MAXIMUM POWER POINT TRACKER

MKI-

Installation, Operation, and Technical Manual

Product Dimensions

4.535" L x 3.543" W x 2.02" H

Specifications

Maximum Output Voltage: 25 Volts

Rated Load Current: 10 A

Maximum Input Voltage*: 38 Volts

^{*}Array voltage should never exceed maximum input voltage. Refer to the PV panel documentation to determine the highest expected array V_{oc} as defined by the lowest expected ambient temperature for the system location.

TABLE OF CONTENTS

IMPORTANT SAFETY INSTRUCTIONS	1
GENERAL INFORMATION	2
Product Description	2
Features	2
INSTALLATION INSTRUCTIONS	3
Mounting Instructions	3
Prior to Wiring	
Wiring Instructions	3
OPERATION	4
LED Indication	4
Inspection & Maintenance	4
TROUBLESHOOTING	5
Error Indications & Causes	5
SERVICING & REPAIR	
Debugging Pins	6
Disassembly	6
Integrated Circuit Replacement	6
Through-Hole Component Replacement	
Printed Circuit Board Diagram	
Circuit Schematic	
Bill of Materials	

IMPORTANT SAFETY INSTRUCTIONS

This manual contains important safety instructions for safe and proper handling, installation, operation, and maintenance of the Maximum Power Point Tracker. Do not discard this manual.

Take note of the following symbols. They will be used throughout the manual to indicate instructions and precautions that require particular care.

WARNING: This instruction/procedure is potentially dangerous and should be carried out with great consideration. Follow the listed precautions and steps very carefully.

CAUTION: This instruction presents an important procedure for the safety and functionality of the device.

General Safety Instructions

- Read all instructions and precautions in this manual before beginning installation.
- The MPPT should be serviced only by a qualified personnel. Do not disassemble or attempt to repair the device unless you are a licensed technician.
- Disconnect all sources of power to the MPPT before installation or adjustment.
- There are no fuses inside the MPPT. Install external fuses or breakers as required.
- Confirm that all power connections are securely tightened to avoid overheating.

WARNING: Servicing instructions listed in this manual are for use by qualified personnel only. Do not perform any servicing other than that specified in the operating instructions unless you are qualified to do so. Attempting to service without proper training could result in electric shock.

WARNING: Do not disconnect live circuit. To do so could result in permanent damage to the circuit.

CAUTION: This device is not constructed to output to a battery. To do so may result in unpredictable and improper operation of the device. Output terminals should only be connected to a resistive load rated at the specifications given in this document.

GENERAL INFORMATION

Product Description

The Solaris Power Systems Maximum Power Point Tracker MKI is a device capable of boosting the power output of a solar panel to a resistive load. The MPPT requires minimal setup and configuration, and little to no maintenance, maximizing your investment in solar panels.

Features

Description:

- Solar Panel POS-IN / NEG-IN Terminal: Positive and negative voltage terminal for solar panel input. Red wire for positive, black wire for negative.
- Load POS-OUT / NEG-OUT Terminal: Positive and negative voltage terminal for resistive load. Red wire for positive, black wire for negative.
- LED Indicator: Lit LED indicates device is receiving power and operating, unlit LED indicates device is not receiving power thus not operating. This LED may also assist in troubleshooting. For more information, see TROUBLESHOOTING on page 5.

INSTALLATION INSTRUCTIONS

Read through all instructions prior to performing installation.

Mounting Instructions

- It is recommended that the MPPT MKI be located in an area with consistent airflow to avoid the possibility of overheating.
- The MPPT MKI can be mounted by two different methods.
 - Standard Mount: Using the two diagonal holes in the bottom of the housing, MPPT MKI can be mounted a flat surface.
 - Pole Mount: Using the two diagonal holes in the bottom of the housing, the MPPT MKI can be mounted to pole-clamping hardware.

Prior to Wiring

- Ensure that solar panel or array is rated at a total power output of no greater than 100 W.
- Ensure that the resistive load is rated for a power output of no less than 100 W.

Wiring Instructions

- 1. Plug negative lead from resistive load into NEG-OUT terminal.
- 2. Plug positive lead from resistive load into POS-OUT terminal.
- 3. Plug negative lead from solar panel or array into NEG-IN terminal.
- 4. Plug positive lead from solar panel or array into POS-IN terminal. NOTE: Upon completion of this step, the LED indicator should be lit. If so, the load will be receiving power. If not, see TROUBLESHOOTING on page 5.

WARNING: Do not connect solar panel terminals into the MPPT MKI before connecting load terminals.

OPERATION & MAINTENANCE

LED Indication

The LED will be lit if the MPPT MKI is receiving power and operating properly. If the LED is not lit, see TROUBLESHOOTING on page 5.

Inspection & Maintenance

While the MPPT MKI is designed to be durable and weather resistant, it is recommended that it be inspected and cleaned on occasion to ensure long life.

To clean the MPPT MKI:

- Ensure no power is being supplied to the device. Unplug all leads.
- Use a damp cloth (with a small amount of soap, if desired) to wipe down the device. Be careful around the terminals, to ensure no moisture enters.
- It is not necessary to clean the inside of the device. Do not open the case unless you are qualified to do so.

TROUBLESHOOTING

Error Indications & Causes

LED not lit

- Solar panel not providing enough power to MPPT MKI.
- Voltage regulator damaged.
- Load not connected properly.
- Panel/Array not connected properly.
- MPPT MKI malfunctioning.

Load not receiving power

- Solar panel not providing enough power to MPPT MKI.
- Load not connected properly.
- Panel/Array not connected properly.
- MPPT MKI malfunctioning.

General Troubleshooting

Before going further, be sure that you can answer 'yes' to all of the following questions:

- Is there a considerable amount of sunlight in view?
- Is the solar panel or array aimed toward the sunlight?
- Is the solar panel or array functional?
- If using an array, are all panels interconnected properly?
- Are all cables good?
- Are connections to solar panel(s) snug?
- Are cables connected to proper inputs on MPPT MKI? See Wiring Instructions on page 3.
- Are connections to MPPT MKI snug?
- Is load functioning properly? Test with other power source if necessary.

If you can answer 'yes' to all of these questions, and your MPPT MKI is still not functional, please contact a qualified service technician.

SERVICING & REPAIR

CAUTION: Do not attempt to service or repair the MPPT MKI unless you are a qualified technician. To do so could result in harm to yourself or to the device.

Debugging Pins

The PORT 1 header pins located at the bottom of the circuit board (relative to the orientation shown in the diagram below) are intended for debugging. The connections are given below.

- Pin 0: Input current sensor
- Pin 1: Input voltage sensor
- Pin 2: Output current sensor
- Pin 3: Output voltage sensor
- Pin 4: MOSFET control

Disassembly

- 1. Ensure no cables are plugged into the device.
- 2. Allow device to cool down if recently operating.
- 3. Remove (4) corner screws on housing lid.
- Carefully tilt open lid and disconnect two wires attached to lid from MPPT MKI circuit board.
- Remove lid.
- 6. Loosen (4) screws on screw terminals to release wire connecting printed circuit board terminals to cable glands.
- 7. Remove (4) screws securing printed circuit board to housing.
- 8. Remove circuit board from housing by grabbing the board itself, not the components.

Integrated Circuit Replacement

To replace an integrated circuit (IC) within the MPPT MKI, follow the steps given below.

- 1. Follow steps 1-5 of the Disassembly section above.
- 2. Locate faulty IC. Use printed circuit board diagram shown on the following page if necessary.
- 3. Use IC puller to remove IC.
- 4. Insert replacement IC, ensuring it is facing the proper direction.
- Reassemble device. NOTE: For wires attached to lid: red goes to right LED pin, purple goes to left LED pin.

Through-Hole Component Replacement

- 1. Follow steps 1-8 of the Disassembly section above.
- Locate faulty component. Use printed circuit board diagram shown on the following page if necessary.

- 3. Remove faulty component using a soldering iron or other appropriate heat tool, being careful not to damage other components.
- 4. Solder in replacement component. If polarized, ensure proper direction.
- 5. Reassemble device. NOTE: For wires attached to lid: red goes to right LED pin, purple goes to left LED pin.

Printed Circuit Board Layout

Circuit Schematic

QTY	DESCRIPTION	MAN	MAN P/N
-	120 µH Fixed Inductor	Bourns Inc.	1140-121K-RC
1	56 μH Fixed Inductor	Bourns Inc.	2310-V-RC
1	27 µF Aluminum-Polymer Capacitor	Nichicon	PLV1J270MDL1TD
1	3.3 µF Ceramic Capacitor	TDK Corporation	FK16X7R1E335K
1	Schottky Diode	STMicroelectronics	STPS10L60D
1	N-Channel MOSFET	NXP Semiconductors	BUK6507-75C,127
-	4 Position Terminal Block	On Shore Technology	OSTTC040162
N	5 mΩ Current Sensing Resistor	Stackpole Electronics Inc.	BR3FB5L00
-	470 kΩ Resistor	Stackpole Electronics Inc.	CF18JT470K
_	11 kΩ Resistor	Yageo	CFR-50JB-52-11K
-	47 kΩ Resistor	Yageo	CFR-50JB-52-47K
1	1.1 kΩ Resistor	Yageo	CFR-50JB-52-1K1
-	IC MCU 16BIT 16KB FLASH 20DIP	Texas Instruments	MSP430G2553IN20
_	IC REG LDO 3.3V 0.8A TO220AB	STMicroelectronics	LD1117V33
ω	0.1 µF Ceramic Capacitor	Kemet	C410C104M5U5TA7200
_	10 µF Ceramic Capacitor	TDK Corporation	FK18X5ROJ106M

_	4	_	-	-	_	ω	-	٥	-	2	2	-	_
Thermal Compound #5	Cable Glands	BOX ALUM 4.53X3.54X2.17" NAT	Duck Brand Self-Locking Mailing Box	20 Pin Headers	15uF Capacitor	IC MCU 16BIT 16KB FLASH 8DIP	IC OPAMP GP 30MHZ RRO 8DIP	120 ohm Resistor	3mm Green LED	1 nF Ceramic Capacitor	Current Shunt Monitor	20 Pin DIP Socket	47 kΩ Resistor
Arctic Silver, Inc.	Arlington	Bud Industries	Duck	Harwin Inc	TDK Corporation	Assmann WSW Components	Linear Technology	Stackpole Electronics Inc.	Lite-On Inc	Vishay BC Components	Texas Instruments	On Shore Technology	Vishay BC Components
•	LPCG50	AN-1304	1062959	M20-9992046	FK24X5ROJ156M	A08-IC-TT	LT1630CN8#PBF	RNMF14TC120R	LTL-4236N	S102K29Y5PN63J5R	INA271 AIDR	ED20DT	PR01000104702JR500

NOTES

© Solaris Power Systems 2015
Maximum Power Point Tracker MKI™
CEO Zachary Lee
COO Kyle Crouse
Division Leader Zeke Zumbro
Fighter Pilot Austin Ricks