Problemas del Tema 1

- **1.-** Considera dos aplicaciones diferenciables $u, v : I \longrightarrow \mathbb{R}^3$, $u(t) = (u_1(t), u_2(t), u_3(t))$, $v(t) = (v_1(t), v_2(t), v_3(t))$, donde I es un intervalo abierto de \mathbb{R} . Denota $u'(t) = (u'_1(t), u'_2(t), u'_3(t))$, $v'(t) = (v'_1(t), v'_2(t), v'_3(t))$, \langle , \rangle el producto escalar usual $y \times$ el producto vectorial respecto a la orientación usual. Prueba
 - (a) $\frac{d}{dt}\langle u(t), v(t)\rangle = \langle u'(t), v(t)\rangle + \langle u(t), v'(t)\rangle,$
 - (b) Como aplicación, si para $w \in \mathbb{R}^3$ fijo, se tiene $u'(t) \perp w$, para todo $t \in I$, y $u(t_0) \perp w$, donde $t_0 \in I$, entonces $u(t) \perp w$, para todo $t \in I$.
 - (c) $\frac{d}{dt}(u(t) \times v(t)) = u'(t) \times v(t) + u(t) \times v'(t),$
 - (d) Como aplicación, si u'(t) = a u(t) + b v(t) y u'(t) = c u(t) a v(t), para $a, b, c \in \mathbb{R}$, entonces $u(t) \times v(t)$ no depende de t; es decir, es un vector constante de \mathbb{R}^3 .
- 2.- Obtén una parametrización de cada una de las siguientes cónicas de \mathbb{R}^2 :
 - (a) La circunferencia de centro el punto (3, 2) y radio 9.
 - (b) La elipse de ecuación $4x^2 + \frac{y^2}{9} = 1$ (respecto del sistema referencia ortonormal usual).
 - (c) La rama de la hipérbola de ecuación $x^2 y^2 = 5$ que contiene al punto (3,2).
 - (d) La parábola de ecuación $2x^2 y + 4 = 0$.
- 3.- Considera un punto $c \in \mathbb{R}^2$ y un número real r(>0).
 - (a) Prueba que la circunferencia de centro c y radio r admite una parametrización de la forma $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$, con $\alpha(t) = c + r \cos\left(\frac{t}{r}\right) v_1 + r \sin\left(\frac{t}{r}\right) v_2$, donde (v_1, v_2) es una base ortonormal positivamente orientada.
 - (b) Calcula las ecuaciones de Frenet de α y la curvatura de α en cada t.
 - (c) Calcula las rectas tangente y normal a α en t=0.
- **4.-** (Espiral logarítmica) Sea la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (e^t \cos t, e^t \sin t)$, para todo $t \in \mathbb{R}$.
 - (a) Comprueba que es regular.
 - (b) Calcula la función longitud de arco desde $t_0 = 0$.
 - (c) Reparametrízala por la longitud del arco.

- (d) Calcula, según la orientación usual de \mathbb{R}^2 , el ángulo orientado $\sphericalangle(\alpha(t), \alpha'(t))$.
- (e) Calcula su función curvatura. Estudia su comportamiento cuando $t\to -\infty$ y cuando $t\to \infty$. Interprétalos geométricamente.
- **5.-** Sea $\alpha: I \longrightarrow \mathbb{R}^2$ una curva regular. Si ocurre que $k(t) \neq 0$, para todo $t \in I$, se define su evoluta como la curva $\beta: I \longrightarrow \mathbb{R}^2$ dada por $\beta(t) = \alpha(t) + \frac{1}{k(t)} e_2(t)$, para todo $t \in I$ (se llama a $\frac{1}{|k(t)|}$ el radio de curvatura de α en t).
 - (a) Prueba que $\beta'(t) = -\frac{k'(t)}{k(t)^2} e_2(t)$ y da una condición necesaria y suficiente para que la evoluta de α sea regular.
 - (b) Cuando $k'(t_0) \neq 0$, prueba que la recta tangente a β en t_0 es la recta normal a α en t_0 .
 - (c) Considera la curva $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (t, \cosh t)$, para todo $t \in \mathbb{R}$, (catenaria). Prueba que es regular, que su curvatura es $k(t) = \frac{1}{\cosh^2 t}$ y calcula su evoluta.
- **6.-** Sean $\alpha, \gamma: I \longrightarrow \mathbb{R}^2$ dos curvas parametrizadas por la longitud de arco cuyas funciones curvatura cumplen $k_{\alpha}(t) = -k_{\gamma}(t)$, para todo $t \in I$. Prueba que existe un único movimiento rígido inverso F de \mathbb{R}^2 de manera que $\gamma = F \circ \alpha$ ¿Quien es F si $\alpha(t) = (\cos t, \sin t)$, $\gamma(t) = (\sin t, \cos t)$, para todo $t \in \mathbb{R}$?
- 7.- Considera una curva regular $\alpha: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$, $\epsilon > 0$ o $\epsilon = \infty$. Define $\beta: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$ por $\beta(t) = \alpha(-t)$, para todo $t \in (-\epsilon, \epsilon)$.
 - (a) Comprueba explícitamente que β también es regular.
 - (b) ¿Qué relación hay entre las funciones curvaturas de ambas curvas?
 - (c) Particulariza lo anterior al caso de la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (a\cos t, b\sin t)$, con a, b > 0 (elípse).
- 8.- Sea la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (t, t^2)$, para todo $t \in \mathbb{R}$.
 - (a) Comprueba que es regular.
 - (b) Prueba que $k(t) = \frac{2}{(1+4t^2)^{3/2}}$ y que, en particular, k(t) = k(-t) para todo $t \in \mathbb{R}$.
 - (c) Observa que $\operatorname{Im}(\alpha)$ es simétrica respecto de la recta normal a α en el punto que se obtiene para t=0.
 - (d) Motivado por lo anterior, si $\alpha: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$, $\epsilon > 0$ o $\epsilon = \infty$, es una curva regular cuya curvatura cumple k(t) = k(-t) para todo $t \in (-\epsilon, \epsilon)$; Podemos afirmar que $\operatorname{Im}(\alpha)$ es simétrica respecto de la recta normal a α en t = 0?

- **9.-** Sea la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^2$ dada por $\alpha(t) = (t, t^3)$, para todo $t \in \mathbb{R}$.
 - (a) Comprueba que es regular.
 - (b) Prueba que $k(t) = \frac{6t}{(1+9t^4)^{3/2}}$ y que, en particular, k(t) = -k(-t) para todo $t \in \mathbb{R}$.
 - (c) Observa que $\operatorname{Im}(\alpha)$ es simétrica respecto del punto $\alpha(0)$ (es decir, que el giro de centro $\alpha(0)$ y ángulo π deja a $\operatorname{Im}(\alpha)$ invariante).
 - (d) Motivado por lo anterior, si $\alpha: (-\epsilon, \epsilon) \longrightarrow \mathbb{R}^2$, $\epsilon > 0$ o $\epsilon = \infty$, es una curva regular cuya curvatura cumple k(t) = -k(-t) para todo $t \in (-\epsilon, \epsilon)$, ¿podemos afirmar que Im(α) es simétrica respecto del punto $\alpha(0)$?
- 10.- Una curva regular $\alpha: I \longrightarrow \mathbb{R}^2$ tiene la propiedad de que todas sus rectas tangentes pasan por un punto fijo. Prueba que su traza es un segmento de recta.
- 11.- Una curva regular $\alpha: I \longrightarrow \mathbb{R}^2$ tiene la propiedad de que todas las rectas normales pasan por un punto fijo. Prueba que su traza es un arco de circunferencia.
- 12.- Prueba que la traza de una curva (parametrizada por la longitud de arco) es un segmento de recta o un arco de circunferencia si y sólo si todas las rectas tangentes equidistan de un punto fijo del plano.
- 13.- (Ventana de Viviani) Considera la intersección de la semiesfera dada por $x^2 + y^2 + z^2 = 4$, $z \ge 0$ y el cilindro circular recto dado por $(x-1)^2 + y^2 = 1$ (nota que el radio de la esfera es 2 y el radio de la circunferencia que genera al cilindro 1, su mitad, y que el cilindro pasa por (0,0,0), el centro de la esfera). Prueba que la traza la curva $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\alpha(t) = (2\cos^2 t, 2(\cos t)(\sin t), 2\sin t)$ es dicha intersección ¿Es α regular? ¿es α cerrada?
- 14.- Encuentra una parametrización de cada una de las siguientes dos intersecciones de cuádricas:
 - (a) El cilindro circular recto dado por $x^2 + y^2 = 4$ y el cilindro parabólico dado por $z = x^2$.
- (b) El cilindro parabólico dado por $x=y^2+1$ y el cilindro parabólico dado por $x=z^2$
- **15.-** Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva regular de manera que $\{\alpha'(t), \alpha''(t)\}$ sea linealmente independiente para todo $t \in I$. Prueba que sus funciones curvatura y torsión (según nuestro convenio de signo) pueden ser calculadas como sigue:

$$k(t) = \frac{|\alpha'(t) \times \alpha''(t)|}{|\alpha'(t)|^3}, \qquad \tau(t) = \frac{\det(\alpha'(t), \alpha''(t), \alpha'''(t))}{|\alpha'(t) \times \alpha''(t)|^2}.$$

- **16.-** Considera $r \in \mathbb{R}$, r > 0, un punto p y un vector v del espacio euclídeo de manera que |p| = |v| = r, $\langle p, v \rangle = 0$ y sea $\gamma : \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\gamma(t) = \left(\cos\frac{t}{r}\right)p + \left(\sin\frac{t}{r}\right)v$
 - (a) Comprueba que está parametrizada por la longitud de arco y que $\gamma''(t) \neq 0$, para todo $t \in \mathbb{R}$.

- (b) Prueba que su torsión es cero y encuentra el plano de contiene su traza.
- (c) Prueba que su curvatura es $\frac{1}{r}$.
- (d) Encuentra un movimiento rígido F de \mathbb{R}^3 de manera que $F \circ \gamma = \beta$, donde $\beta : \mathbb{R} \longrightarrow \mathbb{R}^3$ está dada por $\beta(t) = \left(r\cos\left(\frac{t}{r}\right), r\sin\left(\frac{t}{r}\right), 0\right)$.

17.- (Hélice circular) Sea la curva $\alpha : \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\alpha(t) = (a \cos t, a \sin t, bt)$, donde $a, b \in \mathbb{R}$, a, b > 0.

- (a) Comprueba que es regular.
- (b) Interpreta geométricamente el significado de las constantes a y b.
- (c) Calcula la función longitud de arco desde $t_0 = 0$.
- (d) Construye el triedro de Frenet.
- (e) Calcula sus funciones curvatura y torsión, k y τ . Estudia los comportamientos de k cuando se tiene b fijo pero $a \to \infty$ y de τ cuando a es fijo pero $b \to \infty$. Interprétalos geométricamente.

18.- Sea la curva $\alpha: \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\alpha(t) = (3t - t^3, 3t^2, 3t + t^3)$.

- (a) Comprueba que es regular.
- (b) Calcula la función longitud de α desde $t_0 = 0$ hasta t = 1.
- (c) Construye el triedro de Frenet.
- (d) Calcula los planos osculador, normal y rectificante a α en t=0
- (e) Calcula sus funciones curvatura y torsión.

19.- Para cada función diferenciable $f: \mathbb{R} \longrightarrow \mathbb{R}$ se considera la curva $\alpha_f: \mathbb{R} \longrightarrow \mathbb{R}^3$ dada por $\alpha_f(t) = (\cos t, \sin t, f(t))$.

- (a) Comprueba que α_f es regular.
- (b) Prueba que para cada $t_1, t_2 \in \mathbb{R}, t_1 < t_2$ se cumple $\int_{t_1}^{t_2} |\alpha'(t)| dt \ge t_2 t_1$.
- (c) Construye el triedro de Frenet.
- (d) Calcula sus funciones curvatura y torsión.
- (e) Determina las funciones f para las cuales α_f es una curva plana.

- **20.-** Prueba que los enunciados de los problemas números 10 y 11 de la primera parte pueden extenderse para el caso de curvas en el espacio euclídeo ¿Y el del problema 12? es decir, ¿es un segmento de recta o un arco de circunferencia la traza de una curva si y sólo si todas las rectas tangentes equidistan de un punto fijo del espacio?
- **21.-** Sea $\alpha:I\longrightarrow\mathbb{R}^3$ una curva parametrizada por la longitud de arco y tal que $\alpha''(t)\neq 0$, para todo $t\in I$. Supongamos además que $\tau(t)\neq 0$, $k'(t)\neq 0$, para todo $t\in I$. Prueba que $\mathrm{Im}(\alpha)$ está contenida en una esfera si y sólo si $R^2+(R')^2T^2$ es constante, siendo $R(t)=\frac{1}{k(t)}$, R' la función derivada de R y $T(t)=\frac{1}{\tau(t)}$.
- **22.-** Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva regular de manera que $\{\alpha'(t), \alpha''(t)\}$ sea linealmente independiente para todo $t \in I$. Considera la nueva curva $\beta: I \longrightarrow \mathbb{R}^3$, dada por $\beta(t) = r \alpha(t)$, con r > 0 real fijo. Relaciona los triedros de Frenet, curvatura y torsión de ambas curvas. Pon algún ejemplo como aplicación de lo obtenido.
- **23.-** Sea $\alpha: I \longrightarrow \mathbb{R}^3$ una curva parametrizada por la longitud de arco y tal que $\alpha''(t) \neq 0$, para todo $t \in I$, y con k > 0, $\tau > 0$. Se considera la curva $\beta(t) = \int_{t_0}^t e_3(s) \, ds$, donde $e_3(t)$ es el vector binormal a α en t.
 - (a) Comprueba que β está parametrizada por la longitud de arco.
 - (b) Construye el triedro de Frenet de β .
 - (e) Calcula las funciones curvatura y torsión, k_{β} y τ_{β} .