Задача 1

(A) Рассмотрим произвольное $x \in A^*$. По определению, существует такой открытый интервал U, что $x \in U \subset A$. Тогда U входит в объединение всех открытых множеств, содержащихся в A (назовем его B), а следовательно, и x принадлежит B.

Обратно, рассмотрим произвольное $y \in B$. Найдем такое открытое U, входящее в объединение B, что $x \in U$. Так как U открыто, x содержится в нем вместе с некоторой своей окрестностью; можно выбрать в ней открытый интервал I. Поскольку $I \subset U \subset A$, получаем, что x содержится в A вместе с интервалом I, значит, x — внутренняя.

NB: В первой половине доказательства можно просто показать, что A^* само является открытым множеством, а значит, автоматически входит в B.

(Б) Первый способ: воспользоваться пунктом (а):

$$\mathbb{R} \setminus A^* = \mathbb{R} \setminus (\bigcup_{U \subset A} U) = \bigcap_{U \subset A} \mathbb{R} \setminus U = \bigcap_{F \supset \mathbb{R} \setminus A} F,$$

где F - замкнутые. Последнее, по одному из определений, и есть замыкание $\mathbb{R} \setminus A$.

Второй способ: рассмотрим точку x. По отношению к множеству A она может быть внутренней, предельной, изолированной, или внутренней для $\mathbb{R}\setminus A$. Если она внутренняя, то она содержится в A с некоторой своей окрестностью, значит, она не будет предельной для $\mathbb{R}\setminus A$ и не может лежать в замыкании $\mathbb{R}\setminus A$. Если она предельная или изолированная для A, то она предельная и для $\mathbb{R}\setminus A$; значит, лежит в его замыкании. Наконец, внутренние точки $\mathbb{R}\setminus A$ тоже лежат в его замыкании. Таким образом, мы видим, что либо $x\in A^*$, либо $x\in \overline{\mathbb{R}\setminus A}$., что и требовалось доказать.

Задача 2

Построим искомое множество для произвольного λ : возьмём отрезок I=[0;1] и на первом шаге выкинем из него интервал с центром в $\frac{1}{2}$ длиной $\frac{\lambda}{3}$. Два оставшихся отрезка назовём I_0 (левый) и I_1 (правый) — это первый шаг.

Далее повторяем следующую процедуру: на i-м шаге из отрезка I_{ω} , где ω — слово длины i, состоящее из нулей и единиц, выкидываем интервал длиной $\frac{\lambda}{3n}$ с центром в середине I_{ω} (каждый раз мы выкидываем не больше трети от того, что было, поэтому это всегда возможно), левый отрезок называем $I_{\omega 0}$, правый — $I_{\omega 1}$. Повторяем счетное число раз.

Суммарная длина выброшенных интервалов:

$$\lambda \cdot (\frac{1}{3} + \frac{2}{9} + \frac{4}{27} + \dots) = \lambda \cdot \frac{1}{3} \cdot \frac{1}{1 - \frac{2}{3}} = \lambda$$

Докажем нигде не плотность. Назовем K_i объединение всех I_{ω} с индексами ω длины i. Поскольку на каждом шаге длина I_{ω} , составляющих K_i , уменьшается хотя бы в два раза, длины I_{ω} стремятся к нулю при увеличении длины ω . Из этого следует нигде не плотность множества $K = \bigcap_i K_i$: для любого наперед заданного интервала $J \in [0;1]$ найдётся такое i, что все $|I_{\omega,i}| < |J|$, но все $I_{\omega,i}$ отделены друг от друга открытыми интервалами, и пересечение интервалов тоже является интервалом - значит, в $J \setminus K_i$ есть интервал, а в $J \setminus K$ — тем более.

Наконец, ω задает инъективное отображение из множества бесконечных последовательностей нулей и единиц в K, и, поскольку первое континуально, второе имеет мощность не меньше континуума. Но и не больше — иначе бы оно не поместилось в отрезок [0;1]. Что и требовалось построить.

Задача 3

Рассмотрим множество K точек на прямой таких, что в любой их окрестности найдется несчетное число точек данного множества A (такие точки называются точками конденсации). Ясно, что каждая из этих точек является предельной для A, а поскольку оно замкнуто, и принадлежит A.

Докажем, что $A\setminus K$ — не более чем счетное. В самом деле, каждой точке $A\setminus K$ мы можем поставить в соответствие (максимальный) интервал, в котором она лежит и в котором не более чем счетное число точек A. Каждый из этих интервалов можно немного уменьшить, чтобы его края стали рациональными (количество точек A внутри него все еще останется счетным). Объединение всех этих интервалов содержит в себе все точки $A\setminus K$, но интервалов с рациональными концами не более чем счетное множество, и в каждом из них не более чем счетное множество точек $A\setminus K$ — значит, и всего этих точек не более чем счетное множество.

Докажем, что K — совершенно. Действительно, любая его предельная точка x принадлежит A в силу замкнутости, но в любой окрестности $U \ni x$ есть точка y из K, для которой можно найти окрестность V такую, что $y \in V \subset U$; в V содержится более чем счетное множество точек A, а значит, и в U — следовательно, $x \in K$. Наоборот, любая точка K также является его предельной, поскольку в $A \setminus K$ не более чем счетное число точек, значит, в любой окрестности $x \in K$ не более чем счетное число точек $A \setminus K$ и более чем счетное число точек K.

Задача 4

Ответ: пересечением будет само множество рациональных чисел. Действительно, \mathbb{Q} содержится в искомом пересечении. Однако, для любого $\alpha \in \mathbb{R} \setminus \mathbb{Q}$ мы можем взять множество $(-\infty, \alpha) \cup (\alpha, +\infty)$, которое открыто и не содержит α , а значит, α не содержится в пересечении всех открытых множеств, содержащих \mathbb{Q} .

Задача 5

Рассмотрим совершенное множество C. Каждая его точка является предельной, то есть, содержит в любой своей окрестности бесконечное множество других точек C. По условию, C непусто — значит, в нём есть по крайней мере две точки, назовём их a_0 и a_1 . Выберем для них непересекающиеся окрестности U_0 и U_1 , а внутри этих окрестностей — отрезки $I_0 \ni a_0$ и $I_1 \ni a_1$ такие, что a_0 и a_1 для них являются внутренними. В каждом из этих отрезков будет лежать бесконечное множество точек C в силу предельности a_0 и a_1 . Это будет первым шагом нашего построения.

Для уже построенного I_{ω} , где ω — слово конечной длины из нулей и единиц, строим I_{ω_0} и I_{ω_1} следующим образом: из бесконечного (по построению) числа точек выбираем a_{ω_0} и a_{ω_1} , строим их непересекающиеся окрестности U_{ω_0} и U_{ω_1} , внутри которых, как и выше, берём

отрезки I_{ω_0} и I_{ω_1} , для которых a_{ω_0} и a_{ω_1} являются внутренними.

Для каждого бесконечного ω получаем систему вложенных отрезков; в их пересечении всегда найдётся хотя бы одна точка. Если она единственная, она является пределом последовательности a_{ω^n} , где ω^n — первые n символов ω , а следовательно, в силу замкнутости C, ему принадлежит. Если же в пересечении I_{ω^n} содержится целый отрезок, то в нём будет содержаться предельная точка множества a_{ω^n} вместе со своей (возможно, полу-) окрестностью, в которой будет целое бесконечное множество точек C. Возьмём какую-нибудь из них и поставим её в соответствие данному ω . Таким образом, мы построили инъекцию из множества бесконечных последовательностей из нулей и единиц (которое континуально) в C. Действительно, если ω_1 и ω_2 отличаются в i-м символе, то соответствующие им точки на i-м шаге попадают в разные отрезки, а значит, не совпадают.

Значит, C имеет мощность больше континуума, но поскольку оно само содержится в прямой, которая имеет мощность континуум, по теореме Кантора-Берштейна, его мощность в точности континуум.

Примечание: от трудности с неоднозначностью выбора точки для ω можно избавиться, дополнительно наложив условие стремления длин выбранных отрезков к нулю.

Задача 6

Рассмотрим метрическое пространство $M=(X,\rho),\ X=(a_1,a_2,...,a_n),\ n\in\mathbb{N}.$ Положим $\varepsilon=\frac{1}{2}\cdot\min_{i,j}(\rho(a_i,a_j)).$ Тогда ε -окрестность каждой точки совпадает с ней самой. Значит, все одноточечные подмножества M открыты, а тогда открыты вообще подмножества M.

Пусть теперь M_1 и M_2 — два метрических пространства, состоящие из n точек. Занумеруем их как-нибудь в каждом из M_1 и M_2 и сопоставим друг другу точки с одинаковыми номерами. Это биекция, которая переводит открытые множества в открытые — потому что не-открытых множеств просто нет, — а значит, гомеоморфизм. Что и требовалось доказать.

Задача 7

Будем задавать окружность О радиусом r и координатами её центра x,y. Естественно считать окружности близкими, если y них близко центры и близкие радиуса. Эту идею реализует, например, метрика $\rho_1 = \sqrt{(x_1 - x_2)^2 + (y_1 - y_2)^2 + (r_1 - r_2)^2}$.

Мы получили множество $U:=(x,y,r)\mid r>0$ в \mathbb{R}^3 с евклидовой метрикой. Осталось показать, что U гомеоморфно \mathbb{R}^3 . Для этого рассмотрим отображение $g:(x,y,r)\mapsto (x,y,\ln r)$. Оно и обратное к нему непрерывны (непрерывность логарифма и экспоненты известны из курса анализа), значит, U гомеоморфно \mathbb{R}^3 .

Задача 8

Проверим выполнение аксиом.

Симметричность: $(\rho_1 + \rho_2)(x, y) = \rho_1(x, y) + \rho_2(x, y) = \rho_1(y, x) + \rho_2(y, x) = (\rho_1 + \rho_2)(y, x)$. Неотрицательность: $(\rho_1 + \rho_2)(x, y) = \rho_1(x, y) + \rho_2(x, y) \ge 0$, так как обе $\rho_{1,2}(x, y) \ge 0$.

 $(\rho_1 + \rho_2)(x,y) = \rho_1(x,y) + \rho_2(x,y) = 0$ тогда и только тогда, когда обе $\rho_{1,2}(x,y) = 0$ в силу их неотрицательности, а это равносильно равенству x = y.

Неравенство треугольника: $(\rho_1 + \rho_2)(x, y) + (\rho_1 + \rho_2)(y, z) = \rho_1(x, y) + \rho_2(x, y) + \rho_1(y, z) + \rho_2(x, y) + \rho_2(x, y)$

 $\rho_2(y,z) \ge \rho_1(x,z) + \rho_2(x,z) = (\rho_1 + \rho_2)(x,z)$ в силу неравенств треугольника, выполненных для $\rho_{1,2}$.

Таким образом, $(\rho_1 + \rho_2)$ — метрика.

Задача 9

Рассмотрим точку $x' \in M$, для которой $\rho(x',X) = 0$. По определению инфимума это означает, что для любого $\varepsilon > 0$ найдётся такая точка $x \in X$, что $\rho(x',x) < \varepsilon$. Тогда это означает, что точка x' либо совпадает с некоторой точкой из X, либо является предельной для X, и, таким образом, $x' \in \overline{X}$.

Обратно, пусть $x' \in \overline{X}$. По определению замыкания, $x' \in X \cup (x \mid x-$ предельная точка X). Заметим, что в обоих случаях для любого $\varepsilon > 0$ существует $x \in X$, для которого $\rho(x',x) < \varepsilon$, то есть $\inf_{x \in X} \rho(x',x) = 0$, что и требовалось.

Задача 10

Заметим, что $f^{-1}(x) = x$, а значит, для любого подмножества $A \subseteq X$ выполнено $f(A) = f^{-1}(A) = A$.

Пусть f — гомеоморфизм, то есть и f, и f^{-1} являются непрерывными отображениями. Тогда, если A открыто в метрике ρ_1 , то по непрерывности f^{-1} множество f(A) = A открыто и в метрике ρ_2 . Аналогично, если A открыто в метрике ρ_2 , то по непрерывности f множество $f^{-1}(A) = A$ открыто в метрике ρ_1 . Таким образом, метрики ρ_1 и ρ_2 задают одинаковый набор открытых множеств, то есть являются эквивалентными.

Обратно, пусть метрики ρ_1 и ρ_2 задают одну и ту же топологию. Тогда для любого подмножества $A \subseteq X$ верно следующее: если A открыто в метрике ρ_2 , то множество $f^{-1}(A) = A$ открыто в метрике ρ_1 , а это означает, что отображение f является непрерывным. Аналогично получаем непрерывность отображения f^{-1} , то есть f является гомеоморфизмом, что и требовалось.

Задача 11

Рассмотрим $\rho_X(a) = \inf_{x \in X} \rho(a, x)$ — функцию расстояния от точки a до множества X. Она непрерывна и, в силу замкнутости X, обращается в ноль тогда и только тогда, когда $a \in X$. Аналогичное верно и для $\rho_Y(a) = \inf_{u \in Y} \rho(a, y)$.

Заметим, что сумма $\rho_X(a) + \rho_Y(a)$ всегда положительна, так как множества X и Y не пересекаются.

Тогда функция

$$f(a) = \frac{\rho_X(a)}{\rho_X(a) + \rho_Y(a)}$$

удовлетворяет условиям задачи, а значит, утверждение верно.

Задача 12

Многочлен пятой степени $P(x) = p_5 x^5 + p_4 x^4 + p_3 x^3 + p_2 x^2 + p_1 x + p_0$ будем задавать набором его коэффициентов $\overline{p} = (p_0, p_1, p_2, p_3, p_4, p_5)$. Напомним, что у многочлена пятой степени коэффициент при x_5 ненулевой.

Покажем, что:

- 1) множества $\mathbb{P}^+ = (\overline{p} \mid p_5 > 0)$ и $\mathbb{P}^- = (\overline{p} \mid p_5 < 0)$ линейно связны (из чего будет следовать их связность),
- 2) множество многочленов пятой степени \mathbb{P} несвязно (а значит, и не линейно связно).

Доказательство утверждения 1. Рассмотрим два многочлена P(x) и Q(x) такие, что $p_5q_5 > 0$. Для каждого $t \in [0,1]$ положим s(x,t) = tP(x) + (1-t)Q(x). Это путь, соединяющий P(x) и Q(x), причем, в силу условия $p_5q_5 > 0$, старший коэффициент многочлена s(x,t) всегда имеет тот же знак, что p_5 и q_5 .

Доказательство утверждения 2. \mathbb{P}^+ и \mathbb{P}^- в метрике, индуцированной R^6 , открыты; они не пересекаются и в объединении дают \mathbb{P} , значит, в нем же и замкнуты. Таким образом, это два открыто-замкнутых линейно связных множества, в объединении дающие все пространство \mathbb{P} , то есть, это искомые компоненты линейной связности.

Задача 13

Предположим, что существует такое непустое открытое $U \in \mathbb{R}^2$, что $f: U \to \mathbb{R}$ непрерывно и инъективно. Возьмем в нем открытое линейно связное подмножество V и посмотрим на его образ f(V).

Поскольку f непрерывна, $f(V) \subset \mathbb{R}$ линейно связно и неодноточечно, а значит, содержит некоторый интервал I. Выкинем из него произвольную (она же будет внутренней!) точку a, тогда множество $A = f(V) \setminus a$ станет несвязным.

В силу инъективности f прообраз A — то же самое, что $V \setminus b$, где $b = f^{-1}(a)$ — одна точка. Поскольку V открыто, b является внутренней для V; но тогда $V \setminus b$ все еще линейно связно, а значит, и $f(V \setminus b) = A$ должно быть также линейно связно — противоречие.

Значит, такого множества не существует.

Задача 14

Как обсуждалось, образ связного множества при непрерывном отображении связен.

(Действительно, если образ пространства X разбит на два открытых подмножества, то их прообраз — разбиение на два открытых подмножества исходного пространства.)

Осталось проверить, что любое связное подмножество Y прямой — числовой промежуток. Но действительно, если предположить, что $x, z \in Y$ и x < y < z, но $y \notin Y$, то лучи $(-\infty; y)$ и $(y, +\infty)$ высекают на Y разбиение на два открытых множества, что противоречит связности.

Задача 15

Пусть A не линейно связно, то есть найдутся такие точки $x, y \in A$, что любой соединяющий их путь проходит через точки множества $X \setminus A$. При этом хотя бы одна из этих точек принадлежит внутренности A, так как граница A по условию линейно связна.

Рассмотрим произвольный путь $\gamma:[0,1]\to X,\ \gamma(0)=x,\ \gamma(1)=y,\ \gamma(I)\cap X\setminus A\neq\varnothing,$ где I=[0,1]. Заметим, что $\gamma(I)\cap\delta A\neq\varnothing$, иначе множества $\gamma(I)\cap X\setminus A$ и $\gamma(I)\cap Int(A)$ разбивают связный образ пути γ на два открытых непересекающихся множества.

Возьмём первую точку, в которой образ γ пересекает границу A. Более формально, эту точку мы можем задать как $a:=\gamma(\inf(\gamma^{-1}(\delta A)))$. Таким образом определённая точка a принадлежит границе δA , поскольку $\gamma^{-1}(\delta A)$ есть прообраз замкнутого множества при непрерывном отображении, а значит, является замкнутым подмножеством отрезка, и $\inf(\gamma^{-1}(\delta A))\in\gamma^{-1}(\delta A)$. Аналогично возьмём последнюю точку b, в которой образ γ пересекает границу A, то есть $b:=\gamma(\sup(\gamma^{-1}(\delta A)))$. Заметим, что $\gamma([0,\gamma^{-1}(a)])\subset A$ и $\gamma([\gamma^{-1}(b),1])\subset A$. С другой стороны, $a\in\delta A$ и $b\in\delta A$, значит, по предположению между ними существует путь, лежащий целиком в границе A. Заменив часть пути $\gamma([\gamma^{-1}(a),\gamma^{-1}(b)])$ на этот путь, мы получим путь, соединяющий x и y и лежащий целиком в A.

Таким образом, A линейно связно в X.

Задача 16

Пусть $f, g \in G, e \in H \subset G$ — компонента связности e, то есть единицы. Необходимо, вопервых, доказать, что H — группа, во-вторых — что она нормальна.

Проверим замкнутость относительно умножения и взятия обратного (единица там уже есть). Пусть $f,g\in H$. Умножение на f слева непрерывно, значит, fH связно. В образе fH лежат fg и f=fe, но последнее лежит в H, значит $fH\subset H$, значит $fg\in H$. Рассмотрим теперь умножение на f^{-1} , которое также непрерывно. Оно переводит f в e, а e в f^{-1} . Из первого следует то, что $f^{-1}H\subset H$, из второго — что в нём лежит и f^{-1} . Значит, H действительно группа.

Чтобы доказать её нормальность, рассмотрим произвольный $f \in G$. Отображение $F: h \mapsto fhf^{-1}$ непрерывно как композиция двух умножений (слева и справа) на элементы G. Значит, образ $F(H) = fHf^{-1}$ — связное множество, причём оно содержит единицу: F(e) = e. Значит это компонента связности единицы, то есть H.

Задача 17

Заметим, что любое пространство с дискретной метрикой является полным метрическим пространством. Действительно, любая фундаментальная последовательность в дискретной метрике рано или поздно стабилизируется, а значит, имеет предел. Таким образом, нам подходит любое пространство X (например, X=Z) с метрикой

$$\rho(x,y) = \begin{cases} 0, x = y \\ 1, x \neq y \end{cases}$$

Задача 18

Рассмотрим произвольную фундаментальную последовательность $(x^n)_{n\in\mathbb{N}}$ в этом пространстве. Для каждого $k\in\mathbb{N}$ найдём такое $n_k>n_{k-1}$, что все x^l с $l>n_k$ находятся в $\frac{1}{2^k}$ -окрестности x^{n_k} . Заметим, что по определению метрики из этого следует, что при всех i< k верно $x_i^l=x_i^{n_k}$. Действительно, иначе $\rho(x^l,x^{n_k})\geq \frac{|x_i^l-x_i^{n_k}|}{2^i}=\frac{1}{2^i}>\frac{1}{2^k}$.

Зададим последовательность $x \in X$ следующим образом: $\forall i \in \mathbb{N}_0 \ x_i := x_i^{n_{i+1}}$. Докажем, что x является пределом последовательности x^n . Действительно, по построению x для любого $l > n_k$ верно

$$\rho(x, x^l) = \sum_{i=0}^{\infty} \frac{|x_i - x_i^l|}{2^i} = \sum_{i=k}^{\infty} \frac{|x_i - x_i^l|}{2^i} \le \frac{1}{2^{k-1}}$$

Задача 19

Проверим фундаментальность последовательности (x_n) . Зафиксируем $\varepsilon > 0$, и пусть k < l. Из неравенства треугольника получаем

$$\rho(x_k, x_l) \le \sum_{i=k}^{l-1} \rho(x_i, x_{i+1})$$

Из условия следует, что

$$\rho(x_i, x_{i+1}) < c\rho(x_{i-1}, x_i) < c^2\rho(x_{i-2}, x_{i-1}) < \dots < c^{i-1}\rho(x_1, x_2).$$

Тогда

$$\rho(x_k, x_l) < \rho(x_1, x_2) \cdot \sum_{i=k}^{l-1} c^{i-1} \le \rho(x_1, x_2) \cdot c^{k-1} \frac{1}{1-c}.$$

В правой части стоит геометрическая прогрессия, умноженная на константу, а это значит, что мы можем выбрать такое N, что для любых l>k>N правая часть будет меньше ε . Значит, последовательность фундаментальна, и в полном пространстве она имеет предел.

Задача 20

Рассмотрим произвольную фундаментальную последовательность (a_n) . Для каждого k найдем такое $n_k > n_{k-1}$, что все a_l с $l > n_k$ находятся в $\frac{1}{2^k}$ -окрестности a_{nk} .

Рассмотрим последовательность замкнутых шаров $(\overline{B}_k(a_{n_k}, \frac{1}{2^{k-1}}))$. Их радиусы стремятся к нулю, более того, $\overline{B}_{k+1} \subset \overline{B}_k$, так как расстояние между их центрами не больше $\frac{1}{2^k}$ — половины радиуса большего из шаров.

По условию, у последовательности шаров (\overline{B}_k) есть общая точка a. Она будет также пределом последовательности (a_n) , так как для любого ε найдется шар \overline{B}_k , целиком лежащий в ε -окрестности точки a, и в него попадают все a_n , кроме конечного их числа.

Таким образом, любая фундаментальная последовательность в X имеет предел — следовательно, оно полно.

Задача 21

Пусть (X, ρ_X) , (Y, ρ_Y) — полные метрические пространства, покажем, что $(X \times Y, \rho_\infty)$ тоже является полным метрическим пространством.

По определению $\rho_{\infty}((x_1,y_1),(x_2,y_2)) = \max \rho_X(x_1,x_2), \rho_Y(y_1,y_2)$. Пусть (x_n,y_n) — фундаментальная последовательность. Пусть $\varepsilon > 0$, тогда существует такое $N \in \mathbb{N}$, что $\max \rho_X(x_n,x_m), \rho_Y(y_n,y_n)$ в ε для всех ε другой стороны, ε другой стороны, ε аначит, ε тоже фундаментальные последовательности. Так как ε и ε полные метрические пространства, то существуют ε и ε и ε и ε и ε такие что ε что ε и ε и ε то ε тогда ε и ε то ε тогда (ε и ε то ε начит ε начит ε начит ε тогда (ε начит ε нач

Заметим, что по индукции мы получаем таким образом полноту любого конечного произведения полных метрических пространств: действительно, пусть пространство $X_1 \times X_2 \times$... $\times X_n$ полно и пространство X_{n+1} полно. Тогда аналогичным рассуждением мы получаем, что пространство $(X_1 \times X_2 \times ... \times X_n) \times X_{n+1} = X_1 \times X_2 \times ... \times X_{n+1}$ тоже полно.

Задача 22

Пусть $x \in M$. Тогда в силу плотности X в M существует последовательность $(x_n), n \in \mathbb{N}$, сходящаяся к x. Поскольку $f|_X$ — изометрия, последовательность $(f(x_n)), n \in \mathbb{N}$ фундаментальна в N. Тогда у неё есть предел $y \in N$. Рассмотрим расстояние между точками f(x) и y в метрике N.

$$\rho_N(f(x), y) \le \rho_N(f(x), f(x_n)) + \rho_N(f(x_n), y)$$

Заметим, что в правой части неравенства первое слагаемое стремится к 0 при $n \to \infty$ из-за непрерывности f, а второе слагаемое стремится к нулю, поскольку y — предел последовательности $(f(x_n)), n \in \mathbb{N}$. Таким образом, $\rho_N(f(x), y) = 0$, а значит, f(x) = y. Заметим, что из этого сразу следует инъективность f.

Сюръективность доказывается аналогичным образом: рассмотрим $y \in N$ и последовательность $(f(x_n)), n \in \mathbb{N}$ из плотного множества f(X), которая сходится к y. Соответствующая последовательность $(x_n), n \in \mathbb{N}$ фундаментальна, а следовательно, имеет предел $x \in M$. И, как мы уже доказали в предыдущем абзаце, $f^{-1}(y) = x$.

Осталось проверить, что f сохраняет расстояния между точками. Действительно, пусть $x, x' \in M$, и (x_n) , $n \in \mathbb{N}$, (x'_n) , $n \in \mathbb{N}$ — фундаментальные последовательности в X, которые сходятся к x и x' соответственно. Рассмотрим расстояние между точками f(x) и f(x') в метрике N.

$$\rho_N(f(x), f(x')) \le \rho_N(f(x), f(x_n)) + \rho_N(f(x_n), f(x_n')) + \rho_N(f(x_n'), f(x'))$$

Заметим, что

$$\rho_N(f(x), f(x_n)) \to 0,$$

$$\rho_N(f(x_n), f(x'_n)) = \rho_M(x_n, x'_n) \to \rho_M(x, x'),$$

$$\rho_N(f(x'_n), f(x')) \to 0.$$

Таким образом, $\rho_N(f(x), f(x')) \le \rho_M(x, x')$. Обратно:

$$\rho_N(f(x), f(x')) \ge \rho_N(f(x_n), f(x_n')) - \rho_N(f(x), f(x_n)) - \rho_N(f(x_n'), f(x')) \to \rho_M(x, x')$$

Полученные неравенства дают нам $\rho_N(f(x), f(x')) = \rho_M(x, x')$, что и требовалось.

Задача 23

Достаточно доказать, что A — замкнуто и ограниченно.

Докажем ограниченность. Рассмотрим функцию $f: A \to \mathbb{R}$, заданную формулой $f(x) = \rho(x,0)$. По условию эта функция ограничена, то есть существует M>0, такое что $\rho(x,0)\leq M$ для всех x из A, но это и значит, что A ограничено.

Докажем замкнутость. Предположим, что не замкнуто, тогда существует последовательность (x_n) , такая что $x_n \to x_0$, где $\forall n \times n \in A, x_0 \notin A$. Рассмотрим функцию $f: A \to \mathbb{R}$, заданную формулой $f(x) = \frac{1}{\rho(x,x_0)}$. Тогда f(x) непрерывна, но не ограничена. Противоречие. Утверждение доказано.

Задача 24

Пусть A — подмножество полного метрического пространства.

Докажем для начала, что A допускает конечную ε -сеть для любого $\varepsilon>0$ тогда и только тогда, когда его замыкание \overline{A} допускает конечную ε -сеть для любого $\varepsilon>0$. Действительно, доказательство в одну сторону мы уже знаем из курса: подпространство пространства, допускающего конечную ε -сеть для любого $\varepsilon>0$, тоже допускает конечную ε -сеть для любого $\varepsilon>0$. Пусть теперь A допускает конечную ε -сеть для любого $\varepsilon>0$. Рассмотрим M — конечную $\frac{\varepsilon}{2}$ -сеть в A. Тогда шары $U_{\frac{\varepsilon}{2}}\in(m_i),\ m_i\in M$ покрывают A. Заметим, что из $A\subset\bigcup_{m_i\in M}U_{\frac{\varepsilon}{2}}(m_i)$ следует:

$$\overline{A} \subset \overline{\bigcup_{m_i \in M} U_{\frac{\varepsilon}{2}}(m_i)} = \bigcup_{m_i \in M} \overline{U_{\frac{\varepsilon}{2}}(m_i)} \subset \bigcup_{m_i \in M} U_{\varepsilon}(m_i)$$

Таким образом, M является конечной ε -сетью для \overline{A} , и утверждение выше доказано.

Для решения задачи осталось только доказать, что замкнутое подмножество полного пространства компактно тогда и только тогда, когда оно допускает конечную ε -сеть для любого $\varepsilon > 0$. Но, как мы знаем, множество компактно тогда и только тогда, когда оно полно и допускает конечную ε -сеть для любого $\varepsilon > 0$, а замкнутое подмножество полного пространства заведомо полно. Утверждение задачи доказано.

Задача 25

Вспомним, что компактные подмножества плоскости замкнуты и ограничены. Рассмотрим M>0 такое, что $\forall a\in A\ \rho(a,0)< M$, то есть A целиком содержится в кубе с центром в нуле и стороной 2M. Рассмотрим семейство прямых (l_c) , заданных уравнениями вида y=c, где $-M\leq c\leq M$. Пусть S_c — площадь той части множества A, которая находится ниже прямой l_c , то есть $S_c:=S(A\cap [(x,y)|y\leq c])$. Рассмотрим функцию $f:[-M,M]\to \mathbb{R},\ f(x)=\frac{S_x}{S(A)}$. Функция f непрерывна на отрезке [-M,M], причём f(-M)=0, а f(M)=1. Тогда по теореме о промежуточном значении существует такое $b\in [-M,M]$, что $f(b)=\frac{1}{2}$. А это и означает, что $S_b=\frac{S(A)}{2}$, и, значит, прямая $l_b=[(x,y)|y=b]$ делит множество A на две части равной площади.

Задача 26

Пусть X - компактное метрическое пространство, локально обладающее аддитивным свойством E. Для каждой точки $x \in X$ найдём её окрестность U_x , обладающую свойством E.

Эти окрестности образуют открытое покрытие $[U_x]_{x\in X}$ компактного пространства X, следовательно, из них можно выбрать конечное подпокрытие $[U_{x_i}]_{i=1}^n$. Каждое из множеств U_{x_i} обладает свойством E, а значит, их объединение $\bigcup_{i=1}^n U_{x_i} = X$ также обладает свойством E, что и требовалось.

В частности, из утверждения задачи можно легко вывести следующее свойство: компактное подмножество метрического пространства ограничено. Действительно, свойство ограниченности является аддитивным, и у любой точки в метрическом пространстве есть ограниченная ε -окрестность.

Задача 27

Канторово множество K замкнуто и ограничено, следовательно, компактно в \mathbb{R} . Нам достаточно найти непрерывную биекцию $f:K\to K\times K$ - тогда по одному из упоминавшихся свойств компактных метрических пространств f будет являться гомеоморфизмом.

Вспомним, что точки канторова множества могут быть представлены в виде троичной записи, в которой отсутствуют единицы: $x \in K, x = \sum_{k=1}^{\infty} \frac{a_k}{3^k}, a_k \in (0,2)$. Определим f следующим образом:

$$f(\sum_{k=1}^{\infty} \frac{a_k}{3^k}) = (\sum_{k=1}^{\infty} \frac{a_{2k-1}}{3^k}, \sum_{k=1}^{\infty} \frac{a_{2k}}{3^k})$$

По построению очевидно, что f — биекция между K и $K \times K$, осталось доказать, что f непрерывна. Действительно, пусть $\varepsilon > \frac{1}{3^N} > 0$, $N \in \mathbb{N}$. Рассмотрим произвольные $x = \sum_{k=1}^\infty \frac{a_k}{3^k}$, $x' = \sum_{k=1}^\infty \frac{a_k'}{3^k}$ из K такие, что $|x-x'| < \frac{1}{3^{2N+2}}$. Тогда при $n \le 2N+2$ все $a_n = a_n'$, а тогда $|f(x)-f(x')| < \frac{1}{3^N} < \varepsilon$, откуда функция f непрерывна.

Таким образом, мы нашли гомеоморфизм между K и $K \times K$, что и требовалось.

Задача 28

Пусть τ - некоторая топология на X. Тогда по определению замкнутых множеств $C=(M\subset X\mid X\setminus M\in T)$. Вспомним свойства открытых множеств на X и переформулируем их для замкнутых:

1
$$X \in \tau$$
, $\emptyset \in \tau \Leftrightarrow \emptyset \in C$, $X \in C$.

2 Если
$$U_1,...,U_n\in \tau$$
, то $\bigcap_{i=1}^n U_i\in \tau\Leftrightarrow$ если $U_1',...,U_n'\in C,$ то $\bigcup_{i=1}^n U_i'\in C.$

Действительно, пусть конечное пересечение открытых множеств открыто. Заметим, что $U_i' = X \setminus U_i$ для некоторых $U_i \in \tau$, а тогда $\bigcup_{i=1}^n U_i' = \bigcup_{i=1}^n X \setminus U_i = X \setminus \bigcap_{i=1}^n U_i$ - замкнуто как дополнение открытого множества. Обратно, пусть конечное объединение замкнутых множеств U_i' замкнуто, тогда $\bigcap_{i=1}^n U_i = X \setminus \bigcup_{i=1}^n U_i'$ - открыто, так как является дополнением замкнутого множества.

Если (U_{α}) - произвольный набор множеств из τ , то $\bigcup_{\alpha} U_{\alpha} \in \tau \Leftrightarrow$ если (U'_{α}) - произвольный набор множеств из C, то $\bigcap_{\alpha} U'_{\alpha} \in C$. Доказательство аналогично предыдущему пункту.

Таким образом, произвольный набор подмножеств C задаёт все замкнутые подмножества X, когда он удовлетворяет следующим условиям:

- $X \in C$, $\varnothing \in C$;
- если $U_1, ..., U_n \in C$, то $\bigcup_{i=1}^n U_i \in C$.
- если (U_{α}) произвольный набор множеств из C, то $\bigcap_{\alpha} U_{\alpha} \in C$.

Теперь заметим, что кофинитная топология на пространстве X - это та, в которой замкнуты в точности все конечные множества и само X. Проверим доказанные нами выше свойства замкнутых множеств для кофинитной топологии:

- \emptyset , X замкнуты;
- конечное объединение конечных множеств тоже является конечным множеством;
- пересечение любого набора конечных множеств также конечно.

Таким образом, кофинитная топология действительно является топологией.

Задача 29

Проверим, выполнены ли свойства топологии для τ' на X'.

- $\varnothing \in \tau', X' = (x') \cup X \in \tau'.$
- Пусть $U_1', ..., U_n' \in \tau'$, верно ли, что $\bigcap_{i=1}^n U_i' \in \tau'$?

Если для некоторого i верно $U_i' = \varnothing$, то случай тривиален, иначе существуют такие $U_1, ..., U_n \in \tau$, что $U_i' = (x') \cup U_i$. Тогда $\bigcap_{i=1}^n U_i' = \bigcap_{i=1}^n ((x') \cup U_i) = (x') \cup \bigcap_{i=1}^n U_i \in \tau'$, поскольку $\bigcap_{i=1}^n U_i \in \tau$.

• Пусть (U_{α}) - произвольный набор множеств из τ' , верно ли, что $\bigcup_{\alpha} U'_{\alpha} \in \tau'$?

Как и в предыдущем пункте, мы можем считать, что $\forall \alpha\ U'_{\alpha} \neq \varnothing$. Тогда существует такой набор множеств (U_{α}) из τ , что $\forall \alpha\ U'_{\alpha} = (x') \cup U_{\alpha}$. В таком случае $\bigcup_{\alpha} U'_{\alpha} = \bigcup_{\alpha} ((x') \cup U_{\alpha}) = (x') \cup \bigcup_{\alpha} U_{\alpha} \in \tau'$, поскольку $\bigcup_{\alpha} U_{\alpha} \in \tau$.

Таким образом, τ' является топологией на X.

Задача 30

(A) Если все точки замкнуты, значит, дополнения к ним должны быть открыты. Однако, набор дополнений до одноточечных множеств не является топологией: пересечение двух таких множеств $\mathbb{R}\setminus\{a\}$ и $\mathbb{R}\setminus\{b\}$ для $a\neq b$ тоже должно быть открытым по определению топологии, но не представимо в виде $\mathbb{R}\setminus\{c\}$ ни для какого c. Значит, подобные множества необходимо добавить в топологию; поскольку пересечение конечного числа открытых должно быть открытым, нам придется добавить все множества, содержащие \mathbb{R} за исключением конечного числа точек - так называемые кофинитные

множества. Прямая проверка показывает, что кофинитные множества вместе с \mathbb{R} и пустым множеством образуют топологию. В случае с вещественной прямой она совпадает с топологией Зарисского.

(Б) Самая тонкая из топологий вообще — дискретная, в ней все точки являются как открытыми, так и замкнутыми множествами. Значит, она — искомая.

Задача 31

Пусть τ - набор подмножеств X, состоящий из конечных пересечений элементов из P и всевозможных объединений этих пересечений. Проверим выполнение для τ свойств топологии:

•
$$\varnothing \in \tau$$
, $X = \bigcup_{V \in P} V \in \tau$.

• Пусть
$$U_1,...,U_n \in \tau$$
, верно ли, что $\bigcap_{i=1}^N U_i \in \tau$?

Для начала заметим, что достаточно доказать, что для $U_1, U_2 \in \tau$ верно, что $U_1 \cap U_2 \in \tau$. Действительно, любое конечное пересечение в таком случае доказывается по индукции. По определению τ мы можем записать эти множества как $U_1 = \bigcup_{\alpha} (\bigcap_{j=1}^n V_j^{\alpha})$ и $U_2 = \bigcup_{\beta} (\bigcap_{k=1}^m W_{\beta}^k)$, где

все $V_j^{\alpha}, W_k^{\beta} \in P$. Тогда $U_1 \cap U_2 = \bigcup_{\alpha} (\bigcap_{j=1}^n V_j^{\alpha}) \cap \bigcup_{\beta} (\bigcap_{k=1}^m W_k^{\beta}) = \bigcup_{(\alpha,\beta)} (\bigcap_{j=1}^n V_j^{\alpha} \cap \bigcap_{k=1}^m W_k^{\beta})$ - объединение конечных пересечений множеств из P, следовательно, $U_1 \cap U_2 \in \tau$.

• Пусть $\{U_{\alpha}\}$ - произвольный набор множеств из τ , верно ли, что $\bigcup_{\alpha} U_{\alpha} \in \tau$?

Как мы знаем, что каждое U_{α} есть некоторое объединение конечных пересечений множеств из P, но тогда $\bigcup_{\alpha} U_{\alpha}$ также является объединением конечных пересечений множеств из P, следовательно, принадлежит τ .

Задача 32

Проверим, что набор подмножеств τ пространства \mathbb{N} , состоящий из всевозможных объединений бесконечных арифметических прогрессий, является топологией.

- $\varnothing \in \tau$, $\mathbb{N} \in \tau$, так как само \mathbb{N} тоже является арифметической прогрессией.
- Пусть $U_1,...,U_n \in \tau$, верно ли, что $\bigcap_{i=1}^m U_i \in \tau$?

По определению $U_i=\bigcup_{\alpha_i}\{a_{\alpha_i}+n\cdot d_{\alpha_i}\}_{n\in\mathbb{N}},$ где $a_{\alpha_i},\,d_{\alpha_i}\in\mathbb{N}.$ Тогда

$$\bigcap_{i=1}^m U_i = \bigcap_{i=1}^m (\bigcup_{\alpha_i} \{a_{\alpha_i} + n \cdot d_{\alpha_i}\}_{n \in \mathbb{N} \cup \{0\}}) = \bigcup_{(\alpha_1, \dots, \alpha_m)} (\bigcap_{i=1}^m \{a_{\alpha_i} + n \cdot d_{\alpha_i}\}_{n \in \mathbb{N} \cup \{0\}}).$$

Заметим, что конечное пересечение арифметических прогрессий является объединением некоторого числа других арифметических прогрессий: действительно, если для некоторых $n_1, n_2 \in \mathbb{N} \cup \{0\}a_1 + n_1d_1 = a_2 + n_2d_2 = c$, то для любого $n \in \mathbb{N}$ число $c + n \cdot \mathrm{HOK}(d_1, d_2)$ также принадлежит обеим прогрессиям. Тогда $\bigcap_{i=1}^m U_i \in \tau$ как объединение арифметических прогрессий.

• Пусть $\{U_{\alpha}\}$ - произвольный набор множеств из τ , верно ли, что $\bigcup_{\alpha} U_{\alpha} \in \tau$?

В самом деле, каждое U_{α} мы можем представить как объединение каких-то арифметических прогрессий, а значит, $\bigcup_{\alpha} U_{\alpha} \in \tau$ тоже представляется как объединение арифметических прогрессий, и, следовательно, принадлежит τ .

Итак, мы доказали, что всевозможные арифметические прогрессии образуют базу топологии в \mathbb{N} . Заметим теперь, что для любого $d \in \mathbb{N}$ объединение арифметических прогрессий $\{0+n\cdot d\}_{n\in\mathbb{N}\cup\{0\}},\ \{1+n\cdot d\}_{n\in\mathbb{N}\cup\{0\}},\ \{2+n\cdot d\}_{n\in\mathbb{N}\cup\{0\}},...,\ \{(d-1)+n\cdot d\}_{n\in\mathbb{N}\cup\{0\}}$ покрывает всё множество натуральных чисел, причём каждая из этих прогрессий является дополнением к объединению оставшихся. Тогда каждая арифметическая прогрессия является также замкнутым множеством в \mathbb{N} с топологией τ .

Предположим теперь, что множество всех простых чисел конечно. Обозначим его \mathbb{P} . Тогда множество $\bigcup_{p\in\mathbb{P}}\{n\cdot p\}_{n\in\mathbb{N}\cup\{0\}},$ с одной стороны, замкнуто как конечное объединение замкнутых множеств, с другой стороны, $\bigcup_{p\in\mathbb{P}}\{n\cdot p\}_{n\in\mathbb{N}\cup\{0\}}=N\setminus\{1\}$. Тогда множество $\{1\}$ открыто в топологии τ , но не представляется в виде объединения никаких арифметических прогрессий. Мы получили противоречие, следовательно, множество всех простых чисел бесконечно.

Задача 33

Так как X - метрическое пространство, то достаточно показать, что замкнутый шар не является секвенциально компактным. Пусть $e^i = \{e^i_j\}_{j=0}^\infty \in X$ - последовательность внутри единичного замкнутого шара, такая что на i-месте стоит 1, а в остальных местах 0, то есть $e^i_i = 1$ и $e^j_i = 0$ ($j \neq i$) в остальных случаях. Покажем, что из последовательности (e^i) $_{i \in \mathbb{N}}$ нельзя выбрать сходящуюся подпоследовательность. Действительно, пусть подпоследовательность (e^{in}) сходится. Тогда (e^{in}) - фундаментальная последовательность, но $\rho(e^i, e^j) = 1$ для любых i, j ($i \neq j$). Противоречие.

Задача 34

Проверим аксиомы метрики:

- (1) $\forall A, B$ ограниченных многоугольников на плоскости $d_{\triangle}(A, B) \geq 0$. В самом деле, $A \cap B \subseteq A$ и $A \cap B \subseteq B$, следовательно $2S(A \cap B) \leq S(A) + S(B)$.
 - $\forall A, Bd_{\triangle}(A, B) = 0 \Leftrightarrow A = B$. В одну сторону утверждение очевидно. Обратно: пусть $A \neq B$. Тогда либо $A \cap B \nsubseteq A$, либо $A \cap B \subsetneq B$. Тогда $2S(A \cap B) < S(A) + S(B)$, и $d_{\triangle}(A, B) > 0$.
 - Симметричность очевидна по определению функции $d_{\triangle}.$
 - Неравенство треугольника. Пусть A, B, C ограниченные многоугольники на плоскости. Надо доказать, что $d_{\triangle}(A, B) \leq d_{\triangle}(A, C) + d_{\triangle}(C, B)$. Распишем подробнее:

$$d_{\triangle}(A,C) + d_{\triangle}(C,B) - d_{\triangle}(A,B) = S(A) + S(C) - 2S(A \cap C) + S(C) + S(B) - 2S(B \cap C) - S(A) - S(B) + 2S(A \cap B) = 2(S(C) + S(A \cap B) - S(A \cap C) - S(B \cap C))$$

Заметим, что $S(A \cap C) + S(B \cap C) = S((A \cup B) \cup C) + S((A \cap B) \cap C)$, при этом $S((A \cup B) \cap C) \leq S(C)$ и $S((A \cap B) \cap C) \leq S(A \cap B)$. Следовательно, $d_{\triangle}(A,C) + d_{\triangle}(C,B) - d_{\triangle}(A,B) = 2(S(C) + S(A \cap B) - S(A \cap C) - S(B \cap C)) \geq 0$, и неравенство треугольника выполнено.

Заметим, что d_{\triangle} можно также выразить как $d_{\triangle}(A, B) = S(A \triangle B)$.

Осталось доказать, что на множестве выпуклых многоугольников метрика d_{\triangle} эквивалентна метрике Хаусдорфа d_H . Пусть M - пространство выпуклых многоугольников на плоскости. Докажем, что отображение $f:(M,d_H)\to (M,d_{\triangle}), \ f(A):=A$, - гомеоморфизм.

Докажем непрерывность f в фиксированной точке A. Пусть для некоторого В $d_H(A,B) < \delta$. Заметим, что в таком случае $A\triangle B \subset (\delta A)^{2\delta}$, где $(\delta A)^{2\delta}$ - 2δ окрестность границы многоугольника A. Действительно, по определению метрики Хаусдорфа $B \subset A^{2\delta}$, следовательно, $A\triangle B \subset A^{2\delta}$. С другой стороны, $A\setminus (\delta A)^{2\delta}\subset B$. В самом деле, пусть существует точка $x\in A\setminus (\delta A)^{2\delta}$, но $x\not\in B$. Тогда, поскольку B выпукло, существует прямая l, отделяющая точку x от многоугольника B. Обозначим части, на которые делит l плоскость, как l_- и l_+ . Пусть, не умаляя общности, $B\subset l_-$, $x\in l_+$. Но тогда заметим, что $A\cap l_+\not\subset l^{\frac{3}{2}\delta}$, следовательно, $A\subset l^{\frac{3}{2}\delta}$. Но это противоречит тому, что $d_H(A,B)<\delta$. Таким образом, действительно $A\triangle B\subset (\delta A)^{2\delta}$. А тогда $d\triangle (A,B)=S(A\triangle B)\leq S((\delta A)^{2\delta})<2\delta P(A)+4\pi\delta^2 V(A)$, где P(A) - периметр многоугольника A, а V(A) - количество его вершин. Тогда $\forall \varepsilon>0$ для $\delta:=\min(\frac{\varepsilon}{4P(A)};\sqrt{\frac{\varepsilon}{8\pi V(A)}})2\delta P(A)+4\pi\delta^2 V(A)\leq \frac{\varepsilon}{2}+\frac{\varepsilon}{2}=\varepsilon$, и для любого многоугольника B из неравенства $d_H(A,B)<\delta$ следует неравенство $d_\Delta(A,B)<\varepsilon$, что и является условием непрерывности f.