

Московский государственный университет имени М.В. Ломоносова Факультет вычислительной математики и кибернетики Кафедра исследования операций

Численное решение двумерной задачи Дирихле для уравнения Пуассона в криволинейной области

Выполнил: студент 611 группы Жуков А.С. Вариант 10

Содержание

1	Постановка задачи	;				
2	Метод решения задачи	4				
	2.1 Метод фиктивных областей					
	2.2 Разностная схема					
	2.3 Метод скорейшего спуска для решения СЛАУ					
3	Результаты					
	3.1 Последовательная реализация + OpenMP					
	3.2 Реализация с использованием МРІ					
	3.3 Реализация гибридной программы с использованием MPI и OpenMP					
4	Литература.					

1 Постановка задачи

В области $D\subset R^2$ рассматривается дифференциальное уравнение Пуассона вида

$$-\Delta u = f(x, y),$$

в котором оператор Лапласа

$$\Delta u = \frac{\partial^2 u}{\partial x^2} + \frac{\partial^2 u}{\partial y^2}.$$

Для выделения единственного решения уравнение дополняется граничными условиями Дирихле:

$$u(x,y) = 0, \quad (x,y) \in \gamma$$

В конкретном варианте 6, необходимо решить задачу при следующих условиях:

- f(x,y) = 1 для всех $(x,y) \in D$.

2 Метод решения задачи

Для решения данной задачи предлагается воспользоваться методом фиктивных областей, который преобразует исходную криволинейную задачу в задачу на премоугольнике. Такую задачу можно численно решить методом конечных разностей. Данный метод сводит задачу к решению разностной схемы, которую можно приближенно решить итерационным методом скорейшего спуска.

2.1 Метод фиктивных областей

Основная идея метода состоит в том, чтобы расширить первоначальную криволинейную область D до более простой прямоугольной Π . Это позволяет использовать более традиционные численные методы, которые легче реализовать и анализировать. Для этого введем функцию v(x,y), для которой внутри и на границе заданной области D остабтся изначальные ограничения, а в введенной фиктивной области $\Pi \setminus \overline{D}$ ограничивается равенством:

$$-\frac{\partial}{\partial x}\big(\frac{1}{\epsilon}\,\frac{\partial v}{\partial x}\big) - \frac{\partial}{\partial y}\big(\frac{1}{\epsilon}\,\frac{\partial v}{\partial y}\big) = 0\,.$$

Требуется найти функцию v(x,y), которая должна быть непрерывной в области Π , и чтобы вектор потока $-1/\epsilon\left(\frac{\partial v}{\partial x},\frac{\partial v}{\partial y}\right)$ имел непрерывную нормальную компоненту на общей части криволинейной границы области D и прямоугольника Π . Из [2] функция v(x,y) равномерно приближает решение u(x,y) в области D при $\epsilon \to \infty$.

2.2 Разностная схема

В данной работе полученная краевая задача решалась численно методом конечных разностей [3]. В замыкании прямоугольника $\overline{\Pi}$ определяется равномерная прямоугольная сетка $\overline{\omega}_h = \overline{\omega}_1 \times \overline{\omega}_2$, где $\overline{\omega}_1 = \{x_i = A_1 + i * h_1, i = \overline{0}, \overline{M}\}, \overline{\omega}_2 = \{y_j = A_2 + j * h_2, j = \overline{0}, \overline{N}\}, h_1 = (B_1 - A_1)/M, h_2 = (B_2 - A_2)/N$. Через ω_h обозначим множество узлов сетки прямоугольника, не лежащих на границе Γ . Рассмотрим линейное пространство функций, заданных на сетке ω_h . Обозначим через w_{ij} значение сеточной функции $w \in H$ в узле сетки $(x_i, y_j) \in \omega_h$. Будем считать, что в пространстве H задано скалярное произведение и евклидова норма

$$(u,v) = \sum_{i=1}^{M-1} \sum_{j=1}^{N-1} h_1 h_2 u_{ij} v_{ij}, ||u|| = \sqrt{(u,u)}.$$

В методе конечных разностей дифференциальная задача математической физики заменяется конечно-разностной операторной задачей вида Aw=B, где $A:H\to H$ — оператор, действующий в пространстве сеточных функций, $B\in H$ - известная правая часть. При построении разностной схемы все уравнения краевой задачи аппроксимируются их разностными аналогами сеточными уравнениями, связы- вающими значения искомой сеточной функции в узлах сетки. Полученные таким образом уравнения должны быть функционально независимыми, а их общее количество совпадать с числом неизвестных, т.е. с количеством узлов сетки. Дифференциальное уравнение задачи во всех внутренних точках сетки аппроксимируются разностным уравнением

$$-\frac{1}{h_1}\left(a_{i+1j}\frac{w_{i+1j}-w_{ij}}{h_1}-a_{ij}\frac{w_{ij}-w_{i-1j}}{h_1}\right)-\frac{1}{h_2}\left(b_{ij+1}\frac{w_{ij+1}-w_{ij}}{h_2}-b_{ij}\frac{w_{ij}-w_{ij-1}}{h_2}\right)=F_{ij}, \quad (*)$$

$$i=\overline{1,M-1},j=\overline{1,N-1}.$$
 Где коэффициенты равны

$$a_{ij} = \frac{1}{h_2} \int_{y_{j-1/2}}^{y_{j+1/2}} k(x_{i-1/2}, t) dt, \quad i = \overline{1, M}, j = \overline{1, N},$$

$$b_{ij} = \frac{1}{h_1} \int_{x_{j-1/2}}^{x_{j+1/2}} k(t, y_{i-1/2}) dt, \quad i = \overline{1, M}, j = \overline{1, N},$$

$$F_{ij} = \frac{1}{h_1 h_2} \iint_{\Pi_{ij}} F(x, y) dx dy, \quad i = \overline{1, M - 1}, j = \overline{1, N - 1},$$

$$\Pi_{ij} = \{(x, y) : x_{i-1/2} \le x \le x_{i+1/2}, y_{i-1/2} \le x \le y_{i+1/2}\}.$$

По сути, интегралы в коэффициентах a_{ij} равны длине части отрезка $\left[(x_{i-1/2},y_{j-1/2}),(x_{i-1/2},y_{j+1/2})\right]$, которая лежит в области D. Для b_{ij} аналогично. Интегралы в коэффициентах F_{ij} равны площади пересечения $\Pi_{ij}\cap D$. Все они вычисляются аналитически.

2.3 Метод скорейшего спуска для решения СЛАУ

Полученная разностная схема приближенно решается итерационным методом скорейшего спуска [4]. Начальное приближение $w^{(0)}$ выбран равным нулю во всех точках расчетной сетки. Метод является одношаговым. Итерация $w^{(k+1)}$ вычисляется по итерации $w^{(k)}$ согласно следующему равенству:

$$w_{ij}^{(k+1)} = w_{ij}^k - \tau_{k+1} r_{ij}^{(k)},$$

где невязка $r^{(k)} = Aw^{(k)} - F$, A – самосопряженный и положительноопределенный оператор соответствующий (*), итерационный параметр равен

$$au_{k+1} = \frac{(r^{(k)}, r^{(k)})}{(Ar^{(k)}, r^{(k)})}.$$

В качестве условия остановки итерационного процесса используется неравенство

$$||w^{(k+1)} - w^{(k)}|| < \delta.$$

3 Результаты

Рис. 1: Непрерывная тепловая карта, построенная на решении, полученном на сетке 160×180

3.1 Последовательная реализация + OpenMP

В результате первого этапа работы была написана последовательная программа, реализующая численное решение заданной двумерной задачи Дирихле для уравнения Пуассона в криволинейной области. Основой программы является реализация метода скорейшего спуска. На каждой итерации метода выполняются три цикла: первый вычисляет невязку, второй, используя полученные значения, вычисляет шаг τ , третий меняет значения матрицы w и вычисляет норму разности с предыдущим значением матрицы $||w^{(k+1)}-w^{(k)}||$.

Затем в данную программу интегрирована технология OpenMP, позволяющая использовать несколько потоков вычислений в рамках одного процесса. Это было сделано посредством применения директивы #pragma omp for к каждому из трёх циклов, составляющих итерацию.

Время работы последовательной программы на сетке $80 \times 90 - 40$ секунд, на сетке $160 \times 180 - 541$ секунда. Из таблицы 1 видно, что наибольшее ускорение в первом случае достигается на 8 потоках, а на большой сетке на 32 потоках.

Таблица 1: Таблица с результатами расчетов на ПВС IBM Polus (OpenMP код).

Количество	Число точек	Число	Время	Ускорение
OpenMP-нитей	сетки $(M \times N)$	итераций	решения (с)	
2	80×90	88589	6.79	5.89
4	80×90	88589	3.78	10.58
8	80×90	88589	2.36	16.95
16	80×90	88589	2.51	15.93
4	160×180	328567	49.03	11.03
8	160×180	328567	28.56	18.94
16	160×180	328567	24.09	22.46
32	160×180	328567	22.78	23.74

Рис. 2: Графики ускорений

3.2 Реализация с использованием МРІ

В результате следующего этапа данная программа была изменена с учетом особенностей технологии MPI, которая позволяет обмениваться сообщениями между процессами, выполняющими одну задачу. Сетка, приближающая исходную задачу, была разделена на области оптимальным образом с помощью функции MPI_Dims_create. Затем все процессы на каждой итерации считали значение невязки в своей области, а потом с помощью сообщений обменивались значениями на границах с соседними процессами. Далее, с помощью редуцирования значений по всем областям считается итерационный параметр τ и значение нормы разности решений на двух итерациях $||w^{(k+1)}-w^{(k)}||$. Затем вычисляются значения искомой функции в каждой области и процессы так же обмениваются значениями на границе. Результаты тестирования приведены в таблице 2, из которой видно значительное ускорение при увеличении числа используемых вычислительных узлов.

Таблица 2: Таблица с результатами расчетов на ПВС IBM Polus (МРІ код).

Количество	Число точек	Число Время		Ускорение
процессов МРІ	сетки $(M \times N)$	итераций	решения (с)	
1	40×40	18989	1.897	1
2	40×40	18989	1.001	1.895
4	40×40	18989	0.564	3.363

3.3 Реализация гибридной программы с использованием MPI и OpenMP

Для выполнения задания была модифицирована программа использующая технологию MPI. Как и в случае с последовательной программой, каждый из трёх циклов внутри итерации был разделён на несколько параллельных OpenMP процессов директивой #pragma omp for. Из таблицы 3,содержащей результаты экспериментов, видно, что наибольшее ускорение в обоих случаях достигается на 4 OpenMP потоках.

Таблица 3: Таблица с результатами расчетов на ПВС IBM Polus (MPI+OpenMP код).

Количество	Количество	Число точек	Число	Время	Ускорение
процессов МРІ	OpenMP-нитей	сетки $(M \times N)$	итераций	решения (с)	
	в процессе				
2	1	80×90	85243	18.31	1
2	2	80×90	85243	17.69	1.035
2	4	80×90	85243	7.45	2.458
2	8	80×90	85243	12.71	1.441
4	1	160×180	323945	188.45	1
4	2	160×180	323945	148.24	1.271
4	4	160×180	323945	30.38	6.203
4	8	160×180	323945	43.04	4.378

Рис. 3: Графики ускорений

4 Литература.

- 1. А.Н. Тихонов, А.А. Самарский. Уравнения математической физики. М. Изд. "Наука". 1977.
- 2. Г.И. Марчук. Методы вычислительной математики. М. Изд. "Наука". 1989.
- 3. А.А. Самарский. Теория разностных схем. М. Изд. "Наука". 1989.
- 4. А.А. Самарский, А.В. Гулин. Численные методы. М. Изд. "Наука". 1989.
- 5. В.А. Ильин, Г.Д. Ким. Линейная алгебра и аналитическая геометрия. Изд. Московского университета. 2002.
- 6. IBM Polus http://hpc.cmc.msu.ru