Ejemplo

Suponga que $y_1, \dots, y_n | \theta$ son variables distribuidas normal e independientemente con media θ y varianza σ^2 conocida. Suponga que $p(\theta) \propto 1$ es la distribución a priori uniforme (impropia) sobre los números reales. Encuentre la distribución posterior de θ .

Definición

Sea $p(x|\theta)$ la densidad de x dado θ . La información de Fisher es definida como:

$$\mathbf{I}(\theta) = -E \left[\frac{\partial^2 \log(p(x|\theta))}{\partial \theta^2} \right]$$

Si $\theta = (\theta_1, \cdots, \theta_p)$, entonces:

$$\mathbf{I}(\boldsymbol{\theta}) = -E \left[\frac{\left[\partial^2 (\log(p(x|\boldsymbol{\theta})))}{\partial \theta_i \partial \theta_j} \right]_{\boldsymbol{p} \times \boldsymbol{p}},$$

en este caso $I(\theta)$ es una matriz de dimensión pxp.

$$p(oldsymbol{ heta}) \propto |\mathbf{I}(oldsymbol{ heta})|^{1/2}$$

Ejemplo

Se tienen v.a. independientes y_1, \dots, y_n Bernoulli con parámetro θ . Encontraremos la distribución a priori de Jeffreys para θ .

$$\frac{31000(310)}{300} = \frac{3}{9} + (-1) \frac{(1-3)}{(1-9)}$$

$$= \frac{3}{9} - \frac{(1-3)}{(1-9)^2}$$

$$= \frac{3}{9} - \frac{(1-3)}{(1-9)^2}$$

$$= \frac{3}{9} + \frac{(1-9)^2}{(1-9)^2}$$

$$= \frac{3}{9} + \frac{(1-9)^2}$$

Ejemplo

Se tiene $X \sim N(\mu, \sigma^2)$. Calculemos la distribución a priori de Jeffreys para (μ, σ) .

$$9/086(x/18/29) = -1 + (x-18/3)$$

 $9/086(x/18/29) = -1 + (x-18/3)$
 $9/086(x/18/29) = -1/08(24) - 108(2)$
 $-1/08(x/18/29) = -1/08(24) - 108(2)$
 $-1/08(x/18/29) = -1/08(24) - 108(2)$

73/086(X/M/2s) - - 23 221000(X111, T2) - 1 3 (X-U) 22 3°1086(X(M23) - 5 3°1086(X(M23) - 2 3°3 T (() - E - B - 2 () (- M) 1-2(DC-M) 1-3(X-M)²
52 54 $- \left\{ \left(-2 \left(x - 41 \right) \right) - \frac{2}{5^3} \left(\frac{\epsilon(x)}{x} - M \right) - 0 \right\}$

- E (1 - 3 (X - U) 2) - 1 3 E[(X-M)2] - 1 3 8 - 1 3 - 2 - 52 52 - 52 La a priori de Jeffreys es 76 2020 EE 11/2 P(U,5) X / I (U) / 1/2 2 (2) (2)1 72 Esta distribución a errori 26 26 E C 26 32 02 ; M6 20 610

Ejemplo

Suponga $X \sim N(\mu, 1)$ y $\psi(\mu) = e^{\mu}$. Encuentre la apriori de Jeffreys para $\psi(\mu)$.

$$(\mathbf{I}(\theta))^{1/2} = (\mathbf{I}(\psi(\theta)))^{1/2} \left| \frac{\partial \psi \theta}{\partial \theta} \right|$$

$$p(\theta) = p(\psi(\theta)) \left| \frac{\partial \psi(\theta)}{\partial \theta} \right|$$

$$| (\mathbf{X} \setminus \mathcal{U}, \mathbf{I}) - \mathbf{I} \setminus \mathbf{e} \times \mathbf{e} \times \mathbf{f} = \mathbf{I} \times \mathbf{e} \times \mathbf{f} \times \mathbf{f}$$

La a priori de. Jeççreys para M Tenemos 41M) es voa trons. formacisa uno a uno de 11. 2000 621061 ge Jeffreys 6020 (M) 63; - \ (e \) Q (W (M)) 2 e M