Сергей Николенко Академия MADE — Mail.Ru 14 октября 2020 г.

Random facts:

- 14 октября в Грузии Мцхетоба, христианский государственный праздник, проводящийся в кафедральном храме Светицховели города Мцхета; по легенде, храм основан на том месте, где была захоронена риза Иисуса Христа, привезённая в Грузию грузинскими евреями Элиозом и Лонгинозом, которые присутствовали при распятии
- 14 октября 1843 г. на премьере спектакля «Сон в летнюю ночь» впервые прозвучал «Свадебный марш» Мендельсона. а 14 октября 1860 г. был открыт Мариинский театр
- 14 октября 1892 г. Артур Конан Дойль опубликовал книгу «Приключения Шерлока Холмса», а 14 октября 1926 г. в Лондоне вышла книга Алана Милна «Винни-Пух»
- 14 октября 1943 г. произошло восстание в концлагере Собибор, единственное удачное в истории Третьего рейха
- 14 октября 2012 г. Феликс Баумгартнер прыгнул с парашютом с высоты 39 км и успешно приземлился в окрестностях, что характерно, города Розуэлл, Нью-Мексико

Основные задачи

- Теоретически всё готово, но у нас много проблем:
 - · уравнения знаем, но пока не знаем, как их решать, то есть как найти V^π для данного π ?
 - разных стратегий очень, очень много как найти оптимальную стратегию поведения агента в данной модели и соответствующие V^* ?
 - \cdot но уравнений тоже не знаем в реальности обычно P и R не даны, их тоже нужно обучить; как?
 - более того, их обычно даже записать не получится, слишком уж много состояний в любой реальной задаче... что делать?

• Давайте есть слона по частям...

- В прошлый раз мы ввели основные понятия динамики марковских процессов принятия решений:
 - собственно динамику процесса:

$$p(s', r|s, a) = p(S_t = s', R_t = r | S_{t-1} = s, A_{t-1} = a|;)$$

· награды за каждый эпизод, начиная со времени t:

$$G_t = R_{t+1} + \gamma G_{t+1} = R_{t+1} + \gamma R_{t+2} + \gamma^2 R_{t+3} + \ldots = \sum_{k=0}^{\infty} \gamma^k R_{t+k+1};$$

• функцию значения для состояний и пар состояние-действие:

$$V_{\pi}(s) = \mathbb{E}_{\pi} [G_{t} \mid S_{t} = s] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s \right],$$

$$Q_{\pi}(s, a) = \mathbb{E}_{\pi} [G_{t} \mid S_{t} = s, A_{t} = a] = \mathbb{E}_{\pi} \left[\sum_{k=0}^{\infty} \gamma^{k} R_{t+k+1} \mid S_{t} = s, A_{t} = a \right]$$

- В прошлый раз мы выписали уравнения Беллмана на V и Q и научились их решать.
- Теперь будем обучать одновременно и модель, и оптимальную стратегию; вознаграждения и переходы не даны.
- Начнём со стохастических алгоритмов (метода Монте-Карло); но начнём опять с простой задачи.
- Как обучить вознаграждения $V^{\pi}(s)$, ожидаемые от состояния s в эпизодической задаче?

• Да очень просто: будем накапливать данные и усреднять.

Алгоритм Monte Carlo estimation:

- инициализировать случайно π и V(s), пустые списки $\mathrm{Ret}(s)$;
- повторять до сходимости:
 - сгенерировать эпизод $S_0, A_0, R_1, S_1, A_1, \dots, S_T$ по стратегии π ;
 - G := 0
 - для каждого t = T 1, T 2, ..., 0:
 - $G := \gamma G + R_{t+1}$
 - \cdot если надо, то добавить G в $\mathrm{Ret}(S_t)$ и обновить $V(S_t) := \mathrm{Avg}(\mathrm{Ret}(S_t)).$
- «Если надо» скрывает тонкую разницу между first-visit и every-visit Monte Carlo.
- На выходе этот алгоритм выдаст V_{π} для данной π , которой порождаются эпизоды.

• Но вообще без модели гораздо удобнее оценивать Q_{π} . Сразу можно и стратегию обновлять, тот же policy iteration.

Алгоритм Monte Carlo control with exploring starts:

- инициализировать случайно π и Q(s), пустые списки $\mathrm{Ret}(s)$;
- повторять до сходимости:
 - выбрать S_0, A_0 случайно так, чтобы $\forall (s, a) \ p(s, a) > 0$;
 - сгенерировать эпизод $S_0, A_0, R_1, S_1, A_1, \dots, S_T$ по стратегии π ;
 - G := 0
 - для каждого $t = T 1, T 2, \dots, 0$:
 - $G := \gamma G + R_{t+1}$
 - если надо, то добавить G в $Ret(S_t, A_t)$ и обновить:

$$Q(S_t, A_t) := \operatorname{Avg}(\operatorname{Ret}(S_t, A_t)),$$

$$\pi(S_t) := \operatorname{arg} \max_{a} Q(S_t, a).$$

- Этот алгоритм выдаст π_* и соответствующую ей функцию Q_* .
- Здесь важно предположение exploring starts, без него мы не исследуем все действия.

• А что делать, если оно не выполняется? Придётся исследовать самостоятельно.

Алгоритм on-policy Monte Carlo control с мягкими стратегиями:

- инициализировать случайно ϵ -мягкую π и Q(s), пустые $\mathrm{Ret}(s)$;
- повторять до сходимости:
 - выбрать S_0, A_0 случайно так, чтобы $\forall (s, a) \ p(s, a) > 0$;
 - сгенерировать эпизод $S_0, A_0, R_1, S_1, A_1, \dots, S_T$ по стратегии π ;
 - G := 0
 - для каждого $t = T 1, T 2, \dots, 0$:
 - $G := \gamma G + R_{t+1}$
 - если надо, то добавить G в $Ret(S_t, A_t)$ и обновить:

$$\begin{split} Q(S_t, A_t) &:= \operatorname{Avg}(\operatorname{Ret}(S_t, A_t)), \\ a_* &:= \operatorname{arg} \operatorname{max}_a Q(S_t, a), \\ \pi(a \mid S_t) &:= \begin{cases} 1 - \epsilon + \frac{\epsilon}{|\mathcal{A}(S_t)|}, & \text{если } a = a_*, \\ \frac{\epsilon}{|\mathcal{A}(S_t)|}, & \text{если } a \neq a_*. \end{cases} \end{split}$$

• Этот алгоритм умеет искать оптимальную мягкую π .

- На самом деле для ϵ -мягких стратегий тоже верен аналог policy improvement теоремы, и для ϵ -мягких стратегий метод policy iteration тоже вполне работает.
- Но это on-policy алгоритм, он найдёт мягкую стратегию, а в реальности шахматист, который играет как Магнус Карлсен 90% ходов, а 10% ходов делает случайно, вряд ли продвинется сильно дальше третьего разряда.
- Но ведь и исследовать тоже нужно! Хорошо было бы научиться исследовать по одной стратегии, а оценивать другую...

- ...и такой трюк действительно можно сделать!
- Вспомним сэмплирование со значимостями (importance sampling): если мы умеем брать сэмплы по распределению $q(\mathbf{x})$, а оценивать хотим ожидание по распределению $p(\mathbf{x})$, то можно сделать так:

$$\mathbb{E}_{p(\mathbf{x})}[f(\mathbf{x})] = \int f(\mathbf{x})p(\mathbf{x})d\mathbf{x} = \int f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}q(\mathbf{x})d\mathbf{x} = \mathbb{E}_{q(\mathbf{x})}\left[f(\mathbf{x})\frac{p(\mathbf{x})}{q(\mathbf{x})}\right].$$

• А у нас в качестве p и q выступают распределения на траекториях:

$$\begin{split} p\left(\mathrm{Traj}|\pi\right) &= p\left(A_{t}, S_{t+1}, A_{t+1}, \dots, S_{T-1}, A_{T-1}, S_{T}|\pi\right) = \\ &= \pi\left(A_{t}|S_{t}\right) p\left(S_{t+1}|S_{t}, A_{t}\right) \dots \pi\left(A_{T-1}|S_{T-1}\right) p\left(S_{T}|S_{T-1}, A_{T-1}\right) = \\ &= \prod_{k=t}^{T-1} \pi\left(A_{k}|S_{k}\right) p\left(S_{k+1}|S_{k}, A_{k}\right). \end{split}$$

• И получается, что для двух стратегий π , b (от слова behaviour) определить веса

$$\begin{split} \rho_{t:T-1}^{\pi,b} &= \frac{p\left(\mathrm{Traj}|\pi\right)}{p\left(\mathrm{Traj}|b\right)} = \frac{\prod_{k=t}^{T-1} \pi\left(A_{k}|S_{k}\right) p\left(S_{k+1}|S_{k},A_{k}\right)}{\prod_{k=t}^{T-1} b\left(A_{k}\mid S_{k}\right) p\left(S_{k+1}|S_{k},A_{k}\right)} = \\ &= \frac{\prod_{k=t}^{T-1} \pi\left(A_{k}|S_{k}\right)}{\prod_{k=t}^{T-1} b\left(A_{k}\mid S_{k}\right)}, \end{split}$$

то неизвестные вероятности сократятся и останется, что когда мы порождаем эпизоды по b, нужно просто усреднять не G_t , а $\rho_{t:T-1}^{\pi,b}G_t$, и будут получаться оценки $\pi!$

• Единственное условие – покрытие (coverage): должно быть верно, что если $\pi\left(a|s\right)>0$, то и $b(a\mid s)>0$.

- Ещё есть тонкая разница между обычным importance sampling и взвешенным (weighted importance sampling):
 - в обычном мы берём оценку среднего через сэмплы

$$V(s) = \frac{1}{N} \sum_{t=1}^{N} \rho_{t:T-1}^{\pi,b} G_t,$$

• а во взвешенном ещё нормируем суммой весов

$$V(s) = \frac{\sum_{t=1}^{N} \rho_{t:T-1}^{\pi,b} G_t}{\sum_{t=1}^{N} \rho_{t:T-1}^{\pi,b}}.$$

• Вторая оценка смещённая, но сходится куда надо и у неё нормальная человеческая дисперсия.

• А у первого варианта дисперсия очень большая, и может быть даже бесконечная! Пример:

• Итого вот какой алгоритм получается

Алгоритм on-policy Monte Carlo control с мягкими стратегиями:

- инициализировать ϵ -мягкую b, π , Q(s), пустые $\mathrm{Ret}(s)$ и c(s);
- повторять до сходимости:
 - сгенерировать эпизод $S_0, A_0, R_1, S_1, A_1, \dots, S_T$ по мягкой стратегии b;
 - G := 0, W := 1
 - для каждого $t = T 1, T 2, \dots, 0$:
 - $G := \gamma G + R_{t+1}$
 - $\cdot c(S_t, A_t) := c(S_t, A_t) + W$
 - $\cdot Q(S_t, A_t) := Q(S_t, A_t) + \frac{W}{c(S_t, A_t)} (G Q(S_t, A_t))$
 - $\cdot \pi(a \mid S_t) := \arg \max_a Q(S_t, a)$
 - · если $A_t \neq \pi(S_t)$, то перейти к следующему эпизоду
 - $W := \frac{W}{b(A_t|S_t)}$.
- А если убрать $\arg\max$, то получится просто алгоритм оценки данной стратегии π .

- Общий принцип TD-обучения: давайте обучать оценки состояний на основе обученных нами ранее оценок для последующих состояний.
- TD(0)-обучение: инициализировать V(s) и π произвольно, затем на каждом эпизоде обучения:
 - · инициализировать s;
 - · для каждого шага t в эпизоде:
 - выбрать A_t в состоянии S_t по стратегии π ;
 - · сделать A_t , пронаблюдать результат R_{t+1} и следующее состояние S_{t+1} :
 - · $V(S_t) := V(S_t) + \alpha (R_{t+1} + \gamma V(S_{t+1}) V(S_t)).$

- Здесь по сути методы Монте-Карло и TD-обучение расходятся в том, как строить оценку для V(s):
 - МС-методы оценивают $V(s) = \mathbb{E}_{\pi} [G_t \mid S_t = s]$, собирая статистику из G_t ;
 - \cdot а TD-методы оценивают на один шаг вперёд как $V(s) = \mathbb{E}_{\pi}\left[R_{t+1} + \gamma V_{\pi}(S_{t+1}) \mid S_t = s\right].$
- Смысл TD-обучения в том, чтобы использовать уже обученные закономерности для поиска более глубоких закономерностей.
- В результате обучение получится целенаправленным, обучается гораздо быстрее, чем другие стратегии.

· Здесь тоже есть on-policy и off-policy варианты

Алгоритм Sarsa (on-policy TD control):

- инициализировать случайно Q(s, a);
- повторять до сходимости:
 - инициализировать S_0 , выбрать A_0 по стратегии, полученной из Q (например, по ϵ -жадной стратегии);
 - · для каждого шага в эпизоде $t=0,\ldots,T$:
 - сделать действие A_t , получить награду R_{t+1} , перейти в состояние S_{t+1} ;
 - выбрать A_{t+1} по стратегии, полученной из Q (например, по ϵ -жадной стратегии);
 - · обновить Q:

$$Q(S_t, A_t) := Q(S_t, A_t) + \alpha (R_{t+1} + \gamma Q(S_{t+1}, A_{t+1}) - Q(S_t, A_t))$$

• Этот алгоритм умеет искать оптимальную мягкую π (т.е. опять нужно самому исследовать)

• A off-policy вариант называется Q-обучение; он ещё проще, и это была очень мощная идея, которая до сих пор определяет многое в RL (Watkins, 1989)

Алгоритм Q-learning (off-policy TD control):

- инициализировать случайно Q(s, a);
- повторять до сходимости:
 - инициализировать S_0
 - · для каждого шага в эпизоде $t=0,\ldots,T$:
 - выбрать A_t по стратегии, полученной из Q (например, по ϵ -жадной стратегии);
 - сделать действие A_t , получить награду R_{t+1} , перейти в состояние S_{t+1} ;
 - · обновить Q:

$$Q(S_t, A_t) := Q(S_t, A_t) + \alpha \left(R_{t+1} + \gamma \max_{a} Q(S_{t+1}, a) - Q(S_t, A_t) \right)$$

• Этот алгоритм умеет искать оптимальную жёсткую π_* , делая ходы по мягкой стратегии

Спасибо!

Спасибо за внимание!