Lecture 5 – ϵ -Nondeterministic Finite Automata (ϵ -NFA)

COSE215: Theory of Computation

Jihyeok Park

2025 Spring

Recall

- Deterministic Finite Automata (DFA)
 - Definition
 - Transition Diagram and Transition Table
 - Extended Transition Function
 - Acceptance of a Word
 - Language of DFA (Regular Language)
 - Examples
- Nondeterministic Finite Automata (NFA)
 - Definition
 - Transition Diagram and Transition Table
 - Extended Transition Function
 - Language of NFA
 - Examples
- 3 Equivalence of DFA and NFA
 - DFA \rightarrow NFA
 - DFA ← NFA (Subset Construction)

Contents

1. ϵ -Nondeterministic Finite Automata (ϵ -NFA)

 ϵ -Transition

Definition

Transition Diagram and Transition Table

 ϵ -Closures

Extended Transition Function

Language of ϵ -NFA

2. Equivalence of DFA and ϵ -NFA

 $\mathsf{DFA} \leftarrow \epsilon\text{-NFA (Subset Construction)}$

Contents

1. ϵ -Nondeterministic Finite Automata (ϵ -NFA)

 ϵ -Transition

Definition

Transition Diagram and Transition Table

 ϵ -Closures

Extended Transition Function

Language of ϵ -NFA

2. Equivalence of DFA and ϵ -NFA DFA $\leftarrow \epsilon$ -NFA (Subset Construction)

ϵ -Transition

Let's consider ϵ -transitions which can be taken without consuming any input symbol in finite automata.

For example, the following automaton has an ϵ -transition from q_2 to q_0 :

Then, the above automaton **accepts** the following words:

ab abab ababab ···

Let's formally define ϵ -**NFA**, an extension of NFA with ϵ - transitions.

Definition (ϵ -Nondeterministic Finite Automaton (ϵ -NFA))

An ϵ -nondeterministic finite automaton is a 5-tuple:

$$N^{\epsilon} = (Q, \Sigma, \delta, q_0, F)$$

- Q is a finite set of states
- Σ is a finite set of **symbols**
- $\delta: Q \times (\Sigma \cup {\epsilon}) \to \mathcal{P}(Q)$ is the transition function
- $q_0 \in Q$ is the initial state
- $F \subseteq Q$ is the set of **final states**

$$N_1^{\epsilon} = (\{q_0, q_1, q_2\}, \{a, b\}, \delta, q_0, \{q_2\})$$

$$\delta(q_0, \mathbf{a}) = \{q_1\}$$
 $\delta(q_1, \mathbf{a}) = \varnothing$ $\delta(q_2, \mathbf{a}) = \varnothing$ $\delta(q_0, \mathbf{b}) = \varnothing$ $\delta(q_1, \mathbf{b}) = \{q_2\}$ $\delta(q_2, \mathbf{b}) = \varnothing$ $\delta(q_2, \mathbf{c}) = \{q_0\}$


```
// The definition of epsilon-NFA
case class ENFA(
  states: Set[State],
  symbols: Set[Symbol],
  trans: Map[(State, Option[Symbol]), Set[State]],
  initState: State,
  finalStates: Set[State],
)
```

Transition Diagram and Transition Table

$$N_1^{\epsilon} = (\{q_0, q_1, q_2\}, \{\mathtt{a}, \mathtt{b}\}, \delta, q_0, \{q_2\})$$

$$egin{aligned} \delta(q_0,\mathtt{a}) &= \{q_1\} & \delta(q_1,\mathtt{a}) = arnothing \\ \delta(q_0,\mathtt{b}) &= arnothing & \delta(q_1,\mathtt{b}) = \{q_2\} & \delta(q_2,\mathtt{b}) = arnothing \\ \delta(q_0,\epsilon) &= arnothing & \delta(q_1,\epsilon) = arnothing & \delta(q_2,\epsilon) = \{q_0\} \end{aligned}$$

Transition Diagram

Transition Table

ϵ -Closures

Definition (ϵ -Closures)

The ϵ -closure EClo(q) for a state q is the set of all reachable states only through ϵ -transitions from q, and it can be inductively defined as:

- (Basis Case) $q \in EClo(q)$
- (Induction Case) $(q' \in \delta(q, \epsilon) \land q'' \in \mathsf{EClo}(q')) \Rightarrow q'' \in \mathsf{EClo}(q)$

We sometimes need to define the ϵ -closure for a **set of states** $S \subseteq Q$:

$$\forall S \subseteq Q$$
. $\mathsf{EClo}(S) = \bigcup_{q \in S} \mathsf{EClo}(q)$

ϵ -Closures – Example

Then, how to implement the eclo method for ϵ -closure?

```
case class ENFA(...):
    ...

// The epsilon-closure of a state
def eclo(q: State): Set[State] = ???

// The epsilon-closure of a set of states
def eclo(qs: Set[State]): Set[State] = qs.flatMap(eclo)
```

The ϵ -closures for states 0, 2, 5, and $\{2,5\}$ are as follows:

The above implementation is **WRONG** because of **infinite loop**:

```
enfa2.wrongEClo(5) // Set(3, 5, 6)
enfa2.wrongEClo(2) // INFINITE LOOP -- cycle between states 1 and 2
```


Definition (Extended Transition Function)

For a given ϵ -NFA $N^{\epsilon} = (Q, \Sigma, \delta, q_0, F)$, the **extended transition** function $\delta^* : \mathcal{P}(Q) \times \Sigma^* \to \mathcal{P}(Q)$ is defined as follows:

- (Basis Case) $\delta^*(S, \epsilon) = \frac{\mathsf{EClo}(S)}{\epsilon}$
- (Induction Case) $\delta^*(S, aw) = \delta^*(\bigcup_{q \in \mathsf{EClo}(S)} \delta(q, a), w)$

```
case class ENFA(...):
    ...

// The extended transition function of epsilon-NFA
def extTrans(qs: Set[State], w: Word): Set[State] = w match
    case "" => eclo(qs)
    case x <| w => extTrans(eclo(qs).flatMap(q => trans(q, Some(x))), w)
```


Definition (Acceptance of a Word)

For a given ϵ -NFA $N^{\epsilon}=(Q,\Sigma,\delta,q_0,F)$, we say that N^{ϵ} accepts a word $w\in\Sigma^*$ if and only if $\delta^*(q_0,w)\cap F\neq\varnothing$

```
case class ENFA(...):
    ...

// The acceptance of a word by epsilon-NFA
def accept(w: Word): Boolean =
    extTrans(Set(initState), w).intersect(finalStates).nonEmpty
```

Definition (Language of ϵ -NFA)

For a given ϵ -NFA $N^{\epsilon}=(Q,\Sigma,\delta,q_0,F)$, the **language** of N^{ϵ} is defined as follows:

$$L(N^{\epsilon}) = \{ w \in \Sigma^* \mid N^{\epsilon} \text{ accepts } w \}$$

Contents

1. ϵ -Nondeterministic Finite Automata (ϵ -NFA)

 ϵ -Transition

Definition

Transition Diagram and Transition Table

 ϵ -Closures

Extended Transition Function

Language of ϵ -NFA

2. Equivalence of DFA and $\epsilon\text{-NFA}$

DFA $\leftarrow \epsilon$ -NFA (Subset Construction)

Equivalence of DFA and ϵ -NFA

Theorem (Equivalence of DFA and ϵ -NFA)

A language L is the language L(D) of a DFA D if and only if L is the language L(N $^{\epsilon}$) of an ϵ -NFA N $^{\epsilon}$.

Proof) By the following two theorems.

Theorem (DFA to ϵ -NFA)

For a given DFA $D = (Q, \Sigma, \delta, q, F)$, $\exists \epsilon$ -NFA N^{ϵ} . $L(D) = L(N^{\epsilon})$.

Theorem (ϵ -NFA to DFA – Subset Construction)

For a given ϵ -NFA $N^{\epsilon} = (Q, \Sigma, \delta, q_0, F)$, \exists DFA D. $L(D) = L(N^{\epsilon})$.

The formal proofs are exercises for you

Let's see **examples** of the second theorem (DFA $\leftarrow \epsilon$ -NFA)

DFA $\leftarrow \epsilon$ -NFA (Subset Construction)

Theorem (ϵ -NFA to DFA – Subset Construction)

For a given ϵ -NFA $N^{\epsilon}=(Q_{N^{\epsilon}},\Sigma,\delta_{N^{\epsilon}},q_{0},F_{N^{\epsilon}})$, \exists DFA D. $L(D)=L(N^{\epsilon})$.

Proof) Define a DFA

$$D = (Q_D, \Sigma, \delta_D, \mathsf{EClo}(q_0), F_D)$$

where

- $Q_D = \{S \subseteq Q_{N^{\epsilon}} \mid S = \mathsf{EClo}(S)\}$
 - The states of D are the sets of states of N^{ϵ} whose ϵ -closures are themselves (i.e., EClo(S) = S).
- $\forall S \in Q_D$. $\forall a \in \Sigma$.

$$\delta_D(S,a) = \mathsf{EClo}\left(igcup_{q\in S} \delta_{N^\epsilon}(q,a)
ight)$$

• $F_D = \{ S \in Q_D \mid S \cap F \neq \emptyset \}$

DFA $\leftarrow \epsilon$ -NFA (Subset Construction) – Examples **PLRG**

$$L(D) = L(N^{\epsilon}) = \{(\mathtt{ab})^n \mid n \geq 1\}$$

a, b

DFA $\leftarrow \epsilon$ -NFA (Subset Construction) – Examples **PLRG**

DFA $\leftarrow \epsilon$ -NFA (Subset Construction) – Examples **PLRG**

Summary

1. ϵ -Nondeterministic Finite Automata (ϵ -NFA)

 ϵ -Transition

Definition

Transition Diagram and Transition Table

 ϵ -Closures

Extended Transition Function

Language of ϵ -NFA

2. Equivalence of DFA and ϵ -NFA

DFA $\leftarrow \epsilon$ -NFA (Subset Construction)

Homework #2

Please see this document on GitHub:

 $\verb|https://github.com/ku-plrg-classroom/docs/tree/main/cose215/fa-examples||$

- The due date is 23:59 on Apr. 7 (Mon.).
- Please only submit Implementation.scala file to LMS.

Next Lecture

• Regular Expressions and Languages

Jihyeok Park
 jihyeok_park@korea.ac.kr
https://plrg.korea.ac.kr