Задание 1. Действия над словами

Текст на любом языке: языке программирования, естественном (национальном языке), языке математики или языке математической логики представляет собою цепочку символов (знаков). В виде цепочек, состоящих из символов "0" и "1" выражается и вся информация, циркулирующая в компьютере. Математика, посвящённая изучению цепочек символов — символьная математика — играет важную роль в понимании информационных процессов.

Учебные задачи

- 1. Овладеть терминами: буква, алфавит, символьная фигура, слово в алфавите, пустое слово, однобуквенное слово, длина слова, подслово, вхождение слова, начало слова, конец слова, операция приписывания слова к слову.
- 2. НАУЧИТЬСЯ ВЫПОЛНЯТЬ: замену вхождения подслова, подстановку слова вместо буквы одновременную подстановку слов вместо букв.

ТЕОРЕТИЧЕСКИЕ СВЕДЕНИЯ

Исходные допущения. Слова "знак" "буква", "символ" считаются синонимами. Понятие знака считается известным заранее; оно является абстрактным образом тех материальных знаков, которые мы изображаем, например, на листе бумаги. Предполагается, что мы можем различать знаки и их экземпляры, записывать и удалять их. Предполагается, что знаки можно записывать упорядоченно в пределах некоторой идеальной (т.е.мыслимой нами) плоскости; мы будем использовать как линейный способ записи слева направо, так и (для удобства записи) упорядоченное расположение знаков на этой плоскости сверху вниз. Любую запись на плоскости, состоящую из символов мы будем называть (вслед за Герхардом Генценом [1967, с.11]) фигурой.

Понятие слова в алфавите. Произвольное непустое множество знаков называется алфавитом. Знаки, принадлежащие некоторому алфавиту, называют также буквами этого алфавита. Произвольная конечная последовательность, состоящая из букв алфавита, называется словом 1 в данном алфавите (или просто "словом"). Слово записывают слева направо без каких-либо разделительных знаков в виде $a_1a_2...a_n$ ($a_1, a_2, ..., a_n$ — буквы алфавита, не обязательно различные). Два слова $a_1...a_n$

и $b_1 \dots b_k$ в произвольном алфавите A считаются pавными, или, более точно, pафически равными, если n=k и $a_1=b_1,\dots$, $a_n=b_n$. В этом случае будем писать: $a_1\dots a_n \stackrel{\circ}{=} b_1\dots b_k$. Число n называется ∂ линой слова $a_1a_2\dots a_n$. Длину произвольного слова α будем обозначать $len(\alpha)$. Допускается слово, не содержащее ни одного знака, его называют nустым словом. Длина пустого слова считается равной 0. Пустое слово обозначается Λ .

Пусть A — произвольный алфавит. Множество всех слов в алфавите A (включая и пустое слово) будем обозначать A^{\star} , а множество всех непустых слов в этом же алфавите — A^{+} .

Операция приписывания слов. Основная операция в множестве A^* — операция *приписывания* слова к слову: если дано слово α , имеющее вид $a_0 \dots a_n$ и слово β вида $b_0 \dots b_m$, то записав непосредственно после слова α слово β , получим новое слово

$$\alpha\beta \stackrel{\circ}{=} a_0 \dots a_n b_0 \dots b_m$$
.

Слово $\alpha\beta$ называют результатом приписывания к слову α слова β . В дальнейшем будем использовать без всяких ссылок свойства ассоциативности и сократимости операции приписывания слов.

Свойство ассоциативности приписывания слов состоит в следующем. Если к слову α приписать слово β , а затем к полученному в результате такого приписывания слову приписать некоторое слово γ , то получится тот же самый результат, если к слову α приписать результат приписывания к слову β слова γ .

Свойство сократимости операции ассоциативности приписывания слов состоит в следующем. Если для некоторых слов α , β и γ выполняется $\alpha\gamma \stackrel{\circ}{=} \beta\gamma$, то $\alpha \stackrel{\circ}{=} \beta$ (сократимость справа). Аналогично и с другой стороны: если $\gamma\alpha \stackrel{\circ}{=} \gamma\beta$, то $\alpha \stackrel{\circ}{=} \beta$ (сократимость слева).

Подслова и их вхождения в слово. Подслово — это часть слово. Математически строго подслово можно определить так. Слово β называется подсловом слова α ($\alpha, \beta \in A^*$), если найдутся такие слова $\gamma, \delta \in A^*$, что $\alpha \stackrel{\circ}{=} \gamma \beta \delta$.

Пусть для некоторых слов выполняется $\alpha = \gamma \beta \delta = \gamma_1 \beta \delta_1$ и при этом γ графически не равно слову γ_1 : $\gamma \neq \gamma_1$. В этом случае говорят, что мы имеем два различных вхождения подслова β в слово α . Таким образом, вхождением слова β в слово α называют подслово β вместе с его местом в слове α . Более точно, вхождение слова β в слово α можно определить как тройку слов (γ, β, δ) такую, что $\alpha = \gamma \beta \delta$.

Вхождением буквы a в слово называется вхождение в это слово слова, состоящего из одной буквы a (т.е. однобуквенного слова). Если суще-

 $^{^1}$ Удобным термином, помогающим создать адекватный образ, может служить термин " $uenoч\kappa a$ ". Программисты для используют для рассматриваемого понятия термин " $cmpo\kappa a$ " ($cmpo\kappa a$ cumeonos).

ствует вхождение буквы a в слово α , то говорим, что bвα.

Если $\alpha \stackrel{\circ}{=} \gamma_0 \beta \delta_0$, и при этом слово γ_0 имеет наименьшую длину среди всех таких слов γ , для которых $\alpha \stackrel{\circ}{=} \gamma \beta \delta$, то вхождение $(\gamma_0, \beta, \delta_0)$ называется nepeым exoжdeнueм c.noea eta $ext{ } lpha$. Двойственно определяется $noc \wedge e \partial hee$ вхождение $oldsymbol{eta}$ в $oldsymbol{lpha}$.

Слово β называется началом слова α ($\alpha, \beta \in A^*$), если $\alpha \stackrel{\circ}{=} \beta \delta$ для подходящего слова δ ($\delta \in A^{\star}$). Слово β называется концом слова α , если $\alpha \stackrel{\circ}{=} \gamma \beta$ для подходящего слова γ ($\gamma \in A^{\star}$).

Замены и подстановки слов. Если $\alpha \stackrel{\circ}{=} \gamma \beta \delta$, а $\alpha' \stackrel{\circ}{=} \gamma \beta' \delta$ для некоторого слова eta', то говорят, что *слово* lpha' *получается из слова* lphaзаменой вхождения (γ, β, δ) подслова β на слово β' . Пусть α, β — слова в некотором алфавите, а x — произвольная буква из этого алфавита. Заменим каждое вхождение буквы x в слово α на слово β . Получим новое слово, которое называется результатом подстановки в слово lpha*вместо буквы х слова \beta*. Его будем обозначать $(\alpha)_{\beta}^{x}$.

УПРАЖНЕНИЯ ДЛЯ САМОСТОЯТЕЛЬНОГО РЕШЕНИЯ

- **1.** Найдите все слова в алфавите $\{a, b\}$, имеющие:
 - (а) три (различных) непустых подслова;
 - (б) четыре непустых подслова.
- **2.** Сколько непустых начал имеет слово $x_1x_2x_1x_1x_2$ в алфавите $\{x_1, x_2\}$?
- **3.** Найдите все подслова слова $x_1x_2x_1x_2x_1x_2x_1$ в алфавите $\{x_1, x_2\}$, которые имеют в него точно два вхождения.
- **4.** Второе вхождение слова *хух* в слово *хухухух* замените на слово xx.
 - **5.** Найдите результат применения к слову α следующих подстановок:

- (a) $(abba)_{ba}^{b}$; (b) $(abba)_{ba}^{c}$; (c) $(abba)_{ba}^{c}$; (d) $(abba)_{ba}^{c}$; (e) $(((xyxxyx)_{x}^{x})_{y}^{y})_{y}^{z}$.
- **6.** С помощью одной подстановки вида $(\alpha)^v_{\beta}$ слова вместо буквы получите из слова ху, если возможно, слово
 - (a) zxyzxy;

- (6) zyxzyx.
- 7. Слово abbab получено из двух различных слов β и γ подстановкой слова ab вместо буквы c. Найдите эти слова. Сколько решений имеет данная задача?

- 8. Сколько всего существует таких слов α в алфавите $\{x,y,z\}$, что $(\boldsymbol{\alpha})_{u}^{z} \stackrel{\circ}{=} xyxyy?$
- **9.** Из какого неоднобуквенного слова $\alpha \in \{a, b\}^*$ однократной подстановкой слова вместо некоторой одной буквы можно получит как слово abbab, так и слово babba?

- **10.** Найдите все слова наибольшей длины в алфавите $\{a, b\}$, такие, что в каждое из этих слов всякое подслово, длина которого больше единицы, входит не более одного раза.
- 11. Какое наибольшее количество различных подслов длины 2 может иметь слово, содержащее вхождения точно двух различных букв алфавита? Приведите пример такого слова наименьшей длины.
- **12.** Докажите, что для всякого $n \ge 6$. существует слово α в алфавите $\{a, b\}$ длины n, имеющее вхождения различных букв и такое, что после вычеркивания из него любого вхождения любой буквы, получается слово, имеющее то же множество подслов длины 2, что и слово α .
- **13.** Найдите подслова слова $x_1x_2x_1x_2x_1x_2x_1$ в алфавите $\{x_1, x_2\}$, имеющие в него точно два вхождения и замените первое из этих вхождений на слово $x_1x_2x_1$. Сколько решений имеет эта задача?
- **14.** Приведите пример такого слова α , что $(\alpha)_{ab}^a \stackrel{\circ}{=} (\alpha)_{ba}^b$, в алфавитах $\{a,b\},\{a,b,c\}$. Какова наименьшая длина такого слова?
- **15.** Получите слово *babbbabb* из слова *abc*, пользуясь, возможно несколькими, подстановками вида $(\alpha)_{\beta}^x$, где $\alpha, \beta \in \{a, b, c\}^*$, $x \in \{a, b, c\}$.
- **16.** Как несколькими подстановками вида $(\alpha)_{\beta}^{x}$ из слова ab в алфавите $\{a, b, c\}$ получить слово ba? Возможно ли это сделать в алфавите $\{a, b\}$?
- **17.** Покажите, что из слова *abab* подстановками букв вместо букв невозможно получить ни одно из следующих слов:
 - (a) *bab*;

(б) *babab*;

- (B) abba.
- **18.** Можно ли из слова $x_1x_2x_3x_3x_0x_3$ получить подстановками букв вместо букв следующие слова:
 - (a) $x_2x_1x_2x_2x_1x_1$;

(6) $x_2x_1x_2x_2x_1x_2$;

(B) $x_0x_0x_1x_2x_0x_2$;

 $(\Gamma) x_4x_5x_1x_1x_2x_1$.