ملخص لقوانين وحدة دراسة الظواهر الكهربائية (المكثفات وثنائي القطب RC)

(222 422 6 25 2 22 2 2 2 2 2 2 2 2 2 2 2 2 2 2						
ملاحظات	العبارة الحرفية	القوانين				
التوتر الكهرياتي بين طرفي المقاومة وحدتها : U_R	$U_R = Ri$	عبارة التوتر الكهرباتي بين طرفي ناقل أومي				
V_c يرمز للتوتر الكهرباتي للمكثفة ب U_c وتقدرب	$U_c(t) = \frac{q(t)}{c}$	 التوتر الكهريائي بين طرفي مكثفة: 				
C : سعة المكثفة وتقدر بوحدة الفاراد (F) أو mF أو μF μ أو μF 7: شدة التيار المارة في الدارة 2: الزمن ويقدر بالثانية S	0	عبارة التيار الكهربائي:				
	$I = \frac{Q}{t}$	 حالة تيار ثابت الشدة 				
	$i(t) = \frac{dq(t)}{dt} = C\frac{dU_C(t)}{dt}$	﴿ حالة تيار متغير الشدة				
$U_C = U_{AB}$	$q = CU_c$	عبارة الشحنة الكهربانية				
ير مز المقادير اللحظية التي تتغير مع الزمن بالرموز المقادير اللحظية التي تتغير مع الزمن بالرموز المسغيرة (١٤ إ: ٩) أما المقادير العظمي فيرمز لها برموز كبيرة (١٠٤٥ و١٥ و١٥) أو (١٤ إ: ٩)	$q = gg_c$	 حالة تيار ثابت 				
	$q(t) = \frac{di(t)}{dt}$	 حالة تيار متغير 				
10: شدة التيار المظمى المارة في الدارة في النظام الدائم E : ترتر المولد ويقدر بوحدة الفواط 2 : ترتر المولد ويقدر بوحدة الفواط 2 : ثابت الأزمن ووحدة الثانية وهو الأزمن الازم الشحن المكافة بـ 9 6 6 من شحتها المظمى يمكن تحديده إما بطريقة المملى حد 0 = 1 او £ 0.63 في الشحن او 0.37 في التفريغ ثم الاسقاط لى محور الازمنة	$I_0 = \frac{E}{R}$	عبارة شدة التيار العظمى المارة في الدارة				
	au=RC	عبارة ثابت الزمن ؟ لثناني القطب RC				
. E : تقدر بالجول (J) C: سعة المكلفة (F) E : توتر المولسد وتقدر بـ(V) الطالة الإعظمية المغزنة بالجول E _C (max)	$E_c = \frac{1}{2}CU_c^2 = \frac{1}{2}qU_c = \frac{1}{2}\frac{q^2}{C}$	عبارة الطاقة الكهربائية المخزنة في المكثفة				
	$E_C(0) = E_C(max) = \frac{1}{2}CE^2$	(الطاقة الاعظمية المخزنة عند (t=0)				
	$t_{1/2} = \tau \frac{\ln 2}{2} = RC \frac{\ln 2}{2}$	$t_{1/2}$ زمن تناقص طاقة الوشيعة الى النصف				

الدراسية النظرية لشحن المكثفة (القاطعة في الوضع 01)

t=0; $U_c(0)=E$

 $t=\tau; U_c(\tau)=0.63E$

 $t = 5\tau; U_c(5\tau) = 0.99E$ $t = \infty$; $U_c(\infty) = E$

الصفحة 01

 $\frac{du_{C}(t)}{dt} \perp \frac{u_{C}(t)}{dt} = \frac{E}{t}$

البيان: خلال الشحن (۷) ياب E
τ 5τ t(s)

ملخص لقوانين وحدة دراسة الظواهر الكهربائية (المكثفات وثنائي القطب RC)

الدر اســة النظرية لتفريـغ المكــثفة (القاطعة في الوضع 02)

الصفحة02

التمرين الرابع

تتألف دارة كهربائية من مولد للتوتر الثابت $E = 6 \ V$ و مكثفة فارغة

نافى الشكل : $C = 0.1 \, \mu$ و مقاومتها Ω و مقاومتها $C = 0.1 \, \mu$

1) ـ عند اللحظة t = 0 نضع البادلة في الوضع (1) فتيداً عملية شحن المكثفة

ا ـ استعمل قانون أوم و قانون التوتر ات لكتابة المعادلة التفاضلية

ب ـ تحقق أن حل هذه المعادلة من الشكل:

باختیار صحیح له $U(t) = E + ae^{-bt}$

 τ اوحد قيمة a = -E ؟ ثم أوحد قيمة

2) ـ أكمل الجدول التالي :

 $\mathcal{L}_{BD} = f(t)$ [3]

4) ـ نضع البادلة في الوضع 2 لتفريغ المكثفة ؟

أ ـ الى أبن تذهب الطاقة المخزنة في المكثفة ؟

ب ـ ما هي القيمة العددية لمذه الطاقة ؟

q (µC)

20

t (ms)

0.2

التمرين الأول

نشحن بواسطة مولد مثالي (E, r = 0) مكثفة مربوطة على التسلسل

مع مقاومة $\Omega = 20$. يمثل البيان التالي تغيرات التوتر الكهربائي بين طرفى المكثفة خلال الزمن .

1) ـ عبر عن شدة التيار في كل لحظة بدلالة (u, R, E) .

2) ـ اكمل الجدول التالي :

t(s)	0	5	10	15	20	25
i(A)						

3) ـ عين بيانيا قيمة ثابت الزمن τ لثنائي القطب R C ?

4) - اوحد قيمة C

i = f(t) [i = f(t)] f(t)

6) ـ كيف تتطور شدة التيار ؟

التمرين الثاني

لدينا مولد لتوتر ثابت E=100~V مقاومته الداخلية مهملة ، ناقل أومى مقاومته $R=10~k\Omega$ ، و مكثفة سعتها . بادلة أسلاك توصيل ، $C = 0.5 \, \mu F$ نحقق الدارة التالية:

 $u_{AB} = f(t)$ أ ـ أوجد المعادلة التفاضلية للدارة

حـ مثل كيفيا تغير ات ١٨٤ بدلالة الزمن ؟

د ـ ما هي دلالة فاصلة نقطة تقاطع المماس للبيان

 $\mathcal{E}_{AB} = E_{AB}$ size \mathcal{E}_{AB}

ه ـ أحسب ثابت الزمن لثنائي القطب R C ؟

 $t_2 = 5\tau$ و احسب $t_1 = \tau$ عند اللحظات $t_2 = 5\tau$ و عند اللحظات

t = 0 عند اللحظة في الموضع (2) عند اللحظة 2

ا ـ اوجد المعادلة التفاضلية للدارة ؟

 $f: t \rightarrow \infty$, $t_3 = 5\tau$, $t_2 = \tau$, $t_1 = 0$

حـ مثل تغير أت UAB بدلالة الزمن ؟

التمرين الثالث

 $R=10^5~\Omega$ در شحنها تحت توتر ثابت (E=5.0~V) . ثم أعيد تفريغها في ناقل أومى مقاومته Cو ذلك عند اللحظة t=0 . يمثل البيان التالي تطور ات شحنة المكثفة أثناء تفريغها .

1) ـ أكتب المعادلة التفاضلية للدارة بدلالة q (t) و خلال التفريغ ؟

 $q(t) = Q_0 e^{-t/\tau}$

3) ـ برهن أن المماس للبيان عند المبدأ يقطع محور الأزمنة $(t = \tau)$ عند نقطة تو افق

4) ـ عين بيانيا ثابت الزمن ؟

5 - احسب سعة المكثفة ?

t = 5 و t = 0 و t = 0

7) ـ أحسب شدة التيار عند نفس اللحظتين السابقتين ؟

التمرين الخامس ىكالورىا 2008 تربرياضيات

في حصة للأعمال المخبرية ، اقترح الأستاذ على تلاميذه مخطط الدارة الممثلة في الشكل لدراسة ثنائي القطب . تتكون الدارة من العناصر الكهربائية التالية :

 $C=1,0\mu$ همولد توتره الكهربائي ثابت F=12 مكثفة (غير مشحونة) سعتها F

* ناقل أومى مقاومته $\Omega^{3}\Omega$ * بادلة

(1) على الوضع (1). الحظة (t=0)

أ ـ ماذا بحدث للمكثفة ؟

 $\cdot U_{AB}$ ب كيف يمكن عمليا مشاهدة التطور الزمنى للتوتر الكهربائي جـ ـ بين أن المعادلة التفاضلية التي تحكم اشتغال الدارة الكهربائية عبارتها:

 $RC\frac{dU_{AB}}{dt} + U_{AB} = E$

د ـ اعط عبارة (ד) الثابت المميز للدارة ، و بين باستعمال التحليل البعدي انه يقدر بالثانية في النظام الدولي للوحدات (SI) .

