MATH 281B - Midterm 1 - Winter 2019

Use the notation defined in the summary sheet; otherwise, define any symbol you use. If you use a result from the summary sheet, specify it (e.g., "by M1"). Be concise and clear.

Problem 1.

B. Prove A1 in the summary sheet.

C. Prove M2 in the summary sheet.

D. Derive the Bayes estimator for θ under the loss $L(\theta,d) = 1_{ d-\theta >c}$, where $c>0$ is given.
E. Suppose we want to estimate $\theta \in \Omega = [a, b]$ based on $X \sim P_{\theta}$ under a loss function $L(\theta, d)$ which, for each θ fixed, is strictly decreasing on $(-\infty, \theta]$ and strictly increasing on $[\theta, \infty)$. Show that any estimator taking values outside
[a, b] with positive probability under some P_{θ_0} is inadmissible.
F. Consider a setting where $X \sim \text{Bin}(n,\theta)$ and the goal is to estimate $\theta \in [0,1]$ under squared error loss. The
estimation problem is invariant with respect to the group G induced by the transformation $gx = n - x$. Provide a sufficient condition on a prior Λ , with density λ with respect to the Lebesgue measure on $[0,1]$, such that the corresponding Bayes estimator is equivariant with respect to the action of G .

