Teil 2: topologische grundbegriffe in metrischen Räumen

an11: Topologische Grundbegriffe

Stichworte: Umgebungsbasis, haisdorffsch, offen/abgeschlossen, Topologie

Literatur: [Forster], Kapitel 2

11.1 Einleitung:

Die bekannten Konzepte von "Kugel" und "Umgebung" können im metrischen Raum definiert und studiert werden. Die mehrdimensionale Analysis hat es oftmals erfordert, dass um ein Punkt $a \in D \subseteq \mathbb{R}^n$ immernoch eine Komplette Umgebung von a in D enthalten ist. Wir verallgemeinern dies für metrische Räume und kommen so zum Konzept offener und abgeschlossener Mengen, das zentral für die Topologie (als teilgebiet der Mathematik) ist.

11.2 Bezeichung: Sei (R, δ) metrischer Raum, sei $a \in R$, sei $\epsilon > 0$.

Dann heißt $B_a^{\epsilon} := \{x \in R; \delta(x, a) < \epsilon\}$ eine ϵ -Umgebung von a, ("Ball", "Kugel"...)

und $\tilde{\mathcal{U}}_a := \{ U \subseteq R; U; U = B_a^{\epsilon}, \epsilon > 0 \text{ geeignet} \}$

heißt eine <u>Umgebungsbasis</u> von a.

Bem.: \mathcal{U}_a ist die Menge aller β epsilon-Umgebungen von a, die in R enthalten sind.

11.3 Eigenschaften von ϵ -Umgebungen:

 $(B0) \forall a \in R : \underline{\mathcal{U}}_a \neq \emptyset$, bzw. $\forall a \in R \exists B_a^{\epsilon} \in \mathcal{U}_a$,

d-h- zu jedem Punkt $a \in R$ gibt es eine Umgebung von a in R.

 $(B1)\forall a \in R \forall B_a^{\epsilon} \in \mathcal{U}_a : \underline{a} \in B_a^{\epsilon}, \text{d.h. jede Umgebung von a enthält a.}$

 $(B2) \forall a \in R \forall B_a^{\epsilon_1}, B_a^{\epsilon_2} \in \tilde{\mathcal{U}}_a : \underline{B_a^{\epsilon_1} \cap B_a^{\epsilon_2}} \in \tilde{\mathcal{U}}_a$, und $\underline{B_a^{\epsilon_1} \cup B_a^{\epsilon_2}} = B_a^{min(\epsilon_1, \epsilon_2)}$, d.h. der Durchschnitt zweier Umgebungen von a ist Umgebung von a.

 $(B3) \forall a, b \in R \forall \underline{B}_a^{\epsilon} \ni b \exists V \in \tilde{\mathcal{U}}_a : V \subseteq B_a^{\epsilon},$

d.h. ist b in einer Umgebung U von a, so ex. eine Umgebung V von b mit V⊆U.

Bew.:

$$\begin{array}{l} \underline{\eta := \epsilon - \delta(a,b), \text{ sei } z \in B_a^{\eta}, \text{ d.h. } \delta(z,b) < \epsilon = \eta - \delta(a,b) \\ \Rightarrow \delta(z,a) \leq \delta(z,b) + \delta(b,a) < \epsilon \Rightarrow z \in B_a^{\epsilon} \Rightarrow B_b^{\eta} \subseteq B_a^{\epsilon}. \end{array}$$

 $(B4)\forall a,b\in R, a\neq b\exists U\in \tilde{\mathcal{U}}_a\exists V\in \tilde{\mathcal{U}}_b:\underline{\mathsf{U}}\cap V=\emptyset,$

d.h. verschiedene Punkte in T besitzen disjunkte Umgebungen.

Man nennt dies die Trennungseigenschaft, auch: R ist Hausdroff-Raum/hausdorffsch

→"Hausdorffsches Trennungsaxiom"/"T2-Trennungsaxiom"

Bew.:

Wähle $U = B_a^{\epsilon}, B_b^{\epsilon} mit \ \underline{\epsilon} = \frac{1}{2} \delta(a, b).$

11.4 Fazit: Metrische Räume sind hausdorffsch.

Eine leichte Verallgemeinerung ermöglicht es uns nun, von Umgebungen zu sprechen.

11.5 <u>Def.</u>: $U \subseteq R$ heißt <u>Umgebung von a</u>, falls $\exists B_a^{\epsilon} \subseteq U$.

Setze $U_a := \{ U \subseteq R; B_a^{\epsilon} \subseteq U \text{ für geeignetes } \epsilon > 0 \},$

die Menge aller Umbegungen von a.

Bem.:(B0)-(B4) in 11.3 gelten dann analog.

11.6 <u>Def.:</u> $U \subseteq R$ heißt <u>offen</u> (d.h. offenen Teilmenge), wenn $\forall_u \in U : U$ ist Umgebung von u. 11.7 **Bsp.:** B_a^{ϵ} ist offen wegen (B3).

11.8 Def.: Setze $\mathcal{O} := \{U \leq R; U \text{ offen}\}\$, die Mende aller offenen (Teil-)mengen von R.

11.9 Bsp.: in $R = \mathbb{R}$ (als normierter VR bzgl. $|\cdot|$, dann also Raum bzgl. $\delta(x,y) = |x-y|$), sind offene Intervalle offene Mengen, aber auch beliebige Vereinigung offener Intervalle offen. Schnitte endlich vieler solcher offener Mengen sind wieder solche, nicht aber Schnitte unendlich vieler, denn z.B. ist $\bigcap_{n\in\mathbb{N}} \left[-\frac{1}{n}, \frac{1}{n}\right] = \{0\}$ keinbe offene Menge, obwohl alle IVe $\left[-\frac{1}{n}, \frac{1}{n}\right]$ offen sind.

11.10 Eigenschaften offener Mengen in R:

 $(\mathcal{O}_1)\emptyset \in \mathcal{O}, U_i \in \mathcal{O}, i \in I \Rightarrow \bigcup_{i \in I} U_i \in \mathcal{O}, d.h.$ øund die beliebige Vereinigung offener Mengen ist offen.

Denn: $a \in \bigcup_{i \in I} U_i \Rightarrow \beta \exists i \in I : a \in U \Rightarrow B_a^{\epsilon_i} \subseteq U_i \subseteq \bigcup_{i \in I} U_i$. $(\mathcal{O}_2)R \in \mathcal{O}, \ U_i \in \mathcal{O}, i \in \{1, ..., n\} \Rightarrow \bigcup_{i \in I} U_i \in \mathcal{O}, \text{ d.h. der Schnitt endlich vieler offener Mengen ist}$ offen.

Then: $\times n=2(\text{sonst VI})$.

11.12 Bez.: Eine MEnge R mit einer Menge \mathcal{O} von Teilmengen von R derart, dass die Eigenschaften $(O_1), (O_2)$ gelten, heißt topologischer Raum.

In diesem Fall heißt \mathcal{O} auch eine <u>Topologie auf/von R</u>.

Das Teilgebiet der Mathematik, in dem topologische Räume untersucht werden, nennt man <u>Topologie</u>.

11.13 Beobachtung: Seien $||\cdot||^{(1)}$ und $||\cdot||^{(2)}$ zwei Normen auf \mathbb{R}^n , nach <u>10.10</u> sind diese äquivalent, d.h. $\exists \alpha, \beta \in \mathbb{R} : ||\cdot||^{(1)} \le \alpha ||\cdot||^2 \le \beta ||\cdot||^1$.

Daraus folgt $\delta^{(1)} \leq \alpha \delta^{(2)} \leq \alpha \beta \delta^{(1)}$ für die zugehörige Metriken. Somit ist $(B_z^{\epsilon})^{(1)} \supseteq \frac{1}{\alpha} (B_z^{\epsilon})^{(2)} \supseteq \frac{1}{\alpha \beta} (B_z^{\epsilon})^{(1)}$ für alle $z \in \mathbb{R}^n, \epsilon > 0$,

bzw. $(B_z^{\epsilon})^1 \subseteq \alpha(B_z^{\epsilon})^{(2)} \subseteq \alpha\beta(B_z^{\epsilon})^{(1)}$.

Es ergibt sich, dass $\mathcal{O}^{(1)} = \mathcal{O}^{(2)}$ ist, die von den beiden Normen induzierten Topologien sind also gleich! Zum Studium Topologischerr Fragen auf \mathbb{R}^n fixiert man deswegen irgeneine Norm $||\cdot||$ auf \mathbb{R}^n .

Wir studieren im folgenden topologische Grundeigenschaften im metrischen Raum (R, δ)

11.14 Def.: Sei $M \subseteq R, a \in R$ geg.

Dann heißt a <u>Häufungspunkt von M</u> (kurz: <u>HP von M</u>) : $\Leftrightarrow \forall U \in \mathcal{U}_a, (U \setminus \{a\}) \cap M \neq \emptyset$. (Vgl. auch Def. in <u>An 10.2</u>).

- 11.15 Bezeichnung: $\dot{\underline{M}} := \{a \in R; a \text{HP von M}\}.$
- **11.16** <u>Def.</u>: $M \subseteq R$ heißt <u>abgeschlossen</u> (Kurz:<u>abg.</u>): $\Leftrightarrow \mathcal{C}M := R \setminus M$ offen, d.h. wenn $\mathcal{C}M$ (das <u>Komplement von M</u>) in R eine offenen Teilmenge von R ist.
- 11.17 <u>Bezeichnung:</u> $\underline{\mathcal{A}} := \{ M \subseteq R; M \text{ Abgeschlossene Teilmenge von } R \}$ sei die <u>Menge aller abg.</u> Teilmengen von R.
- 11.18. Eigenschaften abgeschlossener Mengen:

 $(A_1)R \in \mathcal{A}, A_i \in \mathcal{A}, i \in I \Rightarrow \bigcap_{i \in I} A_i \in \mathcal{A}, \text{ we gen}(O_1)$

d.h. R ist abg. und beliebige Durchschnitte abg. Mengen sind abg.

 $(A_2)\emptyset \in \mathcal{A}, A_i \in \mathcal{A}, i \in \{1, ..., n\} \Rightarrow \bigcup_{i=1}^n A_i \in \mathcal{A}, \lceil \operatorname{wegen}(O_2) \rceil$

d.h.øist abg. und endliche Vereinigungen abg. Mengen sind abg.

11.19 <u>Bem.</u>: (A_2) gilt nicht für unendlich viele A_i ,

denn z.B. in \mathbb{R} ist $\bigcup_{n\in\mathbb{N}} [\frac{1}{n},1] =]0,1]$ nicht abg., obwohl jedes Intervall $[\frac{1}{n}]$ abg. ist.

11.20 Bem.: Es gibt Mengen, die (Gleichzeitig) offen und abg. sind, z.B øund R.

11.21 Bem.: Für $M \subseteq R$ gilt: $M \in \mathcal{A} \Leftrightarrow \dot{M} \subseteq M$.

Bew.:

$$M \in \mathcal{A} \Leftrightarrow \mathcal{C}M \in \mathcal{O} \Leftrightarrow \forall a \in \mathcal{C}M \exists U \in \mathcal{U}_a$$
 : $U \subseteq \mathcal{C}M$ (1)

$$\Leftrightarrow \forall a \in \mathcal{C}M \exists U \in \mathcal{U}_a \qquad : U \cap \mathcal{U} = \emptyset$$
 (2)

$$\Leftrightarrow "" : (U \setminus \{a\}) \cap M = \emptyset$$
 (3)

$$\Leftrightarrow \mathcal{C}M \subseteq \mathcal{C}\dot{M} \Leftrightarrow \dot{M} \subseteq M \tag{4}$$

11.22 <u>Def.</u>: Sei $M \subseteq R, a \in R$.

Der Punkt a heißt innerer Punkt von $\underline{M} \Leftrightarrow \exists U \in \mathcal{U}_a : U \subseteq M$. (vgl. an 4.2)

11.23 <u>Def.:</u> Sei $M \subseteq R$, dann heißt \mathring{M} oder auch $M^o := \{a \in R, \text{a innerer Punkt von M}\}$ das <u>Innere von M</u>

und $\overline{M} := \{a \in R; \forall \epsilon > 0 : B_a^{\epsilon} \cap M \neq \emptyset\}$ die Menge Der Berührungspunkte von M.

11.24 <u>Bem.</u>: M ist die maximale offene Teilmenge von M,

d.h. M offen und $(M \subseteq M \subseteq M \text{ mit } M \text{ offen } \to M = M)$.

Es folgt: $M = \mathring{M} \Leftrightarrow M$ offen.

11.25 Bew.:
$$\mathring{\underline{M}} = \{a \in R; \exists \epsilon_a > 0 : B_a^{\epsilon_a} \subseteq M\} = \bigcup_{a \in \mathring{\underline{M}}} \underbrace{B_a^{\epsilon_a}}_{\text{offen}} \text{ ist offen.}$$

·" $M = \mathring{M} \Rightarrow M$ offen" ist klar, da \mathring{M} offen.

· Sei M offen, d.h. $\forall a \in M \exists \epsilon_a > 0 : B_a^{\epsilon_a} \subseteq M \Rightarrow a \in M\mathring{M}$, also ist $\subseteq \mathring{M}$. Da $\mathring{M} \subseteq M$ klar ist, folgt $M = \mathring{M}$.