SC1005 Digital Logic

Simple Guide on Digital Oscilloscope

2023

Two models of oscilloscopes used in the lab

Tektronix TDS2012C

Rigol DS1104Z

user manual

user manual

We will use the oscilloscope to

- Display 2 waveforms
- Measure the voltage of a waveform
- Measure the frequency of a waveform

1. Turn on the main power and locate the

On/Off button

Tektronix TDS2012C

Rigol DS1104Z

2. Press button to switch on the oscilloscope

3. Connect signals to the oscilloscope

Tektronix TDS2012C

4. Press AUTO button if no waveform is displayed on the oscilloscope

Tektronix TDS2012C

5. Set probe to 1X for CH1 & CH2

Tektronix TDS2012C

Rigol DS1104Z

(A) Press button to select Channel

(B) Press button to select Probe 1X

(A) Press button to select Channel

(B) Press button to select Probe 1X

6. Read voltage levels – use squares on grid

Tektronix TDS2012C

Identify the ground level of each signal

Rigol DS1104Z

Identify the ground level of each signal

6. Read voltage levels – use squares on grid

Tektronix TDS2012C

Voltage = (no. of squares) x (volt per square)

CH1 voltage (approx.) = $1.6 \times 2 = 3.2 \text{V}$

CH2 voltage (approx.) = $2.2 \times 2 = 4.4 \text{V}$

Rigol DS1104Z

Voltage = (no. of squares) x (volt per square)

CH1 voltage (approx.) = $1.6 \times 2 = 3.2 \text{V}$

CH2 voltage (approx.) = $2.2 \times 2 = 4.4 \text{V}$

7. Read frequency – use squares on grid

Tektronix TDS2012C

Freq = 1/[(no. of squares) x (time per square)]

CH1 & CH2 freq (approx.) = $1/(4 \times 250 \text{us})$ = 1/1000 us = 1 kHz

Rigol DS1104Z

Freq = 1/[(no. of squares) x (time per square)]

8. Read frequency – from oscilloscope

Tektronix TDS2012C

Freq = 1/[(no. of squares) x (time per square)]

CH1 & CH2 freq (approx.) = $1/(4 \times 250 \text{us})$ = 1/1000 us = 1 kHz

Rigol DS1104Z

Freq = 1/[(no. of squares) x (time per square)]

CH1 & CH2 freq (approx.) =
$$1/(5 \times 200 \text{us})$$

= $1/1000 \text{us} = 1 \text{ kHz}$

9. Optional – adjust voltage scale

Tektronix TDS2012C

10. Optional – adjust time scale

Tektronix TDS2012C

Tek Trig'd M Pos 0.000s CHI Coupling BW Limit 100MHz 2015 CHI 5.00V CHZ 5.00W M 500Jus CHI 7.155V 13-Jul-23 05:32 1.01854dHz CHI 5.00V CHZ 5.00W M 500Jus CHI 7.155V 13-Jul-23 05:32 1.01854dHz

11. Optional – adjust vertical positions of waveforms

Tektronix TDS2012C

Tiek Menu Vortical Coupling Position Volts/Div Volts/Div Volts/Div Volts/Div Volts/Div Notage Probe Scale Sc

End of guide