GOBIERNO CONSTITUCIONAL DEL ESTADO LIBRE Y SOBERANO DE OAXACA INSTITUTO ESTATAL DE EDUCACIÓN PÚBLICA DE OAXACA COORDINACIÓN GENERAL DE PLANEACIÓN EDUCATIVA COORDINACIÓN GENERAL DE EDUCACIÓN MEDIA SUPERIOR Y SUPERIOR

PROGRAMA DE ESTUDIOS

NOMBRE DE LA ASIGNATURA	
	Diseño de Sistemas de Control

CICLO	CLAVE DE LA ASIGNATURA	TOTAL DE HORAS
Sexto Semestre	140602	85

OBJETIVO(S) GENERAL(ES) DE LA ASIGNATURA

Capacitar al estudiante en el diseño de sistemas de control, a través de aplicar métodos de diseño considerando soluciones de modelos de sistemas, con la finalidad de que puedan resolver problemas de ingeniería.

TEMAS Y SUBTEMAS

1. Introducción al diseño de sistemas de control

- 1.1 Consideraciones de diseño
- 1.2 Controladores clásicos por realimentación
- 1.3 Diseño de sistemas de control mediante el método del lugar de las raíces y diseño de prueba de Routh

2. Diseño en el dominio de la frecuencia

- 2.1 Introducción
- 2.2 Diseño para un desempeño específico
- 2.3 Diseño por compensación
- 2.4 Controladores clásicos y ejemplos no lineales
- 2.5 Simulación y discusión

3. Configuraciones de control de lazos múltiples y de otros tipos

- 3.1 Introducción
- 3.2 Configuración de realimentación y de cascada
- 3.3 Sistemas de control multivariable
- 3.4 Observadores de estado y el control adaptable
- 3.5 Control óptimo en tiempo continuo y control H_∞

4. Sistemas de control de tiempo discreto

- 4.1 Introducción
- 4.2 Uso de computadoras en los sistemas de control
- 4.3 Controladores digitales de lazo simple
- 4.4 Diseño en el espacio de estado de tiempo discreto
- 4.5 Introducción al control óptimo de tiempo discreto
- 5. Proyecto final: Realización de sistemas de control por computadora

ACTIVIDADES DE APRENDIZAJE

Sesiones de clases dirigidas por el profesor. Las sesiones se desarrollarán utilizando medios de apoyo didáctico como son la computadora, los retroproyectores y la videograbadora. Asimismo, se desarrollarán programas computacionales sobre los temas y los problemas del curso.

CRITERIOS Y PROCEDIMIENTOS DE EVALUACIÓN Y ACREDITACIÓN

Al inicio del curso el profesor indicará el procedimiento de evaluación que deberá comprender, al menos tres evaluaciones parciales que tendrá una equivalencia del 50% y un examen final que tendrá 50%. Las evaluaciones serán escritas, orales y prácticas; éstas últimas, se asocian a la ejecución exitosa y a la documentación de la solución de programas asociados a problemas sobre temas del curso; la suma de estos dos porcentajes dará la calificación final.

Además se considerará el trabajo extra-clase, la participación durante las sesiones del curso y la asistencia a las asesorías.

BIBLIOGRAFÍA (TIPO, TÍTULO, AUTOR, EDITORIAL, AÑO Y N° DE EDICIÓN)

Libros Básicos:

Dinámica de Sistemas y Control, Umez-Eronini, E., España: Ed. Thomson Paraninfo, S. A., 2001.

Mechatronics: Electronic Control System in Mechanical Engineering, Bolton, W., Ed. England: Longman Scientific and Technical, Third Edition, 1999.

Automatic Control Systems, Kuo, B. C. y Golnaraghi, Ed. Addison Wesley, 8th Edition, 2002.

Libros de consulta:

Modern Control Systems, Dorf, R. y Bishop, R., Ed. Prentice Hall Inc, 9th Edition, 2001.

Ingeniería de Control Moderna, Ogata, K., Ed. Prentice Hall Inc, 4^a Edición, 2005.

Problemas de Ingeniería de Control Utilizando MATLAB -un enfoque práctico, Ogata, K., Ed. Prentice Hall Inc, 1999.

PERFIL PROFESIONAL DEL DOCENTE

Ingeniero mecatrónico, mecánico, mecánico electricista, preferentemente con postgrado y con experiencia en diseño y construcción de sistemas mecatrónicos.