International Olympiad in Informatics 2016

12-19th August 2016 Kazan, Russia day1_1

molecules

Country: ISR

Detecting Molecules

פטר (Petr) עובד בחברה שבנתה מכונה לזיהוי מולקולות. לכל מולקולה יש משקל שהוא מספר שלם חיובי. למכונה יש uורק ו-uו הם מספרים שלמים חיוביים. המכונה יכולה לזהות קבוצת מולקולות אם ורק אם הקבוצה מכילה תת קבוצה של מולקולות עם משקל כולל שנמצא בטווח הזיהוי של המכונה.

פורמלית, נתונות n מולקולות עם משקלים w_0,\dots,w_{n-1} . הזיהוי יצליח אם קיימת קבוצה של אינדקסים שונים פורמלית, נתונות $l \leq w_{i_1}+\dots+w_{i_m} \leq u$ כך שמתקיים בו $l = \{i_1,\dots,i_m\}$

מהגדרת המכונה, מובטח שההפרש בין l ו-u גדול או שווה להפרש המשקלים בין המולקולה הכבדה ביותר לקלה $w_{max}=max(w_0,\dots,w_{n-1})$, כאשר נגדיר $u-l\geq w_{max}-w_{min}$ וגם ביותר. באופן פורמלי, מתקיים $w_{max}=max(w_0,\dots,w_{n-1})$.

משימתכם היא לכתוב תוכנית שמוצאת תת קבוצה כלשהי של מולקולות עם משקל כולל שנמצא בטווח הזיהוי, או קובעת שאין תת קבוצה כזו.

פרטי מימוש

עליכם לממש פונקציה אחת (שיטה):

- int[] solve(int l, int u, int[] w) •
- ו- u: הקצוות של טווח הזיהוי. l
 - משקלי המולקולות. \mathbf{w} \circ
- אם תת הקבוצה הנדרשת קיימת, הפונקציה צריכה להחזיר מערך של אינדקסים של מולקולות
 אשר יוצרות תת קבוצה כזו. אם קיימות מספר תשובות נכונות, החזירו אחת מהן.
 - ס אם תת קבוצה כזו לא קיימת, הפונקציה צריכה להחזיר מערך ריק.

צבור שפת C חתימת הפונקציה שונה מעט:

- int solve(int l, int u, int[] w, int n, int[] result) •
- מספר האיברים ב- \mathbf{w} (כלומר, מספר המולקולות).
 - שאר הפרמטרים זהים למתואר לעיל.
- האינדקסים להחזיר מערך של m אינדקסים (כמתואר לעיל), הפונקציה צריכה לכתוב את האינדקסים סm + התאים הראשונים של המערך ואז להחזיר את m
 - והיא result והיא לכתוב כלום למערך צריכה אם תת הקבוצה הנדרשת לא קיימת, הפונקציה צריכה אם תת הקבוצה הערך \circ

לתוכניתכם מותר לכתוב את האינדקסים למערך המוחזר (או המערך result בשפת C) בכל סדר שהוא.

אנא השתמשו בקבצי ה-template לפרטי המימוש בשפת התכנות שלכם.

דוגמאות

דוגמה 1

solve(15, 17, [6, 8, 8, 7])

בדוגמה זו יש לנו ארבע מולקולות עם משקלים 6, 8, 8 ו-7. המכונה יכולה לזהות תת קבוצות של מולקולות עם 17 בדוגמה זו יש לנו ארבע מולקולות עם משקלים 17 שימו לב שמתקיים 17 ב $15 \ge 8 - 6$. המשקל הכולל של המולקולות 1 ו-3 הוא 17 בין 17 לכן הפונקציה יכולה להחזיר 17, תשובות נכונות נוספות הן 17, (כי 17 בין וגם 17, (כי 17 ב17 (כי 17 ב17).

דוגמה 2

solve(14, 15, [5, 5, 6, 6])

בדוגמה זו יש לנו ארבע מולקולות עם משקלים 5, 5, 6 ו-6, ואנחנו מחפשים תת קבוצה שלהן עם סך משקלים בין 15 ל-15, כולל. שוב, שימו לב שמתקיים 15 16 16 ל16 לא קיימת תת קבוצה של מולקולות עם סך משקלים בין 16 ל-15, לכן הפונקציה צריכה להחזיר מערך ריק.

דוגמה 3

solve(10, 20, [15, 17, 16, 18])

בדוגמה זו יש לנו ארבע מולקולות עם משקלים 15, 17, 16 ו-18, ואנחנו מחפשים תת קבוצה שלהן עם סך משקלים בין 10 ל-20, כולל. שוב, שימו לב שמתקיים $15-18 \leq 10-10$. לכל תת קבוצה שמכילה איבר בודד יש סך משקלים בין 10 ל-20, לכן התשובות הנכונות האפשריות הן: [0], [1], [1], [2].

תת משימות

- .1 (9 נקודות): $n \leq 100$: $n \leq 100$, וכל ערכי $w_i \leq 100$, וכל ערכי $w_i \leq 100$, וכל ערכי $w_i \leq 100$
 - 10) גם (גם נקודות): $w_i, u, l \le 1000$, $1 \le n \le 100$; וגם $10 \le max(w_0, ..., w_{n-1}) min(w_0, ..., w_{n-1}) \le 1$
 - $1 \le w_i, u, l \le 1000$ גקודות): $1 \le n \le 100$ (גם נקודות): 3
 - $1 \le w_i, u, l \le 10 000$ גקודות): $1 \le m \le 10 000$ (15 נקודות).
 - $1 \le w_i, u, l \le 500\,000$ גקודות): $1 \le n \le 10\,000$ (23). 5
 - $.1 \le w_i, u, l < 2^{31}$ נקודות): $n \le 200\,000$: (31) .6

גריידר לדוגמה

הגריידר קורא קלט בפורמט הבא:

- u ואחריו l ואחריו ואחריו שורה ראשונה: שלושה מספרים שלמים, u
 - w_0, \dots, w_{n-1} : שורה שנייה מספרים מספרים שלמים •