Mathematics problems

Mall Eisen

040

01-7

1.
$$\frac{1}{x^{n-2}} \le x^{n+2-(n-2)} = x^{n+2-n+2} = x^{n+2-n+2}$$

1.2
$$x^{-1} \cdot 8 = 2$$

$$\frac{8}{x} = 2$$

$$2x = 8$$

$$(a^{5})^{0} = (5^{10})^{0} = 5^{10.0} = 5^{0} = 1$$

1.5

$$x^{2} + (x+1)^{2} = (x+2)^{2}$$

$$x^{2} + x^{2} + 2x + 1 = x^{2} + 4x + 4$$

$$x^{2} - 2x - 3 = 0$$

$$(x-3)(x+1) = 0$$

$$\frac{x_{1} = 3}{x_{2} = -1}$$

1.6
$$2^{\times}$$
 > 1024
 2^{\times} > 2^{10}
 \times > 10

$$7 = 32 + 1,8C$$
 $7 = C$
 $C = 32 + 1,8C$
 $-32 = 0,8C \rightarrow C = -40$

$$\frac{C=40}{\mp=40}$$

2.2

$$f(8) = 5 \times + 1$$

 $f(3) = y = ?$
 $f(3) = 5 \cdot 3 + 1 = 19$
 $g = 19$

$$7 = a + 5 \cdot C$$

 $212 = a + 5 \cdot 100$ $32 = a + 6 \cdot 0$
 $212 = 32 + 6 \cdot 100$ $\Rightarrow a = 32$
 $180 = 6 \cdot 100$
 $1,8 = 6$

TX + X = 1 + X + X + X + X

$$\rightarrow (x-3)(x-1)=0$$

3.1
$$\sum_{i=1}^{8} \frac{12}{6^{i}}$$
 $\sum_{i=1}^{8} a_{i} = \frac{ab}{1-b}$ $\sum_{i=1}^{8} \frac{12}{6^{i}} = \frac{12/6}{1-\frac{1}{6}} = \frac{12/6}{5/6} = \frac{12}{5}$

3.2

$$\lim_{x \to 1} \frac{G^{(1-x)}}{x} \Rightarrow \lim_{x \to 1} \frac{G^{(1-x)}}{1} = \frac{1}{1} = 1$$

$$f(x) = x^5 - 8$$
 $f'(x) = 5x^4$
 $x = -3$ $f'(-3) = 5 \cdot (-3)^4 = 5 \cdot 81 = 405$

$$\frac{d}{dx} \frac{x^{3}+2x-1}{x-2} = \frac{(3x^{2}+2)(x-2)-(x^{3}+2x-1)\cdot 1}{(x-2)^{42}} = \frac{(x-2)^{42}}{(x-2)^{42}}$$

$$= \frac{3x^{2}-6x^{2}+2x-4-x^{3}-2x+1}{(x-2)^{2}} = \frac{2x^{3}-6x^{2}-3}{(x-2)^{2}}$$

$$\frac{d^{2}}{dx^{2}} 4x^{4} + 4x^{2} = p \frac{d^{4}}{dx^{2}} 16x^{3} + 8x = p 48x^{2} + 8$$

$$\frac{d}{dx} \frac{lux}{e^{x}} = \sqrt{\frac{\frac{1}{x} \cdot e^{x} - e^{x} \cdot lu^{x}}{(e^{x})^{2}}} = \frac{\frac{1}{x} - lux}{e^{x}}$$

$$f(x) = 3x^2 - 5x + 2$$
 6x - 5

$$6x - 5 = 0$$

$$(3x-2)(x-1)=0$$

$$f(x,y) = x^2 + y^3$$

 $f(2,3) = 2^2 + 3^3 = 4 + 27 = 31$

$$f(x,y) = en(x-y) \quad (x,y) = eR \quad (x-y) = eR$$

$$\frac{\partial}{\partial x} x^5 + xy^3 \Rightarrow 5x^9 + y^3$$

3.11

$$f(x,y) = x^{2}y^{2} + 10$$

$$f'_{x}(x,y) = 2xy^{2} \qquad f''_{x}(x,y) = 2y^{2}$$

$$f'_{y}(x,y) = 2x^{2}y \qquad f''_{y}(x,y) = 2x^{2} \qquad \frac{x=0}{2} \qquad y=0$$

maxix²y² s.t. x+y=10

$$\mathcal{L} = f(x,y) - \lambda g(x,y)$$

$$\mathcal{L} = x^{2}y^{2} - \lambda (++y-10)$$

$$\frac{\partial f}{\partial x} = 2x - \lambda = 0 \longrightarrow 2x = \lambda$$

$$\frac{\partial f}{\partial y} = 2y - \lambda = 0 \longrightarrow 2y = \lambda$$

$$\frac{\partial f}{\partial y} = 2y - \lambda = 0 \longrightarrow 2y = \lambda$$

$$\frac{\partial \mathcal{L}}{\partial y \lambda} = x + y - 10 = 0$$

$$2y - 10 = 0$$

$$4.2$$
 21
 2
 4
 5
 191
 39
 59
 $= 8.A$

4.3
$$A^{T} = \begin{bmatrix} 7,1 & 2 & 4 \\ 9,1 & 7,8 & 4,44 \\ 4,7 & 1,1 & 0 \end{bmatrix}$$

$$\Sigma = \{(0,1), (1,2), \dots (6,6)\} \quad \# \Sigma = 36$$