Documentation for the General QMC code

Author: Martin Bercx

November 4, 2016

Contents

1	Definition of the model Hamiltonian	2		
	1.1 Structure of the hopping matrix \mathbf{T} and the interaction matrices $\mathbf{V}^{(k)}$			
	1.2 The Hubbard-Stratonovich decomposition	3		
2	Implementation of a model Hamiltonian	3		
	2.1 The Operator variable	3		
	2.2 The observables			
	2.3 The lattice			
3	Input and output files			
4	Walkthrough: the $SU(2)$ -Hubbard model on a square lattice			
	4.1 Hopping term	4		
	4.2 Interaction term	5		
	4.3 Definition of the square lattice	E		
	4.4 Observables for the Hubbard model			
5	Tutorial: set up a model Hamiltonian	6		

1 Definition of the model Hamiltonian

The class of solvable models includes Hamiltonians \mathcal{H} having the following general form: $\mathcal{H} = \mathcal{H}_T + \mathcal{H}_V$, where

$$\mathcal{H}_T = \sum_{s=1}^{N_{fl}} \sum_{\sigma=1}^{N_{col}} \sum_{x,y} c_{x\sigma s}^{\dagger} T_{xy}^{(s)} c_{y\sigma s}$$

$$\tag{1}$$

$$\mathcal{H}_{V} = -\sum_{k=1}^{M} U_{k} \left\{ \sum_{s=1}^{N_{fl}} \sum_{\sigma=1}^{N_{col}} \left[\sum_{x,y} \left(c_{x\sigma s}^{\dagger} V_{xy}^{(ks)} c_{y\sigma s} \right) - \alpha_{ks} \right] \right\}^{2} . \tag{2}$$

The indices have the following meaning:

- The number of fermion flavors is set by N_{fl} .
- The number of fermion *colors* is set by N_{col} . Does it set the symmetry group of the fermions, namely the dimension of the special unitary group $SU(N_{sun})$?
- The indices x, y label lattice sites where $x, y = 1, \dots N_{dim}$. N_{dim} is the total number of spacial vertices: $N_{dim} = N_{unit\ cell}N_{orbital}$, where $N_{unit\ cell}$ is the number of unit cells of the underlying Bravais lattice and $N_{orbital}$ is the number of (spacial) orbitals per unit cell Check the definition of $N_{orbital}$ in the code.
- Therefore, the matrices $T^{(s)}$ and $V^{(ks)}$ are of dimension $N_{dim} \times N_{dim}$
- The number of correlated sites which is a subset of all sites, is labelled by M ($M \leq N_{dim}$). Be more general here and speak of correlated blocks?

Note that the matrices $T^{(s)}$ and $V^{(ks)}$ explicitly depend on the flavor index s but not on the color index σ . Using this symmetry property is essential for an efficient code implementation. The color index σ only appears

- in the coupling g in the Operator structure (see Sec. ??).
- as normalization constant in the definition of observables (see Sec. ??)
- as exponent in the calculation of the phase factor and the Monte Carlo update ratio.

1.1 Structure of the hopping matrix T and the interaction matrices $V^{(k)}$

In general, the matrices $\mathbf{T}^{(s)}$ and $\mathbf{V}^{(ks)}$ are sparse matrices. This property is used to minimize computational cost and storage. In the following, we discuss the implementation of the single-particle matrix representation $\mathbf{V}^{(ks)}$ of the interaction operator. The same logic applies for the hopping matrix $\mathbf{T}^{(s)}$.

We denote a subset of N_{eff} (in the code, N_{eff} is called just N) degrees of freedom here: sites by the set $[z_1, \dots, z_{N_{eff}}]$ and define it to contain only vertices for which an interaction term is defined:

$$V_{xy}^{(ks)} \neq 0$$
 only if $x, y \in [z_1^{(ks)}, \cdots z_{N_{eff}^{(ks)}}^{(ks)}]$. (3)

We define the projection matrices $\mathbf{P}_{V}^{(ks)}$ of dimension $N_{eff}^{(ks)} \times N_{dim}$:

$$(P_V^{(ks)})_{i,z} = \delta_{z^{(ks)}}, \tag{4}$$

where $i \in [1, \dots N_{eff}^{(ks)}]$ and $z \in [1, \dots N_{dim}]$. The matrix operator $P_V^{(ks)}$ picks out the non-vanishing entries of $V^{(ks)}$, which are contained in the rank- $N_{eff}^{(ks)}$ matrix $O_V^{(ks)}$:

$$\boldsymbol{V}^{(ks)} = \boldsymbol{P}_{V}^{(ks)T} \boldsymbol{O}_{V}^{(ks)} \boldsymbol{P}_{V}^{(ks)} , \qquad (5)$$

and

$$V_{xy}^{(ks)} = (P_V^{(ks)})_{ix} \left[O_V^{(ks)} \right]_{ij} (P_V^{(ks)})_{jy} = \sum_{i,j}^{N_{eff}^{(ks)}} \delta_{z_i^{(ks)},x} \left[O_V^{(ks)} \right]_{ij} \delta_{z_j^{(ks)},y} . \tag{6}$$

Comment that the P matrices have only one non-vanishing entry per column. To set the interaction part, we therefore have to specify the following:

- \bullet the matrix elements $\left[O_V^{(k)}\right]_{ij}$
- the set $[z_1^{(k)}, \cdots z_{N_{eff}^{(k)}}^{(k)}]$
- the interaction strengths U_k
- the numbers α_k .

Be more specific here what really has to specified in the actual code. The same logic also applies to the implementation of the hopping interaction be more specific.

1.2 The Hubbard-Stratonovich decomposition

Consider a single-particle (in other words bilinear) operator O_i . One obtains an approximation to the evolution operator by the following series expansion [?]

$$e^{-\Delta\tau O_i^2} = \sum_{s=\pm 1,\pm 2} \gamma(s) e^{i\sqrt{\Delta\tau}\eta(s)O_i} + \mathcal{O}(\Delta\tau^4) , \qquad (7)$$

with

$$\gamma(\pm 1) = (1 + \sqrt{6}/3)/4 , \ \gamma(\pm 2) = (1 - \sqrt{6}/3)/4 ,$$

$$\eta(\pm 1) = \pm \sqrt{2(3 - \sqrt{6})} , \ \eta(\pm 2) = \pm \sqrt{2(3 + \sqrt{6})} .$$
 (8)

Eq. (7) can be easily proven by expanding its right hand side to eighth order in O_i . The transformation introduces therefore two Ising fields s per lattice site i, taking the values ± 1 and ± 2 . same label as the flavor index

2 Implementation of a model Hamiltonian

To implement a Hamiltonian which belongs to the class of Hamiltonians defined by Eq. (1), the user only has to write/modify a single subroutine. A template is given by Hamiltonian_template.f90. Existing model subroutines are Hamiltonian_Hubb.f90.

2.1 The Operator variable

In the code implementation, we define a structure called Operator. This structure variable Operator bundles several components that are needed to define and use an operator matrix in the program. In Fortran a structure variable like this is called a derived type. The components it contains are:

- the projector P_V ,
- the matrix O_V ,
- the effective dimension N_{eff} ,
- and a couple of auxiliary matrices and scalars.

In general, we will not only have one structure variable Operator, but a whole array of these structures.

Name of variable in the code	Description
Op_V%N	effective dimension N_{eff}
0p_V%0	$\operatorname{matrix} \mathbf{O}_V$
Op_V%U	matrix containing the eigenvectors of \mathbf{O}_V
Op_V%E	eigenvalues of \mathbf{O}_V
Op_V%P	projection matrix \mathbf{P}_V
Op_V%N_non_zero	number of non-vanishing eigenvalues of \mathbf{O}_V
Op_V%g	coupling strength in Hubbard-Stratonovich transformation
Op_V%alpha	constant
Op_V%type	integer parameter to set the type of
	Hubbard-Stratonovich transformation Possible Issue: type is also a Fortran keyword

Table 1: Components of the Operator structure variable Op_V.

2.2 The observables

2.3 The lattice

3 Input and output files

4 Walkthrough: the SU(2)-Hubbard model on a square lattice

In this section, we describe the subroutine Hamiltonian_Hub.f90 which is an implementation of the Hubbard model on the square lattice. The SU(2)-symmetric Hubbard model is given by

$$\mathcal{H} = -t \sum_{\sigma=1}^{2} \sum_{\langle x,y \rangle} \left(c_{x\sigma}^{\dagger} c_{y\sigma} + \text{H.c.} \right) + \frac{U}{2} \sum_{x} \left[\sum_{\sigma=1}^{2} \left(c_{x\sigma}^{\dagger} c_{x\sigma} - 1/2 \right) \right]^{2} . \tag{9}$$

In order to bring the general Hamiltonian (1) to this form, we set

$$N_{fl} = 1$$

$$N_{col} = 2$$

$$T_{xy} = -t\delta_{\langle x,y\rangle}$$

$$M = N_{dim}$$

$$U_k = -\frac{U}{2}$$

$$V_{xy}^{(ks)} = \delta_{x,y}\delta_{x,k}$$

$$\alpha_{ks} = \frac{1}{2}.$$
(10)

Note that in this example $N_{dim} = N_{unit\ cell} = Latt\%N$. And since $N_{fl} = 1$ for SU(N)-symmetric Hubbard models, we will drop the flavor index σ in the following.

4.1 Hopping term

The hopping matrix is implemented as follows. We allocate an array of dimension 1×1 , called Op_T . It therefore contains only a single Operator structure. We set the effective dimension for the hopping term: $N_{eff} = N_{dim}$. And we allocate and initialize this structure by a single call to the subroutine Op_make :

call Op_make(Op_T(1,1),Ndim)

Since the effective dimension is identical to the total dimension, it follows trivially, that $P_T = 1$ and $O_T = T$. Note that although a checkerboard decomposition is not yet used for the Hubbard model, in principle it can be implemented.

4.2 Interaction term

To implement this interaction, we allocate an array of Operator structures. The array is called Op_V and has dimensions $N_{dim} \times N_{fl} = N_{dim} \times 1$. We set the effective dimension for the interaction term: $N_{eff} = 1$. And we allocate and initialize this array of structures by repeatedly calling the subroutine Op_make:

```
N_dim = Latt%N
N_fl = 1
N_eff = 1

do nf = 1, N_FL
do i = 1, Latt%N
call Op_make(Op_V(i,nf),N_eff)
enddo
enddo
```

For each lattice site *i*, the projection matrices $P_V^{(i)}$ are of dimension $1 \times N_{dim}$ and have one non-vanishing entry: $(P_V^{(i)})_{1j} = \delta_{ij}$. The effective matrices are scalars in this example: $O_V^{(i)} = 1$.

Name of variable in the code	Description
Ndim	Spacial dimension of the lattice (total number of sites)
Latt%N	Number of unit cells of the underlying Bravais lattice
Op_T	Array of structure variables that bundles all variables
	needed to define the hopping operator.
$0p_{V}$	Array of structure variables that bundles all variables
	needed to define the two-particle interaction operator.
N_{-} sun	Number of fermion colors spin states of the $SU(N_{sun})$ -symmetric fermions
N_{fl}	Number of fermion flavors

Table 2: Common variables that are set in the Hamiltonian, operator and lattice modules of the code. !!! We have a missmatch in the labelling: $N_{col} = N_{_}sun$!!!

4.3 Definition of the square lattice

This is set in the subroutine Ham_latt. The square lattice is already implemented. In principle, one can specify other lattice geometries and use them by specifying the keyword Lattice_type in the parameter file.

4.4 Observables for the Hubbard model

To do next:

- dicuss the measurements: what observables exit and how do I add a new one?
- discuss the implementation of the lattice.
- discuss the Hubbard-Stratonovich decompositions (this is related to the coupling in the operator structure), discuss also the spin-symmetry-breaking HS-decomposition for the Hubbard model.

5 Tutorial: set up a model Hamiltonian

based on the (not yet existing) template Hamiltonian_template.f90.