Par convention, les vecteurs sont des vecteurs colonne. Pour un vecteur ou une matrice x, x^{\top} désigne la transposée de x. I_n est la matrice identité de taille $n \times n$.

L'espérance et la variance d'une loi géométrique sur \mathbb{N} de paramètre θ , $\theta \in]0,1[$, sont : $(1-\theta)/\theta$ et $(1-\theta)/\theta^2$.

Sujet

Exercice 1. On cherche à expliquer une variable quantitative Y_i (réponse) par un vecteur de régresseurs \mathbf{z}_i , $i \in \{1, ..., n\}$. On pose $\theta := (\boldsymbol{\beta}, \sigma^2) \in \Theta := \mathbb{R}^p \times \mathbb{R}_+^*$. Le modèle linéaire consiste à supposer que, pour tout $\theta \in \Theta$, les variables

$$\varepsilon_i(\theta) := \sigma^{-1} \left\{ Y_i - \mathbf{z}_i^{\top} \boldsymbol{\beta} \right\}, \quad i = 1, 2, \dots, n,$$

sont des variables indépendantes et identiquement distribuées. Nous utilisons les notations matricielles / vectorielles :

$$\mathbf{Y} = \mathbf{Z}\boldsymbol{\beta} + \sigma\boldsymbol{\varepsilon}(\theta),\tag{1}$$

οù

$$\mathbf{Y} := \begin{bmatrix} Y_1 \\ \vdots \\ Y_n \end{bmatrix}, \qquad \boldsymbol{\varepsilon}(\boldsymbol{\theta}) := \begin{bmatrix} \varepsilon_1(\boldsymbol{\theta}) \\ \vdots \\ \varepsilon_n(\boldsymbol{\theta}) \end{bmatrix}, \qquad \mathbf{Z} := \begin{bmatrix} \mathbf{z}_1^\top \\ \mathbf{z}_2^\top \\ \vdots \\ \mathbf{z}_n^\top \end{bmatrix} \in \mathbb{R}^{n \times p};$$

Y est le vecteur des observations, $\boldsymbol{\beta}$ est le vecteur des paramètres de régression et **Z** est la matrice de régression de taille $n \times p$. Nous supposons que n > p + 1.

Pour $i \in \{1, ..., n\}$, nous notons $\mathbf{Z}_{[i]}$ et $\mathbf{Y}_{[i]}$ la matrice \mathbf{Z} et le vecteur \mathbf{Y} dont la i-ème ligne a été retirée. Nous supposons que

GM1 pour tout $i \in \{1, ..., n\}$, la matrice $\mathbf{Z}_{[i]}$ est de rang p.

GM2 les erreurs de régression sont homoscédastiques : pour tout $\theta \in \Theta$, $\mathbb{E}_{\theta}[\varepsilon(\theta)] = 0$ et $Cov_{\theta}(\varepsilon(\theta)) = I_n$.

L'hypothèse GM1 implique que la matrice de Gram $\mathbf{Z}^{\top}\mathbf{Z}$ est inversible et l'hypothèse GM2 entraine que pour tout $\theta \in \Theta$

$$\mathbb{E}_{\theta}[\mathbf{Y}] = \mathbf{Z}\boldsymbol{\beta}, \quad \operatorname{Cov}_{\theta}(\mathbf{Y}) = \sigma^{2} I_{n}.$$

Nous notons par $\widehat{\beta}$ l'estimateur des moindres carrés basé sur (\mathbf{Z}, \mathbf{Y}) et pour $i \in \{1, ..., n\}$, par $\widehat{\beta}_{[i]}$ l'estimateur des moindres carrés basé sur $(\mathbf{Z}_{[i]}, \mathbf{Y}_{[i]})$:

$$\widehat{\boldsymbol{\beta}} := (\mathbf{Z}^{\top} \mathbf{Z})^{-1} \mathbf{Z}^{\top} \mathbf{Y} = \mathbf{Z}^{\#} \mathbf{Y} , \qquad \widehat{\boldsymbol{\beta}}_{[i]} := (\mathbf{Z}_{[i]}^{\top} \mathbf{Z}_{[i]})^{-1} \mathbf{Z}_{[i]}^{\top} \mathbf{Y}_{[i]} = \mathbf{Z}_{[i]}^{\#} \mathbf{Y}_{[i]} . \qquad (2)$$

Nous introduisons le résidu et le résidu prédictif, donnés respectivement par

$$\hat{e}_i := Y_i - \mathbf{z}_i^{ op} \widehat{\boldsymbol{eta}}$$
 $\hat{e}_{[i]} := Y_i - \mathbf{z}_i^{ op} \widehat{\boldsymbol{eta}}_{[i]}.$

- 1. Montrer que pour tout $\theta \in \Theta$, $\mathbb{E}_{\theta}[\widehat{\boldsymbol{\beta}}_{[i]}] = \boldsymbol{\beta}$ et $Cov_{\theta}(\widehat{\boldsymbol{\beta}}_{[i]}) = \sigma^{2}(\mathbf{Z}_{[i]}^{\top}\mathbf{Z}_{[i]})^{-1}$.
- 2. Montrer que pour tout $\theta \in \Theta$, $\mathbb{E}_{\theta}[\hat{e}_{[i]}] = 0$ et $\operatorname{Var}_{\theta}(\hat{e}_{[i]}) = \sigma^2 + \sigma^2 \mathbf{z}_i^{\top} (\mathbf{Z}_{[i]}^{\top} \mathbf{Z}_{[i]})^{-1} \mathbf{z}_i$.

On admettra que si A est une matrice $q \times q$ inversible, et $\mathbf{u} \in \mathbb{R}^q$,

$$(A + \mathbf{u}\mathbf{u}^{\top})^{-1} = A^{-1} - \frac{A^{-1}\mathbf{u}\mathbf{u}^{\top}A^{-1}}{1 + \mathbf{u}^{\top}A^{-1}\mathbf{u}},$$

$$(A - \mathbf{u}\mathbf{u}^{\top})^{-1} = A^{-1} + \frac{A^{-1}\mathbf{u}\mathbf{u}^{\top}A^{-1}}{1 - \mathbf{u}^{\top}A^{-1}\mathbf{u}}, \quad \text{si } \mathbf{u}^{\top}A^{-1}\mathbf{u} \neq 1.$$

Nous posons, pour $i \in \{1, \dots, n\}, m_{ii} := \mathbf{z}_i^\top (\mathbf{Z}^\top \mathbf{Z})^{-1} \mathbf{z}_i$.

- 3. Montrer que $0 \le m_{ii} < 1$ pour tout $i = 1, \dots, n$.
- 4. Montrer que pour tout $i = 1, \dots, n$,

$$\left(\mathbf{Z}_{[i]}^{\top}\mathbf{Z}_{[i]}\right)^{-1} = \left(\mathbf{Z}^{\top}\mathbf{Z}\right)^{-1} + \frac{1}{1 - m_{ii}} \left(\mathbf{Z}^{\top}\mathbf{Z}\right)^{-1} \mathbf{z}_{i}\mathbf{z}_{i}^{\top} \left(\mathbf{Z}^{\top}\mathbf{Z}\right)^{-1}.$$

5. En déduire que pour tout $i = 1, \dots, n$,

$$\widehat{\boldsymbol{\beta}}_{[i]} = \widehat{\boldsymbol{\beta}} - \frac{\hat{e}_i}{1 - m_{ii}} \left(\mathbf{Z}^{\top} \mathbf{Z} \right)^{-1} \mathbf{z}_i.$$

6. Montrer que pour tout $i = 1, \dots, n : \hat{e}_{[i]} = \hat{e}_i / (1 - m_{ii})$ et $\operatorname{Var}_{\theta}(\hat{e}_{[i]}) = \sigma^2 / (1 - m_{ii})$. On suppose maintenant que **Y** est l'observation canonique d'un modèle gaussien

$$(\mathbb{R}^n, \mathcal{B}(\mathbb{R}^n), \{N_n(\mathbf{Z}\boldsymbol{\beta}, \sigma^2 I_n) : \theta = (\boldsymbol{\beta}, \sigma^2) \in \mathbb{R}^p \times \mathbb{R}_+^*\}).$$

Nous notons $\mathbf{H}_{[i]} := \mathbf{Z}_{[i]} \mathbf{Z}_{[i]}^{\#}$ et $\hat{\sigma}_{[i]}^2 := (n - p - 1)^{-1} \| (\mathbf{I}_{n-1} - \mathbf{H}_{[i]}) \mathbf{Y}_{[i]} \|^2$.

- 7. Sous \mathbb{P}_{θ} , montrer que $\hat{e}_{[i]} = Y_i \mathbf{z}_i^{\top} \hat{\boldsymbol{\beta}}_{[i]}$ est distribué suivant une loi Gaussienne dont on précisera les paramètres en fonction de σ^2 et m_{ii} .
- 8. Sous \mathbb{P}_{θ} , montrer que $(n-p-1)\hat{\sigma}_{[i]}^2/\sigma^2$ est distribué suivant une loi de χ^2 à (n-p-1) degrés de liberté, et est indépendant de $\widehat{\beta}_{[i]}$ et Y_i .
- 9. En déduire la distribution sous \mathbb{P}_{θ} du résidu standardisé

$$t_i := \frac{e_{[i]}}{\sqrt{\hat{\sigma}_{[i]}^2/(1 - m_{ii})}}.$$

10. Proposer une méthode pour détecter une valeur aberrante dans les observations.

Exercice 2. Soit $\{(X_1, Y_1), \dots, (X_n, Y_n)\}$ une suite de *n*-échantillons du modèle statistique

$$\left(\mathbb{R}_+^2, \mathcal{B}(\mathbb{R}_+^2), \{p_\theta \cdot \mathrm{Leb}^{\otimes 2}, \theta = (\theta_1, \theta_2) \in \Theta := \mathbb{R}_+^{\star} \times \mathbb{R}_+^{\star}\}\right)$$

οù

$$p_{\theta}: (x,y) \in \mathbb{R}^{2}_{+} \mapsto \theta_{1}^{-1} \exp(-x/\theta_{1})\theta_{2}^{-1} \exp(-y/\theta_{2}).$$

On s'intéresse dans cet exercice à l'estimation de $g(\theta)$, où la fonction g est définie par $g: \Theta \to \mathbb{R}_+$, $\theta \mapsto \mathbb{P}_{\theta}(X_1 \leq Y_1)$. On admettra que le modèle statistique est régulier. On rappelle que $\mathbb{E}_{\theta}[X_1] = \theta_1$, $\operatorname{Var}_{\theta}(X_1) = \theta_1^2$.

On considère d'abord l'estimateur

$$T_n = n^{-1} \sum_{i=1}^n \mathbb{1}_{\{X_i \le Y_i\}}$$
.

- 1. Montrer que, pour tout $\theta \in \Theta$, $g(\theta) = \theta_2/(\theta_1 + \theta_2)$.
- 2. Montrer que (T_n) est une suite d'estimateurs de $g(\theta)$ asymptotiquement normale. Déterminer sa variance asymptotique.

On note $\hat{\theta}_n^{\text{MV}}$ l'estimateur du maximum de vraisemblance de θ et on considère $\tilde{T}_n = g(\hat{\theta}_n^{\text{MV}})$ comme second estimateur de $g(\theta)$.

- 3. Montrer que $\hat{\theta}_n^{\text{MV}}$ est une suite d'estimateurs de θ asymptotiquement normale et déterminer sa covariance asymptotique.
- 4. Montrer que (\tilde{T}_n) est une suite d'estimateurs de $g(\theta)$ asymptotiquement normale et déterminer sa variance asymptotique.
- 5. Quel estimateur de $g(\theta)$ doit-on choisir?
- 6. Construire un intervalle de confiance asymptotique de $g(\theta)$ de probabilité de couverture $1-\alpha$, pour $\alpha \in]0,1[$.
- 7. Construire une suite de tests de niveau asymptotique α de l'hypothèse $H_0: g(\theta) \leq 1/2$, contre $H_1: g(\theta) < 1/2$.

Exercice 3. La probabilité $\theta \in]0,1[$ d'un événement est généralement estimée en examinant la fréquence à laquelle il se produit (on parle de "succès") au cours de n essais indépendants. Une autre façon d'estimer θ est de déterminer le nombre d'échecs Y_r pour obtenir $r \geq 2$ succès.

Soit $\{X_k\}_{k\in\mathbb{N}}$ une suite de variables aléatoires indépendantes distribuées suivant une loi de Bernoulli de paramètre $\theta\in\Theta:=]0,1[$. Nous notons pour $r\in\mathbb{N}^*$, $Z_r:=Y_r-Y_{r-1}$, le nombre d'échecs entre le (r-1)-ème et le r-ème succès, où par convention nous posons $Y_0:=0$.

- 1. Montrer que sous \mathbb{P}_{θ} , les statistiques $\{Z_1, \ldots, Z_r\}$ sont indépendantes et identiquement distribuées de loi géométrique sur \mathbb{N} de paramètre θ .
- 2. Déterminer le modèle statistique induit par les statistiques Z_1, \ldots, Z_r .
- 3. Justifier soigneusement que, sous \mathbb{P}_{θ} , la loi de Y_r est donnée par

$$\mathbb{P}_{\theta}(Y_r = y) = \begin{pmatrix} y + r - 1 \\ r - 1 \end{pmatrix} \theta^r (1 - \theta)^y, \qquad y \in \mathbb{N}.$$

- 4. Déterminer l'estimateur du maximum de vraisemblance $\hat{\theta}_r$ du paramètre θ sous le modèle induit par Z_1, \ldots, Z_r .
- 5. Montrer que $\hat{\theta}_r$ coïncide avec l'estimateur du maximum de vraisemblance sous le modèle induit par Y_r .
- 6. Montrer que la suite d'estimateurs $\{\hat{\theta}_r\}_{r=1}^{\infty}$ est asymptotiquement normale. Préciser la variance asymptotique.
- 7. Montrer que l'estimateur

$$\tilde{\theta}_r := \frac{r-1}{Y_r + r - 1}$$

est un estimateur sans biais du paramètre θ .

8. Montrer $\tilde{\theta}_r$ est l'unique estimateur sans biais sous le modèle induit par Y_r .

Soit $T(Z_1, \ldots, Z_r)$ un estimateur sans biais de θ basé sur Z_1, \ldots, Z_r .

- 9. Montrer qu'il existe une fonction $\widetilde{T}(Y_r)$ telle que, pour tout $\theta \in \Theta$, $\mathbb{E}_{\theta}[T(Z_1, \ldots, Z_r) | Y_r] = \widetilde{T}(Y_r)$.
- 10. Montrer que $\widetilde{T}(Y_r)$ est un estimateur sans biais de θ .
- 11. Montrer que pour tout $\theta \in \Theta$,

$$\mathbb{E}_{\theta}\left[\left(T(Z_1,\ldots,Z_r)-\theta\right)^2\right] = \mathbb{E}_{\theta}\left[\left(T(Z_1,\ldots,Z_r)-\widetilde{T}(Y_r)\right)^2\right] + \mathbb{E}_{\theta}\left[\left(\widetilde{T}(Y_r)-\theta\right)^2\right]$$

12. En déduire que $\tilde{\theta}_r$ est aussi l'estimateur sans biais de variance minimale dans le modèle induit par Z_1, \ldots, Z_r .

Exercice 4. Nous considérons un problème de classification binaire. Nous supposons que l'observation (X,Y) (où $X \in \mathsf{X} \subseteq \mathbb{R}^d$ est le vecteur des attributs, et $Y \in \{-1,1\}$ est l'étiquette) est un vecteur aléatoire défini sur un espace de probabilité $(\Omega,\mathcal{F},\mathbb{P})$ à valeurs dans $\mathbb{R}^d \times \{-1,1\}$. Nous notons

$$\eta(X) := \mathbb{E}\left[\mathbb{1}_{\{Y=1\}} \mid X \right] ,$$

et nous supposons que $\eta(X)$ est à valeurs dans]0,1[avec probabilité 1.

Pour une règle de décision $g: \mathsf{X} \to \mathbb{R}$, nous nous intéressons à la fonction de risque exponentiel

$$R_e(g) := \mathbb{E}[\exp(-Yg(X))]. \tag{3}$$

Rappelons que g est une règle de décision "douce". Nous déciderons 1 si signe $(g(x)) \ge 0$ et -1 sinon. Nous posons pour $(\eta, p) \in]0, 1[\times \mathbb{R},$

$$C_e(\eta, p) := \eta \exp(-p) + (1 - \eta) \exp(p)$$
.

1. Montrer que

$$R_e(g) = \mathbb{E}[C_e(\eta(X), g(X))].$$

2. Montrer que pour tout $\eta \in]0,1[, p \mapsto C_e(\eta, p)$ admet un minimum unique; on le notera $p_e(\eta)$.

On pose pour tout $x \in X$,

$$g_e(x) := p_e(\eta(x))$$
.

3. En déduire que g_e est le classifieur bayésien pour le risque exponentiel 3.

On pose $R_e^* := R_e(g_e)$. Pour tout $\eta \in]0,1[$, on définit

$$H_e(\eta) := C_e(\eta, p_e(\eta)) = \inf_{p \in \mathbb{R}} C_e(\eta, p).$$

4. Montrer que

$$H_e(\eta) = 2\sqrt{\eta(1-\eta)}$$
 pour $\eta \in]0,1[$.

Nous notons R_{0-1} le risque 0-1 : pour toute fonction $g: X \to \mathbb{R}$,

$$R_{0-1}(g) := \mathbb{E}[\mathbb{1}_{\{\text{signe}(g(X)) \neq Y\}}].$$

On a toujours, pour toute function $g: X \to \mathbb{R}$, $R_{0-1}(g) = R_{0-1}(\text{signe}(g))$. Soit

$$g_{0-1}^*(x) := \text{signe}(2\eta(x) - 1), \quad x \in X.$$

On rappelle que g_{0-1}^* minimise le risque R_{0-1} . On pose

$$R_{0-1}^* := R_{0-1}(g_{0-1}^*)$$
.

- 5. Montrer que signe (g_e) est une règle de décision Bayésienne pour le risque 0-1.
- 6. Montrer que pour tout classifieur g

$$R_{0-1}(g) - R_{0-1}^* = \mathbb{E}[|2\eta(X) - 1| \mathbb{1}_{\{q(X) (2\eta(X) - 1) < 0\}}].$$

7. En déduire que si ψ est convexe sur [0,1[et $\psi(0)=0$:

$$\psi(R_{0-1}(g) - R_{0-1}^*) \le \mathbb{E}\left[\ \psi(|2\eta(X) - 1|) \ \mathbb{1}_{\{g(X) \ (2\eta(X) - 1) \le 0\}} \ \right]$$

8. Montrer que, pour tout $\eta \in]0,1[$,

$$\inf_{p \in \mathbb{R}} \inf_{: p (2\eta - 1) \le 0} C_e(\eta, p) = 1 .$$

On définit la fonction H_e^- sur]0,1[et la fonction ψ_e sur [0,1[, par

$$\begin{split} H_e^-(\eta) &:= \inf_{p \in \mathbb{R} \ : \ p \ (2\eta - 1) \le 0} C_e(\eta, p) \ , \quad \eta \in]0, 1[\ , \\ \psi_e(\theta) &:= H_e^-\left(\frac{1+\theta}{2}\right) - H_e\left(\frac{1+\theta}{2}\right) = 1 - H_e\left(\frac{1+\theta}{2}\right), \quad \theta \in [0, 1[\ .]] \end{split}$$

9. Montrer que pour tout $\eta \in]0,1[, H_e(\eta) = H_e(1-\eta)$ et

$$\psi_e(|2\eta - 1|) = 1 - H_e(\eta) = H_e^-(\eta) - H_e(\eta)$$
.

- 10. Montrer que $\psi_e(0) = 0$ et que ψ_e est convexe sur [0,1[.
- 11. En déduire que, pour tout classifieur g, nous avons

$$\psi_e\left(R_{0-1}(g) - R_{0-1}^*\right) \le R_e(g) - R_e^*$$
.