

Departamento de Matemática

Ayudantía 9 Matemática IV (MAT-024) Jueves 18 de Noviembre de 2021

Problema 1. Calcular las integrales:

- (a) $\iint_S xyz \, dS$, donde S es la parte del plano x+y+z=1 que está en el primer octante.
- (b) $\iint_S xy \, dS$, donde S es la parte del cilindro $x^2 + z^2 = 1$ que se encuentra en el primer cuadrante y esta acotada por el plano y = x.

Problema 2. Hallar el área la porción de la esfera $x^2 + y^2 + z^2 = a^2$ incluida dentro del cilindro $x^2 + y^2 = ay$, con a > 0.

Problema 3. Sea, $f: \mathbb{R}^3 \to \mathbb{R}$, $(x,y,z) \mapsto z$ una función. Dado a>0 definamos la superficie que sigue:

$$S := \left\{ (x, y, z) \in \mathbb{R}^3 : x^2 + z^2 = 2az, z \ge \sqrt{x^2 + y^2} \right\}$$

Es decir, S es la parte de la superficie $x^2+z^2=2az$, (a>0), recortada por la superficie $z=\sqrt{x^2+y^2}$. Calcular la integral $\iint_S z\,dS$.

Problema 4. Sea γ la hélice $(\cos(\theta), \theta, \sin(\theta))$ con $0 \le \theta \le \pi$ y S la superficie que se forma al unir cada punto de γ con el origen, mediante un segmento de recta.

Si la densidad de masa es $\delta(x,y,z)=y$, entonces el momento de inercia respecto del eje y es: