ADAM POUR LE DEEP LEARNING

ACHIQ Aya, CLETZ Laura, EL MAZZOUJI Wahel

Octobre 2025

SOMMAIRE

Enjeux et cadre statistique

FORCES ET FAIBLESSES

CONCLUSION

OPTIMISATION EN DEEP LEARNING

- ▶ But : minimiser le fonction de **perte** $\mathcal{L}(\theta)$ pour un poids θ .
- ► Enjeux :
 - Convergence rapide;
 - Stabilité numérique ;
 - Bonne généralisation.

- ▶ But : minimiser le fonction de **perte** $\mathcal{L}(\theta)$ pour un poids θ .
- ► Enjeux :
 - Convergence rapide;
 - Stabilité numérique;
 - Bonne généralisation.

ADAM, KINGMA et BA, 2014

Est-ce l'algorithme d'optimisation idéal pour le Deep Learning?

NOTIONS D'OPTIMISATION

- ► Notations :
 - ▶ Le gradient $g_t = \nabla_{\theta} \mathcal{L}(\theta_{t-1})$;
 - Le **learning rate** η : contrôle la taille des **pas** de mise à jour des paramètres, diffère suivant la méthode (RUDER, 2016);
 - Le **momentum** m_t : lissage de la trajectoire des gradients, calculé à partir de g_{t-1} .

PRINCIPE DE L'ALGORITHME ADAM

IDÉE CLÉ

Adam = Adaptive Moment Estimation : combine le momentum et une adaptation du pas pour chaque paramètre.

Moyennes mobiles :

$$m_t = \beta_1 m_{t-1} + (1 - \beta_1) g_t, \quad v_t = \beta_2 v_{t-1} + (1 - \beta_2) g_t^2$$

► Mise à jour :

$$\theta_t = \theta_{t-1} - \alpha \frac{\hat{m}_t}{\sqrt{\hat{v}_t} + \varepsilon}$$

▶ Valeurs typiques : α =0.001, β_1 =0.9, β_2 =0.999.

Propriétés : invariance d'échelle, stabilité, faible sensibilité aux hyperparamètres.

Objectifs et limites d'Adam

Objectifs:

- Améliorer la convergence en combinant momentum et taux d'apprentissage adaptatif;
- Stabiliser l'apprentissage, même lorsque les gradients sont bruités;
- Réduire la sensibilité aux hyperparamètres grâce à l'adaptation automatique des pas.

Limites:

- ► Moindre généralisation que SGD WILSON et al., 2017;
- Convergence vers $||w||_{\infty}$ minimale;
- Compromis entre vitesse et généralisation.

EXPÉRIMENTATION: MÉTHODOLOGIE

CREDIT CARD

► Taille : 10k / 100k

► Features : 2

Classes : Déséquilibrées

ightharpoonup Réseau : $[2\rightarrow 8\rightarrow 4\rightarrow 1]$

 \rightarrow Dataset large, simple

HEART DISEASE

► Taille : **1025**

► Features : 13

Classes : Équilibrées

 $\qquad \qquad \mathsf{R\'eseau} : [13 {\rightarrow} 16 {\rightarrow} 8 {\rightarrow} 1]$

ightarrow Dataset petit, complexe

Optimiseurs: Adam, SGD, Adagrad, RMSprop Learning rates: 0.001 (Adam/RMSprop), 0.01 (SGD/Adagrad) Adam SGD Adagrad

RMSprop

CREDIT CARD FRAUD DETECTION

n = 10 000

0.0271

0.0167

Optimiseur	Loss	Erreur (%)	
Adam	0.0057	0.23	
SGD	0.0224	0.23	

0.23

0.23

n = 100 000

Optimiseur	Loss	Erreur (%)
Adam	0.0033	0.09
SGD	0.0046	0.14
Adagrad	0.0042	0.10
RMSprop	0.0045	0.10

OBSERVATIONS

- ▶ n=10k : Tous à 0.23% d'erreur, mais la *loss* révèle qu'Adam optimise mieux (0.0057)
- ▶ n=100k : Adam se détache nettement (0.09% d'erreur, loss 0.0033)

HEART DISEASE

n = 1025

Optimiseur	Test Loss	Test Accuracy	Erreur (%)
Adam	0.2196	0.9318	6.82
SGD	0.3425	0.8084	19.16
Adagrad	0.2946	0.8864	11.36
RMSprop	0.2250	0.9416	5.84

OBSERVATIONS

- ► Gros écarts : RMSprop meilleur (5.84%), Adam proche (6.82%), SGD s'effondre (19.16%)
- ▶ Dataset petit (1k) + haute dimension (13D) \rightarrow favorise les méthodes adaptatives

CONCLUSION

- Avantages d'Adam :
 - rapidité à l'initialisation;
 - convergence rapide par momentum;
 - stabilité numérique en présence de gradients bruités;
 - adaptation automatique des pas.
- Limites d'Adam :
 - faible capacité de généralisation (surapprentissage);
 - dépendance de la qualité des données.

Références

Kingma, Diederik P. et Jimmy Lei Ba (2014). « Adam : A Method for Stochastic Optimization ». In : url :

https://arxiv.org/abs/1412.6980.

Ruder, Sebastian (2016). « An overview of gradient descent optimization algorithms ». In : url :

https://arxiv.org/pdf/1609.04747.

Wilson, Ashia C. et al. (2017). « The Marginal Value of Adaptive Gradient Methods in Machine Learning ». In : url :

https://arxiv.org/abs/1705.08292.