Versuchsbericht zu

E1 - GLEICH- UND WECHSELSTROM

Gruppe 6Mi

Alexander Neuwirth (E-Mail: a_neuw01@wwu.de) Leonhard Segger (E-Mail: l_segg03@uni-muenster.de)

> durchgeführt am 20.12.2017 betreut von Philipp Eickholt

> > 9. Januar 2018

Inhaltsverzeichnis

1	Kurzfassung			
2	Methoden			
3	Ergebnisse und Diskussion 3.1 Beobachtung	4 5		
4	Schlussfolgerung	7		

Abbildung 1: Der Schaltkreis, der zur Messung der Leistungsaufnahme verschiedener Verbraucher benutzt wurde.

1 Kurzfassung

Es wurden zwei Experimente zu Gleich- und Wechselstrom bzw. dem Innenwiderstand von Stromquellen durchgeführt. Im ersten Experiment wurde durch Messung der Klemmspannung eines Akkumulators in Abhängigkeit vom Außenwiderstand in einem einfachen Stromkreis untersucht. Da hier der Innenwiderstand durch einen angelöteten Widerstand künstlich erhöht war, war zu erwarten, dass der berechnete Gesamtinnenwiderstand sich nur geringfügig (nämlich um den tatsächlichen Innenwiderstand der Zelle) von dem auf dem Widerstand angegebenen Widerstand unterscheidet.

Im zweiten Experiment wurde die Leistungsaufnahme verschiedener Verbraucher in Abhängigkeit von der Größe und Form (Gleich- oder Wechselstrom) der angelegten Spannung untersucht. Hieraus wurde auch Wirkwiderstand, Innenwiderstand und Phasenwinkel einer Spule sowie Betrag und Phase des Wechselstromwiderstandes der Kombination von Spule und Kondensator bestimmt. Hierbei war zu erwarten, dass die Messungen die theoretisch erwarteten Werte für Widerstände, Spulen und Kondensatoren widerspiegeln.

2 Methoden

Zunächst wurde ein einfacher Stromkreis aufgebaut, mit dem der Innenwiderstand von Akkumulatorzellen gemessen werden konnte. Dieser bestand aus einem veränderlichen Lastwiderstand, der Stromquelle und einem Spannungsmessgerät, mit dem die Klemmspannung der Stromquelle erfasst wurde. Dann wurde der Lastwiderstand verändert und die Klemmspannung über der Stromquelle gemessen. Dies wurde drei mal mit verschiedenen Stromquellen durchgeführt. Hier wurde zunächst eine einzelne Akkumulatorzelle, dann drei Zellen parallel und zuletzt drei Zellen in Reihenschaltung verwendet. Dabei hatten die Zellen einen künstlich (durch einen eingebauten Widerstand) erhöhten Innenwiderstand. Dieser Widerstand wurde abgelesen.

Dann wurde die in Abb. 1 dargestellte Schaltung zur Messung der Leistungsaufnahme verschiedener Verbraucher bei Gleich- und Wechselstrom aufgebaut. Hierfür wurde zunächst für zwei verschiedene Voltmeter deren Verlustleistung in Abhängigkeit von

Tabelle 1: Unsicherheiten verschiedener Messapparaturen.

	Voltmeter	Amperemeter	Leistungsmesser
Messunsicherheit	$0,0204\mathrm{V}$	0,004 A	$0.04{ m W}$

Gleich- bzw. Wechselspannung beobachtet, indem die Schaltung in Abb. 1 ohne Verbraucher verwendet wurde, um einer Entscheidung treffen zu können, welches Messgerät im Folgenden verwendet werden sollte und inwiefern dessen Verlustleistung berücksichtigt werden muss. Dann wurde für ein festes R_2 bei Gleich- und Wechselstrom Spannung, Stromstärke und Leistung für fünf verschiedene R_1 gemessen. Hierbei wurde R_2 so gewählt, das ein möglichst großer Messbereich der Messgeräte genutzt werden konnte. Dann wurde diese Messung für eine Spule sowie eine Spule mit Kondensator wiederholt.

3 Ergebnisse und Diskussion

3.1 Beobachtung

Es wird davon ausgegangen, dass die Unsicherheiten der Messapparaturen im Vergleich zu den Ableseungenauigkeiten verschwindet (??). Die Fortpflanzung der Fehler wurde immer gemäß Gleichung (1) berechnet.

$$u(y) = \sqrt{\sum_{i=0}^{N} \left(\frac{\partial f}{\partial x_i} u(x_i)\right)^2}$$
 (1)

3.1.1 Innenwiderstand

In Abb. 2 ist die Klemmspannung gegen den Strom, der sich aus I = U/R ergeben hat, aufgetragen. Es wurde ein linearer Fit durchgeführt, da nach der Theorie ein linearer Zusammenhang besteht. Die Steigung der Geraden ist der (negative) Innenwiderstand $R_i = (27.19 \pm 0.47) \Omega$.

Trägt man die Leistung gegen den Außenwiderstand, ist zuerwarten, dass (genau) ein Maximum bei R_iR_a liegt. Abb. 3 stellt dies und einen Fit mit dem "Scaled Levenberg-Marquardt"-Algorithmus, welcher die Methode der kleinsten Quadrate verwendet, dar. Die Funktion des Fits ist:

$$f(x) = a \frac{x}{(x+b)^2} \tag{2}$$

Es ergibt sich ein Parameter b = 29,51 ohne Unsicherheit, desshalb haben wir diese als relative Unsicherheit mit 2% abgeschätzt. Folglich ist $R_i = (29,51 \pm 0,59) \Omega$.

Analog kann man aus Abb. 4 bis 7 die Innenwiderstände für drei parallel, bzw. in Reihe, geschaltete Akkus erhalten. In Tabelle 2 sind die ermittelten Innenwiderstände aufgelistet. Aus diesen Widerständen lässt der Innenwiderstand eines einzelnen Akkus bestimmen. Tabelle 3 zeigt diese.

Tabelle 2: Gemessener Innenwiderstand.

Innenwiderstand	Ein Akku	3 Akkus Reihe	3 Akkus Parallel
aus Klemmspannung	$(27,19 \pm 0,47) \Omega$	$(81,24 \pm 1,06) \Omega$	$(9,73 \pm 0,20) \Omega$
aus Leistung	$(29,51 \pm 0,59) \Omega$	$(77,53 \pm 1,55) \Omega$	$(9,79 \pm 0,19) \Omega$

Tabelle 3: Berechneter Innenwiderstand von jeweils einem Akku.

Innenwiderstand	Ein Akku	Akku Reihe	Akku Parallel
aus Klemmspannung	$(27,19 \pm 0,47) \Omega$	$(27,08 \pm 0,35) \Omega$	$(29,19 \pm 0,60) \Omega$
aus Leistung	$(29,51 \pm 0,59) \Omega$	$(25,84 \pm 0,52) \Omega$	$(29,37 \pm 0,57) \Omega$

Zusatzfrage

Eine Stromquelle soll einen möglichst konstanten Strom liefern. Das wird erreicht durch einen möglichst hohen Innenwiderstand, also eine Reihenschaltung der Spannungsquellen. Für eine Spannungsquelle bietet sich eine Parallelschaltung an, da der Innenwiderstand gering und somit die Spannung konstant gehalten werden kann.

3.1.2 Gleich- und Wechselstrom mit verschiedenen Verbrauchern

Widerstand

In Abb. 8 und Abb. 9 ist die Spannung über einen Widerstand gegen den Strom aufgetragen. Die Steigung der linearen Fits entspricht dem Widerstand R $(15,72\pm0,04)\,\Omega$ bzw. $(15,55\pm0,04)\,\Omega$. Der eingestellte Widerstand war $(14,0\pm1,7)\,\Omega$.

In Abb. 10 und Abb. 11 ist die Leistung gegen das Produkt von Strom und Spannung über den Widerstand aufgetragen. Es ist in beiden Fällen eine Steigung von 1 zu erwarten, da P=UI gilt. Im Fall des Wechsselstroms wurden nur Effektivwerte gemessen, da dies einen Faktor von $\frac{1}{2}$ für die Leistung und 2 Faktoren von $\sqrt{2}$ für UI bedeutet, bleibt die Steigung dieselbe. Die Steigung der linearen Fits betragen jedoch $(0,775\pm0,004)$ und $(0,787\pm0,005)$

Spule

Die gemessene effektive Wechselspannung über die Spule ist gegen den effektiven Strom in Abb. 12 aufgetragen. Die Steigung des linearen Fits ist der Scheinwiderstand |Z| $(30,00\pm0,06)\,\Omega.$

Der Widerstand der Spule findet sich in Abb. 14 wieder. In diesem Graphen wurde die Gleichspannung über die Spule gegen den Gleichstrom aufgetragen und analog ist die Steigung des Fits der Widerstand R_i (24,04 ± 0,06) Ω .

Aus der Theorie ist folgender Zusammenhang bekannt:

$$\bar{P} = U_{\text{eff}} I_{\text{eff}} \cos(\phi) \tag{3}$$

Klemmspannung von einem Akku

Abbildung 2: Die gemessene Klemmspannung bei einem Akku ist gegen den Strom aufgetragen.

Abb. 13 beinhaltet die Messwerte für die effektive Leistung in Abhängigket von dem Produkt der effektiven Spannung und des effektiven Stroms. Der linearer Fit hat die Steigung 0.7965 ± 0.0041 , was $\cos(\phi)$ entsprechen sollte. Es folgt also ein ϕ von $(37.202 \pm 0.385)^{\circ}$.

Die Indukivität der Spule lässt sich durch die bereits bestimmten Werte und Gleichung (4) bestimmen.

$$|Z| = \sqrt{R_{\rm W}^2 + (\omega L)^2} \tag{4}$$

$$L = \frac{1}{\omega} \sqrt{|Z|^2 - R_{\mathrm{W}}^2} \tag{5}$$

$$R_{\rm W} = |Z|\cos(\phi) \tag{6}$$

$$L = \frac{1}{\omega} \sin \phi |Z| \tag{7}$$

Das Stromnetz hat eine Frequenz von $50\,\mathrm{Hz}$. Es ergibt sich ein Wirkwiderstand von $(23.90\pm0.06)\,\Omega$ Daraus folgt eine Induktivität von $(0.057\,70\pm0.000\,19)\,\mathrm{H}$.

Spule und Kondensator

Die gemessene effektive Wechselspannung über die Spule und den Kondensator ist gegen den effektiven Strom in Abb. 15 aufgetragen. Die Steigung des linearen Fits ist der Betrag des Scheinwiderstandes |Z| (41,81 ± 0,07) Ω .

Aus der Theorie ist folgender Zusammenhang bekannt:

$$\bar{P} = U_{\text{eff}} I_{\text{eff}} \cos(\phi) \tag{8}$$

Abbildung 3: Die gemessene Leistung bei einem Akku ist gegen den Außenwiderstand aufgetragen.

Abb. 16 beinhaltet die Messwerte für die effektive Leistung in Abhängigket von dem Produkt der effektiven Spannung und des effektiven Stroms. Der linearer Fit hat die Steigung 0.651 ± 0.004 , was $\cos(\phi)$ entsprechen sollte. Es folgt also ein ϕ von $-(49.38 \pm 0.30)^{\circ}$. Die Kapaziät lässt sich mittels Gleichung (9) bestimmen.

$$|Z| = \sqrt{R^2 + (\omega L - \frac{1}{\omega C})^2} \tag{9}$$

$$C = \frac{1}{\omega^2 L - \omega \sqrt{Z^2 - R^2}}$$

$$C = \frac{1}{\omega^2 L - \omega |Z| \sin \phi}$$
(10)

$$C = \frac{1}{\omega^2 L - \omega |Z| \sin \phi} \tag{11}$$

Durch Einsetzten ergibt sich eine Kapazität C von $(63.8 \pm 2.1) \,\mu\text{F}$. Auf dem Kondensator war eine Kapazität von $60 \,\mu\text{F}$ angegeben.

3.2 Diskussion

4 Schlussfolgerung

Im Fall der Innenwiderstände von Akkumulatorzellen konnte festgestellt werden Bei der Verlustleistung verschiedener Verbraucher

Klemmspannung von drei in Reihe geschalteten Akkus

Abbildung 4: Die gemessene Klemmspannung bei drei in Reihe geschateten Akkus ist gegen den Strom aufgetragen. Es wurde mit der doppelten Ableseungenauigkeit gerechnet also $0,0408\,\mathrm{V}$

Abbildung 5: Die gemessene Leistung bei drei in Reie geschalteten Akkus ist gegen den Außenwiderstand aufgetragen. Es wurde mit der doppelten Ableseungenauigkeit gerechnet also $0,0408\,\mathrm{V}$

Abbildung 6: Die gemessene Klemmspannung bei 3 parallelen Akkus ist gegen den Strom aufgetragen.

Abbildung 7: Die gemessene Leistung bei drei parallelen Akkus ist gegen den Außenwiderstand aufgetragen.

Abbildung 8: Die gemessene Gleichspannung über einen Widerstand ist gegen den Gleichstrom aufgetragen.

Abbildung 9: Die gemessene effektive Wechselspannung über einen Widerstand ist gegen den effektiven Wechselstrom aufgetragen.

Abbildung 10: Die gemessene Leistung ist gegen das Produkt aus Gleichstrom und Gleichspannung über einen Widerstand aufgetragen.

Abbildung 11: Die gemessene effektive Leistung ist gegen das Produkt aus effektivem Wechselstrom und effektiver Wechselspannung über einen Widerstand aufgetragen.

Abbildung 12: Die gemessene effektive Wechselspannung über eine Spule ist gegen den effektiver Wechselstrom aufgetragen.

Abbildung 13: Die gemessene effektive Leistung ist gegen das Produkt aus Wechselstrom und Wechselspannung über eine Spule aufgetragen.

Abbildung 14: Die gemessene Spannung über eine Spule ist gegen den Strom aufgetragen.

Abbildung 15: Die gemessene effektive Wechselspannung über eine Spule und einen Kondensator ist gegen den effektiven Wechselstrom aufgetragen.

Abbildung 16: Die gemessene effektive Leistung ist gegen das Produkt aus Wechselstrom und Wechselspannung über eine Spule und einen Kondensator aufgetragen.