Best Available Copy

2/19/2

003526031

WPI Acc No: 1982-74016E/ 198235

Film and fibre forming polyarylate prepn. - from aliphatic dicarboxylic acid ester by reaction with bisphenol and tert.-amine in solvent

Patent Assignee: AS GEOR PHYSIOL INS (AGPH-R)

Inventor: KATSARAVA R D; KHARADZE D P; ZAALISHVIL M M

Number of Countries: 001 Number of Patents: 001

Patent Family:

Patent No Kind Date Applicat No Kind Date Week

SU 876663 B 19811030

198235 B

Priority Applications (No Type Date): SU 2854671 A 19791111

Patent Details:

Patent No Kind Lan Pg Main IPC Filing Notes

SU 876663 B 6

Abstract (Basic): SU 876663 B

Polyarylates based on aliphatic dicarboxylic acids and bis-phenols, are made by reaction in an organic solvent in presence of a tert-amine. The process is simplified and final prod. yield is increased to 91-98% by using the acid diesters and a reaction temp. of 25-26 deg. C. The esters are of formula: X-OCO-R-OCO-X, (where R is (CH2)n, n is 1-8), and X is p-nitro-phenylene, or 2,4-dinitro-phenylene or gp. of formula (I) or pentachloro-phenyl gp.). (6pp)

Title Terms: FILM; FIBRE; FORMING; POLYARYLATE; PREPARATION; ALIPHATIC; DI; CARBOXYLIC; ACID; ESTER; REACT; DI; PHENOL; TERT; AMINE; SOLVENT

Derwent Class: A23

International Patent Class (Additional): C08G-063/16

File Segment: CPI

Manual Codes (CPI/A-N): A05-E02; A10-D; A12-S05K; A12-S06

Plasdoc Codes (KS): 0016 0034 0226 0230 1291 1369 1373 1377 1384 1407 1448

1450 1452 1454 2043 2064 2151 2172 2382 2394 2513 2524 2528

Polymer Fragment Codes (PF):

001 013 02% 04% 081 143 144 151 155 157 159 160 161 162 220 221 222 239 262 273 293 344 345 355 400 402 405 417 435 481 483 689

Derwent WPI (Dialog® File 351): (c) 2004 Thomson Derwent. All rights reserved.

Союз Советских Социалистических Республик

Государственный комитет CCCP по делам изобретений и открытий

ОПИСАНИЕ **ИЗОБРЕТЕНИЯ**

К АВТОРСКОМУ СВИДЕТЕЛЬСТВУ

(61) Дополнительное к авт. свид-ву ...

(22) Заявлено 11.11.79 (21) 2854671/23-05

с присоединением заявки № -

(23) Приоритет

Опубликовано 3010.81. Бюллетень № 40

Дата опубликования описания 30.10.81

(II) 876663

(51) М. Кл.³

C 08 G 63/16

(53) YAK 678.674 (088.8)

(72) Авторы изобретения м.м.Заалишвили, Р.Д.Кацарава, Д.П.Харадзе и Л.М.Авалишвили

BCECO103NAD

(71) Заявитель

Институт физиологии им. акад. И.С.Беритацвили АН Грузинской ССР

FESSIOCISMA

(54) СПОСОБ ПОЛУЧЕНИЯ ПОЛИАРИЛАТОВ

Изобретзние относится к синтезу высокомолекулярных полиарилатов на основе алифатических дикарбоновых кислот и бис-фенолов, которые могут наити применение в различных областях 5 народного хозяйства, как пленко-и волокнообразующие полимеры.

Известен способ получения полиарилатов на основе бис-фенолов и дихлорангидридов алифатических дикарбо- 10 новых кислот в условиях межфазной поликонденсации [1].

Полиарилаты, полученные этим способом, имеют низкие вязкостные характеристики из-за высокой скорости гидро- 15 лиза хлорангидридных групп алифатических дикарбоновых кислот водно-мелочным раствором, что приводит к остановке роста цепи макромолекул.

Наиболее близким к предлагаемому по технической сущности и достигаемому эффекту является способ получения полиарилатов путем взаимодействия производных дикарбоновых кислот в среде органического растворителя в присутствии третичного амина [2].

Этим способом (метод растворной поликонденсации) полиарилаты на основе диклорангидридов ароматической кислоты и бис-фенола имеют высокие вяз- 30

костные характеристики и обладают хорошими пленко- и волокнообразующими свойствами.

На основе дихлорангидридов алифатических кислот методом растворной поликонденсации получают полиарилаты с ниэкими вязкостными характеристиками, что обусловлено протекани ем побочных процессов образования кетена при взаимодействии кислот с третичными аминами, и имеющие неоднородное, разнозвенное строение полимерных цепея.

. Цель изобретения - упрощение технологии процесса.

Поставленная цель достигается тем, что в способе получения полиарилатов путем взаимодействия производных дикарбоновых кислот в среде органического растворителя в присутствии третичного амина, в качестве производных дикарбоновых кислот используют диэфиры алифатических дикарбоновых кислот общей формулы.

X - OCO - R - OCO - Xгде $R = -(CH_2)_n \quad (n=1-8);$

$$x = - \bigcirc NO_2, \qquad - \bigcirc NO_2,$$

$$-\sum_{\alpha=0}^{\alpha} \alpha, \qquad -\sum_{\alpha=0}^{\infty} \alpha + \sum_{\alpha=0}^{\infty} \alpha + \sum_{\alpha=0}^{$$

и процесс проводят при 25-65°C.

Вязкостные характеристики полученных полиэфиров составляют 0,22 - 0,94 дл/г в зависимости от природы активирующей группы и условий синтеза 10 полиэфира.

Полученные полиэфиры растворимы в 1,2-дихлорэтане, NN-диметилацета-миде, гексаметилфосфорамиде, N-метил-2-пирролидоне, диметилсульфоксиде, образуя высококонцентрированные растворы.

Их 10%-ных растворов полиэфиров в 1,2-дихлорэтане методом полива на стеклянные подложки получают пленки, имеющие прочность на разрыв 800-1200 кг/см² и удлинение 5-10%.

Пример 1. К 2,39 г (0,005 моль) бис-2,4-динитрофениладипината добавляют 1,59 г (0,005 моль) фенолфталеина, 5,5 мл 1,2-дихлорэтана и 2,8 мл триэтиламина (концентрация 0,6 моль/л). Реакционную смесь перемешивают при 25°С в течение 3 ч. Вязкий реакционный раствор выливают в спирт, выпавший полимер отфильтровывают и экстрагируют этилацетатом в аппарате Сокслетта, затем сушат. Выход 97%, упр = 0,94 дл/г в 1,2-ди-хлорэтане при 25°С, С = 0,5 г/дл.

Пример 2. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, но в качестве диэфира используют бис-2,4-динитрофениловый эфир янтарной кислоты. Реакционную смесь перемешивают при 60°С в течение 1 ч, а затем при 25°С в течение 2 ч. Выход полимера 97%, % пр = 0,46 дл/г в 1,2-дихлор-этане при 25°С С=0,5 г/дл.

Примера 3. Синтез полимера проводят в соответствии с методикой, 45 приведенной в примере 1, но в качестве растворителя используют метилэтилкетон. Реакционную смесь перемешивают при 50° С в течение 0,5 ч, а затем при 25° С в течение 2,5 ч. Выход полимера 98%, $\eta_{\Pi P} = 0.82$ дл/г в 1,2-дихлорэтане при 25° С, C = 0.5 г/дл.

Пример 4. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, но в качестве растворителя используют бензол. Реакционную смесь перемешивают при 60°С в течение 1 ч, а затем при 25°С в течение 2 ч. Выход полимера 97%; ир = 0,58 дл/г в 1,2дихлорэтане при 25°С, С = 0,5 г/дл.
Пример 5. Синтез полимера

Пример 5. Синтез полимера осуществляют в соответствии с мето-дикой, приведенной в примере 1, но в качестве диэфира используют бис-n-нитрофениладипинат. Реакционную смесь

перемешивают при 65° С в течение 1 ч, а затем при 25° С в течение 2 ч. Вы-ход полимера 92° , $\eta_{\text{пр}} = 0.38$ дл/г в 1.2-дихлорэтане при 25° С, С==0,5 г/дл.

Пример 6. Синтез полимера осуществляют в соответствии с методи-кой приведенной в примере 1, но в качестве диэфира используют бис-пентахлорфениладипинат. Реакционную смесь перемешивают при 65°C в течение 2 ч, а затем при 25°C в течение 1 ч. Выход полимера 93%, упр = 20,29 дл/г в 1,2-дихлорэтане при 25°C, С = 0,5 г/дл.

Пример 7. Синтез полимера осуществляют аналогично методике, приведенной в примере 1, но в качестве диэфира используют бис-N-оксисук-цинимидадипинат. Выход полимера 94%, 1 пр = 0,28 дл/г в 1,2-дихлорэтане при 25°C, C = 0,5 г/дл.

Пример 8. Синтез полимера осуществляют аналогично методике, приведенной в примере 1, но в качестве растворителя используют диметилсульфоксид. Выход полимера 93%, %пр = 0,26 дл/г в 1,2-дихлорэтане при 25°C, С = 0,5 г/дл.

Пример 9. Синтез полимера осуществляют в соответствии с методикой, приведенной в примере 1, но в качестве растворителя используют N,N-диметилацетамид. Выход полимера 91%, 7 пр = 0,22 дл/г в 1,2-дихлорэтане при 25 С, С=0,5 г/дл.

Пример 10. Синтез полимера осуществляют в соответствии с методи-кой, приведенной в примере 1, но в качестве бис-фенола используют диан. Выход полимера 96%, lnp = 0,82 дл/г в 1,2-диклорэтане при 25°С, C=0,5 г/дл.

Примеры 11-16. Синтеэ полиэфиров осуществляют в соответствии с примером 1, но в качестве диэфира используют бис-2,4- динитрофениловые эфиры малоновой, глутаровой, пимелиновой, пробковой, азелаиновой, себациновой кислот.

Пример 17. Синтез полизфира осуществляют в присутствии алифатического 1,3-пропандиола. К смеси 2,39 г (0,005 моль) бис-2,4-динитрофениладипината, 1,59 г (0,005 моль) фенолфталеина 2,8 мл триэтиламина в 5,5 мл 1,2-дихлорэтана добавляют 0,76 г (0,01 моль) 1,3-пропандиола и реакционную смесь перемешивают при 25°C в течение 3 ч. Получают полимер с выходом 96%, тор = 0,88 дл/г в 1,2-дихлорэтане при 25°C, С=0,5 г/дл.

Образование высокомолекулярного полиэфира при соотношении диол: активированный эфир = 3:1 свидетельствует об отсутствии взаимодействия между активированным диэфиром и алифатическими гидроксильными группами. В противном случае в результате нарушения эквимолярности должны были бы

образоваться лишь низкомолекулярные продукты.

Данный пример свидетельствует о высокой селективной ацилирующей спо-

собности активированных диэфиров по сравнению с дихлорангидридами. Условия синтеза и характеристики полиарилатов, полученных по примерам 1-17, приведены в таблице.

ример	Диэфир-общей формулы гле	й формулы	Бис-фенол	Реакционная	Темпе-	BE	τηρ μπ/г B	Свойства пле	пленок
	# ex	×			pary pa peak- ukk,	# # # # # # # # # # # # # # # # # # #	1,2-maxilop- state, t = 25°C, C=0,5	6, kr/cm²	m e
•					•С, (Вре- мя ре- акини.				
		 			· F				
	- (CH _Q)+-	- (Q) - Wor	Фенолфтале- ин	1,2-дихлор- этан	25(3)	97	0,94	1200	10
7	-(CH ₂) ₂ -	ļ	Фенолфтале- ин	1,2-дихлор- этан	60(1) 25(2)	. 16	0,46	800	w ·
т	-(CH ₂)4-	. [Фенолфтале- ин	Метилкетон	50 (0,5) 25 (2,5)	86	0,82	1100	co
.	-(CH _Q)4	=	Фенолфтале- ин	Бензол	60(1) 25(2)	6	0,58	880	'n
ιn	-(cH ₂)4-	- (0) - 102	Фенолфтале- ин	1;2-дихлор- этан	65(1) 25(2)	6	0,38		í
•	-(CH _Q)+-	8 8 0 9	фенолфтале- ин	1,2-дижлор- этан	65 (2) 25 (1)	93	0,29	, , , , , , , , , , , , , , , , , , ,	.
7	-(CH ₂)44	-40-04.	Фенолфтале- ин	1,2-дихлор- этан	25(3)	9	0,28	ı	
∞	-(cH ₂) ₄	Town (O)	Фенолфтале- ин	Диметилсуль-25(3) фоксид		93	0,26	ı	1
6	-(CH ₂),-	<u>!</u> !	Фенолфтале- ин	N,N-диметил-25(3) ацетамид	_	91	0,22	ı	1.
10	- (CH ₁)4 -	1 E 1	Диан	1,2-диклор- этан	25(3)	96	0,82	1050	10
11	- (cH ₂) -	1 = 1	Фенол- Фталеин	1,2-диклор этан	60(1) 25(2)	91	0,18	•	1

.

	# Semigo-cange and	формулы	Бисфенол	Ревиционная	Temne-	I A	Tub, Ant E	/г в Свойства пленок	пленок
	1, rne		-{	смесь	ратура реакции.	XOX .	1,2-дижлор- этане,t=	_	ω,
Пример	N 04	n ×			ос, (Время реакции, ч)	•	25°C,C=0,5	Kr/GM*	do
12		1 = 1		=	60 (1) 25 (2)	46.	0,44	,	•
13	- g(THO)-	•	Диан	t :	60(1) 25(2)	6	0,65	• • •	
14	- (cH ₁), -	t =	l E	i	60(1).	97	0,62		•
15	- (CH ₂)-	1 =	Фенолфта- леин	1 = 1	60 (1) 25 (2)	95	0,72	ſ	. f .
16	-(cH ₂) ₈ -	70m (O)	1 = 1	l 8 1	60 (1) 25 (2)	96	0,58	ſ	•
17	- (CH2)-	\$ 0 P	Фенолфта- леин	i = 1	25(3)	· 9/	0,88	1	•
			+HO (CH2)3 -OH	но				,	

Предлагаемый способ поэволяет синтезировать высокомолекулярные полиэфиры на основе алифатических дикарбоновых кислот, высокая селективность способа (ацилируются ароматические гидроксильные группы и не
затрагиваются алифатические) дает
воэможность синтезировать регулярные
полиэфиры, обладающие пленко- и волокнообразующими свойствами (из-за
отсутствия протекания побочных процессов взаимодействия диэфиров с третичными аминами и реакций гидролиза
функциональных групп).

Таким образом, использование в качестве производных дикарбоновых кислот диэфиров алифатических дикарбоновых кислот общей формулы (в способе получения полиарилатов позволяет упростить технологию процесса.

Формула изобретения

Способ получения полиарилатов путем взаимодействия производных дикарбоновых кислот в среде органического растворителя в присутствии третичного амина, о т л и ч а ю - м и й с я тем, что, с целью упрощения технологии процесса, в качестве производных дикарбоновых кислот используются диэфиры алифатических дикарбоновых кислот общей формулы

$$X - OCO - R - OCO - X$$
,
rge $R = -(CH2)n (n=1-8),$

$$10 \quad X = - \bigcirc - NO_2, \qquad - \bigcirc - NO_2,$$

и процесс проводят при 25-65°C.

30 Источники информации,
принятые во внимание при экспертизе

1. Морган П.У. Поликонденсационные процессы синтеза полимеров. М., "Хи-мия", 1970, с. 312.

2. Коршак В.В. и др. Неравновесная поликонденсация, М., "Наука", 1972 с. 164 (прототип).

Составитель И.Чернова
Редактор Н.Безродная Техред С.Мигунова Корректор Н. Швыдкая
Заказ 9498/30 Тираж 533 Поличенов

8/30 Тираж 533 Подписное ВНИИПИ Государственного комитета СССР по делам изобретений и открытий 113035, Москва, ж-35, Раушская наб.,д.4/5

Филиал ППП "Патент", г. Ужгород, ул. Проектная, 4

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

efects in the imag	ges include but are not limite	ed to the items checked:
□ BLACK BORDE	CRS	· · · · · · · · · · · · · · · · · · ·
☐ IMAGE CUT OF	FF AT TOP, BOTTOM OR SIDES	
☐ FADED TEXT O	OR DRAWING	
☐ BLURRED OR I	LLEGIBLE TEXT OR DRAWING	G
SKEWED/SLAN	ITED IMAGES	
COLOR OR BLA	ACK AND WHITE PHOTOGRAP	HS
☐ GRAY SCALE D	OCUMENTS	
☐ LINES OR MAR	RKS ON ORIGINAL DOCUMENT	
☐ REFERENCE(S)	OR EXHIBIT(S) SUBMITTED A	RE POOR QUALITY
OTHER:		

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.