Analyzing Climate's Role in Urban Accidents in the U.S.

MVP 1: Initial Progress Presentation

Project Scope and Objectives

Objective: Quantify Weather-Accident

Relationships

Approach: Time-Series Analysis

- Explore Seasonal Trends
- Pattern Recognition
- Forecasting

Data Sources

Traffic Data:

- U.S. Accidents (2016 2023) Kaggle
- Crash Report Sampling System from NHTSA

The Weather Dataset: Meteostat from Kaggle

Cities:

- Madison, Wisconsin.
- Nashville, Tennessee.
- Boise, Idaho.

Preliminary Data Exploration & Preprocessing Strategy

- Initial Findings:
 Summary Statistics & Distributions
 - Accidents Across Cities
 - Accidents Across Seasons

Tentative Insights: Correlations

- Challenges:
 Merging & Missing Data.
 - Time-Series Alignment
 - Missing Data Handling

Solutions: Imputation & Alignment

Feature Engineering Approach

 Features: Temporal features, Lag Variables & Seasonality, Normalization.

• Goals: Capture Time-Dependent Patterns

Short-term Trends, Long-term Trends

Initial Model Selection

 Models: ARIMA, SARIMA, (potentially) Prophet, and Recurrent Neural Network (RNN) like LSTM/GRU.

- **Criteria:** Accuracy & Interpretability.
- ARIMA (Autoregressive integrated moving average)/SARIMA (Seasonal AutoRegressive Integrated Moving Average) for Baseline.

 Prophet & LSTM (Long -short-term memory) and GRU (Gated Recurrent Unit) for Advanced Analysis.

Methodology Overview

- Methodology Phases:
 - Data Collection
 - Preprocessing
 - Exploratory Analysis
 - Feature Engineering
 - Model Building
 - Evaluation

- Evaluation Metrics:
 - MAE
 - o RMSE
 - MAPE

Next Steps

MVP 2 Goals:

Feature Engineering & Initial Modeling

• Final Goals:

Model Evaluation & Academic Paper

Questions & Feedback

Presented by Sergio David

22.09.2023