Notas Algoritmos y Programación III

Ivan Litteri - 106223

$\acute{\mathbf{I}}\mathbf{ndice}$

1.		ría de Errores
	1.1.	Fuentes del Error
	1.2.	Tipos de Errores
		1.2.1. Error Absoluto
		1.2.2. Cota del Error
		1.2.3. Error Relativo y Error Relativo Porcentual
		1.2.4. Propagación de Error
	1.3.	Convención
2.		nto Flotante
	2.1.	Ejemplos disparadores
		Números de máquina
		Propiedades destacables
		Formatos típicos
		Aritmética de punto flotante
		Eiemplo final

1. Teoría de Errores

1.1. Fuentes del Error

Definición 1.1 (Redondeo). Es el error que puede producir una máquina al realizar un redondeo.

Ejemplo 1.1.1.

$$(\sqrt{\pi})^2 = \pi$$

Definición 1.2 (Inherente). Es el error que puede percibir un ser humano al realizar una medición.

Ejemplo 1.2.1. Cuando medimos con una regla, o vemos el velocímetro analógico del auto mientras manejamos, etc.

Definición 1.3 (Truncamiento). Cuando en una discretización o una aproximación por una serie, decidimos despreciar algún término.

Ejemplo 1.3.1.

$$\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} = \frac{\pi}{4}$$

1.2. Tipos de Errores

1.2.1. Error Absoluto

Definición 1.4 (Error Absoluto). Sea \overline{x} una aproximación o valor medido de x. El **error absoluto** (e_a) de una medida es

$$e_a = |x - \overline{x}| \tag{1}$$

El error absoluto es un indicador de la imprecisión que tiene una determinada media. De hecho, cuando se proporciona el resultado de una medida suele venir acompañada de dicha imprecisión.

1.2.2. Cota del Error

Definición 1.5 (Cota del Error). Sea \overline{x} una aproximación o valor medido de x. Se dice que el número \overline{x} está aproximado al número real x, t dígitos significativos

$$|e_a| = \leq \Delta x \tag{2}$$

$$\Delta x = \tag{3}$$

1.2.3. Error Relativo y Error Relativo Porcentual

Definición 1.6 (Error Relativo). Sea \overline{x} una aproximación o valor medido de x. El error relativo (e_r)

$$e_r = \frac{e_a}{x} = \frac{|x - \overline{x}|}{x} \cong \frac{\Delta x}{\overline{x}}, x \neq 0$$
 (4)

$$e_{r\%} = \frac{e_a}{x} \cdot 100 = \frac{|x - \overline{x}|}{x} \cdot 100 \approx \frac{\Delta x}{\overline{x}} \cdot 100 \ con \ x, \overline{x} \neq 0$$
 (5)

El error relativo tiene la misión de servir de indicador de la calidad de una medida.

1.2.4. Propagación de Error

Definición 1.7 (Propagación de error). Si nosotros tenemos una determinada función

$$z = f(x, y, t, ..., q)$$

y nosotros queremos saber cuál es la cota del error inherente de z, la cuál involucra la sumatoria de los errores de todas las variables

$$\Delta z = |f(x, y, t, \dots, q) \pm f(x + \Delta x, y + \Delta y, t + \Delta t, \dots, q + \Delta q)|$$
(6)

Aproximando con Taylor

$$|\Delta z| \leq \left| \frac{\partial z}{\partial x} \right|_{\overline{x}, \overline{y}, \overline{t}, \dots, \overline{q}} \cdot \Delta x + \left| \frac{\partial z}{\partial y} \right|_{\overline{x}, \overline{y}, \overline{t}, \dots, \overline{q}} \cdot \Delta y + \left| \frac{\partial z}{\partial t} \right|_{\overline{x}, \overline{y}, \overline{t}, \dots, \overline{q}} \cdot \Delta t + \dots + \left| \frac{\partial z}{\partial q} \right|_{\overline{x}, \overline{y}, \overline{t}, \dots, \overline{q}} \cdot \Delta q$$

$$\leq \sum_{i=0}^{\infty} \left| \frac{\partial f}{\partial x_i} \right|_{\overline{x}_i} \cdot \Delta x_i$$

Ejemplo 1.7.1. Hallar la cota de error inherente propagado para el siguiente cálculo siendo $x=2,0\pm0,1$ e $y=3,0\pm0,2,\ f=x\cdot\sin(\frac{y}{40})$

$$\overline{x} = 2, \Delta x = 0, 1, \overline{y} = 3, \Delta y = 0, 2, \overline{f} = \overline{x} \cdot \sin(\frac{\overline{y}}{40})$$

$$|e_f| \le \sum_{i=0}^{\infty} \left| \frac{\partial f}{\partial x_i} \right|_{\overline{x_i}} \cdot \Delta x_i$$

$$|e_f| \le \left| \frac{\partial f}{\partial x} \right|_{\overline{x}, \overline{y}} \cdot |e_x| + \left| \frac{\partial f}{\partial y} \right|_{\overline{x}, \overline{y}} \cdot |e_y|$$

$$|e_f| \le \sin\left(\frac{\overline{y}}{40}\right) \cdot |e_x| + \frac{\overline{x} \cdot \cos(\frac{\overline{y}}{40})}{40} \cdot |e_y|$$

$$|e_f| \le 0,01746485831$$

$$\overline{f} = 0,1498594145$$

$$\Delta f = 0,01746485831 < 0,02$$

$$x = \overline{x} \pm \Delta x$$

$$= 0,15 \pm 0,02$$

1.3. Convención

Redondeamos el valor medido \overline{x} , y mayoramos la cota de error Δx (mayorar es reducir el número a un sólo dígito distinto de cero, e.g. $\Delta x = 0.0033 < 0.004 \Rightarrow \Delta x_{mayorado} = 0.004$).

$$x = \overline{x} \pm \Delta x$$
$$\Delta x = 0.d_1 \cdot 10^{-t}$$

Ejemplos. Convención

1.
$$\overline{x} = 123,45678 \\ \Delta x = 0,0033 < 0,004$$

$$x = \overline{x} \pm \Delta x \\ = 123,457 \pm 0,004$$
2.
$$\overline{x} = 123,45678 \\ \Delta x = 0,0059 < 0,006$$

$$x = \overline{x} \pm \Delta x \\ = 123,457 \pm 0,006$$

4.
$$\overline{x} = 188,141$$

$$\Delta x = 2,18 < 3$$

$$x = \overline{x} \pm \Delta x$$

$$= 188 \pm 3$$

5.
$$\overline{x}=211117 \\ \Delta x=611<700 \} \qquad x=\overline{x}\pm\Delta x \\ =211100\pm700$$

2. Punto Flotante

2.1. Ejemplos disparadores

2.2. Números de máquina

Todo número de máquina van a estar simbolizados por

$$\mathcal{M} = \{m : m = (-1)^S \cdot C \cdot 2^Q, S, b_i \in \{0, 1\}, C = 1.b_1 b_2 \dots b_p, E_{min} \le Q \le E_{max} \}$$

en donde S es el bit de signo y corresponde a un único bit, C es la mantisa o significado a la que se le asigna una cantidad de bits, que se llama precisión, Q es el exponente.

2.3. Propiedades destacables

- Los números de máquina son un subconjunto finito de los números racionales.
- Los números de máquina son más densos a valores absolutos menores, y se separan más a medida que se alejan del 0.
- La cota para el error relativo es constante para cualquier número distinto de 0 que se represente.

El mayor (valor absoluto) número de máquina que podemos formar es $nmax = (1,1111...) \cdot 2^{E_{max}}$. Ejemplo: $E_{max} = 1023$. Eso da aproximadamente $1,8^{308}$. Al intervalo [-nmax, nmax] se lo conoce como rango de máquina.

Si intentamos almacenar un número más grande en valor absoluto que nmax obtendremos una excepción llamada overflow.

La computadora devuelve el resultada infinito (con signo) y debe levantar una advertencia en la ejecución del programa.

El menor (en valor absoluto) número de máquina que podemos formar es $nmin = (1,1111...) \cdot 2^{E_{min}}$. Ejemplo: $E_{min} = -1022$. Eso da aproximadamente $9,8^{-324}$. El intervalo [-nmin, nmin]es un hueco alrededor del cero.

Si intentamos almacenar un número más chico en valor absoluto que nmin obtendremos una excepción llamada underflow.

La computadora devuelve el resultado cero (con signo) y debe levantar una advertencia en la ejecución del programa.

Cuando queremos almacenar un número cualquiera, la computadora lo redeondea a un número de máquina. El criterio más habitual es redondear al más cercano.

TABLA(screenshot)

2.4. Formatos típicos

2.5. Aritmética de punto flotante

2.6. Ejemplo final