10 線形微分方程式の多項式解

ここまで学んできたことを応用して、線形微分方程式の多項式解を求めてみます.

演習 ${\bf 10.1}\ V=\mathbb{R}[x]$ を実数係数の 1 変数多項式全体のなすベクトル空間とし, $V_n=\mathbb{R}[x]_n$ を次数が n 以下の多項式全体のなす V の部分空間とする.

V から *V* への写像 *ϕ* を

$$\varphi: f(x) \mapsto (x^2 + 1)f''(x) - 3xf'(x) + 3f(x)$$

により定めると、これは線形写像になる.

$$\operatorname{Ker} \varphi = \{ f(x) \in \mathbb{R}[x] \mid (x^2 + 1)f''(x) - 3xf'(x) + 3f(x) = 0 \}$$

だから、 $\operatorname{Ker} \varphi$ は微分方程式 $(x^2+1)y'-3xy'+3y=0$ の (実数係数) 多項式解全体のなすベクトル空間である.

V は無限次元のベクトル空間なので, φ を行列表示することはできないが, 次のようにして $\operatorname{Ker} \varphi$ を求めることができる.

- (1) $f(x)=c_0+c_1x+\cdots+c_nx^n$ $(c_n\neq 0)$ とするとき, $\varphi(f(x))$ は n 次以下の多項式になることを示し, $\varphi(f(x))$ の x^n の項の係数を n や c_0,\ldots,c_n を使って表せ.
 - (2) 上記の結果を使って $\operatorname{Ker} \varphi \subset V_3$ となることを証明せよ.
- (3) φ を V_3 に制限した写像を $\psi:V_3\to V_3$ とする (つまり, $f\in V_3$ に対し $\psi(f(x))=\varphi(f(x))$ とする). このとき V_3 の基底 $1,x,x^2,x^3$ に関する ψ の表現行列を求めよ.
 - (4) Ker ψ (= Ker φ) の基底を求めよ.