5.1

Connor Robinson

$March\ 2020$

1 5.1:1

1.1 a

 (V_1, E_1) is a subgraph of G because every vertex in V_1 is in G and every edge in E_1 is in G and connects vertices in V_1 .

1.2 b

 (V_2, E_2) is not a subgraph of G because cj is not an edge in G

1.3 c

 (V_3,E_3) is not an induced subgraph because dh is not in E_3 but it is in G

1.4 d

Figure 1: Induced subgraph of g, j, d, a, c, i

1.5 e

Figure 2: Induced subgraph of c,h,g,i,j

1.6 f

Figure 3: Non-induced subgraph of e,f,b,c,h,j

This is a non-induced subgraph because every node is in G and there exists an edge in G that connects two nodes in the non-induced subgraph that is not in the non-induced subgraph.

Figure 4: induced subgraph of G with 10 edges This is an induced subgraph because every edge in G that can be in this graph is in the graph. I created this graph by counting the number of total edges, which was 14, then removing vertices with a total degree of 4, along with the corresponding edges, and created this graph.

2 5.1:2

 G_1 and G_3 are isomorphic, where

$$v_1 \cong w_1$$

$$v_2 \cong w_5$$

$$v_3 \cong w_4$$

$$v_4 \cong w_2$$

$$v_5 \cong w_6$$

$$v_6 \cong w_3$$

. G_2 and G_4 are not isomorphic because all vertices in G_2 have degree greater than one, while x_2 on G_4 has degree one.

3 5.1:4

Prove that every tree on n vertices has exactly n-1 edges.

Assume if a tree has n-1 vertices, it has n-2 edges. We need to show that a tree with n vertices has n-1 edges.

Base Case: A tree with 1 vertex has 0 edges.

Induction Step:

Assume we have an n tree with k edges. if we remove a leaf node from our n tree, we have created an n-1 tree with k-1 edges. Because we stated earlier that an n-1 tree has n-2 edges, k-1=n-2, or k=n-1 and therefore an n tree has n-1 edges

4 5.1:6

Prove that in any simple graph (no loops or multiedges), there are two vertices with the same degree.

Proof by contradiction, assume there exists a graph where the degree of each vertex is unique.

For a graph of n vertices, the degree of any vertex can be $0, 1, 2, \ldots, n-1$ because there are at n-1 possible vertices that can be connected to the vertex in question. There are n possibilities for the degree of each vertex on a graph. Because we are assuming that there exists a graph where the degree of each vertex is unique, and there are n vertices and n possibilities for the degree of each vertex, it stands to reason that, on this graph, there is one vertex with a degree of 0, one vertex with a degree of 1, one vertex with a degree of 2, and so on, until we reach a vertex with a degree of n-1.

If we have a vertex of degree n-1, it has an edge connecting to every other vertex on the graph, because there are n-1 other vertices to be connected to on the graph. If we have a vertex with degree 0, it is connected to no vertices

on the graph. This is a contradiction because we can not have a vertex that connects to all other vertices and also a vertex that connects to no vertices, because the vertex with degree n-1 needs to be connected to the vertex with degree 0, but since this defies what we stated about a vertex of degree 0, this is a contradiction, and therefore there must be at least two vertices that have the same degree on any graph.