Homework #6

Pittsburgh Jingyi Guo

Problem 1: Longstaff and Schwartz method

```
Code:
      S0 = 40;
      K=40; % in this case will not exercise at time 0
      sig=0.2;
      r=0.06;
      T=1; % or 2
      N=50;
      n=50000;
      delta=T/N;
      % First generate stock price paths
      S=zeros(n,N);
      San=zeros(n,N); %store antithetic values of S
      S0v=ones(n,1)*S0;
      for j=1:N
          z=randn(n,1);
         if j==1
             S(:,j)=S0v.*exp((r-
      1/2*sig^2)*delta+sig*sqrt(delta).*z);
             San(:,j)=S0v.*exp((r-
      1/2*sig^2)*delta+sig*sqrt(delta).*(-z));
         else
             S(:,j)=S(:,j-1).*exp((r-
      1/2*sig^2)*delta+sig*sqrt(delta).*z);
             San(:,j)=San(:,j-1).*exp((r-
      1/2*sig^2)*delta+sig*sqrt(delta).*(-z));
          end
      end
      S=[S;San];% first 50000 rows: original; second 50000 rows:
      antithetic
      P = max(K-S(:,50),0); % Payoff at final time
      % Cash flow table
      for i = (N-1):-1:1
         Si = S(:,i);
```

```
itmP = find(K-Si>0); % ITM path label
   otmP = find(K-Si \le 0);
   X = Si;
   Y = P*exp(-r*delta); % Discounted payoffs (a reduced-dim
column)
   Y(otmP) = 0;
   XMat =
[ones(size(X)),Laguerre(X,0),Laguerre(X,1),Laguerre(X,2)];
   XMat(otmP,:)=0;
   beta = XMat\Y;
   C = XMat*beta; % Value of continuation
   E = K-X; % Value of immediate exercise
   exP = find(C<E); % immediate exercise</pre>
   P(exP) = E(exP);
   rest = setdiff(1:n,exP);
   P(rest) = P(rest)*exp(-r*delta); % continue
end
P1=P(1:n)*exp(-r*delta);
Pa=P((n+1):2*n)*exp(-r*delta);
newP=(P1+Pa)/2;
P bar = mean(newP)
P stderr = std(newP)/sqrt(n)
function output = Laguerre(X,k) % k - order of laguerre, X -
input vector
   if k==0
       output = \exp(-X/2);
   elseif k == 1
       output = \exp(-X/2) \cdot *(1-X);
   elseif k == 2
       output = \exp(-X/2) \cdot *(1-2*X+X^2/2);
   end
end
```

Result:

	T=1	T=2
Estimate	2.2813	2.8563
Std. Err	0.0042	0.0055

Problem 2: GHS and Carpriotti Importance Sampling

```
(a) GHS
Code:
      clear
      S0=100;
      r=0.05;
      sig=0.20;
      T=1;
      K=120; % or 140, 160
      n=10000;
      % a
      % B-S formula
      dplus=1/(sig*sqrt(T))*(log(S0/K)+(r+1/2*sig^2)*T);
      dminus=1/(sig*sqrt(T))*(log(S0/K)+(r-1/2*sig^2)*T);
      BS price = S0*normcdf(dplus)-normcdf(dminus)*K*exp(-r*T);
      % standard MC
      S stdMC=S0*ones(n,1).*exp((r-
      0.5*sig^2)*T+sig*sqrt(T).*randn(n,1));
      C stdMC=exp(-r*T).*max(S stdMC-K,0);
      C stdMC bar=mean(C stdMC)
      C stdMC stderr=std(C stdMC)/sqrt(n)
      % GHS
      % solve for m:
      syms x positive
      S T m=S0*exp((r-1/2*sig^2)*T+sig*sqrt(T)*x);
      eqn = x == S T m*siq*sqrt(T)/(S T m-K);
      xsolve = solve(eqn) % xsolve = vpasolve(eqn,3)
      m=double(xsolve)
      % importance sampling
      z=randn(n,1);
      S IS=S0*ones(n,1).*exp((r-0.5*sig^2)*T+sig*sqrt(T)*(z+m));
      C IS=\exp(-r*T).*\max(S IS-K,0).*\exp(-m*z-0.5*m^2);
      C IS bar=mean(C IS)
      C IS stderr=std(C IS)/sqrt(n)
```

Result:

Strike Price	BS Price	Std MC Est.	Std. Err	mhat	Imp. Samp. Est.	Std. Err
120	3.2475	3.3392	0.0875	1.4849	3.2706	0.0223

140	0.7850	0.7767	0.0410	2.0465	0.7773	0.0068
160	0.1590	0.1573	0.0186	2.6002	0.1577	0.0016

(b) Capriotti Importance Sampling

Code:

```
K=120; % or 140, 160
M=10000;
ind=randn(M,1);
dep=zeros(M,1);
mtrial=1;
bslink = @(m, X)((exp(-r*T)*max(S0*exp((r-sig^2/2)*T+X*sig*sqrt(T))-K,0)).*sqrt(exp(-m*X+m^2/2)));
mhat=nlinfit(ind,dep,bslink,mtrial)
z=randn(n,1);
S_C=S0*ones(n,1).*exp((r-0.5*sig^2)*T+sig*sqrt(T)*(z+mhat));
C_C=exp(-r*T).*max(S_C-K,0).*exp(-mhat*z-0.5*mhat^2);
C_C_bar=mean(C_C);
C_C_stderr=std(C_C)/sqrt(n)
```

Result:

	K=120	K=140	K=160
mhat estimate	1.6505	2.2167	2.7377
C Std. Error	0.0216	0.0067	0.0016

(c) Capriotti Importance Sampling II

Code:

```
K=120; % or 140, 160
bslink = @(m, X)((exp(-r*T)*max(S0*exp((r-sig^2/2)*T+X*sig*sqrt(T))-K,0)).*sqrt(exp(m(2))*exp(-0.5*(X.^2-((X-m(1))/exp(m(2))).^2))));
ind = randn(M,1);
dep = zeros(M,1);
mtrial = [1,1];
mhat = nlinfit(ind,dep,bslink,mtrial);
m = mhat(1)
s = exp(mhat(2))

S_C2=S0*exp((r-0.5*sig^2)*T+sig*sqrt(T)*(s*z+m));
C_C2=exp(-r*T)*s*max(S_C2-K,0).*exp(-0.5*((s*z+m).^2-z.^2));
C_C2_stderr=std(C_C2)/sqrt(n);
```

Result:

K=120	K=140	K=160
-------	-------	-------

mhat estimate	1.7441	2.3069	2.8080
shat estimate	0.6422	0.6061	0.3940