

Tópicos Avançados Felipe

Figueiredo

ΔΝΟ\/Δ

xercício

ncerramento

Tópicos Avançados

Comparação de 3 ou mais grupos - ANOVA e afins

Felipe Figueiredo

Instituto Nacional de Traumatologia e Ortopedia

Sumário

- Comparações múltiplas
- Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- 3 Exercício
- 4 Encerramento

Tópicos Avançados

Felipe Figueiredo

.

Como comparar três ou mais grupos?

 "Comparar" é um termo vago - precisamos de um critério bem definido!

Para comparar quanto às variâncias dos grupos

Podemos usar

- Teste de Levene
- Teste de Bartlett

Para comparar quanto às médias dos grupos

Pay attention

Tópicos Avançados

Felipe Figueiredo Comparações

múltiplas

....

xercício

Como comparar médias

Tópicos Avançados

Felipe Figueiredo Comparações

múltiplas

xercicio

Encerramento

 Vimos que o teste t pode ser usado para comparar duas médias

- Assumindo que atendemos às premissas do teste t, precisamos levar em conta:
 - variabilidade dos grupos
 - tamanho do estudo (n)

Requisitos não óbvios (além das médias)

desvio padrão + n = erro padrão

Tópicos Avançados

Felipe Figueiredo Comparações

múltiplas

ANOVA

xercício

Encerramento

O que é necessário para decidir se 3 (ou mais) grupos possuem médias diferentes?

Esses 3 grupos têm médias diferentes?

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

.....

Médias: Placebo: 4.210, Tratamento A: 3.250, Tratamento B: 3.845

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

E estes 3 grupos?

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

xercício

Médias: Placebo: 4.559, Tratamento A: 5.855, Tratamento B: 5.928

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

. . .

Lilocitamonto

Comparação entre 3 (ou mais) grupos

Tópicos Avançados Felipe

Figueiredo

Comparações

múltiplas

. , .

Encerramento

Abordagem mais simples

Uma ideia seria usar o teste t três vezes, comparando os grupos aos pares.

Testar se há diferenças significativas, e seus respectivos tamanhos.

Exemplo

- Placebo x Tratamento A
- Placebo x Tratamento B
- Tratamento A x Tratamento B

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

P-valores dos 3 testes t

Placebo x Trat. A $\Rightarrow p = 0.02652$

Placebo x Trat. B $\Rightarrow p = 0.4331$

Trat. A x Trat. B $\Rightarrow p = 0.09686$

Pergunta

Qual é a conclusão correta quanto à comparação destes grupos?

Placebo x Trat. A $\Rightarrow p = 0.0399$

Placebo x Trat. B $\Rightarrow p = 0.02235$

Trat. A x Trat. B $\Rightarrow p = 0.8432$

Pergunta

E no segundo cenário? Os tratamentos são diferentes do placebo? E entre si?

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

ANOVA

xercício

Tópicos Avançados

Felipe Figueiredo Comparações

múltiplas

ncerramento

Existe um problema oculto aí.

O problema é...

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

ANOVA

xercício

¹Leia várias vezes o Cap 13!

O problema é...

A conclusão de que no Exemplo 1 os 3 grupos são diferentes está **errada**!

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

1140 171

xercício

¹Leia várias vezes o Cap 13!

O problema é...

A conclusão de que no Exemplo 1 os 3 grupos são diferentes está **errada**!

- O teste t permite a avaliação de uma hipótese
- Testamos simultaneamente várias ¹
- Isto aumenta a chance de cometermos um erro tipo I (falso positivo)
- Múltiplos testes superestimam o p-valor do método

Felipe Figueiredo

Comparações múltiplas

ANOVA

xercício

Tópicos Avançados

¹Leia várias vezes o Cap 13!

Pensar é obrigatório

Tópicos Avançados

Felipe Figueiredo Comparações

múltiplas

_ .

- Os testes estatísticos (e fórmulas) não "sabem" o que foi levado em conta no estudo.
- Só o pesquisador sabe
- A metodologia da análise precisa levar em conta todo o planejamento do estudo.

Tópicos Avançados Felipe

Figueiredo

Comparações

múltiplas

Everefele

Encerramento

Exemplo 13.2

5 crianças de uma escola tiveram leucemia, ano passado.

- Isto é uma coincidência?
- Esse agrupamento de casos sugere a presença de toxina ou efeito ambiental que causou a doença?

Qual é a probabilidade de se observar 5 casos *nesta* escola, em um ano?

Tópicos Avançados Felipe

Figueiredo

Comparações

múltiplas

-....

- Considerando a incidência de leucemia, isto parece ser um dado extraordinário
- Esta é a pergunta errada, após observar os casos nesta escola.
- Se escola não é especial, é preciso considerar outras escolas
- Além disso, outras doenças (por ex., asma é um fator?).

Exemplo 13.2

5 crianças de uma escola tiveram leucemia, ano passado.

- Isto é uma coincidência?
- Esse agrupamento de casos sugere a presença de toxina ou efeito ambiental que causou a doença?

Qual é a probabilidade de se observar 5 casos *nesta* escola, em um ano?

Pergunta correta

Qual é a probabilidade de se observar 5 casos *em alguma* escola, em um ano?

Tópicos Avançados

Felipe Figueiredo Comparações

múltiplas

71140 171

Kercicio

Lilcerramento

E agora, José?

Como levar em conta as comparações múltiplas sem ser induzido ao erro, pelo teste t?

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

Como comparar médias

Tópicos Avancados

Felipe Figueiredo Comparações

múltiplas

- Vimos que o teste t pode ser usado para comparar duas médias
- Assumindo que atendemos às premissas do teste t, precisamos levar em conta:
 - variabilidade dos grupos
 - tamanho do estudo (n)

Requisitos não óbvios (além das médias)

desvio padrão + n = erro padrão

Sumário

Comparações múltiplas

- Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- 3 Exercício
- 4 Encerramento

Tópicos Avançados

Felipe Figueiredo

manipiao

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste Two-way ANOVA

Iwo-way ANOV

xercício

Tópicos Avancados

Felipe Figueiredo

ANOVA um fator (One-way ANOVA)

Exemplo 13.5

Hetland, et. al (1993) pesquisaram alterações hormonais em mulheres corredoras. Mediram o nível de hormônio luteinizante (LH) em três grupos:

- sedentárias
- corredoras recreacionais
- corredoras de elite

Exemplo 13.5

Table 30.1. LH Levels in Three Groups of Women

· · · · · · · · · · · · · · · · · · ·			
Group	log(LH) ± SEM	N	
Nonrunners	0.52 ± 0.027	88	
Recreational runners	0.38 ± 0.034	89	
Elite runners	0.40 ± 0.049	28	

 Com estas informações, podemos construir uma tabela ANOVA

H₀: todas as médias são iguais

Tópicos Avançados

Felipe Figueiredo

núltiplas

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Pós teste Two-way ANOVA

INO-Way AIVOVA

xercício

Exemplo 13.5

Table 30.2. InStat Results for One-Way ANOVA

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
Treatments (between groups)	2	0.92681	0.4634
Residuals (within groups)	202	16.450	0.0814
Total	204	17.377	
F = 5.690			
The P value is 0.0039, considered ver	ry significant.		
Variation among column means is sig		cted by chance.	

- A razão entre as Somas dos Quadrados: 0.93/17.38 = 5.3%
- 5.3% da variabilidade pode ser explicada pelas diferenças entre os grupos
- (lembra do r^2 ?)

Tópicos Avançados

Felipe Figueiredo

Comparações

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Pós teste

Iwo-way ANOVA

Exercício

One-way ANOVA

Tópicos Avançados Felipe

Figueiredo

múltiplas

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Pós teste

Two-way ANOVA

Exercício

Encerramento

 Este método é chamado one-way (ou 1-way) ANOVA, pois tem um fator categórico

- A premissa é que pode-se modelar a relação entre um desfecho quantitativo e um preditor categórico + um erro aleatório
- A variável dependente do exemplo é o LH
- A (única) variável independente é o Grupo

A ideia básica

Tópicos Avancados Felipe

Figueiredo

ANOVA um fator (One-way ANOVA)

Quando os grupos têm médias diferentes, parte da

variabilidade total é devido a esta diferença

- O resto da variabilidade é devido apenas às variâncias intra-grupos
- A ANOVA tenta desembaraçar esta decomposição, assumindo a hipótese nula.

A ideia básica

Tópicos Avancados

Felipe Figueiredo

ANOVA um fator (One-way ANOVA)

 O nome Análise de Variância vem do critério usado para comparar as médias

- O teste de hipótese é baseado na comparação entre as variâncias intra- e inter grupos
- Estas variâncias aparecem na tabela como "Média dos Quadrados"
- Lembrete: a variância é a média dos desvios elevados ao quadrado

Sumário

Comparações múltiplas

Análise de Variância (ANOVA)

- ANOVA um fator (One-way ANOVA)
- O teste F
- Pós teste
- Two-way ANOVA
- 3 Exercício
- 4 Encerramento

Tópicos Avançados

Felipe Figueiredo

nultiplas

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste

Two-way ANOVA

Exercício

O teste F

 Se as médias forem iguais, a variância intra-grupo deve ser "igual" à variância inter-grupo

 Calculando-se a razão entre a variância, esperamos que seja próximo de 1

• razão = $F = \frac{\text{Entre grupos}}{\text{Intra grupos}}$

 Uma razão muito maior que 1 indica que há mais variância entre os grupos do que o esperado

 Obs: o teste leva em conta os graus de liberdade do numerador e denominador Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

ANOVA

ANOVA um fator (One-way ANOVA)

Pós teste

Iwo-way ANOVA

Evorcício

Exemplo 13.5

Table 30.2. InStat Results for One-Way ANOVA

Source of Variation	Degrees of Freedom	Sum of Squares	Mean Square
Treatments (between groups)	2	0.9268	0.4634
Residuals (within groups)	202	16.450	0.0814
Total	204	17.377	
F = 5.690			
The P value is 0.0039, considered ve	ry significant.		
Variation among column means is sig		cted by chance.	

Razão entre as variâncias:

$$F=0.4634/0.0814=5.69>>1$$
 (mesmo considerando o n de cada grupo)

- p = 0.0039
- Pergunta: Como você redigiria este resultado?

Tópicos Avançados

Felipe Figueiredo

NIOVA

ANOVA um fate

(One-way ANOVA)

O teste F

Pós teste Two-way ANOVA

Two-way ANOVA

LXGIGIGIO

Tópicos Avançados

Figueiredo

4 NIOV/4

ANOVA

ANOVA um fator (One-way ANOVA

O teste F

Pos teste Two-way ANOVA

Iwo-way ANOV.

Exercício

Encerramento

Avançados Felipe

Resposta

Sabemos apenas que pelo menos um dos grupos é diferente dos outros. Mas qual(is)?

Ainda não estamos prontos para redigir o resultado!

Sumário

Comparações múltiplas

- Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- 3 Exercício
- 4 Encerramento

Tópicos Avançados

Felipe Figueiredo

múltiplas

ANOVA

ANOVA um fator (One-way ANOVA

Pós teste

Two-way ANOVA

. , .

.

Testes post-hoc

Tópicos **Avancados**

Felipe Figueiredo

Pós teste

• O teste de ANOVA é apenas a primeira parte!2

- O p-valor do teste F indica o quão raro é encontrar uma discrepância tão grande (ou maior) entre as médias dos grupos, ao acaso
- Mas isso não nos ajuda a saber qual grupo é diferente dos outros.
- Para esta outra pergunta, precisamos de outro método

²Está com saudade do teste t?

Testes post-hoc

Tópicos Avançados

Felipe Figueiredo

iluitipias

ANOVA um fator (One-way ANOVA) O teste F

Pós teste

wo-way ANOVA

WO-Way ANOVA

Encerramento

Como vimos, n\u00e3o podemos simplesmente fazer v\u00e1rios testes t

- Mas podemos ajustar os p-valores destes testes, para compensar a inflação destes resultados
- Isso pode ser feito de várias maneiras

Testes post-hoc

Tópicos Avancados

Felipe Figueiredo

Pós teste

Two-way ANOVA

◆ロト→同ト→三ト ● 夕久で

- Correção de Bonferroni
- Correção para tendências
- Teste "honesto" das diferenças, de Tukey (HSD)
- Método de Scheffe
- Teste de Dunnet

Testes post-hoc

Tópicos Avancados

Felipe Figueiredo

Pós teste

Os dois mais usados são Bonferroni e Tukey

- O teste de Bonferroni ajusta o p-valor dividindo pelo número de comparações, mas seus ICs são muito grandes
- O teste de Tukey é mais conservador, mas pode acusar diferenças significativas com mais frequência
- Infelizmente não há consenso sobre critérios de escolha

Exemplo

Exemplo 13.5

Table 30.3. InStat Results for Tukey's Post Test

	Mean		
Comparison	Difference	q	P Value
Nonrunners vs Recreational	0.1400	2.741	** P < 0.01
Nonrunners vs Elite	0.1200	2.741	ns $P > 0.05$
Recreational vs Elite	-0.02000	0.4574	ns P > 0.05
	Mean	Lower	Upper 95%
Difference	Difference	95% CI	CI
Nonrunners — Recreational	0.1400	0.03823	0.2418
Nonrunners — Elite	0.1200	-0.02688	0.2669
Recreational — Elite	-0.02000	-0.1667	0.1267

Pergunta: Como você redigiria este resultado?

Tópicos Avançados

Felipe Figueiredo

ANOVA um fator Pós teste

Two-way ANOVA

Sumário

Comparações múltiplas

- 2 Análise de Variância (ANOVA)
 - ANOVA um fator (One-way ANOVA)
 - O teste F
 - Pós teste
 - Two-way ANOVA
- 3 Exercício
- 4 Encerramento

Tópicos Avançados

Felipe Figueiredo

núltiplas

ANOVA

ANOVA um fator (One-way ANOVA O teste F

Two-way ANOVA

Ť

_

ANOVA dois parâmetros

Tópicos Avançados

Felipe Figueiredo

múltiplas

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Two-way ANOVA

....

Exercício

- Nas seções anteriores vimos como executar o ANOVA com uma var. independente categórica
- O teste ANOVA permite qualquer quantidade de variáveis independentes!
- Vejamos o exemplo inicial da aula, com duas: incluindo o Gênero
- Agora a pergunta é dupla: as médias são diferentes, quando estratificamos por uma segunda var. categórica?

Esses 3 grupos têm médias diferentes, controlando por Gênero?

Tópicos Avançados

> Felipe Figueiredo

núltiplas

NOVA um fator

ANOVA um fator (One-way ANOVA) O teste F

Two-way ANOVA

Esses 3 grupos têm médias diferentes, controlando por Gênero?

Tópicos Avançados

> Felipe Figueiredo

múltiplas

ANOVA

ANOVA um fator (One-way ANOVA) O teste F

Two-way ANOVA

_ .

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

NOVA ANOVA um fator One-way ANOVA

Pós teste Two-way ANOVA

IWO-Way ANOVA

Exercicio

E estes 3 grupos?

Tópicos Avançados

Felipe Figueiredo

Comparações múltiplas

NOVA

ANOVA um fator (One-way ANOVA) O teste F

Two-way ANOVA

Cenário 1 - ANOVA one-way

```
Df Sum Sq Mean Sq F value Pr(>F)
Grupo 2 3.753 1.8763 3.025 0.0701 .
Residuals 21 13.026 0.6203
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tópicos Avançados

Felipe Figueiredo

múltiplas

ANOVA

Exercício

Cenário 2 - ANOVA one-way

```
Df Sum Sq Mean Sq F value Pr(>F)
Grupo 2 9.499 4.749 4.775 0.0195 *
Residuals 21 20.889 0.995
```

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tópicos Avançados

Felipe Figueiredo

múltiplas

ANOVA

Exercício

Tópicos Avançados

Felipe Figueiredo

A NOVA

Exercício

Encorramonto

Encerramento

```
Cenário 2 - Tukey
```

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ Grupo, data = cenario2.long)

\$Grupo

diff lwr upr p adj Trat.A-Placebo 1.29615978 0.0392117 2.553108 0.0424949 Trat.B-Placebo 1.36988994 0.1129419 2.626838 0.0311078 Trat.B-Trat.A 0.07373016 -1.1832179 1.330678 0.9880276

Cenário 4 - ANOVA two-way (sem interações)

Residuals 20 20.887 1.044

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tópicos Avançados

Felipe Figueiredo

múltiplas

ANOVA

Exercício

Cenário 4 - ANOVA two-way (com interações)

Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1

Tópicos Avançados

Felipe Figueiredo

múltiplas

ANOVA

Exercício

Cenário 4 - ANOVA two-way (com interações)

Tukey multiple comparisons of means 95% family-wise confidence level

Fit: aov(formula = y ~ Grupo * Genero, data = cenario2.long)

\$Grupo

diff lwr upr padj Trat.A-Placebo 1.5514853 0.2712011 2.831770 0.0164455 Trat.B-Placebo 2.1703237 0.8900395 3.450608 0.0011265 Trat.B-Trat.A 0.6188384 -0.6614458 1.899123 0.4494538

diff

\$Genero

diff lwr upr p adj M-F 0.8071626 -0.08158125 1.695906 0.0724633

\$'Grupo:Genero'

Trat.A:F-Placebo:F 2.1160544 -0.4873461 4.719455 0.1523427 Trat.B:F-Placebo:F 1.5879521 -1.0154484 4.191353 0.4122593 Placebo:M-Placebo:F 0.7976679 -1.5308843 3.126220 0.8795976 Trat.A:M-Placebo:F 2.0104118 -0.3181404 4.338964 0.1143524 Trat.B:M-Placebo:F 3.3174146 0.9888624 5.645967 0.0030192 Trat B.F-Trat A.F -0.5281023 -3.1315028 2.075298 0.9857698 Placebo:M-Trat.A:F -1.3183865 -3.6469387 1.010166 0.4902167 Trat.A:M-Trat.A:F -0.1056426 -2.4341948 2.222910 0.9999896 Trat.B:M-Trat.A:F 1.2013602 -1.1271920 3.529912 0.5849474 Placebo:M-Trat.B:F -0.7902842 -3.1188364 1.538268 0.8835616 Trat.A:M-Trat.B:F 0.4224597 -1.9060925 2.751012 0.9913898

Trat D.M_Trat D.F 1 729/625 _0 5990997 / 059015 0 2216761

lwr

upr

Tópicos Avançados

Felipe Figueiredo

munipias

INOVA

Exercício

Leitura pós-aula e exercícios selecionados

Tópicos Avançados

Felipe Figueiredo

ΛΝΟ\/Λ

Encerramento

Leitura obrigatória

- Capítulo 13
- Capítulo 30

Exercícios

Capítulo 13, problema: 1