Kessler

Reducción de dimensión: análisis en componentes principales

Mathieu Kessler

Departamento de Matemática Aplicada y Estadística Universidad Politécnica de Cartagena

Cartagena

Reducción de dimensión

En situaciones donde tenemos muchas variables asociadas a los individuos de un conjunto, buscamos reducir la dimensión del conjunto sin perder demasiada información.

Reducción de dimensión

En situaciones donde tenemos muchas variables asociadas a los individuos de un conjunto, buscamos reducir la dimensión del conjunto sin perder demasiada información.

Lo hacemos con posiblemente dos objetivos:

- Compresión del conjunto de datos.
- Visualización del conjunto de datos,

Un conjunto con k variables, y n individuos:

$$\begin{vmatrix} x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nk} \end{vmatrix}$$

Un conjunto con k variables, y n individuos: introducimos la matriz

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix}.$$

Kessler

El problema de la reducción de dimensión

Un conjunto con k variables, y n individuos: introducimos la matriz

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix}.$$

Los datos forman una nube en un espacio k-dimensional: cada fila contiene las k coordenadas del punto asociado a un individuo en el espacio.

Ejemplo: Consideremos el conjunto de datos:

$$X = \begin{pmatrix} 1.360 & 0.705 \\ -2.115 & -0.720 \\ -2.460 & 0.670 \\ \vdots & \vdots \\ 4.000 & 1.775 \\ -0.080 & -0.440 \\ -3.960 & -2.605 \\ -2.270 & -1.860 \end{pmatrix}$$

Kessler

El problema de la reducción de dimensión

Ejemplo: Consideremos el conjunto de datos: 20 individuos, 2 variables

$$X = \begin{pmatrix} 1.360 & 0.705 \\ -2.115 & -0.720 \\ -2.460 & 0.670 \\ \vdots & \vdots \\ 4.000 & 1.775 \\ -0.080 & -0.440 \\ -3.960 & -2.605 \\ -2.270 & -1.860 \end{pmatrix}$$

Representación de la nube

• La descripción es equivalente en los dos sistemas de coordenadas

- La descripción es equivalente en los dos sistemas de coordenadas
- Pero la variabilidad de las componentes en los dos sistemas es diferente:

- La descripción es equivalente en los dos sistemas de coordenadas
- Pero la variabilidad de las componentes en los dos sistemas es diferente:

$$Var(X_1) = 11.2, Var(X_2) = 3.8.$$

- La descripción es equivalente en los dos sistemas de coordenadas
- Pero la variabilidad de las componentes en los dos sistemas es diferente:

•
$$Var(X_1) = 11.2$$
, $Var(X_2) = 3.8$.

•
$$Var(Z_1) = 11.2$$
, $Var(Z_2) = 0.9$.

- La descripción es equivalente en los dos sistemas de coordenadas
- Pero la variabilidad de las componentes en los dos sistemas es diferente:

$$Var(X_1) = 11.2, Var(X_2) = 3.8.$$

•
$$Var(Z_1) = 11.2$$
, $Var(Z_2) = 0.9$.

En la segunda representación, la variabilidad de Z_2 es pequeña respecto a la variabilidad de Z_1 .

- La descripción es equivalente en los dos sistemas de coordenadas
- Pero la variabilidad de las componentes en los dos sistemas es diferente:

$$Var(X_1) = 11.2, Var(X_2) = 3.8.$$

•
$$Var(Z_1) = 11.2$$
, $Var(Z_2) = 0.9$.

En la segunda representación, la variabilidad de Z_2 es pequeña respecto a la variabilidad de Z_1 .

 \Rightarrow si tenemos que resumir, nos podemos quedar con Z_1 sólo...

- La descripción es equivalente en los dos sistemas de coordenadas
- Pero la variabilidad de las componentes en los dos sistemas es diferente:

$$Var(X_1) = 11.2, Var(X_2) = 3.8.$$

•
$$Var(Z_1) = 11.2$$
, $Var(Z_2) = 0.9$.

En la segunda representación, la variabilidad de Z_2 es pequeña respecto a la variabilidad de Z_1 .

- \Rightarrow si tenemos que resumir, nos podemos quedar con Z_1 sólo...
- Z_1 y Z_2 son incorrelados.

Consideramos la componente Z1:

■ ▶ 4 ■ ▶ ■ り90

Consideramos la componente Z1:

Consideramos la componente Z1:

Consideramos la componente Z1:

■ ▶ 4 ■ ▶ ■ 9 9 0

Reducción de dimensión

$$X = \begin{pmatrix} 1.360 & 0.705 \\ -2.115 & -0.720 \\ -2.460 & 0.670 \\ \vdots & \vdots \\ 4.000 & 1.775 \\ -0.080 & -0.440 \\ -3.960 & -2.605 \\ -2.270 & -1.860 \end{pmatrix} \xrightarrow{Cambio de \\ coordenadas} Z = \begin{pmatrix} 0.947 & 0.114 \\ -2.400 & -0.131 \\ -2.118 & -1.380 \\ \vdots & \vdots \\ 3.492 & 0.315 \\ -0.660 & 0.455 \\ -4.631 & 0.635 \\ -2.976 & 0.714 \end{pmatrix} \xrightarrow{Reducc. de \\ dim.} \hat{Z} = \begin{pmatrix} 0.947 \\ -2.400 \\ -2.118 \\ \vdots \\ 3.492 \\ -0.660 \\ -4.631 \\ -2.976 \end{pmatrix}$$

Reducción de dimensión

Ejemplo en 3D.

UPCT

Planteamiento general: preliminares

■ Sea $\vec{x_1}, \dots, \vec{x_k}$ una base de \mathbb{R}^k . Nube de puntos k-dimensional de n puntos M_1, M_2, \dots, M_n .

Kessler

Planteamiento general: preliminares

- Sea $\vec{x_1}, \dots, \vec{x_k}$ una base de \mathbb{R}^k . Nube de puntos k-dimensional de n puntos M_1, M_2, \dots, M_n .
- $(x_{i1}, x_{i2}, \dots, x_{ik})$ son las coordenadas del punto M_i en la base $\vec{x_1}, \dots, \vec{x_k}$.

- Sea $\vec{x_1}, \dots, \vec{x_k}$ una base de \mathbb{R}^k . Nube de puntos k-dimensional de n puntos M_1, M_2, \dots, M_n .
- $(x_{i1}, x_{i2}, \dots, x_{ik})$ son las coordenadas del punto M_i en la base $\vec{x_1}, \dots, \vec{x_k}$.
- Consideramos la matriz

$$X = \begin{pmatrix} x_{11} & x_{12} & \cdots & x_{1k} \\ x_{21} & x_{22} & \cdots & x_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ x_{n1} & x_{n2} & \cdots & x_{nk} \end{pmatrix}.$$

■ Escogemos otra base $\vec{u}_1, \ldots, \vec{u}_k$ de \mathbb{R}^k .

- Escogemos otra base $\vec{u}_1, \ldots, \vec{u}_k$ de \mathbb{R}^k .
- Sean $(z_{i1}, z_{i2}, ..., z_{ik})$ las coordenadas del punto M_i en esta nueva base

- Escogemos otra base $\vec{u}_1, \ldots, \vec{u}_k$ de \mathbb{R}^k .
- Sean $(z_{i1}, z_{i2}, \dots, z_{ik})$ las coordenadas del punto M_i en esta nueva base
- Consideramos la matriz

$$Z = \begin{pmatrix} z_{11} & z_{12} & \cdots & z_{1k} \\ z_{21} & z_{22} & \cdots & z_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ z_{n1} & z_{n2} & \cdots & z_{nk} \end{pmatrix},$$

de las coordenadas de los puntos de la nube.

■ Para relacionar Z con X, escribimos la matriz de paso de la base base $\vec{x_1}, \dots, \vec{x_k}$ a la nueva base.

- Para relacionar Z con X, escribimos la matriz de paso de la base base $\vec{x_1}, \dots, \vec{x_k}$ a la nueva base.
- La matriz U, es la matriz $k \times k$ cuyas columnas contienen las coordenadas de los vectores $\vec{u}_1, \ldots, \vec{u}_k$ en la base inicial, es decir si

$$\vec{u}_1 = u_{11}\vec{x}_1 + u_{21}\vec{x}_2 + \dots + u_{k1}\vec{x}_k
\vec{u}_2 = u_{12}\vec{x}_1 + u_{22}\vec{x}_2 + \dots + u_{k2}\vec{x}_k
\vdots \vdots \vdots
\vec{u}_k = u_{1k}\vec{x}_1 + u_{2k}\vec{x}_2 + \dots + u_{kk}\vec{x}_k,$$

.... si

$$\vec{u}_1 = u_{11}\vec{x}_1 + u_{21}\vec{x}_2 + \dots + u_{k1}\vec{x}_k
\vec{u}_2 = u_{12}\vec{x}_1 + u_{22}\vec{x}_2 + \dots + u_{k2}\vec{x}_k
\vdots \vdots \vdots
\vec{u}_k = u_{1k}\vec{x}_1 + u_{2k}\vec{x}_2 + \dots + u_{kk}\vec{x}_k,$$

la matriz de paso será

$$U = \begin{pmatrix} u_{11} & u_{12} & \cdots & u_{1k} \\ u_{21} & u_{22} & \cdots & u_{2k} \\ \vdots & \vdots & \vdots & \vdots \\ u_{k1} & u_{k2} & \cdots & u_{kk} \end{pmatrix}.$$

■ La relación entre Z, X y U es

$$X = ZU^T$$

■ La relación entre Z, X y U es

$$X = ZU^T$$
,

U es invertible, por lo que

$$X(U^T)^{-1}=Z.$$

■ La relación entre Z, X y U es

$$X = ZU^T$$

lacksquare U es invertible , por lo que

$$X(U^T)^{-1} = Z.$$

Si los vectores $\vec{u}_1, \dots, \vec{u}_k$ forman una base ortonormal, la matriz U satisface $U^T U = Id$, y por lo tanto $(U^T)^{-1} = U$:

$$Z = XU$$
.

Matriz de covarianzas y cambio de bases

• Consideremos el conjunto de datos representado por la matriz X. La matriz de covarianzas de las variables X_1, \ldots, X_k es

$$S_X = \left(egin{array}{cccc} s_{\chi_1}^2 & s_{\chi_1 \chi_2} & \cdots & s_{\chi_1 \chi_k} \ s_{\chi_1 \chi_2} & s_{\chi_2}^2 & \cdots & s_{\chi_2 \chi_k} \ dots & dots & dots & dots \ s_{\chi_1 \chi_k} & s_{\chi_2 \chi_k} & \cdots & s_{\chi_k}^2 \ \end{array}
ight),$$

donde $s_{X_i}^2$ representa la varianza de la variable X_i en el conjunto y $s_{X_iX_j}$ es la covarianza de X_i y X_j .

Matriz de covarianzas y cambio de bases

Consideremos el conjunto de datos representado por la matriz X. La matriz de covarianzas de las variables X_1, \ldots, X_k es

$$S_X = \left(egin{array}{cccc} s_{\chi_1}^2 & s_{\chi_1 \chi_2} & \cdots & s_{\chi_1 \chi_k} \ s_{\chi_1 \chi_2} & s_{\chi_2}^2 & \cdots & s_{\chi_2 \chi_k} \ dots & dots & dots & dots \ s_{\chi_1 \chi_k} & s_{\chi_2 \chi_k} & \cdots & s_{\chi_k}^2 \ \end{array}
ight),$$

donde $s_{X_i}^2$ representa la varianza de la variable X_i en el conjunto y $s_{X_i X_i}$ es la covarianza de X_i y X_j .

■ Si $X_1, ..., X_k$ tienen cada una media 0:

$$S_X = \frac{1}{n-1} X^T X.$$

■ Deducimos, usando la relación entre Z y X que

$$S_Z = \frac{1}{n-1} Z^T Z = \frac{1}{n-1} U^{-1} X^T X (U^T)^{-1} = U^{-1} S_X (U^T)^{-1}.$$

■ Deducimos, usando la relación entre Z y X que

$$S_Z = \frac{1}{n-1} Z^T Z = \frac{1}{n-1} U^{-1} X^T X (U^T)^{-1} = U^{-1} S_X (U^T)^{-1}.$$

■ En el caso en que *U* es ortogonal,

$$S_Z = U^{-1} S_X U.$$

 Buscamos el cambio de sistemas de coordenadas que nos permita posiblemente una reducción de dimensión.

Kessler

- Buscamos el cambio de sistemas de coordenadas que nos permita posiblemente una reducción de dimensión.
- En ese nuevo sistema, queremos que haya diferencias entre las variabilidad de los componentes: la primera coordenada debe presentar la mayor varianza, la segunda, la segunda mayor varianza, etc...

- Buscamos el cambio de sistemas de coordenadas que nos permita posiblemente una reducción de dimensión.
- En ese nuevo sistema, queremos que haya diferencias entre las variabilidad de los componentes: la primera coordenada debe presentar la mayor varianza, la segunda, la segunda mayor varianza, etc...
- Teniendo en cuenta

$$S_Z = U^{-1} S_X U,$$

se conseguirá el sistema deseado si S_Z es una matriz diagonal...

- Buscamos el cambio de sistemas de coordenadas que nos permita posiblemente una reducción de dimensión.
- En ese nuevo sistema, queremos que haya diferencias entre las variabilidad de los componentes: la primera coordenada debe presentar la mayor varianza, la segunda, la segunda mayor varianza, etc...
- Teniendo en cuenta

$$S_Z = U^{-1} S_X U,$$

se conseguirá el sistema deseado si S_Z es una matriz diagonal...

Realizar el análisis en componentes principales, consiste en diagonalizar la matriz S_x ...

Análisis en componentes principales

Al calcular los vectores propios de la matriz S_X , obtenemos los coeficientes u_{ij} de la matriz U de pas y

$$Z_{1} = u_{11}X_{1} + u_{21}X_{2} + \dots + u_{k1}X_{k}$$

$$Z_{2} = u_{12}X_{1} + u_{22}X_{2} + \dots + u_{k2}X_{k}$$

$$\vdots \quad \vdots$$

$$Z_{k} = u_{1k}X_{1} + u_{2k}X_{2} + \dots + u_{kk}X_{k}.$$

Análisis en componentes principales

■ Al calcular los vectores propios de la matriz S_X , obtenemos los coeficientes u_{ij} de la matriz U de pas y

$$Z_1 = u_{11}X_1 + u_{21}X_2 + \dots + u_{k1}X_k$$

$$Z_2 = u_{12}X_1 + u_{22}X_2 + \dots + u_{k2}X_k$$

$$\vdots \quad \vdots$$

$$Z_k = u_{1k}X_1 + u_{2k}X_2 + \dots + u_{kk}X_k.$$

$$1^{\circ} \text{ vector propio: } \vec{u_1} = \begin{pmatrix} u_{11} \\ u_{21} \\ \vdots \\ u_{k1} \end{pmatrix}, \dots, k^{\circ} \text{ vector propio: } \vec{u_k} = \begin{pmatrix} u_{1k} \\ u_{2k} \\ \vdots \\ u_{kk} \end{pmatrix}.$$

Análisis en componentes principales

Al calcular los vectores propios de la matriz S_X , obtenemos los coeficientes u_{ij} de la matriz U de pas y

$$Z_{1} = u_{11}X_{1} + u_{21}X_{2} + \dots + u_{k1}X_{k}$$

$$Z_{2} = u_{12}X_{1} + u_{22}X_{2} + \dots + u_{k2}X_{k}$$

$$\vdots \quad \vdots$$

$$Z_{k} = u_{1k}X_{1} + u_{2k}X_{2} + \dots + u_{kk}X_{k}.$$

Componentes principales

Los componentes principales Z_1, \ldots, Z_k se obtienen por lo tanto como combinaciones lineales de las variables originales X_1, \ldots, X_k , cuyos coeficientes se deducen de la expresión de los vectores propios.

900

■ Para el ejemplo 2D que vimos al principio de la clase, tenemos

$$S_X = \left(\begin{array}{cc} 11.238 & 5.194 \\ 5.194 & 3.835 \end{array}\right),$$

■ Para el ejemplo 2D que vimos al principio de la clase, tenemos

$$S_X = \left(\begin{array}{cc} 11.238 & 5.194 \\ 5.194 & 3.835 \end{array} \right),$$

Usamos eigen en R, para encontrar los valores propios y vectores propios:

■ Para el ejemplo 2D que vimos al principio de la clase, tenemos

$$S_X = \left(\begin{array}{cc} 11.238 & 5.194 \\ 5.194 & 3.835 \end{array} \right),$$

- Usamos eigen en R, para encontrar los valores propios y vectores propios:
 - $\lambda_1 \simeq 13.93 \text{ y } \lambda_2 \simeq 1.16.$

■ Para el ejemplo 2D que vimos al principio de la clase, tenemos

$$S_X = \left(\begin{array}{cc} 11.238 & 5.194 \\ 5.194 & 3.835 \end{array} \right),$$

- Usamos eigen en R, para encontrar los valores propios y vectores propios:
 - $\lambda_1 \simeq 13.93 \text{ y } \lambda_2 \simeq 1.16.$

$$\vec{u}_1 = \begin{pmatrix} 0.89 \\ 0.46 \end{pmatrix} \text{ y } \vec{u}_2 = \begin{pmatrix} -0.46 \\ 0.89 \end{pmatrix}$$

■ Para el ejemplo 2D que vimos al principio de la clase, tenemos

$$S_X = \left(\begin{array}{cc} 11.238 & 5.194 \\ 5.194 & 3.835 \end{array} \right),$$

- Usamos eigen en R, para encontrar los valores propios y vectores propios:
 - $\lambda_1 \simeq 13.93 \text{ y } \lambda_2 \simeq 1.16.$

•
$$\vec{u}_1 = \begin{pmatrix} 0.89 \\ 0.46 \end{pmatrix}$$
 y $\vec{u}_2 = \begin{pmatrix} -0.46 \\ 0.89 \end{pmatrix}$

Los dos componentes principales son

$$Z_1 = 0.89X_1 + 0.46X_2$$

 $Z_2 = -0.46X_1 + 0.89X_2$

Cambio de sistema en el ejemplo:

La nueva base:

Reducimos la dimensión

Cómo calculamos la componente Z1:

Por la definición de los componentes principales, la matriz de covarianzas S_Z es

$$S_Z = \begin{pmatrix} \lambda_1 & 0 & \cdots & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \cdots & \ddots & \vdots & \vdots \\ 0 & \cdots & \cdots & \lambda_k \end{pmatrix},$$

Por lo tanto:

$$\lambda_i = var(Z_i)$$

Por la definición de los componentes principales, la matriz de covarianzas S_Z es

$$S_Z = \left(\begin{array}{ccccc} \lambda_1 & 0 & \dots & \dots & 0 \\ 0 & \lambda_2 & 0 & \dots & 0 \\ \vdots & \dots & \ddots & \vdots & \vdots \\ 0 & \dots & \dots & \lambda_k \end{array}\right),$$

Por lo tanto:

- $\lambda_i = var(Z_i)$
- Los componentes principales son incorrelados $(r_{Z_iZ_i} = 0)$.

Por teoremas de álgebra lineal:

1 Cualquier combinación lineal estanderizada de las variables iniciales, es decir $a_1X_1 + \cdots + a_kX_k$ con $a_1^2 + \cdots + a_k^2 = 1$, presenta una varianza menor or igual que la del primer componente Z_1 , es decir:

$$Var(a_1X_1+\cdots+a_kX_k)\leq \lambda_1.$$

Es decir:

Cuando fijamos el primer vector del nuevo sistema como $\vec{u_1}$, el vector propio de S_X asociado a λ_1 , maximizamos la varianza de los valores que toma la primera componente en la nube de puntos

2 La variabilidad total se preserva.

$$Var(X_1) + \cdots + Var(X_k) = Var(Z_1) + \cdots + Var(Z_k)$$

= $\lambda_1 + \cdots + \lambda_k$

Nos basamos en la evolución de los valores propios: con dos opciones.

1 Diagrama de codo (Scree plot)

Nos basamos en la evolución de los valores propios: con dos opciones.

1 Diagrama de codo (Scree plot)

Nos basamos en la evolución de los valores propios: con dos opciones.

2 Varianza acumulada explicada. Ejemplo:

Valor propio	% Varianza	% acumulado variabilidad explicada
λ_1	0.734	0.734
λ_2	0.068	0.802
λ_3	0.057	0.859
λ_4	0.038	0.897
λ_5	0.027	0.924
λ_6	0.023	0.947
λ_7	0.021	0.968
λ_8	0.021	0.989
λ_9	0.011	1.000

Nos basamos en la evolución de los valores propios: con dos opciones.

2 Varianza acumulada explicada. Ejemplo:

	Valor	propio	% Varianza	% acum	ulado:	variabilidad	explicada
--	-------	--------	------------	--------	--------	--------------	-----------

	r propio	/ C T COLLEGE	70 dedinarado rariabin
Γ	λ_1	0.734	0.734
ı	λ_2	0.068	0.802
ı	λ_3	0.057	0.859
L	λ_4	0.038	0.897
I	λ_5	0.027	0.924
١	λ_6	0.023	0.947
١	λ_7	0.021	0.968
١	λ_8	0.021	0.989
١	λ_9	0.011	1.000
L			

Nos basamos en la evolución de los valores propios: con dos opciones.

2 Varianza acumulada explicada. Ejemplo:

Val	or propio	% Varianza	% acumulado variabilidad explicada
	λ_1	0.734	0.734
	λ_2	0.068	0.802
	λ_3	0.057	0.859
	λ_4	0.038	0.897
	λ_5	0.027	0.924
	λ_6	0.023	0.947
	λ_7	0.021	0.968
	λ_8	0.021	0.989
	λ_9	0.011	1.000

Nos quedamos con los lambdas necesarios para alcanzar aprox. 90% varianza.