Predictive Modeling for Traffic Volume Forecasting

Using Machine Learning (XGBoost) on Real-World

Traffic Data

Introduction:

- > Traffic congestion is a critical urban challenge.
- > Accurate prediction of traffic volume helps in better road planning and congestion management.
- > This project builds a machine learning model to predict traffic volume using historical and contextual data (like time, weather, incidents).
- > The XGBoost model is used for robust regression performance.

Dataset Overview:

♦ Dataset columns:{

Timestamp, location, traffic_volume, temperature, weather, is_holiday, incident, event}

♦ Target Variable:{

traffic_volume }

- ♦ Features include both numerical and categorical data.
- Preprocessing was done to extract useful features from the timestamp and other variables.

Feature Engineering:

Extracted time-based features:

{hour, day_of_week}

Oreated lag features:

{lag_1, lag_2, lag_3}

Created rolling mean features:

{rolling_mean_3, rolling_mean_6}

Encoded categorical variables:

{weather, event using one-hot encoding}

Data Preprocessing:

- ♦ Checked for missing values and cleaned the data.
- Converted timestamp to datetime and extracted useful components.
- Applied one-hot encoding for categorical features.
- Prepared the final feature set for modeling.

Model Training:

Model used: XGBoost Regressor

❖ Parameters: n_estimators=100, learning_rate=0.1

❖ Split data: 80% training, 20% testing

Target: traffic_volume

Model Evaluation:

- ✓ Evaluation Metrics:
 - MAE (Mean Absolute Error)
 - RMSE (Root Mean Squared Error)
 - * R² Score
- ✓ Predicted traffic volume vs actual shown using line plot.
- ✓ Visualized performance over first 100 samples.

Feature Importance:

- * XGBoost provides feature importance scores.
- Most important features were:
- hour, day_of_week
- recent lag values and rolling_mean
- contextual info like weather and incident
- ❖ Bar chart used to display importance scores.

Conclusion & Future Work

- * XGBoost model successfully predicts traffic volume with good accuracy.
- Useful for real-time traffic monitoring and planning.
 - * Future enhancements:
 - ❖ Include real-time sensor data
 - Use deep learning (e.g., LSTM)
 - Deploy as a live dashboard or API

THANKYOU