Algèbre linéaire - Chapitre 3 Familles de vecteurs

Combinaisons linéaires

Les vecteurs u suivants sont-ils combinaison linéaire des vecteurs e_i ?

-
$$E = \mathbb{R}^2, u = (1, 2), e_1 = (1, -2), e_2 = (2, 3);$$

-
$$E = \mathbb{R}^2$$
, $u = (1, 2)$, $e_1 = (1, -2)$, $e_2 = (2, 3)$, $e_3 = (-4, 5)$;

-
$$E = \mathbb{R}^3, u = (2,5,3), e_1 = (1,3,2), e_2 = (1,-1,4);$$

$$E = \mathbb{R}^3, u = (3, 1, m), e_1 = (1, 3, 2), e_2 = (1, -1, 4)$$
 (discuter suivant la valeur de m).

Sous-espace engendré

Dans
$$\mathbb{R}^3$$
, on pose $u_1 = \begin{pmatrix} 1 \\ -1 \\ 2 \end{pmatrix}$ et $u_2 = \begin{pmatrix} 1 \\ 1 \\ -1 \end{pmatrix}$.

- Les vecteurs $v_1=\begin{pmatrix}3\\1\\0\end{pmatrix}$ et $v_2=\begin{pmatrix}1\\5\\-1\end{pmatrix}$ sont-ils combinaison linéaire de u_1 et u_2 ?
- Soit $a, b, c \in \mathbb{R}$. Démontrer que $v = \begin{pmatrix} a \\ b \\ c \end{pmatrix}$ est combinaison linéaire de u_1 et u_2 si et seulement si -a + 3b + 2c = 0.
- En déduire un vecteur de \mathbb{R}^3 qui n'est pas combinaison linéaire de u_1 et de u_2 .

Familles libres

Les familles suivantes sont-elles libres dans \mathbb{R}^3 ?

$$-(u, v)$$
 avec $u = (1, 2, 3)$ et $v = (-1, 4, 6)$;

$$-(u, v, w)$$
 avec $u = (1, 2, -1), v = (1, 0, 1)$ et $w = (0, 0, 1)$;

$$-(u, v, w)$$
 avec $u = (1, 2, -1), v = (1, 0, 1)$ et $w = (-1, 2, -3)$;