Sequence and Series

Gunja Sachdeva

August 27, 2024

Series

Given a sequence of numbers (a_n) , an expression of the form $a_1 + a_2 + a_3 + \cdots + a_n + \cdots$ is an infinite series. Then a_n is the *n*th term of the series. We write $\sum_{n=1}^{\infty} a_n$ or $\sum a_n$ to denote the series.

The sequence (s_n) defined by

$$s_1 = a_1$$

 $s_2 = a_1 + a_2$
 $s_n = a_1 + a_2 + \dots + a_n = \sum_{k=1}^{n} a_k$

is the **sequence of partial sums** of the series, the number s_n being the nth partial sum.

Convergence of a series

If the sequence of partial sums (s_n) converges to a limit L, we say that the series converges and that its sum is L. That is,

$$a_1 + a_2 + \cdots + a_n + \cdots = \sum_{n=1}^{\infty} a_n = L.$$

If the sequence of partial sums of the series does not converge, we say that the series diverges.

Remarks

- Adding or deleting terms: We can add a finite number of terms to a series or delete a finite number of terms without altering the series convergence or divergence, although in the case of convergence this will usually change the sum.
- Re-indexing: As long as we preserve the order of its terms, we can reindex any series without altering its convergence.

$$\frac{2}{2} \frac{1}{2} = \frac{2}{2} \frac{1}{n-4}$$

Example: Geometric series

The series of the form $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$ in

which a and r are fixed real numbers and $a \neq 0$.

Case 1
$$n=1$$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha + \alpha + \alpha + \cdots$
 $\hat{z}_{\alpha} = \alpha +$

$$|wsn = \frac{\alpha}{1-\beta} - \lim_{n \to \infty} \frac{\beta^n}{1-\beta}$$

$$= \frac{\alpha}{1-\beta}$$

ling"=0 if laler

Example: Geometric series

The series of the form $a + ar + ar^2 + \cdots + ar^{n-1} + \cdots = \sum_{n=1}^{\infty} ar^{n-1}$ in

- which a and r are fixed real numbers and $a \neq 0$.
 - If r=1, then $s_n=na$ and the series diverges because $\lim_{n\to\infty}na=\pm\infty$, depending on the sign of a.
 - If r = -1, then s_n alternate between a and 0 and never approach a single limit. Hence diverges.
 - If $|r| \neq 1$, then $s_n = \frac{a(1-r^n)}{1-r}$.
 - If |r|<1, then $r^n o 0$ and $s_n o \frac{a}{1-r}$ and thus the series converges.
 - If |r| > 1, then $|r^n| \to \infty$ and the series diverges.

Conclusion

Geoemetric Series

- The series $\sum_{n=1}^{\infty} ar^{n-1}$ converges to $\frac{a}{1-r}$, if |r| < 1.
- If $|r| \ge 1$, the series $\sum_{n=1}^{\infty} ar^{n-1}$ diverges.

Find the sum
$$\sum_{n=1}^{\infty} \frac{1}{n(n+1)}. = \sum_{n=1}^{\infty} \left(\frac{1}{n} - \frac{1}{n+1}\right)$$

$$S_1 = \alpha_1 = 1 - \frac{1}{2}$$

$$S_2 = \alpha_1 + \alpha_2 = 1 - \frac{1}{2} + \frac{1}{2} - \frac{1}{3} = 1 - \frac{1}{3}$$

$$S_n = 1 - \frac{1}{n+1}$$

$$1 \le S_n = 1$$

Find the sum $\sum_{n=1}^{\infty} \frac{1}{n(n+1)}$.

- $a_n = \frac{1}{n(n+1)} = \frac{1}{n} \frac{1}{n+1}$.
- $s_n = \left(1 \frac{1}{2}\right) + \left(\frac{1}{2} \frac{1}{3}\right) + \dots + \left(\frac{1}{n} \frac{1}{n+1}\right) = 1 \frac{1}{n+1}.$
- $s_n \to 1$ as $n \to \infty$.
- Thus the series converges and $\sum_{n=1}^{\infty} \frac{1}{n(n+1)} = 1$.

The series

NSP

Solution
$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \dots + \frac{n+1}{n} + \dots + \frac{n+1}{n} + \dots$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{n+1}{n} + \dots + \frac{n+1$$

The series

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

- $a_n = \frac{n+1}{n} = 1 + \frac{1}{n}$.
- Thus $s_n = n + 1 + \frac{1}{2} + \cdots + \frac{1}{n} > n$.
- Thus s_n is not bounded above and hence s_n , the sequence of partial sums diverges.
- Thus the series diverges.

Theorem

If $\sum_{n=1}^{\infty} a_n$ converges, then $a_n \to 0$.

It implies,

Theorem

The n th term test for divergence: $\sum_{n=1}^{\infty} a_n$ diverges if $\lim_{n\to\infty} a_n$ fails to exist or is different from 0.

0

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

diverges as $a_n = \frac{n+1}{n} \to 1 \neq 0$.

$$\bullet \sum_{n=1}^{\infty} n^2$$

0

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

diverges as $a_n = \frac{n+1}{n} \to 1 \neq 0$.

- $\sum_{n=1}^{\infty} n^2$ diverges as $n^2 \to \infty$
- $\sum_{n=1}^{\infty} (-1)^{n+1}$ in an facts to east

0

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

diverges as $a_n = \frac{n+1}{n} \to 1 \neq 0$.

- $\sum_{n=1}^{\infty} n^2$ diverges as $n^2 \to \infty$
- $\sum_{n=1}^{\infty} (-1)^{n+1}$ diverges as $\lim_{n\to\infty} (-1)^{n+1}$ does not exist.

$$\sum_{n=1}^{\infty} \frac{-n}{2n+5}$$

$$a_n = -\frac{n}{2n+5} = -\frac{1}{2+5/n}$$

$$a_n = -\frac{1}{2} + 5$$

$$\sum_{n=1}^{\infty} \frac{n+1}{n} = \frac{2}{1} + \frac{3}{2} + \dots + \frac{n+1}{n} + \dots$$

diverges as $a_n = \frac{n+1}{n} \to 1 \neq 0$.

- $\sum n^2$ diverges as $n^2 \to \infty$
- $\sum (-1)^{n+1}$ diverges as $\lim_{n \to \infty} (-1)^{n+1}$ does not exist.
- $\sum_{n \to \infty}^{\infty} \frac{-n}{2n+5}$ diverges as $\lim_{n \to \infty} \frac{-n}{2n+5} = -\frac{1}{2} \neq 0$.

What about converse?

converse is not true

Iman=0 \$\frac{1}{2} \lequal an converges of dwelges

A series whose $a_n \to 0$, but series diverges

What about the series

1 +
$$\frac{1}{2}$$
 + $\frac{1}{2}$ + $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{4}$ + $\frac{1}{2^n}$ +

A series whose $a_n \rightarrow 0$, but series diverges

What about the series

$$1 + \frac{1}{2} + \frac{1}{2} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \frac{1}{4} + \cdots + \frac{1}{2^n} + \frac{1}{2^n} + \cdots + \frac{1}{2^n} + \cdots$$
?

- This series diverges because the terms can be grouped into infinitely many clusters each of which adds to 1, so the partial sums increase without bound.
- Thus s_n is not bounded hence does not converge.
- However, the terms of the series form a sequence that converges to 0.

Theorem

A series $\sum a_n$ with $a_n \ge 0$ converges if and only if its partial sums are bounded from above.

Let $\sum a_n$ be an infinite series with $a_n \ge 0$ for all n. Then each partial sum is greater than or equal to its predecessor because

$$s_n = s_{n-1} + a_n$$

and $a_n \geq 0$, so

$$s_1 \leq s_2 \leq s_3 \leq \cdots \leq s_n$$

Thus s_n is monotonic increasing and hence by Monotonic increasing theorem s_n converges if it is bounded above.

Harmonic series

What about the convergence of

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots?$$

$$\frac{2n-\frac{1}{n}}{2n-n} = \frac{1}{1+\frac{1}{2}} + \frac{1}{1$$

$$\frac{1}{2^{n-1}} + \frac{1}{2^{n-1}} + \cdots + \frac{1}{2^{n}}$$

$$\frac{1}{2^{n-1}} + \frac{1}{2^{n-1}} + \frac{1}{2^{n-1$$

clearly (Sp? 15 bounded above.

$$=$$
 $\leq \frac{1}{n}$ diverges

Harmonic series

What about the convergence of

$$\sum_{n=1}^{\infty} \frac{1}{n} = 1 + \frac{1}{2} + \frac{1}{3} + \dots + \frac{1}{n} + \dots?$$

• Although $a_n = \frac{1}{n}$ does go to 0, the series diverges because there is no upper bound for its partial sums. We can group the terms of the series in the following way:

$$1 + \frac{1}{2} + \left(\frac{1}{3} + \frac{1}{4}\right) + \left(\frac{1}{5} + \frac{1}{6} + \frac{1}{7} + \frac{1}{8}\right) + \left(\frac{1}{9} + \dots + \frac{1}{16}\right) + \dots$$

- The sum of the first two terms is 1.5. The sum of the next two terms is $> \frac{1}{2}$.
- The sum of the next four terms is greater than $\frac{1}{8} + \frac{1}{8} + \frac{1}{8} + \frac{1}{8} > \frac{1}{2}$.

- The sum of the next eight terms is $> \frac{1}{2}$. The sum of the next 16 terms is greater than 1/2 and so on.
- In general, the sum of 2^n terms ending with $\frac{1}{2^{n+1}}$ is $> \frac{1}{2}$.
- If $n = 2^k$, the partial sum $s_n > \frac{k}{2}$, so the sequence of partial sums is not bounded from above. Thus the harmonic series diverges.

Properties

Theorem

If $\sum a_n = A$ and $\sum b_n = B$ are convergent series, then

- 1. Sum Rule: $\sum (a_n + b_n) = \sum a_n + \sum b_n = A + B$
- 2. Difference Rule: $\sum (a_n b_n) = \sum a_n \sum b_n = A B$
- 3. Constant Multiple Rule: $\sum ka_n = k \sum a_n = kA$. (any number k).

Corollary

- Every nonzero constant multiple of a divergent series diverges.
- If $\sum a_n$ converges and $\sum b_n$ diverges, then $\sum (a_n + b_n)$ and $\sum (a_n - b_n)$ both diverge.

kto Ekan diverges if

San diverges

(i) Find
$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}}$$
.

$$= \sum_{n=1}^{\infty} (\frac{1}{2})^{n-1} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}}$$

$$= \frac{1}{1 - 1/2} - \frac{1}{1 - 1/6}$$

$$= 2 - \frac{6}{5}$$

(i) Find
$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}}$$
.

$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}} = 2 - \frac{6}{5} = \frac{4}{5}$$

(ii) Find
$$\sum_{n=1}^{\infty} \frac{4}{2^n}$$

$$= 4 \sum_{n=1}^{\infty} \frac{1}{2^n}$$

$$= 4 \sum_{n=1}^{\infty} \frac{1}{2^n}$$

$$= 4 \sum_{n=1}^{\infty} \frac{1}{2^n}$$

(i) Find
$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}}$$
.

$$\sum_{n=1}^{\infty} \frac{3^{n-1} - 1}{6^{n-1}} = \sum_{n=1}^{\infty} \frac{1}{2^{n-1}} - \sum_{n=1}^{\infty} \frac{1}{6^{n-1}} = 2 - \frac{6}{5} = \frac{4}{5}$$

(ii) Find
$$\sum_{n=1}^{\infty} \frac{4}{2^n}$$
.

$$\sum_{n=1}^{\infty} \frac{4}{2^n} = 4 \sum_{n=1}^{\infty} \frac{1}{2^n} = 4.$$