日本国特許庁 JAPAN PATENT OFFICE

別紙添付の書類に記載されている事項は下記の出願書類に記載されている事項と同一であることを証明する。

This is to certify that the annexed is a true copy of the following application as filed with this Office.

出 願 年 月 日 Date of Application:

2003年 2月27日

出願番号 Application Number:

特願2003-051794

[ST. 10/C]:

[JP2003-051794]

出 願 人
Applicant(s):

株式会社日本触媒

`,,')

特許庁長官 Commissioner, Japan Patent Office 2003年12月 2日

【書類名】 特許願

【整理番号】 01249JP

【提出日】 平成15年 2月27日

【あて先】 特許庁長官殿

【国際特許分類】 C07C 57/055

【発明の名称】 複合酸化物触媒およびそれを用いたアクリル酸の製造方

法

【請求項の数】 4

【発明者】

【住所又は居所】 兵庫県姫路市網干区興浜字西沖992番地の1 株式会

社日本触媒内

【氏名】 谷本 道雄

【発明者】

【住所又は居所】 兵庫県姫路市網干区興浜字西沖992番地の1 株式会

社日本触媒内

【氏名】 平尾 晴紀

【特許出願人】

【識別番号】 000004628

【氏名又は名称】 株式会社日本触媒

【代理人】

【識別番号】 100073461

【弁理士】

【氏名又は名称】 松本 武彦

【手数料の表示】

【予納台帳番号】 006552

【納付金額】 21,000円

【提出物件の目録】

【物件名】 明細書 1

【物件名】 要約書 1

【包括委任状番号】 9712712

【プルーフの要否】 要

【書類名】 明細書

【発明の名称】 複合酸化物触媒およびそれを用いたアクリル酸の製造方法 【特許請求の範囲】

【請求項1】

下記一般式(1)で表されるアクリル酸製造用触媒であって、

該触媒を調製する際のA成分の供給源が、そのA成分とモリブデン、バナジウムおよび銅から選ばれる少なくとも一種の元素との複合体であることを特徴とする、複合酸化物触媒。

MoaVbWcCudAeBfCgOx (1)

(ここで、Moはモリブデン、Vはバナジウム、Wはタングステン、Cuは銅、Aはコバルト、ニッケル、鉄、鉛およびビスマスから選ばれる少なくとも一種の元素、Bはアンチモン、ニオブおよびスズから選ばれる少なくとも一種の元素、Cはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Oは酸素であり、a、b、c、d、e、f、gおよびxはそれぞれMo、V、W、Cu、A、B、CおよびOの原子比を表し、a=12の時、 $2 \le b \le 15$ 、 $0 < c \le 10$ 、 $0 < d \le 6$ 、 $0 < e \le 30$ 、 $0 \le f \le 6$ 、 $0 \le g \le 6$ 0であり、x はそれぞれの元素の酸化状態によって定まる数値である。)

【請求項2】

アクロレインを分子状酸素または分子状酸素含有ガスにより気相接触酸化して アクリル酸を製造する方法において、

該反応を請求項1に記載の複合酸化物触媒の存在下に行うことを特徴とする、 アクリル酸の製造方法。

【請求項3】

高濃度プロピレンおよび酸素を含有し、かつ、実質的にスチームを含有しない混合ガスを、モリブデンおよびビスマスを必須成分とする複合酸化物触媒が充填された固定床多管式第1反応器に導入して、アクロレイン含有ガスを製造する工程(1)と、前記アクロレイン含有ガスを、モリブデンおよびバナジウムを必須成分とする複合酸化物触媒が充填された固定床多管式第2反応器に導入して、アクリル酸含有ガスを製造する工程(2)と、前記アクリル酸含有ガスをアクリル

酸吸収塔に導入し、高濃度アクリル酸溶液として捕集する工程(3)とを含む、アクリル酸の製造方法であって、

前記固定床多管式第2反応器に導入される複合酸化物触媒として請求項1に記載の複合酸化物触媒を用いるとともに、

前記固定床多管式第2反応器の各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、A成分の量の異なる請求項1に記載の複合酸化物触媒を、各反応管のガス入口側からガス出口側に向けてA成分の量が小さくなるように各反応帯に充填することを特徴とする、アクリル酸の製造方法。

【請求項4】

前記固定床多管式第1反応器に導入される混合ガスが、当該反応器内において 実質的に酸化反応しない飽和炭化水素をも含む、請求項3に記載のアクリル酸の 製造方法。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】

本発明は、アクリル酸を製造する際に用いられる複合酸化物触媒およびその触媒を用いたアクリル酸の製造方法に関する。

[0002]

【従来の技術】

アクロレインの気相接触酸化反応によってアクリル酸を効率よく製造するための改良触媒が数多く提案されている。例えば、モリブデン、バナジウム、タングステンからなる触媒(例えば、特許文献 1 参照)、モリブデン、バナジウム、銅、タングステン、クロムからなる触媒(例えば、特許文献 2 参照)、モリブデン、バナジウムからなる触媒(例えば、特許文献 3 参照)、モリブデン、バナジウム、銅、および、アンチモンとゲルマニウムの少なくとも一種からなる触媒(例えば、特許文献 4 参照)が記載されている。

[0003]

しかしながら、これら従来の触媒には、触媒の長期間の使用において、モリブ デン成分が昇華し、触媒性能が徐々に低下するという問題があった。そして、こ の問題は、触媒が高温に曝されることによってより顕著なものとなっていた。

上記問題の解決策の一つとして、ホットスポット温度の上昇を抑制する方法が開示されている。例えば、原料ガス入口側の触媒層を不活性物質で希釈する方法 (例えば、特許文献 5 参照)、原料ガス入口側から出口側に向かって触媒活性物質の担持率を順次大きくする方法 (例えば、特許文献 6 参照)が開示されている。

[0004]

しかしながら、これらの方法はホットスポットが過度に高温となることを抑制 する方法であって、ホットスポット自体は従来と同様に形成されたままである。 つまり、ホットスポット由来の触媒性能低下の根本的な解決とは決して言えるも のではなく、まだまだ改善の余地があった。

一方で、触媒を用いたアクロレインの気相接触酸化反応によってアクリル酸を 製造する際には、触媒中には通常少なからずホットスポットが形成し、ホットス ポット形成を完全に排除して製造を行うことは現実的に困難である。

[0005]

【特許文献1】

特公昭44-12129号公報

[0006]

【特許文献2】

特公昭49-11371号公報

[0007]

【特許文献3】

特公昭 5 0 - 2 5 9 1 4 号公報

[(00008)]

【特許文献4】

特開昭 5 2 - 8 5 0 9 1 号公報

[0009]

【特許文献5】

特公昭53-30688号公報

[0010]

【特許文献6】

特開平7-10802号公報

$[0\ 0\ 1\ 1]$

【発明が解決しようとする課題】

従って、本発明が解決しようとする課題は、ホットスポットが形成される条件 下においても、活性、選択性および触媒寿命ともに優れ、長期にわたって安定し た性能を示す触媒およびこの触媒の存在下にアクロレインを分子状酸素または分 子状酸素含有ガスにより気相接触酸化して長期にわたって高収率でアクリル酸を 製造する方法を提供しようとするものである。

$[0\ 0\ 1\ 2]$

【課題を解決するための手段】

本発明者は、上記課題を解決するべく鋭意検討を行った。その結果、モリブデン、バナジウム、タングステン、銅を必須成分として含み、かつ、コバルト、ニッケル、鉄、鉛およびビスマスから選ばれる少なくとも一種の元素をも含む複合酸化物触媒であって、前記コバルト、ニッケル、鉄、鉛およびビスマスから選ばれる少なくとも一種の元素の供給源として、モリブデン、バナジウムおよび銅から選ばれる少なくとも一種の元素との複合体を用いて調製されたものが、上記課題を解決する触媒であることを見出した。そして、この触媒を用いれば、アクロレインを分子状酸素または分子状酸素含有ガスにより気相接触酸化して長期にわたって高収率でアクリル酸を製造することができることを見出した。さらに、この触媒を用いることにより、従来は触媒劣化が増大するために回避されていた高濃度プロセスへの適用が可能となった。

[0013]

すなわち、本発明にかかる複合酸化物触媒は、下記一般式 (1) で表されるアクリル酸製造用触媒であって、該触媒を調製する際のA成分の供給源が、そのA成分とモリブデン、バナジウムおよび銅から選ばれる少なくとも一種の元素との複合体であることを特徴とする。

MoaVbWcCudAeBfCgOx (1)

(ここで、Moはモリブデン、Vはバナジウム、Wはタングステン、Cuは銅、Aはコバルト、ニッケル、鉄、鉛およびビスマスから選ばれる少なくとも一種の元素、Bはアンチモン、ニオブおよびスズから選ばれる少なくとも一種の元素、Cはシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、Oは酸素であり、a、b、c、d、e、f、gおよびxはそれぞれMo、V、W、Cu、A、B、CおよびOの原子比を表し、a=12の時、 $2 \le b \le 15$ 、 $0 < c \le 10$ 、 $0 < d \le 6$ 、 $0 < e \le 30$ 、 $0 \le f \le 6$ 、 $0 \le g \le 60$ であり、xはそれぞれの元素の酸化状態によって定まる数値である。)また、本発明にかかるアクリル酸の製造方法は、アクロレインを分子状酸素または分子状酸素含有ガスにより気相接触酸化してアクリル酸を製造する方法において、該反応を本発明の複合酸化物触媒の存在下に行うことを特徴とする。

$[0\ 0\ 1\ 4]$

さらに、本発明にかかる別のアクリル酸の製造方法は、高濃度プロピレンおよび酸素を含有し、かつ、実質的にスチームを含有しない混合ガスを、モリブデンおよびビスマスを必須成分とする複合酸化物触媒が充填された固定床多管式第1反応器に導入して、アクロレイン含有ガスを製造する工程(1)と、前記アクロレイン含有ガスを、モリブデンおよびバナジウムを必須成分とする複合酸化物触媒が充填された固定床多管式第2反応器に導入して、アクリル酸含有ガスを製造する工程(2)と、前記アクリル酸含有ガスをアクリル酸吸収塔に導入し、高濃度アクリル酸溶液として捕集する工程(3)とを含む、アクリル酸の製造方法であって、前記固定床多管式第2反応器に導入される複合酸化物触媒として請求項1に記載の複合酸化物触媒を用いるとともに、前記固定床多管式第2反応器の各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、A成分の量の異なる請求項1に記載の複合酸化物触媒を、各反応管のガス入口側からガス出口側に向けてA成分の量が小さくなるように各反応帯に充填することを特徴とする。

[0015]

【発明の実施の形態】

本発明にかかる複合酸化物触媒は、下記一般式(1)で表されるアクリル酸製

造用触媒である。

MoaVbWcCudAeBfCgOx (1)

ここで、M o はモリブデン、V はバナジウム、W はタングステン、C u は銅、A はコバルト、ニッケル、鉄、鉛およびビスマスから選ばれる少なくとも一種の元素、B はアンチモン、ニオブおよびスズから選ばれる少なくとも一種の元素、C はシリコン、アルミニウム、チタニウムおよびジルコニウムから選ばれる少なくとも一種の元素、O は酸素である。a、b、c、d、e、f、g およびx はそれぞれM o、V、W、C u 、A、B、C およびO の原子比を表し、a=1 2 の時、 $2 \le b \le 1$ 5、 $0 < c \le 1$ 0 、 $0 < d \le 6$ 、0 $< e \le 3$ 0 、 $0 \le f \le 6$ 、 $0 \le g \le 6$ 0 であり、x はそれぞれの元素の酸化状態によって定まる数値である。

[0016]

本発明にかかる複合酸化物触媒は、該触媒を調製する際のA成分の供給源が、そのA成分とモリブデン、バナジウムおよび銅から選ばれる少なくとも一種の元素との複合体であることを特徴とする。ここにいう複合体とは、各元素原料が水性媒体中(一般に100 C以下)で合体して得られるものや、これを乾燥(一般に100 C以下)して得られる固形物(粉体)や、この固形物を更に高温で処理することにより得られる酸化物複合体等をいう。

A成分の供給源としてA成分とモリブデン、バナジウムおよび銅から選ばれる少なくとも一種の元素とを予め複合体とすることによって、ホットスポットが形成される条件下においても、活性、選択性および触媒寿命ともに優れ、長期にわたって安定した性能を示す触媒が得られる。この原因としては、例えば、A成分の供給源としてA成分とモリブデンとを予め複合体とすることによってモリブデンの安定性が向上し、また、A成分とバナジウムあるいは銅を予め複合体とすることによっても、モリブデンに何らかの相互作用を及ぼすことによってモリブデンの安定性が向上したことが考えられる。

[0017]

本発明にかかる複合酸化物触媒の調製方法は、上述のように、A成分の供給源としてA成分とモリブデン、バナジウムおよび銅から選ばれる少なくとも一種の元素とを予め複合体としておく点を除けば、この種の触媒の調製に一般に用いら

れている方法と本質的には異ならない。例えば、従来からよく知られている蒸発 乾固法、造粒法、押出し成型法などの任意の方法に従って行うことができる。

本発明にかかる複合酸化物触媒の形状については特に制限はなく、リング状、球状、円柱状、タブレット状など任意の形状にすることができる。その平均直径は、好ましくは1~15mm、より好ましくは3~10mmである。この際、触媒の強度、粉化度を改善する効果があるとして一般によく知られているガラス繊維などの無機繊維、各種ウィスカーなどを添加しても良い。また、触媒物性を再現よく制御するために硝酸アンモニウム、セルロース、デンプン、ポリビニルアルコール、ステアリン酸など一般に粉体結合剤として知られた添加物を使用することもできる。

[0018]

本発明にかかる複合酸化物触媒はそれ自体単独で使用することができるが、アルミナ、シリカーアルミナ、シリコンカーバイド、酸化チタン、アルミニウムスポンジなどの不活性担体に担持して使用することもできる。この場合、一般式(1)で表される複合酸化物触媒の担持率(%)(=複合酸化物の重量/(不活性担体の重量+複合酸化物の重量)×100)は、好ましくは10~70%、より好ましくは15~50%である。

本発明にかかる複合酸化物触媒の調製時の熱処理温度(焼成温度)は、特に限定されないが、好ましくは $300\sim600$ ℃、より好ましくは350℃ ~500 ℃の温度で、 $1\sim10$ 時間程度焼成することにより、目的とする複合酸化物触媒が得られる。

[0019]

本発明にかかる複合酸化物は、活性、選択性および触媒寿命ともに優れ、長期にわたって安定した性能を示すことができるので、この触媒の存在下にアクロレインを分子状酸素または分子状酸素含有ガスにより気相接触酸化することにより長期にわたって高収率でアクリル酸を製造することが可能となる。

すなわち、本発明にかかるアクリル酸の製造方法は、アクロレインを分子状酸素または分子状酸素含有ガスにより気相接触酸化してアクリル酸を製造する方法において、該反応を本発明の複合酸化物触媒の存在下に行うことを特徴とする。

ページ: 8/

上記製造方法の原料ガスであるアクロレインとしては、アクロレイン、酸素お よび不活性ガスからなる混合ガスはもとよりのこと、プロピレンを直接酸化して 得られるアクロレイン含有の混合ガスも、必要に応じて空気または酸素、さらに は水蒸気やその他のガスを添加して使用することもできる。

[0020]

上記製造方法の実施に際しての装置、条件などについては特に制限はない。す なわち、反応器としては一般の固定床反応器が用いられ、反応条件について言え ば、気相接触酸化反応によるアクリル酸の製造に一般に用いられている条件下で 実施することができる。例えば、1~15容量%、好ましくは4~12容量%の アクロレイン、0.5~25容量%、好ましくは2~20容量%の酸素、1~3 0 容量%、好ましくは3~20容量%の水蒸気および20~80容量%、好まし くは50~70容量%の窒素などの不活性ガスなどからなる混合ガスを200~ 4 0 0 ℃、好ましくは 2 2 0 ~ 3 8 0 ℃の温度範囲で、 0 . 1 ~ 1 M P a の圧力 下に、300~10000hr-1(STP)、好ましくは500~5000hr -l(STP)の空間速度で、本発明の複合酸化物触媒と接触させて反応させれば よい。

[0021]

さらに、本発明にかかる複合酸化物は、ホットスポットが形成される条件下に おいても、活性、選択性および触媒寿命ともに優れ、長期にわたって安定した性 能を示すことができることから、従来は触媒劣化が増大するために回避されてい た高濃度プロセスへの適用が可能となった。

すなわち、本発明にかかる別のアクリル酸の製造方法は、高濃度プロピレンお よび酸素を含有し、かつ、実質的にスチームを含有しない混合ガスを、モリブデ ンおよびビスマスを必須成分とする複合酸化物触媒が充填された固定床多管式第 1 反応器に導入して、アクロレイン含有ガスを製造する工程(1)と、前記アク ロレイン含有ガスを、モリブデンおよびバナジウムを必須成分とする複合酸化物 触媒が充填された固定床多管式第2反応器に導入して、アクリル酸含有ガスを製 造する工程(2)と、前記アクリル酸含有ガスをアクリル酸吸収塔に導入し、高 濃度アクリル酸溶液として捕集する工程(3)とを含む、アクリル酸の製造方法 であって、前記固定床多管式第2反応器に導入される複合酸化物触媒として請求項1に記載の複合酸化物触媒を用いるとともに、前記固定床多管式第2反応器の各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、A成分の量の異なる請求項1に記載の複合酸化物触媒を、各反応管のガス入口側からガス出口側に向けてA成分の量が小さくなるように各反応帯に充填することを特徴とする。

[0022]

上記製造方法は、アクロレイン含有ガスを製造する工程(1)と、工程(1)で得られるアクロレイン含有ガスからアクリル酸含有ガスを製造する工程(2)と、工程(2)で得られるアクリル酸含有ガスをアクリル酸吸収塔に導入し、高濃度アクリル酸溶液として捕集する工程(3)とを含む。

工程(1)で用いる原料ガスは、高濃度でプロピレンを含有する。ここでいう高濃度とは、原料ガス中のプロピレン濃度が、好ましくは7容量%以上、より好ましくは8容量%以上20容量%以下、さらに好ましくは9容量%以上15容量%以下をいう。このようにプロピレン濃度が高められることによって、アクリル酸の生産性が高まる。

[0023]

一方、原料ガス中のプロピレン濃度を増加させると、触媒への負荷量は増大し、従来以上に触媒の劣化は加速されることになる。特に、モリブデンおよびバナジウムを必須成分とする従来触媒においては劣化が大きく、アクリル酸を長期にわたって安定して製造することができないという問題があった。しかしながら、固定床多管式第2反応器に導入される複合酸化物触媒として本発明の複合酸化物触媒を用いるとともに、前記固定床多管式第2反応器の各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、A成分の量の異なる本発明の複合酸化物触媒を、各反応管のガス入口側からガス出口側に向けてA成分の量が小さくなるように各反応帯に充填するという方法を採用することによって、上記問題が解決できることが判明した。

[0024]

工程(1)で用いる原料ガスは、酸素をも含有する。原料ガス中のプロピレン

と酸素との容量比(プロピレン:酸素)は、好ましくは $1:1\sim2.5$ 、より好ましくは $1:1.05\sim2.2$ 、さらに好ましくは $1:1.1\sim2.0$ である。

工程(1)で用いる原料ガスは、プロピレンの気相酸化反応において実質的に不活性な(すなわち実質的に酸化反応を受けない)飽和炭化水素を含有していてもよい。このような飽和炭化水素としては、例えば、メタン、エタン、プロパン、ブタン等が挙げられる。このような飽和炭化水素が原料ガスに添加される主な目的は、バランスガスとしての役割であり、さらには、一般に不活性希釈ガスとして用いられるスチームの代替成分としての役割である。不活性な飽和炭化水素からなるバランスガスとプロピレンの容量比(飽和炭化水素/プロピレン)は、0以上1.5以下が好適な範囲である。

[0025]

工程(1)で用いる原料ガスは、実質的にスチームを含有しない。これは、工程(1)で用いる原料ガスに意図的に(積極的に)スチームを添加しないことを意味する。したがって、分子状酸素の供給源、特に空気を用いた場合に含まれる大気中の水分(湿度)はここでいうスチームには該当しない。

工程(1)で用いる原料ガス中にスチームが実質的に含有されないため、高い 濃度のアクリル酸溶液が得られる。この結果、アクリル酸を精製する工程で消費 されるスチーム等のエネルギー消費を削減することができる。また、系外に排出 される排水量を削減することができる。

$[0\ 0\ 2\ 6]$

上記スチーム濃度は、0容量%がアクリル酸吸収塔でのアクリル酸濃度を上げる点で最も好ましいが、大気中の湿度と温度から求まるスチーム濃度は本発明では許容する。好適な形態としては、分子状酸素の供給源である空気等を除湿機能を備えた装置に導入することにより、湿度および温度の影響を受けることのない分子状酸素供給源として使用する形態を挙げることができる。

また、スチーム濃度が下がると、モリブデンおよびバナジウムを必須成分とする従来触媒においては劣化が大きく、アクリル酸を長期にわたって安定して製造することができないという問題があったが、前述したように、固定床多管式第2 反応器に導入される複合酸化物触媒として本発明の複合酸化物触媒を用いるとと もに、前記固定床多管式第2反応器の各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、A成分の量の異なる本発明の複合酸化物触媒を、各反応管のガス入口側からガス出口側に向けてA成分の量が小さくなるように各反応帯に充填するという方法を採用することによって、上記問題は解決できた。

[0027]

固定床多管式第 1 反応器に充填されるモリブデンおよびビスマスを必須成分とする複合酸化物触媒としては、特に限定されず、例えば、従来公知のモリブデンおよびビスマスを必須成分とする複合酸化物触媒を用いることができる。具体的には、例えば、特開昭 5 8 - 1 1 9 3 4 6 号公報、特開昭 5 9 - 7 6 5 4 1 号公報、特開 2 0 0 0 - 3 2 5 7 9 5 号公報などに記載の触媒を用いることができる

工程(2)に供される反応ガスは、固定床多管式第1反応器から流出するガスをそのまま使用することができるが、場合により分子状酸素含有ガスを固定床多管式第1反応器から流出するガスと混合した後に固定床多管式第2反応器に導入することもできる。この場合、追加される酸素濃度は、固定床多管式第1反応器に供される反応ガスと固定床多管式第1反応器からの流出ガスに追加される分子状酸素含有ガスとの合計において、プロピレン:酸素(容量比)が、好ましくは1:1.5~3.5、より好ましくは1:1.55~3.0、さらに好ましくは1:1.6~2.5になるように分子状酸素含有ガスを追加する。

$[0\ 0\ 2\ 8]$

工程(2)においては、固定床多管式第2反応器に導入される複合酸化物触媒として本発明の複合酸化物触媒を用いる。本発明の複合酸化物触媒を用いることにより、第1反応器へ導入される原料ガス中のプロピレン濃度を増加させたり、スチームを実質的に含有させなくても、触媒の劣化を抑制でき、アクリル酸を長期にわたって安定して製造することができる。

工程(2)においては、また、固定床多管式第2反応器の各反応管の内部を管軸方向に分割することにより複数個の反応帯を設け、A成分の量の異なる本発明の複合酸化物触媒を、各反応管のガス入口側からガス出口側に向けてA成分の量が小さくなるように各反応帯に充填する。この構成をなすことにより、ホットス

ポット部が発生してもモリブデンの昇華が抑制できるので、原料ガス中のプロピレン濃度を増加させたり、スチームを実質的に含有させなくても、触媒の劣化を抑制でき、アクリル酸を長期にわたって安定して製造することができる。

[0029]

固定床多管式第2反応器における各反応管の内部を管軸方向に分割することによって設けた反応帯の数は、特に限定されないが、反応帯の数が多すぎると触媒充填作業が煩雑になるなどの新たな問題が発生するので、工業的には好ましくは2~6程度、より好ましくは2または3程度にすることで十分目的とする効果を得ることができる。また、触媒層の分割比については、酸化反応条件や各層に充填された触媒の組成、形状、サイズなどによって最適値が左右されるため一概に特定できず、全体としての最適な活性および選択率が得られるように適宜選択すればよい。

[0030]

また、固定床多管式第2反応器の各反応管に複合酸化物触媒を充填するに際しては、上述の充填方法を用いるとともに、さらに、従来公知の充填方法、例えば、反応管に複数種の触媒を充填するに際し、触媒の体積が原料ガス入口側から出口側に向かって小さくなるように充填する方法(特開平9-241209号公報)、反応管の原料ガス入口側から出口側に向けて触媒活性物質の担持率がより大きい触媒を順次充填する方法(特開平7-10802号公報)、原料ガス入口側の触媒を不活性物質で希釈する方法(特公昭53-30688号公報)などと組み合わせることも可能である。

[0031]

【実施例】

以下、実施例を挙げて本発明を更に詳細に説明するが、本発明はこれらの実施 例によって何ら制限されるものではない。

なお、アクロレイン転化率、アクリル酸選択率およびアクリル酸収率は次式に よって求めた。

アクロレイン転化率(%) = (反応したアクロレインのモル数) \angle (供給したアクロレインのモル数) \times 100

アクリル酸選択率(%)= (生成したアクリル酸のモル数) / (反応したアクロレインのモル数) $\times 100$

アクリル酸収率(%) = (生成したアクリル酸のモル数) / (供給したアクロレインのモル数) \times 100

[実施例1]

(Fe-Mo前駆体の調製)

純水 $500\,\mathrm{m}$ I を加熱撹拌しながら、この中にパラモリブデン酸アンモニウム $21.9\,\mathrm{g}$ を溶解した。別に純水 $150\,\mathrm{m}$ I を加熱撹拌しながら、この中に硝酸 第二鉄 $33.4\,\mathrm{g}$ を溶解した。得られた $200\,\mathrm{m}$ を混合した後、撹拌しながら $80\,\mathrm{m}$ の温度にて 1 時間保持した後、水分を除去し、 $500\,\mathrm{m}$ にて 3 時間加熱処理 をした。得られた固形物を粒子径が $100\,\mathrm{m}$ 加以下になるように粉砕し、Fe $100\,\mathrm{m}$ の前駆体を調製した。

[0032]

(触媒の調製)

純水2000mlを加熱撹拌しながら、この中にパラモリブデン酸アンモニウム328g、メタバナジン酸アンモニウム96.6gおよびパラタングステン酸アンモニウム53.5gを溶解した。別に純水200gを加熱撹拌しながら、硝酸第二銅79.8gおよび三酸化アンチモン4.8gを添加した。得られた2つの液を混合した後、予め調製したFe-Mo前駆体を加え、湯浴上の磁製蒸発器に入れ、これに平均粒径が5mmのシリカーアルミナからなる球状担体1200mlを加え、撹拌しながら蒸発乾固して担体に付着させた後、400℃で6時間焼成して触媒(1)を調製した。この触媒(1)の金属元素の組成(酸素は除く、以下同じ)は次のとおりであった。

[0033]

触媒(1) Mo₁₂V₅W_{1.2}C u₂S b_{0.2}F e_{0.5}

(耐久試験)

このようにして得られた触媒(1)200mlを熱媒ジャケットを備えた内径25mm、長さ800mmのステンレス製反応管に充填した。この反応管にアクロレイン4容量%、空気20容量%および水蒸気76容量%の混合ガスを導入し

、接触時間1.5秒で2000時間にわたり反応を行った。この間アクロレイン 転化率が98~99モル%を維持するように反応温度を調節した。

反応終了後、反応管から抜き出された触媒を均一に混合し、 50μ m以下になるように粉砕した。粉体5g を精秤した後、加圧成型(20 トン)した後、けい光 X線分析に供した(測定条件:Rh 管球、50kv、50mA、測定機器:理学電機工業株式会社、RIX2000)。

[0034]

反応に使用しなかった触媒(未使用触媒)も同様にけい光X線分析に供した。 未使用触媒のモリブデンのピーク強度を100とした時、2000時間反応を行った後の触媒(使用触媒)のモリブデンのピーク強度は90であった。

「比較例1]

(触媒の調製)

実施例 1 において Fe-Mo 前駆体の調製を予め行うことなく、下記の手順に従って触媒を調製した。

純水2000mlを加熱撹拌しながら、この中にパラモリブデン酸アンモニウム350g、メタバナジン酸アンモニウム96.6gおよびパラタングステン酸アンモニウム53.5gを溶解した。別に純水200gを加熱撹拌しながら、硝酸第二銅79.8g、硝酸第二鉄33.4gおよび三酸化アンチモン4.8gを添加した。得られた2つの液を混合した後、湯浴上の磁製蒸発器に入れ、これに平均粒径が5mmのシリカーアルミナからなる球状担体1200mlを加え、撹拌しながら蒸発乾固して担体に付着させた後、400℃で6時間焼成し、触媒(1)と同一組成の比較触媒(c1)を調製した。

[0035]

(耐久試験)

実施例1において触媒(1)の代わりに比較触媒(c1)を用いて、実施例1 と同様に反応およびけい光X線分析を行った結果、未使用触媒のモリブデンのピーク強度を100とした時、使用触媒のモリブデンのピーク強度は78であった

[実施例2]

(Fe-Mo前駆体の調製)

純水 $500 \, \mathrm{ml}$ を加熱撹拌しながら、この中にパラモリブデン酸アンモニウム $87.5 \, \mathrm{g}$ を溶解した。別に純水 $150 \, \mathrm{ml}$ を加熱撹拌しながら、この中に硝酸 第二鉄 $133 \, \mathrm{g}$ を溶解した。得られた $200 \, \mathrm{m}$ を混合した後、撹拌しながら $80 \, \mathrm{m}$ の温度にて 1 時間保持した後、水分を除去し、 $500 \, \mathrm{m}$ にて 3 時間加熱処理を した。得られた固形物を粒子径が $100 \, \mathrm{m}$ س以下になるように粉砕し、 $\mathrm{Fe-M}$ o 前駆体を調製した。

[0036]

(触媒の調製)

純水2000mlを加熱撹拌しながら、この中にパラモリブデン酸アンモニウム262.5g、メタバナジン酸アンモニウム96.6gおよびパラタングステン酸アンモニウム53.5gを溶解した。別に純水200gを加熱撹拌しながら、硝酸第二銅79.8gおよび三酸化アンチモン4.8gを添加した。得られた2つの液を混合した後、予め調製したFe-Mo前駆体を加え、湯浴上の磁製蒸発器に入れ、これに平均粒径が5mmのシリカーアルミナからなる球状担体1200mlを加え、撹拌しながら蒸発乾固して担体に付着させた後、400℃で6時間焼成して触媒(2)を調製した。この触媒(2)の金属元素の組成は次のとおりであった。

[0037]

触媒(2) Mo12V5W1.2Cu2Sb0.2Fe2

(耐久試験)

実施例1において触媒(1)の代わりに触媒(2)を用いて、実施例1と同様に反応およびけい光X線分析を行った結果、未使用触媒のモリブデンのピーク強度を100とした時、使用触媒のモリブデンのピーク強度は95であった。

「比較例2]

(触媒の調製)

実施例 2 において F e -M o 前駆体の調製を予め行うことなく、下記の手順に従って触媒を調製した。

[0038]

純水2000mlを加熱撹拌しながら、この中にパラモリブデン酸アンモニウム350g、メタバナジン酸アンモニウム96.6gおよびパラタングステン酸アンモニウム53.5gを溶解した。別に純水200gを加熱撹拌しながら、硝酸第二銅79.8g、硝酸第二鉄133gおよび三酸化アンチモン4.8gを添加した。得られた2つの液を混合した後、湯浴上の磁製蒸発器に入れ、これに平均粒径が5mmのシリカーアルミナからなる球状担体1200mlを加え、撹拌しながら蒸発乾固して担体に付着させた後、400℃で6時間焼成し、触媒(2)と同一組成の比較触媒(c2)を調製した。

[0039]

(耐久試験)

実施例1において触媒(1)の代わりに比較触媒(c2)を用いて、実施例1 と同様に反応およびけい光X線分析を行った結果、未使用触媒のモリブデンのピーク強度を100とした時、使用触媒のモリブデンのピーク強度は80であった。

[実施例3]

(Fe−Cu−V前駆体の調製)

純水 $500 \, \mathrm{ml}$ を加熱撹拌しながら、この中に硝酸第二銅 $20 \, \mathrm{g}$ およびメタバナジン酸アンモニウム $19.3 \, \mathrm{g}$ を溶解した。別に純水 $150 \, \mathrm{ml}$ を加熱撹拌しながら、この中に硝酸第二鉄 $33.4 \, \mathrm{g}$ を溶解した。得られた $200 \, \mathrm{ml}$ を次後、撹拌しながら $80 \, \mathrm{ml}$ の温度にて 1 時間保持した後、水分を除去し、 $200 \, \mathrm{ml}$ でにて 5 時間加熱処理をした。得られた固形物を粒子径が $100 \, \mathrm{ml}$ m以下になるように粉砕し、 $\mathrm{Fe-Cu-V}$ 前駆体を調製した。

[0040]

(触媒の調製)

純水2000mlを加熱撹拌しながら、この中にパラモリブデン酸アンモニウム350g、メタバナジン酸アンモニウム77.3gおよびパラタングステン酸アンモニウム53.5gを溶解した。別に純水200gを加熱撹拌しながら、硝酸第二銅60gおよび三酸化アンチモン4.8gを添加した。得られた2つの液を混合した後、予め調製したFe-Cu-V前駆体を加え、湯浴上の磁製蒸発器

に入れ、これに平均粒径が5 mmのシリカーアルミナからなる球状担体1200 ml を加え、撹拌しながら蒸発乾固して担体に付着させた後、400 Cで6 時間 焼成して触媒(3)を調製した。この触媒(3)の金属元素の組成は次のとおりであった。

[0041]

触媒(3) Mo₁₂V₅W_{1.2}C u₂S b_{0.2}F e_{0.5}

(耐久試験)

実施例1において触媒(1)の代わりに触媒(3)を用いて、実施例1と同様に反応およびけい光X線分析を行った結果、未使用触媒のモリブデンのピーク強度を100とした時、使用触媒のモリブデンのピーク強度は92であった。

[実施例4]

(Bi-Mo前駆体の調製)

純水 $500 \, \mathrm{m} \, 1 \, \mathrm{e}$ 加熱撹拌しながら、この中にパラモリブデン酸アンモニウム $43.8 \, \mathrm{g}$ を溶解した。別に純水 $150 \, \mathrm{m} \, 1 \, \mathrm{e} \, 65 \, \mathrm{g}$ 量%硝酸 $30 \, \mathrm{g}$ との混合液 を加熱撹拌しながら、この中に硝酸ビスマス $80 \, \mathrm{g}$ を溶解した。得られた $20 \, \mathrm{o}$ 液を混合した後、撹拌しながら $80 \, \mathrm{c}$ の温度にて $1 \, \mathrm{b}$ 間保持した後、水分を除去 し、 $400 \, \mathrm{c}$ にて $3 \, \mathrm{b}$ 間加熱処理をした。得られた 固形物を粒子径が $100 \, \mathrm{\mu} \, \mathrm{m}$ 以下になるように粉砕し、Bi-Moi 即駆体を調製した。

[0042]

(触媒の調製)

純水2000mlを加熱撹拌しながら、この中にパラモリブデン酸アンモニウム306g、メタバナジン酸アンモニウム87.0gおよびパラタングステン酸アンモニウム66.9gを溶解した。別に純水200gを加熱撹拌しながら、硝酸第二銅79.8gおよび三酸化アンチモン4.8gを添加した。得られた2つの液を混合した後、予め調製したBi-Mo前駆体を加え、湯浴上の磁製蒸発器に入れ、これに平均粒径が5mmのシリカーアルミナからなる球状担体1200mlを加え、撹拌しながら蒸発乾固して担体に付着させた後、400℃で6時間焼成して触媒(4)を調製した。この触媒(4)の金属元素の組成は次のとおりであった。

[0043]

触媒(4) Mo₁₂V_{4.5}W_{1.5}C u₂B i₁

(耐久試験)

実施例1において触媒(1)の代わりに触媒(4)を用いて、実施例1と同様に反応およびけい光X線分析を行った結果、未使用触媒のモリブデンのピーク強度を100とした時、使用触媒のモリブデンのピーク強度は89であった。

[実施例5]

(触媒の調製)

実施例1において触媒を調製するに際し、平均粒径が8mmのシリカーアルミナからなる球状担体を用いた以外は実施例1と同様に行い、触媒(5)を調製した。

[0044]

(酸化反応)

(特開平9-241209号公報の方法)

熱媒循環用ジャケットを備えた内径25mm、長さ3500mmの反応管においてガス入口側から出口側に向かって、①触媒(5)、②触媒(1)の順に各充填層長が1000mm、2000mmになるように充填した。

この反応管にアクロレイン 5. 5 容量%、酸素 6 容量%、水蒸気 2 5 容量% および窒素等からなる不活性ガス 6 3. 5 容量%からなる混合ガスを接触時間 2 秒で導入し、8000時間にわたって反応を継続した。この間、反応器出口圧 0. 15 MPa(絶対圧)にてアクロレイン転化率が 9 8. 5 ± 0. 5 モル%になるように熱媒温度を調節しながら反応を継続した。なお、反応開始から 1 0 0 時間後の熱媒温度は 2 6 2 $\mathbb C$ 、アクリル酸収率は 9 4. 2 モル%であり、8000時間経過した時、熱媒温度は 2 7 0 $\mathbb C$ 、アクリル酸収率は 9 3. 8 モル%であった

[0045]

「比較例3]

(触媒の調製)

比較例1において触媒を調製するに際し、平均粒径が8mmのシリカーアルミ

ナからなる球状担体を用いた以外は比較例1と同様に行い、比較触媒 (c3) を 調製した。

(酸化反応)

実施例 5 において触媒(5)の代わりに比較触媒(63)を、触媒(1)の代わりに比較触媒(63)を、触媒(10)の代わりに比較触媒(63)を用いた以外は実施例 52 に同様に反応を実施したところ、反応開始から 10 の時間後の熱媒温度は 26 4 10、アクリル酸収率は 13 によってあり、 13 を、触媒(13 を、触媒(13 を、触媒(13 を、触媒(13 を、触媒(13 を、触媒(14 を でありに比較触媒(15 を であり、16 を であり、17 を であり、18 を であり、19 を でありた。

[0046]

[実施例6]

(Mo-Bi系触媒の調製)

特開2000-325795号公報の実施例1の記載に従って、モリブデンー ビスマス系触媒(6a)を調製した。

(Mo-V系触媒の調製)

実施例2において触媒を調製するに際し、平均粒径が8mmのシリカーアルミナからなる球状担体を用いた以外は実施例2と同様に行い、モリブデンーバナジウム系触媒(6b)を調製した。

[0047]

(酸化反応)

熱媒循環用ジャケットを備えた内径25mm、長さ7000mmの反応管でジャケット下部から3500mmの位置に熱媒ジャケットを上下に分割する厚さ75mmの仕切り板を設け、上部および下部の熱媒をそれぞれ循環し、おのおのの熱媒温度を制御することができる反応器(下部が第一反応器、上部が第二反応器に相当)にて、反応管下部から上部に向かって、①セラミックボールのみ、②触媒(6a)とセラミックボールとを容量比で70:30に混合したもの、③触媒(6a)のみ、④外径6.5mm、内径6mm、長さ6.5mmのステンレス製ラシヒリング、⑤触媒(6b)、⑥触媒(1)の順に、各充填層長が300mm、800mm、2200mm、500mm、700mm、2300mmになるように充填した。

[0048]

第一反応器に純度 9 6 容量%(他成分は主にプロパン)のプロピレンを 2 1 9 L(normal)/時間、温度 2 0 $\mathbb C$ 、相対湿度 8 0 容量%の空気を 1 8 3 8 L(normal)/時間、プロピレン原料からのプロパン以外の不活性な飽和炭化水素(主にメタン)を 1 5 2 L(normal)/時間の割合で導入した。この時、第二反応器出口圧 0 . 1 5 M P a(絶対圧)にてプロピレン転化率が 9 8 ± 0 . 5 モル%、アクロレイン収率が 1 ± 0 . 5 モル%になるように第一反応器、第二反応器それぞれの熱媒温度を調節しながら反応を継続した。反応温度が 3 0 0 $\mathbb C$ に達したときの反応継続時間を表 1 に示した。なお、反応開始から 1 0 0 時間後のアクリル酸収率は 8 8 モル%であった。また、アクリル酸吸収塔の塔頂温度が 6 2 . 5 $\mathbb C$ 、塔頂圧力が 1 1 k P a $\mathbb C$ の時にアクリル酸収物率が 9 9 . 5 質量%になるように吸収水量を調節したときのアクリル酸溶液濃度は 7 9 . 7 質量%であった。

[0049]

「比較例4]

(触媒の調製)

比較例2において触媒を調製するに際し、平均粒径が8mmのシリカーアルミナからなる球状担体を用いた以外は比較例2と同様に行い、比較触媒(c4)を調製した。

(酸化反応)

実施例 6 において触媒(6 b)の代わりに比較触媒(6 c 4)を、触媒(1)の代わりに比較触媒(6 c 1)を用いた以外は実施例 6 と同様に反応を実施した。反応温度が 3 0 0 1 に達したときの反応継続時間を表 1 に示した。なお、反応開始から 1 0 0 時間後のアクリル酸収率は 1 8 1

[0050]

【表1】

	反応開始時の反応 温度	3 0 0 ℃到達時の反応継続 時間
実施例6	265℃	24000Hrs
比較例4	268℃	13000Hrs

[0051]

[実施例7]

(酸化反応)

熱媒循環用ジャケットを備えた内径25mm、長さ3500mmの反応管2系列からなり、各反応管一つの端所が配管にて接続され、第一反応器の出口と第二反応器の入口とを接続する配管にノズルを設けた反応装置において第一反応器のガス入口側から出口側に向かって、①触媒(6a)と希釈剤(セラミックボール)とを容量比で50:50に混合したもの、②触媒(6a)と希釈剤とを70:30に容量比で混合したもの、③触媒(6a)の順に、各充填層長が500mm、500mm、2000mmになるように充填した。

[0052]

第二反応器のガス入口側から出口側に向かって、①触媒(6 b)、②触媒(1)の順に、各充填層長が700mm、2000mmになるように充填した。

第一反応器に純度 9 6 容量%(他成分は主にプロパン)のプロピレンを 2 4 9 L $(n \circ r \circ a \mid 1)$ / 時間、温度 2 0 $\mathbb C$ 、相対湿度 8 0 容量%の空気を 1 7 4 1 L $(n \circ r \circ a \mid 1)$ / 時間の割合で導入した。第一反応器出口と第二反応器入口とをつなぐ配管に設けられたノズルより温度 2 0 $\mathbb C$ 、湿度 8 0 容量%の空気を 4 9 2 L $(n \circ r \circ a \mid 1)$ / 時間の割合で導入した。

この時、第二反応器出口圧 0.15 MP a (絶対圧) にてプロピレン転化率が 98 ± 0.5 モル%、アクロレイン収率が 1 ± 0.5 モル%になるように第一反 応器、第二反応器それぞれの熱媒温度を調節しながら反応を継続した。なお、反 応開始から 100 時間後のアクリル酸収率は 87.2 モル%であった。また、ア

クリル酸吸収塔の塔頂温度が 62.5 \mathbb{C} 、塔頂圧力が 11kPa-G の時にアクリル酸吸収効率が 99.5 質量%になるように吸収水量を調節したときのアクリル酸溶液濃度は 78.7 質量%であった。

[0053]

【発明の効果】

本発明によれば、ホットスポットが形成される条件下においても、活性、選択性および触媒寿命ともに優れ、長期にわたって安定した性能を示す触媒およびこの触媒の存在下にアクロレインを分子状酸素または分子状酸素含有ガスにより気相接触酸化して長期にわたって高収率でアクリル酸を製造する方法を提供することができ、また、本発明の触媒を用いることにより、従来は触媒劣化が増大するために回避されていた高濃度プロセスへの適用が可能となる。

【書類名】 要約書

【要約】

【課題】 ホットスポット形成条件下でも活性、選択性、寿命に優れて長期に安定した性能を示す触媒と、この触媒を用いたアクリル酸の製造方法を提供する。

【解決手段】 式(1)で表され、該触媒を調製する際のA成分の供給源がそのA成分とMo、V、Cuから選ばれる少なくとも一種との複合体である触媒。

MoaVbWcCudAeBfCgOx (1)

(A は コ バ ル ト、ニッケル、鉄、鉛、ビスマスから選ばれる少なくとも一種、Butアンチモン、ニオブ、スズから選ばれる少なくとも一種、C はシリコン、アルミニウム、チタニウム、ジルコニウムから選ばれる少なくとも一種、a、b、c、d、e、f、g、x はそれぞれ<math>Mo、V、W、C u、A、B、C、Oの原子比、a=12の時、 $2 \le b \le 15$ 、 $0 < c \le 10$ 、 $0 < d \le 6$ 、 $0 < e \le 30$ 、 $0 \le f \le 6$ 、 $0 \le g \le 60$ 、x は各々の元素の酸化状態によって定まる数値。)

【選択図】 なし

特願2003-051794

出願人履歴情報

識別番号

[000004628]

1. 変更年月日

2000年12月 6日

[変更理由]

住所変更

住 所 氏 名 大阪府大阪市中央区高麗橋 4 丁目 1 番 1 号

株式会社日本触媒