Advances in the PANDORA Matlab Toolbox for neural database analysis

Cengiz Günay

cgunay@ggc.edu

School of Science and Technology, Georgia Gwinnett College (previous versions developed at Emory University)

CNS*2020 Software Showcase #3 July 18, 2020

Outline

- Introduction to Pandora
- Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace
- Oatabase analysis with Pandora
 - Creating a database from arbitrary data
 - Creating a database from analysis of traces
 - Multivariate analysis with database objects
- 4 Links

Why should I use the Pandora toolbox?

Use it if:

- You are already using Matlab
- 2 Python and other environments are too complex or unsustainable in your lab

Why should I use the Pandora toolbox?

Use it if:

- 1 You are already using Matlab
- Python and other environments are too complex or unsustainable in your lab

Seriously, why would anyone still use Matlab?

- If you're just starting in computational neuroscience, probably the best option is using Python (Jupyter notebooks, etc)
- Output
 However, even though Python and its modules have improved considerably, they still require a bit of maintenance
- Matlab still has its audience in non-programmer, scientist communities (e.g. experimentalists)
- Also many researchers can't quit Matlab because of inherited legacy code

Main features of the Pandora toolbox

Pandora has several independent features, which also work well together:

- Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output

Main features of the Pandora toolbox

Pandora has several independent features, which also work well together:

- Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output
- Analysis of model or experimental data using a Dataframe-like objects
 - Creating a database from any data for querying and plotting.
 - Putting results from analysis of voltage traces of multiple models into a database.
 - Advanced operations with a database: statistics, multivariate analysis, etc.

Main features of the Pandora toolbox

Pandora has several independent features, which also work well together:

- Extracting electrophysiological properties from intracellular recordings
 - Can find spikes from a membrane voltage trace using multiple methods
 - Frequency filtering of data (lowpass, bandpass, highpass)
 - Finding bursts and analyzing their properties
 - You can add any other custom measurement yourself
 - Made to process large number of files and produce uniform database output
- Analysis of model or experimental data using a Dataframe-like objects
 - Creating a database from any data for querying and plotting.
 - Putting results from analysis of voltage traces of multiple models into a database.
 - Advanced operations with a database: statistics, multivariate analysis, etc.
- Improved plotting functions
 - Matlab's plotting functions are augmented
 - Can stack subplots that share same axes
 - Control spacing between subplots
 - Render plots based on export size to produce **publication-quality figures**

Newer features of the Pandora toolbox

- Simple model simulation and parameter fitting
 - Can simulate simple neuronal structures such as single ion channels, passive membrane, etc
 - Useful for fitting responses from voltage and current clamp protocols
 - For instance, you can compensate for series resistance artifacts
 - Packaged separately as param-fitter, but depends on Pandora objects

Newer features of the Pandora toolbox

- Simple model simulation and parameter fitting
 - Can simulate simple neuronal structures such as single ion channels, passive membrane, etc
 - Useful for fitting responses from voltage and current clamp protocols
 - For instance, you can compensate for series resistance artifacts
 - Packaged separately as param-fitter, but depends on Pandora objects
- Model simulation parameter optimization
 - Uses the GODLIKE toolbox that can run multiple optimization algorithms (multi-objective evolutionary algorithms, swarm, ...)
 - Can control running simulations by calling an external simulator like Neuron, GENESIS, etc)
 - Experimental feature, not included in main Pandora package

See Günay et al. (2009) Neuroinformatics; also Github and Mathworks File Exchange pages.

The basic Pandora workflow

Outline

- Introduction to Pandora
- Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace
- Oatabase analysis with Pandora
 - Creating a database from arbitrary data
 - Creating a database from analysis of traces
 - Multivariate analysis with database objects
- 4 Links

Loading a membrane voltage trace

Pandora can read the file formats from:

- Simulators:
 - Neuron
 - Genesis
- ② Data acquisition programs:
 - All NeuroShare-compatible acquisition devices (Alpha Omega, Cambridge Electronic Design, NeuroExplorer, Plexon, R.C. Electronics Inc., Tucker-Davis Technologies, and Cyberkinetics Inc., etc.)
- Other:
 - Hierarchical data format (HDF5)

Tutorial demo on Github

Analyzing a membrane voltage trace

By extracting electropysiological characteristics

- Measure spike shape and firing rate properties
- Measure sag, spike adaptation and current response properties
- Can be done repetitively for a large number of models
- Can be entered into a Matlab database

Tutorial demo on Github

Outline

- Introduction to Pandora
- Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace
- Oatabase analysis with Pandora
 - Creating a database from arbitrary data
 - Creating a database from analysis of traces
 - Multivariate analysis with database objects
- 4 Links

Creating a database from arbitrary data

Create a 2×2 database matrix:

	col1	col2
row1	1	2
row2	3	4

Creating a database from arbitrary data

Create a 2×2 database matrix:

	col1	col2		
row1	1	2		
row2	3	4		

With Matlab code:

Creating a database from arbitrary data

Create a 2×2 database matrix:

	col1	col2
row1	1	2
row2	3	4

With Matlab code:

Can also import text files as database (e.g., Excel export).

Creating a database from analysis of traces

Creating a database from analysis of traces

```
Using a dataset:
```

```
>> my_dataset_obj =
          my_dataset_class('data/*.bin', arguments...)
>> my_database_obj =
          param_tests_db(my_dataset_obj)
```

Creating a database from analysis of traces

```
Using a dataset:
```

```
>> my_dataset_obj =
        my_dataset_class('data/*.bin', arguments...)
>> my_database_obj =
        param_tests_db(my_dataset_obj)
>> sorted_obj =
        sortrows(my_database_obj, 'AP_amplitude')
```

Database analysis: Querying

```
>> db_obj2 =
     db_obj(1:10, {'neuron_index', 'fire_rate'})
```

Database analysis: Querying

```
>> db_obj2 =
    db_obj(1:10, {'neuron_index', 'fire_rate'})
>> db_obj2 =
    db_obj(db_obj(:, 'neuron_index') == 46, :)
```

Database analysis: Querving

```
>> db_obj2 =
     db_obj(1:10, {'neuron_index', 'fire_rate'})
>> db_obj2 =
     db_obj(db_obj(:, 'neuron_index') == 46, :)
>> db_obj2 =
     db_obj(anyRows(db_obj(:, 'neuron_index'),
                    [46; 56; 12]).:)
```

13 / 19

Database analysis: Querving

```
>> db_obj2 =
     db_obj(1:10, {'neuron_index', 'fire_rate'})
>> db_obj2 =
     db_obj(db_obj(:, 'neuron_index') == 46, :)
>> db_obj2 =
     db_obj(anyRows(db_obj(:, 'neuron_index'),
                    [46: 56: 12]). :)
>> db_obi2 =
     db_obj(db_obj(:, 'neuron_index') ~= 46 &
            (db_obj(:, 'CIP') > 100 |
             db_obi(:, 'rate') <= 50 ), :)
```

13 / 19

Database analysis: Querying

```
>> db_obj2 =
     db obi(1:10. {'neuron index', 'fire rate'})
>> db_obj2 =
     db_obj(db_obj(:, 'neuron_index') == 46. :)
>> db_obj2 =
     db_obj(anyRows(db_obj(:, 'neuron_index'),
                    [46: 56: 12]). :)
>> db_obi2 =
     db_obj(db_obj(:, 'neuron_index') ~= 46 &
            (db_obi(:, 'CIP') > 100 |
             db_obi(:, 'rate') <= 50 ), :)
>> db_obi2 =
     model_db_obj(anyRows(model_db_obj(:, 'rate'),
                  neuron_db_obj(:, 'rate')), :)
```

Multivariate analysis with non-grid data

Tetrodotoxin block effects on firing rate of globus pallidus neurons with current injection

Multivariate analysis (I)

Sifting the database to find effects of parameters

Sample with 3 Neurons:

PicroTx	0.0001	0.0001	0.0001	0.0001	0.0001	0.0001
KynAcid	0.001	0.001	0.001	0.001	0.001	0.001
TTX	0	7 <i>e</i> – 09	0	7 <i>e</i> – 09	0	7 <i>e</i> – 09
Apamin	0	0	0	0	0	0
drug 4AP	0	0	0	0	0	0
Neuronld	107	107	108	108	110	110
D100pA steady rate	25.9982	19.6056	29.9673	22.7628	23.8443	20.9744

Focus on changes with TTX:

	Page 1		Page 2		Page 3	
TTX	0	7 <i>e</i> – 09	0	7 <i>e</i> – 09	0	7 <i>e</i> – 09
D100pA steady rate	25.9982	19.6056	29.9673	22.7628	23.8443	20.9744
RowIndex	1	2	3	4	5	6

Multivariate analysis (II)

Processing database contents

Change in rate (Δ) between successive TTX levels:

Regrouping to find average values for each TTX level:

	Page 1			Page 2		
TTX	0	0	0	7 <i>e</i> – 09	7e - 09	7 <i>e</i> – 09
D100pA steady rate	25.9982	29.9673	23.8443	19.6056	22.7628	20.9744
RowIndex	1	3	5	2	4	6

DEMO

Outline

- Introduction to Pandora
- Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace
- Oatabase analysis with Pandora
 - Creating a database from arbitrary data
 - Creating a database from analysis of traces
 - Multivariate analysis with database objects
- 4 Links

Testing and feedback

How to access Pandora:

- Main publication: Günay et al. (2009) Neuroinformatics
- Downloads and documentation on Github and Mathworks File Exchange pages

How to give feedback/ask questions:

- Open issues on Github
- Email: cgunay AT ggc.edu
- Fill survey (TBA)

Contents

- Introduction to Pandora
- Analyzing voltage trace data
 - Loading a membrane voltage trace
 - Analyzing a membrane voltage trace
- Oatabase analysis with Pandora
 - Creating a database from arbitrary data
 - Creating a database from analysis of traces
 - Multivariate analysis with database objects
- 4 Links

