GPET Versuch 2

Tim Luchterhand, Paul Nykiel

 $23.\ \mathrm{April}\ 2017$

3.1 Bestimmung des Innenwiderstandes einer Quelle

Aufgabe: Nehmen Sie die Strom-Spannungskennlinie der Batterie auf. Verwenden sie hierzu Messtabelle 1 und tragen Sie die Messwerte in ein Diagramm ein. Schließen Sie das Spannungsmessgerät vor der Batterie an, damit Sie die Batterie nicht über einen längeren Zeitraum kurzschließen.

$$U_{innen} = U_{Batterie} - U_{mess}$$

Tabelle 3.1: Messtabelle für Versuch 1

$R_L \Omega$	U_{mess} V	V_{innen}	$I_L \ { m mA}$
0	0	0	0
1000	0	0	0
750	0	0	0
500	0	0	0
250	0	0	0
200	0	0	0
150	0	0	0
125	0	0	0
100	0	0	0
75	0	0	0

3.1.1 U-I-Diagram

3.1.2 Charakterisierung der Ersatzspannungsquelle

Aufgabe: Charakterisieren Sie die Ersatzspannungsquelle mit Hilfe des erstellten Diagramms.

Die Steigung des Graphens ist der Innenwiderstand R_{innen} . Es gilt

$$R_{innen} = \frac{(U_{Batterie} - U_{mess})(R + R_L)}{U_{mess}}$$

3.2 Untersuchung eines einfachen Netzwerks

Bauen Sie die Schaltung aus Abbildung 6 nach. Die Widerstandswerte sind $R1=R2=1\Omega$ und $R3=R4=100\Omega$.

Bestimmen Sie die äquivalente Ersatzspannungsquelle zwischen den Knoten 0 und 1 durch Messung ($U_{in}=3V$). Verwenden Sie hierzu wieder das Potentiometer mit $1k\Omega$ und tragen Sie die Ergebnisse in Messtabelle 2 ein.

$R_L \ \Omega$	U_{mess} mV	$I_L \ \mathrm{mA}$	
0	0	0	

Tabelle 3.2: Messtabelle für Versuch 2

$\frac{R_L}{\Omega}$	${ m mV}$	I_L $^{\mathrm{mA}}$
0	0	0
1000	0	0
750	0	0
500	0	0
250	0	0
100	0	0
50	0	0

3.2.1 Ersatzspannungsquelle

Arbeitsgerade

Berechnung des Kurzschlussstroms durch lineare Regression:

$$\begin{array}{rcl} U_{Quelle} & = & \mathrm{V} \\ I_{Kurzschluss} & = & \mathrm{A} \\ R_{Innen} & = & \Omega \end{array}$$

3.2.2 Widerstand

Aufgabe: Messen Sie die Spannungen an den Widerständen in Abhängigkeit von U_{in} . Tragen Sie die Messwerten in Messtabelle 3 ein und vergleichen diese mit den berechneten Werten in einem Diagramm.

Tabelle 3.3: Messtabelle für Versuch 2

$\overline{U_{in}}$ V	$U_{R1,soll}$ V	$U_{R2,soll}$ V	$U_{R3,soll}$ V	$U_{R4,soll}$ V	$U_{R1,mess}$ V	$U_{R2,mess}$ V	$U_{R3,mess}$ V	$U_{R4,mess}$ V
0.0	0.00	0.00	0.00	0.00	0	0	0	0
0.5	0.429	0.0714	0.0357	0.0357	0	0	0	0
1.0	0.857	0.143	0.0714	0.0714	0	0	0	0
1.5	1.29	0.214	0.107	0.107	0	0	0	0
2.0	1.71	0.286	0.143	0.143	0	0	0	0
2.5	2.14	0.357	0.179	0.179	0	0	0	0
3.0	2.57	0.429	0.214	0.214	0	0	0	0

3.2.3 Diagramm

Berechnete Werte in rot, gemessene Werte in blau.

Vergleich R_1

Vergleich R_2

Vergleich R_3

Vergleich R_4

3.3 Untersuchung eines komplizierten Netzwerks

Aufgabe: Messen Sie die Spannungen an allen Knoten in Abhängigkeit von $U_{in,1}=0\ldots 3V$ und tragen Sie die Ergebnisse in Messtabelle 4 ein. Erstellen Sie ein Diagramm für die Spannungen an allen Knoten in Abhängigkeit der Spannung $U_{in,1}=0\ldots 3V$.

Tabelle 3.4: Messtabelle für Versuch 3					
$V_{in,1}$	${\rm V}_{1,mess}\\{\rm V}$	${\rm V}_{2,mess}\\{\rm V}$	$U_{3,mess}$ V	$U_{4,mess}$ V	
0	0	0	0	0	
0.5	0	0	0	0	
1	0	0	0	0	
1.5	0	0	0	0	
2	0	0	0	0	
2.5	0	0	0	0	
3	0	0	0	0	

3.3.1 Diagramm der Knotenspannungen

3.3.2 Knotenpotenzialanalyse mit Matlab

Aufgabe: Nun soll für dieses Netzwerk das in Abschnitt 2.2 aufgestellte KPV mit Hilfe von Matlab gelöst und mit den Ergebnissen der eben durchgeführten Messungen verglichen werden.

3.4 Aufbau einer Messbrücke nach Wheatstone

Aufgabe: Kann mit diesem Messaufbau jeder Widerstand gemessen werden? Falls dies nicht der Fall ist, wie muss der Messaufbau verändert werden, damit die restlichen Widerstände gemessen werden können?