Methods of Data Analysis I

Derek Li

Contents

1	Review						
	1.1	Expectation					
	1.2	Variance and Covariance					
	1.3	Correlation					
	1.4	Distributions					
		1.4.1 Bivariate Normal Distribution					
2	Sample Linear Regression						
	2.1	Statistical Model					
	2.2	Estimating $\beta_0, \beta_1, \ldots, \beta_0, \beta_1, \ldots, \beta_0, \beta_0, \beta_0, \beta_0, \beta_0, \beta_0, \beta_0, \beta_0$					
		2.2.1 Least Squares Method					
		2.2.2 Interpretation					
		2.2.3 Estimation in R					
	2.3	Properties of Fitted Regression Line					
	2.4	Assumptions					
	2.5	Estimating the Variance of the Random Error Term					
	2.6	Properties of Least Squares Estimators					
	2.7	Normal Error Regression Model					
	2.8	Inference for the Parameter					
		2.8.1 Significance Test					
		2.8.2 Confidence Interval					
	2.9	The Pooled Two-Sample t-Procedure					
	2.10	Regression Analysis of Variance					
		2.10.1 Regression ANOVA Table					
		2.10.2 Coefficient of Determination					
		2.10.3 Sample Correlation Coefficient					
	2 11	Confidence Interval for the Population Regression Line					
		Prediction Interval for Actual Value of Y					

1 Review

1.1 Expectation

- $\mathbb{E}[a] = a, a \in \mathbb{R}$.
- $\mathbb{E}[aY] = a\mathbb{E}[Y]$.
- $\mathbb{E}[X \pm Y] = \mathbb{E}[x] \pm \mathbb{E}[Y]$.
- $\mathbb{E}[XY] = \mathbb{E}[X]\mathbb{E}[Y]$ if X and Y are independent.
- Tower rule: $\mathbb{E}[Y] = \mathbb{E}[\mathbb{E}[Y|X]]$.

1.2 Variance and Covariance

- $Var[a] = 0, a \in \mathbb{R}$.
- $Var[aY] = a^2 Var[Y]$.
- $Cov(X, Y) = \mathbb{E}[(X \mathbb{E}[X])(Y \mathbb{E}[Y])] = \mathbb{E}[XY] \mathbb{E}[X]\mathbb{E}[Y].$
- Cov(Y, Y) = Var[Y].
- $\operatorname{Var}[Y] = \operatorname{Var}[\mathbb{E}[Y|X]] + \mathbb{E}[\operatorname{Var}[Y|X]].$
- $\operatorname{Var}[X \pm Y] = \operatorname{Var}[X] + \operatorname{Var}[Y] \pm 2\operatorname{Cov}(X, Y)$.
- Cov(X, Y) = 0 if X and Y are independent.
- Cov(aX + bY, cU + dW) = acCov(X, U) + adCov(X, W) + bcCov(Y, U) + bdCov(Y, W).

1.3 Correlation

If X and Y are random variables, a symmetric measure of the direction and strength of the linear dependence between them is their correlation

$$\rho = \frac{\operatorname{Cov}(X, Y)}{\sqrt{\operatorname{Var}[X]\operatorname{Var}[Y]}}.$$

1.4 Distributions

- If $X \sim \mathcal{N}(\mu, \sigma^2)$, then $Z = \frac{X \mu}{\sigma} \sim \mathcal{N}(0, 1)$.
- Let $U = Z^2$, then $U \sim \chi^2_{(1)}$.
- If Z and $X \sim \chi^2_{(m)}$ are independent, then $\frac{Z}{\sqrt{X/m}} \sim t_{(m)}$.
- If $X \sim \chi^2_{(m)}, Y \sim \chi^2_{(n)}$ are independent, then $\frac{X/m}{Y/n} \sim F_{(m,n)}$.
- $t_{(m)} \xrightarrow{D} Z$, as $m \to \infty$.

1.4.1 Bivariate Normal Distribution

X and Y are jointly normally distributed is their joint density function is

$$f(x,y) = \frac{e^{-\frac{Q}{2}}}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}},$$

where

$$Q = \frac{1}{1 - \rho^2} \left[\frac{(x - \mu_x)^2}{\sigma_x^2} - 2\rho \frac{(x - \mu_x)(y - \mu_y)}{\sigma_x \sigma_y} + \frac{(y - \mu_y)^2}{\sigma_y^2} \right].$$

Two marginal distributions are

$$X \sim \mathcal{N}(\mu_x, \sigma_x^2)$$
 and $Y \sim \mathcal{N}(\mu_y, \sigma_y^2)$.

The conditional distribution of Y given X = x is

$$Y|X = x \sim \mathcal{N}\left(\mu_y + \rho\sigma_y\left(\frac{x - \mu_x}{\sigma_x}\right), (1 - \rho^2)\sigma_y^2\right).$$

Theorem 1.1. If X and Y are jointly normally distributed, then a zero covariance between X and Y implies that they are statistically independent.

2 Sample Linear Regression

2.1 Statistical Model

$$Y = \beta_0 + \beta_1 X + e,$$

where Y is dependent or response variable, X is independent or explanatory variable, β_0 is intercept parameter, β_1 is slope parameter, and e is random error or noise (variation in measures that we cannot account for).

Given a specific value of X = x, we want to find the expected value of Y

$$\mathbb{E}[Y|X=x].$$

2.2 Estimating β_0, β_1

Given n pairs bivariate data $(x_1, y_1), \dots, (x_n, y_n)$, we want to use $\widehat{\beta}_0$ and $\widehat{\beta}$ to estimate β_0 and β_1 .

Consider the residual sum of squares

$$RSS = \sum_{i=1}^{n} \hat{e}_{i}^{2} = \sum_{i=1}^{n} (y_{i} - \hat{y}_{i})^{2} = \sum_{i=1}^{n} \left[y_{i} - (\hat{\beta}_{0} + \hat{\beta}_{1} x_{i}) \right]^{2},$$

we can use least squares method that minimizes the criterion RSS to find the estimators.

2.2.1 Least Squares Method

Least squares method makes no statistical assumptions. We have

$$\frac{\partial RSS}{\partial \widehat{\beta}_0} = -2\sum_{i=1}^n \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right) \text{ and } \frac{\partial RSS}{\partial \widehat{\beta}_1} = -2\sum_{i=1}^n \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right) x_i.$$

Let $\frac{\partial RSS}{\partial \hat{\beta}_0}$ and $\frac{\partial RSS}{\partial \hat{\beta}_1}$ be 0, we get the normal equations

$$\sum_{i=1}^{n} \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right) = 0 \text{ and } \sum_{i=1}^{n} \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right) x_i = 0.$$

Therefore, we have

$$\sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \widehat{\beta}_0 - \sum_{i=1}^{n} \widehat{\beta}_1 x_i = n\overline{y} - n\widehat{\beta}_0 - n\widehat{\beta}_1 \overline{x} = 0 \Rightarrow \widehat{\beta}_0 = \overline{y} - \widehat{\beta}_1 \overline{x}.$$

Besides,

$$\sum_{i=1}^{n} x_i y_i - \sum_{i=1}^{n} \widehat{\beta}_0 x_i - \sum_{i=1}^{n} \widehat{\beta}_1 x_i^2 = \sum_{i=1}^{n} x_i y_i - \left(\overline{y} - \widehat{\beta}_1 \overline{x} \right) \sum_{i=1}^{n} x_i - \widehat{\beta}_1 \sum_{i=1}^{n} x_i^2$$

$$= \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y} + n \widehat{\beta}_1 \overline{x}^2 - \widehat{\beta}_1 \sum_{i=1}^{n} x_i^2 = 0,$$

i.e.,

$$\widehat{\beta}_1 = \frac{\sum_{i=1}^n x_i y_i - n\overline{x}\overline{y}}{\sum_{i=1}^n x_i^2 - n\overline{x}^2} = \frac{\sum_{i=1}^n (x_i - \overline{x})(y_i - \overline{y})}{\sum_{i=1}^n (x_i - \overline{x})^2} := \frac{SXY}{SXX}.$$

2.2.2 Interpretation

 $\hat{\beta}_0$: The expected value of y when x = 0. No practical interpretation unless 0 is within the range of the predictor values.

 $\hat{\beta}_1$: When x changes by 1 unit, the corresponding average change in y is the slope.

2.2.3 Estimation in R

model=lm(y~x)
summary(model)

2.3 Properties of Fitted Regression Line

Property 2.1.

$$\sum_{i=1}^{n} \hat{e}_i = 0.$$

Proof. By definition,

$$\sum_{i=1}^{n} \widehat{e}_{i} = \sum_{i=1}^{n} (y_{i} - \widehat{y}_{i}) = \sum_{i=1}^{n} \left(y_{i} - \widehat{\beta}_{0} - \widehat{\beta}_{1} x_{i} \right) = \sum_{i=1}^{n} \left(y_{i} - \overline{y} + \widehat{\beta}_{1} \overline{x} - \widehat{\beta}_{1} x_{i} \right)$$
$$= n \overline{y} - n \overline{y} + n \widehat{\beta}_{1} \overline{x} - n \widehat{\beta}_{1} \overline{x} = 0.$$

Property 2.2. The sum of squares of residuals is not 0 unless the fit to the data is perfect.

Property 2.3.

$$\sum_{i=1}^{n} \hat{e}_i x_i = 0.$$

Proof. By definition,

$$\sum_{i=1}^{n} \widehat{e}_i x_i = \sum_{i=1}^{n} \left(y_i - \widehat{\beta}_0 - \widehat{\beta}_1 x_i \right) x_i = \sum_{i=1}^{n} x_i y_i - \overline{y} \sum_{i=1}^{n} x_i + \widehat{\beta}_1 \overline{x} \sum_{i=1}^{n} x_i - \widehat{\beta}_1 \sum_{i=1}^{n} x_i^2$$
$$= \sum_{i=1}^{n} x_i y_i - n \overline{x} \overline{y} - \widehat{\beta}_1 \left(\sum_{i=1}^{n} x_i^2 - n \overline{x}^2 \right) = 0.$$

Property 2.4.

$$\sum_{i=1}^{n} \hat{e}_i \hat{y}_i = 0.$$

Proof. By definition,

$$\sum_{i=1}^{n} \hat{e}_{i} \hat{y}_{i} = \sum_{i=1}^{n} \hat{e}_{i} (\hat{\beta}_{0} + \hat{\beta}_{1} x_{i}) = \hat{\beta}_{0} \sum_{i=1}^{n} \hat{e}_{i} + \hat{\beta}_{1} \sum_{i=1}^{n} \hat{e}_{i} x_{i} = 0 + 0 = 0.$$

Property 2.5.

$$\sum_{i=1}^{n} \widehat{y}_i = \sum_{i=1}^{n} y_i.$$

Proof. We have

$$\sum_{i=1}^{n} \hat{e}_i = 0 = \sum_{i=1}^{n} (y_i - \hat{y}_i) = \sum_{i=1}^{n} y_i - \sum_{i=1}^{n} \hat{y}_i \Rightarrow \sum_{i=1}^{n} \hat{y}_i = \sum_{i=1}^{n} y_i.$$

2.4 Assumptions

The Gauss-Markov conditions are:

- 1. $\mathbb{E}[e_i] = 0$.
- 2. $Var[e_i] = \sigma^2$, i.e., homoscedastic.
- 3. The errors are uncorrelated or $Cov(e_i, e_j) = \rho(e_i, e_j) = 0$.

Theorem 2.1 (Gauss-Markov Theorem). Under the conditions or the simple linear regression model, the least-squares parameter estimators are best linear unbiased estimators.

We assume that Y is relate to x by the simple linear regression model

$$Y_i = \beta_0 + \beta_1 x_i + e_i, i = 1, \dots, n.$$

Under the conditions we have

$$\mathbb{E}[Y|X=x_i] = \beta_0 + \beta_1 x_i$$

and

$$Var[Y|X = x_i] = Var[\beta_0 + \beta_1 x_i + e_i | X = x_i] = Var[e_i] = \sigma^2.$$

2.5 Estimating the Variance of the Random Error Term

The variance σ^2 is another parameter of the SLR model and we want to estimate σ^2 to measure the variability of our estimates of Y, and carry out inference on the model.

An unbiased estimate of σ^2 is

$$S^2 = \frac{\sum_{i=1}^{n} \hat{e}_i^2}{n-2} = \frac{RSS}{n-2}.$$

2.6 Properties of Least Squares Estimators

Since $\sum_{i=1}^{n} (x_i - \overline{x}) = 0$,

$$\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y}) = \sum_{i=1}^{n} (x_i - \overline{x})y_i - \overline{y}\sum_{i=1}^{n} (x_i - \overline{x}) = \sum_{i=1}^{n} (x_i - \overline{x})y_i.$$

Let $c_i = \frac{x_i - \overline{x}}{SXX}$, we can rewrite $\hat{\beta}_1$ as

$$\widehat{\beta}_1 = \sum_{i=1}^n c_i y_i,$$

which is a linear combination of y_i .

We have

$$\mathbb{E}\left[\hat{\beta}_{1}|X\right] = \mathbb{E}\left[\sum_{i=1}^{n} c_{i}y_{i}|X = x_{i}\right] = \sum_{i=1}^{n} c_{i}\mathbb{E}[y_{i}|X = x_{i}]$$

$$= \sum_{i=1}^{n} c_{i}\mathbb{E}[\beta_{0} + \beta_{1}x_{i}] = \beta_{0}\sum_{i=1}^{n} c_{i} + \beta_{1}\sum_{i=1}^{n} c_{i}x_{i}$$

$$= \frac{\beta_{0}}{SXX}\sum_{i=1}^{n} (x_{i} - \overline{x}) + \beta_{1}\sum_{i=1}^{n} \frac{(x_{i} - \overline{x})x_{i}}{SXX}$$

$$= \beta_{1}\frac{\sum_{i=1}^{n} x_{i}^{2} - n\overline{x}^{2}}{SXX} = \beta_{1}.$$

Therefore, $\hat{\beta}_1$ is unbiased for β_1 . Besides,

$$\operatorname{Var}\left[\hat{\beta}_{1}|X\right] = \operatorname{Var}\left[\sum_{i=1}^{n} c_{i}y_{i}|X\right] = \sum_{i=1}^{n} c_{i}^{2}\operatorname{Var}[y_{i}|X = x_{i}]$$
$$= \sigma^{2} \sum_{i=1}^{n} c_{i}^{2} = \sigma^{2} \frac{\sum_{i=1}^{n} (x_{i} - \overline{x})^{2}}{SXX^{2}} = \frac{\sigma^{2}}{SXX}.$$

We have

$$\mathbb{E}\left[\widehat{\beta}_{0}|X\right] = \mathbb{E}\left[\overline{y} - \widehat{\beta}_{1}\overline{x}|X = x_{i}\right] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}y_{i} - \widehat{\beta}_{1}\overline{x}|X = x_{i}\right]$$
$$= \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[\beta_{0} + \beta_{1}x_{i} + e_{i}|X = x_{i}] - \overline{x}\mathbb{E}\left[\widehat{\beta}_{1}|X = x_{i}\right]$$
$$= \frac{1}{n}n\beta_{0} + \frac{1}{n}n\beta_{1}\overline{x} - \overline{x}\beta_{1} = \beta_{0}.$$

Therefore, $\hat{\beta}_0$ is unbiased for β_0 . Besides,

$$\operatorname{Var}\left[\widehat{\beta}_{0}|X\right] = \operatorname{Var}\left[\overline{y} - \widehat{\beta}_{1}\overline{x}|X = x_{i}\right]$$

$$= \operatorname{Var}\left[\overline{y}|X = x_{i}\right] + \operatorname{Var}\left[\widehat{\beta}_{1}\overline{x}|X = x_{i}\right] - 2\operatorname{Cov}\left(\overline{y}, \widehat{\beta}_{1}\overline{x}|X = x_{i}\right)$$

$$= \frac{\sigma^{2}}{n} + \frac{\overline{x}^{2}\sigma^{2}}{SXX} - 0 = \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{SXX}\right).$$

Note that $\operatorname{Cov}\left(\overline{y}, \widehat{\beta}_1 \overline{x} | X = x_u\right) = \frac{\overline{x}\sigma^2}{n} \sum_{i=1}^n c_i = 0.$

2.7 Normal Error Regression Model

Given distributional assumption:

$$e_i \sim \mathcal{N}(0, \sigma^2),$$

we know:

- (1) the errors are independent since $\rho = 0$;
- (2) since $y_i = \beta_0 + \beta_1 x_i + e_i$, then $Y_i | X \sim \mathcal{N}(\beta_0 + \beta_1 x_i, \sigma^2)$;
- (3) the least squares estimates of β_0, β_1 are equivalent to their maximum likelihood estimators.
- (4) since $\hat{\beta}_1 = \sum_{i=1}^n c_i y_i$ is a linear combination of the y_i 's, $\hat{\beta}_1 | X \sim \mathcal{N}\left(\beta_1, \frac{\sigma^2}{SXX}\right)$; since \overline{y} is normally distributed, $\hat{\beta}_0 | X \sim \mathcal{N}\left(\beta_0, \sigma^2\left(\frac{1}{n} + \frac{\overline{x}^2}{SXX}\right)\right)$.

Property 2.6. Under the normal error SLR model, where

$$e_i \sim \mathcal{N}(0, \sigma^2)$$
 and $S^2 = \frac{1}{n-2} \sum_{i=1}^n \hat{e}_i^2 = \frac{1}{n-2} \sum_{i=1}^n \left(Y_i - \hat{Y}_i \right)^2$,

we have

$$\frac{(n-2)S^2}{\sigma^2} = \sum_{i=1}^{n} \left(\frac{Y_i - \hat{Y}_i}{\sigma^2} \right)^2 \sim \chi^2_{(n-2)}.$$

Property 2.7. Under the normal error SLR model,

$$\frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{S^2}{SXX}}} \sim t_{(n-2)}.$$

Proof. We have $\hat{\beta}_1|X=x_i \sim \mathcal{N}\left(\beta_1, \frac{\sigma^2}{SXX}\right)$, and thus

$$\frac{\widehat{\beta}_1 - \beta_1}{\sigma / \sqrt{SXX}} \sim \mathcal{N}(0, 1).$$

Wherefore

$$\frac{\frac{\hat{\beta}_1 - \beta_1}{\sigma/\sqrt{SXX}}}{\sqrt{(n-2)S^2/\sigma^2/(n-2)}} = \frac{\hat{\beta}_1 - \beta_1}{\sqrt{\frac{S^2}{SXX}}} \sim t_{(n-2)}.$$

2.8 Inference for the Parameter

2.8.1 Significance Test

- Step 1: $H_0: \beta_1 = \beta_1^0$ against $H_a: \beta_1 \neq \beta_1^0$.
- Step 2: Test statistic $t = \frac{\hat{\beta}_1 \beta_1^0}{\sqrt{S^2/SXX}}$, and under $H_0, t \sim t_{(n-2)}$.
- Step 3: p-value = $2P(t_{(n-2)} \ge |t|)$.
- Step 4: The smaller the p-value, the greater the evidence against H_0 and the larger p-value indicate that the data is consistent with H_0 .

<i>p</i> -value	Evidence against H_0		
< 0.001	Very strong		
(0.001, 0.01)	Strong		
(0.01, 0.05)	Moderate		
(0.05, 0.1)	Weak		
> 0.1	None		

Note that the test statistic for $\hat{\beta}_0$ is $t = \frac{\hat{\beta}_0 - \beta_0^0}{\sqrt{S^2(\frac{1}{n} + \frac{\overline{x}^2}{SXX})}}$

2.8.2 Confidence Interval

The CI is

Estimate
$$\pm 100 \left(1 - \frac{\alpha}{2}\right)$$
 th quantile \times Standard Error (Estimate),

where α is the critical value.

For β_1 , the CI is

$$\left[\widehat{\beta}_1 \pm t_{\frac{\alpha}{2}(n-2)} \sqrt{\frac{S^2}{SXX}} \right].$$

For β_0 , the CI is

$$\left[\widehat{\beta}_0 \pm t_{\frac{\alpha}{2}(n-2)} \sqrt{S^2 \left(\frac{1}{n} + \frac{\overline{x}^2}{SXX} \right)} \right].$$

Note that a $100(1-\alpha)\%$ CI for θ consists of all those values of θ_0 for which $H_0: \theta = \theta_0$ will not be rejected at level α . In other words, we do not reject H_0 is θ_0 lies within the CI, and we reject H_0 is the CI does not include θ_0 .

2.9 The Pooled Two-Sample t-Procedure

We want to test $H_0: \mu_x = \mu_y$, where

$$X_1, \dots, X_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_x, \sigma_x^2) \text{ and } Y_1, \dots, Y_n \stackrel{\text{i.i.d.}}{\sim} \mathcal{N}(\mu_y, \sigma_y^2).$$

Suppose two samples are independent and $\sigma_x^2 = \sigma_y^2 = \sigma^2$, then we have

$$t = \frac{(\overline{X} - \overline{Y}) - (\mu_x - \mu_y)}{s_p \sqrt{\frac{1}{n_x} + \frac{1}{n_y}}} \sim t_{(n_x + n_y - 2)},$$

where $s_p^2 = \frac{(n_x - 1)s_x^2 + (n_y - 1)s_y^2}{n_x + n_y - 2}$.

2.10 Regression Analysis of Variance

Notice that $y_i - \overline{y} = (y_i - \hat{y}_i) + (\hat{y}_i - \overline{y})$. We have

$$TSS = \sum_{i}^{n} (y_i - \overline{y})^2,$$

$$RSS = \sum_{i}^{n} (y_i - \widehat{y}_i)^2 = \sum_{i}^{n} \widehat{e}_i^2,$$

$$RegSS = \sum_{i}^{n} (\widehat{y}_i - \overline{y})^2.$$

RSS, residual SS, is the least square criterion, representing the unexplained variation in y's. RegSS, regression SS, is the amount of variation in y's explained by regression line.

Property 2.8. $RegSS = \hat{\beta}_1^2 SXX$.

Proof. We have

$$RegSS = \sum_{i}^{n} (\widehat{y}_{i} - \overline{y})^{2} = \sum_{i}^{n} (\widehat{\beta}_{0} + \widehat{\beta}_{1}x_{i} - \overline{y})^{2}$$
$$= \sum_{i}^{n} (\overline{y} - \widehat{\beta}_{1}\overline{x} + \widehat{\beta}_{1}x_{i} - \overline{y})^{2} = \widehat{\beta}_{1}^{2} \sum_{i}^{n} (x_{i} - \overline{x})^{2} = \widehat{\beta}_{1}^{2}SXX.$$

Property 2.9. TSS = RSS + RegSS.

Proof. We have

$$\sum_{i}^{n} (y_{i} - \overline{y})^{2} = \sum_{i}^{n} ((y_{i} - \widehat{y}_{i}) + (\widehat{y}_{i} - \overline{y}))^{2}$$

$$= \sum_{i}^{n} (y_{i} - \widehat{y})^{2} + \sum_{i}^{n} (\widehat{y}_{i} - \overline{y})^{2} + 2 \sum_{i}^{n} (y_{i} - \widehat{y}_{i})(\widehat{y}_{i} - \overline{y})$$

$$= RSS + RegSS + 2 \sum_{i}^{n} \widehat{e}_{i}(\widehat{y}_{i} - \overline{y})$$

$$= RSS + RegSS + 2 \sum_{i}^{n} \widehat{e}_{i}\widehat{y}_{i} - 2\overline{y} \sum_{i}^{n} \widehat{e}_{i}$$

$$= RSS + RegSS.$$

2.10.1 Regression ANOVA Table

Source	SS	df	Mean SS
Regression Line	$RegSS = \widehat{\beta}_1^2 SXX$	1	$\widehat{\beta}_1^2 SXX$
Error	$RSS = \sum_{i=1}^{n} \hat{e}_i^2$	n-2	$\frac{\sum_{i=1}^{n} (y_i - \hat{y}_i)^2}{n-2} = S^2$
Total	$TSS = \sum_{i}^{n} (y_i - \overline{y})^2$		

Property 2.10. Let

$$F = \frac{MRegSS}{MRSS} = \frac{RegSS/1}{RSS/(n-2)}.$$

If $\beta_1 = 0$, then

$$F \sim F_{(1,n-2)}$$
.

Proof. If $\beta_1 = 0$, then $\hat{\beta}_1 \sim \mathcal{N}\left(0, \frac{\sigma^2}{SXX}\right)$, i.e.,

$$\frac{\widehat{\beta}_1}{\sqrt{\sigma^2/SXX}} \sim \mathcal{N}(0,1) \Rightarrow \frac{\widehat{\beta}_1^2}{\sigma^2/SXX} \sim \chi_{(1)}^2.$$

Besides, $\frac{(n-2)S^2}{\sigma^2} \sim \chi^2_{(n-2)}$, and we have

$$\frac{\frac{\hat{\beta}_1^2}{\sigma^2/SXX}}{\frac{(n-2)S^2}{\sigma^2}/(n-2)} = \frac{\hat{\beta}_1^2SXX}{S^2} = F \sim F_{(1,n-2)}.$$

Note that F is another test of $H_0: \beta_1 = 0$, and in R, we have:

anova(model)

2.10.2 Coefficient of Determination

Let

$$R^2 = \frac{RegSS}{TSS} = \frac{TSS - RSS}{TSS} = 1 - \frac{RSS}{TSS}.$$

Here are some comments about R^2 :

- $R^2 \in [0,1]$.
- \bullet R^2 gives percentage of variation in y's explained by regression line.
- R^2 is not resistant to outliers.
- A high R^2 does not indicate that the estimated regression line is a good fit since:
 - * we do not have absolute rules about how large it should be;
 - * R^2 can get very high by overfitting.

- It is not meaningful for models without intercept.
- To compare 2 models, R^2 is only useful:
 - * same observations, y's in original units (not transformed);
 - * one set of predictor variables is a subset of the other.

2.10.3 Sample Correlation Coefficient

The estimate of the population correlation is Pearson's Product-Moment Correlation Coefficient

$$r = \frac{\sum_{i=1}^{n} (x_i - \overline{x})(y_i - \overline{y})}{\sqrt{\sum_{i=1}^{n} (x_i - \overline{x})^2 \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{SXY}{\sqrt{SXX \cdot SYY}},$$

which is the MLE of ρ . r is distribution free and is always a number between -1 and 1.

Theorem 2.2. $R^2 = r^2$.

Proof. We have

$$R^{2} = \frac{RegSS}{TSS} = \frac{\sum_{i=1}^{n} (\hat{y}_{i} - \overline{y})^{2}}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = \frac{\hat{\beta}_{1}^{2}SXX}{SYY} = \frac{\frac{SXY^{2}}{SXX^{2}} \cdot SXX}{SYY} = \frac{SXY^{2}}{SXX \cdot SYY} = r^{2}.$$

Property 2.11. If $\rho = 0$,

$$t = \frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{\hat{\beta}_1}{\sqrt{S^2/SXX}} \sim t_{(n-2)},$$

where $\hat{\beta}_1$ is the slope estimate for the normal error SLR model.

Proof. Since $r^2 = R^2$, then

$$\frac{r\sqrt{n-2}}{\sqrt{1-r^2}} = \frac{\frac{\widehat{\beta}_1\sqrt{SXX}}{\sqrt{SXY}}\sqrt{n-2}}{\sqrt{(n-2)S^2/SXY}} = \frac{\widehat{\beta}_1}{\sqrt{S^2/SXX}}.$$

If $\rho = 0$, then $\beta_1 = 0$, i.e.,

$$\frac{\widehat{\beta}_1}{\sqrt{S^2/SXX}} \sim t_{(n-2)}.$$

2.11 Confidence Interval for the Population Regression Line

We want to find a CI for the unknown population regression line at a given value of X, denoted by x^* , i.e.,

$$\mathbb{E}[Y|X=x^*] = \beta_0 + \beta_1 x^*.$$

The point estimate for $\mathbb{E}[Y|X=x^*]$ is

$$\widehat{y}^* = \widehat{\beta}_0 + \widehat{\beta}_1 x^*.$$

We have

$$\mathbb{E}\left[\hat{y}^*\right] = \mathbb{E}\left[\hat{y}|X = x^*\right] = \beta_0 + \beta_1 x^*,$$

i.e., \hat{y}^* is unbiased for $\mathbb{E}[Y|X=x^*]$.

Recall that
$$\operatorname{Var}\left[\widehat{\beta}_0|X\right] = \sigma^2\left(\frac{1}{n} + \frac{\overline{x}^2}{SXX}\right)$$
, $\operatorname{Var}\left[\widehat{\beta}_1|X\right] = \frac{\sigma^2}{SXX}$, then

$$\operatorname{Cov}\left[\widehat{\beta}_{0}, \widehat{\beta}_{1} | X\right] = \operatorname{Cov}\left[\overline{y} - \widehat{\beta}_{1} \overline{x}, \widehat{\beta}_{1} | X\right] = -\overline{x} \operatorname{Var}\left[\widehat{\beta}_{1} | X\right] = -\frac{\overline{x} \sigma^{2}}{S X X}.$$

Wherefore

$$\operatorname{Var}\left[\hat{y}^{*}\right] = \operatorname{Var}\left[\hat{y}|X = x^{*}\right] = \operatorname{Var}\left[\hat{\beta}_{0} + \hat{\beta}_{1}x|X = x^{*}\right]$$

$$= \operatorname{Var}\left[\hat{\beta}_{0}|X = x^{*}\right] + (x^{*})^{2}\operatorname{Var}\left[\hat{\beta}_{1}|X = x^{*}\right] + 2x^{*}\operatorname{Cov}\left[\hat{\beta}_{0}, \hat{\beta}_{1}|X = x^{*}\right]$$

$$= \sigma^{2}\left(\frac{1}{n} + \frac{\overline{x}^{2}}{SXX}\right) + (x^{*})^{2}\frac{\sigma^{2}}{SXX} - \frac{2x^{*}\overline{x}\sigma^{2}}{SXX} = \sigma^{2}\left(\frac{1}{n} + \frac{(x^{*} - \overline{x})^{2}}{SXX}\right).$$

Hence, as $n \uparrow$, $\operatorname{Var}\left[\widehat{y}^*\right] \downarrow$; as x^* closer to \overline{x} , $\operatorname{Var}\left[\widehat{y}^*\right] \downarrow$.

Using $S^2 = MRSS$, we get the standard error of the estimate of $\mathbb{E}[Y|X = x^*]$,

$$\sqrt{S^2 \left(\frac{1}{n} + \frac{(x^* - \overline{x})^2}{SXX}\right)}.$$

Hence, a $100(1-\alpha)\%$ CI for $\mathbb{E}[Y|X=x^*]$, the mean response for all the elements in the population with $X=x^*$ is

$$\left[\widehat{y}^* \pm t_{\frac{\alpha}{2}(n-2)} \sqrt{S^2 \left(\frac{1}{n} + \frac{(x^* - \overline{x})^2}{SXX}\right)}\right].$$

Notice that it is only valid for x^* in the range of the original data values of X but not for extrapolation.

2.12 Prediction Interval for Actual Value of Y

A confidence interval is always reported for a parameter while a prediction interval is reported for the value of a random variable. We want to find a PI for the actual value of Y at $X = x^*$, i.e., $Y^* = Y | X = x^*$.

The point estimate for Y^* is

$$\widehat{y}^* = \widehat{\beta}_0 + \widehat{\beta}_1 x^*.$$

The error in our prediction is

$$\varepsilon^* = Y^* - \hat{y}^*.$$

The predicted value \hat{y}^* has two sources of variability:

- Since the regression line is estimated at $\hat{\beta}_0 + \hat{\beta}_1 X$;
- due to ε^* , some points do not fall exactly on the line.

We have

$$Var [Y^* - \hat{y}^*] = Var [Y - \hat{y}|X = x^*]$$

$$= Var [Y|X = x^*] + Var [\hat{y}|X = x^*] - 2Cov(Y, \hat{y}|X = x^*)$$

$$= \sigma^2 + \sigma^2 \left(\frac{1}{n} + \frac{(x^* - \overline{x})^2}{SXX}\right) - 0 = \sigma^2 \left(1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{SXX}\right).$$

Notice that $Cov(Y, \hat{y}|X = x^*) = 0$ since Y^* is a new observation.

Hence, a $100(1-\alpha)\%$ PI for $Y|X=x^*$ is

$$\left[\widehat{y}^* \pm t_{\frac{\alpha}{2}(n-2)} \sqrt{S^2 \left(1 + \frac{1}{n} + \frac{(x^* - \overline{x})^2}{SXX}\right)}\right].$$

PIs for Y^* have the same center but are wider than CIs for $\mathbb{E}[Y|X=x^*]$.