	Davier Film haved 598
\mathbf{A}	Bauer–Fike bound, 528 beads on a string, 559
	beads on a string, 559 Bellman, Richard, xii
absolute uncertainty or error, 414	Beltrami, Eugenio, 411
absorbing Markov chains, 700	Benzi, Michele, xii
absorbing states, 700	Bernoulli, Daniel, 299
addition, properties of, 82	Bessel, Friedrich W., 305
additive identity, 82	Bessel's inequality, 305
additive inverse, 82	best approximate inverse, 428
adjacency matrix, 100	biased estimator, 446
adjoint, 84, 479	binary representation, 372
adjugate, 479	Birkhoff, Garrett, 625
affine functions, 89	Birkhoff's theorem, 702
affine space, 436	bit reversal, 372
algebraic group, 402	bit reversing permutation matrix, 381
algebraic multiplicity, 496, 510	block diagonal, 261–263
amplitude, 362	rank of, 137
Anderson-Duffin formula, 441	using real arithmetic, 524
Anderson, Jean, xii	block matrices, 111
Anderson, W. N., Jr., 441	determinant of, 475
angle, 295	linear operators, 392
canonical, 455	block matrix multiplication, 111
between complementary spaces, 389, 450	block triangular, 112, 261–263
maximal, 455	determinants, 467
principal, 456	eigenvalues of, 501
between subspaces, 450	Bolzano-Weierstrass theorem, 670
annihilating polynomials, 642	Boolean matrix, 679
aperiodic Markov chain, 694	bordered matrix, 485
Arnoldi's algorithm, 653	eigenvalues of, 552
Arnoldi, Walter Edwin, 653	branch, 73, 204
associative property	Brauer, Alfred, 497
of addition, 82	Bunyakovskii, Victor, 271
of matrix multiplication, 105	
of scalar multiplication, 83	\mathbf{C}
asymptotic rate of convergence, 621	
augmented matrix, 7	cancellation law, 97
Autonne, L., 411	canonical angles, 455
P	canonical form, reducible matrix, 695
В	Cantor, Georg, 597
had substitution 6.0	Cauchy, Augustin-Louis, 271
back substitution, 6, 9	determinant formula, 484
backward error analysis, 26 backward triangle inequality, 273	integral formula, 611
band matrix, 157	Cauchy-Bunyakovskii-Schwarz inequality, 272
Bartlett, M. S., 124	Cauchy-Goursat theorem, 615
base-b, 375	Cauchy—Schwarz inequality, 287 Cayley, Arthur, 80, 93, 158, 460
basic columns, 45, 61, 178, 218	Cayley-Hamilton theorem, 509, 532, 597
combinations of, 54	to determine $f(\mathbf{A})$, 614
basic variables, 58, 61	Cayley transformation, $336,556$
in nonhomogeneous systems, 70	CBS inequality, 272, 277, 473
basis, 194, 196	general form, 287
change of, 253	centered difference approximations, 19
characterizations, 195	Cesàro, Ernesto, 630
orthonormal, 355	Cesàro sequence, 630
basis for	Cesàro summability, 630, 633, 677
direct sum, 383	for stochastic matrix, 697
intersection of spaces, 211	chain, Jordan, 575
space of linear transformations, 241	change of basis, 251, 253, 258
· · · · · · · · · · · · · · · · · · ·	2

change of coordinates, 252	complex numbers, the set of, 81
characteristic equation, 491, 492	component matrices, 604
coefficients, 494, 504	component vectors, 384
characteristic polynomial, 491, 492	composition
of a product, 503	of linear functions, 93
characteristic values and vectors, 490	of linear transformations, 245, 246
Chebyshev, Pafnuty Lvovich, 40, 687	of matrix functions, 608, 615
checking an answer, 35, 416	computer graphics, 328, 330
Cholesky, Andre-Louis, 154	condition number
Cholesky factorization, 154, 314, 558, 559	for eigenvalues, 528
Cimmino, Gianfranco, 445	generalized, 426
Cimmino's reflection method, 445	for matrices, 127, 128, 414, 415
circuit, 204	condition of
circulant matrix, 379	eigenvalues, hermitian matrices, 552
with convolution, 380	linear system, 128
eigenvalues, eigenvectors, 523	conditioning and pivots, 426
classical Gram–Schmidt algorithm, 309	conformable, 96
classical least squares, 226	conformably partitioned, 111
clock cycles, 539, 694	congruence transformation, 568
closest point	conjugate, complex, 83
to an affine space, 436	conjugate gradient algorithm, 657
with Fourier expansion, 440	conjugate matrix, 84
theorem, 435	conjugate transpose, 84
closure property	reverse order law, 109
of addition, 82, 160	conjugate vectors, 657
of multiplication, 83, 160	connected graph, 202
coefficient matrix, 7, 42	connectivity and linear dependence, 208
coefficient of linear correlation, 297	connectivity matrix, 100
cofactor, 477, 487	consistent system, 53, 54
expansion, 478, 481	constituent matrices, 604
Collatz, Lothar, 666	continuity
Collatz-Wielandt formula, 666, 673, 686	of eigenvalues, 497
column, 7	of inversion, 480
equivalence, 134	of norms, 277
and nullspace, 177	continuous Fourier transform, 357
operations, 14, 134	continuous functions, max and min, 276
rank, 198	convergence, 276, 277
relationships, 50, 136	convergent matrix, 631
scaling, 27	converse of a statement, 54
space, 170, 171, 178	convolution 54
spanning set for, 172	with circulants, 380
	*
vector, 8, 81	definition, 366
Comdico, David, xii	operation count, 377
commutative law, 97	theorem, 367, 368, 377
commutative property of addition, 82	Cooley, J. W., 368, 375, 651
commuting matrices, eigenvectors, 503, 522	cooperating species model, 546
companion matrix, 648	coordinate matrix, 242
compatibility of norms, 285	coordinates, 207, 240, 299
compatible norms, 279, 280	change of, 252
competing species model, 546	of a vector, 240
complementary projector, 386	coordinate spaces, 161
complementary subspaces, 383, 403	core-nilpotent decomposition, 397
angle between, 389, 450	correlation, 296
complete pivoting, 28	correlation coefficient, 297
numerical stability, 349	cosine
complete set of eigenvectors, 507	of angle, 295
complex conjugate, 83	minimal angle, 450
complex exponential, 362, 544	discrete, 361

Courant-Fischer theorem, 550 alternate, 557 for singular values, 555 Courant, Richard, 550 covariance, 447 Cramer, Gabriel, 476 Cramer's rule, 459, 476 critical point, 570 cross product, 332, 339 Cuomo, Kelly, xii curve fitting, 186, 229	diffusion equation, 563 diffusion model, 542 dimension, 196 of direct sum, 383 of fundamental subspaces, 199 of left-hand nullspace, 218 of nullspace, 218 of orthogonal complement, 339 of range, 218 of row space, 218
D	of space of linear transformations, 241 of subspace, 198 of sum, 205
defective, 507 deficient, 496, 507 definite matrices, 559 deflation, eigenvalue problems, 516	direct product, 380, 597 direct sum, 383 of linear operators, 399
dense matrix, 350 dependent set, 181 derivative	of several subspaces, 392 of symmetric and skew-symmetric matrices, 391 directed distance between subspaces, 453 directed graph, 202
of a determinant, 471, 474, 486 of a linear system, 130 of a matrix, 103, 226 operator, 245	Dirichlet, Johann P. G. L, 563, 597 Dirichlet problem, 563 discrete Fourier transform, 356, 358
determinant, 461 computing, 470 of a product, 467 as product of eigenvalues, 494	discrete Laplacian, 563 eigenvalues of, 598 discrete sine, cosine, and exponential, 361
of a sum, 485 and volume, 468 deviation from symmetry, 436	disjoint subspaces, 383 distance, 271 to lower-rank matrices, 417
diagonal dominance, 639 diagonal matrix, 85 eigenvalues of, 501	between subspaces, 450 to symmetric matrices, 436 between a vector and a subspace, 435 distinct eigenvalues, 514
inverse of, 122 diagonalizability, 507 being arbitrarily close to, 533 in terms of minimum polynomial, 645	distributions, 532 distributive property of matrix multiplication, 105
in terms of multiplicities, 512 summary, 520 diagonalization	of scalar multiplication, 83 domain, 89 doubly stochastic, 702
of circulants, 379 Jacobi's method, 353 of normal matrices, 547 simultaneous, 522	Drazin generalized inverse, 399, 401, 422, 640 Cauchy formula, 615 integral representation, 441
diagonally dominant, 184, 499, 622, 623, 639 systems, 193 difference equations, 515, 616	Drazin, M. P., 399 Duffin, R. J., 441 Duncan, W. J., 124
difference of matrices, 82 difference of projectors, 393 differential equations, 489, 541, 542	E
independent solutions, 481 nonhomogeneous, 609 solution of, 546 stability, 544, 609	Eckart, C., 411 economic input-output model, 681 edge matrix, 331 edges, 202
systems, 608 uncoupling, 559	eigenpair, 490 eigenspace, 490

eigenvalues, 266, 410, 490 bounds for, 498 continuity of, 497	extending to a basis, 201 extending to an orthonormal basis, 325, 335, 338, 404 extension set, 188
determinant and trace, 494 distinct, 514	F
generalized, 571 index of, 401, 587, 596	Edden and Cominal ii 704
perturbations and condition of, 528, 551	Faddeev and Sominskii, 504 fail-safe system, 701
semisimple, 596	fast Fourier transform (FFT), 368
sensitivity, hermitian matrices, 552	FFT algorithm, 368, 370, 373, 381, 651
unit, 696 eigenvalues of	FFT operation count, 377 fast integer multiplication, 375
bordered matrices, 552	filtering random noise, 418
discrete Laplacian, 566, 598	finite difference matrix, 522, 639
triangular and diagonal matrices, 501 tridiagonal Toeplitz matrices, 514	finite-dimensional spaces, 195 finite group, 676
eigenvectors, 266, 490	Fischer, Ernst, 550
of commuting matrices, 503	five-point difference equations, 564
generalized, 593, 594	fixed points, 386, 391
independent, 511 of tridiagonal Toeplitz matrices, 514	of a reflector, 338
electrical circuits, 73, 204	flatness, 164 floating-point number, 21
elementary matrices, 131–133	forward substitution, 145
interchange matrices, 135, 140	four fundamental subspaces, 169
elementary orthogonal projector, 322, 431	summary, 178
rank of, 337 elementary reflector, 324, 444	Fourier coefficients, 299 Fourier expansion, 299
determinant of, 485	and projection, 440
elementary row and column operations, 4, 8	Fourier, Jean Baptiste Joseph, 299
and determinants, 463	Fourier matrix, 357
elementary triangular matrix, 142 ellipsoid, 414	Fourier series, 299, 300 Fourier transform
degenerate, 425	continuous, 357
elliptical inner product, 286	discrete, 356, 358
elliptical norm, 288	Frame, J. S., 504
empty set, 383 EP matrices, 408	Francis, J. F. G., 535 Fréchet, Maurice, R., 289
equal matrices, 81	free variables, 58, 61
equivalence, row and column, 134	in nonhomogeneous systems, 70
testing for, 137	frequency, 362
equivalent norms matrices, 425	frequency domain, 363 Frobenius, Ferdinand Georg, 44, 123, 215, 662
vectors, 276	Frobenius form, 680
equivalent statements, 54	Frobenius inequality, 221
equivalent systems, 3	Frobenius matrix norm, 279, 425, 428
ergodic class, 695 error, absolute and relative, 414	and inner product, 288 of rank-one matrices, 391
essentially positive matrix, 686	unitary invariance of, 337
estimators, 446	Frobenius test for primitivity, 678
euclidean norm, 270	full-rank factorization, 140, 221, 633
unitary invariance of, 321	for determining index, 640 of a projector, 393
evolutionary processes, 616 exponential	function 593
complex, 544	affine, 89
discrete, 361	composition of, 93, 615, 608
matrix, 441, 525	domain of, 89
inverse of, 614 products of, 539	linear, 89, 238 norm of, 288
sums of, 614	range of, 89
*	- '

functional matrix identities, 608	GMRES, 655
functions of	Golub, Gene H., xii
diagonalizable matrices, 526	gradient, 570
of Jordan blocks, 600	Gram, Jorgen P., 307
matrices, 601	Gram matrix, 307
using Cauchy integral formula, 611	Gram-Schmidt algorithm
using Cayley-Hamilton theorem, 614	classical version, 309
nondiagonalizable matrices, 603	implementations of, 319
fundamental (normal) mode of vibration, 562	and minimum polynomial, 643
fundamental problem of matrix theory, 506	modified version, 316
fundamental subspaces, 169	numerical stability of, 349
dimension of, 199	and volume, 431
orthonormal bases for, 407	Gram-Schmidt process, 345
projector onto, 434	Gram-Schmidt sequence, 308, 309
fundamental theorem of algebra, 185, 492	graph, 202
fundamental theorem of linear algebra, 405	of a matrix, 209, 671
,	graphics, 3-D rotations, 328, 330
G	Grassmann, Hermann G., 160
	Graybill, Franklin A., xii
gap, 453, 454	grid norm, 274
Gauss, Carl F., ix, 2, 93, 234, 488	grid points, 18
as a teacher, 353	group, finite, 676
Gaussian elimination, 2, 3	group inverse, 402, 640, 641
and LU factorization, 141	growth in Gaussian elimination, 26
effects of roundoff, 129	Guttman, L., 124
modified, 43	, ,
numerical stability, 348	H
operation counts, 10	
Gaussian transformation, 341	Hadamard, Jacques, 469, 497
Gauss–Jordan method, 15, 47, 48	Hadamard's inequality, 469
for computing a matrix inverse, 118	Halmos, Paul, xii, 268
operation counts, 16	Hamilton, William R., 509
Gauss–Markov theorem, 229, 448	harmonic functions, 563
Gauss–Seidel method, 622	Haynsworth, Emilie V., 123
general solution	heat equation, 563
algebraic equations	Helfrich, Laura, xii
homogeneous systems, 59, 61,	Hermite, Charles, 48
nonhomogeneous systems, 64, 66, 70, 180, 221	Hermite interpolation polynomial, 607
difference equations, 616	Hermite normal form, 48
differential equations, 541, 609	Hermite polynomial, 231
generalized condition number, 426	hermitian matrix, 85, 409, 410
generalized eigenvalue problem, 571	condition of eigenvalues, 552
generalized eigenvectors, 593, 594	eigen components of, 549
generalized inverse, 221, 393, 422, 615	Hessenberg matrices 350
Drazin, 399	QR factorization of, 352
group, 402	Hessian matrix, 570
and orthogonal projectors, 434	Hestenes, Magnus R., 656
generalized minimal residual (GMRES), 655	hidden surfaces, 332, 339
genes and chromosomes, 543	Hilbert, David, 307
geometric multiplicity, 510	Hilbert matrix, 14, 31, 39
geometric series, 126, 527, 618	Hilbert–Schmidt norm, 279
Gerschgorin circles, 498	Hohn, Franz, xii
Gerschgorin, S. A., 497	Hölder, Ludwig O., 278
Givens reduction, 344	Hölder's inequality, 274, 277, 278
and determinants, 485	homogeneous systems, 57, 61
numerical stability, 349	
Givens rotations, 333	Hooke, Robert, 86 Hooke's law, 86

Horn, Roger, xii

Givens, Wallace, 333

Horst, Paul, 504	integer multiplication, 375
Householder, Alston S., 324	integral formula
Householder reduction, 341, 342	for generalized inverses, 441
and determinants, 485	for matrix functions, 611
and fundamental subspaces, 407	intercept model, 447
numerical stability, 349	interchange matrices, 135, 140
Householder transformations, 324	interlacing of eigenvalues, 552
hyperplane, 442	interpolation
I	formula for $f(\mathbf{A})$, 529
	Hermite polynomial, 607
idempotent, 113, 258, 339, 386	Lagrange polynomial, 186
and projectors, 387	intersection of subspaces
identity matrix, 106	basis for, 211
identity operator, 238	projection onto, 441
ill-conditioned matrix, 127, 128, 415	invariant subspace, 259, 262, 263
ill-conditioned system, 33, 535	inverse Fourier transform, 358 inverse iteration, 534
normal equations, 214	inverse matrix, 115
image and image space, 168, 170	best approximation to, 428
dimension of, 208	Cauchy formula for, 615
image of unit sphere, 417	computation of, 118
imaginary, pure, 556	operation counts, 119
imprimitive matrices, 674	continuity of, 480
maximal root of, 676	determinants, 479
spectrum of, 677	eigenvalues of, 501
test for, 678	existence of, 116
imprimitivity, index of, 679, 680	generalized, 615
ncidence matrix, 202	integral representation of, 441
inconsistent system, 53	norm of, 285
independent columns, 218	properties of, 120
independent eigenvectors, 511	of a sum, 220
independent rows, 218	invertible operators, 246, 250
independent set, 181	invertible part of an operator, 399
basic facts, 188	involutory, 113, 325, 339, 485
maximal, 186	irreducible Markov chain, limits, 693
independent solutions	irreducible matrix, 209, 671
for algebraic equations, 209	isometry, 321
for differential equations, 481	iteration matrix, 620
index	iterative methods, 620
of an eigenvalue, 401, 587, 596 of imprimitivity, 674, 679, 680	_
of nilpotency, 396	J
of a square matrix, 394, 395	I 10 10 10 10 11 10 000
by full-rank factorization, 640	Jacobi's diagonalization method, 353
induced matrix norm, 280, 389	Jacobi's iterative method, 622, 626
of A^{-1} , 285	Jacobi, Karl G. J., 353
elementary properties, 285	Johnson, Charlie, xii
of rank-one matrices, 391	Jordan blocks, 588, 590 functions of, 600
unitary invariance of, 337	nilpotent, 579
inertia, 568	Jordan chains, 210, 401, 575, 576, 593
infinite-dimensional spaces, 195	construction of, 594
infinite series and matrix functions, 527	Jordan form, 397, 408, 589, 590
infinite series of matrices, 605	for nilpotent matrices, 579
information retrieval, 419	preliminary version, 397
inner product, 286	Jordan, Marie Ennemond Camille, 15, 411, 589
geometric interpretation, 431	Jordan segment, 588, 590
input-output economic model, 681	Jordan structure of matrices, 580, 581, 586, 58
integer matrices 156 473 485	uniqueness of 580

Jordan, Wilhelm, 15	Legendre's differential equation, 319
	Leibniz, Gottfried W., 459
K	length of a projection, 323
	Leontief's input-output model, 681
Kaczmarz's projection method, 442, 443	Leontief, Wassily, 681
Kaczmarz, Stefan, 442	Leslie, P. H., 684
Kaplansky, Irving, 268	Leslie population model, 683
Kearn, Vickie, xi, 12	Leverrier-Souriau-Frame Algorithm, 504
kernel, 173 Kirchhoff's rules, 73	Leverrier, U. J. J., 504
loop rule, 204	Lévy, L., 497
Kline, Morris, 80	limiting distribution, 531, 636
Kowa, Seki, 459	limits
Kronecker, Leopold, 597	and group inversion, 640
Kronecker product, 380, 597	in Markov chains
and the Laplacian, 573	irreducible Markov chains, 693
Krylov, Aleksei Nikolaevich, 645	reducible Markov chains, 698
Krylov	of powers of matrices, 630
method, 649	and spectral radius, 617
sequence, 401	of vector sequences, 639
subspaces, sequences, matrices, 646	in vector spaces, 276, 277
Kummer, Ernst Eduard, 597	Lindemann, Carl Louis Ferdinand von, 662
_	linear
${f L}$	algebra, 238
I 1 1 100 000 000 500	combination, 91
Lagrange interpolating polynomial, 186, 230, 233, 529	correlation, 296, 306
Lagrange, Joseph-Louis, 186, 572	dependence and connectivity, 208
Lagrange multipliers, 282 Lancaster, Peter, xii	estimation, 446
Lanczos algorithm, 651	functions, 89, 238
Lanczos, Cornelius, 651	defined by matrix multiplication, 106
Laplace's determinant expansion, 487	defined by systems of equations, 99
Laplace's equation, 624	models, 448
Laplace, Pierre-Simon, 81, 307, 487, 572	operators, 238
Laplacian, 563	and block matrices, 392
latent semantic indexing, 419	regression, 227, 446
latent values and vectors, 490	spaces, 169
law of cosines, 295	stationary iterations, 620
LDU factorization, 154	transformation, 238
leading principal minor, 558	linearly independent and dependent sets, 185
leading principal submatrices, 148, 156	basic facts, 188
least common multiple, 647	maximal, 186
least squares, 226, 439	and rank, 183
and Gram-Schmidt, 313	linearly independent eigenvectors, 511
and orthogonal projection, 437	lines in \Re^n not through the origin, 440
and polynomial fitting, 230	lines, projection onto, 440
and pseudoinverse, 438 and QR factorization, 346	long-run distribution, 531
total least squares, 223	loop, 73
why least squares?, 446	equations, 204
LeBlanc, Kathleen, xii	rule, 74
left-hand eigenvectors, 490, 503, 516, 523, 524	simple, 75
in inverses, 521	lower triangular, 103
and projectors, 518	LU factorization, 141, 144
left-hand nullspace, 174, 178, 199	existence of, 149
spanning set for, 176	with interchanges, 148
Legendre, Adrien-Marie, 319, 572	operation counts, 146
Legendre polynomials, 319	summary, 153

712 \mathbf{Index}

М	minimum polynomial, 642 determination of, 643
main diagonal, 41, 85	of a vector, 646
Markov, Andrei Andreyevich, 687	minimum variance estimator, 446
Markov chains, 532, 638, 687	Minkowski, Hermann, 184, 278, 497, 626
absorbing, 700	Minkowski inequality, 278
periodic, 694	minor determinant, principal, 559, 466
mass-stiffness equation, 571	MINRES algorithm, 656
matrices, the set of, 81	Mirsky, Leonid, xii
matrix, 7	M-matrix, 626, 639, 682, 703
diagonal 85	modern least squares, 437
exponential, 441, 525, 529	modified gaussian elimination, 43
and differential equations, 541, 546, 608	modified Gram–Schmidt algorithm, 316
inverse of, 614	monic polynomial, 642
products, 539	Montgomery, Michelle, xii
	Moore, E. H., 221
sums, 614 functions, 526, 601	Moore–Penrose generalized inverse, 221, 422, 400
	best approximate inverse, 428
as infinite series, 527	integral representation, 441
as polynomials, 606	and orthogonal projectors, 434
group, 402	Morrison, W. J., 124
multiplication, 96	multiplication
by blocks, 111	of integers, 375
as a linear function, 106	of matrices, 96
properties of, 105	of polynomials, 367
relation to linear transformations, 244	multiplicities, 510
norms, 280	and diagonalizability, 512
1-norm, 283	multiplier, 22, 25
2-norm, 281, 425	in partial pivoting, 26
∞-norm, 127, 283	in partial proting, 20
Frobenius norm, 425	$\mathbf N$
induced norm, 285	
polynomials, 501	negative definite, 570
product, 96	Neumann series, 126, 527, 618
representation of a projector, 387	Newton, 86
representations, 262	Newton's identities, 504
triangular 41	Newton's second law, 560
maximal angle, 455	nilpotent, 258, 396, 502, 510
maximal independent set, 218	Jordan blocks, 579
maximal linearly independent subset, 186, 196	part of an operator, 399
maximum and minimum of continuous functions, 276	Noble, Ben, xii
McCarthy, Joseph R., 651	node, 18, 73, 202, 204
mean, 296, 447	rule, 74, 204
Meyer	no-intercept model, 447
Allison C., xii	noise removal with SVD, 418
Bethany B., xii	nonbasic columns, 50, 61
Carl, Sr., xii	nonderogatory matrices, 644, 648
Holly F., xii	nondiagonalizable, spectral resolution, 603
Louise, xii	nonhomogeneous differential equations, 609
Margaret E., xii	nonhomogeneous systems, 57, 64
Martin D., xii	general solution, 64, 66, 70
min-max theorem, 550	summary, 70
alternate formulation, 557	nonnegative matrices, 661, 670
for singular values, 555	, ,
minimal angle, 450	nonsingular matrices, 115
<u> </u>	and determinants, 465
minimal spanning set, 196, 197 minimum norm least squares solution, 438	and elementary matrices, 133
minimum norm least squares solution, 458 minimum norm solution, 426	products of, 121 sequences of, 220
minimum norm solution, 420	sequences of, 220

norm, 269	orthogonal projection, 239, 243, 248, 299, 305, 385, 429
compatibility, 279, 280, 285	and 3-D graphics, 330
elliptical, 288	onto an affine space, 436
equivalent, 276, 425	and least squares, 437
of a function, 288	orthogonal projectors, 322, 410, 427, 429
on a grid, 274	elementary, 431
of an inverse, 285	formulas for, 430
for matrices, 280	onto an intersection, 441
1-, 2-, and ∞ -norms, 281, 283	and pseudoinverses, 434
Frobenius, 279, 337	sums of, 441
induced, 280, 285, 337	orthogonal reduction, 341
of a projection, 323, 391	to determine full-rank factorization, 633
for vectors, 275	to determine fundamental subspaces, 407
1-, 2-, and ∞ -norms, 274	orthogonal triangularization, 342
p-norms, 274	orthogonal vectors, 294
of a waveform, 382	orthonormal basis, 298
normal equations, 213, 214, 221, 226, 313, 437	extending to, 325, 335, 38
normal modes of vibration, 562, 571	for fundamental subspaces, 407
normalized vector, 270	by means of orthogonal reduction, 355
normal matrix, 304, 400, 409, 547	orthonormal set, 298
nullity, 200, 220	Ostrowski, Alexander, 626
nullspace, 173, 174, 178, 199	outer product, 103
equality, 177	overrelaxation, 624
of an orthogonal projector, 434	
	P
of a partitioned matrix, 208	D : (D:) 1 T "
of a product, 180, 220	Painter, Richard J., xii
spanning set for, 175	parallelepiped, 431, 468
and transpose, 177	parallelogram identity, 290, 291
number of pivots, 218	parallelogram law, 162
numerical stability, 347	parallel sum, 441
_	parity of a permutation, 460
0	Parseval des Chênes, M., 305
	Parseval's identity, 305
oblique projection, 385	partial pivoting, 24
method for linear systems, 443	and diagonal dominance, 193
oblique projectors from SVD, 634	and LU factorization, 148
Ohm's law, 73	and numerical stability, 349
Oh notation $O(h^p)$, 18	particular solution, 58, 65–68, 70, 180, 213
one-to-one mapping, 250	partitioned matrix, 111
onto mapping, 250	and linear operators, 392
operation counts	rank and nullity of, 208
for convolution, 377	Peano, Giuseppe, 160
for Gaussian elimination, 10	Penrose equations, 422
for Gauss–Jordan method, 16	Penrose, Roger, 221
for LU factorization, 146	perfect shuffle, 372, 381
for matrix inversion, 119	period of trigonometric functions, 362
operator, linear, 238	periodic extension, 302
operator norm, 280	periodic function, 301
	periodic Markov chain, 694
Ortega, James, XII	permutation, 460
orthogonal complement, 322, 403	symmetric, 671
dimension of, 339	permutation counter, 151
involving range and nullspace, 405	permutation matrix, 135, 140, 151
orthogonal decomposition theorem, 405, 407	perpendicular, 294
orthogonal diagonalization, 549	perp, properties of, 404, 409
orthogonal distance, 435	Perron–Frobenius theory, 661, 673
orthogonal matrix, 320	Perron, Oskar, 661
determinant of, 473	Perron root, 666, 668

Perron vector, 665, 668, 673	principal submatrix, 494, 558
perturbations	and interlaced eigenvalues, 553
affecting rank, 216	of an M-matrix, 626
eigenvalues, 528	of a stochastic, 703
hermitian eigenvalues, 551	products
in inverses, 128	of matrices, 96
in linear systems, 33, 128, 217	of nonsingular matrices, 121
rank-one update, 208	of orthogonal projectors, 441
singular values, 421	of projectors, 393
Piazzi, Giuseppe, 233	product rule for determinants, 467
pivot	projection, 92, 94, 322, 385, 429
conditioning, 426	and Fourier expansion, 440
determinant formula for, 474, 558	method for solving linear systems, 442, 443
elements and equations, 5	onto
positions, 5, 58, 61	affine spaces, 436
in partial pivoting, 24	fundamental subspaces, 434
uniqueness, 44	hyperplanes, 442
pivoting	lines, 440, 431
complete, 28	oblique subspaces, 385
partial, 24	orthogonal subspaces, 429
plane rotation, 333	symmetric matrices, 436
determinant of, 485	projectors, 239, 243, 339, 385, 386
p-norm, 274	complementary, 386
Poisson's equation, 563, 572	from core-nilpotent decomposition, 398
Poisson, Siméon D., 78, 572	difference of, 393
polar factorization, 572	from full-rank factorization, 633, 634
polarization identity, 293	as idempotents, 387
polynomial	induced norm of, 389, 391
equations, 493	matrix representation of, 387
in a matrix, 501	oblique, 386
and matrix functions, 606	orthogonal, 429
minimum, 642	product of, 393
multiplication and convolution, 367	spectral, 517, 603
polytope, 330, 339	sum of, 393
ponderal index, 236	proper values and vectors, 490
poor man's root finder, 649	pseudoinverse, 221, 422, 615
population distribution, 532	as best approximate inverse, 428
population migration, 531	Drazin, 399
population model, Leslie, 683 positive definite form, 567	group, 402
positive definite norm, 507	inner, outer, reflexive, 393 integral representation of, 441, 615
positive matrix, 661, 663	1 /
positive semidefinite matrix, 558, 566	Moore–Penrose, 422
Poulson, Deborah, xii	and orthogonal projectors, 434
power method, 532, 533	pure imaginary, 556
powers of a matrix, 107	Pythagorean theorem, 294, 305, 423
limiting values, 530	and closest point theorem, 435
powers of linear transformations, 248	for matrices with Frobenius norm, 428
precision, 21	
preconditioned system, 658	\mathbf{Q}
predator–prey model, 544	
primitive matrices, 674	QR factorization, 345, 535
test for, 678	and Hessenberg matrices, 352
principal angles, 456	and least squares, 346
principal minors, 494, 558	and minimum polynomial, 643
in an M-matrix, 626, 639	rectangular version of, 311
nonnegative, 566	and volume, 431
positive, 559	quadratic form, 567

	reducible matrices, 209, 671
quaternions, 509	canonical form for, 695
	in linear systems, 112
R	reflection, 92, 94
	about a hyperplane, 445
random integer matrices, 156	method for solving linear systems, 445
random walk, 638	reflector, 239, 324, 444
range	determinant of, 485
of a function, 89, 169	reflexive pseudoinverse, 393
of a matrix, 170, 171, 178, 199	regression, 227, 446
of an operator, 250	relative uncertainty or error, 414
of an orthogonal projector, 434	relaxation parameter, 445, 624
of a partitioned matrix, 179	residual, 36, 416
of a product, 180, 220	resolvent, 285, 611
of a projector, 391	restricted operators, 259, 393, 399
of a sum, 206	restricted transformations, 424
range-nullspace decomposition, 394, 407	reversal matrix, 596
range-symmetric matrices, 408	reverse order law
rank, 45, 139	for inversion, 120, 121
of a block diagonal matrix, 137	for transpose and conjugate transpose, 109
and consistency, 54	reversing binary bits, 372
and determinants, 466	Richardson iterative method, 622
of a difference, 208	right angle, 294
of an elementary projector, 337	right-hand rule, 340
and free variables, 61	right-hand side, 3
of an incidence matrix, 203	Ritz values, 651
and independent sets, 183	roots of unity, 356
and matrix inverses, 116 and nonhomogeneous systems, 70	and imprimitive matrices, 676
and nonsingular submatrices, 218	Rose, Nick, xii
numerical determination, 421	rotation, 92, 94
of a partitioned matrix, 208	determinant of, 485
of a perturbed matrix, 206	plane (Givens rotations), 333
of a product, 210, 211, 219	in \Re^2 , 326
of a projector, 392	in \Re^3 , 328
and submatrices, 215	in \Re^n , 334
of a sum, 206, 221	rotator, 239, 326
summary, 218	rounding convention, 21
and trivial nullspaces, 175	roundoff error, 21, 129, 347
rank normal form, 136	row, 7
rank-one matrices	echelon form, 44
characterization of, 140	reduced, 48
diagonalizability of, 522	equivalence, 134, 218
perturbations of, 208	and nullspace, 177
rank-one updates	operations, 134
determinants of, 475	rank, 198
eigenvalues of, 503	relationships, 136
rank plus nullity theorem, 199, 410	scaling, 27
Rayleigh, Lord, 550	space, 170, 171, 178, 199
Rayleigh quotient, 550	spanning set for, 172
iteration, 535	vector, 8, 81
real numbers, the set of, 81	RPN matrices, 408
real Schur form, 524	Rutishauser, Heinz, 535
real-symmetric matrix, 409, 410	
rectangular matrix, 8	\mathbf{S}
rectangular QR factorization, 311	
rectangular systems, 41	Saad, Yousef, 655
reduced row echelon form, 48	saw-toothed function, 306
reducible Markov chain, 698	scalar, 7, 81

	singular values, 553
scalar multiplication, 82, 83	Courant–Fischer theorem, 555
scale, 27	and determinants, 473
scaling a linear system, 27, 28	as eigenvalues, 555
scaling in 3-D graphics, 332	and the SVD, 412
Schmidt, Erhard, 307	size, 8
Schrödinger, Erwin, 651	skew-hermitian matrices, 85, 88
Schultz, Martin H., 655	skew-symmetric matrices, 85, 88, 391, 473
Schur complements, 123, 475	eigenvalues of, 549, 556
Schur form for real matrices, 524	as exponentials, 539
Schur, Issai, 123, 508, 662	vector space of, 436
Schur norm, 279	SOR method, 624
Schur triangularization theorem, 508	Souriau, J. M., 504
Schwarz, Hermann A., 271, 307	spanning sets, 165 for column space, 172
search engine, 418, 419	for four fundamental subspaces, 178
sectionally continuous, 301	for left-hand nullspace, 176
secular equation, 503	minimal, 197
Seidel, Ludwig, 622	for nullspace, 175
	for row space, 172
Sellers, Lois, xii	test for, 172
semiaxes, 414	sparse least squares, 237
semidefinite, 566	sparse matrix, 350
semisimple eigenvalue, 510, 591, 593, 596	spectral circle, imprimitive matrices, 676
semistable, 544	spectral mapping property, 539, 613
sensitivity, 128	spectral projectors, 517, 602, 603
minimum norm solution, 426 sequence	commuting property, 522
limit of, 639	interpolation formula for, 529
of matrices, 220	positivity of, 677
series for $f(\mathbf{A})$, 605	in terms of eigenvectors, 518
shape, 8	spectral radius, 497, 521, 540
shell game, 635	Collatz-Wielandt formula, 666, 673, 686
Sherman, J., 124	as a limit, 619
Sherman–Morrison formula, 124, 130	and limits, 617
SIAM, 324, 333	spectral representation of matrix functions, 526
signal processing, 359	spectral resolution of $f(\mathbf{A})$, 603
signal-to-noise ratio, 418	spectral theorem for diagonalizable matrices, 517
sign of a permutation, 461	spectrum, 490
	of imprimitive matrix, 677
similar matrices, 255, 473, 506 similarity, 505	spheres, 275
• .	splitting, 620
and block-diagonal matrices, 263	spring-mass vibrations, 570 springs, 86
and block-triangular matrices, 263	square
and eigenvalues, 508	matrix, 8
invariant, 256	system, 5
and orthogonal matrices, 549	wave function, 301
transformation, 255, 408, 506	stable, 544
and transpose, 596	algorithm, 217, 317, 347, 422
unitary, 547	matrix, 544
simple eigenvalue, 510	system, 544, 609
simple loops, 75	standard
simultaneous diagonalization, triangularization, 522	basis, 194, 240, 299
simultaneous displacements, 622	coordinates, 240
sine, discrete, 361	deviation, 296
singular matrix, 115	inner product, 95, 271
eigenvalues of, 501	scores, 296
sequences of, 220	standardization of data, 296
singular systems, practical solution of, 217	stationary distribution, 531, 693

 \mathbf{T} steady-state distribution, 531, 636 steepest descent, 657 Taussky-Todd, Olga, 497 step size, 19 Taylor series, 18, 570, 600 Stewart, G. W., xii t-digit arithmetic, 21 Stiefel, Eduard, 656 tensor product, 380, 597 stiffness and the Laplacian, 573 constant, 86 term-by-document matrix, 419matrix, 87 text mining, 419 stochastic matrix, 685, 687 three-dimensional rotations, 328, 330 doubly, 702 time domain, 363 summability of, 697 Todd, John, 497 unit eigenvalues of, 696 Toeplitz matrices, Strang, Gilbert, xii Toeplitz, Otto, 514 strongly connected graph, 209, 671 total least squares, 223 Strutt, John W., 550 trace, 90 and characteristic equation, 504 stuff in a vector space, 197, 200 subgroup, 402 of imprimitive matrices, 678 inequalities, 293 submatrix, 7 of a linear operator, 256 as a block matrix, 111 of a product, 110, 114 and rank, 215 of a projector, 392 subscripts, 7 as sum of eigenvalues, 494 subset, 162 transformation, linear, 238 subspace, 162 transient behavior, 532 angles or gaps between, 450 transient class, 695 dimension of, 198 transition diagram, 108, 531 directed distance between, 453 transition matrix, 108, 531, 688 four fundamental, 169 transitive operations, 257 invariant, 259, 262, 263 translation, in 3-D graphics, 332 maximal angle between, 455 transpose, 83 sum of, 205 and determinants, 463 substochastic matrix, 685 nullspace, 177 successive displacements, 623 properties of, 84 successive overrelaxation method. 624 reverse order law for, 109 sum and similarity, 596 of matrices, 81 trapezoidal form, 342 of orthogonal projectors, 441 trend of observations, 231 of projectors, 393 triangle inequality, 220, 273, 277 of vector spaces, 166, 383 backward version, 273 dimension of, 205 triangular matrices, 41, 103 summable matrix and summability, 631, 633, 677 block versions, 112 stochastic matrices, 697 determinant of, 462 superdiagonal, 575 eigenvalues of, 501 SVD, 412 elementary, 142 and full-rank factorization, 634 inverses of, 122 and oblique projectors, 634 triangularization, simultaneous, 522 switching circuits, 539 triangularization using elementary reflectors, 342 Sylvester, James J., 44, 80, 411 triangular system, 6 Sylvester's law of inertia, 568 tridiagonal matrix, 20, 156, 352 Sylvester's law of nullity, 220 Toeplitz matrices, 514 symmetric trivial functions, 494 nullspaces, 175 matrices, 85 solution, 57, 60, 69 diagonalization and eigen components of, 549 and nonhomogeneous systems, 70 reduction to tridiagonal form, 352 and nonsingular matrices, 116 space of, 436 subspace, 162, 197 Tukey, J. W., 368, 375, 651 permutation, 671

two-point boundary value problem, 18

unbiased estimator for variance, 449, 446 uncertainties in linear systems, 414 underrelaxation, 624 unique solution for differential equations, 541 and free variables, 61 for homogeneous systems, 61 for nonhomogeneous systems, unitarily invariant norm, 425, 337 unitary diagonalization, 547 unitary matrices, 304, 320 determinant of, 473 unit columns, 102, 107 unit eigenvalues of stochastic matrices, 696 units, 27 unit sphere, 275 image of, 414, 425 unstable, 544 upper-trapezoidal form, 342, 344 upper triangular, 103

v

URV factorization, 406, 407 and full-rank factorization, 634

Vandermonde, Alexandre-Theophile, 185
Vandermonde determinant, 486
Vandermonde matrices, 185, 230, 357
Van Loan, Charlie, xii
variance, 447
vector, 159
norms, 274
spaces, 160
vertex matrix, 330
vibrations, small, 559
volume
by determinants, 468
by Gram-Schmidt, and QR, 431
von Mises, R., 533
von Neumann, John, 289

w

Weierstrass, Karl Theodor Wilhelm, 589, 662 well conditioned, 33, 127, 415 Weyl, Hermann, 160 why least squares?, 446 Wielandt, Helmut, 534, 666, 675, 679 Wielandt's matrix, 685 Wielandt's theorem, 675 Will, Marianne, xii wire frame figure, 330 Woodbury, M., 124 Wronskian, 474, 481, 486

Wronski, Jozef M., 189 Wronski matrix, 189, 190

X, Y, Z

Young, David M., 625 Young, G., 411 Zeeman, E. Christopher, 704 zero nullspace, 175 zero transformation, 238 Z-matrix, 628, 639, 296 z-scores, 296