A.07.01 – Relações de Propriedades Termodinâmicas Relações Diferenciais Parciais e de Maxwell

Prof. C. Naaktgeboren, PhD

https://github.com/CNThermSci/ApplThermSci Compiled on 2020-12-02 22h26m02s UTC

- Relações Diferenciais Parciais
 - Função de Duas Variáveis Independentes
 - Ferramentas Dedutivas

- Relações Básicas e de Maxwell
 - Relações Básicas
 - Relações de Maxwell

Diferencial Total

Seja z:z(x,y), com x e y contínuos e diferenciáveis, então:

$$dz = \left(\frac{\partial z}{\partial x}\right) dx + \left(\frac{\partial z}{\partial y}\right) dy,$$

As derivadas parciais são efetuadas mantendo as demais variáveis constantes:

A notação abaixo — como em c_p e c_v , por exemplo — explicita esta condição:

$$dz = \left(\frac{\partial z}{\partial x}\right)_{y} dx + \left(\frac{\partial z}{\partial y}\right)_{x} dy.$$

Relação de Derivadas Parciais Cruzadas

Escrevendo-se dz = Mdx + Ndy, com

$$M = \left(\frac{\partial z}{\partial x}\right)_y$$
 $e \qquad N = \left(\frac{\partial z}{\partial y}\right)_x$

$$\left(\frac{\partial^2 z}{\partial x \partial y}\right) = \left(\frac{\partial^2 z}{\partial y \partial x}\right), \qquad \neg$$

$$\left(\frac{\partial M}{\partial y}\right)_x = \left(\frac{\partial N}{\partial x}\right)_y.$$

Ferramentas Matemáticas em Processos Dedutivos

As ferramentas matemáticas em processos dedutivos incluem:

- Expansão / Contração
- Reciprocidade
- Regra Cíclica

Ferramentas Dedutivas

Expansão / Contração:

$$\left(\frac{\partial x}{\partial y}\right)_z = \left(\frac{\partial x}{\partial \square}\right)_z \left(\frac{\partial \square}{\partial y}\right)_z.$$

Ferramentas Dedutivas

Expansão / Contração:

$$\left(\frac{\partial x}{\partial y}\right)_z = \left(\frac{\partial x}{\partial \Box}\right)_z \left(\frac{\partial \Box}{\partial y}\right)_z.$$

Reciprocidade:

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{(\partial y/\partial x)_z}.$$

Ferramentas Dedutivas

Expansão / Contração:

$$\left(\frac{\partial x}{\partial y}\right)_z = \left(\frac{\partial x}{\partial \square}\right)_z \left(\frac{\partial \square}{\partial y}\right)_z.$$

Reciprocidade:

$$\left(\frac{\partial x}{\partial y}\right)_z = \frac{1}{(\partial y/\partial x)_z}.$$

Regra Cíclica:

$$\left(\frac{\partial x}{\partial y}\right)_z \left(\frac{\partial y}{\partial z}\right)_x \left(\frac{\partial z}{\partial x}\right)_y = -1.$$

Novas Propriedades

Seja *a* a energia específica de Helmholtz, definida como:

$$a \equiv u - Ts$$
.

Seja ainda g a energia específica de Gibbs, definida como:

$$g \equiv h - Ts$$
.

Equações de Gibbs

O conjunto completo de equações de Gibbs é:

$$du = +Tds - Pdv,$$

$$dh = +Tds + vdP,$$

$$da = -sdT - Pdv,$$

$$dg = -sdT + vdP.$$

Com todas as equações no formato:

$$dz = Mdx + Ndy$$
 $\rightarrow M = \left(\frac{\partial z}{\partial x}\right)_{y}$ $e \qquad N = \left(\frac{\partial z}{\partial y}\right)_{z}$

Relações Básicas

Assim:

$$T = +\left(\frac{\partial u}{\partial s}\right)_{v}$$
 e $P = -\left(\frac{\partial u}{\partial v}\right)_{s}$ (de u)

$$T = +\left(\frac{\partial h}{\partial s}\right)_P$$
 e $v = +\left(\frac{\partial h}{\partial P}\right)_s$ (de h)

$$s = -\left(\frac{\partial a}{\partial T}\right)_v$$
 e $P = -\left(\frac{\partial a}{\partial v}\right)_T$ (de a)

$$s = -\left(\frac{\partial g}{\partial T}\right)_P$$
 e $v = +\left(\frac{\partial g}{\partial P}\right)_T$ (de g)

Relações de Maxwell

As relações de Maxwell advém das derivadas segundas cruzadas:

$$\left(\frac{\partial T}{\partial v}\right)_s = -\left(\frac{\partial P}{\partial s}\right)_v = \frac{\partial^2 u}{\partial s \partial v}, \quad (\text{de } u)$$

$$\left(\frac{\partial T}{\partial P}\right)_s = + \left(\frac{\partial v}{\partial s}\right)_P \qquad = \qquad \frac{\partial^2 h}{\partial s \partial P}, \qquad (\text{de } h)$$

$$\left(\frac{\partial s}{\partial v}\right)_T = + \left(\frac{\partial P}{\partial T}\right)_v = \frac{\partial^2 a}{\partial T \partial v}, \quad (\text{de } a)$$

$$\left(\frac{\partial s}{\partial P}\right)_T = -\left(\frac{\partial v}{\partial T}\right)_P \qquad = \qquad \frac{\partial^2 g}{\partial T \partial P}, \qquad (\text{de } g).$$

Relações de Propriedades

Nas relações aqui derivadas:

- Baseiam-se no postulado de estado (substâncias puras);
- Nehuma hipótese foi feita quanto à natureza/fase da substância;
- Portanto são válidas em geral para substâncias puras!

Tópicos de Leitura I

- Çengel, Y. A. e Boles, M. A. *Termodinâmica* 7ª *Edição*. Seções 12-1 a 12-2. AMGH. Porto Alegre. ISBN 978-85-8055-200-3.
 - Naaktgeboren, C.

 Thermodynamic Properties Relations (Handout). Seções 2 a 3.

 Disponibilizado no AVA.

