Semaine 14 - Continuité

Valentin De Bortoli email : valentin.debortoli@gmail.com

1 Théorèmes de point fixe

- 1 Soit $f \in \mathcal{C}([0,1],[0,1])$. Montrer que f admet un point fixe.
- **2** Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ décroissante. Montrer que f admet un point fixe.

Remarque : la première question donne un cas particulier d'un théorème plus général, le théorème de Brouwer. Celui-ci assure que si $f \in \mathcal{C}(K,K)$ avec K un compact de dimension finie alors f admet un point fixe (le résultat reste vrai en dimension infinie et se nomme théorème de Schauder).

2 Périodicité et limite

Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$, périodique et qui admet une limite finie en $+\infty$.

1 Montrer que f est constante.

3 Étude de continuité (1)

Donner l'ensemble de définition et étudier la continuité des fonctions suivantes :

- 1 $x \mapsto \lfloor x \rfloor + \sqrt{x \lfloor x \rfloor}$
- $2 \quad x \mapsto \lfloor x \rfloor + (x \lfloor x \rfloor)^2$

4 Étude de continuité (2)

1 Montrer que $x \mapsto \sup_{n \in \mathbb{N}} \frac{x^n}{n!}$ est bien définie sur \mathbb{R}_+ et étudier sa continuité.

5 Croissance et continuité

Soit f une fonction qui va de \mathbb{R}_+^* dans \mathbb{R} avec f croissante et $x\mapsto \frac{f(x)}{x}$ décroissante.

 ${\bf 1} \quad \text{Montrer que } f \text{ est continue.}$

6 Égalité de normes

Soit f et g deux fonctions de $\mathcal{C}(\mathbb{R},\mathbb{R})$ telles que $\forall x \in \mathbb{R}, |f(x)| = |g(x)| \neq 0$.

1 Montrer que f = g ou f = -g.

7 Les morphismes continus réels

Soit ϕ un morphisme continu de \mathbb{R} , c'est-à-dire $\phi: \mathbb{R} \to \mathbb{R}$ qui vérifie $\forall (a,b) \in \mathbb{R}^2, \ \phi(a+b) = \phi(a) + \phi(b)$. On suppose de plus que cette fonction est continue.

1 Montrer que ϕ est linéaire.

Indication : Que peut-on dire de ϕ sur les entiers naturels ? Sur les entiers relatifs ? Sur les rationnels ? Une fois qu'on a l'expression de ϕ sur les rationnels comment étendre aux réels ?

8 Les morphismes continus du cercle unité

Soit ϕ un morphisme continu du cercle unité, c'est-à-dire $\phi: \mathbb{U} \to \mathbb{C}^*$ qui vérifie $\forall (a,b) \in \mathbb{U}^2, \ \phi(ab) = \phi(a)\phi(b)$. On suppose de plus que cette fonction est continue.

- 1 Montrer que ϕ est à valeurs dans le cercle unité.
- **2** Montrer que $\phi(z) = z^n$ avec $n \in \mathbb{N}$.

Remarque : on admettra le théorème de relèvement : $\exists ! \ \psi \in \mathcal{C}([0, 2\pi[, \mathbb{R}) \ \text{telle que } \phi(e^{it}) = e^{i\psi(t)} \ \text{si } \phi \ \text{est à valeurs dans le cercle unité.}$

9 Équation fonctionnelle (1)

Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ qui vérifie : $\forall x \in \mathbb{R}, \ f\left(\frac{x+1}{2}\right) = f(x)$.

1 Montrer que f est constante.

10 Équation fonctionnelle (2)

Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ qui vérifie : $\forall x \in \mathbb{R}, \ f(2x) = f(x) \cos(x)$.

1 Déterminer f.

11 Équation fonctionnelle (3)

Soit f une fonction de $\mathcal{C}(\mathbb{R}, \mathbb{R})$ continue en 0 et en 1 qui vérifie $\forall x \in \mathbb{R}, f(x^2) = f(x)$.

 ${\bf 1} \quad \text{Montrer que } f \text{ est constante.}$

12 Les cordes rationnelles

Soit $f \in \mathcal{C}([0,1])$ telle que f(0) = f(1). Soit $n \in \mathbb{N}^*$.

- **1** Montrer qu'il existe $\alpha \in [0, 1 \frac{1}{n}[$ tel que $f(\alpha + \frac{1}{n}) = f(\alpha)$.
- 2 Pourquoi ce théorème s'appelle-t-il théorème des cordes rationnelles ?

13 Image et périodicité

Soit $f \in \mathcal{C}(\mathbb{R}, \mathbb{R})$ périodique de période T.

- ${\bf 1} \quad \text{Montrer que } f \text{ est born\'ee}.$
- **2** Montrer qu'il existe $x \in \mathbb{R}$ tel que $\operatorname{Im} f = f([x, x + \frac{T}{2}])$.

14 Antécédent et continuité

Soit $f\in\mathcal{C}(\mathbb{R},\mathbb{R})$ tel que chaque $y\in\mathbb{R}$ admet au plus deux antécédents.

1 Montrer qu'il existe $y \in \mathbb{R}$ tel que y admet exactement un antécédent.