UART

Corso di ASE anno 18/19

Gruppo 14 PREVITERA GABRIELE PENNONE MIRKO PENNA SIMONE

Contents

1	Clas	es Index	1
	1.1	Class List	1
2	File I	Index	3
	2.1	File List	3
3	Clas	es Documentation	5
	3.1	anodes_manager Entity Reference	5
		3.1.1 Detailed Description	5
		3.1.2 Member Data Documentation	5
		3.1.2.1 IEEE	6
		3.1.2.2 STD_LOGIC_1164	6
	3.2	cathodes_manager Entity Reference	6
		3.2.1 Detailed Description	6
		3.2.2 Member Data Documentation	7
		3.2.2.1 STD_LOGIC_1164	7
	3.3	clock_divisor Entity Reference	7
		3.3.1 Detailed Description	8
		3.3.2 Member Data Documentation	8
		3.3.2.1 STD_LOGIC_1164	8
	3.4	counter_UpMod2n_Re_Sr Entity Reference	8
		3.4.1 Detailed Description	9
	3.5	counter_UpN_Re_Sr Entity Reference	9
	3.6	display_7_segments Entity Reference	10
		3.6.1 Detailed Description	10
	3.7	io_buffer Entity Reference	10
		3.7.1 Detailed Description	11
	3.8	uart Entity Reference	11
		3.8.1 Detailed Description	12
	3.9	uart_onBoard Entity Reference	12
		3.9.1 Detailed Description	13
	3.10	uart_rx Entity Reference	13
		3.10.1 Detailed Description	14
	3 11	uart tx Entity Reference	14

ii CONTENTS

4	File	Documentation	17
	4.1	counter_UpMod2n_Re_Sr.vhd File Reference	17
		4.1.1 Detailed Description	17
	4.2	counter_UpN_Re_Sr.vhd File Reference	17
		4.2.1 Detailed Description	18
	4.3	display_7_segments.vhd File Reference	18
		4.3.1 Detailed Description	18
	4.4	io_buffer.vhd File Reference	19
		4.4.1 Detailed Description	19
	4.5	uart_onBoard.vhd File Reference	19
		4.5.1 Detailed Description	19
	4.6	uart_rx.vhd File Reference	20
		4.6.1 Detailed Description	20
	4.7	uart_tx.vhd File Reference	20
		4.7.1 Detailed Description	20
Inc	lex		21

Chapter 1

Class Index

1.1 Class List

Here are the classes, structs, unions and interfaces with brief descriptions:

entity anodes_manager	
Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti.	
Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati	
da segnali 0-attivi	Ę
entity cathodes_manager	6
entity clock_divisor	
Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più	
bassa "clock_frequency_out"	7
entity counter_UpMod2n_Re_Sr	8
entity counter_UpN_Re_Sr	ç
entity display_7_segments	(
entity io_buffer	(
entity uart	
RICEZIONE quando uart_rx riceve il dato, lo mette nell'output input e alza rx_done_int. Tale seg-	
nale pilota il set_flag del buffer, segnalando che il buffer è pieno e il dato può essere consumato.	
Per leggere si aspetta dunque che rx_empty sia basso, ossia che rx_full sia alto: tale segnale è	
pilotato dal flag del buffer in uscita, alto solo quando è stato settato con rx_done (ricezione com-	
pletata). Dopodiché si setta rd_uart a 1, il quale pilota clr_flag del buffer in uscita segnalando	
che il dato non è più consumabile (flag basso), e si preleva il dato su d_out	. 1
entity uart_onBoard	2
entity uart_rx	3
entity uart tx	2

2 Class Index

Chapter 2

File Index

2.1 File List

Here is a list of all documented files with brief descriptions:

counter_UpMod2n_Re_Sr.vhd	
Contatore modulo 2 alla N	17
counter_UpN_Re_Sr.vhd	
Contatore modulo N	17
display_7_segments.vhd	
Componente che permette di pilotare le digit di un display a 7 segmenti	18
io_buffer.vhd	
Buffer utilizzato nell'UART in fase di trasmissione e ricezione	19
uart_onBoard.vhd	
Componente di alto livello per testare l'UART su board	19
uart_rx.vhd	
Parte di ricezione dell'UART	20
uart_tx.vhd	
Parte di trasmissione dell'UART	20

File Index

Chapter 3

Class Documentation

3.1 anodes_manager Entity Reference

Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti. Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati da segnali 0-attivi.

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

• select_digit in STD_LOGIC_VECTOR(2 downto 0)

anodes_manager input: seleziona digit

enable_digit in STD_LOGIC_VECTOR(7 downto 0)

anodes_manager input: abilita digit

anodes out STD_LOGIC_VECTOR(7 downto 0)

anodes_manager output: digit da accendere

3.1.1 Detailed Description

Permette di gestire gli anodi associati ad ogni cifra(digit) di un display a 7 segmenti.

Per accendere la cifra giusta(digit) è necessario che l'anodo sia 0, poichè gli anodi sono pilotati da segnali 0-attivi.

3.1.2 Member Data Documentation

3.1.2.1 IEEE

```
TEEE [Library]

FEDERICO II, CORSO DI ASE 18/19, Gruppo 14 –

3.1.2.2 STD_LOGIC_1164
```

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018><15/10/2018><log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· anodes_manager.vhd

3.2 cathodes_manager Entity Reference

Libraries

IEEE

architecture dataflow of anodes_manager end

Use Clauses

- STD LOGIC 1164
- NUMERIC STD

Ports

select_digit in STD_LOGIC_VECTOR(2 downto 0)
 cathodes_manager input: seleziona digit su cui mostrare la cifra

values in STD_LOGIC_VECTOR(31 downto 0)
 cathodes_manager input: valore da mostrare (codifica esadecimale)

dots in STD_LOGIC_VECTOR(7 downto 0)

cathodes_manager input: punto da accendere per la parte decimale

cathodes out STD_LOGIC_VECTOR(7 downto 0)

cathodes_manager output: catodo da accendere

3.2.1 Detailed Description

Permette di gestire l'abilitazione dei catodi associati ad ogni segmento omologo di ogni cifra(digit) di un display a 7 segmenti.

Per accendere il giusto segmento è necessario che il catodo sia 0, poichè i catodi sono pilotati da segnali 0-attivi.

3.2.2 Member Data Documentation

3.2.2.1 STD_LOGIC_1164

```
STD_LOGIC_1164 [Package]
```

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen

The documentation for this class was generated from the following file:

· cathodes_manager.vhd

3.3 clock_divisor Entity Reference

Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più bassa "clock_⇔ frequency_out".

Libraries

IEEE

architecture behavioral of cathodes_manager end

Use Clauses

• STD_LOGIC_1164

Generics

• clock_frequency_in integer:= 100000000

frequenza del clock in ingresso

• clock_frequency_out integer:= 1000

frequenza del clock in uscita

Ports

enable in STD_LOGIC

clock_divisor input: segnale enable

reset_n in STD_LOGIC

clock_divisor input: segnale reset

clock_freq_in in STD_LOGIC

clock_divisor input: segnale di clock in ingresso

clock_freq_out out STD_LOGIC

clock_divisor output: segnale di clock in uscita

3.3.1 Detailed Description

Filtra i fronti del clock ad una frequenza "clock_frequency_in" per averli ad una frequenza più bassa "clock_← frequency_out".

3.3.2 Member Data Documentation

```
3.3.2.1 STD_LOGIC_1164

STD_LOGIC_1164 [Package]

last changes: <11/11/2018> <15/10/2018> <log> Aggiunta doc doxygen
```

The documentation for this class was generated from the following file:

· clock_divisor.vhd

3.4 counter_UpMod2n_Re_Sr Entity Reference

Libraries

IEEE

architecture behavioral of clock_divisor end

Use Clauses

- STD_LOGIC_1164
- · numeric std

Generics

- n NATURAL:= 1
- enable_level STD_LOGIC:=' 1 '

Ports

• enable in STD_LOGIC

enable input

• reset_n in STD_LOGIC

reset input

clock in STD_LOGIC

clock input

count_hit out STD_LOGIC

count hit output

• COUNTS out STD_LOGIC_VECTOR((n-1)downto 0)

COUNT output.

3.4.1 Detailed Description

Contatore modulo 2 alla N. Il conteggio viene effettuato sul fronte di salita del clock e il reset è sincrono.

The documentation for this class was generated from the following file:

· counter_UpMod2n_Re_Sr.vhd

3.5 counter_UpN_Re_Sr Entity Reference

Libraries

• IEEE

architecture behavioral of counter_UpMod2n_Re_Sr end

Use Clauses

- STD_LOGIC_1164
- · numeric std
- math_real

Generics

- n NATURAL:= 2
- enable_level STD_LOGIC:=' 1 '

Ports

· enable in STD_LOGIC

enable input

• reset_n in STD_LOGIC

reset input

clock in STD_LOGIC

clock input

count_hit out STD_LOGIC

count_hit output

• COUNTS out STD_LOGIC_VECTOR((integer(ceil(log2(real(n))))- 1)downto 0)

COUNT output.

The documentation for this class was generated from the following file:

• counter_UpN_Re_Sr.vhd

3.6 display_7_segments Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

• enable in STD_LOGIC

enable del componente

clock in STD_LOGIC

clock

reset in STD_LOGIC

reset 1-attivo

values in STD_LOGIC_VECTOR(31 downto 0)

Stringa di bit del valore da mostrare.

dots in STD_LOGIC_VECTOR(7 downto 0)

Segnali che permette di pilotare i punti.

enable_digit in STD_LOGIC_VECTOR(7 downto 0)

Segnali che attiva le digit.

anodes out STD_LOGIC_VECTOR(7 downto 0)

Uscita che pilota gli anodi.

cathodes out STD_LOGIC_VECTOR(7 downto 0)

Uscita che pilota i catodi.

3.6.1 Detailed Description

Componente che permette di pilotare fino a 4 digit ricevendo il valore da mostrare sul display come sequenza di bit

The documentation for this class was generated from the following file:

· display_7_segments.vhd

3.7 io_buffer Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Generics

• width NATURAL:= 8

Ports

- clock in STD_LOGIC
- reset in STD_LOGIC
- clr_flag in STD_LOGIC

setto lo stato del buffer come vuoto

· set_flag in STD_LOGIC

setta lo stato del buffer come pieno

- din in STD_LOGIC_VECTOR((width- 1)downto 0)
- flag out STD LOGIC

segnala lo stato del buffer

dout out STD_LOGIC_VECTOR((width- 1)downto 0)

3.7.1 Detailed Description

buffer per l'UART che segnala il suo stato: che può essere vuoto o pieno flag : 0 il registro è vuoto ci si può scrivere all'interno

The documentation for this class was generated from the following file:

· io buffer.vhd

3.8 uart Entity Reference

RICEZIONE quando uart_rx riceve il dato, lo mette nell'output input e alza rx_done_int. Tale segnale pilota il set_← flag del buffer, segnalando che il buffer è pieno e il dato può essere consumato. Per leggere si aspetta dunque che rx_empty sia basso, ossia che rx_full sia alto: tale segnale è pilotato dal flag del buffer in uscita, alto solo quando è stato settato con rx_done (ricezione completata). Dopodiché si setta rd_uart a 1, il quale pilota clr_flag del buffer in uscita segnalando che il dato non è più consumabile (flag basso), e si preleva il dato su d_out.

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- · numeric_std
- · math_real

Generics

• data_bits NATURAL:= 8

Ports

- · clock in STD_LOGIC
- · reset in STD LOGIC
- rx in STD_LOGIC
- rd_uart in STD_LOGIC

se alto segnala al buffer in uscita che il dato è stato consumato

wr_uart in STD_LOGIC

se alto segnala al buffer in ingresso che il dato è pronto per essere inviato

• din in STD_LOGIC_VECTOR(data_bits- 1 downto 0)

byte da inviare

- tx out STD LOGIC
- rx_empty out STD_LOGIC

se alto il buffer in uscita è vuoto

• tx full out STD LOGIC

se alto il buffer in ingresso è pieno

dout out STD_LOGIC_VECTOR(data_bits-1 downto 0)

byte ricevuto

3.8.1 Detailed Description

RICEZIONE quando uart_rx riceve il dato, lo mette nell'output input e alza rx_done_int. Tale segnale pilota il set_← flag del buffer, segnalando che il buffer è pieno e il dato può essere consumato. Per leggere si aspetta dunque che rx_empty sia basso, ossia che rx_full sia alto: tale segnale è pilotato dal flag del buffer in uscita, alto solo quando è stato settato con rx_done (ricezione completata). Dopodiché si setta rd_uart a 1, il quale pilota clr_flag del buffer in uscita segnalando che il dato non è più consumabile (flag basso), e si preleva il dato su d_out.

top level entity che utilizza un trasmettitore e ricevitore con opportuni buffer di input e output è in grado di effettuare trasmissione e ricezione

The documentation for this class was generated from the following file:

· uart.vhd

3.9 uart onBoard Entity Reference

Libraries

IEEE

Use Clauses

• STD_LOGIC_1164

Ports

- clock in STD_LOGIC
- rx in STD_LOGIC
- rx_empty out STD_LOGIC

segnala se il buffer in uscita è vuoto

- tx out STD_LOGIC
- tx_full out STD_LOGIC

segnala se il buffer in ingresso è pieno

- anodes out STD_LOGIC_VECTOR(7 downto 0)
- cathodes out STD_LOGIC_VECTOR(7 downto 0)

3.9.1 Detailed Description

per testare l'uart su board, si è istanziato un'entità top level UART: i valori da trasmettere sono comunicati tramite gli switch della board all'uart. i valori vengono ricevuti dallo stesso uart su rx e riportati sul display a 7 segmenti

The documentation for this class was generated from the following file:

· uart_onBoard.vhd

3.10 uart_rx Entity Reference

Libraries

• IEEE

Use Clauses

- STD_LOGIC_1164
- NUMERIC_STD
- STD_LOGIC_ARITH
- STD LOGIC UNSIGNED

Generics

data_bits NATURAL:= 8

Numero di bit dati.

stop_Ticks NATURAL:= 16

Numero di conteggi per determinare la fine della trasmissione.

Ports

```
· clock in STD_LOGIC
```

- · reset in STD_LOGIC
- rx in STD_LOGIC

linea di ricezione

tick in STD_LOGIC

segnale dal baud rate gen

rx_done out STD_LOGIC

va alto quando è stato ricevuto un byte

dout out STD_LOGIC_VECTOR(data_bits - 1 downto 0)

byte ricevuto

3.10.1 Detailed Description

parte di ricezione dell'UART PC e PO unico blocco versione digilent/libro

The documentation for this class was generated from the following file:

· uart_rx.vhd

3.11 uart_tx Entity Reference

Libraries

IEEE

Use Clauses

- STD_LOGIC_1164
- NUMERIC_STD
- STD_LOGIC_ARITH
- STD_LOGIC_UNSIGNED

Generics

data_bits NATURAL:= 8

numero di bit per ogni trasmissione (tra un mark e l'altro)

stop_ticks NATURAL:= 16

numero di tick da lasciar passare alla fine della trasmissione di ogni byte

Ports

- clock in STD_LOGIC
- reset in STD_LOGIC
- tx_start in STD_LOGIC

alto quando deve partire la trasmissione

· tick in STD_LOGIC

baud rate

• din in STD_LOGIC_VECTOR(data_bits - 1 downto 0)

byte da trasmettere

tx_done out STD_LOGIC

alto quando la trasmissione è completata

tx out STD_LOGIC

linea di trasmissione

The documentation for this class was generated from the following file:

• uart_tx.vhd

Chapter 4

File Documentation

4.1 counter_UpMod2n_Re_Sr.vhd File Reference contatore modulo 2 alla N Entities counter_UpMod2n_Re_Sr entity 4.1.1 Detailed Description contatore modulo 2 alla N Author Gabriele Previtera, Mirko Pennone, Simone Penna Date 04/03/2019 Version 0.2

4.2 counter_UpN_Re_Sr.vhd File Reference

Contatore modulo N.

Dependencies: Nothings

18 File Documentation

Entities

• counter_UpN_Re_Sr entity

4.2.1 Detailed Description

Contatore modulo N.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.3 display_7_segments.vhd File Reference

Componente che permette di pilotare le digit di un display a 7 segmenti.

Entities

• display_7_segments entity

4.3.1 Detailed Description

Componente che permette di pilotare le digit di un display a 7 segmenti.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.4 io_buffer.vhd File Reference

buffer utilizzato nell'UART in fase di trasmissione e ricezione

Entities

• io_buffer entity

4.4.1 Detailed Description

buffer utilizzato nell'UART in fase di trasmissione e ricezione

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.5 uart_onBoard.vhd File Reference

Componente di alto livello per testare l'UART su board.

Entities

uart_onBoard entity

4.5.1 Detailed Description

Componente di alto livello per testare l'UART su board.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

20 File Documentation

4.6 uart_rx.vhd File Reference

Parte di ricezione dell'UART.

Entities

uart_rx entity

4.6.1 Detailed Description

Parte di ricezione dell'UART.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

4.7 uart_tx.vhd File Reference

Parte di trasmissione dell'UART.

Entities

uart_tx entity

4.7.1 Detailed Description

Parte di trasmissione dell'UART.

Author

Gabriele Previtera, Mirko Pennone, Simone Penna

Date

04/03/2019

Version

0.2

Dependencies:

Nothings

Index

```
anodes_manager, 5
    IEEE, 5
    STD_LOGIC_1164, 6
cathodes_manager, 6
    STD_LOGIC_1164, 7
clock_divisor, 7
    STD_LOGIC_1164, 8
counter_UpMod2n_Re_Sr, 8
counter_UpMod2n_Re_Sr.vhd, 17
counter_UpN_Re_Sr, 9
counter_UpN_Re_Sr.vhd, 17
display\_7\_segments,\, \textcolor{red}{10}
display_7_segments.vhd, 18
IEEE
    anodes_manager, 5
io_buffer, 10
io_buffer.vhd, 19
STD_LOGIC_1164
    anodes_manager, 6
    cathodes_manager, 7
    clock_divisor, 8
uart, 11
uart_onBoard, 12
uart_onBoard.vhd, 19
uart_rx, 13
uart_rx.vhd, 20
uart_tx, 14
uart_tx.vhd, 20
```