## Power flow feasibility problem

Sergei Volodin under supervision of Y. Maximov

Skolkovo Insitute of Science and Technology

## The problem

- Large-scale power grids
- Need to know if a regime of the grid is «normal», «safe»
- **3** Ohm's law  $\Rightarrow$  quadratic equations:

$$y_i = f_i(x) = x^T A_i x + 2b_i^T x$$

y (regime) known, x is not

• Need to determine if  $\exists x : y = f(x)$  (means «safe»)

This problem is known as Power Flow Feasibility problem. To solve it, the image  $f(\mathbb{R}^n)$  must be examined

## State of the art

- A. Dymarsky, Convexity of a Small Ball Under Quadratic Map, arXiv:1410.1553
- A. Dymarsky, On the Convexity of Image of a Multidimensional Quadratic Map, arXiv:1410.2254

Given: the map  $f: \mathbb{R}^n \to \mathbb{R}^m$ ,  $f_i(x) = x^T A_i x + 2b_i^T x$ ,  $A_i^T = A_i$ Proposed algorithm for examining  $F = f(\mathbb{R}^n)$ :

- Input:  $y^0 \in F$ , direction  $c_+$ :  $c_+ \cdot A > 0$
- Output: value  $z_{\text{max}}$  s.t. the cut  $Q(c_+, z_{\text{max}}, F)$  is convex

$$Q(c_+, z, F) = \{y | (y - y^*, c_+) \in [0, z]\} \cap F$$





## The idea of the algorithm:

- $y^*$  touching point of hyperplane  $c_+$
- ② Discovering boundary nonconvexities  $\{F_i\}$  close to  $y^0$
- **3** Projecting to  $c_+$ :  $(F_i, c_+)$



Boundary points of F on supporting hyperplane c:

$$\partial F_c = f(\arg\min_{x \in \mathbb{R}^n} (c, f(x))) = f(\operatorname{Ker}(c \cdot A) - (c \cdot A)^g(c \cdot b))$$

if 
$$\begin{cases} c \cdot A \geqslant 0 \\ (c \cdot b)^T \operatorname{Ker}(c \cdot A) = 0 \end{cases}$$
, otherwise  $\partial F_c = \emptyset$ 

- $\partial F_c$  is nonconvex  $\Rightarrow F$  has nonconvexity
- $\partial F_c$  is nonconvex  $\Leftrightarrow^{(*)} \operatorname{Rank}(c \cdot A) = n 1$ ,  $c \cdot A \geqslant 0$

Therefore,

$$z_{\mathsf{max}} = \inf_{c} \inf_{y \in \partial F_c} (c_+, \partial F_c)$$

(\*) We assume  $Rank(c \cdot A) < n-1$  to be a rare case. Condition  $Rank(c \cdot A) = n-1$  is associated with nonconvexity of  $\partial F_c$ 



Linear change of basis s.t.  $\{c_+ \cdot A = I, c_+ \cdot b = 0 \Rightarrow$ 

- $\inf_{y \in \partial F_c} (c_+, \partial F_c) = \|(c \cdot A)^g (c \cdot b)\|^2$  for c: Rank $(c \cdot A) = n 1$
- Adding  $\gamma c_+$  to c to ensure  $\lambda_{\min}((c + \gamma c_+) \cdot A) = 0$   $c_+ \cdot A = I$  by our choice of variables
- Define  $z(c) = \|(c \cdot A \lambda_{\min}(c \cdot A))^g(c \cdot b)\|^2$
- Define  $c_{\text{bad}} = \{c \mid \text{Ker}(c \cdot A) \perp (c \cdot b)\}\$  $c \in c_{\text{bad}} \Leftrightarrow z(c)$  has its original meaning, useless otherwise
- Then

$$z_{\mathsf{max}} = \inf_{c \in c_{\mathrm{bad}}} z(c)$$

ullet In general case  $|c_{
m bad}|$  is continuum



We use gradient projection method to find

$$z_{\max} = \inf_{c \in c_{\text{bad}}} z(c)$$

Input: start point obtained via nonconvexity certificate

$$c^0 \in c_{\mathrm{bad}}$$

- ② Gradient  $\frac{dz}{dc}$  is calculated explicitly
- **3** Normal vector n for  $c_{\text{bad}}$
- **①** Projection of c' onto  $c_{\mathrm{bad}}$  is done by adjusting  $\lambda$  in  $c' + \lambda n$
- Sepeat until  $\frac{dz}{dc} \parallel n$
- **10 Output:** minimal value  $z_{max} = z(c^*)$



## Nonconvexity certificate:



- Input:  $y^0$
- @ Generating random directions d
- **3** $Find <math>t: y^0 + td \in \partial \operatorname{conv} F$
- y<sup>0</sup> + td ∈ F?
- If not, obtain c via dual problem
- **10 Output:** «nonconvex»  $c \in c_{\text{bad}}$

⇒ Obtained start point for gradient descent





## Gradient step + projection

- Input: current point  $c = c^k \in c_{\text{bad}}$
- ② Calculate n(c),  $\frac{dz}{dc}$ ,  $c' = c \alpha(\hat{1} \frac{(\cdot,n)}{(n,n)}n)\frac{dz}{dc}$
- **3** Project  $c' \notin c_{\text{bad}}$  onto  $c_{\text{bad}}$
- **Ouput:**  $c^{k+1} \leftarrow \text{result of projection}$

## Projection

**Given:** point  $c' \notin c_{\text{bad}}$ , normal vector n

Find: point  $c \in c_{\text{bad}}$  close to c

- **2** For some  $\lambda$ ,  $c(\lambda) \in c_{\mathrm{bad}}$

- **3** Projection is done by finding root of  $m(\lambda)$
- Bisection method is used

# Numerical experiment

 $f: \mathbb{R}^4 \to \mathbb{R}^4$ 

- 4 local minima
- Global minimum found



#### Results

Algorithm for examining the set of «safe» regimes was proposed:

- Can determine if the whole region is «safe» at one run
- Cuts convex parts of the image F
- General case when the set of nonconvexities is a continuum was considered
- Algorithm was tested on a number of maps f







Thank you! Questions?