Image Derivatives and Edge Detection

Albert Chung
Department of Computer Science
University of Exeter

Spring Term 2023

Main Reference

- R. Szeliski, "Computer Vision: Algorithms and Applications" (2nd Edition):
 - Image gradient: Chapter 3.2
 - Edges and contours: Chapter 7.2

Edge detection

- Convert a 2D image into a set of edge segments (curves)
 - Extracts salient features of the scene
 - More compact than pixels
- Edges are caused by a variety of factors

Characterizing edges

An edge is a place of rapid change in the image intensity function

Image derivatives

- How can we differentiate a digital image F[x,y]?
 - Option 1: reconstruct a continuous image, f, then compute the partial derivative
 - Option 2: take discrete derivative (finite difference)

$$\frac{\partial f}{\partial x}[x,y] \approx F[x+1,y] - F[x,y]$$

How would you implement this as a linear filter?

Image gradient

- The gradient of an image: $\nabla f = \left[\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}\right]$
- The gradient points in the direction of most rapid increase in intensity:

The edge strength is given by the gradient magnitude:

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

The gradient direction is given by:

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

how does this relate to the direction of the edge?

Sobel operator

Common approximation of image derivative operator

<u>1</u> 8	-1	0	1
	-2	0	2
	-1	0	1
$\overline{s_x}$			

- Standard Sobel operator omits the 1/8 term
 - No difference for edge detection
 - Only needed for right gradient magnitude

image

 $\frac{\partial f}{\partial x}$

 $\frac{\partial f}{\partial y}$

Sobel operator: approximation of Gaussian derivative

$$G_{\sigma}(x) = \frac{1}{\sqrt{2\pi}\sigma} e^{-\frac{x^2}{2\sigma^2}}$$

$$G_{\sigma}'(x) = \frac{d}{dx} G_{\sigma}(x) = -\frac{1}{\sigma} \left(\frac{x}{\sigma}\right) G_{\sigma}(x)$$

$$G_{\sigma}''(x) = \frac{d^2}{dx^2} G_{\sigma}(x) = -\frac{1}{\sigma^2} \left(1 - \frac{x^2}{\sigma^2}\right) G_{\sigma}(x)$$

Gaussian and Gaussian derivatives

Sobel operator: approximation of Gaussian derivative

Finding edges

$$\|\nabla f\| = \sqrt{\left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2}$$

$$\theta = \tan^{-1} \left(\frac{\partial f}{\partial y} / \frac{\partial f}{\partial x} \right)$$

Gradient orientation

Finding edges: Canny edge detection

Gradient magnitude

Non-maximal suppression

Nonmaximum suppression

Nonmaxima suppression

After Non-maximal Suppression

- Still some noise
- Only want strong edges
- 2 thresholds, 3 cases
 - R > T: strong edge
 - R < T but R > t: weak edge
 - R < t: no edge

Why two thresholds: connecting edges

- Strong edges are edges!
- Weak edges are edges if and only if they connect to strong
- Look in some neighborhood of pixel (usually 8 closest)

Canny edge detector

- Depends on several parameters:
 - High threshold: T
 - Low threshold: t
 - Width of Gaussian blur: σ
- Still a widely used edge detector in computer vision

J. Canny, A Computational Approach To Edge Detection, IEEE Trans. Pattern Analysis and Machine Intelligence, 8:679-714, 1986.

Canny edge detector

- The choice of σ depends on desired behavior
 - Large σ detects "large-scale" edges
 - Small σ detects fine edges

Similar filters

Sobel filter

$$\begin{bmatrix} +1 & 0 & -1 \\ +2 & 0 & -2 \\ +1 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} +1 & 0 & -1 \\ +1 & 0 & -1 \\ +1 & 0 & -1 \end{bmatrix} \qquad \begin{bmatrix} +1 & 0 \\ 0 & -1 \end{bmatrix}$$

$$S_x \qquad S_x \qquad S_x$$

$$\begin{bmatrix} +1 & +2 & +1 \\ 0 & 0 & 0 \\ -1 & -2 & -1 \end{bmatrix} \qquad \begin{bmatrix} +1 & +1 & +1 \\ 0 & 0 & 0 \\ -1 & -1 & -1 \end{bmatrix} \qquad \begin{bmatrix} 0 & +1 \\ -1 & 0 \end{bmatrix}$$

Prewitt filter

(17)

Roberts filter

Edge detection with zero-crossings of LoG filter

- sub-pixel edge elements (edgels) from zero-crossings:
 - look for adjacent pixels x_i and x_i where the LoG S(x) changes value
 - compute zero-crossing of the line connecting $S(x_i)$ and $S(x_i)$:

$$oldsymbol{x}_{\mathrm{z}} = rac{oldsymbol{x}_i S(oldsymbol{x}_j) - oldsymbol{x}_j S(oldsymbol{x}_i)}{S(oldsymbol{x}_j) - S(oldsymbol{x}_i)}$$

 $\mathsf{input} I(oldsymbol{x})$

 $\mathsf{LoG}[
abla^2 G_\sigma](oldsymbol{x}) * I(oldsymbol{x})$

Sign of LoG

Zero-crossings of LoG

Summary

- Edge is a place of rapid change in the image intensity function
- Image derivatives: 1st and 2nd order Gaussian derivatives
- Image operators or filters as approximation of Gaussian derivatives
- Steps of Canny edge detectors
- Other similar filters: Prewitt and Roberts filters
- Edge detection by finding position of zero-crossing on LoG responses

Questions?