Într-un graf orientat, avem 2 definiții de conexitate.

Un graf orientat este **slab conex** dacă există un drum de la oricare nod la oricare altul, **considerând muchiile grafului neorientate.**

Un graf orientat este tare conex dacă există un drum de la oricare nod la oricare altul.

Într-un graf orientat, avem 2 definiții de conexitate.

Un graf orientat este **slab conex** dacă există un drum de la oricare nod la oricare altul, **considerând muchiile grafului neorientate.**

Un graf orientat este tare conex dacă există un drum de la oricare nod la oricare altul.

Graful este slab conex.

Graful **nu** este tare conex.

□ nu există drumul s→v

Ce element al grafului ne poate da informații despre componentele tare conexe?

Ce element al grafului ne poate da informații despre componentele tare conexe?

Observație

Componentele tare conexe ale lui G = componentele tare conexe ale lui G^T

Observație

Componentele tare conexe ale lui G = componentele tare conexe ale lui G^T

Algoritm

Componente tare conexe - Algoritm

Următorul algoritm de timp liniar (adică $\theta(V+E)$) determină componentele tare conexe ale unui graf orientat G = (V, E), folosind două căutări în adâncime, una în G și una în G^T.

Componente-Tare-Conexe(G)

- 1. apelează CA(G) pentru a calcula timpii de terminare f[u] pentru fiecare vârf u
- calculează G[™]
- 3. apelează CA(G^T), dar, în bucla principală a lui CA, consideră vârfurile în ordinea descrescătoare a timpilor f[u] (calculați la linia 1)
- afișează vârfurile fiecărui arbore din pădurea de adâncime din pasul 3 ca o componentă tare conexă separată

Componente tare conexe - Algoritm Kosaraju

Următorul algoritm de timp liniar (adică $\theta(V+E)$) determină componentele tare conexe ale unui graf orientat G = (V, E), folosind două căutări în adâncime, una în G și una în G^T.

Componente-Tare-Conexe(G)

- 1. apelează CA(G) pentru a calcula timpii de terminare f[u] pentru fiecare vârf u
- calculează G^T
- 3. apelează CA(G^T), dar, în bucla principală a lui CA, consideră vârfurile în ordinea descrescătoare a timpilor f[u] (calculați la linia 1)
- 4. afișează vârfurile fiecărui arbore din pădurea de adâncime din pasul 3 ca o componentă tare conexă separată

Componente tare conexe - Schiță demonstrație

Lemă: Dacă două vârfuri se află în aceeași componentă tare conexă, atunci niciun drum între ele nu părăsește, vreodată, această componentă tare conexă.

Demonstrație

Fie u și v două noduri din componenta tare conexă.

Presupunem că există w în afara componentei și există drum u→v prin w.

Atunci avem drum de la u la w, dar avem şi drumul w→v→u, deci şi drum de la w la u.

Deci, w este în componenta tare conexă.

