Лабораторная работа №5. Модель эпидемии (SIR)

Дисциплина: Имитационное моделирование

Ганина Т. С.

08 марта 2025

Группа НФИбд-01-22

Российский университет дружбы народов, Москва, Россия

Докладчик

- Ганина Таисия Сергеевна
- Студентка Зго курса, группа НФИбд-01-22
- Фундаментальная информатика и информационные технологии
- Российский университет дружбы народов
- · Ссылка на репозиторий гитхаба tsganina

Вводная часть

Выполнить задания и получить практические навыки работы со средствами моделирования xcos, Modelica и OpenModelica. Рассмотреть модель эпидемии (SIR).

Задание

- 1. Реализовать имитационную модель эпидемии в хсох;
- 2. Реализовать имитационную модель эпидемии в Modelica;
- 3. Реализовать имитационную модель эпидемии в OpenModelica (упражнение);
- 4. Выполнить задание для самостоятельной работы.

Реализация учебной модели в хсоѕ

Рис. 1: Установить контекст для учебного примера в Хсоѕ

Рис. 2: Модель SIR в хсоs

7	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	0.999
	With re-initialization (1:yes, 0:no)	0
,	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Рис. 3: Задать начальные значения в верхнем блоке интегрирования

~	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	0.001
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Рис. 4: Задать начальные значения в среднем блоке интегрирования

*	Ввод значений	+ ×
	Set Integral block parameters	
	Initial Condition	0
	With re-initialization (1:yes, 0:no)	0
	With saturation (1:yes, 0:no)	0
	Upper limit	1
	Lower limit	-1
		ОК Отменить

Рис. 5: Задать начальные значения в нижнем блоке интегрирования

	Параметры моделирования		
	Конечное время интегрирования	30	
	Количество секунд в единице времени	0.0E00	
	Абсолютная погрешность интегрирования	1.0E-06	
Относительная погрешность интегрирования		1.0E-06	
	Погрешность по времени	1.0E-10	
Макс	имальный временной интервал интегрирования	1.00001E05	
	Вид программы решения	Sundials/CVODE - BDF - NEWTON	
Максимальный размер шага (0 означает "без ограничения")		0.0E00	
	Установить контекст		
		ОК Отменить По умолчанию	
		HAMILTONIA CONTRACTOR CONTRACTOR	

Рис. 6: Задать конечное время интегрирования в хсоз = 30

Рис. 7: Параметры MUX

Рис. 8: Редактирование параметров блока Scope

*	Ввод значений	+ ×
	Set sum block parameters	
	Datatype (1=real double 2=complex 3=int32)	1
	Number of inputs or sign vector (of +1, -1)	[-1;-1]
	Do on Overflow(0=Nothing 1=Saturate 2=Error)	0
		ОК Отменить

Рис. 9: Задание параметров суммы

Рис. 10: Эпидемический порог модели SIR, график построен в Xcos

Реализация учебной модели с помощью блока Modelica в xcos

▼	Ввод значений	+ x
	Set Modelica generic block pa	arameters
	Input variables:	["beta";"nu"]
	Input variables types:	["E";"E"]
	Output variables:	["s";"i";"r"]
	Output variables types:	["E";"E";"E"]
	Parameters in Modelica:	
	Parameters properties:	
	Function name:	generic
		ОК Отменить

Рис. 11: Параметры блока Modelica для модели. Ввод значений

Рис. 12: Параметры блока Modelica для модели. Ввод значений - функция

Рис. 13: Модель с помощью блока Modelica в xcos

Рис. 14: Эпидемический порог модели SIR, график построен с помощью блока Modelica в хсоѕ

Упражнение. Реализация модели SIR в OpenModelica

Рис. 15: Код для модели SIR в OpenModelica

	интерактив	вная Симуляция	Translation Flags	Флаги Симуляции	Вывести	Data Reconciliat	ion	
1нтервал Си	имуляции							^
Начальное Время: Конечное Время:		0					secs	
		40	40				secs	
• Число Интервалов:						\$		
O.08					secs			
1нтегриров	ание							
Метод:	dassi 🔻 🖸							
Точность:	1e-6							
Якобиан:	*							
DASSL/IDA	Ontions							٧
Save experi	ment annotati	on inside model i.e	e., experiment annota	ition				
Save transla	ation flags insi	de model i.e.,Op	enModelica_comma	ndLineOptions annotati	on			
Save simula	ition flags insi	de model i.e., Op	enModelica_simulation	onFlags annotation				
Save similare	ать	se moder i.e., _op	erimodelica_siridadi	on rags annotation				

Рис. 16: Установки симуляции (конечное время = 40)

Рис. 17: Эпидемический порог модели SIR, график построен в OpenModelica

Задание для самостоятельной работы. Реализация модели в xcos

Рис. 18: Модель SIR (с параметром μ) в хсоѕ

Рис. 19: Эпидемический порог модели SIR (с параметром μ), график построен в Xcos

Задание для самостоятельной

помощью блока Modelica в xcos

работы. Реализация модели с

Рис. 20: Модель с помощью блока Modelica (с параметром μ) в хсоѕ

Рис. 21: Параметры блока Modelica для модели (с параметром μ). Ввод значений

Рис. 22: Параметры блока Modelica для модели (с параметром μ). Ввод значений - функция

Рис. 23: Установить контекст в Xcos (с параметром μ)

Рис. 24: Эпидемический порог модели SIR (с параметром μ), график построен с помощью блока Modelica в xcos

Задание для самостоятельной

работы. Реализация модели в

OpenModelica

```
model sir sam work3
      parameter Real beta = 1;
      parameter Real nu = 0.3;
      parameter Real mu = 0.01;
     Real s(start=0.999);
     Real i(start=0.001);
8
     Real r(start=0):
    equation
11 // N = s+i+r -> N-s = i+r
  der(s)=-beta*s*i + mu*i + mu*r;
13 der(i)=beta*s*i-nu*i - mu*i;
14
     der(r)=nu*i - mu*r;
    end sir sam work3;
```

Рис. 25: Код для модели SIR в OpenModelica (с параметром μ)

Основное	Интерактив	ная Симуляция	Translation Flags	Флаги Симуляции	Вывести	Data Reconcilia	tion
1нтервал Сим	уляции						_
Начальное Время: Конечное Время: • Число Интервалов:		0					secs
		30					secs
		500					\$
O Interval:		0.06					secs
	dassl					•	ß
	e-6						
Якобиан: DASSL/IDA C	ntions						· ·
Save experim	ent annotati	on inside model i.e.,	experiment annota	tion			
Save translati	on flags insi	de model i.e.,Open	Modelica_commar	dLineOptions annotati	ion		

Рис. 26: Установки симуляции (конечное время = 30)

Рис. 27: Эпидемический порог модели SIR (с параметром μ), график построен в OpenModelica

Графики эпидемического порога при различных значениях

параметров модели

Рис. 28: β = 1, ν = 0.3, μ = 0.1

Рис. 29: β = 1, ν = 0.3, μ = 0.5

Рис. 30: β = 1, ν = 0.3, μ = 1

Рис. 31: β = 1, ν = 0.3, μ = 0.3

Рис. 32: β = 3, ν = 0.6, μ = 0.1

Рис. 33: β = 16, u = 0.9, μ = 0.8

Результаты

Я получила практические навыки работы со средствами моделирования xcos, Modelica и OpenModelica. Была рассмотрена модель эпидемии (SIR).