What Is Claimed Is:

- 1 1. A transflective liquid crystal display device 2 capable of balancing color difference between a reflective 3 region and a transmissive region, comprising:
- 4 a first substrate;
- 5 a second substrate;
- a liquid crystal layer disposed between the first and the second substrates:
- 8 a first polarization plate arranged on the first
 9 substrate and opposite to the liquid crystal
 10 layer;
- a second polarization plate arranged on the second substrate and opposite to the liquid crystal layer;
- 14 a first half-wavelength $(\lambda/2)$ plate arranged between 15 the first polarization plate and the liquid 16 crystal layer;
- a first quarter wavelength $(\lambda/4)$ plate arranged between the first half-wavelength plate and the liquid crystal layer;
- a first alignment film arranged between the first quarter wavelength plate and the liquid crystal layer;
- 23 a second half-wavelength $(\lambda/2)$ plate arranged between 24 the second polarization plate and the liquid 25 crystal layer;
- a second quarter wavelength $(\lambda/4)$ plate arranged between the second half-wavelength plate and the liquid crystal layer;

57

29	a second alignment film arranged between the second
30	quarter wavelength plate and the liquid crystal
31	layer;
32	a reflective electrode and a transparent electrode
33	arranged in-plane between the second alignment
34	film and the second substrate; and
35	a backlight arranged on a surface of the second
36	polarization plate and opposite to the second
37	substrate,
38	wherein
39	a twist angle of the liquid crystal is 40° to 80°, a
40	retardation $(\Delta n imes d)_{LC}$ of the liquid crystal is 200
41	to 300 nm,
42	an angle (eta_{up}) between a rubbing direction of the first
43	alignment film and a transmissive axis of the
44	first polarization plate is -20° to -60°,
45	an angle $(eta_{ extsf{down}})$ between a rubbing direction of the
46	second alignment film and a transmissive axis of
47	the second polarization plate is -20 $^{\circ}$ to 20 $^{\circ}$,
48	an angle $(heta_{ extsf{up}})$ between the transmissive axis of the
49	first polarization plate and a retardation axis of
50	the first half-wavelength $(\lambda/2)$ plate is 60° to
51	110°,
52	an angle $(heta_{ extsf{down}})$ between the transmissive axis of the
53	second polarization plate and a retardation axis
54	of the second half-wavelength ($\lambda/2$) plate is -30°
55	to 20°,
56	an angle between the retardation axis of the first

half-wavelength $(\lambda/2)$ plate and a retardation axis

Our client's ref: AU91045 Our ref: 0632-8320US /Amy /Steve

FINAL

58	of the first quarter wavelength $(\lambda/4)$ plate is 30°
59	to 100°, and
60	an angle between the retardation axis of the second
61	half-wavelength $(\lambda/2)$ plate and a retardation axis
62	of the second quarter wavelength $(\lambda/4)$ plate is
63	30° to 80°.

- 2. The transflective liquid crystal display device of claim 1, wherein a retardation of the first and the second half-wavelength $(\lambda/2)$ plates is 220nm to 280nm.
- 3. The transflective liquid crystal display device of claim 1, wherein a retardation of the first and the second quarter wavelength $(\lambda/4)$ plates is 110nm to 150nm.