Termodinâmica (Prova Final ou Substitutiva, 2013) (Prof. Frederico W. Tavares)

1)(30 Ptos) A figura a seguir mostra o processo de produção de A gasoso a partir de A nas condições de 5atm e T=20°C. No processo, 5000 cm³/min de A são produzidos a 30atm e temperatura T₃. Calcule as taxas de calor e trabalho considerando a fase gasosa como gás ideal.

$(C_P(T))_{gas}$ = 10cal/(gmolK)	$P^{SAT} = P_C \exp[5,4(w+1)(1-T_C/T)]$				
$(C_P(T, 5atm))_{liquido} = 20cal/(gmolK)$	$T_C = 470K$ $P_C = 50atm$ $w = 0,0$				
1 2 3 3 + EVAPORADOR +> +> +> +> +> +> +> +> +> +> +> +> +>	Dados: Corrente-1: líquido a 5atm e 20 ⁰ C Corrente-2: vapor saturação Corrente-3: P=30 atm				

2) (40Ptos)

Uma mistura de 40% de $\bf A$, 40% de $\bf B$ e o restante de $\bf C$ entra num reator a 500K e 4 atm e os componentes participam das seguintes reações a 500 K e 4 atm: $\bf A$ (g) \Leftrightarrow $\bf B$ (g) + $\bf D$ (g) e $\bf B$ (g) + 4 $\bf C$ (g) \Leftrightarrow $\bf D$ (g). Considerando o comportamento de gás ideal para a fase gasosa, calcule:

- a) A composição de equilíbrio na saída do reator.
- b) O calor envolvido no processo sabendo que 100 mols/min são alimentados no reator.

Dados: Energias livres de Gibbs e calores de formação dos componentes a 400 K e 1 atm no estado de referência de gás ideal para os compostos **A**, **B**, **C** e **D**.

Compostos	$\Delta G_f^0(cal/gmol)$	$\Delta H_f^0(cal/gmol)$
A	400	35500
В	250	500
C	2000	500
D	150	35000

3) (30Ptos) Duas correntes de água, corrente 1 (150 Kg/min de líquido a 50kPa e 45,8°C) e corrente 2 (x Kg/min nas condições de 50kPa e 500°C), são misturadas em um trocador de calor de contato direto, produzindo uma corrente 3, que deve ser vapor saturado. A corrente 3 passa em um compressor (com eficiência de 80%) e sai a 100kPa (corrente 4). Encontre as propriedades termodinâmicas (T, P, H e S) das correntes 1, 2, 3 e 4 e a taxa de trabalho utilizada no processo.

$$dU = TdS - PdV + \sum_{i} \mu_{i} dN_{i} \qquad dH = TdS + VdP + \sum_{i} \mu_{i} dN_{i} \qquad y_{i}P = x_{i}\gamma_{i}P_{i}^{SAT}$$

$$dA = -SdT - PdV + \sum_{i} \mu_{i} dN_{i} \qquad dG = -SdT + VdP + \sum_{i} \mu_{i} dN_{i} \qquad K = \exp\left(\frac{-\Delta \overline{G}^{0}}{RT}\right) = \prod_{i} \hat{a}_{i}^{\nu_{i}}$$

$$dH = C_{p} dT + [V - T\left(\frac{\partial V}{\partial T}\right)_{p}] dP \qquad dS = \left(\frac{C_{p}}{T}\right) dT - \left(\frac{\partial V}{\partial T}\right)_{p} dP \qquad \hat{f}_{i} = x_{i} \hat{\phi}_{i} P = x_{i} \gamma_{i} f_{i}^{0}$$

$$\Delta S_{n}^{VAP} = 8, 0 + 1,987 \ln(T_{n}) \qquad \frac{\Delta H_{2}^{VAP}}{\Delta H_{1}^{VAP}} = \left(\frac{T_{2} - T_{C}}{T_{1} - T_{C}}\right)^{0.38} \qquad \left(\frac{\partial \overline{G}_{T}}{\partial T}\right)_{p} = -\frac{\overline{H}}{T^{2}}$$

$$R = 1,987 cal/(gmolK) = 82,05(atmcm^{3})/(gmolK) = 0,082(atmL)/(gmolK) = 8,31J/(gmolK)$$

$$\frac{d(mU)_{S}}{dt} = \sum_{i} m_{j}(H_{j} + \frac{v_{j}^{2}}{2} + gz_{j}) - \sum_{i} m_{i}(H_{i} + \frac{v_{i}^{2}}{2} + gz_{i}) + \hat{Q} + \hat{W}_{S}$$

saturada:		

		Volume e (m³/		Energia interna (kJ/kg)			Entalpia (kJ/kg)			Entropia (kJ/kg K)		
Pressão kPa	Temp. °C	Líquido sat.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.	Líquido sat.	Evap.	Vapor sat.
Р	T	V_I	V_V	u_I	u _{lv}	u _v	h _I	h _{lv}	h_{v}	s_l	s_{lv}	S_V
10	45,81	0,001010	14,67355	191,79	2246,10	2437,89	191,81	2392,82	2584,63	0,6492	7,5010	8,1501
15	53,97	0,001014	10,02218	225,90	2222,83	2448,73	225,91	2373,14	2599,06	0,7548	7,2536	8,0084
20	60,06	0,001017	7,64937	251,35	2205,36	2456,71	251,38	2358,33	2609,70	0,8319	7,0766	7,9085
25	64,97	0,001020	6,20424	271,88	2191,21	2463,08	271,90	2346,29	2618,19	0,8930	6,9383	7,8313
30	69,10	0,001022	5,22918	289,18	2179,22	2468,40	289,21	2336,07	2625,28	0,9439	6,8247	7,7686
40	75,87	0,001026	3,99345	317,51	2159,49	2477,00	317,55	2319,19	2636,74	1,0258	6,6441	7,6700
50	81,33	0,001030	3,24034	340,42	2143,43	2483,85	340,47	2305,40	2645,87	1,0910	6,5029	7,5939
75	91,77	0,001037	2,21711	394,29	2112,39	2496,67	384,36	2278,59	2662,96	1,2129	6,2434	7,4563
100	99,62	0,001043	1,69400	417,33	2088,72	2506,06	417,44	2258,02	2675,46	1,3025	6,0568	7,3593
125	105,99	0,001048	1,37490	444,16	2069,32	2513,48	444,30	2241,05	2685,35	1,3739	5,9104	7,2843
150	111,37	0,001053	1,15933	466,92	2052,72	2519,64	467,08	2226,46	2693,54	1,4335	5,7897	7,2232
175	116,06	0,001057	1,00363	486,78	2038,12	2524,90	486,97	2213,57	2700,53	1,4848	5,6868	7,1717
200	120,23	0,001061	0,88573	504,47	2025,02	2529,49	504,68	2201,96	2706,63	1,5300	5,5970	7,1271
225	124,00	0,001064	0,79325	520,45	2013,10	2533,56	520,69	2191,35	2712,04	1,5705	5,5173	7,0878
250	127,43	0,001067	0,71871	535,08	2002,14	2537,21	535,34	2181,55	2716,89	1,6072	5,4455	7,0526
275	130,60	0,001070	0,65731	548,57	1991,95	2540,53	548,87	2172,42	2721,29	1,6407	5,3801	7,0208
300	133,55	0,001073	0,60582	561,13	1982,43	2543,55	561,45	2163,85	2725,30	1,6717	5,3201	6,9918

Tabela B.1.3 Vapor d'água superaquecido

vapor a agua superaqueorao												
7	V	и	h	s	V	и	h	s	V	и	h	s
1	(m^3/kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)	(m ³ /kg)	(kJ/kg)	(kJ/kg)	(kJ/kg K)
	P = 10 kPa (45,81)				P = 50 kPa (81,33)				P = 100 kPa (99,62)			
Sat.	14,67355	2437,89	2584,63	8,1501	3,24034	2483,85	2645,87	7,5939	1,69400	2506,06	2675,46	7,3593
50	14,86920	2443,87	2592,56	8,1749	-	-	-	-	-	-	-	-
100	17,19561	2515,50	2687,46	8,4479	3,41833	2511,61	2682,52	7,6947	-	-	-	-
150	19,51251	2587,86	2782,99	8,6881	3,88937	2585,61	2780,08	7,9400	1,93636	2582,75	2776,38	7,6133
200	21,82507	2661,27	2879,52	8,9037	4,35595	2659,85	2877,64	8,1579	2,17226	2658,05	2875,27	7,8342
250	24,13559	2735,95	2977,31	9,1002	4,82045	2734,97	2975,99	8,3555	2,40604	2733,73	2974,33	8,0332
300	26,44508	2812,06	3076,51	9,2812	5,28391	2811,33	3075,52	8,5372	2,63876	2810,41	3074,28	8,2157
400	31,06252	2968,89	3279,51	9,6076	6,20929	2968,43	3278,89	8,8641	3,10263	2967,85	3278,11	8,5434
500	35,67896	3132,26	3489,05	9,8977	7,13364	3131,94	3488,62	9,1545	3,56547	3131,54	3488,09	8,8341
600	40,29488	3302,45	3705,40	10,1608	8,05748	3302,22	3705,10	9,4177	4,02781	3301,94	3704,72	9,0975
700	44,91052	3479,63	3928,73	10,4028	8,98104	3479,45	3928,51	9,6599	4,48986	3479,24	3928,23	9,3398