Tarea Suma Directa Interna

Maira Florez y Tomás Galeano

1. ¿Puede escribir \mathcal{D}_4 como la suma directa interna de dos de sus subgrupos? Explique.

Sea $D_4=\langle f,r:f^2=r^4=e,\ rfr=f^{-1}
angle$, sabemos que sus subgrupos normales son:

- $N_0 = \{e\}$
- $N_1=\langle r^2
 angle$
- $N_2=\langle r
 angle$
- $N_3 = \{e, rf, r^2, fr\}$
- $N_4 = D_4$

Así, vemos que para todos subgrupos normales $H, K \subseteq D_4$, si $H \neq N_0 \neq K$ entonces $H \cap K \neq \{e\}$ por lo que para describir D_4 como suma directa de dos de sus subgrupos, necesitamos que al menos uno de ellos sea N_0 . Así, lógicamente el otro subgrupo debe ser D_4 mismo y por tanto la única opción es

$$D_4 = N_0 \oplus N_4$$

2. Encuentre todas las descomposiciones de S_3 como suma directa de dos de sus subgrupos.

Dado que $S_3\cong D_3$, entonces trabajaremos con la definición de $D_3=\langle f,r:f^2=r^3=e,rfr=f^{-1}
angle$, así, sus subgrupos normales son:

- $N_0 = \{e\}$
- $N_1 = \langle r
 angle$
- $N_2 = D_3$

Teniendo en cuenta que como $N_0N_1
eq D_3$ y $N_1 \cap N_2
eq \{e\}$, entonces la única opción es que

$$D_3 = N_0 \oplus N_2$$