MSS: Master1

Année universitaire: 2020/2021 Matière: Probabilités Approfondies

Examen du 1er semestre

Question de Cours : Donner une condition nécessaire et suffisante pour qu'un vecteur X de \mathbb{R}^n soit Gaussien.

Exercice 1:

Soit $X=(X_1,X_2)^t$, un vecteur aléatoire réel centré, à deux dimensions, de loi Gaussienne $\mathcal{N}\left(\overrightarrow{0},\Sigma_X\right)$ où

$$\Sigma_X = \left(egin{array}{cc} 1 & 1 \ 1 & 4 \end{array}
ight)$$

- 1. Donner l'expression de la densité de probabilité $f_X(x)$ du couple X.
- 3. Calculer la densité de probabilité conditionnelle $f_{X_2|X_1=x_1}(x_2|x_1)$ de X_2 sachant $X_1=x_1$. Quelle est cette loi ?
- 4. En déduire l'espérance conditionnelle, $\mathbb{E}\left[X_2|X_1=x_1\right]$, de X_2 sachant $X_1=x_1$.

Exercice $n^{\circ}2$:

Soit (X, Y) un couple aléatoire de densité jointe :

$$f(x,y) = \frac{12}{5}x(2-x-y)\mathbf{1}_{]0,1[^2}(x,y).$$

- 1. Déterminer la densité marginale $f_Y(y)$ de Y .
- **2**. En déduire la densité conditionnelle $f_{X|Y=y}(x|y)$.
- $\bf 3$. Montrer que l'espérance conditionnelle de X sachant Y vaut

$$\mathbb{E}[X|Y] = \frac{5 - 4Y}{8 - 6Y}$$

Exercice $n^{\circ}3$:

- 1. Soit (X,Y) un couple indépendant de v.a.r. On suppose que la variable aléatoire réelle X suit la loi uniforme U([0,2]) définie par la densité $f_X(t) := \frac{1}{2} \times 1_{[0,2]}(t)$ et Y suit la loi exponentielle de paramètre 3 de densité f_Y définie sur \mathbb{R} par $f_Y(t) := 1_{[0,+\infty[}(t)e^{-3t}$. Déterminer la densité de la variable aléatoire réelle X + Y.
- **2.** Même question si X suit la loi de Gauss N(0,1), et Y suit la loi de Poisson de paramètre $\lambda=2$.