Ricerca operativa

Ollari Ischimji Dmitri

13 ottobre 2023

Indice

1	Mo	f delli	4
	1.1	Flusso a costo minimo	4
		1.1.1 Matrice dei vincoli	4
		1.1.2 Esempio	5
	1.2	Flusso massimo	6
		1.2.1 Modello matematico	6
			7
2	Teo	ria della programmazione lineare	9
	2.1	PL canonici $\equiv PL$ generici	0
		2.1.1 Trasformazione da min a max	0
		2.1.2 Trasformazione da \geq a \leq	0
		2.1.3 Trasformazione da = $a \le \dots 1$	0
		2.1.4 Sostituzione variabili ≤ 0 con variabili ≥ 0	0
		2.1.5 Sostituzione variabili libere con differenza di variabili ≥ 0	0
	2.2	Insiemi	0
		2.2.1 Insieme convesso	0
		2.2.2 insiemi limitati e chiusi	0
		2.2.3 Semispazio e iperpiano	0
		2.2.4 Poliedro e politopo	1
	2.3	Regione ammissibile	1
		2.3.1 Convessità	1
		2.3.2 Limitatezza e illimitatezza	1
	2.4	Vertici della regione ammissibile	2
	2.5	Raggi	2
	2.6	Raggi estremi	2
	2.7	Teorema di S_a	2
	2.8	Insieme delle soluzioni ottime di S_{ott}	3
		2.8.1 Forme di S_{ott}	

Elenco delle figure

1.1 Matrice dei vincoli		,
-------------------------	--	---

Elenco delle tabelle

Capitolo 1

Modelli

1.1 Flusso a costo minimo

Tipico problema di calcolo computazionale che ha le seguenti caratteristiche per i nodi:

- Nodi sorgente: nodi che producono il flusso
- Nodi destinazione: nodi che consumano il flusso
- Nodi transito: nodi che non sono né sorgenti né destinazioni

Per ogni arco $(i, j) \in A$ sono associati dei costi unitari c_{ij} per unità di flusso che si spostano da i a j, è possibile la presenza di d_{ij} che indica la capacità massima dell'arco (i, j).

Il prodotto trasmesso lungo un'arco del grafo è il flusso x_{ij} , che deve essere minore o uguale alla capacità ma non negativo.

Per calcolare il flusso uscente dal nodo i:

$$\sum_{j:(i,j)\in A} x_{ij} \tag{1.1}$$

Mentre il flusso uscente dal nodo i:

$$\sum_{j:(j,i)\in A} x_{ji} \tag{1.2}$$

I vincoli del problema derivanti dalla conservazione del flusso sono:

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = b_i \quad \forall i \in V$$

$$\tag{1.3}$$

Il modello matematico completo è:

$$\min \sum_{(i,j)\in A} c_{ij} x_{ij} \tag{1.4}$$

$$\sum_{j:(i,j)\in A} x_{ij} - \sum_{j:(j,i)\in A} x_{ji} = b_i \quad \forall i \in V$$

$$\tag{1.5}$$

$$0 \le x_{ij} \le d_{ij} \quad \text{interi} \quad \forall (i,j) \in A$$
 (1.6)

1.1.1 Matrice dei vincoli

La matrice cha ha tante **righe** quanti sono i **vincoli** e tante **colonne** quante sono le **variabili**.

La matrice dei vincoli di uguaglianza per i problemi di flusso a costo minimo coincide con la matrice di incidenza **nodo-arco** della rete.

	x_{12}	x_{13}	x_{15}	x_{23}	x_{42}	x_{34}	x_{53}	x_{45}
1	1	1	1	0	0	0	0	0
2	-1	0	0	1	-1	0	0	0
3	0	-1	0	-1	0	1	-1	0
4	0	0	0	0	0	-1	0	1
5	0	0	-1	0	0	0	0	-1

1.1.2 Esempio

Rete
$$G=(V,A)$$
 con $V=\{1,2,3,4,5\}$ e
$$A=\{(1,2);(1,3);(1,5);(2,3);(3,4);(4,2);(4,5);(5,3)\}$$

(i,j)	(1,2)	(1,3)	(1,5)	(2,3)	(3,4)	(4,2)	(4,5)	(5,3)
c_{ij}	5	-2	2	-4	0	6	3	4

i	1	2	3	4	5
b_i	2	5	1	-4	-4

Figura 1.1: Matrice dei vincoli

Il modello matematico dell'esempio è:

$$\min 5x_{12} - 4x_{23} + 6x_{42} - 2x_{13} + 0x_{34} + 3x_{15} + 4x_{53} + 3x_{45} \tag{1.7}$$

$$x_{12} + x_{13} + x_{15} = 2 (1.8)$$

$$x_{23} - x_{12} - x_{42} = 5 (1.9)$$

$$x_{34} - x_{13} - x_{23} - x_{53} = 1 (1.10)$$

$$x_{42} + x_{45} - x_{34} = -4 (1.11)$$

$$x_{53} + x_{15} - x_{45} = -4 (1.12)$$

$$x_{ij} \ge 0 \quad \forall (i,j) \in A \tag{1.13}$$

La matrice dei vincoli è:

Il modello matematico per la risoluzione scritto in **ampl** è:

```
### INSIEMI ###
set NODI;
set ARCHI within NODI cross NODI;
### PARAMETRI ###
param b{NODI};
param c{ARCHI};
param d{ARCHI} >= 0, default Infinity;
### VARIABILI ###
var x{(i, j) in ARCHI} >= 0, <= d[i,j], integer;
### VINCOLI ###
subject to bilancio{i in NODI}: sum{j in NODI: (i, j) in ARCHI} x[i,j] -
    sum{j in NODI:
    (j, i) in ARCHI} x[j,i] = b[i];
### OBIETTIVO ###
minimize costo_totale: sum{(i, j) in ARCHI} c[i,j]*x[i,j];</pre>
```

I dati del problema sono:

```
### INSIEMI ###
   set NODI := n1 n2 n3 n4 n5;
   set ARCHI := (n1,n2) (n1,n3) (n1,n5) (n2,n3) (n3,n4) (n4,n2) (n4,n5)
### PARAMETRI ###
   param b :=
   n1 2
   n2 5
   n3 1
   n4 -4
   n5-4;
   param c :=
   n1 n2 5
   n1 n3 -2
   n1 n5 2
   n2 n3 -4
   n3 n4 0
   n4 n2 6
   n4 n5 3
   n5 n3 4;
```

1.2 Flusso massimo

Simile al problema di flusso a costo minimo, ma senza i costi unitari c_{ij} , quindi si vuole massimizzare il flusso che attraversa la rete.

1.2.1 Modello matematico

Le variabili del modello matematico per questo problema sono:

- $x_{ij} \ge 0$: flusso lungo l'arco (i, j)
- d_{ij} : capacità massima dell'arco (i, j)
- $x_{ij} \le d_{ij} \quad \forall (i,j) \in A$
- $\sum_{j:(i,j)\in A} x_{ij} = \sum_{j:(j,i)\in A} x_{ji} \quad \forall i\in V\setminus\{S,D\}$ equivalente a dire che il flusso entrante in un nodo è uguale al flusso uscente dal nodo

L'obiettivo del problema è quello di massimizzare la quantità di flusso che esce dal nodo sorgente S:

$$\sum_{j:(S,j)\in A} x_{Sj} \tag{1.14}$$

Che corrisponde al'aumentare il flusso del nodo destinazione D:

$$\sum_{j:(j,D)\in A} x_{jD} \tag{1.15}$$

Il modello matermatico completo è:

$$\max \sum_{j:(S,j)\in A} x_{Sj} \tag{1.16}$$

$$\sum_{j:(i,j)\in A} x_{ij} = \sum_{j:(j,i)\in A} x_{ji} \quad \forall i \in V \setminus \{S,D\}$$
(1.17)

$$0 \le x_{ij} \le d_{ij} \quad \forall (i,j) \in A \tag{1.18}$$

OSS: La matrice dei vincoli di uguaglianza del problema di flusso massimo coincide con la matrice di incidenza node-arco della rete senza i nodi sorgente e destinazione.

1.2.2 Esempio

La rete ha le seguenti caratteristiche:

Arco	(S, 1)	(S,2)	(1, 3)	(1, 4)	(2, 3)	(2, 1)	(3, D)	(4, D)
Capacità	3	2	1	4	1	1	1	7

Il modello matematico per l'esempio è:

$$\max x_{S1} + x_{S2} \qquad (1.19)$$

$$x_{13} + x_{14} - x_{S1} = 0 \qquad (1.20)$$

$$x_{23} + x_{24} - x_{S2} = 0 \qquad (1.21)$$

$$x_{3D} - x_{13} - x_{23} = 0 \qquad (1.22)$$

$$x_{4D} - x_{14} - x_{24} = 0 \qquad (1.23)$$

$$0 \le x_{S1} \le 3 \qquad (1.24)$$

$$0 \le x_{S2} \le 2 \qquad (1.25)$$

$$0 \le x_{13} \le 1 \qquad (1.26)$$

$$0 \le x_{14} \le 4 \qquad (1.27)$$

$$0 \le x_{23} \le 1 \qquad (1.28)$$

$$0 \le x_{24} \le 1 \qquad (1.29)$$

$$0 \le x_{3D} \le 1 \qquad (1.30)$$

$$0 \le x_{4D} \le 7 \qquad (1.31)$$

$$x_{ij} \ge 0 \quad \text{interi} \quad \forall (i, j) \in A \qquad (1.32)$$

La matrice dei vincoli che ne consegue è:

	x_{S1}	x_{S2}	x_{13}	x_{14}	x_{23}	x_{24}	x_{3D}	x_{4D}
1	-1	0	1	1	0	0	0	0
2	0	-1	0	0	1	1	0	0
3	0	0	-1	0	-1	0	1	0
4	0	0	0	-1	0	-1	0	1

Il modello matematico per la risoluzione scritto in **ampl** è:

```
### INSIEMI ###
   set NODI ;
   set ARCHI within NODI cross NODI ;
### PARAMETRI ###
   param Sorgente symbolic in {NODI};
   param Destinazione symbolic in {NODI} , != Sorgente ;
   param d{ARCHI} >= 0, default Infinity ;
### VARIABILI ###
   var x{(i, j) in ARCHI} >= 0, <= d[i,j], integer ;
### VINCOLI ###
   subject to equilibrio{i in NODI diff {Sorgente, Destinazione}} : sum{j
      in NODI : (i, j) in</pre>
```

```
ARCHI} x[i,j] - sum{j in NODI : (j, i) in ARCHI} x[j,i] = 0 ;
### OBIETTIVO ###
maximize flusso_uscente : sum{j in NODI : (Sorgente,j) in ARCHI}
    x[Sorgente,j] ;
```

Capitolo 2

Teoria della programmazione lineare

I problemi di programmazione lineare(PL) in forma scalare canonica sono sempre problemi di massimo con vincoli di minore uguale e con vincoli non negativi.

In forma scalare i problemi di programmazione lineare sono espressi come:

$$\max \sum_{j=1}^{n} c_j x_j \tag{2.1}$$

$$\sum_{j=1}^{n} a_{ij} x_j \le b_i \quad i = 1, \dots, m$$
 (2.2)

$$x_j \ge 0 \quad j = 1, \dots, n \tag{2.3}$$

Mediante l'uso dei **vettori** osservo che:

$$cx = \sum_{j=1}^{n} c_j x_j \tag{2.4}$$

(2.5)

$$a_i x = \sum_{j=1}^n a_{ij} x_j \tag{2.6}$$

In questo modo posso riscrivere il problema di programmazione lineare come:

$$\max cx \tag{2.7}$$

$$a_i x \le b_i \quad i = 1, \dots, m \tag{2.8}$$

$$x \ge \tag{2.9}$$

Anche le matrici vengono in aiuto, considerando una matrice $A \in \mathbb{R}^{m \times n}$ che ha tante **righe** quanti i vincoli (m) e la ci *i*-esima riga è il vettore a_i .

Si considera anche il vettore $b = (b_1, \ldots, b_m) \in \mathbb{R}^m$ di dimensione m che contiene i termini noti dei vincoli.

Nota che $Ax = (a_1x, \dots, a_mx)$, la reppresentazione **matriciale** è :

$$\max cx \tag{2.10}$$

$$Ax \le b \tag{2.11}$$

$$x \ge 0 \tag{2.12}$$

2.1 PL canonici \equiv PL generici

2.1.1 Trasformazione da min a max

$$\min cx \equiv -\max -cx \tag{2.13}$$

2.1.2 Trasformazione da \geq a \leq

$$a_i x \ge b_i \equiv -a_i x \le -b_i \tag{2.14}$$

2.1.3 Trasformazione da = $a \le$

$$a_i x = b_i \equiv \begin{cases} a_i x \le b_i \\ -a_i x \le -b_i \end{cases}$$
 (2.15)

2.1.4 Sostituzione variabili ≤ 0 con variabili ≥ 0

Data una variabile $x_j \leq 0$ si sostituisce con $x_j = -x_j'$ dove $x_j' \geq 0$.

2.1.5 Sostituzione variabili libere con differenza di variabili ≥ 0

Avendo una variabile x_j libera si sostituisce con $x'_j - x''_j$ con $x'_j, x''_j \ge 0$.

2.2 Insiemi

2.2.1 Insieme convesso

Un'insieme $C \subseteq \mathbb{R}^n$ è convesso se:

$$\forall x_1, x_2 \in C, \quad \forall \lambda \in [0, 1]: \quad \lambda x_1 + (1 - \lambda) x_2 \in C \tag{2.16}$$

Il segmento che unisce i due punti fa parte dell'insieme.

2.2.2 insiemi limitati e chiusi

Un'insieme C è limitato se esiste una sfera di raggio finito che contiene C. Un'insieme C è chiuso se contiene tutti i suoi punti di frontiera.

2.2.3 Semispazio e iperpiano

Si definisce semispazio in \mathbb{R}^n l'insieme di punti che soddisfano una disequazione lineare del tipo:

$$\sum_{j=1}^{n} w_j x_j \le v \tag{2.17}$$

In forma vettoriale posso riscrivere come:

$$wx < v \tag{2.18}$$

Si definisce i perpiano in \mathbb{R}^n l'insieme di punti che soddisfano una disequazione lineare del tipo:

$$\sum_{j=1}^{n} w_j x_j = v (2.19)$$

In forma vettoriale posso riscrivere come:

$$wx = v \tag{2.20}$$

2.2.4 Poliedro e politopo

Si definisce poliedro l'insieme di un numero finito di semispazi e/o iperpiani, se il poliedro è limitato, l'intersezione prende il nome di politopo (letto come politopò e non politòpo).

2.3 Regione ammissibile

La regione ammissibile S_a di un problema di PL in forma canonica è un poliedro:

$$S_a = \{ x \in \mathbb{R}^n : a_i x \le b_i, i = 1, \dots, m, x \ge 0 \}$$
 (2.21)

Si noti che:

- I sempispazi e iperspazi sono insiemi chiusi
- L'intersezione di insiemi chiusi è un insieme chiuso

I poliedri sono insiemi chiusi, quindi anche la regione ammissibile S_a è un'insieme chiuso.

2.3.1 Convessità

Siano $x, y \in S_a$:

$$a_i x \le b_i, i = 1, \dots, m, x \ge 0$$
 (2.22)

$$a_i y \le b_i, i = 1, \dots, m, y \ge 0$$
 (2.23)

Quindi $\forall \lambda \in (0,1) \text{ e } \forall i = 1,\ldots,m$:

$$a_i[\lambda x + (1 - \lambda)y] = \tag{2.24}$$

$$= \lambda b_i + (1 - \lambda)b_i \tag{2.25}$$

$$=b_i \tag{2.26}$$

Inoltre:

$$\lambda x + (1 - \lambda)y \in S_a \tag{2.27}$$

Che ci fa capire che S_a è convesso.

2.3.2 Limitatezza e illimitatezza

La regione ammissibile Sa di un problema di PL è un poliedro e come tale è un insieme chiuso e convesso. Inoltre, può essere un insieme vuoto, un insieme limitato (politopo) oppure un insieme illimitato.

2.4 Vertici della regione ammissibile

Si definisce vertice di S_a un punto $\bar{x} \in S_a$ tale che $\nexists x_1, x_2 \in S_a, x \neq x_2$ tali che:

$$\bar{x} = 0.5x_1 + 0.5x_2 \tag{2.28}$$

Ovvero \bar{x} è il punto medio del segmento che unisce x_1 e x_2 .

Ne derica che se un problema di programmazione in forma canonica ha $S_a \neq \emptyset$, allora ha almeno un vertice.

2.5 Raggi

Nel caso S_a sia un poliedro illimitato, si definisce **raggio** di S_a un vettore r tale che:

$$\forall x_0 \in S_a, \quad \forall \lambda \ge 0, \quad x_0 + \lambda r \in S_a \tag{2.29}$$

La semiretta con origine in x_0 e direzione r è completamente contenuta in S_a per qualunque valore di $x_0 \in S_a$.

2.6 Raggi estremi

Un raggio r di S_a è detto **estremo** se non esistono altri due raggi r_1 e r_2 con direzioni distinte tali che:

$$r_1 \neq \mu r_2 \forall \mu \in \mathbb{R} \tag{2.30}$$

tali che:

$$r = \frac{1}{2}(r_1 + r_2) \tag{2.31}$$

 S_a ha sempre un numero finto di raggi estremi.

2.7 Teorema di S_a

Sia dato un problema di Programmazione lineare in forma canonica con $S_a \neq \emptyset$. Siano v_1, \ldots, v_k i vertici di S_a e nel caso in cui S_a sia un poliedro illimitato, siano r_1, \ldots, r_h i raggi estremi di S_a .

Allora $x \in S_a$ se e solo se:

$$\exists \lambda_1, \dots, \lambda_k \ge 0, \quad \sum_{i=1}^k \lambda_i = 1, \quad \exists \mu_1, \dots, \mu_k \ge 0$$
 (2.32)

tali che:

$$x = \sum_{i=1}^{k} \lambda_i v_i + \sum_{j=1}^{h} \mu_j r_j$$
 (2.33)

NOTA: I punti in S_a sono tutti e soli i punti ottenibili come somma di:

- una combinazione convessa dei vertici di S_a
- una combinazione lineare con coefficienti non negativi dei raggi estremi di S_a

Quindi un numero finito di oggetti (vertici e raggi estremi) mi permettono di rappresentare tutto l'insieme S_a .

2.8 Insieme delle soluzioni ottime di S_{ott}

$$S_{ott} = \{x^* \in S_a : cx^* \ge cx \forall x \in S_a\}$$

$$(2.34)$$

L'insieme delle soluzioni ottime è un sottoinsieme di S_a .

2.8.1 Forme di S_{ott}

- $S_a = \emptyset \implies S_{ott}$
- $S_a \neq \emptyset$ e politopo(insieme chiuso e limitato) $\implies S_{ott} \neq \emptyset$:
 - $-S_{ott}$ ha un solo punto
 - $-S_{ott}$ ha infiniti punti
- $S_a \neq \emptyset$ e poliedro illimitato:
 - $-S_{ott} = \emptyset$ obiettivo illimitato(sequenza infinita di punti che aumento la funzione obiettivo all'infinito)
 - $-S_{ott}$ è costituito da un solo punto
 - $-\ S_{ott}$ è costituito da un'insieme infinito e limitato di punti
 - $-\ S_{ott}$ è costituito da un'insieme infinito e illimitato di punti