1

2

1

2

LISTING OF THE CLAIMS

1. (Previously presented) A method for doing call classification 1 on a call to a destination endpoint, comprising the steps of: 2 receiving audio information from the destination endpoint; 3 4 analyzing using automatic speech recognition analysis calculations the received audio information for a first type of classification; 5 analyzing using the automatic speech recognition analysis 6 calculations the received audio information for a second type of 7 classification wherein the second type of classification is for identification 8 of tones in the audio information; and 9 determining a call classification for the destination endpoint in 10 response to the analysis of the first type of classification and the analysis 11 of the second type of classification. 12

- 2. (Original) The method of claim 1 wherein the analysis for the first type of classification is analyzing the audio information for words.
- 3. (Original) The method of claim 2 wherein the analyzed words are formed as phrases.
- 4. (Previously presented) The method of claim 2 wherein the 1 analysis for the second type of classification is analyzing the audio 2 3 information for identifying a set of tones.
- 5. (Original) The method of claim 4 wherein the step of 1 2 receiving audio information further comprises detecting speech or tones in the audio information. 3

303 920 9113

Serial No.	10/037,	588
------------	---------	-----

APR 24 2005 7:02PM

1

2

1	(Original) The method of claim 5 wherein the step of
2	analyzing for the first type of classification is responsive to the detection of
3	speech in the audio information to enable the step of executing a Hidden
4	Markov Model to determine the presence of words in the audio
5	information.

- 7. (Original) The method of claim 6 wherein the step of 1 executing comprises the step of using a grammar for speech. 2
- 8. (Original) The method of claim 6 wherein the step of 1 analyzing for the second type of classification is responsive to the 2 detection of tone in the audio information to enable the step of executing a 3 Hidden Markov Model to determine the presence of tones in the audio 4 information. 5
- 9. (Original) The method of claim 8 wherein the step of 1 2 executing comprises the step of using a grammar for tones.
 - 10. (Original) The method of claim 8 wherein the step of determining comprises the step of executing an inference engine.
- 11. (Previously presented) A method for doing call 1 classification on a call to a destination endpoint, comprising the steps of: 2 receiving audio information from the destination endpoint; 3 detecting speech or tones in received audio information; 4 analyzing using automatic speech recognition the received 5 audio information for words in response to the detection of speech; 6 analyzing using automatic speech recognition the received 7 audio information for identification of tones in response to the detection of 8 tones; and 9

303 920 9113

APR 24 2005 7:02PM

1

2

10	determining a call classification for the destination endpoint in
1	response to the analysis of words or the analysis of tones.

- 12. (Original) The method of claim 11 wherein the step of 1 analyzing for speech comprises the step of executing a Hidden Markov 2 3 Model to determine the presence of words in the audio information.
- 13. (Original) The method of claim 12 wherein the step of 1 2 executing comprises the step of using a grammar for speech.
- 14. (Original) The method of claim 12 wherein the step of 1 2 analyzing for tones comprises the step of executing a Hidden Markov Model to determine the presence of tones in the audio information. 3
- 1 15. (Original) The method of claim 14 wherein the step of 2 executing comprises the step of using a grammar for tones.
 - 16. (Original) The method of claim 15 wherein the step of determining comprises the step of executing an inference engine.
- 17. (Previously presented) A method for doing call 1 classification by a automatic speech recognition unit on a call to a 2 destination endpoint, comprising the steps of: 3
- receiving audio information from the destination endpoint by the 4 automatic speech recognition unit; 5
- analyzing using automatic speech recognition analysis 6 calculations the received audio information for a first type of classification 7 by the automatic speech recognition unit; 8
- analyzing using the automatic speech recognition analysis 9 calculations the received audio information for a second type of 10

p.10

- classification wherein the analysis for the second type of classification is 11
- analyzing the audio information for identification of tones by the 12
- 13 recognition unit; and
- determining a call classification for the destination endpoint in 14
- response to the analysis of the first type of classification and the analysis 15
- of the second type of classification by the automatic speech recognition 16
- 17 unit.

1

- 18. (Original) The method of claim 17 wherein the analysis for 1
- the first type of classification is analyzing the audio information for words. 2
- 19. (Original) The method of claim 18 wherein the analyzed 1
- 2 words are formed as phrases.
 - 20. (Withdrawn)
- 21. (Previously presented) The method of claim 17 wherein the 1
- 2 step of receiving audio information further comprises detecting speech or
- tones in the audio information. 3
- 22. (Original) The method of claim 21 wherein the step of 1
- analyzing for the first type of classification is responsive to the detection of 2
- speech in the audio information to enable the step of executing a Hidden 3
- 4 Markov Model to determine the presence of words in the audio
- information. 5
- 23. (Original) The method of claim 22 wherein the step of 1
- executing comprises the step of using a grammar for speech. 2

DOLLAR 140, 10/05/1500	Serial	No.	10/037	.588
------------------------	--------	-----	--------	------

1	24. (Original) The method of claim 22 wherein the step of
2	analyzing for the second type of classification is responsive to the
3	detection of tone in the audio information to enable the step of executing
4	Hidden Markov Model to determine the presence of tones in the audio
5	information.
1	25. (Original) The method of claim 24 wherein the step of
2	executing comprises the step of using a grammar for tones.
1	26. (Original) The method of claim 24 wherein the step of
2	determining comprises the step of executing an inference engine.
1	27. (Previously presented) A call classifier for determining the
2	call classification of a called destination endpoint, comprising:
3	an automatic speech recognizer for detecting first
4	characteristics in audio information received from the called destination
5	endpoint;
6	the automatic speech recognizer further identifying tones in the
7	audio information received from the called destination endpoint; and
8	inference engine for classifying the call in response to the
9	automatic speech recognizer.
1	28. (Original) The call classifier of claim 27 wherein the first
2	characteristics are words.

- 29. (Original) The call classifier of claim 28 wherein the words are formed into phrases.
- 30. (Withdrawn)

· Serial No. 10/037,588

- 1 31. (Previously Presented) The call classifier of claim 27
- 2 wherein the automatic speech recognizer is executing a Hidden Markov
- 3 Model.