Lista 5

początki

Weronika Jakimowicz

Zadanie 1

Dla k_1, ..., k_n $\in \mathbb{N}_{>0}$ obliczyć

$$\dim_{K} \left[K[X_{1},...,X_{n}]/(X_{1}^{k_{1}},...,X_{n}^{k_{n}}) \right]$$

Atiyah i MacDonald mówią, że jeśli $\varphi: A \to B$ jest surjekcją, to domknięty zbiór $V(\ker \varphi) \subseteq Spec(A)$ jest homeomorficzny ze Spec(B).

Weźmy dowolny ideał pierwszy $\mathfrak{p} \in V(\ker \varphi)$ i niech $xy \in \varphi(\mathfrak{p})$. Z surjektywności φ znajdujemy a, $b \in A$ takie, że $\varphi(a) = x$ oraz $\varphi(b) = y$. Możemy też znaleźć $c \in \mathfrak{p}$ takie, że $\varphi(c) = xy \in \varphi(\mathfrak{p})$. Naszym celem jest włożenie a lub b do \mathfrak{p} .

$$\varphi(\mathbf{c}) = \mathbf{x}\mathbf{y} = \varphi(\mathbf{a})\varphi(\mathbf{b})$$
,

odejmując stronami mamy

$$0 = \varphi(c) - \varphi(a)\varphi(b) = \varphi(c - ab),$$

co jest w jądrze φ . Ale $\mathfrak p$ był ideałem zawierającym ker φ (korzystam z definicji $V(E)=\{\mathfrak q: E\subseteq \mathfrak q \ i \ \mathfrak q \ \text{pierwszy}\}$), czyli $c-ab\in \mathfrak p$ tak samo jak c. Czyli $-(c+(c-ab))=ab\in \mathfrak p$ i tutaj już mamy co chcieliśmy.

Z drugiej strony, dowolny ideał pierwszy $\mathfrak{q} \in \operatorname{Spec} B$ cofa się przez φ do ideału pierwszego w A, bo xy $\in \varphi^{-1}(\mathfrak{q}) \implies \varphi(xy) = \varphi(x)\varphi(y) \in \mathfrak{q} \implies x \in \varphi^{-1}(\mathfrak{q})$ lub y $\in \varphi^{-1}(\mathfrak{q})$. Ponieważ $0 \in \mathfrak{q}$, to takie cofnięcie zawiera też jądro ker φ . Czyli $\varphi^{-1}(\mathfrak{q}) \in V(\ker \varphi)$.

$$\operatorname{Spec} \operatorname{B} \xrightarrow{\mathfrak{q} \mapsto \varphi^{-1}(\mathfrak{q})} \operatorname{V}(\ker \varphi) \xrightarrow{\mathfrak{p} \mapsto \varphi(\mathfrak{p})} \operatorname{Spec} \operatorname{B}$$

Mamy ładne ilorazowe odwzorowanie

$$K[X_1,...,X_n] \twoheadrightarrow K[X_1,...,X_n]/(X_1^{k_1},...,X_n^{k_n})$$

którego jądro jest dość widoczne. Ideał pierwszy zawierający $(X_1^{k_1},...,X_n^{k_n})$ to $(X_1,...,X_n)$ i jest on zarazem ideałem maksymalnym w $K[X_1,...,X_n]$ (jak wydzielimy to znikają zmienne i mamy ciało).

Czyli najdłuższy ciąg ideałów pierwszych w badanym pierścieniu ma długość 1?

Zadanie 2

Niech I, J \unlhd R oraz I $\subseteq \sqrt{J}$. Udowodnić, że jeśli ideał I jest skończenie generowany, to istnieje n $\in \mathbb{N}$ takie, że Iⁿ \subseteq J.

Niech I będzie generowane przez u_1 , ..., u_k . Niech $t_i \in \mathbb{N}_{>0}$ będą takie, że $u_i^{t_i} \in J$ (bo I $\subseteq \sqrt{J}$). Pewnie niezgrabnie można wziąć $N = t_1 \cdot ... \cdot t_n$.

Ideał I^N jest generowany przez $\langle u_1^{i_1}\cdot...\cdot u_n^{i_n}:\sum i_j=N\rangle$, bo każdy element to $\sum x_1\cdot...\cdot x_N$ dla $x_i\in I$ i one się rozpadają w kombinację liniową u_i .

Każdy generator I^N jest podzielny przez pewne $u_i^{t_i}$, bo tak duży wzięłam wykładnik N. Stąd każdy element I^N jest generowany przez elementy z J, czyli $I^N\subseteq J$.