Dhaka International University

Department of Computer Science & Engineering Question Bank

Batch No.:51(1st shift) Semester: 9th

Course Code: CSE-315 Course Title: Theory of Computing

Q.No.	Questions											
1.	1. List out any four the applications of Automata Theory											
2.	2. Define the following i)Alphabet ii)string iii)Language iv)∑* v)problem											
	Give examples for each.											
3.	3. Define Dete	ate Machine (DFSM) .										
	List out the characteristics of DFSM											
3.	3. Define Deterministic Finite Automata. Design DFA for the following Language											
	i)set of all strings of 0's and 1's containing substring 01											
	ii)L ={ w string w begins with 01 and is of even length}											
	iii)set of all strings of a's and b's that end with abb											
	iii) set of all strings of a's and b's that do not end with abb											
4	4. Define Non Deterministic Finite Automata. Design NFA for the following La											
		of all strings that end with substring 01										
	ii)set of all strings that contain 1 as a second symbol from last											
	iii)set of all strings that contain character 'a' as fourth symbol from last											
	iv)L ={w in {a,k)}* there	exist sub	bstrings x and y in $\{a,b\}^*$ such that $\{w=x \text{ abbaa y or } w=$								
	x baba y) Note: here w is a string consisting of substrings x & y											
5	5. Write any five differences between NFA and DFA											
6	6. Convert the following NFA to DFA											
	Ò(delta)	0	1									
) op←	{q0,q1}	{q0}									
	- 1		(- 2)	_								
	q1	ф	{q2}									
	*q2	ф	ф									
7.	7. Define epsilon NFA. Design €-NFA for the following Languages											
	·		_	optional a followed by aa followed by any number of b's								
			-	is even } note: w indicates length of string w								

8	8. Define €-closure of a state. Convert the following €-NDFSM into equivalent DFSM											
		Ò	€	а	b	С	·					
				_								
		→p	{q,r}	ф	{q}	{r}						
		q	ф	{p}	{r}	{p,q}						
		-										
		⋆r	ф	ф	ф	{p}						
9	9. Define Regular Expression as per basis and induction steps (Refer Page number 50 of notes)											
10	10.Design Regular expressions for the following Languages											
	i)set of all strings of a's and b's that end with either a or bb											
		-	•	n+n) is e	_							
	iii) $L = \{ a^n b^m : n > = 4, m < = 3 \}$											
4.4	iv)set of all strings of a's and b's whose fourth symbol from right end is b											
11	11. Prove that every Language defined by Regular expression is also defined by is also											
12	defined by Finite Automata 12.Convert the following Regular expressions to €-NFA(epsilon NFA)											
12		-b)*ab		_	_	•	essions to e-ivi A(epsilon ivi A)					
13	i)(a+b)*ab ii)((01) + 1) iii)011(0+1)* 13.State and prove pumping theorem for Regular Languages											
14	14. Show that the L= $\{a^n b^n \mid n > = 1\}$ is not Regular Language											
15	List out closure properties of Regular Languages											
16	Define i)equivalent and ii)distinguishable pair of states						ble pair of states					
	Consider the following DFA											
		Ò	а	b								
		$\rightarrow q_1$	q_2	q 3								
		q ₂	q 3	q ₅								
		* q 3	q ₄	q 3								
		43	94	43								
		Q4	q 3	q ₅								
		*q ₅	q ₂	q ₅								
	i)Draw a table of Equivalent(in distinguishable) and distinguishable pair of states											
				num st								
17	Define Regular Grammar. Construct Regular Grammar for the following languages											
		 i)L = {w € {a,b}* : w is even } ii) L = {w € {a,b,c}* : there is a symbol a £(sigma) not appearing in string w } 										
10	-						d number of a's and w ends with b }					
18			-				ii)RightMost Derivation(RMD) iii)parse tree for S→AbB A→aA € B→aB bB €					
	lile	su ii ig	aadUdl	o using	uie gi	allilldi.	3 /AND A /AA t D 7dD ND t					
19	Explain the working of Push Down Automata (PDA)with a diagram											
		J CIII										

20	Design PDA for the following languages i)L= $\{a^nb^n \ n>=1 \}$) L= $\{w : n_a(w) = n_b(w) \}$ over £ = $\{a,b\}$							
21	Convert the following Grammars(CFGs) to PDA that accept by empty stack i)S→aSb bSa SS € ii)S→0S1 A A→1A0 S €							
22	Define i)Deterministic PDA ii)Non-Deterministic PDA							
23	State and prove pumping theorem for Context Free Languages							
24	Show that $L=\{a^nb^nc^n\mid n>=1\ \}$ is not Context Free Language							