Barème sur 15 points

Durée: 1 heure 45 minutes

Contrôle de géométrie analytique N°4

NOM:		
	Groupe	
PRENOM:	 _	

1. Dans le plan muni du repère orthonormé $R_e = (O, \vec{e}_1, \vec{e}_2)$, on définit la conique C par son équation cartésienne :

$$C: x^2 + 8xy + 7y^2 + 10x - 14y - 11 = 0.$$

- a) Montrer que C est une hyperbole, déterminer son équation réduite et le repère R_u dans lequel l'équation est réduite.
- b) Déterminer les coordonnées des sommets (A, A') et l'équation cartésienne des asymptotes de $\mathcal C$ dans le repère R_e .
- c) Représenter avec soin et précision l'hyperbole $\mathcal C$ dans le repère R_e (unité = 1 carré).

6 pts

2. Dans le plan muni d'un repère orthonormé, on donne deux points A(-2,0) et B(2,0) et une droite horizontale c d'équation $y=m\,,\quad m\in\mathbb{R}\,.$

Soit C un point courant de la droite c.

On considère, dans le triangle ABC, la médiane g issue du sommet A, la hauteur h issue du sommet B et le point P intersection des droites g et h.

- a) Déterminer l'équation cartésienne du lieu de $\,P\,$ lorsque le point $\,C\,$ décrit la droite $\,c\,$.
- b) Déterminer en fonction de $\ m$ la nature géométrique de ce lieu.

4.5 pts

3. Dans le plan muni d'un repère orthonormé, on donne les coordonnées d'un point S, les composantes d'un vecteur \vec{u} et l'équation cartésienne d'une droite t.

$$S(5, 2), \quad \vec{u} = \begin{pmatrix} 3 \\ 4 \end{pmatrix} \quad \text{et} \quad t: 11x - 2y - 26 = 0.$$

Soit $\mathcal P$ la parabole de sommet S , dont l'axe est dirigé par le vecteur $\vec u$ et qui est tangente à la droite t .

- a) Soit R_u le repère dans lequel l'équation de la parabole \mathcal{P} est réduite. Déterminer avec précision le repère R_u . Indication : Faire une esquisse de la parabole.
- b) Déterminer l'équation cartésienne de la tangente $\ t$ dans le repère $\ R_u$.
- c) En déduire, dans le repère R_u , l'équation réduite de la parabole $\mathcal P$.

4,5 pts