

Prof. Dr. Stefan Decker, PD Dr. Ralf Klamma K. Fidomski, M. Slupczynski, S. Welten 10.05.2021

Datenbanken und Informationssysteme (Sommersemester 2021)

Übung 3

Abgabe bis 17.05.2021 14:00 Uhr.

Zu spät eingereichte Übungen werden nicht berücksichtigt.

Wichtige Hinweise

- Bei Nichtbeachtung dieser Hinweise wird die Abgabe mit 0 Punkten bewertet!
- Bitte reichen Sie Ihre Lösung nur in Dreier- oder Vierergruppen ein.
- Achten Sie auch darauf, dass Ihre Gruppe im Moodle korrekt eingerichtet ist.
- Bitte laden Sie Ihre schriftlichen Lösungen ins Moodle als ein zusammenhängendes PDF-Dokument hoch.
- Bitte geben Sie Namen, Matrikelnummern und Moodle-Gruppennummer auf der schriftlichen Lösung an.
- Wird offensichtlich die gleiche Lösung von zwei Gruppen abgegeben, dann erhalten beide Gruppen 0 Punkte.

Die Lösung zu diesem Übungsblatt wird in den Übungen am 17. und 19. Mai 2021 vorgestellt. Bitte beachten Sie auch die aktuellen Ankündigungen im Moodle-Lernraum zur Vorlesung. * bezeichnet Bonusaufgaben.

Nummer der Abgabegruppe: [124]

Gruppenmitglieder: [Andrés Montoya, 405409], [Marc Ludevid, 405401], [Til Mohr, 405959]

Vergessen Sie nicht, alle Gruppenmitglieder einzutragen!

Der Bearbeitungsmodus kann mit Doppelklick aktiviert und mit der Tastenkombination **Strg+Enter** beendet werden.

Möchten Sie die folgenden Übungsaufgaben über den JupyterHub bearbeiten, finden Sie nachfolgend einige Hinweise zur Bearbeitung.

Tabellen in Markdown

Relationen können Sie in Markdown, wie unten dargestellt, abbilden.

Mit Doppelklick auf diese Zelle können Sie das Grundgerüst von Tabellen in Markdown einsehen.

Beispiel einer 2x2 Tabelle:

X Z

Beispiel einer 2x3 Tabelle:

Ausdrücke der relationalen Algebra in Markdown mittels LaTeX

Ausdrücke der relationalen Algebra können Sie in Markdown mittels LaTeX niederschreiben. Die Ausdrücke können Sie mit den entsprechenden, nachfolgend beschriebenen, LaTeX-Befehlen erzeugen.

Mit **Doppelklick** auf diese Zelle können Sie die Befehle einsehen.

Seien R und S passende Relationen, A_1, \ldots, A_n eine Auswahl von n paarweise verschiedenen Attributen von R und sei F eine logische Formel:

- ullet Vereinigung: $R \cup S$
- ullet Durchschnitt: $R\cap S$
- Differenz: R-S
- ullet Kartesisches Produkt: R imes S
- ullet Projektion: $\Pi_{A_1,...,A_n}(R)$
- Selektion: $\sigma_F(R)$
- Umbennenung: $\rho_S(R)$ oder $\rho_{A\leftarrow A_1}(R)$
- ullet Natürlicheer Verbund: $R \bowtie S$
- ullet Theta-Join: $R \bowtie_{ heta} S$
- Left Outer Join: ⋈
- Right Outer Join: ⋈
- Full Outer Join: ➤<
- Semi-Join: ⋈ bzw. ⋉
- Logisches Und: ∧
- Logisches Oder: ∨
- Vergleichsoperatoren: <, >, \le , \ge , =, \ne

Beachten Sie: Mit \$ werden mathematische Ausdrücke in LaTeX in Markdown eingefasst.

WICHTIG:

Das **gesamte** Übungsblatt ist **schriftlich** zu bearbeiten und wird manuell bewertet.

Die Lösungen der Übungsaufgaben müssen in einem zusammenhängenden .pdf Dokument abgegeben werden.

Aufgabe 3.1 (Relationale Algebra) - Schriftlich

(7 Punkte)

Gegeben sind die folgenden Relationen:

DesignerIn		
Kuerzel	Vorname	Nachname
CL	Christian	Louboutin

Kuerzel	Vorname	Nachname	
JC	Jimmy	Choo	
МВ	Manolo	Blahnik	
SW	Sophia	Webster	

		Schuh		
PID	Тур	Modell	Preis	DKuerzel
1	Sandalen	Double L	1595	CL
2	Pumps	Iriza	575	CL
3	Sandalen	Triplexa	795	МВ
4	Pumps	ВВ	575	МВ
6	Sandalen	Rosalind Crystal 85	500	SW
7	Sandalen	Nicco	340	SW
8	Stiefel	Mavis 85	1175	JC
9	Pumps	Romy 100	545	JC

Berechnen Sie das Resultat der folgenden relationalen Ausdrücke:

- a) $\Pi_{Vorname,Nachname}(DesignerIn)$
- **b)** $\Pi_{PID,Modell}(\sigma_{Typ} = "Pumps" \land DKuerzel = "JC" (Schuh))$
- $\textbf{c)} \quad \Pi_{Vorname, Nachname}((DesignerIn) \bowtie \rho_{Kuerzel} \leftarrow {}_{DKuerzel}(\sigma_{Modell \ = \ "Iriza"}(Schuh)))$
- **d)** $\Pi_{Vorname,Nachname}((DesignerIn)\bowtie (\sigma_{Modell="Triplexa"}(Schuh)))$
- $\textbf{e)} \quad \rho_{Kuerzel} \vdash {}_{DKuerzel}((\Pi_{DKuerzel}(\sigma_{Tum} "Sandalen"}(Schuh))) (\Pi_{DKuerzel}(\sigma_{Tum} + "Sandalen"}(Schuh))))$

a)

Vorname	Nachname	
Christian	Louboutin	
Jimmy	Choo	
Manolo	Blahnik	
Sophia	Webster	

b)

PID	Modell	
9	Romy 100	

c)

orname	Nachname
Christian	Louboutin

d)

Vorname Nachname

e)

SW

f)

A.Modell	B.Modell	A.Preis
Irza	ВВ	575
ВВ	Irza	575

Aufgabe 3.2 (Relationale Algebra) - Schriftlich

(10 Punkte)

Gegeben sei das folgende relationale Schema:

Relationen:

```
Team(\underline{TName}, Gruendungsjahr)
Fahrer(\underline{Vorname}, \underline{Nachname}, Nummer)
Strecke(\underline{SName}, Ort, Land)
Rennen(TName, Vorname, Nachname, SName, Saison, Platzierung)
```

Interrelationale Abhängigkeiten:

```
Rennen[TName] \subseteq Team[TName]

Rennen[Vorname] \subseteq Fahrer[Vorname]

Rennen[Nachname] \subseteq Fahrer[Nachname]

Rennen[SName] \subseteq Strecke[SName]
```

Außerdem gilt: $Rennen[Platzierung] \in \{1, \dots, 20\}.$

Formulieren Sie die folgenden Informationsbedürfnisse in relationaler Algebra für das angegebene Schema. Verwenden Sie dazu die in der Vorlesung vorgestellte Notation. Ihre Anfragen sollen zurückliefern:

- a) Vor- und Nachname des Fahrers mit der Nummer 44.
- b) Vor- und Nachname des Fahrers, der in der Saison 2020 das Rennen auf der Strecke mit Namen 'Silverstone Circuit' gewonnen hat.
- c) Name und Gründungsjahr des Teams, die Saison sowie die Vor- und Nachnamen der zwei Fahrer, die in einer Saison im selben Team gefahren sind.
- d) Namen der Strecken, auf denen der Fahrer mit der Nummer 33, seit der Saison 2015, gefahren ist und noch nicht gewinnen konnte.
- e) Name, Ort und Land der Strecken, auf denen der Fahrer mit der Nummer 44 mindestens zwei Mal gewonnen hat.
- a) $\Pi_{Vorname,Nachname}(\sigma_{Nummer=44}(Fahrer))$
- b) $\Pi_{Vorname,Nachname}(\sigma_{Platzierung=1 \land Saison=2020 \land SName="Silverstone Circuit"}(Rennen)$
- c) $\Pi_{Gruendungsjahr,F1.Vorname,F2.Nachname}(Team)\bowtie (((\rho_{F1}(Rennen))\bowtie_{F1.Saison=F2.Saison\land F1.Nachname\ne F2.Nachname \ne F2.Vorname\land F1.TName=F2.TName}(\rho_{F2}(Rennen))))$
- d) $\Pi_{SName}(\sigma_{Nummer=33 \land Platzierung \neq 1 \land Saison \geq 2015}((Fahrer) \bowtie (Rennen)))$

e)

$\Pi_{SName,Ort,Land}((Strecke)\bowtie_{SName=R1.SName}((Fahrer)\bowtie_{Nachname=R1.Nachname \land Nummer=44}((\rho_R1(Rennen)\bowtie_{R1.Nachname=R2.Nachname \land R1.Sname=R2.Sname \land R1.Sname=R$
Aufgabe 3.3 (Verbundoperator) - Schriftlich
(3 Punkte)

Zeigen oder widerlegen Sie:

Der Operator **RIGHT OUTER JOIN (** ⋈ , **ROJOIN)** ist assoziativ.

Beachten Sie: Bei Anwendung des Operators **RIGHT OUTER JOIN** (M, **ROJOIN**), erscheinen alle Tupel der rechten Relation im Ergebnis. Fehlt der Verbundpartner in der linken Relation, werden die entsprechenden Attribute mit **NULL** aufgefüllt.

Zu zeigen für Relationen L,M,R: $L\bowtie(M\bowtie R)=(L\bowtie M)\bowtie R$

Gegenbeispiel:

L:

x0

M:

X

R:

x0

Dann sind im Linken Teil die Tupel (0), (1) enthalten, aber im Rechten nur (1)