

Arrow's General (Im)Possibility Theorem

KC Border Winter 2002 v. 2017.09.22::16.31

Let X be a nonempty set of **social alternatives** and let \mathcal{P} denote the set of **preference relations** over X. That is, \mathcal{P} is the set of total reflexive transitive binary relations on X. A typical element of \mathcal{P} will be denoted R and its strict part will be denoted P. If there are n members of society, a **preference profile** is an ordered list (R_1, \ldots, R_n) of preference relations, specifying the preference for each member of society.

Definition 1 A social welfare function φ , or SWF, on domain $D \subset \mathcal{P}^n$ is a mapping $\varphi \colon D \to \mathcal{P}$ from a set of preference profiles to the set of preference relations. It is traditional to denote the value of φ at the profile (R_1, \ldots, R_n) by R with no subscript.

This definition incorporates an important assumption, namely that the social welfare relation belongs to \mathcal{P} . In particular, it is transitive.

Definition 2 A SWF satisfies the (Binary) Independence of Irrelevant Alternatives Axiom, or IIA for short, if $(R_1, ..., R_n)$ and $(R'_1, ..., R'_n)$ are profiles satisfying $x R_i y \iff x R'_i y$ for all i, then $x R y \iff x R' y$.

That is, the social ranking of x and y can be determined from only the individual rankings of x and y.

Definition 3 A SWF satisfies the (weak) Pareto Principle if $x P_i y$ for all i implies x P y.

Arrow's General Possibility Theorem Assume X has at least three elements, and let $\varphi \colon \mathcal{P}^n \to \mathcal{P}$ be a social welfare function with domain \mathcal{P}^n . Assume that φ satisfies IIA and the Pareto Principle. Then there is some i such that for every preference profile, and every pair x, y,

$$x P_i y \implies x P y.$$

That is, some one individual dictates the social strict preference relation.

The proof of Arrow's theorem is divided into a number of small lemmas. First we shall need some definitions. A **coalition** is a nonempty subset of $N = \{1, ..., n\}$.

Definition 4 A coalition S is **decisive for x over y** if for some preference profile, $x P_i y$ for all $i \in S$, $y P_i x$ for all $i \notin S$, and x P y. This profile is called a profile of decisiveness for x over y via S.

A coalition S is **strictly decisive for** x **over** y if for every preference profile satisfying $x P_i y$ for all $i \in S$, we have x P y.

A coalition S is **decisive** if it is strictly decisive for every pair of distinct alternatives.

The definitions are a bit tricky. Note that if a coalition is decisive for x over y, then we must have $x \neq y$. On the other hand, it is vacuously true that a coalition S is strictly decisive for x over x. Obviously two decisive coalitions cannot be disjoint.

In the language of decisiveness, Arrow's theorem says that there is a decisive coalition that has only one member. A fundamental question is whether there are *any* decisive coalitions. The answer is yes. Indeed, the Pareto Principle may be restated as follows.

Lemma 1 The coalition of the whole, $\{1, 2, ..., n\}$, is decisive.

We now proceed to show that if a coalition is decisive for x over y, then it is decisive. In the lemmas that follow we shall use the following sort of schematic diagram for preference profiles: Columns represent coalitions. If one element in a column is higher than another, the higher one is strictly preferred. Braces are used to group elements, and within the group the ranking is unrestricted. Thus the schematic diagram

$$\begin{array}{c|c}
S & S^c \\
\hline
x & y \\
y & \{x, z\} \\
z
\end{array}$$

represents any profile such that for $i \in S$, $x P_i y P_i z$, and for $i \in S^c$, $y P_i x$ and $y P_i z$.

Lemma 2 Suppose S is decisive for x over y, and $z \notin \{x, y\}$. Then S is strictly decisive for x over z.

Proof: IIA implies that any profile corresponding to the following schematic is a profile of decisiveness for x over y via S.

$$\begin{array}{c|cc}
S & S^c \\
\hline
x & y \\
y & x
\end{array}$$

In particular, by adding some information about $z \notin \{x, y\}$, we do not change the social preference between x and y, so any profile corresponding to the following schematic is still a profile of decisiveness for x over y via S.

$$\begin{array}{ccc}
S & S^c \\
\hline
x & y \\
y & \{x, z\} \\
z
\end{array}$$

For such profiles,

x P y since S is decisive for x over y,

y P z by the Pareto Principle,

x P z by transitivity of P.

Now erase y, and IIA implies that for any profile satisfying the schematic

$$\begin{array}{c|c} S & S^c \\ \hline x & \{x, z\} \\ z \end{array}$$

where $z \neq y$, we must have x P z.

Corollary 1 If S is decisive for x over y, then for any w, S is strictly decisive for x over w.

Proof: Lemma 2 proves this for $w \neq y$, so we need only consider the case w = y.

Since X has at least three elements, there is some $z \notin \{x, y\}$. Since S is decisive for x over y, Lemma 2 implies that S is strictly decisive for x over z. Since $y \notin \{x, z\}$ and S is decisive for x over z, Lemma 2 implies that S is strictly decisive for x over y.

Lemma 3 Suppose S is decisive for x over y, and $z \notin \{x, y\}$. Then S is strictly decisive for z over y.

Proof: IIA implies that the following schematic represents a profile of decisiveness for x over y via S.

$$\begin{array}{c|c}
S & S^c \\
\hline
z & \{y, z\} \\
x & x \\
y & \end{array}$$

Then

z P x by the Pareto Principle, x P y since S is decisive, z P y by transitivity of P.

Now use IIA to erase x.

The proof of the next corollary is similar to the proof of Corollary 1.

Corollary 2 If S is decisive for x over y, then for any w, S is strictly decisive for w over y.

Lemma 4 Suppose that for some x and y, S is decisive for x over y. Then S is decisive.

Proof: Let v and w be arbitrary distinct elements of X. We need to show that S is strictly decisive for v over w.

Case 1. v = x.

See Corollary 1.

Case 2. w = y.

See Corollary 2.

Case 3. v = y and w = x.

Choose $z \notin \{x,y\}$. Then by Corollary 1, S is strictly decisive for x over z. Since $y \notin \{x,z\}$, Corollary 2 implies S is strictly decisive for y over z. Now Corollary 1 implies S is strictly decisive for y over x.

Case 4. $\{v, w\} \cap \{x, y\} = \emptyset$.

By Corollary 1, S is strictly decisive for x over w, so Corollary 2 implies S is strictly decisive for v over w.

Lemma 5 If S and T are decisive, so is $S \cap T$.

Proof: Consider a preference profile represented by:

$S \setminus T$	$S\cap T$	$T \setminus S$	$(S \cup T)^c$
y	x	z	y
x	z	y	
z	y	\boldsymbol{x}	x

Then

x P z since S is decisive, z P y since T is decisive, x P y by transitivity of P.

Therefore we see that $S \cap T$ is decisive for x over y, so by Lemma 4, $S \cap T$ is decisive.

Lemma 6 If S is not decisive, then S^c is decisive.

Proof: Since S is not decisive, there is some pair x, y for which we have $x P_i y$ for all $i \in S$ and $y P_i x$ for all $i \notin S$ and y R x. Since X has at least three elements, there exists some $z \notin \{x, y\}$. Consider a preference profile represented by:

$$\begin{array}{ccc}
S & S^c \\
\hline
x & y \\
z & x \\
y & z
\end{array}$$

Then

y R x since S is not decisive, x P z by the Pareto Principle, y P z by transitivity of P.

Therefore S^c is decisive for y over z, so by Lemma 4, S^c is decisive.

Lemma 7 (Arrow's Theorem) There is a singleton decisive set.

Proof: Clearly, if $\{i\}$ is decisive for some i < n, we are done. So suppose that $\{1\},...,\{n-1\}$ are not decisive. Then by Lemma 6, $\{1\}^c,...,\{n-1\}^c$ are decisive. But then by Lemma 5, $\{n\} = \bigcap_{i=1}^{n-1} \{i\}^c$ is decisive.

References

- [1] K. J. Arrow. 1950. A difficulty in the concept of social welfare. *Journal of Political Economy* 58:328–346.
- [2] . 1951. Social choice and individual values. New York: Wiley.
- [3] ——. 1963. Social choice and individual values, 2d. ed. New Haven: Yale University Press.
- [4] J. H. Blau. 1971. Arrow's theorem with weak independence. *Economica N.S.* 38:413–420.
- [5] ———. 1972. A direct proof of Arrow's theorem. *Econometrica* 40:61–67.
- [6] K. C. Border. 1983. Social welfare functions for economic environments with and without the Pareto principle. *Journal of Economic Theory* 29:205–216.
- [7] . 1984. An impossibility theorem for spatial models. *Public Choice* 43:293–303.
- [8] P. C. Fishburn. 1970. Arrow's impossibility theorem: Concise proof and infinite voters. *Journal of Economic Theory* 2:103–106.
- [9] B. Hansson. 1976. The existence of group preference functions. *Public Choice* 28:89–98.
- [10] J. S. Kelly. 1978. Arrow impossibility theorems. New York: Academic Press.
- [11] A. P. Kirman and D. Sondermann. 1972. Arrow's theorem, many agents, and invisible dictators. *Journal of Economic Theory* 5:267–277.