### Introduction to Audio Content Analysis

Module 5.5: Non-negative Matrix Factorization for Fundamental Frequency Detection

#### alexander lerch





## introduction overview



#### corresponding textbook section

Chapter 5 — Tonal Analysis: pp. 106

- lecture content
  - introduction to NMF
  - objective function and update rules
- learning objectives
  - describe the process of NMF
  - discuss the pros and cons of using NMF of polyphonic pitch detection
  - apply NMF to a simple audio file and interpret the results



### introduction

overview



#### corresponding textbook section

Chapter 5 — Tonal Analysis: pp. 106

#### lecture content

- introduction to NMF
- objective function and update rules

#### learning objectives

- describe the process of NMF
- discuss the pros and cons of using NMF of polyphonic pitch detection
- apply NMF to a simple audio file and interpret the results





• Non-negative Matrix Factorization (NMF) Given a  $m \times n$  matrix V, find a  $m \times r$  matrix W and a  $r \times n$  matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- $\bullet$  rank r is usually smaller than m and n
- advantage of non-negativity?
  - additive model
  - relates to probability distributions
  - ethiciency?



Non-negative Matrix Factorization (NMF)

Given a  $m \times n$  matrix V, find a  $m \times r$  matrix W and a  $r \times n$  matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- $\bullet$  rank r is usually smaller than m and n

#### • advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?



Non-negative Matrix Factorization (NMF)

Given a  $m \times n$  matrix V, find a  $m \times r$  matrix W and a  $r \times n$  matrix H such that

$$V \approx WH$$

- all matrices must be non-negative
- $\bullet$  rank r is usually smaller than m and n

#### • advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?



Non-negative Matrix Factorization (NMF)

Given a  $m \times n$  matrix V, find a  $m \times r$  matrix W and a  $r \times n$  matrix H such that

 $V \approx WH$ 

- all matrices must be non-negative
- $\bullet$  rank r is usually smaller than m and n

#### • advantage of non-negativity?

- additive model
- relates to probability distributions
- efficiency?

### non-negative matrix factorization overview



alternative formulation  $V \approx WH$ 

$$V = \sum_{i=1}^{r} w_i \cdot h_i + E$$

- $V \in \mathbb{R}^{m \times n}$
- $W = [w_1, w_2, ..., w_r] \in \mathbb{R}^{m \times r}$
- $H = [h_1, h_2, ..., h_r]^T \in \mathbb{R}^{r \times n}$
- E is the error matrix

<sup>1</sup>cichocki nmf 2009.

# objective function



- task: iteratively minimize objective function D(V||WH)
- typical distance measures (B = WH):
  - squared Euclidean distance:

$$D_{\mathrm{EU}}(V \parallel B) = \parallel V - B \parallel^2 = \sum_{ij} (V_{ij} - B_{ij})^2$$

generalized K-L divergence:

$$D_{\mathrm{KL}}(V \parallel B) = \sum_{ij} (V_{ij} \log \left(\frac{V_{ij}}{B_{ij}}\right) - V_{ij} + B_{ij})$$

• others<sup>2</sup>: Bregman Divergence, Alpha-Divergence, Beta-Divergence, . . .

<sup>&</sup>lt;sup>2</sup>cichocki nmf 2009

# objective function distance and divergence



- task: iteratively minimize objective function D(V||WH)
- typical distance measures (B = WH):
  - squared Euclidean distance:

$$D_{\mathrm{EU}}(V \parallel B) = \parallel V - B \parallel^2 = \sum_{ij} (V_{ij} - B_{ij})^2$$

generalized K-L divergence:

$$D_{\mathrm{KL}}(V \parallel B) = \sum_{ij} (V_{ij} \log \left( \frac{V_{ij}}{B_{ij}} \right) - V_{ij} + B_{ij})$$

• others<sup>2</sup>: Bregman Divergence, Alpha-Divergence, Beta-Divergence, . . .

<sup>&</sup>lt;sup>2</sup>cichocki nmf 2009.

- minimization of objective function
- gradient descent: minimum can be found as zero of derivative
  - 2D example: given a function  $f(x_1, x_2)$ , find the minimum  $x_1 = a$  and  $x_2 = b$ 
    - o initialize  $x_i(0)$  with random numbers
    - update points iteratively

$$x_i(n+1) = x_i(n) - \alpha \cdot \frac{\partial t}{\partial x_i}, \quad i = [1, 2]$$

 $\Rightarrow$  as iteration number *n* increases,  $x_1$ ,  $x_2$  will be closer to *a*, *b* 

- minimization of objective function
- gradient descent: minimum can be found as zero of derivative
  - 2D example: given a function  $f(x_1, x_2)$ , find the minimum  $x_1 = a$  and  $x_2 = b$ 
    - $\bigcirc$  initialize  $x_i(0)$  with random numbers
    - update points iteratively:

$$x_i(n+1) = x_i(n) - \alpha \cdot \frac{\partial f}{\partial x_i}, \quad i = [1, 2]$$

 $\Rightarrow$  as iteration number *n* increases,  $x_1$ ,  $x_2$  will be closer to *a*, *b*.

optimization of objective function<sup>3</sup>  $D_{\text{EU}}(V \parallel WH) = \parallel V - WH \parallel^2$ • additive update rules:

$$H \leftarrow H + \alpha \frac{\partial J}{\partial H} = H + \alpha [(W^T V) - (W^T W H)]$$
$$W \leftarrow W + \alpha \frac{\partial J}{\partial W} = W + \alpha [(V H^T) - (W H H^T)]$$

multiplicative update rules

$$H \leftarrow H \frac{(W^T H)}{(W^T W H)}$$
$$W \leftarrow W \frac{(V H^T)}{(W H H^T)}$$

<sup>&</sup>lt;sup>3</sup>seung nmf 2001.

optimization of objective function  $^3$   $D_{\mathrm{EU}}(V \parallel WH) = \parallel V - WH \parallel^2$ 

• additive update rules:

$$H \leftarrow H + \alpha \frac{\partial J}{\partial H} = H + \alpha [(W^T V) - (W^T W H)]$$
$$W \leftarrow W + \alpha \frac{\partial J}{\partial W} = W + \alpha [(V H^T) - (W H H^T)]$$

multiplicative update rules:

$$H \leftarrow H \frac{(W^T H)}{(W^T W H)}$$
$$W \leftarrow W \frac{(V H^T)}{(W H H^T)}$$

<sup>&</sup>lt;sup>3</sup>seung nmf 2001.

- additional penalty terms (regularization terms) may be added to objective function
- example: sparsity in W or H

$$D = \parallel V - WH \parallel^2 + \alpha J_{W}(W) + \beta J_{H}(H)$$

- $\alpha, \beta$ : coefficients for controlling degree of sparsity
- ullet  $J_{
  m W}$  and  $J_{
  m H}$ : typically  $L_1,L_2$  norm

### Georgia Center for Music Tech Techology College of Design

- unsupervised extraction of templates and activations
- input audio: 🖤







#### non-negative matrix factorization

- iterative process minimizing an objective function
- split a matrix into a template matrix and an activation matrix

### NMF for pitch tracking

- input usually magnitude spectrogram
  - templates: spectra of notes/sounds
  - activation: loudness/trigger of these sound

