Advanced Topics in Regression

Kernels, Smoothers, and Generalized Additive Models

07-11-2023

Kernels

In Statistical contexts: a kernel is a symmetric PDF

Examples:

- Normal distribution
- Uniform distribution

Kernel Regression

The classical kernel regression estimator is the **Nadaraya-Wetson** estimator:

$$\hat{y}_h(x) = \sum_{i=1}^n w_i(x) Y_i$$

where:

$$w_i(x) = \frac{K(\frac{x - X_i}{h})}{\sum_{j=1}^n K^{\frac{x - X_j}{h}}}$$

Regression estimate is the average of all the weighted observed response values

• Farther x is from the observation, the less weight that observation has in determining the regression estimate at x.

Nadaraya-Wetson

- given training data with explanatory variable x and continuous response y
- bandwidth h > 0
- and a new point

Example of a linear smoother: class of models where predictions are weighted sums of the response variable.

Local Regression

We can fit a linear model at each point x_{new} with weights given by kernel function centered on x_{new} Local regression of the kth order with kernel function K solves the following:

$$\hat{\beta}(x_{new}) = \arg\min_{\beta} \left\{ \sum_{i} K_h(|x_{new} - x_i|) \cdot (y_i - \sum_{j=0}^k x_i^k \cdot \beta_k)^2 \right\}$$

So, every single observation has its own set of coefficients

The predicted value is then:

$$\hat{y}_{new} = \sum_{i=0}^{k} x_{new}^{k} \cdot \hat{\beta}_{k}(x_{new})$$

This is a smoother prediction than with kernel regression but comes at a higher computational cost

• LOESS replaces kernel with k nearest neighbors (discrete average)

Smoothing Splines

Use a **smooth function** s(x) to predict y, control smoothness directly by minimizing the **spline objective** function:

$$\sum_{i=1}^{n} (y_i - s(x_i))^2 + \lambda \int (s''(x))^2 dx$$

= fit data + impose smoothness

 \Rightarrow model fit = likelihood - λ · wiggliness

Estimate the smoothing spline $\hat{s}(x)$ that balances the tradeoff between the model fit and the wiggliness

Basis Functions

Splines are piecewise cubic polynomials with knots (boundary points for functions) at every data point.

• Practical alternative: linear combination of a set of basis functions

Examples:

For a cubic polynomial:

•
$$B_1(x) = 1$$
, $B_2(x) = x$, $B_3(x) = x^2$, $B_4(x) = x^3$

$$r(x) = \sum_{j}^{4} \beta_{j} B_{j}(x)$$

* Linear in the transformed variables $B_1(x), B_2(x), B_3(x), B_4(x)$ but it is **nonlinear in x**

We extend this idea for splines *piecewise* using indicator functions so the spline is a weighted sum:

$$s(x) = \sum_{j=1}^{m} \beta_j B_j(x)$$

Generalized Additive Models (GAMS)

- relationships between individual explanatory variables and the response variable are smooth (either linear or nonlinear via basis functions)
- estimate the smooth relationships simultaneously to predict the response by just adding them up

generalized like GLMs where g() is the link function for the expected value of the response E(Y) and additive over the p variables.

$$g(E(Y)) = \beta_0 + s_1(x_1) + s_2(x_2) + \dots + s_p(x_p)$$

- * can be a convenient balance between flexibility and interpretability
 - you can combine linear and nonlinear terms!

Example

```
batted_ball_data <- read_csv("https://shorturl.at/moty2") %>%
  mutate(is_hr = as.numeric(events == "home_run")) %>%
  filter(!is.na(launch_angle), !is.na(launch_speed), !is.na(is_hr))
head(batted_ball_data)
## # A tibble: 6 x 32
##
    player_name
                    batter stand events
                                            hc_x hc_y hit_distance_sc launch_speed
                                           <dbl> <dbl>
     <chr>>
                     <dbl> <chr> <chr>
                                                                  <dbl>
                                                                               <dbl>
                                                                                97.4
## 1 Daza, Yonathan 602074 R
                                 force out 103. 150.
                                                                     18
## 2 Robles, Victor 645302 R
                                 single
                                            58.6 120.
                                                                    158
                                                                                80.2
## 3 Hoerner, Nico
                                                                               101.
                    663538 R
                                 field_out 99.3 166.
                                                                     20
                                 field_out 126. 191.
                                                                    165
## 4 Clemens, Kody
                    665019 L
                                                                                84
## 5 Rosario, Amed
                    642708 R
                                 field_out 97.4 170.
                                                                      9
                                                                                94.3
                                                                    369
## 6 Castro, Willi
                    650489 L
                                 sac_fly
                                           178.
                                                  58.9
                                                                                96
## # i 24 more variables: launch_angle <dbl>, hit_location <dbl>, bb_type <chr>,
## #
       barrel <dbl>, pitch_type <chr>, release_speed <dbl>, effective_speed <dbl>,
## #
       if_fielding_alignment <chr>, of_fielding_alignment <chr>, game_date <date>,
       balls <dbl>, strikes <dbl>, outs_when_up <dbl>, on_1b <dbl>, on_2b <dbl>,
       on_3b <dbl>, inning <dbl>, inning_topbot <chr>, home_score <dbl>,
## #
       away_score <dbl>, post_home_score <dbl>, post_away_score <dbl>, des <chr>,
## #
       is hr <dbl>
batted_ball_data %>% ggplot(aes(x = launch_speed, y = launch_angle,
                                 color = as.factor(is hr))) +
  geom\ point(alpha = 0.5) +
  ggthemes::scale_color_colorblind(labels = c("No", "Yes")) +
  labs(x = "Exit velocity", y = "Launch angle", color = "HR?") +
  theme_bw() +
  theme(legend.position = "bottom")
```


HR? • No • Yes

```
# setting up the training data
set.seed(2004)
batted_ball_data <- batted_ball_data %>%
  mutate(is_train = sample(rep(0:1, length.out = nrow(batted_ball_data))))
init_logit_gam <- gam(is_hr ~ s(launch_speed) + s(launch_angle),</pre>
     data = filter(batted_ball_data, is_train == 1), family = binomial, method = "REML")
# REML allows for a more stable solution
summary(init_logit_gam)
## Family: binomial
## Link function: logit
##
## Formula:
## is_hr ~ s(launch_speed) + s(launch_angle)
## Parametric coefficients:
               Estimate Std. Error z value Pr(>|z|)
                -26.96
                           10.31 -2.614 0.00895 **
## (Intercept)
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
## Approximate significance of smooth terms:
##
                     edf Ref.df Chi.sq p-value
```

```
## s(launch_speed) 1.000 1.000 151.5 <2e-16 ***
## s(launch_angle) 2.962 3.305 112.0 <2e-16 ***
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.05 '.' 0.1 ' ' 1
##
## R-sq.(adj) = 0.588 Deviance explained = 68.3%
## -REML = 231.49 Scale est. = 1 n = 3517</pre>
```

displays the partial effect of each term in the model. Add up to the overall prediction
draw(init_logit_gam)

#centered on average value of 0.5 because it's the partial effect without the intercept
draw(init_logit_gam, fun = plogis, constant = coef(init_logit_gam)[1])

intercept reflects relatively rare occurence of HRs!

 $\begin{tabular}{ll} \# \textit{Use } \textit{gam.check()} & \textit{to } \textit{see } \textit{if } \textit{we } \textit{need more } \textit{basis } \textit{functions } \textit{based on an approximate } \textit{test} \\ \textit{gam.check(init_logit_gam)} \\ \end{tabular}$

Resids vs. linear pred.

Histogram of residuals

Response vs. Fitted Values


```
##
                  Optimizer: outer newton
## Method: REML
## full convergence after 11 iterations.
## Gradient range [-5.632542e-05,-2.964163e-06]
## (score 231.4864 & scale 1).
## Hessian positive definite, eigenvalue range [5.631851e-05,0.8679399].
## Model rank = 19 / 19
## Basis dimension (k) checking results. Low p-value (k-index<1) may
## indicate that k is too low, especially if edf is close to k'.
##
                     k'
                         edf k-index p-value
## s(launch_speed) 9.00 1.00
                                1.05
                                         1.00
## s(launch_angle) 9.00 2.96
                                0.97
                                        0.08 .
## ---
## Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
batted_ball_data <- batted_ball_data %>%
  mutate(init_gam_hr_prob = as.numeric(predict(init_logit_gam,
  newdata = batted_ball_data, type = "response")),
  init_gam_hr_class = as.numeric(init_gam_hr_prob >= 0.5))
batted_ball_data %>%
  group_by(is_train) %>%
  summarize(correct = mean(is_hr == init_gam_hr_class))
```

2 1 0.972

What about the linear model?

```
init_linear_logit <- glm(is_hr ~ launch_speed + launch_angle,</pre>
            data = filter(batted_ball_data, is_train == 1), family = binomial)
batted_ball_data <- batted_ball_data %>%
  mutate(init_glm_hr_prob = predict(init_linear_logit,
          newdata = batted_ball_data, type = "response"),
         init_glm_hr_class = as.numeric(init_glm_hr_prob >= 0.5))
batted_ball_data %>%
  group_by(is_train) %>%
  summarize(correct = mean(is_hr == init_glm_hr_class))
## # A tibble: 2 x 2
##
     is_train correct
##
        <int>
                <dbl>
## 1
            0
                0.960
## 2
                0.951
            1
```

• there are very few situations in reality where linear regressions perform better than an additive model using smooth functions – especially since smooth functions can just capture the linear model