

Trabalho experimental do pendulo gravítico simples

Feito por:

Chen Cheng 38147 Adriano Santos 37826 Miguel Neto 37649 Ruben Peixoto 37514

1. Objetivos

O objetivo deste trabalho laboratorial é determinar a aceleração gravítica usando um pêndulo gravítico simples, (como enunciado na ficha do 'Trabalho experimental nº1'). Também pretendemos, com este trabalho, verificar que a aceleração gravítica é de aproximadamente 9,81m/s².

2. Introdução

"O pêndulo simples é um sistema mecânico caracterizado por uma massa pontual suspensa de um fio inextensível de massa desprezável, preso num ponto fixo" informação presente na ficha "Trabalho experimental nº1".

Para esta experiência utilizamos a função $g=\frac{4\pi^2L}{T^2}$ que servirá para calcular a aceleração gravítica em que 'L' é o comprimento da corda mais o raio da esfera, "g" é a aceleração gravítica e "T" é o tempo de uma oscilação. Esta função vem da manipulação da função $T=2\pi\sqrt{\frac{L}{g}}$.

Segundo a Segunda Lei de Newton "...a força resultante aplicada a um objeto é diretamente proporcional à sua aceleração...", nesta experiência o pêndulo foi lançado com uma força inicial composta apenas pela força gravítica sendo este largado num ângulo inferior a 15°, partindo da sua posição de equilíbrio, "tornando as suas oscilações isócronas".

3. Material Utilizado

- Esfera não uniforme de certa massa;
- Suporte de montagem;
- Cronometro analógico;

o Alcance: 15m

o Resolução: 0.1 s

• Fita métrica;

o Alcance: 3m

o Resolução: 1mm

- Papel quadriculado;
- Material de escrita;
- Papel milimétrico;

4. Esquema de montagem

- 1- Fio inextensível de massa desprezável
- 2- Esfera com distribuição de massa não uniforme
- 3- Suporte de montagem
- θ Ângulo em que o pêndulo for largado.

5.Dados

	L(x10 ⁻² m)	t ₁₀ (s)	$T^2(s^2)$
~50	50,0	14,1	1,99
	50,1	14,2	2,02
	50,1	14,2	2,02
	50,0	14,1	1,99
	50,2	14,1	1,99
~60	60,1	15,5	2,40
	60,1	15,0	2,25
	60,0	15,3	2,34
	60,0	15,3	2,34
	60,1	15,5	2,40
~70	69,9	16,8	2,82
	69,6	16,9	2,86
	69,9	16,6	2,76
	69,3	17,0	2,89
	69,6	16,8	2,82
~80	79,7	17,6	3,10
	79,7	17,6	3,10
	79,9	18,1	3,28
	80,0	17,9	3,20
	80,1	17,9	3,20
~90	90,0	18,9	3,57
	90,1	18,8	3,53
	89,9	18,9	3,57
	89,0	19,0	3,61
	90,1	19,0	3,61
~100	99,8	20,1	4,04
	100,1	20,0	4,00
	100,2	20,1	4,04
	99,9	20,1	4,04
	99,8	19,8	3,92
~110	110,0	21,0	4,41
	110,0	20,8	4,33
	110,0	20,8	4,33
	110,0	21,0	4,41
	110,0	21,0	4,41
~120	120,0	21,8	4,75
	120,0	21,9	4,80
	120,0	21,8	4,75
	120,0	21,7	4,71
	120,0	22,0	4,84

6. Tratamento de Dados

 $L(x10^{-2}m)=Comprimento$ do fio em metros mais o raio do pêndulo t_{10} (s) = Tempo de 10 oscilações em segundos

$$T^2(s^2)$$
 = Tempo que decorre numa oscilação calculado por $T^2 = \left(\frac{t_{10}}{10}\right)^2$

Formula do declive da reta: $\frac{Eixo do Y}{Eixo do X} = \frac{T^2}{L} = 3.99$

$$g = \frac{4\pi^2 L}{T^2} <=> gT^2 = 4\pi^2 L <=> \frac{T^2}{L} = \frac{4\pi^2}{g}$$
, como $\frac{T^2}{L} = 3.99 = \frac{4\pi^2}{g}$

Formula de g:
$$g = \frac{4\pi^2}{Declive} <=> g = \frac{4\pi^2}{3.99} \approx 9.89$$

7. Resultados

Nesta experiencia verificamos que a aceleração gravítica e de aproximadamente 9.89 m/s², o que esta consideravelmente próximo do valor tabulado de 9.81m/s².

8. Comentários críticos

Neste trabalho houve vários erros acidentais e instrumentais:

Nos erros acidentais:

- 1. As medições dos valores para L=1.10m e L=1.20m não terem sido efetuadas de forma correta, tendo L sido medido apenas ao inicio da experiência ao invés de após cada cronometragem.
- 2. Devido ao local de realização da experiencia, o pêndulo poder ter mudado de plano e fazer um movimento oval.

Nos erros instrumentais:

- 1. Esfera não homogénea;
- 2. Esfera não perfeitamente circular
- 3. Erro humano na cronometragem e medição do pendulo;
- 4. Erro na fita métrica, devido ao seu zero ser ambíguo.

9. Bibliografia

- LERNER, LAWRENCE. e EISBERG, ROBERT. "FÍSICA Fundamentos e Aplicações", Volume 1.
 - CARRAÇA, GRAÇA, Ficha "Trabalho experimental nº1"