Исследование диффузионных длин неосновных носителей заряда в фотоактивных слоях многопереходных солнечных элементов

© С.А. Минтаиров [¶], В.М. Андреев, В.М. Емельянов, Н.А. Калюжный, Н.К. Тимошина, М.З. Шварц, В.М. Лантратов

Физико-технический институт им. А.Ф. Иоффе Российской академии наук, 194021 Санкт-Петербург, Россия

(Получена 30 декабря 2009 г. Принята к печати 13 января 2010 г.)

Представлена методика определения диффузионных длин неосновных носителей заряда в фотоактивных слоях $A^{\rm III}B^{\rm V}$ солнечных элементов посредством аппроксимации их спектральных характеристик. Исследованы однопереходные GaAs, Ge и многопереходные GaAs/Ge, GaInP/GaAs и GaInP/GaInAs/Ge солнечные элементы, полученные методом MOC-гидридной эпитаксии. Установлены зависимости диффузионных длин неосновных носителей заряда от уровня легирования для p-Ge и n-GaAs. Показано, что параметры твердотельной диффузии атомов фосфора в подложку p-Ge из нуклеационного n-GaInP слоя не зависят от его толщины в пределах $35-300\,\mathrm{hm}$. Обнаружено уменьшение диффузионных длин в слоях $\mathrm{Ga(In)As}$ субэлементов многопереходных структур по сравнению с однопереходными.

1. Введение

Развитие солнечной энергетики в последние годы было связано с появлением более эффективных фотопреобразователей, как тонкопленочных и поликристаллических, так и монокристаллических на основе $A^{III}B^V$ [1]. Однако только применение многопереходных (МП) гетероструктур на основе $A^{III}B^V$ материалов позволило достичь кпд солнечных элементов (СЭ) более 40% и получить радиационно стойкие структуры для космических применений [2–5].

МП СЭ состоят из нескольких гетероструктур субэлементов, включающих в себя p-n-переход и барьерные слои. Субэлементы расположены по убыванию ширины запрещенной зоны их материала от фоточувствительной поверхности к подложке и коммутируются посредством выращивания в монолитных структурах встречновключенных туннельных диодов. Таким образом, каждый субэлемент преобразует в энергию только часть падающего спектра, что позволяет значительно повысить кпд структуры в целом.

Наиболее эффективные на сегодняшний день монолитные GaInP/GaInAs/Ge МП СЭ выращиваются методом МОС-гидридной эпитаксии на подложках p-Ge и обладают n-p-полярностью. При этом нижний p-n-переход создается в подложке за счет твердотельной диффузии атомов фосфора из осаждаемого на поверхность нуклеационного слоя n-GaInP. Малая глубина залегания p-n-перехода в Ge при диффузии в нее атомов фосфора, обеспечивающая оптимальные параметры этого p-n-перехода, во многом определяет n-p-полярность GaInP/GaInAs/Ge МП СЭ. Однако также существуют технологические трудности, не позволяющие создать эффективный верхний GaInP переход p-n-полярности [6].

Ввиду того, что МП СЭ включают большое количество как наноразмерных $(10-100\,\mathrm{mm})$, так и объемных $(\mathrm{до}\ 5\,\mathrm{mkm})$ слоев разного химического состава, в их

структурах в отличие от однопереходных СЭ происходят многократное переотражение света и интерференционные явления [7]. Эти эффекты оказывают сильное влияние на спектральные зависимости квантовой эффективности фотоответа (спектральные характеристики фотоответа) МП СЭ, поэтому их моделирование сталкивается с необходимостью учета сложного распространения электромагнитной волны в структуре. Это делает невозможным применение к МП СЭ классических методов расчета спектральных характеристик фотоответа, используемых для однопереходных структур [8].

В работах [9,10] нами был продемонстрирован аналитический метод расчета спектральных характеристик фотоответа МП СЭ, где функция генерации определялась посредством формализации решения системы уравнений Максвелла для слоистой структуры методом матриц Абелеса [11]. Собирание носителей в p-n-переход рассчитывалось по диффузионной модели. Входными параметрами при расчетах являлись толщины слоев, диффузионные длины неосновных носителей заряда (ННЗ), скорости рекомбинации на гетерограницах и свойства материалов. Так как в слоях малой толщины (менее 50 нм) распространение носителей заряда практически не зависит от диффузионных длин [12], для учета вклада тонких слоев широкозонных "окон" или тыльных потенциальных барьеров (ТПБ) в спектральные характеристики фотоответа вместо диффузионной модели использовались коэффициенты, характеризующие долю носителей заряда, инжектированных в эмиттер и базу соответственно.

В данной работе представлена методика нахождения диффузионных длин в слоях МП СЭ на основе GaInP/GaInAs/Ge и составляющих их субэлементов; исследовано влияние толщины нуклеационного слоя *n*-GaInP на спектральные характеристики однопереходных Ge СЭ; показаны зависимости диффузионных длин носителей заряда от уровня легирования для отдельных слоев структуры МП СЭ, а также проведен анализ

[¶] E-mail: mintairov@scell.ioffe.ru

влияния технологических условий роста на диффузионные длины носителей в слоях отдельных субэлементов МП СЭ.

2. Методика эксперимента и моделирование

2.1. Образцы фотопреобразователей

Структуры СЭ были выращены методом МОС-гидридной эпитаксии при пониженном давлении. Металлорганические соединения использовались в качестве источников элементов III группы (триметилгаллий (TMGa), триметилалюминий (TMAI) и триметилиндий (TMIn)), а арсин (AsH₃) и фосфин (PH₃) в качестве источников элементов V группы. Источником легирующей примеси n-типа являлся силан (SiH₄), p-типа — диэтилцинк (DEZn). Рост проводился на подложках p-Ge (100), разориентированных на 6° в направлении (111), и на подложках GaAs (100) n- и p-проводимости, разориентированных на 2° в направлении (110).

Лицевая контактная сетка наносилась вакуумным напылением через маску, созданную методом фотолитографии. После напыления контактной сетки контактный слой n^+ -GaAs удалялся химическим травлением. Для разделения элементов применялось мезатравление. На поверхность образцов наносились оптимизированные для каждой структуры двухслойные антиотражающие покрытия (AOII) ZnS/MgF $_2$.

Были созданы n-p-Ge СЭ и p-n-GaAs СЭ с различным уровнем легирования базы. При этом уровень легирования подложки p-Ge, выполняющий роль базы в n-p-Ge СЭ, варьировался от $3\cdot 10^{17}$ до $1\cdot 10^{19}$ см $^{-3}$, а уровень легирования базы n-GaAs от $3\cdot 10^{16}$ до $2\cdot 10^{17}$ см $^{-3}$. Толщина нуклеационного слоя n-GaInP, выполняющего роль широкозонного "окна" для Ge-образцов, варьировалась от 35 до 300 нм. Толщины эмиттеров и баз в p-n-GaAs элементах составляли 0.5 и 3 мкм соответственно. В качестве слоев широкозонного "окна" в ТПБ использовались твердые растворы AlGaAs. Также были созданы трехпереходные n-p-GaInP/GaInAs/Ge СЭ и двухпереходные n-p-GaAs/Ge и n-p-GaInP/GaAs СЭ.

2.2. Методика определения диффузионных длин

С использованием описанной в [9,10] методики для изготовленных структур СЭ был произведен расчет спектров фотоответа. Величины коэффициентов поглощения и диффузии носителей для материалов элемента, а также толщины слоев являлись параметрами структуры. Таким образом, в случае, когда известен вид функции генерации носителей, который может быть установлен с помощью расчета поля световой волны в структуре МП СЭ, спектральные характеристики фотоответа зависят только от диффузионных длин в фотоактивных

слоях и скоростей поверхностной рекомбинации на их интерфейсах.

Однако в общем случае увеличение значений скорости рекомбинации на гетерограницах может оказывать влияние на форму спектральной характеристики фотоответа, сходное с тем, что наблюдается при уменьшении диффузионных длин ННЗ. Можно показать, что на спектры фотоответа оказывают влияние скорости рекомбинации на гетерограницах, превышающие 10^4 см/с, в то время как для гетеропереходов большинства материалов характерны значения, меньшие чем 10^4 см/с [13], за исключением скоростей рекомбинации на поверхности полупроводниковых материалов.

Таким образом, при фиксированных значениях скоростей рекомбинации на гетерограницах оптимальные оценки диффузионных длин HH3 в широкозонном "окне", эмиттере, базе и ТПБ \hat{L}_{Win} , \hat{L}_{Em} , \hat{L}_{Base} и \hat{L}_{BSF} могут быть найдены из следующего условия:

$$\sum_{k=1}^{N} (Q_e^*(\lambda_k) - Q_e(\lambda, \hat{L}_{Win}, \hat{L}_{Em}, \hat{L}_{Base}, \hat{L}_{BSF}))^2$$

$$= \min \left[\sum_{k=1}^{N} (Q_e^*(\lambda_k) - Q_e(\lambda, \mathbf{L}_{Win}, \mathbf{L}_{Em}, \mathbf{L}_{Base}, \mathbf{L}_{BSF}))^2 \right],$$

$$\lambda = [\lambda_1, \lambda_2, \dots, \lambda_N]^T,$$
(1)

где λ — множество значений длин волн, для которых производится расчет фотоответа; $Q_e^*(\lambda_k)$ — экспериментально измеренное значение фотоответа для длины волны λ_k , $Q_e(\lambda_k, L_{\rm Win}, L_{\rm Em}, L_{\rm Base}, L_{\rm BSF})$ — расчетное значение фотоответа для длины волны λ_k и диффузионных длин $L_{\rm Win}$, $L_{\rm Em}$, $L_{\rm Base}$ и $L_{\rm BSF}$; $L_{\rm Win}$, $L_{\rm Em}$, $L_{\rm Base}$ и $L_{\rm BSF}$ — векторы-столбцы значений диффузионной длины неосновных носителей заряда в широкозонном "окне", эмиттере, базе и ТПБ соответственно, по которым производится вариация.

3. Результаты и их анализ

3.1. Диффузионные длины неосновных носителей заряда в слоях *p*-Ge и *n*-GaAs

На рис. 1 представлены спектры внешней квантовой эффективности фотоответа трех n-p-Ge солнечных элементов, выращенных на p-Ge подложках разного уровня легирования, и результаты их аппроксимации. Толщина слоя широкозонного "окна" n-GaInP для всех образцов составляла 100 нм. Найденные при расчете значения диффузионных длин элементов в подложке p-Ge представлены в табл. 1.

Повышение уровня легирования подложки приводило к снижению длинноволновой фоточувствительности исследованных СЭ (рис. 1), что было связано с уменьшением диффузионной длины электронов. При уровне $3 \cdot 10^{17} \, \text{см}^{-3}$ диффузионная длина электронов в p-Ge составила $\sim 100 \, \text{мкм}$, что позволило обеспечить

собирание фотогенерированных носителей, близкое к практическому пределу. Поскольку на исследованные образцы не наносилось АОП, уровень эффективности фотоответа не превышал 85% (рис. 1) из-за потерь на отражение падающего излучения от поверхности элемента.

На рис. 2 представлены экспериментальные и расчетные данные для GaAs CЭ p-n-полярности с различным уровнем легирования базы. Как и в случае Ge CЭ, увеличение уровня легирования в базовом слое n-GaAs СЭ приводило к снижению диффузионной длины дырок в нем и соответственно к падению длинноволновой чувствительности СЭ. Найденные при расчете диффу-

Рис. 1. Спектральные зависимости внешней квантовой эффективности фотоответа на фотоактивную поверхность для Ge CЭ n-p-полярности при различном уровне легирования подложки p-Ge N_a , 10^{18} см $^{-3}$: 1-0.3, 2-5, 3-10. Сплошные линии — расчетные значения, точки — экспериментальные значения.

Рис. 2. Спектральные зависимости внешней квантовой эффективности фотоответа на фотоактивную поверхность для GaAs CЭ p-n-полярности при различном уровне легирования базового слоя n-GaAs N_d , 10^{17} см $^{-3}$: I=0.3, 2=1, 3=2. Сплошные линии — расчетные значения, точки — экспериментальные значения.

Таблица 1. Значения диффузионных длин электронов в p-Gе подложках при различных уровнях легирования, полученные аппроксимацией спектров фотоответа Ge CЭ (рис. 1)

N_a , $10^{18} \mathrm{cm}^{-3}$	L_n , MKM
0.3	100
5	10
10	2

Таблица 2. Значения диффузионных длин дырок в *n*-GaAs слоях, полученные аппроксимацией спектров фотоответа GaAs CЭ (рис. 2)

N_d , 10^{17}cm^{-3}	L_p , MKM		
0.3	10		
1	7		
2	3.5		

зионные длины ННЗ сведены в табл. 2. Для слоя n-GaAs базы практически полное собирание носителей обеспечивалось при уровне легирования $3 \cdot 10^{16} \, \mathrm{cm}^{-3}$.

3.2. Влияние толщины нуклеационного слоя p-GaInP на параметры однопереходных Ge-элементов n-p-полярности

На рис. З представлены экспериментальные спектральные характеристики фотоответа n-p-Ge CЭ с различной толщиной n-GaInP "окна" и результаты их моделирования. Уровень легирования подложки p-Ge для всех образцов был $\sim 1 \cdot 10^{18}$ см $^{-3}$.

Аппроксимация спектральных характеристик позволила установить значения диффузионных длин неосновных носителей заряда в слоях n-GaInP широкозонного "окна" (за исключением СЭ с окном 35 нм), n-эмиттера и в p-Ge подложке, выполняющей роль полубесконечной базы (табл. 3). Глубина залегания перехода в элементах определялась методом вторичной ионной массспектроскопии (ВИМС) и для всех образцов составляла ~ 140 нм. При толщине окна n-GaInP 35 нм его вклад учитывался с использованием коэффициента, характеризующего долю носителей, инжектируемых в эмиттер, что, возможно, снижало точность оценки диффузионной длины дырок в эмиттере n-Ge (вероятность инжекции бралась равной 0.5).

Зависимости внутреннего квантового выхода фотоответа исследованных СЭ (см. вставку на рис. 3) отличались только в спектральной области поглощения материала GaInP (диапазон длин волн до 700 нм), а полученные расчетным путем диффузионные длины ННЗ в слоях *n*-GaInP широкозонного окна, *n*-Ge эмиттера и *p*-Ge базы практически полностью совпадали для разных элементов (табл. 3). Исходя из этого можно заключить, что падение коротковолновой фоточувствительно-

Таблица 3. Параметры расчета внешней и внутренней квантовых эффективностей фотоответа для Ge CЭ с различной толщиной слоя широкозонного "окна" *n*-GaInP (рис. 3)

	n-Ge	<i>p</i> -Ge	n-GaInP	n-Ge	<i>p</i> -Ge	n-GaInP	n-Ge	<i>p</i> -Ge
Толщина "окна" <i>n</i> -GaInP, нм	3:	5		100			300	
L_p , мкм L_n , мкм	0.35	50	0.1	0.3	50	0.1	0.3	50
D_p , cm ² /c	30	90	5	30	90	5	30	90
D_n , cm ² /c S, cm/c	< 10 ⁴	80 ∞	$\sim 10^5$	< 10 ⁴	∞	$\sim 10^5$	< 10 ⁴	80 ∞

Примечание. * — для *п*-слоев (эмиттерных) означает скорость рекомбинации на гетерогранице с широкозонным "окном", для *p*-слоев (базовых) — скорость рекомбинации на границе с тыльным металлическим контактом, для слоев широкозонного "окна" — скорость поверхностной рекомбинации.

Рис. 3. Спектральные зависимости внешней квантовой эффективности фотоответа на фотоактивную поверхность для Ge СЭ n-p-полярности при различной толщине n-GaInP нуклеационного слоя, нм: 1-35, 2-100, 3-300. Сплошные линии — результаты расчетов, точки — экспериментальные значения. На вставке — зависимости внутреннего квантового выхода фотоответа для этих СЭ.

сти связано только с потерей носителей, поглощенных в широкозоннном "окне" n-GaInP. Эти потери объясняются низкой диффузионной длиной дырок $(0.1\,\mathrm{mkm})$ в слое "окна".

Таким образом, применение моделирования в данном случае позволило, не прибегая к прямым измерениям, заключить, что глубина и профиль распределения атомов фосфора в Ge для исследованных образцов с различной толщиной слоя *n*-GaInP были одинаковыми. Необходимо отметить, что диффузионная длина дырок в эмиттере Ge CЭ оказалась вдвое больше его толщины, что создавало условия для практически полного собирания носителей из него и обеспечивало близкий к 100% внешний квантовый выход фотоответа практически во всем спектральном диапазоне фоточувствительности таких СЭ, за исключением диапазона 500—700 нм.

3.3. Характеристики GaAs- и Ge-элементов в многопереходных МП СЭ

Трехпереходные n-p-GaInP/GaInAs/Ge МП СЭ были выращены с сохранением технологии получения нижнего диффузионного субэлемента. Однако выращивание на Ge-субэлементе двухпереходной структуры GaInP/GaInAs приводило к существенному изменению его спектров фотоответа (рис. 4).

Волнообразная форма спектральной характеристики фотоответа Ge-субэлементов в отличие от случая однопереходных Ge СЭ была связана с проявлением интерференционных явлений в многослойной структуре МП СЭ, а сужение диапазона чувствительности с поглощением фотонов с длиной волны > 900 нм — в верхних субэлементах.

Кроме того, уровень фотоответа Ge-субэлементов GaInP/GaInAs/Ge СЭ был значительно ниже по срав-

Рис. 4. Спектральные зависимости внешней квантовой эффективности фотоответа на фотоактивную поверхность для: *1* — GaInP-субэлемента, *2* — GaInAs-субэлемента, *3* — Ge-субэлемента GaInP/GaInAs/Ge MII MЭ и отражение от структуры — *4*. Для кривых *1*, *2* и *3* линиями отображены результаты расчетов, точки — экспериментальные значения.

Таблица 4. Значения диффузионных длин и глубины залегания переходов для слоев, составляющих Ge-элементы, спектры фотоответа которых представлены на рис. 5

	Глубина залегания перехода, нм	L_p , мкм	L_n , MKM
Однопереходный Ge-элемент	140	0.4	50
Двухпереходный GaAs/Ge СЭ	500*	0.4	50
Трехпереходный GaInP/GaInAs/Ge СЭ	700	0.4	50

Примечание. * — расчетное значение.

нению с однопереходными Ge CЭ. Это было частично обусловлено отражением от поверхности структуры в диапазоне $900-1900\,\mathrm{hm}$, которое составляло порядка 10-15% (рис. 4). Однако внутренний квантовый выход фотоответа Ge-субэлемента МП СЭ не превышал 80% и имел явный спад в коротковолновой области. Это было связано с более глубокой диффузией атомов фосфора в подложку p-Ge при длительном выращивании каскадной структуры. По данным ВИМС, в трехпереходных GaInP/GaInAs/Ge СЭ глубина диффузии составляла величину порядка $700\,\mathrm{hm}$.

На рис. 5 представлено сравнение внутреннего квантового выхода фотоответа однопереходного Ge CЭ и нижних Ge-субэлементов двухпереходного GaAs/Ge и трехпереходного GaInP/GaInAs/Ge CЭ. Структуры были выращены на одинаковых подложках при одинаковых режимах эпитаксиального роста.

Диффузионные длины, при которых обеспечивалось наилучшее согласование расчетных и экспериментальных данных для однопереходного Ge CЭ и Ge-субэлемента трехпереходного GaInP/GaInAs/Ge CЭ, оказались

Рис. 5. Спектральные зависимости внутренней квантовой эффективности фотоответа на фотоактивную поверхность для Ge-переходов: I — однопереходный Ge CЭ, 2 — двухпереходный GaAs/Ge МП СЭ, 3 — трехпереходный GaInP/GaInAs/Ge МП СЭ, 4 — край спектральной характеристики фотоответа для GaInAs-субэлемента в МП СЭ. Для кривых I, 2 и 3 сплошные линии — результаты расчетов, точки — экспериментальные значения.

Рис. 6. Спектральные зависимости внешней квантовой эффективности фотоответа на фотоактивную поверхность для GaAsпереходов: I — однопереходный Ga(In)As CЭ, 2 — двухпереходный GaInP/GaAs СЭ, 3 — трехпереходный GaInP/GaAs/Ge СЭ, 4 — спектральная характеристика фотоответа для GaInP-субэлемента в МП СЭ. Для кривых 1, 2 и 3 сплошные линии — результаты расчетов, точки — экспериментальные значения.

одинаковыми (табл. 4). Моделирование спектральной характеристики Ge-субэлемента GaAs/Ge МП СЭ при таких же значениях диффузионных длин позволило определить глубину залегания p-n-перехода, которая составила величину порядка 500 нм (табл. 4).

Таблица 5. Значения диффузионных длин для Ga(In)As-субэлементов МП СЭ, представленных на рис. 6

	L_p , мкм	L_n , MKM
Однопереходный GaAs-элемент	0.5	10
Двухпереходный GaInP/GaAs СЭ	0.3	8
Трехпереходный GaInP/GaInAs/Ge СЭ	0.3	4

Спектральные характеристики фотоответа для однопереходного n-p-GaAs СЭ. а также Ga(In)As-субэлементов двухпереходного GaInP/GaAs и трехпереходного GaInP/GaInAs/Ge СЭ представлены на рис. 6. Параметры расчета, обеспечивающие наилучшее согласование теоретических и экспериментальных характеристик на рис. 6, сведены в табл. 5.

Увеличение количества субэлементов МП СЭ при сохранении режимов эпитаксиального роста приводило к уменьшению диффузионных длин ННЗ в слоях Ga(In)As-субэлементов. Волнообразная форма характеристики для двух- и трехпереходных элементов являлась следствием интерференции в слоях верхнего GaInP-субэлемента и туннельного перехода. Общий уровень уменьшался как вследствие снижения диффузионных длин ННЗ, так и за счет поглощения части полезного излучения в слоях туннельного перехода.

Диффузионные длины дырок в эмиттерах n-Ga(In)As для МП СЭ были ниже по сравнению с однопереходными СЭ (табл. 5). Это, скорее всего, было обусловлено диффузией p-примеси из верхних слоев структуры.

Однопереходные GaAs CЭ и нижний субэлемент двух-переходных GaInP/GaAs МП СЭ выращивались по схожей технологии на одинаковых подложках, поэтому диффузионные длины электронов в базах таких элементов отличались незначительно. Малое значение диффузионной длины электронов, наблюдаемое в базе p-GaInAs трехпереходного МП СЭ на основе GaInP/GaInAs/Ge, по-видимому, было обусловлено снижением структурного совершенства слоев GaInAs при росте $A^{III}B^V$ структур на подложках германия.

4. Заключение

Таким образом, продемонстрирована возможность применения математического моделирования для анализа параметров слоев, составляющих структуры МП СЭ. Преимуществом данного подхода является возможность получения оценок диффузионных длин ННЗ в слоях СЭ при моделировании их спектральных характеристик фотоответа без использования дополнительных измерений. Аппроксимация спектров фотоответа позволила установить зависимости диффузионных длин ННЗ в слоях *p*-Ge и *n*-GaAs от уровня их легирования и определить значения, при которых обеспечивалось полное собирание носителей из базовых слоев n-p-Ge и p-n-GaAs СЭ. Анализ полученных при моделировании данных позволил заключить, что падение коротковолновой части спектров фотоответа n-p-Ge СЭ при увеличении толщины слоя n-GaInP не определялось изменением параметров диффузионного p-n-перехода, а было связано с потерей фотонов, поглощенных в этом слое. Обнаружено снижение длин диффузии в слоях Ga(In) Аs-субэлементов и увеличение глубины залегания p-n-перехода в Ge-подложке при увеличении числа переходов МП СЭ.

Авторы выражают признательность С.И. Трошкову за полезные обсуждения, Б.Я. Беру, А.П. Ковальскому и Д.Ю. Казанцеву за проведение ВИМС измерений.

Работа выполнена при поддержке Российского фонда фундаментальных исследований (гранты N_0 08-08-00916-а, N_0 09-08-00879-а, N_0 09-08-00954-а).

Список литературы

- [1] T. Markvart, L. Castaner. *Solar Cells: Materials, Nanufacture and Operation* (Elsevier Sciecne Publishing Company, 2005).
- [2] W. Guter, J. Schöne, S.P. Philipps, M. Steiner, G. Siefer, A. Wekkeli, E. Weiser, E. Oliva, A.W. Bett, F. Dimroth. Appl. Phys. Lett., 94, 223 504 (2009).
- [3] M. Meusel et al. 20th EPSEC (Barselona, Spain, 2005) p. 20.
- [4] L.M. Fraas, J.E. Avery, H.X. Huang, E. Shifman, K. Edmondson, R.R. King. 31th PVSC (Florida, USA, 2005) p. 751.
- [5] M.Z. Shvarts, P.Y. Gazaryan, N.A. Kaluzhniy, V.P. Khvostikov, V.M. Lantratov, S.A. Mintairov, S.V. Sorokina, N.K. Timoshina. 21st EPSEC (Dresden, Germany, 2006) p. 133.
- [6] A.S. Gudovskikh, N.A. Kaluzhniy, V.M. Lantratov, S.A. Mintairov, M.Z. Shvarts, V.M. Andreev. Thin Sol. Films, 516, 6739 (2008).
- [7] M. Born, E. Wolf. *Principles of Optics, 7th edn* (UK, Cambridge University Press, 2002).
- [8] А.М. Васильев, А.П. Ландсман. Полупроводниковые преобразователи (М., Сов. радио, 1971).
- [9] В.М. Емельянов, Н.А. Калюжный, С.А. Минтаиров, В.М. Лантратов. НТВ СПбГУ, 2, 17 (2009).
- [10] V.M. Andreev, V.M. Emelyanov, N.A. Kalyuzhnyy, V.M. Lantratov, S.A. Mintairov, M.Z. Shvarts, N.K. Timoshina. 23th EPSEC (Valencia, Spain, 2008) p. 375.
- [11] F. Abeles. Annales de Physique, 45, 596 (1950).
- [12] В.Б. Егоров. Автореф. канд. дис. (Л., ФТИ, 1986).
- [13] Yu.A. Goldbery. Handbook Series on Semiconductor Parameters, ed. M. Levinshtein, S. Rumyantsev, M. Shur (London, World Scientific, 1996) vol. 1.

Редактор Л.В. Беляков

Investigation of the diffusion lengths of minority carriers in photo-active layers of multi-junction solar cells

S.A. Mintairov, V.M. Andreev, V.M. Emelyanov, N.A. Kalyuzhnyy, N.K. Timoshina, M.Z. Shvarts, V.M. Lantratov

Ioffe Physicotechnical Institute Russian Academy of Sciences, 194021 St. Petersburg, Russia

Abstract A method for determining the minority carriers' diffusion lengths in the photoactive layers of A^{III}B^V multi-junction solar cells by approximating their measured spectral response has been demonstrated. Single junction Ge and GaAs as well as GaAs/Ge, GaInP/GaAs and GaInP/GaInAs/Ge multi-junctions solar cells grown by MOCVD were investigated. The dependencies of the minority carriers' diffusion length on doping levels for *p*-Ge and *n*-GaAs were obtained. It was shown that the bulk diffusion of the phosphor atoms in a Ge wafer doesn't depend on the thickness of *n*-GaInP nucleation layer (used as a precursor for the diffusion) within the frames of 35–300 nm. A decreasing of the diffusion lengths in Ga(In)As layers of multijunction cells was found in comparison with single-junction cells.