Problem #3.3

Second Shot

First Shot
$$S_1 = 1$$
 $S_2 = 1$ $S_2 = 0$ $S_1 = 1$ $S_2 = 0$ $S_1 = 0$ $S_2 = 1$ $S_2 = 0$ $S_2 = 1$ $S_2 = 0$ $S_2 = 1$ $S_2 = 0$ S_2

$$H_0: S_1 \perp \!\!\! \perp S_2 \text{ vs } H_1: \text{not } H_0$$

Data is not ordinal so a restricted alternative is not necessary.

Statistics	Value	p-value	Conclusion
X^2	0.2727	0.6015	Do not reject H_0 , there is evidence that the
			first and second shot are independent
G^2	0.2858	0.5930	Do not reject H_0 , there is evidence that the
			first and second shot are independent

Problem #3.9(a)

Table 1: Counts

Table 2: Perason Standard Residuals

	Drugs	No Drugs		Drugs	No Drugs
Schizophrenia	105	8	Schizophrenia	7.874526	-7.874526
Affective disorder	12	2	Affective disorder	1.602262	-1.602262
Neurosis	18	19	Neurosis	-2.385315	2.385315
Personality disorder	47	52	Personality disorder	-4.841701	4.841701
Special Systems	0	13	Special Systems	-5.139491	5.139491

OUTSTANDING: conclusion

Problem #3.12

Gamma, γ : 0.3873

95% CI: (0.3156, 0.4591)

Gamma is 0.3873 which indicates that when attitudes disagree (i.e. counts that are not on the diagonal), the proportion of concordant attitudes towards abortions (\uparrow school = \uparrow approval) is larger than the proportion of discordant attitudes. This means that there is greater approval of abortion when there is more schooling.

Problem #3.15

		Normalization		
		Yes	No	
Group	Treatment	7	8	
Group	Control	0	15	

Type of CI for OR 95% CI

(a)	Woolf (i.e. Wald)	$(0,\infty)$	
(b)		SAS	$(2.6460, \infty)$
	Cornfield's Exact	R	$(1.9784, \infty)$
		Answer	$(0.618, \infty)$
		OUTSTA	ANDING: Which one??
(c)	Profile Likelihood	$(5.117,\infty)$)

	Normal.Yes	Normal.No
Treatment	7.00	8.00
Control	0.00	15.00

	V1	Estimate	CI Lower	CI Uppder
A	Woolf (Wald)	Inf	NaN	Inf
В	Cornfield Exact	Inf	1.9784	Inf
C(1)	Profile Likelihood	NA	NA	NA
C(2)	Profe Likelihood, counts+1	11.9346	1.7292	335.5171

Problem #3.31

OUTSTANDING: