## Sensory

II sesja technologiczna





#### Sensory - czyli jak rozpoznać środowisko

**Sensory (czujniki)** - przetworniki wielkości nieelektrycznych na elektryczne np. **temperatura na napięcie**.



#### Podstawowa charakterystyka sensorów

zakres pomiarowy

rozdzielczość

dokładność

szybkość akwizycji

szybkość odpowiedzi

#### Mnogość wyboru

Inertial-navigation-system Cloud-chamber Ionization-gauge Inclinometer Laser-rangefinder Photoelectric-sensor Image-sensor
Curb-feeler

Capacitive-sensing
Variable-reluctance-sensor
Curb-feeler

Curb-feeler

Capacitive-sensing
Cyroscopic-sensor

Cyroscopic-sensor

Carbon-paste-electrode

Hot-filament-ionization-gauge

File

File Gyroscope Pressure-sensor Fiber-optic sensors Light-addressable-potentiometric-sensor Integrated-circuit-piezoelectric-sensoElectrolyte-insulator-semiconductor-sensor
Hydrocarbon-dew-point analyzer Hydrogen-sensor
Digital-sensors Level-sensor Hydrogen-sensor Infra-red sensor
Bolometer Daly-detector Flow-sensor Bimetallic-strip Hydrometer Bourdon-gauge
Colorimeter Intelligent-sensor Current-sensor

Colorimeter Sensor Troct-optic sensors
Defect-detector-sensor

Infra-red sensor
Hydrometer Bourdon-gauge
Galvanometer Electro-optical-sensor Boost-gauge Biochip Gas-meter Microwave-chemistry-sensor Breathalyzer Golay-cell LED-as-light-sensor Lab-on-a-chip Blind-spot-monitor Blind-spot-monitor Gravimeter Fluxgate-compass Torque-sensor Barograph Depth-gauge Carbon-monoxide-detector Bhangmeter Calorimeter
Air-speed-indicator
Laser-surface-velocimeter
Doppler-radar
Laser-surface-velocimeter
Laser-surface-velocimeter Catadioptric-sensor Oxygen-sensor Infrared-point-sensor Faraday-cup Hydrogen-sulfide-sensor Displacement-receiver
Holographic-sensor Capacitance-probe Infrared-thermometer Geiger-counter Capacitive-displacement-sensor Chemical-field-effect-transistor

#### Rodzaje pomiarów

#### Pomiary bezpośrednie



czujnik temperatury

temperatura



czujnik ciśnienia

ciśnienie

#### Pomiary pośrednie

temperatura ciśnienie

wysokość

## Wybór właściwego elementu

|                       | oczekiwane parametry | czujnik temperatury LM35                                     | ok?         |
|-----------------------|----------------------|--------------------------------------------------------------|-------------|
| zakres pomiarowy      | 5 – 50 °C            | 2 – 150 °C<br>(-55 – 150 °C – ujemne napięcie<br>zasilania)  | <b>✓</b>    |
| dokładność            | ±1°C                 | ± 0.5 °C @ 25 °C                                             | <b>\</b>    |
| rozdzielczość         | ±1°C                 | zależne od reszty układu                                     | ?           |
| częstotliwość odczytu | 1 Sample/s           | zależne od reszty układu                                     | ?           |
| napięcie zasilania    | 4,5 – 5,5 V          | 4 – 30 V                                                     | <b>&lt;</b> |
| sygnał wyjściowy      | analogowy: 0-5 V     | analogowy, 10 mV/°C<br>(w wymaganym zakresie:<br>0 – 500 mV) | <b>✓</b>    |
| cena                  | < 20 PLN             | ok. 10 PLN                                                   | <b>/</b>    |

#### Sensor w zestawie CanSat



temperatura

+ ciśnienie atmosferyczne

**BMP 180** 

**Bosh** 

#### Magistrala I<sup>2</sup>C



## Konwerter poziomów logicznych







5 V



3.3 V

#### Pomiar temperatury

- rozdzielczość pomiaru temperatury ~ 0,1 °C
- dokładność czujnika 2 °C @ (0 ÷ 65 °C)

#### Pomiar ciśnienia

- rozdzielczość pomiaru ciśnienia  $\sim 0.01 \ hPa$
- dokładność czujnika ( $-6 \div +4.5$ )  $hPa @ (-20 \div 0 °C)$

$$(-4 \div +2) hPa @ (0 \div 65 °C)$$

#### BMP180 – oprogramowanie

Dołączenie potrzebnej biblioteki:

```
#include <qbcan.h>
```

Utworzenie obiektu czujnika:

```
BMP180 bmp;
```

Metoda begin inicjalizuje czujnik, zwraca true jeśli się powiodła bmp.begin()

Metoda do odczytywania pomiaru – temperatura, ciśnienie bmp.getData(T, P);

#### BMP180 – wyświetlanie pomiarów



#### Analogowy czujnik temperatury LM35

- czujnik analogowy
- liniowa zależność  $U_{WY}(T) = 10 \, [^{mV}/_{^{\circ}\text{C}}] \cdot T \, [^{\circ}\text{C}]$



- daje to ~ 0,5 °C rozdzielczości
- dokładność czujnika 0,5 °C @ 25 °C

#### Czujniki analogowe vs. cyfrowe

#### analogowe

- uproszczone oprogramowanie
- łatwiejsze debugowanie

#### cyfrowe

- bardziej odporne na szumy
- wiele czujników na jednej magistrali
- bardziej skomplikowane oprogramowanie

Drużyny mają **pełną dowolność** w wyborze modeli czujników także tych do misji podstawowej!

#### Przetwarzanie danych

- mniej obróbki danych na procesorze CanSata = lepiej
- "NIE" dla obliczeń zmiennoprzecinkowych
- np.: wysokość (h) obliczana ze wzoru barometrycznego:

$$p = p_0 \cdot \exp\left(-\frac{\mu g h}{RT}\right)$$

p<sub>0</sub> – ciśnienie atmosferyczne na poziomie odniesienia,

μ – masa molowa powietrza (0,0289644 kg/mol),

g – przyspieszenie ziemskie,

R – stała gazowa,

T – temperatura powietrza w K

(źródło: https://pl.wikipedia.org/wiki/Wz%C3%B3r\_barometryczny)

#### Analiza danych

- Co mówią zebrane dane?
- Dopasowanie przewidywań teoretycznych / modelu
- Określenie poprawności danych
- Jak najlepiej przedstawić zebrane dane?
  - tabelawykres
- Wykresy:
  - dane w funkcji czasu: np. T(t), h(t)
  - dane w funkcji danych np. T(h)

#### Obróbka i wizualizacja danych

- Pakiety biurowe np. LibreOffice, MS Office itp.
- GNUPlot
- Python + matplotlib
- LabVIEW
- Matlab

## Jak narysować dobry wykres?





### Jak narysować dobry wykres?



# Q&LA