

TARGET: JEE (Main + Advanced) 2015

Course: VIJETA & VIJAY (ADP & ADR) Date: 28-04-2015

TEST INFORMATION

DATE: 29.04.2015 PART TEST-03 (PT-03)

Syllabus: Straight Line, Circle, Solution of Triangle, Matrices & Determinant

REVISION DPP OF

VECTORS AND THREE DIMENSIONAL GEOMETRY

Total Marks: 140

Max. Time: 110 min.

Single choice Objective (-1 negative marking) Q. 1 to 17

Multiple choice objective (-1 negative marking) Q. 18 to 37

Comprehension (-1 negative marking) Q.38 to Q.40

Max. Time: 110 min.

(3 marks 2.5 min.)

[80,60]

(3 marks 2.5 min.)

[9, 7.5]

- 1. If the points with position vectors $-\hat{j} \hat{k}$, $4\hat{i} + 5\hat{j} + \lambda \hat{k}$, $3\hat{i} + 9\hat{j} + 4\hat{k}$ and $-4\hat{i} + 4\hat{j} + 4\hat{k}$ are coplanar, then the value of λ is
 - (A) -1

(B) 0

(C) 1

- (D) 2
- 2. If \vec{a}, \vec{b} and \vec{c} are three non-coplanar uni-modular vectors, each inclined with other at an angle 30°, then volume of tetrahedron whose edges are \vec{a}, \vec{b} and \vec{c} is
 - (A) $\frac{3\sqrt{3}-5}{4}$

(B) $\frac{3\sqrt{3}+5}{12}$

(C) $\frac{\sqrt{3\sqrt{3}-5}}{12}$

- (D) $\frac{3\sqrt{3}-5}{24}$
- 3. If lines $\frac{x-1}{2} = \frac{y+1}{3} = \frac{z-1}{4}$ and $\frac{x-3}{1} = \frac{y-k}{2} = \frac{z}{1}$ intersect, then the value of k is
 - (A) $\frac{3}{2}$

(B) $\frac{9}{2}$

(C) $-\frac{2}{9}$

- (D) $-\frac{3}{2}$
- 4. If the distance between point P and Q is d and the projections of PQ on the coordinate planes are d_1 , d_2 , d_3 respectively, then $d_1^2 + d_2^2 + d_3^2 =$
 - (A) d²

(B) 2d²

(C) $3d^{2}$

(D) 4d²

- 5. If $\vec{a} = \hat{i} + \hat{j} + \hat{k}$, $\vec{c} = \hat{j} \hat{k}$, $\vec{a}.\vec{b} = 3$ and $\vec{a} \times \vec{b} = \vec{c}$, then \vec{b} is equal to
 - (A) $\frac{1}{3} \left(5\hat{i} + 2\hat{j} + 2\hat{k} \right)$

(B) $\frac{1}{3}\left(5\hat{i}-2\hat{j}-2\hat{k}\right)$

(C) $5\hat{i} + 3\hat{j} + 2\hat{k}$

- (D) $3\hat{i} + \hat{j} \hat{k}$
- **6.** If \vec{a} , \vec{b} , \vec{c} are three non-coplanar non-zero vectors, then
 - $(\vec{a}.\vec{a})\vec{b} \times \vec{c} + (\vec{a}.\vec{b})\vec{c} \times \vec{a} + (\vec{a}.\vec{c})\vec{a} \times \vec{b} =$
 - (A) $[\vec{a}\ \vec{b}\ \vec{c}\]\vec{a}$

(B) $[\vec{a} \vec{c} \vec{b}]\vec{a}$

(C) $[\vec{a}\ \vec{b}\ \vec{c}\]\vec{b}$

- (D) $[\vec{a} \vec{c} \vec{b}]\vec{c}$
- 7. Let L_1 , L_2 , L_3 be three distinct lines in a plane π . (Lines are not parallel) Another line L is equally inclined with these three lines
 - S_1 : L is perpendicular to the plane π .
 - \mathbf{S}_2 : If a non-zero $\vec{\mathrm{v}}$ is equally inclined to 3 non-zero coplanar vectors $\vec{\mathrm{v}}_1$, $\vec{\mathrm{v}}_2$ & $\vec{\mathrm{v}}_3$, then it is perpendicular to the plane containing them.
 - (A) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is correct explanation for STATEMENT-1
 - (B) STATEMENT-1 is true, STATEMENT-2 is true and STATEMENT-2 is not correct explanation for STATEMENT-1
 - (C) STATEMENT-1 is true, STATEMENT-2 is false
 - (D) STATEMENT-1 is false, STATEMENT-2 is true
- 8. In given figure, $\overrightarrow{AB} = 3\hat{i} \hat{j}$, $\overrightarrow{AC} = 2\hat{i} + 3\hat{j}$ & $\overrightarrow{DE} = 4\hat{i} 2\hat{j}$. Then the area of the shaded region is

(A) 5

· · ·

(C)7

- (D) 8
- 9. Four points with position vectors \vec{a} , \vec{b} , \vec{c} & \vec{d} are coplanar such that

 $(\sin\alpha)\vec{a} + (2\sin2\beta)\vec{b} + (3\sin3\gamma)\vec{c} - \vec{d} = 0$. Then, the least value of the expression $\sin^2\alpha + \sin^22\beta + \sin^23\gamma$ is

(A) $\frac{1}{14}$

(B) 14

(C) √6

(D) $\frac{1}{\sqrt{16}}$

10. If a, b, c, x, y, z are real numbers and $a^2 + b^2 + c^2 = 9$, $x^2 + y^2 + z^2 = 16$ and ax + by + cz = 12, then

$$\frac{\left(a^3 + b^3 + c^3\right)^{1/3}}{\left(x^3 + y^3 + z^3\right)^{1/3}} \text{ is equal to}$$

(A) $\frac{3}{2}$

(B) $\frac{4}{3}$

(C) $\frac{3}{4}$

- (D) $\frac{2}{3}$
- 11. If \vec{a}, \vec{b} are two unit vectors and \vec{c} is such that $\vec{c} = \vec{a} \times \vec{c} + \vec{b}$, then the maximum value of $\begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}$ is
 - (A) 2

(B) $\frac{1}{2}$

(C) 1

- (D) $\frac{3}{2}$
- 12. If $\begin{bmatrix} \vec{a} \ \vec{b} \ \vec{c} \end{bmatrix} = 2$, then $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{b} \times \vec{c}) \times (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}) \times (\vec{b} \times \vec{d}) = 0$
 - $(A) -5\vec{d}$

(B) $-3\vec{d}$

 $(C) -4\vec{d}$

- (D) 3d
- 13. A variable plane moves so that the sum of reciprocals of its intercepts on the three coordinate axes is constant λ . It passes through a fixed point whose coordinate are
 - (A) $(\lambda, \lambda, \lambda)$

(B) $\left(\frac{-1}{\lambda}, \frac{-1}{\lambda}, \frac{-1}{\lambda}\right)$

 $(C)\left(\frac{1}{\lambda},\frac{1}{\lambda},\frac{1}{\lambda}\right)$

- (D) $(-\lambda, -\lambda, -\lambda)$
- **14.** The line with direction cosines proportional to 2, 1, 2 meets each of the lines x = y + 1 = z and x 2y + 1 = 0 & y z = 0. The coordinates of each of the points of intersection are
 - (A) (2, 1, 2), (1, 1, 1)

(B) (3, 2, 3), (1, 1, 1)

(C) (3, 2, 3), (1, 1, 2)

- (D) (2, 3, 3), (2, 1, 1)
- 15. If $\vec{r} \cdot \vec{a} = \vec{r} \cdot \vec{b} = \vec{r} \cdot \vec{c} = \frac{1}{2}$ for some non-zero vector \vec{r} , then the area of the triangle whose vertices are
 - A(\vec{a}), B(\vec{b}), C(\vec{c}) is (Origin does not lie in the plane of $\Delta ABC)$
 - (A) $|[\vec{a} \ \vec{b} \ \vec{c}]|$

(B) | r |

(C) $|[\vec{a} \ \vec{b} \ \vec{c}]\vec{r}|$

(D) None of these

16. Let $x - y \sin \alpha - z \sin \beta = 0$

 $x \sin \alpha - y + z \sin \gamma = 0$

& $x \sin \beta + y \sin \gamma - z = 0$ be three planes such that $\alpha + \beta + \gamma = \frac{\pi}{2}$ ($\alpha, \beta, \gamma \neq 0$) then the planes

- (A) intersect in a point
- (B) intersect in a line
- (C) are parallel to each other
- (D) are mutually perpendicular and intersect in a point

17. L_1 and L_2 are two lines whose vector equations are

$$L_1 = \vec{r}_1 = \lambda [(\cos\theta + \sqrt{3})\hat{i} + (\sqrt{2}\sin\theta)\hat{j} + (\cos\theta - \sqrt{3})\hat{k}]$$

& $L_2 = \vec{r}_2 = \mu(a\hat{i} + b\hat{j} + c\hat{k}),$

where λ and μ are scalars. If ' α ' is the acute angle between L₁ and L₂, which is independent of ' θ ', then α =

(A) $\frac{\pi}{6}$

(B) $\frac{\pi}{3}$

(C) $\frac{\pi}{4}$

(D) $\frac{5\pi}{12}$

18. A non-zero vector \vec{a} is parallel to the line of intersection of the plane determined by the vectors \hat{i} , \hat{i} + \hat{j} and the plane determined by the vectors \hat{i} - \hat{j} , \hat{i} + \hat{k} . The angle between \vec{a} and \hat{i} - $2\hat{j}$ + $2\hat{k}$ can be

(A) $\frac{3\pi}{4}$

(B) $\frac{\pi}{3}$

(C) $\frac{\pi}{6}$

(D) $\frac{\pi}{4}$

19. \vec{a} and \vec{b} are two vectors such that $|\vec{a}| = 1$, $|\vec{b}| = 2$ and $\vec{a} \cdot \vec{b} = 1$, If $\vec{c} = (2\vec{a} \times \vec{b}) - 3\vec{b}$, then

(A) $|\vec{c}| = 2\sqrt{3}$

(B) $|\vec{c}| = 4\sqrt{3}$

(C) $\vec{b} \vec{c} = \frac{2\pi}{3}$

(D) $\vec{b} \wedge \vec{c} = \frac{5\pi}{6}$

20. The lines x = y = z and $x = \frac{y}{2} = \frac{z}{3}$ and a third line passing through (1, 1, 1) form a triangle of area

 $\sqrt{6}$ units, (1, 1, 1) being one of the vertices of the triangle. Then the point of intersection of the third line with the second is

(A) (1, 2, 3)

(B) (2, 4, 6)

 $(C)\left(\frac{4}{3},\ \frac{8}{3},\ 4\right)$

(D) (-2, -4, -6)

- Let O (O being the origin) be an interior point of $\triangle ABC$ such that \overrightarrow{OA} + 2 \overrightarrow{OB} + 3 \overrightarrow{OC} = 0. If \triangle , \triangle ₁, \triangle ₂ 21. and Δ_3 are areas of ΔABC , ΔOAB , ΔOBC & ΔOCA respectively, then
 - (A) $\Delta = 3\Delta_1$

(B) $\Delta_1 = 3\Delta_2$

(C) $2\Delta_1 = 3\Delta_3$

- (D) $\Delta = 3\Delta_3$
- A unit vector $\hat{\mathbf{k}}$ is rotated by 135° in such a way that the plane made by it bisects the angle between 22. î & ĵ. The vector in the new position is
 - (A) $-\frac{\hat{i}}{2} + \frac{\hat{j}}{2} \frac{\hat{k}}{\sqrt{2}}$

(B) $\frac{\hat{i}}{2} + \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$

(C) $-\frac{\hat{i}}{2} - \frac{\hat{j}}{2} - \frac{\hat{k}}{\sqrt{2}}$

- (D) $\frac{\hat{i}}{2} \frac{\hat{j}}{2} \frac{\hat{k}}{\sqrt{2}}$
- If \hat{a} and \hat{b} are unit vectors, then the vector $\vec{v} = (\hat{a} \times \hat{b}) \times (\hat{a} + \hat{b})$ is collinear with 23.
 - (A) $\hat{a} + \hat{b}$

(B) $\hat{b} - \hat{a}$

(C) $\hat{a} - \hat{b}$

(D) $\hat{a} + 2\hat{b}$

- $[\vec{a} \times \vec{b} \ \vec{c} \times \vec{d} \ \vec{e} \times \vec{f}] =$ 24.
 - (A) $[\vec{a}\ \vec{b}\ \vec{d}][\vec{c}\ \vec{e}\ \vec{f}] [\vec{a}\ \vec{b}\ \vec{c}][\vec{d}\ \vec{e}\ \vec{f}]$ (B) $[\vec{a}\ \vec{b}\ \vec{e}][\vec{f}\ \vec{c}\ \vec{d}] [\vec{a}\ \vec{b}\ \vec{f}][\vec{e}\ \vec{c}\ \vec{d}]$
 - (C) $[\vec{c} \ \vec{d} \ \vec{a}] [\vec{b} \ \vec{e} \ \vec{f}] [\vec{c} \ \vec{d} \ \vec{b}] [\vec{a} \ \vec{e} \ \vec{f}]$ (D) $[\vec{a} \ \vec{c} \ \vec{e}] [\vec{b} \ \vec{d} \ \vec{f}]$
- a_1 , a_2 , $a_3 \in R \{0\}$ and $a_1 + a_2 \cos 2x + a_3 \sin^2 x = 0 \ \forall \ x \in R$, then which of the following is/are true? 25.
 - (A) $\vec{a} = a_1 \hat{i} + a_2 \hat{i} + a_3 \hat{k}$ & $\vec{b} = 4\hat{i} + 2\hat{i} + \hat{k}$ are perpendicular
 - (B) $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k} \& \vec{b} = -\hat{i} + \hat{j} + 2\hat{k}$ are parallel
 - (C) If $\vec{a} = a_1 \hat{i} + a_2 \hat{j} + a_3 \hat{k}$ is of length $\sqrt{6}$ units, then (a_1, a_2, a_3) can be (1, -1, -2)
 - (D) If $2a_1 + 3a_2 + 6a_3 = 26$ then $|a_1\hat{i} + a_2\hat{j} + a_3\hat{k}| = 2\sqrt{6}$ units
- 26. If $\vec{p}, \vec{q}, \vec{r}$ are three non-zero non-collinear vectors satisfying $\vec{p} \times \vec{q} = \vec{r} & \vec{q} \times \vec{r} = \vec{p}$ then which the following is always true
 - (A) $|\vec{q}| = 1$

(B) $|\vec{p}| = |\vec{r}|$

(C) $|\vec{r}| = 1$

- (D) $\vec{r} \times \vec{p} = [\vec{p} \ \vec{q} \ \vec{r}]\vec{q}$
- A rod of length 2 units in such that its one end is (1, 0, -1) and the other end touches the plane 27. x - 2y + 2z + 4 = 0. Then
 - (A) The rod sweeps a figure with volume π cubic units
 - (B) The area of the region which the rod traces on the plane is 2π .
 - (C) The length of projection of the rod on the plane is $\sqrt{3}$ units
 - (D) The centre of the region which the rod traces on the plane is $\left(\frac{2}{3}, \frac{2}{3}, \frac{-5}{3}\right)$

- 28. The position vector of the vertices A, B & C of a tetrahedron ABCD are (1, 1, 1), (1, 0, 0) & (3, 0, 0) respectively. The altitude from the vertex D to the opposite face ABC meets the median through A of \triangle ABC at point E. If AD = 4 units and volume of tetrahedron = $\frac{2\sqrt{2}}{3}$, then the correct statement(s) among the following is/are:
 - (A) The altitude from vertex D = 2 units
 - (B) There is only one possible position for point E
 - (C) There are two possible positions for point E
 - (D) vector $\hat{j} \hat{k}$ is normal to the plane ABC
- 29. The equation of the plane which is equally inclined to the lines

$$L_1 \equiv \frac{x-1}{2} = \frac{y}{-2} = \frac{z+2}{-1}$$
 & $L_2 \equiv \frac{x+3}{8} = \frac{y-4}{1} = \frac{z}{-4}$ and passing through origin is/are

(A)
$$14x - 5y - 7z = 0$$

(B)
$$2x + 7y - z = 0$$

(C)
$$3x - 4y - z = 0$$

(D)
$$x + 2y - 5z = 0$$

30. Let \vec{u} be a vector in the x-y plane with slope $\sqrt{3}$. Further $|\vec{u}|$, $|\vec{u}-\hat{i}|$, $|\vec{u}-2\hat{i}|$ are in G.P., \hat{i} being the unit vector along positive x-axis, then $|\vec{u}|$ is equal to

(A)
$$\sqrt{3-2\sqrt{2}}$$

(B)
$$\sqrt{3+2\sqrt{2}}$$

(C)
$$\tan \frac{9\pi}{8}$$

(D)
$$\cot \frac{3\pi}{8}$$

31. Let OABC is a regular tetrahedron and $\hat{p}, \hat{q}, \hat{r}$ are unit vectors along bisectors of angle between $\overrightarrow{OA}, \overrightarrow{OB}$; \overrightarrow{OB} , \overrightarrow{OC} and $\overrightarrow{OC}, \overrightarrow{OA}$ respectively. If \hat{a}, \hat{b} and \hat{c} are unit vectors along $\overrightarrow{OA}, \overrightarrow{OB}$ & \overrightarrow{OC} respectively, then

$$\text{(A) } \frac{\begin{bmatrix} \hat{a} & \hat{b} & \hat{c} \end{bmatrix}}{\begin{bmatrix} \hat{p} & \hat{q} & \hat{r} \end{bmatrix}} = \frac{3\sqrt{3}}{2}$$

$$(B) \ \frac{\left[\hat{p}+\hat{q} \quad \hat{q}+\hat{r} \quad \hat{r}+\hat{p}\right]}{\left[\hat{a}+\hat{b} \quad \hat{b}+\hat{c} \quad \hat{c}+\hat{a}\right]} = \frac{3\sqrt{3}}{2}$$

$$\text{(C)} \ \frac{\left[\hat{p} \times \hat{q} \quad \hat{q} \times \hat{r} \quad \hat{r} \times \hat{p}\right]}{\left[\hat{a} \times \hat{b} \quad \hat{b} \times \hat{c} \quad \hat{c} \times \hat{a}\right]} = \frac{4}{27}$$

(D)
$$\frac{\begin{bmatrix} \hat{a} & \hat{b} & \hat{c} \end{bmatrix}}{\begin{bmatrix} \hat{p} + \hat{q} & \hat{q} + \hat{r} & \hat{r} + \hat{p} \end{bmatrix}} = \frac{3\sqrt{3}}{4}$$

32. Let $\vec{a} = \hat{i} + 2\hat{j} + \hat{k}$, $\vec{b} = \hat{i} - \hat{j} + \hat{k}$ and $\vec{c} = \hat{i} + \hat{j} - \hat{k}$. A vector in the plane of \vec{a} and \vec{b} , magnitude of whose projection on \vec{c} is $\frac{1}{\sqrt{3}}$ is

$$(A) \ 4\hat{i} - \hat{j} + 4\hat{k}$$

(B)
$$2\hat{i} + \hat{j} + 2\hat{k}$$

(C)
$$3\hat{i} + \hat{j} - 3\hat{k}$$

(D)
$$3\hat{i} - \hat{j} + 3\hat{k}$$

- OA, OB, OC are the sides of a rectangular parallelopiped whose diagonals are OO', AA', BB' and CC'.
 D is the centre of the rectangle AC'O'B' and D' is the centre of rectangle O' B' CA'. If the sides OA, OB,
 OC are in the ratio 1 : 2 : 3 then the ∠DOD' is equal to
 - (A) $\cos^{-1} \frac{24}{\sqrt{697}}$

(B) $\cos^{-1} \frac{11}{\sqrt{697}}$

(C) $\sin^{-1} \frac{11}{\sqrt{697}}$

- (D) $\tan^{-1} \frac{11}{24}$
- **34.** Let $\vec{a} = \hat{i} + \hat{j} \hat{k}$, $\vec{b} = \hat{i} \hat{j} + \hat{k}$ and \vec{c} be a unit vector perpendicular to \vec{a} and coplanar with \vec{a} and \vec{b} , then \vec{c} is
 - (A) $\frac{1}{\sqrt{6}} \left(\hat{i} 2\hat{j} + \hat{k} \right)$

(B) $\frac{1}{\sqrt{6}}(\hat{i}+2\hat{j}+\hat{k})$

(C) $\frac{1}{\sqrt{6}} (2\hat{i} - \hat{j} + \hat{k})$

- (D) $\frac{1}{\sqrt{6}}(\hat{j}-2\hat{i}-\hat{k})$
- **35.** If \vec{a}, \vec{b} and \vec{c} are three non-coplanar vectors, then $\left[\vec{a} \times \left(\vec{b} + \vec{c}\right) \quad \vec{b} \times \left(\vec{c} 2\vec{a}\right) \quad \vec{c} \times \left(\vec{a} + 3\vec{b}\right)\right]$ is equal to
 - $(A) \left[\vec{a} \ \vec{b} \ \vec{c} \, \right]^2$

(B) $7 \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix}^2$

(C) -5 $\begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix}$

- (D) $7 \vec{c} \times \vec{a} \quad \vec{a} \times \vec{b} \quad \vec{b} \times \vec{c}$
- 36. Let a, b, c be distinct positive numbers. If the vectors $a\hat{i} + a\hat{j} + c\hat{k}$, $\hat{i} + \hat{k}$ and $c\hat{i} + c\hat{j} + b\hat{k}$ lie in a plane, then
 - (A) $\frac{a^2 + b^2}{2} > c^2$

(B) $\frac{1}{a} + \frac{1}{b} > \frac{2}{c}$

(C) a + b < 2c

- (D) a + b > 2c
- 37. If θ is the angle between the vectors $\vec{p} = a\hat{i} + b\hat{j} + c\hat{k}$ and $\vec{q} = b\hat{i} + c\hat{j} + a\hat{k}$, where a, b, c, \in R, then all possible values of θ lies in
 - (A) $\left[0, \frac{5\pi}{6}\right]$

(B) $\left\lceil \frac{5\pi}{6}, \pi \right\rceil$

(C) $\left[\frac{\pi}{3}, \frac{2\pi}{3}\right]$

(D) $\left[0, \frac{2\pi}{3}\right]$

Comprehension (Q. 38 to Q.40)

Consider two lines:

$$L_1: \frac{x-1}{1} = \frac{y-2}{2} = \frac{z-3}{3}$$
 and $L_2: \frac{x-2}{3} = \frac{y-3}{1} = \frac{z-1}{2}$ then

- 38. If π denotes the plane x + by + cz + d = 0 parallel to the lines L₁, L₂ and which is equidistant from both L₁ and L₂, then
 - (A) $1 + b^2 = c^2 + d^2$

(B) $d = \sqrt{bc}$

(C) b = cd

- (D) 2b + c + d = 0
- 39. Shortest distance between the two lines L₁ and L₂ is
 - (A) $\frac{2\sqrt{3}}{5}$

(B) $\frac{4\sqrt{3}}{5}$

(C) $\frac{6\sqrt{3}}{5}$

- (D) $\frac{8\sqrt{3}}{5}$
- 40. Number of straight lines that can be drawn through the point (1, 4, -1) to intersect the lines L₁ and L₂ is
 - (A) 0

(B) 1

(C) 2

(D) infinite

DPP#6

REVISION DPP OF SOLUTION OF TRIANGLE AND MATRICES & DETERMINANT

- 1. (B) 2.
- (D)
- 3. (A)
- 4.
- (D) 5.

12.

- (C) 6.
- (C)

3

(D)

(C)

- (D) 9.
- (A) 10.
- (C) 11.
- (A)
- (C,D) 13.
- 7. (A,D)14. (A,B)

- (A,B,C) 16. 15.
- (C,D) **17.**
- (A,D) **18.**
- (C,D) **19**.
- (A,B,C,D)
- 20. (A,C)

- (A,B,C) 22. 21.
- (B,D) **23.**
- (A,D) 24.
- (A,B,D) **25.**

(A,B,D)

- 27.
- (B,C,D) 28.
- (A,C,D) 29.
- (B,C,D) 30.
- (B,C)31.
- (A,B,C) **26.**
- (A,C,D) 33.

- 34. 40.
- (B) 35.
- 36.

- (A,C,D) 32. (B) 39.
- (D) (D) 37. (A) 38. $(A \rightarrow P, Q)$; $(B \rightarrow S)$; $(C \rightarrow P, R)$; $(D \rightarrow R)$

Solution of DPP # 7

TARGET: JEE (ADVANCED) 2015

Course: VIJETA & VIJAY (ADP & ADR)

MATHEMATICS

1.
$$A = \begin{pmatrix} B\left(4\hat{i}+5\hat{j}+\lambda\hat{k}\right) \\ C\left(3\hat{i}+9\hat{j}+4\hat{k}\right) \\ D\left(-4\hat{i}+4\hat{j}+4\hat{k}\right) \end{pmatrix}$$

$$B\left(4\hat{i}+5\hat{j}+\lambda\hat{k}\right)$$

$$C\left(3\hat{i}+9\hat{j}+4\hat{k}\right)$$

$$D\left(-4\hat{i}+4\hat{j}+4\hat{k}\right)$$

$$\left[\overline{AB} \ \overline{AC} \ \overline{AD}\right] = \begin{vmatrix} 4 & 6 & \lambda+1 \\ 3 & 10 & 5 \\ -4 & 5 & 5 \end{vmatrix} = 0 \qquad \Rightarrow \qquad \lambda=1$$

2.
$$\left[\vec{a} \ \vec{b} \ \vec{c}\right]^2 = \begin{vmatrix} 1 & \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & 1 & \frac{\sqrt{3}}{2} \\ \frac{\sqrt{3}}{2} & \frac{\sqrt{3}}{2} & 1 \end{vmatrix} = \frac{3\sqrt{3} - 5}{4}$$

Volume =
$$\frac{1}{6} \begin{bmatrix} \vec{a} & \vec{b} & \vec{c} \end{bmatrix} = \frac{\sqrt{3\sqrt{3} - 5}}{12}$$

3.
$$\begin{vmatrix} 2 & k+1 & -1 \\ 2 & 3 & 4 \\ 1 & 2 & 1 \end{vmatrix} = 0 \implies k = \frac{9}{2}$$

4. Let
$$\overrightarrow{PQ} = x\hat{i} + y\hat{j} + z\hat{k}$$
 :: $d^2 = x^2 + y^2 + z^2$

Now, projection of \overrightarrow{PQ} on xy-plane is d_1 \therefore $d^2 = d_1^2 + z^2$ $d^2 = d_2^2 + x^2$ similarly $d_1^2 + d_2^2 + d_3^2 = 2d^2$ $d^2 = d_3^2 + y^2$

5.
$$\vec{a} \times \vec{b} = \vec{c}$$

 $\Rightarrow \vec{a} \times (\vec{a} \times \vec{b}) = \vec{a} \times \vec{c} \Rightarrow 3\vec{a} - 3\vec{b} = -2\hat{i} + \hat{j} + \hat{k} \Rightarrow \vec{b} = \frac{1}{2} (5\hat{i} + 2\hat{j} + 2\hat{k})$

6. a b c non coplanar

 $\vec{a} \times \vec{b}$, $\vec{b} \times \vec{c}$, $\vec{c} \times \vec{a}$ are also non-coplanar

 $\vec{a} = \lambda \vec{b} \times \vec{c} + \mu \vec{c} \times \vec{a} + \nu \vec{a} \times \vec{b}$ \Rightarrow $\vec{a} \cdot \vec{a} = \lambda [\vec{a} \ \vec{b} \ \vec{c}]$

 $\therefore \qquad \vec{a} = \frac{(\vec{a} \cdot \vec{a})(\vec{b} \times \vec{c})}{\vec{l} \vec{a} \cdot \vec{b} \cdot \vec{c} \vec{1}} + \frac{(\vec{a} \cdot \vec{b})(\vec{c} \times \vec{a})}{\vec{l} \vec{a} \cdot \vec{b} \cdot \vec{c} \vec{1}} + \frac{(\vec{a} \cdot \vec{c})(\vec{a} \times \vec{b})}{\vec{l} \vec{a} \cdot \vec{b} \cdot \vec{c} \vec{1}}$ similarly $\mu \& \nu$

7. Let \vec{a} , \vec{b} , \vec{c} and \vec{d} be unit vectors along L₁, L₂, L₃ & L respectively

$$\Rightarrow \qquad \vec{a} \cdot \vec{d} = \vec{b} \cdot \vec{d} = \vec{c} \cdot \vec{d} \qquad \Rightarrow \qquad (\vec{a} - \vec{b}) \cdot \vec{d} = 0$$

$$(\vec{b} - \vec{c}) \cdot \vec{d} = 0 \quad \& (\vec{c} - \vec{a}) \cdot \vec{d} = 0 \Rightarrow \qquad \text{is perpendicular to plane } \pi$$

8. Required area =
$$\frac{1}{2} \left| \overrightarrow{BE} \times \overrightarrow{DE} + \overrightarrow{EC} \times \overrightarrow{DE} \right|$$

= $\frac{1}{2} \left| \overrightarrow{BC} \times \overrightarrow{DE} \right|$
= $\frac{1}{2} \left| \left(-\hat{i} + 4\hat{j} \right) \times \left(4\hat{i} - 2\hat{j} \right) \right| = 7$

$$\begin{array}{ll} \textbf{9.} & \sin\alpha + 2\sin2\beta + 3\sin3\gamma = 1 &(1) \\ & \text{also} & |\sin\alpha + 2\sin2\beta + 3\sin3\gamma| \leq \sqrt{1 + 4 + 9} \, \sqrt{\sin^2\alpha + \sin^22\beta + \sin^23\gamma} \, \text{ as } |\vec{p} \,.\vec{q}\,| \leq |\vec{p}\,||\,\vec{q}\,| \\ & \therefore & \sin^2\alpha + \sin^22\beta + \sin^23\gamma \geq \frac{1}{14} \end{array}$$

10. Let
$$\vec{r}_1 = a\hat{i} + b\hat{j} + c\hat{k}$$
 & $\vec{r}_2 = x\hat{i} + y\hat{j} + z\hat{k}$

$$\therefore \qquad \vec{r}_1 \cdot \vec{r}_2 = |\vec{r}_1| |\vec{r}_2| \qquad \therefore \qquad \vec{r}_1 ||\vec{r}_2| \qquad \Rightarrow \qquad \frac{a}{x} = \frac{b}{y} = \frac{c}{z}$$

$$\begin{array}{lll} \textbf{11.} & \vec{c} = \vec{a} \times \vec{c} + \vec{b} \\ \Rightarrow & \left| \vec{c} - \vec{b} \right| = \left| \vec{a} \times \vec{c} \right| & \Rightarrow & c^2 + 1 - 2\vec{b}.\vec{c} = c^2 \text{sin}^2\theta \text{, where } \theta = \vec{a} \wedge \vec{c} \\ \Rightarrow & 2\vec{b}.\vec{c} = c^2 \text{cos}^2\theta + 1 & \Rightarrow & 2\vec{b}.\left(\vec{a} \times \vec{c} + \vec{b}\right) = c^2 \text{cos}^2\theta + 1 \\ \Rightarrow & -2\left[\vec{a}\vec{b}\vec{c}\right] + 2 = c^2 \text{cos}^2\theta + 1 & \Rightarrow & 2\left[\vec{a}\vec{b}\vec{c}\right] = 1 - c^2 \text{cos}^2\theta \le 1 & \Rightarrow & \left[\vec{a}\vec{b}\vec{c}\right] \le 1/2 \end{array}$$

12. Let
$$\vec{d} = \alpha \vec{a} + \beta \vec{b} + \gamma \vec{c}$$

Now $\vec{d}.\vec{b} \times \vec{c} = 2\alpha$
 $\vec{d}.\vec{c} \times \vec{a} = 2\beta$
 $\vec{d}.\vec{a} \times \vec{b} = 2\gamma$ \therefore $\left[\vec{d}.\vec{b}.\vec{c}\right] \vec{a} + \left[\vec{d}.\vec{c}.\vec{a}\right] \vec{b} + \left[\vec{d}.\vec{a}.\vec{b}\right] \vec{c} = 2\vec{d}$
Now, $(\vec{a} \times \vec{b}) \times (\vec{c} \times \vec{d}) + (\vec{b} \times \vec{c}) \times (\vec{a} \times \vec{d}) + (\vec{c} \times \vec{a}) \times (\vec{b} \times \vec{d})$
 $= \left[\vec{a}.\vec{b}.\vec{d}\right] \vec{c} - 2\vec{d} + \left[\vec{b}.\vec{c}.\vec{d}\right] \vec{a} - 2\vec{d} + \left[\vec{c}.\vec{a}.\vec{d}\right] \vec{b} - 2\vec{d} = -4\vec{d}$

13. Let equation of plane is
$$\frac{x}{a} + \frac{y}{b} + \frac{z}{c} = 1$$

Given that $\frac{1}{a} + \frac{1}{b} + \frac{1}{c} = \lambda$
 \therefore fixed point is $\left(\frac{1}{\lambda}, \frac{1}{\lambda}, \frac{1}{\lambda}\right)$

$$\frac{2\mu - \lambda - 1}{2} = \frac{\mu - \lambda + 1}{1} = \frac{\mu - \lambda}{2} \qquad \Rightarrow \qquad \lambda = 3 \& \mu = 1$$

15.
$$\vec{r} = x(\vec{a} \times \vec{b}) + y(\vec{b} \times \vec{c}) + z(\vec{c} \times \vec{a})$$

dot with \vec{a} , \vec{b} & \vec{c} \Rightarrow $x = \frac{\vec{r} \cdot \vec{c}}{\vec{a} \vec{b} \vec{c}}$ and so on

14.

$$\Rightarrow \qquad \vec{r} \left[\vec{a} \ \vec{b} \ \vec{c} \right] = \frac{1}{2} \left(\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a} \right) \Rightarrow \qquad \text{Ar } \Delta ABC = \left[\left[\vec{a} \ \vec{b} \ \vec{c} \right] \vec{r} \right]$$

- Line of intersect of plane (1) and (2) is $\frac{x}{\cos \gamma} = \frac{y}{\cos \beta} = \frac{z}{\cos \alpha}$ 16. which passes through origin and is perpendicular to the normal of the third plane
- $cos\alpha = \frac{\vec{r}_1.\vec{r}_2}{\mid\vec{r}_1\mid\mid\vec{r}_2\mid} = \frac{\left(a+c\right)cos\theta + b\sqrt{2}\sin\theta + \sqrt{3}\left(a-c\right)}{\sqrt{a^2+b^2+c^2}\sqrt{8}}$ 17.

for ' α ' to be independent of θ , a + c = 0 & b = 0

- $\vec{\mathbf{r}}_1 = \hat{\mathbf{i}} \times (\hat{\mathbf{i}} + \hat{\mathbf{j}}) = \hat{\mathbf{k}}$ 18. $\vec{r}_2 = (\hat{i} - \hat{j}) \times (\hat{i} + \hat{k}) = -\hat{i} - \hat{j} + \hat{k}$ Now $\vec{a} = \lambda(\vec{r}_1 \times \vec{r}_2) = \lambda(\hat{i} - \hat{j})$
- 19. $\vec{c} = (2\vec{a} \times \vec{b}) - 3\vec{b}$ also, $|\vec{c}|^2 = 4|\vec{a} \times \vec{b}|^2 + 9|\vec{b}|^2 - \underbrace{6\vec{b}.(2\vec{a} \times \vec{b})}_{\text{zero}} \Rightarrow |\vec{c}|^2 = 4[|\vec{a}|^2 |\vec{b}|^2 - (\vec{a}.\vec{b})^2] + 9|\vec{b}|^2$ $\Rightarrow |\vec{c}|^2 = 48 \Rightarrow |\vec{c}| = 4\sqrt{3} \dots (2)$ $\therefore \qquad \cos\theta = \frac{\vec{b}.\vec{c}}{|\vec{b}||\vec{c}|} = \frac{-3|\vec{b}|^2}{|\vec{b}||\vec{c}|} = \frac{-\sqrt{3}}{2}$
- $\cos\theta = \frac{6}{\sqrt{42}}$ \Rightarrow $\sin\theta = \frac{\sqrt{6}}{\sqrt{42}}$ 20. Area $\triangle OAB = \frac{1}{2} (OA)(OB) \sin\theta$ $= \frac{1}{2} (\sqrt{3}) |\lambda| (\sqrt{14}) \frac{\sqrt{6}}{\sqrt{42}} = \sqrt{6} \qquad \Rightarrow \qquad \lambda = \pm 2$
- $\vec{a} + 2\vec{b} + 3\vec{c} = 0$ 21. Taking cross product with \vec{a} and \vec{b} ,

$$\begin{array}{ll}
B \\ (\vec{b}) & (\vec{c}) \\
\vec{a} \times \vec{b} = \frac{3}{2} (\vec{c} \times \vec{a}) = 3(\vec{b} \times \vec{c}) & \text{Now } \Delta = \frac{1}{2} |\vec{a} \times \vec{b} + \vec{b} \times \vec{c} + \vec{c} \times \vec{a}| = \frac{1}{2}.2 |\vec{a} \times \vec{b}| = \frac{1}{2}.3 |\vec{c} \times \vec{a}| = \frac{1}{2}.6 |\vec{b} \times \vec{c}|
\end{array}$$

- the new vector $\Rightarrow \qquad \hat{\mathbf{r}} = \lambda \, \hat{\mathbf{k}} + \mu (\, \hat{\mathbf{i}} + \hat{\mathbf{j}}\,)$ $\hat{\mathbf{r}} \cdot \hat{\mathbf{k}} = -\frac{1}{\sqrt{2}} \quad \& \qquad |\hat{\mathbf{r}}| = 1 \qquad \qquad \lambda = -\frac{1}{\sqrt{2}} \quad \& \, \mu = \pm \frac{1}{2}$ 22. Let \hat{r} be the new vector
- Apply VTP to get = $(1 + \hat{a}.\hat{b})(\hat{b} \hat{a})$ 23.
- Use $\vec{a} \cdot (\vec{b} \times \vec{c}) = \vec{b} \cdot (\vec{c} \times \vec{a}) = \vec{c} \cdot (\vec{a} \times \vec{b})$ 24.

25.
$$(a_1 + a_2) + \sin^2 x (a_3 - 2a_2) = 0 \implies a_1 + a_2 = 0$$

& $a_3 - 2a_2 = 0 \implies \frac{a_1}{-1} = \frac{a_2}{1} = \frac{a_3}{2} = \lambda$

26.
$$\vec{q} \times \vec{r} = \vec{p}$$

 $(\vec{q} \times \vec{r}) \times \vec{q} = \vec{p} \times \vec{q} = \vec{r}$
 $\Rightarrow |\vec{q}| = 1 \& \vec{r} . \vec{q} = 0 \& \because \vec{q} \times \vec{r} = \vec{p}$
 $\Rightarrow |\vec{p}| = |\vec{r}|$

27. The rod sweeps a cone AD = 1 unit

slant height
$$\ell=2$$
 units \Rightarrow r = $\sqrt{3}$ \Rightarrow volume = $\frac{1}{3}\pi r^2 h = \pi$ cubic units also, area of circle = $\pi(\sqrt{3})^2 = 3\pi$

& centre is foot of perpendicular of A in plane =
$$\left(\frac{2}{3}, \frac{2}{3}, \frac{-5}{3}\right)$$

28. Volume = $\frac{2\sqrt{2}}{3}$

$$\Rightarrow \frac{1}{3} \cdot \frac{1}{2} \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 0 & 1 & 1 \\ 2 & -1 & -1 \end{vmatrix} \times h = \frac{2\sqrt{2}}{3}$$

$$\Rightarrow \qquad h \mid \hat{j} - \hat{k} \mid = 2\sqrt{2} \qquad \Rightarrow \qquad h = 2$$

for E , let AE : EM =
$$\lambda$$
 : 1

$$\Rightarrow \qquad \mathsf{E} \equiv \left(\frac{2\lambda + 1}{\lambda + 1}, \frac{1}{\lambda + 1}, \frac{1}{\lambda + 1}\right) \, \& \, (\mathsf{AE})^2 + (\mathsf{ED})^2 = (\mathsf{AD})^2$$

29. The plane is perpendicular to the angle bisectors of the line, which are $\frac{2\hat{i}-2\hat{j}-\hat{k}}{3}\pm\frac{8\hat{i}+\hat{j}-4\hat{k}}{9}$

30.
$$\vec{u} \cdot \hat{i} = |\vec{u}|\cos 60^\circ = \frac{|\vec{u}|}{2}$$
 \therefore slope = $\sqrt{3}$ also $|\vec{u} - \hat{i}|^2 = |\vec{u}||\vec{u} - 2\hat{i}|$ \Rightarrow $u^2 + 1 - u = u \cdot \sqrt{u^2 + 4 - 2u}$ \Rightarrow $|\vec{u}| = \sqrt{2} - 1$

31.
$$\hat{p} = \frac{\hat{a} + \hat{b}}{2\cos\frac{\pi}{6}} = \frac{\hat{a} + \hat{b}}{\sqrt{3}}$$

Similarly
$$\hat{q} = \frac{\hat{b} + \hat{c}}{\sqrt{3}} \& \hat{r} = \frac{\hat{c} + \hat{a}}{\sqrt{3}}$$

Now
$$[\hat{p} \quad \hat{q} \quad \hat{r}] = \frac{1}{3\sqrt{3}} \begin{bmatrix} \hat{a} + \hat{b} & \hat{b} + \hat{c} & \hat{c} + \hat{a} \end{bmatrix} = \frac{2}{3\sqrt{3}} \begin{bmatrix} \hat{a} & \hat{b} & \hat{c} \end{bmatrix}$$

32. Let required vector is
$$\vec{r} = x\vec{a} + y\vec{b}$$

Now
$$\vec{r}.\hat{c} = \pm \frac{1}{\sqrt{3}}$$
 \Rightarrow $2x - y = \pm 1$

33.
$$C(3\hat{k})$$

$$B(2\hat{j})$$

$$O'$$

$$C(\hat{i} + 2\hat{j})$$

$$O(\hat{i} + 2\hat{j})$$

p.v. of point D =
$$\overrightarrow{OD} = \frac{2\hat{i} + 2\hat{j} + 3\hat{k}}{2}$$

p.v. of point D' =
$$\overrightarrow{OD} = \frac{\hat{i} + 2\hat{j} + 6\hat{k}}{2}$$

$$now cos\theta = \frac{\overrightarrow{OD}.\overrightarrow{OD}}{|\overrightarrow{OD}||\overrightarrow{OD}|} = \frac{24}{\sqrt{697}}$$

34.
$$\vec{a} \times (\vec{a} \times \vec{b}) = (\vec{a}.\vec{b})\vec{a} - (\vec{a}.\vec{a})\vec{b}$$

= $-(\hat{i} + \hat{j} - \hat{k}) - 3(\hat{i} - \hat{j} + \hat{k}) = -4\hat{i} + 2\hat{j} - 2\hat{k} = -2(2\hat{i} - \hat{j} + \hat{k})$

Required unit vector =
$$\pm \frac{\left(2\hat{i} - \hat{j} + \hat{k}\right)}{\sqrt{6}}$$

35.
$$\begin{bmatrix} \vec{a} \times \vec{b} - \vec{c} \times \vec{a} & \vec{b} \times \vec{c} + 2\vec{a} \times \vec{b} & \vec{c} \times \vec{a} - 3\vec{b} \times \vec{c} \end{bmatrix}$$

$$= \begin{vmatrix} 1 & 0 & -1 \\ 2 & 1 & 0 \\ 0 & -3 & 1 \end{vmatrix} \begin{bmatrix} \vec{a} \times \vec{b} & \vec{b} \times \vec{c} & \vec{c} \times \vec{a} \end{bmatrix} = 7 \begin{bmatrix} \vec{c} \times \vec{a} & \vec{a} \times \vec{b} & \vec{b} \times \vec{c} \end{bmatrix}$$

36.
$$\begin{vmatrix} a & a & c \\ 1 & 0 & 1 \\ c & c & b \end{vmatrix} = 0 \Rightarrow c^2 = ab \Rightarrow a, c, b \text{ are in G.P.}$$

37.
$$\cos\theta = \frac{\vec{p}.\vec{q}}{|\vec{p}||\vec{p}|} = \frac{ab + bc + ca}{a^2 + b^2 + c^2}$$

: we know that
$$a^2 + b^2 + c^2 - ab - bc - ca \ge 0$$
 and $(a + b + c)^2 \ge 0$

$$\therefore \qquad -\frac{1}{2} \leq \frac{ab+bc+ca}{a^2+b^2+c^2} \leq 1 \quad \Rightarrow \qquad -\frac{1}{2} \leq \cos\theta \leq 1 \qquad \qquad \Rightarrow \qquad \theta \in \left[0,\frac{2\pi}{3}\right]$$

38. Normal of plane
$$\vec{n} = \begin{vmatrix} \hat{i} & \hat{j} & \hat{k} \\ 1 & 2 & 3 \\ 3 & 1 & 2 \end{vmatrix} = \hat{i} + 7\hat{j} - 5\hat{k}$$

Let equation of plane x + 7y - 5z + d = 0

Now
$$\left| \frac{1+14-15+d}{\sqrt{75}} \right| = \left| \frac{2+21-5+d}{\sqrt{75}} \right|$$

$$\Rightarrow$$
 $|d| = |18 + d|$

$$\Rightarrow$$
 d = -9

$$\therefore$$
 equation of plane is $x + 7y - 5z - 9 = 0$.

39. Shortest distance =
$$\left| \left(-\hat{\mathbf{i}} - \hat{\mathbf{j}} + 2\hat{\mathbf{k}} \right) \cdot \frac{\left(\hat{\mathbf{i}} + 7\hat{\mathbf{j}} - 5\hat{\mathbf{k}} \right)}{\sqrt{75}} \right|$$

= $\frac{18}{5\sqrt{3}} = \frac{6\sqrt{3}}{5}$

40. (38 to 40)

Now $\overrightarrow{AP} \parallel \overrightarrow{AQ}$

$$\therefore \qquad \frac{\lambda}{3\mu+1} = \frac{2\lambda-2}{\mu-1} = \frac{3\lambda+4}{2\mu+2} \qquad \Rightarrow \qquad \lambda = 1, -\frac{1}{2}$$
 but $\lambda = 1$ is not possible