主讲人:邓哲也

设x是未知整数,形如

 $ax \equiv b \pmod{m}$

的同余式成为一元线性同余方程。

【定理】

设 a, b 和 m 是整数, m > 0, (a, m) = d.

若 $d \mid b$,则 $ax \equiv b \pmod{m}$ 无解。

若 $d \mid b$, 则 $ax \equiv b \pmod{m}$ 恰好有 $d \land$ 模 $m \land$ 可余的解。

【例】找出 $9x \equiv 12 \pmod{15}$ 的解。

因为 (9, 15) = 3 且 3 | 12, 所以恰好有 3 个不同余的解。

求解 9x - 15y = 12, 由扩展欧几里得算法得:

$$15 = 9 * 1 + 6$$

$$9 = 6 * 1 + 3$$

$$6 = 3 * 2$$

所以 3 = 9 - 6 * 1 = 9 - (15 - 9 * 1) * 1 = 9 * 2 - 15

求出一组特解 x=2*4=8, y=1*4=4

【例】找出 $9x \equiv 12 \pmod{15}$ 的解。

求出特解 x=8, y=4, 即 9 * 8 - 4 * 15 = 12

所以 $x_1 \equiv 8$, $x_2 \equiv 8+5 \equiv 13$, $x_3 \equiv 8+5+5 \equiv 3 \pmod{15}$.

模的逆

【模的逆】 $ax \equiv 1 \pmod{m}$ 的解称为 a 模 m 的逆。 如 $7x \equiv 1 \pmod{31}$ 的解满足 $x \equiv 9 \pmod{31}$

用模的逆来解线性同余方程

【模的逆】 $ax \equiv 1 \pmod{m}$ 的解称为 a 模 m 的逆。设 a 模 m 的一个逆为 k,即 $ak \equiv 1 \pmod{m}$ 对于 $ax \equiv b \pmod{m}$,两边同乘以 k,得到 $akx \equiv bk \pmod{m}$ 也即 $x \equiv bk \pmod{m}$

模的逆

【定理】设 p 是素数,正整数 a 是其自身模 p 的逆,当 且仅当 a \equiv 1 (mod p) 或 a \equiv -1 (mod p)

证明: 若a $\equiv 1 \pmod{p}$ 或 a $\equiv -1 \pmod{p}$,则a² $\equiv 1$ \pmod{p} ,所以a其自身模p的逆。反过来,若a是其自身模p的逆,则a² =a • a $\equiv 1 \pmod{p}$ 。因此,p $\mid (a^2 - 1)$ 。又因为a² $= 1 \pmod{p}$,所以p $\mid (a-1)$ 或p $\mid (a+1)$ 。因此,或者a $\equiv 1 \pmod{p}$,或者a $\equiv -1 \pmod{p}$

费马小定理

【定理】假如 p 是质数,且 (a, p)=1, 那么 $a^{p-1} \equiv 1 \pmod{p}$

因此可以得到,a * $a^{p-2} \equiv 1 \pmod{p}$ 所以 a^{p-2} 是 a 模 p 的一个逆。 可以用快速幂加速计算。

NOIP 2012 Day2 T1 同余方程

求关于 x 同余方程 $ax \equiv 1 \pmod{b}$ 的最小正整数解。

样例输入: 3 10

样例输出:7

数据范围: 2 <= a, b <= 2,000,000,000

下节课再见