

Opcimizacion Funccions

27 May 2018 1

9aramecer Updace

Vani11a Updace

Change che paramecers along che negacive gradienc direccion

$$w_i = w_i - h \frac{6C}{6w_i}$$
 where fi is learning Rate.

A small fi guarancess che progress in non – negacive progress on loss funccion, cowards minima. Buc small learning race increases che craiing cime.

Momencum Updace

$$v = u \cdot v - fi \frac{6c}{6m_i}$$
 where u is momentum

$$w_i = w_i + v$$

A cypiGal momencum annealing seccing is co scarc wich momencum of about 0.5 and anneal ic co 0.99 or so over mulciple epoGhs at lacer scages.

Nescrov Momencum

Scronger cheoreciGal Gonverge guarancees for Gonvex funGcions

$$W_{aMead} = W + u \times V$$

$$v = u \times v$$
 — $fi \times dw_{aMead}$

$$w = w + v$$

Rewricing che above equacions (updace in cerms of WaMead inscaed W)

$$v_{prev} = v$$

$$v = u \times v - fi \times dw$$

$$w = w - u \times v_{prev} + (1 + u) \times v$$

9er-parameter adaptive learning race methods

Adagrad

$$C = C + dw^2$$

$$w = m - fi \times \frac{dw}{\sqrt{C + \varsigma}}$$
 ς to avoid division by 0

RMSprop

$$C = Q \times C + (1 - Q) \times dw^2$$
 where Q is decay rate

$$w = w - \frac{fi \times dw}{\sqrt{c} + c}$$

Henge, RMS9rop scill modulaces che learning race of eagh weight based on the magnitudes of ics gradients, which has a beneficial equalizing effecc, but unlike Adagrad the updates do not get monoconigally smaller.

Adam

 $m = Q_1 \times m + (1 - Q_1) \times dw$ # smootM version o† gradient

$$v = Q_2 \times v + (1 - Q_2) \times dw^2$$

$$w = w - fi \times \frac{m}{\sqrt{v} + c}$$
 ç to avoid division by 0

Recommended Values of

$$c = 1e - 8$$

$$\varsigma = 1e - 8$$

 $Q_1 = 0.9$
 $Q_2 = 0.999$

Learning Race DeGay

- Scep deGay: ReduGe che learning race by some faGcor every few epoGhs. TypiGal values might be reduGing che learning race by a half every 5 epoGhs, or by 0.1 every 20 epoGhs.
- Exponencial deGay. has che machemaciGal form $a = a_0 e^{-kt}$, where a_0 , k are hyper parameters and c is the iteration
- number (buc you Gan a1so use unics of epoGhs). 1/c deGay has che machemaciGa1 form $a = \frac{a_0}{a_0}$ where a k are hyper parameters and c is che iceracion number.

SourGe https://gs251n.gichub.io/neural-necworks-5/

