JP 4061749 A JUN 1994 DEST AVAILABLE COFT

(54) OPTICAL COMPENSATION SHEET AND LIQUID CRYSTAL DISPLAY ELEMENT FORMED BY USING THE SAME

(11), 6-174920 (A)

A CONTRACTOR OF THE PROPERTY O

(43) 24.6.1994 (19) JP

(21) Appl. No. 4-326973 (22) 7.12.1992

(71) FUJI PHOTO FILM CO LTD (72) HIROYUKI MORI

(51) Int. Cl⁵. G02B5/30,G02F1/133,G02F1/1335

PURPOSE: To provide the liquid crystal display element of a high grade display which improves the visual angle characteristic of a TN type liquid crystal display element when used for this element and has excellent visibility.

CONSTITUTION: This optical compensation sheet is a crystallooptically biaxial optically anisotropic element varying in all of the three refractive indices nx, ny, nz (Kz denotes the refractive index most approximate to a thickness direction) in the main axis direction. The angle formed by the direction of nz and the direction perpendicular to the sheet is defined as θz and the angle formed by the optical axis nearer the direction perpendicular to the sheet of the two optical axes and the direction perpendicular to the sheet as θ opt. The θz is then 0° to 40° and the θ opt is 0° to 20° .

(19)日本国特許庁 (JP)

(12) 公開特許公報 (A)

(11)特許出願公開番号

特開平6-174920

(51) Int. Cl. s G 0 2 B G 0 2 F	5/30 1/133 1/1335	500	庁内整理番号 9018-2K 7348-2K 7408-2K	FI	行開平6-174920 (43)公開日 平成6年(1994)6月24日 技術表示箇所

審査請求 未請求 請求項の数3(全 7 頁)

(21)出願番号 特願平4-326973

(22)出願日 平成4年(1992)12月7日

(71)出願人 000005201

富士写真フイルム株式会社

神奈川県南足柄市中紹210番地 森 裕行

(72)発明者

神奈川県南足柄市中沼210番地 富士写真 フイルム株式会社内

(54)【発明の名称】 光学補償シート及びそれを用いた液晶表示素子

(57)【要約】

【構成】 主軸方向の3つの屈折率nx、ny、nz (nzが厚さ方向に最も近い屈折率を表わす) がすべて 異なる結晶光学的に2軸性の光学異方素子であって、n z の方向とシート面に垂直な方向のなす角をheta z とし、 2つの光学軸のうちのシート面に垂直な方向と近い方が シート面に垂直な方向となす角を θ o p t としたとき に、日zが0°以上40°以下でし、かつ、日opt ● 0°以上20°以下であることを特徴とする光学補償

【効果】 TN型液晶表示素子に用いるとその視角特性 が改善され、視認性に優れる高品位表示の液晶表示素子

【特許請求の範囲】

【請求項1】 主軸方向の3つの屈折率 $n \times x \cdot n y \cdot n$ $z \cdot (n z$ が厚さ方向に最も近い屈折率を表わす)がすべて異なる結晶光学的にz 軸性の光学異方素子であって、 $n z \cdot 0$ 方向とシート面に垂直な方向のなす角を θz とし、 $z \cdot 2$ つの光学軸のうちのシート面に垂直な方向に近い方がシート面に垂直な方向となす角を $\theta \circ p t$ としたときに、 $\theta z \cdot n 0$ 。以上 $z \cdot 1 0$ 。以下であり、かつ、 $z \cdot 1 0$ 。以下であることを特徴とする光学補償シート。

【請求項3】 2枚の電極基板間にねじれ角がほぼ90 のTN型液晶を挟持してなる液晶セルと、その両側に配置された2枚の偏光素子と、該液晶セルと該偏光素子の間に少なくとも1枚の光学補償シートを配置した液晶 20 表示素子において、該光学補償シートが請求項1または2に記載の光学補償シートであることを特徴とする液晶表示素子。

-【発明の詳細な説明】

[0001]

【産業上の利用分野】本発明は、表示コントラスト及び表示色の視角特性改良のために用いられる光学補償シートに関し、更に、該光学補償シートを用いることで、表示コントラスト及び表示色の視角特性の改良された液晶表示素子に関する。

[0002]

【従来の技術】日本語ワードプロセッサやディスクトップパソコン等の〇A機器の表示装置の主流であるCRTは、薄型軽量、低消費電力という大きな利点をもった液晶表示素子に変換されてきている。現在普及している液晶表示素子(以下LCDと称す)の多くは、ねじれネマティック液晶を用いている。このような液晶を用いた表示方式としては、複屈折モードと旋光モードとの2つの方式に大別できる。

【0003】複屈折モードを用いたLCDは、液晶分子配列のねじれ角90°以上ねじれたもので、急峻な電気光学特性をもつ為、能動素子(薄膜トランジスタやダイオード)が無くても単純なマトリクス状の電極構造でも時分割駆動により大容量の表示が得られる。しかし、応答速度が遅く(数百ミリ秒)、諧調表示が困難という欠点を持ち、能動素子を用いた液晶表示素子(TFT-LCDやMIM-LCDなど)の表示性能を越えるまでにはいたらない。

【0004】 TFT-LCDやMIM-LCDには、液 晶分子の配列状態が90° ねじれた旋光モードの表示方 50 式(TN型液晶表示素子)が用いられている。この表示方式は、応答速度が速く(数10ミリ秒)、容易に白黒表示が得られ、高い表示コントラストを示すことから他の方式のLCDと比較して最も有力な方式である。しかし、ねじれネマティック液晶を用いている為に、表示方式の原理上、見る方向によって表示色や表示コントラストが変化するといった視角特性上の問題があり、CRTの表示性能を越えるまでにはいたらない。

【0005】特開平4-229828号、特開平4-2 10 58923号公報などに見られるように、一対の偏光板 とTN液晶セルの間に、位相差フィルムを配置すること によって視野角を拡大しようとする方法が提案されている。

【0006】しかし、これらの方法によってもLCDの 視野角はまだ不十分であり、更なる改良が望まれてい る。特に、車載用や、CRTの代替として考えた場合に は、現状の視野角では全く対応できないのが実状であ る。

【0007】液晶分子は、液晶分子の長軸方向と短軸方向とに異なる屈折率を有することは一般に知られている。この様な屈折率の異方性を示す液晶分子にある偏光が入射すると、その偏光は液晶分子の角度に依存して偏光状態が変化する。ねじれネマティック液晶の液晶セルの分子配列は、液晶セルの厚み方向に液晶分子の配列がねじれた構造を有しているが、液晶セル中を透過する光は、このねじれた配列の液晶分子の個々の液晶分子の向きによって逐次偏光して伝搬する。従って、液晶セルに対し光が垂直に入射した場合と斜めに入射した場合とでは、液晶セル中を伝搬する光の偏光状態は異なり、その結果、見る方向によって表示のパターンが全く見えなったりするという現象として現れ、実用上好ましくない。

[0008] -

【発明が解決しようとする課題】本発明は、表示コントラスト及び表示色の視角特性の改良された光学補償シートを提供するものである。 更に、本発明は、表示コントラスト及び表示色の視角特性の改良された液晶表示素子を提供するものである。

【課題を解決するための手段】上記課題は、以下の手段 0 により達成された。

(1) 主軸方向の3つの屈折率nx、ny、nz (nz が厚さ方向に最も近い屈折率を表わす)がすべて異なる結晶光学的に2軸性の光学異方素子であって、nz の方向とシート面に垂直な方向のなす角を θz とし、2つの光学軸のうちのシート面に垂直な方向に近い方がシート面に垂直な方向となす角を θ optとしたときに、 θz が0°以上40°以下であり、かつ、 θ optが0°以上20°以下であることを特徴とする光学補償シート。

(2) 面内方向の屈折率の黒土値をロッパ 同の七点

の屈折率をnz'、厚みをdと定義し、(nz'-n x')×dで厚み方向のレターデーションを定義したと きに、前記厚み方向のレターデーションが一50~-9 00 nmであることを特徴とする前記(1)記載の光学 補償シート。

2枚の電極基板間にねじれ角がほぼ90°の下・ (3) N型液晶を挟持してなる液晶セルと、その両側に配置さ れた2枚の偏光素子と、該液晶セルと該偏光素子の間に 少なくとも1枚の光学補償シートを配置した液晶表示素 液晶表示素子。

【0009】以下、図面を用いてTN型液晶表示素子を 例にとり本発明の作用を説明する。図1、図2、図3 は、液晶セルにしきい値電圧以上の電圧を印加した場合 の液晶セル中を伝搬する光の偏光状態を示したものであ り、電圧無印加時では明状態を示すものである。図2 は、液晶セルに光が垂直に入射した場合の光の偏光状態 を示した図である。自然光0が偏光軸1.1をもつ偏光 板1に垂直に入射したとき、偏光板1を透過した光は、 直線偏光1.3となる。

【0010】図中、3.3は、TN液晶セルに十分に電 圧を印加した時の液晶分手の配列状態を、概略的に I つ の液晶分子モデルで示したものである。液晶セル中の液 晶分子3.3の分子長軸が光の進路1.4と平行な場 合、入射面(光の進路に垂直な面内)での屈折率の差が 生じないので、液晶セル中を伝搬する常光と異常光の位 相差が生じず直線偏光1. 3は液晶セルを透過すると直 線偏光のまま伝搬する。偏光板2の偏光軸2.1を偏光 板1の偏光軸1.1と垂直に設定すると、液晶セルを透 30過した光3.1は偏光板を透過することができず暗状態 となる。

【0011】図3は、液晶セルに光が斜めに入射した場 合の光の偏光状態を示した図である。入射光の自然光 0 が斜めに入射した場合偏光板1を透過した偏光光1. 3 はほぼ直線偏光になる。 (実際の場合偏光板の特性によ り楕円偏光になる)。この場合、液晶の屈折率異方性に より液晶セルの入射面において屈折率の差が生じ、液晶 セルを透過する光 3、よ精円偏光して偏光板 2 を透過 してしまう。この様な斜方入射における光の透過は、コ ントラストの低下を招き好ましくない。

【0012】本発明は、この様な斜方入射におけるコン トラストの低下を防ぎ、視角特性を改善しようとするも のである。図1に本発明による構成の一例を示した。偏 光板2と液晶セル3との間に本発明の光学補償シート7 が配置されている。この光学補償シート7は光学軸に対 して光が入射する角度が大きくなる程大きく偏光する複 屈折体である。この様な構成の液晶表示素子に図3の場 合と同様に光が斜方入射し液晶セル3を透過した楕円偏 光した光3.1は、光学補償シート7を透過する時の位

相遅延作用によって楕円偏光が元の直線偏光に変調さ れ、種々の斜方入射においても同一な透過率が得られる 視角依存性のない良好な液晶表示素子が実現できた。

【0013】本発明に用いられる光学補償シートは結晶 光学的に 2 軸性の光学異方素子である。結晶光学的に 2 軸性であるとは、主軸方向の3つの屈折率nx、ny、 η 2 がすべて異なることを意味している。ここでは、シ ートに垂直な方向に近い主軸方向の屈折率をnzとす 子において、該光学補償シートが前記(1)または 10 伸して得られる光学補償シートのnx、nyは面内にあ る。通常、ポリカーポネートなどの高分子素材を1軸延 り、 n z はシートに対して垂直方向にあるが、本発明に おいては、結晶光学的な主軸nx、nyは必ずしも面内 にあるとは限らず、また、 n z もシートに垂直方向から 傾いていても構わない。本発明においてはnzの方向と シートに対して垂直方向のなす角を θ zと定義し、 θ z は0°以上40°以下であることが好ましい。更には、 5°以上30°以下であることが好ましい。

【0014】結晶光学的に2軸性であると、光学軸が2 - つ存在する。本発明でいうところの光学軸とは、この方 20 向からみるとレターデーションが 0 となる方向のことを いう。本発明においては、この2つの光学軸のうちのシ 一トに対して垂直方向に近い力とシートに対して垂直方 向のなす角を θ o p t と定義し、 θ o p t は 0 。以上 20°以下の範囲であることが好ましい。この場合、正面 方向からみた場合のレターデーションが0に近い。具体 的には、正面からのレターデーションは200nm以下 が好ましく、更には100nm以下であることが好まし

【0015】TN-LCDの多くは、ノーマルーホワイ トモードが採用されている。このモードにおいて、視角 を大きくすることに伴って、黒表示部からの光の透過率 が著しく増大し、結果としてコントラストの急激な低下 を招いていることになる。黒表示は電圧印加時の状態で あるが、この時には、TNセルは、光学軸が、セルの表 面に対する法線方向から若干傾いた正<u>の一</u>軸性光学異方 体とみなすことができる。又、中間諧調の場合にはその 光学軸は更に、LCセルの法線方向から傾いていくもの ーと思われる。

【0016】本発明の光学補償シートを用いた場合、液 晶セルを正面からみた時、光学補償シートのレターデー ションは小さいので従来同様の高いコントラストが得ら れる。斜め方向からみた場合、光学補償シートの復屈折 性が発現し、斜め配向している液晶の複屈折性が補償さ れ、大幅に視角特性が改善される。

【0017】面内方向の屈折率の最大値をnx'、厚み 方向の屈折率を n z 、厚みを d としたときに、厚み方 向のレターデーションを(n z ' - n x ')×dと定義 する。厚み方向のレターデーションが-50~-900 nmであるときに視角特性改善効果が顕著に現れる.1.

0.0 nmの範囲にあることが好ましく、更には $-5.0 \sim -7.00 \text{ nm}$ の範囲であることが好ましい。

【0018】本発明における光学補償シートは、好ましくは高分子のフィルムまたは板状物として提供されるが、該光学補償シートの光の透過率は80%以上が好ましく、90%以上が更に好ましい。

【0019】また、本発明における光学補償シートに使用される高分子素材は特に制限はないが、ポリカーボネート、ポリアリレート、ポリスルホン、ポリフェニレンプのフタレート、ポリエーテルスルホン、ポリフェニレンプのスルファイド、ポリフェニレンオキサイド、ポリアリルスルホン、ポリビニルアルコール、ポリアミド、ポリイーミド、ポリオレフィン、ポリ塩化ビニル、セルロース系重合体、ポリアクリロニトリル、ポリスチレン、また、二元系、三元系、各種重合体、グラフト共重合体、プレンド物など好適に利用される。また、正または負の固有複屈折を有する低分子液晶を高分子マトリックス中に分散したシートなどを使用しても構わない。

【0020】以下実施例によって詳細に説明する。

【実施例】分子量15万のスチレン-アクリロニトリル 20 共重合体のペレットを溶融し、内径100 mmの孔径を有するノズルより押し出すとともに30%の延伸を行い、外径87 mmのスチレン-アクリロニトリル共重合体のロッド棒を得た。該ロッド棒の中心軸、すなわち延伸軸に対して直行する面で、該ロッド棒をスライスし、厚さ約3 mmの円形状の板状物を得た。該板状物を米国ビューラー製ラッピング機にて、50 μ mのS i C パウダー、30 μ mのS i D が D のスチレンD アルミナパウダーで順次研磨し、厚さD mの鏡面状 D のスチレンD のスチレンプルをサンプルをサンプルAとする。

【0021】サンプルAと同様にして得られたロッド棒を中心軸すなわち延伸軸に対して40°の角度で交差する面でスライスし、厚さ約3mmの楕円形状の板状物を得た。該板状物をサンプルAと同様にして研磨し、厚さ2mmの鏡面状のスチレンーアクリロコトリル板を延伸倍率を変化させて延伸し、表した光学補償シートのサンプルB~Fを得た。光学補償シートを用いない場合を比較例1とし、表1のサンプルを用いて、TN型液晶セルに図1に示すような構成で光学補償シートを配置し、表2に示したように実施例1~4、比較例2~3とした。

[0022]

【表1】

	Τ-	_				
本圏との関係	光教室	本部	発	本発明	裸	*
10 3	- 2 0 0 n m	_0 _0	0 0	- 2 0 0 n m	и 0	=
вор t	0 •	.0	. 0	10°	20°	30°
8	0	လ	0 1	20°	.30,	40°
枯電光学的に「電布・12を存	1 雪布	2 配件	畢	畢	書	2 始佐
キンプラ的	A	60	U	Q -	(a)	t.

【0023】複屈折性の評価

作成したサンプルは島津製作所製エリプソメーターAEP-100を用いて、面内方向における屈折率の最大値nx'、厚み方向の屈折率nz'の測定を行った。サンプルの厚みをdとして、(nz'-nx')×dを厚み方向のレターデーションとした。また、サンプルを傾けて、常光屈折率no、異常光屈折率neを測定し、no=neとなる方向を光学軸とした。2つの光学軸のうちのシート面に垂直な方向に近い方と、シート面に垂直な方向のなす角をθoptとした。2つの光学軸のちょう と真ん中の方向を屈折率nzのある方向とし、この方向

とシート面に垂直な方向とのなす角を θ zとした。

【0024】また、nzの方向と垂直な面内方向での屈 折率をAEP-100にて測定し、その最大値をnx、 最小値をnyとした。表1に示したサンプルの中で、結 晶光学的に2軸性であるサンプルB~Fについては、主 軸方向の屈折率nx、ny、nzが全て異なることを確 認した。

【0025】液晶セルにおける視角特性の評価 TN型液晶セルに30Hzの矩形波の電圧を印可し、透 過率と電圧の関係を大塚電子製LCD-5000を用い 10 て測定した。その結果を図4に示す。ここで、電圧を印 可しない状態での光の透過率を100%とした。LCD-- 5 0 0 0 を用いて、電圧が 0 V と 5 V の時の光の透過 事を測定し、0V/5Vのコントラストの視角特性を評 価した。各液晶パネルのコントラストが10以上となる 上下左右方向の視野角を評価した。その結果を表2に示 した。

[0026]

【表2】

教教発発発験 比比本本本本比 巨 COBE 4 4 4 アンアアア 例例明明明明 收較発発発発療 比比本本本本比

30

20

【0027】表2から、本発明である実施例1~4は視 角特性に優れていることがわかる。

[0028]

【本発明の効果】本発明によれば、TN型液晶表示素子 40 の視角特性が改善され、視認性にすぐれる高品位表示の 液晶表示素子を提供することができる。また、本発明を TFTやMIMなどの3端子、2端子素子を用いたアク ティブマトリクス液晶表示素子に応用しても優れた効果 が得られることは言うまでもない。

【図面の簡単な説明】

【図1】本発明の液晶表示素子の構成の1実施例を説明 する図である。

【図2】従来のTN型液晶表示素子の構成図と表示面に 垂直に光が入射する場合の光の透過状態を説明する図で 50 **ある**。

10

【図3】従来のTN型液晶表示素子の構成図と表示面に 斜めに光が入射する場合の光の透過状態を説明する図で ある。

【図4】本発明の実施例における液晶表示素子の透過光の印加電圧特性を示す図である。

【符号の説明】

1、2:偏光板

1. 1、1. 2:偏光軸

3:TN型液晶セル

7:光学補償シート

【図1】

【図3】

【図4】

This Page is inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

	BLACK BORDERS
	IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
	FADED TEXT OR DRAWING
	BLURED OR ILLEGIBLE TEXT OR DRAWING
	SKEWED/SLANTED IMAGES
	COLORED OR BLACK AND WHITE PHOTOGRAPHS
	GRAY SCALE DOCUMENTS
	LINES OR MARKS ON ORIGINAL DOCUMENT
كايه	REPERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY
	OTHER:

IMAGES ARE BEST AVAILABLE COPY.
As rescanning documents will not correct images problems checked, please do not report the problems to the IFW Image Problem Mailbox