1. Show that the set of nondecreasing functions forms a monoid of functions on \mathbb{R} .

Let f and g be nondecreasing functions on \mathbb{R} .

Let $x, y \in \mathbb{R}$ and x > y.

Since f is a nondecreasing function, $f(x) \ge f(y)$. Since g is a nondecreasing function, $g(f(x)) \ge g(f(y))$. Thus $g \circ f$ is a nondecreasing function.

Define the function $e: x \mapsto x$. Note that e is a nondecreasing function, and $(f \circ e)(x) = f(e(x)) = f(x) = e(f(x)) = (e \circ f)(x)$.

So the set of nondecreasing function forms a monoid of function on \mathbb{R} . \square

2. Show that the set $C(\mathbb{R})$ of all continuous functions $f: \mathbb{R} \to \mathbb{R}$ forms a monoid of functions on \mathbb{R} .

Let f and g be continuous functions on \mathbb{R} .

Let $x \in \mathbb{R}$.

Since g is a continuous function on \mathbb{R} , g is defined and continuous at x. Since f is a continuous function on \mathbb{R} , f is defined and continuous at g(x). So $f \circ g$ is a continuous function on \mathbb{R} .

Define the function $e: x \mapsto x$. Note that e is a continuous function, and $(f \circ e)(x) = f(e(x)) = f(x) = e(f(x)) = (e \circ f)(x)$.

So the set $C(\mathbb{R})$ forms a monoid of function on \mathbb{R} . \square

3. Let $f:X\to Y$ be a function with nonempty domain X. Show that there is a function $g:Y\to X$ such that $f=f\circ g\circ f$.

For each $y \in \text{range}(f)$, let $x \in f^{-1}(\{y\})$. Define the function $g: Y \to X: y \mapsto x$.

For each $y \in Y \setminus \text{range}(f)$, let $x_0 \in X$. Define the function

$$g: Y \to X: y \mapsto x_0.$$

Then g is a well-defined function, and for any $x \in X$ and $f(x) = y \in Y$,

$$(f \circ g \circ f)(x) = f(g(y)) = f(x). \square$$