Forecasting Time Series

MBD 2019

Table of contents

1.	Find the best time series model for the variable "ibex"	_ 2
2.	Find the best regression model for the dependent variable "ibex"	_ 4
3.	Find the best regression model with time series errors for the dependent variable "ibex"_	_ 5
4.	The best model and point prediction	_ 7

1. Find the best time series model for the variable "ibex"

We have weekly seasonal data (s = 52). Let's look at ACF and PACF:

The data it is not stationary, we need 1 regular difference and no seasonal differences. Let's fit in arima(0,1,0) and look at the residuals:

The residuals are White Noise (P-value = 1), they are normally distributed (Shapiro-Wilk normality test P-value = 0.4433) and are SWN (Box-Cox of residuals^2 P-value = 1), which can also be seen from the ACF and PACF of the squared residuals:

Series fit\$residuals^2

Series fit\$residuals^2

Thus, our best time model for this step will be arima(0,1,0), meaning that our best prediction is mean:

2. Find the best regression model for the dependent variable "ibex".

In order to proceed, let's take a look at correlation of the variables in our dataset:

```
Week
                                     IBEX Exchange rate \x80/$ Short term rate Long term rate
Week
                     1.0000000 0.9075622
                                                     0.8868654
                                                                    -0.9293596
                                                                                   -0.7802327
IBEX
                     0.9075622 1.0000000
                                                     0.8888655
                                                                    -0.9318204
                                                                                   -0.9441591
Exchange rate \x80/$ 0.8868654 0.8888655
                                                     1.0000000
                                                                    -0.8427291
                                                                                   -0.8675614
Short term rate
                    -0.9293596 -0.9318204
                                                    -0.8427291
                                                                     1.0000000
                                                                                    0.8664739
Long term rate
                    -0.7802327 -0.9441591
                                                    -0.8675614
                                                                     0.8664739
                                                                                    1.0000000
```

Clearly, everything is highly correlated, thus, we are expecting multicollinearity. We're constructing a linear regression including Long Term Rate, Short Term Rate and Exchange rate as explanatory variables.

Coefficients:

```
Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        5231.68
                                    376.91 13.881 < 2e-16 ***
`Exchange rate \\x80/$`
                         783.34
                                    288.44
                                             2.716 0.00773 **
                                     10.51 -8.444 1.84e-13 ***
`Short term rate`
                         -88.70
`Long term rate`
                        -172.16
                                     18.92 -9.098 6.45e-15 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 129.3 on 105 degrees of freedom
Multiple R-squared: 0.9471,
                               Adjusted R-squared: 0.9455
F-statistic: 626.1 on 3 and 105 DF, p-value: < 2.2e-16
```

All the variables are significant, let's check VIF to see if we have multicollinearity (VIF above 5 are considered to be high):

So, we do have multicollinearity. Checking whether the residuals are white noise:

Box-Cox test P-value is < 2.2e-16, thus, our residuals are not white noise, but we cannot deal with that in this step. Other than that, the data is stationary, we don't need regular or seasonal differences.

3. Find the best regression model with time series errors for the dependent variable "ibex"

Let's try to deal with our residuals with the help of time series model.

Series model_1\$residuals

Looks like our fit may be AR(2), let's try it:

Coefficients:

	ar1	ar2	intercept	Exchange rate \x80/\$	Short term rate	Long term rate
	1.0795	-0.1239	4493.4243	958.2677	-10.7181	-192.6842
s.e.	0.0989	0.1022	394.7952	355.0949	15.4530	23.7137

sigma^2 estimated as 3191: log likelihood = -595.67, aic = 1205.33

Our AR(2) parameter is not significant, as well as Short term rate. Let's account for that:

Coefficients:

	ar1	intercept	Exchange rate \x80/\$	Long term rate
	0.9665	4572.186	881.0670	-204.1894
s.e.	0.0233	393.453	351.1813	21.3818

sigma^2 estimated as 3357: log likelihood=-596.47 AIC=1202.93 AICc=1203.51 BIC=1216.39

Ensuring that residuals are white noise graphically and with a formal test (P-value = 0.2876):

Series time_model_2\$residuals

Series time_model_2\$residuals

Everything is within limits, residuals are WN. P-value for Shapiro test is 0.4977, the residuals are normally distributed, they are also SWN (p-value for residuals^2 is 1):

Series time_model_2\$residuals^2

Series time_model_2\$residuals^2

Our final model has zero lags, 2 explanatory variables, on the contrary with the regression model without time series errors which had 4 variables and zero lags. The final equation is:

$$\widehat{\mathit{IBEX}}_t = \underset{(393,45)}{4572,18} + \underset{(351,18)}{958,27} \times Exchange_rate_t - \underset{(21,38)}{204,19} \times Long_term_rate_t + e_t$$
 Where:
$$e_t = a_t + 0.97 \times a_{t-1}$$

with:

 $\delta_a = 0.0233$

4. The best model and point prediction

Let's look at the sigma to figure out which of the 3 models is better:

Model 1: ARIMA(0,1,0) - sigma = 80.41

Model 2: linear regression – sigma = 129.32

Model 3: ARIMA(1,0,0) with time series errors - sigma = 56.87

So, the best model is the model 3.

Point prediction for the Short Term Rate = 10.76 and Exchange Rate = 10.76 is (3336.309 +/- 1.96 * 57.94198), which is (3222.74; 3449.88)

Forecasts from Regression with ARIMA(1,0,0) errors

