Primal-dual proximal methods with Bregman distances

with applications to sparse SDP

Xin Jiang

Department of Electrical and Computer Engineering University of California, Los Angeles

joint work with Lieven Vandenberghe

EUROPT Workshop on Continuous Optimization Toulouse (virtual), July 7–9, 2021

Problem formulation

minimize
$$f(x) + g(Ax) + h(x)$$

- f, g and h are closed convex functions
- ullet f and g have simple proximal operators, h is differentiable and L-smooth
- three-operator splitting algorithms: Condat–Vũ, PD3O, PDDY

Algorithms for special cases

- g = 0: proximal gradient
- h = 0: ADMM, PDHG (Chambolle-Pock), Douglas-Rachford, etc.
- f = 0: Loris-Verhoeven (a.k.a., PDFP 2 O, PAPC)
- A = I: Davis-Yin

Condat-Vũ three-operator splitting method

minimize
$$f(x) + g(Ax) + h(x)$$

- "completion": PDHG with DRS applied to a reformulation
- ullet "with shift" means the gradient of h is evaluated at a shifted point similar scheme also exists for PD3O and PDDY

Proximal mapping

Proximal mapping: for closed convex function f

$$\operatorname{prox}_{f}(x) = \underset{y}{\operatorname{argmin}} \left(f(y) + \frac{1}{2} ||x - y||_{2}^{2} \right)$$

Generalized proximal mapping: use a generalized distance d(x,y)

$$\operatorname{prox}_f^\phi(y,a) = \operatorname*{argmin}_x \left(f(x) + \langle a,x \rangle + d(x,y) \right)$$

for example, in proximal gradient method for minimizing g(x) + h(x):

$$x_{k+1} = \operatorname*{argmin}_{x} \left(h(x) + g(x_k) + \langle \nabla g(x_k), x - x_k \rangle + \frac{1}{\tau} \frac{d(x, x_k)}{} \right)$$

Potential benefits

- 1. "preconditioning": use a more accurate model of g(x) around x_k
- 2. make the generalized proximal mapping easier to compute

4

Outline

Proximal methods with generalized distances

Applications to sparse semidefinite programs (SDPs)

Outline

Proximal methods with generalized distances
Bregman proximal operator
Bregman first-order splitting methods
Line search in Bregman proximal methods

Applications to sparse semidefinite programs (SDPs)

Bregman distance (generalized distance)

$$d(x,y) = \phi(x) - \phi(y) - \langle \nabla \phi(y), x - y \rangle$$

where the kernel ϕ is convex, differentiable on its interior domain

Examples

- squared Euclidean distance: $\phi(x) = \frac{1}{2} \|x\|_2^2$ and $d(x,y) = \frac{1}{2} \|x-y\|_2^2$
- relative entropy:

$$\phi(x) = \sum_{i=1}^{n} x_i \log x_i, \qquad d(x, y) = \sum_{i=1}^{n} (x_i \log(x_i/y_i) - x_i + y_i)$$

Generalized proximal mapping: difficulties

$$\operatorname{prox}_f^\phi(y,a) = \operatorname*{argmin}_x \left(f(x) + \langle a,x \rangle + d(x,y) \right)$$

- ullet no simple condition for existence and uniqueness of minimizer x
- no simple analog to Moreau decomposition

$$\operatorname{prox}_{\tau f}(x) + \tau \operatorname{prox}_{\tau^{-1} f^*}(x/\tau) = x$$

• no simple extension of affine composition rule: if g(x) = f(Ax + b)

$$\operatorname{prox}_g(x) = x - \alpha A^T (Ax + b - \operatorname{prox}_{\alpha^{-1}f}(Ax + b)),$$

when
$$AA^T = (1/\alpha)I$$

6

Bregman Condat-Vũ algorithm

minimize
$$f(x) + g(Ax) + h(x)$$

Algorithm

$$\begin{array}{lcl} x^{(k+1)} & = & \operatorname{prox}_{\tau f}^{\phi_{\mathbf{p}}} \big(x^{(k)}, \tau(A^T z^{(k)} + \nabla h(x^{(k)})) \big) \\ z^{(k+1)} & = & \operatorname{prox}_{\sigma g^*}^{\phi_{\mathbf{d}}} \big(z^{(k)}, -\sigma A(2x^{(k+1)} - x^{(k)}) \big) \end{array}$$

- ullet $\phi_{
 m p},\,\phi_{
 m d}$ are two kernels, normalized to have strong convexity parameter 1
- step sizes must satisfy $\sigma \tau \|A\|^2 + \tau L \le 1$
- \bullet Euclidean distance is usually used in dual space, especially when $g=\delta_{\{b\}}$
- when Euclidean distance is used in primal and dual spaces, it reduces to

$$\begin{array}{lcl} x^{(k+1)} & = & \operatorname{prox}_{\tau f} \left(x^{(k)} - \tau (A^T z^{(k)} + \nabla h(x^{(k)})) \right) \\ z^{(k+1)} & = & \operatorname{prox}_{\sigma g^*} \left(z^{(k)} + \sigma A (2x^{(k+1)} - x^{(k)}) \right) \end{array}$$

Connections between Bregman proximal methods

- "completion" trick may not be applicable in Bregman case
- similar scheme also exists for Bregman PD30
- it is still unclear how to extend PDDY to Bregman distance

8

Line search

Step sizes in Bregman proximal methods

$$\begin{array}{ll} \mbox{Condat-V\~u} & \sigma\tau\|A\|^2+\tau L\leq 1 \\ \mbox{PD3O and PDDY} & \sigma\tau\|A\|^2\leq 1, \ \tau L\leq 1 \end{array}$$

- ullet w.l.o.g., we normalize $\phi_{
 m p}$ and $\phi_{
 m d}$ to have the strong convexity parameter 1
- matrix norm is difficult to estimate or bound accurately

Bregman Condat-Vũ with line search

$$\bar{z}_{k+1} = z_k + \theta_k(z_k - z_{k-1})
x_{k+1} = \operatorname{prox}_{\tau_k f}^{\phi_{\mathbf{p}}}(x_k, \tau_k(A^T \bar{z}_{k+1} + \nabla h(x_k)))
z_{k+1} = \operatorname{prox}_{\sigma_k g^*}^{\phi_{\mathbf{d}}}(z_k, -\sigma_k(2x_{k+1} - x_k))$$

parameters θ_k , τ_k , and σ_k are determined adaptively by line search

Outline

Proximal methods with generalized distances

Applications to sparse semidefinite programs (SDPs)
Generalized proximal operator with log-barrier distance
Numerical experiments

Semidefinite programs (SDPs)

$$\begin{array}{lll} \text{minimize} & \operatorname{tr}(CX) & \text{maximize} & \langle b,y \rangle \\ \text{subject to} & \mathcal{A}(X) = b & \text{subject to} & \mathcal{A}^*(y) + S = C \\ & X \in \mathbf{S}_+^n & S \in \mathbf{S}_+^n \end{array}$$

 $\mathcal{A}\colon \mathbf{S}^n o \mathbf{R}^m$ is a linear mapping, and \mathcal{A}^* is its adjoint

first-order proximal methods (ADMM, primal-dual hybrid gradient, ...)

- exploit structure in linear constraints is straightforward
- require eigenvalue decompositions for projections on PSD cones

large SDPs often have sparse coefficient matrices C,A_1,\ldots,A_m

- applications related to graphs, Euclidean distance geometry
- relaxations of nonconvex quadratic and polynomial optimization

Sparse semidefinite programs

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}(CX) & \text{maximize} & \langle b,y \rangle \\ \text{subject to} & \mathcal{A}(X) = b, \; X \in \mathbf{S}^n_+ & \text{subject to} & \mathcal{A}^*(y) + S = C, \; S \in \mathbf{S}^n_+ \end{array}$$

- C, A_1, \ldots, A_m are sparse with common sparsity pattern E
- \bullet without loss of generality, assume E is chordal (a filled Cholesky pattern)
- ullet optimal X is typically dense, even for sparse coefficients

Equivalent conic linear program

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}(CX) & \text{maximize} & \langle b,y \rangle \\ \text{subject to} & \mathcal{A}(X) = b, \ X \in \textbf{\textit{K}} & \text{subject to} & \mathcal{A}^*(y) + S = C, \ S \in \textbf{\textit{K}}^* \end{array}$$

- variable X is a sparse matrix with pattern E (notation: \mathbf{S}_{E}^{n})
- ullet primal cone is set of matrices in ${f S}^n_E$ with PSD completion: $K=\Pi_E({f S}^n_+)$
- \bullet dual cone is the set of sparse PSD matrices in $\mathbf{S}^n_E \colon K^* = \mathbf{S}^n_+ \cap \mathbf{S}^n_E$

Centering problem

Logarithmic barrier

• ϕ is the conjugate of log-det barrier $\phi_*(S) = -\log \det S$ for K^* :

$$\phi(X) = \sup_{S \in \text{int } K^*} \left(-\operatorname{tr}(XS) + \log \det S \right)$$

- for chordal E: efficient algorithms for computing ϕ , ϕ_* , $\nabla \phi$, $\nabla \phi_*$, etc.
- ullet cost is about the same as sparse Cholesky factorization with pattern E

Centering problem

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}(CX) + \mu \phi(X) \\ \text{subject to} & \mathcal{A}(X) = b \\ & \operatorname{tr} X = 1 \end{array}$$

- ullet solutions for $\mu>0$ form the central path of the SDP
- optimal X is (μn) -suboptimal for the SDP
- can be solved by Bregman PDHG

Bregman proximal operator for the centering objective

ullet centering objective, restricted to $\operatorname{tr} X = 1$

$$f(X) = \operatorname{tr}(CX) + \mu \phi(X) + \delta_H(X), \quad \text{where } H = \{X \mid \operatorname{tr} X = 1\}$$

 \bullet prox-operator $\widehat{X}=\operatorname{prox}_f^\phi(Y,A),$ using Bregman distance generated by ϕ minimize $\operatorname{tr}(BX)+\phi(X)$ subject to $\operatorname{tr}X=1$

where $B \in \mathbf{S}_{E}^{n}$ depends on Y, A, C and μ

ullet use Newton's method to find unique solution $\hat{\lambda}$ of the nonlinear equation

$$\operatorname{tr}((B+\lambda I)^{-1})=1$$
 (with $B+\lambda I\succ 0$)

ullet for chordal sparsity patterns E, efficient algorithms exist for computing

$$g(\lambda)=\operatorname{tr}((B+\lambda I)^{-1}), \quad g'(\lambda)=-\operatorname{tr}((B+\lambda I)^{-2}), \quad \widehat{X}=\Pi_E((B+\widehat{\lambda}I)^{-1})$$
 from sparse Cholesky factorization of $B+\lambda I$

complexity pprox # Newton iterations imes cost of sparse Cholesky factorization

Maximum-cut problem

$$\begin{array}{ll} \text{maximize} & \operatorname{tr}(LX) \\ \text{subject to} & \operatorname{diag}(X) = \mathbf{1}, \ X \succeq 0 \\ \end{array}$$

- compute approximate solution on central path (parameter $\mu = 0.001/n$)
- four problems from SDPLIB, four graphs from SuiteSparse collection

	n	PDHG iterations	time per Cholesky factorization	Newton steps per prox-evaluation	time per PDHG iteration
maxG51	1000	267	0.05	2.45	0.12
maxG32	2000	240	0.12	1.56	0.18
maxG55	5000	249	0.29	2.10	0.58
maxG60	7000	279	0.60	2.55	1.22
barth4	6019	346	0.42	3.57	1.55
tuma2	12992	375	0.48	4.36	1.89
biplane-9	21701	287	0.95	2.58	2.12
c-67	57975	378	0.76	3.58	3.56

SDP relaxation of graph partitioning

$$\begin{array}{ll} \text{minimize} & \operatorname{tr}(P^TLPX) \\ \text{subject to} & \operatorname{diag}(PXP^T) = \mathbf{1}, \ X \succeq 0 \\ \end{array}$$

- columns of P are sparse basis of $\{x \mid \mathbf{1}^T x = 0\}$
- Bregman PDHG for centering problem (parameter $\mu = 0.001/n$)
- four problems from SDPLIB, four graphs from SuiteSparse collection

	n	PDHG iterations	time per Cholesky factorization	Newton steps per prox-evaluation	time per PDHG iteration
gpp100	100	305	0.01	2.43	0.02
gpp124-1	124	392	0.01	2.00	0.02
gpp250-1	250	365	0.01	2.65	0.03
gpp500-1	500	394	0.02	3.01	0.07
delaunay_n10	1024	403	0.37	4.36	1.76
delaunay_n11	2048	420	0.48	4.70	2.54
delaunay_n12	4096	367	0.60	4.43	3.05
delaunay_n13	8192	375	1.02	4.42	4.98

Summary

Bregman primal-dual first-order methods for

minimize
$$f(x) + g(Ax) + h(x)$$

- main steps are matrix–vector products with A, A^T , $\mathrm{prox}_f^{\phi_\mathrm{p}}$, and $\mathrm{prox}_{g^*}^{\phi_\mathrm{d}}$
- algorithm parameters are fixed or determined by line search

Applications to centering problem in sparse SDP

- distance generated by logarithmic barrier
- new, efficient algorithm for prox-operator of centering objective
- cost of prox-evaluation is comparable to sparse Cholesky factorization