

UNIVERSIDADE ESTADUAL DE MONTES CLAROS

CENTRO DE CIÊNCIAS EXATAS E TECNOLÓGICAS MESTRADO EM MODELAGEM COMPUTACIONAL E SISTEMAS

> Marcos Flávio S. V. D'Angelo Universidade Estadual de Montes Claros Centro de Ciências Exatas e Tecnológicas - CCET Mestrado em Modelagem Computacional e Sistemas Campus Universitário Professor Darcy Ribeiro - Vila Mauricéia 39401-089 - Montes Claros - MG - BRASIL

Tel.: 38-3229 8273

email: marcos.dangelo@unimontes.br

Montes Claros, 09 de abril de 2015.

Inteligência Computacional

2º e 3º Projetos Práticos¹

Marcos Flávio Silveira Vasconcelos D'Angelo

¹Esta atividade não valerá ponto, mas pode ao final do semestre ajudar o aluno a mudar sua nota de C para B, de B para A e até mesmo evitar uma reprovação

Projeto Prático 02

Para a confecção de um processador de imagens de ressonância magnética observou-se que a variável $\{y\}$, que mede a energia absorvida do sistema, poderia ser estimada a partir da medição de três outras grandezas $\{x_1,x_2,x_3\}$. Entretanto, em função da complexidade do processo, sabese que este mapeamento é de difícil obtenção por técnicas convencionais, sendo que o modelo matemático disponível para sua representação tem fornecido resultados insatisfatórios.

Assim, a equipe de engenheiros e cientistas pretende utilizar um Perceptron Multicamadas como um aproximador universal de funções, tendo-se como objetivo final a estimação (após o treinamento) da energia absorvida $\{y\}$ em função dos valores de x_1, x_2 e x_3 . A topologia da rede a ser implementada, constituída de duas camadas neurais, está ilustrada na figura 1.

Figure 1: Topologia de PMC(projeto prático 2)

Utilizando o algoritmo de aprendizagem *backpropagation* (regra Delta generalizada), com as amostras de treinamento apresentadas no apêndice III, e assumindo-se também que todas as saídas já estejam normalizadas, realize as seguintes atividades:

- 1. Execute cinco treinamentos para a rede PMC, inicializando-se as matrizes de pesos com valores apropriados em cada treinamento. Se for o caso, reinicie o gerador de números aleatórios em cada treinamento a fim de modificar os seus valores iniciais. Utilize a função de ativação logística(sigmóide) para todos os neurônios, com taxa de aprendizado $\{\eta\}$ de 0,1 e precisão $\{\epsilon\}$ de 10^{-6} . O conjunto de treinamento está disponível no arquivo $dados_2.txt$.
- 2. Registre os resultados finais dos cinco treinamentos na tabela 1.

Table 1: Resultados dos treinamentos(projeto prático 2)

Treinamento	Erro quadrático	Número total de
	médio	épocas
$1^{o}(T1)$		
$2^{o}(T2)$		
$3^{o}(T3)$		
$4^{o}(\mathrm{T4})$		
$5^{o}(T5)$		

- 3. Para aqueles dois treinamentos da tabela 1, com maiores números de épocas, trace os respectivos gráficos dos valores de erro quadrático médio $\{E_M\}$ em relação a cada época de treinamento. Imprima os dois gráficos numa mesma folha de modo não superpostos.
- 4. Fundamentado na tabela do item 2, explique de forma detalhada por que tanto o erro quadrático médio como o número total de épocas variam de treinamento para treinamento.
- 5. Para todos os treinamentos efetuados no item 2, faça a validação da rede aplicando o conjunto de teste fornecido na tabela 2.

Table 2: Conjunto de padrões de teste (projeto prático 2)

Table 2: Conjunto de padrões de teste(projeto prático 2)									
Amostra	x_1	x_2	Х3	d	Y	Y	Y	Y	Y
					T1	T2	Т3	T4	T5
1	0,0611	0,2860	0,7464	0,4831					
2	0,5102	0,7464	0,0860	0,5965					
3	0,0004	0,6916	0,5006	0,5318					
4	0,9430	0,4476	0,2648	0,6843					
5	0,1399	0,1610	0,2477	0,2872					
6	0,6423	0,3229	0,8567	0,7663					
7	0,6492	0,0007	0,6422	0,5666					
8	0,1818	0,5078	0,9046	0,6601					
9	0,7382	0,2647	0,1916	0,5427					
10	0,3879	0,1307	0,8656	0,5836					
11	0,1903	0,6523	0,7820	0,6950					
12	0,8401	0,4490	0,2719	0,6790					
13	0,0029	0,3264	0,2476	0,2956					
14	0,7088	0,9342	0,2763	0,7742					
15	0,1283	0,1882	0,7253	0,4662					
16	0,8882	0,3077	0,8931	0,8093					
17	0,2225	0,9182	0,7820	0,7581					
18	0,1957	0,8423	0,3085	0,5826					
19	0,9991	0,5914	0,3933	0,7938					
20	0,2299	0,1524	0,7353	0,5012					
	Erro relativo médio(%)								
Variância (%)									

6. Fundamentado nas análises da tabela anterior, indique qual das configurações finais de treinamento {T1,T2,T3,T4 ou T5} seria a mais adequada para o sistema de ressonância magnética, ou seja, qual está oferecendo a melhor generalização.

Projeto Prático 03

No processaemento de bebidas, a aplicação de um determinado conservante é feita em função da combinação de quatro variáveis de tipo real, definidas por x_1 (teor de água), x_2 (grau de acidez), x_3 (temperatura) e x_4 (tensão interfacial). Sabe-se que existem apenas três tipos de conservantes que podem ser aplicados, os quais são definidos por A,B e C. Em seguida realizam-se ensaios em laboratório a fim de especificar qual tipo deve ser aplicado em uma bebida específica.

A partir de 148 ensaios executados em laboratório, a equipe de engenheiros e cientistas resolveu aplicar uma rede *Perceptron* multicamadas como classificadora de padrões, visando identificar qual tipo de conservante seria introduzido em determinado lote de bebidas. Por questões operacionais da própria linha de produção, utilizar-se-á aqui uma rede *Perceptron* com três saídas, conforme configuração apresentada na figura 2. A padronização para a saída, a qual

Figure 2: Topologia de PMC(projeto prático 2)

representa o conservante a ser aplicado, ficou definida de acordo com a tabela 3.

Table 3: Padronização das saídas da rede(projeto prático 2)

У1	y_2	Уз
1	0	0
0	1	0
0	0	1
	y ₁ 1 0 0	$\begin{array}{c c} y_1 & y_2 \\ \hline 1 & 0 \\ \hline 0 & 1 \\ \hline 0 & 0 \\ \end{array}$

Utilizando os dados de treinamento disponibilizados no arquivo $dados_3.txt$, execute então o treinamento de uma rede PMC(quatro entradas e três saídas) que possa classificar, em função apenas dos valores medidos de x_1 , x_2 , x_3 e x_4 , qual o tipo de conservante que pode ser aplicado em determinada bebida. Para tanto, faça as seguintes atividades:

- 1. Execute o treinamento da rede *Perceptron*, por meio do algoritmo de aprendizagem *back-propagation* convencional, inicializando-se as matrizes de pesos com valores aleatórios apropriados. Utilize a função de ativação logística (sigmoide) para todos os neurônios, com taxa de aprendizado $\{\eta\}$ de 0,1 e precisão $\{\epsilon\}$ de 10^{-6} .
- 2. Efetue, em seguida, o treinamento da rede *Perceptron* por meio do algoritmo de aprendizagem *backpropagation* com *momentum*, inicializando-se as matrizes de pesos com valores aleatórios apropriados. Adote também a função de ativação logística para todos os neurônios, com taxa de aprendizado $\{\eta\}$ de 0,1, fator de *momentum* $\{\alpha\}$ de 0,9 e precisão $\{\eta\}$ de 10^{-6} .
- 3. Para os dois treinamentos realizados nos itens anteriores, trace os respectivos gráficos dos valores de erro quadrático médio $\{E_M\}$ em função de cada época de treinamento. Imprima os dois gráficos numa mesma página de modo não superpostos. Meça também o tempo de processamento envolvido com cada treinamento.
- 4. Dado que o problema se configura como um típico processo de classificação de padrões, implemente então a rotina que faz o pós-processamento das saídas fornecidas pela rede (valores reais) para números inteiros. Como sugestão, adote o critério de arredondamento simétrico, isto é:

$$\mathbf{y}_i^{pos} \ = \left\{ \begin{array}{ll} 1 & \mathsf{se} & \ \mathbf{y}_i & \geq 0, 5 \\ 0 & \mathsf{se} & \ \mathbf{y}_i & < 0, 5 \end{array} \right.$$

5. Faça a validação da rede aplicando o conjunto de teste fornecido na tabela 4. Forneça a taxa de acertos (%) entre os valores desejados frente àquelas respostas fornecidas pela rede (após o pós-processamento) em relação a todos os padrões de teste.

Table 4: Conjunto de padrões de teste(projeto prático 2)

Amostras	x_1	X2	Х3	X4	d_1	d_2	d_3	y ₁ ^{pos}	y2 ^{pos}	y3 ^{pos}
1	0,8622	0,7101	0,6236	0,7894	0	0	1			
2	0,2741	0,1552	0,1333	0,1516	1	0	0			
3	0,6772	0,8516	0,6543	0,7573	0	0	1			
4	0,2178	0,5039	0,6415	0,5039	0	1	0			
5	0,7260	0,7500	0,7007	0,4953	0	0	1			
6	0,2473	0,2941	0,4248	0,3087	1	0	0			
7	0,5682	0,5683	0,5054	0,4426	0	1	0			
8	0,6566	0,6715	0,4952	0,3951	0	1	0			
9	0,0705	0,4717	0,2921	0,2954	1	0	0			
10	0,1187	0,2568	0,3140	0,3037	1	0	0			
11	0,5673	0,7011	0,4083	0,5552	0	1	0			
12	0,3164	0,2251	0,3526	0,2560	1	0	0			
13	0,7884	0,9568	0,6825	0,6398	0	0	1			
14	0,9633	0,7850	0,6777	0,6059	0	0	1			
15	0,7739	0,8505	0,7934	0,6626	0	0	1			
16	0,4219	0,4136	0,1408	0,0940	1	0	0			
17	0,6616	0,4365	0,6597	0,8129	0	0	1			
18	0,7325	0,4761	0,3888	0,5683	0	1	0			
	Total de acertos(%)									