TP555 - Inteligência Artificial e Machine Learning:

Exemplos de implementação do gradiente descendente

Felipe Augusto Pereira de Figueiredo felipe.figueiredo@inatel.br

- De posse dos dados ruidosos mostrados na figura acima, encontrar com o **gradiente descendente** os pesos de uma função, h(x), que aproxime a função objetivo.
- Para facilitar nossa análise, vamos simplificar um pouco e usar uma *função hipótese* com apenas um peso, \hat{a}_1 :

$$\hat{y}(n) = h(x_1(n)) = \hat{a}_1 x_1(n).$$

- Qual é a regra de atualização para o peso \hat{a}_1 ?
 - Dicas:
 - \circ Comecem substituindo $\hat{y}(n)$ em $J_e(\boldsymbol{a}) = \frac{1}{N} \|\boldsymbol{y} \hat{\boldsymbol{y}}\|^2 = \frac{1}{N} \sum_{n=0}^{N-1} (y(n) \hat{y}(n))^2$.
 - Lembrem-se que a operação da derivada parcial é distributiva.

Para facilitar nossa análise, vamos simplificar um pouco e usar uma *função hipótese* com apenas um peso

$$\hat{y}(n) = h(x_1(n)) = \hat{a}_1 x_1(n).$$

Com *função de erro* dada por

$$J_e(\hat{a}_1) = \frac{1}{N} \sum_{n=0}^{N-1} (y(n) - \hat{a}_1 x_1(n))^2.$$

Operação da derivada parcial é distributiva.

Gradiente dado por

$$\frac{\partial J_e(\hat{a}_1)}{\partial \hat{a}_1} = \frac{1}{N} \sum_{n=0}^{N-1} \frac{\partial (y(n) - \hat{a}_1 x_1(n))^2}{\partial \hat{a}_1}$$
$$= -\frac{2}{N} \sum_{n=0}^{N-1} (y(n) - \hat{a}_1 x_1(n)) x_1(n)$$

E atualização do peso \hat{a}_1 dada por

$$\hat{a}_1 = \hat{a}_1 - \alpha \frac{\partial J_e(\hat{a}_1)}{\partial \hat{a}_1} : \hat{a}_1 = \hat{a}_1 + \alpha \sum_{n=0}^{N-1} (y(n) - \hat{a}_1 x_1(n)) x_1(n),$$

onde o termo $\frac{2}{N}$ foi absorvido pelo *passo de aprendizagem*, α .

gradiente negativo: $a_1 = a_1^{\rm inicial} + \alpha \nabla J_e(a_1)$ a_1 aumenta e se aproxima do mínimo

gradiente positivo: $a_1=a_1^{\mathrm{inicial}}-\alpha\nabla J_e(a_1)$ a_1 diminiu e se aproxima do mínimo

- De posse dos dados ruidosos mostrados na figura acima, encontrar com o **gradiente descendente** os pesos de uma função, h(x), que aproxime a função objetivo.
- Neste exemplo, vamos usar uma *função hipótese* com 2 pesos, \hat{a}_1 e \hat{a}_2 , onde $\hat{a}_0=0$

$$\hat{y}(n) = h(x(n)) = \hat{a}_1 x_1(n) + \hat{a}_2 x_2(n).$$

- Qual é a regra de atualização para os pesos \hat{a}_1 e \hat{a}_2 ?
 - Dicas:
 - \circ Comecem substituindo $\hat{y}(n)$ em $J_e(\boldsymbol{a}) = \frac{1}{N} ||\boldsymbol{y}||^2 = \frac{1}{N} \sum_{n=0}^{N-1} (y(n) \hat{y}(n))^2$.
 - Lembrem-se que a operação da derivada parcial é distributiva.

Neste exemplo, usaremos uma *função hipótese* com 2 pesos, \hat{a}_1 e \hat{a}_2 , sendo $\hat{a}_0=0$

$$\hat{y}(n) = h(x(n)) = \hat{a}_1 x_1(n) + \hat{a}_2 x_2(n).$$

A função de erro é dada por

$$J_e(\mathbf{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y(n) - \left(\hat{a}_1 x_1(n) + \hat{a}_2 x_2(n) \right) \right]^2.$$

Operação da derivada parcial é distributiva.

Cada elemento do vetor gradiente é dado por

$$\frac{\partial J_e(\mathbf{a})}{\partial \hat{a}_k} = \frac{1}{N} \sum_{n=0}^{N-1} \frac{\partial \left[y(n) - \left(\hat{a}_1 x_1(n) + \hat{a}_2 x_2(n) \right) \right]^2}{\partial \hat{a}_k} = -\frac{2}{N} \sum_{n=0}^{N-1} \left[y(n) - \left(\hat{a}_1 x_1(n) + \hat{a}_2 x_2(n) \right) \right] x_k(n), \qquad k = 1, 2,$$

A atualização dos pesos a_k , k=1 e 2 é dada por

$$\hat{a}_{k} = \hat{a}_{k} - \alpha \frac{\partial J_{e}(a)}{\partial \hat{a}_{k}} : \hat{a}_{k} = \hat{a}_{k} + \alpha \sum_{n=0}^{N-1} [y(n) - (\hat{a}_{1}x_{1}(n) + \hat{a}_{2}x_{2}(n))] x_{k}(n), \ k = 1, 2.$$

onde o termo $\frac{2}{N}$ foi absorvido pelo *passo de aprendizagem*, α .

Superfície de contorno com o caminho feito pelo algoritmo até a convergência.

- De posse dos dados ruidosos mostrados na figura acima, encontrar com o **gradiente descendente** os pesos de uma função, h(x), que aproxime a função objetivo.
- Neste exemplo, vamos usar uma **função hipótese** com 2 pesos, \hat{a}_0 e \hat{a}_1 ,

$$\hat{y}(n) = h(x(n)) = \hat{a}_0 + \hat{a}_1 x_1(n).$$

- Qual é a regra de atualização para os pesos \hat{a}_0 e \hat{a}_1 ?
 - Dicas:
 - o Comecem substituindo $\hat{y}(n)$ em $J_e(\boldsymbol{a}) = \frac{1}{N} \|\boldsymbol{y} \hat{\boldsymbol{y}}\|^2 = \frac{1}{N} \sum_{n=0}^{N-1} (y(n) \hat{y}(n))^2$.
 - o Lembrem-se que a operação da derivada parcial é distributiva.

Função hipótese com 2 pesos, \hat{a}_0 e \hat{a}_1 ,

$$\hat{y}(n) = h(x(n)) = \hat{a}_0 + \hat{a}_1 x_1(n).$$

A *função de erro* é dada por

$$J_e(\boldsymbol{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y(n) - \left(\hat{a}_0 + \hat{a}_1 x_1(n) \right) \right]^2.$$
 Operação da derivado narcial é distributivo

$$J_e(\boldsymbol{a}) = \frac{1}{N} \sum_{n=0}^{N-1} \left[y(n) - \left(\hat{a}_0 + \hat{a}_1 x_1(n) \right) \right]^2.$$
 Operação da derivada parcial é distributiva.
$$\frac{\partial J_e(\boldsymbol{a})}{\partial \hat{a}_k} = \frac{1}{N} \sum_{n=0}^{N-1} \frac{\partial \left[y(n) - \left(\hat{a}_0 + \hat{a}_1 x_1(n) \right) \right]^2}{\partial \hat{a}_k} = -\frac{2}{N} \sum_{n=0}^{N-1} \left[y(n) - \left(\hat{a}_0 + \hat{a}_1 x_1(n) \right) \right] x_k(n),$$

$$k = 0, 1,$$

$$\hat{a}_k = \hat{a}_k - \alpha \frac{\partial J_e(a)}{\partial \hat{a}_k} :: \hat{a}_k = \hat{a}_k + \alpha \sum_{n=0}^{N-1} \left[y(n) - \left(\hat{a}_0 + \hat{a}_1 x_1(n) \right) \right] x_k(n), \ k = 0,1,$$
 onde $x_0(n) = 1$, $\forall n$.

OBS.1: Temos o termo de bias/intercept nesta função hipótese, portanto, não se esqueçam da coluna de '1's (vetor do atributo de bias) na implementação do código.

OBS.2: Para executar este exemplo, é necessário instalar a biblioteca ffmpeg com o comando: conda install ffmpea

Exemplo #4: GDE com Scikit-Learn

• A classe **SGDRegressor**, da biblioteca **Scikit-Learn**, implementa o **gradiente descendente estocástico**.

- A classe possui vários *hiperparâmetros* que podem ser configurados (tipo de função de erro, esquema de variação do passo de aprendizagem, penalização, etc.).
 - Hiperparâmetro: parâmetro que controla o processo de aprendizagem.
- A função de erro pode ser configurada entre várias opções, mas por padrão, a classe usa o erro quadrático médio.
- É possível definir o *esquema de variação do passo de aprendizagem*: constante, redução programada ou adaptativo.
- Por padrão, o esquema é o da escala inversa, "invscaling"

$$\alpha = \frac{\alpha_{init}}{i^{power}},$$

- onde α_{init} é o passo inicial (por padrão = 0.01), i é o número da iteração e power é o expoente da escala inversa (por padrão = 0.25).
- Porém, não conseguimos implementar as versões em batelada e mini-batch.