

Theoretische Informatik

Prof. Dr. Juraj Hromkovič Dr. Hans-Joachim Böckenhauer http://www.ita.inf.ethz.ch/theoInf18

Sessionsprüfung

Zürich, 7. Februar 2019

Aufgabe 1

(a) Konstruieren Sie einen deterministischen endlichen Automaten (in graphischer Darstellung), der die Sprache

$$L = \{awb \mid w \in \{a, b\}^* \text{ und } |w|_a \text{ mod } 3 = |w|_b \text{ mod } 3\}$$

akzeptiert.

(b) Geben Sie für jeden Zustand q Ihres in Aufgabenteil (a) konstruierten Automaten die Zustandsklasse Kl[q] an.

5+5 Punkte

Aufgabe 2

(a) Zeigen Sie mit der Methode der Kolmogorov-Komplexität, dass die Sprache

$$L_1 = \{1^{n^3} 0^n \mid n \in \mathbb{N}\}\$$

nicht regulär ist.

(b) Zeigen Sie, dass die Sprache $L_2 = L(G)$, die von der kontextfreien Grammatik $G = (\{S\}, \{[,]\}, P, S\}$, wobei

$$P = \{S \to SS, S \to [S], S \to \lambda\},\$$

erzeugt wird, nicht regulär ist.

(c) Zeigen Sie, dass jeder deterministische endliche Automat, der die Sprache

$$L_3 = \{w \in \{a, b, c\}^* \mid (|w|_a + |w|_b) \bmod 3 = |w|_c \bmod 3$$
 und w endet mit $c\}$

akzeptiert, mindestens 4 Zustände hat.

5+5+5 Punkte

Aufgabe 3

- (a) Formulieren Sie das Pumping-Lemma für kontextfreie Sprachen.
- (b) Verwenden Sie das Pumping-Lemma für kontextfreie Sprachen, um zu zeigen, dass die Sprache

$$L = \{a^n b^{2n} c^{3n} \mid n \in \mathbb{N}\}$$

über dem Alphabet $\{a, b, c\}$ nicht kontextfrei ist.

(c) Entwerfen Sie eine allgemeine Grammatik über dem Terminalalphabet $\{a, b, c\}$, die die Sprache L aus Aufgabenteil (b) erzeugt, und beschreiben Sie informell die Idee Ihrer Konstruktion.

2+4+4 Punkte

Aufgabe 4

- (a) Zeigen Sie $(L_{\text{diag}})^{\complement} \leq_{\text{EE}} L_{\text{U}}$, indem Sie eine konkrete Reduktion angeben und ihre Korrektheit beweisen.
- (b) Für zwei beliebige Wörter $w_1, w_2 \in \{0, 1\}^*$ mit $w_1 \neq w_2$ sei die Sprache L_{w_1, w_2} definiert als

$$L_{w_1,w_2} = \{ \operatorname{Kod}(M) \mid M \text{ ist eine TM und } w_1 \in L(M) \text{ und } w_2 \notin L(M) \}.$$

Zeigen Sie, dass für alle Wörter $w_1, w_2 \in \{0, 1\}^*$ mit $w_1 \neq w_2$ gilt, dass $L_U \leq_{\text{EE}} L_{w_1, w_2}$, indem Sie eine konkrete Reduktion angeben und ihre Korrektheit beweisen.

(c) Wir betrachten die Sprache

$$L_{\text{not-all-length-2}} = \{ \text{Kod}(M) \mid M \text{ ist TM und } \Sigma^2 \not\subseteq L(M) \}.$$

Zeigen Sie, dass $L_{\text{not-all-length-2}} \notin \mathcal{L}_{\text{RE}}$ gilt. Sie dürfen hierfür alle aus der Vorlesung bekannten Ergebnisse verwenden.

(d) Kann es zwei Sprachen $L_1 \notin \mathcal{L}_{RE}$ und $L_2 \in \mathcal{L}_{RE}$ geben, so dass $L_1 \leq_R L_2$ gilt? Begründen Sie Ihre Behauptung.

3+5+5+2 Punkte

Aufgabe 5

Das Subset-Sum-Problem (kurz SUBSET-SUM) ist das folgende Entscheidungsproblem: Gegeben eine endliche Menge $S = \{s_1, \ldots, s_m\}$ von natürlichen Zahlen, und eine natürliche Zahl t, ist zu entscheiden, ob es eine Teilmenge $U \subseteq S$ gibt, so dass $\sum_{x \in U} x = t$.

Das Mengen-Partitions-Problem (kurz PARTITION) ist das folgende Entscheidungsproblem: Gegeben ist eine Menge $S = \{s_1, \ldots, s_m\}$ von natürlichen Zahlen. Die Frage ist, ob sich S so in zwei Mengen U_1 und U_2 aufteilen lässt, dass $U_1 \cup U_2 = S$, $U_1 \cap U_2 = \emptyset$ und $\sum_{x \in U_1} x = \sum_{y \in U_2} y$ gelten.

- (a) Zeigen Sie, dass PARTITION \in NP.
- (b) Zeigen Sie SUBSET-SUM \leq_p PARTITION.