Clustering and dictionary learning

Clustering

1/23

Unsupervised classification / clustering

Unsupervised classification

- ▶ Input: $x_1, x_2, \dots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ **Output**: function $f: \mathbb{R}^d \to \{1, 2, \dots, k\} =: [k]$.
- ▶ Typical semantics: hidden subpopulation structure.

Clustering

- ▶ Input: $x_1, x_2, ..., x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ Output: partitioning of $x_1, x_2, ..., x_n$ into k groups.
- ▶ Often done via unsupervised classification;
 ⇒ "clustering" often synonymous with "unsupervised classification".
- ▶ Sometimes also have a "representative" $c_j \in \mathbb{R}^d$ for each $j \in [k]$ (e.g., average of the x_i in jth group) \longrightarrow quantization.

Uses of clustering: feature representations

"One-hot" / "dummy variable" encoding of f(x)

(Often used together with other features.)

$$= \begin{bmatrix} 1 \\ 0 \\ \vdots \\ 0 \end{bmatrix} \longleftarrow f(\boldsymbol{x}) \text{ } \mathbf{f}$$

Uses of clustering: feature representations

Histogram representation

- ▶ Cut up each $x_i \in \mathbb{R}^d$ into different parts $x_{i,1}, x_{i,2}, \ldots, x_{i,m} \in \mathbb{R}^p$ (e.g., small patches of an image) .
- ▶ Cluster all the parts $x_{i,j}$: get k representatives $c_1, c_2, \ldots, c_k \in \mathbb{R}^p$.
- ▶ Represent x_i by a histogram over $\{1, 2, ..., k\}$ based on assignments of x_i 's parts to representatives.

k-means clustering

Uses of clustering: compression

Quantization

Replace each $oldsymbol{x}_i$ with its representative

$$oldsymbol{x}_i \; \mapsto \; oldsymbol{c}_{f(oldsymbol{x}_i)} \, .$$

Example: quantization at image patch level.

5 / 23

k-means clustering

Problem

- ▶ Input: $x_1, x_2, \dots, x_n \in \mathbb{R}^d$, target cardinality $k \in \mathbb{N}$.
- ▶ Output: k representatives ("centers", "means") $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$.
- ▶ **Objective**: choose $c_1, c_2, \ldots, c_k \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^n \min_{j \in [k]} \|m{x}_i - m{c}_j\|_2^2$$
 .

Natural assignment function

$$f(oldsymbol{x}) \; \coloneqq \; rg \min_{j \in [k]} \|oldsymbol{x} - oldsymbol{c}_j\|_2^2 \, .$$

NP-hard, even if k=2 or d=2.

The easy cases

k-means clustering for k=1

Problem: Pick $c \in \mathbb{R}^d$ to minimize

$$\sum_{i=1}^{n} \| m{x}_i - m{c} \|_2^2$$
 .

Solution: "bias/variance decomposition"

$$rac{1}{n} \sum_{i=1}^{n} \|oldsymbol{x}_i - oldsymbol{c}\|_2^2 = \|oldsymbol{\mu} - oldsymbol{c}\|_2^2 + rac{1}{n} \sum_{i=1}^{n} \|oldsymbol{x}_i - oldsymbol{\mu}\|_2^2$$

where $oldsymbol{\mu} = rac{1}{n} \sum_{i=1}^n oldsymbol{x}_i$.

Therefore, optimal choice for c is μ .

k-means clustering for d=1

Dynamic programming in time $O(n^2k)$.

Alternating optimization algorithm

Assignment variables

For each data point x_i , let $\phi_i \in \{0,1\}^k$ denote its "one-hot" representation:

$$\phi_{i,j} = \mathbb{1}\{x_i \text{ is assigned to cluster } j\}.$$

Objective becomes (for optimal setting of ϕ_i s)

$$\sum_{i=1}^n \min_{j \in [k]} \|m{x}_i - m{c}_j\|_2^2 \ = \ \sum_{i=1}^n \Biggl\{ \sum_{j=1}^k \phi_{i,j} \|m{x}_i - m{c}_j\|_2^2 \Biggr\} \,.$$

Lloyd's algorithm (sometimes called *the k*-means algorithm)

Initialize $c_1, c_2, \dots, c_k \in \mathbb{R}^d$ somehow. Then repeat until convergence:

▶ Holding c_1, c_2, \ldots, c_k fixed, pick optimal $\phi_1, \phi_2, \ldots, \phi_n$.

Set ϕ_i so x_i is assigned to closest c_j .

▶ Holding $\phi_1, \phi_2, \ldots, \phi_n$ fixed, pick optimal c_1, c_2, \ldots, c_k .

Set c_i to be the average of the x_i assigned to cluster i.

9 / 23

Sample run of Lloyd's algorithm

2 (i) 0 -2 -2 0 2

Arbitrary initialization of c_1 and c_2 .

Initializing Lloyd's algorithm

Basic idea: Choose initial centers to have good coverage of the data points.

Farthest-first traversal

For j = 1, 2, ..., k:

Pick $c_j \in \mathbb{R}^d$ from among x_1, x_2, \ldots, x_n farthest from previously chosen $c_1, c_2, \ldots, c_{j-1}$.

(c_1 chosen arbitrarily.)

But this can be thrown off by outliers. . .

A better idea:

$$D^2$$
 sampling (a.k.a. " $k\text{-means}++$ ")

For j = 1, 2, ..., k:

▶ Randomly pick $c_j \in \mathbb{R}^d$ from among x_1, x_2, \dots, x_n according to distribution

$$P(\boldsymbol{x}_i) \propto \min_{\ell=1,2,\ldots,j-1} \|\boldsymbol{x}_i - \boldsymbol{c}_\ell\|_2^2$$
.

(Uniform distribution when j = 1.)

Choosing k

- ► Usually by hold-out validation / cross-validation on auxiliary task (e.g., supervised learning task).
- lacktriangledown Heuristic: Find large gap between (k-1)-means cost and k-means cost.

Clustering at multiple scales

$$k = 2 \text{ or } k = 3?$$

Hierarchical clustering: encode clusterings for all values of k in a tree.

Caveat: not always possible.

13 / 23

Example: phylogenetic tree

Hierarchical clustering

Divisive (top-down) clustering

- ▶ Partition data into two groups (e.g., via k-means clustering with k = 2).
- ► Recurse on each part.

Agglomerative (bottom-up) clustering

- lackbox Start with every point $oldsymbol{x}_i$ in its own cluster.
- ► Repeatedly merge "closest" pair of clusters.

Example: Ward's average linkage method

$$\operatorname{dist}(C, \tilde{C}) := \frac{|C| \cdot |\tilde{C}|}{|C| + |\tilde{C}|} \|\operatorname{mean}(C) - \operatorname{mean}(\tilde{C})\|_{2}^{2}$$

(the increase in k-means cost caused by merging C and \tilde{C}).

14 / 23

Dictionary learning (a.k.a. sparse coding)

Dictionary learning

Goal: Find representatives $c_1, c_2, \dots, c_k \in \mathbb{R}^d$ such that each x_i is "well-represented" by a linear combination of $\leq s$ such representatives c_i .

Special case: $s = 1 \Longrightarrow \text{clustering/quantization}$.

Generalizing k-means

k-means objective

$$\min_{oldsymbol{C}, oldsymbol{\Phi}} \sum_{i=1}^n \lVert oldsymbol{x}_i - oldsymbol{C} oldsymbol{\phi}_i
Vert_2^2$$

- $\Phi = [\phi_1 | \phi_2 | \cdots | \phi_n] \in \{0, 1\}^{k \times n}$ are the cluster assignments.
- $m C = [m c_1 | m c_2 | \cdots | m c_k] \in \mathbb{R}^{d imes k}$ are the cluster representatives.

Lloyd's algorithm:

Initialize C somehow. Then repeat:

- lacktriangle Holding C fixed, pick optimal Φ .
- lacktriangledown Holding Φ fixed, pick optimal C.

Generalization

Permit each ϕ_i to have up to s non-zero entries (not necessarily equal to 1).

Dictionary learning

Common dictionary learning objective

$$\min_{oldsymbol{C}, oldsymbol{\Phi}} \sum_{i=1}^n \lVert oldsymbol{x}_i - oldsymbol{C} oldsymbol{\phi}_i
Vert_2^2$$
 .

Generalization of Lloyd's algorithm:

Initialize ${m C}$ somehow. Then repeat:

- ▶ Holding C fixed, pick (near) optimal Φ .
 - n sparse regression problems (use Lasso, forward stepwise regression, ...)
- ightharpoonup Holding Φ fixed, pick optimal C.

Ordinary least squares solution:

$$\boldsymbol{C}^{ op} := (\boldsymbol{\Phi} \boldsymbol{\Phi}^{ op})^{-1} \boldsymbol{\Phi} \boldsymbol{X}$$

where *i*-th row of \boldsymbol{X} is \boldsymbol{x}_i^{\top} .

Typical initialization: random (e.g., i.i.d. N(0,1) entries), or D^2 sampling.

19 / 2

Example: mixed-membership model

Represent corpus of documents by counts of words they contain:

	doc. 1	doc. 2	doc. 3	
aardvark	3	7	2	• • •
abacus	0	0	4	• • •
abalone	0	4	0	• • •
÷	:	:	:	

Modeling assumption:

- k "topics", each represented by a distributions over vocabulary words $\beta_1, \beta_2, \dots, \beta_k \in \mathbb{R}^d$.
- ▶ Each document i is associated with $\leq s$ topics.

Document i's count vector is drawn from a multinomial distribution with probabilities given by $\sum_{t=1}^k w_{i,t} \beta_t$ where w_i is a probability vector with $\leq s$ non-zero entries.

Example: mixed-membership model

In expectation:

$$egin{array}{|c|c|c|c|c|} \mathbb{E}\left(oldsymbol{A}^{ op}
ight) & & oldsymbol{B} & oldsymbol{\Phi} \ (d imes n) & & (k imes n) \end{array}$$

- $lackbox{} \phi_{i,t} = w_{i,t} imes ext{length of document } i.$
- $ightharpoonup eta_t = t$ -th column of $oldsymbol{B}$

Applying dictionary learning:

Identify $m{eta}_1, m{eta}_2, \dots, m{eta}_k$ as "representatives" $m{c}_1, m{c}_2, \dots, m{c}_k \in \mathbb{R}^d \dots$

Recap

- ► Uses of clustering:
 - ▶ Unsupervised classification ("hidden subpopulations").
 - Quantization
- k-means clustering: popular objective for clustering and quantization.
- ▶ Lloyd's algorithm: alternating optimization, needs good initialization.
- ▶ Hierarchical clustering: clustering at multiple levels of granularity.
- ▶ Dictionary learning/sparse coding: generalization of clustering.