INF367A: Probabilistic machine learning

Lecture 9: The EM algorithm and Gaussian mixture models

Pekka Parviainen

University of Bergen

3.3.2020

Outline

Background

Gaussian mixture models

EM algorithm

EM algorithm

- Finding MAP or ML solutions when not all relevant data is observed
- Applicable in many different settings
- Departure from Bayesian framework
 - Used to find point estimates
 - We derive the algorithm for maximum likelihood estimation because the formulas are simpler but the algorithm can be used also for MAP estimates

Example: Gaussian mixture models

- Standard Gaussian model (left) gives bad fit to data with clusters
- Combination of two Gaussians (right) is much better

Gaussian mixture models

Gaussian mixture model with K components has density

$$P(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x}|\mu_k, \Sigma_k).$$

- ▶ $N(x|\mu_k, \Sigma_k)$ is a **component** with its own mean μ_k and covariance Σ_k .
- \blacktriangleright π_k are the **mixing coefficients**, which satisfy $\sum_k \pi_k = 1$, $0 < \pi_k < 1$.

Gaussian mixture models

A GMM has a probability density

$$P(\mathbf{x}) = \sum_{k=1}^{k} \pi_k N(\mathbf{x}|\mu_k, \Sigma_k)$$

- ► Two questions:
 - 1. Given a data point \mathbf{x} , what is the probability that it belongs to the cluster k?
 - 2. In general, π , μ , and Σ are not known. How to estimate them given data $\{x_1, \ldots, x_n\}$?

GMMs, latent variable representation (1/2)

- ▶ Equivalent formulation is obtained by defining **latent** variables $\mathbf{z}_n = (z_{n1}, \dots, z_{nK})$ which tell the component for observation \mathbf{x}_n
- In detail \mathbf{z}_n is a vector with exactly one element equal to 1 and other elements equal to 0. $z_{nk} = 1$ means that the observation \mathbf{x}_n belongs to component k.

$$\mathbf{z}_n = (0, \dots, 0, \underbrace{1}_{k^{th} \text{ elem}}, 0, \dots, 0)^T$$

GMMs, latent variable representation (2/2)

Define

$$P(z_k=1)=\pi_k$$
 and $P(\mathbf{x}\,|\,z_k=1)=N(\mathbf{x}\,|\,\mu_k,\Sigma_k),$ or equivalently

$$P(\mathbf{z}) = \prod_{k=1}^K \pi_k^{z_k}$$
 and $P(\mathbf{x} | \mathbf{z}) = \prod_{k=1}^K N(\mathbf{x} | \mu_k, \Sigma_k)^{z_k}$

Then

$$P(\mathbf{x}) = \sum_{\mathbf{z}} P(\mathbf{z})P(\mathbf{x}|\mathbf{z}) = \sum_{k} \pi_{k} N(\mathbf{x}|\mu_{k}, \Sigma_{k})$$

 \rightarrow **x** has marginally the Gaussian mixture model distribution.

GMM: responsibilities (1/2)

Posterior probability $P(z_{nk} = 1 | \mathbf{x}_n)$ that observation \mathbf{x}_n was generated by component k given $\theta = (\pi, \mu, \Sigma)$

$$\gamma(z_{nk}) \equiv P(z_{nk} = 1 | \mathbf{x}_n, \theta) = \frac{P(z_{nk} = 1 | \theta)P(\mathbf{x}_n | z_{nk} = 1, \theta)}{\sum_{j=1}^K P(z_{nj} = 1 | \theta)P(\mathbf{x}_n | z_{nj} = 1, \theta)}$$
$$= \frac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{j=1}^K \pi_j N(\mathbf{x}_n | \mu_j, \Sigma_j)}$$

 $ightharpoonup \gamma(z_{nk})$ can be viewed as the **responsibility** that component k takes for explaining the observation \mathbf{x}_n

GMM: responsibilities (2/2)

- left) samples from a joint distribution P(z)P(x|z), showing both cluster labels z and observations x (complete data)
- (center) samples from the marginal distribution P(x)
 (incomplete data)
- (right) **responsibilities** of the data points, computed using *known* parameters $\pi = (\pi_1, \dots, \pi_K), \ \mu = \mu_1, \dots, \mu_K, \ \Sigma = (\Sigma_1, \dots, \Sigma_K).$
- ▶ Problem: in practice π , μ , and Σ are usually *unknown*.

Idea of the EM algorithm

- Three types of variables: Data \mathbf{x} (known), latent variables \mathbf{z} (unknown) and parameters θ (unknown)
- Likelihood of complete data

$$P(\mathbf{x}, \mathbf{z} | \theta) = P(\mathbf{x} | \mathbf{z}, \theta) P(\mathbf{z} | \theta)$$

- If we knew ${\bf z}$ (cluster assignments) then it would be easy to find maximum likelihood parameters for θ
 - Compute sample means and covariances for each cluster
- If we knew parameters θ then we could compute posterior probabilities for cluster assignments **z**
 - Responsibilities
- ► Idea: alternate between computing responsibilities for z (E-step) and maximizing (log-)likelihood (M-step)
 - ► Hence, we have an Expectation-Maximization (EM) algorith (n)

Derivation of the EM algorithm

- **x**: **observed** data, **z**: **unobserved** latent variables
- ► {x,z}: complete data, x: incomplete data
- ► Goal: maximize the incomplete data log-likelihood

$$\hat{\theta} = \arg\max_{\theta} \left\{ \log P(\mathbf{x} | \theta) \right\}$$

▶ If there are latent variables the incomplete data log-likelihood is given by

$$\log P(\mathbf{x} | \theta) = \log \left\{ \sum_{\mathbf{z}} P(\mathbf{x}, \mathbf{z} | \theta) \right\},\,$$

where $P(\mathbf{x}, \mathbf{z} | \theta)$ is the complete data likelihood

Derivation of the EM algorithm

Assume that the complete data log-likelihood

$$\log P(\mathbf{x}, \mathbf{z} | \theta)$$

is easy to maximize

- Problem: z is not observed
- Solution: Maximize

$$Q(\theta, \theta_t) = E_{zx, \theta_t}[\log P(x, z | \theta)]$$
$$= \sum_{z} P(z | x, \theta_t) \log P(x, z | \theta)$$

where $P(\mathbf{z} | \mathbf{x}, \theta_t)$ is the posterior distribution of the latent variables computed using the current parameter estimate θ_t

EM algorithm

Goal: maximize $\log P(\mathbf{x}|\theta)$ w.r.t. θ

- 1. Initialize θ_0
- 2. **E-step** Evaluate $P(\mathbf{z}|\mathbf{x}, \theta_t)$, and then compute

$$Q(\theta, \theta_t) = E_{\mathbf{z} \mathbf{x}, \theta_t} \left[\log P(\mathbf{x}, \mathbf{z} \,|\, \theta) \right] = \sum_{\mathbf{z}} P(\mathbf{z} \,|\, \mathbf{x}, \theta_t) \log P(\mathbf{x}, \mathbf{z} \,|\, \theta)$$

3. **M-step** Find θ_{t+1} using

$$\theta_{t+1} = \arg\max_{\theta} Q(\theta, \theta_t)$$

4. Repeat **E** and **M** steps until convergence

EM algorithm, a simple example

simple_example.pdf

EM algorithm for GMMs

$$P(\mathbf{x}) = \sum_{k=1}^{K} \pi_k N(\mathbf{x} | \mu_k, \Sigma_k)$$

- 1. Initialize parameter μ_k , Σ_k and mixing coefficients π_k . Repeat until convergence:
- 2. **E-step**: Evaluate the responsibilities using current parameter values

$$\gamma(z_{nk}) = \frac{\pi_k N(\mathbf{x}_n | \mu_k, \Sigma_k)}{\sum_{i=1}^K \pi_k N(\mathbf{x}_n | \mu_k, \Sigma_i)}$$

3. **M-step:** Re-estimate the parameters using the current responsibilities

$$\mu_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) \mathbf{x}_n$$

$$\Sigma_k^{new} = \frac{1}{N_k} \sum_{n=1}^N \gamma(z_{nk}) (\mathbf{x}_n - \mu_k^{new}) (\mathbf{x}_n - \mu_k^{new})^T$$

$$\pi_k^{new} = \frac{N_k}{N}, \text{ where } N_k = \sum_{n=1}^N \gamma(z_{nk})$$

Derivation of the EM algorithm for GMMs

- In the **M**-step the formulas for μ_k^{new} and Σ_k^{new} are obtained by differentiating the expected complete data log-likelihood $Q(\theta, \theta_t)$ with respect to the particular parameters, and setting the derivatives to zero.
- ▶ The formula for π_k^{new} can be derived by maximizing $Q(\theta, \theta_t)$ under the constraint $\sum_{k=1}^K \pi_k = 1$. This can be done using the Lagrange multipliers.

Illustration of the EM algorithm for GMMs

EM for GMM, caveats

- ▶ EM converges to a local optimum. In fact, the ML estimation for GMMs is an ill-posed problem due to **singularities**: if $\sigma_k \to 0$ for components k with a single data point, likelihood goes to infinity (fig). Remedy: prior on σ_k .
- ► Label-switching: non-identifiability due to the fact that cluster labels can be switched and likelihood remains the same.
- ► In practice it is recommended to initialize the EM for the GMM by k-means.

GMM vs. k-means (1/2)

"Why use GMMs in the first place and not just k-means?"

- 1. Clusters can be of different sizes and shapes
- 2. Probabilistic assignment of data items to clusters
- 3. Possibility to include prior knowledge (structure of the model/prior distributions on the parameters)

EM algorithm, comments

- ▶ In general, **z** does not have to be discrete, just replace the summation in $Q(\theta, \theta_t)$ by integration.
- ► EM algorithm can be used to compute the MAP (maximum a posteriori) estimate by maximizing in the M-step $Q(\theta, \theta_t) + \log P(\theta)$.
- ▶ EM algorithm can be applied more generally in situations where the observed data x can be **augmented** into complete data $\{x, z\}$ such that $\log P(x, z|\theta)$ is easy to maximize; that is, z does not have to be latent variables but can represent, for example, the unobserved values of missing or censored observations.
- ► EM algorithm converges into a local optimum. Each iteration increases the log-likelihood of observed data log $P(\mathbf{x} | \theta_t)$.
 - You can use the log-likelihood of the observed data as a sanigor check

Further readings

Bishop 9

