Линейная алгебра. Лекция 8. Линейные пространства и линейные операторы

Н. Л. Поляков

Высшая Школа Экономики, Факультет экономических наук, Москва

2022 г.

Определение и примеры

Понятие подпространства

Линейная зависимость и независимость

Базис и размерность линейного пространства

Переход к новому базису

Линейные отображения и операторы операторы

Определение и примеры

Образ и ядро линейного отображения

Матрица линейного отображения (оператора)

Координаты образа вектора при линейном отображении с

матрицей A

Преобразование матрицы линейного оператора при переходе к новому базису

Литература

Приложение 1. Дополнительные сведения о линейных подпространствах и линейных операторах

Дополнения о подпространствах

Операции над линейными отображениями и их матрицами

Приложение 2. Доказательства некоторых теорем

Теорема о базисе

Теорема о сумме размерностей подпространств
Теорема об образе и ядре линейного отображения
Теорема о композиции линейных операторов и обратном
линейном операторе

Теорема о преобразовании координат вектора при линейном отображении

Теорема о преобразовании матрицы линейного оператора при переходе к новому базису

Понятие линейного пространства возникло как результат осмысления того факта, что векторный и матричный анализ может быть применен к объектам весьма разнообразной природы (пример: координатизация геометрической плоскости).

Понятие линейного пространства возникло как результат осмысления того факта, что векторный и матричный анализ может быть применен к объектам весьма разнообразной природы (пример: координатизация геометрической плоскости). Пусть P есть некоторое поле (действительных чисел, комплексных чисел etc.).

Понятие линейного пространства возникло как результат осмысления того факта, что векторный и матричный анализ может быть применен к объектам весьма разнообразной природы (пример: координатизация геометрической плоскости). Пусть P есть некоторое поле (действительных чисел, комплексных чисел etc.). **Линейным пространством** (над полем P) называется непустое множество M (элементы которого называются векторами) с операциями сложения "+" и умножения " \cdot " на элементы поля P, которое удовлетворяет следующим аксиомам:

1. $({m a}+{m b})+{m c}={m a}+({m b}+{m c})$ для всех векторов ${m a},{m b},{m c}\in M$;

- 1. $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})$ для всех векторов $\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\in M$;
- 2. ${m a}+{m b}={m b}+{m a}$ для всех векторов ${m a},{m b}\in M$;

- 1. $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})$ для всех векторов $\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\in M$;
- 2. ${m a}+{m b}={m b}+{m a}$ для всех векторов ${m a},{m b}\in M$;
- 3. Существует такой вектор $oldsymbol{0}$, что $oldsymbol{a}+oldsymbol{0}=oldsymbol{a}$ для каждого вектора $oldsymbol{a}\in M$;

- 1. $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})$ для всех векторов $\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\in M$;
- 2. ${m a}+{m b}={m b}+{m a}$ для всех векторов ${m a},{m b}\in M$;
- 3. Существует такой вектор $oldsymbol{0}$, что $oldsymbol{a}+oldsymbol{0}=oldsymbol{a}$ для каждого вектора $oldsymbol{a}\in M$;
- 4. Для каждого вектора ${m a}\in M$ существует такой вектор $(-{m a})\in M$, что ${m a}+(-{m a})={m 0}.$

- 1. $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})$ для всех векторов $\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\in M$;
- 2. ${m a}+{m b}={m b}+{m a}$ для всех векторов ${m a},{m b}\in M$;
- 3. Существует такой вектор $oldsymbol{0}$, что $oldsymbol{a}+oldsymbol{0}=oldsymbol{a}$ для каждого вектора $oldsymbol{a}\in M$;
- 4. Для каждого вектора ${m a}\in M$ существует такой вектор $(-{m a})\in M$, что ${m a}+(-{m a})={m 0}.$
- 5. $1 \cdot \boldsymbol{a} = \boldsymbol{a}$ для каждого вектора $\boldsymbol{a} \in M$;

- 1. $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})$ для всех векторов $\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\in M$;
- 2. ${m a}+{m b}={m b}+{m a}$ для всех векторов ${m a},{m b}\in M$;
- 3. Существует такой вектор $oldsymbol{0}$, что $oldsymbol{a}+oldsymbol{0}=oldsymbol{a}$ для каждого вектора $oldsymbol{a}\in M;$
- 4. Для каждого вектора ${m a}\in M$ существует такой вектор $(-{m a})\in M$, что ${m a}+(-{m a})={m 0}.$
- 5. $1 \cdot \boldsymbol{a} = \boldsymbol{a}$ для каждого вектора $\boldsymbol{a} \in M$;
- 6. $\lambda(\mu {m a})=(\lambda\mu){m a}$ для каждого вектора ${m a}\in M$ и каждых элементов $\lambda,\mu\in P$;

- 1. $({m a}+{m b})+{m c}={m a}+({m b}+{m c})$ для всех векторов ${m a},{m b},{m c}\in M$;
- 2. ${m a}+{m b}={m b}+{m a}$ для всех векторов ${m a},{m b}\in M$;
- 3. Существует такой вектор $oldsymbol{0}$, что $oldsymbol{a}+oldsymbol{0}=oldsymbol{a}$ для каждого вектора $oldsymbol{a}\in M;$
- 4. Для каждого вектора ${m a}\in M$ существует такой вектор $(-{m a})\in M$, что ${m a}+(-{m a})={m 0}.$
- 5. $1 \cdot \boldsymbol{a} = \boldsymbol{a}$ для каждого вектора $\boldsymbol{a} \in M$;
- 6. $\lambda(\mu a)=(\lambda \mu)a$ для каждого вектора $a\in M$ и каждых элементов $\lambda,\mu\in P;$
- 7. $(\lambda + \mu) a = \lambda a + \mu a$ для каждого вектора $a \in M$ и каждых элементов $\lambda, \mu \in P$;

- 1. $(\boldsymbol{a}+\boldsymbol{b})+\boldsymbol{c}=\boldsymbol{a}+(\boldsymbol{b}+\boldsymbol{c})$ для всех векторов $\boldsymbol{a},\boldsymbol{b},\boldsymbol{c}\in M$;
- 2. $\boldsymbol{a}+\boldsymbol{b}=\boldsymbol{b}+\boldsymbol{a}$ для всех векторов $\boldsymbol{a},\boldsymbol{b}\in M$;
- 3. Существует такой вектор $oldsymbol{0}$, что $oldsymbol{a}+oldsymbol{0}=oldsymbol{a}$ для каждого вектора $oldsymbol{a}\in M;$
- 4. Для каждого вектора ${m a}\in M$ существует такой вектор $(-{m a})\in M$, что ${m a}+(-{m a})={m 0}.$
- 5. $1 \cdot a = a$ для каждого вектора $a \in M$;
- 6. $\lambda(\mu a)=(\lambda \mu)a$ для каждого вектора $a\in M$ и каждых элементов $\lambda,\mu\in P;$
- 7. $(\lambda + \mu)a = \lambda a + \mu a$ для каждого вектора $a \in M$ и каждых элементов $\lambda, \mu \in P$;
- 8. $\lambda(a+b)=\lambda a+\lambda b$ для любых векторов $a,b\in M$ и каждого элемента $\lambda\in P$.

ightharpoonup Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.

- ightharpoonup Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- ightharpoonup Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число

- Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число (можно рассмотреть два случая: умножение допускается только на действительные числа или и на комплексные тоже).

- Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число (можно рассмотреть два случая: умножение допускается только на действительные числа или и на комплексные тоже).
- Множество всех решений системы линейных однородных уравнений (с операциями покоординатного сложения и умножения на число).

- Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число (можно рассмотреть два случая: умножение допускается только на действительные числа или и на комплексные тоже).
- Множество всех решений системы линейных однородных уравнений (с операциями покоординатного сложения и умножения на число).
- Множество геометрических векторов с операциями сложения по правилу параллелограмма и умножения на число.

- Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число (можно рассмотреть два случая: умножение допускается только на действительные числа или и на комплексные тоже).
- Множество всех решений системы линейных однородных уравнений (с операциями покоординатного сложения и умножения на число).
- Множество геометрических векторов с операциями сложения по правилу параллелограмма и умножения на число.
- Множество многочленов степени не выше n с естественными операциями сложения и умножения на число.

- Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число (можно рассмотреть два случая: умножение допускается только на действительные числа или и на комплексные тоже).
- Множество всех решений системы линейных однородных уравнений (с операциями покоординатного сложения и умножения на число).
- Множество геометрических векторов с операциями сложения по правилу параллелограмма и умножения на число.
- Множество многочленов степени не выше n с естественными операциями сложения и умножения на число.
- Множество всех определенных на отрезке [0,1] функций с операциями поточечного сложения и умножения на число.

- Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число (можно рассмотреть два случая: умножение допускается только на действительные числа или и на комплексные тоже).
- Множество всех решений системы линейных однородных уравнений (с операциями покоординатного сложения и умножения на число).
- Множество геометрических векторов с операциями сложения по правилу параллелограмма и умножения на число.
- Множество многочленов степени не выше n с естественными операциями сложения и умножения на число.
- ▶ Множество всех определенных на отрезке [0,1] функций с операциями поточечного сложения и умножения на число. Здесь можно также ограничиться только каким-либо классом функций, замкнутым относительно линейных операций: классом непрерывных, дифференцируемых, интегрируемых функций, и т.п.

- Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число (можно рассмотреть два случая: умножение допускается только на действительные числа или и на комплексные тоже).
- Множество всех решений системы линейных однородных уравнений (с операциями покоординатного сложения и умножения на число).
- Множество геометрических векторов с операциями сложения по правилу параллелограмма и умножения на число.
- Множество многочленов степени не выше n с естественными операциями сложения и умножения на число.
- Множество всех определенных на отрезке [0,1] функций с операциями поточечного сложения и умножения на число. Здесь можно также ограничиться только каким-либо классом функций, замкнутым относительно линейных операций: классом непрерывных, дифференцируемых, интегрируемых функций, и т.п.
- Множество всех матриц размера $m \times n$ с введенными ранее операциями сложения и умножения на число.

- Множество \mathbb{R}^n с операциями покоординатного сложения и умножения на число.
- Множество \mathbb{C}^n с операциями покоординатного сложения и умножения на число (можно рассмотреть два случая: умножение допускается только на действительные числа или и на комплексные тоже).
- Множество всех решений системы линейных однородных уравнений (с операциями покоординатного сложения и умножения на число).
- Множество геометрических векторов с операциями сложения по правилу параллелограмма и умножения на число.
- Множество многочленов степени не выше n с естественными операциями сложения и умножения на число.
- Множество всех определенных на отрезке [0,1] функций с операциями поточечного сложения и умножения на число. Здесь можно также ограничиться только каким-либо классом функций, замкнутым относительно линейных операций: классом непрерывных, дифференцируемых, интегрируемых функций, и т.п.
- Множество всех матриц размера $m \times n$ с введенными ранее операциями сложения и умножения на число.
- Etc.

Определение

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Линейное пространство $\mathcal{L}_1=(M_1;+,\cdot)$ над полем P есть подпространство линейного пространства $\mathcal{L}_2=(M_2;+,\cdot)$ над полем P тогда и только тогда, когда

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Линейное пространство $\mathcal{L}_1=(M_1;+,\cdot)$ над полем P есть подпространство линейного пространства $\mathcal{L}_2=(M_2;+,\cdot)$ над полем P тогда и только тогда, когда $M_1\subseteq M_2$ и

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Линейное пространство $\mathcal{L}_1=(M_1;+,\cdot)$ над полем P есть подпространство линейного пространства $\mathcal{L}_2=(M_2;+,\cdot)$ над полем P тогда и только тогда, когда $M_1\subseteq M_2$ и множество M_1 замкнуто относительно операций + и \cdot ,

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Линейное пространство $\mathcal{L}_1=(M_1;+,\cdot)$ над полем P есть подпространство линейного пространства $\mathcal{L}_2=(M_2;+,\cdot)$ над полем P тогда и только тогда, когда $M_1\subseteq M_2$ и множество M_1 замкнуто относительно операций + и \cdot , т.е. для всех векторов ${\bf a},{\bf b}\in M_2$ и элемента $\lambda\in P$

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Линейное пространство $\mathcal{L}_1=(M_1;+,\cdot)$ над полем P есть подпространство линейного пространства $\mathcal{L}_2=(M_2;+,\cdot)$ над полем P тогда и только тогда, когда $M_1\subseteq M_2$ и множество M_1 замкнуто относительно операций + и \cdot , т.е. для всех векторов $a,b\in M_2$ и элемента $\lambda\in P$

1.
$$\boldsymbol{a}, \boldsymbol{b} \in M_1 \Rightarrow \boldsymbol{a} + \boldsymbol{b} \in M_1$$
,

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Линейное пространство $\mathcal{L}_1=(M_1;+,\cdot)$ над полем P есть подпространство линейного пространства $\mathcal{L}_2=(M_2;+,\cdot)$ над полем P тогда и только тогда, когда $M_1\subseteq M_2$ и множество M_1 замкнуто относительно операций + и \cdot , т.е. для всех векторов $a,b\in M_2$ и элемента $\lambda\in P$

- 1. $\boldsymbol{a}, \boldsymbol{b} \in M_1 \Rightarrow \boldsymbol{a} + \boldsymbol{b} \in M_1$,
- 2. $\boldsymbol{a} \in M_1 \Rightarrow \lambda \boldsymbol{a} \in M_1$.

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Линейное пространство $\mathcal{L}_1=(M_1;+,\cdot)$ над полем P есть подпространство линейного пространства $\mathcal{L}_2=(M_2;+,\cdot)$ над полем P тогда и только тогда, когда $M_1\subseteq M_2$ и множество M_1 замкнуто относительно операций + и \cdot , т.е. для всех векторов $a,b\in M_2$ и элемента $\lambda\in P$

- 1. $\boldsymbol{a}, \boldsymbol{b} \in M_1 \Rightarrow \boldsymbol{a} + \boldsymbol{b} \in M_1$,
- 2. $\boldsymbol{a} \in M_1 \Rightarrow \lambda \boldsymbol{a} \in M_1$.

В этом случае говорят, что множество M_1 образует линейное подпространство пространства \mathcal{L}_2 .

Подпространства линейного пространства

Определение

Подпространством линейного пространства $\mathcal{L} = (M;+,\cdot)$ над полем P называется подмножество множества M с операциями сложения и умножения на элементы поля P (определенными для всех элементов пространства \mathcal{L}), если оно само образует линейное пространство.

Утверждение

Линейное пространство $\mathcal{L}_1=(M_1;+,\cdot)$ над полем P есть подпространство линейного пространства $\mathcal{L}_2=(M_2;+,\cdot)$ над полем P тогда и только тогда, когда $M_1\subseteq M_2$ и множество M_1 замкнуто относительно операций + и \cdot , т.е. для всех векторов ${m a},{m b}\in M_2$ и элемента $\lambda\in P$

- 1. $\boldsymbol{a}, \boldsymbol{b} \in M_1 \Rightarrow \boldsymbol{a} + \boldsymbol{b} \in M_1$,
- 2. $\boldsymbol{a} \in M_1 \Rightarrow \lambda \boldsymbol{a} \in M_1$.

В этом случае говорят, что множество M_1 образует линейное подпространство пространства \mathcal{L}_2 .

Доказательство: упражнение (надо проверить, что в условиях утверждения для множества M_1 с операциями сложения и умножения на элементы поля P выполнены все восемь аксиом линейного пространства).

1. Множество всех векторов x пространства \mathbb{R}^n , удовлетворяющих условию $Ax=\mathbf{0}$, где A есть произвольная матрица (т.е. множество всех решений системы однородных линейных уравнений), образует подпространство пространства \mathbb{R}^n .

- 1. Множество всех векторов x пространства \mathbb{R}^n , удовлетворяющих условию $Ax=\mathbf{0}$, где A есть произвольная матрица (т.е. множество всех решений системы однородных линейных уравнений), образует подпространство пространства \mathbb{R}^n .
- 2. Множество всех дважды дифференцируемых на $\mathbb R$ функций f, удовлетворяющих условию

$$f''(x) + af'(x) + bf(x) = 0$$

(где a,b — фиксированные числа) образует подпространство пространства дважды дифференцируемых числовых функций одной переменной (вместо указанного можно взять любое другое линейное дифференциальное уравнение).

- 1. Множество всех векторов x пространства \mathbb{R}^n , удовлетворяющих условию $Ax=\mathbf{0}$, где A есть произвольная матрица (т.е. множество всех решений системы однородных линейных уравнений), образует подпространство пространства \mathbb{R}^n .
- 2. Множество всех дважды дифференцируемых на $\mathbb R$ функций f, удовлетворяющих условию

$$f''(x) + af'(x) + bf(x) = 0$$

(где a,b – фиксированные числа) образует подпространство пространства дважды дифференцируемых числовых функций одной переменной (вместо указанного можно взять любое другое линейное дифференциальное уравнение).

3. Множество всех многочленов p степени не выше n, удовлетворяющих условию

$$p(a) = 0,$$

где a есть некоторое число, образует подпространство пространства всех многочленов степени не выше n.

- 1. Множество всех векторов x пространства \mathbb{R}^n , удовлетворяющих условию Ax=0, где A есть произвольная матрица (т.е. множество всех решений системы однородных линейных уравнений), образует подпространство пространства \mathbb{R}^n .
- 2. Множество всех дважды дифференцируемых на $\mathbb R$ функций f, удовлетворяющих условию

$$f''(x) + af'(x) + bf(x) = 0$$

(где a,b — фиксированные числа) образует подпространство пространства дважды дифференцируемых числовых функций одной переменной (вместо указанного можно взять любое другое линейное дифференциальное уравнение).

3. Множество всех многочленов p степени не выше n, удовлетворяющих условию

$$p(a) = 0,$$

где a есть некоторое число, образует подпространство пространства всех многочленов степени не выше n.

4. Множество всех диагональных (симметричных, антисимметричных, верхнетреугольных, нижнетреугольных) матриц $n \times n$ образует подпространство пространства матриц $n \times n$.

- 1. Множество всех векторов x пространства \mathbb{R}^n , удовлетворяющих условию $Ax=\mathbf{0}$, где A есть произвольная матрица (т.е. множество всех решений системы однородных линейных уравнений), образует подпространство пространства \mathbb{R}^n .
- 2. Множество всех дважды дифференцируемых на $\mathbb R$ функций f, удовлетворяющих условию

$$f''(x) + af'(x) + bf(x) = 0$$

(где a,b — фиксированные числа) образует подпространство пространства дважды дифференцируемых числовых функций одной переменной (вместо указанного можно взять любое другое линейное дифференциальное уравнение).

3. Множество всех многочленов p степени не выше n, удовлетворяющих условию

$$p(a) = 0,$$

где a есть некоторое число, образует подпространство пространства всех многочленов степени не выше n.

4. Множество всех диагональных (симметричных, антисимметричных, верхнетреугольных, нижнетреугольных) матриц $n \times n$ образует подпространство пространства матриц $n \times n$. Замечание. Матрица A симметрична, если $A^T = A$, и антисимметрична, если $A^T = -A$.

Определение

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P. Непустое множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) называется линейно независимым, если для любых $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и любых $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$ выполнено:

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_k \mathbf{u}_k = \mathbf{0} \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_k = 0.$$

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P. Непустое множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) называется линейно независимым, если для любых $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и любых $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$ выполнено:

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_k \mathbf{u}_k = \mathbf{0} \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_k = 0.$$

Если множество $U\subseteq M$ (или семейство $U=(u_{\alpha})_{\alpha\in I}$ элементов множества M) не является линейно независимым, оно называется линейно зависимым.

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P. Непустое множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) называется линейно независимым, если для любых $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и любых $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$ выполнено:

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_k \mathbf{u}_k = \mathbf{0} \Rightarrow \lambda_1 = \lambda_2 = \ldots = \lambda_k = 0.$$

Если множество $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) не является линейно независимым, оно называется линейно зависимым.

Таким образом, множество или семейство $U\subseteq M$ линейно зависимо, если существуют такие векторы $u_1,u_2,\ldots,u_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, что

$$\lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k = \boldsymbol{0}$$

и среди элементов $\lambda_1, \lambda_2, \dots, \lambda_k$ по крайней мере один отличен от нуля.

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P, множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) и вектор $\boldsymbol{u}\in M$. Вектор \boldsymbol{u} линейно выражается через множество (семейство) U, если существуют векторы $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, для которых выполнено:

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k.$$

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P, множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) и вектор $\boldsymbol{u}\in M$. Вектор \boldsymbol{u} линейно выражается через множество (семейство) U, если существуют векторы $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, для которых выполнено:

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k.$$

Упражнения

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P, множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) и вектор $\boldsymbol{u}\in M$. Вектор \boldsymbol{u} линейно выражается через множество (семейство) U, если существуют векторы $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, для которых выполнено:

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k.$$

Упражнения

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P, множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) и вектор $\boldsymbol{u}\in M$. Вектор \boldsymbol{u} линейно выражается через множество (семейство) U, если существуют векторы $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, для которых выполнено:

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k.$$

Упражнения

Докажите, что

lacktriangle Если $U\subseteq V$ и множество U линейно зависимо, то и множество V линейно зависимо.

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P, множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) и вектор $\boldsymbol{u}\in M$. Вектор \boldsymbol{u} линейно выражается через множество (семейство) U, если существуют векторы $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, для которых выполнено:

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k.$$

Упражнения

- lacktriangle Если $U\subseteq V$ и множество U линейно зависимо, то и множество V линейно зависимо.
- lacktriangle Если $U\subseteq V$ и множество V линейно независимо, то и множество U линейно независимо.

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P, множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) и вектор $\boldsymbol{u}\in M$. Вектор \boldsymbol{u} линейно выражается через множество (семейство) U, если существуют векторы $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, для которых выполнено:

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k.$$

Упражнения

- lacktriangle Если $U\subseteq V$ и множество U линейно зависимо, то и множество V линейно зависимо.
- lacktriangle Если $U\subseteq V$ и множество V линейно независимо, то и множество U линейно независимо.
- Множество {0} линейно зависимо.

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P, множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) и вектор $\boldsymbol{u}\in M$. Вектор \boldsymbol{u} линейно выражается через множество (семейство) U, если существуют векторы $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, для которых выполнено:

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k.$$

Упражнения

- lacktriangle Если $U\subseteq V$ и множество U линейно зависимо, то и множество V линейно зависимо.
- lacktriangle Если $U\subseteq V$ и множество V линейно независимо, то и множество U линейно независимо.
- Множество {0} линейно зависимо.
- ▶ Множество U линейно зависимо тогда и только тогда, когда существует вектор $u \in U$, который линейно выражается через множество $U \setminus \{u\}$.

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P, множество векторов $U\subseteq M$ (или семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ элементов множества M) и вектор $\boldsymbol{u}\in M$. Вектор \boldsymbol{u} линейно выражается через множество (семейство) U, если существуют векторы $\boldsymbol{u}_1,\boldsymbol{u}_2,\ldots,\boldsymbol{u}_k\in U$ и элементы $\lambda_1,\lambda_2,\ldots,\lambda_k\in P$, для которых выполнено:

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_k \boldsymbol{u}_k.$$

Упражнения

- lacktriangle Если $U\subseteq V$ и множество U линейно зависимо, то и множество V линейно зависимо.
- lacktriangle Если $U\subseteq V$ и множество V линейно независимо, то и множество U линейно независимо.
- ▶ Множество {0} линейно зависимо.
- ▶ Множество U линейно зависимо тогда и только тогда, когда существует вектор $u \in U$, который линейно выражается через множество $U \setminus \{u\}$.
- lacktriangle Если множество U линейно независимо, а множество $U \cup \{u\}$ линейно зависимо, то u линейно выражается через U.

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ векторов из M, для которого выполнены условия:

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=(\boldsymbol{u}_{\alpha})_{\alpha\in I}$ векторов из M, для которого выполнены условия:

1. семейство U линейно независимо;

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=({m u}_{lpha})_{lpha\in I}$ векторов из M, для которого выполнены условия:

- 1. семейство U линейно независимо;
- 2. каждый вектор $oldsymbol{u} \in M$ линейно выражается через U.

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=({m u}_{lpha})_{lpha\in I}$ векторов из M, для которого выполнены условия:

- 1. семейство U линейно независимо;
- 2. каждый вектор $oldsymbol{u} \in M$ линейно выражается через U.

Теорема

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=({m u}_{lpha})_{lpha\in I}$ векторов из M, для которого выполнены условия:

- 1. семейство U линейно независимо;
- 2. каждый вектор $oldsymbol{u} \in M$ линейно выражается через U.

Теорема

Если линейное пространство $\mathcal L$ содержит хотя бы один ненулевой элемент, то оно имеет базис.

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=({m u}_{lpha})_{lpha\in I}$ векторов из M, для которого выполнены условия:

- 1. семейство U линейно независимо;
- 2. каждый вектор $oldsymbol{u} \in M$ линейно выражается через U.

Теорема

Если линейное пространство $\mathcal L$ содержит хотя бы один ненулевой элемент, то оно имеет базис.

Замечание

Эта теорема требует некоторых специального предположения о структуре универсума всех множеств (аксиомы выбора).

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=({m u}_{lpha})_{lpha\in I}$ векторов из M, для которого выполнены условия:

- 1. семейство U линейно независимо;
- 2. каждый вектор $oldsymbol{u} \in M$ линейно выражается через U.

Теорема

Если линейное пространство $\mathcal L$ содержит хотя бы один ненулевой элемент, то оно имеет базис.

Замечание

Эта теорема требует некоторых специального предположения о структуре универсума всех множеств (аксиомы выбора).

Примеры.

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=({m u}_{lpha})_{lpha\in I}$ векторов из M, для которого выполнены условия:

- 1. семейство U линейно независимо;
- 2. каждый вектор $oldsymbol{u} \in M$ линейно выражается через U.

Теорема

Если линейное пространство $\mathcal L$ содержит хотя бы один ненулевой элемент, то оно имеет базис.

Замечание

Эта теорема требует некоторых специального предположения о структуре универсума всех множеств (аксиомы выбора).

Примеры.

ightharpoonup Упорядоченный набор $(1,x,x^2)$ есть базис линейного пространства многочленов степени не выше 2.

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=({m u}_{lpha})_{lpha\in I}$ векторов из M, для которого выполнены условия:

- 1. семейство U линейно независимо;
- 2. каждый вектор $oldsymbol{u} \in M$ линейно выражается через U.

Теорема

Если линейное пространство $\mathcal L$ содержит хотя бы один ненулевой элемент, то оно имеет базис.

Замечание

Эта теорема требует некоторых специального предположения о структуре универсума всех множеств (аксиомы выбора).

Примеры.

- Упорядоченный набор $(1,x,x^2)$ есть базис линейного пространства многочленов степени не выше 2.
- Упорядоченный набор $(1, x, x^2, \ldots)$ есть (бесконечный) базис линейного пространства многочленов (произвольной степени).

Базисом линейного пространства $\mathcal{L}=(M;+,\cdot)$ над полем P называется непустое упорядоченное семейство $U=({m u}_{lpha})_{lpha\in I}$ векторов из M, для которого выполнены условия:

- 1. семейство U линейно независимо;
- 2. каждый вектор $oldsymbol{u} \in M$ линейно выражается через U.

Теорема

Если линейное пространство $\mathcal L$ содержит хотя бы один ненулевой элемент, то оно имеет базис.

Замечание

Эта теорема требует некоторых специального предположения о структуре универсума всех множеств (аксиомы выбора).

Примеры.

- Упорядоченный набор $(1, x, x^2)$ есть базис линейного пространства многочленов степени не выше 2.
- Упорядоченный набор $(1, x, x^2, \ldots)$ есть (бесконечный) базис линейного пространства многочленов (произвольной степени).
- ightharpoonup Линейное пространство \mathbb{R}^n имеет базис $(1,0,\dots,0),\,(0,1,\dots,0),\,\dots,$ $(0,0,\dots,1).$ Этот базис называется каноническим.

Линейное пространство ${\cal L}$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе, расширенная версия)

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе, расширенная версия)

Пусть $\mathcal L$ есть конечномерное ненулевое пространство.

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе, расширенная версия)

Пусть $\mathcal L$ есть конечномерное ненулевое пространство. Тогда

1. все его базисы конечны и имеют одну и ту же мощность (количество элементов),

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе, расширенная версия)

Пусть $\mathcal L$ есть конечномерное ненулевое пространство. Тогда

- 1. все его базисы конечны и имеют одну и ту же мощность (количество элементов),
- 2. если линейное пространство $\mathcal L$ имеет базис из n элементов, то любой линейно независимый набор из n элементов линеного пространства $\mathcal L$ есть его базис.

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе, расширенная версия)

Пусть $\mathcal L$ есть конечномерное ненулевое пространство. Тогда

- 1. все его базисы конечны и имеют одну и ту же мощность (количество элементов),
- 2. если линейное пространство $\mathcal L$ имеет базис из n элементов, то любой линейно независимый набор из n элементов линеного пространства $\mathcal L$ есть его базис,
- 3. если x_1, x_2, \ldots, x_n есть базис пространства \mathcal{L} , то любой вектор u из \mathcal{L} однозначно представляется в виде линейной комбинации $u = \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n$ векторов базиса.

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе, расширенная версия)

Пусть $\mathcal L$ есть конечномерное ненулевое пространство. Тогда

- 1. все его базисы конечны и имеют одну и ту же мощность (количество элементов),
- 2. если линейное пространство $\mathcal L$ имеет базис из n элементов, то любой линейно независимый набор из n элементов линеного пространства $\mathcal L$ есть его базис,
- 3. если x_1, x_2, \ldots, x_n есть базис пространства \mathcal{L} , то любой вектор u из \mathcal{L} однозначно представляется в виде линейной комбинации $u = \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n$ векторов базиса.

Свойство 1. позволяет дать следующее определение.

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе, расширенная версия)

Пусть $\mathcal L$ есть конечномерное ненулевое пространство. Тогда

- 1. все его базисы конечны и имеют одну и ту же мощность (количество элементов),
- 2. если линейное пространство $\mathcal L$ имеет базис из n элементов, то любой линейно независимый набор из n элементов линеного пространства $\mathcal L$ есть его базис,
- 3. если x_1, x_2, \ldots, x_n есть базис пространства \mathcal{L} , то любой вектор u из \mathcal{L} однозначно представляется в виде линейной комбинации $u = \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n$ векторов базиса.

Свойство 1. позволяет дать следующее определение.

Определение

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе, расширенная версия)

Пусть $\mathcal L$ есть конечномерное ненулевое пространство. Тогда

- 1. все его базисы конечны и имеют одну и ту же мощность (количество элементов),
- 2. если линейное пространство $\mathcal L$ имеет базис из n элементов, то любой линейно независимый набор из n элементов линеного пространства $\mathcal L$ есть его базис,
- 3. если x_1, x_2, \ldots, x_n есть базис пространства \mathcal{L} , то любой вектор u из \mathcal{L} однозначно представляется в виде линейной комбинации $u = \lambda_1 x_1 + \lambda_2 x_2 + \ldots + \lambda_n x_n$ векторов базиса.

Свойство 1. позволяет дать следующее определение.

Определение

Пусть $\mathcal L$ есть конечномерное линейное пространство. Если пространство $\mathcal L$ ненулевое, то размерностью $\dim \mathcal L$ пространства $\mathcal L$ называется число элементов в каком-либо (любом) его базисе. Размерность нулевого пространства полагают равной нулю.

Определение

Определение

Пусть $\mathcal L$ есть конечномерное пространство размерности n и семейство u_1,u_2,\ldots,u_n есть его базис. Тогда координатами вектора u пространства $\mathcal L$ называется набор $\lambda_1,\lambda_2,\ldots,\lambda_n$ коэффициентов линейной комбинации $\lambda_1u_1+\lambda_2u_2+\ldots+\lambda_nu_n$ векторов u_1,u_2,\ldots,u_n , которая равна u.

Определение

Пусть $\mathcal L$ есть конечномерное пространство размерности n и семейство u_1,u_2,\ldots,u_n есть его базис. Тогда координатами вектора u пространства $\mathcal L$ называется набор $\lambda_1,\lambda_2,\ldots,\lambda_n$ коэффициентов линейной комбинации $\lambda_1u_1+\lambda_2u_2+\ldots+\lambda_nu_n$ векторов u_1,u_2,\ldots,u_n , которая равна u.

Координаты вектора $oldsymbol{u}$ обычно записываются в столбик.

Определение

Пусть $\mathcal L$ есть конечномерное пространство размерности n и семейство u_1,u_2,\ldots,u_n есть его базис. Тогда координатами вектора u пространства $\mathcal L$ называется набор $\lambda_1,\lambda_2,\ldots,\lambda_n$ коэффициентов линейной комбинации $\lambda_1u_1+\lambda_2u_2+\ldots+\lambda_nu_n$ векторов u_1,u_2,\ldots,u_n , которая равна u.

Координаты вектора $oldsymbol{u}$ обычно записываются в столбик.

Пример

Определение

Пусть $\mathcal L$ есть конечномерное пространство размерности n и семейство u_1,u_2,\ldots,u_n есть его базис. Тогда координатами вектора u пространства $\mathcal L$ называется набор $\lambda_1,\lambda_2,\ldots,\lambda_n$ коэффициентов линейной комбинации $\lambda_1u_1+\lambda_2u_2+\ldots+\lambda_nu_n$ векторов u_1,u_2,\ldots,u_n , которая равна u.

Координаты вектора $oldsymbol{u}$ обычно записываются в столбик.

Пример

Дан вектор ${m u}=(1,2,3)$ пространства ${\mathbb R}^3$. Найдите его координаты (a) в каноническом базисе, (б) в базисе ${m e}_1=(1,1,1),\ {m e}_2=(0,1,1),$ ${m e}_3=(0,0,1),$ предварительно убедившись, что семейство ${m e}_1,{m e}_2,{m e}_3$ действительно базис пространства ${\mathbb R}^3$.

Определение

Пусть $\mathcal L$ есть конечномерное пространство размерности n и семейство u_1,u_2,\ldots,u_n есть его базис. Тогда координатами вектора u пространства $\mathcal L$ называется набор $\lambda_1,\lambda_2,\ldots,\lambda_n$ коэффициентов линейной комбинации $\lambda_1u_1+\lambda_2u_2+\ldots+\lambda_nu_n$ векторов u_1,u_2,\ldots,u_n , которая равна u.

Координаты вектора $oldsymbol{u}$ обычно записываются в столбик.

Пример

Дан вектор $\boldsymbol{u}=(1,2,3)$ пространства \mathbb{R}^3 . Найдите его координаты (a) в каноническом базисе, (б) в базисе $\boldsymbol{e}_1=(1,1,1),\ \boldsymbol{e}_2=(0,1,1),$ $\boldsymbol{e}_3=(0,0,1),$ предварительно убедившись, что семейство $\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3$ действительно базис пространства \mathbb{R}^3 .

(a)
$$\pmb{u}=1\cdot(1,0,0)+2\cdot(0,1,0)+3\cdot(0,0,1).$$
 Координаты вектора \pmb{u} в каноническом базисе есть $\begin{pmatrix}1\\2\\3\end{pmatrix}.$

Определение

Пусть $\mathcal L$ есть конечномерное пространство размерности n и семейство u_1,u_2,\ldots,u_n есть его базис. Тогда координатами вектора u пространства $\mathcal L$ называется набор $\lambda_1,\lambda_2,\ldots,\lambda_n$ коэффициентов линейной комбинации $\lambda_1u_1+\lambda_2u_2+\ldots+\lambda_nu_n$ векторов u_1,u_2,\ldots,u_n , которая равна u.

Координаты вектора $oldsymbol{u}$ обычно записываются в столбик.

Пример

Дан вектор $\boldsymbol{u}=(1,2,3)$ пространства \mathbb{R}^3 . Найдите его координаты (a) в каноническом базисе, (б) в базисе $\boldsymbol{e}_1=(1,1,1),\ \boldsymbol{e}_2=(0,1,1),$ $\boldsymbol{e}_3=(0,0,1),$ предварительно убедившись, что семейство $\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3$ действительно базис пространства \mathbb{R}^3 .

(a)
$$\pmb{u}=1\cdot(1,0,0)+2\cdot(0,1,0)+3\cdot(0,0,1).$$
 Координаты вектора \pmb{u} в каноническом базисе есть $\begin{pmatrix}1\\2\\3\end{pmatrix}.$

Замечание.

Определение

Пусть $\mathcal L$ есть конечномерное пространство размерности n и семейство u_1,u_2,\ldots,u_n есть его базис. Тогда координатами вектора u пространства $\mathcal L$ называется набор $\lambda_1,\lambda_2,\ldots,\lambda_n$ коэффициентов линейной комбинации $\lambda_1u_1+\lambda_2u_2+\ldots+\lambda_nu_n$ векторов u_1,u_2,\ldots,u_n , которая равна u.

Координаты вектора \boldsymbol{u} обычно записываются в столбик.

Пример

Дан вектор $\boldsymbol{u}=(1,2,3)$ пространства \mathbb{R}^3 . Найдите его координаты (a) в каноническом базисе, (б) в базисе $\boldsymbol{e}_1=(1,1,1),\ \boldsymbol{e}_2=(0,1,1),$ $\boldsymbol{e}_3=(0,0,1),$ предварительно убедившись, что семейство $\boldsymbol{e}_1,\boldsymbol{e}_2,\boldsymbol{e}_3$ действительно базис пространства \mathbb{R}^3 .

(a)
$$\pmb{u}=1\cdot(1,0,0)+2\cdot(0,1,0)+3\cdot(0,0,1).$$
 Координаты вектора \pmb{u} в каноническом базисе есть $\begin{pmatrix}1\\2\\3\end{pmatrix}.$

Замечание. Элементы пространства \mathbb{R}^n обычно записываются в строку. Однако каждый вектор $\boldsymbol{x} \in \mathbb{R}^n$ корректно записать и в столбик, если воспринимать его как **вектор его координат в каноническом базисе**.

(б) Поскольку векторов e_1,e_2,e_3 три, они образуют базис в \mathbb{R}^3 тогда и только тогда, когда они линейно независимы. Это можно выяснить, проверив матрицу со строками e_1,e_2,e_3 (или столбцами e_1^T,e_2^T,e_3^T) на невырожденность.

$$\left| \begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right| = 1 \neq 0,$$

значит, векторы e_1, e_2, e_3 линейно независимы.

(б) Поскольку векторов e_1,e_2,e_3 три, они образуют базис в \mathbb{R}^3 тогда и только тогда, когда они линейно независимы. Это можно выяснить, проверив матрицу со строками e_1,e_2,e_3 (или столбцами e_1^T,e_2^T,e_3^T) на невырожденность.

$$\left| \begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right| = 1 \neq 0,$$

значит, векторы e_1,e_2,e_3 линейно независимы. Для получения координат вектора ${m u}$ в базисе e_1,e_2,e_3 решаем уравнение

$$x_1(1,1,1) + x_2(0,1,1) + x_3(0,0,1) = (1,2,3),$$

что приводит к системе

$$\begin{cases} x_1 = 1 \\ x_1 + x_2 = 2 \\ x_1 + x_2 + x_3 = 3 \end{cases}$$

(б) Поскольку векторов e_1,e_2,e_3 три, они образуют базис в \mathbb{R}^3 тогда и только тогда, когда они линейно независимы. Это можно выяснить, проверив матрицу со строками e_1,e_2,e_3 (или столбцами e_1^T,e_2^T,e_3^T) на невырожденность.

$$\left| \begin{array}{ccc} 1 & 1 & 1 \\ 0 & 1 & 1 \\ 0 & 0 & 1 \end{array} \right| = 1 \neq 0,$$

значит, векторы e_1,e_2,e_3 линейно независимы. Для получения координат вектора ${m u}$ в базисе e_1,e_2,e_3 решаем уравнение

$$x_1(1,1,1) + x_2(0,1,1) + x_3(0,0,1) = (1,2,3),$$

что приводит к системе

$$\begin{cases} x_1 = 1 \\ x_1 + x_2 = 2 \\ x_1 + x_2 + x_3 = 3 \end{cases}$$

Координаты вектора $m{u}$ в базисе $m{e}_1, m{e}_2, m{e}_3$ есть $\left(egin{array}{c}1\\1\\1\end{array}
ight)$.

Пусть векторы "нового" базиса e_1', e_2', \dots, e_n' линейного пространства $\mathcal L$ размерности n выражены через "старый" базис e_1, e_2, \dots, e_n :

$$\begin{cases} e'_1 = a_{11}e_1 + a_{12}e_2 + \dots + a_{1n}e_n \\ e'_2 = a_{21}e_1 + a_{22}e_2 + \dots + a_{2n}e_n \\ \dots \\ e'_n = a_{n1}e_1 + a_{n2}e_2 + \dots + a_{nn}e_n \end{cases}$$

Пусть векторы "нового" базиса e_1', e_2', \dots, e_n' линейного пространства $\mathcal L$ размерности n выражены через "старый" базис e_1, e_2, \dots, e_n :

$$\begin{cases} e'_1 = a_{11}e_1 + a_{12}e_2 + \dots + a_{1n}e_n \\ e'_2 = a_{21}e_1 + a_{22}e_2 + \dots + a_{2n}e_n \\ \dots \\ e'_n = a_{n1}e_1 + a_{n2}e_2 + \dots + a_{nn}e_n \end{cases}$$

Тогда матрица

$$A = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}^{T}$$

называется матрицей перехода от базиса e_1,e_2,\ldots,e_n к базису e_1',e_2',\ldots,e_n' .

Пусть векторы "нового" базиса e_1', e_2', \dots, e_n' линейного пространства $\mathcal L$ размерности n выражены через "старый" базис e_1, e_2, \dots, e_n :

$$\begin{cases} e'_1 = a_{11}e_1 + a_{12}e_2 + \dots + a_{1n}e_n \\ e'_2 = a_{21}e_1 + a_{22}e_2 + \dots + a_{2n}e_n \\ \dots \\ e'_n = a_{n1}e_1 + a_{n2}e_2 + \dots + a_{nn}e_n \end{cases}$$

Тогда матрица

$$A = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}^{T}$$

называется матрицей перехода от базиса e_1,e_2,\ldots,e_n к базису e_1',e_2',\ldots,e_n' .

Замечание

Пусть векторы "нового" базиса e_1', e_2', \dots, e_n' линейного пространства $\mathcal L$ размерности n выражены через "старый" базис e_1, e_2, \dots, e_n :

$$\begin{cases} e'_1 = a_{11}e_1 + a_{12}e_2 + \dots + a_{1n}e_n \\ e'_2 = a_{21}e_1 + a_{22}e_2 + \dots + a_{2n}e_n \\ \dots \\ e'_n = a_{n1}e_1 + a_{n2}e_2 + \dots + a_{nn}e_n \end{cases}$$

Тогда матрица

$$A = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nn} \end{pmatrix}^{T}$$

называется матрицей перехода от базиса e_1,e_2,\ldots,e_n к базису e_1',e_2',\ldots,e_n' .

Замечание

Матрица перехода невырождена. Упражнение: почему?

$$(e'_1, e'_2, \dots, e'_n) = (e_1, e_2, \dots, e_n) \cdot A.$$

$$(e'_1, e'_2, \dots, e'_n) = (e_1, e_2, \dots, e_n) \cdot A.$$

Теорема

$$(e'_1, e'_2, \ldots, e'_n) = (e_1, e_2, \ldots, e_n) \cdot A.$$

Теорема

Пусть матрица A есть матрица перехода от базиса e_1, e_2, \ldots, e_n к базису e_1', e_2', \ldots, e_n' пространства $\mathcal L$ (размерности n).

$$(e'_1, e'_2, \ldots, e'_n) = (e_1, e_2, \ldots, e_n) \cdot A.$$

Теорема

Пусть матрица A есть матрица перехода от базиса e_1,e_2,\ldots,e_n к базису e_1',e_2',\ldots,e_n' пространства $\mathcal L$ (размерности n). Тогда для любого вектора

$$e_1,e_2,\ldots,e_n'$$
 пространства $\mathcal L$ (размерности n). Гогда для любого вектора x пространства $\mathcal L$ его координаты $\begin{pmatrix} x_1' \\ x_2' \\ \ldots \\ x_n' \end{pmatrix}$ в (новом) базисе e_1',e_2',\ldots,e_n'

и его координаты
$$\left(egin{array}{c} x_1 \\ x_2 \\ \dots \\ x_n \end{array}
ight)$$
 в (старом) базисе e_1,e_2,\dots,e_n связаны

соотношением

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = A \cdot \begin{pmatrix} x'_1 \\ x'_2 \\ \dots \\ x'_n \end{pmatrix}.$$

$$(e'_1, e'_2, \ldots, e'_n) = (e_1, e_2, \ldots, e_n) \cdot A.$$

Теорема

Пусть матрица A есть матрица перехода от базиса e_1,e_2,\ldots,e_n к базису e_1',e_2',\ldots,e_n' пространства $\mathcal L$ (размерности n). Тогда для любого вектора

$$m{e}_1,m{e}_2,\dots,m{e}_n$$
 пространства $\mathcal L$ (размерности n). Тогда для лювого вектора $m{x}$ пространства $\mathcal L$ его координаты $egin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$ в (новом) базисе $m{e}_1',m{e}_2',\dots,m{e}_n'$

и его координаты
$$\left(egin{array}{c} x_1 \\ x_2 \\ \dots \\ x_n \end{array}
ight)$$
 в (старом) базисе $m{e}_1, m{e}_2, \dots, m{e}_n$ связаны

соотношением

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = A \cdot \begin{pmatrix} x'_1 \\ x'_2 \\ \dots \\ x'_n \end{pmatrix}.$$

Внимание! При решении задач не перепутайте, где «новый» базис, а где «старый».

Доказательство.

Доказательство. Пусть x есть произвольный вектор пространства \mathcal{L} .

Доказательство. Пусть x есть произвольный вектор пространства \mathcal{L} . Разложим вектор x по базисам e_1,e_2,\ldots,e_n и e_1',e_2',\ldots,e_n' , и приравняем результаты:

$$x = x_1 e_1 + x_2 e_2 + \ldots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \ldots + x'_n e'_n$$

Доказательство. Пусть x есть произвольный вектор пространства \mathcal{L} . Разложим вектор x по базисам e_1, e_2, \ldots, e_n и e_1', e_2', \ldots, e_n' , и приравняем результаты:

$$x = x_1 e_1 + x_2 e_2 + \ldots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \ldots + x'_n e'_n$$

Заменим в этом равенстве векторы $oldsymbol{e}_i'$ $(1\leqslant i\leqslant n)$ на их разложение

$$\begin{cases} e'_1 = a_{11}e_1 + a_{12}e_2 + \dots + a_{1n}e_n \\ e'_2 = a_{21}e_1 + a_{22}e_2 + \dots + a_{2n}e_n \\ \dots \\ e'_n = a_{n1}e_1 + a_{n2}e_2 + \dots + a_{nn}e_n \end{cases}$$

по базису e_1, e_2, \ldots, e_n :

Доказательство. Пусть x есть произвольный вектор пространства \mathcal{L} . Разложим вектор x по базисам e_1, e_2, \ldots, e_n и e'_1, e'_2, \ldots, e'_n , и приравняем результаты:

$$x = x_1 e_1 + x_2 e_2 + \ldots + x_n e_n = x'_1 e'_1 + x'_2 e'_2 + \ldots + x'_n e'_n$$

Заменим в этом равенстве векторы $oldsymbol{e}_i'$ $(1\leqslant i\leqslant n)$ на их разложение

$$\begin{cases} e'_1 = a_{11}e_1 + a_{12}e_2 + \dots + a_{1n}e_n \\ e'_2 = a_{21}e_1 + a_{22}e_2 + \dots + a_{2n}e_n \\ \dots \\ e'_n = a_{n1}e_1 + a_{n2}e_2 + \dots + a_{nn}e_n \end{cases}$$

по базису e_1, e_2, \dots, e_n :

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 (a_{11} e_1 + a_{12} e_2 + \dots + a_{1n} e_n) + x'_2 (a_{21} e_1 + a_{22} e_2 + \dots + a_{2n} e_n) + \dots$$

$$x'_n (a_{n1} e_1 + a_{n2} e_2 + \dots + a_{nn} e_n).$$

Доказательство. Пусть x есть произвольный вектор пространства \mathcal{L} . Разложим вектор x по базисам e_1, e_2, \ldots, e_n и e'_1, e'_2, \ldots, e'_n , и приравняем результаты:

$$x = x_1 e_1 + x_2 e_2 + \ldots + x_n e_n = x_1' e_1' + x_2' e_2' + \ldots + x_n' e_n'$$

Заменим в этом равенстве векторы e_i' ($1\leqslant i\leqslant n$) на их разложение

$$\begin{cases} e'_1 = a_{11}e_1 + a_{12}e_2 + \dots + a_{1n}e_n \\ e'_2 = a_{21}e_1 + a_{22}e_2 + \dots + a_{2n}e_n \\ \dots \\ e'_n = a_{n1}e_1 + a_{n2}e_2 + \dots + a_{nn}e_n \end{cases}$$

по базису e_1, e_2, \ldots, e_n :

$$x = x_1 e_1 + x_2 e_2 + \dots + x_n e_n = x'_1 (a_{11} e_1 + a_{12} e_2 + \dots + a_{1n} e_n) + x'_2 (a_{21} e_1 + a_{22} e_2 + \dots + a_{2n} e_n) + \dots + x'_n (a_{n1} e_1 + a_{n2} e_2 + \dots + a_{nn} e_n).$$

Приравнивая коэффициенты при векторах базиса e_1, e_2, \ldots, e_n , получаем

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = \begin{pmatrix} a_{11} & a_{21} & \dots & a_{n1} \\ a_{12} & a_{22} & \dots & a_{n2} \\ \dots & \dots & \dots & \dots \\ a_{1n} & a_{2n} & \dots & a_{nn} \end{pmatrix} \cdot \begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}.$$

Утверждение

Утверждение

1. Если X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_3 , то матрица XY есть матрица перехода от базиса B_1 к базису B_3 .

- 1. Если X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_3 , то матрица XY есть матрица перехода от базиса B_1 к базису B_3 .
- 2. Если X есть матрица перехода от базиса B_1 к базису B_2 , то X^{-1} есть матрица перехода от базиса B_2 к базису B_1 .

- 1. Если X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_3 , то матрица XY есть матрица перехода от базиса B_1 к базису B_3 .
- 2. Если X есть матрица перехода от базиса B_1 к базису B_2 , то X^{-1} есть матрица перехода от базиса B_2 к базису B_1 .
- 3. В пространстве \mathbb{R}^n матрица перехода от канонического базиса к базису e_1, e_2, \ldots, e_n есть матрица со столбцами $e_1^T, e_2^T, \ldots, e_n^T$.

- 1. Если X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_3 , то матрица XY есть матрица перехода от базиса B_1 к базису B_3 .
- 2. Если X есть матрица перехода от базиса B_1 к базису B_2 , то X^{-1} есть матрица перехода от базиса B_2 к базису B_1 .
- 3. В пространстве \mathbb{R}^n матрица перехода от канонического базиса к базису e_1, e_2, \ldots, e_n есть матрица со столбцами $e_1^T, e_2^T, \ldots, e_n^T$.

Доказательство.

- 1. Если X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_3 , то матрица XY есть матрица перехода от базиса B_1 к базису B_3 .
- 2. Если X есть матрица перехода от базиса B_1 к базису B_2 , то X^{-1} есть матрица перехода от базиса B_2 к базису B_1 .
- 3. В пространстве \mathbb{R}^n матрица перехода от канонического базиса к базису e_1, e_2, \ldots, e_n есть матрица со столбцами $e_1^T, e_2^T, \ldots, e_n^T$.

Доказательство.

1. Пусть
$$B_1=(e_1,e_2,\ldots,e_n),\,B_2=(e_1',e_2',\ldots,e_n')$$
 и
$$B_3=(e_1'',e_2'',\ldots,e_n''). \ \text{Тогда}$$

$$(e_1'',e_2'',\ldots,e_n'')=(e_1',e_2',\ldots,e_n')\cdot Y=(e_1,e_2,\ldots,e_n)\cdot X\cdot Y.$$

- 1. Если X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_3 , то матрица XY есть матрица перехода от базиса B_1 к базису B_3 .
- 2. Если X есть матрица перехода от базиса B_1 к базису B_2 , то X^{-1} есть матрица перехода от базиса B_2 к базису B_1 .
- 3. В пространстве \mathbb{R}^n матрица перехода от канонического базиса к базису e_1, e_2, \ldots, e_n есть матрица со столбцами $e_1^T, e_2^T, \ldots, e_n^T$.

Доказательство.

1. Пусть
$$B_1=(e_1,e_2,\ldots,e_n)$$
, $B_2=(e_1',e_2',\ldots,e_n')$ и
$$B_3=(e_1'',e_2'',\ldots,e_n'').$$
 Тогда
$$(e_1'',e_2'',\ldots,e_n'')=(e_1',e_2',\ldots,e_n')\cdot Y=(e_1,e_2,\ldots,e_n)\cdot X\cdot Y.$$

2. Легко проверить, что матрица перехода от базиса B к самому себе есть единичная матрица E. Пусть X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_1 . Тогда по предыдущему пункту имеем: XY=E. Значит, $Y=X^{-1}$.

- 1. Если X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_3 , то матрица XY есть матрица перехода от базиса B_1 к базису B_3 .
- 2. Если X есть матрица перехода от базиса B_1 к базису B_2 , то X^{-1} есть матрица перехода от базиса B_2 к базису B_1 .
- 3. В пространстве \mathbb{R}^n матрица перехода от канонического базиса к базису e_1, e_2, \ldots, e_n есть матрица со столбцами $e_1^T, e_2^T, \ldots, e_n^T$.

Доказательство.

- 1. Пусть $B_1=(e_1,e_2,\ldots,e_n)$, $B_2=(e_1',e_2',\ldots,e_n')$ и $B_3=(e_1'',e_2'',\ldots,e_n'').$ Тогда $(e_1'',e_2'',\ldots,e_n'')=(e_1',e_2',\ldots,e_n')\cdot Y=(e_1,e_2,\ldots,e_n)\cdot X\cdot Y.$
- 2. Легко проверить, что матрица перехода от базиса B к самому себе есть единичная матрица E. Пусть X есть матрица перехода от базиса B_1 к базису B_2 , а Y есть матрица перехода от базиса B_2 к базису B_1 . Тогда по предыдущему пункту имеем: XY=E. Значит, $Y=X^{-1}$.
- 3. Упражнение.

Найти матрицу перехода от базиса $B=(m{e}_1,m{e}_2,m{e}_3)$ к базису $B'=(m{e}_1',m{e}_2',m{e}_3')$ пространства \mathbb{R}^3 , если

$$e_1 = (1, 1, 1)$$
 $e_2 = (1, 2, 3)$ $e_3 = (1, 0, 1)$

$$e'_1 = (-1, 0, 1)$$
 $e'_2 = (1, 3, 3)$ $e'_3 = (1, -1, -1)$

Найти матрицу перехода от базиса $B=(m{e}_1,m{e}_2,m{e}_3)$ к базису $B'=(m{e}_1',m{e}_2',m{e}_3')$ пространства \mathbb{R}^3 , если

$$e_1 = (1, 1, 1)$$
 $e_2 = (1, 2, 3)$ $e_3 = (1, 0, 1)$

$$e'_1 = (-1, 0, 1)$$
 $e'_2 = (1, 3, 3)$ $e'_3 = (1, -1, -1)$

Запишем матрицы X и X^\prime перехода от канонического базиса к базисам B и B^\prime соответственно:

$$X = \left(\begin{array}{ccc} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{array}\right), \quad X' = \left(\begin{array}{ccc} -1 & 1 & 1 \\ 0 & 3 & -1 \\ 1 & 3 & -1 \end{array}\right)$$

Найти матрицу перехода от базиса $B=(m{e}_1,m{e}_2,m{e}_3)$ к базису $B'=(m{e}_1',m{e}_2',m{e}_3')$ пространства \mathbb{R}^3 , если

$$e_1 = (1, 1, 1)$$
 $e_2 = (1, 2, 3)$ $e_3 = (1, 0, 1)$

$$e'_1 = (-1, 0, 1)$$
 $e'_2 = (1, 3, 3)$ $e'_3 = (1, -1, -1)$

Запишем матрицы X и X^\prime перехода от канонического базиса к базисам B и B^\prime соответственно:

$$X = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{pmatrix}, \quad X' = \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & -1 \\ 1 & 3 & -1 \end{pmatrix}$$

искомая матрица перехода есть

$$X^{-1}X' = \begin{pmatrix} 1 & 1 & 1 \\ 1 & 2 & 0 \\ 1 & 3 & 1 \end{pmatrix}^{-1} \begin{pmatrix} -1 & 1 & 1 \\ 0 & 3 & -1 \\ 1 & 3 & -1 \end{pmatrix} = \begin{pmatrix} -2 & 1 & 1 \\ 1 & 1 & -1 \\ 0 & -1 & 1 \end{pmatrix}$$

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из линейного пространства $\mathcal{L}_1=(M_1;+,\cdot)$ в линейное пространство $\mathcal{L}_2=(M_2;+,\cdot)$ мы будем понимать функции $\mathcal{A}:M_1\to M_2$. Аналогично, мы будем писать $\boldsymbol{x}\in\mathcal{L}_1$ вместо $\boldsymbol{x}\in M_1$ и т.д.

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из линейного пространства $\mathcal{L}_1=(M_1;+,\cdot)$ в линейное пространство $\mathcal{L}_2=(M_2;+,\cdot)$ мы будем понимать функции $\mathcal{A}:M_1\to M_2$. Аналогично, мы будем писать $\boldsymbol{x}\in\mathcal{L}_1$ вместо $\boldsymbol{x}\in M_1$ и т.д.

Определение

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из линейного пространства $\mathcal{L}_1=(M_1;+,\cdot)$ в линейное пространство $\mathcal{L}_2=(M_2;+,\cdot)$ мы будем понимать функции $\mathcal{A}:M_1\to M_2$. Аналогично, мы будем писать $\boldsymbol{x}\in\mathcal{L}_1$ вместо $\boldsymbol{x}\in M_1$ и т.д.

Определение

Линейное отображение \mathcal{A} из линейного пространства \mathcal{L}_1 в линейное пространство \mathcal{L}_2 (оба над полем P) есть функция $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$, удовлетворяющая условиям:

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из линейного пространства $\mathcal{L}_1=(M_1;+,\cdot)$ в линейное пространство $\mathcal{L}_2=(M_2;+,\cdot)$ мы будем понимать функции $\mathcal{A}:M_1\to M_2$. Аналогично, мы будем писать $\boldsymbol{x}\in\mathcal{L}_1$ вместо $\boldsymbol{x}\in M_1$ и т.д.

Определение

Линейное отображение \mathcal{A} из линейного пространства \mathcal{L}_1 в линейное пространство \mathcal{L}_2 (оба над полем P) есть функция $\mathcal{A}: \mathcal{L}_1 \to \mathcal{L}_2$, удовлетворяющая условиям:

1.
$$\mathcal{A}(oldsymbol{x}+oldsymbol{y})=\mathcal{A}(oldsymbol{x})+\mathcal{A}(oldsymbol{y})$$
 для всех $oldsymbol{x},oldsymbol{y}\in\mathcal{L}_1$,

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из линейного пространства $\mathcal{L}_1=(M_1;+,\cdot)$ в линейное пространство $\mathcal{L}_2=(M_2;+,\cdot)$ мы будем понимать функции $\mathcal{A}:M_1\to M_2$. Аналогично, мы будем писать $\boldsymbol{x}\in\mathcal{L}_1$ вместо $\boldsymbol{x}\in M_1$ и т.д.

Определение

Линейное отображение \mathcal{A} из линейного пространства \mathcal{L}_1 в линейное пространство \mathcal{L}_2 (оба над полем P) есть функция $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$, удовлетворяющая условиям:

- 1. $\mathcal{A}(oldsymbol{x}+oldsymbol{y})=\mathcal{A}(oldsymbol{x})+\mathcal{A}(oldsymbol{y})$ для всех $oldsymbol{x},oldsymbol{y}\in\mathcal{L}_1$,
- 2. $\mathcal{A}(\lambda \boldsymbol{x}) = \lambda \mathcal{A}(\boldsymbol{x})$ для всех $\boldsymbol{x} \in \mathcal{L}_1$, $\lambda \in P$.

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из линейного пространства $\mathcal{L}_1=(M_1;+,\cdot)$ в линейное пространство $\mathcal{L}_2=(M_2;+,\cdot)$ мы будем понимать функции $\mathcal{A}:M_1\to M_2$. Аналогично, мы будем писать $\boldsymbol{x}\in\mathcal{L}_1$ вместо $\boldsymbol{x}\in M_1$ и т.д.

Определение

Линейное отображение \mathcal{A} из линейного пространства \mathcal{L}_1 в линейное пространство \mathcal{L}_2 (оба над полем P) есть функция $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$, удовлетворяющая условиям:

- 1. $\mathcal{A}(oldsymbol{x}+oldsymbol{y})=\mathcal{A}(oldsymbol{x})+\mathcal{A}(oldsymbol{y})$ для всех $oldsymbol{x},oldsymbol{y}\in\mathcal{L}_1$,
- 2. $\mathcal{A}(\lambda \boldsymbol{x}) = \lambda \mathcal{A}(\boldsymbol{x})$ для всех $\boldsymbol{x} \in \mathcal{L}_1$, $\lambda \in P$.

Линейное отображение $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ называется линейным оператором (иногда и произвольное линейное отображение тоже).

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из линейного пространства $\mathcal{L}_1=(M_1;+,\cdot)$ в линейное пространство $\mathcal{L}_2=(M_2;+,\cdot)$ мы будем понимать функции $\mathcal{A}:M_1\to M_2$. Аналогично, мы будем писать $\boldsymbol{x}\in\mathcal{L}_1$ вместо $\boldsymbol{x}\in M_1$ и т.д.

Определение

Линейное отображение \mathcal{A} из линейного пространства \mathcal{L}_1 в линейное пространство \mathcal{L}_2 (оба над полем P) есть функция $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$, удовлетворяющая условиям:

- 1. $\mathcal{A}(oldsymbol{x}+oldsymbol{y})=\mathcal{A}(oldsymbol{x})+\mathcal{A}(oldsymbol{y})$ для всех $oldsymbol{x},oldsymbol{y}\in\mathcal{L}_1$,
- 2. $\mathcal{A}(\lambda \boldsymbol{x}) = \lambda \mathcal{A}(\boldsymbol{x})$ для всех $\boldsymbol{x} \in \mathcal{L}_1$, $\lambda \in P$.

Линейное отображение $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ называется **линейным оператором** (иногда и произвольное линейное отображение тоже).

Замечания.

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из линейного пространства $\mathcal{L}_1=(M_1;+,\cdot)$ в линейное пространство $\mathcal{L}_2=(M_2;+,\cdot)$ мы будем понимать функции $\mathcal{A}:M_1\to M_2$. Аналогично, мы будем писать $\boldsymbol{x}\in\mathcal{L}_1$ вместо $\boldsymbol{x}\in M_1$ и т.д.

Определение

Линейное отображение \mathcal{A} из линейного пространства \mathcal{L}_1 в линейное пространство \mathcal{L}_2 (оба над полем P) есть функция $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$, удовлетворяющая условиям:

- 1. $\mathcal{A}(oldsymbol{x}+oldsymbol{y})=\mathcal{A}(oldsymbol{x})+\mathcal{A}(oldsymbol{y})$ для всех $oldsymbol{x},oldsymbol{y}\in\mathcal{L}_1$,
- 2. $\mathcal{A}(\lambda \boldsymbol{x}) = \lambda \mathcal{A}(\boldsymbol{x})$ для всех $\boldsymbol{x} \in \mathcal{L}_1$, $\lambda \in P$.

Линейное отображение $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ называется **линейным оператором** (иногда и произвольное линейное отображение тоже).

Замечания.

ightharpoonup Символы сложения и умножения на элемент поля P, вообще говоря, разные в разных частях этих равенств.

В дальнейшем под функциями $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из линейного пространства $\mathcal{L}_1 = (M_1; +, \cdot)$ в линейное пространство $\mathcal{L}_2 = (M_2; +, \cdot)$ мы будем понимать функции $\mathcal{A}: M_1 \to M_2$. Аналогично, мы будем писать $x \in \mathcal{L}_1$ вместо $x \in M_1$ и т.д.

Определение

Линейное отображение \mathcal{A} из линейного пространства \mathcal{L}_1 в линейное пространство \mathcal{L}_2 (оба над полем P) есть функция $\mathcal{A}: \mathcal{L}_1 \to \mathcal{L}_2$, удовлетворяющая условиям:

- 1. $\mathcal{A}(x+y) = \mathcal{A}(x) + \mathcal{A}(y)$ для всех $x, y \in \mathcal{L}_1$,
- 2. $\mathcal{A}(\lambda x) = \lambda \mathcal{A}(x)$ для всех $x \in \mathcal{L}_1$, $\lambda \in P$.

Линейное отображение $\mathcal{A}:\mathcal{L} o\mathcal{L}$ называется **линейным оператором** (иногда и произвольное линейное отображение тоже).

Замечания.

- ightharpoonup Символы сложения и умножения на элемент поля P, вообще говоря, разные в разных частях этих равенств.
- ▶ Из определения следует равенство

$$\mathcal{A}(\lambda_1 \boldsymbol{x}_1 + \lambda_2 \boldsymbol{x}_2 + \ldots + \lambda_n \boldsymbol{x}_n) = \lambda_1 \mathcal{A}(\boldsymbol{x}_1) + \lambda_2 \mathcal{A}(\boldsymbol{x}_2) + \ldots + \lambda_n \mathcal{A}(\boldsymbol{x}_n)$$

для всех $n\in\mathbb{N}$, $x_1,x_2,\ldots,x_n\in\mathcal{L}_1$, $\lambda_1,\lambda_2,\ldots,\lambda_n\in P$.

ightharpoonup линейный оператор $\mathcal{A}:\mathbb{R}^2 o \mathbb{R}^2$, $\mathcal{A}(x,y)=(x+y,x-y)$,

- ightharpoonup линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, $\mathcal{A}(x,y)=(x+y,x-y)$,
- ▶ линейное отображение $\mathcal{A}: \mathbb{R}^2 \to \mathbb{R}$, $\mathcal{A}(x,y) = 2x + 3y$,

- lack линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, $\mathcal{A}(x,y)=(x+y,x-y)$,
- ightharpoonup линейное отображение $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}$, $\mathcal{A}(x,y)=2x+3y$,
- ightharpoonup линейное отображение $\mathcal{A}:\mathbb{R}
 ightharpoonup \mathbb{R}^2$, $\mathcal{A}(x)=(x,2x)$,

- $lackrel{}$ линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, $\mathcal{A}(x,y)=(x+y,x-y)$,
- lack линейное отображение $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}$, $\mathcal{A}(x,y)=2x+3y$,
- ightharpoonup линейное отображение $\mathcal{A}:\mathbb{R} o\mathbb{R}^2$, $\mathcal{A}(x)=(x,2x)$,
- линейный оператор $\mathcal D$ (дифференцирования) из пространства $\mathcal P_n$ многочленов степени не выше n в себя, который ставит в соответствие каждому многочлену $p\in \mathcal P_n$ его производную p', например, $\mathcal A(x^2-3x+1)=2x-3$,

- lacktriangle линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, $\mathcal{A}(x,y)=(x+y,x-y)$,
- lacktriangle линейное отображение $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}$, $\mathcal{A}(x,y)=2x+3y$,
- ightharpoonup линейное отображение $\mathcal{A}:\mathbb{R} o\mathbb{R}^2$, $\mathcal{A}(x)=(x,2x)$,
- линейный оператор $\mathcal D$ (дифференцирования) из пространства $\mathcal P_n$ многочленов степени не выше n в себя, который ставит в соответствие каждому многочлену $p\in \mathcal P_n$ его производную p', например, $\mathcal A(x^2-3x+1)=2x-3$,
- ightharpoonup линейное отображение $\mathcal S$ из пространства $\mathcal F$ функций $f:\mathbb R\to\mathbb R$ в $\mathbb R$, которое ставит в соответствие каждой функции $f\in\mathcal F$ ее значение в нуле, например $\mathcal S(\cos(x))=1.$

- lack линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, $\mathcal{A}(x,y)=(x+y,x-y)$,
- lacktriangle линейное отображение $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}$, $\mathcal{A}(x,y)=2x+3y$,
- lack линейное отображение $\mathcal{A}:\mathbb{R} o\mathbb{R}^2$, $\mathcal{A}(x)=(x,2x)$,
- линейный оператор $\mathcal D$ (дифференцирования) из пространства $\mathcal P_n$ многочленов степени не выше n в себя, который ставит в соответствие каждому многочлену $p\in \mathcal P_n$ его производную p', например, $\mathcal A(x^2-3x+1)=2x-3$,
- ightharpoonup линейное отображение $\mathcal S$ из пространства $\mathcal F$ функций $f:\mathbb R\to\mathbb R$ в $\mathbb R$, которое ставит в соответствие каждой функции $f\in\mathcal F$ ее значение в нуле, например $\mathcal S(\cos(x))=1.$
- линейное отображение trace из пространства M_{nn} квадратных матриц размера $n \times n$ в \mathbb{R} , которое ставит в соответствие каждой матрице $A \in M_{nn}$ ее *след*, т.е. сумму элементов, стоящих на главной диагонали, например $\operatorname{trace}\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} = 1 + 4 = 5.$

Определение

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o\mathcal{L}_2.$

▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется *образом* линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется *образом* линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1: \mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора \mathcal{A} и обозначается $\mathop{\mathrm{Ker}} \mathcal{A}.$

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется *образом* линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1: \mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора \mathcal{A} и обозначается $\mathop{\mathrm{Ker}} \mathcal{A}.$

Теорема

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется *образом* линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1:\mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора $\mathcal A$ и обозначается $\mathop{
 m Ker} \mathcal A.$

Теорема

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется *образом* линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1: \mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора \mathcal{A} и обозначается $\mathop{\mathrm{Ker}} \mathcal{A}.$

Теорема

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$. Тогда

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется *образом* линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1:\mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора \mathcal{A} и обозначается $\mathop{
 m Ker} \mathcal{A}.$

Теорема

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$. Тогда

ightharpoonup Im ${\mathcal A}$ образует подпространство в пространстве ${\mathcal L}_2$;

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется *образом* линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1:\mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора $\mathcal A$ и обозначается $\mathop{
 m Ker} \mathcal A.$

Теорема

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$. Тогда

- ightharpoonup Im $\mathcal A$ образует подпространство в пространстве $\mathcal L_2$;
- lacktriangle Ker ${\mathcal A}$ образует подпространство в пространстве ${\mathcal L}_1$.

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется *образом* линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1:\mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора \mathcal{A} и обозначается $\mathop{
 m Ker} \mathcal{A}.$

Теорема

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$. Тогда

- ightharpoonup Im $\mathcal A$ образует подпространство в пространстве $\mathcal L_2$;
- lacktriangle Ker ${\mathcal A}$ образует подпространство в пространстве ${\mathcal L}_1$.

Доказательство.

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется образом линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1: \mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора \mathcal{A} и обозначается $\mathop{
 m Ker} \mathcal{A}.$

Теорема

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$. Тогда

- ▶ $\operatorname{Im} \mathcal{A}$ образует подпространство в пространстве \mathcal{L}_2 ;
- lacktriangle Ker ${\mathcal A}$ образует подпространство в пространстве ${\mathcal L}_1$.

Доказательство.

 $m{y}_1,m{y}_2\in \mathrm{Im}\,\mathcal{A}\Rightarrow m{y}_1=\mathcal{A}(m{x}_1),m{y}_2=\mathcal{A}(m{x}_2)$ для некоторых $m{x}_1,m{x}_2\in\mathcal{L}_1.$ Значит, $\lambda_1m{y}_1+\lambda_2m{y}_2=\lambda_1\mathcal{A}(m{x}_1)+\lambda_2\mathcal{A}(m{x}_2)=\mathcal{A}(\lambda_1m{x}_1+\lambda_2m{x}_2)\in \mathrm{Im}\,\mathcal{A}.$

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o\mathcal{L}_2.$

- ▶ Множество $\{y \in \mathcal{L}_2 : (\exists x \in \mathcal{L}_1) \, \mathcal{A}(x) = y\}$ называется образом линейного оператора \mathcal{A} и обозначается $\operatorname{Im} \mathcal{A}$.
- lacktriangle Множество $\{m{y}\in\mathcal{L}_1:\mathcal{A}(m{x})=m{0}\}$ называется ядром линейного оператора \mathcal{A} и обозначается $\mathop{
 m Ker} \mathcal{A}.$

Теорема

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$. Тогда

- ▶ $\operatorname{Im} \mathcal{A}$ образует подпространство в пространстве \mathcal{L}_2 ;
- lacktriangle Ker ${\mathcal A}$ образует подпространство в пространстве ${\mathcal L}_1$.

Доказательство.

- $m{y}_1,m{y}_2\in \mathrm{Im}\,\mathcal{A}\Rightarrow m{y}_1=\mathcal{A}(m{x}_1),m{y}_2=\mathcal{A}(m{x}_2)$ для некоторых $m{x}_1,m{x}_2\in\mathcal{L}_1.$ Значит, $\lambda_1m{y}_1+\lambda_2m{y}_2=\lambda_1\mathcal{A}(m{x}_1)+\lambda_2\mathcal{A}(m{x}_2)=\mathcal{A}(\lambda_1m{x}_1+\lambda_2m{x}_2)\in \mathrm{Im}\,\mathcal{A}.$
- $m{x}_1, m{x}_2 \in \operatorname{Ker} \mathcal{A} \Rightarrow \mathcal{A}(m{x}_1) = \mathcal{A}(m{x}_2) = m{0}$. Значит, $\mathcal{A}(\lambda_1 m{x}_1 + \lambda_2 m{x}_2) = \lambda_1 \mathcal{A}(m{x}_1) + \lambda_2 \mathcal{A}(m{x}_2) = m{0}$. Следовательно, $\lambda_1 m{x}_1 + \lambda_2 m{x}_2 \in \operatorname{Ker} \mathcal{A}$.

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

Рассмотрим линейное отображение $\mathcal{A}:\mathbb{R}^n \to \mathbb{R}^m$, заданное формулой $\mathcal{A}(\boldsymbol{x}) = A\boldsymbol{x}$, где A есть матрица размера $m \times n$, а векторы из \mathbb{R}^m и \mathbb{R}^n записываются в столбик. Тогда

ightharpoonup Ітп $\mathcal A$ есть совокупность всех линейных комбинаций (линейная оболочка) столбцов матрицы A.

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o\mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

Рассмотрим линейное отображение $\mathcal{A}:\mathbb{R}^n \to \mathbb{R}^m$, заданное формулой $\mathcal{A}(\boldsymbol{x}) = A\boldsymbol{x}$, где A есть матрица размера $m \times n$, а векторы из \mathbb{R}^m и \mathbb{R}^n записываются в столбик. Тогда

ightharpoonup Im $\mathcal A$ есть совокупность всех линейных комбинаций (линейная оболочка) столбцов матрицы A. В качестве базиса пространства $\operatorname{Im} \mathcal A$ можно выбрать любой максимальный по включению набор линейно независимых столбцов матрицы A.

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

Рассмотрим линейное отображение $\mathcal{A}:\mathbb{R}^n \to \mathbb{R}^m$, заданное формулой $\mathcal{A}(\boldsymbol{x}) = A\boldsymbol{x}$, где A есть матрица размера $m \times n$, а векторы из \mathbb{R}^m и \mathbb{R}^n записываются в столбик. Тогда

ightharpoonup Im $\mathcal A$ есть совокупность всех линейных комбинаций (линейная оболочка) столбцов матрицы A. В качестве базиса пространства $\operatorname{Im} \mathcal A$ можно выбрать любой максимальный по включению набор линейно независимых столбцов матрицы A. Размерность пространства $\operatorname{Im} \mathcal A$ равна рангу матрицы A.

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

- lacktriangledown $\operatorname{Im} \mathcal A$ есть совокупность всех линейных комбинаций (линейная оболочка) столбцов матрицы A. В качестве базиса пространства $\operatorname{Im} \mathcal A$ можно выбрать любой максимальный по включению набор линейно независимых столбцов матрицы A. Размерность пространства $\operatorname{Im} \mathcal A$ равна рангу матрицы A.
- ightharpoonup $\operatorname{Ker} \mathcal{A}$ есть множество всех решений с. л. о. у. $Aoldsymbol{x}=0$.

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

- ightharpoonup Im $\mathcal A$ есть совокупность всех линейных комбинаций (линейная оболочка) столбцов матрицы A. В качестве базиса пространства $\operatorname{Im} \mathcal A$ можно выбрать любой максимальный по включению набор линейно независимых столбцов матрицы A. Размерность пространства $\operatorname{Im} \mathcal A$ равна рангу матрицы A.
- lacktriangle Ker ${\cal A}$ есть множество всех решений с. л. о. у. $A{m x}=0$. В качестве базиса пространства ${
 m Im}\,{\cal A}$ можно выбрать любой ФНР этой системы.

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

 $\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$

Замечание

- lacktriangledown $\operatorname{Im} \mathcal{A}$ есть совокупность всех линейных комбинаций (линейная оболочка) столбцов матрицы A. В качестве базиса пространства $\operatorname{Im} \mathcal{A}$ можно выбрать любой максимальный по включению набор линейно независимых столбцов матрицы A. Размерность пространства $\operatorname{Im} \mathcal{A}$ равна рангу матрицы A.
- $ightharpoonup {
 m Ker}\, {\cal A}$ есть множество всех решений с. л. о. у. $A{m x}=0$. В качестве базиса пространства ${
 m Im}\, {\cal A}$ можно выбрать любой ФНР этой системы. Размерность пространства ${
 m Ker}\, {\cal A}$ равна $n-{
 m rang}\, A$ (это число иногда называется *коранг* матрицы A).

Утверждение

Утверждение

Линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ однозначно определяется своими значениями на произвольном фиксированном базисе пространства $\mathcal{L}_1.$

Утверждение

Линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ однозначно определяется своими значениями на произвольном фиксированном базисе пространства \mathcal{L}_1 . Доказательство: упражнение.

Утверждение

Линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ однозначно определяется своими значениями на произвольном фиксированном базисе пространства $\mathcal{L}_1.$

Доказательство: упражнение.

Определение

Утверждение

Линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ однозначно определяется своими значениями на произвольном фиксированном базисе пространства $\mathcal{L}_1.$

Доказательство: упражнение.

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 размерности $m<\infty$.

Утверждение

Линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ однозначно определяется своими значениями на произвольном фиксированном базисе пространства $\mathcal{L}_1.$

Доказательство: упражнение.

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 размерности $m<\infty$. Матрицей A линейного оператора \mathcal{A} в базисах $B_1=(\boldsymbol{e}_1,\boldsymbol{e}_2,\ldots,\boldsymbol{e}_n)$ пространства \mathcal{L}_1 и $B_2=(\boldsymbol{f}_1,\boldsymbol{f}_2,\ldots,\boldsymbol{f}_m)$ пространства \mathcal{L}_2 называется матрица размера $m\times n$, составленная из векторов-столбцов координат векторов $\mathcal{A}(\boldsymbol{e}_1)$, $\mathcal{A}(\boldsymbol{e}_2),\ldots,\mathcal{A}(\boldsymbol{e}_n)$ в базисе B_2 .

Утверждение

Линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ однозначно определяется своими значениями на произвольном фиксированном базисе пространства $\mathcal{L}_1.$

Доказательство: упражнение.

Определение

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 размерности $m<\infty$. Матрицей A линейного оператора \mathcal{A} в базисах $B_1=(\boldsymbol{e}_1,\boldsymbol{e}_2,\ldots,\boldsymbol{e}_n)$ пространства \mathcal{L}_1 и $B_2=(\boldsymbol{f}_1,\boldsymbol{f}_2,\ldots,\boldsymbol{f}_m)$ пространства \mathcal{L}_2 называется матрица размера $m\times n$, составленная из векторов-столбцов координат векторов $\mathcal{A}(\boldsymbol{e}_1)$, $\mathcal{A}(\boldsymbol{e}_2),\ldots,\mathcal{A}(\boldsymbol{e}_n)$ в базисе B_2 .

Если $\mathcal A$ есть линейный оператор из $\mathcal L$ в $\mathcal L$, то базисы B_1 и B_2 , как правило, выбирают одинаковыми. В этом случае говорят просто о матрице линейного оператора $\mathcal A$ в базисе $B=B_1=B_2$.

Рассмотрим линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, действующий по закону

$$\mathcal{A}(x,y) = (x+y, x-y).$$

Рассмотрим линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, действующий по закону

$$\mathcal{A}(x,y) = (x+y, x-y).$$

Его матрица в каноническом базисе есть

$$A_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

Рассмотрим линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, действующий по закону

$$\mathcal{A}(x,y) = (x+y, x-y).$$

Его матрица в каноническом базисе есть

$$A_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

Рассмотрим линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, действующий по закону

$$\mathcal{A}(x,y) = (x+y, x-y).$$

Его матрица в каноническом базисе есть

$$A_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

$$A(1,1) = (2,0) = 2 \cdot (1,1) - 2 \cdot (0,1),$$

Рассмотрим линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, действующий по закону

$$\mathcal{A}(x,y) = (x+y, x-y).$$

Его матрица в каноническом базисе есть

$$A_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

$$\mathcal{A}(1,1) = (2,0) = 2 \cdot (1,1) - 2 \cdot (0,1),$$

$$\mathcal{A}(0,1) = (1,-1) = 1 \cdot (1,1) - 2 \cdot (0,1),$$

Рассмотрим линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, действующий по закону

$$\mathcal{A}(x,y) = (x+y, x-y).$$

Его матрица в каноническом базисе есть

$$A_1 = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

$$A(1,1) = (2,0) = 2 \cdot (1,1) - 2 \cdot (0,1),$$

$$\mathcal{A}(0,1) = (1,-1) = 1 \cdot (1,1) - 2 \cdot (0,1),$$

$$A_2 = \left(\begin{array}{cc} 2 & 1 \\ -2 & -2 \end{array} \right).$$

Теорема

Теорема

Пусть дана матрица A линейного отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ в базисах $B_1=(\boldsymbol{e}_1,\boldsymbol{e}_2,\ldots,\boldsymbol{e}_n)$ пространства \mathcal{L}_1 и $B_2=(\boldsymbol{f}_1,\boldsymbol{f}_2,\ldots,\boldsymbol{f}_m)$ пространства \mathcal{L}_2 .

Теорема

Пусть дана матрица A линейного отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ в базисах $B_1=(\boldsymbol{e}_1,\boldsymbol{e}_2,\ldots,\boldsymbol{e}_n)$ пространства \mathcal{L}_1 и $B_2=(\boldsymbol{f}_1,\boldsymbol{f}_2,\ldots,\boldsymbol{f}_m)$ пространства \mathcal{L}_2 . Тогда для любого вектора $\boldsymbol{x}\in\mathcal{L}_1$ с вектором-столбцом координат

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

в базисе B_1 вектор $\mathcal{A}(\boldsymbol{x})$ имеет вектор-столбец координат

$$A \cdot \left(\begin{array}{c} x_1 \\ x_2 \\ \dots \\ x_n \end{array} \right)$$

в базисе B_2 .

Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o \mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе и вектор $oldsymbol{u}=\left(egin{array}{cc} 3 & -1 \end{array}
ight)\in\mathbb{R}^2.$

Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o \mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе и вектор $u=(3 \quad -1) \in \mathbb{R}^2$.

Hайдите вектор $\mathcal{A}(oldsymbol{u})$.

Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o \mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе и вектор $oldsymbol{u}=\left(egin{array}{cc} 3 & -1 \end{array}
ight)\in\mathbb{R}^2.$

Hайдите вектор $\mathcal{A}(oldsymbol{u})$.

Координаты вектора $oldsymbol{u}$ в каноническом базисе есть $\left(egin{array}{c} 3 \\ -1 \end{array}
ight)$.

Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o \mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе и вектор $oldsymbol{u}=\left(egin{array}{cc} 3 & -1 \end{array}
ight)\in\mathbb{R}^2.$

Hайдите вектор $\mathcal{A}(oldsymbol{u})$.

Координаты вектора $m{u}$ в каноническом базисе есть $\left(egin{array}{c} 3 \ -1 \end{array}
ight)$. Поэтому координаты вектора $\mathcal{A}(m{u})$ в каноническом базисе есть

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} 3 \\ -1 \end{array}\right) = \left(\begin{array}{c} 2 \\ 4 \end{array}\right).$$

Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе и вектор $oldsymbol{u}=\left(egin{array}{cc} 3 & -1 \end{array}
ight)\in\mathbb{R}^2.$

Hайдите вектор $\mathcal{A}(oldsymbol{u})$.

Координаты вектора $m{u}$ в каноническом базисе есть $\left(egin{array}{c} 3 \\ -1 \end{array}
ight)$. Поэтому координаты вектора $\mathcal{A}(m{u})$ в каноническом базисе есть

$$\left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right) \left(\begin{array}{c} 3 \\ -1 \end{array}\right) = \left(\begin{array}{c} 2 \\ 4 \end{array}\right).$$

Искомый вектор – $(2 \ 4)$.

Переход к новому базису Теорема

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}).

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B' (пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B' есть

 $C^{-1}AC$.

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B' (пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B' есть

$$C^{-1}AC$$
.

Доказательство в приложении.

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B' (пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B' есть

$$C^{-1}AC$$
.

Доказательство в приложении. **Пример**.

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B' (пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B' есть

$$C^{-1}AC$$
.

Доказательство в приложении.

Пример. Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе.

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B' (пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B' есть

$$C^{-1}AC$$
.

Доказательство в приложении.

Пример. Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе. Найдите его координаты в базисе ${m f}_1=(1,1)$, ${m f}_2=(0,1).$

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B' (пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B' есть

$$C^{-1}AC$$
.

Доказательство в приложении.

Пример. Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе. Найдите его координаты в базисе ${m f}_1=(1,1)$, ${m f}_2=(0,1).$

Решение.

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B' (пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B' есть

$$C^{-1}AC$$
.

Доказательство в приложении.

Пример. Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе. Найдите его координаты в базисе ${m f}_1=(1,1),$ ${m f}_2=(0,1).$

Решение. Матрица перехода: $C = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}$.

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}\to\mathcal{L}$ в базисе B (пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B' (пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B' есть

$$C^{-1}AC$$
.

Доказательство в приложении.

Пример. Дан линейный оператор $\mathcal{A}:\mathbb{R}^2 o\mathbb{R}^2$, с матрицей

$$A = \left(\begin{array}{cc} 1 & 1 \\ 1 & -1 \end{array}\right).$$

в каноническом базисе. Найдите его координаты в базисе ${m f}_1=(1,1),$ ${m f}_2=(0,1).$

Решение. Матрица перехода: $C = \left(egin{array}{cc} 1 & 0 \\ 1 & 1 \end{array} \right)$. Искомая матрица

$$C^{-1}AC = \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}^{-1} \begin{pmatrix} 1 & 1 \\ 1 & -1 \end{pmatrix} \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 2 & 1 \\ -2 & -2 \end{pmatrix}$$

(как и было вычислено раньше другим способом), 🗀 🗸 🗦 🐧 🚉 🔻 🖘 🔾 🗢

СПАСИБО ЗА ВНИМАНИЕ!

- Бурмистрова Е. Б., Лобанов С. Г. Линейная алгебра, дифференциальное исчисление функций одной переменной: учебник для вузов, 2010.
- Fuad Aleskerov, Hasan Ersel, Dmitri Piontkovski. Linear Algebra for Economists. Springer (2011).

Приложение 1. Дополнительные сведения о линейных подпространствах и линейных операторах

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P и множество $U\subseteq M$. Множество всех линейных комбинаций векторов из U с коэффициентами из поля P называется линейной оболочкой множества U и обозначается $\operatorname{Span} U$:

$$\operatorname{Span} U = \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_n \mathbf{u}_n : \lambda_1, \ldots, \lambda_n \in P, \mathbf{u}_1, \ldots, \mathbf{u}_n \in U, n \in \mathbb{N}\}.$$

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P и множество $U\subseteq M$. Множество всех линейных комбинаций векторов из U с коэффициентами из поля P называется линейной оболочкой множества U и обозначается $\mathrm{Span}\,U$:

$$\operatorname{Span} U = \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_n \mathbf{u}_n : \lambda_1, \ldots, \lambda_n \in P, \mathbf{u}_1, \ldots, \mathbf{u}_n \in U, n \in \mathbb{N}\}.$$

Пример. Каждое линейное пространство есть линейная оболочка любого своего базиса.

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P и множество $U\subseteq M$. Множество всех линейных комбинаций векторов из U с коэффициентами из поля P называется линейной оболочкой множества U и обозначается $\operatorname{Span} U$:

$$\operatorname{Span} U = \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_n \mathbf{u}_n : \lambda_1, \ldots, \lambda_n \in P, \mathbf{u}_1, \ldots, \mathbf{u}_n \in U, n \in \mathbb{N}\}.$$

Пример. Каждое линейное пространство есть линейная оболочка любого своего базиса.

Утверждение

Линейная оболочка любого множества $U\subseteq M$ образует линейное подпространство пространства $\mathcal{L}=(M;+,\cdot)$, которое также обозначается $\operatorname{Span} U$ (также говорят, что пространство $\operatorname{Span} U$ натянуто на множество U или на векторы из U). Если пространство $\mathcal L$ конечномерное, то размерность пространства $\operatorname{Span} U$ равна максимальному (по количеству) множеству линейно независимых векторов в U.

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P и множество $U\subseteq M$. Множество всех линейных комбинаций векторов из U с коэффициентами из поля P называется линейной оболочкой множества U и обозначается $\operatorname{Span} U$:

$$\operatorname{Span} U = \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_n \mathbf{u}_n : \lambda_1, \ldots, \lambda_n \in P, \mathbf{u}_1, \ldots, \mathbf{u}_n \in U, n \in \mathbb{N}\}.$$

Пример. Каждое линейное пространство есть линейная оболочка любого своего базиса.

Утверждение

Линейная оболочка любого множества $U\subseteq M$ образует линейное подпространство пространства $\mathcal{L}=(M;+,\cdot)$, которое также обозначается $\operatorname{Span} U$ (также говорят, что пространство $\operatorname{Span} U$ натянуто на множество U или на векторы из U). Если пространство $\mathcal L$ конечномерное, то размерность пространства $\operatorname{Span} U$ равна максимальному (по количеству) множеству линейно независимых векторов в U.

Доказательство: упражнение.

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ над полем P и множество $U\subseteq M$. Множество всех линейных комбинаций векторов из U с коэффициентами из поля P называется линейной оболочкой множества U и обозначается $\operatorname{Span} U$:

$$\operatorname{Span} U = \{\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_n \mathbf{u}_n : \lambda_1, \ldots, \lambda_n \in P, \mathbf{u}_1, \ldots, \mathbf{u}_n \in U, n \in \mathbb{N}\}.$$

Пример. Каждое линейное пространство есть линейная оболочка любого своего базиса.

Утверждение

Линейная оболочка любого множества $U\subseteq M$ образует линейное подпространство пространства $\mathcal{L}=(M;+,\cdot)$, которое также обозначается $\operatorname{Span} U$ (также говорят, что пространство $\operatorname{Span} U$ натянуто на множество U или на векторы из U). Если пространство $\mathcal L$ конечномерное, то размерность пространства $\operatorname{Span} U$ равна максимальному (по количеству) множеству линейно независимых векторов в U.

Доказательство: упражнение.

Следствие

Если множество $U\subseteq M$ конечно и в пространстве $\mathcal{L}=(M;+,\cdot)$ задан базис B, то размерность пространства $\operatorname{Span} U$ равна рангу матрицы, составленной из координат векторов $\mathbf{u}\in U$ в базисе B.

Найдите размерность подпространства пространства \mathbb{R}^3 , натянутого на векторы $\mathbf{u}_1=(-1,-3,2),\ \mathbf{u}_2=(4,-1,1),\ \mathbf{u}_3=(3,-4,3),\ \mathbf{u}_4=(1,-10,7).$

Найдите размерность подпространства пространства \mathbb{R}^3 , натянутого на векторы $\mathbf{u}_1=(-1,-3,2),\ \mathbf{u}_2=(4,-1,1),\ \mathbf{u}_3=(3,-4,3),\ \mathbf{u}_4=(1,-10,7).$

Ответ:
$$\dim \mathrm{Span}\,\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4\} = \mathrm{rang}\,\left(\begin{array}{cccc} -1 & 4 & 3 & 1 \\ -3 & -1 & -4 & -10 \\ 2 & 1 & 3 & 7 \end{array}\right) = 2$$

Найдите размерность подпространства пространства \mathbb{R}^3 , натянутого на векторы $\mathbf{u}_1=(-1,-3,2),\ \mathbf{u}_2=(4,-1,1),\ \mathbf{u}_3=(3,-4,3),\ \mathbf{u}_4=(1,-10,7).$

Ответ:
$$\dim \mathrm{Span}\,\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4\} = \mathrm{rang}\,\left(\begin{array}{cccc} -1 & 4 & 3 & 1 \\ -3 & -1 & -4 & -10 \\ 2 & 1 & 3 & 7 \end{array}\right) = 2$$

Утверждение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ и подмножества M_1 и M_2 множества M, каждое из которых образует подпространство пространства \mathcal{L} . Тогда множество $M_1\cap M_2$ образует подпространство пространство \mathcal{L} . Это подпространство называется пересечением подпространств \mathcal{L}_1 и \mathcal{L}_2 , образованных множествами M_1 и M_2 , и обозначается $\mathcal{L}_1\cap \mathcal{L}_2$.

Найдите размерность подпространства пространства \mathbb{R}^3 , натянутого на векторы $\mathbf{u}_1=(-1,-3,2),\ \mathbf{u}_2=(4,-1,1),\ \mathbf{u}_3=(3,-4,3),\ \mathbf{u}_4=(1,-10,7).$

Ответ:
$$\dim \mathrm{Span}\,\{\mathbf{u}_1,\mathbf{u}_2,\mathbf{u}_3,\mathbf{u}_4\} = \mathrm{rang}\, \left(\begin{array}{cccc} -1 & 4 & 3 & 1 \\ -3 & -1 & -4 & -10 \\ 2 & 1 & 3 & 7 \end{array} \right) = 2$$

Утверждение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ и подмножества M_1 и M_2 множества M, каждое из которых образует подпространство пространства \mathcal{L} . Тогда множество $M_1\cap M_2$ образует подпространство пространство \mathcal{L} . Это подпространство называется пересечением подпространств \mathcal{L}_1 и \mathcal{L}_2 , образованных множествами M_1 и M_2 , и обозначается $\mathcal{L}_1\cap \mathcal{L}_2$.

Пример

Пусть \mathcal{L}_1 есть пространство всех векторов из \mathbb{R}^3 , которые удовлетворяют условию $x_1+x_2+x_3=0$, а \mathcal{L}_2 есть пространство всех векторов из \mathbb{R}^3 , которые удовлетворяют условию $2x_1-x_2-x_3=0$. Тогда $\mathcal{L}_1\cap\mathcal{L}_2$ есть пространство всех векторов из \mathbb{R}^3 , которые удовлетворяют системе

$$\begin{cases} x_1 + x_2 + x_3 = 0 \\ 2x_1 - x_2 - x_3 = 0 \end{cases}$$

Объединение носителей линейных подпространств пространства $\mathcal L$ в общем случае не образует подпространства пространства $\mathcal L$ (упражнение).

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ и его подпространства $\mathcal{L}_1=(M_1;+,\cdot)$ и $\mathcal{L}_2=(M_2;+,\cdot)$. Тогда множество $\{\mathbf{x}+\mathbf{y}:\mathbf{x}\in M_1,\mathbf{y}\in M_2\}$ образует подпространство в \mathcal{L} , называемое суммой подпространств \mathcal{L}_1 и \mathcal{L}_2 и обозначаемое $\mathcal{L}_1+\mathcal{L}_2$.

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ и его подпространства $\mathcal{L}_1=(M_1;+,\cdot)$ и $\mathcal{L}_2=(M_2;+,\cdot)$. Тогда множество $\{\mathbf{x}+\mathbf{y}:\mathbf{x}\in M_1,\mathbf{y}\in M_2\}$ образует подпространство в \mathcal{L} , называемое суммой подпространств \mathcal{L}_1 и \mathcal{L}_2 и обозначаемое $\mathcal{L}_1+\mathcal{L}_2$.

Замечание

Иначе сумма подпространств $\mathcal{L}_1=(M_1;+,\cdot)$ и $\mathcal{L}_2=(M_2;+,\cdot)$ пространства \mathcal{L} может быть определена как $\mathrm{Span}\,(M_1\cup M_2)$.

Определение

Пусть дано линейное пространство $\mathcal{L}=(M;+,\cdot)$ и его подпространства $\mathcal{L}_1=(M_1;+,\cdot)$ и $\mathcal{L}_2=(M_2;+,\cdot)$. Тогда множество $\{\mathbf{x}+\mathbf{y}:\mathbf{x}\in M_1,\mathbf{y}\in M_2\}$ образует подпространство в \mathcal{L} , называемое суммой подпространств \mathcal{L}_1 и \mathcal{L}_2 и обозначаемое $\mathcal{L}_1+\mathcal{L}_2$.

Замечание

Иначе сумма подпространств $\mathcal{L}_1=(M_1;+,\cdot)$ и $\mathcal{L}_2=(M_2;+,\cdot)$ пространства \mathcal{L} может быть определена как $\mathrm{Span}\,(M_1\cup M_2).$

Замечание

$$\operatorname{Span} M_1 + \operatorname{Span} M_2 = \operatorname{Span} (M_1 \cup M_2).$$

Теорема

Пусть дано линейное пространство $\mathcal L$ конечной размерности, и его подпространства $\mathcal L_1$ и $\mathcal L_2$. Тогда

$$\dim \mathcal{L}_1 + \dim \mathcal{L}_2 = \dim \left(\mathcal{L}_1 \cap \mathcal{L}_2\right) + \dim \left(\mathcal{L}_1 + \mathcal{L}_2\right).$$

Теорема

Пусть дано линейное пространство $\mathcal L$ конечной размерности, и его подпространства $\mathcal L_1$ и $\mathcal L_2$. Тогда

$$\dim \mathcal{L}_1 + \dim \mathcal{L}_2 = \dim \left(\mathcal{L}_1 \cap \mathcal{L}_2\right) + \dim \left(\mathcal{L}_1 + \mathcal{L}_2\right).$$

Пример

Найдите размерность пересечения линейной оболочки векторов $\mathbf{u}_1=(1,1,-2,1),\ \mathbf{u}_2=(3,-1,0,2),\ \mathbf{u}_3=(4,0,-2,3)$ и линейной оболочки векторов $\mathbf{v}_1=(2,-2,2,1),\ \mathbf{v}_2=(4,2,1,3).$

Пусть дано линейное пространство $\mathcal L$ конечной размерности, и его подпространства $\mathcal L_1$ и $\mathcal L_2$. Тогда

$$\dim \mathcal{L}_1 + \dim \mathcal{L}_2 = \dim \left(\mathcal{L}_1 \cap \mathcal{L}_2 \right) + \dim \left(\mathcal{L}_1 + \mathcal{L}_2 \right).$$

Пример

Найдите размерность пересечения линейной оболочки векторов $\mathbf{u}_1=(1,1,-2,1),\ \mathbf{u}_2=(3,-1,0,2),\ \mathbf{u}_3=(4,0,-2,3)$ и линейной оболочки векторов $\mathbf{v}_1=(2,-2,2,1),\ \mathbf{v}_2=(4,2,1,3).$

dim Span
$$\{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\}$$
 = rang $\begin{pmatrix} 1 & 1 & -2 & 1 \\ 3 & -1 & 0 & 2 \\ 4 & 0 & -2 & 3 \end{pmatrix} = 2$

$$\dim \operatorname{Span} \left\{ \mathbf{v}_1, \mathbf{v}_2 \right\} = \operatorname{rang} \left(\begin{array}{ccc} 2 & -2 & 2 & 1 \\ 4 & 2 & 1 & 3 \end{array} \right) = 2$$

$$\dim\left(\operatorname{Span}\left\{\mathbf{u}_{1},\mathbf{u}_{2},\mathbf{u}_{3}\right\}+\operatorname{Span}\left\{\mathbf{v}_{1},\mathbf{v}_{2}\right\}\right)=\operatorname{rang}\left(\begin{array}{cccc}1&1&-2&1\\3&-1&0&2\\4&0&-2&3\\2&-2&2&1\\4&2&1&3\end{array}\right)=3$$

$$\dim (\operatorname{Span} \{\mathbf{u}_1, \mathbf{u}_2, \mathbf{u}_3\} \cap \operatorname{Span} \{\mathbf{v}_1, \mathbf{v}_2\}) = 2 + 2 - 3 = 1.$$

Теорема

Теорема

1. Пусть даны линейные отображения $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ и $\mathcal{B}:\mathcal{L}_2\to\mathcal{L}_3.$ Тогда композиция

$$\mathcal{B} \circ \mathcal{A} : \mathcal{L}_1 \to \mathcal{L}_3$$

есть линейное отображение.

Теорема

1. Пусть даны линейные отображения $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2$ и $\mathcal{B}:\mathcal{L}_2 o \mathcal{L}_3$. Тогда композиция

$$\mathcal{B} \circ \mathcal{A} : \mathcal{L}_1 \to \mathcal{L}_3$$

есть линейное отображение.

2. Пусть дано взаимно-однозначное линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$ Тогда обратная функция

$$\mathcal{A}^{-1}:\mathcal{L}_2 o\mathcal{L}_1$$

есть линейное отображение.

Теорема

1. Пусть даны линейные отображения $\mathcal{A}:\mathcal{L}_1 \to \mathcal{L}_2$ и $\mathcal{B}:\mathcal{L}_2 \to \mathcal{L}_3$. Тогда композиция

$$\mathcal{B} \circ \mathcal{A} : \mathcal{L}_1 \to \mathcal{L}_3$$

есть линейное отображение.

2. Пусть дано взаимно-однозначное линейное отображение $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$ Тогда обратная функция

$$\mathcal{A}^{-1}:\mathcal{L}_2 o\mathcal{L}_1$$

есть линейное отображение.

Доказательство в приложении.

1. Пусть даны линейные отображения $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ и $\mathcal{B}:\mathcal{L}_2\to\mathcal{L}_3$ с матрицами A и B (базисы в пространствах \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_3 фиксированы). Тогда композиция $\mathcal{B}\circ\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_3$ имеет матрицу BA.

- 1. Пусть даны линейные отображения $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ и $\mathcal{B}:\mathcal{L}_2\to\mathcal{L}_3$ с матрицами A и B (базисы в пространствах \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_3 фиксированы). Тогда композиция $\mathcal{B}\circ\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_3$ имеет матрицу BA.
- 2. Пусть дано взаимно-однозначный линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ и в пространствах \mathcal{L}_1 и \mathcal{L}_2 фиксированы некоторые базисы. Тогда $\dim\mathcal{L}_1=\dim\mathcal{L}_2$, матрица оператора \mathcal{A} обратима и обратное отображение \mathcal{A}^{-1} имеет матрицу A^{-1} .

- 1. Пусть даны линейные отображения $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ и $\mathcal{B}:\mathcal{L}_2\to\mathcal{L}_3$ с матрицами A и B (базисы в пространствах \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_3 фиксированы). Тогда композиция $\mathcal{B}\circ\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_3$ имеет матрицу BA.
- 2. Пусть дано взаимно-однозначный линейное отображение $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ и в пространствах \mathcal{L}_1 и \mathcal{L}_2 фиксированы некоторые базисы. Тогда $\dim\mathcal{L}_1=\dim\mathcal{L}_2$, матрица оператора \mathcal{A} обратима и обратное отображение \mathcal{A}^{-1} имеет матрицу A^{-1} .

Доказательство.

1. Для каждого вектора $u \in \mathcal{L}_1$ координаты вектора $\mathcal{B} \circ \mathcal{A}(u) = \mathcal{B}(\mathcal{A}(u))$ есть $BA \cdot x$, где x есть вектор-столбец координат вектора u.

- 1. Пусть даны линейные отображения $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ и $\mathcal{B}:\mathcal{L}_2\to\mathcal{L}_3$ с матрицами A и B (базисы в пространствах \mathcal{L}_1 , \mathcal{L}_2 , \mathcal{L}_3 фиксированы). Тогда композиция $\mathcal{B}\circ\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_3$ имеет матрицу BA.
- 2. Пусть дано взаимно-однозначный линейное отображение $\mathcal{A}:\mathcal{L}_1 \to \mathcal{L}_2$ и в пространствах \mathcal{L}_1 и \mathcal{L}_2 фиксированы некоторые базисы. Тогда $\dim \mathcal{L}_1 = \dim \mathcal{L}_2$, матрица оператора \mathcal{A} обратима и обратное отображение \mathcal{A}^{-1} имеет матрицу A^{-1} .

Доказательство.

- 1. Для каждого вектора $u \in \mathcal{L}_1$ координаты вектора $\mathcal{B} \circ \mathcal{A}(u) = \mathcal{B}(\mathcal{A}(u))$ есть $BA \cdot x$, где x есть вектор-столбец координат вектора u.
- 2. Поскольку отображение $\mathcal A$ инъективное, $\dim \operatorname{Ker} \mathcal A=0$. Поскольку оно еще и сюръективное, $\operatorname{Im} \mathcal A=\mathcal L_2$. По теореме о ядре и образе имеем $\dim \mathcal L_2=\dim \operatorname{Im} \mathcal A=\dim \mathcal L_1-\dim \operatorname{Ker} \mathcal A=\dim \mathcal L_1$. Далее, матрица тождественного отображения есть единичная матрица E. Обозначим символом B матрицу оператора $\mathcal A^{-1}$. Тогда по предыдущему пункту AB=E. Значит, $|B|\neq 0$ (матрица B невырожденная) и $B=A^{-1}$.

Приложение 2. Доказательства некоторых теорем

Теорема о базисе

Утверждение

Пусть каждый из векторов $m{u}_1, m{u}_2, \dots, m{u}_k$ выражаются через семейство $m{v}_1, m{v}_2, \dots, m{v}_l$, причем

$$\begin{cases} \boldsymbol{u}_1 = a_{11}\boldsymbol{v}_1 + a_{12}\boldsymbol{v}_2 + \ldots + a_{1l}\boldsymbol{v}_l \\ \boldsymbol{u}_2 = a_{21}\boldsymbol{v}_1 + a_{22}\boldsymbol{v}_2 + \ldots + a_{2l}\boldsymbol{v}_l \\ \ldots \\ \boldsymbol{u}_k = a_{k1}\boldsymbol{v}_1 + a_{k2}\boldsymbol{v}_2 + \ldots + a_{kl}\boldsymbol{v}_l \end{cases}$$

Пусть при этом векторы $oldsymbol{u}_1,oldsymbol{u}_2,\dots,oldsymbol{u}_k$ линейно независимы. Тогда строки матрицы

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1l} \\ a_{21} & a_{22} & \dots & a_{2l} \\ \dots & \dots & \dots & \dots \\ a_{k1} & a_{k2} & \dots & a_{kl} \end{pmatrix}$$

линейно независимы.

Доказательство. Допустим, нетривиальная линейная комбинация строк матрицы A с коэффициентами $\lambda_1, \lambda_2, \dots, \lambda_k$ равна нулевой строке. Тогда

$$\lambda_1 \mathbf{u}_1 + \lambda_2 \mathbf{u}_2 + \ldots + \lambda_k \mathbf{u}_k = \mathbf{0},$$

Пусть линейное пространство $\mathcal L$ имеет базис из l элементов. Тогда любое семейство, содержащее более чем l элементов, линейно зависимо.

Доказательство. Достаточно рассмотреть случай конечных семейств. Пусть набор v_1, v_2, \ldots, v_l есть базис пространства \mathcal{L} , и пусть u_1, u_2, \ldots, u_k есть семейство векторов из \mathcal{L} , причем k>l. Векторы u_1, u_2, \ldots, u_k можно выразить через базис:

$$\begin{cases} \boldsymbol{u}_1 = a_{11}\boldsymbol{v}_1 + a_{12}\boldsymbol{v}_2 + \ldots + a_{1l}\boldsymbol{v}_l \\ \boldsymbol{u}_2 = a_{21}\boldsymbol{v}_1 + a_{22}\boldsymbol{v}_2 + \ldots + a_{2l}\boldsymbol{v}_l \\ \ldots \\ \boldsymbol{u}_k = a_{k1}\boldsymbol{v}_1 + a_{k2}\boldsymbol{v}_2 + \ldots + a_{kl}\boldsymbol{v}_l \end{cases}$$

Предположим, что семейство u_1,u_2,\ldots,u_k линейно независимо. Тогда по предыдущему утверждению матрица $A=(a_{ij})$ имеет ранг k>l. Противоречие с теоремой о ранге матрицы: размер любого минора не превосходит количества столбцов l матрицы A.

Определение

Линейное пространство $\mathcal L$ называется конечномерным, если оно состоит только из одного (нулевого) элемента или имеет хотя бы один конечный базис.

Теорема (о базисе)

Пусть $\mathcal L$ есть конечномерное ненулевое пространство. Тогда все его базисы конечны и имеют одну и ту же мощность (количество элементов).

Доказательство. Пусть B_1 есть конечный базис пространства \mathcal{L} , который содержит l элементов. Пусть B_2 есть какой-либо иной базис пространства \mathcal{L} . Если B_2 содержит больше элементов, чем B_1 , получаем противоречие с предыдущей теоремой. Если B_2 содержит меньше элементов, чем B_1 , поменяем базисы местами, и вновь придем к противоречию с предыдущей теоремой.

Это позволяет дать следующее определение.

Определение

Пусть $\mathcal L$ есть конечномерное линейное пространство. Если пространство $\mathcal L$ ненулевое, то размерностью $\dim \mathcal L$ пространства $\mathcal L$ называется число элементов в каком-либо (любом) его базисе. Размерность нулевого пространства полагают равной нулю.

Пусть $\mathcal L$ есть конечномерное пространство размерности n. Тогда любое линейно независимое семейство u_1,u_2,\ldots,u_n (мощности n) векторов пространства $\mathcal L$ есть базис $\mathcal L$.

Доказательство. Семейство u_1, u_2, \ldots, u_n линейно независимо, и для любого вектора u пространства $\mathcal L$ семейство u_1, u_2, \ldots, u_n, u линейно зависимо. Значит, вектор u линейно выражается через u_1, u_2, \ldots, u_n . Все свойства базиса выполнены.

Теорема

Пусть $\mathcal L$ есть конечномерное пространство размерности n, и пусть семейство u_1,u_2,\ldots,u_n есть его базис. Тогда для каждого вектора u пространства $\mathcal L$ коэффициенты $\lambda_1,\lambda_2,\ldots,\lambda_n$ линейной комбинации $\lambda_1u_1+\lambda_2u_2+\ldots+\lambda_nu_n$ векторов u_1,u_2,\ldots,u_n , которая равна u, определены однозначно.

Доказательство. Пусть

$$\boldsymbol{u} = \lambda_1 \boldsymbol{u}_1 + \lambda_2 \boldsymbol{u}_2 + \ldots + \lambda_n \boldsymbol{u}_n = \lambda_1' \boldsymbol{u}_1 + \lambda_2' \boldsymbol{u}_2 + \ldots + \lambda_n' \boldsymbol{u}_n.$$

Тогда

$$(\lambda_1 - \lambda_1')\boldsymbol{u}_1 + (\lambda_2 - \lambda_2')\boldsymbol{u}_2 + \ldots + (\lambda_n - \lambda_n')\boldsymbol{u}_n = \mathbf{0}.$$

Значит, $\lambda_1=\lambda_1',\ \lambda_2=\lambda_2',\ \dots,\ \lambda_n=\lambda_n'$ поскольку семейство u_1,u_2,\dots,u_n линейно независимо.

Теорема о сумме размерностей подпространств

Теорема

Пусть дано линейное пространство $\mathcal L$ конечной размерности, и его подпространства $\mathcal L_1$ и $\mathcal L_2$. Тогда

$$\dim \mathcal{L}_1 + \dim \mathcal{L}_2 = \dim \left(\mathcal{L}_1 \cap \mathcal{L}_2 \right) + \dim \left(\mathcal{L}_1 + \mathcal{L}_2 \right).$$

Доказательство. Вначале докажем следующее вспомогательное утверждение.

Любое линейно независимое семейство $U=(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k)$ векторов линейного пространства $\mathcal L$ размерности $n<\infty$ можно дополнить до базиса $U^+=(\mathbf{u}_1,\mathbf{u}_2,\ldots,\mathbf{u}_k,\mathbf{u}_{k+1},\ldots,\mathbf{u}_n)$ пространства $\mathcal L$.

Действительно, если k=n, то U уже базис. В противном случае U не базис и, следовательно, существует вектор ${\bf v}$ пространства ${\cal L}$, который не выражается через U. Положим ${\bf u}_{k+1}={\bf v}$. Тогда семейство $U=({\bf u}_1,{\bf u}_2,\ldots,{\bf u}_k,{\bf u}_{k+1})$ линейно независимо. Продолжая процесс, приходим к линейно независимому семейству из n векторов. Оно является базисом. Далее, если ${\cal L}_1$ есть подпространство пространства ${\cal L}_2$ или ${\cal L}_2$ есть подпространство пространства ${\cal L}_1$, формула очевидна (т.к. в этом случае ${\cal L}_1 \cap {\cal L}_2 = {\cal L}_1$ и ${\cal L}_1 + {\cal L}_2 = {\cal L}_2$). Исключим этот случай.

Пусть U_0 есть базис пространства $\mathcal{L}_1\cap\mathcal{L}_2$ (или пустое множество, если пространство $\mathcal{L}_1\cap\mathcal{L}_2$ нулевое). Дополним его семействами U_1 и U_2 до базисов пространств \mathcal{L}_1 и \mathcal{L}_2 соответственно. В рамках сделанных допущений множества U_1,U_2 не пусты. Покажем, что семейство $U_0\cup U_1\cup U_2$ линейно независимо. Предположим, что, напротив, существует нетривиальная линейная комбинация векторов из $U_0\cup U_1\cup U_2$, равная нулевому вектору. Представим эту линейную комбинацию в виде

$$x + y + z$$

где ${\bf x}$ - сумма всех слагаемых вида $\lambda {\bf u}$, где ${\bf u} \in U_0$, ${\bf y}$ - сумма всех слагаемых вида $\lambda {\bf u}$, где ${\bf u} \in U_1$ и ${\bf z}$ - сумма всех слагаемых вида $\lambda {\bf u}$, где ${\bf u} \in U_2$ (если множество U_0 пусто, считаем, что первого слагаемого в этой сумме нет).

Если $\mathbf{y}=\mathbf{0}$, получаем противоречие с линейной независимостью множества $U_0\cup U_2$. Если $\mathbf{z}=\mathbf{0}$, получаем противоречие с линейной независимостью множества $U_0\cup U_1$. Значит, $\mathbf{y}\neq\mathbf{0}$ и $\mathbf{z}\neq\mathbf{0}$. Но тогда вектор $\mathbf{y}=-\mathbf{x}-\mathbf{z}$ выражается через векторы из $U_0\cup U_2$, т.е. является вектором пространства \mathcal{L}_2 и, следовательно, вектором пространства $\mathcal{L}_1\cap\mathcal{L}_2$. Значит, вектор \mathbf{y} может быть представлен как линейная комбинация векторов из U_0 . Подставив это представление в равенство

$$\mathbf{x} + \mathbf{y} + \mathbf{z} = \mathbf{0},$$

мы получим линейную комбинацию векторов из $U_0 \cup U_2$, равную нулевому вектору. Кроме того, она нетривиальна, поскольку $\mathbf{z} \neq \mathbf{0}$ Противоречие.

Из доказанного мы можем извлечь следующие равенства:

$$\dim (\mathcal{L}_1 + \mathcal{L}_2) = |U_0| + |U_1| + |U_2|$$

$$\dim \mathcal{L}_1 = |U_0| + |U_1|$$

$$\dim \mathcal{L}_2 = |U_0| + |U_2|.$$

Следовательно, $\dim \mathcal{L}_1 + \dim \mathcal{L}_2 = \dim (\mathcal{L}_1 \cap \mathcal{L}_2) + \dim (\mathcal{L}_1 + \mathcal{L}_2)$.

Теорема об образе и ядре линейного отображения

Теорема

Пусть дано линейное отображение $\mathcal{A}:\mathcal{L}_1 o\mathcal{L}_2$ из пространства \mathcal{L}_1 размерности $n<\infty$ в пространство \mathcal{L}_2 . Тогда

$$\dim \operatorname{Ker} \mathcal{A} + \dim \operatorname{Im} \mathcal{A} = n.$$

Доказательство. Если пространство \mathcal{L}_1 нулевое, теорема очевидна, поскольку в этом случае оба пространства $\operatorname{Ker} \mathcal{A}$ и $\operatorname{Im} \mathcal{A}$ тоже нулевые. Если пространство $\operatorname{Im} \mathcal{A}$ нулевое, теорема тоже очевидна, поскольку в этом случае $\operatorname{Ker} \mathcal{A} = \mathcal{L}_1$. Будем считать, что пространства \mathcal{L}_1 и $\operatorname{Im} \mathcal{A}$ ненулевые. Пространство $\operatorname{Ker} \mathcal{A}$ есть подпространство конечномерного пространства \mathcal{L}_1 , поэтому оно само конечномерно. Пусть $\dim \operatorname{Ker} \mathcal{A} = k$. Выберем базис $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_k$ пространства $\operatorname{Ker} \mathcal{A}$ (будем считать его пустым, если k=0). Дополним его до базиса $\mathbf{e}_1, \mathbf{e}_2, \ldots, \mathbf{e}_k, \mathbf{e}_{k+1}, \ldots, \mathbf{e}_n$ пространства \mathcal{L}_1 . Теорема будет доказана, если мы покажем, что семейство

$$\mathcal{A}(\mathbf{e}_{k+1}), \mathcal{A}(\mathbf{e}_{k+2}), \dots, \mathcal{A}(\mathbf{e}_n)$$

есть базис пространства $\operatorname{Im} \mathcal{A}$.

lack
ightharpoonup Пусть ${f y}$ есть произвольный вектор пространства ${
m Im}\, {\cal A}$. Тогда ${f y}={\cal A}({f x})$ для некоторого вектора ${f x}\in {\cal L}_1$. Разложим вектор ${f x}$ по базису ${f e}_1,{f e}_2,\ldots,{f e}_k,{f e}_{k+1},\ldots,{f e}_n$:

$$\mathbf{x} = \lambda_1 \mathbf{e}_1 + \lambda_2 \mathbf{e}_2 + \ldots + \lambda_k \mathbf{e}_k + \lambda_{k+1} \mathbf{e}_{k+1} + \ldots + \lambda_n \mathbf{e}_n.$$

Тогда

$$\mathbf{y} = \mathcal{A}(\mathbf{x}) = \lambda_{k+1} \mathcal{A}(\mathbf{e}_{k+1}) + \ldots + \lambda_n \mathcal{A}(\mathbf{e}_n)$$

(используем то, что векторы $\mathbf{e}_1, \mathbf{e}_2, \dots, \mathbf{e}_k$ принадлежат ядру оператора \mathcal{A}).

▶ Допустим, что векторы $\mathcal{A}(\mathbf{e}_{k+1}), \mathcal{A}(\mathbf{e}_{k+2}), \dots, \mathcal{A}(\mathbf{e}_n)$ образуют линейно зависимое множество. Тогда для некоторой нетривиальной линейной комбинации $\lambda_{k+1}, \dots, \lambda_n$ имеем

$$\lambda_{k+1}\mathcal{A}(\mathbf{e}_{k+1}) + \ldots + \lambda_n\mathcal{A}(\mathbf{e}_n) = \mathbf{0}.$$

Значит,

$$\mathcal{A}(\lambda_{k+1}\mathbf{e}_{k+1}+\ldots+\lambda_n\mathbf{e}_n)=\mathbf{0}$$

и, следовательно, ненулевой вектор $\lambda_{k+1}\mathbf{e}_{k+1}+\ldots+\lambda_n\mathbf{e}_n$ принадлежит ядру оператора \mathcal{A} , что противоречит выбору векторов $\mathbf{e}_{k+1},\ldots,\mathbf{e}_n$.

Действия над линейными операторами.

Теорема

1. Пусть даны линейные операторы $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ и $\mathcal{B}:\mathcal{L}_2\to\mathcal{L}_3.$ Тогда композиция

$$\mathcal{B} \circ \mathcal{A} : \mathcal{L}_1 \to \mathcal{L}_3$$

есть линейный оператор.

2. Пусть дан взаимно-однозначный линейный оператор $\mathcal{A}:\mathcal{L}_1 o \mathcal{L}_2.$ Тогда обратная функция

$$\mathcal{A}^{-1}:\mathcal{L}_2 o\mathcal{L}_1$$

есть линейный оператор.

Доказательство.

- 1 Упражнение
- 2. Пусть $\mathbf{x}_2, \mathbf{y}_2 \in \mathcal{L}_2$. Тогда для некоторых $\mathbf{x}_1, \mathbf{y}_1 \in \mathcal{L}_1$ выполнено: $\mathcal{A}(\mathbf{x}_1) = \mathbf{x}_2$ и $\mathcal{A}(\mathbf{y}_1) = \mathbf{y}_2$ или, что то же самое, $\mathbf{x}_1 = \mathcal{A}^{-1}(\mathbf{x}_2)$ и $\mathbf{y}_1 = \mathcal{A}^{-1}(\mathbf{y}_2)$. Тогда

$$\mathcal{A}^{-1}(\mathbf{x}_2 + \mathbf{y}_2) = \mathcal{A}^{-1}(\mathcal{A}(\mathbf{x}_1) + \mathcal{A}(\mathbf{y}_1)) =$$

$$\mathcal{A}^{-1}(\mathcal{A}(\mathbf{x}_1 + \mathbf{y}_1)) = \mathbf{x}_1 + \mathbf{y}_1 = \mathcal{A}^{-1}(\mathbf{x}_2) + \mathcal{A}^{-1}(\mathbf{y}_2).$$

Преобразование координат вектора при линейном отображении

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L}_1\to\mathcal{L}_2$ в базисах $B_1=(\mathbf{e}_1,\mathbf{e}_2,\ldots,\mathbf{e}_n)$ пространства \mathcal{L}_1 и $B_2=(\mathbf{f}_1,\mathbf{f}_2,\ldots,\mathbf{f}_m)$ пространства \mathcal{L}_2 . Тогда для любого вектора $\mathbf{x}\in\mathcal{L}_1$ с вектором-столбцом координат

$$\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$$

в базисе B_1 вектор $\mathcal{A}(\mathbf{x})$ имеет вектор-столбец координат

$$A \cdot \left(\begin{array}{c} x_1 \\ x_2 \\ \dots \\ x_n \end{array} \right)$$

в базисе B_2 .

Пусть

$$\begin{cases} \mathcal{A}(\mathbf{e}_1) = a_{11}\mathbf{f}_1 + a_{21}\mathbf{f}_2 + \dots + a_{m1}\mathbf{f}_m \\ \mathcal{A}(\mathbf{e}_2) = a_{12}\mathbf{f}_1 + a_{22}\mathbf{f}_2 + \dots + a_{m2}\mathbf{f}_m \\ \dots \\ \mathcal{A}(\mathbf{e}_n) = a_{1n}\mathbf{f}_1 + a_{2n}\mathbf{f}_2 + \dots + a_{mn}\mathbf{f}_m \end{cases}$$

и $\mathbf{x} = x_1 \mathbf{e}_1 + x_2 \mathbf{e}_2 + \ldots + x_n \mathbf{e}_n$. Тогда

$$\mathcal{A}(\mathbf{x}) = x_1(a_{11}\mathbf{f}_1 + a_{21}\mathbf{f}_2 + \dots + a_{m1}\mathbf{f}_m) + x_2(a_{12}\mathbf{f}_1 + a_{22}\mathbf{f}_2 + \dots + a_{m2}\mathbf{f}_m) + \dots \\ x_n(a_{1n}\mathbf{f}_1 + a_{2n}\mathbf{f}_2 + \dots + a_{mn}\mathbf{f}_m).$$

Отсюда $\mathcal{A}(\mathbf{x})$ в базисе $B_2 = (\mathbf{f}_1, \mathbf{f}_2, \dots, \mathbf{f}_m)$ имеет координаты:

$$\begin{pmatrix} a_{11} & a_{12} & \dots & a_{1n} \\ a_{21} & a_{22} & \dots & a_{2n} \\ \dots & \dots & \dots & \dots \\ a_{m1} & a_{m2} & \dots & a_{mn} \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}.$$

Переход к новому базису

Теорема

Пусть дана матрица A линейного оператора $\mathcal{A}:\mathcal{L} o\mathcal{L}$ в базисе B(пространства \mathcal{L}). Пусть C есть матрица перехода от базиса B к базису B'(пространства \mathcal{L}). Тогда матрица A' линейного оператора \mathcal{A} в базисе B'есть $C^{-1}AC$.

Доказательство. Пусть ${f u}$ есть произвольный вектор пространства ${\cal L}$ с

доказательство. Пусть
$$\mathbf u$$
 есть произвольный вектор пространства $\mathcal L$ с координатами $\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix}$ в базисе B и $\begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$ в базисе B' . Тогда $\begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = C \cdot \begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$. Координаты вектора $\mathcal A(\mathbf u)$ в базисе B есть $A \cdot \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} = AC \cdot \begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$, а в базисе B' они есть $A \cdot \begin{pmatrix} x_1' \\ x_2' \\ \dots \\ x_n' \end{pmatrix}$.