CS207 Design and Analysis of Algorithms

Sajith Gopalan

Indian Institute of Technology Guwahati sajith@iitg.ac.in

February 14, 2022

Dynamic Programming

Dynamic Programming

▶ Particularly useful for optimization problems. Solution space. Constraints. Many feasible solutions, each of which satisfies the constraints, and has a value. We wish to find one feasible solution that minimises (maximizes) value.

► Steps:

- ► Formulate the structure of an optimal solution
- ► Recursively define the value of an optimal solution
- Compute the value of an optimal solution, typically in a bottom-up fashion
- ► Construct an optimal solution from computed information
- Works particularly when the following properties hold:
 - ▶ Optimal Substructure: an optimal solution to the problem contains within it optimal solutions to subproblems
 - Overlapping subproblems: recursive algorithm for the problem solves the same subproblems repeatedly

- Consider sequences "ABDCBCD" and "AEFGBFHDBCDCHEBHEJCKCBD"
- The former is a subsequence of the latter
- Consider "AEFGBFHDBCDCHEBHEJCKCBD" and "AJKBAACCDCMMDBABCHHJDL"
- "ABDCBCD" is a subsequence is both; so it is a common subsequence
- ▶ There is no longer sequence that is a subsequence of both
- ► So, it is the longest common subsequence (LCS)
- That's our problem. Given two sequences, find their LCS.

- Suppose X is a sequence of length m and Y is a sequence of length n
- ▶ Let Z of length k be an LCS of X and Y
- ▶ Let X_i denote the prefix of length i of X. That is, $X_i = X[1 \dots i]$
- ▶ If X[m] = Y[n] then Z[k] = X[m] = Y[n] and Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

- ▶ If $Z[k] \neq X[m] = Y[n]$, then add X[m] = Y[n] to Z gets us a longer LCS. But Z is the LCS. Contradiction.
- ► So, Z[k] = X[m] = Y[n]
- Now suppose Z_{k-1} is not an LCS of X_{m-1} and Y_{n-1} , but W of greater length is
- ▶ Then W.Z[k] is an LCS of X and Y and its length is more than k. Contradiction.
- ▶ So, Z_{k-1} is an LCS of X_{m-1} and Y_{n-1}

- ▶ If $X[m] \neq Y[n]$ and $Z[k] \neq X[m]$, then Z is an LCS of X_{m-1} and Y
- ▶ Suppose, $X[m] \neq Y[n]$ and $Z[k] \neq X[m]$ and Z is not an LCS of X_{m-1} and Y
- ▶ But W of greater length is
- ▶ Then W is an LCS of X and Y as well. Contradiction.
- ▶ Analogously, if $X[m] \neq Y[n]$ and $Z[k] \neq Y[n]$, then Z is an LCS of Y_{n-1} and X

Length of LCS: Recursive formulation

- ▶ Let I[i,j] denote the length of the LCS of X_i and Y_j
- ► Then

$$I[i,j] = \left\{ \begin{array}{ll} 0 & \text{if } i = 0 \lor j = 0 \\ I[i-1,j-1] + 1 & \text{if } i,j > 0 \land X[i] = Y[j] \\ \max\{I[i,j-1],I[i-1,j]\} & \text{if } i,j > 0 \land X[i] \neq Y[j] \end{array} \right\}$$

- ▶ Once I[i-1,j-1], I[i-1,j] and I[i,j-1] are known, I[i,j] can be computed in O(1) time
- ▶ So the *I* array can be computed in $\Theta(mn)$ time
- ▶ If we remember, at each (i,j), which of the three options applies, then the LCS can be printed out in linear time
- ▶ Note that there might exist multiple LCSes
- ▶ Our algorithm will find out one of them

The Longest Common Subsequence Problem: The Memoized Solution

► Exercise: Write the memoized solution