## Процессы Data Mining

Николай Анохин

### CRISP-DM

Cross Industry Standard Process for Data Mining



## Игра в голь $\phi^1$

### **Business understanding**

- понимание задачи с точки зрения бизнеса
- сбор требований и ограничений
- ▶ постановка задачи в терминах Data Mining

 $\mathcal{D}$  – множество, содержащее все рассматриваемые в задаче объекты

$$f:\mathcal{D} o\mathcal{Y}$$
 – целевая функция

Цель – с использованием данных о конечном множестве объектов из  $\mathcal{D}$  (data set) научиться предсказывать значения целевой функции для любых объектов из  $\mathcal{D}$ 

Задача с учителем – для "известных" объектов дано значение целевой функции, иначе – задача без учителя.



<sup>&</sup>lt;sup>1</sup>Induction of Decision Trees / R. Quinlan

## Игра в гольф

### Data understanding

- первичный сбор данных
- ознакомление с данными и понимание их специфики

### Data preparation

формирование финального набора данных



### Признаки

 $\mathcal{D}$  – множество, содержащее все рассматриваемые в задаче объекты  $d\in\mathcal{D}$  – объект,  $\phi_j:\mathcal{D} o F_j$  – признак

### Виды признаков

- Бинарные/Binary  $F_i = \{true, false\}$
- ightharpoonup Hоминальные/Categorical  $F_j$  конечное
- ▶ Порядковые/Ordinal  $F_i$  конечное, упорядоченное
- ightharpoonup Количественные/Numerical  $F_i=\mathbb{R}$

Признаковое представление объекта d

$$\mathbf{x} = (\phi_1(d), \dots, \phi_m(d)) \in \mathcal{X}$$

## Игра в гольф: признаки

| Outlook  | Temperature | Humidity | Wind  | Play |
|----------|-------------|----------|-------|------|
| Sunny    | 85          | 85       | false | no   |
| Sunny    | 80          | 90       | true  | no   |
| Overcast | 83          | 86       | false | yes  |
| Rainy    | 70          | 96       | false | yes  |
| Rainy    | 68          | 80       | false | yes  |
| Rainy    | 65          | 70       | true  | no   |
| Overcast | 64          | 65       | true  | yes  |
| Sunny    | 72          | 95       | false | no   |
| Sunny    | 69          | 70       | false | yes  |
| Rainy    | 75          | 80       | false | yes  |
| Sunny    | 75          | 70       | true  | yes  |
| Overcast | 72          | 90       | true  | yes  |
| Overcast | 81          | 75       | false | yes  |
| Rainy    | 71          | 91       | true  | no   |

## Моделирование

- перебор различных моделей
- настройка параметров моделей

### Модель

признаковое описание объекта d:

$$\mathbf{x} = (\phi_1(d), \dots, \phi_m(d)) \in \mathcal{X}$$

значение целевой функции для объекта d:  $f(d)=y\in\mathcal{Y}$ 

модель – семейство функций вида

$$H = \{h(\mathbf{x}, \theta) : \mathcal{X} \times \Theta \to \mathcal{Y}\},\$$



где  $heta \in \Theta$  — неизвестный вектор параметров

## Виды моделей

### Качество вина

признаковое описание:  $\mathbf{x} \in \mathbb{R}^1$ 

**целевая переменная**: y = 1, если вино хорошее, y = 0 иначе

модель:

$$\begin{cases} p(\mathbf{x}|\mathsf{good}) \sim \mathcal{N}(\mathbf{x}|\mu_g, \sigma_g), & p(\mathsf{good}) = \frac{1}{2} \\ p(\mathbf{x}|\mathsf{bad}) \sim \mathcal{N}(\mathbf{x}|\mu_b, \sigma_b), & p(\mathsf{bad}) = \frac{1}{2} \end{cases} + y = \mathcal{I}(p(\mathsf{good}|\mathbf{x}) > p(\mathsf{bad}|\mathbf{x}))$$

параметры:  $heta = (\mu_{\mathsf{g}}, \sigma_{\mathsf{g}}, \mu_{\mathsf{b}}, \sigma_{\mathsf{b}})$ 

## Дерево решений



| Outlook  | Temperature | Humidity | Wind  | Play |
|----------|-------------|----------|-------|------|
| Sunny    | 85          | 85       | false | no   |
| Sunny    | 80          | 90       | true  | no   |
| Overcast | 83          | 86       | false | yes  |
| Rainy    | 70          | 96       | false | yes  |
| Rainy    | 68          | 80       | false | yes  |
| Rainy    | 65          | 70       | true  | no   |
| Overcast | 64          | 65       | true  | yes  |
| Sunny    | 72          | 95       | false | no   |
| Sunny    | 69          | 70       | false | yes  |
| Rainy    | 75          | 80       | false | yes  |
| Sunny    | 75          | 70       | true  | yes  |
| Overcast | 72          | 90       | true  | yes  |
| Overcast | 81          | 75       | false | yes  |
| Rainy    | 71          | 91       | true  | no   |

## Обучение модели

- lacktriangle дана обучающая выборка (data set)  $X = \{ {f x}_1, \ldots, {f x}_{f N} \}$
- ightharpoonup для каждого из объектов обучающей выборки дано значение целевой функции  $Y=\{y_1,\ldots,y_N\}$  (если задача с учителем)

### Алгоритм обучения

Выбор наилучших параметров  $\theta^*$  с использованием обучающей выборки

$$A(X,Y): (\mathcal{X} \times \mathcal{Y})^N \to \Theta$$

В итоге:

$$h^*(\mathbf{x}) = h(\mathbf{x}, \theta^*)$$

## Пример 2. Игра в гольф

#### **Evaluation**

- тщательная проверка качества модели
- подробное рассмотрение шагов, предпринятых при построении
- ▶ поиск бизнес-требований, которые не удоволетворены

### **Deployment**

- презентация модели клиенту
- развертывание и использование модели



# Другие процессы: $SEMMA^2$ , $KDD^3$



<sup>&</sup>lt;sup>2</sup>http://timkienthuc.blogspot.ru/2012/04/crm-and-data-mining-day-08.html

<sup>&</sup>lt;sup>3</sup>http://www.rithme.eu/