It is well known (e.g. de Haan and Resnick (1977), Pickands (1981), Falk et al. (2011)) that a rv (η_1, \ldots, η_d) is a <u>standard max-stable rv</u> iff there exists a rv (Z_1, \ldots, Z_d) and some number $c \geq 1$ with $Z_i \in [0, c]$ almost surely (a.s.) and $E(Z_i) = 1, i = 1, \ldots, d$, such that for all $\mathbf{x} = (x_1, \ldots, x_d) \leq \mathbf{0} \in \mathbb{R}^d$

$$P(\eta_1 \le x_1, \dots, \eta_d \le x_d) = \exp(-\|\mathbf{x}\|_D) := \exp\left(-E\left(\max_{i=1,\dots,d} (|x_i| Z_i)\right)\right).$$

The condition $Z_i \in [0,c]$ a.s. can be weakened to $P(Z_i \geq 0) = 1$. Note that $\|\cdot\|_D$ defines a norm on \mathbb{R}^d , called \underline{D} -norm, with $\underline{generator} \ Z$. The D means dependence: We have independence of the margins of X iff $\|\cdot\|_D$ equals the norm $\|x\|_1 = \sum_{i=1}^d |x_i|$, which is generated by (Z_1, \ldots, Z_d) being a random permutation of the vector $(d, 0, \ldots, 0)$. We have complete dependence of the margins of X iff $\|\cdot\|_D$ is the maximum-norm $\|x\|_\infty = \max_{1 \leq i \leq d} |x_i|$, which is generated by the constant vector $(Z_1, \ldots, Z_d) = (1, \ldots, 1)$. We refer to Falk et al. (2011, Section 4.4) for further details of D-norms.

Let S be a compact metric space. A standard max-stable process $\eta = (\eta_t)_{t \in S}$ with sample paths in $\bar{C}^-(S) := \{g \in C(S) : g \leq 0\}$ is, in what follows, shortly called a <u>standard max-stable process</u> (SMSP). Denote further by E(S) the set of those bounded functions $f \in \mathbb{R}^S$ that have only a finite number of discontinuities and define $\bar{E}^-(S) := \{f \in E(S) : f \leq 0\}$. We know from Giné et al. (1990) that a process $\eta = (\eta_t)_{t \in S}$ with sample paths in C(S) is an SMSP iff there exists a stochastic process $\mathbf{Z} = (Z_t)_{t \in S}$ realizing in $\bar{C}^+(S) := \{g \in C(S) : g \geq 0\}$ and some $c \geq 1$, such that $Z_t \leq c$ a.s., $E(Z_t) = 1$, $t \in S$, and

$$P(\boldsymbol{\eta} \le f) = \exp\left(-\|f\|_D\right) := \exp\left(-E\left(\sup_{t \in S} \left(|f(t)| Z_t\right)\right)\right), \qquad f \in \bar{E}^-(S).$$

Note that $\|\cdot\|_D$ defines a norm on the function space E(S), again called <u>D</u>-norm with <u>generator process</u> Z. The functional D-norm is topologically equivalent to the sup-norm $\|f\|_{\infty} = \sup_{t \in S} |f(t)|$, which is itself a D-norm by putting $Z_t = 1$, $t \in S$, see Aulbach et al. (2013) for details.