ДОМАШНЕЕ ЗАДАНИЕ № 1

Задание «Имя». Написать программу, которая выводит на экран Ваше имя.

Задание «**Арифметика**». Ввести с клавиатуры два числа и найти их сумму, разность, произведение и, если возможно, частное от деления одного на другое.

Задание «Уравнение». Для любых введенных с клавиатуры b и c pешить уравнение вида bx + c = 0.

Задание «**Еще уравнение**». Для любых введенных с клавиатуры a, b и c pешить уравнение вида

$$ax^2 + bx + c = 0.$$

Задание «Лампа со шторой». В комнате светло, если на улице день и раздвинуты шторы или если включена лампа. Ваша программа должна, в зависимости от времени суток и состояния лампы и штор, отвечать на вопрос, светло ли в комнате.

Домашнее задание № 2

Задача «Конус». Вычислить объем и полную поверхность усеченного конуса:

$$V = 1/3 \pi h(R^2 + Rr + r^2), S = \pi(R^2 + (R+r)l + r^2).$$

Задача «Разветвление». Для произвольных *х* и *а* вычислить

$$\begin{cases} w = & a \ln|x|, & |x| < 1, \\ \sqrt{a - x^2}, & |x| \ge 1. \end{cases}$$

Задача «Функция». Для произвольных x,y и b вычислить функцию $z=\ln(b-y)\,\sqrt{b-x}$.

Задача «Порядок». Распечатать 10 последовательных натуральных чисел в возрастающем порядке, начиная с произвольного числа N.

Задача «Табуляция». Протабулировать функцию

$$y = \frac{x^2 - 2x + 2}{x - 1}$$
 при изменении x от -4 до +4 с шагом 0.5.

Домашнее задание № 3

Задача «Заем». Месячная выплата m по займу в S рублей на n лет под процент p вычисляется по формуле:

$$m = \frac{Sr(1+r)^n}{12((1+r)^n-1)},$$
 где $r = \frac{p}{100}.$

Дано: *S, p, n*. Найти: *m*.

Задача «**Ссуда**». Под какой процент p выдана ссуда величиной S рублей, которая гасится месячными выплатами величиной m в течение n лет. Формула приведена в предыдущей задаче.

Задача «Копирование файла». Создать на диске текстовый файл и скопировать его на экран.

Задача «Фильтр». Вывести на экран только числа из созданного Вами на диске текстового файла, содержащего буквы и числа.

Задача «Сортировка букв». Задать строку из 30 букв и расставить их в алфавитном порядке.

Домашнее задание № 4

Задача «Файл». Создать файл, записать в него 10 чисел, закрыть, потом вновь открыть файл и найти сумму чисел.

Задача «Геометрические фигуры». Вычислить площади прямоугольника, треугольника, круга, используя подпрограммы-функции.

Задача «Былая слава». В 1912 году американский флаг «Былая слава» имел 48 звезд (по одной на каждый штат) и 13 полос (по одной на колонию). Напечатать «Былую славу 1912 года».

Задача «Синусоида». Напечатать график функции $y = \sin x$.

Задача «Автоматный распознаватель». Декодировать римскую запись числа, состоящего из любого количества знаков. Правила: $I \rightarrow 1$, $V \rightarrow 5$, $X \rightarrow 10$, $L \rightarrow 50$, $C \rightarrow 100$, $D \rightarrow 500$, $M \rightarrow 1000$. Значение римской цифры не зависит от позиции, а знак — зависит.

Задача «Генератор псевдослучайных чисел». Построить генератор псевдослучайных чисел по рекуррентной формуле:

 $s_{i+1} = (m \cdot s_i + b)$ mod c, где m, b, c – целые числа. *І вариант*: m = 37, b = 3, c = 64. *ІІ вариант*: m = 25173, b = 13849, c = 65537. Начальное значение s_0 =0, где m, b, c – целые числа. *І вариант*: m = 37, b = 3, c = 64. *ІІ вариант*: m = 25173, b = 13849, c = 65537. Начальное значение s_0 =0.

Задача «Умножение матриц». Три продавца продают 4 вида товаров. Количество продаваемого товара представлено таблицей А. В таблице В представлены цена каждого товара и комиссионные, полученные от продажи, например:

	<u>Таблиц</u>	<u>a A</u>					<u>Таблица B</u>	
	Товар	1	2	3	4	Товар	Цена	Комиссионные
Прод	авец					1	1,20	0,50
	1	5	2	0	10	2	2,80	0,40
	2	3	5	2	5	3	5,00	1,00
	3	20	0	0	0	4	2,00	1,50

Задать соответствующие таблицам матрицы A и B, получить матрицу C = AxB и определить: 1) какой продавец выручил больше всего денег с продажи, какой – меньше; 2) какой получил наибольшие комиссионные, какой – наименьшие; 3) чему равна общая сумма денег, вырученных за проданные товары; 4) сколько всего комиссионных получили продавцы; 5) чему равна общая сумма денег, прошедших через руки продавцов?

Задача «Системы счисления». Программа должна считывать с клавиатуры число, записанное в одной системе счисления, и выводить на экран это число в записи по другому основанию, например: исходное число – 112D, старое основание – 16, новое основание – 8, результат – 10455.

Домашнее задание № 5

Задание «Алгоритм Евклида». Задать 2 числа и найти их наибольший общий делитель двумя способами: делением и вычитанием.

Задание «Решето Эратосфена». Найти все простые числа в диапазоне от 2 до введенного вами натурального числа.

Задание «Обработка текстовых файлов». Выполнить два варианта задания.

- 1. Преобразование разделителей: замена пробелов на другие(определенные) символы.
- 2. Преобразование разделителей: превращение строк в столбцы слов.
- 3. Преобразование разделителей: превращение строк в столбцы фраз.
- 4. Поиск в тексте слова максимальной длины.
- 5. Поиск в тексте фразы максимальной длины.
- 6. Поиск в тексте слова минимальной длины.
- 7. Поиск в тексте фразы минимальной длины.
- 8. Преобразование текста в цепочку ASCII-кодов.
- 9. Преобразование текста в столбец ASCII-кодов.
- 10. Обработка текста по слогам: вставка разделителей между слогами.
- 11. Обработка текста по словам: вставка разделителей между словами.
- 12. Чтение текста из текстового файла.
- 13. Запись текста в текстовый файл.
- 14. Добавление текста в конец текстового файла.
- 15. Поиск определенного слова в текстовом файле.
- 16. Поиск определенного сочетания слов в текстовом файле.
- 17. Сортировка слов в текстовом файле по алфавиту.
- 18. Поиск вхождения подстроки в строку текстового файла.
- 19. Статистическая обработка текстового файла: поиск наиболее часто встречающегося символа.
- 20. Статистическая обработка текстового файла: поиск наименее часто встречающегося символа.
- 21. Статистическая обработка текстового файла: поиск наиболее часто встречающейся гласной буквы.
- 22. Статистическая обработка текстового файла: поиск наименее часто встречающейся гласной буквы.
- 23. Статистическая обработка текстового файла: поиск наиболее часто встречающейся согласной буквы.
- 24. Статистическая обработка текстового файла: поиск наименее часто встречающейся согласной буквы
- 25. Поиск подстроки в строке по заданному условию.
- 26. Посимвольная замена элементов текстового файла.
- 27. Вычисление частоты повтора символа в текстовом файле.
- 28. Преобразование текста в массив символов.
- 29. Посимвольная сортировка.

- 30. Шифрование текстового файла заменой символов.
- 31. Шифрование текстового файла перестановкой символов.
- 32. Шифрование текстового файла сдвигом в алфавите.
- 33. Поиск элемента в текстовом файле по заданному условию.
- 34. Поиск определенных словосочетаний в текстовом файле.
- 35. Составление словаря для слов текстового файла.
- 36. Исключение из текстового файла заданных символов.
- 37. Поиск вхождения цифр в текстовом файле.
- 38. Проверка баланса скобок в текстовом файле.
- 39. Подсчет числа вхождений символов в текстовый файл.
- 40. Расположение слов текстового файла в алфавитном порядке.

Задание «Ряды». Выполнить два варианта задания

1) Дано целое число n (вводится с клавиатуры). Вычислить:

$$y = \frac{1}{\sin 1} + \frac{2}{\sin 1 + \sin 2} + \frac{3}{\sin 1 + \sin 2 + \sin 3} + \dots + \frac{n}{\sin 1 + \dots + \sin n}$$

- 2) Дано целое число n (вводится с клавиатуры). Вычислить сумму из n слагаемых: $y = \frac{n!}{\sqrt{1}} + \frac{(n-1)!}{\sqrt{2+3}} + \frac{(n-2)!}{\sqrt{4+5+6}} + \frac{(n-3)!}{\sqrt{7+8+9+10}} + \dots$
- 3) Дано целое число n (вводится с клавиатуры). Вычислить: $y = \frac{1!}{\sin 2} * \frac{2!}{\sin 2 + \sin 4} * \frac{3!}{\sin 2 + \sin 4 + \sin 6} * \dots * \frac{n!}{\sin 2 + \dots + \sin (2n)}$
- **4)** Дано натуральное число n. Вычислить: $y = \sum_{k=1}^{n} \frac{k!}{\frac{1}{1} \frac{1}{2} + \frac{1}{3} \frac{1}{4} + \ldots + \frac{1}{k}}$
- 5) Даны вещественные числа x и ε . Последовательность a_1, a_2, \ldots образована по закону: $a_1 = 1, a_2 = x$. Далее для $n = 3, 4, \ldots$ выполнено: $a_n = \frac{12 a_{n-1}x}{a_{n-2}^2 + 5}$. Найти первый член a_n (n > 15), для которого выполняется условие $|a_n a_{n-1}| < \varepsilon$.
- 6) Даны вещественные числа x и ε . Последовательность a_1 , a_2 , ... образована по закону: $a_1 = 0$, $a_2 = 1$, $a_3 = x$. Далее для n=4, 5, ... выполнено: $a_n = 3 + \frac{1}{2^n} \cos^2(a_{n-1}^2 xa_{n-2}^2 \frac{a_{n-3}}{x})$. Найти первый член a_n , для которого выполняется условие $|a_n a_{n-1}| < \varepsilon$.
- 7) Вычислить сумму с точностью $\varepsilon = 10^{-6}$, x вводится с клавиатуры. $y = \sum_{k=0}^{\infty} \frac{(x+k)!}{3^k \cdot (3k+2)}$
- 8) Даны целое число n и вещественное a (вводятся с клавиатуры). Вычислить: $y = \frac{1}{a} + \frac{2}{a(a+1)} + \frac{3}{a(a+1)(a+2)} + \dots + \frac{n+1}{a(a+1)\dots(a+n)}$
- 9) Даны вещественные числа x и ε . Последовательность $a_1, a_2, ...$ образована по закону: $a_1 = 1, a_2 = x, a_3 = x^3$. Далее для n=4, 5, ... выполнено: $a_n = \frac{12 a_{n-1}x}{a_{n-2}^2 + \sqrt{a_{n-3}}}$. Найти первый член a_n (n > 15), для которого выполняется условие $|a_n a_{n-1}| < \varepsilon$.

10) Дано целое число
$$n$$
 (вводится с клавиатуры). Вычислить:
$$y = \frac{n!}{\sin 12} + \frac{(n-1)!}{\left(\sin 12 + \sin 14\right)^2} + \frac{(n-2)!}{\left(\sin 12 + \sin 14 + \sin 16\right)^3} + \dots + \frac{1!}{\left(\sin 12 + \dots + \sin (10 + 2n)\right)^n}$$

- 11) Дано целое число n (вводится с клавиатуры). Вычислить сумму из n слагаемых: $y = \frac{n!}{\sqrt{1}} \frac{(n-1)!}{\sqrt{2+3}} + \frac{(n-2)!}{\sqrt{4+5+6}} \frac{(n-3)!}{\sqrt{7+8+9+10}} + \dots$
- **12)** Дано натуральное число n. Вычислить: $y = \sum_{k=1}^{n} \frac{k!}{\left(\frac{1}{1} + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \ldots + \frac{1}{k}\right)^k}$
- **13)** Дано натуральное число m < 27. Получить все трехзначные целые числа, сумма цифр которых равна m (указание: использовать полный перебор).
- 14) Получить все четырехзначные целые числа, в записи которых нет двух одинаковых цифр (указание: использовать полный перебор).
- 15) Используя рекуррентное соотношение, вычислить сумму с точностью $\varepsilon = 10^{-6}, x$ вводится с клавиатуры.

$$y = \sum_{k=0}^{\infty} \frac{(2k+1)!}{(k+1)^k x^{4k}}$$

- **16)** Дано вещественное число ε . Вычислить $y = \sum_{n=1}^{\infty} \frac{1}{3^n} \cos^3(3^{n-1})$, учитывая только те слагаемые, в
 - которых множитель $1/3^n$ имеет величину, не меньшую, чем ϵ .
- 17) Используя рекуррентное соотношение, вычислить сумму с точностью $\varepsilon = 10^{-6}$, x вводится с клавиатуры.

$$y = \sum_{k=0}^{\infty} \frac{(k+2)!}{(k+1)^2 x^{2k+2}}$$

18) Написать программу, которая определяет количество учеников в классе, чей рост превышает средний. Рекомендуемый вид экрана во время работы программы приведен ниже (введенные пользователем данные выделены полужирным шрифтом).

19)	****	Анализ	J 1	роста		уче	ников	***
	Введите	рост	(CM)		N	нажи	мите	<enter>.</enter>
	Для	завершения	введите	0	V	1	нажмите	<enter></enter>
	->							175
	->							170
	->							180
	->							168
	->							170
	->							0
	Средний		pocT:			172.6		CM

- У 2-х человек рост превышает средний.
- **20)** Задан массив **F[1:n]** из чисел в двоичной системе счисления. В другом массиве организовать перевод исходного массива в **четверичную** систему счисления.
- **21)** Задан массив **F[1:n]** из чисел в двоичной системе счисления. В другом массиве организовать перевод исходного массива в **троичную** систему счисления.
- **22)** Задан массив **F[1:n]** из чисел в двоичной системе счисления. В другом массиве организовать перевод исходного массива в **пятеричную** систему счисления.
- **23)** Задан массив **F[1:n]** из чисел в троичной системе счисления. В другом массиве организовать перевод исходного массива в **шестеричную** систему счисления.
- 24) Задан массив **F**[1:n] из чисел в семеричной системе счисления. В другом массиве организовать перевод исходного массива в **троичную** систему счисления.
- **25)** Задан массив **F[1:n]** из чисел в пятеричной системе счисления. В другом массиве организовать перевод исходного массива в **двоичеую** систему счисления.

- **26)** Дана строка S из n символов, в которой символом «пробел» разделяются слова. Вывести на экран **третье** слово в обратном порядке.
- **27)** Даны целые числа c_1, c_2, \ldots, c_{95} . Подсчитать количество троек идущих подряд отрицательных чисел.
- **28)** Найти сумму цифр целого числа n (водится с клавиатуры).
- 29) В строке символов вывести на экран в обратном порядке пятое слово, если оно присутствует в строке.
- **30)** Определить, сколько различных цифр входят в запись целого числа n, которое водится с клавиатуры.
- **31)** Дано целое число n (вводится с клавиатуры). Определить, входит ли цифра 3 в запись числа n^2 .
- **32)** Дано натуральное число x. Выбросить из записи числа x цифры 0 и 5, оставив прежним порядок остальных цифр. Например, из числа 590155069 должно получиться 9169.
- **33)** Даны числа c_1, c_2, \ldots, c_{15} . Подсчитать количество *всех* попарных сочетаний чисел, сумма которых образует значение «13» (предусмотреть допустимые случаи как подряд идущих пар, так и разрозненных, например, $c_{11} + c_{12} = 13$, $c_7 + c_{12} = 13$).
- **34)** Дана строка S из n символов. Определить, содержаться ли в ней *все* символы (в произвольном порядке), входящие в слово «студенчество».
- **35)** Дана строка S из n символов. Подсчитать максимальное число подряд идущих пробелов.
- **36)** Дана строка **S** из **n** символов, в которой символом «пробел» разделяются слова. Определить длину самого короткого слова.
- **37)** Дана строка S из n символов, в которой символом «пробел» разделяются слова. Подсчитать количество слов, начинающихся с буквы «к» и заканчивающихся буквой «н».
- **38)** Дано натуральное число m < 27. Получить все трехзначные целые числа, сумма цифр которых равна m (указание: использовать полный перебор).
- **39)** Написать программу, которая подсчитывает количество возрастающих последовательностей во введенном с клавиатуры массиве чисел.
- 40) Написать программу, которая подсчитывает количество убывающих последовательностей во введенном с клавиатуры массиве чисел.
- **41)** Написать программу, которая вычисляет, сколько раз введенное с клавиатуры число встречается в массиве и в каких позициях.
- 42) Написать программу, которая проверяет, есть ли во введенном с клавиатуры массиве элементы с одинаковым значением. Если «ДА», то посчитать их количество, определить их положение в массиве и отсортировать в отдельном массиве.
- **43)** Написать программу, которая объединяет два упорядоченных по возрастанию массива в один, также упорядоченный по возрастанию, массив.
- **44)** Написать программу, которая определяет количество учеников в классе, чей рост превышает средний. Найти количество пар учеников с одинаковым ростом.
- **45)** Написать программу, которая вводит по строкам с клавиатуры двумерный массив и вычисляет суммы его элементов по столбцам.
- **46)** Написать программу, которая вводит по строкам с клавиатуры двумерный массив и вычисляет суммы его элементов по строкам.
- 47) Написать программу, которая вычисляет сумму диагональных элементов квадратной матрицы.
- **48)** Написать программу, которая вводит с клавиатуры двумерный массив по строкам и вычисляет среднее арифметическое его элементов в каждой строке и сортирует строки согласно уменьшения средних по строкам.
- **49)** Написать программу, которая проверяет, является ли введенная с клавиатуры квадратная матрица магическим квадратом. Магическим квадратом называется матрица, сумма элементов которой в каждой строке, в каждом столбце и по каждой диагонали одинакова.
- 50) Написать программу подведения итогов Олимпийских игр. В программу пользователь должен ввести количество медалей разного достоинства, завоеванное каждой командой-участницей, а программа подсчитать общее число медалей и соответствующее число очков, после чего упорядочить список в соответствии с набранным количеством очков, которое определяется по следующему правилу: за золотую медаль команда получает 7 очков, за серебряную 6, за бронзовую 5. Рекомендуемый вид экрана во время работы программы приведен ниже (данные, введенные пользователем, выделены полужирным шрифтом).

Итоги Олимпийских игр

Введите в одной строке количество золотых,

серебряных и бронзовых медалей.
Австрия -> 359
Германия -> 1298
Канада -> 654
Китай -> 062
Корея -> 312
Норвегия -> 10105
Россия -> 963
США -> 634

Финляндия -> **246** Япония -> **514**.

	Страна	Золото	Серебро	Бронза	Всего	Очков
1	Германия	12	9	8	29	178
2	Новергия	10	10	5	25	155
3	Россия	9	6	3	18	114
4	Австрия	3	5	9	17	96
5	Канада	6	5	4	15	92
6	США	6	3	4	13	80
7	Финлядия	2	4	6	12	68
8	яинопК	5	1	4	10	61
9	Китай	0	6	2	8	46
10	Корея	3	1	2	6	37

Итоги зимней Олимпиады в Нагано, 1998 г.

- **51)** Написать программу, которая вводит по строкам с клавиатуры двумерный массив и вычисляет сумму его элементов в четных столбцах.
- **52)** Написать программу, которая вычисляет определитель квадратной матрицы второго порядка. Рекомендуемый вид экрана во время работы программы приведен ниже.

Введите		матрицу		второго		порядка.
После	ввода	элементов	строк	KN	нажимайте	<enter></enter>
->			5			-7
->			1			3
Определитель						матрицы
5.00						-7.00
1 00 3 00 Par	22 00					

1.00 3.00 Равен 22.00

53) Написать программу, которая вводит с клавиатуры последовательность из пяти дробных чисел и после ввода каждого числа выводит среднее арифметическое полученной части последовательности. Рекомендуемый вид экрана во время работы программы приведен ниже.

Обработка п	оследователи	ьности др	обных чисел.	. После ввода	каждого числа нажимайте	<enter></enter>
->						12.3
Введено	чисел:	1	Сумма:	12.30	Сред.арифметическое:	12.30
->						15
Введено	чисел:	2	Сумма:	27.30	Сред.арифметическое:	13.65
->						10
Введено	чисел:	3	Сумма:	37.30	Сред.арифметическое:	12.43
->						5.6
Введено	чисел:	4	Сумма:	42.90	Сред.арифметическое:	10.73
->						11.5
Введено	чисел:	5	Сумма:	54.40	Сред.арифметическое:	10.88
Для заверше	ния работы і	программы	и нажмите <er< td=""><td>nter>.</td><td></td><td></td></er<>	nter>.		

54) Написать программу, которая вычисляет среднее арифметическое последовательности дробных чисел, вводимых с клавиатуры. После того, как будет введено последнее число, программа должна вывести минимальное и максимальное число последовательности. Количество чисел должно задаваться во время работы программы. Рекомендуемый вид экрана приведен ниже. Данные, введенные пользователем, выделены полужирным шрифтом.

Обработка последовательности дробных чисел. Введите количество чисел последовательности -> 5

Вводите последовательность. После ввода каждого числа нажимайте <Enter> -> 5.4 -> 7.8 -> 3.0 -> 1.5 -> 2.3

Количество чисел: 5

Среднее арифметическое: 4.00

Минимальное число:

Максимальное число:

Для завершения нажмите <Enter>

- **55)** Дана символьная матрица N*N. найти номер последнего по порядку столбца, содержащего наименьшее число букв Ш и Щ.
- 56) Ввести с клавиатуры массив строк. Отсортировать его по возрастанию количества слов в каждой строке.
- 57) Создать массив, содержащий сведения в библиотеке о книгах: ФИО автора, название, год издания. Данные вводить с клавиатуры. Найти название книги, автор и год издания которой вводятся вручную; определить имеется ли книга, в названии которой есть слово «Программирование». Если «да», то сообщить автора и год издания.
- 58) Ввести 2 массива. Объединить эти 2 массива в один с сохранением упорядоченности по возрастанию.
- **59)** Ввести целочисленную матрицу **m*n**. Вывести номер строки и номер столбца для элемента матрицы, который одновременно является наименьшим в своей строке и наибольшим в своем столбце (седловая точка).
- 60) Дано натуральное N, действительные **a**1, ..., **a**3n.

Получить $Q=x^2+y^2+z^2$,

где
$$x = a_1 * a_2 * a_3 ... * a_N$$
,

$$y = a_{N+1} * a_{N+2} * a_{N+3} ... * a_{2N},$$

$$z = a_{2N+1}*a_{2N+2}*a_{2N+3}...*a_{3N}.$$

Желательно программу реализовать с использованием подпрограмм(ы).

В массиве натуральных чисел найти наименьший и наибольший общие делители.

- **61)** Ввести целочисленную матрицу **m*n**. Определить номера строк столбцов всех одинаковых элементов, их значения. Подсчитать количество элементов, лежащих в диапазоне от **5** до **9** включительно.
- 62) Ввести две квадратные матрицы **A** и **B** порядка **N**.

Получить матрицу **M**= **A**(**B**-**E**)+**C**, где **E** – единичная матрица порядка **N**, а элементы матрицы **C** вычисляются по формуле: $C_{ij} = \frac{1}{i+j}$, $c\partial ei$, i = 1,2...n

- 63) Задан массив x[1:m]. Найти длину k самой длинной «пилообразной (зубьями вверх)» последовательности идущих подряд чисел: X[p+1] < X[p+2] < X[p+3] < ... < X[p+k]
- **64)** В целочисленном массиве **A[1:n]** найти число, повторяющееся максимальное количество раз. Если таких чисел несколько, то одно из них.
- **65)** Задан числовой массив **F[1:n].** Найти отрезок массива максимальной длины, в котором первое число равно последнему, второе предпоследнему и т.д. Напечатать длину этого отрезка.
- **66)** Задан массив **F[1:n]** из вещественных чисел в десятичной системе счисления. В другом массиве организовать перевод исходного массива в любую систему счисления по желанию пользователя в пределах от двоичной до девятеричной.

- 67) Задан массив **F[1:n]** из чисел в двоичной системе счисления. В другом массиве организовать перевод исходного массива в любую систему счисления по желанию пользователя в пределах **от троичной** до **шестеричной**.
- **68)** Задан массив F[1:n] из вещественных чисел. Отсортировать его элементы по сумме цифр дробной части. Программу написать с использованием функции.

Задание «Файлы». Выполнить один вариант задания

1)Создать внешний файл, содержащий сведения об игрушках: указывается название игрушки, ее стоимость, возрастные границы (например, игрушка предназначается для детей от 2-х до 5-ти лет). Получить следующие сведения:

- а) названия игрушек, цена которых не превышает 400 р., и которые подходят детям 8 лет;
- б) цену самой дорогой игрушки (игрушек);
- в) названия и цену игрушек, которые подходят одновременно детям 4-х и 10-и лет.
- **2)**Создать файл, содержащий сведения в библиотеке о книгах: ФИО автора, название, год издания. Данные вводить с клавиатуры. В этом файле: найти название книги, автор и год издания которой вводятся вручную; определить имеется ли книга, в названии которой есть слово «С++». Если «да», то сообщить автора и год издания:
- 3) Организовать файл 1, компонентами которого являются 10 целочисленных одномерных массивов. Максимальные и минимальные элементы всех массивов заменить на нули. Полученные массивы сохранить в файл 2. 2. Каждый массив преобразовать в квадратную матрицу размера 10*10. Если количество элементов недостаточно, то добавить их с использованием генератора случайных чисел. Результат сохранить в файл 3. Предусмотреть возможность просмотра полученных файлов.
- **4)**Организовать файл, элементами которого являются слова. Упорядочить в нем слова по алфавиту. Добавить в файл произвольное слово с сохранением сортировки в файле.
- **5**)Создать файл, элементами которого являются **5** целочисленных матриц **m*n**. Для каждой матрицы вывести номер строки и номер столбца для элемента матрицы, который одновременно является наименьшим в своей строке и наибольшим в своем столбце.
- **6)**Создать файл из натуральных чисел. В файле натуральных чисел найти наименьший и наибольший общие делители, также определить все простые числа и их количество. Все простые числа сохранить в другой файл. Предусмотреть возможность просмотра содержимого всех файлов.
- 7) Создать файл, элементами которого являются 10 целочисленных матриц **m*n**. Определить для каждой матрицы номера строк столбцов всех одинаковых элементов, их значения. Полученные результаты для каждой матрицы сохранить в другом файле.
- **8**)В файле организовать создание двух квадратных матрицы **A** и **B** порядка **N**. Получить матрицу **M**= **A**(**B E**)+**C**, где **E** единичная матрица порядка **N**, а элементы матрицы **C** вычисляются по формуле: $C_{ij} = \frac{1}{i+j}$, где i,j=1,2,...,n

Все созданные и вычисленные матрицы также сохранить в файле.

Все матрицы вывести на экран в порядке заполнения и выполнения действий.

- 9) Создать два файла **A** и **B**. Компонентами файлов являются целые числа, которые следует упорядочить по возрастанию. Объединить содержимое файлов в новый файл **C** с сохранением сортировки всех элементов.
- **10**)Ввести с клавиатуры фамилии студентов и их шифры, сохраняя информацию в файле. Упорядочить данные по фамилии или по шифру в зависимости от пожелания пользователя. После ввода данных иметь возможность просмотреть введенную информацию. Программу желательно реализовать с использованием подпрограмм(ы).
- **11)**Ввести в файл **4** целочисленных матрицы порядка **8 х 8**. В другом файле получить эти матрицы в транспонированном виде. В третьем файле для каждой матрицы найти сумму элементов в каждой строке и отсортировать каждую матрицу по уменьшению сумм элементов в строке.
- 12)Создать файл из m вещественных чисел. Найти длину k самой длинной «пилообразной (зубьями вверх)» последовательности идущих подряд чисел: X[p+1] < X[p+2] < X[p+3] < ... < X[p+k]
- **13)**Создать файл из **N** целых чисел. Найти число, повторяющееся максимальное количество раз. Если таких чисел несколько, то все из них. Сохранить эти числа в другой файл и отсортировать. Все файлы до и после обработки вывести на печать.
- **14**)Создать файл из **N** целых чисел. Найти отрезок массива максимальной длины, в котором первое число равно последнему, второе предпоследнему и т. д. Напечатать длину этого отрезка и весь файл.
- **15)**Создать файл из **N** вещественных чисел в десятичной системе счисления. В другой файл записать эти числа, переведенные из исходного файла в любую систему счисления по желанию пользователя в пределах от двоичной до девятеричной.
- 16)Создать файл, в котором хранятся записи целых чисел в шестнадцатеричной системе счисления. Организовать перевод чисел исходного файла в любую систему счисления по желанию пользователя в пределах от от двоичной до девятеричной. Результаты сохранить в другом файле. 17)Создать файл из п из вещественных чисел. Отсортировать его элементы по сумме цифр дробной части. Результат сохранить в другом файле. Программу написать с использованием подпрограмм(ы).
- **18)**Написать программу, которая создаст файл **phone.txt** с информацией: фамилия и номер телефона нескольких ваших товарищей. Программа должна запрашивать фамилию человека и выводить его телефон. Если в справочнике есть одинаковые фамилии, то программа должна вывести список всех людей, имеющих эти фамилии. В другом файле организовать отсортированные по фамилиям данные исходного файла.
- 19)Написать программу, которая создаст файл **phone.txt** с информацией с данными: фамилия и номер телефона нескольких ваших товарищей. Рекомендуемый вид экрана во время работы программы приведен ниже. Вывести все данные товарищей, у которых в телефонный номер «счастливый» т.е. сумма цифр левой и правой частей равен (без учета симметричной позиции). Сохранить эти данные в другой файл и отсортировать их по фамилии.
- **20**)Написать программу, которая создаст файл **phone.txt** с информацией с данными: фамилия и номер телефона нескольких ваших товарищей. Рекомендуемый вид экрана во время работы программы приведен

ниже. Вывести все данные товарищей, у которых в телефонных номерах все цифры четные. Сохранить эти данные в другой файл и отсортировать по номерам телефонов.

21)Написать программу подведения итогов Олимпийских игр. В программу пользователь должен ввести количество медалей разного достоинства, завоеванное каждой командой-участницей, а программа — подсчитать общее число медалей и соответствующее число очков, после чего упорядочить список в соответствии с набранным количеством очков, которое определяется по следующему правилу: за золотую медаль команда получает 7 очков, за серебряную — 6, за бронзовую — 5. Вся информация должна быть сохранена в файле, где одной записью будут являться все данные по одной стране.

Отсортировать в файле страны по общему количеству набранных очков и вывести всю информацию на экран. Вся информация должна быть сохранена в файле, где одной записью будут являться все данные по одной стране.

Итоги Олимпийских игр: количество золотых, серебряных и бронзовых медалей.

Австрия -> 3 5 9 Германия -> 12 9 8 Канада -> 6 5 4 Китай -> 0 6 2 Корея -> 3 1 2 Норвегия -> 10 10 5 Россия -> 9 6 3 США -> 6 3 4 Финляндия -> 2 4 6 Япония -> 5 1 4

22) Написать программу подведения итогов Олимпийских игр. В программу пользователь должен ввести количество медалей разного достоинства, завоеванное каждой командой-участницей, подсчитать общее число медалей и

Страна	Золот
	О
Германи	12
Я	
Новергия	10
Россия	9
Австрия	3
Канада	6
США	6
Финляди	2
Я	
Япония	5
Китай	0
Корея	3
-	
	Германи я Новергия Россия Австрия Канада США Финляди я Япония Китай

соответствующее число очков, в соответствии с набранным количеством очков, которое определяется по следующему правилу: за золотую медаль команда получает 7 очков, за серебряную — 6, за бронзовую — 5. Вся информация должна быть сохранена в файле, где одной записью будут являться все данные по одной стране. Отсортировать файл по количеству золотых медалей и вывести всю информацию на экран. Итоги Олимпийских игр: количество золотых, серебряных и бронзовых медалей.

Австрия -> 3 5 9 Германия -> 12 9 8 Канада -> 6 5 4 Китай -> 0 6 2 Корея -> 3 1 2 Норвегия -> 10 10 5 Россия -> 9 6 3 США -> 6 3 4 Финляндия -> 2 4 6 Япония -> 5 1 4.

	Страна	Золот	Серебр	Бронз	
		0	0	a	
1	Германи	12	9	8	
	R				
2	Новергия	10	10	5	
3	Россия	9	6	3	
4	Австрия	3	5	9	
5	Канада	6	5	4	
6	США	6	3	4	
7	Финляди	2	4	6	
	Я				
8	Япония	5	1	4	
9	Китай	0	6	2	
1	Корея	3	1	2	
0	_				

23) Написать программу полведения итогов

Олимпийских игр. В программу пользователь должен ввести количество медалей разного достоинства, завоеванное каждой командой-участницей, подсчитать общее число медалей и соответствующее число очков, в соответствии с набранным количеством очков, которое определяется по следующему правилу: за

золотую медаль команда получает 7 очков, за серебряную — 6, за бронзовую — 5. Вся информация должна быть сохранена в файле, где одной записью будут являться все данные по одной стране. Отсортировать файл по сумме количества золотых и серебряных медалей и вывести всю информацию на экран.

Итоги Олимпийских игр: количество золотых, серебряных и бронзовых медалей.

Австрия -> **3 5 9**

	Страна	Золот	Серебр	Бронз	Bcer	Очко	
		0	0	a	0	В	
1	Германи	12	9	8			
	R						
2	Новергия	10	10	5			
3	Россия	9	6	3			
4	Австрия	3	5	9			
5	Канада	6	5	4			
6	США	6	3	4			
7	Финляди	2	4	6			
	Я						
8	яинопК	5	1	4			
9	Китай	0	6	2			
1	Корея	3	1	2			
0	_						

Германия -> **12 9 8** Канада -> **6 5 4** Китай -> **0 6 2** Корея -> **3 1 2**

Норвегия -> 10 10 5

Россия -> 9 6 3

США -> 6 3 4

Финляндия -> 2 4 6

Япония -> 5 1 4.

Итоги зимней Олимпиады в Нагано, 1998 г.

24) Написать программу подведения итогов Олимпийских игр. В программу пользователь должен ввести количество медалей разного достоинства, завоеванное каждой командой-участницей, подсчитать общее число медалей и соответствующее число очков, в соответствии с набранным количеством очков, которое определяется по следующему правилу: за золотую медаль команда получает 7 очков, за серебряную — 6, за бронзовую — 5. Вся информация должна быть сохранена в файле, где одной записью будут являться все данные по одной стране. Отсортировать файл по странам в алфавитном порядке и вывести всю информацию на экран.

Итоги Олимпийских игр: количество золотых, серебряных и бронзовых медалей.

	Страна	Золот	Серебр	Бронз	Bcer	Очко	
		О	0	a	0	В	
1	Германи	12	9	8			
	R						
2	Новергия	10	10	5			
3	Россия	9	6	3			
4	Австрия	3	5	9			
5	Канада	6	5	4			
6	США	6	3	4			
7	Финляди	2	4	6			
	я						
8	Япония	5	1	4			
9	Китай	0	6	2			
1	Корея	3	1	2			
0							

Австрия -> **3 5 9** Германия -> **12 9 8** Канада -> **6 5 4** Китай -> **0 6 2**

Корея -> 3 1 2

Норвегия -> **10 10 5** Россия -> **9 6 3**

США -> 6 3 4

Финляндия -> **2 4 6**

Япония -> 5 1 4.

Итоги зимней Олимпиады в Нагано, 1998 г.

- **25)**Организовать создание текстового файла. Подсчитать в текстовом файле число непустых строк, в которых символы упорядочены по возрастанию.
- **26)**Создать файл, данными которого являются: номер зачетной книжки, ФИО студента, список из **5** предметов с оценками в сессии. Отсортировать файл по среднему баллу каждого студента в сессии
- **27)**Создать файл, данными которого являются: номер зачетной книжки, ФИО студента, список из **5** предметов с оценками в сессии. Отсортировать файл по фамилиям студентов.
- **28**)Создать файл, данными которого являются: номер зачетной книжки, ФИО студента, список из **5** предметов с оценками в сессии. Отсортировать файл по результат второго экзамена.
- **29)** Создать файл, данными которого являются: номер зачетной книжки, ФИО студента, список из **5** предметов с оценками в сессии. Подсчитать среднюю успеваемость группы и вывести список всех студентов, у которых личный средний балл выше среднего балла группы.
- **30)** Создать файл, данными которого являются: номер зачетной книжки, ФИО студента, список из **5** предметов с оценками в сессии. Сохранить список отличников и хорошистов в отдельном файле и вывести их список с результатами сессии, отсортированный по фамилиям студентов.
- 31)Написать программу подведения итогов Олимпийских игр. В программу пользователь должен ввести количество медалей разного достоинства, завоеванное каждой командой-участницей, а программа подсчитать общее число медалей и соответствующее число очков, после чего упорядочить список в соответствии с набранным количеством очков, которое определяется по следующему правилу: за золотую медаль команда получает 7 очков, за серебряную 6, за бронзовую 5. Вся информация должна быть сохранена в файле, где одной записью будут являться все данные по одной стране. Рекомендуемый вид экрана во время работы программы приведен ниже (данные, введенные пользователем, выделены полужирным шрифтом).

Итоги Олимпийских игр

	Страна	Золот	Серебр	Бронз	Всег	Очко	
	-	0	0	a	0	В	
1	Германи я	12	9	8	29	178	
2	Новерги я	10	10	5	25	155	
3	Россия	9	6	3	18	114	
4	Австрия	3	5	9	17	96	
5	Канада	6	5	4	15	92	
6	США	6	3	4	13	80	
7	Финляди я	2	4	6	12	68	
8	яинопЯ	5	1	4	10	61	
9	Китай	0	6	2	8	46	
1 0	Корея	З	1	2	6	37	

Введите в одной строке количество золотых,

серебряных и бронзовых медалей.

Австрия -> **359**

Германия -> **1298**

Канада -> 654 Китай -> 062 Корея -> 312 Норвегия -> 10105 Россия -> 963 США -> 634 Финляндия -> 246 Япония -> 514 Итоги зимней Олимпиады в Нагано, 1998 г.