SEEM3550 Fundamentalsof Information System

Database Management System

- Why not file systems
 - Data redundancy and inconsistency
 - Difficulty in accessing data
 - Data isolation
 - Integrity problems
 - Atomicity of updates
 - Concurrent access
 - Security

Relational Model

	4	4	4	attributes (or columns)
ID	name	dept_name	salary	
10101	Srinivasan	Comp. Sci.	65000	•
12121	Wu	Finance	90000	tuples
15151	Mozart	Music	40000	(or rows)
22222	Einstein	Physics	95000	
32343	El Said	History	60000	
33456	Gold	Physics	87000	
45565	Katz	Comp. Sci.	75000	
58583	Califieri	History	62000	
76543	Singh	Finance	80000	
76766	Crick	Biology	72000	
83821	Brandt	Comp. Sci.	92000	
98345	Kim	Elec. Eng.	80000	

Relation Schema and Instance

- Each table is a relation *r* on the relation schema R: r(R)
- Schema $R=\{A_1,A_2,\ldots,A_n\}$
- Each attribute A_i has a domain D_i
- Attribute values are required to be atomic
- A relation r is a set of n-tuples $(a_1, a_2, ..., a_n)$ where each a_i in D_i

DDL and DML

- Data Definition Language (DDL)
 - create table instructor (

ID char(5),
name char(20),
dept_name char(20),

salary numeric(8,2))

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	75000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

DDL and DML

Data Manipulation Language (DML)

– select name

from *instructor*

where instructor.ID = '22222'

In plain English:

Find all instructors' name whose ID is equal to 22222

ID	name	dept_name	salary
10101	Srinivasan	Comp. Sci.	65000
12121	Wu	Finance	90000
15151	Mozart	Music	40000
22222	Einstein	Physics	95000
32343	El Said	History	60000
33456	Gold	Physics	87000
45565	Katz	Comp. Sci.	<i>7</i> 5000
58583	Califieri	History	62000
76543	Singh	Finance	80000
76766	Crick	Biology	72000
83821	Brandt	Comp. Sci.	92000
98345	Kim	Elec. Eng.	80000

The Entity-Relationship Model

- Entity: An entity is a real-world object distinguishable from other objects.
 - e.g. A person, a dog, a CD, a ...

The Entity-Relationship Model

- Relationship: A relationship describes the connection between entities
 - E.g. A person <u>owns</u> a pet, A man <u>marries</u> a woman

Key

- Superkey
 - K is a **superkey** of R if values for K are sufficient to identify a unique tuple of each possible relation r(R)
- Candidate key
 - Superkey K is a candidate key if K is minimal
- Primary key
 - The one of candidate keys that designated is the primary key

Key

- Foreign key: Set of attributes in one relation that is used to 'refer' to a tuple in another relation
 - E.g., *sid* is a foreign key referring to Students

Students(<u>sid</u>: char(20), name: char(20), login: char(10), age: integer, gpa: real) Enrolled(sid: char(20), cid: char(20), grade: char(2))

Key

- Superkey
 - A1, (A1, A2), A3, etc.
- Candidate key
 - A1, A3
- Primary key
 - A1 or A3

A1	A2	A3	A4
1	а	alpha	X
2	а	beta	X
3	b	gamma	У
4	С	delta	Z

Relational Operators

Symbol (Name)	Example of Use	
σ (Cologlion)	σ salary>=85000 (instructor)	
(Selection)	Return rows of the input relation that satisfy the predicate.	
[] (Projection)	Π _{ID, salary} (instructor)	
(Projection)	Output specified attributes from all rows of the input relation. Remove duplicate tuples from the output.	
×	instructor ⋈ department	
(Natural Join)	Output pairs of rows from the two input relations that have the same value on all attributes that have the same name.	
×	instructor × department	
(Cartesian Product)	Output all pairs of rows from the two input relations (regardless of whether or not they have the same values on common attributes)	
U (Union)	$\Pi_{name}(instructor) \cup \Pi_{name}(student)$	
(Official)	Output the union of tuples from the two input relations.	

R

sid	bid	day	S
22	103	10/10/96	
31	101	11/12/96	
22	102	11/12/96	
22	101	10/10/96	
58	103	11/12/96	

В rating age sid sname 22 Bob 45.0 31 Alice 55.5 8 58 35.0 Peter 10

bidbnamecolor101Sunred102Moonyellow103Marsgreen

Sailor

Boat

Reservation

S(<u>sid</u>, sname, rating, age)

B(<u>bid</u>, bname, color)

 $R(\underline{sid}, \underline{bid}, \underline{day})$

S(<u>sid</u>, sname, rating, age) B(<u>bid</u>, bname, color) R(<u>sid</u>, <u>bid</u>, <u>day</u>)

1. Find the name and ratings of each sailor

2. Find the names of sailors over the age of 40

S(<u>sid</u>, sname, rating, age)

B(<u>bid</u>, bname, color)

 $R(\underline{sid}, \underline{bid}, \underline{day})$

3. Find the names of sailors who have reserved boat 103

4. Find the names of sailors who have reserved a red boat

S(<u>sid</u>, sname, rating, age) B(<u>bid</u>, bname, color)

 $R(\underline{sid}, \underline{bid}, \underline{day})$

5. Find the names of sailors who have reserved a red boat or a green boat

6. Find the names of sailors who have reserved a red boat and a green boat

S(<u>sid</u>, sname, rating, age)

B(<u>bid</u>, bname, color)

 $R(\underline{sid}, \underline{bid}, \underline{day})$

7. Find the names of sailors who've reserved at least 1 boats

8. Find the sids of sailors with age over 40 who have not reserved a red boat