M3T2 Final.R

christiancobollogomez

2021-11-24

```
## Module 3 Task 2. We load Complete responses, explore a bit the data,
# then optimize 2 models:
# 1. GBM, Automatic Tuning.
# 2. Random Forest, Manual mtry values.
# We analyze both models and use it to predict the brands in the incomplete
# survey.
#load library and set seed
library(caret)
## Loading required package: ggplot2
## Loading required package: lattice
library(gbm)
## Loaded gbm 2.1.8
set.seed(998)
CompleteResponses <- read.csv("CompleteResponses.csv")</pre>
CompleteResponses$brand=as.factor(CompleteResponses$brand)
Incomplete <- read.csv("SurveyIncomplete.csv")</pre>
summary(CompleteResponses) #Prints the min, max, mean, median, and quartiles of each attribute.
                                        elevel
##
       salary
                         age
                                                         car
## Min.
          : 20000
                    Min.
                           :20.00
                                   Min.
                                           :0.000
                                                  Min.
                                                          : 1.00
## 1st Qu.: 52082
                                   1st Qu.:1.000
                                                   1st Qu.: 6.00
                   1st Qu.:35.00
## Median : 84950
                   Median :50.00
                                    Median :2.000
                                                   Median :11.00
## Mean
         : 84871
                    Mean
                          :49.78
                                   Mean
                                         :1.983
                                                  Mean
                                                         :10.52
## 3rd Qu.:117162
                    3rd Qu.:65.00
                                    3rd Qu.:3.000
                                                  3rd Qu.:15.75
                                   Max.
                                          :4.000 Max. :20.00
## Max.
          :150000
                   Max.
                          :80.00
##
      zipcode
                       credit
                                    brand
## Min.
          :0.000 Min. :
                                   0:3744
                                0
## 1st Qu.:2.000 1st Qu.:120807
                                   1:6154
## Median :4.000 Median :250607
## Mean
          :4.041
                  Mean
                          :249176
## 3rd Qu.:6.000
                   3rd Qu.:374640
          :8.000 Max.
                          :500000
## Max.
str(CompleteResponses) #Displays the structure of your data set.
```

```
## 'data.frame':
                    9898 obs. of 7 variables:
## $ salary : num 119807 106880 78021 63690 50874 ...
             : int 45 63 23 51 20 56 24 62 29 41 ...
## $ elevel : int 0 1 0 3 3 3 4 3 4 1 ...
## $ car
             : int 14 11 15 6 14 14 8 3 17 5 ...
## $ zipcode: int 4 6 2 5 4 3 5 0 0 4 ...
## $ credit : num 442038 45007 48795 40889 352951 ...
## $ brand : Factor w/ 2 levels "0", "1": 1 2 1 2 1 2 2 2 1 2 ...
names(CompleteResponses) #Names your attributes within your data set.
## [1] "salary" "age"
                           "elevel" "car"
                                                "zipcode" "credit" "brand"
#create a 20% sample of the data
#data <- data[sample(1:nrow(data), 7000,replace=FALSE),]</pre>
# define an 75%/25% train/test split of the dataset
inTraining <- createDataPartition(CompleteResponses$brand, p = .75, list = FALSE)
training <- CompleteResponses[inTraining,]</pre>
testing <- CompleteResponses[-inTraining,]</pre>
#10 fold cross validation
fitControl <- trainControl(method = "repeatedcv", number = 10, repeats = 1)</pre>
## Here we include the First Algorithm: Stochastic Gradient Boosting (10-fold
# cross-validation and Automatic Tuning Grid)
#train model with a tuneLenght = 5 (trains with 5 mtry value for Stochastic
#Gradient Boosting)
gmbFitm0 <- train(brand~., data = training, method = "gbm", trControl=fitControl, tuneLength = 5);</pre>
          TrainDeviance
                          ValidDeviance
## Iter
                                           StepSize
                                                      Improve
##
        1
                 1.3001
                                     nan
                                             0.1000
                                                       0.0129
##
        2
                 1.2781
                                             0.1000
                                                       0.0107
                                     nan
##
        3
                 1.2598
                                             0.1000
                                                       0.0090
                                     nan
##
        4
                 1.2438
                                     nan
                                             0.1000
                                                       0.0082
##
        5
                 1.2299
                                             0.1000
                                                       0.0064
                                     nan
        6
##
                 1.2188
                                     nan
                                             0.1000
                                                       0.0050
##
        7
                 1.2071
                                             0.1000
                                                       0.0056
                                     nan
##
        8
                 1.1988
                                             0.1000
                                                       0.0038
                                     nan
##
        9
                 1.1918
                                             0.1000
                                                       0.0034
                                     nan
##
       10
                 1.1825
                                     nan
                                             0.1000
                                                       0.0045
##
       20
                 1.1252
                                             0.1000
                                                       0.0029
                                     nan
##
       40
                 1.0709
                                     nan
                                             0.1000
                                                       0.0006
##
       60
                 1.0457
                                             0.1000
                                                       0.0001
                                     nan
                                                       0.0002
##
       80
                 1.0332
                                     nan
                                             0.1000
##
      100
                 1.0279
                                             0.1000
                                                       0.0000
                                     nan
##
      120
                 1.0245
                                     nan
                                             0.1000
                                                      -0.0001
##
      140
                 1.0224
                                     nan
                                             0.1000
                                                      -0.0001
##
      160
                 1.0207
                                             0.1000
                                                      -0.0002
                                     nan
##
      180
                                                      -0.0001
                 1.0190
                                     nan
                                             0.1000
##
      200
                 1.0182
                                             0.1000
                                                      -0.0001
                                     nan
      220
                                                      -0.0001
##
                 1.0174
                                     nan
                                             0.1000
```

##	240	1.0167	nan	0.1000	-0.0000
##	250	1.0164	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2907	nan	0.1000	0.0176
##	2	1.2597	nan	0.1000	0.0145
##	3	1.2328	nan	0.1000	0.0131
##	4	1.2073	nan	0.1000	0.0123
##	5	1.1860	nan	0.1000	0.0100
##	6	1.1684	nan	0.1000	0.0084
##	7	1.1530	nan	0.1000	0.0073
##	8	1.1402	nan	0.1000	0.0056
##	9	1.1280	nan	0.1000	0.0054
##	10	1.1181	nan	0.1000	0.0043
##	20	1.0378	nan	0.1000	0.0041
##	40	0.9189	nan	0.1000	0.0030
##	60	0.7722	nan	0.1000	0.0075
##	80	0.6922	nan	0.1000	0.0000
##	100	0.6293	nan	0.1000	0.0005
##	120	0.5713	nan	0.1000	0.0001
##	140	0.5351	nan	0.1000	0.0010
##	160	0.5171	nan	0.1000	0.0009
##	180	0.4954	nan	0.1000	0.0008
##	200	0.4743	nan	0.1000	0.0015
##	220	0.4599	nan	0.1000	0.0001
##	240	0.4508	nan	0.1000	-0.0001
##	250	0.4472	nan	0.1000	-0.0002
##					
##	Ttor	TrainDouinnea	ValidDowiance	C+onCiro	Tmnmouro
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
## ##	1	1.2729	nan	0.1000	0.0275
## ## ##	1 2	1.2729 1.2212	nan nan	0.1000 0.1000	0.0275 0.0249
## ## ## ##	1 2 3	1.2729 1.2212 1.1794	nan nan nan	0.1000 0.1000 0.1000	0.0275 0.0249 0.0203
## ## ## ##	1 2 3 4	1.2729 1.2212 1.1794 1.1417	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178
## ## ## ## ##	1 2 3 4 5	1.2729 1.2212 1.1794 1.1417 1.1125	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144
## ## ## ## ## ##	1 2 3 4	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116
## ## ## ## ##	1 2 3 4 5 6	1.2729 1.2212 1.1794 1.1417 1.1125	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138
## ## ## ## ## ##	1 2 3 4 5 6 7	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765 0.5185	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001 0.0016
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765 0.5185 0.4728	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001 0.0016 0.0024
## ###################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765 0.5185 0.4728 0.4355	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001 0.0016 0.0024 0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765 0.5185 0.4728 0.4355 0.4032	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001 0.0016 0.0024 0.0001 0.0010
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765 0.5185 0.4728 0.4355 0.4032 0.3914 0.3803 0.3726	nan	0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001 0.0016 0.0024 0.0001 0.0010 -0.0001 0.0006 -0.0000
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765 0.5185 0.4728 0.4355 0.4032 0.3914 0.3803 0.3726 0.3606	nan	0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001 0.0016 0.0024 0.0001 0.0010 -0.0001 0.0006 -0.0000 -0.0001
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765 0.5185 0.4728 0.4355 0.4032 0.3914 0.3803 0.3726	nan	0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001 0.0016 0.0024 0.0001 0.0010 -0.0001 0.0006 -0.0000
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	1.2729 1.2212 1.1794 1.1417 1.1125 1.0881 1.0594 1.0344 1.0204 1.0085 0.8738 0.7408 0.6402 0.5765 0.5185 0.4728 0.4355 0.4032 0.3914 0.3803 0.3726 0.3606	nan	0.1000 0.1000	0.0275 0.0249 0.0203 0.0178 0.0144 0.0116 0.0138 0.0123 0.0070 0.0057 0.0058 0.0038 0.0059 -0.0001 0.0016 0.0024 0.0001 0.0010 -0.0001 0.0006 -0.0000 -0.0001

##	1	1.2575	nan	0.1000	0.0328
##	2	1.2031	nan	0.1000	0.0270
##	3	1.1655	nan	0.1000	0.0186
##	4	1.1274	nan	0.1000	0.0194
##	5	1.0897	nan	0.1000	0.0185
##	6	1.0507	nan	0.1000	0.0185
##	7	1.0185	nan	0.1000	0.0153
##	8	0.9922	nan	0.1000	0.0120
##	9	0.9670	nan	0.1000	0.0119
##	10	0.9481	nan	0.1000	0.0092
##	20	0.7605	nan	0.1000	0.0057
##	40	0.5774	nan	0.1000	0.0092
##	60	0.5187	nan	0.1000	0.0020
##	80	0.4843	nan	0.1000	-0.0002
##	100	0.4700	nan	0.1000	-0.0000
##	120	0.4412	nan	0.1000	0.0006
##	140	0.4119	nan	0.1000	-0.0002
##	160	0.3817	nan	0.1000	0.0007
##	180	0.3687	nan	0.1000	-0.0002
##	200	0.3542	nan	0.1000	-0.0002
##	220	0.3445	nan	0.1000	-0.0001
##	240	0.3388	nan	0.1000	-0.0002
##	250	0.3332	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2350	nan	0.1000	0.0452
##	2	1.1599	nan	0.1000	0.0370
##	3	1.1024	nan	0.1000	0.0291
##	4	1.0640	nan	0.1000	0.0189
##	5	1.0093	nan	0.1000	0.0267
##	6	0.9710	nan	0.1000	0.0190
##	7	0.9402	nan	0.1000	0.0149
##	8	0.9115	nan	0.1000	0.0142
##	9	0.8882	nan	0.1000	0.0112
##	10	0.8667	nan	0.1000	0.0102
##	20	0.6779	nan	0.1000	0.0062
##	40	0.5150	nan	0.1000	0.0001
##	60	0.4519	nan	0.1000	0.0030
##	80	0.4281	nan	0.1000	0.0002
##	100	0.4113	nan	0.1000	0.0000
##	120	0.3921	nan	0.1000	-0.0002
##	140	0.3751	nan	0.1000	-0.0001
##	160	0.3477	nan	0.1000	-0.0001
##	180	0.3323	nan	0.1000	0.0011
##	200	0.3197	nan	0.1000	-0.0000
##	220	0.3079	nan	0.1000	-0.0001
##	240	0.2957	nan	0.1000	0.0002
##	250	0.2893	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2991	nan	0.1000	0.0128
##	2	1.2772	nan	0.1000	0.0113
##	3	1.2590	nan	0.1000	0.0084
##	4	1.2419	nan	0.1000	0.0085

##	5	1.2283	nan	0.1000	0.0066
##	6	1.2166	nan	0.1000	0.0054
##	7	1.2066	nan	0.1000	0.0045
##	8	1.1955	nan	0.1000	0.0050
##	9	1.1879	nan	0.1000	0.0033
##	10	1.1803	nan	0.1000	0.0032
##	20	1.1241	nan	0.1000	0.0013
##	40	1.0625	nan	0.1000	0.0005
##	60	1.0373	nan	0.1000	0.0002
##	80	1.0260	nan	0.1000	0.0000
##	100	1.0212	nan	0.1000	-0.0001
##	120	1.0179	nan	0.1000	-0.0001
##	140	1.0151	nan	0.1000	-0.0001
##	160	1.0136	nan	0.1000	-0.0001
##	180	1.0128	nan	0.1000	-0.0001
##	200	1.0120	nan	0.1000	-0.0001
##	220	1.0107	nan	0.1000	-0.0001
##	240	1.0102	nan	0.1000	-0.0001
##	250	1.0100	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2893	nan	0.1000	0.0185
##	2	1.2580	nan	0.1000	0.0153
##	3	1.2294	nan	0.1000	0.0133
##	4	1.2041	nan	0.1000	0.0124
##	5	1.1821	nan	0.1000	0.0105
##	6	1.1629	nan	0.1000	0.0084
##	7	1.1460	nan	0.1000	0.0075
##	8	1.1322	nan	0.1000	0.0069
##	9	1.1206	nan	0.1000	0.0059
##	10	1.1098	nan	0.1000	0.0047
##	20	1.0328	nan	0.1000	0.0027
##	40	0.9020	nan	0.1000	0.0122
##	60	0.7186	nan	0.1000	0.0034
##	80	0.6434	nan	0.1000	0.0025
##	100	0.5865	nan	0.1000	0.0020
##	120	0.5422	nan	0.1000	-0.0000
##	140	0.5268	nan	0.1000	-0.0000
##	160	0.5175	nan	0.1000	-0.0001
##	180	0.4997	nan	0.1000	-0.0002
##	200	0.4839	nan	0.1000	-0.0000
##	220	0.4717	nan	0.1000	-0.0001
##	240	0.4577	nan	0.1000	-0.0001
##	250	0.4499	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2686	nan	0.1000	0.0290
##	2	1.2216	nan	0.1000	0.0228
##	3	1.1745	nan	0.1000	0.0229
##	4	1.1467	nan	0.1000	0.0140
##	5	1.1162	nan	0.1000	0.0145
##	6	1.0841	nan	0.1000	0.0156
##	7	1.0593	nan	0.1000	0.0125
##	8	1.0361	nan	0.1000	0.0112

##	9	1.0169	nan	0.1000	0.0094
##	10	1.0038	nan	0.1000	0.0065
##	20	0.8540	nan	0.1000	0.0026
##	40	0.7200	nan	0.1000	0.0016
##	60	0.6162	nan	0.1000	0.0071
##	80	0.5463	nan	0.1000	0.0023
##	100	0.4930	nan	0.1000	-0.0000
##	120	0.4468	nan	0.1000	0.0016
##	140	0.4291	nan	0.1000	-0.0001
##	160	0.4009	nan	0.1000	0.0002
##	180	0.3881	nan	0.1000	-0.0002
##	200	0.3759	nan	0.1000	-0.0000
##	220	0.3661	nan	0.1000	-0.0000
##	240	0.3557	nan	0.1000	0.0003
##	250	0.3529	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2588	nan	0.1000	0.0325
##	2	1.2048	nan	0.1000	0.0269
##	3	1.1603	nan	0.1000	0.0218
##	4	1.1181	nan	0.1000	0.0208
##	5	1.0891	nan	0.1000	0.0143
##	6	1.0596	nan	0.1000	0.0139
##	7	1.0378	nan	0.1000	0.0103
##	8	1.0067	nan	0.1000	0.0154
##	9	0.9789	nan	0.1000	0.0138
##	10	0.9546	nan	0.1000	0.0116
##	20	0.7931	nan	0.1000	0.0039
##	40	0.6285	nan	0.1000	0.0032
##	60	0.5726	nan	0.1000	0.0000
##	80	0.5198	nan	0.1000	0.0008
##	100	0.4769	nan	0.1000	0.0018
##	120	0.4184	nan	0.1000	-0.0001
##	140	0.3918	nan	0.1000 0.1000	-0.0000
## ##	160 180	0.3667 0.3486	nan	0.1000	-0.0001 0.0009
##	200	0.3358	nan	0.1000	0.0009
##	220	0.3355	nan	0.1000	-0.0001
##	240	0.3157	nan nan	0.1000	-0.0001
##	250	0.3134	nan	0.1000	-0.0001
##	200	0.0104	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2327	nan	0.1000	0.0462
##	2	1.1571	nan	0.1000	0.0371
##	3	1.1027	nan	0.1000	0.0266
##	4	1.0595	nan	0.1000	0.0205
##	5	1.0057	nan	0.1000	0.0258
##	6	0.9662	nan	0.1000	0.0192
##	7	0.9307	nan	0.1000	0.0176
##	8	0.8930	nan	0.1000	0.0181
##	9	0.8584	nan	0.1000	0.0161
##	10	0.8320	nan	0.1000	0.0129
##	20	0.6462	nan	0.1000	0.0056
##	40	0.4930	nan	0.1000	0.0014

##	60	0.4207	nan	0.1000	-0.0001
##	80	0.3923	nan	0.1000	-0.0000
##	100	0.3734	nan	0.1000	-0.0001
##	120	0.3527	nan	0.1000	0.0000
##	140	0.3356	nan	0.1000	-0.0000
##	160	0.3238	nan	0.1000	-0.0002
	180				
##		0.3122	nan	0.1000	-0.0001
##	200	0.3019	nan	0.1000	-0.0001
##	220	0.2918	nan	0.1000	-0.0002
##	240	0.2847	nan	0.1000	-0.0001
##	250	0.2811	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.3003	nan	0.1000	0.0134
##	2	1.2786	nan	0.1000	0.0108
##	3	1.2617	nan	0.1000	0.0084
##	4	1.2449	nan	0.1000	0.0086
##	5	1.2300	nan	0.1000	0.0073
##	6	1.2182	nan	0.1000	0.0055
##	7	1.2065	nan	0.1000	0.0057
##	8	1.1964		0.1000	0.0037
			nan		
##	9	1.1888	nan	0.1000	0.0035
##	10	1.1824	nan	0.1000	0.0029
##	20	1.1219	nan	0.1000	0.0020
##	40	1.0631	nan	0.1000	0.0008
##	60	1.0372	nan	0.1000	0.0009
##	80	1.0268	nan	0.1000	-0.0000
##	100	1.0197	nan	0.1000	-0.0000
##	120	1.0160	nan	0.1000	-0.0001
##	140	1.0136	nan	0.1000	-0.0001
##	160	1.0126	nan	0.1000	-0.0001
##	180	1.0116	nan	0.1000	-0.0000
##	200	1.0106	nan	0.1000	-0.0001
##	220	1.0092	nan	0.1000	-0.0001
##	240	1.0086	nan	0.1000	-0.0003
##	250	1.0083	nan	0.1000	-0.0001
##	200	1.0000	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2894	nan	0.1000	0.0184
	2				
##		1.2576	nan	0.1000	0.0152
##	3	1.2293	nan	0.1000	0.0135
##	4	1.2039	nan	0.1000	0.0120
##	5	1.1838	nan	0.1000	0.0100
##	6	1.1636	nan	0.1000	0.0093
##	7	1.1480	nan	0.1000	0.0074
##	8	1.1337	nan	0.1000	0.0068
##	9	1.1215	nan	0.1000	0.0058
##	10	1.1118	nan	0.1000	0.0045
##	20	1.0349	nan	0.1000	0.0038
##	40	0.9373	nan	0.1000	0.0047
##	60	0.8024	nan	0.1000	0.0066
##	80	0.6753	nan	0.1000	0.0017
##	100	0.6266	nan	0.1000	0.0002
##	120	0.5667	nan	0.1000	0.0013
π	120	0.0001	nan	0.1000	0.0010

##	140	0.5283	nan	0.1000	0.0001
##	160	0.5121	nan	0.1000	-0.0001
##	180	0.4902	nan	0.1000	0.0014
##	200	0.4753	nan	0.1000	-0.0001
##	220	0.4637	nan	0.1000	0.0003
##	240	0.4538	nan	0.1000	0.0005
##	250	0.4453	nan	0.1000	0.0004
##	200	0.1100		0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2687	nan	0.1000	0.0285
##	2				
		1.2261	nan	0.1000	0.0211
##	3	1.1825	nan	0.1000	0.0217
##	4	1.1455	nan	0.1000	0.0177
##	5	1.1150	nan	0.1000	0.0147
##	6	1.0904	nan	0.1000	0.0118
##	7	1.0672	nan	0.1000	0.0113
##	8	1.0395	nan	0.1000	0.0135
##	9	1.0243	nan	0.1000	0.0075
##	10	1.0032	nan	0.1000	0.0099
##	20	0.8672	nan	0.1000	0.0021
##	40	0.7382	nan	0.1000	0.0006
##	60	0.6573	nan	0.1000	0.0087
##	80	0.5758	nan	0.1000	-0.0002
##	100	0.5197	nan	0.1000	0.0007
##	120	0.4649	nan	0.1000	0.0031
##	140	0.4358	nan	0.1000	-0.0001
##	160	0.4193	nan	0.1000	-0.0001
##	180	0.4053	nan	0.1000	-0.0001
##	200	0.3845	nan	0.1000	-0.0002
##	220	0.3726	nan	0.1000	-0.0003
##	240	0.3585	nan	0.1000	-0.0001
##	250	0.3533	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2628	nan	0.1000	0.0319
##	2	1.2070	nan	0.1000	0.0278
##	3	1.1600	nan	0.1000	0.0236
##	4	1.1240	nan	0.1000	0.0176
##	5	1.0884	nan	0.1000	0.0181
##	6	1.0529	nan	0.1000	0.0171
##	7	1.0195	nan	0.1000	0.0162
##	8	0.9936	nan	0.1000	0.0126
##	9	0.9733	nan	0.1000	0.0098
##	10	0.9536	nan	0.1000	0.0095
##	20	0.7821	nan	0.1000	0.0075
##	40	0.6256	nan	0.1000	0.0010
##	60	0.5482		0.1000	0.0003
##	80	0.4832	nan	0.1000	-0.0003
			nan		
##	100	0.4523	nan	0.1000	0.0007
##	120	0.4044	nan	0.1000	0.0002
##	140	0.3716	nan	0.1000	0.0013
##	160	0.3575	nan	0.1000	0.0004
##	180	0.3477	nan	0.1000	-0.0003
##	200	0.3366	nan	0.1000	-0.0001

##	220	0.3272	nan	0.1000	-0.0001
##	240	0.3171	nan	0.1000	-0.0001
##	250	0.3139	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2488	nan	0.1000	0.0389
##	2	1.1659	nan	0.1000	0.0407
##	3	1.1136	nan	0.1000	0.0255
##	4	1.0532	nan	0.1000	0.0296
##	5	1.0072	nan	0.1000	0.0219
##	6	0.9748	nan	0.1000	0.0158
##	7	0.9333	nan	0.1000	0.0207
##	8	0.9122	nan	0.1000	0.0103
##	9	0.8817	nan	0.1000	0.0154
##	10	0.8594	nan	0.1000	0.0103
##	20	0.6724	nan	0.1000	0.0108
##	40	0.5107	nan	0.1000	0.0005
##	60	0.4505	nan	0.1000	0.0008
##	80	0.4307	nan	0.1000	0.0005
##	100	0.4107	nan	0.1000	0.0027
##	120	0.3897	nan	0.1000	-0.0002
##	140	0.3686	nan	0.1000	0.0000
##	160	0.3479	nan	0.1000	0.0005
##	180	0.3299	nan	0.1000	-0.0002
##	200	0.3218	nan	0.1000	-0.0003
##	220	0.3126	nan	0.1000	-0.0001
##	240	0.3014	nan	0.1000	-0.0001
##	250	0.2985	nan	0.1000	-0.0003
##	Ttom	TwoimDowionac	ValidDarriance	C+ on Ci = o	Tmnmorro
## ##	Iter 1	TrainDeviance 1.2994	ValidDeviance	StepSize 0.1000	Improve 0.0129
##	2	1.2769	nan nan	0.1000	0.0129
##	3	1.2587	nan	0.1000	0.0107
##	4	1.2431	nan	0.1000	0.0031
##	5	1.2300	nan	0.1000	0.0078
##	6	1.2170	nan	0.1000	0.0064
##	7	1.2056	nan	0.1000	0.0057
##	8	1.1957	nan	0.1000	0.0047
##	9	1.1885	nan	0.1000	0.0033
##	10	1.1801	nan	0.1000	0.0039
##	20	1.1245	nan	0.1000	0.0014
##	40	1.0652	nan	0.1000	0.0005
##	60	1.0389	nan	0.1000	0.0002
##	80	1.0279	nan	0.1000	0.0001
##	100	1.0224	nan	0.1000	-0.0000
##	120	1.0182	nan	0.1000	-0.0000
##	140	1.0158	nan	0.1000	-0.0000
##	160	1.0148	nan	0.1000	-0.0001
##	180	1.0137	nan	0.1000	-0.0000
##	200	1.0127	nan	0.1000	-0.0001
##	220	1.0118	nan	0.1000	-0.0002
##	240	1.0109	nan	0.1000	-0.0001
##	250	1.0105	nan	0.1000	-0.0002
##					

##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2885	nan	0.1000	0.0180
##	2	1.2586	nan	0.1000	0.0151
##	3	1.2291	nan	0.1000	0.0143
##	4	1.2065	nan	0.1000	0.0109
##	5	1.1859	nan	0.1000	0.0100
##	6	1.1670	nan	0.1000	0.0093
##	7	1.1512	nan	0.1000	0.0076
##	8	1.1374	nan	0.1000	0.0068
##	9	1.1256	nan	0.1000	0.0058
##	10	1.1143	nan	0.1000	0.0052
##	20	1.0375	nan	0.1000	0.0021
##	40	0.8870	nan	0.1000	0.0010
##	60	0.7436	nan	0.1000	0.0044
##	80	0.6945	nan	0.1000	0.0002
##	100	0.6343	nan	0.1000	0.0044
##	120	0.5841	nan	0.1000	0.0009
##	140	0.5501	nan	0.1000	-0.0001
##	160	0.5300	nan	0.1000	-0.0001
##	180	0.5124	nan	0.1000	0.0002
##	200	0.4880	nan	0.1000	-0.0002
##	220	0.4636	nan	0.1000	-0.0000
##	240	0.4505	nan	0.1000	0.0007
##	250	0.4476	nan	0.1000	-0.0002
##	- .			a. a.	_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2705	nan	0.1000	0.0273
##	2	1.2226	nan	0.1000	0.0231
##	3	1.1797	nan	0.1000	0.0217
##	4 5	1.1443	nan	0.1000	0.0172
##	6	1.1144	nan	0.1000	0.0144 0.0143
## ##	7	1.0860 1.0577	nan	0.1000 0.1000	0.0145
##	8	1.0400	nan	0.1000	0.0133
##	9	1.0252	nan nan	0.1000	0.0003
##	10	1.0082	nan	0.1000	0.0073
##	20	0.8859	nan	0.1000	0.0004
##	40	0.7339	nan	0.1000	0.0024
##	60	0.6280	nan	0.1000	-0.0000
##	80	0.5732	nan	0.1000	0.0005
##	100	0.5525	nan	0.1000	-0.0001
##	120	0.5004	nan	0.1000	-0.0001
##	140	0.4678	nan	0.1000	0.0001
##	160	0.4344	nan	0.1000	0.0015
##	180	0.4109	nan	0.1000	0.0015
##	200	0.3976	nan	0.1000	-0.0001
##	220	0.3864	nan	0.1000	-0.0001
##	240	0.3764	nan	0.1000	-0.0001
##	250	0.3724	nan	0.1000	0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2678	nan	0.1000	0.0286
##	2	1.2090	nan	0.1000	0.0290
##	3	1.1649	nan	0.1000	0.0215

##	4	1.1252	nan	0.1000	0.0198
##	5	1.0914	nan	0.1000	0.0171
##	6	1.0445	nan	0.1000	0.0221
##	7	1.0092	nan	0.1000	0.0173
##	8	0.9770	nan	0.1000	0.0158
##	9	0.9482	nan	0.1000	0.0141
##	10	0.9292	nan	0.1000	0.0093
##	20	0.7812	nan	0.1000	0.0021
##	40	0.6523	nan	0.1000	0.0062
##	60	0.5738	nan	0.1000	0.0032
##	80	0.5393	nan	0.1000	-0.0001
##	100	0.4992	nan	0.1000	0.0008
##	120	0.4492	nan	0.1000	-0.0003
##	140	0.4025	nan	0.1000	0.0018
##	160	0.3891	nan	0.1000	0.0005
##	180	0.3757	nan	0.1000	-0.0001
##	200	0.3539	nan	0.1000	0.0005
##	220	0.3404	nan	0.1000	0.0006
##	240	0.3260	nan	0.1000	-0.0002
##	250	0.3236	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2523	nan	0.1000	0.0374
##	2	1.1896	nan	0.1000	0.0306
##	3	1.1170	nan	0.1000	0.0353
##	4	1.0570	nan	0.1000	0.0286
##	5	1.0178	nan	0.1000	0.0186
##	6	0.9722	nan	0.1000	0.0218
##	7	0.9368	nan	0.1000	0.0167
##	8	0.8991	nan	0.1000	0.0188
##	9	0.8732	nan	0.1000	0.0127
##	10	0.8449	nan	0.1000	0.0142
##	20	0.6614	nan	0.1000	0.0053
##	40	0.5053	nan	0.1000	0.0002
##	60	0.4474	nan	0.1000	-0.0001
##	80	0.4123	nan	0.1000	-0.0003
##	100	0.3873	nan	0.1000	-0.0001
##	120	0.3709	nan	0.1000	-0.0002
##	140	0.3499	nan	0.1000	0.0006
##	160	0.3394	nan	0.1000	0.0001
##	180	0.3263	nan	0.1000	-0.0001
##	200	0.3153	nan	0.1000	-0.0001
##	220	0.3072	nan	0.1000	0.0000
##	240	0.2981	nan	0.1000	-0.0001
##	250	0.2947	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2999	nan	0.1000	0.0133
##	2	1.2776	nan	0.1000	0.0112
##	3	1.2584	nan	0.1000	0.0092
##	4	1.2417	nan	0.1000	0.0085
##	5	1.2270	nan	0.1000	0.0072
##	6	1.2153	nan	0.1000	0.0054
##	7	1.2050	nan	0.1000	0.0048

##	8	1.1944	nan	0.1000	0.0052
##	9	1.1868	nan	0.1000	0.0035
##	10	1.1789	nan	0.1000	0.0040
##	20	1.1169	nan	0.1000	0.0018
##	40	1.0591	nan	0.1000	0.0007
##	60	1.0321	nan	0.1000	0.0002
##	80	1.0193	nan	0.1000	0.0006
##	100	1.0136	nan	0.1000	-0.0001
##	120	1.0100	nan	0.1000	-0.0001
##	140	1.0089	nan	0.1000	-0.0001
##	160	1.0067	nan	0.1000	-0.0000
##	180	1.0061	nan	0.1000	-0.0001
##	200	1.0052	nan	0.1000	-0.0001
##	220	1.0043	nan	0.1000	-0.0002
##	240	1.0033	nan	0.1000	-0.0002
##	250	1.0023	nan	0.1000	0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2880	nan	0.1000	0.0185
##	2	1.2524	nan	0.1000	0.0169
##	3	1.2256	nan	0.1000	0.0135
##	4	1.2004	nan	0.1000	0.0122
##	5	1.1798	nan	0.1000	0.0104
##	6	1.1617	nan	0.1000	0.0082
##	7	1.1461	nan	0.1000	0.0072
##	8	1.1297	nan	0.1000	0.0072
##	9	1.1170	nan	0.1000	0.0056
##	10	1.1063	nan	0.1000	0.0051
##	20	1.0320	nan	0.1000	0.0031
##	40	0.9095	nan	0.1000	0.0001
##	60	0.7417	nan	0.1000	0.0003
##	80	0.6660	nan	0.1000	0.0047
##	100	0.6055	nan	0.1000	0.0004
##	120	0.5472	nan	0.1000	0.0004
##	140	0.5249	nan	0.1000	0.0001
##	160	0.5173	nan	0.1000	-0.0001
##	180	0.5039	nan	0.1000	0.0009
##	200	0.4893	nan	0.1000	-0.0001
##	220	0.4759	nan	0.1000	0.0005
##	240	0.4611	nan	0.1000	-0.0000
##	250	0.4528	nan	0.1000	0.0003
##	_				_
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2686	nan	0.1000	0.0283
##	2	1.2176	nan	0.1000	0.0252
##	3	1.1743	nan	0.1000	0.0210
##	4	1.1336	nan	0.1000	0.0196
##	5	1.1047	nan	0.1000	0.0148
##	6	1.0738	nan	0.1000	0.0152
##	7	1.0492	nan	0.1000	0.0114
##	8	1.0240	nan	0.1000	0.0117
##	9	1.0045	nan	0.1000	0.0092
##	10	0.9913	nan	0.1000	0.0068
##	20	0.8535	nan	0.1000	0.0028

##	40	0.7361	nan	0.1000	0.0024
##	60	0.6167	nan	0.1000	0.0024
##	80	0.5719		0.1000	-0.0001
			nan		
##	100	0.5186	nan	0.1000	0.0031
##	120	0.4921	nan	0.1000	-0.0002
##	140	0.4505	nan	0.1000	0.0007
##	160	0.4241	nan	0.1000	0.0015
##	180	0.4117	nan	0.1000	-0.0001
##	200	0.3948	nan	0.1000	0.0000
##	220	0.3830	nan	0.1000	-0.0001
##	240	0.3689	nan	0.1000	0.0004
##	250	0.3665	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2595	nan	0.1000	0.0334
##	2	1.2061	nan	0.1000	0.0262
##	3	1.1604	nan	0.1000	0.0224
##	4	1.1173	nan	0.1000	0.0206
##	5	1.0832	nan	0.1000	0.0162
##	6	1.0546	nan	0.1000	0.0134
##	7	1.0248	nan	0.1000	0.0151
##	8	0.9957	nan	0.1000	0.0142
##	9	0.9673	nan	0.1000	0.0135
##	10	0.9425	nan	0.1000	0.0120
##	20	0.7760	nan	0.1000	0.0049
##	40	0.6183	nan	0.1000	0.0010
##	60	0.5362	nan	0.1000	0.0032
##	80	0.4693	nan	0.1000	0.0006
##	100	0.4266	nan	0.1000	-0.0002
##	120	0.3942	nan	0.1000	0.0012
##	140	0.3783	nan	0.1000	0.0000
##	160	0.3624	nan	0.1000	-0.0001
##	180	0.3527	nan	0.1000	-0.0001
##	200	0.3439	nan	0.1000	0.0003
##	220	0.3342	nan	0.1000	-0.0002
##	240	0.3224	nan	0.1000	-0.0002
##	250	0.3189	nan	0.1000	-0.0003
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2517	nan	0.1000	0.0367
##	2	1.1879	nan	0.1000	0.0312
##	3	1.1367	nan	0.1000	0.0256
##	4	1.0698	nan	0.1000	0.0330
##	5	1.0165	nan	0.1000	0.0259
##	6	0.9811	nan	0.1000	0.0178
##	7	0.9376	nan	0.1000	0.0212
##	8	0.9114	nan	0.1000	0.0129
##	9	0.8870	nan	0.1000	0.0125
##	10	0.8533	nan	0.1000	0.0116
##	20	0.6598	nan	0.1000	0.0100
##	40	0.4993		0.1000	0.0082
##	60	0.4439	nan	0.1000	0.0016
##	80	0.4122	nan	0.1000	0.0002
##	100		nan		
##	100	0.3953	nan	0.1000	0.0000

##	120	0.3714	nan	0.1000	0.0000
##	140	0.3544	nan	0.1000	-0.0001
##	160	0.3377	nan	0.1000	-0.0002
##	180	0.3238	nan	0.1000	-0.0001
##	200	0.3144	nan	0.1000	0.0001
##	220	0.3055	nan	0.1000	-0.0001
##	240	0.2959	nan	0.1000	-0.0001
##	250	0.2917	nan	0.1000	0.0000
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2997	nan	0.1000	0.0133
##	2	1.2763	nan	0.1000	0.0111
##	3	1.2568	nan	0.1000	0.0092
##	4	1.2411	nan	0.1000	0.0078
##	5	1.2271	nan	0.1000	0.0069
##	6	1.2152	nan	0.1000	0.0053
##	7	1.2043	nan	0.1000	0.0051
##	8	1.1939	nan	0.1000	0.0050
##	9	1.1859	nan	0.1000	0.0040
##	10	1.1764	nan	0.1000	0.0047
##	20	1.1202	nan	0.1000	0.0013
##	40	1.0583	nan	0.1000	0.0006
##	60	1.0305	nan	0.1000	0.0002
##	80	1.0199	nan	0.1000	-0.0001
##	100	1.0142	nan	0.1000	-0.0001
##	120	1.0100	nan	0.1000	-0.0001
##	140	1.0079	nan	0.1000	-0.0001
##	160	1.0070	nan	0.1000	-0.0002
##	180	1.0062	nan	0.1000	-0.0000
##	200	1.0049	nan	0.1000	-0.0001
##	220	1.0040	nan	0.1000	-0.0001
##	240	1.0028	nan	0.1000	-0.0001
##	250	1.0024	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2879	nan	0.1000	0.0189
##	2	1.2552	nan	0.1000	0.0159
##	3	1.2269	nan	0.1000	0.0141
##	4	1.1992	nan	0.1000	0.0127
##	5	1.1787	nan	0.1000	0.0098
##	6	1.1602	nan	0.1000	0.0091
##	7	1.1445	nan	0.1000	0.0078
##	8	1.1310	nan	0.1000	0.0064
##	9	1.1173	nan	0.1000	0.0064
##	10	1.1052	nan	0.1000	0.0052
##	20	1.0307	nan	0.1000	0.0021
##	40	0.8927	nan	0.1000	0.0081
##	60	0.7764	nan	0.1000	-0.0000
##	80	0.6821	nan	0.1000	0.0001
##	100	0.6058	nan	0.1000	0.0029
##	120	0.5611	nan	0.1000	-0.0001
##	140	0.5219	nan	0.1000	0.0001
##	160	0.4814	nan	0.1000	-0.0001
##	180	0.4583	nan	0.1000	0.0005

##	200	0.4475	nan	0.1000	0.0006
	220				
##		0.4339	nan	0.1000	-0.0000
##	240	0.4232	nan	0.1000	-0.0001
##	250	0.4222	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2682	nan	0.1000	0.0286
##	2	1.2165	nan	0.1000	0.0258
##	3	1.1748	nan	0.1000	0.0203
##	4	1.1367	nan	0.1000	0.0183
##	5	1.1071	nan	0.1000	0.0140
##	6	1.0758	nan	0.1000	0.0156
##	7	1.0564	nan	0.1000	0.0093
##					
	8	1.0342	nan	0.1000	0.0106
##	9	1.0197	nan	0.1000	0.0071
##	10	0.9981	nan	0.1000	0.0105
##	20	0.8772	nan	0.1000	0.0078
##	40	0.7249	nan	0.1000	0.0051
##	60	0.6365	nan	0.1000	-0.0002
##	80	0.5730	nan	0.1000	0.0076
##	100	0.4881	nan	0.1000	0.0021
##	120	0.4453	nan	0.1000	0.0025
##	140	0.4183	nan	0.1000	0.0007
##	160	0.4064	nan	0.1000	0.0001
##	180	0.3884	nan	0.1000	-0.0001
##	200	0.3810	nan	0.1000	-0.0002
##	220	0.3672	nan	0.1000	-0.0002
	240				
##	240	0.3542	nan	0.1000	-0.0000
##		0.3542 0.3482	nan nan	0.1000	-0.0000 0.0005
##	250	0.3482	nan nan	0.1000	0.0005
## ##	250	0.3482	nan	0.1000	0.0005
## ## ##	250 Iter	0.3482 TrainDeviance	nan ValidDeviance	0.1000 StepSize	0.0005 Improve
## ## ## ##	250 Iter 1	0.3482 TrainDeviance 1.2610	nan ValidDeviance nan	0.1000 StepSize 0.1000	0.0005 Improve 0.0318
## ## ## ##	250 Iter 1 2	0.3482 TrainDeviance 1.2610 1.2109	nan ValidDeviance nan nan	0.1000 StepSize 0.1000 0.1000	0.0005 Improve 0.0318 0.0243
## ## ## ## ##	250 Iter 1 2 3	0.3482 TrainDeviance 1.2610 1.2109 1.1596	nan ValidDeviance nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248
## ## ## ## ##	250 Iter	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147	nan ValidDeviance nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217
## ## ## ## ## ##	250 Iter 1 2 3 4 5	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163
## ## ## ## ## ##	250 Iter 1 2 3 4 5 6	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428	Nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172	nan ValidDeviance nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885	Nan ValidDeviance nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885	Nan ValidDeviance nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674	Nan ValidDeviance nan nan nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103
## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098
## ## ## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046
## ## ## ## ## ## ## ## ## ## ## ## ##	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026
## ## # # # # # # # # # # # # # # # #	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076 0.4406	Nan ValidDeviance nan nan nan nan nan nan nan nan nan n	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003 0.0010
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076 0.4406 0.4093 0.3887	Nan ValidDeviance nan nan nan nan nan nan nan	0.1000 StepSize 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003 0.0010 0.0018 0.0002
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076 0.4406 0.4093 0.3887 0.3711	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003 0.0010 0.0018 0.0002 0.0005
######################################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076 0.4406 0.4093 0.3887 0.3711 0.3551	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003 0.0010 0.0018 0.0002 0.0005 -0.0000
########################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076 0.4406 0.4093 0.3887 0.3711 0.3551 0.3405	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003 0.0010 0.0018 0.0002 0.0005 -0.0000 -0.0001
###########################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076 0.4406 0.4093 0.3887 0.3711 0.3551 0.3405 0.3322	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003 0.0010 0.0018 0.0002 0.0005 -0.0000 -0.0001
#########################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076 0.4406 0.4093 0.3887 0.3711 0.3551 0.3405 0.3322 0.3244	Nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003 0.0010 0.0018 0.0002 0.0005 -0.0000 -0.0001 -0.0001
###########################	250 Iter 1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	0.3482 TrainDeviance 1.2610 1.2109 1.1596 1.1147 1.0816 1.0428 1.0172 0.9885 0.9674 0.9476 0.7869 0.6401 0.5076 0.4406 0.4093 0.3887 0.3711 0.3551 0.3405 0.3322	nan ValidDeviance nan nan nan nan nan nan nan nan nan na	0.1000 StepSize 0.1000	0.0005 Improve 0.0318 0.0243 0.0248 0.0217 0.0163 0.0188 0.0125 0.0143 0.0103 0.0098 0.0046 0.0026 0.0003 0.0010 0.0018 0.0002 0.0005 -0.0000 -0.0001

##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2313	nan	0.1000	0.0467
##	2	1.1664	nan	0.1000	0.0319
##	3	1.1142	nan	0.1000	0.0252
##	4	1.0544	nan	0.1000	0.0300
##	5	1.0151	nan	0.1000	0.0187
##	6	0.9654	nan	0.1000	0.0237
##	7	0.9289	nan	0.1000	0.0175
##	8	0.8890	nan	0.1000	0.0195
##	9	0.8632	nan	0.1000	0.0132
##	10	0.8303	nan	0.1000	0.0151
##	20	0.6424	nan	0.1000	0.0045
##	40	0.4854	nan	0.1000	-0.0000
##	60	0.4248	nan	0.1000	-0.0001
##	80	0.3970	nan	0.1000	-0.0001
##	100	0.3622	nan	0.1000	0.0001
##	120	0.3444	nan	0.1000	-0.0001
##	140	0.3261	nan	0.1000	0.0001
##	160	0.3179	nan	0.1000	-0.0002
##	180	0.3100	nan	0.1000	-0.0001
##	200	0.3030	nan	0.1000	0.0001
##	220	0.2936	nan	0.1000	0.0003
##	240	0.2857	nan	0.1000	-0.0003
##	250	0.2817	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.3003	nan	0.1000	0.0127
##	2	1.2793	nan	0.1000	0.0109
##	3	1.2617	nan	0.1000	0.0088
##	4	1.2450	nan	0.1000	0.0080
##	5	1.2327	nan	0.1000	0.0063
##	6	1.2197	nan	0.1000	0.0065
##	7	1.2107	nan	0.1000	0.0045
##	8	1.2034	nan	0.1000	0.0034
##	9	1.1944	nan	0.1000	0.0042
##	10	1.1880	nan	0.1000	0.0029
##	20	1.1279	nan	0.1000	0.0014
##	40	1.0669	nan	0.1000	0.0005
##	60	1.0409	nan	0.1000	0.0011
##	80	1.0286	nan	0.1000	-0.0000
##	100	1.0222 1.0184	nan	0.1000 0.1000	-0.0001
## ##	120 140		nan	0.1000	0.0001 -0.0001
##	160	1.0166 1.0155	nan	0.1000	-0.0001
##	180	1.0133	nan nan	0.1000	-0.0001
##	200	1.0133	nan	0.1000	-0.0001
##	220	1.0133	nan	0.1000	-0.0001
##	240	1.0109	nan	0.1000	-0.0000
##	250	1.0109	nan	0.1000	-0.0001
##	200	1.0100	11411	3.1000	3.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2904	nan	0.1000	0.0183
##	2	1.2591	nan	0.1000	0.0152

##	3	1.2302	nan	0.1000	0.0144
##	4	1.2067	nan	0.1000	0.0115
##	5	1.1864	nan	0.1000	0.0096
##	6	1.1703	nan	0.1000	0.0080
##	7	1.1526	nan	0.1000	0.0083
##	8	1.1384	nan	0.1000	0.0066
##	9	1.1267	nan	0.1000	0.0056
##	10	1.1151	nan	0.1000	0.0048
##	20	1.0385	nan	0.1000	0.0021
##	40	0.9129	nan	0.1000	0.0084
##	60	0.7610	nan	0.1000	0.0048
##	80	0.6846	nan	0.1000	-0.0000
##	100	0.6121	nan	0.1000	0.0015
##	120	0.5523	nan	0.1000	0.0010
##	140	0.5217	nan	0.1000	0.0010
##	160	0.5053	nan	0.1000	-0.0001
##	180	0.4842	nan	0.1000	-0.0001
##	200	0.4739	nan	0.1000	-0.0001
##	220	0.4638	nan	0.1000	0.0004
##	240	0.4521	nan	0.1000	-0.0001
##	250	0.4501	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2708	nan	0.1000	0.0279
##	2	1.2209	nan	0.1000	0.0241
##	3	1.1781	nan	0.1000	0.0210
##	4	1.1406	nan	0.1000	0.0181
##	5	1.1081	nan	0.1000	0.0163
##	6	1.0812	nan	0.1000	0.0125
##	7	1.0535	nan	0.1000	0.0137
##	8	1.0302	nan	0.1000	0.0112
##	9	1.0166	nan	0.1000	0.0065
##	10	0.9955	nan	0.1000	0.0098
##	20	0.8809	nan	0.1000	0.0024
##	40	0.7487	nan	0.1000	0.0047
##	60	0.6484	nan	0.1000	0.0080
##	80	0.5826	nan	0.1000	-0.0002
##	100	0.5171	nan	0.1000	-0.0001
##	120	0.4700	nan	0.1000	0.0000
##	140	0.4174	nan	0.1000	0.0001
##	160	0.3956	nan	0.1000	-0.0001
##	180	0.3776	nan	0.1000	0.0012
##	200	0.3676	nan	0.1000	-0.0001
##	220	0.3582	nan	0.1000	-0.0000
##	240	0.3499	nan	0.1000	0.0005
##	250	0.3452	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2624	nan	0.1000	0.0317
##	2	1.1995	nan	0.1000	0.0317
##	3	1.1516	nan	0.1000	0.0237
##	4	1 1105	nan	0 1000	0 0202
		1.1105	nan	0.1000	0.0203
##	5 6	1.1103 1.0739 1.0392	nan	0.1000 0.1000 0.1000	0.0203 0.0175 0.0169

##	7	1.0145	nan	0.1000	0.0119
##	8	0.9865	nan	0.1000	0.0137
##	9	0.9665	nan	0.1000	0.0097
##	10	0.9500	nan	0.1000	0.0077
##	20	0.7976	nan	0.1000	0.0065
##	40	0.6204	nan	0.1000	0.0024
##	60	0.5640	nan	0.1000	-0.0001
##	80	0.4986	nan	0.1000	-0.0001
##	100	0.4502	nan	0.1000	-0.0001
##	120	0.4293	nan	0.1000	0.0000
##	140	0.4058	nan	0.1000	0.0002
##	160	0.3786	nan	0.1000	0.0016
##	180	0.3604	nan	0.1000	-0.0000
##	200	0.3508	nan	0.1000	0.0009
##	220	0.3340	nan	0.1000	0.0006
##	240	0.3228	nan	0.1000	-0.0000
##	250	0.3187	nan	0.1000	0.0002
##	200	0.0107	nan	0.1000	0.0002
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2486	nan	0.1000	0.0377
##	2	1.1865	nan	0.1000	0.0304
##	3	1.1310	nan	0.1000	0.0272
##	4	1.0915	nan	0.1000	0.0193
##	5	1.0306	nan	0.1000	0.0290
##	6	0.9788	nan	0.1000	0.0250
##	7	0.9350	nan	0.1000	0.0212
##	8	0.9010	nan	0.1000	0.0212
##	9	0.8678	nan	0.1000	0.0160
##	10	0.8373	nan	0.1000	0.0100
##	20	0.6616	nan	0.1000	0.0045
##	40	0.4975		0.1000	-0.0000
##	60	0.4427	nan	0.1000	0.0005
##	80	0.4099	nan	0.1000	0.0000
			nan	0.1000	
##	100	0.3905	nan	0.1000	0.0019
##	120	0.3744	nan	0.1000	0.0002
##	140	0.3560 0.3454	nan		-0.0001
##	160		nan	0.1000	0.0011
##	180	0.3298	nan	0.1000	-0.0001
##	200	0.3209	nan	0.1000	-0.0001
##	220	0.3089	nan	0.1000	-0.0001
##	240	0.2999	nan	0.1000	-0.0001
##	250	0.2959	nan	0.1000	-0.0001
## ##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2999		0.1000	0.0128
##	2	1.2783	nan	0.1000	0.0128
			nan		
##	3	1.2603	nan	0.1000	0.0087
##	4	1.2435	nan	0.1000	0.0080
##	5	1.2290	nan	0.1000	0.0070
##	6	1.2175	nan	0.1000	0.0052
##	7	1.2071	nan	0.1000	0.0049
##	8	1.1997	nan	0.1000	0.0033
##	9	1.1918	nan	0.1000	0.0040
##	10	1.1825	nan	0.1000	0.0048

##	20	1.1239	nan	0.1000	0.0030
##	40	1.0646	nan	0.1000	0.0015
##	60	1.0399	nan	0.1000	0.0000
##	80	1.0281	nan	0.1000	0.0006
##	100	1.0235	nan	0.1000	-0.0002
##	120	1.0206	nan	0.1000	-0.0001
##	140	1.0179	nan	0.1000	-0.0000
##	160	1.0166	nan	0.1000	-0.0003
##	180	1.0149	nan	0.1000	-0.0002
##	200	1.0140	nan	0.1000	-0.0001
##	220	1.0134	nan	0.1000	-0.0001
##	240	1.0126	nan	0.1000	-0.0001
##	250	1.0123	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2903	nan	0.1000	0.0184
##	2	1.2593	nan	0.1000	0.0159
##	3	1.2324	nan	0.1000	0.0130
##	4	1.2079	nan	0.1000	0.0126
##	5	1.1869	nan	0.1000	0.0097
##	6	1.1676	nan	0.1000	0.0087
##	7	1.1522	nan	0.1000	0.0074
##	8	1.1389	nan	0.1000	0.0065
##	9	1.1260	nan	0.1000	0.0061
##	10	1.1164	nan	0.1000	0.0046
##	20	1.0392	nan	0.1000	0.0021
##	40	0.9396	nan	0.1000	-0.0001
##	60	0.8656	nan	0.1000	0.0027
##	80	0.8277	nan	0.1000	-0.0003
##	100	0.7610	nan	0.1000	-0.0000
##	120	0.6457	nan	0.1000	0.0027
##	140	0.5956	nan	0.1000	0.0011
##	160	0.5442	nan	0.1000	0.0012
##	180	0.5063	nan	0.1000	0.0003
##	200	0.4890	nan	0.1000	0.0007
##	220	0.4691	nan	0.1000	-0.0001
##	240	0.4517	nan	0.1000	0.0007
##	250	0.4479	nan	0.1000	0.0004
##	200	0.1175	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2698	nan	0.1000	0.0275
##	2	1.2233	nan	0.1000	0.0224
##	3	1.1809	nan	0.1000	0.0206
##	4	1.1420	nan	0.1000	0.0193
##	5	1.1122	nan	0.1000	0.0143
##	6	1.0810	nan	0.1000	0.0162
##	7	1.0566	nan	0.1000	0.0102
##	8	1.0380	nan	0.1000	0.0120
##	9	1.0250		0.1000	0.0059
##	10	1.0230	nan	0.1000	0.0039
##	20	0.8702	nan	0.1000	0.0104
##	40	0.7507	nan nan	0.1000	0.0042
##	60	0.6340	nan	0.1000	0.0033
##	80	0.5854		0.1000	0.0030
##	00	0.5054	nan	0.1000	0.0027

##	100	0.5305	nan	0.1000	0.0023
##	120	0.4986	nan	0.1000	0.0002
##	140	0.4518	nan	0.1000	-0.0000
##	160	0.4239	nan	0.1000	0.0000
##	180	0.3975	nan	0.1000	0.0013
##	200	0.3844	nan	0.1000	0.0001
##	220	0.3707	nan	0.1000	0.0004
##	240	0.3630	nan	0.1000	0.0003
##	250	0.3589	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2615	nan	0.1000	0.0309
##	2	1.2003	nan	0.1000	0.0295
##	3	1.1529	nan	0.1000	0.0225
##	4	1.1098	nan	0.1000	0.0208
##	5	1.0730	nan	0.1000	0.0178
##	6	1.0452	nan	0.1000	0.0138
##	7	1.0233	nan	0.1000	0.0101
##	8	0.9914	nan	0.1000	0.0150
##	9	0.9698	nan	0.1000	0.0106
##	10	0.9460	nan	0.1000	0.0115
##	20	0.7715	nan	0.1000	0.0055
##	40	0.5974	nan	0.1000	0.0023
##	60	0.5081	nan	0.1000	0.0005
##	80	0.4369	nan	0.1000	0.0001
##	100	0.4064	nan	0.1000	0.0000
##	120 140	0.3806	nan	0.1000 0.1000	0.0007
## ##	160	0.3644 0.3518	nan	0.1000	-0.0000 0.0006
##	180	0.3373	nan	0.1000	-0.0002
##	200	0.3300	nan nan	0.1000	-0.0002
##	220	0.3212	nan	0.1000	-0.0001
##	240	0.3125	nan	0.1000	-0.0001
##	250	0.3099	nan	0.1000	-0.0001
##	200	0.0033	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2512	nan	0.1000	0.0378
##	2	1.1922	nan	0.1000	0.0297
##	3	1.1213	nan	0.1000	0.0346
##	4	1.0795	nan	0.1000	0.0206
##	5	1.0409	nan	0.1000	0.0183
##	6	0.9904	nan	0.1000	0.0237
##	7	0.9554	nan	0.1000	0.0169
##	8	0.9124	nan	0.1000	0.0208
##	9	0.8840	nan	0.1000	0.0132
##	10	0.8542	nan	0.1000	0.0147
##	20	0.6715	nan	0.1000	0.0090
##	40	0.5130	nan	0.1000	0.0001
##	60	0.4446	nan	0.1000	0.0003
##	80	0.4037	nan	0.1000	0.0023
##	100	0.3790	nan	0.1000	0.0007
##	120	0.3589	nan	0.1000	0.0009
##	140	0.3445	nan	0.1000	0.0007
##	160	0.3309	nan	0.1000	-0.0002

##	180	0.3193	nan	0.1000	-0.0001
##	200	0.3085	nan	0.1000	0.0006
##	220	0.3028	nan	0.1000	-0.0002
##	240	0.2946	nan	0.1000	-0.0002
		0.2910			
##	250	0.2910	nan	0.1000	-0.0002
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2999	nan	0.1000	0.0131
##	2	1.2782	nan	0.1000	0.0104
##	3	1.2603	nan	0.1000	0.0084
##	4	1.2444	nan	0.1000	0.0076
##	5	1.2301	nan	0.1000	0.0069
##	6	1.2186	nan	0.1000	0.0054
##	7	1.2073		0.1000	0.0053
##	8	1.1992	nan	0.1000	0.0038
			nan		
##	9	1.1915	nan	0.1000	0.0037
##	10	1.1838	nan	0.1000	0.0033
##	20	1.1240	nan	0.1000	0.0020
##	40	1.0663	nan	0.1000	0.0006
##	60	1.0410	nan	0.1000	0.0002
##	80	1.0292	nan	0.1000	-0.0000
##	100	1.0226	nan	0.1000	-0.0000
##	120	1.0196	nan	0.1000	-0.0000
##	140	1.0175	nan	0.1000	-0.0001
##	160	1.0160	nan	0.1000	-0.0001
##	180	1.0146	nan	0.1000	-0.0001
##	200	1.0135	nan	0.1000	-0.0001
##	220	1.0119	nan	0.1000	-0.0002
##	240	1.0112	nan	0.1000	-0.0001
##	250	1.0108	nan	0.1000	-0.0001
##	200	1.0100	nan	0.1000	0.0002
	T+	T i Di	V-1: 4D	C+ C :	T
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2890	nan	0.1000	0.0183
##	2	1.2583	nan	0.1000	0.0149
##	3	1.2277	nan	0.1000	0.0147
##	4	1.2054	nan	0.1000	0.0110
##	5	1.1864	nan	0.1000	0.0095
##	6	1.1665	nan	0.1000	0.0093
##	7	1.1518	nan	0.1000	0.0071
##	8	1.1374	nan	0.1000	0.0070
##	9	1.1259	nan	0.1000	0.0056
##	10	1.1128	nan	0.1000	0.0064
##	20	1.0389	nan	0.1000	0.0038
##	40	0.9318	nan	0.1000	0.0002
##	60	0.8018	nan	0.1000	0.0042
##	80	0.6875	nan	0.1000	0.0001
##	100	0.6415		0.1000	0.0001
##	120	0.6080	nan	0.1000	-0.0001
			nan		
##	140	0.5638	nan	0.1000	-0.0000
##	76()	0.5366	nan	0.1000	0.0009
	160			0	
##	180	0.5117	nan	0.1000	0.0009
##	180 200	0.5117 0.4989	nan nan	0.1000	-0.0002
	180	0.5117			

## ##	250	0.4578	nan	0.1000	-0.0000
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2678	nan	0.1000	0.0287
##	2	1.2211	nan	0.1000	0.0239
##	3	1.1794	nan	0.1000	0.0207
##	4	1.1476	nan	0.1000	0.0147
##	5	1.1149	nan	0.1000	0.0160
##	6	1.0817	nan	0.1000	0.0159
##	7	1.0593	nan	0.1000	0.0111
##	8	1.0334	nan	0.1000	0.0129
##	9	1.0179	nan	0.1000	0.0074
##	10	1.0027	nan	0.1000	0.0067
##	20	0.8671	nan	0.1000	0.0087
##	40	0.7285	nan	0.1000	0.0004
##	60	0.6426	nan	0.1000	0.0065
##	80	0.5939	nan	0.1000	0.0005
##	100	0.5233	nan	0.1000	0.0012
##	120	0.4785	nan	0.1000	-0.0002
##	140	0.4526	nan	0.1000	-0.0001
##	160	0.4256	nan	0.1000	0.0003
##	180	0.4104	nan	0.1000	-0.0002
##	200	0.3860	nan	0.1000	-0.0001
##	220	0.3718	nan	0.1000	0.0006
##	240	0.3569	nan	0.1000	-0.0001
##	250	0.3541	nan	0.1000	-0.0002
##	- .			a. a.	_
##	Iter	TrainDeviance	// 2 1 d \D\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	StenSize	Improtto
			ValidDeviance	StepSize	Improve
##	1	1.2621	nan	0.1000	0.0320
## ##	1 2	1.2621 1.2043	nan nan	0.1000 0.1000	0.0320 0.0275
## ## ##	1 2 3	1.2621 1.2043 1.1570	nan nan nan	0.1000 0.1000 0.1000	0.0320 0.0275 0.0237
## ## ## ##	1 2 3 4	1.2621 1.2043 1.1570 1.1187	nan nan nan nan	0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186
## ## ## ##	1 2 3 4 5	1.2621 1.2043 1.1570 1.1187 1.0836	nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174
## ## ## ## ##	1 2 3 4 5 6	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570	nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125
## ## ## ## ## ##	1 2 3 4 5 6 7	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253	nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156
## ## ## ## ## ##	1 2 3 4 5 6 7	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253	nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143
## ## ## ## ## ##	1 2 3 4 5 6 7 8	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680	nan nan nan nan nan nan nan nan nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053
## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005
## ## ## ## ## ## ## ## ## ## ## ## ##	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0012 0.0000 -0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0012 0.0000 -0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017 0.3758 0.3619	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0001 -0.0001 -0.0000
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017 0.3758 0.3619	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0012 0.0000 -0.0001 -0.0000 -0.0002
#####################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017 0.3758 0.3619 0.3531 0.3451	nan	0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0053 0.0005 0.0005 0.0005 0.0001 -0.0000 -0.0001 -0.0002
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017 0.3758 0.3619 0.3531 0.3451 0.3360	nan	0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0012 0.0000 -0.0001 -0.0000 -0.0001 -0.0002 -0.0001
#######################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017 0.3758 0.3619 0.3531 0.3451 0.3360 0.3262	nan	0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0012 0.0000 -0.0001 -0.0002 -0.0001 -0.0001 -0.0001
######################################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017 0.3758 0.3619 0.3531 0.3451 0.3360	nan	0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0012 0.0000 -0.0001 -0.0000 -0.0001 -0.0002 -0.0001
#########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 200 220 240	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017 0.3758 0.3619 0.3531 0.3451 0.3360 0.3262	nan	0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0001 -0.0001 -0.0001 -0.0002 -0.0001 -0.0001 -0.0001 0.0000
########################	1 2 3 4 5 6 7 8 9 10 20 40 60 80 100 120 140 160 180 220 240 250	1.2621 1.2043 1.1570 1.1187 1.0836 1.0570 1.0253 0.9956 0.9680 0.9503 0.7820 0.6432 0.5251 0.4835 0.4332 0.4017 0.3758 0.3619 0.3531 0.3451 0.3360 0.3262 0.3226	nan	0.1000 0.1000	0.0320 0.0275 0.0237 0.0186 0.0174 0.0125 0.0156 0.0143 0.0136 0.0088 0.0053 0.0006 0.0005 0.0012 0.0000 -0.0001 -0.0002 -0.0001 -0.0001 -0.0001

##	2	1.1683	nan	0.1000	0.0404
##	3	1.1166	nan	0.1000	0.0261
##	4	1.0684	nan	0.1000	0.0232
##	5	1.0346	nan	0.1000	0.0169
##	6	1.0031	nan	0.1000	0.0150
##	7	0.9570	nan	0.1000	0.0226
##	8	0.9137	nan	0.1000	0.0204
##	9	0.8927	nan	0.1000	0.0104
##	10	0.8619	nan	0.1000	0.0141
##	20	0.6526	nan	0.1000	0.0103
##	40	0.4847	nan	0.1000	0.0021
##	60	0.4269	nan	0.1000	0.0001
##	80	0.3899	nan	0.1000	-0.0001
##	100	0.3760	nan	0.1000	0.0006
##	120	0.3548	nan	0.1000	-0.0001
##	140	0.3407	nan	0.1000	-0.0000
##	160	0.3283	nan	0.1000	-0.0003
##	180	0.3184	nan	0.1000	-0.0002
##	200	0.3087	nan	0.1000	-0.0001
##	220	0.2998	nan	0.1000	-0.0001
##	240	0.2899	nan	0.1000	-0.0001
##	250	0.2868	nan	0.1000	-0.0001
##					
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2992	nan	0.1000	0.0128
##	2	1.2779	nan	0.1000	0.0107
##	3	1.2595	nan	0.1000	0.0090
##	4	1.2442	nan	0.1000	0.0074
##	5	1.2297	nan	0.1000	0.0067
##	6	1.2189	nan	0.1000	0.0051
##	7	1.2095	nan	0.1000	0.0044
##	8	1.1991	nan	0.1000	0.0047
##	9	1.1923	nan	0.1000	0.0035
##	10	1.1831	nan	0.1000	0.0045
##	20	1.1260	nan	0.1000	0.0019
##	40	1.0655	nan	0.1000	0.0014
##	60	1.0411 1.0290	nan	0.1000 0.1000	0.0001 0.0000
## ##	80 100	1.0226	nan	0.1000	-0.0001
##	120	1.0220	nan	0.1000	-0.0001
##	140	1.0202	nan	0.1000	-0.0002
##	160	1.0178	nan	0.1000	-0.0001
##	180	1.0132	nan	0.1000	-0.0001
##	200	1.0142	nan nan	0.1000	-0.0001
##	220	1.0126	nan	0.1000	-0.0000
##	240	1.0108	nan	0.1000	-0.0002
##	250	1.0105	nan	0.1000	-0.0001
##	200	1.0100	nan	0.1000	0.0001
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2891	nan	0.1000	0.0184
##	2	1.2574	nan	0.1000	0.0151
##	3	1.2292	nan	0.1000	0.0134
	U	1.2272		0.1000	0.0134
##	4		nan		
## ##		1.2074 1.1854		0.1000 0.1000 0.1000	0.0106 0.0108

##	6	1.1667	nan	0.1000	0.0092
##	7	1.1504	nan	0.1000	0.0072
##	8	1.1367	nan	0.1000	0.0066
##	9	1.1244	nan	0.1000	0.0058
##	10	1.1137	nan	0.1000	0.0049
##	20	1.0323	nan	0.1000	0.0035
##	40	0.8666	nan	0.1000	0.0063
##	60	0.7373	nan	0.1000	0.0043
##	80	0.6613	nan	0.1000	-0.0001
##	100	0.6041	nan	0.1000	0.0008
##	120	0.5748	nan	0.1000	0.0003
##	140	0.5511	nan	0.1000	-0.0001
##	160	0.5243	nan	0.1000	0.0001
##	180	0.4995	nan	0.1000	0.0010
##	200	0.4797	nan	0.1000	-0.0001
##	220	0.4666	nan	0.1000	-0.0001
##	240	0.4583	nan	0.1000	0.0007
## ##	250	0.4549	nan	0.1000	-0.0002
##	Iter	TrainDeviance	ValidDeviance	StepSize	Tmnmorro
##	1	1.2716	nan	0.1000	Improve 0.0279
##	2	1.2204	nan	0.1000	0.0279
##	3	1.1809	nan	0.1000	0.0237
##	4	1.1419	nan	0.1000	0.0190
##	5	1.1093	nan	0.1000	0.0158
##	6	1.0807	nan	0.1000	0.0133
##	7	1.0614	nan	0.1000	0.0093
##	8	1.0394	nan	0.1000	0.0107
##	9	1.0172	nan	0.1000	0.0109
##	10	1.0041	nan	0.1000	0.0064
##	20	0.8538	nan	0.1000	0.0056
##	40	0.7491	nan	0.1000	-0.0001
##	60	0.6284	nan	0.1000	-0.0001
##	80	0.5809	nan	0.1000	0.0002
##	100	0.5410	nan	0.1000	0.0000
##	120	0.4913	nan	0.1000	0.0030
##	140	0.4773	nan	0.1000	-0.0001
##	160	0.4468	nan	0.1000	0.0020
##	180	0.4217	nan	0.1000	0.0009
##	200	0.4012	nan	0.1000	0.0016
##	220	0.3840	nan	0.1000	0.0006
##	240	0.3712	nan	0.1000	-0.0000
##	250	0.3617	nan	0.1000	0.0004
##					
##	Iter	TrainDeviance	ValidDeviance	${ t StepSize}$	Improve
##	1	1.2673	nan	0.1000	0.0287
##	2	1.2047	nan	0.1000	0.0306
##	3	1.1594	nan	0.1000	0.0225
##	4	1.1148	nan	0.1000	0.0222
##	5	1.0784	nan	0.1000	0.0178
##	6	1.0400	nan	0.1000	0.0183
##	7	1.0072	nan	0.1000	0.0166
##	8	0.9805	nan	0.1000	0.0123
##	9	0.9604	nan	0.1000	0.0094

##	10	0.9389	nan	0.1000	0.0105
##	20	0.7969	nan	0.1000	0.0047
##	40	0.6306	nan	0.1000	0.0035
##	60	0.5266	nan	0.1000	0.0017
##	80	0.4718	nan	0.1000	0.0047
##	100	0.4251	nan	0.1000	-0.0001
##	120	0.3983	nan	0.1000	-0.0002
##	140	0.3813	nan	0.1000	-0.0001
##	160	0.3668	nan	0.1000	0.0001
##	180	0.3566	nan	0.1000	-0.0001
##	200	0.3453	nan	0.1000	-0.0002
##	220	0.3370	nan	0.1000	-0.0001
##	240	0.3273	nan	0.1000	-0.0001
##	250	0.3213	nan	0.1000	0.0005
##					
##	Iter	TrainDeviance	ValidDeviance	${\tt StepSize}$	Improve
##	1	1.2317	nan	0.1000	0.0472
##	2	1.1672	nan	0.1000	0.0319
##	3	1.0998	nan	0.1000	0.0325
##	4	1.0526	nan	0.1000	0.0236
##	5	1.0112	nan	0.1000	0.0205
##	6	0.9626	nan	0.1000	0.0242
##	7	0.9354	nan	0.1000	0.0136
##	8	0.9001	nan	0.1000	0.0173
##	9	0.8704	nan	0.1000	0.0148
##	10	0.8375	nan	0.1000	0.0157
##	20	0.6406	nan	0.1000	0.0060
##	40	0.4901	nan	0.1000	0.0018
##	60	0.4203	nan	0.1000	-0.0001
##	80	0.3901	nan	0.1000	0.0004
##	100	0.3748	nan	0.1000	-0.0002
##	120	0.3591	nan	0.1000	-0.0001
##	140	0.3390	nan	0.1000	-0.0001
##	160	0.3300	nan	0.1000	-0.0003
##	180	0.3180	nan	0.1000	-0.0001
##	200	0.3076	nan	0.1000	0.0001
##	220	0.2984	nan	0.1000	-0.0001
##	240	0.2888	nan	0.1000	0.0000
##	250	0.2843	nan	0.1000	-0.0001
##	т.	m · ъ ·	W 1 . ID .	a. a:	-
##	Iter	TrainDeviance	ValidDeviance	StepSize	Improve
##	1	1.2501	nan	0.1000	0.0372
##	2	1.1897	nan	0.1000	0.0302
##	4	1.1186	nan	0.1000	0.0355
## ##		1.0556 1.0042	nan	0.1000 0.1000	0.0307
	5		nan		0.0246
## ##	6 7	0.9699 0.9441	nan	0.1000 0.1000	0.0164 0.0124
			nan		
##	8	0.9146	nan	0.1000	0.0132
##	9	0.8805	nan	0.1000	0.0165
##	10	0.8573	nan	0.1000	0.0111
## ##	20 40	0.6541 0.4984	nan	0.1000	0.0056 0.0018
			nan	0.1000	
##	60	0.4294	nan	0.1000	0.0007

```
##
      100
                 0.3745
                                             0.1000
                                                       -0.0001
                                     nan
gmbFitm0
## Stochastic Gradient Boosting
##
## 7424 samples
##
      6 predictor
##
      2 classes: '0', '1'
##
## No pre-processing
  Resampling: Cross-Validated (10 fold, repeated 1 times)
## Summary of sample sizes: 6681, 6682, 6681, 6682, 6681, ...
  Resampling results across tuning parameters:
##
##
     interaction.depth n.trees
                                  Accuracy
                                             Kappa
##
     1
                         50
                                  0.7315437
                                             0.4328139
##
     1
                         100
                                  0.7303313
                                             0.4290749
##
     1
                         150
                                  0.7312749
                                             0.4302008
##
     1
                         200
                                  0.7319497
                                             0.4312044
##
                         250
                                  0.7335669
                                             0.4336890
     1
##
     2
                         50
                                  0.8023910
                                             0.5850725
##
     2
                         100
                                  0.8783612 0.7466126
##
     2
                         150
                                  0.9082660 0.8071783
     2
                         200
##
                                            0.8236808
                                  0.9164823
     2
##
                         250
                                  0.9224095
                                             0.8357639
##
     3
                                  0.8778264 0.7478966
                         50
##
     3
                         100
                                  0.9057060
                                             0.8024451
##
     3
                                             0.8330066
                         150
                                  0.9209294
##
     3
                         200
                                  0.9242963
                                             0.8400485
##
     3
                         250
                                  0.9249710
                                             0.8413764
##
     4
                         50
                                  0.8977606
                                             0.7877566
##
     4
                         100
                                  0.9201222
                                             0.8317229
##
     4
                         150
                                  0.9244301
                                             0.8403391
##
     4
                         200
                                  0.9252375
                                            0.8418356
##
     4
                         250
                                  0.9257768 0.8429767
##
     5
                         50
                                  0.9225452
                                             0.8364810
                                  0.9263166 0.8440786
##
     5
                         100
##
     5
                         150
                                  0.9260476
                                            0.8435010
##
     5
                         200
                                  0.9259126
                                             0.8432316
##
     5
                         250
                                  0.9236230
                                             0.8383548
##
## Tuning parameter 'shrinkage' was held constant at a value of 0.1
##
## Tuning parameter 'n.minobsinnode' was held constant at a value of 10
  Accuracy was used to select the optimal model using the largest value.
  The final values used for the model were n.trees = 100, interaction.depth =
    5, shrinkage = 0.1 and n.minobsinnode = 10.
```

0.1000

nan

-0.0000

##

80

0.3977

summary(gmbFitm0) # Shows the relative influence of each variable in the model.


```
## [2147] 1 0 1 1 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0 1 0
## [2258] 0 1 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 0 1 1 1 0 1 0 0
## [2332] 1 0 0 1 0 0 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1
## [2443] 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 0 1 1 0 0 0 1 1
## Levels: 0 1
summary(gmbPredict1)
      Ω
## 967 1507
Results1gmb<-postResample(gmbPredict1,testing$brand)# Show accuracy and kappa.
Results1gmb # over 92% of accuracy, 0.83 kappa.
## Accuracy
                  Kappa
## 0.9211803 0.8335184
# Prediction of the Incomplete Surveys.
gmbPredictBrand <- predict(gmbFitm0,Incomplete)</pre>
gmbPredictBrand
##
      ##
##
     ##
    [149] 1 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 1 1 0 1 1 1 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 0
    ##
    ##
##
    [297] 0 0 0 1 0 0 1 0 1 0 1 0 1 1 0 1 0 1 1 1 1 1 1 1 0 0 1 1 1 1 1 1 1 0 0 1 1 0 1 0
##
    ##
   [445] 0 0 1 1 1 1 0 0 1 0 1 1 1 0 0 0 1 0 0 0 0 0 0 0 1 1 1 0 1 1 1 0 0 1 0 0 0
##
    [482] 1 1 0 1 0 0 1 0 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 1 0
##
    ##
   [593] 1 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 1 1 1 1 1 0 1 0 0 0 1
##
##
    [630] 1 1 1 1 0 1 0 0 1 1 1 0 1 0 1 1 1 0 0 1 0 0 1 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 0 1
    ##
##
   [704] 1 0 1 1 1 0 1 1 1 1 1 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 0 1 0 1 1 1 1 1 0 1 0 0 0 0 1 1
##
    [741] 1 1 0 1 1 1 0 0 1 0 1 0 1 0 0 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 0 0 0 1 0 0 1 1 1
    ##
##
    [815] 0 0 1 1 1 1 1 0 1 1 0 1 0 0 1 1 0 1 1 1 1 1 1 1 1 0 1 1 0 1 1 1 1 1 0 0
   [852] 0 1 0 1 1 1 1 0 1 1 0 1 1 0 1 1 1 0 0 0 1 0 1 1 1 1 1 0 0 0 1 0 1 1 0 1 0 1
##
```

```
## [4996] 0 1 0 0 0
## Levels: 0 1
summary(gmbPredictBrand) # 1940 Acer, 3060 Sony.
##
     0
           1
## 1940 3060
#Random Forest model. With 5 manual values for mtry.
#dataframe for manual tuning of mtry
rfGrid \leftarrow expand.grid(mtry=c(1,2,3,4,5))
#train Random Forest Regression model
#note the system time wrapper. system.time()
#this is used to measure process execution time
rfFitm1 <- train(brand~., data = training, method = "rf", trControl=fitControl, tuneGrid=rfGrid)
#training results
rfFitm1
## Random Forest
##
## 7424 samples
##
      6 predictor
      2 classes: '0', '1'
##
##
## No pre-processing
## Resampling: Cross-Validated (10 fold, repeated 1 times)
## Summary of sample sizes: 6681, 6681, 6682, 6682, 6681, 6682, ...
## Resampling results across tuning parameters:
##
##
    mtry Accuracy
                      Kappa
##
           0.8545232 0.6788543
##
           0.9230906 0.8369402
          0.9240318 0.8388522
    3
##
    4
           0.9218769 0.8342634
##
           0.9194527 0.8288669
## Accuracy was used to select the optimal model using the largest value.
## The final value used for the model was mtry = 3.
summary(rfFitm1)
##
                  Length Class
                                     Mode
## call
                      4 -none-
                                     call
                       1 -none-
                                    character
## type
## predicted
                                    numeric
                    7424 factor
                    1500 -none-
## err.rate
                                   numeric
## confusion
                      6 -none-
                                    numeric
## votes
                   14848 matrix
                                    numeric
## oob.times
                   7424 -none-
                                    numeric
## classes
                      2 -none-
                                    character
## importance
                       6 -none-
                                    numeric
## importanceSD
                       0 -none-
                                     NULL
```

```
## localImportance
                      NULL
               -none-
                      NUIT.T.
## proximity
             0
               -none-
## ntree
               -none-
                      numeric
## mtry
             1
               -none-
                      numeric
## forest
             14
               -none-
                      list
## y
           7424 factor
                      numeric
                      NULL
## test
             0
               -none-
                      NULL
## inbag
             0
               -none-
## xNames
             6
               -none-
                      character
## problemType
             1
               -none-
                      character
## tuneValue
             1 data.frame list
## obsLevels
             2
               -none-
                      character
## param
               -none-
                      list
VarImprf <- varImp(rfFitm1)</pre>
VarImprf
## rf variable importance
##
      Overall
## salary
      100.000
## age
       65.560
## credit
       9.185
## car
       3.386
## zipcode
       1.455
## elevel
       0.000
rfPredict1 <- predict(rfFitm1,testing)# The values are discrete because
# the imputs were introduced as factors. In other case, the model returns
# continuous values, close to 0 and 1.
rfPredict1
   ##
##
   ##
   [75] 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 1 1 0 0 0 0 1 0 0 1 0 1 1 0 0 1 0 1 1 1 1 1 1 0
  ##
##
  ##
  [186] 1 1 0 1 1 1 0 1 0 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1 0
  [223] 1 1 1 1 1 0 1 1 0 1 0 1 1 1 1 1 0 0 0 0 0 1 1 1 0 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1 1
##
  [297] 0 0 0 0 1 1 1 0 1 0 1 1 0 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 0 1
  ##
  [408] 0 0 1 0 1 0 1 1 0 1 1 0 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 1 1 1
##
  ##
  ##
  ##
  [593] 1 0 1 1 1 0 0 0 0 1 1 0 1 1 0 0 1 1 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1
  ##
```

[704] 1 1 1 1 1 0 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 1 0 0 0 0 1 1 0 1 0 1 0 1

##

##

```
## [963] 1 1 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 1 1 1 1 0 0 1 1 0
## [1000] 0 0 1 0 0 0 0 1 0 1 1 1 1 1 1 0 1 1 1 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 0 0 1 1
## [1074] 1 1 0 1 1 0 0 1 1 0 0 0 0 0 0 1 1 0 1 1 1 1 1 1 1 0 0 1 1 1 0 1 1 1 1 1 1
## [1111] 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 0 0 1 1 0 1 1 1 0 0 1 0 1 1 0 1 1 1 1 1 1
## [1148] 1 1 1 0 0 0 0 0 0 0 1 0 1 0 0 1 0 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1 1 0 1 1
## [1259] 1 0 0 1 1 0 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 0 0 1
## [1370] 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 1 0 1 1 0 1 1 0 1 1 0 1 1 0 1 0 1 0 0
## [1629] 1 1 0 0 0 1 1 0 0 1 1 1 0 0 0 1 0 0 1 0 0 1 0 0 1 1 0 1 0 1 1 0 0 0 0 1 1 0
## [1703] 0 1 1 1 1 1 0 1 0 0 0 1 1 0 0 0 1 1 1 0 0 0 0 0 0 1 1 0 0 0 0 1 1 1 1 1 1 1 0
## [1740] 1 0 0 1 0 0 1 0 1 0 1 0 1 0 1 0 1 0 0 1 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0
## [1777] 0 1 1 0 0 1 1 1 0 1 0 1 0 1 1 1 1 0 1 1 1 1 0 1 1 1 1 0 0 1 0 1 1 1 1 0 1 1 1 0 0 0 1 1
## [1814] 1 0 0 1 0 0 0 1 1 1 0 0 1 0 0 1 0 1 1 1 1 0 1 1 1 1 1 1 1 1 0 1 1 1 1 0 1 1 1 0 1 1 0
## [1925] 0 0 0 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1 0 0 0 1 0 1 1 0 1 0 0 0 1 0 1 1 1 1 1 1 1 1
## [1962] 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 1 1 1 0 1 1 1 1 1 1 0 0 1 1 1 1 1 0 1 1 1 1 0 1 1 0 1
## [1999] 1 1 0 0 1 0 1 0 0 0 0 0 1 1 0 0 1 1 0 0 0 1 1 1 1 1 1 1 0 1 1 1 1 1 1 1 0
## [2036] 1 1 1 1 1 1 0 1 1 0 1 1 1 0 0 0 0 0 1 0 1 1 1 1 1 1 0 1 0 1 1 1 1 1 0 0 0
## [2147] 1 0 1 0 0 1 1 1 0 1 1 1 1 1 1 0 0 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 0 1 1 0
## [2258] 0 1 0 0 1 1 0 1 0 1 0 0 0 1 1 0 1 1 1 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1 0 0
## [2295] 0 1 1 1 1 1 0 1 1 1 1 1 1 1 1 1 1 0 1 0 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 0 1 1 1
## [2332] 1 0 0 1 0 1 1 0 1 1 0 1 1 1 1 1 1 0 1 1 0 0 1 0 0 1 0 0 0 1 0 0 0 1 1 1 0 1 1
## [2406] 1 1 0 1 1 1 0 0 1 0 0 0 1 0 1 1 1 0 1 1 0 1 0 0 0 1 1 1 1 1 1 1 1 1 0 1 0
## [2443] 0 0 1 1 1 1 0 1 1 1 1 1 0 0 1 1 0 1 1 0 0 1 0 0 1 1 1 0 0 1 1
## Levels: 0 1
summary(rfPredict1)
   0
## 953 1521
Results1rf<-postResample(rfPredict1, testing$brand) # Show accuracy and kappa.
Results1rf # almost 92% of accuracy, 0.82 kappa.
```

```
## Accuracy Kappa
## 0.9163298 0.8227579

# Prediction of the Incomplete Surveys.

rfPredictBrand <- predict(rfFitm1 ,Incomplete)

rfPredictBrand</pre>
```

```
## [3738] 0 1 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 1 1 1 1 1 1 1 0 1 0 1 0 1 0 1
## [3775] 0 0 0 0 1 1 1 1 0 1 0 1 0 0 0 1 0 1 1 1 1 0 0 1 1 0 0 1 1 0 0 1 1 1 0 1 1
## [3849] 1 0 0 0 0 0 1 1 1 1 1 1 0 1 1 1 0 1 1 1 0 1 0 1 0 0 0 1 0 0 1 0 1 1 1 1 0 1 0 0
## [3923] 1 1 1 1 1 0 1 0 1 1 1 1 0 0 0 0 0 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1
## [3960] 1 1 1 1 0 1 0 1 1 1 1 1 1 0 0 1 0 0 0 0 0 0 1 0 1 1 0 1 1 0 0 0 1 1 0 0 1
## [3997] 1 1 1 1 1 0 1 1 1 0 1 1 1 1 0 1 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 1 0 1 1 1 0 0 0 1
## [4034] 1 1 0 1 1 1 0 1 0 1 0 0 0 1 1 1 0 0 1 1 0 0 1 1 1 0 0 1 0 0 1 1 1 1 0 0 1 1 1 1 0 0 1
## [4108] 1 0 0 0 0 1 1 0 1 0 0 1 1 0 0 1 1 0 0 1 0 0 1 1 1 0 1 0 1 1 1 1 1 1 0 0 0 0 0 1
## [4145] 1 0 1 1 1 1 1 1 1 1 1 1 1 0 0 1 1 1 0 0 1 1 0 0 1 0 1 1 0 1 1 0 1 0 1 0 1
## [4219] 1 1 1 0 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 1 1 1 1 1 1 0 0 0 1 0
## [4256] 1 1 0 0 0 1 1 1 0 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 1 1 0 0 0 1 1
## [4293] 1 1 1 1 1 1 1 1 0 0 1 0 0 1 0 1 1 0 1 0 1 0 0 0 1 1 1 1 1 0 0 1 0 1 1 1 0 1
## [4367] 0 0 0 0 1 1 0 1 1 1 1 0 0 0 0 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 0 1 0 1 1 1 1 1 0
## [4441] 1 1 1 0 0 0 1 1 1 1 1 0 0 1 1 0 1 1 0 1 1 0 1 1 0 0 1 1 1 1 1 0 0 1 1 1 1 1 0
## [4515] 1 1 1 1 1 1 0 1 0 1 0 0 1 0 1 0 1 1 0 0 1 1 0 1 1 0 1 0 1 1 1 1 0 0 1 1 1 1 1 1 1 0
## [4589] 0 0 1 1 1 1 0 0 1 0 1 0 1 1 1 1 0 1 1 1 1 1 1 0 0 0 1 1 1 1 1 1 0 1 0 1 1
## [4626] 0 0 1 1 1 0 0 1 1 1 1 0 1 1 1 1 1 0 1 0 1 1 1 1 0 0 1 1 1 0 0 1 1 1 0 0 1 0 1
## [4663] 1 1 1 1 0 0 0 0 1 0 0 1 0 1 0 1 1 1 0 1 1 1 0 1 1 0 0 1 1 1 1 0 1 1 1 0 1
## [4774] 0 1 0 0 1 1 0 1 1 0 1 1 0 1 0 1 1 0 1 0 1 1 0 1 0 1 0 1 0 1 0 1 0 1 1 0 1 1 0 1 1
## [4811] 0 1 1 0 1 1 1 0 0 0 0 0 1 1 1 1 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 1 1 0 0 0 1 0 1 1 0 0 0
## [4848] 1 1 1 1 1 1 0 0 1 1 0 1 1 1 1 1 0 0 0 0 1 1 1 1 1 1 1 1 0 1 1 1 0 0 1 1 0 1 1
## [4885] 1 0 1 1 1 1 1 0 1 0 0 1 1 0 1 1 0 1 1 0 0 1 1 0 0 1 1 0 1 0 1 0 1 0 1 0 1 1 1 1
## [4996] 0 1 0 0 0
## Levels: 0 1
```

0 1 ## 1909 3091

summary(rfPredictBrand) # 1905 Acer, 3095 Sony.