REPUBLIQUE ISLAMIQUE DE MAURITANIE Ministère de l'Education Nationale de la Formation Technique et de la Reforme Direction des Examens et des Concours

8accalauréat

Sciences physiques session normale 2020

Honneur Fraternité Justice Série ¡Mathématiques/T¸M.G.M

Durée: 4H Coefficient: 8/4

Exercice 1(4pts)

Afin d'étudier la cinétique de décomposition de l'iodure d'hydrogène HI en diiode et dihydrogène, on place à la date t=0 dans un thermostat maintenu à 380° C des ampoules scellées identiques, contenant chacune la même quantité de matière en iodure d'hydrogène.

À la date t donnée, une ampoule est refroidie rapidement et ouverte.

Le diiode formé à cet instant est mis en solution et dosé par un volume V d'une solution de thiosulfate de sodium $Na_2S_2O_3$, de concentration C.

1.1. Pourquoi refroidit-on rapidement l'ampoule?

(0,5pt)

- 1.2. Ecrire les demi-équations électroniques des couples oxydants réducteurs et l'équation bilan de la réaction correspondant au dosage. On donne : $E_{1,/\Gamma}^0 = 0,55V$ et $E_{S_4O_6^2/S_2O_3^2}^0 = 0,08V$ (lpt)
- 1.3. Montrer que la quantité de matière du disode formée à la date t est donnée par la relation $n(I_2) = \frac{CV}{2}$ ([],5pt)
- 2. Les courbes représentatives de la fonction $C_0=f(t)$ sont données par la figure pour deux températures. Où C_0 représente la concentration en diiode.
- 2.1. Définir la vitesse instantanée de formation du diiode. (0,5pt)
- 2.2. Calculer les vitesses de formation du diiode à t=0. (lpt)
- 2.3. Quel facteur cinétique ces deux expériences mettent-elles en évidence ? (0,5pt)

Exercice 2 (3pts)

1. L'acide benzoïque est un corps solide blanc de formule C_6H_5COOH ; il se trouve dans certaines plantes. On représente cet acide par AH.

On dissout une masse m=122mg de l'acide benzoïque pour obtenir une solution aqueuse S_A de volume V=100mL. On mesure le pH de cette solution et on trouve pH=3,1

1.1. Calculer la concentration molaire volumique C_{A} de la solution $\mathsf{S}_{\mathsf{A}}.$

(0,5pt)

1.2. Ecrire l'équation de la réaction entre l'acide et l'eau.

(0,5pt)

1.3. Montrer que la constante pKa du couple AH/A peut s'écrire : $pKa = -log \frac{[H_3O^+]^2}{C_A - [H_3O^+]}$

Calculer pKa.

(lpt)

2. On mélange un volume V_A =40mL de la solution \dot{S}_A d'acide benzoïque avec un volume V_B =5mL d'une solution d'hydroxyde de sodium de concentration C_B .

On mesure le pH du mélange et on trouve pH=3,8.

2.1. Ecrire l'équation de la réaction réalisée.

(0,5pt)

2.2. Calculer la quantité de matière n(OH) qui se trouve dans ce mélange.

(0,5pt)

On donne: C: 12g/mol; H:1g/mol; O: 16g/mol.

Exercice 3 (4,5pts)

On néglige les frottements sauf dans la question 2.

1. Un ouvrier exerce sur un solide de masse m', par l'intermediaire d'une corde inextensible et de masse négligeable faisant l'angle β , comme l'indique la figure 2, une force constante \overline{F} pour le faire monter à partir du repos d'une position A à une position B distante de d, selon la ligne de plus grande pente d'un plan incliné d'un angle a par rapport à l'horizontale.

1.1. Déterminer la nature du mouvement et établir son équation horaire, l'origine des abscisses x étant le point A.

Faire les applications numériques.

(0.5ot)

On donne : $\cos \beta = 0.9$, $\sin \beta = 0.42$, F=152.5 N, m = 25 kg, $\alpha = 30^{\circ}$.

1.2. Sachant que $d=4\ m$; calculer le travail de la tension \overline{T} de la corde, lors de son déplacement de la position A à la position B. Préciser son caractère.

(lpt)

1.3. Donner les expressions des travaux des autres forces appliquées au solide pendant ce déplacement, en précisant leurs caractères.

2. On considère maintenant que le plan incliné exerce sur le solide une force de frottement $ar{ ext{f}}$ constanté.

On constate que l'ouvrier doit exercer une force F'=162,5N pour déplacer le solide de A vers B avec la même accélération. Déduire la valeur de cette force de frottement. (0.5ot)

3. Etablir en fonction de x, les expressions des énergies potentielle de pesanteur $\mathbb{E}_{P}(x)$, cinétique $\mathrm{Ec}(x)$ et mécanique $\mathrm{E}_{\mathrm{m}}(x)$ du solide lorsque ce dernier occupe une position d'abscisse x quelconque entre A et B.

L'origine de l'énergie potentielle de pesanteur est le plan horizontal passant par le point B.

4. Lors que le solide passe en B la force \overline{F} exercée par l'ouvrier est supprimée ; il continue alors son mouvement pour atteindre le point C avec une vitesse nulle. En déduire la distance BC.

Exercice 4(4.5pts)

Le poids de l'électron sera négligeable devant les autres forces appliquées.

1. Un faisceau d'électrons est émis sans vitesse par une cathode C et accéléré par une anode A à l'aide d'une différence de potentiel $\mathbb{U}_0 = \mathbb{V}_A - \mathbb{V}_C$.

1.1. Déterminer le signe de U_0 appliquée entre C et A et calculer sa valeur si $\mathrm{AC} = \mathrm{d}_0 = 3\mathrm{cm}$ et $E=6.10^3 V/m$. (0.75pt)

1.2. Calculer la vitesse $V_0\,$ de l'électron lors qu'il $\,$ avrive en $\,$ O $\,$ '.

On donne: $e=1,6.10^{-19}$ C, $m=9.10^{-31}$ kg.

(0,75pt)

fig2

2. En O, les électrons pénètrent avec la vitesse $\overline{\mathrm{V}}_{\mathfrak{o}}$ dans une zone où règne un champ électrique dû à une tension U existant entre deux plaques P_1 et P_2 de longueur l et distantes de d. (voir fig3)

2.1. Etablir l'expression de l'équation de la trajectoire de l'électron entre les plaques. Donner cette expression en fonction de \mathbb{U}_0 , \mathbb{U} et d.

Préciser sa nature.

(0,75pt)

2.2. Déterminer la valeur de la tension U si la déviation angulaire électrique est telle que $\tan \alpha = 0,3$. On donne: l = d = 4cm.

(0,5pt)

3. On remplace le champ électrique $\vec{E}_{\rm e}$ par un champ magnétique \vec{B} crée dans une zone carré MNPQ de coté a=4cm.

Les électrons pénètrent dans cette zone au point O avec la vitesse \overline{V}_0 . (Voir fig4).

3.1. Déterminer la nature du mouvement de l'électron dans le champ magnétique $\overline{\mathbf{B}}$.

Domner l'expression du rayon de la trajectoire en fonction de m, e, B et U_0 . (0.75 pt)

3.2. Déterminer la valeur de la déviation angulaire magnétique α ' si les électrons sortent entre P et N. On donne : $B=2,25.10^{-4}T$.

3.3.Quelle est la valeur de B pour que l'électron effectue un quart de cercle ?

(0,5pt)

(0,5pt)

Exercice 5 (4nts)

On place une tige en cuivre PP' de longueur l=10 cm de masse $m_t=15 g$ sur deux rails AB et A'B' conducteurs parallèles séparés par une distance d=5 cm.

On relie les extrémités B et B' des rails à un générateur.

On place le circuit dans un champ magnétique uniforme dont le vecteur B reste vertical.

Quand on fait passer un courant dans la tige, on constate qu'elle glisse sur les rails.

Pour conserver l'équilibre de la tige on la relie à l'extrémité

On rappelle que les valeurs des tensions aux extrémités d'un fil de masse négligeable passant dans la gorge d'une poulie de masse également négligeable sont égales.

1. Déterminer le sens de \overline{B} pour que la tige soit en équilibre. Exprimer alors l'intensité B du champ magnétique en fonction de l'intensité I du couvant, de la masse m, de la distance d et de g. (Ipt)

2. On fait varier l'intensité du courant et on accroche chaque fois à l'extrémité du fil une masse marquée pour conserver l'équilibre. L'étude

expérimentale a permis d'établir le tableau ci-contre :

I(A)	0	0,5	1	1,5	2	2,5	3
$m.10^{-3}(kg)$	0	0,15	0,3	0,45	0,6	0,75	0,9

2.1. Représenter graphiquement m=f(I) les variations de la masse en fonction de l'intensité I.

On utilisera l'échelle : $1 \text{cm} \rightarrow 0.5 \text{A}$ et $1 \text{cm} \rightarrow 0.15.10^{-3}$ kg.

(0,75pt)

2.2. Trouver l'équation de la courbe.

(0,75pt)

2.3. En déduire l'intensité B du champ magnétique.

(0,75pt)

3. On décroche le fil de la tige et on donne à l'intensité du courant la valeur I=15A. Pour conserver l'équilibre, on incline les rails d'un angle a par rapport à l'horizontale. Calculer a. (0,75pt)