SOLDADURA (II)

SOLDADURA CON ELECTRODO

Soldadura de Arco Manual (Soldadura con electrodo)

 El sistema de soldadura Arco Manual o SMAW, se define como el proceso en que se unen dos metales mediante una fusión localizada, producida por un arco eléctrico entre un electrodo metálico y el metal base que se desea unir.

Arco Eléctrico

- Al formarse el arco eléctrico se genera un intenso calor, que produce:
 - La fusión del núcleo metálico del electrodo y que formara parte del depósito.
 - ➤ La descomposición del recubrimiento que formará una atmosfera rica en CO₂, y la escoria necesarias para la protección del metal liquido.
 - Durante la solidificación, la capa de escoria ocupara la parte superior del cordón y protegerá al metal del deposito durante el enfriamiento.

Electrodos

 Los electrodos consisten en un núcleo o varilla metálica, rodeados por una capa de revestimiento, donde el núcleo es transferido hacia el metal base a través de una zona eléctrica generada por la corriente de soldadura.

Descripción del Proceso

Ventajas

- El equipo es relativamente simple, portátil y económico.
- La protección del metal de aporte y del charco de soldadura está incluida en el electrodo revestido.
- No requiere del suministro externo de un gas de protección o fundente granular.
- Es menos sensible a las corrientes de aire que los procesos que requieren de protección con gas.
- Puede ser utilizado en áreas de acceso limitado.
- Para la mayoría de las aleaciones comerciales existe disponibilidad de electrodos.

Limitaciones

- El operador requiere de una mayor habilidad que en los procesos de alambre.
- La aplicación es mas lenta que los procesos de alambre (tipo MIG/MAG).
- Se requiere de mayor tiempo de limpieza para los cordones.

• El electrodo reventida tiana la oficiancia mas bain.

Equipo Básico

Fuente de Fuerza

- Transforma la corriente eléctrica de la línea de alimentación a valores de amperaje y voltaje adecuados para establecer y mantener el arco de soldadura.
- Se prefiere del tipo de corriente constante y la característica más importante es la capacidad.

Fuente de Fuerza

- Los tipos más comunes son:
 - > Transformadores.
 - > Transformadores-rectificadores.
 - Motosoldadoras (Diesel ó Gasolina).
 - > Inversores.

Porta Electrodo

- Transfiere la corriente eléctrica del cable al electrodo.
- Está aislado para permitir la manipulación por el operador.
- Disponible en varias capacidades.

Pinza de Tierra

- Es el medio de conexión del cable de fuerza a la pieza de trabajo.
- Están disponibles en varios tamaños y configuraciones para diferentes aplicaciones.

Cables de Fuerza

Α	Longitud de cable en el circuito - ∅ A.W.G.					
	60´	100´	150´	200´	300´	400´
100	4	4	4	2	1	1/0
150	2	2	2	1	2/0	3/0
200	2	2	1	1/0	3/0	4/0
250	2	2	1/0	2/0		
300	1	1	2/0	3/0		
350	1/0	1/0	3/0	4/0		
400	1/0	1/0	3/0			
450	2/0	2/0	4/0			
500	2/0	2/0	4/0			
400	4/0	4/0	Operación automática (100% Ciclo de trabajo)			
800	4/0 (2)	4/0 (2)				
1200	4/0 (3)	4/0 (3)				

Corriente Alterna (AC)

- El sentido del flujo de corriente cambia 100 veces por segundo (frecuencia de 50 Hz).
- Se obtiene una penetración y una tasa de depósito media.
- Se reduce el soplo magnético.
- El equipo es mas económico.

Corriente Continua (DC)

- La corriente directa fluye continuamente en un solo sentido.
- Puede usarse con todos los tipos de electrodos recubiertos.
- Es la mejor opción para aplicaciones a bajos amperajes.
- El Sentido y la estabilidad de arco son mejores.
- Produce menos salpicadura

Amperaje

- Es la variable de mayor importancia en el proceso, determina:
 - La profundidad de penetración.
 - La tasa depósito.
 - > El volumen del cordón.

Depende del tipo y diámetro del electrodo, posición y

diseño de la junta.

Velocidad de Avance

- Depende del operador y es la rapidez con la que el charco o cráter se desplaza a lo largo de la junta.
- Al aumentar la velocidad de avance.
 - Se reduce el tamaño del cordón.
 - Se incrementa ligeramente la penetración.
- El Voltaje esta determinado por la longitud de arco (distancia de la punta del electrodo al charco).
 - A mayor voltaje se obtiene un cordón mas plano y ancho.

Relación Voltaje-Amperaje

Mantenimiento Mecánico. Prof. Ing. Luis Suárez

Efectos de las Variables

Fusión Incompleta:

- Velocidad de avance muy alta.
- Mayor diámetro de electrodo del necesario.

Socavado:

- Excesivo amperaje de soldadura.
- Voltaje demasiado alto.
- Velocidad de oscilación alta.

Porosidad de agujero de gusano:

- Causado por humedad o azufre en el acero.
- Superficies sucias.
- Demasiada humedad en la junta.