第 35 届全国信息学奥林匹克竞赛

CCF NOI 2018

模拟训练

时间: 2018 年 5 月 18 日 15:00 ~ 20:00

题目名称	史莱姆	原题加强	定向越野赛
题目类型	传统型	传统型	传统型
目录	slime	ext	orient
可执行文件名	slime	ext	orient
输入文件名	slime.in	ext.in	orient.in
输出文件名	slime.out	ext.out	orient.out
每个测试点时限	1 秒	4 秒	1 秒
内存限制	512 MB	512 MB	512 MB
测试点数目	20	20	10
每个测试点分值	5	5	10

提交源程序文件名

对于 C++ 语言	slime.cpp	ext.cpp	orient.cpp
对于 C 语言	slime.c	ext.c	orient.c
对于 Pascal 语言	slime.pas	ext.pas	orient.pas

编译选项

对于 C++ 语言	-02 -lm	-02 -lm	-O2 -lm
对于 C 语言	-02 -lm	-02 -lm	-O2 -lm
对于 Pascal 语言	-02	-02	-02

史莱姆 (slime)

【题目描述】

N+M 只史莱姆在一条线段上玩耍,其中 N 只史莱姆在线段的一端点上,另外 M 只在线段的另一端点上。

史莱姆会进行若干次合并。每次合并,可以任选 K 只史莱姆,将它们合并为一只。合并后的新史莱姆的位置为线段上到原来 K 只史莱姆的距离的平方和最小的点。

保证 N+M-1 能被 K-1 整除,因此合并到最后恰有 1 只史莱姆。

问:最后的这只史莱姆的位置有多少种可能?输出可能的位置数对 $10^9 + 7$ 取模的结果。

【输入格式】

从文件 slime.in 中读入数据。

输入一行三个正整数 N, M, K。保证 $1 \le N, M \le 2000, 2 \le K \le 2000, K-1|N+M-1$ 。

【输出格式】

输出到文件 slime.out 中。

输出一行一个整数,表示最后的史莱姆可能的位置数对 109+7 取模的结果。

【样例1输入】

2 2 2

【样例1输出】

5

【样例 1 解释】

最后的史莱姆位置有 5 种,分别为距离线段一端点 $\frac{1}{4}$, $\frac{3}{8}$, $\frac{1}{2}$, $\frac{5}{8}$, $\frac{3}{4}$ 的位置。

【样例 2 输入】

3 4 3

【样例 2 输出】

9

【样例3输入】

150 150 14

【样例3输出】

937426930

【子任务】

测试点	N, M	K
1-3	≤ 10	≤ 10
4-5	≤ 30	≤ 30
6-9	< 100	= 2
10-12	≤ 100	≤ 100
13-15	≤ 2000	= 2
16-20	≥ 2000	≤ 2000

原题加强(ext)

【题目描述】

temporaryDO 是一个很强的 OIer。在 4 月,他在省队选拔赛的考场上见到了《林克卡特树》一题。temporaryDO 看完这道题就会做了:"这题和我之前出过的***题做法不是一样吗?"于是,他在考场上 10 分钟就解决了这道题。

AK 完没事干的 temporaryDO 决定将这道题的加强版出出来。

temporaryDO 有一个 N 个点的树,每条边有一个非负整数边权 v_i ,表示经过这条 边需要支付 v_i 的费用。temporaryDO 需要在树上连接**不超过** K 条边权为 V 的边,得 到一个新的无向图。接着,他会在图上寻找一条经过每条边**至少**一次的回路(**可以不是简单回路**),每次经过一条边需要支付相应的费用。

如果 temporaryDO 连接合适的边、选择合适的路径从而使路径的总费用最小化,那么这个最小费用是多少?

【输入格式】

从文件 ext.in 中读入数据。

输入第一行包含三个正整数 N, K, V,保证 $0 \le K < N \le 3 \times 10^5$, $0 \le V \le 10^6$ 。树的结点编号为 $1, 2, \dots, N$ 。

接下来 N-1 行,每行包含三个整数 x_i, y_i, v_i ,表示第 i 条边连接树中的 x_i, y_i 两点,它的边权为 v_i 。保证 $1 \le x_i, y_i \le N$, $0 \le v_i \le 10^6$ 。

【输出格式】

输出到文件 ext.out 中。

输出一行一个整数,表示答案。

【样例1输入】

- 8 1 0
- 1 2 1
- 1 3 2
- 3 4 1
- 3 5 2
- 5 6 1
- 5 7 2
- 5 8 1

【样例1输出】

13

【样例 2 输入】

- 8 2 0
- 1 2 1
- 1 3 2
- 3 4 1
- 3 5 2
- 5 6 1
- 5 7 2
- 5 8 1

【样例 2 输出】

11

【样例3输入】

- 8 2 3
- 1 2 1
- 1 3 2
- 3 4 1
- 3 5 2
- 5 6 1
- 5 7 2
- 5 8 1

【样例3输出】

16

【样例 4】

见选手目录下的 ext/ext4.in 与 ext/ext4.ans。

【子任务】

测试点编号	N	K	
1	≤ 5		
2	≤ 10		
3	≤ 20		
4	≤ 100	< <i>N</i>	
5	≤ 300		
6	≤ 500		
7	≤ 1000		
8		=0	
9		_ 1	
10		≤ 1	
11		≤ 2	
12		<u> </u>	
13	$\leq 10^5$		
14		104	
15		$\leq 10^4$	
16			
17			
18		< <i>N</i>	
19	2 2 105	< 1V	
20	$\leq 3 \times 10^5$		

定向越野赛 (orient)

【题目描述】

C 国一年一度的定向越野赛将在 3 个月后举行。小明正在制定他的训练计划。

他在一张 n 个点 n-1 条边的无向连通图上进行训练,点的编号为 $1,2,\cdots,n$,第 i 条边连接两个点 x_i,y_i ,边的长度为 w_i 。每一次小明会等概率地随机选择图中恰好 k ($k \le n$) 个点作为检查点,然后他会从某个检查点出发,走一条最短的、能经过每个检查点至少一次的路径(可以重复经过点)最后回到出发点,作为这次训练的内容。

现在,小明有 q 个询问,每次询问给出一个 k_i ,希望你能帮他求出,当随机选择恰好 k_i 个检查点时,他进行一次训练期望走过的距离。

【输入格式】

从文件 orient.in 中读入数据。

输入文件的第一行包含 3 个正整数 n,q,表示树上的节点个数和小明的询问个数。接下来 n-1 行,每行 3 个正整数 x_i,y_i,w_i ,表示有一条连接点 x_i 和 y_i ,长度为 w_i 的无向边。

接下来 q 行,每行一个正整数 k_i ,表示一个询问。

【输出格式】

输出到文件 orient.out 中。

输出 q 行,依次表示每个询问的答案。为了避免精度误差,请输出答案在模 998244353 意义下的值,即:设答案的最简分数形式为 $\frac{p}{q}$,输出整数 x 满足 $qx \equiv p$ (mod 998244353) 且 $0 \le x < 998244353$ 。

【样例1输入】

- 3 3
- 1 2 2
- 2 3 3
- 1
- 2
- 3

【样例1输出】

Ω

665496242

10

【样例1解释】

对于第 2 组询问,选取点集 $\{1,2\},\{1,3\},\{2,3\}$ 的最短距离分别为 4,10,6,答案为 $\frac{20}{3}$ 。由于 $3\times665496242\equiv20\pmod{998244353}$,所以输出 665496242。

【样例 2 输入】

- 7 3
- 1 2 4
- 2 3 8
- 2 4 3
- 4 5 10
- 4 6 6
- 6 7 1
- 3
- 5
- 2

【样例 2 输出】

570425378

713031731

713031703

【样例 3】

见选手目录下的 *orient/orient3.in* 与 *orient/orient3.ans*。

【子任务】

- 对于 10% 的数据, $n, q \le 5$;
- 对于 20% 的数据, $n, q \le 20$;
- 对于 40% 的数据, $n, q \le 200$;
- 对于 60% 的数据, *n*, *q* ≤ 2000;
- 对于 100% 的数据, $n, q \le 200000$, $1 \le w_i \le 10^4$, $1 \le k_i \le n$.