

Flamespreading Processes in Ball Powder Propellants

Andrew L. Brant
Joseph W. Colburn
Carl R. Ruth
U.S. ARMY RESEARCH LABORATORY

Dennis W. Worthington OLIN ORDNANCE

ARL-TR-731

April 1995

19950508 078

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION IS UNLIMITED.

NOTICES

Destroy this report when it is no longer needed. DO NOT return it to the originator.

Additional copies of this report may be obtained from the National Technical Information Service, U.S. Department of Commerce, 5285 Port Royal Road, Springfield, VA 22161.

The findings of this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute endorsement of any commercial product.

REPORT DOCUMENTATION PAGE Public reporting burden for this collection of information is estimated to average 1 nour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the follection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this purcen. to washington Headquarters Services, Directorate for information Operations and Reports, 1215 Jefferson Davis highway, Suite 1204. Arington, v. 22202-4302, and to the Office of Management and Budget, Paperwork Reduction Project (0704-0188). Washington, DC 20503 1. AGENCY USE ONLY (Leave blank) 2. REPORT DATE April 1995 3. REPORT TYPE AND DATES COVERED Final, January 1990–November 1990 4. TITLE AND SUBTITLE 5. FUNDING NUMBERS

1. AGENCY USE UNLY (Leave Diank)	2. REPORT DATE	1	1000 Name to 1000
	April 1995	Final, January	1990-November 1990
4. TITLE AND SUBTITLE			5. FUNDING NUMBERS
Flamespreading Processes in Ball	Powder Propellants		PR: 1L162618AH80
6. AUTHOR(S)	· · · · · · · · · · · · · · · · · · ·		1
Andrew L. Brant, Joseph W. Colbi	urn, Carl R. Ruth, and D	Dennis W. Worthington	
7. PERFORMING ORGANIZATION NAME	(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
U.S. Army Research Laboratory			
ATTN: AMSRL-WT-PA			ARL-TR-731
Aberdeen Proving Ground, MD 2	1005-5066		
9. SPONSORING / MONITORING AGENCY	NAME(S) AND ADDRESS	S(ES)	10. SPONSORING / MONITORING AGENCY REPORT NUMBER
			AGENCI REPORT ROWIDER
11. SUPPLEMENTARY NOTES			
Olin Ordnance			
12a. DISTRIBUTION / AVAILABILITY STAT	EMENT		12b. DISTRIBUTION CODE
Approved for public release; distrib	oution is unlimited.		

13. ABSTRACT (Maximum 200 words)

Ball powder propellants, loose and compacted, have been considered for use in recent years in tank and artillery applications. They are on interest due to the potential for high loading density, reduced temperature sensitivity, and improved performance through chemical/geometric progressivity control. However, there are several areas of concern, among them an uncontrolled deconsolidation process of compacted ball powder and a reduction in performance if the deterrent location is varied from the optimum.

In order to address these concerns, a study was conducted by the U.S. Army Ballistic Research Laboratory and Olin Corporation to investigate the initial phase of the ballistic cycle with a 120-mm simulator. The simulator, employing a disposable plexiglass chamber, allowed direct viewing of the events occurring during the ignition and flamespreading portion of the interior ballistic cycle via high-speed cinematography. Pressures were measured at the ends and interior of the chamber with gages mounted in the case base, projectile fins, and projectile base. Shots were conducted with loose and compacted ball powder charges at several temperatures.

14. SUBJECT TERMS ball powder propellants, igni charges, consolidation charge	15. NUMBER OF PAGES 24 16. PRICE CODE		
17. SECURITY CLASSIFICATION OF REPORT	18. SECURITY CLASSIFICATION OF THIS PAGE	19. SECURITY CLASSIFICATION OF ABSTRACT	20. LIMITATION OF ABSTRACT
UNCLASSIFIED	UNCLASSIFIED	UNCLASSIFIED	UL

INTENTIONALLY LEFT BLANK.

TABLE OF CONTENTS

	<u>Pa</u>	ge
	LIST OF FIGURES	V
	ACKNOWLEDGMENTS	vi
1.	INTRODUCTION	1
2.	EXPERIMENTAL	1
3.	EXPERIMENTAL DATA	4
	3.1 Loose BALL POWDER Charge, 21°C	6 8
4.	CONCLUDING REMARKS	11
5.	REFERENCES	15
	DISTRIBUTION LIST	17

Acces	on For			
DTIC	ounced	4		
By				
Availability Codes				
Dist	Avail ar Spec			
A-1				

INTENTIONALLY LEFT BLANK.

LIST OF FIGURES

Figur	<u>re</u>	<u>Page</u>
1.	Diagram of Interior Ballistic Simulator	2
2.	Experimental Test Setup	2
3.	BALL POWDER Propellant Base Grain	3
4.	Loose BALL POWDER Propellant Charge	3
5.	Compacted BALL POWDER Propellant Charge	4
6.	Pressures and Radar Data, Loose BALL POWDER , 21°C	5
7.	Schematic of Flamespread in Loose BALL POWDER , 21°C	6
8.	Pressures and Radar Data, Compacted BALL POWDER , 21°C .	7
9.	Schematic of Flamespread in Compacted BALL POWDER , 21°C	. 8
10.	Pressures and Radar Data, Compacted BALL POWDER , -32°C	9
11.	Schematic of Flamespread in Compacted BALL POWDER , -32°	°C.10
12.	Pressures and Radar Data, Compacted BALL POWDER , 54°C .	11
13.	Schematic of Flamespread in Compacted BALL POWDER , 54°C	. 12

INTENTIONALLY LEFT BLANK.

ACKNOWLEDGMENTS

The authors would like to thank James Bowen, John Hewitt, James Tuerk, and Dennis Meier for their assistance with the simulator setup and firings.

INTENTIONALLY LEFT BLANK.

1. INTRODUCTION

For some time, the Olin Corporation's research and development facility at St. Marks, Florida, and the Ballistic Research Laboratory (BRL), Aberdeen Proving Ground, MD, * have been involved in an unfunded study investigating the potential of compacted BALL POWDER® propellants as a means of reducing propulsion system temperature sensitivity. Generally, as a propellant's temperature increases, chamber pressures and muzzle velocities increase, resulting in maximum performance only when firing at the hot temperature limit. Therefore, a desirable propellant should exhibit little change in burning characteristics over a wide temperature range (-45 to $+65^{\circ}$ C).

Olin has developed compacted BALL POWDER® charges in systems ranging from small caliber up to the 120-mm smooth bore tank gun that may partially meet this criterion. Their data, obtained using 20-mm and 30-mm compacted charges, indicated a substantial decrease in temperature sensitivity (Kruczynski 1991). As part of the unfunded research agreement with Olin and because of a lack of the necessary facilities at Olin to fire 120-mm compacted charges, the BRL undertook the investigation of the behavior of these charges in gun firings.

In the past, the BRL has extensively used large-caliber simulators to study the ignition and combustion processes of propellant charges (Chang and Rocchio 1988). Consequently, prior to the actual gun firings, a series of low-pressure simulator firings were undertaken to study the ignition and flamespread phenomena of both loose and compacted Olin charges. This report presents the results of these experiments.

2. EXPERIMENTAL APPARATUS AND CHARGE DESIGN

The apparatus designed to simulate a 120-mm round consisted of the case base of a real cartridge, a transparent acrylic tube containing propellant and an inert projectile, and the forcing cone section of a shortened gun barrel in which the front of the projectile was inserted. A cross-sectional view of the simulator is shown in Figure 1. The fixture was held together by a series of bolts and was mounted on a steel platform.

*On 30 September 1992, the U.S. Army Ballistic Research Laboratory (BRL) was deactivated and subsequently became part of the U.S. Army Research Laboratory (ARL) on 1 October 1992.

Figure 1. Diagram of Interior Ballistic Simulator

The simulator was generally capable of withstanding dynamic pressures up to approximately 15 MPa before rupturing. Pressure measurements were obtained using four PCB Model 113A23 gages. Two gages (P1,P2) were mounted in the breech, one gage (P3) was mounted in the rear of the fins, and one gage (P4) was mounted in the projectile afterbody near the front of the chamber. Photographic data was obtained at a framing rate of approximately 5,000 pictures per second using a 16-mm Hycam camera. A 35-GHz microwave interferometer was placed about 25 feet in front of the simulator to record projectile motion. The interferometer was protected from blast debris by a 1-inch-thick plexiglass shield and a steel trap designed to catch the projectile if it left the simulator. A schematic of the entire arrangement is shown in Figure 2.

Figure 2. Experimental Test Setup

The propellant base grain for all the charges used was a deterred rolled BALL POWDER® propellant. Figure 3 shows a cross-sectional view of a sample grain along with plot of a typical deterrent gradient.

Figure 3. BALL POWDER® Propellant Base Grain.

A test was conducted with a loose BALL POWDER® propellant charge conditioned at 21° C. The charge consisted of 9.5 kg of loose BALL POWDER® propellant. The loading density was 0.97 g/cm³. The charge was ignited with a M129 primer. A cross-sectional view of the charge is shown in Figure 4.

Figure 4. Loose BALL POWDER® Propellant Charge.

The compacted BALL POWDER® propelling charges were made up of several propellant segments. The compacted propellant segments were made by pressing the solvent-wetted propellant grains into shapes which would fit into a 120-mm cartridge case and provide adequate flamespreading throughout the charge. The compacted charge consisted of 9.3 kg of propellant arranged in an inner and outer cylinder with an annular space between them. There was also a small vertical gap between each of the propellant segments. The loading density was 0.95 g/cm^3 . The charge was ignited with a XM123 primer and a 100-g black powder basepad igniter. A cross-sectional view of the charge and propellant segments is shown in Figure 5. Compacted propellant charges were tested at -32°C , 21°C , and 49°C .

Figure 5. Compacted BALL POWDER® Propellant Charge.

3. EXPERIMENTAL RESULTS

3.1 Loose BALL POWDER® Charge, 21°C. The pressure-time and displacement-time histories for the loose BALL POWDER® charge are presented in Figure 6. This charge showed a peak pressure of 10.9 MPa at gage locations P1 and P2, 4.9 MPa at P3, and 0.51 MPa at P4. The oscillations on the pressure-time traces are believed to be caused by various modes of 60 cycle noise. The radar showed projectile motion between 8 and 10 ms, then the projectile stopped and remained stationary A schematic of the events taking place during the until 42 ms. flamespread is shown is Figure 7. At approximately 8 ms, the propellant bed is seen moving forward and impacting the projectile. At 15 ms, the formation of dark areas in the rear quarter of the charge was noted. These areas appeared in a pattern corresponding to that of the vent These dark areas, which are believed to be holes in the primer. combustion products, continued to enlarge. At 32 ms, the first area of flame was seen near the center of one of the dark areas, which is shown in black on the schematic diagram. Other small areas of flames appeared in the other dark areas as time progressed. At 50 ms, there were three areas of flame in the rear of the charge just before the chamber burst.

Figure 6. Pressures and Radar Data, Loose BALL POWDER, 21°C.

Figure 7. Schematic of Flamespread in Loose BALL POWDER®, 21°C.

3.2 Compacted BALL POWDER® Charge, 21°C. A compacted BALL POWDER® charge was conditioned at 21°C. The pressure-time and displacement-time plots are shown in Figure 8. The round obtained a peak pressure of 11.9 MPa at the breech (P1 and P2), 11.0 MPa at the fins (P3), and 9.2 MPa at the forward end of the chamber (P4). The projectile started to move at approximately 8 ms and accelerated smoothly until the chamber burst. A schematic of the events taking place is shown in Figure 9. At 1 ms, the XM123 primer had ignited the basepad and luminous gases could be seen near the rear of the charge. At 1.5 ms, the luminous gases advanced around the rear two segments and also through the inside of the charge to the forward end of the chamber. The luminous gases continued to spread throughout the charge.

Figure 8. Pressures and Radar Data, Compacted BALL POWDER, 21°C

At 13.5 ms, the rear of the charge became bright orange, indicating propellant ignition. At 19 ms, the propellant in the center of the charge, as seen through the vertical gaps, became bright orange which indicated propellant ignition at that location.

Figure 9. Schematic of Flamespread in Compacted BALL POWDER, 21°C.

3.3 Compacted BALL POWDER® Charge, $-32^{\circ}C$. A compacted BALL POWDER® charge was conditioned at $-32^{\circ}C$ for use in the ballistic simulator. The pressure-time and displacement-time plots are shown is Figure 10. The round reached a peak pressure of 22.5 MPa at the breech (P1 and P2), 22.0 MPa at the fins (P3), and 21.5 MPa at the forward end of the chamber (P4). Projectile motion started at 1 ms and accelerated smoothly until the chamber burst. A schematic of the events

Figure 10. Pressures and Radar Data, Compacted BALL POWDER, -32°C.

taking place is shown in Figure 11. Between 12 and 14 ms the rear half of the charge showed bright, erratic flames, which indicated the propellant was deconsolidating. At 14 ms the chamber burst.

Figure 11. Schematic of Flamespread in Compacted BALL POWDER®, -32°C.

3.4 <u>Compacted BALL POWDER® Charge, 54°C</u>. A compacted BALL POWDER® charge was conditioned at 54°C. The pressure-time and displacement-time plots are shown is Figure 12. The round reached a peak pressure of 13.1 MPa at the breech (P1 and P2), 15.6 MPa at the fins (P3), and 16.4 MPa at the forward end of the chamber (P4). Projectile motion started at approximately 2 ms and accelerated smoothly until the chamber burst. A schematic of the events taking place is shown in Figure 13. At 1 ms, the XM123 primer had ignited the blackpowder basepad and luminous gases could be seen around the rear of the charge. By 3 ms, luminous gases could be seen in the vertical gaps between the segments in the rear half of the charge as well as

Figure 12. Pressures and Radar Data, Compacted BALL POWDER, 54°C.

in the forward end of the chamber. At $4~\mathrm{ms}$, the rear section of the charge became bright orange which indicated the propellant had started to ignite. The chamber burst at $4.5~\mathrm{ms}$.

Figure 13. Schematic of Flamespread in Compacted BALL POWDER®, 54°C.

4. CONCLUDING REMARKS

The testing conducted with loose BALL POWDER® propellants showed a very high resistance to the flow of igniter products. This high resistance led to poor flamespread and localized ignition in the base of the charge.

Due to the axial ports, the compacted propellants showed rapid propagation of igniter products to all areas of the chamber, which led to uniform ignition of the charge. The flow could be further enhanced by altering the shapes and sizes of the propellant segments.

Deconsolidation of the compacted propellant was seen only with the charge conditioned at -32°C . The key to temperature sensitivity reduction is progressively more deconsolidation as the temperature of the charge is reduced. Such deconsolidation took pace at -32°C ; we may not have observed it at 21°C due to earlier simulator chamber failure.

Based on the results obtained during the simulator tests, a series of gun firings is planned in the 120-mm gun with compacted BALL POWDER® propellants conditioned to temperatures spanning the required operational spectrum. The goal is to demonstrate a significantly reduced temperature sensitivity across this range compared to conventional charges.

INTENTIONALLY LEFT BLANK.

5. REFERENCES

- Chang, L.M., and J.J. Rocchio "Simulator Diagnostics of the Early Phase Ignition Phenomena in a 105-MM Tank Gun Chamber." BRL-TR-2890, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, March 1988.
- Kruczynski, D. L. "Temperature Compensation Techniques And Technologies-An Overview." BRL-TR-3283, U.S. Army Ballistic Research Laboratory, Aberdeen Proving Ground, MD, October 1991.

INTENTIONALLY LEFT BLANK

NO. OF <u>COPIES</u> <u>ORGANIZATION</u>

- 2 ADMINISTRATOR
 ATTN DTIC DDA
 DEFENSE TECHNICAL INFO CTR
 CAMERON STATION
 ALEXANDRIA VA 22304-6145
- 1 DIRECTOR
 ATTN AMSRL OP SD TA
 US ARMY RESEARCH LAB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 3 DIRECTOR
 ATTN AMSRL OP SD TL
 US ARMY RESEARCH LAB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145
- 1 DIRECTOR
 ATTN AMSRL OP SD TP
 US ARMY RESEARCH LAB
 2800 POWDER MILL RD
 ADELPHI MD 20783-1145

ABERDEEN PROVING GROUND

5 DIR USARL ATTN AMSRL OP AP L (305)

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	HQDA ATTN SARD TT DR F MILTON PENTAGON WASHINGTON DC 20310-0103	11	CDR US ARMY ARDEC ATTN SMCAR AEE B A BEARDELL D DOWNS
1	HQDA ATTN SARD TT MR J APPEL PENTAGON WASHINGTON DC 20310-0103		S EINSTEIN S WESTLEY S BERNSTEIN J RUTKOWSKI B BRODMAN
1	CHAIRMAN DOD EXPLOSIVES SAFETY BD HOFFMAN BLDG 1 RM 856 C 2461 EISENHOWER AVE ALEXANDRIA VA 22331-0600		P OREILLY R CIRINCIONE P HUI J OREILLY PCTNY ARSNL NJ 07806-5000
1	CDR USAMC ATTN AMCICP AD M FISETTE 5001 EISENHOWER AVE ALEXANDRIA VA 22333-0001	5	CDR US ARMY ARDEC ATTN SMCAR AEE WW M MEZGER J PINTO D WIEGAND P LU
1	USA BMD SYSTEMS COMMAND ADVANCED TECHNOLOGY CTR PO BOX 1500		C HU PCTNY ARSNL NJ 07806-5000
2	HUNTSVILLE AL 35807-3801 CDR US ARMY ARDEC ATTN SMCAR CCH V	1	CDR US ARMY ARDEC ATTN SMCAR HFM E BARRIERES PCTNY ARSNL NJ 07806-5000
	C MANDALA E FENNELL PCTNY ARSNL NJ 07806-5000 CDR US ARMY ARDEC	1	CDR US ARMY ARDEC ATTN SMCAR FSA F LTC R RIDDLE PCTNY ARSNL NJ 07806-5000
	ATTN SMCAR CCH T L ROSENDORF PCTNY ARSNL NJ 07806-5000	1	CDR US ARMY ARDEC ATTN SMCAR FSC G FERDINAND
_	CDR US ARMY ARDEC ATTN SMCAR CCS PCTNY ARSNL NJ 07806-5000	1	PCTNY ARSNL NJ 07806-5000 CDR US ARMY ARDEC ATTN SMCAR FS T GORA
	CDR US ARMY ARDEC ATTN SMCAR AEE J LANNON	1	PCTNY ARSNL NJ 07806-5000 CDR US ARMY ARDEC
1	PCTNY ARSNL NJ 07806-5000 CDR US ARMY ARDEC ATTN SMCAR AES		ATTN SMCAR FS DH J FENECK PCTNY ARSNL NJ 07806-5000
	S KAPLOWITZ PCTNY ARSNL NJ 07806-5000		

NO. OF		NO. OF	
	ORGANIZATION		ORGANIZATION
2	CDR US ARMY ARDEC	1	US ARMY RD&S GROUP (UK)
	ATTN SMCAR FSS A		PSC 802 BOX 15
	R KOPMANN		DR ROY E RICHENBACH
	B MACHEK		FPO AE 09499-1500
	PCTNY ARSNL NJ 07806-5000		
		1	CDR NSSC
1	CDR US ARMY ARDEC		ATTN SEA 62R
	ATTN SMCAR FSS A		WASH DC 20362-5101
	L PINDER		
	PCTNY ARSNL NJ 07806-5000	1	CDR NSSC
			ATTN SEA 64
1	CDR US ARMY ARDEC		WASH DC 20362-5101
	ATTN SMCAR FSN N K CHUNG		CDD MAG
	PCTNY ARSNL NJ 07806-5000	1	CDR NASC
•			ATTN AIR 954 TECH LIB
2	DIR BENET LABS		WASH DC 20360
	ATTN SMCAR CCB RA G P O'HARA	1	CDR NAVAL RESEARCH LAB
	G A PFLEGL	1	ATTN TECH LIB
	WATERVLIET NY 12189-4050		WASH DC 20375-5000
	WILDRY EDIT IVI IDIO AGGO		William 20070 0000
1	DIR BENET LABS	3	CDR NAVAL RESEARCH LAB
	ATTN SMCAR CCB S		ATTN CODE 4410 J BORIS
	S F HEISER		K KAILASANATH
	WATERVLIET NY 12189-4050		E ORAN
			WASH DC 20375-5000
1	DIR BENET LABS		
	ATTN SMCAR CCB RT	1	OFFICE OF NAVAL RESEARCH
	S SOPOK		ATTN CODE 473 R S MILLER
	WATERVLIET NY 12189-4050		800 N QUINCY ST
2	CDR USARO		ARLINGTON VA 22217-9999
	ATTN TECH LIB	1	OFFICE OF NAVAL TECHNOLOGY
	D MANN	•	ATTN ONT 213
	PO BOX 12211		D SIEGEL
	RSCH TRI PK NC 27709-2211		800 N QUINCY ST
			ARLINGTON VA 22217-5000
1	CDR USACECOM		111111111111111111111111111111111111111
	R&D TECHNICAL LIBRARY	1	CDR NSWC
	ATTN ASQNC ELC IS L R		ATTN CODE 730
	MYER CTR		SLVR SPRNG MD 20903-5000
,	FT MONMOUTH NJ 07703-5301		
		1	CDR NSWC
1	CDR USABRDC		ATTN CODE R 13
	ATTN STRBE WC		R BERNECKER
]	FT BELVOIR VA 22060-5006		SLVR SPRNG MD 20903-5000
1 .	CDD LIC ADMY NOIC		
	CDR US ARMY NGIC ATTN AMXST MC 3		
	220 SEVENTH ST NE		
•	220 SEVENIH SI NE		

CHARLOTTESVILLE VA 22901-5396

NO. OF		NO. OF	
COPIES	ORGANIZATION	COPIES	ORGANIZATION
7	CDR NSWC	1	AFOSR NA
	ATTN TC SMITH		ATTN J TISHKOFF
	K RICE		BOLLING AFB DC 20332-6448
	S MITCHELL		
	S PETERS	1	OLAC PL TSTL
	J CONSAGA		ATTN D SHIPLETT
	C GOTZMER		EDWARDS AFB CA 93523-5000
	TECHNICAL LIBRARY		
	INDIAN HEAD MD 20640-5000	3	OLAC PL RK
			ATTN J LEVINE
1	CDR NSWC		L QUINN
	ATTN CODE G30		T EDWARDS
	GUNS & MUNITIONS DIVISION		5 POLLUX DRIVE
	DAHLGREN VA 22448-5000		EDWARDS AFB CA 93524-7048
1	CDR NSWC	1	WL MNAA
	ATTN CODE G32		ATTN B SIMPSON
	GUNS SYSTEMS DIVISION		EGLIN AFB FL 32542-5434
	DAHLGREN VA 22448-5000		
		1	WL MNME
1	CDR NSWC		ENERGETIC MATERIALS BR
	ATTN CODE G33		2306 PERIMETER RD
	T DORAN		STE 9
	DAHLGREN VA 22448-5000		EGLIN AFB FL 32542-5910
1	CDR NSWC	1	WL MNSH
	ATTN CODE E23		ATTN R DRABCZUK
	TECHNICAL LIBRARY		EGLIN AFB FL 32542-5434
	DAHLGREN VA 22448-5000		
		2	NASA LANGLEY RESEARCH CTR
2	CDR NAWC		ATTN MS 408
	ATTN CODE 388		W SCALLION
	CF PRICE		D WITCOFSKI
	T BOGGS		HAMPTON VA 23605
	CHINA LAKE CA 93555-6001		
			CIA
-	CDR NAWC		OFC OF INFO RESOURCES
	ATTN CODE 3895		ROOM GA 07 HQS
	T PARR		WASH DC 20505
•	R DERR		
	CHINA LAKE CA 93555-6001		CIA
_			ATTN J BACKOFEN
_	CDR NAWC		NHB ROOM 5N01
	ATTN INFORMATION SCIENCE DIVISION		WASH DC 20505
•	CHINA LAKE CA 93555-6001	1	SDIO TNI
1 (CDR NUSC		ATTN LH CAVENY
	ATTN CODE 5B331		PENTAGON
	TECHNICAL LIBRARY		WASH DC 21301-7100
	NEWPORT RI 02840		
-			

NO. OF NO. OF COPIES ORGANIZATION COPIES ORGANIZATION SDIO DA 1 BATTELLE PNL 1 ATTN MCC BAMPTON ATTN E GERRY PO BOX 999 **PENTAGON RICHLAND WA 99352** WASH DC 21301-7100 INSTITUTE OF GAS TECH 2 **HQ DNA** ATTN D GIDASPOW ATTN D LEWIS A FAHEY 3424 S STATE ST CHICAGO IL 60616-3896 6801 TELEGRAPH RD ALEXANDRIA VA 22310-3398 INST FOR ADV TECHNOLOGY ATTN T M KIEHNE 1 DIR SNL 4030 2 W BRAKER LANE ENRGTC MATLS & FLUID MECH **AUSTIN TX 78759-5329 DEPARTMENT 1512** ATTN M BAER CPIA JHU PO BOX 5800 ATTN H J HOFFMAN **ALBUQUERQUE NM 87185** T CHRISTIAN 1 DIR SNL 10630 LTLE PATUXENT PKWY COMBUSTION RSCH FACILITY SUITE 202 ATTN R CARLING COLUMBIA MD 21044-3200 LIVERMORE CA 94551-0469 **BRIGHAM YOUNG UNIVERSITY** 1 DIR SNL **DEPT OF CHEMICAL ENGNRNG** ATTN 8741 GA BENEDETTI ATTN M BECKSTEAD PO BOX 969 **PROVO UT 84601** LIVERMORE CA 94551-0969 JET PROPULSION LAB 2 DIR LLNL CA INSTITUTE OF TECH **ATTN L 355** ATTN L STRAND MS 125 224 **4800 OAK GROVE DRIVE** A BUCKINGHAM PASADENA CA 91109 M FINGER **PO BOX 808** LIVERMORE CA 94550-0622 CA INSTITUTE OF TECH 204 KARMAN LABORATORY 1 DIR LANL MAIL STOP 301 46 ATTN T3 D BUTLER ATTN F E C CULICK PO BOX 1663 1201 E CALIFORNIA ST LOS ALAMOS NM 87544 PASADENA CA 91109 DIR LANL GEORGIA INST OF TECH ATTN M DIV B CRAIG SCH OF AEROSPACE ENGRNG PO BOX 1663 ATTN B T ZIM LOS ALAMOS NM 87544 E PRICE WC STRAHLE 2 BATTELLE ATLANTA GA 30332 **ATTN TWSTIAC**

V LEVIN 505 KING AVE

COLUMBUS OH 43201-2693

NO. OF COPIES ORGANIZATION

- 2 UNIV OF ILLINOIS
 DEPT OF MECH INDUS ENGNR
 ATTN H KRIER
 R BEDDINI
 144 MEB 1206 N GREEN ST
 URBANA IL 61801-2978
- 1 UNIV OF MASSACHUSETTS DEPT OF MECH ENGR ATTN K JAKUS AMHERST MA 01002-0014
- 1 UNIV OF MINNESOTA
 DEPT OF MECH ENGNR
 ATTN E FLETCHER
 MINNEAPOLIS MN 55414-3368
- 3 PENN STATE UNIV
 DEPT OF MECH ENGNR
 ATTN V YANG
 K KUO
 C MERKLE
 UNIV PARK PA 16802-7501
- 1 RENSSELAER POLYTECH INST DEPT OF MATHEMATICS TROY NY 12181
- 1 STEVENS INST OF TECH
 DAVIDSON LABORATORY
 ATTN R MCALEVY III
 CASTLE POINT STATION
 HOBOKEN NJ 07030-5907
- 1 RUTGERS UNIVERSITY
 DEPT OF MECHANICAL AND
 AEROSPACE ENGINEERING
 ATTN S TEMKIN
 UNIVERSITY HEIGHTS CAMPUS
 NEW BRUNSWICK NJ 08903
- 1 UNIVERSITY OF UTAH
 DEPT OF CHEM ENGNRG
 ATTN A BAER
 SALT LK CTY UT 84112-1194
- 1 WASHINGTON STATE UNIV DEPT OF MECH ENGNRG ATTN CT CROWE PULLMAN WA 99163-5201

NO. OF COPIES ORGANIZATION

- 1 AFELM THE RAND CORP ATTN LIBRARY D 1700 MAIN ST SNTA MONICA CA 90401-3297
- 1 ARROW TECH ASSOC INC ATTN W HATHAWAY PO BOX 4218 S BRLNGTN VT 05401-0042
- 2 AAI CORPORATION
 ATTN J FRANKLE
 D CLEVELAND
 PO BOX 126
 HUNT VALLEY MD 21030-0126
- 2 ALLIANT TECHSYSTEMS INC ATTN RE TOMPKINS J KENNEDY 7225 NORTHLAND DR BRKLYN PARK MN 55428
- 1 GENERAL APPLIED SCI LAB ATTN J ERDOS 77 RAYNOR AVE RONKONKOMA NY 11779-6649
- 1 GENERAL ELECRIC COMPANY
 TACTICAL SYSTEM DEPT
 ATTN J MANDZY
 100 PLASTICS AVE
 PITTSFIELD MA 01201-3698
- 1 IITRI
 ATTN MJ KLEIN
 10 W 35TH ST
 CHICAGO IL 60616-3799
- 4 HERCULES INC
 RADFORD ARMY AMMUNITION PLANT
 ATTN L GIZZI
 D A WORRELL
 W J WORRELL
 C CHANDLER
 RADFORD VA 24141-0299
- 2 HERCULES INC
 ALLEGHENY BALLISTICS LAB
 ATTN WILLIAM B WALKUP
 THOMAS F FARABAUGH
 PO BOX 210
 ROCKET CTR WV 26726

NO. OF NO. OF COPIES ORGANIZATION COPIES ORGANIZATION HERCULES INC 1 ROCKWELL INTERNATIONAL **ROCKETDYNE DIVISION AEROSPACE** ATTN WC79 R EDELMAN ATTN R CARTWRIGHT 100 HOWARD BLVD 6633 CANOGA AVE KENVILLE NJ 07847 CANOGA PARK CA 91303-2703 ROCKWELL INTL SCIENCE CTR HERCULES INC 2 1 HERCULES PLAZA ATTN DR S CHAKRAVARTHY ATTN BM RIGGLEMAN DR S PALANISWAMY **WILMINGTON DE 19894** 1049 CAMINO DOS RIOS THOUSAND OAKS CA 91360 1 MBR RESEARCH INC ATTN MOSHE BEN REUVEN 1 SAIC ATTN M PALMER 601 EWING ST SUITE C 22 PRINCETON NJ 08540 2109 AIR PARK RD **ALBUQUERQUE NM 87106** 3 **OLIN ORDNANCE** ATTN EJ KIRSCHKE 1 SOUTHWEST RSCH INST A F-GONZALEZ ATTN J P RIEGEL D W WORTHINGTON 6220 CULEBRA ROAD PO BOX 222 **SAN ANTONIO TX 78228-0510** ST MARKS FL 32355-0222 SVERDRUP TECHNOLOGY INC 1 1 **OLIN ORDNANCE** ATTN DR JOHN DEUR ATTN H A MCELROY 2001 AEROSPACE PARKWAY 10101 9TH ST NORTH **BROOK PARK OH 44142** ST PETERSBURG FL 33716 3 THIOKOL CORPORATION 1 PAUL GOUGH ASSOC INC **ELKTON DIVISION** ATTN PS GOUGH ATTN R WILLER 1048 SOUTH ST R BIDDLE PORTSMOUTH NH 03801-5423 **TECH LIBRARY** PO BOX 241 PHYSICS INTL LIBRARY ELKTON MD 21921-0241 ATTN H WAYNE WAMPLER PO BOX 5010 1 **VERITAY TECHNOLOGY INC** SAN LEANDRO CA 94577-0599 ATTN E FISHER 4845 MILLERSPORT HWY 1 PRINCETON CMBSTN RSCH LABS EAST AMHRST NY 14501-0305 ATTN N A MESSINA PRINCETON CORPORATE PLAZA 1 UNIVERSAL PROPULSION CO 11 DEERPARK DR ATTN HJ MCSPADDEN **BLDG IV SUITE 119** 25401 NORTH CENTRAL AVE **MONMOUTH JUNCTION NJ 08852** PHOENIX AZ 85027-7837 2 ROCKWELL INTERNATIONAL 1 SRI INTERNATIONAL **ROCKETDYNE DIVISION** PROPULSION SCI DIV

ATTN TECH LIBRARY

333 RAVENWOOD AVE

MENLO PARK CA 94025-3493

ATTN BA05

J GRAY

J FLANAGAN

6633 CANOGA AVE

CANOGA PARK CA 91303-2703

NO. OF COPIES ORGANIZATION

- 1 DEPARTMENT OF THE ARMY
 ATTN SFAE AR HIP IP
 R DE KLEINE
 OFFICE OF THE PRODUCT MANAGER
 155 MM HOWITZER M109A6 PALADIN
 PCTNY ARSNL NJ 07806-5000
- 3 PROJECT MANAGER
 ATTN SFAE ASM AF E
 LTC A ELLIS
 T KURIATA
 J SHIELDS
 ADVANCED FIELD ARTILLERY SYSTEM
 PCTNY ARSNL NJ 07801-5000
- 1 PROJECT MANAGER
 ATTN SFAE ASM AF Q
 W WARREN
 US ARMY AFAS
 PCTNY ARSNL NJ 07801-5000
- 1 CDR
 ATTN AMSMC PBM A SIKLOSI
 PROD BASE MODRNZTIN AGCY
 US ARMY ARDEC
 PCTNY ARSNL NJ 07806-5000
- 1 CDR
 ATTN AMSMC PBM E L LAIBSON
 PROD BASE MODRNZTIN AGCY
 US ARMY ARDEC
 PCTNY ARSNL NJ 07806-5000
- 1 PEO ARMAMENTS
 ATTN AMCPM TMA
 PROJECT MANAGER
 TMAS
 PCTNY ARSNL NJ 07806-5000
- 1 PEO ARMAMENTS
 ATTN AMCPM TMA 105
 PROJECT MANAGER
 TMAS
 PCTNY ARSNL NJ 07806-5000
- 1 PEO ARMAMENTS
 ATTN AMCPM TMA 120
 PROJECT MANAGER
 TMAS
 PCTNY ARSNL NJ 07806-5000

NO. OF

COPIES ORGANIZATION

- 1 PEO ARMAMENTS
 ATTN AMCPM TMA AS H YUEN
 PROJECT MANAGER
 TMAS
 PCTNY ARSNL NJ 07806-5000
- 1 CDR
 ATTN SMCAR FSA T M SALSBURY
 US ARMY ARDEC
 PCTNY ARSNL NJ 07806-5000
- 1 COMMANDANT
 ATTN AVIATION AGENCY
 US ARMY AVIATION SCHOOL
 FT RUCKER AL 36360
- 1 PROGRAM MANAGER
 ATTN AMCPM ABMS T DEAN
 US ARMY TACOM
 WARREN MI 48092-2498
- 1 PROJECT MANAGER
 ATTN SFAE ASM BV
 US ARMY TACOM
 FIGHTING VEHICLE SYSTEMS
 WARREN MI 48397-5000
- 1 PROJECT MANAGER
 ATTN SFAE ASM AB
 ABRAMS TANK SYSTEM
 WARREN MI 48397-5000
- 1 DIRECTOR
 ATTN ATCD MA
 HQ TRAC RPD
 FT MONROE VA 23651-5143
- DIRECTOR
 ATTN ATRC L MR CAMERON
 US ARMY TRAC FT LEE
 FT LEE VA 23801-6140
- 1 COMMANDANT US ARMY CMND AND GEN STAFF COLLEGE FT LEAVENWORTH KS 66027
- 1 COMMANDANT
 ATTN REV AND TRNG LIT DIV
 US ARMY SPECIAL WARFARE SCHOOL
 FT BRAGG NC 28307

NO. OF COPIES	ORGANIZATION	NO. OF COPIES	ORGANIZATION
1	CDR ATTN SMCAR QA HI LIB RADFORD ARMY AMMUNITION PLANT		A BRANT C BULLOCK L CHANG
2	RADFORD VA 24141-0298 COMMANDANT ATTN ATSF CD COL T STRICKLIN		T COFFEE J COLBURN P CONROY M DEL GUERCIO
	ATTN ATSF CD COL I STRICKLIN ATSF CN P GROSS US ARMY FLD ARTLY CTR AND SCHL FT SILL OK 73503-5600		J DE SPIRITO S FORTIER G GAZONAS
1	COMMANDANT ATTN ATZK CD MS M FALKOVITCH		J HEWITT S HOWARD A JOHNSON
	US ARMY ARMOR SCHOOL ARMOR AGENCY FT KNOX KY 40121-5215		A JUHASZ G KATULKA G KELLER
1	MARTIN MARIETTA ARMAMENT SYSTEMS ATTN JIM TALLEY		M KIWAN J KNAPTON A KOSZORU
	ROOM 1309 LAKESIDE AVE BURLINGTON VT 05401		D KRUCZYNSKI F LIBERATORE M MCQUAID
1	OLIN CORPORATION ATTN F E WOLF		M NUSCA W OBERLE P REEVES
	BADGER ARMY AMMUNITION PLANT BARABOO WI 53913 ABERDEEN PROVING GROUND		M RIDGLEY F ROBBINS T ROSENBERGER
1	CDR USACSTA ATTN STECS LI		C RUTH I STOBIE P TRAN J TUERK
110	R HENDRICKSON DIR USARL		K WHITE A WILLIAMS G WREN
	ATTN AMSRL WT I MAY D ECCLESHALL		AMSRL WT PB E SCHMIDT P PLOSTINS
	AMSRL CI C MERMEGAN AMSRL CI C W STUREK AMSRL CI S A MARK		M BUNDY W THOMSPON AMSRL WT PC
	AMSRL SL B P DIETZ AMSRL SL I D HASKILL AMSRL WT P		R FIFER G ADAMS W ANDERSON
	A HORST J DANTE AMSRL WT PA		R BEYER S BUNTE A COHEN
	T MINOR C LEVERITT D KOOKER		B FORCH A KOTLAR J HEIMERL
	R ANDERSON A BIRK		M MILLER A MIZIOLEK

COPIES ORGANIZATION

NO. OF COPIES ORGANIZATION

AMSRL SL BL G BOWERS AMSRL SL BS J JACOBSON AMSRL SL BV A YOUNG

R PESCE RODRIGUEZ

M SCHROEDER

J VANDERHOFF

AMSRL WT PD

B BURNS

A ABRAHAMIAN

W DRYSDALE

K BANNISTER

J BENDER

L BURTON

T ERLINE

A FRYDMAN

D HOPKINS

R KASTE

M LEADORE

R LIEB

S WILKERSON

AMSRL WT T W MORRISON

AMSRL WT TA

W GILLICH

M BURKINS

AMSRL WT TB

R FREY

L VANDE KIEFT

AMSRL WT TC

W DE ROSSET

B SORENSEN

G SILSBY

AMSRL WT TD A DIETRICH

AMSRL WT NC J POLK

AMSRL WT W C MURPHY

AMSRL WT WA

H ROGERS

B MOORE

a baran

AMSRL WT WB

F BRANDON

W D'AMICO

AMSRL WT WC

J ROCCHIO

T BROSSEAU

B HAUG

AMSRL WT WD A NIILER

AMSRL WT WE

J TEMPERLEY

J THOMAS

AMSRL CI A

H BREAUX

A CELMINS

AMSRL CI AC J GROSH

AMSRL SL I M STARKS

AMSRL SL BG D KIRK

NO. OF

COPIES ORGANIZATION

- DEFNS RSRCH AGCY MLTRY DIV ATTN C WOODLEY RARDE FT HALSTEAD SEVENOAKS KENT TN14 7BP ENGLAND
- SCHL OF MECHL MTRLS AND CIVIL ENGRG ATTN DR BRYAN LAWTON ROYAL MILITARY COLLEGE OF SCIENCE SHRIVANHAM SWINDON WILTSHIRE SN6 8LA ENGLAND
- 2 INSTITUT SAINT LOUIS
 ATTN DR MARC GIRAUD
 DR GUNTHER SMEETS
 POSTFACH 1260
 7858 WEIL AM RHEIN 1
 GERMANY
- 1 EXPLOSIVE ORDNANCE DIVISION
 ATTN A WILDEGGER-GAISSMAIER
 DEFNS SCIENCE AND TECHLGY ORGNZTIN
 PO BOX 1750
 SALISBURY SOUTH AUSTRALIA 5108
- 1 ARMAMENTS DIVISION
 ATTN DR J LAVIGNE
 DEFNS RSRCH ESTLSHMNT VALCARTIER
 2459 PIE XI BLVD NORTH
 PO BOX 8800
 COURCELETTE QUEBEC G0A 1R0
 CANADA
- 1 ERNST MACH INSTITUT
 ATTN DR R HEISER
 HAUPSTRASSE 18
 WEIL AM RHEIM
 GERMANY

INTENTIONALLY LEFT BLANK.

USER EVALUATION SHEET/CHANGE OF ADDRESS

This Laboratory undertakes a continuing effort to improve the quality of the reports it publishes. Your comments/answers to the items/questions below will aid us in our efforts. 1. ARL Report Number <u>ARL-TR-731</u> Date of Report <u>April 1995</u> 2. Date Report Received _____ 3. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which the report will be used.) 4. Specifically, how is the report being used? (Information source, design data, procedure, source of ideas, etc.) 5. Has the information in this report led to any quantitative savings as far as man-hours or dollars saved, operating costs avoided, or efficiencies achieved, etc? If so, please elaborate. 6. General Comments. What do you think should be changed to improve future reports? (Indicate changes to organization, technical content, format, etc.) Organization CURRENT Name **ADDRESS** Street or P.O. Box No. City, State, Zip Code 7. If indicating a Change of Address or Address Correction, please provide the Current or Correct address above and the Old or Incorrect address below. Organization OLD Name **ADDRESS** Street or P.O. Box No.

(Remove this sheet, fold as indicated, tape closed, and mail.)
(DO NOT STAPLE)

City, State, Zip Code

DEPARTMENT OF THE ARMY

OFFICIAL BUSINESS

POSTAGE WILL BE PAID BY ADDRESSEE

DIRECTOR
U.S. ARMY RESEARCH LABORATORY
ATTN: AMSRL-WT-PA
ABERDEEN PROVING GROUND, MD 21005-5066

NO POSTAGE NECESSARY IF MAILED IN THE UNITED STATES