AD101LDMA

单板使用指南

文档版本 01

发布日期 2022-08-15

前言

概述

本文档主要介绍 AD101LDMA 单板基本功能和硬件特性、多功能硬件配置、软件调试操作使用方法。

产品版本

与本文档相对应的产品版本如下。

产品名称	产品版本
AD101LDMA	-

读者对象

本文档(本指南)主要适用于以下工程师:

- 软件调试工程师
- 单板硬件开发工程师

修订记录

修订记录累积了每次文档更新的说明。最新版本的文档包含以前所有文档版本的更新内容。

修订日期	版本	修订说明
------	----	------

2022-08-15 i

修订日期	版本	修订说明
2022-08-15	01	第 1 次正式版本发布。

2022-08-15 ii

目录

前	言	i
1	概述	.1
1.1	l 简介	. 1
1.2	2 功 能特 性	. 1
	3 相关组件	
2	硬件介绍	.3
2.1	结构与接口	. 3
2.2	2 指示灯	. 4
2.3	3 单板电源供电方式切换	. 5
	↓ SWD 调试器接口	
3	操作指南	10
3.1	 注意事项	10
	2 单板硬件配置字选择	

插图目录

图 1-1	单板功能接口框图	2
图 2-1	单板接口结构示意图(插件在正面,贴片在背面)	3
图 2-2	指示灯位置	5
图 2-3	高压供电接线方式	6
图 2-4	低压电源板跳线位置示意图	7
图 2-5	SWD 接口 J4 的位置示意图	8
图 2-6	SWD 接口连接器管脚定义	9
图 3-1	启动管脚原理图	11
图 3-2	R28 R29的 PCB 位置	11

2022-08-15 iv

表格目录

表 2-1	单板接口说明	4
表 3-1	启动配置选择	1

2022-08-15 v

4 概述

1.1 简介

AD101LDMA 是针对 306xH 系列 32PIN MCU 开发的产品 demo 板,用于 MCU 基于 冰箱电控板场景的功能、性能测试验证,同时作为客户冰箱电控板的参考设计。

AD101LDMA 支持 220V AC 输入方式,其中 220V AC 输入包含保护、整流、滤波、BUCK 电路控制。如果想用低压调试,需要外接一块电源板 (ADPWR24),该单板支持 24V DC 输入,输出 24V、15V、6V 三路电源。MCU 的 DVDD33 和 AVDD33 由同一LDO 供电,CORE 电源由 MCU 内置 LDO 供电。

AD101LDMA 支持冰箱压缩机控制,双电阻和单电阻采样兼容。逆变电路是预驱 +IGBT 组合,通流 4A,电流采样使用内置 PGA2(W 相电流或总电流)和 PGA1(U 相电流),均为外置电阻模式,采样电阻 100mohm。过流保护使用内置比较器 ACMP1,过流保护点 3.9A。

通过串口或 JTAG/SWD 与 PC 连接,组成一个基本开发系统。为实现更完整的开发系统或演示环境,需增加如下设备或部件:

- PC
- 5PIN 串口小板 + RJ45 to Dsub-9 串口线 (串口转 USB 线)
- JTAG/SWD 调试/仿真器,支持 5PIN (2.54 mm pitch) 连接器
- ADPWR24 电源板 (低压调试使用) + 24V 直流电源

1.2 功能特性

AD101LMDA 包含以下功能特性:

- 支持主控板通讯功能 (UART1)。
- 支持 1 路 SWD 接口,连接 5PIN 连接器。
- 支持 1 个 I2C 接口的 EEPROM。
- 支持母线电压侦测。
- 支持 2 个内置 PGA,PGA2 采 W 相电流或总电流和 PGA1 采 U 相电流,均为外 置电阻模式。
- 支持3个APT (APT0/1/2) 输出,用作预驱 + IGBT控制。
- 支持 1 个内置 ACMP1,用作 IGBT 总电流过流保护。
- 预留 1 个 25MHz 外置晶体。
- 支持1个指示灯,用做故障指示或电源灯。

图1-1 单板功能接口框图

1.3 相关组件

以下所列组件不包含在 AD101LDMA 的交付清单之内,但它们是用户程序调试过程中必备的。

- 5PIN 串口线。
- 5PIN SWD 排线。

2 硬件介绍

2.1 结构与接口

图2-1 单板接口结构示意图 (插件在正面,贴片在背面)

表2-1 单板接口说明

序号	描述	
1	5PIN SWD 接口	
2	5PIN 主控板通讯接口 (UART1)	
3	单板高压接口,市电 220VAC 接口或者接 AC 电源	
4	整流桥	
5	母线电容	
6	开关电源器件 (310V 转 15V)	
7	逆变电路输出 UVW 相电源接口	
8	6个IGBT	
9	3 个预驱	
10	LDO (15V 转 3.3V)	
11	MCU	

2.2 指示灯

单板中有一个指示灯 D10,位置如图 2-2 所示。

图2-2指示灯位置

2.3 单板电源供电方式切换

AD101LDMA 默认为高压供电,可以切换成低压供电,两种供电不能同时用。

图2-3 高压供电接线方式

图2-4 低压电源板跳线位置示意图

□ 说明

在切换成低压电源板供电时,需要将 L1 电感去除。

2.4 SWD 调试器接口

AD101LDMA 单板提供了 SWD 接口对接调试器。可以对接我司提供的四合一调试器或者其他 SWD 接口调试器。调试接口在板上的位置和连接器管脚定义如下。

🗀 说明

在对接调试器时, AD101LDMA 单板必须供电。

图2-5 SWD 接口 J4 的位置示意图

图2-6 SWD 接口连接器管脚定义

3 操作指南

3.1 注意事项

单板适用于实验室或者工程开发环境。在开始操作之前,请先阅读以下注意事项。

- 请在使用单板前仔细阅读本指南。
- 避免单板沾水。如果不慎将水等液体洒落到单板,请立即切断电源,并用干布擦拭干净。
- 只能使用符合本机要求的电源。
- 高压调试时,做好高压防护,下电时切记一定要等到单板母线电容完全放电后触碰单板,以免造成触电危险。
- 在拆封单板包装与安装之前,为避免静电释放 (ESD) 对单板硬件造成损伤,需 采取必要的防静电措施。
- 手持单板时请拿单板的边沿,不要触碰到单板上的外露金属部分,以免静电对单板元器件造成损坏。
- 请将单板放置于干燥的平面上,并保证它们远离热源、电磁干扰源与辐射源、电磁辐射敏感设备(如:医疗设备)等。
- 请对照图 2-1 熟悉单板的结构布局,确保能够在单板上辨认出可操作部件,如电源、连接器以及指示灯的位置。

3.2 单板硬件配置字选择

启动配置和测试模式由以下管脚的上电锁存状态决定,如表 3-1 和图 3-1 所示。

图3-1 启动管脚原理图

表3-1 启动配置选择

BOOT 管脚 (GPIO1_2)	电阻选择	MODE
0	R29 上件	正常启动。
1	R28上件	升级模式,默认选择 UARTO。

图3-2 R28、R29的 PCB 位置

