Ice Model Calibration Using Spatial Processes

Murali Haran

Penn State

March 30, 2014

Collaborators: Won Chang (Penn State Statistics) Klaus Keller, Roman Olson (Penn State Geosciences)

This Talk

- Ice models are often used to make projections about future ice sheet behavior.
- A major source of uncertainty about these projections is due to uncertainty about climate model input parameters.
- We propose a method for learning about ice model parameters from ice model outputs and observations.
- Challenges: Data in the form of high-dimensional spatial processes.
 Complicated error structures.
- I will describe novel computationally efficient approaches based on Principal components (PC) and kernel convolution.

Greenland Ice Sheet

Important contributor to sea level rise: Total melting results in sea level rise of 7m.

Bamber et al. (2001)

Calibration Problem

Which parameter settings best match observations?

Two-stage Approach to Emulation-Calibration

- Emulation step: Find fast approximation for climate model using Gaussian process (GP)
- Calibration step: Infer climate parameter using emulator and observations, while accounting for data-model discrepancy

(Bhat, Haran, Olson, Keller, 2012; Liu, Bayarri and Berger, 2009)

Emulation Step

Computer model output (y-axis) vs. input (x-axis)

Emulation (approximation) of computer model using GP

Calibration Step

Combining observation and emulator

Posterior PDF of θ given model output and observations

Summary of Statistical Problem

- **Goal**: Learning about θ based on two sources of information:
 - **Observations**: Mean ice thickness profile† $\mathbf{Z} = (Z(\mathbf{s}_1), \dots, Z(\mathbf{s}_n))^T$, where $\mathbf{s}_1, \dots, \mathbf{s}_n$ are latitude points.
 - **Ice model output*** for mean ice thickness $\mathbf{Y}(\theta_1), \dots, \mathbf{Y}(\theta_p)$, where each $\mathbf{Y}(\theta_i) = (Y(\mathbf{s}_1, \theta_i), \dots, Y(\mathbf{s}_n, \theta_i))^T$ is spatial process (Applegate et al 2012).
 - **Z** and $\mathbf{Y}(\theta_i)$'s are *n*-dimensional vectors
- Important: output at each θ_i is a spatial process. n=264 locations, p=100 runs.

†Averaged over longitude

*SICOPOLIS (Greve, 1997; Greve et al., 2011)

Step 1: Dimension Reduction

ullet Consider model outputs at $oldsymbol{ heta}_1,\ldots,oldsymbol{ heta}_p$ as replicates and obtain PCs

$$\begin{pmatrix} Y(\mathbf{s}_{1}, \theta_{1}) & \dots & Y(\mathbf{s}_{n}, \theta_{1}) \\ \vdots & \ddots & \vdots \\ Y(\mathbf{s}_{1}, \theta_{p}) & \dots & Y(\mathbf{s}_{n}, \theta_{p}) \end{pmatrix}_{p \times n} \Rightarrow \begin{pmatrix} Y_{1}^{R}(\theta_{1}) & \dots & Y_{J_{y}}^{R}(\theta_{1}) \\ \vdots & \ddots & \vdots \\ Y_{1}^{R}(\theta_{p}) & \dots & Y_{J_{y}}^{R}(\theta_{p}) \end{pmatrix}_{p \times J_{y}}$$

• PCs pick up characteristics of model output that vary most across input parameters $\theta_1, \dots, \theta_p$.

Step 2: Emulation Using PCs

- ullet Fit 1-dimensional GP for each series $Y_j^R(oldsymbol{ heta}_1),\ldots,Y_j^R(oldsymbol{ heta}_p)$
- $\eta(\theta, \mathbf{Y}^R)$: J_y -dimensional emulation process for PCs, \mathbf{Y}^R is collection of PCs
- Computation reduces from $\mathcal{O}(n^3p^3)$ to $\mathcal{O}(J_yp^3)$ (6.13 × 10¹² to 3.33 × 10⁶ flops).
- Emulation for original output: compute $K_y \eta(\theta, \mathbf{Y}^R)$ where K_y is matrix of scaled eignvectors

Dimension Reduction for Discrepancy Process

- Kernel convolution: Specifying *n*-dimensional discrepancy process δ using J_d -dimensional knot process ν ($J_d < n$) and kernel functions
- Kernel basis matrix \mathbf{K}_d links grid locations $\mathbf{s}_1, \dots, \mathbf{s}_n$ to knot locations $\mathbf{a}_1, \dots, \mathbf{a}_{J_d}$;

$$\left\{ \mathbf{K}_{d} \right\}_{ij} = \exp\left(-\frac{\left\| \mathbf{s}_{i} - \mathbf{a}_{j} \right\|}{\phi_{d}} \right)$$

with $\phi_d > 0$. Fix ϕ_d at large value determined by expert judgment

 Results in better identifiability: Overly flexible discrepancy process may be confounded with emulator

Calibration in Reduced Dimensions

• Probability model for dimension-reduced observation \mathbf{Z}^R :

$$\begin{split} \mathbf{Z} &= \underbrace{\mathbf{K}_y \boldsymbol{\eta}(\boldsymbol{\theta}, \mathbf{Y}^R)}_{\text{emulator}} + \underbrace{\mathbf{K}_d \boldsymbol{\nu}}_{\text{discrepancy}} + \underbrace{\boldsymbol{\epsilon}}_{\text{observation error}}, \\ \Rightarrow & \mathbf{Z}^R = (\mathbf{K}^T \mathbf{K})^{-1} \mathbf{K}^T \mathbf{Z} = \left(\begin{array}{c} \boldsymbol{\eta}(\boldsymbol{\theta}, \mathbf{Y}^R) \\ \boldsymbol{\nu} \end{array} \right) + (\mathbf{K}^T \mathbf{K})^{-1} \mathbf{K}^T \boldsymbol{\epsilon}, \end{split}$$

with combined basis $[\mathbf{K}_y \ \mathbf{K}_d]$, knot process $\boldsymbol{\nu} \sim N(\mathbf{0}, \kappa_d \mathbf{I})$, and observational error $\boldsymbol{\epsilon} \sim N(\mathbf{0}, \sigma^2 \mathbf{I})$.

ullet Infer heta through posterior distribution

$$\pi(\boldsymbol{\theta}, \kappa_d, \sigma^2 | \mathbf{Z}^R, \mathbf{Y}^R) \propto \underbrace{L(\mathbf{Z}^R | \mathbf{Y}^R, \boldsymbol{\theta}, \kappa_d, \sigma^2)}_{\text{likelihood given by above}} \underbrace{p(\boldsymbol{\theta}) p(\kappa_d) p(\sigma^2)}_{\text{priors}}$$

Perfect Model Experiment

Test if our calibration method can recover the "truth".

- Pick one model output as synthetic truth.
- @ Generate observational data by adding structural error.
- Calibrate the parameters using remaining model outputs.
- See if we get back parameter setting for synthetic truth.

Parameter Densities

Ice Volume Change Projection

Discussion

- Dimension reduction-based approach:
 - Very fast, scales well with *n*, number of spatial locations: Potential to apply for bigger data set
 - Very easy to use: Automatic emulation step
- Ice model calibration:
 - Provides sharper posterior densities for input parameters and sea level rise projections
 - Shows clear interaction between parameters

References

- Chang, W., Applegate, P., Haran, M. and Keller, K. (2014)
 Probabilistic calibration of a Greenland Ice Sheet model using spatially-resolved synthetic observations: toward projections of ice mass loss with uncertainties, submitted to Geophysical Model Development Discussion
- Chang, W., Haran, M., Olson, R., and Keller, K. (2013) Fast dimension-reduced climate model calibration, accepted for publication in the Annals of Applied Statistics, arXiv:1303.1382.
- Applegate, P. J., Kirchner, N., Stone, E. J., Keller, K., and Greve, R., 2012, An assessment of key model parametric uncertainties in projections of Greenland Ice Sheet behavior: *The Cryosphere* 6, 589-606.

This work was supported by the Network for Sustainable Climate Risk Management (SCRiM) under NSF cooperative agreement GEO-1240507