SEQUENCE LISTING

<110> THE JOHNS HOPKINS UNIVERSITY SCHOOL OF MEDICINE
 GERMINO, Gregory
 WATNICK, Terry
 PHAKDEEKITCHAROEN, Bunyong

<120> DE	TECTION A	IND	TREATMENT	OF	POLYCYSTIC	KIDNEY	DISEASE
----------	-----------	-----	-----------	----	------------	--------	---------

<130> JHU1680-2

<150> US 60/283,691

<151> 2001-07-13

<150> US 60/218,261

<151> 2000-07-13

<160> 113

<170> PatentIn version 3.0

<210> 1

<211> 53522

<212> DNA

<213> Homo sapiens

<400> 1 tgtaaacttt ttgagacagc atctcaccct gttccccagg ctggagtgca gtggtgtgat 60 catggctcac tgcagcgtca acctcctggg tctacttgat ctgtaaactt cgagggaagg 120 tgtaataaac cctcctgcaa tgtctttgtt tttcaaaatc tttgtatttc acagtttagc 180 240 ttgagacaca gtcttgctct tgttgcccag gctggagtgc aatggtgtga tcttggctca 300 360 ctgcaacttc cacctcttgg gttcaagaga ttctcctgcc tcagccttcc gagtagctag gattacagge geogecacca caccecgeta attitigtatt titagtagag atggggttte 420 tecatattgg teaggetggt eteaaactee egaceteagg tgateegeee aceteageet 480 cccaaaatgc tgggattaca ggcgtgagtc accgcacctg gccaatgttc tatttttgag 540 aacacaacag ttcataatat attctacata gaccatacct gttatgtgta gataaacaga 600 ctcttttccc atttaacacc ttttgcctta ggtttatttt tctggtatca atactggcac 660 acttactttg tttgcagttt cctgtctttt ttttttttt tttttttt gagacagagt 720 ctcactctgt cacccagget ggagtgaagt ggegggatet eggeteactg caacetetae 780 ctcctgggtt catgcgattc tcctgcctca gcttcccgaa tagctgagac cacaactgtg 840 900 tgccaccatg cccagccaat ttttgtattt ttagtagaca cggggtttca ccatactggc caggatggct caatctcttg acctcgtgat ccacctgcct ccgcctccca aagtgctggg 960 1020 1080 ctgtcaccca ggctggagtg cagtggggta acctcaggte actgcgacct ccgcctcccg

ggttccagtg attctcctgc ctcagcctcc cgagtagctg ggattacagg cacccaccac 1140 catgcctggc taatttttgt atttttagta gagacggggt tttgccacgt tggccaggtt 1200 ggtctcgaac tcttggcctc atgtgacccg cctgccttgg cctcccaaag tgctgggatt 1260 acaggtgtga gccactgtgc ctggcctggc tttcttgttt cttttctcct cttctagttt 1320 ccccctttta qqctaacaat tattcactgt taataaaaac cctcaggtct gtattttatc 1380 aagaaacatt teeeteaegt ettetteeet gaaccaaaca agatetetgg cacattttat 1440 ttgctctgtc tcaccacatg gattttgttt ttttgtttct ttgttttttg agatggagtc 1500 tcactcttgt tgcccaggct ggagtgccat ggcacaatct cagctcactg caacctccac 1560 ctcctgggtt caagcgattc tcctgtctca gcctcctgag tagctgggat tacaggcgcg 1620 tggcaccacc cccagctaat ttttgtattt ttagtagaga cggggtttca ccatgttggt 1680 caggetggte tegaacteet gacettgtga tetgeecace ttggeeteec aaagtgetgg 1740 gattacaggc atgagccacc acgcccggcc cccatggttt ttcaaatagt ttagaatttc 1800 atttccaggt aactaatttg cttctttaaa catatgtctt ttctatttaa gaaatccttt 1860 1920 ctaaacaatt gcattttatt ccacaaccgc cttcaaacaa tcattgagac ttggttaatc 1980 tgttttgctc atttggcagc agtttcttgt ggctgtttct tccctccact ggagtccttg aatcttaagt ctgtcatttg actgcaatta aaagctgggt ttggaataca atcgcagcct 2040 taccatccac ctgctgtgtg acctggtaaa tttctttttt tttttttgag acggagtctt 2100 2160 getetgttge ceaggetgga gtgeagtgge acaacetetg ceteceaggt teaagegatt 2220 ctactgcctc aggctcccta gtagctggga ttataggtgc ctgccaccat gcccagctga 2280 tttttgtatt tttagtagag atgaggtttc accatgttgg ctaggctggt ctcgaacttc tgatettgtg atetgeeege eteggeetee eaaagtgetg ggattaeagg eatgageeae 2340 2400 cactcccage cagttetttt tttettttt ccatttttt ttttttegag acaggatett 2460 actettttge ccaggeggga gtgeagtgge acaateaegg etcagegeag ccaetgeeta ctgggetcac acgetectee ggeetcagee tetegagtae etgggaetae aagegtgage 2520 2580 cagtttggct aatttttggct aatttttgta gaaacggggt ctcgccatgt tggccaggct ggtctccaac tcctggactc aagggatcca ccttcctccc cctctcaaag ttctgggatt 2640 accggagtga gccactgtgc cctgctggca aatttcttaa actgtctgtg cctcagtgac 2700 ctcatttaat aaagggaata attgtagcac actttttcta gagctgtgaa gattcaatgg 2760 2820 aataaataag gcaataaatg aatggatggg gaatgaagga tgtgggtttc ctccctcttg 2880 tettteaata ageteteace ateaacetee cattgeetgt tetetetett ceceetetet

4800 gcaggggttt ggaactatga ggtgcccagg acccagggtt ggattgaaaa gggcggaggg 4860 gactaagata agcagacagt tgtccccagc gctggggaga gtcttgggac cagtctgatg 4920 ccttgtattt cccaggctcc aggctcctcg ccgggacagt gtctccttgg gtgcgtgctg 4980 gatecetggg ggaegtggea catececagg ettgetaaac attgggtggg ttetggeatt 5040 tggttttgta acgtttctgg gtcactcccg cctgtggcca cccttcctta ggggagccgt 5100 gtgtccttgg ggctttgctg ggtggtctcg agggtgggag aagaatgggt tctcctggac caatggagee egtgeeeete ggggeeaeat tgeteetgeg eteeetgaet geggaegegt 5160 5220 gtgtetegeg getgtetetg tggagatgge eteeteetge etggeaacag cacceacaga 5280 attgcatcag acctacccca cccgttgttt gtgatgctgt agctgagggc tcctctgtct 5340 gccaggccgg tcactgggga ctctgtccag ggcctggtgg ttcctgcttc ccagcacctg 5400 atggtgtcca tgagagcagc ccctcaggag ctgtccggga gagaagggcg ctggtggctg 5460 ctgagcggag agcaaggccc gtgttctcca ggcccttggc acagcagtgg agcccccgcc 5520 cctgccttgt gttgtcctct taggctctgg tcctggggtt tggaggaggg ggaccctggg agttggtggc ctgtcccagc ctgagctggc aagattccga atgccaggcc ccccaagtgt 5580 gcaacagggc acagggtgac ctcatgtggg caggtgggtg ctgttctgta cacacctggg 5640 5700 qccgccgctg ggagagttct ggaaggtggg gtgaggggac ccatggcaaa ctagggcctt aggaaggatg tgaaggccct ggctggcccc ccaggccacc ctctgtgctg tggggcagcc 5760 cagccatttt gctgtctacc ctgcaaactc ctcctcgggg agacggctgg gttttcccca 5820 gggaagaggg gtcaagctgg gagaggtgaa ggacacagat cacagctgct ggcaggtgtt 5880 caagggtcca agagcgttgc tgtctgggtg tcaccagtag ccttcctggg gggctcacgc 5940 aggtgcctct ccacttgtgg ctccctggct gctgaagctc agcagggaca gctgtgtcca 6000 gttccaggtg gaggacagcc ggggcttctg aggccacagc ctgccttggg ttaatgatgc 6060 tgccgagagg tggtggcttt tggaaaagat ggcgtactgc aaaacgtgct gctctgcgtg 6120 gctcgaaget tegtggggag acgtgggcag ageegtgget gactcacaga cececcacee 6180 cagageetge cetgeeetee etgeeeegae eetteteeet eetgaeeeat gtgtttttt 6240 6300 ttttttttt ttttttgag acagagttca ctcttgttgc caaggctgga gtgcaatggc acgatetegg eteatggeaa ceteegeete etgggtteaa gegettttte etgeeteage 6360 6420 ctcccgagta gctgggatta caggcgtgca ccaccatgcc tggctaattt tgtattttta gtagagacag ggtttctcca tattggtcag gctggtcttg aactcctgac ctcagatgat 6480 6540 ccgcccgcct cggcctccca aagtgctggg attacaggca tgagccacca cgcccagccc

8460 accetggetg ggggteacet gggtetgetg etgtetegea aatgetgggg teeaggaetg 8520 ggcacatcga gggacttggt aggtgcttgg ttcactgatg taaaatatag gagcacccgg 8580 ggccttgccc tttcccacct gcatccctga atgacaggag agtgtgggag agtgtaggga 8640 cagcaggege agacceeggg geceetgeet gggattggeg teggggaaga caggeattet ggagcgaccc ctaggcctga tgccttagag cgcaactgcc agagacacag cttccttggg 8700 gggctggcca ggccacggag gggccctggc tcccatttct ggtccctgga tcctgagagc 8760 8820 gaggactagg gattgtcacc aaggcctcca tgagccctca gcagaaggag ggccaccctc 8880 gagggctccg ttatcactgg agcccgcgtt caaccaacac gcagatgatt ctccaaggac 8940 agagatggat gatggggagg gggctggcct ggaaggaccc ccagtgcagg tgacattgaa 9000 gccaggtttc aaagctccca cagggagctg cccagagaga gtccccaagg ggcaaggtga 9060 ctcgggggca ggggtagggc ctctgtcagg agagcctagg agaggcctgt gtcttctagg aagageeetg geageegage ggaggeagtg gtgaggaeet geateetgea tgteeagetg 9120 9180 geeteaceeg gggteeetga geegggtett aegtggetee egeacteggg egtteagaae 9240 gtgcctgcgt gagaaacggt agtttcttta ttagacgcgg atgcaaactc gccaaacttg 9300 tggacaaaaa tgtggacaag aagtcacacg ctcactcctg tacgcgattg ccggcagggg 9360 tqqqqqaaqq gatqggqagg ctttggttgt gtctgcagca gttgggaatg tggggcaccc 9420 qaqctcccac tgcagaggcg actgtggaga cagagagcac ctgcaggtca tccatgcagt 9480 atoggottgo atocagatoa tacagggaac actatgatto aacaacagac agggaccocg 9540 tttaaacatg gacaaggggt cactcacgcc tggaatccca gcagtttggg aggccagggt gggtggatcg cttgagccca ggagtttgac accagcctgg gcaacagggt gagaccccgg 9600 tctctaaaaa ataaaagaac attggccggg cgtggtggta tgcatctgtg gtcccagcta 9660 ttcaggagac tgaggtggga catcacttga gccgaggagg tcaaggctgc agtgagctgt 9720 9780 aaaaaaaaa aaaaaatcac aggatctgaa cagagatttc tccaaagaag acgcacagat 9840 9900 ggccaacagc gtgtgagaag atggtcggcc tcattagtca tgagggaaac gtaaatcaaa 9960 accactgtcc agccgggcgc ggtgcctcac gcctgtaatc ccagcacttt aggagagcag atggcttgag gccaggagtt tgaggccagc ctgggcaaca tagcgagacc aataaataga 10020 10080 tattagtggt ggcgcctgta gtcccagcta gttgggaggc tgagggggga ggattccctg 10140 agtotatgag gttgagactg cagttagotg tgatggtgcc actgcactcc agcotgggcg actaggaaac ggtctttaaa aaaaaaaaaa aaaaacaggg tgggcgcggt ggttcacgcc

tgtaatctca gcactttggg aggccaaggt ggggggatca caaggtcagg agtttgtgac 10320 cagcctgacc aacatggtga aaccccgttc tactaaaaat acaaaaatta gcgaggtgtg gtcgtgggcg cctgtaatcc cagctaatta ggaggctgag gcaggagaat cacttgaacc 10380 10440 cgggaggcgg aggttgcagt gagccaatat cacaccactg cactctagcc tggtcaacag 10500 agcgagactc tgtctcaaaa aaaaaaaatg ctgagcgtgg tggcgcatgc ctgtagtctc agctactttg ggggctgagg caggagaatc gcttgaacct gggaggcaga ggtcgcagtg 10560 10620 aggcaagatt gcaccattgc actccagcct gggagacaga gtgaaactct gtctcaaaaa 10680 gaaaaggtet aggaagagte egeaecetet eeeegeggtg gecaegeegg geteegeget 10740 gagecetetg tgttettgte tetecatace teateaegge acegeagggt tgeagecaet 10800 cctggtctca ttttacacac caggaaattg aggctctttg agaagccgtg gtgatgattt 10860 catcagcatg ctctggggca gacccctgca gccgcacagg gtgcctgggg cccacactag 10920 tgccctggtt tatagacaga cagaggtggc agtggcgctt ccgagtcggg ctgcgatgtg 10980 cttgcactcc ccgaggggct gaggggccct gcgcccaggt gcagctgctt gggtgctgcc 11040 agecectece acetetecet ecetgecage eceteceace tetecetece tgecageece toccacetet cectecetge cageceetee caeeteteee teeetgecag ecceteceae 11100 ctctccctcc ctgccagccc ctcccacctc tccctccctg ccagcccctc ccacctctcc 11160 11220 ctccctgcca gccctccca cctctccctc cctccagccc ctcccacctc tccctccctg 11280 ccaqccctc ccacctctcc ctccctgcca gcccctccca cctctccctc cctgccagcc cctcccacct ctccctccct gccagcccct cccacctctc cctccctgcc agcccctccc 11340 acctctccct ccctgccagc ccctcccacc tctccctccc tggctcatcc ctgctgtgtc 11400 ccttctctct agtttcctgt tcagtttcag gaaggaggct gggaacccag atgtagggaa 11460 tttgcgccct ggagtcagac ctgggttcac gtcccagcgc ctccacctct ggtgtgacct 11520 11580 tggtccagtc tctcagcctc agtttcctca cctgtaaagt gggctccatg attagatgca 11640 ccctgcaggg cagtgtagca gtgacctggc tcagccactg gcagccccaa caatcatacc 11700 ttgttaaagt agctctgtcg gttccctcag gggttccggg ggcccattcc cctgtcctcc 11760 atgcactgtg agacctgccc tgccacagag cagagtgtaa cagcctgagg gtgagagcca 11820 gacactgtgc ctgtgcttag accagacact ggacgacggg agccagtgca gcctgggcgg gtggactcct atggacccct cagcacccag cctcggtgcc ttcagcgcag ggccgcgtgg 11880 ctgtgggggc tcacaagacc cggcccactc ctgcttgtgc ctacatctgg gtgtttgccc 11940 12000 attggtgcct tttgacgcgt tctggtgtgt gtgagacgtg cggggctggg aagtgttggc agageegega gtaeegteet caeteetttt gttettttga egtaagetgg egagtggeae 12060

ctccccagct agtctcacac cccgtgtctg ggacccagag accctcgtgc agggctctgt 13980 tgcttggggc ctggcagcct cgtcctgtat cagaggctgc cacccccacc cctcgtgggg ccagggttgt ggccggcctc cctggccctc cccatggaag tggtaggcgg agccagcagc 14040 14100 catctgccca gcccggggct gcactgtttt ttttcaaatg agcaccgtcc caaactgcag cccgttaatt taaacaggat catttccggc cctggaagcc gcctcactct ccttaaatag 14160 aaaggagcac agegeagagg gaaacagatg aggteatgge teggetggee cagegaggaa 14220 ggggccgcag tgggggtggc actgccgcct gtcccctgtc ctctccagcg cccacactgc 14280 14340 ageceattte eteaceetgg geetgetete gggagggaeg ggeetggggg teetettget gggcggaggg gaaccagctc ctccaggaga ggacggggcc tggcaggggg catggggcct 14400 14460 ccctgggtct ggcgtcctgt cctgcccctg ccgagggagg agcggttaca taagctccgc aggeggeeee teegageegg teeeceeage eeagttteea gtgaggegge eagegegge 14520 gggggtgccg ggcctggcgc acaccegctg ctgaccacac gtgtctggaa tgtgcagatg 14580 tttctttggg ggctccgtcc ggcccccaga ccccactcag catctggtct ggggagtggg 14640 14700 cgcctggggc actcagctct gagtgtgaga ctctgaggca ggtctggttt gtctggggcc 14760 attecetetg etgtggattg ggagggeece gggagetgee ceacacceag ggaagttete 14820 ctcagtccca ctgttgcatt ccccgacccc ggctcccccg gcccaggagc gcctgtgggg 14880 caqaaggccc agccccaaga cttcccggcc ctgccagcct caggcttcac ccaccctcgc 14940 gccaactgtg ggcagagccc agggggaggg caggagagcc agcgcctggc tgggaacacc 15000 cctgaggggc cgaggctcca gggcgagggg gcccgacctg gggttcacac gcccgggtgg 15060 egggeagace egetgeagea tgagaeaegt gteagetace tegggeegge aggetggeee tgctgcccac agccctggga cgtggcccca cctgtgacgg gtgtggaggg gcagcctcca 15120 15180 ggcctggcca caccetetge tgttgctget cetgetecag gattggcaag ggtgctggga aggggtgaag acccgtactg tggccacaca cctgggactt ccttctccac ccagtggtgc 15240 cccagcagcc gctaaggagc ccgctgggtc ccacgctagg atggtcctaa ctcctcccgc 15300 15360 cttccagatc ggacgctcgg cgctggggac cccttgtgtc ccggggctgg ggcaccgtcc 15420 tgcccccatg ggggtgtact cctcccgaca agcttggctt cagcttccct gggagcacat cctggccctc gggcacccat caggctgtcc ctgtgcacct ggctcccacc cttccagctc 15480 15540 atagcaggaa ctggggtgag gagtgcgtgg ggcagcaagg gcctgggacc ccagaggacc 15600 ctgcactctg ctctgtgctc ttgcctgggc ttagggccgc tcggtggtcc tgctgccaga tgcctgggcc ctgctgtgtc ccccatcctt gcagggaacc agaacgtggg ggcagggcat 15660 cagacagcgg cgatgatgtc acctggcggg tgcagaggaa gcccgagggg cggggtgggg 15720

gggctggcgc gaggctgcct ggctaggcct tggcgttccc ccagaacggc gatggcaaaa 15780 gcagatggag acgtgaaaaa gtacgggagc aagcgaggtg aggactccac ggggacccct 15840 gtgctgttcc ctgtccctga agcccacacc tgagtcctgc ccagggcaga tgcttccaca 15900 cccagggggc acctgagtcc tacccagggc agacgcttcc acaccctggg ggctggggga 15960 etgeacetgg etectgtetg ggeeceaget teattecaet geeetgggee etgggagete 16020 ggccgagcgg ggtccccaag accttgctgc atttctgggc cttgggctgg ggtgagggcc 16080 gggagaagga gccagcctgg agcctggcac gcagggagtg catggccaga accggtgaca 16140 ggcagggctg cctgctggcg tggaagaagt gtccatggca cccccaggcc tggttcacag 16200 tgggatgggc ggggagccgg ggggctctgg ggtcctcggc tgacctgccc ccaccctgc 16260 16320 cctggcttgt cagctcccag cagcagccac tcttgatgga ttttccagaa aatgaggtgt 16380 ggccaaacat cttcaggctt ttccttcttt cctttctccc gtggcctggg tgggagctgc tececatgee tgggggeagg tgegagagee tgtgeeeete eetggggeag ttteaeaget 16440 gtgtcccttc cagggggcct gcctgtgttc accgtggcct ctgcagcacc tctcgcccct 16500 tagggeteet gegeeteggg teeeggtgee teatttetee etaaageatt ggttetgetg 16560 16620 ccgccgcagc cgctggaaag tccctcctca ggtctaactg cagttcctca cggcacagtg ttccccctcg ggcatggtgc ttgggcagtg ggtgtgagtc cagctgcctc accctgtctc 16680 gagaatggcc tcttgctggt ctcccagcca ccaccctgtc ccaccccacg gcggggatgg 16740 tgtggatgcc tagcagcgcg gctgtgggcc cacccatcct tatgggcagt ggggagcacc 16800 tcagcccgtg tccctacctt ggtgtagagg aggggacggc agagaagcag ggttcagtta 16860 ggggggaagt ggtggccctg ccggaggggc cgttccctgt gtgcctggcc cccagatcct 16920 ctcccctccc ggagcccagg gcacaggcat aggctctctg agtgtcccac agcccctggg 16980 17040 ggaagggaac tgcaccccca accgtgccct ccatccgcag atggaacgag aagctccggg 17100 agccagtgcc cagcgtctca tetgtetggg cacccagece aggtgaggge etggetecae cgtccgtggc tggtgctgct tcctggcacg gagaaggcct cggctgctct gtcccctcag 17160 ctggggtggc ctctggtccc cttctttgtt ggttcccttc tcaagctctt gccctggccc 17220 egggeeceae egggeageet gtgtgtgegt eteteetgeg eegggtagge teetgtggga 17280 geggagetee ggtgggagga geagggetgg aggetggeag gggetgggeg ggtgtteagg 17340 gatggaggcc gccccggctt ggggctggct gccgggtggt cattgctggg aagagcaagt 17400 ctaggcggag gcacctgctg ggtcactcgt ggggagggtg acacctgggg aagtagaggc 17460 ccgtggcagg aggtgaggcc tcggggtcct ggggagcagg ggggtggtgt gcagacctgc 17520

ggagccatag tcctgtgcca ggagcactac tgggagtgcg tgggaccagg aggggtgccc 17580 17640 agggtgggcg gcagagtgac ccccgaggtg cttgaggccg aggggaggtg gagttctcgg 17700 tttgccccag ctctctgtct actcacctcc gcatcaccag ctccaggacc tggtttgtaa ctcgggcagc tctgaaaaga gagacatgct gccgccctgt ggtttctgtt gctttttctt 17760 cactgactac tgacatggga tgtttttcct acggctgtga ccaattgtgc ttcttctaat 17820 tgcctggttt ttctttttt gtttttggag ttttctcttt ctttcctccc tccctctcac 17880 cctccatcct ttttttttt atttttattt tttgagatgg agcttcactc ttgcaggatg 17940 18000 gggtgctgga gtgcaggggt gcgatctcag ctcactgcaa cctctgcctc gcgggttcaa gtgattetee tgeetaagee teetgagtag etggaattae aggtgettge caccaegeee 18060 18120 gactaattct gtagttttgg tagagacagg gtgtctccgt gttggtcggt ctggtcttga actoctgaco toaggtgatg ogocogocto agootoccaa agtgotggga ttacaggcag 18180 gagecattge acceggetet trecectret cettrette tereteet ceettrett 18240 cttttctttt ctttttttt tcttttgaga tggagtctcg ctctgtcacc aggctggatt 18300 18360 gcagtggcgt gatcttggct cactgcaacc ttcgcctccc gggttcacgt gattctcctg cctcagcctc ctgagtggct ggcactacag gctcccgccg ccatgcccgg ctaatttttg 18420 catttttagt agagacaggg tttcaccctg ttggccagga tggtctcgat ctcttgatct 18480 18540 catgatccac ccaccttggc ctcccaaagt tctggcatta caggagtgag ccaccgtgcc 18600 eggecatett tettteettg etttetettt gttttettte gagacegggt ettgetetgt egeceagget ggaetgeagt ggeacaatea tageteactg cageetegae tteeetgget 18660 caagegatee tteeteetea geeeceegag tagetggaac tacagttaca caetaceatg 18720 18780 cctggctgat tcttttttc cttgtagaga tggggtcttg ctatgctgtc catcctggtc tcaaactcct ggccttccca aagcactggg tttacaggca taagccacca cacccagttt 18840 18900 ccttttcttc tttttaactg gaatagttga cgttttcttt attagctgtg tgtcaggagg 18960 gtatttttgg cctttagtat gtcgtgtaag ttgctagtgc ttttctgaga ttgtagtttg ttttctaatt ttatttatat tttgcgtaga agttgtgtat tttagatgga gttaggtcgg 19020 19080 ctcgccgttt cacccaggct ggagtacagt gatgcgatct cagctccctg tagccttgac 19140 ctctctgggc tcaagtgatt tttctctcct ctacctcccg agtacttggg accccaggcg 19200 catgccgcca tgcctggcta atgtgtattt tttgtagata cggggtctca ctgtgttgcc 19260 cagggtggtt tcaaaatcct gggcccaggc gatccttccg tctcagctcc cacggtgctg 19320 tgttaccggc gtgtgcccag tgcctggccg tcttggaggt cttgtttctc tgggtttatg 19380

cctcgaggtg gcgcctgctc ccctgtgctc cctggtagcc tggtagtgag cctgcttctc 19440 acacagtcat acctggttgt ggtcccacag tgggaccacc ctgttgggtt cagaacagga 19500 gatgggggcc cctcgagtct gtgtgggggc tgtggacagg gttgggagac cttggctctg 19560 tgggggactg tggacagggg atggggggcc ttggccctgc gtgggatggg ttgggggtcc 19620 gtgcccttcc tggccctggg tggacaggtc catgtggcac tcggcatagg gctgagatgg 19680 gtgcagaggg ctgaggcccc caggcctctc ctggcttggt ttccccagat gagtgttcat 19740 ttgggtette catcagaaag teceeteetg acetetggga gtggggaget caagggtggg 19800 aggccatagc ttggggatgc tggcaatgtg tgggatgggc ccagggaagg cctctggcct 19860 actaggggct ctggccctga cccacggcca ctcactcctc agagacgtct cccacaacct 19920 19980 gctccgggcg ctggacgttg ggctcctggc gaacctctcg gcgctggcag agctgtgagt 20040 gtcccccagt cgtgccagca tgcggggctc actccgggtg ggctggcggc accgcctctt gctgctcagc tgtgggggct tccatcagct ttgccgaatc ccccgtctct tccagggata 20100 20160 gtgaaatgta agttgtggtt ctttgggtgg ggtcctggct ggaccccagg cccccaatat 20220 cccttctgcc ctcccagttg gtccgtgtcc ccttccaggc ttgagaccag atcctggggg 20280 cagttcactg cetgettgga geceecagt geeggettgg ttggggeagg ggaggeggtg 20340 ctgtcagggt ggctccaggg cctggttgcc agtggggggc tggcatagac ccttcccacc 20400 agacctggtc cccaacacct gcccctgccc tgcagaaacc tgagtgggaa cccgtttgag 20460 20520 tgtgactgtg gcctggcgtg gctgccgcga tgggcggagg agcagcaggt gcgggtggtg cagecegagg cagecacgtg tgetgggeet ggeteeetgg etggeeagee tetgettgge 20580 atccccttgc tggacagtgg ctgtggtgag tgccggtggg tggggccagc tctgtccttc 20640 ccagccaggt gggacctggg ccctgcagac actgggcagg gctcaggaag gcctctctgg 20700 ggggggcctc cgggccaagg gaacagcatg ggagcctgtg agtgcggcgg gcggatgtgg 20760 20820 gggcgtgggg tggagccagg aggagcagaa cccggggtcc agtggctgcc tcttctaggt gaggagtatg tegeetgeet ceetgacaac ageteaggea eegtggeage agtgteettt 20880 tcagctgccc acgaaggcct gcttcagcca gaggcctgca gcgccttctg cttctccacc 20940 ggccagggcc tegeagecet eteggageag ggetggtgce tgtgtggggc ggeccagece 21000 tocagtgcct cotttgcctg cotgtccctc tgctccggcc ccccgccacc tcctgccccc 21060 acctgtaggg gccccaccct cetccagcac gtettecetg cetccccagg ggccaccetg 21120 gtggggcccc acggacctct ggcctctggc cagctagcag ccttccacat cgctgccccg 21180

ctccctgtca ctgccacacg ctgggacttc ggagacggct ccgccgaggt ggatgccgct 21300 gggccggctg cctcgcatcg ctatgtgctg cctgggcgct atcacgtgac ggccgtgctg gccctggggg ccggctcagc cctgctgggg acagacgtgc aggtggaagc ggcacctgcc 21360 21420 gccctggagc tcgtgtgccc gtcctcggtg cagagtgacg agagcctcga cctcagcatc 21480 cagaaccgcg gtggttcagg cctggaggcc gcctacagca tcgtggccct gggcgaggag ccggcccgag gtgagtgtct gctgcccact ccccttcctc cccagggcca tccagatggg 21540 gcagagcctg gtacccccgt cttgggccca cactgaccgt tgacaccctc gttcccaccg 21600 21660 gtetecageg gtgcaccege tetgeceete ggacaeggag atettecetg gcaaegggca 21720 ctgctaccgc ctggtggtgg agaaggcggc ctggctgcag gcgcaggagc agtgtcaggc 21780 ctgggccggg gccgccctgg caatggtgga cagtcccgcc gtgcagcgct tcctggtctc 21840 ccgggtcacc aggtgcctgc ccccacccc cgaggggcca taggttggga gatctctgaa gcactggggc agagactgcg gctggggagt ctcaggagga aggaggtggg agctgggccg 21900 21960 gccctggtga gcaggtggcg ccggccggtg gggccgttcc tgtcagctct gcagatgcag 22020 aggtggacat gagctggggg cagcctccgg acactcctgg gcacgccata cgggaggtgg 22080 cctgcacggg gatccctgcc ggtacccaca ggccccgtgg gtgggtgctg ctgtgagcct gggctggtgg gccctggtct ccgggctctg agcctcagtt tccccatctg gaaaggggga 22140 cagtgatggg gctcccagcg ggctgctgtg agggtgggag gatggaggag tgccctgagc 22200 eccetgecat eccaeaceg ecceeaggag cetagaegtg tggategget tetegaetgt 22260 gcagggggtg gaggtgggcc cagcgccgca gggcgaggcc ttcagcctgg agagctgcca 22320 gaactggctg cccggggagc cacacccagc cacagccgag cactgcgtcc ggctcgggcc 22380 caccgggtgg tgtaacaccg acctgtgctc agcgccgcac agctacgtct gcgagctgca 22440 gcccggaggt gtgcgggggg ccaggcaggg gcctgagacg ctggctgtgg ttaggggcct 22500 22560 gccgagcgcc cgcggtggag cctgggctga ggaggagggg ctggtggggg ggttttcggg 22620 eggeteggte eccagtetgt tegteetggt gteetgggee etggeeegge geeteaetgt gcactegeca ecceaggece agtgeaggat geegagaace teetegtggg agegeeeagt 22680 22740 ggggacctgc agggacccct gacgcctctg gcacagcagg acggcctctc agccccgcac 22800 gagecegtgg aggtagtegg ecceecacgt tetacaacet geceteetge etgeceetgg aggeettgee tgeeetgeee actgtgggte tegeeaaaaa acttggggge ettaatgttg 22860 cttgtgccca gtgaagatgg ttgggaaaat ccagagtgca gagaggaaag cgtttactca 22920 cattacctcc aggccttttc tctgagcgtg tgtgagttat tcctgaaagg caggtcaggg 22980 23040 gtcctgcccc ccatggacag tttccaccgg agtcttcctc tcgagcgaca ggagccaggc

ctgtgggggt ctgatggctc gctctccttc cctccctct tcctgggaag ttcgggtagg 23100 gggagtetgg getteagget gggatggggt etgtggaget gaggeggeee eetgeeeace 23160 23220 aggtcatggt attcccgggc ctgcgtctga gccgtgaagc cttcctcacc acggccgaat ttgggaccca ggagctccgg cggcccgccc agctgcggct gcaggtgtac cggctcctca 23280 gcacagcagg tgggactctg ggtggtgggt ggtgggtggt gggcgccgca ggactcgggg 23340 23400 tggcctctct gagctttcac gtctgctggt cctgtggcca ccagagtggt tcccagtctt 23460 aggtggacag agcaggggtt ccagagacac cagctcattc caggtgtcct gggggtggat tgggtggggc ctgcctgggg gccggcctgg gtcagtcggc tggccggaga cggacgcagc 23520 23580 actgggctgg gagtgctgcc caggtgggga gacctgtcct cacagcaagg ccaggattgc 23640 tggtgcaggc agttgggcat ctctgacggt ggcctgtggg caaatcaggg ccccaacacc ctccctcct cacagggacc ccggagaacg gcagcgagcc tgagagcagg tccccggaca 23700 acaggaccca gctggccccc gcgtgcatgc cagggggacg ctggtgccct ggagccaaca 23760 23820 tetgettgee getggaegee teetgeeace eecaggeetg egecaatgge tgeaegteag 23880 ggccagggct acccggggcc ccctatgcgc tatggagaga gttcctcttc tccgttcccg 23940 eggggeeece egegeagtae teggtgtgtg geeetgaeet gggtetgtte eetgeatete 24000 ctcaggccac cttcctgtct gctgcccagg gtctgggtct gtgcaccaga cacacccagc 24060 ctgcaggccc ctcccacgtc cttgccacct ctgacctccg acctctgcag tgccctcggc 24120 cctctccag tgggagaagc tctcgcctgg gcccttggca cgagctgtgc ctcctcttcc tototoccag cacagotgot cottoctgto tgccaggtot tggcctgtgt cototocceg 24180 tgtgtccccc ggtctgcaac tgtcctgcct gtccttgtca cgagcactgt ggggaggctc 24240 cttgaggtgt ggctgacgaa gcggggagcc ctgcgtgtcc accctcatcc gtcgtgcggg 24300 ggtccacggg ccatgaccgt gaggacgtga tgcagccctg cctccctctc cacaggtcac 24360 cctccacggc caggatgtcc tcatgctccc tggtgacctc gttggcttgc agcacgacgc 24420 tggccctggc gccctcctgc actgctcgcc ggctcccggc caccctggtc cccgggcccc 24480 24540 24600 ttgggcctgc cctgcctgtg ccctgcggct gcttgcagcc acggaacagc tcaccgtgct gctgggcttg aggcccaacc ctggactgcg gctgcctggg cgctatgagg tccgggcaga 24660 24720 ggtgggcaat ggcgtgtcca ggcacaacct ctcctgcagc tttgacgtgg tctccccagt ggctgggctg cgggtcatct accetgecce cegegaegge egeetetaeg tgeceaecaa eggeteagee ttggtgetee aggtggaete tggtgeeaac gecaeggeea eggetegetg 24840

gcctgggggc agtgtcagcg cccgctttga gaatgtctgc cctgccctgg tggccacctt 24960 cgtgcccggc tgcccctggg agaccaacga taccctgttc tcagtggtag cactgccgtg gctcagtgag ggggagcacg tggtggacgt ggtggtggaa aacagcgcca gccgggccaa 25020 25080 cctcagcctg cgggtgacgg cggaggagcc catctgtggc ctccgcgcca cgcccagccc 25140 cgaggcccgt gtactgcagg gagtcctagt ggtgagtatg gccgaggctc caccaccagc ccccaggcag gtgcctgcag acagggtgct cacacagggc gtgaggcctg gcttcccagt 25200 gagggcagca gcccagttac tggggacgtc ggccccgggc aggtcctgct ggctggctcc 25260 25320 tegggetace tggtgggett taaatteetg gaaagteaeg getetgaeag tggeteeget 25380 aactcattcc actgtctcat ttcacaaaat gaatttaaaa ctctgctccc tgacctcaca 25440 cgagececeg tgagtetete aegecetetg etgtgttete geetggetaa agegagtgge 25500 ttttgaggtg gagtctgaac ccctgatggg aaactgcggg ctgcccgcgg tgccaccatg 25560 ctgggtacat gggggacagg gctgtctcca tcttgcgggt acctgcctct tcaccagggg 25620 ccttgggagg ggccatcaga aatggcgtga cctgtgcagc ctgtcctggg ttctgtaagc 25680 cagtgtaggt gcctcccctc actgctccga gctctctggg tgaggagctg gggcaagagc 25740 gccgggaggg tctgagaaga ctcagagaga ggtggactct ttgtagctgg tactaggttt gctttacaga tggggaaact gaggcacaga gaggttgagg cattagtagt actacatggc 25800 25860 tggctggaga gccggacagt gagtgtccca gcccgggctt ggctcccatg gcatgcagag 25920 ccccgggcac ctcctctct ctgtgccccg cgtgggactc tccagcccga cgggaggtgt gtocaggagg cgacaggeta agggeagagt cetecacaga geceaggetg acaceattee 25980 26040 ccccgcagag gtacagcccc gtggtggagg ccggctcgga catggtcttc cggtggacca tcaacgacaa gcagtccctg accttccaga acgtggtctt caatgtcatt tatcagagcg 26100 26160 26220 gcagggcggg ggcgggctcc accttcacct ctgccttctg ctctgcttca tgctgcccga ggacgctgcc atggctgtgg gtgagtggag ggagggacgc caatcagggc caggcctctc 26280 26340 acctgccacc tgggctcact gacgcctgtc cctgcagctg acggcctcca accacgtgag 26400 caacgtcacc gtgaactaca acgtaaccgt ggagcggatg aacaggatgc agggtctgca 26460 ggtctccaca gtgccggccg tgctgtcccc caatgccacg ctagcactga cggcgggcgt gctggtggac tcggccgtgg aggtggcctt cctgtgagtg actcgggggc cggtttgggg 26520 26580 tgggcaccag gctcttgtcc cagccccagc ctcagccgag ggacccccac atcacggggt tgcttttctg agcctcggtt tccctgtctg ttgggaggta actgggtgca caggagccct 26640 26700 gaggetgeac gggageeggg agaggeetea geacageegg gtgggeeetg aatggaggee

cggggcgtga ctgcagagtg gagcctcggc tgggtcccaa gcaccccctg ccccgccacc 26760 gcccacccct gtcccggttc actcactgcg tcccaccgcc ccggcaggtg gacctttggg 26820 gatggggagc aggccctcca ccagttccag cctccgtaca acgagtcctt cccggttcca 26880 gacccctcgg tggcccaggt gctggtggag cacaatgtca tgcacaccta cgctgcccca 26940 ggtgagggat gaggggtga gggggccact gcctttcagg ctctgagcac gggtcccccc 27000 agetececag teaagetgee eccetteete eccaacagee etcaetgtga eetcaeetgg 27060 gctgatggct taggccctac tggggtgagg gaggggccag gcgtgggggg agtggacagg 27120 gaagetggge ceetgaactg egeceeege ceteeeeggg cetggetett getgetetge 27180 tgccccgagt gcagctgcac ttggaggcgg tgcgtcctcg ccaggcagcc ctcagtgctg 27240 ctacacctgt gctccgtccc gcacgtggct tgggagcctg ggacccttaa ggctgggccg 27300 27360 caggtgcagc cgttcacccc gggctcctca ggcggggggc ttctgccgag cgggtgggga gcaggtgggg gtgccgcggc tgccccactc gggcctgtcc ccacaggtga gtacctcctg 27420 accetteteg catctaatec cttceagaac cegacecage aeetgcctet gageeteec 27480 27540 gcctccctgc cctccgtggc tgtgggtgtg agtgacggcg tcctggtggc cggccggccc 27600 gteacettet accegeacee getgeeeteg cetgggggtg ttetttacae gtgggaette 27660 ggggacggct cccctgtcct gacccagagc cagccggctg ccaaccacac ctatgcctcg 27720 aggggcacct accacgtgcg cctggaggtc aacaacacgg tgagcggtgc ggcggcccag geggatgtge gegtetttga ggageteege ggaeteageg tggaeatgag cetggeegtg 27780 gagcagggcg cccccgtggt ggtcagcgcc gcggtgcaga cgggcgacaa catcacgtgg 27840 accttcgaca tgggggacgg caccgtgctg tcgggcccgg aggcaacagt ggagcatgtg 27900 tacctgcggg cacagaactg cacagtgacc gtgggtgcgg ccagccccgc cggccacctg 27960 gcccggagcc tgcacgtgct ggtcttcgtc ctggaggtgc tgcgcgttga acccgccgcc 28020 28080 tgcatcccca cgcagcctga cgcgcggctc acggcctacg tcaccgggaa cccggcccac tacctcttcg actggacctt cggggatggc tcctccaaca cgaccgtgcg ggggtgcccg 28140 acggtgacac acaacttcac geggageggc acgttecece tggegetggt getgtecage 28200 cgcgtgaaca gggcgcatta cttcaccagc atctgcgtgg agccagaggt gggcaacgtc 28260 accetgeage cagagaggea gtttgtgeag eteggggaeg aggeetgget ggtggeatgt 28320 gcctggcccc cgttccccta ccgctacacc tgggactttg gcaccgagga agccgcccc 28380 accogtgcca ggggccctga ggtgacgttc atctaccgag acccaggctc ctatcttgtg 28440 acagtcaccg cgtccaacaa catctctgct gccaatgact cagccctggt ggaggtgcag 28500

28560 gagecegtge tggteaceag cateaaggte aatggeteee ttgggetgga getgeageag 28620 ccgtacctgt tctctgctgt gggccgtggg cgccccgcca gctacctgtg ggatctgggg gacggtgggt ggctcgaggg tccggaggtc acccacgctt acaacagcac aggtgacttc 28680 accgttaggt ggccggctgg aatgaggtga gccgcagcga ggcctggctc aatgtgacgg 28740 28800 tgaageggeg egtgeggggg etegtegtea atgeaageee caeggtggtg eeeetgaatg ggagcgtgag cttcagcacg tcgctggagg ccggcagtga tgtgcgctat tcctgggtgc 28860 tetgtgaceg etgeaegeee atecetgggg gteetaeeat etettaeaee tteegeteeg 28920 tgggcacctt caatatcatc gtcacggctg agaacgaggt gggctccgcc caggacagca 28980 tcttcgtcta tgtcctgcag ctcatagagg ggctgcaggt ggtgggcggt ggccgctact 29040 tccccaccaa ccacacggta cagctgcagg ccgtggttag ggatggcacc aacgtctcct 29100 29160 acagetggae tgeetggagg gacaggggee eggeeetgge eggeagegge aaaggettet 29220 cgctcaccgt ctcgaggccg gcacctacca tgtgcagctg cgggccacca acatgctggg 29280 cagegeetgg geegaetgea eeatggaett egtggageet gtggggtgge tgatggtgge egecteeceg aacceagetg cegteaacaa aagegteace eteagtgeeg agetggetgg 29340 tggcagtggt gtcgtataca cttggtcctt ggaggagggg ctgagctggg agacctccga 29400 gccatttacc acccataget tececacaec eggeetgeac ttggteacca tgaeggeagg 29460 29520 gaacccgctg ggctcagcca acgccaccgt ggaagtggat gtgcaggtgc ctgtgagtgg 29580 cctcagcatc agggccagcg agcccggagg cagcttcgtg gcggccgggt cctctgtgcc cttttggggg cagctggcca cgggcaccaa tgtgagctgg tgctgggctg tgcccggcgg 29640 29700 cagcagcaag cgtggccctc atgtcaccat ggtcttcccg gatgctggca ccttctccat 29760 ccggctcaat gcctccaacg cagtcagctg ggtctcagcc acgtacaacc tcacggcgga ggagcccatc gtgggcctgg tgctgtgggc cagcagcaag gtggtggcgc ccgggcagct 29820 ggtccatttt cagatcctgc tggctgccgg ctcagctgtc accttccgcc tgcaggtcgg 29880 29940 eggggeeaac ceegaggtge teecegggee eegtttetee cacagettee eeegegtegg 30000 agaccacgtg gtgagcgtgc ggggcaaaaa ccacgtgagc tgggcccagg cgcaggtgcg 30060 catcgtggtg ctggaggccg tgagtgggct gcaggtgccc aactgctgcg agcctggcat 30120 cgccacgggc actgagagga acttcacagc ccgcgtgcag cgcggctctc gggtcgccta 30180 cgcctggtac ttctcgctgc agaaggtcca gggcgactcg ctggtcatcc tgtcgggccg cgacgtcacc tacacgcccg tggccgcggg gctgttggag atccaggtgc gcgccttcaa 30240 cgccctgggc agtgagaacc gcacgctggt gctggaggtt caggacgccg tccagtatgt 30300 ggccctgcag agcggcccct gcttcaccaa ccgctcggcg cagtttgagg ccgccaccag 30360

30420 ccccagcccc cggcgtgtgg cctaccactg ggactttggg gatgggtcgc cagggcagga 30480 cacagatgag cccagggccg agcactccta cctgaggcct ggggactacc gcgtgcaggt 30540 gaacgeetee aacetggtga gettettegt ggegeaggee aeggtgaeeg teeaggtget ggcctgccgg gagccggagg tggacgtggt cctgcccctg caggtgctga tgcggcgatc 30600 acagegeaac taettggagg eccaegttga eetgegegae tgegteaeet accagaetga 30660 gtaccgctgg gaggtgtatc gcaccgccag ctgccagcgg ccggggcgcc cagcgcgtgt 30720 ggccctgccc ggcgtggacg tgagccggcc tcggctggtg ctgccgcggc tggcgctgcc 30780 30840 tgtggggcac tactgctttg tgtttgtcgt gtcatttggg gacacgccac tgacacagag 30900 catccaggcc aatgtgacgg tggcccccga gcgcctggtg cccatcattg agggtggctc 30960 ataccgcgtg tggtcagaca cacgggacct ggtgctggat gggagcgagt cctacgaccc caacctggag gacggcgacc agacgccgct cagtttccac tgggcctgtg tggcttcgac 31020 acaggtcagt gcgtggcagg gccgtcctcc atgcccctca cccgtccaca cccatgagcc 31080 cagagaacac ccagcttgcc accagggctg gcccgtcctc agtgcctggt gggccccgtc 31140 31200 ccagcatggg gagggggtct cccgcgctgt ctcctgggcc gggctctgct ttaaaactgg atggggctct caggccacgt cgccccttgt tctcggcctg cagagggagg ctggcgggtg 31260 31320 tgcgctgaac tttgggcccc gcgggagcag cacggtcacc attccacggg agcggctggc 31380 ggctggcgtg gagtacacct tcagcctgac cgtgtggaag gccggccgca aggaggaggc caccaaccag acggtgggtg ccgcccgccc ctcggccact tgccttggac agcccagcct 31440 31500 ccctggtcat ctactgtttt ccgtgtttta gtgctggtgg aggccgcacg ctctcccctc tctgtttctg atgcaaattc tatgtaacac gacagcctgc ttcagctttg cttccttcca 31560 aacctgccac agttccacgt acagtcttca agccacatat gctctagtgg caaaagctac 31620 31680 acagtcccct agcaatacca acagtgagga agagcccctt cccaccccag aggtagccac tgtccccagc ccatgtccct gttgctggat gtggtgggcc ggttctcacc ctcacgctcc 31740 cctctctgga ccggccagga ggcttggtga ccctgagccc gtggtggctg ctcctgctgc 31800 tgtcaggcgg ggcctgctgg tgccccagag tgggcgtctg ttccccagtc cctgctttcc 31860 31920 ggttccatcc cagctcagcc tcctgaccca ggccctggct aagggctgca ggagtctgtg 31980 agtcaggcct acgtggcagc tgcggtcctc acacccacac atacgtctct tctcacacgc 32040 atcccccag gggccctcag tgagcattgc ctgcctcctg ctagggtcca gctgggtcca 32100 gtacaccaga acgcacactc cagtgtcctc tgccctgtgt atgcccttcc gccgtccaag

ttggaaggtg gcaaaccgga tgagtatcct gggagggagt gagctcaccg gcagtggcca 32280 ggcccctggg aaacctggag tttgggagca gcatcctcca tgggtccccc agtccttcca gcaggccaaa tagacctgtg ttggaggtaa ccccactccc acgccaggtg ctgatccgga 32340 32400 gtggccgggt gcccattgtg tccttggagt gtgtgtcctg caaggcacag gccgtgtacg aagtgagceg cageteetae gtgtaettgg agggeegetg eetcaattge ageagegget 32460 ccaagcgagg ggtgagtgtt gagcggggtg tgggggggtt ggggatgggt cccatggccg 32520 32580 aggggacggg gcctgcaggc agaagtgggg ctgacagggc agagggttgc gcccctcac cacccettet geetgeageg gtgggetgea egtaegttea geaacaagae getggtgetg 32640 gatgagacca ccacatccac gggcagtgca ggcatgcgac tggtgctgcg gcggggcgtg 32700 32760 ctgcgggacg gcgagggata caccttcacg ctcacggtgc tgggccgctc tggcgaggag 32820 gagggetgeg ectecateeg cetgteecee aacegeeege egetgggggg etettgeege ctcttcccac tgggcgctgt gcacgccctc accaccaagg tgcacttcga atgcacgggt 32880 32940 gagtgcaggc ctgcgtgggg ggagcagcgg gatcccccga ctctgtgacg tcacggagcc 33000 ctcccgtgat gccgtgggga ccgtccctca ggctggcatg acgcggagga tgctggcgcc 33060 ccgctggtgt acgccctgct gctgcggcgc tgtcgccagg gccactgcga ggagttctgt gtctacaagg gcagcctctc cagctacgga gccgtgctgc ccccgggttt caggccacac 33120 33180 ttegaggtgg geetggeegt ggtggtgeag gaccagetgg gageegetgt ggtegeeete aacaggtgag ccaggccgtg ggagggcgcc cccgagactg ccacctgctc accacccct 33240 ctgctcgtag gtctttggcc atcaccctcc cagagcccaa cggcagcgca acggggctca 33300 cagtetgget geaegggete acceptagtg tgeteceagg getgetgegg caggeegate 33360 33420 cccagcacgt catcgagtac tcgttggccc tggtcaccgt gctgaacgag gtgagtgcag cctgggaggg gacgtcacat ctgctgcatg cgtgcttggg accaagacct gtacccctgc 33480 33540 ctggagettt geagaggget cateeeggge eecagagata aateeeagtg accetgaage 33600 agcaccccga cetteegete ceageageea cacccaccgg geceteteeg gegtetgett 33660 tccacaatgc agcccccgcc caggagggcc catgtgctta ccctgttttg cccatgaaga 33720 aacageteag tgttgtgggt cagtgeeege ateacacage gtetageaeg taactgeaee cegggagteg tgggcatetg etggceteet geeggeetee tgegetgetg acagettget 33780 gtgcccctg cctgccccag tacgagcggg ccctggacgt ggcgcagagc ccaagcacga 33840 33900 gcggcagcac cgagcccaga tacgcaagaa catcacggag actctggtgt ccctgagggt 33960 ccacactgtg gatgacatcc agcagatcgc tgctgcgctg gcccagtgca tggtaggatg gccccacctg ctcaccctgc cccgcatgcc tgccagggca ctgggttcag ccccccaggg 34020

cagacgggca gcttggccga ggagctgagc ctccagcctg ggctccttcc tgccatggcg 34080 ttcctcggtc tctgacctgc ttcagtagcc tcagccgttc tgtcctgtgt gaacgcaggg 34140 tgcctctcgg gggacccagg gtgtaaagag gggcccagat gtggggaggg actaagaaga 34200 34260 teccetecte cectececta gecettecee tectececte ecctagecet ttecettett ccccccage cetteceete eteccetece etagecette ccetectece eteccetace 34380 cotteccete cteccetece etagaeette coeteacete eteccqetqa qeecetecae 34440 tegtececca geceeteeet eccetageee eteceeteee eetteeteee etecteeee 34500 tecectecte ecectecete tteeteceee tecectecte ececttecte ecetetecte 34560 cocctocct cetyteccc ctectecct cetectect cecetecte cecetectec 34620 teccectect ecetectece tectececet ectectec ecetectec tectecete 34680 cetetectec teccatecet ecteceatec etecteceeg tteccattet eteccetece 34800 cettecattt eteceteete eccetgeeet ecteteetee teaceteece tteteegete 34860 ccccctcctc ccctccttcc tcctcccatt ccccctcctc ccccctccca ttccccctcc 35040 teccetectt cetectecca ttacceetec tetectecce tecteccace eccetetect 35100 coeggetect etecteect ceteatecee etecteteet tecetectaa ecceeteet 35160 ctcctcccct cctcatcccc ctcctctcct tccctcctcc tatcccccct cctctcctcc 35220 toctoccete eteccatece ectectece tectecete teccatecea tecceetect 35340 ctcccatccc ccctcctccc atccccctc ctctcctccc cactcctctc ctccccactc 35460 tttcctccc tcccctcct tcccctcct cccctcctt ctccccatcc cccttcccct 35580 tetectecte teccetecee ettetettt tecctectee teccttecte eteccetett 35640 tetetettte ttteeteeet tteettetee eetgttetee teeetteeet teteeeettt 35760 tettecetee teettteete eesteeteet titetetgit tetetteett teeceteeae 35820

tttccccttc ctttcccctc tcctttctcc ttcctttcct ctccccttct cttccttttc 35880 ctctctccc ttctttccc tcttcccctc ccctctctt cccctcccct cctcttcccc 35940 teccetecte tteccetece etectettee ectetectee tetteccete ecetectett 36000 tecetecet etteteetee ectetetee ectetteeee teceeteete tteceteeee 36060 tteccetece etectettee eteccettee ecteccetee tettecetee cetteccete 36120 ctetteette etetetteee eteceeteet etteceteee etetteeeet eccettetet 36180 totoctocco ttotottocc oteccetttt ottocctotc ottgtottoc otgocctoct 36240 cttecetece etectettee eteceetett ecceteteet cetetteeet eccetettee 36300 tettteetet teeceteece teeteeteec teecetttee eetetteece teeceteege 36360 ttccctcccc tttctccccc ttctctcccc tcccctctcc ccccttctct cccctcccct 36420 cteccette teteccetee ceteteccee ttetetecce tetectetee ccettetete 36480 coccttetet coccettete teteccette teteccett eteteccete eccettete 36540 toccotocco totocccott ctotocccto coototocco totoctotoc totocaccot 36600 tototococt cocctotoct otococotto cototoctot coccottoto toccotocco 36660 totoototoo coccititoi coactoccot oteotototo coctootoot cogototoat 36720 gtgaagaggt gccttgtgtg gtcggtgggc tgcatcacgt ggtccccagg tggaggccct 36780 gggtcatgca gagccacaga aaatgcttag tgaggaggct gtgggggtcc agtcaagtgg 36840 gctctccagc tgcagggctg ggggtgggag ccaggtgagg acccgtgtag agaggagggc 36900 gtgtgcaagg agtggggcca ggagcggggc tggacactgc tggctccaca caggggccca 36960 gcagggagct cgtatgccgc tcgtgcctga agcagacgct gcacaagctg gaggccatga 37020 tgctcatcct gcaggcagag accaccgcgg gcaccgtgac gcccaccgcc atcggagaca 37080 gcatcctcaa catcacaggt gccgcggccc gtgccccatg ccacccgccc gccccgtgcg 37140 gecettteet etgeeteect cetecececa acegegtege etttgeecea teccatette 37200 gteccettee cetecceca atteccatee teatecceet ecceaatte ceatteteet 37260 ccccctcccc cttccctatt accatccctt ttctccatct ctctcccctt ttctccattt 37320 cocccccgt cotccccgtc cttttgtcca ttcccctcat cttcctcatc cccctcatcc 37380 coetteecet coettatece cetteecete cettteecee tgeteetett etteteeett 37440 37500 37560 ttccttctgc ctgcacctcg ctctctgccc cctcaggttc cccctttctc ccagcccca 37620 ccctccggct cccccttttt gcctgcccc accctccctc tacctccctg tctctgcact 37680

gacctcacgc atgtctgcag gagacctcat ccacctggcc agctcggacg tgcgggcacc 37740 37800 acagecetea gagetgggag eegagteace ateteggatg gtggegteee aggeetaeaa 37860 ectgacetet geecteatge geatecteat gegeteeege gtgeteaaeg aggageeeet gacgctggcg ggcgaggaga tcgtggccca gggcaagcgc tcggacccgc ggagcctgct 37920 gtgctatggc ggcgccccag ggcctggctg ccacttctcc atccccgagg ctttcagcgg 37980 ggccctggcc aacctcagtg acgtggtgca gctcatcttt ctggtggact ccaatccctt 38040 38100 tccctttggc tatatcagca actacaccgt ctccaccaag gtggcctcga tggcattcca 38160 gacacaggec ggegeceaga tececatega geggetggee teagagegeg ceateacegt gaaggtgccc aacaactcgg actgggctgc ccggggccac cgcagctccg ccaactccgc 38220 caactccgtt gtggtccagc cccaggcctc cgtcggtgct gtggtcaccc tggacagcag 38280 38340 caaccetgeg geegggetge atetgeaget caactatacg etgetggaeg gtgegtgeag cgggtggggc acacgcggcc ccctggcctt gttcttgggg ggaaggcgtt tctcgtaggg 38400 38460 cttccatggg tgtctctggt gaaatttgct ttctgtttca tgggctgctg ggggcctggc 38520 cagagaggag ctgggggcca cggagaagca ggtgccagct ctggtgcaga ggctcctatg ctttcaggcc cgtggcagag ggtgggctca ggagggccat cgtgggtgtc ccccgggtgg 38580 ttgagettee eggeaggegt gtgaeetgeg egttetgeee eaggeeaeta eetgtetgag 38640 38700 gaacctgagc cctacctggc agtctaccta cactcggagc cccggcccaa tgagcacaac tgctcggcta gcaggaggat ccgcccagag tcactccagg gtgctgacca ccggccctac 38760 38820 accttettea ttteeceggg gtgagetetg egggecagee tggeagggea gggeagggea tcatgggtca gcattgcctg ggttactggc cccatgggga cggcaggcag cgaggggact 38880 ggaccgggta tgggctctga gactgcgaca tccaacctgg cggagcctgg gctcacgtcc 38940 39000 gctacccctt ccctgcccag gagcagagac ccagcgggga gttaccatct gaacctctcc 39060 agccacttcc gctggtcggc gctgcaggtg tccgtgggcc tgtacacgtc cctgtgccag tacttcagcg aggaggacat ggtgtggcgg acagaggggc tgctgcccct ggaggagacc 39120 tegeceegee aggeegtetg ceteaceege caceteaceg cetteggege cageetette 39180 gtgcccccaa gccatgtccg ctttgtgttt cctgtgagtg accctgtgct cctgggagcc 39240 tetgeagagt egaggaggge etgggtggge teggetetat eetgagaagg cacagettge 39300 39360 acgtgacctc ctgggcccgg cggctgtgtc ctcacaggag ccgacagcgg atgtaaacta categicatg etgacatgig etgigtgeet ggigacetae atggicatgg eegecateet 39420 gcacaagctg gaccagttgg atgccagccg gggccgcgcc atccctttct gtgggcagcg 39480

gggccgcttc aagtacgaga tcctcgtcaa gacaggctgg ggccggggct caggtgaggg 39540 39600 gcgcagcggg gtggcagggc ctcccctgct ctcactggct gtgctggttg caccctctgg gagtgagtct cgtcgcaggc gtcagaacaa ggcagttttt gcagtgctgt gtgaagggct 39660 39720 cgtgtgttca tcctgggaat gacctcgtga gcactcactg tccctgagga ctaggacagc tectagetgg aagtaggtge cagteagtea gggtgggeag eecaegttet geacagtage 39780 gtggccccac aagtgacgtg agcatcgcta ccactgtggg agactgtgca tccacccgcg 39840 39900 atcctgactg catagetegt eteteagacg gaggegecag cacceteece gtggetgttt 39960 cttcagtacc tccattttcc tttcattgga attgcccttc tggcattccc tttttgtttt cgtttttctt tttttagaga cggagtctca ctctgttgcc caggctggag tgcaatggca 40020 40080 tgatcttggc tcacagcaac ttccagctcc cgggtttaag ccattcccct taagcgattc 40140 tectgagtag etgggagtae aggtgeaeae caccacacce agttaatttt teaccatgte agccaggcga actcctgacc tcaggtgatc cgcctgcctc ggcctgccag agtgctggga 40200 40260 tgacaggtgt gagccaccac acctggctgt gttcccattt tttatctctg tgctgctttc 40320 ctcttcattg cccagttctt tcttttgatt acctactttt aaaaactgtc ggccgggcgc 40380 ggtggctcac acctgtaatc cgagcacttt gggaggccag gcaggcaaat cacggggtca ggagatcgag accatcctgg ctaacggtga aaccctgtct ctaataaaaa gtacaaaaaa 40440 40500 attagecegg egtagtggea ggegeetgta gteecagete ettgggagae tgaggeagga 40560 gaatggcgtg aaccegggag geggagettg cagtgagetg agattgegee aetgeactee 40620 gggtctgtca ctgggagagg aggtgacaca gcttcacgct ttgcagtctg tgcatgaact 40680 gagggacggg tgtgtggtgc gggtcaccgg ttgtggcatg actgaggcgt ggacaggtgt 40740 gcagtgcggg tcactggttg tggtgtggac tgaggcgtgt gcagccatgt ttgcatgtca 40800 40860 caagttacag ttctttccat gtaacttaat catgtccttg aggtcctgct gttaattgga 40920 caaattgcag taaccgcagc tccttgtgta tggcagagcc gtgcaaagcc gggactgcct gtgtggctcc ttgagtgcgc acaggccaaa gctgagatga cttgcctggg atgccacacg 40980 tgttgggcag cagaccgagc ctcccacccc tccctcttgc ctcccaggta ccacggccca 41040 41100 cgtgggcatc atgctgtatg gggtggacag ccggagcggc caccggcacc tggacggcga cagageette caeegeaaca geetggacat etteeggate geeaeeeege acageetggg 41160 tagcgtgtgg aagatccgag tgtggcacga caacaaaggt ttgtgcggac cctgccaagc 41220 tetgececte tgececegea ttggggegee etgegageet gaeeteeete etgegeetet 41280 gcagggctca gccctgcctg gttcctgcag cacgtcatcg tcagggacct gcagacggca 41340

cgcagcgcct tcttcctggt caatgactgg ctttcggtgg agacggaggc caacgggggc 41400 ctggtggaga aggaggtgct ggccgcgagt aaggcctcgt tccatggtcc cactccgtgg 41460 gaggttgggc agggtggtcc tgccccgtgg cctcctgcag tgcggccctc cctgccttct 41520 aggegaegea gecettttge getteeggeg cetgetggtg getgagetge agegtggett 41580 ctttgacaag cacatctggc tetecatatg ggaceggeeg cetegtagee gtttcacteg 41640 41700 catccagagg gccacctgct gcgttctcct catctgcctc ttcctgggcg ccaacgccgt 41760 gtggtacggg gctgttggcg actctgccta caggtgggtg ccgtaggggt cggggcagcc tetteetgee cagecettee tgeeceteag ceteacetgt gtggeeteet etecteeaca 41820 cagcacgggg catgtgtcca ggctgagccc gctgagcgtc gacacagtcg ctgttggcct 41880 ggtgtccagc gtggttgtct atcccgtcta cctggccatc ctttttctct tccggatgtc 41940 ccggagcaag gtgggctggg gctggggacc cgggagtact gggaatggag cctgggcctc 42000 42060 ggcaccatgc ctagggccgc cactttccag tgctgcagcc agagggaaag gcgtccacca 42120 aaggctgctc gggaagggtc aacacacttg agcagcctta gctagactga ccagggagaa 42180 agagagaaga ctcagaagcc agaatggtga aagaacgagg gcactttgct aagcagacgc cacggacgac tgcacagcag cacgccagat aactcagaag aagcaagcac gcggctgtgc 42240 42300 acgcttccga aatgcactcc agaagaaaat ctcagtacat ctataggaag tgaagaggct 42360 gagttagtcc cttagaaacg tcccagtggc cgggccgggt gtggtggctc acgcctgtaa 42420 tcccaacact tcaggtggcc gaggtgggcg gatctgagtc caggagtttg agaccagcct gggcaacata gcaagacccc atctatataa aacattaaaa agggccaggc gcggtggctc 42480 42540 acgcctgtaa tcccagcact ttgggaggcc gaggcgggca gatcacttga ggtcaggagt tegagaceag cetggeeaac acaatgaaac eeegacteta etacaaatac aaaaaettag 42600 42660 ctgggcatgg tggcgggcgc ctgtagtccc agctactcga gaggctgagg caggagaatg 42720 gcatgaaccc aggaggcgga gcttgcagtg agccgagatt gcgccactgc actccatcct 42780 gggcaacgga gcaagactcc atctccaaaa aaaaaaaaa aaaatcccac aaagaaaagc tcaggctcag agccttcacg atagaatttt tctaagcagt taaggaagaa ttaacaccaa 42840 tectteacag actettteca agaatacage aggtgggaae getteecatt cataeggaaa 42900 cgggaggccg cacccttag gaatgcacac gtggggtcct caagaggtta catgcaaact 42960 43020 aaccccagca gcacacagag aaggcgcata agccgcgacc aggaggggtt gctcccgagt 43080 ccgtggcagg aaccagaggc cacatgtggc tgctcgtatt taagttaatt aaaatggaac gatggccggg tgtggtggct cacacctgta atcccagcac tttggggaggc ggaggcgggc

agatcacttg aggtcaggag ttccaagacc agcctggcca acacagtgaa accccgtctc 43260 tactaaaaat acaaaaaatt agctgggcat ggtggcaggc acctgtaatc ccagctactc aggaggetga gecaggaeaa tegeetgaae gegggaggtg gaggttgeag tgagetgaga 43320 43380 ttgcgccatt gcactccagc ctgggtgaca gcgagactcc atctaaaaaa gaaaatatga aatttaaaac tetgtteett agetgeacea gtetgetgte aagtgtteag tggeacaegt 43440 cgcgaggggc tgccatcacg gacggtgcag atgtcccata tatccagcat tctaggacat 43500 43560 tetgteagat ggeaceggge tetgteetgt etgetgagga ggtggettet eatecetgte ctgagcaggt ctgagctgcc gcccgctgac cactgccctc gtcctgcagg tggctgggag 43620 43680 cccgagcccc acacctgccg ggcagcaggt gctggacatc gacagctgcc tggactcgtc 43740 cgtgctggac agctccttcc tcacgttctc aggcctccac gctgaggtga ggactctact 43800 gggggtcctg ggctgggctg ggggtcctgc cgccttggcg cagcttggac tcaagacact 43860 gtgcacctct cagcaggcct ttgttggaca gatgaagagt gacttgtttc tggatgattc 43920 taagaggtgg gttccctaga gaaacctcga gccctggtgc aggtcactgt gtctggggtg 43980 ccgggggtgt gcgggctgcg tgtccttgct gggtgtctgt ggctccatgt ggtcacacca 44040 cccgggagca ggtttgctcg gaagcccagg gtgtccgtgc gtgactggac gggggtgggc tgtgtgtgtg acacatecce tggtacettg etgaceegeg ceacetgeag tetggtgtge 44100 tggccctccg gcgagggaac gctcagttgg ccggacctgc tcagtgaccc gtccattgtg 44160 ggtagcaatc tgcggcagct ggcacggggc caggcgggcc atgggctggg cccagaggag 44220 gacggettet eeetggeeag eeeetaeteg eetgeeaaat eetteteage atcaggtgag 44280 44340 ctggggtgag aggaggggc tctgaagctc accettgcag ctgggcccac cetatgectc ctgtacctct agatgaagac ctgatccagc aggtccttgc cgagggggtc agcagcccag 44400 cccctaccca agacacccac atggaaacgg acctgctcag cagcctgtga gtgtccggct 44460 ctcgggggag gggggattgc cagaggaggg gccgggactc aggccaggca gccgtggttc 44520 44580 ctctgaacct ctgttgtctg tggaaagagc ctcatgggat ccccagggcc ccagaacctt 44640 ccctctaggg agggagcagg ctcatggggc tttgtaggag cagaaaggct cctgtgtgag 44700 gctggccggg gccacgtttt tatcttggtc tcagagcagt gagaaattat gggcgggttt 44760 ttaaataccc catttttggc cgggcgcggt ggctcacacg tgtaatccca gcactttggg 44820 aggeegaggt gggeagatga eetgaggtea geagttegag accageetgg eeaacatgge 44880 gaaaccccgt ctctactaaa aatacaaaaa attagccggg catgctggca ggcgcctgta 44940 gtcccagtta ctcgggagac tgaggtagga gaatcgattg aacctggtag gtgaaggttg 45000

tagtgagccg agatcgcgcc actgcactcc agcctgggca acaagagcga aactccgtct 45060 caaaaacaaa aaaattcctc aatttcttgg ttgttttgta acttatcaac aaatggtcat 45120 atagaggtta ccttgtatgt agtcacgcac atagtcacgc acatggcagc cggcggcgga 45180 gegeacecae ggegtgttee caegegtgtg acceeggget etgecatgee etectatget 45240 caggtgtgct gaggtccaca cggccctgcc gttgcactgc agctgcctgc aggattcagt 45300 gcagtggcat gcagtgcagg tgcggtgccc cggagccaca ggccacacca cagggcctgc 45360 atgcacaggg gctgcggtgt ctgggtttgg gtaactacgc cctgtgacat ttgcacagca 45420 acagaattac ctaatgacgc atttctcaga acacatccct ggcactaagt ggtgcgtgac 45480 tgctgctttt gcatccacat ctagtttgat ttgtgtgtta ttcctttgag tgcttctcat 45540 45600 tgttaagcaa ccaagaacta aagaggtatg aactgcccct ggactcaaac aaaaaggaaa acttcctgat ttacaaaagg cagataacca tcacatgagg gcatctttat gaataaattg 45660 ctggttggtt ttaaaaatac agagtatggg gaaatccagg ggtagtcact acatgctgac 45720 cagececagg tateteegge ecaaagetet gtgaaateea gatteagtge tteegegggg 45780 atttctgacg gcagctcaga ctccgcatcc acacagagcg cgtggccctc accctcccgg 45840 ettectcaac cettggeegt ceettgeteg gacagtgett egggetgaec aggteggagg 45900 45960 ettgggtttg teetggaeee etetgegtee tteeteaetg eageeteeag egegteeegt 46020 ggeteettte ecaaegeaga geaeggeett eeetgegeet gageetgeae eeteegteet 46080 ggcggcgcct ctgccctggc attccctgcc actccatgcc tccctattgg ccattctccg tctctgccag cgagagcctg ctccctgagt cagaccctga gtcatttgtg ttgctataaa 46140 ggaatagttg aggctgggtt attttttatt tttatttatt tttttgagat ggagtctctg 46200 ttgcccagac tggagtgcag tcgcatgatc tcggctcact gcaaagtctg cctcccacgt 46260 tcaagcagtt atctgcctca gcctcccaag tagctaagat tacaggcgcc cgccgccaca 46320 gccggctaat tttttgtgtg tgtgttttag tagagaggag gtttcaccat cttagccagg 46380 ctggtcttga actcctgacc tcgtgatcca cccatctcag cctcccaaaa tgctgagatt 46440 acaggcgtga gccaccacgc ctgaccaagt tgaggctagg tcatttttta attttttgta 46500 aagacagggt ctcactgtct ccaactcctg agctcaagtg atcctcctgc ctcagcctcc 46560 tgaagtgctg ggattacagg cttgagacac tgcgcccagc caagagtgtc ttttatcctc 46620 cgagagacag caaaacagga agcattcagt gcagtgtgac cctgggtcag gccgttcttt 46680 46740 cggtgatggg ctgacgaggg cgcaggtacg ggagagcgtc ctgagagccc gggactcggc gtotogcagt tggtotogto otococotca acgtgtotto gotgcototg tacotottot 46800

ctagcagctc tgggaccggg catatcagca tggtggcccg atgcagtggc acagcctcgg tggtcactgg ctcctggaga cacaagcaga tctctggcct cagggagccc tacacactgt 46920 tgggatttga aaggcattca tatgtttcct tgtccagaag ttaattttag gccataaacc 46980 tgcatgggac agacacactg gcgtctctag attgtagaga tgcttgttgg atggttgaga 47040 cccaatcata gtttgcaggg ttgaaggggg gctcattgca ccctgagaga ctgtgcactg 47100 ctgtaagggc agctggtcag gctgtgggcg atgggtttat cagcagcaag cgggcgggag 47160 agggacgcag gcggacgcct gacttcggtg cctggagtgg ctcttggttc cctggctccc 47220 47280 agcaccactc ccactctcgt ttggggtagg gtcttccggc tttttgtcgg ggggaccctg tgacccaaga ggctcaagaa actgcccgcc caggttaaca tgggcttggc tgcaactgcc 47340 teetggagge egggatgaat teacageeta ceatgteeet eaggteeage aeteetgggg 47400 agaagacaga gacgctggcg ctgcagaggc tgggggagct ggggccaccc agcccaggcc 47460 tgaactggga acagccccag gcagcgaggc tgtccaggac aggtgtgctt gcgtagcccc 47520 gggatgcccc tagcccctcc ctgtgagctg cctctcacag gtctgtctct gcttccccag 47580 gactggtgga gggtctgcgg aagcgcctgc tgccggcctg gtgtgcctcc ctggcccacg 47640 ggctcagcct gctcctggtg gctgtggctg tggctgtctc agggtgggtg ggtgcgagct 47700 tececeeggg egtgagtgtt gegtggetee tgteeageag egeeagette etggeeteat 47760 tecteggetg ggagecaetg aaggtgaggg ggetgeeagg ggtaggetae aggeeteeat 47820 cacgggggac ccctctgaag ccacccctc cccaggtctt gctggaagcc ctgtacttct 47880 cactggtggc caageggetg cacceggatg aagatgacac cetggtagag ageceggetg 47940 tgacgcctgt gagcgcacgt gtgccccgcg tacggccacc ccacggcttt gcactcttcc 48000 tggccaagga agaagcccgc aaggtcaaga ggctacatgg catgctgcgg gtgagcctgg 48060 gtgcggcctg tgcccctgcc acctccgtct cttgtctccc acctcccacc catgcacgca 48120 ggacactect gteeceettt ceteacetea gaaggeeett aggggtteaa tgetetgeag 48180 cetttgeceg gtetecetee taccecaege ecceaettg etgeeceagt ecetgecagg 48240 geocagetee aatgeceact cetgeetgge cetgaaggee cetaageace aetgeagtgg 48300 cctgtgtgtc tgccccagg tggggttccg ggcagggtgt gtgctgccat taccctggcc 48360 aggtagagte ttggggegee eeetgeeage teacetteet geageeacae etgeegeage 48420 catggeteca geogttgeca aageeetget gteaetgtgg getggggeea ggetgaeeae 48480 agggcccccc cgtccaccag agcctcctgg tgtacatgct ttttctgctg gtgaccctgc 48540 tggccagcta tggggatgcc tcatgccatg ggcacgccta ccgtctgcaa agcgccatca 48600 ageaggaget geacageegg geetteetgg ceateaegeg gtaegggeat eeggtgeaet 48660

ggtctgtctt ctgggcttta gttttgcctt tagtccagcc agaccctagg ggacatgtgg 48720 acatgtgtag atacctttgt ggctgctaga actggaggta ggtgctgctg gcatcagtag 48780 gcagagggga gggacacagg tccgtgtctt gcagtgcaca ggacgggccc atgacagaca 48840 actgtctgcc ccagaacatc cccaggataa ggctgagaag cccaggtcta gccgtggcca 48900 gcagggcagt gggagccatg ttccctgggt ctctggtggc cgctcactcg aggcgggcat 48960 ggggcagtag gggctggagc gtgtgactga tgctgtggca ggtctgagga gctctggcca 49020 tggatggccc acgtgctgct gccctacgtc cacgggaacc agtccagccc agagctgggg 49080 ccccacggc tgcggcaggt gcggctgcag gaaggtgagc tggcagggcg tgccccaaga 49140 cttaaatcgt tcctcttgtt gagagagcag cctttagcgg agctctggca tcagcctgc 49200 teeetagetg tgtgaeettt geeetettaa caeegeegtt teettetetg tatatgagag 49260 atggtaacgt tgtctaattg atggctgctg ggagggttcc ctggggtggc gccgaaccag 49320 agctcaggcg agctggccag caggaaacac teetgttggg ttttgatgag geeetggeee 49380 eggeetgggg etetgtgtgt tteageacte tacceagace eteceggeee eagggteeae 49440 acgtgctcgg ccgcaggagg cttcagcacc agcgattacg acgttggctg ggagagtcct 49500 cacaatggct cggggacgtg ggcctattca gcgccggatc tgctggggtg agcagagcga 49560 gggccccggg cgtctacgcc aaggacaagg gagtagttct ccaggagtgc cgcggcctcc 49620 tgaccageet ggeteegggg tgeeggaagg getggggtge ggeacceaeg ceaccetet 49680 49740 ccggcagggc atggtcctgg ggctcctgtg ccgtgtatga cagcgggggc tacgtgcagg agetgggeet gageetggag gagageegeg aceggetgeg etteetgeag etgeacaact 49800 ggctggacaa caggtgggag ctccctcccc tgccctctcc ggggtggccg cagtcaccag 49860 ccaggagece acceteacte eteeggeece egetggeeta ggeggettee acageceete 49920 agccacgcct gcactgcgcg gtccccgcag ctcccgcct gccacccgct cctactgacc 49980 egeacectet gegeaggage egegetgtgt teetggaget eaegegetae ageceggeeg 50040 tggggctgca cgccgccgtc acgctgcgcc tcgagttccc ggcggccggc cgcgccctgg 50100 cegecetcag egteegeece tittgegetge geegeetcag egegggeete tegetgeete 50160 50220 tgeteacete ggtacgeceg tecceggeca gacceegege eteccacegg cagegteceg ccccctegeg gggcccegcc eggcagegtc teaccccteg cagegccceg ccccctegca 50280 gegteeegee ceetegeagg geeeegeeee ggeagegtee egeeeeeteg tagggeeeeg 50340 ccccggcagc gtcccgcccc ctcgcagggc cccgccccgg cagcgtccct cccgccctcc 50400 tgaccgcgcc ccccacaggt gtgcctgctg ctgttcgccg tgcacttcgc cgtggccgag 50460

gcccgtactt ggcacaggga agggcgctgg cgcgtgctgc ggctcggagc ctgggcgcgg 50520 tggctgctgg tggcgctgac ggcggccacg gcactggtac gcctcgccca gctgggtgcc 50580 50640 gctgaccgcc agtggacccg tttcgtgcgc ggccgcccgc gccgcttcac tagcttcgac caggtggcgc agctgagctc cgcagcccgt ggcctggcgg cctcgctgct cttcctgctt 50700 ttggtcaagg tgagggctgg gccggtgggc gcggggctgg gcgcacaccc cagggctgca 50760 agcagacaga tttctcgtcc gcaggctgcc cagcagctac gcttcgtgcg ccagtggtcc 50820 gtctttggca agacattatg ccgagctctg ccagagctcc tggggggtcac cttgggcctg 50880 gtggtgctcg gggtagccta cgcccagctg gccatcctgg taggtgactg cgcggccggg 50940 gagggcgtct tagctcagct cagctcagct gtacgccctc actggtgtcg ccttccccgc 51000 agetegtgte tteetgtgtg gaeteeetet ggagegtgge ceaggeeetg ttggtgetgt 51060 gccctgggac tgggctctct accctgtgtc ctgccgagtc ctggcacctg tcacccctgc 51120 51180 tgtgtgtggg getetgggea etgeggetgt ggggegeeet aeggetgggg getgttatte teegetggeg etaceaegee ttgegtggag agetgtaeeg geeggeetgg gageeeeagg 51240 actacgagat ggtggagttg ttcctgcgca ggctgcgcct ctggatgggc ctcagcaagg 51300 tcaaggaggt gggtacggcc cagtgggggg gagagggaca cgccctgggc tctgcccagg 51360 gtgcagccgg actgactgag cccctgtgcc gcccccagtt ccgccacaaa gtccgctttg 51420 aagggatgga gccgctgccc tctcgctcct ccaggggctc caaggtatcc ccggatgtgc 51480 ccccacccag cgctggctcc gatgcctcgc acccctccac ctcctccagc cagctggatg 51540 51600 ggctgagcgt gagcctgggc cggctgggga caaggtgtga gcctgagccc tcccgcctcc aagccgtgtt cgaggccctg ctcacccagt ttgaccgact caaccaggcc acagaggacg 51660 51720 tetaccaget ggageageag etgeaeagee tgeaaggeeg eaggageage egggegeeeg ceggatette cegtggeeca teccegggee tgeggeeage actgeecage egeettgeec 51780 gggccagtcg gggtgtggac ctggccactg gccccagcag gacacccctt cgggccaaga 51840 acaaggteca ceccageage acttagtect cettectgge gggggtggge egtggagteg 51900 gagtggacac cgctcagtat tactttctgc cgctgtcaag gccgagggcc aggcagaatg 51960 gctgcacgta ggttccccag agagcaggca ggggcatctg tctgtctgtg ggcttcagca 52020 ctttaaagag gctgtgtggc caaccaggac ccagggtccc ctccccagct cccttgggaa 52080 ggacacagca gtattggacg gtttctagcc tctgagatgc taatttattt ccccgagtcc 52140 tcaggtacag cgggctgtgc ccggccccac cccctgggca gatgtccccc actgctaagg 52200 ctgctggctt cagggagggt tagcctgcac cgccgccacc ctgcccctaa gttattacct 52260 ctccagttcc taccgtactc cctgcaccgt ctcactgtgt gtctcgtgtc agtaatttat

atggtgttaa aatgtgtata tttttgtatg tcactatttt cactagggct gaggggcctg 52380 cgcccagage tggcctcccc caacacctgc tgcgcttggt aggtgtggtg gcgttatggc 52440 agcccggctg ctgcttggat gcgagcttgg ccttgggccg gtgctggggg cacagctgtc 52500 52560 tgccaggcac tctcatcacc ccagaggcct tgtcatcctc ccttgcccca ggccaggtag 52620 caagagagca gcgcccaggc ctgctggcat caggtctggg caagtagcag gactaggcat gtcagaggac cccagggtgg ttagaggaaa agactcctcc tgggggctgg ctcccagggt 52680 ggaggaaggt gactgtgtgt gtgtgtgtgt gcgcgcgcgc acgcgcgagt gtgctgtatg 52740 52800 gcccaggcag cctcaaggcc ctcggagctg gctgtgcctg cttctgtgta ccacttctgt 52860 gggcatggcc gcttctagag cctcgacacc ccccaaccc ccgcaccaag cagacaaagt caataaaaga getgtetgae tgeaatetgt geetetatgt etgtgeaetg gggteaggae 52920 52980 tttatttatt tcactgacag gcaataccgt ccaaggccag tgcaggaggg agggccccgg 53040 cctcacacaa actcggtgaa gtcctccacc gaggagatga ggcgcttccg ctggcccacc tcatagccag gtgtgggctc ggctggagtc tgtgcagggg ctttgctatg ggacggaggg 53100 tgcaccagag gtaggctggg gttggagtag gcggcttcct cgcagatctg aaggcagagg 53160 53220 cggcttgggc agtaagtctg ggaggcgtgg caaccgctct gcccacacac ccgccccaca gcttgggcag ccagcacacc ccgctgaggg agccccatat tccctacccg ctggcggagc 53280 53340 gcttgatgtg gcggagcggg caatccactt ggaggggtag atatcggtgg ggttggagcg 53400 gctatgatgc acctgtgagg ccatctgggg acgtaggcag ggggtgagct cactatcagg 53460 tggcacctgg gcctgtccca ccagctcacg cctggaccca cccccactca catttgcgtg 53520 cagggccatc tggcgggcca cgaagggcag gttgcggtca gacacgatct tggccacgct 53522 gg

<210> 2

<211> 4303

<212> PRT

<213> Homo sapiens

<400> 2

Met Pro Pro Ala Ala Pro Ala Arg Leu Ala Leu Gly Leu Gly 1 5 10 15

Leu Trp Leu Gly Ala Leu Ala Gly Gly Pro Gly Arg Gly Cys Gly Pro 20 25 30

Cys Glu Pro Pro Cys Leu Cys Gly Pro Ala Pro Gly Ala Ala Cys Arg 35 40 45

Val Asn Cys Ser Gly Arg Gly Leu Arg Thr Leu Gly Pro Ala Leu Arg

60

55

50

Ile Pro Ala Asp Ala Thr Glu Leu Asp Val Ser His Asn Leu Leu Arg 75 Ala Leu Asp Val Gly Leu Leu Ala Asn Leu Ser Ala Leu Ala Glu Leu 90 Asp Ile Ser Asn Asn Lys Ile Ser Thr Leu Glu Glu Gly Ile Phe Ala 105 Asn Leu Phe Asn Leu Ser Glu Ile Asn Leu Ser Gly Asn Pro Phe Glu Cys Asp Cys Gly Leu Ala Trp Leu Pro Gln Trp Ala Glu Glu Gln Gln Val Arg Val Val Gln Pro Glu Ala Ala Thr Cys Ala Gly Pro Gly Ser Leu Ala Gly Gln Pro Leu Leu Gly Ile Pro Leu Leu Asp Ser Gly Cys Gly Glu Glu Tyr Val Ala Cys Leu Pro Asp Asn Ser Ser Gly Thr Val 185 Ala Ala Val Ser Phe Ser Ala Ala His Glu Gly Leu Leu Gln Pro Glu Ala Cys Ser Ala Phe Cys Phe Ser Thr Gly Gln Gly Leu Ala Ala Leu 215 Ser Glu Gln Gly Trp Cys Leu Cys Gly Ala Ala Gln Pro Ser Ser Ala Ser Phe Ala Cys Leu Ser Leu Cys Ser Gly Pro Pro Ala Pro Pro Ala 250 Pro Thr Cys Arg Gly Pro Thr Leu Leu Gln His Val Phe Pro Ala Ser Pro Gly Ala Thr Leu Val Gly Pro His Gly Pro Leu Ala Ser Gly Gln Leu Ala Ala Phe His Ile Ala Ala Pro Leu Pro Val Thr Asp Thr Arg Trp Asp Phe Gly Asp Gly Ser Ala Glu Val Asp Ala Ala Gly Pro Ala Ala Ser His Arg Tyr Val Leu Pro Gly Arg Tyr His Val Thr Ala Val 325 Leu Ala Leu Gly Ala Gly Ser Ala Leu Leu Gly Thr Asp Val Gln Val 345 Glu Ala Ala Pro Ala Ala Leu Glu Leu Val Cys Pro Ser Ser Val Gln Ser Asp Glu Ser Leu Asp Leu Ser Ile Gln Asn Arg Gly Gly Ser Gly 370 375 380

Leu Glu Ala Ala Tyr Ser Ile Val Ala Leu Gly Glu Glu Pro Ala Arg 390 Ala Val His Pro Leu Cys Pro Ser Asp Thr Glu Ile Phe Pro Gly Asn 405 410 Gly His Cys Tyr Arg Leu Val Val Glu Lys Ala Ala Trp Leu Gln Ala 425 Gln Glu Gln Cys Gln Ala Trp Ala Gly Ala Ala Leu Ala Met Val Asp Ser Pro Ala Val Gln Arg Phe Leu Val Ser Arg Val Thr Arg Ser Leu Asp Val Trp Ile Gly Phe Ser Thr Val Gln Gly Val Glu Val Gly Pro Ala Pro Gln Gly Glu Ala Phe Ser Leu Glu Ser Cys Gln Asn Trp Leu 490 Pro Gly Glu Pro His Pro Ala Thr Ala Glu His Cys Val Arg Leu Gly Pro Thr Gly Trp Cys Asn Thr Asp Leu Cys Ser Ala Pro His Ser Tyr 520 Val Cys Glu Leu Gln Pro Gly Gly Pro Val Gln Asp Ala Glu Asn Leu Leu Val Gly Ala Pro Ser Gly Asp Leu Gln Gly Pro Leu Thr Pro Leu 550 555 Ala Gln Gln Asp Gly Leu Ser Ala Pro His Glu Pro Val Glu Val Met Val Phe Pro Gly Leu Arg Leu Ser Arg Glu Ala Phe Leu Thr Thr Ala Glu Phe Gly Thr Gln Glu Leu Arg Arg Pro Ala Gln Leu Arg Leu Gln Val Tyr Arg Leu Leu Ser Thr Ala Gly Thr Pro Glu Asn Gly Ser Glu Pro Glu Ser Arg Ser Pro Asp Asn Arg Thr Gln Leu Ala Pro Ala Cys Met Pro Gly Gly Arg Trp Cys Pro Gly Ala Asn Ile Cys Leu Pro Leu Asp Ala Ser Cys His Pro Gln Ala Cys Ala Asn Gly Cys Thr Ser Gly Pro Gly Leu Pro Gly Ala Pro Tyr Ala Leu Trp Arg Glu Phe Leu Phe Ser Val Pro Ala Gly Pro Pro Ala Gln Tyr Ser Val Thr Leu His Gly 695

Gln Asp Val Leu Met Leu Pro Gly Asp Leu Val Gly Leu Gln His Asp Ala Gly Pro Gly Ala Leu Leu His Cys Ser Pro Ala Pro Gly His Pro Gly Pro Arg Ala Pro Tyr Leu Ser Ala Asn Ala Ser Ser Trp Leu Pro His Leu Pro Ala Gln Leu Glu Gly Thr Trp Gly Cys Pro Ala Cys Ala Leu Arg Leu Leu Ala Gln Arg Glu Gln Leu Thr Val Leu Leu Gly Leu 775 Arg Pro Asn Pro Gly Leu Arg Leu Pro Gly Arg Tyr Glu Val Arg Ala 795 Glu Val Gly Asn Gly Val Ser Arg His Asn Leu Ser Cys Ser Phe Asp Val Val Ser Pro Val Ala Gly Leu Arg Val Ile Tyr Pro Ala Pro Arg 825 Asp Gly Arg Leu Tyr Val Pro Thr Asn Gly Ser Ala Leu Val Leu Gln Val Asp Ser Gly Ala Asn Ala Thr Ala Thr Ala Arg Trp Pro Gly Gly 855 Ser Leu Ser Ala Arg Phe Glu Asn Val Cys Pro Ala Leu Val Ala Thr 870 Phe Val Pro Ala Cys Pro Trp Glu Thr Asn Asp Thr Leu Phe Ser Val Val Ala Leu Pro Trp Leu Ser Glu Gly Glu His Val Val Asp Val Val 900 Val Glu Asn Ser Ala Ser Arg Ala Asn Leu Ser Leu Arg Val Thr Ala 920 Glu Glu Pro Ile Cys Gly Leu Arg Ala Thr Pro Ser Pro Glu Ala Arg Val Leu Gln Gly Val Leu Val Arg Tyr Ser Pro Val Val Glu Ala Gly Ser Asp Met Val Phe Arg Trp Thr Ile Asn Asp Lys Gln Ser Leu Thr Phe Gln Asn Val Val Phe Asn Val Ile Tyr Gln Ser Ala Ala Val Phe Lys Leu Ser Leu Thr Ala Ser Asn His Val Ser Asn Val Thr Val Asn Tyr Asn Val Thr Val Glu Arg Met Asn Arg Met Gln Gly Leu Gln Val Ser Thr Val Pro Ala Val Leu Ser Pro Asn Ala Thr Leu Ala

	1025					1030					1035			
Leu	Thr 1040		Gly	Val	Leu	Val 1045	_	Ser	Ala	Val	Glu 1050		Ala	Phe
Leu	Trp 1055	Thr	Phe	Gly	Asp	Gly 1060		Gln	Ala	Leu	His 1065	Gln	Phe	Gln
Pro	Pro 1070	Tyr	Asn	Glu	Ser	Phe 1075	Pro	Val	Pro	Asp	Pro 1080	Ser	Val	Ala
Gln	Val 1085	Leu	Val	Glu	His	Asn 1090	Val	Thr	His	Thr	Tyr 1095		Ala	Pro
Gly	Glu 1100		Leu	Leu	Thr	Val 1105	Leu	Ala	Ser	Asn	Ala 1110	Phe	Glu	Asn
Leu	Thr 1115	Gln	Gln	Val	Pro	Val 1120	Ser	Val	Arg	Ala	Ser 1125	Leu	Pro	Ser
Val	Ala 1130	Val	Gly	Val	Ser	Asp 1135	Gly	Val	Leu	Val	Ala 1140	Gly	Arg	Pro
Val	Thr 1145	Phe	Tyr	Pro	His	Pro 1150	Leu	Pro	Ser	Pro	Gly 1155	Gly	Val	Leu
Tyr	Thr 1160	Trp	Asp	Phe	Gly	Asp 1165	Gly	Ser	Pro	Val	Leu 1170	Thr	Gln	Ser
Gln	Pro 1175	Ala	Ala	Asn	His	Thr 1180	Tyr	Ala	Ser	Arg	Gly 1185	Thr	Tyr	His
Val	Arg 1190	Leu	Glu	Val	Asn	Asn 1195	Thr	Val	Ser	Gly	Ala 1200	Ala	Ala	Gln
Ala	Asp 1205	Val	Arg	Val	Phe	Glu 1210	Glu	Leu	Arg	Gly	Leu 1215	Ser	Val	Asp
Met	Ser 1220	Leu	Ala	Val	Glu	Gln 1225	Gly	Ala	Pro	Val	Val 1230	Val	Ser	Ala
Ala	Val 1235	Gln	Thr	Gly	Asp	Asn 1240	Ile	Thr	Trp	Thr	Phe 1245	Asp	Met	Gly
Asp	Gly 1250	Thr	Val	Leu	Ser	Gly 1255	Pro	Glu	Ala	Thr	Val 1260	Glu	His	Val
Tyr	Leu 1265	Arg	Ala	Gln	Asn	Cys 1270	Thr	Val	Thr	Val	Gly 1275	Ala	Gly	Ser
Pro	Ala 1280	Gly	His	Leu	Ala	Arg 1285	Ser	Leu	His	Val	Leu 1290	Val	Phe	Val
Leu	Glu 1295	Val	Leu	Arg	Val	Glu 1300	Pro	Ala	Ala	Cys	Ile 1305	Pro	Thr	Gln
Pro	Asp 1310	Ala	Arg	Leu	Thr	Ala 1315	Tyr	Val	Thr	Gly	Asn 1320	Pro	Ala	His
Tyr	Leu 1325	Phe	Asp	Trp	Thr	Phe 1330	Gly	Asp	Gly	Ser	Ser 1335	Asn	Thr	Thr

Val Arg Gly Cys Pro Thr Val Thr His Asn Phe Thr Arg Ser Gly 1340 1345 Thr Phe Pro Leu Ala Leu Val Leu Ser Ser Arg Val Asn Arg Ala 1355 1360 His Tyr Phe Thr Ser Ile Cys Val Glu Pro Glu Val Gly Asn Val 1375 Thr Leu Gln Pro Glu Arg Gln Phe Val Gln Leu Gly Asp Glu Ala 1385 1390 Trp Leu Val Ala Cys Ala Trp Pro Pro Phe Pro Tyr Arg Tyr Thr Trp Asp Phe Gly Thr Glu Glu Ala Ala Pro Thr Arg Ala Arg Gly 1415 Pro Glu Val Thr Phe Ile Tyr Arg Asp Pro Gly Ser Tyr Leu Val Thr Val Thr Ala Ser Asn Asn Ile Ser Ala Ala Asn Asp Ser Ala 1445 1450 Leu Val Glu Val Gln Glu Pro Val Leu Val Thr Ser Ile Lys Val 1465 Asn Gly Ser Leu Gly Leu Glu Leu Gln Gln Pro Tyr Leu Phe Ser 1475 Ala Val Gly Arg Gly Arg Pro Ala Ser Tyr Leu Trp Asp Leu Gly 1495 Asp Gly Gly Trp Leu Glu Gly Pro Glu Val Thr His Ala Tyr Asn 1505 Ser Thr Gly Asp Phe Thr Val Arg Val Ala Gly Trp Asn Glu Val 1525 Ser Arg Ser Glu Ala Trp Leu Asn Val Thr Val Lys Arg Arg Val 1535 1540 Arg Gly Leu Val Val Asn Ala Ser Arg Thr Val Val Pro Leu Asn Gly Ser Val Ser Phe Ser Thr Ser Leu Glu Ala Gly Ser Asp Val Arg Tyr Ser Trp Val Leu Cys Asp Arg Cys Thr Pro Ile Pro Gly 1590 Gly Pro Thr Ile Ser Tyr Thr Phe Arg Ser Val Gly Thr Phe Asn Ile Ile Val Thr Ala Glu Asn Glu Val Gly Ser Ala Gln Asp Ser Ile Phe Val Tyr Val Leu Gln Leu Ile Glu Gly Leu Gln Val Val 1630

Gly	Gly 1640		Arg	Tyr	Phe	Pro 1645		Asn	His	Thr	Val 1650	Gln	Leu	Gln
Ala	Val 1655	Val	Arg	Asp	Gly	Thr 1660	Asn	Val	Ser	Tyr	Ser 1665	Trp	Thr	Ala
Trp	Arg 1670	Asp	Arg	Gly	Pro	Ala 1675	Leu	Ala	Gly	Ser	Gly 1680	Lys	Gly	Phe
Ser	Leu 1685	Thr	Val	Leu	Glu	Ala 1690	Gly	Thr	Tyr	His	Val 1695	Gln	Leu	Arg
Ala	Thr 1700	Asn	Met	Leu	Gly	Ser 1705	Ala	Trp	Ala	Asp	Cys 1710	Thr	Met	Asp
Phe	Val 1715	Glu	Pro	Val	Gly	Trp 1720	Leu	Met	Val	Ala	Ala 1725	Ser	Pro	Asn
Pro	Ala 1730	Ala	Val	Asn	Thr	Ser 1735	Val	Thr	Leu	Ser	Ala 1740	Glu	Leu	Ala
Gly	Gly 1745	Ser	Gly	Val	Val	Tyr 1750	Thr	Trp	Ser	Leu	Glu 1755	Glu	Gly	Leu
Ser	Trp 1760	Glu	Thr	Ser	Glu	Pro 1765	Phe	Thr	Thr	His	Ser 1770	Phe	Pro	Thr
Pro	Gly 1775	Leu	His	Leu	Val	Thr 1780	Met	Thr	Ala	Gly	Asn 1785	Pro	Leu	Gly
Ser	Ala 1790	Asn	Ala	Thr	Val	Glu 1795	Val	Asp	Val	Gln	Val 1800	Pro	Val	Ser
Gly	Leu 1805	Ser	Ile	Arg	Ala	Ser 1810	Glu	Pro	Gly	Gly	Ser 1815	Phe	Val	Ala
Ala	Gly 1820	Ser	Ser	Val	Pro	Phe 1825	Trp	Gly	Gln	Leu	Ala 1830	Thr	Gly	Thr
Asn	Val 1835	Ser	Trp	Cys	Trp	Ala 1840	Val	Pro	Gly	Gly	Ser 1845	Ser	Lys	Arg
Gly	Pro 1850	His	Val	Thr	Met	Val 1855	Phe	Pro	Asp	Ala	Gly 1860	Thr	Phe	Ser
Ile	Arg 1865	Leu	Asn	Ala	Ser	Asn 1870	Ala	Val	Ser	Trp	Val 1875	Ser	Ala	Thr
Tyr	Asn 1880	Leu	Thr	Ala	Glu	Glu 1885	Pro	Ile	Val	Gly	Leu 1890	Val	Leu	Trp
Ala	Ser 1895	Ser	Lys	Val	Val	Ala 1900	Pro	Gly	Gln	Leu	Val 1905	His	Phe	Gln
Ile	Leu 1910	Leu	Ala	Ala	Gly	Ser 1915	Ala	Val	Thr	Phe	Arg 1920	Leu	Gln	Val
Gly	Gly 1925	Ala	Asn	Pro	Glu	Val 1930	Leu	Pro	Gly	Pro	Arg 1935	Phe	Ser	His
Ser	Phe	Pro	Arg	Val	Gly	Asp	His	Val	Val	Ser	Val	Arg	Gly	Lys

	1940					1945					1950			
Asn	His 1955	Val	Ser	Trp	Ala	Gln 1960	Ala	Gln	Val	Arg	Ile 1965	Val	Val	Leu
Glu	Ala 1970	Val	Ser	Gly	Leu	Gln 1975		Pro	Asn	Cys	Cys 1980		Pro	Gly
Ile	Ala 1985	Thr	Gly	Thr	Glu	Arg 1990	Asn	Phe	Thr	Ala	Arg 1995	Val	Gln	Arg
Gly	Ser 2000	Arg	Val	Ala	Tyr	Ala 2005	Trp	Tyr	Phe	Ser	Leu 2010	Gln	Lys	Val
Gln	Gly 2015	Asp	Ser	Leu	Val	Ile 2020	Leu	Ser	Gly	Arg	Asp 2025	Val	Thr	Tyr
Thr	Pro 2030	Val	Ala	Ala	Gly	Leu 2035	Leu	Glu	Ile	Gln	Val 2040	Arg	Ala	Phe
Asn	Ala 2045	Leu	Gly	Ser	Glu	Asn 2050	Arg	Thr	Leu	Val	Leu 2055	Glu	Val	Gln
Asp	Ala 2060	Val	Gln	Tyr	Val	Ala 2065	Leu	Gln	Ser	Gly	Pro 2070	Cys	Phe	Thr
Asn	Arg 2075	Ser	Ala	Gln	Phe	Glu 2080	Ala	Ala	Thr	Ser	Pro 2085	Ser	Pro	Arg
Arg	Val 2090	Ala	Tyr	His	Trp	Asp 2095	Phe	Gly	Asp	Gly	Ser 2100	Pro	Gly	Gln
Asp	Thr 2105	Asp	Glu	Pro	Arg	Ala 2110	Glu	His	Ser	Tyr	Leu 2115	Arg	Pro	Gly
Asp	Tyr 2120	Arg	Val	Gln	Val	Asn 2125	Ala	Ser	Asn	Leu	Val 2130	Ser	Phe	Phe
Val	Ala 2135	Gln	Ala	Thr	Val	Thr 2140	Val	Gln	Val	Leu	Ala 2145	Cys	Arg	Glu
Pro	Glu 2150	Val	Asp	Val	Val	Leu 2155	Pro	Leu	Gln	Val	Leu 2160	Met	Arg	Arg
Ser	Gln 2165	Arg	Asn	Tyr	Leu	Glu 2170	Ala	His	Val	Asp	Leu 2175	Arg	Asp	Cys
Val	Thr 2180	Tyr	Gln	Thr	Glu	Tyr 2185	Arg	Trp	Glu	Val	Tyr 2190	Arg	Thr	Ala
Ser	Cys 2195	Gln	Arg	Pro	Gly	Arg 2200	Pro	Ala	Arg	Val	Ala 2205	Leu	Pro	Gly
Val	Asp 2210	Val	Ser	Arg	Pro	Arg 2215	Leu	Val	Leu	Pro	Arg 2220	Leu	Ala	Leu
Pro	Val 2225	Gly	His	Tyr	Сув	Phe 2230	Val	Phe	Val	Val	Ser 2235	Phe	Gly	Asp
Thr	Pro 2240	Leu	Thr	Gln	Ser	Ile 2245	Gln	Ala	Asn	Val	Thr 2250	Val	Ala	Pro

Glu	Arg 2255		Val	Pro	Ile	Ile 2260		Gly	Gly	Ser	Tyr 2265	_	Val	Trp
Ser	Asp 2270	Thr	Arg	Asp	Leu	Val 2275	Leu	Asp	Gly	Ser	Glu 2280	Ser	Tyr	Asp
Pro	Asn 2285	Leu	Glu	Asp	Gly	Asp 2290	Gln	Thr	Pro	Leu	Ser 2295	Phe	His	Trp
Ala	Cys 2300	Val	Ala	Ser	Thr	Gln 2305	Arg	Glu	Ala	Gly	Gly 2310	Cys	Ala	Leu
Asn	Phe 2315	Gly	Pro	Arg	Gly	Ser 2320	Ser	Thr	Val	Thr	Ile 2325	Pro	Arg	Glu
Arg	Leu 2330	Ala	Ala	Gly	Val	Glu 2335	Tyr	Thr	Phe	Ser	Leu 2340	Thr	Val	Trp
Lys	Ala 2345	Gly	Arg	Lys	Glu	Glu 2350	Ala	Thr	Asn	Gln	Thr 2355	Val	Leu	Ile
Arg	Ser 2360	Gly	Arg	Val	Pro	Ile 2365	Val	Ser	Leu	Glu	Cys 2370	Val	Ser	Cys
Lys	Ala 2375	Gln	Ala	Val	Tyr	Glu 2380	Val	Ser	Arg	Ser	Ser 2385	Tyr	Val	Tyr
Leu	Glu 2390	Gly	Arg	Cys	Leu	Asn 2395	Cys	Ser	Ser	Gly	Ser 2400	Lys	Arg	Gly
Arg	Trp 2405	Ala	Ala	Arg	Thr	Phe 2410	Ser	Asn	Lys	Thr	Leu 2415	Val	Leu	Asp
Glu	Thr 2420	Thr	Thr	Ser	Thr	Gly 2425	Ser	Ala	Gly	Met	Arg 2430	Leu	Val	Leu
Arg	Arg 2435	Gly	Val	Leu	Arg	Asp 2440	Gly	Glu	Gly	Tyr	Thr 2445	Phe	Thr	Leu
Thr	Val 2450	Leu	Gly	Arg	Ser	Gly 2455	Glu	Glu	Glu	Gly	Cys 2460	Ala	Ser	Ile
Arg	Leu 2465	Ser	Pro	Asn	Arg	Pro 2470	Pro	Leu	Gly	Gly	Ser 2475	Cys	Arg	Leu
Phe	Pro 2480	Leu	Gly	Ala	Val	His 2485	Ala	Leu	Thr	Thr	Lys 2490	Val	His	Phe
Glu	Cys 2495	Thr	Gly	Trp	His	Asp 2500	Ala	Glu	Asp	Ala	Gly 2505	Ala	Pro	Leu
Val	Tyr 2510	Ala	Leu	Leu	Leu	Arg 2515	Arg	Сув	Arg	Gln	Gly 2520	His	Cys	Glu
Glu	Phe 2525	Cys	Val	Tyr	Lys	Gly 2530	Ser	Leu	Ser	Ser	Tyr 2535	Gly	Ala	Val
Leu	Pro 2540	Pro	Gly	Phe	Arg	Pro 2545	His	Phe	Glu	Val	Gly 2550	Leu	Ala	Val

Val	Val 2555		Asp	Gln	Leu	Gly 2560	Ala	Ala	Val	Val	Ala 2565		Asn	Arg
Ser	Leu 2570	Ala	Ile	Thr	Leu	Pro 2575	Glu	Pro	Asn	Gly	Ser 2580		Thr	Gly
Leu	Thr 2585	Val	Trp	Leu	His	Gly 2590	Leu	Thr	Ala	Ser	Val 2595	Leu	Pro	Gly
Leu	Leu 2600	Arg	Gln	Ala	Asp	Pro 2605	Gln	His	Val	Ile	Glu 2610	Tyr	Ser	Leu
Ala	Leu 2615	Val	Thr	Val	Leu	Asn 2620	Glu	Tyr	Glu	Arg	Ala 2625	Leu	Asp	Val
Ala	Ala 2630	Glu	Pro	Lys	His	Glu 2635	Arg	Gln	His	Arg	Ala 2640	Gln	Ile	Arg
Lys	Asn 2645	Ile	Thr	Glu	Thr	Leu 2650	Val	Ser	Leu	Arg	Val 2655	His	Thr	Val
Asp	Asp 2660	Ile	Gln	Gln	Ile	Ala 2665	Ala	Ala	Leu	Ala	Gln 2670	Cys	Met	Gly
Pro	Ser 2675	Arg	Glu	Leu	Val	Cys 2680	Arg	Ser	Cys	Leu	Lys 2685	Gln	Thr	Leu
His	Lys 2690	Leu	Glu	Ala	Met	Met 2695	Leu	Ile	Leu	Gln	Ala 2700	Glu	Thr	Thr
Ala	Gly 2705	Thr	Val	Thr	Pro	Thr 2710	Ala	Ile	Gly	Asp	Ser 2715	Ile	Leu	Asn
Ile	Thr 2720	Gly	Asp	Leu		His 2725	Leu	Ala	Ser	Ser	Asp 2730	Val	Arg	Ala
Pro	Gln 2735	Pro	Ser	Glu	Leu	Gly 2740	Ala	Glu	Ser	Pro	Ser 2745	Arg	Met	Val
Ala	Ser 2750	Gln	Ala	Tyr	Asn	Leu 2755	Thr	Ser	Ala	Leu	Met 2760	Arg	Ile	Leu
Met	Arg 2765	Ser	Arg	Val	Leu	Asn 2770	Glu	Glu	Pro	Leu	Thr 2775	Leu	Ala	Gly
Glu	Glu 2780	Ile	Val	Ala	Gln	Gly 2785	Lys	Arg	Ser	Asp	Pro 2790	Arg	Ser	Leu
Leu	Cys 2795	Tyr	Gly	Gly	Ala	Pro 2800	Gly	Pro	Gly	Cys	His 2805	Phe	Ser	Ile
Pro	Glu 2810	Ala	Phe	Ser	Gly	Ala 2815	Leu	Ala	Asn	Leu	Ser 2820	Asp	Val	Val
Gln	Leu 2825	Ile	Phe	Leu	Val	Asp 2830	Ser	Asn	Pro	Phe	Pro 2835	Phe	Gly	Tyr
Ile	Ser 2840	Asn	Tyr	Thr	Val	Ser 2845	Thr	Lys	Val	Ala	Ser 2850	Met	Ala	Phe
Gln	Thr	Gln	Ala	Gly	Ala	Gln	Ile	Pro	Ile	Glu	Arg	Leu	Ala	Ser

	2855					2860					2865			
Glu	Arg 2870		Ile	Thr	Val	Lys 2875		Pro	Asn	Asn	Ser 2880	Asp	Trp	Ala
Ala	Arg 2885		His	Arg	Ser	Ser 2890		Asn	Ser	Ala	Asn 2895		Val	Val
Val	Gln 2900	Pro	Gln	Ala	Ser	Val 2905		Ala	Val	Val	Thr 2910	Leu	Asp	Ser
Ser	Asn 2915		Ala	Ala	Gly	Leu 2920		Leu	Gln	Leu	Asn 2925	Tyr	Thr	Leu
Leu	Asp 2930		His	Tyr	Leu	Ser 2935		Glu	Pro	Glu	Pro 2940	_	Leu	Ala
Val	Tyr 2945	Leu	His	Ser	Glu	Pro 2950	Arg	Pro	Asn	Glu	His 2955	Asn	Cys	Ser
Ala	Ser 2960	Arg	Arg	Ile	Arg	Pro 2965		Ser	Leu	Gln	Gly 2970	Ala	Asp	His
Arg	Pro 2975	_	Thr	Phe	Phe	Ile 2980	Ser	Pro	Gly	Ser	Arg 2985	Asp	Pro	Ala
Gly	Ser 2990	Tyr	His	Leu	Asn	Leu 2995	Ser	Ser	His	Phe	Arg 3000	Trp	Ser	Ala
Leu	Gln 3005	Val	Ser	Val	Gly	Leu 3010	Tyr	Thr	Ser	Leu	Cys 3015	Gln	Tyr	Phe
Ser	Glu 3020	Glu	Asp	Met	Val	Trp 3025	Arg	Thr	Glu	Gly	Leu 3030	Leu	Pro	Leu
Glu	Glu 3035	Thr	Ser	Pro	Arg	Gln 3040	Ala	Val	Cys	Leu	Thr 3045	Arg	His	Leu
Thr	Ala 3050	Phe	Gly	Ala	Ser	Leu 3055	Phe	Val	Pro	Pro	Ser 3060	His	Val	Arg
Phe	Val 3065	Phe	Pro	Glu	Pro	Thr 3070	Ala	Asp	Val	Asn	Tyr 3075	Ile	Val	Met
Leu	Thr 3080	Cys	Ala	Val	Cys	Leu 3085	Val	Thr	Tyr	Met	Val 3090	Met	Ala	Ala
Ile	Leu 3095	His	Lys	Leu	Asp	Gln 3100	Leu	Asp	Ala	Ser	Arg 3105	Gly	Arg	Ala
Ile	Pro 3110	Phe	Cys	Gly	Gln	Arg 3115	Gly	Arg	Phe	Lys	Tyr 3120	Glu	Ile	Leu
Val	Lys 3125	Thr	Gly	Trp	Gly	Arg 3130	Gly	Ser	Gly	Thr	Thr 3135	Ala	His	Val
Gly	Ile 3140	Met	Leu	Tyr	Gly	Val 3145	Asp	Ser	Arg	Ser	Gly 3150	His	Arg	His
Leu	Asp 3155	Gly	Asp	Arg	Ala	Phe 3160	His	Arg	Asn	Ser	Leu 3165	Asp	Ile	Phe

Arg	Ile 3170		Thr	Pro	His	Ser 3175		Gly	Ser	Val	Trp 3180	Lys	Ile	Arg
Val	Trp 3185	His	Asp	Asn	Lys	Gly 3190		Ser	Pro	Ala	Trp 3195	Phe	Leu	Gln
His	Val 3200	Ile	Val	Arg	Asp	Leu 3205	Gln	Thr	Ala	Arg	Ser 3210	Ala	Phe	Phe
Leu	Val 3215	Asn	Asp	Trp	Leu	Ser 3220		Glu	Thr	Glu	Ala 3225	Asn	Gly	Gly
Leu	Val 3230	Glu	Lys	Glu	Val	Leu 3235	Ala	Ala	Ser	Asp	Ala 3240	Ala	Leu	Leu
Arg	Phe 3245	Arg	Arg	Leu	Leu	Val 3250	Ala	Glu	Leu	Gln	Arg 3255	Gly	Phe	Phe
Asp	Lys 3260	His	Ile	Trp	Leu	Ser 3265	Ile	Trp	Asp	Arg	Pro 3270	Pro	Arg	Ser
Arg	Phe 3275	Thr	Arg	Ile	Gln	Arg 3280	Ala	Thr	Cys	Cys	Val 3285	Leu	Leu	Ile
Cys	Leu 3290	Phe	Leu	Gly	Ala	Asn 3295	Ala	Val	Trp	Tyr	Gly 3300	Ala	Val	Gly
Asp	Ser 3305	Ala	Tyr	Ser	Thr	Gly 3310	His	Val	Ser	Arg	Leu 3315	Ser	Pro	Leu
Ser	Val 3320	Asp	Thr	Val	Ala	Val 3325	_	Leu	Val	Ser	Ser 3330	Val	Val	Val
Tyr	Pro 3335	Val	Tyr	Leu	Ala	Ile 3340	Leu	Phe	Leu	Phe	Arg 3345	Met	Ser	Arg
Ser	Lys 3350	Val	Ala	Gly	Ser	Pro 3355	Ser	Pro	Thr	Pro	Ala 3360	Gly	Gln	Gln
Val	Leu 3365	Asp	Ile	Asp	Ser	Cys 3370	Leu	Asp	Ser	Ser	Val 3375	Leu	Asp	Ser
Ser	Phe 3380	Leu	Thr	Phe	Ser	Gly 3385	Leu	His	Ala	Glu	Gln 3390	Ala	Phe	Val
Gly	Gln 3395	Met	Lys	Ser	Asp	Leu 3400	Phe	Leu	Asp	Asp	Ser 3405	Lys	Ser	Leu
Val	Cys 3410	Trp	Pro	Ser	Gly	Glu 3415	Gly	Thr	Leu	Ser	Trp 3420	Pro	Asp	Leu
Leu	Ser 3425	Asp	Pro	Ser	Ile	Val 3430	Gly	Ser	Asn	Leu	Arg 3435	Gln	Leu	Ala
Arg	Gly 3440	Gln	Ala	Gly	His	Gly 3445	Leu	Gly	Pro	Glu	Glu 3450	Asp	Gly	Phe
Ser	Leu 3455	Ala	Ser	Pro	Tyr	Ser 3460	Pro	Ala	Lys	Ser	Phe 3465	Ser	Ala	Ser

Asp	Glu	Asp	Leu	Ile	Gln		Val	Leu	Ala	Glu	_	Val	Ser	Ser
	3470			a 1 .		3475			~·1	1	3480	_		_
Pro	Ala 3485	Pro	Thr	GIn	Asp	Thr 3490	His	Met	Glu	Thr	Asp 3495	Leu	Leu	Ser
Ser	Leu 3500	Ser	Ser	Thr	Pro	Gly 3505	Glu	Lys	Thr	Glu	Thr 3510	Leu	Ala	Leu
Gln	Arg 3515	Leu	Gly	Glu	Leu	Gly 3520	Pro	Pro	Ser	Pro	Gly 3525	Leu	Asn	Trp
Glu	Gln 3530	Pro	Gln	Ala	Ala	Arg 3535	Leu	Ser	Arg	Thr	Gly 3540	Leu	Val	Glu
Gly	Leu 3545	Arg	Lys	Arg	Leu	Leu 3550	Pro	Ala	Trp	Cys	Ala 3555	Ser	Leu	Ala
His	Gly 3560	Leu	Ser	Leu	Leu	Leu 3565	Val	Ala	Val	Ala	Val 3570	Ala	Val	Ser
Gly	Trp 3575	Val	Gly	Ala	Ser	Phe 3580	Pro	Pro	Gly	Val	Ser 3585	Val	Ala	Trp
Leu	Leu 3590	Ser	Ser	Ser	Ala	Ser 3595	Phe	Leu	Ala	Ser	Phe 3600	Leu	Gly	Trp
Glu	Pro 3605	Leu	Lys	Val	Leu	Leu 3610	Glu	Ala	Leu	Tyr	Phe 3615	Ser	Leu	Val
Ala	Lys 3620	Arg	Leu	His	Pro	Asp 3625	Glu	Asp	Asp	Thr	Leu 3630	Val	Glu	Ser
Pro	Ala 3635	Val	Thr	Pro	Val	Ser 3640	Ala	Arg	Val	Pro	Arg 3645	Val	Arg	Pro
Pro	His 3650	Gly	Phe	Ala	Leu	Phe 3655	Leu	Ala	Lys	Glu	Glu 3660	Ala	Arg	Lys
Val	Lys 3665	Arg	Leu	His	Gly	Met 3670	Leu	Arg	Ser	Leu	Leu 3675	Val	Tyr	Met
Leu	Phe 3680	Leu	Leu	Val	Thr	Leu 3685	Leu	Ala	Ser	Tyr	Gly 3690	Asp	Ala	Ser
Cys	His 3695	Gly	His	Ala	Tyr	Arg 3700	Leu	Gln	Ser	Ala	Ile 3705	Lys	Gln	Glu
Leu	His 3710	Ser	Arg	Ala	Phe	Leu 3715	Ala	Ile	Thr	Arg	Ser 3720	Glu	Glu	Leu
Trp	Pro 3725	Trp	Met	Ala	His	Val 3730	Leu	Leu	Pro	Tyr	Val 3735	His	Gly	Asn
Gln	Ser 3740	Ser	Pro	Glu	Leu	Gly 3745	Pro	Pro	Arg	Leu	Arg 3750	Gln	Val	Arg
Leu	Gln 3755	Glu	Ala	Leu	Tyr	Pro 3760	Asp	Pro	Pro	Gly	Pro 3765	Arg	Val	His
Thr	Cys	Ser	Ala	Ala	Gly	Gly	Phe	Ser	Thr	Ser	Asp	Tyr	Asp	Val

	3770					3775					3780			
Gly	Trp 3785	Glu	Ser	Pro	His	Asn 3790	_	Ser	Gly	Thr	Trp 3795	Ala	Tyr	Ser
Ala	Pro 3800	Asp	Leu	Leu	Gly	Ala 3805	Trp	Ser	Trp	Gly	Ser 3810	Cys	Ala	Val
Tyr	Asp 3815	Ser	Gly	Gly	Tyr	Val 3820	Gln	Glu	Leu	Gly	Leu 3825	Ser	Leu	Glu
Glu	Ser 3830	Arg	Asp	Arg	Leu	Arg 3835	Phe	Leu	Gln	Leu	His 3840	Asn	Trp	Leu
Asp	Asn 3845	Arg	Ser	Arg	Ala	Val 3850	Phe	Leu	Glu	Leu	Thr 3855	Arg	Tyr	Ser
Pro	Ala 3860	Val	Gly	Leu	His	Ala 3865	Ala	Val	Thr	Leu	Arg 3870	Leu	Glu	Phe
Pro	Ala 3875	Ala	Gly	Arg	Ala	Leu 3880	Ala	Ala	Leu	Ser	Val 3885	Arg	Pro	Phe
Ala	Leu 3890	Arg	Arg	Leu	Ser	Ala 3895	Gly	Leu	Ser	Leu	Pro 3900	Leu	Leu	Thr
Ser	Val 3905	Cys	Leu	Leu	Leu	Phe 3910	Ala	Val	His	Phe	Ala 3915	Val	Ala	Glu
Ala	Arg 3920	Thr	Trp	His	Arg	Glu 3925	Gly	Arg	Trp	Arg	Val 3930	Leu	Arg	Leu
Gly	Ala 3935	Trp	Ala	Arg	Trp	Leu 3940	Leu	Val	Ala	Leu	Thr 3945	Ala	Ala	Thr
Ala	Leu 3950	Val	Arg	Leu	Ala	Gln 3955	Leu	Gly	Ala	Ala	Asp 3960	Arg	Gln	Trp
Thr	Arg 3965	Phe	Val	Arg	Gly	Arg 3970	Pro	Arg	Arg	Phe	Thr 3975	Ser	Phe	Asp
Gln	Val 3980	Ala	His	Val	Ser	Ser 3985	Ala	Ala	Arg	Gly	Leu 3990	Ala	Ala	Ser
Leu	Leu 3995	Phe	Leu	Leu	Leu	Val 4000	_	Ala	Ala	Gln	His 4005		Arg	Phe
Val	Arg 4010	Gln	Trp	Ser	Val	Phe 4015	Gly	Lys	Thr	Leu	Cys 4020	Arg	Ala	Leu
Pro	Glu 4025	Leu	Leu	Gly	Val	Thr 4030	Leu	Gly	Leu	Val	Val 4035	Leu	Gly	Val
Ala	Tyr 4040	Ala	Gln	Leu	Ala	Ile 4045		Leu	Val	Ser	Ser 4050	Cys	Val	Asp
Ser	Leu 4055	Trp	Ser	Val	Ala	Gln 4060	Ala	Leu	Leu	Val	Leu 4065	Cys	Pro	Gly
Thr	Gly 4070	Leu	Ser	Thr	Leu	Cys 4075	Pro	Ala	Glu	Ser	Trp 4080	His	Leu	Ser

Pro Leu Cys Val Gly Leu Trp Ala Leu Arg Leu Trp Gly Ala 4085 4090 Leu Arg Leu Gly Ala Val Ile Leu Arg Trp Arg Tyr His Ala Leu 4105 4110 Arg Gly Glu Leu Tyr Arg Pro Ala Trp Glu Pro Gln Asp Tyr Glu 4115 4120 Met Val Glu Leu Phe Leu Arg Arg Leu Arg Leu Trp Met Gly Leu 4130 4135 Ser Lys Val Lys Glu Phe Arg His Lys Val Arg Phe Glu Gly Met 4150 Glu Pro Leu Pro Ser Arg Ser Ser Arg Gly Ser Lys Val Ser Pro 4160 4165 Asp Val Pro Pro Pro Ser Ala Gly Ser Asp Ala Ser His Pro Ser Thr Ser Ser Ser Gln Leu Asp Gly Leu Ser Val Ser Leu Gly Arg 4190 Leu Gly Thr Arg Cys Glu Pro Glu Pro Ser Arg Leu Gln Ala Val 4205 4210 Phe Glu Ala Leu Leu Thr Gln Phe Asp Arg Leu Asn Gln Ala Thr 4220 4225 Glu Asp Val Tyr Gln Leu Glu Gln Gln Leu His Ser Leu Gln Gly 4240 Arg Arg Ser Ser Arg Ala Pro Ala Gly Ser Ser Arg Gly Pro Ser 4250 Pro Gly Leu Arg Pro Ala Leu Pro Ser Arg Leu Ala Arg Ala Ser 4265 4270 Arg Gly Val Asp Leu Ala Thr Gly Pro Ser Arg Thr Pro Leu Arg 4280 4285 Ala Lys Asn Lys Val His Pro Ser Ser Thr 4295 4300 <210> 3 <211> 29 <212> DNA <213> Artificial sequence <220> <223> PCR primer BPF14

<210> 4

<400> 3

ccatccacct gctgtgtgac ctggtaaat

<211> 26 <212> DNA

20

21

28

26

<220>

<212> DNA

<213> Artificial sequence

<223> PCR primer F13

<220>		
	PCR primer BPR12	
\2237	rek primer bekiz	
<400>		
agggag	gcag aggaaagggc cgaac	25
<210>	15	
<211>	24	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	PCR primer BPF6	
\2257	FCR PITMET BFF6	
<400>	15	
ccccgt	cctc cccgtccttt tgtc	24
<210>		
<211>		
<212>	DNA	
<213>	Artificial sequence	
	-	
<220>		
<223>	PCR primer BPR6	
	2	
<400>	16	
	aaaa gggctgcgtc g	
aagegee	adda gggctgcgc g	21
-210-	10	
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer BPF13	
<400>	17	
ggccctc	ccct gccttctagg cg	22
		~ ~
<210>	18	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer KG8R25	
	18	
gttgcag	gcca agcccatgtt a	21
<210>	19	
<211>	19	
<212>		
	Artificial sequence	
<220>		
	PCR primer 1F1	
~4432	ELB DI LUCE I I CI	

<400> 19

ggtcgcgctg tggcgaagg

	<400 <i>/</i>	4 4 4	
	gggat	tcggc aaagctgatg	20
	-210-	25	
	<210> <211>		
	<211>		
		Artificial sequence	
	\213/	Altilitial sequence	
	<220>		
		PCR primer 3F	
	<400>	25	
	ccatca	agctt tgccgaatcc	20
	<210>		
	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
		PCR primer 3R	
T	,	TON PILMOL ON	
	<400>	26	
	agggca	agaag ggatattggg	20
	<210>		
	<211>		
ij	<212>		
<u></u>	<213>	Artificial sequence	
=======================================			
ųį	<220>		
=	<223>	PCR primer 4F	
	<400>	27	
7		Ettec caccagacet	
£	agaccc	cocc caccagaccc	20
	<210>	28	
	<211>	19	
	<212>	DNA	
	<213>	Artificial sequence	
	<220>		
	<223>	PCR primer 4R	
	<400>	20	
		28 ectge ceagtgtet	
	cgagee	cege ceagegeet	19
	<210>	29	
	<211>		
	<212>		
		Artificial sequence	
		•	
	<220>		
	<223>	PCR primer 5F1	
	<400>	29	

gagcca	aggag gagcagaacc c	21
<210>	30	
<211>		
<212>		
	Artificial sequence	
\213/	Arcificial sequence	
<220>		
<223>	PCR primer 5R1	
<400>	30	
	acag gcaggcaaag g	2.1
- 3333		21
<210>		
<210>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 5F2	
400		
<400>	- -	
cccage	cctc cagtgcct	18
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	PCR primer 5R2	
<400>	32	
cccagg	cagc acatagcgat	20
<210>	33	
<211>	18	
<212>	DNA	
<213>	Artificial sequence	
<220>		
	PCR primer 5F3	
	•	
<400>	33	
ccgaggt	gga tgccgctg	18
<210>	34	
<212>		
	Artificial sequence	
000		
<220>		
<223>	PCR primer 5R3	
<400>	34	
	gagt gggcagcaga c	21

```
<210> 35
<211>
       21
<212>
       DNA
<213> Artificial sequence
<220>
<223> PCR primer 6F
<400> 35
cactgaccgt tgacaccctc g
                                                                      21
<210>
       36
<211>
       21
<212>
       DNA
<213> Artificial sequence
<220>
<223>
      PCR primer 6R
<400> 36
tgccccagtg cttcagagat c
                                                                      21
<210> 37
<211>
       19
<212>
      DNA
<213> Artificial sequence
<220>
<223>
      PCR primer 7F
<400> 37
ggagtgccct gagccccct
                                                                     19
<210> 38
<211>
      19
<212> DNA
<213> Artificial sequence
<220>
<223>
      PCR primer 7R
<400> 38
cccctaacca cagccagcg
                                                                     19
<210> 39
<211>
      21
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer 8F
<400> 39
tctgttcgtc ctggtgtcct g
                                                                     21
```

<210>	40	
<211>		
<212>		
	Artificial sequence	
<213>	Artificial sequence	
<220>		
	DOD maimon OD	
<223>	PCR primer 8R	
.400-	40	
<400>		21
gcaggag	gggc aggttgtaga a	21
<210>	4.3	
<211>		
<211>		
	Artificial sequence	
<213>	Artificial sequence	
<220>		
	PCR primer 9F	
(2237	FCK PITIMET ST	
<400>	41	
	ggga gtctgggctt	20
990499	9994 9000999000	
<210>	42	
<211>		
<212>		
	Artificial sequence	
12137	Michigan poducinos	
<220>		
	PCR primer 9R	
12237	Ten parmer sh	
<400>	42	
	accc cgagtcc	17
34.33.		
<210>	43	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 10F	
<400>	43	
gttggg	catc tctgacggtg	20
<210>	44	
	20	
	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 10R	
<400>	44	
qqaaqq	tqqc ctqaqqagat	20

-21	0> 45	
	1> 17	
	2> DNA	
<21	3> Artificial sequence	
<22		
<22	3> PCR primer 11F2	
<40	0> 45	
aga	gtccacg ggccatg	17
JJJ.		
-21	0> 46	
	1> 20	
	2> DNA	
<21.	3> Artificial sequence	
2.2	0	
<22		
<22	3> PCR primer 11R2	
	0> 46	
aag	cccagca gcacggtgag	20
<21	.0> 47	
<21	.1> 17	
<21	.2> DNA	
<21	3> Artificial sequence	
	<u>.</u>	
<22	.0>	
	3> PCR primer 11midF	
\ <u>L</u> <u>L</u>	John Primer rimidi	
-10	00> 47	
		17
get	tgcagcc acggaac	Ι,
	.0> 48	
	.1> 20	
	.2> DNA	
<21	.3> Artificial sequence	
<22		
<22	23> PCR primer 11midR	
<40	00> 48	
qca	gtgctac cactgagaac	20
_		
<21	.0> 49	
	1> 23	
	2> DNA	
	.3> Artificial sequence	
< Z I	3) MICILICIAL BEQUENCE	
	10.	
<22		
<22	23> PCR primer 11F1	
	00> 49	
tgc	ccctggg agaccaacga tac	23

<210> 50

<211>	22	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 11R1	
<400>		
ggctgc	tgcc ctcactggga ag	22
<210>	F1	
<210>		
<211>		
	Artificial sequence	
\Z137	Arcillotal sequence	
<220>		
	PCR primer 12F	
	F	
<400>	51	
gaggcg	acag gctaaggg	18
<210>		
<211>		
<212>		
<213>	Artificial sequence	
-220-		
<220>	Primer for PCR	
(4437	PITMET TOT PCK	
<400>	52	
	acgt gggcctccaa gtagt	25
23	3 333	
<210>	53	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	Forward nested primer F32	
<400>	E2	
	ggca gcttggact	19
geeeg	ogea gereggaee	19
<210>	54	
<211>		
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	Second specific primer 31R	
<400>		
acagtgt	cctt gagtccaagc	20
<210>	55	
<210>	33	

```
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 55
                                                                    30
ctggtgacct acatggtcat ggccgagatc
<210> 56
<211> 30
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 56
                                                                    30
ggttgtctat cccgtctacc tggccctcct
<210> 57
<211> 25
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
<400> 57
                                                                    25
gtccccagcc ccagcccacc tggcc
<210> 58
<211> 7
<212> PRT
<213> Homo sapiens
<400> 58
Trp Asp Phe Gly Asp Gly Ser
<210> 59
<211> 4
<212> PRT
<213> Homo sapiens
<400> 59
His Leu Thr Ala
<210> 60
<211> 27
<212> DNA
<213> Artificial sequence
<220>
<223> PCR primer
```

-100-		
<400>		
ccgtgc	tcag agcctgaaag	20
010		
<210>		
<211>	18	
<212>	DNA	
	Artificial sequence	
\Z1J/	Attititat sequence	
<220>		
<223>	PCR primer 15F16	
12207	101 21101	
<400>	66	
cgggtg	ggga gcaggtgg	18
<210>		
<211>	21	
<212>		
	Artificial sequence	
~CI3>	wrettretat seducace	
<220>		
<223>	PCR primer 15R16	
1		
	67	
gctctg	ggtc aggacagggg a	21
<210>		
<211>	18	
<212>	DNA	
<213>	Artificial sequence	
<220>		
c2235	PCR primer 15F15	
12237	Tek primer 13113	
<400>	68	
cgcctg	gggg tgttcttt	18
<210>	69	
<211>	18	
<212>		
<213>	Artificial sequence	
<220>		
	PCR primer 15R15	
~~~>	TOR PLIMET TORIS	
<400>	69	
acqtqa	tgtt gtcgcccg	18
J-J-		
<210>	70	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	PGP	
<223>	PCR primer 15F14	
<400>	70	

gcccc	cgtgg tggtcagc	18
<210>		
<212>		
	Artificial sequence	
<220>		
<223>	PCR primer 15R14	
	•	
<400>	71	
caggct	tgcgt ggggatgc	18
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	PCR primer 15F13	
12237	TON PITMOT 13113	
<400>	72	
ctggad	ggtgc tgcgcgtt	18
<210>		
<211>		
<212>		
<213>	Artificial sequence	
.220.		
<220>	DCD primar 15D12	
(223)	PCR primer 15R13	
<400>	73	
ctggct	tccac gcagatgc	18
<210>		
<211> <212>		
	DNA Artificial sequence	
~2137	ALULITUIAI BUQUUNCE	
<220>		
<223>	PCR primer 15F12	
<400>	74	
cgtgaa	acagg gcgcatta	18
<210>	75	
<210> <211>		
<211>		
	Artificial sequence	
	·····	
<220>		
<223>	PCR primer 15R12	
<400>		
gcagca	agaga tgttgttgga c	21

<210>	76	
<211>		
<212>		
	Artificial sequence	
	•	
<220>		
<223>	PCR primer 15F11	
	•	
<400>	76	
ccaggct	cct atcttgtgac a	21
<210>	77	
<211>	21	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R11	
<400>	77	
tgaagt	cacc tgtgctgttg t	21
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15F10	
	78	19
ctacct	gtgg gatctgggg	1)
<210>		
<211>		
<212>		
<213>	Artificial sequence	
.220.		
<220>	DGD primar 1ED10	
<223>	PCR primer 15R10	
.400-	79	
<400>	aget caegetee	18
tgctga	aget caegetee	
<210>	80	
<211>	20	
<211>		
	Artificial sequence	
<b>\</b> 4137	THE CTTTOWN MANAGED	
<220>		
<223>	PCR primer 15F9	
\223/		
<400>	80	
	gtcg tcaatgcaag	20
444666	, , , , , , , , , , , , , , , , , , , ,	

<210>	81	
<211>		
<212>		
	Artificial sequence	
<220>		
<223>	PCR primer 15R9	
<400>	<del>-</del>	20
caccac	ctgc agcccctcta	
<210>	82	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15F8	
<400>	82	
	agga cagcatcttc	20
005000	-53	
<210>		
<211>		
<212>		
<213>	Artificial sequence	
<220>		
	PCR primer 15R8	
(225)	Tok primor form	
<400>	83	
cgctgc	ccag catgttgg	18
<210> <211>		
<211> <212>		
	Artificial sequence	
(215/	Mollional volumes	
<220>		
<223>	PCR primer 15F7	
<400>		19
cggcaa	aggc ttctcgctc	
<210>	85	
<211>		
<212>		
	Artificial sequence	
<220>		
<223>	PCR primer 15R7	
-400-	85	
<400>	85 Egtgg ggaagctatg	20

<210> 86 <211> 21	
<212> DNA	
<213> Artificial sequence	
<213> Artificial sequence	
<220>	
<223> PCR primer 15F6	
-	
<400> 86	
	21
cgagccattt accacccata g	
<210> 87	
<211> 19	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 15R6	
1223	
<400> 87	
	19
gcccagcacc agctcacat	
<210> 88	
<211> 19	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer 15F5	
(223) 100 923	
<400> 88	19
ccacgggcac caatgtgag	
<210> 89	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<220> <223> PCR primer 15R5	
<223> PCR primer 15R5	
<223> PCR primer 15R5 <400> 89	20
<223> PCR primer 15R5	20
<223> PCR primer 15R5 <400> 89	20
<223> PCR primer 15R5 <400> 89	20
<223> PCR primer 15R5  <400> 89  ggcagccagc aggatctgaa	20
<223> PCR primer 15R5  <400> 89 ggcagccagc aggatctgaa  <210> 90	20
<223> PCR primer 15R5  <400> 89 ggcagccagc aggatctgaa  <210> 90 <211> 18	20
<223> PCR primer 15R5  <400> 89 ggcagccagc aggatctgaa  <210> 90 <211> 18 <212> DNA	20
<223> PCR primer 15R5  <400> 89 ggcagccagc aggatctgaa  <210> 90 <211> 18	20
<223> PCR primer 15R5  <400> 89 ggcagccagc aggatctgaa  <210> 90 <211> 18 <212> DNA	20
<223> PCR primer 15R5  <400> 89 ggcagccagc aggatctgaa  <210> 90 <211> 18 <212> DNA	20
<223> PCR primer 15R5  <400> 89 ggcagccagc aggatctgaa  <210> 90 <211> 18 <212> DNA <213> Artificial sequence <220>	20
<223> PCR primer 15R5  <400> 89 ggcagccagc aggatctgaa  <210> 90 <211> 18 <212> DNA <213> Artificial sequence	20
<pre>&lt;223&gt; PCR primer 15R5  &lt;400&gt; 89 ggcagccagc aggatctgaa  &lt;210&gt; 90 &lt;211&gt; 18 &lt;212&gt; DNA &lt;213&gt; Artificial sequence  &lt;220&gt; &lt;223&gt; PCR pimer 15F4</pre>	20
<pre>&lt;223&gt; PCR primer 15R5  &lt;400&gt; 89 ggcagccagc aggatctgaa  &lt;210&gt; 90 &lt;211&gt; 18 &lt;212&gt; DNA &lt;213&gt; Artificial sequence  &lt;220&gt; &lt;223&gt; PCR pimer 15F4 &lt;400&gt; 90</pre>	20
<pre>&lt;223&gt; PCR primer 15R5  &lt;400&gt; 89 ggcagccagc aggatctgaa  &lt;210&gt; 90 &lt;211&gt; 18 &lt;212&gt; DNA &lt;213&gt; Artificial sequence  &lt;220&gt; &lt;223&gt; PCR pimer 15F4</pre>	
<pre>&lt;223&gt; PCR primer 15R5  &lt;400&gt; 89 ggcagccagc aggatctgaa  &lt;210&gt; 90 &lt;211&gt; 18 &lt;212&gt; DNA &lt;213&gt; Artificial sequence  &lt;220&gt; &lt;223&gt; PCR pimer 15F4 &lt;400&gt; 90</pre>	
<pre>&lt;223&gt; PCR primer 15R5  &lt;400&gt; 89 ggcagccagc aggatctgaa  &lt;210&gt; 90 &lt;211&gt; 18 &lt;212&gt; DNA &lt;213&gt; Artificial sequence  &lt;220&gt; &lt;223&gt; PCR pimer 15F4 &lt;400&gt; 90</pre>	
<pre>&lt;223&gt; PCR primer 15R5  &lt;400&gt; 89 ggcagccagc aggatctgaa  &lt;210&gt; 90 &lt;211&gt; 18 &lt;212&gt; DNA &lt;213&gt; Artificial sequence  &lt;220&gt; &lt;223&gt; PCR pimer 15F4 &lt;400&gt; 90</pre>	

<211>	18	
<212>		
	Artificial sequence	
12207		
<220>		
	PCR primer 15R4	
\L_1_3_	Tok primer rows	
<400>	91	
	gcga cccgagag	18
3-33.	J-J J J J	
<210>	92	
<211>		
<212>		
	Artificial sequence	
<220>		
<223>	PCR primer 15F3	
<400>	92	
acgggc	actg agaggaactt c	21
<210>	93	
<211>		
<212>		
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R3	
	93	20
accago	gtgc ggttctcact	
<210>	0.4	
<211>		
<211>		
	Artificial sequence	
(213)	Altilitiai bequence	
<220>		
	PCR primer 15F2	
12207		
<400>	94	
	gacgt cacctacac	19
JJ		
<210>	95	
<211>	18	
<212>	DNA	
<213>	Artificial sequence	
<220>		
<223>	PCR primer 15R2	
<400>		18
tcggc	cetgg geteatet	Τ.Ο
<210>		
<211>	20	

<212> <213>	DNA Artificial sequence	
<220> <223>	PCR primer 15F1	
<400> gtcgcc	96 aggg caggacacag	20
<210> <211> <212>	21	
	Artificial sequence	
<220> <223>	PCR primer 15F1-1	
<400> acttgg	97 agge ceaegttgae e	21
<210>		
<211> <212>		
	Artificial sequence	
<220> <223>	PCR primer 15R1-1	
<400>	98	
tgatgg	gcac caggogoto	19
<210>	99	
<211>		
<212>	Artificial sequence	
	· · · · · · · · · · · · · · · · · · ·	
<220> <223>	PCR primer 15F1-2	
<400>	99	
catcca	ggcc aatgtgacgg t	21
<210>	100	
<211>	21	
<212> <213>	DNA Artificial sequence	
~6137	arearaca bequence	
<220>		
<223>	PCR primer 15R1-2	
<400>	100	
cctggt	ggca agctgggtgt t	21
<210>	101	
<211> <212>	20 DNA	
~~~~		

	<213>	Artificial sequence	
	<220>	PCR primer 16F	
	(223)	FCK PITMOT TOT	
	<400>	101	
	taaaact	tgga tggggctctc	20
	<210>		
	<211>		
•	<212>	DNA Artificial sequence	
	<213>	Aftilitial sequence	
	<220>		
		PCR primer 16R	
	<400>		18
	ggcctc	cacc agcactaa	10
	<210>	103	
	<211>		
	<212>		
		Artificial sequence	
	<220>		
	<223>	PCR primer 17F	
	<400>	102	
		ccca gtccttccag	20
	999000		
	<210>	104	
	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
		PCR primer 17R	
	<400>	104	
	tcccca	gece geceaea	17
	<210>	105	
	<210> <211>		
	<211 <i>></i>		
		Artificial sequence	
		•	
	<220>		
	<223>	PCR primer 18F	
		105	
	<400>		20
	geceec	ctcac caccccttct	
	<210>	106	
	<211>		
	<212>		
	<213>	Artificial sequence	

.

	<220>		
	<223>	PCR primer 18R	
	<400>		4.0
	tcccgc	tgct cccccac	18
	-010-	107	
	<210>	107	
	<211>		
	<212>	Artificial sequence	
	<213>	Artificial sequence	
	<220>		
		PCR primer 19F	
	12237	TON PIIMOI IN	
	<400>	107	
		gtgg ggaccgtc	18
	J J	3,33,33	
	<210>	108	
	<211>	20	
3	<212>		
	<213>	Artificial sequence	
1			
9	<220>	<u>.</u>	
==	<223>	PCR primer 19R	
		100	
	<400>	108	20
ā	grgago	aggt ggcagtctcg	20
₩			
=	<210>	109	
eř . I	<211>		
펜	<212>		
. 9	<213>		
1- L. C. C. I- C. L. L.		-	
4	<220>		
÷	<223>	PCR primer 20F	
	<400>	109	
	ccacco	ecete tgetegtagg t	. 21
		110	
	<210>	110	
	<211>		
	<212>		
	<213>	Artificial sequence	
	<220>		
	<223>	PCR primer 20R	
	~223/	Pramor	
	<400>	110	
		caagc acgcatgca	19
		- -	
	<210>		
	<211>		
	<212>		
	<213>	Artificial sequence	

<220>	
<223> PCR primer 21F	
<400> 111	
tgccggcctc ctgcgctgct ga	22
<210> 112	
<211> 28	
<212> DNA	
<213> Artificial sequence	
42205	
<220>	
<223> PCR primer TWR2-1	
<400> 112	
gtaggatggc cccacctgct caccctgc	28
<210> 113	
<211> 20	
<212> DNA	
<213> Artificial sequence	
<220>	
<223> PCR primer R27'	
•	
<400> 113	
aggtcaacgt gggcctccaa	20