531 Rec'd PCT 2 6 DEC 2001

Japanese Patent Publication No. 18336/1990 (JP-B2-2-18336)

What is claimed is:

1. A flame retardant polyamide or flame retardant polycarbonate composition obtained by adding a polyphosphate compound shown by the following general formula:

$$\begin{array}{c|c}
R_{2} & R_{1} \\
\hline
R_{2} & R_{1}
\end{array}$$

$$\begin{array}{c|c}
R_{1} & R_{2} \\
\hline
R_{1} & R_{2}
\end{array}$$

(wherein R1 and R2 independently represent a hydrogen atom or a lower alkyl group, and n represents 1 to 5)

to a polyamide or a polycarbonate.

⑫ 特 許 公 報(B2)

平2-18336

®Int. Cl. 5	識別記号	庁内整理番号	200公告	平成2年(1990)4月25日
C 08 L 69/00 C 08 K 5/52	KKM	6609-4 J		
C 08 L 77/00 // D 01 F 1/07	KLB	7038—4 J 6791—4 I		
6/90 6/92	3 0 1 3 0 4 J	6791-4L 6791-4L		
				発明の数 1 (全6頁)

❷発明の名称 難燃性組成物

> 20特 顧 昭57-156378

砂公 第 昭59-45351

20出 願 昭57(1982)9月8日 ❷昭59(1984)3月14日

@発明 者 阿久津 光 男

埼玉県浦和市白幡5丁目2番13号 アデカ・アーガス化学

株式会补内

⑦発 明者 栗田 有 康

埼玉県浦和市白幡5丁目2番13号 アデカ・アーガス化学

株式会补内

勿出 夏 人 アデカ・アーガス化学 東京都荒川区東尾久8丁目4番1号

株式会社

四代 理 弁理士 天 野 泉 査 官 市门川 信 摡

1

2

切特許請求の範囲

1 ポリアミド又はポリカーポネートに対して、 次の一般式(I)で表わされるポリホスフェート* *化合物を配合して成る難燃性ポリアミド又は難燃 性ポリカーポネート組成物。

(式中R1及びR2は各々独立して水素原子又は低 級アルキル基を示し、nは1~5を示す。)

発明の詳細な説明

ト組成物に関する。更に詳しくは、ポリアミド又 は芳香族ポリカーポネートに、レゾルシンポリホ スフエート化合物を配合して成る難燃性ポリアミ ド又はポリカーボネート組成物に関する。

機械的性質、電気特性などにより、広い範囲の樹 脂および繊維としての用途が開かれていることは 周知の通りである。

ポリアミドは、本来自己消火性がある部類に属 する合成高分子材料であるが、近来厳しさを増し 本発明は難燃性ポリアミド又はポリカーポネー 15 ている電気部品或いは建材分野における樹脂とし て、この用途での難燃性の要求、或いは糸、布、 カーペットなどとして使用される繊維材料として の難燃性の付与要請に対しては不充分である。こ れら高度な難燃性を要求される分野の用途に対応 ポリアミドは、そのすぐれた加工性、紡糸性、20 するために、数多くの技術が開発されつつある。 一般的手段として、難燃剤を添加する方法は公知 であり、ポリアミドに対しても、含ハロゲン有機

化合物、含リン有機化合物、含イオウ化合物、含 **窒素化合物或いはヒ素、アンチモン、鉛などを含** む無機化合物などが、単独または併用により添加 型難燃剤として使用しうることが知られている。

による自己消火性の付与は、難燃剤の添加量が多 いこと、ポリアミドとの親和性が不充分なこと等 により、ポリアミド自体の特徴である機械的性質 が大幅に低下してしまうという欠点がある。また 一方、ポリアミドとの親和性の大きい添加剤を難 10 難燃剤の添加による自己消火性の付与は、難燃剤 燃剤として使用した場合には、成形加工時等に、 ポリアミドの分子量低下を来たして糸或いは成形 品としての強度を保持しえなくなつたり、ポリア ミドの可塑剤として作用して耐熱性を著しく低下 せしめたりするという欠点がある。

又、芳香族ポリカーポネートは、そのすぐれた 機械的性質、電気特性、耐候性、外観などによ り、合成樹脂としての広い範囲の用途が開かれて いることは周知の通りである。

中では、自己消化性の付与し易い部類に属する が、電気部品或いは建材分野における樹脂として の用途での難燃性の要求は近来厳しさを増してお り、より良い性能を保持し続ける難燃性ポリカー ボネートが要望されている。これら高度な難燃性*25 とによつて得られる。

*を要求される分野の用途に対応するために、数多 くの技術が開発されつつある。一般的手法として 難燃剤を添加する方法は公知であり、芳香族ポリ カーボネート樹脂に対しても、含ハロゲン有機化 従来知られているポリアミドへの難燃剤の添加 5 合物、含イオウ有機化合物、含窒素有機化合物或 いは、アンチモン、鉛などを含む無機化合物など が、単独または併用により添加剤難燃剤として使 用しうることが知られている。

> 従来知られている芳香族ポリカーボネートへの の添加量が多いこと、難燃剤と芳香族ポリカーボ ネートとの親和性が不充分なこと等により、ポリ カーポネート自体の特徴である機械的性質、外観 特に透明性などが、大幅に低下してしまうという 15 欠点を有している。

本発明者らは、ある種のレゾルシンポリホスフ エートがポリアミド及び芳香族ポリカーボネート に対して特異的な親和性を有すると共に機械的強 度、外観、耐熱性などを犠性にすることなく、難 芳香族ポリカーポネートは、合成高分子材料の 20 燃性を付与しうることを見出し、本発明に到達し た。

> 即ち、本発明の難燃性組成物は、次の一般式 (I) で表わされるポリホスフエート化合物をポ リアミド又はポリカーポネートに混入せしめるこ

$$\begin{array}{c|c}
R_2 & R_1 \\
\hline
 & O & O \\
\hline
 & P & O & P \\
\hline
 & R_1 & R_2
\end{array}$$
(1)

(式中、R1及びR2は各々独立して水素原子又は 低級アルキル基を示し、nは1~5を示す。)

一般式(I)において、R₁及びR₂で示される 低級アルキル基としては、メチル、エチル、プロ ビル、イソプロビル、プチル、secーブチル、イ ソブチル、tープチルなどがあげられる。

具体的には、フェニル・レゾルシン・ポリホス 40 フェート、クレジル・レゾルシン・ポリホスフエ ート、フエニル・クレジル・レゾルシン・ポリホ スフェート、キシリル・レゾルシン・ポリホスフ エート、フエニル、ローセーブチルフエニル・レ

ゾルシン・ポリホスフエート、フエニル・イソブ 35 ロピルフエニル・レゾルシン・ポリホスフエー ト、クレジン・キシリル・レゾルシン・ポリホス フエート、フエニル・イソプロピルフエニル・ジ イソプロピルフエニル・レゾルシン・ポリホスフ エートなどがあげられる。

本発明にいうポリアミドとは、数平均分子量が 5000~70000の範囲にあり、カルポンアミド結合 を繰返し有する合成高分子材料を指す。具体的に は、ラクタムを開環重合させて得られるポリ(ω ーアミノカルボン酸) 或いは、ジアミンとジカル ボン酸との縮合体であるアミド結合を交互に有す るポリアミド等、合成樹脂、合成繊維として使用 できるものの全般を包括して指す。

本発明にいう芳香族ポリカーポネートとは、数 平均分子量が、6000~70000の範囲にある一般式

で表わされる合成高分子材料を指す。具体的に ーポネート結合の繰り返しにより連結せしめたポ リマーで、二官能性フエノールの例としては、ハ イドロキノン、4,4ージヒドロキシジフェニ ル、1, 1ービス (4ーヒドロキシフェニル) エ タン、2, 2ービス(4ーヒドロキシフエニル) 15 する。 プロパン、2,2-ビス(4-ヒドロキシフェニ ル) ブタン、ビス (4-ヒドロキシフエニル) ス ルホン、4,4'ージヒドロキシジフエニルエーテ ルなどが挙げられる。特に本発明にとつて好まし リカーポネート樹脂にも主として使用されている 2, 2ーピス(4ーヒドロキシフエニル)プロパ ン (ピスフエノールAと略称する) である。

本発明の達成に必要な燐酸エステルの添加量 は、その用途又は、ポリアミド種又は芳香族ポリ 25 をブレンダーによつて良く混合した後、押出機に カーポネート種と難燃剤との組合せによつても異 なるが、1~30重量%、好ましくは2~25重量% の範囲から選ばれる。1%より少ない添加量では 難燃化は達成されず、30%より多い量を添加する とポリアミド又はポリカーポネート本来の特性が 30 損われるので好ましくない。

本発明の組成物は、ポリアミドにとつて、難燃 性が付与されるばかりでなく、紡糸性、延伸性の 改良、染色性の改善、日光堅牢度の向上、熱安定 性の付与、脱色効果、酸化防止効果、紫外線劣化 35 防止効果など又芳香族ポリカーポネートの場合も 難燃性のみならず、耐候性の向上、熱安定性の付 与、脱色効果、酸化防止効果、紫外線劣化防止効 果など付加的な性質の改良がもたらされる場合が あり、工業的に極めて有用な素材を提供するもの 40 である。

本発明の組成物を得るための方法には格別の制 限はなく、如何なる方法によつて混合しても差支 えない。好ましい方法の一例を挙げれば、組成物

を形成すべきポリアミドおよび有機リン化合物を ドライブレンダーで良く混合した後、直接溶融紡 糸して繊維とするか、又組成物を形成すべきポリ アミド又は芳香族ポリカーポネートと有機リン化 5 合物および必要ならば他の添加剤とをドライブレ ンダーで良く混合した後、押出機を用いて溶融混 練しペレツト状に切断する。

本発明の効果が発揮される範囲において、他の 添加剤、例えば、ガラス繊維などの補強剤、充塡 は、二官能性フエノール(HO-Ar-OH)をカ 10 剤、増量剤、安定剤、可塑剤、潤滑剤、帯電防止 剤、発泡剤などを併用することができる。又、必 要に応じ他のポリマーの添加プレンドも妨げるも のでは無い。

以下、実施例により、本発明を更に詳しく説明

実施例中、部は、重量部を表わす。

難燃性の評価はUL-94に規定された試験法に 準じて行い、各々5個の試験片に対し最初の着火 から消炎までの時間を求めてその平均値を記し い二官能性フェノールは、広く市販されているポ 20 た。又、熱変形温度はASTMD648に準じて測定 した。

実施例 1

数平均分子量が15000であるナイロン11を90部 と第1表に記載の有機ホスフェート化合物10部と よつてペレツト化した。UL-94に定める試験片 を射出成形により成形し、燃焼テストを実施し

結果を第1表に示す。

1 表

No.	ホスフエート化 合物	難燃性	滴下性
(比較例) 1-1	トリクレジルホ スフエート	15₺	有
(実施例) 1-1	フエニル・レゾ ルシン・ボリホ スフエート(n= 1.5)	7	無
1-2	フエニル・レゾ ルシン・ポリホ スフエート(n= 2.1)	6	無

7

Na.	ホスフエート化 合物	難燃性	滴下性
1-3	フエニル・クレジル・レゾルシン・ポリホスフエート(n=1.8)	8	無

実施例 2

数平均分子量が19000であるナイロン66の64部、 ガラス繊維28部及び第2表に記載の有機ホスフェ 10 ート化合物8部をブレンダーで混合し、押出機を 用いて溶融混練した。射出成形試験片はUL-94 の方法によつて燃焼テストを行つた。

又、熱変形温度を測定した。

得られた結果を第2表に示す。

第 2

No.	ホスフエート化 合物	難燃性	熱変形 温度
(比較例) 2-1	クレジルジフェ ニルホスフエー ト	10秒	238°C
(実施例) 2-1	フエニル・クレ ジル・レゾルシ ン・ポリホスフ エート(n=1.1)	4	250
2-2	クレジル・レゾ ルシン・ポリホ スフエート(n= 1.3)	4	248
2-3	クレジル・レゾ ルシン・ポリホ スフエート(n= 3.1)	4	250
2-4	フエニル・レゾ ルシン・ポリホ スフエート(n= 1.0)	3	250

実施例 3

数平均分子量が21000であるパラキシリレンイ ソフタルアミド88部と第3表に記載の有機ホスフ エート化合物 6 部及び三酸化アンチモン 6 部を混 合し、押出機を用いて溶融混練した。UL-94の 40 実施例 5 試験法による燃焼テストを行つた。

結果を第3表に示す。

8

3 表 第

No.	ホスフエート化合物	難燃性
(比較例) 3-1	トリフエニルホスフエー ト	12秒
(比較例) 3-1	フエニル・レゾルシン・ ポリホスフエート(n= 1.0)	3
3-2	フエニル・レゾルシン・ ポリホスフエート(n= 1.5)	3
3 – 3	クレジル・レゾルシン・ ポリホスフエート(n= 1.3)	4

15 実施例 4

ナイロン11の代りに、数平均分子量が24000で あるナイロン6を用いて、実施例1と同一の試験 を行なつた。

又熱変形温度を測定した。結果を第4表に示 20 す。

第 表

	No.	ホスフエート化 合物	難燃性	熱変形 温度
25	(比較例) 4-1.	トリクレジルホ スフエート	16₺	60.C
	(実施例) 4-1.	クレジル・レゾ ルシン・ポリホ スフエート(n=	6	67
<i>30</i>	4 -2.	スフェート(n- 1.0) クレジル・レゾ ルシン・ポリホ スフェート(n=	7	65
	4 -3.	1.3) フエニル・クレジル・レゾルシン・ポリホスフ	7	68
35	4 –4.	エート(n=1.8) フエニル・レゾ ルシン・ポリホ	5	68
		スフエート(n= 1.5)		

数平均分子量が25000であるピスフェノールA からのポリカーポネート93部と第5表に記載の有 機ポスフエート化合物 7部をプレンダーで良く混 合した後、押出機によりペレツトとした。ULー

20

94の方法による燃焼性テストを行った。又、樹脂の熱変形温度を測定した。結果を第5表に示す。

第 3 表

No.	ホスフエート化 合物	難燃性	熱変形 温度
(比較例) 5-1	トリフエニルホ スフエート	12秒	123°C
(実施例) 5-1	クレジル・レゾ ルシン・ポリホ スフエート(n= 1.0)	5	135
5-2	クレジル・レゾ ルシン・ポリホ スフエート(n= 2.1)	5	137
5-3	フエニル・レゾ ルシン・ポリホ スフエート(n= 2.9)	5	137
5 — 4	クレジル・レゾ ルシン・ポリホ スフエート(n= 1.0)	7	133

実施例 6

数平均分子量が21000であるピスフェノールAからのポリカーボネート96部、三酸化アンチモン1部及び第6表に記載の有機ホスフエート化合物 253部をプレンダーで良く混合した後、押出機によりペレットとした。UL-94の方法による燃焼テストを行つた。

又、樹脂組成物の熱変形温度を測定した。結果 を第6表に示す。

第 6 表

No.	ホスフエート化 合物	難燃性	熱変形 温度
(比較例) 6-1	トリキシリルホ スフエート	18秒	125℃
(実施例) 6-1	フエニル・イソ プロピルフエニ ル・レゾルシ ン・ポリホスフ エート(n=1.5)	7	134
6-2	キシリル・イソ プロピルフエニ ル・レゾルシ ン・ポリホスフ エート(n=1.3)	5	132

No.	ホスフエート化 合物	難燃性	熱変形 温度
6-3	フエニル・クレジル・レゾルシン・ポリホスフェート(n=1.1)	6	136

実施例 7

数平均分子量が33000であるピスフェノールA 10 からのポリカーボネート95部に、デカブロモジフエニルエーテル3部及び第7表に記載の有機ホスフエート化合物2部を加え、ブレンダーで良く混合した後、押出機により溶融混練してベレツト化した。UL-94の方法による燃焼テストを行つた。15 結果を第7表に示す。

第 7 表

No	ホスフェート化合物	難燃性
	17.7	* FEATE LE
(比較例) 7-1	テトラフエニル・ピスフ エノールA・ジホスフェ ート	14秒
(実施例) 7-1	フェニル・レゾルシン・ ポリホスフェート(n= 1.0)	7
7 – 2	フエニル・レゾルシン・ ポリホスフエート(n= 2,1)	7
7 – 3	クレジル・レゾルシン・ ポリホスフエート(n= 1.3)	8

30 実施例 8

ポリカーボネートとして、数平均分子量が、 16000である 2, 2 ーピス (4 ーヒドロキシフェ ニル) ブタンからのポリカーボネートを用いて実 施例 5 を繰返し、樹脂組成物を得た。ULー94の 35 方法による燃焼テストを行つた。

結果を第8表に示す。

第 8 表

No.	ホスフエート化合物	難燃性
(比較例) 8-1	トリクレジルホスフェー ト	18₺⊅

40

10

-	-
	٠,

No.	ホスフエート化合物	難燃性
(比較例) 8-1	フェニル・クレジル・レ ゾルシン・ポリホスフェ ート(n=1,1)	8
8-2	フェニル・レゾルシン・ ポリホスフェート(n= 1.0)	8
8-3	クレジル・レゾルシン・ ポリホスフェート(n= 1.3)	9

実施例 9

数平均分子最が42000であるピスフェノールAからのポリカーボネート76部と第9表に記載の有機ホスフェート化合物24部とをブレンダーで良く 15混合した後、押出機により溶融混練してペレット化した。UL-94の方法による燃焼テストを行った。

結果を第9表に示す。

第 9 表

No.	ホスフエート化合物	難燃性
(比較例) 9-1	トリフエニルホスフエー ト	8秒
(比較例) 9-1	フェニル・レゾルシン・ ポリホスフェート(n= 1.5)	1
9-2	フェニル・レゾルシン・ ポリホスフエート(n= 2,1)	1
9 – 3	フエニル・クレジル・レ ゾルシン・ポリホスフエ ート(n=1.8)	2