<u>Instituto Nacional de Telecomunicações – INATEL</u>

E203 – Circuitos Elétricos III Exercícios de revisão

Aluno:		
Matrícula:	Período:	Curso:

Conversão entre fontes

1) Para o circuito a seguir: a) determinar a corrente I_L , b) converter a fonte real de tensão em uma fonte real de corrente, c) utilizando a fonte de corrente do item (b), calcular a corrente através do resistor de carga e comparar com o resultado do item (a). Resp.: a) 1A, b) I = 3A, $R = 2\Omega$, c) 1A

2) Para o circuito a seguir: a) determinar a corrente I_L , b) converter a fonte real de corrente em uma fonte real de tensão, c) utilizando a fonte de tensão do item (b), calcular a corrente através do resistor de carga e comparar com o resultado do item (a). Resp.: a) 3mA, b) V = 27V, $R = 3k\Omega$, c) 3mA

3) Para o circuito a seguir determinar a corrente I_2 . Resp.: 3,4A

4) Para o circuito a seguir determinar a corrente I_L . Resp.: 3A

Método das Malhas

5) Determinar as correntes I_1 e I_2 no circuito, da forma como estão indicadas, utilizando o Método das Malhas. Resp.: $I_1 = -1$ A, $I_2 = -2$ A

6) Determinar as correntes I_1 , I_2 e I_3 no circuito, da forma como estão indicadas, utilizando o Método das Malhas. Resp.: $I_1 = 1A$, $I_2 = -1A$, $I_3 = 2A$

7) Determinar as tensões V_A e V_B no circuito, da forma como estão indicadas, utilizando o Método das Malhas. Resp.: V_A = 4,5V, V_B = 1,1V

Método dos Nós

8) Determinar as tensões V_A e V_B no circuito, da forma como estão indicadas, utilizando o Método dos Nós. Resp.: V_A = 2,5V, V_B = -26V

9) Determinar as tensões V_A e V_B no circuito, da forma como estão indicadas, utilizando o Método dos Nós. Resp.: V_A = 4,5V, V_B = 1,1V

Outros

10) Esboçar o gráfico da função $x(t) = 6 - 4e^{-2t}$, para t = 0s, 0,2s, 0,4s, 0,6s, 0,8s e 1s.

3

11) Obter a transformada inversa de Laplace das funções.

a)
$$\frac{-13}{s+1} + \frac{20}{s+2} + \frac{-3}{s+3}$$

b)
$$\frac{1}{(s+1)^2+2^2}$$

12) Expandir em frações parciais a função a seguir.

$$X(s) = \frac{4s - 8}{s^2 + 3s + 2}$$