

74LCX139

LOW VOLTAGE CMOS DUAL 2 TO 4 DECODER/DEMULTIPLEXER

- 5V TOLERANT INPUTS
- HIGH SPEED: t_{PD} = 6.2ns (MAX.) at V_{CC} = 3V
- POWER DOWN PROTECTION ON INPUTS AND OUTPUTS
- SYMMETRICAL OUTPUT IMPEDANCE: |I_{OH}| = I_{OL} = 24mA (MIN) at V_{CC} = 3V
- PCI BUS LEVELS GUARANTEED AT 24 mA
- BALANCED PROPAGATION DELAYS: tplh ≅ tphl
- OPERATING VOLTAGE RANGE:
 V_{CC}(OPR) = 2.0V to 3.6V (1.5V Data Retention)
- PIN AND FUNCTION COMPATIBLE WITH 74 SERIES 139
- LATCH-UP PERFORMANCE EXCEEDS 500mA (JESD 17)
- ESD PERFORMANCE: HBM > 2000V (MIL STD 883 method 3015); MM > 200V

DESCRIPTION

The 74LCX139 is a low voltage CMOS DUAL 2 TO 4 LINE DECODER/DEMULTIPLEXER fabricated with sub-micron silicon gate and double-layer metal wiring C²MOS technology. It is ideal for low power and high speed 3.3V applications; it can be interfaced to 5V signal environment for inputs.

Table 1: Order Codes

PACKAGE	T & R
SOP	74LCX139MTR
TSSOP	74LCX139TTR

The active low enable input can be used for gating or as a data input for demultiplexing applications. While the enable input is held high, all four outputs are high independently of the other inputs.

It has same speed performance at 3.3V than 5V AC/ACT family, combined with a lower power consumption.

All inputs and outputs are equipped with protection circuits against static discharge, giving them 2KV ESD immunity and transient excess voltage.

Figure 1: Pin Connection And IEC Logic Symbols

September 2004 1/12

Figure 2: Input And Output Equivalent Circuit

Table 2: Pin Description

PIN N°	SYMBOL	NAME AND FUNCTION
1, 15	1 <u>G</u> , 2 <u>G</u>	Enable Inputs
2, 3	1A, 1B	Address Inputs
4, 5, 6, 7	1 <u>Y0</u> to 1 <u>Y3</u>	Outputs
12, 11, 10, 9	2 <u>Y0</u> to 2 <u>Y3</u>	Outputs
14, 13	2A, 2B	Address Inputs
8	GND	Ground (0V)
16	V _{CC}	Positive Supply Voltage

Table 3: Truth Table

	INPUTS			DIITE		
ENABLE SELECT		- OUTPUTS				
G	В	Α	<u>Y0</u>	<u>Y1</u>	<u>Y2</u>	<u> 73</u>
Н	Х	Х	Н	Н	Н	Н
L	L	L	L	Н	Н	Н
L	L	Н	Н	L	Н	Н
L	Н	L	Н	Н	L	Н
L	Н	Н	Н	Н	Н	L

X : Don't Care

Figure 3: Logic Diagram

This logic diagram has not be used to estimate propagation delays

Table 4: Absolute Maximum Ratings

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage	-0.5 to +7.0	V
VI	DC Input Voltage	-0.5 to +7.0	V
Vo	DC Output Voltage (V _{CC} = 0V)	-0.5 to +7.0	V
Vo	DC Output Voltage (High or Low State) (note 1)	-0.5 to V _{CC} + 0.5	V
I _{IK}	DC Input Diode Current	- 50	mA
I _{OK}	DC Output Diode Current (note 2)	- 50	mA
I _O	DC Output Current	± 50	mA
I _{CC}	DC Supply Current per Supply Pin	± 100	mA
I _{GND}	DC Ground Current per Supply Pin	± 100	mA
T _{stg}	Storage Temperature	-65 to +150	°C
TL	Lead Temperature (10 sec)	300	°C

Absolute Maximum Ratings are those values beyond which damage to the device may occur. Functional operation under these conditions is not implied 1) I_O absolute maximum rating must be observed 2) V_O < GND

Table 5: Recommended Operating Conditions

Symbol	Parameter	Value	Unit
V _{CC}	Supply Voltage (note 1)	2.0 to 3.6	V
V _I	Input Voltage	0 to 5.5	V
Vo	Output Voltage (V _{CC} = 0V)	0 to 5.5	V
V _O	Output Voltage (High or Low State)	0 to V _{CC}	V
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 3.0 to 3.6V)	± 24	mA
I _{OH} , I _{OL}	High or Low Level Output Current (V _{CC} = 2.7V)	± 12	mA
T _{op}	Operating Temperature	-55 to 125	°C
dt/dv	Input Rise and Fall Time (note 2)	0 to 10	ns/V

¹⁾ Truth Table guaranteed: 1.5V to 3.6V 2) $V_{\rm IN}$ from 0.8V to 2V at $V_{\rm CC}$ = 3.0V

Table 6: DC Specifications

		Te	est Condition					
Symbol	Parameter	v _{cc}		-40 to 85 °C		-55 to 125 °C		Unit
		(V)		Min.	Max.	Min.	Max.	
V _{IH}	High Level Input Voltage	2.7 to 3.6		2.0		2.0		V
V_{IL}	Low Level Input Voltage	2.7 10 3.6			0.8		0.8	V
V _{OH}	High Level Output	2.7 to 3.6	I _O =-100 μA	V _{CC} -0.2		V _{CC} -0.2		
	Voltage	2.7	I _O =-12 mA	2.2		2.2		V
		2.0	I _O =-18 mA	2.4		2.4] V
		3.0	I _O =-24 mA	2.2		2.2		
V _{OL}	Low Level Output	2.7 to 3.6	I _O =100 μA		0.2		0.2	
	Voltage	2.7	I _O =12 mA		0.4		0.4	V
		2.0	I _O =16 mA		0.4		0.4	V
		3.0	I _O =24 mA		0.55		0.55	
I _I	Input Leakage Current	2.7 to 3.6	V _I = 0 to 5.5V		± 5		± 5	μΑ
I _{off}	Power Off Leakage Current	0	V_{I} or $V_{O} = 5.5V$		10		10	μА
I _{CC}	Quiescent Supply	2.7 to 3.6	$V_I = V_{CC}$ or GND		10		10	
	Current 2	2.7 10 3.6	V_{I} or V_{O} = 3.6 to 5.5 V		± 10		± 10	μΑ
ΔI_{CC}	I _{CC} incr. per Input	2.7 to 3.6	$V_{IH} = V_{CC} - 0.6V$		500		500	μΑ

Table 4: DYNAMIC SWITCHING CHARACTERISTICS

		Tes	Test Condition			Value		
Symbol	Parameter	v _{cc}		7	Γ _A = 25 °C	;	Unit	
		(V)		Min.	Тур.	Max.		
V _{OLP}	Dynamic Low Level Quiet	3.3	C _L = 50pF		0.8		V	
V _{OLV}	Output (note 1)		$V_{IL} = 0V, V_{IH} = 3.3V$		-0.8		V	

¹⁾ Number of outputs defined as "n". Measured with "n-1" outputs switching from HIGH to LOW or LOW to HIGH. The remaining output is measured in the LOW state.

Table 7: AC Electrical Characteristics

		Test Condition			Value						
Symbol	Parameter	V _{CC}	C _L (pF)	R _L	t _s = t _r (ns)	-40 to 85 °C		-55 to 125 °C		Unit	
		(V)		(Ω)		Min.	Max.	Min.	Max.		
t _{PLH} t _{PHL}	Propagation <u>D</u> elay	2.7	- 50	50 500	2.5		7.3		7.3	nc	
	Time A, B to Y	3.0 to 3.6			300 2.5	1.0	6.2	1.0	6.2	ns	
t _{PLH} t _{PHL}	Propagation Delay	2.7		50 500	500	2.5		5.8		5.8	no
	Time G to Y	3.0 to 3.6	30		00 2.5	1.0	5.3	1.0	5.3	ns	
t _{OSLH} t _{OSHL}	Output To Output Skew Time (note1, 2)	3.0 to 3.6	50	500	2.5		1.0		1.0	ns	

¹⁾ Skew is defined as the absolute value of the difference between the actual propagation delay for any two outputs of the same device switching in the same direction, either HIGH or LOW (t_{OSLH} = | t_{PLHm} - t_{PLHn}|, t_{OSHL} = | t_{PHLm} - t_{PHLn}|)
2) Parameter guaranteed by design

Table 8: Capacitive Characteristics

		Tes					
Symbol	Parameter	V _{CC}		٦	Γ _A = 25 °C		Unit
		(V)		Min.	Тур.	Max.	
C _{IN}	Input Capacitance	3.3	$V_{IN} = 0$ to V_{CC}		6		pF
C _{PD}	Power Dissipation Capacitance (note 1)	3.3	$f_{IN} = 10MHz$ $V_{IN} = 0 \text{ or } V_{CC}$		26		pF

¹⁾ C_{PD} is defined as the value of the IC's internal equivalent capacitance which is calculated from the operating current consumption without load. (Refer to Test Circuit). Average operating current can be obtained by the following equation. $I_{CC(opr)} = C_{PD} \times V_{CC} \times f_{IN} + I_{CC}/2$ (per gate)

Figure 5: Test Circuit

 $C_L=50$ pF or equivalent (includes jig and probe capacitance) $R_L=500\Omega$ or equivalent $R_T=Z_{OUT}$ of pulse generator (typically $50\Omega)$

Figure 6: Waveform - Propagation Delays For Inverting Outputs (f=1MHz; 50% duty cycle)

SO-16 MECHANICAL DATA

DIM		mm.		inch					
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.			
А			1.75			0.068			
a1	0.1		0.25	0.004		0.010			
a2			1.64			0.063			
b	0.35		0.46	0.013		0.018			
b1	0.19		0.25	0.007		0.010			
С		0.5			0.019				
c1			45°	(typ.)					
D	9.8		10	0.385		0.393			
Е	5.8		6.2	0.228		0.244			
е		1.27			0.050				
e3		8.89			0.350				
F	3.8		4.0	0.149		0.157			
G	4.6		5.3	0.181		0.208			
L	0.5		1.27	0.019		0.050			
М			0.62			0.024			
S		8° (max.)							

TSSOP16 MECHANICAL DATA

DIM		mm.		inch			
DIM.	MIN.	TYP	MAX.	MIN.	TYP.	MAX.	
А			1.2			0.047	
A1	0.05		0.15	0.002	0.004	0.006	
A2	0.8	1	1.05	0.031	0.039	0.041	
b	0.19		0.30	0.007		0.012	
С	0.09		0.20	0.004		0.0079	
D	4.9	5	5.1	0.193	0.197	0.201	
E	6.2	6.4	6.6	0.244	0.252	0.260	
E1	4.3	4.4	4.48	0.169	0.173	0.176	
е		0.65 BSC			0.0256 BSC		
К	0°		8°	0°		8°	
L	0.45	0.60	0.75	0.018	0.024	0.030	

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.45		6.65	0.254		0.262
Во	10.3		10.5	0.406		0.414
Ko	2.1		2.3	0.082		0.090
Ро	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Tape & Reel TSSOP16 MECHANICAL DATA

DIM.	mm.			inch		
	MIN.	TYP	MAX.	MIN.	TYP.	MAX.
А			330			12.992
С	12.8		13.2	0.504		0.519
D	20.2			0.795		
N	60			2.362		
Т			22.4			0.882
Ao	6.7		6.9	0.264		0.272
Во	5.3		5.5	0.209		0.217
Ко	1.6		1.8	0.063		0.071
Po	3.9		4.1	0.153		0.161
Р	7.9		8.1	0.311		0.319

Table 9: Revision History

Date	Revision	Description of Changes
15-Sep-2004	3	Ordering Codes Revision - pag. 1.

Information furnished is believed to be accurate and reliable. However, STMicroelectronics assumes no responsibility for the consequences of use of such information nor for any infringement of patents or other rights of third parties which may result from its use. No license is granted by implication or otherwise under any patent or patent rights of STMicroelectronics. Specifications mentioned in this publication are subject to change without notice. This publication supersedes and replaces all information previously supplied. STMicroelectronics products are not authorized for use as critical components in life support devices or systems without express written approval of STMicroelectronics.

The ST logo is a registered trademark of STMicroelectronics All other names are the property of their respective owners

© 2004 STMicroelectronics - All Rights Reserved

STMicroelectronics group of companies

Australia - Belgium - Brazil - Canada - China - Czech Republic - Finland - France - Germany - Hong Kong - India - Israel - Italy - Japan - Malaysia - Malta - Morocco - Singapore - Spain - Sweden - Switzerland - United Kingdom - United States of America www.st.com