CSE 355: Intro to Theoretical Computer Science Recitation #4 (20 pts)

1. [5 pts] Write the formal description of each set described by the regular expression below. Assume alphabet $\Sigma = \{0, 1\}$.

Example: $(0 \cup 1)^*00(0 \cup 1)^*11(0 \cup 1)^*$

Answer: $L = \{xy \mid where \ x \ contains \ substring \ 00 \ and \ y \ contains \ substring \ 11\}$

A) 1^*01^*

Answer: $L = \{ \text{ contains only one zero} \}$

B) $(\Sigma\Sigma\Sigma)^*$

Answer: $L = \{ \text{ contains a string which is divisible by 3} \}$

C) $(0\Sigma^*0) \cup (1\Sigma^*1) \cup 0 \cup 1$

Answer: $L = \{ \text{ starts and ends with the same sequence} \}$

D) $0^* \cup 1^*$

Answer: $L = \{ \text{ contains any number of zeros or any number of ones} \}$

E) $(10)^+(\Sigma \cup \varepsilon)$

Answer: $L = \{ \text{ contains at least one sequence of } 10 \}$

2. [5 pts] Let $\Sigma = \{0, 1\}$, use the procedure describe in class to convert the following RE into an NFA. Show step-by-step construction and no simplification.

 $(0 \cup 1)^*1$

3. [5 pts] Use the procedure described in Lemma 1.55 (textbook pp.88) to convert the following RE into an NFA. Show step-by-step construction.

$$(((00)^*(11)) \cup 01)^*$$

4. [5 pts] Use the procedure described in Lemma 1.60 (textbook pp.90) to convert the following DFA into a regular expression. Eliminate states in the order of q_2 , q_0 and q_1 . Assume alphabet $\Sigma = \{a, b\}$.

