## University of Rome "La Sapienza" Department of Ingegneria Informatica, Automatica e Gestionale

# Reinforcement Learning

## Assignment 1

Value Iteration, Policy Iteration & iLQR



Gianmarco Scarano

Matricola: 2047315

# Contents

| 1        | Theory                             | 2 |
|----------|------------------------------------|---|
|          | 1.1 Iterations for Value Iteration | 2 |
|          | 1.2 Value Iteration Exercise       | 3 |
| <b>2</b> | Practice                           | 4 |
|          | 2.1 Policy Iteration               | 4 |
|          | 2.2 iLQR                           | 5 |
| 3        | Collaborations                     | 6 |

## Chapter 1

## Theory

### 1.1 Iterations for Value Iteration

If we want to get the minimum number of iterations of Value Iteration in order to have an  $\epsilon$ -error on the quality of the policy, we can simply reason about this formula here:

$$\frac{2\gamma i}{(1-\gamma)} \cdot \|Q_0 - Q^*\| \le \epsilon$$

We know from theory that  $Q^*$  and  $Q_0$  are in range  $[0, \frac{1}{1-\gamma}]$  since under the assumption that  $R(s, a) \in [0, 1]$ , the maximum possible value of Q evolves into a geometric series.

Due to the fact that the difference between  $Q_0 - Q^*$  is exactly  $\frac{1}{1-\gamma}$  since we are doing an infinity norm, we can just leave  $Q^*$ .

$$\frac{2\gamma i}{(1-\gamma)} \cdot \|Q^*\| \le \epsilon$$

Now, as in Analysis demonstrations, one additionally adds and subtract 1 (basically doing nothing to the formula), but this allows us to rewrite our formula in the following form:

$$\frac{2(1-(1-\gamma))^i}{1-\gamma} \cdot \|Q^*\| \le \epsilon$$

We can get rid now of  $Q^*$ , since we know that it is equal to  $\frac{1}{1-\gamma}$ , so we'll get:

$$\frac{2(1-(1-\gamma))^i}{(1-\gamma)^2} \le \epsilon$$

Always from Analysis theory, one knows that the following inequality holds:  $1+x \le e^x$ ,  $\forall x \in \mathbb{R}$ , leading us to the next step of our proof:

$$\frac{2 \cdot e^{-(1-\gamma) \cdot i}}{(1-\gamma)^2} \le \epsilon$$

Now we simply divide by 2 and multiply by  $(1 - \gamma)^2$ , starting isolating the *i* term as follows:

$$e^{-(1-\gamma)\cdot i} \le \frac{\epsilon \cdot (1-\gamma)^2}{2}$$

Exploiting logarithm properties, this now becomes:

$$-i \cdot (1 - \gamma) \le -log(\frac{2}{\epsilon \cdot (1 - \gamma)^2})$$

Now, we just divide by  $-\frac{1}{(1-\gamma)}$ , thus changing the inequality sign and getting that the final result is:

$$i \geq \tfrac{\log(\frac{2}{\epsilon \cdot (1-\gamma)^2})}{1-\gamma}$$

### 1.2 Value Iteration Exercise

From theory, one knows that the Value Iteration algorithm is explained as follows (just for V):

#### Algorithm 1 Value Iteration

- 1: Initialize  $V_0^*(s) = 0 \ \forall s \in S$
- 2: For i = 1, ..., H
- 3: For all states s in S:

Finally,  $V_{k+1}^*(s_6) = 3.15$ .

4: 
$$V_{i+1}^*(s) = \max_{a} \sum_{s'} T(s, a, s') [R(s, a, s') + \gamma V_i^*(s')]$$

So, simply apply this definition on our problem.

$$\begin{split} V_{k+1}^*(s_6) &= \left[ (0.3*(0+0.9*0)) + (0.7*(0+0.9*5)) \right] \\ V_{k+1}^*(s_6) &= \left[ (0.3*(0+0)) + (0.7*(0+4.5)) \right] \\ V_{k+1}^*(s_6) &= \left[ (0.3*0) + (0.7*4.5) \right] \\ V_{k+1}^*(s_6) &= \left[ 0 + 3.15 \right] = 3.15 \end{split}$$

## Chapter 2

## **Practice**

## 2.1 Policy Iteration

Really simply, I just edited the student.py file in order to fill in the function reward\_function(), check\_feasibility() and transition\_probabilities(), due to the fact that the whole code for Policy Iteration Algorithm was already implemented by TAs.

With this being said, let's analyze the functions:

### • reward\_function():

I checked if the values in state s were equal to the final state [env\_size-1,env\_size-1]. If yes, then return reward = 1, else 0.

### • check\_feasibility():

As we did in Value Iteration (during Practicals) we check how feasible is our new state by considering if we have exceeded the boundaries of our World (if s\_prime[0 (for 1 too)] >= env\_size as well as if (s\_prime < 0).any()). I have not decided to take into consideration obstacles since they are still a feasible path in our grid world.

### • transition\_probabilities():

Also here, as we did in practicals, we have to compute the table for the prob\_next\_state array. First, we check the feasibility of the next state (as well as next state with action  $\pm 1$ ) with the previous explained function, then we assign a certain probability to each state (in this case the exercise provided 1/3 as value). I've put +=1/3 as probability for the next state, since if we are dealing with a boundary state, we should sum up the probability of staying where we are.

## 2.2 iLQR

In the iLQR problem, I populated the following functions: backward(), forward() and pendulum\_dyn().

#### • backward():

I populated the kt, pt matrices according to the formulas given in the Assignment presentation PDF. Then, Kt and Pt have been updated using the standard LQR-LTV pseudo-code from the slides.

#### • forward():

I update the control using the formula given in the Assignment presentation PDF:

$$control = k_seq[t] + K_seq[t] @ (x_seq_hat[t] - x_seq[t]).$$

The only difficult part was understanding  $x_t^i$  and  $x_t^{i-1}$ , but then I understood that  $x\_{\tt seq}$  was referring to the previous iteration and  $x\_{\tt seq\_hat}$  to our new actual iteration. The time-step is the same for both arrays.

#### • *pendulum\_dyn()*:

I easily plugged in the Assignment presentation PDF formulas into the function, as the Pendulum parameters were already given.

# Chapter 3

# Collaborations

I discussed this assignment with the following students:

- Giancarlo Tedesco
- Emanuele Rucci
- Mostafa Mozafari