19 January 2022 10:33

Sample Mean	probability of sample Mean	
$\overline{\times}_{l}$	PCXJ)	t
<u>X</u> 2	PCX2)	
XIC XIC	P(XK)	
1	<u></u>	

sampling distribution a mean

S. D	Probability 8.D.	
S ₁ S ₂ S ₁ =	pcs,)	< sampling distributions of s-D-

#standard Error

peth. Standard deviation of sampling distribution of a statistic is known as standard error.

S.E is different for every distribution,

_	statisti c	standard error		
<	1> Sample Mean, X	S.D. of population		
	2) sample s'D. S	V = 27.		
	3) sample variance	$r^2\sqrt{2/n}$		
	4) proportion and			
1	n, & n 2 sizes of few of independent randon samples.			
	Sample proportion	P VP2/n.		
I]	difference of two sample (X-X2)	$\sqrt{\frac{r_1^2}{n_1} + \frac{r_2^2}{n_2}}$		

UNIT I Page 2

$$\sqrt{\frac{r_1^2}{2n_1} + \frac{r_2^2}{2n_2}}$$

It sampling with and without Replacement

Withreplacements

Total no of possible sample of size 2.

without replacement

possible sample without replacem = 6.

$$N=2$$

Sample values Statistical Inferma