Laboratorio di Fisica

Docenti: Prof. A. Garfagnini - Prof. M. Lunardon Corso di Laurea in Fisica Canale 1 A-L Anno Accademico 2020/2021

ESPERIENZA DI LABORATORIO

Catena Elettronica

Turno T2

NICOLÒ LAI 1193976 nicolo.lai@studenti.unipd.it

 $\begin{array}{c} {\rm DATA} \ \ {\rm ESPERIENZA} \\ 23/11/2020 \\ 25/11/2020 \\ 26/11/2020 \end{array}$

1 Obiettivo

Assemblare una catena elettronica associata ad un rivelatore di radiazione. Studiare il segnale in uscita e la risposta in frequenza dei singoli moduli e della catena elettronica completa.

2 Strumentazione e Componenti

Nel corso dell'esperienza vengono utilizzati:

- Multimetro digitale Metrix MTX3292
- Generatore di funzioni Tektronix AFG1022
- Oscilloscopio digitale Tektronix TBS1102B
- Alimentatore di tensione continua TTi
- Due circuiti integrati TL082C (in totale quattro amplificatori operazionali)
- Resistori e condensatori di varie taglie
- Scheda Arduino Due

3 Introduzione

L'esperienza si basa su l'assemblamento e lo studio della risposta di una serie di moduli volti a simulare l'elettronica associata ad un rivelatore di radiazione. In laboratorio, quindi, si utilizza il generatore di funzioni per simulare un segnale tipicamente acquisibile dalla rivelazione di un evento da parte del detector. Questo segnale viene inizialmente elaborato dal preamplificatore (di tipo charge sensitive) e successivamente dallo shaper (di tipo CR-RC). Il segnale in uscita dal formatore viene infine amplificato per favorirne l'acquisizione da parte di una DAQ, che corrisponde in questo caso all'ADC della scheda Arduino Due. I tre stadi (preamplificatore, shaper, amplificatore) costituiscono dunque la catena elettronica rappresentata in Figura 1.

Figura 1: Schema a costanti concentrate della catena elettronica suddivisa nei tre moduli di interesse.

4 Preamplificatore

Il primo stadio della catena (preamplificatore) si utilizza per migliorare il rapporto segnale/rumore, in modo da trasferire un segnale più pulito all'elettronica di acquisizione. In laboratorio si assembla un preamplificatore charge sensitive: il modulo, infatti, consiste di un circuito integratore e la tensione in uscita è quindi direttamente proporzionale alla carica in ingresso. Nelle sezioni successive si vogliono studiare le caratteristiche principali del preamplificatore e verificare il corretto funzionamento del circuito confrontando la risposta sperimentale con il comportamento teorico atteso.

4.1 Configurazione Sperimentale

Si comincia utilizzando il generatore per simulare i segnali del rivelatore, impostando sul CH1 un impulso quadrato di frequenza $f_{\rm gen}=1\,\rm kHz$, tensione di riferimento $V_{\rm high}=0\,\rm V$, ampiezza negativa $V_{\rm low}=-1\,\rm V$ e durata $T=5\,\rm \mu s$ (cioè il tempo di raccolta del segnale). Viene successivamente assemblato sulla breadboard il primo modulo in Figura 1 utilizzando le componenti circuitali riportate in Tabella 1, misurate con il multimetro Metrix. È dunque fondamentale che il segnale erogato dal generatore sia negativo: avendo un amplificatore operazionale in configurazione invertente è infatti una richiesta necessaria per poter avere in output un segnale positivo, cioè già acquisibile con la scheda Arduino.

Misure Dirette - Preamplificatore		
Label	Valore	F.S.
$R_{\rm in}$	$56.56 \pm 0.02 \mathrm{k}\Omega$	$100\mathrm{k}\Omega$
$R_{ m f} \ C_{ m f}$	$696.1 \pm 0.3 \mathrm{k}\Omega \ 232 \pm 9 \mathrm{pF}$	$1000\mathrm{k}\Omega$ $1000\mathrm{pF}$

Tabella 1: Misure dirette delle componenti circuitali.

Si utilizza poi un generatore di tensione continua con $V_{\rm cc} = +15\,\mathrm{V}$ e $V_{\rm ee} = -15\,\mathrm{V}$ per alimentare l'operazionale. Si assume che esso abbia un comportamento ideale, ovvero che il polo positivo ed il polo negativo si trovino allo stesso potenziale (virtual short). Il segnale in ingresso $V_{\rm in}$ viene prelevato nel punto IN evidenziato nello schema mentre il segnale in uscita $V_{\rm out}^{\rm pre}$ dal

preamplificatore viene prelevato al termine del primo modulo, entrambi utilizzando sonde 10X.

4.2 Trattazione Analitica

Concentrando inizialmente l'attenzione sul modulo di ingresso (generatore reale e cablaggio), il sistema è un filtro passa basso con frequenza di taglio $f_{\rm t}^{\rm in}\approx 32\,{\rm MHz}$, molto maggiore delle frequenze in gioco: risulta allora corretto assumere il modulo in ingresso del tutto equivalente ad un generatore ideale, come rappresentato in Figura 1. Trattando ora il preamplificatore, invece, la funzione di trasferimento del circuito è riportata in Equazione 1: si noti il segno negativo dovuto all'amplificatore operazionale posto in configurazione invertente, la presenza di un unico polo e l'assenza di zeri.

$$H(s) = -\frac{1}{R_{\rm in} C_{\rm f}} \frac{1}{s + \frac{1}{T_{\rm pre}}}$$
 con $\tau_{\rm pre} = R_{\rm f} C_{\rm f}$ (1)

Data la forma della funzione di trasferimento, la risposta in frequenza sarà quella di un filtro passa basso: rappresentando H(s) in un grafico di Bode ci si aspetta allora un andamento costante a basse frequenze fino alla frequenza di taglio $f_{\rm t} = \frac{1}{2\pi\tau_{\rm pre}}$ e una decrescita lineare con pendenza $-20\,{\rm dB/dec}$ per frequenze maggiori. Facendo riferimento ai valori delle componenti circuitali riportati in Tabella 1, il tempo caratteristico del preamplificatore e la frequenza di taglio del filtro risultano essere

$$\tau_{\rm pre} = 161 \pm 6 \,\mu s$$
 $f_{\rm t} = 0.99 \pm 0.04 \,\text{kHz}$ (2)

Si ricava, infine, la risposta del circuito ad un segnale a gradino: nell'approssimazione $T \ll \tau_{\text{pre}}$ si trova una crescita lineare direttamente proporzionale alla carica in ingresso al preamplificatore per 0 < t < T e una decrescita smorzata esponenzialmente per $t \gg T$:

$$V_{\text{out}}^{\text{pre}}(t) = \begin{cases} -\frac{Q_{\text{in}}(t)}{C_{\text{f}}} & 0 < t < T \\ -\frac{Q_{\text{c}}}{C_{\text{f}}} e^{-\frac{t}{\tau^{\text{pre}}}} & t \gg T \end{cases} \qquad \text{con} \begin{cases} Q_{\text{in}}(t) = I_{\text{in}} t = \frac{V_{\text{in}}}{R_{\text{in}}} t \\ Q_{\text{c}} = I_{\text{in}} T = \frac{V_{\text{in}}}{R_{\text{in}}} T \end{cases}$$
(3)

dove, appunto, $Q_{\rm in}(t)$ corrisponde alla carica raccolta al tempo t dal preamplificatore mentre $Q_{\rm c}$ rappresenta la carica totale accumulata nel preamplificatore. Ci si aspetta allora che il segnale in uscita $V_{\rm out}$ visualizzato sull'oscilloscopio presenti una salita lineare fino ad un valore di tensione massimo $V_{\rm out}^{\rm max} = \frac{Q_c}{C_{\rm f}}$ e, successivamente, una decrescita esponenziale di tempo caratteristico $\tau_{\rm pre}$. Al fine di

verificare il corretto funzionamento dell'apparato sperimentale, si riportano in Tabella 2 le misure sperimentali del massimo della tensione e della costante di tempo $\tau_{\rm pre}$ acquisite con l'oscilloscopio. Confrontando le ultime con le aspettative teoriche si nota chiaramente un accordo generale tra le predizioni analitiche e

Controllo Apparato - Preamplificatore			
$V_{\mathrm{max}}^{\mathrm{th}}\left(\mathrm{mV}\right)$	$V_{\mathrm{max}}^{\mathrm{sper}}\left(\mathrm{mV}\right)$	$ au_{\mathrm{pre}}^{\mathrm{th}}\left(\mu\mathrm{s}\right)$	$ au_{\mathrm{pre}}^{\mathrm{sper}}\left(\mu\mathrm{s}\right)$
388 ± 17	392 ± 7	161 ± 6	158 ± 2

Tabella 2: Stime teoriche e misure sperimentali.

l'effettiva risposta del preamplificatore. Osservando poi Equazione 3, è esplicita la dipendenza lineare del segnale in uscita rispetto alla carica in ingresso al preamplificatore: nella sezione successiva si vuole quindi verificare che tale linearità venga rispettata.

4.3 Linearità del Preamplificatore

Al fine di verificare la dipendenza lineare del segnale in uscita $V_{\rm out}^{\rm pre}$ dalla carica in ingresso $Q_{\rm c}$, come esposto in Equazione 3, si fa variare la durata T del segnale erogato dal generatore di funzioni da 2 µs a 10 µs, in modo da modificare di volta in volta la quantità di carica iniettata nel preamplificatore rimanendo nell'approssimazione $T \ll \tau_{\rm pre}$. Per ogni T viene calcolata la quantità di carica totale $Q_{\rm c}$ e viene misurato con l'oscilloscopio il valore massimo del segnale in uscita $V_{\rm out}^{\rm max}$. Ai valori di tensione misurati con l'oscilloscopio viene associato l'errore di acquisizione comprendente sia il

contributo di lettura sia il contributo sul guadagno verticale in quanto nel processo di misura sono state utilizzate scale diverse, con la consapevolezza che queste ultime portano ad una correlazione almeno parziale delle incertezze. Gli errori sulla carica Q_c , invece, vengono calcolati per propagazione assumendo, ragionevolmente, che l'incertezza sulla durata T del segnale sia trascurabile. Questi risultano allora totalmente correlati tra loro: $V_{\rm in}$ e $R_{\rm in}$ rimangono costanti e l'incertezza sulla carica è dunque semplicemente l'incertezza sulla corrente in ingresso al preamplificatore riscalata dal tempo T.

Linearit	Linearità del Preamplificatore - Misure				
$T (\mu s)$	$Q_{\mathrm{c}}\left(\mathrm{pC}\right)$	$V_{\mathrm{out}}^{\mathrm{max}}\left(\mathrm{mV}\right)$			
2	36.0 ± 0.7	162 ± 3			
3	54.0 ± 1.0	238 ± 4			
4	72.0 ± 1.3	320 ± 6			
5	90 ± 2	392 ± 7			
6	108 ± 2	472 ± 8			
7	126 ± 2	548 ± 9			
8	144 ± 3	632 ± 12			
9	162 ± 3	704 ± 13			
10	180 ± 3	776 ± 14			

Tabella 3: Dati relativi al grafico in Figura 2.

Si rappresentano ora in Figura 2 le coppie $\{Q_{\rm c}, V_{\rm out}^{\rm max}\}$: il coefficiente angolare della retta di regressione corrisponde analiticamente all'inverso della capacità di feedback $C_{\rm f}$. Si vuole evidenziare che gli errori relativi su $V_{\rm out}^{\rm pre}$ e su $Q_{\rm c}$ sono entrambi circa il 2% della misura: nell'effettuare la regressione si decide tuttavia di trascurare l'incertezza sulla carica $Q_{\rm c}$ (in quanto totalmente correlata) e di aggiungere tale contributo successivamente nel calcolo dell'errore sulla capacità $C_{\rm f}$ in Equazione 4. La bontà del fit, l'andamento dei residui, l'errore a posteriori ed il confronto di $C_{\rm f}^{\rm fit}$ con quanto misurato direttamente con il multimetro verranno presi in

considerazione per verificare la linearità del preamplificatore rispetto alla carica in ingresso.

Figura 2: Fit lineare del massimo di tensione in uscita contro la carica totale in ingresso.

Si noti, inizialmente, come il χ^2 della regressione sia notevolmente inferiore rispetto al suo valore di aspettazione: essendo a conoscenza della parziale correlazione tra gli errori di scala dell'oscilloscopio ciò non risulta essere sorprendente in quanto il fit non ne tiene ovviamente conto. Segue direttamente una sottostima dell'errore sui parametri a e b della retta del fit. Un piccolo valore di χ^2 rispetto al numero di gradi di libertà, purtroppo, non permette nè di confermare l'ipotesi di linearità né di poterla rigettare. L'errore a posteriori, invece, si trova essere dello stesso ordine di grandezza dell'errore associato alle tensioni più basse (i primi punti) mentre diventa gradualmente inferiore rispetto all'incertezza associata alle tensioni maggiori. Questo suggerisce una soddisfacente distribuzione dei punti attorno alla retta di regressione, che si traduce nel grafico dei residui in un'ottimale distribuzione attorno allo zero. I residui, infatti, non presentano andamenti patologici accentuati e lo zero risulta essere sempre ben compreso nelle barre d'errore. Concentrando ora l'attenzione sui parametri della retta restituiti dal fit, si può notare come l'intercetta a sia ben compatibile con zero, evidenziando l'assenza di un eventuale offset sistematico o un errore di zero. Dal coefficiente angolare b si ricava la stima della capacità

$$C_{\rm f}^{\rm fit} = 232 \pm 7 \,\mathrm{pF} \qquad \qquad \mathrm{con} \ \sigma_{C_{\rm f}^{\rm fit}} = \sqrt{\left(\frac{1}{b^2}\right)^2 \sigma_b^2 + 2 \,\left(\frac{1}{b \,I}\right)^2 \sigma_I^2} \tag{4}$$

dove, nel computo dell'errore, σ_I rappresenta l'errore sulla corrente $I=\frac{V_{\rm in}}{R_{\rm in}}$ che, nel fit, verrebbe

riscalato dalla durata T del segnale. La stima della capacità di feedback risulta essere in ottima compatibilità ($\lambda = 0.05$) con quanto misurato con il multimetro (Tabella 1): questo porta quindi ad un'ulteriore conferma di una corretta linearità del preamplificatore.

Forma d'Onda del segnale in uscita

In questa sezione si vuole analizzare il segnale in uscita dal preamplificatore $V_{\mathrm{out}}^{\mathrm{pre}}$: sfruttando la stessa configurazione sperimentale presentata in Sezione 4.1 viene acquisita la forma d'onda del segnale utilizzando la scheda Arduino Due. Inizialmente allora si vogliono convertire le grandezze acquisite dalla scheda in unità arbitrarie a grandezze fisicamente rilevanti. In particolare, dividendo il numero di acquisizione per il sampling rate $S = 0.955 \,\mathrm{Msps}$ si ottiene l'evoluzione temporale (in secondi) del segnale acquisito. Sfruttando invece la funzione di calibrazione in tensione $V = a + b \cdot \text{counts}$ (con $a = -0.637 \pm 0.010 \,\mathrm{Ve}$ e $b = 0.828 \pm 0.007 \,\mathrm{mV/counts}$) si ottengono i valori in Volt delle misure acquisite in ADC counts. Per quanto riguarda l'errore da associare a tali valori di tensione, ci si ritrova davanti ad un certo numero di complicazioni. La prima idea sarebbe sfruttare gli errori sui parametri di calibrazione e, per propagazione, trovare l'incertezza sui valori di tensione secondo

$$\sigma_V = \sqrt{\sigma_a^2 + \text{counts}^2 \cdot \sigma_b^2 + 2 \cdot \text{counts} \cdot \text{cov}(a, b)}$$
 (5)

 $\sigma_V = \sqrt{\sigma_a^2 + \text{counts}^2 \cdot \sigma_b^2 + 2 \cdot \text{counts} \cdot \text{cov}(a, b)}$ Tuttavia, questa strategia porta ad una notevole sovrastima degli errori: così facendo, si associa ai valori di tensione V un'incertezza proveniente dal fit di calibrazione, pesato con gli errori di misura dati dall'oscilloscopio. Si perde quindi l'informazione sull'accuratezza effettiva della scheda Arduino, che risulta essere invece decisamente migliore. Inoltre, i parametri (a, b) e, soprattutto, i loro errori (σ_a, σ_b) della funzione di calibrazione dipendono fortemente dal range di tensioni che si sceglie di adottare per la calibrazione: quest'ultima, infatti, risulta essere sensibilmente differente per bassi valori di tensione (fino a circa 1.5 V) e per alti valori di tensione a causa dei circuiti di protezione dei pin di ingresso. Si sceglie quindi di adottare una metodologia differente per stimare le incertezze sui valori di tensione V. Ricordando che l'ADC della scheda Arduino Due converte segnali analogici con tensione di riferimento $V_{\rm ref} = 3.3\,\mathrm{V}$ su un range di N = 12 bit (ovvero 4096 valori), si trova una risoluzione di tensione dell'ADC, ovvero la più piccola variazione di tensione in ingresso che causa la variazione di 1 bit del valore convertito in uscita, pari a

 $\Delta V = \frac{V_{\text{ref}}}{2^N} = \frac{3.3 \,\text{V}}{4096} = 0.81 \,\text{mV}$ (6)

Per valutare gli effetti dell'accuratezza complessiva dell'acquisizione dell'ADC sulla stima della tensione in ingresso ad Arduino, occorre ricordare che ciascun bit della conversione digitale ha un peso pari alla risoluzione di tensione dell'ADC. Assumendo poi una un'accuratezza di ± 4 LSB (bit meno significativo) sull'acquisizione dell'ADC si ottiene un'accuratezza sulla stima della tensione in ingresso di $\Delta V \times$ 4 = 3.2 mV. Assumendo infine che questa si distribuisca uniformemente, si arriva alla stima finale dell'incertezza sulle stime dei valori di tensione $\sigma_V = 2 \,\mathrm{mV}.^1$ In Figura 3 è esposto quanto acquisito

dalla scheda Arduino: si nota immediatamente come siano stati registrati due "eventi", o meglio nel tempo di acquisizione impostato per Arduino il generatore di funzioni ha erogato due impulsi di tensione. Il segnale registrato, inoltre, risulta essere leggermente rumoroso: per rendere l'analisi successiva meglio gestibile si decide di sovrapporre i due picchi di tensione e di effettuarne una media. Osservando la Figura 3, si può inoltre notare chiaramente la salita lineare del segnale e la decrescita esponenziale, come previsto in Equazione 3. Il valore massimo di tensione acquisito con la scheda Arduino, inoltre,

Figura 3: Segnale in uscita dal preamplificatore.

è in linea con le aspettative e con quanto misurato sperimentalmente con l'oscilloscopio. Ci si concentra ora sulla stima del tempo caratteristico $\tau_{\rm pre}$: si vuole inizialmente effettuare un fit esponenziale del tipo $y = a + b \exp(-x/\tau)$. Successivamente, sfruttando i parametri a e b per normalizzare i dati, si vuole considerare il logaritmo delle tensioni normalizzate $\tilde{V} = (V - a)/b$ ed effettuare una regressione

¹Tamberi, G. (2016). La Conversione Analogico/Digitale con Arduino. (Prima Edizione).

lineare. L'errore su \tilde{V} è dato per propagazione, in cui compare la covarianza tra i parametri a e b restituiti dal fit esponenziale. In questo modo, quindi, i dati si distribuiscono secondo $\log(\tilde{V}) = -t/\tau$.

Figura 4: A sinistra: fit esponenziale dello smorzamento del segnale in uscita. A destra: fit lineare del logaritmo del segnale in uscita normalizzato.

Osservando rapidamente il grafico a sinistra, si nota come il segnale segua in modo ottimale la funzione esponenziale: la stima del tempo caratteristico $\tau_{\rm pre}^{\rm exp}$, inoltre, risulta essere sufficientemente compatibile con la stima teorica $\tau_{\rm pre}^{\rm th}=161\pm 6\,\mu{\rm s}~(\lambda=1.5).$ Come stima del tempo caratteristico, in ogni caso, si preferisce quanto trovato dalla regressione lineare: tale metodo, infatti, è complessivamente più robusto, più preciso e fornisce una stima migliore sugli errori dei parametri. Dal grafico a destra, quindi, si nota chiaramente come computare il logaritmo delle tensioni V porti a considerare più "pesanti" (barre d'errore più piccole) i punti a monte della discesa esponenziale e a dare conseguentemente meno peso ai punti di coda. Questi ultimi, eccessivamente prossimi allo zero, non vengono considerati dato che la propagazione dell'errore su di essi porta ad un contributo decisamente troppo grande ed il fit non ne è praticamente influenzato. Il χ^2 , inoltre risulta essere in soddisfacente accordo con il suo valore di aspettazione (Z=1.6): le misure in cima alla discesa si distribuiscono estremamente fedelmente attorno alla retta, compatibilmente con il loro errore, mentre le misure verso la coda risultano discostarsi più sensibilmente dal fit. Si nota, infine, che rimuovendo dati outlier scartando tutti i punti che distano più di 3σ dalla retta di regressione i risultati non vengono sensibilmente influenzati: queste misure si trovano quasi esclusivamente sulla coda di destra e, avendo un errore notevolmente maggiore rispetto ai punti situati in alto a sinistra, hanno poca influenza sulla retta del fit. Calcolando ora il tempo caratteristico si trova $\tau_{\rm pre}^{\rm th}=-1/b=153.9\pm0.2\,\mu{\rm s}$: questo presenta infine una compatibilità $\lambda=1.2$ con la stima teorica $\tau_{\rm pre}^{\rm th}=d$ è in linea con quanto misurato sperimentalmente (Tabella 2).

4.5 Analisi in Frequenza

Si vuole ora studiare la risposta in frequenza del preamplificatore: si modificano le impostazioni del generatore in modo da erogare un'onda sinusoidale di ampiezza 1V e frequenza $f_{\rm gen}$ variabile da 10 Hz a 1 MHz. Viene acquisita allora l'ampiezza del segnale sia in ingresso sia in uscita utilizzando l'oscilloscopio e viene calcolata la funzione di trasferimento H, alla quale viene associata un'incertezza σ_H data da

 $H = \frac{V_{\text{out}}}{V_{\text{in}}} \qquad \sigma_H = H \sqrt{\left(\frac{\sigma_{\text{L}} \times V_{\text{in}}/\text{div}}{V_{\text{in}}}\right)^2 + \left(\frac{\sigma_{\text{L}} \times V_{\text{out}}/\text{div}}{V_{\text{out}}}\right)^2}$ (7)

dove $\sigma_{\rm L}=0.04$ rappresenta l'incertezza di lettura associata all'oscilloscopio mentre i termini $V_{\rm in}/{\rm div}$ e $V_{\rm out}/{\rm div}$ corrispondono al numero di Volt per divisione per il canale di acquisizione rispettivamente del segnale in ingresso e del segnale in uscita. L'incertezza di guadagno associata all'oscilloscopio non viene invece considerata in quanto, volendo rappresentare le misure acquisite sperimentalmente attraverso un grafico di Bode, tale contributo viene scaricato interamente nell'intercetta delle interpolazioni volte a caratterizzare l'andamento delle misure. L'errore sulle misure espresse in Decibel viene calcolato per propagazione. Si assume infine trascurabile l'incertezza sulla frequenza dell'onda erogata dal generatore. Si faccia quindi riferimento a quanto riportato in Sezione 4.2 per le aspettative teoriche della risposta in frequenza del circuito. Si rappresenta ora in Figura 5 il grafico di Bode delle misure acquisite assieme ai punti ottenuti attraverso una simulazione Spice della risposta del circuito.

Confrontando inizialmente le misure sperimentali con la simulazione Spice, si nota un ottimo accordo in tutto lo spettro di frequenze. Questo è chiaramente indice di una risposta in frequenza del circuito

Figura 5: Grafico di Bode delle misure sperimentali e dei dati simulati.

compatibile con le aspettative: il comportamento del filtro, infatti, è evidentemente un passa basso. A basse frequenze, la funzione di trasferimento è pressochè costante a 22 dB (retta in arancione), mentre per frequenze crescenti la funzione di trasferimento decresce linearmente con coefficiente angolare conforme all'aspettativa dei $-20\,\mathrm{dB/dec}$. L'ascissa del punto di intersezione tra le due rette di regressione fornisce una stima della frequenza di taglio del circuito $f_{\rm t}=1.03\pm0.03\,\mathrm{kHz}$, compatibile in modo soddisfacente ($\lambda=0.9$) con la frequenza di taglio teorica esposta in Equazione 2. Si vuole sottolineare che nel computo dell'errore su $f_{\rm t}$ è stata presa in considerazione la covarianza tra parametri appartenenti allo stesso fit. Osservando infine che la formula analitica frequenza di taglio $f_{\rm t}$ riportata in Equazione 2 contiene il tempo caratteristico $\tau_{\rm pre}$, si vuole valutare l'accordo tra la frequenza di taglio ottenuta dal grafico di Bode e la frequenza di taglio teorica, utilizzando però $\tau_{\rm pre}=\tau_{\rm pre}^{\rm lin}$ ricavato nella sezione precedente. Si ottiene dunque una frequenza di taglio $f_{\rm t}^{\rm lin}=1.0340\pm0.0013\,\mathrm{kHz}$ ed è in eccellente compatibilità con quanto appena stimato ($\lambda=0.13$). Da questo notevole accordo si deduce l'assenza di possibili sistematicità di metodo, sia nella stima del tempo caratteristico attraverso il fit lineare in Figura 4, sia nella stima della frequenza di taglio analizzando il grafico di Bode.

5 Shaper CR-RC

Riprendendo ora quanto esposto in Sezione 4.2, si ottiene in uscita dal preamplificatore un segnale direttamente proporzionale alla carica in ingresso. Questo segnale è caratterizzato da una salita lineare

Figura 6: Signal pile-up simulazione Spice.

fino al raggiungimento del massimo di tensione (in modulo) $V_{\text{out}}^{\text{max}} = \frac{Q_c}{C_{\text{f}}}$ ed uno smorzamento esponenziale di tempo caratteristico τ_{pre} di circa un centinaio di µs. Si nota allora in Figura 3 che un segnale di questo tipo impiega circa 1 ms per azzerarsi completamente. Il secondo stadio della catena (shaper) si utilizza per modificare la forma del segnale in uscita dal preamplificatore, rendendolo più simile ad una curva gaussiana ed accorciandone la durata effettiva. Si è particolarmente interessati a diminuire il tempo di discesa al fine di evitare un possibile signal pile up nel caso di un'elevata frequenza di

acquisizione. In tale situazione, infatti, il segnale di un'acquisizione precedente si sovrapporrebbe a quello dell'acquisizione successiva, rendendo estremamente più complicato estrarre le corrette informazioni dalle due acquisizioni. In Figura 6 è raffigurata una simulazione di questo fenomeno, impostando una frequenza dell'impulso in ingresso pari a 10 kHz. Infine, per quanto affermato in Sezione 4.2, è importante che lo shaper preservi l'informazione sulla carica in ingresso, in quanto

questa risulta essere il modello utilizzando nell'esperienza per simulare l'evento rivelato dal detector. Nelle sezioni successive si vuole ricavare analiticamente il comportamento teorico dello shaper e, successivamente, verificarne l'accordo con la risposta sperimentale. In particolare, si vuole verificare che il segnale in uscita sia proporzionale al segnale in ingresso e che la durata del segnale in uscita sia ridotta rispetto allo smorzamento esponenziale della tensione dovuto al preamplificatore. Si vuole sottolineare, infine, che inizialmente verrà studiato il comportamento dello shaper in condizioni di preamplificatore ideale mentre successivamente ci si concentrerà sul caso reale.

Configurazione Sperimentale Ideale 5.1

Si comincia assemblando sulla breadboard il secondo modulo rappresentato in Figura 1 utilizzando le resistenze e capacità riportate in Tabella 4. Si evidenzia che per la prima fase di analisi (preamplificatore

	Misure Dirette - Shaper		
Label	Valore	F.S.	
R_1	$100.99\pm0.06\mathrm{k}\Omega$	$1000\mathrm{k}\Omega$	
R_2	$99.93 \pm 0.06 \mathrm{k}\Omega$	$1000\mathrm{k}\Omega$	
C_1	$157 \pm 9\mathrm{pF}$	$1000\mathrm{pF}$	
C_2	$159 \pm 9\mathrm{pF}$	$1000\mathrm{pF}$	

Tabella 4: Misure dirette delle componenti circuitali.

ideale) non viene montata la resistenza R_{pz} . Per studiare il comportamento dello shaper in coda ad un preamplificatore ideale è sufficiente fornire in ingresso (direttamente allo shaper) un segnale tale da avere una salita (quasi) istantanea che mantenga la tensione al valore massimo per un tempo sufficientemente lungo. Un segnale di questo tipo viene simulato facendo erogare al generatore di funzioni un'onda quadra a bassa frequenza (100 Hz) di tensioni $V_{\text{low}} = 0 \text{ V}$ e

 $V_{\rm high}=1\,{
m V}$. Si rimanda infine a Sezione 4.1 per l'alimentazione dell'operazionale e l'acquisizione del segnale mediante l'oscilloscopio.

5.2Trattazione Analitica

Si noti inizialmente (Figura 1) la presenza di un buffer tra il modulo CR ed il modulo RC. Il buffer, che non altera il comportamento del circuito, permette di fattorizzare la funzione di trasferimento

complessiva $H(s) = H_{CR} H_{RC}$, dove H_{CR} e H_{RC} sono rispettivamente le funzioni di trasferimento di un circuito RC in configurazione passa alto e passa basso. In questo modo, quindi, il calcolo della funzione di trasferimento si semplifica notevolmente. Inoltre, si vuole assumere $R_1 C_1 \equiv \tau_{\rm sh1} \approx \tau_{\rm sh2} \equiv R_2 C_2$: questa approssimazione risulta ragionevole osservando i valori riportati Tabella 5 e, di conseguenza, si considera la media pesata dei due come tempo caratteristico dello shaper, detto shaping time. L'effettiva validità di questa approssimazione può essere verificata studiando il grafico di Bode della

Shaping Time
$ au_{ m sh1} = 15.86 \pm 0.91 m \mu s$ $ au_{ m sh2} = 15.89 \pm 0.90 m \mu s$
$\langle \tau_{\rm sh} \rangle = 15.9 \pm 0.6 \mu \mathrm{s}$

Tabella 5: Stime di $\tau_{\rm sh}$.

risposta in frequenza del circuito. La funzione di trasferimento risulta allora essere

$$H(s) = \frac{1}{\tau_{\rm sh}} \frac{s}{\left(s + \frac{1}{\tau_{\rm sh}}\right)^2}$$
 con $\tau_{\rm sh} = 15.9 \pm 0.6 \,\mu s \implies f_{\rm polo} = \frac{1}{2\pi\tau_{\rm sh}} = 10.0 \pm 0.4 \,\mathrm{kHz}$ (8)

Si noti quindi come la forma analitica di H(s) presenti uno zero nell'origine ed un polo doppio legato allo shaping time. Il grafico di Bode della risposta in frequenza presenta allora una salita lineare con pendenza $20\,\mathrm{dB/dec}$ fino al raggiungimento della frequenza f_{polo} relativa al polo doppio per poi decrescere linearmente con pendenza $-20\,\mathrm{dB/dec}$. Il filtro è dunque un passa banda, la cui banda passante (e di conseguenza gli intervalli di integrazione e derivazione del segnale) è influenzata dallo shaping time. Concentrando ora i automore ci si aspetta in uscita una tensione data da $V_{\rm out}(t) = \frac{V_{\rm in}}{\tau_{\rm sh}} \, t \, e^{-\frac{t}{\tau_{\rm sh}}}$ shaping time. Concentrando ora l'attenzione sulla risposta dello shaper ad un segnale in ingresso ideale,

$$V_{\text{out}}(t) = \frac{V_{\text{in}}}{\tau_{\text{ch}}} t e^{-\frac{t}{\tau_{\text{sh}}}} \tag{9}$$

che presenta un massimo $V_{\rm out}^{\rm max}=V_{\rm in}/e$ direttamente proporzionale al segnale in ingresso, che quindi contiene l'informazione sulla carica raccolta dal preamplificatore. Inoltre, tale massimo viene assunto ad un tempo $t^{\text{max}} = \tau_{\text{sh}}$: lo shaping time, quindi, determina approssimativamente la durata del segnale in uscita dallo shaper. Si noti che $\tau_{\rm sh}$ è un ordine di grandezza inferiore rispetto al tempo caratteristico $\tau_{\rm pre}$: da questo si deduce quindi che la durata del segnale viene notevolmente ridotta grazie all'azione dello shaper, come anticipato in Sezione 5.

5.3 Risposta del Circuito

Al fine di verificare il corretto funzionamento dell'apparato sperimentale, si riportano in Tabella 6 le misure sperimentali del massimo della tensione e dello shaping time $\tau_{\rm sh}$ acquisite con l'oscilloscopio.

Confrontando la misura di $V_{\rm max}^{\rm sper}$ con l'aspettativa teorica emerge una sensibile discrepanza tra le due: la prima, infatti, si discosta del 7.9% rispetto alla seconda. Questa incongruenza si attribuisce principalmente alle componenti circuitali ed alle sistematiche presenti nel circuito stesso, comprendendo quindi anche la capacità

Controllo Apparato - Shaper			
$V_{\max}^{\text{th}} \left(\text{mV} \right)$	$V_{ m max}^{ m sper}\left({ m mV}\right)$	$ au_{\mathrm{sh}}^{\mathrm{th}}\left(\mu\mathrm{s}\right)$	$ au_{\mathrm{sh}}^{\mathrm{sper}}\left(\mu\mathrm{s}\right)$
372 ± 6	342 ± 6	15.9 ± 0.6	16 ± 3

Tabella 6: Stime teoriche e misure sperimentali.

parassita dovuta ai cavi ed alla breadboard. Tale valore massimo, tuttavia, viene assunto ad un tempo $\tau_{\rm sh}^{\rm sper}$ perfettamente conforme allo shaping time. In Figura 7 viene mostrato il segnale in uscita acquisito con la scheda Arduino assieme alla simulazione Spice: si nota chiaramente come la tensione sperimentale sia inferiore alle aspettative, come già evidenziato in Tabella 6. Si fa notare, tuttavia, che il valore massimo dei dati acquisiti con la scheda Arduino risulta essere $V_{\rm max}=342\pm2\,{\rm mV}$ e questo viene assunto ad un tempo $t\approx 15.9\,{\rm ps}$ perfettamente in linea con quanto misurato sperimentalmente

Figura 7: Segnale in uscita dallo shaper.

mediante l'oscilloscopio. Si noti, inoltre, che il segnale si azzera dopo circa 150 µs, ovvero molto prima rispetto al segnale in uscita dal preamplificatore (Figura 3): come anticipato in Sezione 5, questo aspetto è fondamentale per evitare un signal pile up in caso di alta frequenza di acquisizione. Si vuole infine specificare che il convertitore all'interno della scheda Arduino Due è ottimizzato per ricevere in ingresso segnali provenienti da una sorgente la cui impedenza di uscita sia sufficientemente bassa. Secondo il datasheet Atmel (relativo alla CPU su cui è basata la scheda), questa deve essere al massimo

di $10\,\mathrm{k}\Omega$. Questo non è chiaramente il caso dell'uscita dallo shaper: una tale impedenza porterebbe quindi ad una scorretta conversione del segnale. Per ovviare al problema, il segnale viene prelevato in uscita dalla catena elettronica completa (Sezione 6.1), la quale presenta un'impedenza in uscita idealmente nulla, e dividendo i valori misurati per il fattore di amplificazione G si riporta il segnale allo stadio non amplificato. Questa procedura viene effettuata anche per la configurazione reale dello shaper + preamplificatore, trattata in seguito.

5.4 Analisi in Frequenza

Si vuole ora studiare la risposta in frequenza dello shaper (configurazione ideale): si imposta il generatore in modo da erogare un'onda sinusoidale di ampiezza $1\,\mathrm{V}$ e frequenza f_{gen} variabile da 50 Hz a 1 MHz. Si acquisisce quindi l'ampiezza del segnale sia in ingresso sia in uscita utilizzando l'oscilloscopio e viene calcolata la funzione di trasferimento H, alla quale viene associata un'incertezza σ_H data da Equazione 7. Si rimanda a Sezione 4.5 per le considerazioni sugli errori associati alle misure, in quanto risulta essere perfettamente analogo. Si rappresenta allora in Figura 8 il grafico di Bode delle misure acquisite e di una simulazione Spice della risposta del circuito. Confrontando inizialmente le misure sperimentali con la simulazione Spice si nota un ottimo accordo a basse frequenze. Nella zona di mid band si ha invece un leggero scostamento: i dati sperimentali risultano essere lievemente inferiori rispetto alla simulazione. Per alte frequenze (attorno al MHz) si osserva infine un notevole disaccordo tra l'andamento delle misure sperimentali e la simulazione Spice: la causa di questa anomalia si crede essere dovuta alla GBW dell'operazionale, la quale non è stata presa in considerazione nel simulare la risposta del circuito.² In ogni caso, il filtro si comporta secondo le aspettative riportate in Sezione 5.2: la funzione di trasferimento presenta una crescita lineare a basse frequenze (zona di derivazione) con pendenza $19.3 \pm 0.2 \,\mathrm{dB/dec}$ ed una decrescita lineare ad alte frequenze (zona di integrazione) con pendenza $-18.8 \pm 0.3 \,\mathrm{dB/dec}$. L'ascissa del punto di intersezione delle due rette di regressione fornisce una stima della frequenza relativo al polo $f_{\rm polo} = 9.6 \pm 0.2 \, \mathrm{kHz}$, in ottima compatibilità con la frequenza

²La Gain BandWidth dell'amplificatore operazionale, anche detta frequenza a guadagno unitario, determina il massimo guadagno ottenibile ad una data frequenza.

Figura 8: Grafico di Bode delle misure sperimentali e dei dati simulati.

del polo teorica esposta in Equazione 8 ($\lambda=0.8$). Sottraendo infine 3 dB al massimo della funzione di trasferimento, le ascisse dei punti di intersezione con le due rette di regressione determinano la larghezza di banda Δf del filtro. Si ottiene quindi la bandwidth dello shaper, delimitata da

$$f_{\text{low}} = 3.7 \pm 0.4 \,\text{kHz}$$
 $f_{\text{high}} = 26.1 \pm 0.8 \,\text{kHz}$ (10)

Si vuole infine sottolineare che l'ottimo accordo della frequenza f_{polo} con l'aspettativa teorica (in cui compare la media pesata τ_{sh}) supporta ulteriormente la validità dell'approssimazione $\tau_{\text{sh}1} \approx \tau_{\text{sh}2}$.

5.5 Shaper con Preamplificatore in ingresso

Si vuole ora studiare il comportamento dello shaper in condizioni più realistiche. Nelle sezioni precedenti è stato iniettato nel formatore un segnale ideale direttamente erogato dal generatore. Nell'idea di una catena elettronica associata ad un rivelatore di radiazione, ovviamente, questo non è possibile. Nella situazione reale, infatti, lo shaper è posto in coda al preamplificatore, che fornisce in uscita il segnale rappresentato in Figura 3. La salita è ora lineare, non più "istantanea", ed il segnale è smorzato esponenzialmente, non più costante al suo valore massimo. Questa deviazione dall'idealità porta a rilevanti deformazioni del segnale in uscita dallo shaper. Osservando il grafico a sinistra in Figura 9 si nota chiaramente il fenomeno di undershoot del segnale: questo, infatti, dopo aver raggiunto il massimo di tensione scende sotto allo zero (baseline) per poi tendere ad esso abbastanza lentamente. Si ricorda che, nel caso ideale, già dopo 150 µs il segnale si poteva considerare azzerato, mentre in questa situazione è necessario attendere circa 600 µs. È tuttavia possibile aggirare l'effetto di undershoot ponendo una resistenza adeguata in parallelo alla capacità C_1 : scegliendo quindi $R_{\rm pz}$ tale che $R_{\rm pz} = \frac{\tau_{\rm pre}^{\rm pre}}{C_1}$ si trova $R_{\rm pz} \gg R_1$ e di conseguenza la funzione di trasferimento del modulo CR assume la forma

$$H(s) = \frac{s + \frac{1}{\tau^{\text{pz}}}}{s + \frac{1}{\tau^{\parallel}}} \approx \frac{s + \frac{1}{\tau^{\text{pz}}}}{s + \frac{1}{\tau^{1}}} \qquad \text{con } \begin{cases} \tau^{\text{pz}} = C_{1} R_{\text{pz}} \\ \tau^{\parallel} = C_{1} \left(\frac{1}{R_{1}} + \frac{1}{R_{\text{pz}}}\right)^{-1} \end{cases}$$
(11)

e risulta avere, in buona approssimazione, lo stesso polo del modulo CR base. Di conseguenza, la funzione di trasferimento complessiva dello shaper compensato continua ad avere un polo doppio in $f_{\rm polo}$ e questo non ne altera le proprietà caratteristiche. La correzione apportata per eliminare l'effetto di undershoot prende il nome di compensazione pole zero. In laboratorio, quindi, viene montata una resistenza $R_{\rm pz}=1.013\pm0.007\,{\rm M}\Omega$ (F.S. $10\,{\rm M}\Omega$) molto simile a quella necessaria per compensare l'effetto di undershoot ($R_{\rm pz}^{\rm th}=1.03\pm0.07\,{\rm M}\Omega$): osservando il grafico a destra in Figura 9 si nota quindi come l'effetto sia del tutto scomparso. Il segnale ora, infatti, dopo aver assunto il valore massimo decresce senza scendere sotto la baseline. Inoltre, il segnale si azzera completamente dopo circa 200 µs, come nel caso ideale trattato in precedenza. Si vuole ora confrontare le misure sperimentali acquisite con l'oscilloscopio ed i dati acquisiti con la scheda Arduino. In Tabella 7 si riportano quindi le misure del massimo di tensione, il tempo in cui tale massimo viene assunto e la tensione di undershoot.

Figura 9: A sinistra: segnale in uscita dallo shaper senza resistenza di compensazione. A destra: segnale in uscita dallo shaper con resistenza di compensazione.

	Shaper - Segnale in uscita $senza\ R_{\rm pz}$				
$V_{ m max}$	$V_{\max} \left(\text{mV} \right)$ $t_{\max} \left(\text{ps} \right)$			$V_{ m undershoot} \left({ m mV} ight)$	
Osc.	Arduino	Osc.	Arduino	Osc.	Arduino
123 ± 2	124 ± 2	17 ± 1	~ 16.8	-19.7 ± 1.1	-20 ± 2
	Shaper - Segnale in uscita $con\ R_{\rm pz}$				
$V_{\rm max}$	$V_{\max} \left(\text{mV} \right)$ $t_{\max} \left(\text{\mu s} \right)$ $V_{\text{undershoot}} \left(\text{mV} \right)$			ot (mV)	
Osc.	Arduino	Osc.	Arduino	Osc.	Arduino
129 ± 2	131 ± 2	17 ± 1	~ 17.7	X	X

Tabella 7: Confronto del segnale in uscita tra le due configurazioni dello shaper.

Si noti allora come tutte le misure acquisite con l'oscilloscopio e con Arduino sono tra loro consistenti. Inoltre, la precisione con cui viene acquisito il segnale risulta essere analoga tra le due tipologie di misure. Osservando l'accordo tra i dati acquisiti con Arduino e la simulazione Spice (Figura 9), invece, si nota una leggera discrepanza. Un effetto analogo è già stato evidenziato in Figura 7: il segnale misurato sia con la scheda Arduino sia con l'oscilloscopio risulta essere sempre lievemente minore delle aspettative. Si ritiene, tuttavia, più rilevante l'elevato accordo tra metodologie di acquisizione differenti, piuttosto che il leggero disaccordo con le simulazioni. Come è già stato evidenziato in precedenza, infatti, questa deviazione dalle aspettative viene attribuita a delle sistematiche inerenti alle componenti circuitali ed al circuito stesso (per esempio capacità parassite di breadboard e cavi). Si noti ora invece come il tempo t_{max} sia ora leggermente aumentato rispetto al caso ideale ($t_{\text{max}}^{\text{ideal}} = 15.9 \pm 0.6 \,\mu\text{s}$): la causa di ciò si crede essere, ancora una volta, la perdita di idealità del segnale in ingresso. La salita lineare di questo, infatti, causa un leggero ritardo nel raggiungimento del massimo di tensione. Il tempo t_{max} risulta essere, in ogni caso, in linea con le simulazioni Spice e quindi con le aspettative.

6 Catena Elettronica Completa

Generalmente, in una catena elettronica associata ad un rivelatore, lo shaper non ha solamente la funzione di modificare la forma del segnale. Viene infatti progettato in modo tale da fornire anche un'amplificazione e, in tal caso, il modulo prende il nome di shaping amplifier. L'azione dello shaper CR-RC montato in laboratorio riduce in modo ottimale la durata effettiva del segnale, rendendo più difficile che si verifichi un signal pile up. Tuttavia, l'ampiezza in tensione viene notevolmente ridotta: per questo motivo allora, in laboratorio, si assembla in coda allo shaper un circuito amplificatore con operazionale in configurazione non invertente, ovvero l'ultimo stadio della catena rappresentato in Figura 1. Lo scopo di questo terzo ed ultimo stadio della catena è ottimizzare l'ampiezza del segnale per sfruttare al meglio il range in input della DAQ, ovvero in questo caso l'ADC della scheda Arduino Due. Questa, infatti, può ricevere nell'input analogico segnali positivi su un range di circa 3 V, nonostante sia opportuno notare che già oltre i 2 V i vari circuiti di protezione dei pin in ingresso tendono ad alterare l'acquisizione del segnale. Quest'ultimo, infine, viene convertito lavorando su 12 bit, cioè 4096 valori. Come è stato evidenziato nelle sezioni precedenti, i segnale già positivo è sufficiente un'amplificazione lineare non invertente per adattare il segnale al range dell'ADC di Arduino.

6.1Amplificatore non invertente

Si assembla sulla breadboard il terzo, ed ultimo, modulo rappresentato in Figura 1 utilizzando le due resistenze riportate in Tabella 8. Il circuito è un semplice circuito amplificatore non invertente di guadagno $G=1+\frac{R_{2a}}{R_{1a}}=9.254\pm0.004$. Impostando il generatore come in Sezione 4.1,

Mis	Misure Dirette - Amplificatore				
Label	Valore	F.S.			
$R_{1\mathrm{a}} \ R_{2\mathrm{a}}$	$\begin{array}{c} 9.982 \pm 0.006 \mathrm{k}\Omega \\ 82.39 \pm 0.03 \mathrm{k}\Omega \end{array}$	$\begin{array}{c} 100\mathrm{k}\Omega \\ 100\mathrm{k}\Omega \end{array}$			

Tabella 8: Misure dirette delle componenti circuitali.

scegliendo però un tempo di raccolta del segnale massimo pari a $T = 10 \,\mu s$, si ha in ingresso un segnale $V_{\rm shaper}^{\rm max}=260\pm4\,{\rm mV}$, misurato con l'oscilloscopio. Ci si aspetta, dunque, in uscita dalla catena completa un segnale di ampiezza $V_{\rm out}^{\rm th} = 2.41 \pm 0.04 \, {\rm V}.$ Si misura, invece,

utilizzando l'oscilloscopio una tensione $V_{\rm out}^{\rm sper} = 2.32 \pm 0.04 \, {\rm V}$: emerge nuovamente la leggera discrepanza tra le aspettative sulla tensione e le effettive misure sperimentali.

Trattazione Analitica

Per il calcolo della funzione di trasferimento complessiva della catena si moltiplicano tra loro le funzioni di trasferimento dei singoli moduli:

rasferimento dei singoli moduli:
$$H(s) = \underbrace{-\frac{1}{R_{\rm in} C_{\rm f}} \frac{1}{s + \frac{1}{\tau^{\rm pre}}}}_{\text{preamplificatore}} \underbrace{\frac{1}{\tau^{\rm sh}} \frac{s + \frac{1}{\tau^{\rm pz}}}{\left(s + \frac{1}{\tau^{\rm sh}}\right)^{2}}}_{\text{shaper}} \underbrace{\left(1 + \frac{R_{\rm 2a}}{R_{\rm 1a}}\right)}_{\text{amplificatore}} \quad \text{con} \quad \begin{cases} \tau^{\rm pre} = R_{\rm f} C_{\rm f} \\ \tau^{\rm sh} = R_{\rm 1} C_{\rm 1} = R_{\rm 2} C_{\rm 2} \end{cases}$$

$$(12)$$

Si ricorda ora che la resistenza di compensazione $R_{\rm pz}$ è stata scelta tale che $R_{\rm pz}=\frac{ au^{\rm pre}}{C_1}$: si trova allora $\tau^{\rm pz} = \tau^{\rm pre}$ e la funzione di trasferimento diventa

$$H(s) = -\frac{1 + \frac{R_{2a}}{R_{1a}}}{R_{in} C_{f} \tau^{sh}} \frac{1}{\left(s + \frac{1}{\tau^{sh}}\right)^{2}}$$
(13)

Si noti allora che la funzione di trasferimento effettiva della catena elettronica completa non presenta zeri, mentre presenta lo stesso polo doppio dello shaper. Ci si aspetta dunque che il comportamento in frequenza della catena sia quello di un filtro passa basso avente frequenza di taglio teorica $f_{\rm t}=10.0\pm$ $0.4\,\mathrm{kHz}$ (sperimentalmente si è invece trovato, in Sezione $5.4,\,f_\mathrm{t}=9.6\pm0.2\,\mathrm{kHz}$). Per frequenze minori ci si aspetta, nel grafico di Bode, un andamento costante delle misure mentre, per frequenze maggiori, ci si aspetta una decrescita lineare con pendenza -40 dB/dec. Infine, in analogia a quanto discusso in Sezione 4.3 riguardo la linearità del preamplificatore, siccome lo shaper preserva l'informazione sulla carica in ingresso ed il modulo finale amplifica semplicemente la tensione senza alterarne le altre caratteristiche, ci si aspetta che il valore massimo del segnale in uscita $V_{\text{out}}^{\text{max}}$ dalla catena elettronica completa risulti lineare rispetto alla carica totale Q_c raccolta dal preamplificatore.

Linearità della Catena Elettronica 6.3

Line	Linearità della Catena - Misure			
T (µs)	$Q_{\mathrm{c}}\left(\mathrm{pC}\right)$	$V_{\mathrm{out}}^{\mathrm{max}}\left(\mathbf{V}\right)$		
3	54.0 ± 1.0	0.536 ± 0.002		
4	72.0 ± 1.3	0.790 ± 0.002		
5	90 ± 2	1.044 ± 0.002		
6	108 ± 2	1.298 ± 0.002		
7	126 ± 2	1.554 ± 0.002		
8	144 ± 3	1.810 ± 0.002		
9	162 ± 3	2.064 ± 0.002		
10	180 ± 3	2.320 ± 0.002		

Tabella 9: Dati relativi al grafico in Figura 10.

Ci si propone qui di verificare la dipendenza lineare del segnale in uscita $V_{\rm out}^{\rm max}$ dalla catena elettronica rispetto alla carica totale $Q_{\rm c}$ raccolta dal preamplificatore. Si fa variare dunque la durata T dell'impulso quadrato erogato dal generatore di funzioni da 3 µs a 10 µs, in modo da modificare di volta in volta la carica iniettata nel preamplificatore: per ogni ${\cal T}$ viene calcolata la quantità di carica totale Q_c secondo Equazione 3 e si acquisisce poi, utilizzando la scheda Arduino Due, la forma d'onda del segnale in uscita. Da quest'ultima si misura infine l'ampiezza effettiva del segnale in uscita. Per quanto riguarda gli errori sulla carica, in analogia a quanto riportato in Sezione 4.3, questi sono totalmente

correlati e non vengono dunque considerati per effettuare il fit, riportato in Figura 10. Si nota immediatamente, osservando il grafico dei residui, come gli errori associati alle misure siano leggermente sovrastimati in confronto all'effettiva distribuzione dei punti attorno alla retta. Il χ^2 infatti risulta essere minore rispetto al suo valore di aspettazione e l'errore a posteriori risulta essere un ordine di grandezza inferiore rispetto alle incertezze associate alle misure (si rimanda a Sezione 4.4 per gli errori associati alle misure acquisite con Arduino). L'andamento dei residui è sufficientemente regolare e, assieme all'ottima distribuzione delle misure attorno alla retta caratterizzata dall'errore a posteriori, si può quindi affermare una soddisfacente linearità della catena.

Figura 10: Fit lineare del massimo di tensione in uscita contro la carica totale in ingresso.

6.4 Analisi in Frequenza

Si vuole ora studiare la risposta in frequenza della catena elettronica: per quanto riportato in Sezione 6.1, ci si aspetta un comportamento da filtro passa basso avente frequenza di taglio analoga alla frequenza relativa al polo dello shaper (Sezione 5.4). Si rappresenta allora in Figura 11 il grafico di Bode delle misure acquisite assieme ai punti ottenuti attraverso una simulazione Spice della risposta del circuito.

Figura 11: Grafico di Bode delle misure sperimentali e dei dati simulati.

Confrontando inizialmente le misure sperimentali con la simulazione Spice, si nota un ottimo accordo in tutto lo spettro di frequenze. Questo è chiaramente indice di una risposta in frequenza conforme alle aspettative: a basse frequenze la funzione di trasferimento è costante a $20.1 \pm 0.2\,\mathrm{dB}$ mentre per frequenze crescenti la funzione di trasferimento subisce un'attenuazione lineare di pendenza $-39.2 \pm 0.3\,\mathrm{dB/dec}$, in linea con l'aspettativa dei $-40\,\mathrm{dB/dec}$ dovuti al polo doppio. L'ascissa del punto di intersezione tra le due rette di regressione fornisce quindi una stima della frequenza di taglio del circuito $f_{\rm t} = 9.72 \pm 0.13\,\mathrm{kHz}$. Si ricorda quindi che la frequenza di taglio teorica attesa è $f_{\rm t} = 10.0 \pm 0.4\,\mathrm{kHz}$, mentre la frequenza relativa al polo della funzione di trasferimento dello shaper ricavata dal grafico di

Bode in Figura 8 risulta essere $f_{\rm t}=9.6\pm0.2\,{\rm kHz}$. La stima della frequenza di taglio appena trovata presenta un'ottima compatibilità con queste ultime: in particolare si ha una compatibilità $\lambda=0.7$ con la stima teorica e $\lambda=0.3$ con la frequenza relativa al polo dello shaper. È stata quindi verificata la validità di Equazione 13, fortemente dipendente dalla corretta scelta delle componenti circuitali al fine di poter effettuare determinate approssimazioni e identificazioni.

6.5 Considerazioni Finali

Si vuole ora cercare di fornire una visione d'insieme della catena elettronica studiata nelle sezioni precedenti. Si ricorda che il segnale in ingresso, erogato dal generatore di funzioni, consiste in un impulso quadrato di frequenza $f_{\rm gen}=1\,{\rm kHz}$, ampiezza $V_{\rm gen}=1\,{\rm V}$ e durata $T=5\,{\rm \mu s}$. Il segnale viene quindi inizialmente elaborato dal preamplificatore, lineare rispetto alla carica totale in ingresso. In

seguito, il segnale viene modificato in forma e durata tramite l'azione dello shaper. Infine, tale segnale viene amplificato per favorirne l'acquisizione da parte dell'ADC della scheda Arduino. In Figura 12 si evidenzia l'andamento dell'ampiezza del segnale dall'ingresso fino all'uscita dell'amplificatore finale, confrontandolo parallelamente al trend teorico. I due si trovano allora in soddisfacente accordo: ad eccezione della tensione in ingresso erogata dal generatore, in uscita da ciascun modulo della catena si misura sperimentalmente un'ampiezza leggermente inferiore delle aspettative teoriche, come più volte sottolineato in precedenza. Il buon accordo e la coerenza dell'andamento permettono

dunque di affermare il corretto funzionamento della catena elettronica nel suo insieme. L'importanza e l'efficacia dell'azione del preamplificatore e dello shaper sono state ampiamente discusse e verificate in precedenza. Si vuole ora invece essere più quantitativi riguardo all'azione dell'amplificatore finale. Come anticipato in Sezione 6, il segnale amplificato è meglio adattato al range in input dell'ADC della scheda Arduino. Come conseguenza, sfruttando più correttamente la conversione AD, si ottiene un sostanziale aumento di precisione nelle misure. Osservando ad esempio i valori di tensione in uscita dallo shaper in Tabella 7, sia le misure acquisite con l'oscilloscopio sia le misure acquisite dalla scheda Arduino presentano un errore relativo del 1.5%, trattandosi di un centinaio di milliVolt. Per quanto riguarda il segnale amplificato, invece, un'acquisizione con l'oscilloscopio è caratterizzata da un errore relativo del 1.7%, mentre per un'acquisizione effettuata da Arduino si ottiene almeno uno 0.4% e adattando più accuratamente il segnale al range dell'ADC si è in grado di aumentare ulteriormente la precisione delle misure fino a circa lo 0.1%.

7 Conclusioni

In conclusione, è stato messo in evidenza come la catena elettronica risponda al segnale in ingresso in modo conforme alle aspettative teoriche ed alle simulazioni Spice. I principali vantaggi emersi nel corso dell'esperienza riguardo l'utilizzo di un'elettronica modulare di questo tipo sono sicuramente l'ottenere in uscita un segnale acquisibile adattato al range specifico della DAQ in utilizzo e l'accorciare la durata effettiva del segnale evitando quindi eventuali pile up. Inoltre, è stato evidenziato come queste caratteristiche di interesse dipendano esclusivamente dalla scelta delle componenti circuitali: sarebbe dunque possibile sostituire, per esempio, una resistenza del modulo amplificatore con un trimmer resistivo, al fine di rendere più agevole in laboratorio la corretta scelta dell'amplificazione per adattare il segnale al range della DAQ. Analogamente, sarebbe possibile implementare trimmer resistivi o capacitivi anche nello shaper, in quanto si è visto che lo shaping time è strettamente correlato alla durata effettiva del segnale in uscita.