# Whitening Coloring Batch Transform for GANs Aliaksandr Siarohin, Enver Sangineto, Nicu Sebe DISI, University of Trento, Italy

# Whitening Coloring Batch Transform:

 Whitening is a normalization technique. Contrary to batch norm (standardization), whitening also decorelates features:



 Whitening reduces the network capacity. To restore the original capacity coloring is introduced:



| Cifar10 | IS   | FID  |
|---------|------|------|
| W-only  | 6.63 | 36.8 |
| WC-diag | 7.00 | 34.1 |
| WC      | 8.66 | 17.2 |

 Whitening improves the conditioning number of the generator Jacobian. Controlling the conditional number the Jacobian plays an important role in the improve GAN training[1]:



### **Cholesky Whitening:**

 We propose Cholesky based whitening. It has marginal runtime overhead (32%). ZCA whitening [2] is an order of magnitude slower. ZCA whitening also has unstable gradient computation:



### Conditional Coloring (cWC):

• Conditional coloring is similar to cBN. Coloring parameters depend on the input condition (class label in our case). Conditional coloring is the more expressive than other commonly used methods:



 Conditional coloring is only works jointly with whitening and with a class-agnostic branch:



| IS   | FID  |
|------|------|
| 7.92 | 24.4 |
| 8.10 | 28.0 |
| 8.97 | 13.5 |
|      | 7.92 |



## Parameter-efficient conditional coloring (cWC<sub>sa</sub>):

- A dictionary of coloring filters is learned, a filter for each class is a linear combination of the dictionary filters. Another view: a single layer predicts coloring filters from one-hot class embedding.
- This technique scales up to ImageNet.
  We can obtain better performance than cBN based networks, with significantly less parameters in the generator:

| Imagenet | #params | IS   |
|----------|---------|------|
| cBN      | 45M     | 29.7 |
| cWCsa    | 6M      | 34.4 |

#### Discriminative experiments:

WC usually achieves a test error slightly better than BN.
 Hoewer, WC has significantly higher train error, thus can be trained for more iteration than BN:

|       | Cifar10   |           | Cifar100  |           |
|-------|-----------|-----------|-----------|-----------|
|       | ResNet-32 | ResNet-56 | ResNet-32 | ResNet-56 |
| BN    | 7.31      | 7.21      | 31.41     | 30.86     |
| WC    | 7.30      | 6.33      | 29.50     | 28.69     |
| WC x2 | 6.37      | 5.95      | 29.00     | 27.21     |

#### Acknowledgment:

 Many thanks to Anirudh Goyal, who kindly presented this poster.

- 1. Odena et al. Is generator conditioning causally related to gan performance?
- 2. Huang et al. Decorrelated batch normalization.
- 3. Dumoulin, et al., "Feature-wise transformations"

Our code is publicly available: https://github.com/AliaksandrSiarohin/wc-gan

