Problem A

Find the roots of $f(x) = (e^x - e^\pi)(e^x - \pi)$ where e denotes Euler's number.

Answer:

We denote the set of real numbers and integers by \mathbb{R} and \mathbb{Z} respectively. Since it is not mentioned, we assume that we are not only finding $x \in \mathbb{R}$ but all $x \ni f(x) = 0$.

The roots of f(x) are x's such that $f(x)=0 \Leftrightarrow (e^x-e^\pi)(e^x-\pi)=0$. This implies that either $e^x-e^\pi=0$ or $e^x-\pi=0$.

Let x = p + iq where $p, q \in \mathbb{R}$ and i is the imaginary unit.

If $e^x - e^\pi = 0$, then we have:

$$e^x = e^\pi \Leftrightarrow e^{p+iq} = e^\pi \Leftrightarrow e^p e^{iq} = e^\pi$$

Since $q \in \mathbb{R}$, then by Euler's formula, $e^{iq} = \cos q + i \sin q$, hence:

$$e^p e^{iq} = e^\pi \Leftrightarrow e^p(\cos q + i\sin q) = e^\pi \Leftrightarrow e^p\cos q + ie^p\sin q = e^\pi$$

This implies that $e^p \cos q = e^{\pi}$ and $ie^p \sin q = 0$ simultaneously.

Since $e^p \neq 0$ for an arbitrary $p \in \mathbb{R}$, then we find that $\sin q = 0 \Leftrightarrow q = 2n\pi, n \in \mathbb{Z}$.

This means that $\cos q = \cos 2n\pi = 1$. So, $e^p \cos q = e^\pi \Leftrightarrow e^p = e^\pi \Leftrightarrow p = \pi$.

Hence, for $e^x - e^{\pi} = 0$, we have $x = p + iq = \pi + i \cdot 2n\pi = \pi + 2in\pi, n \in \mathbb{Z}$.

If $e^x - \pi = 0$, then we have:

$$e^x = \pi \Leftrightarrow e^{p+iq} = \pi \Leftrightarrow e^p e^{iq} = \pi$$

Since $q \in \mathbb{R}$, then by Euler's formula, $e^{iq} = \cos q + i \sin q$, hence:

$$e^{p}e^{iq} = \pi \Leftrightarrow e^{p}(\cos q + i\sin q) = \pi \Leftrightarrow e^{p}\cos q + ie^{p}\sin q = \pi$$

This implies that $e^p \cos q = \pi$ and $i e^p \sin q = 0$ simultaneously.

Since $e^p \neq 0$ for an arbitrary $p \in \mathbb{R}$, then we find that $\sin q = 0 \Leftrightarrow q = 2k\pi, k \in \mathbb{Z}$.

This means that $\cos q = \cos 2k\pi = 1$. So, $e^p \cos q = \pi \Leftrightarrow e^p = \pi \Leftrightarrow p = \ln \pi$.

Hence, for $e^x - \pi = 0$, we have $x = p + iq = \ln \pi + i \cdot 2k\pi = \ln \pi + 2ik\pi, k \in \mathbb{Z}$.

This means the roots of $f(x)=(e^x-e^\pi)(e^x-\pi)$ are the sets:

$$\{\pi+2in\pi:n\in\mathbb{Z}\} \ \ \text{and} \ \ \{\ln\pi+2ik\pi:k\in\mathbb{Z}\}$$

 \therefore The roots of $f(x) = (e^x - e^\pi)(e^x - \pi)$ are given by the set:

$$\{x : f(x) = 0\} = \{\pi + 2in\pi : n \in \mathbb{Z}\} \cup \{\ln \pi + 2ik\pi : k \in \mathbb{Z}\}\$$

Problem B

Show that $n^4 - n^3 + n^2 - n$ is divisible by 2 for all positive integers n.

Answer:

We denote the set of positive integers as $\mathbb N$ and extensively for $\mathbb N$ with 0 as $\mathbb N_0$. Note that:

$$n^4 - n^3 + n^2 - n = n(n^3 - n^2 + n - 1) = n(n - 1)(n^2 + 1)$$

Since n and n-1 have different parities for any given $n \in \mathbb{N}$, i.e. if n is odd then n-1 is even and if n is even then n-1 is odd, then $n(n-1)(n^2+1)$ is even, meaning it is divisible by 2.

If n is odd, then we can write $n=2k+1 \Leftrightarrow n-1=2k, k \in \mathbb{N}_0$. Hence:

$$n^4 - n^3 + n^2 - n = n(n-1)(n^2 + 1) = 2(nk(n^2 + 1)), k \in \mathbb{N}_0$$

Therefore, it is divisible by 2.

If n is even, then we can write $n=2m, m \in \mathbb{N}$. Hence:

$$n^4 - n^3 + n^2 - n = n(n-1)(n^2 + 1) = 2(m(n-1)(n^2 + 1)), m \in \mathbb{N}$$

Therefore, it is divisible by 2.

 \therefore It is shown that $n^4 - n^3 + n^2 - n$ is divisible by 2 for all positive integers n.

Problem C

You have given a sphere with a volume of π^3 . What is the radius of this sphere? Explain whether or not it is possible to build such a sphere in reality?

Answer:

A sphere with radius r has a volume of $\frac{4}{3}\pi r^3$. Hence, we have:

$$\frac{4}{3}\pi r^3 = \pi^3 \Leftrightarrow r^3 = \frac{3}{4}\pi^2 = 0.75\pi^2 \Leftrightarrow r = \sqrt[3]{0.75}\pi^{\frac{2}{3}}$$

It is impossible to build a sphere in reality with radius π because π is an irrational number, meaning we cannot pinpoint the exact measurements, i.e. there is bound to be an error in the building process. Since it is impossible to build a sphere in reality with radius π , it is also impossible to build a sphere with radius $\sqrt[3]{0.75}\pi^{\frac{2}{3}}$.

... The radius of a sphere with volume π^3 is $\sqrt[3]{0.75}\pi^{\frac{2}{3}}$ and in reality, it is impossible to build such a sphere.

Problem D

Find the numerical value of the following expression without the use of a calculator.

$$\log_2(2^2 + 5 \cdot 2^2 \cdot 3) \cdot (2\log_3 2 + \log_3(7 - \frac{1}{4})) + \frac{(\log_2 128 - 2)^3}{3 + 2} + (-1)^{32 + \pi^0}$$

Answer:

By logarithm properties, we find that:

$$\begin{split} \log_2(2^2+5\cdot 2^2\cdot 3)\cdot (2\log_32+\log_3(7-\frac{1}{4})) + \frac{(\log_2128-2)^3}{3+2} + (-1)^{32+\pi^0} \\ &= \log_2(4+60)\cdot (\log_34+\log_3(\frac{27}{4})) + \frac{(7-2)^3}{5} + (-1)^3 \\ &= \log_2(64)\cdot \log_3(27) + 5^2 + ((-1)^2)^{16}(-1) \\ &= 6\cdot 3 + 25 - 1 \\ &= 18 + 24 \\ &= 42 \\ \therefore \log_2(2^2+5\cdot 2^2\cdot 3)\cdot (2\log_32 + \log_3(7-\frac{1}{4})) + \frac{(\log_2128-2)^3}{3+2} + (-1)^{32+\pi^0} = 42 \end{split}$$

Problem E

The square below has an edge length of a. A line intersects the square at a height of x and y. Find an expression for the surface area A(x,y) below the line (gray area).

Answer:

Notice that A(x, y) is a trapezoid.

The area of a trapezoid with lower base \emph{p} , upper base \emph{q} , and height \emph{h} is given by:

$$\frac{h}{2} \cdot (p+q)$$

Hence,

$$A(x,y) = \frac{a}{2} \cdot (x+y)$$

Alternatively, we can view the area A(x,y) as the area of the square subtracted by the area of the white trapezoid, i.e.:

$$A(x,y)=a^2-\frac{a}{2}\cdot((a-x)+(a-y))=a(a-\frac{2a-(x+y)}{2})=a(\frac{x+y}{2}=\frac{a}{2}(x+y))$$
 which yields the same result as it should.

 \therefore The surface area A(x,y) below the line is given by the expression:

$$A(x,y) = \frac{a}{2}(x+y)$$