Homework 8

Ravi Kini

December 7, 2023

Exercise 1

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 7.33 (partial)

Part (a)

The density of states is seen to be symmetric about ϵ_F . Further, as:

$$\overline{n}_{FD}(\epsilon) = \frac{1}{e^{\frac{\epsilon - \mu}{k_B T}} + 1} = 1 - \frac{e^{\frac{\epsilon - \mu}{k_B T}}}{e^{\frac{\epsilon - \mu}{k_B T}} + 1}$$

$$= 1 - \frac{1}{1 + e^{-\frac{\epsilon - \mu}{k_B T}}}$$

$$= 1 - \frac{1}{e^{\frac{(2\mu - \epsilon) - \mu}{k_B T}} + 1}$$

$$= 1 - \overline{n}_{FD}(2\mu - \epsilon)$$
(1)

Evidently, the probability of a state at ϵ being occupied is equal to the probability of a state at $2\mu - \epsilon$ being unoccupied. These states are symmetric about μ . For a semiconductor at nonzero temperatures, there will be some electrons in the conduction band and an equal number of holes in the valence band. Consequently, letting $\epsilon_c = \epsilon_F + \epsilon'$:

$$\int_{\epsilon_{F}+\epsilon'}^{\infty} g_{0}\sqrt{\epsilon - (\epsilon_{F} + \epsilon')} \overline{n}_{FD}(\epsilon) d\epsilon = -\int_{\epsilon_{F}-\epsilon'}^{-\infty} g_{0}\sqrt{(\epsilon_{F} - \epsilon') - \epsilon} (1 - \overline{n}_{FD}(\epsilon)) d\epsilon$$

$$= \int_{2\mu - \epsilon_{F} + \epsilon'}^{\infty} g_{0}\sqrt{\epsilon - (2\mu - \epsilon_{F} + \epsilon')} (1 - \overline{n}_{FD}(2\mu - \epsilon)) d\epsilon$$
(2)

This is only true when $\epsilon_F + \epsilon' = 2\mu - \epsilon_F + \epsilon'$, or $\mu = \epsilon_F$, which means that the chemical potential is exactly in the middle of the gap.

Part (b)

For gap width $\delta \epsilon = 2\epsilon'$:

$$N = \int_{\epsilon_{c}}^{\infty} g(\epsilon) \,\overline{n}_{FD}(\epsilon) \,d\epsilon$$

$$= g_{0} \int_{\epsilon_{c}}^{\infty} \sqrt{\epsilon - \epsilon_{c}} \frac{1}{e^{\frac{\epsilon - \epsilon_{F}}{k_{B}T}} + 1} \,d\epsilon$$

$$\approx g_{0} \int_{\epsilon_{c}}^{\infty} \sqrt{\epsilon - \epsilon_{c}} e^{-\frac{\epsilon - \epsilon_{F}}{k_{B}T}} \,d\epsilon$$

$$\approx g_{0} e^{-\frac{\epsilon'}{k_{B}T}} \int_{\epsilon_{c}}^{\infty} \sqrt{\epsilon - \epsilon_{c}} e^{-\frac{\epsilon - \epsilon_{c}}{k_{B}T}} \,d\epsilon$$

$$\approx g_{0} e^{-\frac{\epsilon'}{k_{B}T}} (k_{B}T)^{\frac{3}{2}} \int_{\epsilon_{c}}^{\infty} \sqrt{x} e^{-x} \,d\epsilon$$

$$\approx \frac{\pi (8m)^{\frac{3}{2}}}{2h^{3}} V e^{-\frac{\epsilon'}{k_{B}T}} (k_{B}T)^{\frac{3}{2}} \sqrt{\pi} 2$$

$$\frac{N}{V} \approx 2(\frac{2\pi k_{B}Tm}{h^{2}})^{\frac{3}{2}} e^{-\frac{\epsilon'}{k_{B}T}}$$

$$\approx \frac{2}{v_{Q}} e^{-\frac{\delta\epsilon}{2k_{B}T}}$$
(3)

Part (c)

$$\frac{N}{V_{\text{Si}}} \approx 2 \left(\frac{2\pi k_B T m}{h^2}\right)^{\frac{3}{2}} e^{-\frac{\delta \epsilon_{\text{Si}}}{2k_B T}}$$

$$\approx 2 \left(\frac{2\pi \cdot 1.381 \cdot 10^{-23} \text{ J/K} \cdot 298 \text{ K} \cdot 9.11 \cdot 10^{-31} \text{ kg}}{(6.63 \cdot 10^{-34} \text{ J s})^2}\right)^{\frac{3}{2}} e^{-\frac{1.11 \text{ eV}}{2 \cdot 8.617 \cdot 10^{-5} \text{ eV/K} \cdot 298 \text{ K}}}$$

$$\approx 1.018 \cdot 10^{16} \frac{e}{m^3} \approx 1.018 \cdot 10^{10} \frac{e}{cm^3}$$

$$\frac{N}{V_{Cu}} \approx \frac{N_A}{V_{\text{mol}}} \approx \frac{6.022 \cdot 10^{23}}{\frac{63.5}{8.93} \text{ cm}^3} \approx 8.469 \cdot 10^{22} \frac{e}{cm^3}$$
(4)

Conduction electrons are far more dense in copper in comparison to silicon, so copper conducts electricity several times better than silicon.

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 7.41

Part (a)

The number of atoms N_1 in state s_1 obeys the differential equation:

$$\frac{\mathrm{d}N_1}{\mathrm{d}t} = AN_2 - Bu(f)N_1 + B'u(f)N_2 \tag{5}$$

Part (b)

At equilibrium,
$$\frac{dN_1}{dt} = \frac{dN_2}{dt} = 0$$
, with $\frac{N_2}{N_1} = e^{-\frac{E(s_2) - E(s_1)}{k_B T}} = e^{-\frac{\epsilon}{k_B T}} = e^{-\frac{hf}{k_B T}}$.

$$\frac{dN_1}{dt} = 0 = AN_2 - Bu(f)N_1 + B'u(f)N_2$$

$$\frac{N_1}{N_2} = e^{\frac{hf}{k_B T}} = \frac{A + B'u(f)}{Bu(f)}$$

$$= \frac{\frac{A}{u(f)} + B'}{B}$$

$$\frac{A}{Be^{\frac{hf}{k_B T}} - B'} = \frac{8\pi h}{c^3} \frac{f^3}{e^{\frac{hf}{k_B T}} - 1}$$
(6)

$$\frac{1}{Be^{\frac{hf}{k_BT}} - B'} = \frac{1}{c^3} \frac{1}{e^{\frac{hf}{k_BT}} - 1}$$
$$\frac{A}{Be^{\frac{hf}{k_BT}} - \frac{B'}{B}} = \frac{8\pi hf^3}{c^3} \frac{1}{e^{\frac{hf}{k_BT}} - 1}$$

Evidently, $\frac{A}{B} = \frac{8\pi h f^3}{c^3}$ and B = B'.

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 7.44

Part (a)

The number of photons in equilibrium N in a box of volume V and temperature T is:

$$N = 2 \sum_{n_x, n_y, n_z} \frac{1}{e^{\frac{hcn}{2Lk_BT}} - 1}$$

$$= 2(\frac{4\pi}{8}) \int_0^\infty \frac{n^2}{e^{\frac{hcn}{2Lk_BT}} - 1} dn$$

$$= \pi \left(\frac{2Lk_BT}{hc}\right)^3 \int_0^\infty \frac{x^2}{e^x - 1} dx$$

$$= 8\pi V \left(\frac{k_BT}{hc}\right)^3 \int_0^\infty \frac{x^2}{e^x - 1} dx$$
(7)

Part (b)

The entropy per photon $\frac{S}{N}$ is:

$$\frac{S}{N} = \frac{\frac{32\pi^{5}}{45}Vk_{B}\left(\frac{k_{B}T}{hc}\right)^{3}}{8\pi V\left(\frac{k_{B}T}{hc}\right)^{3}\int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} dx}$$

$$= k_{B} \frac{\frac{4\pi^{4}}{45}}{\int_{0}^{\infty} \frac{x^{2}}{e^{x}-1} dx}$$

$$\approx 3.602k_{B}$$
(8)

There is about $3.602k_B$ entropy per photon.

Part (c)

The photons per cubic meter at 300 K is:

$$\frac{N}{V} (T = 300 \text{ K}) = 8\pi \left(\frac{k_B T}{hc}\right)^3 \int_0^\infty \frac{x^2}{e^x - 1} dx$$

$$\approx 8\pi \left(\frac{1.381 \cdot 10^{-23} \text{ J/K} \cdot 300 \text{ K}}{6.63 \cdot 10^{-34} \text{ J s} \cdot 3 \cdot 10^8 \text{ m/s}}\right)^3 (2.404)$$

$$\approx 5.460 \cdot 10^{14} \frac{\gamma}{\text{m}^3}$$
(9)

The photons per cubic meter at $1500~\mathrm{K}$ is:

$$\frac{N}{V} (T = 1500 \text{ K}) = 8\pi \left(\frac{k_B T}{hc}\right)^3 \int_0^\infty \frac{x^2}{e^x - 1} dx$$

$$\approx 8\pi \left(\frac{1.381 \cdot 10^{-23} \text{ J/K} \cdot 1500 \text{ K}}{6.63 \cdot 10^{-34} \text{ J s} \cdot 3 \cdot 10^8 \text{ m/s}}\right)^3 (2.404)$$

$$\approx 6.825 \cdot 10^{16} \frac{\gamma}{m^3}$$
(10)

The photons per cubic meter at 2.73 K is:

$$\frac{N}{V} (T = 2.73 \text{ K}) = 8\pi \left(\frac{k_B T}{hc}\right)^3 \int_0^\infty \frac{x^2}{e^x - 1} dx$$

$$\approx 8\pi \left(\frac{1.381 \cdot 10^{-23} \text{ J/K} \cdot 2.73 \text{ K}}{6.63 \cdot 10^{-34} \text{ Js} \cdot 3 \cdot 10^8 \text{ m/s}}\right)^3 (2.404)$$

$$\approx 4.115 \cdot 10^8 \frac{\gamma}{\text{m}^3}$$
(11)

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 7.51 (partial)

Part (a)

The surface area of the filament A is:

$$P = \sigma e A T^{4}$$

$$A = \frac{P}{\sigma e T^{4}}$$

$$= \frac{100 \text{ W}}{5.67 \cdot 10^{-8} \text{ W}/(\text{m}^{2} \text{ K}^{4}) \cdot \frac{1}{3} \cdot (3000 \text{ K})^{4}}$$

$$\approx 6.532 \cdot 10^{-5} \text{ m}^{2}$$
(12)

Part (b)

The peak in the bulb's spectrum occurs at an energy ϵ of:

$$\epsilon = 2.82k_BT$$
= 2.82 · 1.381 · 10⁻²³ J/K · 3000 K

$$\approx 1.168 · 10^{-19} J \approx 0.729 \text{ eV}$$

$$\lambda = \frac{hc}{\epsilon}$$
= $\frac{1230 \text{ eVnm}}{0.729 \text{ eV}}$

$$\approx 1687.243 \text{ nm} \approx 1.687 \text{ µm}$$
(13)

Part (c)

The shaded area in the plot is the visible light spectrum.

Part (d)

The fraction of energy that comes out as visible light $p_{\rm vis}$ is:

$$x_{r} = \frac{\epsilon_{r}}{k_{B}T} = \frac{\frac{1230 \text{ eVnm}}{700 \text{ nm}}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 3000 \text{ K}} \approx 6.797$$

$$x_{v} = \frac{\epsilon_{v}}{k_{B}T} = \frac{\frac{1230 \text{ eVnm}}{400 \text{ nm}}}{8.617 \cdot 10^{-5} \text{ eV/K} \cdot 3000 \text{ K}} \approx 11.895$$

$$p_{\text{vis}} = \frac{\int_{x_{r}}^{x_{v}} \frac{e^{x^{3}}}{e^{x}-1} dx}{\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} dx}$$

$$\approx \frac{\int_{6.797}^{11.895} \frac{x^{3}}{e^{x}-1} dx}{\int_{0}^{\infty} \frac{x^{3}}{e^{x}-1} dx}$$

$$\approx 0.084$$
(14)

About 8% of the light is visible, which matches with the plot.

Part (e)

Increasing the temperature would move the peak to the right and closer to the range of visible light.

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 7.66

The theoretical Debye temperature $T_{D,\text{theoretical}}$ is:

$$T_{D,\text{theoretical}} = \frac{hc_s}{2k_B} \left(\frac{6}{\pi} \frac{N}{V}\right)^{\frac{1}{3}}$$

$$\approx \frac{6.626 \cdot 10^{-34} \text{ Js} \cdot 3560 \text{ m/s}}{2 \cdot 1.381 \cdot 10^{-23} \text{ J/s}} \left(\frac{6}{\pi} \cdot 8.469 \cdot 10^{28} \text{ 1/m}^3\right)^{\frac{1}{3}} \qquad (15)$$

$$\approx 465.324 \text{ K}$$

The experimental Debye temperature $T_{D,\text{experimental}}$ is:

$$C_{V} = \frac{12\pi^{4}}{5} \left(\frac{T}{T_{D,\text{experimental}}}\right)^{3} N k_{B}$$

$$\frac{C_{V}}{T} = \frac{12\pi^{4} N k_{B}}{T_{D,\text{experimental}}^{3}} \cdot T^{2}$$

$$\frac{12\pi^{4} N k_{B}}{T_{D,\text{experimental}}^{3}} = m \approx \frac{1}{18} \cdot 10^{-3} \text{ kg}$$

$$T_{D,\text{experimental}} \approx \left(\frac{12\pi^{4} N k_{B}}{5m}\right)^{\frac{1}{3}}$$

$$\approx \left(\frac{12\pi^{4} 12\pi^{4} \cdot 6.022 \cdot 10^{23} \cdot 1.381 \cdot 10^{-23} \text{ J/K}}{5 \cdot \frac{1}{18} \cdot 10^{-3} \text{ kg}}\right)^{\frac{1}{3}}$$

$$\approx 327.094 \text{ K}$$

The theoretical Debye temperature is about 50% larger than the experimental Debye temperature.

An Introduction to Thermal Physics (Schroeder, 1e) Exercise 7.73 (partial)

Part (a)

The energy of the ground state ϵ_0 is:

$$\epsilon_0 = \frac{3h^2}{8mL^2}$$

$$= \frac{3(6.63 \cdot 10^{-34} \text{ J s})^2}{8 \cdot 87 \cdot 1.66 \cdot 10^{-27} \text{ kg} \cdot (10^{-5} \text{ m})^2}$$

$$\approx 1.141 \cdot 10^{-32} \text{ J} \approx 7.122 \cdot 10^{-14} \text{ eV}$$
(17)

Part (b)

The condensation temperature T_c is:

$$T_c = \frac{0.527}{k_B} \frac{h^2}{2\pi m} \left(\frac{N}{V}\right)^{\frac{2}{3}}$$

$$= \frac{0.527}{1.381 \cdot 10^{-23} \text{ J/K}} \frac{\left(6.63 \cdot 10^{-34} \text{ J s}\right)^2}{2\pi \cdot 87 \cdot 1.66 \cdot 10^{-27} \text{ kg}} \left(\frac{10000}{(10^{-5} \text{ m})^3}\right)^{\frac{2}{3}}$$

$$\approx 8.580 \cdot 10^{-8} \text{ K}$$
(18)

Consequently, $k_B T_c \approx 1.185 \cdot 10^{-30} \text{ J} \approx 100 \epsilon_0.$

Part (c)

When $T = 0.9T_c$:

$$N_{0} = \left(1 - \frac{T}{T_{c}}^{\frac{3}{2}}\right) N$$

$$= \left(1 - 0.9^{\frac{3}{2}}\right) \cdot 10000 \approx 1462 \text{ atoms}$$

$$\epsilon_{0} - \mu = \frac{k_{B}T}{N_{0}}$$

$$= \frac{8.617 \cdot 10^{-5} \cdot 0.9 \cdot 8.580 \cdot 10^{-8}}{1462} \approx 4.551 \cdot 10^{-15} \text{ eV} \qquad (19)$$

$$\epsilon_{1} = \frac{2^{2} + 1^{2} + 1^{2}}{3} \epsilon_{0} = 2\epsilon_{0}$$

$$N_{1} = \frac{1}{e^{\frac{\epsilon_{1} - \mu}{k_{B}T}} - 1}$$

$$= \frac{1}{e^{\frac{4.551 \cdot 10^{-15} \text{ eV} + 7.122 \cdot 10^{-14} \text{ eV}}{e^{8.617 \cdot 10^{-5} \text{ eV} / \text{K} \cdot 0.9 \cdot 8.580 \cdot 10^{-8} \text{ K}} - 1} \approx 87$$

There are 87 atoms in each of the three first excited states, for a total of $3 \cdot 87 = 261$ atoms in the first excited state.

Part (d)

For $N = 10^6$ atoms:

$$T_c = \frac{0.527}{k_B} \frac{h^2}{2\pi m} \left(\frac{N}{V}\right)^{\frac{2}{3}}$$

$$= \frac{0.527}{1.381 \cdot 10^{-23} \text{ J/K}} \frac{\left(6.63 \cdot 10^{-34} \text{ J s}\right)^2}{2\pi \cdot 87 \cdot 1.66 \cdot 10^{-27} \text{ kg}} \left(\frac{10^6}{\left(10^{-5} \text{ m}\right)^3}\right)^{\frac{2}{3}}$$

$$\approx 1.848 \cdot 10^{-6} \text{ K}$$
(20)

Consequently, $k_B T_c \approx 2.552 \cdot 10^{-29} \text{ J} \approx 100 \epsilon_0$. When $T = 0.9 T_c$:

$$N_{0} = \left(1 - \frac{T^{\frac{3}{2}}}{T_{c}}\right) N$$

$$= \left(1 - 0.9^{\frac{3}{2}}\right) \cdot 10^{6} \approx 1.462 \cdot 10^{5} \text{ atoms}$$

$$\epsilon_{0} - \mu = \frac{k_{B}T}{N_{0}}$$

$$= \frac{8.617 \cdot 10^{-5} \cdot 0.9 \cdot 8.580 \cdot 10^{-8}}{1462} \approx 9.802 \cdot 10^{-16} \text{ eV} \qquad (21)$$

$$\epsilon_{1} = \frac{2^{2} + 1^{2} + 1^{2}}{3} \epsilon_{0} = 2\epsilon_{0}$$

$$N_{1} = \frac{1}{e^{\frac{\epsilon_{1} - \mu}{k_{B}T}} - 1}$$

$$= \frac{1}{e^{\frac{9.802 \cdot 10^{-16} \text{ eV} + 7.122 \cdot 10^{-14} \text{ eV}}{e^{8.617 \cdot 10^{-5} \text{ eV}/\text{K} \cdot 0.9 \cdot 8.580 \cdot 10^{-8} \text{ K}} - 1} \approx 1985$$

There are 1985 atoms in each of the three first excited states, for a total of $3 \cdot 1985 = 5955$ atoms in the first excited state. The number of atoms in the ground state is much greater than the number of atoms in the first excited state for large N within a range of temperatures that gets wider as N increases, for fixed $\frac{T}{T_c}$.

Part (a)

For $n \gg 1$, the degeneracy is approximately $\frac{n^2}{2}$. The density of states $g\left(\epsilon\right)$ is then:

$$g(\epsilon) = \frac{\frac{n^2}{2}}{hf}$$

$$= \frac{n^2}{2hf} = \frac{\epsilon^2}{2(hf)^3}$$
(22)

Part (b)

The condensation temperature T_c is then:

$$N = \int_0^\infty g(\epsilon) \frac{1}{e^{\frac{\epsilon - \mu}{k_B T_c}} - 1} d\epsilon$$

$$= \frac{1}{2(hf)^3} \int_0^\infty \frac{\epsilon^2}{e^{\frac{\epsilon - \mu}{k_B T_c}} - 1} d\epsilon$$

$$= \frac{1}{2} \left(\frac{k_B T_c}{hf}\right)^3 \int_0^\infty \frac{x^2}{e^x - 1} dx$$

$$T_c = \left(\frac{2N}{\int_0^\infty \frac{x^2}{e^x - 1} dx}\right)^{\frac{1}{3}} \left(\frac{hf}{k_B}\right)$$

$$\approx \frac{hf}{k_B} \left(\frac{N}{1.202}\right)^{\frac{1}{3}}$$
(23)