```
In [1]: import pandas as pd
import numpy as np
import matplotlib.pyplot as plt
import seaborn as sns
In [3]: car = pd.read csv("car data.csv")
```

Out[3]:		Car_Name	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transm
	0	ritz	2014	3.35	5.59	27000	Petrol	Dealer	ľ
	1	sx4	2013	4.75	9.54	43000	Diesel	Dealer	ľ
	2	ciaz	2017	7.25	9.85	6900	Petrol	Dealer	N
	3	wagon r	2011	2.85	4.15	5200	Petrol	Dealer	N
	4	swift	2014	4.60	6.87	42450	Diesel	Dealer	N
							•••		
	296	city	2016	9.50	11.60	33988	Diesel	Dealer	N
	297	brio	2015	4.00	5.90	60000	Petrol	Dealer	Ŋ
	298	city	2009	3.35	11.00	87934	Petrol	Dealer	N
	299	city	2017	11.50	12.50	9000	Diesel	Dealer	Ŋ
	300	brio	2016	5.30	5.90	5464	Petrol	Dealer	ľ
	004								

301 rows × 9 columns

```
In [4]: print(car['Selling_type'].unique())
    print(car['Fuel_Type'].unique())
    print(car['Transmission'].unique())
    print(car['Owner'].unique())
```

```
['Dealer' 'Individual']
['Petrol' 'Diesel' 'CNG']
['Manual' 'Automatic']
[0 1 3]
```

```
In [5]: car.describe()
```

Out[5]:	Year	Selling_Price	Present_Price	Driven_kms

	Year	Selling_Price	Present_Price	Driven_kms	Owner
count	301.000000	301.000000	301.000000	301.000000	301.000000
mean	2013.627907	4.661296	7.628472	36947.205980	0.043189
std	2.891554	5.082812	8.642584	38886.883882	0.247915
min	2003.000000	0.100000	0.320000	500.000000	0.000000
25%	2012.000000	0.900000	1.200000	15000.000000	0.000000
50%	2014.000000	3.600000	6.400000	32000.000000	0.000000
75%	2016.000000	6.000000	9.900000	48767.000000	0.000000
max	2018.000000	35.000000	92.600000	500000.000000	3.000000

```
In [6]:
        car.info()
```

<class 'pandas.core.frame.DataFrame'> RangeIndex: 301 entries, 0 to 300 Data columns (total 9 columns):

```
#
     Column
                    Non-Null Count
                                    Dtype
                    -----
 0
    Car_Name
                    301 non-null
                                    object
1
    Year
                    301 non-null
                                    int64
 2
    Selling Price
                                    float64
                   301 non-null
 3
    Present_Price
                   301 non-null
                                    float64
4
    Driven kms
                    301 non-null
                                    int64
 5
    Fuel_Type
                    301 non-null
                                    object
     Selling_type
                    301 non-null
                                    object
7
    Transmission
                    301 non-null
                                    object
8
    Owner
                    301 non-null
                                    int64
dtypes: float64(2), int64(3), object(4)
```

memory usage: 21.3+ KB

```
In [7]: | car.duplicated().sum()
```

Out[7]: 2

```
In [8]:
        car.drop_duplicates(inplace= True)
```

```
In [9]:
        car.isnull().sum()
```

Out[9]: Car_Name 0 Year 0 0 Selling Price Present_Price 0 Driven_kms 0 Fuel_Type 0 Selling_type 0 Transmission 0 0 Owner

dtype: int64

```
In [10]: | car["Year"] = pd.to_datetime(car["Year"], format = '%Y').dt.year
In [11]: | car["Owner"] = car["Owner"].astype("int32")
         car["Driven_kms"] = car["Driven_kms"].astype("int32")
In [12]: | car.info()
         <class 'pandas.core.frame.DataFrame'>
         Index: 299 entries, 0 to 300
         Data columns (total 9 columns):
              Column
                             Non-Null Count Dtype
                              -----
                                              ----
          0
              Car Name
                              299 non-null
                                              object
              Year
                              299 non-null
                                              int32
          1
          2
              Selling Price 299 non-null
                                              float64
          3
              Present Price 299 non-null
                                              float64
          4
              Driven_kms
                              299 non-null
                                              int32
          5
              Fuel Type
                              299 non-null
                                              object
                              299 non-null
              Selling type
                                              object
          6
          7
              Transmission
                              299 non-null
                                              object
              Owner
                              299 non-null
                                              int32
         dtypes: float64(2), int32(3), object(4)
         memory usage: 19.9+ KB
In [13]: | car["Year"].unique()
Out[13]: array([2014, 2013, 2017, 2011, 2018, 2015, 2016, 2009, 2010, 2012, 2003,
                2008, 2006, 2005, 2004, 2007])
In [14]: car["Year"].nunique()
Out[14]: 16
In [15]: | car = car.drop(columns= "Car Name")
In [16]: | car["current year"]= 2023
In [17]: | car['Age of car'] = car["current year"] - car["Year"]
```

In [18]: car

Out[18]:

	Year	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Own
0	2014	3.35	5.59	27000	Petrol	Dealer	Manual	
1	2013	4.75	9.54	43000	Diesel	Dealer	Manual	
2	2017	7.25	9.85	6900	Petrol	Dealer	Manual	
3	2011	2.85	4.15	5200	Petrol	Dealer	Manual	
4	2014	4.60	6.87	42450	Diesel	Dealer	Manual	
296	2016	9.50	11.60	33988	Diesel	Dealer	Manual	
297	2015	4.00	5.90	60000	Petrol	Dealer	Manual	
298	2009	3.35	11.00	87934	Petrol	Dealer	Manual	
299	2017	11.50	12.50	9000	Diesel	Dealer	Manual	
300	2016	5.30	5.90	5464	Petrol	Dealer	Manual	

299 rows × 10 columns

In [19]: car = car.drop(columns= ["current year", "Year"])
car

Out[19]:

	Selling_Price	Present_Price	Driven_kms	Fuel_Type	Selling_type	Transmission	Owner	AÇ (Ci
0	3.35	5.59	27000	Petrol	Dealer	Manual	0	
1	4.75	9.54	43000	Diesel	Dealer	Manual	0	1
2	7.25	9.85	6900	Petrol	Dealer	Manual	0	
3	2.85	4.15	5200	Petrol	Dealer	Manual	0	1
4	4.60	6.87	42450	Diesel	Dealer	Manual	0	
		•••						
296	9.50	11.60	33988	Diesel	Dealer	Manual	0	
297	4.00	5.90	60000	Petrol	Dealer	Manual	0	
298	3.35	11.00	87934	Petrol	Dealer	Manual	0	1
299	11.50	12.50	9000	Diesel	Dealer	Manual	0	
300	5.30	5.90	5464	Petrol	Dealer	Manual	0	

299 rows × 8 columns

<

car = pd.get_dummies(data=car, drop_first= True) In [20]: In [21]: car Out[21]: Age Fuel_Type_Diesel Fuel_Type_Petrol Selling_Price Present_Price Driven_kms Owner of car 0 3.35 5.59 27000 0 9 False True 1 4.75 9.54 43000 0 False 10 True 2 7.25 9.85 6900 0 6 False True 2.85 5200 3 4.15 0 12 True False 4.60 6.87 42450 0 9 True False 7 296 9.50 11.60 33988 0 True False 297 4.00 5.90 60000 0 8 False True 298 3.35 11.00 87934 0 14 False True 299 11.50 12.50 9000 0 6 True False 300 5.30 5.90 5464 0 7 False True 299 rows × 9 columns > g= ['Fuel_Type_Diesel', 'Fuel_Type_Petrol', 'Selling_type_Individual', 'Transm In [22]: car[g]= car[g].astype('int') In []: In [23]: car.head(3) Out[23]: Age Selling_Price Present_Price Driven_kms Owner Fuel_Type_Diesel Fuel_Type_Petrol Se of car 0 3.35 5.59 27000 0 9 0 1 1 4.75 9.54 43000 0 10 1 0

7.25

9.85

6900

0

6

0

2

1

>

In [24]: car.corr()

Out[24]:

	Selling_Price	Present_Price	Driven_kms	Owner	Age of car	Fuel_Type
Selling_Price	1.000000	0.876305	0.028566	-0.087880	-0.234369	0.
Present_Price	0.876305	1.000000	0.205224	0.009948	0.053167	0.
Driven_kms	0.028566	0.205224	1.000000	0.089367	0.525714	0.
Owner	-0.087880	0.009948	0.089367	1.000000	0.181639	-0.
Age of car	-0.234369	0.053167	0.525714	0.181639	1.000000	-0.
Fuel_Type_Diesel	0.543541	0.464934	0.173295	-0.051836	-0.056469	1.
Fuel_Type_Petrol	-0.531636	-0.456829	-0.173595	0.054102	0.052197	-0.
Selling_type_Individual	-0.553851	-0.511779	-0.101030	0.123646	0.036820	-0.
Transmission_Manual	-0.348869	-0.334326	-0.163881	-0.052166	-0.003434	-0.

In [25]: import warnings
 warnings.filterwarnings("ignore")
 sns.pairplot(car)

Out[25]: <seaborn.axisgrid.PairGrid at 0x1db569738d0>


```
In [26]: sns.heatmap(car.corr(), annot= True, cmap= 'Reds')
```

Out[26]: <Axes: >

Name: Selling_Price, Length: 299, dtype: float64

9.50

4.00

3.35

5.30

11.50

296

297

298

299

300

In [29]: x

Out[29]:

	Present_Price	Driven_kms	Owner	Age of car	Fuel_Type_Diesel	Fuel_Type_Petrol	Selling_type_lr
0	5.59	27000	0	9	0	1	
1	9.54	43000	0	10	1	0	
2	9.85	6900	0	6	0	1	
3	4.15	5200	0	12	0	1	
4	6.87	42450	0	9	1	0	
			•••				
296	11.60	33988	0	7	1	0	
297	5.90	60000	0	8	0	1	
298	11.00	87934	0	14	0	1	
299	12.50	9000	0	6	1	0	
300	5.90	5464	0	7	0	1	

299 rows × 8 columns

In [30]: x['Owner'].unique()

Out[30]: array([0, 1, 3])

In [31]: from sklearn.ensemble import ExtraTreesRegressor
model = ExtraTreesRegressor()
model.fit(x,y)

Out[31]: ExtraTreesRegressor()

In a Jupyter environment, please rerun this cell to show the HTML representation or trust the notebook.

On GitHub, the HTML representation is unable to render, please try loading this page with nbviewer.org.

In [32]: print(model.feature_importances_)

```
In [33]: feat_importances = pd.Series(model.feature_importances_, index=x.columns)
    feat_importances.nlargest(5).plot(kind='barh')
    plt.show()
```



```
In [34]: from sklearn.model selection import train test split
         x_train, x_test, y_train, y_test = train_test_split(x,y, test_size=0.2, random)
In [35]: x_train.shape
Out[35]: (239, 8)
         x test.shape
In [36]:
Out[36]: (60, 8)
In [38]: from sklearn.model_selection import RandomizedSearchCV
In [39]:
         parameters = {
             'n_estimators': [100, 200, 300, 400, 500, 600, 700, 800, 900, 1000],
             'criterion': ['squared_error', 'absolute_error', 'poisson', 'friedman_mse'
             'max_depth': [10, 20, 30, 40, 50],
             'min_samples_split': [2, 5, 10, 20, 50],
             'min_samples_leaf': [1, 2, 5, 10],
             'max_features': ['auto', 'sqrt', 'log2']
         }
```