Al in Mathematics Lecture 5 Deep Learning in Mathematics

Bar-Ilan University
Nebius Academy | Stevens Institute of
Technology
April 22, 2025

About This Course

1 week: Intro

2 weeks: Classic ML

2 weeks: Deep Learning in Mathematics

3 weeks: Math as an NLP problem (LLMs etc.)

3 weeks: Reinforcement Learning (RL) in Math

1 week: Advanced AI topics

1 week: Project Presentations

Neural Network

Input layer Hidden layers Output layer

$$f(x) = f_L \circ \cdots \circ f_1(x), \qquad f_i(x) = \sigma_i(xW_i^T + b_i)$$

$$W_i \in \mathbb{R}^{n_{i-1} \times n_i}$$
, $b_i \in \mathbb{R}^{n_i}$, $x \in \mathbb{R}^{n_0}$

Dropout

Standard Neural Net

After applying dropout

BatchNorm

There's **no theoretical guarantee**, but it has **empirically shown strong performance** across many models. Helps stabilize training and improve convergence speed.

🔼 Training Phase

1. For each batch: $X'_k = \frac{X_k - \mu}{\sqrt{\sigma^2 + \varepsilon}}$

where \mu and \sigma^2 are the batch mean and variance.

2. Running estimates are updated:

$$\mu_* = \lambda \mu_* + (1 - \lambda)\mu$$
 and $\sigma_* = \lambda \sigma_* + (1 - \lambda)\sigma$

3. Then apply **learnable transformation**:

$$X_{k+1} = \gamma X_k' + \beta$$

where β and γ are **trainable parameters** (not fixed hyperparameters).

Test Phase

Use the **running estimates** μ_* , σ_*^2 , and learned β , γ to normalize:

$$X'_{k} = \frac{X_{k} - \mu_{*}}{\sqrt{\sigma_{*}^{2} + \varepsilon}} \to X_{k+1} = \gamma X'_{k} + \beta$$

Advancing mathematics by guiding human intuition with AI (2021)

Knot Theory

Representation theory

General framework suggested by the authors

Representation theory

 S_n – the group of all permutations of n elements.

Each element $\sigma \in S_n$ is a **bijection** from the set $\{1, 2, ..., n\}$ to itself.

For example:
$$\sigma = \binom{12345}{23514} \in S_5$$
.

This means:

$$\sigma(1) = 2$$
, $\sigma(2) = 3$, $\sigma(3) = 5$, $\sigma(4) = 1$, $\sigma(5) = 4$

We can also represent σ by just a bottom line:

$$\sigma = \binom{12345}{23514} = (23514)$$

Representation theory

Inversions:

•The **number of inversions** in σ , denoted $i(\sigma)$, is defined by:

$$i(\sigma) = \#\{k < l \mid \sigma(k) > \sigma(l)\}$$
 – number of **inversions**.

This measures how much the permutation "disorders" the natural order.

$$\begin{pmatrix}
1 & 2 & 3 & 4 & 5 \\
3 & 5 & 1 & 2 & 4
\end{pmatrix}$$

$$\frac{\pi(i) > \pi(j)}{\pi(j)}$$

Bruhat Order Motivation

Let $A(a_{i,j}) = (I + a_{12}E_{12})...(I + a_{n-1}nE_{n-1}n)$ denote an upper triangular matrix with diagonal entries equal to 1, where E_{ij} is the elementary matrix with 1 in position (i,j) and $a_{ij} \in K$ for i < j.

 $\Omega_w = \{T \circ A(a_{i,j}) \circ \mathbf{w} \circ A(b_{i,j}) | T - diagonal, a_{ij}, b_{ij} \in K\}$ Where $b_{ij} = 0$, if the matrix $w(I + E_{i,j})w^{-1}$ is lower triangular

$$v \leq w \iff \Omega_v \subseteq \overline{\Omega_w}.$$

Example in GL_2

$$\Omega_e = \{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}, b \in K, a, c \in K^* \}$$

$$\Omega_{(1,2)} = \left\{ \begin{pmatrix} a & 0 \\ 0 & d \end{pmatrix} \begin{pmatrix} 1 & b \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & c \\ 0 & 1 \end{pmatrix}, b, c \in K, a, d \in K^* \right\} = \left\{ \begin{pmatrix} ab & a + abc \\ d & cd \end{pmatrix}, b, c \in K, a, d \in K^* \right\}$$

As $d \to 0$, we can choose a, b, c such that $\Omega_e \subseteq \overline{\Omega_{(1,2)}}$.

Representation theory

The **Bruhat graph** is a **directed graph** where:

Vertices: $V = S_n$

Edges:

$$\sigma \leftarrow \tau \iff$$

 $\tau = \sigma \circ t$, and $i(\sigma) < i(\tau)$.

Where t is a simple transposition (s, s + 1).

Bruhat Order:

The **Bruhat order** \leq is the **transitive closure** of the relation \leftarrow in the Bruhat graph.

Representation theory

A **Bruhat interval** is the **subgraph** of the Bruhat graph **induced by a pair** $\sigma \leq \tau$.

• It includes all permutations $\chi \in S_n$ such that:

$$[\sigma, \tau] = \{ \chi \in S_n \mid \sigma \le \chi \le \tau \}$$

This interval forms a **subgraph** within the full Bruhat order on S_n

The interval [01234, 23410]:

KL polynomials

For any pair of elements σ , τ , Kazhdan and Lusztig defined a polynomial:

$$P_{\sigma,\tau}(q) \in \mathbb{Z}[q]$$

Defined **inductively**, starting from the identity element. At each step, the computation may depend on previously calculated polynomials. Arise from **Hecke algebra theory**.

Combinatorial Invariance Conjecture

Conjecture:

The KL polynomial $P_{\sigma,\tau}(q)$ depends only on the structure of Bruhat graph of the interval $[\sigma,\tau]$.

Combinatorial Invariance Conjecture

z: Pair of permutations	X(z): Unlabelled Bruhat interval	Y(z): KL polynomial		
(03214), (34201)		1 + q ²		
(021435), (240513)		$1 + 2q + q^2$		

Graph Neural Network

Combinatorial Invariance Conjecture

- •A **neural network** was trained to compute Kazhdan–Lusztig polynomials for labeled Bruhat intervals.
- •The network achieved **high accuracy**, uncovering interesting structure in the input data.

Main Theorem (Conjectured & Proved):

Every labeled Bruhat interval admits a canonical hypercube decomposition along its extremal reflections?, from which the KL polynomial can be directly computed.

Combinatorial Invariance Conjecture

The neural model suggested something even deeper: It seems that the KL polynomial can be reconstructed from **any hypercube decomposition**, not just the canonical one. This observation was **experimentally verified** for S_n with n < 8.

Second Conjecture (Open):

The **Kazhdan–Lusztig polynomial** of an **unlabeled Bruhat interval** can be computed from **any hypercube decomposition** using the same formula as in the labeled case.

If proved, this would resolve the Combinatorial Invariance Conjecture

Advancing mathematics by guiding human intuition with AI (2021)

Knot theory

Representation theory

What Is a Knot (Formally)?

A **knot** is a smooth embedding of the circle:

$$S^1 \to \mathbb{R}^3$$

Knots have a lot of different invariants of different nature and it is important to find relations between them.

What is the Signature of a Knot?

- •We can construct a **Seifert surface** a smooth, oriented surface whose boundary is the knot.
- •From this surface, we build a matrix called the **Seifert matrix**, using information from the surface's homology.
- •The signature of the knot is defined as the signature of this matrix (i.e., the number of positive eigenvalues minus the number of negative ones).

Key Point

The **signature** is a **knot invariant** — it stays the same no matter which Seifert surface is used.

$$\mathsf{A} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \end{bmatrix}$$

z: Knot	X(z): Geometric invariants				Y(z): Algebraic invariants		
_	Volume	Chern-Simons	Meridional translation		Signature	Jones polynomial	•••
	2.0299	0	i	•••	0	$t^{-2} - t^{-1} + 1 - t + t^2$	
	2.8281	-0.1532	0.7381 + 0.8831 <i>i</i>	•••	-2	$t - t^2 + 2t^3 - t^4 + t^5 - t^6$	
	3.1640	0.1560	-0.7237 + 1.0160 <i>i</i>		0	$t^{-2} - t^{-1} + 2 - 2t + t^2 - t^3 + t^4$	

Fig. 2| **Examples of invariants for three hyperbolic knots.** We hypothesized that there was a previously undiscovered relationship between the geometric and algebraic invariants.

Goal of the Study

The authors aim to explore whether there exists a hidden relationship between **algebraic** and **geometric** knot invariants.

Specifically, they focus on predicting the **signature** of a knot — an algebraic invariant — using **geometric features** of the knot.

We'll see how they approached this problem in today's notebook!

Geometric Invariants

Let $K \subset S^3$ be a hyperbolic knot. Then its complement $M = S^3 \setminus K$ has a complete finite-volume hyperbolic metric. From this structure, we get canonical geometric invariants:

Hyperbolic Volume:

Volume of M with the hyperbolic metric. Topological invariant.

Injectivity Radius:

Half the length of the shortest nontrivial loop through point p \in M. Measures local geometric "thickness."

Meridional and Longitudinal Translations:

Complex translation vectors describing how the outer torus wraps around the knot.

Slope of a knot is defined by authors as a real part of ratio of **Meridional and Longitudinal Translation**.

By applying machine learning techniques, the authors initially formulated an incorrect mathematical hypothesis:

$$|2\sigma(K) - \text{slope}(K)| < c_1 \text{vol}(K) + c_2$$

by analyzing the behavior of counterexamples, they were able to refine their understanding — ultimately leading to an updated hypothesis, which they then **proved**:

$$|2\sigma(K) - \text{slope}(K)| \le c \text{vol}(K) \text{inj}(K)^{-3}$$