

SGA: A Robust Algorithm for Partial Recovery of Tree-Structured Graphical Models with Noisy Samples

Anshoo Tandon, ¹ Aldric J. Y. Han, ² and Vincent Y. F. Tan^{1,2}

Department of {¹Electrical and Computer Engineering, ²Mathematics}, National University of Singapore, Singapore Emails: anshoo.tandon@gmail.com, e0175459@u.nus.edu, vtan@nus.edu.sg

Tree Ising Model

ullet Ising model for a d node tree with random variables X_1,\ldots,X_d :

$$P(\mathbf{x}) = \frac{1}{Z} \exp\left(\sum_{\{i,j\}\in\mathcal{E}} \theta_{i,j} x_i x_j\right),\,$$

where $x_i \in \mathcal{X} = \{+1, -1\}$ with $\mathbb{E}[X_i] = 0$, \mathcal{E} is the set of edges, $\theta_{i,j}$ are edge interaction parameters, and Z is the normalization constant

• For $\{i,j\} \in \mathcal{E}$, the correlation $\rho_{i,j} \triangleq \mathbb{E}[X_i X_j] = \tanh(\theta_{i,j})$

Non-Identically Distributed Noise

ullet Noise Model: For $i\in\{1,\ldots,d\}$, we observe $Y_i=X_iN_i$ where

• With non-identically distributed noise, the classical Chow-Liu algorithm may not be able to recover the tree-structure. For example:

Partial Tree Recovery

- Katiyar-Shah-Caramanis [arXiv, Jun. 2020] gave an algorithm for partial tree-structure recovery (up to an equivalence class)
- ullet For a given tree T, the elements in the equivalence class [T] are obtained by interchanging leaf node(s) with their respective parent node

Katiyar, A., Shah, V., and Caramanis, C. Robust estimation of tree structured Ising models. arXiv:2006.05601 [stat.ML], Jun. 2020

SGA Algorithm

- \bullet SGA is adapted from the procedure by Katiyar-Shah-Caramanis [arXiv, Jun. 2020] for declaring any 4 nodes as star or non-star
- Overview of SGA algorithm via an example:
- Let $\{X_1, X_2, X_3, X_4\}$ form a non-star with pair $\{X_1, X_2\}$
- Let $\widehat{\rho}_{i,j}$ denote the empirical correlation between nodes i and j
- Then, we would expect the following two equations to hold

(i)
$$\frac{\widehat{\rho}_{1,3}\,\widehat{\rho}_{2,4}}{\widehat{\rho}_{1,2}\,\widehat{\rho}_{3,4}} < \frac{1+\rho_{\max}^2}{2}$$
, and (ii) $\frac{\widehat{\rho}_{1,4}\,\widehat{\rho}_{2,3}}{\widehat{\rho}_{1,2}\,\widehat{\rho}_{3,4}} < \frac{1+\rho_{\max}^2}{2}$

- The procedure by Katiyar et al. checks eq. (i) but ignores eq. (ii)
- SGA computes the Geometric Average of (i) and (ii) to check if

$$\sqrt{\left|\frac{\widehat{\rho}_{1,3}\,\widehat{\rho}_{2,4}}{\widehat{\rho}_{1,2}\,\widehat{\rho}_{3,4}}\right|\cdot\left|\frac{\widehat{\rho}_{1,4}\,\widehat{\rho}_{2,3}}{\widehat{\rho}_{1,2}\,\widehat{\rho}_{3,4}}\right|} = \frac{\sqrt{\left|\widehat{\rho}_{1,3}\,\widehat{\rho}_{2,4}\,\widehat{\rho}_{1,4}\,\widehat{\rho}_{2,3}\right|}}{\left|\widehat{\rho}_{1,2}\,\widehat{\rho}_{3,4}\right|} \stackrel{?}{<} \frac{1+\rho_{\max}^2}{2}$$

- SGA has two useful properties:
- Symmetry: Invariant to permutation of node indices
- Robustness: Geometric Averaging of metrics makes it robust to noise

Partial Tree Recovery: Novel Converse Result

- Let $\mathcal{M}_n(q_{\max}, \rho_{\min}, \rho_{\max})$ denote the minimax error probability when $0 \le q_i \le q_{\max} < 0.5$, and $0 < \rho_{\min} \le |\rho_{i,j}| \le \rho_{\max} < 1$
- Converse Result: Let $\rho_q \triangleq (1-2q_{\max})\rho_{\min}$. If d>32, and the number of samples n satisfy

$$n < \frac{\log(d)}{4(1-\rho_{\max})\rho_q \operatorname{atanh}(\rho_q)}$$

then we have $\mathcal{M}_n(q_{\max}, \rho_{\min}, \rho_{\max}) \geq 1/2$.

Our proof has two key ingredients: (i) Choice of a sufficiently large number of 'close' tree structures whose equivalence classes are disjoint,
(ii) Choice of noise parameters for different nodes that have a high impact on the error probability

Summary of Contributions

- We improve the sufficient sample complexity result of Katiyar et al. by reducing the dependence on minimum correlation from ρ_{\min}^{-24} to ρ_{\min}^{-8}
- ullet We present a modified procedure, SGA, for declaring a set of 4 nodes as star/non-star, that outperforms the algorithm by Katiyar et al.
- We provide an error exponent analysis that provides the intuition why SGA outperforms the algorithm by Katiyar et al.
- We present a novel converse result, quantifying necessary number of samples, for partial tree structure recovery under non-identical noise

Error Exponents for a 4-node Markov chain

Homogeneous Markov chain with edge correlation ho

 Ψ_{SGA} : SGA Algorithm, Ψ_{KA} : Algorithm by Katiyar et al.

- Error exponents quantify the exponential decay of error probability
- When ρ is relatively small, Ψ_{SGA} has a much larger error exponent (and hence better) compared to Ψ_{KA}

- Simulation Results for a 12-node Markov chain

Homogeneous Markov chain with edge correlation $\rho = 0.6$

- For Fig. (b), $q_i = 0$ for odd indices and $q_i = 0.2$ for even indices
- The Chow-Liu algorithm, Ψ_{CL} , performs very well for the noiseless setting (a), but fails miserably in the noisy setting (b)
- ullet Ψ_{SGA} performs robustly, and outperforms Ψ_{KA} both in (a) and (b)