Disciplina de Inteligência Artificial e Robótica

Material com atividades de laboratório

Fabricio Barth

https://insper.github.io/ia_bcc/

Conteúdo

1. Inteligência Artificial e Robótica - 2025/2	3
1.1 Horário das aulas	3
1.2 Horário de atendimento	3
1.3 Informações adicionais sobre os projetos e implementações	3
1.4 Contato	3
2. Introdução	4
3. Ementa	4
3.1 Objetivos	4
3.2 Conteúdo Programático	4
3.3 Bibliografia Básica	4
3.4 Bibliografia Complementar	5
4. Plano de aula	6
4.1 Introdução à Inteligência Artificial	6
4.2 Busca em Espaços de Estados	7
4.3 Busca Heurística	8
4.4 Ambientes Competitivos	9
4.5 Projeto Intermediário	9
4.6 Aprendendo políticas	10
4.7 Robótica	10
5. Atividades e Critérios de aprovação	12
$5.1\ N$ exercícios sobre agentes autônomos	12
5.2 2 projetos	12
5.3 Conversão de conceito para valor numérico	12
6. Aulas	14
6.1 Introdução	14
7. Referências	17
7.1 Introdução à Inteligência Artificial	17

1. Inteligência Artificial e Robótica - 2025/2

- 1. Ementa da disciplina.
- 2. Plano aula-a-aula da disciplina.
- 3. Critérios de avaliação.

1.1 Horário das aulas

Segundas e quartas das 07:30 até 09:30.

1.2 Horário de atendimento

Segundas das 16:30 às 18:00 na sala TI-27 no prédio P1 no 7
o andar.

1.3 Informações adicionais sobre os projetos e implementações

- Todas os projetos e implementações irão utilizar a linguagem de programação **Python**. Sendo assim, espera-se que os alunos desta disciplina tenham conhecimento de programação em Python.
- As entregas dos projetos e exercícios serão via Github Classroom

1.4 Contato

Em caso de dúvida ou comentários, favor encaminhar e-mail para fabriciojb@insper.edu.br.

(> July 16, 2025

2. Introdução

Aplicações modernas apontam para um conceito de Inteligência Artificial (IA) voltado para duas principais características: **autonomia** e **adaptabilidade**. Autonomia é a habilidade de executar tarefas em contextos complexos sem constante intervenção do ser humano e adaptabilidade é a habilidade de melhorar seu desempenho aprendendo com a experiência.

3. Ementa

Introdução à Inteligência Artificial; Definições de Agente Autônomo; Arquitetura computacional de agentes e o laço percepção – planejamento e ação; Caracterização de Ambientes; Resolução de problemas usando espaço de busca; Estratégias de busca; Algoritmos de busca cega e informados; Conceito de Heurística; Teoria de Jogos e Ambientes Competitivos; Aprendizagem por Reforço; Percepção, sensores e incerteza; Noções de visão computacional e reconhecimento de padrões; Aplicação comercial de robôs e usos emergentes, soluções de plataformas robóticas e de software para robôs (R.O.S, OpenCV).

3.1 Objetivos

Ao final da disciplina o estudante será capaz de:

- 1. Descrever os conceitos, técnicas e métodos para o desenvolvimento de Agentes Autônomos.
- 2. Identificar quais tipos de problemas podem ser resolvidos através do uso de Agentes Autônomos.
- 3. Criar soluções para alguns problemas clássicos desta área.
- 4. Especificar, desenvolver e testar projetos que façam uso de Agentes Autônomos para resolver problemas complexos.
- 5. Planejar e executar um trabalho em equipe, fornecendo e assimilando devolutivas.

3.2 Conteúdo Programático

- 1. Definições de Agente Autônomo e resolução de problemas.
- 2. Estratégias de busca: algoritmos de busca cega e algoritmos informados.
- 3. Heurísticas.
- 4. Implementação de agentes autônomos utilizando estratégias de busca.
- 5. Programação por restrições (CSP).
- 6. Ambientes competitivos e teoria de jogos.
- 7. Algoritmo Min-Max e função de utilidade.
- 8. Implementação de agentes autônomos para ambientes competitivos.
- 9. Aprendizagem por Reforço.
- 10. Implementação de agentes autônomos usando aprendizagem por reforço.
- 11. Algoritmo Q-Learning.
- 12. Implementações de agentes autônomos usando o projeto Gym.
- 13. Implementação de um agente robótico.

3.3 Bibliografia Básica

1. NORVIG, P.; RUSSELL, S., Inteligência Artificial, 3ª ed., Campus Elsevier, 2013

3.4 Bibliografia Complementar

- $1.\ O'KANE,\ J.,\ A\ Gentle\ introduction\ to\ ROS,\ CreateSpace\ Publishing,\ 2013$
- 2. SIEGWART, R.; NOURBAKHSH, I. R.; SCARAMUZZA, D., Introduction to Autonomous Mobile Robots., 2ª ed., MIT Press, 2011
- 3. SILVER, D.; SINGH S.; PRECUP D.; SUTTON R. Reward is enough. Artificial Intelligence. Vol 299, 2021. Disponível em https://doi.org/10.1016/j.artint.2021.103535.
- 4. SILVER, D.; HUBERT T.; SCHRITTWIESER, J.; ANTONOGLOU, I.; LAI, M.; GUEZ, A. A general reinforcement learning algorithm that masters chess, shogi, and Go through self-play. Science 362, 1140-1144 (2018).

() July 23, 2024

4. Plano de aula

O plano de aula desta disciplina está divido em **seis** (6) blocos. Para cada bloco as seguintes atividades estão planejadas.

nção!

O programa está sempre sujeito a alterações e adaptações conforme as disciplina é executada.

4.1 Introdução à Inteligência Artificial

Data	Fundamentos / Conteúdo	Dinâmica
03-	Apresentação da disciplina e critérios de avaliação.	Dinâmica
Fev	Introdução à IA e ao conceito de agente autônomo	em grupo
05-	Revisão do conceito de agente autônomo, discussão sobre	Dinâmica
Fev	diferenças de agente autônomo e software convencional, e	em grupo
	propriedades de ambientes.	

O conteúdo associado a este bloco é 1 e 2

4.2 Busca em Espaços de Estados

Data	Fundamentos / Conteúdo	Dinâmica
10- Fev	Resolução de problemas através de espaço de busca.	Exercícios em sala de aula onde os alunos são convidados a definir estado, transição, estado meta e custo da solução encontrada para diversos problemas.
12- Fev	Estratégias de busca. Algoritmos de busca cegos (largura, profundidade, iterativo, custo uniforme). Critérios de comparação entre os algoritmos.	Implementação dos algoritmos de busca e dos agentes autônomos em Python para resolver alguns problemas clássicos da literatura.
17- Fev	Estratégias de busca. Algoritmos de busca cegos (largura, profundidade, iterativo, custo uniforme). Critérios de comparação entre os algoritmos.	Implementação dos algoritmos de busca e dos agentes autônomos em Python para resolver alguns problemas clássicos da literatura.
19- Fev	Estratégias de busca. Algoritmos de busca cegos (largura, profundidade, iterativo, custo uniforme). Critérios de comparação entre os algoritmos.	Implementação dos algoritmos de busca e dos agentes autônomos em Python para resolver alguns problemas clássicos da literatura.

O conteúdo associado a este bloco é 3, 4, 5, 6 e 7.

4.3 Busca Heurística

Data	Fundamentos / Conteúdo	Dinâmica
24-	Estratégia de busca. Algoritmos de	Implementação dos algoritmos
Fev	busca **informados** (busca	de busca e dos agentes
	gananciosa, \$A^{*}\$, família subida	autônomos em Python para
	da montanha). Função heurística.	resolver alguns problemas
	Comparação entre os algoritmos.	clássicos da literatura.
26-	Estratégia de busca. Algoritmos de	Implementação dos algoritmos
Fev	busca **informados** (busca	de busca e dos agentes
	gananciosa, \$A^{*}\$, família subida	autônomos em Python para
	da montanha). Função heurística.	resolver alguns problemas
	Comparação entre os algoritmos.	clássicos da literatura.
10-	Estratégia de busca. Algoritmos de	Implementação dos algoritmos
Mar	busca **informados** (busca	de busca e dos agentes
	gananciosa, \$A^{*}\$, família subida	autônomos em Python para
	da montanha). Função heurística.	resolver alguns problemas
	Comparação entre os algoritmos.	clássicos da literatura.
12-	Desenvolvimento de um agente	Implementação de um projeto,
Mar	autônomo que atua em um ambiente	provavelmente, envolvendo
	discreto, determinístico, síncrono,	algum framework de simulação
	simulado e *single agent*.	(i.e., Gym Open AI).

O conteúdo associado a este bloco é 8, 9, 10 e 11.

4.4 Ambientes Competitivos

Data	Fundamentos / Conteúdo	Dinâmica
17-	Constraint Satisfaction	Implementação de um agente autônomo
Mar	Problems	capaz de identificar estados que
		satisfazem determinadas restrições.
19-	Jogos de tabuleiro, busca	Implementação de um agente autônomo
Mar	competitiva, algoritmo min-	que deverá atuar em um ambiente
	max e função de utilidade.	competitivo, determinístico e
		completamente observável.
24-	SEMANA DE PROVAS	SEMANA DE PROVAS - Prova
Mar		Intermediária
26-	SEMANA DE PROVAS	SEMANA DE PROVAS - Prova
Mar		Intermediária

O conteúdo associado a este bloco é 12 e 13.

4.5 Projeto Intermediário

Data	Fundamentos / Conteúdo	Dinâmica
31-	Desenvolvimento de um agente autônomo que	Desenvolvimento de
Mar	atua em um ambiente discreto, determinístico, síncrono, simulado e *single agent* ou *multi- agent*.	projeto em sala de aula
02- Abr	Desenvolvimento de um agente autônomo que atua em um ambiente discreto, determinístico, síncrono, simulado e *single agent* ou *multiagent*.	Desenvolvimento de projeto em sala de aula
07- Abr	Studio	Desenvolvimento de projeto em sala de aula

O conteúdo associado a este bloco é 14.

4.6 Aprendendo políticas

Data	Fundamentos / Conteúdo	Dinâmica
09- Abr	Definição de aprendizagem por reforço, política de controle e algoritmo Q- Learning.	Discussão em sala. Exercícios em sala de aula envolvendo o ambiente OpenAl Gym. Implementação de agentes autônomos usando o algoritmo Q- Learning.
14- Abr 16-	Algoritmo Q-Learning: detalhes e hiperparâmetros. Apresentação do ambiente OpenAl Gym. Algoritmo Q-Learning:	Exercícios em sala de aula envolvendo o ambiente OpenAl Gym. Implementação de agentes autônomos usando o algoritmo Q-Learning. Implementação de agentes autônomos
Abr	detalhes e hiperparâmetros.	usando o algoritmo Sarsa.
23- Abr	Ambientes não- determinísticos. Reinforcement Learning: métodos tabulares	Implementação de agentes autônomos usando o algoritmo Q-Learning e Sarsa
28- Abr	Ambientes não- determinísticos. Reinforcement Learning: métodos tabulares	Implementação de agentes autônomos usando o algoritmo Q-Learning e Sarsa

O conteúdo associado a este bloco é 15, 16, 17 e 18.

4.7 Robótica

Data	Fundamentos / Conteúdo	Dinâmica
30-	Visão geral sobre robótica e	Visão geral sobre robótica e
Abr	framework ROS2	framework ROS2
05-	Desenvolvimento de um agente	Implementação de um projeto
Mai	robótico (físico).	envolvendo um robô físico
07-	Desenvolvimento de um agente	Implementação de um projeto
Mai	robótico (físico).	envolvendo um robô físico
12-	Avaliação Final da disciplina	Avaliação Final da disciplina
Mai		
14-	Avaliação Final da disciplina	Avaliação Final da disciplina
Mai		

O conteúdo associado a este bloco é 19.

April 29, 2025

5. Atividades e Critérios de aprovação

Os objetivos de aprendizagem desta disciplina serão avaliados através das seguintes atividades:

Atividade	Peso
N exercícios (APS) sobre agentes autônomos	10%
2 projetos	30%
Avaliação Intermediária	30%
Avaliação Final	30%

O critério para aprovação é:

- nota final superior ou igual a cinco (5);
- a média das avaliações intermediária e final deve ser igual ou maior que cinco (5);
- e 75% de frequência mínima nas aulas.

5.1 N exercícios sobre agentes autônomos

Seguem os enunciados que se encaixam nesta categoria:

Descrição	Prazo para entrega	
TBD	TBD	

5.2 2 projetos

Seguem os enunciados que se encaixam nesta categoria:

Descrição	Prazo para entrega
TBD	TBD

5.3 Conversão de conceito para valor numérico

O resultado de algumas avaliações poderá adotar conceitos (A+, B,..., I) ao invés de um valor numérico. Para estes casos será utilizada a seguinte tabela de conversão:

A +	A	В	C	D	I
10	9	7	5	4	2

- Insuficiente (I): não entregou, entregou algo que não exigiu esforço ou desviou do objetivo.
- Em Desenvolvimento (D): entregou algo que estava de acordo com o objetivo e exigiu algum esforço, mas possui problemas e limitações importantes. O mínimo aceitável não foi atingido.
- Básico (C): o mínimo aceitável do objetivo medido foi alcançado, mas o desempenho foi abaixo do esperado. É suficiente para aprovação.
- Esperado (B): atingiu o desempenho esperado.
- $\bullet \ \textbf{Avançado} \ \textbf{(A)} : o \ desempenho \ foi \ acima \ do \ esperado. \ \acute{E} \ algo \ desej\'avel, \ mas \ n\~ao \ \acute{e} \ motivo \ de \ preocupaç\~ao \ se \ n\~ao \ for \ alcançado.$

() July 16, 2025

6. Aulas

6.1 Introdução

6.1.1 Introdução à Inteligência Artificial

O objetivo desta aula é responder as seguintes perguntas:

- O que é inteligência artificial (IA) geral ou profunda?
- O que é inteligência artificial fraca?
- Quais são as principais aplicações de IA?
- Qual é a definição de agente autônomo?
- Qual é a relação de agente autônomo com IA?
- Quais as funcionalidades que um agente autônomo precisa ter e como podemos desenvolver tais funcionalidades?
- Qual é o escopo desta disciplina? Ver ementa.
- Quais são as outras disciplinas do curso que estão relacionadas com este tópico?

As respostas para as perguntas acima serão construídas de forma colaborativa em sala de aula.

Material de referência

Material com exemplos de ficção científica:

Material com exemplos de aplicações reais:

Uma apresentação sobre a evolução da IA:

January 30, 2024

6.1.2 Agentes Autônomos

Exemplo do aspirador de pó

Um robô aspirador de pó deve limpar uma casa com duas posições. As operações que ele sabe executar são:

- sugar
- ir para a posição da esquerda
- ir para a posição da direita

Em **grupo** de 4 pessoas responda as seguintes perguntas (tempo de 15 minutos):

- O que é relevante representar nos estados do mundo? Como os estados são estruturados (estrutura de dados) e qual o significado dela (dos campos)?
- Quais são os estados possíveis do mundo do aspirador e as suas transições?
- Quais são as consequências das ações sobre os estados? As ações são determinísticas?
- ullet É possível desenhar o **grafo** com todos os estados e transições para este problema?
- · Apresente uma solução possível. Uma sequência de ações que fazem o robô sair do estado inicial e chegar no estado final.

Considere como estado final a situação ilustrada abaixo:

Prepararem-se para eventualmente apresentar as suas respostas.

Representação de um problema na forma de estado, transição, grafo

S February 10, 2023

7. Referências

7.1 Introdução à Inteligência Artificial

January 30, 2024

