is the least dual D-norm function, corresponding to the case of independent univariate margins, where $\|\cdot\|_D = \|\cdot\|_1$, and

$$\langle \! \langle \boldsymbol{x} \rangle \! \rangle_{\infty} = \min_{1 \leq j \leq d} |x_j|, \qquad \boldsymbol{x} \in \mathbb{R}^d,$$

is the largest dual D-norm function, corresponding to the perfect dependence case, where $\|\cdot\|_D = \|\cdot\|_{\infty}$. Hence, we have for an arbitrary dual D-norm function the bounds

$$0 = \mathbf{n} \cdot \mathbf{n}_1 \leq \mathbf{n} \cdot \mathbf{n}_D \leq \mathbf{n} \cdot \mathbf{n}_{\infty}.$$

For the next examples, the following abbreviation is useful. We define for $x \in \mathbb{R}^d$ and a nonempty subset $T \subset \{1, \dots, d\}$

$$\boldsymbol{x}_T := (x_i, i \in T) \in \mathbb{R}^{|T|}.$$

EXAMPLE 2.5 (Fréchet model). It is well-known that a D-norm is given by the l_{λ} -norm

(9)
$$\|\boldsymbol{x}\|_{\lambda} := \left(\sum_{i=1}^{d} |x_i|^{\lambda}\right)^{1/\lambda}, \qquad \boldsymbol{x} \in \mathbb{R}^d, \ \lambda \in (1, \infty),$$

usually referred to as the $\underline{\text{logistic model}}$ in the literature. Therefore, we obtain by (8)

$$\| \boldsymbol{x} \|_{\lambda} = \sum_{\emptyset \neq T \subset \{1,...,d\}} (-1)^{|T|-1} \| \boldsymbol{x}_T \|_{\lambda}, \qquad \boldsymbol{x} \in \mathbb{R}^d, \ \lambda \in (1,\infty).$$

A generator $\mathbf{Z} = (Z_1, \dots, Z_d)$ of $\|\cdot\|_{\lambda}$ can easily be found: Put $Z_i := \tilde{Z}_i/\Gamma(1 - 1/\lambda)$, $i = 1, \dots, d$, where $\tilde{Z}_1, \dots, \tilde{Z}_d$ are iid Fréchet distributed with parameter λ , and Γ denotes the gamma function.

EXAMPLE 2.6 (Weibull model). We can define a generator $\mathbf{Z} = (Z_1, \dots, Z_d)$ by taking independent Weibull distributed random variables $\tilde{Z}_1, \dots, \tilde{Z}_d$, i.e. $P(\tilde{Z}_1 > t) = \exp(-t^{\alpha}), t > 0, \alpha > 0$, and putting $Z_i := \tilde{Z}_i/\Gamma(1+1/\alpha)$. It is easy to show that the corresponding dual D-norm function is for $\mathbf{x} \in \mathbb{R}^d$, $x_i \neq 0$, $i = 1, \dots, d$,