Nombre y apellido: DANTE COCÚ	1	2	3	4	Calificación
N° de libreta y hojas entregadas: 1179/22,	0	0	X 33	0	& (othe)

Álgebra Lineal Computacional

Examen Final - 1 de agosto 2024

Ejercicio 1. Sea
$$n \in \mathbb{N}$$
 y sea $A_n \in \mathbb{R}^{n \times n}$, $A_n = \begin{pmatrix} 1 & 0 & 0 & \cdots & 0 \\ \frac{1}{2} & \frac{1}{2} & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \ddots & \vdots \\ \frac{1}{2^{n-1}} & \frac{1}{2^n} & \cdots & \frac{1}{2^n} & 0 \\ \frac{1}{2^n} & \frac{1}{2^n} & \cdots & \frac{1}{2^n} & \frac{1}{2^n} \end{pmatrix}$.

- (a) Probar que $Cond_{\infty}(A_n) \xrightarrow{n \to \infty} +\infty$.
- (b) ¿Qué sucede con $Cond_2(A_n)$ cuando $n \to \infty$?

Ejercicio 2. Sea $A \in \mathbb{R}^{4\times 4}$ tal que el polinomio característico es $\chi_A(\lambda) = (\lambda - 1/2)^3(\lambda - 1)$ y tal que $\text{Nu}(A - 1/2I) = \langle (1, 2, 3, 1)(a, 2, 2, 2)(0, 1, 1, 1) \rangle$, $\text{Nu}(A - I) = \langle (0, 0, 0, 1) \rangle$ con $a \in \mathbb{R}$

- a) Encontrar los valores de a para los cuales A es diagonalizable sobre \mathbb{R} .
- b) Para a=0 y v=(0,1,1,2) decidir si existe el $\lim_{k\to\infty}A^kv$. En caso de que exista calcularlo.

Ejercicio 3. Dadas $A \in \mathbb{R}^{m \times n}$ y $b \in \mathbb{R}^m$, $m \ge n$, se quiere resolver el problema de cuadrados mínimos, i.e. encontrar x^* tal que, $||Ax^* - b||_2 = \min_{x \in \mathbb{R}^n} ||Ax - b||_2$.

a) Demostrar que si rango(A) = n entonces el problema de cuadrados mínimos tiene solución única. Probar además que A^+b es la solución $(A^+$ es la pseudoinversa).

b) Sea
$$A = \begin{pmatrix} 1 & 0 \\ \sqrt{2}/2 & -\sqrt{2}/2 \\ 0 & 1 \end{pmatrix}$$

- (i) Encontrar la descomposición en valores singulares de A y calcular A+.
- (ii) Se quiere ajustar la siguiente tabla

$$\begin{vmatrix} x & 0 & -\pi/8 & \pi/4 \\ y & 1 & 1/2 & -1 \\ \end{vmatrix}$$

por un modelo de la forma $f(x) = a \cos(2x) + b \sin(2x)$ en el sentido de cuadrados mínimos. Resolver el problema utilizando los resultados del item a).

Ejercicio 4. Sea
$$k \in \mathbb{R}$$
 y sea $A = \begin{pmatrix} -1 & -1 & 0 \\ k & -1 & -1 \\ -3k^2 & 3k & -1 \end{pmatrix}$

- a) Hallar todos los valore de $k \neq -1/3$, -1 para los que Gauss-Seidel converge.
- b) Sea $b = \begin{pmatrix} -1 \\ -1 \\ 9 \end{pmatrix}$, k = 3 y x^* solución de $Ax^* = b$. Encontrar todos los valores iniciales para los que el método converja en 1 paso a la solución x^* .

Importante: Justificar claramente todas las respuestas.

AUKC:

$$NU(A^{2}A - 2I) =$$

 $NU(A^{2}A - 2I) =$
 $NU(A^{2}A - 2I) = (-1, 1)$
 $NU(A^{2}A - 1) =$
 $NU(A^{$

$$\begin{array}{c} \chi_{1} + \chi_{3} = 0 \rightarrow \chi_{1} = -\chi_{3} \\ \chi_{1} + \sqrt{1}\chi_{3} = 0 \\ (2 \chi_{2} = -\sqrt{2} \chi_{3}) \\ \chi_{2} = -\sqrt{2} \chi_{3} \\ \chi_{3} = 0 \\ \chi_{4} = 2 \\ \chi_{5} = 0 \\ \chi_{7} = \chi_{7} \\ \chi_{7} = 0 \\ \chi_{7} = 0 \\ \chi_{7} = 0 \\ \chi_{7} = \chi_{7} \\ \chi_{7} = 0 \\ \chi_{7} = 0 \\ \chi_{7} = 0 \\ \chi_{7} = \chi_{7} \\ \chi_{7} = 0 \\ \chi_{7} = 0$$

$$A = 0 \geq \sqrt{6}$$

$$Con \quad 0 = \left(-\frac{1}{5}, 0 + \frac{1}{5}, \frac{1}{$$

Abora, Para ge GS

Conversa 1-KICI
$$\Lambda$$
 1-3K|CI,

T

T

T

T

 $1-K/CI \rightleftharpoons -(2-3K-CI)$

T

 $1/3 > K > -1/3$
 $1/3 > K > -1/$

Para gue el métalo x 0 - x × = ~ (- (D+2)-() $\frac{1}{2}$ $\frac{1}$ 3 (2,-1) + 2 = 0 - 5 2 = 0 $9 \times 2 + \times 3 - 1 \rightarrow 5 = 1$ · · E 1/5/2 CD S6/2 CO/OT inclory es 2 the settle