MAT0206/MAP0216 - Análise Real - IME - 2007

Prof. Gláucio Terra

3^a Lista de Exercícios - Resolução dos Exercícios 10, 12, 29 e 30

- **10-)** Defina a $dist \hat{a}ncia$ de um ponto $a \in \mathbb{R}$ a um conjunto não-vazio $X \subset \mathbb{R}$ por $d(a, X) \doteq \inf\{|x a| \mid x \in X\}$. Mostre que:
 - (a) $d(a, X) = 0 \Leftrightarrow a \in \overline{X}$;
 - (b) Se $F \subset \mathbb{R}$ é fechado, então $(\forall a \in \mathbb{R}, \exists b \in F) d(a, F) = |b a|$.

DEMONSTRAÇÃO: (a) É imediato, pois $d(a,X) = 0 \Leftrightarrow \inf\{|x-a| \mid x \in X\} = 0 \Leftrightarrow \forall \epsilon > 0, \exists x \in X \text{ tal que } |x-a| < \epsilon \Leftrightarrow a \in \overline{X}.$

- (b) Seja $(x_n)_{n\in\mathbb{N}}$ uma seqüência de elementos de F tal que, para cada $n\in\mathbb{N}, |x_n-a|< d(a,F)+1/n$ (existe x_n , pela definição de ínfimo). Esta seqüência é tal que $|x_n-a|\to d(a,F)$. Tome $\delta>d(a,F)$; o conjunto $F_\delta\doteq\{x\in F\mid |x-a|\leqslant \delta\}=F\cap[a-\delta,a+\delta]$ é fechado (por ser intersecção de dois fechados) e limitado (por estar contido no conjunto limitado $[a-\delta,a+\delta]$), portanto compacto. Como $\delta-d(a,F)>0$, podemos tomar $n_0\in\mathbb{N}$ tal que $1/n_0\leqslant\delta-d(a,F)$. Assim, tem-se $x_n\in F_\delta$ para $n\geqslant n_0$; sendo F_δ compacto, existe uma subseqüência convergente $(x_{n_k})_{k\in\mathbb{N}}$ de $(x_n)_{n\geqslant n_0}$, cujo limite pertence a $F_\delta\subset F$. Seja $b\in F$ o limite desta subseqüência, i.e. $x_{n_k}\to b$; então $|x_{n_k}-a|\to|b-a|$. Como também temos $|x_{n_k}-a|\to d(a,F)$ (pois $|x_n-a|\to d(a,F)$), segue-se que |b-a|=d(a,F) (por unicidade do limite).
- 12-) Para todo $X \subset \mathbb{R}$, X' é fechado.

Demonstração: Seja a um ponto do fecho de X'. Queremos mostrar que $a \in X'$. Ora, pela definição de fecho, dado I intervalo aberto contendo a, existe em I algum ponto $x \in X'$. Por outro lado, sendo I um intervalo aberto contendo x, e sendo x um ponto de acumulação de X, existe (por definição de ponto de acumulação) uma infinidade de pontos de X em I. Como o intervalo aberto I contendo a foi tomado arbitrariamente, segue-se que todo intervalo aberto contendo a tem uma infinidade de pontos de X, i.e. a é um ponto de acumulação de X.

29-) Seja $X \subset \mathbb{R}$. Uma função $f: X \to \mathbb{R}$ diz-se localmente limitada se, para cada $x \in X$, existe um intervalo aberto I_x contendo x tal que $f|_{I_x \cap X}$ é limitada (i.e. se f for limitada numa vizinhança aberta de cada ponto de X). Mostre que, se X é compacto, toda função $f: X \to \mathbb{R}$ localmente limitada é limitada. Sugestão: propriedade de Borel-Lebesgue.

Demonstração: Sejam $X \subset \mathbb{R}$ compacto e $f: X \to \mathbb{R}$ localmente limitada. Então, para cada $x \in X$, existem um intervalo aberto I_x contendo x e $m_x > 0$ tal que $f|_{I_x \cap X}$ é limitada por m_x (i.e. $\forall y \in I_x, |f(y)| \leqslant m_x$). Como $(I_x)_{x \in X}$ é uma cobertura aberta do compacto X, pela propriedade de Borel-Lebesgue podemos extrair desta cobertura uma subcobertura finita $(I_{x_k})_{1 \leqslant k \leqslant n}$. Tome $M \doteq \max\{m_{x_1}, \ldots, m_{x_n}\}$. Ora, para todo $x \in X$, existe $k \in \{1, \ldots, n\}$ tal que $x \in I_{x_k}$, portanto $|f(x)| \leqslant m_{x_k} \leqslant M$, o que mostra que f é limitada por M.

30-) Se $X \subset \mathbb{R}$ é não-enumerável, X' também o é.

Demonstração:

Inicialmente, demonstremos o seguinte:

LEMA: Seja $X \subset \mathbb{R}$ um conjunto cujos pontos são todos isolados (i.e. $X \cap X' = \emptyset$). Então X é enumerável.

Prova do lema: Seja $E \subset X$ um subconjunto enumerável denso (já demonstramos em aula que todo subconjunto de $\mathbb R$ possui um subconjunto enumerável denso). Afirmo que E = X. Com feito, dado $x \in X$, como $x \notin X'$, existe $\delta > 0$ tal que $(x - \delta, x + \delta) \cap X \setminus \{x\} = \emptyset$, donde $(x - \delta, x + \delta) \cap X = \{x\}$. Então, por ser E denso em X, segue-se que $x \in E$, donde a inclusão $X \subset E$.

Considere $X \subset \mathbb{R}$ tal que X' seja enumerável. Ora, sendo $X \setminus X'$ o conjunto dos pontos isolados de X, segue-se do lema que $X \setminus X'$ é enumerável; como $\overline{X} = X \cup X' = (X \setminus X') \cup X'$, segue-se que \overline{X} é enumerável (por ser união de dois conjuntos enumeráveis). Finalmente, sendo $X \subset \overline{X}$, conclui-se que X é enumerável (por ser subconjunto de um conjunto enumerável). Assim, provamos que X' enumerável $\Rightarrow X$ enumerável; ou, equivalentemente, X não-enumerável $\Rightarrow X'$ não-enumerável.