Jaypee Institute of Information Technology

Test - 2 Examination, Odd Semester 2021-22

B. Tech. 3rd Semester

Course Title: Electrical Science-2 Maximum Marks: 20 M
Course Code: 15B11EC211 Maximum Time: 1 Hr

Note:

- This is a pen paper examination. Answers have to be written on papers only in your own hand writing. No answer has to be given on Google form.
- Write on the first page, your Name, Enrollment Number, Batch, Course Title, Course Code and Date of Exam and Name, Enrollment Number and Page numbering on subsequent pages compulsorily.
- The steps to obtain the answers should be written in answer sheet.
- Answers should be uploaded collectively in a single .pdf file at the end of the examination renamed as BATCH_ENROLLNO_NAME.
- Answers must be written in order of questions and no space should be left between answers of two subsequent questions.
- Each student must keep his camera and mic 'ON' through Google Meet during exam.
 - [CO3] The electron and hole concentrations in an intrinsic semiconductor are n_i per cm³ at 300 K. Now, if acceptor impurities are introduced with a concentration of N_A per cm³ (where N_A>> n_i, Find the electron concentration per cm³ at 300 K? (1 Mark)
 - [CO3] What is the value of bandgap of Silicon at room temperature? (1 Mark)
 - [CO3] When acceptor type impurities are added to the intrinsic semiconductor, what is the position of discrete energy level produced due to acceptor impurity? (1 Mark)
 - 4. [CO2] What is the function of difference amplifier and how it responds to common mode signal? (1 Mark)
 - [CO2] Given the lower and higher cut-off frequency of a band-pass filter are 2.5kHz and 10kHz. Determine its bandwidth. (1 Mark)
 - [CO2] Design an op-amp circuit such that output voltage vo = -2(3v₁+4v₂+2v₃). Given R_f= 120kΩ.
 - [CO2] In a series RL circuit connected with voltage source V, what is the type of filter
 if output is taken across R. (1 Mark)
 - 8. [CO2] If transfer function of a filter is (1-s)/(1+s)? Which type of filter is this?

(1 Mark)

- 9. [CO2] For an ideal op amp, the differential voltage across the input terminals is zero.
 True or false?
 (1 Mark)
- 10. [CO2] In a series resonant circuit, to obtain a low-pass characteristic, across which element should the output voltage be taken? (1 Mark)

11. [CO3] In an n type silicon, the donor concentration is 1 atom per 2 × 10⁸ silicon atoms. Assume that the effective mass of the electron equals the true mass and the density of atoms in the silicon is 5 × 10²² atoms/cm³. At what temperature will the Fermi level coincide with the edge of the conduction band?
(2 Marks)

[CO2] For the circuit shown in Fig. 1, if input voltage V_s is 9V the output voltage V_o is
 (2 Marks)

Fig 1

13. [CO3] A silicon sample is doped such that $n_0 = 1.2 \times 10^{12}$ cm⁻³ and $p_0 = 8 \times 10^{11}$ cm⁻³ at 100°C. Determine n_0 and p_0 assuming that all the dopants are ionised and $n_i = 1.5 \times 10^{10}$ cm⁻³ at 300 K. (3 Marks)

14. [CO2] In the inverting amplifier as shown in Fig.2 if capacitor C₁ is connected in parallel with resistance R₁ and capacitor C₂ is connected in parallel with resistance R₂ then derive the transfer function H(jω). Specify the suitable component for a low frequency gain of 40dB, a high frequency gain of 0 dB so that the geometric mean of its pole and zero frequencies is 1KHz.
(3 Marks)

Fig 2