Ve572 Lecture 9

Manuel and Jing

UM-SJTU Joint Institute

June 14, 2018

• The process of assigning objects that are similar in some sense with observed

features:
$$x_{i1}$$
 x_{i2} ... x_{ij} ... x_{ip} $i = 1, 2, ..., n$

into clusters without a clear definition or knowledge of those clusters is called

clustering

Q: Can you identify the 2 major differences between

classification and clustering

- Clustering is usually the first step, e.g.
- Cambridge Analytica, people in the same cluster tends to react in similar ways, so having different set of messages and videos for each cluster proves to be highly efficient.
- Speech recognition, learning and prediction can be done more efficiently within each cluster.

ullet Given a dataset of n observations with p features:

features:
$$x_{i1}$$
 x_{i2} ... x_{ij} ... x_{ip} $i=1,2,\ldots,n$

- Let C_ℓ denotes the set containing the observations in the ℓ th cluster.
- ullet K-means clustering is a type of hard clustering that has exactly K clusters:
- 1. Clusters are non-overlapping

$$C_{\ell} \cap C_{\ell^*} = \varnothing$$
 for all $\ell \neq \ell^*$

2. Each observation can belong to exactly one cluster

$$i \in C_{\ell} \implies i \notin C_{\ell^*}$$
 for all $\ell \neq \ell^*$

3. The whole dataset is partitioned into the K clusters

$$C_1 \cup C_2 \cup \cdots \cup C_K = \{1, 2, \ldots, n\}$$

 \bullet The idea behind K-means is that a good clustering is one for which the

within-cluster variation

is as small as possible

$$\underset{C_{1},...,C_{K}}{\operatorname{minimize}} \left\{ \sum_{\ell=1}^{K} W\left(C_{\ell}\right) \right\}$$

where $W(C_{\ell})$ is a measure of variation within C_{ℓ} .

• A common measure of variation is simple total square Euclidean distance

$$W(C_{\ell}) = \frac{1}{\|C_{\ell}\|} \sum_{i,i^* \in C_{\ell}} \sum_{i=1}^{p} (x_{ij} - x_{i^*j})^2$$

where $\|C_\ell\|$ denotes the number of observations in the ℓ th cluster.

• Notice the within-cluster distance is as small as possible

Q: How to solve this optimization problem?

$$\underset{C_1, \dots, C_K}{\text{minimize}} \left\{ \sum_{\ell=1}^K \frac{1}{\|C_\ell\|} \sum_{i, i^* \in C_\ell} \sum_{j=1}^p (x_{ij} - x_{i^*j})^2 \right\}$$

Notice the following identity is true

$$\frac{1}{\|C_{\ell}\|} \sum_{i,i^* \in C_{\ell}} \sum_{j=1}^{p} (x_{ij} - x_{i^*j})^2 = \frac{2}{\|C_{\ell}\|} \sum_{i \in C_{\ell}} \sum_{j=1}^{p} (x_{ij} - \bar{x}_{\ell j})^2$$

where the bar notation denotes the mean for feature j in the ℓ th cluster

$$\bar{x}_{\ell j} = \frac{1}{\|C_\ell\|} \sum_{i \in C_\ell} x_{ij}$$

- Q: How can we use this identity to derive an optimisation scheme?
- 1. Randomly assign each of the observation into a cluster out of the K cluster.
- 2. Iterate until the cluster assignments stop changing:
 - (a) For each of the K clusters, compute the cluster centroid, which is the vector of the p means, $\bar{x}_{\ell j}$, for observations in the ℓ th cluster.
 - (b) Reassign each observation to the cluster whose centroid is closest according to the Euclidean distance.

• Note there is no reason to expect that the *K*-means will manage to find the global optimum, so it is important to run the algorithm multiple times from different random initial configuration, and select the best solution.

- ullet K-means requires a predetermined K, which is not always available.
- If the goal is to investigate the number of possible clusters, it does not give any information on the possible number of clusters in terms of dissimilarity.
- ${\sf Q}$: What is a natural way to do clustering when K is not given?
 - Imagine we have a bunch of Chinese medicines, and some features for each

Bitterness

Market Price

Density

Size

RGB Color Spectrum

Q: How to gradually form clusters to reflect their dissimilarity?

• Given a measure of dissimilarity, we can start with pairwise comparison,

Q: How can we form clusters with more than two observations?

- The definition of dissimilarity can be extended to clusters using linkage.
- Common linkage are given below

Linkage	Description		
Complete	Compute all pairwise dissimilarity measures between the observations in cluster A and the observations in cluster B , use the largest value as the inter-cluster dissimilarity.		
Single	Compute all pairwise dissimilarity measures between the observations in cluster A and the observations in cluster B , use the smallest value as the inter-cluster dissimilarity.		
Average	Compute all pairwise dissimilarity measures between the observations in cluster A and the observations in cluster B , use the average value as the inter-cluster dissimilarity.		
Centroid	Compute the centroid of cluster A and cluster B , use the centroid dissimilarity as the inter-cluster dissimilarity.		

- ullet This is known as the Hierarchical Clustering. Given n observations:
- Compute the pairwise dissimilarity measure between every 2 observations.
 Treat each observation as its own cluster.
- 2. For $i = n, n 1, \dots, 2$:
 - (a) Examine all pairwise inter-cluster dissimilarities among those i clusters.
 - (b) Identify the pair of clusters that are least dissimilar, i.e. most similar.
 - (c) Fuse these two clusters that are identified.
 - A common dissimilarity measure is simply the Euclidean distance, e.g.

• The plot on the left is known as a dendrogram.

Centroid linkage is slightly cheaper to use, and often used genomics, but it
causes inversion, which is difficult to interpret and visualise in dendrogram.

- Complete and average are usually preferred for they give balanced results.
- Single linkage can result in extended, trailing clusters.

- A very attractive aspect of hierarchical clustering: one single dendrogram can be used to obtain any number of clusters.
- In practice, people often look at the dendrogram and select by eye a sensible number of clusters, based on the heights of the fusion and the number of clusters desired.

• The term hierarchical refers to the fact that clusters obtained by cutting the dendrogram at a given height are necessarily nested within the clusters obtained by cutting the dendrogram at any greater height.

- A major problem with hierarchical clustering is the fact this assumption of nested structure might be unrealistic.
- Q: Can you imagine a dataset that this assumption is clearly not true?
 - Football fans?

Russia Vs Saudi Arabia

• If we collect only two features,

Country Russian, Saudis and Others

Gender Female and Male

- Q: How many natural clusters are there?
- Due to situations such as this imaginary dataset of football fans, hierarchical clustering can sometimes yield much worse results than K-means clustering for a given number of clusters.

- Choice of dissimilarity measure depends on the type of data.
- Euclidean distance

$$d(\mathbf{x}_{i}, \mathbf{x}_{i^{*}}) = \|\mathbf{x}_{i} - \mathbf{x}_{i^{*}}\|_{2}$$
$$= \sqrt{(x_{i1} - x_{i^{*}1})^{2} + (x_{i2} - x_{i^{*}2})^{2} + \dots + (x_{ip} - x_{i^{*}p})^{2}}$$

Correlation-based distance

$$d\left(\mathbf{x}_{i}, \mathbf{x}_{i^{*}}\right) = 1 - r$$
 or $d\left(\mathbf{x}_{i}, \mathbf{x}_{i^{*}}\right) = 1 - |r|$

where r is the Pearson or Spearman correlation coefficient.

For instance, consider the online retailers cat and dog

interested in clustering shoppers based on their past shopping histories.

• Suppose the data takes the usual rectangular form

Q: What type of dissimilarity measure should be used to cluster the shoppers?

• If Euclidean distance is used, then

users will clustered overwhelmingly according to their usage.

Consider the following dataset

	Gillette Razors	Christian Louboutin Shoes	Air Jordan Shoes
obs. 1	8	3	7
obs. 2	1	0	1
obs. 1	5	9	3

If Euclidean distance is used, we will have following matrix of dissimilarity

$$\begin{bmatrix} 9.69536 & 7.81025 \\ 9.69536 & 10.04988 \\ 7.81025 & 10.04988 \end{bmatrix}$$

• However, if a correlation-based distance is used, we will have

$$\begin{bmatrix} 0.01801949 & 1.86602540 \\ 0.01801949 & 1.94491118 \\ 1.86602540 & 1.94491118 \end{bmatrix}$$

Q: Do you notice the difference and impact?

• Another approach is to standardising the data, which is done for each feature

$$x_{ij}^* = \frac{x_{ij} - \bar{x}_j}{s_j}$$

where \bar{x}_j and s_j are the mean and s.d. of the jth feature, respectively.

After standardisation, we have the following instead

	Gillette Razors	Christian Louboutin Shoes	Air Jordan Shoes
obs. 1	0.9491580	-0.2182179	1.0910895
obs. 2	-1.0440738	-0.8728716	-0.8728716
obs. 1	0.0949158	1.0910895	-0.2182179

and the corresponding matrix of dissimilarity is given by

$$\begin{bmatrix} 2.873793 & 2.039191 \\ 2.873793 & 2.362840 \\ 2.039191 & 2.362840 \end{bmatrix}$$

• Notice observation 3 is now closer to observation 2 than to observation 1.

• Scaling the data instead of standardising the data

