

Pontifícia Universidade Católica de Minas Gerais Bacharelado em Ciência da Computação Projeto e Análise de Algoritmos – 2º Semestre de 2018 Prof^a. Raquel Mini

2ª PROVA

No	me:												
Va	lor: 35	pontos											
То	das as i	respostas	devem	ser dada	as nos loc	cais indi	cados.						
1.	(8 pontos) Considere o problema da colocação ótima de parênteses para multiplicação das seguintes matrizes A[5][14], B[14][3], C[3][10], D[10][8], E[8][50], F[50][6].												
	a) Execute o algoritmo e preencha os campos destacados indicados abaixo (utilize a folha em branco no final da prova para as execuções):												
	Matriz cost						Matriz best						
	0	Lost	360	570	2400	2640	1	Iviaui	Z DEST	3	3	3	3
	U	0	300	576	3540	2592				3	3	3	3
		U	0	370	1440	2340					3	5	
			U	0	1440	2880						3	5
				U	0	2000							3
					U	0							
						0]						
	matrizes? Justifique sua resposta.												
 2. (8 pontos) Prove se as seguintes afirmativas são verdadeiras ou falsas: a) Se A e B são dois problemas pertencentes à classe NP-Completo, então A é polinomialmente redutível a B e B é polinomialmente redutível a A. Justifique. 						nialmente							

	à classe P é encontrarmos uma redução em tempo polinomial em máquina determinística de A para algum problema em NP-Completo. Justifique.							
•	(10 pontos) a) Apresente um algoritmo que utiliza a técnica de divisão e conquista para calcular a soma dos elementos de um vetor A [0n-1] de números inteiros.							

b) Considerando que a operação relevante seja o número de somas realizadas, escreva a equação de recorrência dessa versão recursiva. Utilizando o Teorema Mestre, encontre o comportamento assintótico da função de custo.

4. (9 pontos) O Quicksort é um dos algoritmos de ordenação mais utilizados na computação. A sua implementação recursiva consiste da chamada do procedimento partição que realiza n+1 comparações com os elementos de A e de duas chamadas recursivas como mostrado abaixo:

```
Quicksort(A, p, r) {
   if (p < r) {
      q = Partition(A, p, r)
      Quicksort(A, p, q-1)
      Quicksort(A, q+1, r)
   }
}</pre>
```

onde A é um vetor, p e r são os índices da esquerda e direita do subvetor a ser particionado e q é o ponto de partição. A ordenação do vetor se dá pela chamada Quicksort (A, 1, A.length).

a)	considerando que a operação relevante seja o numero de comparações com os elementos de A , mostre a fórmula fechada para a função de custo do Quicksort para a ordenação de um vetor de tamanho n no melhor caso. Para isso, construa e resolva a equação de recorrência (não pode ser utilizado o Teorema Mestre).

b)	Para a execução das chamadas recursivas, os compiladores em geral utilizam uma pilha. A cada chamada de um procedimento recursivo, um registro de ativação é empilhado sendo posteriormente desempilhado ao final da execução do procedimento. Considerando que a operação relevante seja o número de vezes que o registro de ativação é empilhado , encontre a fórmula fechada para a função de custo do Quicksort no melhor caso. Para isso, construa e resolva a equação de recorrência (não pode ser utilizado o Teorema Mestre).

Fórmulas:

$\log n = \log_2^n$	$n! \approx \left(\frac{n}{e}\right)^n$	$\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
$a = b^{\log \frac{a}{b}}$	$ \ln n = \log_e^n $	$\sum_{i=0}^{n} i^3 = \frac{n^2(n+1)^2}{4}$
$n^{\frac{1}{\log n}} = n^{\log \frac{2}{n}} = 2$	$a^{\log b^n} = n^{\log b^a}$	$\sum_{i=0}^{n} i^2 = \frac{n(n+1)(2n+1)}{6}$
$4^{\log n} = 2^{2\log n} = 2^{\log n^2} = n^2$	$2^{\log n} = n$	Para $a \neq 1$ $\sum_{i=0}^{n} a^{i} = \frac{a^{n+1} - 1}{a - 1}$

 $1 \prec \log\log n \prec \log n \prec n^\varepsilon \prec n \prec n^c \prec n^{\log n} \prec c^n \prec n^n \prec c^{c^n}$ onde ε e c são constantes arbitrárias com $0 < \varepsilon < 1 < c$

Multiplicação de uma Cadeia de Matrizes

```
for( i=1; i <= N; i++ )
    for( j = i+1; j <= N; j++ ) cost[i][j] = INT_MAX;
for( i=1; i <= N; i++ ) cost[i][i] = 0;
for( j=1; j < N; j++ )
    for( i=1; i <= N-j; i++ )
        for( k= i+1; k <= i+j; k++ )
        {
            t = cost[i][k-1] + cost[k][i+j] +
            r[i]*r[k]*r[i+j+1];
            if( t < cost[i][i+j] )
            { cost[i][i+j] = t; best[i][i+j] = k;
            }
        }
}</pre>
```

Teorema Mestre

 Sejam as constantes a ≥ 1 e b > 1 e f(n) uma função definida nos inteiros não-negativos pela recorrência:

$$T(n) = aT(n/b) + f(n)$$

onde a fração n/b pode significar $\lfloor n/b \rfloor$ ou $\lceil n/b \rceil$. A equação de recorrência $\mathrm{T}(n)$ pode ser limitada assintoticamente da seguinte forma:

- 1. Se $f(n) = O(n^{\log_b a \varepsilon})$ para alguma constante $\varepsilon > 0$, então $T(n) = O(n^{\log_b a})$
- 2. Se $f(n) = \Theta(n^{\log_b a})$, então $\Gamma(n) = \Theta(n^{\log_b a} \log n)$
- 3. Se $f(n) = \Omega(n^{\log_b a + \varepsilon})$ para alguma constante $\varepsilon > 0$ e se $af(n/b) \le cf(n)$ para alguma constante c < 1 e para n suficientemente grande, então $T(n) = \Theta(f(n))$