

GEETHANJALI INSTITUTE OF SCIENCE & TECHNOLOGY

(AN AUTONOMOUS INSTITUTION)

(Approved by AICTE, New Delhi & Affiliated to JNTUA, Ananthapuramu)
(Accredited by NAAC with "A" Grade, NBA (EEE,ECE &ME) & ISO 9001:2008Certified Institution)

QUESTIONBANK(DESCRIPTIVE)

Subject Name with Code: MACHINE LEARNING (22A0528T)

Course & Branch: B.TECH CSE(AIML & DS & CS)

Year & Semester: III-I

Regulation: RG22

<u>UNIT - I</u>

S.No.	Question	[BT Level] [CO][Marks]			
	2 Marks Questions (Short)				
1.	List any four examples of Supervised Machine Learning.	L1/CO1/2M			
2.	What is dimensionality reduction?	L1/CO1/2M			
3.	List basic types of data in Machine Learning	L1/CO1/2M			
4.	4. Outline bootstrap sampling? L1/CO1/				
5.	5. What is data transformation? L1/C01/2				
6.	Define data cleaning?	L1/CO1/2M			
7.	Define human learning with example.	L1/CO1/2M			
8.	Relate the terms penalty and reward in reinforcement learning	L2/CO1/2M			
9.	What is generalization?	L1/CO1/2M			
10.	Interpret reinforcement learning.	L2/CO1/2M			
	Descriptive Questions (Long)				
1	Explain different types of human Learning.	L2/CO1/12M			
2	Explain machine learning process with a neat sketch.	L2/CO1/12M			
3	Explain different forms of Machine Learning with few examples.	L2/CO1/12M			
4	Explain different tools available for solving problems in Machine Learning.	L2/CO1/12M			
5	Explain the applications of machine learning.	L2/CO1/12M			
6	Explain in detail about the data quality and remediation in ML	L2/CO1/12M			
7	Compare between different types of data in ML.	L2/CO1/12M			
8	Explain different perspectives and issues in machine learning.	L2/CO1/12M			
9	Discuss the significance of data preprocessing in machine learning.	L2/CO1/12M			
10	Explain the process of data cleaning with an example.	L2/CO1/12M			

UNIT - II

S.No.	Question	[BT Level] [CO][Marks]			
	2 Marks Questions (Short)				
1	Define Sensitivity of a model.	L1/CO2/2M			
2	Identify the use of kappa value?	L3/CO2/2M			
3	Compare between predictive and descriptive models.	L3/CO2/2M			
4.	Define Random Sampling.	L1/CO2/2M			
5.	What is hold-out method?	L1/CO2/2M			
6.	Define the need for bootstrap sampling.	L1/CO2/2M			
7.	Write the formula for F1-Score.	L1/C02/2M			
8.	Contrast between underfitting and overfitting	L2/CO2/2M			
9.	Write formulae for Precision and Recall	L1/CO2/2M			
10.	Find the use of Ensemble approach	L1/CO2/2M			
Descriptive Questions (Long)					
1	Explain how to choose a model in machine learning?	L2/CO2/12M			
2	Explain various methods used to train a model.	L2/CO2/12M			
3	Explain K-fold Cross-validation method in detail.	L2/CO2/12M			

4	4 Identify the differences between k-fold cross-validation and bootstrapping. L3/CO2/12		
5	Compare between bias and variance.	L2/CO2/12M	
6.	Apply all the cases involved in evaluating the performance of a classification model in supervised learning.	L3/CO2/12M	
7.	Demonstrate the model interpretability and representation.	L2/CO2/12M	
8.	Choose the approaches involved in evaluating the performance of a clustering model in unsupervised learning.	L3/CO2/12M	
9.	Illustrate ensemble approach to improve the performance of a model.	L3/CO2/12M	
10.	Explain bias variance trade off in the context of model fitting	L2/CO2/12M	

<u>UNIT - III</u>

S.No.	Question	[BT Level] [CO][Marks]			
	2 Marks Questions (Short)				
1.	What is supervised learning? Why it is called so?	L1/CO3/2M			
2.	List any 2 examples of supervised learning.	L1/CO3/2M			
3.					
4.					
5.	•				
6.	List the disadvantages of the k-NN algorithm?	L1/CO3/2M			
7.	Define entropy of a decision tree.	L2/CO3/2M			
8.	Define information gain in a decision tree.	L2/CO3/2M			
9.	Outline three weaknesses of a decision tree method.	L2/CO3/2M			
10.	Define random forest model.	L2/CO3/2M			
Desci	riptive Questions (Long)				
1	Differentiate between supervised learning, semi-supervised learning, and	L2/CO3/12M			
1	unsupervised learning	L2/CO3/12IVI			
2	Explain any five examples of classification problems in detail.	L2/CO3/12M			
3	Explain classification learning steps in detail.	L2/CO3/12M			
4	Apply k-NN algorithm by taking suitable dataset to find a class label.	L3/CO3/12M			
5	Apply Backpropagation technique by taking suitable dataset to find a class label.	L3/CO3/12M			
6	Apply Naïve Bayes technique by taking suitable dataset to find a class label.	L3/CO3/12M			
7	Explain the need for using Entropy and Information gain to partition the data	L2/CO3/12M			
	in a decision tree.				
8	Construct a random forest tree by choosing Bagging and Bootstrapping approaches	L3/CO3/12M			
9	Explain decision tree based ID3 algorithm in detail.	L2/CO3/12M			

<u>UNIT - IV</u>

S.No.	Question	[BT Level] [CO][Marks]			
	2 Marks Questions (Short)				
1	Compare dependent and an independent variable in a linear equation	L4/CO4/2M			
2	L1/CO4/2M				
3	Define slope in a linear regression.	L2/CO4/2M			
4	Compare and contrast between the conditions of a positive slope & negative slope in linear regression?	L4/CO4/2M			
5	Define multiple linear regression.	L1/CO4/2M			
6	Define ridge & lasso regression	L1/CO4/2M			
7	What is polynomial regression?	L1/CO4/2M			
8	Categorize various regression techniques.	L4/CO4/2M			
9	Which method is used for the best line of fit?	L1/CO4/2M			
10	Recall multicollinearity in regression analysis.	L1/CO4/2M			
Descriptive Questions (Long)					
1	Explain simple linear regression with suitable example.	L2/CO4/12M			
2	Illustrate logistic regression in detail with an example	L2/CO4/12M			

3	Distinguish between linear positive slope and linear negative slope in a graph along with various conditions leading to the slope	L4/CO4/12M
4	Compare between curve linear negative slope curve and curve linear positive curve slope in a graph.	L4/CO4/12M
5	With suitable example analyze method of least squares.	L4/CO4/12M
6	List the assumptions in regression analysis.	L1/CO4/12M
7	Choose the method to improve accuracy of the linear regression model?	L3/CO4/12M
8	Infer the need for polynomial regression with an example	L4/CO4/12M
9	Explain multiple linear regression with an example.	L2/CO4/12M

<u>UNIT - V</u>

S.No.		[BT Level] [CO][Marks]			
2 Marks Questions (Short)					
1.	Explain the use of u	L2/CO5/2M			
2.	List few application	L1/CO5/2M			
3.	List categories of cl	L1/CO5/2M			
4.	List various partition	ning methods.	L1/CO5/2M		
5.	Define clade.		L2/CO6/2M		
6.	Define DBSCAN.		L2/CO6/2M		
7.		s of hierarchical clustering.	L1/CO6/2M		
8.	What is a dendrogra		L1/CO6/2M		
9.		ENCLUE and OPTICS.	L3/CO6/2M		
10.	Compare between k	-Means and k-Medoids approaches.	L3/CO5/2M		
		Descriptive Questions (Long)			
1		supervised and unsupervised learning techniques.	L4/CO5/12M		
2		of clustering with neat diagram.	L2/CO5/12M		
3	11 7 00	e hierarchical clustering with a suitable example.	L3/CO6/12M		
4	Analyze various clu Apply DBSCAN als	L4/CO5/12M			
5	Data Points: P1: (3, 7) P3: (5, 5) P5: (7, 3) P7: (7, 2) P9: (3, 3) P11: (3, 5)	P2: (4, 6) P4: (6, 4) P6: (6, 2) P8: (8, 4) P10: (2, 6) P12: (2, 4)	L3/CO6/12M		
6	Apply k-means algorithms A1(2, 10), A2(2, 5) Explain in detail aborexample.	L3/CO5/12M L2/CO6/12M			

Apply k-medoid algo	orithm on the data	set		
	i	х	у	
	X1	1 2 6	6	
	X2	3	4	
	Х3	3	8	
	X4	4	7	10/00/100
8	X5	6	2	L3/CO5/12M
	X6	6	4	
	X7	7	3	
	X8	7	4	
	Х9	8	5	
	X10	7	6	
9 Explain OPTICS clusterin	g Algorithm with an e	xample.		L2/CO6/12M

Signature of the Staff:

Signature of Department Academic Committee Member 1:

Signature of Department Academic Committee Member 2:

 ${\bf Signature\ of\ Department\ Academic\ Committee\ Member\ 3:}$