Week 9 at a glance

Textbook reading: Section 5.3, Section 5.1, Section 3.2

For Monday, Example 5.26 (page 237).

For Wednesday, Theorem 5.30 (page 238) and skim section 3.2.

Friday: no class in observance of Thanksgiving holiday.

For Monday of Week 10: Definition 7.1 (page 276)

We will be learning and practicing to:

- Clearly and unambiguously communicate computational ideas using appropriate formalism. Translate across levels of abstraction.
 - Give examples of sets that are regular, context-free, decidable, or recognizable (and prove that they are).
 - * Define and explain computational problems, including A^{**} , E^{**} , EQ^{**} , (for ** DFA or TM) and $HALT_{TM}$
- Know, select and apply appropriate computing knowledge and problem-solving techniques. Reason about computation and systems.
 - Use mapping reduction to deduce the complexity of a language by comparing to the complexity of another.
 - * Explain what it means for one problem to reduce to another
 - * Define computable functions, and use them to give mapping reductions between computational problems
 - * Build and analyze mapping reductions between computational problems
 - Classify the computational complexity of a set of strings by determining whether it is regular, context-free, decidable, or recognizable.
 - * State, prove, and use theorems relating decidability, recognizability, and corecognizability.
 - * Prove that a language is decidable or recognizable by defining and analyzing a Turing machines with appropriate properties.
 - Describe several variants of Turing machines and informally explain why they are equally expressive.
 - * Define an enumerator
 - * Define nondeterministic Turing machines
 - * Use high-level descriptions to define and trace machines (Turing machines and enumerators)
 - * Apply dovetailing in high-level definitions of machines

TODO:

Review Quiz 9 on PrairieLearn (http://us.prairielearn.com), complete by Sunday 12/1/2024

Monday: Mapping reductions and recognizability

Recall definition: A is mapping reducible to B means there is a computable function $f: \Sigma^* \to \underline{\Sigma}^*$ such that for all strings x in Σ^* ,

 $x \in A$

if and only if

 $f(x) \in B$.) translation

Notation: when A is mapping reducible to B, we write $A \leq_m B$.

Theorem (Sipser 5.23): If $A \leq_m B$ and A is undecidable, then B is undecidable.

Last time we proved that $A_{TM} \leq_m HALT_{TM}$ where

 $HALT_{TM} = \{\langle M, w \rangle \mid M \text{ is a Turing machine, } w \text{ is a string, and } M \text{ halts on } w\}$ X=< M, w> ~~>

and since A_{TM} is undecidable, $HALT_{TM}$ is also undecidable. The function witnessing the mapping reduction mapped strings in A_{TM} to strings in $HALT_{TM}$ and strings not in A_{TM} to strings not in $HALT_{TM}$ by changing encoded Turing machines to ones that had identical computations except looped instead of rejecting.

True at False: $\overline{A_{TM}} \leq_m \overline{HALT_{TM}}$ Why? Use same function!

As the one witnesses:

And Sm HALT_{TM}

True of False: $HALT_{TM} \leq_m A_{TM}$.

Proof: Need computable function $F: \Sigma^* \to \Sigma^*$ such that $x \in HALT_{TM}$ iff $F(x) \in A_{TM}$. Define

F = "On input x,

1. Type-check whether $x = \langle M, w \rangle$ for some TM M and string w. If so, move to step 2; if not, output $\langle \rightarrow \langle \downarrow \rangle \rangle$ 2. Construct the following machine M'_x :

Mie" On input y:

1. Run Mon y.

2 if Moccept, accept.

3 if Mryects, accept.

3. Output $\langle M'_x, w \rangle$.

want x=<M, w> f(x)=< M'x, ...

M halls on w then M'x accepts...

M loops on w then M'x accept...

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property $x \in HALT_{TM}$ iff its image is in A_{TM} ?

Lin	Input string	Output string	۲œ.)و
HALTO		< M'x, w> weL(M'x> skp a	FOE) E
xis notin ($\langle M, w \rangle$ where M does not halt on w	< M'x, w> WEL(M'x) trace M'x	Fore
HALTIM		< M'x, w> w L(M'x) trace M'x Step 1-100P	FCC
	x not encoding any pair of TM and string	<- (D) (D) (E)	FOXY

doesn't the function that withesses Why Arm &m HALTIM witness also HALTEN Sm Arm ? Have function with property at Arm iff f(x) EHALTON arbitrary & X = < M, W> X = < M, W >

X = < M, W > M excepts W

2 = < M, W > M rejects W X= < W' M> W looks ou m. ZE HALTM IS f(x) E ATM Want X=<M, w> M ecception
2=<M, w> Miejech w ZEHALTIM but Jr= <W'M> W looks ou m. fox) & HALTIM and 50 for & Arm. HALTEN Function that witnessed Arm 5m flALTIM court be used to whoess HALTEN En ATM Look for another function that might! - nell defined - compatible - for each strings in E* XEHALTIN iff I GOVE AM MTTJAH m> MTA 2) HALTIM SM ATM.

ATM & HALTTAM
ATM

Theorem (Sipser 5.28): If $A \leq_m B$ and B is recognizable, then A is recognizable.

Proof:

Assume A sin B.

By Let there is f computable forction

So trial for each string $x \in \mathbb{Z}^*$, $x \in A$ iff for $f(x) \in B$ WTS if B is recognizable

Assume B is recognizable

By Linton, there is a TM MB LMB)=B

WTS A is recognizable

Dofine MA = "On input Z. finitely many steps blk t is computable

a Run MB on fax)

3 If accepts, accept if rejects, reject "

Case I Assume XEA. By Let of fax), foxieB. Running MA on X, etcp 1

Case I Assume XEA. By Let of fax) are MB on fax) walter and accepts so

MA accepts x in step 3

Case I Assume XAA. By Let of fax), foxieB. Running MA on X, step 1

Case I Assume XAA. By Let of fax), foxieB. Running MA on X, step 1

Case I Assume XAA. By Let of fax), foxieB. Running MA on X, step 1

Case I Assume XAA. By Let of fax), foxieB. Running MA on X, step 1

Case I Assume XAA. By Let of fax), foxieB. Running MA on X, step 1

Case I Assume XAA. By Let of fax) are MB on fax) walter and rejects so

MA rejects x in step 3 or Locan't Malt so MA dorn't not the results of MA vegets x in step 3 or Locan't Malt so MA dorn't not the con X. Gitten way.

Corollary: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable.

To calibrate "difficulty" of language.

ATM undecidable, recognizable

HALTER undecidable, recognizable

ATM undecidable, unrecognizable

HALTER undecidable, unrecognizable

ATM IN X gives X undecidable

and that ATM IN X

HALTER IN X gives X undecidable

ATM IN X

and that HALTER IN X.

Strategy:

- (i) To prove that a recognizable language R is undecidable, prove that $A_{TM} \succeq_m R$.
- (ii) To prove that a co-recognizable language U is undecidable, prove that $\overline{A_{TM}} \nleq_m U$, i.e. that $A_{TM} \leq_m \overline{U}$.

 $E_{TM} = \{ \langle M \rangle \mid M \text{ is a Turing machine and } L(M) = \emptyset \}$

Can we find algorithms to recognize

ETM? Not recognizable (needs proof)

 $\overline{E_{TM}}$? Recognizable Davetail the computations of M on each string. = if any accept, <M> \neq \in \in Trm.

Claim: $A_{TM} \leq_m \overline{E_{TM}}$. And hence also $\overline{A_{TM}} \leq_m E_{TM}$ $\overline{E_{TM}}$ is undecidable hence $\overline{E_{TM}}$ is undecidable and unrecugnizable.

Proof: Need computable function $F: \Sigma^* \to \Sigma^*$ such that $x \in A_{TM}$ iff $F(x) \notin E_{TM}$. Define

F = "On input x,

- 1. Type-check whether $x = \langle M, w \rangle$ for some TM M and string w. If so, move to step 2; if not, output ()
- 2. Construct the following machine M'_x :

M'x="On irput y

1. Run M on W

2. If M accepts w, accepty.

3. If M rejects w, reject y"

3. Output $\langle M'_r \rangle$."

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property $x \in A_{TM}$ iff its image is **not** in E_{TM} ?

Goel: XE ATM	(P FCX) & ETM
Input string	Output string
سے $\langle M, w \rangle$ where $w \in L(M)$	FCX) = < M'x> with LCM'x) = 5*
refren	FOR & ETM
$\chi = \langle M, w \rangle$ where $w \notin L(M)$	FOX) = Em
x not encoding any pair of TM and string $x \in \mathbb{A}_{TM}$	< → (5m) (0) > F(x) ∈ Ezm

Wednesday: More mapping reductions and other models of computation

Recall: A is mapping reducible to B, written $A \leq_m B$, means there is a computable function $f: \Sigma^* \to \Sigma^*$ such that for all strings x in Σ^* ,

 $x \in A$

if and only if

 $f(x) \in B$.

So far:

- A_{TM} is recognizable, undecidable, and not-co-recognizable.
- $\overline{A_{TM}}$ is unrecognizable, undecidable, and co-recognizable.
- $HALT_{TM}$ is recognizable, undecidable, and not-co-recognizable.
- $\overline{HALT_{TM}}$ is unrecognizable, undecidable, and co-recognizable.
- E_{TM} is unrecognizable, undecidable, and co-recognizable.
- $\overline{E_{TM}}$ is recognizable, undecidable, and not-co-recognizable.

 $EQ_{TM} = \{\langle M_1, M_2 \rangle \mid M_1 \text{ and } M_2 \text{ are both Turing machines and } L(M_1) = L(M_2) \}$

Can we find algorithms to recognize

 EQ_{TM} ?

 $\overline{EQ_{TM}}$? $\qquad \bigvee \qquad \qquad \bigvee \qquad \qquad \ldots$

∀x (M, accepts x M₂ accepts x)

Goal: Show that EQ_{TM} is not recognizable and that $\overline{EQ_{TM}}$ is not recognizable.

Using Corollary to **Theorem 5.28**: If $A \leq_m B$ and A is unrecognizable, then B is unrecognizable, it's enough to prove that

 $\overline{HALT_{TM}} \leq_m EQ_{TM}$ hence since $\overline{HALT_{TM}}$ is not se against aka $HALT_{TM} \leq_m \overline{EQ_{TM}}$

 $\overline{HALT_{TM}} \leq_m \overline{EQ_{TM}}$ hence since $\overline{HAUT_{TM}}$ is not recognished aka $HALT_{TM} \leq_m EQ_{TM}$ weither is $\overline{EQ_{TM}}$

Need computable function $F_1: \Sigma^* \to \Sigma^*$ such that $x \in HALT_{TM}$ iff $F_1(x) \notin EQ_{TM}$.

Strategy:

Map strings $\langle M, w \rangle$ to strings $\langle M_x'$, start $\xrightarrow{q_0}$ q_{ac} . This image string is not in EQ_{TM} when $L(M_x') \neq \emptyset$.

We will build M'_x so that $L(M'_x) = \Sigma^*$ when M halts on w and $L(M'_x) = \emptyset$ when M loops on w.

Thus: when $\langle M, w \rangle \in HALT_{TM}$ it gets mapped to a string not in EQ_{TM} and when $\langle M, w \rangle \notin HALT_{TM}$ it gets mapped to a string that is in EQ_{TM} .

Define

$$F_1 =$$
 "On input x ,

- 1. Type-check whether $x = \langle M, w \rangle$ for some TM M and string w. If so, move to step 2; if not, output $\langle \bigcap_{\text{start} \to \emptyset}^{0,1,\cup \to R} \bigcap_{\text{start} \to \emptyset}^{0,1,\cup \to R} \bigcap_{\text{start} \to \emptyset} \rangle$ 2. Construct the following machine M'_x :

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property $x \in HALT_{TM}$ iff its image is **not** in EQ_{TM} ?

GOOL: XE HALTON	, ff Fa) & Eam
Input string	Output string
\mathcal{L}^{\sharp} $\langle M, w \rangle$ where M halts on w	Fi (x) = $\langle M \rangle_{x}$, $0,1, \dots \to R$ > Fix γ start $\rightarrow q_0$ q_{acc} recognizes Fix γ
$\mathcal{L} (M, w)$ where M loops on w	$F(x) = \langle M'x, s_{tart} \rightarrow q_0 \rangle$ $F(x) \in G_{tarm}$
x not encoding any pair of TM and string	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$

Conclude: $HALT_{TM} \leq_m \overline{EQ_{TM}}$

Need computable function $F_2: \Sigma^* \to \Sigma^*$ such that $x \in HALT_{TM}$ iff $F_2(x) \in EQ_{TM}$.

Strategy:

Map strings $\langle M, w \rangle$ to strings $\langle M'_x, \stackrel{\text{start} \to Q_0}{\longrightarrow} \rangle$. This image string is in EQ_{TM} when $L(M'_x) = \Sigma^*$.

We will build M'_x so that $L(M'_x) = \Sigma^*$ when M halts on w and $L(M'_x) = \emptyset$ when M loops on w.

Thus: when $\langle M, w \rangle \in HALT_{TM}$ it gets mapped to a string in EQ_{TM} and when $\langle M, w \rangle \notin HALT_{TM}$ it gets mapped to a string that is not in EQ_{TM} .

Define

 $F_2 =$ "On input x,

- 1. Type-check whether $r \langle M \rangle$ some TM M and string w. If so, move to step 2; if not, output $\langle \bigcap_{\text{start} \to \{q_0\}}^{0,1, \cup \to R} \bigcap_{\text{start} \to \{q_0\}}^{\text{start} \to \{q_0\}} \rangle$ 2. Construct the ronowing machine M_x :

3. Output $\langle M'_x, \stackrel{\text{start} \to (q_0)}{\longrightarrow} \rangle$ "

Verifying correctness: (1) Is function well-defined and computable? (2) Does it have the translation property $x \in HALT_{TM}$ iff its image is in EQ_{TM} ?

Goal: XE HALTIM	, fr Fa) E EQTM
Input string	Output string
$\langle M, w \rangle$ where M halts on w	Ficx) = < M'x, start - 40. Ficx) & Form Ficx) & Form
$\mathcal{L} \langle M, w \rangle$ where M loops on w	F. (x) & Earn
x not encoding any pair of TM and string	$F(C) = \begin{pmatrix} 0, 1, \omega \to R \\ 0, 1, \omega \to R \\ \text{start} \to q_0 \end{pmatrix}$ $f(C) = \begin{pmatrix} 0, 1, \omega \to R \\ 0, 1, \omega \to R \\ \text{start} \to q_0 \end{pmatrix}$

Conclude: $HALT_{TM} \leq_m EQ_{TM}$

Two models of computation are called **equally expressive** when every language recognizable with the first model is recognizable with the second, and vice versa.

Church-Turing Thesis (Sipser p. 183): The informal notion of algorithm is formalized completely and correctly by the formal definition of a Turing machine. In other words: all reasonably expressive models of computation are equally expressive with the standard Turing machine.

Some examples of models that are equally expressive with deterministic Turing machines:

May-stay machines The May-stay machine model is the same as the usual Turing machine model, except that on each transition, the tape head may move L, move R, or Stay.

Formally: $(Q, \Sigma, \Gamma, \delta, q_0, q_{accept}, q_{reject})$ where

$$\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R, S\}$$

Claim: Turing machines and May-stay machines are equally expressive. To prove . . .

To translate a standard TM to a may-stay machine: never use the direction S!

To translate one of the may-stay machines to standard TM: any time TM would Stay, move right then left.

Multitape Turing machine A multitape Turing machine with k tapes can be formally representated as $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where Q is the finite set of states, Σ is the input alphabet with $\bot \notin \Sigma$, Γ is the tape alphabet with $\Sigma \subsetneq \Gamma$, $\delta : Q \times \Gamma^k \to Q \times \Gamma^k \times \{L, R\}^k$ (where k is the number of states)

If M is a standard TM, it is a 1-tape machine.

To translate a k-tape machine to a standard TM: Use a new symbol to separate the contents of each tape and keep track of location of head with special version of each tape symbol. Sipser Theorem 3.13

Enumerators Enumerators give a different model of computation where a language is **produced**, **one string at a time**, rather than recognized by accepting (or not) individual strings.

Each enumerator machine has finite state control, unlimited work tape, and a printer. The computation proceeds according to transition function; at any point machine may "send" a string to the printer.

$$E = (Q, \Sigma, \Gamma, \delta, q_0, q_{print})$$

Q is the finite set of states, Σ is the output alphabet, Γ is the tape alphabet $(\Sigma \subsetneq \Gamma, \bot \in \Gamma \setminus \Sigma)$,

$$\delta: Q \times \Gamma \times \Gamma \to Q \times \Gamma \times \Gamma \times \{L, R\} \times \{L, R\}$$

where in state q, when the working tape is scanning character x and the printer tape is scanning character y, $\delta((q, x, y)) = (q', x', y', d_w, d_p)$ means transition to control state q', write x' on the working tape, write y' on the printer tape, move in direction d_w on the working tape, and move in direction d_p on the printer tape. The computation starts in q_0 and each time the computation enters q_{print} the string from the leftmost edge of the printer tape to the first blank cell is considered to be printed.

The language **enumerated** by E, L(E), is $\{w \in \Sigma^* \mid E \text{ eventually, at finite time, prints } w\}$.

Theorem 3.21 A language is Turing-recognizable iff some enumerator enumerates it.

Proof, part 1: Assume L is enumerated by some enumerator, E, so L = L(E). We'll use E in a subroutine within a high-level description of a new Turing machine that we will build to recognize L.

Goal: build Turing machine M_E with $L(M_E) = L(E)$.

Define M_E as follows: M_E = "On input w,

- 1. Run E. For each string x printed by E.
- 2. Check if x = w. If so, accept (and halt); otherwise, continue."

Proof, part 2: Assume L is Turing-recognizable and there is a Turing machine M with L = L(M). We'll use M in a subroutine within a high-level description of an enumerator that we will build to enumerate L.

Goal: build enumerator E_M with $L(E_M) = L(M)$.

Idea: check each string in turn to see if it is in L.

How? Run computation of M on each string. But: need to be careful about computations that don't halt.

Recall String order for $\Sigma = \{0,1\}$: $s_1 = \varepsilon$, $s_2 = 0$, $s_3 = 1$, $s_4 = 00$, $s_5 = 01$, $s_6 = 10$, $s_7 = 11$, $s_8 = 000$, ...

Define E_M as follows: E_M = " ignore any input. Repeat the following for $i=1,2,3,\ldots$

- 1. Run the computations of M on s_1, s_2, \ldots, s_i for (at most) i steps each
- 2. For each of these i computations that accept during the (at most) i steps, print out the accepted string."

Nondeterministic Turing machine

At any point in the computation, the nondeterministic machine may proceed according to several possibilities: $(Q, \Sigma, \Gamma, \delta, q_0, q_{acc}, q_{rej})$ where

$$\delta: Q \times \Gamma \to \mathcal{P}(Q \times \Gamma \times \{L, R\})$$

The computation of a nondeterministic Turing machine is a tree with branching when the next step of the computation has multiple possibilities. A nondeterministic Turing machine accepts a string exactly when some branch of the computation tree enters the accept state.

Given a nondeterministic machine, we can use a 3-tape Turing machine to simulate it by doing a breadth-first search of computation tree: one tape is "read-only" input tape, one tape simulates the tape of the nondeterministic computation, and one tape tracks nondeterministic branching. Sipser page 178

Summary

Two models of computation are called **equally expressive** when every language recognizable with the first model is recognizable with the second, and vice versa.

To prove the existence of a Turing machine that decides / recognizes some language, it's enough to construct an example using any of the equally expressive models.

But: some of the **performance** properties of these models are not equivalent.

Friday: No class in observance of Thanksgiving Holiday