## Neural network

#### Convolution neural network

#### Khiem Nguyen

| Email    | khiem.nguyen@glasgow.ac.uk       |  |  |  |  |
|----------|----------------------------------|--|--|--|--|
| MS Teams | khiem.nguyen@glasgow.ac.uk       |  |  |  |  |
| Whatsapp | +44 7729 532071 (Emergency only) |  |  |  |  |

May 18, 2025



#### **Table of Contents**

- Convolutions over volume
- 2 Visualization of convolution neural networks
- 3 Working on an example of CNN
- 4 Classic Convolution Neural Networks
- 6 Putting it together and summary









Few words on drawing:

- > We can think of the filter with three channels of the same color channels as the input.
- > When we have more channels in deeper layers (more on this later), it probably does not make a lot of sense to think of color channels.

## Movement of the filter/kernel



Figure: Movement of the kernel through one layer

# Multiple filters



# Multiple filters



# One layer of a Convolutional Network



$$\mathbf{z}^{[1]} = \mathbf{W}^{[1]} \mathbf{a}^{[0]} + \mathbf{b}^{[1]}$$
  
 $\mathbf{a}^{[1]} = g(\mathbf{z}^{[1]})$ 

### Example

Let us summarize the theory we have learned so far by an example:

Compute number of parameters in one layer!!!

If we have 10 filters of the size  $(3 \times 3 \times 3)$  in one layer of a neural network, how many parameters does that layer have?

## Summary of notation

### If layer l is a convolution layer:

$$\begin{split} f^{[l]} &= \text{filter size} \\ p^{[l]} &= \text{padding} \\ s^{[l]} &= \text{stride} \\ n^{[l]}_C &= \text{number of filters} \\ &= \text{number of channels of the output "image"} \end{split}$$

- $\square$  Each filter:  $f^{[l]} \times f^{[l]} \times n_C^{[l-1]}$
- $\square$  Activations:  $a^{[l]} \to n_H^{[l]} \times n_W^{[l]} \times n_G^{[l]}$
- $\square$  Weights:  $f^{[l]} \times f^{[l]} \times n_G^{[l-1]} \times n_G^{[l]}$

$$\ \ \, \square \ \, \text{Input:} \ \, n_H^{[l-1]} \times n_W^{[l-1]} \times n_C^{[l-1]}$$

□ Input:  $n_H^{[l-1]} \times n_W^{[l-1]} \times n_C^{[l-1]}$ □ Output:  $n_H^{[l]} \times n_W^{[l]} \times n_C^{[l]}$ 

$$\begin{split} n_H^{[l]} &= \left\lfloor \frac{n_H^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right\rfloor \\ n_W^{[l]} &= \left\lfloor \frac{n_W^{[l-1]} + 2p^{[l]} - f^{[l]}}{s^{[l]}} + 1 \right\rfloor \end{split}$$

$$A^{[l]} \quad \rightarrow \quad m \times n_H^{[l]} \times n_W^{[l]} \times n_C^{[l]}$$

#### Conv2d

CLASS torch.nn.Conv2d(in\_channels, out\_channels, kernel\_size, stride=1, padding=0, dilation=1, groups=1, bias=True, padding\_mode='zeros', device=None, dtype=None) [SOURCE]

Applies a 2D convolution over an input signal composed of several input planes.

In the simplest case, the output value of the layer with input size  $(N,C_{
m in},H,W)$  and output  $(N,C_{
m out},H_{
m out},W_{
m out})$  can be precisely described as:

$$\mathrm{out}(N_i, C_{\mathrm{out}_j}) = \mathrm{bias}(C_{\mathrm{out}_j}) + \sum_{k=0}^{C_{\mathrm{in}}-1} \mathrm{weight}(C_{\mathrm{out}_j}, k) \star \mathrm{input}(N_i, k)$$

where  $\star$  is the valid 2D cross-correlation operator, N is a batch size, C denotes a number of channels, H is a height of input planes in pixels, and W is width in pixels.

This module supports TensorFloat32.

On certain ROCm devices, when using float16 inputs this module will use different precision for backward.

Documentation: Click on Me!

#### nn.Conv2d

In the simplest case, the input and output of the layer have the size

- > Input size  $(N, C_{\rm in}, H, W)$
- $\triangleright$  Output size  $(N, C_{\text{out}}, H, W)$
- > To understand keyword argument dilation, cf. Visualization of convolution layer
- The computation in the nn.Conv2d is given by (from PyTorch description)

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) * \operatorname{input}(N_i, k)$$

Input size  $(N, C_{in}, H, W)$ 

Output size  $(N, C_{\text{out}}, H, W)$ 

⇔ Wee "cute" equation from PyTorch

$$\operatorname{out}(N_i, C_{\operatorname{out}_j}) = \operatorname{bias}(C_{\operatorname{out}_j}) + \sum_{k=0}^{C_{\operatorname{in}}-1} \operatorname{weight}(C_{\operatorname{out}_j}, k) * \operatorname{input}(N_i, k)$$

➡ We need "decode" this wee cute equation

| $N_i$                | for the $i^{\rm th}$ input example                 |
|----------------------|----------------------------------------------------|
| $C_{\mathrm{out}_j}$ | for the $j^{\text{th}}$ channel in the output      |
| $C_{\mathrm{in}_j}$  | number of channels of the input ('image')          |
| k                    | running index for the $k^{\rm th}$ filter (kernel) |

In deeper layer, the input does not carry the meaning of image we can see or visualize easily on the computer (too many channels).

#### Quick comparison nn.Linear versus nn.Conv2d

nn.Linear

- Input size  $(N, H_{\rm in})$
- Output size  $(N, H_{\text{out}})$

#### nn.Conv2d

- Input size  $(N, C_{\rm in}, H, W)$
- Output size  $(N, C_{\text{out}}, H, W)$

Trick If you kinda think of

$$H_{
m in}$$
 (in\_features) as  $C_{
m in}$  (in\_channels

$$H_{\mathrm{out}}$$
 (out\_features) as  $C_{\mathrm{out}}$ 

 $\Rightarrow$  the number of neurons in fully connected layer is some what like number of channels in convolution layer.

**Note** This is just a comparison for our memory. Of course, these concepts should not be mixed and confused.

## Example of ConvNet

Congrat! Now you understand the key concept of Convolution Layer, and how to construct it with PyTorch

## Example of ConvNet





Hyperparameters

 $\Box$  Filter: f=2

ightharpoonup Stride: s=2

| 1 | 3 | 2 | 1 | 3 |           |  |
|---|---|---|---|---|-----------|--|
| 2 | 9 | 1 | 1 | 5 |           |  |
| 1 | 3 | 2 | 3 | 2 | <b>──</b> |  |
| 8 | 3 | 5 | 1 | 0 |           |  |
| 5 | 6 | 1 | 2 | 9 |           |  |

- $\Box$  Filter: f=2
- $\Box$  Stride: s=2

| 1 | 3 | 2 | 1 | 3 |          |   |   |
|---|---|---|---|---|----------|---|---|
| 2 | 9 | 1 | 1 | 5 |          | 9 | 9 |
| 1 | 3 | 2 | 3 | 2 | <b>→</b> |   |   |
| 8 | 3 | 5 | 1 | 0 |          |   |   |
| 5 | 6 | 1 | 2 | 9 |          |   |   |

- lacksquare Filter: f=2
- $\Box$  Stride: s=2

|   |   |   |   |   | ]        |   |
|---|---|---|---|---|----------|---|
| 1 | 3 | 2 | 1 | 3 |          |   |
| 2 | 9 | 1 | 1 | 5 |          | ę |
| 1 | 3 | 2 | 3 | 2 | <b>─</b> |   |
| 8 | 3 | 5 | 1 | 0 |          |   |
| 5 | 6 | 1 | 2 | 9 |          |   |

- lacksquare Filter: f=2
- $\Box$  Stride: s=2

| 1 | 3 | 2 | 1 | 3 |
|---|---|---|---|---|
| 2 | 9 | 1 | 1 | 5 |
| 1 | 3 | 2 | 3 | 2 |
| 8 | 3 | 5 | 1 | 0 |
| 5 | 6 | 1 | 2 | 9 |



- lacksquare Filter: f=2
- $\Box$  Stride: s=2

| 1 | 3 | 2 | 1 | 3 |           |   |   |    |
|---|---|---|---|---|-----------|---|---|----|
| 2 | 9 | 1 | 1 | 5 | !         | 9 | 9 |    |
| 1 | 3 | 2 | 3 | 2 | <b>──</b> | 9 | 9 | Γ. |
| 8 | 3 | 5 | 1 | 0 |           | 8 | 6 |    |
| 5 | 6 | 1 | 2 | 9 | _         |   |   |    |

As before, we can apply the pooling over many channels in the image.

- lacksquare Filter: f=2
- $\Box$  Stride: s=2

## Pooling layer: Average pooling

| 2 | 2 | 7 | 3 |
|---|---|---|---|
| 9 | 4 | 6 | 1 |
| 8 | 5 | 2 | 4 |
| 3 | 1 | 2 | 6 |



| 4.25 | 4.25 |
|------|------|
| 4.25 | 3.5  |

## Hyperparameters

lacksquare Filter: f=2

 $\Box$  Stride: s=2

# Summary of pooling



- > Reduce the size of "input" image
- > Two main types: Max pooling or Average pooling
- Max pooling is used in most of the modern convolution neural networks
- > Hyperparameters: filter size and stride
- No parameters to learn!

# Types of layer in a convolutional network

- ➤ Convolution (CONV/C)
- ➤ Pooling (POOL/P)
- > Fully connected (FC)

#### **Table of Contents**

- Convolutions over volume
- 2 Visualization of convolution neural networks
- 3 Working on an example of CNN
- 4 Classic Convolution Neural Networks
- 5 Putting it together and summary

- > There have been various ways of visualizing convolution neural networks.
- > Although a CNN can be presented in different formats, it is important to interpret them with proper mechanism/mathematics behind the hood.





Figure: A common visualization of the convolution operation on one channel

#### Such visualization inspires the following representation



The visualization is absolutely useless and superficial as it is not an implementable architecture.



Figure: LeNet-5 Convolution Neural Network

- This convolution neural network was presented in 1998 by Yan LeCun (a god-level machine learning scientist).
- This visualization is useful as we know what we are dealing with.
- $\triangleright$  The "image" dimension  $(n_H \times n_W \times n_C)$  is presented as  $n_C @ n_H \times n_W$ .

- The modern networks are so big that it is difficult to visualize by drawing.
- Block diagrams in such cases are more useful.
- Top: LeNet, Bottom: AlexNet



#### **Table of Contents**

- Convolutions over volume
- 2 Visualization of convolution neural networks
- 3 Working on an example of CNN
- 4 Classic Convolution Neural Networks
- 5 Putting it together and summary

## Neural network example

|                        | Activation shape | Activation size | # parameters |
|------------------------|------------------|-----------------|--------------|
| Input                  | (32, 32, 3)      | ?               | ?            |
| CONV1 $(f = 5, s = 1)$ | (28, 28, 8)      | ?               | ?            |
| POOL1                  | (14, 14, 8)      | ?               | ?            |
| CONV2 $(f = 5, s = 1)$ | (10, 10, 16)     | ?               | ?            |
| POOL2                  | (5, 5, 16)       | ?               | ?            |
| FC3                    | (120, 1)         | ?               | ?            |
| FC4                    | (84, 1)          | ?               | ?            |
| Softmax                | (10, 1)          | ?               | ?            |

Let us do an exercise: Compute the learnable parameters in the model!

## Neural network example

|                        | Activation shape | Activation size | # parameters |
|------------------------|------------------|-----------------|--------------|
| Input                  | (32, 32, 3)      | 3072            | ?            |
| CONV1 $(f = 5, s = 1)$ | (28, 28, 8)      | 6272            | ?            |
| POOL1                  | (14, 14, 8)      | 1568            | ?            |
| CONV2 $(f = 5, s = 1)$ | (10, 10, 16)     | 1600            | ?            |
| POOL2                  | (5, 5, 16)       | 400             | ?            |
| FC3                    | (120, 1)         | 120             | ?            |
| FC4                    | (84, 1)          | 84              | ?            |
| Softmax                | (10,1)           | 10              | ?            |

 $(A): (5 \cdot 5 \cdot 3 + 1) \cdot 8 = 608$   $(C): 400 \cdot 120 + 120 = 48120$ 

(B):  $(5 \cdot 5 \cdot 8 + 1) \cdot 16 = 3216$  (D):  $128 \cdot 84 + 84 = 10164$ 

 $(E): 84 \cdot 10 + 10 = 850$ 

## Neural network example

|                        | Activation shape | Activation size | # parameters |  |
|------------------------|------------------|-----------------|--------------|--|
| Input                  | (32, 32, 3)      | 3072            | 0            |  |
| CONV1 $(f = 5, s = 1)$ | (28, 28, 8)      | 6272            | (A) 608      |  |
| POOL1                  | (14, 14, 8)      | 1568            | 0            |  |
| CONV2 $(f = 5, s = 1)$ | (10, 10, 16)     | 1600            | (B) 3216     |  |
| POOL2                  | (5, 5, 16)       | 400             | 0            |  |
| FC3                    | (120, 1)         | 120             | (C) 48120    |  |
| FC4                    | (84, 1)          | 84              | (D) 10164    |  |
| Softmax                | (10, 1)          | 10              | (E) 850      |  |

 $(A): (5 \cdot 5 \cdot 3 + 1) \cdot 8 = 608$   $(C): 400 \cdot 120 + 120 = 48120$ 

(B):  $(5 \cdot 5 \cdot 8 + 1) \cdot 16 = 3216$  (D):  $120 \cdot 84 + 84 = 10164$ 

 $(E): 84 \cdot 10 + 10 = 850$ 

## **Table of Contents**

- Convolutions over volume
- 2 Visualization of convolution neural networks
- 3 Working on an example of CNN
- 4 Classic Convolution Neural Networks
- 6 Putting it together and summary

## Why look at classic convolution neural networks

Why look at classic convolution neural networks?

- > Get intuition and update your own knowledge
- > Understand the theory better (just like how we look at code and learn coding)
- > One trained neural network working well on one computer vision task can be applied to other computer vision tasks through the concept of transfer learning

#### Classic convolution neural networks

- ✓ LeNet-5: This CNN is considered very simple nowadays but was considered one of the pioneers in 1998. LeNet-1 was train in 1989.
  - Original paper
  - Tutorial
- ✓ AlexNet: A large, deep convolutional neural network to classify the 1.2 million high-resolution images in the ImageNet LSVRC-2010 contest into the 1000 different classes.
  - Original paper.
  - Pretrained model from torchvision.
  - Pretrained model from PyTorch Hub
- **▼ VGG**: Very Deep Convolutional Networks for Large-Scale Image Recognition.
  - Original paper.
  - Pretrained models from torchvision

Remark: LeNet-5 is so easy to train that I cannot find the pretrained model. The network, which was considered high-tech in the past, is now considered a simple network.

## LeNet-5: Diagram



## LeNet-5: Diagram



What is missing in this representation?

## LeNet-5: Diagram



What is missing in this representation?

 $Yes! \ The \ activation \ functions.$ 

### LeNet-5: Architecture in table

| #                                 | Layer           | Feature     |                |              |   |                                          |
|-----------------------------------|-----------------|-------------|----------------|--------------|---|------------------------------------------|
| map                               | ${f Size}$      | Kernel size | Stride         | Activation   |   |                                          |
| Input                             | Image           | 1           | $32 \times 32$ |              |   |                                          |
| 1                                 | Convolution     | 6           | $28 \times 28$ | $5 \times 5$ | 1 | tanh                                     |
| $\begin{bmatrix} 2 \end{bmatrix}$ | Average Pooling | 6           | $14 \times 14$ | $2 \times 2$ | 2 | tanh                                     |
| 3                                 | Convolution     | 16          | $10 \times 10$ | $5 \times 5$ | 1 | tanh                                     |
| 4                                 | Average Pooling | 16          | $10 \times 10$ | $5 \times 5$ | 1 | tanh                                     |
| 5                                 | Convolution     | 120         | $1 \times 1$   | $5 \times 5$ | 1 | tanh                                     |
| 6                                 | FC              |             | 84             |              |   | $\begin{bmatrix} \\ \tanh \end{bmatrix}$ |
| Output                            | FC              |             | 10             |              |   | softmax                                  |

The original paper Click on me! experimented with both tanh and sigmoid as activation functions. The tutorial used ReLU. The idea is essentially the same.

## AlexNet



This figure is from the original paper Click on Me!.

### AlexNet



This figure is from the original paper Click on Me!.

- > Yup! It looks like somebody cut the figure and it was missing something on the top.
- > Everything is actually fine. One block is one filter; and we have many filters.
- > Instead of drawing many filters stacked together in a big volume, it drew filters separately.

### AlexNet

#### AlexNet

Image: 224 (height) × 224 (width) × 3 (channels) Convolution with 11×11 kernel+4 stride: 54×54×96 Relu Pool with 3x3 max, kernel+2 stride: 26x26x96 Convolution with 5×5 kernel+2 pad:26×26×256 ReLu Pool with 3×3 max.kernel+2stride: 12×12×256 Convolution with 3×3 kernel+1 pad:12×12×384 Relu Convolution with 3×3 kernel+1 pad:12×12×384 ReLu Convolution with 3×3 kernel+1 pad:12×12×256 ReLu Pool with 3×3 max.kernel+2stride: 5×5×256 flatten Dense: 4096 fully connected neurons ReLu. dropout p=0.5 Dense: 4096 fully connected neurons ReLu, dropout p=0.5 Dense: 1000 fully connected neurons

Output: 1 of 1000 classes

Little advice: Always ask whether you learn the right thing.

#### Explanation & background:

- > If you work out the model, the input image should have the size
  - (227, 227, 3), not (224, 224, 3).
- > So the original paper has its own minor mistake (not fundamental mistake). So that's fine :D.
- This has been pointed out by "Andrej Karpathy" and actually anybody who understand the theory.



Try to understand what you end up seeing online: VGG
Original paper

## **Table of Contents**

- Convolutions over volume
- 2 Visualization of convolution neural networks
- 3 Working on an example of CNN
- 4 Classic Convolution Neural Networks
- **5** Putting it together and summary

# Putting it together

- ightharpoonup Training set  $(\mathbf{x}^{(1)}, y^{(1)}), \dots, (\mathbf{x}^{(m)}, y^{(m)})$
- > Loss function

$$\mathcal{L} = \frac{1}{m} \sum_{i=1}^{m} L(\widehat{y}^{(i)}, y^{(i)}),$$

where

 $\triangleright$  Use gradient-based methods (such as gradient descent) to optimize *learnable* parameters to minimize the loss function  $\mathcal{L}$ .

## Why convolutions?

- **Parameter sharing**: A feature detector (such as vertical edge detector) that's useful in one part of the image is probably useful in another part of the image.
- Sparsity of connections: In each layer, each output value depends only on small number of inputs.

## Inpterpretation of a ConvNet architecture

Hopefully, after studying the basic building block of a convolution neural network, you can read and interpret convolution neural network architectures you bump into on the internet:



Figure: A ConvNet to classify handwritten digits