Attention Mechanisms and Transformers

Convolutional Encoder-Decoder

- Drawbacks of Recurrent Neural Networks:
 - Sequential computation prohibits parallelization;
 - Long-term dependencies are **hard to learn**;
- A possible solution is to replace the RNN encoder with a hierarchical
 1D CNN Convolutional Encoder-Decoder;
 - Encoder is parallelizable, but decoder still requires sequential computation the model is still auto.regressive.

Self-Attention and Transformer Networks

- We want NNs that **automatically weight** the **relevant** parts of the input, so we use **attention mechanisms**;
 - Performance gain;
 - None or few parameters;
 - Fast parallelizable;
 - Tool for interpreting predictions.

Attention Mechanism: Recap

- 1. We have a query vector q and input keys (vectors) $H = [h_1, h_2, \dots, h_L]^T$;
 - Input vectors appear in two roles: keys and values;
 - Keys are used to compute the attention scores;
 - Values are used to compute the weighted average;
- 2. We compute **affinity scores** s_1, s_2, \ldots, s_L between q and h_i ; there are several ways of comparing q and h_i :

- Additive attention: $s_i = w^T tanh(Ah_i + Bq);$
- Biliner attention: $s_i = q^T U h_i$;
- **Dot product attention**: $s_i = q^T h_i$; but queries and keys must have the same size;
- 3. We convert these scores to **probabilities**: p = softmax(s);
- 4. We use this to output a representation as a weighted average: $c = H^T p = \sum_{i=1}^{L} p_i h_i$.

Self-Attention

- Self-attention is a special case of attention;
- At each position, the encoder attends to the other positions in the encoder itself same for the decoder;
- Self-attention for a sequence of length L:
 - Query vectors: $Q = [q_1, q_2, \dots, q_L]^T$;
 - **Key vectors**: $K = [k_1, k_2, ..., k_L]^T$;
 - Value vectors: $V = [v_1, v_2, \dots, v_L]^T$;
 - 1. Compute **affinity scores** $S = QK^T$;
 - 2. Convert these scores to **probabilities**: P = softmax(S);
 - 3. Output the weighted average of the value: Z = PV.

Transformer

- Transformer is a neural network architecture that uses self-attention in the encoder instead of RNNs/CNNs;
- Each word state attends to all the other words;
- Each self-attention is followed by a feed-forward transformation;
- Do several layers of this;
- Do the same for the decoder, attending only to already generated words.

Multi-Head Attention

- Multi-head attention is a variant of self-attention that allows the model to jointly attend to information from different representation subspaces at different positions;
- Define h attention heads;
- Apply attention in multiple channels, concatenate the outputs and pipe through linear layer: $MultiHead(X) = Concat(Z_1, ..., Z_h)W^O$, where $Z_i = Attention(XW_i^Q, XW_i^K, XW_i^V)$;

Positional Encoding

• Positional encoding is a technique used to inject information about the relative or absolute position of tokens in a sequence;