Informatik II Skript Sommersemester 2015

Finn Ickler

22. Juli 2015

Inhaltsverzeichnis

14.4.2015	5
16.4.2015	6
21.4.2015	8
23.4.2015	11
28.4.2015	13
30.4.2015	16
5.5.2015	20
7.5.2015	21
12.5.2015	25
19.5.2015	29
21.5.2015	34
9.6.2015	39
11.6.2015	42
16.6.2015	47

01 .			- 11
Skrint	5515	Hinn	Ickler
ONLIDE	.),)] ,)	1 11111	IUNIUI

Informatik II Thorsten Grust

18.6.20	015	50
23.6.20	015	54
25.6.20	015	59
30.6.20	015	63
2.7.201	.5	69
7.7.201	.5	74
9.7.201		77
9.7.201	3	"
14.7.20	015	83
16.7.20	015	89
21.7.20	015	98
Code	ebeispiele	
1	Schlüsselwort define	7
2	Lambda Abstraktion	8
3	Bilderzusammenstellung am Beispiel einer Uhr	10
4	Die one-of Signatur	13
5	Konstruktion eines eigenen Ifs?	13
6	Absolutbetrag durch cond	15
7	Boolsche Ausdrücke mit and und or	16
8	Record Definitionen	16
9	Check-property	18
10	Übersetzung mathematischer Aussagen in check-property	18
11	Konstruktoren und Selektoren	19
12	predicate Signaturen am Beispiel von Längen- und Breitengrade	21
13	Ersetzung one-of druch predicate Siganturen	21
14	Geocoding	23

15	cond mit gemischten Daten	24
16	Wrapper und Worker	25
17	make-pair, ein polymorpher Datentyp	28
18	Listen mit Signatur list-of	29
19	Geschachtelte Listen	31
20	Rekursion auf Listen: Länge einer Liste	32
21	Rekursion: Zusammenfügen zweier Listen	33
22	Bildmanipulation mit Listen aus Pixeln	34
23	Check-property mit Einschränkungen	37
24	Rekursion auf natürlichen Zahlen: Fakultät	37
25	Fehlerhafte Rekursionen	
End	rekursion.rkt	39
26	Umdrehen einer Liste durch lambda Rekursion	40
27	Letrec und endrekursives Umdrehen einer Liste	41
High	nerOrderProcedures.rkt	50
28	Anwendungsbeispiele foldr	52
Anir	nationen–und–HOP–Typ2.rkt	54
29	Animation 1: Ein Zähler	54
30	Animation 2: Ein Raumschiff	54
31	Anwendungen von Combined	56
32	+ als Higher Order Funktion	
Curi	ryUndMengen.rkt	59
33	Einfache Curry Beispiele	59
34	Ableitungen berechnen mit Curry	60
35	Mengenoperationen Teil 1	61
36	Mengenoperationen Teil 2	62
Strea	amsUndMengen.rkt	63
37	Listen zu Mengen Konvertierung	63
38	Mengenoperationen	63
39	Implementation von Streams	66
40	Rekursiv defnierter Sream	69
Baeı	ume.rkt	70
41	Implementation von Bäumen	72

42	Berechnung der Größe eines Baumes
43	Entwicklung einer Pretty Print Methode für Bäume
44	Fold über Bäume
45	Ismorphie von Listen und rechtstiefe Bäumen
46	Breitendurchlauf eines Baumes
Huf	fman.rkt
47	Huffman Codes
48	Decoding von Huffman Codes
49	Huffman-Code Encode
50	Erzeugen eines Huffman-Trees
51	Ausdruck Arithmetischer Ausdrucke mittels Quote
52	Implementation des lambda Kalküls
53	Freie und gebundene Variablen im lambda Kalkül

14.4.2015

Scheme

Ausdrücke, Auswertung und Abstraktion

Dr Racket

Die Anwendung von Funktionen wird in Scheme ausschlieSSlich in Präfixnotation durchgeführt

Mathematik	Scheme
44 – 2	(- 44 2)
f(x, y)	(f x y)
$\sqrt{81}$	(sqrt 81)
9^2	(! 3)

Allgemein: (<funktion><argument1><argument2> ...)

(+ 40 2) und (odd? 42) sind Beispiele für *Ausdrücke*, die bei *Auswertung* einen Wert liefern.

Interaktionsfenster:
$$\underbrace{Read \rightarrow Eval \rightarrow Print \rightarrow Loop}_{PEDL}$$

Literale stehen für einen konstanten Wert (auch: *Konstante*) und sind nicht weiter reduzierbar.

Literal		Sorte,Typ
#f,#t	(true, false, Wahrheitswert)	boolean
" X "	(Zeichenketten)	String
0 1904 42 -2	(ganze Zahl)	Integer
0.423.14159	(FlieSS kommazahl)	real
1/2, 3/4, -1/10	(rationale Zahlen)	rational
	(Bilder)	image

16.4.2015

Auswertung *zusammengesetzter Ausdrücke* in mehreren Schritten (Steps), von "innen nach außen", bis keine Reduktion mehr möglich ist.

Ein Wert kann an einen Namen (auch Identifier) gebunden werden, durch

```
(define <id> <e>) (id)Identifier (e)Ausdruck
```

Erlaubte konsistente Wiederverwendung, dient der Selbstdokumentation von Programmen

Achtung: Dies ist eine sogenannte Spezialform und kein Ausdruck. Insbesondere besitzt diese Spezialform *keinen* Wert, sondern einen Effekt Name $\langle id \rangle$ wird an den *Wert* von $\langle e \rangle$ gebunden.

Namen können in Scheme beliebig gewählt werden, solange

- (1) die Zeichen () [] {} ", ' '; # | \nicht vorkommen
- (2) dieser nicht einem numerischen Literal gleicht.
- (3) kein Whitespace (Leerzeichen, Tabulator, Return) enthalten ist.

Beispiel: euro→US\$

Achtung: Groß-\Kleinschreibung ist irrelevant.

Codebeispiel 1: Bindung von Werten an Namen

```
(define absoluter-nullpunkt -273.15)
(define pi 3.141592653)
(define Gruendungsjahr-SC-Freiburg 1904)
(define top-level-domain-germany "de")
(define minutes-in-a-day (* 24 60))
(define vorwahl-tuebingen (sqrt 1/2))
```

Eine *lambda-Abstraktion* (auch Funktion, Prozedur) erlaubt die Formatierung von Ausrdrücken, in denen mittels *Parametern* von konkreten Werten abstrahiert wird.

```
(lambda (<p1><p2>...) <e>
```

 $\langle e \rangle$ Rumpf: enthält Vorkommen der Parameter $\langle p_n \rangle$

(lambda(...)) ist eine Spezialform. Wert der lambda-Abstraktion ist #⟨procedure⟩

. *Anwendung* (auch Application) des lambda-Aufrufs führt zur Ersetzung aller Vorkommen der Parameter im Rumpf durch die angegebenen *Argumente*.

Codebeispiel 2: Lambda-Abstraktion

In Scheme leitet ein Semikolon einen Kommentar ein, der bis zum Zeilenende reicht und vom System bei der Auswertung ignoriert wird.

Prozeduren sollten im Programm ein- bis zweizeilige *Kurzbeschreibungen* direkt vorangestellt werden.

21.4.2015

Eine Signatur prüft, ob ein Name an einen Wert einer angegebenen Sorte (Typ) gebunden wird. Signaturverletzungen werden protokolliert.

```
(: <id> <signatur>)
```

Bereits eingebaute Sinaturen

```
\begin{array}{c|ccc} natural & \mathbb{N} & boolean \\ integer & \mathbb{Z} & string \\ rational & \mathbb{Q} & image \\ real & \mathbb{R} & \dots \\ number & \mathbb{C} & \end{array}
```

(: ...) ist eine Spezialform und hat keinen Wert, aber einen Effekt: Signaturprüfung

Prozedur Signatur spezifizieren sowohl Signaturen für die Parameter $P_1, P_2, \dots P_n$ als auch den Ergebniswert der Prozedur,

```
(: <Signatur P1> ... <Signatur Pn> -> <Signatur Ergebnis>)
```

Prozedur Signaturen werden *bei jeder Anwendung* einer Prozedur auf Verletzung geprüft. *Testfälle* dokumentieren das erwartete Ergebnis einer Prozedur für ausgewählte Argumente:

```
(check-expect <e1> <e2>)
```

Werte Ausdruck $\langle e_1 \rangle$ aus und teste, ob der erhaltene Wert der Erwartung $\langle e_2 \rangle$ entspricht (= der Wert von $\langle e_2 \rangle$) Einer Prozedur sollte Testfälle direkt vorangestellt werden.

Spezialform: kein Wert, sondern Effekt: Testverletzung protokollieren

Konstruktionsanleitung für Prozeduren:

- (1) Kurzbeschreibung (ein- bis zweizeiliger Kommentar mit Bezug auf Parametername)
- (2) Signaturen
- (3) Testfälle
- (4) Prozedurrumpf

Top-Down-Entwurf (Programmieren durch "Wunschdenken")

Beispiel: Zeichne Ziffernblatt (Stunden- und Minutenzeiger) zu Uhrzeit h:m auf einer analogen 24h-Uhr

Minutenzeiger legt $\frac{360^{\circ}}{60}$ Grad pro Minute zurück (also $\frac{360}{60} \cdot m$) Studentenzeiger legt $\frac{360}{12}$ pro Stunde zurück ($\frac{360}{12} \cdot h + \frac{360}{12} \cdot \frac{m}{60}$)

Codebeispiel 3: Bauen der Uhr durch Top Down Entwurf

```
; Grad, die Minutenzeiger pro Minute zuruecklegt
  (define degrees-per-minute 360/60)
  ; Grad, die Stundenzeiger pro voller Stunde zuruecklegt
  (define degrees-per-hour 360/12)
  ; Zeichne Ziffernblatt zur Stunde h und Minute m
  (: draw-clock (natural natural -> image))
  (check-expect (draw-clock 4 15) (draw-clock 16 15))
  (define draw-clock
  (lambda (h m)
  (clock-face (position-hour-hand h m)
  (position-minute-hand m))))
15 ; Winkel (in Grad), den Minutenzeiger zur Minute m einnimmt
  (: position-minute-hand (natural -> rational))
  (check-expect (position-minute-hand 15) 90)
  (check-expect (position-minute-hand 45) 270)
  (define position-minute-hand
  (lambda (m)
  (* m degrees-per-minute)))
  ; Winkel (in Grad), den Stundenzeiger zur Stunde h einnimmt
  (: position-hour-hand (natural natural -> rational))
25 (check-expect (position-hour-hand 3 0) 90)
  (check-expect (position-hour-hand 18 30) 195)
  (define position-hour-hand
```

```
(lambda (h m)
  (+ (* (modulo h 12) degrees-per-hour)
; h mod 12 in {0,1,...,11}
  (* (/ m 60) degrees-per-hour))))

; Zeichne Ziffernblatt mit Minutenzeiger um dm und
; Stundenzeiger um dh Grad gedreht
  (: clock-face (rational rational -> image))
  (define clock-face
  (lambda (dh dm)
  (clear-pinhole
  (overlay/pinhole
  (circle 50 "outline" "black")
  (rotate (* -1 dh) (put-pinhole 0 35 (line 0 35 "red")))
  (rotate (* -1 dm) (put-pinhole 0 45 (line 0 45 "blue")))))))
```

23.4.2015

Substitutionsmodell

Reduktionsregeln für Scheme (Fallunterscheidung je nach Ausdrücken) wiederhole, bis keine Reduktion mehr möglich

```
- literal (1, "abc", #t, ...) l >>> [eval_{lit}] 

- Identifier id(pi, clock-face,...) id >>> gebundene Wert [eval_{id}] 

- lambda Abstraktion (lambda (...) >>> (lambda (...) ...) [eval_\lambda] 

- Applikationen (f e_1 e_2...)
```

(1) f, e_1, e_2 reduzieren erhalte: f', e_1', e_2'

```
 (2) \begin{cases} \text{Operation } f \text{` auf } e_1 \text{` und } e_2 \text{` [apply}_{prim}] & \text{falls } f \text{` primitiv ist} \\ \text{Argumentenwerte in den Rumpf von } f \text{` einsetzen, dann reduzieren} & \text{falls } f \text{` lambda Abstraktion} \end{cases}
```

Beispiel:

```
(+ 40 2) \overset{\longleftarrow}{evalid} (#procedure+> 40 2) \overset{\longleftarrow}{40}
```

Bezeichnen (lambda (x) (* x x)) und lambda (r) (* r r) die gleiche Prozedur? \Rightarrow JA!

Achtung: Das hat Einfluß auf das Korrekte Einsetzen von Argumenten für Prozeduren (siehe apply)

Prinzip der Lexikalischen Bindung

Das *bindene Vorkommen* eines Identifiers id kann im Programmtext systematisch bestimmt werden: Suche strikt von innen nach außen, bis zum ersten

```
(1) (lambda (r) <Rumpf>
```

(2) (**define** <e>)

Übliche Notation in der Mathematik: Fallunterscheidung

$$max(x_1, x_2) = \begin{cases} x_1 & \text{falls } x_1 \ge x_2 \\ x_2 & \text{sonst} \end{cases}$$

Tests (auch Prädikate) sind Funktionen, die einen Wert der Signatur boolean liefern. Typische primitive Tests.

```
(: = (number number -> boolean))
(: < (real real -> boolean))
auch >, <=, >=
(: String=? (string string -> boolean))
auch string>?, string<=?
(: zero? (number -> boolean))
auch odd?, even?, positive?, negative?
```

Binäre Fallunterscheidung if

```
if < e_1 >  Mathematik: < e_2 > \begin{cases} e_1 & \text{falls } t_1 \\ e_2 & \text{sonst} \end{cases} < e_2 > )
```

28.4.2015

Die Signatur *one of* lässt genau einen der ausgewählten Werte zu.

```
(one of \langle e_1 \rangle \langle e_2 \rangle ... \langle e_n \rangle)
```

Codebeispiel 4: one-of am Beispiel des Fußballpunktesystems

Reduktion von if:

```
(if t_1 < e_1 > < e_2 >)
```

1 Reduziere t_1 , erhalte $t_1' \longrightarrow \begin{cases} \langle \mathbf{e}_1 \rangle & \text{falls } t_1' = \# \mathbf{t}, \langle \mathbf{e}_2 \rangle \text{ niemals ausgewertet} \\ \langle \mathbf{e}_2 \rangle & \text{falls } t_1' = \# \mathbf{f}, \langle \mathbf{e}_1 \rangle \text{ niemals ausgewertet} \end{cases}$

Codebeispiel 5: Koennen wir unser eigenes 'if' aus 'cond' konstruieren? (Nein!)

Spezifikation Fallunterscheidung (conditional expression):

Werte die Tests in den Reihenfölge $t_1, t_2, t_3, ..., t_n$ aus.

Sobald $t_i \# t$ ergibt, werte Zweig e_i aus. e_i ist Ergebnis der Fallunterscheidung. Wenn $t_n \# t$ liefert, dann liefert

```
Fehlermeldung "cond: alle Tests ergaben false" falls kein else Zweig \langle e_{n+1} \rangle sonst
```

Codebeispiel 6: Absolutwert von x

Reduktion von cond [eval_{cond}]

cond ist syntaktisches Zucker (auch abgeleitete Form) für eine verbundene Anwendung von if

Spezialform 'and' und 'or'

```
(or \langle t_1 \rangle \langle t_2 \rangle ... \langle t_n \rangle) \sim \sim (\mathbf{if} \langle t_1 \rangle (\mathbf{or} \langle t_2 \rangle ... \langle t_n \rangle) \#t)

(or) \sim \sim \#f

(and \langle t_1 \rangle \langle t_2 \rangle ... \langle t_n \rangle) \sim \sim (\mathbf{if} \langle t_1 \rangle (\mathbf{and} \langle t_2 \rangle ... \langle t_n \rangle) \#f)

(and) \sim \sim \#t
```

Codebeispiel 7: Konstruktion komplexer Prädikate mittels 'and' und 'or'

30.4.2015

Zusammengesetze Daten

Ein Charakter besteht aus drei Komponenten

- Name des Charakters (name)
- Handelt es sich um einen Jedi? (jedi?) Datendefinition für zusammengesetzte Daten
- Stärke der Macht (force)

Konkrete Charakter:

name	"Luke Skywalker "
jedi?	#f
force	25

Codebeispiel 8: Starwars Charakter als Racket Records

```
; Ein Charakter (character) besteht aus
; - Name (name)
; - Jedi-Status (jedi?)
; - Stärke der Macht (force)
(: make-character (string boolean real -> character))
(: character? (any -> boolean))
(: character-name (character -> string))
(: character-jedi? (character -> boolean))
(: character-force (character -> real))
(define-record-procedures character
    make-character
    character?
    (character-name)
```

```
character-jedi?
character-force))

; Definiere verschiedene Charaktere des Star Wars Universums
(define luke
    (make-character "Luke_Skywalker" #f 25))
(define r2d2
    (make-character "R2D2" #f 0))
(define dooku
    (make-character "Count_Dooku" #f 80))
(define yoda
    (make-character "Yoda" #t 85))
```

Zusammengesetzte Daten = *Records* in Scheme Record-Definition legt fest:

- Record-Signatur
- Konstruktor (baut aus Komponenten einen Record)
- Prädikat (liegt ein Record vor?)
- Liste von *Selektoren* (lesen jeweils eine Komponente des Records)

```
(define-record-procedure <t>
          make-<t>
           <t>?
           (<t>-<comp1> ... <t>-<comp2>))
          ;Liste der n Selektoren
```

Verträge des Konstruktors der Selektoren für Record- Signatur

 $\langle t \rangle$ mit Komponenten namens $\langle comp_1 \rangle \dots \langle comp_n \rangle$

```
(: make-<t> (<t1>...<t2>) -> <t>)
(: <t>-<comp1> (<t> -> <t1>))
(: <t>-<compn> (<t> -> <tn>))
```

Es gilt für alle Strings n, Booleans j und Integer f:

```
(character-name (make-character n j f) n)
(character-jedi? (make-character n j f) j)
(character-force (make-character n j f) f )
```

Spezialform check-property:

Test erfolgreich, falls $\langle e \rangle$ für beliebig gewählte Bedeutungen für $\langle id_1 \rangle \dots \langle id_n \rangle$ immer #t ergibt

Codebeispiel 9: Interaktion von Selektoren und Konstruktor:

```
(check-property
(for-all ((n string)
           (j boolean)
           (f real))
   (expect (character-name (make-character n j f)) n)))
(check-property
(for-all ((n string)
           (j boolean)
           (f real))
   (expect (character-jedi? (make-character n j f)) j)))
(check-property
(for-all ((n string)
           (j boolean)
           (f real))
   (expect-within (character-force (make-character n j f)) f 0
      .001)))
```

Beispiel: Die Summe von zwei natürlichen Zahlen ist mindestens so groß wie jeder dieser Zahlen: $\forall x_1 \in \mathbb{N}, x_2 \in \mathbb{N} : x_1 + x_2 \ge \max\{x_1, x_2\}$

Codebeispiel 10: Mathematische ∀-Aussage in Racket

Konstruktion von Funktionen, die bestimmte gesetzte Daten konsumiert.

- Welche Record-Componenten sind relevant für Funktionen?

→ Schablone:

Konstruktion von Funktionen, die zusammengesetzte Daten konstruieren

- Der konstruktor muss aufgerufen werden
 - → Schablone:

- Konkrete Beispiele:

Codebeispiel 11: Abfragen der Eigenschaften von character Records

```
; Könnte Charakter c ein Sith sein?
  (: sith? (character -> boolean))
  (check-expect (sith? yoda) #f)
  (check-expect (sith? r2d2) #f)
  (define sith?
    (lambda (c)
      (and (not (character-jedi? c))
           (> (character-force c) 0))))
  ; Bilde den Charakter c zum Jedi aus (sofern c überhaupt
     Macht besitzt)
  (: train-jedi (character -> character))
  (check-expect (train-jedi luke) (make-character "Luke_
     Skywalker" #t 50))
  (check-expect (train-jedi r2d2) r2d2)
  (define train-jedi
    (lambda (c)
      (make-character (character-name c)
                       (> (character-force c) 0)
20
                       (* 2 (character-force c)))))
```

5.5.2015

Position Nord/Südwest vom Äquator Position west/östlich vom Nullmeridian Sei ein Prädikat mit Signatur (<t> -> boolean).

Eine Signatur der Form (predicate gilt für jeden Wert der Signatur $\langle t \rangle$ sofern ($\langle p \rangle$) \leadsto #t

Signaturen des Typs predicate) sind damit *spezifischer* (restriktiver) als die Signatur $\langle t \rangle$ selbst.

(define <newt> (signature <t>

Codebeispiel 12: Restriktive Signaturen mit predicate

```
; Ist x ein gültiger Breitengrad
; zwischen Südpol (-90°) und Nordpol (90°)?
(: latitude? (real -> boolean))
(check-expect (latitude? 78) #t)
(check-expect (latitude? -92) #f)
(define latitude?
  (lambda (x)
    (within? -90 \times 90))
; Ist x ein gültiger Längengrad westlich (bis -180°)
; bzw. östlich (bis 180°) des Meridians?
(: longitude? (real -> boolean))
(check-expect (longitude? 0) #t)
(check-expect (longitude? 200) #f)
(define longitude?
  (lambda (x)
    (within? -180 \times 180)))
; Signaturen für Breiten-/Längengrade basierend auf
; den obigen Prädikaten
(define latitude
  (signature (predicate latitude?)))
(define longitude
  (signature (predicate longitude?)))
```

7.5.2015

Man kann jedes one-of durch ein predicate ersetzen.

Codebeispiel 13: Das "große One-of Sterben des Jahres 2015"

```
(: f ((one-of 0 1 2 ) -> natural))
(define f
   (lambda (x)
        x))
; And then the "The Great one-of Extinction" of 2015 occurred
```

```
(: g ((predicate
(lambda (x) (or (= x 0) (= x 1) (= x 2)))) -> natural))
(define q
```

```
 \begin{array}{c|c} \textbf{(lambda} & (\textbf{x}) \\ \hline \textbf{x}) \ ) \end{array}
```

Geocoding: Übersetze eine Ortsangabe mittels des Google Maps Geocoding API (Application Programm Interface) in eine Position auf der Erdkugel.

```
(: geocoder (string -> (mixed geocode geocode-error)))
```

Ein geocode besteht aus:

Signatur

- Adresse (address) stringOrtsangabe (loc) location
- Nordostecke (northeast) location Ein geocode-error besteht aus:
- Südwestecke (southwest) locationTyp (type) stringGenauigkeit (accuracy) string

```
(: geocode-adress (geocode -> string))
(: geocode-loc (geocode -> location))
(: geocode-... (geocode -> ...))
```

Signatur

- Fehlerart (level) (one-of "TCP" "HTTP" "JSON" "API")
- Fehlermeldung (message) string

Gemischte Daten

Die Signatur

```
(mixed \langle t_1 \rangle \ldots \langle t_n \rangle)
```

ist gültig für jeden Wert, der mindestens eine der Signaturen $\langle t_1 \rangle \dots \langle t_n \rangle$ erfüllt. *Beispiel:* Data-Definition

Eine Antwort des Geocoders ist *entweder*

- ein Geocode (geocode) oder
- eine Fehlermeldung (geocode-error)

Beispiel (eingebaute Funktion string-\number)

```
(: string->number (string -> (mixed number (one-of #f))))
(string->number "42") \( \infty \) 42
(string-> number "foo") \( \infty \) #f
```

Codebeispiel 14: Die Google Geocode API

```
(define geocoder-response
    (signature (mixed geocode geocode-error)))
  (: sand13 geocoder-response)
  (define sand13
    (geocoder "Sand 13, Tübingen"))
  (geocode-address sand13)
  (geocode-type sand13)
(location-lat (geocode-loc sand13))
  (location-lng (geocode-loc sand13))
  (geocode-accuracy sand13)
  (: lady-liberty geocoder-response)
  (define lady-liberty
    (geocoder "Statue_of_Liberty"))
  (: alb geocoder-response)
  (define alb
    (geocoder "Schwäbische_Alb"))
  (: A81 geocoder-response)
  (define A81
    (geocoder "A81, Germany"))
```

Erinnerung:

Das Prädikat $\langle t \rangle$? einer Signatur $\langle t \rangle$ unterscheidet Werte der Signatur $\langle t \rangle$ von allen anderen Werten:

```
(: @\argt{}@? (any -> boolean))
```

Auch: Prädikat für eingebaute Signaturen

```
number?
complex?
real?
rational?
s integer?
natural?
```

```
string?
boolean?
```

Prozeduren, die gemischte Daten der Signaturen $\langle t_1 \rangle \dots \langle t_n \rangle$ konsumieren: *Konstruktionsanleitung*:

```
(: \langle \mathsf{t} \rangle ((mixed \langle \mathsf{t}_1 \rangle ... \langle \mathsf{t}_n \rangle) -> ...))
(define \langle \mathsf{t} \rangle
(lambda (x)
(cond
((\langle \mathsf{t}_1 \rangle? x) ...)
...
((\langle \mathsf{t}_n \rangle? x) ...))))
```

Mittels let lassen sich Werte an lokale Namen binden,

Die Ausdrücke $\langle e_1 \rangle \dots \langle e_n \rangle$ werden *parallel* ausgewertet. $\Rightarrow \langle id_1 \rangle \dots \langle id_n \rangle$ können in $\langle e \rangle$ (und nur hier) verwendet werden. Der Wert des let Ausdruckes ist der Wert von $\langle e \rangle$.

Codebeispiel 15: Liegt der Geocode r auf der südlichen Erdhalbkugel?

ACHTUNG:

'let' ist verfügbar auf ab der Sprachebene "Macht der Abstraktion".

'let' ist syntaktisches Zucker.

12.5.2015

Abstand zweier geographischer Positionen b_1 , b_2 auf der Erdkugel in km (lat, lng jeweils in Radian).

Codebeispiel 16: Abstand zweier geographischer Positionen

```
; Abstand zweier geographischer Positionen 11, 12 auf der
     Erdkugel in km (lat, lng jeweils in Radian):
  ; dist(11, 12) =
     Erdradius in km *
      acos(cos(11.lat) * cos(11.lng) * cos(12.lat) * cos(12.lng)
           cos(11.lat) * sin(11.lng) * cos(12.lat) * sin(12.lng)
5
           sin(l1.lat) * sin(l2.lat))
  \pi
  (define pi 3.141592653589793)
  ; Konvertiere Grad d in Radian (\pi = 180^{\circ})
  (: radians (real -> real))
  (check-within (radians 180) pi 0.001)
  (check-within (radians -90) (* -1/2 pi) 0.001)
  (define radians
    (lambda (d)
      (* d (/ pi 180))))
  ; Abstand zweier Orte o1, o2 auf Erdkugel (in km)
20 ; [Wrapper]
```

```
(: distance (string string -> real))
(check-within (distance "Tübingen" "Freiburg") (distance
   "Freiburg" "Tübingen") 0.001)
(define distance
  (lambda (01 02)
    (let ((dist (lambda (11 12)
                                             ; Abstand zweier
       Positionen 11, 12 (in km) [Worker]
                  (let ((earth-radius 6378); Erdradius (in km)
                        (lat1 (radians (location-lat l1)))
                        (lng1 (radians (location-lng l1)))
                        (lat2 (radians (location-lat 12)))
                        (lng2 (radians (location-lng 12))))
                    (* earth-radius
                       (acos (+ (* (cos lat1) (cos lng1) (cos
                          lat2) (cos lng2))
                                 (* (cos lat1) (sin lng1) (cos
                                    lat2) (sin lng2))
                                 (* (sin lat1) (sin lat2))))))))
          (gcl (geocoder ol))
          (gc2 (geocoder o2)))
      (if (and (geocode? gc1)
               (geocode? gc2))
          (dist (geocode-loc gc1) (geocode-loc gc2))
          (violation "Unknown, location(s)"))))
; ... einmal quer durch die schöne Republik
(distance "Konstanz" "Rostock")
```

PARAMETRISCH POLYMORPHE PROZEDUREN

Beobachtung: Manche Prozeduren arbeiten unabhängig von den Signaturen ihrer Argumente: parametrisch polymorphe Funktion (griechisch: vielgestaltig).

Nutze Signaturvariablen %a, %b,...

Beispiel:

```
; die Identität
(: id (%a -> %a))
(define id
    (lambda (x) x))

; die konstante Funktion
(: const (%a %b -> %a))
(define const
```

Eine polymorphe Signatur steht für alle Signaturen, in denen die Signaturvariablen durch konkrete Signaturen ersetzt werden.

Beispiel: Wenn eine Prozedur (: number %a %b -> %a) erfúllt, dann auch:

```
(: number string boolean -> string)
(: number boolean natural -> boolean)
(: number number number -> number)
```



```
; Ein polymorphes Paar (pair-of %a %b) besteht aus
; - einer ersten Komponente (first)
; - einer zweiten Komponente (rest)
  (: make-pair (%a %b -> (pair-of %a %b)))
5 (: pair? (any -> boolean))
  (: first ((pair-of %a %b) -> %a))
  (: rest ((pair-of %a %b) -> %b))
  (define-record-procedures-parametric pair pair-of make-pair
    pair?
    (first
    rest))
```

(pair-of <t1> <t2>) ist eine Signatur für Paare deren erster bzw. zweiter Komponente die Signaturen $\langle t_1 \rangle$ bzw. $\langle t_2 \rangle$ erfüllen.

```
;→ pair-of Signatur mit (zwei) Parametern
(: make-pair (%a %b -> (pair-of % a %b)))
(: pair? (any -> boolean))
(: first ((pair-of %a %b ) -> %a))
5 (: rest ((pair-of %a %b ) -> %b))
```

Codebeispiel 17: Paare aus verschiedenen Datentypen

```
; Ein paar aus natürlichen Zahlen
  ; FIFA WM 2014
  (: deutschland-vs-brasilien (pair-of natural natural))
  (define deutschland-vs-brasilien
    (make-pair 7 1))
  ; Ein Paar aus einer reellen Zahl (Messwert)
  ; und einer Zeichenkette (Einheit)
  (: measurement (pair-of real string))
10 (define measurement
    (make-pair 36.9 "°C"))
  ; "Liste" der Zahlen 1,2,3,4
  (define nested
    (make-pair 1
                (make-pair 2
                           (make-pair 3
                                      4))))
  ; Extrahiere das dritte Element der Liste (hier: 3)
  (first (rest (rest nested)))
```

Eine *Liste* von Werten der Signatur $\langle t_t \rangle$ ist entweder

- leer (Signatur empty-list) oder:
- ein Paar (Signatur pair-of) aus einem Wert der Signatur $\langle t \rangle$ und einer Liste von Werten der Signatur $\langle t \rangle$.

Signatur empty-list bereits in Racket vordefiniert.

Ebenfalls vordefiniert:

```
(:empty empty-list)
(: empty? (any -\zu boolean))
```

Operatoren auf Listen

```
Konstruktoren
(: empty-list) leere liste
(: make-pair (% a (list-of % a)) Konstruiert Liste aus Kopf und Rest

Predikate:
(: empty (any -> boolean) liegt leere Liste vor?
(: pair? (any -> boolean)) Nicht leere Liste?

Selektoren:
(: first (list-of %a) -> %a) Kopf-Element
(: rest (list-of %a) -> (list-of %a)) Rest Liste
```

Codebeispiel 18: Listen aus einem oder verschiedenen Datentypen

```
; Noch einmal (jetzt mit Signatur): Liste der natürlichen
     Zahlen 1,2,3,4
  (: one-to-four (list-of natural))
  (define one-to-four
     (make-pair 1
                (make-pair 2
                           (make-pair 3
                                       (make-pair 4
                                                  empty)))))
10
  ; Eine Liste, deren Elemente natürliche Zahlen oder Strings
    sind
  (: abstiegskampf (list-of (mixed number string)))
  (define abstiegskampf
    (make-pair "SCF"
                (make-pair 96
15
                           (make-pair "SCP"
                                       (make-pair "VfB" empty)))))
```

19.5.2015

1

```
(make-pair 1 (make-pair 2 empty))
Visualisierung Listen
```

empty

2

Spine (Rückgrat)


```
(: jedis-and-siths (list-of (list-of string)))
```


Codebeispiel 19: Jedis und Siths in einer geschachtelten Liste

Prozeduren, die Liste konsumieren

Konstruktionsanleitung:

Beispiel:

(rest xs) mit Signatur
(list-of number)
ist selbst wieder eine
kürzere Liste von Zahlen.
(list sum (rest

xs)) erzielt Fortschritt

Konstruktionsanleitung für Prozeduren:

```
(: <f> ((list-of \langle t_1 \rangle) \rightarrow \langle t_2 \rangle))
(define <f> (lambda(xs))
(cond)
((empty? xs) ...)
((pair? xs) ... (first xs) ...)
(<f> (rest xs)))...))
```

Neue Sprachebene "Macht der Abstraktion"

```
- Signatur (list-of \% a) eingebaut 

(list \langle e_1 \rangle \langle e_2 \rangle \dots \langle e_n \rangle)
\equiv
(make-pair (\langle e_1 \rangle)
(make-pair \langle e_2 \rangle)
... (make-pair \langle e_n \rangle) empty) ...)
```

- Ausgabeformat für nicht leere Listen:

```
{#<list x1x2... xn>
```

Codebeispiel 20: Länge einer Liste

```
; Länge der Liste xs
(: list-length ((list-of %a) -> natural))

(check-expect (list-length empty) 0)
(check-expect (list-length (list 1 1 3 8)) 4)
(check-expect (list-length jedis-and-siths) 2) ; nicht 4!
```

Füge Listen xs, ys zusammen (concatination)

Zwei Fälle (xs leer oder nicht leer)

Beobachtung:

- Die Längen von xs bestimmt die Anzahl der rekursiven Aufrufe von cat
- Auf xs werden Selektoren angewendet

Codebeispiel 21: Zusammenfügen zweier Listen

21.5.2015

Codebeispiel 22: Ausflug: Bluescreen Berechnung wie in Starwars mit Listen:

(**define** yoda


```
(define dagobah
;
;;Zugriff auf die Liste der Bildpunkte (Pixel) eines Bildes:

;(: image->color-list (image -> (list-of rgb-color)))
;(: color-list->bitmap ((list-of rgb-color) natural natural -> image))

;Breite/Höhe eines Bildes in Pixeln:

;(: image-width (image -> natural))
; (: image-height (image -> natural))

; Eine Farbe (rgb-color) besteht aus ihrem
; - Rot-Anteil 0..255 (red)
; - Grün-Anteil 0..255 (green)
; - Blau-Anteil 0..255 (blue)
```



```
; (define-record-procedures rgb-color
    make-color
     color?
     (color-red color-green color-blue))
  ; Signatur für color-Records nicht in image2.rkt eingebaut.
    Roll our own...
  (define rgb-color
    (signature (predicate color?)))
  ; Ist Farbe c bläulich?
  (: bluish? (rgb-color -> boolean))
  (define bluish?
    (lambda (c)
      (< (/ (+ (color-red c) (color-green c) (color-blue c))</pre>
            3)
          (color-blue c))))
40 ; Worker:
  ; Pixel aus Hintergrund bg scheint durch, wenn der
  ; entsprechende Pixel im Vordergrund fg bläulich ist.
  ; Arbeite die Pixellisten von fg und bg synchron ab
  ; Annahme: fg und bg haben identische Länge!
  (: bluescreen ((list-of rgb-color) (list-of rgb-color) ->
     (list-of rgb-color)))
  (define bluescreen
    (lambda (fq bq)
      (cond ((empty? fg)
             empty)
            ((pair? fg)
             (make-pair
              (if (bluish? (first fg))
                   (first bg)
                  (first fg))
```

```
(bluescreen (rest fq) (rest bq)))))))
  ; Wrapper:
  ; Mische Vordergrund fg und Hintergrund bg nach
     Bluescreen-Verfahren
  (: mix (image image -> image))
  (define mix
     (lambda (fg bg)
       (let ((fg-h (image-height fg))
             (fg-w (image-width fg))
             (bg-h (image-height bg))
             (bg-w (image-width bg)))
         (if (and (= fg-h bg-h)
                  (= fq-w bq-w)
             (color-list->bitmap
              (bluescreen (image->color-list fg)
                          (image->color-list bg))
             fg-w
             fg-h)
             (violation "Dimensionen_von_Vorder-/Hintergrund_
               verschieden")))))
75 ; Yoda vor seine Hüte auf Dagobah setzen
```


(mix yoda dagobah) ~~

Generierung aller natürlichen Zahlen (vgl. gemischte Daten) Eine natürliche Zahl (natural) ist entweder

- die 0 (zero)
- der Nachfolge (succ) einer natürlichen Zahl

```
\mathbb{N} = \{0, (succ(0)), (succ(succ(0))), \ldots\}
```

Konstruktoren

bedingle algebraische Eigenschaft (für check-property)

```
(==>  <t>)
```

Nur wenn $\langle p \rangle \sim \# t$ ist, wird Ausdruck $\langle t \rangle$ ausgwertet und getestet $\langle t \rangle \sim \# t$

Codebeispiel 23: ==> als Einschränkungsoperator

Beispiel für Rekursion auf natürlichen Zahlen: Fakultät

```
0! = 1
n! = n \cdot (n-1)!
3! = 3 \cdot 2!
= 3 \cdot 2 \cdot 1!
= 3 \cdot 2 \cdot 1 \cdot 0!
= 3 \cdot 2 \cdot 1 \cdot 1
= 6
10 = 3628800
```

Codebeispiel 24: Fakultät rekursiv

```
; Berechne n!
(: factorial (natural -> natural))
(check-expect (factorial 0) 1)
(check-expect (factorial 3) 6)
```

Konstruktionsanleitung für Prozeduren über natürlichen Zahlen:

Beobachtung:

- Im letzten Zweig ist n > 0 \rightarrow pred angewandt
- $(\langle f \rangle (-n 1))$ hat die Signatur $\langle t \rangle$

Satz:

Eine Prozedur, die nach der Konstruktionsanleitung für Listen oder natürliche Zahlen konstruiert wurde *terminiert immer* (= liefert immer ein Ergebnis).

(Beweis in Kürze)

Codebeispiel 25: Fehlerhafte Rekursionen

```
(cond ((> n 0) (* n (not-factorial (- n 1)))))))
```

```
\underbrace{(3\cdot(2\cdot(1\cdot0!)))}^{\text{merken}}
```

Die Größe eines Ausdrucks ist proportional zum Platzverbrauch des Reduktionsprozesses im Rechner

 \Rightarrow Wenn möglich Reduktionsprozesse, die *konstanten* Platzverbrauch - unabhängig von Eingabeparametern - benötigen

9.6.2015

```
Beobachtung: (factorial 10).

(* 10(* 9(* 8(* 7(* 6(factorial 5))))))
= (*(*(*(*(* (* (109)8)7)6) (factorial 5)) **** (* 30240 (factorial von. 5)))
```

→ Multiplikationen können vorgezogen werden :-)

Idee: Führe Multiplikation sofort aus. Schleife des Zwischenergebnis (*akkumulierendes Argument*) durch die ganze Berechnung. Am Ende erhält der Akkumulatoren das Endergebnis.

Beispiel: Berechne 5!

```
(: fac-worker (natural natural -> natural))

n | acc

-1 \checkmark 5 | 1 \searrow · 5 | neutrales Element

-1 \checkmark 4 | 5 \searrow · 4

-1 \checkmark 3 | 20 \searrow · 3

-1 \checkmark 2 | 60 \searrow · 2

-1 \checkmark 1 | 120 \searrow · 1

-1 \checkmark 0 | 120
```

```
; Berechne n!
; Wrapper
5 (: fac (natural -> natural))
  (check-expect (fac 0) 1)
```

Ein Berechnungsprozess ist *iterativ*, falls seine Größe konstant bleibt.

Damit:

```
factorial nicht iterativ fac-worker iterativ
```

Wieso ist fac-worker iterativ?

Der Rekursive Aufruf ersetzt den aktuell reduzierten Aufruf *vollständig*. Es gibt keinen *Kontext* (umgebenden Ausdruck), der auf das Ergebnis des rekursiven Aufrufs "wartet"

Kontext des rekursiven Aufrufs in:

```
- factorial: (* n □)
- fac-worker: keiner
```

Eine Prozedur ist *endrekursiv* (tail call), wenn sie keinen Kontext besitzt. Prozeduren, die nur endrekursive Prozeduren beinhalten, heißen selber endrekursiv. Endrekursive Prozeduren generieren *iterative* Berechnungsprozesse

```
(: rev ((list-of %a))-> (list-of %a))
```

Codebeispiel 26: Liste xs umdrehen

```
; Aufwand: 1/2 x n x (n + 1) Aufrufe von make-pair wenn xs die
   Länge n hat
  (: rev ((list-of %a) -> (list-of %a)))
```

```
Beobachtung: von (rev (from-to 11000))
1000 \cdot \text{make-pair}
(cat (list 1000 ... 2) (list 1))
(\text{cat (list 1000 ... 3) (list 2)})
\rightarrow \text{Aufrufe von make-pair: } 1000+999+998+...+1
\sum_{i=1}^{n} i = \frac{n \cdot (n+1)}{2} \text{ Quadratische Aufrufe :-} (
```

Konstruiere iterative Listenumkehrfunktion backwards:

```
n
rest ✓ (list 123)

(: backwards-worker ((list-of %a) (list-of %a) -> (list-of %a))) rest ✓ (list 23)
rest ✓ (list 3)
empty
```

Mittels letrec lassen sich Werte an lokale Namen binden.

```
(letrec  \begin{array}{ccc} (\langle \operatorname{id}_1 \rangle & \langle \operatorname{e}_1 \rangle) & \dots \\ (\langle \operatorname{id}_n \rangle & \langle \operatorname{e}_n \rangle) & \langle \operatorname{e} \rangle) \end{array}
```

Die Ausdrücke $\langle e_1 \rangle, \dots, \langle e_n \rangle$ und $\langle e \rangle$ dürfen sich auf die Namen $\langle id_1 \rangle, \dots, \langle id_n \rangle$ beziehen

Codebeispiel 27: Effizientere Variante eine Liste umzudrehen

```
; Wrapper
(: backwards ((list-of %a) -> (list-of %a)))

(check-expect (backwards empty) empty)
(check-expect (backwards (list 1 2 3 4)) (list 4 3 2 1))

(define backwards
    (lambda (xs))

; Liste xs umdrehen (mit Akkumulator acc, endrekursiv)
```

11.6.2015

Induktive Definition

Konstante Definition der natürlichen Zahlen \mathbb{N} .

Definition: (Peamo Axiome)

(P1) $0 \in \mathbb{N}$

 $(P2) \qquad \forall n \in \mathbb{N} : succ(n) \in \mathbb{N}$

(P3) $\forall n \in \mathbb{N} : succ(n) \neq 0$

 $(P4) \qquad \forall n, m \in \mathbb{N} : succ(n) = succ(m) \Leftrightarrow n = m$

TODO: "Plot"mit punkten und Pfeilen

(P5) Für jede Menge $M \subset N$ mit $0 \in M$

```
und \forall n : (n \in M \Rightarrow succ(n) \in M), gilt M = \mathbb{N}
```

" \mathbb{N} enthält nicht mehr als die 0 und die durch succ() generierten Elemente "Nicht ist sonst in \mathbb{N} ,

TODO: Plot von zwei kreisen ineinander Beweisschema der *vollständigen Induktion* Sei P(n) eine Eigenschaft einer Zahl $n \in \mathbb{N}$

```
(: P (natural \rightarrow boolean))
Ziel: \forall n \in \mathbb{N}: P(n)
```

Definiere $M = \{n \in \mathbb{N} | P(n)\} \subset \mathbb{N}$

M enthält die Zahlen n für die P(n) gilt

Induktionsaxiom

Falls

 $0 \in M$

und

$$\forall n : (n \in M \Rightarrow succ(n) \in M)$$

dann

 $M \in \mathbb{N}$

Falls

Induktionsstart

P(0)

und

 $\forall (P(n) \Rightarrow P(succ(n)))$

Induktionsschritt

dann

 $\forall n \in \mathbb{N}P(n)$

Beispiel:

$$1 & = 1 \\
1+3 & = 4 \\
1+3+5 & = 9 \\
1+3+5+7 & = 16$$

. . .

$$P(n) = \sum_{i=0}^{n} (2i+1) \stackrel{!}{=} (n+1)^{2}$$
Summe der ersten n ungeraden Zahlen

Induktionsschluss P(0)

$$\sum_{0}^{0} (2i+1) = 2 \cdot 0 + 1 = (0+1)^{2} \checkmark$$

Induktionsschritt $\forall n(P(n)) = P(n+1)$

$$\sum_{i=0}^{n+1} (2i+1) = \sum_{i=0}^{n} (2i+1) + (2(n+1)+1)$$

$$\stackrel{iv.}{=} (n+1)^2 + 2n + 3$$

$$= n^2 + 4n + 4$$

$$= ((n+1)+1)^2 \checkmark$$

Beispiel:

```
(define factorial
                                           (lambda (k)
                                                      (if
                                                                (= k 0) 1
                                                                (* k (factorial (- k 1)))))
                     P(x) \equiv (factorial n) = \boxed{n!}
                                                                     x:(Racket Repräsentation für x \in \mathbb{N})
                     Zeige: \forall n \in \mathbb{N} : P(n)
                     Induktionsbasis P(0)
                     (factorial(0))
                     * ((lambda (k)...) 0)
                     ⋯ (if (= 0 0)1 ...)
                     ~~→ (if #t 1 ...)
                     \longrightarrow 1 = \boxed{0}! \checkmark
                     Induktionsschritt: \forall n : (P(n) \rightarrow P(n+1))
                     (factorial n+1)
                     * ((lambda (n)...) n+1)
                     \longrightarrow (if (= n+1 0)1 ... (...)
                     ⋯→ (if #f 1 ... (...))
                     ★ (* n+1 (factorial (- n+1 1)))
                     (* n+1) (factorial (- n)))
                       \stackrel{iv}{=} (* [n + 1] n!)
implementiert ist
                       = (n+1)! \checkmark
```

Unter der

tatsächlich Subtraktion

Annahme, dass

Beispiel:

5

Jede durch die Konstruktionsanleitung für Funktionen über natürliche Zahlen konstruierte Funktion liefert ein Ergebnis (*terminiert immer*)

```
(define f
          (lambda (n)
                     (if
                               (= n 0) base
                               (step (f (n-1)) n)))
(: base natural)
(: step (natural natural \rightarrow natural)) Bsp:step \rightarrow (lambda (x y) (* x
у))
Dann gilt P(n) = (f n) terminiert (Mit Ergebnis der Signatur natural)
Zeige \forall n \in \mathbb{N} : P(n)
Induktionsbasis P(0):
(f 0)
→→ (if (= 0 0) base ...)
∼→ (if #tbase
→ base ✓
Induktionsschritt \forall n : (P(n) \rightarrow P(n+1))
(f n+1)
\longrightarrow (if (= |n+1| 0) base ... (step ...))
→→ (if #f base ... (step ...))
\longrightarrow (step (f (- n+1 1)) n+1)
(f|n|)
 \Rightarrow (step (f \boxed{n}) \boxed{n+1}) terminiert
```

Definition:(Listen.endliche Folge)

Die Menge M^* (= Listen mit Elementen aus M + list-of M ist induktiv definiert

```
Nicht leere Liste (L1) empty \in M^*
\in M^* \quad (L2) \qquad \forall x \in M, xs \in M^*
(L3) \qquad \text{Nichts sonst in } M^*
(make-pair \times Beweisschema \textit{Listeninduktion} So <math>P(xs) eine Eigenschaft von Listen über M.
```

(: P ((list-of M) -> boolean))

Induktionsanfang

```
Falls P(\text{empty})

und

\forall x \in M, xs : P(xs) \Rightarrow (P(xs) \Rightarrow (P(\text{make-pair} \times xs))

dann

\forall xs \in M^* : P(xs)
```

Indukstionsschritt

16.6.2015

```
Beispiel:
```

5

```
(define cat
          (lambda (xs ys)
                     (cond
                               ((empty? xs ) ys)
                               ((pair? xs) (make-oair (first xs) (cat
                                  (rest xs) ys))))))
    (1) cat empty ys = ys
       (cat xs empty) = xs
                                                               Beweise:
                                                                                     (M^*, cat, empty)
                                                                                     ist ein Monoid)
       (cat (cat xs ys)ys) = (cat xs (cat ys zy))
(1) (cat empty ys) ★ys√
(2) P(xs) = (cat xs empty) = xs
Induktionsanfang P(empty)
(cat empty empty) \stackrel{\text{(1)}}{=} empty \checkmark
Induktionsschritt \forall x \in M : P(xs) \Rightarrow P((make-pair x xs))
(define make-pair mp)
(cat (mp x xs)empty)
(mp (first (mp x xs)) (cat (rest (mp x xs))empty))
(mp x (cat xs empty))
 \stackrel{iv.}{=} (mp \times xs) \checkmark
(3) Listeninduktion über xs (ys,zs \in M^* beliebig)
   P(xs) \equiv (\text{cat (cat xs ys)zs}) = (\text{cat xs (cat ys zs)})
Induktionsanfang P(empty)
(cat (cat empty ys)zs)
\longrightarrow \stackrel{\text{(1)}}{=} (cat ys zs)
```

```
\leftarrow \sim (1) (cat empty (cat ys zs))\checkmark
  Induktionsschritt \forall x \in M : P(xs) \Rightarrow P((make-pair x xs))
  (cat (cat (mp x xs)ys)zs))
  (cat (mp x (cat xs ys))zs)
  (mp (cat (cat xs ys))zs)
    \stackrel{iv.}{=} (mp (cat (cat xs ys)zs))
  \leftarrow (cat (mp x xs ) (cat ys zs))\checkmark
  Beispiel: Interaktion von length und cat (Distributivität)
  (define length
            (lambda (xs)
                      (cond
                                ((empty? xs)0)
                                ((pair? xs) (+ 1
                                          (length (rest xs)))))))
 P(xs): (length (cat xs ys)) = (+(length xs)(length ys)),
  ys \in M^* beliebig.
  Induktionsbasis:
  (length (cat empty ys))
    \stackrel{\text{(1)}}{=} (length ys)
     \stackrel{+}{=} (+ 0(length ys))
  ← (+ (length empty) (length ys)) ✓
  Induktionsschritt
  (length (mp x xs)ys)
   cat \rightsquigarrow (length (mp x (cat xs ys)))
length \stackrel{\star}{\longleftrightarrow} (+ 1(length (rest (mp x (cat xs ys)))))
  48
```

```
iv. = (+ 1 (+ (length xs) (length ys)))
ass. (+) (+ (+ 1 (length xs) (length ys)))
length (+) (+ (length (mp x xs) (length ys))) ✓
```

Prozeduren höherer Ordnung

(higher-order *procedures*)

Wert des Parameters p? ist Prozedur ⇒ kann angewendet werden

18.6.2015

Zwei Arten von Higher Order Prozeduren (H.O.P)

- (1) akzeptieren, Prozeduren als Parameter oder/und
- (2) liefern Prozeduren als Ergebnis

```
filter ist vom Typ (1).
```

H.O.P vermeiden Duplizierung von Code und führen zu kompakteren Programmen, verbesserte Lesbarkeit und verbesserte Wartbarkeit.

```
Beispiel: (map f x)
```


Allgemeine Transformation von Listen *Listenfaltung* (list folding)

Idee: Ersetze die Listenkonstruktoren make-pair und empty systematisch.

- z c xs) wirkt als Spinetransformer
 - empty **→→**Z
 - make-pair \leadsto c
 - Eingabe:Liste (list-of %a)
 - Ausgabe : im Allgemeinen keine Liste mehr: %b

TODO: Großes Bild von foldr Funktionen

```
(: sum ((list-of number) -> number))
(define sum(lambda (xs)(foldr 0 + xs)))
```

Beispiel: Länge einer Liste durch Listenreduktion TODO: Bild Plotten

Codebeispiel 28: Fold und seine Anwendungen

```
; Listenreduktion via foldr: Summe der Liste xs
  (: my-sum ((list-of number) -> number))
  (define my-sum
    (lambda (xs)
      (foldr 0 + xs))
  ; Listenreduktion via foldr: Produkt der Liste xs
  (: my-product ((list-of number) -> number))
  (define my-product
    (lambda (xs)
      (foldr 1 * xs))
  ; Listenreduktion via foldr: Maximum der Liste xs
  (: my-maximum ((list-of number) -> number))
  (define my-maximum
    (lambda (xs)
      (foldr -inf.0 max xs)))
  ; Identität (auf Listen), implementiert via foldr
20 (: my-id ((list-of %a) -> (list-of %a)))
```

```
(define my-id
    (lambda (xs)
      (foldr empty make-pair xs)))
  ; Reimplementation von append via foldr
  (: my-append ((list-of %a) (list-of %a) -> (list-of %a)))
  (define my-append
    (lambda (xs ys)
      (foldr ys make-pair xs)))
  ; Reimplementation von map via foldr
  (: my-map ((%a -> %b) (list-of %a) -> (list-of %b)))
  (define my-map
    (lambda (f xs)
      (foldr empty
             (lambda (y ys) (make-pair (f y) ys))
             xs)))
  ; Reimplementation von reverse via foldr
  (: my-reverse ((list-of %a) -> (list-of %a)))
  (define my-reverse
    (lambda (xs)
      (foldr empty
             (lambda (y ys) (append ys (list y)))
             xs)))
45
  ; Listenreduktion via foldr: Länge der Liste xs
  (: my-length ((list-of %a) -> natural))
  (define my-length
    (lambda (xs)
      (foldr 0 (lambda (x l) (+ 1 l)) xs)))
  ; Reimplementation von filter mittels foldr
  (: my-filter ((%a -> boolean) (list-of %a) -> (list-of %a)))
  (define my-filter
    (lambda (p? xs)
      (foldr empty
              (lambda (y ys) (if (p? y)
                                 (make-pair y ys)
                                 ys))
             xs)))
```

23.6.2015

Teachpack 'universe' nutzt H.O.P Animationen (Sequenzen von Bildern/Szenen) zu definieren.

```
(big bang
 ((init))
 (ontick (tock))
 (todraw (render)(w)(h)))
```

- (⟨init⟩ %a) Startzustand
- (: <tock> (%a -> %a)) Funktion, die einen neuen Zustand aus alten Zustand berechnet
- (: $\langle render \rangle$ (%a -> image)) Funktion, die aus dem aktuellen eine Szene berechnet (wird in Fenster mit Dimension $\langle w \rangle \cdot \langle h \rangle$ Pixel angezeigt)
- Beim Schließen der Animation wird der letzte Zustand zurückgegeben

Codebeispiel 29: Ein animierter Zähler

Codebeispiel 30: Ein animiertes Raumschiff

```
; Erstellung von Animationen mit Teachpack "universe"
; (2) X-Wing Fighter + Scrolling Death Star

(define death-star
```



```
(crop (modulo (* 8 t) 200) 0 400 440
death-star))))
(big-bang 0
(on-tick (lambda (t) (+ t 1)))
```

Ausgabe der römischen Episoden nummern für Film f: (roman (film-episode f))

Gesuchte Funktion ist *Komposition* von zwei existierenden Funktionen:

- (1) Erst film-episode anwenden, dann
- (2) Wende roman auf das Ergebnis von (1) an

Komposition von Prozeduren allgemein:

```
( (compose f g) x) \equiv (f (g x))

neue Prozedur realisiert
Komposition von f und g

[ Mathematisch (compose f g) \equiv f \circ g ]

(: compose (%b -> %c) ($a -> %b) -> (%a -> %c))

(define compose

(lambda (f g)

(lambda (x)

(f (g x)))))
```

Codebeispiel 31: Zweites und Drittes Element durch Combined

repeat: n-fache Komposition von f auf sich selbst (n-fache Anwendung von f, Exponentation)

Codebeispiel 32: Gibt die Funktion + zurück

```
; Funktionen, die ihre Argument schrittweise konsumieren
; Konsumiert Argumente x,y in einem Schritt (eine Reduktion
   von apply_)
(: plus (number number -> number))
(define plus
  (lambda (x y)
    (+ x y)))
; Konsumiert Argumente x, y in zwei Schritten (zwei Reduktionen
  von apply_).
; Nach dem ersten Schritt ist nur Argument x festgelegt,
   Ergebnis ist eine
; Funktion, die das zweite Argument y erwartet.
(: add (number -> (number -> number)))
(define add
  (lambda (x)
    (lambda (y)
      (+ x y))))
```

```
(map (add 1) (list 1 2 3 4 5 6 7 8 9 10)); *** (list 2 3 4 5 6 7
8 9 10 11)
(map (add 10) (list 1 2 3 4 5 6 7 8 9 10)); *** (list 11 12 13 14
15 16 17 18 19 20)

Reduktion: ((add 1) 41)

*** ((lambda (x) (lambda (y) (+ x y))1) 41)
eval<sub>id</sub>

*** ((lambda (y) (+ 1 y) 41)
apply<sub>A</sub>
[lambda(x)]

*** Funktion die 1 auf
ihr Argument anwenden

*** (+ 1 41)
apply<sub>A</sub>
[lambda(y)]
```

25.6.2015

```
(%a %b → %c) \longrightarrow Applikation auf zwei Argumente (Signaturen %a, %b) \longrightarrow %c

Curry \downarrow uncurry

(%a → (%b → %c)) \rightarrow App. auf Arg. (Sig. %a) \rightarrow (%b %c) App. auf Arg. (Sig. %b) \rightarrow %c

Currying (Haskell B. Curry, Moses Schönfinkel)
```

Anwendung einer Prozedur auf ihr erstes Argument liefert Prozedur der restlichen Argumente.

Jede n-stellige Prozedur lässt sich in eine alternative curried Prozedur transformieren, die in n Schritte jeweils ein Argument konsumiert. Uncurry ist die umgekehrte Transformation.

Es gilt für jeder Prozedur p:

```
(uncurry (curry p)) = p
```

"Schönfinkel Isomorphismus"

Codebeispiel 33: Einfache Anwendung von Curry

```
(map ((curry +) 1) (list 1 2 3 4 5 6 7 8 9 10))
; →→ (list 2 3 4 5 6 7 8 9 10 11)
(map ((curry +) 10) (list 1 2 3 4 5 6 7 8 9 10))
; →→ (list 11 12 13 14 15 16 17 18 19 20)
(filter ((curry =) 2) (list 1 2 3 4 5 4 3 2 1))
; →→ (list 2 2)
```

Erinnerung: Bestimmung der ersten Ableitung der rellen Funktion durch Bildung des Differentialqoutienten

Bildung des Differentialqoutienten:

Operator ' (Ableitung konsumiert Funktionen und produziert Funktion) \rightarrow _' ist higher Order

Codebeispiel 34: Ableitungen mit Curry

```
; Differenzenquotienten von f (mit Differenz h)
  (: diffquot (real (real -> real) -> (real -> real)))
  (define diffquot
    (lambda (h f)
       (lambda (x)
         (/ (- (f (+ x h)) (f x))
           h))))
Berechne Differenzenquotienten mit Differenz h = 0.00001
  ; ((derive f) x) \equiv (f' x)
  (: derive ((real -> real) -> (real -> real)))
  (define derive
     ((curry diffquot) 0.00001))
15
  ; Beispielfunktion: f1(x) = xs + 2x
  (: f1 (real -> real))
  (define f1
     (lambda (x) (+ (\star x x x)
                    (*2x)))
  ; Ableitung von f1(x)
  ; f1'(x) = 3xš + 2
25 (check-property
```

Charakteristische Funktion einer Menge $S \subset M$ $\left(\begin{array}{c} s \\ s \end{array}\right)$ M

Charakteristische Funktion für S: $(:\chi_s (M \rightarrow Boolean))$

$$\chi_s(x) = \begin{cases} \#t & x \in S \\ \#f & \text{sonst} \end{cases}$$

$$\chi_s(m) = \#f \qquad \chi_s(s) = \#t$$

Idee Repräsentiere $S \subseteq$ durch Prozedur (M -> boolean) und Mengenoperation auf Prozeduren (H.O.P)

Codebeispiel 35: Grundlagen Mengenimplementierung

```
; Charakteristische Funktion (M -> boolean) als Repräsentation
; für eine Menge S ⊆ M
(define set-of
   (lambda (t)
        (signature (t -> boolean))))

; S42 = { x ∈ Z | x > 42 }
(: S42 (set-of integer))
(define S42
   (lambda (x)
        (> x 42)))

; Leere Menge Ø
(: empty-set (set-of %a))
(define empty-set
   (lambda (x)
        #f))
```

- :-) Darstellung unendlicher Mengen $(S_42 = \{x \in \mathbb{Z} \mid x > 42\})$
- :-) Mengenoperationen (\cup, \cap, \setminus) in *Konstanter Zeit*

Element *x* in Menge S einfügen:

$$\chi_{S \cup \{x\}}(y) = \begin{cases} \# f & x = y \\ \chi_s(y) & \text{sonst} \end{cases}$$

Codebeispiel 36: Erweiterte Mengenoperationen

```
; Element x in Menge S hinzufügen: S U {x}
   (: set-insert (number (set-of number) -> (set-of number)))
  (define set-insert
     (lambda (x S)
       (lambda (y)
         (or (= y x)
             (S y)))))
10 ; Test: die leere Menge enthält kein Element
  (check-property
   (for-all ((x integer))
      (boolean=? (set-member? x empty-set) #f)))
  ; Test: die Menge Ø U {x} enthält x
  (check-property
   (for-all ((x integer))
      (set-member? x (set-insert x empty-set))))
  ; Konstruiere \{1, 2, 3, 4, 5\} = (((\emptyset \cup \{1\}) \cup \{2\}) \cup \{3\}) \cup \{4\})
     U {5})
   (: 1-to-5 (set-of integer))
   (define 1-to-5
     (set-insert
      5
      (set-insert
      4
```

```
(set-insert
    3
    (set-insert
    2
    (set-insert
    1 empty-set))))))
```

30.6.2015

Konvertierung Liste xs in eine Menge gleicher Elemente.

Codebeispiel 37: Konvertiert eine Liste zu einer Menge

```
; Konvertiere Liste xs in Menge
(: list->set ((list-of number) -> (set-of number)))
(define list->set
   (lambda (xs)
        (fold empty-set set-insert xs)))

; Beispiel: Konstruiere {1,2,...,10}
(: 1-to-10 (set-of integer))
(define 1-to-10
        (list->set (list 1 2 3 4 5 6 7 8 9 10)))
```

Vereinigung: $\chi_{S \cup T}(x) = \chi_S(x) \vee \chi_T(x)$.

Weitere Mengenoperationen analog:

Codebeispiel 38: Mengenoperationen \setminus , \cup , \cap , \triangle

```
; Element x aus Menge S löschen
```

```
(: set-delete (number (set-of number) -> (set-of number)))
   (define set-delete
      (lambda (x S)
        (lambda (y)
           (if (= y x)
                #f
                (S y)))))
   ; S U T
   ; x \in S \cup T \iff x \in S \lor x \in T
   (: set-union ((set-of %a) (set-of %a) -> (set-of %a)))
   (define set-union
     (lambda (S T)
        (lambda (x)
           (or (S x) (T x))))
   ; S ∩ T
   ; x \in S \cap T \Leftrightarrow x \in S \wedge x \in T
   (: set-intersect ((set-of %a) (set-of %a) -> (set-of %a)))
   (define set-intersect
      (lambda (S T)
        (lambda (x)
           (and (S \times) (T \times)))
25
   ; S \ T
   ; x \in S \setminus T \Leftrightarrow x \in S \wedge x \notin T
   (: set-difference ((set-of %a) (set-of %a) -> (set-of %a)))
   (define set-difference
      (lambda (S T)
        (lambda (x)
           (\textbf{and} \ (\texttt{S} \ \texttt{x}) \ (\textbf{not} \ (\texttt{T} \ \texttt{x}))))))
```

Charakteristische Funktion zur Repräsentation Mengen:

- (1) Performance: set-member hat lineare Laufzeit bei mit set-insert konstruierte Mengen (wie Liste!)
- (2) Vorteile:
 - + unendliche Mengen darstellbar
 - + Mengenoperationen in konstanter Zeit durchführbar
- (3) Nachteile
 - Elemente sind nicht auf zählbar

 $\it Streams$ (stream-of %a):unendliche Ströme von Elementen x, mit Signatur %a

Ein Stream ist ein Paar:

-Erst eine Ausführung des Tails (force) erzeugt nächstes Stream-Element (faher

auch lazylist).

Vergleich:

Verzögerte Auswertung eines Ausdrucks (delayed Evaluation):

- (**delay** e): Verzögere die Auswertung des Ausdruckes e und liefere "Versprechen" (promise) e bei Bedarf später auswerten zu können.

```
(\textbf{delay} \ \texttt{e}) \ \equiv \ (\textbf{lambda} \ \ () \ \ \ \ \ \ \ \ ) \\ \uparrow \\ \text{nicht} \\ \text{ausgewertet}
```

(force p) Erzwinge Auswertung des promise. p liefert Wert zurück

Codebeispiel 39: Streams

```
; Promise, ein Wert des Vertrags t zu liefern (0-stellig
Prozedur)
```

```
(define promise
    (lambda (t)
      (signature (-> t))))
  ; Verzögerte Auswertung (delay)
  ; Variante 1:
  ; (delay e) (lambda () e)
  ; Variante 2 (nutzt selbstdefinierte Scheme-Syntax-Regel,
    verfügbar ab
  ; Sprachebene "DMdA - fortgeschritten"):
15
  ; (define-syntax delay
  ; (syntax-rules ()
        (lambda () e))))
  ; Erzwungene Auswertung
  (: force ((promise %a) -> %a))
  (define force
    (lambda (p)
      (p)))
25
  ; Beispiel:
  ; Promise (werde 41+1 berechnen, falls gefordert)
  (: will-evaluate-to-42 (promise natural))
 (define will-evaluate-to-42
    (lambda () ; oder äquivalent mit Variante 2: (delay (+ 1
       41))
      (+ 41 1)))
  ; Verzögerte Ausführung...
will-evaluate-to-42
  ; ... und erzwungene Ausführung
  (force will-evaluate-to-42)
  ; Polymorphe Paare (isomorph zu `pair')
40 (: make-cons (%a %b -> (cons-of %a %b)))
  (: head ((cons-of %a %b) -> %a))
  (: tail ((cons-of %a %b) -> %b))
  (define-record-procedures-parametric cons cons-of
   make-cons
  cons?
45
```

```
(head
     tail))
  ; Ein Stream besteht aus
  ; - einem ersten Element (head)
  ; - einem Promise, den Rest des Streams generieren zu können
     (tail)
   (define stream-of
    (lambda (t)
       (signature (cons-of t (promise (stream-of t))))))
55
  ; Beispiel:
  ; Stream mit Zahlen ab n erzeugen
  (: from (number -> (stream-of number)))
  (define from
    (lambda (n)
       (make-cons n (lambda () (from (+ n 1)))))
  ; Beispiel (Stream Liste):
  ; Erste n Elemente des Streams str in eine Liste extrahieren
  (: stream-take (natural (stream-of %a) -> (list-of %a)))
   (check-expect (stream-take 5 (from 1)) (list 1 2 3 4 5))
   (check-expect (stream-take 0 (from 1)) empty)
  (define stream-take
    (lambda (n str)
       (if (= n 0)
          empty
           (make-pair (head str)
                      (stream-take (- n 1) (force (tail str))))))
  ; Beispiel (Stream Stream):
  ; Filtere Stream str bzgl. Prädikat p?
  (: stream-filter ((%a -> boolean) (stream-of %a) -> (stream-of
     %a)))
  (check-expect (stream-take 10
                              (stream-filter (lambda (x) (=
                                 (remainder x 2) 0))
                                              (from 1)))
                 (list 2 4 6 8 10 12 14 16 18 20))
  (define stream-filter
```

2.7.2015

Generiere den unendlichen Strom der Fibonacci Zahlen.

```
fib(0) = 1

fib(1) = 1

fib(n) = fib(n-1) + fib(n-2)

1, 1, 2, 3, 5, 8, 13, 21,...
```

↑ ab hier jeweils Summe der beiden Vorgänger

Beobachtung:

```
11235
+ 1235
2358
```

Stream-Diagramm zu fibs:

Codebeispiel 40: Stream aller Fibonacci Zahlen

Die Menge der Binärbäume T(m) ist induktiv definiert:

```
(T1) empty-tree \in T(M)

(T2) \forall x \in M \text{ und } l, r \in T(M): (make-node 1 x r) \in T(M)

(T3) nichts sonst in T(M)
```

Hinweis:

- Jeder Knoten (make-node) in einem Binärbaum hat zwei Teilbäume sowie eine Markierung ((label)).
- Vegleiche:

```
M^* und T(M) empty und empty-tree make-pair und make-node
```

Visualisierung:

- empty-tree□
- (make-node x l r)
- Die Knoten mit Markierung x ist Wurzel (root) des Baumes
- Ein Knoten, der nur leere Teilbäume beinhaltet heißt *Blatt* (leaf). Alle anderen Knoten heißen *innere Konten* (inner-nodes)

Beispiel für Binärbäume der Menge T(M) (Binär-) Bäume haben zahlreiche Anwendungen:

Abbildung 2: Baum t_2 balanciert, alle Teilbäume auf einer Tiefe haben die selbe Anzahl an Knoten

- Suchbäume (z.B Datenbanken)
- Datenkompression

• Darstellung von Termen (Ausdrücken)

Bäume sind die Induktiv definierte Datenstruktur

Codebeispiel 41: Verschiedene Bäume

```
; Ein Knoten (node) eines Binärbaums besitzt
  ; - einen linken Zweig (left-branch),
  ; - eine Markierung (label) und
  ; - einen rechten Zweig (right-branch)
  (: make-node (%a %b %c -> (node-of %a %b %c)))
  (: node-left-branch ((node-of %a %b %c) -> %a))
  (: node-label ((node-of %a %b %c) -> %b))
  (: node-right-branch ((node-of %a %b %c) -> %c))
  (define-record-procedures-parametric node node-of
   make-node
    node?
    (node-left-branch
     node-label
    node-right-branch))
  ; Ein leerer Baum (empty-tree) besitzt
  ; keine weiteren Eigenschaften
  (: make-empty-tree (-> the-empty-tree))
  (define-record-procedures the-empty-tree
   make-empty-tree
    empty-tree?
    ())
  ; Der leere Baum (Abkürzung)
(: empty-tree the-empty-tree)
  (define empty-tree (make-empty-tree))
  ; Signatur für Binärbäume (btree-of t) mit Markierungen des
     Signatur t
  ; (im linken/rechten Zweig jedes Knotens findet sich jeweils
  ; ein Binärbaum)
  (define btree-of
    (lambda (t)
      (signature (mixed the-empty-tree
                         (node-of (btree-of t) t (btree-of t))))))
  ;
  ;
                                     zweifache Rekursion, s.
     (list-of t)
```

```
; Konstruiere Blatt mit Markierung x
  (: make-leaf (%a -> (btree-of %a)))
  (define make-leaf
    (lambda (x)
      (make-node empty-tree x empty-tree)))
45
  ; Beispiel: t1 (rechts-tief, listen-artig)
  (: t1 (btree-of natural))
  (define t1
    (make-node empty-tree
               (make-node empty-tree
                          2
                           (make-node empty-tree
                                      3
                                     empty-tree))))
  ; Beispiel: t2 (balanciert)
  (: t2 (btree-of natural))
  (define t2
    (make-node (make-leaf 2)
               (make-leaf 3)))
  ; Beispiel: Klassifikation von Star Wars Charakteren
  ; (left branch "no", right branch "yes")
  (: classifier (btree-of string))
  (define classifier
    (make-node (make-node (make-leaf "Han, Solo")
                                      "female?"
                                      (make-leaf "Padme_Amidala"))
                          "droid?"
                           (make-node (make-leaf "C-3PO")
                                      "astromech?"
75
                                      (make-leaf "R2D2")))
               "force?"
                (make-node (make-leaf "Luke_Skywalker")
                                      "prequel?"
                                      (make-leaf "Mace_Windu"))
                          "dark_side?"
```

Die *Tiefe* (depth) eines Baumes ist die maximale Länge eines Weges von der Wurzel von tzu einem leeren Baum. Also:

7.7.2015

Codebeispiel 42: Die Größe eines Baumes

Einschub: Pretty-Printing von Bäumen

Prozedur (pp t) erzeugt formatierten String für Binärbaum t.

Idee: Repräsentiere formatierten String als Liste von Zeilen (Strings).

- ⇒(1) Nutze (string-append) um Zeilen-String zu definieren (horizontale Konkatenation).
 - (2) Nutze (append) um die einzelnen Zeilen zu einer Liste von Zeilen zusammenzusetzen (vertikale Konkatenation)

Erst direkt vor der Ausgabe werden die Zeilen-Strings zu einem auszugebenden String zusammengesetzt (strings-list->string)

Codebeispiel 43: Pretty Print eines Baumes

```
; Drucke Textrepräsentation des Baums t
  (: print ((btree-of (mixed number string)) -> %void))
  (define print
    (lambda (t)
      (write-string (strings-list->string (pp t)))))
  ; Erzeuge Liste von Zeilen-Strings der Textrepräsentation des
     Baums t
  (: pp ((btree-of (mixed number string)) -> (list-of string)))
  (define pp
    (lambda (t)
      (cond
        ((empty-tree? t) (list "\n"))
        ((node? t)
         (letrec ((lbl (node-label t))
15
                   (x (if (string? lbl) lbl (number->string
                     lbl)))
                   (wx (string-length x))
                   (ppl (pp (node-left-branch t)))
```

```
(ppr (pp (node-right-branch t))))
         (append (list (string-append x "--"
                                   (first ppr)))
                  (map ((curry string-append))
                        (string-append "" (replicate wx "..")))
                               (rest ppr))
                  (list (string-append "" (replicate wx "_")
                    "\n"))
                  (list (string-append "" (replicate (+ 1 wx)
                    "-") (first ppl)))
                  (map ((curry string-append)
                        (string-append "__" (replicate wx "_
                           ")))
                                   (rest ppl)))
         ))))))
; Konkateniere String s genau n mal (Hilfsfunktion für pp)
(: replicate (natural string -> string))
(define replicate
  (lambda (n s)
    (cond ((= n 0) "")
          ((> n 0) (string-append s (replicate (- n 1) s)))))
(check-property
 (for-all ((t (btree-of natural)))
   (==> (< (btree-size t) 10)</pre>
        (expect (print t) (write-string "\n"))))
```

Induktion über Binärbäume

Sei P(t) eine Eigenschaft von Binärbäumen $t \in T(M)$, also (: P((btree-of M)->boolean)).

Induktionsbasis

Induktionsschritt

```
Falls (empty-tree) und \forall x \in M, r, l \in T(M) \colon P(l) \land P(r) \Rightarrow P \text{ (make-node 1 x r)} dann \forall t \in T(M) \colon P(t)
```

Beispiel:

Zusammenhang zwischen Größe (btree-size) und Tiefe (btree-depth) eines Binärbaums t. ("Ein Baum der Tiefe n enthält mindestens n und höchstens $2^n - 1$ Konten").

```
P(t) \equiv (\text{btree-depth } t) \leq (\text{btree-size } t) \leq 2^{(\text{btree depth } t)} - 1
Induktionsbasis P((empty-tree))
(size empty-tree)

*** 0

= 2^0 - 1 \checkmark
Induktionsschritt(P(l) \land P(r) \Rightarrow P(make-nodelxr)
(size (make-node 1 x r)))

*** (size 1) +1 + (size r)

[size]

= 2^{(\text{depth } 1)} - 1 + 1 + 2^{(\text{depth } r)} - 1

= 2^{(\text{depth } 1)} + 2^{(\text{depth } r)} - 1

\leq 2 \cdot \max\{2^{(\text{depth } 1)}, 2^{(\text{depth } r)}\} - 1

= 2 \cdot 2^{\max((\text{depth } r), (\text{depth } r))} - 1

*** (depth)

2 (depth) (make-node 1 x r)) - 1 \( depth = 2^{(\text{depth } r)}, 2^{(\text{depth } r)} - 1 \end{aligned}
```

Wie müsste sich btree-fold eine fold-Operation für *Binärbäume* verhalten? Tree Transformer für Baum t: TODO: Bild

9.7.2015

Codebeispiel 44: Beispiele von btree-fold

```
; Tiefe des Baums t
  (: new-btree-depth ((btree-of %a) -> natural))
  (define new-btree-depth
     (lambda (t)
       (btree-fold 0
                   (lambda (d1 x d2) (+ 1 (max d1 d2)))
                   t)))
  ; Grösse des Baums t
  (: new-btree-size ((btree-of %a) -> natural))
  (define new-btree-size
     (lambda (t)
       (btree-fold 0
                   (lambda (s1 x s2) (+ s1 1 s2))
15
                   t)))
  ; Ist x eine Markierung im Baum t?
  (: btree-member? (number (btree-of number) -> boolean))
  (define btree-member?
     (lambda (x t)
       (btree-fold #f
                   (lambda (m1 y m2) (or m1 (= x y) m2))
                   t)))
  ; Spiegelbild des Baums t
  (: btree-mirror ((btree-of %a) -> (btree-of %a)))
  (define btree-mirror
     (lambda (t)
       (btree-fold empty-tree
                   (lambda (t1 x t2) (make-node t2 x t1))
                   t)))
```

Bestimme die Markierung lm links-Außen im Baum t (oder empty falls t leer ist).

¹Nach dem Prinzip von "How to Replace Failure by a List of Successes", Wadler 1985

Listen und rechtstiefe Bäume sind isomorph

Codebeispiel 45: Listen sind rechtstiefe Bäume

Ein *Tiefendurchlauf* (depth-first-traversal) eines Baumes t sammelt die Markierungen der Teilbäume l, r des Knotens.

 $n = \text{make-node 1} \times \text{r}$ werden vor x eingesammelt (Durchlauf zuerst in der Tiefe). Je nachdem ob x:

- (a) zwischen, (b) vor, (c) nach den Markierungen von l,r eingezeichnet wird, erhält man einen
- (a) *inorder* traversal **023**
- (b) *preorder* traversal **203**
- (c) *postorder* traversal **032**

Ein *Breitendurchlauf* ((breadth-first-traversal)) eines Baumes t sammelt die Markierungen der Knoten ebenenweise von der Wurzel ausgehend auf.

Idee: Gegeben sei eine Liste von Bäumen

- (1) Sammle die Liste der Markierungen der Wurzeln der nicht leeren Bäume in ts auf (roots ts)
- (2) Bestimme Liste ts' der nicht leeren Teilbäume der Bäume in ts (subtrees ts)
- (3) Führe (1) rekursiv auf ts' aus
- (4) Konkateniere die Listen aus (1) und (3)

Codebeispiel 46: Breitendurchlauf

```
; Breitendurchlauf für die Liste der Bäume ts
  (: traverse ((list-of (btree-of %a)) -> (list-of %a)))
  (define traverse
     (lambda (ts)
       (cond ((empty? ts) empty)
             ((pair? ts) (append (roots ts)
                                   (traverse (subtrees ts)))))))
  ; Liste der Wurzelmarkierungen der nicht-leeren Bäume in ts
  (: roots ((list-of (btree-of %a)) -> (list-of %a)))
  (define roots
    (lambda (ts)
       (map node-label
30
            (filter node? ts))))
  ; Liste der Teilbäume der nicht-leeren Bäume in ts
  (: subtrees ((list-of (btree-of %a)) -> (list-of (btree-of
     %a))))
  (define subtrees
    (lambda (ts)
       (flatten
        (map (lambda (t) (list (node-left-branch t)
                                (node-right-branch t)))
             (filter node? ts))))
  ; Breitendurchlauf für Baum t
  ; (Wrapper für traverse)
  (: levelorder ((btree-of %a) -> (list-of %a)))
  (define levelorder
    (lambda (t)
       (traverse (list t))))
50 ; Beispielbaum
  (: scheme (btree-of string))
  (define scheme
     (make-node (make-node empty-tree
                           " C "
                           (make-leaf "e"))
                " s "
                (make-node (make-leaf "m")
                           "h"
                           (make-leaf "e"))))
```

```
(check-expect (levelorder scheme) (string->strings-list
    "scheme"))
```

14.7.2015

Zeichenkodierungen bilden Zeichen auf Sequenzen von Bits ab. Derzeit sind Codes fester Länge sehr beliebt.

ASCII (Code 0-127, 7Bit, American Standard Code for Information Interchange)

ISO8859-1 (Code 0-255, 8Bit, besteht aus lateinischen und Steuerzeichen)

Unicode (20Bit,codiert Zeichen aus 129 aktuellen und historischen Sprachen, inkl. Klingon)

Beispiel Zeichen '€': 0000 0010 0000 1010 1100

Huffman-Codes nutzen Bitsequenzen variabler Länge.

Idee: Zeicehn mit hoher Frequenz werden mit weniger Bits codiert, als seltene Zeichen. ⇒ Datenkompression

Huffman-Codes sind Binärbäume mit markierten Blättern:

Beispiel Huffmann-Codes für: "erdbeermarmelade"

Code für Zeichen x: Pfad von Wurzel bis Blatt mit Markierung x

- Abstieg in linken Teilbaum: Bit 0

- Abstieg in Rechten Teilbaum: Bit 1

Zeichen	Frequenz	Code
e	5	11
r	3	00
m	2	010
a	2	101
b	1	1000
1	1	1001

Huffman-Codes sind präfix frei, die Bits eines Zeichens sind niemals Präfix eines anderen Zeichens \rightarrow eindeutige Codierung.

```
|11|00|101|1000|11|11... \Rightarrow erdbee...
(Länge 42 Bit, Unicode = 320 Bit)
Einsetzung in JPEG, MP3, ZIP
```

Codebeispiel 47: Implementierung von Huffman-Codes

```
; Huffman-Trees zur Datenkompression
  ; Beispiel: Unicode Zeichen ""
  (: euro-symbol string)
  (define euro-symbol "\U020AC")
  ; Ein Blatt eines Huffman-Tree (huff-leaf)
  ; - trägt eine Markierung (label):
  (: make-huff-leaf (%a -> (huff-leaf-of %a)))
  (: huff-leaf-label ((huff-leaf-of %a) -> %a))
  (define-record-procedures-parametric huff-leaf huff-leaf-of
    make-huff-leaf
   huff-leaf?
    (huff-leaf-label))
  ; Ein innerer Knoten eines Huffman-Tree (huff-node) besitzt
  ; - einen linken Teilbaum (left) und
20 ; - einen rechten Teibaum (right):
  (: make-huff-node (%a %b -> (huff-node-of %a %b)))
```

```
(: huff-node-left ((huff-node-of %a %b) -> %a))
  (: huff-node-right ((huff-node-of %a %b) -> %b))
  (define-record-procedures-parametric huff-node huff-node-of
    make-huff-node
    huff-node?
    (huff-node-left
     huff-node-right))
 ; Signatur (huff-tree-of t): Huffman-Tree mit Blättern
  ; mit Markierungen der Signatur t
  (define huff-tree-of
    (lambda (t)
       (signature (mixed (huff-leaf-of t)
                         (huff-node-of (huff-tree-of t)
35
                            (huff-tree-of t)))))
  ; Ein Bit eines Zeichencodes
  (define bit
    (signature (one-of 0 1)))
40
  ; Beispiel: Huffman-Tree für Text "erdbeermarmelade" (s. oben)
  (: code-for-erdbeermarmelade (huff-tree-of string))
  (define code-for-erdbeermarmelade
    (make-huff-node
     (make-huff-node
      (make-huff-leaf "r")
       (make-huff-node
       (make-huff-leaf "m")
       (make-huff-leaf "a")))
     (make-huff-node
      (make-huff-node
       (make-huff-node
        (make-huff-leaf "b")
55
        (make-huff-leaf "l"))
       (make-huff-leaf "d"))
       (make-huff-leaf "e"))))
  (print code-for-erdbeermarmelade)
```

Prozeduren zur Huffman-Codierung:

(1) Decodierung einer Bitsequenz

```
(:huff-decode ((huff-tree-of string)(list-of bit)-> string))
```

(2) Codierung eines Strungs

```
(huff-tree-of string) string -> (list-of bit) \forall string: (huff-decode (huff-encode s)) = s
```

(3) Huffman-Tree für gegebenen Text erstellen

```
(:huffman-code (string -> (huff-tree-of string)))
```

Decodieren eines huffman-codierten string (= eine Liste aus Bits)

Plan: Baue

```
(: decode((huff-tree-of %a)(huff-tree-of %a)(list-of bit)->(list-of
%a)))
```

(1) (decode
$$\triangle_{ht}$$
 \times [... $Bits...$]) = (make-pair \times (decode \triangle_{ht} \triangle_{ht} [... $Bits...$]))

(2) (decode
$$\triangle_{ht}$$
 \triangle []) = empty

(3a) (decode
$$\triangle_{ht}$$
 [0...Bits...] = (decode \triangle_{ht} \triangle_{l} [...Bits...])

(3b) (decode
$$\triangle ht$$
 [1...Bits...] = (decode $\triangle ht$ $\triangle r$ [...Bits...])

Zu (1): Neueinstieg an Wurzel des Huffman-Tree \Rightarrow Wurzel des Huffman-Tree als Parameter durchführen.

Codebeispiel 48: Decodierung einer Liste von Bits in einen String

```
(decode ht ht bits)))
         ((huff-node? t)
          (cond
            ((empty? bits)
                                                                  ;
15
               (2)
            empty)
            ((pair? bits)
             (cond
               ((= 0 (first bits))
                                                                  ;
                  (3a)
                (decode ht (huff-node-left t) (rest bits)))
20
               ((= 1 (first bits))
                  (3b)
                (decode ht (huff-node-right t) (rest
                   bits))))))))))
  ; Wrapper
 ; Decodiere Bitsequenz bits bzgl. Huffman-Tree ht
  (: huff-decode ((huff-tree-of string) (list-of bit) -> string))
  (define huff-decode
    (lambda (ht bits)
       (strings-list->string (decode ht ht bits))))
30
  ; Beispiel
  (: erdbeermarmelade-bits (list-of bit))
  (define erdbeermarmelade-bits
    (list 1 1 0 0 1 0 1 1 0 0 0 1 1 1 1 0 0 0 1 1 1
          0 0 0 1 0 1 1 1 0 0 1 0 1 1 1 0 1 1 1))
  (: bread-bits (list-of bit))
  (define bread-bits
    (list 1 0 0 0 0 0 1 1 0 1 1 1 0 1))
  ; Funktioniert Decodierung wie erwartet?
  (check-expect
   (huff-decode code-for-erdbeermarmelade erdbeermarmelade-bits)
   "erdbeermarmelade")
  (check-expect
   (huff-decode code-for-erdbeermarmelade bread-bits)
   "bread")
```

Huffman-Codierung eines Strings als Liste von Bits

Plan:

a) Codierung eines Zeichens c. Suche mittels einer Tiefensuche von der Wurzel des Huffman-Trees aus. Protokolliere den Pfad beim Absteig als Liste von Bits.

Frage: Wie soll ich reagieren, wenn die Tiefensuche zu einem Blatt mit $x \neq c$ führt? Idee: Verfolge an inneren Knoten (make-huff-node l r) jeweils linken und rechten Teilbaum. Suche nach c schlägt fehl in entweder l oder r. Bei Fehlschlag liefern wir die leere Bitliste. Beachte (append empty xs) = xs und

```
(append xs empty) = xs

(: encode ((huff-tree-of %a) (list-of bit) %a -> (list-of bit)))

(1) (encode \boxed{x} [...Bits...] c) = empty

(2) (encode \boxed{c} [...Bits...] c) = (reverse [...Bits...])

(3) (encode \boxed{c} [...Bits...] c) = (append (encode \triangle [0...Bits...] c) (encode \triangle [1...Bits...] c))
```

b) Codiere Zeichen des Strings s mit encode (mittels map), verbinde einzelne Bitlisten mit flatten (bzw. concat)

Codebeispiel 49: Encodierung eines String in Bit

```
((huff-node? t)
                                                         ; (3)
         (append (encode (huff-node-left t) (make-pair 0 bits)
15
            C)
                  (encode (huff-node-right t) (make-pair 1 bits)
                     c))))))
  ; Wrapper
  ; Codiere Text s mittels Huffman-Tree ht
  (: huff-encode ((huff-tree-of string) string -> (list-of bit)))
  (define huff-encode
    (lambda (ht s)
      (flatten
       (map (lambda (c) (encode ht empty c))
             (string->strings-list s)))))
  ; Beispiel
  (huff-decode code-for-erdbeermarmelade
                (huff-encode code-for-erdbeermarmelade
                   "erdbeermarmelade"))
  ; Eigenschaft:
  ; Wenn wir String s mit demselben Huffman-Tree codieren und
  ; decodieren, erhalten wir wieder s:
  (check-property
   (for-all
       ((xs (list-of (one-of "e" "r" "d" "b" "m" "a" "l"))))
     (let ((s (strings-list->string xs)))
       (expect (huff-decode code-for-erdbeermarmelade
                             (huff-encode
40
                                code-for-erdbeermarmelade s))
               s))))
```

16.7.2015

Erstellung eines Huffman-Tree eines gegebenen Textes txt. Plan:

(H1) Stelle Häufigkeit des Vorkommens jedes Zeichen in txt fest. Sortiere in Reihenfolge steigender Häufigkeit (occurences)

```
Beispiel: (occurences "erdbeermarmelade") >>> (list \( \) "l" \( 1 \) \( \) "b" \( 1 \) \( \) \( \) Vorkommen \( \) i \( n \) \( \) (occur) : Ding i (item) kommt mit Häufigkeit n (freq) vor.
```

- (H2) Baue Huffman-Tree von Blättern her auf. Initialisiere den Aufbau: Für Vorkommen (i n) konstruiere (i n)
- (H3) Die beiden Huffman-Trees die die seltensten Zeichen repräsentieren stehen am Anfang der Liste. (list (i n) (j n)). Konstruktion des Huffman-Tree, die diese *Invariante* bewahren.

Iteration: Wiederhole bis Liste Länge 1 hat:

- a) Fasse Vorkommen $(\underset{1}{\triangle} n)$ und $(\underset{r}{\triangle} m)$ zu einem Vorkommen $(\underset{r}{\triangleright} n+m)$
- b) Sortiere dieses Vorkommen bzgl. Häufigkeit n+m in die Restliste ein.
- (H4) Baum ht in (list $\langle \underline{\wedge}$ n) ist der gesuchte Huffman-Tree

Codebeispiel 50: Implementation der Erzeugung von Huffman-Trees

```
; Konstruktion von Huffman-Trees für gegebenen Text
  ; Zu (H1)
  ; Worker
  ; Grupperie Liste von String xs bzgl. eq?
  (: group-by ((%a %a -> boolean) (list-of %a) (list-of %a)
                                  -> (list-of (list-of %a))))
  (define group-by
    (lambda (eq? gs xs)
      (cond
         ((empty? xs)
         (list gs))
15
        ((pair? xs)
          (if (eq? (first gs) (first xs))
              (group-by eq?
                        (make-pair (first xs) gs)
                        (rest xs))
              (make-pair gs (group-by eq?
                                       (list (first xs))
```

```
(rest xs))))))))
25 ; Wrapper
  ; Gruppiere die Liste von Strings xs
  (: group ((list-of string) -> (list-of (list-of string))))
  (define group
    (lambda (xs)
      (cond
30
        ((empty? xs)
         empty)
        ((pair? xs)
         (let ((ys (sort (curry string<=?) xs)))</pre>
            (group-by string=? (list (first ys)) (rest ys))))))
  ; "Star Wars scroll": Intro zu Episode IV (A New Hope)
40 ; Video im Web: http://vimeo.com/1589113
  (define starwars-scroll "\
  starwarsepisodeivanewhope\
  alongtimeagoinagalaxyfarfaraway\
  aperiodofcivilwar\
45 rebelspaceshipsstrikingfromahiddenbasehavewontheirfirstvictory
  againsttheevilgalacticempireduringthebattlerebelspiesmanagedto\
  stealsecretplanstotheempiresultimateweaponthedeathstar\
  anarmoredspacestationwithenoughpowertodestroyanentireplanet\
  pursuedbytheempiressinisteragentsprincessleiaraceshome\
aboardherstarshipcustodianofthestolenplansthatcansaveherpeople\
  andrestorefreedomtothegalaxy")
55 ; Ein Vorkommen (occur) ist charakterisiert durch
  ; - ein Ding (item) und
  ; - seine Häufigkeit (freg)
  (: make-occur (%a %b -> (occur-of %a %b)))
  (: occur-item ((occur-of %a %b) -> %a))
  (: occur-freq ((occur-of %a %b) -> %b))
  (define-record-procedures-parametric occur occur-of
    make-occur
    occur?
    (occur-item
     occur-freq))
```

```
; Vergleiche zwei Vorkommen bzgl. Häufigkeit
  (: occur<=? ((occur-of %a natural) (occur-of %a natural) ->
     boolean))
  (define occur<=?</pre>
    (lambda (01 02)
       (<= (occur-freq o1)</pre>
          (occur-freq o2))))
  ; Liste der Zeichen (und ihrer Häufigkeiten) in s,
  ; nach aufsteigender Häufigkeit sortiert
  (: occurrences (string -> (list-of (occur-of string natural))))
  (define occurrences
    (lambda (s)
       (sort (curry occur<=?)</pre>
             (map (lambda (g)
                    (make-occur ; i, n
                     (first g) ; i
                     (length g))) ; n
                  (group (string->strings-list s)))))
90 ; Zu (H2)
  ; Konstruiere Liste der Huffman-Tree-Blätter aus Liste os
  ; der Häufigkeiten der einzelnen Zeichen:
  (: huffman-leaves ((list-of (occur-of %a
                                                            %b)) ->
                      (list-of (occur-of (huff-tree-of %a) %b))))
  (define huffman-leaves
    (lambda (os)
       (map (lambda (o)
              (make-occur (make-huff-leaf (occur-item o))
                          (occur-freq o)))
           os)))
         Länge k 2
                                       Länge k-1
  ; (list , n , m, ...) ~~> (list ... , n+m ...)
           1
  ;
  ;
```

```
1
  ;
                                                r
110
   (: merge ((list-of (occur-of (huff-tree-of %a) natural)) ->
             (list-of (occur-of (huff-tree-of %a) natural))))
   (define merge
     (lambda (os)
115
       (let* ((o1
                    (first os))
                     (first (rest os)))
              (o1+2 (make-occur (make-huff-node (occur-item o1)
                                                  (occur-item o2))
                                  (+ (occur-freq o1) (occur-freq
120
                                    02)))))
         (sort (curry occur<=?) (make-pair o1+2 (rest (rest
            os)))))))
   ; Zu (H3)
  ; Iteriere Anwendung von f auf x bis done? erfüllt ist
   (: until ((%a -> boolean) (%a -> %a) %a -> %a))
   (define until
     (lambda (done? f x)
       (if (done? x)
130
           (until done? f(f(x))))
   ; Enthält Liste xs genau ein Element?
   (: singleton? ((list-of %a) -> boolean))
   (define singleton?
     (lambda (xs)
       (and (pair? xs)
            (empty? (rest xs)))))
  ; Zu (H4)
   ; Generiere optimalen Huffman-Tree für String s
   (: huffman-code (string -> (huff-tree-of string)))
   (define huffman-code
     (lambda (s)
145
       (occur-item
                                                          ; (H4)
        (first
         (until singleton? merge
                                                           (H3)
                (huffman-leaves
                                                            (H2)
                                                            (H1)
                    (occurrences s)))))))
```

Neue Sprachebene: DMdA-fortgeschritten

- Neues Ausgabeformat im REPL

```
(list x1... xn) \rightarrow (x1.. xn)
empty \rightarrow ()
```

- Neuer (struktureller) Gleichheitstest für Werte aller (auch benutzerdefinierte)

```
Signatur: (: equal? (%a %b -> boolean))
```

Quote:

Sei e ein beliebiger Scheme-Ausdruck. Dann liefert (**quote** e) die Repräsentation von e – e wird *nicht* ausgewertet.

Beispiele:

```
(list x1 ... xn) \equiv '(x1... xn)
empty \equiv '()
```

Symbole:

```
Was ist (first '(x 12))?
```

```
Was sind lambda, x_i + in' (lambda (x) (+ x 1))
```

Neue Signatur *Symbol* zur Repräsentation von Namen in Programmen. Effiziente interne Darstellung/effizient vergleichbar. Kein Zugriff auf die einzelnen Zeichen des Symbols.

Operationen:

```
- (symbol? (%a -> boolean))
```

```
- (: symbol->string (symbol -> string))
```

Repräsentation und Auswertung arithmetischer Ausdrücke:

Auswertung möglich, wenn Bindungen für Symbole (Variablen *und* Operatoren) an Wert gegeben. *Dictionary* (*Envirement*).

```
d_1: \\ \{x \rightarrow 3 \\ * \rightarrow <procedure : *> \\ + \rightarrow <procedure : +> \\ ! \rightarrow fac\} \\ e \longrightarrow 18 \\ d_2: \\ \{x \rightarrow 1 \\ * \rightarrow <procedure : *> \\ + \rightarrow <procedure : +> \\ ! \rightarrow (lambda (x) (- x))\} \\ e \longrightarrow -3
```

Codebeispiel 51: Eigene Programmiersprache die arithmetische Ausdrücke auswerten kann

```
; Arithmetische Ausdrücke (Konstanten, Variablen,
     Operatorapplikationen)
  (define arith
    (signature (mixed number
                                           ; Konstanten
                                            ; Variablen/Operatoren
                      symbol
                       (list-of arith)))) ; zusammengesetzter
5
                         Ausdruck (op e1 e2)
  ; Ist e eine Konstante?
  (: constant? (arith -> boolean))
  (define constant?
    (lambda (e) (number? e)))
  ; Ist e ein Operator?
  (: operator? (arith -> boolean))
  (define operator?
    (lambda (e) (elem? e '(* + ^ !))))
  ; Ist e eine Variable?
  ; NB: + ist auch eine (funktionswertige) Variable!
  (: variable? (arith -> boolean))
20 (define variable?
```

```
(lambda (e) (symbol? e)))
  ; Ist e ein zusammengesetzter Ausdruck?
  (: compound? (arith -> boolean))
  (define compound?
    (lambda (e) (pair? e)))
  ; Ein Eintrag (entry) key val im Dictionary besteht aus
30 ; - einem Schlüssel (key) und
  ; - einem Wert (val)
  (: make-entry (%a %b -> (entry-of %a %b)))
  (: entry-key ((entry-of %a %b) -> %a))
  (: entry-val ((entry-of %a %b) -> %b))
(define-record-procedures-parametric entry entry-of
   make-entry
    entry?
    (entry-key
     entry-val))
  ; Vertrag für Dictionary mit Schlüsseln k und Werten v
  (define dict-of
    (lambda (k v)
      (signature (list-of (entry-of k v)))))
  ; Das leere Dictionary ohne Einträge
  (: empty-dict (dict-of %a %b))
  (define empty-dict '())
50 ; Signatur t, erweitert um Wert 'nothing
  (define maybe
    (lambda (t)
      (signature (mixed t
                         (one-of 'nothing))))
  ; Wert des Eintrags für Schlüssel k im Dictionary d
  ; (oder k falls k nicht in d existiert)
  (: lookup-dict (%a (dict-of %a %b) -> (maybe %b)))
  (define lookup-dict
    (lambda (k d)
      (cond
        ((empty? d) 'nothing)
        ((pair? d) (if (equal? k (entry-key (first d)))
                         (entry-val (first d))
```

```
(lookup-dict k (rest d))))))
65
  ; Beispiel
  (: fac (natural -> natural))
  (define fac
    (lambda (n)
       (if (= 0 n)
          1
           (* n (fac (- n 1)))))
75
  ; Dictionary eingebauter Funktionen (curried)
  (: builtin-dict (dict-of symbol %a))
  (define builtin-dict
    (list (make-entry '* (curry *))
           (make-entry '+ (curry +))
           (make-entry '^ (curry expt))
           (make-entry '! fac)))
```

Auswertung eines arithmetischen Ausdrucks e (unter Dictionary d)

```
((eval d) e)

Konfigurierter
Ausdruck

(E1) ((eval d) c) = c
```

```
(E2) ((\text{eval } \{x_1 \rightarrow v_1 \dots x_n \rightarrow v_n\})x_i) = v_i x_i \text{ Variable}

(E3) ((\text{eval } d) e_1 e_2 \dots e_n) = (\dots ((\text{eval } d) e_1) ((\text{eval } d) e_2) \dots ((\text{eval } d) e_n))

(: eval ((\text{dict-of symbol}) %a \rightarrow (\text{arith } %b)))

(define eval

(lambda (d)

(lambda (e)

(cond ((constant? e)e)

((variable? e) (lookup-dict d e))

((compound? e)

(let ((es (map (eval d) e)))

(foldl (first es) (lambda (f x) (f x))) (rest es)))))))))
```

Konstante

21.7.2015

Das λ -Kalkül ist eine Notation für beliebige (berechenbare) Funktionen : Entwickelt in den 1930er Jahren von Alonzo Church (*1903 †1995) als neue Grundlage der Mathematik. Seither verwendet als Theoretischer Unterbau von Programmiersprachen. Syntax des λ -Kalküls

Die Menge der Ausdrücke (expressions) E des λ -Kalküls ist induktiv definiert. Sei V eine unendliche Menge an Variablennamen

```
- \forall v \in V : v \in E [Variablen]

- \forall e_1, e_2 \in E : (e_1 e_2) \in E [Applikation]

- \forall v \in V, e_1 \in E : (\lambda v e_1) \in E [Abstraktion]

Beispiele:

y \in E

(\lambda y y) \in E Identitätsfunktion

(\lambda y z) \in E Funktion ignoriert y,liefert z

((f x)y) \in E Currying

(\lambda f (f x)) \in E Anwendung von Funktion f auf x (H.O.P)

Abkürzungen:

(...(e_1 e_2) e_3) ... e_n) \equiv (e_1 e_2 ... e_n)

(f x y) \equiv ((f x)y)
```

Codebeispiel 52: Das Lambda Kalkül durch Schemes Quote Technik implementiert

```
; Ist Ausdruck e eine Variable?
   (: var? (\lambda-syntax -> boolean))
  (define var?
     (lambda (e)
       (and (symbol? e)
             (not (equal? e ')))))
  ; Ist Ausdruck e eine Applikation (e1 e2)?
                                        kein \lambda
   (: app? (\lambda-syntax -> boolean))
   (define app?
     (lambda (e)
       (and (pair? e)
25
             (not (equal? (first e) '))))
  ; Zugriff auf Funktion e1 / Argument e2 der Applikation (e1 e2)
  (: fun (\lambda-syntax \rightarrow \lambda-syntax))
  (: arg (\lambda-syntax -> \lambda-syntax))
   (define fun
     (lambda (e)
       (if (app? e) (first e) (violation "fun: not an 
          application"))))
   (define arg
     (lambda (e)
       (if (app? e) (first (rest e)) (violation "arg:_not_an_
          application"))))
  ; Ist Ausdruck e eine Abstraktion (\lambda v e1)?
   (: lam? (\lambda-syntax -> boolean))
  (define lam?
     (lambda (e)
       (and (pair? e)
                                                    Liste dreistellig?
             (pair? (rest e))
             (equal? (first e) \lambda)
             (symbol? (first (rest e)))))) ; Symbol v
45
  ; Zugriff auf Parameter v / Body e der Abstraktion (\lambda v e)
  (: parm (\lambda - syntax -> \lambda - syntax))
  (: body (\lambda - syntax \rightarrow \lambda - syntax))
  (define parm
     (lambda (e)
       (if (lam? e) (first (rest e)) (violation "parm:_not_an_
          abstraction"))))
```

```
(define body
     (lambda (e)
       (if (lam? e) (first (rest (rest e))) (violation "body:_not_
          an_abstraction"))))
  ; Beispiele:
  ; Kombinator I
  ; I (\lambda x.x)
   (: I \lambda-syntax)
  (define I
     '($\lambda$ x x)); Kombinator K; K
        65
  ; Kombinator S
  ; S (\lambda f.(\lambda g.(\lambda x.((f x) (g x)))))
  (: S \lambda-syntax)
   (define S
     '(\lambda f (\lambda g (\lambda x ((f x) (g x))))))
  ; Beispiele: Operationen auf Syntax des \lambda-Kalküls
  (var? 'x)
   (var? '\lambda); \sim> #f
   (app? '(f x))
   (fun '(f x))
   (arg '(f x))
   (lam? '(\lambda \times (f \times)))
   (parm '(\lambda x (f x)))
   (body '(\lambda x (f x)))
85
```

Freie/Gebundene Variablen

Zur Auswertung von $E_1 \equiv ((\lambda \times (f \times y)) z)$

- wird der hier nicht bekannte Wert von Variablen f,y,z benötigt, während
- der Wert von x im Rumpf (f x y) durch das Argument z festgelegt ist.

in E_2 ist

- Variable x (durch das λ x) als Parameter *gebunden*, während
- Variablen f,y,z *frei* sind

bound(E_2) = {x}

Welche Variablen eines Ausdrucks sind frei/gebunden?

```
\begin{aligned} &\operatorname{free}(\mathbf{v}) = \{v\} \\ &\operatorname{free}(\ (e_1 \ e_2)\ ) = \operatorname{free}(e_1) \cup \operatorname{free}(e_2) \\ &\operatorname{free}(\ (\lambda \ \mathbf{v} \ e_1)\ ) = \operatorname{free}(e_1) \backslash \{\, \mathbf{v}\, \} \\ &\operatorname{bound}(\mathbf{v}) = \varnothing \\ &\operatorname{bound}(\ (e_1 \ e_2)\ ) = \operatorname{bound}(e_1) \cup \operatorname{bound}(e_2) \\ &\operatorname{bound}(\ (\lambda \ \mathbf{v} \ e_1)\ ) = \operatorname{bound}(e_1) \cup \{\, \mathbf{v}\, \} \\ &\operatorname{Beispiel} \\ &\operatorname{Klausur} \begin{cases} \operatorname{free}(E_1) &= \{f\, yz\} \\ \operatorname{bound}(E_1) &= \{x\} \end{cases} \\ &\operatorname{Achtung: Bindung/Freiheit muss für jedes Vorkommen separat entschieden werden.} \\ &E_2 \equiv \ (x_1\ (\lambda \ x_2\ x_2)\ ) \\ &\operatorname{free}(E_2) = \{x\} \end{aligned}
```

Codebeispiel 53: Prozeduren die herausfinden ob Variablen frei oder gebunden sind

```
(cond
         ((var? e)
          empty-set)
         ((app? e)
          (set-union (bound (fun e)) (bound (arg e))))
         ((lam? e)
          (set-insert (parm e) (bound (body e))))))
  ; Beispiele
  ; E1 ((\lambda x.((f x) y)) z)
   (: E1 \lambda-syntax)
30 (define E1
    '((\lambda x ((f x) y)) z))
  ; E2 (x (\lambda x.x))
   (: E2 \lambda-syntax)
(define E2
    '(x (\lambda \times x))
  ; frei gebunden
```