Instructions

- The homework is due on Friday 4/14 at 5pm ET.
- No extension will be provided, unless for serious documented reasons.
- Start early!
- Study the material taught in class, and feel free to do so in small groups, but the solutions should be a product of your own work.
- This is not a multiple choice homework; reasoning, and mathematical proofs are required before giving your final answer.

1 [15 points]

Let $A \in \mathbf{R}^{m \times n}$ be a real $m \times n$ matrix.

- 1. (5pts) Prove that the eigenvalues of AA^T and A^TA are real and non-negative.
- 2. (5pts) Prove that the two matrices have the same set of non-negative eigenvalues.
- 3. (5pts) How does this set of eigenvalues relates to the set of singular values? What about the left, right singular vectors with respect to the eigenvectors of the matrices AA^T and A^TA ?

2 [20 points]

- 1. (5 pts) Let $A^{n \times n}$ be a real square matrix. Suppose the rows of A are orthonormal. Prove that the columns have to be orthonormal. Is this statement true when the matrix is not square?
- 2. (5 pts) Prove that a linear system Ax = b is consistent if and only if rank(A) = rank([A|b]). Comment on the geometric interpretation of equation rank(A) = rank([A|b]).
- 3. (5 pts + 5 pts) What is the SVD of the matrix $M = [0, 1, 2]^{1 \times 3}$? Compute it in two ways:
 - (a) Using exercise 1.3.
 - (b) By "eyeballing" M.

Hint: Understand the subspaces spanned by the columns and rows in order to decide the left and singular vectors.

3 SVD for least squares [20 points]

Suppose you are given a system of linear equations $A^{m \times n} x^{n \times 1} = b^{m \times 1}$ where the number of rows m is greater than the number of columns n (overdetermined system of linear equations). Given that the number of equations m is greater than the number of unknowns maybe there is no x that satisfies the linear system. Thus it is natural to try to find an x that minimizes the error $||Ax - b||_2$.

- 1. (10 pts) Assume that A is full rank, i.e., rank(A) = n < m. Prove that the unique minimizer $x^* = (A^T A)^{-1} A^T b$. Be explicit about where you use the assumption that A is full rank and the objective value $||Ax^* b||_2$.
- 2. (10 pts) Solve the same optimization problem when A is rank deficient.

Hint: Use the SVD decomposition

4 Coding [30 points]

Check the Jupyter notebook on our Git repo.