Model Size

I compared three model sizes during this experiment: YOLOv8n, YOLOv8s, YOLOv8m.

These are the results over 10 epochs

Model	mAP@0.5	mAP@0.5:0.95	Precisio n	Recall
YOLOv8n	0.929	0.926	0.867	0.862
YOLOv8s	0.825	0.798	0.725	0.759
YOLOv8m	0.627	0.591	0.512	0.707

Contrary to popular belief, bigger != better, the smallest model (YOLOv8n) achieved the best results across all metrics. Surprisingly, the largest model (YOLOv8m) underperformed significantly despite having more parameters.

Conclusion

For our current dataset and model purpose, I recommend using YOLOv8n as it offers the best balance of accuracy and efficiency.

Continuation of my experiments, learning rate:

These are the results over 10 epochs

MODEL USED: YOLOv8n

Learning Rate	mAP@0.5	mAP@0.5:0.95	Precisio n	Recall
0.001	0.929	0.926	0.867	0.862
0.005	0.929	0.926	0.867	0.862
0.01	0.929	0.926	0.867	0.862

Based on these results I've reached a conclusion that learning rate has no significant effect on model performance in this 10-epoch window.

Conclusion

For our current dataset it doesn't matter what learning rate we use.

Final experiment, image size:

These are the results over 10 epochs

MODEL USED: YOLOv8n

Image Size	mAP@0.5	mAP@0.5:0.95	Precisio n	Recall
416	0.923	0.918	0.864	0.843
640	0.929	0.926	0.867	0.862
1024	0.844	0.827	0.789	0.757

Based on these results the sweet spot is 640x640. Going larger actually hurts performance, probably due to overfitting or inefficient learning.

Conclusion

For our current dataset and model purpose, I recommend using 640x640 image size.

Final conclusion

I recommend using **YOLOv8n**, learning rate of 0.005 and image size 640x640, as this is the most balanced combo out of all possible combinations.

