Teorema 0.1. Supóngase que f es continua en a, y f(a) > 0. Entonces existe un número $\delta > 0$ tal que f(x) > 0 para todo x que satisface $|x - a| < \delta$. Análogamente, si f(a) < 0 entonces existe un número $\delta > 0$ tal que f(x) < 0 para todo x que satisface $|x - a| < \delta$.

Demostraci'on. Considérese el caso f(a)>0 puesto que f que es continua en a, si $\xi>0$ existe un $\delta>0$ tal que, para todo x,

si
$$|x - a| < \delta$$
 entonces $|f(x) - f(a)| < \xi$

Puesto que f(a)>0 podemos tomar a f(a) como el $\xi.$ Así pues, existe $\delta>0$ tal que para todo x,

si
$$|x - a| < \delta$$
, entonces $|f(x) - f(a)| < f(a)$,

y esta última iguldad implica f(x) > 0.