પ્રશ્ન 1(અ) [3 ગુણ]

વ્યાખ્યાયિત કરો : Peer to Peer network

જવાબ:

Peer-to-Peer (P2P) નેટવર્ક એ વિતરિત નેટવર્ક આર્કિટેક્ચર છે જ્યાં દરેક નોડ (peer) ક્લાયન્ટ અને સર્વર બંને તરીકે કામ કરે છે અને કેન્દ્રીય નિયંત્રણ વિના સીધા સંસાધનો શેર કરે છે.

ટેબલ:

પાસાં	વર્ણન
સ્ટ્રક્ચર	વિકેન્દ્રીકૃત નેટવર્ક
રોલ	દરેક peer ક્લાયન્ટ અને સર્વર
કંટ્રોલ	કોઈ કેન્દ્રીય સત્તા નથી
ઉદાહરણ	BitTorrent, Skype

ਮੇਮਣੀ ਟ੍ਰੀਡ: "Peers Share Equally"

પ્રશ્ન 1(બ) [4 ગુણ]

તુલના કરો : SMTP, POP અને IMAP

જવાબ:

ઈમેઈલ પ્રોટોકોલ્સ ઈમેઈલ કમ્યુનિકેશન સિસ્ટમમાં અલગ અલગ હેતુઓ પૂરા કરે છે.

ટેબલ:

ફીચર	SMTP	POP3	IMAP
હેતુ	ઈમેઈલ મોકલવા	ઈમેઈલ ડાઉનલોડ કરવા	ઈમેઈલ એક્સેસ કરવા
પોર્ટ	25, 587	110, 995	143, 993
સ્ટોરેજ	સર્વર ફોરવર્ડ કરે	લોકલ સ્ટોરેજ	સર્વર સ્ટોરેજ
એક્સેસ	એક દિશામાં મોકલવું	સિંગલ ડિવાઇસ	મલ્ટિપલ ડિવાઇસ

મેમરી ટ્રીક: "Send-Pop-Internet Mail Access"

પ્રશ્ન 1(ક) [7 ગુણ]

દરેક સ્તરની જવાબદારી સાથે OSI model સમજાવો

જવાબ:

OSI (Open Systems Interconnection) મોડેલમાં સાત સ્તરો છે, દરેકની નેટવર્ક કમ્યુનિકેશન માટે ચોક્કસ જવાબદારીઓ છે.

ડાયાગ્રામ:

ટેબલ:

ક્લક	નામ	જવાબદારીઓ
7	Application	યુઝર ઇન્ટરફેસ, નેટવર્ક સેવાઓ
6	Presentation	ડેટા એન્ક્રિપ્શન, કમ્પ્રેશન
5	Session	સેશન મેનેજમેન્ટ, ડાયલોગ કંટ્રોલ
4	Transport	End-to-end ડિલિવરી, એરર કંટ્રોલ
3	Network	રૂટિંગ, લોજિકલ એડ્રેસિંગ
2	Data Link	ક્રેમ ફોર્મેટિંગ, એરર ડિટેક્શન
1	Physical	બિટ ટ્રાન્સમિશન, હાર્ડવેર

મુખ્ય મુદ્દાઓ:

• Application Layer: એપ્લિકેશનોને નેટવર્ક સેવાઓ પ્રદાન કરે

• Transport Layer: વિશ્વસનીય ડેટા ડિલિવરી સુનિશ્ચિત કરે

• Network Layer: નેટવર્ક્સ વચ્ચે રૂટિંગ હેન્ડલ કરે

મેમરી ટ્રીક: "All People Seem To Need Data Processing"

પ્રશ્ન 1(ક OR) [7 ગુણ]

TCP/IP model ની OSI model સાથે તુલના કરો

જવાબ:

TCP/IP અને OSI મોડેલ્સ અલગ અલગ લેયર સ્ટ્રક્ચર સાથે નેટવર્ક આર્કિટેક્ચર ફ્રેમવર્ક છે.

ડાયાગ્રામ:

પાસાં	OSI Model	TCP/IP Model
લેચર્સ	7 લેયર્સ	4 લેચર્સ
ડેવલપમેન્ટ	થિયોરેટિકલ	પ્રેક્ટિકલ
ઉપયોગ	રેફરન્સ મોડેલ	ઇન્ટરનેટ સ્ટાન્ડર્ડ
જટિલતા	વધુ વિગતવાર	સરળીકૃત

મુખ્ય મુદ્દાઓ:

• OSI: વિગતવાર અલગીકરણ સાથે થિયોરેટિકલ ફ્રેમવર્ક

• TCP/IP: ઇન્ટરનેટ માટે પ્રેક્ટિકલ ઇમ્પ્લિમેન્ટેશન

• મેપિંગ: OSI ના ટોપ 3 લેયર્સ = TCP/IP માં Application layer

મેમરી ટ્રીક: "OSI Seven, TCP Four"

પ્રશ્ન 2(અ) [3 ગુણ]

સમજાવો: Network Address Translation (NAT)

જવાબ:

NAT પ્રાઇવેટ IP એડ્રેસને પબ્લિક IP એડ્રેસમાં ટ્રાન્સલેટ કરે છે, જે મલ્ટિપલ ડિવાઇસને સિંગલ પબ્લિક IP શેર કરવા સક્ષમ બનાવે છે.

ડાયાગ્રામ:

```
Private Network NAT Router Internet

192.168.1.10 --> 203.0.113.1 --> Server

192.168.1.20 --> 203.0.113.1 --> Server

192.168.1.30 --> 203.0.113.1 --> Server
```

મુખ્ય મુદ્દાઓ:

• હેતુ: નેટવર્ક્સ વચ્ચે IP એડ્રેસ ટ્રાન્સલેશન

• **ફાયદો**: પબ્લિક IP એડ્રેસની બચત

• સિક્યોરિટી: આંતરિક નેટવર્ક સ્ટ્રક્ચર છુપાવે છે

મેમરી ટ્રીક: "Network Address Translation"

પ્રશ્ન 2(બ) [4 ગુણ]

વ્યાખ્યાયિત કરો: Subnetting and Supernetting

മവവം

Subnetting અને Supernetting કાર્યક્ષમ નેટવર્ક મેનેજમેન્ટ માટે IP એડ્રેસિંગ તકનીકો છે.

สราใธ	વ્યાખ્યા	હેતુ
Subnetting	નેટવર્કને નાના સબનેટ્સમાં વિભાજન	બહેતર સંગઠન
Supernetting	મલ્ટિપલ નેટવર્ક્સનું સંયોજન	રૂટ એગ્રિગેશન

મુખ્ય મુદ્દાઓ:

• Subnetting: નેટવર્ક બિટ્સ વધારે, હોસ્ટ બિટ્સ ઓછા કરે

• Supernetting: નેટવર્ક બિટ્સ ઓછા કરે, રૂટિંગ કાર્યક્ષમતા વધારે

• CIDR: Classless Inter-Domain Routing બંનેને સક્ષમ બનાવે

ਮੇਮરੀ ਟ੍ਰੀs: "Sub-divides, Super-combines"

પ્રશ્ન 2(ક) [7 ગુણ]

સમજાવો: IPv4 ની Classful અને Classless notation addressing scheme

જવાબ:

IPv4 એડ્રેસિંગ નેટવર્ક ઓળખ માટે classful અને classless સ્કીમનો ઉપયોગ કરે છે.

ટેબલ - Classful Addressing:

Class	Range	Default Mask	Networks	Hosts
Α	1-126	/8 (255.0.0.0)	126	16M
В	128-191	/16 (255.255.0.0)	16K	65K
С	192-223	/24 (255.255.255.0)	2M	254

• 192.168.1.0/25: 128 hosts

• 10.0.0.0/16: 65,536 hosts

• 172.16.0.0/20: 4,096 hosts

મુખ્ય મુદ્દાઓ:

• Classful: ફિક્સ્ડ નેટવર્ક/હોસ્ટ બાઉન્ડરીઝ

• Classless: Variable Length Subnet Mask (VLSM)

• CIDR: વધુ કાર્યક્ષમ એડ્રેસ એલોકેશન

મેમરી ટ્રીક: "Class-Fixed, CIDR-Flexible"

પ્રશ્ન 2(અ OR) [3 ગુણ]

મોબાઇલ IP ના ધ્યેયોની ચર્ચા કરો

જવાબ:

મોબાઇલ IP મોબાઇલ ડિવાઇસ માટે વિવિધ નેટવર્ક્સમાં સીમલેસ કનેક્ટિવિટી સક્ષમ કરે છે.

મુખ્ય મુદ્દાઓ:

• પારદર્શિતા: એપ્લિકેશનોને મોબિલિટીની જાણ નથી

• સુસંગતતા: હાલના પ્રોટોકોલ્સ સાથે કામ કરે

• કાર્યક્ષમતા: ન્યૂનતમ રૂટિંગ ઓવરહેડ

મેમરી ટ્રીક: "Transparent Compatible Efficient"

પ્રશ્ન 2(બ OR) [4 ગુણ]

વ્યાખ્યાયિત કરો : ARP and RARP

જવાબ:

ARP અને RARP વિવિધ એડ્રેસ પ્રકારો વચ્ચે મેપિંગ માટે એડ્રેસ રિઝોલ્યુશન પ્રોટોકોલ્સ છે.

ટેબલ:

પ્રોટોકોલ	પૂરું નામ	હેતુ	દિશા
ARP	Address Resolution Protocol	IP to MAC મેપિંગ	લોજિકલ થી ફિઝિકલ
RARP	Reverse ARP	MAC to IP મેપિંગ	ફિઝિકલ થી લોજિકલ

મેમરી ટ્રીક: "ARP-asks, RARP-reverses"

પ્રશ્ન 2(ક OR) [7 ગુણ]

સમજાવો : Stop and Wait, Stop and Wait ARQ data link layer protocols

જવાબ:

આ પ્રોટોકોલ્સ ડેટા લિંક લેયર પર વિશ્વસનીય ડેટા ટ્રાન્સમિશન સુનિશ્ચિત કરે છે.

ડાયાગ્રામ - Stop and Wait:

ટેબલ:

પ્રોટોકોલ	એરર ડિટેક્શન	કાર્યક્ષમતા	જટિલતા
Stop and Wait	બેસિક	ઓછી	સરળ
Stop and Wait ARQ	એડવાન્સ્ડ	મધ્યમ	મોડરેટ

મુખ્ય મુદ્દાઓ:

• Stop and Wait: ફ્રેમ મોકલો, acknowledgment ની રાહ જુઓ

• ARQ: એરર પર Automatic Repeat reQuest

• **Timeout**: કોઈ acknowledgment ન મળે તો ફરીથી મોકલો

મેમરી ટ્રીક: "Stop-Wait-Acknowledge"

પ્રશ્ન 3(અ) [3 ગુણ]

Wireless networks સમજાવો

જવાબ:

વાયરલેસ નેટવર્ક્સ ફિઝિકલ કનેક્શન વિના કમ્યુનિકેશન માટે રેડિયો તરંગોનો ઉપયોગ કરે છે.

મુખ્ય મુદ્દાઓ:

• ટેકનોલોજી: રેડિયો ફ્રીક્વન્સી ટ્રાન્સમિશન

• પ્રકારો: WiFi, Bluetooth, સેલ્યુલર

• ફાયદાઓ: મોબિલિટી, સરળ ઇન્સ્ટોલેશન

મેમરી ટ્રીક: "Wireless-Radio-Mobile"

પ્રશ્ન 3(બ) [4 ગુણ]

વ્યાખ્યાયિત કરો : Communication Middleware in mobile computing

જવાબ:

કમ્યુનિકેશન મિડલવેર મોબાઇલ એપ્લિકેશન કમ્યુનિકેશન માટે અમૂર્તીકરણ લેયર પ્રદાન કરે છે.

ટેબલ:

પાસાં	นย์่า
હેતુ	કમ્યુનિકેશન સરળ બનાવવું
સ્થાન	એપ અને નેટવર્ક વચ્ચે
ફીચર્સ	પ્રોટોકોલ હેન્ડલિંગ, ડેટા કન્વર્ઝન
ઉદાહરણો	CORBA, RMI

મેમરી ટ્રીક: "Middle-Communication-Layer"

પ્રશ્ન 3(ક) [7 ગુણ]

મોબાઈલ કમ્પ્યુટિંગના આર્કિટેક્ચરની ચર્ચા કરો

જવાબ:

મોબાઇલ કમ્પ્યુટિંગ આર્કિટેક્ચર મોબાઇલ એપ્લિકેશનોને સપોર્ટ કરતા મલ્ટિપલ પરસ્પર જોડાયેલા ઘટકોનો સમાવેશ કરે છે.

ડાયાગ્રામ:

ટેબલ:

ยรร	รเช็
Mobile Device	યુઝર ઇન્ટરફેસ, લોકલ પ્રોસેસિંગ
Wireless Network	રેડિયો કમ્યુનિકેશન
Base Station	નેટવર્ક એક્સેસ પોઇન્ટ
MSS	મોબિલિટી મેનેજમેન્ટ
Fixed Network	બેકબોન ઇન્ફ્રાસ્ટ્રક્ચર

મુખ્ય મુદ્દાઓ:

• ત્રણ-સ્તરીય: મોબાઇલ ડિવાઇસ, વાયરલેસ નેટવર્ક, ફિક્સ્ડ નેટવર્ક

• મોબિલિટી સપોર્ટ: હેન્ડઓફ મેનેજમેન્ટ

• ડેટા મેનેજમેન્ટ: કેશિંગ અને સિંક્રોનાઇઝેશન

મેમરી ટ્રીક: "Mobile-Wireless-Fixed"

પ્રશ્ન 3(અ OR) [3 ગુણ]

ad-hoc networks સમજાવો

જવાલ

Ad-hoc નેટવર્ક્સ ફિક્સ્ડ ઇન્ફ્રાસ્ટ્રક્ચર વિના સેલ્ફ-ઓર્ગેનાઇઝિંગ વાયરલેસ નેટવર્ક્સ છે.

મુખ્ય મુદ્દાઓ:

• સ્ટ્રક્ચર: Peer-to-peer ટોપોલોજી

• રૂટિંગ: ડાયનેમિક રૂટ ડિસ્કવરી

• એપ્લિકેશનો: ઇમર્જન્સી, મિલિટરી

મેમરી ટ્રીક: "Ad-hoc-Self-Organizing"

પ્રશ્ન 3(બ OR) [4 ગુણ]

વ્યાખ્યાયિત કરો: Transaction Processing Middleware in mobile computing

જવાબ:

ટ્રાન્ઝેક્શન પ્રોસેસિંગ મિડલવેર મોબાઇલ ડેટાબેસ ટ્રાન્ઝેક્શનોમાં ACID પ્રાપર્ટીઓ સુનિશ્ચિત કરે છે.

ટેબલ:

มเนอ์	นย์ฯ
Atomicity	સર્વ અથવા કંઈ નહીં એક્ઝિક્યુશન
Consistency	ડેટાબેસ અખંડિતતા જાળવાય
Isolation	સમાંતર ટ્રાન્ઝેક્શન અલગીકરણ
Durability	કાયમી ટ્રાન્ઝેક્શન અસરો

મેમરી ટ્રીક: "ACID-Properties"

પ્રશ્ન 3(ક OR) [7 ગુણ]

મોબાઇલ કમ્પ્યુટિંગની એપ્લિકેશન અને સેવાઓની ચર્ચા કરો

જવાબ:

મોબાઇલ કમ્પ્યુટિંગ મલ્ટિપલ ડોમેન્સમાં વિવિધ એપ્લિકેશનોને સક્ષમ બનાવે છે.

ડોમેન	એપ્લિકેશનો	સેવાઓ
બિઝનેસ	CRM, ERP	ડેટા સિંક્રોનાઇઝેશન
હેલ્થકેર	પેશન્ટ મોનિટરિંગ	રિમોટ ડાયગ્નોસિસ
એજ્યુકેશન	E-learning	કન્ટેન્ટ ડિલિવરી
એન્ટરટેઈનમેન્ટ	ગોમિંગ, સ્ટ્રીમિંગ	મીડિયા સેવાઓ
નેવિગેશન	GPS, મેપ્સ	લોકેશન સેવાઓ

મુખ્ય મુદ્દાઓ:

• **લોકેશન-આદ્યારિત**: GPS નેવિગેશન, જિયો-ફેન્સિંગ

• કમ્યુનિકેશન: ઇમેઇલ, મેસેજિંગ, વિડિયો કોલ્સ

• કોમર્સ: મોબાઇલ બેંકિંગ, શોપિંગ

મેમરી ટ્રીક: "Business-Health-Education-Entertainment"

પ્રશ્ન 4(અ) [3 ગુણ]

વર્ણન કરો: Indirect TCP in mobile computing

જવાબ:

Indirect TCP મોબાઇલ હોસ્ટ મોબિલિટી કાર્યક્ષમ રીતે હેન્ડલ કરવા માટે TCP કનેક્શન સ્પ્લિટ કરે છે.

ડાયાગ્રામ:

Fixed Host --> Base Station --> Mobile Host
TCP1 TCP2

મુખ્ય મુદ્દાઓ:

• **સ્પ્લિટ કનેક્શન**: બે અલગ TCP કનેક્શનો

• બેસ સ્ટેશન: પ્રોક્સી તરીકે કામ કરે

• ફાયદો: ઝડપી હેન્ડઓફ

મેમરી ટ્રીક: "Indirect-Split-Proxy"

પ્રશ્ન 4(બ) [4 ગુણ]

મોબાઈલ આઈપીમાં પેકેટ ડિલિવરીના સ્ટેપ્સ સમજાવો

જવાબ:

મોબાઇલ IP પેકેટ ડિલિવરીમાં રજિસ્ટ્રેશન, ટનલિંગ અને ડિલિવરી સ્ટેપ્સ સામેલ છે.

સ્ટેપ્સ:

1. **રજિસ્ટ્રેશન**: મોબાઇલ નોડ હોમ એજન્ટ સાથે રજિસ્ટર કરે

2. **ટનલિંગ**: હોમ એજન્ટ કોરેન એજન્ટ માટે ટનલ બનાવે

3. **એન્કેપ્સુલેશન**: મૂળ પેકેટ નવા હેડરમાં લપેટાય

4. **ડિલિવરી**: ફોરેન એજન્ટ મોબાઇલ નોડને ડિલિવર કરે

મેમરી ટ્રીક: "Register-Tunnel-Encapsulate-Deliver"

પ્રશ્ન 4(ક) [7 ગુણ]

મોબાઇલ આઈપી ની નીચેની ત્રણ પ્રક્રિયાઓ લખો: (1) Registration (2) Tunneling (3) Encapsulation

જવાબ:

1. Registration มริขา:

- મોબાઇલ નોડ કોરેન એજન્ટ શોધે
- હોમ એજન્ટ સાથે care-of address રજિસ્ટર કરે
- ઓથેન્ટિકેશન અને બાઇન્ડિંગ અપડેટ

2. Tunneling પ્રક્રિયા:

- હોમ એજન્ટ વર્ચ્યુઅલ ટનલ બનાવે
- ટનલ દ્વારા પેકેટ્સ ફોરવર્ડ કરાય
- End-to-end કનેક્ટિવિટી જાળવે

3. Encapsulation પ્રક્રિયા:

- મૂળ પેકેટ પેલોડ બને
- Care-of address સાથે નવો IP હેડર ઉમેરાય
- પેકેટ ફોરેન નેટવર્કમાં ડિલિવર થાય

ડાયાગ્રામ:

મુખ્ય મુદ્દાઓ:

• Registration: લોકેશન અપડેટ મેકેનિઝમ

• Tunneling: વર્ચ્યુઅલ કનેક્શન સ્થાપના

• Encapsulation: પેકેટ રેપિંગ તકનીક

મેમરી ટ્રીક: "Register-Tunnel-Encapsulate"

પ્રશ્ન 4(અ OR) [3 ગુણ]

વર્ણન કરો : Snooping TCP in mobile computing

જવાબ:

Snooping TCP બેસ સ્ટેશન પર TCP સેગમેન્ટ્સ કેશ અને મોનિટર કરીને પર્ફોર્મન્સ સુધારે છે.

મુખ્ય મુદ્દાઓ:

• લોકલ રિટ્રાન્સમિશન: બેસ સ્ટેશન લોસેસ હેન્ડલ કરે

• **બફર મેનેજમેન્ટ**: અનએકનોલેજ્ડ સેગમેન્ટ્સ કેશ કરે

• **นเระโย์สเ**: End-to-end TCP ซเดนเข

મેમરી ટ્રીક: "Snoop-Cache-Retransmit"

પ્રશ્ન 4(બ OR) [4 ગુણ]

મોબાઈલ આઈપીમાં હેન્ડઓવર મેનેજમેન્ટ સમજાવો

જવાબ:

હેન્ડઓવર મેનેજમેન્ટ જ્યારે મોબાઇલ નોડ નેટવર્ક બદલે છે ત્યારે કનેક્ટિવિટી જાળવે છે.

ટેબલ:

તબક્કો	પ્રક્રિયા
ડિસ્ ક વરી	નવો ફોરેન એજન્ટ શોધો
રજિસ્ટ્રેશન	Care-of address અપડેટ કરો
ડેટા ફોરવર્ડિંગ	પેકેટ્સ રીડાયરેક્ટ કરો
ક્લીનઅપ	જૂના રિસોર્સ રિલીઝ કરો

મેમરી ટ્રીક: "Discover-Register-Forward-Cleanup"

પ્રશ્ન 4(ક OR) [7 ગુણ]

મોબાઇલ આઈપી માટે લક્ષ્યો અને જરૂરિયાતો લખો

જવાબ:

લક્યો:

• પારદર્શિતા: એપ્લિકેશનો માટે સીમલેસ મોબિલિટી

• સુસંગતતા: હાલના ઇન્ટરનેટ પ્રોટોકોલ્સ સાથે કામ

• સ્કેલેબિલિટી: મોટી સંખ્યામાં મોબાઇલ નોડ્સ સપોર્ટ

• સિક્યોરિટી: મોબાઇલ નોડ્સ ઓથેન્ટિકેટ અને ડેટા પ્રોટેક્ટ

જરૂરિયાતો:

• હોમ એજન્ટ: મોબાઇલ નોડ લોકેશન જાળવે

• ફોરેન એજન્ટ: લોકલ સેવાઓ પ્રદાન કરે

• Care-of Address: ફોરેન નેટવર્કમાં ટેમ્પરરી એડ્રેસ

• ટનલિંગ: પેકેટ કોરવર્ડિંગ મેકેનિઝમ

ટેબલ:

પાસાં	લક્ષ્યો	જરૂરિયાતો
મોબિલિટી	સીમલેસ મૂવમેન્ટ	Care-of address
કનેક્ટિવિટી	સેશન જાળવો	ટનલિંગ
પર્ફોર્મન્સ	ન્યૂનતમ ઓવરહેડ	કાર્યક્ષમ રૂટિંગ
સિક્યોરિટી	ઓથેન્ટિકેશન	સિક્યોર પ્રોટોકોલ્સ

મેમરી ટ્રીક: "Transparent-Compatible-Scalable-Secure"

પ્રશ્ન 5(અ) [3 ગુણ]

મોબાઇલ નેટવર્કમાં 6G ની વિશેષતાઓ લખો

જવાબ:

6G એડવાન્સ્ડ ક્ષમતાઓ સાથે મોબાઇલ નેટવર્ક્સની આવતી પેઢીનું પ્રતિનિધિત્વ કરે છે.

મુખ્ય મુદ્દાઓ:

• સ્પીડ: 1 Tbps થિયોરેટિકલ સ્પીડ

• લેટેન્સી: સબ-મિલિસેકન્ડ લેટેન્સી

• **AI ઇન્ટિગ્રેશન**: નેટિવ આર્ટિફિશિયલ ઇન્ટેલિજન્સ

ਮੇਮરੀ ਟ੍ਰੀs: "Tera-Speed-Al-Integration"

પ્રશ્ન 5(બ) [4 ગુણ]

વર્ણન કરો : Dynamic Host Configuration Protocol (DHCP)

જવાબ:

DHCP ડિવાઇસને IP એડ્રેસ અને નેટવર્ક કન્ફિગરેશન આપોઆપ એસાઇન કરે છે.

પ્રક્રિયા	વર્ણન
Discover	ક્લાયન્ટ બ્રોડકાસ્ટ રિક્વેસ્ટ
Offer	સર્વર IP એડ્રેસ ઓફર કરે
Request	ક્લાયન્ટ યોક્કસ IP રિકવેસ્ટ કરે
Acknowledge	સર્વર એસાઇનમેન્ટ કન્ફર્મ કરે

મેમરી ટ્રીક: "Discover-Offer-Request-Acknowledge"

પ્રશ્ન 5(ક) [7 ગુણ]

જવાબ:

WLAN આર્કિટેક્ચર IEEE 802.11 સ્ટાન્ડર્ડ્સનો ઉપયોગ કરીને લોકલ એરિયાની અંદર વાયરલેસ કનેક્ટિવિટી પ્રદાન કરે છે.

ડાયાગ્રામ:

ટેબલ:

ยรร	รเช้
Access Point	કેન્દ્રીય વાયરલેસ હબ
Station	વાયરલેસ ક્લાયન્ટ ડિવાઇસ
Distribution System	બેકબોન નેટવર્ક
BSS	બેસિક સર્વિસ સેટ
ESS	એક્સટેન્ડેડ સર્વિસ સેટ

મુખ્ય મુદ્દાઓ:

• **ઇન્ફ્રાસ્ટ્રક્ચર મોડ**: એક્સેસ પોઇન્ટ્સનો ઉપયોગ

• Ad-hoc મોડ: સીધા ડિવાઇસ કમ્યુનિકેશન

• સ્ટાન્ડર્ડ્સ: 802.11a/b/g/n/ac/ax પ્રોટોકોલ્સ

મેમરી ટ્રીક: "Access-Station-Distribution"

પ્રશ્ન 5(અ OR) [3 ગુણ]

મોબાઇલ નેટવર્કમાં 5G ની વિશેષતાઓ લખો

જવાબ:

5G અલ્ટ્રા-લો લેટેન્સી સાથે એન્હાન્સ્ડ મોબાઇલ બ્રોડબેન્ડ પ્રદાન કરે છે.

મુખ્ય મુદ્દાઓ:

• સ્પી**ડ**: 10 Gbps સુધી ડાઉનલોડ

• લેટેન્સી: 1ms અલ્ટ્રા-લો લેટેન્સી

• **ડેન્સિટી**: પ્રતિ km² 1 મિલિયન ડિવાઇસ

મેમરી ટ્રીક: "10G-1ms-1Million"

પ્રશ્ન 5(બ OR) [4 ગુણ]

WWW અને HTTP સમજાવો

જવાબ:

વર્લ્ડ વાઇડ વેબ વેબ પેજ કમ્યુનિકેશન માટે HTTP પ્રોટોકોલનો ઉપયોગ કરે છે.

ટેબલ:

પાસાં	www	НТТР
હેતુ	માહિતી શેરિંગ	કમ્યુનિકેશન પ્રોટોકોલ
ઘટકો	વેબ પેજીસ, બ્રાઉઝર્સ	Request/response
ફોર્મેટ	HTML ડોક્યુમેન્ટ્સ	ટેક્સ્ટ-આદ્યારિત પ્રોટોકોલ
પોર્ટ	વિવિદ્ય	80, 443

ਮੇਮરੀ ਟ੍ਰੀs: "Web-Hypertext-Transfer"

પ્રશ્ન 5(ક OR) [7 ગુણ]

બ્લૂટ્રથના આર્કિટેક્ચરનું વર્ણન કરો

જવાબ:

બ્લૂટૂથ આર્કિટેક્ચર પ્રોટોકોલ સ્ટેકનો ઉપયોગ કરીને શોર્ટ-રેન્જ વાયરલેસ કમ્યુનિકેશન પ્રદાન કરે છે.

ડાયાગ્રામ:

ટેબલ:

લેચર	รเน็
Radio	ફિઝિકલ ટ્રાન્સમિશન
Baseband	ટાઇમિંગ અને ફ્રીક્વન્સી હોપિંગ
Link Manager	કનેક્શન મેનેજમેન્ટ
нсі	હોસ્ટ કંટ્રોલર ઇન્ટરફેસ
L2CAP	લોજિકલ લિંક કંટ્રોલ
Applications	યુઝર સેવાઓ

મુખ્ય મુદ્દાઓ:

• **Piconet**: માસ્ટર-સ્લેવ નેટવર્ક ટોપોલોજી

• Frequency Hopping: 79 ફ્રીક્વન્સી યેનલ્સ

• Power Classes: વિવિધ ટ્રાન્સમિશન રેન્જીસ

મેમરી ટ્રીક: "Radio-Baseband-Link-Host-Logic"