2n Parcial de Teoria (TSR)

Aquest examen consta de 40 qüestions. En cada cas només una de les respostes és correcta. Per a indicar la resposta n'hi ha prou amb emplenar la casella corresponent en la fulla de respostes adjunta. Totes les qüestions tenen el mateix valor. Si són correctes, aporten 0,25 punts a la nota obtinguda. Si són incorrectes descomptaran 1/5 del valor correcte, és a dir, -0,05 punts. Convé pensar acuradament les respostes.

Durada prevista per a aquesta part de l'examen: 2 hores.

1. El model de fallades bizantí...

Α	no ha d'assumir-se per a implantar un servei distribuït real ja que els ordinadors no poden tenir aquest comportament.
В	assumeix que els processos poden tenir un comportament arbitrari.
С	no té sentit actualment. Com suggereix el seu nom, modela el comportament d'ordinadors obsolets, en lloc d'ordinadors recents.
D	assumeix que els processos poden fallar parant i que aquestes fallades poden ser detectades per altres processos.
Е	Totes les anteriors.
F	Cap de les anteriors.

2. Quan dissenyem un algorisme assumint el model de fallades de parada...

Α	l'algorisme resultant serà senzill ja que s'assumeix que els processos es comporten segons la seua especificació fins que fallen.
В	hi haurà dificultats per a implantar aquest algorisme ja que els sistemes operatius i el middleware no garanteixen un comportament perfecte dels processos.
С	s'assumeix que els processos fallen parant i que aquestes fallades poden ser detectades pels processos correctes.
D	s'assumeix que els canals de comunicació funcionen correctament.
Ε	Totes les anteriors.
F	Cap de les anteriors.

3. Hi ha una fallada de partició de la xarxa quan...

Α	un procés para.
В	un procés mostra un comportament arbitrari.
С	es fragmenta i distribueix una base de dades entre múltiples ordinadors, però d'una forma incorrecta (p. ex., esborrant algunes files en diverses taules).
D	el teorema CAP no ha sigut respectat.
E	Totes les anteriors.
F	Cap de les anteriors.

4. En el model de "partició primària":

Α	Els subgrups minoritaris (aquells amb menys de la meitat dels nodes) han de parar.
В	Tots els canals de comunicació funcionen correctament.
С	Apliquem el teorema CAP sacrificant la tolerància al particionat.
D	Tots els subgrups de nodes poden continuar.
Ε	Totes les anteriors.
F	Cap de les anteriors.

5. La seguretat (Safety) és...

Α	un atribut qualitatiu de la robustesa.
В	la probabilitat S(t) que un sistema distribuït es recupere en l'instant t si havia fallat en l'instant t'=0.
С	un model de fallades.
D	un dels aspectes considerats en el teorema CAP.
Е	Totes les anteriors.
F	Cap de les anteriors.

6. La replicació millora el rendiment d'un servei quan:

Α	la major part de les operacions són de només lectura.
В	totes les operacions impliquen escriptures.
С	les rèpliques estan contínuament recuperant-se de fallades en els seus processos.
D	s'usa un model de replicació passiva, es perd la connectivitat de la xarxa i les modificacions de l'estat no poden propagar-se a les rèpliques secundàries.
Ε	Totes les anteriors.
F	Cap de les anteriors.

7. En el model de replicació passiva:

Α	Múltiples rèpliques reben i processen directament les peticions dels clients.
В	Totes les rèpliques interpreten un mateix paper.
С	Per a implantar-ho no es pot assumir el model de fallades arbitràries.
D	Per a implantar-ho no es pot assumir el model de fallades de parada.
Е	Totes les anteriors.
F	Cap de les anteriors.

8. Sobre els models de consistència centrats en dades:

Α	Causal és més estricte que <i>cache</i> .
В	Processador és més estricte que causal.
С	Cache és més estricte que FIFO.
D	Seqüencial és més estricte que <i>cache</i> .
Е	Totes les anteriors.
F	Cap de les anteriors.

9. L'acoblament mesura:

Α	El grau de dependència entre els mòduls d'una aplicació.
В	La fiabilitat d'una aplicació.
С	La continuïtat de servei.
D	Si cadascuna de les dimensions considerades en el teorema CAP s'està garantint.
Е	Totes les anteriors.
F	Cap de les anteriors.

10. No interessa una cohesió feble perquè:

Α	Sempre genera defectes, errors i fallades.
В	Implica una pèrdua de disponibilitat.
С	La funcionalitat de cada operació no queda clara. Això evita que els mòduls puguen reutilitzar-se en altres aplicacions.
D	Assegura consistència forta entre rèpliques.
Е	Totes les anteriors.
F	Cap de les anteriors.

11. En un sistema distribuït amb acoblament baix:

Α	Els missatges de petició seran xicotets, generalment.
В	Es minimitza la interacció entre components.
С	Hi ha un alt grau de localitat en l'accés a dades.
D	Cada operació solament necessita uns pocs arguments.
Е	Totes les anteriors.
F	Cap de les anteriors.

12. Els magatzems NoSQL...

Α	asseguren la consistència de dades utilitzant transaccions ACID.
В	solen ser més escalables que els sistemes gestors de bases de dades relacionals.
С	no proporcionen persistència de dades.
D	utilitzen un llenguatge d'interrogació basat en l'operador JOIN.
Е	Totes les anteriors.
F	Cap de les anteriors.

13. Els magatzems clau-valor:

Α	Són exemples de sistemes gestors de bases de dades relacionals.
В	Usen un esquema basat en objectes amb un nombre variable d'atributs.
С	Dos exemples són MongoDB i SimpleDB.
D	Dos exemples són Cassandra i PNUTs.
Е	Totes les anteriors.
F	Cap de les anteriors.

14. Els magatzems de registres extensibles:

Α	Usen esquemes basats en taules amb un nombre variable de columnes.
В	Usen particionat horitzontal i vertical de taules per a millorar l'escalabilitat.
С	Un exemple és Bigtable.
D	Un exemple és Cassandra.
Ε	Totes les anteriors.
F	Cap de les anteriors.

15. Sobre el teorema CAP:

Α	Relaciona consistència, disponibilitat i tolerància al particionat.
В	El seu resultat solament té sentit en sistemes distribuïts sincrònics.
С	Estableix que la consistència forta i l'alta disponibilitat no poden proporcionar-se simultàniament.
D	Relaciona consistència de dades, atomicitat i persistència.
Е	Totes les anteriors.
F	Cap de les anteriors.

16. Sobre les consequències del teorema CAP:

Α	Per a implantar un servei altament disponible i tolerant a particions, necessitem utilitzar consistència eventual (o final).
В	Per a implantar un servei amb consistència forta (seqüencial) i altament disponible, no podrem permetre particions de la xarxa.
С	La consistència eventual és pràcticament obligatòria per a implantar serveis escalables ja que aquests han de ser altament disponibles i tolerar particions.
D	El model de "partició primària" s'assumeix per a sacrificar la disponibilitat, gestionar particions i assegurar consistència forta.
Е	Totes les anteriors.
F	Cap de les anteriors.

17. Les tres dimensions de l'escalabilitat són:

Α	Consistència, disponibilitat i tolerància a particions.
В	Fiabilitat i els dos tipus de seguretat (security i safety).
С	Hardware, firmware i programari.
D	Interfície d'usuari, lògica de negoci i dades persistents.
Е	Totes les anteriors.
F	Cap de les anteriors.

18. L'escalabilitat vertical consisteix en:

Α	Adaptar la capacitat de còmput a la càrrega actual.
В	Assegurar continuïtat de servei durant les actualitzacions de programari.
С	Incrementar el nombre de nodes en els quals un servei està executant-se.
D	Incrementar la capacitat de còmput d'un node determinat.
Е	Totes les anteriors.
F	Cap de les anteriors.

19. L'escalabilitat horitzontal consisteix en:

Α	Adaptar la capacitat de còmput a la càrrega actual.
В	Assegurar continuïtat de servei durant les actualitzacions de programari.
С	Incrementar el nombre de nodes en els quals un servei està executant-se.
D	Incrementar la capacitat de còmput d'un node determinat.
Е	Totes les anteriors.
F	Cap de les anteriors.

20. Els quatre mecanismes complementaris per a aconseguir escalabilitat de grandària són:

Α	Fiabilitat, disponibilitat, mantenibilitat i seguretat.
В	Repartiment de tasques, repartiment de dades, replicació i ús de memòries cau.
С	Consistència estricta, particionat de taules, replicació activa i tolerància a particions.
D	Elasticitat, computació en el núvol, computació grid i computació P2P.
Е	Totes les anteriors.
F	Cap de les anteriors.

21. Propietats dels algorismes descentralitzats:

Α	Quan un procés falla, l'algorisme es bloqueja.
В	Els processos prenen decisions utilitzant informació local.
С	Els processos assumeixen que existeix un rellotge global.
D	Un dels processos té informació completa sobre l'estat del sistema.
Е	Totes les anteriors.
F	Cap de les anteriors.

22. El particionat hortizontal de taules millora l'escalabilitat perquè...

Α	És un mecanisme de repartiment de dades.
В	Proporciona equilibrat de càrrega.
С	Incrementa el grau de concurrència, així el servei resultant pot processar un major nombre de peticions simultàniament.
D	Amb un disseny apropiat, no necessita cap pas de sincronització.
Е	Totes les anteriors.
F	Cap de les anteriors.

23. Un servei és elàstic quan...

Α	És fiable i altament disponible.
В	És robust i utilitza un model de consistència ràpid.
С	És escalable i s'adapta dinàmica i autònomament.
D	És segur i tolerant a defectes (fault-tolerant).
Ε	Totes les anteriors.
F	Cap de les anteriors.

24. Per a implantar un servei elàstic, necessitem:

Α	Un sistema de monitoratge de la càrrega actual.
В	Un sistema reactiu que automatitze la reconfiguració del servei, prenent decisions d'escalat.
С	Un sistema reactiu que tinga en compte el SLA.
D	Un sistema de monitoratge del rendiment actual.
Е	Totes les anteriors.
F	Cap de les anteriors.

25. Els objectius principals de la seguretat (security) són:

Α	Assegurar la persistència i consistència de les dades.
В	Confidencialitat, integritat, disponibilitat i comptabilitat.
С	Seguretat (safety), fiabilitat, disponibilitat i mantenibilitat.
D	Transparència, continuïtat de servei, rendiment i eficiència.
Е	Totes les anteriors.
F	Cap de les anteriors.

26. L'objectiu d'una política de seguretat és:

Α	Assegurar la correcció d'un sistema de seguretat.
В	Implantar un sistema de seguretat.
С	Especificar un sistema de seguretat.
D	Avaluar la robustesa d'un sistema.
Е	Totes les anteriors.
F	Cap de les anteriors.

27. Sobre els mecanismes de seguretat:

Α	Són tècniques i eines utilitzades per a implantar la seguretat.
В	Hi ha tres classes principals: físics, relacionats amb autenticació i relacionats amb autorització (és a dir, control d'accés).
С	Un exemple és l'ús de contrasenyes.
D	Un exemple és la paraula de protecció en els sistemes de fitxers UNIX.
Е	Totes les anteriors.
F	Cap de les anteriors.

28. Una amenaça és:

Α	Una feblesa en dispositius, protocols, programes o polítiques d'un sistema.
В	La probabilitat A(t) que un sistema realitze les seues funcions en l'instant t si ha estat funcionant correctament des de l'instant t'=0.
С	Un model que especifica quines divergències estan permeses en les rèpliques d'una determinada dada.
D	Un conjunt de regles que especifica quines accions estan autoritzades per als agents d'un sistema determinat.
Ε	Totes les anteriors.
F	Cap de les anteriors.

29. Exemples de vulnerabilitats en les polítiques de seguretat:

Α	Denegació de servei.
В	Man in the middle.
С	SYN floods.
D	Falta de plans per a recuperació de desastres.
Е	Totes les anteriors.
F	Cap de les anteriors.

30. Exemples de vulnerabilitats de configuració:

Α	Amenaces desestructurades.
В	Permetre contrasenyes febles.
С	Rastrejadors de paquets.
D	Phishing.
Е	Totes les anteriors.
F	Cap de les anteriors.

31. Sobre els mecanismes en els protocols criptogràfics:

Α	Un MAC assegura no repudi.
В	Un certificat és un mecanisme que proporciona comptabilització.
С	Les funcions unidireccionals (cripto-hashing) s'utilitzen en els MAC i en els certificats.
D	El xifrat simètric necessita dues claus diferents i complementàries, una per a xifrar i una altra per a desxifrar.
Ε	Totes les anteriors.
F	Cap de les anteriors.

32. Protocols criptogràfics. Distribució de claus:

Α	Amb xifrat simètric, només necessitem distribuir la clau privada.
В	Amb xifrat asimètric, només necessitem distribuir la clau pública.
С	En el xifrat simètric, la fugida d'informació no és problemàtica.
D	En el xifrat asimètric, necessitem canals secrets per a distribuir claus.
Е	Totes les anteriors.
F	Cap de les anteriors.

33. En el patró bàsic (i sincrònic) de petició/resposta:

Α	Les peticions dels clients poden lliurar-se en un ordre "no FIFO" al servidor.
В	El client pot enviar una altra petició abans de rebre la resposta per a l'actual.
С	Si el servidor cau abans de respondre una petició d'un client, aquest client quedarà bloquejat.
D	Aquest patró s'implanta utilitzant sockets PUSH i PULL en ZeroMQ.
Е	Totes les anteriors.
F	Cap de les anteriors.

34. Per a desplegar el patró bàsic petició/resposta, considerant sockets ZeroMQ:

В	Els servidors realitzen el bind() i els clients el connect().
С	Tant els clients com els servidors usen un únic socket. Tots dos realitzen un bind(), però també un connect() sobre altres sockets.
D	No es necessita cap socket per a implantar aquest patró arquitectònic.
Ε	Totes les anteriors.
F	Cap de les anteriors.

35. El patró arquitectònic PUSH-PULL bàsic és un patró de comunicacions...

Α	Bidireccional.
В	Sincrònic.
С	Per a fer multienviaments (multicast).
D	Asincrònic.
Е	Totes les anteriors.
F	Cap de les anteriors.

36. En el patró arquitectònic client/servidor avançat amb múltiples clients i múltiples servidors interconnectats mitjançant una cua intermèdia:

Α	Cada servidor és un únic punt de fallada per al servei.
В	La cua intermèdia és un element estable. En la seua configuració més simple, els seus sockets faran el bind().
С	La cua intermèdia utilitza sockets PUSH-PULL.
D	Els clients utilitzen sockets SUB.
Е	Totes les anteriors.
F	Cap de les anteriors.

37. Els heart-beats s'utilitzen en algunes arquitectures client-servidor per a:

Α	Detectar fallades en els clients.
В	Monitoritzar la càrrega actual.
С	Millorar l'escalabilitat dels servidors.
D	Implantar protocols criptogràfics.
Е	Totes les anteriors.
F	Cap de les anteriors.

38. Els reintents s'utilitzen en algunes arquitectures client-servidor avançades per a:

Α	Detectar fallades en els servidors.
В	Implantar un mecanisme d'equilibrat de càrrega.
С	Millorar l'escalabilitat dels servidors.
D	Detectar fallades en els clients, combinant-los amb timeouts.
Е	Totes les anteriors.
F	Cap de les anteriors.

39. Per a implantar un mecanisme de recuperació en cas de fallada d'una petició no idempotent, necessitem:

Α	Identificar clarament cada missatge de petició, amb un parell <id-emissor, id-petició="">.</id-emissor,>
В	Abans de servir cada petició, el servidor ha de cercar-la en el seu "magatzem de respostes".
С	Si trobem una petició en el "magatzem de respostes", la resposta és presa d'allí i enviada al client.
D	Després de servir cada petició, el servidor copia el seu missatge de resposta en el "magatzem de respostes" local.
Е	Totes les anteriors.
F	Cap de les anteriors.

40. En els patrons arquitectònics client/servidor avançats del tema 9, els servidors es repliquen de la següent manera:

Α	Utilitzant el model de replicació actiu.
В	Exigint que totes les seues operacions siguen idempotents.
С	Utilitzant el model de replicació passiu.
D	Tant el procés primari com els secundaris utilitzen un mòdul de "heart-beats" per a detectar fallades en els clients.
Е	Totes les anteriors.
F	Cap de les anteriors.