

Transformaciones y visualización 3D

Transformaciones 3D

El proceso de visualización

Proyecciones

Modelo de cámara

Matrices de proyección

Recortado 3D

- Las transformaciones en 3D se utilizan para:
 - Manipular objetos en el espacio 3D
 - Traslación, giro y escalado
 - Ayuda para visualizar y examinar objetos

- Los sistemas de coordenadas pueden ser
 - Dextrógiro (el que utilizaremos para realizar las transformaciones)
 - Levógiro

El eje Z apunta hacia el exterior del papel

El eje Z apunta hacia el interior del papel

- Al igual que en 2D se utilizan las coordenadas homogéneas
 - Un punto 3D (x, y, z) se representa por (x, y, z, w) y como vector columna
 - Las matrices de transformación serán, por tanto, 4x4
 - Las matrices premultiplicarán a los puntos

$$\begin{bmatrix} x' \\ y' \\ z' \\ w' \end{bmatrix} = \begin{bmatrix} a & b & c & d \\ e & f & g & h \\ i & j & k & l \\ m & n & o & p \end{bmatrix} \bullet \begin{bmatrix} x \\ y \\ z \\ w \end{bmatrix}$$

Traslación

$$\begin{bmatrix} 1 & 0 & 0 & t_x \\ 0 & 1 & 0 & t_y \\ 0 & 0 & 1 & t_z \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Escalado

$$\begin{bmatrix} s_x & 0 & 0 & 0 \\ 0 & s_y & 0 & 0 \\ 0 & 0 & s_z & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Rotación

$$\begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & \cos \alpha & -\sin \alpha & 0 \\ 0 & \sin \alpha & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\begin{bmatrix} \cos \alpha & -\sin \alpha & 0 & 0 \\ \sin \alpha & \cos \alpha & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Ejemplo

$$\mathbf{R}_{y}(90) = \begin{bmatrix} \cos \alpha & 0 & \sin \alpha & 0 \\ 0 & 1 & 0 & 0 \\ -\sin \alpha & 0 & \cos \alpha & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$P' = \mathbf{R}_{y}(90) \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ -1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \begin{bmatrix} 0 \\ 0 \\ 1 \\ 1 \end{bmatrix} = \begin{bmatrix} 1 \\ 0 \\ 0 \\ 1 \end{bmatrix}$$

- Para realizar una rotación de α grados respecto a un eje cualquiera, se deben realizar los siguientes pasos:
 - Traslación para que el eje pase por el origen
 - Rotar el eje para que coincida con uno de los ejes de coordenadas
 - ightharpoonup Realizar la rotación de lpha grados alrededor del eje anterior
 - Aplicar las rotaciones inversas para que el eje vuelva a su orientación original
 - Aplicar la traslación inversa para que el eje vuelva a su posición original

• **Ejemplo:** Girar α grados alrededor de un eje definido por los puntos P1 y P2:

Ejemplo: Girar α grados alrededor de un eje definido por los puntos P1 y P2:

1. Trasladar el eje hasta el origen de coordenadas

- 2. Girar el eje para que coincida con uno de los ejes principales (p.ej. En la figura el eje Z)
 - 1. Girar alrededor del eje Y de manera que P1P2 coincida con el plano YZ
 - 2. Girar alrededor del eje X de manera que P1P2 coincida con el eje Z

Transformaciones y visualización 3D

3. Girar α grados alrededor del eje de coordenadas (eje Z)

- 4. Girar el eje hasta llevarlo a su orientación original (transformaciones inversas a las del paso 2)
- 5. Trasladar el eje para devolverlo a su posición original (traslación inversa a la del paso 1)

 El proceso de síntesis de una imagen (proceso de visualización) es el conjunto de operaciones (en 3D y en 2D) sobre un modelo informático de datos que resultan en una representación gráfica del mismo en un dispositivo físico de representación

Sección de Computer Graphics Gráfic a Group

El proceso de visualización

Pipeline 3D

Pipeline 3D. Recorrido de la escena

Cada objeto se modela en su propio sistema de coordenadas

Pipeline 3D. Recorrido de la escena

Normalmente la escena se representa mediante un grafo:

Pipeline 3D. Transformación del modelo

Los objetos se distribuyen en la escena:

Pipeline 3D. Transformación del modelo

La cámara y luces también forman parte de la escena:

Pipeline 3D. Transformación de la vista

- La escena se transforma a una posición estándar:
 - La cámara se mueve al origen
 - El vector de la vista se sitúa sobre el eje Z, la vertical es Y

Pipeline 3D. Iluminación

- Cada objeto está definido por:
 - Geometría (una serie de vértices)
 - Propiedades de color
- Las fuentes de luz están definidas por:
 - El color e intensidad de la luz que emiten
 - Su posición
- En esta etapa se calcula el color que debe tener cada vértice, teniendo en cuenta todos los parámetros anteriores

Pipeline 3D. Recortado

Se define el volumen de la vista y se recortan los objetos que quedan en el exterior de dicho volumen.

Pipeline 3D. Visibilidad

- Se eliminan los objetos de la escena que no se pueden ver:
 - Tapados por partes del propio objeto

Pipeline 3D. Visibilidad

- Se eliminan los objetos de la escena que no se pueden ver:
 - Tapados por otros objetos

Estos polígonos no se pueden ver desde la cámara

Pipeline 3D. Proyección

Proyección: Convierte un espacio 3D en uno 2D

Pipeline 3D. Proyección

(esto todavía es un conjunto de objetos matemáticos, pero ahora son 2D)

Pipeline 3D. Transformación del dispositivo

Adaptar el sistema de coordenadas de la vista al sistema de coordenadas del dispositivo

Coordenadas de la cámara

Coordenadas del dispositivo

Pipeline 3D. Conversión al raster

Convertir un conjunto de primitivas matemáticas 2D en píxeles

Primitivas proyectadas

Raster

Pipeline 3D. Sombreado

Decidir el color de cada píxel de un polígono en función del color de sus vértices.

Pipeline 3D. Visibilidad de píxeles

Para todos los píxeles de la imagen, se selecciona el color del objeto más cercano

Raster

Proyecciones

PP: Plano de proyección CP: Centro de proyección

p: Punto en 3D

p': Proyección de p (intersección entre la

visual y PP)

- Dos tipos de proyecciones:
 - Perspectiva: definida por un **C**entro de **P**royecciones (CP)

Paralela: definida por una Dirección de Proyección (DP)

Centro de proyecciones en el infinito

Centro de

- Multivista ortográfica: DP ⊥ PP
 - PLANTA: PP ⊥ eje Y.
 - ALZADO: PP ⊥ eje Z.
 - PERFIL: PP ⊥ eje X.
 - Se utilizan en:
 - diseños de ingeniería: máquinas, partes de máquinas
 - planos de arquitectura
 - Ventajas:
 - es posible realizar medidas precisas
 - todas las vistas tienen la misma escala
 - Inconvenientes:
 - no proporciona una visión realista de los objetos 3D. Generalmente es necesario varias vistas para percibir las 3D

- ▶ Proyecciones Axonométricas (DP ⊥ PP)
 - El plano de proyecciones no es perpendicular a ningún eje
 - El tamaño de las líneas paralelas se reduce en la proyección en la misma medida
 - ISOMETRICA: Los ángulos entre las proyecciones de los tres ejes son iguales (120°). Se aplica el mismo factor de escala a lo largo de cada eje. La dirección de proyección es el vector [1 1 1]
 - DIMETRICA: Los ángulos entre dos de los ejes son iguales. Se necesitan dos factores de escala
 - TRIMETRICA: Los ángulos entre los tres ejes son diferentes. Se necesitan tres factores de escala.

Ortográfica

- Proyección isométrica
 - Se utiliza en:
 - ilustraciones de catálogos, registros de oficinas de patentes, diseño de muebles
 - Ventajas:
 - no es necesario utilizar múltiples vistas
 - muestra la naturaleza tridimensional de los objetos
 - se pueden realizar medidas escalando en los ejes
 - Inconvenientes:
 - la falta de disminución del tamaño en la proyección produce distorsiones
 - más útil para superficies planas que para superficies curvas

- Proyecciones oblicuas
 - Los proyectores son oblicuos al plano de proyecciones
 - El plano de proyecciones es normal a uno de los ejes
 - Ventajas:
 - pueden representar de forma exacta una cara del objeto (es decir, se pueden tomar medidas exactas): mejor para formas elípticas que las axonométricas.
 - la comparación de tamaños es más sencilla que con la perspectiva
 - representa la apariencia tridimensional
 - Inconvenientes:
 - los objetos aparecen distorsionados si no se elige bien el plano de proyecciones (p.ej: los círculos pueden aparecer como elipses)

Principales tipos de proyecciones oblicuas

Caballera: El ángulo entre el plano de proyecciones y los proyectores es 459. Las caras perpendiculares se proyectan a escala 1

VNP

PP

Ejemplos de proyecciones ortográfica y oblicuas

Tipos de proyecciones

- Sumario de proyecciones paralelas
 - Asume que la cara principal del objeto se encuentra en el plano principal, p.ej: paralela al plano XY,YZ o ZX.
 - 1. Multivista ortográfica
 - VNP // ejes
 - ▶ DP // VNP
 - muestra una cara
 - medidas exactas
 - 2. Axonométricas
 - VNP ¬ // ejes
 - DP // VNP
 - muestra caras adyacentes
 - medidas inexactas
 - disminución del tamaño en la proyección de forma uniforme en función del ángulo que forman la normal a la cara y DP
 - 3. Oblicuas
 - VNP // ejes
 - ▶ DP ¬ // VNP
 - muestra caras adyacentes
 - una cara medidas exactas
 - las otras disminución del tamaño en la proyección de forma uniforme

Proyecciones

- o Proyección perspectiva
 - El centro de proyección está en un punto (x,y,z)
 - La proyección está definida por el centro de proyección (CP) y el plano de proyección (PP)
 - Ventajas:
 - Proporciona realismo visual y sensación tridimensional (efecto tamaño distancia)
 - Inconvenientes:
 - No mantiene la forma ni la escala del objeto (excepto en los planos paralelos al plano de proyección)
 - Es diferente de la proyección paralela porque:
 - Líneas paralelas dejan de serlo al proyectar
 - El tamaño de los objetos disminuye con la distancia
 - o La disminución del tamaño no es uniforme

http://flickr.com/photos/andykirk/

- Parámetros del modelo de cámara
- Posición
 - Tres grados de libertad:
 - Las coordenadas x, y, z de la cámara en el espacio 3D
- Orientación
 - Viene dada por dos vectores: LOOK and UP
 - El vector LOOK indica hacia donde mira la cámara
 - Con la posición de la cámara y un punto de interés LOOK-AT también se puede obtener LOOK
 - UP define una rotación alrededor del eje definido por LOOK

- En principio, el vector UP debe ser perpendicular al vector LOOK
- Como puede resultar difícil determinar un vector perpendicular a LOOK, los paquetes gráficos ajustan el vector UP para que sea perpendicular a LOOK
- Por ello, UP puede ser cualquier vector mientras no sea paralelo a LOOK
- Generalmente, el vector UP se define como (0,1,0)

- Volumen de la vista para una proyección paralela ortográfica
 - Define la parte de la escena visible para el usuario
 - Los objetos se recortan contra este volumen de la vista

- Volumen de la vista para una proyección perspectiva
 - Pirámide truncada

- Planos de recorte frontal y trasero
 - El volumen entre seis planos de recortado define la porción de la escena que la cámara ve
 - Las posiciones de los planos frontal y trasero vienen dadas por dos distancias a lo largo del vector LOOK
 - Los objetos que quedan fuera del volumen no se dibujan
 - Los objetos que intersectan con el volumen se recortan

- Razón de aspecto
 - Análogo al tamaño de las fotografías, indica la proporción entre anchura y altura
- Campo de visión (anchura de campo)
 - Análogo a escoger una lente para una cámara fotográfica: ajusta el zoom y la cantidad de distorsión perspectiva

Efecto gran angular

- Profundidad de campo
 - Algunos modelos de cámara tienen profundidad de campo para fijar el rango de enfoque ideal y así aproximar el comportamiento de una cámara real
 - Objetos situados a la distancia focal se visualizarán nítidos (enfocados), los que estén más cercanos o más lejanos aparecerán borrosos (desenfocados)

Sección de Computer Informática Graphics Gráfica Group

Profundidad de campo

Volúmenes canónicos de la vista

* Paralelo

* Perspectivo

- LOOK=(0,0,1)
- UP=(0,1,0)

- Transformaciones de la vista
 - Vista general → Vista simple
 - La cámara se mueve al origen
 - La dirección de proyección se lleva al eje Z
 - La dirección UP se lleva al eje Y

- Transformaciones de la vista (cámara perspectiva)
 - Vista simple → Volumen canónico
 - Ajusta el tamaño del volumen
 - Cambia a un sistema levógiro

- Transformaciones de la vista (cámara paralela)
 - Vista simple → Volumen canónico
 - ▶ Traslada el volúmen a z=o
 - Ajusta el tamaño del volumen
 - Cambia a un sistema levógiro

- En este screencast se explica el modelo de cámara y cómo resolver un problema de transformación de la vista:
 - Modelo de cámara: Parámetros
 - Cámara Ortográfica
 - Cámara Perspectiva
 - Volúmenes canónicos
 - Transformación de la vista
 - Ejercicio
- http://hdl.handle.net/10251/105167

Matrices de proyección

Matrices de proyección simples

- Tenemos un sistema de coordenadas LEVÓGIRO
- CP en el origen y PP perpendicular a Z a una distancia d
- Proyección perspectiva simple

Por triángulos semejantes:

$$\frac{x}{x_p} = \frac{z}{d} \rightarrow x_p = \frac{x \cdot d}{z}$$

$$\frac{y}{y_p} = \frac{z}{d} \rightarrow y_p = \frac{y \cdot d}{z}$$

$$(x_p, y_p, d) = \left(\frac{x}{\frac{z}{d}}, \frac{y}{\frac{z}{d}}, \frac{z}{\frac{z}{d}}\right)$$

Matrices de proyección

Matrices de proyección simples

Proyección perspectiva:

$$(x, y, z, 1) \rightarrow (x_p, y_p, d, 1) = \left(\frac{x}{\frac{z}{d}}, \frac{y}{\frac{z}{d}}, \frac{z}{\frac{z}{d}}, 1\right)$$

Matriz resultante:

$$\begin{bmatrix} x_p \\ y_p \\ d \\ 1 \end{bmatrix} = \begin{bmatrix} 1/z/d & 0 & 0 & 0 \\ 0 & 1/z/d & 0 & 0 \\ 0 & 0 & 1/z/d & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

- Problema: depende de la z de cada vértice
- > Solución: dos pasos:

1. Matriz de proyección perspectiva:

$$\begin{bmatrix} x \\ y \\ z \\ \frac{z}{d} \end{bmatrix} = M_{per} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

2. División homogénea:

$$\frac{\left(x, y, z, \frac{z}{d}\right)}{\left(\frac{z}{d}\right)} = \left(\frac{x}{\frac{z}{d}}, \frac{y}{\frac{z}{d}}, \frac{z}{\frac{z}{d}}, 1\right) = \left(x_p, y_p, d, 1\right)$$

Matrices de proyección

Matrices de proyección simples

Matriz de proyección perspectiva:

$$M_{per} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & \frac{1}{d} & 0 \end{bmatrix}$$

Proyección ortográfica simple: $(x, y, z, 1) \rightarrow (x, y, d, 1)$

$$\begin{bmatrix} x \\ y \\ d \\ 1 \end{bmatrix} = M_{ort} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & d \\ 0 & 0 & 0 & 1 \end{bmatrix} \cdot \begin{bmatrix} x \\ y \\ z \\ 1 \end{bmatrix}$$

$$M_{ort} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & d \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Recortado 3D

 En 3D el algoritmo se aplica a cada una de las caras del poliedro a recortar contra cada uno de los planos del volumen canónico

Bibliografía

- D. Hearn, M. Baker. Computer Graphics with OpenGL. Pearson Prentice Hall, 4ª edición.
 - Capítulos 9 y 10