Part B - Reflection Paper

1. What I Implemented

In this project, I built a customer spending segmentation model using K-Means clustering. selected **Income \$** and **SpendingScore** as the two features First, I checked for missing numeric values and filled them using the **median** to avoid skewing the data. Then I scaled the features with **StandardScaler** so that income (measured in dollars) and spending score were the same scale. Next, I ran a loop for k = 1 to 10, fitting a K-Means model each time and printing the Sum of **Squared Errors (SSE)** to perform an elbow check. Based on the SSE results, I chose the best value of K. trained the final K-Means model, and added a new Cluster column to the dataset. Finally, I evaluated the clustering quality using the **Silhouette Score** and the **Davies-Bouldin** Index (DBI), and I inverse-transformed the cluster centers back to their original units to interpret the results in real-world terms.

2. Choosing K

The printed SSE values decreased rapidly up to $\mathbf{k} = \mathbf{3}$ and then started to level off, creating a clear elbow at $\mathbf{K} = \mathbf{3}$. At this value, the **Silhouette Score** was high and the **Davies-Bouldin Index** was low, confirming that the clusters were both well-separated and compact. Because $K = \mathbf{3}$ offered the best trade-off between simplicity and performance, I selected **3 clusters** for the final model.

3. Cluster Interpretation

The three clusters can be described as follows:

Cluster	Description	Business Action
0 – Low Income / High Spending	income but high	Offer loyalty rewards or discounts to retain these enthusiastic buyers and encourage repeat purchases.
Moderate	Customers with average income and balanced spending habits.	Use seasonal promotions or personalized recommendations to maintain engagement and gently increase spending.
_	High earners who currently spend cautiously.	Provide premium upsell opportunities (VIP programs, exclusive products) to capture more of their potential spending power.

These insights can guide marketing strategies such as targeted offers and customer retention plans.

4. Limitations & Next Steps

This analysis only used **Income_\$** and **SpendingScore**, which limits the depth of customer profiles.

Adding other features such as **Age**, **VisitsPerMonth**, or **OnlinePurchases** could reveal more detailed spending behaviors and improve segmentation. As a next step, I could expand the model to include **three or more features**, experiment with **DBSCAN or Hierarchical Clustering**, or compare K-Means results with other unsupervised techniques to discover more complex customer patterns.