Estimando la especiación y la extinción dependiente de estados

Día 2

Rosana Zenil-Ferguson (ella)

Profesora asistente
Departmento de Biología. Universidad de Kentucky

roszenil@uky.edu @roszenil.bsky.social

Diapositivas y archivos

https://roszenil.github.io/portfolio/suresteworkshop/

Ejemplo del Taller: Polinización

- Las plantas dependen de la polinización para reproducirse.
- El pólen puede ser transferido por insectos, viento, vertebrados, e incluso por ríos
- Frequentemente encontramos especies cercanas en la filogenia en donde lo único que difiere es el tipo de polinización
- Una polinización efectiva hace que las poblaciones de una especie persistan e incluso encuentren la manare de especiar

Cumberland Falls State Park, KY

Evolución de la polinización, los cromosomas y

los sistemas sexuales del género *Thalictrum*

> Verónica di Stilio Universidad de Washington

Thalictrum thalictroides

Múltiples cambios en la polinización

Cambios en la polinización generan portunidades para ocupar nuevos nichos ecológicos, nuevas funciones y especiar

Insectos

Modelo: Cadena de Markov en Tiempo continuo

Nuestros datos

Tasas evolutiovas?

Representación de la Q-matriz

Cómo se calculan las probabilidades?

El grave problema: La muestra no es independiente

Past Present

Cómo calcular las probabilidades en todo el árbol?

Reconstrucción Ancestral de Estados

Mapas estocásticos

Modelo: Cadena de Markov en Tiempo continuo generalizado

Modelo: Cadena de Markov en Tiempo continuo con estados escondidos

Mapa estocástico HMM

