Valorisation de publication

Pourquoi faire une these ?

Aghiles DJOUDI

PhD student LIGM/ESIEE Paris & ECE Research Lab Paris

October 3, 2019

- 1. Genetic Algorithm For LoRa
- 1. Problem statement
- 2. Related work
- 3. Background
- 4. Method
- 5. Experimentation

1. Genetic Algorithm For LoRa

1. Problem statement

- 2. Related work
- 3. Background
- 4. Method
- Experimentation

Problem statement

Introduction²?

Parameters

- → Bandwidth (BW)
- → Spreading Factor (SF)
- → Coding Rate (CR)
- → Transmission Power (Tx)

Metrics

- → Receiver Sensitivity (RS)
- → Signal Noise Rate (SNR)
- → Data Rate (DR)
- → Air Time (AT)
- → Payload length (PktL)

Setting	Values	Rewards	Costs
BW	7.8 → 500 <i>kHz</i>	DR	RS, Range
SF	2 ⁶ 🗪 2 ¹²	RS, Range	DR, SNR, PktL, Tx
CR	4/5 🗪 4/8	Resilience	PktL, Tx, AT
Tx	-4 → 20 <i>dBm</i>	SNR	Tx

Table 1: 1

^{*}Marco Cattani, Carlo Boano, and Kay Römer. * An Experimental Evaluation of the Reliability of Lora Long-Range Low-Power Wireless Communication *. In: Journal of Sensor and Actuator Networks 6.2 2017). 00042, p. 7.

²B. Di Martino et al. * Internet of Things Reference Architectures, Security and Interoperability: A Survey *. In: Internet of Things 1-2 (Sept. 2018). 00006, pp. 99–112.

- 1. Genetic Algorithm For LoRa
- Problem statement
- 2. Related work
- 3. Background
- 4. Method
- Experimentation

- 1. Genetic Algorithm For LoRa
- 1. Problem statemen
- 2. Related work
- 3. Background
- 4. Method
- 5. Experimentation

- 1. Bandit Algorithm
- 2. Genetic Algorithm
- 3. Marcov chain
- 4. Game theory

- 1. Genetic Algorithm For LoRa
- 1. Problem statemen
- 2. Related work
- 3. Background
- 4. Method
- Experimentation

- 1. Bandit Algorithm
- Genetic Algorithm
- 3. Marcov chain
- 4. Game theory

Multi-Armed-Bandit Algorithm

Related work

- → Arms: K = 1, ..., K
- → Decision: T = 1, ..., T
- \implies Reward: X_t^k with $\mu_t^k = E[X_t^k]$
 - \Rightarrow Best reward: X_t^* with $\mu_t^* = \max \mu_t^k$, k∈K

- 1. Genetic Algorithm For LoRa
- 1. Problem statemen
- 2. Related work
- 3. Background
- 4. Method
- Experimentation

- 1 Bandit Algorithm
- 2. Genetic Algorithm
- 3. Marcov chair
- 4. Game theory

Genetic Algorithm

Related work [alkhawlani access 2008a]

- Heterogeneous wireless network: (RAT 1 ,RAT 2 ,...,RAT n)
- → Criteria up to i (c 1 ,c 2 ,...,c i) the operators, the applications, and the network conditions.
- The different sets of scores (d 1, d 2,...,d i) are sent to the MCDM in the second component.
- → GA component assigns a suitable weight (w 1 ,w 2 ,...,w i)

Genetic Algorithm

Related work

1111

⇒ S = SF12, BW125, 4/8, 17 dBm

Input:

→ Problem: $f(x) = max(x^2), x \in [0,32]$

 $* x_1:01101_b$ $* x_2:11000_b$

 $* x_3 : 01000_b$

 $* x_4:10011_b$

- → Method: Genetic algorithm
 - Generate a set of random possible solution
 - Test each solution and see how good it is (ranking)
 - * Remove some bad solutions
 - * Duplicate some good solutions
 - * Make small changes to some of them (Crossover, Mutation)

→ Output:

- 1. Genetic Algorithm For LoRa
- 1. Problem statemen
- 2. Related work
- 3. Background
- 4. Method
- Experimentation

- 1. Bandit Algorithm
- 2. Genetic Algorithm
- 3. Marcov chain
- 4. Game theory

Marcov chain

Related work

$$V(s,\pi) = \mathbb{E}_{s}^{\pi} \left(\sum_{k=0}^{\inf} \gamma^{k} \cdot r(s_{k}, a_{k}) \right), s \in \mathbb{S}$$
 (1)

$$r(s_k, a_k) = G_k \cdot PRR(a_k) \tag{2}$$

$$\pi^* = \arg\max_{\pi} V(s,\pi) \tag{3}$$

$$PRR = (1 - BER)^{L} \tag{4}$$

$$BER = 10^{\alpha e^{\beta SNR}} \tag{5}$$

Marcov chain

Related work

Learning Iterative Steps:

- Choose action $a_k(t) \sim \pi_k(t)$.
- Observe game outcome, e.g.,
 a_{-k}(t)
 u_k(a_k(t), a_{-k}(t)).
- Improve $\pi_k(t+1)$.

 $\begin{array}{c|c} \pi_k(t) & a_k(t) \\ \hline & h(t) \\ \hline & (i) \ a_{-k}(t) \\ & (ii) \ \tilde{u}_k(t) \end{array}$

Thus, we can expect that: $\forall k \in \mathcal{K}$,

$$\pi_k(t) \stackrel{t\to\infty}{\longrightarrow} \pi_k^*$$
 (1)

$$\bar{u}_k(\pi_k(t), \pi_{-k}(t)) \stackrel{t \to \infty}{\longrightarrow} \bar{u}_k(\pi_k^*, \pi_{-k}^*)$$
 (2)

where, $\pi^* = (\pi_1^*, \dots, \pi_K^*)$ is a NE strategy profile.

- 1. Genetic Algorithm For LoRa
- 1. Problem statemen
- 2. Related work
- 3. Background
- 4. Method
- Experimentation

- 1. Bandit Algorithm
- 2. Genetic Algorithm
- Marcov chair
- 4. Game theory

Game theory

Related work

- → Players: K = {1,..., K}
- ⇒ Strategies: $S = S_1 \times ... \times S_K$
 - \rightarrow S_k is the strategy set of the k^{th} player.
- \rightarrow Rewards: $u_k: S \longrightarrow R_+$ and is denoted by $r_k(s_k, s_{-k})$
 - \Rightarrow $s_{-k} = (s_1, ..., s_{k-1}, s_{k+1}, ..., s_K) \in S_1 \times ... \times S_{k-1} \times S_{k+1} \times ... \times S_K$

- 1. Genetic Algorithm For LoRa
- Problem statemen
- 2. Related work
- 3. Background
- 4. Method
- Experimentation

... (step 2)

Methods

 $2^{nd}\ {\rm component}$ FL Criteria C1 Device conditions d2, QoS requirements FL Criteria C2 Map configuration MCDM to the application d3App preferences FL Criteria C3 Operator policies FL Criteria CN $\mathbf{1}^{st}$ component (w1, ..., wn) GA weights $3^{rd}\ {\rm component}$ Input Training Output

Figure 2: HH.

... (step 3)
Methods

... (step 4)
Methods

- 1. Genetic Algorithm For LoRa
- Problem statemen
- 2. Related work
- 3. Background
- 4. Method
- 5. Experimentation

Contribution

Contributions

Use cases (Application Requirements)

→ Smart building: Voice, Images, Text.

Environments

- → Rural/Urban
- → Static/Mobile
- → Temperature

Scenarios

- → Application protocol (MQTT, COAP, XMPP)
- → Network protocol (Start, Mesh)
- → MAC protocol (LoraWan, Sigfox, ...)

→ Input:

- Service QoS metrics requirements
- → MAC configuration (SF, CR, BW, ...)
- → Network QoS metrics

Algorithms:

- → MADM
 - * Ranking methods
 - * Ranking & weighted methods
- Game theory
 - * Users vs users
 - * Users vs networks
 - * Networks vs network
- → Fuzzy logic
 - * as a score method
 - * another theory
- → Utility function
 - * 1
 - * 2

Outputs:

→ Ranked networks

Technical choice

Implementation

- → Low consumption component
- → ADC port for placing sensors on it
- CONTIKI OS
 - → Operating system for wireless and low power development
 - → Support for newer standards (6LowPAN, RPL, CoAP, MQTT)
- → 6LowPAN
 - → Based on IPv6 and IEEE 802.15.4
 - → IPv6-based network with low power consumption
 - → Ability to create a mesh network
- Sending packages
 - → UDP in the 6LowPAN network
 - → MQTT between the cloud platform and the router

Experimentation

Experimentation

■ a

1111

Figure 3: .

References

[2]

- B. Di Martino et al. " Internet of Things Reference Architectures, Security and Interoperability: A Survey ". In: Internet of Things 1-2 (Sept. 2018). 00006, pp. 99–112.
- Marco Cattani, Carlo Boano, and Kay Rômer. * An Experimental Evaluation of the Reliability of Lora Long-Range Low-Power Wireless Communication *. In: Journal of Sensor and Actuator Networks 6.2 (2017).
 0042. D. 7.