

Signali i sustavi

Auditorne vježbe 9.

LS&S FER – ZESOI – UniZG

Spajanje sustava u paralelu kontinuirani slučaj

■ Zadatak1: Potrebno je za dane prijenosne funkcije

$$H_1(s) = \frac{s}{(s+1)}.$$

$$H_2(s) = \frac{1}{(s+1)}.$$

- Odrediti raspored polova i nula u kompleksnoj ravnini
- Odrediti pripadne amplitudne i fazne frekvencijske karakteristike

Spajanje sustava u paralelu kontinuirani slučaj

- Odrediti prijenosnu funkciju paralelnog
- Odrediti raspored polova i nula
- Odrediti frekvencijske karakteristike paralelnog spoja

V(-)	$H_2(s)$	Y(s)
<i>X</i> (<i>s</i>) -	 $H_1(s)$	

Spajanje sustava u paralelu - kontinuirani slučaj

- Određivanje rasporeda polova i nula za $H_1(s) = \frac{s}{(s+1)}$.
- Nule = $\{0\}$, Polovi = $\{-1\}$
- Određivanje frekvencijskih karakteristika
- Sustav je stabilan pa možemo promatrati $H_1(j\omega) = \frac{j\omega}{1+j\omega}$
- Amplitudna frekvencijska karakteristika $|H_1(j\omega)| = \frac{|\omega|}{\sqrt{1+\omega^2}}$
- Fazna frekvencijska karakteristika $\varphi(j\omega) = Arctg\left(\frac{1}{\omega}\right)$

Spajanje sustava u paralelu kontinuirani slučaj

Prikaz polova i nula u kompleksnoj ravnini

■ H₁(s)

Spajanje sustava u paralelu - kontinuirani slučaj

Prikaz frekvencijskih karakteristika

- H₁(jω)
- H₂(jω)

		•
		•

Spajanje sustava u paralelu - kontinuirani slučaj

- Prijenosna funkcija paralelnog spoja izgleda $H(s) = H_1(s) + H_2(s) = \frac{s+1}{s+1}$ ovako
- Raspored polova i nula
- Frekvencijske karakteristike

Spajanje sustava u paralelu kontinuirani slučaj

- Blok shema u Matlab - simulinku
- Odzivi na pobudu $X(t) = \sin(0.1t) + \sin(10t)$

Spajanje sustava u paralelu diskretni slučaj

Zadatak2: Potrebno je za dane prijenosne funkcije

$$H_1(z) = \frac{1}{(z+0.5)}$$
. $H_2(z) = \frac{1}{(z-0.5)}$.

- Odrediti raspored polova i nula u kompleksnoj
- Odrediti pripadne amplitudne i fazne frekvencijske karakteristike

Spajanje sustava u paralelu diskretni slučaj

- Odrediti prijenosnu funkciju paralelnog
- Odrediti raspored polova i nula
- Odrediti frekvencijske karakteristike paralelnog spoja

Spajanje sustava u paralelu - diskretni slučaj

- Određivanje rasporeda polova i nula za $H_1(z)$ =
- Nule = $\{\emptyset\}$, Polovi = $\{-0.5\}$
- Određivanje frekvencijskih karakteristika
- Sustav je stabilan pa možemo promatrati $H_1(e^j)$
- Amplitudna frekvencijska karakteristika

 $\left(\cos\omega + \frac{1}{2}\right)^2 + (\sin\omega)^2$

	(2)	sin ω
•	Fazna frekvencijska $\varphi(e^{j\omega}) = Arctg$	- 5111 60
	karakteristika	$\cos \omega + \frac{1}{2}$
		\ 2)

Spajanje sustava u paralelu - diskretni slučaj

Prikaz polova i nula u kompleksnoj ravnini

Spajanje sustava u paralelu diskretni slučaj

Prikaz frekvencijskih karakteristika

- H₁(e^{jω})
- H₂(e^{jω})

Spajanje sustava u paralelu -Zisson diskretni slučaj

- Prijenosna funkcija paralelnog spoja izgleda ovako $H(z) = H_1(z) + H_2(z) = \frac{2z}{2}$
- Raspored polova i nula
- Frekvencijske karakteristike

Spajanje sustava u paralelu - diskretni slučaj

Odziv na pobudu $x[n] = \sin(0.1n) + \sin(0.01n)$

Spajanje sustava u kaskadu zesoi kontinuirani slučaj

■ Zadatak3: Potrebno je za dane prijenosne funkcije

$$H_1(s) = \frac{s-1}{s+1}$$

$$H_2(s) = \frac{2}{s+1}$$

- Odrediti raspored polova i nula u kompleksnoj ravnini
- Odrediti pripadne amplitudne i fazne frekvencijske karakteristike
- Što možete reći o mogućem paralelnom spoju?

Spajanje sustava u kaskadu kontinuirani slučaj

- Odrediti prijenosnu funkciju kaskadnog spoja
- Odrediti raspored polova i nula
- Odrediti frekvencijske karakteristike paralelnog spoja

$X(s)$ $Y_1(s)$		Y(s
$H_1(s)$	$I_2(s)$	<u> </u>
i — –		! !

Spajanje sustava u kaskadu kontinuirani slučaj

Prikaz polova i nula u kompleksnoj ravnini

■ H₁(s)

Spajanje sustava u kaskadu kontinuirani slučaj

Prikaz frekvencijskih karakteristika

- H₁(jω)
- H₂(jω)

Spajanje sustava u kaskadu - kontinuirani slučaj

- Prijenosna funkcija kaskadnog spoja izgleda $H(s) = H_1(s) \cdot H_2(s) = \frac{2(s-1)}{(s+1)^2}$
- Raspored polova i nula
- Frekvencijske karakteristike

Spajanje sustava u kaskadu kontinuirani slučaj

Blok shema u Matlab - simulinku

 Odzivi na pobudu $X(t) = \sin(0.1t) + \sin(10t)$

Spajanje sustava u kaskadu zesol diskretni slučaj

- Zadatak4: Potrebno je za dane prijenosne
- Odrediti raspored polova i nula u kompleksnoj
- Odrediti pripadne amplitudne i fazne frekvencijske karakteristike

Spajanje sustava u kaskadu diskretni slučaj

- Odrediti prijenosnu funkciju kaskadnog spoja
- Odrediti raspored polova i nula
- Odrediti frekvencijske karakteristike paralelnog spoja

Spajanje sustava u kaskadu diskretni slučaj

Prikaz polova i nula u kompleksnoj ravnini

Spajanje sustava u kaskadu -ZESOI diskretni slučaj

Prikaz frekvencijskih karakteristika

- H₁(e^{jω})
- H₂(e^{jω})

Spajanje sustava u kaskadu -Zisson diskretni slučaj

- Prijenosna funkcija paralelnog spoja izgleda ovako $H(z) = H_1(z) \cdot H_2(z) = \frac{z^2 - 2z}{1 + 1}$
- Raspored polova i nula
- Frekvencijske karakteristike

Spajanje sustava u kaskadu - diskretni slučaj

Odziv na pobudu $x[n] = \sin(0.1n) + \sin(0.01n)$

Spajanje sustava u povratnu vezu zesoi kontinuirani slučaj

■ Zadatak5: Potrebno je za dane prijenosne funkcije

 $H_1(s) = \frac{1}{s-1}$. $H_2(s) = \frac{8}{s+5}$

- Odrediti raspored polova i nula u kompleksnoj
- Odrediti pripadne amplitudne i fazne frekvencijske karakteristike

Spajanje sustava u povratnu vezu kontinuirani slučaj

- Odrediti prijenosnu funkciju sustava spojenog u povratnu vezu
- Odrediti raspored polova i nula
- Odrediti frekvencijske karakteristike sustava

Spajanje sustava u povratnu vezu kontinuirani slučaj

Prikaz polova i nula u kompleksnoj ravnini

■ H₁(s)

■ H₂(s)

Spajanje sustava u povratnu vezu - kontinuirani slučaj Prikaz frekvencijskih karakteristika • H₁(jω) • H₂(jω)

Spajanje sustava u povratnu vezu - kontinuirani slučaj Prijenosna funkcija spoja u povratnoj vezi izgleda ovako $H(s) = \frac{H_1(s)}{1 + H_1(s) \cdot H_2(s)} = \frac{s + 5}{s^2 + 4s + 3}$ Raspored polova i nula Frekvencijske karakteristike

Spajanje sustava u povratnu vezu diskretni slučaj

■ Zadatak6: Potrebno je za dane prijenosne funkcije

February 1. $H_1(z) = \frac{1}{z+2}$. $H_2(z) = \frac{\frac{13}{8}}{z-\frac{1}{2}}$

- Odrediti raspored polova i nula u kompleksnoj
- Odrediti pripadne amplitudne i fazne frekvencijske karakteristike

Spajanje sustava u povratnu vezu diskretni slučaj

- Odrediti prijenosnu funkciju sustava spojenog u povratnu vezu
- Odrediti raspored polova i nula
- Odrediti frekvencijske karakteristike sustava

Spajanje sustava u povratnu vezu diskretni slučaj

Prikaz polova i nula u kompleksnoj ravnini

Spajanje sustava u povratnu vezu diskretni slučaj Prikaz frekvencijskih karakteristika H₁(e^{jω}) H₂(e^{jω}) NEIN!

SS
ZESOI
■ P

Spajanje sustava u povratnu vezu diskretni slučaj

Prijenosna funkcija paralelnog spoja izgleda ovako

$$H(z) = \frac{H_1(z)}{1 + H_1(z) \cdot H_2(z)} = \frac{z - \frac{1}{2}}{z^2 + \frac{3}{2}z + \frac{5}{8}}$$
va i nula • Frekvencijske karakteristike

- Raspored polova i nula

Spajanje sustava u povratnu vezu -diskretni slučaj

Odziv na pobudu $x[n] = \sin(0.1n) + \sin(0.01n)$

