# Рачунарска интелигенција

Вештачке неуронске мреже

Александар Картељ

kartelj@matf.bg.ac.rs

Датум последње измене: 16.10.2019.

# Вештачке неуронске мреже

Вештачки неурон

### Биолошки неурон

- ~10<sup>11</sup> неурона
- Синапса повезује два неурона
  - Заслужна за памћење
  - Сваки импулс у синапси изазива лучење мале количине неуротрансмитера
  - Синапса може да поспеши или инхибира импулс
  - Она тип реакције памти током времена
- Неурони се не регенеришу као остале ћелије
  - То у комбинацији са синапсама омогућава памћење



### Вештачки неурон



$$f_{AN}: \mathbb{R}^I \to [0,1]$$

$$f_{AN}: \mathbb{R}^I \to [-1,1]$$

$$net = \sum_{i=1}^{I} z_i v_i \qquad net = \prod_{i=1}^{I} z_i^{v_i}$$

- McCulloch и Pitts (енг. Threshold Logic Unit – TLU)
- Омогућава апроксимацију нелинеарне функције f<sub>AN</sub> слика улазне сигнале у излазни
- І број улазних сигнала
- **z** улазни сигнали
- **v** тежине придружене улазним сигналима (симулација синапсе)
  - Позитивна тежина = ексцитација
  - Негативна тежина = инхибиција
- о излазни сигнал
- net базиран на производу омогућава већи информациони капацитет

## Функција активације











## Линеарна раздвојивост

**Decision Boundary** 

 $net - \theta > 0$ 



| $z_1$ | $z_2$ | $z_1 	ext{ OR } z_2$ |
|-------|-------|----------------------|
| 0     | 0     | 0                    |
| 0     | 1     | 1                    |
| 1     | 0     | 1                    |
| 1     | 1     | 1                    |

#### The Artificial Neuron



- Омогућава линеарну раздвојивост без грешке
- Постављање хиперравни која раздваја улазне податке на оне са излазом испод и изнад неког прага
- Слика приказује хиперраван која одговара функцији логичке дисјункције

### Нелинеарна раздвојивост

#### Truth Table

| $z_2$ | $z_1 \text{ XOR } z_2$ |
|-------|------------------------|
| 0     | 0                      |
| 1     | 1                      |
| 0     | 1                      |
| 1     | 0                      |
|       | 0<br>1                 |



- Реализација екслузивне дисјункције захтева постојање средишњег слоја са два неурона
- Ово је пример проблема који није линеарно раздвојив

## Учење градијентним спустом

- Вештачки неурон апроксимира функцију описану улазно излазним сигналима подешавањем тежина **ν** и параметра θ
- Скаларни параметар θ се може придружити вектору тежина **v** ради елегантније нотације
- Апроксимација се своди на минимизацију укупне грешке:

$$\mathcal{E} = \sum_{p=1}^{P_T} (t_p - o_p)^2$$

• Где t<sub>p</sub> и о<sub>p</sub> представљају редом циљну и апроксимирану вредност излазног сигнала, а Pr број података спроведених на улаз.

## Учење градијентним спустом (2)



• Правило градијентног спуста омогућава итеративно ажурирање тежина и дефинисано је као:

$$v_i(t) = v_i(t-1) + \Delta v_i(t)$$

$$\Delta v_i(t) = \eta(-\frac{\partial \mathcal{E}}{\partial v_i})$$
  $\frac{\partial \mathcal{E}}{\partial v_i} = -2(t_p - o_p)z_{i,p}$ 

$$v_i(t) = v_i(t-1) + 2\eta(t_p - o_p)z_{i,p}$$

• Где је η параметар брзине учења.

#### Пример учења градијентним спустом

- Градијентним спустом научити тежине мреже тако да правилно класификује тачке A(2,1) и C(0.5,0.5) као једну класу, а тачку B(-1,-1) као другу класу.
- Претпоставити да су иницијалне тежине w1=2 и w2=3 док је  $\theta$ =3.
- Брзина учења је 1.

# Вештачке неуронске мреже

Надгледано учење вештачке неуронске мреже

### Учење неуронских мрежа

- Појединачни вештачки неурон омогућава учење само линеарно раздвојивих функција
  - Груписање неурона у мреже то омогућава
  - Учење оваквих мрежа је и значајно комплексније и рачунарски захтевно
  - Надгледано и ненадгледано учење
- Надгледано учење захтева скуп података за тренинг
  - Сваки податак (вектор променљивих) има своју придружени циљну променљиву

## Мреже са пропагацијом унапред (FFNN)



- енг. Feedforward neural network
- Најмање три слоја: улазни, средњи и излазни
- Излаз се рачуна помоћу једног проласка кроз мрежу

$$o_{k,p} = f_{o_k}(net_{o_{k,p}}) 
= f_{o_k}\left(\sum_{j=1}^{J+1} w_{kj} f_{y_j}(net_{y_{j,p}})\right) 
= f_{o_k}\left(\sum_{j=1}^{J+1} w_{kj} f_{y_j}\left(\sum_{i=1}^{I+1} v_{ji} z_{i,p}\right)\right)$$

#### Рекурентне неуронске мреже



- Elman SRNN (енг. Simple recurrent neural network)
- У Копија скривеног слоја се враћа на улаз (контекстни слој)
- Циљ је употреба претходног стања мреже
- Омогућава нпр. учење темпоралних зависности

$$o_{k,p} = f_{o_k} \left( \sum_{j=1}^{J+1} w_{kj} f_{y_j} \left( \sum_{i=1}^{I+1+J} v_{ji} z_{i,p} \right) \right)$$

$$(z_{I+2,p},\cdots,z_{I+1+J,p})=(y_{1,p}(t-1),\cdots,y_{J,p}(t-1)).$$

## Рекурентне неуронске мреже (2)



- Jordan SRNN
- Копија излазног слоја се спроводи на улаз (тзв. слој стања)

## Каскадне неуронске мреже



- CNN (енг. Cascade NN)
- Сви улази спојени са свим скривеним и свим излазним елементима
- Елементи средњег слоја спојени са свим излазима и свим наредним елементима средњег слоја

## Правила надгледаног учења

• Нека је дат коначан скуп уређених парова улазних вредности и придружених циљних вредности:

$$D = \{dp = (\mathbf{z}_p, \mathbf{t}_p)/p = 1, \dots, P\}$$

- Где су  $z_{i,p}$ ,  $t_{k,p} \in \mathbb{R}$  за  $i=1,\cdots,I$  и  $k=1,\cdots,K$
- І је број улазних сигнала
- К је број излазних сигнала
- Р је број тренинг података
- Тада се може представити следећа зависност:  $\mathbf{t}_p = \mu(\mathbf{z}_p) + \zeta p$
- Где је  $\mu$ (\*) непозната циљна функција, а  $\zeta p$  шум

## Правила надгледаног учења (2)

- Циљ учења је апроксимирати дату функцију  $\mu(*)$  на основу података из D
- Полазни скуп *D* се обично дели на три дисјунктна подскупа:
  - $D_T$  тренинг скуп за апроксимацију
  - $D_V$  скуп за валидацију (меморизација)
  - $D_G$  скуп за тестирање (процена квалитета уопштавања)
- Током фазе учења минимизује се емпиријска грешка подешавањем *W*:

$$\mathcal{E}_T(D_T; \mathbf{W}) = \frac{1}{P_T} \sum_{p=1}^{P_T} (F_{NN}(\mathbf{z}_p, \mathbf{W}) - \mathbf{t}_p)^2$$

- Постоје разне технике за оптимизацију овог типа:
  - Методе локалне оптимизације: градијентни спуст нпр.
  - Методе глобалне оптимизације: метахеуристике нпр.
- Изазови: преприлагођавање и потприлагођавање?

## Подсећање на структуру мреже



## Пример – препознавање цифара



- Улаз је матрица пиксела 28х28
- На излазу је 10 сигнала сваки одговара једној цифри



## Градијентни спуст за учење NN

- Састоји из две фазе:
  - 1. Пропагација сигнала унапред, једноставно рачунање сигнала за FFNN
  - 2. Пропагација грешке уназад: сигнал грешке се шаље назад ка улазном слоју при чему се врши измена тежинских коефицијената
- Нека је сума квадратна грешка (енг. Sum squared error SSE) узета за функцију циља минимизације:  $\frac{1}{2}\sum_{i=1}^{K}(t_k-o_k)^2$
- И нека се користи сигмоидна функција активације и на излазном и на средишњем слоју:  $o_k = f_{o_k}(net_{o_k}) = \frac{1}{1+e^{-net_{o_k}}}$

## Стохастички градијентни спуст за учење NN

• Тежине се ажурирају на следећи начин:

$$w_{kj}(t) + = \Delta w_{kj}(t) + \alpha \Delta w_{kj}(t-1)$$
  
$$v_{ji}(t) + = \Delta v_{ji}(t) + \alpha \Delta v_{ji}(t-1)$$

• Где је  $\alpha$  тзв. моменат који дефинише значај претходне промене.

$$\Delta w_{kj} = \eta \left( -\frac{\partial E}{\partial w_{kj}} \right)$$
  $\delta_{o_k} = \frac{\partial E}{\partial net_{o_k}}$   $= -\eta \frac{\partial E}{\partial o_k} \frac{\partial o_k}{\partial w_{kj}}$  где је:  $= -\eta \delta_{o_k} y_j$   $= -(t_k - o_k)(1 - o_k)o_k = -(t_k - o_k)f'_{o_k}$   $\Theta$ :  $\frac{\partial o_k}{\partial net_{o_k}} = \frac{\partial f_{o_k}}{\partial net_{o_k}} = (1 - o_k)o_k = f'_{o_k}$ 

## Стохастички градијентни спуст за учење NN (2)

• Слично и за ажурирање тежина између улазног и средњег слоја:

$$\Delta v_{ji} = \eta \left( -\frac{\partial E}{\partial v_{ji}} \right)$$
  $\delta_{y_j} = \frac{\partial E}{\partial net_{y_j}}$   $= -\eta \frac{\partial E}{\partial y_j} \frac{\partial y_j}{\partial v_{ji}}$  где је:  $= \sum_{k=1}^K \delta_{o_k} w_{kj} f'_{y_j}$   $= \frac{\partial F}{\partial net_{y_j}} = (1 - y_j) y_j = f'_{y_j}$ 

## Стохастички градијентни спуст за учење NN (3)

```
Иницијализуј тежине, \eta, \alpha, и број епоха t=0;
while није задовољен услов за завршетак do
         E=0;
         for сваки тренинг податак р do
                  Пропагирај податак унапред и рачунај y_{i,p}(\forall j=1,\cdots,J) и o_{k,p}(\forall k=1,\cdots,K);
                  Рачунај сигнале грешака \delta_{\scriptscriptstyle ok,p} и \delta_{\scriptscriptstyle yl,p};
                  Ажурирај тежине w_{k_i} и v_{ji} (пропагација грешака уназад);
                  E+=E_n
         end
         t = t + 1
```

end

### Примери

- Ha cajтy <a href="https://playground.tensorflow.org">https://playground.tensorflow.org</a> се налази једноставан кориснички интерфејс за тестирање малих мрежа
- Посматрати понашање мреже услед измене:
  - Улазног скупа података
  - Укључених улазних података
  - Удела података за тест и тренинг
  - Броја података
  - Броја слојева (пробати нелинеарни проблем без унутрашњег слоја)
  - Пробати нелинеарни проблем без унутрашњег слоја, али са нелинеарним улазним подацима
  - Броја неурона по слојевима
  - Типа активационе функције
  - Броја епоха
  - Варирати величине тренинг скупа: преприлагођавање, потприлагођавање?
  - Итд.

## Примери (2)



## Примери (3)



## Примери (4)



# Вештачке неуронске мреже

Ненадгледано учење вештачке неуронске мреже – самоорганизујуће мапе

## Ненадгледано учење

- Код надгледаног учења, користи се приступ у којем се мрежи даје улаз и очекивани излаз (попут "учитеља")
  - На основу овога, грешка бива "кажњавана" ажурирањем тежина у случају да постоји грешка
  - У супротном се не ради ништа
- Код ненадгледаног учења не постоји очекивани излаз
  - Алгоритам учења мора самостално да утврди постојање правилности у улазним подацима
  - Вештачке неуронске мреже омогућавају прављење асоцијација између шаблона (енг. Pattern association)
  - Овакве мреже се још зову и асоцијативна меморија или асоцијативне неуронске мреже
  - Нпр. сећање на слику код човека може да изазове осећај среће, туке, итд.

#### Асоцијативне неуронске мреже

- Обично двослојне
- Циљ је да омогуће стварање асоцијације без употребе "учитеља"
- Развој оваквих мрежа заснован на студијама визуелног и звучног кортекста код мозга сисара
- Тополошка организација неурона омогућава асоцијацију
- Додатна пожељна карактеристика је задржавање старих информација и након пристизања нових (надгледаним учењем ово обично не може да се постигне)

#### Пример асоцијативне мреже



• Функција коју учи оваква мрежа је пресликавање улазног шаблона у излазни

$$f_{NN}: \mathbb{R}^I \to \mathbb{R}^K$$

## Хебово учење

- Названо по неуропсихологу Hebb-y
- Тежине се ажурирају на основу корелације између активационих вредности неурона
- Засновано на хипотези: "потенцијал неурона да испали сигнал је завистан од од потенцијала околних неурона"
- Тежина између два корелисана неурона се појачава

$$u_{ki}(t) = u_{ki}(t-1) + \Delta u_{ki}(t) \qquad \Delta u_{ki}(t) = \eta o_{k,p} z_{i,p}$$

• Измена тежине је већа за оне улазно-излазне парове код којих улазна вредност има јачи ефекат на излазну вредност

## Хебово учење (2)

- Проблем је што поновно убацивање улазних шаблона доводи до експоненцијалног раста тежина
- Ово се решава постављањем лимита на вредност тежина
- Пример лимита је нелинеарни фактор заборављања:

$$\Delta u_{ki}(t) = \eta o_{k,p} z_{i,p} - \gamma o_{k,p} u_{ki}(t-1)$$

• Где је у позитивна константа која контролише умањење

## LVQ-1 кластеровање

- Енглески назив: Learning Vector Quantizer-1
- Ненадгледана метода учења за кластеровање
- Циљ је скуп од n података груписати у m група:
  - Тако да су елементи из исте групе слични међусобно
  - За меру сличности/различитости се обично користи Еуклидско растојање
  - Излазне вредности (ознаке кластера) се "такмиче" за улазне податке



(a) Clustering Problem



(b) LVQ-I network

## LVQ-1 алгоритам

Иницијализуј тежине мреже, брзину учења и пречник суседства **while** *није испуњен услов за завршетак* **do** 

for сваки улазни податак р do

Израчунај Еуклидско растојање,  $d_{kp}$ , између улазног вектора  $\mathbf{z}_{p}$  и сваког вектора тежине  $\mathbf{u}_{k} = (u_{k1}, u_{k2}, \cdots, u_{kn})$  по формули:

$$d_{k,p}(\mathbf{z}_p, \mathbf{u}_k) = \sqrt{\sum_{i=1}^{I} (z_{i,p} - u_{ki})^2}$$

Пронађи излазну вредност  $o_k$  за коју је растојање  $d_{k,k}$  најмање;

Ажурирај све тежине у суседству  $\kappa_{k,p}$  формулом:  $\Delta u_{ki}(t) = \left\{ egin{array}{ll} \eta(t)[z_{i,p} - u_{ki}(t-1)] & \text{if } k \in \kappa_{k,p}(t) \\ 0 & \text{otherwise} \end{array} \right.$  end

Ажурирај брзину учења;

Смањи пречник суседства;

#### end

## Самоорганизујуће мапе (SOM)

- Енг. Self-organizing feature maps
- Развио их је Кохонен у намери да моделира карактеристике људског целебралног кортекса
- Метода врши пројекцију *І*-димензионог улазног простора у излазни дискретни простор (неки вид компресије)
- Излазни простор је често дводимензиона мрежа вредности
- Идеја је задржавање тополоше структуре улазног простора
  - Ако су два податка близу у улазном простору, биће близу и у излазном
  - Сличне мождане активности активирају блиске неуроне

#### SOM – стохастичко правило учења

- Засновано на компетитивној стратегији учења
- Врло слично LVQ-1 кластеровању
- Улазни подаци су повезани са одговарајућим неуронима у мапи
  - Мапа је обично квадратног облика
  - Број неурона је мањи од броја тренинг података
  - У идеалном случају број неурона је једнак броју независних тренинг примерака

## SOM – стохастичко правило учења (2)



• Вектор тежина за сваки неурон на позицији (k, j) је иницијално насумично подешен:

$$\mathbf{w}_{kj} = (w_{kj1}, w_{kj2}, \cdots, w_{KJI}),$$

- Сваки улазни податак је повезан са сваким неуроном из мапе
- Приметити да је димензија вектора тежина иста као и димензија улазног податка

## SOM – стохастичко правило учења (3)

- За сваки прочитани податак са улазног слоја, проналази се неурон из мапе који има најсличнији тежински вектор
  - Сличност може нпр. бити Еуклидска
- Над тим "победничким" неуроном врши се корекција тежина у складу са улазним податком
  - Такође се врши корекција тежина суседних неурона пропорицонално њиховој удаљености од "победника"
- Како одмиче тренинг, смањује се и опсег суседних неурона и на самом крају се сматра да неурони више немају суседа

#### Примери:

#### распоређивање тема на Википедији и кластеровање боја





### Примене SOM

- Анализа слика
- Препознавање звука
- Процесирање сигнала
- Телекомуникације
- Анализа временских серија
- Погодности:
  - Омогућава лаку визуелизацију и интепретацију
  - Области које класификују (категоришу) су видљиве на мапи

#### Материјали за читање

- https://sci2s.ugr.es/keel/pdf/algorithm/articulo/1990-Kohonen-PIEEE.pdf
- https://cloud.google.com/blog/products/gcp/understanding-neuralnetworks-with-tensorflow-playground

## Алати за развој

- https://www.tensorflow.org/tutorials/
- http://scikit-learn.org/stable/index.html

## Задатак 1

- Реализовати неуронску мрежу која је у стању да препознаје ручно написане цифре. Користити скуп података MNIST доступан са адресе <a href="http://yann.lecun.com/exdb/mnist/">http://yann.lecun.com/exdb/mnist/</a>
- Дозвољено је користити и готове алате за неуронске мреже попут оних поменутих на претходном слајду.

### Задатак 2

- Имплементирати LVQ-I алгоритам за кластеровање и применити га над Ирис скупом података.
- https://archive.ics.uci.edu/ml/datasets/Iris