Differential- und Integralrechnung, Wintersemester 2024-2025

8. Vorlesung

Definition

Ist M eine nichtleere Teilmenge des \mathbb{R}^n und $f: M \to \mathbb{R}$, dann wird f eine reellwertige Funktion von n Variablen genannt.

Definition

Sei $M \subseteq \mathbb{R}^n$. Ein Punkt $x \in \mathbb{R}^n$ ist ein Häufungspunkt von M, falls

$$\forall U \in \mathcal{U}(x) \text{ gilt } (U \setminus \{x\}) \cap M \neq \emptyset.$$

Die Menge gebildet aus allen Häufungspunkten von M wird mit M' bezeichnet.

Ein Punkt $x \in M$, der kein Häufungspunkt von M ist, wird isolierter Punkt von M genannt.

Ab jetzt sei $\emptyset \neq M \subseteq \mathbb{R}^n$.

Definition

Seien $f: M \to \mathbb{R}, \ a = (a_1, ..., a_n) \in M'$ und $L \in \overline{\mathbb{R}}$. Man sagt, dass L der Grenzwert von f in (bei) a ist, falls

$$\forall \ V \in \mathcal{U}(L) \ \exists \ U \in \mathcal{U}(a), \text{ so dass } \forall \ x \in (U \setminus \{a\}) \cap M \text{ gilt } f(x) \in V.$$

 $x_n \rightarrow a_n$

Bezeichnung:
$$\lim_{x\to a} f(x) = L$$
 oder $\lim_{x_1\to a_1} f(x_1,...,x_n) = L$.

Th1 (Die Eindeutigkeit des Grenzwertes einer Funktion in einem Punkt)

Seien $f: M \to \mathbb{R}$ und $a \in M'$. Hat f einen Grenzwert in a, dann ist dieser eindeutig bestimmt.

Th2 (Die Charakterisierung für den Grenzwert einer Funktion mit Hilfe von Folgen)

Seien $f: M \to \mathbb{R}, \ a \in M'$ und $L \in \overline{\mathbb{R}}$. Dann sind äquivalent:

- $1^{\circ} \lim_{x \to a} f(x) = L.$
- 2° Für jede Folge $(x^k)_{k\in\mathbb{N}}$ in $M\setminus\{a\}$ mit $\lim_{k\to\infty}x^k=a$ gilt $\lim_{k\to\infty}f(x^k)=L.$

Definition

Seien $f: M \to \mathbb{R}$ und $a \in M$. Die Funktion f ist stetig in a, falls

 $\forall \ V \in \mathcal{U}(f(a)) \ \exists \ U \in \mathcal{U}(a), \text{ so dass } \forall \ x \in U \cap M \text{ gilt } f(x) \in V.$

Ist $\emptyset \neq D \subseteq M$, so heißt f stetig auf D, falls f in jedem Punkt von D stetig ist. Ist f stetig auf M, dann sagt man, dass f stetig ist.

Th3 (Charakterisierungen für die Stetigkeit einer Funktion in einem Punkt)

Seien $f: M \to \mathbb{R}$ und $a \in M$. Dann sind äquivalent:

- 1° f ist stetig in a.
- 2° Für jede Folge $(x_n)_{n\in\mathbb{N}}$ in M, die gegen a konvergiert, konvergiert $(f(x_n))_{n\in\mathbb{N}}$ gegen f(a).
- 3° Entweder

ist a ein isolierter Punkt von M

oder

$$a \in M', \ \exists \lim_{x \to a} f(x) \ \text{und} \ \lim_{x \to a} f(x) = f(a).$$

S4

Seien $f: M \to \mathbb{R}$, $\emptyset \neq S \subseteq \mathbb{R}$ und $g: S \to \mathbb{R}$ mit $f(M) \subseteq S$. Ist f stetig in $a \in M$ und g stetig in f(a), dann ist $f \circ g$ stetig in a.

Beispiele stetiger reellwertiger Funktionen mehrerer Variablen

- 1) Polynomfunktionen von n Variablen (d.h. endliche Summen von endlichen Produkten der Variablen und reeller Zahlen) sind auf \mathbb{R}^n stetig.
- 2) Rationale Funktionen von *n* Variablen (d.h. Quotienten von 2 Polynomfunktionen von *n* Variablen) sind auf deren maximalen Definitionsbereichen stetig.
- **3)** Summen, Produkte und Quotienten (falls definiert) reellwertiger stetiger Funktionen von *n* Variablen sind stetig.
- 4) In **S4** kann g eine elementare Funktion gewählt werden.

Definition

Sei $S \subseteq \mathbb{R}^n$. Ein Punkt $x \in \mathbb{R}^n$ wird innerer Punkt von S genannt, falls $S \in \mathcal{U}(x)$, d.h. $\exists r > 0$, so dass $B(x, r) \subseteq S$.

Bezeichung: int $S := \{x \in \mathbb{R}^n | x \text{ ist innerer Punkt von } S\}$ ist das Innere von S.

Die Menge S heißt offen, falls int S = S ist.

S5

Sei $S \subseteq \mathbb{R}^n$. Dann ist int $S \subseteq S$ und int $S \subseteq S'$.

Seien $M \subseteq \mathbb{R}^n$, $f: M \to \mathbb{R}$, $a = (a_1, ..., a_n) \in \operatorname{int} M$ und $j \in \{1, ..., n\}$. Die Funktion f ist in (an der Stelle) a partiell nach x_j differenzierbar, falls der folgende Grenzwert in \mathbb{R} existiert

$$\frac{\partial f}{\partial x_j}(a) := \lim_{x_j \to a_j} \frac{f(a_1, ..., a_{j-1}, x_j, a_{j+1}, ..., a_n) - f(a_1, ..., a_{j-1}, a_j, a_{j+1}, ..., a_n)}{x_j - a_j}.$$

 $\frac{\partial f}{\partial x_j}(a)$ ist die partielle Ableitung (erster Ordnung) von f nach x_j in a.

Die Funktion f heißt partiell differenzierbar in a, falls f in a nach allen Variablen $x_1, ..., x_n$ partiell differenzierbar ist. In diesem Fall, nennt man den Vektor

$$\nabla f(a) := \left(\frac{\partial f}{\partial x_1}(a), ..., \frac{\partial f}{\partial x_n}(a)\right) \in \mathbb{R}^n$$

den Gradienten von f in a.