Homework 2 — Tom Mulvey 2/15/18

- 2.14 A) At most, one of my library books are overdue.
 - B) Both of my two friends did not misplace their homework.
 - C) There exists at least one person who thought that would happen.
 - D) It's often that my profesor teaches that course.
 - E) It is not surprising that two students recieved the same exam score.
- $2.34~{\rm B}$) For all integers, if a given integer is odd, then the square of that integer is odd.
 - C) For any integer, n, if 3n + 7 is even, then n is odd.
 - D) If a given function is f(x) = cos(x), then f'(x) = -sin(x)
 - F) If a given integer, n, is even, then n^3 is also even.

2.76
$$P(x,y,z)$$
: $(x-1)^2 + (y-2)^2 + (z-2)^2 > 0$

- A) For all real numbers x,y, and z, $(x-1)^2+(y-2)^2+(z-2)^2$ is greater than zero.
- B) False

Assume $\forall x, y, z \in \mathbb{R}$, P(x, y, z): $(x - 1)^2 + (y - 2)^2 + (z - 2)^2 > 0$ holds true.

let
$$x = 1, y = 2, \text{ and } z = 2.$$

with the assumption P(x, y, z) holds for all real numbers, then

$$(1-1)^2 + (2-2)^2 + (2-2)^2 > 0$$

$$\iff (0)^2 + (0)^2 + (0)^2 > 0$$

$$\iff 0 > 0$$

We have reached a contradiction.

$$0 \geq 0$$

C)
$$\exists x, y, z \in \mathbb{R}$$
 s.t. $(x-1)^2 + (y-2)^2 + (z-2)^2 \le 0$

- D) There exists a tuple, composed of x, y, and z in the Real Numbers, such that $(x-1)^2+(y-2)^2+(z-2)^2$ is less than or equal to zero.
- E) True

Assume
$$\neg P(x, y, z)$$
 is true.
 $\iff \exists x, y, z \in \mathbb{R} \text{ s.t. } (x-1)^2 + (y-2)^2 + (z-2)^2 \le 0$
 $let \ x = 1, \ y = 2, \text{ and } z = 2$
 $\iff (1-1)^2 + (2-2)^2 + (2-2)^2 \le 0$
 $\iff (0)^2 + (0)^2 + (0)^2 \le 0$
 $\iff 0 \le 0$