Stephen Ferro

stephenferro2024@u.northwestern.edu • 1-847-471-8561 • linkedin.com/in/scferro • github.com/scferro

EDUCATION

Northwestern University, Evanston, IL

Expected Graduation Fall 2024

Master of Science in Robotics

Purdue University, West Lafayette, IN

Graduated May 2018

Bachelor of Science in Mechanical Engineering

Minor in Economics and Certificate in Entrepreneurship and Innovation.

WORK EXPERIENCE

SKF USA

Product Engineer for Slewing Rings

July 2022 - August 2023; Chicago, IL

- Designed custom slewing bearings with PTC Creo for demanding applications in the wind-energy and rail industries.
- Ensured designs met customer requirements such as stiffness and load capacity by performing raceway and bolting analysis.
- Reduced delivery times by reviewing and updating old bearing designs to simplify manufacturing at a new factory.

Application Engineer for Industrial Market

June 2018 - July 2022; Elgin, IL and Lansdale, PA

- Directly supported industrial market customers in all aspects of bearing system design, including bearing and seal selection, life calculations, shaft and housing tolerances, and lubrication.
- Reduced failures and improved bearing performance in applications such as pumps, gearboxes, and other rotating machinery.
- Ensure smooth operation of specialty thin section bearings for the robotics industries by performing load and torque analysis.

Tenneco Automotive

Mechanical Engineering Co-Op - 5 sessions

May 2014 - August 2017; Grass Lake, MI

- Worked with four different teams at all stages of the product lifecycle: design, prototyping, testing, and warranty support.
- Designed and implemented several test procedures, including component fatigue testing, on-vehicle testing, and flowrate tests.

PROJECTS (photos and more at scferro.github.io)

RC Hot Lap Car Using SLAM and Machine Learning (in progress)

January 2024 - Present

- Creating a ROS 2 package using C++ and Python to map an unknown racetrack and plan a "racing line" for the robot to follow.
- Optimizing throttle, braking, and cornering behavior using reinforcement learning to minimize lap time.

Simultaneous Localization and Mapping (EKF SLAM) from Scratch (in progress)

January 2024 – Present

- Currently programming an EKF SLAM algorithm using C++ and ROS 2 for both a real and simulated Turtlebot3 robot.
- Incorporating differential drive control of the robot, odometry, and feature classification of <u>2D LiDAR</u> data.

Making Coffee With 7DOF Robot Arm: Botrista

November – December 2023

- Used ROS 2, Python, and Movelt2 to control a Franka Emika robot arm to brew a cup of coffee as part of a team of five.
- Used a RealSense camera and OpenCV to detect the handles of objects before picking them up.
- Successfully performed precise actions such as grasping the coffee ground scoop and pouring hot coffee into a cup.

Robot Navigation Using A* Algorithm

October 2023

- Developed a navigation model from scratch using Python and the A* algorithm to plan paths for a robot to a goal location.
- Created a motion model and PID controller to simulate the motion of the robot following the planned paths.
- Optimized performance of the algorithm using different cell sizes, different obstacles, and different start and goal locations.

Design of Back-drivable Cycloidal Actuator for Quadruped

2021 - 2022

- Designed and manufactured a 3D printed robot actuator powered by a brushless motor that outputs over 10 Nm of torque.
- Built prototype leg for quadruped robot using two actuators and performed robot leg motions using an Arduino on a test stand.

Purdue FSAE Electric - Member and 2018 Vehicle Dynamics Team Lead

lanuary 2016 - June 2018

- 2018 Results: 1st in Skidpad and 2nd in AutoX at Formula North and FSAE Lincoln, the team's best results to that point.
- Reduced weight of suspension system by 15% by optimizing suspension component design and implementing carbon fiber links.
- Improved driver feel and simplified tuning at the track by redesigning suspension geometry.

RELEVANT SKILLS

- Programming/Software: Python, C++, C, Git, Linux, Visual Studio, MATLAB
- Robotics: ROS/ROS 2 (Robot Operating System), OpenCV, Machine Learning, Kalman and Particle Filters, Embedded Systems, SLAM, Computer Vision, Movelt, Single Board Computers/SBCs, Intel RealSense Cameras
- Design: CAD (SolidWorks/Creo/ProE/Fusion360/Inventor), CAM (Fusion360), FEA (SolidWorks, Creo), PCB Design (KiCAD)
- Manufacturing: Manual and CNC Machining, Injection Molding, Waterjet, Laser Cutting, 3D Printing (FDM, SLA), Soldering