

3. most powerful reducing agent: Zn; 1 (a) Fe²⁺ (b) (i) reducing species: 1 (ii) oxidising species: Cl_2 ; 1 (i) standard electrode potential 1.25 V; 1 (c) equation: $T1^{3+} + 2 Fe^{2+} \rightarrow 2Fe^{3+} + T1+$ (ii) balanced; 1 correct direction; [6] 4. Primary standard = standard hydrogen electrode (1) (a) (i) Secondary standard = simpler \overline{OR} easily constructed \overline{OR} more OR safer OR, less danger (1) **Equations** (ii) $H+(aq) + e^- \rightarrow \frac{1}{2} H_2 (g)$ (1) $Fe^{2+}(aq) + 2e^- \rightarrow Fe(s)$ (1) **(2)** $2H^{+} + Fe \rightarrow Fe^{2+} + H_{2}$ (1) overall: **Conditions** SHE: H^+ 1 M (1) 1 bar (1) Pt electrode (1) T = 298K (1) Fe pure (1) $Fe^{2+} 1 M$ (1) salt bridge (1) zero current (1) $E^{\bullet} = 0 \text{ V definition OR e.m.f.} = E^{\bullet} (\text{Fe}^{2+}/\text{Fe})$ (1) Precautions H_2 explosive in air OR Fe^{2+} oxidised by air (1) 12 E^{\bullet}/V (b) 2Fe³⁺(aq) + 6e⁻ \rightarrow 2Fe(s) -0.04 $3\text{Fe}^{2+}(aq)$ $+ 6e^- \rightarrow 3Fe(s)$ -0.44 \rightarrow 3Fe²⁺(aq) $2\text{Fe}^{3+}(\text{aq})$ + Fe(s)+0.40correct direction (1) balance (1) standard states (1) E^{\bullet} value (>0) (1) 4 E^{\bullet}/V $3Au^{+}(aq)$ $+ 3e^{-}$ \rightarrow 3 Au(s) +1.69 $Au^{3+}(aq)$ $+3e^{-} \rightarrow Au(s)$ +1.40 \rightarrow Au3⁺(aq) + 2Au(s) $3Au^{+}(aq)$ +0.29correct direction (1) balance (1) standard states (1) E^{\bullet} value (>0) (1) [20]