## Лабораторная работа №3

Студент: Султанов Артур Радикович, группа: Р3313

### ЗАДАНИЕ 1. Сеть с одним маршрутизатором (вариант В1)

Построение и настройка сети с маршрутизатором.



#### Таблица маршрутизации router0:

|   | Destination | Mask          | Gateway     | Interface   | Metric | Source    |
|---|-------------|---------------|-------------|-------------|--------|-----------|
| 1 | 214.21.18.0 | 255.255.255.0 | 214.21.18.1 | 214.21.18.1 | 0      | Connected |
| 2 | 214.21.19.0 | 255.255.255.0 | 214.21.19.1 | 214.21.19.1 | 0      | Connected |
| 3 | 214.21.20.0 | 255.255.255.0 | 214.21.20.1 | 214.21.20.1 | 0      | Connected |

Помимо прочего, всем компьютерам нужно добавить в таблицу маршрутизации вхождения о других двух подсетях - при чем так, чтобы шлюзом был router0:

|   | Destination | Mask          | Gateway      | Interface    | Metric | Source    |
|---|-------------|---------------|--------------|--------------|--------|-----------|
| 1 | 214.21.18.0 | 255.255.255.0 | 214.21.18.13 | 214.21.18.13 | 0      | Connected |
| 2 | 214.21.0.0  | 255.255.0.0   | 214.21.18.1  | 214.21.18.13 | 1      | Static    |

#### Тестирование сети (отправка пакетов)

UDP (comp0(214.21.18.13) -> comp6(214.21.20.19)):



Здесь все довольно наглядно и просто. Путь UDP-сообщения:

comp0[eth0] -> hub0[LAN1 -> LAN4] -> router0[LAN1 -> LAN3] -> switch1[LAN3 -> LAN1] ->
comp6[eth0]

Также важно отметить, что compo искал ARP-запросом именно routero.

ARP-таблица router0 после отправки сообщения:

| Mac-address         | lp-address   | Record type | Netcard name | TTL  |
|---------------------|--------------|-------------|--------------|------|
| 1 01:D7:30:58:75:D1 | 214.21.18.13 | Dinamic     | LAN1         | 1015 |
| 2 01:83:80:E1:22:E4 | 214.21.20.19 | Dinamic     | LAN3         | 592  |

TCP (comp0(214.21.18.13) -> comp6(214.21.20.19)):

С TCP все чуть сложнее (в силу прежде всего самого протокола), но по сути последовательность сообщений и маршрут тот же, что и с UDP.



## ЗАДАНИЕ 2. Сеть с двумя маршрутизаторами (вариант В2)

#### Построение сети



Таблица маршрутизации comp0 (для работы необходимо каждому компьютеру добавить вхождения о двух других подсетях - это можно сделать с помощью чуть более общей маски - тогда мы захватим все остальные подсети. А чтобы пакет в этой подсети все еще оставался в этой подсети, укажем у более общего правила метрику выше - чтобы ее приоритет был ниже):

|   | Destination | Mask          | Gateway      | Interface    | Metric | Source    |
|---|-------------|---------------|--------------|--------------|--------|-----------|
| 1 | 214.21.18.0 | 255.255.255.0 | 214.21.18.13 | 214.21.18.13 | 0      | Connected |
| 2 | 214.21.0.0  | 255.255.0.0   | 214.21.18.1  | 214.21.18.13 | 1      | Static    |

Таблица маршрутизации router (для работы необходимо также добавить строку о третьей подсети - для router это 3, для router - 1):

|   | Destination | Mask          | Gateway     | Interface   | Metric | Source    |
|---|-------------|---------------|-------------|-------------|--------|-----------|
| 1 | 214.21.18.0 | 255.255.255.0 | 214.21.18.1 | 214.21.18.1 | 0      | Connected |
| 2 | 214.21.19.0 | 255.255.255.0 | 214.21.19.1 | 214.21.19.1 | 0      | Connected |
| 3 | 214.21.20.0 | 255.255.255.0 | 214.21.19.2 | 214.21.19.1 | 0      | Static    |

#### Тестирование сети (отправка пакетов)

#### UDP:



TCP:



ЗАДАНИЕ 3. Сеть с тремя маршрутизаторами (вариант ВЗ)





#### Таблица маршрутизации сотро:

| Destination   | Mask          | Gateway      | Interface    | Metric | Source    |
|---------------|---------------|--------------|--------------|--------|-----------|
| 1 214.21.18.0 | 255.255.255.0 | 214.21.18.13 | 214.21.18.13 | 0      | Connected |
| 2 214.21.19.0 | 255.255.255.0 | 214.21.18.1  | 214.21.18.13 | 1      | Static    |
| 3 214.21.20.0 | 255.255.255.0 | 214.21.18.2  | 214.21.18.13 | 1      | Static    |

#### Таблица маршрутизации router0:

| Destination   | Mask          | Gateway     | Interface   | Metric | Source    |
|---------------|---------------|-------------|-------------|--------|-----------|
| 1 214.21.18.0 | 255.255.255.0 | 214.21.18.1 | 214.21.18.1 | 0      | Connected |
| 2 214.21.19.0 | 255.255.255.0 | 214.21.19.1 | 214.21.19.1 | 0      | Connected |
| 3 214.21.20.0 | 255.255.255.0 | 214.21.19.2 | 214.21.19.1 | 1      | Static    |
| 4 214.21.20.0 | 255.255.0.0   | 214.21.18.2 | 214.21.18.1 | 2      | Static    |

#### Тестирование сети (отправка пакетов)

Отправка UDP прошла неудачно: пакеты продублировались, так как после хаба пошли двумя путями к одному компьютеру:



#### Исправим сеть, заменив hub0 на switch2:



#### И действительно, UDP-сообщение успешно дошло без повторений:



#### ТСР тоже прошло успешно, без коллизий:



Настройка динамической маршрутизации по протоколу RIP

Установим на всех компьютерах и роутерах RIP:



И увидим периодические RIP-сообщения (роутеры оповещают других о том, что они знают, как добраться до какой-либо подсети):

И, соответственно, все участники сети получают эту информацию:

#### router1:

|   | Destination | Mask          | Gateway     | Interface   | Metric | Source    |
|---|-------------|---------------|-------------|-------------|--------|-----------|
| 1 | 214.21.18.0 | 255.255.255.0 | 214.21.19.1 | 214.21.19.2 | 1      | RIP       |
| 2 | 214.21.19.0 | 255.255.255.0 | 214.21.19.2 | 214.21.19.2 | 0      | Connected |
| 3 | 214.21.20.0 | 255.255.255.0 | 214.21.20.2 | 214.21.20.2 | 0      | Connected |

#### comp4:

| Destination   | Mask          | Gateway      | Interface    | Metric | Source    |
|---------------|---------------|--------------|--------------|--------|-----------|
| 1 214.21.18.0 | 255.255.255.0 | 214.21.19.1  | 214.21.19.17 | 1      | RIP       |
| 2 214.21.19.0 | 255.255.255.0 | 214.21.19.17 | 214.21.19.17 | 0      | Connected |
| 3 214.21.20.0 | 255.255.255.0 | 214.21.19.2  | 214.21.19.17 | 1      | RIP       |

Далее, смоделируем выход из строя одного из коммутаторов (удалив его), получаем:



#### router1:

|   | Destination | Mask          | Gateway     | Interface   | Metric | Source    |
|---|-------------|---------------|-------------|-------------|--------|-----------|
| 1 | 214.21.19.0 | 255.255.255.0 | 214.21.19.2 | 214.21.19.2 | 0      | Connected |
| 2 | 214.21.20.0 | 255.255.255.0 | 214.21.20.2 | 214.21.20.2 | 0      | Connected |

#### comp4:

|   | Destination | Mask          | Gateway      | Interface    | Metric | Source    |
|---|-------------|---------------|--------------|--------------|--------|-----------|
| 1 | 214.21.19.0 | 255.255.255.0 | 214.21.19.17 | 214.21.19.17 | 0      | Connected |
| 2 | 214.21.20.0 | 255.255.255.0 | 214.21.19.2  | 214.21.19.17 | 1      | RIP       |

Как видно, из-за того, что RIP-рассылка со стороны подсети 214.21.18.0 прекратилась, у всех участников сети "пропала" информация об этой подсети.

# Настройка автоматического получения сетевых настроек по протоколу DHCP

Добавим DHCP-сервер на все роутеры:



#### Не забыв настроить диапазон адресов:



#### Логи:



После получения всеми компьютерами сетевых настроеек имеем (сотро):



| Destination   | Mask          | Gateway     | Interface   | Metric | Source    |
|---------------|---------------|-------------|-------------|--------|-----------|
| 1 214.21.18.0 | 255.255.255.0 | 214.21.18.5 | 214.21.18.5 | 0      | Connected |
| 2 214.21.19.0 | 255.255.255.0 | 214.21.18.1 | 214.21.18.5 | 1      | RIP       |
| 3 214.21.20.0 | 255.255.255.0 | 214.21.18.2 | 214.21.18.5 | 1      | RIP       |

#### Отправим UDP-сообщение с comp0 на comp6:



И действительно, UDP-сообщение успешно прошло от comp0 (214.21.18.5) до comp6 (214.21.20.4).

## Вывод

В рамках даной лабораторной работы были построены модели сети на основе трех подсетей из предыдущей лабораторной работы.

На практике познакомился с RIP и DHCP, настроил сети, использующие эти протоколы, провел тестирование всех полученных сетей посредством отправки TCP- и UDP-сообщений.