Quantitative Finance Regression Analysis with Alpha Signals

This notebook goes beyond just cross-sectional regressions. It demonstrates a complete, end-to-end quantitative finance analysis pipeline using real stock market and macroeconomic data. Below is a complete summary of what was implemented, along with simplified explanations and key takeaways.

Project Overview

This project analyzes a set of U.S. stocks (mostly FAANG and major indices) using:

- Time-series regression: To understand how each factor affects a specific stock over time.
- Cross-sectional regression: To evaluate which factors consistently explain differences between stocks in the same week.

The goal is to identify **statistically significant alpha signals** and understand how macro factors (like VIX, interest rates, dollar strength) impact returns.

Nata Preparation

- Stocks Analyzed: AAPL, MSFT, AMZN, GOOGL, META, NFLX, SPY, QQQ, IWM
- Macroeconomic Proxies:
 - VIX (market volatility)
 - TLT (interest rate proxy)
 - DXY (U.S. dollar strength)
- Sources: All data collected using yfinance from Yahoo Finance.

🥯 Alpha Signal Engineering

Signal	Description		
Mom1M	1-month price momentum (short-term)		
Mom3M	3-month momentum (medium-term)		
Vol_Surp	Volume surprise: how different today's volume is from 20-day average		
Volatility	21-day rolling standard deviation of returns		
Beta	Rolling 60-day beta with SPY		
VIX_chg	Daily percentage change in VIX (fear index)		
TLT_ret	Daily return of TLT (20Y bond ETF)		
DXY_chg	Daily percentage change in USD index		

All signals are aligned and merged per (Date, Ticker) for predictive modeling.

Time-Series Regression (AAPL Case Study)

CAPM Regression (AAPL ~ SPY)

- AAPL's beta $\approx 1.2 \rightarrow$ AAPL moves 20% more than the market on average
- $R^2 \approx 30-50\% \rightarrow$ reasonable explanatory power for a single factor

Multivariate Regression

- Factors: SPY, Mom1M, Mom3M, Vol_Surp, Volatility, Beta, VIX, TLT, DXY
- Coefficients interpreted in financial context (e.g. negative VIX → rising fear hurts AAPL)
- R² improved to ~40%+ with all factors included

Diagnostics

- Residuals were normally distributed (QQ plot)
- · No strong autocorrelation or heteroskedasticity
- Inference from t-stats and p-values reliable

Out-of-Sample Testing

- Training: 2018-2021, Testing: 2022-2024
- Out-of-sample R2 lower (as expected), but core macro effects (VIX, SPY) remained strong

• Demonstrated importance of avoiding overfitting and checking for signal robustness

Cross-Sectional Regression

- Weekly regression across 9 stocks
- Factors: Mom1M, Vol_Surp, Volatility, Beta

Key Results:

Factor	Avg Coeff	t-Stat	Interpretation
Mom1M	-0.15	-2.5	Reversal effect (recent winners underperform)
Vol_Surp	+0.05	+1.2	Not significant, some hint of effect
Volatility	-0.08	-2.0	Significant low-volatility premium
Beta	-0.02	-0.5	No significant premium for high-beta

Summary of Findings

- Market returns (SPY) were the most powerful explanatory factor.
- VIX spikes consistently led to stock price drops (strong negative effect).
- Short-term reversal: 1-month momentum had a negative effect → contrarian strategy.
- Medium-term momentum (3M) had a mild positive effect → continuation strategy.
- Low-volatility stocks outperformed more volatile ones, aligning with the low-vol anomaly.
- Volume surprise was inconsistent.
- Beta did not produce reliable excess returns.

Practical Use Cases

- Alpha generation: Form long-short portfolios based on momentum or volatility.
- Risk control: Use VIX, TLT, DXY exposure to manage macro risk.
- Performance attribution: Use model coefficients to decompose return sources.

Next Steps & Extensions

- Expand universe to include 100-500 stocks
- Incorporate Fama-French style factors (Size, Value)
- Use ridge regression or machine learning for nonlinear signals
- Backtest factor-ranked portfolios

Conclusion

This notebook represents a complete quantitative research pipeline:

- From raw data → clean features
- ☐ From regression modeling → interpretable coefficients
- III From statistical inference → financial strategy