Uni.lu HPC School 2018

PS8: Bio-informatics workflows and applications

Uni.lu High Performance Computing (HPC) Team

V. Plugaru & S. Peter

University of Luxembourg (UL), Luxembourg http://hpc.uni.lu

Latest versions available on Github:

UL HPC tutorials:

https://github.com/ULHPC/tutorials

UL HPC School:

http://hpc.uni.lu/hpc-school/

PS8 tutorial sources:

https://github.com/ULHPC/tutorials/tree/devel/bio/basics/

2018

Summary

- Objectives
- 2 Bioinformatics packages
- 3 Notes
- 4 Practical session
- Conclusion

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

Why Bioinformatics? 3Vs:

very relevant in the context of the UL/LCSB

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

- \bullet very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

- \bullet very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Objective of this Session

Better understand the usage of Bioinformatics packages on the Uni.lu HPC Platform.

- very relevant in the context of the UL/LCSB
- very fast growing domain
- very many associated workflows, thus excellent examples

Summary

- Objective:
- 2 Bioinformatics packages
- 3 Notes
- 4 Practical session
- Conclusion

ABySS

ABySS: Assembly By Short Sequences a de novo, parallel, paired-end sequence assembler designed for short reads

ABySS

ABySS: Assembly By Short Sequences a de novo, parallel, paired-end sequence assembler designed for short reads

- several applications in the ABySS package
- only ABYSS-P is parallelized using MPI
 - \hookrightarrow started with the **abyss-pe** launcher
- workflow (pipeline) of abyss-pe also includes:
 - → OpenMP-parallel applications
 - → serial applications
- Note: compared with other de novo assemblers, the per-node memory requirements are smaller due to ABySS' task distribution model

Gromacs

GROMACS: GROningen MAchine for Chemical Simulations versatile package for molecular dynamics, primarily designed for biochemical molecules

Gromacs

GROMACS: GROningen MAchine for Chemical Simulations versatile package for molecular dynamics, primarily designed for biochemical molecules

- very large codebase: 1.836.917 SLOC
- many applications in the package, several parallelization modes
- mdrun: computational chemistry engine, performing:
 - \hookrightarrow molecular dynamics simulations
 - ⇔ Brownian Dynamics, Langevin Dynamics
 - \hookrightarrow Conjugate Gradient
 - \hookrightarrow L-BFGS
 - $\hookrightarrow \mathsf{Steepest}\ \mathsf{Descents}\ \mathsf{energy}\ \mathsf{minimization}$
 - \hookrightarrow Normal Mode Analysis
- mdrun parallelized using MPI, OpenMP, pthreads and with support for GPU acceleration

Bowtie2/TopHat

Bowtie2: Fast and sensitive read alignment

ultrafast & memory-efficient alignment of sequencing reads to long ref. sequences

TopHat: A fast spliced read mapper for RNA-Seq

alignment of RNA-Seq reads to a genome, to identify exon-exon splice junctions

Bowtie2/TopHat

Bowtie2: Fast and sensitive read alignment

ultrafast & memory-efficient alignment of sequencing reads to long ref. sequences

TopHat: A fast spliced read mapper for RNA-Seq

alignment of RNA-Seq reads to a genome, to identify exon-exon splice junctions

- TopHat aligns reads to mammalian-sized genomes using Bowtie
- then analyzes the mapping results to identify splice junctions between exons
- bowtie2 is OpenMP-parallel
- rest of workflow is sequential

mpiBLAST

mpiBLAST: Open-Source Parallel BLAST

parallel implementation of NCBI BLAST, scaling to hundreds of processors

mpiBLAST

mpiBLAST: Open-Source Parallel BLAST

parallel implementation of NCBI BLAST, scaling to hundreds of processors

- two main applications: mpiblast mpiformatdb
- requires (NCBI) substitution matrices and formatted BLAST databases
- the databases can be segmented

 - → or a multiple, in order to avoid load imbalance
- mpiblast requires >= 3 processes, 2 used for internal tasks
 - → mpirun -np 3 mpiblast [...] only gives you one searcher process!

Notes

Summary

- Objectives
- 2 Bioinformatics packages
- 3 Notes
- 4 Practical session
- Conclusion

Notes

Notes..

- .. on real world applications (bioinfo or others):
 - make sure you understand the parallel capabilities of your software
 - \hookrightarrow pthreads/OpenMP vs MPI vs hybrid
 - \hookrightarrow use of GPU acceleration

Notes

Notes..

- .. on real world applications (bioinfo or others):
 - make sure you understand the parallel capabilities of your software
 - \hookrightarrow pthreads/OpenMP vs MPI vs hybrid
 - \hookrightarrow use of GPU acceleration
 - make sure you request the appropriate resources for the processing needs of your workflow
 - \hookrightarrow Does the software always take advantage of more than 1 core or node?
 - → How does it scale? Many obstacles to perfect scalability!

Notes..

- .. on real world applications (bioinfo or others):
 - make sure you understand the parallel capabilities of your software
 - $\hookrightarrow \mathsf{pthreads}/\mathsf{OpenMP} \; \mathsf{vs} \; \mathsf{MPI} \; \mathsf{vs} \; \mathsf{hybrid}$
 - \hookrightarrow use of GPU acceleration
 - make sure you request the appropriate resources for the processing needs of your workflow
 - → Does the software always take advantage of more than 1 core or node?
 - → How does it scale? Many obstacles to perfect scalability!
- .. on data management:
 - make sure you use the appropriate storage place
 - \hookrightarrow \$HOME vs \$WORK vs \$SCRATCH
 - stage data in/out, archive your (many & unused) 'small' files

Practical session

Summary

- Objective:
- Bioinformatics packages
- 3 Notes
- Practical session
- Conclusion

Exercises

Read and understand the Bioinformatics tutorial

https://github.com/ULHPC/tutorials/tree/devel/bio/basics/

- Run the examples
 - \hookrightarrow all calculations should be fast
 - \hookrightarrow you should attempt the exercises proposed in each section
- Try even more tests, e.g.:
 - → on different node classes
 - \hookrightarrow with one core per node on >= 2 nodes
 - \hookrightarrow vs >= 2 cores on single node

Conclusion

Summary

- Objective:
- 2 Bioinformatics packages
- 3 Notes
- 4 Practical session
- **5** Conclusion

Conclusion

Conclusion

- Bioinformatics applications execution on the Uni.lu HPC Platform
- Outlined:
 - → different workflows
 - \hookrightarrow some of the concepts you should care about when running complex software

Perspectives

 Personalize the UL HPC launchers with the specific commands for ABySS, Gromacs, TopHat, Bowtie, mpiBLAST..

Thank you for your attention...

Questions?

http://hpc.uni.lu

High Performance Computing @ uni.lu

Prof. Pascal Bouvry Dr. Sebastien Varrette Valentin Plugaru Sarah Peter Hyacinthe Cartiaux Clement Parisot

University of Luxembourg, Belval Campus Maison du Nombre, 4th floor 2, avenue de l'Université L-4365 Esch-sur-Alzette mail: hpc@uni.lu

