Тятя! Тятя! Наши сети притащили мертвеца!

Листочек с задачками №2: Матричное дифФфФфФфириенцирование*

https://github.com/FUlyankin/neural nets prob

РАНХ осень 2020

Цитата про матрицы

Из фильма «Я, робот» (2004)

Упражнение 1

В этой задачке нужно просто найти НЕмного разных производных:

- а. $f(x) = a^T x$, где a и x векторы размера $1 \times n$
- б. $f(x) = x^\mathsf{T} A x$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- в. $f(x) = ln(x^TAx)$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- г. $f(x) = a^\mathsf{T} X A X a$, где x вектор размера $1 \times n$, A матрица размера $n \times n$
- д. $f(x) = xx^Tx$, где x вектор размера $1 \times n$
- е. $f(X) = X^{-1}$, где матрица X размера $n \times n$
- ж. $f(X) = \det X$, где матрица X размера $n \times n$

Упражнение 2

В этой задачке нужно просто найти много разных производных:

- а. f(X)=tr(AXB), где матрица A размера $p \times m$, матрица B размера $n \times p$, матрица X размера $m \times n$.
- б. $f(X) = tr(AX^TX)$, где матрица A размера $\mathfrak{n} \times \mathfrak{n}$, матрица X размера $\mathfrak{m} \times \mathfrak{n}$.
- B. $f(X) = \ln \det X$
- r. $f(X) = \ln AX^{-1}B$
- д. $f(X) = tr(AX^TXBX^{-T})$

^{*}Часть задач взята из прототипа задачника по ML Демешева, часть из Конспектов Соколова

- e. $f(X) = \ln \det(X^T A X)$
- ж. $f(x) = x^T A b$, где матрица A размера $n \times n$, вектора x и b размера $n \times 1$.
- з. $f(A) = x^T Ab$.

Упражнение 3

Рассмотрим задачу линейной регресии

$$Q(w) = (y - Xw)^{\mathsf{T}}(y - Xw) \to \min_{w}.$$

- а. Найдите dQ(w), выведите формулу для оптимального w.
- б. Как выглядит шаг градиентного спуска в матричном виде?
- в. Найдите $d^2Q(w)$. Убедитесь, что мы действительно в точке минимума.

Упражнение 4

В случае Ridge-регрессии минимизируется функция

$$Q(w) = (y - Xw)^{\mathsf{T}}(y - Xw) + \lambda w^{\mathsf{T}}w,$$

где λ — положительный параметр, штрафующий функцию за слишком большие значения w.

- а. Найдите dQ(w), выведите формулу для оптимального w.
- б. Как выглядит шаг градиентного спуска в матричном виде?
- в. Найдите $d^2Q(w)$. Убедитесь, что мы действительно в точке минимума.

В случае Lasso-регрессии мы имеем дело с функцией

$$Q(w) = (y - Xw)^{\mathsf{T}}(y - Xw) + \lambda |w|,$$

- а. Найдите dQ(w), выведите формулу для оптимального w.
- б. Как выглядит шаг градиентного спуска в матричном виде?

Упражнение 5

Пусть x_i — вектор-столбец $k \times 1$, y_i — скаляр, равный +1 или -1, w — вектор-столбец размера $k \times 1$. Рассмотрим функцию

$$Q(w) = \sum_{i=1}^{n} \ln(1 + \exp(-y_i x_i^\mathsf{T} w)) + \lambda w^\mathsf{T} w$$

- а. Найдите dQ;
- б. Найдите вектор-столбец ∇Q .

Упражнение 6

Упражняемся в матричном методе максимального правдоподобия! Допустим, что векторы X_1, \dots, X_m выбраны из многомерного нормального распределения с неизвестными вектором средних μ и ковариационной матрицей Σ . В этом задании нужно найти оценки максимального правдоподобия для $\hat{\mu}$ и $\hat{\Sigma}$. Обратите внимание, что выборкой здесь будет не X_1, \dots, X_m , а

$$\begin{pmatrix} x_{11}, \dots, x_{m1} \\ \dots \\ x_{1n}, \dots, x_{mn} \end{pmatrix}$$

Упражнение 7

Найдите симметричную матрицу X наиболее близкую а A по норме Фробениуса, $\sum_{i,j} (x_{ij} - a_{ij})^2$. Тут мы просто из каждого элемента вычитаем каждый и смотрим на сумму квадратов таких разностей.

То есть решите задачку условной матричной минимизации

$$\begin{cases} & \|X - A\|^2 \to \min_A \\ & X^T = X \end{cases}$$

Hint: Надо будет выписать Лагранджиан. А ещё пригодится тот факт, что $\sum_{i,j} (x_{ij} - a_{ij})^2 = ||X - A||^2 = \operatorname{tr}((X - A)^\mathsf{T}(X - A))$. То, что это так мы доказали на семинаре :) Вспоминайте!