Autodock原理及使用

G14小组成员

李婷婷 郭潇 张荣飞 多丽娜

2012年1月18日

Outline

1. 分子对接简介

2. Autodock 使用过程及实例

3. 总结

分子对接简介

分子对接定义

依据配体与受体的相互作用,模拟两分子之间通过几何和能量匹配相互识别的过程。

分子对接原理

通过计算方法把配体分子放在受体活性位点,利用几何和能量互补原则评价配体 与受体相互作用好坏,通过打分函数,找到最佳结合模式。

分子对接用途

确定两个分子正确的相对位置和取向,研究 两个分子的构象,用来研究蛋白激活剂、抑 制剂作用机制以及药物作用机制,在新药设 计中有重要的作用。

分子对接类型

刚性对接

在对接的过程中,研究体系的构象不发生变化 比较大的体系,如蛋白质和蛋白质、蛋白质和核 酸之间,计算简单,考虑构象之间的契合程度。

半柔性对接

在对接过程中,研究体系尤其是配体的构象允许 在一定的范围内变化,适合于处理小分子和大分 子之间的对接

柔性对接

在对接过程中,研究体系的构象基本上是可以自由变化的,用于精确考察分子之间的识别情况

分子对接算法

对接类型	对接方法类型		
Flexible-Ligand Docking 柔性配体对接		Conformational 构象	
	Systematic 系统方法	Fragmentation 片段生长	
		Database 数据路	
	Random/stochastic 随机方法	Monte Carlo (MC) 蒙特卡罗	
		Genetic algorithm (GA) 遗传算法	
		Tabu Search 禁忌搜索	
	Simulation methods 模拟方法	Molecular dynamics (MD) 分子动力学	
		Energy minimization 能量最小化	
Flexible-Protein Docking 柔性蛋白对接		Molecular dynamics (MD) 分子模拟	
		Monte Carlo (MC) 蒙特卡罗	
		Rotamer libraries 旋转异构体库	
		Protein-ensemble grids 蛋白集合栅格	
		Soft-receptor modeling 软受体建模	

分子对接软件

名称	优化方法	评价函数	速度	Protein-protein (peptide) docking	Protein-ligand docking
DOCK	片断生长	分子力场、表面匹 配得分、化学环境 匹配得分	快		√
AutoDock	遗传算法	半经验自由能评价 函数	一般		\checkmark
ICM- Docking	随机全局优化	半经验自由能评价 函数	快		$\sqrt{}$
GOLD	遗传算法	半经验自由能评价 函数	快		\checkmark
FlexX	片断生长	半经验自由能评价 函数	快		\checkmark
Affinity	蒙特卡罗/分 子力学/分子 动力学	分子力场	慢		V
ZDock&RD ock	几何匹配/分 子动力学	CAPRI* /分子力场	慢	V	
FlexiDock	遗传算法	分子力场	慢		V
eHiTS	系统搜索	半经验自由能评价 函数	快		$\sqrt{}$
Hex	几何匹配	*	快	V	

实现Autodock过程的相关软件

Autodock一般流程

围绕受体活性位点的氨基酸残基形成一个范围较大的Box

用不同类型的原子作为探针进行扫描,计算格点能量

对配体在Box范围内进行构象搜索,根据配体的不同构象,按方向、位置及能量进行评分,最后对结果进行排序

结果分析:找到正确对接构象,分析结果

Autodock 实例演示

Drug Design Targeting on 14-3-3zeta for Cancer Therapy

14-3-3ζ as a target for anti-cancer therapy

- %Overexpression of 14-3-3 ζ is associated with diverse cancer types and regulates pathways that promote cancer initiation and progression.
- $\times 14$ -3-3 ζ overexpression and gene amplification are correlated with poor prognosis and chemoresistance in cancer patients.

Cancer type	14-3-3zeta expression	Chemoresistance	Poor prognosis
Lung	Elevated	Yes	Yes
Breast	Elevated	Yes	Yes
Prostate	Elevated		
Diffuse large B-cell lymphoma	Elevated	Yes	
Multiple myeloma	Elevated	Yes	
Acute promyelocytic leukemia	Positive	Yes	
Liver	Positive	Yes	
Stomach	Positive		
Glioma	Elevated		Yes
Meningioma	Positive		
Esophageal	Elevated		
Head and neck squamous cell carcinoma	Elevated		Yes
Oral	Elevated		
Pancreatic	Elevated		
Ovarian	Elevated		
Skin	Elevated		

Uniplot检索

别名: Protein kinase C inhibitor protein 1 245 AA, sequence complete, protein level 亚细胞定位: 细胞质和黑素体

功能:调控广泛的信号通路。常常通过识别of a 磷酸丝氨酸或磷酸苏氨酸模序结合大量的partners蛋白。结合通常会导致结合partner的活性调控。

两个位点56和127与作用蛋白的磷酸丝氨酸发生相互作用

Sit	es			
	Site	56	1	Interaction with phosphoserine on interacting protein (By similarity)
	Site	127	1	Interaction with phosphoserine on interacting protein (By similarity)

二级结构:

流程

实验筛选获得了有14-3-3zeta抑制活性的抑制剂

小分子衍生物模型由maestro软件通过计算化学方法生成

分子对接: Autodock4.2

作用力分析: Poseview

结果分析,进一步改造,以提高抑制活性

实验验证

Structure of 14-3-3\zefa

RSxpS/TxP OR RxxxpS/TxP

Sites: K49 R56 R127

Liu Dong, et al.crystal structure of the zeta isoform of the 14-3-3 protein. nature; 1995, 376:191-194.

14-3-3ζ inhibitors

 $IC_{50}: 10 \mu M$

Interaction

Covalent bond: Lys120

Van der Walls contact: Ile217

Solvent molecule bridges: Arg56 and Arg127

图形界面

准备受体

1.打开蛋白文件

PMV菜单: File → Save → Write PDB保存修改过的receptor分子

Wirte PDB对话框。(注: Other write option选择Sort Nodes)

准备配体

- 1、ADT检测Ligand分子是否已经加了电荷,自动加上Gasteiger电荷
- 2、ADT检测并合并非极性的H
- 3、将Ligand中的每个原子设置为 "AutoDock原子类型"

准备AutoGrid参数文件

- 1.Grid -> macromolecule -> (檔名.pdbqt) (protein)
- 2.Grid -> Set Map Type -> (檔名.pdbqt) (ligand)
- 3. Grid -> Grid Box (把所有参数调整好)
- 4. File(Grid Options) -> Close saving current
- 5. Grid -> Output -> Save GPF (檔名.gpf)

设置好的Grid参数保存成GPF文 件

Grid → Edit GPF... 手工编辑修改刚 才通过ADT生成的GDF文件

对接位置

运行Autogrid

Run -> RunAutoGrid

AutoDock Process Manager

针对不同原子探针的范德华作用力、静 电力等作用力的Map文件

hsg1_rigid.A.map# atom-specific affinity maphsg1_rigid.C.map# atom-specific affinity maphsg1_rigid.NA.map# atom-specific affinity maphsg1_rigid.OA.map# atom-specific affinity maphsg1_rigid.N.map# atom-specific affinity maphsg1_rigid.HD.map# atom-specific affinity maphsg1_rigid.e.map# electrostatic potential map

desolvation potential map.

准备Dock参数文件

可编辑生成DPF文件

设置对接遗传算法搜索参数

运行AutoDock

ADT菜单: Run → Run AutoDock

对接结果分析

观察对接好的分子构象

ADT菜单: Analyze → Conformations → Load ··· 将对接结果及分子构象载入到图形窗口中,并且在弹出ind Conformation Chooser对话框中单击列表中的相应分子构象编号后,上部显示窗口即可显示此分子构象的对接数据。而如果双击,则可以将该分子构象载入到分子显示窗口中,以便观察分析。

构象聚类

ADT可以将对接结果相似的分子构象进行聚类,这样会极大的 方便对不同对接结果的分析和比较。

ADT菜单: Analyze → Clusterings → Show ··· 显示2.0 clustering交互式柱状图,单击柱状图上相应的条带,分子显示窗口中将显示相应的分子构象.

构象聚类

以上仅按照2.0 rms进行聚类显然还是不容易比较分析对接 所产生的10个构象,所以我们分别按rms: 1.0, 2.0和3.0对对接 结果进行重新聚类。

ADT菜单: Analyze → Clusterings → Recluster …重新聚类,将tolerance (RMS值公差)设为1.0,2.0和3.0,输入输出文件名称,点击OK重新聚类。

聚类构象

在Receptor环境中观察对接构象

ADT菜单: Analyze → Dockings → Show Interactions ADT将自动计算并显示Ligand分子在当前构象下与周围 Receptor残基之间的相互作用。

ADT自动显示Ligand和Receptor 相互作用的效果

结论

抑制活性

- 1 羰基氧与Arg56形成的氢键
- 2 两个芳香环与蛋白受体疏水作用
- 3 芳香环侧链及杂环与蛋白受体形成的氢键
- 4 杂环的疏水性

提高抑制活性

保留羰基氧

改变芳香环的疏水性和成氢键能力,疏水性更有效

杂环中引入氢键

细胞实验,证实部分小分子抑制活性

SPR实验,检测到部分小分子抑制活性<1uM

比已报道小分子抑制剂FOBOSIN101 10uM的抑制活性高10倍以上

意义

研究14-3-3zeta蛋白相关调控过程的研究提供手段

为癌症治疗提供新策略

谢谢

感谢罗老师和各位同学,这学期ABC我们一起 走过,收获很多!