0.1 Definisjoner

Gitt en funksjon f(x) og to x-verdier a og b, hvor a < b. Endringen til f relativ til endringen til x for disse verdiene er gitt som

$$\frac{f(b) - f(a)}{b - a} \tag{1}$$

I MB har vi sett at uttrykket over gir stigningstallet til linja som går gjennom punktene (a, f(a)) og (b, f(b)). I en matematisk sammenheng er det ekstra interessant å undersøke (1) når b nærmer seg a.

Ved å sette b = a + h, hvor h > 0, kan vi skrive (1) som

$$\frac{f(a+h) - f(a)}{h}$$

Å derivere innebærer å undersøke grenseverdien til denne brøken når h går mot 0.

Definisjon 0.1 Den deriverte

Gitt en funksjon f(x). Den deriverte av f i x = a er da gitt som

$$f'(a) = \lim_{h \to 0} \frac{f(a+h) - f(a)}{h}$$
 (2)

Linja som har stigningstall f'(a), og som går gjennom punktet (a, f(a)), kalles tangeringslinja til f for x = a.

Eksempel 1

Gitt $f(x) = x^2$. Finn f'(2).

Svar

Vi har at

$$f'(2) = \lim_{h \to 0} \frac{f(2+h) - f(2)}{h}$$

$$= \lim_{h \to 0} \frac{(2+h)^2 - 2^2}{h}$$

$$= \lim_{h \to 0} \frac{2^2 + 4h + (h)^2 - 2^2}{h}$$

$$= 4$$

Eksempel 2

Gitt $f(x) = x^3$. Finn f'(a).

Svar

Vi har at

$$f'(a) = \lim_{h \to 0} \frac{(a+h)^3 - a^3}{h}$$

$$= \lim_{h \to 0} \frac{a^3 + 3a^2h + 3ah^2 + h^3 - a^3}{h}$$

$$= \lim_{h \to 0} \left(3a^2 + 3ah + h^2\right)$$

$$= 3a^2$$

Altså er $f'(a) = 3a^2$.

Alternativ definisjon

En ekvivalent utgave av (2) er

$$f'(a) = \lim_{b \to a} \frac{f(b) - f(a)}{b - a} \tag{3}$$

Linearisering av en funksjon

Gitt en funksjon f(x) og en variabel k. Siden f'(a) angir stigningstallet til f(a) for x = a, vil en tilnærming til f(a + k) være (se figur ???)

$$f(a+k) \approx f(a) + f'(a)k$$

Det er ofte nyttig å vite differansen ε mellom en tilnærming og den faktiske verdien:

$$\varepsilon = f(a+k) - [f(a) + f'(a)k] \tag{4}$$

Vi legger merket til at $\lim_{h\to 0} \frac{\varepsilon_f}{k} = 0$, og skriver om (4) til en formel for f(x+k):

¹Dette overlates til leseren å vise.

Regel 0.2 Linearisering av en funskjon

Gitt en funskjon f(x)og en variabel k. Da finnes en funksjon ε slik at

$$f(a+k) = f(a) + f'(a)k + \varepsilon \tag{5}$$

hvor $\lim_{h\to 0} \frac{\varepsilon_f}{k} = 0$.

Tilnærmingen

$$f(a+k) \approx f(a) + f'(x)k \tag{6}$$

kalles lineæarapproksimasjonen av f(a + k).

0.2 Derivasjonsregler

0.2.1 Den deriverte

Eksempel 2 på side 3 belyser noe viktig; hvis grenseverdien i (2) eksisterer, vil f'(a) være uttrykt ved a. Og selv om a betraktes som en konstant langs veien som fører til dette uttrykket, er det ingenting som hindrer oss i å etterpå behandle a som en variabel. Hvis f'(a) er et resultat av derivasjon av funksjonen f(x) er det også hendig å omdøpe a til x:

Regel 0.3 Den deriverte funksjonen

Gitt en funksjon f(x). Den deriverte av f er funksjonen som fremkommer ved å erstatte a i (2) med x. Denne funksjonen skriver vi som f'(x).

Eksempel

Gitt $f(x) = x^3$. Siden $f'(a) = 3a^2$, er $f'(x) = 3x^2$.

¹Se Eksempel 2, side 3.

Alternative skrivemåter

Alternative skrivemåter for f' er (f)' og $\frac{d}{dx}f$.

Derivert med hensyn på

Derivasjon som vi har sett på så langt har vært en brøk med en differanse av x-verdier i nevner og den tilknyttede differansen av f-verdier i teller. Da sier vi at f er derivert med hensyn på x. I denne bokserien skal vi i all hovedsak se på funksjoner som bare er avhengige av én variabel. Gitt en funksjon f(x), er det da underforstått at f' symboliserer f derivert med hensyn på x.

Samtidig er det greit å være klar over at en funksjon gjerne kan være avhengig av flere variabler. For eksempel er funksjonen

$$f(x,y) = x^2 + y^3$$

en flervariabel funksjon, avhengig av både x og y. I dette tilfellet kan vi bruke skrive $\frac{d}{dx}f$ for å indikere derivasjon med

hensyn på x, og $\frac{\mathrm{d}}{\mathrm{d}x}f$ for å indikere derivasjon med hensyn på y. Leseren må gjerne forklare for seg selv hvorfor følgende stemmer:

$$\frac{\mathrm{d}}{\mathrm{d}x}f = 2x \qquad , \qquad \frac{\mathrm{d}}{\mathrm{d}y}f = 3y^2,$$

0.2.2 Den deriverte av elementære funksjoner

Regel 0.4 Den deriverte av elementære funksjoner

For $x, r \in \mathbb{R}$ og

$$(e^x)' = e^x \tag{7}$$

$$(x^r)' = rx^{r-1} \tag{8}$$

$$(\ln x)' = \frac{1}{x} \tag{9}$$

$$(\sin x)' = \cos(x) \tag{10}$$

$$(\cos x)' = -\sin(x) \tag{11}$$

$$(\tan x)' = \frac{1}{\cos^2 x} = 1 + \tan^2 x \tag{12}$$

Regel 0.5 Den deriverte av sammensatte funksjoner

Gitt $c \in \mathbb{R}$ og funksjonene f(x) og g(x). Da er

$$(a \cdot f)' = a \cdot f'$$

$$(f+q)' = f' + q'$$

$$(f-g)' = f' - g'$$

Definisjon 0.6 Den deriverte av en vektorfunksjon

Gitt funksjonene f(t), g(t) og v(t) = [f(t), g(t)]. Da er

$$v'(t) = [f'(t), g'(t)] \tag{13}$$

0.2.3 Kjerneregelen

La oss se på tre funksjoner f, g og u, hvor

$$f(x) = g\left[u(x)\right]$$

f beskrives direkte av x, mens g beskrives indirekte av x, via u(x).

La oss bruke $f(x) = e^{x^2}$ som eksempel. Kjenner vi verdien til x, kan vi fort regne ut hva verdien til f(x) er. For eksempel er

$$f(2) = e^4$$

Men vi kan også skrive $g[u(x)] = e^{u(x)}$, hvor $u(x) = x^2$. Denne skrivemåten impliserer at når vi kjenner verdien til x, regner vi først ut verdien til u, før vi så finner verdien av g:

$$u(2) = 4$$
 , $g[u(2)] = e^{u(2)} = e^4$

Av derdef?? har vi at

$$f(x) = \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$
$$= \lim_{h \to 0} \frac{g[u(x+h)] - g[u(x)]}{h}$$

Vi setter k = u(x+h) - u(x). Da er

$$\lim_{h \to 0} \frac{g[u(x+h)] - g[u(x)]}{h} = \lim_{h \to 0} \frac{g(u+k) - g(u)}{h}$$

Av (5) har vi at

$$g(u) - g(u+k) = g'(u)k + \varepsilon_g$$

Altså er

$$\lim_{h \to 0} \frac{g(u+k) - g(u)}{h} = \lim_{h \to 0} \frac{g'(u)k + \varepsilon_g}{h}$$
$$= \lim_{h \to 0} \left(g'(u) + \frac{\varepsilon_g}{k} \right) \frac{k}{h}$$

Da $\lim_{h\to 0} k=0$, er $\lim_{h\to 0} \frac{\varepsilon_g}{k}=0$. Videre har vi at $\lim_{h\to 0} \frac{k}{h}=u'(x)$. Altså har vi at

$$\lim_{h \to 0} \left(g'(u) + \frac{\varepsilon_g}{k} \right) \frac{k}{h} = g'(u)u'(x)$$

Regel 0.7 Kjerneregelen

For en funksjon f(x) = g[u(x)], har vi at

$$f'(x) = g'(u)u'(x) \tag{14}$$

Eksempel

Finn f'(x) når $f(x) = e^{x^2 + x + 1}$.

Svar

Vi setter $u = x^2 + x + 1$, og får at

$$g(u) = e^{u}$$

$$g'(u) = e^{u}$$

$$u'(x) = 2x + 1$$

Altså er

$$f'(x) = g'(u)u'(x)$$

$$= e^{u}(2x+1)$$

$$= e^{x^{2}+x+1}(2x+1)$$

0.2.4 Produkt- og divisjonsregelen

Gitt funksjonene f, u og v, hvor

$$f(x) = u(x)v(x)$$

Av defref?? er da

$$f' = \lim_{h \to 0} \frac{u(x+h)v(x+h) - u(x)v(x)}{h}$$

La oss nå skrive u(x) og v(x) som henholdsvis u og v, og u(x+h) og v(x+h) som henholdsvis \tilde{u} og \tilde{v} :

$$f' = \lim_{h \to 0} \frac{\tilde{u}\tilde{v} - uv}{h}$$

Vi kan alltids legge til 0 i form av $\frac{u\tilde{v}}{h} - \frac{u\tilde{v}}{h}$:

$$f' = \lim_{h \to 0} \left[\frac{\tilde{u}\tilde{v} - uv}{h} + \frac{u\tilde{v}}{h} - \frac{u\tilde{v}}{h} \right]$$
$$= \lim_{h \to 0} \left[\frac{(\tilde{u} - u)\tilde{v}}{h} + \frac{u(\tilde{v} - v)}{h} \right]$$

Siden vi for enhver kontinuerlig funksjon ghar at $\lim_{h\to 0} \tilde{g} = g$ og

$$\lim_{h\to 0} \frac{g(x+k)-g(x)}{h} = g', \text{ er}$$

$$f' = u'v + uv'$$

Regel 0.8 Produktregelen ved derivasjon

Gitt funksjonene f(x), u(x) og v(x), hvor f = uv da er

$$f' = u'v + uv'$$

Eksempel 1

Finn den deriverte av funksjonen $f(x) = x^2 e^x$.

Svar

Vi setter $u(x) = x^2$ og $v(x) = e^x$, da er

$$f = uv$$

$$u' = 2x$$

$$f = uv$$
 $u' = 2x$ $v' = e^x$

Altså er

$$f' = 2xe^x + x^2e^x$$
$$= xe^x(2+x)$$

Regel 0.9 Divisjonsregelen ved derivasjon

Gitt funksjonene f(x), u(x) og v(x), hvor $f = \frac{u}{v}$. Da er

$$f' = \frac{u'v - uv'}{v^2} \tag{15}$$

Eksempel

Finn den deriverte av funksjonen $f(x) = \frac{\cos x}{x^4}$.

Svar

Vi setter $u(x) = \cos x$ og v(x) = x, da er

$$f = uv$$

$$f = uv u' = -\sin x v' = 4x^3$$

$$v' = 4x^3$$

Altså er

$$f' = \frac{-\sin x \cdot x^4 - \cos x \cdot 4x^3}{x^8}$$
$$= -\frac{x \sin x + 4 \cos x}{x^5}$$

Merk: Vi kan også finne f' ved å sette $u(x) = \cos x$ og $v(x) = x^{-4}$, for så å bruke produktregelen.

Regel 0.10 L'Hopitals regel I

Gitt to deriverbare funksjoner f(x) og g(x), hvor

$$f(a) = g(a) = 0$$

eller hvor

$$\lim_{x\to a} f = \lim_{x\to a} g = \infty$$

Da er

$$\lim_{x \to a} \frac{f}{g} = \lim_{x \to a} \frac{f'}{g'}$$

Eksempel

Finn grenseverdien til $\lim_{x\to 0} \frac{e^x - 1}{x}$.

Svar

Vi setter $f(x) = e^x - 1$ og g(x) = x, og merker oss at f(0) = g(0) = 0. Dermed har vi at

$$\lim_{x \to 0} \frac{e^x - 1}{x} = \lim_{x \to 0} \frac{f}{g}$$

$$= \lim_{x \to 0} \frac{f'}{g'}$$

$$= \lim_{x \to 0} \frac{e^x}{1}$$

$$= 1$$

0.3 Forklaringer

L'hoptial (forklaring)

Siden f(a) = g(a) = 0, er

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f(x) - f(a)}{g(x) - g(a)}$$

Vi setter k = a - x, da har vi av linaprx?? at

$$f(x) - f(a) = f(x) - f(x+h) = -f'(x)k - \varepsilon_f$$

$$g(x) - g(a) = g(x) - g(x+h) = -g'(x)k - \varepsilon_g$$

Altså er

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x) + \frac{\varepsilon_f}{k}}{g'(x) + \frac{\varepsilon_g}{k}}$$

Da $\lim_{x\to a}k=0,$ har vi at $\lim_{x\to a}\frac{\varepsilon_f}{k}=\lim_{x\to a}\frac{\varepsilon_g}{k}=0$ Altså er

$$\lim_{x \to a} \frac{f(x)}{g(x)} = \lim_{x \to a} \frac{f'(x)}{g'(x)}$$

L'hopital 2 (forklaring)

Vi har at

$$\lim_{x \to a} \frac{g}{f} = \lim_{x \to a} \frac{\frac{1}{f}}{\frac{1}{g}}$$

Da $\lim_{x\to a}f=\lim_{x\to a}g=\infty$, må $\lim_{x\to a}\frac{1}{f}=\lim_{x\to a}\frac{1}{g}=0$. Av Lhopital
1?? har vi da at

$$\lim_{x \to a} \frac{g}{f} = \lim_{x \to a} \frac{\frac{1}{f^2} f'}{\frac{1}{g^2} g'}$$

Multipliserer vi begge sider med $\lim_{x \to a} \frac{f^2}{g^2},$ får vi at

$$\lim_{x \to a} \frac{f}{g} = \lim_{x \to a} \frac{f'}{g'}$$

(forklaring)

Vi har at

$$f' = \left(\frac{u}{v}\right)' = \left(uv^{-1}\right)'$$

Av produktregelen og kjerneregelen er da

$$f' = u'v^{-1} - uv^{-2}v'$$
$$= \frac{u'v - uv'}{v^2}$$

(forklaring)

Likning (8)

Vi starter med å merke oss at

$$(\ln x^r)' = (r \ln x)'$$
$$= \frac{r}{r}$$

Vi setter $u = x^r$. Av kjerneregelen har vi da at

$$\frac{r}{x} = (\ln u)'$$

$$= \frac{1}{u}u'$$

$$= \frac{1}{x^r}(x^r)'$$

Altså er

$$(x^r)' = \frac{r}{x}x^r = rx^{r-1}$$

Likning (9)

Vi har at $x = e^{\ln x}$. Vi setter $u = \ln x$ og $g(u) = e^u$. Da har vi at x = g(u), og at

$$g'(u) = e^{u} = e^{\ln x} = x$$
$$u'(x) = (\ln x)'$$

Av kjerneregelen har vi at

$$(x)' = g'(u)u'(x)$$
$$= x (\ln x)'$$

 $\mathrm{Da}^1(x)' = 1$, har vi at

$$1 = x \left(\ln x\right)'$$

Altså er

$$(\ln x)' = \frac{1}{x}$$

Vi skal her anvende de to ligningene (se vedlegg??)

$$\lim_{x \to 0} \frac{\sin x}{x} = 1 \tag{I}$$

$$\lim_{x \to 0} \frac{\cos x - 1}{x} = 0 \tag{II}$$

Av (2) har vi at

$$(\cos x)' = \lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h}$$

Ved (??) kan vi skrive

$$\lim_{h \to 0} \frac{\cos(x+h) - \cos x}{h} = \lim_{h \to 0} \frac{\cos x \cos h - \sin x \sin h - \cos x}{h}$$

$$= \lim_{h \to 0} \frac{[\cos h - 1] \cos x - \sin x \sin h}{h}$$

$$= \lim_{h \to 0} \frac{\cos h - 1}{h} \cos x - \lim_{h \to 0} \frac{\sin h}{h} \sin x$$

$$= 0 - 1 \cdot \sin x$$

$$= -\sin x$$

Mellom tredje og fjerde linje i likningen over brukte vi (I) og (II).

Likning (11)

Av $(\ref{eq:constraints}),\,(\ref{eq:constraints})$ og $(\ref{eq:constraints})$ har vi at

$$\sin x = \cos\left(x - \frac{\pi}{2}\right)$$
$$\sin\left(\frac{\pi}{2} - x\right) = \cos x$$

Bruker vi det faktum at $(\cos x)' = -\sin x$, i kombinasjon med kjerneregelen, får vi at

$$(\sin x)' = \left(\cos\left(x - \frac{\pi}{2}\right)\right)'$$
$$= -\sin\left(x - \frac{\pi}{2}\right) \cdot 1$$
$$= \sin\left(\frac{\pi}{2} - x\right)$$
$$= \cos x$$

Likning (12)

Av kjerneregelen og (15) har vi at

$$(\tan x)' = \left(\frac{\sin x}{\cos x}\right)'$$

$$= \cos x \cos^{-1} x + \sin x \left(\cos^{-1}\right)'$$

$$= 1 + \sin x (-\cos^{-2} x)(-\sin x)$$

$$= 1 + \tan^2 x$$

$$= \frac{\cos^2 x + \sin^2 x}{\cos^2 x}$$

$$= \frac{1}{\cos^2 x}$$

¹Se oppgave ??.