

Status of the VBF Higgs to Invisible Analysis AN-12-403, PAS-HIG-13-013

D.Colling, P. Dunne, A. Magnan, A. Nikitenko, J. Pela with

R. Aggleton, J. Brooke: Bristol

C.Asawangtrakuldee, Q.Li: Peking

P. Srimanobhas: Chulalongkorn

S. Kumar, K. Mazumdar: Mumbai

Introduction

- Searching for VBF produced Higgs decaying to invisible final state
- Visible decays constrain invisible BE to less than 64% at 95% C.L. (assumes standard model width)
- Many theoretical possibilities for BSM invisible final states:
- $H \rightarrow 2LSPs$ (SUSY)
- $H \rightarrow \text{dark matter (Extra}$ Dimensions)
- etc.

Measurement Strategy

Select VBF Topology

- \triangleright 2 jets with a large η separation
- Nothing in the gap between the jets
- Need dedicated VBF trigger

- Clean data from pileup and mismeasured MET
- Use hard cuts to restrict backgrounds
- Remaining background estimation must be data driven as hard cuts make MC unreliable
- This iteration just a counting experiment, shape based analysis planned for final paper with parked data

Backgrounds Overview

Main backgrounds:

- \triangleright W + jets where lepton is missed
 - AM+Patrick cross check $W \rightarrow e/\mu$ & measure $W \rightarrow \tau_h$ background from data
- ightharpoonup Z
 ightarrow
 u
 u + jets
- QCD: Sasha

Data driven W/Z + jets estimation:

- Pick W/Z dominated control region in same trigger sample with same VBF selection
- $lackbox{ Recalculate MET after removing leptons from } W \& Z$
 - Mimics W with missed leptons/Z
 ightarrow
 u
 u
- Check data/MC agreement in control regions
- Assume MC signal/control ratio is the same as that in data

Datasets and Trigger

Datasets:

- 8 TeV MET datasets
 - Total of 19.6 fb^{-1}
- MFT filters are used to cut out events with mismeasured MET

Trigger:

- HLT_DiPF.Jet40_PFMET noMu65 M H800VBF All lets
- VBF means $|\Delta \eta_{j_1 j_2}| > 3.5$
- IC heavily involved in design of the trigger

Objects

VBF Selections

- Applied to all regions
- 2 jets:
- Both jets must pass loose PUJetID
- $p_T > 50 \, GeV$, $|\eta| < 4.7$
- $|\Delta \eta| > 4.2$, $\eta_{i_1} * \eta_{i_2} < 0$
- $m_{ii} > 1200 \, GeV$

MET

► Using Type 0 + 1 Corrections

Electrons

- ► Veto:
- $p_T > 10 \, GeV$, $|\eta < 2.5|$
- rel PF Iso < 0.2
- ► Tight:
- $p_T > 20 \, GeV$, $|\eta < 2.5|$

Muons

- Veto:
- $p_T > 10 \, GeV$, $|\eta < 2.1|$
- rel PF Iso < 0.2
- ► Tight:
- $p_T > 20 \, GeV$, $|\eta < 2.1|$

Signal Event Selection

Signal Region Selection:

- ightharpoonup PFMET $> 130 \, GeV \ \& \ \Delta \phi_{jj} < 1.0$ to reduce QCD
- e/μ veto to reduce W/Z+jets

Data MC difference is QCD

Тор	W+jets	Z+jets	VV	SumMC	Data	Signal 120	
55 ± 6	382 ±	258 ±	5.2 ±	700.2±	XXX	209 ± 9	1
	18	10	0.6	21.5			L

W+jets Background Estimation

Background estimation formula:

$$N_{data}^{S}(W
ightarrow \mathrm{e}/\mu) = (N_{data}^{C} - N_{bkg}^{C}) rac{N_{MC}^{S}}{N_{MC}^{C}}$$

$$N_{MC}^{S}=142\pm11(stat.)$$
 events $N_{data}^{S}=87\pm17(stat.)$ events

$W \to \mu/e$ Control Region Selection:

- ▶ 1 tight muon/electron:
 - MET without $(\mu/e) > 130 GeV$

$$N_{MC}^S=130\pm 10$$
 events $N_{data}^S=105\pm 13 (stat.)$ events

$W \rightarrow \tau$ Background Estimation

$W \rightarrow \tau$ Method:

- Select subsample of signal region
- Require 1 $\tau_{hadronic}$ candidate
- $p_T > 20 \, GeV$, $|\eta| < 2.3$
- Discriminant "byTightCombinedIsolationDeltaBetaCorr3Hits"
- ► Correct with the efficiency: 0.55
- ► Fake rate: 0.02/0.03 in barrel/endcap

Result

- ▶ MC expectation: 130 ± 10
- $N_{W \to \tau \nu}^{data} = 135 \pm 52(stat) \pm 11(syst)$

Thanks to A. Gilbert and M. Acosta for explanations of tau id

Systematics

IC doing W + jets uncertainties: work in progress

Uncertainties considered

- Statistics
- ► Jet Energy Scale(JES)
- Jet Energy Resolution(JER)
- Unclustered Energy Scale
- Pileup ID
- Luminosity

Preliminary $W+$ Jets Background Uncertainties						
	Muon	Electron	N ^{data} W→ev			
	105	87	Central num. of events			
	±12.2%	±19.8%	Statistical			
	+4.6%	-3.75%	JESUP			
	+1.91% %	+3.57%	JESDOWN			
	-0.616%	+2.91%	JERBETTER			
	+6.84%	+7.01%	JERWORSE			
	Muon 105 ±12.2% +4.6% +1.91% % -0.616%	87 ±19.8% -3.75% +3.57% +2.91%	$N_{W o e \nu}^{data}$ Central num. of events Statistical JESUP JESDOWN JERBETTER			

Z+jets Background Estimation

Z+jets background estimation formula:

$$N_{data}^{S}(Z
ightarrow
u
u) = (N_{data}^{C} - N_{bkg}^{C}) rac{\sigma(Z
ightarrow
u
u)}{\sigma(Z/\gamma^{*}
ightarrow \mu \mu)} rac{\epsilon_{VBF}^{S}/\epsilon_{VBF}^{C}}{\epsilon_{\mu\mu}}$$

$Z \rightarrow \nu \nu$ Control Region Selection:

- Select $Z \rightarrow \mu\mu$ and extrapolate to $Z \rightarrow \nu\nu$
- 2 tight muons
- MET after Z candidate removed > 130 GeV
- No additional veto muons/electrons

$$N_{data}^{S} = 162 \pm 48$$

- Critical part of analysis
- ► V. low MC statistics
- ► Therefore two options:
- 1) Estimate from data
- 2) Reduce background further

QCD Control Region Selection

 $ightharpoonup \Delta \phi_{ii} > 2.6$

QCD Background Estimation - Method 1

Formula: $N_{multijet}^{S} = (N^{C} - N_{non-multijet})xr$ $r = \frac{\textit{N}_{\textit{data}}(\Delta \phi_{\textit{ij}} \!<\! 1.0) - \textit{N}_{\textit{non-multijet}}(\Delta \phi_{\textit{ij}} \!<\! 1.0)}{\textit{N}_{\textit{data}}(\Delta \phi_{\textit{ij}} \!>\! 2.6) - \textit{N}_{\textit{non-multijet}}(\Delta \phi_{\textit{ij}} \!>\! 2.6)}$

Method:

- Extrapolate from $\Delta \phi_{ii} > 2.6$ to $\Delta \phi_{ii} < 1.0$
- Preliminary study showed r appeared flat
- After more analysis method is not usable

QCD Background Estimation - Method 2

Method:

- Find a distribution that is the same shape in $\Delta\phi_{jj} < 1.0$ and $\Delta\phi_{jj} > 2.6$ regions
- We use MET
- Normalise below MET cut and extrapolate
- If you shift control region distribution by 10 GeV they look similar but still not entirely satisfactory

Reducing QCD Contribution

Other Solutions

- ► Given estimation has issues try cutting most of QCD so large estimation errors are less important
- Work in progress!
- Several options:
- Central Jet Veto (CJV)
- Veto events with additional jets above a p_T threshold between VBF Jets
- Additional let Veto
- Veto additional jets above a p_T threshold in the tracker region
- \blacktriangleright Variables used for SUSY hadronic searches, e.g. α_T

Preliminary Expected Limits - QCD Method 1

- Very preliminary to make sure we can go to the end of the analysis
- Produced with combine package using CL_S statistics, cross-checked with RooStats
- ▶ 95% CL expected limit on the invisible BR for 125 GeV: 62%

Summary

- Most of the analysis is complete
- QCD still needs to be understood
- Some systematics still need to be included
- ► Expected limit on BR 62% is promising and competitive with:
- CMS ZH expected 79% (AN-13-116,AN-12-123)
- ATLAS ZH 65% observed 84% expected (ATLAS-CONF-2013-011)
- CMS indirect observed 64%
- ▶ Plan to have PAS for 8 TeV data then paper with additional parked data

BACKUP

Parked Data

- IC pushed strongly for data parking
- ▶ Jet $E_T > 35(30) GeV$, $\Delta \eta_{ii} > 3.5$, $m_{ii} > 700 GeV$
- Trigger with $E_T > 30 \, GeV$ added for runs C+D
- ► Good efficiency for visible and invisible VBF Higgs channels
- ▶ Plan to update result with parked data included after PAS

W+jets background m_T plots

