Notes of "Linear Form"

Jinxin Wang

1 Overview

- Linear form, dual space and dual basis of a vector space
 - Def: A linear form (or linear functional or covector) of a vector space
 - Examples of linear forms of vector spaces
 - * Eg: $f(x_1, x_2, \dots, x_n) = \sum_{i=1}^n a_i x_i$ is a linear map from K^n to K
 - * Eg: $\int_a^b f(x)dx$ is a linear map from the space of all continuous functions on [a,b] to $\mathbb R$
 - * Eg: $Tr: M_n(\mathbb{R}) \to \mathbb{R}, M \mapsto Tr(M)$ is a linear map from $M_n(\mathbb{R})$ to \mathbb{R}
 - Rmk: A necessary and sufficient condition to determine a linear form of a space
 - Rmk: The set of linear forms from a vector space V to its field K is a subspace of K^V
 - Def: The dual space of a vector space
 - Rmk: A basis of the dual space of a finite-dimensional space
 - Thm: The dimension of the dual space of a finite-dimensional space and the dual basis of a basis of the space
 - Examples of dual space and dual basis
 - * Eg: The dual space of $P_n = \langle 1, t, t^2, \dots, t^{n-1} \rangle$ and the dual basis of the basis $1, t, t^2, \dots, t^{n-1}$ of the space P_n
 - * Eg: The dual space of $V = \langle \sin t, \sin 2t, \sin 3t, \dots, \sin nt \rangle$ and the dual basis of the basis $\sin t, \sin 2t, \sin 3t, \dots, \sin nt$ of the space V
- A natural isomorphism from a space to the dual space of its dual space
 - Rmk: The motivation of examining V^{**}
 - Thm: The map $f: x \mapsto f_x$ where $f_x: V^* \to K, \alpha \mapsto \alpha(x)$ is a (linear) isomorphism from V to V^{**}
 - * Rmk: The (linear) isomorphism $f: x \mapsto f_x$ is natural
 - * Rmk: The symmetry between V and V^* through the isomorphism from V to V^{**}
 - Cor: The one-to-one correspondence between basis of V and basis of V^*
 - Rmk: The conclusion about the equality of the dimension of a finite-dimensional space and the dimension of its dual space doesn't hold for infinite-dimensional spaces and the counterexample of K|x|

- Application of linear form: determine the rank of a set of vector in a space
 - Lma: The determinant of n linear forms on n linear dependent vectors in a space is 0
 - Lma: A necessary and sufficient condition for a set of vectors to be linear independent in terms of the determinant of a basis of V^* on those vectors
 - Thm: The rank of a set of vectors in a space V is the same as the rank of the matrix consists of the basis of V^* on those vectors
- A natural correspondence from subspaces of a space to subspaces of its dual space
 - Def: The annihilator of a subspace of a space
 - * Rmk: The annihilator of a subspace of a space is a subspace of its dual space
 - Thm: The dimension of the annihilator in terms of the dimension of the space and the subspace
 - Thm: The annihilator of the annihilator of a subspace give rise to the subspace itself under the isomorphism
 - Cor: The correspondence between subspaces of a space and subspaces of its dual space in terms of annihilators
- A geometric interpretation of the solution space of a homogeneous linear system
 - Rmk: The generalization of homogeneous linear systems on a vector space
 - Thm: The dimension of the solution space can be determined by the dimension of the space and the rank of the set of linear forms
 - Thm: Every subspace of a vector space is the solution space of a homogeneous linear system on the space

2 Linear form, dual space and dual basis of a vector space

3 A natural isomorphism from a space to the dual space of its dual space

Theorem 1 (The map $f: x \mapsto f_x$ where $f_x: V^* \to K, \alpha \mapsto \alpha(x)$ is a (linear) isomorphism from V to V^{**}). The map $f: x \mapsto f_x$ where $f_x: V^* \to K, \alpha \mapsto \alpha(x)$ is a (linear) isomorphism from V to V^{**}

证明. First, we need to prove that $f_x: V^* \to K, \alpha \mapsto \alpha(x)$ is a linear form of V^* .

$$f_x(a\alpha + b\beta) = (a\alpha + b\beta)(x)$$
$$= a(\alpha(x)) + b(\beta(x))$$
$$= a(f_x(\alpha)) + b(f_x(\beta))$$

From this we can confirm that $f: x \mapsto f_x$ is a map from V to V^{**} .

Second, we need to prove that f is a linear map from V to V^{**} .

Third, we need to prove that f is bijective. To prove this, we can prove that f maps a basis of V to a basis of V^{**} .

- 4 Application of linear form: determine the rank of a set of vector in a space
 - 5 A natural correspondence from subspaces of a space to subspaces of its dual space
 - 6 A geometric interpretation of the solution space of a homogeneous linear system