

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Student's Name: Mayank Bansal Mobile No: +919636993445

Roll Number: B20156 Branch:CSE

1 a.

	Prediction	o Outcome
Label	81	27
True	27	201

Figure 1 KNN Confusion Matrix for K = 1

	Prediction	o Outcome
Label	83	25
True	12	216

Figure 2 KNN Confusion Matrix for K = 3

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	Prediction	Outcome
Label	82	26
True	9	219

Figure 3 KNN Confusion Matrix for K = 5

b.

Table 1 KNN Classification Accuracy for K = 1, 3 and 5

	Classification
K	Accuracy (in %)
1	83.9
3	88.9
5	89.5

Inferences:

- 1. The highest classification accuracy is obtained with K = 5.
- 2. Increasing the value of K increases the prediction accuracy.
- 3. Increasing the value of K increases the prediction accuracy as more no training samples are involved.
- 4. Diagonal elements increase with rise in accuracy.
- 5. Diagonal elements correspond to correct predictions. Hence by increase in accuracy diagonal elements also increase.
- 6. As the classification accuracy increases with the increase in value of K the number of off-diagonal elements decrease.
- 7. Total no of test elements is same. Diagonal elements correspond to correct predictions. Hence by increase in accuracy non-diagonal elements decrease.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

2

	Prediction	Outcome
Label	108	0
True	0	228

Figure 4 KNN Confusion Matrix for K = 1 post data normalization

	Prediction	n Outcome
Label	108	0
True	0	228

Figure 5 KNN Confusion Matrix for K = 3 post data normalization

	Prediction	Outcome
Label	108	0
True	0	228

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Figure 6 KNN Confusion Matrix for K = 5 post data normalization

b.

Table 2 KNN Classification Accuracy for K = 1, 3 and 5 post data normalization

К	Classification Accuracy (in %)
1	100
3	100
5	100

Inferences:

- 1. Data normalization increases accuracy.
- 2. Accuracy increases because after normalization attributes with bigger range come in same range with that of the other attributes. Euclidean distances can't have different ranges for different attributes.
- 3. The highest classification accuracy is obtained with K = 5.
- 4. Increasing the value of K increases the prediction accuracy.
- 5. Increasing the value of K increases the prediction accuracy as more no training samples are involved.
- 6. Diagonal elements increase with rise in accuracy.
- 7. Diagonal elements correspond to correct predictions. Hence by increase in accuracy diagonal elements also increase.
- 8. As the classification accuracy increases with the increase in value of K the number of off-diagonal elements decrease.
- 9. Total no of test elements is same. Diagonal elements correspond to correct predictions. Hence by increase in accuracy non-diagonal elements decrease.

3

	Prediction	Outcome
Label	100	8
True	10	218

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Figure 7 Confusion Matrix obtained from Bayes Classifier

The classification accuracy obtained from Bayes Classifier is 94.6%.

	A	В
1	Means in Class1	0
2	X_Minimum	718.104
3	X_Maximum	746.584
4	Y_Minimum	1445930.352
5	Y_Maximum	1445963.75
6	Pixels_Areas	583.512
7	X_Perimeter	52.184
8	Y_Perimeter	43.112
9	Sum_of_Luminosity	61552.412
10	Minimum_of_Luminosity	94.804
11	Maximum_of_Luminosity	130.184
12	Length_of_Conveyer	1486.63
13	Steel_Plate_Thickness	100.434
14	Edges_Index	0.3888644
15	Empty_Index	0.4186428
16	Square_Index	0.5103224
17	Outside_X_Index	0.0198538
18	Edges_X_Index	0.6256006
19	Edges_Y_Index	0.837443
20	Outside_Global_Index	0.611
21	LogOfAreas	2.2643112
22	Log_X_Index	1.2140754
23	Log_Y_Index	1.2994936
24	Orientation_Index	0.131946
25	Luminosity_Index	-0.122632
26	SigmoidOfAreas	0.5270244

4	A	В
1	Means in Class 0	0
2	X_Minimum	137.0742
3	X_Maximum	286.3322
4	Y_Minimum	1711389
5	Y_Maximum	1711478
6	Pixels_Areas	7268.032
7	X_Perimeter	355.6148
8	Y_Perimeter	207.1555
9	Sum_of_Luminosity	808615.7
10	Minimum_of_Luminosit	53.40283
11	Maximum_of_Luminosit	135.8587
12	Length_of_Conveyer	1382.516
13	Steel_Plate_Thickness	40.24735
14	Edges_Index	0.126447
15	Empty_Index	0.449608
16	Square_Index	0.593253
17	Outside_X_Index	0.108173
18	Edges_X_Index	0.565851
19	Edges_Y_Index	0.524692
20	Outside_Global_Index	0.268551
21	LogOfAreas	3.599567
22	Log_X_Index	2.048011
23	Log_Y_Index	1.825003
24	Orientation_Index	-0.32807
25	Luminosity_Index	-0.10907
26	SigmoidOfAreas	0.91587

In Fig. 8 and 9 representing covariance matrices for class 0 and class 1 respectively the column numbers and row numbers correspond to attribute with serial number as in Table 3.

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

	0	1	2	3	4	5		7	8	9	10	11	12	13	14	15	16	17	18	19	20	21			24
0				-90093815					6342.261		2828.869		35.08571											24.74246	
1	60549.17	57593.63											26.17266						34.63566	01112300	00137213	00102070	DETOGRES		-33.45988
	-90087769	00037 102		2.63E+12									-55553.89						-133546.7					-57050.28	
3	-90093815							-9.8E+10														46364.04	-141235.6	-57051.38	95439.94
4				-7.54E+08										368.7523			-931.4997		290.1563	2816.525					
5	-31930.69	-15539.49	-38599976	-38584596	1395371			1.67E+08			2140.324	1.372203	-22.569	22.28837	32.94668	11.61067	-52.15125	-33.65195	22.92827	135.711	69.40658	86.51528	26.97984	-5.82787	28.83417
6	-17452.27	-8064.197	-29528899	-29519236	857469.9	45819.84	28599.26	1.03E+08	-3579.286	186.0079	1535.583	-4.613062	-12.42497	13.37403	22.38895	6.618315	-32.587	-19.54701	19.01129	79.72314	39.188	52.72424	20.9153	-2.337009	16.39452
7	-74756359	-38068098	-9.8E+10					4.03E+11					-53411.29											-14263.37	67039.14
8	6342.261	4246.334	-4663742	-4665084	-130039.3	-6114.624	-3579.286	-14678207	1435.624	454.1635	-143.8008	-2.688645	4.151371	-2.060208	1.110997	-1.50741	4.217815	4.825914	3.304557	-23.06008	-13.28703	-11.31091	2.997309	4.691634	-7.150363
9	2694.95	2211.845	-8054009	-8053965	-4383.886	45.13686	186.0079	10270.49	454.1635	359.4764	-7.735333	-7.269879	1.958658	-0.349753	2.293221	-0.356177	-0.052436	1.563509	3.839511	-6.09022	-4.447025	-1.785354	3.952615	2.95132	-2.910464
10	2828.869	2606.644	-10798321	-10797723	30347.18	2140.324	1535.583	3727268	-143.8008	-7.735333	2489.102	40.58116	1.088053	0.403797	3.902723	-0.291321	-2.618431	0.068471	4.977984	1.110105	-0.94312	2.477846	5.153582	-0.476642	0.079518
11	195.088	204.7402	-325682.7	-325686.4	-158.4831	1.372203	-4.613062	-38801.98	-2.688645	-7.269879	40.58116	6.67619	-0.022884	-0.018332	-0.000332	0.007042	0.015516	0.04225	0.075182	-0.05118	-0.043492	-0.01177	0.063571	-0.054797	0.016415
12	35.08571	26.17266	-55553.89	-55558.11	-476.9369	-22.569	-12.42497	-53411.29	4.151371	1.958658	1.088053	-0.022884	0.031376	-0.010696	0.008443	-0.00652	0.016943	0.024762	0.025106	-0.089475	-0.057231	-0.040142	0.02475	0.017144	-0.030313
13	-17.97702	-9.754506	14526.26	14531.11	368.7523	22.28837	13.37403	43540.79	-2.060208	-0.349753	0.403797	-0.018332	-0.010696	0.015879	0.003162	0.005884	-0.01716	-0.014905	-0.001551	0.055166	0.035188	0.034454	-0.000615	-0.004472	0.016978
14	13.56639	7.642827	-93640.68	-93632.71	529.9781	32.94668	22.38895	69465.53	1.110997	2.293221	3.902723	-0.000332	0.008443	0.003162	0.064938	-0.00461	-0.036792	0.001585	0.070142	-0.002032	-0.024245	0.024275	0.072524	0.016203	-0.013461
15	-9.395472	-2.229997	3189.947	3191.985	228.2041	11.61067	6.618315	26038.01	-1.50741	-0.356177	-0.291321	0.007042	-0.00652	0.005884	-0.00461	0.005192	-0.002687	-0.007895	-0.008767	0.031563	0.022657	0.015489	-0.009319	-0.003908	0.008422
16	24.49329	20.45434	6719.661	6707.551	-931.4997	-52.15125	-32.587	-112302.2	4.217815	-0.052436	-2.618431	0.015516	0.016943	-0.01716	-0.036792	-0.002687	0.057628	0.026556	-0.035449	-0.103878	-0.043683	-0.072027	-0.040273	0.003847	-0.026872
17	38.95188	28.00765	-38617.3	-38623.71	-654.2399	-33.65195	-19.54701	-74739.59	4.825914	1.563509	0.068471	0.04225	0.024762	-0.014905	0.001585	-0.007895	0.026556	0.032364	0.021446	-0.108107	-0.066749	-0.052792	0.020181	0.015404	-0.033496
18	46.25837	34.63566	-133546.7	-133538.2	290.1563	22.92827	19.01129	44593.87	3.304557	3.839511	4.977984	0.075182	0.025106	-0.001551	0.070142	-0.008767	-0.035449	0.021446	0.193582	-0.048175	-0.065507	0.016604	0.127894	0.028636	-0.029729
19	-131.5098	-87.72956	183134	183163.6	2816.525	135.711	79.72314	321540.3	-23.06008	-6.09022	1.110105	-0.05118	-0.089475	0.055166	-0.002032	0.031563	-0.103878	-0.108107	-0.048175	0.497087	0.28442	0.253712	-0.045113	-0.066846	0.147085
20	-87.22761	-55.97149	137789.1	137803.1	1451.628	69.40658	39.188	162501.5	-13.28703	-4.447025	-0.94312	-0.043492	-0.057231	0.035188	-0.024245	0.022657	-0.043683	-0.066749	-0.065507	0.28442	0.178677	0.134332	-0.064281	-0.044567	0.088635
21	-57.24686	-35.52575	46344.19	46364.04	1686.892	86.51528	52.72424	197432.1	-11.31091	-1.785354	2.477846	-0.01177	-0.040142	0.034454	0.024275	0.015489	-0.072027	-0.052792	0.016604	0.253712	0.134332	0.146629	0.018411	-0.024791	0.070343
22	44.99933	32.66325	-141244.4	-141235.6	371.9959	26.97984	20.9153	54471.51	2.997309	3.952615	5.153582	0.063571	0.02475	-0.000615	0.072524	-0.009319	-0.040273	0.020181	0.127894	-0.045113	-0.064281	0.018411	0.122956	0.029404	-0.02825
23	24.74246	19.371	-57050.28	-57051.38	-158.5223	-5.82787	-2.337009	-14263.37	4.691634	2.95132	-0.476642	-0.054797	0.017144	-0.004472	0.016203	-0.003908	0.003847	0.015404	0.028636	-0.066846	-0.044567	-0.024791	0.029404	0.025836	-0.027681
24	-45.08064	-33.45988	95433.37	95439.94	605.0511	28.83417	16.39452	67039.14	-7.150363	-2.910464	0.079518	0.016415	-0.030313	0.016978	-0.013461	0.008422	-0.026872	-0.033496	-0.029729	0.147085	0.088635	0.070343	-0.02825	-0.027681	0.053956

Figure 8: Covariance matrix for class 0

	. 0		2	3	4	5	6	7	8	9		11		13	14	15	16		18	19	20	21	22	23	24
- 1	259938												2.94481										-10.1206		
	1 256138		1.5E+08		-19263.8								3.38963												
1	2 1.2E+08						9298938						36535.8											-13912.4	
	3 1.2E+08		3.3E+12		5.1E+08		9302068						36534.8												
-		-19263.8			5121724	201881	135507						-37.4526								377.583	342.99			
		261.359		2.9E+07			5755.11						-0.37207										-5.72256		
		-1901.45					5008.47						-1.34556				-8.18555						9.91343		
_		-2032754						5.6E+10					-3554.68								39675.7			-2320.96	
		-1183.65																					-2.80378		
		-1180.02	600188										0.64891											2.91411	
		12247.4																							
-		-2832.32	0	0			313.843													2.46304			7.27256		22
_	2 2.94481				-37.4526																	-0.01327			-0.00073
-		-2.46295						3415.54					-0.00062								0.01803		-0.00275	0.00269	
-	4 16.5186				-107.658												0.02161							-0.00112	
_		1.20702			69.8587								0.00029						-0.00579		0.01299		-0.00946		
1	5.62894				-87.9306																			0.00367	
1	7 4.18412		-29078		-125.617		-2.71112						-0.00563				-0.01361	0.0484		-0.02696		0.02195		-0.00926	
_	3 -1.98451				30.5783														0.22663				0.23065		
		-15.4643					28.179																	-0.01878	
2	-16.8198			89905.8		24.905							0.00622											0.00074	
2	1 -20.57	20.57.57					19.7475						-0.01327	0.01891	-0.0313									-0.01752	
_		-23.3566		-116645			9.91343				-4.35897		-0.02537											-0.0214	
_		-10.1654																				-0.01752		0.02601	
2	4 -21.7521	-14.8971	-2807.31	-2798.65	225.095	15.1153	12.2662	23386.7	-1.90637	-0.70993	-7.36396	1.79777	-0.00073	0.02131	-0.0267	0.00493	-0.04222	-0.01539	0.02058	0.14027	0.06081	0.09646	0.03861	-0.0085	0.09779

Figure 9: Covariance matrix for class 1

Data classification using K-nearest neighbor classifier and Bayes classifier with unimodal Gaussian density

Inferences:

- 1. Accuracy of Bayes Classifier is 94.6%. It is less because it tries to find a general trend instead of focusing on neighbors as done in KNN.
- 2. The diagonal elements denote the variance of the attribute or data spread across the median. We can find the dispersion of the attribute by looking at it.
- 3. Off diagonal elements refer to covariance among the data attributes.

4

Table 4 Comparison between classifiers based upon classification accuracy

S. No.	Classifier	Accuracy (in %)
1.	KNN	89.5
2.	KNN on normalized data	100
3.	Bayes	94.6

Inferences:

- 1. KNN Normalized has highest and KNN has lowest accuracy.
- 2. KNN < Bayes < KNN Normalized.
- 3. KNN performs better when data is normalized because accuracy increases because after normalization attributes with bigger range come in same range with that of the other attributes. Euclidean distances can't have different ranges for different attributes. The Bayes classifier is less because it tries to find a general trend instead of focusing on neighbors as done in KNN.