数据科学R与Python实践

第05章多项式

顾立平

9项式定义

由单项式加减构成,非负整数为次数,每个单项式为一"项",次数最高的为"多项式次数"。

02 单项式与多项式关系 单项式与多项式关系

单项式是多项式的组成单元,次数由单项式内字母的指数决定,多项式次数为所有单项式中最高次数。

多项式表示公式 表示为 anxn + a_{n-1}x^{n-1} + ... + a1x + a0 系数决定权重 , n为最高次数 , 影响多项式行为。

04 公式解释

n为最高幂次,表示x的最高次幂,系数an-an_1...a1决定各 幂次权重,影响多项式在x变化时的行为特征。

S. A. A.

WEALTH

展现多项式

多项式是数学基本概念,包含 多个单项式相加或相减,广泛 应用于科学和商业领域。

034 展现多项式

```
R R Console
                                                         - - X
> p2 <- create polynomial from zeros(zeros)
> # 输出多项式p2
> print (p2)
> # 使用polynom函数,根据给定的系数(1,2,0,4)创建一个多项式。
> # 这些系数代表了多项式的各项系数。
> p3 = polynom(c(1,2,0,4))
> # 输出多项式p3的信息
> p3
1 + 2*x + 4*x^3
> # 创建一个空的多项式变量x
> x = polynom()
> # 根据给定的数学表达式创建一个多项式p4
> p4 = 5*(x-4)^3 + 10*x^2 - 5
> # 输出多项式p4的信息
> p4
-325 + 240*x - 50*x^2 + 5*x^3
>
```


多项式的定义

多项式定义

包含变量、系数,通过加减乘幂运算形成,如3x^2+2x-1。每个单项式为项,最高项次数为多项式次数,无字母项为常数项。

01

在科学领域 的应用

物理学中的多 项式应用

揭示运动学、动力学中的定量关系,量子力学中与角动量量子化相关。

化学与材料科 学中的应用

物理化学中描述化 学反应动力学,材 料性质随环境参数 变化的数学工具。

工程学中的多 项式应用

电路分析、控制 系统设计、信号 处理等领域的重 要计算基础,表 达工程参数关系。

04

数据分析与建模中的应用

多项式拟合分析 数据趋势,用于 统计学的多项式 回归,研究变量 间非线性关系。

在科学领域的应用

商业领域的应用

预测金融经济指标趋势,风险管理,市 场趋势预测,支持企业决策制定。

算法与计算机科 学中的应用 描述算法效率,评估时间复杂度和空间复杂度,以及在加密解密中的数学基础。

数学中的多项式 求解 寻找满足多项式方程为零的解,是代数中基本且重要的问题,广泛应用于各科学领域。

035 求解多项式

```
R Console
> # 注释: 从0到10的整数中随机抽取5个数,允许重复,结果存储在rand.int变; > # 解释: sample() 函数用于从指定的向量中随机抽取元素。这里,它从0到108 > # 并且由于replace=TRUE,所以同一个数可能会被多次抽取。
> rand.int = sample(0:10, 5, replace=TRUE)
> # 使用rand.int中的值(这些值应该是之前随机生成的)作为系数创建一个多
> p5 = polynom(rand.int)
> # 输出多项式p6的信息
9 + 10*x^2 + 8*x^3 + 3*x^4
> # 求解多项式p6的根(即解方程p6=0)
> solve(p5)
[1] -1.5931059-1.3233717i -1.5931059+1.3233717i 0.2597725-0.7949423i
[41 0.2597725+0.7949423i
> # 使用复数来求解多项式p6的根,并指定求解的精度为9位有效数字
> solve(p5, 9)
[1] -1.333333-1.247219i -1.333333+1.247219i 0.000000+0.000000i
[41 0.000000+0.000000i
> # 绘制多项式p5的图像
> plot(p5)
>
```


在科学领域的应用

用于运动学、力学和量子力学,解决 物体运动、受力和微观粒子行为问题。 电路分析中确定电流电压参数,控制系统设计中分析系统动态特性,确保系统稳定性。

物理学中的多项式方程应用

工程学中的多项式方程应用

化学中的多项式方程应用

在反应动力学和电化学中,描述反应 速率、电动势与浓度的关系,预测反 应进程。 生物学中的多项式方程应用

1000

在生物信息学中解决基因表达和蛋白质结构问题,帮助解析生物过程的机制。

在商业领域的应用

利用多项式方程建立资产定价、风险管理模型,协助金融机构评估投资风险与制定策略。

多项式回归分析消费者行为、预测销售趋势,帮助企业优化营销策略,提升市场响应。

通过多项式拟合揭示数据趋势,为企业战略规划和决策 提供预测依据,如零售业的销售预测。 应用多项式方程 优化库存管理、 生产速率,提升 供应链效率,降 低运营成本。

金融建模应用

市场营销策略

数据分析与预测

供应链管理优 化

计算多项式

多项式计算原理

涉及单项式加减乘幂运算,各单项式由系数和变量构成,次数由最高次项决定,常数项无变量。

计算步骤

确定每个单项式的次数,合并相同次项,遵循 乘法和加法运算的优先级,保持表达式平衡。

应用领域

在代数、方程求解、函数逼近等领域广泛应用,帮助简化复杂数学问题的解决。

科学领域的应用

多项式拟合应用

信号处理中的多项式

用于数据分析、预测 和优化,通过多项式 函数模拟实验数据或 自然现象趋势。 设计滤波器、分析信号频 谱,多项式逼近帮助更准 确提取信号特征,实现噪 声抑制和信号增强。

在曲线和曲面建模中发挥作用,贝塞尔曲线和B样条曲线等基于多项式定义,生成平滑图形对象。

多项式插值和逼近实 现函数近似,多项式 求根解决多项式方程, 广泛应用于物理学、 工程学等领域。

036 计算多项式

```
R Console
                                                          0 0
> p6 = polynom(c(0,0,1))
> # 计算多项式p4的平方
> p4^2
105625 - 156000*x + 90100*x^2 - 27250*x^3 + 4900*x^4 - 500*x^5 + 25*x^6
> # 将多项式p1除以3, 并对结果进行四舍五入保留两位小数
> round(p1/3, 2)
> # 输出多项式p5的系数
> coef (p5)
[1] 9 0 10 8 3
> # 计算多项式(x-2)^20的系数,并取出第一个系数
> coef((x-2)^20)[1]
[1] 1048576
> # 计算多项式(x-2)^20的系数,并取出第21个系数
> coef((x-2)^20)[21]
[1] 1
>
```


038 创建具有多项式系数的Pascal三角

商业领域的应用

01

三次多项式在商业分析

用于市场预测,拟合销售 趋势,分析成本与产量关 系,优化金融模型风险管 理,揭示业务转折点和优 化点。 02

Pascal三角与多项式系数

扩展传统Pascal三角,每 一行视为多项式序列,反 映二项式展开的系数,关 联多项式展开与商业分析。

科学领域的应用

01

Pascal三角与组合数

揭示从n中取k的组合数, 广泛应用于概率论、统计 学的计算中。

02

多项式展开与二项式定理

作为多项式展开的基础,关 联二项式定理,关键于信号 处理、图像处理的计算。

03

数学研究中的深度应用

涉及代数几何、数论等高级数学领域,为数学理论探索提供灵感和素材。

商业领域的应用

组合数学在数据分析中的应用 => 组合数学与数据分析 1 利用组合数学分析促销策略组合效果,理解其背后的数学原理。

Pascal三角在算法设计中的应用

动态规划中借鉴Pascal三角的数字生成规则,指导状态转移方程设计。

Pascal三角在教育中的应用 在培训中教授Pascal三角,帮助学员理解并掌握组合数学和多项式知识。

多项式微积分

微积分基础

关注多项式函数的导数与积分计算,理解导数的几何意义和积分的面积概念,常数项、导数公式和积分公式是关键。

多项式结构

由常数和变量通过加法、乘法构成,如f(x) = a₀ + a₁ x + a₂ x² + ... + a□ xⁿ, n为非负整数,a□ 为常数。

多项式微积分

微分运算

求多项式函数的导数,揭示函数在特定点的斜率,如一元多项式可通过常数导数规则和幂函数导数公式求导,导数多项式次项降低。

积分运算

研究多项式函数的积分, 计算区间内的定积分, 相当于函数图像与x轴围成的面积, 一元多项式积分后多项式次项升高。

039 多项式微积分

科学领域的应用

物理学中的多项式微积分

用于描述物体运动规律,如求导得到速度、加速度,积分 计算位移,广泛应用于电磁学、流体力学和量子力学。

工程设计中的应用

建模和优化问题,如结构设计中的应力分布分析,电路分析、通信系统和控制系统设计。

生物学与医学中的应用

描述生物过程和系统,如药物动力学中的药物浓度变化规律研究,遗传学中的基因变异计算。

地球科学中的应用

分析地形特征,如计算地形起伏和地势,水文学中用于降雨量和径流量的计算,揭示水文循环和水资源分布。

商业领域的 应用

01

经济学中的微积分 应用

构建经济模型,优化投资组合,用于期权定价,助力成本-收益和市场均衡分析。

金融学的数学工具

在金融分析中,多项式 微积分用于计算投资组 合最优配置,定价期权, 有效管理风险。

商业决策的量化辅 助

多项式微积分帮助管 理者量化分析,优化 库存管理、生产计划 和市场策略,确定最 佳决策。

Sin(x)的Taylor多项式

泰勒公式与正弦 函数

将sin(x)在x=0处展开,用多项式级数表示,描述函数局部行为。

正弦函数Taylor 展开式

x的幂次与阶乘结合,形成级数,如x - □33! + □55!..., n为非负整数。

多项式级数逼近

随着级数项数增加,更好地逼近sin(x)函数值,逼近效果逐渐增强。

泰勒公式求sin(x)

以x=0为中心,通过泰勒公式计算任意阶 多项式,用于近似计算sin(x)。

040 Sin (x)的Taylor多项式

科学领域的应用

01

波动理论与光学

sin(x)的Taylor 多项式揭示波形 与传播,波动方 程中体现波的振 幅和相位变化。 02

量子力学中的波函 数

泰勒展开近似计算波函数性质, sin(x)或其变体描述粒子状态。 03

信号处理与控制系统

sin(x)的Taylor 多项式用于信号 频谱分析,控制 系统设计中的稳 定性与动态响应 研究。 04

数值分析与复变函数

在泰勒级数展开中解决微分方程,复指数函数和三角函数的性质分析离不开sin(x)的Taylor展开。

商业领域的应用

在衍生品定价模型中, Taylor多项式用于简化 sin(x)的复杂运算,辅助 验证模型准确性。 利用sin(x)的Taylor多项式,配合分析周期性数据,如季节性销售,以拟合和预测数据趋势。

在科学计算或工程仿真软件开发中,Taylor多项式用于快速近似sin(x)计算,确保高精度需求。

金融工程Taylor应 用概览

数据分析的周期性 建模

软件开发中的数学 优化

勒让德多项式

01 勒让德多项式定义

18世纪末法国数学家勒让德发现,正交多项式,研究长城摆运动方程。

- 9项式特性 区间[-1,1]的n次多项式,满足正交性条件,内积为零。
- 03 递推关系 可通过低阶多项式推导高阶,具有递推性质,方便计算。
- 表示与性质 罗德里格斯公式表示,n偶数时为偶函数,n奇数时为 奇函数,体现其奇偶性。

041 勒让德多项式

```
R Console
                                                               - - X
> ##### 勒让德多项式 (Legendre Polynomials) #####
> # 创建一个多项式变量x
> x = polynom()
> # 初始化前两个Legendre多项式, PO(x) = 1 和 P1(x) = 1/2 * (3x^2 - 1)
> P = polylist(x, 1/2 * (3 * x^2 - 1))
> # 使用递推关系计算从P2到P14的Legendre多项式
> # 递推公式为: Pn+1(x) = ((2n + 1) * x * Pn(x) - n * Pn-1(x)) / (n + 1)
> for (n in 2:14) {
   P[[n + 1]] = ((2 * n + 1) * x * P[[n]] - n * P[[n - 1]]) / (n + 1)
+ }
> # 输出第五个Legendre多项式P4(x)
> P[5]
List of polynomials:
[[1]]
1.875*x - 8.75*x^3 + 7.875*x^5
> # 验证Legendre多项式的奇偶性: 当n为偶数时, Pn(-x) = Pn(x); 当n为奇数时, Pn(-x$
> for (i in 1:15) {
   print(P[[i]](-x) == (-1)^i * P[[i]](x))
+ }
```


科学领域的应用

物理学:电 磁学应用

勒让德多项 式描述电荷 间相互作用, 解决球对称 电场磁场问 题。

量子力学中 的作用

天体力学计 算

科学领域的应用

数学:微积分工具

勒让德多项式用于函数 的幂级数展开,特别是 在正交基展开中。 数论与工程学应用

在数论中解决相关问题, 工程学中处理有心力场 的势能计算。 数据分析与软件开发

在数据处理和软件开发中, 勒让德多项式用于球对称性 数据的分析、提高计算精度。

数据科学R与Python实践

谢谢

gulp@mail.las.ac.cn