10. Logické obvody

1. Logická hradla

- základní prvek logických obvodů
- implementace Boolovských funkcí
- typicky jeden či více vstupu, ale jeden výstup
- hradla definujeme pomocí stavové tabulky
- násobení pomocí AND, nebo pomocí OR
- logická funkce je realizovaná pomocí logického členu, zatímco hradlo je konkrétní implementací

2. Základní zapojení

- repeater: pouze upevňuje napěťovou úroveň
- invertor: NOT, invertuje vstup
- AND: implementace logického součinu
- OR: implementace logického součtu
- NAND: negovaný AND, nejčastěji používaný člen v počítačích zejména ve FLASH uložištích
- NOR: negovaný OR
- XOR: unikátní hodnota v porovnání s ostatními
- reálně se log. obvody realizují pomocí aktivních komponent, tranzistory, diod. ...
- často více integrovaných v jednom pouzdře

3. Minimalizace

- proces, při kterém se snažíme omezit počet logických členů, optimalizace zapojení
- nejčastěji se používa Karnaughova mapa, jedná se o dvourozměrnou matici, do níž vkládáme jednotlivé pravdivostní hodnoty a poté slučováním tvoříme logické bloky
- zde je názorný příklad:

Takže výsledná funkce vypadá $Q(x, y, z) = \overline{y} \cdot \overline{z} + \overline{x} \cdot \overline{z}$

4. Využití v praxi

- čítače
- podpůrné obvody sedmisegmentových displejů
- paměti
- procesory
- $\bullet\;$ vyhodnocovače signálu, PLL
- frekvenční modulátory

х	у	z	Q
0	0	0	1
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	0

Figure 1: Pravdivostní tabulka

			у	
		z		
	1	0	0	1
х	1	0	0	0

Figure 2: Hotová mapa