Correction des travaux dirigés de MACHINE LEARNING

Cycle pluridisciplinaire d'études supérieures Université Paris sciences et lettres

Joon Kwon

vendredi 22 mai 2020

*6

EXERCICE 1. — Pour $x, x' \in \mathbb{R}^2$,

$$K(x, x') = \langle x, x' \rangle = (x_1 x_1' + x_2 x_2')^2 = x_1^2 (x_2')^2 + 2x_1 x_1' x_2 x_2' + x_2^2 (x_2')^2.$$

On pose $\psi:\mathbb{R}^2 \to \mathbb{R}^3$ définie par

$$\psi:(x_1,x_2)\mapsto (x_1^2,\sqrt{2}x_1x_2,x_2^2).$$

On a bien alors:

$$\forall x, x' \in \mathbb{R}^2, \quad \left< \psi(x), \psi(x') \right>_{\mathbb{R}^3} = x_1^2 (x_2')^2 + 2 x_1 x_1' x_2 x_2' + x_2^2 (x_2')^2 = K(x, x'),$$

K est le noyau associé à ψ .

EXERCICE 2. — *Noyau polynomial.* — On note $[d] = \{1, ..., d\}$. Pour $x, x' \in \mathbb{R}^d$,

$$\begin{split} \mathbf{K}(x,x') &= \langle x,x' \rangle^m \\ &= (x_1 x_1' + \dots + x_d x_d') \times (x_1 x_1' + \dots + x_d x_d') \times \dots \times (x_1 x_1' + \dots + x_d x_d') \\ &= \sum_{(j_1,\dots,j_m) \in [d]^m} \prod_{k=1}^m x_{j_k} x_{j_k}' = \sum_{(j_1,\dots,j_m) \in [d]^m} \left(\prod_{k=1}^m x_{j_k} \right) \left(\prod_{k=1}^m x_{j_k}' \right). \end{split}$$

Soit $\tilde{\mathcal{X}} = \mathbb{R}^{([d]^m)}$ On considère $\psi: \mathbb{R}^d \to \tilde{\mathcal{X}}$ définie par

$$\psi:\begin{pmatrix} x_1 \\ \vdots \\ x_d \end{pmatrix} \longmapsto \left(\prod_{k=1}^m x_{j_k}\right)_{(j_1,\dots,j_m)\in[d]^m}$$

On considère sur $\widetilde{\mathcal{Z}}$ le produit scalaire canonique : pour $u,v\in\widetilde{\mathcal{Z}}$,

$$\langle u,v\rangle_{\tilde{\mathcal{X}}}=\sum_{(j_1,\ldots,j_m)\in[d]^m}u_{(j_1,\ldots,j_m)}v_{(j_1,\ldots,j_m)}.$$

Alors, on a pour x, $x \in \mathbb{R}^d$:

$$\langle \psi(x), \psi(x') \rangle_{\tilde{\mathcal{G}}} = \sum_{(j_1, \dots, j_m) \in [d]^m} \left(\prod_{k=1}^m x_{j_k} \right) \left(\prod_{k=1}^m x'_{j_k} \right) = \mathrm{K}(x, x').$$

K est donc bien un noyau.

Exercice 3. — Noyau gaussien

1) Soit $N\geqslant 0.$ En utilisant l'inégalité de Cauchy-Schwarz :

$$\sum_{m=0}^N |u_m v_m| \leqslant \sqrt{\sum_{m=0}^N u_m^2} \sqrt{\sum_{m=0}^N v_m^2} \leqslant \sqrt{\sum_{m=0}^{+\infty} u_m^2} \sqrt{\sum_{m=0}^{+\infty} v_m^2}.$$

La série $\sum u_m v_m$ converge absolument, donc converge.

2) $\tilde{\mathscr{X}}$ est inclus par définition dans l'espace vectoriel $\mathbb{R}^{\mathbb{N}}$. Montrons que $\tilde{\mathscr{X}}$ est un sous-espace. Pour $u, v \in \tilde{\mathscr{X}}$ et $\lambda \in \mathbb{R}$, on a que la série $\sum (\lambda u_m)^2$ converge, donc $\lambda u \in \tilde{\mathscr{X}}$. Pour $m \geqslant 0$, on a :

$$(u_m + v_m)^2 = u_m^2 + 2u_m v_m + v_m^2.$$

On sait que les séries $\sum u_m^2$, $\sum v_m^2$ et $\sum u_m v_m$ convergent, donc $\sum (u_m + v_m)^2$ aussi. Donc : $u + v \in \tilde{\mathcal{X}}$. $\tilde{\mathcal{X}}$ est bien un sous-espace.

3) Soit $u, v, w \in \mathcal{X}$ et $\lambda \in \mathbb{R}$.

— Bilinéaire. — On a pour $N \geqslant 0$,

$$\sum_{m=0}^{N} (u_m + v_m) w_m = \sum_{m=0}^{N} u_m w_m + \sum_{m=0}^{N} v_m w_m.$$

et

$$\sum_{m=0}^{N} \lambda u_m v_m = \lambda \sum_{m=0}^{N} u_m v_m.$$

En passant à la limite quand $N \to +\infty$, on obtient :

$$\langle u+v,w\rangle_{\tilde{\mathscr{Z}}}=\langle u,w\rangle_{\tilde{\mathscr{Z}}}+\langle v,w\rangle_{\tilde{\mathscr{Z}}} \quad \text{ et } \quad \langle \lambda u,v\rangle_{\tilde{\mathscr{Z}}}=\lambda\,\langle u,w\rangle_{\tilde{\mathscr{Z}}} \,.$$

— Symmétrique. — Pour $N \geqslant 0$,

$$\sum_{m=0}^{N} u_m v_m = \sum_{m=0}^{N} v_m u_m,$$

et en passant à la limite quand $N \to +\infty$, on obtient $\langle u, v \rangle_{\tilde{x}} \langle v, u \rangle_{\tilde{x}}$. — *Positive*. — Pour $N \geqslant 0$, on a

$$\sum_{m=0}^{N} u_m u_m \geqslant 0$$

et $\langle u, u \rangle_{\tilde{x}} \geqslant 0$ en passant à la limite quand $N \to +\infty$. — Définie. — Si $\langle u, u \rangle = 0$, on a pour tout $m \geqslant 0$:

$$0 \leqslant u_m^2 \leqslant \sum_{m'=0}^{N} u_{m'}^2,$$

ce qui entraîne $0 \le u_m^2 \le 0$ en passant à la limite quand $N \to +\infty$, autrement dit $u_m = 0$. Donc u = 0.

4) Pour $x, x' \in \mathbb{R}$,

$$K(x, x') = \exp\left(-\frac{(x - x')}{2}\right) = \exp\left(-\frac{x^2}{2} + xx' - \frac{(x')^2}{2}\right)$$

$$= \exp\left(-\frac{x^2}{2}\right) \exp\left(-\frac{(x')^2}{2}\right) \sum_{m=0}^{+\infty} \frac{(xx')^m}{m!}$$

$$= \sum_{m=0}^{+\infty} \left(\frac{e^{-x^2/2}x^m}{\sqrt{m!}}\right) \left(\frac{e^{-(x')^2/2}(x')^m}{\sqrt{m!}}\right).$$

On définit:

$$\forall x \in \mathbb{R}, \quad \psi(x) = \left(\frac{e^{-x^2/2}x^m}{\sqrt{m!}}\right)_{m \geqslant 0}.$$

Pour tout $x \in \mathbb{R}$, on a bien $\psi(x) \in \tilde{\mathcal{Z}}$ car la série $\sum (\frac{x^m}{\sqrt{m!}})^2$ converge (de limite e^{x^2}). Et on a bien :

$$\forall x, x' \in \mathbb{R}, \quad \langle \psi(x), \psi(x') \rangle_{\tilde{x}} = K(x, x').$$

