

MULTIMEDIA



UNIVERSITY

STUDENT ID NO

|  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|
|  |  |  |  |  |  |  |  |  |  |  |  |
|--|--|--|--|--|--|--|--|--|--|--|--|

# MULTIMEDIA UNIVERSITY

## FINAL EXAMINATION

TRIMESTER 1, 2018/2019

### **PCM0035 – GENERAL CHEMISTRY** ( Foundation in Engineering )

13 OCTOBER 2018  
2.30 p.m – 4.30 p.m  
( 2 Hours )

---

#### INSTRUCTIONS TO STUDENTS

1. This Question paper consists of 3 pages with 3 Questions only, excluding the cover page.
2. Attempt **ALL** questions. Distribution of the marks for each question is given.
3. Please write all your answers in the Answer Booklet provided.

**QUESTION 1 [20 MARKS]**

- (a) Sketch the orbital diagrams for the following atom or ion.

|       |                  |          |
|-------|------------------|----------|
| (i)   | Cr <sup>2+</sup> | [1 mark] |
| (ii)  | Cu               | [1 mark] |
| (iii) | Cl               | [1 mark] |

[Atomic number: Cr = 24; Cu = 29; Cl = 17]

- (b) Determine if the following combinations of quantum numbers ( $n, l, m_l, m_s$ ) are acceptable. Explain your answer if the combination of quantum numbers is unacceptable.

|       |                |           |
|-------|----------------|-----------|
| (i)   | (3, 3, 2, +½)  |           |
| (ii)  | (3, 0, 0, +½)  |           |
| (iii) | (4, 2, -3, +½) |           |
| (iv)  | (3, 2, -1, -½) | [4 marks] |

- (c) For the following pairs of ions, identify the ion with smaller ionic radius. Explain your answer.

|      |                                     |            |
|------|-------------------------------------|------------|
| (i)  | Cl <sup>-</sup> or Br <sup>-</sup>  | [1½ marks] |
| (ii) | Na <sup>+</sup> or Al <sup>3+</sup> | [1½ marks] |

[Atomic number: Cl = 17; Br = 35; Na = 11; Al = 13]

- (d) Bonding is a result from combining a minimum of two types of atoms. State the type of bonding (ionic, covalent or metallic) in the following compounds.

|       |                     |          |
|-------|---------------------|----------|
| (i)   | K(s)                | [1 mark] |
| (ii)  | N <sub>2</sub> O(g) | [1 mark] |
| (iii) | MgCl(s)             | [1 mark] |

[Atomic number: K = 19; N = 7; O = 8; Mg = 12; Cl = 17]

- (e) Draw the *Lewis structures* for

|       |                              |           |
|-------|------------------------------|-----------|
| (i)   | As                           | [1 mark]  |
| (ii)  | Se                           | [1 mark]  |
| (iii) | NO <sub>2</sub> <sup>-</sup> | [2 marks] |

[Atomic number: As = 33; Se = 34]

- (f) Use the VSEPR model to predict the geometry and give the AB<sub>m</sub>E<sub>n</sub> classification for OF<sub>2</sub>. Provide the *Lewis structure* for this molecule.

[Atomic number: F = 9] [3 marks]

**Continued...**

**QUESTION 2 [15 MARKS]**

- (a) Define *phase change*. [1 mark]
- (b) What processes are involved with the phase changes if
- (i) I<sub>2</sub> vapor comes in contact with a cold surface? [1 mark]
  - (ii) solid vaporized directly? [1 mark]
  - (iii) dew appears on a grass in the morning? [1 mark]
- (c) (i) What is the difference between the intermolecular forces and intramolecular forces? [1 mark]
- (ii) Determine the possible types of crystal for the following compounds: ZnS, SO<sub>2</sub>, CaF<sub>2</sub>, Ba and SiO<sub>2</sub>. [2½ marks]  
[Atomic number: Zn = 30; S = 16; O = 8; Ca = 20; F = 9; Ba = 56; Si = 14]
- (d) Referring to the reaction below, answer the following.
- $$A(g) \longrightarrow \frac{3}{2}B(g) + \frac{5}{2}C(g)$$
- (i) Express the rate of reaction in term of changing in concentration of each of the reactants and products. [1½ marks]
  - (ii) What is the rate of C if the rate of B is increasing at 0.025 M/s? [1½ marks]
  - (iii) What is the reaction order if the rate law for A(g) = k [A]<sup>2/3</sup>? [1 mark]
  - (iv) If the rate constant k is  $6.60 \times 10^{-2} \text{ min}^{-1}$ , determine the half-life of this decomposition. [1 mark]
- (e) Sometimes catalyst is preferred to be used in the reaction.
- (i) What is catalyst? [1 mark]
  - (ii) What are the types of catalyst? Briefly discuss the difference between them. [1½ marks]

**Continued...**

**QUESTION 3 [15 MARKS]**

(a) Acids and bases are classified in terms of their formulas and their behavior in solvent water (based on Arrhenius definition).

- (i) What is the main characteristic of acids? [1 mark]  
(ii) What is the main characteristic of bases? [1 mark]

(b) Write the acid-dissociated constant ( $K_a$ ) for the following acids.

- (i)  $\text{HNO}_2$  [½ mark]  
(ii)  $\text{HCO}_3$  [½ mark]

(c) Calculate the pH of (i) and (ii), and pOH of (iii).

- (i)  $5.04 \times 10^{-3}$  M HI [½ mark]  
(ii) 0.0111 M NaOH [1 mark]  
(iii) 0.125 M Ba(OH)<sub>2</sub> [½ mark]

(d) Rank the following acids in the order of decreasing acid strength (Higher strength first):

HCl      HI      HBr      HF  
[2½ marks]

(e) Define the following.

- (i) Redox reaction [1 mark]  
(ii) Electrochemistry [1 mark]

(f) Consider the electrolysis of molten barium chloride, BaCl<sub>2</sub>.

- (i) Write the balanced half-reactions at cathode and anode.  
[2 marks]

- (ii) How many grams of Ba metal can be produced by supplying 0.50 A for 30 min?  
[3½ marks]

[Atomic mass of Ba = 137.3 ; Faraday constant = 96,500 C/mol e<sup>-</sup>]

**End of Paper**