Experiment No. 5
Fractional Knapsack using Greedy Method
Date of Performance:
Date of Submission:

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Experiment No. 5

Title: Fraction Knapsack

Aim: To study and implement Fraction Knapsack Algorithm

Objective: To introduce Greedy based algorithms

Theory:

Greedy method or technique is used to solve Optimization problems. A solution that can be maximized or minimized is called Optimal Solution.

The knapsack problem or rucksack problem is a problem in combinatorial optimization: Given a set of items, each with a mass and a value, determine the number of each item to include in a collection so that the total weight is less than or equal to a given limit and the total value is as large as possible. It derives its name from the problem faced by someone who is constrained by a fixed size knapsack and must fill it with the most valuable items. The most common problem being solved is the 0-1 knapsack problem, which restricts the number xi of copies of each kind of item to zero or one.

In Knapsack problem we are given:1) n objects 2) Knapsack with capacity m, 3) An object i is associated with profit Wi , 4) An object i is associated with profit Pi , 5) when an object i is placed in knapsack we get profit Pi Xi .

Here objects can be broken into pieces (Xi Values) The Objective of Knapsack problem is to maximize the profit.

Example:

In this version of Knapsack problem, items can be broken into smaller pieces. So, the thief may take only a fraction x_i of ith item.

0**≤**xi**≤**1

The i^{th} item contributes the weight xi.wi to the total weight in the knapsack and profit xi.pi to the total profit.

					,
1	donald	factional -	knapsact (wc1 n]	pc1 mJ, W)
1	greay-	Journal -			1=1 -> 8
	for i=	1 to n			10+10<60
1		[i] = 0			XCIJ = 1
	weight	10 tot= 10			
	for 1	4			
	ix weight + with sw then				1=2 -> A
	if weight + weight then xeije;				10+40 50 < 60
1		xcij:2			
-	els c				10+40
-	*[i] = (H-weigh) / W[i]				
-	weight = M				(=3 -> C
	break				(60-59)/20
	rehim x				XC13:10/20 = 1/2
					int: so
	*[i].0-			C : 1 1	X=[A,B, 12]
	12t = 0		Total pr 100+280+1		A
EX!	W=6	0	380+60	= 440	10+40+20 × (10/20)
_	Item	A	ß	C	D = 60
+	profit	280	1.0	120	120
	veignt	40	10	20	24
	Ratio (P	(-) 7	10	1	_
					-
	provided	item a	are not	sorted b	ased on Pi
1			app .		ased on Pi
Softed	ytem	B	A	C	
	hotit	100	280	1000	D
	weight	10	40	120	120
Per	io (Pi	10	1	20	24
				6	5

Vidyavardhini's College of Engineering and Technology

Department of Artificial Intelligence & Data Science

Algorithm:

Hence, the objective of this algorithm is to

$$maximize \sum_{n=1}^{n} (x_i. pi)$$

subject to constraint,

$$\sum_{n=1}^n (x_i.\,wi)\leqslant W$$

It is clear that an optimal solution must fill the knapsack exactly, otherwise we could add a fraction of one of the remaining items and increase the overall profit.

Thus, an optimal solution can be obtained by

$$\sum_{n=1}^n (x_i.\,wi) = W$$

In this context, first we need to sort those items according to the value of $\frac{p_i}{w_i}$, so that $\frac{p_i+1}{w_i+1} \leq$

 $rac{p_i}{w_i}$. Here, $m{x}$ is an array to store the fraction of items.

```
Algorithm: Greedy-Fractional-Knapsack (w[1..n], p[1..n], W)

for i = 1 to n
    do x[i] = 0

weight = 0

for i = 1 to n
    if weight + w[i] ≤ W then
        x[i] = 1
        weight = weight + w[i]

else
    x[i] = (W - weight) / w[i]
    weight = W
    break

return x
```


Implementation:

```
#include <stdio.h>
#include <conio.h>
void main()
  int capacity, no_items, cur_weight, item;
  int used[10];
  float total_profit;
  int i;
  int weight[10];
  int value[10];
  clrscr();
  printf("Enter the capacity of knapsack:\n");
  scanf("%d", &capacity);
  printf("Enter the number of items:\n");
  scanf("%d", &no_items);
  printf("Enter the weight and value of %d item:\n", no_items);
  for (i = 0; i < no_items; i++)
  {
       printf("Weight[%d]:\t", i);
       scanf("%d", &weight[i]);
       printf("Value[%d]:\t", i);
       scanf("%d", &value[i]);
  }
  for (i = 0; i < no_items; ++i)
       used[i] = 0;
  cur_weight = capacity;
  while (cur\_weight > 0)
```



```
item = -1;
       for (i = 0; i < no_{items; ++i})
          if ((used[i] == 0) \&\&
          ((item == -1) \parallel ((float) \ value[i] / weight[i] > (float) \ value[item] /
weight[item])))
          item = i;
     used[item] = 1;
     cur_weight -= weight[item];
     total_profit += value[item];
     if (cur\_weight >= 0)
       printf("Added object %d (%d Rs., %dKg) completely in the bag. Space left:
%d.\n", item + 1, value[item], weight[item], cur_weight);
     else
       int item_percent = (int) ((1 + (float) cur_weight / weight[item]) * 100);
       printf("Added %d%% (%d Rs., %dKg) of object %d in the bag.\n",
item_percent, value[item], weight[item], item + 1);
       total_profit -= value[item];
       total_profit += (1 + (float)cur_weight / weight[item]) * value[item];
     }
  printf("Filled the bag with objects worth %.2f Rs.\n", total_profit);
}
```


Output:

```
= Output =
Enter the capacity of knapsack:
Enter the number of items:
Enter the weight and value of 3 item:
Weight[0]:
Value[0]:
                100
Weight[1]:
                15
                50
                5
Weight[2]:
Value[21:
                50
Added object 1 (100 Rs., 10Kg) completely in the bag. Space left: 10.
Added object 3 (50 Rs., 5Kg) completely in the bag. Space left: 5.
```

Conclusion: experiment successfully implemented the fractional knapsack algorithm, efficiently allocating items based on their values and weights. By prioritizing fractional solutions, we optimized resource utilization, demonstrating the algorithm's practicality and effectiveness in real-world scenarios.