R.LTWB - SECTION 03

Descarga, procesamiento y análisis de datos hidroclimatológicos

dentificación y procesamiento de datos atípicos - Outliers

https://github.com/jlgingcivil/R.LTWB.CS2120

JORGE LUIS GONZÁLEZ CASTRO CC: 1032395475

CS2021

SECTION 03 DESCARGA, PROCESAMIENTO Y ANÁLISIS DE DATOS HIDROCLIMATOLÓGICOS

TABLA DE CONTENIDO

1.	Introducción	3
2.	Objetivo General	3
3.	Actividad 1: Procesamiento en software	3
4.	ACTIVIDAD 2: análisis de OTROS PARÁMETROS	3
5.	ACTIVIDAD 3: SENSIBILIDAD PARÁMETROS ESTADÍSTICOS	
6.	Conclusiones.	
7.	Referencias Bibliográficas	. 11
	ÍNDICE DE ILUSTRACIONES	
llus [.]	tración 3-1. Descarga Outlier.py	3
	tración 3-2. Script Outlier.py	
	tración 3-3. Ejecución inicial Outlier.py	
llus ⁻	tración 3-4. Resultados Precipitación script Outlier.py	6
llus ⁻	tración 3-5. Resultados Outlier Método 1 Precipitación	7
llus ⁻	tración 3-6. Resultados Outlier Método 2 Precipitación	7
	tración 3-7. Resultados Outlier Método 3 Precipitación	
	tración 3-8. Resultados Outlier Método 1 Evaporación	
	tración 3-9. Resultados Outlier Método 2 Evaporación	
	tración 3-10. Resultados Outlier Método 3 Evaporación	
	tración 3-11. Resultados Outlier Método 1 Temperatura Máxima	
	tración 3-12. Resultados Outlier Método 2 Temperatura Máxima	
	tración 3-13. Resultados Outlier Método 3 Temperatura Máxima	
	tración 3-14. Resultados Outlier Método 1 Temperatura Mínima	
	tración 3-15. Resultados Outlier Método 2 Temperatura Mínima	
	tración 3-16. Resultados Outlier Método 3 Temperatura Mínima	
	tración 3-17. Resultados Outlier Método 1 Caudal	
	tración 3-18. Resultados Outlier Método 2 Caudal	
	tración 3-19. Resultados Outlier Método 3 Caudal	
	tración 3-20. Registros Evaporación	
	tración 3-21. Análisis Desviaciones Estándar Precipitación	
	tración 3-22. Registros Evaporacióntración 3-23. Análisis Desviaciones Estándar Evaporación	
	tración 3-24. Registros Caudaltración 3-25. Análisis Desviaciones Estándar Caudal	
	tración 3-26. Registros Temperatura Mínima	
	tración 3-26. Registros Temperatura Máximatración 3-27. Registros Temperatura Máxima	
	tración 4-1. Acceso plataforma IDEAM	
	tración 5-1. Resultados Precipitación	

SECTION 03	JORGE LUIS GONZÁLEZ CASTRO
DESCARGA, PROCESAMIENTO	CC: 1032395475
Y ANÁLISIS DE DATOS	C\$2021
HIDROCLIMATOLÓGICOS	
Ilustración 5-2. Resultados Evaporación	5
Ilustración 5-3. Resultados Caudal	7
llustración 5-4. Resultados Temperatura Máxima	8
llustración 5-5. Resultados Temperatura Mínima	9

JORGE LUIS GONZÁLEZ CASTRO CC: 1032395475

CS2021

HIDROCLIMATOLÓGICOS 1. INTRODUCCIÓN

Se continua con curso Balance hidrológico de largo plazo para estimación de caudales medios usando SIG - LWTB con el desarrollo de la sección 3 Descarga,

procesamiento y análisis de datos hidroclimatológicos. A continuación, se presenta en cada numeral las actividades realizadas de acuerdo con cada capítulo de la sección de estudio, incluyendo el resumen de actividades, logros alcanzados y capturas de pantalla de los ejercicios realizados. Se ha creado el repositorio https://github.com/ilgingcivil/R.LTWB.CS2021 para la inclusión de los archivos y documentos de las actividades desarrolladas.

2. OBJETIVO GENERAL

El objetivo general en esta sección es analizar a través de diferentes técnicas los datos atípicos, realizar su exclusión, complemento o ajuste de las series de datos descargadas desde el portal del IDEAM.

3. ACTIVIDAD 1: PROCESAMIENTO EN SOFTWARE

En primera medida se realiza la descarga del script Outlier.py y la creación de la carpeta para almacenamiento de archivos.

Fuente: Elaboración Propia, 2023.

Luego se ajusta el script para que lea la ruta de almacenamiento de archivos, así como la definición de los parámetros tomando el ejemplo de clase para el archivo pivot de precipitación y se inicia con la ejecución de la herramienta.

CC: 1032395475 CS2021

Ilustración 3-2. Script Outlier.py

Fuente: Elaboración Propia, 2023.

General dataframe information with 516 IDEAM records for 328 stations

Creation | Creation** | Creati

CC: 1032395475 CS2021

CC: 1032395475 CS2021

Fuente: Elaboración Propia, 2023.

Se verificó que en la carpeta /.datasets/IDEAM_Outlier se almacenarán los resultados del script en cuanto a gráficas, tablas y archivo de visualización en formato MarkDown.

Fuente: Elaboración Propia, 2023.

Las gráficas de resultados por cada método se presentan a continuación.

Ilustración 3-5. Resultados Outlier Método 1 Precipitación

Ilustración 3-6. Resultados Outlier Método 2 Precipitación

Ilustración 3-7. Resultados Outlier Método 3 Precipitación

Fuente: Elaboración Propia, 2023.

Se realizó el mismo ejercicio para los parámetros de caudal, evaporación, temperatura máxima y temperatura mínima.

Ilustración 3-8. Resultados Outlier Método 1 Evaporación

Ilustración 3-9. Resultados Outlier Método 2 Evaporación

Ilustración 3-10. Resultados Outlier Método 3 Evaporación

Ilustración 3-11. Resultados Outlier Método 1 Temperatura Máxima

Fuente: Elaboración Propia, 2023. Ilustración 3-12. Resultados Outlier Método 2 Temperatura Máxima

Ilustración 3-13. Resultados Outlier Método 3 Temperatura Máxima

Fuente: Elaboración Propia, 2023.
Ilustración 3-14. Resultados Outlier Método 1 Temperatura Mínima

Ilustración 3-15. Resultados Outlier Método 2 Temperatura Mínima

Fuente: Elaboración Propia, 2023. Ilustración 3-16. Resultados Outlier Método 3 Temperatura Mínima

Ilustración 3-17. Resultados Outlier Método 1 Caudal

Ilustración 3-18. Resultados Outlier Método 2 Caudal

CC: 1032395475 CS2021

Ilustración 3-19. Resultados Outlier Método 3 Caudal

Fuente: Elaboración Propia, 2023.

En la siguiente ilustración se observa el resultado de las medias y desviaciones estándar de los resultados del ejercicio del numeral anterior, donde se compara en cada estación estos parámetros para la serie original y las series con datos reemplazados e imputados por cada uno de los tres métodos usados. A estos valores estadísticos se les calculo la desviación estándar para conocer la dispersión entre sí y valorar cuales estaciones tienen grandes diferencias entre los datos iniciales y los procesados.

| Comparation Store | Comp

JORGE LUIS GONZÁLEZ CASTRO CC: 1032395475

CS2021

Se define como el umbral de aceptación las desviaciones que sean menores a 1. Se hizo un filtro para la desviación estándar de las medias y la desviación estándar de este mismo parámetro, con el fin de identificar en cada caso la magnitud de estaciones con problemas.

Para el caso de la precipitación se obtuvieron los siguientes resultados donde se observa que el filtro por la desviación estándar genera 15 estaciones con datos deficientes que deberían ser eliminadas para análisis posteriores.

Ilustración 3-21. Análisis Desviaciones Estándar Precipitación

Estación	Serie Original		Método 1 - Valores Reemplazados		Método 1 - Valores Imputados		Método 2 - Valores Reemplazados		Método 2 - Valores Imputados		Método 3 - Valores Reemplazados		Método 3 - Valores Imputados		Análisis Desviación Estándar		
~	mea 🔻	std ▼	mea 🔻	std ▼	mea ▼	std ▼	mea 🔻	std ▼	mea 🔻	std ▼	mea 🔻	std ▼	mea ▼	std ▼	mean 🍱	std 🔻	
21200710	66.205	72.622	66.021	71.747	63.526	65.719	66.021	71.747	63.526	65.719	66.021	71.747	63.526	65.719	1.359670392	3.35340906	
21200800	67.413	68.151	65.513	53.570	61.738	40.986	65.503	53.513	62.672	44.429	65.503	53.513	62.672	44.429	2.073582947	9.12560141	
21201090	130.214	125.314	129.132	119.133	122.365	101.531	128.918	118.158	124.406	106.678	128.918	118.158	124.406	106.678	3.085311106	8.6683583	
21201130	39.284	214.980	40.559	137.867	22.219	29.832	29.378	77.817	24.793	38.554	29.378	77.817	24.793	38.554	7.224932512	67.1953031	
21201380	65.632	54.125	65.388	52.933	63.514	48.349	65.388	52.933	63.514	48.349	65.388	52.933	63.514	48.349	1.037609778	2.64355761	
21201620	57.139	54.803	56.803	52.828	51.929	39.459	56.621	52.012	53.697	44.380	56.621	52.012	53.697	44.380	2.065018026	5.75623153	
21201720	59.824	80.735	59.222	76.954	52.157	57.356	58.861	75.341	54.824	64.665	58.861	75.341	54.824	64.665	2.964551981	8.50321309	
21201750	80.825	89.550	82.167	95.199	70.973	65.766	80.825	89.550	80.825	89.550	80.825	89.550	80.825	89.550	3.840948931	9.57939939	
21201760	22.476	35.008	22.081	32.765	19.317	25.040	21.990	32.367	19.687	26.003	21.990	32.367	19.687	26.003	1.389320085	4.09174364	
21201790	12.148	40.022	12.967	42.414	5.021	17.674	11.660	37.491	9.012	30.285	11.660	37.491	9.012	30.285	2.749447744	8.41421565	
21201840	21.000	74.893	26.155	87.481	5.092	17.338	19.317	64.450	15.600	53.572	19.317	64.450	15.600	53.572	6.518298886	22.0483115	
21206070	101.584	82.502	101.584	82.502	101.584	82.502	101.464	81.940	99.401	77.067	101.464	81.940	99.401	77.067	1.043154671	2.55466547	
21230080	88.953	93.328	88.545	91.317	85.853	84.801	88.545	91.317	85.853	84.801	88.545	91.317	85.853	84.801	1.50052915	3.81804371	
23060040	113.111	109.778	112.574	107.135	108.832	97.964	112.574	107.135	108.832	97.964	112.574	107.135	108.832	97.964	2.080623224	5.33787922	
24010380	22.084	43.361	21.835	41.878	18.786	33.859	21.702	41.296	20.178	37.465	21.702	41.296	20.178	37.465	1.229621934	3.34450836	

Fuente: Elaboración Propia, 2023.

Es así que las siguientes estaciones se consideran no apropiadas para continuar:

- 21200710
- 21200800
- 21201090
- 21201130
- 21201380
- 21201620
- 21201720
- 21201750

- 21201760
- 21201790
- 21201840
- 21206070
- 21230080
- 23060040
- 24010380

En la siguiente ilustración se observa el resultado de este análisis para las estaciones de evaporación.

JORGE LUIS GONZÁLEZ CASTRO CC: 1032395475

CS2021

| Comparison Series Original | Series Original | Series Original | Microbo 2 - Valores | Imputations | Microbo 2 - Valores | Imputations | Microbo 3 - Valores | Imputations

Fuente: Elaboración Propia, 2023.

Para el caso de la evaporación se obtuvieron los siguientes resultados donde se observa que el filtro por la desviación estándar genera 6 estaciones con datos deficientes que deberían ser eliminadas para análisis posteriores.

Ilustración 3-23. Análisis Desviaciones Estándar Evaporación

Estación	Serie C	Método 1 - Valores Reemplazados		Método 1 - Valores Imputados		Método 2 - Valores Reemplazados		Método 2 - Valores Imputados		Método 3 - Valores Reemplazados		Método 3 - Valores Imputados		Análisis Desviación Estándar				
~	mea ▼	std▼	mea ▼	std ▼	mea ▼	std▼	mea 🔻	std▼	mea ▼	std▼	mea ▼	std▼	mea 🔻	std▼	mean	Ψ,	std	Ţ,
21206930	136.260	319.190	136.433	311.753	88.584	161.795	130.540	287.186	110.002	228.724	130.540	287.186	110.002	228.724	17.994112	11	56.65335	64
21206950	160.363	440.671	189.348	532.043	60.327	134.197	157.197	424.978	132.866	362.770	157.197	424.978	132.866	362.770	40.571268	99	123.6832	12
21206980	83.629	326.543	103.158	352.236	22.672	49.470	73.000	258.984	44.807	155.705	73.000	258.984	44.807	155.705	27.459568	67	107.3785	82
21206990	178.095	368.500	177.765	366.869	169.145	346.723	177.641	366.321	172.571	354.615	177.641	366.321	172.571	354.615	3.5876832	69	8.479127	96
21255160	24.061	79.268	31.167	100.216	4.615	15.578	23.773	77.882	20.409	69.657	23.773	77.882	20.409	69.657	8.1350094	97	26.09333	301
35035130	186.647	153.257	181.794	104.686	178.177	91.737	181.714	104.224	178.441	92.532	181.714	104.224	178.441	92.532	3.016736	3	21.63054	11

Fuente: Elaboración Propia, 2023.

Es así que las siguientes estaciones se consideran no apropiadas para continuar:

- 21206930
- 21206950
- 21206980

- 21206990
- 21255160
- 35035130

Al ser casi la totalidad de estaciones de evaporación con problemas, podría evaluarse la sustitución de datos con otra metodología para generar las series sintéticas en cada estación o trabajar con datos de alta incertidumbre hacia el error.

En la siguiente ilustración se observa el resultado de este análisis para las estaciones de caudal.

JORGE LUIS GONZÁLEZ CASTRO CC: 1032395475

CS2021

Ilustración 3-24. Registros Caudal

Fuente: Elaboración Propia, 2023.

Para el caso de caudal se obtuvieron los siguientes resultados donde se observa que el filtro por la desviación estándar genera 1 estación que es la 35067050 con datos deficientes que debería ser eliminada para análisis posteriores.

Ilustración 3-25. Análisis Desviaciones Estándar Caudal

Estación	Serie O	riginal	Método 1 - Valores Reemplazados		Método 1 - Valores Imputados		Método 2 - Valores Reemplazados		Método 2 - Valores Imputados		Métod Valo Reempl	res	Métod Valo Imput	res	Análisis Do Estár	
~	meai ▼	std▽	meai▼	std ▼	meai▼	std ▼	meai▼	std▼	meai ▼	std▼	mear▼	std ▼	meai▼	std ▼	mean 🍱	std 🍱
35067050	24.029	30.574	23.754	29.013	19.954	17.302	23.584	28.246	21.304	21.797	23.584	28.246	21.304	21.797	1.612778238	4.95782209

Fuente: Elaboración Propia, 2023.

En la siguiente ilustración se observa el resultado de este análisis para las estaciones de temperatura mínima.

CC: 1032395475 CS2021

Ilustración 3-26. Registros Temperatura Mínima ición de página Fórmulas Datos Revisar Vista Programador Ayuda Estilos =+DESVEST.M(B5.D5.F5.H5.J5.L5.N5 Método 1 -Método 1 -Método 2 -Método 2 -Método 3 Método 3 Serie Original Valores Valores Valores Valores **Valores** Estándar Reemplazados Imputados Reemplazados Imputados Reemplazado Imputados mean std mean std mean std mean std std mean std mean std 21185040 23.122 1.345 23.122 1.345 23.122 1.345 23.122 1.345 23.122 1.345 23.122 1.345 23.122 1.345 21195080 21.693 1.532 21.694 1.527 21.697 1.521 21.694 1.527 21.697 1.521 21.694 1.527 21.697 1.521
 21195190
 1.385
 1.530
 1.388
 1.513
 1.1406
 1.471
 1.388
 1.513
 1.406
 1.471
 1.388
 1.513
 1.406
 1.471

 21205012
 9.415
 2.242
 9.417
 9.423
 9.421
 2.234
 9.425
 2.217
 9.417
 9.234
 9.425
 2.217

 21205160
 8.227
 3.455
 8.227
 3.455
 8.227
 3.455
 8.227
 3.455
 8.227
 3.455
 8.227
 3.455
 8.227
 3.455
 8.227
 3.455
 8.227
 3.455
 8.227
 8.245
 8.227
 8.245
 8.247
 8.245
 8.247
 8.245
 8.247
 8.245
 8.247
 8.245
 8.247
 8.245
 8.247
 8.245
 8.245
 8.247
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 8.245
 < 2.356 21205230 8.892 2.358 8.892 2.356 8.889 2.349 8.892 2.356 8.889 2.349 8.892 21205420 | 6.967 | 2.795 | 6.967 | 2.795 | 6.967 | 2.795 | 6.967 | 2.795 | 6.967 | 2.795 | 6.967 | 2.795 | 6.967 | 2.795
 2.779
 7.260
 2.779
 7.260
 2.779
 7.260
 2.778
 7.260
 2.778
 7.262
 2.772
 7.260
 2.778
 7.262

 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.054
 1.398
 9.0 21205520 7.260 21205580 9.054 1.398 1.398 21205660 19.620 2.133 19.620 2.132 19.622 2.129 19.621 2.131 19.636 2.096 19.621 2.131 19.636 21205670 13.485 1.118 13.485 1.118 13.485 1.118 13.485 1.118 13.485 1.118 13.485 1.118 13.485 1.118 21205700 7.731 2.257 7.731 2.257 7.731 2.257 7.731 2.257 7.731 2.257 7.731 2.257 7.731 2.257 7.731 8.901 1.941 8.901 1.941 8.901 1.940 8.903 1.935 8.901 1.940 8.903
 21205720
 7.141
 7.65
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 1.765
 7.141
 < P | P (2) | EV | EV (2) | Q | Q (2) | Tmin | Hoja2 | 今 9回 //(4)) ESP

Fuente: Elaboración Propia, 2023.

Para el caso de la temperatura mínima no se obtuvieron estaciones con mala desviación estándar por lo que se podría continuar con todas.

En la siguiente ilustración se observa el resultado de este análisis para las estaciones de temperatura máxima.

Fuente: Elaboración Propia, 2023.

JORGE LUIS GONZÁLEZ CASTRO CC: 1032395475

CS2021

Para el caso de la temperatura máxima no se obtuvieron estaciones con mala desviación estándar por lo que se podría continuar con todas.

4. ACTIVIDAD 2: ANÁLISIS DE OTROS PARÁMETROS

A la fecha de desarrollo de esta actividad, la página web del IDEAM se encuentra deshabilitada por lo que no se pueden descargar los datos de otros parámetros.

Fuente: IDEAM, 15/09/2023.

5. ACTIVIDAD 3: SENSIBILIDAD PARÁMETROS ESTADÍSTICOS

Se realizó un ejercicio de ensayo y error para determinar el q1, q3, K-sigma y Z-score para generar un número similar de outliers.

Para la precipitación se tiene que q1=0.15, q3=0.90, K-sigma=4.35 y Z-score=4.35.

JORGE LUIS GONZÁLEZ CASTRO

SECTION 03 DESCARGA, PROCESAMIENTO Y ANÁLISIS DE DATOS HIDROCLIMATOLÓGICOS

CC: 1032395475 CS2021

Ilustración 5-1. Resultados Precipitación

Fuente: Elaboración Propia.

Para evaporación se tiene que q1=0.1, q3=0.9, K-sigma=2.8 y Z-score=2.8.

Ilustración 5-2. Resultados Evaporación

Fuente: Elaboración Propia.

Para caudal se tiene que q1=0.1, q3=0.9, K-sigma=3.8 y Z-score=3.8.

Ilustración 5-3. Resultados Caudal

Para la temperatura máxima se tiene que q1=0.15, q3=0.85, K-sigma=3.8 y Z-score=3.8.

Ilustración 5-4. Resultados Temperatura Máxima

Fuente: Elaboración Propia.

Para la temperatura mínima se tiene que q1=0.15, q3=0.85, K-sigma=3.58 y Z-score=3.58.

Ilustración 5-5. Resultados Temperatura Mínima

CS2021

SECTION 03 DESCARGA, PROCESAMIENTO Y ANÁLISIS DE DATOS HIDROCLIMATOLÓGICOS

Fuente: Elaboración Propia.

6. CONCLUSIONES

- Se realizó el análisis de los outliers a partir de las tres metodologías incluidas en el script Outlier.py.
- Se realizó la identificación de las estaciones con mejor ajuste de datos reemplazados o imputados.
- Se realizó el análisis de sensibilidad de los parámetros el q1, q3, K-sigma y Z-score.
- No se pude realizar la actividad con otros parámetros ya que a la fecha la plataforma de descarga del IDEAM no se encuentra activa.

7. REFERENCIAS BIBLIOGRÁFICAS

 RCFDTOOLS, 2023. Balance hidrológico de largo plazo para estimación de caudales medios usando SIG. Contenido del curso: https://github.com/rcfdtools/R.LTWB/tree/main/Section03/Outlier.