MARKS)

(START A NEW PAGE)

(a) Given that a, b, c and d represent positive integers and that a + b + c = 3dshow that 100a + 10b + c is divisible by 3.

2

- The roots of $x^3 + 3px + q = 0$ are α, β and γ , (b) (none of which are equal to 0).
 - Find the monic equation with roots $\frac{\beta \gamma}{\alpha}$, $\frac{\alpha \gamma}{\beta}$ and $\frac{\alpha \beta}{\gamma}$, giving the (i) coefficients in terms of p and a.

4

Deduce that if $\gamma = \alpha \beta$ then $(3p - q)^2 + q = 0$. (ii)

2

Determine the values of a and b given that $(x + 1)^2$ is a factor of (c) $P(x) = x^5 + 2x^2 + ax + b.$

- 3
- $\frac{\sin{(2k+1)\alpha}}{\sin{\alpha}} \frac{\sin{(2k-1)\alpha}}{\sin{\alpha}} = 2\cos{(2k\alpha)} \quad \text{if } 0 < \alpha < \frac{\pi}{2}.$ Show that (d)
- 2

Given that $sin^{-1}x$, $cos^{-1}x$ and $sin^{-1}(1-x)$ are acute, show that (e) $\sin(\sin^{-1}x - \cos^{-1}x) = 2x^2 - 1$

2

(START A NEW PAGE)

(a) A toy car of mass *Ikg*, initially at rest, starts to move by a propelling force of 50N, provided by its engine along a straight road.

The car experiences a resistance force of kv^2 Newtons, where v is its velocity in metres per second and k is a positive constant. The limiting velocity of the car is 10m/s.

Let x be the displacement of the car at time t seconds after it starts to move.

(i) Show that
$$2\frac{d^2x}{dt^2} = 100 - v^2$$

2

(ii) Show that
$$v^2 = 100 (1 - e^{-x})$$

2

(iii) Find the time taken for the car to reach a velocity of 5 m/s.

3

(iv) When the car reaches a velocity of 5 m/s the engine is switched off and a breaking force of F is applied. Find F, given that the distance travelled by the car to stop is equal to the distance to reach 5 m/s.

3

(b) The depth of water in a harbour on a particular day is 8.2 metres at low tide and 14.6 metres at high tide. Low tide is at 1:05 pm and high tide is at 7:20pm. The captain of a ship wants to leave the harbour after midday on that day. To leave the harbour the ship requires at least 13.3 metres of water.

5

Find between what two times of that day the captain can leave the harbour.

1

3

1

- The part of the curve $y = \ln \frac{x}{e}$ between x = e and $x = e^2$ is rotated about (a) the x - axis to form a solid.
 - Draw the curve $y = \ln \frac{x}{e}$ between x = e and $x = e^2$ and show a sketch of the solid formed by the rotation of this curve.
 - Use the method of cylindrical shells to find the volume of the solid.
- (b) A body is projected vertically upwards from the surface of the Earth with initial speed u. The acceleration due to gravity, g at any point on its path is inversely proportional to the square of the distance from the centre of the Earth. R is the radius of the Earth.
 - Prove that the speed v at any position x is given by $v^2 = u^2 + 2gR^2(\frac{1}{r} - \frac{1}{R})$
 - 2 Prove that the greatest height H above the Earth's surface is (ii) given by $H = \frac{u^2R}{2gR - u^2}$
 - Show that the body will escape from the Earth if $u \ge \sqrt{2gR}$ (iii)
 - Find the minimum speed in km/s with which the body must be initially (iv) 1 projected from the surface of the Earth so as to never return. (Take $R = 6400km, q = 10m/s^2$)
 - If $u = \sqrt{2gR}$ prove that the time taken to reach a height 3R, (v) 3 above the surface of the Earth is equal to $\frac{14}{3} \sqrt{\frac{R}{2q}}$.

2

- Sketch the graph of $y = px^2 + q$ where p and q are positive constants. (a)
- 1
 - By considering the area represented by $\int_1^2 (px^2 + q)dx$, show that (ii)

$$p+q<\frac{7p+q}{3}<4p+q$$

Shown are two circles centres H and K which touch at M. (b)

PQ and RM are common tangents.

Show that quadrilaterals HPRM and MRQK are cyclic. (i)

Prove that triangles PRM and MKQ are similar. (ii)

3

2

Question 8 continued on the next page.

(c) The Taylor series provides a way of expressing certain functions as infinite series.

Using the Taylor series, it can be shown that

$$sinx = x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^7}{7!} + \dots$$

$$cosx = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!} + \dots$$

$$e^{ix} = 1 + ix - \frac{x^2}{2!} - \frac{ix^3}{3!} + \frac{x^4}{4!} + \frac{ix^5}{5!} - \dots$$

- (i) Using these infinite series, show that $e^{i\pi} = -1$
- (ii) Show i^i is a real number.
- (iii) Find the general formula for lnz where z = x + iy, and state the interval for lnz that will give the principle value of lnz.
- (iv) Hence, find the principle value for the complex number z = 1 + i

END OF TEST.

APA - EXT.2 MATHEMATICS Question One: .. du = 2x dx. $\int_0^3 \frac{3c}{\sqrt{16+n^2}} ds = \int_0^{26} \frac{1}{2} ds$ 1 4 tand . 4 sec odo = 1 2 2 2 300 = [u]25 4 tano secodo - J25 - J16 = 4 (sec (tan (3)-sec) $\frac{x^2 + x + 1}{x \left(x^2 + 1\right)} dx = \int \frac{(x^2 + 1) + x}{x \left(x^2 + 1\right)} dx = \int \frac{1}{x^2 + 1} dx.$ = In | set + tan set C also sin 0 = 2t dl= = (1+62)do When 0=0 == 0 = \int \frac{2}{1+t^2} \times \frac{1}{2+\frac{2t}{1+t^2}} dt

= $\frac{2}{\sqrt{3}}$ $\left\{ \frac{\tan^4 + \frac{1}{2}}{\sqrt{3}} \right\}$ OR = SBT (1) = 0,6045. (d) [xe dx = sida (-e-x) dx = -xe-x-/1. (-e-x)dx-() n = [x(1+x2)] - (x. n(1+x2).2x da = 2 - 2n / x2 (1+x2) nda 1) 2=2"-2n/o(1+x2-1)(1+x2)n-1cha = 2^-2n { (1+x2)dx - (1+x)^-dx} $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty$

(ii)
$$u = tanx$$
 $x = C$ $u = 0$ $du = sec^{2}xdx$ $x = \frac{\pi}{2} + u = 1$

$$\int m = \int sec^{2}xdx$$
 $x = \frac{\pi}{2} + u = 1$

$$\int m = \int sec^{2}xdx$$

$$= \int (sec^{2}x)^{m-1} du$$

$$= \int (1+u^{2})^{m-1} du$$

$$= \int (2m-1) + i \int du$$

$$= \int (2m-1) = \int du$$

$$= \int (2m-1) = \int du$$

$$= \int (2m-1) = \int du$$

$$= \int du = \int du$$

$$= \int du$$

$$= \int du = \int du$$

$$= \int du$$

$$=$$

 $8x^{4} + 8(1-x^{2})^{2} = 7$ $16x^{4} - 16x^{2} + 1 = 0$ roofs: cos II, -cos II; cos SII, -cos SII1) (then $\alpha \beta 8 \Delta = \cos^2 \pi \cos^2 5\pi = 1$ $\int_{12}^{2} \left[\int_{12}^{2} \left[$ (1) where 0 < FI < 511 < 7/2 Then cos 1/2 coo 5/1 = + JT6 = 1/4 & (1) 7 cos = # +co = 5/1 +2cos 1/2 co 1/2 = 1+1 $(\cos \frac{11}{12} + \cos \frac{511}{12}) = \frac{3}{2}$ $\cos \frac{11}{12} + \cos \frac{511}{12} = \frac{3}{2}$ cos II, cos 517 are roots of the guad. $cos \frac{\pi}{12} > cos \frac{5\pi}{12} \Rightarrow cos \frac{\pi}{12} = \frac{53+1}{2\sqrt{2}}$ OR 56+52

area Ounder the

Area = 4a.a- / 3 dx < $=4a^{2}-2\int \frac{x^{3}}{12a} \int_{0}^{2a}$ $= 4a^2 - 2 \int \frac{8x^3}{3} = 4a^2 - \frac{4a^2}{3}$ + Could do thus question a $H = \frac{8a^2u^2}{3}$ next to the y ascus egz Fray. Using (c) area of Section = $\frac{8}{3} \left(\frac{JI-k^2}{2} \right)$ Volume of the slice = $2(1-k^2)\Delta k$ Text das Vol. of Solid = 2 / (1-k')dk $\frac{\text{genu}}{\Rightarrow_{\text{genu}}} = \frac{2}{3} \left[k - \frac{k^3}{3} \right]_0^{1/3}$

Alternate solution for (03 bil) at height y, then thickness is Dx Wea = &a a is half the y-distance So do 3 y 2x (area of parabola x theckness) $V = \int_{0}^{1} \frac{2}{3} \cdot (1-x^2) dx$ $=\frac{2}{3}\left[x-\frac{x^3}{3}\right]$

SUESTION FOUR (8) (a) AB represents Z-P \$ DO represents -1 (2-p)

\$\frac{1}{60} = \frac{1}{60} + \frac{1}{60} = \frac{1}{60} \frac{1}{60} = \frac{1}{60} + \frac{1}{60 = -iz + ip + p = p + z + i(p-z)of in the iclockwese relation it of by 900 and a represent is = i (ntry) = -y tine.

Since E is the midple of the detal coord (E, 2) Let R be the midpt of OA, directly below E. The E 15 the Libisector of OA the LOOPE is iscs and as a circle capted at R. A radius 1/2 can pass through the pts O, E & A then LOAE is b'at E. $b)(a) \quad PS = e \qquad PS = e PM = e \left(\frac{q}{e} - a\cos\theta\right) - e \left(1 - e\cos\theta\right) - e \left(1 - e$ = a (1-2000) - () (ii) Similarly PS' = e :. PS'=cPm'=e (= racoso) () = a (1+ e coso) (iii) Differentiating 200 + 24 xy'=0 $y' = \frac{-zb^2}{ya^2} = \frac{b\cos a}{a \sin a}$ Equation of tangent P $y = b \sin a = \frac{b\cos a}{a \sin a} (x - a\cos a)$ as an a. Day un O -absinto = -bx cos O tabasos O bx cas O tay en O - ab (sinto tasto) -co bxcos O tay en O - ab = 0

Distance from a (ac, C) to tangent co SL = /abe cos & -ab/ = ab(essQ-) Ub co to ta sing beattasin get ab (1- e cos 6) Ainidarly 5'L'= 1-abecord-abi J 5+cos 20 +a+sinto = ab (1+ecoso) In DPS'L' & APSL $\frac{PS'}{PS} = \frac{\alpha \left(1 + e \cos \theta\right)}{\alpha \left(1 - e - \alpha\right)}$ a (1-e coso) SL' = 1 + e coso = sun LLPS 1. LL'PS'= LLPS 1. LS'PN =90-LL'PS' = 90°- LLPS a PN biseds LSPS

PN has gradient = asuno

(vi)

x-intercept when y=0

$$NS = ae^{2}\cos\theta$$

$$NS' = ae + ae^{2}\cos\theta = ae (1-\cos\theta)$$

$$NS' = ae + ae^{2}\cos\theta = ae (1+\cos\theta)$$

$$NS' = ae + ae^{2}\cos\theta = ae (1+\cos\theta)$$

$$NS' = \frac{1-e\cos\theta}{1+e\cos\theta} = \frac{PS}{PS'}$$

$$NS' = \frac{PS}{NS'}$$

$$NS' = \frac{PS}{NS'}$$

BUESTION : FINE 1000 +105 +c = 99a + 95 tattoto -- (T) = 9(11a+b)+3d = 3 (3 (11a Ho]+d) Hence divisible by 3.

2+B+8=0, dB+dy+ 138 = 3p dB8=-9. = (By + 2x + 2x) - 2 (4)28

B8. 48-+ 48 - 4B+ B8. 4B = 8"++"+B"() = (8+1x+13)"-2(x13+x8+138)

 $\frac{\beta \times \alpha \times \beta}{\alpha \times \beta} = \frac{\alpha \times \beta}{\alpha \times \beta} = \frac{\alpha \times \beta}{\alpha} = \frac{\alpha}{\alpha} = \frac{\alpha}{\alpha$.. Required egn w/x3+ 9p2x2-6px+q=0 (ii) dB = 1 is a rool + :. 1+ 9p2 - 6p+q=0 9 + 9p2-6pg+g2=0 (3p-9)+9=0 Let P(x) = x 5+ 2x2+asx+6 If (x+1) " is a factor P(-1)=p'(1)=0 P(-1) =-1+2-a+6=0 (1) P(x) = 5x + + 5x+a P1(-1) = 5-4 ta = 0 r sin (2k+1) 0 = sin (2k0+0) = sun akocoso tos 2kosino 16 sun (ak-1) 0 = sun (ako-o) = sin ak a cos a-cos 2ka sina Sin2k0cood+cos20seno-sun2k0cood+cos2kosino : sin (2kH) a - sin (2K-1) a

Hernate Achinon for 65 hi) (106) = 9 Let y= 9 2 50 x2 = -97 > eqn of polynomial: x 3+3xp+q=0 ie (1 g) + 3 (g) p+g=0 J3/(J3)2+3p+2 =0 罗[(强)2+30]=-9 -2 (-2 +3p) = 2 $-\frac{4}{9}\left[\frac{9^{2}}{4^{2}}-\frac{6pq}{4}+\frac{9p^{2}}{9}\right]=2^{2}$ -1 [4 - 6pg + 9p] = 2 $-\frac{9^{2}}{4^{3}} + \frac{6pq}{4^{2}} - \frac{4p^{2}}{4} = 9$ -92+6pqy-9py=y2 Sogy 3 + 9py - 6pgg + q2 = 0 let y=x $x^3 + \frac{q_{py}^2}{qy} - 6px + q = 0$

(8) set A = son 1/2 and B = 2000. 1. S. = MAN H SIND X = LOS B So JI-x2 = cos A JI-x2 = am B = :. LHS = sin (sin x -co) x) = sun (A-13) = sin Acos B-cos A sin B QUESTION SIX: (a/4) F=me==50-1602 (1) 1) So 2x = 100-02 when is = 0 1 12 2 d3 = 100-02 K= 1/2 2 = 2 do : 22 du = 100 -02 from part (c) $\int \frac{\partial v}{\partial x} dv = \int dx$ In (100-03) =-xtc -x=10/100-20)-10100

 $-x = \ln\left(\frac{100 - v^2}{100}\right)$ e-2 = 100 - 22 « _ O 2 = 100 (1-e-x) .. 2 du = 100 -22 $\int \frac{dv}{100-v^2} = \frac{1}{2} \int dt$ 1 S (1000 1015 du = 1) dt -. - In (10-2) + In (10+0) = 10++C When t=0 $t = \frac{1}{10} \ln \left(\frac{10+2}{10-11} \right)$ When V=5 t=1 In (15) = 1 In 3 seconds. 2 du = - (F+2) In (F+UL) =-xtc Swhen U.S.

rrorn pant (ii) we dotain clustomic trucelled when can reached 5m/s. Substitute x= In (=) and v=0 in egn () 10 (3) = 1 (F) 3 F = 75 = 37.5 N Penod T= 2x [7:20-1:05] = 2x 375 = 750 muin a = 0.5 (14.6-8.2) =3.2m since mohon is SAM. Sol of this egn is x=a cos(nt +x) thigh, 14.6 m 7:20pm / where 0€x € 200 1 x = 3.2 con (nt+d) Considering the initial 11.4m ~~-3.2 =3.2 con(0+~~) 1. con 2 = - 1 or d= TT $(x=3.2 \cos(\alpha t)\pi)$ Low 8-2m 1:05pm. 7 = -3.2 wont

since 000 (0-HT) =- con O-

QUESTION SEVEN:

 $\begin{array}{lll}
(16) \\
&= 2\pi - \frac{1}{2} \quad \text{if } \quad \text{if$

Most 2 de $= -\frac{R^2}{2}$ Orados (A)

Le de $= \frac{R^2}{2}$ When 2 = uUnion or $\frac{1}{2} = -\frac{1}{2}$ Orados (A)

Le de $= \frac{1}{2} = -\frac{R^2}{2}$ When 2 = u

then 102 - Rig + 1 it - gR & $v^2 = \frac{2Rg}{r} + u^2 - 2gR$ $v^{2} = u^{2} + 2R^{2}g\left[\frac{1}{x} - \frac{1}{R}\right]$ (vel of a body at distance & from cinte) When the body is at the hughest and hence 00 = 2Rg tut 2gR $\frac{2R^{t}q}{2R} = 2qR - u$. Greatest height H above the earth's surface

(iii) Createst height reached by the body well live intenite it 2gR-u=0 or u=2gR u = 12gR

Body well exapt from the earth if u> 12gR

(V) Min escape velocity is given by u= JagR

u= J2x 0.01 x 6400 = 11.3 km/s correct to I dec place.

$$u = \sqrt{2gR^2}$$

$$u = \sqrt{2gR^2}$$

$$u = \sqrt{2gR^2}$$

$$u = \sqrt{2gR^2}$$

$$dt = \sqrt{2gR^2}$$

(ii) Area of ABFE < (px'+q) < Area of ABCL $\frac{AB \times AE}{1 \times (p \times q)} < \left[\frac{px^3 + qx}{3}\right]^{\frac{1}{2}} < AB \times BC$ $-\left(\frac{8p}{3} + 2q\right) - \left(\frac{6}{3} + q\right)] < 1*(pt)$ $(p+q) < \frac{7p+3q}{3} < 4p+q$ (b) (e) In HPRM, LHPR=LRMH=90° (Angle between radius of fargent at pt. of contact = 90°)

(: HPRM is a cyclic quad, (opp Ls are supple (Similarly for MRGK. (ii) Construction: Join pm and amin -> { APRM & AMGK. (Ext. Lot ayche quad. PR=RM (targent Komext.pt) KM=KG (rada) : triangle is isosceles. : IRPM = LRMP = LKMQ .. OPRM II AMAK (1) > (Equangular)

(e)(1) $\sin x = x - \frac{x^3}{3!} + \frac{x}{5!} + \frac{x}{7!} + \dots$ $ccox = 1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^4}{6!} + \dots$ $e^{ix} = 1 + ix - \frac{x^2}{2!} - \frac{x^3}{3!} + \frac{x^4}{4!} + \frac{1x^5}{5!}$ $(1) = (1 - \frac{x^2}{2!} + \frac{x^4}{4!} - \frac{x^6}{6!}) + i(x - \frac{x^3}{3!} + \frac{x^5}{5!} - \frac{x^4}{7!} - \frac{x^6}{6!})$ e = costi + csinti = aoTT e = - I since coott = - 1 & sint = 0 = e which is real. (m) 2=1 (coso + using) = re10 Inz = In Te 10 This will give an infinite number of results unless O is restricted. le = Inrti(o+211k) where k is are integer. The principal value of the occur when -T SOST. (N) == |ti $\ln z = \ln \sqrt{2 + i\pi}$