第五章 多级放大电路与差分放大电路

序号_____学号______姓名_____

一、填空题

1	在多级直接耦合放大器中,对电路零点漂移影响最严重的一级
	是,零点漂移最大的一级是。
2	图 1 为某多级放大电路,其中各级放大器的增益、输入阻抗、输出阻
	抗如图中所示,则多级放大器的总增益 $Av=v_o/v_i=$,输入阻抗
	R_i =,输出阻抗 R_o =。多级放大电路的通频带总是比组
	成它的每一级的通频带要(宽或窄)。
	中间级 输出级 中间级 $A_{V1} \times R_{d} \times R_{o1}$ $A_{V2} \times R_{i2} \times R_{o2}$ $A_{V3} \times R_{i3} \times R_{o3}$ R_{o}
	R_i R_{i1} R_{i2} R_{i2} R_{i2} R_{i3} R_{i3} R_{i3} R_{i3} R_{i3}
	<u> </u>
3	对于一对任意输入信号,它可以分解为差模(或差分)信号与共模信
	号。若输入信号分别为 v_{i1} 和 v_{i2} ,则对应的差模信号为 v_{id} =,共模
	信号为 $v_{ic} =$ 。在差分放大器中,放大器的增益也可分为两类,即
4	如果差分放大电路完全对称,那么双端输出时,共模输出电压
	为,共模抑制比为。
5	电流源电路的特点是输出电流、直流等效电阻和交流
	等效电阻。

二、分析计算题

1、差分放大电路如图 2 所示。已知 $R_C=10K\Omega$, $R_L=10K\Omega$, $R_{EE}=10K\Omega$ 。假设晶体管的参数为 $β_1=β_2=100$, $r_{be1}=r_{be2}=5K\Omega$ (其中 $r_{be}=r_{bb'}+r_\pi$, $r_{bb'}$ 或 $r_x=0$)。试求差模电压增益 $A_{Vd}=v_o/v_{id}$,差模输入电阻 R_{id} 和输出电阻 R_O 。

2、在图 3 电路中,VT₁,VT₂的特性相同,且 β 很大,求 I_{C2} 和 I_{C2} 的值,设 V_{BE} =0.6V。

图 3

- 3、某差分放大器电路如图 4 所示, $R_{C}=2K\Omega$, $R_{REF}=8.6K\Omega$, $V_{CC}=5V$, $V_{EE}=-5V$ 。
- 假设晶体管的 $\beta = 100$, 试回答下列问题:
- (1) 试求电流 I_0 的值;
- (2) 试求输入阻抗 R_i 的值;
- (3) 试求电压增益 $A_V = \frac{v_o}{v_i}$ 。

- 4、某差分放大器电路如图 5 所示, $R_C=2K\Omega$, $R_{EE}=4.3K\Omega$, $V_{CC}=5V$, $V_{EE}=-5V$ 。 试回答下列问题:
- (1) 当 $v_{{\scriptscriptstyle B}1}=v_{{\scriptscriptstyle d}}/2$, $v_{{\scriptscriptstyle B}2}=-v_{{\scriptscriptstyle d}}/2$ 时,试求差分电压增益 $A_{{\scriptscriptstyle V}{\scriptscriptstyle d}}=v_{{\scriptscriptstyle 0}}/v_{{\scriptscriptstyle d}}$ 。
- (2) 当 $v_{B1}=v_{B2}=v_{CM}$ 时,试求共模电压增益 $A_{VC}=v_o/v_{CM}$ 。
- (3) 计算共模抑制比 CMRR
- (4) 当 $v_{B1}=0.1\sin\omega t+0.005\sin\Omega t$, $v_{B2}=0.1\sin\omega t-0.005\sin\Omega t$ 时,求输出电压 v_o 。

- 5、双端输入、双端输出理想的差分式放大电路如题图 6 所示。求解下列问题
 - (1) 若 v_{i1} =1500 μ V。 v_{i2} =500 μ V,求差模输人电压 v_{id} ,共模输入电压 v_{ic} 的值;
 - (2) 若 A_{VD}=100, 求差模输出电压 v_{od};
 - (3) 当输入电压为 v_{id} 时,若从 C_2 点输出,求 v_{c2} 与 v_{id} 的相位关系;
 - (4) 若输出电压 $v_0 = 1000 v_{i1} 999 v_{i2}$ 时,求电路的从 A_{VD} 、Avc 和 K_{CMR} 的值。

6、图 7 所示为某差分放大器电路。已知 $R_C=10K\Omega$, $R_L=10K\Omega$, $R_{EE}=4.3K\Omega$, $V_{CC}=V_{EE}=5V$ 。假设晶体管参数为 $V_{BE}=0.7V$, $\beta=200$,热电压 $V_T=25mV$,不计厄尔利电压 V_A 。 v_i 为交流小信号,电容 C_C 为输出隔直耦合电容。试问:

- (1) 计算电流 I_o 的值。
- (2) 计算差分输入阻抗 R_i 。
- (3) 试求差分放大器的增益 $A_V = v_o/v_i$

7、如图 8 所示, R_{E1} = R_{E2} =100Ω,BJT 的 β=100, V_{BE} =0.6V,当 ν_{i1} =0.01 $V_i\nu_{i2}$ =-0.01V 时,求输出电压 ν_{O} = ν_{O1} - ν_{O2} 的值、电路的差模输入电阻 Rid、共模输入电阻 Ric 和输出电阻 RO。

8、电路如图 9 所示,JFET 的 g_m =2mS, R_{ds} =20 $K\Omega$ 。试求双端输出时的差模电压增益 A_{VD} 的值,若电路改为单端输出时,试求 A_{VDI} 、 A_{VCI} 和 K_{CMR} 的值。

9、在图 10 的电路中, VT_1 , VT_2 的特性相同,且 β 很大,求 I_{C1} 和 I_{C2} 的值,设 V_{BE} =0.6V。

10、在图 11 所示电路中,已知所有晶体管特性均相同, $V_{\rm BE}$ 均为 0.7V,求 $R_{\rm e2}$ 和 $R_{\rm e3}$ 的阻值。

