Resumo

Por $\mathcal{A}lef\ \mathcal{K}euffer$

Exemplos

De problemas de decisão decidíveis

Seja L uma linguagem recursiva. Dada uma palavra w, tem-se $w \in L$

De problemas de decisão indecidíveis

- Dada uma palavra $w \in x. y^*$, tem-se $w \in \operatorname{AutoAceite}$?
 - devido a AutoAceite ser não recursiva. Não existe algoritmo que decida AutoAceite. No entanto esta linguagem é recursivamente enumeravel. Diz-se então que o problema é semi-decidível (isto significa que existe uma máquina de Turing que permite responder nos casos afirmativos, ou seja, nos casos em que w é uma palavra de AutoAceite).
- Aceita $_w(\mathcal{T})$ [Aceitação]
 - \circ AceitaTudo(\mathcal{T})
 - \circ Aceita_{ε}(\mathcal{T})
- $\operatorname{Para}_w(\mathcal{T})$ [Paragem]
 - \circ AceitaNada(\mathcal{T})
 - $\circ \operatorname{Para}_{\varepsilon}(\mathcal{T})$
- Equiv $(\mathcal{T}_1, \mathcal{T}_2)$: " $L(\mathcal{T}_1) = L(\mathcal{T}_2)$ "
- Sub $(\mathcal{T}_1, \mathcal{T}_2)$: " $L(\mathcal{T}_1) \subseteq L(\mathcal{T}_2)$ "
- " $L(\mathcal{T}_1) \cap L(\mathcal{T}_2) = \emptyset$ "

De linguagens não recursivamente enumeráveis

• NãoAutoAceite

De linguagens recursivamente enumeráveis não recursivas

• AutoAceite

De problemas indecidíveis sobre linguagens recursivamente enumeráveis

- $\varepsilon \in L$
- $L = \emptyset$
- $L = A^*$

De prova usando teorema de Rice

Diga se a afirmação é verdadeira ou falsa justificando.

O problema "Dada uma máquina de Turing ${\mathcal T}$, será que $L({\mathcal T})\subseteq a^*$?" e decidivel

Seja
$$d=L(\mathcal{T})$$

Note que $d \in D = \{L : L \text{ \'e uma linguagem} \}$ recursivamente enumerável

Seja
$$P(x)$$
 : " $x \subseteq a^*$ " para $x \in D$.

Note que P não é trivial porque $a^*,b^*\in D$ mas $P(a^*)$ é verdade e $P(b^*)$ é falso.

Logo, pelo Teorema de Rice, P é indecidível.

Observações

 AutoAceite contém palavras que codificam máquinas de Turing que reconhecem sua codificação.

Máquinas Auxiliares

- Escreve_w
- ApagaFita

Definições

Função característica

Seja L uma linguagem sobre um alfabeto A. A função característica de L é a função

$$\chi_L:A^* o\{0,1\}$$

definida para cada $u \in A^*$, por

$$\chi_L(u) = \left\{ egin{array}{l} 1 ext{ se } u \in L \ 0 ext{ se } u
otin L \end{array}
ight.$$

Definição 1

Seja $L\subseteq A^*$ uma linguagem e seja $\mathcal T$ uma máquina de Turing com alfabeto de entrada A. Diz-se que

- \mathcal{T} aceita ou reconhece L se $L = L(\mathcal{T})$.
- ${\mathcal T}$ decide L se a função característica χ_L é calculada por ${\mathcal T}$.

Definição 2

Uma linguagem L diz-se

- recursivamente enumerável se existe uma MT que reconhece L.
- recursiva (ou decidivel) se existe uma MT que decide L.

Função Codificadora

$$c: \operatorname{MT_N} o \{x,y\}^* \ \mathcal{T} \mapsto c(\mathcal{T})$$

•
$$c'(q_i) = c'(s_i) = x^{i+1}$$

•
$$c'(C) = x, c'(E) = x * 2, c'(D) = x^3$$

Note-se em particular,

•
$$c'(\Delta) = c'(s_0) = x e c'(f) = c'(q_0) = x$$

A cada transição e, descrita por $\delta(q,t)=(q',t',m)$

$$c'(e) = c'(q)yc'(t)yc'(q')yc'(t')yc'(m)y$$

Depois, codifica-se a máquina de Turing ${\mathcal T}$ pela palavra

$$c(\mathcal{T}) = c'(q_i)yc'(e_1)yc'(e_2)\cdots yc'(e_k)y$$

onde q_i é o estado inicial de \mathcal{T} e e_1, e_2, \ldots, e_k são as transições de \mathcal{T} numa ordem fixada previamente.

Pode também codificar-se cada palavra $w=r_1r_2\cdots r_n$, onde $r_i\in\mathcal{S}$, por

$$c(w) = yyc'(r_1)yc'(r_2)\cdots yc'(r_n)y$$

Quando se considera uma sequência

$$c(\mathcal{T})c(w) = c'(q_i)yc'(e_1)yc'(e_2)\cdots yc'(e_k)yyyc'(r_1)yc'(r_2)\cdots yc'(r_n)y$$

fica claro onde $c(\mathcal{T})$ termina devido ao prefixo yy de c(w).

Exemplo

$$c(\mathcal{T}) = \underbrace{x^2}_{c'(q_1)} \underbrace{yx^2yxyx^3yy}_{c'(e_1)} \underbrace{yx^3yx^2yx^3yx^3yx^3yy}_{c'(e_2)} \underbrace{yy \cdots}_{c'(e_2)}$$

Proposicões e Teoremas

 ${f Proposição}$ 1. Sejam L e K linguagens sobre um alfabeto A

- Se L e K são recursivas (resp. recursivamente enumeráveis), então $L \cup K$ e $L \cap K$ são recursivas (resp. recursivamente enumeráveis).
- Se L é recursiva, então \overline{L} e recursiva.

Teorema [Post, 1943]. Uma linguagem L é recursiva se e só se L e \overline{L} são recursivamente enumeráveis.

 Proposição 2. Sejam P e P^\prime dois problemas de decisão tais que $P < P^\prime$

- Se P' é decidível, então P é decidível.
- Se P é indecidível, então P^\prime é indecidível.
- Se P^\prime e semi-decidível, então P e semi-decidível.

Teorema [Rice, 1953]. Se P é uma propriedade não trivial sobre linguagens recursivamente enumeráveis, então P é indecidível.

Convenções

Convenção 1. Assume-se que existem dois conjuntos enumeráveis

$$Q = \{q_0, q_1, \ldots\}$$
 e $S = \{s_0, s_1, \ldots\}$

tais que, para cada máquina de Turing,

$$\mathcal{T} = (Q, A, T, \delta, i, f, \Delta)$$

se tem

- $ullet \ Q\subseteq \mathcal{Q}$, com $f=q_0$
- $T \subseteq \mathcal{S}$, com $\Delta = s_0$

Diz-se que $\mathcal T$ é normalizada se todos os estados e todos os símbolos não brancos de $\mathcal T$ pertencem a alguma transição.