

A practical perspective on HOW to use GEA to study adaptation to the environment

"Ecology sets the context for evolution while genetic variation sets the opportunity" Joan Roughgarden

Opportunity ~ context: across bioms

March 2012

(SEDAC), http://sedac.ciesin.columbia.edu/data/set/hando-population-landscape-climate-estimates-v3

Opportunity ~ context: along env gradient

Distribution and adaptation of diatoms along salinity gradient in the North and Baltic Seas.

Kowalewski 1997, Oceanol. Stud. Sjögvist et al. 2015, Mol Ecol

Opportunity ~ context: along clim gradient

Distribution and adaptation of non-biting midges along climate gradient.

Waldvogel et al. 2018, Mol Ecol

Opportunity ~ context: along alt. gradient

Invasion of Yellow fever mosquito Aedes aegypti towards higher altitudes in the Himalayan mountains of Nepal.

Kramer et al. (under review) Phuyal, Kramer et al. (in prep)

Plasticity versus adaptation

phenotypic plasticity

?

genetic adaptation

Ecological reaction norms

Environmental factor (e.g. temperatur, salinity, presence of predator)

complex traits

impossible cultivation

long generation time

From phenotype to genotype with natural populations of any species

Rellstab et al. 2015, Mol Ecol

Manel et al. 2012

Weigel&Tautz

Inclusion of ecological and evolutionary context requires comprehensive population-scale sampling across ranges, categories, or gradients.

Sampling along env gradients

The GEA hypothesis

adaptation to the
environment

local env conditions

population occurrence as
trait proxies

Sampling and appropriate sequencing

Sampling and appropriate sequencing

costs & feasibility

Strategies for genome sequencing

Whole genome sequencing:

Indiv-Sea

Guideline for standard pre-processing of genome data

Ann-Marie Waldvogel, University of Cologne 19/09/2022

→ pooled individuals of the same population

metagenomics

aacgtccaaaggagt
gttacctacggctaa
aacgtccaaaggagt
ttcgagcatacgact
cacgtcgaatgagt
attacgtacgtacgagt
atcgtgcttacgagt
tacgtgcttacgagt
atcgaaggctagctat

 \rightarrow entire samples with individuals of many species

Strategies for genome sequencing

Whole genome sequencing:

Indiv-Seq

GENOTYPE-ENVIRONMENT

Pool-Seq

ASSOCIATION

→ pooled individuals of the same population

metagenomics

aacgtccaaaggagt
gttacctacggctaa
aacgtccaaaggagt
ttcgagcatacgact
actcggctacgagt
attacgtacgggtaa
tacgtgcttacgagt
atcggagctagctat
atcgaaggctagctat

→ entire samples with individuals of many species

Climatologies at high resolution for the earth's land surface areas

https://chelsa-climate.org/

Logging of microhabitat conditions...
Remote sensing...

Theoria cum praxis...

Studying temperature as a selection factor along environmental gradients

across climate zones

Waldvogel et al. 2018, Mol Ecol

Phuyal, Kramer et al. (in prep)

Phenotypic evidence as prerequisite to study the genomic basis of adaptation

Kramer et al. 2021, STOTEN

Heritable phenotypic adaptation to local temperature regime reflects the gradient (climate zone / altitude).

WGS of natural populations as pooled sampled

Pool-Seq

 \rightarrow pooled individuals of the same population

5 natural populations á ~100 individuals (=200 chromosomes)

5 natural populations á ~100 individuals (=200 chromosomes)

Integrating approaches

Genome-wide population differentiation and signatures of selection

Simple but stringent: outlier approach

Genotype-environment association

Integrating approaches

Gradual AFC across climate zones

Non-gradual AFC along altitudinal gradient

Kramer et al. (under review)

Kathmandu International Airport

900m

800m

200m

Isolation-by-environment versus population/invasion history?!

→ Meet Isabelle at her poster for details!

Flexibility of GEAs: you define the environment

Genotype association to climate factors and to cuticular hydrocarbon profiles

How to proceed with candidates loci/genes of environmental adaptation?

space-for-time approaches / genomic offset predictions

structural and functional annotation / enrichment analysis

GO!!!

Functional annotation and its relevance

Taxonomic validation approach

Towards comparative studies

Climate Change Genomics Calls for Standardized Data Reporting

Ann-Marie Waldvogel^{1,2}, Dennis Schreiber^{1,3}, Markus Pfenninger^{1,3,4*} and Barbara Feldmeyer¹

Waldvogel et al. 2020, Front Ecol Evol

Open challenges

Community level: metagenome ~ environment association

Integrating estimators of adaptive capacity:
time-series data, rates of phenotypic trait change,
rates of AFC

Acknowledgements

waldvogel-lab.com @Institute of Zoology @UniCologne

a.waldvogel@uni-koeln.de

@AmWaldvogel

Senckenberg BIK-F Markus Pfenninger with the Molecular Ecology Group

Isabelle Kramer

Institute of Tropical Medicine Ruth Müller

