Variable compleja

Los números complejos

Definición 1.1 Un número complejo es una expresión a+bi donde $a,b\in\mathbb{R}$ y i es la unidad imaginaria, fruto de resolver la ecuación $x^2+1=0$ en \mathbb{R} . Así, definimos $i=\sqrt{-1}$. Si $z\in\mathbb{C}=a+bi$, $a=\operatorname{Re} z$ y $b=\operatorname{Im} z$ son la parte **real** e **imaginaria** de z.

Definición 1.2 La **suma** y **multiplicación** están definidas en los complejos así:

$$(x_1 + y_1i) + (x_2 + y_2i) = (x_1 + x_2) + (y_1 + y_2)i$$

$$(x_1 + y_1i)(x_2 + y_2i) = (x_1x_2 - y_1y_2) + (x_1y_2 + x_2y_1)i$$

Y con estas operaciones (\mathbb{C} , +, ·) es un cuerpo, con $0_{\mathbb{C}} = 0 + 0i$ y $1_{\mathbb{C}} = 1 + 0i$.

Definición 1.3 Dado un complejo z = x + yi, llamamos **conjugado** de z, \overline{z} a x - yi.

Proposición 1.3.1 Se verifica que $\overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$ y $\overline{z_1 z_2} = \overline{z_1} \cdot \overline{z_2}$.

Definición 1.4.1 Se denomina **módulo** de un complejo z = x + yi, |z| a $\sqrt{x^2 + y^2}$. Se cumple que $|z| = \sqrt{z\overline{z}}$. El módulo cumple que (1) $|z| \ge 0$, (2) $|z| = 0 \iff z = 0$, (3) $|z_1z_2| = |z_1||z_2|$ y (4) $|z_1 + z_2| \le |z_1| + |z_2|$

Demostración. (4)
$$|z_1 + z_2|^2 = (z_1 + z_2) (\overline{z_1 + z_2}) = (z_1 + z_2) (\overline{z_1} + \overline{z_2}) = z_1 \overline{z_1} + z_1 \overline{z_2} + z_2 \overline{z_1} + z_2 \overline{z_2} = z_1 \overline{z_1} + z_1 \overline{z_2} + z_1 \overline{z_2} + z_2 \overline{z_2} = |z_1|^2 + |z_2|^2 + 2 \operatorname{Re}(z_1 \overline{z_2}) \le |z_1|^2 + |z_2|^2 + 2 |z_1| |z_2| = (|z_1| + |z_2|)^2$$

Definición 1.5 Dado un z = a + bi, aplicando u = p + iq = z/|z|, entonces $|u| = 1 = p^2 + q^2$. El ángulo tal que $p = \cos \alpha$, $q = \sin \alpha$ se denomina **argumento**, arg z. Así, z puede representarse como $z = |z|(\cos \alpha + i \sin \alpha)$. Esta forma es la **forma polar**, y también se representa como $z = |z|e^{i\alpha}$.x

El argumento cumple que (1) arg $\overline{z} = -\arg z$ y (2) arg $z_1z_2 = \arg z_1 + \arg z_2$.

Definición 1.7 / 1.8 El espacio topológico (\mathbb{C} , δ_E) con distancia euclídea no es compacto. Sin embargo, si tomamos $\hat{\mathbb{C}} = \mathbb{C} \cup \{\infty\}$ entonces sí es compacto, y lo denominamos **plano complejo ampliado**. La **esfera de Riemann**, \mathbb{S} , es la representación del conjunto $\hat{\mathbb{C}}$ en $\mathbb{R}^3_{(\xi,\eta,\zeta)}$ en una esfera con centro (0, 0, 1/2) con ecuación $\xi^2 + \eta^2 + \zeta^2 - \zeta = 0$.

La relación entre la esfera y el plano es

$$\xi = \frac{x}{1+x^2+y^2}, \eta = \frac{y}{1+x^2+y^2}, \zeta = \frac{x^2+y^2}{1+x^2+y^2}$$

La **distancia cordal** entre dos puntos z_1, z_2 es la distancia euclídea entre los puntos P_1, P_2 de la esfera de la esfera de Riemman.

$$\delta(z_1, z_2) = \sqrt{(\xi_1 - \xi_2)^2 + (\eta_1 - \eta_2)^2 + (\zeta_1 - \zeta_2)^2} = \frac{\sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2}}{\sqrt{(1 + x_1^2 + y_1^2)(1 + x_2^2 + y_2^2)}}$$

Para un punto en el infinito, la distancia es $\delta(z,\infty) = \frac{1}{\sqrt{1+x^2+y^2}}$

Funciones complejas

Definición 2.0 Una función puede ser de tipo $f: \mathbb{R} \to \mathbb{C}$ (f. compleja de var. real) o $f: \mathbb{C} \to \mathbb{C}$ (f. compleja de var. compleja).

Definición 2.1.1 f = f(z) es **continua** en $z_0 \in \mathbb{C}$ si para todo $\epsilon > 0$ existe $\delta > 0$ tal que si $|z - z_0| < \delta$ entonces $|f(z) - f(z_0)| < \epsilon$. f es **uniformemente continua** en $B \subset \mathbb{C}$ si dado $\epsilon > 0$ existe $\delta > 0$ tal que para todo $z_0 \in B$ y para todo z tal que $|z - z_0| < \delta$ entonces $|f(z) - f(z_0)| < \epsilon$. Si f es uniformemente continua es continua, pero no siempre a la inversa.

Teorema 2.1.1 Si $f_1(z)$, $f_2(z)$ están definidas en $A \subset \mathbb{C}$, A abierto, y son continuas en $z_0 \in A$, $f_1 + f_2$ y f_1/f_2 son continuas en z_0 . Así, los polinomios complejos son continuos.

Definición 2.1.2 Una función f(z) en $A \subset \mathbb{S}$ es continua en z_0 si para todo $\epsilon > 0$ existe $\eta > 0$ tal que para todo $z \in A$ donde $\delta(z, z_0) < \eta$ entonces $\delta(f(z_0), f(z)) < \epsilon$.

Definición 2.2.1, 2.2.2 Una función f(z) es **derivable** en z_0 si existe el límite $\lim_{z\to z_0} \frac{f(z)-f(z_0)}{z-z_0}$ y es finito. Si $z_0=\infty$, consideramos g(z)=f(1/z) y f es derivable en ∞ si g es derivable en z=0. Una función $f:A\subset\mathbb{C}\to\mathbb{C}$ derivable en todo A se llama función **holomorfa** o **analítica.**

Proposición 2.3.2 Si f es derivable en un punto, también es continua en ese punto.

Proposición 2.3.4 (Regla de la cadena) Sean $g: A \to \mathbb{C}$ y $f: B \to \mathbb{C}$ tales que $g(A) \subset B$. Si g es derivable en z_0 y f es derivable en $g(z_0)$ entonces $f \circ g'(z_0) = f'(g(z_0))g'(z_0)$.

Definición 2.4.1 Una función $f: A \to \mathbb{C}$ es conforme en z_0 si existe exsite $\theta \in [0, 2\pi]$ tal que cualquier curva $\gamma(t)$ diferenciable en t_0 , $\gamma(t_0) = z_0$ y $\gamma'(t_0) \neq 0$ se transforma por f en una curva $\sigma(t) = f(\gamma(t))$ diferenciable en t_0 tal que $\sigma'(t_0) = \gamma'(t_0) + \theta$. Si α es el ángulo en el punto de cruce z_0 entre γ_1 , γ_2 , entonces el ángulo de $f(\gamma_1)$, $f(\gamma_2)$ es α .

Teorema 2.4.1 Si f es derivable en z_0 y $f'(z_0) \neq 0$ entonces f es conforme en z_0 y $\theta = \arg f'(z_0)$. Si f es holomorfa, es conforme. Demostración. Por la regla de la cadena, $\sigma'(t_0) = f'(\gamma(t_0)) \cdot \gamma'(t_0)$ y $\arg \sigma'(t_0) = \arg f'(\gamma(t_0)) + \arg \gamma'(t_0)$

Definición 2.5.1 Una función de variable compleja puede transformarse a una función $f : \mathbb{R}^2 \to \mathbb{R}^2$: f(x,y) = (u(x,y) + v(x,y)) = u(x,y) + v(x,y)i

Teorema 2.5.1 (Ecuaciones de Cauchy-Riemman)

Sea f. $f'(z_0)$ existe sii f es diferenciable como función de dos variables y las funciones u(x, y), v(x, y) satisfacen

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y}, \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$

Demostración. Suponemos f derivable en z_0 complejo, con derivada $\lambda = f'(z_0)$. Si tomamos la aplicación lineal $l_c: \mathbb{C} \to \mathbb{C}; \eta \to \lambda \eta$. Entonces $\lim_{\eta \to 0} \left| \frac{f(z_0 + \eta) - f(z_0)}{\eta} - \lambda \right| = \lim_{\eta \to 0} \frac{|f(z_0 + \eta) - f(z_0) - l_c(\eta)|}{|\eta|} = 0$. Escribiendo $f(z_0)$ y $l_c(\eta)$ como componentes reales: (1) $f(z_0) = u(x_0, y_0) + v(x_0, y_0)i = (u(x_0, y_0), v(x_0, y_0))$ su jacobiano es $D = \begin{bmatrix} \frac{\partial u}{\partial x} & \frac{\partial u}{\partial y} \\ \frac{\partial v}{\partial x} & \frac{\partial v}{\partial y} \end{bmatrix}$ y (2) $l_c(\eta) = \lambda \eta = (\lambda_1 + \lambda_2 i)(\eta_1 + \eta_2 i) = (\lambda_1 \eta_1 - \lambda_2 \eta_2, \lambda_1 \eta_2 + \lambda_2 \eta_1)$, que como aplicación lineal $\mathbb{R}^2 \to \mathbb{R}^2$ es $A = \begin{bmatrix} \lambda_1 & -\lambda_2 \\ \lambda_2 & \lambda_1 \end{bmatrix}$. Como el jacobiano la derivada de f en los reales, y A es también la diferencial de f en z_0 , D = A, y se dan las ecuaciones.

Teorema 2.6.1 (Teorema de la función inversa)

Sea f analítica con derivada continua en A. Sea $z_0 \in A$ tal que $f'(z_0) \neq 0$. Entonces, existen U, V abiertos tal que $z_0 \in U$, $f(z_0) \in V$ y $f: U \to V$ es biyectiva. Además, f^{-1} es analítica en V y para todo $z \in U$, $(f^{-1})'(f(z)) = \frac{1}{f'(z)}$.

Series de potencias. Funciones elementales

Definición 3.0.1 Una **sucesión** de complejos es una aplicación $\mathbb{N} \to \mathbb{C}$ tal que para cada $n \in \mathbb{N}$ se le corresponde $a_n \in \mathbb{C}$.

complejos $\{A_n\}_{n\in\mathbb{N}}$ tal que $A_n = \sum_{i=0}^n a_i$.

Definición 3.0.3 Una sucesión es de Cauchy o fun**damental** si dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para todo $n_1, n_2 \ge n_0$, se tiene que $|a_{n_1} - a_{n_2}| < \epsilon$.

Definición 3.0.4 Se dice que $\{a_n\}_{n\in\mathbb{N}}$ es **convergente** a a si dado $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que para todo $n \ge n_0$ se tiene $|a_n - a| < \epsilon$, y diremos $\lim_{n\to\infty} a_n = a$. Asimismo, A_n es convergente a A $\operatorname{si\,lim}_{n\to\infty} A_n = A.$

Definición 3.0.5 Una serie A_n es absolutamente convergente si la serie $\sum |a_n|$ es convergente.

Teorema 3.1.1 (Criterio de la raíz) Dado $\sum_{i=1}^{\infty} a_i$, sea $\lambda = \lim_{n \to \infty} \sup \sqrt[n]{|a_n|}$. Si $\lambda < 1$ la serie converge y si $\lambda > 1$ diverge.

Teorema 3.1.2 (Criterio del cociente) Dado $\sum_{i=1}^{\infty} a_i$ sea $\beta = \lim_{n \to \infty} \frac{|a_n|}{|a_{n-1}|}$, si $\beta < 1$ la serie converge, y si $\beta > 1$ diverge.

Definición 3.2.0 Una sucesión de variable compleja es una aplicación de tal manera que a cada $n \in \mathbb{N}$ le corresponde una función f_n : $A \to \mathbb{C}$. Representamos la sucesión por $\{f_n\}_{n\in\mathbb{N}}$. Asimismo, una serie de funciones de variable compleja es el resultado de sumar dichas funciones: $F_n(z) = \sum_{i=1}^n f_i$.

Definición 3.2.1 Una sucesión $\{f_n\}_{n\in\mathbb{N}}$ converge en $z_0 \in A$ cuando converge la sucesión numérica $\{f_n(z_0)\}_{n\in\mathbb{N}}$. Diremos que $\{f_n\}_{n\in\mathbb{N}}$ converge pun**tualmente** cuando converge para todo $z \in A$.

Definición 3.2.2 La serie $f_0 + \cdots + f_n + \cdots$ converge en un punto $z_0 \in A$, A abierto en \mathbb{C} si la sucesión $\{F_n(z_0)\}_{n\in\mathbb{N}}$ con $F_n=f_0+\cdots+f_n$ converge. La serie converge puntualmente en A si $\{F_n\}_{n\in\mathbb{N}}$ converge puntualmente en A.

Definición 3.2.3 La sucesión de funciones $\{f_n\}_{n\in N}$

converge uniformemente a f si para todo $\epsilon > 0$ existe $n_0 \in \mathbb{N}$ tal que $|f_n(z) - f(z)| < \epsilon$ para todo $z \in A$, $n \ge n_0$.

Definición 3.0.2 Una serie es una sucesión de **Definición 3.2.4** La serie $\sum_{n=1}^{\infty} f_n(z)$ converge uniformemente en A si la sucesión $\{F_n\}_{n\in N}$ converge uniformemente en A.

> Teorema 3.2.1 Criterio de la mayorante de Weierstrass) Una condición suficiente para que $\sum_{n=1}^{\infty} f_n$ converja uniformemente en $A \subset \mathbb{C}$ es que exista una serie $\sum_{n=1}^{\infty} a_n$ convergente tal que $|f_n(z)| \le a_n$ para todo z y $n \in \mathbb{N}$. En tal caso, $\sum_{n=1}^{\infty} a_n$ es una mayorante de $\sum_{n=1}^{\infty} f_n$.

> Definición 3.3.0 Una serie de potencias es una serie de la forma $\sum_{n=1}^{\infty} a_n (z-z_0)^n$, con $z_0, a_n \in \mathbb{C}$ para todo n. Los a_n se llaman **coeficientes** de la serie. Si $z_0 = 0$, es decir, $\sum_{n=1}^{\infty} a_n z^n$ decimos que la serie está centrada en el origen.

> Definición 3.3.1 (Teorema de **Hadamard**) Dada la serie $\sum_{n=1}^{\infty} a_n (z-z_0)^n$ considerando $\lambda = \lim_{n\to\infty} \sup \sqrt[n]{|a_n|}$; si llamamos $R = \frac{1}{\lambda}$, tenemos:

- La serie converge absolutamente en el interior del círculo $D_R = \{z | |z - z_0| < R\}$ y diverge en el exterior $D_R = \{z | |z - z_0| > R\}$
- La convergencia es uniforme en todo circulo de radio $0 \le r < R$

R se llama **radio de convergencia** de la serie.

Teorema 3.3.2 La función definida por la suma de serie de potencias en su círculo de convergencia es derivable en todo punto de dicho círculo:

$$\frac{d}{dz} \left(\sum_{n=0}^{\infty} a_n (z - z_0)^n \right) = \sum_{n=0}^{\infty} n a_n (z - z_0)^{n-1}$$

Definición 3.4.1 La función exponencial compleja

$$e^z = \sum_{n=0}^{\infty} \frac{z^n}{n!}$$

Su radio de convergencia es $R = \infty$. Cumple

también que $e^{z_1+z_2}=e^{z_1}e^{z_2}$. El exponente puede reescribirse como $e^z = e^{x+yi} = e^x e^{iy} = e^x (\cos y + \sin y)$ $i \sin y$)

Definición 3.4.2 La función logaritmo se obtiene desde la exponencial. Escribiendo $z = re^{i\theta}$ tenemos que $\log z = \log |r| + i\theta = \log |r| + i \arg(z)$. Como $arg(z) = \theta + 2\pi k$, el logaritmo principal es $\theta \in [0, 2\pi] = \operatorname{Arg} z$.

Definición 3.4.3 Las funciones seno y coseno se definen a través de sus series de potencias con $R = \infty$:

La función logaritmo se obtiene encial. Escribiendo
$$z=re^{i\theta}$$
 tenelog $|r|+i\theta=\log|r|+i$ arg (z) . $\theta+2\pi k$, el logaritmo principal es g (z) . Las funciones seno y coseno se de sus series de potencias con

$$\sin(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n+1}}{(2n+1)!}, \cos(z) = \sum_{n=0}^{\infty} (-1)^n \frac{z^{2n}}{(2n)!}$$
 En este caso los ejes X e Y representan el plano complejo de z . El eje Z representa la parte real de

La derivación es como con los números reales, y las identidades de Euler son idénticas:

$$\cos(z) = \frac{e^{iz} + e^{-iz}}{2}$$
, $\sin(z) = \frac{e^{iz} - e^{-iz}}{2i}$

$$sinh(z) = \frac{e^z - e^{-z}}{2}, cosh(z) = \frac{e^z + e^{-z}}{2}$$

Definición 3.4.4 La función potencial con exponente complejo, z^{ζ} , $\zeta \in \mathbb{C}$ es $z^{\zeta} = e^{\zeta \log z}$

Definición 3.5.1 (Funciones multiformes) Una función f es multiforme cuando w = f(z) puede tomar diferentes valores para el mismo z. Por ejemplo, para $f = \sqrt{z}$, f(2i) = 1 + i y f(2i) =-1 - *i*. Esto se debe a que $z^{1/2} = e^{\frac{1}{2}\log z} = e^{\frac{1}{2}(\log|z|+i\arg(z))} = |z|^{\frac{1}{2}}e^{i\frac{\operatorname{Arg}z+2k\pi}{2}}, k = 0, 1.$

Observamos que como k puede tomar dos valores, entonces la función tiene dos ramas, es decir, $w_1 = \sqrt{r}e^{i\frac{\theta}{2}}$, $w_2 = -\sqrt{r}e^{-i\frac{\theta}{2}}$. Por tanto, para completar un ciclo en w necesitamos completar dos ciclos en z (uno por rama). Esto genera una **superficie de Riemann** como la siguiente figura:

f(z), y el color representa la imaginaria. El punto de corte del plano es el caso $\sqrt{-a}$, $a \in \mathbb{R} = 0 + i\sqrt{a}$. Sin embargo, el corte es un artefacto de la visualización tridimensional de 4 dimensiones.

Debajo se muestra el ejemplo de $f = \log z$, donde el eje X representa el argumento, y el color representa la parte real.

Vemos que el el plano "cae" de nivel en cada vuelta. Esto es el equivalente a cada rama del logaritmo.

Integración en el campo complejo

Definición 4.0.1 Una curva $\gamma : [a,b] \to \mathbb{C}$ es **rectificable** cuando presenta una longitud finita.

Definición 4.0.2 Una **partición** de un intervalo es el conjunto $\Delta = \{a = t_0 < t_1 < \dots < t_n = b\}$. La **norma** de la partición es $|\Delta| = \max\{|t_{k-1} - t_k|, k = 0, 1, \dots, n-1\}$. Una partición Δ' es **más fina** que otra partición Δ cuando $\Delta \subset \Delta'$.

Definición 4.0.3 Dados f, γ, Δ , definimos la suma de Riemman-Stieljes como $S(\Delta, f, \gamma) = \sum_{k=0}^{n-1} f(s_k)[\gamma(t_{k+1}) - \gamma(t_k)]$, con $s_k \in [t_k, t_{k+1}]$. f es **integrable** Riemman-Stieljes (RS) si existe un complejo I tal que para cualquier $\epsilon > 0$ existe una partición Δ_{ϵ} tal que para toda $\Delta_{\epsilon} \subset \Delta$, $|S(\Delta, f, \gamma) - I| < \epsilon$. I se denota por $\int_a^b f \, d\gamma$.

Definición 4.0.4 Si $\gamma(t) = \phi(t) + i\psi(t)$, entonces $\int_a^b f \, d\gamma = \int_a^b f \, d\phi + i \int_a^b f \, d\psi$.

Proposición 4.1.1 Sean f, γ . Entonces existe la integral RS y $\left| \int_a^b f \, \mathrm{d} \gamma \right| \le ML(\gamma)$, donde $M = \max\{|f(t)| \mid t \in [a,b]\}$ y $L(\gamma)$ es la longitud de γ . Demostración. $|S(\Delta,f,\gamma)| \le \sum_{k=0}^{n-1} \left| f(s_k) \right| \left| \gamma(t_{k+1}) - \gamma(t_k) \right| \le (\max\{|f(t)|,t \in [a,b]\}) \sum_{k=0}^{n-1} \left| \gamma(t_{k+1}) - \gamma(t_k) \right| \le ML(\gamma)$

Proposición 4.1.2 Si f es continua en [a,b] y γ define un camino de clase C^1 entonces la integral RS viene dada por $\int_a^b f \, \mathrm{d} \gamma = \int_a^b f \gamma' \mathrm{d} t$ Demostración. Como $\int_a^b f \, \mathrm{d} \gamma = \int_a^b f \, \mathrm{d} \phi + i \int_a^b f \, \mathrm{d} \psi$, vamos a demostrar que $\int_a^b f \, \mathrm{d} \phi = \int_a^b f \, \phi' \, \mathrm{d} t$. Por la definición de I existe para todo $\epsilon > 0$ una partición tal que $\left| \sum_{k=0}^{n-1} f \left(s_k \right) \left[\varphi \left(t_{k+1} \right) - \varphi \left(t_k \right) \right] - \int_a^b f \, d \phi \right| < \epsilon$ Por el teorema del valor intermedio: $\varphi \left(t_{k+1} \right) - \varphi \left(t_k \right) = \varphi' \left(s_k' \right) \left(t_{k+1} - t_k \right)$, luego $\left| \sum_{k=0}^{n-1} f \left(s_k' \right) \varphi' \left(s_k' \right) \left(t_{k+1} - t_k \right) - \int_a^b f \, d \varphi \right| < \epsilon$. Ahora bien, la expresión de sumatorio puede aplicarse a la integral, de modo que $\left| \sum_{k=0}^{n-1} f \left(s_k' \right) \varphi' \left(s_k' \right) \left(t_{k+1} - t_k \right) - \int_a^b f \varphi' \, d t \right| < \epsilon$. Por último, si denominamos S al sumatorio anterior, tenemos que $\left| \int_a^b f \varphi' \, d t - \int_a^b f \, d \varphi \right| \leq 1$ Repetimos para $\left| \int_a^b f \varphi' \, d t - S \right| + \left| S - \int_a^b f \, d \varphi \right| \leq 2\epsilon$. Repetimos para $\left| \int_a^b f \, \varphi' \, d t - \int_a^b f \, d \psi \right| = \int_a^b f \, d \psi$ y finalmente $\left| \int_a^b f \, d \varphi \right| = \int_a^b f \, d \varphi + i \int_a^b f \, d \psi = \int_a^b f \, d \psi$

Definición 4.2.0 Sean f, γ . Se define la **integral de** f **a lo largo de** γ , $\int_{\gamma} f dz$ como $\int_{a}^{b} f \circ \gamma \ d\gamma$ y, si γ es C^{1} , entonces $\int_{\gamma} f dz = \int_{a}^{b} f(\gamma(t))\gamma'(t) \ dt$. La integral cumple:

- Linealidad: $\int_{\gamma} (c_1 f_1 + c_2 f_2) dz = c_1 \int_{\gamma} f_1 dz + c_2 \int_{\gamma} f_2 dz$
- Si $-\gamma$ es el camino opuesto a γ : $\int_{\gamma} f \, dz = -\int_{-\gamma} f \, dz$
- Yuxtaposición: $\int_{\gamma_1 \cup \gamma_2} f \, dz = \int_{\gamma_1} f \, dz + \int_{\gamma_2} f \, dz$
- Se tiene la siguiente stimación: $|\int_{\gamma} f \, dz| \le \int_{\gamma} |f| |dz| = \int_{a}^{b} |f(t)| |\gamma'(t)| \, dt \le ML(\gamma).$

Proposición 4.2.1 Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones, y γ . Si f_n son continuas y $f_n\to f$ entonces $\lim_{n\to\infty}\int_{\gamma}f_n=\int_{\gamma}fdz$. Demostración. Si |dz| es la longitud de la curva, L, entonces $\left|\int_{\gamma}fdz-\int_{\gamma}f_ndz\right|\leq\int_{\gamma}\left|f-f_n\right|\left|dz\right|<\epsilon L$.

También, si $\sum f_n$ converge uniformemente a F, entonces $\sum_{n=1}^{\infty} \int_{\gamma} f_n \, dz = \int_{\gamma} F \, dz$. Demostración. $\int_{\gamma} \left(\sum_{n=1}^{\infty} f_n\right) dz = \int_{\gamma} \left(\lim_{n \to \infty} F_n\right) dz = \lim_{n \to \infty} \int_{\gamma} F_n dz = \lim_{n \to \infty} \int_{\gamma} \left(\sum_{k=1}^{n} f_k\right) dz = \lim_{n \to \infty} \sum_{k=1}^{n} \int_{\gamma} f_k dz = \sum_{n=1}^{\infty} \int_{\gamma} f_n dz$

Proposición 4.3.1 Sean $f, \gamma, \gamma : [a, b] \to \mathbb{C}$ de clase \mathbb{C}^1 . Si F es una frimitiva de F, se tiene que $\int_{\gamma} f \ dz = F(\gamma(a)) - F(\gamma(b))$. Demostración. Si $\int_{\gamma} f \ dz = \int_a^b f(\gamma(t))\gamma'(t) \ dt$, como la derivada de $F(\gamma(t)) = F'(\gamma(t))\gamma'(t) = f(\gamma(t))\gamma'(t)$; por el Teorema Fundamental del Cálculo se cumple que $\int_{\gamma} f \ dz = \int_a^b [F(\gamma(t))]' \ dt = F(\gamma(b)) - F(\gamma(a))$

Proposición 4.3.2 Sea f y γ_1 , γ_2 tales que $\gamma_1(a) = \gamma_2(a)$ y $\gamma_1(b) = \gamma_2(b)$. Entonces $\int_{\gamma_1} f \ dz = \int_{\gamma_2} f \ dz$.

Teorema 4.4.1 (Preliminar del T de Cauchy) Sea f analítica y $\gamma \subset A$ es una curva cerrada y su interior. Entonces $\int_{\gamma} f \ dz = 0$. Demostración. La fórmula de Green indica que $\int_{\gamma} P(x,y) dx + Q(x,y) dy =$

 $\iint_A \left[\frac{\partial \mathcal{Q}}{\partial x}(x,y) - \frac{\partial P}{\partial y}(x,y) \right] dx dy \text{ Con } A \text{ el interior de } \gamma.$ Si describimos f = u(x,y) + iv(x,y) operando tenemos que $\int_{\gamma} f dz = \int_{\gamma} (u+iv)(dx+idy) = \int_{\gamma} (udx-vdy) + i \int_{\gamma} (udy+vdx).$ Applicando el teorema de Green tenemos que $\int_{\gamma} f dz = \iint_A \left[-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} \right] dx dy + \iint_A \left[\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y} \right] dx dy$ y, por las ecs. de Cauchy-Riemman, $-\frac{\partial v}{\partial x} - \frac{\partial u}{\partial y} = \frac{\partial u}{\partial y} - \frac{\partial u}{\partial y} = 0.$ Ídem para la segunda integral.

Teorema 4.4.2 (T de Cauchy-Goursat para el triángulo) Sea $f:A\to\mathbb{C}$, $A\subset\mathbb{C}$ abierto, y f analítica en A {p}. Si T es el triángulo cerrado contenido en A, se tiene $\int_{\partial T} f \, \mathrm{d}z = 0$.

Teorema 4.4.3 (T de Cauchy para un conjunto convexo). Sea f analítica en $A\{p \text{ con } p \in A \text{ y continua en } A$. Entonces $\int_{\partial T} f \, dz = 0$ para todo camino cerrado y rectificable en A.

Consecuencias del Teorema de Cauchy

Definición 5.0 Llamamos **indice** de γ respecto de α , representado por $Ind_{\nu}(\alpha)$ a la integral

$$Ind_{\gamma}(\alpha) = \frac{1}{2\pi i} \int_{\gamma} \frac{\mathrm{d}z}{z - \alpha}$$

Intuitivamente $Ind_{\gamma}(\alpha)$ representa el número de vueltas de γ respecto de α . Demostración. función $\frac{1}{z-\alpha}$ admite la primitiva $\log z - \alpha$ en todo entorno expcepto para α . Subdividimos γ en subarcos suficientemente pequeños $\gamma_1, \gamma_2, \cdots, \gamma_n$, tal que $\gamma_i=z_iz_{i+1};z_i,z_{i+1}\in\gamma$. Así, la integral se puede calcular como $\frac{1}{2\pi i}\int_{\gamma}\frac{\mathrm{d}z}{z-\alpha}=\sum_{j=1}^{n-1}\frac{1}{2\pi i}\int_{\gamma_j}\frac{\mathrm{d}z}{z-\alpha}=$ $\sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac{1}{2\pi i} [\ln|(z_{j+1} - \alpha) - \ln(z_j - \alpha)] = \sum_{j=1}^{n-1} \frac$ $\alpha)|-\ln|(z_j-\alpha)|]+\sum_{j=1}^{n-1}\frac{1}{2\pi}[\operatorname{Arg}(z_{j+1}-\alpha)-\operatorname{Arg}(z_j-\alpha)].$ La primera suma es 0 por ser teléscopica y $z_1 = z_n$, luego $\frac{1}{2\pi i} \int_{\gamma} \frac{dz}{z-\alpha} = \sum_{j=1}^{n-1} \frac{1}{2\pi} [\text{Arg}(z_{j+1}-\alpha) - \text{Arg}(z_j-\alpha)].$ Cada elemento de la suma es una variación de la circunferencia, y en conjunto representa el número de vueltas recorrido.

Teorema 5.1.1 Si γ es diferenciable cerrado, γ^* su interior, entonces $Ind_{\nu}(\alpha)$ es entero si $\alpha \in \gamma^*$, o es cero si $\alpha \in \mathbb{C}/\gamma^*$.

Teorema 5.2.1 (Fórmula integral de Cauchy) Sea $f: A \to \mathbb{C}$, y sea γ un camino cerrado en A. Entonces para todo $z \in A$ tal que $z \notin \gamma^*$ se tiene

$$f(z)Ind_{\gamma}(z) = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$$

Demostración. Definimos $g: A \to \mathbb{C}$ mediante:

$$g(\zeta) = \begin{cases} \frac{f(\zeta) - f(z)}{\zeta - z} & \text{para} \quad \zeta \in A, \quad \zeta \neq z \\ f'(z) & \text{para} \quad \zeta = z \end{cases}$$

donde $z \in A \setminus \gamma^*$ es un punto fijo. La función g es analítica para $\zeta \neq z$ y $g'(\zeta) = \frac{(\zeta-z)f'(\zeta)-f(\zeta)+f(z)}{(\zeta-z)^2}$ y es continua para $\zeta = z$ pues $\lim_{\zeta \to z} g(\zeta) = f'(z)$. Por tanto podemos aplicar el Teorema de Cauchy-Goursat y $\frac{1}{2\pi i} \int_{\gamma} g(\zeta) d\zeta = 0$ y como $z \notin \gamma^*$, se puede escribir $0 = \frac{1}{2\pi i} \int_{\mathcal{V}} \frac{f(\zeta) - f(z)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \int_{\zeta - z} \frac{f(\zeta)}{\zeta - z} d\zeta - \frac{f(z)}{2\pi i} \int_{\mathcal{V}} \frac{d\zeta}{\zeta - z} \iff$ $\frac{f(z)}{2\pi i} \int_{\gamma} \frac{d\dot{\zeta}}{\zeta - z} = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{\zeta - z} d\zeta$ es decir $f(z) \operatorname{Ind}_{\gamma}(z) =$ $\frac{1}{2\pi i} \int_{\mathcal{V}} \frac{f(\zeta)}{\zeta - z} d\zeta$

Teorema 5.3.1 (Teorema de Taylor) Sea *f* holo- Demostración. morfa, $A \subset \mathbb{C}$ abierto, y $\alpha \in A$. Sea d > 0 la uniforme de la sucesión $\{f'_n\}$ a f' en todo círculo $B \subset \mathbb{C}$

distancia de α a la frontera de A; entonces para todo $z \in B(\alpha, d)$

$$f(z) = \sum_{n=0}^{\infty} \frac{f^{(n)}(\alpha)}{n!} (z - \alpha)^n$$

El radio de convergencia es mayor o igual que d, y en $B(\alpha, d)$ su suma es f(z). Además las derivadas sucesivas $f^{(n)}(\alpha)$ de f en α vienen dadas por

$$f^{(n)}(\alpha) = \frac{n!}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - \alpha)^{n+1}} d\zeta$$

donde γ es una circunferencia de centro α y radio r, con 0 < r < d.

Teorema 5.4.1 (Desigualdades de Cauchy) Si f es analítica y $B(\alpha, d) \subset A$ entonces $|f^{(n)}(\alpha)| \leq \frac{n!M(r)}{r^n}$, $\operatorname{con} M(r) = \max_{|z|=r < d} |f(z)|$

Teorema 5.4.2 (Teorema de Liouville) Si f es entera (analítica en todo C) y acotada, entonces es constante. Demostración. Por ser f analítica existe un desarrollo $f(z) = \sum_{n=0}^{\infty} a_n z^n$ con radio de convergencia infinito. Sea K una cota de f, es decir |f(z)| < K, para todo $z \in \mathbb{C}$ entonces de las desigualdades de Cauchy se obtiene $|a_n| < \frac{K}{r^n}$, n = 1, 2, ... para todo r. Como $r \to \infty$, $a_n \to 0$ y $f(z) = a_0$.

Teorema 5.5.1 Sea $\{f_n\}_{n\in\mathbb{N}}$ una sucesión de funciones analíticas en A que converge uniformemente en todo compacto de A. Entonces la sucesión $\{f'_n\}$ converge uniformemente en todo compacto de A. Además, si $\lim_{n\to\infty} f_n(z) = f(z)$ entonces $\lim_{n\to\infty} f'_n(z) = f'(z)$ para todo $z \in A$.

Bastará demostrar la convergencia

A, pues todo compacto $K \subset A$ puede ser recubierto por una cantidad finita de círculos. Sea $\gamma^* \subset A$ una circunferencia concéntrica con B con $r = r_\gamma - r_B$. Sea $z \in B$ y γ_z la circunferencia de centro z y radio r. Entonces $f'(z) = \frac{1}{2\pi i} \int_{\gamma_z} \frac{f(\zeta)}{(\zeta-z)^2} d\zeta$, $f'_n(z) = \frac{1}{2\pi i} \int_{\gamma_z} \frac{f_n(\zeta)}{(\zeta-z)^2} d\zeta$ de donde $|f'(z) - f'_n(z)| \le \frac{1}{2\pi} \int_{\gamma_z} \frac{eft|f(\zeta) - f_n(\zeta)|}{|\zeta-z|^2} |d\zeta| \le \frac{1}{2\pi} \frac{M_n}{r^2} 2\pi r = \frac{M_n}{r}$ donde M_n es $\max(|f(\zeta) - f_n(\zeta)|)$ en γ_z . Puesto que $\{f_n\}$ converge uniformemente sobre todo círculo cerrado, se tiene que $\lim_{n\to\infty} M_n = 0$ de tal manera que $\frac{M_n}{r} < \varepsilon$ para $n \ge n_0$, y $z \in B$.

Definición 5.6 f en $A \subset \mathbb{C}$ tiene la **propiedad de la media** si para todo cerrado $\overline{D}(\alpha, r) = \{z \mid |z - \alpha| \le r\} \subset A$, el valor $f(\alpha)$ en el centro es la media de f en la circunferencia:

$$f(\alpha) = \frac{1}{2\pi} \int_0^{2\pi} f\left(\alpha + re^{it}\right) dt$$

Proposición 5.6.1 Toda función analítica f en A tiene la propiedad de la media.

Teorema 5.6.1 (Principio del módulo máximo) Sea f analítica en A, abierto conexo. Entonces para todo $\alpha \in A$ en cualquier entorno de α existe $\beta \in A$ para el cual $|f(\alpha)| < |f(\beta)|$.

Lema 5.7.1 (Lema de Schwarz) Sea $f: B(0,1) \rightarrow B(0,1)$ analítica. |f(z)| < 1 para todo $z \in B(0,1)$ y f(0) = 0. Entonces se tiene $|f(z)| \le |z|$ para todo $z \in B(0,1)$ y $|f'(0)| \le 1$. Además, si para un $z_0 \in B(0,1)$, $z_0 \ne 0$, se tiene $|f(z_0)| = |z_0|$, o si se verifica f'(0) = 1, entonces f(z) es de la forma f(z) = cz, con |c| = 1

Teorema general de Cauchy

Definición 6.1.1 Dos caminos γ_0 , γ_1 con γ_0^* , $\gamma_1^* \subset A$ son A-homótopos si existe una aplicación h:

$$h: I \times I \longrightarrow A$$

 $(s,t) \longmapsto h((s,t)) = \gamma_s(t)$

Si γ_0 , γ_1 tienen los mismos extremos, se exige que $h(s,0) = \gamma_0(0) = \gamma_1(0)$ y $h(s,1) = \gamma_0(1) = \gamma_1(1)$. Finalmente, si los caminos son cerrados, h(s,0) = h(s,1).

 γ_0 , γ_1 son A-homotópos cuando γ_0 se puede deformar a γ_1 continuamente a través de una familia de caminos γ_s . Un camino γ es homotópico a $z_0 \in A$ cuando γ es homotópico al camino constante γ_{z_0} .

Teorema 6.1.1 (Teorema de Cauchy, versión homotópica) Sea $f: A \to \mathbb{C}$, A abierto una función analitica y sean γ_0 , γ_1 dos caminos tales que $\gamma_0(0) = \gamma_1(0)$, $\gamma_0(1) = \gamma_1(1)$, entonces

$$\int_{\gamma_0} f dz = \int_{\gamma_1} f dz$$

También si γ_0 , γ_1 son cerrados y homotópicos obtenemos la misma conclusión.

Definición 6.2.1 Dos caminos cerrados γ_0 , γ_1 contenidos en el mismo abierto A son A**-homólogos** cuando

$$\operatorname{Ind}_{\gamma_0}(\alpha) = \operatorname{Ind}_{\gamma_1}(\alpha)$$

para todo $\alpha \notin A$

Teorema 6.2.1 Si γ_0 , γ_1 son cerrados en A, y γ_0 , γ_1 son A-homótopos, son también A-homólogos. Si γ_0 es homótopo a un punto en A, entonces es A-homólogo a cero.

Teorema 6.2.2 (Teorema de Cauchy, versión homológica) Sea $f: A \to \mathbb{C}$, A abierto una función analitica y sean γ_0 , γ_1 dos ciclos A homológos, entonces

$$\int_{\gamma_0} f dz = \int_{\gamma_1} f dz$$

Definición 6.3.1/Teorema 6.3.1 Un abierto conexo no vacío $A \subset \mathbb{C}$ es simplemente conexo si todo cerrado $\gamma \subset A$ es A-homótopo a cero. Si f es analítica

en A, simplemente conexo, entonces $\int_{\gamma} f \, dz = 0$ para todo camino cerrado y rectificable en A.

Teorema 6.3.2 Sea $A \in \mathbb{C}$ un dominio, entonces las siguientes afirmaciones son equivalentes:

- *A* es simplemente conexo
- Todo ciclo γ contenido en A es homólogo a 0.
- $\hat{\mathbb{C}} \backslash A$ es conexo

Desarrollo en serie de Laurent

Teorema 6.4.1 (Series de Laurent) Sea f(z) analítica en la corona circular $A = \{z \mid r < |z - \alpha| < R\}$, donde r puede ser 0 y R infinito. Entonces existen dos desarrollos en serie según las potencias de $z - \alpha$ y de $(z - \alpha)^{-1}$ $\sum_{n=0}^{\infty} a_n (z - \alpha)^n$, $\sum_{n=1}^{\infty} \frac{b_n}{(z-\alpha)^n}$ convergentes en A y tales que

$$f(z) = \sum_{n=0}^{\infty} a_n (z - \alpha)^n + \sum_{n=1}^{\infty} \frac{b_n}{(z - \alpha)^n}$$

para $z \in A$. Además estas series convergen uniformemente en toda corona cerrada $A' \subset A$ de la forma $A' = \{z \mid r < r' \le |z - \alpha| \le R' < R\}$ y los coeficientes a_n, b_n vienen dados por

$$a_n = \frac{1}{2\pi i} \int_{\gamma} \frac{f(\zeta)}{(\zeta - \alpha)^{n+1}} d\zeta$$
$$b_n = \frac{1}{2\pi i} \int_{\gamma} f(\zeta) (\zeta - \alpha)^{n-1} d\zeta$$

donde γ es una circunferencia dada por $\gamma(t)$ = $\alpha + \rho e^{it}$, $t \in [0, 2\pi]$ siendo ρ un radio cualquiera entre r y R.

Demostración. Sean r_1, r_2 dos radios tales que $r < r_1 < r_2 < R$, y sean γ_1, γ_2 las circunferencias $\gamma_1(t) = \alpha + r_1 e^{it}$, $\gamma_2(t) = \alpha + r_2 e^{it}$, $t \in [0, 2\pi]$ tal que si z está entre ambas se tiene $\operatorname{Ind}_{\gamma_2}(z) = 1$, $\operatorname{Ind}_{\gamma_1}(z) = 0$.

Sea $r_1 < |z - \alpha| < r_2$, y supongamos que z no pertenece al segmento γ_3 (si no movemos γ_3). Sea $\Gamma = \gamma_2 - \gamma_3 - \gamma_1 + \gamma_3$; entonces z está en el recinto simplemente conexo encerrado por Γ y de la Fórmula integral de Cauchy obtenemos

$$f(z) = \frac{1}{2\pi i} \int_{\Gamma} \frac{f(\zeta)}{\zeta - z} d\zeta = \frac{1}{2\pi i} \left(\int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta - \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta \right)$$

Utilizaremos ahora desarrollos en serie similares a los de Taylor. Para $\zeta \in \gamma_2$ y z en el interior de γ_2 tendremos

$$\frac{1}{\zeta - z} = \frac{1}{\zeta - \alpha} \cdot \frac{1}{1 - \frac{z - \alpha}{\zeta - \alpha}} = \sum_{n=0}^{\infty} \frac{(z - \alpha)^n}{(\zeta - \alpha)^{n+1}}$$

y para $\zeta \in \gamma_1$ y z exterior a γ_1 tendremos

$$-\frac{1}{\zeta - z} = \frac{1}{z - \alpha} \frac{1}{1 - \frac{\zeta - \alpha}{z - \alpha}} = \sum_{n=1}^{\infty} \frac{(\zeta - \alpha)^{n-1}}{(z - \alpha)^n}$$

siendo convergentes las series geométricas y uniformemente convergentes en $\zeta \in \gamma_2$ y $\zeta \in \gamma_1$ respectivamente. Integrando término a término ambos desarrollos se tiene

$$\frac{1}{2\pi i} \int_{\gamma_2} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=0}^{\infty} \frac{1}{2\pi i} \left(\int_{\gamma_2} \frac{f(\zeta)}{(\zeta - \alpha)^{n+1}} d\zeta \right) (z - \alpha)^n$$
$$-\frac{1}{2\pi i} \int_{\gamma_1} \frac{f(\zeta)}{\zeta - z} d\zeta = \sum_{n=1}^{\infty} \frac{1}{2\pi i} \left(\int_{\gamma_1} f(\zeta) (\zeta - \alpha)^{n-1} d\zeta \right) \frac{1}{(z - \alpha)^n}$$

Puesto que los caminos $\gamma_1, \gamma_2, \gamma$ son A-homótopos y las funciones $\frac{f(\zeta)}{(\zeta-\alpha)^{n+1}}$, $f(\zeta)(\zeta-\alpha)^{n-1}$ son analíticas en A, se tiene

$$\frac{\frac{1}{2\pi i}\int_{\gamma_2}\frac{f(\zeta)}{(\zeta-\alpha)^{n+1}}d\zeta=\frac{1}{2\pi i}\int_{\gamma}\frac{f(\zeta)}{(\zeta-\alpha)^{n+1}}d\zeta=a_n}{\frac{1}{2\pi i}\int_{\gamma_1}f(\zeta)(\zeta-\alpha)^{n-1}=\frac{1}{2\pi i}\int_{\gamma}f(\zeta)(\zeta-\alpha)^{n-1}=b_n}$$

Por tanto concluimos

$$f(z) = \sum_{n=0}^{\infty} a_n (z - \alpha)^n + \sum_{n=1}^{\infty} b_n \frac{1}{(z - \alpha)^n}, z \in A$$

Queda por probar la convergencia uniforme en una corona cerrada contenida en A. Sean z_1, z_2 puntos de A tales que $r < |z_1 - \alpha| < r' < R' < |z_2 - \alpha| < R$. Como $z_2 \in A$, la serie de potencias $\sum_{n=0}^{\infty} a_n (z - \alpha)^n$ converge uniformemente en el círculo cerrado de centro α y radio $R' < |z_2|$. Análogamente, puesto que $z_1 \in A$, la serie $\sum_{n=1}^{\infty} b_n \left(\frac{1}{z_1 - \alpha}\right)^n$ converge y la serie $\sum_{n=1}^{\infty} b_n \left(\frac{1}{z - \alpha}\right)^n$ convergerá uniformemente para $|z - \alpha| \ge r'$ con $r' > |z_1 - \alpha|$, pues en estas condiciones $\left|\frac{1}{z - \alpha}\right| \le \frac{1}{r'} < \left|\frac{1}{z_1 - \alpha}\right|$. Análogamente se comprueba la convergencia uniforme en $|z - \alpha| < R'$ de la serie $\sum_{n=0}^{\infty} a_n (z - \alpha)^n$.

Ceros de las funciones analíticas. Singularidades aisladas.

Teorema 7.1.1 Sea $f: A \to \mathbb{C}$, con A un dominio. El conjunto $\mathbb{Z}(f)$, los ceros de f, o coincide con A (f=0) o no tiene puntos de acumulación en A. En este último caso, para cada $\alpha \in A$ existe un $m \in \mathbb{N}$ tal que $f(z) = (z - \alpha)^m g(z)$, con $g(\alpha) \neq 0$.

Teorema 7.1.2 (Ppo de Identidad) Si f_1 , f_2 son funciones analíticas en A tal que $f_1(z) = f_2(z)$, $z \in B \subset A$; si B tiene punto de acumulación en A entonces $f_1 = f_2$ en A.

Definición 7.2.0 f tiene una **singularidad aislada** en $\alpha \in A$ si f es analítica en $A/\{\alpha\}$ pero desconocemos el comportamiento en α .

Definición 7.2.1 f tiene una **singularidad evitable** en α si tiene una singularidad aislada pero se puede encontrar un valor $b \in \mathbb{C}$ tal que poniendo $f(\alpha) = b$, f es analítica en A.

Teorema 7.2.1 Sea α aislada para f en A, y supongamos f **acotada** en un círculo perforado $B^*(\alpha, r)$ contenido en $A/\{\alpha\}$. Entonces la singularidad es evitable. Demostración. Definamos la función $h: A \to \mathbb{C}$ mediante

$$h(z) = \begin{cases} (z - \alpha)^2 f(z) & \text{para} \quad z \in A \setminus \{\alpha\} \\ 0 & \text{para} \quad z = \alpha \end{cases}$$

Por la hipótesis de acotación (pues f es acotada) existe $h'(\alpha)$ y $h'(\alpha)=0$. Luego h es analítica en A y existe un desarrollo en serie de potencias en un $B(\alpha,r'),r'\geq r$, donde tendremos que $h(z)=\sum_{n=0}^{\infty}a_n(z-\alpha)^n$ para todo z en dicho círculo y, por tanto, también en $B(\alpha,r)$. Se tiene que $a_0=h(\alpha)=0$, $a_1=h'(\alpha)=0$ y, considerando entonces la función analítica en $B(\alpha,r)$ definida por $\sum_{n=0}^{\infty}a_{n+2}(z-\alpha)^n$, vale a_2 en $z=\alpha$ y coincide con f en $B^*(\alpha,r)$, luego concluimos que α es una singularidad evitable para f.

Teorema 7.2.2 (Weierstrass) Sea $\alpha \in A$ una singularidad aislada para f en $A/\{\alpha\}$. Entonces (1) f tiene una singularidad evitable en α , (2) existen complejos $c_1, \dots, c_m \neq 0$ y la función $f(z) - \sum_{k=1}^m \frac{c_k}{(z-\alpha)^k}$ tiene una singularidad evitable en α , o (3) para todo $B(alpha, r) \subset A, r > 0$ la imagen de f en $B^*(\alpha, r)$ es densa en \mathbb{C} .

Definición 7.2.2 Sea $A \subset \overline{\mathbb{C}}$ abierto y f analítica en $A \setminus \{\infty\}$. Se dice que f tiene una singularidad evitable en ∞ , un polo de orden m o una singulari-

dad esencial, si la función $\phi: B \to \mathbb{C}$, $\phi(z) = f(\frac{1}{z})$, con $B = \{z \mid \frac{1}{z} \in A\}$ tiene una singularidad de tal tipo en z = 0.

Teorema 7.2.3 Si existe una singularidad aislada en ∞ entonces (1) f tiene una singularidad evitable sii existe un entorno perforado de ∞; (2) f tiene un polo de orden m si existe un polinomio $h(z) = a_1z + \cdots + a_mz^m \neq 0$ tal que f(z) - h(z) está acotada en $\{z \mid |z| > r\}$; (3) para todo r la imagen de $\{z \mid |z| > r\}$ es densa en \mathbb{C} .

Definición 7.3.1 Diremos que $f_A \to \mathbb{C}$, $A \subset \mathbb{C}$ abierto es meromorfa si existe un conjunto $P \subset A$, sin puntos de acumulación en A, tal que f es analítica en $A \setminus P$ y f presenta en cada $p \in P$ una singularidad aislada, que es un polo.

Teorema 7.3.1 f(z) tiene un **polo** de orden m en $\alpha \in \mathbb{C}$ sii existe un entero m > 0 y un entorno $U_{\alpha} \subset A$ de definición de f tal que la función $g(z) = f(z)(z - \alpha)^m$ es analítica en U_{α} y $g(\alpha) \neq 0$. Demostración. Sea

$$p(z) = \sum_{n=1}^{m} \frac{c_n}{(z - \alpha)^n}$$

la parte principal del polo, de tal forma que h = f - p es analítica en un entorno $U(\alpha)$ de α y por tanto también lo será la función $h(z)(z-\alpha)^m$.

Como $p(z)(z-\alpha)^m = c_m + c_{m-1}(z-\alpha) + \ldots + c_1(z-\alpha)^{m-1}$ es también analítica, también lo será la función $f(z)(z-\alpha)^m = h(z)(z-\alpha)^m + p(z)(z-\alpha)^m$. Llamando g(z) a esta función, obtenemos $g(\alpha) = c_m \neq 0$.

Inversamente, si para un entero m > 0 se tiene que $g(z) = f(z)(z - \alpha)^m$ es analítica y $g(\alpha) \neq 0$ en un entorno $U(\alpha)$ de α entonces admitirá un desarrollo en serie de potencias de $z - \alpha$; $f(z)(z - \alpha)^m = \sum_{n=0}^{\infty} b_n(z - \alpha)^n$, con $b_0 \neq 0$. De esta igualdad resulta si $z \neq \alpha$

$$f(z) = \frac{1}{(z - \alpha)^m} \sum_{n=0}^{\infty} b_n (z - \alpha)^n = p(z) + \sum_{n=m}^{\infty} b_n (z - \alpha)^{n-m}$$

donde

$$p(z) = \sum_{n=1}^{m} \frac{b_{m-n}}{(z-\alpha)^n}, \text{ con } b_0 \neq 0$$

De aquí se deduce que α es un polo de orden m y su parte principal es p.

Teorema 7.3.2 Si f(z) es analítica en el abierto A y si f(z) tiene un cero de orden m en $\alpha \in A$, entonces

la función $g(z) = \frac{1}{f(z)}$ tiene un polo de orden men α . Repíprocamente, si f(z) tiene un polo de orden m en α , entonces $g(z) = \frac{1}{f(z)}$ es analíotica en un entorno de α y tiene un cero de orden m en α .

Definición 7.3.2 Si f(z) es una función con un polo de orden m en α y su parte principal es $p(z) = \sum_{n=1}^{m} \frac{c_m}{(z-\alpha)^n}$, llamaremos **residuo** de f en α al coeficiente c_1 del término $\frac{1}{z-\alpha}$, y se designa por $Res(f, \alpha)$.

Teorema 7.3.3 (Residuos para funciones mero**morfas)** Sea $A \subset \mathbb{C}$ un abierto simplemente conexo y f(z) una función meromorfa con polos $\alpha_1, \alpha_2, \dots, \alpha_r$. Sea γ un camino cerrado contenido en A que no pasa por ninguno de los polos. Entonces se tiene

$$\int_{\gamma} f(z)dz = 2\pi i \sum_{i=1}^{r} \operatorname{Ind}_{\gamma}(\alpha_{i}) \operatorname{Res}(f, \alpha_{i})$$

Demostración. Sean los polos $\alpha_1, \ldots, \alpha_r$ de multiplicidades m_1, \ldots, m_r y sean $p_i(z)$, $i = 1, \ldots, r$ sus partes principales con

$$p_i(z) = \sum_{n=1}^{m_i} \frac{c_{i,n}}{(z - \alpha_i)^n}, i = 1, \dots, r$$

. Entonces la función $f-\sum_{i=1}^r p_i$ es analitica en A pues ambas funciones f y $\sum_{i=1}^r p_i$ son meromorfas en A, con los mismos polos, cuyas partes principales se cancelan en cada polo. Así pues podemos aplicar el Teorema de Cauchy para dominios simplemente conexos (Teorema 7.4.1) y obtenemos

$$\int_{\gamma} f - (p_1 + p_2 + \ldots + p_r) dz = 0 \rightarrow \int_{\gamma} f dz = \sum_{i=1}^{r} \int_{\gamma} p_i dz$$
 Calculo de residuos para polos

Por otra parte

$$\int_{\gamma} p_i(z) = \int_{\gamma} \frac{c_{i,1}}{z - \alpha_i} dz + \dots + \int_{\gamma} \frac{c_{i,m_i}}{(z - \alpha_i)^{m_i}} dz$$
$$= 2\pi i c_{i,1} \operatorname{Ind}_{\gamma} (\alpha_i)$$

las últimas $m_i - 1$ integrales son nulas pues las funciones integrando tienen primitiva. De ambas igualdades se concluye el enunciado del teorema.

Observación 7.3.3 Si *f* es meromorfa con polo en ∞ ; para el desarrollo en serie f(z) = $\sum_{n=0}^{m} a_n z^n + \sum_{n=1}^{\infty} b_n \frac{1}{z_n}$, $Res(f, \infty) = -b_1$. Demostración. Los residuos pertenecen a los **difer**enciales de las funciones, no a las funciones en sí.

Por tanto, dado el diferencial f(z)dz con el cambio de variable z = 1/w tenemos que f(z)dz = $f(1/w)(1/w)'dw = f(1/w)(-1/w^2)dw$. Entonces, $Res(f,\infty) = Res(-\frac{f(1/z)}{z^2},0)$. Con este cambio, la representación por series $f(z) = \sum_{n=0}^{m} a_n z^n + \sum_{n=1}^{\infty} b_n \frac{1}{z^n}$ con $z \to \infty$ pasa a ser $-\frac{1}{z^2} f(\frac{1}{z}) (\sum_{n=0}^m a_n (\frac{1}{z})^n + \sum_{n=1}^\infty \frac{b_n}{(\frac{1}{z})^n})$ $= -(\sum_{n=0}^{m} a_n (\frac{1}{z})^{n+2} + \sum_{n=1}^{\infty} b_n z^{n-2} \text{ y } \int_{\mathcal{V}} -\frac{1}{z^2} f(\frac{1}{z}) \text{ d}z =$ $-\int_{\mathcal{V}} \frac{b_1}{z} dz = -2\pi i b_i = 2\pi i Res(f, \infty).$

La opción (3) del Teorema 7.2.2 se puede extender a dos teoremas extra, el segundo más potente que el primero.

Teorema 7.A (Casorati - Weierstrass) Sea α una singularidad esencial de f. Entonces para cada $w \in \mathbb{C}$ existe una secuencia de complejos $\{z_n\}$ convergente a α tal que $f(\{z_n\}) \to w$.

Teorema 7.B (Picard) Sea α una singularidad esencial de f. Entonces, para cada $w \in \mathbb{C}$, con una excepción a lo sumo, existe una sucesión $z_n \to \alpha$ tal que $f(z_n) = w$.

Por ejemplo, para $f(z) = e^{1/z}$, que tiene una singularidad esencial en 0, queremos que w = 3 + i. Entonces, la sucesión $z_n = \frac{3+i}{2n\pi i}$ cumple que para $n \to \infty$,

Resumen de casos (según series de Laurent)

- Singularidad evitable: $a_0 + a_1(z \alpha) + \cdots$
- Polo de orden m: $\frac{a_{-m}}{(z-\alpha)^m} + \cdots + \frac{a_{-1}}{z-\alpha} + a_0 + \cdots$ $a_1(z-\alpha)+\cdots$
- Singularidad esencial: $\cdots + \frac{a_{-1}}{z-\alpha} + a_0 + a_1(z a_0)$

• Polo simple

$$f(z) = \frac{b_1}{z - \alpha} + a_0 + a_1(z - \alpha) + \cdots$$
$$(z - \alpha)f(z) = b_1 + a_0(z - \alpha) + \cdots$$
$$Res(f, \alpha) = b_1 = \lim_{z \to \alpha} (z - \alpha)f(z)$$

• Polo de orden m

$$f(z) = \frac{b_m}{(z - \alpha)^m} + \dots + \frac{b_1}{z - \alpha} + a_0 + a_1(z - \alpha) + \dots$$
$$(z - \alpha)^m f(z) = b_m + \dots + b_1(z - \alpha)^{m-1} + a_0(z - \alpha)^m + \dots$$
$$Res(f, \alpha) = \frac{1}{(m-1)!} \lim_{z \to \alpha} \frac{d^{m-1}}{dz^{m-1}} ((z - \alpha)^m f(z))$$

Aplicación del método de residuos al cálculo de integrales reales