Last nar	ne	
First na	me	

LARSON—MATH 310–CLASSROOM WORKSHEET 17 Matrix-Vector and Vector-Matrix Multiplication

Review: Chapter 3 of Klein's Coding the Matrix text

1. Book problem:

Vector spaces

Problem 3.8.7: Prove or give a counterexample: " $\{[x,y,z]: x,y,z\in\mathbb{R}, x+y+z=1\}$ is a vector space."

Problem 3.8.8: Prove or give a counterexample: " $\{[x,y,z]:x,y,z\in\mathbb{R} \text{ and } x+y+z=0\}$ is a vector space."

Problem 3.8.9: Prove or give a counterexample: " $\{[x_1, x_2, x_3, x_4, x_5] : x_1, x_2, x_3, x_4, x_5 \in \mathbb{R}, x_2 = 0 \text{ or } x_5 = 0\}$ is a vector space."

2. What is the *transpose* of a matrix?

New

Definition 4.5.1 (*Linear-combinations* definition of matrix-vector multiplication): Let M be an $R \times C$ matrix over \mathbb{F} . Let v be a C-vector over \mathbb{F} . Then M * v is the linear combination

$$\sum_{c \in C} \boldsymbol{v}[c] \; (\mathsf{column} \; c \; \mathsf{of} \; M)$$

If M is an $R \times C$ matrix but v is not a C-vector then the product M * v is illegal.

1. Find:

Example 4.5.2: Let's consider a

$$\left[\begin{array}{ccc} 1 & 2 & 3 \\ 10 & 20 & 30 \end{array}\right] \quad * \quad [7, 0, 4]$$

Definition 4.5.6 (*Linear-combinations* definition of vector-matrix multiplication): Let M be an $R \times C$ matrix. Let w be an R-vector. Then w * M is the linear combination

$$\sum_{r \in R} \boldsymbol{w}[r] \, (\mathsf{row} \,\, r \,\, \mathsf{of} \,\, M)$$

If M is an $R \times C$ matrix but w is not an R-vector then the product w * M is illegal.

2. Find:

Example 4.5.7:

$$\begin{bmatrix} 3,4 \end{bmatrix} \quad * \quad \left[\begin{array}{ccc} 1 & 2 & 3 \\ 10 & 20 & 30 \end{array} \right]$$