Predicting new MCIA scores

Max Mattesich, Joaquin Reyna, Anna Konstorum

2022-09-01

Predicting MCIA global (factor) scores for new test samples

It may be of interest to use the embedding that is calculated on a training sample set to predict scores on a test set (or, equivalently, on new data).

After loading the nipalsMCIA library (see the X vignette for instructions on how to install), we randomly split the NCI60 cancer cell line data into training and test sets.

```
library(nipalsMCIA)
library(ggplot2)

data(NCI60)

set.seed(8)
num_samples = dim(data_blocks[[1]])[1]
num_train = round(num_samples*0.7,0)
train_samples = sample.int(num_samples,num_train)

data_blocks_train<-data_blocks
data_blocks_test<-data_blocks
for (i in 1:length(data_blocks)){
   data_blocks_train[[i]]<-data_blocks_train[[i]][train_samples,]
   data_blocks_test[[i]]<-data_blocks_test[[i]][-train_samples,]
}</pre>
```

Run NIPALS-MCIA on training data

Visualize model on training data using metadata on cancer type

The metadata for cancer type is contained in the sample name (before the period) e.g. 'ME.UACC 62' is type 'ME'

```
cancer_type <- substr(rownames(data_blocks_train$mrna), 1, 2)
MCIA_out<-data.frame(MCIA_train$global_scores[,1:2])
MCIA_out$Cancer_type<-cancer_type
colnames(MCIA_out)<-c("Factor_1", "Factor_2", "Cancer_type")
ggplot(data = MCIA_out, aes(x=Factor_1, y=Factor_2, color=Cancer_type))+
    geom_point(size=3) +
    theme_bw() +
    ggtitle("MCIA for NCI60 training data")</pre>
```


Generate factor scores for test data using the MCIA_train model

We use the predict_gs function to generate new factor scores on the test data set using the MCIA_train model above

```
MCIA_test_scores <- predict_gs(MCIA_train,data_blocks_test)</pre>
```

Visualize new scores with old

We once again plot the top two factor scores for both the training and test datasets

```
cancer_type <- substr(rownames(data_blocks_test$mrna), 1, 2)
MCIA_out_test<-data.frame(MCIA_test_scores[,1:2])
MCIA_out_test$Cancer_type<-cancer_type
colnames(MCIA_out_test)<-c("Factor_1", "Factor_2", "Cancer_type")
MCIA_out_test$set<-"test"
MCIA_out_$set<-"train"
MCIA_out_full<-rbind(MCIA_out,MCIA_out_test)
rownames(MCIA_out_full)<-NULL

ggplot(data = MCIA_out_full)<-NULL

ggplot(data = MCIA_out_full, aes(x=Factor_1, y=Factor_2, color=Cancer_type, shape=set))+
    geom_point(size=3) +
    theme_bw() +
    ggtitle("MCIA for NCI60 training and test data")</pre>
```


0.0

-0.2

Factor_1

-0.2

-0.3

-0.4

ME

0.2