- STM32F407 mikrodenetleyicisinde 2 adet DMA bulunmaktadır.
- Bir DMA'da 8 akış (stream) ve her akışta 8 kanal bulunmaktadır.
- DMA, bellekten belleğe, çevre birimden belleğe ve bellekten çevre birime olmak üzere üç farklı şekilde veri transferi yapabilir.
- Veri transfer doğrudan yapılabildiği gibi, DMA'da bulunan FIFO ile de yapılabilir.
- FIFO için eşik değerler belirlenmiştir. FIFo'daki veri bu sınıra ulaştığında FIFO boşaltılmaya başlar.
- DMA akışlarının öncelikleri yazılımla ayarlanabilir.

- DMA'nın ard arda kaç defa veri transferi yapacağının sayısı 16 bit yazmaç ile belirlenir.
- Byte, 2 byte ve 4 byte veri transferi gerçekleştirilebilir.
- Birden fazla adresteki veri transfer edilmek istendiğinde DMA'da bulunan şaretçi otomatik arttırılabilir.
- Dairesel mod ile veri transfer edildikten sonra işaretçi başa dönerek aynı transfer tekrarlanır.
- Burst mode ile (patlama) 4, 8 veya 16 vuruş (beat) gerçekleştirili. Yani gönderilecek olan veriden (byte, 2 byte, 4 byte) burst modda belirtilen sayılarda gönderim yapılır.

Figure 6. Multi-AHB matrix

10.5.5 DMA stream x configuration register (DMA_SxCR) (x = 0..7)

This register is used to configure the concerned stream.

Address offset: 0x10 + 0x18 × stream number

Reset value: 0x0000 0000

Bits 27:25 CHSEL[2:0]: Channel selection

These bits are set and cleared by software.

000: channel 0 selected

001: channel 1 selected

010: channel 2 selected

011: channel 3 selected

100: channel 4 selected

101: channel 5 selected

110: channel 6 selected

111: channel 7 selected

These bits are protected and can be written only if EN is '0'

Bits 17:16 PL[1:0]: Priority level

These bits are set and cleared by software.

00: Low

01: Medium

10: High

11: Very high

These bits are protected and can be written only if EN is '0'.

Bits 14:13 MSIZE[1:0]: Memory data size

These bits are set and cleared by software.

00: byte (8-bit)

01: half-word (16-bit)

10: word (32-bit)

11: reserved

These bits are protected and can be written only if EN is '0'.

In direct mode, MSIZE is forced by hardware to the same value as PSIZE as soon as bit EN = '1'.

Bits 12:11 PSIZE[1:0]: Peripheral data size

These bits are set and cleared by software.

00: Byte (8-bit)

01: Half-word (16-bit)

10: Word (32-bit)

11: reserved

These bits are protected and can be written only if EN is '0'

Bit 10 MINC: Memory increment mode

This bit is set and cleared by software.

0: Memory address pointer is fixed

 Memory address pointer is incremented after each data transfer (increment is done according to MSIZE)

This bit is protected and can be written only if EN is '0'.

Bit 9 PINC: Peripheral increment mode

This bit is set and cleared by software.

0: Peripheral address pointer is fixed

 Peripheral address pointer is incremented after each data transfer (increment is done according to PSIZE)

This bit is protected and can be written only if EN is '0'.

Bit 8 CIRC: Circular mode

This bit is set and cleared by software and can be cleared by hardware.

0: Circular mode disabled

1: Circular mode enabled

When the peripheral is the flow controller (bit PFCTRL=1) and the stream is enabled (bit EN=1), then this bit is automatically forced by hardware to 0.

It is automatically forced by hardware to 1 if the DBM bit is set, as soon as the stream is enabled (bit EN ='1').

Bits 7:6 **DIR[1:0]**: Data transfer direction

These bits are set and cleared by software.

00: Peripheral-to-memory

01: Memory-to-peripheral

10: Memory-to-memory

11: reserved

These bits are protected and can be written only if EN is '0'.

TCIE: Transfer complete interrupt enable This bit is set and cleared by software.

0: TC interrupt disabled1: TC interrupt enabled

Bit 0 EN: Stream enable / flag stream ready when read low

This bit is set and cleared by software.

0: Stream disabled

1: Stream enabled

This bit may be cleared by hardware:

- on a DMA end of transfer (stream ready to be configured)
- if a transfer error occurs on the AHB master buses
- when the FIFO threshold on memory AHB port is not compatible with the size of the burst

When this bit is read as 0, the software is allowed to program the Configuration and FIFO bits registers. It is forbidden to write these registers when the EN bit is read as 1.

Note: Before setting EN bit to '1' to start a new transfer, the event flags corresponding to the stream in DMA_LISR or DMA_HISR register must be cleared.

10.5.6 DMA stream x number of data register (DMA_SxNDTR) (x = 0..7)

Address offset: 0x14 + 0x18 × stream number

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	NDT[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:16 Reserved, must be kept at reset value.

Bits 15:0 NDT[15:0]: Number of data items to transfer

Number of data items to be transferred (0 up to 65535). This register can be written only when the stream is disabled. When the stream is enabled, this register is read-only, indicating the remaining data items to be transmitted. This register decrements after each DMA transfer.

Once the transfer has completed, this register can either stay at zero (when the stream is in normal mode) or be reloaded automatically with the previously programmed value in the following cases:

- when the stream is configured in Circular mode.
- when the stream is enabled again by setting EN bit to '1'

If the value of this register is zero, no transaction can be served even if the stream is enabled.

10.5.7 DMA stream x peripheral address register (DMA_SxPAR) (x = 0..7)

Address offset: 0x18 + 0x18 × stream number

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	PAR[31:16]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	PAR[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 PAR[31:0]: Peripheral address

Base address of the peripheral data register from/to which the data will be read/written.

These bits are write-protected and can be written only when bit EN = '0' in the DMA_SxCR register.

10.5.8 DMA stream x memory 0 address register (DMA_SxM0AR) (x = 0..7)

Address offset: 0x1C + 0x18 × stream number

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	M0A[31:16]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	M0A[15:0]														
rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw	rw

Bits 31:0 M0A[31:0]: Memory 0 address

Base address of Memory area 0 from/to which the data will be read/written.

These bits are write-protected. They can be written only if:

- the stream is disabled (bit EN= '0' in the DMA_SxCR register) or
- the stream is enabled (EN='1' in DMA_SxCR register) and bit CT = '1' in the DMA_SxCR register (in Double buffer mode).

10.5.1 DMA low interrupt status register (DMA_LISR)

Address offset: 0x00

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved			TCIF3	HTIF3	TEIF3	DMEIF3	Reserv	FEIF3	TCIF2	HTIF2	TEIF2	DMEIF2	Reserv	FEIF2
r	r	r	r	r	r	r	r	ed	r	r	r	r	r	ed	r
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved			TCIF1	HTIF1	TEIF1	DMEIF1	Reserv	FEIF1	TCIF0	HTIF0	TEIF0	DMEIF0	Reserv	FEIF0
r	r	r	r	r	r	r	r	ed	r	r	r	r	r	ed	r

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 TCIFx: Stream x transfer complete interrupt flag (x = 3..0)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register.

0: No transfer complete event on stream x

A transfer complete event occurred on stream x

Bits 26, 20, 10, 4 HTIFx: Stream x half transfer interrupt flag (x=3..0)

This bit is set by hardware. It is cleared by software writing 1 to the corresponding bit in the DMA_LIFCR register.

0: No half transfer event on stream x

1: A half transfer event occurred on stream x

10.5.3 DMA low interrupt flag clear register (DMA_LIFCR)

Address offset: 0x08

Reset value: 0x0000 0000

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved				CHTIF3	CTEIF3	CDMEIF3	Reserved	CFEIF3	CTCIF2	CHTIF2	CTEIF2	CDMEIF2	Reserved	CFEIF2
				w	w	w	w	Reserved	w	w	w	w	w	Keserved	w
15	14	13	12	11	10	9	8	7	6	5	4	3	2	1	0
	Reserved				CHTIF1	CTEIF1	CDMEIF1	Reserved	CFEIF1	CTCIF0	CHTIF0	CTEIF0	CDMEIF0	Reserved	CFEIF0
					w	w w		Reserved	w	w	w	w	w	Reserved	w

Bits 31:28, 15:12 Reserved, must be kept at reset value.

Bits 27, 21, 11, 5 **CTCIFx**: Stream x clear transfer complete interrupt flag (x = 3..0)

Writing 1 to this bit clears the corresponding TCIFx flag in the DMA_LISR register

Bits 26, 20, 10, 4 CHTIFx: Stream x clear half transfer interrupt flag (x = 3..0)

Writing 1 to this bit clears the corresponding HTIFx flag in the DMA_LISR register

10.5.10 DMA stream x FIFO control register (DMA_SxFCR) (x = 0..7)

Address offset: 0x24 + 0x24 × stream number

Reset value: 0x0000 0021

31	30	29	28	27	26	25	24	23	22	21	20	19	18	17	16
	Reserved														
15	14	13	12	11	10	6	5	4	3	2	1	0			
	Decembed								Reser		FS[2:0]		DMDIS	FTH	[1:0]
	Reserved									r	r	r	rw	rw	rw

Bit 2 DMDIS: Direct mode disable

This bit is set and cleared by software. It can be set by hardware.

Direct mode enabled

Direct mode disabled

This bit is protected and can be written only if EN is '0'.

This bit is set by hardware if the memory-to-memory mode is selected (DIR bit in DMA_SxCR are "10") and the EN bit in the DMA_SxCR register is '1' because the direct mode is not allowed in the memory-to-memory configuration.

Bits 1:0 FTH[1:0]: FIFO threshold selection

These bits are set and cleared by software.

00: 1/4 full FIFO

01: 1/2 full FIFO

10: 3/4 full FIFO

11: full FIFO

These bits are not used in the direct mode when the DMIS value is zero.

These bits are protected and can be written only if EN is '0'.