

FORTGESCHRITTENEN-PRAKTIKUM SS 2017

Der Helium-Neon-Laser

Durchführung: 24.04.17

Anja Beck¹ Clara Rittmann² Betreuer: Henning MOLDENHAUER

¹anja.beck@tu-dortmund.de

 $^{^2} clara.rittmann@tu-dortmund.de\\$

Inhaltsverzeichnis

1	Theorie							
	1.1 Zugrundeliegende Physik							
	1.2 Grundsätzlicher Aufbau und Funktionsweise							
	1.3 Der HeNe-Laser							
2	Aufbau und Ablauf des Experiments							
3	Auswertung							
	3.1 Statistische Formeln							
	3.1.1 Fehlerrechnung							
	3.1.2 Regression							
4	Diskussion							

Versuch V61 Theorie

Ziel des Versuchs ist es den grundlegenden Umgang mit einem Laser zu erlernen und dabei verschiedene seiner Kenngrößen zu bestimmen.

Die theoretische Betrachtung und die Beschreibung von Aufbau und Durchführung orientieren sich eng an der Versuchsanleitung [V61].

1 Theorie

1.1 Zugrundeliegende Physik

Laser (kurz für light amplification by stimulated emission of radiation) machen sich die Wechselwirkung zwischen Photonen und Hüllenelektronen zunutze. Dabei gibt es drei grundlegende Phänomene (erklärt am Beispiel eines Zweiniveausystems mit Energiedifferenz E):

- Absorption: Das Elektron ist auf dem unteren Niveau. Ein einfallendes Photon mit Energie E gibt seine gesamte Energie an das Elektron ab, das somit auf das obere Niveau gelangt. Das Atom ist nun angeregt.
- \bullet Induzierte Emission: Das Elektron ist auf dem oberen Niveau. Ein einfallendes Photon, das etwa die Energie E hat, verursacht die Emission eines zweiten Photons mit Energie E beim Übergang des Elektrons zum unteren Niveau.
- Spontane Emission: Das Elektron ist auf dem oberen Niveau und emittiert spontan, zur Energieminimierung, ein Photon der Energie E.

Die Besetzungsdichten der beiden Niveaus n_1, n_2 können mit folgenden Differentialgleichungen beschrieben werden

$$\dot{n}_1 = -n_1 B_{12} \rho(x) + n_2 B_{21} \rho(x) + n_2 A_{21} \tag{1}$$

$$\dot{n}_2 = +n_1 B_{12} \rho(x) - n_2 B_{21} \rho(x) - n_2 A_{21} \tag{2}$$

 $\rho(x)$ ist dabei die Energiedichte des einfallenden Strahlungsfelds und A_{21}, B_{12}, B_{21} die Einsteinkoeffizienten und dienen als Maß für die Wahrscheinlichkeit eines Übergangs. Man spricht von Besetzungsinversion, wenn die Besetzung des oberen Niveaus n_2 größer ist, als die des unteren n_1 , mit anderen Worten, wenn die Differenz der beiden Besetzungsdichten $\Delta N = n_1 - n_2$ negativ ist. Durch Transformation der Variablen n_1, n_2 zu $\Delta N, N = n_1 + n_2 = const$ in den Gleichungen (1) und Lösung der neuen Differentialgleichung ergibt sich der Ausdruck

$$\Delta N(t) = N \left[-\left(\frac{1}{2\frac{B\rho}{A_{21}} + 1} + 1\right) e^{-\left(B\rho + \frac{A_{21}}{2}\right)t} + \frac{1}{2\frac{B\rho}{A_{21}} + 1} \right] , \tag{3}$$

wenn $\Delta N(0) = -N$, d.h. alle Atome sind angeregt, und die Niveaus nicht entartet, $B_{12} = B_{21} = B$, sind. Für lange Zeiten konvergiert ΔN gegen $N/(2\frac{B\rho}{A_{21}} + 1) > 0$, d.h. eine dauerhafte Besetzungsinversion kann mit einem Zweiniveausystem nicht erreicht werden.

1.2 Grundsätzlicher Aufbau und Funktionsweise

Bestimmend für die Frequenz des Laserlichts ist das Lasermedium. Durch eine äußere Energiequelle wird die Emission von Photonen im Medium angeregt und aufrecht erhalten, hierbei ist auch von *pumpen* die Rede. Um einen kohärenten und starken Laserstrahl zu erhalten ist es dann wichtig, dass das Strahlungsfeld ständig verstärkt wird. Um das zu erreichen ist eine dauerhafte Besetzungsinversion nötig. Dafür wird ein Resonator verwendet. Er besteht aus zwei sich gegenüber stehenden Spiegeln, wovon einer teilreflektierend sein sollte um den Laserstrahl auskoppeln zu können, mit dem Lasermedium in der Mitte. Er sorgt dafür, dass die emittierten Photonen das Medium mehrfach durchlaufen und so Atome anregen können oder durch stimulierte Emission das Strahlungsfeld verstärken. Die grundsätzliche Anordnung der Bauteile ist in Abbildung 1 dargestellt.

Abbildung 1: Schematischer Aufbau eines Lasers [V61]

Die Form der Resonatorspiegel kann verschieden sein und entscheidet über die Stabilität des Lasers. Als Kenngröße dient dabei

$$g = 1 - \frac{L}{r} \,, \tag{4}$$

wobei r der Krümmungsradius des Spiegels und L die Länge des Resonators ist. Ein Resonator ist optisch stabil, wenn $0 \le g_1 \cdot g_2 < 1$ gilt.

Auch die Moden der stehenden Welle, die sich im Resonator ausbildet, haben einen Einfluss auf die Verluste. Die sogenannte TEM_{00} -Mode ist hierbei die präferierte, denn sie hat keine transversalen Anteile, welche die Fokussierung erschweren. Ihre Intensitätsverteilung auf einem Schirm wird durch die Gaußverteilung

$$I(r) = I_0 \exp\left(-2\left(\frac{r}{\omega}\right)^2\right) \tag{5}$$

mit dem Abstand zur optischen Achse r und dem Strahldurchmesser 2ω beschrieben. Der Strahlradius ω hängt von der Fokussierung ab und kann mit

$$\omega(z) = \omega_0 \sqrt{1 + \left(\frac{\theta z}{\omega_0}\right)^2} \tag{6}$$

moduliert werden, wobei $\theta = \omega_0 \lambda / \pi$ die Divergenz des Strahls ist.

Neben den beschriebenen grundlegenden Bauteilen werden weitere Elemente zur Verbesserung des Strahls eingesetzt:

- Brewsterfenster an beiden Seiten der Kammer, die das Lasermedium enthält, sorgen für die Polarisation des Lichts. Sie bestehen aus Glasplatten, die im Brewsterwinkel zum Strahl stehen und so die senkrecht polarisierten Anteile der Welle herausfiltern.
- Modenblenden sind mechanische Widerstände, die transversale Moden blockieren.

Versuch V61 Der HeNe-Laser

1.3 Der HeNe-Laser

Beim HeNe-Laser befindet sich neben Neon als Lasermedium noch Helium als Pumpgas im Verhältnis 1 (Ne) zu 5 (He). Die Heliumatome werden durch Entladung angeregt. Durch Stöße zweiter Art $(A^* + B \rightarrow A + B^*)$ werden die Neonatome angeregt. Das Energieniveauschema 2 stellt diesen und die darauf folgenden Abläufe in den Atomhüllen dar. Die intensivste der emittierten Wellenlängen, ist rote mit einer Wellenlänge von $\lambda = 632.8$ nm.

Abbildung 2: Niveauschema der Abläufe im HeNe-Laser [Niveaus]

2 Aufbau und Ablauf des Experiments

Versuch V61 Auswertung

3 Auswertung

3.1 Statistische Formeln

3.1.1 Fehlerrechnung

Im folgenden wurden Mittelwerte von N Messungen der Größe x berechnet

$$\bar{x} = \frac{1}{N-1} \sum_{i=1}^{N} x_i , \qquad (7)$$

sowie die Varianz

$$V(x) = \frac{1}{N-1} \sum_{i=1}^{N} (x_i - \bar{x})^2$$
(8)

woraus die Standardabweichung folgt

$$\sigma_x = \sqrt{V(x)}. (9)$$

Die Standardabweichung des Mittelwertes

$$\Delta_x = \frac{\sigma_x}{\sqrt{N}} \,\,, \tag{10}$$

kürzer auch Fehler des Mittelwertes genannt, bezieht noch die Anzahl der Messungen mit ein.

Des weiteren ist die Gaußsche Fehlerfortpflanzung definiert als

$$\sigma_A = \sqrt{\sum_{i=1}^N \left(\frac{\partial A(x_1, ..., x_N)}{\partial x_i}\right)^2 \sigma_{x_i}^2} \quad . \tag{11}$$

3.1.2 Regression

Nachfolgend wird eine lineare Regression für Wertepaare (x_i, y_i) durchgeführt. Dafür müssen die Steigung

$$m = \frac{n \cdot \sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(12)

und der y-Achsenabschnitt

$$b = \frac{\sum_{i=1}^{n} x_i^2 \cdot \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} x_i \cdot \sum_{i=1}^{n} x_i y_i}{n \cdot \sum_{i=1}^{n} x_i^2 - \left(\sum_{i=1}^{n} x_i\right)^2}$$
(13)

berechnet werden. Den jeweiligen Fehler erhält man mit

$$s_m^2 = s_y^2 \cdot \frac{n}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2}$$
 (14)

$$s_b^2 = s_y^2 \cdot \frac{\sum_{i=1}^n x_i^2}{n \cdot \sum_{i=1}^n x_i^2 - \left(\sum_{i=1}^n x_i\right)^2} . \tag{15}$$

 s_y ist hierbei die Abweichung der Regressionsgeraden in y-Richtung.

$$s_y^2 = \frac{\sum_{i=1}^n (\Delta y_i)^2}{n-2} = \frac{\sum_{i=1}^n (y_i - b - mx_i)^2}{n-2}$$
(16)

VERSUCH V61 DISKUSSION

4 Diskussion

Todo list

A 1 1	• 1 1	•	
Abl	าปส	ungsverzeic	chnis
$\mathbf{A}\mathbf{D}\mathbf{B}$	JHU	ungsverzer	. 1111

1	Schematischer	Aufbau eines I	Lasers $[{f V61}]$		 	 	 	3
2	Niveauschema	der Abläufe in	n HeNe-Laser	[Niveaus]	 	 	 	4

Tabellenverzeichnis