How to simulate large signals for precision matrices

Miaoyan Wang, Oct 19, 2020

Scheme 1: simulate covariance matrix S and then obtain precision matrix Ω by converting S.

Scheme 2: simulate precision matrix Ω and then obtain covariance S from Ω .

Goal: precision matrix should be as sparse as possible.

Criteria: Write $\Omega = \Omega_{\text{diag}} + \Omega_{\text{off}}$ and $S = S_{\text{diag}+S_{\text{off}}}$. More proper notion of signal levels should be

$$\mathrm{signal}_{\mathrm{pre}} = \frac{\lambda_r \left(\boldsymbol{\Omega}_{\mathrm{off}} \right)}{\lambda_{r+1} \left(\boldsymbol{\Omega}_{\mathrm{off}} \right)} \quad \text{or} \quad \mathrm{signal}_{\mathrm{cov}} = \frac{\lambda_r \left(\boldsymbol{S}_{\mathrm{off}} \right)}{\lambda_{r+1} \left(\boldsymbol{S}_{\mathrm{off}} \right)},$$

where r is the target rank.

Two examples verified:

- 1. dense precision (random graph) \rightarrow covariance with exchangeable off-diagonals \rightarrow covariance with small eigen-gap.
- 2. Hub network \rightarrow a small number of dense rows/columns in Ω , and others sparse \rightarrow covariance with large eigen-gap.