Revision-Week-L

Me is the study of algorithms that improves automatically through experience & by the use of data.

Why?

-> scale / speed / cost of human labor.

Date

	_				W	_
	feat	ure L	feature 2	feature 3	lubel 7	7
	01	a	Ь	C	Ex	1
7	02	d	e	f.	しまり	$\downarrow \downarrow$
7	0	g	1 ~ 1		' \ 1	,

Model

Mathematical simplification of reality.

Types of MI Algorithms

-> Supervised & Unsupervised.

& Supervised lea

Regression

label is continuous

-> Curr fitting

$$f(z) = \omega^T z + b$$

If f&g are 2 different model,

loss (f) < loss(g) then fis better model than g. :- Label is present. Classification

bel is discretice(-1,1) or

$$\int_{1}^{1} dx = \int_{1}^{1} \int_{1}^{1} \left(\int_{1}^{1} \left(\int_{1}^{1} \left(\int_{1}^{1} \int_{1}^{1}$$

Evaluating learning models:- Test data Training data: Validation data.
Unsupervised - label is not present in the data. -> Understanding data: -> Build models that compress, explain & group data.
→ Compression & Simplification
-> Envoter & Devoter Compress Undo
Jensity estimation: A density estimation model takes in several samples from a random source, & outputs a model that assigns a probability seem to every possible instance.
Ex- To increase the no of observation