CSCE 633: Machine Learning

Lecture 16: Tree-Based Methods

Texas A&M University

9-30-19

Last Time

SVMs

Goals of this lecture

- Decision Trees
- Random Forest

Many decisions are tree-like structures

Medical treatment

Salary in a company

What is a decision tree

A hierarchical data structure implementing the divide-and-conquer strategy for decision making

Can be used for both classification & regression

A decision tree partitions the feature space

Three things to learn

- The tree structure (i.e. attributes and #branches for splitting)
- The threshold values (i.e. θ_i)
- The values of the leaves (i.e. A, B, \ldots)

Example

We want to find a regression on baseball player salaries

```
Hits
                               HmRun
                                                                                            Years
Min. : 16.0
              Min. : 1
                          Min. : 0.00
                                        Min. : 0.00
                                                         Min. : 0.00
                                                                        Min. : 0.00
                                                                                        Min. : 1.000
              1st Qu.: 64
                           1st Ou.: 4.00
                                         1st Ou.: 30.25
                                                        1st Ou.: 28.00
                                                                        1st Ou.: 22,00
              Median: 96
                          Median: 8.00
                                         Median : 48.00
                                                         Median : 44.00
                                                                        Median : 35.00
              Mean :101
                           Mean :10.77
                                         Mean : 50.91
                                                         Mean : 48.03
                                                                        Mean : 38.74
3rd Qu.:512.0
              3rd Qu.:137
                           3rd Qu.:16.00
                                         3rd Qu.: 69.00
                                                         3rd Qu.: 64.75
                                                                        3rd Qu.: 53.00
     :687.0 Max.
                    :238
                          мах.
                                 :40.00
                                        Max.
                                                :130.00
                                                        Max.
                                                               :121.00
                   CHits
                                                  CRuns
                                                                                   cwalks
                                                                                                League
                Min. : 4.0
                               Min. : 0.00
                                               Min. : 1.0
                                                              Min. : 0.00
                                                                               Min. : 0.00
     : 19.0
1st Qu.: 816.8
                1st Qu.: 209.0
                               1st Qu.: 14.00
                                               1st Qu.: 100.2
                                                              1st Qu.: 88.75
                                                                               1st Qu.: 67.25
Median: 1928.0
                Median : 508.0
                               Median : 37.50
                                               Median: 247.0
                                                              Median: 220.50
                                                                               Median: 170,50
                Mean : 717.6
                                               Mean : 358.8
Mean : 2648.7
                               Mean : 69.49
                                                              Mean : 330.12
3rd Ou.: 3924.2
                3rd Ou.:1059.2
                               3rd Ou.: 90.00
                                               3rd Ou.: 526.2 3rd Ou.: 426.25
                                                                               3rd Ou.: 339.25
      :14053.0
                Max.
                      :4256.0
                               мах.
                                     :548.00
                                               мах.
                                                     :2165.0
                                                              мах.
                                                                    :1659.00
                                                                               Max. :1566.00
Division
                          Assists
                                         Errors
                                                        Salary
                                                                    NewLeague
E:157
             : 0.0
                       Min. : 0.0
                                      Min. : 0.00
                                                    Min. : 67.5
W:165
        1st Qu.: 109.2
                       1st Qu.: 7.0
                                      1st Qu.: 3.00
                                                    1st Qu.: 190.0
                       Median: 39.5
        Median: 212.0
                                      Median: 6.00
                                                    Median: 425.0
        Mean : 288.9
                       Mean :106.9
                                      Mean : 8.04
        3rd Qu.: 325.0
                       3rd Qu.:166.0
                                      3rd Qu.:11.00
                                                    3rd Qu.: 750.0
                             :492.0
                                      мах.
                                           :32.00
                                                    NA's :59
```

Example

We want to find a regression on baseball player salaries

Histogram of Hitters\$Salary

Example

We want to find a regression on baseball player salaries

Create a basic tree

make a prediction of e raised to the regression value What is the most important variable?

This partitions our data space

These regions are known as leaves or terminal nodes
B Mortazavi CSE
Copyright 2018

Prediction via Stratification

- Divide the predictor space, X_1, X_2, \dots, X_p into J distinct and non-overlapping regions R_1, R_2, \dots, R_J
- For every observation that falls into the region R_j we make the same prediction, which is simply the mean of the response values for the training observations in R_i

Goal: find boxes that minimize the RSS given by:

$$\sum_{j=1}^{J} \sum_{i \in R_j} (y_i - \hat{y}_{R_j})^2$$

Prediction

- This is done in a top-down, greedy approach called recursive binary splitting
- At each step of the tree, we make a best split decision
- At each cut point s that splits a region into two partitions $R_1(j,s)=\{X|X_j< s\}$ and $R_2(j,s)=\{X|X_j\geq s\}$ that leads to the greatest minimization in RSS

Minimize:

$$\sum_{i:x_i \in R_1(j,s)} (y_i - \hat{y}_{R_1})^2 + \sum_{i:x_i \in R_2(j,s)} (y_i - \hat{y}_{R_2})^2$$

Partitioning: Another Example

Pruning: Avoiding Overfitting

• A big tree might overfit

Pruning: Avoiding Overfitting

- A big tree might overfit
- Limiting the depth up front might not result in a huge reduction in RSS, missing a key split

Pruning: Avoiding Overfitting

- A big tree might overfit
- Limiting the depth up front might not result in a huge reduction in RSS, missing a key split
- Best to create a very large tree T_0 then prune it down to obtain an optimal subtree.

Cost Complexity Pruning

Algorithm 8.1 Building a Regression Tree

- Use recursive binary splitting to grow a large tree on the training data, stopping only when each terminal node has fewer than some minimum number of observations.
- 2. Apply cost complexity pruning to the large tree in order to obtain a sequence of best subtrees, as a function of α .
- 3. Use K-fold cross-validation to choose α . That is, divide the training observations into K folds. For each $k = 1, \ldots, K$:
 - (a) Repeat Steps 1 and 2 on all but the kth fold of the training data.
 - (b) Evaluate the mean squared prediction error on the data in the left-out kth fold, as a function of α .

Average the results for each value of α , and pick α to minimize the average error.

4. Return the subtree from Step 2 that corresponds to the chosen value of α .

For each value of α there corresponds a subtree $T \subset T_0$ such that

$$\sum_{m=1}^{|T|} \sum_{x_i \in R_m} (y_i - \hat{y}_{R_m})^2 + \alpha |T| \qquad (8.4)$$

Cost Complexity Pruning

Cost Complexity Pruning -

Classification Trees

- Same for classification trees as regression trees only pick most commonly occurring class
- Instead of RSS we look at classification error rate.

$$E = 1 - max_k(\hat{p}_{mk})$$

, where \hat{p}_{mk} is the proportion of <u>training observations</u> in the mth region that are from the kth class. Turns out this is insufficient for tree growing

Gini Index and Entropy

$$G = \sum_{k=1}^K \hat{p}_{mk} (1 - \hat{p}_{mk})$$

, which measures the total variance across K classes. This is a measure of node purity.

$$H = -\sum_{k=1}^{K} \hat{p}_{mk} \log(\hat{p}_{mk})$$

, Entropy which takes a value near 0 if all the \hat{p} are near zero or one -smaller value if node is pure

Classification and Pruning

Example

We want to find a decision process for choosing a restaurant

Example	Attributes									Target	
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	\$\$\$	F	T	French	0–10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30–60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0–10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10–30	T
X_5	T	F	T	F	Full	\$\$\$	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0–10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0–10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0–10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	<i>T</i>	T	T	T	Full	\$\$\$	F	T	Italian	10–30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0–10	F
X_{12}	T	T	<i>T</i>	T	Full	\$	F	F	Burger	30–60	T

Example	Attributes										
	Alt	Bar	Fri	Hun	Pat	Price	Rain	Res	Type	Est	WillWait
X_1	T	F	F	T	Some	555	F	T	French	0-10	T
X_2	T	F	F	T	Full	\$	F	F	Thai	30-60	F
X_3	F	T	F	F	Some	\$	F	F	Burger	0-10	T
X_4	T	F	T	T	Full	\$	F	F	Thai	10-30	T
X_5	T	F	T	F	Full	555	F	T	French	>60	F
X_6	F	T	F	T	Some	\$\$	T	T	Italian	0-10	T
X_7	F	T	F	F	None	\$	T	F	Burger	0-10	F
X_8	F	F	F	T	Some	\$\$	T	T	Thai	0-10	T
X_9	F	T	T	F	Full	\$	T	F	Burger	>60	F
X_{10}	T	T	T	T	Full	555	F	T	Italian	10-30	F
X_{11}	F	F	F	F	None	\$	F	F	Thai	0-10	F
X_{12}	T	T	T	T	Full	\$	F	F	Burger	30-60	T

If we split the train samples with respect to the attribute "Patron", we will gain more information regarding the outcome.

How do we measure information gain?

- Intuitively, information gain tells us how important a given attribute is for predicting the outcome
- We will use it to decide the ordering of attributes in the nodes of a decision tree (i.e. tree structure)
- Main idea: Gaining information reduces uncertainty
- ullet From information theory, we have a measure of uncertainty ightarrow entropy

Entropy for discrete distribution

Let X be a discrete random variable with $\{x_1, \ldots, x_N\}$ outcomes, each occurring with probability $p(x_1), \ldots, p(x_N)$.

The information content of outcome x_i is inversely proportional to its probability, $h(x_i) = \log \frac{1}{p(x_i)}$

The entropy of the random variable X is the average information content of the outcomes:

$$H(X) = \sum p(x_i) \log(\frac{1}{p(x_i)}) = -\sum p(x_i) \log(p(x_i))$$

Example

no uncertainty H(X)=0

high uncertainty $\frac{1}{8} \frac{H(X) = 1.3863}{H(X) = \frac{1.3863}{2}}$

B Mortazavi CSE

[Watch this: https://www.khanacademy.cos/computer-science/informationtheory/

Question:

Suppose $X \sim Bernoulli(p)$ with $X \in \{0,1\}$, i.e. coin toss with probability p of getting heads and 1-p of getting tails. What would be a correct plot for the entropy H(X) in relation to the probability of getting heads?

Question:

Suppose $X \sim Bernoulli(p)$ with $X \in \{0,1\}$, i.e. coin toss with probability p of getting heads and 1-p of getting tails. What would be a correct plot for the entropy H(X) in relation to the probability of getting heads?

The correct answer is A

- Minimum entropy → no uncertainty about X, i.e. p = 0 (only tails) or p = 1 (only heads)
- Maximum entropy \rightarrow complete uncertainty about X, i.e. p = 0.5 B Mort (tails and heads with equal probability)

Entropy for continuous distribution

Let X be a continuous random variable with $x \in \Omega$. Its entropy is defined as follows:

$$H(X) = -\int_{x \in \Omega} p(x) \log(p(x)) dx$$

Example

If $X \sim \mathcal{N}(\mu, \sigma^2)$ its entropy is $H(X) = \frac{1}{2}(1 + \log(2\pi\sigma^2))$.

The entropy depends on the variance of the Gaussian.

i.e. higher variance \rightarrow higher uncertainty, and vice-versa.

Gaussians with the same σ , therefore same entropy.

Conditional Entropy

We want to quantify how much uncertainty the realization of a random variable X has if the outcome of another random variable Y is known. The conditional entropy is defined as:

$$H(X|Y) = \sum_{m=1}^{M} p_{Y}(y_{m}) H_{X|Y=y_{m}}(X)$$

$$= \sum_{m=1}^{M} p_{Y}(y_{m}) \left(-\sum_{n=1}^{N} \underline{p_{X|Y}(x_{n}|y_{m})} \log(p_{X|Y}(x_{n}|y_{m})) \right)$$

$$= -\sum_{m=1}^{M} \sum_{n=1}^{N} p_{Y}(y_{m}) \underline{p_{X|Y}(x_{n}|y_{m})} \log(p_{X|Y}(x_{n}|y_{m}))$$

Example: Choosing a restaurant

Measuring the conditional entropy on each of the "Patrons" attributes

For "None" branch

$$-\left(\frac{0}{0+2}\log\frac{0}{0+2} + \frac{2}{0+2}\log\frac{2}{0+2}\right) = 0$$
For "Some" branch
$$-\left(\frac{4}{4+0}\log\frac{4}{4+0} + \frac{4}{4+0}\log\frac{4}{4+0}\right) = 0$$
For "Full" branch
$$-\left(\frac{2}{2+4}\log\frac{2}{2+4} + \frac{4}{2+4}\log\frac{4}{2+4}\right) \approx 0.9$$

Measuring the conditional entropy on Patrons

$$H(Outcome|Patron) = \frac{2}{12} \times 0 + \frac{4}{12} \times 0 + \frac{6}{12} \times 0.9 = 0.45$$

"How uncertain is the Outcome with respect to attribute Patrons"

Example: Choosing a restaurant

Measuring the conditional entropy on each of the "Type" attributes

For "French" branch

$$-\left(\frac{1}{1+1}\log\frac{1}{1+1}+\frac{1}{1+1}\log\frac{1}{1+1}\right)=1$$

For "Italian" branch

$$-\left(\frac{1}{1+1}\log\frac{1}{1+1} + \frac{1}{1+1}\log\frac{1}{1+1}\right) = 1$$

For "Thai" and "Burger" branches

$$-\left(\frac{2}{2+2}\log\frac{2}{2+2} + \frac{2}{2+2}\log\frac{2}{2+2}\right) = 1$$

For choosing "Type"

Measuring the conditional entropy on Type

$$H(Outcome|Type) = \frac{2}{12} \times 1 + \frac{2}{12} \times 1 + \frac{4}{12} \times 1 + \frac{4}{12} \times 1 = 1$$

"How uncertain is the Outcome with respect to attribute Type"

B Mortazavi CSE

Burger

00

Example: Choosing a restaurant

- H(Outcome|Patron) < H(Outcome|Type), H(Outcome|Patron) < H(Outcome|Price), ...
- The entropy of the Outcome conditioned on Patron is the largest
- So the first split is performed with respect to Patron
- We do not split the "None" and "Some" nodes, since their decision is deterministic from the train data
- Next split? We will look only at the 6 instances assigned to the node "Full"

Example: Choosing a restaurant
Greedily we build the tree and looks like this

Decision Trees: Algorithm Outline

GenerateTree(\mathcal{X} **)** (Input \mathcal{X} : training samples)

- 1 $i:=SplitAttribute(\mathcal{X})$ (find attribute with lowest uncertainty)
- 2 For each branch of xi
 - 2a Find X_i falling in branch
 - 2b GenerateTree(\mathcal{X}_i)

SplitAttribute(\mathcal{X} **)** (Input \mathcal{X} : training samples)

- 1 MinFnt := MAX
- 2 For all attributes X_i , i = 1, ..., D
 - 2a Compute $H(Y|\mathcal{X}_i)$ (entropy of attribute X_i)
 - 2b If $MinEnt > H(Y|X_i)$ (current attribute X_i has the lowest entropy so far)
 - 2b.i $MinEnt := H(Y|\mathcal{X}_i)$
 - 2b.ii SplitAttr := i
- 3 Return SplitAttr

Decision Trees

Should we continue to split until every training sample is classified correctly?

- We should be very careful about the depth of the tree
- Eventually, we can get all training examples right
 - Is this what we want?
- The maximum depth of the tree is a hyperparameter

Decision Trees: Pruning

Example: Choosing a restaurant

We should prune some of the leaves of the tree to get a smaller depth

- If we stop here, not all training samples are classified correctly
- How do we classify a new instance?
 - We label the leaves of this smaller tree with the label of the majority of training samples

Decision Trees

Example: Choosing a restaurant

If we wanted to prune at this first node, we would take the following decisions

Decision Trees: Pruning

• Pre-Pruning

- Stop growing the tree earlier, before it perfectly classifies the training set
- Use a min entropy parameter θ_I

Post-Pruning

- Grow the tree full until no training error
- Trim the nodes of the decision tree in a bottom-up fashion
- If generalization error improves after trimming, replace sub-tree by a leaf node
 - Class label of leaf node is determined from majority class of instances in the sub-tree

Decision Trees: Algorithm Outline with Pre-Pruning

```
GenerateTree(\mathcal{X}) (Input \mathcal{X}: training samples)

1 If Entropy(\mathcal{X}) < \theta_I (very small uncertainty)

1a Create leaf labelled by majority class in \mathcal{X}

2 Else

2a i := SplitAttribute(\mathcal{X}) (find attribute with lowest uncertainty)

2b For each branch of \mathbf{x_i}

2b.i Find \mathcal{X}_i falling in branch

2b.ii GenerateTree(\mathcal{X}_i)
```

Decision Trees: Alternative splitting criteria

2-class problem

 \hat{p} , $1 - \hat{p}$: frequency of class 0 and 1

• Entropy:

$$\phi(\hat{p}) = -\hat{p}\log\hat{p} - (1-\hat{p})\log(1-\hat{p})$$

• Gini index:

$$\phi(\hat{p}) = 2\hat{p}(1-\hat{p})$$

• Misclassification error:

$$\phi(\hat{\pmb{
ho}}) = 1 - \max(\hat{\pmb{
ho}}, 1 - \hat{\pmb{
ho}})$$

C-class problem

 $\hat{p}_1,...,\hat{p}_C$: frequency of class 1,...,C

- Entropy:
 - $\phi(\hat{p}_1,\ldots,\hat{p}_C) = -\sum_c \hat{p}_c \log \hat{p}_c$
- Gini index:

$$\phi(\hat{p}_1,\ldots,\hat{p}_C) = \sum_c \hat{p}_c(1-\hat{p}_c)$$

Misclassification error:

$$\phi(\hat{\pmb{
ho}}_1,\ldots,\hat{\pmb{
ho}}_{\mathcal{C}})=1-\mathsf{max}_{c}(\hat{\pmb{
ho}}_{c})$$

Regression Trees

- Similar to classification trees with some differences
- Split criterion
 - Mean square error between predicted and actual value of samples that have reached current node
- Leaf node value
 - Mean (or medium) of samples that have reached the node
 - Linear regression estimate on samples that have reached the node
 - Leaf node is created (splitting stops) if the current node has "acceptable" error

Decision Trees

Advantages

- The models are transparent: easily interpretable by human (as long as the tree is not too big)
- Data can contain combination of continuous and discrete features
- Decision tress more closely mirror human decision making than do regressions?
- Graphical representation
- Qualitative predictors without dummy variables!

Disadvantages

- Usually not same level of predictive accuracy as other regression and classification approaches
- Non-robust small change in data can change a large amount of the final estimated tree
- Solutions? Bagging, Random Forest, Boosting

Random Forests

- We grow many classification trees through bagging & randomization
- Bagging (Bootstrap aggregating)
 - · Generate independently bootstrap datasets from original data
 - Run a decision tree in each one of them
- Randomize over the set of attributes
 - Before growing a bootstrap decision tree
 - When splitting an interior node of the classification tree
- No pruning (small trees)
- For each sample, each tree "votes" for a class and we perform majority voting for final decision

Random Forests

Advantages

- Very good performance in practice
- Runs efficiently on large data bases
- Runs efficiently on large feature sets
- Gives estimates of the most relevant variables for the problem

What have we learnt so far

Decision Trees

- Hierarchical (tree-like) structure to perform classification/regression
- Tree structure determined by splitting criterion
 - Entropy (measure of uncertainty), gini index, etc.
- Pruning
 - Prevent overfitting by limiting the depth of the tree
 - Avoids perfect performance on train set
 - Pre/Post-pruning
- Main advantage: interpretability

Random Forests

- Tree ensemble
- Bagging & Randomization
- Good peformance in practice

Takeaways and Next Time

- Decision Trees
- Random Forest
- Next Time: Random Forest and AdaBoost