Федеральное государственное автономное образовательное учреждение высшего образования «СИБИРСКИЙ ФЕДЕРАЛЬНЫЙ УНИВЕРСИТЕТ»

$\frac{ \text{Институт Космических и информационных технологий}}{\text{Кафедра «Информатика»}}_{\text{кафедра}}$

ОТЧЕТ О ЛАБОРАТОРНОЙ РАБОТЕ

<u>Лабораторная работа №1. Конечные автоматы</u> _{тема}

Преподаватель

Студент

<u>КИ18-17/2Б</u> номер группы подпись, дата

подпись, дата

А.С. Кузнецов инициалы, фамилия А.С. Ядров инициалы, фамилия

1 Цель работы с постановкой задачи

1.1 Цель работы

Реализация и исследование детерминированных и недетерминированных конечных автоматов.

1.2 Задача работы

Необходимо построить ДКА и НКА в системе JFLAP и произвести программную реализацию. В коде программы обязательно наличие сущностей и процедур, относящихся к табличному представлению автомата. Использование функций обработки строковых данных запрещено. Результат работы, выдаваемый программой на экран, внешне должен быть схож, а фактически эквивалентен результату, выдаваемому JFLAP на тех же тестовых цепочках.

В каждом варианте задания в части а) задается цепочка или набор цепочек для распознавания ДКА. В части б) задается цепочка или набор цепочек для распознавания НКА.

Вариант 3.

- а) Построить ДКА, допускающий в алфавите {0, 1} все цепочки нулей и единиц, в которых символ 1 следует непосредственно за парой 00. Пример 1: Цепочки 101, 0010, 0010011001 принадлежат языку. Пример 2: цепочки 0001 и 00100 не принадлежат;
- б) Построить НКА, допускающий цепочки в алфавите $Z = \{0, 1\}$, в которых содержится два нуля, разделенных позициями в количестве, кратном 4. Примечание: нуль тоже кратен 4.

2 Графы переходов полученных НКА и ДКА

Рисунок 1 – ДКА

Рисунок 2 – НКА

3 Наборы тестов для НКА и ДКА

Input	Result
101	Reject
0	Reject
1	Reject
00	Accept
011110\	Reject
011110	Accept
01110	Reject
01011110	Accept
0111111110	Accept
11111100	Accept
10011111111	Accept
101010101010101010101	Reject
101010	Reject
10	Reject
001000	Accept

Рисунок 3 – Набор тестов для НКА

Input	Result
101	Accept
0	Accept
1	Accept
00	Reject
001	Accept
1100	Reject
11001	Accept
10010	Accept
1010110101	Accept
00100100100	Reject
001001001001	Accept

Рисунок 4 – Набор тестов для ДКА

Рисунок 5 - НКА, «1001000»

Рисунок 6 – Перехват шагов для НКА, «1001000»

Рисунок 7 – Перехват шагов для НКА, «1001000»

Рисунок 8 – НКА, «101010100»

Рисунок 9 — Перехват шагов для НКА, «101010100»

Рисунок 10 – Перехват шагов для НКА, «101010100»

Рисунок 11 – ДКА, «101001»

Рисунок 12 – Перехват шага ДКА, «101001»

Рисунок 13 – ДКА, «0010»

Рисунок 14 – Перехват шага для ДКА «0010»