信号与图像处理基础

Fourier Analysis and Convolution

中国科学技术大学 自动化系 曹 洋

本节内容

• 傅里叶变换回顾

• 傅里叶变换性质与信号卷积

• 图像傅里叶变换

1. 傅里叶变换回顾

- 复数的几何意义
- 欧拉公式和调和函数
- 傅里叶变换
- 离散傅里叶变换

复数的几何意义

复数可以用于描述二维复平面上的点集

A complex number is one of the form

a + bi

where

$$i = \sqrt{-1}$$

a: real part

b: imaginary part

复数的几何意义

复数的幅值和相位(Magnitude and Phase)

► The length is called the *magnitude*:

$$|a+bi|=\sqrt{a^2+b^2}$$

▶ The angle from the real-number axis is called the *phase*:

$$\phi(a+bi)=\tan^{-1}\left(\frac{b}{a}\right)$$

复数的几何意义

复数乘法

When you multiply two complex numbers, their magnitudes multiply:

$$|xy| = |x||y|$$

and their phases add:

$$\phi(xy) = \phi(x) + \phi(y)$$

复数乘法的等效表达:

$$(a_1e^{b_1})(a_2e^{b_2})=a_1a_2e^{(b_1+b_2)}$$
 指数形式

欧拉公式

欧拉公式的定义

$$e^{i\theta} = \cos\theta + i\sin\theta$$

任意的一个复数z可以写作:

$$z = |z| e^{i\phi(z)}$$

欧拉公式的几何意义

欧拉公式的定义

$$e^{i\theta} = \cos\theta + i\sin\theta$$

任意的一个复数z可以写作:

$$z = |z| e^{i\phi(z)}$$

调和函数(Harmonic Functions)

考虑一下这个函数: $f(t) = e^{i2\pi ut}$

Real Part	Imaginary Part
$\Re(e^{i2\pi ut})$	$\Im(e^{i2\pi ut})$
$\cos(2\pi ut)$	$sin(2\pi ut)$

e^{i2πut} 模为1

将正弦函数和余弦函数同时表示; 若这个函数是信号的描述,则u为信号频率; 这一函数被称作广义调和函数。

调和函数(Harmonic Functions)

若将调和函数输入一个线性时不变系统,则有

$$f(t) = e^{i2\pi ut}$$

 $f(t) \rightarrow H(u) f(t)$

其中,H(u)为系统传递函数,满足

$$H(u) = |H(u)| e^{i\phi(H(u))}$$

则有,

$$H(u) e^{i2\pi ut} = |H(u)| e^{i\phi(u)} e^{i2\pi ut}$$

= $|H(u)| e^{i(2\pi ut + \phi(u))}$

|H(u)| is the **Modulation Transfer Function (MTF)** $\phi(H(u))$ is the **Phase Transfer Function (PTF)**

复杂信号描述为一组正弦信号的叠加

Fundamental frequency

+ 0.5 × 2 × fundamental

+ 0.33 × 3 × fundamental

+ 0.25 × 4 × fundamental

+ 0.5 × 5 × fundamental

类正弦信号

傅里叶变换的基本原理

假设有一组单位正交基 $\{\bar{e}_k\}$

则属于由单位正交基所构成空间内的向量可以描述为:

$$\overline{v} = \sum_k a_k \ \overline{e}_k$$

其中, 权重系数为

$$a_k = \overline{v} \cdot \overline{e}_k$$

Notes:

- 每个向量可以被转换为一组权重系数
- 向量与权重系数之间的转换是可逆变换

函数的线性计算

向量的内积:

$$\overline{u}\cdot\overline{v}=\sum_{j}\overline{u}[j]\ \overline{v}[j]$$

类比定义函数的内积:

$$f \cdot g = \int_{-\infty}^{\infty} f(x) \ g(x) \ dx$$

Functions satisfy all of the linear algebraic requirements of vectors.

傅里叶变换的基本原理

类比向量的正交投影变换,函数同样满足:

	Vectors $\{\overline{e}_k\}$	Functions $\{e_k(t)\}$
Transform	$a_k = \overline{oldsymbol{v}} \cdot \overline{oldsymbol{e}}_k$	$a_k = f \cdot e_k$
	$= \sum_j \overline{v}[j] \; \boldsymbol{e}_k[j]$	$=\int_{-\infty}^{\infty}f(t)\;e_{k}(t)\;dt$
Inverse	$\overline{v}=\sum_k a_k \ \overline{e}_k$	$f(t) = \sum_{k} a_{k} e_{k}(t)$

函数的基: 调和函数

调和函数可以作为输入函数的一组正交基:

$$e^{i2\pi ut} = \cos(2\pi ut) + i\sin(2\pi ut)$$

- ▶ The real part is a cosine of frequency *u*.
- ▶ The imaginary part is a sine of frequency *u*.

傅里叶级数

对于一个有限集合 $\{u_k\}$:

	All Functions $\{e_k(t)\}$	Harmonics { <i>e</i> ^{i2πut} }
Transform	$a_k = f \cdot e_k$	$a_k = f \cdot e^{i2\pi u_k t}$
	$=\int_{-\infty}^{\infty}f(t)\;e_k(t)\;dt$	$=\int_{-\infty}^{\infty}f(t)\;e^{-i2\pi u_kt}\;dt$
Inverse	$f(t) = \sum_{k} a_{k} e_{k}(t)$	$f(t) = \sum_{k} a_k e^{i2\pi u_k t}$

将uk换为频率u,则有

	Fourier Series	Fourier Transform
Transform	$a_k = f \cdot e^{i2\pi u_k t}$	$F(u) = f \cdot e^{i2\pi ut}$
	$=\int_{-\infty}^{\infty}f(t)\ e^{-i2\pi u_k t}\ dt$	$= \int_{-\infty}^{\infty} f(t) e^{-i2\pi ut} dt$
Inverse	$f(t) = \sum_{k} a_k e^{i2\pi u_k t}$	$f(t) = \int_{-\infty}^{\infty} F(u) e^{i2\pi ut} du$

To get the weights (amount of each frequency):

$$F(u) = \int_{-\infty}^{\infty} f(t) e^{-i2\pi ut} dt$$

F(u) is the Fourier Transform of f(t): $F(u) = \mathcal{F}(f(t))$

To turn the weights back into the signal (invert the transform):

$$f(t) = \int_{-\infty}^{\infty} F(u) e^{i2\pi ut} du$$

f(t) is the Inverse Fourier Transform of F(u): $f(t) = \mathcal{F}^{-1}(F(u))$

How to handle the complex numbers:

$$F(u) = \int_{-\infty}^{\infty} f(t) e^{-i2\pi ut} dt$$

$$= \int_{-\infty}^{\infty} f(t) \left[\cos(-2\pi ut) + i\sin(-2\pi ut)\right] dt$$

$$= \underbrace{\int_{-\infty}^{\infty} f(t) \cos(-2\pi ut) dt + i}_{\text{Real-valued Integral}} \int_{-\infty}^{\infty} f(t) \sin(-2\pi ut) dt$$
Real-valued Integral

So, all we're really doing is

- projecting onto a cosine (one integral)
- projecting onto a sine (the other integral)
- encoding the result as a complex number

信号拟合-N Harmonics

harmonics: 1

哺乳动物的知觉感应使用傅里叶变换

离散傅里叶变换

离散傅里叶变换,将时域信号的采样变换为在离散时间傅里叶变换频域的采样。即使对有限长的离散信号作DFT,也应当将其看作经过周期延拓成为周期信号再作变换。

$$F(u) = \frac{1}{M} \sum_{x=0}^{M-1} f(x) \ e^{-i2\pi ux/M} \qquad f(x) = \sum_{u=0}^{M-1} F(u) \ e^{i2\pi ux/M}$$

归一化离散傅里叶变换

Basis Functions
Transform
Inverse

$$e^{i2\pi ux/M}$$

$$F[u] = \frac{1}{M} \sum_{x=0}^{M-1} f(x) e^{-i2\pi ux/M}$$

$$f(x) = \sum_{u=0}^{M-1} F[u] e^{i2\pi ux/M}$$

Basis Functions
Transform
Inverse

$$F[u] = \sum_{x=0}^{M-1} f(x) e^{-i2\pi ux/M}$$

$$f(x) = \frac{1}{M} \sum_{u=0}^{M-1} F[u] e^{i2\pi ux/M}$$

Basis Functions
Transform
Inverse

$$F[u] = \frac{1}{\sqrt{M}} \sum_{x=0}^{M-1} f(x) e^{-i2\pi ux/M}$$

$$f(x) = \frac{1}{\sqrt{M}} \sum_{u=0}^{M-1} F[u] e^{i2\pi ux/M}$$

2. 傅里叶变换性质与信号卷积

- 典型信号的傅里叶变换
- 傅里叶变换的性质
- 信号的卷积

$$f(t) = \cos(2\pi st)$$

$$F(u) = \int_{-\infty}^{\infty} f(t) e^{-i2\pi ut} dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) e^{-i2\pi ut} dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \left[\cos(-2\pi ut) + i\sin(-2\pi ut)\right] dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(-2\pi ut) dt + i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(-2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi st) \sin(2\pi ut) dt - i \int_{-\infty}^{\infty} \cos(2\pi st) \sin(2\pi ut) dt$$

$$= \int_{-\infty}^{\infty} \cos(2\pi st) \cos(2\pi st) \sin(2\pi ut) dt$$

余弦信号

Spatial Domain

 $\cos(2\pi st)$

Frequency Domain

$$\frac{1}{2}\delta(u-s)+\frac{1}{2}\delta(u+s)$$

余弦信号

Spatial Domain

 $\cos(2\pi st)$

Frequency Domain

$$\frac{1}{2}\delta(u-s)+\frac{1}{2}\delta(u+s)$$

正弦信号

Spatial Domain $f(t)$	Frequency Domain $F(u)$
$\cos(2\pi st)$	$\frac{1}{2}\left[\delta(u+s)+\delta(u-s)\right]$
$\sin(2\pi st)$	

正弦信号

Spatial Domain $f(t)$	Frequency Domain $F(u)$
$\cos(2\pi st)$	$\frac{1}{2}\left[\delta(u+s)+\delta(u-s)\right]$
$\sin(2\pi st)$	$\frac{1}{2}i\left[\delta(u+s)-\delta(u-s)\right]$

阶跃信号

Spatial Domain	Frequency Domain
f(t)	F(u)
1	
а	

阶跃信号

Spatial Domain $f(t)$	Frequency Domain $F(u)$
1	$\delta(u)$
а	a $\delta(u)$

冲击信号

Spatial Domain Frequency Domain f(t) F(u) $\delta(t)$

冲击信号

Spatial Domain	Frequency Domain
f(t)	F(u)
$\delta(t)$	1

门信号

Spatial Domain f(t)

Frequency Domain F(u)

$$\begin{cases} 1 & \text{if } -a/2 \le t \le a/2 \\ 0 & \text{otherwise} \end{cases}$$

门信号

Spatial	Domain
f(t)	

Frequency Domain F(u)

$$\begin{cases} 1 & \text{if } -a/2 \le t \le a/2 \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{sinc}(a\pi u) = \frac{\sin(a\pi u)}{a\pi u}$$

a b c d

FIGURE 4.2 (a) A discrete function of *M* points, and (b) its Fourier spectrum. (c) A discrete function with twice the number of nonzero points, and (d) its Fourier spectrum.

门信号

辛格信号

高斯信号

Spatial Domain Frequency Domain f(t) F(u)

$$e^{-\pi t^2}$$

高斯信号

Spatial Domain Frequency Domain f(t) F(u)

 $e^{-\pi t^2}$

 $e^{-\pi u^2}$

三角信号 vs 高斯信号

差分信号

Spatial Domain Frequency Domain f(t) F(u)

<u>d</u> dt

差分信号

Spatial Domain	Frequency Domain	
f(t)	F(u)	
d		
$\frac{d}{dt}$	$2\pi iu$	

Spatial Domain		Frequency Domain	
f	f(t)	F(u)	
Cosine	$\cos(2\pi st)$	Deltas	$\frac{1}{2}\left[\delta(u+s)+\delta(u-s)\right]$
Sine	$sin(2\pi st)$	Deltas	$\frac{1}{2}i\left[\delta(u+s)-\delta(u-s)\right]$
Unit	1	Delta	$\delta(u)$
Constant	а	Delta	$a\delta(u)$
Delta	$\delta(t)$	Unit	1
Comb	$\delta(t \bmod k)$	Comb	$\delta(u \bmod 1/k)$

Spatial Domain $f(t)$		Frequency Domain $F(u)$	
Square	1 if $-a/2 \le t \le a/2$ 0 otherwise	Sinc	sinc(<i>a</i> π <i>u</i>)
Triangle	$1 - t $ if $-a \le t \le a$ 0 otherwise	Sinc ²	$sinc^2(a\pi u)$
Gaussian	$e^{-\pi t^2}$	Gaussian	$e^{-\pi u^2}$
Differentiation	<u>d</u> dt	Ramp	$2\pi iu$

傅里叶变换性质:线性

傅里叶变换的线性特性表示为

若
$$f_1(t) \leftrightarrow F_1(\Omega)$$
 $f_2(t) \leftrightarrow F_2(\Omega)$

$$af_1(t) + bf_2(t) \leftrightarrow aF_1(\Omega) + bF_2(\Omega)$$

式中 a、b 为任意常数。

$$=a\int_{-\infty}^{\infty}f_1(t)e^{-j\Omega t}dt+b\int_{-\infty}^{\infty}f_2(t)e^{-j\Omega t}dt=aF_1(\Omega)+bF_2(\Omega)$$

利用傅氏变换的线性特性,可以将待求信号分解为若干基本信号之和。 ⁴⁵

傅里叶变换性质: 时延

傅里叶变换的时延 (移位) 特性表示为

$$f(t) \leftrightarrow F(\Omega)$$

$$f_1(t) = f(t - t_0) \leftrightarrow F_1(\Omega) = F(\Omega)e^{-j\Omega t_0}$$

$$\int_{-\infty}^{\infty} f(t - t_0) e^{-j\Omega t} dt = \int_{-\infty}^{\infty} f(x) e^{-j\Omega(x + t_0)} dx$$

$$= e^{-j\Omega t_0} \int_{-\infty}^{\infty} f(x) e^{-j\Omega x} dx = F(j\Omega) e^{-j\Omega t_0}$$

时延(移位)性说明波形在时间轴上时延,不改变信号振幅频谱,仅使信号增加一 $-\Omega t_0$ 线性相位。

傅里叶变换性质:尺度变换

傅里叶变换的尺度变换特性表示为

若
$$f(t) \leftrightarrow F(\Omega)$$

则 $f(at) \leftrightarrow \frac{1}{|a|} F(\frac{\Omega}{a})$ $a \neq 0$

$$\mathbf{F} \left[f(at) \right] = \int_{-\infty}^{\infty} f(at)e^{-j\Omega t} dt$$

$$a > 0 \quad \diamondsuit at = x \quad \text{if } dt = (1/a)dx \quad t = x/a \quad \text{代入上式}$$

$$\mathbf{F} \left[f(at) \right] = \frac{1}{a} \int_{-\infty}^{\infty} f(x)e^{-j\frac{\Omega}{a}x} dx = \frac{1}{a} F\left(\frac{\Omega}{a}\right)$$

傅里叶变换性质:尺度变换

a b c d

figure 4.2 (a) A discrete function of *M* points, and (b) its Fourier spectrum. (c) A discrete function with twice the number of nonzero points, and (d) its Fourier spectrum.

傅里叶变换性质:帕斯瓦尔定理

傅里叶变换后信号的总能量不变

$$\int_{-\infty}^{\infty} |f(t)|^2 dt = \int_{-\infty}^{\infty} |F(u)|^2 du$$

傅里叶变换性质:卷积定理

时域内作 f(x)和h(x)的卷积,可以转化为在频域内作乘法

$$\mathcal{F}\{f(x) * h(x)\} = \mathcal{F}\left\{\int_{-\infty}^{\infty} f(a)h(x-a)da\right\}
= \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(a)h(x-a)da \ e^{-2\pi i\xi x}dx
= \int_{-\infty}^{\infty} f(a)e^{-2\pi i\xi a}da \int_{-\infty}^{\infty} h(b)e^{-2\pi i\xi b}db = F(\xi)H(\xi)$$

信号的卷积

线性系统与响应

	Time/Spatial	Frequency
Input	f	F
Output	g	G
Impulse Response	h	
Transfer Function		H
Relationship	g = f * h	G = FH

Is there a relationship?

信号的卷积

线性系统与响应

	Time/Spatial	Frequency
Input	f	F
Output	g	G
Impulse Response	h	
Transfer Function		Н
Relationship	g = f * h	G = FH

Relationship: the Transfer Function H(u) is the Fourier Transform of the impulse response h(u)

图像生成机制

定义亮度为空间变量的函数, f(x,y)是点(x,y)的亮度

成像系统会使输入图像退化(质量失真),得到图像为

$$g(x, y) = D(f(x, y))$$

D为退化函数,一般包含某些随机噪声过程,若退化操作D是线性移不变的,则*g*可以写成

$$g(x,y) = \int_{-\infty}^{+\infty} \int f(\alpha,\beta)h(x-\alpha,y-\beta)d\alpha d\beta + n(x,y)$$

以一维条件下为例(可以自然推广到二维情况),点x处的函数f为:

$$f(x) = \int f(x')\delta(x - x')dx'$$

其中, δ (r) 表示增量<u>一</u>数数

$$g(x) = D(f(x)) = D(\int f(x')\delta(x - x')dx')$$

若D是线性运算,可以变换D与积分符号次序

$$g(x) = D(f(x)) = \int_{-\infty}^{\infty} f(x')D(\delta(x - x'))dx'$$

引入新的函数 $h(x,x') = D(\delta(x-x'))$, 假设D只与x-x'有关,则有

$$g(x) = \int f(x')h(x-x')dx'$$

图像生成机制

Blurred image I

Sharp image *L*

Blur kernel h

点扩散函数 (Point Spread Function) (Blur kernel)

Camera Noise n

卷积定理

卷积定理的一个直接应用是对于卷积的运算可以在频域内进行,这也是绝大多数信号处理问题中所采用的 方法

$$f * g = \mathcal{F}^{-1}(\mathcal{F}(f)\mathcal{F}(g))$$

能够大大降低计算的复杂度(依赖于快速傅里叶变换的出现)

相关与卷积

Convolution is

$$f(t) * g(t) = \int_{-\infty}^{\infty} f(\tau) g(t - \tau) d\tau$$

Correlation is

$$f(t) * g(-t) = \int_{-\infty}^{\infty} f(\tau) g(t+\tau) d\tau$$

相关的作用是判断两个信号的相似程度,不仅是波形上的,也包括起始位置。

相关的频域特性

与卷积类似,相关也可以在频域内计算

Convolution

$$f(t) * g(t) \leftrightarrow F(s) G(s)$$

Correlation

$$f(t) * g(-t) \leftrightarrow F(s) G^*(s)$$

信号的自相关

自相关是指与信号自身进行相关计算,

$$f(t) * f(-t)$$

其作用是判断信号是否周期性信号?

实际应用中用来表示局部范围内有效信号和噪声的权重比

3. 图像傅里叶变换

- 二维连续傅里叶变换
- 二维离散(图像)傅里叶变换
- 图像与傅里叶频谱之间的关系

二维连续傅里叶变换

二维连续傅里叶变换

可以分解为水平和垂直方向上的一维连续傅里叶变换

$$b(u, v) = e^{i2\pi ux} e^{i2\pi vy}$$
$$= e^{i2\pi(ux+vy)}$$

二维连续傅里叶变换

二维连续傅里叶变换

$$v = \omega \sin \theta$$
, $u = \omega \cos \theta$, $\omega = \sqrt{v^2 + u^2}$, and $\theta = \tan^{-1}(\frac{v}{u})$.

二维连续傅里叶变换

二维连续傅里叶变换

The transform now becomes:

$$F(u,v) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x,y) e^{-i2\pi(ux+vy)} dx dy$$

Similar process for the inverse:

$$f(x,y) = \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,v) e^{i2\pi(ux+vy)} du dv$$

二维离散傅里叶变换

对于一副M*N的图像,可以描述为:

$$f_{u,v}[x,y] = e^{i2\pi ux/M} e^{i2\pi vy/N}$$

= $e^{i2\pi(ux/M+vy/N)}$

其傅里叶变换及逆变换为:

$$F[u, v] = \frac{1}{MN} \sum_{x=0}^{M-1} \sum_{y=0}^{N-1} f[x, y] e^{-i2\pi(ux/M + vy/N)}$$

$$f[x,y] = \sum_{u=0}^{M-1} \sum_{v=0}^{N-1} F[u,v] e^{i2\pi(ux/M+vy/N)}$$

例子

Image

Fourier Transform (magnitude)

一维离散傅里叶变换:门信号

a b

figure 4.2 (a) A discrete function of *M* points, and (b) its Fourier spectrum. (c) A discrete function with twice the number of nonzero points, and (d) its Fourier spectrum.

二维离散傅里叶变换:门信号

a b FIGURE 4.3 (a) Image of a 20×40 white rectangle on a black background of size 512 × 512 pixels. (b) Centered Fourier spectrum shown after application of the log transformation given in Eq. (3.2-2). Compare with

Fig. 4.2.

二维离散傅里叶变换:图像

a

FIGURE 4.4

(a) SEM image of a damaged integrated circuit. (b) Fourier spectrum of (a). (Original image courtesy of Dr. J. M. Hudak, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, Canada.)

二维离散傅里叶变换:图像(实部和虚部)

二维离散傅里叶变换:图像(功率和相位)

I

 $\log\{|\mathcal{F}\{\mathbf{I}\}|^2+1\}$

 $\angle[\mathcal{F}\{\mathbf{I}\}]$

二维离散傅里叶变换:中心化

二维离散傅里叶变换:中心化

为了便于分析和描述,需要对频谱进行中心化。

用(-1)×+y乘以输入图像来进行中心变换

脉冲(点)的频谱

脉冲(点)的频谱

脉冲(点)的频谱

384 rows

边缘的频谱

线的频谱

相位谱的作用

图像

功率谱

相位谱

仅使用功率谱重建的结果

仅使用相位谱重建的结果

