Lista 2

Victor Sena Molero - 8941317

28 de agosto de 2016

1 Exercícios

Ex 3. Construa instâncias do MINCC com custos unitários, ou seja, instâncias (E, \mathcal{S}, c) com $c_S = 1$ para todo S em \mathcal{S} , para as quais o custo da cobertura produzida pelo algoritmo MINCC-CHVÁTAL pode chegar arbitrariamente perto de H_n opt (E, \mathcal{S}, c) , onde n := |E|.

Resposta. Seja k um inteiro positivo. Vamos construir uma instância $I=(E,\mathcal{S},c)$ com $m:=|E|=2^{2k}$ que alcança a aproximação pedida no algoritmo MINCC-CHVÁTAL. Definimos também $n:=2^k$ e então podemos indexar os elementos de E em uma matriz $n\times n$, ou seja, identificar cada um dos elementos de E por um par (i,j) e denotar o elemento em questão por $E_{i,j}$.

Precisamos agora descrever os conjuntos contidos em S. Teremos n conjuntos que contém, cada um, uma coluna distinta da matriz, ou seja, para todo $i \in [1, n]$ existe exatamente um $S_i^* \in S$ tal que $S_i = \{E_{j,i} \mid j \in [1, n]\}$. Denotaremos o conjunto de todos os S_i^* por S^* .

Além disso, teremos vários outros conjuntos em $\mathcal S$ que particionam cada uma das linhas da matriz E separadamente. Cada linha será particionada em 1 ou mais conjuntos de mesmo

tamanho. Mais especificamente, a *i*-ésima linha será dividida em $\lfloor \frac{n}{i} \rfloor$ conjuntos de tamanho $n/\lfloor \frac{n}{i} \rfloor$ cada. O conjunto destes conjuntos vai ser chamado \bar{S} .

Se o algoritmo MINCC-CHVÁTAL sempre der prioridade para os elementos de \bar{S} quando os custos deles empatarem com os de S^* , vai selecionar todos os elementos de \bar{S} e nenhum do outro conjunto, enquanto a solução ótima era exatamente oposta (selecionar todo S^* e nada mais). Portanto, a razão da aproximação encontrada pelo algoritmo é $|\bar{S}|/|S^*|$. Sabemos que $|S^*| = n$, basta calcular $|\bar{S}|$.

Pela descrição de $|\bar{\mathcal{S}}|$ sabemos quantos elementos existem em cada linha, então, podemos escrever

$$|\bar{\mathcal{S}}| = \sum_{i=1}^{n} \lfloor \frac{n}{i} \rfloor$$

.