Part I Syllabus - Fundamental Underlying Layers

Date	Subject	File
Week 1: 9/Jan/2023	Introduction: course logistics and Internet history	M1-L1-Introduction.pptx
11/Jan/2023	Layered Network Architecture	First part of M1-L2-Network Layer & Physical Resilience.pptx
Week 2:	Physical Layer: Network Resilience	Second part of M1-L2-Network Layer &

Data link layer – Flow control

Data link layer – Error control

Local area network – MAC

Local area network – Ethernet

Local area network – WLAN

E-learning for Network paradigms

Mobile Access Networks

Network paradigms

Local area network – Ethernet Evolutions

Local area network – Introduction

Physical Resilience.pptx

M1-L3-DLL-Flow Control.pptx

M1-L4-DLL-Error Control.pptx

M1-L5-LAN-Introduction.pptx

First part of M1-L7-LAN-Ethernet.pptx

Second part of M1-L7-LAN-Ethernet.pptx

M1-L6-LAN-MAC.pptx

M1-L8-LAN-WLAN.pptx

M1-L10-Paradigms.pptx

M1-L10-Paradigms.pptx

M1-L9-Mobile.pptx

16/Jan/2023

18/Jan/2023

25/Jan/2023

30/Jan/2023

01/Feb/2023

06/Feb/2023 08/Feb/2023

13/Feb/2023

15/Feb/2023

20/Feb/2023

22/Feb/2023

Week 3:

Week 4:

Week 5:

Week 6:

Week 7:

Additional Materials

- - Chapter 5

 https://www.techtarget.com/searchnetworking/definition/localarea-network-LAN

Mingling Among a Cocktail party

SC2008/CZ3006/CE3005 Computer Network

Lecture 5 Local Area Network (LAN): Introduction

Contents

Local Area Network

- Definition and Taxonomy
- Protocol Architecture

LAN Topologies

- Bus, Tree, Ring and Star
- Choice of topology
- Transmission Media

Medium Access Control

- Functions and Features
- Static Channel Allocation
- Dynamic Channel Allocation

Local Area Network (LAN)

Not Examinable

WAN/MAN/LAN

Not Examinable

LAN (Local Area Networks)

- LAN is a computer network that covers a small area (home, office, building, campus)
 - a few kilometers
- LANs (usually) do not involve leased lines; cabling and equipments belong to the LAN owner.
- LAN consists of
 - Shared transmission medium
 - not so valid today due to switched LANs
 - regulations for orderly access to the medium
 - set of hardware and software for the interfacing devices

Not Examinable

LAN Taxonomy

LAN Protocol Architecture

- Corresponds to lower two layers of OSI model
 - But mostly LANs do not follow OSI model
- Current LANs are most likely to be based on Ethernet protocols developed by IEEE 802

committee

- IEEE 802 reference model
 - Logical link control (LLC)
 - Media access control (MAC)
 - Physical

IEEE 802 Layers - Physical

- Signal encoding/decoding
- Preamble generation/removal
 - for synchronization
- Bit transmission/reception
- Specification for topology and transmission medium
- WiFi (Wireless Fidelity) vs. LiFi (Light Fidelity)

IEEE 802 Layers - DLL

OSI layer 2 (Data Link) is divided into two in IEEE 802

- Logical Link Control (LLC) layer
- Medium Access Control (MAC) layer

LLC layer

- Interface to higher levels
- flow control, error control
- Based on classical Data Link Control Protocols (so we have already covered it earlier)

MAC layer

- Prepare data for transmission
- Error detection
- Address recognition
- Govern access to transmission medium
 - Not found in traditional layer 2 data link control

IEEE 802 Protocols vs OSI Model

LAN in a Nutshell

	TLC	IEEE 802.2 Logical Link Control Protocol								
Link		802.3	802.4	802.5	802.6	802.11	802.12	802.14		
Data		CSMA /CD	Token Bus	Token Ring	DQDB	CSMA /CA	Round Robin	HFC		
	MAC	used by Ethernet				used by WiFi				
Physical	•	Coax UTP STP Fiber	Coax Fiber	UTP STP Fiber	Fiber	Radio Infrared	UTP	Coax		
		B,T,S	B,T,S	R	DB		S, T	T *		

Topologies (see next slide): Bus, Tree, Star, Ring, DualBus

LAN Topologies

LAN Topologies: Bus, Tree, Ring and Star

Bus and Tree

- Multipoint medium
- Transmission propagates throughout medium
- Heard by all stations
 - Need to identify target station
 - Each station has unique address
- Full duplex connection between station and tap
 - Allows for transmission and reception
- Need to regulate transmission
 - To avoid collisions
 - If two stations transmit at same time, signals overlap
 - To avoid continuous transmission from a single station.
 - Solution: Transmit Data in small blocks frames
- Terminator absorbs frames at end of medium

Ring Topology

Repeaters are joined by point to point links in closed loop

- Receive data on one link and retransmit on another
- Links are unidirectional
- Stations attach to repeaters

Data Frames

- Circulate past all stations
- Destination recognizes address and copies frame
- Frame circulates back to source where it is removed
- Medium access control determines when station can insert frame

Star Topology

- Each station connected directly to central node
 - using a full-duplex (bi-directional) link
- Central node can broadcast (hub)
 - Physical star, but logically like bus since broadcast
 - Only one station can transmit at a time; otherwise, collision occurs
- Central node can act as frame switch
 - retransmits only to destination
 - today's technology

Choice of Topology

- Reliability
- Expandability
- Performance
- Needs considering in context of:
 - Medium
 - Wiring layout
 - Access control

Transmission Medium

Medium Available (1)

- Voice grade unshielded twisted pair (UTP)
 - Cat 3/ Cheap
 - Well understood
 - Use existing telephone wiring in office building
 - Low data rates
- Shielded twisted pair (STP) and baseband coaxial
 - More expensive than UTP but higher data rates
- Broadband cable
 - Still more expensive and higher data rate

Networking Cables

Unshilded twisted-pair cable

Shielded twisted-pair cable

Coaxial cable

http://www.computerhope.com

Media Available (2)

High performance unshielded twisted pair (UTP)

- Cat 5 and above (5e and 6)
- High data rate for small number of devices
- Switched star topology for large installations

Optical fiber

- Electromagnetic isolation
- High capacity
- Small size
- High cost of components
- High skill needed to install and maintain

Wireless Channel

Fading channel

Media Access Control (MAC)

Media Access Control

- Assembly of data into frame with address and error detection fields
- Disassembly of frame
 - Address recognition
 - Error detection
- Govern access to transmission medium
 - Not found in traditional layer 2 data link control
- For the same LLC, several MAC options may be available

MAC Decision Making Options

Where?

- Central
 - Greater control
 - Simple access logic at station
 - Avoids problems of co-ordination
 - Single point of failure
 - Potential bottleneck
- Distributed

How?

- Synchronous (static) solutions
 - Specific capacity dedicated to connection
- Asynchronous (dynamic) solutions
 - In response to demand

Static Channel Allocation

Time Division Multiplexing (TDM)

- Each user is statically allocated one time slot
- if a particular user does not have anything to send, that period is wasted
- User may not utilize the whole channel for a time slot

- Channel is divided to carry different signals at different frequencies
- Efficient if there is a constant (one for each slot) amount of users with continous traffic
- Code Division Multiplexing (CDM)

Dynamic Channel Allocation (1)

Round robin

- Each station has a turn to transmit
 - declines or transmits up to a certain data limit
 - overhead of passing the turn in either case
- Performs well if many stations have data to transmit for most of the time
 - otherwise passing the turn would cause inefficiency

Reservation

- It is used for stream traffic, where time on the medium is divided into slots, much as with TDM.
- Reservation can be made in centralized or distributed fashion.

Dynamic Channel Allocation (2)

Contention

- All stations contend to transmit
- No control to determine whose turn is it
- Stations send data by taking risk of collision (with others' packets)
 - however they understand collisions by listening to the channel, so that they can retransmit
- Several implementation methods: Aloha, CSMA, etc
- In general, good for bursty traffic
 - Typical traffic types for most networks
- Efficient under light or moderate load
- Performance is bad under heavy load

Learning Objectives

Local Area Network

- Functions of each layer: physical, LLC and MAC
- 802 Protocol family

LAN Topologies

- Frame transmission over Bus, Tree, Ring and Star
- Transmission Media
- Medium Access Control
 - Pros and Cons of Static Channel Allocation
 - Comparison among Dynamic Channel Allocation

