

Universidad Tecnológica Nacional Facultad Regional Buenos Aires

Materia: Robótica Curso: R-6055

Profesor: Ing. Hernán Gianetta

JTP: Ing. Damián Granzella

Año: 2010

Tesis Final

Alumnos: Charec, Diego 113768-2

Montaño Vallejos, Hector 116021-7

Fecha de Entrega: 27/08/2010

Cinemática del Robot Manipulador Stanford Elegido

Cuadro con las Articulaciones del Robot Stanford de 6 Grados de Libertad

Articulación	θ	d	A	α
1	θ 1	11	0	-90°
2	θ 2	12	0	90°
3	0	d3	0	0
4	θ 4	0	0	-90°
5	θ 5	0	0	90°
6	θ 6	16	0	0

Obtención de Matrices por el Método de Transformación Homogénea

Obtención de A_0^1 : Rotación en eje Z, seguida de una Traslación en Z, y por ultimo una Rotación sobre el eje X.

$$A_0^1 = \begin{bmatrix} \cos(\theta 1) & 0 & -\sin(\theta 1) & 0\\ \sin(\theta 1) & 0 & \cos(\theta 1) & 0\\ 0 & -1 & 0 & l1\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Obtención de A_1^2 : Rotación en eje Z, seguida de una Traslación en Z, y por ultimo una Rotación sobre el eje X.

$$A_{1}^{2} = \begin{bmatrix} \cos(\theta 2) & 0 & \sin(\theta 2) & 0\\ \sin(\theta 2) & 0 & -\cos(\theta 2) & 0\\ 0 & 1 & 0 & l2\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Obtención de A_2^3 : Traslación sobre el eje Z.

$$A_2^3 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & d3 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Obtención de A_3^4 : Rotación en eje Z y Rotación sobre el eje X.

$$A_3^4 = \begin{bmatrix} \cos(\theta 4) & 0 & -\sin(\theta 4) & 0\\ \sin(\theta 4) & 0 & \cos(\theta 4) & 0\\ 0 & -1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Obtención de A_4^5 : Rotación en eje Z y Rotación sobre el eje X.

$$A_4^5 = \begin{bmatrix} \cos(\theta 5) & 0 & \sin(\theta 5) & 0\\ \sin(\theta 5) & 0 & -\cos(\theta 5) & 0\\ 0 & 1 & 0 & 0\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Obtención de A_5^6 : Rotación sobre el eje Z y Traslación sobre el eje Z

$$A_5^6 = \begin{bmatrix} \cos(\theta 6) & -\sin(\theta 6) & 0 & 0\\ \sin(\theta 6) & \cos(\theta 6) & 0 & 0\\ 0 & 0 & 1 & 16\\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Obtención de $T_0^6 = A_0^1 x A_1^2 x A_2^3 x A_3^4 x A_4^5 x A_5^6$

$$T_0^6 = \begin{bmatrix} A & B & C & D \\ E & F & G & H \\ I & J & K & L \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Donde cada término queda definido a continuación:

```
A = \{ [\cos(\theta 1) * \cos(\theta 2) * \cos(\theta 4) - \sin(\theta 1) * \sin(\theta 4) ] * \cos(\theta 5) - \cos(\theta 1) * \sin(\theta 2) * \sin(\theta 5) \} * \cos(\theta 6) \}
  + [-\cos(\theta 1)*\cos(\theta 2)*\sin(\theta 4)-\sin(\theta 1)*\cos(\theta 4)]*\sin(\theta 6)
B = -\left\{ \left[ \cos(\theta 1) * \cos(\theta 2) * \cos(\theta 4) - \sin(\theta 1) * \sin(\theta 4) \right] * \cos(\theta 5) - \cos(\theta 1) * \sin(\theta 2) * \sin(\theta 5) \right\} * \sin(\theta 6)
 + [-\cos(\theta 1) \cos(\theta 2) \sin(\theta 4) - \sin(\theta 1) \cos(\theta 4)] \cos(\theta 6)
C = [\cos(\theta 1) * \cos(\theta 2) * \cos(\theta 4) - \sin(\theta 1) * \sin(\theta 4)] * \sin(\theta 5) + \cos(\theta 1) * \sin(\theta 2) * \cos(\theta 5)
 D = \{ [\cos(\theta 1) * \cos(\theta 2) * \cos(\theta 4) - \sin(\theta 1) * \sin(\theta 4) ] * \sin(\theta 5) + \cos(\theta 1) * \sin(\theta 2) * \cos(\theta 5) \} * 16
  +\cos(\theta 1)*\sin(\theta 2)*d3 - \sin(\theta 1)*12
E = \{ [\sin(\theta 1) * \cos(\theta 2) * \cos(\theta 4) + \cos(\theta 1) * \sin(\theta 4) ] * \cos(\theta 5) - \sin(\theta 1) * \sin(\theta 2) * \sin(\theta 5) \} * \cos(\theta 6)
  + \left[-\sin(\theta 1)\cos(\theta 2)\sin(\theta 4) + \cos(\theta 1)\cos(\theta 4)\right]\sin(\theta 6)
F = -\{ [\sin(\theta 1) * \cos(\theta 2) * \cos(\theta 4) + \cos(\theta 1) * \sin(\theta 4) ] * \cos(\theta 5) - \sin(\theta 1) * \sin(\theta 2) * \sin(\theta 5) \} * \sin(\theta 6) \}
  + [-\sin(\theta 1)*\cos(\theta 2)*\sin(\theta 4) + \cos(\theta 1)*\cos(\theta 4)]*\cos(\theta 6)
G = [\sin(\theta 1) \cos(\theta 2) \cos(\theta 4) + \cos(\theta 1) \sin(\theta 4)] \sin(\theta 5) + \sin(\theta 1) \sin(\theta 2) \cos(\theta 5)
H = \{ [\sin(\theta 1) * \cos(\theta 2) * \cos(\theta 4) + \cos(\theta 1) * \sin(\theta 4) ] * \sin(\theta 5) + \sin(\theta 1) * \sin(\theta 2) * \cos(\theta 5) \} * 16
 +\sin(\theta 1)*\sin(\theta 2)*d3 + \cos(\theta 1)*12
I = [-\sin(\theta 2) \cos(\theta 4) \cos(\theta 5) - \cos(\theta 2) \sin(\theta 5)] \cos(\theta 6) + \sin(\theta 2) \sin(\theta 4) \sin(\theta 6)
J = -[-\sin(\theta 2) \cos(\theta 4) \cos(\theta 5) - \cos(\theta 2) \sin(\theta 5)] \sin(\theta 6) + \sin(\theta 2) \sin(\theta 4) \cos(\theta 6)
K = -\sin(\theta 2) \cos(\theta 4) \sin(\theta 5) + \cos(\theta 2) \cos(\theta 5)
L = [-\sin(\theta 2) \cos(\theta 4) \sin(\theta 5) + \cos(\theta 2) \cos(\theta 5)] \sin(\theta 5) + \cos(\theta 2) \cos
```

Para nuestro brazo robótico nuestras coordenadas X, Y, Z serán:

$$X = D$$
 $Y = H$ $Z = L$

Dichas coordenadas serán utilizadas para el empleo de la simulación en DSP.

Simulación del DSP con Code Warrior obtenido en Matlab

La simulación fue realizada para una cantidad de ángulos de rotación muy pequeña a afectos de mostrar una zona de trabajo específica en la cual trabajara. Se estimo una variación de 10.8° por cada articulación de rotación y 3 pasos como máximo en la base prismática de rotación.

Dinámica del Robot Manipulador Stanford

A continuación se tratara sobre la parte dinámica del Stanford, y para ello se lo dividirá en dos partes, una con el sistema 1 2 3, y la segunda con el sistema 4 5 6.

Esta separación es para comprobar como se maneja el manipulador, por un lado esta el manejo de la base, y por el otro un poco mas fino para la manipulación de la pinza que puede llegar a manejar o transportar objetos.

Sistema 1 2 3

Para tal tarea se deben completar unas matrices en la configuración del diagrama en bloques utilizado, que se encuentra dentro de la herramienta Hemero dentro de Matlab.

```
Matriz a completar en el cuadro de matrices del bloque:

dyn = [0 0 0 0 0 9.29 11.05 0 0 0 0 0 0 0 0 1 0 0 0;

0 11.05 0 0 0 5.01 10.54 0 0 0 0 0 0 0 0 1 0 0 0;

0 11.05 0 0 0 4.25 64.47 0 0 0 0 0 0 0 0 0 1 0 0 0]
```

Una vez cargadas las matrices dinámicas se procede a su simulación que fue configurada para un tiempo de visualización de 10 segundos, estas mismas arrojaron: En la Figura 1 (visualizada por el Scope 2) se encuentra el comportamiento de las 3 primeras articulaciones, y en la Figura 2 (visualizada por el Scope 1) su correspondiente Par y Fuerza aplicados.

Figura 1

Figura 2

Como señal de prueba piloto se usaron señales senoidales en las entradas de un MUX que actúa para dividir estas señales de modo de que sean aplicadas a cada articulación de rotación.

Sistema 4 5 6

Del mismo modo que el anterior se procede de la misma manera

```
Matriz a completar en el cuadro de matrices del bloque:

dyn = [0 0 0 0 0 1.05 0.54 0 0 0 0 0 0 0 0 1 0 0 0;

0 0 0 0 0 0.63 5.66 0 0 0 0 0 0 0 0 1 0 0 0;

0 0 0 0 0 0.51 15.54 0 0 0 0 0 0 0 0 1 0 0 0]
```

En la Figura 3 (visualizada por el Scope 2) se encuentra el comportamiento de las 3 articulaciones, y en la Figura 4 (visualizada por el Scope 1) su correspondiente Par y Fuerza aplicados.

Figura 3

Figura 4

Dichos diagramas en bloque utilizados para el análisis fueron realizados sobre el siguiente:

