Formal Power Series

A formal power series (FPS) is an expression of the form:

"A general function is a clothesline on which we hang a sequence of coefficients for display"-H. Wilf.

Thus, formal power series are not functions or polynomials, but objects in their own right.

Given formal power series
$$A(x) = \sum_{k \geq 0} a_k x^k$$
 and $B(x) = \sum_{k \geq 0} b_k x^k$, we define $(A+B)(x) = \sum_{k \geq 0} (a_k + b_k) x^k$ and $AB(x) = \sum_{k \geq 0} (\sum_{i=0}^k a_i b_{k-i}) x^k$ finite sum of real numbers

e.g. let
$$A(x) = \sum_{k \geq 0} k x^k$$
, $B(x) = \sum_{k \geq 0} x^k$

$$(A+B)(x) = \sum_{k \geq 0} (k+1) x^k$$

$$AB(x) = \sum_{k \geq 0} (\sum_{i=0}^{k} a_{i}b_{k-1}) x^k = \sum_{k \geq 0} (\sum_{i=0}^{k} i\cdot 1) x^k$$

$$= \sum_{k \neq 0} (0 + 1 + 21 \dots + k) x^{k}$$

$$= \sum_{k \geq 0} \frac{k(k+1)}{2} x^{k}$$

$$A B(x) = \sum_{k \geq 0} {k+1 \choose 2} x^{k}$$

We also define notation for coefficient extraction. $[x^k]A(x)$ is defined to be the coefficient of x^k in the series A(x).

eg. $[x^{4}](1-x+2x^{2}-3x^{3}+7x^{4}-...)=7$ $[x^k](1+x)^n = {n \choose k}$ $[x^k]AB(x)^2 \sum_{k=1}^{k} [x^k]A(x)[x^{k-1}]B(x)$ Binomial Theorem Restated from definition of power series product

Given that we have defined multiplication, we can write and solve equations whose variables are power series.

e.g. find a formal power series A(x) so that $(1+x+x^2+...)A(x)=1-x$

let A(x) = a0+a,x+a2x+...

We want $(1+x+x^2+x^3+...)(a_0+a_1x+a_2x^2+...)$ $= 1 - x + 0 x^2 + 0 x^3 + 0 x^4 + \dots$

do+ (ao+a,)x+ (ao+a,+a2)x2+...

=1-x+0=1+0=1+0=1+0=1+---

We need
$$a_0 = 1$$
 $\Rightarrow a_0 = 1$
 $a_0+d_1 = -1$ $\Rightarrow a_1 = -2$
 $a_0+d_1+d_2 = 0$ $\Rightarrow a_3 = 1$
 $a_0+d_1+d_2 = 0$ $\Rightarrow a_4 = 0$
 $a_1 = -2$
 $a_0+d_1+d_2 = 0$ $\Rightarrow a_4 = 0$
 $a_1 = -2$
 $a_2 = -2$
 $a_4 = 0$
 a

So
$$\beta(a) = 1 + \sum_{k \ge 1} (-3)(-\lambda)^{k-1} x^k$$

= $1 - 3 \sum_{k \ge 1} (-\lambda)^{k-1} x^k$

Alternatively, we could solve these equations by turning reciprocals into infinite series using $\frac{1}{1-r} = 1+r+r^2+...$

first eqn: we had
$$(1+x+x^2+...)A(x)=1-x$$

 $\Rightarrow \frac{1}{1-x}A(x)=1-x$ so $A(x)=(1-x)^2$
 $=1-2x+x^2$

For
$$(1+2x)8(n) = 1-2$$

we have $8(n) = (1-3)(\frac{1}{1+2n}) = (1-3)(\frac{1}{1-6-2n})$
 $= (1-3)(1+(-2x)+(-2x)^2+(-2x)^2+...)$
 $= (1-3)(1-2x+4x^2-8x^2+...)$
 $= (1-2x+4x^2-8x^3+...) - \chi(1-2x+4x^2-8x^2+...)$