()

n

<u>I- عموميات حول المتتاليات</u>

<u>1- تعاریف و مصطلحات</u>

<u>a/ أنشطة</u>

1/ لاحظ ثم أتمم خمسة أعداد ملائمة لتسلسل كل لائحة من اللوائح التالية:

......11 ،9 ،7 ،5 ،3 ،1 -a

.....
$$\frac{1}{6}$$
, $\frac{1}{5}$, $\frac{1}{4}$, $\frac{1}{3}$, $\frac{1}{2}$, 1 -b

.....
$$-\frac{3}{32}$$
 , $-\frac{3}{16}$, $-\frac{3}{8}$, $-\frac{3}{4}$, $-\frac{3}{2}$, -3 -c

....,
$$\frac{6}{7}$$
, $\frac{5}{6}$, $\frac{4}{5}$, $\frac{3}{4}$, $\frac{2}{3}$, $\frac{1}{2}$ -d

..... 9 ، 5 ، 4 ، 1 ، 3 ، -2 -e

- كل لائجِة من اللِّوائح تسمى متتالية و الاعداد المكونة لكل لائحة تسمى حدود المتتالية

نلاحظ أن لوائح أعلاه تسير بانتظام معين

اللائحة a هَى الاعداد الفُردية في ترتيب تصاعدي

اللائحة b هي أعداد على شكل $\frac{1}{n}$ بتعويض n بعدد صحيح طبيعي غير منعدم

اللائحة c هي أعداد على شكل $\frac{-3}{2^n}$ بتعويض c اللائحة

اللائحة d هي أعداد على شكل $\frac{n}{n+1}$ بتعويض n بعدد صحيح طبيعي غير منعدم

اللائحة e هى أعداد حصلنا فيها على الحد الثالث بمجموع الحدين اللذين قبله و الحد الرابع بمجموع الحد ين اللذين قبله وهكذا.........

 u_2 و الثالث بـ u_1 و u_1 و الثالث بـ u_2 اذا رمزنا لأول عدد من اللائحة بـ u_0 و الثاني بـ u_1 و الثالث بـ u_2

 u_3 ، u_2 ، u_1 ، u_0 و هكذا دواليك فاننا نحصل على اللائحة u_3 ، u_2 ، u_3 ، u_4 . u_5 أ/ ما رتبة u_8 الما رتبة u_8 .

 u_n ج/ ما رتبة u_n ، حدد

سمى حدود متتالية u_3 ، u_2 ، u_1 ، u_0 -

n+1 هي 2 و هكذا...... رتبة u_0 هي 1 و رتبة u_1 هي 2 و هكذا u_0 هي أبا الحد الأول هو u_0 ها الحد الأول هو الأول ه

$$\forall n \in \mathbb{N}$$
 $u_n = \frac{-3}{2^n}$ /c $\forall n \in \mathbb{N}$ $u_n = \frac{1}{n+1}$ /b $\forall n \in \mathbb{N}$ $u_n = 2n+1$ /a -ج

يسمى الحد العام للمتتالية u_n

 v_3 و الثالث ب v_2 و الثالث بالمرزا الأول عدد من اللائحة با v_1 و الثاني بالمرزا الأول عدد من اللائحة و v_1

 \dots و هكذا دواليك فإننا نحصل على اللائحة v_{3} ، v_{2} ، v_{1} و

 v_n ما رتبة v_n ، حدد

$$orall n \in \mathbb{N}^*$$
 رتبة $v_n = rac{n}{n+1}$ و n هي n رتبة

e حد صيغة التي تسير عليها اللائحة

لاحظنا أن في اللائحة e أعداد حصلنا فيها على الحد الثالث بمجموع الحدين اللذين قبله و الحد الرابع بمجمِوع الحد ياللذين قبلهما وهكذا......

 $... w_4 = w_2 + w_3$ و $w_3 = w_1 + w_2$ فان e فان e فان $w_3 + w_2 + w_3$ و e فان e

$$n \in \mathbb{N}^*$$
 حیث $w_{n+2} = w_{n+1} + w_n$

المتتاليات في a و b و c و أعطينا حدها العام بصيغة صريحة أي لحساب أي حد نعوض a و نحصل على النتيجة أم في e أعطينا حدها العام بدلالة حدود للمتتالية أي لحساب حد يجيب أن نرجع إلى حدين قبلهما

 \mathbb{N} ليكن $I = \{ n \in \mathbb{N} / n \ge n_0 \}$ جزء من عددا صحيحا طبيعيا و

کل دالة من I نحو $\mathbb R$ تسمى متتالية عددية

متتالية عددية $u: I \to \mathbb{R}$ -*

يرمز لصورة n بواسطة u_n عوض u(n) . العدد u_n يسمى حد المتتالية ذا المدل n ويسمى أيضا الحد العام.

 u_n يرمز للمتتالية بـ $(u_n)_{n \in I}$ عوض

 (u_n) أو $(u_n)_{n>0}$ اذا كان $I=\mathbb{N}$ فانه يرمز للمتتالية بـ

 $(u_n)_{n>1}$ اذا کان $I=\mathbb{N}^*$ فانه یرمز للمتتالیة ب-*

 $\left(u_{n}
ight)_{n\geq n_{0}}$ اذا كان $I=\left\{n\in\mathbb{N}\,/\,n\geq n_{0}
ight\}$ فانه يرمز للمتتالية أيضا ب *

: نعتبر المتتاليات العددية $\left(u_{n}
ight)_{n\geq2}$ و $\left(v_{n}
ight)_{n\geq1}$ المعرفة ب

$$\begin{cases} w_1 = -2 \\ w_{n+1} = 2w_n + 1 \end{cases} \quad \forall n \in \mathbb{N}^* \quad \mathbf{y} \qquad v_n = 2n^2 - 3n \quad \mathbf{y} \qquad u_n = \left(-2\right)^n + 3n$$

 $\left(w_{n}
ight)_{n\geq1}$ و $\left(v_{n}
ight)_{n\geq2}$ و $\left(u_{n}
ight)$ أحسب الحدود الأربعة الأولى لكل من المتتاليات

<u>2- تحديد متتالية</u> تحدد المتتالية اذا علمت حدودها أو الوسيطة التي تمكن من حساب أي حد من حدودها.

أ- المتتالية المحددة بالصيغة الصريحة للحد العام.

: نعتبر المتتاليات العددية $\left(u_{n}
ight)$ و $\left(v_{n}
ight)$ و المعرفة ب

$$w_n = \frac{\left(-2\right)^n}{n+1}$$
 و عدد حقیقی $u_n = 2n-6$

و $(v_n)_{n\geq 1}$ و $(v_n)_{n\geq 1}$ و متتاليات محددة بالصيغة الصريحة

 $\left(w_{n}\right)_{n\geq1}$ و $\left(v_{n}\right)$ و أحسب الحد الثالث لكل من المتتاليات

ب – المتتالية الترجعية: أي لحساب حد من حدودها نرجع لحدود أخرى

: نعتبر المتتاليات العددية $\left(u_{n}
ight)$ و $\left(v_{n}
ight)$ و $\left(u_{n}
ight)$ المعرفة ب

$$\begin{cases} w_3 = 1 \\ w_{n+1} = 3w_n - 1 \end{cases} \quad n \in \mathbb{N} \quad \begin{cases} v_0 = 2 & v_1 = -1 \\ v_{n+1} = 2v_n + v_{n-1} \end{cases} \quad n \ge 1 \end{cases} \quad \mathbf{9} \quad \begin{cases} u_0 = 2 \\ u_n = \frac{u_{n-1}}{1 + u_{n-1}} \end{cases} \quad n \ge 1$$

و $(v_n)_{n>1}$ و (v_n) و (v_n)

 w_0 ; w_2 ; v_3 ; v_2 ; u_3 ; u_2 ; u_1 $\downarrow 1$

$$\forall n \in \mathbb{N}$$
 $u_n = \frac{2}{2n+1}$ ابين بالترجع أن /2

II- المتتاليات المحدودة – المتتاليات الرتبية

<u>1-المتتالية المكبورة – المتتالية المصغورة – المتتالية المحدودة</u>

أنشطة

$$v_n=rac{n+1}{2n+3}$$
 و $u_n=rac{2}{3}n-1$ عتبر المتتاليات العددية $\left(v_n
ight)$ و $\left(v_n
ight)$ حيث $\left(v_n
ight)$ و $\left(u_n
ight)$ ع $\left(u_n
ight)$ و $\left(u_n
ight)$ حيث $\left(u_n
ight)$ احسب $\left(u_n
ight)$ و $\left(u_n
ight)$

.....

دينا $u_n \geq 3$ نقول إن المتتالية (u_n) مصغورة بالعدد 3 $\forall n \in \mathbb{N}$ عدد 1 نقول إن المتتالية $\forall n \in \mathbb{N}$ عدد 1 $\forall n \in \mathbb{N}$ عدد 1

<u>تعریف</u>

 $\forall n \in I \quad u_n \leq M$ تكون المتتالية $\left(u_n\right)_{n \in I}$ مكبورة اذا وفقط اذا وجد عدد حقيقي m بحيث $m \in I \quad u_n \geq m$ مصغورة اذا وفقط اذا وجد عدد حقيقي $\left(u_n\right)_{n \in I}$ مصغورة اذا وفقط اذا كانت $\left(u_n\right)_{n \in I}$ مكبورة و مصغورة تكون المتتالية $\left(u_n\right)_{n \in I}$ محدودة اذا وفقط اذا كانت

 $\exists k \in \mathbb{R}_+^* \quad \forall n \in I \quad |u_n| \le k \quad \Leftrightarrow \quad \text{مدودة} \quad (u_n)_{n \in I}$ محدودة

تمادن

: نعتبر المتتاليات العددية $\left(u_{n}
ight)_{n\geq1}$ و $\left(v_{n}
ight)_{n\geq1}$ المعرفة ب

$$w_n = \frac{(-1)^n}{n+1}$$
 9 $\begin{cases} v_1 = 2 \\ v_{n+1} = \frac{1}{3}v_n + 2 \end{cases}$ 9 $u_n = 2n-1$

بین أن $(w_n)_{n\geq 1}$ مصغور ة و $(v_n)_{n\geq 1}$ مكبورة بالعدد3 و (u_n) محدودة.

<u>2- المتتالية الرتبية</u>

تعريف

 $u_n \geq u_m$ تكون المتتالية $n \succ m$: I ترايدية اذا وفقط اذا كان لكل $n \in m$ و m من $n \succ m$: $n \succ m$ تستلزم $n \succ m$ ترايدية قطعا اذا وفقط اذا كان لكل $n \in m$ و $n \in m$ تستلزم $n \succ m$ تكون المتتالية $n \succ m$ تناقصية اذا وفقط اذا كان لكل $n \in m$ و $n \in m$ تستلزم $n \succ m$ تكون المتتالية $n \succ m$ تناقصية قطعا اذا وفقط اذا كان لكل $n \in m$ و $n \in m$ تستلزم $n \succ m$ تستلزم $n \succ m$ تكون المتتالية $n \succ m$ تناقصية قطعا اذا وفقط اذا كان لكل $n \in m$ من $n \succ m$ تستلزم $n \succ m$ تستلزم $n \succ m$

 $u_n=u_m$ تكون المتتالية I من I تابثة اذا وفقط اذا كان لكل n و m من I لدينا

أمثلة

 $v_n = -3n+5$ و $u_n = 2n-1$ حيث $u_n = 2n-1$ و (v_n) و أدرس رتابة المتتاليتين العدديتين (u_n)

نشاط

 $\forall n \in I \quad u_{n+1} \ge u_n \quad \Leftrightarrow$ برهن أن $\left(u_n\right)_{n \in I}$ متتالية تزايدية

<u>خاصیات</u>

$$I=\left\{n\in\mathbb{N}\,/\,n\geq n
ight\}$$
 لتكن $\left(u_{n}
ight)_{n\in I}$ متتالية $\left(u_{n}
ight)_{n\in I}$ متتالية تزايدية $\left(u_{n}
ight)_{n\in I}$

$$orall n\in I$$
 $u_{n+1}\succ u_n$ \Leftrightarrow قطعا u_{n+1} $v_n\in I$ $u_{n+1}\le u_n$ $v_n\in I$ $v_n\in I$

تمرين

: نعتبر المتتاليات العددية $\left(u_{n}
ight)_{n\geq1}$ و $\left(v_{n}
ight)_{n\geq1}$ المعرفة ب

$$\begin{cases} w_1 = 1 \\ w_{n+1} = \frac{1}{2}w_n + 1 \end{cases} \quad \mathbf{y} \quad v_n = \frac{2^n}{n} \quad \mathbf{y} \quad u_n = \frac{n}{n+1}$$

$$egin{aligned} \left(v_n
ight)_{n\geq 1} & \mathrm{e}\left(u_n
ight) & \mathrm{e}\left(u_n
ight) -1 \ orall n\in \mathbb{N}^* & w_n\prec 2 & \mathrm{e}^{-1} -2 \ \mathrm{e}\left(w_n
ight)_{n\geq 1} & \mathrm{e}^{-1} & \mathrm{e}^{-1} \end{aligned}$$
 بين أن $\left(w_n
ight)_{n\geq 1}$ تزايدية

III- <u>المتتالية الحسابية - المتتالية الهندسية</u>

A<u>- المتتالية الحسابية</u>

1- <u>تعریف</u>

 $orall n \geq n_0$ $u_{n+1} = u_n + r$ تكون متتالية $(u_n)_{n \geq n_0}$ حسابية اذا كان يوجد عدد حقيقي r بحيث بيسمى أساس المتتالية .

أمثلة

$$v_n=rac{1}{n}$$
 و $u_n=-2n+1$ حيث $\left(v_n
ight)_{n\geq 1}$ و $\left(u_n
ight)$ و بعتبر المتتاليتين $\left(u_n
ight)$ متتالية حسابية محددا أساسها. هل $\left(v_n
ight)_{n\geq 1}$ متتالية حسابية؟

2- <u>صيغة الحد العام - مجموع حدود متتابعة لمتتالية حسابية</u>

$$u_p$$
 حسابية أساسها r و حدها الأول $\left(\overline{u_n}\right)_{n\geq p}$ $\forall n\geq p$ $u_n=u_p+(n-p)r$ أنضع $S_n=u_p+u_{p+1}+.....u_{n-1}$ أنضع أن $r=1+2+3...+n=\frac{n(n+1)}{2}$ أن عدد حدود المجموع $r=1+2+3...+n=\frac{n(n+1)}{2}$ أن أن $r=1+2+3...+n=\frac{(n-p)(u_p+u_{n-1})}{2}$ أن أن $r=1+2+3...+n=\frac{(n-p)(u_p+u_{n-1})}{2}$

<u>خاصية</u>

$$\forall n \geq p$$
 $u_n = u_p + (n-p)r$ فان $u_n \geq p$ متتالية حسابية أساسها الخاكان $(u_n)_{n \geq p}$

$$orall n \in \mathbb{N}$$
 $u_n = u_0 + nr$ فان r متتالية حسابية أساسها - اذا كان (u_n) متتالية حسابية

$$orall n \geq 1$$
 $u_n = u_1 + \left(n-1\right)r$ فان r اذا کان $\left(u_n\right)_{n \geq 1}$ متتالیة حسابیة أساسها -

$$orall n \geq q \geq p$$
 $u_n = u_q + \left(n-q\right)r$ اذا کان $\left(u_n\right)_{n \geq p}$ متتالیة حسابیة أساسها - اذا کان -

<u>خاصية</u>

لتكن
$$\left(u_{_{n}}
ight)_{_{n\geq n_{_{0}}}}$$
 لتكن

$$S_n = \frac{(n-p)(u_p + u_{n-1})}{2}$$
 فان $S_n = u_p + u_{p+1} + \dots + u_{n-1}$ اذا کان

هو الحد الأخير u_{n-1} هو عدد حدود المجموع S_n هو الحد الأول للمجموع S_n هو الحد الأخير n-p S_n للمجموع

اذا کان
$$(u_n)$$
 متتالیة حسابیة فان S_n مجموع متتالیة حسابیة فان اذا کان اذا کان ا

$$S_n = u_0 + u_1 + \dots + u_{n-1} = \frac{n(u_0 + u_{n-1})}{2}$$

متالية حسابية فان S_n مجموع متالية حسابية فان $\left(u_n\right)_{n\geq 1}$ اذا کان

$$S_n = u_1 + u_2 + \dots + u_n = \frac{n(u_1 + u_n)}{2}$$

$$u_0 = -2$$
 لتكن $\left(u_n\right)$ متتالية حسابية اساسها3 و حدها الأول

 u_{200} بدلالة n وأحسب u_n بدلالة 1

2/ أحسب مجموع 100 حدا أولا للمتتالية

$$u_{30} = -40$$
 و $u_{50} = 20$ و متالية حسابية حيث (u_n) لتكن

 (u_n) حدد أساس ثم الحد العام للمتتالية /1

 $S = u_{15} + u_{16} + ... + u_{54}$ أحسب المجموع /2

$$S_n = 1 + 3 + 5 + \dots + (2n+1)$$
 أحسب

نعتبر المتاليتين المعرفتين ب
$$\begin{cases} u_0=1 &; \quad u_1=3\\ u_{n+2}=2u_{n+1}-u_n & \forall n\in\mathbb{N} \end{cases}$$

. متتالية ثابتة (v_n) متتالية ثابتة -1

. استنتج أن (u_n) متتالية حسابية و حدد عناصرها المميزة -2

 $S_n = \sum_{i=1}^{n} u_i$ بدلالة n . ثم أحسب u_n بدلالة -3

<u>B- المتتالية الهندسية</u>

 $\forall n \geq n_0 \quad u_{n+1} = qu_n$ تكون متتالية $(u_n)_{n \geq n_0}$ هندسـية اذا كان يوجد عدد حقيقي q بحيث العدد q يسمى أساس المتتالية .

أمثلة

$$\forall n \in \mathbb{N}$$
 $u_n = 3(2)^n$ متتالية حيث (u_n) متتالية هندسية محددا أساسها

$$v_n = u_n - 2$$
 و $u_1 = 1$ و $u_{n+1} = \frac{1}{2}u_n + 1$ و المعرفة ب $(v_n)_{n \geq 1}$ و $(u_n)_{n \geq 1}$ و $(u_n)_{n \geq 1}$ و نعتبر المتتاليتين العدديتين العدديتين محددا أساسها

2- صيغة الحد العام - مجموع حدود متتابعة لمتتالية هندسية

نشاط

q متتالية هندسية أساسها $\left(u_{\,n}\,
ight)_{n\geq n_0}$

$$u_n = u_{n_0} q^{n-n_0}$$
 ابين بالترجع أن /1

$$S_n = u_p + u_{p+1}$$
..... $+ u_{n-1}$ و $q \neq 1$ نعتبر /2

$$S_n - qS_n = u_p - u_n$$
 أ- بين أن

$$S_n = u_p \left(\frac{1 - q^{n-p}}{1 - q} \right)$$
 ب- استنتج أن

<u>خاصية</u>

 $orall n \geq n_0$ اذا کان $u_n = u_{n_0} q^{n-n_0}$ اذا کان $(u_n)_{n \geq n_0}$ متتالیة هندسیة أساسها q

 $orall n \in \mathbb{N}$ $u_n = u_0 q^n$ فان q فان $u_n = u_0 q^n$ متتالية هندسية أساسها

$$orall n \geq 1$$
 اذا کان $u_n = u_1 q^{n-1}$ فان q اساسے أساسے $\left(u_n\right)_{n \geq 1}$ - اذا كان -

$$orall n \geq p \geq n_0$$
 متتالية هندسية أساسها q فان q اذا كان $\left(u_n\right)_{n\geq n_0}$ متتالية هندسية أساسها -

أمثلة

$$u_0=5$$
 لتكن $\left(u_n
ight)$ متتالية هندسية أساسها $*$

$$n$$
 بدلالة (u_n) محدد الحد العام للمتتالية

$$u_5=-2$$
 لتكن $\left(v_n
ight)$ متتالية هندسية أساسها 3 و أحد حدودها *

$$n$$
 حدد الحد العام للمتتالية (v_n) بدلالة

خاصية

1لتكن q لتكن متتالية هندسية أساسها التكن لتكن

$$S_n=u_p\left(rac{1-q^{n-p}}{1-q}
ight)$$
 فان $S_n=u_p+u_{p+1}....+u_{n-1}$ اذا کان

 S_n و هو الحد الأول للمجموع S_n و S_n هو عدد حدود المجموع S_n

<u>ملاحظة</u>

يخالف 1 فان n مجموع n حدا أولا منها هو q إذا كان (u_n) متتالية هندسية أساسها q

$$S_n = u_0 + u_1 + u_1 + u_{n-1} = u_0 \left(\frac{1 - q^n}{1 - q} \right)$$

اذا کان n متتالیة هندسیة أساسها q یخالف n فان S_n مجموع n مجموع اولا منها هو

$$S_n = u_1 + u_2 + u_1 + u_2 + u_n = u_1 \left(\frac{1 - q^n}{1 - q} \right)$$

<u>حالة خاصة</u>

 $S_n = u_p + u_{p+1}$ يذا كانت $\left(u_n\right)_{n \geq n_0}$ متتالية هندسية أساسها 1 فان و المامي المامي متتالية المامية أساسها 1 فان $\left(u_n\right)_{n \geq n_0}$

تمرين

$$u_0=5$$
 لتكن $\left(u_n
ight)$ متتالية هندسية أساسها $-\frac{1}{2}$ و حدها الأول /1

$$n$$
 جدد الحد العام للمتتالية (u_n) بدلالة

$$u_5=-2$$
 لتكن $\left(v_n
ight)$ متتالية هندسية أساسها 3 و أحد حدودها /2

n حدد الحد العام للمتتالية (v_n) بدلالة

<u>تمرين</u>

 $S = 2 + 4 + 8 + 16.... + 2^n$ أحسب بدلالة n المجموع

مرين

 $n\in\mathbb{N}$ لكل $u_{n+1}=rac{1}{3}u_n-4$ و $u_0=-3$ بحيث: $(u_n)_{n\in\mathbb{N}}$ لكل

 $v_n = u_n + 6$ نضع

 v_0 وحدها الأول ومين أن q بين أن (v_n) متتالية هندسية وحدد أساسها

n ثم u_n بدلالة v_n احسب 2.

 $\mathbb N$ من $S_n=u_0+u_1+...+u_n$ من S_n الكل S_n بدلالة S_n