

PES ITS APPLICATIONS

Shylaja S S & Kusuma K V

Department of Computer Science & Engineering

BST: Deletion Operations

Shylaja S S

Department of Computer Science & Engineering

Binary Search Tree - Deletion

Deletion of a Node in Binary Search Tree

case1: Node with no child (leaf node)

case2: Node with 1 child

case3: Node with 2 children

Binary Search Tree - Deletion

case1: Node with no child (leaf node)

To delete the node with info 7:

- Set its parent's left child field to point to NULL
- Free memory allocated to node with info 7

Binary Search Tree - Deletion

case1: Node with no child (leaf node)

To delete the node with info 4:

- Set its parent's right child field to point to NULL
- Free memory allocated to node with info 4

Binary Search Tree - Deletion

case2: Node with 1 child

To delete the node with info 6:

- Set its parent's right child field to point to its only child
- Free memory allocated to node with info 6

Binary Search Tree - Deletion

case2: Node with 1 child

To delete the node with info 2:

- Set its parent's left child field to point to its only child
- Free memory allocated to node with info 2

Binary Search Tree - Deletion

To delete the node with info 5:

- Replace 5 with its inorder successor and delete that inorder successor
- Now case3 has got changed to case2 (In general may

Binary Search Tree - Deletion

To delete the node with info 5:

- Replace 5 with its inorder predecessor and delete that inorder predecessor
- Here case3 has got changed to case1 (In general may

Multiple-Choice-Questions (MCQ's)

1. In a Binary Search Tree (BST), deleting a leaf node requires:

- A) Replacing it with its inorder predecessor
- B) Replacing it with its inorder successor
- C) Simply removing the node
- D) Replacing it with the root node

Multiple-Choice-Questions (MCQ's)

1. In a Binary Search Tree (BST), deleting a leaf node requires:

- A) Replacing it with its inorder predecessor
- B) Replacing it with its inorder successor
- C) Simply removing the node
- D) Replacing it with the root node

Multiple-Choice-Questions (MCQ's)

2. When deleting a node with only one child in a BST:

- A) Replace it with its inorder successor
- B) Replace it with its inorder predecessor
- C) Replace it with its child
- D) Delete the entire subtree

Multiple-Choice-Questions (MCQ's)

2. When deleting a node with only one child in a BST:

- A) Replace it with its inorder successor
- B) Replace it with its inorder predecessor
- C) Replace it with its child
- D) Delete the entire subtree

Multiple-Choice-Questions (MCQ's)

3. To delete a node with two children in a BST, we usually:

- A) Replace it with the root node
- B) Replace it with its inorder predecessor or successor
- C) Replace it with any leaf node
- D) Delete the entire subtree and rebuild

Multiple-Choice-Questions (MCQ's)

3. To delete a node with two children in a BST, we usually:

- A) Replace it with the root node
- B) Replace it with its inorder predecessor or successor
- C) Replace it with any leaf node
- D) Delete the entire subtree and rebuild

Multiple-Choice-Questions (MCQ's)

- 4. Suppose we delete a node with two children and replace it with its inorder successor. The inorder successor is always found in the node's:
- A) Left subtree
- B) Right subtree
- C) Root node
- D) Either left or right subtree

Multiple-Choice-Questions (MCQ's)

- 4. Suppose we delete a node with two children and replace it with its inorder successor. The inorder successor is always found in the node's:
- A) Left subtree
- B) Right subtree
- C) Root node
- D) Either left or right subtree

THANK YOU

Shylaja S S

Department of Computer Science & Engineering

shylaja.sharath@pes.edu