CS 559 Machine Learning

Lecture 11: Neural Networks

Ping Wang
Department of Computer Science
Stevens Institute of Technology

Today's Lecture

- Summary and review
- Neural networks
- Implementation

Reviews

- Unsupervised learning:
 - Density estimation
 - K-means
 - Gaussian mixture models
- Supervised learning:
 - Classification
 - Regression

Supervised Learning

$$w^T x + b$$
 score

	Classification	Regression
Predictor	Sign	Score
Relate to y	Margin(score, y)	Residual(score, y)
Loss	Zero-one, hinge, cross-entropy	Squared, absolute
Algorithm	Gradient descent	Gradient descent

Review: Optimization Problem

Minimize Training Loss

$$\min_{w \in \mathbb{R}^d} TrainLoss(w) = \frac{1}{N} \sum_{n=1}^{N} L(x_n, y_n, w)$$

Review: Optimization Problem

Gradient descent:

$$w \leftarrow w - \eta * \nabla_w TrainLoss(w)$$

Step size Gradient

 $\nabla_w TrainLoss(w)$ denotes the gradient of the (average) total training loss with respect to w

• Stochastic Gradient Descent (SGD):

For each
$$(x, y) \in D_{train}$$
, $w \leftarrow w - \eta \nabla_w Loss(x, y, w)$

 $\nabla_w Loss(x, y, w)$ denotes the gradient of one example loss with respect to w.

Neural Networks

Everything Has Al Now!

Image Classification

Speech Recognition

Image Captioning

Machine Translation

2016: YEAR of Deep Learning (and AI)

- DeepMind's AlphaGo beat South Korean professional Go player Lee Sedol.
- Out of five matches, Lee lost 4-1.

2019: Turing Award in Artificial Intelligence

Turing Award Won by 3
Pioneers in Artificial Intelligence

From left, Yann LeCun, Geoffrey Hinton and Yoshua Bengio. The researchers worked on key developments for neural networks, which are reshaping how computer systems are built.

Myths about Deep Learning

- Deep learning mimics human brain.
 - Deep learning is only "loosely" inspired by the workings of the human brain.
- Deep learning is "magical" and the rest of machine learning models are completely "useless".
 - The main power of deep learning comes from the fact that deep models can learn efficient representations.
- Any problem can be solved using deep learning.
 - Only in the presence of sufficient data to learn from.
- Deep learning replaces human jobs.
 - It creates more new interesting jobs for humans than it takes.
- Many others ...

Deep Learning is Only a Small Part!!

Since an early flush of optimism in the 1950s, smaller subsets of artificial intelligence – first machine learning, then deep learning, a subset of machine learning – have created ever larger disruptions.

Figure: Nvidia blog about "What's the Difference Between Artificial Intelligence, Machine Learning and Deep Learning?".

Deep Learning Breakthrough

- Large high-quality labeled datasets
- Parallel computing with GPUs
- Backprop-friendly activation functions (ReLu)
- Improved model architectures
- Software platforms
- New regularization techniques
- Robust optimization (momentum, RMSprop, ADAM)

What is Neural Network?

- Typically, it is associated with biological devices (brains), electronic devices, or network diagrams;
- But the best conceptualization in computing area is none of these: we think of a neural network as a mathematical function.

Advantages of Neural Network

- Successfully used in a variety of domains: computer vision, speech recognition, gaming etc.
- Can provide solutions to very complex and nonlinear problems.
- If provided with sufficient amount of data, it can solve classification and forecasting problems accurately and easily.
- Once trained, prediction is fast.

Motivation of Neural Network

- Perceptron: First learning algorithm for neural networks. (Frank Rosenblatt, 1957)
- Limitations: Marvin Minsky and Seymour Papert, "Perceptrons" 1969: The perceptron can only solve problems with linearly separable classes.
 - The functions can be drawn in 2-dim graph and a single straight line separates values in two parts.
 - The perceptron cannot model the non-linearly separable functions: Logical XOR function (computes the logical exclusive).

Motivation of Neural Network

- Allows to learn nonlinearly separable transformations from input to output.
- A single hidden layer allows to compute any input/output transformation.

No Hidden Units: Logistic Regression

• Sigmoid activation function:

- Output score: sigmoid function $\hat{y} = \sigma(w^T x + b)$
- Recall sigmoid function:

$$\sigma(z) = \frac{1}{1 + e^{-z}}$$

Derivative: $\sigma'(z) = \sigma(z)(1 - \sigma(z))$

Learning Algorithm: No hidden units

- Logistic loss: $J(x, y, w) = -y \log \hat{y} (1 y) \log(1 \hat{y})$
- $\bullet \ \hat{y} = \frac{1}{1 + e^{-w^T x}} = \sigma(w^T x)$
- $\frac{\partial \hat{y}}{\partial w_i} = \hat{y}(1-\hat{y})x_i$
- $\frac{\partial J}{\partial w_i} = \frac{\partial J}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial w_i} = (\hat{y} y)x_i$

- Applying gradient descent (η is the learning rate):
- Element (feature) operation: $w_i^{t+1} = w_i^t \eta \frac{\partial J}{\partial w_i}$
- Vector operation: $w^{t+1} = w^t \eta \frac{\partial J}{\partial w}$

Neural Networks: One Hidden Layer

• One hidden layer:

• Hidden layer representation:

$$z_1^{[1]} = \mathbf{w}_1^{[1]T} \mathbf{x} + b_1^{[1]}, h_1^{[1]} = \sigma(z_1^{[1]})$$
$$z_2^{[1]} = \mathbf{w}_2^{[1]T} \mathbf{x} + b_2^{[1]}, h_2^{[1]} = \sigma(z_2^{[1]})$$

 \Rightarrow

$$\mathbf{z}^{[1]} = \underbrace{W^{[1]}}_{2\times3} \underbrace{\mathbf{x}}_{3\times1} + \underbrace{\mathbf{b}^{[1]}}_{2\times1}$$

Neural Networks: One Hidden Layer

• One hidden layer:

Output layer:

$$z^{[2]} = \underbrace{W^{[2]}}_{1 \times 2} \underbrace{\mathbf{h}^{[1]}}_{2 \times 1} + b^{[2]}$$
$$\hat{y} = \sigma(z^{[2]})$$

Neural Networks: One Hidden Layer

- We can think of intermediate hidden units as learned features of a linear predictor.
- Feature learning: manually specified features:

X

automatically learned features:

$$h(\mathbf{x}) = [h_1(\mathbf{x}), \dots, h_k(\mathbf{x})]$$

Loss Minimization

Optimization problem

$$TrainLoss(W,b) = \frac{1}{|D_{train}|} \sum_{(x,y) \in D_{train}} L(x,y,W,b)$$
$$L(x,y,W,b) = -y \log \hat{y} - (1-y) \log(1-\hat{y})$$
$$\hat{y} = h^{[2]}$$

Goal: compute gradient

$$\nabla_{W,b}L(W,b)$$

Stochastic Gradient Descent

Goal: compute gradient

$$\nabla_{W,b}L(W,b)$$

• Repeat, given a sample $(x^{(i)}, y^{(i)})$

$$dW^{[1]} = \frac{\partial L}{\partial W^{[1]}}, \qquad W^{[1]} \leftarrow W^{[1]} - \eta dW^{[1]}$$

$$db^{[1]} = \frac{\partial L}{\partial b^{[1]}}, \qquad b^{[1]} \leftarrow b^{[1]} - \eta db^{[1]}$$

$$dW^{[2]} = \frac{\partial L}{\partial W^{[2]}}, \qquad W^{[2]} \leftarrow W^{[2]} - \eta dW^{[2]}$$

$$db^{[2]} = \frac{\partial L}{\partial b^{[2]}}, \qquad b^{[2]} \leftarrow b^{[2]} - \eta db^{[2]}$$

Approach

- Mathematical: chain rule
- Next: visualize the computation using a computation graph
- Advantages:
 - Avoid long equations
 - Reveal structure of computations (modularity, efficiency, dependencies)

Functions As Boxes

Partial derivatives (gradients): how much does the output change if an input changes?

• Example:

$$out = 2in_1 + in_2in_3$$

$$2in_1 + (in_2 + \epsilon)in_3 = out + \epsilon in_3$$

Partial derivatives (gradients): a measure of sensitivity

Basic Building Blocks

$$\begin{array}{|c|c|c|}\hline {\sf max}\\ \hline \mathbb{I}[a>b] & \hline \mathbb{I}[b>a]\\ {\sf d} & {\sf b} \end{array}$$

Composing Functions

• Chain rule:

$$\frac{\partial out}{\partial in} = \frac{\partial out}{\partial mid} \frac{\partial mid}{\partial in}$$

Chain Rule

Case 1

$$y = g(x)$$
 $z = h(y)$

$$\Delta x \to \Delta y \to \Delta z$$

$$\frac{dz}{dx} = \frac{dz}{dy} \frac{dy}{dx}$$

Case 2

$$x = g(s)$$
 $y = h(s)$ $z = k(x, y)$

$$\Delta S = \frac{\partial z}{\partial s} = \frac{\partial z}{\partial x} \frac{\partial x}{\partial s} + \frac{\partial z}{\partial y} \frac{\partial y}{\partial s}$$

- Goal: learn the weights so that the loss (error) is minimized.
- It provides an efficient procedure to compute derivatives.
- For a fixed sample (x, y), we want to learn $\hat{y} = f(x)$
- Negative Log-likelihood over input x_n is $L_n = -y_n \log \hat{y}_n (1 y_n) \log (1 \hat{y}_n)$
- Total error of training examples is $E = \sum_{n} L_n$
- Backpropagation: an efficient way to compute the gradients of the network parameters.

$$\underbrace{\mathbf{W}^{[1]}, \mathbf{b}^{[1]}}_{\mathbf{X}} \underbrace{\mathbf{W}^{[1]}\mathbf{x} + \mathbf{b}^{[1]}}_{\mathbf{z}^{[1]}} \underbrace{\sigma(\mathbf{z}^{[1]})}_{\mathbf{h}^{[1]}} \underbrace{\mathbf{W}^{[2]}\mathbf{h}^{[1]} + \mathbf{b}^{[2]}}_{\mathbf{z}^{[2]}} \underbrace{\sigma(\mathbf{z}^{[2]})}_{\mathbf{h}^{[2]} = \hat{\mathbf{y}}} \mathcal{L}(\hat{\mathbf{y}}, \mathbf{y})$$

• Loss function for each data sample: $L_n = -y_n \log \hat{y}_n - (1 - y_n) \log (1 - \hat{y}_n)$

$$\frac{\partial L}{\partial W^{[1]}} = \frac{\partial L}{\partial z^{[1]}} \frac{\partial z^{[1]}}{\partial W^{[1]}}, \qquad \frac{\partial L}{\partial b^{[1]}} = \frac{\partial L}{\partial z^{[1]}} \frac{\partial z^{[1]}}{\partial b^{[1]}}$$

$$\frac{\partial L}{\partial W^{[2]}} = \frac{\partial L}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial W^{[2]}}, \qquad \frac{\partial L}{\partial b^{[2]}} = \frac{\partial L}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial b^{[2]}}$$

$$W^{[1]}, \mathbf{b}^{[1]} \underbrace{\mathbf{x} + \mathbf{b}^{[1]}}_{\mathbf{z}^{[1]}} \underbrace{\frac{\sigma(\mathbf{z}^{[1]})}{\mathbf{h}^{[1]}}}_{\mathbf{h}^{[1]}} \underbrace{\frac{\sigma(\mathbf{z}^{[1]})}{\mathbf{z}^{[2]}}}_{\mathbf{h}^{[1]} + \mathbf{b}^{[2]}} \underbrace{\frac{\sigma(\mathbf{z}^{[2]})}{\mathbf{h}^{[2]} = \hat{\mathbf{y}}}}_{\mathbf{h}^{[2]} = \hat{\mathbf{y}}} L(\hat{\mathbf{y}}, \mathbf{y})$$

$$\frac{\partial L}{\partial \mathbf{z}^{[2]}} = \frac{\partial L}{\partial \hat{\mathbf{y}}} \frac{\partial \hat{\mathbf{y}}}{\partial \mathbf{z}^{[2]}} = \frac{\hat{\mathbf{y}} - \mathbf{y}}{\hat{\mathbf{y}}(1 - \hat{\mathbf{y}})} \hat{\mathbf{y}} (1 - \hat{\mathbf{y}}) = \hat{\mathbf{y}} - \mathbf{y}$$

$$\frac{\partial L}{\partial \hat{\mathbf{y}}} = \frac{\hat{\mathbf{y}} - \mathbf{y}}{\hat{\mathbf{y}}(1 - \hat{\mathbf{y}})}$$

$$\frac{\partial \mathbf{z}^{[2]}}{\partial \mathbf{w}^{[2]}} = h^{[1]}, \frac{\partial \mathbf{z}^{[2]}}{\partial \mathbf{b}^{[2]}} = 1$$

$$\frac{\partial L}{\partial \mathbf{w}^{[2]}} = \frac{\partial L}{\partial \mathbf{z}^{[2]}} \frac{\partial \mathbf{z}^{[2]}}{\partial \mathbf{w}^{[2]}} = (\hat{\mathbf{y}} - \mathbf{y}) h^{[1]}$$

$$\frac{\partial L}{\partial \mathbf{b}^{[2]}} = \frac{\partial L}{\partial \mathbf{z}^{[2]}} \frac{\partial \mathbf{z}^{[2]}}{\partial \mathbf{b}^{[2]}} = \hat{\mathbf{y}} - \mathbf{y}$$

$$\underbrace{\boldsymbol{W}^{[1]}, \boldsymbol{b}^{[1]}}_{\mathbf{X}} \underbrace{\boldsymbol{W}^{[1]}\mathbf{x} + \boldsymbol{b}^{[1]}}_{\mathbf{z}^{[1]}} \underbrace{\boldsymbol{\sigma}(\mathbf{z}^{[1]})}_{\mathbf{h}^{[1]}} \underbrace{\boldsymbol{W}^{[2]}\mathbf{h}^{[1]} + \boldsymbol{b}^{[2]}}_{\mathbf{z}^{[2]}} \underbrace{\boldsymbol{\sigma}(\mathbf{z}^{[2]})}_{\mathbf{h}^{[2]} = \hat{\mathbf{y}}} \mathcal{L}(\hat{\mathbf{y}}, \mathbf{y})$$

$$\frac{\partial L}{\partial z^{[1]}} = \frac{\partial L}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial z^{[1]}} = (\hat{y} - y) W^{[2]} h^{[1]} (1 - h^{[1]})
\frac{\partial z^{[2]}}{\partial z^{[1]}} = \frac{\partial z^{[2]}}{\partial h^{[1]}} \frac{\partial h^{[1]}}{\partial z^{[1]}} = W^{[2]} h^{[1]} (1 - h^{[1]})
\frac{\partial z^{[1]}}{\partial W^{[1]}} = x, \frac{\partial z^{[1]}}{\partial b^{[1]}} = 1$$

$$\frac{\partial L}{\partial W^{[1]}} = \frac{\partial L}{\partial z^{[1]}} \frac{\partial z^{[1]}}{\partial W^{[1]}} = (\hat{y} - y) W^{[2]} h^{[1]} (1 - h^{[1]}) x$$

$$\frac{\partial L}{\partial h^{[1]}} = \frac{\partial L}{\partial z^{[1]}} \frac{\partial z^{[1]}}{\partial h^{[1]}} = (\hat{y} - y) W^{[2]} h^{[1]} (1 - h^{[1]})$$

Summary: Computing Derivatives

• Forward propagation:

$$z^{[1]} = W^{[1]}x + b^{[1]}$$

$$h^{[1]} = \sigma(z^{[1]})$$

$$z^{[2]} = W^{[2]}h^{[1]} + b^{[2]}$$

$$\hat{y} = h^{[2]} = \sigma(z^{[2]})$$

Backpropagation:

$$\frac{\partial L}{\partial z^{[2]}} = \frac{\partial L}{\partial \hat{y}} \frac{\partial \hat{y}}{\partial z^{[2]}} = \hat{y} - y$$

$$\frac{\partial L}{\partial \hat{y}} = \frac{\hat{y} - y}{\hat{y}(1 - \hat{y})}$$

$$\frac{\partial z^{[2]}}{\partial W^{[2]}} = h^{[1]}, \quad \frac{\partial z^{[2]}}{\partial b^{[2]}} = 1$$

$$\frac{\partial L}{\partial z^{[1]}} = \frac{\partial L}{\partial z^{[2]}} \frac{\partial z^{[2]}}{\partial z^{[1]}} = (\hat{y} - y)W^{[2]}h^{[1]}(1 - h^{[1]})$$

$$\frac{\partial z^{[2]}}{\partial z^{[1]}} = \frac{\partial z^{[2]}}{\partial h^{[1]}} \frac{\partial h^{[1]}}{\partial z^{[1]}} = W^{[2]}h^{[1]}(1 - h^{[1]})$$

$$\frac{\partial z^{[1]}}{\partial W^{[1]}} = x, \quad \frac{\partial z^{[1]}}{\partial b^{[1]}} = 1$$

Learning Rate

Set the learning rate carefully:

- If there are more than 3 parameters, it is hard to visualize the loss w.r.t the parameters.
- But you can visualize the loss w.r.t the # of parameter updates (epoch).
 - If the loss increases, we need to decrease the value of the learning rate.
 - If the loss is decreasing at a very slow rate, we need to increase the value of the learning rate.

Adaptive Learning Rates

- ➤ Popular & Simple Idea: Reduce the learning rate by some factor every few epochs.
 - At the beginning, we are far from the destination, so we use larger learning rate
 - After several epochs, we are close to the destination, so we reduce the learning rate
- > Learning rate cannot be one-size-fits-all
 - Giving different parameters different learning rates
 - Adagrad, RMSprop, Adam, etc

Warm-up Learning Rate

- Motivation: At the beginning of training, the weights of the model are randomly initialized. If you choose a larger learning rate, it may lead to instability (oscillation) of the model.
- Solution: At the beginning of training, it uses a small learning rate to train some epochs or steps, and then modifies it to the preset learning for training.
- The model can gradually become stable, which makes the convergence speed of the model become faster and the model effect is better.

Optimization

- Gradient descent
- Stochastic gradient descent
- Mini-batch gradient descent

Comparisons

Handwriting Digit Classification

Hard to Get the Power of Deep ...

Vanishing Gradient Problem

Vanishing Gradient Problem

Activation Functions

Sigmoid

$$\sigma(x) = \frac{1}{1 + e^{-x}}$$

tanh

tanh(x)

ReLU

 $\max(0, x)$

Leaky ReLU

 $\max(0.1x, x)$

Maxout

 $\max(w_1^T x + b_1, w_2^T x + b_2)$

ELU

$$\begin{cases} x & x \ge 0 \\ \alpha(e^x - 1) & x < 0 \end{cases}$$

Sigmoid and tanh

- 1. Vanishing gradient problem
- 2. The output of sigmoid function is not zero centered.
- 3. It is expensive to calculate e^{-x} .

tanh(x)

- 1. The output is zero centered.
- 2. Suffer from vanishing gradient problem.

ReLU

Rectified Linear Unit (ReLU)

[Xavier Glorot, AISTATS'11] [Andrew L. Maas, ICML'13] [Kaiming He, arXiv'15]

Reason:

- 1. Fast to compute: no exponential computations
- 2. Solves the vanishing gradient problem

ReLU

ReLU

a = z

ReLU: Variant

• Learnable activation function [Ian J. Goodfellow, ICML'13] $\max(w_1^Tx+b_1,w_2^Tx+b_2)$

You can have more than 2 elements in a group.

More than ReLU

- Learnable activation function [lan J. Goodfellow, ICML'13]
 - Activation function in maxout network can be any piecewise linear convex function
 - How many pieces depending on how many elements in a group

Problem: The number of parameters are doubled.

Regularization

- New loss function to be minimized
- Find a set of weights not only minimizing original loss but also reducing overfitting.

L1 regularization: $\|\theta\|_1 = |w_1| + |w_2| + \dots$

Original loss (e.g. minimize squared error, cross entropy ...)

Early Stopping

- One of the most widely used regularization techniques to overcome the overfitting issue.
- Monitors the performance of the model for every epoch on the validation set during the training.
- Terminates the training as soon as the validation error reaches a minimum.

Implementation

- Deep learning packages: <u>Tensorflow</u>, <u>Pytorch</u> ...
- Visualization of Learning a Neural Network
- Implementation of a 1-hidden layer Neural Network

Summary of Today's Lecture

- Summary and review
- Neural networks
- Implementation