2229879 numer albumu

Michał Gebel imię i nazwisko 229908 numer albumu

Antoni Karwowski imię i nazwisko

kierunek Informatyka Stosowana semestr III rok akademicki 2020/21

czwartek dzień tygodnia

14:00-15:30

godziny zajęć

4

numer zespołu

Laboratorium elektroniki

Ćwiczenie E-03 Tranzystory

9.11.2020r.

data wykonania pomiarów

11.11.2020r.

data oddania raportu

ocena ____

1. Cel ćwiczenia

Puentą ćwiczenia jest poznanie właściwości statycznych tranzystora bipolarnego oraz unipolarnego (polowego).

2. Schematy układów pomiarowych

Podczas przeprowadzanego doświadczenia mamy dwa układy pomiarowe. Jeden dotyczący tranzystora bipolarnego, a drugi unipolarnego. Zostały one przedstawione na poniższych schematach.

Rys. 1. Schemat połączeń układu do wyznaczania charakterystyk wyjściowej i wejściowej tranzystora bipolarnego.

Rys. 2. Schemat połączeń układu do wyznaczania charakterystyk wyjściowej i wejściowej tranzystora unipolarnego.

3. Wykaz aparatury

W doświadczeniu użyto poniżej aparatury:

- 1). Moduł doświadczalny T1-13
- 2). Zespół Źródeł Sterujących ZŹS-09
- 3). Zasilacz napięcia (w obwodzie kolektora): *bez numeru*
- 4). Multimetr UT-804, nr inw. WD051.01-008-203 do pomiaru U_{CE} oraz U_{DS}
- 5). Multimetr UT-804, nr inw. WD054.01-003-203 do pomiaru U_{BE} oraz U_{GS}
- 6). Multimetr Protek 506, nr inw. WD043.01-013-203 do pomiaru I_C
- 7). Multimetr M-3800, nr inw. I3/2.03/2017-M/2 do pomiaru I_B oraz I_D
- 8). Zasilacz Siglent SPD3303D, nr inw. WD051.02-006-203

4. Stabelaryzowane wyniki pomiarów i wzory na niepewności

Dla powyższej aparatury została sporządzona tabela, na podstawie której wyliczane były niepewności pomiarowe dla otrzymanych podczas eksperymentu pomiarów.

Multimetr	Wartość mierzona	Zakres	Wzór
M-3800	I_B	200 μA DC	ΔU
	I_D	20 mA DC	$= \pm (0.5\% rdg)$
			+ 1 dgs
Protek 506	I_C	400 mA DC	ΔI
			$= \pm (1.0\% rdg)$
			+ 2 dgs
UT-804	U_{BE}	4 <i>V DC</i>	ΔI
	U_{CE}	40 <i>V DC</i>	$= \pm (0.05\% rdg)$
	U_{GS}		+ 5 dgs)
	U_{DS}		

Tabela 1. Wykaz wzorów na niepewność graniczną.

Wyliczone niepewności zostały umieszczone razem z wynikami pomiarów, które zostały wykonane przez dr. inż. Macieja Dłużniewskiego i dr. inż. Piotra Górskiego

$U_{CE}[V]$	$\Delta U_{CE} [V]$	$I_B [\mu A]$	$\Delta I_B [\mu A]$	$U_{BE}[V]$	ΔU_{BE} [V]	$I_C[mA]$	$\Delta I_C [mA]$
0,000	0,005	0,2	0,1	0,4589	0,00073	0,0	0,2
1,006	0,0055	0,2	0,1	0,5181	0,00076	0,0	0,2
2,007	0,006	0,3	0,1	0,5182	0,00076	0,0	0,2
3,009	0,0065	0,3	0,1	0,5183	0,00076	0,0	0,2
4,003	0,007	0,3	0,1	0,5183	0,00076	0,0	0,2
5,001	0,0075	0,3	0,1	0,5184	0,00076	0,0	0,2
6,001	0,008	0,3	0,1	0,5185	0,00076	0,0	0,2
7,005	0,0085	0,3	0,1	0,5185	0,00076	0,0	0,2
8,000	0,009	0,3	0,1	0,5185	0,00076	0,0	0,2
9,009	0,0095	0,3	0,1	0,5186	0,00076	0,0	0,2
10,002	0,01	0,3	0,1	0,5187	0,00076	0,0	0,2
0,004	0,005	60,0	0,4	0,5766	0,00079	0,0	0,2
0,020	0,005	60,0	0,4	0,5918	0,0008	0,2	0,2
0,040	0,005	60,0	0,4	0,6087	0,0008	0,6	0,2
0,060	0,005	60,0	0,4	0,6255	0,00081	1,4	0,21
0,080	0,005	60,0	0,4	0,6358	0,00082	2,2	0,22
0,100	0,0051	60,0	0,4	0,6459	0,00082	3,4	0,23
0,120	0,0051	60,0	0,4	0,6516	0,00083	4,4	0,24
0,140	0,0051	60,0	0,4	0,6563	0,00083	5,3	0,25
0,160	0,0051	60,0	0,4	0,6590	0,00083	5,9	0,26
0,180	0,0051	60,0	0,4	0,6601	0,00083	6,2	0,26
0,200	0,0051	60,0	0,4	0,6607	0,00083	6,4	0,26
1,001	0,0055	60,0	0,4	0,6605	0,00083	6,6	0,27

2,008	0,006	60,0	0,4	0,6591	0,00083	6,7	0,27
3,002	0,0065	60,0	0,4	0,6575	0,00083	6,8	0,27
4,008	0,007	60,0	0,4	0,6560	0,00083	6,8	0,27
5,000	0,0075	60,0	0,4	0,6538	0,00083	6,8	0,27
6,016	0,008	60,0	0,4	0,6520	0,00083	6,9	0,27
7,000	0,0085	60,0	0,4	0,6502	0,00083	6,9	0,27
8,001	0,009	60,0	0,4	0,6482	0,00082	7,0	0,27
9,011	0,0095	60,0	0,4	0,6463	0,00082	7,0	0,27
10,000	0,01	60,0	0,4	0,6446	0,00082	7,0	0,27
0,002	0,005	135,0	0,78	0,6053	0,0008	0,0	0,2
0,200	0,0051	135,0	0,78	0,6237	0,00081	0,5	0,21
0,040	0,005	135,0	0,78	0,6395	0,00082	2,0	0,22
0,060	0,005	135,0	0,78	0,6515	0,00083	3,6	0,24
0,080	0,005	135,0	0,78	0,6625	0,00083	6,1	0,26
0,100	0,0051	135,0	0,78	0,6705	0,00084	8,3	0,28
0,120	0,0051	135,0	0,78	0,6751	0,00084	10,3	0,3
0,140	0,0051	135,0	0,78	0,6782	0,00084	11,6	0,32
0,160	0,0051	135,0	0,78	0,6811	0,00084	12,6	0,33
0,180	0,0051	135,0	0,78	0,6827	0,00084	12,6	0,33
0,200	0,0051	135,0	0,78	0,6833	0,00084	13,5	0,34
1,066	0,0055	135,0	0,7	0,6815	0,00084	14,1	0,34
2,012	0,006	135,0	0,78	0,6787	0,00084	15,2	0,35
3,024	0,0065	135,0	0,78	0,6747	0,00084	15,4	0,35
4,011	0,007	135,0	0,78	0,6711	0,00084	15,6	0,36
5,000	0,0075	135,0	0,78	0,6676	0,00083	15,8	0,36
6,000	0,008	135,0	0,78	0,6635	0,00083	16,0	0,36
7,007	0,0085	135,0	0,78	0,6596	0,00083	16,3	0,36
8,006	0,009	135,0	0,78	0,6552	0,00083	16,5	0,37
9,000	0,0095	135,0	0,78	0,6510	0,00083	16,8	0,39
		135,0		0,6464		17,0	
10,000	0,01		0,78		0,00082		0,37

Tabela. 2. Charakterystyka wyjściowa i zwrotna dla tranzystora bipolarnego bez obciążenia wraz z wyliczonymi niepewnościami granicznymi.

$U_{CE}[V]$	$\Delta U_{CE}[V]$	$I_B [\mu A]$	$\Delta I_B [\mu A]$	$U_{BE}[V]$	$\Delta U_{BE} [V]$	$I_{C}[mA]$	$\Delta I_C [mA]$
3,017	0,007	0,2	0,1	0,5186	0,0007	0,0	0,2
3,018	0,007	10,1	0,15	0,6136	0,0008	1,1	0,2
3,014	0,007	20,2	0,2	0,6312	0,0008	2,2	0,2
3,013	0,007	30,3	0,25	0,6414	0,0008	3,4	0,2
3,012	0,007	40,3	0,3	0,6482	0,0008	4,5	0,2
3,011	0,007	50,3	0,35	0,6535	0,0008	5,6	0,2
3,009	0,007	60,5	0,4	0,6577	0,0008	6,8	0,3
3,008	0,007	70,3	0,45	0,6611	0,0008	7,9	0,3
3,007	0,007	80,1	0,5	0,6638	0,0008	9,1	0,3
3,006	0,007	90,0	0,55	0,6664	0,0008	10,2	0,3
3,006	0,007	100,0	0,6	0,6685	0,0008	11,4	0,3
3,005	0,007	110,5	0,65	0,6705	0,0008	12,6	0,3
3,003	0,007	120,0	0,7	0,6723	0,0008	13,7	0,3

3,003	0,007	130,0	0,75	0,6734	0,0008	15,0	0,4
3,002	0,007	140,8	0,8	0,6752	0,0008	16,2	0,4
3,001	0,007	150,1	0,85	0,6764	0,0008	17,3	0,4
3,000	0,007	160,0	0,9	0,6776	0,0008	18,5	0,4
8,004	0,009	0,4	0,1	0,5154	0,0007	0,0	0,2
8,004	0,009	9,9	0,15	0,6077	0,0008	1,1	0,2
8,004	0,009	20,5	0,20	0,6258	0,0008	2,3	0,2
8,005	0,009	30,3	0,25	0,6342	0,0008	3,4	0,2
8,005	0,009	40,2	0,3	0,6387	0,0008	4,6	0,3
8,005	0,009	50,5	0,35	0,6436	0,0008	5,9	0,3
8,005	0,009	60,2	0,4	0,6458	0,0008	7,1	0,3
7,999	0,009	69,6	0,45	0,6480	0,0008	8,2	0,3
7,999	0,009	80,4	0,5	0,6494	0,0008	9,5	0,3
7,999	0,009	89,4	0,55	0,6500	0,0008	10,7	0,3
7,999	0,009	100,3	0,6	0,6511	0,0008	12,1	0,3
7,998	0,009	110,7	0,65	0,6512	0,0008	13,4	0,3
7,997	0,009	120,4	0,7	0,6514	0,0008	14,7	0,3
7,997	0,009	129,7	0,75	0,6521	0,0008	16,0	0,4
7,996	0,009	140,5	0,8	0,6514	0,0008	17,4	0,4
7,995	0,009	150,6	0,85	0,6511	0,0008	18,8	0,4
		160,5		0,6507		20,1	
7,995	0,009		0,9		0,0008		0,4

Tabela. 3. Charakterystyka wejściowa i przejściowa (bramkowa) dla tranzystora bipolarnego wraz z wyliczonymi niepewnościami granicznymi.

$U_{DS}[V]$	$\Delta U_{DS}[V]$	$U_{GS}[V]$	$\Delta U_{GS}[V]$	$I_D[mA]$	$\Delta I_D [mA]$
4,006	0,007	-13,914	0,012	0,0	0,01
4,006	0,007	-3,531	0,007	0,1	0,01
4,006	0,007	-3,099	0,007	0,7	0,01
4,006	0,007	-2,706	0,007	1,5	0,02
4,006	0,007	-2,300	0,007	2,5	0,02
4,006	0,007	-1,901	0,006	3,7	0,02
4,006	0,007	-1,502	0,006	5,0	0,03
4,006	0,007	-1,100	0,006	6,4	0,04
4,006	0,007	-0,711	0,005	8,0	0,05
4,006	0,007	-0,343	0,005	9,6	0,06
4,006	0,007	0,015	0,005	11,1	0,07
9,003	0,01	-13,914	0,012	0,0	0,01
9,003	0,01	-3,604	0,007	0,1	0,01
9,003	0,01	-3,194	0,007	0,6	0,01
9,003	0,01	-2,804	0,006	1,3	0,02
9,003	0,01	-2,397	0,006	2,4	0,02
9,003	0,01	-2,004	0,006	3,6	0,03
9,003	0,01	-1,602	0,006	4,9	0,04
9,003	0,01	-1,213	0,006	6,3	0,04
9,003	0,01	-0,803	0,005	7,9	0,05
9,003	0,01	-0,410	0,005	9,3	0,06
9,003	0,01	0,000	0,005	11,6	0,07

Tabela. 4. Charakterystyka przejściowa (bramkowa) dla tranzystora polowego wraz z wyliczonymi niepewnościami granicznymi.

$U_{DS}[V]$	$\Delta U_{DS} [V]$	$U_{GS}[V]$	$\Delta U_{GS} [V]$	$I_D [mA]$	$\Delta I_D [mA]$
0,000	0,01	-3,600	0,007	0,0	0,01
0,402	0,01	-3,600	0,007	0,0	0,01
0,804	0,01	-3,600	0,007	0,0	0,01
1,206	0,01	-3,600	0,007	0,0	0,01
1,601	0,01	-3,600	0,007	0,0	0,01
2,004	0,01	-3,600	0,007	0,0	0,01
2,398	0,01	-3,600	0,007	0,0	0,01
2,804	0,01	-3,600	0,007	0,0	0,01
3,205	0,01	-3,600	0,007	0,0	0,01
3,602	0,01	-3,600	0,007	0,0	0,01
4,050	0,01	-3,600	0,007	0,0	0,01
5,005	0,01	-3,600	0,007	0,0	0,01
6,080	0,01	-3,600	0,007	0,0	0,01
7,004	0,01	-3,600	0,007	0,0	0,01
8,000	0,01	-3,600	0,007	0,0	0,01
9,066	0,01	-3,600	0,007	0,0	0,01
10,015	0,01	-3,600	0,00	0,0	0,01
0,000	0,005	-2,001	0,006	0,0	0,01
0,404	0,005	-2,001	0,006	1,1	0,02
0,811	0,005	-2,001	0,006	2,0	0,02
1,209	0,006	-2,001	0,006	2,5	0,02
1,610	0,006	-2,001	0,006	2,8	0,02
2,007	0,006	-2,001	0,006	3,1	0,03
2,404	0,006	-2,001	0,006	3,2	0,03
2,795	0,006	-2,001	0,006	3,2	0,03
3,205	0,007	-2,001	0,006	3,3	0,03
3,611	0,007	-2,001	0,006	3,7	0,03
4,001	0,007	-2,001	0,006	3,7	0,03
5,007	0,008	-2,001	0,006	3,5	0,03
6,000	0,008	-2,001	0,006	3,5	0,03
7,031	0,008	-2,001	0,006	3,5	0,03
8,037	0,009	-2,001	0,006	3,5	0,03
9,027	0,01	-2,001	0,006	3,5	0,03
10,020	0,01	-2,001	0,006	3,6	0,03
0,000	0,005	-0,507	0,005	0,0	0,01
0,405	0,005	-0,507	0,005	2,1	0,02
0,808	0,005	-0,507	0,005	4,0	0,03
1,198	0,006	-0,507	0,005	5,4	0,04
1,609	0,006	-0,507	0,005	6,5	0,04
2,008	0,006	-0,507	0,005	7,3	0,05
2,404	0,006	-0,507	0,005	7,9	0,05
2,804	0,006	-0,507	0,005	8,3	0,05
3,208	0,007	-0,507	0,005	8,5	0,05

3,601	0,007	-0,507	0,005	8,7	0,05
4,006	0,007	-0,507	0,005	8,9	0,05
5,003	0,008	-0,507	0,005	9,0	0,06
6,014	0,008	-0,507	0,005	9,1	0,06
7,016	0,009	-0,507	0,005	9,1	0,06
8,023	0,009	-0,507	0,005	9,1	0,06
9,033	0,01	-0,507	0,005	9,2	0,06
10,019	0,01	-0,507	0,005	9,2	0,06

Tabela. 5. Charakterystyka wyjściowa (drenowa) dla tranzystora polowego wraz z wyliczonymi niepewnościami granicznymi.

5. Wykresy charakterystyk dla obu tranzystorów

Wykres 1. $I_C = f(U_{CE}, I_B)$ przedstawiający charakterystykę wyjściową tranzystora bipolarnego dla stałych $I_B[\mu A]$ (wartości w legendzie).

Z powyższego wykresu widzimy, że gwałtowny wzrost I_C przypada dla małych wartości U_{CE} . Natomiast od pewnej wartości U_{CE} wzrost I_C jest stały, a więc charakterystyka prądowo-napięciowa staje się w przybliżeniu liniowa. Ponadto dla bardzo niewielkich natężeń wejściowych prąd wyjściowy jest równy 0.

Wykres 2. $U_{BE} = m(U_{CE}, I_B)$ przedstawiający charakterystykę zwrotną tranzystora bipolarnego dla stałych $I_B[\mu A]$ (wartości w legendzie).

Z powyższego wykresu widzimy, że gwałtowny wzrost U_{BE} przypada dla małych wartości U_{CE} . Natomiast od pewnej wartości U_{CE} obserwujemy niewielki liniowy spadek U_{BE}

Wykres 3. $U_{BE} = g(I_B, U_{CE})$ przedstawiający charakterystykę wejściową tranzystora bipolarnego dla stałych $U_{CE}[V]$ (wartości w legendzie).

Z powyższego wykresu widzimy, że stosunek U_{BE} do I_B przypomina zależność pierwiastkową, a więc dla małych wartości rośnie znacznie, a w dalszych przyrostach zaczyna przypominać funkcję liniową stałą.

Wykres 4. $I_C = k(I_B, U_{CE})$ przedstawiający charakterystykę przejściową tranzystora bipolarnego dla stałych $U_{CE}[V]$ (wartości w legendzie).

Z powyższego wykresu widzimy, że dla całego zakresu pomiarowego stosunek I_C do I_B jest w przybliżeniu liniowy.

Wykres 5. Przedstawiający rodzinę charakterystyk przejściowych tranzystora polowego dla stałych $U_{DS}[V]$ (wartości w legendzie).

Z powyższego wykresu widzimy, że stosunek I_D do U_{GS} przypomina funkcję wykładniczą, a więc dla większych wartości U_{GS} obserwujemy znacznie większy przyrost I_D .

Wykres 6. Przedstawiający rodzinę charakterystyk wyjściowych tranzystora polowego dla stałych $U_{GS}[V]$ (wartości w legendzie).

Z powyższego wykresu widzimy, że stosunek I_D do U_{DS} przypomina zależność pierwiastkową, a więc dla małych wartości rośnie znacznie, a w dalszych przyrostach zaczyna przypominać funkcję liniową stałą. Ponadto dla dużych wartości stałego parametru U_{GS} zauważamy, że prąd nie płynie.

6. Współczynniki hybrydowe dla tranzystora bipolarnego

Wykres. 7. Zestawienie charakterystyk prądowo-napięciowych tranzystora bipolarnego w układzie wspólnego emitera.

Na wykresach zakreślono fragmenty, które na potrzeby zadania zostają uznane za w przybliżeniu liniowe i posłużą do wyznaczenia współczynników hybrydowych tranzystora za pomocą metody najmniejszych kwadratów przy użyciu funkcji REGLINP (funkcjonalność programu LibreOffice Calc).

Wyliczone wartości współczynników hybrydowych:

$$h_{11e} = 141,68 \pm 27,21 \Omega$$

$$h_{12e} = 1,7 * 10^{-3} \pm 0,05 * 10^{-3}$$

$$h_{21e} = 125,79 \pm 0,91$$

$$h_{22e} = 5,29 * 10^{-5} \pm 0,69 * 10^{-5} S$$

Na podstawie powyższych współczynników obliczono parametry tranzystora bipolarnego:

- 1. Wzmocnienie prądowe = $h_{21e} = 125,79 \pm 0,91$
- 2. Wzmocnienie napięciowe = $\frac{1}{h_{12e}}$ = 1700 ± 50
- 3. Rezystancja wejściowa = h_{11e} = 141,68 \pm 27,21 Ω
- 4. Rezystancja wyjściowa = $\frac{1}{h_{220}}$ = 529000 ± 69000 Ω

7. Wnioski

Wykresy otrzymane na podstawie wyników pomiarów zgadzają się z wzorcowymi wykresami opisującymi wybrane charakterystyki prądowo-napięciowe tranzystorów bipolarnego oraz polowego, co pozwala przypuszczać, że eksperyment został przeprowadzony prawidłowo.

Również wyniki obliczeń, a więc wyznaczone współczynniki hybrydowe, a co za tym idzie parametry tranzystora bipolarnego nie tylko zawierają się w żądanych zakresach przedstawionych w instrukcji, ale także charakteryzują się niewielkimi (rzędu 0,01 lub 0,1) niepewnościami wynikającymi ze znacznego podobieństwa wybranych fragmentów wykresów do funkcji liniowych.

8. Literatura

- [1] R. Śledziewski, Elektronika dla Fizyków, PWN, Warszawa, 1984.
- [2] K. Bracławski. Antoni Siennicki, Elementy półprzewodnikowe, WSiP, Warszawa, 1986.
- [3] A. Rusek, Podstawy Elektroniki tom I i II, WSiP, Warszawa, 1984.
- [4] A. Sukiennicki, Alfred Zagórski, Fizyka ciała stałego, WNT, Warszawa, 1984.
- [5] J. Rydzewski, Pomiary oscyloskopowe, WNT, Warszawa, 1994.

9. Otrzymany dokument z wynikami

Ćwiczenie E03IS "Tranzystory" - wyniki pomiarów, zestaw Nr 4

Użyta aparatura:

- 1). Moduł doświadczalny T1-13
- 2). Zespół Źródeł Sterujących ZŹS-09
- 3). Zasilacz napięcia (w obwodzie koletora): bez numeru
- 4). Multimetr UT-804, nr inw. WD051.01-008-203 do pomiaru U_{CE} oraz U_{DS}
- 5). Multimetr UT-804, nr inw. WD054.01-003-203 do pomiaru UBE oraz UGS

- 6). Multimetr Protek 506, nr inw. WD043.01-013-203 do pomiaru I_{C}
- 7). Multimetr M-3800, nr inw. I3/2.03/2017-M/2 do pomiaru $I_{\textrm{B}}$ oraz $I_{\textrm{D}}$
- 8). Zasilacz Siglent SPD3303D, nr inw. WD051.02-006-203

5.1. Charakterystyka wyjściowa i zwrotna tranzystora bipolarnego bez obciążenia

U _{CE} [V]	Ιв [μΑ]	U _{BE} [V]	Ic [mA]	
0,000	0,2	0,4589	0,0	Zakresy pomiarowe
1,006	0,2	0,5181	0,0	- U _{CE} : 40 V DC
2,007	0,3	0,5182	0,0	- I _B : 200 μA DC
3,009	0,3	0,5183	0,0	- U _{BE} : 4 V DC
4,003	0,3	0,5183	0,0	- Ic: 200 mA DC
5,001	0,3	0,5184	0,0	10. 200 11 120
6,001	0,3	0,5185	0,0	
7,005	0,3	0,5185	0,0	
8,000	0,3	0,5185	0,0	
9,009	0,3	0,5186	0,0	
10,002	0,3	0,5187	0,0	
0,004	60,0	0,5766	0,0	
0,020	60,0	0,5918	0,2	
0,040	60,0	0,6087	0,6	
0,060	60,0	0,6255	1,4	
0,080	60,0	0,6358	2,2	
0,100	60,0	0,6459	3,4	
0,120	60,0	0,6516	4,4	
0,140	60,0	0,6563	5,3	
0,160	60,0	0,6590	5,9	
0,180	60,0	0,6601	6,2	
0,200	60,0	0,6607	6,4	
1,001	60,0	0,6605	6,6	
2,008	60,0 60,0	0,6591	6,7 6,8	
3,002 4,008	60,0	0,6575	6,8	
5,000	60,0	0,6560 0,6538	6,8	
6,016	60,0	0,6520	6,9	
7,000	60,0	0,6502	6,9	
8,001	60,0	0,6482	7,0	
9,011	60,0	0,6463	7,0	
10,000	60,0	0,6446	7,0	
0,002	135,0	0,6053	0,0	
0,200	135,0	0,6237	0,5	
0,040	135,0	0,6395	2,0	
0,060	135,0	0,6515	3,6	
0,080	135,0	0,6625	6,1	
0,100	135,0	0,6705	8,3	
0,120	135,0	0,6751	10,3	
0,140	135,0	0,6782	11,6	
0,160	135,0	0,6811	12,6	
0,180	135,0	0,6827	12,6	
0,200	135,0	0,6833	13,5	
1,066	135,0	0,6815	14,1	
2,012	135,0	0,6787	15,2	
3,024	135,0	0,6747	15,4	

4,011	135,0	0,6711	15,6
5,000	135,0	0,6676	15,8
6,000	135,0	0,6635	16,0
7,007	135,0	0,6596	16,3
8,006	135,0	0,6552	16,5
9,000	135,0	0,6510	16,8
10,000	135,0	0,6464	17,0

5.2. Charakterystyka wejściowa i przejściowa tranzystora bipolarnego

(zmiany U_{CE} wynikają z niestabilności źródła napięciowego)

(zmiany Uce wynik	rmiany U _{CE} wynikają z niestabilności źródła napięciowego)				
U _{CE} [V]	I _Β [μΑ]	U _{BE} [V]	I _C [mA]		
3,017	0,2	0,5186	0,0		
3,018	10,1	0,6136	1,1		
3,014	20,2	0,6312	2,2		
3,013	30,3	0,6414	3,4		
3,012	40,3	0,6482	4,5		
3,011	50,3	0,6535	5,6		
3,009	60,5	0,6577	6,8		
3,008	70,3	0,6611	7,9		
3,007	80,1	0,6638	9,1		
3,006	90,0	0,6664	10,2		
3,006	100,0	0,6685	11,4		
3,005	110,5	0,6705	12,6		
3,003	120,0	0,6723	13,7		
3,003	130,0	0,6734	15,0		
3,002	140,8	0,6752	16,2		
3,001	150,1	0,6764	17,3		
3,000	160,0	0,6776	18,5		
8,004	0,4	0,5154	0,0		
8,004	9,9	0,6077	1,1		
8,004	20,5	0,6258	2,3		
8,005	30,3	0,6342	3,4		
8,005	40,2	0,6387	4,6		
8,005	50,5	0,6436	5,9		
8,005	60,2	0,6458	7,1		
7,999	69,6	0,6480	8,2		
7,999	80,4	0,6494	9,5		
7,999	89,4	0,6500	10,7		
7,999	100,3	0,6511	12,1		
7,998	110,7	0,6512	13,4		
7,997	120,4	0,6514	14,7		
7,997	129,7	0,6521	16,0		
7,996	140,5	0,6514	17,4		
7,995	150,6	0,6511	18,8		
7,995	160,5	0,6507	20,1		

Zakresy pomiarowe

- Uce: 40 V DC

- I_B: 200 µA DC

- U_{BE}: 4 V DC

- Ic: 200 mA DC

5.3. Charakterystyka przejściowa (bramkowa) tranzystora polowego

U _{DS} [V]	U _{GS} [V]	I _D [mA]
4,006	-13,914	0.0

Zakresy pomiarowe

1		
4,006	-3,531	0,1
4,006	-3,099	0,7
4,006	-2,706	1,5
4,006	-2,300	2,5
4,006	-1,901	3,7
4,006	-1,502	5,0
4,006	-1,100	6,4
4,006	-0,711	8,0
4,006	-0,343	9,6
4,006	0,015	11,1
9,003	-13,914	0,0
9,003	-3,604	0,1
9,003	-3,194	0,6
9,003	-2,804	1,3
9,003	-2,397	2,4
9,003	-2,004	3,6
9,003	-1,602	4,9
9,003	-1,213	6,3
9,003	-0,803	7,9
9,003	-0,410	9,3
9,003	0,000	11,6

5.4. Charakterystyka wyjściowa (drenowa) tranzystora polowego

U _{DS} [V]	U _{GS} [V]	I _□ [mA]
0.000	2 000	0.0
0,000	-3,600	0,0
0,402	-3,600	0,0
0,804	-3,600	0,0
1,206	-3,600	0,0
1,601	-3,600	0,0
2,004	-3,600	0,0
2,398	-3,600	0,0
2,804	-3,600	0,0
3,205	-3,600	0,0
3,602	-3,600	0,0
4,050	-3,600	0,0
5,005	-3,600	0,0
6,080	-3,600	0,0
7,004	-3,600	0,0
8,000	-3,600	0,0
9,066	-3,600	0,0
10,015	-3,600	0,0
0,000	-2,001	0,0
0,404	-2,001	1,1
0,811	-2,001	2,0
1,209	-2,001	2,5
1,610	-2,001	2,8
2,007	-2,001	3,1
2,404	-2,001	3,2
2,795	-2,001	3,2
3,205	-2,001	3,3

Zakresy pomiarowe

- U_{DS}: 40 V DC - U_{GS}: 40 V DC - I_D: 200 mA DC

- U_{DS}: 40 V DC - U_{GS}: 40 V DC - I_D: 200 mA DC

3,611	-2,001	3,7
4,001	-2,001	3,7
5,007	-2,001	3,5
6,000	-2,001	3,5
7,031	-2,001	3,5
8,037	-2,001	3,5
9,027	-2,001	3,5
10,020	-2,001	3,6
0,000	-0,507	0,0
0,405	-0,507	2,1
0,808	-0,507	4,0
1,198	-0,507	5,4
1,609	-0,507	6,5
2,008	-0,507	7,3
2,404	-0,507	7,9
2,804	-0,507	8,3
3,208	-0,507	8,5
3,601	-0,507	8,7
4,006	-0,507	8,9
5,003	-0,507	9,0
6,014	-0,507	9,1
7,016	-0,507	9,1
8,023	-0,507	9,1
9,033	-0,507	9,2
10,019	-0,507	9,2