Network Medicine@Data Science A.Y. 2020-2021

Weight Gain – Network Medicine project

Alessandro Taglieri¹, Yao Appeti¹ and Davide Zingaro¹ ¹Group no. 8

Abstract

The goal of the assignment was to perform an analysis of the seed genes collected from DisGeNET dataset C0043094 – Weight Gain and collect interaction data from Biogrid Human. Afterward, we have built the interactome networks in two different cases: the first one when we consider seed genes only and the second done when we consider the database mentioned before (Biogrid Human). Enrichment analysis was performed to determine overrepresented GO categories and pathways. Different metrics for seed genes and interactome network were calculated in order to determine the general characteristics of the network. MCL algorithms were used to identify modules, on which hypergeometric test were performed to identify putative disease modules. DIAMOnD tool was used in order to compute the putative disease protein list.

Weight Gain

Weight gain is an increase in body weight. This can involve an increase in muscle mass, fat deposits, excess fluids such as water or other factors. Weight gain can be symptom of a serious medical condition. Weight gain occurs when more energy (as calories from food and beverage consumption is gained than the energy expended by life activities, including normal physiological processes and physical exercise. If enough weight is gained due to increased body fat deposits, one may become overweight or obese, generally defined as having more body fat (adipose tissue) than is considered good for health. The Body Mass Index (BMI) measures body weight in proportion to height, and defines optimal, insufficient, and excessive weight based on the ratio.

Seed genes

To get the information about our seed genes, we downloaded the "Weight Gain Curated gene-disease associations data" from DisGeNET Databse¹. This database is a discovery platform containing one of the largest publicly available collections of genes and variants associated to human diseases. At first, we obtained 102 results. Moreover, we checked if the gene symbols are updated and approved by HGNC² and UniProt³ websites. Finally, we stored the data gathered in a table with 102 rows and 5 columns that are the following:

- Official Gene symbols: approved and official gene symbols;
- Uniprot AC: Uniprot alphanumeric 'accession number';
- Protein name: approved protein name taken from HGNC database (not aliases);
- Entrez Gene ID: NCBI unique identifier of the gene, also taken from HGNC database;
- Brief Description: very short description about the protein functions, taken from UniProt website

Table 1. Top-10 rows of the Seed Genes Table (protein description omitted)

Gene symbol	Uniprot AC	Prrotein name	Entrez Gene ID
ABCG1	P45844	ATP binding cassette subfamily G member 1	9619
ACADM	P11310	acyl-CoA dehydrogenase medium chain	34
ACE	P12821	angiotensin I converting enzyme	1636
ADIPOQ	Q15848	adiponectin, C1Q and collagen domain containing	9370
AHR	P35869	aryl hydrocarbon receptor	196
AKR1C2	P52895	aldo-keto reductase family 1 member C2	1646
ANXA2	P07355	annexin A2	302
ANXA5	P08758	annexin A5	308
		amyloid beta precursor protein binding family B	
APBB2	Q92870	member 2	323
APP	P05067	amyloid beta precursor protein	351

Summary on interaction data

Once we generated all the information about seed genes involved in our disease, we collected all binary interactions from a PPI sources: Biogrid Human. It is the Biological General Repository for Interaction Datasets, version 4.2.191.

Table 2. Summary Table of Interaction Data

	Biogrid
Number of seed genes collected in DisGenet	102
Number of seed genes found in Biogrid	100
Number of interacting proteins	18909
Number of interactions	630323

Interactomes data

In this section, we had to build and store two different interactome tables:

- Seed genes interactome (sgi): interactions that involves seed genes only, from Biogrid DB⁴;
- Disease interactome (di): all proteins interacting with at least one seed gene confirmed by Biogrid DB.

We store the data using the same format. All interactome tables are characterized by four columns: interactor A gene symbol, interactor B gene symbol, interactor A Uniprot AC and interactor B Uniprot AC. In order to obtain them we've pre-processed the Biogrid dataset with Pandas library in Python.

Enrichment analysis

In this section, we performed an enrichment analysis by Enrichr web service⁵. This method is useful to identify classes of genes or proteins that may have an association with disease phenotypes. The method uses statistical approaches to identify significantly enriched or depleted groups of genes. This analysis is performed by using four Gene Ontology classes and also using a pathways databases:

- GO Biological Process;
- GO Molecular Function;
- GO Cellular Component;
- KEGG 2019 Human (pathways databases).

In this step we had to perform our enrichment analysis on disease interactome, that we have performed before.

Hence, starting from disease interactome table, we extracted the list of the unique genes involved in this dataset. After that we uploaded this list of genes on Enrichr website;in this way we obtained five different charts in total (four charts about GO categories and one for KEGG).

Since we are interested in overrepresented GO categories and overrepresented pathways, we limited our analysis to the first 10 results obtained for each main category. The following tables represent these data given from Enrichr website.

Table 3. GO Biological Process – Disease interactome genes

	GO Biological Process
1	Positive regulation of gene expression
2	Positive regulation of transcription, DNA-templated
3	Regulation of transcription from RNA polymerase II promoter
4	Transcription from RNA polymerase II promoter
5	Regulation of transcription, DNA-templated
6	Regulation of apoptotic process
7	mRNA processing
8	Positive regulation of nucleic acid-templated transcription
9	Positive regulation of transcription from RNA polymerase II promoter
10	mRNA splicing, via spliceosome

Table 4. GO Molecular Function – Disease interactome genes

	GO Molecular Function
1	RNA binding
2	Transcription coactivator activity
3	Kinase binding
4	Protein kinase binding
5	Cadherin binding
6	Protein kinase activity
7	Transcription regulatory region DNA binding
8	DNA binding
9	Protein serine/threonine kinase activity
10	Ubiquitin-like protein ligase binding

Table 5. GO Cellular Component – Disease interactome genes

	GO Cellular Component
1 2	Nuclear body Focal adhesion
3	Nuclear chromosome part
4	RNA polymerase II transcription factor complex
5	Nucleoplasm part
6	Chromatin
7	Nuclear speck
8	nucleolus
9	Nuclear chromatin
10	cytoskeleton

Table 6. KEGG Pathways – Disease interactome genes

	KEGG Pathways
1	Pathways in cancer
2	Cell cycle
3	Viral carcinogenesis
4	Human T-cell leukemia virus 1 infection
5	Cellular senescence

6 Hepatitis B
7 Epstein-Barr virus infection
8 Endocytosis
9 Human immunodeficiency 1 infection
10 Apoptosis

Network measures

Starting from the data that we build in the first part of the project, we compute the main network measures. First we have built a graph from disease interactome. From this graph we noticed that it was composed by a several connected components and we take only the LCC (large connected component) and we start to work on it. The following figure represents the graph that we draw with networkx⁶ (python library).

Figure 1. Interactome LCC plot

From this graph we computed the following measures:

- Number of nodes;
- Number of links;
- Average path length;
- Average degree;
- · Average clustering coefficient;
- Network diameter;
- Network radius;
- Network centralization.

The Table 7 shows all data about these measures.

Table 7. Global measures of the disease interactome LCC

Measures	Interactome network	
Number of nodes Number of links	4391 9619	
Average path length	5.2675	
Average degree	18.7061	
Average clustering coefficient	0.0987	
Network diameter	15	
Network radius	8	
Centralization	0.02839	

In the following table it's represented a list of first 20 genes in LCC ranked by their betweenness centrality.

Table 8. First 20 genes with the higher Betweenness centrality (LCC)

Gene	Node degree	Betweenness centrality	Eigenvector centrality	Closeness centrality	Betweenness / Node degree
EWSR1	100	0.075241	0.013749	0.278943	0.000752
CCDC85B	129	0.075241	0.040199	0.281374	0.000566
AR	71	0.066159	0.021188	0.282606	0.000932
BRCA1	95	0.065715	0.073733	0.279475	0.000692
SFN	102	0.060212	0.009421	0.271574	0.000590
TRAF2	87	0.049687	0.020990	0.273367	0.000571

MDFI	98	0.035781	0.016117	0.259594	0.000365
MAGEA11	61	0.035190	0.030719	0.271625	0.000577
FXR2	52	0.033764	0.024577	0.273095	0.000649
CTNNB1	45	0.030914	0.005073	0.263664	0.000687
TP53	57	0.030907	0.019865	0.268617	0.000542
PLSCR1	66	0.030335	0.020364	0.266367	0.000460
MYC	45	0.029432	0.010809	0.265819	0.000654
VHL	53	0.028636	0.002145	0.251850	0.000540
RNPS1	58	0.025673	0.003891	0.256425	0.000443
HDAC1	60	0.024104	0.023803	0.263759	0.000402
UBE2I	42	0.023160	0.003558	0.247533	0.000551
KRTAP4-12	75	0.020981	0.017257	0.256276	0.000280
LNX1	43	0.020624	0.016834	0.268485	0.000480
YWHAQ	55	0.01946	0.003126	0.248909	0.000354

Putative Disease Module Detection

Different clustering techniques can be used to identify modules in a network. We have chosen to perform MCL algorithm to determine modules in interactome LCC network. On the identified modules, which had more than 9 nodes, we performed hypergeometric test and determinated the putative disease modules. The results are shown in the following table and we mark the only one putative disease module that has p-value less than 0.05.

Table 9. Summary table of the module found from MCL clustering

Module ID	No. of seed genes in the module	Total no. of genes in the module	Ratio no. of sed genes/total genes in the module	P-value
MOD_0	1	54	0.0187	0.19358
MOD_1	1	50	0.02	0.18252
MOD_2	1	26	0.038	0.10581
MOD_3	1	14	0.071	0.06015
MOD_4	1	51	0.0196	0.18533
MOD_5	1	30	0.033	0.11989
MOD_6	1	10	0.1	0.04375

From the previous table we can see that there is only one putative disease modules, i.e. a module with a p-value less than 0.05. This is the MOD_0. For all genes involved in this module we did an Enrichment analysis to get overrepresented GO categories and overrepresented pathway (both limit to ten).

Table 10. GO over-represented Analysis for Putative Disease Module (interactome LLC)

GO Biological Process	Cellular Component	Molecular Function	KEGG Pathways
RNA splicing, via transesterification reactions with bulged adenosine as nucleophile	U2-type prespliceosome	RNA binding	Spliceosome
mRNA splicing, via spliceosome	Prespliceosome	Poly(U) RNA binding	Ferroptosis
mRNA processing	Nuclear spck	RNA polymerase binding	Cardiac muscle con- traction
mRNA 3'-splice site recognition	Spliceosomal snRNP complex	Poly-pyrimidine tract binding	Hypertrophic cardio- myopathy
mRNA splice site selection	U2-type prespliceosome complex	RNA polymerase II transcription core- pressor activity	Dilated cardiomyopa- thy
RNA processing	Spliceosomal complex	RNA polymerase II repressing transcription factor binding	Adrenergic signaling cardiomyocytes
Nucleic acid metabolic process	Nuclear body	Transcriptional repressor activity, RNA polymerase II transcription factor binding	
mRNA metabolic process	U2 snRNP	Repressing transcription factor binding	J
RNA metabolic process	U1 snRNP	PRNA polymerase II transcription co- factor activity	
Negative regulation of endoplasmic retional ulum unfolded protein response	c-Contractile actin filament bun- dle	Single-stranded DNA binding	

Putative Disease Proteins Detection (DIAMOnD tool)

A tool named DIAMonD⁷ was used to perform putative modules detection. This tool allow to use DI-AMOnD algorithm that is a DIseAse MOdulee Detection (DIAMOnD) Algorithm based on a systematic analysis of connectivity patterns of disease proteins in the Human Interactome. It was originally implemented in python 2 and with some changes this algorithm is converted to python 3. It takes as input several parameters:

- Path of txt file that contains the seed genes list involved in our disease;
- Path of txt file containing protein-protein interaction network. In our case these informations comes from BioGrid interactome. This file contains every interaction for every line of the txt file;
- Iteration number, in our case it's 200;
- Alpha (seed weight). It is set to default value 1;
- Path where file containing results will be stored.

In order to run the tool, we have prepared the two input files using the 'gene symbol' column from DisGeNet dataset for the first txt file and using the columns named 'Official Symbol Interactor A' and 'Official Symbol Interactor A' (splitted in gene pairs) from the result Biogrid interactome for the second txt file. Then we run the following command from the command line:

Python3 ./DIAMOnD.py ppi.txt seed_genes.txt 200

As a result, we obtain a text file containing a list of putative disease proteins. The first 30 elements of the result are shown in the following table

Table 11. First 30 elements of the result from DIAMOnD algorithm

Tuble 11: 1 list of clements of the result			
rank	DIAMOnD node		
1	MARK4		
2	PPM1B		
3	MLNR		
4	EDNRB		
5	MAP2		
6	TTF1		
7	PPIL3		
8	CEACAM1		
9	ITGB5		
10	APBA2		
11	CLSTN1		
12	DGKZ		
13	ANXA1		
14	MPDZ		
15	SCP2		
16	AQP3		
17	PLD2		
18	PLCG1		
19	EEF1A1		
20	PPP1R12C		
21	SELE		
22	SERPING1		
23	SELP		
24	SNX17		
25	IKBKB		
26	LTA4H		
27	RASD2		
28	MYH9		
29	PLCD4		
30	VIL1		

From the result obtained with DIAMOnD algorithm we can do and Enrichment analysis. In this way we can:

- Fin overrepresented GO categories (limit to first ten);
- Find overrepresented pathways (limit to first ten).

We used all result (200 node) that we obtain for the previous algorithm. Then we show the result obtained from Enrichr in different table ranked by the p-value.

Table 12. Top ten of overrepresented GO categories

GO Biological Process	Cellular Component	Molecular Function
transmembrane receptor protein tyrosine kinase signaling pathway	Focal adhesion	Cadherin binding
ERBB signaling pathway	Catenin complex	Phosphotyrosine resiude binding
Enzyme linked receptor protein signaling pathway	Actin cytoskeleton	Protein tyrosine kinase activity
Epidermal growth factor receptor signaling pathway	Actomyosin	Protein phosphorylated amino acid binding
Fc-gamma receptor signaling pathway involved in phagocytosis	Cytoskeleton	Phosphatidylinositol 3-kinase activity
Fc-gamma receptor signaling pathway	Contractile actin filament bundle	Phosphatidylinositol-4,5-bisphosphate 3-kinase activity
Fc receptor mediated stimulatory signaling pathway	Stress fiber	Phosphatidylinositol bisphosphate ki- nase activity
Peptidyl-tyrosine phosphorylation	Cortical actin cytoskeleton	Non-membrane spanning protein tyrosine kinase activity
Adherens junction organization	Membrane raft	Protein kinase binding
Peptidyl-tyrosine autophosphorylation	Cortical cytoskeleton	Ephrin receptor

Table 13. Top ten of overrepresented pathways

Term	P-value	Adjusted P-Value
Regulation of actin cytoskeleton	8.182e-26	2.520e-23
Focal adhesion	3.485e-24	5.366e-22
Bacterial invasion of epithelial cells	5.547e-22	4.271e-20
ErbB signaling pathway	1.002e-20	6.172e-19
Adherens junction	1.187e-20	6.094e-19
Chronic myeloid leukemia	1.144e-18	5.034e-17
Endometrial cancer	1.199e-17	4.104e-16
Gastric cancer	3.904e-17	1.202e-15
Leukocyte transendothlial	1.176e-15	3.293e-14
Non-small cell lung cancer	8.676e-14	2.055e-12

Notes and comments:

All the code and files are stored in the following github repository:

https://github.com/AlessandroTaglieri/Project Bioinformatics

In dataset folder you can find all files that we use to do this project and all output files. It's organized in several sub-folder, one for every module. One of input files, about biogrid data, is not present in the github repository (for memory storage problem).

As it's written in the code, you can find this file at the following drive folder: https://drive.google.com/drive/folders/1SW9HTjI_RtX_eigLe5OozuN279C_A7EB?usp=sharing It's necessary to put this file in dataset/1.2/.

References

- 1- https://www.disgenet.org
- 2- https://www.genenames.org
- 3- https://www.uniprot.org
- 4- https://thebiogrid.org
- 5- https://maayanlab.cloud/Enrichr/
- 6- https://networkx.org
- 7- https://github.com/barabasilab/DIAMOnD