• Boxplot:

$$-Q_1 = N \times 0.25$$

$$-Q_2 = N \times 0.5$$

$$-Q_3 = N \times 0.75$$

$$-IQR = Q_3 - Q_1$$

$$- Bounds = [Q_1 - 1.5 \times IQR, Q_3 + 1.5 \times IQR]$$

• Pearson =
$$\frac{\Sigma(y_{1i} - \bar{y}_1)(y_{2i} - \bar{y}_2)}{\sqrt{\Sigma(y_{1i} - \bar{y}_1)^2 \times (y_{2i} - \bar{y}_2)^2}}$$

• Spearman: Assign ranks and apply Pearson formula. Example: $[20, 10, 20, 30, 20] \rightarrow [3, 1, 3, 5, 3]$

• Normalization:

- MinMax:
$$\frac{y_i - min}{max - min}$$

- Standardization:
$$\frac{y_i - \mu}{\sigma}$$

• Binarization:

- Range (equal width): Depends on variable range Example: $y \in [-1, 1] : [0.2, -0.1, 0.6] \rightarrow [1, 0, 1]$
- Frequency (equal depth): Depends on variable mean Example: $\bar{y} = 25 : [10, 40, 30, 20] \rightarrow [0, 1, 1, 0]$

• Confusion Matrix:

	A	В	\mathbf{C}
A	TA	FA	FA
В	FB	ТВ	FB
С	FC	FC	TC
		B FB	A TA FA B FB TB

True

В TPTNFPFN

$$- Accuracy = \frac{TP + TN}{total}$$

– Error rate =
$$1 - Accuracy = \frac{FP + FN}{total}$$

$$- \text{ Recall} = \frac{TP}{TP + FN} \text{ (Sensitivity)}$$

- Fallout =
$$\frac{TN}{TN + FP}$$
 (Specificity)

- Precision =
$$\frac{TP}{TP + FP}$$

- Precision =
$$\frac{TP}{TP + FP}$$
- F₁ =
$$\frac{TP}{TP + \frac{1}{2}(FP + FN)}$$

• Error:

Sum of Squares Error: $\sum (z - \hat{z})^2$

Root Maen Squared Error: $\sqrt{\frac{1}{n}SSE}$

Mean Absolute (Percentage) Error: $\frac{1}{n} \sum |\frac{z-\hat{z}}{(z)}|$

• Information Gain: $IG(class|y_i) = E(class) - E(class|y_i)$

• Entropy:
$$E(y) = \sum_{i=1}^{k} \frac{|y_i|}{|y|} \sum_{j=1}^{n} -P(y_{ij}) \log(P(y_{ij}))$$

• Decision trees:

- 1. Choose feature with highest IG.
- 2. Split dataset by that feature, create leaves if necessary.
- 3. Repeat until unable to proceed.

Prune: (Given a twig)

- 1. Count it's leaves labels. Example: #A = 5, #B = 6
- 2. Remove it's leaves.
- 3. Relabel twig as a leaf. Example: B(6/11), #B > #A

• Vector Norm:

$$||x||_p = \sqrt[p]{\sum_{i=1}^n |x_i|^p} \qquad ||x||_{\infty} = \max |x_i|$$

• Matrix Multiplication:

$$\begin{bmatrix} \dots & n \\ m & \dots \end{bmatrix} \cdot \begin{bmatrix} \dots & l \\ n & \dots \end{bmatrix} = \begin{bmatrix} \dots & l \\ m & \dots \end{bmatrix}$$

– Variance:
$$var = \frac{\sum (y_i - \mu)^2}{n(-1)}$$

- Standard Deviation: $\sigma = \sqrt{var}$

$$-P(y|\mu,\sigma) = \frac{1}{\sqrt{2\pi} \cdot \sigma} \cdot \exp\left(-\frac{1}{2} \left(\frac{y-\mu}{\sigma}\right)^2\right)$$

• Gaussian Mixture:

- Covariance:
$$cov(y_1, y_2) = \frac{\sum (y_{1i} - \mu_1)(y_{2i} - \mu_2)}{n(-1)}$$

– Covariance Matrix:
$$\Sigma(y_1, y_2) = \begin{bmatrix} var(y_1) & cov(y_1, y_2) \\ cov(y_1, y_2) & var(y_2) \end{bmatrix}$$

$$- |\det |\Sigma| = \det \begin{vmatrix} a & b \\ c & d \end{vmatrix} = ad - bc$$

$$- P(y|\mu, \Sigma) = \frac{1}{(2\pi)^{d/2} |\Sigma|^{1/2}} \cdot exp\left(-\frac{1}{2}(y-\mu)^T \Sigma^{-1}(y-\mu)\right)$$

• Naive Bayes:

- MAP:
$$P(C|x) = \frac{P(C)P(x|C)}{P(x)}$$

- ML:
$$P(C|x) = P(x|C)$$

- 1. Calculate P(C) for each class.
- 2. Calculate P(y|C) for each variable for each class.
- 3. Calculate likelihood: $P(x|C) = P(y_1|C) \times ... \times P(y_d|C)$

• K-Nearest Neighbors:

1. Distances: (for n variables)

- Manhattan:
$$\sum |y_{1i} - y_{2i}|$$

- Euclidean:
$$\sqrt{\sum_{y_{1i},y_{2i}}}(y_{1i}-y_{2i})$$

- Euclidean:
$$\sqrt{\sum (y_{1i} - y_{2i})^2}$$

- Cosine: $\frac{\sum y_{1i} \ y_{2i}}{\sqrt{\sum y_{1i}^2 \sqrt{\sum y_{2i}^2}}}$

Hamming: #Differences

2. If weighted, for each variable multiply by weight.

- 3. Choose K nearest neighbors.
- 4. Classify using mean if variable is numeric, or mode if it is categoric.

• Regressions: $\hat{z} = Xw = (w^T X^T)^T$

- Linear: $y = w_0 + w_1 x$
- Polynomial: $w = (X^T X)^{-1} X^T z$
- Ridge: $w = (X^T X + \lambda I)^{-1} X^T z$

• Perceptron:

$$\hat{z} = a(w^T x), \ a \leftarrow \text{activation function}$$

Gradient Descent:

$$w^{new} = w^{old} + \Delta w$$
 where $\Delta w = -\eta \frac{\partial E}{\partial w}$

• Neural Networks (MLP):

- Forward:
$$x^{[0]} \to z^{[1]} = w^{[1]}x^{[0]} + b^{[1]} \to x^{[1]} = a(z^{[1]}) \to \dots \to z^{[i]} = w^{[i]}x^{[i-1]} + b^{[i]} \to x^{[i]} = a(z^{[i]})$$

- Backward:

$$* \delta^{[last]} = \frac{\partial E}{\partial x^{[last]}} \circ \frac{\partial x^{[last]}}{\partial z^{[last]}}$$

$$* \delta^{[i]} = \left(w^{[i+1]}\right)^T \cdot \delta^{[i+1]} \circ \frac{\partial x^{[i]}}{\partial z^{[i]}}$$

$$* w^{[i]'} = w^{[i]} - \eta \cdot \frac{\partial E}{\partial w^{[i]}}$$

$$* \ b^{[i]'} = b^{[i]} - \eta \cdot \frac{\partial E}{\partial b^{[i]}}$$

- Multiple observations:
 - 1. Apply forward propagation for each observation.
 - 2. Calculate $\delta_i^{[l]}$ for each observation.

3.
$$\frac{\partial E}{\partial w^{[l]}} = \sum_{i=1}^{n} \delta_i^{[l]} \cdot \left(x_i^{[l-1]} \right)^T$$

4.
$$\frac{\partial E}{\partial b^{[l]}} = \sum_{i=1}^{n} \delta_i^{[l]}$$

- Derivatives:

Name	Error function	$\frac{\partial E}{\partial x^{[i]}}$
Squared Error	$\frac{1}{2} \left(x^{[i]} - t \right)^2$	$x^{[i]} - t$
Cross- -entropy	$-\sum_{i=1}^{n} t_i \log \left(x_i^{[i]} \right)$	$-\frac{t}{x^{[i]}} + \frac{1-t}{1-x^{[i]}}$
Name	Activation function	$\frac{\partial x^{[i]}}{\partial z^{[i]}}$
Sigmoid $\sigma(x)$	$\frac{1}{1+e^{-x}}$	$x^{[i]}\left(1-x^{[i]}\right)$
	$\arctan(x)$ or $\tan^{-1}(x)$	$\frac{1}{\left(x^{[i]}\right)^2 + 1}$
Hyperbolic tangent	$\frac{e^x - e^{-x}}{e^x + e^{-x}}$	$1 - \left(x^{[i]}\right)^2$
ReLU	$ \begin{array}{c c} 0 \text{ if } x < 0 \\ x \text{ if } x \ge 0 \end{array} $	$ 0 \text{ if } x^{[i]} < 0 \\ 1 \text{ if } x^{[i]} \ge 0 $
Softmax	$\frac{e^{x_i}}{\sum_{i=0}^{n} e^{x_i}}$	$x^{[i]}\left(1-x^{[i]}\right)$

NOTE:

Sign

* When cross-entropy and softmax are combined:

1 if $x \ge 0$

0 if x < 0

$$\delta^{[last]} = \frac{\partial E}{\partial z^{[last]}} = x^{[last]} - t$$

More Derivatives:

Function	Derivative	Function	Derivative
$x \pm y$	$x' \pm y'$	$f(x)^a$	$af(x)^{a-1}f'(x)$
xy	x'y + y'x	$a^{f(x)}$	$a^{f(x)}f'(x)\ln a$
$\frac{x}{y}$	$\frac{xy' + y'x}{y^2}$	$\log_a f(x)$	$\frac{f'(x)}{f(x)\ln a}$

• K-Means:

- 1. Assign each point to a cluster.
- 2. Update centroids: centroid_{new} = μ of cluster's points
- 3. Repeat until centroids don't change.
- Sillhouette: \in [-1,1] (the closer to 1 the better)
 - For an observation x_i :
 - * $a = \text{average distance of } x_i \text{ to the points in it's cluster}$
 - * $b = \text{average distance of } \mathbf{x}_i \text{ to points in closest cluster}$
 - * $s_{observation} = \frac{b-a}{max(a,b)}$
 - For a cluster:

Average of the cluster's observations silhouettes

For the solution:

Average of the clusters silhouettes

• EM:

ar

- Initialization: Initial mixture parameters
- Expectation (E-step):

Calculate weights for each datapoint x_i for each cluster c_k :

$$\gamma_{ki} = \frac{\mathcal{N}(x_i|\mu_k, \Sigma_k) \cdot \pi_k}{\sum_{j=1}^k \mathcal{N}(x_i|\mu_j, \Sigma_j) \cdot \pi_j}$$

- Maximization (M-step):

Update parameters for each cluster: (for n observations)

$$* N_k = \sum_{i=1}^n \gamma_{ki}$$

$$* \mu_k = \frac{1}{N_k} \sum_{i=1}^n \gamma_{ki} \cdot x_i$$

$$* \Sigma_k = \frac{1}{N_k} \sum_{i=1}^n \gamma_{ki} \cdot (x_i - \mu_k) \cdot (x_i - \mu_k)^T$$

$$* \pi_k = \frac{N_k}{N_k}$$

- Quadratic Formula: $ax^2 + bx + c = 0 \implies x = \frac{-b \pm \sqrt{b^2 4ac}}{2a}$
- PCA: $\Sigma u = (\lambda I)u$
 - $-\Sigma$: Covariance Matrix
 - I: Identity Matrix
 - Eigenvalue (λ): $\det |\Sigma \lambda I| = 0$ or $\lambda = \Sigma u \circ \frac{1}{N}$

$$\lambda = \begin{pmatrix} \begin{bmatrix} 2.917 & 2.667 \\ 2.667 & 2.667 \end{bmatrix} \begin{bmatrix} -0.690 \\ 0.723 \end{bmatrix} \end{pmatrix} \circ \begin{bmatrix} -0.690^{-1} \\ 0.723^{-1} \end{bmatrix}$$

$$= \begin{bmatrix} -0.084 \\ 0.088 \end{bmatrix} \circ \begin{bmatrix} -0.690^{-1} \\ 0.723^{-1} \end{bmatrix}$$

$$= \begin{bmatrix} 1.122 \\ 1.122 \end{bmatrix}$$

- Eigenvector (u): $(\Sigma - \lambda I)u = \vec{0}$ Example:

$$u \Leftrightarrow \left(\begin{bmatrix} 1.333 & 0.667 \\ 0.667 & 1.667 \end{bmatrix} - \begin{bmatrix} 2.187 & 0 \\ 0 & 2.187 \end{bmatrix} \right) \begin{bmatrix} x_1 \\ x_2 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} -0.854 & 0.667 & 0 \\ 0.667 & -0.52 & 0 \end{bmatrix} \Leftrightarrow \begin{bmatrix} L_1 \times -0.854^{-1} \\ L_2 \times 0.667^{-1} \end{bmatrix}$$

$$\Leftrightarrow \begin{bmatrix} 1 & -0.781 & 0 \\ 1 & -0.781 & 0 \end{bmatrix} \Leftrightarrow L_2 - L_1$$

$$\Leftrightarrow \begin{bmatrix} 1 & -0.781 & 0 \\ 0 & 0 & 0 \end{bmatrix} \Leftrightarrow x_1 = 0.781x_2$$

$$= \begin{bmatrix} 0.781x \\ x \end{bmatrix}$$

- Projecting (bivariate to univariate):
 - 1. Choose highest λ (higher λ means more variation)
 - 2. Calculate eigenvector (u)
 - 3. Apply formula: $\phi = u^T X^T$
- Model complexity:
 - Perceptron with d inputs: d+1
 - Tree with d features que tomam n valores: n^d
 - MLP: estimated by the number of weights
 - Bayesian Classifier: estimated by the number of parame-
 - * With c classes: c-1 priors
 - * With d dimension: $(d \ averages + \frac{d(d+1)}{2}\Sigma) \times c$