Kuis 2:Teori Bahasa dan Automata (Kelas A-C)

23 Mei 2022 (15.00 – 16.30)

Dari Kelas C

1. Jika L adalah suatu bahasa DCFL maka bisa jadi ada FSM yang dapat menerimanya.

Benar. Bahasa DCFL adalah superset dari bahasa regular. Jadi setiap bahasa regular adalah DFCL. Sudah jelas setiap bahasa regule dapat diterima suatu FSM.

2. Jika L_1 dan L_2 adalah dua bahasa DCFL maka konkatenasi kedua bahasa itu (atau L_1L_2) adalah juga DCFL.

Salah. Counter example dengan dua bahasa ini: $\{a^nb^m : m \neq n\}$ dan $\{b^pa^q : p \neq q\}$ adalah DCFL, tapi jika diconcate menjadi bahasa $a^nb^ra^q : m, r, q \geq 0\}$ yang bahkan merupakan inherently ambiguous, misalnya abbba yang bisa merupakan concate dari ab dan bba atau abb dan ba, sehingga parsetree string tsb lebih dari satu.

3. Jika L_1 adalah bahasa regular dan L_2 adalah bahasa CFL, maka konkatenasi kedua bahasa itu (atau L_1L_2) adalah juga CFL.

Benar. Setiap regular adalah CFL sementara menurut sifatrnya CFL closure terhadap operasi konkatenasi.

4. Jika L_1 adalah bahasa D dan L_2 adalah bahasa SD, maka mungkin saja konkatenasi kedua bahasa itu (atau L_1L_2) adalah juga D.

Benar. Jika ternyata L_2 adalah juga D maka L_1L_2 adalah D.

5. Jika L_1 adalah bahasa D dan L_2 adalah bahasa SD, sementara $L_2 \subset L_1$, maka konkatenasi kedua bahasa itu (atau L_1L_2) adalah juga D.

Salah. Misalnya mesin Turing M_1 untuk L_1 dana M_2 untuk L_2 . Jika kedua mesin dirangkaikan menjadi M_1M_2 untuk mengenali L_1L_2 maka saat memeriksa string w_1w_2 , jika w1 bukan anggota L_1 secara keseluruhan proses bisa tidak dapat masuk (karena infinite loop) ke bagian M_2 untuk memeriksa w_2 . Dengan demikian, belum tentu D (tapi sudah pasti SD).

6. Pernyataan "setiap bahasa yang tidak decidable disebut non-decidable" menyatakan komplemen dari suatu kelas bahasa yang decidable adalah non-decidable (atau undecidable).

Benar. Jika tidak decidable berarti adanya string w mungkin anggota L atau tidak yang dapat membuat mesin Turing infinite-loop. (Note: jika hanya w yang bukan anggota L saja yang menyebabkan infinite-loop sementara jika anggota L selalu halt disebut semi-decidable).

7. Bahasa $\{a^nb^{2n}c^{3n}: n \text{ bilangan bulat}\}\$ dapat diterima oleh suatu PDA yang memiliki stack ganda $\}$.

Benar. PDA dengan stack ganda (atau double stack) setara dengan Mesin Turing dan Mesin Turing dapat menerima bahasa tersebut.

8. Jika *L* adalah bahasa semidecidable (SD) tapi terdapat mesin Turing yang dapat mengenumerasikan anggota-anggota bahasa itu secara proper order, maka komplemennya pasti decidable (D).

Benar. Kemampuan melakukan enumerasi secara proper-order menunjukkan mesin bisa selalu halt-yes atau halt-no untuk setiap kemungkinan input (halt-yes jika anggota L dan halt-no jika bukan).

Dari Kelas A & C

11. Jika *L* adalah suatu bahasa non-inherently ambiguous CFL maka bisa jadi ada FSM yang dapat menerimanya.

Benar. Non-inherently ambiguous adalah superset dari DCFL dan DCFL superset dari bahasa regular sehingga bisa saja L mrpk bahasa regular.

12. Jika L_1 dan L_2 adalah dua bahasa DCFL maka union kedua bahasa itu (atau $L_1 \cup L_2$) adalah juga DCFL.

Salah. DCFL tidak closure pada operasi union.

13. Jika L_1 adalah bahasa regular dan L_2 adalah bahasa CFL, maka union kedua bahasa itu (atau $L_1 \cup L_2$) adalah juga CFL.

Benar. *L*₁ sebagai bahasa regular juga dalah bahasa CFL, dan CFL closure pada operasi union.

14. Jika L_1 adalah bahasa D dan L_2 adalah bahasa SD, maka mungkin saja union kedua bahasa itu (atau $L_1 \cup L_2$) adalah juga D.

Benar. (Perhatikan kata "mungkin saja" bukannya "pasti selalu") Kalau L_2 ternyata D (sebagai SD bisa juga D), maka union keduanya bisa D.

15. Jika L_1 adalah bahasa D dan L_2 adalah bahasa SD, sementara $L_2 \subset L_1$, maka union kedua bahasa itu (atau $L_1 \cup L_2$) adalah juga D.

Benar. Kalau $L_2 \subset L_1$ maka $L_1 \cup L_2 = L_1$. Dengan sendirinya karena $L_1 \cup L_2 = L_1$ adalah D.

16. Jika untuk suatu bahasa *L*, terdapat mesin Turing yang dapat meng-enumerasi string-string anggota bahasa tersebut, maka mesin itu akan selalu halt untuk setiap string apapun yang diberikan.

Salah. Enumerasi tersebut tidak disebutkan bersifat "proper-order". Jadi kalau hanya enumerasi saja aka bahasa SD memenuhi hal ini. Sementara, string-string yang tidak masuk

dalam enumerasi (artinya bukan string anggota *L*) bisa jadi membawa mesin menjadi infiniteloop (tidak halt).

17. Mesin Turing single-tape hanya bisa menerima bahasa yang diterima oleh Mesin Turing double-tape saja, sementara mesin Turing dengan jumlah tape 10 memerlukan tape yang jumlahnya lebih dari 1 untuk mensimulasikan bekerjanya kesepuluh tape itu.

Salah. Berapa banyak tape yang digunakan tetap bisa diemulasi (ditiru) oleh mesin Turing 1 tape (bukan hanya 2 tape!).

18. Jika L adalah bahasa non-decidable (\neg D) maka \neg L (komplemen dari L tersebut) adalah juga bahasa non-decidable (\neg D).

Salah. Bahasa-bahasa D bersifat closure pada operasi komplemen.