

CAI 4104/6108 – Machine Learning Engineering: Introduction

Prof. Vincent Bindschaedler

Spring 2024

Administrivia

- Setting up your environment
 - Happy to see Slack used for this
 - If you are having issues that you cannot resolve, let us know (Slack, Canvas, email, office hours)
- Office Hours
 - Mondays @ 11:30 AM (online) or by appointment
- TA Office Hours
 - Mondays and Wednesday @ 2:00 PM (online)
 - Fridays @ 4:30 PM (online)
- Background Survey (not graded)
 - Average score is about 60% so far

What is Machine Learning?

Definitions:

- "Machine learning is the study of computer algorithms that improve automatically through experience."
 - * Tom Mitchell, 1997.
- "Machine learning is programming computers to optimize a performance criterion using example data or past experience."
 - Ethem Alpaydin, 2004.
- What makes an algorithm a machine learning algorithm?
- In this course:
 - Machine learning is about using data to create models (broadly construed)
 that can make predictions (broadly construed)
 - Note: old(er) techniques like linear models, decision tables, or decision trees are still ML
 - Terminology: "machine learning" = "learning"

What is Machine Learning?

- An alternative view of what machine learning is about:
 - 1. Identify a problem
 - 2. Collect and prepare a dataset for it
 - 3. Use an algorithm to build a model from the dataset
 - 4. Use the model to solve the problem

- Problem: how to tell when an avocado is ripe?
- Dataset?
 - Find one online (e.g., Kaggle's fruits 360 dataset)
 - Create one
 - Go to Publix, buy a bunch of avocados
 - For each avocado: slice it open and label it (as ripe or unripe)

Features?

- We could take a picture of each avocado and use the pixels' RGB as features, or
- We could extract features manually. For example:
 - Color: light green, green, dark green, dark purple, black
 - Softness: firm, slightly firm, soft, mushy
 - Texture: smooth, bumpy
- Prediction task:
 - Given features of an avocado (i.e., color, softness, texture), predict ripe (1) or unripe/overripe (0)

Prediction task:

• Given the features (i.e., color, softness, texture), predict ripe (1) or unripe/overripe (0)

Dataset

- Feature engineering:
 - Let's say we encode color (0, 1, 2, 3, 4), softness (0, 1, 2, 3), and texture (0, 1)
- Suppose we have n examples, the data can be viewed as a n × 3 matrix, and a corresponding vector of n labels (0/1)
 - Call the matrix X and the labels vector y
- For example:

$$\mathbf{X} = \begin{pmatrix} 1 & 0 & 0 \\ 3 & 2 & 1 \\ 3 & 1 & 0 \\ 2 & 2 & 1 \\ 4 & 3 & 1 \end{pmatrix} \qquad \mathbf{y} = \begin{pmatrix} 0 \\ 1 \\ 0 \\ 1 \\ 0 \end{pmatrix}$$

E.g.: the second avocado has the following features:

- 3 (color: dark purple),
- 2 (softness: soft),
- 1 (texture: bumpy);

It is ripe (1)

- Prediction task:
 - Given the features (i.e., color, softness, texture), predict ripe (1) or unripe/overripe (0)
- Dataset
 - Matrix X and the labels vector y
- Let's use a Support Vector Machine (SVM) model:
 - We need to relabel unripe/overripe as -1, so the labels are +1 and -1
 - The SVM is represented as the hyperplane w x b = 0,
 - * x is a feature vector and w and b are the model's parameters (to be learned from data)
 - Define $f_{\theta}(x) = \operatorname{sign}(w \ x b)$, where $\theta = (w, b)$
 - If $w x b \ge 0$, then we predict +1 (ripe)
 - Otherwise, we predict -1 (unripe/overripe)
 - Note: w x is the dot-product of w and x
 - $w x = w_1x_1+w_2x_2+...+w_mx_m$

Dataset

- Matrix X and the labels vector y
- Let x_i be the feature vector for example i and y_i be the corresponding label

Training the model

- We need to learn the optimal parameter values w^* , b^* given our dataset
- We want the hyperplane that best separates positive from negative examples
 - That is: the one with the largest distance (called "margin") between the closest examples of each class

- \bullet Why? We want: $w x_i b \ge +1$ if $y_i = +1$ and $w x_i b \le -1$ if $y_i = -1$
- Minimize ||w|| subject to: $y_i(w x_i b) \ge 1$ for i=1,2,...,n
 - (This is called hard margin linear SVM in the linearly separable case.)
- So our model is: $\theta^* = (w^*, b^*)$

Support Vector Machines:

- There are different kinds of SVMs (soft vs. hard margin, kernels)
 - We will explore this later in the course

Dataset

- Matrix X and the labels vector y
- Let x_i be the feature vector for example i and y_i be the corresponding label
- Training the model
 - So our model is: $\theta^* = (w^*, b^*)$
- What if we want to classify a new example?
 - Given feature vector x' of an (unseen) avocado: $y' = sign(w^* x' b^*)$
 - Question: will the model predict correctly unseen (i.e., new) examples?
 - In other words: will the model generalize?

decision boundary

Concepts & Terminology

- We used SVM to solve a binary classification problem
 - We learned the model by solving an optimization problem on our dataset
- The model defines a decision boundary (hyperplane)

Avocado Ripeness: Alternative

Dataset

- Matrix X and the labels vector y
- Let x_i be the feature vector for example i and y_i be the corresponding label
- Do we need to train a model?
 - Given feature vector x of an avocado, we want to predict ripeness.
 - Do we necessarily need to train a model for this? No!

Instance-based learning

- What if: given the feature vector x, we find the most similar example in our dataset
 - * If that avocado has feature vector x' and label y', we predict label y' (if the avocado is ripe we say ripe, otherwise we say unripe)
- There are several ways to define similarity (e.g.: Euclidean distance, cosine similarity, etc.)
- This strategy is called k-Nearest Neighbors classification
 - \bullet If k>1, then we take can predict using the majority label among the k most similar examples
- Note: in contrast, training an SVM model is an example of model-based learning

Evaluating Models

- To assess a model's performance, we need:
 - A metric
 - For classification, we can use accuracy (# of correctly predicted instances / total # of instances)
 - A dataset (containing features and corresponding labels)
- Should we use the training dataset to evaluate the model?
 - No!! We care about making accurate predictions on new data!
 - Our model has seen the training data; it would not be surprising if it made good predictions on it
 - How accurate will the predictions of a kNN model with k=1 be on the training data?
 - We need a separate test dataset
- Best practice:
 - After you have pre-processed the data, split the data into a training set and test set
 - Rule of thumb: 80% for training, 20% for testing
 - Never use the test data except at the very end of the process. Why?

Takeaways: Machine Learning is About:

- Solving problems using data by training a model
 - How to solve the problem is dictated by the data, not some hardcoded algorithm
- Framed as an optimization problem with a learning objective (loss function)
 - So training the model means algorithmically finding the best solution (model parameters)
- The model needs to generalize beyond the training data
 - It should make accurate predictions on unseen data (e.g., test dataset)

References, Exercise & Next Time

- Book references:
 - Chapter 1 of the "Hands on ML" book (2nd ed)
 - Note: SVM is not discussed in depth until Chapter 5
- Next Meeting on Friday (1/12) Exercise 0
 - We will dive into training ML models using scikit-learn
 - If you already set up your environment, feel free to follow along
 - The Jupyter notebook for ex0 can be downloaded from Canvas

source: xkcd