Sistemas de almacenamiento y procesado distribuido

Tema 3. Procesamiento en batch

© 2023 Javier Esparza Peidro - jesparza@dsic.upv.es

Contenido

- Introducción
- MapReduce
- Hadoop
- Spark

Procesamiento datos

- Tiene lugar siempre que se produce una transformación de datos
- Las fases principales son siempre las mismas: obtener la entrada, transformación de datos, generar la salida
- La transformación suele incluir diversas subfases: limpieza, conversión, filtrado, agrupación, etc.

Procesamiento datos

 Se enmarca en procesos más complejos: ciclo de vida de la ingeniería de datos

Fundamentals of Data Engineering. Joe Reis and Matt Housley. O'Reilly Media, Inc., 2022.

Procesamiento datos > Tipos

- Batch vs streaming
 - Batch: se procesan los datos en bloque
 - Streaming: se procesan los datos de manera contínua
- Online vs Offline
 - Online: el cliente envía consulta y espera respuesta de manera interactiva
 - Offline: el cliente no espera respuesta; se procesa en modo desconectado

- El término *batch* (lote) procede de los tiempos de tarjetas perforadas.
- Cada programa estaba contenido en un lote (batch) de tarjetas.
- Los programas se ejecutaban uno tras otro.

- Un proceso batch (job)
 - 1. Lee grandes volúmenes de datos (TB)
 - 2. Los procesa y genera datos de salida
 - 3. Escribe los resultados

- Un proceso batch (job)
 - No precisa interacción del usuario (off-line)
 - Se ejecuta de manera periódica/planificada
 - Medidas de rendimiento: tiempo de proceso, tareas/segundo

- Ejemplos de procesos batch:
 - Integración de información obtenida de múltiples fuentes: procesos ETL (Extract-Transform-Load)
 - Actualización (construcción) de índices sobre grandes volúmenes de datos
 - Aplicación periódica que aplica reglas de negocio sobre grandes volúmenes de datos
 - Machine learning (iterativo)
 - etc.

Procesamiento datos a escala

- Cuando el volumen de datos es muy grande
- Cuando el tiempo de proceso es muy grande
- Los cálculos no pueden tener lugar en una única máquina

Procesamiento datos a escala

 Deben ejecutarse en un clúster de máquinas, con tareas en paralelo, que se comunican entre sí

Procesamiento datos a escala

- Deben ejecutarse en un clúster de máquinas, con tareas en paralelo, que se comunican entre sí
- Es muy complejo: dividir en tareas, enviar y recibir datos, sincronizar, fallos, etc.

Para simplificar, se utilizan modelos de computación distribuida

task

Modelos de computación distribuida

 Proporciona abstracciones que facilitan la programación de algoritmos distribuidos

- Ejemplos
 - MPI (Message Passing Interface): mensajes

- Ejemplos
 - MPI (Message Passing Interface): mensajes
 - Memoria compartida: por debajo hay mensajes

- Ejemplos
 - MPI (Message Passing Interface): mensajes
 - Memoria compartida: por debajo hay mensajes
 - MapReduce: dos fases, tareas independientes

- Ejemplos
 - MPI (Message Passing Interface): mensajes
 - Memoria compartida: por debajo hay mensajes
 - MapReduce: dos fases, tareas independientes
 - Barrier: barreras de sincronización, tareas dependientes

Plataforma de computación distribuida

• El modelo es implementado por una plataforma de computación distribuida: Hadoop, Spark, etc.

¿Qué es?

• Es un modelo de programación en batch

- Es un modelo de programación en batch
- Permite procesar grandes volúmenes de datos en paralelo en grandes clústers

- Es un modelo de programación en batch
- Permite procesar grandes volúmenes de datos en paralelo en grandes clústers
- Original de <u>Google</u>; hoy en día existen múltiples implementaciones (Hadoop, Spark, Dryad, etc.)

- Es un modelo de programación en batch
- Permite procesar grandes volúmenes de datos en paralelo en grandes clústers
- Original de <u>Google</u>; hoy en día existen múltiples implementaciones (Hadoop, Spark, Dryad, etc.)
- Supone el comienzo de la "era Big Data"
- A partir de este modelo han surgido diversas extensiones que conforman el panorama Big Data actual

- Proporciona un esquema genérico aplicable a múltiples casos
- Abstrae las complejidades de bajo nivel (fraccionar datos, distribuir tareas a máquinas, gestionar fallos, equilibrar carga trabajo, etc.)

- Proporciona un esquema genérico aplicable a múltiples casos
- Abstrae las complejidades de bajo nivel (fraccionar datos, distribuir tareas a máquinas, gestionar fallos, equilibrar carga trabajo, etc.)
- Se basa en las primitivas funcionales Map y Reduce

Map

Transforma datos de entrada en datos de salida

```
map(fun, iter): iter

def double(n): return n + n

input = [1, 2, 3, 4]
output = map(double, input)
output = map(lambda a: a+a, input)
print(list(output)) # [2, 4, 6, 8]
```

Reduce (fold)

 Aplica una función a todos los elementos, y acumula: agregación, búsquedas, etc.

```
reduce(fun, iter, accum=None): any

def sum(a,b): return a+b

input = [1, 2, 3, 4]
output = reduce(sum, input, 0)
output = reduce(lambda a,b: a+b, input, 0)
print(output) # 10
```

Map + Reduce

• ¿Por qué no combinarlos?

Map

f f f f Transformación

Reduce

Agregación

- Múltiples problemas de procesamiento de datos se pueden adaptar a este patrón
 - 1. Se extrae información de una fuente de datos
 - 2. Se transforma la información
 - 3. Se efectúa algún cálculo agregado

- Ejemplo: Contar nº palabras total en texto
 - Fuente de datos: líneas de texto
 - Transformación: parsear (split), contar, emitir suma
 - Agregación: sumar

- Ejemplo: Contar nº palabras en texto
 - Fuente de datos: líneas de texto
 - Transformación: parsear (split) y emitir conteo individual (word,1)
 - Agregación: agrupar y sumar

- Ejemplo: Número accesos total al sistema
 - Fuente de datos: entradas en log [user, fecha]
 - Transformación: emitir 1
 - Agregación: sumar

- Ejemplo: Número accesos de root al sistema
 - Fuente de datos: entradas en log [user, fecha]
 - Transformación: parsear, filtrar y emitir 1
 - Agregación: sumar

- Ejemplo: Número accesos al sistema por usuario
 - Fuente de datos: entradas en log [user, fecha]
 - Transformación: parsear, y emitir conteo individual (usr,1)
 - Agregación: agrupar y sumar

- Ejemplo: Temperatura máxima al año
 - Fuente de datos: entradas en log [ciudad, temp, fecha]
 - Transformación: parsear, extraer temperatura, emitir
 - Agregación: comparar

- Ejemplo: Temperatura máxima por mes
 - Fuente de datos: entradas en log [ciudad, temp, fecha]
 - Transformación: parsear, emitir (mes,temperatura)
 - Agregación: agrupar y comparar

Propiedades > Map

Las tareas Map son independientes: fácilmente paralelizables

Map

f f f f f

f f f

Propiedades > Map

- Las tareas Map son independientes: fácilmente paralelizables
- Si una tarea falla, se puede relanzar, con el mismo resultado

Мар

Propiedades > Reduce

• Los resultados se acumulan en una tarea Reduce

Propiedades > Reduce

- Los resultados se acumulan en una tarea Reduce
- Se podría paralelizar en varias tareas Reduce, pero con resultados independientes

Propiedades > Reduce

- Los resultados se acumulan en una tarea Reduce
- Se podría paralelizar en varias tareas Reduce, pero con resultados independientes
- Si falla, hay que redistribuir los resultados y recomputar

Propiedades > Abstracción

- El programador sólo tiene que codificar el mapper y el reducer
- De todo lo demás (distribución de datos y tareas, ordenación, fallos, etc.) se encarga "el sistema"

Implementación

- Generalmente MapReduce se implementa como un proceso con tres fases:
 - 1. Fase *map*
 - 2. Fase shuffle/sort
 - 3. Fase reduce

Implementación > 1. Fase map

- Una función, el mapper, recibe pares (k1,v1)
- Para cada par, produce cero o más pares (k2,v2), es decir, list((k2,v2))

Implementación > 1. Fase map

• Ejemplo: contar palabras

Implementación > 2. Fase shuffle/sort

 Los resultados de map, list((k2,v2)), se agrupan (por clave) y ordenan (por clave), dando lugar a (k2, list(v2))

Implementación > 2. Fase shuffle/sort

• Ejemplo: contar palabras

Implementación > 3. Fase reduce

- Una función, el reducer, recibe la clave y valores asociados a dicha clave, (k2, list(v2)), en orden
- Y produce cero o más pares (k3,v3), es decir, list((k3,v3))

Implementación > 3. Fase reduce

• Ejemplo: contar palabras

Implementación > Las tres fases

Map abre los resultados, reduce los recoge

Diseñar mapper y reducer > Ejemplo I

El contador de palabras en pseudocódigo

```
def mapper(document):
    words = tokenize(document)
    for word in words:
        emit(word, 1)

def reducer(word, values):
    sum = 0
    for value in values: sum += value
    emit(word, sum)
```

Diseñar mapper y reducer > Ejemplo II

Indexación de documentos

Diseñar mapper y reducer > Ejemplo II

Indexación de documentos

Diseñar mapper y reducer > Ejemplo II

Indexación de documentos en pseudocódigo

```
def mapper(document):
    words = tokenize(document)
    for word in words:
        emit(word, document.name)

def reducer(word, values):
    emit(word, str(values))
```

Simulación en una máquina

- Es sencillo simular un programa MapReduce con Unix en una única máquina
- Redirecciones de entrada/salida y comando sort
- Mapper y reducer leen/escriben en stdin/stdout

Ejercicio 1

Ejercicio 1

```
#!/bin/python3
import sys
def map(input):
    for line in input:
        words = line.split()
        for word in words:
            print(f"{word} 1")
map(sys.stdin)
```


Ejercicio 1

```
#!/bin/python3
import sys
def reduce(input):
  curr_word = None; curr_count = 0
  for line in input:
    word, count = line.split()
    if word == curr_word: curr_count += int(count)
    else:
      if curr_word: print(f"{curr_word} {curr_count}")
      curr_word = word; curr_count = int(count)
  if curr_word == word: print(f"{curr_word} {curr_count}")
reduce(sys.stdin)
```


Ejercicio 1

```
$ cat el_quijote.txt | python3 map.py | sort -t 1 |
python3 reduce.py
```

Escalar MapReduce

- MapReduce está diseñado para ser escalable
- Si se incrementa la infraestructura se obtienen mejores resultados

Escalar MapReduce

- MapReduce está diseñado para ser escalable
- Si se incrementa la infraestructura se obtienen mejores resultados
- Múltiples mappers, múltiples reducers, en paralelo

Escalar MapReduce > Runtime

- Es necesario un runtime/framework que gestione todo el proceso:
 - Asignación de tareas map/reduce a nodos
 - Distribución de datos: mover tareas a los datos
 - Sincronización: agrupar, ordenar datos intermedios
 - Detección de errores y reinicios

¿Qué es?

- https://hadoop.apache.org/
- Plataforma de computación open source distribuida, fiable y escalable
- Originalmente concebida para ejecutar trabajos batch (MapReduce) en clústers con miles de máquinas
- Gestiona volúmenes de PetaBytes
- Utilizado por Yahoo!, Facebook, Twitter, ...

¿Qué es?

 En la actualidad: sistema ficheros distribuido + plataforma de computación distribuida con localidad de datos

Ecosistema

• Infinidad de herramientas basadas en Hadoop

[Hadoop in practice. 2nd Ed. Alex Holmes]

Arquitectura

- HDFS + YARN + MapReduce/XXX
- MapReduce: modelo de procesamiento en batch
- Otros tipos de carga también
- Gestor de recursos del clúster
- Permite ejecutar cualquier programa distribuido
- Sistema de ficheros distribuido
- Eficiente, escalable, replicado

Instalación

- Requisitos Hadoop 3.3.x
 - > sudo apt install openjdk-8-jdk ssh pdsh
- <u>Descargar</u> hadoop-x.x.x.tar.gz y fijar variables en /etc/hadoop/hadoop-env.sh
 - > tar xfz hadoop-x.x.x.tar.gz
 - > export JAVA_HOME=/usr/java/latest (ubicación JDK)
 - > export HADOOP_HOME=/home/alumno/hadoop-x.x.x
 - > export PDSH_RCMD_TYPE=ssh
- Ejecutar hadoop
 - > bin/hadoop

Ejecución

- Tres modos
 - Modo local
 - Modo pseudo-distribuido
 - Modo distribuido
- + Modo docker :-)!

Ejecución > Modo local

- Standalone: modo por defecto
- Hadoop se ejecuta en un único proceso Java
- Útil para depuración
- Se utiliza el sistema de ficheros local

Ejecución > Modo pseudo-distribuido

- <u>Hadoop</u> se ejecuta en una única máquina
- Cada demonio se ejecuta en su proceso Java
- Se pueden probar todos los componentes
- Se simula un clúster en pequeña escala

Ejecución > Modo distribuido

- <u>Hadoop</u> se ejecuta en un clúster de nodos
- Configuración de Hadoop en producción

Ejecución > Modo Docker

- Arranca todo el sistema en modo pseudo-distribuido en <u>Docker</u>, con un único comando
- Hay varias imágenes Docker disponibles; nos basaremos en la imagen oficial <u>apache/hadoop</u>
- Dos ficheros: docker-compose.yaml y config.env
 - > docker compose up -d

¿Qué es?

- Sistema de ficheros distribuido usado en Hadoop
- Implementación open-source Google File System
- Eficiente, escalable, altamente disponible
- Se ejecuta en hardware básico
 - Alta probabilidad de fallos
- Optimizado para leer/escribir ficheros grandes (TB)
 - Pocos ficheros, pero muy grandes
 - Escribir una vez, leer muchas veces

¿Qué es?

- No está pensado para:
 - Acceder a datos con baja latencia
 - Muchos ficheros pequeños
 - Múltiples escritores
 - Modificaciones arbitrarias

Bloques

- Los ficheros se dividen en bloques grandes (+128MB)
- HDFS distribuye y replica los bloques en distintos nodos

Bloques

- Bloques grandes = minimizar búsquedas en disco
- El factor de réplica es configurable (por fichero!) (suele ser 3)
- Si una réplica falla
 - Se lee de otra réplica de manera transparente
 - Se vuelve a replicar en otro nodo

Arquitectura

Maestro/esclavo: NameNode vs DataNode

- NameNode
 - Gestiona el sistema de ficheros
 - Mantiene un mapa de toda la info en memoria

- NameNode
 - Gestiona el sistema de ficheros
 - Mantiene un mapa de toda la info en memoria
 - Además, registra toda la info en disco: FsImage + EditLog

- NameNode
 - Gestiona el sistema de ficheros
 - Mantiene un mapa de toda la info en memoria
 - Además, registra toda la info en disco: FsImage + EditLog
 - Al arrancar, carga en memoria FsImage y aplica EditLog
 - Periódicamente efectúa checkpoints de la imagen en memoria en disco y elimina EditLog

- DataNode
 - Almacena los bloques como ficheros independientes en el disco local
 - Crean, eliminan y replican bloques solicitados por NameNode
 - Leen/escriben los bloques solicitados por el cliente
 - Periódicamente envían heartbeat y reporte de bloques (BlockReport) al NameNode

Funcionamiento

Lectura de fichero

Funcionamiento

• Escritura en fichero

Replicación

 HDFS distribuye los bloques "inteligentemente", para asegurar mayor fiabilidad y rendimiento

Replicación

- HDFS distribuye los bloques "inteligentemente", para asegurar mayor fiabilidad y rendimiento
- Premisas: nodos en racks, ancho de banda en el mismo rack es mayor

Replicación

- HDFS distribuye los bloques "inteligentemente", para asegurar mayor fiabilidad y rendimiento
- Premisas: nodos en racks, ancho de banda en el mismo rack es mayor
- Distintas estrategias, por ejemplo:
 - 3 bloques en 3 racks distintos
 - Buena disponibilidad y tasa de lectura
 - Mala tasa de escritura (3 racks!)

Replicación

- HDFS distribuye los bloques "inteligentemente", para asegurar mayor fiabilidad y rendimiento
- Premisas: nodos en racks, ancho de banda en el mismo rack es mayor
- Distintas estrategias, por ejemplo:
 - 1^{er} bloque se escribe en nodo local (o arbitrario), 2º bloque en otro nodo en el mismo rack, 3^{er} bloque en otro rack
 - Buena disponibilidad, tasa lectura y escritura

HA (High Availability)

 Si falla un DataNode, los bloques que almacena vuelven a replicarse entre el resto de DataNodes

HA (High Availability)

• ¿Y si falla el NameNode?

HA (High Availability)

- ¿Y si falla el NameNode?
- Es necesario replicarlo: múltiples NameNodes que comparten el EditLog (NFS vs Journal)
- Los DataNodes remiten informes de estado a todos

Puesta en marcha en Docker

Definición del clúster

Puesta en marcha en Docker

- Usando la imagen oficial <u>apache/hadoop</u>
- docker-compose.yaml

```
version: "2"
services:
   namenode:
                                                  volumes:
      image: apache/hadoop:3
                                                      ./data:/data
      hostname: namenode
      command: ["hdfs", "namenode"]
      ports:
        - 9870:9870
                                         Para transferir ficheros
      env file:
                                         desde ./data
        - ./config.env
      environment:
          ENSURE_NAMENODE_DIR: "/tmp/hadoop-root/dfs/name"
   datanode:
      image: apache/hadoop:3
      command: ["hdfs", "datanode"]
                                            Puede replicarse
      env file:
        - ./config.env
```

Puesta en marcha en Docker

- Usando la imagen oficial <u>apache/hadoop</u>
- config.env

```
HADOOP_HOME=/opt/hadoop
CORE-SITE.XML_fs.default.name=hdfs://namenode
CORE-SITE.XML_fs.defaultFS=hdfs://namenode
HDFS-SITE.XML_dfs.namenode.rpc-address=namenode:8020
HDFS-SITE.XML_dfs.replication=1
```

- > docker compose up
- El NameNode publica una GUI web en http://localhost:9870/
- Iniciar sesión en namenode:
- > docker compose exec namenode /bin/bash

Hadoop File System Shell

- Para interaccionar con HDFS en línea de comandos
 - > bin/hadoop fs <args>
- Existen multitud de <u>comandos</u> familiares
- cat, chmod, chown, cp, df, du, find, head, ls, mkdir, mv, rm, rmdir, tail, touch, concat, ...

- > bin/hadoop fs -mkdir -p /user/alumno
- > bin/hadoop fs -touch /user/alumno/test.txt
- > bin/hadoop fs -ls /user/alumno
- > bin/hadoop fs -cp /user/alumno/test.txt /test2.txt

Hadoop File System Shell

 Es habitual mover/copiar ficheros del sistema de ficheros local a HDFS y viceversa: appendToFile, copyFromLocal, copyToLocal, get, moveFromLocal, moveToLocal, put

```
> bin/hadoop fs -copyFromLocal test.txt /user/alumno
> bin/hadoop fs -copyToLocal /test2.txt test2.txt
> bin/hadoop fs -get /test2.txt test2.txt
> bin/hadoop fs -put test.txt /user/alumno
> echo "hello world!" | bin/hadoop fs -put - /test3.txt
> bin/hadoop fs -cat /test3.txt
```


¿Qué es?

- Yet Another Resource Negotiator (Hadoop 2+)
- Sistema de gestión de recursos de clúster Hadoop
- Permite la ejecución de cualquier programa distribuido (MapReduce, machine learning, grafos, etc.)

Contenedores

- YARN gestiona los recursos del clúster a través de contenedores
- Son procesos con un contrato que determina los recursos físicos que está permitido usar
- YARN crea contenedores bajo demanda, planifica dónde se ejecutan y los monitoriza
- Si el contenedor utiliza más recursos, o YARN necesita liberar recursos, el contenedor puede ser finalizado

Arquitectura

Maestro/esclavo: ResourceManager vs NodeManager

- ResourceManager
 - Planifica los recursos del clúster
 - Recibe peticiones de creación de contenedores y decide dónde se ejecutan
 - Distintas políticas de planificación (plugins):
 - <u>CapacityScheduler</u>: se fracciona la capacidad del clúster en múltiples colas; no se puede exceder la capacidad de una cola
 - <u>FairScheduler</u>: los recursos se reparten equitativamente entre todas las aplicaciones

- NodeManager
 - Ejecuta los contenedores
 - Crea, monitoriza y mata contenedores, por orden del ResourceManager
 - Periódicamente proporciona informes del estado de los contenedores al ResourceManager

Funcionamiento

• Un cliente crea una aplicación YARN

NodeManager

NodeManager

Funcionamiento

• Un cliente crea una aplicación YARN

Funcionamiento

Un cliente crea una aplicación YARN

Funcionamiento

ApplicationMaster solicita nuevos recursos

ApplicationMaster

 Se encarga de distribuir el trabajo necesario para completar la tarea (un único proceso, cientos de procesos, etc.)

ApplicationMaster

- Se encarga de distribuir el trabajo necesario para completar la tarea (un único proceso, cientos de procesos, etc.)
- Solicita la creación de nuevos contenedores, los coordina y los reinicia si fallan

ApplicationMaster

- Se encarga de distribuir el trabajo necesario para completar la tarea (un único proceso, cientos de procesos, etc.)
- Solicita la creación de nuevos contenedores, los coordina y los reinicia si fallan
- Distintos modelos: una aplicación por trabajo (e.g. MapReduce), una aplicación por sesión de usuario, una aplicación compartida por varios usuarios, etc.

Solicitud de contenedores

- Se pueden solicitar todos al principio, bajo demanda, etc.
- Se especifican los recursos necesarios (CPU, memoria, GPU, disco, etc.)
- Se pueden especificar restricciones de localidad: en qué nodo, rack, etc.
- Esto permite que un contenedor se pueda ejecutar en el mismo nodo en el que reside un bloque HDFS

HDFS + YARN

 En un clúster en producción: nodos maestro vs nodos trabajadores

HA (High Availability)

- Si un contenedor falla, el NodeManager notifica al ResourceManager, y éste al ApplicationMaster
- ApplicationMaster decide si el contenedor debe ser ejecutado otra vez

HA (High Availability)

 Si un NodeManager falla, todos sus contenedores se marcan como fallados, y se sigue el mismo procedimiento

HA (High Availability)

- ¿Y si falla el ResourceManager?
- Es necesario <u>replicarlo</u>: múltiples RMs comparten estado (clave-valor <u>ZooKeeper</u>)
- Los demás (cliente, NodeManagers, ApplicationMaster) se comunican con los RMs en round-robin (sólo el RM activo responde)

Puesta en marcha en Docker

Definición del clúster

Puesta en marcha en Docker

- Usando la imagen oficial <u>apache/hadoop</u>
- config.env

```
HADOOP_HOME=/opt/hadoop
CORE-SITE.XML_fs.default.name=hdfs://namenode
CORE-SITE.XML_fs.defaultFS=hdfs://namenode
YARN-SITE.XML_yarn.resourcemanager.hostname=resourcemanager
YARN-SITE.XML_yarn.nodemanager.pmem-check-enabled=false
YARN-SITE.XML_yarn.nodemanager.delete.debug-delay-sec=600
YARN-SITE.XML_yarn.nodemanager.vmem-check-enabled=false
YARN-SITE.XML_yarn.nodemanager.aux-services=mapreduce_shuffle
YARN-SITE.XML_yarn.log-aggregation-enable=true
CAPACITY-SCHEDULER.XML_yarn.scheduler.capacity.maximum-applications=10000
...
```

Puesta en marcha en Docker

- El ResourceManager publica una GUI web en http://localhost:8088/
- Iniciar sesión en namenode:
- > docker compose exec resourcemanager /bin/bash

DistributedShell

- YARN integra dos aplicaciones por defecto
 - DistributedShell: ejecuta un comando en el clúster
 - MapReduce: lo veremos después
- Ejecutar DistributedShell: echo "HelloWorld!"

DistributedShell

- YARN integra dos aplicaciones por defecto
 - DistributedShell: ejecuta un comando en el clúster
 - MapReduce: lo veremos después
- Ejecutar DistributedShell: echo "HelloWorld!"
- > export HADOOP_HOME=/home/alumno/hadoop-xxx
 > bin/hadoop
 org.apache.hadoop.yarn.applications.distributedshell.Client
 -shell_command echo -shell_args '"Hello world!"'
 -jar \${HADOOP_HOME}/share/hadoop/yarn/*distributedshell*.jar
 -container_memory 350 -master_memory 350

DistributedShell > Logs

- La tarea se ejecuta en un NodeManager
- Los logs (stdout, stderr) se guardan en local, y se eliminan tras cierto tiempo

DistributedShell > Logs

- La tarea se ejecuta en un NodeManager
- Los logs (stdout, stderr) se guardan en local, y se eliminan tras cierto tiempo
- En la GUI web se puede acceder a los logs del contenedor master (DistributedShell)
- Para ver el resto de logs debe publicarlos la ApplicationMaster; DistributedShell no lo hace
- Otra opción es habilitar agregación de logs

YARN-SITE.XML_yarn.log-aggregation-enable=true

Agregación de logs

• Los logs de todos los contenedores se guardan en HDFS

Agregación de logs

- Los logs de todos los contenedores se guardan en HDFS
- Se pueden consultar utilizando CLI
 - > bin/yarn logs -applicationId application_xxxx

MapReduce en Hadoop

 MapReduce es una aplicación que se ejecuta sobre YARN

MapReduce en Hadoop

1 Job ejecuta múltiples mappers/reducers en paralelo

MapReduce en Hadoop

- 1 Job ejecuta múltiples mappers/reducers en paralelo
- Job = entrada + mapper/reducer + config

MapReduce en Hadoop > Entrada

 Los datos están en una máquina, cada mapper se ejecuta en otra: coste alto en la distribución de datos

MapReduce en Hadoop > Entrada

- Los datos están en una máquina, cada mapper se ejecuta en otra: coste alto en la distribución de datos
- Localidad de datos: particionar datos primero y ejecutar tareas donde estén los datos después

130

MapReduce en Hadoop > Entrada

- Los datos están en una máquina, cada mapper se ejecuta en otra: coste alto en la distribución de datos
- Localidad de datos: particionar datos primero y ejecutar tareas donde estén los datos después
- Es necesario contar con sistemas de ficheros distribuidos: HDFS!!!

MapReduce en Hadoop > Entrada

- Generalmente en HDFS: varios ficheros en dir
- Se divide en splits. Cada split es procesado por un mapper

MapReduce en Hadoop > Entrada

- Número de splits = número de mappers
- Si split pequeño/grande
 - Muchos/pocos mappers en paralelo
 - Mucho/poco trabajo de coordinación
- Habitualmente 1 split = 1 bloque (128MB?)

MapReduce en Hadoop > Map

 Localidad de datos: cada mapper se distribuye al nodo donde está el bloque, o al mismo rack

MapReduce en Hadoop > Map

- Localidad de datos: cada mapper se distribuye al nodo donde está el bloque, o al mismo rack
- La salida del mapper se escribe en local
 - Es una salida intermedia; se desecha
 - Guardarla en HDFS sería demasiado costoso
 - Si el mapper falla, se vuelve a computar

MapReduce en Hadoop > Shuffle/Sort

- Agrupa los valores por clave y ordena las claves
- El número de reducers *r* es configurable
- Se crean *r* particiones de claves (con sus valores)
- Cada partición es procesada por un reducer

MapReduce en Hadoop > Shuffle/Sort

- Las particiones las crea una función de particionado: por defecto, se usan técnicas de hashing (balanceo); es configurable
- En una partición
 - Las claves se ordenan
 - Puede haber muchas claves (y los valores asociados)
 - Es mucho trabajo para el reducer

MapReduce en Hadoop > Shuffle/Sort

 El particionado y ordenado (parcial) se produce en el nodo que ejecutó el mapper

MapReduce en Hadoop > Shuffle/Sort

- El particionado y ordenado (parcial) se produce en el nodo que ejecutó el mapper
- Las particiones (parciales) se envían a los reducers
- No se puede aprovechar localidad de datos; se transfieren muchos datos

MapReduce en Hadoop > Shuffle/Sort

- El particionado y ordenado (parcial) se produce en el nodo que ejecutó el mapper
- Las particiones (parciales) se envían a los reducers
- No se puede aprovechar localidad de datos; se transfieren muchos datos
- Es habitual efectuar un reduce local en el mapper para transferir menos datos: combiner

MapReduce en Hadoop > Reduce

 Cada reducer recibe las particiones (parciales) de múltiples mappers

MapReduce en Hadoop > Reduce

- Cada reducer recibe las particiones (parciales) de múltiples mappers
- El reducer debe fusionar (ordenadamente) las particiones (mergesort?)

MapReduce en Hadoop > Reduce

- Cada reducer recibe las particiones (parciales) de múltiples mappers
- El reducer debe fusionar (ordenadamente) las particiones (mergesort?)
- Cada reducer escribe en HDFS (local mismo rack otro rack) aprovechando la localidad de datos

MapReduce en Hadoop

• El esquema completo

MapReduce en Hadoop > Propiedades

- Si la máquina donde se ejecuta un mapper/reducer falla, se puede relanzar en otra: idempotente
- Ejecución especulativa: ralentización, sospechas de fallos, etc.
- Escalabilidad lineal: la capacidad de proceso aumenta linealmente con respecto a los recursos disponibles

MapReduce en Hadoop > YARN

 Hadoop ejecuta trabajos MapReduce utilizando el ApplicationMaster incluido en su distribución

MapReduce en Hadoop > API

```
public static class TokenizerMapper
  extends Mapper<Object, Text, Text, IntWritable> {
  private final static IntWritable one = new IntWritable(1);
  private Text word = new Text();
  public void map(Object key, Text value, Context context)
    throws IOException, InterruptedException {
    StringTokenizer itr = new StringTokenizer(value.toString());
    while (itr.hasMoreTokens()) {
      word.set(itr.nextToken());
      context.write(word, one);
```

MapReduce en Hadoop > API

```
public static class IntSumReducer
  extends Reducer<Text,IntWritable,Text,IntWritable> {
  private IntWritable result = new IntWritable();
  public void reduce(Text key, Iterable<IntWritable> values,
    Context context) throws IOException, InterruptedException {
    int sum = 0;
    for (IntWritable val : values) {
      sum += val.get();
    result.set(sum);
    context.write(key, result);
```

MapReduce en Hadoop > API

```
public class WordCount {
  public static void main(String[] args) throws Exception {
    Configuration conf = new Configuration();
    Job job = Job.getInstance(conf, "word count");
    job.setJarByClass(WordCount.class);
    job.setMapperClass(TokenizerMapper.class);
    job.setCombinerClass(IntSumReducer.class);
    job.setReducerClass(IntSumReducer.class);
    job.setOutputKeyClass(Text.class);
    job.setOutputValueClass(IntWritable.class);
    FileInputFormat.addInputPath(job, new Path(args[0]));
    FileOutputFormat.setOutputPath(job, new Path(args[1]));
    System.exit(job.waitForCompletion(true) ? 0 : 1);
```

MapReduce en Hadoop > API

```
% Copiar datos de entrada a HDFS
> bin/hadoop fs -cat /input.txt
Hello World Bye World

% Ejecutar MapReduce
> bin/hadoop jar wc.jar WordCount /input.txt /output

% Leer datos de salida en HDFS
> bin/hadoop fs -cat /output/part-r-00000
```

Hadoop Streaming

• <u>Hadoop Streaming</u> permite utilizar cualquier ejecutable/script como mapper/reducer

Hadoop Streaming

- Hadoop Streaming permite utilizar cualquier ejecutable/script como mapper/reducer
- La interfaz de comunicación entre Hadoop y el mapper/reducer es a través de entrada/salida universal stdin/stdout
- La entrada se obtiene de la entrada estándar stdin, una línea cada vez
- La salida se escribe en la salida estándar stdout en el formato: clave TAB valor

Hadoop Streaming

• Ejemplo: contar palabras

Hadoop Streaming

- Hay diferencias notables en el reducer
- En Java recibe (k2, list(v2)), en Streaming se recibe (k2,v2) en cada lectura de stdin

Hadoop Streaming

- Hay diferencias notables en el reducer
- En Java recibe (k2, list(v2)), en Streaming se recibe (k2,v2) en cada lectura de stdin
- Dificulta un poco la lógica de reducer: es necesario saber cuándo acaban los valores asociados a una clave y cuándo comienzan los de la siguiente

Ejemplo

Contar palabras con Streaming (mapper.py)

```
#!/bin/python
import sys
for line in sys.stdin:
  words = line.split()
  for word in words:
    print("{0}\t{1}".format(word, 1))
```

Ejemplo

Contar palabras con Streaming (reducer.py)

```
#!/bin/python
import sys
curr_word = None
curr count = 0
for line in sys.stdin:
  word, count = line.split('\t')
  count = int(count)
  if word == curr_word:
    curr count += count
  else:
    if curr_word:
      print("{0}\t{1}".format(curr_word, curr_count))
    curr word = word
    curr_count = count
if curr word == word:
  print("{0}\t{1}".format(curr_word, curr_count))
```

Ejemplo

Contar palabras con Streaming

```
% Arrancar clúster e iniciar sesión en ResourceManager
> docker compose up -d
> docker compose exec resourcemanager /bin/bash
% Copiar datos de entrada a HDFS
> bin/hadoop fs -put /shared/el_quijote.txt /
% Ejecutar MapReduce
> bin/hadoop jar $HADOOP_HOME/share/hadoop/tools/lib/hadoop-
streaming-3.3.6.jar \
    -files /shared/mapper.py,/shared/reducer.py
    -input /el_quijote.txt -output /output \
    -mapper mapper.py -reducer reducer.py \
    -numReduceTasks 1
% Leer datos de salida en HDFS
> bin/hadoop fs -cat /output/part-00000
```


Ejercicio 2

- A partir del dataset "city_accesses.csv", contar número de coches que entran en Alcoy cada día
 - https://opendata.alcoi.org/es/
 - Transporte > Entradas y salidas

```
"2020-01-01 00:56:27.537","00:56:28","Acercamiento", "72","AF_Entrada_Cocentaina"
```


Ejercicio 3

 A partir del dataset "city_accesses.csv", contar cuántos coches entran cada día de la semana

```
"2020-01-01 00:56:27.537","00:56:28","Acercamiento", "72","AF_Entrada_Cocentaina"
```


Ejercicio 4

 A partir del dataset "city_accesses.csv", qué día de la semana y a qué hora se corre más

```
"2020-01-01 00:56:27.537","00:56:28","Acercamiento",
"72","AF_Entrada_Cocentaina"
```


Críticas a MapReduce

No todo son luces

Críticas a MapReduce

- No todo son luces
- La salida se almacena en HDFS
 - Es costoso (replicación, etc.)
 - ¿Qué pasa si es un resultado intermedio, parte de un workflow?

Críticas a MapReduce

- No todo son luces
- La salida se almacena en HDFS
- El modelo MapReduce es muy específico
 - Surgió para indexar la web
 - Hay muchos problemas cuya solución no se adaptan bien al modelo MapReduce
 - ¿Procesos iterativos? Ej: fibonacci, grafos, ...

Críticas a MapReduce

- No todo son luces
- La salida se almacena en HDFS
- El modelo MapReduce es muy específico
- MapReduce es difícil de programar
 - No es un modelo de procesamiento de datos natural: bucles y filtros
 - Algunas operaciones de procesamiento de datos son difíciles de traducir a tareas MapReduce

Críticas a MapReduce

Aparecen extensiones de más alto nivel

Aparecen otras plataformas

Spark

Spark

Contenido

- Introducción
- RDDs
- Spark SQL

¿Qué es?

- http://spark.apache.org/
- Plataforma de computación open source distribuida, fiable y escalable
- Puede ejecutar trabajos en batch/streaming, iterativos, grafos, machine learning, etc.
- Muy rápida: 10x (disco) -100x (memoria) más rápida que Hadoop
- Múltiples lenguajes: Java, Scala, Python, R

¿Qué es?

 Permite efectuar múltiples operaciones sobre una colección de datos

¿Qué es?

- Permite efectuar múltiples operaciones sobre una colección de datos
- Con una API muy sencilla (ej: wordcount)

```
sc = SparkContext()
file = sc.textFile("hdfs://...")
counts = file.flatMap(lambda line: line.split(" "))
   .map(lambda word: (word, 1)).countByKey()
counts.saveAsTextFile("hdfs://...")
```

¿Qué es?

- Es un framework muy genérico (SQL, stream, etc.)
- Se ejecuta sobre múltiples plataformas

- Cada componente publica cierta funcionalidad
 - Spark Core
 - Spark SQL
 - Spark Streaming
 - MLlib
 - GraphX

- Cada componente publica cierta funcionalidad
 - Spark Core
 - RDDs: colecciones básicas, la base de todo

- Cada componente publica cierta funcionalidad
 - Spark Core
 - Spark SQL
 - <u>DataFrames</u>: colecciones de datos organizadas en columnas (como una tabla)
 - <u>Datasets</u>: añaden tipado de datos (en Python no está disponible)
 - SQL: subconjunto de SQL

- Cada componente publica cierta funcionalidad
 - Spark Core
 - Spark SQL
 - Spark Streaming
 - Extensión de Spark Core para procesar streams de datos continuos

- Cada componente publica cierta funcionalidad
 - Spark Core
 - Spark SQL
 - Spark Streaming
 - MLlib
 - Contiene algoritmos (escalables) de Machine Learning

- Cada componente publica cierta funcionalidad
 - Spark Core
 - Spark SQL
 - Spark Streaming
 - MLlib
 - GraphX
 - Incluye algoritmos para procesamiento de grafos en paralelo

Arquitectura global

- Clúster Spark: master vs workers
- Cliente contacta con máster y envía trabajos

Arquitectura en detalle

Driver, SparkContext, Cluster Manager, Executor, Task

Arquitectura en detalle

- El Driver dialoga con el Clúster Manager a través de SparkContext
- SparkContext solicita Executors al principio, y están disponibles durante toda la ejecución de la tarea
- El Executor ejecuta Tasks (threads) y mantiene datos
- El Driver se conecta con los Executors

Puesta en marcha

- Primero es necesario disponer de una instalación de Spark funcionando
- Entonces el cliente puede enviar trabajos a Spark

Instalación de Spark

- En local (para aprender, desarrollo, pruebas) o Colab
- En un clúster standalone
- En un clúster YARN
- En un clúster Kubernetes (K8S)

Instalación de Spark > En local

- https://spark.apache.org/downloads.html
- Versión 3.x pre-built for Hadoop 3.x
- > tar xvfz spark-3.x-bin-hadoop3.x.tgz
- > export SPARK_HOME=xxx

Instalación de Spark > En local con Docker

Un único contenedor

```
> docker run -d --name spark -v ./share:/data -p
8888:8888 -p 4040:4040 jupyter/pyspark-notebook
```

- En Google Colab (PoliformaT)
- Simulación de clúster con Docker Compose (PoliformaT)
 - > docker compose up -d

Enviar trabajos

- En batch (spark-submit)
- Intérprete interactivo (pyspark shell)
- Jupyter (IDE interactivo)

Enviar trabajos > En batch

- Con ./bin/spark-submit
- --master local [local[K]], --py-files, --xxx-memory, --xxxcores, ...

```
> ./bin/spark-submit --master local --driver-memory 8g test.py

test.py
import pyspark
sc = pyspark.SparkContext()
data = sc.parallelize(["Hello world", "Bye world"])
counts = data.flatMap(lambda line: line.split(" "))
    .map(lambda word: (word, 1)).countByKey()
print(counts)
```

Enviar trabajos > Intérprete interactivo

- Con <u>./bin/pyspark</u>
- --master local [local[K]], --py-files, --xxx-memory, --xxx-cores, ...

```
> ./bin/pyspark --master local
>>> data = sc.parallelize(["Hello world","Bye world"])
>>> counts = data.flatMap(lambda line: line.split(" "))
    .map(lambda word: (word, 1)).countByKey()
>>> print(counts)
>>> quit()
```

Enviar trabajos > Jupyter

 Permite ejecutar comandos en entorno de desarrollo interactivo, a través de notebooks

APIs

- Las distintas APIs suministran distintas abstracciones
- Cada abstracción de mayor nivel se basa en la anterior

¿Qué es?

- Resilient Distributed Dataset
- Colección de datos
 - Distribuida: se particiona en múltiples nodos (en memoria)
 - Inmutable: no se puede modificar
 - Resiliente: si un nodo falla se reconstruye

¿Cómo funciona?

- Datos a partir de un origen (HDFS, otros), se particionan
- Cada partición se distribuye a un nodo (localidad de datos), y se mantiene en memoria
- Se aplican operaciones: en paralelo, eficientes
- Se generan nuevas particiones, en memoria
- Finalmente, se recuperan/guardan los resultados

SparkContext

 Para empezar a trabajar con RDDs es necesario disponer de un contexto Spark: conexión con el clúster

SparkContext

- Para empezar a trabajar con RDDs es necesario disponer de un contexto Spark: conexión con el clúster
- En PySpark ya está disponible en la variable sc; en otros clientes hay que crearlo
- El contexto se cierra al finalizar la ejecución: .stop()

```
from pyspark import SparkContext
sc = SparkContext(master='local',appName='test')
...
sc.stop()
```

Creación de RDDs

- A partir de un iterable
- A partir de una fuente externa

Creación de RDDs

- A partir de un iterable
 - Con <u>sc.parallelize()</u>
 - Los datos locales se distribuyen en particiones

```
data = [1,2,3,4,5]
rdd = sc.parallelize(data)
```

A partir de una fuente externa

Creación de RDDs

- A partir de un iterable
- A partir de una fuente externa
 - Cualquier origen soportado por Hadoop (HDFS, HBase, Amazon S3, etc.)
 - Ficheros con <u>sc.textFile()</u>

```
rdd = sc.textFile("file:///data.txt")
rdd = sc.textFile("/my/dir")
rdd = sc.textFile("/my/dir/*.txt")
rdd = sc.textFile("/my/dir/*.gz")
```

Operaciones sobre RDDs

- Una vez se dispone de un RDD, se aplican operaciones
- Existen dos tipos de operaciones
 - Transformaciones: en cadena, generan nuevos RDDs
 - Acciones: finalizan la cadena de transformaciones

- A partir de una colección origen (en memoria), crea una nueva colección destino (en memoria)
- La transformación se aplica en paralelo en las distintas particiones

```
lines = sc.textFile("data.txt")
words = lines.flatMap(lambda line: line.split())
lengths = words.map(lambda word: len(word))
```


- A partir de una colección origen (en memoria), crea una nueva colección destino (en memoria)
- La transformación se aplica en paralelo en las distintas particiones
- En caso de fallo, es habitual recomputar las particiones

Transformaciones

- Consultar la API
- flatMap(), map(), reduceByKey(), sortByKey(), filter(), union(), intersection(), distinct(), groupByKey(), aggregateByKey(), join(), ...

```
Project Gutenberg's
                                                                Project
Alice's Adventures in Wonderland
                                                                Gutenberg's
Project Gutenberg's
                                                                Alice's
Adventures in Wonderland
                                                                Adventures
Project Gutenberg's
                                                                in
                                                                Wonderland
                                                                Project
            rdd=rdd.flatMap(lambda x: x.split(" "))
                                                                Gutenberg's
                                                                Adventures
                                                                in
                                                                Wonder land
                                                                Project
```

Gutenbera's

- Consultar la API
- flatMap(), map(), reduceByKey(), sortByKey(), filter(), union(), intersection(), distinct(), groupByKey(), aggregateByKey(), join(), ...

```
('Project', 1)
Project
                                                               ('Gutenberg's', 1)
Gutenberg's
                                                               ('Alice's', 1)
Alice's
                                                               ('Adventures', 1)
Adventures
                                                               ('in', 1)
in
Wonderland
                                                               ('Wonderland', 1)
               ➤ rdd=rdd.map(lambda x: (x,1)) -
Project
                                                               ('Project', 1)
Gutenberg's
                                                               ('Gutenberg's', 1)
Adventures
                                                               ('Adventures', 1)
in
                                                               ('in', 1)
Wonderland
                                                               ('Wonderland', 1)
Project
                                                               ('Project', 1)
Gutenberg's
                                                               ('Gutenberg's', 1)
```

- Consultar la API
- flatMap(), map(), reduceByKey(), sortByKey(), filter(), union(), intersection(), distinct(), groupByKey(), aggregateByKey(), join(), ...

```
('Project', 1)
('Gutenberg's', 1)
('Alice's', 1)
('Adventures', 1)
                                                               ('Project', 3)
('in', 1)
                                                               ('Gutenberg's', 3)
('Wonderland', 1) 	→ rdd=rdd.reduceByKey(
                                                            ➤ ('Alice's', 1)
('Project', 1)
                                                               ('in', 2)
                           lambda a,b: a+b
('Gutenberg's', 1)
                                                               ('Adventures', 2)
('Adventures', 1)
                                                               ('Wonderland', 2)
('in', 1)
('Wonderland', 1)
('Project', 1)
                                                                                203
('Gutenberg's', 1)
```

- Consultar la API
- flatMap(), map(), reduceByKey(), sortByKey(), filter(), union(), intersection(), distinct(), groupByKey(), aggregateByKey(), join(), ...

```
('Project', 3)
('Gutenberg's', 3)

('Alice's', 1)
('Alice's', 1)
('In', 2)
('In', 2)
('Adventures', 2)
('Adventures', 2)
('Adventures', 2)
('Adventures', 2)
('Yeroject', 3)
('Wonderland', 2)
```

- Consultar la API
- flatMap(), map(), reduceByKey(), sortByKey(), filter(), union(), intersection(), distinct(), groupByKey(), aggregateByKey(), join(), ...

```
('Project', 3)
('Gutenberg's', 3)

('Alice's', 1)
('in', 2)
('Adventures', 2)
('Adventures', 2)
('Adventures', 2)
('Wonderland', 2)

)

('Project', 3)
('Alice's', 1)
('Adventures', 2)
('Wonderland', 2)
```

Transformaciones

 Son perezosas: sólo se evalúan cuando es necesario, cuando se produce una acción

- Son perezosas: sólo se evalúan cuando es necesario, cuando se produce una acción
- Esta evaluación retardada permite analizar todo el proceso y diseñar un plan de ejecución
- El plan de ejecución permite incorporar diversas optimizaciones (reordenar evaluaciones, evitar cálculos duplicados, etc.)

Acciones

Disparan la ejecución de transformaciones

```
lines = sc.textFile("data.txt")
lengths = lines.map(lambda line: line.length)
length = lengths.reduce(lambda a, b: a + b)
```


Acciones

- Disparan la ejecución de transformaciones
- Computan una colección origen y devuelven un valor al Driver

```
lines = sc.textFile("data.txt")
lengths = lines.map(lambda line: line.length)
length = lengths.reduce(lambda a, b: a + b)
```


Acciones

- Consultar la API
- reduce(func), collect(), count(), first(), take(n), saveAsTextFile(path), countByKey(), foreach(func), ...

Persistencia

- Los RDDs por defecto se cachean en memoria
- Una vez computada la operación, los RDDs intermedios se desechan

```
lines = sc.textFile("data.txt")
lengths = lines.map(lambda line: line.length)
length = lengths.reduce(lambda a, b: a + b)
again = lengths.reduce(lambda a, b: a + b)
```


Persistencia

 Se pueden mantener en el clúster con <u>rdd.persist()</u>/ <u>rdd.cache()</u>

```
lines = sc.textFile("data.txt")
lengths = lines.map(lambda line: line.length).persist()
length = lengths.reduce(lambda a, b: a + b)
again = lengths.reduce(lambda a, b: a + b)
```


Ejercicio 5

 A partir del dataset "city_accesses.csv", obtener qué día de la semana y a qué hora se corre más usando Spark

```
"2020-01-01 00:56:27.537", "00:56:28", "Acercamiento", "72", "AF_Entrada_Cocentaina"
```


Ejercicio 6

 A partir del dataset "climate.json", obtener la temperatura media por mes usando Spark

```
[ ... {
"fecha" : "2000-01-01", "indicativo" : "8025", "nombre" : "ALACANT/ALICANTE",
"provincia" : "ALICANTE", "altitud" : "81", "tmed" : "9,0", "prec" : "0,0", "tmin" : "2,4",
"horatmin" : "08:00", "tmax" : "15,7", "horatmax" : "12:30", "dir" : "16", "velmedia" : "1,1",
"racha" : "2,5", "horaracha" : "15:33", "sol" : "8,4", "presMax" : "1019,4", "horaPresMax" :
"11", "presMin" : "1017,5", "horaPresMin" : "06"
}
...
]
```

Planificación de trabajos

- Spark dispone de un planificador de trabajos: Spark Scheduler
- Transforma los trabajos en un grafo (DAG-Direct Acyclic Graph) de operaciones
- Analiza, reagrupa, reordena, optimiza el grafo para obtener un plan de ejecución

Trabajos

 Cada secuencia de transformaciones que se ejecuta como consecuencia de una acción es un trabajo (job)

- Hay dos tipos de transformaciones
 - Narrow
 - Wide

- Hay dos tipos de transformaciones
 - Narrow (non-shuffle):
 - Cada partición de salida puede ser computada a partir de una única partición de entrada
 - No requiere comunicación entre nodos (e.g. map(), filter())

- Hay dos tipos de transformaciones
 - Wide (shuffle):
 - Cada partición de salida se computa a partir de varias particiones de entrada
 - Requiere comunicación entre nodos, redistribución de datos: partition shuffling (e.g. groupBy(), sortBy()):

Trabajos > Transformaciones

 Transformaciones narrow y wide se suceden en un flujo de trabajo

- Transformaciones narrow y wide se suceden en un flujo de trabajo
- Las transformaciones narrow se pueden ejecutar en un mismo nodo, y sin esperar a que acabe la anterior

- Transformaciones narrow y wide se suceden en un flujo de trabajo
- Las transformaciones narrow se pueden ejecutar en un mismo nodo, y sin esperar a que acabe la anterior
- Es posible definir un grafo (DAG), identificando grupos de operaciones narrow (stages), separadas por operaciones wide

Trabajos > DAG

Cada nodo identifica un RDD

```
(0) sc.textFile("/data/el_quijote.txt") (1) (1) .flatMap(lambda line: line.split(" ")) (2) (2) .map(lambda word: (wdrd, 1)) (3) (3) .reduceByKey(lambda a, b: a + b) (4) (4) .saveAsTextFile("/data/count") (5)
```

3

4

• 5

Trabajos > DAG

- Cada nodo identifica un RDD
- Cada arista identifica una operación sobre el RDD: non-shuffle (narrow) vs shuffle (wide)

```
(0) sc.textFile("/data/el_quijote.txt") (1)
    (1) .flatMap(lambda line: line.split(" ")) (2)
    (2) .map(lambda word: (word, 1)) (3)
    (3) .reduceByKey(lambda a, b: a + b) (4)
    (4) .saveAsTextFile("/data/count") (5)
```


Trabajos > DAG

- Cada nodo identifica un RDD
- Cada arista identifica una operación sobre el RDD: non-shuffle (narrow) vs shuffle (wide)
- Los nodos se agrupan en etapas cuyos límites son las operaciones shuffle

```
(0) sc.textFile("/data/el_quijote.txt") (1)
    (1) .flatMap(lambda line: line.split(" ")) (2)
    (2) .map(lambda word: (wdrd, 1)) (3)
    (3) .reduceByKey(lambda a, b: a + b) (4)
    (4) .saveAsTextFile("/data/count") (5)
```


Trabajos > DAG

- Las operaciones incluidas en una misma etapa no requieren intercambio de datos entre nodos
- Se ejecutan en el mismo nodo y se efectúa pipelining (la salida de una operación se va pasando de manera contínua como entrada de la siguiente)
- Distintas etapas implican intercambio de datos entre nodos

Problemática

- La naturaleza de los datos procesados por Spark es desconocida: Spark (de)serializa objetos Java en memoria
- La transformación que se aplica a los datos en un RDD es arbitraria y desconocida para Spark (funciones lambda soportadas por map, filter, reduce, etc.)
- Spark tiene poca información para optimizar las estructuras de datos y las operaciones: los trata como cajas negras

SparkSQL

- La solución pasa por añadir estructura: definir esquemas y tipos de datos, y detallar las operaciones a aplicar
- De este modo, Spark puede optimizar el almacenamiento y transferencia de datos, así como compactar, reordenar operaciones
- Spark SQL representa las APIs estructuradas de Spark: DataFrames, Datasets, SQL

DataFrames

- API de alto nivel (relacional)
- A partir de los RDDs, aportan estructura y optimización

DataFrames > Estructura

- Modelo de datos tabular, inspirado por Pandas
- Cada columna tiene un tipo de datos
- Soportan operaciones relacionales de alto nivel (e.g. select, union, join, ...)

		Columnas		
	str	int	str	
	col1	col2	col3	
Files	Joe	1.3	Α	
	Nat	0.4	F	
Filas {	Harry	4.3	С	
l	Sam	-1.6	D	

DataFrames > Optimización

Los trabajos son optimizados por Catalyst+Tungsten

DataFrames > Optimización

- Los trabajos son optimizados por Catalyst+Tungsten
- Catalyst analiza las operaciones y elabora un plan de ejecución optimizado; Tungsten genera el código final

DataFrames > Optimización

- Los trabajos son optimizados por Catalyst+Tungsten
- Catalyst analiza las operaciones y elabora un plan de ejecución optimizado
- Al final, se traduce a operaciones sobre RDDs (dependencias, particiones, función de computación)

DataFrames > SparkSession

 Sustituye a SparkContext como punto de entrada para trabajar con Spark: modela una conexión con el clúster

DataFrames > SparkSession

- Sustituye a SparkContext como punto de entrada para trabajar con Spark: modela una conexión con el clúster
- En PySpark ya está disponible en la variable spark; en otros clientes hay que crearla
- Contiene SparkContext en el atributo <u>.sparkContext</u>
- La sesión se cierra al finalizar el trabajo: .stop()

DataFrames > Creación

- A partir de datos en memoria: <u>spark.createDataFrame()</u>
- A partir de una fuente externa con <u>spark.read</u>
- Tienen un esquema en <u>.schema</u>; Spark intenta inferirlo

DataFrames > Operaciones

- Como con RDDs, existen dos tipos de operaciones: transformaciones y acciones
- Transformaciones: generan un nuevo DataFrame, son perezosas
- Acciones: disparan la ejecución de las transformaciones

DataFrames > Transformaciones

- Proyecciones: <u>.select()</u>
- > df.select("*"), df.select("name", df.name, (df.age+10))
- Filtrados: <u>.filter()</u>, <u>.where()</u>
- > df.filter("age > 10"), df.filter(df.age > 10)
- Manipulación de columnas: <u>.withColumn()</u>, <u>.drop()</u>
- > df.withColumn("age", df.age+10).drop("age")
- Operaciones conjuntos: <u>.union()</u>, <u>.intersect()</u>, <u>.join()</u>
- > df.union(df2), df.intersect(df3), df.join(df4, on="id")

DataFrames > Transformaciones

- Distintos, ordenar: .distinct(), .sort(),
- > df.distinct(), df.sort("name")
- Agrupar (devuelve un grupo): .groupBy()
- > df.groupBy("name")
- Agregar en un grupo: <u>.count()</u>, <u>.max()</u>, <u>.avg()</u>, ...
- > df.groupBy("name").avg("age")

DataFrames > Acciones

- Disparan la ejecución de las transformaciones
- Recuperar datos desdecliente: .show(), .collect(), .head(), first(), .tail(), .take(), .count()
- Escribir datos en disco o almacén externo

```
df = spark.read.csv("/data/datos.csv")
df.head(10), df.take(10), df.count()
df.groupBy("name").avg("age").show()
lst = df.groupBy("name").avg("age").collect()
print(lst)
```

DataFrames vs RDDs

- Al final todo son RDDs
- DataFrame y RDDs son APIs compatibles

```
df = spark.read.csv("/data/datos.csv")

rdd = df.rdd  # df to rdd

rdd = rdd.map(lambda row: (row.date, row.speed))

print(rdd.collect())

df = rdd.toDF()  # rdd to df

df = spark.createDataFrame(rdd, schema="date STRING, speed INT")

df.show()
```

SQL

El motor Spark SQL soporta las APIs SQL y DataFrame

SQL

- El motor Spark SQL soporta las APIs SQL y DataFrame
- SQL es una API de alto nivel disponible en spark.sql()

```
df.select("date","type","speed")
   .where(df.speed > 50)
   .orderBy("speed", asceding=True)

df.sql("SELECT date, type, speed FROM table
        WHERE speed > 50 ORDER BY speed ASC")
```

SQL

- El motor Spark SQL soporta las APIs SQL y DataFrame
- SQL es una API de alto nivel disponible en spark.sql()
- SQL trabaja sobre una base de datos, con tablas y vistas en memoria/disco

SQL > Base de datos

Creación de base de datos; por defecto existe "default"

```
spark = SparkSession.builder.master('local').appName('test')
    .config('spark.sql.catalogImplementation','hive')
    .getOrCreate()

spark.sql("CREATE DATABASE IF NOT EXISTS db")
spark.sql("USE db")

spark.sql("SHOW DATABASES").show()
dbs = spark.catalog.listDatabases()

spark.sql("DROP DATABASE db")
```

SQL > Tablas

Creación de tabla vacía

```
spark.sql("CREATE TABLE IF NOT EXISTS mytable (date STRING, type
STRING, speed INT")
spark.sql("SHOW TABLES").show()
```

• Creación de tabla a partir de DataFrame

Eliminación de tabla

```
spark.sql("DROP TABLE mytable")
```

SQL > Vistas

- A partir de un DataFrame
- Son temporales: sólo visibles en la sesión en curso
- Vista global vs local: visible en todas las sesiones de la aplicación en curso

SQL > Consultas

- Utilizan Ansi SQL, sobre tablas/vistas
- Devuelven un DataFrame

```
df = spark.sql("SELECT * FROM mytable WHERE speed > 50")
df = spark.sql("SELECT * FROM myview WHERE speed > 50")
```