Chapter 1

Geodesic Fields

Usually, in the context of differential geometry, a *geodesic curve* It's characterized as self-parallel curve in order to generalize the *straight lines*. Considering a differential manifold M endowed with an affine connection ∇ we define:

Definition 1: Geodesic

A curve $\wedge a \gamma : [a, b] \to M$ such that:

$$\nabla_{\dot{\gamma}}\dot{\gamma} = 0 \tag{1.1}$$

where $\dot{\gamma}^{\mu}\coloneqq\frac{d\gamma^{\mu}}{dt}$ is the tangent vector to the curve.

Notation fixing

In local chart the previous equation assume the popular expression:

$$\ddot{\gamma}^i + \Gamma^i_{jk} \dot{\gamma}^j \dot{\gamma}^k = 0 \tag{1.2}$$

Where Γ^i_{jk} is the coordinate representation of the Christoffel symbols of the connection.

In presence of a pseudo-Riemmanian metric is possible to present the geodesic in a metric sense i.e. as the curve which extremizes the $Energy\ Functional^1$:

Definition 2: Energy functional

^aDevo dire smooth o piecewise?

 $^{^1\}mathrm{Remember}$ that for arc-length parametrized curves the Energy functional coincide with the length functional. [7, Lemma 1.4.2]

$$E(\gamma) \coloneqq \int_a^b \left\| \frac{d\gamma}{dt}(t) \right\|^2 dt$$

Considering only the proper variation (that keep the end-point fixed), the extremum condition corresponds to equation where ∇ is the unique Levi-Civita connection (torsion-free and metric-compatible).

1.1 Geodesic Problem as a Mechanical Systems

- 1.1.1 Geodesic Motion
- 1.1.2 Geodesic Field
- 1.2 Peierls Bracket of the Geodesic field
- 1.2.1 Example: Geodesic field on FRW space-time.
- 1.3 Algebraic quantization of the Geodesic Field
- 1.3.1 Peierls Approach
- 1.3.2 Inital data Approach
- 1.4 Interpretations??????