Nyquist (sem ruído)	Shannon (com ruido)	Valores
C = 2 B log2(L)	C=B log2(1+SNR)	
C = Taxa de dados máxima (bps)	SNR = Relação sinal	G=10^9
B = Largura de banda (Hz)	ruído	M = 10^6
L = Número de níveis	SNRdB= 10 log10(SNR)	k=10^3
DR = MR* log2(L)		m = 10^-3 (mili)
(Taxa de dados) (Taxa de		μ = 10^-6 (micro)
símbolos) (nº níveis do sinal)		n=10^-9 (nano)

1-

- a) Quando maior o número de termos na série de Fourier mais a onda se assemelha com uma onda quadrada, isto acontece porque é necessário um infinito número de termos para a onda ser completamente igual á onda quadrada
- b) Quanto maior a quantidade de transições numa onda é necessária uma maior largura de banda para fazer a sua transmissão.

2-

a) Largura de banda de um sinal – É a diferença entre a frequência máxima e a frequência mínima (W=fmax-fmin)

Largura de banda de um canal – O intervalo das frequências que pode ser transmitido sem estas serem muito atenuadas

b) Digital transmission- é um sinal com valores discretos (descontínuos) no tempo e em amplitude. A representação de um sinal digital é um histograma.

Analog transmission - é um tipo de sinal contínuo que varia em função do tempo. A representação de um sinal analógico é uma curva

3-

B=4*10^3 Hz

L=8

T=1*10^-3 s

- a) C = 2B*log2(L) C = 2*4*10^3*3 = 24*10^3 bps
- b) 8*10^3 bps
- c) Aumenta-se a capacidade do canal
- d) O sinal digital vai ser distorcido, logo vai haver trocas de bits no recetor

4-SIM

20000 = 8000 * (log2(N)) \Leftrightarrow 20000 / 8000 = log2(N) \Leftrightarrow 2,5 = log2(N) \Leftrightarrow N = 2,5^2 \Leftrightarrow N = 6,25 \sim 8 níveis

```
6 MHz = 6000000 Hz
```

C = 2* 6000000 log2(4) =24000000*10^6 Mbps

30 SNRdb = 1000 SNR

C=6000000 log2(1001)= 59803357.553 = 59 Mbps

6-

3kHZ=3000 Hz

Converter para SNR: $20 = 10 \log 10(SNR) \Leftrightarrow 2 = \log 10(SNR) \Leftrightarrow 10^2 = SNR$

C= 3000*log2 (1+10^2) \Leftrightarrow C=19974.6

7-

1544 *10^6= 5*10^4 log2(1+SNR)⇔log2(1+SNR)=154.4/5⇔ log2(1+SNR)=30.88 ⇔ 1+SNR=2^30.88⇔SNR=2^30.88-1

SNRdb=10*log10(SNR)⇔93db

8-

100kbps = 100.000 bps

4 kHz= 4000 Hz

30 SNRdb = 1000 SNR

 $C=B \log 2(1+SNR) = 39868.9$

Não, 100.000>39868.9

9- 442,368*10^3 = B*log2(1+10^4) \Leftrightarrow 442,368*10^3/ log2(1+10^4) =B \Leftrightarrow B=33291147.8445 Hz

Converter para SNR: 40=10log10(SNR) ⇔4=log10(SNR) ⇔ 10^4=SNR