

Physical Entity Relationship Diagram (ERD)

London Crime Analysis Dashboard System

Siu Chun Anson Chan Knowledge Extraction Modelling and Visualisation Modul University Vienna

June 2025

Abstract

This document presents the comprehensive Physical Entity Relationship Diagram (ERD) for the London Crime Analysis Dashboard System database. The design implements a normalised relational structure supporting multi-dimensional crime analysis across geographic, temporal, and categorical dimensions. The schema includes 10 core entities with appropriate relationships to support strategic, tactical, and analytical dashboard requirements, handling approximately 22,000 crime incidents efficiently.

Contents

1	Database Design Overview	2
	1.1 Design Objectives	2
	1.2 Schema Architecture	2
2	Physical ERD Diagram	3
	2.1 Entity Relationship Visual	3
3	Entity Definitions	3
	3.1 Police Forces Entity	
	3.2 Cities/Boroughs Entity	
	3.3 Crime Categories Entity	
4	Relationship Matrix	4
5	Performance Optimisation	5
	5.1 Indexing Strategy	
	5.2 Query Optimisation Examples	
6	Data Integrity and Constraints	6
	6.1 Referential Integrity	(
	6.2 Domain Constraints	

7	Scalability and Future Considerations 7.1 Partitioning Strategy	
-	Conclusion 8.1 ERD Design Summary	8

1 Database Design Overview

1.1 Design Objectives

Primary Goals:

- Support multi-level crime analysis (Strategic, Tactical, Analytical)
- Enable efficient querying across geographic and temporal dimensions
- Maintain data integrity and consistency
- Provide scalable foundation for future enhancements
- Optimise performance for dashboard applications

Design Principles:

- **Normalisation**: Third Normal Form (3NF) with selective denormalisation for performance
- Scalability: Designed for growth in data volume and user base
- Performance: Optimised for common query patterns with strategic indexing
- Flexibility: Supports diverse analytical requirements
- Integrity: Ensures data consistency through comprehensive constraints

1.2 Schema Architecture

Database Model: Relational (Enhanced Star Schema)

Normalisation Level: Third Normal Form (3NF) with performance optimisations

Primary Architecture: Fact-Dimension model with supporting lookup tables

Core Design Patterns:

- Central Fact Table: crime_incidents (primary transaction table)
- Dimension Tables: cities, crime_categories, locations, time_dimension
- Lookup Tables: police_forces, police_stations, demographics
- Summary Tables: crime_statistics (materialised aggregations)
- Audit Tables: crime_outcomes (incident resolution tracking)

2 Physical ERD Diagram

2.1 Entity Relationship Visual

3 Entity Definitions

3.1 Police Forces Entity

Purpose: Stores information about law enforcement organisations and their operational capacity

Table Name: police_forces

Table 1: Police Forces Entity Attributes

Attribute	Data Type	Size	Description	
force_id	VARCHAR	10	Unique force identifier (PK)	
force_name	VARCHAR	100	Official force name	
region	VARCHAR	50	Geographic region covered	
headquarters_address	VARCHAR	200	Main office address	
phone	VARCHAR	20	Contact phone number	
website	VARCHAR	100	Official website URL	
$established_year$	INTEGER	-	Year force was established	
$officer_count$	INTEGER	-	Number of sworn officers	
$civilian_staff_count$	INTEGER	_	Number of civilian staff	
$budget_millions$	DECIMAL	10,2	Annual budget in millions GBP	
$area_covered_sq_km$	DECIMAL	10,2	Geographic coverage area	

3.2 Cities/Boroughs Entity

Purpose: Represents geographic administrative units (London boroughs and other cities)

Table Name: cities

Table 2: Cities Entity Attributes

Attribute	Data Type	Size	Description	
city_id	INTEGER	-	Unique city identifier (PK,	
			AUTO_INCREMENT)	
city_name	VARCHAR	100	Official borough/city name	
region	VARCHAR	50	Geographic region	
country VARCHAR		20	Country designation (DEFAULT	
			'England')	
latitude	DECIMAL	10,6	Central latitude coordinate	
longitude	DECIMAL	11,6	Central longitude coordinate	
population	INTEGER	_	Current population estimate	
area_sq_km	DECIMAL	10,2	Borough area	
population_density	DECIMAL	10,2	People per sq km (CALCU-	
•			LATED)	

Attribute	Data Type	Size	Description
force_id	VARCHAR	10	Reference to police force (FK)

Calculated Fields:

population_density = population / area_sq_km

3.3 Crime Categories Entity

Purpose: Defines crime classification hierarchy with severity levels and violence indica-

tors

Table Name: crime_categories

Table 3: Crime Categories Entity Attributes

Attribute	Data Type	Size	Description	
category_id	INTEGER	-	Unique category identifier (PK, AUTO_INCREMENT)	
$category_code$	VARCHAR	50	Standard category cod (UNIQUE)	
category_name	VARCHAR	,		
description	TEXT	-	Detailed category description	
severity_level	INTEGER	-	Crime severity rating (1-5)	
$is_violent$	BOOLEAN	-	Violence classification (DE-	
			FAULT FALSE)	
parent_category_id	INTEGER	-	Hierarchical relationship (FK)	

Severity Levels:

- Level 1: Minor infractions (anti-social behaviour)
- Level 2: Low-impact crimes (shoplifting, bicycle theft)
- Level 3: Medium-impact crimes (theft from person, vehicle crime)
- Level 4: Serious crimes (burglary, drug offences)
- Level 5: Severe crimes (violent crime, robbery)

4 Relationship Matrix

Table 4: Entity Relationship Matrix

Parent Entity	Child Entity	Relationship Type	Foreign Key
Police Forces	Cities	One-to-Many (1:N)	$force_id$
Police Forces	Police Stations	One-to-Many (1:N)	$force_id$

Parent Entity	Child Entity	Relationship Type	Foreign Key
Police Forces	Crime Incidents	One-to-Many (1:N)	force_id
Cities	Locations	One-to-Many (1:N)	$\operatorname{city_id}$
Cities	Police Stations	One-to-Many (1:N)	city_id
Cities	Demographics	One-to-Many (1:N)	$\operatorname{city_id}$
Cities	Crime Statistics	One-to-Many (1:N)	city_id
Locations	Crime Incidents	One-to-Many (1:N)	location_id
Crime Categories	Crime Incidents	One-to-Many (1:N)	category_id
Crime Categories	Crime Categories	One-to-Many (1:N)	parent_category_id
Crime Categories	Crime Statistics	One-to-Many (1:N)	category_id
Crime Incidents	Crime Outcomes	One-to-Many (1:N)	$incident_id$

5 Performance Optimisation

5.1 Indexing Strategy

Primary Indexes (Automatically Created):

```
-- Primary Key Indexes

CREATE UNIQUE INDEX pk_police_forces ON police_forces(force_id);

CREATE UNIQUE INDEX pk_cities ON cities(city_id);

CREATE UNIQUE INDEX pk_crime_categories ON crime_categories(
    category_id);

CREATE UNIQUE INDEX pk_locations ON locations(location_id);

CREATE UNIQUE INDEX pk_crime_incidents ON crime_incidents(
    incident_id);
```

Performance Indexes:

```
-- Geographic Queries
CREATE INDEX idx_locations_coordinates ON locations(latitude,
   longitude);
CREATE INDEX idx_cities_coordinates ON cities(latitude, longitude
CREATE INDEX idx_stations_coordinates ON police_stations(latitude
   , longitude);
-- Temporal Queries
CREATE INDEX idx_incidents_date ON crime_incidents(incident_date)
CREATE INDEX idx_incidents_month ON crime_incidents(
  month_reported);
CREATE INDEX idx_time_date ON time_dimension(date_value);
-- Category Analysis
CREATE INDEX idx_incidents_category ON crime_incidents(
   category_id);
CREATE INDEX idx_categories_severity ON crime_categories(
   severity_level);
```



```
-- Composite Indexes for Common Queries

CREATE INDEX idx_incidents_date_category

ON crime_incidents(incident_date, category_id);

CREATE INDEX idx_incidents_location_date

ON crime_incidents(location_id, incident_date);
```

5.2 Query Optimisation Examples

Strategic Dashboard - Borough Crime Summary:

6 Data Integrity and Constraints

6.1 Referential Integrity

6.2 Domain Constraints

7 Scalability and Future Considerations

7.1 Partitioning Strategy

```
-- Temporal Partitioning for Large Datasets

CREATE TABLE crime_incidents_2025_q1 PARTITION OF crime_incidents

FOR VALUES FROM ('2025-01-01') TO ('2025-04-01');

CREATE TABLE crime_incidents_2025_q2 PARTITION OF crime_incidents

FOR VALUES FROM ('2025-04-01') TO ('2025-07-01');
```

7.2 Archive Strategy

```
-- Archive Table for Historical Data

CREATE TABLE crime_incidents_archive (
    LIKE crime_incidents INCLUDING ALL
);

-- Automated Archiving Procedure

CREATE PROCEDURE archive_old_incidents(retention_years INT)

BEGIN

INSERT INTO crime_incidents_archive

SELECT * FROM crime_incidents

WHERE incident_date < DATE_SUB(CURDATE(), INTERVAL retention_years YEAR);

DELETE FROM crime_incidents

WHERE incident_date < DATE_SUB(CURDATE(), INTERVAL retention_years YEAR);
```

END;

8 Conclusion

8.1 ERD Design Summary

Technical Achievements:

- ✓ Comprehensive 10-entity normalised schema design
- ✓ Optimised for analytical query patterns and dashboard performance
- ✓ Scalable architecture supporting 22,667+ records efficiently
- ✓ Complete referential integrity with 11 foreign key relationships
- ✓ Performance-optimised with 15+ strategic indexes
- ✓ Business rule enforcement through 10+ check constraints

Performance Specifications:

- Database Size: Handles 22,667+ crime incidents efficiently
- Query Performance: Sub-second response times for dashboard queries
- Normalisation: Third Normal Form with selective denormalisation
- Indexing: Comprehensive covering all major query patterns
- Scalability: Partitioning and archiving strategies for growth

Professional Value: This Physical ERD demonstrates advanced database design skills including:

- Complex relational schema design with multiple entity relationships
- Performance optimisation through strategic indexing and query planning
- Data integrity enforcement through comprehensive constraint design
- Scalability planning with partitioning and archiving strategies
- Real-world application understanding in law enforcement analytics

The design provides a robust, scalable foundation for the London Crime Analysis Dashboard System, supporting multi-level analytical requirements while maintaining data integrity and optimal performance.

| postcode VARCHAR(10)

POLICE_FORCES TIME_DIMENSION | force_id (PK) VARCHAR(10) | time_id (PK) INTEGER | force_name VARCHAR(100) | date_value DATE UQ | region VARCHAR(50) | year INTEGER | headquarters_address VARCHAR(200)| | quarter INTEGER | officer_count INTEGER | month INTEGER | budget_millions DECIMAL(10,2) | | day_of_week INTEGER | area_covered_sq_km DECIMAL(10,2)| | is_weekend BOOLEAN | season ENUM(...) 1:N (Reference) CITIES | city_id (PK) INTEGER | city_name VARCHAR(100) | region VARCHAR(50) | latitude DECIMAL(10,6) | longitude DECIMAL(11,6) | population INTEGER | area_sq_km DECIMAL(10,2) | population_density DECIMAL(10,2)| | force_id (FK) VARCHAR(10) | 1:N POLICE_STATIONS | station_id (PK) INTEGER | station_name VARCHAR(100) | address VARCHAR(200) | latitude DECIMAL(10,6) | longitude DECIMAL(11,6) | force_id (FK) VARCHAR(10) | city_id (FK) INTEGER | station_type ENUM(...) | is_operational BOOLEAN 1:N LOCATIONS | location_id (PK) BIGINT | 10 | street_name VARCHAR(200) | area_name VARCHAR(100)