- 5.1 Tiefen- und Breitensuche
- 5.2 Minimale Spannbäume
- 5.3 Kürzeste Wege
- 5.4 Flussprobleme

ungerichteter Graph G = (V, E):

- *V* = endliche Knotenmenge
- E = Kantenmenge E dabei sei $e = \{u, v\} \in E$ zweielementige Teilmenge von V

ungerichteter Graph G = (V, E):

- V = endliche Knotenmenge
- E = Kantenmenge E dabei sei $e = \{u, v\} \in E$ zweielementige Teilmenge von V

gerichteter Graph G = (V, E):

- *V* = endliche Knotenmenge
- E = Kantenmenge E
 dabei sei e = (u, v) ∈ E geordnetes Paar von Elementen aus V

ungerichteter Graph G = (V, E):

- V = endliche Knotenmenge
- E = Kantenmenge Edabei sei $e = \{u, v\} \in E$ zweielementige Teilmenge von V

gerichteter Graph G = (V, E):

- *V* = endliche Knotenmenge
- E = Kantenmenge E
 dabei sei e = (u, v) ∈ E geordnetes Paar von Elementen aus V

Hinweis: Ist aus Kontext klar, dass G ungerichtet ist, schreiben wir oft (u, v) statt $\{u, v\}$.

ungerichteter Graph G = (V, E):

- V = endliche Knotenmenge
- E = Kantenmenge Edabei sei $e = \{u, v\} \in E$ zweielementige Teilmenge von V

gerichteter Graph G = (V, E):

- *V* = endliche Knotenmenge
- E = Kantenmenge E
 dabei sei e = (u, v) ∈ E geordnetes Paar von Elementen aus V

Hinweis: Ist aus Kontext klar, dass G ungerichtet ist, schreiben wir oft (u, v) statt $\{u, v\}$.

Kantengewichte: Funktion $w \colon E \to \mathbb{R}$, die jeder Kante $e \in E$ ein *Gewicht* w(e) zuweist.

ungerichteter Graph G = (V, E):

Sei G = (V, E) ungerichtet.

- $u, v \in V$ heißen adjazent, wenn $\{u, v\} \in E$.
- Knoten $u \in V$ und Kante $\{u, v\} \in E$ heißen inzident.
- Für $v \in V$: Grad d(v) = Anzahl zu v inzidenter Kanten.

ungerichteter Graph G = (V, E):

Sei G = (V, E) ungerichtet.

- $u, v \in V$ heißen adjazent, wenn $\{u, v\} \in E$.
- Knoten $u \in V$ und Kante $\{u, v\} \in E$ heißen inzident.
- Für $v \in V$: Grad d(v) = Anzahl zu v inzidenter Kanten.

gerichteter Graph G = (V, E):

- Für $v \in V$ heißt $(u, v) \in E$ in v eingehende Kante.
- Für $v \in V$ heißt $(v, u) \in E$ von v ausgehende Kante.
- Für $(u, v) \in E$ heißt v direkter Nachfolger von u und u direkter Vorgänger von v.
- Für $v \in V$: Outgrad $d^+(v)$ = Anzahl der von v ausgehenden Kanten.
- Für $v \in V$: Ingrad $d^-(v)$ = Anzahl der in v eingehenden Kanten.

Eine Folge v₀,..., v_ℓ ∈ V heißt Weg von v₀ nach v_ℓ der Länge ℓ ∈ N₀, wenn (v_{i-1}, v_i) ∈ E für alle i ∈ {1,...,ℓ} gilt.
Alternativ bezeichnen wir auch (v₀, v₁),..., (v_{ℓ-1}, v_ℓ) ∈ E als Weg.

- Eine Folge v₀,..., v_ℓ ∈ V heißt Weg von v₀ nach v_ℓ der Länge ℓ ∈ N₀, wenn (v_{i-1}, v_i) ∈ E für alle i ∈ {1,...,ℓ} gilt.
 Alternativ bezeichnen wir auch (v₀, v₁),..., (v_{ℓ-1}, v_ℓ) ∈ E als Weg.
- Ein Weg v_0, \ldots, v_ℓ heißt einfach, wenn alle Knoten auf dem Weg paarweise verschieden sind.

- Eine Folge v₀,..., v_ℓ ∈ V heißt Weg von v₀ nach v_ℓ der Länge ℓ ∈ N₀, wenn (v_{i-1}, v_i) ∈ E für alle i ∈ {1,...,ℓ} gilt.
 Alternativ bezeichnen wir auch (v₀, v₁),..., (v_{ℓ-1}, v_ℓ) ∈ E als Weg.
- Ein Weg v_0, \ldots, v_ℓ heißt einfach, wenn alle Knoten auf dem Weg paarweise verschieden sind.
- Ein Weg heißt Kreis, wenn $v_0 = v_\ell$ und $\ell \ge 1$. Er ist einfach, wenn $v_0 = v_\ell$ gilt und alle anderen Knoten paarweise verschieden und verschieden von $v_0 = v_\ell$ sind.

- Eine Folge v₀,..., v_ℓ ∈ V heißt Weg von v₀ nach v_ℓ der Länge ℓ ∈ N₀, wenn (v_{i-1}, v_i) ∈ E für alle i ∈ {1,...,ℓ} gilt.
 Alternativ bezeichnen wir auch (v₀, v₁),..., (v_{ℓ-1}, v_ℓ) ∈ E als Weg.
- Ein Weg v_0, \ldots, v_ℓ heißt einfach, wenn alle Knoten auf dem Weg paarweise verschieden sind.
- Ein Weg heißt Kreis, wenn $v_0 = v_\ell$ und $\ell \ge 1$. Er ist einfach, wenn $v_0 = v_\ell$ gilt und alle anderen Knoten paarweise verschieden und verschieden von $v_0 = v_\ell$ sind.
- (Zusatzbedingung für Kreise in ungerichtete Graphen: Kreis ist einfach und $\ell \geq 3$.)

- Eine Folge v₀,..., v_ℓ ∈ V heißt Weg von v₀ nach v_ℓ der Länge ℓ ∈ N₀, wenn (v_{i-1}, v_i) ∈ E für alle i ∈ {1,...,ℓ} gilt.
 Alternativ bezeichnen wir auch (v₀, v₁),..., (v_{ℓ-1}, v_ℓ) ∈ E als Weg.
- Ein Weg v_0, \ldots, v_ℓ heißt einfach, wenn alle Knoten auf dem Weg paarweise verschieden sind.
- Ein Weg heißt Kreis, wenn $v_0 = v_\ell$ und $\ell \ge 1$. Er ist einfach, wenn $v_0 = v_\ell$ gilt und alle anderen Knoten paarweise verschieden und verschieden von $v_0 = v_\ell$ sind.
- (Zusatzbedingung für Kreise in ungerichtete Graphen: Kreis ist einfach und $\ell \geq 3$.)
- Ein Graph, der keinen Kreis enthält, heißt kreisfrei, azyklisch oder Wald.

- Eine Folge v₀,..., v_ℓ ∈ V heißt Weg von v₀ nach v_ℓ der Länge ℓ ∈ N₀, wenn (v_{i-1}, v_i) ∈ E für alle i ∈ {1,...,ℓ} gilt.
 Alternativ bezeichnen wir auch (v₀, v₁),..., (v_{ℓ-1}, v_ℓ) ∈ E als Weg.
- Ein Weg v_0, \ldots, v_ℓ heißt einfach, wenn alle Knoten auf dem Weg paarweise verschieden sind.
- Ein Weg heißt Kreis, wenn $v_0 = v_\ell$ und $\ell \ge 1$. Er ist einfach, wenn $v_0 = v_\ell$ gilt und alle anderen Knoten paarweise verschieden und verschieden von $v_0 = v_\ell$ sind.
- (Zusatzbedingung für Kreise in ungerichtete Graphen: Kreis ist einfach und $\ell \geq 3$.)
- Ein Graph, der keinen Kreis enthält, heißt kreisfrei, azyklisch oder Wald.
- Ein ungerichteter Graph heißt zusammenhängend, wenn es zwischen jedem Paar von Knoten einen Weg gibt. Ein zusammenhängender Graph, der keinen Kreis besitzt, heißt Baum.

Datenstrukturen für Graphen: Sei G = (V, E) mit $V = \{v_1, \dots, v_n\}$ und m = |E|.

• Bei der Adjazenzmatrix $A = (a_{ij})$ von G handelt es sich um eine $n \times n$ -Matrix. Ist Gungewichtet oder gewichtet, gilt

$$a_{ij} = egin{cases} 1 & ext{falls}\left(v_i, v_j
ight) \in E, \ 0 & ext{sonst}, \end{cases}$$

G underichtet \Rightarrow A symmetrisch

$$a_{ij} = egin{cases} 1 & ext{falls } (v_i, v_j) \in E, \ 0 & ext{sonst}, \end{cases} \quad ext{bzw.} \quad a_{ij} = egin{cases} w((v_i, v_j)) & ext{falls } (v_i, v_j) \in E, \ ot & ext{sonst}. \end{cases}$$

Speicherplatz $\Theta(n^2)$.

Datenstrukturen für Graphen: Sei G = (V, E) mit $V = \{v_1, \dots, v_n\}$ und m = |E|.

Bei der Adjazenzmatrix A = (a_{ij}) von G handelt es sich um eine n × n-Matrix. Ist G ungewichtet oder gewichtet, gilt

$$a_{ij} = egin{cases} 1 & ext{falls } (v_i, v_j) \in E, \ 0 & ext{sonst}, \end{cases} \quad ext{bzw.} \quad a_{ij} = egin{cases} w((v_i, v_j)) & ext{falls } (v_i, v_j) \in E, \ ot & ext{sonst}. \end{cases}$$

G ungerichtet \Rightarrow *A* symmetrisch

Speicherplatz $\Theta(n^2)$.

 Eine Adjazenzliste ist ein Feld von n verketteten Listen. Liste von v ∈ V enthält bei ungerichteten Graphen alle zu v adjazenten Knoten und bei gerichteten Graphen alle direkten Nachfolger von v.

Speicherplatz $\Theta(n+m)$

Tiefensuche/Depth-First Search (DFS)

Attribute eines Knotens:

- Farbe *u*.color
- Vorgänger $u.\pi$
- Entdeckungszeitpunkt u.d
- Fertigstellungszeitpunkt u.f

Tiefensuche/Depth-First Search (DFS)

```
\begin{array}{ll} \mathsf{DFS}(G = (V, E)) \\ 1 & \textbf{for each } (u \in V) \ \{ \\ 2 & u.\mathsf{color} = \mathsf{weiB}; \\ 3 & u.\pi = \mathsf{null}; \\ 4 & \} \\ 5 & \mathsf{time} = 0; \\ 6 & \textbf{for each } (u \in V) \\ 7 & \textbf{if } (u.\mathsf{color} == \mathsf{weiB}) \ \mathsf{DFS-VISIT}(G, u); \end{array}
```

Attribute eines Knotens:

- Farbe *u*.color
- Vorgänger $u.\pi$
- Entdeckungszeitpunkt u.d
- Fertigstellungszeitpunkt u.f

```
DFS-VISIT(G = (V, E), u)
      time++:
     u.d = time:
      u.color = grau;
     for each ((u, v) \in E) {
          if (v.color == weiß) {
               \mathbf{v}.\pi = \mathbf{u};
               DFS-VISIT(G, v);
 9
10
      u.color = schwarz;
11
      time++:
12
      u.f = time:
```

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Beispiel für Tiefensuche

Knoten v ist mit v.d/v.f beschriftet.

Ist Kante (u, v) mit T beschriftet, so gilt $v.\pi = u$.

Ein Knoten $v \in V$ heißt DFS-Nachfolger von $u \in V$, wenn es Weg $u = v_0, v_1, \dots, v_\ell = v$ gibt, sodass $v_i.\pi = v_{i-1}$ für alle $i \in \{1, \dots, \ell\}$ gilt.

Lemma 5.1

Ein Knoten $v \in V$ ist genau dann ein DFS-Nachfolger eines Knotens $u \in V$, wenn der Knoten u zum Zeitpunkt v.d des ersten Besuches von v grau ist.

Lemma 5.1

Ein Knoten $v \in V$ ist genau dann ein DFS-Nachfolger eines Knotens $u \in V$, wenn der Knoten u zum Zeitpunkt v.d des ersten Besuches von v grau ist.

Beweis: Fixiere Zeitpunkt. Seien u_1, \ldots, u_ℓ die grauen Knoten mit $u_1.d < \ldots < u_\ell.d$.

Lemma 5.1

Ein Knoten $v \in V$ ist genau dann ein DFS-Nachfolger eines Knotens $u \in V$, wenn der Knoten u zum Zeitpunkt v.d des ersten Besuches von v grau ist.

Beweis: Fixiere Zeitpunkt. Seien u_1, \ldots, u_ℓ die grauen Knoten mit $u_1.d < \ldots < u_\ell.d$.

Zeige mit vollständiger Induktion: $\mathbf{u}_1, \dots, \mathbf{u}_\ell$ ist einfacher Weg und Knoten u_i für $i \in \{1, \dots, \ell\}$ besitzt genau die DFS-Vorgänger u_1, \dots, u_{i-1} .

Lemma 5.1

Ein Knoten $v \in V$ ist genau dann ein DFS-Nachfolger eines Knotens $u \in V$, wenn der Knoten u zum Zeitpunkt v.d des ersten Besuches von v grau ist.

Beweis: Fixiere Zeitpunkt. Seien u_1, \ldots, u_ℓ die grauen Knoten mit $u_1.d < \ldots < u_\ell.d$.

Zeige mit vollständiger Induktion: $\mathbf{u}_1, \dots, \mathbf{u}_\ell$ ist einfacher Weg und Knoten u_i für $i \in \{1, \dots, \ell\}$ besitzt genau die DFS-Vorgänger u_1, \dots, u_{i-1} .

Zum aktuellen Zeitpunkt kann nur von u_{ℓ} aus ein neuer Knoten erreicht werden.

Lemma 5.1

Ein Knoten $v \in V$ ist genau dann ein DFS-Nachfolger eines Knotens $u \in V$, wenn der Knoten u zum Zeitpunkt v.d des ersten Besuches von v grau ist.

Beweis: Fixiere Zeitpunkt. Seien u_1, \ldots, u_ℓ die grauen Knoten mit $u_1.d < \ldots < u_\ell.d$.

Zeige mit vollständiger Induktion: $\mathbf{u}_1, \dots, \mathbf{u}_\ell$ ist einfacher Weg und Knoten u_i für $i \in \{1, \dots, \ell\}$ besitzt genau die DFS-Vorgänger u_1, \dots, u_{i-1} .

Zum aktuellen Zeitpunkt kann nur von u_{ℓ} aus ein neuer Knoten erreicht werden.

Wird von u_ℓ aus ein neuer Knoten v erreicht, so besitzt er genau die momentan grauen Knoten u_1, \ldots, u_ℓ als DFS-Vorgänger.

Theorem 5.2

Für jeden (gerichteten oder ungerichteten) Graphen G = (V, E) gilt für jedes Paar $u \in V$ und $v \in V$ von zwei verschiedenen Knoten genau eine der folgenden drei Aussagen.

- 1. Die Intervalle [u.d, u.f] und [v.d, v.f] sind disjunkt und weder u ist ein DFS-Nachfolger von v noch andersherum.
- 2. Es gilt $[u.d, u.f] \subseteq [v.d, v.f]$ und u ist ein DFS-Nachfolger von v.
- 3. Es gilt $[v.d, v.f] \subseteq [u.d, u.f]$ und v ist ein DFS-Nachfolger von u.

Beweis: Sei o. B. d. A. u.d < v.d.

Beweis: Sei o. B. d. A. u.d < v.d.

Da Knoten *u* vor Knoten *v* besucht wird, ist *u* kein DFS-Nachfolger von *v*.

Beweis: Sei o. B. d. A. u.d < v.d.

Da Knoten *u* vor Knoten *v* besucht wird, ist *u* kein DFS-Nachfolger von *v*.

Gilt v.d > u.f, so sind die Intervalle [u.d, u.f] und [v.d, v.f] disjunkt. In diesem Fall ist der Knoten u bereits schwarz, wenn der Knoten v erreicht wird. Gemäß Lemma 5.1 ist v demnach kein DFS-Nachfolger von u.

Beweis: Sei o. B. d. A. u.d < v.d.

Da Knoten *u* vor Knoten *v* besucht wird, ist *u* kein DFS-Nachfolger von *v*.

Gilt v.d > u.f, so sind die Intervalle [u.d, u.f] und [v.d, v.f] disjunkt. In diesem Fall ist der Knoten u bereits schwarz, wenn der Knoten v erreicht wird. Gemäß Lemma 5.1 ist v demnach kein DFS-Nachfolger von u.

Gilt v.d < u.f, so ist der Knoten u zu dem Zeitpunkt, zu dem v erreicht wird, grau. Gemäß Lemma 5.1 ist v damit ein DFS-Nachfolger von u. Außerdem gilt v.f < u.f, denn die Tiefensuche arbeitet erst alle von v ausgehenden Kanten ab, bevor ein Backtracking zu u erfolgt.

Einteilung der Kantenmenge: Situation bei erster Betrachtung von (u, v) in DFS-VISIT.

1. Ist $v.color = wei\beta$, so ist (u, v) eine Tree- oder T-Kante.

Einteilung der Kantenmenge: Situation bei erster Betrachtung von (u, v) in DFS-VISIT.

1. Ist $v.color = wei\beta$, so ist (u, v) eine Tree- oder T-Kante.

- 1. Ist $v.color = wei\beta$, so ist (u, v) eine Tree- oder T-Kante.
- 2. Ist v.color = grau, so ist (u, v) eine Back- oder B-Kante.

- 1. Ist $v.color = wei\beta$, so ist (u, v) eine Tree- oder T-Kante.
- 2. Ist v.color = grau, so ist (u, v) eine Back- oder B-Kante.

- 1. Ist v.color = weiß, so ist (u, v) eine Tree- oder T-Kante.
- 2. Ist v.color = grau, so ist (u, v) eine Back- oder B-Kante.
- 3. Ist v.color = schwarz und v.d > u.d, so ist (u, v) eine Forward- oder F-Kante.

- 1. Ist v.color = weiß, so ist (u, v) eine Tree- oder T-Kante.
- 2. Ist v.color = grau, so ist (u, v) eine Back- oder B-Kante.
- 3. Ist v.color = schwarz und v.d > u.d, so ist (u, v) eine Forward- oder F-Kante.

- 1. Ist v.color = weiß, so ist (u, v) eine Tree- oder T-Kante.
- 2. Ist v.color = grau, so ist (u, v) eine Back- oder B-Kante.
- 3. Ist v.color = schwarz und v.d > u.d, so ist (u, v) eine Forward- oder F-Kante.
- 4. Ist v.color = schwarz und v.d < u.d, so ist (u, v) eine Cross- oder C-Kante.

- 1. Ist v.color = weiß, so ist (u, v) eine Tree- oder T-Kante.
- 2. Ist v.color = grau, so ist (u, v) eine Back- oder B-Kante.
- 3. Ist v.color = schwarz und v.d > u.d, so ist (u, v) eine Forward- oder F-Kante.
- 4. Ist v.color = schwarz und v.d < u.d, so ist (u, v) eine Cross- oder C-Kante.

Lemma 5.3

In einem zusammenhängenden ungerichteten Graphen erzeugt die Tiefensuche nur *T*- und *B*-Kanten.

Lemma 5.3

In einem zusammenhängenden ungerichteten Graphen erzeugt die Tiefensuche nur T- und B-Kanten.

Beweis:

Es sei $\{u, v\}$ eine beliebige Kante des Graphen. O. B. d. A. gelte u.d < v.d.

Lemma 5.3

In einem zusammenhängenden ungerichteten Graphen erzeugt die Tiefensuche nur T- und B-Kanten.

Beweis:

Es sei $\{u, v\}$ eine beliebige Kante des Graphen. O. B. d. A. gelte u.d < v.d.

Bevor u komplett abgearbeitet ist, wird $\{u, v\}$ betrachtet. Passiert dies zuerst ausgehend von u, so ist v zu diesem Zeitpunkt noch weiß und $\{u, v\}$ wird eine T-Kante.

Lemma 5.3

In einem zusammenhängenden ungerichteten Graphen erzeugt die Tiefensuche nur T- und B-Kanten.

Beweis:

Es sei $\{u, v\}$ eine beliebige Kante des Graphen. O. B. d. A. gelte u.d < v.d.

Bevor u komplett abgearbeitet ist, wird $\{u, v\}$ betrachtet. Passiert dies zuerst ausgehend von u, so ist v zu diesem Zeitpunkt noch weiß und $\{u, v\}$ wird eine T-Kante.

Wird v von u aus nicht direkt über die Kante $\{u, v\}$, sondern über Zwischenknoten erreicht, so wird die Kante $\{u, v\}$ zuerst von v ausgehend betrachtet. Sie wird dann eine B-Kante, da u zu diesem Zeitpunkt noch grau ist.

Theorem 5.4

Ein ungerichteter oder gerichteter Graph G ist genau dann kreisfrei, wenn bei der Tiefensuche keine B-Kante erzeugt wird.

Theorem 5.4

Ein ungerichteter oder gerichteter Graph *G* ist genau dann kreisfrei, wenn bei der Tiefensuche keine *B*-Kante erzeugt wird.

Beweis: Erzeugt DFS *B*-Kante (u, v), so ist v grau, wenn u erreicht wird. Gemäß Lemma 5.1 ist u DFS-Nachfolger von v. Also gibt es Weg von v nach u, der zusammen mit der Kante (u, v) einen Kreis bildet.

Theorem 5.4

Ein ungerichteter oder gerichteter Graph G ist genau dann kreisfrei, wenn bei der Tiefensuche keine B-Kante erzeugt wird.

Beweis: Erzeugt DFS *B*-Kante (u, v), so ist v grau, wenn u erreicht wird. Gemäß Lemma 5.1 ist u DFS-Nachfolger von v. Also gibt es Weg von v nach u, der zusammen mit der Kante (u, v) einen Kreis bildet.

Annahme: G gerichtet.

Sei C ein Kreis und $v \in C$ der erste Knoten, der von DFS erreicht wird.

Sei u Vorgänger von v auf C, also $(u, v) \in C$.

Theorem 5.4

Ein ungerichteter oder gerichteter Graph G ist genau dann kreisfrei, wenn bei der Tiefensuche keine B-Kante erzeugt wird.

Beweis: Erzeugt DFS *B*-Kante (u, v), so ist v grau, wenn u erreicht wird. Gemäß Lemma 5.1 ist u DFS-Nachfolger von v. Also gibt es Weg von v nach u, der zusammen mit der Kante (u, v) einen Kreis bildet.

Annahme: G gerichtet.

Sei C ein Kreis und $v \in C$ der erste Knoten, der von DFS erreicht wird.

Sei u Vorgänger von v auf C, also $(u, v) \in C$.

Wenn *v* erreicht wird, sind alle Knoten auf *C* noch weiß.

Theorem 5.4

Ein ungerichteter oder gerichteter Graph G ist genau dann kreisfrei, wenn bei der Tiefensuche keine B-Kante erzeugt wird.

Beweis: Erzeugt DFS *B*-Kante (u, v), so ist v grau, wenn u erreicht wird. Gemäß Lemma 5.1 ist u DFS-Nachfolger von v. Also gibt es Weg von v nach u, der zusammen mit der Kante (u, v) einen Kreis bildet.

Annahme: G gerichtet.

Sei C ein Kreis und $v \in C$ der erste Knoten, der von DFS erreicht wird.

Sei u Vorgänger von v auf C, also $(u, v) \in C$.

Wenn *v* erreicht wird, sind alle Knoten auf *C* noch weiß.

Alle Knoten aus *C* werden besucht, bevor *v* abgearbeitet ist.

Theorem 5.4

Ein ungerichteter oder gerichteter Graph G ist genau dann kreisfrei, wenn bei der Tiefensuche keine B-Kante erzeugt wird.

Beweis: Erzeugt DFS *B*-Kante (u, v), so ist v grau, wenn u erreicht wird. Gemäß Lemma 5.1 ist u DFS-Nachfolger von v. Also gibt es Weg von v nach u, der zusammen mit der Kante (u, v) einen Kreis bildet.

Annahme: G gerichtet.

Sei C ein Kreis und $v \in C$ der erste Knoten, der von DFS erreicht wird.

Sei u Vorgänger von v auf C, also $(u, v) \in C$.

Wenn *v* erreicht wird, sind alle Knoten auf *C* noch weiß.

Alle Knoten aus C werden besucht, bevor ν abgearbeitet ist.

Somit wird *u* besucht, während *v* grau ist.

Theorem 5.4

Ein ungerichteter oder gerichteter Graph G ist genau dann kreisfrei, wenn bei der Tiefensuche keine B-Kante erzeugt wird.

Beweis: Erzeugt DFS *B*-Kante (u, v), so ist v grau, wenn u erreicht wird. Gemäß Lemma 5.1 ist u DFS-Nachfolger von v. Also gibt es Weg von v nach u, der zusammen mit der Kante (u, v) einen Kreis bildet.

Annahme: *G* gerichtet.

Sei C ein Kreis und $v \in C$ der erste Knoten, der von DFS erreicht wird.

Sei u Vorgänger von v auf C, also $(u, v) \in C$.

Wenn *v* erreicht wird, sind alle Knoten auf *C* noch weiß.

Alle Knoten aus C werden besucht, bevor v abgearbeitet ist.

Somit wird *u* besucht, während *v* grau ist.

Von u aus wird die Kante (u, v) betrachtet und als B-Kante markiert.

G = (V, E) ungerichtet: $v \rightsquigarrow u : \iff$ Es gibt Weg von v nach u in G.

Äquivalenzklassen von → heißen Zusammenhangskomponenten von G.

G heißt zusammenhängend wenn er nur eine Zusammenhangskomponente besitzt.

Theorem 5.5

In einem ungerichteten Graphen bilden die \mathcal{T} -Kanten einen Wald, dessen Zusammenhangskomponenten genau die Zusammenhangskomponenten des Graphen sind.

G = (V, E) ungerichtet: $v \rightsquigarrow u : \iff$ Es gibt Weg von v nach u in G.

Äquivalenzklassen von → heißen Zusammenhangskomponenten von G.

G heißt zusammenhängend wenn er nur eine Zusammenhangskomponente besitzt.

Theorem 5.5

In einem ungerichteten Graphen bilden die \mathcal{T} -Kanten einen Wald, dessen Zusammenhangskomponenten genau die Zusammenhangskomponenten des Graphen sind.

Beweis: *T*-Kanten können keinen Kreis bilden.

G = (V, E) ungerichtet: $v \rightsquigarrow u : \iff$ Es gibt Weg von v nach u in G.

Äquivalenzklassen von → heißen Zusammenhangskomponenten von G.

G heißt zusammenhängend wenn er nur eine Zusammenhangskomponente besitzt.

Theorem 5.5

In einem ungerichteten Graphen bilden die T-Kanten einen Wald, dessen Zusammenhangskomponenten genau die Zusammenhangskomponenten des Graphen sind.

Beweis: T-Kanten können keinen Kreis bilden.

Zwischen zwei Knoten aus derselben Zusammenhangskomponente gibt es Weg über T-Kanten: Sei eine beliebige Zusammenhangskomponenten fixiert und sei u der erste Knoten aus dieser Komponente, der von der Tiefensuche besucht wird. Wie im Beweis von Theorem 5.4 kann man argumentieren, dass jeder Knoten v, der von u aus erreichbar ist, ein DFS-Nachfolger von u wird.

Theorem 5.6

Die Laufzeit von Tiefensuche auf einem Graphen G = (V, E) beträgt $\Theta(|V| + |E|)$, wenn der Graph als Adjazenzliste gegeben ist.

Breitensuche/Breadth-First Search (BFS)

```
BFS(G = (V, E), s)
       for each (u \in V \setminus \{s\}) {
             u.\operatorname{color} = \operatorname{wei} B; u.\pi = \operatorname{null}; u.d = \infty;
 3
       s.color = grau; \ s.\pi = null; \ s.d = 0;
       Q = \emptyset:
       Q.enqueue(s);
       while (Q \neq \emptyset) {
             u = Q.dequeue();
             for each ((u, v) \in E) {
                  if (v.color == weiß) {
10
                        v.\text{color} = \text{grau}; \ v.\pi = u; \ v.d = u.d + 1;
                        Q.enqueue(v);
13
14
15
             u.color = schwarz:
16
```


Beispiel für Breitensuche

Theorem 5.7

Die Laufzeit von Breitensuche auf einem Graphen G = (V, E) beträgt O(|V| + |E|), wenn der Graph als Adjazenzliste gegeben ist.

Definition: $\delta(u, v) = \text{Länge des kürzesten Weges von } u \text{ nach } v.$

Definition: $\delta(u, v) = \text{Länge des kürzesten Weges von } u \text{ nach } v.$

Theorem 5.8

Sei G = (V, E) ein beliebiger Graph und sei $s \in V$ ein beliebiger Knoten. Nachdem die Breitensuche BFS(G, s) abgeschlossen ist, gilt $u \cdot d = \delta(s, u)$ für jeden Knoten $u \in V$.

Definition: $\delta(u, v) = \text{Länge des kürzesten Weges von } u \text{ nach } v.$

Theorem 5.8

Sei G = (V, E) ein beliebiger Graph und sei $s \in V$ ein beliebiger Knoten. Nachdem die Breitensuche BFS(G, s) abgeschlossen ist, gilt $u \cdot d = \delta(s, u)$ für jeden Knoten $u \in V$.

Für jeden Knoten $u \in V$ mit $\delta(s,u) < \infty$ kann ein kürzester Weg von s zu u rückwärts von u aus konstruiert werden, indem man vom aktuellen Knoten v stets zu seinem Vorgänger $v.\pi$ geht.

Lemma 5.9

Es sei $G=(\mathit{V},\mathit{E})$ ein beliebiger Graph und es sei $s\in\mathit{V}$ ein beliebiger Knoten. Für jede

Kante $(u, v) \in E$ gilt $\delta(s, v) \leq \delta(s, u) + 1$.

Lemma 5.9

Es sei G=(V,E) ein beliebiger Graph und es sei $s\in V$ ein beliebiger Knoten. Für jede Kante $(u,v)\in E$ gilt $\delta(s,v)\leq \delta(s,u)+1$. Ist die Kante $(u,v)\in E$ in einem kürzesten Weg von s nach v enthalten, so gilt sogar $\delta(s,v)=\delta(s,u)+1$.

Lemma 5.9

Es sei G=(V,E) ein beliebiger Graph und es sei $s\in V$ ein beliebiger Knoten. Für jede Kante $(u,v)\in E$ gilt $\delta(s,v)\leq \delta(s,u)+1$. Ist die Kante $(u,v)\in E$ in einem kürzesten Weg von s nach v enthalten, so gilt sogar $\delta(s,v)=\delta(s,u)+1$.

Beweis:

Sei $\delta(s, u) < \infty$. Hänge an kürzesten s-u-Weg die Kante $(u, v) \in E$ an. Dies ergibt s-v-Weg der Länge $\delta(s, u) + 1$.

Lemma 5.9

Es sei G=(V,E) ein beliebiger Graph und es sei $s\in V$ ein beliebiger Knoten. Für jede Kante $(u,v)\in E$ gilt $\delta(s,v)\leq \delta(s,u)+1$. Ist die Kante $(u,v)\in E$ in einem kürzesten Weg von s nach v enthalten, so gilt sogar $\delta(s,v)=\delta(s,u)+1$.

Beweis:

Sei $\delta(s,u)<\infty$. Hänge an kürzesten s-u-Weg die Kante $(u,v)\in E$ an.

Dies ergibt s-v-Weg der Länge $\delta(s, u) + 1$.

Sei P ein kürzester s-v-Weg, der die Kante (u, v) enthält.

Dann ist $P' = P \setminus \{(u, v)\}$ ein kürzester *s-u*-Weg.

Also
$$\delta(s, v) = \delta(s, u) + 1$$
.

Lemma 5.10

Sei G=(V,E) ein beliebiger Graph und sei $s\in V$ ein beliebiger Knoten. Nach Ausführung von Zeile 3 in BFS(G,s), gilt $u.d\geq \delta(s,u)$ für jeden Knoten $u\in V$.

Lemma 5.10

Sei G=(V,E) ein beliebiger Graph und sei $s\in V$ ein beliebiger Knoten. Nach Ausführung von Zeile 3 in BFS(G,s), gilt $u.d \geq \delta(s,u)$ für jeden Knoten $u\in V$.

Beweis:

Induktion über die Anzahl an Knoten, die bislang in die Queue eingefügt wurden:

Lemma 5.10

Sei G=(V,E) ein beliebiger Graph und sei $s\in V$ ein beliebiger Knoten. Nach Ausführung von Zeile 3 in BFS(G,s), gilt $u.d\geq \delta(s,u)$ für jeden Knoten $u\in V$.

Beweis:

Induktion über die Anzahl an Knoten, die bislang in die Queue eingefügt wurden: Induktionsanfang: Nach Einfügen von s: s. $d = \delta(s, s) = 0$;

$$\forall u \in V \setminus \{s\} : u.d = \infty \geq \delta(s, u).$$

Lemma 5.10

Sei G=(V,E) ein beliebiger Graph und sei $s\in V$ ein beliebiger Knoten. Nach Ausführung von Zeile 3 in BFS(G,s), gilt $u.d\geq \delta(s,u)$ für jeden Knoten $u\in V$.

Beweis:

Induktion über die Anzahl an Knoten, die bislang in die Queue eingefügt wurden:

Induktionsanfang: Nach Einfügen von s: $s.d = \delta(s, s) = 0$;

$$\forall u \in V \setminus \{s\} : u.d = \infty \geq \delta(s, u).$$

Induktionsschritt: Während der Bearbeitung von *u* wird *v* der Queue hinzugefügt.

Lemma 5.10

Sei G=(V,E) ein beliebiger Graph und sei $s\in V$ ein beliebiger Knoten. Nach Ausführung von Zeile 3 in BFS(G,s), gilt $u.d\geq \delta(s,u)$ für jeden Knoten $u\in V$.

Beweis:

Induktion über die Anzahl an Knoten, die bislang in die Queue eingefügt wurden:

Induktionsanfang: Nach Einfügen von s: s. $d = \delta(s, s) = 0$;

$$\forall u \in V \setminus \{s\} : u.d = \infty \geq \delta(s, u).$$

Induktionsschritt: Während der Bearbeitung von u wird v der Queue hinzugefügt.

Dann $(u, v) \in E$ und es wird v.d = u.d + 1 gesetzt.

Lemma 5.10

Sei G=(V,E) ein beliebiger Graph und sei $s\in V$ ein beliebiger Knoten. Nach Ausführung von Zeile 3 in BFS(G,s), gilt $u.d\geq \delta(s,u)$ für jeden Knoten $u\in V$.

Beweis:

Induktion über die Anzahl an Knoten, die bislang in die Queue eingefügt wurden:

Induktionsanfang: Nach Einfügen von s: $s.d = \delta(s, s) = 0$;

$$\forall u \in V \setminus \{s\} : u.d = \infty \geq \delta(s, u).$$

Induktionsschritt: Während der Bearbeitung von u wird v der Queue hinzugefügt.

Dann $(u, v) \in E$ und es wird v.d = u.d + 1 gesetzt.

Lemma 5.9 besagt $\delta(s, v) \leq \delta(s, u) + 1$.

Lemma 5.10

Sei G = (V, E) ein beliebiger Graph und sei $s \in V$ ein beliebiger Knoten. Nach Ausführung von Zeile 3 in BFS(G, s), gilt $u.d \ge \delta(s, u)$ für jeden Knoten $u \in V$.

Beweis:

Induktion über die Anzahl an Knoten, die bislang in die Queue eingefügt wurden:

Induktionsanfang: Nach Einfügen von s: $s.d = \delta(s, s) = 0$;

$$\forall u \in V \setminus \{s\} : u.d = \infty \geq \delta(s, u).$$

Induktionsschritt: Während der Bearbeitung von *u* wird *v* der Queue hinzugefügt.

Dann $(u, v) \in E$ und es wird v.d = u.d + 1 gesetzt.

Lemma 5.9 besagt $\delta(s, v) \leq \delta(s, u) + 1$.

Induktionsannahme impliziert $u.d \ge \delta(s, u)$.

Lemma 5.10

Sei G=(V,E) ein beliebiger Graph und sei $s\in V$ ein beliebiger Knoten. Nach Ausführung von Zeile 3 in BFS(G,s), gilt $u.d\geq \delta(s,u)$ für jeden Knoten $u\in V$.

Beweis:

Induktion über die Anzahl an Knoten, die bislang in die Queue eingefügt wurden: Induktionsanfang: Nach Einfügen von s: s. $d = \delta(s, s) = 0$;

$$\forall u \in V \setminus \{s\} : u.d = \infty > \delta(s, u).$$

Induktionsschritt: Während der Bearbeitung von *u* wird *v* der Queue hinzugefügt.

Dann $(u, v) \in E$ und es wird v.d = u.d + 1 gesetzt.

Lemma 5.9 besagt $\delta(s, v) \leq \delta(s, u) + 1$.

Induktionsannahme impliziert $u.d \ge \delta(s, u)$.

$$\Rightarrow v.d = u.d + 1 \ge \delta(s, u) + 1 \ge \delta(s, v).$$

Lemma 5.11

Enthält die Queue Q während der Ausführung von BFS(G, s) zu einem Zeitpunkt die Knoten v_1, \ldots, v_r in dieser Reihenfolge (wobei v_1 von diesen Elementen das erste ist, das eingefügt wurde), so gilt $v_i.d \le v_{i+1}.d$ für alle $i \in \{1, \ldots, r-1\}$ und $v_r.d \le v_1.d+1$.

Lemma 5.11

Enthält die Queue Q während der Ausführung von BFS(G, s) zu einem Zeitpunkt die Knoten v_1, \ldots, v_r in dieser Reihenfolge (wobei v_1 von diesen Elementen das erste ist, das eingefügt wurde), so gilt $v_i.d \le v_{i+1}.d$ für alle $i \in \{1, \ldots, r-1\}$ und $v_r.d \le v_1.d+1$.

Beweis:

Induktion über die Anzahl an dequeue-Operationen:

Lemma 5.11

Enthält die Queue Q während der Ausführung von BFS(G, s) zu einem Zeitpunkt die Knoten v_1, \ldots, v_r in dieser Reihenfolge (wobei v_1 von diesen Elementen das erste ist, das eingefügt wurde), so gilt $v_i.d \le v_{i+1}.d$ für alle $i \in \{1, \ldots, r-1\}$ und $v_r.d \le v_1.d+1$.

Beweis:

Induktion über die Anzahl an dequeue-Operationen:

Induktionsanfang: Trivial, da nur *s* in der Queue.

Lemma 5.11

Enthält die Queue Q während der Ausführung von BFS(G, s) zu einem Zeitpunkt die Knoten v_1, \ldots, v_r in dieser Reihenfolge (wobei v_1 von diesen Elementen das erste ist, das eingefügt wurde), so gilt $v_i.d \le v_{i+1}.d$ für alle $i \in \{1, \ldots, r-1\}$ und $v_r.d \le v_1.d+1$.

Beweis:

Induktion über die Anzahl an dequeue-Operationen:

Induktionsanfang: Trivial, da nur s in der Queue.

Induktionsschritt: Betrachte eine dequeue-Operation mit der Knoten v_1 aus der Queue entfernt wird. Danach ist v_2 der neue erste Knoten in der Queue und die Aussagen des Lemmas sind noch immer erfüllt, denn es gilt $v_r.d \le v_1.d + 1 \le v_2.d + 1$.

Lemma 5.11

Enthält die Queue Q während der Ausführung von BFS(G, s) zu einem Zeitpunkt die Knoten v_1, \ldots, v_r in dieser Reihenfolge (wobei v_1 von diesen Elementen das erste ist, das eingefügt wurde), so gilt $v_i.d \le v_{i+1}.d$ für alle $i \in \{1, \ldots, r-1\}$ und $v_r.d \le v_1.d+1$.

Beweis:

Induktion über die Anzahl an dequeue-Operationen:

Induktionsanfang: Trivial, da nur s in der Queue.

Induktionsschritt: Betrachte eine dequeue-Operation mit der Knoten v_1 aus der Queue entfernt wird. Danach ist v_2 der neue erste Knoten in der Queue und die Aussagen des Lemmas sind noch immer erfüllt, denn es gilt $v_r.d \le v_1.d+1 \le v_2.d+1$.

Zu $u=v_1$ adjazente Knoten $v_{r+1},\ldots,v_{r+\ell}$ werden an das Ende der Queue angefügt. Es gilt $v_{r+1}.d=\ldots=v_{r+\ell}.d=v_1.d+1$.

Lemma 5.11

Enthält die Queue Q während der Ausführung von BFS(G, s) zu einem Zeitpunkt die Knoten v_1, \ldots, v_r in dieser Reihenfolge (wobei v_1 von diesen Elementen das erste ist, das eingefügt wurde), so gilt $v_i.d \le v_{i+1}.d$ für alle $i \in \{1, \ldots, r-1\}$ und $v_r.d \le v_1.d+1$.

Beweis:

Induktion über die Anzahl an dequeue-Operationen:

Induktionsanfang: Trivial, da nur s in der Queue.

Induktionsschritt: Betrachte eine dequeue-Operation mit der Knoten v_1 aus der Queue entfernt wird. Danach ist v_2 der neue erste Knoten in der Queue und die Aussagen des Lemmas sind noch immer erfüllt, denn es gilt $v_r.d \le v_1.d+1 \le v_2.d+1$.

Zu $u=v_1$ adjazente Knoten $v_{r+1},\ldots,v_{r+\ell}$ werden an das Ende der Queue angefügt. Es gilt $v_{r+1}.d=\ldots=v_{r+\ell}.d=v_1.d+1$. Also $v_{r+i}.d=v_1.d+1\leq v_2.d+1$ für alle i.

Lemma 5.11

Enthält die Queue Q während der Ausführung von BFS(G, s) zu einem Zeitpunkt die Knoten v_1, \ldots, v_r in dieser Reihenfolge (wobei v_1 von diesen Elementen das erste ist, das eingefügt wurde), so gilt $v_i.d \le v_{i+1}.d$ für alle $i \in \{1, \ldots, r-1\}$ und $v_r.d \le v_1.d+1$.

Beweis:

Induktion über die Anzahl an dequeue-Operationen:

Induktionsanfang: Trivial, da nur s in der Queue.

Induktionsschritt: Betrachte eine dequeue-Operation mit der Knoten v_1 aus der Queue entfernt wird. Danach ist v_2 der neue erste Knoten in der Queue und die Aussagen des Lemmas sind noch immer erfüllt, denn es gilt $v_r.d \le v_1.d+1 \le v_2.d+1$.

Zu $u=v_1$ adjazente Knoten $v_{r+1},\ldots,v_{r+\ell}$ werden an das Ende der Queue angefügt. Es gilt $v_{r+1}.d=\ldots=v_{r+\ell}.d=v_1.d+1$. Also $v_{r+i}.d=v_1.d+1\leq v_2.d+1$ für alle i. Ferner gilt aufgrund der Induktionsannahme $v_r.d\leq v_1.d+1=v_{r+i}.d$.

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Sei w Vorgänger von u' auf P. Nach Wahl von u' gilt $w.d = \delta(s, w)$.

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Sei w Vorgänger von u' auf P. Nach Wahl von u' gilt $w.d = \delta(s, w)$.

Gemäß Lemma 5.9 und Lemma 5.10 gilt $u'.d > \delta(s, u') = \delta(s, w) + 1$.

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Sei w Vorgänger von u' auf P. Nach Wahl von u' gilt $w.d = \delta(s, w)$.

Gemäß Lemma 5.9 und Lemma 5.10 gilt $u'.d > \delta(s, u') = \delta(s, w) + 1$.

Betrachte Farbe von u', zum Zeitpunkt, dass w entfernt wird:

1) u' ist grau oder schwarz: dann ist u' von einem Knoten x vorher erreicht worden.

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Sei w Vorgänger von u' auf P. Nach Wahl von u' gilt $w.d = \delta(s, w)$.

Gemäß Lemma 5.9 und Lemma 5.10 gilt $u'.d > \delta(s, u') = \delta(s, w) + 1$.

Betrachte Farbe von u', zum Zeitpunkt, dass w entfernt wird:

1) u' ist grau oder schwarz: dann ist u' von einem Knoten x vorher erreicht worden.

Vor w nur Knoten x mit $x.d \le w.d = \delta(s, w)$ aus der Queue entfernt (Lemma 5.11).

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Sei w Vorgänger von u' auf P. Nach Wahl von u' gilt $w.d = \delta(s, w)$.

Gemäß Lemma 5.9 und Lemma 5.10 gilt $u'.d > \delta(s, u') = \delta(s, w) + 1$.

Betrachte Farbe von u', zum Zeitpunkt, dass w entfernt wird:

1) u' ist grau oder schwarz: dann ist u' von einem Knoten x vorher erreicht worden.

Vor w nur Knoten x mit $x.d \le w.d = \delta(s, w)$ aus der Queue entfernt (Lemma 5.11).

$$u'.d \le x.d + 1 \le w.d + 1 = \delta(s, w) + 1 = \delta(s, u')$$

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Sei w Vorgänger von u' auf P. Nach Wahl von u' gilt $w.d = \delta(s, w)$.

Gemäß Lemma 5.9 und Lemma 5.10 gilt $u'.d > \delta(s, u') = \delta(s, w) + 1$.

Betrachte Farbe von u', zum Zeitpunkt, dass w entfernt wird:

1) u' ist grau oder schwarz: dann ist u' von einem Knoten x vorher erreicht worden.

Vor w nur Knoten x mit $x.d \le w.d = \delta(s, w)$ aus der Queue entfernt (Lemma 5.11).

$$u'.d \le x.d + 1 \le w.d + 1 = \delta(s, w) + 1 = \delta(s, u')$$

Mit Lemma 5.10 folgt daraus $u'.d = \delta(s, u')$, was im Widerspruch zur Wahl von u' steht.

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Sei w Vorgänger von u' auf P. Nach Wahl von u' gilt $w.d = \delta(s, w)$.

Gemäß Lemma 5.9 und Lemma 5.10 gilt $u'.d > \delta(s, u') = \delta(s, w) + 1$.

Betrachte Farbe von u', zum Zeitpunkt, dass w entfernt wird:

1) u' ist grau oder schwarz: dann ist u' von einem Knoten x vorher erreicht worden.

Vor w nur Knoten x mit $x.d \le w.d = \delta(s, w)$ aus der Queue entfernt (Lemma 5.11).

$$u'.d \le x.d + 1 \le w.d + 1 = \delta(s, w) + 1 = \delta(s, u')$$

Mit Lemma 5.10 folgt daraus $u'.d = \delta(s, u')$, was im Widerspruch zur Wahl von u' steht.

2) u' ist weiss: dann wird u' bei Betrachtung von w in die Queue eingefügt:

$$u'.d = w.d + 1 = \delta(s, w) + 1 = \delta(s, u').$$

Beweis von Theorem 5.8: Annahme: Es gibt Knoten $u \in V$ mit $u.d \neq \delta(s, u)$.

Sei P kürzester s-u-Weg und sei u' erster solcher Knoten entlang P.

Sei w Vorgänger von u' auf P. Nach Wahl von u' gilt $w.d = \delta(s, w)$.

Gemäß Lemma 5.9 und Lemma 5.10 gilt $u'.d > \delta(s, u') = \delta(s, w) + 1$.

Betrachte Farbe von u', zum Zeitpunkt, dass w entfernt wird:

1) u' ist grau oder schwarz: dann ist u' von einem Knoten x vorher erreicht worden.

Vor w nur Knoten x mit $x.d \le w.d = \delta(s, w)$ aus der Queue entfernt (Lemma 5.11).

$$u'.d \le x.d + 1 \le w.d + 1 = \delta(s, w) + 1 = \delta(s, u')$$

Mit Lemma 5.10 folgt daraus $u'.d = \delta(s, u')$, was im Widerspruch zur Wahl von u' steht.

2) u' ist weiss: dann wird u' bei Betrachtung von w in die Queue eingefügt:

$$u'.d = w.d + 1 = \delta(s, w) + 1 = \delta(s, u').$$

Dies ist ebenfalls Widerspruch zur Wahl von u'.

Beweis von Theorem 5.8:

Für jede Kante der Form $(v.\pi, v)$ gilt $v.d = v.\pi.d + 1$.

Beweis von Theorem 5.8:

Für jede Kante der Form $(v.\pi, v)$ gilt $v.d = v.\pi.d + 1$.

 \Rightarrow Folgen wir Kanten der Form $(v.\pi, v)$ von s zu $u \in V$, so erhalten wir Weg der

Länge $u.d = \delta(s, u)$.