

Peer-to-Peer Networks 14 Network Coding

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg

IP Multicast

Motivation

- Transmission of a data stream to many receivers

Unicast

- For each stream message have to be sent separately
- Bottleneck at sender

Multicast

- Stream multiplies messages
- No bottleneck

Peter J. Welcher

www.netcraftsmen.net/.../ papers/multicast01.html

Working Principle

- IPv4 Multicast Addresses
 - class D
 - outside of CIDR (Classless Interdomain Routing)
 - 224.0.0.0 239.255.255.255
- Hosts register via IGMP at this address
 - IGMP = Internet Group Management Protocol
 - After registration the multicast tree is updated
- Source sends to multicast address

- Routers duplicate messages
- and distribute them into sub-trees
- All registered hosts receive these messages
 - ends after Time-Out
 - or when they unsubscribe
- Problems
 - No TCP only UDP
 - Many routers do not deliver multicast messages
 - solution: tunnels

Routing Protocols

- Distance Vector Multicast Routing Protocol (DVMRP)
 - used for years in MBONE
 - particularly in Freiburg
 - own routing tables for multicast
- Protocol Independent Multicast (PIM)
 - in Sparse Mode (PIM-SM)
 - current (de facto) standard
 - prunes multicast tree
 - uses Unicast routing tables
 - is more independent from the routers
- Prerequisites of PIM-SM:
 - needs Rendezvous-Point (RP) in one hop distance
 - RP must provide PIM-SM
 - or tunneling to a proxy in the vicinity of the RP

PIM-SM Tree Construction

Host a Shortest-Path-Tree

Shared Distribution Tree

From Cisco: http://www.cisco.com/en/US/ products/hw/switches/ps646/ products_configuration_guide_chapter09186a00 8014f350.html

IP Multicast Seldomly Available

- IP Multicast is the fastest download method
- Yet, not many routers support IP multicast
 - -http://www.multicasttech.com/status/

Why so few Multicast Routers?

- Despite successful use
 - in video transmission of IETFmeetings
 - MBONE (Multicast Backbone)
- Only few ISPs provide IP Multicast
- Additional maintenance
 - difficult to configure
 - competing protocols
- Enabling of Denial-of-Service-Attacks
 - Implications larger than for Unicast

- Transport protocol
 - only UDP
 - Unreliable
 - Forward error correction necessary
 - or proprietary protocols at the routers (z.B. CISCO)
- Market situation
 - consumers seldomly ask for multicast
 - prefer P2P networks
 - because of a few number of files and small number of interested parties the multicast is not desirable (for the ISP)
 - small number of addresses

Scribe & Friends

- Multicast-Tree in the Overlay Network
- Scribe [2001] is based on Pastry
 - Castro, Druschel, Kermarrec, Rowstron
- Similar approaches
 - CAN Multicast [2001] based on CAN
 - Bayeux [2001] based on Tapestry
- Andere Ansätze
 - Overcast ['00] and Narada ['00]
 - construct multi-cast trees using unicast connections
 - do not scale

How Scribe Works

Create

GroupID is assigned to a peer according to Pastry index

Join

- Interested peer performs lookup to group ID
- When a peer is found in the Multicast tree then a new subpath is inserted

Download

- Messages are distributed using the multicast tree
- Nodes duplicate parts of the file

Scribe Optimization

Bottleneck-Remover

- If a node is overloaded then from the group of peers he sends messages
- Select the farthest peer
- This node measures the delay between it and the other nodes
- and rebalances itself under the next (then former) brother

Split-Stream Motivation

- Multicast trees discriminate certain nodes
- Lemma
 - In every binary tree the number of leaves
 = number of internal nodes +1
- Conclusion
 - Nearly half of the nodes distribute data
 - While the other half does not distribute any data
 - An internal node has twice the upload as the average peer
- Solution: Larger degree?
- Lemma
 - In every node with degree d the number of internal nodes k und leaves b we observe
 - (d-1) k = b -1
- Implication
 - Less peers have to suffer more upload

Split-Stream

- Castro, Druschel, Kermarrec, Nandi, Rowstron, Singh 2001
- Idea
 - Partition a file of size into k small parts
 - For each part use another multicast tree
 - Every peer works as leave and as distributing internal tree node
 - except the source
- Ideally, the upload of each node is at most the download

Bittorrent

- Bram Cohen
- Bittorrent is a real (very successful) peer-to-peer network
 - concentrates on download
 - uses (implicitly) multicast trees for the distribution of the parts of a file
- Protocol is peer oriented and not data oriented
- Goals
 - efficient download of a file using the uploads of all participating peers
 - efficient usage of upload
 - usually upload is the bottleneck
 - e.g. asymmetric protocols like ISDN or DSL
 - fairness among peers
 - seeders against leeches
 - usage of several sources

Bittorrent Coordination and File

Central coordination

- by tracker host
- for each file the tracker outputs a set of random peers from the set of participating peers
 - in addition hash-code of the file contents and other control information
- tracker hosts to not store files
 - yet, providing a tracker file on a tracker host can have legal consequences

File

- is partitions in smaller pieces
 - as describec in tracker file
- every participating peer can redistribute downloaded parts as soon as he received it
- Bittorrent aims at the Split-Stream idea

Interaction between the peers

- two peers exchange their information about existing parts
- according to the policy of Bittorrent outstanding parts are transmitted to the other peer

Bittorrent Part Selection

Problem

- The Coupon-Collector-Problem is the reason for a uneven distribution of parts
 - · if a completely random choice is used

Measures

- Rarest First
 - Every peer tries to download the parts which are rarest
 - density is deduced from the comunication with other peers (or tracker host)
 - in case the source is not available this increases the chances the peers can complete the download
- Random First (exception for new peers)
 - When peer starts it asks for a random part
 - Then the demand for seldom peers is reduced
 - especially when peers only shortly join
- Endgame Mode
 - if nearly all parts have been loaded the downloading peers asks more connected peers for the missing parts
 - then a slow peer can not stall the last download

Bittorrent Policy

- Goal
 - self organizing system
 - good (uploading, seeding) peers are rewarded
 - bad (downloading, leeching) peers are penalized
- Reward
 - good download speed
 - un-choking
- Penalty
 - Choking of the bandwidth
- Evaluation
 - Every peers Peers evaluates his environment from his past experiences

Bittorrent Choking

- Every peer has a choke list
 - requests of choked peers are not served for some time
 - peers can be unchoked after some time
- Adding to the choke list
 - Each peer has a fixed minimum amount of choked peers (e.g. 4)
 - Peers with the worst upload are added to the choke list
 - and replace better peers
- Optimistic Unchoking
 - Arbitrarily a candidate is removed from the list of choking candidates
 - the prevents maltreating a peer with a bad bandwidth

Network Coding

 R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

Example

- Bits x and y need to be transmitted
- Every line transmits one bit
- If only bits are transmitted
 - then only x or y can be transmitted in the middle?
- By using X we can have both results at the outputs

Network Coding

R. Ahlswede, N. Cai, S.-Y. R. Li, and R. W. Yeung, "Network Information Flow", (IEEE Transactions on Information Theory, IT-46, pp. 1204-1216, 2000)

 There is a network code for each graph such that each node receives as much information as the maximum flow of the corresponding flow problem

Practical Network Coding Avalanche

 Christos Gkantsidis, Pablo Rodriguez Rodriguez, 2005

Goal

- Overcoming the Coupon-Collector-Problem
 - a file of m parts can be always reconstructed if at least m network codes have been received
- Optimal transmission of files within the available bandwidth

Method

- Use codes as linear combinations of a file
 - Produced code contains the vector and the variables
- During the distribution the linear combination are re-combined to new parts
- The receiver collects the linear combinations
- and reconstructs the original file using matrix operations

Coding and Decoding

File: x₁, x₂, ..., x_m

Codes: y₁,y₂,...,y_m

Random Variables r_{ii}

$$(r_{i1}r_{i2}\dots r_{im})\cdot\left(egin{array}{c} x_1\ dots\ x_m \end{array}
ight)=y_i$$

$$\left(egin{array}{ccc} r_{11} & \dots & r_{1m} \ draim & \ddots & draim \ r_{m1} & \dots & r_{mm} \end{array}
ight) \cdot \left(egin{array}{c} x_1 \ draim \ x_m \end{array}
ight) = \left(egin{array}{c} y_1 \ draim \ y_m \end{array}
ight)$$

If the matrix is invertable then

$$\left(\begin{array}{c} x_1 \\ \vdots \\ x_m \end{array} \right) = \left(\begin{array}{ccc} r_{11} & \dots & r_{1m} \\ \vdots & \ddots & \vdots \\ r_{m1} & \dots & r_{mm} \end{array} \right)^{-1} \cdot \left(\begin{array}{c} y_1 \\ \vdots \\ y_m \end{array} \right)$$

Speed of Network-Coding

Comparison

- Network-Coding (NC) versus
- Local-Rarest (LR) and
- Local-Rarest+Forward-Error-Correction (LR+FEC)

Problems of Network-Coding

- Overhead of storing of variables
 - per block one variable vector
 - e.g. 4 GB file with 100 kB blocks
 - 4 GB/100 KB = 40 kB
 - Overhead of 40%
 - better: 4 GB und 1 MB-Block
 - 4kB Overhead = 0,4%
- Overhead of Decoding
 - Inversion of a m x m- Matrix needs time O(m³)
- Read/Write Accesses
 - For writing m blocks each part must be read m times
 - Disk access is much slower than memory access

Pair-Coding

- Paircoding: Improving File Sharing Using Sparse Network Codes Christian Ortolf Christian Schindelhauer Arne Vater
- Model Description
 - Round model
 - complete information of the system can be described by file sharing state γ(p,t) of each peer p after round t.
 - It is defined as the set of all code blocks that are available at peer p after round t.
 - Progress of a peer
 - number of indepdendent code blocks at a peer at round t
 - Availability at a set of peers
 - number of independent code blocks at the peers of the set divided by the number of code blocks

Scenario

Round model

- In each round each peer can upload and download a bounded number of blocks of the document
- Peers do not know the future

Progress

 number of (independent encoded) blocks that are available at the end of the rounds

Policy and Outperforming

- Policy of a scheme
 - algorithmic choice of encoding of a block in a round
 - determine the efficiency of a scheme
- Policies of Bittorrent
 - chosen to optimize throughput and fairness
- A scheme A is at least as good as B
 A ≥ B
 - if for every scenario and every policy of B there is a policy in A such that A performs as well as B in all scenarios.

Network Coding

Practical Network Coding

- is the best possible method
- as long as the underlying finite base is large enough

But:

Decoding needs
 O(m) read/write
 operations

Pair Coding

Pair Coding

- is a reduced form of Network Coding
- Only two components are combined

Theorem

- For all scenarios Pair-Coding is at least as efficient as Bittorrent
- For some scenarios
 Pair-Coding is more
 efficient than Bittorrent
- Encoding and
 Decoding can be
 performed with
 (almost) linear number
 of Read/Write Operations

The Random Policy

Scenario

- one seeder
- one downloading peer
- Seeder sends a random block in each round

Figure 8. Simulation of decodability for one peer

Availability

Scenario:

- p peers
- one seeder
- every peer receives n/p+1 blocks from the seed
- then the seed disappears

Figure 9. Simulation of availability for increasing number of peers

Peer-to-Peer Networks 14 Network Coding

Christian Schindelhauer
Technical Faculty
Computer-Networks and Telematics
University of Freiburg