- 5.2.2 (a) Use Definition 5.2.1 to produce the proper formula for the derivative of $f(x) = \frac{1}{x}$. $f'(c) = \lim_{x \to c} \frac{f(x) f(c)}{x c} = \lim_{x \to c} \frac{\frac{1}{x} \frac{1}{c}}{x c} = \lim_{x \to c} \frac{\frac{c x}{xc}}{x c} = \lim_{x \to c} \frac{-1}{xc} = -\frac{1}{c^2}.$
 - (b) Combine the result in part (a) with the chain rule (Theorem 5.2.5) to supply a proof for part (iv) of Theorem 5.2.4.

Proof. Let $h(x) = \frac{1}{x}$. Then, we can use the chain rule to simplify

$$(\frac{1}{g(x)})' = (h \circ g)'(x)$$

$$= h'(g(x))g'(x)$$

$$= -\frac{1}{(g(x))^2}(g'(x)) = -\frac{g'(x)}{(g(x))^2}.$$

This helps us to simplify

$$(\frac{f}{g})'(x) = (f(x)(h \circ g)(x))'$$

$$= f'(x)h(g(x)) + f(x)(h \circ g)'(x)$$

$$= \frac{f'(x)}{g(x)} - \frac{f(x)g'(x)}{(g(x))^2}$$

$$= \frac{f'(x)g(x) - f(x)g'(x)}{(g(x))^2} .$$

(c) Supply a direct proof of Theorem 5.2.4 (iv) by algebraically manipulating the difference quotient for $(\frac{f}{g})$ in a style similar to the proof of Theorem 5.2.4 (iii).

Proof.

$$(\frac{f}{g})'(c) = \frac{(\frac{f}{g})(x) - (\frac{f}{g})(c)}{x - c} = \frac{1}{x - c} (\frac{f(x)}{g(x)} - \frac{f(c)}{g(c)})$$

$$= \frac{1}{x - c} (\frac{f(x)g(c) - g(x)f(c)}{g(x)g(c)})$$

$$= \frac{1}{g(x)g(c)} (\frac{f(x)g(c) - f(c)g(c) + f(c)g(c) - g(x)f(c)}{x - c})$$

$$= \frac{1}{g(x)g(c)} (g(c)\frac{f(x) - f(c)}{x - c} - f(c)\frac{g(x) - g(c)}{x - c})$$

Because f and g are differentiable at c, it is continuous there and thus $\lim_{x\to c} f(x) = f(c)$ and $\lim_{x\to c} g(x) = g(c)$. Using this with the Algebraic Limit Theorem for functional limits, we can simplify the answer to $\frac{1}{(g(c))^2}(g(c)f'(c) - f(c)g'(c))$.

Thus,
$$(\frac{f}{g})'(c) = \frac{g(c)f'(c) - f(c)g'(c)}{(g(c))^2}$$
 as desired.

5.2.5 Let

$$g_a(x) = \begin{cases} x^a \sin(\frac{1}{x}) & \text{if } x \neq 0 \\ 0 & \text{if } x = 0. \end{cases}$$

Find a particular (potentially noninteger) value for a so that

- (a) g_a is differentiable on \mathbb{R} but such that g'_a is unbounded on [0,1]. $a = \frac{3}{2}$ satisfies both requirements.
- (b) g_a is differentiable on \mathbb{R} with g'_a continuous but not differentiable at zero. a=3 satisfies all the requirements.
- (c) g_a is differentiable on \mathbb{R} with g'_a is differentiable on \mathbb{R} , but such that g''_a is not continuous at zero.
 - a = 4 satisfies all the requirements.
- 5.2.8 Decide whether each conjecture is true or false. Provide an argument for those that are true and a counterexample for each one that is false.
 - (a) If a derivative function is not constant, then the derivative must take on some irrational values.

False, take the following counterexample: f(x) = |x|. Then, f'(x) = -1 when x < 0 and f'(x) = 1 when x > 0 and f'(x) is not defined when x = 0. So, we see that f' is not constant since it has two values, -1 and 1, but it is does not take on any irrational values.

(b) If f' exists on an open interval, and there is some point c where f'(c) > 0, then there exists a δ -neighborhood $V_{\delta}(c)$ around c in which f'(x) > 0 for all $x \in V_{\delta}(c)$.

False, take the following counterexample: $f(x) = \begin{cases} x^2 \sin(\frac{1}{x}) + x & \text{if } x \neq 0 \\ 0 & \text{if } x = 0 \end{cases}$

Then, $f'(0) = \lim_{x\to 0} \frac{x^2 sin(\frac{1}{x}) + x - 0}{x - 0} = 1 > 0$. But, the derivative at $x \neq 0$ is $f'(x) = 2x sin(\frac{1}{x}) - cos(\frac{1}{x}) + 1$ which has non-positive values at $x = \frac{1}{2n\pi}$ for $n \in \mathbb{N}$. We can see this by plugging in $\frac{1}{2n\pi}$ to get $f'(\frac{1}{2n\pi}) = \frac{1}{n\pi} sin(2n\pi) - cos(2n\pi) + 1 = 0 - 1 + 1 = 0$ and 0 > 0 is false. We can always choose n large enough so that for any $V_{\delta}(0)$ with $\delta > 0$, $\frac{1}{2n\pi} \in V_{\delta}(0)$ and thus fails to satisfy the claim.

(c) If f is differentiable on an interval containing zero and if $\lim_{x\to 0} f'(x) = L$, then it must be that L = f'(0).

True, because if $L \neq f'(0)$ then this is a violation of Darboux's Theorem.

Proof. Assume for the sake of contradiction that $L \neq f'(0)$. We will assume that f'(0) < L (the other case is shown below). Let $0 < \epsilon < \frac{L-f'(0)}{2}$. Since $\lim_{x\to 0} f'(x) = L$, we know that there exists $\delta > 0$ such that for all x with $0 < |x| < \delta$ implies $|f'(x) - L| < \epsilon$, or in more detail: $L - \epsilon < f'(x) < L + \epsilon$. Choose such a δ and choose a such that $f'(0) < a < L - \epsilon$. Then, for all x with $0 < |x| < \delta$ it is true that f'(0) < a < f'(x). By Darboux's Theorem, we have $c \in (0, x)$ such that f'(c) = a. However, this is a contradiction since $0 < c < \delta$ but $f'(c) = a < L - \epsilon$ which means it fails to satisfy $\lim_{x\to 0} f'(x) = L$. Thus, L = f'(0) must be true.

Proof. Assume for the sake of contradiction that $L \neq f'(0)$. We will assume that f'(0) > L (the other case is shown above). Let $0 < \epsilon < \frac{f'(0) - L}{2}$. Since $\lim_{x \to 0} f'(x) = L$, we know that there exists $\delta > 0$ such that for all x with $0 < |x| < \delta$ implies $|f'(x) - L| < \epsilon$, or in more detail: $L - \epsilon < f'(x) < L + \epsilon$. Choose such a δ and choose a such that $L + \epsilon < a < f'(0)$. Then, for all x with $0 < |x| < \delta$ it is true that f'(0) > a > f'(x). By Darboux's Theorem, we have $c \in (0, x)$ such that f'(c) = a. However, this is a contradiction since $0 < c < \delta$ but $f'(c) = a > L + \epsilon$ which means it fails to satisfy $\lim_{x \to 0} f'(x) = L$. Thus, L = f'(0) must be true.

- (d) Repeat conjecture (c) but drop the assumption that f'(0) necessarily exists. If f'(x) exists for all $x \neq 0$ and if $\lim_{x\to 0} f'(x) = L$, then f'(0) exists and equals L. False, take the counterexample: $f(x) = \frac{x^2+x}{x}$. We see that f'(x) exists for all $x \neq 0$. Also, we see that for $x \neq 0$, $f(x) = \frac{x^2+x}{x} = x+1$ so $\lim_{x\to 0} f'(x) = 1$. However, f'(0) is undefined since f is not differentiable at x = 0 and so it cannot be equal to 1.
- 5.3.1 Recall from Exercise 4.4.9 that a function $f: A \to \mathbb{R}$ is Lipschitz on A if there exists an M > 0 such that $\left| \frac{f(x) f(y)}{x y} \right| \le M$ for all $x, y \in A$. Show that if f is differentiable on a closed interval [a, b] and if f' is continuous on [a, b], then f is Lipschitz on [a, b].

Proof. Assume f is differentiable on a closed interval [a,b] and f' is continuous on [a,b]. Need to show that f is Lipschitz on [a,b], that is there exists an M>0 such that $\left|\frac{f(x)-f(y)}{x-y}\right|\leq M$ for all $x,y\in A$. Suppose x,y are arbitrary such that a<=x< y<=b. Given the assumptions, we know that by MVT there exists a $c\in(a,b)$ such that $f'(c)=\frac{f(x)-f(y)}{x-y}$. Since [a,b] is a compact set and f' is continuous on [a,b], we know that there exists an upper bound M>0 such that for all $n\in[a,b], |f'(n)|\leq M$. Thus, since $c\in[a,b]$, we have that $|f'(c)|=\left|\frac{f(x)-f(y)}{x-y}\right|\leq M$ as desired. \square

5.3.5 A fixed point of a function f is a value x where f(x) = x. Show that if f is differentiable on an interval with $f'(x) \neq 1$, then f can have at most one fixed point.

Proof. Assume for the sake of contradiction that f has two fixed points x and y. Then, by the provided definition of fixed points we have f(x) = x and f(y) = y. This means that by MVT we can find a c in the provided interval such that $f'(c) = \frac{f(x) - f(y)}{x - y} = \frac{x - y}{x - y} = 1$. However, this is a contradiction to the provided assumption that $f'(x) \neq 1$. Thus, f can have at most one fixed point.

5.3.8 Assume $g:(a,b)\to\mathbb{R}$ is differentiable at some point $c\in(a,b)$. If $g'(c)\neq 0$, show that there exists a δ -neighborhood $V_{\delta}(c)\subseteq(a,b)$ for which $g(x)\neq g(c)$ for all $x\in V_{\delta}(c)$. Compare this result with Exercise 5.3.7.

Proof. Suppose $g:(a,b)\to\mathbb{R}$ is differentiable at some point $c\in(a,b)$. Assume g'(c)>0 (the other case will be handled later). Since g is differentiable at c, we have $g'(c)=\lim_{x\to c}\frac{g(x)-g(c)}{x-c}>0$. Let $0<\epsilon< g'(c)$. Then we know there exists a $\delta>0$ such that $0<|x-c|<\delta$ implies $\left|\frac{g(x)-g(c)}{x-c}-g'(c)\right|<\epsilon$. We can rewrite this to $\frac{g(x)-g(c)}{x-c}>g'(c)-\epsilon>0$. This means that if x>c then g(x)>g(c) or if x< c, g(x)< g(c) which means that the fraction will always be positive. Thus we see that this is a δ -neighborhood around c for which $g(x)\neq g(c)$ for all $x\in V_\delta(c)$ whenever $x\neq c$. Similarly, if we take the other case [g'(c)<0], then we see that we can let f(x)=-g(x) and derive that there exists a neighborhood around c for which $f(x)\neq f(c)$ for all c in the neighborhood whenever c is neighborhood around c for which c is a multiply the result by c 1 to show that c 2 then c 3 there exists a c 3-neighborhood c 3 there exists a c 3-neighborhood c 3 there exists a c 4 there exists a c 3 there exists a c 4 there exists a c 5 there exists a c 6 there exists a c

5.4.2 Fix $x \in \mathbb{R}$. Argue that the series $\sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x)$ converges absolutely and thus g(x) is properly defined.

We know that h(x) is bounded by 1 and so $h(x) \leq 1$ for all x. Then, $\sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x) \leq \sum_{n=0}^{\infty} \frac{1}{2^n} = \sum_{n=0}^{\infty} (\frac{1}{2})^n$ which we know is a geometric series and converges since $\frac{1}{2} < 1$. By the Comparison Test, we know that $\sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x)$ converges and since all of the terms are positive we know from the Absolute Convergence Test that $\sum_{n=0}^{\infty} \frac{1}{2^n} h(2^n x)$ absolutely converges.

5.4.4 Show that $\frac{g(x_m)-g(0)}{x_m-0}=m+1$ where $x_m=\frac{1}{2^m}$ for m=0,1,2,..., and use this to prove that g'(0) does not exist.

Given an m, we see that $g(x_m) = \sum_{n=0}^{\infty} \frac{1}{2^n} h(2^{n-m})$. Then, when n > m, $g(x_m) = 0$ since we are at a multiple of 2 and h has a period of 2 meaning h(2z) = 0 for $z \in \mathbb{Z}$. So, $g(x_m)$ simplifies to $g(x_m) = \sum_{n=0}^{m} \frac{h(2^{n-m})}{2^n} = \sum_{n=0}^{m} \frac{2^{n-m}}{2^n} = \sum_{n=0}^{m} \frac{1}{2^m}$. Then, $\frac{g(x_m) - g(0)}{x_m - 0} = \frac{\sum_{n=0}^{m} \frac{1}{2^m}}{\frac{1}{2^m}} = m + 1$.

To show that g'(0) doesn't exist, notice that $g'(0) = \lim_{m \to \infty} \frac{g(x_m) - g(0)}{x_m - 0} = \lim_{m \to \infty} m + 1$ which is clearly unbounded and so the limit does not exist. Thus, g'(0) doesn't exist.

5.4.5 (a) Modify the previous argument to show that g'(1) does not exist. Show that $g'(\frac{1}{2})$ does not exist.

Given an m we see that $g(1+x_m)=\sum_{n=0}^{\infty}\frac{1}{2^n}h(2^n(1+x_m))=\sum_{n=0}^{\infty}\frac{h(2^n+2^{n-m})}{2^n}.$ Like 5.4.4, when n>m, $g(1+x_m)=0$ since we are at a multiple of 2 and h has a period of 2 meaning h(2z)=0 for $z\in\mathbb{Z}.$ So, $g(1+x_m)=\sum_{n=0}^{m}\frac{h(2^n+2^{n-m})}{2^n}.$ Next, when $1\leq n\leq m$, since h has a period of 2, we get $\frac{h(2^n+2^{n-m})}{2^n}=\frac{h(2^{n-m})}{2^n}=\frac{1}{2^m}.$ So, $g(1+x_m)=\sum_{n=0}^{1}\frac{h(2^n+2^{n-m})}{2^n}+\sum_{n=1}^{m}\frac{1}{2^m}.$ Then, when $n=0, \frac{h(2^n+2^{n-m})}{2^n}=h(1+\frac{1}{2^m})=h(1)-\frac{1}{2^m}=g(1)-\frac{1}{2^m}.$ So, $g(1+x_m)=g(1)-\frac{1}{2^m}+\sum_{n=1}^{m}\frac{1}{2^m}.$ Then, $\frac{g(1+x_m)-g(1)}{x_m}=\frac{g(1)-\frac{1}{2^m}+(\sum_{n=1}^{m}\frac{1}{2^m})-g(1)}{\frac{1}{2^m}}=-1+\frac{\sum_{n=1}^{m}\frac{1}{2^m}}{\frac{1}{2^m}}=m-1.$ Thus, like 5.4.4, as $m\to\infty, m-1$ is unbounded meaning that g'(1) doesn't exist.

Given an m we see that $g(\frac{1}{2}+x_m)=\sum_{n=0}^{\infty}\frac{1}{2^n}h(2^n(\frac{1}{2}+x_m))=\sum_{n=0}^{\infty}\frac{h(2^{n-1}+2^{n-m})}{2^n}.$ Like before, when n>m, $g(\frac{1}{2}+x_m)=0$ since we are at a multiple of 2 and h has a period of 2 meaning h(2z)=0 for $z\in\mathbb{Z}.$ So, $g(\frac{1}{2}+x_m)=\sum_{n=0}^{m}\frac{h(2^{n-1}+2^{n-m})}{2^n}.$ Next, when $2\leq n\leq m$, since h has a period of 2, we get $\frac{h(2^{n-1}+2^{n-m})}{2^n}=\frac{h(2^{n-m})}{2^n}=\frac{1}{2^m}.$ So, $g(\frac{1}{2}+x_m)=\sum_{n=0}^{1}\frac{h(2^{n-1}+2^{n-m})}{2^n}+\sum_{n=1}^{2}\frac{h(2^{n-1}+2^{n-m})}{2^n}+\sum_{n=2}^{m}\frac{1}{2^m}.$ Then, when n=0, $\frac{h(2^{n-1}+2^{n-m})}{2^n}=h(\frac{1}{2}+\frac{1}{2^m})=h(\frac{1}{2})-\frac{1}{2^m}=g(\frac{1}{2})-\frac{1}{2^m}.$ Similarly, when n=1, $\frac{h(2^{n-1}+2^{n-m})}{2^n}=\frac{h(1+2^{1-m})}{2}=\frac{h(1)-h(2*2^{-m})}{2}=\frac{1}{2}-\frac{1}{2^m}.$ So, $g(\frac{1}{2}+x_m)=g(\frac{1}{2})-\frac{1}{2^m}+\frac{1}{2}-\frac{1}{2^m}+\sum_{n=2}^{m}\frac{1}{2^m}.$ Then, $\frac{g(\frac{1}{2}+x_m)-g(\frac{1}{2})}{x_m}=\frac{g(\frac{1}{2})-\frac{2}{2^m}+\frac{1}{2}+(\sum_{n=2}^{m}\frac{1}{2^m})-g(\frac{1}{2})}{\frac{1}{2^m}}=-2+2^{m-1}+m.$ Thus, like before, as $m\to\infty$, $-2+2^{m-1}+m$ is unbounded meaning $g'(\frac{1}{2})$ doesn't exist.

(b) Show that g'(x) does not exist for any rational number of the form $x = \frac{p}{2^k}$ where $p \in \mathbb{Z}$ and $k \in \mathbb{N} \cup \{0\}$.

Assume m > k since we eventually want to see the behavior as m goes to infinity. Then, $g(x+x_m) = \sum_{n=0}^{\infty} \frac{h(2^n(\frac{p}{2^k} + \frac{1}{2^m}))}{2^n} = \sum_{n=0}^{\infty} \frac{h(p2^{n-k} + 2^{n-m})}{2^n}$. Like 5.4.4 and 5.4.5a, when n > m, $g(x+x_m) = 0$ since we are at a multiple of 2 and h has a period of 2 meaning h(2z) = 0 for $z \in \mathbb{Z}$. So, $g(x+x_m) = \sum_{n=0}^{m} \frac{h(p2^{n-k} + 2^{n-m})}{2^n}$. Next, when $k < n \le m$, since h has a period of 2, we get $\frac{h(p2^{n-k} + 2^{n-m})}{2^n} = \frac{h(2^{n-m})}{2^n} = \frac{1}{2^m}$.

So, $g(x+x_m) = \sum_{n=0}^k \frac{h(p2^{n-k}+2^{n-m})}{2^n} + \sum_{n=k+1}^m \frac{1}{2^m}$. Then, when $0 \le n \le k$, $\frac{h(p2^{n-k}+2^{n-m})}{2^n} = \frac{h(p2^{n-k})\pm 2^{n-m}}{2^n} = \frac{h(2^nx)}{2^n} \pm \frac{1}{2^m}$. So, $g(x+x_m) = (\sum_{n=0}^k \frac{h(2^nx)}{2^n} \pm \frac{1}{2^m}) + (\sum_{n=k+1}^m \frac{1}{2^m})$. Then, $\frac{g(x+x_m)-g(x)}{x_m} = \frac{(\sum_{n=0}^k \frac{h(2^nx)}{2^n} \pm \frac{1}{2^m}) + (\sum_{n=k+1}^m \frac{1}{2^m}) - g(x)}{\frac{1}{2^m}} = (\sum_{n=0}^k \pm 1) + (m-k-1)$. If it is supposed to be $\sum_{n=0}^k -1$ then we get m-2k-1, else if it supposed to be $\sum_{n=0}^k 1$ then we get m-1. Regardless, we see that as $m \to \infty$, both m-2k-1 and m-1 are unbounded meaning that g'(x) does not exist eitherways.