

HEXFET® Power MOSFET

V _{DS}	-30	V
V _{GS Max}	± 20	V
$R_{DS(on) max}$ (@V _{GS} = -10V)	64	$\mathbf{m}\Omega$
$R_{DS(on) max}$ (@V _{GS} = -4.5V)	103	$\mathbf{m}\Omega$

Application(s)

• System/Load Switch

Features and Benefits

Features

Low $R_{DS(on)}$ ($\leq 64m\Omega$)
Industry-standard pinout
Compatible with existing Surface Mount Techniques
RoHS compliant containing no lead, no bromide and no halogen
MSL1, Consumer qualification

Benefits

-55 to + 150

	Lower switching losses			
	Multi-vendor compatibility			
results in	Easier manufacturing			
\Rightarrow	Environmentally friendly			
	Increased reliability			

Symbol	Parameter	Max.	Units
V _{DS}	Drain-Source Voltage	-30	V
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	-3.6	
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	-2.9	Α
I _{DM}	Pulsed Drain Current	-15	
P _D @T _A = 25°C	Maximum Power Dissipation	1.3	W
P _D @T _A = 70°C Maximum Power Dissipation		0.8	VV
	Linear Derating Factor	0.01	W/°C
V _{GS} Gate-to-Source Voltage		± 20	V
V _{GS} Gate-to-Source Voltage		± 20	V

Thermal Resistance

 $T_{J,}T_{STG}$

Symbol	Parameter	Тур.	Max.	Units
$R_{\theta JA}$	Junction-to-Ambient ③		100	°C/W
R _{eJA}	Junction-to-Ambient (t<10s) ⊕		99	C/VV

ORDERING INFORMATION:

See detailed ordering and shipping information on the last page of this data sheet.

Junction and Storage Temperature Range

Notes ① through ④ are on page 10 www.irf.com

°С

Electric Characteristics @ T_J = 25°C (unless otherwise specified)

Parameter	Min.	Тур.	Max.	Units	Conditions
Drain-to-Source Breakdown Voltage	-30			٧	$V_{GS} = 0V, I_D = -250\mu A$
Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, $I_D = -1 \text{mA}$
Static Drain to Source On Registance		51	64		$V_{GS} = -10V, I_D = -3.6A$ ②
Static Diam-to-Source On-Nesistance		82	103	11122	$V_{GS} = -4.5V, I_D = -2.9A$ ②
Gate Threshold Voltage	-1.3		-2.4	V	$V_{DS} = V_{GS}$, $I_D = -10\mu A$
Drain to Source Leakage Current			1		$V_{DS} = -24V, V_{GS} = 0V$
Diam-to-Source Leakage Current			150	μΑ	$V_{DS} = -24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
Gate-to-Source Forward Leakage			-100		$V_{GS} = -20V$
Gate-to-Source Reverse Leakage			100	117	$V_{GS} = 20V$
Internal Gate Resistance		12		Ω	
Forward Transconductance	5.0			S	$V_{DS} = -10V, I_D = -3.6A$
Total Gate Charge	_	4.8			$I_D = -3.6A$
Gate-to-Source Charge		1.2		nC	V _{DS} =-15V
Gate-to-Drain ("Miller") Charge		2.5			V _{GS} = -4.5V ②
Turn-On Delay Time		9.6			V _{DD} =-15V②
Rise Time		19			$I_D = -1A$
Turn-Off Delay Time		16		ris	$R_G = 6.8\Omega$
Fall Time		15			$V_{GS} = -4.5V$
Input Capacitance		388			V _{GS} = 0V
Output Capacitance		93		pF	V _{DS} = -25V
Reverse Transfer Capacitance		65			f = 1.0KHz
	Drain-to-Source Breakdown Voltage Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Forward Transconductance Total Gate Charge Gate-to-Source Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance	Breakdown Voltage Temp. Coefficient Static Drain-to-Source On-Resistance Gate Threshold Voltage -1.3 Drain-to-Source Leakage Current Gate-to-Source Forward Leakage Gate-to-Source Reverse Leakage Internal Gate Resistance Forward Transconductance 5.0 Total Gate Charge Gate-to-Drain ("Miller") Charge Turn-On Delay Time Rise Time Turn-Off Delay Time Fall Time Input Capacitance Output Capacitance ———————————————————————————————————	Drain-to-Source Breakdown Voltage -30 — Breakdown Voltage Temp. Coefficient — 0.02 Static Drain-to-Source On-Resistance — 82 Gate Threshold Voltage -1.3 — Drain-to-Source Leakage Current — — Gate-to-Source Forward Leakage — — Gate-to-Source Reverse Leakage — — Internal Gate Resistance — 12 Forward Transconductance 5.0 — Total Gate Charge — 4.8 Gate-to-Source Charge — 1.2 Gate-to-Drain ("Miller") Charge — 2.5 Turn-On Delay Time — 9.6 Rise Time — 16 Fall Time — 15 Input Capacitance — 388 Output Capacitance — 93	Drain-to-Source Breakdown Voltage -30 — — Breakdown Voltage Temp. Coefficient — 0.02 — Static Drain-to-Source On-Resistance — 51 64 — 82 103 Gate Threshold Voltage -1.3 — -2.4 Drain-to-Source Leakage Current — 1 — -150 Gate-to-Source Forward Leakage — -100 — -100 Gate-to-Source Forward Leakage — -100 — -100 Internal Gate Resistance — 12 — Forward Transconductance 5.0 — — Total Gate Charge — 4.8 — Gate-to-Source Charge — 1.2 — Gate-to-Source Charge — 1.2 — Gate-to-Drain ("Miller") Charge — 2.5 — Turn-On Delay Time — 9.6 — Rise Time — 16 — Turn-Off Delay Time —	Drain-to-Source Breakdown Voltage -30 — — V Breakdown Voltage Temp. Coefficient — 0.02 — V/°C Static Drain-to-Source On-Resistance — 51 64 mΩ Gate Threshold Voltage -1.3 — -2.4 V Drain-to-Source Leakage Current — — 1 μA Gate-to-Source Forward Leakage — — 150 nA Gate-to-Source Forward Leakage — — 100 nA Internal Gate Resistance — — 100 nA Internal Gate Resistance — 12 — Ω Forward Transconductance 5.0 — S Total Gate Charge — 4.8 — Gate-to-Source Charge — 1.2 — nC Gate-to-Drain ("Miller") Charge — 2.5 — Turn-On Delay Time — 19 — Rise Time — 15 — <t< td=""></t<>

Source - Drain Ratings and Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
I _S	Continuous Source Current			-1.3		MOSFET symbol
	(Body Diode)				A	showing the ((→ ▼)
I _{SM}	Pulsed Source Current			-15	^	integral reverse
	(Body Diode) ①			.0		p-n junction diode.
V _{SD}	Diode Forward Voltage			-1.2	٧	$T_J = 25^{\circ}C$, $I_S = -1.3A$, $V_{GS} = 0V$ ②
t _{rr}	Reverse Recovery Time		14	21	ns	$T_J = 25^{\circ}C$, $V_R = -24V$, $I_F = -1.3A$
Q _{rr}	Reverse Recovery Charge		7.2	11	nC	di/dt = 100A/µs ②

International IOR Rectifier

IRLML9301TRPbF

VGS -10V

-I_D, Drain-to-Source Current (A) 10 ≤60µs PUL 0.1 0.1 100 -V _{DS}, Drain-to-Source Voltage (V)

100

Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

 $I_D = -3.6A$

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area

International TOR Rectifier

IRLML9301TRPbF

Fig 9. Maximum Drain Current Vs. Ambient Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Typical Effective Transient Thermal Impedance, Junction-to-Ambient

International

TOR Rectifier

500 $R_{\mbox{\footnotesize{DS}}}(\mbox{\scriptsize{on}}), \mbox{ Drain-to -Source On Resistance } (m\Omega)$ 400 300 200 Vgs = -10V100 0 5 10 20 25 35 15 30 -I_D, Drain Current (A)

Fig 12. Typical On-Resistance Vs. Gate Voltage

Fig 13. Typical On-Resistance Vs. Drain Current

Fig 14a. Gate Charge Waveform

Fig 14b. Gate Charge Test Circuit

International TOR Rectifier

IRLML9301TRPbF

Fig 15. Typical Threshold Voltage Vs. Junction Temperature

Fig 16. Typical Power Vs. Time

Micro3 (SOT-23) Package Outline

Dimensions are shown in millimeters (inches)

DIMENSIONS					
SYMBOL	MILLIM	ETERS	INCH	HES	
STWIDOL	MIN	MAX	MIN	MAX	
Α	0.89	1.12	0.035	0.044	
A1	0.01	0.10	0.0004	0.004	
A2	0.88	1.02	0.035	0.040	
b	0.30	0.50	0.012	0.020	
С	0.08	0.20	0.003	0.008	
D	2.80	3.04	0.110	0.120	
E	2.10	2.64	0.083	0.104	
E1	1.20	1.40	0.047	0.055	
е	0.95	BSC	0.037	BSC	
e1	1.90	BSC	0.075	BSC	
L	0.40	0.60	0.016	0.024	
L1	0.54	REF	0.021	REF	
L2	0.25	BSC	0.010	BSC	
0	0	8	0	8	

- 1. DIMENSIONING & TOLERANCING PER ANSI Y14.5M-1994
- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 CONTROLLING DIMENSION: MILLIMETER.
- A CONTROLLING DIMENSION MILLIMETER.

 ADATUM PLANE HIS LOCATED AT THE MOLD PARTING LINE.

 ADATUM AND B TO BE DETERMINED AT DATUM PLANE H.

 ADMENSIONS D AND E1 ARE MEASUPED AT DATUM PLANE H. DIMENSIONS DOES NOT INCLIDE MOLD PROTINGIONS OR INTERLEAD FLASH SHALL NOT EXCEED 0.25 MM [0.010 INCH] PER SIDE.

 ADMENSION LIS THE LEAD LEWISH FOR SOLDEFINIO TO A SUBSTRATE.

 8. OUTLINE CONFORMS TO JEDEC OUTLINE TO 228 AB.

Micro3 (SOT-23/TO-236AB) Part Marking Information

Notes: This part marking information applies to devices produced after 02/26/2001

W = (1-26) IF PRECEDED BY LAST DIGIT OF CALENDAR YEAR

YEAR	Υ	WORK WEEK	W
2001	1	01	Α
2002	2	02	В
2003	3	03	С
2004	4	04	D
2005	5		
2006	6		
2007	7		
2008	8	1	1
2009	9	1	1
2010	0	24	X
		25	Υ
		26	Z

X = PART NUMBER CODE REFERENCE: A= IRLML2402

B = IRLML2803 C = IRLML6302 D = IRLML5103 E = IRLML6402 F = IRLML6401 G= IRLML2502 H = IRLML5203 I = IRLML0030

J = IRLML2030 K = IRLML0100 L = IRLML0060 W= (27-52) IF PRECEDED BY A LETTER

YEAR	Υ	WORK WEEK	W	
2001	Α	27	Α	
2002	В	28	В	
2003	С	29	С	
2004	D	30	D	
2005	Е			
2006	F			
2007	G			
2008	Н	1		
2009	J	7	1	
2010	K	50	X	

M = IRLML0040 N = IRLML2060 P = IRLML9301R = IRLML9303

Note: For the most current drawing please refer to IR website at: http://www.irf.com/package/

Micro3TM Tape & Reel Information Dimensions are shown in millimeters (inches)

- CONTROLLING DIMENSION : MILLIMETER.
 OUTLINE CONFORMS TO EIA-481 & EIA-541.

International

TOR Rectifier

Orderable part number	Package Type	Standard Pack		Note
_		Form	Quantity	
IRLML9301TRPbF	Micro3	Tape and Reel	3000	

Qualification information[†]

Qualification level	Consumer ^{††} (per JEDEC JES D47F ^{†††} guidelines)		
		MS L 1	
Moisture Sensitivity Level	Micro3	(per IPC/JEDEC J-STD-020D ^{†††})	
RoHS compliant	Yes		

- † Qualification standards can be found at International Rectifier's web site http://www.irf.com/product-info/reliability
- †† Higher qualification ratings may be available should the user have such requirements. Please contact your International Rectifier sales representative for further information: http://www.irf.com/whoto-call/salesrep/
- ††† Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Pulse width \leq 400 μ s; duty cycle \leq 2%.
- 3 Surface mounted on 1 in square Cu board
- Refer to <u>application note #AN-994.</u>

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information.12/2010