Convexity Preserving Operation

2020年3月4日 9:26

① domf convex,
$$f(0x+(1-0)y) \le 0 f(x)+(1-0)f(y)$$

 $\forall x,y \in domf$

3 epif=
$$\{(x,t) \mid t \geq f(x)\}$$
 convex R^{n+1}

$$(4)$$
 if $f \in C^1$, $f(z) \ge f(x) + \nabla f(x)^7(z-x)$, $\forall x, z \in domf$

(5) if
$$f \in C^2$$
, $\nabla^2 f(x) \gg 0$, $\forall x \in dom f$.

$$f(x) = \sup \left\{ g(x) \mid g \text{ is affine, } g(z) \leq f(z), \forall z \right\}$$

$$\int s_i t_i f(x) \leq g(x) \langle -$$

1.
$$f \in C^1$$
, $g(z) = f(x) + \nabla f(x)(z-x)$

$$f \in C$$
, $f(x) = \frac{1}{2} \frac{1}$

$$f \in C$$
, $f(x) = \frac{f(x) + \sqrt{f(x)}(z - x)}{\sqrt{f(x)}}$ Since $(x, f(x)) \in epif$

We have $f(z) \ge g(z)$, $\forall z$ and $g(x) = f(x)$. $\Rightarrow C^{f(x)}$ define a supporting hyperplane for $epif$.

2.
$$f \notin C'$$
, $(x, f(x)) \in epi f$,

$$\exists (a,b) \neq 0 \quad \text{s.t.} \quad \begin{bmatrix} a \\ b \end{bmatrix}^{\intercal} \begin{bmatrix} x \\ f(x) \end{bmatrix} > \begin{bmatrix} a \\ b \end{bmatrix}^{\intercal} \begin{bmatrix} z \\ t \end{bmatrix}, \forall (a,t) \in \text{epif.} \quad \begin{bmatrix} \sqrt{2} \\ -1 \end{bmatrix}^{\intercal} \begin{bmatrix} x \\ f(x) \end{bmatrix} > \begin{bmatrix} \sqrt{2} \\ f(x) \end{bmatrix}$$

$$as (z,t) \in \text{epif.} \quad \Rightarrow \quad t = f(z) + s, \quad s \geq 0.$$

f(z) > f(x) + Df(x) (3-x)-

$$0 > 0$$
 (otherwise, $-bs \rightarrow -\infty$) as $s \rightarrow +\infty$)

$$0 \quad b < 0 \quad (\text{if } b = 0, \quad \underline{a^{7}(x - \xi)} > 0, \quad (\text{since dow} f = R^{n}) \Rightarrow \quad a = 0 \Rightarrow (a,b) = 0$$

$$0 \quad \text{Choose } z = x + \delta a \Rightarrow \quad a^{7}(x - \xi) = -\delta \|a\|^{2} < 0$$

Then,
$$\frac{a^7}{b}(x-z) + f(x) - f(z) - s \le 0$$
, $\forall z$, $s \ge 0$.
Choose $s = 0 \Rightarrow f(z) > f(x) + \frac{a^7}{b}(x-z) = g(z)$

$$\mathbf{A} = \mathbf{f}(\mathbf{x}) = \mathbf{g}(\mathbf{x})$$

