

The Need for Explainable AI

- We are entering a new age of AI applications
- Machine learning is the core technology
- Machine learning models are opaque, non-intuitive, and difficult for people to understand

- Why did you do that?
- Why not something else?
- When do you succeed?
- When do you fail?
- When can I trust you?
- How do I correct an error?

- The current generation of AI systems offer tremendous benefits, but their effectiveness will be limited by the machine's inability to explain its decisions and actions to users
- Explainable AI will be essential if users are to understand, appropriately trust, and effectively manage this incoming generation of artificially intelligent partners

XAI In the News

MIT **Technology** Review

The Dark Secret at the Heart of AI Will Knight April 11, 2017

Inside DARPA's Push to Make Artificial Intelligence **Explain Itself**

Sara Castellanos and Steven Norton August 10, 2017

Can A.I. Be Taught to **Explain Itself?** Cliff Kuang November 21, 2017

heA Register

You better explain yourself, mister: DARPA's mission to make an accountable AL Dan Robinson September 29, 2017

Executive Biz

Charles River Analytics-Led Team Gets DARPA Contract to Support Artificial Intelligence Program Ramona Adams

Are Asked to Explain How Their Minds Work Richard Waters

Intelligent Machines

Team investigates artificial intelligence, machine learning in DARPA project

FAST @MPANY

Why The Military And Corporate America Want To Make AI Explain Itself Steven Melendez

Ghosts in the Machine Christina Couch October 25, 2017

Entrepreneur

Elon Musk and Mark

Zuckerberg Are Arguing

About AI -- But They're

Both Missing the Point

Artur Kiulian

July 28, 2017

DARPA's XAI seeks explanations from autonomous systems Geoff Fein November 16, 2017

COMPUTERWORLD

Oracle quietly researching 'Explainable AI' George Nott May 5, 2017

SCIENTIFIC AMERICAN

Lisa Daigle

June 14, 2017

Demystifying the Black Box That Is AI Ariel Bleicher August 9, 2017

How AI detectives are cracking open the black box of deep learning

June 13, 2017

Paul Voosen July 6, 2017

What Are We Trying To Do?

Challenge Problems

An analyst is looking for items of interest in massive multimedia data sets

An operator is directing autonomous systems to accomplish a series of missions

Goal: Performance and Explainability

- XAI will create a suite of machine learning techniques that
 - Produce more explainable models, while maintaining a high level of learning performance (e.g., prediction accuracy)
 - Enable human users to understand, appropriately trust, and effectively manage the emerging generation of artificially intelligent partners

Measuring Explanation Effectiveness

Explanation Framework

Measure of Explanation Effectiveness

User Satisfaction

- Clarity of the explanation (user rating)
- Utility of the explanation (user rating)

Mental Model

- Understanding individual decisions
- Understanding the overall model
- · Strength/weakness assessment
- 'What will it do' prediction
- 'How do I intervene' prediction

Task Performance

- Does the explanation improve the user's decision, task performance?
- Artificial decision tasks introduced to diagnose the user's understanding

Trust Assessment

Appropriate future use and trust

Correctability (Extra Credit)

- Identifying errors
- Correcting errors
- Continuous training

Performance vs. Explainability

Explainability

New Approach

Create a suite of machine learning techniques that produce more explainable models, while maintaining a high level of learning performance

Learning Techniques (today)

Deep Explanation

Modified deep learning techniques to learn explainable features

Interpretable Models

Techniques to learn more structured, interpretable, causal models

Model Induction

Techniques to infer an explainable model from any model as a black box

XAI Concept and Technical Approaches

Psychological Model of Explanation

Network Dissection Quantifying Interpretability of Deep Representations (MIT)

Furniture

18) billard table

38) cabinet

Indoor objects

182) food

...

46) painting

in the man

106) screen

53) staircase

Interpretation of several units in pool5 of AlexNet trained for place recognition Audit trail: for a particular output unit, the drawing shows the most strongly activated path

Causal Model Induction (CRA)

<u>Causal Model Induction</u>: Experiment with the learned model (as a grey box) to learn an explainable, causal, probabilistic programming model

Four Modes of Explanation (Raytheon BBN)

Analytic (didactic) statements

in natural language that describe the elements and context that support a choice

Visualizations

that directly highlight portions of the raw data that support a choice and allow viewers to form their own perceptual understanding

Explanation Modes

Cases

that invoke specific examples or stories that support the choice

Rejections of alternative choices

(or "common misconceptions" in pedagogy) that argue against less preferred answers based on analytics, cases, and data

XAI Program Structure

Data Analytics
Multimedia Data

Autonomy
ArduPilot &
SITL Simulation

TA1: Explainable Learners

Teams that provide prototype systems with both components

- Explainable Model
- Explanation Interface

Deep Learning Teams

Interpretable Model Teams

> Model Induction Teams

TA2:

Psychological Model of Explanation

- Psychological Theory of Explanation
- Computational Model Consulting

Evaluation Framework

Explanation Measures

- User Satisfaction
- Mental Model
- Task Performance
- Trust Assessment
- Correctability

Evaluator Naval Research Laboratory

TA1: Explainable Learners

- Multiple TA1 teams will develop prototype explainable learning systems that include both an explainable model and an explanation interface
- TA2: Psychological Model of Explanation
 - At least one TA2 team will summarize current psychological theories of explanation and develop a computational model of explanation from those theories