

Relaxation-Free Deep Hashing via Policy Gradient

Xin Yuan, Liangliang Ren, Jiwen Lu *, and Jie Zhou

Department of Automation, Tsinghua University yuanx16@mails.tsinghua.edu.cn; renll16@mails.tsinghua.edu.cn; lujiwen@tsinghua.edu.cn; jzhou@tsinghua.edu.cn

ECCV 2018

Made by Godder 2019/10/25

- Hash evaluate
 - Hamming distance

- Hash evaluate
 - Hamming distance
 - cosine

- European space to Hamming distance.
 - Sign function

$$sign(x) = \begin{cases} 1 & x \ge 0 \\ -1 & x < 0. \end{cases}$$

- European space to Hamming distance.
 - Sign function
 - relaxation

- European space to Hamming distance.
 - Sign function
 - relaxation
 - Probability

- Unsupervised
 - SH: graph partition
 - AGH: neighborhoods by tractable graph
 - DH: neural network & non-linear function
 - ITQ: iterative manner to learn a rotation matrix
 - MH: cluster center & dimensionally reduction
 - DGH: optimization method for discrete code space.

- Machine learning Supervised
 - KSH: inner product for hamming distance
 - FSH: decision tree.
 - SDH: auxiliary variable & kernel based.
 - SEDH: learn multi-layer function by label information

- Deep learning Supervised
 - CNNH: two stages strategy.
 - <1> learn hash code
 - <2> learn network by hash code
 - DNNH: CNNH with simultaneous feature learning.
 - DSH: DNNH + max-margin loss + quantization loss
 - HashNet: non-smooth sign activation.

 Deep learning hash code generation discrete hash code is non-differentiable

 Deep learning hash code generation discrete hash code is non-differentiable

Continuous relaxation by a quantization function

 Deep learning hash code generation discrete hash code is non-differentiable

Continuous relaxation by a quantization function

quantization loss is np-hard, the loss is disconvergent

 Deep learning hash code generation discrete hash code is non-differentiable

- Continuous relaxation by a quantization function
- Replace sign function with sigmoid or tanh function

 Deep learning hash code generation discrete hash code is non-differentiable

- Continuous relaxation by a quantization function
- Replace sign function with sigmoid or tanh function

Model learning difficult, relaxation becomes more non-smooth

Hash representation

$$p(a_{i,k}) = \begin{cases} \pi_{\mathbf{x}_{i},\theta}^{(k)}, & \text{if } a_{i,k} = 1\\ 1 - \pi_{\mathbf{x}_{i},\theta}^{(k)}, & \text{if } a_{i,k} = 0 \end{cases}$$

Hash representation to discrete hash codes

$$b_q^k = \begin{cases} +1, & \text{if } \pi_{\boldsymbol{x}_q, \theta}^{(k)} > 0.5\\ -1, & \text{otherwise} \end{cases}$$

$$b_q^k = \begin{cases} +1, & \text{with probability} \quad \pi_{\boldsymbol{x}_q, \theta}^{(k)} \\ -1, & \text{with probability} \quad 1 - \pi_{\boldsymbol{x}_q, \theta}^{(k)} \end{cases}$$

Hash constraint

$$b_{i} = 2 * (\boldsymbol{a}_{i} - 0.5)$$

$$r(\boldsymbol{a}_{i}) = -\frac{1}{2} \sum_{j=1}^{n} \hat{s}_{ij} (K - \boldsymbol{b}_{i}^{T} \hat{\boldsymbol{b}}_{j})$$

$$s.t. \quad \boldsymbol{b}_{i}, \hat{\boldsymbol{b}}_{j} \in \{-1, +1\}^{K}$$

$$\hat{s}_{ij} = \begin{cases} \beta, & \text{if } s_{ij} = 1\\ \beta - 1, & \text{otherwise} \end{cases}$$

$$(4)$$

Objective function

$$\mathcal{L}(\theta) = -\sum_{i} \mathbb{E}_{\boldsymbol{a}_{i} \sim P_{\theta}(\boldsymbol{x}_{i})}[r(\boldsymbol{a}_{i})]$$

Policy gradient

$$\nabla_{\theta} \mathcal{L}(\theta) = -\sum_{i} \mathbb{E}_{\boldsymbol{a}_{i} \in \mathcal{A}_{i}} [r(\boldsymbol{a}_{i}) \nabla_{\theta} \log(P_{\theta}(\boldsymbol{a}_{i} | \boldsymbol{x}_{i}))]$$

where A_i is the set of all possible actions for i-th input data in the minibatch

T-samples Monte Carlo on a_i

$$A_i = \{a_i^1, a_i^2, ..., a_i^T\} = MC^{P_{\theta}(a_i|x_i)}(T)$$

$$\nabla_{\theta} \mathcal{L}(\theta) \approx -\frac{1}{T} \sum_{i} \sum_{t} [r(\boldsymbol{a}_{i}^{t}) \nabla_{\theta} \log(P_{\theta}(\boldsymbol{a}_{i}^{t} | \boldsymbol{x}_{i}))]$$

REINFORCE

$$\nabla_{\theta} \mathcal{L}(\theta) \approx -\frac{1}{T} \sum_{i} \sum_{t} \left[(r(\boldsymbol{a}_{i}^{t}) - r') \nabla_{\theta} \log(P_{\theta}(\boldsymbol{a}_{i}^{t} | \boldsymbol{x}_{i})) \right]$$
(10)

r' the average of all rewards in each mini-batch.

$$\sum_{i} \mathbb{E}_{\boldsymbol{a}_{i} \in \mathcal{A}_{i}} [r' \nabla_{\theta} \log(P_{\theta}(\boldsymbol{a}_{i}^{t} | \boldsymbol{x}_{i}))] = \sum_{i} r' \nabla_{\theta} \sum_{\boldsymbol{a}_{i}} P_{\theta}(\boldsymbol{a}_{i}^{t} | \boldsymbol{x}_{i}) = \sum_{i} r' \nabla_{\theta} 1 = 0$$

$$\theta \leftarrow \theta - \lambda \nabla_{\theta} \mathcal{L}(\theta) \tag{11}$$

Algorithm 1: PGDH

```
Input: Training set: X = \{x_i\}_{i=1}^n, pairwise labels: S = \{s_{ij}\} and codebook update interval R > 1.
```

Output: Learning model θ and codebook C

- 1: Initialize p_{θ} and C;
- 2: **for** iter = 1, 2, ..., M **do**
- 3: Sample random minibatch from X;
- 4: Compute the action probability by feeding minibatch to the model;
- 5: Compute the rewards for MC samples of the minibatch according to Eq. (4)
- 6: Compute policy gradient according to Eq. (10);
- 7: Update the model θ according to Eq. (11);
- 8: if iter % R = 0 then
- 9: Update codebook C;
- 10: end if
- 11: end for
- 12: **return** model θ and codebook C;

Dataset

	CIFAR10	NUSWIDE	ImageNet			
category number	10	21	100			
Train set	500×10	500×21	100×100			
Query set	100×10	100×21	Validation set			
Retrieval set	All - query	All - query	100 categories			

- Evaluate
 - MAP
 - RP
 - HLP@2 (Hamming lookup precision within radius r=2)

• Hash code generation method

Training Epochs		5	10	40	50	60	• •	80	90	100	
	1									75.54	_
Stochastic	10.10	18.18	58.32	73.54	74.18	74.93	75.12	75.18	74.90	75.21	

- Setting
 - Hyper-parameter

β	ı						0.7		
CIFAR-10	10.12	18.38	20.08	49.43	73.65	70.32	75.23	75.12	34.12
NUS-WIDE									
${\bf ImageNet}$	1.14	1.14	33.12	43.64	69.65	68.69	70.32	70.11	70.03

R = 5, Monte Carlo samples T = 10

- Network: AlexNet pretrained on ImageNet.
- Optimizer: Adam with Ir=0.005
- Batch-size: 128

Methods	CIFAR-10 (%)			NU	NUS-WIDE (%)				ImageNet (%)			
	16	32	48	64	16	32	48	64	16	32	48	64
LSH [8]	12.9	15.2	16.9	17.8	40.3	49.2	49.3	55.1	10.1	23.5	30.1	34.9
SH [40]	12.2	13.5	12.1	12.6	47.9	49.1	49.8	51.5	20.8	32.7	39.5	42.0
ITQ [9]	21.3	23.4	23.8	25.3	56.7	60.3	62.2	62.6	32.5	46.2	51.3	55.6
CCA-ITQ [9]	31.4	36.1	36.6	37.9	50.9	54.4	56.8	67.6	26.6	43.6	54.8	58.0
KSH [25]	35.6	40.8	53.1	44.1	40.6	40.8	38.7	39.8	16.0	28.8	34.2	39.4
FastH [19]	45.3	46.1	48.7	50.3	51.9	61.0	64.7	65.2	22.8	44.7	51.7	55.6
SDH [30]	40.2	42.0	44.9	45.6	53.4	61.8	63.1	64.5	29.9	45.1	54.9	59.3
CNNH [42]	48.8	51.2	53.4	53.6	61.2	62.3	62.1	63.7	28.8	44.7	52.8	55.6
DNNH [17]	55.5	55.8	58.1	62.3	68.1	71.3	71.8	72.0	29.7	46.3	54.0	56.6
DPSH [18]	64.6	66.1	67.7	68.6	71.5	72.6	73.8	75.3	32.6	54.6	61.7	65.4
DSH [22]	68.9	69.1	70.3	71.6	71.8	72.3	74.2	75.6	34.8	55.0	62.9	66.5
HashNet [2]	70.3	71.1	71.6	73.9	73.3	75.2	76.2	77.6	50.6	62.9	66.3	68.4
PGDH	73.6	74.1	74.7	76.2	76.1	78.0	78.6	79.2	51.8	65.3	70.7	71.6

(a) P-R curve at 64 bits

(a) P-R curve at 64 bits

(b) P@N at 64 bits

(b) P@N at 64 bits

(c) HLP@2 at 64 bits

(c) HLP@2 at 64 bits

Reference

- Liu, W., Wang, J., Kumar, S., Chang, S.: Hashing with graphs. In: ICML (2011)
- Liong, V.E., Lu, J., Wang, G., Moulin, P., Zhou, J.: Deep hashing for compact binary codes learning. In: CVPR. pp. 2475–2483 (2015). https://doi.org/10.1109/CVPR.2015.7298862
- Gong, Y., Lazebnik, S., Gordo, A., Perronnin, F.: Iterative quantization: A procrustean approach to learning binary codes for large-scale image retrieval. TPAMI 35(12), 2916– 2929 (2013). https://doi.org/10.1109/TPAMI.2012.193
- Etc.