There were 4,527 stolen vehicles in New Zealand from 2021-2022.

Population vs. Density

Weekly Trends

Top 10 per Vehicle Type

Total Share

Abstract

- ▶ I analyzed a relational database of motor vehicle thefts from New Zealand.
 - ▶ I had to help law enforcement raise awareness of motor vehicle thefts and improve safety.
- My analysis focused primarily on the seasonality trends and the characteristics of the stolen vehicles.
- I used Microsoft Excel and MySQL Workbench to conduct my analysis.
 - ▶ I created a relational data model using the EER diagram editor.
 - ▶ I used Microsoft Excel to create a dashboard that summarized the following information:
 - Yearly, monthly, and weekly trends in stolen vehicles.
 - ▶ Top 10 stolen vehicles per region and vehicle type.
 - ▶ The share of stolen vehicles per vehicle type.
 - Population and Density correlation for the stolen vehicles.
- ▶ I have uploaded all the files for this project onto my <u>GitHub</u>.

Data-Cleaning Strategy

- I am working with structured data for this project.
- The data for this project consists of three tables.
 - locations
 - ▶ A dimension table with information on where vehicles were stolen.
 - make_details
 - ▶ A dimension table with information about the make of each stolen vehicle.
 - stolen_vehicles
 - ▶ A fact table with logs of each stolen vehicle and their characteristics.
- I made some slight modifications to the database file for this project.
 - ▶ I added foreign keys to the stolen_vehicles table.
 - ▶ I took away the NOT NULL constraints from all the tables.
 - primary keys are always unique, so this constraint is redundant.

Assumptions

- There were null values in the stolen_vehicles table.
 - ▶ I assumed there was a user error in recording these stolen vehicles.
 - The scope of my analysis did not focus on any uncertainties.
 - ▶ Therefore, I filtered out these vehicles from my analysis.

Data Model

SQL Query Objectives

- 1. Identify when vehicles were stolen.
 - 1. Total number of vehicles stolen per year
 - 2. Total number of vehicles stolen per month
 - 3. Total number of vehicles stolen per day of week
- Identify what vehicles were stolen.
 - 1. Total number of vehicles stolen per make type
 - 2. Pivot table
- 3. Identify where vehicles were stolen.
 - 1. Total number of vehicles stolen per region

```
-- Find the total number of vehicles stolen per year
SELECT
    YEAR(date_stolen) AS year,
    COUNT(*) AS num_vehicles
FROM stolen_vehicles
WHERE vehicle_type IS NOT NULL
GROUP BY year;
```

year	num_vehides
2021	1657
2022	2870

```
-- Find the total number of vehicles stolen per month
SELECT
    LEFT(MONTHNAME(date_stolen), 3) AS month,
    COUNT(*) AS num_vehicles
FROM stolen_vehicles
WHERE vehicle_type IS NOT NULL
GROUP BY MONTH(date_stolen)
ORDER BY MONTH(date_stolen);
```

month	num_vehides
Jan	737
Feb	757
Mar	1049
Apr	327
Oct	461
Nov	556
Dec	640

```
- Find the total number of vehicles stolen per day of the week
SELECT
    CASE
        WHEN WEEKDAY(date_stolen) = 0 THEN 'Mon'
       WHEN WEEKDAY(date_stolen) = 1 THEN 'Tue'
        WHEN WEEKDAY(date_stolen) = 2 THEN 'Wed'
        WHEN WEEKDAY(date_stolen) = 3 THEN 'Thu'
       WHEN WEEKDAY(date_stolen) = 4 THEN 'Fri'
        WHEN WEEKDAY(date_stolen) = 5 THEN 'Sat'
       WHEN WEEKDAY(date_stolen) = 6 THEN 'Sun'
    END AS day_of_week,
    COUNT(*) AS num_vehicles
FROM stolen_vehicles
WHERE vehicle_type IS NOT NULL
GROUP BY WEEKDAY(date_stolen)
ORDER BY WEEKDAY(date_stolen);
```

day_of_week	num_vehides
Mon	760
Tue	704
Wed	624
Thu	616
Fri	653
Sat	576
Sun	594

```
-- Find the total number of vehicles stolen per make type
SELECT
    m.make_type,
    COUNT(*) AS num_vehicles
FROM stolen_vehicles s
LEFT JOIN make_details m ON s.make_id = m.make_id
WHERE s.vehicle_type IS NOT NULL
GROUP BY m.make_type
ORDER BY num_vehicles DESC;
```

make_type	num_vehicles
Standard	4338
Luxury	189

```
-- Create a pivot table with the following dimensions:
 -- rows representing the top 10 stolen vehicle types
 -- columns representing the each make type ratio and total number of vehicles stolen
 -- values representing the total number of vehicles stolen
SELECT
    s.vehicle_type,
    ROUND(COUNT(CASE WHEN m.make_type = 'Standard' THEN s.vehicle_id ELSE NULL END)/
          COUNT(*), 2) AS standard,
    ROUND(COUNT(CASE WHEN m.make_type = 'Luxury' THEN s.vehicle_id ELSE NULL END)/
          COUNT(*), 2) AS luxury,
    COUNT(*) AS total
FROM stolen_vehicles s
LEFT JOIN make_details m ON s.make_id = m.make_id
WHERE s.vehicle_type IS NOT NULL
GROUP BY s.vehicle_type
ORDER BY total DESC
LIMIT 10;
```

vehicle_type	standard	luxury	total
Stationwagon	0.96	0.04	945
Saloon	0.87	0.13	851
Hatchback	0.97	0.03	644
Trailer	1.00	0.00	582
Utility	1.00	0.00	466
Roadbike	0.99	0.01	297
Moped	1.00	0.00	187
Light Van	0.99	0.01	154
Boat Trailer	1.00	0.00	105
Trailer - Heavy	1.00	0.00	90

```
-- Find the total number of vehicles stolen per region, population, and density SELECT
    l.region,
    l.population,
    l.density,
    COUNT(*) AS num_vehicles
FROM stolen_vehicles s
LEFT JOIN locations l ON s.location_id = l.location_id
WHERE s.vehicle_type IS NOT NULL
GROUP BY
    l.region,
    l.population,
    l.density
ORDER BY num_vehicles DESC;
```

region	population	density	num_vehicles
Auckland	1695200	343.09	1626
Canterbury	655000	14.72	660
Bay of Plenty	347700	28.80	442
Wellington	543500	67.52	417
Waikato	513800	21.50	369
Northland	201500	16.11	233
Gisborne	52100	6.21	175
Manawatu-Whanganui	258200	11.62	138
Otago	246000	7.89	137
Taranaki	127300	17.55	112
Hawke's Bay	182700	12.92	100
Nelson	54500	129.15	92
Southland	102400	3.28	26

Seasonal Insights

- Yearly Trends
 - ▶ The total number of stolen vehicles increased by 73% from 2021-2022.
- Monthly Trends
 - ► The total number of stolen vehicles peaked during the first quarter.
 - After the first quarter, the total number of vehicles stolen declined significantly.
 - ▶ The total was at its lowest value of 327 in April.
 - ▶ Then the total began to increase gradually again after April.
- Weekly Trends
 - More vehicles were stolen on weekdays than on weekends.

Vehicle Insights

- Standard vehicles made up 96% of all stolen vehicles.
 - ▶ They were also the most frequently stolen vehicles across all vehicle types.
 - ▶ Stationwagans were the most frequently stolen vehicle type.
 - Luxury vehicles weren't even stolen for some vehicle types.

Regional Insights

- Auckland and Nelson are two regions that show some interesting insights.
 - Auckland has the largest population and density and was the region with the maximum number of stolen vehicles.
 - Nelson has one of the lowest populations, but it is denser than other regions outside of Auckland, and not many vehicles were stolen there.
 - ► There were more vehicles stolen in more populated and less dense regions outside of Auckland and Nelson.
- There is a direct correlation between population and density of the regions.
 - ▶ However, the correlation is weak since the coefficient of determination was 68%.

Recommendations

- To prevent more vehicles from being stolen in the future and to increase public safety, I recommend doing the following:
 - Prioritize law enforcement patrolling during the first quarter of the year and weekdays.
 - ➤ Since most vehicles were stolen during these times, this strategy will help law enforcement proactively prevent motor vehicle thefts.
 - Prioritize funding for law enforcement in Auckland.
 - ▶ Since most vehicles were stolen here, this strategy will allow for improved training for law enforcement to prevent more motor vehicle thefts.
 - Prioritize standard vehicles when trying to search for stolen vehicles.
 - Luxury vehicles seem to be stolen less frequently because they tend to have better theft protection systems.
 - ▶ This is because luxury vehicles are more expensive compared to standard vehicles.