Experiment No 7: BJT biasing Simulation Exercise

Q1 Write the net list for the biasing network shown in Fig. 4.

We will use Transistor, BC547, $R_1 = 47 \text{ k}$, $R_2 = 5.6 \text{ k}$, $R_{C=} 1.8 \text{ k}$, RE = 1 k.

- a. Tabulate the following quantities: V_{CE} , I_{C} , I_{E} , I_{B} , and V_{E} .
- b. Plot the DC load line and locate the operating point.

Hint: To plot DC load line you have to find the intercepts on X and Y axes by making I_C =0 for X axis intercept and by making V_{CE} =0 for Y axis intercept in the following equation.

$$V_{CC} = I_{C.}R_C + V_{CE} + I_{E.}R_E$$

c. Apply input signal of 50mVp-p through a capacitor of 10µF into the base.

Observe the output voltage with respect to input voltage. Comment on the output amplitude and the wave shape.

- d. Replace the transistor by SL100 and tabulate the values of V_{CE}, I_C, I_E, I_B, and V_E.
- e. Repeat steps a, b, c, and d for

(i) BC547,
$$R_1 = 47$$
 k, $R_2 = 5.6$ k, $R_C = 1.8$ k, $RE = 1$ k

(ii) BC547,
$$R_1 = 47 \text{ k}$$
, $R_2 = 18 \text{ k}$, $R_C = 1.8 \text{ k}$, $RE = 1 \text{ k}$

(iii) BC547,
$$R_1 = 68 \text{ k}$$
, $R_2 = 5.6 \text{ k}$, $R_C = 4.7 \text{ k}$, $RE = 1 \text{ k}$

(iv) BC547,
$$R_1 = 68 \text{ k}$$
, $R_2 = 33 \text{ k}$, $R_C = 4.7 \text{ k}$, $RE = 1 \text{ k}$

BC547,	SL100	BC547,	BC547	BC547	BC547
$R_1 = R_2 =$	$R_1 = R_2 =$	$R_1 = , R_2 =$			
$R_C = RE =$	$R_C = RE =$	$R_C = R_E =$	$, R_C = , RE$	$, R_C = , RE$	$, R_C = , RE$
			=	=	
	$R_1 = R_2 =$		$R_1 = R_2 = R_1 = R_2 = R_1 = R_2 =$	$R_1 = R_2 = $	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$