Quiz 4

本人郑重承诺将秉承诚信原则,自觉遵守考场纪律,并承担违纪或作弊带来的后果。

学号:				姓名:		
题号	1	2	3	4	5	合计
分值	10分	10分	10分	10分	10分	50分
得分						

This 50-minute long test includes 5 questions. Write *all your answers* on this examination paper.

- 1. (1) The area of the triangle on the plane \mathbb{R}^2 with the vertices (2,1),(3,4),(0,5) is _____.

 (2) Let A, B be $n \times n$ matrices, and |A| = -2, |B| = -3, and A^* is the adjoint matrix (伴随矩阵) of A, then $|2B^{-1}A^*| = \frac{1}{2} \times (-2)^N$

 - (3) A matrix \mathbf{A} is diagonalizable if and only if it is a normal matrix. (\mathbf{A}) (4) A matrix \mathbf{A} is invertible if and only if it has no zero eigenvalue. (\mathbf{A}) \mathbf{A}
 - (5) If \mathbf{A} is a 3×3 matrix, and none of $\mathbf{A} \mathbf{I}$, $\mathbf{A} + 2\mathbf{I}$, $5\mathbf{A} 3\mathbf{I}$ is invertible, then \mathbf{A} is diagonalizable. (\mathbf{A})
- Suppose that a 3×3 real symmetric matrix \boldsymbol{A} has the eigenvalues $\lambda_1 = 1, \lambda_2 = -1, \lambda_3 = 0$. The eigenvectors corresponding to λ_1, λ_2 are $\boldsymbol{p}_1 = (1,2,2)^T, \boldsymbol{p}_2 = (2,1,-2)^T$. Find the matrix \boldsymbol{A} .

$$\int_{\mathbb{T}^{2}} \frac{P_{1}}{||P_{1}||} = \begin{bmatrix} \frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{3} \end{bmatrix} \qquad Q_{2} = \frac{P_{2}}{||P_{1}||} = \begin{bmatrix} \frac{2}{3} \\ \frac{1}{3} \\ \frac{2}{3} \end{bmatrix} \qquad Q_{3} \text{ is orthogonal to } Q_{1} \text{ and } Q_{2}$$

$$+ \text{hom } \left(\begin{array}{c} P_{1}^{T} \\ P_{2}^{T} \end{array} \right) \times = \overrightarrow{D} \Rightarrow \begin{bmatrix} 1 & 2 & 2 \\ 2 & 1 & 2 \end{bmatrix} \times = \begin{bmatrix} 0 \\ 0 \end{bmatrix} \Rightarrow Q_{3} = \begin{bmatrix} \frac{2}{3} \\ -\frac{2}{3} \\ \frac{2}{3} \end{bmatrix}$$

$$Q = \begin{bmatrix} Q_{1} & Q_{2} & Q_{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

$$Q = \begin{bmatrix} Q_{1} & Q_{2} & Q_{3} \end{bmatrix} = \begin{bmatrix} \frac{1}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

$$Q = \begin{bmatrix} Q_{1} & Q_{2} & Q_{3} \\ Q_{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & -\frac{2}{3} \end{bmatrix}$$

$$Q = \begin{bmatrix} Q_{1} & Q_{2} & Q_{3} \\ Q_{3} & \frac{1}{3} & \frac{1}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{1}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} & \frac{2}{3} \\ \frac{2}{3} & \frac{2}{3} & \frac{2$$

3. Find an orthogonal diagonalizing matrix for the following matrix: $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$. $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$ $A = \begin{bmatrix} 2 & 2 & -2 \\ 2 & 5 & -4 \\ -2 & -4 & 5 \end{bmatrix}$ $Q_{1} = \frac{\chi_{1}}{||\chi_{1}||} = \frac{1}{||\xi||} = \frac{1}{||\xi||}$ $= \begin{bmatrix} 0 \\ 1 \end{bmatrix} - \frac{1}{5} \times \begin{bmatrix} 0 \\ 1 \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ \frac{1}{4} \\ \frac{1}{4} \end{bmatrix} = \begin{bmatrix} -\frac{1}{5} \\ \frac{1}{$

4. Find a unitary diagonalizing matrix for the following matrix:
$$\mathbf{B} = \begin{bmatrix} 0 & 2i \\ -2i & 1 \end{bmatrix}$$
.

$$\det(B-\lambda I) = 0 = \begin{vmatrix} -\lambda & 2i \\ -2i & |-\lambda| \end{vmatrix} = \lambda^{2} - \lambda - 4$$

$$\lambda_{1} = \frac{1-\sqrt{17}}{2} \quad \lambda_{2} = \frac{1+\sqrt{17}}{2}$$

$$\lambda_{1} = \begin{bmatrix} 4 \\ \sqrt{17}-1 \rangle i \end{bmatrix} \quad \lambda_{3} = \begin{bmatrix} 4 \\ \sqrt{17}+1 \rangle i \end{bmatrix} \Rightarrow \lambda_{4} = \begin{bmatrix} 4 \\ \sqrt{17}-1 \rangle i \quad (\sqrt{17}+1)i \end{bmatrix}$$

$$3+12\sqrt{17}$$

5. Suppose the determinant
$$\begin{vmatrix} a & -5 & 8 \\ 0 & a+1 & 8 \\ 0 & 3a+3 & 25 \end{vmatrix} = 0$$
. The 3 × 3 matrix \boldsymbol{A} has three eigenvalues 1, -1,0, with

the corresponding eigenvectors $\boldsymbol{p}_1 = (1,2a,-1)^T$, $\boldsymbol{p}_2 = (a,a+3,a+2)^T$, $\boldsymbol{p}_3 = (a-2,-1,a+1)^T$. Try to determine the parameter a, and find the matrix \boldsymbol{A} .

STALO
$$\begin{vmatrix} \alpha & -5 & 8 \\ 0 & \alpha+1 & 8 \\ 0 & 3\alpha+3 & 25 \end{vmatrix} = 0$$
, then $\alpha=-1$, for $\alpha \ge 0$ if $\alpha=-1$, β_1 , β_2 , β_3 are linearly dependent.

$$S = \begin{bmatrix} 1 & 0 & -2 \\ 0 & 3 & -1 \\ -1 & 2 & 1 \end{bmatrix} \quad S = \begin{bmatrix} -5 & 4 & -6 \\ -1 & 1 & -1 \\ -3 & 2 & -3 \end{bmatrix} \quad A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$A = S \wedge S^{7} = \begin{bmatrix} -5 & 4 & 6 \\ 3 & -3 & 3 \\ 7 & -6 & 8 \end{bmatrix}$$