Cryptography Day 2

Brandon Hernandez

September 18, 2020

Overview

Brief Review

Diffie-Hellman

Asymmetric and Symmetric Diffie-Hellman Construction Diffie-Hellman Demo

RSA

The RSA Problem
Construction
Encryption
Decryption
Construction Example

Closing Thoughts

Brief Review

In crypto, we utilize hard problems in mathematics to ensure that breaking the cryptosystem is non-trivial. We looked at basic modular arithmetic last time, we'll continue on with that today with RSA and Diffie-Hellman.

Crytpohack Docker

https://cryptohack.org/

Diffie-Hellman

An early version of what we would call public key protocol, also called asymmetric. If you remember the One-time pad, we used a singular key for encryption and decryption.

If we wish to share a message encrypted using a One-time pad with someone how do we securely give them the key?

Asymmetric and Symmetric

- ► Asymmetric → different keys for encryption and decryption
 - ► RSA, Diffie-Hellman Key Exchange, ECC
- ► Symmetric → same key is used for encryption and decryption
 - One-time pads, AES

Diffie-Hellman Construction

- Prime modulus, p
- ▶ Base, g
- Two individuals Alice and Bob, whose private keys are a and b, respectively
- ► Alice and Bob's public keys are A and B
 - $ightharpoonup A \equiv g^a \pmod{p}$
 - $B \equiv g^b \pmod{p}$
- ► Alice and Bob communicate A and B
- ▶ Shared secret, $S \equiv g^{a*b} \equiv g^{b*a} \pmod{p}$
- Discrete Logarithm Problem

Diffie-Hellman Demo

Refer to Day_2/diffie-hellman

The RSA Cryptosystem

Public-key cryptosystem based around the difficulty in factoring a composite integer into primes.

The RSA Problem

- ► Consider two large primes, *p* and *q*
- \triangleright N = pq
- Consider *e*, *m*, and *c*
- $ightharpoonup C \equiv m^e \pmod{N}$

Construction

- Consider two large primes, p and q
- \triangleright Let our modulus, N = pq
- lacksquare Our public key, e, where $\gcd(\phi \mathit{N}, e) = 1$ and $1 < e < \phi \mathit{N}$
 - So our private key, d, exists
- ▶ The private key, d, where $d * e \equiv 1 \pmod{\phi N}$

Encryption

- ▶ Given *N*, *m*, and *e*
- $ightharpoonup C \equiv m^e (mod N)$

Decryption

- ▶ Given N, C, and d
- $ightharpoonup m \equiv C^d \equiv m^{e*d} (modN)$
- **Euler's theorem:** $a^{\phi(N)} \equiv 1 \pmod{N}$
- ▶ Remember: $e * d \equiv 1 \pmod{\phi N}$
- ightharpoonup $ed = k\phi(N) + 1$
- $ightharpoonup m^{\phi(N)} \equiv 1 \pmod{N}$

Construction Example

Refer to Day_2/Examples/construction

Basic Exploit Example 1

Refer to Day_2/Examples/cube

Basic Exploit Example 2 (Factoring)

Refer to Day_2/Examples/multiPrime

Basic Exploit Example 3 (Hastad)

Refer to Day_2/Examples/hastad

What's left?

- AES
- Elliptic Curve Cryptography
- ► Post Quantum Cryptography
 - ► Lattice-Based Cryptography
 - ► LWE
 - ► Multivariate Cryptograhy