CAPSTONE PROJECT

TRACKING MATERNAL HEALTH PROGRESS TOWARD SDG 3.1: A GLOBAL DATA ANALYSIS

Presented By: Yerramsetti Krishna Sri Charan CMR College Of Engineering And Technology CSM Department

OUTLINE

- Problem Statement
- Proposed System/Solution
- System Development Approach
- Algorithm & Deployment
- Result
- Conclusion
- Future Scope
- References

PROBLEM STATEMENT

Despite global commitments to maternal health, the maternal mortality ratio (MMR) still exceeds the Sustainable Development Goal 3.1 target of 70 deaths per 100,000 live births by 2030 in many countries.

Progress monitoring is difficult due to disparities in:

- Health infrastructure
- Antenatal care coverage
- Adolescent birth rates
- Skilled birth assistance

A robust data analysis is essential to understand trends and guide policy.

PROPOSED SOLUTION

To track maternal health progress and identify influencing factors, we propose a **data-driven** analytical system that:

- Ingests multi-country health data from the AI Kosh SDG dataset
- Analyzes key indicators affecting maternal mortality
- Builds predictive models for future projections
- Visualizes trends and highlights at-risk regions
- Uses IBM Cloud Lite tools for end-to-end development

SYSTEM APPROACH

- Technologies Used:
- IBM Cloud Lite Services:
 - Watson Studio (for EDA & ML)
 - IBM Cloud Object Storage (data storage)
 - Watson Machine Learning (deployment)
- Python Libraries: pandas, seaborn, matplotlib, scikit-learn, plotly

ALGORITHM & DEPLOYMENT

Algorithm:

- Linear Regression / Random Forest / XGBoost for predictive modeling
- K-Means Clustering for country grouping

Training Inputs:

- Antenatal care (%)
- Births attended by skilled personnel (%)
- Adolescent birth rate
- Healthcare expenditure
- Historical MMR data

Deployment:

- Trained models deployed via Watson Machine Learning
- Interactive dashboard hosted using IBM Cloud Foundry.

RESULT

Pipeline details

Ra...

RMSE (Optimiz... 26.665 (Holdout)

Algorithm

Batched Tree Ensemble Regressor (XGB Regre...

Specializati...

INCR

Enhancements

TFE HPO-1 FE +2

Save as

×

Pipeline 9 ×

Model viewer

Model information

Feature summary

Evaluation

Model evaluation

Measures	Holdout score	Cross validation score
Root mean squared error	26.665	84.564
R squared	0.981	0.858
Explained variance	0.981	0.858
Mean squared error	711.030	7642.721
Mean absolute error	14.343	26.763
Median absolute error	8.759	9.174

CONCLUSION

- Maternal health varies widely between regions, income levels, and service coverage.
- Countries with low antenatal care and high adolescent birth rates tend to have higher MMR.
- The proposed system helps monitor progress and highlights gaps for intervention.
- Data-driven insights are essential for meeting the 2030 SDG target.

FUTURE SCOPE

- Integrate real-time health surveillance data and population growth rates
- Expand analysis to include education, nutrition, and infrastructure
- Apply deep learning for better forecasting
- Develop mobile/web dashboards for policymakers
- Scale to include other SDG targets (child mortality, infectious disease, etc.)

REFERENCES

- Maternal health care in India: a reflection of 10 years of national health mission on the Indian maternal health scenario
- https://www.who.int/news-room/fact-sheets/detail/maternal-mortality
- https://www.who.int/data/gho/indicator-metadata-registry/imr-details/4622

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Yerramsetti Krishna Sri Charan

Has successfully satisfied the requirements for:

Getting Started with Artificial Intelligence

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

In recognition of the commitment to achieve professional excellence

Yerramsetti Krishna Sri Charan

Has successfully satisfied the requirements for:

Journey to Cloud: Envisioning Your Solution

Issued on: Jul 19, 2025 Issued by: IBM SkillsBuild

IBM CERTIFICATIONS

IBM SkillsBuild

Completion Certificate

This certificate is presented to

Krishna Sri Charan Yerramsetti

for the completion of

Lab: Retrieval Augmented Generation with LangChain

(ALM-COURSE_3824998)

According to the Adobe Learning Manager system of record

Completion date: 23 Jul 2025 (GMT)

Learning hours: 20 mins

THANK YOU

