08.10.03

## 日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 8月26日

出 願 番 号 Application Number:

特願2003-301229

[JP2003-301229]

REC'D 3 0 OCT 2003

WIPO PCT

出 願 人 Applicant(s):

[ST. 10/C]:

セントラル硝子株式会社

BEST AVAILABLE COPY

# PRIORITY DOCUMENT

SUBMITTED OR TRANSMITTED IN COMPLIANCE WITH RULE 17.1(a) OR (b)

特許庁長官 Commissioner, Japan Patent Office 2003年10月 6日





【書類名】-

特許願

【整理番号】

03G3115

【提出日】

平成15年 8月26日

【あて先】

特許庁長官殿

【国際特許分類】

C03B 27/00

C03B 27/044

【発明者】

【住所又は居所】

三重県松阪市大口町1521-2番地 セントラル硝子株式会社

松阪工場内

【氏名】

玉井 弘二

【発明者】

【住所又は居所】

宫城県仙台市青葉区折立6丁目9番地7

【氏名】

高山 和喜

【特許出願人】

【識別番号】

000002200

【氏名又は名称】

セントラル硝子株式会社

【代理人】

【識別番号】

100108671

【弁理士】

【氏名又は名称】

西 義之

【先の出願に基づく優先権主張】

【出願番号】

特願2002-258355

【出願日】

平成14年 9月 4日

【手数料の表示】

【予納台帳番号】

013837

【納付金額】

21,000円

【提出物件の目録】

【物件名】

特許請求の範囲 1

【物件名】

明細書 1

【物件名】

図面 1

【物件名】

要約書 1

#### 【曹類名】特許請求の範囲

#### 【請求項1】

冷却用ノズルからの衝突噴流をガラスに吹き付けて熱強化ガラスを製造する場合において、冷却用ノズルの口径が異なる2種類以上の冷却用ノズルを同時に用いて急冷することを特徴とする湾曲した熱強化ガラスの製造方法。

#### 【請求項2】

冷却用ノズルの口径 d は  $\phi$  1 mm以上  $\phi$  8 mm以下であること、冷却用ノズルーガラス間距離 Z は 1 mm以上 8 0 mm以下であること、冷却用ノズルにつながるチャンバー内の圧力 P は 0.  $1\sim0$ . 8 MP a であることを特徴とする請求項 1 に記載の湾曲した熱強化ガラスの製造方法。

#### 【請求項3】

ノズルーガラス間距離 Z、チャンバー内の圧力 P及び冷却用ノズルの径 d を適宜変更することにより、ガラス面内での熱流束の差を150 k W/m  $^2$  以下とすることを特徴とする請求項 1 Z は請求項 2 に記載の湾曲した熱強化ガラスの製造方法。

#### 【請求項4】

熱強化ガラスの表面圧縮応力値の差が20MPa以下となるように冷却用ノズルーガラス間距離2、チャンバー内の圧力P、及び冷却用ノズル径dを設定することを特徴とする請求項1乃至3のいずれかに記載の湾曲した熱強化ガラスの製造方法。

#### 【請求項5】

請求項1乃至4のいずれかの方法で製造されたことを特徴とする湾曲した熱強化ガラス。 【請求項6】

ガラス面内の表面圧縮応力値の差が20MPa以下であることを特徴とする請求項5に記載の湾曲した熱強化ガラス。

#### 【請求項7】

口径Dが φ 1 mm以上 φ 8 mmの 2 種類以上の冷却用ノズルを同時に有すること、チャンバー内の圧力 Pが 0. 1 M P a 以上 0. 8 M P a 以下となるように制御されたシステムを有すること、及び冷却用ノズルーガラス間距離 Z を 1 ~ 8 0 mmの範囲に調整できる冷却用ノズルを用いることを特徴とする請求項 5 又は請求項 6 に記載の湾曲した熱強化ガラスの製造装置。

#### 【請求項8】

ガラス面内の表面圧縮応力値の差が20MPa以下となるよう、湾曲した領域形成部と平面的な領域形成部に口径の異なる冷却用ノズルを配したことを特徴とする請求項7に記載の湾曲した熱強化ガラスの製造装置。

#### 【請求項9】

ガラス面内の表面圧縮応力値の差が20MPa以下となるよう、口径の異なる2種類以上の冷却用ノズルを配したことを特徴とする請求項7に記載の熱強化ガラスの製造装置。

【書類名】明細書

【発明の名称】熱強化ガラス、及びその製造方法と装置 【技術分野】

[0001]

本発明は、風冷法で製造されるいわゆる熱強化ガラス、特に湾曲した2.5 mm厚以下の熱強化ガラス、その製造方法及びその製造装置に関する。

#### 【背景技術】

[0002]

省資源・省エネルギーの観点から、強化ガラスの薄板化や強化度アップが進んでおり、このための手法として主に化学強化法と物理強化法が用いられている。 化学強化法は、イオン交換、結晶化、熱膨張率の違いなどを利用してガラス表面に圧縮応力を与える方法であり、その方法による強化ガラスは化学強化ガラスと呼ばれている。化学強化法は3m以下特に2mm以下の板厚をもった薄板の強化には適しているが、化学強化ガラスの圧縮応力層の厚さが薄いことから加傷強度の問題が発生しやすいので、その使用場所が限定されるという欠点がある。

#### [0003]

これに対し、物理強化法による強化ガラスは、熱強化ガラスとも呼ばれているように、 軟化点近傍まで加熱したガラスをその表面から急冷することにより製造される。熱強化ガ ラスの場合、板厚の約1/6の圧縮応力層を有し、加傷強度の問題が発生しにくいという 長所がある。熱強化ガラスの製造方法としては、急冷用の冷却媒体として生産コスト上及 び安全上の理由から空気を用いるいわゆる風冷強化法が多く採用され、製造された熱強化 ガラスは風冷強化ガラスとも呼ばれている。

#### [0004]

熱強化ガラスは炉内で加熱後、そのガラス内の温度差と粘性流動を利用することにより製造される。このため、熱強化ガラスの強化度アップを行う場合、大きくは主に以下の2つの方法で対応することが知られている。一つは冷却開始時のガラス温度をできるだけ高くすることであり、もう一つは冷却時における表層と内層のガラス内温度差を大きくすることである。

#### [0005]

冷却開始時のガラス温度を高くすることにより、強化度を高くすることができ、薄板の強化ガラスも製造することができる。また、製造中のガラス破壊を少なくすることができる。しかし、ガラス温度を高くしすぎると、ガラスが変形して、所定の形状を得ることができないという致命的な問題が発生してくる。このため、薄板強化ガラスの強化度アップを行う場合、ガラス温度を高くする手法のみでは限界がある。

#### [0006]

一方、冷却時における表層と内層のガラス内温度差を大きくすることに関しては、例えば、ビオー数を大きくする概念で説明することができる。ビオー数は(熱伝達係数 x 板厚/熱伝導率)で表される無次元数であるが、このビオー数を大きくすることにより、ガラスの強化度を上げることができる。すなわち、熱伝達係数を大きくすること、板厚を厚くすること、そして熱伝導率を小さくすることにより、ガラスの強化度を上げることができる。しかし、強化ガラスの板厚を薄くする場合、すなわち薄板強化ガラスを製造する場合、一般的にガラスの熱伝導率は一定であるので、ビオー数の分子を大きくするためには、熱伝達係数を大きくせざるを得ない。このため、ガラスを薄板化する場合、熱伝達係数を大きくする方法が主な対策となっている。

#### [0007]

ノズルを使った冷却において、熱伝達係数とその冷却条件との間には、

 $(h \cdot r_n) / \lambda = 0.286 Re^{0.625}$ 

 $Re = (V_g \cdot r_n) / \nu$ 

#### $V_g = 6.63 V_n \cdot d/Z$

等の関係が実験的に導き出されている(例えば、非特許文献 1 参照)。ここで、 h は熱伝達係数、 λ は空気の熱伝導率、 ν は空気の動粘性係数、 R e はレイノルズ数、 r n はノズル間距離、 d はノズル出口でノズル直径、 V n はノズル出口での流速、 V g はガラス面での流速、 Z はノズルーガラス間距離である。 上述の数値は Z / d が 8 よりも大きな場合に成立するとされているが、上式の形から明らかなように、 熱伝達係数を大きくする一般的な方法としては、 ノズルからの噴出速度を大きくする(ノズルからの噴出圧力を大きくする)、 ノズル径を大きくする、 ノズル数を増やす他、 ガラスとノズル先端との距離を小さくすることや冷却媒体の衝突時のエネルギー増大などが効果的とされている。

#### [0.008]

強化ガラスにおける省資源・省エネルギーの流れは、強化ガラス形状の複雑化というもう一つの大きな流れを有する。例えば、自動車の燃費を下げるため、自動車の流線形化が進み、その形状に合わせた強化ガラスが要求されてきている。この動きは、自動車に限らず、電車や飛行機など、多くの分野でも進んでいる。 流線形化に対応するため、強化ガラス形状を複雑化する要求があり、この要求にも対応しなければならない状況下にある。しかし、この要求に対する対応は簡単ではない。特に、大きく湾曲したガラスにおいては、その湾曲部周辺において所定の強化度を得ることは非常に難しい。さらには、前述したように、強化ガラスは薄板化の要請もあるため、この対応は非常に難しい技術となっている。

#### [0009]

公知技術をみれば、例えば、急冷に用いた排気エアで板幅方向のガラス温度を調整したり(例えば、特許文献1参照)、先細ノズルの使用を特徴としたり(例えば、特許文献2参照)、プロアエアを噴射する第1群ノズルとコンプレッスドエアを噴射する第2ノズル群を備えたり(例えば、特許文献3参照)、形状変化する湾曲板ガラスに追随するように工夫したり(例えば、特許文献4参照)、帯状領域の幅、最大主応力差および平均表面圧縮応力などを限定したり(例えば、特許文献5参照)する考え方が開示されている。また、本出願人も衝撃波管的な利用による熱強化方法を示している(例えば、特許文献6参照)。

#### [0010]

【特許文献1】特開2001-48561号公報

【特許文献 2】特公平6-76223号公報

【特許文献3】特開2001-26434号公報

【特許文献4】特開平7-29164号公報

【特許文献 5】特開平11-199257号公報

【特許文献 6 】特開昭62-158128号公報

【非特許文献 1】 R. Gardon and J. Cobonpue, Heat Transfer between a Flat Plate and Jets of Air Impinging on It, Int. Develop Heat Transfer, ASME (1962), pp 454-460.

#### 【発明の開示】

#### 【発明が解決しようとする課題】

#### [0011]

2.5 mm厚以下の熱強化ガラス、特に2.3 mm厚以下の薄板強化ガラスを製造する場合、従来の強化時のガラス温度を上げる手法および/または大きな熱伝達係数を得る手法では、熱強化ガラスの製造方法が確立されているとは言えず、したがって、所望の熱強化ガラスを得ることができない状況にある。特に、薄板で湾曲した熱強化ガラスの場合、この傾向は顕著である。

#### [0012]

すなわち、熱伝達係数を大きくする方法としては、ノズルからの噴出速度を大きくする (ノズルからの噴出圧力を大きくする)、ノズル径を大きくする、ノズル数を増やす他、 ガラスとノズル先端との距離を小さくすることや冷却媒体の衝突エネルギー増大などが効



#### [0013]

特開2001-48561号公報に開示された方法では十分なガラス温度を確保することができない。また、特公平6-76223号公報や特開2001-26434号公報に開示された手法でも、大きな熱伝達係数を得ることはできない。特開平7-29164号公報に開示された手法でも上述の薄板強化ガラスを得ることができず、場合によっては強化度が下がることさえある。さらには、特開平11-199257号公報に開示された手法では湾曲強化ガラスに応用することは実質的に無理がある。

#### 【課題を解決するための手段】

#### [0014]

本発明は、上述の問題点に鑑み、新しい概念での薄板強化ガラス、その強化方法及び強化装置を提供するものである。すなわち、本発明は、冷却用ノズルからの衝突噴流をガラスに吹き付けて熱強化ガラスを製造する場合において、冷却用ノズルの口径が異なる2種類以上の冷却用ノズルを同時に用いて急冷する湾曲した熱強化ガラスの製造方法である。

#### [0015]

また、冷却用ノズルの口径 d は  $\phi$  1 mm以上  $\phi$  8 mm以下であること、冷却用ノズルーガラス間距離 Z は 1 mm以上 8 0 mm以下であること、冷却用ノズルにつながるチャンバーの圧力 P は 0. 1 M P a 以上 0. 8 M P a 以下である上記の湾曲した熱強化ガラスの製造方法である。

#### [0016]

また、ノズルーガラス間距離 Z、チャンバー内の圧力 P 及び冷却用ノズルの径 d を適宜変更することにより、ガラス面内での熱流束の差を  $150\,k\,W/m^2$  以下とする上記の湾曲した熱強化ガラスの製造方法である。

#### [0017]

また、熱強化ガラスの表面圧縮応力値の差が20MPa以下となるように冷却用ノズルーガラス間距離Z、チャンバー内の圧力P、及び冷却用ノズル径dを設定する上記の湾曲した熱強化ガラスの製造方法である。

#### [0018]

さらに、上記のいずれかの方法で製造された湾曲した熱強化ガラスである。

#### [0019]

また、ガラス面内の表面圧縮応力値の差が20MPa以下である上記の湾曲した熱強化ガラスである。

#### [0020]

さらにまた、口径 d が φ 1 mm以上 φ 8 mm以下である 2 種類以上の冷却用ノズルを同時に有すること、冷却用ノズルにつながるチャンバー内の圧力 P が 0 . 1 M P a 以上 0 . 8 M P a 以下となるように制御されたシステムを有すること、及び冷却用ノズルーガラス間距離 Z を 1 mm以上 8 0 mm以下の範囲に調整できる冷却用ノズルを用いる湾曲した熱強化ガラスの製造装置である。

#### [0021]

また、ガラス面内の表面圧縮応力値の差が20MPa以下となるよう、湾曲した領域形成部と平面的な領域形成部に口径の異なる冷却用ノズルを配した上記の湾曲した熱強化ガラスの製造装置である。

#### [0022]

また、ガラス面内の表面圧縮応力値の差が20MPa以下となるよう、口径の異なる2種類以上の冷却用ノズルを配した上記の熱強化ガラスの製造装置である。

#### [0023]

本発明者は、強化ガラスを製造するときに使われるノズルから噴き出されるエアの流れを詳細に検討した結果、従来の熱伝達の概念を一部修正する必要があることを見出し、この修正した概念に基づく新たな強化ガラスの製造方法を開発した。すなわち、冷却用ノズルからの噴出噴流と熱伝達係数の関係は、従来から言われていたように単純ではなく、ノズルの内径や形状、衝突噴流の圧力及びノズルーガラス間距離などに影響される複雑な挙動であることを見出し、この挙動に対応する手段によってこれまで難しいとされていた25mm厚以下の湾曲した薄板強化ガラスの製造を可能とした。特に、これまで製造が極めて難しかった2.3mm厚以下の湾曲した薄板強化ガラスに対し、有効である。

#### 【発明の効果】

[0024]

これまで、困難とされてきた2.5 mm厚以下の薄板強化ガラス、特に2.3 mm以下の湾曲した強化ガラスを安定して製造することができるようになった。

#### 【発明を実施するための最良の形態】

#### [0025]

図1に示すように、細長いノズルに高圧のエアを流すと一部の条件下では不足膨張噴流が発生し、ノズルとガラス板表面の衝突面までの距離の違いで、衝突圧力が変化するとともに、熱伝達係数が変化する。

#### [0026]

本発明は、冷却用ノズルからの衝突噴流をガラスに吹き付けて熱強化ガラスを製造する場合において、冷却用ノズルの口径が異なる2種類以上の冷却用ノズルを同時に用いて急冷する湾曲した熱強化ガラスの製造方法である。従来行われてきたように、1種類の口径のノズルを使うだけでは湾曲したガラスに対してノズルの長さを変更するだけでは良好な強化ガラスを得ることはできない。

#### [0027]

また、冷却用ノズルの口径 d は φ 1 mm以上 φ 8 mm以下であること、冷却用ノズルーガラス間距離 Z は 1 mm以上 8 0 mm以下であること、冷却用ノズルにつながるチャンバーの圧力 P は 0. 1 M P a 以上 0. 8 M P a 以下であることが好ましい。ここで、冷却用ノズルの口径 d とはノズル出口での直径を意味する。

#### [0028]

#### [0029]

冷却用ノズルーガラス間距離 Z は 1 mm以上 8 0 mm以下であることが好ましい。冷却用ノズルーガラス間距離 Z が 1 mm未満であると、ノズルからでた衝突噴流の跡がつく。一方、 8 0 mmを越えると、薄い板厚の強化ガラスを得ることができない。より好ましくは、 3 mm以上 5 0 mm以下である。なお、ガラス冷却用ノズルーガラス間距離 Z は、ノズルの先端とガラス板間の距離を示している。

#### [0030]

冷却用ノズルは通常プラストヘッドと呼ばれるチャンバーと連結しており、そのチャンバーの上流にはコンプレッサーあるいは高圧プロワーがある。冷却用ノズルにつながるチャンバーの圧力 Pは 0.1 M P a 以上 0.8 M P a 以下であることが好ましい。冷却用ノズルにつながるチャンバーの圧力 Pが 0.1 M P a 未満であると、2.5 mm厚以下の熱強化ガラスを得ることは難しい。一方、0.8 M P a を越える圧力を一般的な装置で得ることは難しく、大幅なコスト高となる。好ましくは、0.2 M P a 以上 0.75 M P a 以下である。

#### [0031]

#### [0032]

また、熱強化ガラスの表面圧縮応力値の差が20MPa以下となるように冷却用ノズルーガラス間距離2、衝突噴流の圧力P、及び冷却用ノズル径dを設定することが好ましい。熱強化ガラスの表面圧縮応力値の差が20MPaを越えると、均一性の下がった熱強化ガラスとなる。なお、一般的な製造条件では、熱強化ガラスの表面圧縮応力値の差が20MPa以下とするために、冷却時の熱流束を150kW/m²以下とすることが多い。しかし、冷却開始時のガラス温度が低い場合には上述の値よりも小さな差とした方が良い。

#### [0033]

さらに、上記のいずれかの方法で製造された湾曲した熱強化ガラスである。この熱強化ガラスは、これまで極めて難しいとされてきた2.5 mm以下であり、さらに2.3 mm以下の湾曲した熱強化ガラスを製造することもできる。

#### [0034]

また、ガラス面内の表面圧縮応力値の差が20MPa以下であることが好ましい。この値以下であれば、熱強化ガラスとして均一であり、種々の負荷に対しても大きな問題とはならない。

#### [0035]

さらにまた、口径 d が  $\phi$  1 mm以上  $\phi$  8 mm以下である 2 種類以上の冷却用ノズルを同時に有すること、冷却用ノズルにつながるチャンバーの圧力 P が 0. 1 MP a 以上 0. 8 MP a 以下となるように制御されたシステムを有すること、及び冷却用ノズルーガラス間距離 Z を 1 mm以上 8 0 mm以下に調整できる冷却用ノズルを用いる湾曲した熱強化ガラスの製造装置であることが好ましい。本装置では、冷却用ノズルからの衝突噴流の圧力 P 、冷却用ノズルとガラス間の距離 Z と  $\phi$  1 mm以上  $\phi$  8 mm以下にある 2 種類以上の冷却用ノズルの口径 d を総合的に判断して決められる。

#### [0036]

また、ガラス面内の表面圧縮応力値の差が20MPa以下となるよう、湾曲した領域形成部と平面的な領域形成部に口径の異なる冷却用ノズルを配することが好ましい。湾曲した領域形成部では多くの場合、圧縮応力が入りにくいので、平面的な領域部よりも熱流束を大きくとる必要がある。このため、口径の異なる冷却用ノズルを配することができる熱強化ガラスの製造装置であることが好ましいことになる。

#### [0037]

また、ガラス面内の表面圧縮応力値の差が20MPa以下となるよう、口径の異なる2種類以上の冷却用ノズルを配した熱強化ガラスの製造装置であることが好ましい。ガラスの板厚が薄くなると、均一冷却は難しくなる。このため、平面的な領域部であっても、2種類以上の冷却用ノズルを組み合わせることができる熱強化ガラスの製造装置が好ましいことになる。

#### [0038]

さらに、詳細に述べると、最低でも開口面積で10%口径が異なる2種類の冷却ノズルを必要とする。一方、その上限は開口面積で500%である。望ましくは、開口面積で20%以上300%以下の異なる冷却用ノズルを用いることが好ましい。ノズルの内径、ノズルの長さ、ノズルとガラス板表面の衝突面までの距離、および衝突噴流の圧力を適宜選択することにより、熱伝達係数が大きなノズルと、それよりも熱伝達係数が小さなノズルを適正に配することが重要となってくる。一般的には、熱伝達係数の大きなノズルは、大きな冷却能を必要とするところ、例えば、湾曲の大きな場所に使用される。衝突噴流は不足膨張噴流であることが好ましい。不足膨張噴流であることが熱伝達係数を上げるために



重要であるからである。

#### [0039]

なお、冷却用ノズルの配置は、湾曲度の他、ガラス面内の温度分布も考慮する必要がある。同様の条件で加熱したとしても、ガラス面の温度は均一になっていないのが常であるからである。一般的には冷却用ノズルの種類は多いほど、均一化した熱強化ガラスを得ることができるが、ノズル配置及び冷却条件が逆に限定されるので、対象とする熱強化ガラスの形状や板厚のみではなく、設備仕様や冷却条件等を総合的に考えるべきである。

#### -[0040]

また、冷却用ノズルは一般的な細長形状が好ましいが、例えばラバールノズルのように 内径が変化するノズルの場合でも良い。しかし、その内径が大きく変化する場合は、結果 として大口径のノズルを用いたのと同様となり、冷却後の空気の流れを考えると効率的で はない。

#### [0041]

なお、図6にノズル径が φ8でチャンバー圧力が0.65MPaにおける冷却用ノズルからの熱流東測定結果、図7にノズル径が φ4でチャンバー圧力が0.3MPaにおける冷却用ノズルからの熱流東測定結果、図8にノズル径が φ1でチャンバー圧力が0.65MPaにおける冷却用ノズルからの熱流東測定結果の一例を示す。いずれも縦軸は熱流東、横軸はガラスーノズル間距離を冷却ノズルの口径dで除した無次元距離である。

#### [0042]

このように、種々の条件により、熱流束の値は複雑に変化する。空気を噴き出すノズル 先端とガラス表面の衝突面までの距離の違いで熱伝達係数と衝突圧力は変化するとともに 、チャンバー内の圧力によっても両者の挙動が全く異なる。すなわち、不足膨張噴流の場 合、衝突面までの距離を短くしても熱伝達係数が必ずしも向上するとは言えず、長くした 方が向上する場合もある。また、チャンバー内の圧力を増加させてもガラス表面の衝突面 までの距離によっては逆効果となることもある。

#### [0043]

熱強化ガラスの強化度を求める方法としては、破砕試験(JISR3205)や表面圧縮応力(JISR3222)から推定する方法が広く提案されている。破砕試験は、5cm角の中の破砕数を断片密度として表され、破片が5cm角内にある場合には1、辺にかかる場合は0. 5としてカウントされる。断片密度が大きいほど、強化度は大きく、一般的な熱強化ガラスの場合、断片密度は $40\sim400$ 間にあることが必要とされる。400を越した場合、一般的な熱強化ガラスの範疇外になるが、一部では超強化ガラスとして使用される場合もある。強化ガラスの表面圧縮応力の値については限定されている訳ではないが、一般的には表面圧縮応力が大きな値をとる方が強化度の大きな強化ガラスである。

#### [0044]

熱強化ガラス面内における表面圧縮応力の差を 20 MP a 以下とすることが必要である。熱強化ガラス面内における表面圧縮応力の差が 20 MP a を越えると、強化ガラス内の断片密度のばらつきが多くなり、強化ガラスの仕様を満足できない場合が多くなってくる。好ましくは、15 MP a 以下である。なお、ノズル長さも上述の因子ほどではないが影響するので、50~250 mmの範囲であるのが好ましい。

以下、実施例に基づき、述べる。

#### 【実施例1】

#### [0045]

寸法が490x820 (mm)で湾曲した2.3 mm厚ガラスを準備し、図3に示すように、比較的平面的な領域形成部には内径 dが3 mmで長さLが100 mmの図2に示す形状のノズル1群を、湾曲した領域形成部(曲面半径:~500 mm)には内径 dが4 m m、長さLが100~130 mmの図2に示す形状のノズル2群を用いて熱強化ガラスの製作を行った。なお、いずれのノズルもブラストヘッド3を介して高圧空気供給装置につながっている。このときのガラスーノズル間の距離は約30 mmを基準とし、チャンバー

圧は0.4MPaとした。

#### [0046]

この冷却条件で風冷強化処理した結果、比較的平面的な領域形成部では断片密度(個数/25cm²)で約100、湾曲した領域形成部でも約60が得られた。この結果は、強化ガラスとしての仕様を満足している。また、この強化ガラスの表面圧縮応力を測定したところ、最も大きな値がえられた場所では90MPa、最も小さな値が得られた場所でも80MPaであり、その差は10MPaであった。

#### 【実施例2】

#### [0047]

寸法が $490 \times 820$  (mm) で湾曲した2. 3 mm厚ガラスを準備し、比較的平面的な領域形成部には内径が3 mmで長さが100 mmのノズル群を、湾曲した領域形成部(曲面半径: $\sim 250 \text{ mm}$ )には内径が4 mm、長さが $150 \sim 200 \text{ mm}$ のノズル群を用いて強化ガラスの製作を行った。このときのガラスーノズル間距離は25 mmを基準とし、チャンバー圧は0.5 MP a とした。

#### [0048]

この冷却条件で風冷強化処理した結果、比較的平面的な領域形成部では断片密度(個数 / 25 c m²)で約350、湾曲した領域形成部でも約250が得られた。この結果は、強化ガラスとしての仕様を満足している。また、この強化ガラスの表面圧縮応力を測定したところ、最も大きな値がえられた場所では135MPa、最も小さな値が得られた場所でも120MPaであり、その差は15MPaであった。

#### 【実施例3】

#### [0049]

寸法が $540 \times 1150$ (mm)で湾曲した2.3 mm厚ガラスを準備し、比較的平面的な領域形成部には径が2.5 mmで長さが100 mmのノズル群を、湾曲した領域形成部A(曲面半径: $\sim 500 mm$ )には内径が3 mm、長さが $150 \sim 200 mm$ のノズル群を、湾曲した領域形成部B(曲面半径: $\sim 250 mm$ )には内径が4 mm、長さが $150 \sim 200 mm$ のノズル群を用いて強化ガラスの製作を行った。このときのガラスーノズル間距離は25 mmを基準とし、チャンバー圧は0.55 MPaとした。

#### [0050]

この冷却条件で風冷強化処理した結果、比較的平面的な領域形成部では断片密度(個数 / 25 c m²)で約150、湾曲した領域形成部でも約80が得られた。この結果は、強化ガラスとしての仕様を満足している。また、この強化ガラスの表面圧縮応力を測定したところ、最も大きな値がえられた場所では100MPa、最も小さな値が得られた場所でも90MPaであり、その差は10MPaであった。

#### 【実施例4】

#### [0051]

寸法が540x1150 (mm)で湾曲した1.8mm厚ガラスを熱強化するため、図4に示すように、ノズル口径とノズル長さが異なる冷却装置を用いた。比較的平面的な領域形成部には口径が3mm及び5mmのノズル群を、湾曲した領域形成部A(曲面半径:~500mm)には口径が2.5mm及び4mmのノズル群を、湾曲した領域形成部B(曲面半径:~250mm)には口径が2mm、3mm、及び4mmのノズル群を用いて熱強化ガラスの製作を行った。このときの衝突噴流の圧力は平面的な領域形成部で0.4MPa、湾曲した領域形成部Aでは0.5MPa、湾曲した領域形成部Bでは0.65MPaとした。ガラスーノズル間距離Zについては、平面的な領域形成部の口径が3mmのノズルでは20mm、口径が5mmのノズルでは25mm、湾曲した領域形成部Aの口径が2.5mmのノズルでは16mm、口径が4mmのノズルでは20mm、湾曲した領域形成部Bの口径が2mmのノズルでは16mm、口径が3mmのノズルでは20mm、口径が4mmのノズルでは20mm、口径が4mmのノズルでは20mm、口径が4mmのノズルでは24mmを基準とした。

#### [0052]

炉内温度が680℃、炉内時間が180秒の加熱条件とし、上述の冷却装置で風冷強化



#### [0053]

#### (比較例1)

寸法が490x820 (mm) で湾曲した2.3 mm厚ガラス (曲面半径:~500 mm) を準備し、図5に示すように内径 dが3 mmで長さしが100 mmの図2に示す形状のノズル1群を一様に配置して熱強化ガラスの製作を行った。このとき、湾曲形成部については先端を曲げたノズル4を使った。なお、いずれのノズルもブラストヘッド3を介して高圧空気供給装置につながっている。ガラスーノズル間距離は30 mmを基準とし、チャンバー圧は0.4 MPaとした。

#### [0054]

この冷却条件で2. 3 mm厚ガラスを風冷強化処理した場合、比較的平面的な領域形成部では約100の断片密度(個数 $/25\text{ cm}^2$ )が得られたが、湾曲した領域形成部では45であり、熱強化ガラスとしての仕様を満足することができなかった。この強化ガラスの表面圧縮応力を測定したところ、最も大きな値がえられた場所では90 MP a であったが、最も小さな値が得られた場所でも65 MP a であり、その差は25 MP a であった。

#### [0055]

#### (比較例2)

寸法が $490 \times 820$  (mm) で湾曲した 2. 3 mm厚ガラス (曲面半径:  $\sim 250$  mm) を準備し、内径が3 mmで長さが100 mmのノズル群のみを用いて強化ガラスの製作を行った。このときのガラスーノズル間距離は25 mmを基準とし、チャンバー圧は0. 5 MP a とした。

#### [0056]

この冷却条件で風冷強化処理した結果、比較的平面的な領域形成部では断片密度(個数/25cm²)で約330が得られた。また、湾曲した領域形成部での約80が得られた。しかし、破砕始点を中心部としたときに、80mmの長さを持つスプラインが湾曲形成部の近傍で発生した。このため、熱強化ガラスとしての仕様を満足しないと判断せざるを得なかった。この強化ガラスの表面圧縮応力を測定したところ、最も大きな値がえられた場所では135MPa、最も小さな値が得られた場所でも110MPaであり、その差は25MPaであった。

#### [0057]

#### (比較例3)

寸法が $540 \times 1150$  (mm) で湾曲した2.3 mm厚ガラス (湾曲した領域形成部A (曲面半径: $\sim 500 \text{ mm}$ ) と湾曲した領域形成部B (曲面半径: $\sim 250 \text{ mm}$ ) を有す) を準備し、内径が2.5 mmで長さが100 mmのノズル群のみを用いて強化ガラスの製作を行った。このときのガラスーノズル間距離は25 mmを基準とし、チャンバー圧は0.55 MP aとした。

#### [0058]

この冷却条件で風冷強化処理した結果、湾曲した領域形成部では約40しか得られなかったため、さらにチャンバー圧を0.65MPaに上げて製作した。

#### [0059]

この結果、湾曲した領域形成部でも約60の断片密度が得られた。しかし、圧力を上げたことによって、ガラスに跡が残るようになり、光学特性としても強化ガラスとしての仕様を満足することができなかった。このため、総合評価としては、強化ガラスとしての仕様を満足させることはできなかった。この強化ガラスの表面圧縮応力を測定したところ、最も大きな値がえられた場所では110MPa、最も小さな値が得られた場所でも80MPaであり、その差は30MPaであった。

#### [0060]

#### (比較例4)

寸法が540x1150(mm)で1.8mm厚ガラスを準備し、すべての冷却用ノズルを口径が3mm、ノズルーガラス間距離を40mm、衝突噴流の圧力を0.4MPaとして、実施例4と同様の熱強化ガラスの製作を試みた。

#### [0061]

しかし、破砕試験を行っても、未強化ガラスの場合のように断片化現象を示さなかったので、衝突噴流の圧力を 0.6 MP a まで上げ、かつノズルーガラス間距離を 20 mm まで近づけた。この結果、平面的な領域では断片化現象を示すようになったが、湾曲した領域形成部Bでは破砕の荒い部分(断片密度 12)があった。さらに、全体をみると断片密度は十数個~80個と大きくばらついていた。

#### [0062]

なお、ガラスの表面圧縮応力は、東芝硝子製の表面応力計を用いた。また、熱強化ガラスの製作時の冷却開始温度は680℃とした。

#### [0063]

以上の結果から示されるように、ノズルからの噴出圧力が高いことやノズルとガラス間の距離を小さくすることが熱伝達係数を必ずしも大きくするとは言えず、も湾曲した薄板強化ガラスを品質良く製造することは極めて困難であった。しかし、本発明の条件とすることで、湾曲薄板強化ガラスの製造が可能となり、その生産歩留も安定した。なお、実施例で噴流自体が不足膨張噴流となっていることは、二重露光ホログラフィー干渉計法での可視化により確認した。

#### 【図面の簡単な説明】

#### [0064]

- 【図1】不足膨張噴流の熱伝達係数の変化を示す概念図である。
- 【図2】実施例1および比較例1のノズル形状を示す概念図であり、(a)は側面図、(b)は正面図である。
- 【図3】実施例1の口径の異なる2種類以上の冷却用ノズルを配した冷却装置を示す概念図であり、(a)はその全体図、(b)はその部分拡大図である。
- 【図4】比較例1の口径の同じ冷却用ノズルを配した冷却装置を示す概念図であり、(a)はその全体図、(b)はその部分拡大図である。
- 【図5】実施例4の口径の異なる2種類以上の冷却用ノズルを配した冷却装置を示す概念図であり、(a)はその全体図、(b)はその部分拡大図である。
- 【図 6 】ノズル径が φ 8 でチャンバー圧力が 0 . 6 5 M P a における冷却用ノズルからの熱流束測定結果を示す分布図である。
- 【図7】ノズル径が φ 4 でチャンバー圧力が 0.3 M P a における冷却用ノズルからの熱流束測定結果を示す分布図である。
- 【図8】ノズル径がφ1でチャンバー圧力が0.65MPaにおける冷却用ノズルからの熱流束測定結果を示す分布図である。

#### 【符号の説明】

#### [0065]

- 1 冷却用ノズル
- 2 冷却用ノズル
- 3 プラストヘッド
- 4 冷却用ノズル
- L ノズルの長さ
- d ノズルの内径



【図3】



出証特2003-3082114

【図4】



【図5】





(b)



【図6】



【図7】











1/E

#### 【書類名】要約書

#### 【要約】

【課題】薄板強化ガラス、特に2..5mm厚以下で湾曲した強化ガラスの製造方法が確立 されているとは言えず、強化ガラスを得ることもできない状況にある。

【解決手段】冷却用ノズルからの衝突噴流をガラスに吹き付けて熱強化ガラスを製造する 場合において、冷却用ノズルの口径 d が異なる 2 種類以上の冷却用ノズルを同時に用いて 急冷する湾曲した熱強化ガラスの製造方法。口径 d は  $\phi$  1  $\sim$   $\phi$  8 mmの、ノズルーガラス 間距離 Zは1~80mm、衝突噴流の圧力は0.1~0.8MPaの範囲にあり、熱流束 の差を150kW/m²以下にある特徴を有す。ガラス面内の表面圧縮応力値の差が20 MPa以下の熱強化ガラス、及び上記の特徴を有した熱強化ガラスの製造装置。

【選択図】

特願2003-301229

出願人履歴情報

識別番号

[000002200]

1.変更年月日 [変更理由]

1990年 8月24日

住所

新規登録

住所氏名

山口県宇部市大字沖宇部5253番地

セントラル硝子株式会社

# This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

### **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

| Defects in the images include but are not limited | to the items checked: |
|---------------------------------------------------|-----------------------|
| ☐ BLACK BORDERS                                   |                       |
| ☐ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES           |                       |
| ☐ FADED TEXT OR DRAWING                           |                       |
| ☐ BLURRED OR ILLEGIBLE TEXT OR DRAWING            | •                     |
| ☐ SKEWED/SLANTED IMAGES                           |                       |
| ☐ COLOR OR BLACK AND WHITE PHOTOGRAPHS            | •                     |
| ☐ GRAY SCALE DOCUMENTS                            |                       |
| ☐ LINES OR MARKS ON ORIGINAL DOCUMENT             |                       |
| ☐ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE        | POOR QUALITY          |
|                                                   |                       |

# IMAGES ARE BEST AVAILABLE COPY.

OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.