### Pattern Recognition Basics

Xiaojun Qi

1

### Pattern Class vs. Pattern

- Pattern Class: It is a category determined by some given common attributes.
- Pattern: It is the description of any member of a category representing a pattern class. In other words, it is the description of an object.
- We may divide our acts of recognition into two major types:
  - The recognition of concrete items
  - The recognition of abstract items

act items

### Pattern Recognition

 Pattern recognition can be defined as the categorization of input data into identifiable classes via the extraction of significant features or invariant attributes of the data from a background of irrelevant detail.

3

# Two Categories of Pattern Recognition

- The study of the pattern recognition capability of human beings and other living organisms. (Psychology, Physiology, and Biology)
- The development of theory and techniques for the design of devices capable of performing a given recognition task for a specific application. (Engineering, Computer, and Information Science)

| Task of<br>Classification  | Input Data                 | Output Response                 |
|----------------------------|----------------------------|---------------------------------|
| Character<br>Recognition   | Optical signals or strokes | Name of character               |
| Speech<br>Recognition      | Acoustic waveforms         | Name of word                    |
| Speaker<br>Recognition     | Voice                      | Name of speaker                 |
| Weather<br>Prediction      | Weather maps               | Weather forecast                |
| Medical<br>Diagnosis       | Symptoms                   | Disease                         |
| Stock Market<br>Prediction | Financial news and charts  | Predicted market ups and downs. |

# Fundamental Issues in Pattern Recognition System Design

- The representation of input data which can be measured from the objects to be recognized.
  - The pattern vectors contain all the measured information available about the patterns.
  - When the measurements yield information in the form of real numbers, it is often useful to think of a pattern vector as a point in an n-dimensional Euclidean space.
  - The set of patterns belonging to the same class corresponds to an ensemble of points scattered within some region of the measurement space.

U

# Fundamental Issues in Pattern Recognition System Design

- The extraction of characteristic features or attributes from the received input data and the reduction of the dimensionality of pattern vectors.
  - Intraset features: characterizing attributes common to all patterns belonging to that class.
  - Interset features: reprenting the differences between pattern classes.

7

# Fundamental Issues in Pattern Recognition System Design

- The determination of optimum decision procedures, which are needed in the identification and classification process.
  - If completed a prior knowledge about the patterns to be recognized is available, the decision functions may be determined with precision.
  - If only qualitative knowledge about the patterns is available, reasonable guesses of the forms of the decision functions can be made.
  - If there exists little a priori knowledge about the patterns to be recognized, a training or learning procedure is needed.

### Summary

- The patterns to be recognized and classified by an automatic pattern recognition system must possess a set of measurable characteristics.
- · Correct recognition will depend on
  - The amount of discriminating information contained in the measurements;
  - The effective utilization of this information.

Sample Object Features: Shape

 What features can we get from an Object?



- Perimeter
- Area
- Eccentricity: The ratio of the major to the minor axis
- Curvature: The rate of change of slope. That is: Use the difference between the slopes of adjacent boundary segments as a descriptor of curvature at the point of intersection of the segments.
- · Chain Code...

10



# Object Representation and Recognition

- Representing a region involves two choices:
  - We can represent the region in terms of its external characteristics (its boundary)
    - Focus on Shape Characteristics.
  - We can represent the region in terms of its internal characteristics (the pixels comprising the region)
    - · Focus on regional properties such as color and texture.
- Describe the region based on the chosen representation.
  - A region may be represented by its boundary, and the boundary can be described by features such as:
    - Length
    - The orientation of the straight line joining its extreme points,
    - The number of concavities in the boundary.



# Boundary Features (1) – Shape Signatures

- A signature is a 1-D functional representation of a boundary and may be represented in various ways.
- Regardless of how a signature is generated, the basic idea is to reduce the boundary representation to a 1-D function, which presumably is easier to describe than the original 2-D boundary.

# 

### Other Shape Signatures

- Complex Coordinates
- · Central Distance
- Central Complex Coordinates
- · Chordlength
- · Cumulative Angular Function
- Curvature Function
- Area Function
- → Normally, we do not consider boundaries with self-intersections, boundaries with deep, narrow concavities, or boundaries with thin, long protrusions.

# Shape Signatures – Complex Coordinates

to generate the signature, regardless of the shape's orientation.

of values [0, 1]

Scale all functions so that the values always span the same range 15

The boundary can be represented as the sequence of coordinates s(t) = [x(t), y(t)] for t = 0, 1, 2, ..., N-1, where x(t) = x<sub>t</sub> and y(t) = y<sub>t</sub>; (x<sub>t</sub>, y<sub>t</sub>)'s are encountered in traversing the boundary in the counterclockwise direction and N is the total number of points on the boundary.

number of points on the boundary. 
$$Z(t) = x(t) + iy(t)$$

$$= \sum_{k=1 \atop k \neq j} \frac{1}{\sum_{k=1}^{N} \frac{1}{\sum_{k=1}^{N$$



--Central Complex Coordinates

$$z(t) = [x(t) - x_c] + i[y(t) - y_c]$$

### Shape Signatures

### - Chordlength

- R\*(t) = length of chord in object perpendicular to tangent at p, as a function of p.
- The chord length function r\*(t) is derived from shape boundary without using any reference point



### **Shape Signatures**

### - Cumulative Angular Function

- It is also called turning angle function.
- $\varphi(t) = [\theta(t) \theta(0)] \mod(2\pi)$



## Shape Signatures – Curvature Function

- Curvature Functio

• 
$$K(t) = \theta(t) - \theta(t-1)$$

$$\theta(t) = \arctan \frac{y(t) - y(t+w)}{x(t) - x(t+w)}$$

w is the jumping step in selecting next pixel





21

# Shape Signatures – Area Function

$$A(t) = \frac{1}{2} |x_1(t)y_2(t) - x_2(t)y_1(t)|$$



22

# Boundary Features (2) – Fourier Descriptors

• Fourier Transform of the Signature s(t):

$$u_{n} = \frac{1}{N} \sum_{t=0}^{N-1} s(t) e^{-j2\pi nt/N}$$

for 
$$n = 0,1,..., N-1$$

The complex coefficients  $u_n$  are called the Fourier descriptors of the boundary, and are denoted as FDn.

23

# Boundary Features (2) – Fourier Descriptors

 The inverse Fourier transform of these coefficients restores s(t). That is:

$$s(t) = \sum_{n=0}^{N-1} u_n e^{j2\pi nt/N} \quad \text{for } t = 0, 1, \dots, N-1$$

 Suppose that only the first P coefficients are used (that is, setting u<sub>n</sub> = 0 for n > P-1). The result is the following approximation to s(k):

$$\hat{s}(t) = \sum_{n=0}^{\infty} u_n e^{j2\pi nt/N}$$

for t = 0, 1, 2, ..., N-1.



information and can be used as the basis for differentiating

between distinct boundary shapes.

| Transformation | Boundary                      | Fourier Descriptor                     |
|----------------|-------------------------------|----------------------------------------|
| Identity       | s(k)                          | a(u)                                   |
| Rotation       | $s_r(k) = s(k)e^{i\theta}$    | $a_r(u) = a(u)e^{i\theta}$             |
| Translation    | $s_t(k) = s(k) + \Delta_{xy}$ | $a_t(u) = a(u) + \Delta_{xy}\delta(u)$ |
| Scaling        | $s_s(k) = \alpha s(k)$        | $a_s(u) = \alpha a(u)$                 |
| Starting point | $s_p(k) = s(k - k_0)$         | $a_p(u) = a(u)e^{-j2\pi k_0 u/K}$      |

$$s_{t}(k) = [x(k) + \Delta x] + j[y(k) + \Delta y]$$
$$s_{n}(k) = x(k - k_{0}) + jy(k - k_{0})$$

- 1) Magnitude |FDn| is translation and rotation invariant
- 2) |FD0| carries scale-information
- 3) "Low-frequency" terms (t small): smooth behavior
- 4) "High-frequency" terms (t large): jaggy, bumpy behavior

26

### Normalized Fourier Descriptor

When two shapes are compared, m=N/2 coefficients are used for central distance, curvature and angular function

m=N coefficients are used for complex coordinates.

$$d = \sqrt{\sum_{i=1}^{m} (f_{i}^{q} - f_{i}^{t})^{2}}$$
where  $f_{q} = (f_{q}^{1}, f_{q}^{2}, ..., f_{q}^{m})$  and  $f_{t} = (f_{t}^{1}, f_{t}^{2}, ..., f_{t}^{m})$ 

are the feature vectors of the two shapes respectively.

27

• Complex FFT example:

$$A = [2 \ 3 \ 4 \ 4];$$

$$B = [1 \ 3 \ 4 \ 7];$$

$$C = A + B * i;$$

$$fft(A) = [13 \quad -2 + i \quad -1 \quad -2 - i];$$

$$fft(B) = [15 \quad -3 + 4i \quad -5 \quad -3 - 4i];$$

$$fft(C) = [13 + 15i \quad -6 - 2i \quad -1 - 5i \quad 2 - 4i];$$

28

### • Criteria for shape representation

- Rotation, scale and translation Invariant
- Compact & easy to derive
- Perceptual similarity
- Robust to shape variations
- Application Independent
- FD satisfies all these criteria
- Problem
  - Different shape signatures can be used to derive FD, which is the best?

Boundary Features (3)

- Chain Codes
- A chain code could be generated by following a boundary in a clockwise direction and assigning a direction to the segments connecting every pair of pixels.
- · Disadvantage:
  - The resulting chain of codes tends to be quite long
  - Any small disturbance along the boundary due to noise or imperfect segmentation cause changes in the code that may not be related to the shape of the boundary.



- The chain code of a boundary depends on the starting point.
  - Treat the chain code as a circular sequence of direction numbers and redefine the starting point so that the resulting sequence of numbers forms an integer of minimum magnitude.
- · Rotation Invariance:
  - Normalize for rotation by using the first difference of the chain code instead of the code itself. This difference is obtained by counting the number of direction changes (in a counterclockwise direction) that separate two adjacent elements of the code.
- Scaling Invariance:
  - Normalize for scaling is achieved by altering the size of the resampling grid.













# Boundary Features () • Simple features • Area : A• Circumference: r• Euler's number: #parts - #holes • Direction: $\varphi_{major}$ • Eccentricity: $||I_{major}|| / ||I_{minor}||$ • Elongatedness: $w_{BB} / h_{BB}$ • Rectangularity: $A / A_{BB}$ • Compactness: $r^2 / A$ • Greyvalue/colour/texture statistics • Projections • Not all invariant



### **Regional Texture Features**

- The three principal approaches used in image processing to describe the texture of a region are statistical, structural, and spectral.
  - Statistical approaches yield characterizations of textures as smooth, coarse, grainy, and so on.
  - Structural techniques deal with the arrangement of image primitives, such as the description of texture based on regularly spaced parallel lines.
  - Spectral techniques are based on properties of the Fourier spectrum and are used primarily to detect global periodicity in an image by identifying highenergy, narrow peaks in the spectrum.



















### Summary

- Features are derived from measurements
- Application-dependent knowledge tells what features are important
- •Invariance is important to make discrimination easier
- Recognition:
  - -Noise removal
  - -Shading removal
  - -Segmentation and labeling
  - -Features: Simple, Skeletons, Moments, Polygons,
     Chain Code, Fourier descriptors, ....

# Other Sample Features: MPEG-7 Color Descriptors Color descriptors Color descriptors Scalable Color - HSV space Group of frames/pictures histogram Color Spaces - YC/C/Cb - monochrone (Y only) - RGB - HSV - HMMD

# Other Sample Features: MPEG7 Homogenous Texture Descriptor

 Partition the frequency domain into 30 channels (modeled by a 2D-Gabor function)



53

- Compute the energy and energy deviation for each channel
- Compute mean and standard variation of frequency coefficients

# Other Sample Features: MPEG7 Non-Homogenous Texture Descriptor

- Represent the spatial distribution of five types of edges
  - vertical, horizontal, 45°, 135°, and nondirectional
- Dividing the image into 16 (4x4) blocks
- Generating a 5-bin histogram for each block
- · It is scale invariant