Research Log - Week 01

JeffGWood@mavs.uta.edu

July 28, 2016

May 18, 2016 Reviewed [Chen1993] [1] Section 2. Consider reviewing follow relevant articles:

- Disparity [Gosh89]
- Optical Flow [Nage86]
- Look-up tables [Wolb89]
- 3d scenes [Pogg91]

Working on MatLab code to pick corresponding points in stereo-images, and calculate pixel offset vectors.

May 19, 2016 Read Section 2.3 of [Chen1993] [1]. View interpolation is limited by:

- Penumbra: pixels visible in one source image but not both
- **Umbra**, pixels visible in neither source image, and *invisible* in destination image.
- Holes, pixels visible in neither source image, but *visible* in destination image.

Calculatred formula for *pre-displaced* quad-pixel calculation using a bi-linear interpolation as:

$$\mathbf{P}(u,v) = \mathbf{P}(0,0) \cdot (1-u) \cdot (1-v) + \mathbf{P}(1,0) \cdot u \cdot (1-v) + \mathbf{P}(0,1) \cdot (1-u) \cdot v + \mathbf{P}(1,1) \cdot u \cdot v$$

May 20, 2016 Derived formula for uv calculation using geometry matrix, blending matrix and basis vectors of $\mathbf{u} = [u \ 1]^T$ and $\mathbf{v} = [v \ 1]^T$

$$x_{uv} = \begin{bmatrix} u & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} x_{00} & x_{01} \\ x_{10} & x_{11} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ 1 \end{bmatrix}$$
$$y_{uv} = \begin{bmatrix} u & 1 \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} y_{00} & y_{01} \\ y_{10} & y_{11} \end{bmatrix} \begin{bmatrix} -1 & 1 \\ 1 & 0 \end{bmatrix} \begin{bmatrix} v \\ 1 \end{bmatrix}$$

Question for Kamangar: Is there a way given x and y to solve for u and y?

References

[1]	Shenchang Eric Chen and Lance Williams. View interpolation for image synthesis. In Proceedings of the 20th Annual
	Conference on Computer Graphics and Interactive Techniques, SIGGRAPH '93, pages 279–288, New York, NY, USA,
	1993. ACM.