context-sensitive grammars, Intro to computability theory

NTIN071 Automata and Grammars

Jakub Bulín (KTIML MFF UK) Spring 2024

^{*} Adapted from the Czech-lecture slides by Marta Vomlelová with gratitude.

The translation, some modifications, and all errors are mine.

Recap of Lecture 10

- Turing machine: two-way infinite tape, read, write, move head
- Accept iff in a final state; configurations
- TMs with output, computing a function
- Recursively enumerable vs. recursive languages (always halt).
- Construction tricks:
 - · storage in state
 - multiple tracks (on a single tape)
- Variants of TMs:
 - multi-tape (independent heads),
 - nondeterministic (accept iff some choices lead to final state)

3.3 Turing Machines and grammars

Chomsky hierarchy: type 0

Theorem

A language is recursively enumerable, if and only if it is generated by a Type 0 grammar.

Turing machine to grammar

- First generate the relevant portion of the tape and a copy of the input word (nonterminal X for each x ∈ Γ, in reverse)
- Why? TM can rewrite w, G must generate it, cannot modify
- We have $wB^n\underline{W}^RQ_0B^m$, where B^n , B^m is sufficient free space
- Then simulate moves (essentially reverse configs+free space)
- In a final state erase the simulated tape, keep only w

$$G=(\{S,C,D,E\}\cup\{\underline{X}\}_{x\in\Gamma}\cup\{Q_i\}_{q_i\in Q},\Sigma,\mathcal{P},S)$$
 where $\mathcal P$ is:

- (1) $S \to DQ_0E$ simulation starts in initial state $D \to xD\underline{X} \mid E$ generate input word, reverse copy for simulation $E \to BE \mid \epsilon$ generate sufficient free space for simulation
- (2) $\underline{X}P \to Q\underline{X'}$ for all $\delta(p,x) = (q,x',R)$ [direction reversed!] $\underline{X}P\underline{Y} \to \underline{X'Y}Q$ for all $\delta(p,x) = (q,x',L)$
- (3) $P \to C$ for all $p \in F$ $C\underline{X} \to C, \underline{X}C \to C$ clean the tape finish, generated w

Example: $L = \{a^{2n} | n \ge 0\}$

$$M=(\{q_0,q_1,q_2,q_F\},\{a\},\{a\},\delta,q_0,B,\{q_F\})$$
 where
$$\delta(q_0,a)=(q_1,a,R),$$

$$\delta(q_1,a)=(q_0,a,R),$$

$$\delta(q_0,B)=(q_F,B,L)$$

$$G = (\{S, C, D, E, Q_0, Q_1, Q_F, \underline{a}\}, \{a\}, S, \mathcal{P}_1 \cup \mathcal{P}_2 \cup \mathcal{P}_3)$$

Initialize: \mathcal{P}_1	Simulate: \mathcal{P}_2	Cleanup: \mathcal{P}_3
$S \rightarrow DQ_0E$	$\underline{a}Q_0 o Q_1 \underline{a}$	$Q_F o C$
$D o aD\underline{a} \mid E$	$\underline{a}Q_1 o Q_0 \underline{a}$	$C\underline{a} o C$
$E o BE \mid \epsilon$	$BQ_0\underline{a} o B\underline{a}Q_F$	$\underline{a}C o C$
		BC o C
		$C \rightarrow \epsilon$

For w = aa: initialize $aaBaaQ_0$, simulate $aaBaQ_Fa$, cleanup: aa

Proof

Grammar to Turing machine

3.4 Linear bounded automata and

context-sensitive grammars

CHAPTER 4: INTRO TO COMPUTABILITY THEORY