Compilers Assignment 2

Sarthak Kalankar

Problem 1

The given context-free grammar is as follows:

$$\begin{aligned} \text{Function} &\to \text{Type } \mathbf{id}(\text{Arguments}) \\ &\quad \text{Type} &\to \mathbf{id} \\ &\quad \text{Type} &\to \text{Type*} \\ \text{Arguments} &\to \text{ArgList} \\ \text{Arguments} &\to \epsilon \\ &\quad \text{ArgList} &\to \text{Type } \mathbf{id}, \text{ArgList} \\ &\quad \text{ArgList} &\to \text{Type } \mathbf{id} \end{aligned}$$

(i) Explanation

The given grammar is not LL(1) because of the ambiguity and left recursion in the productions.

(ii) Transformed Grammar

```
\begin{aligned} & \text{Function} \to \text{Type } \textbf{id } \text{ (Arguments)} \\ & & \text{Type'} \to \text{id Type'} \\ & & \text{Type'} \to * \text{Type'} \\ & & \text{Type'} \to \epsilon \\ & \text{Arguments} \to \text{ArgList} \\ & \text{Arguments} \to \epsilon \\ & & \text{ArgList} \to \text{Type id ArgList'} \\ & & \text{ArgList'} \to \text{, ArgList} \\ & & \text{ArgList'} \to \text{, } \epsilon \end{aligned}
```

(iii) FIRST and FOLLOW Sets

```
\begin{aligned} & \text{FIRST(Function)} = \{id\} \\ & \text{FIRST(Type)} = \{id\} \\ & \text{FIRST(Type')} = \{\epsilon, *\} \\ & \text{FIRST(Arguments)} = \{\epsilon, id\} \\ & \text{FIRST(ArgList)} = \{id\} \\ & \text{FIRST(ArgList')} = \{\epsilon, , \} \end{aligned}
& \text{FOLLOW(Function)} = \{\$\} \\ & \text{FOLLOW(Type)} = \{id\} \\ & \text{FOLLOW(Type')} = \{id\} \\ & \text{FOLLOW(Arguments)} = \{\}\} \\ & \text{FOLLOW(ArgList)} = \{\}\} \\ & \text{FOLLOW(ArgList')} = \{\}\} \end{aligned}
```

(iv) LL(1) Parsing Table

	id	()	*	,	\$
Function	Function \rightarrow Type id (Arguments)					
Type	$\mathrm{Type} \to \mathrm{id} \; \mathrm{Type'}$					
Type'	Type' $\rightarrow \epsilon$			$\mathrm{Type'} \to *\mathrm{Type'}$		
Arguments	$Arguments \rightarrow ArgList$		Arguments $\rightarrow \epsilon$			
ArgList	$ArgList \rightarrow Type id ArgList'$					
ArgList'			$ArgList' \rightarrow, \epsilon$		$ArgList' \rightarrow ArgList$	

Problem 2

$$0. \quad S' \to S$$

1.
$$S \to LM$$

$$2. \quad S \to Lp$$

3.
$$S \rightarrow qLr$$

4.
$$S \rightarrow sr$$

5.
$$S \rightarrow qsp$$

6.
$$L \rightarrow aMb$$

7.
$$L \rightarrow s$$

8.
$$L \rightarrow t$$

9.
$$M \rightarrow t$$

FIRST and FOLLOW sets:

$$FIRST(S) = \{a, s, q, t\}$$
$$FIRST(L) = \{a, s, t\}$$
$$FIRST(M) = \{t\}$$

$$FOLLOW(S) = \{\$\}$$

$$FOLLOW(L) = \{p, r, t\}$$

$$FOLLOW(M) = \{b, \$\}$$

Cannonical LR(0) Collection

$$\begin{split} I_0 &= Closure(\{[S' \to S]\}) \\ &= \{[S' \to S], \ [S \to \iota LM], \ [S \to \iota Lp], \ [S \to \iota qLr], \ [S \to \iota sr], \ [S \to \iota qsp], \ [L \to \iota aMb], \ [L \to \iota s], \ [L \to \iota t]\} \\ I_1 &= GOTO(I_0, S) = \{[S' \to S \cdot]\} \\ I_2 &= GOTO(I_0, L) = \{[S \to L \cdot M], \ [S \to L \cdot p], \ [M \to \iota t]\} \\ I_3 &= GOTO(I_0, q) = \{[S \to q \cdot Lr], \ [S \to q \cdot sp], \ [L \to \iota aMb], \ [L \to \iota s], \ [L \to \iota t]\} \\ I_4 &= GOTO(I_0, s) = \{[S \to s \cdot r], \ [L \to s \cdot]\} \\ I_5 &= GOTO(I_0, a) = \{[L \to a \cdot Mb], \ [M \to \iota t]\} \\ I_6 &= GOTO(I_0, t) = \{[L \to \iota \iota \cdot]\} \\ I_7 &= GOTO(I_2, M) = \{[S \to LM \cdot]\} \\ I_8 &= GOTO(I_2, p) = \{[S \to Lp \cdot]\} \\ I_9 &= GOTO(I_3, L) = \{[S \to qL \cdot r]\} \\ I_{10} &= GOTO(I_3, s) = \{[S \to qs \cdot p], [L \to s \cdot]\} \\ I_{12} &= GOTO(I_4, r) = \{[S \to sr \cdot]\} \\ I_{13} &= GOTO(I_5, M) = \{[L \to aM \cdot b]\} \\ I_{14} &= GOTO(I_{10}, r) = \{[S \to qLr \cdot]\} \\ I_{15} &= GOTO(I_{11}, p) = \{[S \to qsp \cdot]\} \\ \end{split}$$

$$I_{16} = GOTO(I_{13}, b) = \{[L \rightarrow aMb \cdot]\}$$

$$\begin{split} I_6 &= GOTO(I_3,t) \\ I_5 &= GOTO(I_3,a) \\ I_9 &= GOTO(I_5,t) \end{split}$$

LR(0) Automaton

SLR(1) Table

STATE	ACTION									GOTO			
	a	b	p	q	r	s	t	\$	S	L	M		
0	s5			s3		s4	s6		1	2			
1								Accept					
2			s8				s9				7		
3	s5					s11	s6			10			
4			r7		r7,s12		r7						
5							s9				13		
6			r8		r8		r8						
7								r1					
8								r2					
9		r9						r9					
10					s14								
11			r7,s15		r7		r7						
12								r4					
13		s16											
14								r3					
15								r5					
16			r6		r6		r6						

Table 1: SLR(1) Parsing Table

Hence, due to the multiply filled cells, the grammar is not SLR(1)

LR(1) Collection:-

```
I_0 = Closure(\{[S' \rightarrow \cdot S, \$]\})
 =\{[S'\to\cdot S,\$],\ [S\to\cdot LM,\$],\ [S\to\cdot Lp,\$],\ [S\to\cdot qLr,\$],\ [S\to\cdot sr,\$],\ [S\to\cdot qsp,\$],\ [L\to\cdot aMb,t/p],\ [L\to\cdot pL,\$],\ [L\to\cdot pL,\$
\cdot s, t/p, [L \rightarrow \cdot t, t/p]
I_1 = GOTO(I_0, S) = \{ [S' \to S \cdot, \$] \}
I_2 = GOTO(I_0, L) = \{ [S \to L \cdot M, \$], [S \to L \cdot p, \$], [M \to t, \$] \}
I_3 = GOTO(I_0, q) = \{ [S \to q \cdot Lr, \$], [S \to q \cdot sp, \$], [L \to aMb, r], [L \to s, r], [L \to t, r] \}
I_4 = GOTO(I_0, s) = \{ [S \to s \cdot r, \$], [L \to s \cdot, t/p] \}
I_5 = GOTO(I_0, a) = \{ [L \rightarrow a \cdot Mb, t/p], [M \rightarrow t, b] \}
I_6 = GOTO(I_0, t) = \{ [L \rightarrow t \cdot, t/p] \}
I_7 = GOTO(I_2, M) = \{ [S \to LM \cdot, \$] \}
I_8 = GOTO(I_2, p) = \{ [S \rightarrow Lp \cdot, \$] \}
I_9 = GOTO(I_2, t) = \{ [M \to t \cdot, \$] \}
I_{10} = GOTO(I_3, L) = \{ [S \to qL \cdot r, \$] \}
I_{11} = GOTO(I_3, s) = \{ [S \to qs \cdot p, \$], [L \to s \cdot, r] \}
I_{12} = GOTO(I_3, a) = \{ [L \to a \cdot Mb, r], [M \to t, b] \}
I_{13} = GOTO(I_3, t) = \{[L \rightarrow t \cdot, r]\}
I_{14} = GOTO(I_4, r) = \{ [S \to sr \cdot, \$] \}
I_{15} = GOTO(I_5, M) = \{ [L \rightarrow aM \cdot b, t/p] \}
I_{16} = GOTO(I_6, t) = \{ [M \to t \cdot, b] \}
I_{17} = GOTO(I_{10}, r) = \{ [S \to qLr, \$] \}
I_{18} = GOTO(I_{11}, p) = \{ [S \to qsp \cdot, \$] \}
I_{19} = GOTO(I_{12}, M) = \{ [L \to aM \cdot b, r] \}
I_{20} = GOTO(I_{15}, b) = \{ [L \to aMb, t/p] \}
I_{21} = GOTO(I_{19}, b) = \{ [L \to aMb \cdot, r] \}
I_{16} = GOTO(I_{12}, t)
```

LR(1) Automaton:-

LR(1) Table

STATE	ACTION									GOTO		
	a	b	р	q	r	s	t	\$	S	L	M	
0	s5			s3		s4	s6		1	2		
1								Accept				
2			s8				s9				7	
3	s12					s11	s13			10		
4			r7		s14		r7					
5							s16				15	
6			r8				r8					
7								r1				
8								r2				
9								r9				
10					s17							
11			s18		r7							
12							s16				19	
13					r8							
14								r4				
15		s20										
16		r9										
17								r3				
18								r5				
19		s21										
20			r6				r6					
21					r6							

Table 2: LR(1) Parsing Table

LALR(1) Table

STATE	ACTION								GOTO		
	a	b	p	q	r	s	t	\$	S	L	M
0	s512			s3		s4	s613		1	2	
1								Accept			
2			s8				s9				7
3	s512					s11	s613			10	
4			r7		s14		r7				
512							s916				1519
613			r8		r8		r8				
7								r1			
8								r2			
916		r9						r9			
10					s17						
11			s18		r7						
14								r4			
1519		s2021									
17								r3			
18								r5			
2021			r6		r6						

Table 3: LALR(1) Parsing Table

As there are no multiply-filled cells, grammar is LALR(1).

Problem 3

Assumptions

- If the number of choices in a question is not 3 or 4, the question is **not considered** in the statistics of the quiz. Further, the program is terminated there only, keeping the stats only for the previously encountered valid questions.
- ullet I have assumed that there are no stray characters in a valid tag. For ex- <choice random >

Bash Script for running the code

```
#!/bin/bash

bison -d parser.y

flex -o lexer.c lexer.l

g++ parser.tab.c lexer.c -lfl

./a.out < testfile.txt
```

Files Submitted

- lexer.l -> the lexer file
- parser.y -> the parser file
- \bullet script.sh -> script file

Process of running

- Instead of testfile.txt in line 6 of **script.sh**, put your test file.
- In parser.y, go to main(), in fopen(), write your testfile name.
- \bullet run ./script.sh in the terminal