Wei-Hsien (Willy) Lee

(919)-638-0957 | willylee@ku.edu | LinkedIn

EDUCATION

University of Kansas *Ph.d. in Bioengineering (GPA 4.0/4.0)*

Lawrence, KS *Aug.* 2020 – *Jan.* 2025

Duke University *Master of Science in Biomedical Engineering*

Durham, NC *Aug. 2018 – May. 2020*

Sun Yat-Sen University
Bachelor of Science in Biomedical Engineering

Guangzhou, CN Jun. 2014 – Jun. 2018

EXECUTIVE SUMMARY

- Experienced Bioengineer specializing in cross-functional BCI pipeline development including real-time neural signal processing (MATLAB, Python), machine learning (TensorFlow, PyTorch), and computational neuroengineering.
- Expertise in experimental protocol design, firmware and software development (C++ and C), non-human primate electrophysiology, large-scale neural data modeling (Cloud Platforms), and precision motor decoding.
- Strong collaboration skills to bridge peripheral stimulation circuitry and photoacoustic imaging systems to deliver insights into neurophysiological processes.

SKILLS

Programming Languages/ Machine Learning

- Time-series signal decoding and feature extraction from neural and EMG data
- Deep learning model development using **TensorFlow** and **PyTorch**
- Real-time signal processing and closed-loop control systems

Electrophysiology

- Large-scale data analysis
- In-vivo electrophysiology and extracellular recording of neural signals
- Electrical stimulation/photoacoustic imaging protocol development and operation

Modeling

- Medical device design and prototype with Auto CAD, Solidworks, 3D printing, and COMSOL Multiphysics
- Software development for task protocol design with Simulink and PyQt

Device Development

• Experience in device development integrating engineering design, clinical need, market analysis, and regulatory considerations

RESEARCH EXPERIENCE

Randy Nudo Lab at University of Kansas Medical Center

Postdoctoral research fellow

Kansas City, KS

Jan. 2025 – present

- Designed and executed electrophysiology experiments in chronically implanted non-human primates (NHPs), integrating behavioral training, sensorimotor task paradigms, and synchronized neural and behavioral data acquisition.
- Conducted peripheral electric stimulation and analyzed stimulus evoked neural activity at scale.
- Utilized photoacoustic imaging to investigate functional connectivity and intracortical dynamics in both resting-state and task-relevant conditions.

Aug. 2020 - Jan. 2025

- Planned electrode implantation for non-human primates (NHP), leveraging 3D cortical modeling to optimize craniotomy.
- Co-developed WaveLimit, a high-performance spike sorting algorithm for multimodal neural recordings outperforming the modern spike sorters (Ironclust, Trideclous, Spiking Circus) by both quality (~3X units) and speed (2X faster).
- Designed and implemented a cross-system communication pipeline for BCI experiments, showcasing expertise in both **MATLAB** and **Python** to optimize real-time neural data acquisition and enable precise control of robotic arm movements.
- Analyzed fine-wire EMG data to show distinct recruitment of motor neurons during precision movement control.
- Experienced in Deep learning architectures including **TensorFlow** and **PyTorch**. Built an advanced data analysis framework using **deep learning** techniques to decode precision movements and to extract the underlying neural dynamics in collaboration with Dr. Pandarinath Lab at Georgia Tech.

Nerve regeneration Lab at Duke University

Durham, NC

Regenerative Science Project Research Assistant

Nov. 2018 - May. 2020

- Designed a **high-throughput** multidimensional cell-carrying microfluidic device using Polydimethylsiloxane (PDMS) and photolithography techniques.
- Performed 3D modeling and fluid-electric field distribution analysis using Solidworks and COMSOL Multiphysics for comprehensive evaluation of the microfluidic device.
- Optimized in-vitro electrical field stimulation (EFS) paradigms to enhance macrophage phenotype expression and validate stimulation device performance in neural regeneration assays.

Big Ideas Lab at Duke University

Durham, NC

Summer Internship Research Assistant

May. 2019 – Aug. 2019

- Conducted human factors study on skin tone effect to ECG data quality, including human subject recruiting, experimental design, data acquisition, and data analysis.
- Bench-tested commercial wearables (Apple Watch, Fitbit, Garmin) vs. clinical ECG standards for human factors research.

LeLun Lab at Sun Yat-sen University

Guangzhou, CN

Nanotechnology Projects Research Assistant

Aug. 2016 – May. 2018

- Designed a novel fabrication pipeline of microneedle using Magnetorheological Drawing Lithography (MRDL).
- Built simulation models, analyzed statistical results of magnetic force in microneedle using COMSOL modeling software.
- Conducted bench testing to optimize penetration parameters for transdermal drug delivery, achieving a 15% increase in drug diffusion rate under controlled conditions.

WORK EXPERIENCE

MeDomino Insights

Remote

Assistant Product Manager

Dec. 2021 – May. 2022

- Optimized natural language processing (NLP) pipeline to improve efficiency of data processing. Designed a healthcare data platform bridging the clinicians and key opinion leaders to automate treatment recommendations.
- Evaluated and reconstructed the in-house data labeling platform on over 10 rare disease models to enhance accuracy.

Marketing Associate Intern

IOVIA

Remote

Jun. 2022 – Aug. 2022

- Analyzed market datasets to identify unmet clinical needs and showcase pharmaceutical client de novo product potential.
- Synthesized field insights into actionable go-to-market strategies for medical devices in APAC.

First people's Hospital of Guangdong, Department of Neurosurgery

Foshan, CN

Data Optimization Analyst, Summer Intern

Sep. 2017 – Oct. 2017

- Processed and optimized SEEG (stereotactic electroencephalography) signals for clinical diagnostics in MATLAB, enhancing signal clarity and reliability for epilepsy treatment.
- Conducted literature reviews on advanced diagnostic methodologies, integrating findings to propose innovative strategies for SEEG-based epilepsy diagnosis.
- Proposed strategic workflow improvements for SEEG analysis, reducing processing time while improving accuracy.

LEADERSHIP AND EXTRACURRICULAR ACTIVITIES

President of Graduate Engineering Association ambassador at University of Kansas

Sep. 2022 - Apr. 2024

- Led the organization of the Research Showcase to foster student-faculty collaboration and increase visibility of cutting-edge research across departments.
- Encouraged student engagement and well-being by organizing cultural roundtables and wellness events for over 100 graduate students.
- Advocated for graduate student needs through university-wide committees, influencing policy discussions on funding and academic support.

Team leader of Design Health Fellowship

Aug. 2019 - May. 2020

- Demonstrated project management skills with a cross-disciplinary team in identifying unmet needs in the gastric tube market through comprehensive stakeholder interviews and market analysis within a given timeline.
- Developed potential business models, aligning design solutions with market demands and presenting findings to industry experts for feedback.
- Conceptualized and prototyped a flexible gastric tube to address usability challenges, incorporating user-centered design principles with modeling technique including various fluid dynamics and 3D modeling.
- Coordinated engineering, clinical, and business expertise to develop a unified prototype that met both clinical and business goals.

PROFESSIONAL ACTIVITIES

- Innovative biotechnology panel presenter, 'A novel spatiotemporal strategy to inspire understanding of neural control of movement', Innovation Festival by BioKansas, 2024
- Poster presenter, 'Improving BCI accuracy with multiple neural dimensions for a single degree of freedom', Society for Neuroscience, 2023.
- Poster presenter, 'Identifying distinct neural features between the initial and corrective phases of precise reaching using AutoLFADS', Neural Control of Movement, 2023.
- Oral and poster presentation, 'Understanding neural dynamics under precision movement control', Engineering Graduate Research Showcase Symposium, University of Kansas, 2022.

JOURNAL ARTICLES

Google Scholar: https://scholar.google.com/citations?hl=en&user=z0uJLfkAAAAJ.

- W.H Lee et al., Identifying distinct neural features between the initial and corrective phases of precise reaching using AutoLFADS. (Journal of Neuroscience 44 (20), 2024)
- KC Schwartze, **W.H Lee** et al., Initial and corrective submovement encoding differences within primary motor cortex during precision reaching. (*Journal of Neurophysiology*, 2024)
- Z Chen, R Ye, **W.H Lee** et al., Magnetization-induced self-assembling of bendable microneedle arrays for triboelectric nanogenerators. (*Advanced Electronic Materials 5 (5), 2019*)
- Z. Chen, Y Lin, **W.H Lee** et al., Additive Manufacturing of Honeybee-inspired Microneedle for Easy Skin Insertion and Difficult Removal. (ACS Applied Materials & Interfaces 10 (35), 2018)
- W. Lee et al., A controlled force and depth of portable microneedle puncture drug delivery assisting device. (Patent, CN)

Awards

- Outstanding Doctoral Researcher in BioEngineering, University of Kansas, 2025.
- School of Engineering Travel Award, University of Kansas, 2024.