Part I

Telemetry Box

1 ESP32 Board

Telemetry box uses ESP32 board.

- $\bullet~{\rm VIN};~3.3\mbox{-}12{\rm V}$ gives very wide voltage range.
- GPIO13: Connected to Hobbywing ESC for telemetry signal
- GPIO12: Used to receive SmartPort data. Connect it to model receiver
- GPIO14: Used to transmit SmartPort data. Use 120 ohm resistor and connect with Rx pin (GPIO12).

2 Hobbywing ESC

2.1 Communication

• Speed: 19200 bps

• Parity bit: No

• Stop bit: 1

• Logic: Normal

• Big endian coding

• bit duration: 52 us

• two types of frames sent: data and signature

- Data frame: 20 bytes

- Hobbywing signature frame: ? bytes

2.2 Data frames

Length equal to 20 bytes.

0: Start byte 0x9B

1-3: Frame number

4-5: (0-100%). To calculate throttle percentage divide this value by 10.0

6-7: (0-100%) Real motor output. To calculate percentage divide by 10.0

8-10: data

11-12: data. To calculate real voltage divide this value by ~113,29. So for example value 2830 will be 24.98V (/113,29)

13-14: data

15-16:

17-18: Temperature 2

19: End byte 0xB9

19. End byte oxb3									
	Start	Frame number	Rx throttle 0-1000	Output PWM 0-1000	RPM raw	Voltage raw			
Byte	0	1-3	4-5	6-7	8-10	11-12			
	9B	00 07 DC	01 2C	00 00	00 00 00	0A 49			
	9B	00 07 DD	01 2C	00 00	00 00 00	0A 4A			
	9B	00 07 DE	01 2C	00 00	00 00 00	0A 49			
	9B	00 07 DF	01 2C	00 00	00 00 00	0A 4A			
	9B	00 07 E0	01 2C	00 00	00 00 00	0A 48			
	9B	00 07 E1	01 2C	00 00	00 00 00	0A 4C			
	9B	$00\ 07\ E2$	$01~2\mathrm{C}$	00 00	00 00 00	0A 48			
	9B	00 07 E3	$01~2\mathrm{C}$	00 00	00 00 00	0A 48			
	9B	00 07 E4	01 2C	00 00	00 00 00	0A 4B			
	9B	$00\ 07\ \mathrm{E}5$	$01~2\mathrm{C}$	00 00	00 00 00	0A 48			
	9B	00 07 E6	01 2C	00 00	00 00 00	0A 49			
	9B	00 07 E7	01 2C	00 00	00 00 00	0A 48			

2.3 Signature frames

Length equal to 13 bytes. But as my software starts frame recognition from 0x9b, it sees it as 12 bytes frame.

0-1 or 0: Start byte 0x9B

1-10: Signature

11: End byte 0xB9

	Start	Start										
Byte	-1	0	1	2	3	4	5	6	7	8	9	
V4LV/25/60/80A	0x9b	0x9b	0x03	0xe8	0x01	0x08	0x5b	0x00	0x01	0x00	0x21	
V4HV200A OPTO	0x9b	0x9b	0x03	0xe8	0x01	0x02	0x0d	0x0a	0x3d	0x05	0x1e	
V5HV130A OPTO	0x9b	0x9b	0x03	0xe8	0x01	0x0b	0x41	0x21	0x44	0xb9	0x21	
HW HV 200A	0x9b	0x9b	0x02	0xd0	0x01	0x0b	0x41	0x21	0x7e	0x62	0x21	
HW 120A	0x9b	0x9b	0x03	0xe8	0x01	0x08	0x5b	0x21	0x71	0x6e	0x21	

3 FrSky Smart Port

3.1 Communication

• Speed: 57600 bps

• Parity bit: No

• Stop bit: 1

• Logic: Inverted

• Little endian coding

FrSky receiver asks for sensor with two bytes.

	Start	Sensor ID
Byte	0	1
Value	0x7e	ID

Pooled sensor IDs:

• 6A CB AC 0D 8E 2F D0 71 F2 53 34 95 16 B7 98 39 BA 1B 00 A1 22 83 E4 45 C6 67 48 E9

If sensor is present - it answers with:

	Head	Senso	r type	Value				CRC
Byte	0	1	2	3	4	5	6	7
	0x10							
FLVV Cell sensor for 2S LiPo	0x10	0x00	0x03	0x20	0x2C	0xC8	0x82	
A3 Voltage sensor	0x10	0x00	0x90		Voltage	* 100.0		

Known sensor types:

• RPM: 0x0500

• A3 (Voltage): 0x0900

- A4: 0x0910
- Current: 0x0200
- T1: 0x0400
- T2: 0x0410
- FLVV Cell sensor: 0x0300
 - -0x20 means:
 - * Total numbers of cells is 2
 - * Currently sent ID is 0
 - * For 4S battery there will be frames with ID=0 (Cell0=C0 and Cell1=C1) and ID=2 (Cell0 refers to C2 and Cell1 refers to C3)
 - Two cells voltages are send using 24 + 24 bits.
 - * Cell0: $0x82c \rightarrow$ when read as float it refers to 4.2V
 - * Cell1: 0x82c
 - * Transmitter will sum up all cells and show summed voltage

3.1.1 CRC calculation

It is not a simple sumup. Below is correct method:

```
 \begin{array}{l} \mbox{uint8\_t calcCrc}(\mbox{const uint8\_t* buf, size\_t len}) \; \{ \\ \mbox{short crc} = 0; \\ \mbox{for}(\mbox{int } i = 0; i < \mbox{len}; i + +) \; \{ \\ \mbox{crc} \; + = \; \mbox{buf}[i]; \; //0 - 1 FF \\ \mbox{crc} \; + = \; \mbox{crc} \; > > 8; \; //0 - 100 \\ \mbox{crc} \; \& = \; 0 x 0 0 ff; \\ \mbox{crc} \; + = \; \mbox{crc} \; > > 8; \; //0 - 0 FF \\ \mbox{crc} \; \& = \; 0 x 0 0 ff; \\ \mbox{} \; \} \\ \mbox{return} \; \sim \; \mbox{crc}; \\ \mbox{} \} \\ \mbox{return} \; \sim \; \mbox{crc}; \\ \mbox{} \} \\ \end{array}
```