# MARKER FOR GROVER ADAPTIVE SEARCH BASED CONSTRAINED POLYNOMIAL OPTIMIZATION: ANALYSIS OF COMPLEXITY

#### Goal

Given an integer-valued function  $f: \mathbb{F}_2^n \to \mathbb{Z}$  in n boolean variables (the objective function), an integer-valued function  $C: \mathbb{F}_2^n \to \mathbb{Z}$  in n-boolean variables (the constraint function) and a threshold  $t \in \mathbb{Z}$ , write a qiskit function that outputs the marker oracle  $U_{f,t,C}$  such that

$$U_{f,t,C}|x\rangle|y\rangle_1 = \begin{cases} |x\rangle|y\oplus 1\rangle & \text{if } f(x) > t \text{ and } C(x) \ge 0, \\ |x\rangle|y\rangle & \text{otherwise.} \end{cases}$$

The implementation may use any number of ancillas, MCX gates and 1-qubit gates.

The marker oracle is implemented using the ideas in [GWG21].

# Encoding an integer valued function in several boolean variables

Let  $f: \mathbb{F}_2^n \to \mathbb{Z}$  be the function to be encoded. We first note that any such function has to be a polynomial of degree at most n since  $x_i^2 = x_i$  for a boolean variable. Moreover, we have  $\binom{n}{k}$  monomials of degree k,  $0 \le k \le n$ . Hence, any such f is a  $\mathbb{Z}$ -linear combination of a total of  $2^n$  monomials (including the degree 0 constant monomial).

On the input side we use binary numbers to represent arbitrary monomials. A total of n-qubits are needed for the  $2^n$  possible inputs. A monomial

$$m_{i_0\cdots i_{n-1}}=x_0^{i_0}x_1^{i_1}\cdots x_{n-1}^{i_{n-1}},$$

where  $i_k \in \{0, 1\}$  is represented by the number corresponding to the binary string  $i_{n-1} \cdots i_1 i_0$ . Then we have

$$f = \sum_{i_0, \dots, i_{n-1} \in \mathbb{F}_2} f(i_{n-1} \dots i_1 i_0) \, m_{i_0 i_1 \dots i_{n-1}} \equiv \sum_{j=0}^{2^n - 1} f(j) \, m_j \,. \tag{1}$$

Thus, we can encode f as a list  $[f(0), f(1), \ldots, f(2^n - 1)]$  of length  $2^n$ , and f(j) is the coefficient of the monomial corresponding to the binary string representing j. Note the left most qubit here is the most significant.

#### **Implementation of monomials using quantum gates**

As in [GWG21], a monomial of degree k can be implemented by a k-controlled  $U_G(\theta)$  gate. The  $U_G(\theta)$  gate when composed after the Hadamard gate generates a geometric sequence

$$U_G(\theta) H^{\otimes m} |0\rangle_m = \frac{1}{\sqrt{2^m}} \sum_{a=0}^{2^m-1} e^{ia\theta} |a\rangle_m.$$

Date: June 2, 2025.

Using the inverse quantum Fourier transform we have

$$QFT^{\dagger} U_{G} \left( \frac{2\pi f(j)}{2^{m}} \right) H^{\otimes m} |0\rangle_{m} = \frac{1}{\sqrt{2^{m}}} \sum_{a=0}^{2^{m}-1} e^{ia2\pi f(j)/2^{m}} |a\rangle_{m} = |f(j)\rangle_{m}.$$

This gives representation of an integer on m-qubits. The representation is understood to be in 2's complement. Thus we have  $-2^{m-1} \le f(j) < 2^{m-1}$ , with the understanding that

$$2^{m-1} + z = 2^{m-1} + z - 2^m = -(2^{m-1} - z), \quad 0 \le z \le 2^{m-1} - 1.$$

The controlled version of  $U_G(2\pi f(j)/2^m)$  is then used to implement a monomial  $f(j) m_j$  in (1) by controlling the m-qubit gate  $U_G(2\pi f(j)/2^m)$  from the input register qubits which correspond to a 1. For instance, the constant monomial will be not controlled at all, the monomial  $x_i$  will be controlled by 1-qubit, namely qubit i, the monomial  $x_i x_j$ , ( $i \neq j$ ), will be controlled by qubits i, j, and so on. In general a k-degree monomial will be controlled by k-qubits in the input register, precisely those which would be 1 in the binary string representing the corresponding monomial.

Figure 1 below shows the implementation of  $f(x_0, x_1) = 1 + 2x_0 + 3x_1 + 4x_0x_1$  using one  $U_G(\pi/8)$  gate, two 1-qubit controlled gates  $CU_G(\pi/4)$  and  $CU_G(3\pi/8)$ , and one 2-qubit controlled gate  $C^2U_G(\pi/2)$ . The ancillas are needed only for implementing the MCP gates from mcx and 1-qubit phase and Hadamard gates, used in implementing multi-controlled  $U_G(\theta)$  gates



Figure 1. Encoding a polynomial

## Implementing the oracle

Figure 2 below shows the implementation of marker oracle circuit  $U_{f,t,C}$  using the circuit above used to encode a multivariable boolean function. The qubit in  $y_0$  is flipped iff f(x) > t. This is done by changing f(x) to f(x) - t and then observing the most significant qubit of the output, which encodes the sign. Similarly, the qubit in  $y_1$  is flipped iff  $C(x) \ge 0$ . While  $C(x) \ge 0$  can be implemented using controls from only the sign qubit, to implement the strict inequality f(x) > t, we also need to use controls from other output qubits. Finally, the qubit  $y_2$  is flipped iff f(x) > t and  $f(x) \ge 0$ .



Figure 2. Encoding a polynomial

## **Analysis of space and time complexity**

Suppose the output is stored in an m-qubit register. One can implement  $U_G(\theta)$  using m 1-qubit phase gates. The 1-qubit controlled version of  $U_G(\theta)$  requires m CP-gates, each of which requires 2 CX and 3 phase gates. Both of these do not require any ancillas. For  $k \ge 2$ , a k-controlled version of  $U_G(\theta)$  requires m MCP-gates, each of which requires 3 MCX gates and 3 phase gates, along with 1 ancilla. A function encoding unit requires m Hadamard gates, one  $U_G(\theta)$  gate, n C $U_G(\theta)$  gates and  $(2^n - n - 1)$ 

 $MCU_G(\theta)$  gates, along with an inverse QFT gate. The inverse QFT on m qubits is implemented using m Hadamard gates, m(m-1)/2 CP-gates and m/2 swap gates. The swap gates are implemented using 3 CX-gates. The number of gates and ancillas used in each module of the function encoding unit can be described in the following table:

| Module                 | 1-qubit Gates                 | mcx gates  | Ancillas |
|------------------------|-------------------------------|------------|----------|
| $U_G(	heta)$           | <i>m</i> p-gates              | 0          | 0        |
| $\mathrm{C}U_G(	heta)$ | 3 <i>m</i> p-gates            | 2m         | 0        |
| $MCU_G(\theta)$        | 3m p-gates                    | 3 <i>m</i> | m        |
| IQFT(m)                | m h-gates $3m(m-1)/2$ p-gates | 3 <i>m</i> | m        |

Table 1. Poles of the *R*-matrix  $\check{R}(z)$  for type  $U_q(\mathbb{E}_8^{(1)})$ .

## REFERENCES

[GWG21] A. Gilliam, S. Woerner, and C. Gonciulea, *Grover Adaptive Search for Constrained Polynomial Binary Optimization*, Quantum, **5**, (2021), 428.