Изпит по СЕМ 03.02.2021

Време за работа 150 минути

Общият брой точки е 73 плюс 7 бонус точки

При работата върху проблемите може да реферирате към теореми и твърдения, които ви помагат за извеждането на някоя стъпка. Всички части на въпрос, предхождани от \bullet , се решават от всички. За някои въпроси се изчислява индивидуален параметър M и ако M=x, решавайте само тези части, предхождани от (x) в допълнение на частите, предхождани от \bullet . За всяка задача записвате изчислението на M и факултетния си номер. Пример: изчислявате за конкретна задача M=1 и решавате за тази задача частите с (1) и \bullet . При някои задачи се изчислява параметър N, но зависимостта от него е числова и се отразява в конкретна подзадача, която се решава от всички и изчислението на N се прилага.

Въпрос 1. Използвайки наготово останалите компоненти на вероятностното пространство:

- дефинирайте вероятностната функция \mathbb{P} ; (2 точки)
- докажете, че $\mathbb{P}(A \cup B \cup C) \leq \mathbb{P}(A) + \mathbb{P}(B) + \mathbb{P}(C)$. (2 moчки)

Въпрос 2. За всеки две събития A, B дефинираме $A\Delta B = A \cap B^c \bigcup A^c \cap B$, където c е операцията допълнение и въвеждаме индикаторната функция 1_D за произволно събитие D.

 $Heкa\ M = \Phi \bmod 2$, където $\Phi\ e\ nocneд$ ната цифра на вашия факултетен номер.

- (0) Изразете $1_{(A\Delta B)\Delta C}$ чрез индикаторните функции $1_A, 1_B, 1_C$. (5 точки)
- (1) Докажете, че $\mathbb{P}(A\Delta B) \leq \mathbb{P}(A\Delta C) + \mathbb{P}(B\Delta C)$. (5 точки)

Въпрос 3. Нека $M = \Phi \bmod 2$, където Φ е <u>предпоследната</u> цифра на вашия факултетен номер.

(0) Докажете, че

$$\mathbb{P}\left(A|B
ight) \geq rac{\mathbb{P}\left(A
ight) + \mathbb{P}\left(B
ight) - 1}{\mathbb{P}\left(B
ight)}.$$
 (3 mouru)

(1) Докажете, че ако $\mathbb{P}\left(A|C\right) > \mathbb{P}\left(B|C\right)$ и $\mathbb{P}\left(A|C^c\right) > \mathbb{P}\left(B|C^c\right)$, то

$$\mathbb{P}\left(A
ight) > \mathbb{P}\left(B
ight)$$
.(3 mouru)

Въпрос 4. Тестват се за Ковид n души по следната процедура: пробите се събират заедно и ако тестът е отрицателен, всички се декларират здрави, а ако е положителен, всеки се тества отново с индивидуален тест. В популацията има 4 кръвни групи (К Γ_i , i=1,2,3,4) с равна представителност от 1/4. Сред К Γ_1 има 10% заразени, сред К Γ_2 има 1% заразени, сред К Γ_3 има 5% заразени и сред К Γ_4 има 4% заразени. Всеки от n-те тествани индивида се допуска, че е с кръвна група, независима от тази на всички останали n-1 души и падаща се с вероятността на представителността на кръвната група в популацията.

 $Heka\ N = \Phi \bmod 3$, където $\Phi\ e\ \underline{nocnedhama}$ цифра на вашия факултетен номер. Цената на общия тест е 1 лев, а цената на всеки повторен, индивидуален тест е $1+0.1 \times N$.

- Съставете модел, който отразява очакваната цена $\mathcal{P}(n)$ на един тестван по тази процедура човек. (5 mouku)
- Третирайки n като непрекъсната променлива x, изведете уравнение за x (без да го решавате), което ви задава x^* , такова че $\mathcal{P}(x^*) = \min_{x>0} \{\mathcal{P}(x)\}$. (2 точки)

• Ако имате време, намерете с помощта на компютър за кое n^* се получава минимална единична цена и нейната стойност. (З бонус точки)

Въпрос 5. Нека X е случайна величина, приемаща стойности в $\{0,1,2,3,\cdots\}$. Нека $H_X(\lambda)=\mathbb{E}\left[e^{-\lambda X}\right]$ за $\lambda\geq 0$. Тогава:

- покажете, че $H_X(\lambda) \le 1$ и чрез формално диференциране по λ под знака на очакването, изразете $\mathbb{E}[X]$ и $\mathbb{E}[X^2]$; (3 точки)
- \bullet изразете пораждащата функция на X, т.е. s_X , чрез H_X . (2 moчки)

 $Heкa\ M = \Phi \bmod 2$, където $\Phi\ e\ \underline{cymama\ na\ nocnedhume\ две}$ цифри на вашия факултетен номер.

- (0) За $X \sim Bi(n,p)$ намерете $H_X(\lambda)$ и чрез нея намерете $\mathbb{E}[X], \mathbb{E}[X^2].$ (5 точки)
- (1) За $X \sim Po(\mu)$ намерете $H_X(\lambda)$ и чрез нея намерете $\mathbb{E}[X], \mathbb{E}[X^2]$. (5 точки)

Въпрос 6. Нека $\xi \in U(0,2), \eta \in U(0,1)$.

• Намерете $\mathbb{E}\left[\xi\right], \mathbb{E}\left[\eta\right], \mathbb{E}\left[\xi^2\right], \mathbb{E}\left[\eta^2\right].$ (3 mouku)

Нека е дадено, че $cov(\xi, \eta) = -\frac{1}{10}$. Нека $M = \Phi \mod 2$, където Φ е сумата на последните три цифри на вашия факултетен номер.

- (0) Намерете $D(\xi 2\eta)$. (4 mouru)
- (1) Намерете $D(\xi 3\eta).(4 \ moч \kappa u)$

Въпрос 7. Работата на централа за конкретен ден зависи от отклонението от очакването на параметър, моделиран със случайна величина X с $\mathbb{E}[X]=1, DX=0.01$, т.е. от Y=|X-1|. Поради съществуваща екологична опасност при големи отклонения от средното, регулаторен орган налага глоба от q(n) лева, ако $Y \in (n, n+1]$, $n \ge 2$.

- Намерете горна граница за стойностите на $f(a) = \mathbb{P}(Y > a)$. (3 точки)
- Според независими експерти за $g(n) = n^{3/2}$ е вярно, че $\lim_{n\to\infty} g(n) \mathbb{P}(Y \in [n,n+1)) = 0$ и глобите не са достатъчно ефективни. Вярно ли е тяхното твърдение за границата? (4 точки)
- Ако X е случайна величина, приемаща стойности в $\{0,1,2,3,\cdots\}$, докажете, че за всяко $\lambda>0$

$$\mathbb{P}\left(X \leq n\right) \leq \mathbb{E}\left[e^{-\lambda X}\right]e^{\lambda n}.$$
 (4 bonyc mouku)

Въпрос 8. Нека X_1, \dots, X_n, \dots са независими случайни величини с Поасоново разпределение. Следователно имаме за $k \geq 0$

$$\mathbb{P}\left(X_{1}=k\right)=e^{-\lambda}\frac{\lambda^{k}}{k!}.$$

Чрез тези случайни величини се моделира процес на раждане чрез $Y_n=(1+X_n)Y_{n-1}, n\geq 1, Y_0=1$ и процес на раждане и умиране чрез $Z_n=X_nZ_{n-1}, n\geq 1, Z_0=1$.

 $Heka\ M = \Phi \bmod 2$, където $\Phi\ e\ \underline{nocnedhama}$ цифра на вашия факултетен номер.

- Кога казваме, че редица от сл.вел. ξ_n клони почти сигурно към сл. вел. ξ ? (2 $moч\kappa u$)
- (0) Съществува ли граница на редицата $\frac{1}{n}\log Y_n$ и коя е тя? За какъв тип сходимост става въпрос? Вярно ли е, че $\mathbb{E}[Y_n]$ расте с експоненциална скорост? (8 точки)

(1) Пресметнете $\mathbb{P}(Z_n \neq 0)$ и докажете, че Z_n клони към 0 почти сигурно, т.е. процесът изчезва почти сигурно. Вярно ли е, че $\mathbb{E}[Z_n]$ расте с експоненциална скорост при $\lambda > 1$? (8 точки)

Въпрос 9. Зар с шест стени се хвърля 3×10^{12} пъти и се образува броя X на падналите се от тези хвърляния единици или тройки. $\textbf{Hera}\ N = \Phi \bmod 3$, $\kappa z \partial emo\ \Phi\ e\ \underline{npednocnedhama}\ uu \phi pa$ на вашия факултетен номер. Слаб студент трябва да отговори на следните въпроси:

- Каква е вероятността (*приблизително*) за $X > 10^{12}$?
- Каква е вероятността (*приблизително*) за $X > 10^{12} + 10^{1+N}$?
- Каква е вероятността (*приблизително*) за $X > 10^{12} + 10^{7+N}$?

Студентът не знаел какво да прави и отговорял навсякъде 50 на 50 или 1/2. На колко и на кои въпроси е отговорил правилно? Обосновете математически отговора си. (7 movku)

Въпрос 10. Времетраенето на придобит към вирус имунитет се моделира с непрекъсната, експоненциално разпределена случайна величина X с параметър λ , а силата на имунитета се измерва от непрекъсната случайна величина Y с плътност $f_Y(y) = \beta y^{\beta-1}, 0 < y \le 1, \beta > 0$. Нека $\overrightarrow{X} = (x_1, x_2, \dots, x_n)$ и $\overrightarrow{Y} = (y_1, y_2, \dots, y_n)$ са n наблюдения върху X, Y.

 $Heкa\ M = \Phi \bmod 2,\ \kappa \it{vdemo}\ \Phi\ e\ cymama\ ha\ \underline{mpemama\ u\ nocnedhama}\ uu\it{ppa}\ ha\ вашия\ \it{parynmemeh}\ homep.$

- (0) Намерете максимално правдоподобна оценка за λ ; намерете оценка по метода на моментите. (5 $moч\kappa u$)
- (1) Намерете максимално правдоподобна оценка за β и разпишете функцията на правдоподобие. (5 mounu)
- (0) Състоятелна ли е максимално правдоподобната оценка? (3 точки)
- (1) Състоятелна ли е максимално правдоподобната оценка? (3 точки)

Въпрос 11. Ваксина преминава изпитания на фаза 3, като са тествани n=10000 души, от които 9000 са получили имунитет. Допуска се, че получилите имунитет са $X \in Bi(10000,p)$. Как бихте конструирали симетрична критична област за тестването на нулевата хипотеза $H_0: p=0.9$ с грешка от първи род $\alpha=0.01$? Имате ли основания да мислите, че тази критична област е близка до оптималната критична област? (5 точки)