Übungen zur Kryptographie und Datensicherheit

Andre Löffler

October 24, 2013

1. Übung 1

Aufgabe 1

 $A \subseteq \mathbb{N}, \ \mu$ probabilistische Maschine mit $P(\mu(x) = c_A(x)) = \alpha \geq \frac{3}{4}$. O.B.d.A gibt μ nur Werte aus 0,1 zurück. μ' arbeitet wie folgt:

- 1. simuliere $\mu(x)$ und weise diesen Wert y_1 zu.
- 2. simuliere $\mu(x)$ und weise diesen Wert y_2 zu.
- 3. simuliere $\mu(x)$ und weise diesen Wert y_3 zu.
- 4. simuliere $\mu(x)$ und weise diesen Wert y_4 zu.
- 5. simuliere $\mu(x)$ und weise diesen Wert y_5 zu.
- 6. simuliere $\mu(x)$ und weise diesen Wert y_6 zu.
- 7. simuliere $\mu(x)$ und weise diesen Wert y_7 zu.
- 8. Falls Mehrzahl der y_i gleich 1 ist, gib 1 zurück.

 $P(\mu'(x) \neq c_A(x)) = P(\text{mind. 4 der } y_i \text{ haben nicht den Wert } c_A(x))$ $= \sum_{i=1}^{r} P(\text{genau k der } y_i \neq c_A(x))$ $= \binom{7}{4} (1-\alpha)^4 \alpha^3 + \binom{7}{5} (1-\alpha)^5 \alpha^2 + \binom{7}{6} (1-\alpha)^6 \alpha + \binom{7}{7} (1-\alpha)^7$

Nebenüberlegung: $\begin{array}{l} \alpha(1-\alpha)=-(\alpha-\frac{1}{2})^2+\frac{1}{4}. \ \alpha \ \text{ist im Intervall} \ [\frac{1}{2},1] \ \text{monoton fallend:} \\ \alpha(1-\alpha)\leq\frac{3}{4}\cdot\frac{1}{4}=\frac{3}{16}. \\ \text{Schätze damit} \ 1-\alpha\leq\frac{1}{4} \ \text{ab. Damit ist obige Summe} \leq 0,08. \\ P(\mu'(x)=c_A(x))=1-P(\mu'(x)\neq c_A(x))\geq 1-0,08\geq\frac{11}{12} \end{array}$

1.2Aufgabe 2

- 1. Alphabet $\{1,2\}$ ist endliche, nichtleere Menge. \checkmark
- K ist deterministisch, also auch probabilistischer Algorithmus.
 - Legendres Vermutung: zwischen n^2 und $(n+1)^2$ liegt stets eine Primzahl.
 - \bullet Angenommen, die Vermutung gilt und wir suchen ab $m=\underbrace{1\dots 1}$ nach einer Primzahl, könnte es sein, dass wir erst bei $(\sqrt{m} + 1)^2 =$ $m + 2\sqrt{m} + 1$ fündig werden.
 - Testen also, $O(\sqrt{n}) = O(n^{\frac{1}{2}}) = O(2^{\frac{1}{2}n})$ Zahlen ⇒ nicht klar, ob Polynomialzeit möglich ist.
- 3. $\varepsilon(e, m)$ liefert $e \cdot dya^{-1}(m)$ für $m \in \{1, 2\}^*$ \Rightarrow Polynomialzeit-Algorithmus \checkmark

- 4. D(d,c) liefert dya $(\frac{c}{q})$, wobei q der größte Primfaktor von q ist. \Rightarrow unklar ob im Polynomialzeit möglich, da Faktorisierung nötig.
- 5. Sei (e,d) ein von $K(1^n)$ genutzes Schlüsselpaar und $m \in \{1,2\}$ $\Rightarrow (e,d) = (q,1)$, wobei q die kleine Primzahl mit $|\mathrm{dya}(q)| > n$ $\Rightarrow \varepsilon(e,m) = q \cdot \mathrm{dya}^{-1}(m)$

$$D(d, \varepsilon(e, m)) = D(1, q \cdot \operatorname{dya}^{-1}(m)) = \operatorname{dya}\left(\frac{\overbrace{q \cdot \operatorname{dya}^{-1}(m)}^{c}}{q'}\right), \text{ wobei } q' \text{ der}$$

größte Primfaktor von c ist.

$$q = q'$$
, weil $|m| = n < |dya(q)|$, q größter Primfaktor von $q \cdot dya^{-1}(m)$
 $\Rightarrow D(d, \varepsilon(e, m)) = dya(dya^{-1}(m)) = m \checkmark$

1.3 Hinweise zu Übungsblatt 2

1. Sei p eine Primzahl.

 $\mathbb{F}_p =_{\operatorname{def}} (\mathbb{Z}_p, +_p, \cdot_p)$ mit $+_p, \cdot_p$: Addition und Multiplikation modulo p. \mathbb{F}_p ist ein endlicher Körper, der (bis auf Isomorphie) einzige endliche Körper mit genau p Elementen.

Beispiel: \mathbb{F}_2 : 1 ist das Einselement, 0 ist das Nullelement. $5\cdot 3=1,$ also ist 3 das inverse Element zu 5.

2. Sei $q=p^n$ mit einer Primzahl p und $n\geq 2$. Ziel: der Körper \mathbb{F}_q mit q Elementen.

$$\begin{split} \mathbb{F}_p[x] &= \text{ Menge aller Polynome mit Koeffizienten aus } \mathbb{F}_p \\ &= \{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x^1 + a_0 | n \geq 0, a_0, \dots, a_n \in \mathbb{F}_p\} \\ &= \{(a_n, \dots, a_0) | n \geq 0, a_n, \dots, a_0 \in \mathbb{F}_p\} \end{split}$$

Die Multiplikation von Elementen aus $\mathbb{F}_p[x]$ entspricht der Polynommultiplikation.

Beispiel:
$$\mathbb{F}_2[x]$$
: $(x^2+1)(x^2+1) = x^4+2x^2+1 = x^4+1$

Definition 1 Ein Polynom $g \in \mathbb{F}_p[x]$ heißt <u>irreduzibel</u> über \mathbb{F}_p \Leftrightarrow_{def} es gibt keine Polynome $p_1, p_2 \in \mathbb{F}_p[x]$ mit $Grad \geq 1$ mit $g = p_1 \cdot p_2$

Satz 1.1 $x^8 + x^4 + x^3 + x + 1$ ist irreduzibel über \mathbb{F}_p .

Definition 2 Sei $g \in \mathbb{F}_p[x]$ irreduzibel und vom Grad $k \geq 1$.

$$\begin{split} \mathbb{F}_p[x]/g =_{def} \left\{ f \in \mathbb{F}_p[x] \middle| Grad \ von \ f < k \right\} \\ = Reste \ bei \ Polynom division \ durch \ g \\ = \left\{ (a_{k-1}, \cdots, a_0) \middle| a_0, \cdots, a_{k-1} \in \mathbb{F}_p \right\} \end{split}$$

Satz 1.2 [Addition in F]

Addition der Polynome, wobei di Koeffizienten entsprechend \mathbb{F}_p addiert werden.

Satz 1.3 [Multiplikation in F]

$$p_1 \cdot p_2$$
 = Rest von $p_1 \cdot p_2$ bei Division durch g .

 $\underbrace{p_1 \cdot p_2}_{\textit{Multiplikation in } \mathbb{F}_p[x]/g} = \textit{Rest von} \underbrace{p_1 \cdot p_2}_{\textit{Multiplikation in } \mathbb{F}_p[x]} \textit{bei } 1$ $\textit{Beispiel: } p = 2 \textit{ und } g(x) = x^8 + x^4 + x^3 + x + 1 \in \mathbb{F}_2[x].$

Sei
$$p_1 = x^7 + x^2 + 1$$
 und $p_2 = x_2 + 1 \in \mathbb{F}_2[x]/g$.

$$\begin{aligned} p_1 \cdot p_2 &= ((x^7 + x^2 + 1) \cdot (x^2 + 1)) \bmod g \\ &= (x^9 + x^4 + x^2 + x^7 + x^2 + 1) \bmod g \\ &= (x^9 + x^7 + x^4 + 1) \bmod g \\ &= ((x^9 + x^7 + x^4 + 1) - x \cdot g) \bmod g \\ &= ((x^9 + x^7 + x^4 + 1) - (x^9 + x^5 + x^4 + x^2 + x)) \bmod g \\ &= (x^7 + x^5 + x^2 + x + 1) \bmod g \\ &= (x^7 + x^5 + x^2 + x + 1) \end{aligned}$$

Satz 1.4 Sei p eine Primzahl, $k \geq 2$ und $g \in \mathbb{F}_p[x]$ irreduzibel und vom Grad k. Dann ist

$$\mathbb{F}_{p^k} = def(\mathbb{F}_p[x]/g, +, \cdot)$$

der einzige endliche Körper mit p^k Elementen (bis auf Isomorphie).

Beispiel: Sei $g=x^8+x^4+x^3+x+1$. Die Elemente von $\mathbb{F}_{2^8}=\mathbb{F}_2[x]/g=$ $\{(a_7, \dots, a_0) | a_0, \dots, a_7 \in \{0, 1\}\}$ lassen sich als Bytes interpretieren.

$$0x03 \cdot 0xa1 = 0b00000011 \cdot 0b10100001$$

$$= (x+1) \cdot (x^7 + x^5 + 1) \mod g$$

$$= (x^8 + x^6 + x + x^7 + x^5 + 1) \mod g$$

$$= (x^7 + x^6 + x^5 + x^4 + x^3)$$

$$= 0b11111000 = 0xf8$$

 $\Rightarrow 3 \cdot 161 = 248.$