

第四节

函数的单调性与极植

- 一、主要内容
- 二、典型例题
- 三、同步练习
- 四、同步练习解答

一、主要内容

- (一) 函数单调性的判定法
- 1. 单调区间的判定法
- 定理3.8 设函数 f(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,
 - (1) 若对于任意的 $x \in (a,b)$, f'(x) > 0, g(x) = f(a,b), g'(x) = f
 - (2) 若对于任意的 $x \in (a,b)$, f'(x) < 0, 则 f(x) 在 [a,b]上单调减少.

注 1° [a,b]可换成任何区间.

$$2^{\circ}$$
 $f'(x) > 0$ $(\forall x \in (a,b))$ $f(x)$ 在 (a,b) 上单调增加 $(減少)$

- 例如,① $f(x) = x^3 \text{在}(-\infty, +\infty)$ 上单调增加,但 f'(0) = 0.
 - ② $f(x) = \sqrt[3]{x}$ 在 $(-\infty, +\infty)$ 上单调增加,但 $f'(0) = \infty$,不存在.

3° 事实上,定理3.8可推广为:

定理3.8' 设 y = f(x)在[a,b]上连续,在(a,b)

内除去有限个点外, f'(x) > 0, 则 y = f(x)在

[a,b]上单调增加。

(减少)

2. 单调性的确定法

讨论f(x)单调性的步骤:

- 1° 确 定 f(x) 的 定 义 区 间;
- 2° 求使 f'(x) = 0及 f'(x)不存在的点;

若这些点只有有限个: $a < x_1 < x_2 < \cdots < x_n < b$

3°划分区间

$$(a, x_1), (x_1, x_2), \cdots, (x_n, b)$$

4°列表

判断各子区间内f'(x)的符号,并指出f(x)的单调性及单调区间.

3. 应用

(1) 证明不等式

推论 设函数 f(x), g(x) 在闭区间 [a,b] 上连续,在开区间 (a,b) 内可导,

- (1) 若 $\forall x \in (a,b), f'(x) > g'(x), 且 f(a) = g(a),$ 则在 (a,b)内f(x) > g(x);
- (2) 若 $\forall x \in (a,b), f'(x) < g'(x), 且 f(b) = g(b),$ 则在(a,b)内f(x) > g(x).

此推论可用来证明函数不等式.

(2) 方程根的确定

方程: f(x) = 0

思路: 1° 确定 f(x) 的单调区间:

$$(x_{i-1}, x_i), (i=1,2,\dots,n);$$

 2° 查 $f(x_{i-1}), f(x_i)$ 或 $f(x_{i-1}^+), f(x_i^-)$ 的符号;

 3° 利用零点定理查 f(x) 在 (x_{i-1},x_i) 内零点的存在性,

利用 f(x)的单调性可知 f(x)在 (x_{i-1},x_i) 内零点的唯一性.

(二) 函数的极值及其求法

- 1. 定义3.1 设函数 f(x)在 $U(x_0)$ 内有定义,若当 $x \in \mathring{U}(x_0)$ 时,总有
 - (1) $f(x) < f(x_0)$,

则称 x_0 为 f(x)的极大值点, 称 $f(x_0)$ 为 f(x)的极大值;

 $(2) \quad f(x) > \overline{f(x_0)},$

则称 x_0 为 f(x)的极小值点, 称 $f(x_0)$ 为 f(x) 的极小值.

注 1° 极值 _____ 最值

2°区间端点一定不是极值点.

2. 极值的判定法

定理3.9(必要条件) 若f(x)在 x_0 处取得极值,且

在 x_0 处可导,则必有 $f'(x_0) = 0$.

注 1° 若 $f'(x_0) = 0$, 则称 x_0 为f(x)的驻点.

2° 可导函数的极值点 ____ 驻点

例如,
$$y=x^3$$
, $y'(0)=0$, 但 $x=0$ 不是极值点.

极值可疑点: 驻点、

导数不存在(但函数有定义)的点.

问题:如何判定极值可疑点是否是函数的极值点?

定理3.10(第一充分条件)

设函数f(x)在 $U(x_0)$ 内连续,在 $U(x_0)$ 内可导, $\forall x \in U(x_0),$

- (1) 若当 $x < x_0$ 时, f'(x) > 0, 当 $x > x_0$ 时, f'(x) < 0, 则 f(x)在 x_0 处取得极大值;
- (2) 若当 $x < x_0$ 时, f'(x) < 0, 当 $x > x_0$ 时, f'(x) > 0, 则, $f(x) \ne x_0$ 处取得极小值;
- (3) 若 f'(x)的符号保持不变,则f(x)在 x_0 处没有极值.

求极值的步骤:

- 1° 确定f(x)的定义域,并求导数 f'(x);
- 2° 求极值可疑点:驻点,导数不存在(但有定义)的点.
- 3°列表,检查 f'(x) 在极值可疑点左右的正 负号, 判断极值点;
- 4° 求极值.

注 极值的判定法1 (定理3.10)是 充分条件, 不是必要的.

例如函数

$$f(x) = \begin{cases} 2 - x^2(2 + \sin\frac{1}{x}), & x \neq 0, \\ 2, & x = 0 \end{cases}$$

 $\Delta tx = 0$ 处取得极大值 f(0) = 2,但在 $\forall U(0)$ 内

$$f'(x) = -2x(2+\sin\frac{1}{x})+\cos\frac{1}{x}$$

有正有负, 从而f(x)在x = 0的左右两侧都不单调

定理3.11(第二充分条件)

设函数 f(x) 在点 x_0 处具有二阶导数。且 $f'(x_0) = 0, \ f''(x_0) \neq 0,$

- (1) 若 $f''(x_0) < 0$, 则 f(x) 在点 x_0 处取得极大值;
- (2)若 $f''(x_0) > 0$, 则 f(x) 在点 x_0 处取得极小值.

记忆方法: $y=x^2$ 在x=0 处取得极小值 y''(0) = 2 > 0

注 1° 当 $f''(x_0) = 0$ 时,定理3.11失效,此时需用

极值第一判定法或极值定义等其他方法,判定 x_0 是否为极值点.

例如,
$$(1) f(x) = x^4$$
,
$$f'(x) = 4x^3, \ f''(x) = 12x^2$$

$$f'(0) = f''(0) = 0$$

- :: 当 x < 0时, f'(x) < 0,当 x > 0时, f'(x) > 0
- x = 0是f(x)的极小值点.

$$(2) f(x) = x^3$$

$$f'(x) = 3x^2, f''(x) = 6x$$

 $f'(0) = f''(0) = 0$

$$\therefore x = 0$$
不是 $f(x)$ 的极值点.

2° 极值的判别法2(定理3.11)也是充分条件,不是必要的.

定理(第三充分条件)

设
$$f(x)$$
在 x_0 处有 n 阶 导数,若
$$f'(x_0) = f''(x_0) = \cdots = f^{(n-1)}(x_0) = 0$$

且
$$f^{(n)}(x_0) \neq 0$$
,则

- (1) 当n 为奇数时, f(x) 在 x_0 处不取得极值;
- (2) 当n为偶数时, 若 $f^{(n)}(x_0) > 0$, (<)

则 f(x)在 x_0 处取得极小值. (极大值)

二、典型例题

例1 讨论函数 $y = e^x - x - 1$ 的单调性.

∴函数 y在($-\infty$, 0]上单调减少;

:. 函数 y在[$0,+\infty$) 上单调增加.

例2 讨论 $f(x) = x + \cos x$ 在[0, 2 π]上的单调性.

解 当 $x \in [0,2\pi]$ 时, $f'(x) = 1 - \sin x \ge 0$,

且只在一点
$$x = \frac{\pi}{2}$$
处 $f'(x) = 0$, 故函数在 $[0,2\pi]$ 内

单调递增.

例3 确定函数 $f(x)=(1-x)x^{3}$ 的单调区间.

- \mathbf{H} 1° 确定定义区间 f(x)在($-\infty$, $+\infty$)内有定义
 - 2° 求驻点及导数不存在的点

$$f'(x) = -x^{\frac{2}{3}} + (1-x) \cdot \frac{2}{3}x^{-\frac{1}{3}} = \frac{2-5x}{3\sqrt[3]{x}}, \ x \neq 0,$$

令
$$f'(x) = 0$$
,得驻点: $x = \frac{2}{5}$;
导数不存在的点: $x = 0$.

3° 列表判别

故f(x)的单调增区间为 $[0,\frac{2}{5}]$,

$$f(x)$$
的单调减区间为 $(-\infty,0]$ 和 $[\frac{2}{5},+\infty]$.

$$f'(x) = \frac{2-5x}{3\sqrt[3]{x}}, x \neq 0$$

例4 证明: 当
$$0 < x < \frac{\pi}{2}$$
时, $\tan x > x + \frac{x^3}{3}$.

例5 方程 $\ln x = ax (a > 0)$ 有几个实根?

$$f(x) = \ln x - ax, D = (0, +\infty).$$

$$f'(x) = \frac{1}{x} - a,$$

$$f''(x) = -\frac{1}{x^2}.$$

令
$$f'(x)=0$$
,得 $x=\frac{1}{a}$,

且当
$$0 < x < \frac{1}{a}$$
时, $f'(x) > 0$, $f(x)$ 单调增加,

当
$$x > \frac{1}{a}$$
时, $f'(x) < 0$, $f(x)$ 单调减少,

$$\begin{array}{c}
\mathbb{X} \lim_{x \to 0^{+}} f(x) = -\infty, \\
f(\frac{1}{a}) = -(\ln a + 1)
\end{array}$$

$$\lim_{x \to +\infty} f(x) = \lim_{x \to +\infty} x(\frac{\ln x}{x} - a) = -\infty, \qquad \frac{f(\frac{1}{a})}{a}$$

(1) 当
$$f(\frac{1}{a}) = -(\ln a + 1) > 0$$
,即 $0 < a < \frac{1}{e}$ 时, $f(x) = 0$ 有两个不同的实根;

$$f(x) = \ln x - ax$$

(2) 当
$$a = \frac{1}{e}$$
时,
$$f(x) = 0$$
有且仅有一个实根 $x = e$; 0 $\frac{1}{a}$ x

(3) 当
$$a > \frac{1}{e}$$
时, $f(x) = 0$ 无实根.
$$0$$

$$x$$

例6 求 $f(x) = (x+1)^3 (x-1)^3$ 的极值.

 $\mathbf{f}(x)$ 在 $(-\infty,+\infty)$ 内连续.

1° 找极值可疑点

$$f'(x) = 3(x+1)^{2}(x-1)^{\frac{2}{3}} + (x+1)^{3} \cdot \frac{2}{3}(x-1)^{-\frac{1}{3}}$$

$$=\frac{(x+1)^{2}[9(x-1)+2(x+1)]}{3(x-1)^{\frac{1}{3}}}=\frac{(x+1)^{2}(11x-7)}{3(x-1)^{\frac{1}{3}}}$$

令
$$f'(x) = 0$$
,得 驻点: $x = -1$, $x = \frac{7}{11}$ 导数不存在的点: $x = 1$.

$$f'(x) = \frac{(x+1)^2(11x-7)}{3(x-1)^{\frac{1}{3}}}$$
2° 列表
$$3(x-1)^{\frac{1}{3}}$$

$$x$$
 $(-\infty,-1)$ -1 $(-1,\frac{7}{11})$ $\frac{7}{11}$ $(\frac{7}{11},1)$ 1 $(1,+\infty)$ $f'(x)$ + 0 + 0 - $\frac{\pi}{4}$ + $\frac{\pi}{4}$

3° 求极值. 极大值 $f(\frac{7}{11}) \approx 2.2$,极小值 f(1) = 0.

例7 设 y = y(x)由方程:

$$y'-y^2-x=0$$

所确定,且 $y'(x_0) = 0$.问y(x)在 x_0 处是否取得

极值?若取得极值,是极大值还是极小值?

分析 由 $y' = y^2 + x$, y可导,知 y'' 存在

$$0 = y'(x_0) = y^2(x_0) + x_0, x_0 = -y^2(x_0) \le 0$$

由 $y' = y^2 + x$, 在 $x = x_0$ 的两侧, 不能判定 y'的符号,

故不能用第一充分判定 法,

考虑用第二充分判定法.

$$y'(x) - y^2(x) - x = 0$$

等式两端对x求导

$$y''(x) - 2y(x)y'(x) - 1 = 0$$

 $y''(x) = 2y(x)y'(x) + 1$

$$y''(x_0) = 2y(x_0)y'(x_0) + 1 = 1 > 0$$

 $\therefore y(x)$ 在 x_0 处取得极小值.

例8 设函数 f(x)满足 $f''(x)+[f'(x)]^2=x$,

且 f'(0) = 0, 问 f(0)是否是 f(x)的极值?

解
$$: f'(0) = 0,$$

在
$$f''(x) + [f'(x)]^2 = x 中, 令 x = 0$$

得
$$f''(0) + [f'(0)]^2 = 0$$

$$\therefore f''(0) = 0 \circ \bigcirc$$

能否用极值第一判定法?

极值第二充分 判定法失效!

关键: 在U(0)内,判断 f'(x)的符号.

$$f''(x) + [f'(x)]^2 = x$$

两边求导,得

$$f'''(x) + 2f'(x)f''(x) = 1,$$

$$x = 0$$
, $f'''(0) = 1 > 0$

对f'(x)用麦克劳林公式,得

$$f'(x) = f'(0) + f''(0)x + \frac{f'''(0)}{2!}x^2 + o(x^2) > 0, x \in \mathring{U}(0)$$

- f'(x)在某U(0)内不变号
- f(0)不是 f(x)的极值.

直接由此式

不易判断f'(x)

的符号

例9 设 f(x)在某 U(0)内连续,且 f(0) = 0,

$$\lim_{x\to 0} \frac{f(x)}{1-\cos x} = 2$$
.问: $f(x)$ 在 $x = 0$ 处是否取得极值?

分析 依题设条件,只知

$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

$$= \lim_{x \to 0} \frac{f(x)}{1 - \cos x} \cdot \frac{1 - \cos x}{x} = 2 \times 0 = 0$$

存在,但在 $\mathring{U}(0)$ 内不知 f(x)的可导性,故不能用极值的充分判 定法.

$$\lim_{x\to 0} \frac{f(x)}{1-\cos x} = 2 > 0$$

 \therefore 由极限的保号性知,存在 $\mathring{U}(0)\subseteq\mathring{U}(0,\frac{\pi}{2}),$ 当 $x\in\mathring{U}(0)$ 时,

$$\frac{f(x)}{1-\cos x} > 0.$$

$$\mathcal{R} : 1 - \cos x > 0, x \in \overset{\circ}{U}(0)$$

$$f(x) > 0 = f(0), x \in U(0)$$

$$f(x)$$
在 $x = 0$ 处取得极小值.

三、同步练习

1.
$$f'(x_0) > 0 \longrightarrow f(x)$$
在某 $U(x_0)$ 上单调增加.

2. 已知y = f(x)的导函数 在区间 $[\gamma, \beta]$ 上的图形,试 写出:

- (1) y = f(x)的单调增区间与单调减 区间;
- (2) y = f(x)的极值,是极大值还是极小值?

- 3. 讨论函数 $f(x) = \sqrt[3]{x^2}$ 的单调性.
- 4. 确定函数 f(x) = |x-1| 的单调区间.
- 5. 讨论函数 $f(x) = x^3 + x^2 5x 5$ 的单调性.
- 6. 证明: 当 $0 < x < \frac{\pi}{2}$ 时, $\sin x + \tan x > 2x$.
- 7. 证明: $\exists x > 0$ 时, $\arctan x + \frac{1}{x} > \frac{\pi}{2}$.

9. 设b > a > e,证明 $b^a < a^b$.

10. 求函数
$$y = x^{\frac{1}{3}}(1-x)^{\frac{2}{3}}$$
的极值.

11. 求由参数方程
$$\begin{cases} x = \frac{1}{2}(t+1)^2 \\ y = \frac{1}{2}(t-1)^2 \end{cases} \quad (t \ge 0)$$

所确定的函数 y = f(x)的极值.

12. 求函数
$$y = x^3 + 9(a - x)^3$$
的极值.

13. 由方程 $x^3 + 3y^3 - 3xy = 0$ 所确定的函数 4x > 0且 $x \neq y^2$ 范围内的极值点 .

14. 求函数
$$f(x) = (x^2 - 1)^3 + 1$$
的极值.

四、同步练习解答

1.
$$f'(x_0) > 0 \xrightarrow{?} f(x)$$
在某 $U(x_0)$ 上单调增加.

解 反例:

$$f(x) = \begin{cases} x + 2x^2 \sin \frac{1}{x}, & x \neq 0 \\ 0, & x = 0 \end{cases}$$

虽然 f'(0) = 1 > 0,但 f(x)在任何U(0)内不单调增.

事实上,
$$f'(0) = \lim_{x \to 0} \frac{f(x) - f(0)}{x - 0}$$

= $\lim_{x \to 0} (1 + 2 \cdot x \cdot \sin \frac{1}{x}) = 1 > 0$

当 $k \to \infty$ 时, $x_k \to 0^+$,因此,在x=0 的任何邻域。 U(0)内,f(x)不单调增加.

若不然, 假设 f(x) 在点 x=0的某一邻域 $(-\delta,\delta)$ 内 单调增加,则 对于充分小的 $|\Delta x| \neq 0$,使 $x_{k}+\Delta x \in (-\delta,\delta)$,

则有

当
$$\Delta x > 0$$
 时, $f(x_k) < f(x_k + \Delta x)$, 当 $\Delta x < 0$ 时, $f(x_k) > f(x_k + \Delta x)$,

于是
$$\frac{f(x_k + \Delta x) - f(x_k)}{\Delta x} > 0$$

故
$$f'(x_k) = \lim_{\Delta x \to 0} \frac{f(x_k + \Delta x) - f(x_k)}{\Delta x} \ge 0$$

这与
$$f'(x_k) = -1 < 0$$
相矛盾!

- 2. 已知y = f(x)的导函数 在区间 $[\gamma, \beta]$ 上的图形,试 写出:
- (1) y = f(x)的单调增区间与单调减区间;

- (2) y = f(x)的极值,是极大值还是 极小值?
- 解 单调增区间 [a,c], 单调减区间 $[\gamma,a]$ 和 $[c,\beta]$, 极小值 f(a), 极大值 f(c).

3. 讨论函数 $f(x) = \sqrt[3]{x^2}$ 的单调性.

$$f'(x) = \frac{2}{3\sqrt[3]{x}}, \quad x \neq 0.$$

当 x = 0 时, 导数不存在, 且当 $x \in (-\infty, 0)$ 时,

$$f'(x) < 0$$
, 当 $x \in (0, +\infty)$ 时, $f'(x) > 0$, 故 $f(x)$ 的

的单调增区间为 $[0,+\infty)$,单调减区间为 $(-\infty,0]$.

4. 确定函数 f(x) = |x-1| 的单调区间.

解
$$f(x) = \begin{cases} x-1, x \ge 1 \\ 1-x, x < 1, \end{cases}$$
 $D = (-\infty, +\infty).$

$$f'_{-}(1) = -1, f'_{+}(1) = 1,$$

$$f(x)$$
在 $x = 1$ 处不可导,且

$$f'(x) = \begin{cases} 1, x > 1, \\ -1, x < 1. \end{cases}$$

故函数的单调递减区间 为 $(-\infty,1]$,单调递增区间为 $[1,+\infty)$.

5. 讨论函数
$$f(x) = x^3 + x^2 - 5x - 5$$
的单调性.

故 f(x) 的 单调增区间为 $(-\infty, -\frac{5}{3}]$ 和 $[1, +\infty)$; f(x) 的 单调减区间为 $[-\frac{5}{3}, 1]$.

6. 证明: 当
$$0 < x < \frac{\pi}{2}$$
时, $\sin x + \tan x > 2x$.

证
$$\diamondsuit f(x) = \sin x + \tan x - 2x,$$
 则

$$f'(x) = \cos x + \sec^2 x - 2,$$

$$f''(x) = 2\sec^2 x \tan x - \sin x$$

$$= \sin x (2 \sec^3 x - 1) > 0$$

故
$$f'(x)$$
在 $(0,\frac{\pi}{2})$ 上单调递增,从而当 $0 < x < \frac{\pi}{2}$ 时,

$$f'(x) > f'(0) = 0.$$

 $(0 < x < \frac{\pi}{2})$

$$f'(x) > f'(0) = 0.$$

于是
$$f(x)$$
在 $(0,\frac{\pi}{2})$ 单调递增,因此当 $0 < x < \frac{\pi}{2}$ 时,
$$f(x) > f(0) = 0,$$

 $\mathbb{F}^p \quad \sin x + \tan x > 2x.$

$$f(x) = \sin x + \tan x - 2x$$

7. 证明:
$$\exists x > 0$$
时, $\arctan x + \frac{1}{x} > \frac{\pi}{2}$.

$$\mathbf{ii} \quad \diamondsuit f(x) = \arctan x + \frac{1}{x} - \frac{\pi}{2},$$

$$\therefore f'(x) = \frac{1}{1+x^2} - \frac{1}{x^2} < 0,$$

$$\therefore f(x)$$
在[0,+∞)上单调递减,

又
$$\lim_{x \to +\infty} f(x) = 0$$
, 故当 $x > 0$ 时, $f(x) > 0$,

$$\operatorname{arctan} x + \frac{1}{x} > \frac{\pi}{2}.$$

8. 设 $x \in (0,1)$,证明 $(1+x)\ln^2(1+x) < x^2$.

令
$$g(x) = \ln(1+x)-x$$
,则

$$g'(x) = \frac{1}{1+x} - 1 = \frac{-x}{1+x} < 0 \ (x \in (0,1)),$$

所以g(x)在(0,1)内单减,从而

$$g(x) < g(0) = 0, f''(x) < 0,$$

于是f'(x)在(0,1)内单减,从而f'(x) < f'(0) = 0,

因此f(x)在(0,1)内单减,f(x) < f(0) = 0,

$$\mathbb{P} \qquad (1+x)\ln^2(1+x) < x^2.$$

$$f(x) = (1+x)\ln^2(1+x) - x^2$$

9. 设b > a > e,证明 $b^a < a^b$.

分析 要证 $b \ln a - a \ln b > 0$

可设 $f(x) = x \ln a - a \ln x$ $(x \ge a)$

证 (方法1) 令 $f(x) = x \ln a - a \ln x, x \in [a, +\infty),$

$$\mathfrak{M}f'(x) = \ln a - \frac{a}{x} > 0,$$

故f(x)在 $[a,+\infty)$ 上单调递增. 故当b>a>e时,

f(b) > f(a) = 0, 即 $a \ln b < b \ln a$, 从而 $b^a < a^b$.

分析
$$b^a < a^b$$
, 即 $a \ln b < b \ln a$, 变形为 $\frac{\ln b}{b} < \frac{\ln a}{a}$, 于是可令 $f(x) = \frac{\ln x}{x}$, 只要证 $f(x)$ 在[e,+ ∞)上单减.

(方法2) 令
$$f(x) = \frac{\ln x}{x}, x \in [e, +\infty).$$

$$f'(x) = \frac{1 - \ln x}{x^2}.$$

当x > e时, $\ln x > 1$, f'(x) < 0,

故f(x)在 $[e,+\infty)$ 上单调递减,而b>a>e,

于是 f(a) > f(b), 即 $b^a < a^b$.

10. 求函数
$$y = x^{\frac{1}{3}}(1-x)^{\frac{2}{3}}$$
的极值.

$$P = (-\infty, +\infty).$$

$$y' = \frac{1 - 3x}{\frac{2}{3}(1 - x)^{\frac{1}{3}}} = \frac{1 - 3x}{3\sqrt[3]{x^2(1 - x)}}.$$

令
$$y'=0$$
, 得 $x=\frac{1}{3}$, 导数不存在的点为 $x=0$ 及 $x=1$.

x	$(-\infty,0)$	0	$(0,\frac{1}{3})$	$\frac{1}{3}$	$(\frac{1}{3},1)$	1	$(1,+\infty)$
y'	+		+	0	-		+
y							

$$x = \frac{1}{3}$$
 是极大值点,极大值为 $y(\frac{1}{3}) = \frac{\sqrt[3]{4}}{3}$,

x=1是极小值点,极小值为 y(1)=0.

11. 求由参数方程
$$\begin{cases} x = \frac{1}{2}(t+1)^2 \\ y = \frac{1}{2}(t-1)^2 \end{cases} \quad (t \ge 0)$$

所确定的函数 y = f(x)的极值.

$$\frac{\mathrm{d} y}{\mathrm{d} x} = \frac{y'_t}{x'_t} = \frac{t-1}{t+1}.$$

令
$$\frac{dy}{dx} = 0$$
,解得驻点 $t = 1$,
对应的 $x = 2$, $y = 0$.

又当
$$0 \le t < 1$$
时, $x < 2$, $\frac{\mathrm{d} y}{\mathrm{d} x} < 0$,

当
$$t>1$$
时, $x>2$, $\frac{\mathrm{d} y}{\mathrm{d} x}>0$,

根据函数取得极值的第 一充分条件可知,

$$t=1$$
对应的点 $x=2$ 为 $y=f(x)$ 的极小值点,

此时,极小值 y=0.

$$x = \frac{1}{2}(t+1)^2, y = \frac{1}{2}(t-1)^2, \frac{dy}{dx} = \frac{t-1}{t+1}$$

12. 求函数 $y = x^3 + 9(a - x)^3$ 的极值.

$$\mathbf{P} \quad D = (-\infty, +\infty).$$

$$y' = 3x^2 - 27(a - x)^2 = 3(4x - 3a)(3a - 2x)$$

令
$$y'=0$$
, 得 $x_1=\frac{3}{4}a$, $x_2=\frac{3}{2}a$.

$$y'' = 6x + 54(a - x) = 6(9a - 8x),$$

数
$$y''(\frac{3}{4}a) = 18a, \ y''(\frac{3}{2}a) = -18a.$$

(1)
$$a > 0$$
时,函数有极小值 $y(\frac{3}{4}a) = \frac{9}{16}a^3$,

极大值
$$y(\frac{3}{2}a) = \frac{9}{4}a^3$$
.

(2)
$$a < 0$$
时, 函数有极小值 $y(\frac{3}{2}a) = \frac{9}{4}a^3$.

极大值
$$y(\frac{3}{4}a) = \frac{9}{16}a^3$$
,

(3)
$$a = 0$$
时,函数为 $y = -8x^3$,无极值.

$$y''(\frac{3}{4}a) = 18a, y''(\frac{3}{2}a) = -18a.$$

13. 由方程 $x^3 + 3y^3 - 3xy = 0$ 所确定的函数 4x > 0且 $x \neq y^2$ 范围内的极值点 .

解方程两边关于x求导一次,有

$$3x^{2} + 3y^{2} \frac{dy}{dx} - 3y - 3x \frac{dy}{dx} = 0,$$

因此
$$\frac{dy}{dx} = \frac{y-x^2}{y^2-x}$$
. 令 $\frac{dy}{dx} = 0$,可得 $y = x^2$,

代入原方程,便得 $x^6-2x^3=0$.

于是可求得y = f(x)的驻点为 $x = \sqrt[3]{2}$. 又

$$\frac{d^2 y}{dx^2} = \frac{(\frac{d y}{dx} - 2x)(y^2 - x) - (2y\frac{d y}{dx} - 1)(y - x^2)}{(y^2 - x)^2},$$

从而有
$$\frac{d^2 y}{d x^2}$$
 < 0, 所以 $\sqrt[3]{2}$ 是函数 $y = f(x)$

的极大值点.

$$\frac{\mathrm{d}\,y}{\mathrm{d}\,x} = \frac{y - x^2}{y^2 - x}$$

14. 求函数 $f(x) = (x^2 - 1)^3 + 1$ 的极值.

解 1° 求导数
$$f'(x) = 6x(x^2 - 1)^2,$$

$$f''(x) = 6(x^2 - 1)(5x^2 - 1).$$

2° 求驻点

令
$$f'(x) = 0$$
,得驻点 $x_1 = -1$, $x_2 = 0$, $x_3 = 1$.

3° 判别

因
$$f''(0) = 6 > 0$$
, 故 $f(0) = 0$ 为极小值;

又f''(-1) = f''(1) = 0,故需用第一判别法判别.由于f'(x)在 $x = \pm 1$ 的左右邻域内不变号,

故 f(x) 在 $x = \pm 1$ 处 没有取得极值.

综上所述,函数 f(x) 仅有极小值 f(0)=0, 无极大值.

$$f'(x) = 6x(x^2 - 1)^2,$$

$$f''(x) = 6(x^2 - 1)(5x^2 - 1)$$

