

Software Design and Architecture			
Course Code:	SE-210	Semester:	5 th
Credit Hours:	3+1	Prerequisite Codes:	SE
Instructor:	Dr. Qaiser Riaz	Class:	BESE 5AB
Office:	A-103, IAEC Building	Telephone:	9085 2184
Lecture Days:	Mon., Thur., and Fri.	E-mail:	qaiser.riaz@seecs.edu.pk
Class Room:	TBA	Consulting Hours:	Tuesday 2-3 pm (by prior email)
Lab Engineer:	Nadeem Nawaz	Lab Engineer Email:	nadeem.nawaz@seecs.edu.pk
Knowledge Group:	Software Engineering	Updates on LMS:	After every lecture

Course Description:

Software Design & Architecture course is designed to help students to develop skills that will enable them to construct software of high quality, software that is reliable, easy to understand, modify and maintain. The course is important in relation to the core modules and helps the students to understand the Object oriented software design and to develop reusable software.

The course introduces principles of good design, object oriented software design and a number of architectural patterns like client server, multi layered architecture, Transaction processing, Pipes and filter, service oriented architecture, and cloud computing etc. These architectural patterns help the students to analyze the non-functional requirements. A particular emphasis is laid on the design process so that students can recognize the significance of design in maintaining the project.

Course Objective:

To enhance the abilities of students to develop reusable software designs. To introduce the students to the principles of good design, design approaches, paradigms and object-oriented concepts. In addition to this students will learn software architecture that represents the gross-level structure of software intensive systems and includes early design decisions that impact the quality of the overall system. Software architecture is generally considered to play a fundamental role in coping with the inherent difficulties of the development of large-scale and complex software systems. A common assumption is that architecture design can support the required software system qualities such as robustness, adaptability, reusability and maintainability. This course enables the students to apply architecture pattern, design principles on different real world problems.

Based on students' feedback, special emphasis will be given to the behavioral design patterns and the architectural views and patterns by including a case study on non-functional requirements and choice of architectural patterns. This will help students broadening their knowledge of handling and assessment of non-functional requirements in a real world problem.

Course Learning Outcomes (CLOs):			
Upon completion of the course, students should demonstrate the ability to: Mapping			BT Level*
CLO 1	Comprehend software design principles and fundamentals of design/architectural patterns.	PLO 1	C-2
CLO 2	Select appropriate design pattern and architectural pattern for a given problem.	PLO 2	C-6
CLO 3	Implement the design pattern and architectural pattern to fulfill given quality criteria	PLO 3	C-5
CLO 4	Analyze the quality of the implemented design and system architecture	PLO 4	C-6
	* BT= Bloom's Taxonomy, C=Cognitive domain, P=Psychomotor domain, A= Affective domain		

Program Learning Outcomes (PLOs):

PLO 1: Engineering Knowledge

An ability to apply knowledge of mathematics, science, engineering fundamentals and an engineering specialization to the solution of complex engineering problems.

PLO 2: Problem Analysis

An ability to identify, formulate, research literature, and analyze complex engineering problems reaching substantiated conclusions using first principles of mathematics, natural sciences and engineering sciences.

PLO 3: Design/Development of Solutions

An ability to design solutions for complex engineering problems and design systems, components or processes that meet specified needs with appropriate consideration for public health and safety, cultural, societal, and environmental considerations.

PLO 4: Investigation

An ability to investigate complex engineering problems in a methodical way including literature survey, design and conduct of experiments, analysis and interpretation of experimental data, and synthesis of information to derive valid conclusions.

PLO 5: Modern Tool Usage

An ability to create, select and apply appropriate techniques, resources, and modern engineering and IT tools, including prediction and modelling, to complex engineering activities, with an understanding of the limitations.

PLO 6: The Engineer and Society

An ability to apply reasoning informed by contextual knowledge to assess societal, health, safety, legal and cultural issues and the consequent responsibilities relevant to professional engineering practice and solution to complex engineering problems

PLO 7: Environment and Sustainability

An ability to understand the impact of professional engineering solutions in societal and environmental contexts and demonstrate knowledge of and need for sustainable development.

PLO 8: Ethics

Apply ethical principles and commit to professional ethics and responsibilities and norms of engineering practice.

PLO 9: Individual and Team Work

An ability to work effectively, as an individual or in a team, on multifaceted and /or multidisciplinary settings.

PLO 10: Communication

An ability to communicate effectively, orally as well as in writing, on complex engineering activities with the engineering community and with society at large, such as being able to comprehend and write effective reports and design documentation, make effective presentations, and give and receive clear instructions.

PLO 11: Project Management

An ability to demonstrate management skills and apply engineering principles to one's own work, as a member and/or leader in a team, to manage projects in a multidisciplinary environment.

PLO 12: Lifelong Learning

An ability to recognize importance of, and pursue lifelong learning in the broader context of innovation and technological developments.

То	Topics to be Covered:				
1.	Introduction to Software Design and Architecture	2.	Software Design Process and Principles (Class Level)		
3.	Software Design Process and Principles (Package Level)	4.	UML Revision and Software Design Patterns		
5.	Creational Design Patterns	6.	Structural Design Patterns		
7.	Behavioral Design Patterns	8.	Software Architecture I		
9.	Architectural Patterns and Styles	10.	Software Architecture Documentation and Evaluation		

11. Advanced Topics

Week No.	Topics	Assessment	Remarl
1 Introd	uction to Software Design & Architecture		
•	Importance of software design & architecture		
•	Levels of Designs		
•	Design Approaches		
•	Design Challenges		
•	Characteristics of Good and Bad design		
•	How to know and avoid a bad design		
2 Softw	are Design Process and Principles I		
2 30111	Software Design Process		
•	Class Level Software Design Principles (SOLID)		
·	Single responsibility principle (SRP)		
	 The Open-Closed Principle (OCP) 		
	The Liskov Substitution Principle (LSP)		
	The Liskov Substitution Frinciple (LSF) The Interface Segregation Principle (ISP)		
	 The Interface Segregation Principle (ISP) The Dependency Inversion Principle (DIP) 		
3 Softw	are Design Process and Principles II		
3 301tW	Structural vs Object-oriented Design		
•	Package Level Software Design Principles		
·	The Release Reuse Equivalency Principle		
	 The Release Reuse Equivalency Principle The Common Closure Principle 		
	The Common Reuse Principle		
	 The Stable Dependencies Principle The Stable Abstractions Principle 		
4 UML	Revision and Software Design patterns		
4 OIVIL	Design Patterns and their Usage		
•	Classification of Design Patterns (Creational, Structural, Behavioral)		
•	Creational Design Patterns I		
•	Factory Method		
•	Abstract Factory		
- C			
5 Creat	onal Design Patterns II		
•	Prototype Pattern		
•	Singleton Pattern		
•	Builder Pattern		
6 OHT-1			
7 Struct	ural Design Patterns I		
•	Adaptor Pattern		
•	Decorator pattern		
•	Façade Pattern		
•	Flyweight Pattern		
8 Struct	ural Design Patterns II		
•	Adapter Pattern		
•	Bridge Pattern		
•	Composite Pattern		
9 Behav	ioral Design Patterns I		
•	Observer Pattern		
•	Interpreter Pattern		
•	State Pattern		

18	ESE		
17	Project Presentations, demo and viva		
	Mobile-Cloud		
	 Service-Oriented Architecture, Design and Architecture for Systems of Systems, IOT, Cyber-physical, Cloud, 		
16	Advanced Topics		
	Architecture Tradeoff Analysis Method (ATAM)		
	Software Architecture Analysis Method (SAAM)		
15	Documenting Software Architecture and Architectural Views		
15	Software Architecture Documentation and Evaluation		
	 Quality and Reusability in Design and Architecture Case Study – Pattern-based Architecting 		
	Pipes and filter architecture Overline and Revealility in Design and Architecture		
14	Architectural Patterns and Styles II		
	Model view controller		
	Client-Server architectures		
	Layered architectures		
	Architecture Pattern vs Architecture Styles		
13	Architectural Patterns and Styles I		
12	OHT-2		
	 Architectural views (Logical Process Physical and Deployment views) 		
	Architecture Description Languages		
	Architectural descriptions using UML		
11	Software Architecture		
	Strategy Pattern		
	Command Pattern		
	Chain of Responsibility Pattern		
10	Behavioral Design Patterns II		

Lab Experiments:		
Lab 01	Introduction to Rational Rose, Class and Sequence Diagrams	
Lab 02	Class, Sequence Diagrams, Activity, State Transition Diagrams	
Lab 03	OO Design Principles (Class level)	
Lab 04	OO Design Principles (Package level)	
Lab 05	Architecture using UML: Package, Deployment, Component Diagrams	
Lab 06	Creational Design Patterns	
Lab 07	Structural Design Patterns	
Lab 08	Behavioral Design Patterns	
Lab 09	Architectural Views	
Lab 10	Development of Components in the form of Dynamic Link Libraries (DLL)	
Lab 11	Implementation of Key Word in Context (KWIC) system using pipes	
Lab 12	Implementation of Web based Client Server Application	
Lab 13	Model View Controller using ASP.net/Java	
Lab 14	Architecture Description Language (ADL)	

Tools / Software Requirement:

Rational Rose, Eclipse, J2EE, Visual Studio, ASP.Net

Books:

Text Book:	1.	Len Base, Paul Clements, Rick Kazman. Software Architecture in Practice. 3rd Edition, 2012, Addison, Wesley
	2.	Design Patterns: Elements of Reusable Object-Oriented Software, Erich Gamma, Richard Helm , Ralph Johnson, John Vlissides , Grady Booch
Reference		
	1.	Ian Gortan. Essentials Software Architecture. 2006. Springer.
Books:	2.	Timothy C. Lethbridge and Robert Laganière. Object-Oriented Software Engineering: Practical Software
		Development using UML and Java, 2nd Edition. 2005. McGraw Hill.
	3.	Mary Shaw and David Garlan. Software Architecture - Perspectives on an Emerging Discipline. 1996. Prentice Hall
	4.	Object-Oriented Systems Analysis and Design using UML, by Simon Bennett, McRobb & Farmer. 2010. McGraw-Hill
	5.	Evaluating Software Architecture: Methods and Case Studies, by Clements, P., Kazman, R., and Klein, M.
		SEI Series in Software Engineering, 2002, Addison-Wesley.

Course Assessment		
Exam:	2 One Hour Tests (OHT) and 1 End Semester Exam (ESE)	
Home work:	3 Assignments	
Lab Assignments:	12 Reports	
Design reports: 1 Design report for the term/semester project		
Quizzes:	4 - 5 Quizzes	

Theory	y: 75%
•	Quizzes: 15%
•	Assignments: 10%
•	OHT-1:15%
•	OHT-2:15%
•	End Semester Exam: 45%
Practio	ral: 25%
•	Labs Assignments: 70%
•	Semester Project: 30%

Grading Policy:		
Quiz Policy:	The quizzes will be unannounced and normally last for ten minutes. The question framed is to test the concepts involved in last few lectures. Number of quizzes that will be used for evaluation is at the instructor's discretion.	
Assignment Policy:	Late assignments will not be accepted / graded. All assignments will count towards the total (No 'best-of' policy). The students are advised to do the assignment themselves. Copying of assignments is highly discouraged and violations will be dealt with severely by referring any occurrences to the disciplinary committee. The questions in the assignment are meant to be challenging to give students confidence and extensive knowledge about the subject matter and enable them to prepare for the exams.	
Lab Conduct:	The labs will be conducted for three hours every week. A lab handout will be given in advance for study and analysis The lab handouts will also be placed on LMS. The students are to submit their results by giving a lab report at the end of lab for evaluation. One lab report per group will be required. However, students will also be evaluated by oral viva during the lab.	

Semester Project:

The basic aim of the semester project is to help students to practically deal and solve complex engineering problems. Students will propose features of a system having properties of a large-scale complex system, engineer its architectural design, and will implement at least one design pattern of choice from the following: creational, structural, behavioral, architectural design patterns. Each group will have to submit three reports: 1) features of the selected system, 2) architectural design of the selected system, 3) Implementation of selected design patterns. The evaluation will be based on the submitted reports, presentation/demo, and viva.

Plagiarism:

SEECS maintains a zero tolerance policy towards plagiarism. While collaboration in this course is highly encouraged, you must ensure that you do not claim other people's work/ ideas as your own. Plagiarism occurs when the words, ideas, assertions, theories, figures, images, programming codes of others are presented as your own work. You must cite and acknowledge all sources of information in your assignments. Failing to comply with the SEECS plagiarism policy will lead to strict penalties including zero marks in assignments and referral to the academic coordination office for disciplinary action.