Tracking

16-385 Computer Vision Spring 2018, Lecture 24

http://www.cs.cmu.edu/~16385/

Course announcements

- Homework 6 has been posted and is due on April 20th.
 - Any questions about the homework?
 - How many of you have looked at/started/finished homework 6?
- This week Yannis' office hours will be on Wednesday 3-6 pm.
 - Added an extra hour to make up for change.

Overview of today's lecture

- KLT tracker.
- Mean-shift algorithm.
- Kernel density estimation.
- Mean-shift tracker.
- Modern trackers.

Slide credits

Most of these slides were adapted from:

Kris Kitani (16-385, Spring 2017).

Friday May 04	Morning session McConomy Auditorium
8:00am - 9:00am	Registration
9:00am - 9:15am	Welcome
9:15am - 10:30am	Session 1
10:30am - 11:00am	Coffee break
11:00am - 12pm	Keynote 1: Kyros Kutulakos
12:00pm - 1:30pm	Lunch in Wiegand gym
1:30pm - 2:45pm	Session 2
2:45pm - 3:15pm	Coffee break
3:15pm - 4:30pm	Session 3
4:30pm - 6:30pm	Optional lab tours (Details TBD)
6:30pm - 9:30pm	Reception in Phipps Outdoor garden

Saturday May 05	Morning session McConomy Auditorium
8:30am - 9:15am	Registration
9:15am - 10:30am	Session 4
10:30am - 11:00am	Coffee break
11:00am - 12:00pm	Keynote 2: Quyen Nguyen
12:00pm - 1:30pm	Lunch in Wiegand gym
1:30pm - 3:10pm	Session 5
3:10pm - 6:30pm	Poster session in <u>Wiegand gym</u>

Sunday May 06	Morning session McConomy Auditorium
8:15am - 9:15am	Registration
9:15am - 10:30am	Session 6
10:30am - 11:00am	Coffee break
11:00am - 12:00pm	Keynote 3: Sönke Johnsen
12:00pm - 1:30pm	Lunch in <u>Wiegand gym</u>
1:30pm - 3:10pm	Session 7
3:10pm - 4:00pm	Concluding remarks and awards ceremony

All lectures and talks are free for CMU students!

(You only need to pay for registration to attend the free food events.)

Friday May 04	Morning session McConomy Auditorium
8:00am - 9:00am	Registration
9:00am - 9:15am	Welcome
9:15am - 10:30am	Session 1
10:30am - 11:00am	Coffee break
11:00am - 12pm	Keynote 1: Kyros Kutulakos
12:00pm - 1:30pm	Lunch in <u>Wiegand gym</u>
12:00pm - 1:30pm 1:30pm - 2:45pm	Lunch in <u>Wiegand gym</u> Session 2
·	
1:30pm - 2:45pm	Session 2
1:30pm - 2:45pm 2:45pm - 3:15pm	Session 2 Coffee break
1:30pm - 2:45pm 2:45pm - 3:15pm 3:15pm - 4:30pm	Session 2 Coffee break Session 3

Saturday May 05	Morning session McConomy Auditorium
8:30am - 9:15am	Registration
9:15am - 10:30am	Session 4
10:30am - 11:00am	Coffee break
11:00am - 12:00pm	<u>Keynote 2: Quyen Nguyen</u>
12:00pm - 1:30pm	Lunch in <u>Wiegand gym</u>
1:30pm - 3:10pm	Session 5
3:10pm - 6:30pm	Poster session in <u>Wiegand gym</u>

Sunday May 06	Morning session McConomy Auditorium
8:15am - 9:15am	Registration
9:15am - 10:30am	Session 6
10:30am - 11:00am	Coffee break
11:00am - 12:00pm	Keynote 3: Sönke Johnsen
12:00pm - 1:30pm	Lunch in <u>Wiegand gym</u>
1:30pm - 3:10pm	Session 7
3:10pm - 4:00pm	Concluding remarks and awards ceremony

All lectures and talks are free for CMU students!

(You only need to pay for registration to attend the free food events.)

Everything in blue is free!

15-463/15-663/15-862 Computational Photography

Learn about this and other unconventional cameras – and build some on your own!

cameras that take video at the speed of light

cameras that measure depth in real time

cameras that see around corners

cameras that capture entire focal stacks

http://graphics.cs.cmu.edu/courses/15-463/

ICCP covers all of these

Kanade-Lucas-Tomasi (KLT) tracker

Feature-based tracking

Up to now, we've been aligning entire images but we can also track just small image regions too!

(sometimes called sparse tracking or sparse alignment)

How should we select the 'small images' (features)?

How should we track them from frame to frame?

An Iterative Image Registration Technique with an Application to Stereo Vision.

History of the

Kanade-Lucas-Tomasi (KLT) Tracker

1981

1991

The original KLT algorithm

Good Features to Track.

1994

Kanade-Lucas-Tomasi

How should we track them from frame to frame?

Lucas-Kanade

Method for aligning (tracking) an image patch

How should we select features?

Tomasi-Kanade

Method for choosing the best feature (image patch) for tracking

Intuitively, we want to avoid smooth regions and edges.

But is there a more is principled way to define good features?

Can be derived from the tracking algorithm

Can be derived from the tracking algorithm

'A feature is good if it can be tracked well'

error function (SSD)
$$\sum_{\bm{x}} \left[I(\mathbf{W}(\bm{x};\bm{p})) - T(\bm{x}) \right]^2$$
 incremental update
$$\sum_{\bm{x}} \left[I(\mathbf{W}(\bm{x};\bm{p})) - T(\bm{x}) \right]^2$$

error function (SSD)
$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$
 incremental update
$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$
 linearize
$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p} + \Delta \boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^2$$

error function (SSD)
$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

incremental update

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

linearize

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Gradient update

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

$$H = \sum_{m{x}} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]^{ op} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]$$

error function (SSD)
$$\sum_{\bm{x}} \left[I(\mathbf{W}(\bm{x};\bm{p})) - T(\bm{x}) \right]^2$$

incremental update

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p} + \Delta \boldsymbol{p})) - T(\boldsymbol{x}) \right]^2$$

linearize

$$\sum_{\boldsymbol{x}} \left[I(\mathbf{W}(\boldsymbol{x};\boldsymbol{p})) + \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \Delta \boldsymbol{p} - T(\boldsymbol{x}) \right]^{2}$$

Gradient update

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

$$H = \sum_{m{x}} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]^{ op} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]$$

Update

$$oldsymbol{p} \leftarrow oldsymbol{p} + \Delta oldsymbol{p}$$

Stability of gradient decent iterations depends on ...

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

Stability of gradient decent iterations depends on ...

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

Inverting the Hessian

$$H = \sum_{m{x}} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]^{ op} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]^{ op}$$

When does the inversion fail?

Stability of gradient decent iterations depends on ...

$$\Delta \boldsymbol{p} = H^{-1} \sum_{\boldsymbol{x}} \left[\nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \right]^{\top} \left[T(\boldsymbol{x}) - I(\mathbf{W}(\boldsymbol{x}; \boldsymbol{p})) \right]$$

Inverting the Hessian

$$H = \sum_{m{x}} \left[
abla I rac{\partial \mathbf{W}}{\partial m{p}}
ight]^{ ext{\tiny{\tiny{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiny{\text{\tiny{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiny{\tiny{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\text{\tiny{\text{\text{\text{\text{\text{\text{\text{\text{\tiny{\tiny{\text{\text{\text{\tiny{\tiny{\tiny{\text{\text{\tiny{\tiny{\text{\tiny{\tiny{\text{\tiny{\tiny{\text{\tiny{\tiny{\tiny{\tiny{\tiny{\text{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\text{\text{\tiny{\tiny{\text{\tiny{\text{\tiny{\tiny{\text{\tiny{\tiny{\tiny{\tity{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\text{\tiny{\tiny{\tiny{\text{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tiny{\tity{\tiny{\tii$$

When does the inversion fail?

H is singular. But what does that mean?

Above the noise level

$$\lambda_1 \gg 0$$
 $\lambda_2 \gg 0$

$$\lambda_2 \gg 0$$

both Eigenvalues are large

Well-conditioned

both Eigenvalues have similar magnitude

Concrete example: Consider translation model

$$\mathbf{W}(m{x};m{p}) = \left[egin{array}{c} x+p_1 \ y+p_2 \end{array}
ight] \qquad \qquad rac{\mathbf{W}}{\partial m{p}} = \left[egin{array}{c} 1 & 0 \ 0 & 1 \end{array}
ight]$$

Hessian

$$H = \sum_{\boldsymbol{x}} \begin{bmatrix} \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \end{bmatrix}^{\top} \begin{bmatrix} \nabla I \frac{\partial \mathbf{W}}{\partial \boldsymbol{p}} \end{bmatrix}$$

$$= \sum_{\boldsymbol{x}} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} I_x \\ I_y \end{bmatrix} \begin{bmatrix} I_x & I_y \end{bmatrix} \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= \begin{bmatrix} \sum_{\boldsymbol{x}} I_x I_x & \sum_{\boldsymbol{x}} I_y I_x \\ \sum_{\boldsymbol{x}} I_x I_y & \sum_{\boldsymbol{x}} I_y I_y \end{bmatrix} \leftarrow \text{when is this singular?}$$

How are the eigenvalues related to image content?

interpreting eigenvalues

$$\lambda_2 >> \lambda_1$$

What kind of image patch does each region represent?

$$\lambda_1 \sim 0$$

$$\lambda_2 \sim 0$$

$$\lambda_1 >> \lambda_2$$

interpreting eigenvalues

interpreting eigenvalues

$$\min(\lambda_1, \lambda_2) > \lambda$$

'big Eigenvalues means good for tracking'

KLT algorithm

- 1. Find corners satisfying $\min(\lambda_1, \lambda_2) > \lambda$
- For each corner compute displacement to next frame using the Lucas-Kanade method
- 3. Store displacement of each corner, update corner position
- 4. (optional) Add more corner points every M frames using 1
- 5. Repeat 2 to 3 (4)
- 6. Returns long trajectories for each corner point

Mean-shift algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm
Fukunaga & Hostetler (1975)

Find the region of highest density

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Pick a point

A 'mode seeking' algorithm

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Compute the (weighted) **mean**

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Shift the window

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

Compute the **mean**

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

A 'mode seeking' algorithm

Fukunaga & Hostetler (1975)

To understand the theory behind this we need to understand...

Kernel density estimation

Kernel Density Estimation

A method to approximate an underlying PDF from samples

Put 'bump' on every sample to approximate the PDF

Now to estimate the 'hidden' PDF place Gaussian bumps on the samples...

• •

discretized 'bump'

samples

Kernel Density Estimation

Approximate the underlying PDF from samples from it

Put 'bump' on every sample to approximate the PDF

Kernel Function

 $K(\boldsymbol{x}, \boldsymbol{x}')$

returns the 'distance' between two points

Epanechnikov kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = \left\{ egin{array}{ll} c(1 - \|\boldsymbol{x} - \boldsymbol{x}'\|^2) & \|\boldsymbol{x} - \boldsymbol{x}'\|^2 \leq 1 \\ 0 & ext{otherwise} \end{array}
ight.$$

Uniform kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = \begin{cases} c & \|\boldsymbol{x} - \boldsymbol{x}'\|^2 \le 1 \\ 0 & \text{otherwise} \end{cases}$$

Normal kernel

$$K(\boldsymbol{x}, \boldsymbol{x}') = c \exp\left(\frac{1}{2}\|\boldsymbol{x} - \boldsymbol{x}'\|^2\right)$$

These are all radially symmetric kernels

Radially symmetric kernels

...can be written in terms of its *profile*

$$K(\boldsymbol{x}, \boldsymbol{x}') = c \cdot k(\|\boldsymbol{x} - \boldsymbol{x}'\|^2)$$

profile

Connecting KDE and the Mean Shift Algorithm

Mean-Shift Tracking

Given a set of points:

$$\{oldsymbol{x}_s\}_{s=1}^S \qquad oldsymbol{x}_s \in \mathcal{R}^d$$

and a kernel:

$$K(\boldsymbol{x}, \boldsymbol{x}')$$

Find the mean sample point:

Mean-Shift Algorithm

Initialize $oldsymbol{x}$

place we start

While $v(\boldsymbol{x}) > \epsilon$

shift values becomes really small

1. Compute mean-shift

$$m(\boldsymbol{x}) = rac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s)}$$

compute the 'mean'

$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

compute the 'shift'

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$

update the point

Where does this algorithm come from?

Mean-Shift Algorithm

Initialize $oldsymbol{x}$

While
$$v(\boldsymbol{x}) > \epsilon$$

1. Compute mean-shift

$$m(\boldsymbol{x}) = rac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s)}$$

$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

2. Update
$$\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$$

Where does this come from?

Where does this algorithm come from?

How is the KDE related to the mean shift algorithm?

Recall:

Kernel density estimate

(radially symmetric kernels)

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

can compute probability for any point using the KDE!

We can show that:

Gradient of the PDF is related to the mean shift vector

$$\nabla P(\boldsymbol{x}) \propto m(\boldsymbol{x})$$

The mean shift vector is a 'step' in the direction of the gradient of the KDE mean-shift algorithm is maximizing the objective function

In mean-shift tracking, we are trying to find this

which means we are trying to...

We are trying to optimize this:

$$m{x} = rg \max_{m{x}} P(m{x})$$
 find the solution that has the highest probability $m{x} = rg \max_{m{x}} rac{1}{N} c \sum_{m{n}} k(||m{x} - m{x}_{m{n}}||^2)$ usually non-linear non-parametric

How do we optimize this non-linear function?

We are trying to optimize this:

How do we optimize this non-linear function?

compute partial derivatives ... gradient descent!

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n}k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Compute the gradient

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Expand the gradient (algebra)

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x} - \boldsymbol{x}_n) k'(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Expand gradient

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x} - \boldsymbol{x}_n) k'(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Call the gradient of the kernel function g

$$k'(\cdot) = -g(\cdot)$$

$$P(\boldsymbol{x}) = \frac{1}{N}c\sum_{n} k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} c \sum_{n} \nabla k(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

Expand gradient

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x} - \boldsymbol{x}_n) k'(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

change of notation (kernel-shadow pairs)

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x}_n - \boldsymbol{x}) g(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

keep this in memory: $\,k'(\cdot) = -g(\cdot)\,$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} (\boldsymbol{x}_n - \boldsymbol{x}) g(\|\boldsymbol{x} - \boldsymbol{x}_n\|^2)$$

multiply it out

$$\nabla P(\mathbf{x}) = \frac{1}{N} 2c \sum_{n} \mathbf{x}_{n} g(\|\mathbf{x} - \mathbf{x}_{n}\|^{2}) - \frac{1}{N} 2c \sum_{n} \mathbf{x} g(\|\mathbf{x} - \mathbf{x}_{n}\|^{2})$$

too long! (use short hand notation)

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

multiply by one!

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} \boldsymbol{x}_{n} g_{n} \left(\frac{\sum_{n} g_{n}}{\sum_{n} g_{n}} \right) - \frac{1}{N} 2c \sum_{n} \boldsymbol{x} g_{n}$$

collecting like terms...

$$\nabla P(\boldsymbol{x}) = \frac{1}{N} 2c \sum_{n} g_{n} \left(\frac{\sum_{n} \boldsymbol{x}_{n} g_{n}}{\sum_{n} g_{n}} - \boldsymbol{x} \right)$$

What's happening here?

$$abla P(oldsymbol{x}) = rac{1}{N} 2c \sum_{n} g_n \left(rac{\sum_{n} oldsymbol{x}_n g_n}{\sum_{n} g_n} - oldsymbol{x}
ight)$$
 constant mean shift!

The mean shift is a 'step' in the direction of the gradient of the KDE

Let
$$m{v}(m{x}) = \left(rac{\sum_{n}m{x}_{n}g_{n}}{\sum_{n}g_{n}} - m{x}
ight) = rac{
abla P(m{x})}{rac{1}{N}2c\sum_{n}g_{n}}$$

Can interpret this to be gradient ascent with data dependent step size

Mean-Shift Algorithm

Initialize $oldsymbol{x}$

While
$$v(\boldsymbol{x}) > \epsilon$$

1. Compute mean-shift

$$m(\boldsymbol{x}) = rac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s)}$$

$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$

gradient with adaptive step size $\frac{\nabla P(\boldsymbol{x})}{\frac{1}{N}2c\sum_{n}g_{n}}$

Just 5 lines of code!

Everything up to now has been about distributions over samples...

Mean-shift tracker

Dealing with images

Pixels for a lattice, spatial density is the same everywhere!

What can we do?

Consider a set of points:

$$\{\boldsymbol{x}_s\}_{s=1}^S$$

$$oldsymbol{x}_s \in \mathcal{R}^d$$

Associated weights:

$$w(\boldsymbol{x}_s)$$

Sample mean:

$$m(\boldsymbol{x}) = \frac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s)}$$

Mean shift:

$$m(\boldsymbol{x}) - \boldsymbol{x}$$

Mean-Shift Algorithm

(for images)

Initialize $oldsymbol{x}$

While
$$v(\boldsymbol{x}) > \epsilon$$

1. Compute mean-shift

$$m(\boldsymbol{x}) = rac{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s) \boldsymbol{x}_s}{\sum_{s} K(\boldsymbol{x}, \boldsymbol{x}_s) w(\boldsymbol{x}_s)}$$

$$v(\boldsymbol{x}) = m(\boldsymbol{x}) - \boldsymbol{x}$$

2. Update $\boldsymbol{x} \leftarrow \boldsymbol{x} + \boldsymbol{v}(\boldsymbol{x})$

For images, each pixel is point with a weight

For images, each pixel is point with a weight

For images, each pixel is point with a weight

Finally... mean shift tracking in video!

Goal: find the best candidate location in frame 2

Frame 1 Frame 2

Use the mean shift algorithm to find the best candidate location

Non-rigid object tracking

hand tracking

Compute a descriptor for the target

Target

Search for similar descriptor in neighborhood in next frame

Target Candidate

Compute a descriptor for the new target

Target

Search for similar descriptor in neighborhood in next frame

Target

Candidate

Modeling the target

M-dimensional target descriptor

$$oldsymbol{q} = \{q_1, \dots, q_M\}$$

(centered at target center)

a 'fancy' (confusing) way to write a weighted histogram

Modeling the candidate

M-dimensional candidate descriptor

$$\boldsymbol{p}(\boldsymbol{y}) = \{p_1(\boldsymbol{y}), \dots, p_M(\boldsymbol{y})\}$$

(centered at location y)

a weighted histogram at y

$$p_m = C_h \sum_n k \left(\left\| rac{oldsymbol{y} - oldsymbol{x}_n}{h}
ight\|^2
ight) \delta[b(oldsymbol{x}_n) - m]$$
 bandwidth

Similarity between the target and candidate

Distance function

$$d(\boldsymbol{y}) = \sqrt{1 - \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}]}$$

Bhattacharyya Coefficient

$$\rho(y) \equiv \rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] = \sum_{m} \sqrt{p_m(\boldsymbol{y})q_u}$$

Just the Cosine distance between two unit vectors

$$\rho(\boldsymbol{y}) = \cos \theta \boldsymbol{y} = \frac{\boldsymbol{p}(\boldsymbol{y})^{\top} \boldsymbol{q}}{\|\boldsymbol{p}\| \|\boldsymbol{q}\|} = \sum_{m} \sqrt{p_m(\boldsymbol{y}) q_m}$$

Now we can compute the similarity between a target and multiple candidate regions

similarity over image

we want to find this peak

similarity over image

Objective function

$$\min_{m{y}} d(m{y})$$

same as

$$\max_{\boldsymbol{y}} \rho[\boldsymbol{p}(\boldsymbol{y}),\boldsymbol{q}]$$

Assuming a good initial guess

$$ho[oldsymbol{p}(oldsymbol{y}_0+oldsymbol{y}),oldsymbol{q}]$$

Linearize around the initial guess (Taylor series expansion)

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} p_m(\boldsymbol{y}) \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

function at specified value

derivative

Linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} p_m(\boldsymbol{y}) \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

$$p_m = C_h \sum_{m} k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \quad \text{Remember definition of this?}$$

Fully expanded

$$\rho[\boldsymbol{p}(\boldsymbol{y}),\boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} \left\{ C_h \sum_{n} k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}),\boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{1}{2} \sum_{m} \left\{ C_h \sum_{n} k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \delta[b(\boldsymbol{x}_n) - m] \right\} \sqrt{\frac{q_m}{p_m(\boldsymbol{y}_0)}}$$

Moving terms around...

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \left[\frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0) q_m} + \left[\frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right) \right] \right]$$

Does not depend on unknown y

Weighted kernel density estimate

where
$$w_n = \sum_{m} \sqrt{\frac{q_m}{p_m(oldsymbol{y}_0)}} \delta[b(oldsymbol{x}_n) - m]$$

Weight is bigger when $q_m > p_m(\boldsymbol{y}_0)$

OK, why are we doing all this math?

$$\max_{m{y}}
ho[m{p}(m{y}), m{q}]$$

$$\max_{m{y}}
ho[m{p}(m{y}), m{q}]$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m(oldsymbol{y}_0)}} \delta[b(oldsymbol{x}_n) - m]$$

$$\max_{m{y}}
ho[m{p}(m{y}), m{q}]$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}),\boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown y

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m(oldsymbol{y}_0)}} \delta[b(oldsymbol{x}_n) - m]$$

$$\max_{m{y}}
ho[m{p}(m{y}), m{q}]$$

only need to maximize this!

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown y

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m(m{y}_0)}} \delta[b(m{x}_n) - m]$$

$$\max_{m{y}}
ho[m{p}(m{y}), m{q}]$$

Fully expanded linearized objective

$$\rho[\boldsymbol{p}(\boldsymbol{y}), \boldsymbol{q}] \approx \frac{1}{2} \sum_{m} \sqrt{p_m(\boldsymbol{y}_0)q_m} + \frac{C_h}{2} \sum_{n} w_n k \left(\left\| \frac{\boldsymbol{y} - \boldsymbol{x}_n}{h} \right\|^2 \right)$$

doesn't depend on unknown y

where
$$w_n = \sum_m \sqrt{\frac{q_m}{p_m(oldsymbol{y}_0)}} \delta[b(oldsymbol{x}_n) - m]$$

what can we use to solve this weighted KDE?

Mean Shift Algorithm!

$$\left\| \frac{C_h}{2} \sum_n w_n k \left(\left\| \frac{oldsymbol{y} - oldsymbol{x}_n}{h} \right\|^2 \right) \right\|$$

the new sample of mean of this KDE is

$$egin{align*} oldsymbol{y}_1 &= rac{\sum_{n} oldsymbol{x}_n w_n g\left(\left\|rac{oldsymbol{y}_0 - oldsymbol{x}_n}{h}
ight\|^2
ight)}{\sum_{n} w_n g\left(\left\|rac{oldsymbol{y}_0 - oldsymbol{x}_n}{h}
ight\|^2
ight)} \end{aligned}$$
 (this was derived earlier)

Mean-Shift Object Tracking

For each frame:

- 1. Initialize location y_0 Compute qCompute $p(y_0)$
- 2. Derive weights w_n
- 3. Shift to new candidate location (mean shift) \boldsymbol{y}_1
- 4. Compute $p(y_1)$
- 5. If $\| \boldsymbol{y}_0 \boldsymbol{y}_1 \| < \epsilon$ return

 Otherwise $\boldsymbol{y}_0 \leftarrow \boldsymbol{y}_1$ and go back to 2

Compute a descriptor for the target

Target

Search for similar descriptor in neighborhood in next frame

Target Candidate $\max_{m{y}}
ho[m{p}(m{y}), m{q}]$

Compute a descriptor for the new target

Target

 $oldsymbol{q}$

Search for similar descriptor in neighborhood in next frame

Target Candidate $\max_{{\boldsymbol y}} \rho[{\boldsymbol p}({\boldsymbol y}),{\boldsymbol q}]$

Modern trackers

Learning Multi-Domain Convolutional Neural Networks for Visual Tracking

Hyeonseob Nam and Bohyung Han

References

Basic reading:

• Szeliski, Sections 4.1.4, 5.3.