

PHYSICS LAB. (20147) Experiment No. 6 Simple Harmonic Motion

Single Spring

Exp.no. 6 Simple Harmonic Motion

Single Spring

- Lo is the original length of the spring.
- L is the new length of the spring.
- X is the elongation of the spring.
- Fs is the restoring force in the spring.
- Fs is proportional to X, we write it as Fs αX
- Or we can write it as Fs = k X
- The quantity k is called "Force Constant " of the spring.
- k is measured by N / m.

How to determine the force constant (k) experimentally

- The force constant k depends on :
 The type of the material,
- the number of turns of the spring, the spacing between.
- k can be found experimentally as follows:

As the mass m in fig.(b) is at equilibrium then Fs = mg, but

Fs = k X, then we have

$$\mathbf{k} = \left(\frac{m}{X}\right) \mathbf{g}$$

If we take several readings of m and the corresponding values of X, we can draw a graph as shown in the figure.

From the graph,

the slope =
$$\left(\frac{\Delta \mathbf{m}}{\Delta \mathbf{X}}\right)$$

Vibrational motion of a mass attached to a spring

- A is the amplitude of the vibration, which is the maximum displacement from the equilibrium position.
- T is the period of one vibration. For mass less spring it is given by:

$$T = 2\pi \sqrt{\frac{m}{k}}$$

• X is the displacement of the mass from the equilibrium position at any time t during vibration. It is given by

$$X = A \cos\left(\frac{2\pi}{T} t\right)$$

3. Data:

a) Complete the following table for the hard spring.

Original length of the spring $L_0 = \dots$ cm

No.	Mass M (g)	Length of spring L (cm)	Elongation of spring X (cm)
1	100		
2	200		
3	300		
4	400		
5	500		
6	600		
7	700		
8	800		
9	900		

ربعاء، 30 سرین التانی،

c) Complete the following table for the light spring.

Original length of the spring $L_0 = \dots$ cm

No.	Mass M (g)	Length of spring L (cm)	Elongation of spring X (cm)
1	20		
2	30		
3	40		
4	50		
5	60		
6	70		
7	80		
8	90		
9	100		