🔊 МАТЕМАТИКА ЗА 7 КЛАС 💸

% Цели изрази

- Променливи величини: приемат различни числени стойностти.
- Параметър: приема постоянна стойност в задача с едно условие и приема друга постоянна стойност в задача с друго условие.
- **ч Цели изрази:** изрази, в които няма променлива в знаменател или няма деление с променлива.

Примери: $\frac{x}{2}$, 7x + 3, 5ya, 8.5x са цели изрази, а $\frac{2}{x}$, $\frac{y}{x}$, 2:x не са цели.

• Едночлен: Цял израз, които е умножение на постоянни и променливи величини. Без действията "+" и "-".

Примери: 5axy4, 5a(-x)y3, 1, x са едночлени, а $5a - xy3, 8a + x, \frac{3}{x}$ не са едночлени.

• Нормален вид на едночлен: Подредба, започвайки от един числов множител (ако има), след това параметри (ако има) и накрая променливи (ако има), като всяка буква се среща само веднъж (записана с степени).

Пример: $5xyza2(-x)(-y) = 10ax^2y^2z$; $4axyb(-\frac{1}{2})(-x)^2 = 4.(-\frac{1}{2})abx^3y = -2abx^3y$; $(-1)x^3(-3z) = 3x^3z$, където a,b са параметри.

- **№ Коефициент на едночлен:** произведението от числовия множител и параметрите (ако има) на едночлена в нормален вид
- **Степен на едночлен:** сборът от всички степени на неизвестните в едночлена.

Примери (a, b) са параметри):

Едночленът $10ax^2y^2z$ има коефициент 10a и степен 2+2+1=5;

Едночленът $-2abx^3y$ има коефициент -2ab и степен 3+1=4;

Едночленът $3x^3z$ има коефициент 3 и степен 3+1=4;

Едночленът xy има коефициент 1 и степен 1 + 1 = 2;

Едночленът -xy има коефициент -1 и степен 1+1=2;

Едночленът 1 има коефициент 1 и степен 0.

- **•• Подобни едночлени:** различават се само по коефициент; Пример: $5x^2y$ и $-2x^2y$.
- **Противоположни едночлени:** различават се само по знак; Пример: -2xy и 2xy.
- **събиране и изваждане** на едночлени: събират се или изваждат числата пред подобните едночлени, другото се преписва.

Пример: Ако
$$u=5xy^3z, v=-4xy^3z,$$
 то $u+v=5xy^3z+(-4xy^3z)=xy^3z,$ а $u-v=5xy^3z-(-4xy^3z)=9xy^3z.$

- Умножение на едночлени: числата се умножават, а на еднаквите букви степените се събират.
- **№ Деление** на едночлени: числата се делят, а степените се изваждат.

Пример: Ако
$$u=4ax^2yz,v=4xy^3z$$
 то $u.v=4ax^2yz.4xy^3z=16ax^3y^4z^2,$ а $u:v=1axy^{-2}=\frac{ax}{y^2}$

 \bullet Степенуване на едночлени: $(a^n)^m = a^{n.m}$

🎾 Многочлени

- 🖚 Многочлен: Сбор от едночлени.
- **Нормален вид** на многочлен: всички едночлени трябва да са в нормален вид и да няма подобни едночлени.
- **Коефициенти** на многочлен: коефициентите на всички едночлени от него. Коефициент пред члена от втора степен: числото пред x^2 . Свободен член: числото, което не е умножено по х на някоя степен.
- Степен на многочлен: Най-високата от степените на едночлените в многочлена.
- **©** Събиране и изваждане на многочлени: събираме/ изваждаме числата пред подобните едночлени, друго го преписваме. Често се използва формулата: -(a-y+x)=-a+y-x
- **Умножение** на многочлен с едночлен/многочлен: y.(ax + b) = y.ax + y.b, (ax + b)(cx + d) = ax.cx + ax.d + b.cx + b.d.

🋇 Формули за съкратено умножение

$$(a+b)^{2} = a^{2} + 2ab + b^{2}$$

$$(a-b)^{2} = a^{2} - 2ab + b^{2}$$

$$(a+b)^{3} = a^{3} + 3a^{2}b + 3ab^{2} + b^{3}$$

$$(a-b)^{3} = a^{3} - 3a^{2}b + 3ab^{2} - b^{3}$$

$$a^{2} - b^{2} = (a+b)(a-b)$$

$$(a+b)(a^{2} - ab + b^{2}) = a^{3} + b^{3}$$

$$(a-b)(a^{2} + ab + b^{2}) = a^{3} - b^{3}$$

$$(a+b+c)^{2} = a^{2} + b^{2} + c^{2} + 2ab + 2ac + 2bc$$

$$x^{2} + y^{2} = (x+y)^{2} - 2xy$$

$$-x - y = (x^{1/2} - y^{1/2})(x^{1/2} + y^{1/2})$$

$$(a-b)^{2} = (b-a)^{2}$$

🌑 Разлагане многочлен на прости множители

№ Чрез изнасяне на общ множител:

$$ax + bx + cx = x(a+b+c)$$

№ Чрез групиране

$$ax + by + bx + ay = a(x + y) + b(x + y) = (x + y)(a + b)$$

- Чрез използване на формулите за съкратено умножение.
- Разлагане на квадратен тричлен $ax^2 + bx + c$:
- Чрез допълване до точен квадрат. Пример: $x^2 + 6x - 7 = (x^2 + 2 \cdot x \cdot 3 + 3^2) - 3^2 - 7 = (x+3)^2 - 16 = (x+3-4)(x+3+4) = (x-1)(x+7).$
 - С представяне на bx като сбор. Пример: $x^2 + 3x + 2 = x^2 + 1x + 2x + 2 = x(x+1) + 2(x+1) = (x+1)(x+2)$.

Уравнения

• Уравнение с едно неизвестно се нарича равенство, в което едното число, означено с буква, се приема за неизвестно.

- **№ Корен (решение)** на уравнение е всяко число, което като се постави на мястото на неизвестното, се получава вярно числово равенство.
- Да се реши едно уравнение означава да се намерят корените му или да се останови, че няма решение.

№ Стъпки при решаване на уравнение:

- 1. ако има скоби се разкриват, a(x-b) = ax ab, -a(x-b) = -ax + ab:
- 2. ако има един или повече знаменателя, се подвежда под общ знаменател, дробите се разширяват и знаменателят повече не се пише;
- 3. всички едночлени с неизвестно се прехвърлят отляво на равното, а всички числа отдясно (мести се с обратен знак);
- 4. събират изваждат се подобните едночлени от двете страни на равенството и се намира неизвестното.

• Често срещани уравнения

(ax+b)(cx+d)=0	$(ax+b)^n=0$	x(ax+b)=0	
ax + b = 0 и $cx + d = 0$	(ax+b)=0	$x_1 = 0$ и $ax + b = 0$	
$x_1 = -\frac{b}{a}$ и $x_2 = -\frac{d}{c}$	$x = -\frac{b}{a}$	$x_1 = 0$ и $x = -\frac{b}{a}$	
$x^2 = a$,		$(ax+b)^n = a,$	
a < 0	a < 0	a < 0, n-четно число	
няма решение	H	няма решение	

$ax^2 - bx = 0$	$ax^3 - bx^2 = 0$	$ax^2 = bx$
x(ax-b)=0	$x^2(ax-b)=0$	$ax^2 - bx = 0$
x = 0 и $ax - b = 0$	$x^2 = 0$ и $x(ax - b) = 0$	x(ax-b)=0

модулното уравнение |ax + b| = c при:

- -c > 0, има две решения ax + b = c или ax + b = -c;
- -c > 0, има две решения ax + b = 0;
- -c < 0, няма решение.

моделиране с линейни уравнения:

- последователни числа се записват с: x, x + 1, x + 2, ...;
- последователни четни числа се записват с: 2x, 2x+2, 2x+4, ...;
- последователни нечетни числа се записват с: 2x + 1, 2x + 3, 2x + 5, ...
- № Задачи от движение: v-скорост; t-време; S-изминал път. S = v.t Решават се с помощта на таблица, в която се въвеждат, известните стойности, а неизвестната стойност се означава с х. В първия ред на таблицата се пишат буквите v, t, S. Една от колоните в таблицата се попълва с помощта на формулите:

$$S = v.t, v = \frac{S}{t}, t = \frac{S}{v}$$

В повечето задачи уравнението може да се състави с помощта на следните схеми:

- Двупосочно движение:

където пр. ср.=превозно средство. В този случай уравнението е: $S_{AB} = S$ пр.ср.1 + Sпр.ср.2.

- Еднопосочно движение:

В този случай уравнението е: S_{AB} = $S_{{
m np.cp.1}}$ = S_{AC} + $S{
m np.cp.2}$.

 $a \ m \sec = a \cdot \frac{3600}{1000} \ km h, a \ km h = a \cdot \frac{1000}{3600} \ m \sec .$

• Задачи от движение във вода:

 $v_{\rm cn.\ B.}$ — скорост на водното превозно средство в спокойни води или собствена скорост на превозното средство; $v_{\rm теч.}$ — скорост на течението на водата; $v_{\rm по\ Teч.}$ — скорост на превозното средство по течението на водата; $v_{\rm срещу\ Teч.}$ — скорост на превозното средство срещу течението на водата; $v_{\rm ca.}$ — скорост на превозното средство по течение на водата и тогава неговата скорост е същата като

скоростта на течение на водата. В таблицата се въвеждат $v_{\text{по теч.}}$ и $v_{\text{срешу теч.}}$

 $v_{\text{по теч.}} = v_{\text{сп. в.}} + v_{\text{теч.}}$

 $v_{\text{срещу теч.}} = v_{\text{сп. в.}} - v_{\text{теч.}}$

№ Задачи от работа

Задачите се решават с помощта на таблица, като в първия ред се записват N или P (норма|производителност), t (време за което се свършва дадената работа), A (свършената работа). B сила е формулата A = N.t, като една от колоните на таблицата се попълва с пощта на тази формула.

Ако е дадено че даден работник|машина може да свърши сам определена работа за a часа, то нормата му ще е $\frac{1}{a}$.

Цялата работа, която трябва да се върши е равна на 1.

• Задачи от смеси и сплави Задачите се решават с помощта на таблица, от вида:

	количество	% или части	кол. чисто
		y	вещ.
	B_1		A_1
	B_2		A_2
смес	$B_1 + B_2$		A_3

От таблицата се получава уравнението: $A_1 + A_2 = A_3$.

Задачи от капитал

Означения: А-начален капитал|вложена сума, р-лихвен процент, K-нараснала сума след 1 година.

$$K = A + \frac{p}{100}.A, \ \frac{p}{100}.A$$
 =лихва.

Основни геометрични фигури

Ъгли: означават се с малките гръцки букви: алфа (α) , бета (β) , гама (γ) делта (δ) . Ъгълът на чертежа се чете ъгъл АОВ или ъгъл ВОА и се означава с $\angle AOB$ или $\angle BOA$.

Пресмятане на ъгли: $1^{\circ} = 60'$; 1' = 60'' (1 градус= 60 минути; 1 минута = 60 секунди).

При изваждане на ъгли се изваждат градуси с градуси, минути с минути, секунди със секунди. Ако минутите на първия ъгъл са по — малко от минутите на втория, то от него се взима един градус, който се прибавя към минутите му като 60 минути.

Пример 1.
$$180^{\circ} - 60^{\circ}15' = 179^{\circ}60' - 60^{\circ}15' = 119^{\circ}45'(180^{\circ} = 179^{\circ}60')$$
.

Пример 2. $66^{\circ}30'15'' - 2^{\circ}40'50''$ (минутите в първия ъгъл са помалко от тези във втория, затова взимаме 1° и прибавяме 60')= $65^{\circ}90'15'' - 2^{\circ}40'50''$ (секундите в първия са ъгъл са по-малко от тези във втория, затова от първия ъгъл взимаме 1 минута

и прибавяме 60 секунди) =
$$65^{\circ}89'75'' - 2^{\circ}40'50'' = 63^{\circ}49'25''$$
.

При събиране на ъгли се събират градуси с градуси, минути с минути, секунди със секунди, когато минутите са повече от 60, взимаме 60' и прибавяме 1° .

Пример 3.
$$30^{\circ}24' + 10^{\circ}53' = 40^{\circ}77' = 41^{\circ}17'(77' = 60' + 17')$$
.

∾ Б равен е на 180°. Б равен е на 90° и се означава с точка.

№ Съседни и противоположни (връхни) ъгли: съседните ъгли са един до друг при пресичане на две прави и сбора на всеки два съседни ъгъла е 180°. Противоположните (връхни) ъгли са един срещу друг при пресичане на две прави и всеки два противоположни ъгъла са равни.

 $\upred 1+\upred 2=180^\circ, \upred 1+\upred 4=180^\circ, \upred 2+\upred 3=180^\circ, \upred 3+\upred 4=180^\circ, \upred 1+\upred 4=180^\circ, \upred 4=$

№ Ъгли получени при две пресечени прави с трета:

- кръстни ъгли: единия е над едната права (а или b), другия е под другата права (а или b) и единия е отляво на правата с, другия е отдясно. Има два вида кръстни ъгли вътрешно кръстни (когато ъглите са между двете прави а и b) и външно кръстни (когато и двата ъгъла не са между двете прави а и b) 41 и 47, както и 42 и 48 са външно кръстни; 44 и 46, както и 43 и 45 са вътрешно кръстно.
- съответни ъгли: единия ъгъл е над правата а, а другия е над правата b или единия е под правата а, а другия над правата b и двата са или отляво или отдясно на правата с.
 ∠1 и ∠5; ∠2 и ∠6; ∠4 и ∠8; ∠3 и ∠7 са съответни.
- прилежащи ъгли: единия е над едната права (а или b), а другия е под другата права (а или b) и двата са или отляво или отдясно на с. Има два вида прилежащи ъгли вътрешно прилежащи (когато ъглите са между двете прави а и b) и външно прилежащи (когато и двата ъгъла не са между двете прави а и b). ∠1 и ∠8, както и ∠2 и ∠7 са

външно прилежащи $\angle 4$ и $\angle 5$, както и $\angle 3$ и $\angle 6$ са вътрешно прилежащи.

Теореми за успоредност на правите а и b: Правите а и b са успоредни (a||b), ако два кръстни ъгъла са равни. Два кръстни ъгъла са равни, ако a||b.

Правите а и b са успоредни (a||b), ако два съответни ъгъла са равни. Два съответни ъгъла са равни, ако a||b.

Правите а и b са успоредни (a||b), ако сбора на два прилежащи ъгъла е 180° . Сбора на два прилежащи ъгъла е 180° , ако ако а||b.

№ Две прави се наричат **перпендикулярни** $(a \perp b)$, ако при пресичането си образуват прав ъгъл =90°.

Теорема: Две прави са перпендикулярни на една и съща права, ако те са успоредни.

ъглополовяща на ъгъл: разделя ъгъла на две равни части. Ако OL е ъглополовяща $\angle BOL = \angle AOL = \frac{\angle AOB}{2}$.

🛇 Еднакви триъгълници

• Височина в триъгълник: отсечка от някой връх на триъгълника. Образува прав ъгъл (=90°) със страната към която е пусната. Правият ъгъл се означава с точка. Всеки триъгълник има 3 височини (от ∡ A, от ∡ B и от ∡ C).

Височината (АН) от \checkmark А, образува прав ъгъл със страната ВС. Височината (ВН) от \checkmark В, образува прав ъгъл със страната АС. Височината (СН) от \checkmark С, образува прав ъгъл със страната АВ.

Ако триъгълникът е остроъгълен: трите височини са вътре в триъгълник. Ако е правоъгълен: височината от правия ъгъл е в триъгълника, а другите две височини са двата катета на триъгълника. Ако е тъпоъгълен: височината от тъпия ъгъл е в триъгълника, а останалите две височини се чертаят извън триъгълника, като се удължават страните на триъгълника.

• Ъглополовяща в триъгълник: разделя ъгъла, от който е пусната на две равни части. Всеки триъгълник има 3 ъглополовящи: Ъглополовяща (AL) от A, разделя ∠ A на две равни части: ∠ BAL= ∠ CAL. Ъглополовяща (BL) от ∠ B, разделя ∠ B на две равни части: ∠ ABL= ∠ CBL. Ъглополовяща (CL) от ∠ C, разделя ∠ C на две равни части: ∠ ACL= ∠ BCL.

№ Медиана в триъгълник: разделя страната, към която е пусната на две равни части. Всеки триъгълник има три медиани. Медианата АМ, разделя страната ВС на две равни части: ВМ=СМ; Медианата ВМ, разделя страната АС на две равни части: АМ=СМ; Медианата СМ, разделя страната АВ на две равни части: АМ=ВМ; Равни отсечки се отбелязват с по една, с по две или с по три чертички.

№ Елементи на триъгълник:

Страни: AB=c; BC=a; AC=b;

Вътрешни ъгли: \angle BAC= α , \angle ABC= β и \angle ACB= γ .

Външни ъгли: α', β', γ' .

Сборът на вътрешните ъгли е 180°, т.е. $\alpha+\beta+\gamma=180$ °. Сборът на външните ъгли е 360°, т.е. $\alpha'+\beta'+\gamma'=360$ °.

Сборът на всеки вътрешен с неговия външен е 180°, т.е.

$$\alpha + \alpha' = 180^{\circ}, \beta + \beta' = 180^{\circ}, \gamma + \gamma' = 180^{\circ}.$$

Всеки външен ъгъл е равен на сбора на двата му не съседни вътрешни ъгли, т.е. $\alpha'=\beta+\gamma, \beta'=\alpha+\gamma, \gamma'=\alpha+\beta.$

Ако в един и същ триъгълник трябва да се начертае и височина и ъглополовяща от един и същ връх, то ъглополовящата се прави по-близо до по-малкия ъгъл.

• Aко два триъгълника са еднакви, то те имат съответно равни страни и ъгли.

- **№ Първи признак** за еднаквост на два триъгълника: два триъгълника са еднакви по I признак, ако две страни и ъгъла между тях от единия триъгълник са съответно равни на две страни и ъгъл между тях от другия триъгълник.
- № Втори признак за еднаквост на два триъгълника: два триъгълника са еднакви по II признак, ако една страна и два нейни прилежащи ъгъла от единия триъгълник са съответно равни на една страна и два нейни прилежащи ъгъла от другия триъгълник. Прилежащи ъгъла означава, че страната трябва да е между два ъгъла.
- Трети признак за еднакви триъгълници: два триъгълника са еднакви по III признак, ако трите страни на единия триъгълник са съответно равни на трите страни на другия триъгълник.
- Симетрала на отсечка. Симетралата на отсечката AB се означава s_{AB} . Симетралата е права, която минава през средата на отсечка, т.е. разделя отсечката на две равни части и е перпендикулярна на нея, т.е. образува прав ъгъл с нея. Освен това всяка точка от симетралата е на равни разстояния от краищата на отсечката, т.е. AM=BM.

Равнобедрен триъгълник: освен две равни страни има и два равни ъгъла при основата.

Ако триъгълник ABC е равнобедрен, то: AC=BC са бедрата; AB е основата; \angle A= \angle B=x. Обратното също е вярно, ако \angle A= \angle B=x, то триъгълник ABC е равнобедрен. Медианите към бедрата в равнобедрен триъгълник са равни. Височините към бедрата в равнобедрен триъгълник са равни. Ъглополовящите към бедрата в равнобедрен триъгълник са равни.

Височина, ъглополовяща и медиана в равнобедрен триъгълник: в равнобедрен триъгълник височината, медианата и ъглополовящата, построени от върха между двете бедра съвпадат и се намират върху симетралата на основата. Обратното също е вярно, ако два от елементите височина, ъглополовяща или медиана построени от един същ връх на триъгълника съвпадат, то триъгълника е равнобедрен.

№ Равностранен триъгълник: всички страни са равни и всички ъгли са равни на 60°.

Медианата, ъглополовящата и височината в равностранен триъгълник, построени от който и да е ъгъл съвпадат.

• Правоъгълен триъгълник

 Правоъгълен триъгълник с ъгъл 30°: катетът, лежащ срещу ъгъл от 30° в правоъгълен триъгълник е равен на половината от хипотенузата. Обратното също е равно, ако има катет равен на половината от хипотенузата, то ъгъла срещу този катет е 30°.

Ако
$$\angle$$
 A = 30°, то $BC = \frac{AB}{2}$ или ако \angle B = 30°, то $AC = \frac{AB}{2}$.

 Медианата към хипотенузата в правоъгълен триъгълник е равна на половината от хипотенузата.

Ако една от страните на триъгълник е два пъти по-голяма от медианата към нея, то триъгълника е правоъгълен, с хипотенуза тази страна.

Ако
$$\angle$$
 C=90 и CM е медиана, то $CM = \frac{AB}{2} = AM = BM$.

🐟 Еднаквост на правоъгълни триъгълници

- Два правоъгълни триъгълници са еднакви, ако катетите на единия триъгълник са съответно равни на катетите на другия триъгълник.
- Два правоъгълни триъгълника са еднакви, ако катет и остър ъгъл от единия триъгълник са съответно равни на катет и остър ъгъл от другия триъгълник.
- (4-ти признак) Два правоъгълни триъгълника са еднакви, ако катет и хипотенуза от единия триъгълник са съответно равни на катет и хипотенуза от другия триъгълник.

Перавенства

№ Видове неравенства: по-малко (<); по-голямо (>); но-малко или равно (\leq); по-голямо или равно (\geq).

- № Когато се умножава или дели с отрицателно число знакът на неравенството се обръща $(-6x < 12 \mid : (-6), x > -2)$.
- **№** Когато неравенството е \leq или \geq скобите на числата винаги са затворени, т.е. се пишат с [или].
- **№** На $-\infty + \infty$ скобите винаги са отворени, т.е. се пишат с (или).
- Отговорът на неравенствата $x^2 > -a$, при a > 0 и $x^2 \ge 0$ е всяко х е решение или $x \in (-\infty, +\infty)$.
- Отговорът на неравенствата $x^2 < -a, x^2 \le -a,$ при a > 0 и $x^2 < 0$ е няма решение.

№ Неравенства между страните и ъглите в триъгълник

В триъгълник срещу по-голямата страна стои по-голям ъгъл. Обратното също е вярно.

В триъгълник всяка страна е по-малка от сбора на другите две и по-голяма от модула на разликата на другите две страни.

- Диагоналите взаимно се разполовяват, т.е. AO = CO, BO = DO.
- Срещуположните ъгли са равни, т.е $\angle A = \angle C$, $\angle B = \angle D$.
- \bullet Обиколка и лице: $P = 2(a+b), S = a.h_a, S = b.h_b$. На чертежа $DM = h_a, DN = h_b$.

Признаци на успоредник:

- Четириъгълник, на който двойките срещуположни страни са равни, е успоредник.
- Четириъгълник, на който една двойка срещуположни страни са успоредни и равни, е успоредник.
- Четириъгълник, на който диагоналите взаимно се разполовяват, е успоредник.

Успоредник се получава, ако се продължи една от медианите в триъгълник и се нанесе още веднъж извън триъгълника.

Правоъгълник

- $\bullet \bullet$ Успоредник с равни диагнали е правоъгълник, т.е. AO = OC = OB = OD.
- **№** Във всеки правоъгълник **диагонали са равни.**
- \bullet Обиколка и лице: P = 2a + 2b или P = 2(a + b), S = a.b.

- Ромб е успоредник с равни страни.
- Успоредник, на който диагоналите са перпендикулярни е ромб.
- Четириъгълник, на който всички страни са равни е ромб.
- Диагоналите в ромба са ъглополовящи на ъглите.
- \bullet Обиколка и лице: P = 4a, S = a.h.

- Ромб с един прав ъгъл е квадрат.
- ightharpoonup Диагоналите в квадрата са равни и се разполовяват от пресечената им точка, т.е. AO = CO = BO = DO.
- Обиколка и лице: P=4a, S=a.a или $S=\frac{d^2}{2}, \ {\rm d}$ е диагонал, т.е. d=AC=BD.

