NOTE ON POLYNOMIALS

KEISUKE HOSHINO

Notation 0.1. We employ the following notations.

- Sets are regarded as discrete categories, and categories are regarded as locally discrete 2-categories.
- Set is the large category of small sets.
- We write CAT for the huge 2-category of large categories.
- For each set S and a functor $X: S \longrightarrow \mathbf{Set}$, we write X_s for the image of $s \in S$ under X. Moreover, we write $(X_s)_{s:S}$ for X.
- For each set S and functors $X, Y: S \longrightarrow \mathbf{Set}$, a natural transformation $f: X \Longrightarrow Y$ is denoted as a family of functions $(f_s)_{s:S}$.
- We write 1 for the terminal set, and we write * for the unique element in 1.

1. POLYNOMIALS

Definition 1.1. We define a category **Poly** as the Grothendieck construction of the following 2-functor.

$$\mathbf{Set}^{op} \xrightarrow{ \left[-, \mathbf{Set} \right]^{op} } \mathfrak{CAT}$$

A *polynomial* is an object in **Poly**. We write

$$(-)_{\circ} \colon \mathbf{Poly} \longrightarrow \mathbf{Set}$$

for the fibration corresponding to the 2-functor. For each polynomial A, we write $A = \sum_{a:A_0} y^{A_a}$. In particular, we mean by y the polynomial satisfying $(y)_0 = 1$ and $(y)_* = 1$.

Definition 1.2. Define a functor $- \triangleleft -: \mathbf{Poly} \times \mathbf{Poly} \longrightarrow \mathbf{Poly}$ as follows.

• Let A, B be polynomials.

$$(A \triangleleft B)_{o} = \sum_{a:A_{o}} [A_{a}, B_{o}]$$

$$(A \triangleleft B)_{a,t} = \sum_{u:A_a} B_{t(u)}$$

for any $a: A_{\circ}$ and $t: A_a \longrightarrow B_{\circ}$.

• Let $F: A \longrightarrow X$, $G: B \longrightarrow Y$ be morphisms in **Poly**.

$$(F \triangleleft G)_{\mathbf{o}} \colon \sum_{a:A_{\mathbf{o}}} [A_a, B_{\mathbf{o}}] \longrightarrow \sum_{x:X_{\mathbf{o}}} [X_x, Y_{\mathbf{o}}] \colon (a, t) \mapsto (F_{\mathbf{o}}(a), F_a \ \mathring{\circ} \ t \ \mathring{\circ} \ G_{\mathbf{o}})$$

$$(F \triangleleft G)_{a,t} \colon \sum_{v: X_{F_a(a)}} Y_{G_o(t(F_a(v)))} \longrightarrow \sum_{u: A_a} B_{t(u)} \colon (v,r) \mapsto (F_a(v), G_{t(F_a(v))}(r))$$

Proposition 1.3. For each polynomial A, there are natural isomorphisms $y \triangleleft A \cong A$ and $A \triangleleft y \cong A$ in **Poly**.

Proposition 1.4. Let \mathbf{V} be a category and $\mathbf{W} = (\mathbf{W}, \otimes', I')$ be a monoidal category. Consider a functor $\otimes : \mathbf{V} \times \mathbf{V} \longrightarrow \mathbf{V}$ and an object $I \in \mathbf{V}$. Suppose that we are given a functor $F : \mathbf{V} \longrightarrow \mathbf{W}$ such that there are a family of isomorphisms $F(A \otimes B) \cong F(A) \otimes F(B)$ natural in $A, B \in \mathbf{V}$ and an isomorphism $F(I) \cong I$. If F induces a fully faithful functor on the core groupoids, then (\mathbf{V}, \otimes, I) becomes a monoidal category and F is a pseudo monoidal functor.

Date: April 29, 2024.

Definition 1.5. Define $\mathbf{Set} \hookrightarrow \mathbf{Poly}$ as a functor induced from the 2-natural transformation $\Delta(\mathbf{1}) \Longrightarrow [-, \mathbf{Set}]^{\mathrm{op}}$ whose component at $S \in \mathbf{Set}^{\mathrm{op}}$ is the name for the terminal object in $[S, \mathbf{Set}]^{\mathrm{op}}$. In other words, the fibration $\mathbf{Poly} \stackrel{(-)_{\mathrm{o}}}{\longrightarrow} \mathbf{Set}$ has the fibred terminal. This functor is automatically fully faithful, and we regard sets as polynomials through this functor.

Lemma 1.6. Poly
$$\times$$
 Poly $\stackrel{\triangleleft}{\longrightarrow}$ Poly restricts to a functor Poly \times Set $\stackrel{\triangleleft}{\longrightarrow}$ Set.

Definition 1.7. Define a functor rep: Poly \longrightarrow [Set, Set] as the currying of the functor Poly \times Set $\stackrel{\triangleleft}{\longrightarrow}$ Set obtained in Lemma 1.6.

Proposition 1.8. rep induces a fully faithful functor on the core groupoids.

Proof. Suppose we are given $P, Q \in \mathbf{Poly}$, an isomorphism $\alpha \colon \mathbf{rep}(P) \cong \mathbf{rep}(Q)$ in $[\mathbf{Set}, \mathbf{Set}]$, and $S \in \mathbf{Set}$. We have the following commutative diagram:

where the left and the right vertical arrows are projections. Therefore, we have $[P_p, S] \cong [Q_{\alpha_1(p)}, S]$ for each $p \in P_o$ and $S \in \mathbf{Set}$. By applying the yoneda lemma, we obtain $Q_{\alpha_1(p)} \cong P_p$ for each $p \in P_o$, which induces an isomorphism $\bar{\alpha} \colon P \cong Q$ in **Poly**. One can readily check that $\bar{\alpha}$ is a unique isomorphism satisfying $\mathbf{rep}(\bar{\alpha}) = \alpha$.

Lemma 1.9. There is a family of isomorphisms $\operatorname{rep}(P \triangleleft Q) \cong \operatorname{rep}(P) \circ \operatorname{rep}(Q)$ natural in $P, Q \in \operatorname{Poly}$. Moreover, we have $\operatorname{rep}(y) \cong \operatorname{id}_{\operatorname{\mathbf{Set}}}$ in $[\operatorname{\mathbf{Set}}, \operatorname{\mathbf{Set}}]$.

Proposition 1.10. (Poly, \triangleleft , y) is a monoidal category such that rep: Poly \longrightarrow ([Set, Set], \circ , id_{Set}) is a pseudo monoidal functor.

Proof. Follows from Lemma 1.9 and Propositions 1.4 and 1.8.

References

Email address: hoshinok@kurims.kyoto-u.ac.jp

RESEARCH INSTITUTE OF MATHEMATICAL SCIENCE, KYOTO UNIVERSITY