# 합성가스로부터 메탄제조용촉매의 합성

조영녀, 김명국, 박철만

경애하는 최고령도자 김정은동지께서는 다음과 같이 말씀하시였다.

《인민경제의 자립성과 주체성을 보장하는데서 중핵적인 문제는 원료와 연료, 설비의 국산화를 실현하는것입니다.》(《조선로동당 제7차대회에서 한 중앙위원회사업총화보고》단행본 46폐지)

메탄제조용촉매는 수소기체속에 들어있는 CO기체를 메탄으로 전환시켜 제거[1, 2]하거나 증착공구생산에 리용되는 메탄을 생산하는데 리용되고있다. 최근에는 Ni를 주성분으로 하여 침지법으로 제조한 Ni/Al<sub>2</sub>O<sub>3</sub>촉매에 여러가지 조촉매들을 첨가하거나 담체를 리용하여 촉매활성을 높이기 위한 연구[1-3]들이 진행되고있다.

우리는 상압조건에서 증착공구생산용메탄기체를 제조하기 위한 촉매를 합성하였다.

#### 실 험 방 법

촉매제조 촉매는 침지법으로 제조하였다. 담체로는 비표면적이  $280\text{m}^2/\text{g}$ 인 구상 $\gamma$ -Al<sub>2</sub>O<sub>3</sub>을 리용하였다. 침지전에 담체를  $10^{\circ}$ C/min의 속도로  $450^{\circ}$ C까지 올리고 이 온도에서 소성하였다. 일정한 농도의 Ni(NO<sub>3</sub>)<sub>2</sub>용액에 담체를  $80^{\circ}$ C에서 물이 다 증발할 때까지 침지시키고  $100^{\circ}$ C에서 2h동안 건조시킨 후 3회 반복침지시켰다. 다음  $400^{\circ}$ C에서 3h동안 소성하였다.

촉매의 구조는 X선회절분석기(《Rigaku SmartLab》)로, 활성성분담지량은 원자흡광분광기(《Perkin Elmer 5100PC-ZL》)로 분석하였다.

촉매활성 메탄생성반응은 상압고정층흐름식반응기에서 진행하였다. 촉매를 10mL 취하여 반응기에 충전하고 400℃에서 H<sub>2</sub>기체를 30mL/min의 속도로 통과시키면서 환원활성화시킨 다음 반응온도까지 온도를 낮추었다. 반응온도에서 1h동안 유지하고 합성가스를 일정한류속으로 통과시키면서 반응시켰다. 합성가스는 메타놀을 Cr-Zn촉매우에서 분해(400~450℃)하여 얻었는데 메타놀분해가스에서 CO: H<sub>2</sub>=1:2이므로 메탄합성반응(CO+3H<sub>2</sub>=CH<sub>4</sub>+H<sub>2</sub>O)을 위해 CO: H<sub>2</sub>=1:3 되게 수소를 보충해주었다.

생성물은 기체크로마토그라프(《GC-4B》)로 분석하였다.

### 실험결과 및 해석

촉매의 성능평가 촉매의 성능은 CO전화률과 CH<sub>4</sub>선택률로 평가하였다. CO전화률(%)과 CH<sub>4</sub> 선택률(%)은 다음식으로 계산하였다.

$$\begin{split} X_{\mathrm{CO}} &= \frac{S_{\mathrm{\hat{l}},\mathrm{CO}} \cdot y_{\mathrm{\hat{l}},\mathrm{CO}} - S_{\frac{2}{6},\mathrm{CO}} \cdot y_{\frac{2}{6},\mathrm{CO}}}{S_{\mathrm{\hat{l}},\mathrm{CO}} \cdot y_{\mathrm{\hat{l}},\mathrm{CO}}} \times 100 \\ X_{\mathrm{CH}_4} &= \frac{S_{\frac{2}{6},\mathrm{CH}_4} \cdot y_{\frac{2}{6},\mathrm{CH}_4}}{S_{\mathrm{\hat{l}},\mathrm{CO}} \cdot y_{\mathrm{\hat{l}},\mathrm{CO}} - S_{\frac{2}{6},\mathrm{CO}} \cdot y_{\frac{2}{6},\mathrm{CO}}} \times 100 \end{split}$$

여기서  $X_{\text{CO}}$ ,  $X_{\text{CH}_4}$ 은 CO의 전화률과 CH<sub>4</sub>의 선택률,  $S_{\text{Ql,CO}}$ ,  $S_{\frac{5}{2},\text{CO}}$ ,  $S_{\frac{5}{2},\text{CH}_4}$ 은 반응기입구와 출구에서의 CO와 CH<sub>4</sub>의 함량을 나타내는 기체크로마토그람의 봉우리면적,  $y_{\text{Ql,CO}}$ ,  $y_{\frac{5}{2},\text{CH}_4}$ 은 반응기입구와 출구에서의 CO와 CH<sub>4</sub>의 류속이다.

서로 다른 조성의 촉매들의 CO전화률과 CH4선택률을 측정한 결과는 그림 1, 2와 같다.





CH<sub>4</sub>선택률 1-5% Ni/Al<sub>2</sub>O<sub>3</sub>, 2-5% Ni/SiO<sub>2</sub>, 3-10% Ni/SiO<sub>2</sub>, 4-10% Ni-2% La<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>, 5-10% Ni/Al<sub>2</sub>O<sub>3</sub>

그림 1에서 보는바와 같이 반응온도가 높아짐에 따라 모든 촉매들의 CO전화률이 높아지는데  $La_2O_3$ 을 조촉매로 첨가한 촉매는 다른 촉매들에 비하여 낮은 온도에서 높은 전화률을 나타냈다. 또한 그림 2에서 보는바와 같이 반응온도가 높아짐에 따라  $CH_4$ 선택률이 높아지며 350°C근방에서 최대로 된다.  $La_2O_3$ 을 조촉매로 첨가한 촉매는 다른 촉매들보다 낮은 온도(300°C근방)에서  $CH_4$ 선택률이 90%이상으로 매우 높다.

촉매의 특성 몇가지 메탄제조용촉매들의 XRD 도형은 그림 3과 같다.

그림 3에서 보는바와 같이 촉매에서 활성성 분(Ni)과 담체성분들이 미세하게 분산되여있다 는것을 알수 있다.

La<sub>2</sub>O<sub>3</sub>을 조촉매로 첨가한 촉매에서는 2*0*=43, 76.5°에서 Ni에 해당한 회절봉우리들이 예리하게 나타나고 31.4, 52.3°에서 NiAl<sub>2</sub>O<sub>4</sub>의 회절봉우리들이 나타났다. 이로부터 활성성분과 조촉매성분사이에 안정한 슈피넬화합물을 이루었다는 것을 알수 있다.



그림 3. 메탄제조용촉매들의 XRD도형 1-10% Ni/Al<sub>2</sub>O<sub>3</sub>, 2-10% Ni-2% La<sub>2</sub>O<sub>3</sub>/Al<sub>2</sub>O<sub>3</sub>, 3-10% Ni/SiO<sub>2</sub>

# 맺 는 말

서로 다른 조성의 Ni계촉매를 제조하고 활성을 평가하였다. 결과  $La_2O_3$ 을 조촉매로 첨가한 촉매가 메탄생성반응에 제일 적합하다는것을 확증하였다.

### 참 고 문 헌

- [1] Gabriella Garbarino et al.; International Journal of Hydrogen Energy, 39, 11557, 2014.
- [2] Xuzhuang Yang et al.; International Journal of Hydrogen Energy, 39, 3231, 2014.
- [3] Chang Wei Hu et al.; Journal of Catalysis, 166, 1, 1997.

주체106(2017)년 10월 5일 원고접수

### Manufacturing of the Catalyst for Methane Synthesis from Syngas

Jo Yong Nyo, Kim Myong Guk and Pak Chol Man

We manufactured Ni-based catalysts having difficult composition and confirmed that catalyst added La<sub>2</sub>O<sub>3</sub> as promoter is proper for methanation of syngas.

Key words: Ni catalyst, methanation