Review of Vectors

Daniel Kim

§1 Problem Set 1

§1.1 Problems

- 1. Compute the magnitudes (also called *norms*) of the following vectors:
 - a) $\langle 3, 4 \rangle$
 - b) $3\hat{i} + 4\hat{j} + 5\hat{k}$
 - c) (0, 1, 2, 3, 4)
- 2. Find the unit vector in the same direction as $\langle 5, 7 \rangle$.
- 3. Find a vector of magnitude 6 in the opposite direction as $\langle 4, 5, 6 \rangle$.
- 4. Find a vector of magnitude k (for positive $k \in \mathbb{R}$) in the same direction as the vector $\langle a_1, a_2, \cdots, a_n \rangle$ for integers $n \geq 2$.
- 5. Let $\vec{v} = \langle 2, 3 \rangle$ and $\vec{w} = \langle 3, 1 \rangle$. Compute $2 \|\vec{v}\|^2 + 2 \|\vec{w}\|^2$ and $\|\vec{v} + \vec{w}\|^2 + \|\vec{v} \vec{w}\|^2$ and confirm that they're equal. Formulate an appropriate geometric interpretation of this result, and try to prove that this equation holds for any 2D vectors \vec{v} and \vec{w} .

§1.2 Solutions

1. The magnitude of a 2D vector $\langle a, b \rangle$ is $\sqrt{a^2 + b^2}$, and similarly, the magnitude of a 3D vector is $\langle a, b, c \rangle$ is $\sqrt{a^2 + b^2 + c^2}$. We can generalize this to n dimensions:

$$\|\langle a_1, a_2, \cdots, a_n \rangle\| = \sqrt{\sum_{i=1}^n a_i^2}.$$

- a) $\|\langle 3, 4 \rangle\| = \sqrt{3^2 + 4^2} = \boxed{5}$
- b) Recall that $\hat{\imath} = \langle 1,0,0 \rangle$, $\hat{\jmath} = \langle 0,1,0 \rangle$, and $\hat{k} = \langle 0,0,1 \rangle$. Then $3\hat{\imath} + 4\hat{\jmath} + 5\hat{k} = 3\langle 1,0,0 \rangle + 4\langle 0,1,0 \rangle + 5\langle 0,0,1 \rangle = \langle 3,0,0 \rangle + \langle 0,4,0 \rangle + \langle 0,0,5 \rangle = \langle 3,4,5 \rangle$. Therefore, the magnitude is $\sqrt{3^2 + 4^2 + 5^2} = \boxed{5\sqrt{2}}$.
- c) The magnitude is $\sqrt{0^2 + 1^2 + 2^2 + 3^2 + 4^2} = \sqrt{30}$
- 2. Think of a right triangle with hypotenuse $\langle 5,7 \rangle$ (which has magnitude $\sqrt{5^2 + 7^2} = \sqrt{74}$) and legs $\langle 5,0 \rangle$ and $\langle 0,7 \rangle$. We want to scale this triangle down such that its hypotenuse has magnitude 1. This means we should scale the legs of the triangle by a factor of $\frac{1}{\sqrt{74}}$ (think about proportionality of similar triangles). Thus we should multiply each component of the vector $\langle 5,7 \rangle$ by $\frac{1}{\sqrt{74}}$, to arrive at our answer

$$\left\langle \frac{5}{\sqrt{74}}, \frac{7}{\sqrt{74}} \right\rangle.$$

- 3. First, our unit vector in the same direction would be $\frac{1}{\sqrt{77}}\langle 4,5,6\rangle$. Then our unit vector pointing in the opposite direction would be $-\frac{1}{\sqrt{77}}\langle 4,5,6\rangle$. We want scale up its magnitude from 1 to 6, meaning that we should multiply our current vector by a scalar of 6. So our answer is $-\frac{6}{\sqrt{77}}\langle 4,5,6\rangle = \boxed{\left\langle -\frac{24}{\sqrt{77}}, -\frac{30}{\sqrt{77}}, -\frac{36}{\sqrt{77}}\right\rangle}$.
- 4. In general, we would normalize a vector (scaling to magnitude 1) by dividing each component by the current magnitude. Thus, the unit vector would be

$$\frac{1}{\sqrt{a_1^2+a_2^2+\cdots+a_n^2}} \left\langle a_1, a_2, \cdots, a_n \right\rangle.$$

Then a vector of magnitude k in the same direction would be this unit vector multiplied by scalar k, so our answer is

$$\frac{k}{\sqrt{a_1^2 + a_2^2 + \dots + a_n^2}} \langle a_1, a_2, \dots, a_n \rangle.$$

5. We first compute:

$$\begin{split} \|\vec{v}\|^2 &= 2^2 + 3^2 = 13, \\ \|\vec{w}\|^2 &= 3^2 + 1^2 = 10, \\ \vec{v} + \vec{w} &= \langle 2, 3 \rangle + \langle 3, 1 \rangle = \langle 5, 4 \rangle \implies \|\vec{v} + \vec{w}\| = 5^2 + 4^2 = 41, \\ \vec{v} - \vec{w} &= \langle 2, 3 \rangle - \langle 3, 1 \rangle = \langle -1, 2 \rangle \implies \|\vec{v} - \vec{w}\| = (-1)^2 + 2^2 = 5. \end{split}$$

Then $2 \|\vec{v}\|^2 + 2 \|\vec{w}\|^2 = \|\vec{v} + \vec{w}\|^2 + \|\vec{v} - \vec{w}\|^2 = 46$. Why are they equal? Draw \vec{v} , \vec{w} , $\vec{v} + \vec{w}$, and $\vec{v} - \vec{w}$ on the 2D plane.

We end up with a parallelogram with side lengths $\|\vec{v}\|$ and $\|\vec{w}\|$ and diagonals $\vec{v} + \vec{w}$ and $\vec{v} - \vec{w}$.

Geometrically, $2\|\vec{v}\|^2 + 2\|\vec{w}\|^2 = \|\vec{v} + \vec{w}\|^2 + \|\vec{v} - \vec{w}\|^2$ is equivalent to the idea that the sum of the squares of the lengths of the four sides of a parallelogram equals the sum of the squares of the lengths of the two diagonals. This is called the **Parallelogram law** (https://en.wikipedia.org/wiki/Parallelogram_law).

To prove that this is true for any \vec{v} and \vec{w} , let $\vec{v} = \langle a, b \rangle$ and $\vec{w} = \langle c, d \rangle$. Then

$$2 \|\vec{v}\|^2 + 2 \|\vec{w}\|^2 = 2(a^2 + b^2) + 2(c^2 + d^2),$$

$$\|\vec{v} + \vec{w}\|^2 + \|\vec{v} - \vec{w}\|^2 = (a+c)^2 + (b+d)^2 + (a-c)^2 + (b-d)^2.$$

We expand $(a+c)^2 + (b+d)^2 + (a-c)^2 + (b-d)^2$ to get $a^2 + 2ac + c^2 + b^2 + 2bd + d^2 + a^2 - 2ac + c^2 + b^2 - 2bd + d^2 = 2(a^2 + b^2) + 2(c^2 + d^2)$, proving the claim.

§2 Problem Set 2

§2.1 Problems

1. Describe geometrically all linear combinations of

a)
$$\begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
 and
$$\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$$

b)
$$\begin{bmatrix} 1\\0\\0 \end{bmatrix} \text{ and } \begin{bmatrix} 0\\2\\3 \end{bmatrix}$$

c)
$$\begin{bmatrix} 2\\0\\0 \end{bmatrix}$$
 and $\begin{bmatrix} 0\\2\\2 \end{bmatrix}$ and $\begin{bmatrix} 2\\2\\3 \end{bmatrix}$

2. Let
$$\vec{u} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$$
, $\vec{v} = \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix}$, and $\vec{w} = \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix}$. Compute $\vec{u} + \vec{v} + \vec{w}$ and $2\vec{u} + 2\vec{v} + \vec{w}$.

Then determine whether \vec{u} , \vec{v} , and \vec{w} lie in a plane or not.

3. What combination of
$$c \begin{bmatrix} 1 \\ 2 \end{bmatrix} + d \begin{bmatrix} 3 \\ 1 \end{bmatrix}$$
 produces $\begin{bmatrix} 14 \\ 8 \end{bmatrix}$?

- 4. Find vectors \vec{v} and \vec{w} so that $\vec{v} + \vec{w} = \langle 4, 5, 6 \rangle$ and $\vec{v} \vec{w} = \langle 2, 5, 8 \rangle$.
- 5. Find two different combinations of the three vectors $\vec{u} = \langle 1, 3 \rangle$, $\vec{v} = \langle 2, 7 \rangle$, and $\vec{w} = \langle 1, 5 \rangle$ that produce $\vec{b} = \langle 0, 1 \rangle$.
- 6. Let θ be the angle between $\langle 1, 2 \rangle$ and $\langle 2, 1 \rangle$. Find $\cos \theta$.
- 7. Let θ be the angle between (1,2,3) and (3,4,5). Find $\cos \theta$.
- 8. Prove $\vec{u} \cdot (\vec{v} + \vec{w}) = \vec{u} \cdot \vec{v} + \vec{u} \cdot \vec{w}$ for $\vec{u}, \vec{v}, \vec{w} \in \mathbb{R}^n$.
- 9. Find all values of m for which the angle between vectors $\langle 1, 1 \rangle$ and $\langle 1, m \rangle$ is 60°.

§2.2 Solutions

- 1. a) Since $\begin{bmatrix} 3 \\ 6 \\ 9 \end{bmatrix}$ is $3 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix}$, the span would be a straight line in 3D.
 - b) Suppose a linear combination is $a \begin{bmatrix} 1 \\ 0 \\ 0 \end{bmatrix} + b \begin{bmatrix} 0 \\ 2 \\ 3 \end{bmatrix} = \begin{bmatrix} a \\ 2b \\ 3b \end{bmatrix}$. Notice that the components 2b and 3b both solely depend on the value of b, so this vector is governed by two variables. The span is a plane.
 - c) A linear combination would be $a\begin{bmatrix} 2\\0\\0\end{bmatrix} + b\begin{bmatrix} 0\\2\\2\end{bmatrix} + c\begin{bmatrix} 2\\2\\3\end{bmatrix} = \begin{bmatrix} 2a+2c\\2b+2c\\2b+3c \end{bmatrix}$. If we were to set this vector equal to any 3D vector $\begin{bmatrix} x\\y\\z \end{bmatrix}$, we would be able to solve for unique solutions a, b, and c, so the span is \mathbb{R}^3 .

2.

$$\vec{u} + \vec{v} + \vec{w} = \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \end{bmatrix}.$$
$$2\vec{u} + 2\vec{v} + \vec{w} = 2 \begin{bmatrix} 1 \\ 2 \\ 3 \end{bmatrix} + 2 \begin{bmatrix} -3 \\ 1 \\ -2 \end{bmatrix} + \begin{bmatrix} 2 \\ -3 \\ -1 \end{bmatrix} = \begin{bmatrix} -2 \\ 3 \\ 1 \end{bmatrix}.$$

Notice that $\vec{u} + \vec{v} + \vec{w} = \vec{0}$. Then $\vec{w} = -\vec{u} - \vec{v}$, so \vec{w} is a linear combination of \vec{u} and \vec{v} . Therefore, \vec{w} lies in the same plane as \vec{u} and \vec{v} .

3. Note that $c \begin{bmatrix} 1 \\ 2 \end{bmatrix} + d \begin{bmatrix} 3 \\ 1 \end{bmatrix} = \begin{bmatrix} c \\ 2c \end{bmatrix} + \begin{bmatrix} 3d \\ d \end{bmatrix} = \begin{bmatrix} c+3d \\ 2c+d \end{bmatrix} = \begin{bmatrix} 14 \\ 8 \end{bmatrix}$, so we set up a system of equations

$$c + 3d = 14,$$
$$2c + d = 8$$

Solving this gives c=2 and d=4

- 4. Given $\vec{v} + \vec{w} = \langle 4, 5, 6 \rangle$ and $\vec{v} \vec{w} = \langle 2, 5, 8 \rangle$, we can add the two equations to get $2\vec{v} = \langle 4 + 2, 5 + 5, 6 + 8 \rangle \implies \boxed{\vec{v} = \langle 3, 5, 7 \rangle}$. From this we also get $\boxed{\vec{w} = \langle 1, 0, -1 \rangle}$.
- 5. Consider a linear combination $a\langle 1,3\rangle + b\langle 2,7\rangle + c\langle 1,5\rangle = \langle a+2b+c, 3a+7b+5c\rangle$. This has to be equal to $\langle 0,1\rangle$, so we have

$$a+2b+c=0,$$
$$3a+7b+5c=1.$$

We have two equation with three unknown variables, so we can arbitrarily set c = 0 to find one solution. Assuming c = 0, we have a + 2b = 0 and 3a + 7b = 1, which

we solve to get a=-2 and b=1. So one solution is (a,b,c)=(-2,1,0). We could also assume a=0 to get another solution: solving 2b+c=0 and 7b+5c=1 gives $b=-\frac{1}{3}$ and $c=\frac{2}{3}$. From this we have another solution $(a,b,c)=\left(0,-\frac{1}{3},\frac{2}{3}\right)$.

I set c = 0 and a = 0 for convenience - it doesn't matter which variables you adjust as long as you get two different solutions for the same system of equations.

6. Note that for any two vectors \vec{v} and \vec{w} ,

$$\cos \theta = \frac{\vec{v} \cdot \vec{w}}{\|\vec{v}\| \|\vec{w}\|}.$$

We have $\langle 1,2\rangle \cdot \langle 2,1\rangle = 1 \cdot 2 + 2 \cdot 1 = 4$ and $\|\langle 1,2\rangle\| = \|\langle 2,1\rangle\| = \sqrt{5}$, so our answer is $\cos \theta = \left\lceil \frac{4}{5} \right\rceil$.

7. Similarly, $\langle 1, 2, 3 \rangle \cdot \langle 3, 4, 5 \rangle = 1 \cdot 3 + 2 \cdot 4 + 3 \cdot 5 = 26$, $\|\langle 1, 2, 3 \rangle\| = \sqrt{1^2 + 2^2 + 3^2} = \sqrt{14}$, and $\|\langle 3, 4, 5 \rangle\| = \sqrt{3^2 + 4^2 + 5^2} = 5\sqrt{2}$. Our answer is

$$\cos\theta = \frac{26}{\sqrt{14} \cdot 5\sqrt{2}} = \boxed{\frac{13}{10\sqrt{7}}}.$$

8. Let $\vec{u} = \langle u_1, u_2, \cdots, u_n \rangle$, $\vec{v} = \langle v_1, v_2, \cdots, v_n \rangle$, and $\vec{w} = \langle w_1, w_2, \cdots, w_n \rangle$. Then

$$\vec{u} \cdot (\vec{v} + \vec{w}) = \langle u_1, u_2, \cdots, u_n \rangle \cdot \langle v_1 + w_1, v_2 + w_2, \cdots, v_n + w_n \rangle$$

$$= \sum_{i=1}^n u_i (v_i + w_i)$$

$$= \sum_{i=1}^n u_i v_i + u_i w_i$$

$$= \sum_{i=1}^n u_i v_i + \sum_{i=1}^n u_i w_i$$

$$= \vec{u} \cdot \vec{w} + \vec{u} \cdot \vec{w}.$$

9. We have

$$\cos 60^\circ = \frac{1+m}{\sqrt{2} \cdot \sqrt{1+m^2}}.$$

Since $\cos 60^{\circ} = \frac{1}{2}$, we end up with $\sqrt{2 + 2m^2} = 2 + 2m$. After squaring both sides and simplifying, the equation reduces to $m^2 + 4m + 1 = 0$. The quadratic formula yields $m = -2 \pm \sqrt{3}$.

However, since $\cos 60^\circ = \frac{1}{2} > 0$, we cannot have $\frac{1+m}{\sqrt{2} \cdot \sqrt{1+m^2}}$ be negative. When we plug in $m = -2 - \sqrt{3}$, we end up with a negative value. Therefore $-2 - \sqrt{3}$ cannot be a solution of m.

Then, $m = \lfloor -2 + \sqrt{3} \rfloor$ yields a positive value and thus it is the only value of m which satisfies the conditions.