$\mu_n C_{ox}$  = 200  $\mu$ A/V $^2$  ,  $\mu_p C_{ox}$  = 100  $\mu$ A/V $^2$  , NMOS  $V_{TH}$  = 0.4 V, PMOS  $V_{TH}$  = -0.4 V,

7.7 We wish to design the stage in Fig 7.40 for a drain current of 0.5 mA. If W/L = 50/0.18, calculate the value of  $R_1$  and  $R_2$  such that these resistors carry a current equal to one-tenth of  $I_{D1}$ .

$$V_{DD} = 1.8 \text{ V}$$

$$R_1 \geq 2 \text{ k}\Omega$$

$$R_2 \geq M_1$$
Fig. 7.40

7.17 We wish to design a stage of Fig 7.50 for a voltage gain of 5 with  $W/L \le 20/0.18$  Determine the required  $R_D$  if the power dissipation must not exceed 1 mW.



7.21 Explain which one of the topologies shown in Fig. 7.54 is preferred.



7.23 The CS stage shown in Fig. 7.56 must achieve a gain of 7. If  $(W/L)_2 = 2/0.18$ , compute the required value of  $(W/L)_1$ .

