ниу итмо

Факультет программной инженерии и компьютерной техники Направление подготовки 09.03.04 Программная инженерия Дисциплина «Вычислительная математика»

Отчет

По лабораторной работе №2 «Численное решение нелинейных уравнений и систем»

Вариант 27

Выполнил:

студент группы Р32131

Овсянников Роман Дмитриевич

Преподаватель:

Малышева Татьяна Алексеевна

Санкт-Петербург,

2023 г.

Цель работы:

Изучить численные методы решения нелинейных уравнений и их систем, найти корни заданного нелинейного уравнения/системы нелинейных уравнений, выполнить программную реализацию методов.

Порядок выполнения:

Вычислительная реализация:

- 1. Отделить корни заданного нелинейного уравнения графически (вид уравнения представлен в табл. 6)
- 2. Определить интервалы изоляции корней.
- 3. Уточнить корни нелинейного уравнения (см. табл. 6) с точностью ε=10^-2.
- 4. Используемые методы для уточнения каждого из 3-х корней многочлена представлены в таблице 7.
- 5. Вычисления оформить в виде таблиц (1-5), в зависимости от заданного метода.

Для всех значений в таблице удержать 3 знака после запятой.

- 5.1 Для метода половинного деления заполнить таблицу 1.
- 5.2 Для метода хорд заполнить таблицу 2.
- 5.3 Для метода Ньютона заполнить таблицу 3.
- 5.4 Для метода секущих заполнить таблицу 4.
- 5.5 Для метода простой итерации заполнить таблицу 5.
- 6. Заполненные таблицы отобразить в отчете.

Программная реализация:

Для нелинейных уравнений:

- 1. Все численные методы (см. табл. 8) должны быть реализованы в виде отдельных подпрограмм/методов/классов.
- 2. Пользователь выбирает уравнение, корень/корни которого требуется вычислить (3-5 функций, в том числе и трансцендентные), из тех, которые предлагает

программа.

- 3. Предусмотреть ввод исходных данных (границы интервала/начальное приближение к корню и погрешность вычисления) из файла или с клавиатуры по выбору конечного пользователя.
- 4. Выполнить верификацию исходных данных. Необходимо анализировать наличие корня на введенном интервале. Если на интервале несколько корней или
- они отсутствуют выдавать соответствующее сообщение. Программа должна реагировать на некорректные введенные данные.
- 5. Для методов, требующих начальное приближение к корню (методы Ньютона, секущих, хорд с фиксированным концом), выбор начального приближения (а или b) вычислять в программе.

- 6. Для метода простой итерации проверять достаточное условие сходимости метода на введенном интервале.
- 7. Предусмотреть вывод результатов (найденный корень уравнения, значение функции в корне, число итераций) в файл или на экран по выбору конечного пользователя.
- 8. Организовать вывод графика функции, график должен полностью отображать весь исследуемый интервал (с запасом).

Для систем нелинейных уравнений:

- 1. Пользователь выбирает предлагаемые программой системы двух нелинейных уравнений (2-3 системы).
- 2. Организовать вывод графика функций.
- 3. Начальные приближения ввести с клавиатуры.
- 4. Для метода простой итерации проверить достаточное условие сходимости.
- 5. Организовать вывод вектора неизвестных: x1, x2.
- 6. Организовать вывод количества итераций, за которое было найдено решение.
- 7. Организовать вывод вектора погрешностей: $|xi^{h}(k) xi^{h}(k-1)|$
- 8. Проверить правильность решения системы нелинейных уравнений.

Используемые формулы/методы:

Метод половинного деления

Идея метода: начальный интервал изоляции корня делим пополам, получаем начальное приближение к корню:

$$x_0 = \frac{a_0 + b_0}{2}$$

Вычисляем $f(x_0)$. В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$. Другую половину отрезка $[a_0, b_0]$, на которой функция f(x) знак не меняет, отбрасываем. Новый интервал вновь делим пополам, получаем очередное приближение к корню: $x_1 = (a_1 + b_1)/2$. и т.д.

Рабочая формула метода:
$$x_i = \frac{a_i + b_i}{2}$$

Критерий окончания итерационного процесса: $|b_n - a_n| \le \varepsilon$ или $|f(\mathbf{x}_n)| \le \varepsilon$.

Приближенное значение корня: $x^* = \frac{a_n + b_n}{2}$ или $x^* = a_n$ или $x^* = b_n$

Метод хорд

<u>Идея метода:</u> функция y = f(x) на отрезке [a, b] заменяется хордой и в качестве приближенного значения корня принимается точка пересечения хорды с осью абсцисс.

Уравнение хорды, проходящей через точки A(a,f(a)) и B(b,f(b)):

$$\frac{y-f(a)}{f(b)-f(a)} = \frac{x-a}{b-a}$$

Точка пересечения хорды с осью абсцисс (y=0): $x=a-\frac{b-a}{f(b)-f(a)}f(a)$

Алгоритм метода:

 $\underline{\mathsf{0}}$ шаг: Находим интервал изоляции корня $[a_0,b_0]$

$$\underline{1}$$
 шаг: Вычисляем x_0 : $x_0 = a_0 - \frac{b_0 - a_0}{f(b_0) - f(a_0)} f(a_0)$

<u>2 шаг:</u> Вычисляем $f(x_0)$.

<u>3 шаг:</u> В качестве нового интервала выбираем ту половину отрезка, на концах которого функция имеет разные знаки: $[a_0, x_0]$ либо $[b_0, x_0]$.

<u>4 шаг:</u> Вычисляем x_1 и т.д (повторяем 1-3 шаги).

Рабочая формула метода:

$$x_i = \frac{a_i f(b_i) - b_i f(a_i)}{f(b_i) - f(a_i)}$$

Критерий окончания итерационного процесса: $|x_i - x_{i-1}| \le \varepsilon$ или $|a_i - b_i| \le \varepsilon$ или $|f(x_i)| \le \varepsilon$ Приближенное значение корня: $x^* = x_n$

Метод Ньютона (касательных)

Идея метода: функция y=f(x) на отрезке [a, b] заменяется касательной и в качестве приближенного значения корня $x^*=x_n$ принимается точка пересечения касательной с осью абсцисс.

$$x_1 = x_0 - h_0$$

$$h_0 = \frac{f(x_0)}{\tan \alpha} = \frac{f(x_0)}{f'(x_0)}$$

$$x_1 = x_0 - \frac{f(x_0)}{f'(x_0)}$$

$$x_i = x_{i-1} - \frac{f(x_{i-1})}{f'(x_{i-1})}$$

Критерий окончания итерационного процесса:

$$|x_n-x_{n-1}| \leq arepsilon$$
 или $|rac{f(x_n)}{f'(x_n)}| \leq arepsilon$ или $|f(x_n)| \leq arepsilon$

Приближенное значение корня: $x^* = x_n$

Метод секущих

Упростим метод Ньютона, заменив f'(x) разностным приближением:

$$f'(x_i) \approx \frac{f(x_i) - f(x_{i-1})}{x_i - x_{i-1}}$$

Рабочая формула метода:

$$x_{i+1} = x_i - \frac{x_i - x_{i-1}}{f(x_i) - f(x_{i-1})} f(x_i)$$
 $i = 1, 2 \dots$

Метод секущих является <u>двухшаговым</u>, т.е. новое приближение x_{i+1} определяется двумя предыдущими итерациями x_i и x_{i-1} .

Выбор x_0 определяется как и в методе Ньютона, x_1 - выбирается рядом с начальным самостоятельно.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 или $|f(x_n)| \le \varepsilon$

Приближенное значение корня: $x^* = x_n$

Метод простой итерации

Уравнение f(x) = 0 приведем к эквивалентному виду: $x = \varphi(x)$, выразив x из исходного уравнения.

Зная начальное приближение: $x_0 \in [a, b]$, найдем очередные приближения:

$$x_1 = \varphi(x_0) \to x_2 = \varphi(x_1) \dots$$

Рабочая формула метода: $x_{i+1} = \varphi(x_i)$

Условия сходимости метода простой итерации определяются следующей теоремой.

Теорема. Если на отрезке локализации [a,b] функция $\varphi(x)$ определена, непрерывна и дифференцируема и удовлетворяет неравенству:

 $|\varphi'(x)| < q$, где $0 \le q < 1$, то независимо от выбора начального приближения $x_0 \in [a,b]$ итерационная последовательность $\{x_n\}$ метода будет сходится к корню уравнения.

Достаточное условие сходимости метода:

 $|\varphi'(x)| \le q < 1$, где q — некоторая константа (коэффициент Липшица или коэффициент сжатия)

Чем меньше q, тем выше скорость сходимости.

Критерий окончания итерационного процесса:

$$|x_n - x_{n-1}| \le \varepsilon$$
 (при $0 < q \le 0.5$)

$$|x_n - x_{n-1}| < rac{1-q}{q} arepsilon$$
 (при $0.5 < q < 1$)

Можно ограничиться: $|x_n - x_{n-1}| \le \varepsilon$

Метод простой итерации

Способы преобразования уравнения:

$$x^3 - x + 4 = 0$$

3 способ (наиболее используемый):

Если непосредственное преобразование уравнения к виду $x = \varphi(x)$ не позволяет получить уравнение, для которого выполняются условия сходимости метода, применяем более общий прием введения параметра λ

- 1. преобразуем уравнение f(x) = 0 к равносильному (при $\lambda \neq 0$) $\lambda f(x) = 0$
- **2.** прибавим x в обеих частях: $x = x + \lambda f(x)$
- 3. $\varphi(x) = x + \lambda f(x), \varphi'(x) = 1 + \lambda f'(x)$
- 4. высокая скорость сходимости обеспечивается при $q=\max_{[a,b]} |\varphi'(x)| pprox 0$. Тогда

$$\lambda = -\frac{1}{\max_{[a,b]} |f'(x)|}$$
$$f'(x) = 3x^2 - 1$$

$$f'(x) = 3x^{2} - 1 \qquad f'(-2) = 11 \qquad f'(-1) = 2 \qquad \lambda = -\frac{1}{\max_{[a,b]} |f'(x)|} = -\frac{1}{11}$$

$$x = x + \lambda f(x) \to x = x + \lambda (x^{3} - x + 4) = \frac{12}{11} x - \frac{1}{11} x^{3} - \frac{4}{11}$$

$$\varphi(x) = \frac{12}{11} x - \frac{1}{11} x^{3} - \frac{4}{11}$$

РЕШЕНИЕ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД НЬЮТОНА.

К основе метода лежит использование разложения функций $F_i(x_1, x_2, ..., x_n)$ в окрестности некоторой фиксированной точки в ряд Тейлора, причем члены, содержащие вторые (и более высоких порядков) производные, отбрасываются.

Пусть начальные приближения неизвестных системы (1) получены и равны соответственно a_1, a_2, \dots, a_n . Задача состоит в нахождении приращений (поправок) к этим значениям $\Delta x_1, \Delta x_2, \dots, \Delta x_n$, благодаря которым решение системы запишется в виде

$$x_1 = a_1 + \Delta x_1$$
, $x_2 = a_2 + \Delta x_2$, ..., $x_n = a_n + \Delta x_n$ (2)

Проведем разложение левых частей уравнений (1) с учетом (2) в ряд Тейлора, ограничиваясь лишь линейными членами относительно приращений:

РЕШЕНИЕ СИСТЕМЫ НЕЛИНЕЙНЫХ УРАВНЕНИЙ. МЕТОД НЬЮТОНА.

Итерационный процесс решения систем нелинейных уравнений методом Ньютона состоит в определении приращений Δx_1 , Δx_2 , ... , Δx_n к значениям неизвестных на каждой итерации.

Критерий окончания итерационного процесса: $max | \Delta x_i \leq \varepsilon |$.

В методе Ньютона:

- 1. Важен удачный выбор начального приближения для обеспечения хорошей сходимости.
- 2. Сходимость ухудшается с увеличением числа уравнений системы.

$$\begin{vmatrix} \frac{\partial f(x,y)}{\partial x} & \frac{\partial f(x,y)}{\partial y} \\ \frac{\partial g(x,y)}{\partial x} & \frac{\partial g(x,y)}{\partial y} \end{vmatrix} \begin{pmatrix} \Delta x \\ \Delta y \end{pmatrix} = -\begin{pmatrix} f(x,y) \\ g(x,y) \end{pmatrix}$$

Вычислительная реализация:

Функция: $2,335x^3 + 3,98x^2 - 4,52x - 3,11$

Крайний правый корень [1, 2] Метод половинного деления n=8 - число итераций для точности 10^-2

Уточнение корня уравнения методом половинного деления

№ шага	a	b	Х	f(a)	f(b)	f(x)	a-b
1	1	2	1.5	-1.315	22.45	6.946	1
2	1	1.5	1.25	-1.315	6.946	2.019	0.5
3	1	1.25	1.125	-1.315	2.019	0.167	0.25
4	1	1.125	1.0625	-1.315	0.167	-0.619	0.125

5	1.0625	1.125	1.09375	-0.619	0.167	-0.237	0.0625
6	1.09375	1.125	1.1094	-0.237	0.167	-0.038	0.03125
7	1.1094	1.125	1.1172	-0.038	0.167	0.064	0.0156
8	1.1094	1.1172	1.1133	-0.038	0.064	0.013	0.0078

Правый корень уравнения: 1.1133 (точность 0.01)

Крайний левый корень [-3, -2] Метод Ньютона

Уточнение корня уравнения методом Ньютона

эточнение корни уравнении методом тивотона					
№ итерации	x_k	$f(x_k)$	$f'(x_k)$	x_{k+1}	$ x_k-x_{k+1} $
1	-3	-16.775	34.645	-2.5158	0.4842
2	-2.5158	-3.7287	19.7907	-2.3274	0.1884
3	-2.3274	-0.4687	14.8984	-2.2959	0.03146
4	-2.2959	-0.01212	14.13	-2.295042	0.000858

Левый корень уравнения: -2.2959 (точность 0.01)

Центральный корень [-1, 0] Метод простой итерации

Уточнение корня уравнения методом простой итерации

№ итерации	X_k	\mathcal{X}_{k+1}	$f(x_{k+1})$	$ x_k-x_{k+1} $
1	-1	-0.3242	-1.3056	0.6758

2	-0.3242	-0.613	0.6188	0.2888
3	-0.613	-0.4762	-0.3074	0.1368
4	-0.4762	-0.5442	0.1519	0.068
5	-0.5442	-0.5106	-0.07554	0.0336
6	-0.5106	-0.5273	0.03749	0.0167

Центральный корень уравнения: -0.5273 (точность 0.01)

2.335x³+3.98x² - 4.52x -3.11

Программная реализация:

Решение нелинейных уравнений: Метод хорд Метод секущих Метод простой итерации

Решение систем нелинейных уравнений: Метод Ньютона

Код программы:

https://github.com/Ja1rman/Computational-Mathematics/tree/main/lab2

Примеры работы программы:

```
Лабораторная работа №2, Численное решение нелинейных уравнений и систем Взять исходные данные из файла (+) или ввести с клавиатуры (-)?

Введите границы интервала через пробел: 0 3
Введите погрешность вычислений: 0.01
Вывести результат в файл (+) или в терминал (-)?

Выберите номер функции
1 - 2.335x^3 + 3.98x^2 - 4.52x - 3.11
2 - x^3 - x + 4
3 - sin(x) + 0.1
1

Выберите номер метода решения
1 - Метод хорд
2 - Метод секущих
3 - Метод простой итерации
1
Решение: 1.0890640650578385 -0.29593868212825214 14
```



```
Выберите номер системы линейных уравнений:

1 - x^2 + y^2 = 4; y = 3*x^2

2 - 2*x^2 - y^2 = 1; x - e^(y) = -1

1

Введите начальное приближение:

1 1

Вектор погрешностей: 3.3265306122448974 2.6054421768707483

Вектор погрешностей: 0.14565661971735933 1.3195442939637323

Вектор погрешностей: 0.013859819338728768 0.08010479907807054

Решение: [0.7832643908088742 1.8403627002429144] Итераций: 3
```


Вывод:

Во время выполнения лабораторной работы я познакомился с несколькими методами, позволяющими решать нелинейные уравнения и системы нелинейных уравнений. Все методы довольно легко программируются и дают высокую точность и быструю сходимость при удачном выборе начального приближения.