MDI 103: Analyse fonctionnelle

Conventions, notations et rappels

Not. $\bar{\mathbf{R}} = \mathbf{R} \cup \{-\infty, +\infty\}, \bar{\mathbf{R}}_+ = \mathbf{R} \cup \{+\infty\}, \bar{\mathbf{R}}_- = \mathbf{R} \cup \{-\infty\}$

Def. Soit $(x_i)_{i\in I}$ une famille de $E\subset \bar{\mathbf{R}}$, alors :

- Si I est finie $\sum_{i \in I} x_i$ est correctement définie dès que (x_i) ne prend pas à la fois des valeurs $-\infty$ et $+\infty$.
- Si $E = \bar{\mathbf{R}}_+$ et I quelconque, on définit $\sum_{i \in I} x_i = \sup \left\{ \sum_{i \in J} x_i \mid J \subset I \text{ de cardinal fini} \right\}$. En particulier, si I est dénombrable, $\sum_{i \in I} x_i = \lim_p \sum_{n=0}^p x_i$.

 Si $\sum_{i \in I} x_{i+} < \infty$ et $\sum_{i \in I} x_{i-} < \infty$, on dit que (x_i) est absolument sommable.

Def. Pour des ensembles on note $\liminf_n A_n = \bigcup_n \bigcap_{p \ge n} A_p$ et $\liminf_n A_n = \bigcap_n \bigcup_{p \ge n} A_p$.

Not. Soit
$$\alpha \in \mathbf{N}^p$$
 et $f : \mathbf{R}^p \to \mathbf{R}^q$. On note $\partial^{\alpha} f(x_1, \dots, x_p) = \left(\frac{\partial}{\partial x_1}\right)^{\alpha_1} \cdots \left(\frac{\partial}{\partial x_p}\right)^{\alpha_p} f(x_1, \dots, x_p)$.

Def. Soit $f: \Omega \to \mathbf{R}^q$ avec $\Omega \subset \mathbf{R}^p$ ouvert. On dit que f est différentiable en $x \in \Omega$ si $\exists D_x f \in \mathcal{L}(\mathbf{R}^p, \mathbf{R}^q), \forall y \to \mathbf{R}^q$ $x, f(y) = f(x) + D_x f(y-x) + o(|y-x|)$. Si f est différentiable en tout point de Ω et que $x \mapsto D_x f$ est continue sur Ω , on dit que f est continûment différentiable sur Ω .

Th. Les deux propositions suivantes sont équivalentes :

- (i) f est continûment dérivable par rapport à chacune de ses variables,
- (ii) f est continûment différentiable sur Ω .

Def (Théorème de Schwartz). Si f est \mathcal{C}^n dans un voisinage de x, alors $\forall \alpha \in \mathbb{N}^p$ tel que $\alpha^* = \sum_{i=1}^p \alpha_i$, l'ordre de dérivation utilisé pour calculer $\partial^{\alpha} f(x)$ ne modifie pas le résultat.

Topologie des espaces vectoriels normés

Def. On appelle $d: X \times X \to \mathbf{R}_+$ une **distance** sur X si d vérifie les propriétés de séparation, de symétrie et d'inégalité triangulaire. X muni de d est alors un **espace métrique**.

Prop (Seconde inégalité triangulaire). $\forall (x, y, z) \in X^3, d(x, z) \ge |d(x, y) - d(y, z)|$.

Prop. Les ouverts sont stables par union et par intersection finie. Si on note \mathcal{T} l'ensemble des ouverts, on dit que (X,\mathcal{T}) forment un espace topologique.

Prop. Les ouverts d'un espace métrique sont les unions de boules ouvertes.

Def. Soit $A \subset X$. On appelle **fermeture** de A et on note \bar{A} le plus petit fermé contenant A, $\bar{A} = \bigcap_{O \in \mathcal{T}, A \in O^c} O^c$. On appelle **intérieur** de A et on note Å le plus grand ouvert inclus dans A, $Å = \bigcup_{O \in \mathcal{T}.O \in A} O^{\mathcal{C}}$.

Def. Support d'une application : Supp $f = \{f \neq 0\}$.

Prop. Si X et Y sont des espaces métriques et $f: X \to Y$, il y a équivalence entre :

- (i) f est continue (i.e. pour toute suite $(x_n)_n \to x$ alors $(f(x_n))_n \to f(x)$),
- (ii) pour tout ouvert $O \subset Y$, l'ensemble $f^{-1}(O)$ est un ouvert de X,
- (iii) pour tout fermé $F \subset Y$, l'ensemble $f^{-1}(O)$ est un fermé de X,

Prop (Caractérisation séquentielle des fermés). Il est équivalent de dire que F est fermé ou que pour toute suite $(x_n)_n \in F^{\mathbf{N}}$ qui converge vers un point x, on a $x \in F$.

Prop (Caractérisation séquentielle de la fermeture). $\bar{E} = \{x \in X \mid \exists (x_n) \in E^{\mathbf{N}}, \lim_n x_n = x\}.$

Def. Soit E un ev sur un corps K (R ou C). Une application $\|\cdot\|$ de E dans R_+ , est une **norme** sur E si

- (i) ||x|| = 0 si et seulement si x = 0,
- (ii) $\forall x \in E, \forall \lambda \in K, ||\lambda x|| = |\lambda| \cdot ||x||$,
- (iii) $\forall (x, y) \in E \times E, ||x + y|| \le ||x|| + ||y||$.

On dit que $(E, \|\cdot\|)$ est un **espace vectoriel normé** (evn).

Th. Une application lineaire f entre deux evn E et F est continue si et seulement si $\exists C \geqslant 0, \forall x \in E, ||f(x)||_F \leqslant$ $C \|x\|_E$.

Def (Norme opérateur). $||f||_{\mathcal{A}(E,F)} = \inf\{C \mid \forall x \in E ||f(x)||_F \leqslant C ||x||_E\}.$

Def. $\|\cdot\|_1$ et $\|\cdot\|_2$ sur E sont **équivalentes** entre elles si $\exists A, B > 0, \forall x \in E, A \|x\|_1 \leqslant \|x\|_2 \leqslant B \|x\|_1$.

Prop. Deux normes sur un même e.v. définissent une même topologie si et seulement si elles sont équivalentes.

Def. Si F et G sont des evn alors $(F \times G, \|\cdot\|_{F \times G})$ est un evn avec $\|(f,g)\|_{F \times G} = \max(\|f\|_F, \|g\|_G)$.

Th. Soit $T: F \times G \to H$ bilinéaire. Alors T est continue si et seulement si $\exists A \geqslant 0, \forall (f,g) \in F \times G, \|T(f,g)\|_H \leqslant 1$ $A \|f\|_F \|g\|_G$.

Def. Soit $A \subset E$ evn. On dit que A est **dense** dans E si $\forall x \in E, \forall \epsilon > 0, \exists y \in A, ||x - y|| \leq \epsilon$.

Def. Un evn est dit **séparable** s'il contient un sous-ensemble dense et dénombrable.

Prop. E est séparable si et seulement s'il contient un ensemble dénombrables de boules $(A_i)_{i \in \mathbb{N}}$ tel que tout ouvert de E s'écrit comme une union de boules prises dans cet ensemble.

Prop. Soit $F \subset E$ un hyperplan. Alors il existe G de dimension 1 tel que $F \oplus G = E$. D'autre part, si G est un s-ev tel que $F \oplus G = E$, alors G est de dimension 1.

Prop. *Un hyperplan dans un evn est soit dense soit fermé.*

Def. Une suite (x_n) dans un e.v.n. est dite **de Cauchy** si $\forall \epsilon > 0, \exists N, \forall m, n > N, ||x_m - x_n|| \le \epsilon$. Un evn est dit **complet** (ou de Banach) si toute suite de Cauchy converge vers un point de l'espace.

Prop. Un complet est complet si et seulement si toute série absolument convergente est convergente.

Prop. Soient E et F deux evn, F complet, et G un s-ev dense dans E. Si $A: G \to F$ est un opérateur linéaire continu, alors il existe un prolongement unique $\tilde{A}: E \to F$ linéaire continu et $\|\tilde{A}\| = \|A\|$.

Th. Si E est un evn alors il existe un e.v.n. F tel que

- 1. L'evn F est complet.
- 2. $\exists I \in \mathcal{L}(E, F)$ isométrique et telle que I(E) est dense dans F.

De plus, si F_2 est un autre evn vérifiant les deux propriétés et que I_2 est l'isométrie correspondante alors $I_2 \circ I^{-1}$ se prolonge en une isométrie bijective entre F et F_2 , i.e. F est unique à une isométrie près.

Espaces L^p

Th. Il existe une unique mesure λ_N sur $(\mathbf{R}^N, \mathcal{B}(\mathbf{R}^N))$ qui vérifie, pour tout pavé $[a;b] = \prod_{i=1}^N [a_i;b_i]$, $\lambda_N([a;b]) = \prod_{i=1}^N (b_i - a_i)$. On l'appelle mesure de Lebesgue de dimension N.

Prop. La mesure de Lebesgue est invariante par translation.

Def. Soit $f: \mathbf{R}^N \to \mathbf{R}$ ou $\bar{\mathbf{R}}$. On dit que f est **borélienne** si elle est mesurable de $(\mathbf{R}^N, \mathcal{B}(\mathbf{R}^N))$ dans $(\mathbf{R}, \mathcal{B}(\mathbf{R}))$ ou $(\bar{\mathbf{R}}, \mathcal{B}(\bar{\mathbf{R}}))$.

Def. On dit que f est **intégrable** si c'est une fonction borélienne et $\int |f| = \int f_+ + \int f_- < \infty$. On note $\mathcal{L}^1(\mathbf{R}^N)$ l'ensemble des fonctions intégrables définies sur \mathbf{R}^N .

Th. $\mathcal{L}^1(\mathbf{R}^N)$ est un e.v., $f \to \int f$ définit une forme linéaire sur cet espace et $f \leqslant g \implies \int f \leqslant \int g$.

Th (Théorème de convergence monotone). Soit $(f_n)_{n\in\mathbb{N}}$ une suite de fonctions boréliennes de \mathbf{R}^N dans \mathbf{R}_+ ou $\bar{\mathbf{R}}_+$, et f sa limite simple. Alors f est borélienne et si de plus $(f_n(x))_n$ est croissante pour tout x alors $\int f = \lim_n \int f_n$. Def. $A \in \mathcal{B}(\mathbf{R}^N)$ est dit négligeable si $\lambda_N(A) = 0$.

Lem. Soit f borélienne positive. Alors f = 0 si et seulement si $f \neq 0$ est négligeable.

Def. Soit f et g boréliennes. On dira qu'elles sont égales presque partout et on notera $f \stackrel{\text{p.p.}}{=} g$ si $\{f \neq g\}$ est négligeable.

Lem (Lemme de Fatou). *Soit* (f_n) *une suite de fonctions boréliennes positives. On a* $\int \liminf_n f_n \leq \liminf_n \int f_n$.

Th (**Théorème de convergence dominée**). Soit (f_n) une suite de fonctions boréliennes. S'il existe g intégrable telle que $\forall n \geq 1, |f_n| \leq g$ et qu'il existe f borélienne telle que $f_n \stackrel{p.p.}{\to} f$, alors f est intégrable et on a $\lim_n \int |f_n - f| = 0$, d'où en particulier $\int f = \lim_n \int f_n$. On note alors $f_n \stackrel{L^1}{\to} f$.

Th. Soit (f_n) une suite de fonctions boréliennes. Si les f_n sont à valeurs positives ou si $\int \sum_n |f_n| < \infty$, alors $\int \sum_{n\geqslant 1} f_n = \sum_{n\geqslant 1} \int f_n$.

Th (Théorèmes de Fubini et Tonelli). Soit f borélienne sur \mathbf{R}^N avec $N=N_1+N_2$ et $N_1,N_2\geqslant 0$. Alors $\forall x\in\mathbf{R}^{N_1}$, $y\mapsto f(x,y)$ est borélienne sur \mathbf{R}^{N_2} , $x\mapsto \int f_\pm(x,y)\,\mathrm{d}y$ sont boréliennes de $\mathbf{R}^{N_1}\to\bar{\mathbf{R}}$, et de même en échangeant les rôles de x et y.

Supposons maintenant que l'une des conditions suivantes soient vérifiées :

- (i) $f \geqslant 0$ (critère de Tonelli)
- (ii) $\int |f| < \infty$ (critère de Fubini)

Alors on $a \int f = \int_{\mathbf{R}^{N_1}} (\int_{\mathbf{R}^{N_2}} f(x, y) \, dy) \, dx = \int_{\mathbf{R}^{N_2}} (\int_{\mathbf{R}^{N_1}} f(x, y) \, dx) \, dy.$

Def. Soit U et V deux ouverts de \mathbf{R}^N . On dit que $\phi \colon U \to V$ est un difféomorphisme si ϕ est bijective, continûment dérivable sur U et son application réciproque ϕ^{-1} est continûment dérivable sur V.

Def. Soit ϕ continûment dérivable sur U ouvert. La fonction $J_{\phi}\colon \begin{array}{ccc} U & \to \mathbf{R} \\ x & \mapsto & \det[D_x(\phi)] = \det[\partial\phi(x)] \end{array}$ est appelée Jacobien de ϕ , où $D_x(\phi)$ dénote l'application différentielle de f en x et $\partial\phi(x)$ la matrice jacobienne associée. **Th** (**Changement de variable** dans \mathbf{R}^N). Soit U et V deux ouverts de \mathbf{R}^N et $\phi\colon U \to V$ un difféomorphisme. Alors pour tout f borélienne sur V, on a $f \circ \phi$ borélienne sur U et $\int_U f \circ \phi = \int_V \frac{f}{|J_{\phi} \circ \phi|^{-1}}$.

Rem. Formulations équivalentes : $\int_U (f \circ \phi) \cdot |J_{\phi}| = \int_V f$, $\int_V f \circ \phi^{-1} = \int_U f \cdot |J_{\phi}|$.

Def. Nous appelons $(L^1(\mathbf{R}^N), \|\cdot\|_1)$ l'e.v.n. des classes d'équivalence des fonctions intégrables.

Th. L'intégrale définit une application linéaire continue de $L^1(\mathbf{R}^N)$ dans \mathbf{R} .

Th. L'espace $C_c(\mathbf{R}^N)$ des fonctions continues à support compact est dense dans $L^1(\mathbf{R}^N)$.

Def. Pour tout réel $p \in [1; \infty[$, nous appelons $\mathcal{L}^p(\mathbf{R}^N)$ l'espace des fonctions boréliennes $f : \mathbf{R}^N \to \mathbf{R}$, \mathbf{C} , $\bar{\mathbf{R}}$ ou $\bar{\mathbf{C}}$ vérifiant $|f|^p \in \mathcal{L}^1(\mathbf{R}^N)$ On appelle $\mathcal{L}^\infty(\mathbf{R}^N)$ l'espace des fonctions boréliennes f à valeurs complexes pour lesquelles il existe g bornée telle que $f \stackrel{\mathrm{p.p.}}{=} g$.

Lem (Inégalité de **Young**). Soit $a, b \in \mathbb{R}_+$ et $(p,q) \in]1; \infty[^2$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Alors $ab \leqslant \frac{a^p}{p} + \frac{b^q}{q}$.

Th (Inégalité de Hölder). Soit $1 \leqslant p \leqslant \infty$ et $1 \leqslant q \leqslant \infty$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. Si $f \in \mathcal{L}^p\left(\mathbf{R}^N\right)$ et $g \in \mathcal{L}^q\left(\mathbf{R}^N\right)$, alors $fg \in \mathcal{L}^1\left(\mathbf{R}^N\right)$ et $\|fg\|_1 \leqslant \|f\|_p \|g\|_q$.

Th (Inégalité de **Minkowski**). Soit $1 \leqslant p \leqslant \infty$. Si $f,g \in \mathcal{L}^p\left(\mathbf{R}^N\right)$, alors $f+g \in \mathcal{L}^p\left(\mathbf{R}^N\right)$ et $\|f+g\|_p \leqslant \|f\|_p + \|g\|_p$.

Th (Inégalité de **Jensen**). Soit $-\infty \le a < b \le \infty$. On dispose de φ : $]a;b[\to \mathbf{R}$ convexe, $\lambda : \mathbf{R}^N \to \mathbf{R}_+$ borélienne de mase totale 1 et $g: \mathbf{R}^N \to]a;b[$ borélienne telle que $g \cdot \lambda$ est intégrable. Alors $\varphi(\int g\lambda) \le \int (\varphi \circ g)\lambda$.

Th. Soit $1 \le p \le \infty$. L'espace $\mathcal{L}^p(\mathbf{R}^N)$ est un ev sur \mathbf{C} et $\|\cdot\|_p$ est une semi-norme sur lui.

Def. Soit $1 \leq p \leq \infty$. On appelle $\left(L^p\left(\mathbf{R}^N\right), \|\cdot\|_p\right)$ l'evn des classes d'équivalence des fonctions de $\mathcal{L}^p\left(\mathbf{R}^N\right)$.

Def. On a $f_n \stackrel{L^p}{\to} f$ si $\lim_n \|f_n - f\|_p = 0$.

Th (Convergence dominée dans $\mathcal{L}^p\left(\mathbf{R}^N\right)$). Soit $1 \leqslant p < \infty$ et $(f_n)_{n \in \mathbf{N}} \subset \mathcal{L}^p\left(\mathbf{R}^N\right)$ une suite vérifiant $f_n \overset{p.p.}{\to} f$ et $\exists g \in \mathcal{L}^p\left(\mathbf{R}^N\right), \forall n \in \mathbf{N}, |f_n| \overset{p.p.}{\leqslant} g$. Alors $f \in \mathcal{L}^p\left(\mathbf{R}^N\right)$ et $f_n \overset{L^p}{\to} f$.

Th. Soit $1 \leqslant p < \infty$, $(f_n)_{n \in \mathbb{N}} \subset \mathcal{L}^p(\mathbf{R}^N)$ et $f \in \mathcal{L}^p(\mathbf{R}^N)$. On suppose $f_n \stackrel{L^p}{\to} f$. Alors il existe une sous-suite $(f_{n_k})_{k \in \mathbb{N}}$ telle que $f_{n_k} \stackrel{p.p.}{\to} f$ lorsque $k \to \infty$ et $\exists g \in \mathcal{L}^p(\mathbf{R}^N)$, $\forall k \in \mathbb{N}, |f_{n_k}| \stackrel{p.p.}{\leqslant} g$.

Prop. (Séries absolument convergentes dans $L^p(\mathbf{R}^N)$) Soit $1 \leqslant p < \infty$ et $(f_n)_{n \in \mathbf{N}} \subset \mathcal{L}^p(\mathbf{R}^N)$. On suppose $\sum_n \|f_n\|_p < \infty$. Alors:

- (i) $\sum_{n=0}^{+\infty} |f_n(x)| \stackrel{p.p.}{<} \infty$, on pose $f(x) \stackrel{p.p.}{=} \sum_{n=0}^{+\infty} f_n(x)$,
- (ii) $f \in \mathcal{L}^p(\mathbf{R}^N)$,
- (iii) $\sum_{k=0}^{n} f_k \stackrel{L^p}{\underset{n}{\longrightarrow}} f$ et $\exists h \in \mathcal{L}^p\left(\mathbf{R}^N\right), \forall n \in \mathbf{N}, \left|\sum_{k=0}^{n} f_k\right| \stackrel{p,p}{\leqslant} h$.
- **Th.** Soit $1 \leq p < \infty$. L'evn $(L^p, \|\cdot\|_p)$ est complet.
- **Th.** Soit $1 \leq p < \infty$. L'espace $C_c\left(\mathbf{R}^N\right)$ est dense dans $\left(L^p\left(\mathbf{R}^N\right), \left\|\cdot\right\|_p\right)$.
- **Th.** Si $f \in L^1(\mathbf{R}^N)$ alors $t \mapsto \mathcal{T}_t f$ est continue de \mathbf{R}^N dans $L^1(\mathbf{R}^N)$.

Def. Produit de convolution de f et g boréliennes : $f \star g \colon x \mapsto \int f(x-y)g(y) \, dy$, en tout point où cette intégrale est correctement définie.

Th. Si $f,g \in \mathcal{L}^1(\mathbf{R}^N)$, alors $f \star g$ est défini et fini presque partout. Dans $L^1(\mathbf{R}^N)$ on a $||f \star g||_1 \leqslant ||f||_1 ||g||_1$ et $\int f \star g = \int f \times \int g$.

Th. Le produit de convolution, comme application de $L^1(\mathbf{R}^N) \times L^1(\mathbf{R}^N) \to L^1(\mathbf{R}^N)$ est commutatif et associatif.

- **Th.** Soit $1 \leqslant p, q \leqslant \infty$ tels que $\frac{1}{p} + \frac{1}{q} = 1$. On a:
 - (i) la convolution définie sur $L^p \times L^q$ est à valeurs dans $C_b(\mathbf{R}^N)$,
- (ii) la convolution sur $L^p\left(\mathbf{R}^N\right) \times L^q\left(\mathbf{R}^N\right)$ vue comme application à valeurs dans $L^\infty\left(\mathbf{R}^N\right)$ est bilinéaire continue,
- (iii) si, de plus, p et q sont finis, alors $f \star g$ tend vers 0 à l'infini.

Th. Soit $f \in L^1$ et $g \in L^p$ avec p fini. ALors $f \star g$ est défini et fini en presque tout point. De plus, $(f,g) \mapsto f \star g$ sur $L^1 \times L^p$ est à valeurs dans L^p et bilinéaire continu avec $\|f \star g\|_p \leqslant \|f\|_1 \|g\|_p$.

Espaces de Hilbert

Def. Soit E un \mathbf{K} -ev. L'application $\langle \cdot \mid \cdot \rangle : E \times E \to \mathbf{R}$ est appelé **produit scalaire** si c'est une forme bilinéaire définie positive. Si l'espace d'arrivé est \mathbf{C} et qu'il y a sesqui-linéarité c'est un **produit hermitien**. E muni de $\langle \cdot \mid \cdot \rangle$ est un **espace pré-hilbertien**.

Prop (Inégalité de Cauchy-Schwarz). $\forall f, g \in E, |\langle f \mid g \rangle|^2 \leq \langle f \mid f \rangle \langle g \mid g \rangle, l'égalité nécessitant la colinéarité.$

Prop. Soit E pré-hilbertien. Alors $\|\cdot\|: x \mapsto \sqrt{\langle x \mid x \rangle}$ est une norme sur E.

Def. Un espace pré-hilbertien est dit **espace de Hilbert** s'il est complet pour cette norme.

Th. Soit H de Hilbert et $C \subset H$ un convexe fermé non vide. Pour tout $f \in H$ il existe un unique point g de C, appelé projection de f sur C vérifiant ||f-g|| = d(f,C). Elle se caractérise comme l'unique point de C tel que $\forall h \in C$, $\Re(\langle f-g \mid h-g \rangle) \leq 0$. Si C est un s-ev, g est l'unique point de C tel que $f-g \in C^{\perp}$.

Lem (Identité du parallélogramme). $||u||^2 + ||v||^2 = \frac{1}{2} (||u + v||^2 + ||u - v||^2)$.

Prop. Si F est un s-ev fermé de H, alors tout élément de H se décompose de manière unique sous la forme $f=g+h, g\in F, h\in F^\perp$, où g est la projection de h sur F et h la projection de f sur F^\perp . Si $A\subset H$ on a toujours $A^\perp=\overline{\operatorname{Vect}(A)}^\perp$ et $\operatorname{donc}(A^\perp)^\perp=\overline{\operatorname{Vect}(A)}$.

Def. On dit que $A \subset H$ est total si Vect(A) est dense dans H, i.e. si $A^{\perp} = \{0\}$.

Th (Riesz). Pour tout $f \in H$, $v \mapsto \langle v \mid f \rangle$ est une forme linéaire continue sur H. Réciproquement, si \tilde{f} est une forme linéaire continue sur H, $\exists ! f \in H$, $\tilde{f} = \langle \cdot \mid f \rangle$.

Def. On pose $\mathcal{T}_x = (y \mapsto f(y-x))$ (translatée de f par x). On dit qu'un opérateur T agissant sur des fonctions est invariant par translation si $T(\mathcal{T}_x f) = \mathcal{T}_x(Tf)$.

Th. Soit $T: L^2(\mathbf{R}^N) \to C_b(\mathbf{R}^N)$ un opérateur linéaire, invariant par translation et continu. Alors $\exists g \in L^2(\mathbf{R}^N), \forall f, T(f) = g \star f$.

Prop. Soit $(x_n)_{n\in\mathbb{N}}$ des vecteurs deux à deux orthogonaux dans un espace de Hilbert. Alors $\left(\sum_{n=0}^N x_n \text{ converge lorsque } N \to \infty\right) \iff \left(\sum_n \|x_n\|^2 < \infty\right)$.

Def. On appelle **base hilbertienne** de *H* séparable un système orthonormé fini ou infini qui est total.

Th. Tout espace de Hilbert séparable admet une base hilbertienne.

Th (Égalité de Parseval). Soit H séparable et $(e_n)_n$ une base hilbertienne de H. Alors tout élément de H peut s'écrire comme la somme d'une série convergente : $f = \sum_n \langle f \mid e_n \rangle e_n = \sum_n c_n(f) e_n$ et les coordonnées $c_n(f)$ vérifient $||f||^2 = \sum_n |c_n(f)|^2$.

Cor. Tout espace de Hilbert séparable est isométrique à $l^2(\mathbf{N})$. Il suffit d'associer à f son vecteur de coordonnées sur une base hilbertienne. En particulier on a $\langle f \mid g \rangle = \sum_n c_n(f) \overline{c_n(g)}$.

Th. Le système $\{e_k : x \mapsto e^{2i\pi kx}\}_{k \in \mathbb{Z}}$ est une base hilbertienne de $L^2_p(0,1)$ (fonctions 1-périodiques).

Def. Polynôme trigonométrique : fonction $f \in \text{Vect}(\{e_k\}_k)$, i.e. dont la suite des $c_n(f)$ dans la base des e_k est à support fini.

Def (Convolution circulaire). Si f et g sont 1-périodique, on note $f \star_c g \colon x \mapsto \int_0^1 f(t)g(x-t) \, \mathrm{d}t$ là où cette quantité est définie, et cette fonction est aussi 1-périodique.

Th. Soit $f, g \in L_p^2(0, 1)$. On a $c_n(f \star_c g) = c_n(f)c_n(g)$ et $c_n(f \cdot g) = \sum_k c_k(f)c_{n-k}(g)$.

La transformée de Fourier sur R

Def. Soit $f \in L^1$. Sa transformée de Fourier est $\mathcal{F}(f) = \hat{f} := \xi \mapsto \int f(x)e^{-2i\pi\xi x} dx$. **Prop.** Soit $f, g \in L^1, \lambda, \alpha \in \mathbf{R}$.

- (i) \hat{f} est bornée par $\|f\|_1$, donc \mathcal{F} est linéaire continue de L^1 dans L^∞ ,
- (ii) \hat{f} est continue,
- (iii) $\hat{f}(\xi)$ tend vers 0 lorsque $|\xi|$ tend vers $+\infty$,
- (iv) $\mathcal{F}(f \star g) = \hat{f} \cdot \hat{g}$,
- (v) $\int \hat{f} \cdot g = \int f \cdot \hat{g}$,
- (vi) Si $g(x) = f(x)e^{2i\pi\alpha x}$ alors $\hat{g}(\xi) = \hat{f}(\xi \alpha)$,
- (vii) Si $g(x) = f(x \alpha)$ alors $\hat{g}(\xi) = \hat{f}(\xi)e^{-2i\pi\alpha\xi}$,
- (viii) Si $g(x) = \overline{f(-x)}$ alors $\hat{g}(\xi) = \overline{\hat{f}(\xi)}$,
- (ix) Si $g(x) = f(x/\lambda)$ avec $\lambda > 0$ alors $\hat{g}(\xi) = \lambda \hat{f}(\lambda \xi)$.

Def (Un couple de fonctions auxiliaires). Soit $n \in \mathbb{N}^*$. On a $H_n := x \mapsto e^{-\frac{|x|}{n}}$ et $h_n := x \mapsto n \frac{2}{1+4\pi^2(nx)^2}$. On remarque que $H_n(nx) = H_1(x)$ (homotéthie) et $h_n(x) = nh_1(nx)$ de sorte que $\int h_n = \int h_1$.

Prop. (i) $\forall n \geqslant 1, \forall 1 \leqslant p \leqslant \infty, h_n \in L^p \text{ et } H_n \in L^p$,

- (ii) $\mathcal{F}(H_n) = h_n$,
- (iii) $\int h_n(t) dt = 1$,
- (iv) Si $f \in L^p, p < \infty$, alors $h_n \star f$ tend vers f dans L^p ,
- (v) Si $f \in L^1$, alors $\forall x \in \mathbf{R}, (f \star h_n)(x) = \int \hat{f}(\xi) H_n(\xi) e^{2i\pi x \xi} d\xi$,

- (vi) Si f est bornée et continue en x alors $(f \star h_n)(x) \xrightarrow[n \to \infty]{} f(x)$.
- **Def.** Si $f \in L^1$, sa transformée de Fourier inverse est $\bar{\mathcal{F}}(f)$: $x \mapsto \int f(t)e^{2i\pi xt} dt$ (continue).

Th (Théorème d'inversion). Si $f \in L^1$ et $\hat{f} \in L^1$ alors $\bar{\mathcal{F}}(\hat{f}) \stackrel{p.p.}{=} f$ (donc égalité dans L^1). En particulier, si $\hat{f} \in L^1$ alors f est égale p.p. à une fonction continue car bar \mathcal{F} a les mêmes propriétés que \mathcal{F} .

Cor. Si $f \in L^1$ et $\hat{f} = 0$ alors f = 0, i.e. \mathcal{F} est injective.

Th (Extension à L^2). 1. Si $f \in L^1 \cap L^2$ alors $\hat{f} \in L^2$ et $\|\hat{f}\|_2 = \|f\|_2$.

- 2. Il existe une unique application dans $\mathcal{O}(L^2) \cap \mathcal{C}^0(L^2, L^2)$ égale à \mathcal{F} sur $L^1 \cap L^2$, notée encore \mathcal{F} .
- 3. $\operatorname{Im}(\mathcal{F})$ est dense dans L^2 .
- 4. \mathcal{F} est bijective de L^2 dans lui-même.

Th. On étend $\bar{\mathcal{F}}$ de la même manière et il vient : $\forall f \in L^2, \bar{\mathcal{F}}(\mathcal{F}(f)) = f, \forall f, g \in L^2, f \star g = \bar{\mathcal{F}}(\hat{f} \cdot \hat{g}).$

Def. C_c^{∞} : ensemble des fonctions indéfiniment dérivables à support compact. C'est un C-ev non réduit à $\{0\}$.

Th. Soit $1 \leq p < \infty$.

- 1. Si $g \in \mathcal{C}_c^0$ et $h \in \mathcal{C}_c^\infty$ alors $g \star h \in \mathcal{C}_c^\infty$ et $(g \star h)^{(n)} = (g \star h^{(n)})$.
- $2. \ \forall f \in L^p, f \star \rho_n \xrightarrow{L^p} f \ en \ not ant \ \rho \colon x \mapsto e^{-\frac{1}{x}} e^{-\frac{1}{1-x}}, \ \rho_1 = \frac{\rho}{\int \rho} \ et \ \forall n \geqslant 1, \rho_n \colon x \mapsto n \rho_1(nx).$
- 3. Les fonctions C_c^{∞} sont denses dans L^p .

Th (Échange de régularité et de décroissance à l'infini). 1. Si $f \in C^1 \cap L^1$ et $f' \in L^1$ alors $\mathcal{F}(f')(\xi) = 2i\pi \xi \hat{f}(\xi)$.

- 2. Si $f \in L^1$ et $(x \mapsto x f(x)) \in L^1$ alors \hat{f} est continûment dérivable et $\mathcal{F}(f)' = \mathcal{F}(x \mapsto -2i\pi x f(x))$.
- 3. Si $f \in \mathcal{C}^n \cap L^1$ et $\forall k \leq n, f^{(k)} \in L^1$ alors $\mathcal{F}\left(f^{(n)}\right)(\xi) = (2i\pi\xi)^n \hat{f}(\xi)$.
- 4. Si $f \in L^1$ et $\forall k \leq n, (x \mapsto x^k f(x)) \in L^1$ alors \hat{f} est n fois continûment dérivable et $\mathcal{F}(f)^{(n)} = \mathcal{F}(x \mapsto (-2i\pi x)^n f(x))$.

Def. On dit que f est dans la classe de Schwartz \mathcal{S} si $f \in \mathcal{C}^{\infty}$ et $\forall n, k \in \mathbb{N}, f^{(n)}(x)x^k \underset{|x| \to \infty}{\to} 0$.

Prop. Soit $f, g \in \mathcal{S}$ et $P \in \mathbf{K}[X]$. On a $f^{(n)} \in \mathcal{S}$, $f \cdot g \in \mathcal{S}$, $P \cdot f \in \mathcal{S}$, $\forall 1 \leq p \leq \infty, f \in L^p$ et $\mathcal{C}_c^{\infty} \subset \mathcal{S}$. Donc \mathcal{S} est dense dans tous les L^p pour $p < \infty$.

Th. Si $f \in \mathcal{S}$ alors $\hat{f} \in \mathcal{S}$.

Th. La transformée de Fourier est une bijection entre S et lui-même et son inverse est S.

Règles de calcul dans $L^p([0;1])$ et l^p

Def (Continuité sur [0;1[torique). Une fonction définie sur [0;1[est dite continue si elle est continue au sens classique et qu'en plus elle admet une limite en 1 égale à sa valeur en 0.

Def. Les espaces $L^p([0;1[)$ sont définis comme sur \mathbf{R} , avec pour norme $\|f\|_p = \left(\int_0^1 |f(t)|^p dt\right)^{\frac{1}{p}}$ pour $p < \infty$.

Def. Soit $1 \le p < \infty$, $l^p := \{(u_n)_{n \in \mathbb{Z}} \mid \sum_{n \in \mathbb{Z}} |u_n|^p < \infty \}$ et, pour $u \in l^p$, $||u||_p = (\sum_{n \in \mathbb{Z}} |u_n|^p)^{\frac{1}{p}}$. l^∞ est l'espace des suites bornées et $||u||_\infty = \sup_n (|u_n|)$.

Prop. (i) Si p < q, alors $L^q([0;1]) \subset L^p[0;1[$, $L^\infty([0;1]) \subset L^2([0;1[) \subset L^1([0;1[)$.

- (ii) Si p < q, alors $l^p \subset l^q$, $l^1 \subset l^2 \subset l^\infty$.
- (iii) $C^0([0;1])$ est dense dans $L^p([0;1])$ pour p fini.
- (iv) Les suites à support fini sont denses dans l^p pour p fini.
- **Def.** Convolution sur les suites : $(u \star v)_n = \sum u_k v_{n-k}$.

Def. Convolution entre fonctions sur $[0;1[:(f\star g)(x)=\int_0^x f(t)g(x-t)\,\mathrm{d}t+\int_x^1 f(t)g(1+x-t)\,\mathrm{d}t$. Cela peut se ramener à une convolution sur $\mathbf R$ et les règles de calcul précédentes sont donc encore vraies.

Prop. Soit p et q des exposants conjugués.

- 1. Si $f \in L^p([0;1])$ et $g \in L^q([0;1])$ alors $f \star g$ est continue bornée sur [0;1].
- 2. Si $u \in l^p$ et $v \in l^q$ alors $u \star v$ est une suite bornée.
- 3. Si $f \in L^1([0;1])$ et $g \in L^p([0;1])$ alors $f \star g \in L^p([0;1])$.
- 4. Si $u \in l^1$ et $v \in l^p$ alors $u \star v \in l^p$.

Def. *t*-translatée de $f: f_t: x \mapsto f((x-t) - \lfloor x-t \rfloor)$, définie sur [0; 1].

Th. Si $f \in L^p([0;1])$ avec $p < \infty$ akirs $x \mapsto f_x$ est uniformément continue de \mathbf{R} dans $L^p([0;1])$.

Fourier sur [0;1[

Prop. Soit $f, g \in L^1([0;1[), \lambda, \alpha \in \mathbf{R}.$

- 1. \hat{f} est bornée $\|f\|_1$ et donc \mathcal{F} est continue de L^1 dans l^∞ .
- 2. $\hat{f}(\xi) \xrightarrow[|\xi| \to +\infty]{} 0$
- 3. $\mathcal{F}(f \star g) = \hat{f} \cdot \hat{g}$
- 4. Si $g(x) = f(x)e^{2i\pi\alpha x}$, $\alpha \in \mathbf{Z}$, alors $\hat{g}(\xi) = \hat{f}(\xi \alpha)$.
- 5. Si $g(x) = f(x \alpha)$, $\alpha \in \mathbf{R}$, alors $\hat{g}(\xi) = \hat{f}(\xi)e^{-2i\pi\alpha\xi}$.
- 6. Si $g(x) = \overline{f(-x)}$ alors $\hat{g}(\xi) = \overline{\hat{f}(\xi)}$.