Linear Regression

Adriano Zanin Zambom ¹

 $^{1}{\mbox{Department of Mathematics}}$ California State University Northridge

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

► Everything is the same, but we now have 3 predictors X_1, X_2, X_3

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

- ▶ Everything is the same, but we now have 3 predictors X_1, X_2, X_3
- ▶ and 4 parameters: $\beta_0, \beta_2, \beta_2, \beta_3$

Multiple Linear Regression: Assumptions

► Real example in R: ?mtcars

Multiple Linear Regression: Assumptions

► Real example in R: ?mtcars

- We want to predict Y =miles per galon,
- using the other predictors X = cyl, Hp, etc

▶ How do we run multiple regression in R?

▶ How do we run multiple regression in R?

```
\begin{aligned} & \text{fit} = \text{Im}(\text{mpg} \quad ., \, \text{data} = \text{mtcars}) \\ & \text{summary}(\text{fit}) \end{aligned}
```

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

▶ There is one t-value for each predictor

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

- ▶ There is one t-value for each predictor
- ► There is one p-value for each predictor

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

- ► There is one t-value for each predictor
- ► There is one p-value for each predictor
- ▶ So we can test each hypothesis: Is predictor X_2 significant?

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

- ► There is one t-value for each predictor
- ► There is one p-value for each predictor
- ▶ So we can test each hypothesis: Is predictor X_2 significant?

$$H_0: \beta_2 = 0$$

$$H_0: \beta_2 \neq 0$$

$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_3 X_3 + \epsilon$$

- There is one t-value for each predictor
- ► There is one p-value for each predictor
- ▶ So we can test each hypothesis: Is predictor X_2 significant?

$$H_0: \beta_2 = 0$$

$$H_0: \beta_2 \neq 0$$

• We can run similar tests for β_1 or β_3 or any β

Matrix Notation for Multiple Regresison

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \dots + \beta_{p-1} X_{i,p-1} + \varepsilon_i$$

in matrix terms, we need to define the following matrices:

(6.18a) (6.18b)
$$\mathbf{Y} = \begin{bmatrix} Y_1 \\ Y_2 \\ \vdots \\ Y_n \end{bmatrix} \qquad \mathbf{X}_{n \times p} = \begin{bmatrix} 1 & X_{11} & X_{12} & \cdots & X_{1,p-1} \\ 1 & X_{21} & X_{22} & \cdots & X_{2,p-1} \\ \vdots & \vdots & \vdots & & \vdots \\ 1 & X_{n1} & X_{n2} & \cdots & X_{n,p-1} \end{bmatrix}$$
(6.18c) (6.18d)
$$\boldsymbol{\beta} = \begin{bmatrix} \beta_0 \\ \beta_1 \\ \vdots \\ \alpha \end{bmatrix}$$

$$\boldsymbol{\epsilon}_{n \times 1} = \begin{bmatrix} \varepsilon_1 \\ \varepsilon_2 \\ \vdots \\ \alpha \end{bmatrix}$$

Categorical Variables

Categorical Variables

 We need to differentiate categorical predictors from regular predictors

Categorical Variables

 We need to differentiate categorical predictors from regular predictors

► For example: the variable "am" in the mtcars example is categorical (Transmission (0 = automatic, 1 = manual))

Categorical Variables

 We need to differentiate categorical predictors from regular predictors

For example: the variable "am" in the mtcars example is categorical (Transmission (0 = automatic, 1 = manual))

▶ If we try to plot: plot(mtcars\$am, mtcars\$mpg)

We dont see a linear relationship

► To account for categorical variables we specify factor()

```
 \begin{aligned} & \text{fit} = \text{Im}(\texttt{mpg} \sim \text{factor}(\texttt{cyl}) + \texttt{disp} + \texttt{hp} + \texttt{drat} + \texttt{wt} + \texttt{qsec} \\ & + \texttt{factor}(\texttt{vs}) + \texttt{factor}(\texttt{am}) + \texttt{factor}(\texttt{gear}) + \texttt{carb}, \, \texttt{data} = \\ & \text{mtcars}) \end{aligned}
```

summary(fit)

To account for categorical variables we specify factor()

```
 \begin{aligned} & \text{fit} = \text{Im}(\text{mpg} \sim \text{factor}(\text{cyl}) + \text{disp} + \text{hp} + \text{drat} + \text{wt} + \text{qsec} \\ & + \text{factor}(\text{vs}) + \text{factor}(\text{am}) + \text{factor}(\text{gear}) + \text{carb}, \, \text{data} = \\ & \text{mtcars}) \end{aligned}
```

summary(fit)

These factors care called dummy variables

▶ One item is created for dummy variables of 2 categories

One item is created for dummy variables of 2 categories

▶ 2 items are created for dummy variables of 3 categories

One item is created for dummy variables of 2 categories

▶ 2 items are created for dummy variables of 3 categories

▶ p-1 items are created for dummy variables of p categories

One item is created for dummy variables of 2 categories

▶ 2 items are created for dummy variables of 3 categories

▶ p-1 items are created for dummy variables of p categories

► These represent the expected amount increased in the response *Y* when you move to that category

Quick diagnostics

```
 \begin{aligned} &\text{fit} = \text{Im}(\text{mpg} \sim \text{factor(cyl)} + \text{disp} + \text{hp} + \text{drat} + \text{wt} + \text{qsec} \\ &+ \text{factor(vs)} + \text{factor(am)} + \text{factor(gear)} + \text{carb, data} = \\ &\text{mtcars)} \end{aligned}
```

plot(fit)

Multiple Linear Regression: The Model

Diagnostic Plots

- In the first plot (residuals vs fitted), the model is not a good fit if we find
 - 1. Trends (up or down, curves, increasing variance)

▶ In the second plot (Normal Q-Q), points should fall near the line. If too many of them fall far from the line, the model is not a good fit

▶ In the third plot (Scale-Location), we dont want to see any trends

▶ In the fourth plot (Residuals vs Leverage), we are looking for points outside the red bounds. These are highly influential points in the regression and should be investigated.

► We should identify outliers and verify if they are real observations or mistakes when data was recorded

▶ What do we do if the diagnostic plots dont look good?

- ▶ What do we do if the diagnostic plots dont look good?
 - 1. Add polynomial terms of the predictors

summary(fit2)

- What do we do if the diagnostic plots dont look good?
 - 1. Add polynomial terms of the predictors

```
Example: cars:
fit = Im(dist \sim speed, data = cars)
summary(fit)
newdatacars = data.frame(dist = cars$dist, speed=
cars\$speed, speed2 = cars\$speed^2)
fit2 = Im(dist \sim speed + speed2, data = newdatacars)
```

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

► An alternative when the regression does not look linear is to use **Nonparametric Regression**

► An alternative when the regression does not look linear is to use **Nonparametric Regression**

▶ in R there are many ways: ksmooth, loess, and others

plot(cars\$speed, cars\$dist)

lines(ksmooth(cars\$speed, cars\$dist, "normal", bandwidth = 2), col = 2)

lines(ksmooth(cars\$speed, cars\$dist, "normal", bandwidth = 5), col = 3)

plot(cars\$speed, cars\$dist)

lines(ksmooth(cars\$speed, cars\$dist, "normal", bandwidth = 2), col = 2)

lines(ksmooth(cars\$speed, cars\$dist, "normal", bandwidth = 5), col = 3)

 Choosing the bandwidth is important, because you dont want to undersmooth nor oversmooth

Variable Selection

Variable Selection

Variable Selection

- Variable Selection
- ► Sometimes we have many predictors X that are not really useful for predicting the response variable Y

Variable Selection

- Variable Selection
- ► Sometimes we have many predictors X that are not really useful for predicting the response variable Y

► We want to select only those X that are important, making the model **simple**

- Variable Selection
- ► Sometimes we have many predictors X that are not really useful for predicting the response variable Y

We want to select only those X that are important, making the model simple

► Two most common ways of variable selection: stepwise regression (forward or backward), shrinkage methods

Forward Selection

1. Start with no predictors

2. Calculate the contribution of each variable for predicting Y.

3. Include the variable according the some criteria. Some programs use the smallest p-values, AIC, BIC

4. Repeat until none of the remaining variables meet the minimum requirements for inclusion.

Forward Selection

1. Start with no predictors

2. Calculate the contribution of each variable for predicting Y.

3. Include the variable according the some criteria. Some programs use the smallest p-values, AIC, BIC

4. Repeat until none of the remaining variables meet the minimum requirements for inclusion. ?step

Forward Selection

1. Start with no predictors

2. Calculate the contribution of each variable for predicting Y.

3. Include the variable according the some criteria. Some programs use the smallest p-values, AIC, BIC

4. Repeat until none of the remaining variables meet the minimum requirements for inclusion.

```
?step summary(lm1 <- lm(Fertility \sim ., data = swiss)) step(lm1, direction = "forward")
```

Backward Selection

1. Start with all the variables in the model.

2. Calculate the conditional contribution of each variable.

3. Eliminate the variable according the some criteria. Some programs use the largest p-values, BIC, AIC

4. Repeat until none of the remaining variables meet the minimum requirements for exclusion.

```
summary(Im1 <- Im(Fertility \sim ., data = swiss)) \\ step(Im1, direction = "backward")
```

Shrinkage Methods: Lasso, Ridge

► Lasso in R

- ► Lasso in R
- Ex: swiss <- datasets::swiss</p>

- Lasso in R
- Ex: swiss <- datasets::swiss
 x <- model.matrix(Fertility~ ., swiss)[,-1]
 y <- swiss\$Fertility</pre>

- Lasso in R
- Ex: swiss <- datasets::swiss
 x <- model.matrix(Fertility~ ., swiss)[,-1]
 y <- swiss\$Fertility

 library(glmnet)
 lassofit <- glmnet(x,y,alpha=1)
 CV = cv.glmnet(x,y)
 coef(CV, s = "lambda.1se")</pre>

- Lasso in R
- Ex: swiss <- datasets::swiss</p> x <- model.matrix(Fertility \sim ., swiss)[,-1] v <- swiss\$Fertility library(glmnet) lassofit <- glmnet(x,y,alpha=1) CV = cv.glmnet(x,y)coef(CV, s = "lambda.1se")6 x 1 sparse Matrix of class "dgCMatrix" 1 (Intercept) 60.59204873 Agriculture . Examination -0.16858920 Education -0.51419936 Catholic 0.04745011 Infant.Mortality 0.80347816

Simple Linear Regression

```
Exercises:
https://www.r-exercises.com/2018/02/18/tensorflow-linear-
regression-exercises/
https://www.r-exercises.com/2017/12/04/boston-regression-
exercises/
https://www.r-exercises.com/2018/06/07/polynomial-model-in-r-
study-case-exercises/
https://www.r-exercises.com/2017/01/15/multiple-regression-
part-1/
https://www.r-exercises.com/2017/10/14/regression-model-
assumptions-exercises/
```