

GEOMETRÍA

Capítulo 19

1st SECONDARY

TRIÁNGULOS SEMEJANTES

MOTIVATING | STRATEGY

En nuestra vida cotidiana nos encontramos con objetos que tiene igual forma y distinto tamaño, por ejemplo algunas tablets, los conos de transito, una tarjeta de crédito, etc. En geometría existen triángulos que tiene igual forma y algunas veces igual tamaño, a dichas figuras se le llama semejantes, que es el tema que estudiaremos a continuación.

Existen condiciones mínimas para que dos triángulos sean semejantes, así como también existen figuras geométricas que siempre son semejantes, por ejemplo los triángulos equiláteros, los cuadrados ,las circunferencias, etc.

TRIÁNGULOS SEMEJANTES

Dos triángulos son semejantes si tienen tres pares de ángulos congruentes y sus lados homólogos respectivamente proporcionales.

$$\frac{BC}{QR} = \frac{AC}{PR} = \frac{BH}{QM} = k$$

1. En el gráfico, si AB= 4 m, BC=5 m y DF=20 m, halle DE.

Resolución

Piden: DE

$$\frac{x}{4} = \frac{20}{5}$$

$$5x = 80$$

$$x = 16$$

$$\alpha + \beta = 90^{\circ}$$

Piden: X

$$\triangle$$
 ABC \sim \triangle PRQ

$$\frac{x}{3} = \frac{12}{x}$$

$$x^2 = 36$$

$$x = 6$$

3. En el gráfico, halle el valor de x.

Resolución

Piden: X

$$\triangle$$
 PBQ \sim \triangle ABC

$$\frac{x}{15} = \frac{4}{12}$$

$$12x = 60$$

$$x = 5$$

4. En el gráfico, halle el valor de x.

Resolución

Piden: X

$$\Delta$$
 PBQ \sim Δ ABC

$$\frac{x}{10} = \frac{9}{15}$$

$$15x = 90$$

$$x = 6$$

5. Las longitudes de los lados AB y AC de un triángulo ABC son de 9 m y 12 m, D ∈ AB, E ∈ BC. Si m∢BDE= m∢BCA y BE= 6 m,

Resolución

Piden: DE

$$\triangle$$
 DBE \sim \triangle ABC

$$\frac{X}{12} = \frac{6}{9}$$

$$9x = 72$$

$$x = 8$$

$$DE = 8 m$$

6. En la figura se muestra un terreno triangular representado por \overline{PQ} . Si la pared \overline{AB} mide 10 m. ¿Cuánto mide la pared \overline{PQ} .

Resolución

Piden: PQ

$$\frac{X}{10} = \frac{2a}{5a}$$

$$5x = 20$$

$$x = 4$$

7. Halle la longitud de la altura de un edificio que proyecta una sombra de 20 m y en el mismo instante que una pared de 3 m

provecta una sombra de 2 m.

Resolución

Piden: h

$$\triangle$$
 ACB \sim \triangle AHP

$$\frac{3}{h} = \frac{2}{20}$$

$$60 = 2 h$$

$$h = 30 m$$