

National Aeronautics and Space Administration

Development of Gas-to-Gas Lift Pad Dynamic Seals

Final Report

Volumes I and II

by

A.N. Pope, Principal Investigator D.W. Pugh

General Electric Company Aircraft Engine Business Group Cincinnati, Ohio 45215

Prepared for

National Aeronautics and Space Administration

Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135

(NASA-CR-179486) DEVELOPMENT OF GAS-TO-GAS LIFT PAD DYNAMIC SEALS, VOLUMES 1 AND 2 Final Report (General Electric Co.) 189 p Avail: NIIS EC AC9/MF AO1 CSCL 11A

N87-22245

Unclas G3/37 0072742

NASA Lewis Research Center Contract NAS3-20043

National Aeronautics and Space Administration

Development of Gas-to-Gas Lift Pad Dynamic Seals

Final Report

Volumes I and II

by

A.N. Pope, Principal Investigator D.W. Pugh

General Electric Company Aircraft Engine Business Group Cincinnati, Ohio 45215

Prepared for

National Aeronautics and Space Administration

Lewis Research Center

21000 Brookpark Road

Cleveland, Ohio 44135

NASA Lewis Research Center Contract NAS3-20043

-				
' '	Report No.	2. Government Accession No.	3. Recipient's Catalo	g No.
<u> </u>	NASACR- 179486 Title and Subtitle			
•	little and Subtitie		5. Report Date May 1987	
	DEVELOPMENT OF GAS TO GA	S LIFT PAD DYNAMIC SEALS	6. Performing Organi	
			o. renorming organi	zation code
7.	Author(s)		8. Performing Organia	zation Report No.
	A. N. Pope (Vol. I) D. 1	W Pugh (Vol. II)	R87-AEB432	2
		". 1 ugn (VOI. 11)	10. Work Unit No.	
9.	Performing Organization Name and Address			·
	General Electric Company		11. Contract or Grant	t No.
	Cincinnati, Ohio 45215		·NAS3-20043	
	ornermaer, onto 43213	· ·	13. Type of Report and Period Covered	
12.	Sponsoring Agency Name and Address			
	NACA I and a Barranta Gara		Contractor	
	NASA Lewis Research Cent- Cleveland, Ohio 44135	er	14. Sponsoring Agenc	y Code
<u> </u>	•			
15.	Supplementary Notes			···
	Project Manager, H. J. S	cibbe, Structures Division,	NASA Lewis B	Research
•	Center, Cleveland, Ohio	44135	THE LEWIS I	(csearch
16	Abstract			
	Dynamic tests were performers	rmed on self-acting (hydrody	ynamic) carbo	n face
	rotary shaft seals to assess their potential, relative to presently used			
	labyrinth seals, for improving performance of aircraft gas turbine engines			
	by reducing air leakage flow rate at compressor end seal locations.			
	Seals of 23.762 cm (9.355	5 inch) mean face diameter v	vere tested t	hrough the
	speed range of 1100 radia	ans per second (10.500 RPM)	nressure ra	nge through
•	21/.2 N/cm ² (315 psia) and sealed air temperature range through 811K			
	(1000°F), with seal downstream air pressure at approximately one (1)			
	atmosphere, absolute.			
	T ' (0)			
	Three (3) self-acting bea	aring configurations, design	ned to supply	load
	support at the interface	of the stationary carbon se	eal and rotat	ing seal
	race, were tested. Two	configurations, the shrouded	l taper and s	hrouded
	riat step, were incorpora	ated on the face of the stat	ionary carbo	n seal
	element. The third confi	iguration, inward pumping sp	piral grooves	, was
	incorporated on the hard	faced surface of the rotati	ng seal race	. Test
	can be achieved with the	l leakage air flow rates fro	om 75 to 95%	lower than
	identification (1)	st" state-of-the-art labyrin	ith designs a	nd led to
	configuration which is a	ed for a more geometrically	stable seal	design
17.	Key Words (Suggested by Author(s))	resently being manufactured for 18. Distribution Statement	er subsequent t	est evaluation.
	Self-Acting Labyrin	l l	•	
		ft Gas Turbine		
	01 1 -	formance		
	Shrouded Step			ı
	Spiral Groove			
19.	Security Classif, (of this report)	20. Security Classif. (of this page)	21. No. of Pages	22: Price*
	Unclassified	Unclassified	182	

^{*} For sale by the National Technical Information Service, Springfield, Virginia 22161

FOREWORD

This program was sponsored by the Lewis Research Center of the National Aeronautics and Space Administration under Contract NAS3-20043. The period of performance for this program was from June 4, 1976, through December, 1985. This report is Volume I of two volumes. It encompasses the period of performance from program initiation on June 4, 1976, through approximately April 18, 1981, which covers work up to, but not including, program modification number 6. Volume II covers performance initiated with program modification number 6 through program termination.

Technical direction was provided by the NASA Project Managers, Dr. John Zuk, the late Mr. L. P. Ludwig, and Messrs. H. J. Scibbe and Eliseo DiRusso of the Seals and Rotor Dynamics Section. Messrs. Leonard W. Shopen and Willie C. Fleming, NASA Lewis Research Center, were the Contracting Officers.

Mr. J. C. Clark, Manager, Bearings, Seals and Drives Design Technology, was the Technical Program Manager for General Electric. Mr. A. N. Pope was the Principal Investigator.

PRECEDING PAGE BLANK NOT PLEED

VOLUME I TABLE OF CONTENTS

Section		Page
	BACKGROUND	1
	SEAL HARDWARE DESCRIPTION	3
	INTRODUCTION	6
	TEST EQUIPMENT	8
	Static Fixture	8
	Dynamic Test Facility	8
	SEAL DYNAMIC ANALYSIS	13
	Gas Film Forces	13
	Seal Air Flow Rates	23
	TEST RESULTS AND DISCUSSION	24
	Summary	24
	Test Build No. 1 - Static Tests of Composite Slider	31
	Test Build No. 2 - Static and Dynamic Tests of Composite Slider	31
	Test Build No. 3 - Static and Dynamic Tests with Elastomer Secondary Seal	40
	Test Build No. 4 - Static and Dynamic Tests with Elastomer Secondary Seal	40
	Test Build No. 5 - NASA Designed Stepped Pad Bearing with O-Ring Secondary	45
	Test Build No. 6 - Static Tests with Reworked Metal Piston Ring	49
	Test Build No. 7 - Static and Dynamic Tests with Hardware Changes	53
	Test Build No. 8 - Static and Dynamic Tests, NASA Designed Test Bearing	59
	Test Build Nos. 9-13 - Static Leakage Evaluation	59
	Test Build Nos. 14-19 - Static Hardware Leakage Evaluation	65
	Test Build No. 20 - Endurance Test, Shrouded Composite Slider Bearing	68

 $= \frac{1}{K_c} \frac{\mathcal{H}_c}{f}$

VOLUME I TABLE OF CONTENTS (Concluded)

Section		Page
	Test Build No. 21 - Performance Mapping, NASA Design Step Pad Bearing	77
	Test Build No. 22 - Performance Mapping, Composite Slider Bearings	87
	Test Build No. 23 - Performance Mapping, Spiral Groove Seal	87
	Test Build No. 24 - Performance Mapping, Spiral Groove Seal	102
	Test Build No. 25 - Endurance Testing, Spiral Groove Seal	107
C	ONCLUSIONS AND RECOMMENDATIONS	125
R	EFERENCES	130

VOLUME II TABLE OF CONTENTS

Section		Page
	ABSTRACT	131
	SUMMARY	131
	CONCLUSIONS	131
	RECOMMENDATIONS	132
1.0	SEAL DESIGN	133
	1.1 WAFER SEAL DESIGN PROBLEMS	133
	1.2 PROPOSED DESIGN	137
	1.3 SHRINK RING DESIGN	139
	1.3.1 Parameters Related to Axial Forces	142
	1.3.2 Parameters Related to Radial Pressure Forces	149

VOLUME II TABLE OF CONTENTS (Concluded)

Section		Page
	1.3.3 Design Details	149
	1.3.4 Other Design Features	152
2.0	MANUFACTURING	156
3.0	STATIC LEAK TEST	157
4.0	DYNAMIC TESTING	168
	DISTRIBUTION	177

VOLUME I LIST OF ILLUSTRATIONS

Figure		Page
1.	Cross-Sectional View - Self-Acting Seal Assembly.	2
2.	Cross-Sectional View - Static Test Setup.	9
3.	Photo - Static Test Setup.	10
4.	Cross Section View - Dynamic Test Rig.	11
5.	Photo - Dynamic Test Rig.	12
6.	Gas Bearing Configuration Descriptions.	14
7a.	Gas Bearing Capacities - Cycle A.	16
7Ъ.	Gas Bearing Capacities - Cycle B.	17
8a.	Net Gas Axial Pressure Force Versus Seal Delta P.	18
8b.	Net Gas Axial Pressure Force Versus Seal Delta P (QUASQ, $k = 0.6$.	19
8c.	Net Axial Gas Pressure Force at 300 psid Versus Loss Coefficient.	20
9.	Seal Face Inertia Versus Shaft RPM.	21
10.	Secondary Seal Friction Drag Versus Seal Delta P.	22
11a.	Seal Dam Flow Rate Versus Clearance, $T = 100^{\circ} F$, $k = 0.6$.	25
11b.	Seal Dam Flow Rate Versus Clearance, $T = 550^{\circ}$ F, $k = 0.6$.	26
11c.	Seal Dam Flow Rate Versus Clearance, T = 1000° F, k = 0.6.	27
12a.	Seal Dam Flow Rate Versus Clearance, $T = 100^{\circ} F$, $k = 1.0$.	28
12b.	Seal Dam Flow Rate Versus Clearance, $T = 550^{\circ}$ F, $k = 1.0$.	29
12c.	Seal Dam Flow Rate Versus Clearance, $T = 1000^{\circ}$ F, $k = 1.0$.	30
13.	Composite Slider Face Contour, After Build 2.	37
14.	Photo - Seal and Race Assemblies, After Build 2.	39
15.	Photo - Piston Ring, After Build 2.	39
16.	Photo - Carbon Face, After Build 3.	43
17.	Carbon Face Measurements, After Build 3.	44
18.	Carbon Face Contour, After Build 4.	48
19.	Photo - O-Ring Secondary, After Build 5.	52
20.	Typical Face Pad Area, After Build 5.	52
21.	Carbon Face Measurements, After Build 7.	58

VOLUME I LIST OF ILLUSTRATIONS (Concluded)

Figure		Page
22.	Carbon Face Measurements, After Build 8.	63
23.	Photos - Seal Face and Race After Bearing Failure, Build 20.	73
24.	Failed Thrust Bearing, Build 20.	74
25.	Photos - Rig Hardware After Bearing Failure, Build 20.	75
26.	Photos - Stepped Pad Seal Assembly, Before Build 21.	80
27.	Photos - Seal Race Coating Spalls, After Build 21.	82
28.	Photos - Seal Race and Adapter, After Build 21.	83
29.	Photos - Carbon Wafer Face, After Build 21.	84
30.	Photos - Carbon Wafer Aft Face, After Build 21.	85
31.	Photos - Piston Ring Carrier, After Build 21.	86
32.	Photos - Seal Race, After Build 22.	93
33.	Photos - Piston Ring/Balance Diameter, After Build 22.	94
34.	Photos - Carbon Face/Bearings, After Build 22.	95
35.	Photos - Gas Bearings, After Build 22.	96
36.	Calculated Seal Dam Clearance, Build 23.	103
37.	Photo - Seal Assembly Before Spiral Groove Bearing Tests, Build 23.	104
38.	Photo - Carbon Face, After Build 23.	105
39.	Photos - Spiral Groove Gas Bearings, After Build 23.	106
40.	Photos - Seal and Race, After Build 24.	110
41.	Photo - Spiral Groove Seal Wafer, Before Build 25.	111
42.	Photo - Seal and Air Plenum, After Build 25.	118
43.	Photo - Shaft Face, After Build 25.	119
44.	Photo - Spiral Groove Bearing Race, After Build 25.	120
45.	Photo - Wafer Aft Face, After Build 25.	121
46.	Photo - Carrier Face, After Build 25.	122
47.	Photo - Seal Housing Balance Diameter, After Build 25.	123
48.	Photo - Carbon Piston Ring, After Build 25.	124
49.	Wafer Shrink Line Forces and Moments.	127
50.	Recommended Configuration.	129

VOLUME II

LIST OF ILLUSTRATIONS

<u>Figure</u>		Page
1.	Wafer Design.	134
2.	Composite Design.	135
3.	Axial Static Pressure Forces.	136
4.	Radial Static Pressure Forces.	138
5.	Block and Shoe Design.	138
6.	Spiral Groove Details.	139
7.	Two-Piece and Shrink Ring Designs.	140
8.	Analysis Results Showing Details of Fits.	143
9.	Thermally Generated Face Deflection.	143
10.	Axial Forces.	144
11.	Results of Seal Dam Analysis Using QUASC.	146
12.	Net Lift Versus Operating Clearance.	148
13.	NASA Face Seal Carrier Assembly.	150
14.	NASA Face Seal Race.	151
15.	Final Design Assembled in Static Test Fixture.	153
16.	Static Test Assembly.	158
17.	Schematic of Static Leak Check Setup.	159
18.	Photograph of Static Leak Check Setup.	160
19.	Test Assembly and Strain Gage Locations.	161
20.	Photograph of Carbon Carrier Showing Strain Gage Locations.	162
21.	Photograph of Race Showing Strain Gage Locations.	163
22.	Gas-to-Gas Seal - Static Leak Test Leakage Flow Versus Seal Delta P.	164
23.	Flowpaths of Observed Air Leakage.	165
24.	Local Twisting Versus Seal Delta P.	166
25.	Dynamic Test Setup.	169
26.	NASA Seal Carbon Dimensions - Pretest.	172
27.	NASA Seal Carbon Dimensions After 2.6 Hours Run Time.	172
28.	NASA Seal Race Surface After 2.6 Hours Run Time.	173
29.	NASA Seal Pretest Static Leakage.	174
30.	NASA Seal Performance Map.	175
31.	Leakage Mechanism.	176

VOLUME I LIST OF TABLES

<u>Table</u>		Page
1.1.	Static Leakage, Build 1, Composite Slider.	32
2.1.	Static Leakage, Build 2, Composite Slider.	33
2.2.	Dynamic Test Data, Build 2, Composite Slider.	34
3.1.	Dynamic Test Data, Build 3, Elastomer Secondary.	41
3.2.	Static Leakage, After Build 3, Dynamic Tests.	42
4.1.	Static Leakage, Before and After Build 4.	46
4.2.	Dynamic Test Data, Build 4.	47
5.1.	Dynamic Test Data, Build 5.	50
5.2.	Hardware Temperature from Build 5.	51
6.1.	Static Leakage, Build 6.	54
7.1.	Static Leakage, Build 7.	55
7.2.	Dynamic Test Data, Build 7.	56
8.1.	Dynamic Test Data, Build 8.	. 60
8.2.	Static Leakage, Build 8.	62
9.1.	Static Leakage, Builds 9 through 13.	64
14.1.	Static Leakage, Builds 14 through 19.	67
20.1.	Static Leakage, Build 20.	69
20.2.	Dynamic Test Data, Build 20, Composite Slider.	70
20.3.	Carbon Face Wear from Build 20.	76
21.1.	Dynamic Test Data from Build 21.	78
22.1.	Initial Static Test Data for Build 22.	88
22.2.	Dynamic Test Data, Build 22.	89
22.3.	Carbon Face Wear Data, After Build 22.	97
23.1.	Dynamic Test Data, Build 23.	99
23.2.	Dynamic Test Data, Build 23.	101
24.1.	Dynamic Test Data, Build 24.	108
25.1.	Dynamic Test Data, Build 25.	112

VOLUME I

Background

The initial design and procurement of seal hardware used in this program was done during the development cycle for a large military transport engine in the 1967 time period. The purpose was to serve as a backup for a labyrinth type compressor discharge balance piston seal in the event additional performance margin was required. Maximum design condition was the following:

Seal delta-P 350 PSI (241 N/sq cm)

Temperature, Air In 1000 degrees F (811° K)

Shaft Speed 9900 RPM (1037 rad/sec)

Pitch Line Velocity 392 Ft/Sec (119 m/sec)

A cross-section view of the seal and race assembly is shown on Figure 1. The carbon seal face wafer, item 9, procured initially for the military program, contained shrouded composite slider gas bearings in the carbon face. This seal was rig tested for 4 hours 58 minutes with maximum conditions of 280 psid (193 N/sq cm) at 785F (691K) and 140 psid (96.5 N/sq cm) at 1003F (812K) with shaft speed at 9900 RPM. Seal performance was good with negligible wear. Subsequent planned testing was dropped at this point because engine testing did not demonstrate need for additional performance improvement. Some months later (late 1968) an additional short test was performed to determine if the seal could operate at higher shaft speed and lower pressure. Test duration was 5 hours 45 minutes, including 3 hours at 15,100 RPM (600 Ft/Sec or 182.9 m/sec pitch line velocity). Maximum pressures and temperatures at this speed were 90 psid at 635F (62 N/sq cm at 603K) and 50 psid at 820F (34.5 N/sq cm at 711K).

Although all the above testing demonstrated the potential of the seal for use as an energy conserving device in gas turbine engines, no additional development funding was obtained until 1976 at which time the NASA Lewis Research Center, recognizing the potential of this seal type and the need for energy conservation, initiated funding to proceed on the development program summarized in this report.

Description

- Hydrodynamic Air Bearing
- Honeycomb Seal
- Labyrinth Seal
- Race
- Wave Spring
- Lock Rivet
- Rotation Lock
- Seal Dam
- 9 Carbon Wafer
- 10 Piston Ring Carrier
- 11 Piston Ring
- 2 Heat Shield
- 13 Race Holder (Adapter to Shaft)
- 14 Balance Diameter
- 15 Bolt
- 16 Rotation Lock
- 17 Coil Springs
- 18 Seal Housing
- 19 Splines
- 20 Shrink Ring
- 21 Assembly Lock

Figure 1. Assembly, Hydrodynamic Face Seal.

Seal Hardware Description

The following is a brief description of hardware comprising the seal and race assembly (reference Figure 1):

Item 3 - Piston Ring Secondary Seal

Three piston ring types were tested. The initial design was of Inconel 718 material with an open end gap, no wear pads and with aluminum oxide coating on the transverse sealing face. A narrow land on the piston ring outside diameter forms a gas seal at the seal pressure balance diameter which is located in the bore of the housing, Item 6. The balance diameter is also coated with aluminum oxide. The face of the piston ring seals against a narrow land projecting from the face of the ring gland located in the piston ring carrier, Item 4. The second design was the same as above except that it contained vented wear pads on its outside diameter. The third design was manufactured from a high temperature seal carbon material grade, with a single overlapping tongue and socket (sealed) end gap, and vented wear pads on both the outside diameter and transverse face of the ring. The narrow axially projecting land on the face of the gland was removed so that the ring contacted a flat transverse surface in the ring carrier gland.

<u>Item 4 - Piston Ring Carrier</u>

This part contains the gland to carry the piston ring secondary seal and transmits the axial seal closing force from the coil springs, Item 7, and balance piston pressure to the carbon face wafer assembly, Item 9. The thin Sheet in the bore is a welded in heat shield. Parent metal is Inconel 718. The face bearing against the left side transverse face of the carbon wafer is coated with aluminum oxide.

Item 6 - Seal Housing

Material of this part is Inconel 718. The seal balance diameter is at the bore of this part and is coated with aluminum oxide to provide a non-galling radial seat for the piston ring. The housing contains three equally spaced female radial splines held in close true position location with respect to the balance diameter. Three male splines on the seal carbon wafer assembly, Item 9, engage the female splines in the seal housing. The wafer splines are held in close true position tolerance to the carbon face sealing dam. The purpose of this method of engagement is to maintain close concentricity between the seal face dam in the carbon wafer and the balance diameter of the seal housing.

A honeycomb stationary labyrinth seal seat is located on the inner diameter of the housing sleeve to the right of the assembly retention pins, Item 8.

Item 7 - Coil Springs

Coil spring material is Inconel X750. The springs provide force to seat the piston ring carrier, Item 4, against the carbon wafer and the carbon wafer against the face of the seal race, Item 10.

Item 9 - Seal Carbon Wafer Assembly

This assembly consists of a high temperature seal carbon material shrunk inside the bore of an Inconel 718 shrink ring. The female splines (refer to Item 6, above) on the original hardware were Inconel 718 material. For this program, inserts of a high temperature carbon material were fitted by rework on original hardware and were used in all subsequent hardware to provide a better wear surface.

The face of the carbon wafer contains the primary sealing dam and self-acting hydrodynamic gas bearing pads in the high pressure region outboard of the sealing dam. Wafers were tested with and without the vented wear pads located inboard of the face sealing dam. The radial width of the sealing dam was .045 inch (.1143 cm), and its radial location with respect to the balance diameter on the seal housing, Item 6, is selected to balance the axial pressure force acting to close the seal face against the face of the race to the required magnitude. The wafer is also pressure seated against the

transverse face of the piston ring carrier, Item 4, by the location of a sealing land of approximately .06 inch (.1524 cm) radial width projecting from the left side face of the carbon wafer.

Item 10 - Rotating Seal Race

Race material is Inconel 718. The face mating with the seal carbon wafer is coated with aluminum oxide. The race is seated axially against the shoulder of the shaft adapter, Item 15, by pressure and spring force. Three anti-rotation pins, Item 14, fixed in the shaft adapter and engaging slots in the bore of the race prevent the race from rotating with respect to the adapter.

Item 12 - Wave Spring

A wave spring of Inconel 718 material provides an axial force to seat the race, Item 10, axially against the shoulder of the shaft adapter, Item 15, while operating at very low pressure conditions.

Item 11 - Rotating Labyrinth Seal

Material of the rotating labyrinth seal is Inconel 718. The labyrinth is a safety feature added to restrict the loss of high pressure air in the event of a gross failure of the self-acting face seal. Pressure drop across the labyrinth seal is negligible at any normal flow rate experienced with the self-acting seal. Static radial clearance is large (approximately .02 inch or .0508 cm) to preclude generation of rub debris which might otherwise enter and damage the seal face.

Summary

Analytical and experimental evaluations were conducted on inward flow self-acting gas-to-gas face seals utilizing the following gas bearing configurations to generate load carrying capacity at the interface of the stationary seals and the rotating seal races:

	Gas Bearing Configuration	Gas Bearing Location
1	Shrouded Taper	Stationary Carbon Face
2	Shrouded Step	Stationary Carbon Face
3	Spiral Groove	Rotating Race Face

Seals utilizing the above three (3) gas bearing configurations were tested at the following concurrent maximum operating conditions:

Seal Upstream Air Pressure	315 psia (217.2 N/sq cm)
Seal Downstream Air Pressure	1 atmosphere (abs.)
Seal Upstream Air Temperature	1000 degrees F (811K)
Seal Face Pitch Line Velocity	429 ft/sec (131 m/s)
Seal Race Angular Velocity	1100 rad/sec (at 10,500 RPM)

All configurations demonstrated the capability of operating successfully throughout the operating test range while restricting air leakage flow rates to between one-twentieth and one-quarter of the rates expected for a "best configuration" labyrinth air seal. Design problems, involving primarily the capability for maintaining control of geometry, were identified. A design configuration having the potential for substantially improving geometric stability and further reducing air leakage flow rates was identified and is described in Volume II of this report.

Introduction

Performance of jet engines is affected by efficiency of the air seals used to restrict air leakage flow rates at gaps between stationary and rotating engine components, particularly in the area of the primary (high pressure) gas flow path. Historically, these inner air seals have been axial flow labyrinth configurations which throttle the gas through a series of annular constrictions formed by labyrinth "knives" operating with a

premachined radial clearance between the tips of the rotating knife edges and the bore of a stationary cylindrical sleeve. On a new installation, radial clearance will be in the range of .0005 to .001 times the diameter. During operation this clearance is affected by differential thermal expansion, centrifugal and pressure strains, rotor dynamics, hardware vibration, material wear and erosion, etc. Because of the extreme range of peripheral velocities, gas temperature, pressure, etc., and the variation of these parameters with time response and random duty cycles, it is very difficult to control operating clearances on new engine installations and even more difficult to prevent deterioration of sealing performance with engine service time.

Some percentage of the labyrinth seal leakage flow can be used to cool engine components. The practice of using compressor discharge labyrinth seal leakage flow for this purpose, however, is usually not energy efficient since the magnitude of the flow is generally in excess of that required. A more efficient solution would be to use bleed air from a lower stage of compression with cooler air and less loss of cycle energy. Other potential applications such as geared fans or turboprops may require large diameter high pressure balance piston seals to react the net system rotor thrust pressure forces. Labyrinth seals used for these applications are inherently inefficient.

Gas film technology seals have the potential to recoup 50 to 95% of this wasted leakage flow. Self-acting hydrodynamic face seals have repeatedly demonstrated successful operation with a controlled leakage flow clearance in the magnitude of .0003 to .001 inch (.0008 to .0025 cm) over a range of engine operating parameters with resulting leakage rates 75 to 90 percent lower than attainable with labyrinth seals. The purpose of this program was to add impetus to the continuing development of these types of energy conservative sealing devices with the view towards eventual introduction into engine installations.

The configuration of the self-acting seals tested is shown on Figure 1. Testing was conducted using three (3) types of self-acting gas bearings.

Shrouded composite slider bearings and shrouded (Rayleigh) stepped bearings, both of which were machined into the stationary seal carbon faces, were tested. The third configuration tested incorporated inward flow spiral groove gas bearings in the hard facing of the rotating seal race.

Test Equipment

Static Fixture

A bench fixture in which static air leakage rates can be determined for the test seal and race assembly is shown on Figures 2 and 3. The fixture is configured for rapid assembly/disassembly when compared to the dynamic test rig and is used to screen parasitic leakage flow rates prior to assembly in the dynamic rig, to isolate sources of air leakage through the seal assembly and as a vehicle in which to measure pressure induced strain in components of the seal assembly.

Air leakage and flow rate measurements are taken with the same instruments used on the dynamic test rig to minimize error between static and dynamic test set-ups.

Dynamic Test Facility

The rig in which dynamic seal testing is conducted is shown on Figures 4 and 5. It is a two bearing, stiff shaft machine driven by a 40 horsepower variable speed eddy-current motor coupling through a flat belt on crowned pulleys. Both rig shaft bearings are oil jet cooled and lubricated. The forward bearing (test end of shaft) is a ball thrust bearing which must support an axial thrust force of 18,000 pounds (8165 kg) when the seal is operating at maximum test pressure. The aft bearing (drive end of shaft) is also a ball bearing which is preloaded axially by a 200 pound (91 kg) spring force. Buffer pressure introduced between tandem sets of circumferentially

Figure 2. Cross-section View - Static Test Set-up.

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

ORIGINAL PAGE IS OF POOR QUALITY

segmented carbon bore rubbing seal elements contain the bearing lubrication at both ends of the shaft. The forward tandem carbon seal also prevents hot test leakage air ingestion into the bearing lube compartment.

A thermally insulated hat-piece forms the high pressure plenum upstream of the test seal and contains six (6) banks of "pancake" shaped electrical resistance type air heaters to control seal air upstream temperature. Each bank is rated at 4050 watts for a total capacity of 24.3 kw.

High pressure air is delivered to the seal from a Gardner-Denver two-stage piston type air compressor rated for 500 psig (138 N/sq cm) maximum pressure and capable of delivering a maximum flow rate of approximately 56 SCFM (.038 kg/sec) of air at 200 psig (138 N/sq cm).

Seal air inlet flow rate is metered through a steel tube rotometer mounted in the high pressure piping in close proximity to the high pressure plenum hat-piece cover plate. The rotometer scale is 100 scfm (.0578 kg/sec), maximum, at one atmosphere of pressure. Rotometer inlet air temperature and pressure are measured and used to determine the corrections for flow rate at actual inlet conditions.

Seal upstream air pressure is measured by a 0 to 500 psig (345 N/sq cm) Heise gage.

Seal air inlet temperature is measured by two (2) thermocouples located in the high pressure plenum. One thermocouple is located within 0.5 inch (1.3 cm) of the test seal in the seal air inlet flowpath. The second is located approximately 2 inches (5 cm) radially outward and 90 degrees circumferentially from the first.

Seal Dynamic Analysis

Gas Film Forces

An analysis was made of each of the three self-acting gas bearing seal configurations (see Figure 6) to determine the theoretical gas film clearance

Located in Carbon Face	
Bearing Radial Width	.29 inch
Bearing Step Length	1.048 inches
Bearing Total Length	1.563 inches
Rail Radial Width	.025 inch
Step Depth	.0007 inch
Number of Bearings	18

Figure 6a. Stepped Pad Geometry.

Located in Carbon Face	
Bearing Radial Width	. 29
Bearing Taper Length	1.386 inches
Bearing Total Length	1.512 inches
Rail Radial Width	.03 inch
Bearing Taper Depth	.009 inch
Number of Bearings	18

Figure 6b. Composite Slider Geometry.

Located in Face of Race	
Carbon Pad Radial Width	0.29 inch
Arc Radius	4.97 inches
Arc Center Distance	1.99 inches
Number of Grooves	90
Groove to Land Ratio	.69
Groove Depth	.0007 inch
End Land Radial Width	.05 inch

14

Figure 6c. Spiral Groove Geometry.

generated at the interface of the stationary seal and rotating race and to determine theoretical air leakage rates. Gas bearing load capacities and forces reacted by the gas bearings were calculated for the following two (2) cycles:

		Pressure**		Air Temp			Speed		
<u>Cycle</u>	<u>Point</u>	Psig	N/sq cm	F	<u>K</u>	RPM	ft/sec*	m/sec*	
A	1	9	6.2	260	400	1181	48.2	14.7	
A	2	202	139.3	940	777	7935	323.9	98.7	
A	3	125	86.2	820	711	7480	305.3	93.1	
В	1	23	15.9	600	589	6000	244.9	74.6	
В	2	290	199.9	950	783	10500	428.6	130.6	
В	3	270	186.2	950	783	9300	379.6	115.7	

*At mean diameter of gas bearing, 9.355 inches (23.762 cm).

**Pressure downstream of the seal is equal to one (1) atmosphere.

Points A1, A2 and A3 are representative of ground idle, take-off and cruise conditions for a low pressure turbine thrust balance seal for a geared fan engine. Points B1, B2 and B3 are representative of a reduced temperature cycle for a core rotor compressor discharge seal in a large commercial fan engine.

Calculated hydrodynamic forces generated in the gas bearings are shown in Figures 7a and 7b, for Cycles A and B, respectively, for the composite slider, stepped pad and spiral groove configurations. Gas bearing dimensions are shown on Figure 6a, 6b and 6c for the three configurations tested. Bearing load capacity is based on the assumption of perfect geometry and parallelism at the transverse interface of the gas film.

Forces plotted on Figures 7a and 7b, 8a, 8b and 8c, 9 and 10 are total forces divided by the circumference of the seal balance diameter (force per inch of circumference).

The minimum, nominal and maximum net axial pressure closing forces
(Figure 8a) are relative to drawing dimensional tolerances. Calculated forces
for Figure 8a are based on the assumption that pressure distribution is a

Figure 7a. Gas Bearing Capacity - Cycle A.

Figure 7b. Gas Bearing Capacity - Cycle B.

Figure 8a. Net Axial Gas Pressure Closing Force Versus Seal/ ΔP .

Figure 8b. Net Axial Gas Pressure Force vs. Seal ΔP (QUASQ, k = .6).

Figure 8c. Net Axial Gas Pressure Force @ 300 psid vs. Loss Coefficient.

Figure 9. Inertia of Seal Face Assembly Versus Shaft RPM.

Figure 10. Piston Ring Sliding Friction Force Versus Seal AP.

function of viscous flow with friction, only. It is also assumed that the gas flow velocity is low enough to neglect dynamic losses at the entrance and exit of the seal face dam. Forces shown on Figure 8b are calculated via computer program QUASQ (Reference 1) with loss coefficient equal to 0.6, and with all dimensions at drawing nominal. Data shown on Figure 8c are for a high pressure condition (300 psig/206.84 N/sq cm) and compare seal pressure closing forces with loss coefficients at 0.6 an 1.0. Comparing results of Figures 8a, b, and c imply the significance of including dynamic losses and of knowing the loss coefficient relative to gas film clearance, leakage flow rate and sealing forces.

Angular misalignment of the rotating seal race with respect to perpendicularity with the center axis of the rotating shaft will generate a circumferential variation in gas film clearance and hydrodynamic force. This variation is a result of mass inertia and friction in the stationary seal face assembly. Inertia is proportional to mass and magnitude of misalignment. Figure 9 shows the inertia of the test seal face assembly if total misalignment results in one-per-revolution axial motion of 0.0015 inch (.00381 cm). Friction force is generated as the piston ring secondary gas seal and the rotation lock of the stationary seal assembly slide axially against their relative mating surfaces in response to seal race misalignment or other causes of relative axial motion. Friction force is shown on Figure 10 for the piston ring secondary seal with an assumed constant coefficient of friction equal to 0.15. Rotation lock friction force is negligible when the seal operates with a gas film at the seal to race interface. At 10,000 RPM the air shear gradient in the interface film generates a torque less than 7 in-lbs (8.07 kg-cm) with clearance as low as 0.00015 inch (0.00038 cm), or approximately 0.008 pounds/inch (1.43 gms/cm) of circumference friction force for an assumed rubbing coefficient of friction equal to 0.15 at the rotation lock interfaces.

Seal Air Flow Rates

Computer program QUASQ (Reference 1) was used to determine theoretical flow rates through the clearance at the interface of the seal face dam and the

rotating seal race. Results are shown for three air temperatures with loss coefficient equal to 0.6 (Figure 11) and 1.0 (Figure 12). Parallel face film clearance and air leakage flow rates projected to maximum condition (Cycle B-2) are approximately the following:

Loss	Bearing	Clearance		Air Flow Rate		
<u>Coefficient</u>	Configuration	Inches	<u>cm</u>	SCFM	<u>lbs/sec</u>	kg/sec
0.6	Comp. Slider	.00031	.00079	9.0	.0115	.0052
1.0	Comp. Slider	.00054	.00137	31.0	.0395	.0179
0.6	Stepped Pad	.00042	.00107	16.5	.0210	.0096
1.0	Stepped Pad	.00063	.00160	40.2	.0512	.0232
0.6	Spiral Groove	.00046	.00117	19.5	.0249	.0113
1.0	Spiral Groove	.00069	.00175	46.4	.0592	.0269

Air leakage rates through the secondary piston ring seal are not included in the above and are assumed to be negligible in comparison to seal face flow rates. Those piston rings tested with open end gaps would have a maximum gap flow clearance area of approximately .00066 sq in (.0043 sq cm) resulting in theoretical leakage rates of approximately 3.1 scfm (.0018 kg/sec) at 300 psid (207 N/sq cm) and 70 deg F (294 deg K) and 1.9 scfm (.0011 kg/sec) at 1000 deg F (811 deg K) using orifice flow equations as a basis for calculations.

Test Results and Discussion

Summary

Twenty-five (25) recorded assemblies were made in the dynamic test rig (Figure 4) in an effort to complete the specified tests. Static testing only was completed in thirteen (13) of these builds primarily because of efforts to the determine a source(s) for higher than expected air leakage rates. Two hundred fifty-four (254) hours, twenty-nine (29) minutes of dynamic testing were completed as a result of the other twelve (12) builds on three gas bearing seal configurations as follows:

Configuration	Build Number	Test Time Hrs:Min	
Shrouded Composite Slider	2, 3, 4, 7, 20, 22	119:33	
NASA Shrouded Step Pad	5, 8, 21	15: 8	
NASA Spiral Groove	23, 24, 25	119:48	

Figure 11a. Seal Dam Flow Rate vs. Clearance, T = 100F, k = .6.

Figure 11b. Seal Dam Flow Rate vs. Clearance, T = 550F, k = .6.

Figure 11c. Seal Dam Flow Rate vs. Clearance, T = 1000F, k = .6.

Figure 12a. Seal Dam Flow Rate vs. Clearance, T = 100F, k = 1.0.

Figure 12b. Seal Dam Flow Rate vs. Clearance, T = 550F, k = 1.0.

Figure 12c. Seal Dam Flow Rate vs. Clearance, T = 1000F, k = 1.0.

Several other builds were made in the static test fixture (Figures 2 and 3), also in efforts to isolate leakage sources.

A build-by-build summary of static and dynamic testing conducted in the dynamic rig is as follows:

Test Build No. 1 - Static Test of Composite Slider Seal Assembly

Shrouded composite slide wafer Serial Number (SN) 4 in seal housing SN 4 with 10.44 pounds (4.74 kg) spring force closing the seal face axially against the face of the seal race was static tested in the dynamic test rig to determine air leakage rates as a function of pressure drop. Data (Table 1.1) showed abnormally high leak rates, reaching 68.79 scfm (0.04 kg/sec) at 225 psid (155 N/sq cm). The cause was traced to the metal piston ring outside diameter sealing land. Per drawing, the land projects .002-.006 inch (.0051-.0152 cm) above the outside diameter of the main cross-section of the ring. Portions of the land, however, were flush with the outside diameter of the main section of the ring. This condition severely unbalances the radial pressure forces and results in "hanging" of the ring 0.D. on the seal balance diameter with leakage occurring through the forced separation at the transverse interface of the ring and gland.

Test Build No. 2 - Static and Dynamic Test of Composite Slider Seal

A new piston ring was installed in place of the discrepant part from Build No. 1. Static air leakage rates (Table 2.1) were approximately 60 percent less than measured in Build No. 1. Although greatly reduced, the rates were still approximately 5 to 10 times higher than expected, implying the possibility of other geometric discrepancies. The second column on this table shows small changes in leak rates induced by vibrating the rig (striking the hat piece air plenum cover with a lead mallet), implying that friction at sealing interfaces was affecting leakage rates, but not significantly.

Dynamic tests were subsequently run to map leakage performance and to determine temperature rise in the seal carbon face wafer. Results are shown on Table 2.2.

TABLE 1.1

STATIC TEST
(Build 1)

Se	al ΔP	S	eal Air Flow	٧
psi	N/cm ²	kg/sec	SCFM	<u>lb/sec</u>
50	34.5	.0097	16.78	.0214
75	51.7	.0129	22.36	.0285
100	68.9	.0179	30.86	.0393
126	86.9	.0216	37.26	.0475
161	111.0	.0281	48.54	.0619
200	137.9	.0355	61.29	.0781
225	155.1	.0398	68.79	.0877

TABLE 2.1

STATIC TEST
(Build 2)

Sea]	AD	9 0	al Air Fl	OW		Vibrate R al Air Fl	
N/cm ²	psid	kg/sec	SCFM	<u>lb/sec</u>	kg/sec	SCFM	1b/sec
11.9	25	.0014	2.47	.0031	.0009	1.64	.0021
34.5	50	.0024	4.20	.0054	.0024	4.20	.0054
51.7	75	.0043	7.41	.0094	.0036	6.18	.0079
68.9	100	.0065	11.17	.0142	.0065	11.17	.0142
86.2	125	.0089	15.41	.0196	.0071	12.33	.0157
103.4	150	.0107	18.41	.0235	.0097	16.74	.0213
120.7	175	.0124	21.55	.0275	.0104	17.96	.0229
137.9	200	.0111	19.10	.0244	.0132	22.93	.0292
158.6	230	-	-	-	.0118	20.40	.0260
160.0	232	.0130	22.53	.0287	-	-	-
103.4	150	.0078	13.39	.0171	.0078	13.39	.0171
68.9	100	.0049	8.38	.0107	.0057	9.78	.0125
34.5	50	.0018	3.15	.0040	.0018	3.15	.0040

^{*}New Piston Ring Secondary Seal Installed

TABLE 2.2

BUILD 2 PERFORMANCE TESTING (Sheet 1 of 2)

% of	Labyrinth Flow		ı	1	4.04	7.72	10.46	12.30	14.21	14.33	10.34	11.76	10.76	11.59	11.42	13.32	13.70	3.77	6.05	ı	6.29	11.94	14.18	18.24	21.67	24.18	26.50	22.96	22.98
	ate kg/sec		ı	i	.0029	.0088	.0164	.0233	.0342	.0405	.0030	.0082	.0118	.0172	.0213	.0299	.0359	.0049	.0162	i	.0015	0000.	.0082	.0170	.0276	.0388	.0465	.0405	.0448
	Air Flow Rate		i	ı	.0065	.0195	.0361	.0514	.0754	.0894	.0067	.0182	.0260	.0380	.0471	0990:	.0792	.0107	.0358	ı	.0033	.0156	.0181	.0374	6090.	.0856	.1026	.0894	0660.
	Ai		ı	1	5.08	15.30	28.32	40.29	59.12	70.07	5.24	14.23	20.41	29.82	36.93	51.73	62.07	8.42	28.03	ł	2.62	12.19	14.22	29.34	47.71	67.15	80.42	70.12	77.60
noc	T/C #16																		186 359							401 478			-
Carbon	T/C #15		i							102 312																399 477			
Air	T/C #6		i																178 354							392 473			
Seal	T/C #5	*	ı						_	60 8 96		_	_			_	_	_	_	ı	0	357 454	00	_	2	385 469	က	0	4
	Shaft RPM		0/5150	5150	5150	5150	5150	5150	5150	5150	10300	10300	10300	10300	10300	10300	10300	0	0	5150	5150	5150	5150	5150	5150	5150	5150	10300	10300
Sealed Air	Pressure		.7	.7	3.2	5.6	8.1	11.0	13.0	15.5	.7	3.2	5.6	8.1	11.0	13.0	15.5	7.0	15.5	.7	.7	3,2	3.2	5.6	8.1	11.0	11.5	11.8	13.0
Seal	Pre		10	10	45	80	115	150	185	220	10	45	80	115	150	185	220	100	220	10	10	45	45	80	115	150	164	167	185
Test	Time Hrs Min		0	S	6	12	15	17	20	22	27	30	32	33	34	37	39	45	48	52	1 8	1 12	1 28	1 39	2 7	2 18	2 23	2 27	2 54

TABLE 2.2 (Concluded)

BUILD 2 PERFORMANCE TESTING (Sheet 2 of 2)

% of	Labyrinth	Flow	21.90	20.92	17.50	14.10	15.72	7.26	11.67	21.98	28.13			
	ate	kg/sec	.0349	.0267	.0162	.0082	.0038	.0015	.0059	.0177	.0310			
	Air Flow Rate	1b/sec	.0771	.0590	.0358	.0182	.0084	.0033	.0130	.0391	.0685			
	Ai	SCFM	60.43	46.22	28.06	14.23	6.55	2.62	10.16	30.62	53.72			
	#16	*	503	490	464	967	865	544	665	641	940			
noc	T/C #16	E-	446	422	430	434	437	520	738	695	693	ık	ure	
Carbon	/C #15	×۱	501	487	491	493	492	537	629	989	637	Lost Power to Air Heater Ban	Cannot Maintain Air Temperature	
	I/C	E.							726	989	688	. Heat	lir Te	
	9#	*				470			635	624	621	to Air	tain 1	
Air	9# 2/I	E	401	372	383	386	390	989	683	663	629	Power	t Main	Оомп
Seal Air	: #5	%							626		614	Lost	Canno	Shut Down
	I/C	E.	398	370	380	383	386	929	667	645	646			
	Shaft	RPM	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	2000	2000/0
ed Air	ssure	psid kg/cm ²	11.0	8.1	5.6	3.2	.7	.7	3.2	5.6	8.1	11.0	.7	.7
Seal	Pre	psid	150	115	80	45	10	10	45	80	115	150	10	10
st	ne		9											
Te	Tiı	Hrs	က	က	က	က	ო	က	ო	က	4	4	4	2

*"Best" configuration labyrinth of equivalent diameter, six slanted, stepped teeth against 1/16 honeycomb seat, operating at .008 inch radial clearance with no seat grooving opposite the labyrinth teeth, (WVI)/(P_1 A) = .28.

of the labyrinth seal clearance (see Figure 1). Circumferential locations are 12 o'clock and 3 o'clock (in I/C = thermocouple, I/C #5 and 6 measure seal air inlet temperature approximately 0.5 to 1.0 inch upstream the direction of shaft rotation). I/C #15 and 16 are embedded in the seal carbon wafer .16 inch from the sealing face (axially) and .20 inch deep from the carbon bore (radially). Note:

The last column of Table 2.2 compares the test seal leakage with leakage rates through a "best configuration" labyrinth seal of the same diameter operating under the same conditions. Although test seal leakage is considered excessive, it is important to note that the flow rates are, in the worst case, approximately seventy—two (72) percent lower than the comparable "best configuration" labyrinth seal (see Table 2.2 for labyrinth seal description).

Carbon temperature rise relative to pressurizing air temperature showed very little change with air inlet temperatures when seal delta-P was greater than approximately 10 psi (6.9 N/sq cm). At 10 psid, with very low seal air leakage rates and immediately following a temperature transient (Table 2.2, 1 hour 8 minute point and 3 hour 57 minute point), carbon temperature is substantially lower than air inlet. Carbon temperature rise does show the effect of surface rubbing velocity, as shown in the following summary:

			Ave	erage T	emperat	ure	•	rbon-A nperati	•
Shaft	Seal 1	Delta-P	A	ir	Car	bon	De	egrees	F
RPM	PSIG	N/sq cm	F	C	F	<u>C</u>	Min	Avg	Max
5150	10-220	7–152	92	33	100	38	7	9	12
5150	45-164	31-113	379	193	385	196	- 8	6	22
10300	10-220	7-152	152	67	198	92	33	46	55
10300	10-185	7-128	386	197	431	222	41	45	49
10300	45-150	31-103	661	349	704	374	37	44	43

Inspection following test showed average carbon face contour as shown on Figure 13. The source of this generated contour was not known at this point. If, however, it were a result of thermal section roll of the carbon face wafer assembly, generated by relative axial displacement of the centers of stiffness of the carbon and steel members of the assembly, it would be a source of increased air leakage rate past the seal face dam. Photos of the seal and race following test are shown on Figure 14.

Also observed was absence of piston ring outside diameter sealing land radial heighth adjacent to both ends of the piston ring end gap (Figure 15). Inspection of a second unused piston ring showed the same discrepancy, implying a manufacturing problem as opposed to a dynamic wear problem.

Figure 13. Composite Slider Face Contour, After Build 2.

ORIGINAL PAGE IS OF POOR QUALITY

SEAL ASSEMBLY

Figure 14. Seal and Race Assemblies, After Build 2.

ORIGINAL PAGE IS OF POOR QUALITY

PISTON RING AFTER R/W AFTER BUILD 2

Figure 15. Piston Ring, After Build 2.

Test Build No. 3 - Static and Dynamic Test with Elastomer Secondary Seal

For this testing the seal face spring closing force was increased from 10.44 pounds (4.55 kg) to 17.4 pounds (7.58 kg), and an elastomeric O-ring was fitted at the secondary seal position in place of the discrepant metal piston ring. The purpose for these changes was to identify the contribution of the discrepant piston ring and/or mass inertia to excessive air leakage rates. Static test results in the dynamic rig prior to dynamic testing showed essentially zero air leakage rates throughout the test pressure range to 225 psid (155 N/sq cm). Dynamic air leakage at 115 psid (79 N/sq cm), 10,300 RPM and air inlet temperatures from 170 to 600 degrees F (77 to 316 degrees C) are shown on Table 3.1. These leakage rates are approximately 75 percent lower than experienced with the piston ring. Static leakage rates following test (Table 3.2) show a slightly erratic pattern but generally are near zero at 115 psig dynamic test pressure.

Figure 16 shows a typical area of the carbon face following test.

Figure 17 shows the measured contour of the seal carbon face following Build 3 and wear measurements of the carbon face for the total of dynamic testing accumulated to date. Note that the contour has changed from approximately .000330 inch (.000838 cm) low toward the outside radius to .000100 inch (.000254 cm) high at the outside following Build 3. This represents a total contour change of approximately .00043 inch (.00109 cm) while measured wear in this area is only .00011 inch (.00028 cm). This may imply an instability in the shrink-line of the face wafer assembly, resulting from the difference in thermal expansion rates between the carbon and steel materials comprising the assembly, combined with the relatively low modulus of elasticity of the carbon material. For example, at an operating temperature of 600 degrees F the steel will expand axially approximately .0015 inch (.0038 cm) more than the carbon which may cause the carbon to be stretched and compressed axially in the vicinity of the shrink line while responding to thermal changes.

Test Build No. 4 - Static and Dynamic Test with Elastomer Secondary Seal

Transverse faces of the test adapters between the seal race and shaft were inspected and machined as necessary to assure low total axial runout

TABLE 3.1

BUILD 3 PERFORMANCE TESTING (0-RING SECONDARY)

			Remarks																				-				
	¾ of	Labyrinth	Flow*	ı	≈ 1. 00	3.53	9.76	6.14	3.71	2.48	3.75	3.80	3.83	4.56	5.32	5.43	5.51	6.28	2.67	5.82	6.62	69.9	6.03	6.85	19.11	14.17	15.13
Nataka		Rate	kg/sec	ŧ	0≂	.0052	.0138	9800.	.0052	.0034	.0052	.0052	.0052	0900.	6900.	6900.	6900.	8/00.	6900.	6900.	8/00.	.0078	6900.	8.00.	.0233	.0181	.0198
		r Flow I	1 lb/sec kg/	ı	<u>د</u> 0	.0114	.0304	.0190	.0114	9200.	.0114	.0114	.0114	.0133	.0151	.0151	.0151	1710.	.0151	.0151	.0171	.0171	.0151	.0171	.0513	.0399	.0437
		Ai	SCFM	ı	0≈	8.95	23.85	14.91	8.95	5.96	8.95	8.95	8.95	10.44	11.93	11.93	11.93	13.42	11.93	11.93	13.42	13.42	11.93	13.42	40.25	31.31	34.29
	Air	T/C #6	F K	1	1		223 379																				-
	Seal Air	T/C #5	F K	1	1	170 350	217 376																				
		Shaft	RPH	0	5150	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
	Sealed Air	Pressure	kg/cm ²	7.0	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1	8.1
	Seal	Pre	psid	100	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115
	Test	Time	Hrs Min	0	က	10	18	20	22	24	32	38	44	54	1 3	1 9	1 16	1 24	1 31	1 39	1 44	1 49	1 54	2 1	2 7	2 20	3 1

TABLE 3.2

STATIC TEST (Buil'd 3)

Seal AP Air Temp Seal Air Flow °C 1b/sec Remarks N/cm² psid °F_ kg/sec <u>SCFM</u> 0 Before Dynamic Test 0 0 69 100 RT Before Dynamic Test 225 RT * 155 After Dynamic Test 7 10 100 38 After Dynamic Test 20 100 38 14 After Dynamic Test 21 30 100 38 After Dynamic Test 40 100 38 28 After Dynamic Test 50 100 38 35 After Dynamic Test 100 60 38 41 After Dynamic Test 70 100 38 48 After Dynamic Test 80 100 38 55 After Dynamic Test 62 90 100 38 After Dynamic Test 69 100 100 38 After Dynamic Test 100 38 76 110 After Dynamic Test 120 100 38 83 After Dynamic Test 90 130 100 38 _ .0038 6.51** .0083 After Dynamic Test 140 100 38 97 After Dynamic Test .0085 100 .0039 6.71 103 150 38 After Dynamic Test 6.91 .0088 110 160 100 38 .0040 After Dynamic Test 117 170 100 38 .0062 10.66 .0136 After Dynamic Test 180 100 38 .0063 10.95 .0139 124 11.22 .0143 After Dynamic Test .0065 190 100 38 131 After Dynamic Test 11.49 .0146 200 100 38 .0066 138 After Dynamic Test .0068 11.76 .0150 145 210 100 38 After Dynamic Test 225 100 38 .0070 12.14 .0155 155

^{*}Too low to read on rotometer.

^{**}Readings are below calibrated scale on rotometer. All readings are visually extrapolated.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 16. Carbon Face, After Build 3.

Figure 17. Carbon Face Measurements, After Build 3.

[<.001 inch (.00254 cm)] of the face of the seal race. Bench measurements also showed that excessive radial pilot interference at the seal housing interface to the dynamic rig adapter flange, and rig flange out-of-flatness, was forcing a .004 inch (.01 cm) reduction in the size of the seal balance diameter. This condition, which would affect an additional pneumatic closing force on the seal equal to 6.44 lbs (2.92 kg) at 115 psid (79.3 N/sq cm), was corrected by reworking the rig adapter flange.

The axial spring closing force in the seal assembly was reduced from 17.44 lbs (Build 3) to the design force of 10.44 lbs. Static testing was conducted to determine seal air leakage rates.

Static leakage rates as measured before and after dynamic testing are shown on Table 4.1. Comparing dynamic leakage rates from this test (Table 4.2) to the previous test (Table 3.1), where the sum of spring and gas pressure closing force was approximately 13.4 lbs (6.08 kg) greater, shows no significant change. Results may imply that seal inertia in conjunction with reasonably low race face runout does not contribute significantly to increases in seal air leakage rates; however, no conclusion with respect to operating with a piston ring secondary seal should be drawn due to the possible damping affect of the elastomer O-ring used in this test.

Figure 18 shows the measured contour of the seal carbon face following dynamic test. Comparing the contour to that shown in Figure 17 shows little change. This may imply that the wafer assembly has stabilized significantly after completion of the first thermal cycle (see Build 3). Air leakage during this test was approximately five (5) percent of that expected through a labyrinth of equivalent diameter.

Test Build No. 5 - NASA Design Stepped Pad Bearing and O-Ring Secondary

This was the first build made with a seal carbon wafer containing the NASA designed shrouded step lift pad air bearings. All other hardware was the same as Build 4. Seal spring force was 10.44 lbs, total. In addition to the change in lift pad configuration, the temperatures of the seal components at

TABLE 4.1

STATIC TEST
(Build 4)

Sea	al AP	Seal Air 1		Ai	r Flow Ra	ate	
psid	kg/cm ²	• F	°C	kg/sec	SCFM	<u>lb/sec</u>	Remarks
10	.7	80	27	.0010	1.71	.0022	Before Dynamic Test
25	1.8	80	27	.0010	1.66	.0021	Before Dynamic Test
50	3.5	80	27	.0018	3.17	.0040	Before Dynamic Test
75	5.3	80	27	.0022	3.73	.0048	Before Dynamic Test
100	7.0	80	27	.0032	5.61	.0071	Before Dynamic Test
125	8.7	80	27	.0036	6.19	.0079	Before Dynamic Test
150	11.0	80	27	.0048	8.39	.0107	Before Dynamic Test
175	12.3	80	27	.0059	10.18	.0130	Before Dynamic Test
200	14.1	80	27	.0066	11.49	.0146	Before Dynamic Test
225	15.8	80	27	.0082	14.16	.0180	Before Dynamic Test
100	7.0	104	40	.0016	2.81	.0036	After Dynamic Test
125	8.7	104	40	.0018	3.09	.0039	After Dynamic Test
150	11.0	104	40	.0019	3.36	.0043	After Dynamic Test
175	12.3	104	40	.0031	5.40	.0069	After Dynamic Test
200	14.1	104	40	.0066	11.49	.0146	After Dynamic Test
225	15.8	109	43	.0070	12.14	.0155	After Dynamic Test

TABLE 4.2

DYNAMIC TESTS (Build 4)

	Remarks	Accelerate to 10300 RPM												Heaters Off		Shutdown
% of Labyrinth	Flow	ı	3.14	3.54	3.65	3.74	3.87	4.68	4.82	4.25	5.16	4.53	5.36	ı	i	i
te	1b/sec	i	.0114	.0114	.0114	.0114	.0014	.0133	.0133	.0114	.0133	.0114	.0133	ı	1	ı
Air Flow Rate	SCFM	i	8.95	8.95	8.95	8.95	8.95	10.44	10.44	8.95	10.44	8.95	10.44	1	1	ı
Air	kg/sec	ı	.0052	.0052	.0052	.0052	.0052	0900.	0900.	.0052	0900.	.0052	0900.	i	ı	ı
ΛP	psid	100	115	115	115	115	115	115	115	115	115	115	115	115	115	115
SealAP	kg/cm ²	7.037	8.093	8.093	8.093	8.093	8.093	8.093	8.093	8.093	8.093	8.093	8.093	8.093	8.093	8.093
Temp	₽. 2	ı	130	175	214	250	300	354	404	455	531	579	610	i	ì	ı
Air	ပ		54	79	101	121	149	179	207	235	277	304	321			
Shaft	RPM	0/10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
Lapsed Time	Min	ო	9	11	53	39	51	9	10	16	25	30	34	39	53	0
La	Hrs								~	-	1	-	-	-	-	7

Figure 18. Carbon Face Contour, After Build 4.

the piston ring carrier and housing balance diameter were measured. The purpose of the measurements was to determine if significant thermal clearance changes are generated in the radial gap between these seal components. It should be noted that thermally generated interference would contribute to carbon face wear and leakage, and additional clearance could contribute to pneumatic force unbalance and frictional "hanging" of the piston ring with subsequent affect on leakage rates.

The test consisted of one (1) thermal cycle while increasing air inlet temperature from room temperature to 612 degrees F (322 degrees C), with the seal pressurized to 115 psid (79.3 N/sq cm) and shaft speed at 10,300 RPM. Seal dynamic performance results are shown on Table 5.1. Static air leakage rates were below the readable scale of the rotometer (approximately zero leakage) throughout the test pressure range to 225 psid (155 N/sq cm) prior to dynamic testing.

Dynamic air leakage rates were low in the air temperature range through 612 degrees F, not exceeding 17.9 scfm (.0104 kg/sec). As air inlet temperature was reduced, however, leakage increased and reached 77 scfm (.045 kg/sec) at 270 degrees F (132 degrees C). This was a result of thermal failure of the elastomer O-ring, which bonded firmly onto the seal housing balance diameter and totally lost its sealing integrity (see Figure 19). Static leakage after cooling to room temperature was 70 scfm (.04 kg/sec) at 10 psid (6.895 N/sq cm).

Recorded temperatures of the seal housing and piston ring carrier vs. air inlet temperature are shown on Table 5.2. No significant thermal differences relative to air leakage rates or seal face wear were observed.

Following test, all hardware with the exception of the elastomer O-ring were in good condition (see Figures 19 and 20).

Test Build No. 6 - Static Tests with Reworked Metal Piston Ring

Static testing was conducted with a metal piston ring (Design 1) which had been reworked to provide a .01 inch (.0254 cm) radial relief on the

TABLE 5.1

DYNAMIC TEST/0-RING SECONDARY (Build 5)

																				**			-		
	Remarks												•			•	400		*O-Ring Bonded to Seal	Balance Diameter	Because of Thermal	Deterioration Causing	Leakage Rate Increase		
% of Labyrinth	Flow	i		ı		2.32		3.59	3.69	4.41	5.23	5.47	6.35	7.98	8.21	7.63	9.20	8.35	ł	ı	ı	ı	•	i	i
4	kg/sec	ı		i		1		.0034	.0034	0900.	6900.	6900.	.0077	.0095	.0095	9800.	.0103	.0095							
Air Flow Rate	1b/sec	ı		ı		ı		9200.	9200.	.0133	.0152	.0152	.0171	.0209	.0209	.0190	.0228	.0209				*			
*;	SCFM	i		1		5.96		8.9	8.9	10.4	11.9	11.9	13.4	16.4	16.4	14.9	17.9	16.4	26.8	43.2	56.6	67.7	74.8	77.0	1
Air Temn	A P	٠ ١	Speed Pickup)	i	d Pickup)	153 340	(u	200 366	236 386	568 404	323 435	396 475	450 505	500 533	556 564	5		5	544 557		424 491	380 466	298 420	270 405	200 366
Shaft	RPM	0/10300	(Shutdown to Calibrate Sp	0/10300	(Shutdown to Rework Speed Picku	10300	(Heater Power On)	10300	10300	10300	10300	10300	10300	10300	10300	10300	(Heaters Off)	10300	10300	10300	10300	10300	10300	10300	(Shutdown)
9	N/cm ²	79	down to	79	tdown to	79	79 (He	79	62	79	79	79	79	79	79	79	H) 62	79	79	79	79	77	48	43	
070	psid	115	(Shute	115	(Shu	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	115	112	20	62	
Test	Hrs Min	13		20		28	30	36	44	51	1	1 10	1 18	1 26	1 38	1 41	1 47	1 58	2 6	2 14	2 26	2 36	2 49	2 56	2 58

ORIGINAL PAGE IS OF POOR QUALITY Data Taken from Sandborn Trace Build Carrier HARDWARE TEMPERATURES (Build 5) TABLE 5.2 Housing -10 HOUSING T/C CARRIER T/C Housing Carrier (°F) 3 o'clock 12 o'clock 1150 1175 220 220 220 220 330 440 440 440 602 602 524 460 2527 460 258 258 200 200

ORIGINAL PAGE IS

Figure 19. O-Ring Secondary, After Build 5.

Figure 20. Typical Face Pad Area, After Build 5.

outside diameter adjacent to the sealing land. Results (Table 6.1) show no improvement in air leakage rates when compared to data on Table 2.1 (prior to rework of piston ring), and were two to three times the rates with an elastomer O-ring secondary seal (Tables 3.2 and 4.1). The secondary was inspected and found not light-tight at the housing balance diameter to piston ring interface, and the piston ring sealing land in the piston ring carrier was found to be .00032 inch (.00081 cm) out-of-flat circumferentially. Inspection of the other available housing and piston ring carriers also gave poor results and one housing (serial number 2) and two piston ring carriers (S/N 1 and 4) were scheduled for rework. One housing (S/N 4) and one piston ring carrier (no S/N) were retained for further testing on Builds 7 and 8.

Carrier sealing land circumferential flatness per drawing is .000030 inch (.000076 cm). Measured flatness showed the following:

Carrier S/N	<u>Flatness</u>	(Circumferential)
(No S/N)	.000080	inch (.00020 cm)
1	.000110	inch (.00028 cm)
4	.000320	inch (.00081 cm)

Test Build No. 7 - Static and Dynamic Tests with Hardware Changes

Testing was conducted with the shrouded composite slider air bearing with 10.44 pounds spring closing force and metal piston ring secondary. Static testing (Table 7.1) shows high air flow rates which are nearly identical to the flow rates measured in Build 6 which had a different housing and piston ring carrier.

Results of three (3) hours, twenty-two (22) minutes of dynamic testing are shown on Table 7.2. The maximum pressure during testing was 185 psid (127.6 N/sq cm), and maximum sealed air temperature was 990 degrees F (532 degrees C). Higher pressures could not be run because of flow rate limitation of the air supply compressor.

Figure 21 shows seal face contour and wear through all testing to date. It is noted that face contour has changed during this test (see Figure 18, Build 4), but no additional average wear has occurred:

TABLE 6.1

STATIC TEST
(Build 6)

Seal	ΔР	Se	al Air F	Low	
N/cm ²	psid	kg/sec	SCFM	<u>lb/sec</u>	Remarks
138	200	.0133	22.98	.0293	Air Temperature = 80°F (27°C)
121	175	.0115	19.81	.0252	
103	150	.0106	18.47	.0235	
86	125	.0089	15.47	.0197	
69	100	.0081	14.03	.0179	
52	75	.0057	9.94	.0127	
35	50	.0049	8.46	.0108	
11	25	.0032	5.56	.0071	
7	10	.0019	3.31	.0042	

TABLE 7.1

STATIC TEST
(Build 7)

Seal	ΔΡ				
N/cm ²	psid	kg/sec	SCFM	<u>lb/sec</u>	Remarks
7	10	.0008	1.31	.0017	Air Temperature = 80°F (27°C)
17	25	.0019	3.33	.0042	Prior to Dynamic Testing
28	40	.0034	5.84	.0074	Prior to Dynamic Testing
35	50	.0049	8.46	.0108	Prior to Dynamic Testing
52	75	.0057	9.94	.0127	Prior to Dynamic Testing
69	100	.0065	11.22	.0143	Prior to Dynamic Testing
86	125	.0072	12.38	.0158	Prior to Dynamic Testing
103	150	.0078	13.43	.0171	Prior to Dynamic Testing
121	175 .	.0114	19.81	.0252	Prior to Dynamic Testing
138	200	.0133	22.98	.0293	Prior to Dynamic Testing
155	225	.0140	24.28	.0309	Prior to Dynamic Testing
7	10	.0053	9.17	.0117	After Dynamic Testing
31	45	.0153	26.42	.0337	After Dynamic Testing
55	80	.0258	44.65	.0569	After Dynamic Testing
79	115	.0362	62.62	.0798	After Dynamic Testing

TABLE 7.2

BUILD 7 (Sheet 1 of 2)

		•	Remarks										•																
	% of	Labyrinth	Flow	5.46	7.66	9.37	10.55	12.16	17.40	14.32	11.13	11.71	9.18	10.45	9.18	9.40	9.14	9.85	13.46	12.55	15.38	16.94	17.87	18.73	21.33	22.26	14.60	14.25	14.80
Temperature		te	kg/sec	9800.	.0121	.0138	.0155	.0155	.0190	.0155	.0034	.0057	.0073	.0115	.0138	.0161	.0184	.0229	.0354	.0172	.0198	.0207	.0207	.0207	.0301	.0384	.0118	.0704	.0030
	,	Air Flow Rate	1b/sec	.0190	.0266	.0304	.0342	.0342	.0418	.0342	.0074	.0126	.0161	.0253	.0304	.0355	.0406	.0505	.0790	.0380	.0437	.0456	.0456	.0456	.0664	.0848	.0260	.0155	.0067
		Air	SCFM	14.91	20.87	23.85	26.84	26.84	32.80	26.84	5.83	9.86	12.59	19.87	23.85	27.84	31.90	39.65	61.29	29.82	34.29	35.78	35.78	35.78	52.04	66.51	20.41	12.19	5.24
	Air	*	٠ ٢	83 301	84 302		375 464	374 463	682 634		76 297	74 296	259 399	356 453	450 505	552 562	653 618	640 611		648 615	678 632	716 653							
	Seal	* U	A.	83 301	88 304	164 346	375 364			692 640	77 298		77 298			356 453			651 617	639 610		646 614		712 651					
		Shaft	RPM	0	5150	10300	10300	5150	10300	5150	0	0	0	0	0	0	0	0	0	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300
	Air	ure	N/cm ²	79	79	79	79	79	79	79	7	17	34	52	69	98	103	121	138	62	79	79	79	79	103	128	55	31	7
	Sealed Air	Pressure	psid	115	115	115	115	115	115	115	10	25	20	75	100	125	150	175	200	115	115	115	115	115	150	185	80	45	10
	Test	튀	Hrs Min	0	2	19	12	1 14	2 31	3 1	1	1	1	1	1	1	1	1	1	3 32	3 51	4 27	4 42	5 8	6 9	5 10	5 12	5 14	5 16

TABLE 7.2 (Concluded)

BUILD 7 (Sheet 2 of 2)

			Remarks																								
	% of	Labyrinth	Flow	16.07	18.24	18.93	16.57	11.69	10.98	16.45	19.33	20.83	14.74	11.53		23.58	20.89	24.57	26.87	12.08	19.79	22.26	23.40	24.24	15.34	12.02	15.98
Temperature		te	kg/sec	.0172	.0252	.0320	.0133	.0059	.0023	.0118	.0190	.0272	.0070	.0023	t)	.0170	.0094	.0241	.0339	.0023	.0140	.0215	.0291	.0374	.0070	.0023	.0094
	i	Air Flow Rate	1b/sec	.0308	.0557	.0707	.0293	.0130	.0050	.0260	.0418	.0599	.0155	.0050	Circui	.0374	.0207	.0532	.0749	.0050	.0309	.0475	.0642	.0825	.0155	.0050	.0208
	•	Air	SCFM	29.82	43.65	55.43	22.96	10.16	3.93	20.41	32.80	47.00	12.19	3.93	ir Heater	777 29.34 .	16.26	41.75	58.75	3.93	24.24	37.27	50.36	64.66	12.19	3.93	16.29
		T/C #6	Y.			662 623			689 638				669 662	808 704	m to Repai	939 777	962 790	947 781	092 606	930 772	688 803	680 805	926 786	893 751	904 757	921 767	367 459
	9a1	I/C #5	자 제	715 652	681 634	661 622	664 624	677 631	687 637	946 781	948 782		195 697	805 702	(Shutdow	935 775 939	954 785	944 780	908 760		911 798		949 782	890 750	• -	913 762	367 459
		Shaft	RPM	5150	5150	5150	5150	5150	5150	10300	10300	10300	10300	10300		10300	10300	10300	10300	10300	5150	5150	5150	5150	5150	5150	5150
	1 Air	sure	N/cm ²	79	103	128	55	31	7	55	79	103	31	7		55	31	79	103	7	55	79	103	128	31	7	31
	Sealed Air	Pressure	psid	115	150	185	80	45	10	80	115	150	45	10		80	45	115	150	10	80	115	150	185	45	10	45
	Test	Time	Hrs Min	5 21	5 24	5 26	5 28	5 30	5 31	2 9	6 9	6 12	6 14	6 16		8 13	8 15	8 17	8 19	8 21	8 25	8 26	8 28	8 30	8 31	8 33	9 38

Figure 21. Carbon Face Measurements, After Build 7.

	Cumulative Test Time	Cumulative Average Face Wear
After Build 4	10 hrs, 19 min	.000290 inch (.000737 cm)
After Build 7	19 hrs, 57 min	.000290 inch (.000737 cm)

Test Build No. 8 - Static and Dynamic Tests, NASA Designed Step Bearing

Static and dynamic testing was conducted with a seal wafer containing the NASA designed shrouded stepped pad air bearing, with 10.44 lbs (4.74 kg) total spring force and metal piston ring secondary. With the exception of the carbon wafer, all hardware was the same as used in Build 7.

Dynamic test results are shown on Table 8.1. Maximum air temperature and pressure achieved during dynamic testing were 970 degrees F (521 degrees C) and 223 psid (154 N/sq cm). Static air leakage rates prior to and following dynamic tests are shown on Table 8.2.

Figure 22 shows carbon face contour and wear for all stepped pad seal testing to date (Build 5 plus Build 8) after a total operating time of 6 hours 53 minutes. Seal face contour and wear show a similarity. Average wear is .000287 inch (.000729 cm) and at this point is nearly identical to wear on the wafer with the GE designed shrouded tapered gas bearings (.000290 inch average), which again may imply an axial differential thermal expansion instability in the carbon to steel shrink line of the seal face wafer assembly (see Build 3).

Test Builds 9 through 13 - Static Leakage Evaluation

This sequence of builds and static testing was done in an effort to isolate the cause for the abnormally high air leakage rates experienced with seals tested utilizing metal piston ring secondary seals. Results are compared to data from Build 8 and are summarized on Table 9.1 and as follows:

<u>Build 9</u> - Installed seal housing S/N 2 with newly lapped balance diameter and changed the carbon wafer and piston ring carrier. Otherwise the hardware was the same as in Build 8. Air leakage was still excessive.

TABLE 8.1

BUILD 8 (Sheet 1 of 2)

		•	Remarks																											
	% of	Labyrinth	Flow*	2.51	6.49	8.35	12.10	14.64	16.44	1	3.82	6.62	7.98	11.46	12.33	14.12	14.22	10.25	12.78	14.28	8.95	12.46	17.29	16.28	4.80	4.86	14.12	17.18	8.95	6.25
Temperature		te	kg/sec	.0008	.0047	9600.	.0190	.0291	.0395	ı	.0011	.0047	.0088	.0172	.0233	.0320	.0378	9600.	.0152	.0233	.0053	.0030	.0342	.0339	.0045	.0045	.0181	.0281	.0053	.0015
			1b/sec	.0017	.0104	.0211	.0418	.0642	.0872	ı	.0025	.0104	.0195	.0380	.0514	.0707	.0833	.0211	.0361	.0514	.0117	.0067	.0754	.0748	.0100	.0100	.0399	.0621	.0116	.0033
		Air	SCFM	1.31	8.13	16.58	32.80	50.36	68.36	ı	1.96	8.13	15.31	29.82	40.29	55.43	65.37	16.58	26.33	40.29	9.14	5.24	59.12	58.68	7.86	7.86	31.31	48.68	9.14	2.62
	Air	I/C #6	보	83 301	88 304	89 305	92 306	93 307	60 8 96	ı	98 310	110 316	127 326	_		164 346						374 463					365 458			
	Seal	2	F.	83 301	88 304	89 305	92 306	93 307	60 8 96	1						164 346														
		Shaft	RPM	5150	5150	5150	5150	5150	5150	5150	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	5150	5150	5150	5150	5150	5150
	d Air	sure	N/cm ²	7	31	55	79	103	128	152	7	31	55	79	103	128	148	55	79	103	31	7	128	134	55	55	79	103	31	7
	Sealed Air	Pressure	psid	10	45	80	115	150	185	220	10	45	80	115	150	185	215	80	115	150	45	10	185	195	80	80	115	150	45	10
	Test	Time	Hrs Min	1	7	က	2	9	∞	ı	10	13	15	16	17	18	23	1 35	1 37	1 38	1 40	1 42	1 43	1 45	1 49	1 55	1 57	1 58	2 0	2 2

TABLE 8.1 (Concluded)

BUILD 8 (Sheet 2 of 2)

		•	Ren																											
	% of	Labyrinth	Flow*	17.94	13.80	17.22	21.89	11.43	18.84	7.24	17.94	18.26	18.87	20.05	14.69	12.94	14.88	15.60	15.47	17.47	16.14	15.55	19.31	14.45	15.86	17.84	10.40	18.28	4.03	20.01
		te	kg/sec	.0352	.0111	.0190	.0310	.0059	.0320	.0015	.0317	.0198	.0262	.0342	.0117	.0065	.0030	.0070	.0111	.0172	.0030	.0194	.0299	.0103	.0155	.0223	.0047	.0278	8000.	.0373
	:	Air Flow Rate	1b/sec	.0778	.0244	.0418	.0685	.0130	.0707	.0033	.0700	.0437	.0578	.0754	.0258	.0143	.0067	.0155	.0244	.0380	.0067	.0428	0990.	.0228	.0342	.0492	.0104	.0613	.0017	.0822
a		Air	SCFM	60.97	19.14	32.80	53.72	10.16	55.43	2.62	54.90	34.29	45.32	59.12	20.41	11.18	5.24	12.19	19.14	29.82	5.24	33.57	51.73	17,86	26.84	38.61	8.13	48.04	1.31	64.47
Temperature		9#	×	463	630	627					633	642	632	919	624	949	999	790	791	779	782	781	747	794	794	781	787	779	779	731
Temp	Air	T/C	œ.	374	675	667	632	636	657	671	680	969	678	650	199	669	736	962	964	942	948	946	886	970	696	947	958	943	943	828
	Seal	**	*	7 462		919										635														
		I/C	E.	372	655	650	620	618	645	654	999	685	699	644	653	683	718	933	945	923	922	921	873	945	945	928	934	925	920	848
		Shaft	RPM	5150	5150	5150	5150	5150	5150	5150	5150	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	10300	5150	5150	5150	5150	5150	5150	5150
	d Air	sure	N/cm ²	128	55	79	103	31	128	7	134	79	103	128	55	31	7	31	55	79	7	103	128	55	79	103	31	128	7	154
	Sealed Air	Pressure	psid	185	80	115	150	45	185	10	195	115	150	185	80	45	10	45	80	115	10	150	185	80	115	150	45	185	10	223
	st	ne	Min	4	45	47	49	51	22	27	28	9	∞	10	11	12	15	28	53	30	32	33	35	46	48	49	20	52	54	55
	Test	Time	Hrs.	2	7	7	7	7	7	7	2	က	က	ო	ო	ო	က	ო	ო	ო	ო	က	ო	က	က	က	က	က	က	က

TABLE 8.2

STATIC TEST
(Build 8)

Seal	ΔΡ	Air	Temp	Seal	l Air Fl	.ow	
N/cm ²	psid	<u>• K</u>	°F	kg/sec	SCFM	<u>lb/sec</u>	Remarks
7	10	302	85	.0030	5.24	.0067	Before Dynamic Test
17	25	302	85	.0058	9.98	.0127	Before Dynamic Test
34.5	50*	302	85	.0098	16.91	.0215	Before Dynamic Test -
34.3	30	302					*(Rig Vibrated)
58	75	302	85	.0057	9.94	.0127	Before Dynamic Test
69	100	302	85	.0081	14.03	.0179	Before Dynamic Test
86	125	302	85	.0107	18.56	.0236	Before Dynamic Test
103	150	302	85	.0167	28.86	.0368	Before Dynamic Test
121	175	302	85	.0187	32.42	.0413	Before Dynamic Test
138	200	302	85	.0232	40.22	.0512	Before Dynamic Test
35	50*	302	85	.0055	9.51	.0121	Before Dynamic Test -
							<pre>*(Rig Vibrated)</pre>
35.5	50	302	85	.0054	9.40	.0120	Before Dynamic Test
17	25	302	85	.0024	4.16	.0053	Before Dynamic Test
7	10	302	85	.0015	2.62	.0033	Before Dynamic Test
7	10	306	92	.0011	1.96	.0025	After Dynamic Test
17	25	306	92	.0029	4.99	.0064	After Dynamic Test
35	50	306	92	.0043	7.40	.0094	After Dynamic Test
52	75	306	92	.0057	9.94	.0127	After Dynamic Test
69	100	306	92	.0089	15.43	.0197	After Dynamic Test
86	125	306	92	.0125	21.66	.0276	After Dynamic Test
103	150	306	92	.0213	36.93	.0470	After Dynamic Test
121	175	306	92	.0271	46.82	.0596	After Dynamic Test
138	200	306	92	.0354	61.29	.0781	After Dynamic Test

Figure 22. Carbon Face Measurements, After Build 8.

TABLE 9.1

STATIC TEST SUMMARY, BUILDS 8 THROUGH 13

	1d 13	1.31	3.33	.40	.18	.03	.56	.50	.62	38.31								Build 13	2	Yes	.01	Yes	ı	H	Yes	က	GE	New	.00024	/in	.00045/	in saddle
	12 Build	1	Ŕ	7	11	14	18.	23.	30.	•								Build 12 E	2	Yes	1	Į	i		Yes	က	GE	New	.0009 to	.0023/in		••
	Build 12	ı	1	ı	1	i	1	ı	1	7.66								Build 11	2	Yes	.01	Yes	i	—	Yes	က	GE	New		٥.,		6 -
	Build 11	.65	1.66	4.23	7.45	11.22	13.92	16.79	25.21	45.97		e Rig)						Build 10	2	Yes	.01	Yes	ı	H	Yes	ო	GE	New		۰.		۰-
	Build 10	ı	ı	ı	ı	1	1	1	i	68.00		(*Vibrate						Build 9	2	Yes	.01	No	i	7	Yes	4	35	Used		~-		6-
	Build 9 B	2.62	99.9	8.46	13.66	16.83	20.11	25.18	32.42	40.22						Build 8	After	Dynamic Test	4	No	.01	No	ŀ	None	No	7	NASA	Used		6-		~ -
Build 8 After	Dynamic Test	1.96	4.99	7.40	9.94	15.43	21.66	36.93	46.82	61.29						Build 8	Before	Dynamic Test	4	No	.01	No	I	None			NASA	New		<i>~</i>		<i>«</i>
Build 8 Before	Dynamic Test Dy	5.24	9.98	16.91	9.94*	14.03	18.56	26.86	32.42	40.22	9.51	9.40*	4.16	2.62	(SCFM)				1 No.	e Diameter	elief (0.D.)	on Ring	ary	Piston Ring Carrier Serial Number	in Piston Ring Carrier	Carbon Face Wafer Serial Number	afer Design	Wafer Condition		Squareness	•	Flange Out-of-Flatness (Rig)
Sealed Air Pressure	PSIG	10	25	20	7.5	100	125	150	175	200	20	20	25	10					Housing Serial No.	Lapped Balance Diameter	Piston Ring Relief (0.D.)	Relapped Piston Ring	O-Ring Secondary	Piston Ring C	Seat Lapped in	Carbon Face W	Carbon Face Wafer Design	Carbon Face W		Seal Mounted Squareness		Flange Out-of

<u>Build 10</u> - Changed to a new carbon wafer and a relapped piston ring. Otherwise same as Build 9. Leakage very excessive.

<u>Build 11</u> - No hardware change. Teardown and rebuild, only. Leakage excessive but significantly reduced from Build 10.

<u>Build 12</u> - Same as Build 11 except that an elastomer O-ring was installed in place of the piston ring in the seal secondary. As shown in past tests, leakage was again very significantly reduced.

Following the above test the face squareness of the test rig seal mounting flange was measured while installed on the test rig. It was found to vary from .0009 to .0023 in/in (cm/cm) of diameter, depending on the circumferential orientation. Since this would directly affect squareness of the piston ring to its radial and axial seats, it could also affect air leakage.

<u>Build 13</u> - The seal housing rig adapters were shimmed at appropriate locations to reduce face out-of-squareness to .00024 in/in (cm/cm) of diameter. Air leakage was still excessive.

Following the above static test, the two rig adapters were removed from the test rig and measured while bolted together to determine seal housing adapter flange flatness. The flange surface was found to be saddled in the magnitude of .00045 in/in (cm/cm) of radius. This could distort the seal housing balance diameter (piston ring radial seat) in the form of a saddle.

Test Build Nos. 14 through 19 - Static Hardware Leakage Evaluation

Following Build 13 the seal housing rig adapters were reworked to provide .0004 inch (.001 cm) flatness and parallelism between flange faces. In addition, the seal housing flange (S/N 2) was measured and found to have a .003 to .004 inch (.0076 to .0102 cm) radial taper across the flange width. Since this could also distort the seal housing balance diameter when bolted to the seal adapter flange in the test rig, it was also reworked to obtain

flatness within .0004 inch (.00102 cm). Selective assembly was made in the ensuing six builds to try again to isolate the cause of excessive air leakage rates. Again, no cause was clearly identified. Results are shown on Table 14.1 and are described as follows:

Build 14 - This build was made after reworking the test rig flange and seal housing adapter flange as described above. Leakage rate was reduced from 38.31 scfm (.0488 lbs/sec) in Build 13 to 30.65 scfm (.0391 lbs/sec) with seal air pressure at 200 psid (137.9 N/sq cm). This rate, however, is still excessive.

Build 15 - A different carbon face wafer assembly and piston ring were installed. The piston ring was made from carbon steel with flash chrome plated surfaces and did not contain the aluminum oxide inlay on the transverse sealing face as did all other piston rings previously tested. The piston ring is not completely light tight when assembled inside the balance diameter of seal housing serial number 2. Leakage was very excessive.

<u>Build 16</u> - This build was otherwise the same as Build 15 with the exception that a light tight piston ring (S/N 1) was installed. Leakage improved from Build 15 but was higher than Build 14 where a new carbon face wafer was used.

<u>Build 17</u> - This build was otherwise the same as Build 16 except that piston ring carrier S/N 1 was substituted for S/N 4. This resulted in increased leakage over Build 16.

Build 18 - This build was otherwise the same as Build 16 except that a piston ring with vented wear pads on its outside diameter was substituted for piston ring S/N 1 (light tight piston ring). This piston ring was not light tight when installed inside the balance diameter of seal housing S/N 2. Minimum leakage at 200 psid (137.9 N/sq cm) is the same as Build 16 but is not stable, and maximum leakage exceeded Build 16.

TABLE 14.1

STATIC TEST SUMMARY, BUILDS 14 THROUGH 19

19		9	8		2	3	8	_	5.97		Build 19	2	Yes	.01	Yes	н	ო	Yes	4	8	Used	Yes	Yes
Build 19	i	1.6	4.2	7.4	9.8	10.8	. 13.4	21.6	30.64/45.97		Build 18	8	Yes	.01	No	O.D. Pads	ო	Yes	4	GE	Used	Yes	Yes
Build 18	ļ	i	2.11	4.97	8.42	10.83	15.11	21.61	38.31/44.05		Build 17	2	Yes	.01	Yes	-	-	Yes	4	GE	Used	Yes	Yes
Build 17	ı	1	.29	.21	.82	12.38	.79	.81	.97		Build 16	8											
	•	•	5	9	6	12	16	28	45		Build 15	2	Yes	.01	No	lash Chrome	က	Yes	4	GE	Used	Yes	Yes
Build 16	ı	ı	4.23	7.45	11.22	13.92	18.47	25.21	38.31		Build 14	2	Yes	.01	Yes	H	ဗ	Yes	2	NASA	New	Yes	Yes
Build 15	ı	i	i	1	ı	1	1	1	53.63						Ring O.D.	tion)	ber	rier	Ł				
Build 14	I	i	2.11	3.73	7.02	12.33	15.11	21.61	30.65	(SCFM)		1 Number	e Diameter	elief (0.D.)	Relapped (Light Tight) Piston Ring O.D	/N (or Identificat	Piston Ring Carrier Serial Number	Seat Lapped in Piston Ring Carrier	Carbon Face Wafer Serial Number	afer Design	Carbon Face Wafer Condition	ework	work
Sealed Air Pressure PSIG	10	25	20	75	100	125	150	175	200			Housing Serial Number	Lapped Balance Diameter	Piston Ring Relief (0.D.)	Relapped (Lig	· Piston Ring S	Piston Ring C	Seat Lapped i	Carbon Face W	Carbon Face Wafer Design	Carbon Face W	Seal Flange Rework	Rig Flange Rework

Build 19 - This build was otherwise the same as Build 16 except that the radial clearance between the seal housing balance diameter and the piston ring carrier outside diameter was shimmed to promote concentricity between the balance diameter and the piston ring carrier. This reduced the minimum leakage compared to Build 16 at higher pressures but was unstable and the maximum leakage exceeded that from Build 16.

Following the above sequence of unsuccessful static tests conducted in an effort to isolate a source of abnormally high air leakage rates, a meeting was held with the NASA Technical Program Director. This meeting resulted in a recommendation to proceed with endurance testing per Cycle A wherein maximum seal delta-P is 202 psi (139.3 N/sq cm) since the limited available flow rate capacity of the air supply would otherwise continue to preclude testing at higher pressures.

Test Build No. 20 - Endurance Test, Shrouded Composite Slider Bearing

Sixty-three and one-half (63.5) hours of endurance testing was completed at Cycle A operating conditions using seal face carbon wafer assembly S/N 4 with the GE designed shrouded composite slider gas bearings. Prior to this test 13.28 test hours had been accumulated on this same carbon wafer during Builds 2, 3, 4 and 7. The wafer was not reworked prior to test.

Actual hours and percent time at Cycle A conditions were as follows:

	Cycle Point	Hours	% Time
Ground Idle	A-1	18.8	29.61
Take-off	A-2	11.9	18.74
Cruise	A-3	32.8	51.65

Static air leakage rates measured before test are shown on Table 20.1. Table 20.2 gives data, including air leakage rates, taken during dynamic testing.

TABLE 20.1

STATIC TEST (Build 20)

Seal	ΔP	Se	al Air F	low	
N/cm ²	psid	kg/sec	SCFM	<u>lb/sec</u>	Remarks
7	10	0	≃0	0	(Room Temperature)
17	25	0	≃0	0	-
35	50	.0012	2.11	.0027	
52	75	.0036	6.21	.0079	
68	100	.0057	9.82	.0125	
86	125	.0089	15.47	.0197	
103	150	.0116	20.14	.0256	
121	175	.0156	25.21	.0321	
138	200	.0221	38.31	.0488	

TABLE 20.2

BUILD 20 (Sheet 1 of 2)

			Remarks			(1) See Note 1.																				(2) See Note 2.										
	% of	Labyrinth	Flow	ı	ı	12.32		10.78	10.87	27.33	10.99	11.73	11.02	13.05	13.13	11.31	10.66	10.01	10.40	10.28	10.94	12.08	16.06	i	16.16	i		16.17	16.29		16.20	1	15.99	15.66	17.10	20.75
		te	kg/sec	ı	ı	.0139		.0121	.0121	.0303	.0121	.0130	.0121	.0142	.0142	.0127	.0121	.0116	.0116	.0116	.0121	.0127	.0266	ı	.0266	1		.0266	.0266		.0266	ı	.0266	.0266	.0283	.0341
		- 1	1b/sec	i	1	.0306		.0268	.0268	8990.	.0268	.0287	.0268	.0314	.0314	.0281	.0268	.0255	.0255	.0255	.0268	.0281	.0587	1	.0587	ı		.0587	.0587		.0587	i	.0587	.0587	.0625	.0752
		Air	SCFM	0≈	0≅	24.0		21.0	21.0	52.4	21.0	22.5	21.0	24.6	24.6	22.0	21.0	20.0	20.09	20.0	21.0	22.0	46.0	ı	46.0	i		46.0	46.0		46.0	ł	46.0	46.0	49.0	29.0
Temperature	Air	**	자 보	ı	200 366	280/411(1)	780 689	780 689	800 700	815 708	830 716	820 711	830 716	870 739	880 744	783 690	750 672			780 689	820 711	ı	1	i	910 761	- (2)		ı	ı		942 779	i	098 206		918 765	939 777
	- 1	* U	자 	450 505	200 366	280/411	780 689	780 689	800 700	825 714	835 719	825 714	840 722	860 733	880 744		754 674		815 708	785 691		682 096	950 766	950 766	914 763	865/ 736	950 766	913 762	876/742	934 774	946 781	922 786	910 761	890 750		942 779
		Shaft	RPM	1180	1180	7480		7440	7460	7440	7420	7460	7440	7410	7420	7420	7440	7460	7470	7460	7460	7460	7460	7935	1960	1960		1960	1960		1960	0961	0961	1960	0961	1960
	1 Air	sure	N/cm ²	9	9	98		98	98	98	98	98	98	98	98	98	98	98	98	98	98	98	139	139	139	139		139	139		139	139	139	141	139	139
	Sealed Air	Pressure	psid	6	6	125		125	125	125	125	125	125	125	125	125	125	125	125	125	125	125	202	202	202	202		202	202		202	202	202	202	202	202
	Test	.=	Hrs Min		18 48			2 12	22 42		3 42	4	4 48	S	26 49	7	41 42				4 12	4 18		44 42	. i	45 12		1	46 12		46 42	l i	7			9 48
		1	声		-	N		7	7	7	7	Ö	7	2	7	7	4	4	4	4	4	4	4	4		4			4		4		4	4	4	4

TABLE 20.2 (Concluded)

BUILD 20 (Sheet 2 of 2)

			Remarks								(3) See Note 3.									Test Stopped,	Bearing Failure. See Note 4.
	% of	Labyrinth	Flow	10.58	16.87	17.00	17.06	19.18	16.27	16.70	16.17	20.44	16.97	17.00	17.26		11.30	11.43	11.43	11.43	
		te	kg/sec	.0173	.0277	.0277	.0277	.0312	.0266	.0272	.0266	.0335	.0277	.0277	.0283		.0124	.0127	.0127	.0127	
		Air Flow Rate	1b/sec	.0383	.0612	.0612	.0612	.0689	.0587	0090.	.0587	.0740	.0612	.0612	.0625		.0274	.0281	.0281	.0281	
e		Aiı	SCFM	30.0	48.0	48.0	48.0	54.0	46.0	47.0	0.94 (58.0	48.0	48.0	49.0		21.5	22.0	22.0	22.0	
Temperature	Air	1/C #6	Y. J.		938 776							ı	ı	ı	ı		860 733	i	ł	í	
	Seal Air	T/C #5	Ho Ho	950 783	940 777													810 705			
		Shaft	RPH	7960	7950	1960	1960	7960	7960	1960	1960	1960	1960	7950	7920	ank Out)	7480	7510	7350	7400	
	d Air	sure	N/cm ²	139	139	138	138	138	139	138	139	138	138	138	138	Heater B	98	98	98	98	
	Sealed Air	Pressure	psid	202	202	200	200	200	202	. 500	202	200	200	200	200	(One	125	125	125	125	
	Test	Time	s Min	12	42	12	42	12	12	42	12	42	12	42	12	1	42	12	42	30	
	• ¬		Hrs	50	20	51	51	52	53	53	54	54	55	55	96	1	26	57	57	63	

Seal leakage increased to $\simeq 93$ SCFM for a few seconds then returned to normal. (1) Notes:

Cycling continued to occur with diminishing variation in flow rate over the next six hours. Increased flow rate was accompanied by decrease in air inlet temperature and pressure. Raising air Leakage cycled to 85 SCFM and returned over a 5 minute period, then cycled to 65 SCFM in about 3 inlet temperature appears to increase the cyclic air flow rate. (2)

(3) Rig seems to be running rougher, possibly bearing noise.

Torque increased and drive belt disengaged from shaft. Seal pressure dropped from 125 to 70 PSIG and Duplex bearing failed, shaft shifted axially causing the seal to bottom out against the seal race. seal leakage (static) increased to 76 SCFM. (4)

It is noted in the log sheets (Table 20.2) that there was a tendency towards cyclic flow rates when stabilizing at high temperature and pressure. This may imply a cyclic axial thermal gradient in the seal assembly, particularly at the interface of carbon wafer and race where the resulting thermal deflection can force a change in the seal dam to race clearance. This situation may be aggravated by the configuration of test apparatus since any small change in air flow rate affects a change in air temperature because the air heaters are set at a constant power input. This is unlike the situation in an engine installation.

Failure of the duplex thrust bearing assembly while endurance testing the lift pad seal resulted in heavy wear on the face of seal carbon wafer (S/N 4) and resulted in moderate rub tracks in the hard plated surface of the seal race. The failure caused damage to the bearing journals on both the shaft and rig housing such that both were in non-serviceable condition. (See photographs on Figures 23, 24 and 25.)

Table 20.3 shows carbon wear rates following the thrust bearing failure 63.5 hours after initiation of the endurance test. When the duplex bearing failed, the rotor shifted axially until the seal bottomed in its housing and the entire gas pressure thrust force was supported at the dynamic interface of the seal carbon and race. Operating pressure at initiation of the failure was 125 psid (86.2 N/sq cm) and decreased to 70 psid (48.3 N/sq cm) at time of rig shutdown. The thrust force at these pressures is 7776 and 4355 pounds (3387 and 1897 kg), respectively. The resulting carbon specific load is in the order of 500 to 1000 psi (345 to 689 N/sq cm), which, of course, is an extremely high wearing load.

Inspection of the wear rates shown on Table 20.3 implies that the seal was functioning with minimum wear until the bearing failure. The wear pattern on the carbon face is symmetrical, with the maximum wear occurring approximately 180 degrees from the minimum, where no wear occurred. The uniform, symmetrical wear pattern may be the result of out-of-squareness at internal interfaces of the seal assembly in the compressed position following bearing failure.

RUB ZONE SHOWING CARBON ORIGINAL PAGE IS TRANSFER IN A1203 OF POOR QUALITY BEARINGS WORN FLAT DAM BEARING PAD RECESS

Figure 23. Seal Face and Race After Bearing Failure, Build 20.

Figure 24. Failed Thrust Bearing, Build 20.

ORIGINAL PAGE IS OF POOR QUALITY

RACE JOURNAL

Figure 25. Rig Hardware After Bearing Failure, Build 20.

TABLE 20.3

CARBON FACE WEAR FROM BUILD 20 (WAFER SERIAL NO. 4)

Circumferential Position (Degrees)	Air Be	earing	Seal:	-	Wear 1		Avera	ge
	inch	<u>cm</u>	<u>inch</u>	<u>cm</u>	<u>inch</u>	cm	inch	<u>cm</u>
0	.0010	.0025	.0006	.0015	.0013	.0033	.000967	.0246
40	.0026	.0066	.0045	.0114	.0057	.0145	.004267	.0108
80	.0081	.0205	.0092	.0234	.0088	.0224	.008700	.0220
120	.0095	.0241	.0111	.0282	.0100	.0254	.010200	.0259
160	.0053	.0135	.0070	.0179	.0077	.0196	.006667	.0169
200	.0018	.0046	.0015	.0038	.0020	.0051	.001767	.0045
240	.0013	.0033	.0010	.0025	.0009	.0023	.001067	.0027
280	.0005	.0013	.0003	.0008	0	0	.000267	.0007
320	.0004	.0010	.0003	.0008	.0003	.0008	.000333	.00084
Average	.00338	.0086	.00394	4 .0100	.00407	8.0140	.003800	.0120
Maximum	. 0095	.0241	.0111	.0282	.0100	.0254	.010200	.0259
Minimum	.0004	.001	.0003	.0008	0	0	.000233	.0007

It is noted that the seal did not fail, and it is probable that it would still be serviceable, albeit at a higher gas leakage rate. The ruggedness of the seal design as demonstrated by results of this test is significant in that it implies the potential for saving an engine in the event of a catastrophic rotor thrust bearing failure. This particular advantage has been inadvertently demonstrated in a test engine with a similar face type carbon seal assembly.

Steady state air leakage rates for the lift pad seal configuration at conditions of test was 80 to 90 percent lower than an equivalent "best" configuration labyrinth seal. For the NASA/QCSEE geared fan engine rotor thrust balance seal, of which the conditions are representative, this reduction in flow rate would improve engine SFC by approximately one (1) percent and would allow reduction of turbine inlet temperature by approximately 20 degrees F.

Test Build No. 21 - Performance Mapping, NASA Design Step Pad Bearing

Performance mapping was initiated using seal carbon face wafer S/N 2 containing NASA designed shrouded stepped gas bearing pads, seal housing S/N 4, and a new carbon piston ring secondary seal with overlapping tongue and socket end gap. All testing was done at 5000 RPM shaft speed. Total operating time at speed was 8 hours 15 minutes, with 6 hours 53 minutes at performance points. Test data is shown on Table 21.1. The seal assembly is shown on Figure 26.

While operating at 150 psid (103.4 N/sq cm) and seal air temperature at approximately 700 degrees F (371 degrees C), the seal air heater system malfunctioned. The test was stopped to facilitate repair of an electrical problem in the heater system. After restarting the rig, seal air pressure was set at 220 psid (151.7 N/sq cm) and air temperature was increased to 662 degrees F (350 degrees C). Air leakage rate at this point was 7.99 scfm (.0102 lbs/sec), which is normal. After 7 minutes at this point, seal air leakage rate suddenly increased to approximately 49 scfm (.0625 lbs/sec) and pressure decreased to 75 psid (51.7 N/sq cm). The test was shut down at this point.

TABLE 21.1

BUILD 21, PERFORMANCE MAPPING (Sheet 1 of 2)

Test	st me	Seal	Sealed Air Pressure	Shaft	Seale	Sealed Air Temperature	Ai	Air Flow Rate	ıte	% of Labyrinth
Hrs	Hin	psig	N/cm ²	RPM	d.	*	SCFM	1b/sec	kg/sec	Flow
	0	30	21	0/2000	84	303	0	0	0	0
	13	06	62	2000	84	303	4.0	.0051	.0023	1.80
	17	153	106	2000	68	305	10.13	.0129	6500.	2.80
	28	215	148	2000	104	314	7.9	.0101	900.	1.64
	29	200	136	2000	106	315	7.6	.0097	.0044	1.69
	32	255	176	2000	105	314	17.1	.0218	6600.	3.02
	35	245	169	2000	101	315	14.7	.0187	.0085	2.69
	37	290	200	2000	108	316	20.5	.0261	.0118	3.21
	40	290	200	2000	108	316	22.8	.0291	.0132	3.57
	55	230	159	2000	124	325	10.2	.0130	.0059	2.02
_	10	230	159	rest	to Repla	e Failed	Rig Drive	End Bear	ing)	
-	50	25	17	2000	118	322	2.46	.0031	.0014	2.95
7	0	25	17	2000	121	323	1.64	.0021	6000.	2.00
7	က	20	35	2000		324	3.14	.0040	.0018	2.34
2	11	20	35	2000		325	2.09	.0027	.0012	1.58
2	14	75	52	2000		328	2.47	.0031	.0014	1.32
2	24	75	52	2000		327	2.47	.0031	.0014	1.32
က	44	85	59	2000		462	5.2	9900.	.0030	2.99
က	49	53	37	2000		503	4.29	.0055	.0025	3.84
4	0	150	103	2000		462	20.75	.0264	.0120	7.25
4	'n	185	128	2000		438	21.37	.0272	.0123	9.00
4	12	220	152	2000		462	15.98	.0240	.0092	4.63
4	19	215	148	2000		475	15.81	.0202	.0091	40.4
4	23	256	177	2000		462	26.6	.0339	.0154	2.67
4	28	255	176	2000		442	26.55	.0339	.0153	5.56
4	35	290	200	2000	372	463	19.12	.0244	.0110	3.63
4	40	280	193	2000		614	18.8	.0240 .0109	6010.	3.75

TABLE 21.1 (Concluded)

BUILD 21, PERFORMANCE MAPPING (Sheet 2 of 2)

% of	Flow	8.94	3.53	5.47	5.75						2.28			
4	kg/sec	.0073	.0030	.0077	0800.						.0046			
Air Flow Doto	1b/sec	.0161	9900.	.0171	.0176	Test)					.0102			
• •	SCFM	12.6	5.2	13.38	13.79	30°F - Stop	ı	ilure)	i	r Failure)	7.99	rive)	1	Flow Rate) Seal Race)
Sealed Air	No No					Air at ≈ 7((Stop Test - Heater Failure)		(Stop Test - Another Heater Failure)		(Stop Test - Repair Drive)		(Stop Test - Excessive Air Flow Rate) (Found Spalled Plating on Seal Race)
Seal	4	662	694	999	632	wer at	ı	p Test -	i	st - Ano	662	op Test	i	t - Exc. palled P
ch ch ch	RPM	2000	2000	2000	2000	(Lost heater Power at Air at ≈ 700°F - Stop	2000	(Sto)	2000	(Stop Te	2000	(St	2000	(Stop Tes (Found S
d Air	N/cm ²	55	59	103	66		21		21		152		21	
Seale	psig N/cm ²	80	85	150	144		30		30		220		30	
ر د د	Min	36	42	20	26		43		13		43		15	
Tes	Hrs Min	2	2	2	9		9		7		7		∞	

Figure 26. Stepped Pad Seal Assembly, Before Build 21.

The seal was removed from the test rig for inspection, and the following was noted:

- Several spalls from the aluminum oxide coating on the face of the seal race in the area that contacts the inner wear pads of the seal carbon wafer face (see Figures 27 and 28). The plated surface in the circumferential band of this same area was grooved with a "phonograph" finish, evidently resulting from race plating particles imbedded in the leading edges of the carbon face inner wear pad vent grooves.
- Approximately .0035 inch wear in the carbon face sealing dam and gas bearing pads. The gas bearing pad recesses, initially approximately .001 inch (.00254 cm) deep (Figure 26), were completely removed (Figure 29). Face wear on the inner wear pads was approximately .0075 inch (.029 cm).
- Burnishing on the outer surfaces of the carbon inserts (Figure 30) in the rotation locks on the outside diameter of the seal carbon wafer assembly. A matching burnish on the outer radius surface of the rotation lock slots on the inside diameter of the seal housing. A dimensional check with shim stock showed radial clearance between the insert and housing at one location equal to .0015 inch as compared to part drawing dimensions which would provide .014-.023 inch clearance.

The probable cause for the sudden increase in air leakage rate, as described above, was the spalled platelets of hard coating (aluminum oxide) from the seal race passing through and damaging the interfaces of the carbon seal and seal race.

The sequence resulting in plating spalls, based on test evidence, implies that the problem may have resulted from thermally generated radial interference between the outer radius of the seal wafer rotation lock and the bottom of the lock slot in the seal housing. At one rotation lock location (where measured radial clearance was .0015 inch), a 25 degree F delta-T

Figure 27. Seal Race Coating Spalls, After Build 21.

Figure 28. Seal Race and Adapter, After Build 21.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 30. Carbon Wafer Aft Face, After Build 21.

between the seal wafer and housing would result in radial interference. Interference at this interface would generate a high friction drag force which would prevent the seal from freely following the axial motion of the rotating seal race. This would cause a substantial increase in rubbing loads, and the resulting heat generated in the dynamic sealing interface could result in thermal spalling of the hard coating.

Test Build No. 22 - Performance Mapping, Composite Slider Bearings

Performance mapping was completed using seal carbon wafer S/N 3, containing the GE designed shrouded composite slider gas bearings, seal housing S/N 4, and a carbon piston ring secondary seal.

Prior to testing, the inside radius of the seal dam on the face of the carbon wafer assembly was reworked, changing the radial width of the dam from .045 inch (.1143 cm) to .0336 inch (.0853 cm), to provide additional pressure force to seat the seal face against the race. The carbon inserts at the wafer assembly rotation locks were also reworked to provide drawing specified radial clearance to the seal housing (see Build No. 21). In addition, the carbon wear pads at the inside radius of the primary seal face were removed.

Static leakage rates measured in the dynamic test rig prior to dynamic testing are shown on Table 22.1. Leakage rate at 290 psi (200 N/sq cm) delta-P was 10.02 scfm (.0058 kg/sec).

Data from dynamic testing is shown on Table 22.2. Total operating time was 36 hours 6 minutes. Seal performance was excellent throughout the testing. All hardware was in excellent condition after test (see photos, Figures 32, 33, 34, and 35). Average carbon wear on the face of the primary wafer assembly (see Table 22.3) was approximately .000850 inch (.002159 cm). No wear occurred in the hard coating on the face of the seal race.

Test Build No. 23 - Performance Mapping, Spiral Groove Seal

Static and dynamic testing was conducted using seal carbon wafer S/N 2, seal housing S/N 1, and a carbon piston ring secondary seal. The seal race

TABLE 22.1

STATIC TEST (Build 22)

Seal	ΔΡ	Se	al Air Fl	Low	
N/cm ²	psid	kg/sec	SCFM	<u>lb/sec</u>	Remarks
7	10	.0002	.26	.0003	Air Temperature = 80°F (43°C)
17	25	.0002	.33	.0004	
35	50	.0002	.42	.0005	
69	100	.0003	.56	.0007	
103	150	.0004	.67	.0009	
138	200	.0004	.76	.0010	
172	250	.0024	4.24	.0054	
200	290	.0058	10.02	.0128	

TABLE 22.2

BUILD 22, PERFORMANCE MAPPING, SHROUDED COMPOSITE SLIDER (Sheet 1 of 4)

Lapsed	ed	Seal	Sealed Air		Seal	Sealed Air			•	% of
Time	Je Je	Pre	Pressure	Shaft	Temp	erature	Aì	Air Flow Rate	te	Labyrinth
Hrs	Min	psig	N/cm ²	RPM	E.	X d	SCFM	1b/sec	kg/sec	Flow
	36	∞	9	1355	88	304	0.248	.0003	.0001	0.51
	54	9	7	1598	275	408	0.237	.0003	.0001	0.62
H	18	∞	9	1631	262	401	0.248	.0003	.0001	0.59
-	36	12	8	1647	249	394	0.269	.0003	.0002	0.54
-	48	80	9	1660	265	402	0.248	.0003	.0001	0.59
7	90	10	7	1590	272	406	0.259	.0003	.0001	0.57
7	24	6	9	1590	267	4 0 4	0.253	.0003	.0001	0.58
7	36	6	9	1590	263	401	0.253	.0003	.0001	0.57
7	54	6	9	1586	263	401	0.253	.0003	.0001	0.57
က	18	6	9	1580	264	402	0.253	. 0003	.0001	0.57
					(Sh	ut Down)				
4	0	125	98	7440	260	400	0.617	8000.	.0004	0.23
4	24	125	98	7441	784	691	0.617	8000.	.0004	0.31
S	90	125	98	7437	827	715	18.50	.0236	.0107	9.51
2	36	125	98	7439	830	830 716	19.11	.0243	.0110	9.82
					(Sh	ut Down)				
9	24	125	98	7390	710	650	0.617	8000.	.0004	0.30
9	42	125	98	7422	809	705	15.41	.0196	.0089	7.86
7	18	125	98	7401	829	716	17.88	.0228	.0103	9.19
7	48	125	98	7410	834	719	17.88	.0228	.0103	9.21
∞	12	200	138	7921	917	765	38.22	.0467	.0221	13.21
œ	42	200	138	7914	925	692	42.04	.0536	.0243	14.58
6	12	200	138	7916	924	692	38.98	.0497	.0225	13.51
6	42	200	138	7907	932	773	30.57	.0389	.0177	10.63
10	18	200	138	1901	940	777	38.98	.0497	.0225	13.59
10	42	200	138	7900	951	784	45.86	.0584	.0265	16.05
11	12	200	138	7916	922	167	40.13	.0511	.0232	13.90
11	42	200	138	7914	928	771	45.86	.0584	.0265.	15.91

TABLE 22.2 (Continued)

BUILD 22, PERFORMANCE MAPPING, SHROUDED COMPOSITE SLIDER (Sheet 2 of 4)

Lapsed	sed	Seale	Sealed Air	i i	Seal	Sealed Air	•	1		% of
T1me Hrs	Min	Pres	Pressure	Shaft RPM	Temp	remperature F K	SCFM	Air Flow Rate 1b/sec k	kg/sec	Labyrinth Flow
11	54	125	98	7884	750	672	15.41	.0196	6800.	7.67
12	12	125	98	6867	649	616	12.95	.0165	.0075	6.17
12	30	125	98	6873	595	586	5.55	.0071	.0032	2.58
12	45	125	86	7882	561	567	6.17	.0079	.0036	2.82
13	90	125	86	7869	522	545	12.95	.0165	.0075	5.81
13	24	125	98	6877	475	519	11.71	.0149	8900.	5.13
13	36	125	98	6862	438	665	3.7	.0047	.0021	1.58
					(Sh	(Shut Down)				
14	12	25	17	6044	312	429	0.328	.0004	.0002	0.46
14	36	26	18	6057	609	594	1.66	.0021	.0010	2.67
15	9	25	17	6909	614	296	2.96	.0038	.0017	4.89
15	36	20	14	9909	602	590	2.17	.0035	.0016	4.55
16	9	25	17	0909	618	009	2.96	.0038	.0017	4.90
				(Shut Down -	Loose Connection	nnection on	Chip Detector)	ctor)		
16	42	29	20	6040	595	586	0.862	.0011	.0005	1.28
17	1.2	24	17	6019	602	590	0.811	.0011	.0005	1.37
17	42	175	121	9311	726	629	17.96	.0229	.0104	6.52
17	54	110	92	9312	860	733	11.94	.0152	6900.	96.9
18	9	110	9/	9310	406	759	17.18	.0219	.0105	10.19
18	36	275	190	9300	855	730	48.83	.0622	.0283	12.23
18	54	148	102	8567	640	611	20.63	.0263	.0119	8.41
19	9	150	103	8575	552	562	14.06	.0179	.0081	5.43
19	36	140	76	8659	200	533	12.65	.0161	.0073	5.07
19	54	137	94	8565	444	502	7.07	0600.	.0041	2.80
					(Sh	(Shut Down)				
20	36	136	96	9300	619	632	4.80	.0061	.0028	2.15
21	0	225	155	9316	810	705	24.23	.0309	.0140	7.21
21	30	569	185	9322	831	717	43.93	.0560	.0254	11.13

TABLE 22.2 (Continued)

BUILD 22, PERFORMANCE MAPPING, SHROUDED COMPOSITE SLIDER (Sheet 3 of 4)

48 269 185 9320 847 726 44.81 6 269 185 9312 870 739 44.81 6 269 185 9312 870 739 48.32 84 269 185 9319 873 723 48.32 84 269 185 9316 881 743 52.58 18 269 185 9306 831 73 52.58 18 269 185 9306 862 734 51.40 36 269 185 9308 862 734 51.40 36 269 185 9305 863 735 51.84 42 130 90 9246 484 524 11.55 43 130 90 9246 488 746 12.55 44 130 90 9246 488 746 12.55 44	Lapsed	sed ed	Seal	Sealed Air	Shaft	Seal	Sealed Air Temperature	Ai	Air Flow Rate	te e	% of Labyrinth
48 269 185 9320 847 726 44.81 .0571 6 269 185 9312 870 739 48.32 .0616 24 269 185 9319 878 743 50.52 .0643 48 269 185 9316 881 745 50.52 .0643 48 269 185 9306 81 745 51.72 .0673 36 269 185 9305 863 734 51.84 .0606 36 269 185 9305 863 735 51.84 .0607 42 116 924 484 524 11.95 .015 42 130 90 9246 484 524 11.55 .0160 42 130 90 9246 484 524 11.55 .0160 42 130 90 9246 484 524 12.55	1 101	Min	psig	N/cm ²	RPM	4	» K	1 1	1b/sec	kg/sec	Flow
6 269 185 9312 870 739 48.32 .0616 24 269 185 9319 878 743 50.52 .0643 48 269 185 9316 811 745 52.78 .0610 18 269 185 9306 862 734 52.72 .0640 36 269 185 9308 862 734 51.84 .0600 36 269 185 9303 863 735 49.20 .0627 40 269 185 9303 863 735 91.84 .060 12 165 114 9254 624 27.27 .0347 42 130 90 9246 484 524 11.92 .0160 42 130 90 9246 484 524 11.92 .0160 42 130 90 9246 484 524 11.55		48	269	185	9320	847	726	44.81	.0571	.0259	11.42
24 269 185 9319 878 743 50.52 .0643 48 269 185 9316 881 745 55.58 .0670 18 269 185 9306 881 745 55.58 .0670 10 269 185 9308 863 734 51.40 .0655 36 269 185 9303 863 735 51.84 .0660 12 269 185 9303 863 735 51.84 .0660 12 130 90 9246 584 524 27.27 .0347 42 130 90 9246 448 524 11.92 .0160 42 130 90 9246 448 524 12.55 .0160 42 130 90 9246 448 524 12.55 .0160 42 130 90 9246 1248 746		9	269	185	9312	870	739	48.32	.0616	.0279	12.42
48 269 185 9316 881 745 52.58 .0670 18 269 185 9306 831 717 52.72 .0672 0 269 185 9308 862 734 51.40 .0667 36 269 185 9305 863 735 51.84 .0667 12 165 114 9254 663 624 27.27 .0627 30 130 90 9246 584 524 11.92 .0160 42 130 90 9246 48 524 11.92 .0150 42 130 90 9246 48 524 11.92 .0160 42 130 90 9246 48 76 12.55 .0160 42 130 90 9246 624 78 12.55 .0160 42 115 79 928 78 76 12		24	269	185	9319	878	743	50.52	.0643	.0292	13.03
18 269 185 9306 831 717 52.72 .0672 0 269 185 9308 862 734 51.40 .0655 36 269 185 9308 862 734 51.40 .0655 4 269 185 9305 863 735 51.84 .0660 12 165 114 9246 58 587 12.55 .0160 42 130 90 9246 48 524 11.92 .0160 42 130 90 9246 48 524 11.92 .0160 42 130 90 9246 48 524 11.92 .0160 42 130 90 9294 627 604 12.55 .0160 42 130 90 9304 884 746 12.55 .0160 42 115 79 9322 917 765 <td< td=""><td></td><td>48</td><td>269</td><td>185</td><th>9316</th><td>881</td><td>745</td><td>52.58</td><td>.0670</td><td>: 0304</td><td>13.57</td></td<>		48	269	185	9316	881	745	52.58	.0670	: 0304	13.57
0 269 185 9308 862 734 51.40 .0655 36 269 185 9305 860 733 49.20 .0627 6 269 185 9305 860 735 51.84 .0660 12 165 114 9254 663 624 27.27 .0347 30 130 90 9246 588 524 11.92 .0160 42 130 90 9246 627 604 12.55 .0160 42 130 90 9294 627 604 12.55 .0160 42 130 90 9294 627 604 12.55 .0160 42 130 90 9304 884 76 12.55 .0160 43 115 79 9308 948 76 12.55 .0160 44 115 79 9324 858 732 <		18	269	185	9306	831	717	52.72	.0672	.0305	13.39
36 269 185 9305 860 733 49.20 .0627 6 269 185 9303 863 735 51.84 .0660 12 165 114 9254 663 624 27.27 .0347 30 130 90 9246 484 524 11.92 .0160 42 130 90 9294 624 11.92 .0152 24 130 90 9294 624 12.55 .0160 42 130 90 9294 624 12.55 .0160 42 130 90 9304 884 746 12.55 .0160 42 115 79 9304 884 746 12.55 .0160 42 115 79 9308 948 782 18.12 .0216 43 15 190 9324 814 70 44.39 .0254		0	269	185	9308	862	734	51.40	.0655	.0297	13.18
6 269 185 9303 863 735 51.84 .0660 12 165 114 9254 663 624 27.27 .0347 30 130 90 9246 598 587 12.55 .0160 42 130 90 9246 484 524 11.92 .0152 24 130 90 9294 627 604 12.55 .0160 42 130 90 9294 627 604 12.55 .0160 42 130 90 9294 627 604 12.55 .0160 42 130 90 9304 884 746 12.55 .0160 42 115 79 932 917 765 16.93 .0216 48 275 190 932 814 707 26.64 .0339 42 125 190 9326 87 72 <td< td=""><td></td><td>36</td><td>269</td><td>185</td><th>9305</th><td>860</td><td>733</td><td>49.20</td><td>.0627</td><td>.0284</td><td>12.60</td></td<>		36	269	185	9305	860	733	49.20	.0627	.0284	12.60
12 165 114 9254 663 624 27.27 .0347 30 130 90 9246 598 587 12.55 .0160 42 130 90 9246 594 524 11.92 .0152 24 130 90 9294 627 604 12.55 .0160 42 130 90 9294 627 604 12.55 .0160 42 130 90 9294 627 604 12.55 .0160 42 130 90 9304 884 746 12.55 .0160 42 115 79 9322 917 765 16.93 .0216 48 275 190 9325 817 709 44.39 .0564 42 115 79 9340 858 732 43.51 .0564 42 123 190 9324 81 707		9	569	185	9303	863	735	51.84	.0660	.0300	13.29
30 130 90 9246 598 587 12.55 .0160 42 130 90 9246 484 524 11.92 .0152 42 130 90 9246 627 604 12.55 .0160 24 130 90 9294 627 604 12.55 .0160 42 130 90 9304 884 746 12.55 .0160 24 115 79 9304 884 746 12.55 .0160 24 115 79 9304 884 746 12.55 .0160 42 115 79 9322 917 765 16.93 .0216 48 275 190 9324 814 707 44.39 .036 48 275 190 9324 814 707 44.39 .036 42 123 85 73 43.51 .036 <		12	165	114	9254	663	624	27.27	.0347	.0158	10.17
42 130 90 9246 484 524 11.92 .0152 Chut Chut Down Drive Belt Problem .0082 24 130 90 9294 627 604 12.55 .0160 42 130 90 9304 884 746 12.55 .0160 24 115 79 9304 884 746 12.55 .0160 24 115 79 9304 869 738 15.41 .0196 42 115 79 9322 917 765 16.93 .0216 48 275 190 9328 817 709 44.39 .036 48 275 190 9324 814 707 26.64 .033 42 275 190 9340 858 732 44.351 .056 42 123 85 9304 646 614 9.18		30	130	06	9246	598	587	12.55	.0160	.0073	5.64
124 85 9285 448 504 6.45 .0082 130 90 9294 627 604 12.55 .0160 130 90 9304 884 746 12.55 .0160 125 86 9317 869 738 15.41 .0196 115 79 9322 917 765 16.93 .0216 115 79 9328 948 782 18.12 .0231 275 190 9324 814 707 26.64 .0339 275 190 9324 858 732 44.39 .0565 275 190 9340 858 732 43.51 .0554 275 190 9340 858 732 43.51 .0554 0339 .017 017		42	130	90	9246	484	524	11.92	.0152	6900.	90.5
0 124 85 9285 448 504 6.45 .0082 24 130 90 9294 627 604 12.55 .0160 42 130 90 9304 884 746 12.55 .0160 24 125 86 9317 869 738 15.41 .0196 24 115 79 9322 917 765 16.93 .0216 42 115 79 9328 948 782 18.12 .0231 48 275 190 9325 817 709 44.39 .0565 42 275 190 9340 858 732 43.51 .0554 42 275 190 9340 858 732 43.51 .0554 54 123 85 9304 646 614 9.18 .0117 24 125 86 9306 738 65 <td< td=""><td></td><td></td><td></td><td></td><th>(Shut</th><td>Down D</td><td>elt</td><td>Problem</td><td></td><td></td><td></td></td<>					(Shut	Down D	elt	Problem			
130 90 9294 627 604 12.55 .0160 130 90 9304 884 746 12.55 .0160 125 86 9317 869 738 15.41 .0196 115 79 9322 917 765 16.93 .0216 275 190 9325 817 709 44.39 .0565 275 190 9324 814 707 26.64 .0339 275 190 9324 814 707 26.64 .0339 275 190 9340 858 732 43.51 .0554 0339 .0565 0340 .058 .032 .034 .034 .046 .017 .054 .0117 034 .046 .046 .046 .046 .046 .046 .046 .046 .046 .046 .046		0	124	85	9285	448	504	6.45	.0082	.0037	2.80
130 90 9304 884 746 12.55 .0160 125 86 9317 869 738 15.41 .0196 115 79 9322 917 765 16.93 .0216 115 79 9328 948 782 18.12 .0216 275 190 9324 817 709 44.39 .0555 275 190 9324 814 707 26.64 .0339 275 190 9340 858 732 43.51 .0554 0339 .0554 0340 .058 732 43.51 .0554 0339 .0117 034 .0117 		24	130	06	9294	627	604	12.55	.0160	.0073	5.72
125 86 9317 869 738 15.41 .0196 115 79 9322 917 765 16.93 .0216 115 79 9322 917 765 16.93 .0216 275 190 9324 817 709 44.39 .0565 275 190 9324 814 707 26.64 .0339 275 190 9340 858 732 43.51 .0554 0554 0554 .0339 0554 .0339 0554 0304 . . .0117 <		42	130	06	9304	884	746	12.55	.0160	.0073	6.36
115 79 9322 917 765 16.93 .0216 115 79 9308 948 782 18.12 .0231 275 190 9324 814 707 26.64 .0339 275 190 9340 858 732 43.51 .0554 27 180 9340 646 614 9.18 .0117 123 85 9304 646 614 9.18 .0117 125 86 9306 738 665 12.33 .0157 125 86 9309 856 704 13.18 .0168 128 88 9298 890 750 15.58 .0168		0	125	98	9317	869	738	15.41	.0196	6800.	8.04
115 79 9308 948 782 18.12 .0231 275 190 9325 817 709 44.39 .0565 275 190 9324 814 707 26.64 .0339 275 190 9340 858 732 43.51 .0554 123 85 9304 646 614 9.18 .0117 125 86 9306 738 665 12.33 .0157 125 86 9309 856 704 13.18 .0168 128 88 9298 890 750 15.58 .0198		24	115	62	9322	917	765	16.93	.0216	8600.	89.6
275 190 9325 817 709 44.39 .0565 275 190 9324 814 707 26.64 .0339 275 190 9340 858 732 43.51 .0554 123 85 9304 646 614 9.18 .0117 125 86 9306 738 665 12.33 .0157 120 90 9295 807 704 13.18 .0168 128 88 9298 890 750 15.58 .0198		42	115	62	9308	948	782	18.12	.0231	.0105	10.49
275 190 9324 814 707 26.64 .0339 275 190 9340 858 732 43.51 .0554 (Shut Down) Compressor Problem 123 85 9304 646 614 9.18 .0117 125 86 9306 738 665 12.33 .0157 130 90 9295 807 704 13.18 .0168 125 86 9309 856 731 12.95 .0165 128 88 9298 890 750 15.58 .0198		48	275	190	9325	817	709	44.39	.0565	.0256	10.95
275 190 9340 858 732 43.51 .0554 . (Shut Down) Compressor Problem 123 85 9304 646 614 9.18 .0117 125 86 9306 738 665 12.33 .0157 130 90 9295 807 704 13.18 .0168 125 86 9309 856 731 12.95 .0165 128 88 9298 890 750 15.58 .0198		18	275	190	9324	814	707	26.64	.0339	.0154	92.9
(Shut Down) Compressor Problem 123 85 9304 646 614 9.18 .0117 125 86 9306 738 665 12.33 .0157 130 90 9295 807 704 13.18 .0168 125 86 9309 856 731 12.95 .0165 128 88 9298 890 750 15.58 .0198		42	275	190	9340	858	732	43.51	.0554	.0251	10.91
123 85 9304 646 614 9.18 .0117 125 86 9306 738 665 12.33 .0157 130 90 9295 807 704 13.18 .0168 125 86 9309 856 731 12.95 .0165 128 88 9298 890 750 15.58 .0198			٠		(Shut		_	Problem			
125 86 9306 738 665 12.33 .0157 130 90 9295 807 704 13.18 .0168 125 86 9309 856 731 12.95 .0165 128 88 9298 890 750 15.58 .0198		54	123	85	9304	646	614	9.18	.0117	.0053	4.43
130 90 9295 807 704 13.18 .0168 125 86 9309 856 731 12.95 .0165 128 88 9298 890 750 15.58 .0198		12	125	98	9306	738	999	12.33	.0157	.0071	6.11
125 86 9309 856 731 12.95 .0165 128 88 9298 890 750 15.58 .0198		24	130	90	9295	807	704	13.18	.0168	9200.	6.48
128 88 9298 890 750 15.58 . 0198		42	125	98	9309	856	731	12.95	.0165	.075	6.73
		54	128	88	9298	890	750	15.58	.0198	0600.	8.63

TABLE 22.2 (Concluded)

BUILD 22, PERFORMANCE MAPPING, SHROUDED COMPOSITE SLIDER (Sheet 4 of 4)

% of Labyrinth	Flow	8.91	67.6	9.58	10.95	8.96	12.67	13.32	98.6	4.22	4.61	4.56	3.35	4.23	4.23	6.15	5.62	4.35	4.24	4.20	3.23	2.99	2.83	2.43	2.03	
																			·	. •		;				
e O	kg/sec	6600.	.0104	.0104	.0163	7600.	.0303	.0321	.0237	6600.	.0110	.0110	.007	6600.	6600.	.0077	8900.	.0053	.0054	.0053	.0044	.0039	.0031	.0022	.0012	
Air Flow Rate	1b/sec	.0218	.0230	.0230	.0359	.0214	.0667	.0707	.0522	.0219	.0242	.0242	.0170	.0217	.0217	.0171	.0149	.0118	.0119	.0118	.0097	.0087	.0067	.0049	.0026	
•	SCFM	17.14	18.07	18.07	28.17	16.82	52.38	55.54	40.98	1716	18.96	18.96	13.32	17.07	17.07	13.40	11.71	9.25	9.31	9.25	7.58	6.81	5.28	3.81	2.02	Seal)
Sealed Air) 	765	780	794	770	801	730	741	746	754	736	722	736	751	751	656	624	009	577	560	543	529	517	508	501	- Inspect S
Seale	4	917	945	970	927	984	854	875	883	868	866	840	865	893	893	721	664	621	579	548	518	492	471	455	442	Down
S. P. P. P	RPM	9287	9291	9294	9288	9288	10400	10387	10387	10387	10391	10391	10391	10408	10411	8000	8000	8000	8000	8000	8000	8000	8000	8000	8000	(Shut
Sealed Air	N/cm ²	88	88	88	122	88	196	200	200	196	196	196	190	194	194	93	98	98	88	98	91	87	89	55	31	
Seale	psig	128	128	128	177	128	285	290	290	285	285	285	275	282	282	135	125	125	127	125	132	126	66	80	45	
Lapsed	Min	12	24	42	54	12	36	0	9	24	36	54	9	18	30	42	48	0	12	24	36	42	54	, - -	9	
Lapse	Hrs	31	31	31	31	32	32	33	33	33	33	33	34	34	34	34	34	35	35	35	35	35	35	36	36	

Figure 32. Seal Race, After Build 22.

Figure 33. Piston Ring/Balance Diameter, After Build 22.

Figure 34. Carbon Face/Bearings, After Build 22.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 35. Gas Bearings, After Build 22.

TABLE 22.3

CARBON FACE WEAR MEASUREMENTS # (Shrouded Composite Slider)

	Angular Location	Dimension_	A (inches)	Wear
<u>Point</u>	Degrees	Before Test	After Test	(inches)
1	0	.4843	.4839	.0004
2	40	.4843	.4830	.0013
3	80	.4837	.4830	.0007
4	120	.4837	.4830	.0007
5	160	.4833	.4829	.0004
6	200	.4839	.4831	.0008
7	240	.4840	.4825	.0015
8	280	.4841	.4829	.0012
9	320	.4840	.4833	.0007

Maximum Wear = .0015 inch (.00381 cm)

Minimum Wear = .0004 inch (.00102 cm)

Average Wear = .000855 inch (.00217 cm)

Total Time = 33 hrs, 44 min

Wear Rate = 25×10^{-6} inch/hr (64 x 10^{-6} cm/hr)

contained a total of 90 inward pumping spiral grooves with 75% groove, 25% land, in the aluminum oxide hard coating. The depth of each groove was measured, and average, minimum, and maximum depths were .00095 inch (.00241 cm), .00088 inch (.00224 cm), and .00118 inch (.00300 cm), respectively.

Prior to test, the radial width of the primary face carbon sealing dam was reworked from .045 inch (.1143 cm) to .0335 inch (.0851 cm) to increase the pressure force seating the seal face against the race. To accomplish this change, material was removed from the inner radius of the dam.

Two dynamic tests, consisting of 8.2 hours total operating time, were completed. Data from the first test (5 hours 13 minutes) is shown on Table 23.1. Results of the balance of testing (2 hours 59 minutes) is shown on Table 23.2. Wear on the carbon face was relatively high following Build 23.1, with a conical taper high at the outside diameter of the sealing face. This taper suggested the possibility of an axial offset of the centers of stiffness of the carbon cross-section and cross-section of the metal ring shrunk around its outside diameter.

To determine if the result was repeatable, a second test (Build No. 23.2) was conducted after lapping the carbon face to flatness within three (3) helium light bands. Following are wear and taper measurements for both tests:

				<u>Average Ca</u>	rbon Face		Carbon Taper
	Time	e	We	ar	Wear	Rate	(High @ OD)
Build	Hrs	Min	inch	cm	in/hr	cm/hr	<u>in/in</u>
23.1	5	13	.000971	.002466	.000186	.000472	.00487
23.2	2	57	.000401	.001019	.000136	.000345	.00580

Based on analysis using nominal drawing dimensions, the carbon taper predicted at 1000 degrees F (538 degrees C) and 295 psid (203.4 N/sq cm) was .00154 inch/inch high at the inside diameter. Approximately 91% of the calculated taper results from offset of axial centers of gravity of the carbon ring and steel shrink-ring of the wafer assembly. The torsional moment generating this taper is 1.944 inch-pounds per inch of circumference. The axial offset generating this moment is .00458 inches (.01163 cm).

TABLE 23.1

BUILD 23, PERFORMANCE MAPPING, SPIRAL GROOVE SEAL (Sheet 1 of 2)

Time	e	Seal	Sealed Air Pressure	Shaft	Seal	Sealed Air Femperature	Air	Air Flow Rate	ø	% of Labyrinth
Hrs	Min	psig	N/cm ²	RPM	<u>-</u>	 %	SCFM	1b/sec	kg/sec	Flow
0	0	10	7	2000	85	302	.259	.0003	.0001	0.49
		45	31	2000	87	304	. 403	.0005	.0002	0.32
		80	55	2000	95	308	.508	9000.	.0003	0.25
		115	79	2000	110	316	. 594	.0008	.0003	0.22
		150	103	2000	117	320	3.347	.0043	.0019	0.98
		185	128	2000	134	330	5.528	.0070	.0032	1.35
		220	152	2000	167	348	13.985	.0178	.0081	2.98
		255	176	2000	144	335	33.409	.0426	.0193	60.9
,- -	24	290	200	2000	138	332	35.551	.0453	.0205	5.71
		10	7	2000	391	472	. 648	8000.	.0004	1.53
		45	31	2000	390	472	4.230	.0054	.0024	4.13
		80	55	2000	384	695	8.883	.0113	.0051	5.45
		115	79	2000	378	465	12.474	.0159	.0072	5.57
		150	103	2000	390	472	16.735	.0213	7600.	5.93
		185	128	2000	382	467	21.373	.0272	.0123	6.21
		220	152	2000	384	694	23.970	.0305	.0138	5.93
		255	176	2000	390	472	25.698	.0327	.0148	5.56
7	24	290	200	2000	392	473	28.222	.0359	.0163	5.41
		10	7	2000	687	637	. 648	8000.	.0004	1.78
		45	31	2000	687	637	6.045	.0077	.0035	98.9
		80	55	2000	699	627	10.660	.0136	.0062	7.57
		115	79	2000	675	630	14.256	.0182	.0082	7.41
		150	103	2000	999	625	20.080	.0256	.0116	8.18
		185	128	2000	634	209	26.164	.0333	.0151	8.67
		220	152	2000	634	209	35.955	.0458	.0208	10.13
		255	176	2000	614	969	43.686	.0556	.0252	10.62

TABLE 23.1 (Concluded)

BUILD 23, PERFORMANCE MAPPING, SPIRAL GROOVE SEAL (Sheet 2 of 2)

% of	Flow	10.62	0.75	0.51	4.47	3.79	4.54	5.40	4.89	6.17	10.51	14.00	15.83	16.62	16.18	
•	kg/sec	.0289	.0001	.0002	.0032	.0038	.0058	.0085	.0092	.0148	.0263	.0145	.0178	.0194	.0194	s)
	AIL FIOW RALE	.0638	.0003	.0005	.0071	.0083	.0128	.0188	.0240	.0327	.0580	.0320	.0391	.0427	.0427	kage Rate
•	SCFM	50.070	.249	.403	5.58	6.53	10.04	14.74	15.98	25.69	45.52	25.14	30.72	33.52	33.52	Increasing Leakage Rates
ealed Air	emperature									802 701					106 425	of
02 8	RPM •									5000						Down - Inspect for
Air	ure N/cm ²	200	7	31	55	62	103	128	152	176	200	69	69	69	69	(Shut Down
Sealed Air	Pressure psig N/c									255						
	Time s Min	30									30				13	
Ĩ	Hrs	ო									4				S	

TABLE 23.2

BUILD 23a, PERFORMANCE MAPPING, SPIRAL GROOVE SEAL

		Seale	Sealed Air		Seal	ealed Air				of of
Time	<u>a</u>	Pres	Pressure	Shaft	Temp	erature	Air	Air Flow Rate	£	Labyrinth
Hrs	Min	psig	N/cm ²	RPM	CE.	A. A.	SCFM	1b/sec	kg/sec	Flow
	12	25	17	5018	132	329	.329	.0004	.0002	0.40
	30	100	69	5022	355	452	.559	.0007	.0003	0.28
	42	110	9/	5025	524	546	.583	.0007	.0003	0.29
-	0	100	69	5057	692	079	.559	.0007	.0003	0.33
_	30	96	62	5076	918	765	.534	.0007	.0003	0.38
-	36	115	62	2067	931	772	.594	8000.	.0003	0.34
-	42	290	200	5058	940	777	9.105	.0116	.0053	2.24
-	47	290	200	2068	729	099	35.505	.0452	.0205	8.04
-	54	290	200	5069	643	612	35.505	.0452	.0205	7.74
-	59	290	200	5071	573	574	35.505	.0452	.0205	7.49
7	5	255	176	5070	558	565	35.505	.0452	.0205	8.40
7	∞	200	138	5080	260	566	19.109	.0243	.0110	5.69
7	15	100	69	5051	583	579	8.938	.0114	.0052	5.06
7	25	100	69	5034	478	521	16.758	.0213	7600.	8.95
7	30	100	69	5053	415	486	19.551	.0249	.0113	9.56
7	49	100	69	5045	327	437	19.551	.0249	.0113	9.56
7	59	15	10	5048	316	431	ı			i

Since the above analysis did not correlate well with test results (measured taper is larger than calculated), the calculations were repeated based on actual physical measurements taken from the carbon wafer assembly. Results showed an axial offset of c.g.'s equal to .01563 inch (.03970 cm) generating a taper of approximately .00493 inch/inch at 1000 degrees F and 295 psid, which correlates exceptionally well with measurements taken from the seal carbon face following tests.

Data on Figure 36 shows calculated face seal dam to race clearance required to give the flow rates measured during Build 23.2 testing (Table 23.2). The circled numbers, 1 through 17, are in sequence from test start to stop. Calculated clearances were estimated based on the assumption of viscous, laminar, isothermal flow, with secondary piston ring flow assumed equal to zero. The curve suggests that the wafer section rolls in the direction to close the seal dam to race clearance as temperature is increased and in the process wear is generated on the seal face with the greater wear occurring at the seal dam. When temperature is decreased, the wafer section rolls in the opposite direction which moves the worn seal dam away from the race to generate a clearance which increases with decreasing temperature. This test data supports the results of analysis.

Figures 37, 38, and 39 show seal condition following test.

Test Build No. 24 - Performance Mapping, Spiral Groove Seal

Following the testing completed in Build 23, seal carbon wafer S/N 3 was reworked to align the axial c.g. of the carbon ring to the axial position of the c.g. of the metal shrink ring in the wafer assembly. Face taper measurements taken before and after rework confirmed that the accuracy of the calculations was within 10%. While taking measurements to determine if rework affected dimensions of the face sealing dam, the dam was fractured and was not repairable.

Carbon wafer S/N 1 was then measured, and the axial offset in carbon to shrink ring c.g.'s was determined by calculation to produce a section roll of

Figure 36. Calculated Seal Dam Clearance, Build 23.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 38. Carbon Face, After Build 23.

Figure 39. Spiral Groove Gas Bearings, After Build 23.

.001567 inch/inch at 1000 degrees F and 295 psid. Rework to align the c.g.'s again corroborated that the analytical prediction was within 10% of accuracy based on pre- and post-rework measurements of carbon face taper.

In addition to the above, the inside radius of the carbon face sealing dam was reworked to decrease the dam radial width from .045 inch (.0043 cm) to .0378 inch (.0960 cm) to increase the axial pressure force seating the seal against the race.

Seal wafer S/N 1, in seal housing S/N 1, with a carbon piston ring secondary seal was subsequently tested dynamically for 8 hours 26 minutes against the same spiral groove race used in Build 23. Test results are shown on Table 24.1. Average wear on the carbon face was .000546 inch (.001387 cm). Wear rate was .000067 inch (.000170 cm) per hour. Measured taper was .000128 inch (.000325 cm) with the high at the seal dam. No measurable wear occurred on the aluminum oxide hard coating of the spiral groove seal race. All hardware appeared to be in good condition (see photo, Figure 40).

Test Build No. 25 - Endurance Testing, Spiral Groove Seal

Spiral groove seal wafer S/N 1 was again reworked to increase the axial pressure force seating the seal against the race. Rework consisted of removing material from the inner radius of the carbon face sealing dam to reduce its radial width from .0378 to .0345 inch (.0960 to .0876 cm). The wafer assembly was not relapped or reconditioned in any other way (see Figure 41). The wafer was assembled in housing S/N 2 with a new carbon piston ring secondary seal prior to this endurance test.

One hundred three (103) hours thirty (30) minutes dynamic testing was subsequently completed at conditions and with air leakage rates shown on Table 25.1.

Seal carbon face wear for this test duration was as follows:

TABLE 24.1

BUILD 24, PERFORMANCE MAPPING, SPIRAL GROOVE SEAL (Sheet 1 of 2)

% of Labyrinth	Flow	6.23	3.06	2.18	3.24	3.54	2.33	2.75	2.37	6.41	8.01	5.29		2.21	2.06	2.20	2.28	2.25	2.56	3.07	3.42	5.04	6.51	6.42	7.12	7.17	7.57
4	kg/sec	.0019	.0024	.0034	.0052	9900.	.0037	.0036	.0048	9900.	.0095	.0071		.0031	.0034	.0036	.0036	.0034	.0034	.0033	.0034	.0048	.0073	.0067	.0071	.0071	.0077
Air Flow Rate	1b/sec	.0042	.0054	.0076	.0116	.0145	.0082	.0080	.0107	.0146	.0210	.0157		.0068	.0075	.0079	.0079	9200.	.0075	.0073	.0075	.0107	.0162	.0151	.0155	.0156	.0170
***	SCFM	3.29	4.20	5.94	9.08	11.35	6.45	6.27	8.38	11.47	16.48	12.33	Heaters)	5.30	5.86	6.23	6.17	96.5	5.86	5.71	5.86	8.37	12.71	11.88	12.13	12.23	13.36
Sealed Air	X. J.	304	309	315	320	324	424	553	582	521	462	410	Repair Air	317	335	351	371	415	516	574	620	663	099	682	720	742	149
Seal	E.	87	96	108	116	123	304	536	588	479	372		Down to		144												889
Shaft	RPM	. 5000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000		2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000
d Air	N/cm ²	17	35	79	83	97	95	90	69	65	72	77		69	86	88	86	06	86	72	69	69	83	79	74	9/	62
Sealed Air	psig	25	20	115	120	140	138	130	100	95	104	112		100	125	128	125	130	125	105	100	100	120	115	108	110	115
Q	Min	10	17	30	48	15	39	55	18	29	30	48		က	13	23	33	43	53	3	13	23	33	43	∞	28	33
 E	Hrs					-	-	-	7	7	7	7		က	ო	ო	က	က	က	4	4	4	4	4	2	2	2

TABLE 24.1 (Concluded)

BUILD 24, PERFORMANCE MAPPING, SPIRAL GROOVE SEAL (Sheet 2 of 2)

% of	Labyrinth	Flow	9.75	8.48	13.95	19.71	9.76	19.14	12.97	9.95	9.95	9.82	9.52	9.29	90.6	8.82	7.97	6.95	6.70	2.60	5.15		
	ite	kg/sec	.0100	.0175	.0183	.0271	.0111	.0208	.0121	8600.	.0093	9600.	7600.	7600.	.0097	.0097	.0094	.0082	.0083	.0070	.0067		
	Air Flow Rate	1b/sec	.0219	.0385	.0403	.0597	.0246	.0458	.0267	.0218	.0213	.0212	.0213	.0213	.0213	.0213	.0207	.0182	.0184	.0155	.0148		
	Ai	SCFM	17.23	30.22	31.61	46.86	19.32	35.92	20.95	17.12	16.76	16.61	16.76	16.76	16.76	16.76	16.27	14.27	14.45	12.13	11.65	1	
1 Air	rature	씱	749	739	716	999	723	705	700	672	645	617	584	562	533	505	478	472	450	445	423		(Shut Down)
Seale	Tempe	Y.				739																I	(Shut
	Shaft	RPM	2000	2000	2000	2000	9200	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	2000	
d Air	sure	N/cm ²	79	104	102	104	88	81	69	72	69	89	69	69	69	69	72	72	74	74	9/	9/	
Sealed Air	Pressure	psig	115	151	148	150	128	117	100	105	100	86	100	100	100	100	105	105	108	108	110	110	
	Time	Min	43	53	58	00	28	37	43	47	48	49	51	54	58	Ŋ	19	23	44	52	18	26	
	Ti	Hrs	2	2	2	9	9	9	9	9	9	9	9	9	9	7	7	7	7	7	œ	œ	

Figure 40. Seal and Race, After Build 24.

TABLE 25.1

BUILD 25, ENDURANCE TEST, SPIRAL GROOVE SEAL (Sheet 1 of 5)

% of	Labyrinth	0.55	0.95	2.10	2.11	2.24	2.37		4.01	5.73	9.32	14.31	16.70	16.83	18.29	17.60	18.38	18.92	18.45	18.57	19.20	17.30	17.53	17.49	18.42	17.49	17.54	21.48
	kg/sec	.0001	.0005	.0036	.0036	.0036	.0036		.0050	.0068	.0104	.0159	.0186	.0186	.0221	.0196	.0205	.0218	.0207	.0205	.0214	.0197	.0196	.0196	.0203	.0196	9610.	.0249
	Air Flow Rate	.0003	.0011	6200.	6200.	6200.	6200.		.0111	.0150	.0230	.0351	.0409	.0409	.0488	.0432	.0451	.0480	.0453	.0451	.0472	.0434	.0432	.0432	.0448	.0432	.0432	.0549
	SCFM	.232	.842	6.21	6.21	6.21	6.17		8.68	11.78	18.06	27.55	32.13	32.13	38.29	33.91	35.42	37.65	35.57	35.42	37.03	34.10	33.88	33.88	35.19	33.88	33.88	43.12
Sealed Air	Temperature °F °K	305	310	318	321	362	401	Replace Blowm	594	099	701	710	711	722	710	719	730	734	740	745	708	717	725	722	721	722	726	672
Seal	Temp	89	86		118		262	Down -	610		803		821															
	Shaft RPM	2000	2000	2000	2000	7400	7400	(Shut	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	6250	2000	2000
1 Air	N/cm ²	က	19	88	88	88				88																		
Sealed Air	Pressure psig N/c	S	27	127	127	127	125		127	127	123	123	123	123	135	125	125	130	126	125	123	127	125	125	123	125	125	125
	Time Hrs Min	15	25	35	40	1 0	1 21		1 31	1 46	2 1	2 21	2 41	3 1	3 21		4 1	4 21	4 41	5 1	5 21	5 41		6 21	6 41	9 46		

TABLE 25.1 (Continued)

BUILD 25, ENDURANCE TEST, SPIRAL GROOVE SEAL (Sheet 2 of 5)

% of	Labyrinth	Flow	16.33	14.09			5.68	11.38	12.23	13.50	18.17	19.45	20.23		21.52	22.32	21.56		23.68	23.48	23.55	24.24	23.33	23.17	23.04	22.86	22.19	21.74	21.76
	ė	kg/sec	.0214	.0197			.0148	.0177	.0203	.0196	.0240	.0232	.0232		.0250	.0246	.0227		.0328	.0284	.0289	.0281	.0267	.0257	.0251	.0257	.0244	.0240	.0240
	Air Flow Rate	1b/sec	.0472	.0434		s)	.0325	.0390	.0447	.0432	.0530	.0511	.0511	rer)	.0552	.0542	.0501		.0722	.0626	.0637	.0620	.0589	.0567	.0553	.0567	.0537	.0530	.0530
	Air	SCFM	37.08	34.10	1	Power Loss)	25.53	30.61	35.10	33.91	41.62	40.08	40.08	Roots Blower)	43.30	42.54	39.35	Lost Power)	56.86	49.15	50.03	48.71	46.24	44.54	43.45	44.50	42.18	41.59	41.59
Sealed Air	Temperature	%	533	476		to In Plant	357	364	377	429	516	638	783	- Lost Power to	718	746	756	Roots Blower L	518	609	635	671	685	723	748	695	949	638	079
Seale	Tempe	Œ	200	397	1		183	195	220	313	470	689	783	٠.	833	883	901	- Roo	473	637	684	748	773	842	887	191	704	689	692
	Shaft	RPM	2000	2000	2000	(Test Aborted Due	2600	5500	6839	7350	7349	7356	7357	(Rig Shut Down	7000	7000	7000	(Shut Down	7341	7180	7172	7179	7160	7159	7162	7162	7162	7148	7154
Sealed Air	sure	N/cm ²	87	88	88		93	85	93	98	98	98	98		90	98	83		91	85	89	98	86	85	85	84	62	79	79
Seale	Pressure	psig	126	127	127		135	123	135	125	125	125	125		130	125	120		132	124	129	125	125	124	124	123	115	115	115
	ne	Min	2	21	48		0	17	20	20	20	20	12		45	45	42		27	57	30	57	27	2	55	55	52	48	32
	Time	Hrs	7	7	7		∞	œ	œ	0	10	11	12		12	13	14		15	15	16	16	17	18	18	19	20	21	22

TABLE 25.1 (Continued)

BUILD 25, ENDURANCE TEST, SPIRAL GROOVE SEAL (Sheet 3 of 5)

Seg	Sealed Air		Seal	Sealed Air	•	6	9	% of
Pre	Pressure is N/cm ²	Shaft RPM	Temp	Temperature •F •K	SCFM	Air Flow Kate	kg/sec	Flow
	79	7144	675	630		.0530	.0240	21.61
		(Rig	Shut Down -	wm - Motor	Failure)			
	31	2968	100	311	24.18	.0308	.0140	19.17
	31	9199	164	346	18.18	.0232	.0105	15.22
		S)	(Shut Down	- Chip Det	Detector)			
	9/	9669	148	337	46.30	.0590	.0268	18.31
		<u>(S</u>	(Shut Down	- Belt De	Detector)			
	24	6456	46	309	18.39	.0234	.0106	17.47
	24	1111	101	311	16.56	.0211	9600.	15.79
	38	7239	187	359	22.86	.0291	.0132	16.69
	78	7239	293	418	46.57	.0593	.0269	20.02
	81	7350	323	435	39.06	.0498	.0226	16.47
	9/	7381	509	538	43.69	.0557	.0252	21.81
	9/	7393	547	559	43.69	.0557	.0252	22.23
	9/	7406	603	590	43.07	.0579	.0249	22.52
	9/	7411	627	604	41.32	.0526	.0239	21.85
	9/	7416	643	612	43.69	.0557	.0252	23.27
	9/	7420	099	622	43.69	.0557	.0252	23.45
	9/	7423	671	628	43.69	.0557	.0252	23.57
	92	7432	681	634	43.69	.0557	.0252	23.67
	9/	7430	691	639	43.69	.0557	.0252	23.77
	74	7436	669	944	43.34	.0552	.0250	24.05
	74	7445	743	899	40.45	.0515	.0234	22.87
	62	7447	437	498	42.17	.0537	.0244	24.13
	62	5263	384	695	42.17	.0537	.0244	23.40
			S)	(Shut Down)				

TABLE 25.1 (Continued)

BUILD 25, ENDURANCE TEST, SPIRAL GROOVE SEAL (Sheet 4 of 5)

Time	يو	Seal	Sealed Air Pressure	Shaft	Seal	Sealed Air Temperature	Air	Air Flow Rate	ø	% of Labyrinth
Hrs	Min	psig	N/cm ²	RPM	E 4	» 	SCFM	1b/sec	kg/sec	Flow
47	38	i		7400	1		ı			
		(Shut	Down - Water	in Seal Air	- Com	Compressor 1	Failure - Wate	- Water/Oil in	Supply Line)	
47	20	35	24	1300	92	306	ı	1	, 1	ı
48	10	115	79	7400	100	311	65.34	.0832	.0378	23.84
48	35	115	79	7400	107	315	53.46	.0681	.0309	19.63
48	20	110	92	7400	118	321	49.47	.0630	.0286	19.08
49	10	0	0	7400	(Adj	ust Air	(Adjust Air Compressor)			
49	14	110	92	7400	121	322	48.02	.0612	.0277	18.57
20	0	105	72	7400	297	420	42.80	.0545	.0247	19.68
20	34	115	79	7400	390	472	47.52	.0605	.0275	21.36
51	34	115	79	7400	514	541	44.55	.0567	.0257	21.44
54	24	115	79	7400	549	260	43.07	.0549	.0249	21.10
					(S)	(Shut Down)				
55	19	110	9/	7000	126	325	45.98	.0586	.0266	17.85
22	44	125	98	7300	314	430	46.64	.0636	.0289	19.89
99	53	120	83	7300	525	547	45.45	.0579	.0263	21.18
27	37	120	83	7300	595	586	46.64	.0636	.0289	24.09
28	20	120	83	7300	630	605	43.03	.0548	.0249	21.09
29	15	110	92	7350	643	612	40.74	.0519	.0235	21.70
09	29	115	62	7350	999	625	42.17	.0537	.0244	21.82
19	19	120	83	7350	685	636	42.42	.0540	.0245	21.31
9/	41	115	62	7400	736	664	46.93	.0598	.0271	25.03
78	14	110	9/	7400	786	692	43.65	.0556	.0252	23.76
79	49	120	83	7400	823	712	45.45	.0579	.0263	24.17
81	24	115	79	7400	836	720	42.18	.0537	.0243	23.42
83	44	125	98	7400	835	719	46.24	.0589	.0267	23.80
84	29	125	98	7400	832	719	46.24	.0589	.0267	23.82

TABLE 25.1 (Continued)

BUILD 25, ENDURANCE TEST, SPIRAL GROOVE SEAL (Sheet 5 of 5)

% of	Flow	See Note*															
	kg/sec	.0362	.0374	.0374	.0374	.0374	.0436	.0436	.0436	.0436	.0436	.0436	.0436	.0436	.0463	.0463	.0463
	SCFM 1b/sec k	.0799	.0825	.0825	.0825	.0825	.0961	.0961	1960.	1960.	1960.	1960.	.0961	.0961	.1020	.1020	.1020
1	SCFM	62.69*	64.74*	62.37*	73.08*	73.08*	75.50*	75.50*	69.46*	75.46*	75.46*	75.46*	75.46*	75.46*	80.08*	77.00*	81.12*
ed Air	remperature F °K	662	658	588	464	474	462	452	077	435	430	427	425	419	404	401	396
Seal	. F	733	725	599	430	393	372	355	332	323	315	309	305	294	268	263	254
i i	RPM	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	7400	0
Sealed Air	rressure ig N/cm ²	83	86	79	83	83	89	83	83	98	98	98	98	98	98	86	81
Seale	psig	120	125	115	120	120	129	120	120	125	125	125	125	125	125	125	118
	Min	29	52	57	က	œ	13	18	23	28	33	38	43	48	15	30	ı
i	Hrs	100	101	101	102	102	102	102	102	102	102	102	102	102	103	103	I

Air compressor will not pump this much flow (~ 58 SCFM, maximum). Vapors were noted from discharge pipes downstream of seal. Source of vapors is air storage tank. Liquid through air rotometer gives high indicated false readings. Storage tank drain valve not open. Note:

	Average	Wear
Radial Location	inches	cm
	•	
Seal Dam	.002600	.006604
Bearing Pad I.D.	.000719	.001826
Bearing Pad Ctr.	.000665	.001689
Bearing Pad O.D.	.000696	.001768

The above wear data is based on the average of measurements taken at six (6) equally spaced circumferential locations sixty (60) degrees apart. Radial flatness remained within .000055 inch (.000140 cm), average, on the gas bearing pad implying good flatness during testing. Pad wear averaged .000693 inch (.001760 cm) for a wear rate of .0000068 inch/hour (.0000173 cm/hr). Based on an initial available depth of carbon wear material of .065 inch (.165 cm), this would extrapolate to a minimum carbon wear life of 9561 hours.

Wear on the seal face dam was approximately .0026 inches (.0066 cm), or approximately .00188 inch (.00478 cm) greater than at the inner radius of the gas bearing pad on the carbon face. The surface of the sealing dam was very rough and striated circumferentially, and the inner and outer radius of the dam, as well as the circumferential groove above the dam and the 90 air bleed holes that feed high pressure air to the groove, were coated with a reddish colored fine powder with the consistency of iron oxide. In referring to Table 25.1, Sheet 4, a failure was experienced in the supply air compressor approximately 56 hours 6 minutes prior to test completion. Oily water was found in the seal pressurizing air pipes after the compressor failure. Again, 2 hours 30 minutes before test completion vapors were observed exiting the seal downstream air plenum (see Table 25.1, Sheet 5), followed by a significant increase in seal air leakage rates. Inspection of the seal pressurizing air plenum showed all surfaces to be coated with red colored fine abrasive powder. The vapors were the result of failure to open the air storage tank drain line prior to testing. This allowed the tank to accumulate water and compressor oil. This mixture apparently flushed rust through the pressurizing air to the seal inlet air plenum (see photos, Figures 42 through 48).

The above implied that the seal dam wear was caused by ingestion of abrasive particles in the seal dam interface, causing the rapid wear and sudden increase in air leakage rates noted 2.5 hours prior to the end of test.

Figure 42. Seal and Air Plenum, After Build 25.

Figure 43. Shaft Face, After Build 25.

Figure 44. Spiral Groove Bearing Race, After Build 25.

Figure 45. Wafer Aft Face, After Build 25.

Figure 46. Carrier Face, After Build 25.

Figure 47. Seal Housing Balance Diameter, After Build 25.

Figure 48. Carbon Piston Ring, After Build 25.

No measurable wear was observed in the hard coating (aluminum oxide) of the spiral groove race. Light striations were observed in the vicinity of the race opposite the carbon face sealing dam but not in the bearing pad area (see photo, Figure 44).

Conclusions and Recommendations

The three (3) lift pad gas bearing seal designs tested demonstrated adequate potential to encourage continuation of development for application to high pressure, high speed, energy conservative gas sealing applications.

The principal seal design problems experienced during this program were related to the structure of the seal face wafer assembly. The wafer lacked sufficient structural stiffness to control radial pressure dilation and thermally and pressure generated section torsional "roll." Strain gage measurements were made on several wafers to determine pressure induced deflection. These measurements showed that 300 psi pressure drop generated radial dilation in the order of 1500 micro-radians with circumferential variations in section roll in the order of 350 micro-radians. The radial dilation affects a change in total seal axial pressure closing force of minus 11.07 pounds at 300 psid due to the increased projected interface area between the seal face dam and the piston ring balance diameter. This affects a reduction in allowable friction coefficient at the piston ring to balance diameter interface from .275 to .085 with spring force equal to 10.44 pounds, used earlier in the program, and .394 to .204 with the later used 17.40 pound spring force. Both are marginal in providing the magnitude of force required to allow the seal to track the axial one per rev runout of the seal race. If mass inertia affects are added, the situation becomes more marginal. To compensate for this, the seal face dams were reworked to restore the pressure closing forces prior to the last several tests as described previously under Test Results and Discussion. The pressure induced torsional moments are of sufficient magnitude when compared to the calculated gas bearing film thickness to cause face wear and increased air leakage rates. In addition to the pressure-strain problems, the large differential thermal expansion rate between the carbon and the steel shrink ring is the source of significant

additional section roll when even small offsets exist between the axial centers of stiffness of the carbon and steel (see Figure 49). The relatively low thermal expansion rate of the carbon results in a shrink line force (F) of approximately 600 pounds per inch of circumference at room temperature in order that a sufficient fit is retained at part temperature of 1000 degrees F. This force varies almost linearly with temperature. The composite stiffness of the wafer section about the Y-Y plane is approximately .041 1b-inch squared. Using the equation, theta equals moment times radius squared divided by stiffness, the section roll at 1000 degrees F and .01 inch offset is approximately 3000 micro-radians or a deflection across the seal face of approximately .0018 inch. This affect was clearly demonstrated in Test Build No. 23. To correct these problems it became necessary to measure each individual wafer and, using the measured data, determine analytically the dimensional adjustments required to align the axial locations of the carbon with respect to the steel and the composite center of stiffness with respect to the center of radial pressure force. Material was then removed from appropriate areas of the shrink ring, carbon, or both to correct the problem.

The above described "stiffness" problem is detrimental in the manufacture of the part as well as in its operation. During manufacture the problem shows up in final machining and lapping operations where material removed from one face generates a section roll which shows up as a taper on the opposite face. During operation any face wear incurred changes the axial location of the center of stiffness of the carbon and affects a section roll of the wafer assembly. This is more pronounced on the spiral groove assembly wafers because the entire dynamic face of the carbon is part of the section hoop, whereas the stepped and tapered bearing wafers contain radial vent grooves in the dynamic faces which effectively interrupts the hoops except at the sealing dams.

In addition to the stiffness problem, other areas require improvement as follows:

1. <u>Spline Inserts</u> - The carbon inserts installed by rework at the male radial splines on the wafer assembly are too fragile. Several of these fractured during normal handling.

Figure 49. Wafer Shrink Line Forces and Moments.

- 2. <u>Wafer Stabilization</u> Thermal cycling is recommended to relieve the axial and radial shrink line strains generated in the carbon wafer assembly while the steel shrink ring cools after heat assembly around the carbon ring.
- 3. Inner Wear Pads The small vented wear pads located radially inward of the sealing dam on the face of the carbon wafer were removed during the later stages of the test program. This was done primarily because the integrity of the bond between the hard coating and the substrate on the seal race in the vicinity of these pads was in doubt. A pneumatic study of the affect of these pads should be done to understand if they are a requirement on gas bearing seal faces. They are used to reduce the seal dam pressure force variations resulting from convergence in the direction of gas flow. Since convergence affects an increase in pressure force as face clearance approaches zero, it may well be advantageous to ignore this convention on clearance type seals.
- 4. Race Plating A plating spillover groove was provided in the design of the seal race at the intersection of the transverse face and inner flange of the race. The bond of the coating to the substrate in this area is in doubt, and spalling was experienced as a result of a hard rub during one test. This design should be changed to the flush machined "pocket" as is now the commonly accepted practice.

It is recommended that a configuration, revised approximately as shown on Figure 50, be designed, manufactured and tested. This design has the potential to substantially improve the problems described above. Torsional stiffness can potentially be increased in the Y-Y plane by a factor of between 10 and 18 to 1, in the X-X plane by 6 or 8 to 1, and radially between 2 and 3 to 1. It is also recommended that the spiral groove gas bearing configuration be continued as the prime design in follow-on development since it is more easily adapted to the hard coating of the seal race, allowing substantially greater carbon wear without loss of load capacity.

Figure 50. Recommended Configuration.

REFERENCES

- 1. Yuk, J. and Smith, P.J., "Quasi-One-Dimensional Compressible Flow Across Face Seals and Narrow Slots," NASA Technical Note NASA TN D-6787, August 1972.
- 2. Chow, C.V. and Wilcox, D.F., "Optimization and Design of Non-Contact Bearing Geometry," MTI CADENSE Program HS-7, Prepared for the General Electric Company, August 6, 1968.
- 3. Pugh, D.W., "Analysis of Spiral Groove Gas Bearings with Parallel Interfaces," SPIRAL, General Electric DRB No. 6161, Vol. I, June 6, 1980.

VOLUME II

ABSTRACT

This report covers an extension of the development of the gas-to-gas seal reported in Volume I. The original wafer design functioned well on test, but each seal required delicate and expensive rework to obtain the desired performance. The intent of the follow-on effort was to design a seal functionally equivalent to the original, but having design features amenable to production type hardware. This volume documents the design, manufacture, and testing of the follow-on seal.

SUMMARY

The gas-to-gas seal has been redesigned from a wafer type seal to a composite assembly design. The design and design analysis are described. Two sets of the composite seal assembly design were manufactured, and race hardware from testing reported in Volume I was used in testing.

After some difficulties in manufacturing the hardware, further problems were encountered in the static test phase. The hardware was returned to the vendor for rework and completion of the static testing. Acceptable leakage was obtained (10 scfm at 300 psid).

Startup problems were again encountered in the dynamic testing. A drive motor shutdown resulted in wear of the carbon and race faces. Further testing was attempted, but erratic leakage prevented successful completion of the performance mapping. Although backup hardware was available, some rework would have been required to proceed. Since funding for the program had been used up by unanticipated hardware rework and program delays associated with the rework, and because of other Government programs of higher priority using the test rig, the program has been stopped.

CONCLUSIONS

Due to the difficulties encountered in the test program, the basic adequacy of the composite design could not be determined.

It appears that the radial face of the insert where the secondary seal seats should have been finish ground after the press fit assembly in the housing. In addition, the axial taper on the bore of the secondary seal should be incorporated into the design (vendor designed secondary seal).

The need for undercutting the primary seal face above the seal dam is not understood. The vendor felt that the race was rotating counterclockwise under pressure loading, but that problem had not been encountered in testing reported in Volume I.

RECOMMENDATIONS

The design integrity of the composite design was not proved or disproved by the test program. Two sets of seal hardware are available for further testing. one of which would have to be reworked. Both sets of race hardware would be in need of rework.

There remains work to be done in providing reliable techniques for calculating flow across the seal dam. Entrance loss coefficients need to be defined experimentally.

If a need for an air-to-air seal of this type were identified, there is no reason to doubt the ability of the hardware designed in this program to function well. The hardware designed and manufactured under this program remains available for rework and testing.

1.0 SEAL DESIGN

The wafer seal design is shown in Figure 1. The initial configuration of the proposed composite design is shown in Figure 2.

1.1 WAFER SEAL DESIGN PROBLEMS

Assembly Interference Fit - A major problem in the wafer design was associated with the configuration of the seal. In this design, the seal carbon is compressed by the metal shrink ring, which is press-fitted over the carbon. A large press fit (0.060 inch diametral) is necessary since the thermal expansion coefficient the carbon is so much lower than the shrink ring (difference in alpha is approximately 5.8×10^{-6} in/in-o F). When the ring assembly is heated to 1000° F, there will still be a small press fit between the two rings. However, at room temperature, the fit load, or pressure, is 477 lbf/in of circumference. Although this presents no problem with stresses, if there is an initial axial offset in the centers of stiffness of the two rings, then the resultant moment will be the press fit load times the offset. instance, if there were a 0.01 inch offset in the centers of stiffness and the parts were at 1000° F, the resultant moment would be 3.9 in-lbf/in circumference. The section roll would be 0.0021 in/in and the total taper on the seal face would be 0.00084 inch. Since the press fit load changes with temperature, it is clear that the seal and race faces will not be parallel across the seal operating range, partially resulting in wear and leakage.

In addition, since wear of the carbon changes the location of the center of stiffness of the carbon, two other problems arise. First, during the manufacturing process, as the seal face is lapped to achieve the required flatness, the assembly must occasionally be "rung." Ringing is a process wherein vibrating the assembly will relieve nonuniform shrink line forces. If the assembly is lapped without ringing, then as time goes by or as the seal is used, the nonuniform forces will naturally redistribute to relieve the unbalance, and subsequently the face flatness will change and seal performance will deteriorate significantly.

Second, as the seal is run, wear will naturally occur. As wear occurs, the center of stiffness of the carbon changes, and thus an offset is generated between the carbon and the carrier ring. If the offset in ring stiffness centers is in the disadvantageous direction, then as the seal wears it will tend to twist out of flat. This is a non-self-stabilizing process.

Balance Diameter - An additional problem with the wafer design is the fact that the seal dam and the balance diameter are located on different parts (see Figure 1). Since the axial force balance on the seal assembly is a function of the relative location of these two diameters, any eccentric mislocation or any relative change of these diameters will adversely affect seal performance (see Figure 3). During testing of this design, the seal dam was reworked to restore the relationship between these two diameters, thus

Figure 1. Wafer Design.

Figure 2. Composite Design.

Figure 3. Axial Static Pressure Forces.

reducing the width of the dam. This had the effect of making the dam more fragile and also of causing increased leakage (+35%).

1.2 PROPOSED DESIGN

The intent of the composite design is to substantially reduce the problems inherent in the wafer design. Specifically, the design goals are as follows:

- Significantly increase the torsional stiffness of the carbon assembly
- Significantly increase the hoop transverse stiffness (resistance to forces producing out-of-roundness)
- Increase hoop stiffness
- Incorporate dam and balance diameter on the same press-fit assembly
- Increased envelope for secondary seal allowing a more-rugged, better-performing design.

The composite design is shown in Figure 2. It is similar in structure to seals used in the F101 engine (6.7 inch diameter) and one designed and tested on the T700 engine (3.4 inch diameter). In this design, the balance diameter and seal dam are located on the same press-fit assembly. Thus, when the structure grows or shrinks radially, the diameters grow or shrink together, preserving the axial force balance. This is true as long as the ring cross section does not roll as it grows or shrinks. Ring roll would also diminish the performance of the seal interface since lift forces are maximum for parallel seal/race faces. In order to ensure that the section does not roll, several steps were taken.

- 1. The axial location of the secondary seal is chosen such that the pressure forces generate zero net moment on the section (see Figure 4).
- 2. The three ring fit is designed such that, as the assembly temperature changes, the net result on applied section moment is minimized. This will be discussed later.

Also incorporated in the proposed design is a block and shoe rotation lock arrangement wherein both the block and shoe are replaceable (see Figure 5). This allows investigating various material combinations in this area.

The existing race hardware was used. The race face incorporates a spiral groove bearing that generates the lift required to separate the race and seal assemblies at operating conditions. The spiral groove details are shown in Figure 6.

Figure 4. Radial Static Pressure Forces.

Figure 5. Block and Shoe Design.

Figure 6. Spiral Groove Details.

1.3 SHRINK RING DESIGN

Problem - The carbon member of the seal, because of its flexible and fragile nature, must be constrained by a more rigid, rugged structure. The most reliable method of securing the carbon is by press fitting it into a more rigid carrier. Because of this, a couple of difficult problems arise. First, since the carrier is normally a metallic material, the coefficient of thermal expansion of the carrier is significantly higher than that of the carbon. Second, since a secondary seal must be incorporated (the primary seal is at the dam face on the carbon), the supporting structure is asymmetrical and the axial center stiffness of the carbon carrier is significantly offset from the center of stiffness of the carbon (see Figure 7). The net result is a substantial self-induced moment in the structure due to the press fit. As the temperature changes, the press fit load changes since the expansion coefficients are different. The face of the carbon is lapped at room temperature with a certain press fit load; therefore, at other temperatures the interference changes, the fit load changes, and the section will roll. As the section rolls, the face will no longer be flat.

Solution - To alleviate this problem, a third ring, the "shrink ring", is located above the carrier (Figure 7). The material and geometry of this ring are chosen so that the press fit load of the shrink-ring/carrier is the same as the carrier/carbon over as much of the operating range as possible.

Design Considerations - Among the considerations in the design are:

- The face of the carbon will be lapped at room temperature, with the carbon installed in the carrier assembly
- The operating temperature is 950° F, at which there must be a good press fit
- The material properties vary with temperature.

Two-Piece Design

Figure 7. Two-Piece and Shrink Ring Designs.

Material Selection - A critical factor in the design process is the selection of the proper carbon type, carrier, and shrink ring materials.

The first material selected was the carbon. Desirable carbon mechanical properties are the following:

- Low Modulus of Elasticity: This will provide best conformity and lower stresses
- <u>High Thermal Expansion Coefficient</u>: This will lower the press fit loads since the expansion will be closer to the supporting structure
- <u>High Strength</u>: This will allow the large interference fit required because of the high operating temperature.

The following data summarize properties for the candidate carbon materials:

<u>Grade</u>	$E (\times 10^6)$	<u>Alpha (×10⁻⁶)</u>	Composite Strength, psi
2980	1.8	2.3	15000
2690	1.4	3.5	23000
CJPS	2.1	1.7	26000
2866	1.75	2.6	18000
3048	1.8	2.3	15000

Based on this data, Grade 2690 was chosen for the carbon (low E, low alpha, high strength).

Given this information, a computer program was written to scan a material properties data base, and select candidate carrier and shrink ring combinations based on geometric envelope, alpha, and E. The program was given the following set of assumptions:

- Material properties were taken from the data base at 250° F to . be representative of the operating range
- The shrink ring must fit in an envelope where the maximum outer diameter (OD) is 10.2 inches and the total length is less than 0.35 inch
- The shrink-ring/carrier fit is at 10.00 inches and the carrier/ carbon fit is at 9.72 inches (diameters)
- The fits are line-to-line when the assembly is uniformly at 1200° F.

After the initial runs were made, several material combinations were found acceptable. To narrow the field, a further assumption was made that the carrier material thermal expansion coefficient should be near that of the existing housing, Inconel 718, so that the housing and carrier would grow

similarly and allow the balance diameter/housing bore clearance to be minimized. This narrowed the field to the following:

Shrink Ring	Carrier	
A286	Cr-Mo-V	
V57	Inco 722	
	Inco X-750	
	L605	
	Waspaloy	

From the above, A286 was chosen for the shrink ring and Inco X-750 for the carrier. This final selection was based primarily on availability.

Fit Load Analysis - Another computer program was written to compute the fit interference and load over a range of temperatures, from room temperature to 1200° F. The program accounts for the variation of properties with temperature. The program was also used to choose the cross-sectional area of the shrink ring. The results of this analysis are shown in Figures 8 and 9. Figure 8 shows a number of details of the fits, and Figure 9 shows the effect on the flatness of the carbon face. This curve shows that at the operating temperature, 950° F, the face will have a taper of 0.0002 inch total. In hindsight, the line-to-line fit at 1200° F requirement should be replaced by zero flatness error at the operating temperature.

Figure 8 also shows the stresses in the rings. The maximum compressive stress is 8 ksi in the carbon and 65 ksi in the shrink ring, both well within the allowable range for their respective materials.

1.3.1 Parameters Related to Axial Forces

A face seal is designed to operate with a gap between the carbon and the race. The force required to hold the carbon away from the race is generated by the spiral groove bearing in the race face. A typical curve showing the axial forces is presented in Figure 10(a). A spring is included in the assembly that provides a small closing force, principally to ensure that the seal is closed prior to startup. The balance diameter and the dam are related so as to generate a "bias" closing force as a pressure differential is applied to the seal. The two forces tending to close the seal (the bias and the spring) are added together and shown on Figure 10(a). When the race rotates, the inertia and friction forces shown in Figure 10(b) are developed.

To counteract the closing forces, spiral grooves are machined into the face of the race. These provide a lift force as the race rotates generating relative motion between the carbon and race faces. Since the lift force is a function of clearance, the carrier assembly will position itself so that the axial forces are in balance, and the operating gap is thus established. This system behaves very much like a servo device in that, if the gap increases, the lift force diminishes and the carrier assembly tends to return to the operating gap; similarly, if the gap decreases, the lift force increases and

ORIGINAL PAGE IS OF POOR QUALITY

PROGRAM	SHRINKD	DATE-1	2/11/81	TIME- 10	.97		
A3- 0.3	9000 6640 .9300	IRI E3			RB3•	4.5847	
SHRINK	RING OUTSI TEMP= 1200	Le		•••			
ZERO NE	T FORCE TE	MP- 70	<u>. </u>				
ALE THE	RING IS A	206					
	IS INCO X						
	RING IS A		•				
CARRIER	IS INCO X	-750					
SHRINK	RING LENGT	H . 0.4	518 A	REA - 0.6	4518		
REAK .	5.8500			_			
TEMP	SR-CR	SR-CR	CR-CB	CR-CB	NET OUT	STRESS	(KPSI)
,	FIT	PRESS	FIT	PRESS	PRESS	SR	CARB
(DEGF)		LBF/IN)		LBF/IN)*	(LBF/IN)*		
70.0	0.011733	596.7	9.026292	596.7	0.	65.1	8.0
						-43.4	
100.0	0.011367	574.9	0.026023	590.6	15.6	62.7	7.9
200.0	0.011367 0.010248	508.8	0.024849	590.6 563.9	15. 6 55.1	62.7 55.5	7.6
200.0	0.011367 0.010248 0.009268	508.8 451.4	0.024849 0.023284	590.6 563.9 528.4	15.6 55.1 77.0	62.7 55.5 49.3	7.6
200.0 300.0 400.0	0.011367 0.010248 0.009268 0.008375	508.8 451.4 400.0	0.024849 0.023284 0.021376	590.6 563.9 528.4 485.1	15.6 55.1 77. 0 85.2	62.7 55.5 49.3 43.6	7.6 7.1 6.5
200.0 300.0 400.0 500.0	0.011367 0.010248 0.009268 0.008375 0.007500	508.8 451.4 400.0 351.0	0.024849 0.023284 0.021376 0.019215	590.6 563.9 528.4 485.1 436.1	15.6 55.1 77.0 85.2 85.0	62.7 55.5 49.3 43.6 38.3	7.6 7.1 6.5 5.9
200.0 300.0 400.0 500.0 600.0	0.011367 0.010248 0.009268 0.008375 0.007500 0.006571	508.8 451.4 400.0 351.0 301.1	0.024849 0.023284 0.021376 0.019215 0.016937	590.6 563.9 528.4 485.1 436.1 384.4	15.6 55.1 77.0 85.2 85.0 83.3	62.7 55.5 49.3 43.6 38.3 32.9	7.6 7.1 6.5 5.9 5.2
200.0 300.0 400.0 500.0 600.0 700.0	0.01367 0.019248 0.009268 0.008375 0.007500 0.006571 0.005472	508.8 451.4 400.0 351.0 301.1 245.3	0.024849 0.023284 0.021376 0.019215 0.016937 0.014461	590.6 563.9 528.4 485.1 436.1 384.4 328.2	15.6 55.1 77.0 85.2 85.0 83.3 82.9	62.7 55.5 49.3 43.6 38.3 32.9 26.8	7.6 7.1 6.5 5.9 5.2
200.0 300.0 400.0 500.0 600.0 700.0	0.011367 0.010248 0.009268 0.008375 0.007500 0.006571 0.005472	508.8 451.4 400.0 351.0 301.1 245.3 188.2	0.024849 0.023284 0.021376 0.019215 0.016937 0.014461 0.011900	590.6 563.9 528.4 485.1 436.1 384.4 328.2 270.1	15.6 55.1 77.0 85.2 85.3 83.3 82.9	62.7 55.5 49.3 43.6 38.3 32.9 26.8 20.5	7.6 7.1 6.5 5.9 5.2 4.4 3.6
200.0 300.0 400.0 500.0 600.0 700.0 800.0	0.011367 0.010248 0.009268 0.008375 0.007500 0.006571 0.005472 0.004299 0.003188	508.8 451.4 400.0 351.0 301.1 245.3 188.2 136.2	0.024849 0.023284 0.021376 0.019215 0.016937 0.014461 0.011900 0.009227	590.6 563.9 528.4 485.1 436.1 384.4 328.2 270.1 209.4	15.6 55.1 77.0 85.2 85.9 83.9 81.8 73.2	62.7 55.5 49.3 43.6 38.3 32.9 26.8 29.5	7.61592468 7.655.4.68
200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0	0.011367 0.019248 0.009268 0.008375 0.007500 0.006571 0.005472 0.004299 0.003188 0.002190	508.8 451.4 400.0 351.0 301.1 245.3 188.2 136.2 90.8	0.024849 0.023284 0.021376 0.019215 0.016937 0.014461 0.011900 0.009227 0.006479	590.6 563.9 528.4 485.1 436.1 384.4 328.2 270.1 209.4 147.0	15.6 55.1 77.0 85.2 85.0 83.3 82.9 81.8 73.2	62.7 55.5 49.3 43.6 38.3 32.9 26.8 29.5 14.9	7.6 7.1 6.5 5.9 5.2 4.4 3.6
200.0 300.0 400.0 500.0 600.0 700.0 800.0	0.011367 0.010248 0.009268 0.008375 0.007500 0.006571 0.005472 0.004299 0.003188	508.8 451.4 400.0 351.0 301.1 245.3 188.2 136.2	0.024849 0.023284 0.021376 0.019215 0.016937 0.014461 0.011900 0.009227	590.6 563.9 528.4 485.1 436.1 384.4 328.2 270.1 209.4	15.6 55.1 77.0 85.2 85.9 83.9 81.8 73.2	62.7 55.5 49.3 43.6 38.3 32.9 26.8 29.5	7.6 7.1 6.9 5.9 4.4 3.8 2.0
200.0 300.0 400.0 500.0 600.0 700.0 800.0 900.0 1000.0	0.011367 0.010248 0.009268 0.009375 0.007500 0.005472 0.005472 0.004299 0.003188 0.002190 0.001168	508.8 451.4 400.0 351.0 301.1 245.3 188.2 136.2 90.8 46.6	0.024849 0.023284 0.023378 0.019215 0.016937 0.014461 0.011900 0.009227 0.009479	590.6 563.9 528.4 485.1 436.1 384.4 328.2 270.1 209.4 147.0 78.8	15.6 55.1 77.0 85.2 85.9 82.9 81.8 73.2 56.3	62.7 55.5 49.3 43.6 38.9 32.9 26.8 29.5 14.9 5.1	7.6 7.1 6.5 5.9 5.2 4.4 3.6 2.8 2.0

Figure 8. Analysis Results Showing Details of Fits.

Figure 9. Thermally Generated Face Deflection.

(c) Bias =
$$\frac{a}{b}$$

Figure 10. Axial Forces.

the carrier assembly tends to return again to the operating gap. Other operative forces are friction forces (between the secondary seal and the carrier) and inertia forces (if there is axial runout that makes the race oscillate axially). An additional criterion in choosing the operating gap is that the friction and inertia forces should not cause the gap to become zero, as shown in Figure 10(b).

For the current design, a spring force of 15 lbf was chosen to provide a light closing force. The bias chosen was 0.67, where bias is defined as in Figure 10(c). The axial forces can be calculated using the approximate equation for the dam lift force:

 $F = \lambda \Delta r \Delta p$

Where:

$$\lambda = \frac{1}{3} \quad \frac{2+r}{1+r} \quad , \quad r = \frac{P_e}{P_i}$$

 $\Delta r = dam \ width$

 Δp = pressure drop across dam

F = lift force - lbf/in-circum.

Defining the bias as β , the equation for the bias force is:

$$F_{\beta} = (\beta - \lambda)\Delta r \Delta P$$
 (+ = opening)

To minimize the radial height of the seal, a narrow dam is desirable. However, too narrow a dam would be fragile, so to balance these requirements, a width of 0.060 inch was selected. Using this width, the above equation for bias force gives a value of 0.33 lbf/in circumference.

A more detailed analysis of the dam was performed later using the NASA program QUASC. These results are a function of the entrance loss parameter. Two values of this parameter were used, 0.6 and 1.0. Some of the results are shown in Figure 11. As indicated on the plots, the bias force depends on the temperature and the assumption regarding the loss coefficient. Note that at low clearance, the bias force tends toward the above calculated value. Because of the uncertainties regarding the loss coefficient, the approximate calculation was used in the design. Further experimental studies would be warranted regarding the flow through the seal dam.

Sprial Groove Bearing Lift - The lift generated by the spiral grooves was calculated; it is plotted in Figure 12. As shown, the total lift force for all assumptions of speed and temperature yields an operating clearance in excess of 0.0003 inch, if the above calculated closing force of 26.0 lbf is used.

Figure 11. Results of Seal Dam Analysis Using QUASC.

Figure 11. Results of Seal Dam Analysis Using QUASC. (Concluded)

Figure 12. Net Lift Versus Operating Clearance.

1.3.2 Parameters Related To Radial Pressure Forces

Since the balance diameter and the dam are on the same assembly, radial deflections of the carrier assembly do not affect the seal performance. However, to minimize the twisting of the assembly about its section center of stiffness, the radial forces should be balanced. In calculating the moment applied to the assembly by the radial forces, it is assumed that the applied forces are reacted by a radial force acting at the assembly center of stiffness (the self-equilibriating force of the ring). The applied radial pressure forces are a function of the location of the secondary seal (see Figure 4) which was chosen so that the moment on the assembly is zero.

1.3.3 Design Details

The design is iterative. Details of the final results are summarized below and in Figures 13 and 14.

Carrier Assembly

Several of the detail values are:

Center of Stiffness

x = 0.5769

Balance

diameter = 8.894

 ΣIxx = 5.75 × 10⁻⁵ lbf-in² ΣIrr = 7.20 × 10⁻⁵ lbv-in² Weight = 2.7 lbm (approximate)

Figure 13 shows:

- Location of Secondary Seal
- Bias of Balance Diameter and Seal Dam
- Location of Section Center of Stiffness
- Pressure Loading
- Spring Force Location
- Spiral Groove Lift Force Location.

The total moment on the assembly is 0.14 in-lbf/in, which generates a section roll of 0.004 milliradians.

Figure 13. NASA Face Seal Carrier Assembly.

Figure 14. NASA Face Seal Race.

Race

Several of the race detail values are:

Center of Stiffness

x = 0.2490 in.

Diameter = 8.827 in

 $\Sigma Ixx = 1.04 \times 10^{-6} lbf-in^2$

 $\Sigma Irr = 0.42 \times 10^{-6} lbf-in^2$

Weight = 3.8 lbm.

Figure 14 shows:

- Center of stiffness
- Applied pressures.

The total moment on the race is 0.30 in-lbf/in, which generates a section roll of 0.014 milliradians.

1.3.4 Other Design Features

The final design is shown as assembled in the static test fixture in Figure 15. Several features of the design are described below.

Airflow - To provide equal pressure on both ends of the spiral groove region, the forward OD of the carbon is undercut to expose radial vent holes that feed a groove just above the dam OD (see Figure 13b). To ensure that the bore of the race is at high pressure, air flows through the wave spring and the race bore to the opposite end, where the race seats against the shaft shoulder and provides the secondary seal. The three seal locations, then, are the circumferential secondary seal on the carrier assembly, the primary seal dam, and the secondary seal on the race where it clamps against the shaft.

Secondary Seal - The secondary seal is a three-segment circumferential seal. The segments are loaded by a helical "garter" spring wrapped around the OD of the segments and are loaded axially by small coil springs. To be able to use the existing seal housing, modifications were required to accommodate the circumferential secondary seal. The insert and retainer were designed to capture the seal and provide a sealing surface. The retainer has a slightly tapered OD that is pressed into a similarly tapered bore of the housing, and is thus restrained by a press fit. The total section of the insert is relatively large to reduce deflections due to unbalanced pressure loading.

Race Plating/Spiral Grooves - The spiral grooves are incorporated in the plating on the face of the race. The plating, Linde LA2 aluminum oxide, is intended to reduce wear on the occasions when the carbon and race come into contact. The plating is 0.003 to 0.005 inch thick. The plating and the race

Figure 15. Final Design Assembled in Static Test Fixture.

Figure 15. Final Design Assembled in Static Test Fixture. (Concluded)

materials have different thermal expansion coefficients, so that as the race heats, internal stresses are generated in the race. The stresses cause the race section to roll. The amount of face taper was calculated at different temperatures (assuming uniform race temperature) and is shown below:

	Face Taper, mils/inch				
Plating Thickness	0.003	0.004	0.005		
600° F	0.167	0.222	0.278		
1200° F	0.386	0.515	0.643		

In the operating range, these distortions are of similar magnitude and direction as the carrier distortions (Figure 9). This being the case, there should be no problems caused by the differential thermal expansion.

2.0 MANUFACTURING

A couple of problems were encountered in the manufacturing phase. Although the problems were resolved, the net effect was a substantial delay in the program.

<u>Carbon Blank</u> - The carbon processing cycle is lengthy, about 13 weeks. The first set of blanks to be manufactured fractured during the cool-down cycle. New blanks had to be manufactured, delaying the procurement by about 26 weeks.

Shrink Ring - The A286 shrink ring is relatively highly stressed. It is critical that the ring have the proper strength. There is a requirement on the assembly drawing that the seal go through a heat (900°F)/cool (RT)/face lap cycle until the face flatness stabilizes from one heat cycle to the next. The vendor was unable to achieve stabilization, and investigation revealed that the A286 shrink ring had not been heat treated for strength prior to assembly. Thus, when the ring was shrunk onto the assembly, it was stressed beyond its yield strength and the tight fit thus loosened. In this condition, the ring would come loose at approximately 800°F. The ring would then shift position axially, and on subsequent cooling the face of the seal would be out of flat. The shrink ring had to be remanufactured, causing another 12 to 16 week delay.

Once received, however, the hardware was of excellent quality. Dimensions checked were within tolerance. The bias of the seal was checked and found to be 0.679 versus a drawing specification of 0.667. The face flatness of the carbon was checked and found to be within 6 He light bands.

3.0 STATIC LEAK TEST

Prior to dynamic testing, static leak tests were performed to establish a baseline and to determine the leakage characteristics of the seal. The test fixture is shown in Figure 16. Pressurization air is supplied as shown. Figure 17 shows the test setup, and Figure 18 is a photograph of the setup.

As shown in Figure 17, the static pressure within the test cavity is measured using a dial gage and the leakage is measured using a rotometer in the supply line.

Prior to assembling the rig, strain gages were applied to the test parts to be used to determine deformation of the parts during operation. The strain gage locations are shown in Figure 19 and photographs are shown in Figures 20 and 21.

Upon initial testing, substantial leakage was encountered. The leakage is plotted in Figure 22. As shown, the leakage starts at a relatively low ΔP and shows no sign of decreasing as the pressure is increased. It appeared that most of the leakage was occurring at the secondary seal location and the leakage varied circumferentially (see Figure 23). This indicates leakage at the end gaps of the segmented secondary seal. Dial indicators were located along the exposed radial face of the insert and the twist of the section calculated from the readings. The twist thus determined was 0.00256 radians when the cavity pressure was 248 psig. Structural analysis of the part shows that the twist of the section due to fit-only would be 0.00106 radians and the twist due to fit and pressure loading would be 0.00226 radians. The dial indicators would measure the difference, 0.00120 radians. Thus, the agreement between analytical and the measured twist is not very good. The analytical result would indicate a marginal design.

The secondary seal was designed by the vendor; however, the insert design was given to the vendor. The sealing surface of the insert should have been finish machined with the insert installed in the seal housing, thus eliminating the press fit deflection.

Considerable effort was expended to determine the exact cause of the static leakage. The strain gage information was difficult to analyze. Initially, there was substantial drift in the data. Some of the data are shown in Figure 24. Note that the carrier in the region of the secondary seal is deflecting counterclockwise a small amount and the carbon is deflecting clockwise a fair amount more. This suggests that the carrier assembly is bowing.

The chief problem during the testing was the drifting of the race strain gages, also shown in Figure 24. The arrows show the data as pressure was applied and then relieved. The gages were reapplied, but the problem persisted. A new bonding agent was used to mount the gages, and the gages were then coated to ensure that moisture would not cause problems. Further testing, however, resulted in data similar to that shown above.

Figure 16. Static Test Assembly.

Figure 17. Schematic of Static Leak Check Setup.

Figure 18. Photograph of Static Leak Check Setup.

Figure 19. Test Assembly and Strain Gage Locations.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 20. Photograph of Carbon Carrier Showing Strain Gage Locations.

ORIGINAL PAGE IS OF POOR QUALITY

Figure 21. Photograph of Race Showing Strain Gage Locations.

Figure 22. Gas-to-Gas Seal - Static Leak Test Leakage Flow Versus Seal Delta P.

Figure 23. Flowpaths of Observed Air Leakage.

ORIGINAL PAGE IS OF POOR QUALITY

Since a second set of hardware was available, it was instrumented and static tested. The results were very similar.

Because of the delicacy of the secondary seal and the special assembly technique required, the hardware was returned to the vendor for disassembly and inspection. In addition, the static test fixture was also sent to the vendor to allow rapid checking of any hardware modifications. The seal, when received by the vendor, was retested for correlation of leakage. The leakage measured 92 scfm at 300 psid, compared to 74 scfm at 280 psid prior to shipping. The seal was inspected, and it was found that the carbon face was significantly out of flat, both circumferentially and radially. The face was lapped flat and the leakage was then 45 scfm at 300 psid.

Since this leakage was still too high, the secondary seal assembly was disassembled and inspected. It was found that two axial coil springs were crushed between the carbon segments and the retainer, and that two segments were broken. The damage apparently occurred at assembly. Since rough machined carbon segments were available, replacement segments were manufactured.

Retesting with new secondary seal segments resulted in nearly the same leakage. A 0.002 inch radial taper was ground on the secondary seal seat to account for the clockwise deflection of the insert. This also had very little effect on the leakage. Acceptable leakage of 10 scfm at 300 psid was finally achieved after an axial taper was ground on the bore of the secondary seal and the primary seal face above the seal dam was undercut 0.001 inch to account for suspected counterclockwise rotation of the seal race under pressure loading.

Salar Salar Salar Salar

4.0 DYNAMIC TESTING

Prior to dynamic testing. the forward rig housing was reworked to provide thermal insulation to minimize the flow required to maintain the high temperatures required. In earlier testing it was discovered that when the seal functioned properly there was so little flow that convective and radiative cooling of the housing exceeded the heat supplied by the hot pressurization airflow, The rework consisted of manufacturing the insulation can shown in Figure 25.

The testing was to be performed in two parts, first performance mapping and then endurance running. The test plan is shown in Table 1. The test assembly is shown in Figure 25. After the rig was assembled a static leak check was run. The leakage was very small up to 300 psid. Since a 0-300 scfm flow meter was used, there was no indicated leakage.

Upon rig disassembly to install the insulation in the can, a fair amount of debris was found that apparently came from the air supply. Since air entering the heater is filtered, the debris must have come from the heater. Purchasing a high temperature filter would have delayed testing, so one was fabricated from fine mesh Inconel screen.

Prior to the start of the performance testing, the large compressor used for supply air failed during another test program. A delay of several months was encountered.

After the compressor repair, the seal was again static tested, with results similar to earlier static testing. When the rig was started and run at low speed and moderate pressure as a system check, the drive motor tripped off and the speed decreased to zero. The pressure to the system was cut off (manually) as quickly as possible so that the axial load on the seal would be removed.

The seal was removed from the rig and inspected. A fine white powder was found lightly coating about 40% of the surfaces within the test cavity, a small amount of which was found on the seal. This powder was insulation from the can at the forward end of the rig. The design intent was that the insulation would be trapped within the can except for small bleed holes that would allow pressure equalization within the cavity. There was also a rectangular opening (approximately 1×2 inches) that was capped with shim stock and tacked with a nichrome welder. Because the pressure dropped so quickly in the test cavity, the pressure drop in the insulation can lagged that within the test cavity; thus, insulation was blown into the test cavity.

The rig was cleaned, the insulation can was cut open, and the insulation removed. If the dead air space in the insulation cavity proved to be an inadequate insulator, the problem would be resolved at that time with other insulation. To ensure that the problem did not recur, the pulley on the drive motor was replaced by one of smaller diameter and the control system changed so that if the motor did drop off line, a valve supplying air to the rig would be shut off, and simultaneously, one venting the rig would be opened.

ORIGINAL PAGE IS OF POOR QUALITY

169

Dynamic Test Setup.

Figure 25.

Table 1. Gas-to-Gas-Seal Test Plan.

Performance Mapping

Seal ΔP : Air Temp: 10 to 290 , 35 psi increments RT to 950 , 290°F increments 200 and 400 ft/sec

Pitchline Velocity:

N, rpm	Temperature, ° F	ΔP, psí								
4900	RT 370 660 950	10	45	80	115	150	185	220	225	290
9800	RT 370 660 950									

Endurance

		Cycle A	
N, rpm	Δ, psi	Temperature, ° F	Time, %
1181 7935 7480	9 202 125	260 940 820	10 10 80
		Cycle B	
N, rpm	Δ, psi	Temperature, ° F	Time, %
6000 10500 9300	23 290 270	600 950 950	10 10 80

At first it was thought that the test hardware was not damaged. However, closer inspection revealed that wear had occurred on both the seal and the race faces. This may well have been a result of the motor shutdown. When the shutdown occurred, the seal was heavily loaded in the direction of the race (since there was no race/seal relative circumferential speed to generate bearing lift forces which separate the seal and race) and the seal and race could come into contact. Figures 26 and 27 show the "before" and "after" dynamic running seal face measurements. Figure 28 shows the race "after" run measurements. Since the nominal spiral groove depth is only 0.0007 inches, some of the more shallow grooves give a visual indication that surface wear had occurred.

The dam was initially 0.001-0.002 inch high, as shown in Figure 26. After the motor failure, Figure 27 shows that the situation has been reversed, with the dam being approximately 0.001 inch low.

After reassembling the hardware, a static leak test was run. The results are shown in Figure 29. The leakage had approximately doubled. Even though leakage was significantly higher than desired, it was decided to continue mapping to determine leakage characteristics with respect to increased air supply temperature and race rotational speed.

The data shown in Figure 30 were obtained during the mapping. At the high speed point (9800), there was a significant audible rig resonance. It was decided to avoid high speed running throughout the balance of the mapping. The decision not to investigate the source of resonance was based on the severe funding limitations at this point in the program, which were largely due to unanticipated hardware rework which absorbed funding and caused further costs due to increased labor rates.

During this testing, if a test point was held, the leakage would oscillate slowly between some reading and approximately 50% of that reading. This indicates that there is likely to be some heating/cooling of the components that cause the sections to roll with respect to each other. One possible sequence of events is shown in Figure 31.

Because of the instability of the seal, further mapping of the hardware was judged to be not prudent.

At this time in the program, funding was nearly exhausted. In fact, GE had already provided internal funding to make an effort to complete the program. Although backup hardware was available, the backup race would have required rework. It was agreed with the sponsor that the appropriate action at this time would be to write the final report and store the hardware.

Figure 26. Pretest Carbon Dimensions.

Figure 27. Carbon Dimensions After 2.6 Hours Run Time.

Figure 28. Seal Race Surface Dimensions After 2.6 Hours Run Time.

Figure 29. Static Leakage - Pretest.

Figure 30. Performance Mapping Before and After Motor Overload.

Figure 31. Leakage Mechanism.

DISTRIBUTION

	<u>Copies</u>
Department of the Navy Naval Air Systems Command AIR-330	
Washington, DC 20360	1
U.S. Navy Marine Engineering Laboratory Friction and Wear Division Annapolis, MD 21490 Attn: R.B. Snapp	1
Department of the Navy Office of Naval Research Arlington, VA 22217 Attn: 411/Lt. R. Miller	1
U.S. Army Research and Technology Laboratory Fort Eustis, VA 23604	•
Attn: J. White, Chief Propulsion Division	1
AMMRC	
Watertown, MA 02172 Attn: Dr. R. Singler	1
Commander U.S. Research and Development Command	
P.O. Box 209 St. Louis, MO 63166	
Attn: SVDL-SR/J. Means	1
Avco Corporation Lycoming Division	
550 S. Main Street	
Stratford, CT 06497 Attn: M. O'Brien	1
Mr. Jesse Davis	
Microtron Corp.	
8 Sagamore Hill Drive P.O. Box 588	
Port Washington, NY 11050	1

Department of Mechanical Engineering	
Technicon-Israel Institute of Technology	
Haifa	
ISRAEL	
Attn: Dr. Izhak Etsion	1
The Boeing Aircraft Company	
P.O. Box 3707	
Seattle, WA 98124	
Attn: W.S. Lambert W.G. Nelson	1
W.G. Neison	1
The Boeing Vertol Company	
Boeing Center	
P.O. Box 16858	
Philadelphia, PA 19142	
Attn: A.J. Lemanski, MS P-32-09	1
Borg Warner Corporation	
Roy C. Ingersoll Research Center	
Wolf and Algonquin Roads	
Des Plaines, IL 60018	1
Gould, Inc.	
17000 St. Clair Avenue	
Cleveland, OH 44110	
Attn: T. Fazekas	1
Cooper Bessemer	
Mt. Vernon, OH 43050	
Attn: K. Smith	1
Crane Packing Co. 6400 W. Oakton Street	
Morton Grove, IL 60053	
Attn: J. Sedy	1
	_
Defense Ceramics Information Center	
Battelle Columbus Laboratories	
Room 11-9021	
505 King Avenue	_
Columbus, OH 43201	1
Dresser Industries	
Dresser Clark Division	
P.O. Box 560	
Olean, NY 14780	
Attn: J.W. Kirkpatrick	1
E. Tanzberger	1

Durametallic Corporation Kalamazoo, MI 49001 Attn: H. Hummer	1
Franklin Institute Laboratories 20th and Parkway Philadelphia, PA 19103 Attn: R. Colsher	1
Garrett Corporation AiResearch Manufacturing Division 9851-9951 Sepulveda Blvd. Los Angeles, CA 90009 Attn: A. Silver	1
General Electric Company Advanced Engineering Technologies Department Cincinnati, OH 45215	
Attn: N. Pope	1
Gould Information Center 540 E. 150th Street Cleveland, OH 44108	1
Koppers Co., Inc. Metal Products Division P.O. Box 626 Baltimore, MD 21203	
Attn: E. Taschenburg	1
Mechanical Technology, Inc. 968 Albany Shaker Road Latham, NY 12110 Attn: W. Shapiro	1
MILL TO THE TOTAL	
Midwest Research Institute 425 Volker Boulevard Kansas City, MO 64110 Attn: V. Hopkins	1
Garrett Turbine Engine Co. P.O. Box 5217 Phoening A7, 85010	
Phoenix, AZ 85010 Attn: Mr. Lowell Hollars	1
North American Rockwell Corporation Rocketdyne Division 6633 Canoga Avenue, AC 51	•
Canoga Park, CA 91304	
Attn: R.E. Burcham	1

Sealol, Inc.	
P.O. Box 2158	
Providence, RI 02905	
Attn: Mr. H.F. Greiner	1
Sikorsky Aircraft	
N. Main Street	
Stratford, CT 06497	
Attn: Carl Keller	1
T. Hayden	1
SKF Industries, Inc.	
1100 First Avenue	
King of Prussia, PA 19406	_
Attn: L.B. Sibley	1
Southwest Research Institute	
P.O. Drawer 28510	
San Antonio, TX 78228	_
Attn: P.M. Ku	1
St. Marys Carbon Company	
1939 State Road	
St. Marys, PA 15857	
Attn: J.E. Lanzel	1
Stackpole Carbon Co.	
St. Marys, PA 15857	
Attn: Dr. E.I. Shobert	1
Stein Seal Company	
20th Street and Indiana Avenue	
Philadelphia, PA 19131	
Attn: E. Goldring	1
Teledyne CAE	
1330 Laskey Road	
Toledo, OH 43612	
Attn: Mr. James Gasser	1
Ultra Carbon Corporation	
1300 N. Madison Avenue	
Bay City, MI 48706	
Attn: Del Hughes	1
Union Carbide	
Carbon Products Division	
P.O. Box 6116	
Cleveland, OH 44101	

Attn: E. Ferrier

Wickes Engineered Materials 1621 Holland Saginaw, MI Attn: P. Dahlenberg	1
The University of Tennessee Dept. of Mechanical and Aerospace Engineering Knoxville, TN 37916 Attn: Professor W.K Stair	1
Naval Air Propulsion Center P.O. Box 7176 Trenton, NJ 08628 Attn: Mr. Ray Valori	1
Pratt & Whitney Aircraft Group Government Products Division E-40, Box 2691 West Palm Beach, FL 33402 Attn: Mr. Al Peduzzi	1
Solar Turbine, Inc. San Diego, CA 92112 Attn: T. Batakis	1
NASA Scientific and Technical Information Facility Attn: Acquisition Branch PO Box 8757 Baltimore Washington International Airport MD 21240	25
NASA Lewis Research Center Attn: Report Control, MS 60-1, Room 225 21000 Brookpark Road Cleveland, Ohio 44135	2
NASA Lewis Research Center Attn: Library, MS 60-3 21000 Brookpark Road Cleveland, Ohio 44135	2
NASA Lewis Research Center Structures Division Attn: L.D. Nichols, MS 49-6 21000 Brookpark Road Cleveland, Ohio 44135	1
NASA Lewis Research Center Structural Dynamics Branch Attn: L.J. Kiraly, MS 23-3 21000 Brookpark Road	1
Cleveland, Ohio 44135	1

NASA Lewis Research Center Attn: E. DiRusso, MS 23-3 21000 Brookpark Road Cleveland, Ohio 44135

3