

NATIONAL UNIVERSITY of Computer & Emerging Sciences, Lahore

Department of Computer Science

CS1002 – Programming Fundamentals FALL 2022

Instructor Name:	Arooj Khalil	
Email address:	arooj.khalil@nu.edu.pk	
Office Location/Number:	Room 024	
Office Hours:	Tuesday and Friday 1-3 pm	

Course Information

Program: BS (CS) **Credit Hours:** 3 + 1 (Lab)

Course Type: Core

Course Description/Objectives/Goals:

• To introduce the notion of algorithms.

• To develop problem solving and logic building skills in students.

• To introduce the basic concepts of programming in C++, including basic data types, expressions, iterations, functions and arrays.

Course Learning Outcomes (CLOs):

At the end of the course students will be able to:	Domain	BT* Level
Understand basic problem-solving steps and logic constructs	С	2
Apply basic programming concepts	С	3
Design and implement algorithms to solve real world problems and should be able to translate a problem statement into pseudo-code/C++ code	С	3

^{*} BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain

Bloom's taxonomy Levels: 1. Knowledge, 2. Comprehension, 3. Application, 4. Analysis, 5. Synthesis, 6. Evaluation

Course Textbook

- C++ Programming: Program Design Including Data Structures, by D. S. Malik (8th Edition)
- C++: How to Program? by Deitel & Deitel (9th Edition)

Additional references and books related to the course:

- Starting out with C++ from control structures through objects by Tony Gaddis 8th Edition
- Theory and Problems of Programming with C++ by John R. Hubbard, 2nd Edition
- Programming and Problem Solving with C++, Nell Dale
- www.learncpp.com

Tentative Weekly Schedule

Tentative Week	Tentative Weekly Schedule					
Week 1	Lecture 1	Lecture 2				
Problem Solving	Course introduction and logistics	A brief introduction of programming				
and Programming		languages and the idea of compiling,				
Introduction	Introduction to Computers,	linking and loading.				
	Basic Computer architecture with an					
	overview of memory as consisting of	Introduction of some fundamental				
	addressable storage locations for	operations provided by a Basic/C++				
	keeping data and program.	like programming language				
		with/without getting into exact C++				
	A program as a sequence of	program structure details. These				
	instructions and the Fetch-Decode-	include				
	Execute cycle	Idea of a variable with an				
		understanding that a variable is a				
	Fundamental arithmetic and logical	place in memory without				
	operations provided by a typical	discussing the internal				
	machine.	representation of data.				
	Some interesting programs like	Assignment of values to variable				
	spreadsheets, databases and intelligent game playing programs etc.	Basic arithmetic and logical				
	intelligent game playing programs etc.	operations performed on				
		variables.				
		variables.				
		Input and Output operations				
		Writing some simple programs for				
		performing calculations using the				
		fundamental operations.				
Week 2	Lecture 3	Lecture 4				
Simple C++	The structure of a C++ program with a	A review of Lecture 2 and the				
Programs	single main function and very brief	Introduction of logical operations				
	explanation of #include and named	and the use of logical operation for				
	spaces.	conditional execution (IF statements).				
	A high level description of some built					
	in C++ datatypes (int, float, double,	C++ Operators (Arithmetic, Logical,				
	char, bool), variables declaration,	and Relational) Use of operators for				
	assignment operator, input, output.	different datatypes.				

	T	T
	Writing the programs introduced in the first week using the C++ syntax. Compiling and running the program	Translating programs written using pseudocode or a flowchart into working C++code.
Week 3	Lecture 5	Lecture 6
Simple C++ Programs	Translating programs written using pseudocode or a flowchart into working C++code continued.	Programming exercises. Writing clean code using indentation and comments.
	A basic introduction of operator precedence and writing complex expressions as a sequence of simple intermediate expressions.	
Week 4	Lecture 7	Lecture 8
Simple C++	Using a Nested selection structure.	Programs with nested if/else
Programs If/Else	Programs with if/else statements	statements
Week 5	Lecture 9	Lecture 10
Repetition	Repetitions using while, for and do	Problem solving using repetition
Structures(Loops)	while	structures
Structures(Loops)		Structures
	MID-I	
Week 6	Lecture 11	Lecture 12
Nested Control	Problem solving nested repetition	Problem solving using nested
Structures	structures	repetition structures
Week 7	Lecture 13	Lecture 14
Functions	Function definition and calling:	Function Parameters: Pass by value
	parameters and return types; Global and local variables scope and	and pass by reference. Stack rolling and unrolling.
	life time.	
Week 8	Lecture 15	Lecture 16
Functions	Top-Down Design of a program and its implementation using functions Built-in functions	Function Overloading. Functions with Default Parameters.
Week 9	Lecture 17	
File Handling	I/O from simple text Files	
Week 9	Lecture 18	
Arrays Introduction	Define and use fixed sized arrays.	
and Repetition	Array organization in memory and eleme	ent access using Array name and
structure	index.	
	Initialization using member initializer list, and by using loops.	
Week 10	Lecture 19	Lecture 20
Arrays Processing	Printing data, taking input,	Passing arrays to functions.
	Processing by index and by elements	Design different functions for input,
	Find Min, Max, Avg, Equilibrium Index	output, search, reverse,
	Reverse: All Elements, odd/eve	Shifting and Rotation of elements:
	elements and indices	right and left
	Search: Linear and Binary	Insert and delete elements from

		ordered list using shifting.			
MID II					
Week 11 Arrays Processing	Passing arrays to functions use of const. Sorting: Bubble Sort, Selection Sort	Lecture 22 Sorting: Insertion Sort, Even/odd Sort Merging sorted arrays. Application: Sets, Union, Intersection, difference.			
Week 12 CStrings and character Arrays Processing	Lecture 23 I/O from simple text Files in arrays. Difference between Null terminated CStrings and character arrays. Storage of CStrings in character arrays and aggregate I/O.	Lecture 24 Functions design: Find String length, Compare strings, Find substring and replace, Calculate frequency of specific characters Remove specific characters.			
Week 13 2D Arrays Processing	Lecture 25 Using built in CSrting functions. Use of built-in rand () function. 2-Dimensional Array and how it is organized in memory in row/col major order. Initialization using member initializer list, and by using loops. I/O and processing of elements in row/col major order.	Lecture 26 Application: Store and process Students Quiz marks. Find Min, Max, Avg, column and row wise. Sorting: row wise or column wise, complete array by specific column or row.			
Week 14 2D Arrays Processing	Lecture 27 Passing 2D arrays to functions: Complete, individual rows, or elements. Processing diagonals: reverse elements, print data of whole array.	Lecture 28 Application: Matrices storage and processing Addition, Subtraction, Multiplication, Transpose, Check for Upper and lower triangular. Use of graphic libraries functions. Designing header files for user defined functions.			
Week 15 2D CStrings Processing	Lecture 29 Storage and processing of CStrings in 2D Arrays. Bitwise operators Binary files I/O Application: Data compression.				
Week 16 Structures	Lecture 30 Introduction and using structs Passing and returning from functions	Lecture 31 Arrays of Structs, Application of structs			
	Final Exam	1			

1 1110 .naiii

(Tentative) Grading Criteria:

- Assignments (10 %)
 Quizzes (15 %)
 Midterms (25 %)
 Project (10 %)
 Final Exam (40 %)
- Grading scheme for this course is **Absolute** under application of CS department's grading policies.
- Minimum requirement to pass this course is to obtain at least 50% absolute marks

Course Policies:

- All assignments and homework must be done individually.
- Late Submissions of assignments will not be accepted.
- Plagiarism in any work (Quiz, Assignment, Midterms, Project and Final Exam)
 from any source, Internet or a Student will result in deduction of absolute
 marks or F grade.
- Minimum **80%** attendance is required for appearing in the Final exams.