Question sheet

Sophie Chowgule

Questions: PMFs, PDFs, and CDFs

A selection of questions to test your understanding of Probability Mass Functions (PMFs), Probability Density Functions (PDFs), and Cumulative Distribution Functions (CDFs).

Before attempting these questions it is highly recommended that you read (Guide: PMFs, PDFs, and CDFs).

Q1

For each of the scenarios below, determine if the given distribution is a valid PMF and answer the following questions.

1.1

Let X be the random variable representing the result of rolling a biased four sided-dice. The PMF of X is given by:

x	1	2	3	4
P(X=x)	$\frac{1}{10}$	$\frac{1}{5}$	$\frac{1}{2}$	$\frac{1}{5}$

a. What is the probability of X=4?

1.2

A random variable X has five possible outcomes 1, 2, 3, 4, 5, and the PMF is:

\overline{x}	1	2	3	4	5
P(X = x)	0.25	0.35	0.05	0.2	0.1

a. What is the probability of X=3 or X=4?

1.3

A coin is tossed, where the probability of tails is 70% and heads is 30%. Let X represent the result of the coin toss. Complete the table below:

\overline{x}	Heads	Tails
P(X=x)		

1.4

A random variable X have the possible outcomes 1, 2, 3, 4, 5, 6, 7 with the following PMF:

x	1	2	3	4	5	6	7
P(X=x)	0.1	0.05	0.05	0.3	0.25	0.75	0.35

a. Is this a valid PMF? Why or why not?

1.5

A bag contains 5 red, 3 blue, and 2 green sweets from a sweet shop. Let X represent the color of a randomly picked sweet:

- a. What is the probability of picking a blue sweet?
- b. Construct the PMF for this scenario by completing the table:

\overline{x}	Red	Blue	Green
P(X = x)			

1.6

The PMF for a random variable X is given as:

- a. For what value of p is this a valid PMF?
- b. For this value of p, what is the probability of X=3?

Q2

For each of the scenarios below, determine if the given distribution is a valid PDF and answer the following questions.

2.1

Let X be a continuous random variable on the interval [0,2] with the PDF:

$$f(x) = \begin{cases} \frac{1}{2} & \text{if } 0 \leq x \leq 2 \\ 0 & \text{otherwise} \end{cases}$$

a. What is the probability that X lies between 1 and 2?

2.2

Let X be a continuous random variable with the PDF:

$$f(x) = \begin{cases} 2x & \text{if } 0 \le x \le 1, \\ 0 & \text{otherwise.} \end{cases}$$

- a. What is the probability that X lies between 0.5 and 1?
- b. What is P(0.25 > X > 0.75)?

2.3

Let X be a continuous random variable uniformly distributed between 3 and 7. The PDF is:

$$f(x) = \begin{cases} \frac{1}{4} & \text{if } 3 \le x \le 7\\ 0 & \text{otherwise} \end{cases}$$

a. What is the probability that X lies between 3 and 6?

2.4

The PDF of a random variable X is given by:

$$f(x) = \begin{cases} \frac{1}{9} & \text{if } 1 \le x \le 4\\ \frac{1}{4} & \text{if } 5 \le x \le 7\\ 0 & \text{otherwise} \end{cases}$$

a. Is this a valid PDF? Why or why not?

2.5

Consider the PDF:

$$f(x) = \begin{cases} kx^2 & \text{if } 0 \le x \le 1\\ 0 & \text{otherwise} \end{cases}$$

- a. For what value of k is this a valid PDF?
- b. For this value of k, what is the $P(0.2 \le x \le 0.3)$?

2.6

The PDF of X is given by:

$$f(x) = \begin{cases} 4x & \text{if } 0 \leq x < 0.5, \\ 4 - 4x & \text{if } 0.5 \leq x < 0.75, \\ 0.5 & \text{if } 0.75 \leq x \leq 1, \\ 0 & \text{otherwise.} \end{cases}$$

a. Is this a valid PDF? Why or why not?

Q3

For each of the scenarios below, determine if the given distribution is a valid CDF and answer the following questions.

3.1

A scenario respresented by a PMF has the following CDF:

\overline{x}	1	2	3	4
P(X=x)	0.1	0.3	0.5	1

a. What is F(3)?

b. What is P(X > 2)?

3.2

For the random variable uniformly distributed on [0,2] as seen in question 2.2:

- a. Write the CDF F(x) for the values 0.5, 1, and 2.
- b. What is F(1.5)?
- c. What is F(3)?

3.3

For the PDF given in question 2.3:

- a. Write the CDF F(x) at points 4, 5, and 6?
- b. What is P(X > 5)?

3.4

The PDF of X for a scenario is given by:

\overline{x}	1	2	3	4	5	6
P(X=x)	0.1	0.2	0.5	0.4	8.0	1

a. Is this a valid CDF? Why or why not?