Bachelorarbeit

Das Elektron Benedikt und seine Brüder*innen

Jan Gaschina jan.gaschina@tu-dortmund.de

Abgabe: DATUM

TU Dortmund – Fakultät Physik

Abstract

Inhaltsverzeichnis

1	Fülls	struktur am Elektronenspeicherring DELTA	3
	1.1	Singlebunch	4
	1.2	Multibunch	4
	1.3	Hybride Füllstruktur	4
	1.4	Bisherige Messung der Füllstruktur	4
2	Theorie 5		
	2.1	Entstehung von Synchrotronstrahlung	
	2.2	Wahrscheinlichkeit für das Messen eines Photons	
	2.3		6
3	Aufbau		6
	3.1	Oszilloskop	6
	3.2	TDC7201	
	3.3	Time Tagger	
4	Dur	chführung	8
	4.1	Auflösung des TDC bestimmen	8
	4.2	Probleme bei der Messung mittels TDC	8
		4.2.1 Geschwindigkeit des Delaygenerators	8
		4.2.2 Geschwindigkeit des TDC	8
	4.3	Messungen mit dem Oszilloskop	8
	4.4	Messungen mit dem Time Tagger	8
5	Aus	wertung	8
6	Diskussion		8

1 Füllstruktur am Elektronenspeicherring DELTA

Der Dortmunder Elektronenspeicherring DELTA (Dortmund Electron Accelerator) ist eine 1,5 GeV Synchrotronstrahlungsquelle mit einem Umfang von 115,2 m. Die bereitgestellte Synchrotronstrahlung wird von verschiedenen Arbeitsgruppen aus den Gebieten der Physik, Chemie und Materialwissenschafen genutzt, um meist kondensierte Materie zu untersuchen. Zudem wird bei DELTA in immer größerem Maß Grundlagenforschung im Bereich der Beschleunigerphysik betrieben. Dazu zählen vorallem Konzepte zur erzeugung von ultrakurzen Strahlungspulsen mittels Interaktion von geladnenen Teilchen, welche sich in periodischen Magnetfeldstrukturen bewegen, mit Laserpulsen unterschiedlichster Wellenlängen. Synchrotronstrahlung ist diejenige breitspektrale Strahlung welche entsteht wenn, mit elektrischer Ladung belegte Teilchen, beschleunigt werden. In einem Speicherring bleiben die geladenen Teilchen zwar in sehr guter Näherung bei gleicher Geschwindigkeit, welche hier nahezu die Vakuumlichtgeschwindigkeit ist, jedoch stellt auch ein Richtungswechsel im Laborsystem eine Beschleunigung dar, sodas in jeder Kurve des Speicherrings Synchrotronstrahlung abgegeben wird. Die Richtungsänderung zur Erhaltung der null-förmigen Sollbahn wird bei DELTA durch elektrische Dipolmagneten, welche mit einem Betriebsstrom von etwa 1 kA eine magnetische Flussdichte von circa 1,5 T in der Strahlbahn erzeugen, bewirkt. Die so erzeugte Strahlung nennt sich nach ihrer entstehung Dipolstrahlung und kann an 12 Beamlines genutzt werden. Die mit der Strahlung ausgekoppelte Energie geht für die umlaufenden Teilchen verloren und muss in als Cavity bezeichneten elektromagnetischen Hohlraumresonatoren nachgefüttert werden. Die Cavitys werden mit einer Frequenz von knapp 500 MHz betrieben. In den hier beschriebenen Experimenten wird jedoch keine Dipolstrahlung verwendet sondern Undulatorstrahlung. Diese entsteht wenn ein geladenes Teilchen eine Anordnung von abwechselnd gepolten Magneten durchläuft. Diese Abfolge wird Undulator genannt. Die entstehende Strahlung ist im Spektrum wesentlich schmaler als die Dipolstrahlung am selben Speicherring. Bei DELTA werden zur Strahlungserzeugung Elektronen verwendet. Diese sind besonders geeignet da sie sich aufgrund ihrer geringen Ruhemasse leicht beschleunigen und ablenken lassen. Eine wichtige characteristische Größe eines Speicherrings für geladenen Teilchen ist der maximale Strahlstrom. Dieser ist definiert als Zahl der Ladungen die pro Zeiteineheit eine Fläche durchqueren. Der maximale Strahlstrom im Multibunchbetrieb liegt am DELTA bei etwa 130 mA. Der Elektonenstrahl ist an dieser Maschine in 192 Buckets mit einer Länge von etwa 0,6 m, was bei Lichtgeschwindigkeit etwa 2 ns entspricht, aufgeteilt. In jedem Bucket können sich unterschiedlich viele Elektronen befinden. Ein Bucket bezeichnet hier eine Art räumlichen Abschnitts im mitbewegten Bezugssystem. Die Gruppe von Elektronen die sich in jedem Bucket befinden kann, besitzt bei Lichtgeschwindigeit eine Länge von etwa 36 ps und wird als Bunch bezeichnet. Die Kombination von unterschiedlich stark gefüllten Buckets wird Füllstruktur genannt. DELTA kann mit drei verschiedenen Typen von Füllstrukturen betrieben werden.

1.1 Singlebunch

Im Singlebunchbetrieb wird nur ein einzelner Bucket mit einem einzelnen Bunch befüllt. Das hat zur Folge das mit einer Frquenz von etwa 2,6 MHz etwa alle 384 ns ein kurzer Strahlungsblitz erzeugt wird. Eine Variante dieses Betriebsmodus ist der Betrieb mit einem einzelnen Elektron. Dazu wird im Singlebunchbetrieb ein Bucket mit einer geringen Zahl Elektronen befüllt. Im nächsten Schritt wird dann eine art Stempel, Scraper genannt, nah an den Elektronenstrahl herngefahren. Da die Elektronen sich nun nicht, wie an einer Perlenkette aufgereiht präzise auf ihrer Sollbahn fliegen, sondern vielmehr transversal um diese Sollbahn schwingen, treffen immer wieder Elektronen auf den Scraper und gehen somit für den eigentlichen Strahl verloren. Die Ausdehnung des Strahls verringert sich durch den Verlust der stark schwingenden Elektronen. Der Scraper wird nun Schritt für Schritt näher an den Strahl herangefahren bis nurnoch ein einzelnes Elektron übrig ist.

1.2 Multibunch

Der Multibunchbetrieb stellt die Standardfüllstruktur bei DELTA dar. Hier werden 128 der Buckets mit einer ähnlichen Anzahl von Elektronen befüllt, darauf folgen dann 64 ungefüllte Buckets. Das bedeutet es wird eine Abfolge von 128 kurzen Strahlungsblitzen mit einem Absand von jeweils etwa 2 ns erzeugt auf welche eine Strahlungsfreie Periode von etwa 128 ns folgt.

1.3 Hybride Füllstruktur

Die hybride Füllstruktur zeichnet sich dadurch aus das der Speicherring zunächst im Multibunchbetrieb gestartet wird und dann in ein Bucket das zur strahlungsfreien Periode gehört Elektronen injiziert werden.

1.4 Bisherige Messung der Füllstruktur

Bisher wird die Füllstruktur gemessen indem das Signal eines BPMs (Beam Position Monitors) mit einer Oszilloskopkarte ausgewertet wird. Ein solcher BPM besteht aus vier sogenannter Pickupelektroden welche in der zum Strahl transversalen Ebene in die Bahn eingebracht wurden. Wenn nun ein Elektronenpaket diese Ebene quert, erzeugt es in den Elektroden Spiegelladungen, daher kann eine kleine Spannung gemessen werden. Aus den vier Spannungen kann dann die transversale Strahllage berechnet werden. Um die Füllstruktur zu errechnen müssen jedoch alle vier Spannungen in einem Leistungsaddierer addiert werden. Dabei gilt: je größer das Gesamtsignal desto größer die Ladungsmenge im Bunch. Das entstehende Summensignal wird an eine Oszilloskopkarte weitergeleitet dort aufgezeichnet, verarbeitet und über das EPICS (Experimental Physics and Industrial Control System) an den Kontrollraum weitergeleitet wo es als Balkendiagram mit der Bucketnummer auf der Abszisse und der Ladungsmenge auf der Ordinate dargestellt wird.

2 Theorie

2.1 Entstehung von Synchrotronstrahlung

Synchrotronstrahlung bezeichnet ein kontinuirliches Strahlungspektrum das vom Infraroten über das sichtbare und ultraviolette Licht bis in den Bereich der harten Röntgenstrahlung reicht. Sie entsteht, wie bereits erwähnt, durch die beschleunigung von elektrisch geladenen Teilchen, im speziellen Fall des DELTA Speicherrings durch die Beschleunigung von Elektronen. Um die zur Beschleunigung verwendete Richtungsänderung zu bewirken werden Magnetfelder verwendet. Elektrisch geladene Teilchen in einem Magnetfeld sind der Lorentzkraft ausgezetzt. Sie wird beschrieben durch:

$$\vec{F}_L = e \cdot \vec{v} \times \vec{B} = \dot{\vec{p}}$$

Die Kraft wirkt also auf ein mit der Ladung e belegtes Teilchen das mit der Geschwindigkeit \vec{v} das Magnetfeld \vec{B} durchugert. Der Biegeradius R lässt sich durch gleichstzen der Lorentzkraft mit der Zentripetalkraft \vec{F}_Z ermitteln.

$$\vec{F}_Z = m \frac{\vec{v^2}}{R}$$

$$\vec{F}_Z = \vec{F}_L \ \Rightarrow m \frac{\vec{v}^2}{R} = e \cdot \vec{v} \times \vec{B} \Leftrightarrow R = \frac{\vec{v}^2 m}{e \cdot |\vec{v} \times \vec{B}|}$$

Da sich die Elektronen mit nahezu Lichtgeschwindigkeit bewegen muss relativistisch gerechnet werden. Es gilt also $m=m_0\gamma$ mit m_0 der Ruhemasse des Elektrons und γ dem Lorentzfaktor. Die Strahlungsleistung P_S eines derart bewegten Elektrons wird beschrieben durch:

$$P_S = \frac{e^2 c}{6\pi\epsilon_0} \frac{1}{(m_0 c^2)^4} \frac{E^4}{R^2}$$

Hier meint c die Vakuumlichtgeschwindigkeit, ϵ_0 die Dielektrizitätskonstante und E die Gesamtenergie des Teilchens. Das die Ruhemase m_0 in vierter Potenz eingeht, erklärt die gute Eignung von Elektronen zur Synchrotronstrahlungserzeugung. Schwerere Teilchen wie Protonen oder auch -Leptonen sind nicht nur schwerer zu beschaffen, sondern müssten auch auf deutlich größere Energien beschleunigt werden um die gleiche Strahlungsleistung zu erbringen. Pro Umlauf ergibt sich für ein Elektron die mittlere Abgestrahlte Energie ΔE :

$$\varDelta E = \frac{e^2}{3\epsilon_0 (m_o c^2)^4} \frac{E^4}{R}$$

2.1.1 Undulatorstrahlung

Undulatoren zählen zu den sogenannten incertion devices, diese werden auf graden Strecken des Speicherrings untergebracht welche ohne diese Geräte einfache Driftstrecken

wären. Ein Undulator besteht aus einer Abfolge von abwechselnd gepolten Magneten. Bei den Magneten kann es sich sowohl um Dauer- als auch normal- oder supraleitende Elektromagneten handeln. Durch die Periodische, abwechselnd gepolte Anordnung von Magneten beschreiben die durfliegenden Teilchen eine sinusförmige Bahn. Die Amplitude des Sinus ist dabei Abhängig von der Magnetischen Feldstärke und der Gesamtmasse der Teilchen. Eine characterristische Größe ist hier der sogenannte Undulatorparameter K, er ergibt sich über:

$$K \equiv \frac{\lambda_U e B_0}{2\pi m_e c}$$

Dabei bezeichnet λ_U die Undulatorperiode, also den longitudinalen Abstand zwischen zwei gleichartig gepolten Magneten. Anhand des Undulatorparameters lassen sich auch Undulatoren von Wigglern unterscheiden. Für einen Undulator gilt $K \leq 1$ und für einen Wiggler K > 1. Bei einem Undulator interferieren die in jedem Bogen der sinusförmigen Bahn erzeugten Strahlungskegel miteinander was zu einem Linienspektrum führt. Die Intensität der Synchrotronstrahlung ist hier um den Faktor N_P^2 erhöht, wobei N_P die Anzahl der Magnetpole ist. Bei einem Wiggler erfolgt keine Interferenz und es entsteht ein kontinuirliches Spektrum dessen Synchrotronstrahlungsintensität proportional zu N_P ist. Diese Unterscheidung ist jedoch sehr theoretisch, in der Praxis treten mit zunehmender Flussdichte im Undulatorspektrum immer mehr ungradzahlige Harmonische der Undulatorline auf die dann zu einem kontinuirlichen Spektrum verschmelzen.

2.2 Wahrscheinlichkeit für das Messen eines Photons

2.3 Höhenkorrektur der Histogramme

3 Aufbau

Allen Messungen liegt ein einfacher Aufbau zu Grunde. An einer Beamline des Elektronenspeicherrings DELTA wird die im davorliegenden elektromagnetischen Undulator entstehende, Strahlung über einen Spiegel ausgekoppelt. Diese wird über zwei weitere Spiegel in eine dunkle Box geleitet. Dort durchquert der Lichtstrahl zuerst eine Blende dann eine Reihe von neutrale Dichte Filtern und eine weitere Blende bevor er auf eien Photomultiplier trifft. Dort werden einzelne Phottonen in elektrische Pulse umgewandelt. Diese Pulse werden im weiteren mit unterschiedlichen Messinstrumenten aufgezeichnet und später ausgewertet.

3.1 Oszilloskop

3.2 TDC7201

Beim TDC7201 handelt es sich um einen Time to Digital Converter. Dieser besitzt einen Eingang für ein Start Signal und einen Eingang für ein Stop Signal. Der Chip misst die Zeit zwischen den steigenden oder fallenden Flanken der Signale. Die gemessenen Zeiten können dann über einen SPI Bus ausgelesen werden. Das geschieht in diesem

Aufbau durch einen Raspberry Pi. Dieses Verfahren funktioniert in nahezu Echtzeit. Daher kann mit diesem Aufbauleicht eine Füllstruktur errechnet und über das EPICS Protokoll im Netzwerk zur verfügung gestellt werden. Als Startsignal wird der DELTA Umlauftrigger genutzt. Als Stopsignal wird das Signal des Photomultipliers genutzt. Da es bei diesem Aufbau wahrscheinlicher ist Photonen von Bunches zu messen die als erstes nach dem Umlauftrigger Signal kommen, sollte das Umlauftriggersignal nach jeder Messung um zwei Nannosekunden verzögert werden um so alle Bunches über die Zeit gleich gut vermessen zu können. Dazu wurde der Delaygenerator über das VXII Protokoll vom Raspberry Pi angesteuert. Dieses Vorhaben scheiterte jedoch daran das der Delaygenerator nicht schnell genug umschalten konnte. Daher müssen die gemessenen Signale später rechnerisch korrigiert werden. Dazu wurde ein Histogramm über meherere Umläufe erstellt und anhand dessen der Abfall der Messwahrscheinlichkeit bestimmt.

Abbildung 1: Plot.

Siehe Abbildung 1!

3.3 Time Tagger

Der Time Tagger ist ein dem in Unterabschnitt 3.2 beschriebenen Aufbau ähnliches kommerzielles Produkt der Firma Swabian Instruments.

4 Durchführung

- 4.1 Auflösung des TDC bestimmen
- 4.2 Probleme bei der Messung mittels TDC
- 4.2.1 Geschwindigkeit des Delaygenerators
- 4.2.2 Geschwindigkeit des TDC
- 4.3 Messungen mit dem Oszilloskop
- 4.4 Messungen mit dem Time Tagger
- 5 Auswertung
- 6 Diskussion

Anhang