Metody probabilistyczne

4. Niezależność

Wojciech Kotłowski

Instytut Informatyki PP http://www.cs.put.poznan.pl/wkotlowski/

24.10.2017

Zdarzenia niezależne

Definicja

Zdarzenia A i B nazywamy niezależnymi, gdy:

$$P(A \cap B) = P(A)P(B)$$

Oznaczenie: $A \perp B$

Zdarzenia niezależne

Definicja

Zdarzenia A i B nazywamy niezależnymi, gdy:

$$P(A \cap B) = P(A)P(B)$$

Oznaczenie: $A \perp B$

Uwaga: Jeśli P(B) > 0 to

$$P(A \mid B) = \frac{P(A \cap B)}{P(B)} = \frac{P(A)P(B)}{P(B)} = P(A)$$

Podobnie, jeśli P(A) > 0, to P(B|A) = P(B).

Czyli zajście jednego ze zdarzeń nie ma wpływu na prawdopodobieństwo zajścia drugiego ze zdarzeń.

Relacja niezależności jest symetryczna.

• Rzut dwoma monetami: $\Omega = \{OO, OR, RO, RR\}$ A_1 – "orzeł na pierwszej monecie": $A_1 = \{OO, OR\}$, $P(A_1) = \frac{1}{2}$

• Rzut dwoma monetami: $\Omega = \{OO, OR, RO, RR\}$ $A_1 - \text{"orzeł na pierwszej monecie": } A_1 = \{OO, OR\}, \ P(A_1) = \frac{1}{2}$ $A_2 - \text{"orzeł na drugiej monecie": } A_2 = \{OO, RO\}, \ P(A_2) = \frac{1}{2}$

• Rzut dwoma monetami: $\Omega = \{OO, OR, RO, RR\}$ A_1 – "orzeł na pierwszej monecie": $A_1 = \{OO, OR\}$, $P(A_1) = \frac{1}{2}$ A_2 – "orzeł na drugiej monecie": $A_2 = \{OO, RO\}$, $P(A_2) = \frac{1}{2}$ $A_1 \cap A_2 = \{OO\}$, $P(A_1 \cap A_2) = \frac{1}{4} = P(A_1)P(A_2) \implies A_1 \perp A_2$. Podobnie można pokazać, że dowolny wynik w pierwszym rzucie jest niezależny od dowolnego wyniku w drugim rzucie.

• Rzut dwoma monetami: $\Omega = \{OO, OR, RO, RR\}$ A_1 – "orzeł na pierwszej monecie": $A_1 = \{OO, OR\}$, $P(A_1) = \frac{1}{2}$

 A_2 – "orzeł na drugiej monecie": $A_2 = \{OO, RO\}$, $P(A_2) = \frac{1}{2}$ $A_1 \cap A_2 = \{OO\}$, $P(A_1 \cap A_2) = \frac{1}{4} = P(A_1)P(A_2) \implies A_1 \perp A_2$.

Podobnie można pokazać, że dowolny wynik w pierwszym rzucie jest niezależny od dowolnego wyniku w drugim rzucie.

Rzut dwoma kostkami

Zadanie 1

Pokaż, że dowolne zdarzenie na pierwszej kostce jest niezależne od dowolnego zdarzenia na drugiej kostce

Czy zdarzenia rozłączne mogą być niezależne?

Czy zdarzenia rozłączne mogą być niezależne?

Odpowiedź: Aby zaszło $A \perp B$ przy $A \cap B = \emptyset$ musimy mieć:

$$P(A)P(B) = P(A \cap B) = P(\emptyset) = 0$$

Czy zdarzenia rozłączne mogą być niezależne?

Odpowiedź: Aby zaszło $A \perp B$ przy $A \cap B = \emptyset$ musimy mieć:

$$P(A)P(B) = P(A \cap B) = P(\emptyset) = 0$$

Czyli tylko wtedy, gdy
$$P(A) = 0$$
 lub $P(B) = 0$

Czy zdarzenia rozłączne mogą być niezależne?

Odpowiedź: Aby zaszło $A \perp B$ przy $A \cap B = \emptyset$ musimy mieć:

$$P(A)P(B) = P(A \cap B) = P(\emptyset) = 0$$

Czyli tylko wtedy, gdy P(A) = 0 lub P(B) = 0

Kiedy zachodzi $A \perp A$?

Czy zdarzenia rozłączne mogą być niezależne?

Odpowiedź: Aby zaszło $A \perp B$ przy $A \cap B = \emptyset$ musimy mieć:

$$P(A)P(B) = P(A \cap B) = P(\emptyset) = 0$$

Czyli tylko wtedy, gdy P(A) = 0 lub P(B) = 0

Kiedy zachodzi $A \perp A$?

Odpowiedź: Aby dla zdarzenia A zaszło $A \perp A$, musimy mieć:

$$P(A)P(A) = P(A \cap A) = P(A)$$

Czy zdarzenia rozłączne mogą być niezależne?

Odpowiedź: Aby zaszło $A \perp B$ przy $A \cap B = \emptyset$ musimy mieć:

$$P(A)P(B) = P(A \cap B) = P(\emptyset) = 0$$

Czyli tylko wtedy, gdy P(A) = 0 lub P(B) = 0

Kiedy zachodzi $A \perp A$?

Odpowiedź: Aby dla zdarzenia A zaszło $A \perp A$, musimy mieć:

$$P(A)P(A) = P(A \cap A) = P(A) \implies P(A) = 1$$
 lub $P(A) = 0$

- Z 52 kart ciągniemy jedną. Czy niezależne są zdarzenia:
 - (a) A "wyciągnęliśmy asa", B "wyciągnęliśmy pika"
 - (b) C "wyciągnęliśmy kiera", "wyciągnęliśmy czerwoną figurę"

- Z 52 kart ciągniemy jedną. Czy niezależne są zdarzenia:
 - (a) A "wyciągnęliśmy asa", B "wyciągnęliśmy pika"
 - (b) C "wyciągnęliśmy kiera", "wyciągnęliśmy czerwoną figurę"

(a)
$$A = \{A , A , A , A , A \}, |A| = 4$$

 $B = \{2 , 3 , ..., 10 , W , D , K , A \}, |B| = 13$
 $A \cap B = \{A , |A \cap B| = 1$

- Z 52 kart ciągniemy jedną. Czy niezależne są zdarzenia:
 - (a) A "wyciągnęliśmy asa", B "wyciągnęliśmy pika"
 - (b) C "wyciągnęliśmy kiera", "wyciągnęliśmy czerwoną figurę"

(a)
$$A = \{A , A , A , A , A \}, |A| = 4$$

 $B = \{2 , 3 , ..., 10 , W , D , K , A \}, |B| = 13$
 $A \cap B = \{A , |A \cap B| = 1$
 $P(A \cap B) = \frac{1}{52}, \qquad P(A)P(B) = \frac{4}{52} \cdot \frac{13}{52} = \frac{1}{52} \qquad A \perp B$

- Z 52 kart ciągniemy jedną. Czy niezależne są zdarzenia:
 - (a) A "wyciągnęliśmy asa", B "wyciągnęliśmy pika"
 - (b) C "wyciągnęliśmy kiera", "wyciągnęliśmy czerwoną figurę"

(a)
$$A = \{A , A , A , A \}, |A| = 4$$

 $B = \{2 , 3 , ..., 10 , W , D , K , A \}, |B| = 13$
 $A \cap B = \{A \}, |A \cap B| = 1$
 $P(A \cap B) = \frac{1}{52}, \qquad P(A)P(B) = \frac{4}{52} \cdot \frac{13}{52} = \frac{1}{52} \qquad A \perp B$

(b)
$$C = \{2 \checkmark, 3 \checkmark, \dots, 10 \checkmark, W \checkmark, D \checkmark, K \checkmark, A \checkmark\}, |C| = 13$$

 $D = \{W \checkmark, D \checkmark, K \checkmark, A \checkmark, W \checkmark, D \checkmark, K \checkmark, A \checkmark\}, |D| = 8$
 $C \cap D = \{W \checkmark, D \checkmark, K \checkmark, A \checkmark\}, |C \cap D| = 4$

- Z 52 kart ciągniemy jedną. Czy niezależne są zdarzenia:
 - (a) A "wyciągnęliśmy asa", B "wyciągnęliśmy pika"
 - (b) C "wyciągnęliśmy kiera", "wyciągnęliśmy czerwoną figurę"

(a)
$$A = \{A , A , A , A \}, |A| = 4$$

 $B = \{2 , 3 , ..., 10 , W , D , K , A \}, |B| = 13$
 $A \cap B = \{A \}, |A \cap B| = 1$
 $P(A \cap B) = \frac{1}{52}, \qquad P(A)P(B) = \frac{4}{52} \cdot \frac{13}{52} = \frac{1}{52} \qquad A \perp B$

(b)
$$C = \{2 \checkmark, 3 \checkmark, \dots, 10 \checkmark, W \checkmark, D \checkmark, K \checkmark, A \checkmark \}, |C| = 13$$

 $D = \{W \checkmark, D \checkmark, K \checkmark, A \checkmark, W \checkmark, D \checkmark, K \checkmark, A \checkmark \}, |D| = 8$
 $C \cap D = \{W \checkmark, D \checkmark, K \checkmark, A \checkmark \} |C \cap D| = 4$
 $P(C \cap D) = \frac{4}{52} = \frac{1}{13}, \qquad P(C)P(D) = \frac{13}{52} \cdot \frac{8}{52} = \frac{2}{52} = \frac{1}{52} \quad C \not\perp D$

Fakt: Dowolne zdarzenie A jest niezależne ze zdarzeniami Ω i \emptyset

Fakt: Dowolne zdarzenie A jest niezależne ze zdarzeniami Ω i \emptyset

Dowód:
$$P(A \cap \Omega) = P(A) = P(A) \cdot \underbrace{P(\Omega)}_{-1}$$
.

Fakt: Dowolne zdarzenie A jest niezależne ze zdarzeniami Ω i \emptyset

Dowód:
$$P(A \cap \Omega) = P(A) = P(A) \cdot \underbrace{P(\Omega)}_{=1}$$
.
Podobnie: $P(A \cap \emptyset) = P(\emptyset) = 0 = P(A) \cdot 0 = P(A) \cdot \underbrace{P(\emptyset)}_{=0}$

Fakt: Jeśli $A \perp B$ to także: (a) $A' \perp B$; (b) $A \perp B'$; (c) $A' \perp B'$

Fakt: Jeśli $A \perp B$ to także: (a) $A' \perp B$; (b) $A \perp B'$; (c) $A' \perp B'$

Dowód:

(a) Mamy:

$$P(A' \cap B) = P(B) - P(A \cap B)$$

Fakt: Jeśli $A \perp B$ to także: (a) $A' \perp B$; (b) $A \perp B'$; (c) $A' \perp B'$

Dowód:

(a) Mamy:

$$P(A' \cap B) = P(B) - P(A \cap B)$$

$$\stackrel{(*)}{=} P(B) - P(A)P(B)$$

= T(B) - T(A)T(B) $A' \cap B$

gdzie w (*) korzystamy z niezależności A i B

Α

В

Fakt: Jeśli $A \perp B$ to także: (a) $A' \perp B$; (b) $A \perp B'$; (c) $A' \perp B'$

Dowód:

(a) Mamy:

$$P(A' \cap B) = P(B) - P(A \cap B)$$

$$\stackrel{(*)}{=} P(B) - P(A)P(B)$$

$$= P(B)(1 - P(A)) = P(B)P(A'),$$

gdzie w (*) korzystamy z niezależności A i B

Fakt: Jeśli $A \perp B$ to także: (a) $A' \perp B$; (b) $A \perp B'$; (c) $A' \perp B'$

Dowód:

(a) Mamy:

$$P(A' \cap B) = P(B) - P(A \cap B)$$

$$\stackrel{(*)}{=} P(B) - P(A)P(B)$$

$$= P(B)(1 - P(A)) = P(B)P(A'),$$

gdzie w (*) korzystamy z niezależności A i B

(b) Na mocy symetrii mamy $P(A \cap B') = P(A)P(B')$

Fakt: Jeśli $A \perp B$ to także: (a) $A' \perp B$; (b) $A \perp B'$; (c) $A' \perp B'$

Dowód:

(a) Mamy:

$$P(A' \cap B) = P(B) - P(A \cap B)$$

$$\stackrel{(*)}{=} P(B) - P(A)P(B)$$

$$= P(B)(1 - P(A)) = P(B)P(A'),$$

gdzie w (*) korzystamy z niezależności A i B

- (b) Na mocy symetrii mamy $P(A \cap B') = P(A)P(B')$
- (c) Skoro pokazaliśmy w (a), że $A' \perp B$, stosujemy punkt (b) do tych zdarzeń i dostajemy: $P(A' \cap B') = P(A')P(B')$

Rozważmy trzy zdarzenia A_1, A_2, A_3 , dla których:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

Czy zachodzi wtedy $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$?

Rozważmy trzy zdarzenia A_1, A_2, A_3 , dla których:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

Czy zachodzi wtedy $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$?

Rzut 3 monetami: $\Omega = \{OOO, OOR, ORO, ORR, ROO, ROR, RRO, RRR\}$

- $A_1 = \{OOO, ORO, OOR, ORR\}$ ("orzeł na 1. monecie"), $P(A_1) = \frac{1}{2}$
- $A_2 = \{RRR, RRO, ROR, ORR\}$ ("co najwyżej 1 orzeł"), $P(A_2) = \frac{1}{2}$
- $A_3 = A_2$, $P(A_3) = \frac{1}{2}$

Rozważmy trzy zdarzenia A_1, A_2, A_3 , dla których:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

Czy zachodzi wtedy $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$?

Rzut 3 monetami: $\Omega = \{OOO, OOR, ORO, ORR, ROO, ROR, RRO, RRR\}$

- $A_1 = \{OOO, ORO, OOR, ORR\}$ ("orzeł na 1. monecie"), $P(A_1) = \frac{1}{2}$
- $A_2 = \{RRR, RRO, ROR, ORR\}$ ("co najwyżej 1 orzeł"), $P(A_2) = \frac{1}{2}$
- $A_3 = A_2$, $P(A_3) = \frac{1}{2}$

Mamy
$$A_1 \cap A_2 \cap A_3 = A_1 \cap A_2 = \{ORR\}.$$

Wiec
$$P(A_1 \cap A_2 \cap A_3) = \frac{1}{8} = P(A_1)P(A_2)P(A_3)$$
.

Rozważmy trzy zdarzenia A_1, A_2, A_3 , dla których:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

Czy zachodzi wtedy $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$?

Rzut 3 monetami: $\Omega = \{OOO, OOR, ORO, ORR, ROO, ROR, RRO, RRR\}$

- $A_1 = \{OOO, ORO, OOR, ORR\}$ ("orzeł na 1. monecie"), $P(A_1) = \frac{1}{2}$
- $A_2 = \{RRR, RRO, ROR, ORR\}$ ("co najwyżej 1 orzeł"), $P(A_2) = \frac{1}{2}$
- $A_3 = A_2$, $P(A_3) = \frac{1}{2}$

Mamy $A_1 \cap A_2 \cap A_3 = A_1 \cap A_2 = \{ORR\}.$

Wiec
$$P(A_1 \cap A_2 \cap A_3) = \frac{1}{8} = P(A_1)P(A_2)P(A_3)$$
.

Ale zdarzenia A_2 i A_3 nie są niezależne:

$$P(A_2 \cap A_3) = P(A_2) \neq P(A_2)P(A_3).$$

Czy jeśli $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$ (niezależność parami), to zajdzie:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$
?

Czy jeśli $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$ (niezależność parami), to zajdzie:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$
?

Rzut 2 monetami: $\Omega = \{OO, OR, RO, RR\}$

- A_1 "orzeł na pierwszej monecie", $A_1 = \{OO, OR\}$, $P(A_1) = \frac{1}{2}$
- A_2 "orzeł na drugiej monecie", $A_2 = \{OO, RO\}$, $P(A_2) = \frac{1}{2}$
- A_3 "to samo na obu monetach", $A_3=\{OO,RR\}, \quad P(A_3)=\frac{1}{2}$

Czy jeśli $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$ (niezależność parami), to zajdzie:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$
?

Rzut 2 monetami: $\Omega = \{OO, OR, RO, RR\}$

- A_1 "orzeł na pierwszej monecie", $A_1=\{OO,OR\}, \quad P(A_1)=rac{1}{2}$
- A_2 "orzeł na drugiej monecie", $A_2 = \{OO, RO\}$, $P(A_2) = \frac{1}{2}$
- A_3 "to samo na obu monetach", $A_3=\{OO,RR\}, \quad P(A_3)=\frac{1}{2}$

Mamy
$$A_1 \cap A_2 = A_1 \cap A_3 = A_2 \cap A_3 = \{OO\}.$$

Wiec
$$P(A_1 \cap A_2) = P(A_1 \cap A_3) = P(A_2 \cap A_3) = \frac{1}{4}$$
.

Zdarzenia są niezależne parami, bo $P(A_1 \cap A_2) = P(A_1)P(A_2)$, itp.

Czy jeśli $A_1 \perp A_2$, $A_1 \perp A_3$, $A_2 \perp A_3$ (niezależność parami), to zajdzie:

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$
?

Rzut 2 monetami: $\Omega = \{OO, OR, RO, RR\}$

- A_1 "orzeł na pierwszej monecie", $A_1 = \{OO, OR\}, P(A_1) = \frac{1}{2}$
- A_2 "orzeł na drugiej monecie", $A_2 = \{OO, RO\}$, $P(A_2) = \frac{1}{2}$
- A_3 "to samo na obu monetach", $A_3 = \{OO, RR\}, P(A_3) = \frac{1}{2}$

Mamy
$$A_1 \cap A_2 = A_1 \cap A_3 = A_2 \cap A_3 = \{OO\}.$$

Wiec
$$P(A_1 \cap A_2) = P(A_1 \cap A_3) = P(A_2 \cap A_3) = \frac{1}{4}$$
.

Zdarzenia są niezależne parami, bo $P(A_1 \cap A_2) = P(A_1)P(A_2)$, itp.

Ale postulowana własność nie zachodzi:

$$P(A_1 \cap A_2 \cap A_3) = P(\{OO\}) = \frac{1}{4} \neq \frac{1}{8} = P(A_1)P(A_2)P(A_3)$$

Definicja

Zdarzenia A_1,A_2,\ldots,A_n nazywamy niezależnymi, gdy dla dowolnego podzbioru indeksów $S\subseteq\{1,2,\ldots,n\}$

$$P\Big(\bigcap_{i\in S}A_i\Big)=\prod_{i\in S}P(A_i)$$

Definicja

Zdarzenia A_1,A_2,\ldots,A_n nazywamy niezależnymi, gdy dla dowolnego podzbioru indeksów $S\subseteq\{1,2,\ldots,n\}$

$$P\Big(\bigcap_{i\in S}A_i\Big)=\prod_{i\in S}P(A_i)$$

Przykład: Zdarzenia A_1, A_2, A_3 są niezależne, jeśli

$$P(A_1 \cap A_2) = P(A_1)P(A_2)$$

$$P(A_1 \cap A_3) = P(A_1)P(A_3)$$

$$P(A_2 \cap A_3) = P(A_2)P(A_3)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

Definicja

Zdarzenia A_1,A_2,\ldots,A_n nazywamy niezależnymi, gdy dla dowolnego podzbioru indeksów $S\subseteq\{1,2,\ldots,n\}$

$$P\Big(\bigcap_{i\in S}A_i\Big)=\prod_{i\in S}P(A_i)$$

Przykład: Zdarzenia A_1, A_2, A_3 są niezależne, jeśli

$$P(A_1 \cap A_2) = P(A_1)P(A_2)$$

$$P(A_1 \cap A_3) = P(A_1)P(A_3)$$

$$P(A_2 \cap A_3) = P(A_2)P(A_3)$$

$$P(A_1 \cap A_2 \cap A_3) = P(A_1)P(A_2)P(A_3)$$

W ogólnym przypadku, trzeba sprawdzić te równości dla wszystkich możliwych podzbiorów indeksów zdarzeń.

Pokazaliśmy, że jeśli $A\perp B$, to również $A\perp B'$, $A'\perp B$ oraz $A'\perp B'$

Pokazaliśmy, że jeśli $A \perp B$, to również $A \perp B'$, $A' \perp B$ oraz $A' \perp B'$

Zadanie 2

Pokaż, że jeśli zdarzenia A_1, \ldots, A_n są niezależne, to również są niezależne zdarzenia B_1, \ldots, B_n , gdzie $B_i = A_i$ lub $B_i = A_i'$ ($i = 1, \ldots, n$)

Załóżmy, że zdarzenia A_1,A_2 i A_3 są niezależne i:

$$P(A_1) = p_1, \qquad P(A_2) = p_2 \qquad P(A_3) = p_3$$

Oblicz $P(A_1 \cup A_2 \cup A_3)$

Załóżmy, że zdarzenia A_1, A_2 i A_3 są niezależne i:

$$P(A_1) = p_1, \qquad P(A_2) = p_2 \qquad P(A_3) = p_3$$

Oblicz $P(A_1 \cup A_2 \cup A_3)$

Odpowiedź: Z prawa De Morgana:

$$A_1 \cup A_2 \cup A_3 = (A'_1 \cap A'_2 \cap A'_3)'$$

Załóżmy, że zdarzenia A_1, A_2 i A_3 są niezależne i:

$$P(A_1) = p_1, \qquad P(A_2) = p_2 \qquad P(A_3) = p_3$$

Oblicz $P(A_1 \cup A_2 \cup A_3)$

Odpowiedź: Z prawa De Morgana:

$$A_1 \cup A_2 \cup A_3 = (A_1' \cap A_2' \cap A_3')'$$

Jeśli A_1, A_2, A_3 – niezależne, to również A'_1, A'_2, A'_3 .

Załóżmy, że zdarzenia A_1, A_2 i A_3 są niezależne i:

$$P(A_1) = p_1, \qquad P(A_2) = p_2 \qquad P(A_3) = p_3$$

Oblicz $P(A_1 \cup A_2 \cup A_3)$

Odpowiedź: Z prawa De Morgana:

$$A_1 \cup A_2 \cup A_3 = (A'_1 \cap A'_2 \cap A'_3)'$$

Jeśli A_1,A_2,A_3 – niezależne, to również $A_1^\prime,A_2^\prime,A_3^\prime.$

$$P(A_1 \cup A_2 \cup A_3) = P((A'_1 \cap A'_2 \cap A'_3)')$$

Załóżmy, że zdarzenia A_1, A_2 i A_3 są niezależne i:

$$P(A_1) = p_1, \qquad P(A_2) = p_2 \qquad P(A_3) = p_3$$

Oblicz $P(A_1 \cup A_2 \cup A_3)$

Odpowiedź: Z prawa De Morgana:

$$A_1 \cup A_2 \cup A_3 = (A'_1 \cap A'_2 \cap A'_3)'$$

Jeśli A_1,A_2,A_3 – niezależne, to również A_1',A_2',A_3' .

$$P(A_1 \cup A_2 \cup A_3) = P((A'_1 \cap A'_2 \cap A'_3)')$$

= 1 - P(A'_1 \cap A'_2 \cap A'_3)

Załóżmy, że zdarzenia A_1, A_2 i A_3 są niezależne i:

$$P(A_1) = p_1,$$
 $P(A_2) = p_2$ $P(A_3) = p_3$

Oblicz $P(A_1 \cup A_2 \cup A_3)$

Odpowiedź: Z prawa De Morgana:

$$A_1 \cup A_2 \cup A_3 = (A'_1 \cap A'_2 \cap A'_3)'$$

Jeśli A_1, A_2, A_3 – niezależne, to również A'_1, A'_2, A'_3 .

$$P(A_1 \cup A_2 \cup A_3) = P((A'_1 \cap A'_2 \cap A'_3)')$$

= 1 - P(A'_1 \cap A'_2 \cap A'_3)
= 1 - P(A'_1)P(A'_2)P(A'_3)

Załóżmy, że zdarzenia A_1, A_2 i A_3 są niezależne i:

$$P(A_1) = p_1, \qquad P(A_2) = p_2 \qquad P(A_3) = p_3$$

Oblicz $P(A_1 \cup A_2 \cup A_3)$

Odpowiedź: Z prawa De Morgana:

$$A_1 \cup A_2 \cup A_3 = (A'_1 \cap A'_2 \cap A'_3)'$$

Jeśli A_1, A_2, A_3 – niezależne, to również A_1', A_2', A_3' .

$$P(A_1 \cup A_2 \cup A_3) = P((A'_1 \cap A'_2 \cap A'_3)')$$

$$= 1 - P(A'_1 \cap A'_2 \cap A'_3)$$

$$= 1 - P(A'_1)P(A'_2)P(A'_3)$$

$$= 1 - (1 - p_1)(1 - p_2)(1 - p_3)$$

Rzucamy 6 razy kostką. Jaka jest szansa, że wyrzucimy przynajmniej jedną "szóstkę"?

Rzucamy 6 razy kostką. Jaka jest szansa, że wyrzucimy przynajmniej jedną "szóstkę"?

Odpowiedź: A_i – "szóstka na i-tej kostce" ($i=1,\ldots,6$) B – "co najmniej jednak szóstka", $B=A_1\cup A_2\cup\ldots\cup A_6$

Rzucamy 6 razy kostką. Jaka jest szansa, że wyrzucimy przynajmniej jedną "szóstkę"?

Odpowiedź: A_i – "szóstka na i-tej kostce" ($i=1,\ldots,6$) B – "co najmniej jednak szóstka", $B=A_1\cup A_2\cup\ldots\cup A_6$

Analogicznie do poprzedniego slajdu:

$$P(B) = P(A_1 \cup ... \cup A_6) = 1 - (1 - P(A_1)) \cdot ... \cdot (1 - P(A_6))$$

= $1 - \left(\frac{5}{6}\right)^6 \simeq 0.665$

Uogólniamy: Rzucamy n razy kostką n-ścienną. Jaka jest szansa, że wyrzucimy przynajmniej jedną jedynkę?

Uogólniamy: Rzucamy n razy kostką n-ścienną. Jaka jest szansa, że wyrzucimy przynajmniej jedną jedynkę?

Odpowiedź: B_n – "co najmniej jedna jedynka"

$$P(B_n) = 1 - \left(1 - \frac{1}{n}\right)^n$$

Uogólniamy: Rzucamy n razy kostką n-ścienną. Jaka jest szansa, że wyrzucimy przynajmniej jedną jedynkę?

Odpowiedź: B_n – "co najmniej jedna jedynka"

$$P(B_n) = 1 - \left(1 - \frac{1}{n}\right)^n$$

n	$P(B_n)$	п	$P(B_n)$
2	0.75	6	0.665
3	0.704	7	0.66
4	0.683	8	0.656
5	0.672	9	0.653

Uogólniamy: Rzucamy *n* razy kostką *n*-ścienną. Jaka jest szansa, że wy-rzucimy przynajmniej jedną jedynkę?

Odpowiedź: B_n – "co najmniej jedna jedynka"

$$P(B_n) = 1 - \left(1 - \frac{1}{n}\right)^n$$

n	$P(B_n)$	n	$P(B_n)$
2	0.75	6	0.665
3	0.704	7	0.66
4	0.683	8	0.656
5	0.672	9	0.653

$$\lim_{n\to\infty} \left(1-\frac{1}{n}\right)^n = \frac{1}{e}, \qquad \lim_{n\to\infty} P(B_n) = 1-\frac{1}{e} \simeq 0.632$$

Warunkowa niezależność

Definicja

Zdarzenia A i B nazywamy warunkowo niezależnymi pod warunkiem zajścia zdarzenia C z P(C) > 0, gdy:

$$P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$$

Oznaczenie: $A \perp B \mid C$

Warunkowa niezależność

Definicja

Zdarzenia A i B nazywamy warunkowo niezależnymi pod warunkiem zajścia zdarzenia C z P(C) > 0, gdy:

$$P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$$

Oznaczenie: $A \perp B \mid C$

Uwaga: Jeśli $P(B \cap C) > 0$ to:

$$P(A|B\cap C) = \frac{P(A\cap B\cap C)}{P(B\cap C)} = \frac{P(A\cap B|C)P(C)}{P(B|C)P(C)}$$

$$= \frac{P(A\cap B|C)}{P(B|C)} \stackrel{(*)}{=} \frac{P(A|C)P(B|C)}{P(B|C)} = P(A|C),$$

gdzie w (*) skorzystaliśmy z warunkowej niezależności.

Podobnie, jeśli $P(A \cap C) > 0$, to $P(B \mid A \cap C) = P(B \mid C)$.

Warunkowa niezależność

Definicja

Zdarzenia A i B nazywamy warunkowo niezależnymi pod warunkiem zajścia zdarzenia C z P(C) > 0, gdy:

$$P(A \cap B \mid C) = P(A \mid C)P(B \mid C)$$

Oznaczenie: $A \perp B \mid C$

Uwaga: Jeśli $P(B \cap C) > 0$ to:

$$P(A|B\cap C) = \frac{P(A\cap B\cap C)}{P(B\cap C)} = \frac{P(A\cap B|C)P(C)}{P(B|C)P(C)}$$
$$= \frac{P(A\cap B|C)}{P(B|C)} \stackrel{(*)}{=} \frac{P(A|C)P(B|C)}{P(B|C)} = P(A|C),$$

gdzie w (*) skorzystaliśmy z warunkowej niezależności.

Podobnie, jeśli $P(A \cap C) > 0$, to $P(B \mid A \cap C) = P(B \mid C)$.

Czyli jeśli zaszło zdarzenie C, to zajście zdarzenia B (A) nie ma wpływu na prawdopodobieństwo zajścia zdarzenia A (B).

Szansa zapadnięcia na pewną chorobę wynosi 10%. Dwa różne testy na obecność choroby wykrywają ją na 100% jeśli pacjent jest chory i mylą się (niezależnie) w 5% przypadków jeśli pacjent jest zdrowy. Czy wyniki pozytywne obu testów są niezależne?

Szansa zapadnięcia na pewną chorobę wynosi 10%. Dwa różne testy na obecność choroby wykrywają ją na 100% jeśli pacjent jest chory i mylą się (niezależnie) w 5% przypadków jeśli pacjent jest zdrowy. Czy wyniki pozytywne obu testów są niezależne?

Z – "pacjent zdrowy", A_i – "pozytywny wynik testu i" (i=1,2)

Szansa zapadnięcia na pewną chorobę wynosi 10%. Dwa różne testy na obecność choroby wykrywają ją na 100% jeśli pacjent jest chory i mylą się (niezależnie) w 5% przypadków jeśli pacjent jest zdrowy. Czy wyniki pozytywne obu testów są niezależne?

$$Z$$
 – "pacjent zdrowy", A_i – "pozytywny wynik testu i " $(i=1,2)$
$$P(A_1 \cap A_2|Z) = P(A_1|Z)P(A_2|Z) = 0.05 \cdot 0.05 \quad (A_1 \perp A_2 \mid Z)$$

$$P(A_1 \cap A_2|Z') = 1$$

Szansa zapadnięcia na pewną chorobę wynosi 10%. Dwa różne testy na obecność choroby wykrywają ją na 100% jeśli pacjent jest chory i mylą się (niezależnie) w 5% przypadków jeśli pacjent jest zdrowy. Czy wyniki pozytywne obu testów są niezależne?

$$Z$$
 – "pacjent zdrowy", A_i – "pozytywny wynik testu i " $(i=1,2)$
$$P(A_1\cap A_2|Z) = P(A_1|Z)P(A_2|Z) = 0.05\cdot 0.05 \quad (A_1\perp A_2\mid Z)$$

$$P(A_1\cap A_2|Z') = 1$$

Ze wzoru na prawdopodobieństwo całkowite:

$$P(A_i) = P(Z)P(A_i|Z) + P(Z')P(A_i|Z') = 0.9 \cdot 0.05 + 0.1 \cdot 1 = 0.145$$

Szansa zapadnięcia na pewną chorobę wynosi 10%. Dwa różne testy na obecność choroby wykrywają ją na 100% jeśli pacjent jest chory i mylą się (niezależnie) w 5% przypadków jeśli pacjent jest zdrowy. Czy wyniki pozytywne obu testów są niezależne?

$$Z$$
 – "pacjent zdrowy", A_i – "pozytywny wynik testu i " $(i=1,2)$
$$P(A_1\cap A_2|Z) = P(A_1|Z)P(A_2|Z) = 0.05\cdot 0.05 \quad (A_1\perp A_2\mid Z)$$

$$P(A_1\cap A_2|Z') = 1$$

Ze wzoru na prawdopodobieństwo całkowite:

$$P(A_i) = P(Z)P(A_i|Z) + P(Z')P(A_i|Z') = 0.9 \cdot 0.05 + 0.1 \cdot 1 = 0.145$$

 $P(A_1)P(A_2) = 0.145 \cdot 0.145 = 0.021025$

Szansa zapadnięcia na pewną chorobę wynosi 10%. Dwa różne testy na obecność choroby wykrywają ją na 100% jeśli pacjent jest chory i mylą się (niezależnie) w 5% przypadków jeśli pacjent jest zdrowy. Czy wyniki pozytywne obu testów są niezależne?

$$Z$$
 – "pacjent zdrowy", A_i – "pozytywny wynik testu i " $(i=1,2)$
$$P(A_1\cap A_2|Z) = P(A_1|Z)P(A_2|Z) = 0.05\cdot 0.05 \quad (A_1\perp A_2\mid Z)$$

$$P(A_1\cap A_2|Z') = 1$$

Ze wzoru na prawdopodobieństwo całkowite:

$$P(A_i) = P(Z)P(A_i|Z) + P(Z')P(A_i|Z') = 0.9 \cdot 0.05 + 0.1 \cdot 1 = 0.145$$

 $P(A_1)P(A_2) = 0.145 \cdot 0.145 = 0.021025$

$$P(A_1 \cap A_2) = P(Z)P(A_1 \cap A_2|Z) + P(Z')P(A_1 \cap A_2|Z')$$

= 0.9 \cdot 0.05 \cdot 0.05 + 0.1 \cdot 1 = \frac{0.10225}{2.000} \neq P(A_1)P(A_2)

Warunkowa niezależność nie implikuje niezależności

Czy niezależność \Longrightarrow warunkowa niezależność?

```
A_i – "orzeł na i-tej monecie", A_1 = \{OO, OR\}, A_2 = \{OO, RO\} C – "co najmniej jeden orzeł", C = \{OO, OR, RO\}.
```

$$A_i$$
 – "orzeł na i -tej monecie", $A_1 = \{OO, OR\}$, $A_2 = \{OO, RO\}$ C – "co najmniej jeden orzeł", $C = \{OO, OR, RO\}$.
$$P(A_1 \cap A_2) = P(A_1)P(A_2) \quad (A_1 \perp A_2)$$

$$A_i$$
 – "orzeł na i -tej monecie", $A_1 = \{OO, OR\}$, $A_2 = \{OO, RO\}$ C – "co najmniej jeden orzeł", $C = \{OO, OR, RO\}$.

$$P(A_1 \cap A_2) = P(A_1)P(A_2) \quad (A_1 \perp A_2)$$

$$P(A_1|C) = \frac{P(A_1 \cap C)}{P(C)} = \frac{P(\{OO, OR\})}{P(C)} = \frac{1/2}{3/4} = \frac{2}{3} = P(A_2|C)$$

$$A_i$$
 – "orzeł na i -tej monecie", $A_1 = \{OO, OR\}, A_2 = \{OO, RO\}$ C – "co najmniej jeden orzeł", $C = \{OO, OR, RO\}$.
$$P(A_1 \cap A_2) = P(A_1)P(A_2) \quad (A_1 \perp A_2)$$

$$P(A_1|C) = \frac{P(A_1 \cap C)}{P(C)} = \frac{P(\{OO, OR\})}{P(C)} = \frac{1/2}{3/4} = \frac{2}{3} = P(A_2|C)$$

$$P(A_1 \cap A_2|C) = \frac{P(A_1 \cap A_2 \cap C)}{P(C)} = \frac{P(\{OO\})}{P(C)} = \frac{1/4}{3/4} = \frac{1}{3}$$

Czy zdarzenia "orzeł na pierwszej monecie" i "orzeł na drugiej monecie" są warunkowo niezależne pod warunkiem zdarzenia "wypadł co najmniej jeden orzeł"?

$$A_i$$
 – "orzeł na i -tej monecie", $A_1 = \{OO, OR\}$, $A_2 = \{OO, RO\}$ C – "co najmniej jeden orzeł", $C = \{OO, OR, RO\}$.

$$P(A_1 \cap A_2) = P(A_1)P(A_2) \quad (A_1 \perp A_2)$$

$$P(A_1|C) = \frac{P(A_1 \cap C)}{P(C)} = \frac{P(\{OO, OR\})}{P(C)} = \frac{1/2}{3/4} = \frac{2}{3} = P(A_2|C)$$

$$P(A_1 \cap A_2 | C) = \frac{P(A_1 \cap A_2 \cap C)}{P(C)} = \frac{P(\{OO\})}{P(C)} = \frac{1/4}{3/4} = \frac{1}{3}$$

$$P(A_1 \cap A_2 | C) \neq P(A_1 | C)P(A_2 | C)$$

Niezależność nie implikuje warunkowej niezależności

Niezależność a model probabilistyczny

Pokazaliśmy, że dwa zdarzenia opisujące wyniki na dwóch różnych monetach/kostkach są niezależne.

Podobny wynik łatwo uogólnić na *n* monet/kostek.

Niezależność a model probabilistyczny

Pokazaliśmy, że dwa zdarzenia opisujące wyniki na dwóch różnych monetach/kostkach są niezależne.

Podobny wynik łatwo uogólnić na *n* monet/kostek.

Skąd wynika niezależność? Jest w pewnym sensie wbudowana w wybrany przez nas model prawdopodobieństwa klasycznego:

	1 moneta	n monet
liczba wyników	2	$2 \cdot \ldots \cdot 2 = 2^n$
prawdopodobieństwo	$\frac{1}{2}$	$\tfrac{1}{2}\cdot\ldots\cdot\tfrac{1}{2}=\tfrac{1}{2^n}$

Niezależność a model probabilistyczny

Pokazaliśmy, że dwa zdarzenia opisujące wyniki na dwóch różnych monetach/kostkach są niezależne.

Podobny wynik łatwo uogólnić na *n* monet/kostek.

Skąd wynika niezależność? Jest w pewnym sensie wbudowana w wybrany przez nas model prawdopodobieństwa klasycznego:

	1 moneta	n monet
liczba wyników	2	$2 \cdot \ldots \cdot 2 = 2^n$
prawdopodobieństwo	$\frac{1}{2}$	$\frac{1}{2} \cdot \ldots \cdot \frac{1}{2} = \frac{1}{2^n}$

A jak modelować ciągi niezależnych eksperymentów losowych w przypadku ogólnych miar prawdopodobieństwa?

Przestrzenie produktowe

Rozważmy n przestrzeni probabilistycznych $(\Omega_i, \mathcal{F}_i, P_i)$, $i=1,\ldots,n$, dotyczących n niezależnych etapów doświadczenia losowego

• np. rzuty poszczególnymi monetami/kośćmi

Przestrzenie produktowe

Rozważmy n przestrzeni probabilistycznych $(\Omega_i, \mathcal{F}_i, P_i)$, $i = 1, \ldots, n$, dotyczących n niezależnych etapów doświadczenia losowego

np. rzuty poszczególnymi monetami/kośćmi

Przestrzenią produktową nazywamy przestrzeń (Ω, \mathcal{F}, P) , gdzie:

- $\Omega = \Omega_1 \times \Omega_2 \times \dots \Omega_n$
- \mathcal{F} jest σ -ciałem zdarzeń wygenerowanym ze zdarzeń postaci $A_1 \times \ldots \times A_n, \ A_i \in \mathcal{F}_i$
- $P(A_1 \times \ldots \times A_n) = P_1(A_1) \cdot P_2(A_2) \cdot \ldots \cdot P_n(A_n)$.

Z definicji, zdarzenia dotyczące poszczególnych etapów doświadczenia, np. $A_1 \times \Omega \times \ldots \times \Omega$, są niezależne.

Przestrzenie produktowe – przykład

Rzucamy dwoma kostkami

$$\Omega_1 = \Omega_2 = \{1, 2, 3, 4, 5, 6\}
P_1 = P_2, P_1(\{j\}) = \frac{1}{6}, j = 1, \dots, 6
\Omega = \Omega_1 \times \Omega_2, \Omega = \{(i, j): i, j = 1, \dots, 6\}
P(\{i, j\}) = P(\{i\})P(\{j\}) = \frac{1}{6} \cdot \frac{1}{6}$$

Przestrzenie produktowe – przykład

Rzucamy dwoma kostkami

$$\Omega_1 = \Omega_2 = \{1, 2, 3, 4, 5, 6\}
P_1 = P_2, P_1(\{j\}) = \frac{1}{6}, j = 1, \dots, 6
\Omega = \Omega_1 \times \Omega_2, \Omega = \{(i, j) : i, j = 1, \dots, 6\}
P(\{i, j\}) = P(\{i\})P(\{j\}) = \frac{1}{6} \cdot \frac{1}{6}$$

Zdarzenie dotyczące pierwszej kostki: $A = A_1 \times \Omega_2$

Np.
$$A-$$
 "wypadło 6 oczek na 1. kostce":

$$A = \{6\} \times \Omega_2 = \{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$$

Zdarzenie dotyczące drugiej kostki $B = \Omega_1 \times A_2$

Przestrzenie produktowe – przykład

Rzucamy dwoma kostkami

$$\Omega_1 = \Omega_2 = \{1, 2, 3, 4, 5, 6\}
P_1 = P_2, P_1(\{j\}) = \frac{1}{6}, j = 1, \dots, 6
\Omega = \Omega_1 \times \Omega_2, \Omega = \{(i, j) : i, j = 1, \dots, 6\}
P(\{i, j\}) = P(\{i\})P(\{j\}) = \frac{1}{6} \cdot \frac{1}{6}$$

Zdarzenie dotyczące pierwszej kostki: $A = A_1 \times \Omega_2$

Np. A – "wypadło 6 oczek na 1. kostce":

$$A = \{6\} \times \Omega_2 = \{(6,1), (6,2), (6,3), (6,4), (6,5), (6,6)\}$$

Zdarzenie dotyczące drugiej kostki $B = \Omega_1 \times A_2$

$$P(A) = P(A_1 \times \Omega_2) = P_1(A_1) \cdot P_2(\Omega_2) = P_1(A_1) = \frac{1}{6}$$

$$P(B) = P(\Omega_1 \times A_2) = P_1(\Omega_1) \cdot P_2(A_2) = P_2(A_2) = \frac{1}{6}$$

$$P(A \cap B) = P(A_1 \times A_2) = P_1(A_1) \cdot P_2(A_2)$$

Niezawodność systemów

Jeśli każdy z n niezależnych komponentów ulega awarii z prawdopodobieństwem p_i , $i=1,\ldots,n$, to z jakim prawdopodobieństwem ulegnie awarii cały system?

Komponenty szeregowe

Komponenty szeregowe

System ulega awarii, jeśli choć jeden z komponentów ulega awarii.

Komponenty szeregowe

System ulega awarii, jeśli choć jeden z komponentów ulega awarii.

 A_i – "i-ty komponent uległ awarii"

A – "system uległ awarii", $A = A_1 \cup \ldots \cup A_n$

$$P(A) = 1 - (1 - p_1) \cdot \ldots \cdot (1 - p_n)$$

(z zadania o sumie zdarzeń niezależnych)

Komponenty równoległe

Komponenty równoległe

System ulega awarii, jeśli wszystkie komponenty ulegną awarii.

Komponenty równoległe

System ulega awarii, jeśli wszystkie komponenty ulegną awarii.

 A_i – "i-ty komponent uległ awarii"

A – "system uległ awarii", $A = A_1 \cap \ldots \cap A_n$

$$P(A) = p_1 \cdot \ldots \cdot p_n$$

W macierzy RAID, składających się z *n* dysków, dane replikowane są na wszystkich dyskach. Oblicz szanse utraty danych, jeśli awaria pojedynczego dysku zdarza się z prawdopodobieństwem *p* i jest niezależna od awarii innych dysków.

W macierzy RAID, składających się z *n* dysków, dane replikowane są na wszystkich dyskach. Oblicz szanse utraty danych, jeśli awaria pojedynczego dysku zdarza się z prawdopodobieństwem *p* i jest niezależna od awarii innych dysków.

Odpowiedź: Jest to system równoległy.

A_i – awaria *i*-tego dysku, B – utrata danych

$$P(B) = P(A_1) \cdot \ldots \cdot P(A_n) = p^n$$

$$p_G = 1 - (1 - 0.2)(1 - 0.1)$$

= 0.28

$$p_H = 1 - (1 - 0.2)(1 - 0.1)$$

 $\times (1 - 0.05) = 0.316$

$$p_{I} = 0.28 \cdot 0.2 \cdot 0.316$$

$$\simeq 0.018$$

Jaka jest szansa, że uda się przesłać pakiet z punktu A do B w sieci komputerowej poniżej (liczby na krawędziach to prawd. awarii połączeń):

Jaka jest szansa, że uda się przesłać pakiet z punktu A do B w sieci komputerowej poniżej (liczby na krawędziach to prawd. awarii połączeń):

Rozwiązanie: zamieniamy na graf komponentów:

26 / 41

Jaka jest szansa, że uda się przesłać pakiet z punktu A do B w sieci komputerowej poniżej (liczby na krawędziach to prawd. awarii połączeń):

Jaka jest szansa, że uda się przesłać pakiet z punktu A do B w sieci komputerowej poniżej (liczby na krawędziach to prawd. awarii połączeń): 0.2 0.15 0.05 0.25

Rozwiązanie: zamieniamy na graf komponentów:

26 / 41

Jaka jest szansa, że uda się przesłać pakiet z punktu A do B w sieci komputerowej poniżej (liczby na krawędziach to prawd. awarii połączeń):

Jaka jest szansa, że uda się przesłać pakiet z punktu A do B w sieci komputerowej poniżej (liczby na krawędziach to prawd. awarii połączeń):

Jaka jest szansa, że uda się przesłać pakiet z punktu A do B w sieci komputerowej poniżej (liczby na krawędziach to prawd. awarii połączeń):

Rozwiązanie: zamieniamy na graf komponentów:

Prawdopodobieństwo, że uda się przesłać pakiet: 1 - 0.043 = 0.957

Rzucamy 2 razy nieuczciwą monetą, dla której orzeł wypada z prawdopodobieństwem $p \in [0,1]$, a reszka z prawdopodobieństwem 1-p. Przedstaw prawdopodobieństwa wszystkich zdarzeń elementarnych.

Rzucamy 2 razy nieuczciwą monetą, dla której orzeł wypada z prawdopodobieństwem $p \in [0,1]$, a reszka z prawdopodobieństwem 1-p. Przedstaw prawdopodobieństwa wszystkich zdarzeń elementarnych.

$$\Omega = \{OO, OR, RO, RR\}$$

Z niezależności obu rzutów monetą prawdopodobieństwa przemnażają się:

ω	$P(\{\omega\})$
00	$p \cdot p = p^2$
OR	$ ho \cdot (1- ho)$
RO	$(1-p)\cdot p$
RR	$(1-p)\cdot (1-p) = (1-p)^2$

Rzucamy 2 razy nieuczciwą monetą, dla której orzeł wypada z prawdopodobieństwem $p \in [0,1]$, a reszka z prawdopodobieństwem 1-p. Przedstaw prawdopodobieństwa wszystkich zdarzeń elementarnych.

$$\Omega = \{OO, OR, RO, RR\}$$

Z niezależności obu rzutów monetą prawdopodobieństwa przemnażają się:

ω	$P(\{\omega\})$
00	$p \cdot p = p^2$
OR	$ ho \cdot (1- ho)$
RO	$(1-p)\cdot p$
RR	$(1-p)\cdot (1-p) = (1-p)^2$

Jakie jest prawdopodobieństwo A_1 – "wypadł dokładnie jeden orzeł"?

$$P(A_1) = P(\{OR, RO\}) = P(\{OR\}) + P(\{RO\}) = 2p(1-p)$$

Rzucamy 2 razy nieuczciwą monetą, dla której orzeł wypada z prawdopodobieństwem $p \in [0,1]$, a reszka z prawdopodobieństwem 1-p. Przedstaw prawdopodobieństwa wszystkich zdarzeń elementarnych.

zdarzenie	opis	prawd.
"wypadły 2 orły"	$A_2 = \{OO\}$	p^2
"wypadł 1 orzeł"	$A_1 = \{OR, RO\}$	2p(1-p)
"wypadło 0 orłów"	$A_0 = \{RR\}$	$(1-p)^2$

Sumowanie i mnożenie prawdopodobieństw

1. Jeśli A i B są niezależne:

$$P(A \cap B) = P(A) \cdot P(B)$$

2. Jeśli A i B są rozłączne:

$$P(A \cup B) = P(A) + P(B)$$

Nieuczciwa moneta

Rzucamy 3 razy nieuczciwą monetą z prawdopodobieństwem orła p. Oblicz prawdopodobieństwa pojawienia się k orłów (k = 0, 1, 2, 3).

Nieuczciwa moneta

Rzucamy 3 razy nieuczciwą monetą z prawdopodobieństwem orła p. Oblicz prawdopodobieństwa pojawienia się k orłów (k=0,1,2,3).

zdarzenie	opis	prawd.
"3 orły"	$A_3 = \{OOO\}$	p^3
"2 orły"	$A_2 = \{OOR, ORO, ROO\}$	$3p^2(1-p)$
"1 orzeł"	$A_1 = \{\textit{ORR}, \textit{ROR}, \textit{RRO}\}$	$3p(1-p)^2$
"brak orłów"	$A_0 = \{RRR\}$	$(1 - p)^3$

Np.:

$$P(A_2) = P(\{OOR\}) + P(\{ORO\}) + P(\{ROO\})$$

= $p \cdot p \cdot (1-p) + p \cdot (1-p) \cdot p + (1-p) \cdot p \cdot p$
= $3p^2(1-p)$

Rzucamy n razy nieuczciwą monetą z prawdopodobieństwem orła p. Oblicz prawdopodobieństwo pojawienia się k orłów (k = 0, 1, 2, ..., n).

Wykonujemy serię niezależnych prób (doświadczeń), każde z nich kończy się sukcesem z prawd. p i porażką z prawd. 1-p. Podaj prawdopodobieństwo k sukcesów w n próbach $(k=0,1,\ldots,n)$.

Wykonujemy serię niezależnych prób (doświadczeń), każde z nich kończy się sukcesem z prawd. p i porażką z prawd. 1-p. Podaj prawdopodobieństwo k sukcesów w n próbach $(k=0,1,\ldots,n)$.

Kodujemy sukcesy jako jedynki a porażki jako zera:

$$\Omega = \{\omega = (b_1, \ldots, b_n) \colon b_i \in \{0, 1\}\}$$

Wykonujemy serię niezależnych prób (doświadczeń), każde z nich kończy się sukcesem z prawd. p i porażką z prawd. 1-p. Podaj prawdopodobieństwo k sukcesów w n próbach $(k=0,1,\ldots,n)$.

Kodujemy sukcesy jako jedynki a porażki jako zera:

$$\begin{split} &\Omega = \left\{ \omega = (b_1, \ldots, b_n) \colon b_i \in \{0, 1\} \right\} \\ &\text{Jeśli } k = b_1 + b_2 + \ldots + b_n \text{ jest liczbą sukcesów, to:} \\ &P(\left\{ (b_1, \ldots, b_n) \right\}) = \underbrace{p \cdot \ldots \cdot p} \cdot \underbrace{(1-p) \cdot \ldots \cdot (1-p)}_{} = p^k (1-p)^{n-k} \end{split}$$

Wykonujemy serię niezależnych prób (doświadczeń), każde z nich kończy się sukcesem z prawd. p i porażką z prawd. 1-p. Podaj prawdopodobieństwo k sukcesów w n próbach $(k=0,1,\ldots,n)$.

Kodujemy sukcesy jako jedynki a porażki jako zera:

$$\Omega = \{\omega = (b_1, \ldots, b_n) \colon b_i \in \{0, 1\}\}$$

Jeśli $k = b_1 + b_2 + \ldots + b_n$ jest liczbą sukcesów, to:

$$P(\{(b_1,\ldots,b_n)\}) = \underbrace{p\cdot\ldots\cdot p}_{k}\cdot\underbrace{(1-p)\cdot\ldots\cdot(1-p)}_{n-k} = p^k(1-p)^{n-k}$$

Ile jest różnych ciągów binarnych o długości n z k jedynkami?

Wykonujemy serię niezależnych prób (doświadczeń), każde z nich kończy się sukcesem z prawd. p i porażką z prawd. 1-p. Podaj prawdopodobieństwo k sukcesów w n próbach $(k=0,1,\ldots,n)$.

Kodujemy sukcesy jako jedynki a porażki jako zera:

$$\Omega = \{\omega = (b_1, \ldots, b_n) \colon b_i \in \{0, 1\}\}$$

Jeśli $k = b_1 + b_2 + \ldots + b_n$ jest liczbą sukcesów, to:

$$P(\{(b_1,\ldots,b_n)\}) = \underbrace{p\cdot\ldots\cdot p}_{k}\cdot\underbrace{(1-p)\cdot\ldots\cdot(1-p)}_{n-k} = p^k(1-p)^{n-k}$$

lle jest różnych ciągów binarnych o długości n z k jedynkami? $\binom{n}{k}$.

Wykonujemy serię niezależnych prób (doświadczeń), każde z nich kończy się sukcesem z prawd. p i porażką z prawd. 1-p. Podaj prawdopodobieństwo k sukcesów w n próbach $(k=0,1,\ldots,n)$.

Kodujemy sukcesy jako jedynki a porażki jako zera:

$$\Omega = \{\omega = (b_1, \ldots, b_n) \colon b_i \in \{0, 1\}\}$$

Jeśli $k = b_1 + b_2 + \ldots + b_n$ jest liczbą sukcesów, to:

$$P(\{(b_1,\ldots,b_n)\}) = \underbrace{p\cdot\ldots\cdot p}_{k}\cdot\underbrace{(1-p)\cdot\ldots\cdot(1-p)}_{n-k} = p^k(1-p)^{n-k}$$

lle jest różnych ciągów binarnych o długości $n \ge k$ jedynkami? $\binom{n}{k}$.

Jeśli A_k – "wypadło dokładnie k sukcesów w n próbach", to:

$$P(A_k) = \binom{n}{k} p^k (1-p)^{n-k}$$

$$P(A_k) = \binom{n}{k} p^k (1-p)^{n-k}$$

n=2		n = 3		n = 4	
#sukc.	prawd.	#sukc.	prawd.	#sukc.	prawd.
0	$(1-p)^2$	0	$(1-p)^3$	0	$(1-p)^4$
1	2p(1-p)	1	$3p(1-p)^2$	1	$4p(1-p)^3$
2	p^2	2	$3p^2(1-p)$	2	$6p^2(1-p)^2$
		3	$(1-p)^3$	3	$4p^3(1-p)$
				4	p^4

Fakt: Dla dowolnego $p \in [0, 1]$:

$$\sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = 1$$

W szczególności, jeśli $p = \frac{1}{2}$:

$$\sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{2}\right)^n = 1 \qquad \Longrightarrow \qquad \sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Fakt: Dla dowolnego $p \in [0, 1]$:

$$\sum_{k=0}^{n} \binom{n}{k} p^{k} (1-p)^{n-k} = 1$$

W szczególności, jeśli $p = \frac{1}{2}$:

$$\sum_{k=0}^{n} \binom{n}{k} \left(\frac{1}{2}\right)^n = 1 \qquad \Longrightarrow \qquad \sum_{k=0}^{n} \binom{n}{k} = 2^n$$

Dowód: Niech A_k – "wypadło dokładnie k sukcesów w n próbach"

$$\Omega = A_0 \cup A_1 \cup \ldots \cup A_n$$

Ponieważ A_k są rozłączne (k = 0, ..., n):

$$1 = P(\Omega) = \sum_{k=0}^{n} P(A_k) = \sum_{k=0}^{n} {n \choose k} p^k (1-p)^{n-k}$$

Dla dużych *n*, rozkład "koncentruje" się wokół wartości *np*.

Czasem w schemacie Bernoulliego nie ma ograniczenia na liczbę prób n

Czasem w schemacie Bernoulliego nie ma ograniczenia na liczbę prób n

 Spacer losowy: idziemy krok w lewo ("sukces") lub w prawo ("porażka") z prawdopodobieństwem 1/2. Jaka jest szansa, że kiedykolwiek oddalimy się o 10 kroków od punktu startowego?

Czasem w schemacie Bernoulliego nie ma ograniczenia na liczbę prób n

 Spacer losowy: idziemy krok w lewo ("sukces") lub w prawo ("porażka") z prawdopodobieństwem 1/2. Jaka jest szansa, że kiedykolwiek oddalimy się o 10 kroków od punktu startowego?

 Gry hazardowe: Gramy w ruletkę ("czerwone/czarne"), za każdym razem obstawiając 1 zł. Zaczynając z 10 zł kończymy grę, jeśli albo stracimy wszystko, albo osiągniemy 20zł. Jaka jest szansa wygranej?

Czasem w schemacie Bernoulliego nie ma ograniczenia na liczbę prób n

 Spacer losowy: idziemy krok w lewo ("sukces") lub w prawo ("porażka") z prawdopodobieństwem 1/2. Jaka jest szansa, że kiedykolwiek oddalimy się o 10 kroków od punktu startowego?

 Gry hazardowe: Gramy w ruletkę ("czerwone/czarne"), za każdym razem obstawiając 1 zł. Zaczynając z 10 zł kończymy grę, jeśli albo stracimy wszystko, albo osiągniemy 20zł. Jaka jest szansa wygranej?

Prawdopodobieństwa zwykle uzyskujemy rozwiązując rekurencję.

- S_k "student dojdzie do domu, jeśli jest k kroków od niego"
- H_+ "pierwszy krok w kierunku domu"
- H_ "pierwszy krok w kierunku przeciwnym"

- S_k "student dojdzie do domu, jeśli jest k kroków od niego"
- H_+ "pierwszy krok w kierunku domu"
- *H*₋ "pierwszy krok w kierunku przeciwnym"

Ponieważ
$$H_+ \cup H_- = \Omega$$
 oraz $H_+ \cap H_- = \emptyset$,

$$P(S_k) = P(S_k|H_+)P(H_+) + P(S_k|H_-)P(H_-)$$

- S_k "student dojdzie do domu, jeśli jest k kroków od niego"
- H_+ "pierwszy krok w kierunku domu"
- H_ "pierwszy krok w kierunku przeciwnym"

Ponieważ
$$H_+ \cup H_- = \Omega$$
 oraz $H_+ \cap H_- = \emptyset$,

$$P(S_k) = \underbrace{P(S_k|H_+)}_{P(S_{k-1})} P(H_+) + \underbrace{P(S_k|H_-)}_{P(S_{k+1})} P(H_-)$$

- S_k "student dojdzie do domu, jeśli jest k kroków od niego"
- H_+ "pierwszy krok w kierunku domu"
- H_ "pierwszy krok w kierunku przeciwnym"

Ponieważ
$$H_+ \cup H_- = \Omega$$
 oraz $H_+ \cap H_- = \emptyset$,

$$P(S_{k}) = \underbrace{P(S_{k}|H_{+})}_{P(S_{k-1})} P(H_{+}) + \underbrace{P(S_{k}|H_{-})}_{P(S_{k+1})} P(H_{-})$$

$$= \frac{1}{2} P(S_{k-1}) + \frac{1}{2} P(S_{k+1})$$

Oznaczając
$$s_k=P(S_k)$$
 i mnożąc przez 2, otrzymujemy rekurencję $2s_k=s_{k-1}+s_{k+1},$ przy warunkach brzegowych $s_0=1,s_n=0$

Oznaczając
$$s_k=P(S_k)$$
 i mnożąc przez 2, otrzymujemy rekurencję
$$2s_k\ =\ s_{k-1}+s_{k+1}, \qquad \text{przy warunkach brzegowych } s_0=1, s_n=0$$
 Przekształcając: $s_k-s_{k-1}=s_{k+1}-s_k$

Oznaczając
$$s_k = P(S_k)$$
 i mnożąc przez 2, otrzymujemy rekurencję

$$2s_k = s_{k-1} + s_{k+1}$$
, przy warunkach brzegowych $s_0 = 1, s_n = 0$

Przekształcając:
$$s_k - s_{k-1} = s_{k+1} - s_k$$

Kolejne różnice $r = s_{k+1} - s_k$ są identyczne dla wszystkich k!

$$s_1 = s_0 + s_1 - s_0 = s_0 + r$$

$$s_2 = s_1 + s_2 - s_1 = s_1 + r = s_0 + 2r$$

$$s_n = s_0 + nr$$

Oznaczając
$$s_k = P(S_k)$$
 i mnożąc przez 2, otrzymujemy rekurencję

$$2s_k = s_{k-1} + s_{k+1}$$
, przy warunkach brzegowych $s_0 = 1, s_n = 0$

Przekształcając:
$$s_k - s_{k-1} = s_{k+1} - s_k$$

Kolejne różnice $r = s_{k+1} - s_k$ są identyczne dla wszystkich k!

$$s_1 = s_0 + s_1 - s_0 = s_0 + r$$

$$s_2 = s_1 + s_2 - s_1 = s_1 + r = s_0 + 2r$$

$$s_n = s_0 + nr$$

Ale skoro $s_n = 0$, $s_0 = 1$, to $r = -\frac{1}{n}$

Oznaczając
$$s_k = P(S_k)$$
 i mnożąc przez 2, otrzymujemy rekurencję

$$2s_k = s_{k-1} + s_{k+1},$$
 przy warunkach brzegowych $s_0 = 1, s_n = 0$

Przekształcając:
$$s_k - s_{k-1} = s_{k+1} - s_k$$

Kolejne różnice $r = s_{k+1} - s_k$ są identyczne dla wszystkich k!

$$s_1 = s_0 + s_1 - s_0 = s_0 + r$$

$$s_2 = s_1 + s_2 - s_1 = s_1 + r = s_0 + 2r$$

$$s_n = s_0 + nr$$

Ale skoro
$$s_n = 0$$
, $s_0 = 1$, to $r = -\frac{1}{n}$

Czyli
$$P(S_k) = s_k = 1 - \frac{k}{n} = \frac{n-k}{n}$$

A jaka jest szansa, że student wróci do baru, będąc k kroków od domu?

A jaka jest szansa, że student wróci do baru, będąc k kroków od domu?

 B_k – "student dojdzie do baru, jeśli jest k kroków od domu"

A jaka jest szansa, że student wróci do baru, będąc k kroków od domu?

 B_k – "student dojdzie do baru, jeśli jest k kroków od domu"

Wskazówka: "bar" i "dom" są tu umowne i symetryczne! "k kroków od domu" to "n-k kroków od baru"

A jaka jest szansa, że student wróci do baru, będąc *k* kroków od domu?

 B_k – "student dojdzie do baru, jeśli jest k kroków od domu"

Wskazówka: "bar" i "dom" są tu umowne i symetryczne! "k kroków od domu" to "n-k kroków od baru"

A jaka jest szansa, że student wróci do baru, będąc k kroków od domu?

 B_k – "student dojdzie do baru, jeśli jest k kroków od domu"

Wskazówka: "bar" i "dom" są tu umowne i symetryczne! "k kroków od domu" to "n-k kroków od baru"

$$P(B_k) = P(S_{n-k}) = \frac{n - (n-k)}{n} = \frac{k}{n}$$

A jaka jest szansa, że student wróci do baru, będąc *k* kroków od domu?

 B_k – "student dojdzie do baru, jeśli jest k kroków od domu"

Wskazówka: "bar" i "dom" są tu umowne i symetryczne! "k kroków od domu" to "n-k kroków od baru"

$$P(B_k) = P(S_{n-k}) = \frac{n - (n-k)}{n} = \frac{k}{n}$$

Ponieważ $P(B_k) + P(S_k) = 1$, prawdopodobieństwo, że student będzie krążył w nieskończoność jest równe 0.

Przykład – gra

Jaś i Małgosia rzucają monetą. Jeśli wypadnie orzeł – Jaś daje Małgosi złotówkę, jeśli reszka – Małgosia Jasiowi. Jaś zaczyna z kapitałem j zł, Małgosia – z m zł. Gra toczy się, dopóki któreś z nich nie przegra wszystkiego. Jaka jest szansa wygranej Jasia, a jaka Małgosi?

Przykład – gra

Jaś i Małgosia rzucają monetą. Jeśli wypadnie orzeł – Jaś daje Małgosi złotówkę, jeśli reszka – Małgosia Jasiowi. Jaś zaczyna z kapitałem j zł, Małgosia – z m zł. Gra toczy się, dopóki któreś z nich nie przegra wszystkiego. Jaka jest szansa wygranej Jasia, a jaka Małgosi?

Sprowadzamy problem do poprzedniego zadania:

- Jaś = dom, Małgosia = bar
- Odległość dom-bar n = m + j
- Początkowa odległość od domu k=m

Jeśli J – "wygrywa Jaś", M – "wygrywa Małgosia" to:

$$P(J) = 1 - \frac{k}{n} = \frac{j}{j+m}, \qquad P(M) = \frac{k}{n} = \frac{m}{j+m}$$

Przykład – wracamy do zadania z barem

Komplikujemy: student wykonuje krok w kierunku domu z prawdopodobieństwem $p \neq \frac{1}{2}$. Jaką ma szansę dojść do domu?

Przykład – wracamy do zadania z barem

Komplikujemy: student wykonuje krok w kierunku domu z prawdopodobieństwem $p \neq \frac{1}{2}$. Jaką ma szansę dojść do domu?

Wychodzimy z uprzednio otrzymanego równania:

$$P(S_k) = P(S_{k-1})P(H_+) + P(S_{k+1})P(H_-) = pP(S_{k-1}) + (1-p)P(S_{k+1})$$

Oznaczając $s_k = P(S_k)$ dostajemy rekurencję:

$$s_k = ps_{k-1} + (1-p)s_{k+1}, \quad przy \ s_0 = 1, s_n = 0.$$

Przykład – wracamy do zadania z barem

Komplikujemy: student wykonuje krok w kierunku domu z prawdopodobieństwem $p \neq \frac{1}{2}$. Jaką ma szansę dojść do domu?

Wychodzimy z uprzednio otrzymanego równania:

$$P(S_k) = P(S_{k-1})P(H_+) + P(S_{k+1})P(H_-) = pP(S_{k-1}) + (1-p)P(S_{k+1})$$

Oznaczając $s_k = P(S_k)$ dostajemy rekurencję:

$$s_k = ps_{k-1} + (1-p)s_{k+1}, \quad przy \ s_0 = 1, s_n = 0.$$

Zgadujemy rozwiązanie: dla $r = \frac{p}{1-p}$ mamy

$$P(S_k) = s_k = \frac{r^k - r^n}{1 - r^n}$$

Student jest k kroków od domu. Z prawdopodobieństwem 1/3 wykonuje krok w kierunku domu, 2/3 – w kierunku przeciwnym. Jaką ma szansę dojść kiedykolwiek do domu?

Student jest k kroków od domu. Z prawdopodobieństwem 1/3 wykonuje krok w kierunku domu, 2/3 – w kierunku przeciwnym. Jaką ma szansę dojść kiedykolwiek do domu?

$$P(S_k) = s_k = \frac{r^k - r^n}{1 - r^n}, \qquad r = \frac{p}{1 - p} = \frac{1/3}{2/3} = \frac{1}{2}$$

Student może zawędrować dowolnie daleko w przeciwnym kierunku.

Student jest k kroków od domu. Z prawdopodobieństwem 1/3 wykonuje krok w kierunku domu, 2/3 – w kierunku przeciwnym. Jaką ma szansę dojść kiedykolwiek do domu?

$$P(S_k) = s_k = \frac{r^k - r^n}{1 - r^n}, \qquad r = \frac{p}{1 - p} = \frac{1/3}{2/3} = \frac{1}{2}$$

Student może zawędrować dowolnie daleko w przeciwnym kierunku.

 \implies bar jest nieskończenie daleko: $n \to \infty$

Student jest k kroków od domu. Z prawdopodobieństwem 1/3 wykonuje krok w kierunku domu, 2/3 – w kierunku przeciwnym. Jaką ma szansę dojść kiedykolwiek do domu?

$$P(S_k) = s_k = \frac{r^k - r^n}{1 - r^n}, \qquad r = \frac{p}{1 - p} = \frac{1/3}{2/3} = \frac{1}{2}$$

Student może zawędrować dowolnie daleko w przeciwnym kierunku.

 \implies bar jest nieskończenie daleko: $n \rightarrow \infty$

$$\lim_{n\to\infty} P(S_k) = \lim_{n\to\infty} \frac{\left(\frac{1}{2}\right)^k - \left(\frac{1}{2}\right)^n}{1 - \left(\frac{1}{2}\right)^n} = \left(\frac{1}{2}\right)^k$$

Nieskończone ciągi Bernoulliego – podsumowanie

Spacer losowy:

Prawdopodobieństwo osiągnięcia punktu A:

$$P(A) = \begin{cases} \frac{b}{a+b} & \text{jeśli } p = \frac{1}{2} \\ \frac{\left(\frac{p}{1-p}\right)^a - \left(\frac{p}{1-p}\right)^{a+b}}{1 - \left(\frac{p}{1-p}\right)^{a+b}} & \text{jeśli } p \neq \frac{1}{2} \end{cases}$$

Prawdopodobieństwo osiągnięcia punktu B:

$$P(B) = 1 - P(A)$$

 Możemy usunąć punkt B (lub A) przechodząc z b (lub a) do nieskończoności.