

연구 계획서

지원 연구 과제 명 :

설비(로봇)의 잔여수명 예측

팀원 이름:

변준현, 민수홍, 차승우

CONTENTS

1. 연구배경

- 예지보전 로드맵
- 잔여수명 예측 (개요, 특징)

2. 연구과제 아이디어

- 하이브리드 수명 예측 모델
- 정비 스케줄링 최적화

3. 고품질 데이터 수집

• 베어링, 컨베이어벨트 수명 실험

4. 메타트론 그랜드뷰 아키텍처 연계

5. 연구 과제 수행 및 연구비 사용 계획

1. 연구배경: 예지보전 로드맵

1. 연구배경: 잔여수명 예측

• 잔여수명 예측 방법은 크게 신뢰성, 데이터, 물리 기반으로 분류됨

1. 연구배경: 잔여수명 예측 특징 (신뢰성, 데이터, 물리)

잔여수명 예측 신뢰성 (Reliability-based approach) 데이터 (Data-driven approach) 물리 (Physics-based approach) 특징 • 평균 신뢰성으로 예측하기 때문에 전체적인 설비의 작동원리를 고려하여 수식화 되었기 수명관리 지표를 삼을 수 있음 현재 환경을 반영할 수 있음 정확한 예측 가능 • 전통적인 수명예측 방법 센싱 기술의 발달로 원활한 데이터 수집이 관측이 제한적일 때, 관측된 변수들을 이용하 가능해져 적용 범위가 넓음 여 시뮬레이션을 통한 새로운 정보 생성 가능 • 통계적 특징에 대한 이해도가 필요 한계점 PoF 정보가 필수적으로 존재해야함 • 신뢰성 기반으로 수명 관리를 하는 분야가 제한적 고장 물리모델이 많지 않아. 적용 분야가 제한적 모델 구축을 위해 많은 데이터가 필요 • 센서를 이용한 실시간 결함 모니터링이 아니기 복잡한 시스템에서 물리식을 적용하기 어려움 때문에 외부 요인으로 인한 파손을 반영할 수 없음 과적합 위험이 있음

1. 연구배경: 잔여수명 예측 개요

데이터 기반 잔여수명 예측을 위한 전처리

데이터 기반 잔여수명 예측 (EWLR: Exponentially Weighted Linear Regression)

2. 연구과제 아이디어: 하이브리드 수명 예측 모델 (신뢰성·데이터)

• 신뢰성 정보를 알고 있을 때, 신뢰성·데이터 하이브리드 잔여수명 예측

2. 연구과제 아이디어: 하이브리드 수명 예측 모델 (신뢰성·데이터)

• 신뢰성 정보를 결합한 베이지안 혼합형 모델

- 잔여수명 예측 방법으로 Bayeisan Mixture Model 제안
 - PoF (Physics of Failure) 기반 잔여수명 예측 방법
 - 신뢰성 정보를 기반으로 가상패턴 생성 후, 실제 데이터와 가상패턴 간 적합도 가중치를 조합하여 잔여수명 예측
 - 예측불확실성을 줄이기 위해 적합도 가중치에 베이지안 업데이트 기법 적용

2. 연구과제 아이디어: 하이브리드 수명 예측 모델 (물리·데이터)

• 물리 정보를 알고 있을 때, 물리·데이터 하이브리드 잔여수명 예측

2. 연구과제 아이디어: 하이브리드 수명 예측 모델 (물리·데이터)

• 데이터 기반 모델과 물리 모델을 결합한 수명 예측 방법

2. 연구과제 아이디어: 스케줄링 최적화

• 잔여수명 기반 정비 스케줄링 최적화

- 예측 잔여수명 기반으로 예측 수명 분포 추정 → Risk 정보로 변환
- 각 시점 별 위험도, 중요도, 정비 비용 등을 반영한 최적 정비 스케줄링 목적 함수 정의
- 정수 계획법(Formulation) 및 메타휴리스틱 기법 (Solver)을 활용한 최적 정비 스케줄링 수행

2. 연구과제 아이디어: 스케줄링 최적화

정비 스케줄링 목적함수

Repair efficiency Prevention efficiency $\max_{x_{tc}} \sum_{t=1}^{\infty} \sum_{c=1}^{\infty} w_{tc} * x_{tc} - \lambda_{1}(R_{tc} * x_{tc} - r_{1}) + \lambda_{2}(R_{tc} * x_{tc} - r_{2})$

subject to $\sum_{i=1}^{c} x_{tc} \leq H(maximum number of maintenance)$

 $x_{tc} = \{0, 1\}$

 $T: end\ of\ cycletime$ R_{tc} _ t시점에서 설비의 risk $C: idnex\ of\ machine$ $r_1:$ 최소 정비 수준 x_{tc} _ t시점에서 특정 설비의 점검 여부 w_{tc} _ t시점에서 특정 설비의 중요도

최적 정비 시점

- 해당 시점의 설비의 중요도와 risk를 고려하여 최적의 정비 시점 결정
- 최소, 최대 정비 수준 (r_1, r_2) 를 설정을 통해 과도한 정비 비용과 고장 비용을 최소화 하고자 함
- 향후 r_1 , r_2 을 결정하는 후속 연구 진행 예정

3. 고품질 데이터 수집: 베어링, 컨베이어벨트 수명 실험

테스트베드

2018年5月 2018年5月 2018年5月 2018年5月

수명 실험 대상

- 실험계획법을 활용하여 고장 유형을 설계
- 테스트베드를 활용하여 다양한 고장 유형 데이터 (고품질 데이터) 수집
- 실험 데이터를 활용하여, 수명 예측모델 검증 예정

4. 메타트론 그랜드뷰 아키텍처 연계

5. 연구 과제 수행 및 연구비 사용 계획

• 연구 과제 수행 계획

※ 과제기간: '22년 6월~ 10월 (5개월)

5. 연구 과제 수행 및 연구비 사용 계획

• 연구비 사용 계획

※ 과제기간 : '22년 6월 ~ 10월 (5개월) (단위 : 원)

항목	세부 항목	금액 (단위 : 원)
학회	PHM 학회 (2022-06-29~2022-07-01)	3,000,000 (3명 × 2학회 × 500,000 =3,000,000)
(SKT 공동 발표)	한국신뢰성학회 (11월 말 예정)	
연구재료	컨베이어벨트	1,000,000
	베어링	
연구장비	센서	1,000,000
식대	회의비	1,000,000
	야근식대	
총합		6,000,000