${\bf Suites, La\ Pratique}_{\bf Corrig\'e}$

DARVOUX Théo

Novembre 2023

Exercices.	
Avant de parler de convergence	2
Exercice 13.1	2
Exercice 13.2	2
Exercice 13.3	2
Exercice 13.4	3
Exercice 13.5	3
Exercice 13.6	4
Exercice 13.7	4
Encadrement	4
Exercice 13.8	4
Exercice 13.9	4
Exercice 13.10	5
Monotonie.	5
Exercice 13.11	5
Exercice 13.12	5
Exercice 13.13	6
Exercice 13.14	6
Exercice 13.15	7
Exercice 13.16	7
Modes de définition particulier d'une suite	8
Exercice 13.17	8

Une suite croissante est une fonction croissante sur \mathbb{N} .

Démontrer que le titre de l'exercice dit vrai, c'est-à-dire, pour une suite réelle $(u_n)_{n\in\mathbb{N}}$ l'équivalence entre

1. $\forall n \in \mathbb{N} \ u_{n+1} \ge u_n$.

2. $\forall (n,p) \in \mathbb{N}^2 \ n \leq p \Longrightarrow u_n \leq u_p$.

Supposons 2, montrons 1.

Soit $n \in \mathbb{N}$

On a $n \leq n+1$. D'après 2, $u_n \leq u_{n+1}$. ez

Supposons 1, montrons 2.

Soit $(n, p) \in \mathbb{N}^2$ tels que $n \leq p$. On sait que $u_{n+1} \geq u_n$, $u_{n+2} \geq u_{n+1}$, $u_{n+3} \geq u_{n+2}$, etc...

Par récurrence triviale et par transitivité, pour tout entier $q \geq n$, $u_q \geq u_n$.

En particulier, $u_p \ge u_n$

Soit a un réel supérieur à 1 et $(u_n)_{n\geq 0}$ la suite définie par $\forall n\in\mathbb{N}\ u_n=\frac{a^n}{n!}$.

Démontrer que l'ensemble des termes de la suite possède un maximum, qu'on exprimera en fonction de a. (u_n) est strictement positive sur \mathbb{N} .

Soit $n \in \mathbb{N}$.

On peut donc écrire : $\frac{u_{n+1}}{u_n} = \frac{a}{n+1}$. Ainsi, (u_n) est croissante $(a \ge n+1)$ puis décroissante $(a \le n+1)$, ce qui implique qu'un maximum existe. Ce maximum est atteint lorsque a = n + 1 c'est à dire quand n = |a|.

Ainsi, le maximum de la suite u est : $\frac{a^{\lfloor a \rfloor}}{|a|!}$

Exercice 13.3 $[\diamondsuit \lozenge \lozenge]$

Pour $n \in \mathbb{N}$, on pose

$$u_n = \sum_{k=n+1}^{2n} \frac{k \sin k}{k^2 + 1}.$$

Prouver que la suite (u_n) est bornée.

Soit $n \in \mathbb{N}$, on a : $-1 \le \sin n \le 1$. Donc :

$$\left| \sum_{k=n+1}^{2n} \frac{k \sin k}{k^2 + 1} \right| \le \sum_{k=n+1}^{2n} \frac{k}{k^2 + 1}$$

$$\le \sum_{k=n+1}^{2n} \frac{n+1}{(n+1)^2 + 1}$$

$$\le \frac{n^2 + n}{n^2 + 2n + 2}$$

$$< 1$$

Majorer en valeur absolue c'est borner

Exercice 13.4 $[\blacklozenge \lozenge \lozenge]$

Soit $\alpha \in]0,1[$ et (u_n) la suite définie par $\begin{cases} u_0 = \alpha(1-\alpha) \\ \forall n \geq 0 \ u_{n+1} = (1-\alpha)u_n + \alpha(1-\alpha) \end{cases}$

- 1. Exprimer le terme général de la suite en fonction de α et n.
- 2. Donner $\lim u_n$.
- 1. Soit $n \in \mathbb{N}$.

On pose l'équation au point fixe : $x = (1 - \alpha)x + \alpha(1 - \alpha)$.

Sa solution est : $x = 1 - \alpha$.

On a: $u_{n+1} - (1 - \alpha) = (1 - \alpha)u_n + \alpha(1 - \alpha) - (1 - \alpha)$.

Ainsi, $u_{n+1} + \alpha - 1 = (1 - \alpha)(u_n + \alpha - 1)$.

On pose $v_n := u_n + \alpha - 1$. Par définition, v est géométrique, de raison $1 - \alpha$.

Son terme général est : $v_n = v_0(1-\alpha)^n$.

Or $v_0 = u_0 + \alpha - 1 = \alpha(1 - \alpha) + \alpha - 1 = (\alpha - 1)(1 - \alpha)$.

On en déduit que $v_n = (\alpha - 1)(1 - \alpha)^{n+1}$.

Finalement, $u_n = (\alpha - 1)(1 - \alpha)^{n+1} - \alpha + 1$.

Exercice 13.5 $[\Diamond \Diamond \Diamond]$

Soit $\theta \in \mathbb{R}$.

1. Donner la forme du terme général d'une suite $(u_n)_{n\in\mathbb{N}}$ de $\mathbb{R}^{\mathbb{N}}$ telle que

$$\forall n \in \mathbb{N} \ u_{n+2} - 2\cos(\theta)u_{n+1} + u_n = 0.$$

2. Supposons dans cette question que $\theta \notin \pi \mathbb{Z}$. Donner sous forme factorisée le terme général de l'unique suite (u_n) satisfaisant la relation ci-dessus et telle que $u_0 = u_1 = 1$.

Polynome caractéristique : $r^2 - 2\cos(\theta)r + 1$. $\Delta = -4\sin^2(\theta)$. $r_1 = \cos(\theta) + i\sin(\theta)$ et $r_2 = \cos(\theta) - i\sin(\theta)$.

Lorsque $\theta \in \pi \mathbb{Z}$: $\exists ! (\lambda, \mu) \in \mathbb{R}^2 \ \forall n \in \mathbb{N}, \ u_n = \lambda n \cos^n(\theta) + \mu \cos^n(\theta)$.

Lorsque $\theta \notin \pi \mathbb{Z}$: $\exists ! (\lambda, \mu) \in \mathbb{R}^2 \ \forall n \in \mathbb{N}, \ u_n = \lambda \cos(n\theta) + \mu \sin(n\theta)$.

2. Soient $\lambda, \mu \in \mathbb{R}$ tels que $\forall n \in \mathbb{N}, u_n = \lambda \cos(n\theta) + \mu \sin(n\theta)$.

On a $u_0 = \lambda = 1$ et $u_1 = \cos(\theta) + \mu \sin(\theta) = 1$ donc $\mu = \frac{1 - \cos(\theta)}{\sin(\theta)}$

Ainsi, $\forall n \in \mathbb{N}n, \ u_n = \cos(n\theta) + \frac{1 - \cos(\theta)}{\sin(\theta)}\sin(n\theta)$

Comment tu factorises ça wtf

Exercice 13.6 $[\Diamond \Diamond \Diamond]$

Soit (u_n) , définie par récurrence par $\begin{cases} u_0 = 1 \\ \forall n \geq 0, \ u_{n+1} = 3u_n + 2^n \end{cases}$

- 1. Prouver qu'il existe une suite (a_n) géométrique de raison 2 qui satisfait la relation de récurrence.
- 2. Donner le terme général de (u_n) .
- 1. Soit $n \in \mathbb{N}$ et soit (a_n) une suite géométrique de raison 2. On a :

$$\forall n \in \mathbb{N}, \ a_n = a_0 2^n$$

On cherche (a_n) telle que $a_{n+1} = 3a_n + 2^n = 3a_02^n + 2^n = 2^n(3a_0 + 1)$.

Posons $a_0 = -1$. On a $a_{n+1} = 2^n(-2) = -2^{n+1} = a_0 2^{n+1}$.

Ainsi, la suite géométrique (a_n) de raison 2 et de premier terme -1 satisfait la relation de récurrence.

2. On a $u_{n+1} - 2a_n = 3u_n + 2^n - 2a_n \iff u_{n+1} - a_{n+1} = 3(u_n - a_n)$.

On pose $v_n := u_n - a_n$. Alors $v_0 = u_0 - a_0 = 2$ et $v_n = 2 \cdot 3^n$.

On en déduit que $u_n = v_n + a_n = 2 \cdot 3^n - 2^n = 2(3^n - 2^{n-1})$

On a $u_{n+1} = 2(3^{n+1} - \cdot 2^n)$

 $\begin{cases} u_0 > 0; u_1 > 0 \\ \forall n \ge 0 \ u_{n+2} = \sqrt{u_{n+1} u_n} \end{cases}.$ Étudier la suite (u_n) , définie par récurrence par

Soit $n \in \mathbb{N}$.

On a:

$$u_{n+2} = \sqrt{u_{n+1}u_n} \iff \ln(u_{n+2}) = \ln(\sqrt{u_{n+1}u_n})$$

 $\iff \ln(u_{n+2}) = \frac{1}{2}(\ln(u_{n+1}) + \ln(u_n))$

On pose $v_n := \ln(u_n)$.

On obtient : $v_{n+2} = \frac{1}{2}v_{n+1} + \frac{1}{2}v_n$.

C'est une suite récurrente linéaire d'ordre 2!

Polynome caractéristique : $r^2 - \frac{1}{2}r - \frac{1}{2}$. $\Delta = \frac{9}{4}$. $r_1 = 1$ et $r_2 = -\frac{1}{2}$.

Ainsi, $v_n = \lambda + \frac{\mu(-1)^n}{2^n} \mid (\lambda, \mu) \in \mathbb{R}^2$. Soient $(\lambda, \mu) \in \mathbb{R}^2$ et v_n une telle suite.

Alors $v_0 = \lambda + \mu$ et $v_1 = \lambda - \frac{\mu}{2}$.

On a $v_0 + 2v_1 = 3\lambda = \ln(u_0 u_1^2)$. Donc $\lambda = \ln(\sqrt[3]{u_0 u_1^2})$.

On a $u_n = e^{\lambda} \cdot e^{\frac{\mu(-1)^n}{2^n}} \to e^{\lambda}$. Ainsi, $u_n \to \sqrt[3]{u_0 u_1^2}$.

Soit a > 1. Pour $n \ge 1$, on définit $u_n = (|a^n|)^{1/n}$.

Montrer que (u_n) est convergente et donner sa limite.

On a:

$$a^{n} - 1 < |a^{n}| \le a^{n} \iff (a^{n} - 1)^{\frac{1}{n}} < |a^{n}|^{\frac{1}{n}} \le a$$

П

On peut appliquer la fonction $x \mapsto \frac{1}{n}$: elle est croissante sur \mathbb{R}_+ et a > 1.

D'une part, $(a^n - 1)^{\frac{1}{n}} = (a^n (1 - \frac{1}{a^n}))^{\frac{1}{n}} = a(1 - \frac{1}{a^n})^{\frac{1}{n}} \to a$.

D'autre part, $a \rightarrow a \ (big \ brain)$

Ainsi, d'après le théorème des gendarmes : $|a^n|^{\frac{1}{n}} \to a$.

Pour tout $n \in \mathbb{N}^*$, on note $u_n = \prod_{n=1}^{n} \left(1 + \frac{k}{n^2}\right)$.

1. Montrer que pour tout $x \ge 0$, $x - \frac{x^2}{2} \le \ln(1+x) \le x$.

2. Montrer que u converge et déterminer sa limite.

1. On pose $f: x \mapsto \ln(1+x) - x$. f est dérivable comme somme et $f': x \mapsto -\frac{x}{1+x}$. f décroissante sur \mathbb{R}_+ . Or f(0) = 0 donc $f(x) \le 0$. Ainsi, $\ln(1+x) \le x$.

On pose $g: x \mapsto x - \frac{x^2}{2} - \ln(1+x)$. g est dérivable comme somme, $g': x \mapsto -\frac{x^2}{1+x}$. g décroissante sur \mathbb{R}_+ .

Or g(0) = 0 donc $g(x) \le 0$. Ainsi, $x - \frac{x^2}{2} \le \ln(1+x)$.

2. Posons $v_n := \ln(u_n)$. Alors $v_n = \sum_{k=1}^n \ln\left(1 + \frac{k}{n^2}\right)$.

Alors $\sum_{k=1}^{n} \left(\frac{k}{n^2} - \frac{k^2}{2n^4} \right) \le v_n \le \sum_{k=1}^{n} \frac{k}{n^2} : \frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \le v_n \le \frac{n+1}{2n}.$

Par théorème des gendarmes, $v_n \to \frac{1}{2}$. Ainsi, $u_n \to \sqrt{e}$.

Étudier la convergence de la suite de terme général $\frac{1!+2!+...+n!}{n!}$.

Soit (u_n) une suite de terme général : $\frac{1}{n!} \sum_{k=1}^{n} k!$.

Soit $n \in \mathbb{N}$.

On sait d'avance que $u_n \ge 1$, puisque $\sum_{k=1}^n k! \ge n!$.

De plus,

$$\frac{1}{n!} \sum_{k=1}^{n} k! = \frac{n!}{n!} + \frac{(n-1)!}{n!} + \frac{1}{n!} \sum_{k=1}^{n-2} k!$$

$$\leq 1 + \frac{1}{n} + \frac{(n-2)(n-2)!}{n!}$$

$$= 1 + \frac{1}{n} + \frac{n-2}{n(n-1)}$$

$$\longrightarrow 1$$

D'après le théorème des gendarmes (AQAB), $u_n \to 1$.

Exercice 13.11 $[\Diamond \Diamond \Diamond]$

Pour $n \in \mathbb{N}$, on pose $I_n = \int_0^{\frac{\pi}{4}} (\arctan(x))^n dx$. Justifier que (I_n) est convergente.

Soit $n \in \mathbb{N}$

Pour $x \in [0, \frac{\pi}{4}]$, on a $\arctan(x)^n \in [0, 1]$ donc $\arctan^{n+1}(x) \leq \arctan^n(x)$.

Alors:

$$I_{n+1} - I_n = \int_0^{\frac{\pi}{4}} \left(\arctan^{n+1}(x) - \arctan^n(x)\right) dx \le 0.$$

Ainsi, I_n est décroissante et minorée par $0:I_n$ est convergente d'apres le TLM.

Exercice 13.12 $[\Diamond \Diamond \Diamond]$

Soit α un réel de]0,1[. Pour tout $n \in \mathbb{N}^*$, on pose $u_n = \prod_{k=1}^n (1 + \alpha^k)$

- 1. Justifier brièvement que $\forall x \in \mathbb{R} \ 1 + x \leq e^x$.
- 2. Démontrer que (u_n) est une suite convergente, et que $\lim u_n \leq \exp(\frac{\alpha}{1-\alpha})$.
- 1. Soit $x \in \mathbb{R}$, par convexité de l'exponentielle, elle est supérieure à toutes ses tangentes, en particulier x + 1.
- 2. Puisque $\forall x \in \mathbb{R}, \ 1 + x \le e^x$, on a $\forall k \in \mathbb{N}, \ 1 + \alpha^k \le e^{\alpha^k}$.

Ainsi:

$$\prod_{k=1}^{n} (1+\alpha^k) \le \prod_{k=1}^{n} e^{\alpha^k} = \exp(\sum_{k=1}^{n} \alpha^k) = \exp(\frac{\alpha - \alpha^{n+1}}{1-\alpha}) \le \exp\left(\frac{\alpha}{1-\alpha}\right)$$

On a $u_n > 0$ donc on peut écrire :

$$\frac{u_{n+1}}{u_n} = 1 + \alpha^{n+1} > 1$$

Donc (u_n) est croissante et majorée, ainsi elle converge vers un réel $l \leq \exp(\frac{\alpha}{1-\alpha})$

Soient (u_n) et (v_n) deux suites définies par

$$\forall n \in \mathbb{N}^* \quad u_n = \sum_{k=n+1}^{2n} \frac{1}{k} \text{ et } v_n = u_n + \frac{1}{n}.$$

Démontrer que (u_n) et (v_n) convergent vers une même limite.

Soit $n \in \mathbb{N}$.

On a:

$$u_{n+1} - u_n = \sum_{k=n+2}^{2n+2} \frac{1}{k} - \sum_{k=n+1}^{2n} \frac{1}{k} = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n+1} = \frac{1}{4n^2 + 6n + 2} > 0$$

$$v_{n+1} - v_n = u_{n+1} + \frac{1}{n+1} - u_n - \frac{1}{n} = \frac{1}{2n+2} + \frac{1}{2n+1} - \frac{1}{n} = -\frac{3n+2}{2n(n+1)(2n+1)} < 0$$

Alors (u_n) et (v_n) sont monotones de monotonies contraires.

On a:

$$u_n - v_n = -\frac{1}{n} \longrightarrow 0$$

Ainsi, (u_n) et (v_n) sont adjacentes : elles convergent vers la même limite.

Soient (u_n) et (v_n) deux suites définies par $u_0 > v_0 > 0$ et

$$u_{n+1} = \frac{u_n + v_n}{2}$$
; $v_{n+1} = \frac{2u_n v_n}{u_n + v_n}$.

Montrer que ces deux suites convergent vers une limite commune. En examinant la suite $(u_n v_n)$, exprimer cette limite en fonction de u_0 et v_0 .

Soit $n \in \mathbb{N}$. On a $u_{n+1} - u_n = \frac{v_n - u_n}{2}$. Montrons $\mathcal{P}_n : \langle v_n - u_n \leq 0 \rangle$.

 \mathcal{P}_0 est évident. On suppose \mathcal{P}_n pour un n fixé. Montrons \mathcal{P}_{n+1} . On a $v_{n+1} - u_{n+1} = \frac{2u_nv_n}{u_n+v_n} - \frac{u_n+v_n}{2} = \frac{2u_nv_n-u_n^2-v_n^2}{2(u_n+v_n)} = -\frac{(u_n-v_n)^2}{2(u_n+v_n)} \le 0$. \mathcal{P}_{n+1} est vrai. Par récurrence, \mathcal{P}_n est vrai pour tout $n \in \mathbb{N}$. On a $v_{n+1} - v_n = \frac{2u_nv_n}{u_n+v_n} - \frac{v_n(u_n+v_n)}{u_n+v_n} = \frac{v_n(u_n-v_n)}{u_n+v_n} \ge 0$. Ainsi, u est décroissante, v est croissante.

u est minorée par 0 : elle converge vers une limite $l \in \mathbb{R}$.

Puisque $u_{n+1}v_{n+1} = \frac{u_n+v_n}{2} \cdot \frac{2u_nv_n}{u_n+v_n} = u_nv_n$, (u_nv_n) est constante et $u_nv_n = u_0v_0$. On obtient que v_n converge aussi vers une limite $m \in \mathbb{R}$.

On a: $u_{n+1} = \frac{u_n + v_n}{2} \longrightarrow \frac{l+m}{2}$.

Ainsi, $l = \frac{l+m}{2}$ donc l = m. Les deux suites convergent vers la même limite.

Puisque $u_n v_n = u_0 v_0$, $lm = u_0 v_0$ donc $l = m = \sqrt{u_0 v_0}$

Pour $n \in \mathbb{N}^*$

$$u_n = \sum_{k=1}^n \frac{1}{k}$$
 et $v_n = \sum_{k=1}^n \frac{1}{k^2}$

- 1. Pour chacune des deux suites u et v, faire un pronostic : convergente ou divergente ?
- 2. Justifier que pour tout entier k supérieur à 2, on a $\frac{1}{k^2} \le \frac{1}{k(k-1)} = \frac{1}{k-1} \frac{1}{k}$.

En déduire que la suite (v_n) est majorée puis qu'elle converge vers une limite finie.

- 3. (a) Montrer que pour tout $n \in \mathbb{N}^*$, $u_{2n} u_n \ge 1/2$.
- (b) Démontrer par l'absurde que (u_n) tend vers $+\infty$.
- 1. Conjecture : u diverge et v converge.
- 2. Soit $k \in \mathbb{N} \mid k \geq 2$ et $n \in \mathbb{N}^*$. On a $k^2 \geq k^2 k \iff \frac{1}{k^2} \leq \frac{1}{k(k-1)}$.

On a:

$$1 + \sum_{k=2}^{n} \frac{1}{k^2} \le 1 + \sum_{k=1}^{n} \frac{1}{k} - \sum_{k=2}^{n} \frac{1}{k} \le 1 + \frac{1}{n}$$

Et:

$$v_{n+1} - v_n = \frac{1}{(n+1)^2} \ge 0$$

v est croissante et majorée : elle converge vers une limite finie.

3. (a) Soit $n \in \mathbb{N}^*$.

$$u_{2n} - u_n = \sum_{k=n+1}^{2n} \frac{1}{k} \ge \sum_{k=n+1}^{2n} \frac{1}{2n} = \frac{1}{2}.$$

(b) Soit $n \in \mathbb{N}^*$.

Grâce au TLM, on sait que u_n tend soit vers $+\infty$, soit vers un réel.

Supposons que u tende vers une limite réelle, notée l.

On a alors, en passant à la limite que : $u_{2n} - u_n = \frac{1}{2} \Longrightarrow l - l = \frac{1}{2}$.

C'est absurde, donc $u_n \longrightarrow +\infty$.

Soit la suite (u_n) définie par

$$\forall n \in \mathbb{N}^* \ u_n = \sqrt{a_1 + \sqrt{a_2 + \dots + \sqrt{a_n}}}$$

où a_n est la nème décimale de π . Étudier la convergence de (u_n) .

On pose $v_n := \sqrt{9 + \sqrt{9 + ... + \sqrt{9}}}$, ainsi $\forall n \in \mathbb{N}$, $v_{n+1} = \sqrt{9 + v_n}$ et $v_0 = 3$ Soit \mathcal{P}_n la proposition : $\langle v_n \leq 9 \rangle$. Montrons \mathcal{P}_n pour tout $n \in \mathbb{N}$.

 \mathcal{P}_0 est immédiat. Supposons \mathcal{P}_n pour un n fixé. Montrons \mathcal{P}_{n+1} .

$$v_n \le 9 \iff v_n + 9 \le 18 \iff v_{n+1} \le \sqrt{18} \le 9.$$

Ainsi, v est majorée par 9.

On a
$$u_1 = \sqrt{3}$$
, $u_2 = \sqrt{3 + \sqrt{1}}$, $u_3 = \sqrt{3 + \sqrt{1 + \sqrt{4}}}$...

Or $\sqrt{\cdot}$ est croissante et $3 \le 3 + \sqrt{1} \le 3 + \sqrt{1 + \sqrt{4}} \le \dots$ car $\forall n \in \mathbb{N}^*$ $a_n \ge 0$.

Alors (u_n) est croissante et majorée par 9.

D'après le théorème de la limite monotone, (u_n) converge vers $l \leq 9$.

Étudier la suite u définie par $\begin{cases} u_0 \in \mathbb{R} \\ \forall n \in \mathbb{N} \ u_{n+1} = \frac{1}{3}(4 - u_n^2) \end{cases}$

Posons $f: x \mapsto \frac{1}{3}(4-x^2)$. f est définie et dérivable sur \mathbb{R} .

On a: $f': x \mapsto -\frac{2}{3}x$ et:

x	$-\infty$	-4	0	1	$+\infty$
f'(x)		+	0	_	
f	$-\infty$ —	4	$\longrightarrow \frac{4}{3}$	1	$\rightarrow -\infty$

 \mathbb{R} est stable par f, (u_n) est bien définie.

Soit $l \in \mathbb{R}$. On a $f(l) = l \iff \frac{1}{3}(4 - l^2) = l \iff l^2 + 3l - 4 = 0$. $r_1 = 1, r_2 = -4$.

Les points fixes de f sont donc en -4 et 1.

On remarque que $]-\infty,-4]$ est un intervalle stable par f sur lequel f est monotone.

Cas n°1: $u_0 \in \{-4, 1\}$

Remarque : Lorsque $u_0 \in \{1, 4\}$, on a $u_1 \in \{-4, 1\}$: même raisonnement.

Ce sont les points fixes de $f:(u_n)$ est convergente vers u_0 .

Cas n°2 : $u_0 \in]-\infty, -4[.$

Remarque : Lorsque $u_0 \in]4, +\infty[$, on a $u_1 \in]-\infty, -4[$: même raisonnement.

On a f croissante sur $]-\infty,-4]$, alors (u_n) est monotone sur cet intervalle.

De plus, $u_1 - u_0 = \frac{1}{3}(4 - u_0^2) - u_0 < 0$, alors (u_n) est décroissante.

Enfin, on a que u_0 est inférieur à tout point fixe de f:u ne peut pas converger, elle diverge vers $-\infty$

Cas n°3: $u_0 \in]-4,4[.$

On a que]-4,4[est un intervalle stable par f sur lequel f est croissante puis décroissante.

De plus, $\forall x \in]-4,1[, f(x)-x>0 \text{ et } \forall x \in]1,4[, f(x)-x<0 \text{ et pour } x=1, f(x)-x=0.$

Ainsi, (u_n) est croissante sur]-4,1] et décroissante sur [1,4[.

Aussi, $\forall n \in \mathbb{N}, u_n \in [2, 4[\Rightarrow u_{n+1} \in]-4, 0] \text{ et } \forall n \in \mathbb{N}, u_n \in]1, 2] \Rightarrow u_{n+1} \in [0, 1[$

Et: $\forall n \in \mathbb{N}, \ u_n \in [0,1] \Rightarrow u_{n+1} \in [1,\frac{4}{3}].$

Par théorème de la limite monotone, (u_n) converge vers 1.