What is a zyBook?

New to zyBooks? Check out a short video to learn how zyBooks uses concise writing, interactive activities, and research-backed approaches to help students learn.

Watch now

1.1 ASCII and Unicode

Bits: 0's and 1's

Computers are built from connected switches that, like light switches, are either on or off. On is represented as 1, and off is 0. A single 0 or 1 is called a *bit*. 1011 is four bits. Eight bits, like 11000101, are called a *byte*.

Humans represent information using characters and numbers like Z or 42. To present information that people can understand, computers need a way to represent characters and numbers using 0's and 1's.

Characters as bits: ASCII

A **character** is a letter (a, b, ..., z, A, B, ..., Z), symbol (!, @, #, ...), or single-digit number (0, 1, ..., 9). Basically, each item on a computer keyboard is a character (though more characters exist). Each character can be given a unique bit code.

ASCII is a popular code for characters. ASCII stands for American Standard Code for Information Interchange, and was developed in 1963. ASCII uses 7 bits per code, and has codes for 128 characters. Ex: Using ASCII, the letter Z would be stored in a computer as 1011010. This material inserts a space for readability, as in: 101 1010. Each bit code is sometimes written as an equivalent decimal number (written as Dec below), discussed later.

Table 1.1.1: ASCII bit codes for common characters.

			.				.	
Bit code	Dec	Char		Bit code	Dec	Char		В
010 0000	32	space		100 0000	64	@		
010 0001	33	į		100 0001	65	А		
010 0010	34	Ш		100 0010	66	В		
010 0011	35	#		100 0011	67	С		
010 0100	36	\$ %		100 0100	68	D		
010 0101	37			100 0101	69	Е		
010 0110	38	&		100 0110	70	F		
010 0111	39	ı		100 0111	71	G		
010	40	(100	72	Н		

Bit code	Dec	Char
110 0000	96	`
110 0001	97	а
110 0010	98	b
110 0011	99	С
110 0100	100	d
110 0101	101	е
110 0110	102	f
110 0111	103	g
110	104	h

1000			1000			1000		
010 1001	41)	100 1001	73	I	110 1001	105	i
010 1010	42	*	100 1010	74	J	110 1010	106	j
010 1011	43	+	100 1011	75	K	110 1011	107	k
010 1100	44	ı	100 1100	76	L	110 1100	108	I
010 1101	45	-	100 1101	77	М	110 1101	109	m
010 1110	46		100 1110	78	N	110 1110	110	n
010 1111	47	/	100 1111	79	0	110 1111	111	0
011 0000	48	0	101 0000	80	Р	111 0000	112	р
011 0001	49	1	101 0001	81	Q	111 0001	113	q
011 0010	50	2	101 0010	82	R	111 0010	114	r
011 0011	51	3	101 0011	83	S	111 0011	115	S
011 0100	52	4	101 0100	84	Т	111 0100	116	t
011 0101	53	5	101 0101	85	U	111 0101	117	u
011 0110	54	6	101 0110	86	V	111 0110	118	V
011 0111	55	7	101 0111	87	W	111 0111	119	W

011 1000	56	8
011 1001	57	9
011 1010	58	÷
011 1011	59	·,
011 1100	60	<
011 1101	61	=
011 1110	62	>
011 1111	63	?

101 1000	88	X
101 1001	89	Υ
101 1010	90	Z
101 1011	91	[
101 1100	92	\
101 1101	93]
101 1110	94	٨
101 1111	95	_

organization Z	,	
111 1000	120	X
111 1001	121	У
111 1010	122	Z
111 1011	123	{
111 1100	124	
111 1101	125	}
111 1110	126	~

Feedback?

PARTICIPATION ACTIVITY

1.1.2: ASCII bit codes (and decimal number equivalents).

Type a character: S

ASCII bit code: **1010011** ASCII number: **83**

Feedback?

PARTICIPATION ACTIVITY

1.1.3: ASCII.

Text is a sequence of character codes

Computers commonly deal with text, consisting of a sequence of characters. The computer stores each character's ASCII code in successive locations in the computer's memory. Each location has at least enough bits (often more) to store an ASCII code.

- 2. Text is stored as a sequence of bit codes in the computer's memory. S is 101 0011, e is 110 0101, a is 110 0001, and t is 111 0100.
- 3. Symbols and spaces are also characters, and stored in the memory as bit codes. A colon (:) is 011 1010. A space is 010 0000.
- 4. Here, 9 is just another character, and has code 011 1001. Character a appears a second time, again with code 110 0001.

Feedback?

Encoding more characters: Unicode

Unicode is another character encoding standard, published in 1991, whose codes can have more bits than ASCII and thus can represent over 100,000 items, such as symbols and non-English characters. Characters in Unicode are represented as a number, or **code point**. Ex: In Unicode, the letter "H" is represented as U+0048. U+ means the character is encoded in Unicode, and 0048 is the corresponding code point. The code point is written in hexadecimal, which is discussed elsewhere.

Characters can range from U+0000 to U+10FFFF. The table below provides a very small subset of encodings.

Table 1.1.2: Unicode code points for control characters and basic Latin.

										-	-				
0022	П	003	2	2		0042	В		0052	R		0062	b		00
0023	#	003	3	3		0043	С		0053	S		0063	С		00
0024	\$	003	4	4		0044	D		0054	Т		0064	d		00
0025	%	003	5	5		0045	Е		0055	U		0065	е		00
0026	&	003	6	6		0046	F		0056	V		0066	f		00
0027	ı	003	7	7		0047	G		0057	W		0067	g		00
0028	(003	8	8		0048	Н		0058	X		0068	h		00
0029)	003	9	9		0049	I		0059	Υ		0069	i		00
002A	*	003	А	:		004A	J		005A	Z		006A	j		00
002B	+	003	В			004B	K		005B	[006B	k		00
002C	ı	003	С	<		004C	L		005C	\		006C	I		00
002D	-	003	D	=		004D	М		005D]		006D	m		00
002E		003	Е	>		004E	N		005E	٨		006E	n		00
002F	/	003	F	?		004F	0		005F	_		006F	0		
					-			_			-			-	

Feedback?

UTF-8, UTF-16, and UTF-32 are encoding standards that indicate how the Unicode is stored. In the UTF-8 standard, characters are stored using variable widths and range from one to four bytes. Whereas in the UTF-32 encoding, all characters are stored as a single 32-bit value. An application that converts the encoding to the final characters viewed by the end user must know which standard is utilized. Emails, web pages, and other digital media frequently contain additional information, or metadata, to indicate how characters are stored. Ex: A webpage may contain the tag <meta charset='utf-8'> to indicate that the UTF-8 Unicode standard is used to encode text.

PARTICIPATION ACTIVITY 1.1.6: Unicode.

1) An uppercase letter P is represented as _____ in

Correct

16-bit value.

True

False

Section 1.1 - CSE 031: Computer Organization | zyBooks

Unicode. Uppercase and lowercase letters are represented by different encodings. U+0050 corresponds to uppercase P, (h) U+0050 while U+0070 corresponds to lowercase p. O U+0070 2) U+0020 represents _____. Correct an uppercase A Unicode includes encodings for numbers, letters, a space symbols, and control characters. 3) Which text is represented Correct by the following unicode? U+0061 U+0020 U+0062 U+0061, U+0062, and U+0063 correspond to lowercase letters a, b, and c, respectively. Each letter is separated U+0020 U+0063 U+0020, which corresponds to a space. abc O ABC 4) In Unicode, each Correct character is stored as a

> UTF-8, UTF-16, and UTF-32 indicate how each code point is stored. A code point can be represented as a sequence of one to four 8-bit bytes, one or two 16-bit code units, or a single 32-bit code unit.

> > Feedback?

A Unicode table can be used to look up the code.

Feedback?

This section provides a simple introduction to Unicode. We encourage the interested reader to <u>Unicode Consortium</u> for additional information on advanced topics and features.

Exploring further:

- Wikipedia: ASCII
- http://www.asciitable.com/
- Unicode 9.0 Character Code Charts

How was this section?

Provide section feedback