Visualization for Data Science Visual Marks & Channels

Datasets

Attributes

- Data Types
 - → Items
- → Attributes
- → Links
- → Positions
- → Grids
- **→** Attribute Types
 - → Categorical

- → Ordered
 - → Ordinal

→ Quantitative

→ Data and Dataset Types

- **→** Dataset Types
 - → Tables

(rows)

- → Networks
- → Fields (Continuous)

→ Diverging

→ Ordering Direction

→ Sequential

→ Cyclic

→ Multidimensional Table

Attributes (columns)

Cell containing value

→ Trees

→ Geometry (Spatial)

Attributes

Key 2

→ Dataset Availability

→ Dynamic

Lecture Recap

What kind of questions can we answer?

What is the data?

Who might be the audience?

City	Condition	Temperature
<u>Calgary</u>	Mainly Clear	-4°C
Charlottetown	Light Snowshower	-6°C
Edmonton		-7°C
Fredericton	Clear	-9°C
<u>Halifax</u>	Light Snow	-6°C
<u>Iqaluit</u>	Clear	-28°C
<u>Montréal</u>	Mainly Clear	-9°C
Ottawa (Kanata - Orléans)	Mainly Clear	-10°C
Prince George	Fog	-6°C
<u>Québec</u>	Mainly Clear	-15°C
Regina	Mist	-13°C
Saskatoon	Mist	-11°C
St. John's	Mostly Cloudy	-5°C
<u>Thunder Bay</u>	Light Snow	0°C
<u>Toronto</u>	Cloudy	-1°C
Vancouver	Mainly Clear	7°C
<u>Victoria</u>	Mainly Clear	5°C
Whitehorse	Mostly Cloudy	-12°C
<u>Winnipeg</u>	Mist	-6°C
<u>Yellowknife</u>	Light Snow	-13°C

Data abstraction: Three operations

 translate from domain-specific language to generic visualization language

- identify dataset type(s), attribute types
- identify cardinality
 - how many items in the dataset?
 - what is cardinality of each attribute?
 - number of levels for categorical data
 - range for quantitative data
- consider whether to transform data
 - guided by understanding of task

Data vs conceptual models

- data model
 - mathematical abstraction
 - sets with operations, eg floats with * / +
 - variable data types in programming languages
- conceptual model
 - mental construction (semantics)
 - supports reasoning
 - -typically based on understanding of tasks [stay tuned!]
- data abstraction process relies on conceptual model
 - for transforming data if needed

Data vs conceptual model, example

- data model: floats
 - $-32.52, 54.06, -14.35, \dots$
- conceptual model
 - -temperature
- multiple possible data abstractions
 - continuous to 2 significant figures: quantitative
 - task: forecasting the weather
 - hot, warm, cold: ordinal
 - task: deciding if bath water is ready
 - above freezing, below freezing: categorical
 - task: decide if I should leave the house today

Visual encoding

How many ways can you visually represent two numbers, e.g.? 75 and 37

- A. 1
- B. 2
- C. 5
- D. 10
- E. 15

Design Task (5 mins)

Thinking outside the box, sketch all the different ways you can visualize two numbers: 75 and 37

Lessons Learned from the exercise

- Some vizzes are scalable to larger lists of numbers
- Some vizzes focus on the relationship between the values, while others focus on each value independently
- Information visualization is a language that has its own grammar
 - Combinatory: composition of marks
 - Generative: serve as building blocks to other vizzes
 - Expansive: hard to count all options
 - Creative

Learning Outcomes

- Describe the basic visual primitives of visualizations (marks and channels)
- Differentiate between a mark and channel
- Describe a visualization using appropriate viz grammar
- Use makes and channels to create a bubble chart in Altair
 - Chart Object
 - How to attach data to the Chart
 - How to specify each channel and describe which attribute encodes

Visual encoding

How to systematically analyze idiom structure?

- Marks: represent items or links (e.g., line, point, circle)
- Channels: change appearance of marks based on attributes (position, color)

Marks for items

• basic geometric elements or primitives

• 3D mark: volume, rarely used

Channels

- control appearance of marks
 - proportional to or based on attributes

- many names
 - -visual channels
 - visual variables
 - retinal channels
 - visual dimensions
 - Visual encodings

Color

Definitions: Marks and channels

- marks
 - geometric primitives
- channels
 - control appearance of marks
- channel properties differ
 - type & amount of information that can be conveyed to human perceptual system

Visual encoding

analyze idiom structure as combination of marks and channels

Visual encoding

analyze idiom structure as combination of marks and channels

In groups, deconstruct this visualization

What are the data attributes being encoded? What marks are used? What channels are used?

Data Semantics	Attribute Type	Channel	Mark

Across U.S. Companies, Tax Rates Vary Greatly

Last week, in a Congressional hearing, Apple got grilled for its low-tax strategy. But not every business can copy that approach. Here is a look at what S.&P. 500 companies paid in corporate income taxes — federal, state, local and foreign — from 2007 to 2012, according to S&P Capital IQ. Related Article »

https://archive.nytimes.com/www.nytimes.com/interactive/2013/05/25/sunday-review/corporate-taxes.html

Data Semantics	Attribute Type	Channel	Mark

Redundant encoding

Multiple channels

- sends stronger message
- but uses up channels

Channels

→ Magnitude Channels: Ordered Attributes

Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

Grammar of Graphics

A framework which follows a layered approach to describe, design, create visualizations in a structured fashion.

Grammar of Graphics – Leland Wiklinson

Layered Grammar of Graphics – Hadley Wickman (R visualization package ggplot2)

<u>Vega</u> is a *visualization grammar*, a declarative language for creating, saving, and sharing interactive visualization designs. Vega-Altair – statistical visualization library for Python.

Others: Cicero, Atlas

Grammar Building Blocks

Vega (altair)

- Data
- Graphical marks
- Transformation
 - Aggregate, Bin, Density, Filter, Flatten,
- Scales
- Map projections
- Axes
- Legends

The key idea is that you are declaring links between *data columns* and *visual encoding channels*, such as the x-axis, y-axis, color, etc.

Layered Grammar (ggplot2)

- Data
- Layer
 - Data
 - Mapping
 - Geometric object
 - Stat (Statistical Transformation)
 - Position
- Scales
- Facet specification
- Coordinate system

From Theory to Tooling

Magnitude Channels: Ordered Attributes Position on common scale Position on unaligned scale Length (1D size) Tilt/angle Area (2D size) Depth (3D position) Color luminance Color saturation Curvature Volume (3D size)

Altair Channels

- x: Horizontal (x-axis) position of the mark.
- y: Vertical (y-axis) position of the mark.
- angle:
- color: Mark color, specified as a legal CSS color.
- fill
- opacity: Mark opacity, ranging from 0 (fully transparent) to 1
- radius
- shape: Plotting symbol shape for point marks.
- size

Altair Marks

- arc
- area
- bar
- circle
- line
- point
- rect

Altair Basics

Create a Chart Object Attach data to the Chart Object Specify the mark type alt.Chart(data).mark bar().encode(channel 1 = 'column1', channel 2 = 'column2', Specify each channel and what data it encodes