

Capstone Project

Online Retail Customer **Segmentation**

Individual Contributor

Aamir Sohail

Content

PROBLEM
STATEMENT DATA

SUMMARY

ANALYSIS

CHALLENGES

CONCLUSION

What is Customer Segmentation?

- Practice of dividing a customer base into groups of individuals that are similar in specific ways relevant to marketing, such as age, gender, interests and spending habits.
- Allows us to better understand our customers helping us target these customers in a more efficient manner and improve the customer experience.

Problem Statement

Given a dataset related to a online retailer based out of the UK, we need to analyse and identify major customer segments using K Means algorithm and also using different verification method to confirm the result.

Data Summary

- A transnational data set with transactions occurring between 1st December 2010 and
 9th December 2011 for a UK-based online retailer.
- The company mainly sells unique all-occasion gifts.
- Many customers of the company are wholesalers.

InvoiceNo	StockCode	Description	Quantity	InvoiceDate	UnitPrice	CustomerID	Country
536365	85123A	WHITE HANGING HEART T-LIGHT HOLDER	6	2010-12-01 08:26:00	2.55	17850.0	United Kingdom
536365	71053	WHITE METAL LANTERN	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
536365	84406B	CREAM CUPID HEARTS COAT HANGER	8	2010-12-01 08:26:00	2.75	17850.0	United Kingdom
536365	84029G	KNITTED UNION FLAG HOT WATER BOTTLE	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom
536365	84029E	RED WOOLLY HOTTIE WHITE HEART.	6	2010-12-01 08:26:00	3.39	17850.0	United Kingdom

Finding the most Purchased Products

Description_Name	Count
WHITE HANGING HEART T-LIGHT HOLDER	2369
REGENCY CAKESTAND 3 TIER	2200
JUMBO BAG RED RETROSPOT	2159
PARTY BUNTING	1727
LUNCH BAG RED RETROSPOT	1638

Top 5 vs Bottom 5 countries

Analysis

UK Saudi

Source obtained from Statista comparing online purchases from 2011 to 2016

Month-wise analysis

November and December could be the months with highest sales in anticipation of Christmas

Daywise analysis

Hourwise analysis

Working hours witnessing the highest sales could be attributed to the fact that a large part of the dataset is Wholesalers' data

Recency, Frequency, Monetary values

RFM Metrics

The freshness of the customer activity, be it purchases or visits

RECENCY

E.g. Time since last order or last engaged with the product

FREQUENCY

The frequency of the customer transactions or visits

E.g. Total number of transactions or average time between transactions/ engaged visits

MONETARY

The intention of customer to spend or purchasing power of customer

E.g. Total or average transactions value

Silhouette score and Elbow method onR&M


```
For n_clusters = 2, silhouette score is 0.42130248458822245
For n_clusters = 3, silhouette score is 0.34330894361588987
For n_clusters = 4, silhouette score is 0.364717216775287
For n_clusters = 5, silhouette score is 0.33534472450641756
For n_clusters = 6, silhouette score is 0.34443902026447926
For n_clusters = 7, silhouette score is 0.3485492146418403
For n_clusters = 8, silhouette score is 0.3485492146418403
For n_clusters = 9, silhouette score is 0.349572879744673
For n_clusters = 10, silhouette score is 0.34486114804981075
For n_clusters = 11, silhouette score is 0.33740901777353544
For n_clusters = 12, silhouette score is 0.3401710887874453
For n_clusters = 13, silhouette score is 0.3456994787287528
For n_clusters = 14, silhouette score is 0.3456994787287528
For n_clusters = 15, silhouette score is 0.34356994787287528
```


Silhouette score and Elbow method on F&M

Silhouette analysis on R, F and M

```
For n clusters = 2 The average silhouette score is : 0.3956478042246982
For n clusters = 3 The average silhouette score is : 0.3049826724447913
For n clusters = 4 The average silhouette score is : 0.30279724233096916
For n_clusters = 5 The average silhouette_score is : 0.2785519277480847
For n clusters = 6 The average silhouette score is : 0.2789560652501828
For n_clusters = 7 The average silhouette_score is : 0.2613208163968789
For n clusters = 8 The average silhouette score is : 0.2640918249728342
For n clusters = 9 The average silhouette_score is : 0.2585642595481418
For n_clusters = 10 The average silhouette_score is : 0.2644733794304285
For n clusters = 11 The average silhouette score is : 0.2592423011915937
For n clusters = 12 The average silhouette score is : 0.26503813251658404
For n clusters = 13 The average silhouette score is : 0.2621555416679574
For n clusters = 14 The average silhouette score is : 0.26140947155997746
For n clusters = 15 The average silhouette score is: 0.2587546253386377
```


Silhouette analysis on RFM

Elbow method and Cluster chart on RFM

Dendrogram

DBSCAN

Challenges

- Tackling refunds
- Right number of 'k' for clusters

Conclusion

Model Name	Data	Optimal Number of Clusters		
K-Means with Silhouette Score	RM	2		
K-Means with Elbow method	RM	2		
DBSCAN	RM	2		
K-Means with Silhouette Score	FM	2		
K-Means with Elbow method	FM	2		
DBSCAN	FM	2		
K-Means with Silhouette Score	RFM	2		
K-Means with Elbow method	RFM	2		
Hierarchical Clustering	RFM	2		
DBSCAN	RFM	3		