© 陈强,《高级计量经济学及 Stata 应用》课件,第二版,2014年,高等教育出版社。

第6章 最大似然估计

如果回归模型存在非线性,常使用最大似然估计法(MLE)。

6.1 最大似然估计法的定义

假设随机向量y的概率密度函数为 $f(y;\theta)$,其中 θ 为 K 维未知参数向量, $\theta \in \Theta$ 。

 Θ 为参数空间,即参数 θ 所有可能取值所构成的集合。

通过抽取随机样本 $\{y_1, ..., y_n\}$ 来估计 θ 。

假设 $\{y_1, \dots, y_n\}$ 为 iid,则样本数据的联合密度函数为 $f(y_1; \theta) f(y_2; \theta) \dots f(y_n; \theta)$ 。

在抽样前, $\{y_1, \dots, y_n\}$ 为随机向量。

抽样后, $\{y_1, ..., y_n\}$ 有了特定的样本值,可将样本联合密度 函数视为在 $\{y_1, ..., y_n\}$ 给定情况下,未知参数 θ 的函数。

定义似然函数(likelihood function)为

$$L(\boldsymbol{\theta}; \boldsymbol{y}_1, \dots, \boldsymbol{y}_n) = \prod_{i=1}^n f(\boldsymbol{y}_i; \boldsymbol{\theta})$$

似然函数与联合密度函数完全相等,只是 θ 与 $\{y_1, ..., y_n\}$ 的角色互换,即把 θ 作为自变量,而视 $\{y_1, ..., y_n\}$ 为给定。

为了运算方便,常把似然函数取对数:

$$\ln L(\boldsymbol{\theta}; \boldsymbol{y}_1, \dots, \boldsymbol{y}_n) = \sum_{i=1}^n \ln f(\boldsymbol{y}_i; \boldsymbol{\theta})$$

"最大似然估计法" (Maximum Likelihood Estimation,简记 MLE 或 ML)的思想:给定样本取值后,该样本最有可能来自参数 θ 为何值的总体。

寻找 $\hat{\boldsymbol{\theta}}_{ML}$,使得观测到样本数据的可能性最大,即最大化对数似然函数(loglikelihood function):

$$\max_{\boldsymbol{\theta} \in \boldsymbol{\Theta}} \ \ln L(\boldsymbol{\theta}; \boldsymbol{y})$$

最大似然估计量 $\hat{\theta}_{ML}$ 可写为,

$$\hat{\boldsymbol{\theta}}_{\mathrm{ML}} \equiv \arg\max \ln L(\boldsymbol{\theta}; \boldsymbol{y})$$

其中,"argmax" (argument of the maximum)表示能使 $\ln L(\theta; y)$ 最大化的 θ 取值。

假设存在唯一内点解,一阶条件:

$$s(\boldsymbol{\theta}; \boldsymbol{y}) \equiv \frac{\partial \ln L(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \boldsymbol{\theta}} \equiv \begin{bmatrix} \frac{\partial \ln L(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \theta_1} \\ \vdots \\ \frac{\partial \ln L(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \theta_K} \end{bmatrix} = \mathbf{0}$$

一阶条件要求,对数似然函数的梯度向量(gradient,偏导数、斜率) $s(\theta; y)$ 为0,实际上是 K 个未知参数 $(\theta_1 \theta_2 \cdots \theta_K)$,K 个方程的方程组。

该向量也称"得分函数"(score function)或"得分向量"(score vector)。

得分函数 $s(\theta; y)$ 是y的函数,也是随机向量。

在下面,记真实参数为 θ_0 ,而 θ 为该参数的任何可能取值。

命题(得分函数的期望为0)

如果似然函数正确(correctly specified),则

$$E[s(\theta_0; y)] = \theta$$

其中, $s(\theta_0; y)$ 表示得分函数 $s(\theta; y)$ 在 $\theta = \theta_0$ 处的取值。

例 假设随机样本 $y_i \sim N(\theta_0, 1)$, $i = 1, \dots, n$ 。则样本数据的对数似然函数为,

$$L(\theta) = -\frac{n}{2} \ln 2\pi - \frac{1}{2} \sum_{i=1}^{n} (y_i - \theta)^2$$

其得分函数为,

$$s(\theta) = \frac{\partial L(\theta)}{\partial \theta} = \sum_{i=1}^{n} (y_i - \theta)$$

故得分函数的期望值为,

$$E[s(\theta)] = \sum_{i=1}^{n} [E(y_i) - \theta] = \sum_{i=1}^{n} [\theta_0 - \theta]$$

$$E[s(\theta)]\Big|_{\theta=\theta_0} = \sum_{i=1}^n [\theta_0 - \theta]\Big|_{\theta=\theta_0} = 0$$

此结果与上述命题一致。

得分函数可分解为

$$s(\theta; y) = \frac{\partial \ln L(\theta; y)}{\partial \theta} = \frac{\partial \sum_{i=1}^{n} \ln f(y_i; \theta)}{\partial \theta}$$
$$= \sum_{i=1}^{n} \frac{\partial \ln f(y_i; \theta)}{\partial \theta} = \sum_{i=1}^{n} s_i(\theta; y_i)$$

其中, $s_i(\theta; y_i) \equiv \frac{\partial \ln f(y_i; \theta)}{\partial \theta}$ 为第 i 个观测值对得分函数的贡献。

在上例中,
$$s(\theta; \mathbf{y}) = \sum_{i=1}^{n} (y_i - \theta)$$
,而 $s_i(\theta, y_i) = (y_i - \theta)$ 。

二阶条件要求,对数似然函数的黑赛矩阵(Hessian matrix)

$$\frac{\partial^2 \ln L(\boldsymbol{\theta}; \, \boldsymbol{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \equiv \frac{\partial \left(\frac{\partial \ln L(\boldsymbol{\theta}; \, \boldsymbol{y})}{\partial \boldsymbol{\theta}}\right)}{\partial \boldsymbol{\theta}'}$$

为负定矩阵,即对数似然函数为严格凹函数(strictly concave)。黑赛矩阵可分解为

$$\boldsymbol{H}(\boldsymbol{\theta}; \boldsymbol{y}) \equiv \frac{\partial^2 \ln L(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \boldsymbol{\theta} \, \partial \boldsymbol{\theta}'} = \sum_{i=1}^n \frac{\partial^2 \ln L(\boldsymbol{\theta}; \boldsymbol{y}_i)}{\partial \boldsymbol{\theta} \, \partial \boldsymbol{\theta}'} \equiv \sum_{i=1}^n \boldsymbol{H}_i(\boldsymbol{\theta}; \boldsymbol{y}_i)$$

其中, $H_i(\theta; y_i)$ 为第 i 个观测值对黑赛矩阵的贡献。

在上例中,
$$H(\theta; y) = \frac{\partial s(\theta)}{\partial \theta} = \frac{\partial \sum_{i=1}^{n} (y_i - \theta)}{\partial \theta} = -n$$
,而
$$H_i(\theta; y_i) = \frac{\partial s_i(\theta)}{\partial \theta} = \frac{\partial (y_i - \theta)}{\partial \theta} = -1$$
。

6.2 线性回归模型的最大似然估计

例 假设 $X \sim N(\mu, \sigma^2)$,其中 σ^2 已知,得到一个样本容量为 1 的样本 $x_1 = 2$,求对 μ 的最大似然估计。

似然函数为
$$L(\mu) = \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left\{\frac{-(2-\mu)^2}{2\sigma^2}\right\}$$
。

似然函数在 $\hat{\mu}=2$ 处取最大值,见图 6.1。

图 6.1 选择参数使观测到样本的可能性最大

例(非正式) 某人操一口浓重的四川口音,则判断他最有可能来自四川。

考虑线性回归模型:

$$y = X\beta + \varepsilon$$

假设 $\boldsymbol{\varepsilon}|\boldsymbol{X} \sim N(\boldsymbol{\theta}, \sigma^2 \boldsymbol{I}_n)$,则 $\boldsymbol{y}|\boldsymbol{X} \sim N(\boldsymbol{X}\boldsymbol{\beta}, \sigma^2 \boldsymbol{I}_n)$,条件密度函数为:

$$f(\mathbf{y} \mid \mathbf{X}) = (2\pi\sigma^2)^{-n/2} \exp\left\{-\frac{1}{2\sigma^2} (\mathbf{y} - \mathbf{X}\boldsymbol{\beta})'(\mathbf{y} - \mathbf{X}\boldsymbol{\beta})\right\}$$

用假想 $\tilde{\boldsymbol{\beta}}$, $\tilde{\sigma}^2$ 代替真实 $\boldsymbol{\beta}$, σ^2 ,取对数可得

$$\ln L(\tilde{\boldsymbol{\beta}}, \tilde{\sigma}^2) = -\frac{n}{2} \ln 2\pi - \frac{n}{2} \ln \tilde{\sigma}^2 - \frac{1}{2\tilde{\sigma}^2} (\boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}})'(\boldsymbol{y} - \boldsymbol{X}\tilde{\boldsymbol{\beta}})$$

分两步最大化。第一步,给定 $\tilde{\sigma}^2$,选择最优 $\tilde{\boldsymbol{\beta}}$ 。第二步,代入第一步的最优 $\tilde{\boldsymbol{\beta}}$,选择最优 $\tilde{\sigma}^2$ 。

第一步。由于 $\tilde{\boldsymbol{\beta}}$ 只出现在第三项中,故等价于使 $(\boldsymbol{y}-\boldsymbol{X}\tilde{\boldsymbol{\beta}})'(\boldsymbol{y}-\boldsymbol{X}\tilde{\boldsymbol{\beta}})$ 最小,正是OLS的目标函数 $\boldsymbol{e}'\boldsymbol{e}$ 。

$$\hat{\beta}_{\mathrm{ML}} = \hat{\beta}_{\mathrm{OLS}} = (X'X)^{-1}X'y$$

第二步。对数似然函数变为 $-\frac{n}{2}\ln 2\pi - \frac{n}{2}\ln \tilde{\sigma}^2 - \frac{1}{2\tilde{\sigma}^2}e'e$,称

为"集中对数似然函数"(concentrated log likelihood function),因为 $\tilde{\boldsymbol{\beta}}$ 的取值已在第一步固定,称为"concentrated with respect to $\tilde{\boldsymbol{\beta}}$ "。对 $\tilde{\boldsymbol{\sigma}}^2$ 求导可得

$$-\frac{n}{2}\frac{1}{\tilde{\sigma}^2} + \frac{1}{2\tilde{\sigma}^4}e'e = 0$$

求解 σ^2 的 MLE 估计量为

$$\hat{\sigma}_{\text{ML}}^2 = \frac{e'e}{n} \neq \hat{\sigma}_{\text{OLS}}^2 = \frac{e'e}{n-K} \equiv s^2$$

MLE 对 β 的估计与 OLS 一样,但对 σ^2 的估计略有不同,此差别在大样本下消失。

由于 OLS 估计量 s^2 是对 σ^2 的无偏估计,故 MLE 估计量 $\hat{\sigma}_{ML}^2$ 是有偏的(小样本性质)。

MLE 的主要优点是大样本性质良好,比如一致性、最小渐近方差。

6.3 最大似然估计的数值解

最大似然估计通常没有解析解,只能寻找"数值解" (numerical solution)。

方法一为"网格搜索"(grid search):

如果待估参数 θ 为一维,且大致知道取值范围,比如 $\theta \in (0,1)$ 。

如果待估参数 θ 为多维,或对 θ 的取值范围所知不多,网格搜索不现实。

方法二为"高斯-牛顿法"(Gauss-Newton method)。

牛顿法收敛很快,是二次的。比如,如果本次迭代的误差为 0.1,则下次迭代的误差约为 0.1^2 。

如果初始值 x₀ 选择不当,可能出现迭代不收敛的情形。

使用牛顿法得到的可能只是"局部最大值"(local maximum),而非"整体最大值"(global maximum)。

牛顿法也适用于多元函数的情形 f(x) = 0,将切线替换为 (超) 切平面即可。

如对原函数 f(x) 作二阶近似(二阶泰勒展开),称为"牛顿-拉夫森法" (Newton-Raphson method)。

6.4 信息矩阵与无偏估计的最小方差

定义信息矩阵(information matrix)为对数似然函数的黑塞矩阵之期望值(对y求期望)的负数,

$$I(\boldsymbol{\theta}) \equiv -E \left[\frac{\partial^2 \ln L(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \right]$$

一维情形下,一 $\frac{\partial^2 \ln L}{\partial \theta^2}$ 为对数似然函数的二阶导数之负数。 对数似然函数为凹函数,故二阶导数为负数,加负号为正数。 $-\frac{\partial^2 \ln L(\boldsymbol{\theta}; \boldsymbol{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} 表 示 对 数 似 然 函 数 在 \boldsymbol{\theta} 空 间 中 的 曲 率 (curvature),取期望值之后为平均曲率(对 <math>\boldsymbol{y}$ 进行平均)。

如果曲率大,对数似然函数陡峭,较易根据样本分辨真实 θ 的位置;反之,如果曲率小,对数似然函数平坦,不易根据样本判断真实 θ 的位置。

如果似然函数完全平坦,则似然函数不存在唯一最大值,MLE 没有唯一解;则无法根据样本数据来判断 θ 的位置。

 $I(\theta)$ 包含了 θ 是否容易估计的信息,故称"信息矩阵"。

图 6.3 平坦(左)与陡峭(右)的对数似然函数

命题 (信息矩阵等式)

在 $\theta = \theta_0$ 处,以下"信息矩阵等式"(information matrix equality)成立,

$$I(\boldsymbol{\theta}_{0}) = -E \left[\frac{\partial^{2} \ln L(\boldsymbol{\theta}_{0}; \boldsymbol{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'} \right]$$

$$= E \left[\frac{\partial \ln L(\boldsymbol{\theta}_{0}; \boldsymbol{y})}{\partial \boldsymbol{\theta}} \frac{\partial \ln L(\boldsymbol{\theta}_{0}; \boldsymbol{y})}{\partial \boldsymbol{\theta}'} \right] = E \left[s(\boldsymbol{\theta}_{0}; \boldsymbol{y}) s(\boldsymbol{\theta}_{0}; \boldsymbol{y})' \right]$$

证明参见附录。

命题 (得分函数的方差为信息矩阵)

在 $\theta = \theta_0$ 处,信息矩阵 $I(\theta_0)$ 就是得分函数的协方差矩阵 $Var[s(\theta_0; y)]$ 。

证明:

$$Var[s(\boldsymbol{\theta}_0; \boldsymbol{y})] = E[s(\boldsymbol{\theta}_0; \boldsymbol{y})s(\boldsymbol{\theta}_0; \boldsymbol{y})'] - \underbrace{E[s(\boldsymbol{\theta}_0; \boldsymbol{y})]}_{=0} \underbrace{E[s(\boldsymbol{\theta}_0; \boldsymbol{y})]'}_{=0}$$

$$= E[s(\boldsymbol{\theta}_0; \boldsymbol{y})s(\boldsymbol{\theta}_0; \boldsymbol{y})']$$

$$= I(\boldsymbol{\theta}_0)$$

最后一步用到了信息矩阵等式。

假设 $\hat{\boldsymbol{\theta}}$ 是对真实参数 $\boldsymbol{\theta}_0$ 的任意无偏估计,则在一定的正则条件(regularity conditions)下, $\hat{\boldsymbol{\theta}}$ 的方差不会小于[$\boldsymbol{I}(\boldsymbol{\theta}_0)$] $^{-1}$,即 $\operatorname{Var}(\hat{\boldsymbol{\theta}}) \geq [\boldsymbol{I}(\boldsymbol{\theta}_0)]^{-1}$ 。

称[$I(\theta_0)$]⁻¹为"克莱默-劳下限"(Cramer-Rao Lower Bound)。

无偏估计所能达到的最小方差与信息矩阵有关。曲率 $I(\theta_0)$ 越大,则 $[I(\theta_0)]^{-1}$ 越小,无偏估计可能达到的最小方差越小。

在古典线性回归模型中,可证明(参见附录)

$$\left[\boldsymbol{I}(\boldsymbol{\theta}_0) \right]^{-1} = \begin{pmatrix} \boldsymbol{\sigma}^2 (\boldsymbol{X}'\boldsymbol{X})^{-1} & \mathbf{0} \\ \mathbf{0} & 2\boldsymbol{\sigma}^4/n \end{pmatrix}$$

其中, $\boldsymbol{\theta}_0 = (\boldsymbol{\beta} \ \sigma^2)'$ 。由于 $Var(\hat{\boldsymbol{\beta}}_{OLS}) = \sigma^2 (\boldsymbol{X'X})^{-1}$,故 $\hat{\boldsymbol{\beta}}_{ML} = \hat{\boldsymbol{\beta}}_{OLS}$ 均达到了无偏估计的最小方差。

命题 在高斯-马尔可夫定理中,如果加上扰动项为正态分布的假定,则 OLS 是"最佳无偏估计"(Best Unbiased Estimator,简记 BUE),而不仅仅是 BLUE。

克莱默-劳下限的结论可推广到渐近分布的情形。

在一定的正则条件下,对于真实参数 θ_0 的渐近正态一致估计 (Consistent and Asymptotically Normally distributed estimators,简记 CAN)所能达到的最小方差为[$I(\theta_0)$]⁻¹,即克莱默-劳下限。

6.5 最大似然法的大样本性质

定理(MLE 的大样本性质)在一定的正则条件下,MLE 估计量拥有以下良好的大样本性质。

(1) 一致性,即
$$\lim_{n\to\infty}\hat{\boldsymbol{\theta}}_{ML}=\boldsymbol{\theta}_0$$
。

- (2) 渐近有效性,即渐近协方差矩阵 $Avar(\hat{\boldsymbol{\theta}}_{ML}) = n[\boldsymbol{I}(\boldsymbol{\theta}_0)]^{-1}$,在大样本下达到了克莱默-劳下限。
- (3) 渐近正态,即 $\sqrt{n}(\hat{\boldsymbol{\theta}}_{ML} \boldsymbol{\theta}_0) \xrightarrow{d} N(\boldsymbol{\theta}, n[\boldsymbol{I}(\boldsymbol{\theta}_0)]^{-1})$,可近似地认为 $\hat{\boldsymbol{\theta}}_{ML} \xrightarrow{d} N(\boldsymbol{\theta}, [\boldsymbol{I}(\boldsymbol{\theta}_0)]^{-1})$ 。

证明 (选读)

定理 (不变性) 如果将参数 θ "参数变换" (reparameterize) 为 $\alpha \equiv g(\theta)$,则对 α 的最大似然估计就是 $\hat{\alpha}_{\text{ML}} = g(\hat{\theta}_{\text{ML}})$ 。

其中, $g(\cdot)$ 可以是多维函数,也不要求 α 与 θ 有一一对应的函数关系。

利用最大似然估计的不变性,有时可以大大简化计算。

【例】对 $(\mu^2 + \sigma^2)$ 的最大似然估计就是 $(\hat{\mu}_{ML}^2 + \hat{\sigma}_{ML}^2)$ 。

6.6 MLE 估计量的渐近协方差矩阵

在大样本下,最大似然估计量的渐近协方差矩阵为

$$\operatorname{Avar}(\hat{\boldsymbol{\theta}}_{\operatorname{ML}}) = n[\boldsymbol{I}(\boldsymbol{\theta}_0)]^{-1} = n \left\{ -\operatorname{E}\left[\frac{\partial^2 \ln L(\boldsymbol{\theta}_0; \boldsymbol{y})}{\partial \boldsymbol{\theta} \partial \boldsymbol{\theta}'}\right] \right\}^{-1}$$

此表达式依赖于未知参数 θ_0 ,有三种估计方法。

1. 期望值法。如果知道黑塞矩阵期望值的具体函数形式,则直接以 $\hat{\theta}_{ML}$ 替代 θ_{0} 可得,

$$\widehat{\text{Avar}}(\hat{\boldsymbol{\theta}}_{\text{ML}}) = n \left\{ -E \left[\frac{\partial^2 \ln L(\hat{\boldsymbol{\theta}}_{\text{ML}}; \boldsymbol{y})}{\partial \hat{\boldsymbol{\theta}} \partial \hat{\boldsymbol{\theta}}'} \right] \right\}^{-1}$$

黑塞矩阵通常包含复杂的非线性函数,期望值可能无解析解。

2. 观测信息矩阵法。以 $\hat{\theta}_{ML}$ 替代 θ_{0} 后,将期望算子忽略掉:

$$\widehat{\text{Avar}}(\hat{\boldsymbol{\theta}}_{\text{ML}}) = n \left[-\frac{\partial^2 \ln L(\hat{\boldsymbol{\theta}}_{\text{ML}}; \boldsymbol{y})}{\partial \hat{\boldsymbol{\theta}} \partial \hat{\boldsymbol{\theta}}'} \right]^{-1}$$

此法称为"观测信息矩阵"(Observed Information Matrix,

简记 OIM)法。但二阶偏导数可能不易计算。

3. 梯度向量外积或 BHHH 法。利用信息矩阵等式,用 $\sum_{i=1}^{n} \hat{s}_{i} \hat{s}'_{i}$ 来估计 $I(\theta_{0})$:

$$\mathbb{EP}\widehat{\text{Avar}}(\hat{\boldsymbol{\theta}}_{\text{ML}}) = n \left(\sum_{i=1}^{n} \hat{\boldsymbol{s}}_{i} \hat{\boldsymbol{s}}_{i}' \right)^{-1}$$

其中, $\hat{\mathbf{s}}_i \equiv \frac{\partial \ln f(\mathbf{y}_i; \hat{\boldsymbol{\theta}}_{\text{ML}})}{\partial \boldsymbol{\theta}}$ 为第 i 个观测值对得分函数的贡献之估计值。此法称为"梯度向量外积"(Outer Product of Gradients,简记 OPG)或 BHHH 法,只需计算一阶偏导数;

且协方差估计量总是非负定的(nonnegative definite),而 OIM 法的协方差估计量无此保证。

这三种方法在大样本下渐近等价(asymptotically equivalent)。

在有限样本中, 计算结果可能差别较大, 甚至导致统计推断作出不同的结论, 参见 Greene (2012, p.522)。

这三种方法都建立在似然函数正确的前提上。如果似然函数不正确,则三种方法都失效,应使用稳健标准误。

6.7 三类渐近等价的统计检验

对于线性回归模型,检验原假设 $H_0: \boldsymbol{\beta} = \boldsymbol{\beta}_0$,其中 $\boldsymbol{\beta}_{K\times 1}$ 为未知参数, $\boldsymbol{\beta}_0$ 已知,共有K个约束。

(1) 沃尔德检验(Wald Test)

通过 $\boldsymbol{\beta}$ 的无约束估计量 $\hat{\boldsymbol{\beta}}_U$ 与 $\boldsymbol{\beta}_0$ 的距离来进行检验。如果 H_0 正确,则($\hat{\boldsymbol{\beta}}_U - \boldsymbol{\beta}_0$)的绝对值不应该很大。沃尔德统计量:

$$W = (\hat{\boldsymbol{\beta}}_U - \boldsymbol{\beta}_0)' [\operatorname{Var}(\hat{\boldsymbol{\beta}}_U)]^{-1} (\hat{\boldsymbol{\beta}}_U - \boldsymbol{\beta}_0) \xrightarrow{d} \chi^2(K)$$

K 为约束条件的个数,证明类似于第 5 章对于线性假设" $H_0: R\beta = r$ "的大样本检验。t 检验、F 检验都是 Wald 检验。

(2) 似然比检验 (Likelihood Ratio Test, 简记 LR)

无约束的似然函数最大值 $\ln L(\hat{\boldsymbol{\beta}}_{U})$ 比有约束的似然函数最大值 $\ln L(\hat{\boldsymbol{\beta}}_{R})$ 更大,因为在无约束条件下的参数空间 $\boldsymbol{\Theta}$ 比有约束条件下(即 H_{0} 成立时)参数的取值范围更大。

在此例中,有约束的估计量 $\hat{\boldsymbol{\beta}}_R = \boldsymbol{\beta}_0$ 。

图 6.5 无约束与有约束的参数空间

如果 H_0 正确,则 $\ln L(\hat{\boldsymbol{\beta}}_U) - \ln L(\hat{\boldsymbol{\beta}}_R)$ 不应该很大。LR 统计量:

$$LR = -2\ln\left[\frac{L(\hat{\boldsymbol{\beta}}_R)}{L(\hat{\boldsymbol{\beta}}_U)}\right] = 2\left[\ln L(\hat{\boldsymbol{\beta}}_U) - \ln L(\hat{\boldsymbol{\beta}}_R)\right] \xrightarrow{d} \chi^2(K)$$

证明方法是,将对数似然函数作二阶泰勒展开(根据 MLE 一阶条件,一阶项为 0)。

$$F$$
 统计量的另一表达式 $F = \frac{(e^{*'}e^{*} - e'e)/(K-1)}{e'e/(n-K)}$,可视为 LR 统计量。

(3) 拉格朗日乘子检验(Lagrange Multiplier Test,简记LM):

考虑有约束条件的对数似然函数最大化问题:

$$\max_{\tilde{\boldsymbol{\beta}}} \ln L(\tilde{\boldsymbol{\beta}})$$
s.t. $\boldsymbol{\beta} = \boldsymbol{\beta}_0$

引入拉格朗日乘子函数,

$$\max_{\tilde{\boldsymbol{\beta}}, \lambda} \ln L(\tilde{\boldsymbol{\beta}}) - \lambda'(\tilde{\boldsymbol{\beta}} - \boldsymbol{\beta}_0)$$

其中, **2**为拉格朗日乘子向量。

如果 $\hat{\lambda} \approx \mathbf{0}$,则说明此约束条件不"紧"(tight)或不是"硬约束"(binding constraint),加上此约束条件不会使似然函数的最大值下降很多,即原假设 H_0 很可能成立。

根据一阶条件(对
$$\tilde{\boldsymbol{\beta}}$$
求导)可知, $\hat{\boldsymbol{\lambda}} = \frac{\partial \ln L(\hat{\boldsymbol{\beta}}_R)}{\partial \tilde{\boldsymbol{\beta}}}$ 。LM 统计量:

$$LM = \left(\frac{\partial \ln L(\hat{\boldsymbol{\beta}}_R)}{\partial \tilde{\boldsymbol{\beta}}}\right)' \left[\boldsymbol{I}(\hat{\boldsymbol{\beta}}_R)\right]^{-1} \left(\frac{\partial \ln L(\hat{\boldsymbol{\beta}}_R)}{\partial \tilde{\boldsymbol{\beta}}}\right) \xrightarrow{d} \chi^2(K)$$

其中, $I(\hat{\boldsymbol{\beta}}_R)$ 为信息矩阵在 $\hat{\boldsymbol{\beta}}_R$ 处的取值。由于 $\frac{\partial \ln L(\tilde{\boldsymbol{\beta}})}{\partial \tilde{\boldsymbol{\beta}}}$ 为"得分函数" (score function),故也称"得分检验" (score test);而 $I(\hat{\boldsymbol{\beta}}_R)$ 为得分函数的协方差矩阵。

在 $\hat{\boldsymbol{\beta}}_{U}$ 处, $\frac{\partial \ln L(\hat{\boldsymbol{\beta}}_{U})}{\partial \tilde{\boldsymbol{\beta}}} = \mathbf{0}$ 。如 H_{0} 成立,则在 $\hat{\boldsymbol{\beta}}_{R}$ 处,也应有 $\frac{\partial \ln L(\hat{\boldsymbol{\beta}}_{R})}{\partial \tilde{\boldsymbol{\beta}}} \approx \mathbf{0}$,而 LM 统计量反映此接近程度。

图 6.6 三类渐近等价的统计检验

Wald 检验仅利用无约束估计的信息,LM 检验仅利用有约束估计的信息,而 LR 检验同时利用二者的信息。

这三类检验在大样本下渐近等价,但小样本性质不同。

实际应用中究竟采取哪种检验常取决于"无约束估计"与"有约束估计"哪种更方便。

6.8 准最大似然估计法

如果随机变量不服从正态分布,却使用了以正态分布为前提的 MLE,该估计量是否一致?

对于线性模型,MLE 估计量等价于 OLS 估计量,而 OLS 估计量的一致性不依赖于正态分布的假定。

定义 使用不正确的似然函数而得到的最大似然估计,被称为准最大似然估计 (Quasi MLE,简记 QMLE)或"伪最大似然估计"(Pseudo MLE)。

虽然 MLE 常要求随机变量服从正态,此假定可能并不强。

如果 QMLE 估计量满足以下两个条件,则为一致估计量。

(i)模型设定的概率密度函数属于"线性指数分布

族" (linear exponential family),即概率密度函数可以写为 $f(y; \theta) = \frac{p(y)e^{r(\theta)}}{q(\theta)}$ 的形式。

线性指数分布族包括正态分布,二项分布,泊松分布,负 二项分布,Γ分布,以及逆高斯分布(inverse Gaussian)等。

(ii) 条件期望E(y|x)的函数形式设定正确。

一般情况下,QMLE 并不一致,譬如第 14 章的 Tobit 回归。即使 QMLE 碰巧一致, $\hat{\boldsymbol{\theta}}_{\text{QML}}$ 的渐近方差也不再是 $n[\boldsymbol{I}(\boldsymbol{\theta}_0)]^{-1}$ 。

假设正确的对数似然函数为 $\ln L(\theta; y)$,被误设为 $\ln L^*(\theta; y)$,称为"准对数似然函数" (pseudo log likelihood function)。最大化 $\ln L^*(\theta; y)$ 的结果即 QMLE 估计量,

$$\hat{\boldsymbol{\theta}}_{\text{QML}} \equiv \arg\max \ln L^*(\boldsymbol{\theta}; \boldsymbol{y})$$

遵循类似于 MLE 一致性的证明步骤,可证明 $\hat{\theta}_{QML} \xrightarrow{p} \theta^*$, 其中 θ^* 称为"准真实值" (pseudo-true value),通常 $\theta^* \neq \theta_0$ 。

对于 $\hat{\theta}_{\text{OML}}$ 的大样本分布,可证明:

$$\sqrt{n}(\hat{\boldsymbol{\theta}}_{\mathrm{ML}} - \boldsymbol{\theta}^*) \xrightarrow{d} N(0, \boldsymbol{A}_0^{*-1} \boldsymbol{B}_0^* \boldsymbol{A}_0^{*-1})$$

由于 $\ln L^*(\theta; y)$ 并非真正的对数似然函数,信息矩阵等式不成立,故一般 $A_0^* \neq B_0^*$,夹心估计量 $A_0^{*-1}B_0^*A_0^{*-1}$ 无法进简化。

基于 $A_0^{*-1}B_0^*A_0^{*-1}$ 的标准误差被称为"胡贝尔-怀特稳健标准误" (Huber-White robust standard errors)。

胡贝尔-怀特稳健标准误也简称为"稳健标准误",因为它

与异方差稳健标准误是一致的。

假设用 MLE 来估计古典线性回归模型,真实模型存在异方差,但在同方差的错误设定下来求 MLE 估计量,即得到的就是 QMLE 估计量。

此 $\hat{\boldsymbol{\beta}}_{QML}$ 依然是真实参数 $\boldsymbol{\beta}$ 的一致估计,而胡贝尔-怀特稳健标准误就是异方差稳健的标准误。

在使用 MLE 估计非线性模型时,如果对模型的正确设定 无把握,而 QMLE 估计量依然一致,应使用(胡贝尔-怀特) 稳健标准误。Stata 的选择项为"r"或"vce (robust)"。 如果对于模型设定很有信心,可直接使用 OIM 或 OPG 法来估计渐近方差,没有必要使用稳健标准误。

当 QMLE 估计量不一致时,即使采用(胡贝尔-怀特)稳健标准误也无济于事,应担心估计量的一致性。

(胡贝尔-怀特)稳健标准误只是一致地估计了一个不一致估计量的方差(a consistent estimator of the variance of an inconsistent estimator)。

无论 OIM、OPG 法, 还是(胡贝尔-怀特)稳健标准误都假设 样本数据为 iid。如果样本数据可分为若干组, 而同一组内的 观测值存在自相关,则应使用"聚类稳健标准误" (cluster-robust standard errors), 在 Stata 中由选择项"vce(cluster clustvar)"来实现。

总结:对于线性回归模型,建议总是使用稳健标准误。对于非线性模型,可分四种情况考虑。

- (i) 如果对模型设定较有信心或模型拟合得较好,可不用稳健标准误。
- (ii) 如果对模型设定缺乏信心,且 QMLE 为一致估计,应使用稳健标准误。

- (iii) 如果对模型设定缺乏信心,但 QMLE 也不一致,应首先担心 QMLE 估计量的一致性,仅使用稳健标准误进行校正无济于事。
 - (iv) 对于聚类样本,应使用聚类稳健的标准误。

6.9 对正态分布假设的检验

对于线性回归模型,即使扰动项不服从正态分布,OLS 依然一致,且服从渐近正态,可用进行大样本推断;故检验扰动项是否服从正态分布意义不大。

对非线性模型,由于正态分布假定是推导 MLE 的前提,故检验扰动项是否服从正态分布可能较重要。

在某些情况下,"准最大似然估计"也一致,但毕竟不如 真正的 MLE 有效率。

为了考察扰动项是否为正态,最直观的方法是画图。可把 残差画成直方图(histogram),并与正态分布的密度函数比较。

但直方图是不连续的。为得到光滑估计,可使用"核密度估计法"(kernel density estimation),并与正态密度相比。

另一画图方法是,将正态分布的分位数(quantiles)与残差的分位数画成散点图(scatter plot)。

如果残差来自正态分布,则该图上的散点应该集中在 45° 线附近。

称这种图为"分位数-分位数图"(Quantile-Quantile plot, 简记 QQ plot)。

常用的检验方法利用了正态分布的偏度与峰度性质。

随机变量X的偏度为 $E[(X-\mu)/\sigma]^3$,峰度为 $E[(X-\mu)/\sigma]^4$,超额峰度为 $E[(X-\mu)/\sigma]^4-3$ 。

对于残差 $\{e_1, \dots, e_n\}$,其偏度与超额峰度的样本估计值分别为

$$\frac{1}{n\hat{\sigma}^3} \sum_{i=1}^n e_i^3 \qquad \Rightarrow \qquad \left(\frac{1}{n\hat{\sigma}^4} \sum_{i=1}^n e_i^4\right) - 3$$

其中,e=0。在扰动项服从正态分布的原假设下,这两个统计量服从正态分布。

"雅克-贝拉检验"(Jarque and Bera, 1987, 简记 JB)使用它们的平方之加权平均作为检验统计量:

$$JB = \frac{n}{6} \left[\left(\frac{1}{n\hat{\sigma}^3} \sum_{i=1}^n e_i^3 \right)^2 + \frac{1}{4} \left(\frac{1}{n\hat{\sigma}^4} \sum_{i=1}^n e_i^4 - 3 \right)^2 \right] \xrightarrow{d} \chi^2(2)$$

JB 检验虽常用,但收敛速度较慢,对样本容量要求较高。 Stata 官方程序中提供了 D'Agostino et al (1990)的改进方法, 基于偏度与峰度设计了更复杂的检验统计量。

如果发现某变量不服从正态分布,有时可以通过取对数, 使之变得更接近于正态分布。