D INTELLECTUAL PROPERTY ORGANIZATION International Bureau

INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 7:

C07D 309/10, 405/06, A61K 31/351, A61P 25/22

A1

(11) International Publication Number:

WO 00/56728

(43) International Publication Date: 28 September 2000 (28,09,00)

(21) International Application Number:

PCT/GB00/00977

(22) International Filing Date:

16 March 2000 (16.03.00)

(30) Priority Data:

9906480.0 9924616.7

19 March 1999 (19.03.99) GR 18 October 1999 (18.10.99)

GB

(71) Applicant (for all designated States except US): MERCK SHARP & DOHME LIMITED [GB/GB]; Hertford Road. Hoddesdon, Hertfordshire EN11 9BU (GB).

(72) Inventors; and

- (75) Inventors/Applicants (for US only): OWEN, Simon, Neil [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). SEWARD, Eileen, Mary [IE/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). SWAIN, Christopher, John [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB). WILLIAMS, Brian, John [GB/GB]; Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).
- (74) Agent: HISCOCK, Ian, James; Merck & Co., Inc., European Patent Department, Terlings Park, Eastwick Road, Harlow, Essex CM20 2QR (GB).

(81) Designated States: AE, AL, AM, AT, AU, AZ, BA, BB, BG, BR, BY, CA, CH, CN, CR, CU, CZ, DE, DK, DM, DZ, EE, ES, FI, GB, GD, GE, GH, GM, HR, HU, ID, IL, IN, IS, JP, KE, KG, KP, KR, KZ, LC, LK, LR, LS, LT, LU, LV, MA. MD, MG, MK, MN, MW, MX, NO, NZ, PL, PT, RO, RU, SD, SE, SG, SI, SK, SL, TJ, TM, TR, TT, TZ, UA, UG, US, UZ, VN, YU, ZA, ZW, ARIPO patent (GH, GM, KE, LS, MW, SD, SL, SZ, TZ, UG, ZW), Eurasian patent (AM, AZ, BY, KG, KZ, MD, RU, TJ, TM), European patent (AT, BE, CH, CY, DE, DK, ES, FI, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE), OAPI patent (BF, BJ, CF, CG, CI, CM, GA, GN, GW, ML, MR, NE, SN, TD, TG).

Published

With international search report.

Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.

(54) Title: TETRAHYDROPYRAN DERIVATIVES AND THEIR USE AS THERAPEUTIC AGENTS

(57) Abstract

The present invention relates to compounds of formula (I) wherein R¹, R², R³, R⁴, R⁵, R⁹ and R¹⁰ represent a variety of substituents: R⁶ represents hydrogen or a C₁₋₄alkyl group optionally substituted by a hydroxy group; R⁷ represents halogen, hydroxy, C₂₋₄alkenyl, N₃, -NR¹¹R¹², -NR^aCOR^b, -OSO₂R^a, -(CH₂)_pNR^a(CH₂)_qCOOR^b, COR^a, COOR^a, or a five membered or six membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroatoms selected from N, O and S which heteroaromatic ring is optionally substituted at any substitutable position by a substituent selected from =0, =S, halogen, hydroxy, -SH, CORa, CO2Ra, -ZNR11R12, C1-4alkyl, hydroxyC₁₋₄alkyl, fluoroC₁₋₄alkyl, C₁₋₄alkoxy, fluoroC₁₋₄alkoxy or C₁₋₄alkoxy or C₁₋₄alkoxy or hydroxyl group; R⁸ represents hydrogen, C₁₋₆alkyl, fluoroC₁₋₆alkyl, hydroxy, C₁₋₆alkoxy or hydroxyC₁₋₆alkyl; and n is zero, 1 or 2; or a pharmaceutically acceptable salt thereof. The compounds are of particular use in the treatment or prevention of depression, anxiety, pain, inflammation, migraine, emesis or postherpetic neuralgia.

Printed: 13-11-2003 Cited Doc: WO 0056728A1 I Cited in: GB0303098

FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

AL	Albania	ES	Spain	LS	Lesotho	SI	Slovenia
AM	Armenia	FI	Finland	LT	Lithuania	SK	Slovakia
АT	Austria	FR	France	LU	Luxembourg	SN	Senegal
AU	Australia	GA	Gabon	LV	Latvia	SZ	Swaziland
ΑZ	Azerbaijan	GB	United Kingdom	MC	Мопасо	TD	Chad
BA	Bosnia and Herzegovina	GE	Georgia	MD	Republic of Moldova	TG	Togo
BB	Barbados	GH	Ghana	MG	Madagascar	TJ	Tajikistan
BE	Belgium	GN	Guinea	MK	The former Yugoslav	TM	Turkmenistan
BF	Burkina Faso	GR	Greece		Republic of Macedonia	TR	Turkey
BG	Bulgaria	HU	Hungary	ML	Mali	TT	Trinidad and Tobago
BJ	Benin	IE	Ireland	MN	Mongolia	UA	Ukraine
BR	Brazil	IL	Israel	MR	Mauritania	UG	Uganda
BY	Belarus	IS	Iceland	MW	Malawi	US	United States of America
CA	Canada	IT	Italy	MX	Mexico	UZ	Uzbekistan
CF	Central African Republic	JP	Japan	NE	Niger	VN	Viet Nam
CG	Congo	KE	Kenya	NL	Netherlands	YU	Yugoslavia
CH	Switzerland	KG	Kyrgyzstan	NO	Norway	zw	Zimbabwe
CI	Côte d'Ivoire	KP	Democratic People's	NZ	New Zealand	2,,,	Zimoabwe
CM	Cameroon		Republic of Korea	PL	Poland		
CN	China	KR	Republic of Korea	PT	Portugal		
CU	Cuba	KZ	Kazakstan	RO	Romania		
CZ	Czech Republic	LC	Saint Lucia	RU	Russian Federation		
Œ	Germany	LI	Liechtenstein	SD	Sudan		
DΚ	Denmark	LK	Sri Lanka	SE	Sweden		
EE	Estonia	LR	Liberia	SG	Singapore		

WO 00/56728

1

PCT/GB00/00977

TETRAHYDROPYRAN DERIVATIVES AND THEIR USE AS THERAPEUTIC AGENTS

This invention relates to a class of tetrahydropyran compounds which are useful as tachykinin antagonists. More particularly, the compounds of the invention are useful as neurokinin 1(NK-1) receptor antagonists.

The present invention provides compounds of the formula (I):

$$R^{6}$$
 R^{9}
 R^{10}
 R^{10}
 R^{8}
 R^{7}
 R^{7}
 R^{5}
 R^{5}

10

15

wherein

R¹ is hydrogen, halogen, C¹-6alkyl, C¹-6alkoxy, fluoroC¹-6alkyl, fluoroC¹-6alkoxy, C³-7cycloalkyl, C³-7cycloalkylC¹-4alkyl, NO², CN, SR³, SOR³, SO²R³, CO²R³, CO²R³, CONR³R¹, C²-6alkenyl, C²-6alkynyl or C¹-4alkyl substituted by C¹-4alkoxy, wherein R³ and R¹ each independently represent hydrogen or C¹-4alkyl;

 R^2 is hydrogen, halogen, $C_{1\text{-}6}$ alkyl, fluoro $C_{1\text{-}6}$ alkyl or $C_{1\text{-}6}$ alkoxy substituted by $C_{1\text{-}4}$ alkoxy;

R³ is hydrogen, halogen or fluoroC₁₋₆alkyl;

R⁴ is hydrogen, halogen, C₁₋₆alkyl, C₁₋₆alkoxy, fluoroC₁₋₆alkyl, fluoroC₁₋₆alkoxy, hydroxy, NO₂, CN, SR^a, SOR^a, SO₂R^a, CO₂R^a, CONR^aR^b, C₂₋₆alkenyl, C₂₋₆alkynyl or C₁₋₄alkyl substituted by C₁₋₄alkoxy, wherein R^a and R^b are as previously defined;

 R^5 is hydrogen, halogen, C_{1-6} alkyl, fluoro C_{1-6} alkyl or C_{1-6} alkoxy substituted by C_{1-4} alkoxy;

10

15

20

25

30

WO 00/56728

2

PCT/GB00/00977

 $$\rm R^{6}$$ represents hydrogen or a $C_{1\text{--}4}alkyl$ group optionally substituted by a hydroxy group;

R⁷ represents halogen, hydroxy, C₂₋₄alkenyl, N₃, -NR¹¹R¹², -NR^aCOR^b, -OSO₂R^a, -(CH₂)_pNR^a(CH₂)_qCOOR^b, COR^a, COOR^a, or a five membered or six membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroatoms selected from N, O and S which heteroaromatic ring is optionally substituted at any substitutable position by a substituent selected from =O, =S, halogen, hydroxy, -SH, COR^a, CO₂R^a, -ZNR¹¹R¹², C₁₋₄alkyl, hydroxyC₁₋₄alkyl, fluoroC₁₋₄alkyl, C₁₋₄alkoxy, fluoroC₁₋₄alkoxy or C₁₋₄alkoxy substituted by a C₁₋₄alkoxy or hydroxyl group;

 R^8 represents hydrogen, $C_{1\text{-}6}$ alkyl, fluoro $C_{1\text{-}6}$ alkyl, hydroxy, $C_{1\text{-}6}$ alkoxy or hydroxy $C_{1\text{-}6}$ alkyl;

 R^9 and R^{10} each independently represent hydrogen, halogen, $C_{1\text{-}6}$ alkyl, CH_2OR^c , oxo, CO_2R^a or $CONR^aR^b$ where R^a and R^b are as previously defined and R^c represents hydrogen, $C_{1\text{-}6}$ alkyl or phenyl;

R¹¹ is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, C₂₋₄alkyl substituted by a C₁₋₄alkoxy or hydroxyl group, or R¹¹ is a five membered or six membered nitrogen-containing heteroaromatic ring as previously defined;

 R^{12} is hydrogen or $C_{1\text{-}4}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}7}$ cycloalkyl $C_{1\text{-}4}$ alkyl, or $C_{2\text{-}4}$ alkyl substituted by a $C_{1\text{-}4}$ alkoxy or hydroxyl group;

or R¹¹, R¹² and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms, optionally substituted by one or two groups selected from hydroxy, COR^e, CO₂R^e, C₁₋₄alkyl optionally substituted by a C₁₋₄alkoxy or hydroxyl group, or C₁₋₄alkoxy optionally substituted by a C₁₋₄alkoxy or hydroxyl group, or a five membered or six membered nitrogen-containing heteroaromatic ring as previously defined, or said heteroaliphatic ring is substituted by a spiro-fused lactone ring, and said heteroaliphatic ring optionally containing a double bond, which heteroaliphatic ring may optionally contain an oxygen or sulphur ring atom, a group S(O) or S(O)₂ or a second nitrogen atom which will be part of a NH or NR^d moiety, where R^d is C₁₋₄alkyl optionally substituted by hydroxy or C₁₋₄alkoxy, and where R^e is hydrogen, C₁₋₄alkyl or benzyl;

or R^{11} , R^{12} and the nitrogen atom to which they are attached form a non-aromatic azabicyclic ring system of 6 to 12 ring atoms;

15

20

25

30

WO 00/56728

3

PCT/GB00/00977

or R¹¹, R¹² and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms to which is fused a benzene ring or a five membered or six membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroatoms selected from N, O and S;

Z represents a bond, C₁₋₆alkylene or C₃₋₆cycloalkylene;

n is zero, 1 or 2;

p is 1 or 2; and

q is 1 or 2;

and pharmaceutically acceptable salts thereof.

A preferred class of compounds of formula (I) is that wherein:

R⁷ represents halogen, hydroxy, C₂₋₄alkenyl, N₃, -NR¹¹R¹², -NR^aCOR^b, -OSO₂R^a, -(CH₂)_pNR^a(CH₂)_qCOOR^b or a five membered or six membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroatoms selected from N, O and S which heteroaromatic ring is optionally substituted at any substitutable position by a substituent selected from =O, =S, halogen, hydroxy, -SH, COR^a, CO₂R^a, -ZNR¹¹R¹², C₁₋₄alkyl, hydroxyC₁₋₄alkyl, fluoroC₁₋₄alkyl, C₁₋₄alkoxy, fluoroC₁₋₄alkoxy or C₁₋₄alkoxy substituted by a C₁₋₄alkoxy or hydroxyl group;

R¹¹ is hydrogen or C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, or C₂₋₄alkyl substituted by a C₁₋₄alkoxy or hydroxyl group;

R¹² is hydrogen or C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, or C₂₋₄alkyl substituted by a C₁₋₄alkoxy or hydroxyl group;

or R¹¹, R¹² and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms, optionally substituted by one or two groups selected from hydroxy, COR^a, CO₂R^a or C₁₋₄alkoxy optionally substituted by a C₁₋₄alkoxy or hydroxyl group, and said ring optionally containing a double bond, which ring may optionally contain an oxygen or sulphur ring atom, a group S(O) or S(O)₂ or a second nitrogen atom which will be part of a NH or NR^d moiety where R^d is C₁₋₄alkyl optionally substituted by hydroxy or C₁₋₄alkoxy;

or R¹¹, R¹² and the nitrogen atom to which they are attached form a non-aromatic azabicyclic ring system of 6 to 12 ring atoms; or a pharmaceutically acceptable salt thereof.

A further preferred class of compounds of formula (I) is that wherein R¹ is hydrogen, C₁₋₄alkyl, C₁₋₄alkoxy, halogen or CF₃.

15

20

25

30

Another preferred class of compounds of formula (I) is that wherein R^2 is hydrogen, $C_{1\text{-}4}$ alkyl, $C_{1\text{-}4}$ alkoxy, halogen or CF_3 .

Also preferred is the class of compounds of formula (I) wherein R³ is hydrogen, fluorine, chlorine or CF₃.

A particularly preferred class of compounds of formula (I) is that wherein R^1 is fluorine, chlorine or CF_3 .

Another particularly preferred class of compounds of formula (I) is that wherein R² is hydrogen, fluorine, chlorine or CF₃.

Also particularly preferred is the class of compounds of formula (I)

wherein R³ is hydrogen, fluorine, chlorine or CF₃.

Preferably R^1 and R^2 are in the 3 and 5 positions of the phenyl ring.

More preferably R1 is 3-fluoro or 3-CF3.

More preferably R² is 5-fluoro or 5-CF₃.

More preferably R³ is hydrogen.

Most preferably R¹ is 3-F or 3-CF₃, R² is 5-CF₃ and R³ is hydrogen.

A further preferred class of compound of formula (I) is that wherein R^4 is hydrogen.

Another preferred class of compounds of formula (I) is that wherein R^5 is hydrogen, fluorine, chlorine or CF_3 .

Preferably R4 is hydrogen and R5 is hydrogen or 4-fluoro.

 R^6 is preferably $C_{1\text{-}4}$ alkyl optionally substituted by hydroxy. In particular, R^6 is preferably a methyl or hydroxymethyl group.

Where -NR¹¹R¹² is defined as a substituent R⁷ or as a substituent on a heteroaromatic ring in the definition of R⁷, then R¹¹ may aptly be a C₁₋₄alkyl group or a C₂₋₄alkyl group substituted by a hydroxyl or C₁₋₂alkoxy group, R¹² may aptly be a C₁₋₄alkyl group or a C₂₋₄alkyl group substituted by a hydroxyl or C₁₋₂alkoxy group, or R¹¹ and R¹² may be linked so that, together with the nitrogen atom to which they are attached, they form an azetidinyl, pyrrolidinyl, piperidinyl, morpholino, thiomorpholino, piperazino or piperazino group substituted on the nitrogen atom by a C₁₋₄alkyl group or a C₂₋₄alkyl group substituted by a hydroxy or C₁₋₂alkoxy group. Particularly preferred heteroaliphatic rings formed by -NR¹¹R¹² are azetidine, pyrrolidine, piperidine, morpholine, piperazine and N-methylpiperazine, and especially piperidine.

10

25

CID: <WO_

WO 00/56728

5

PCT/GB00/00977

Where the group NR¹¹R¹² represents a heteroaliphatic ring of 4 to 7 ring atoms substituted by two groups, the first substituent, where present, is preferably selected from hydroxy, CO₂R^e (where R^e is hydrogen, methyl, ethyl or benzyl), or C₁₋₂alkyl substituted by hydroxy. Where present, the second substituent is preferably a methyl group. Where two substituents are present, said substituents are preferably attached to the same carbon atom of the heteroaliphatic ring.

Where the group NR¹¹R¹² represents a heteroaliphatic ring of 4 to 7 ring atoms substituted by a spiro-fused lactone ring, a particularly preferred example is:

Where the group NR¹¹R¹² represents a heteroaliphatic ring of 4 to 7 ring atoms and said ring contains a double bond, a particularly preferred group is 3-pyrroline.

Where the group NR¹¹R¹² represents a non-aromatic azabicyclic ring system, such a system may contain between 6 and 12, and preferably between 7 and 10, ring atoms. Suitable rings include 5-azabicyclo[2.1.1]hexyl, 5-azabicyclo[2.2.1]heptyl, 6-azabicyclo[3.2.1]octyl, 2-azabicyclo[2.2.2]octyl, 6-azabicyclo[3.2.2]nonyl, 6-azabicyclo[3.3.1]nonyl, 6-azabicyclo[3.3.2]decyl, 7-azabicyclo[4.3.1]decyl, 7-azabicyclo[4.4.1]undecyl and 8-azabicyclo[5.4.1]dodecyl, especially 5-azabicyclo[2.2.1]heptyl and 6-azabicyclo[3.2.1]octyl.

Where the group NR¹¹R¹² represents a heteroaliphatic ring of 4 to 7 ring atoms to which is fused a benzene ring or a five membered or six membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroatoms selected from N, O and S, said heteroaromatic ring is preferably a five-membered ring, in particular a pyrrole, imidazole or triazole ring, a nitrogen atom of which is preferably included in the heteroaliphatic ring. Suitable examples of such fused ring systems include

10

15

20

25

WO 00/56728

6

PCT/GB00/00977

Particularly suitable moieties $NR^{11}R^{12}$ include those wherein $NR^{11}R^{12}$ is amino, methylamino, dimethylamino, diethylamino, azetidino, pyrrolidino, piperidino, morpholino and piperazino.

Where R⁷ represents an optionally substituted five or six-membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroatoms selected from N, O and S, the heteroaromatic ring is selected from pyrrole, pyridine, pyrazole, imidazole, oxazole, isoxazole, thiazole, isothiazole, pyrazine, pyrimidine, pyridazine, triazole, oxadiazole, thiadiazole, triazine, and tetrazole.

Preferred compounds of the present invention are those wherein R^7 is a group selected from imidazole, 1,2,3-triazole and 1,2,4-triazole.

Particularly preferred compounds of the present invention are those wherein \mathbb{R}^7 is a group selected from imidazol-1-yl and 1,2,4-triazol-1-yl.

Where R⁷ represents an optionally substituted five membered or six membered nitrogen-containing heteroaromatic ring, preferred substituents are -ZNR¹¹R¹² and C₁₋₂alkyl (especially methyl). With reference to the group ZNR¹¹R¹² defined as a substituent on a heteroaromatic ring in the definition of R⁷, Z may be a bond or a linear, branched or cyclic group. Favourably Z is a bond or contains 1 to 4 carbon atoms and most favourably 1 to 2 carbon atoms. A particularly favourable group Z is -CH₂-. In this instance, particularly suitable moieties NR¹¹R¹² include those wherein NR¹¹R¹² is amino, methylamino, dimethylamino, diethylamino, azetidino, pyrrolidino, piperidino, morpholino and piperazino. Most especially, -ZNR¹¹R¹², as a substituent on a heteroaromatic ring in the definition of R⁷, is preferably CH₂N(CH₃)₂.

A further preferred class of compound of formula (I) is that wherein R^7 represents halogen (especially iodine), hydroxy, vinyl, N_3 or $-OSO_2R^a$ (especially where R^a is methyl).

Another preferred class of compound of formula (I) is that wherein R^8 is hydrogen or methyl, and especially hydrogen.

WO 00/56728

7

PCT/GB00/00977

A further preferred class of compound of formula (I) is that wherein n is 1 or 2, and especially wherein n is 1.

Another preferred class of compound of formula (I) is that wherein one of R^9 and R^{10} is hydrogen, and especially wherein R^9 and R^{10} are both hydrogen atoms.

One favoured group of compounds of the present invention are of the formula (Ia) and pharmaceutically acceptable salts thereof:

$$A^{4}$$

$$C$$

$$CH_{2})_{n}$$

$$A^{3}$$

$$R^{7}$$

$$(Ia)$$

10

15

20

wherein

A¹ is fluorine or CF₃;

A² is fluorine or CF₃;

A³ is fluorine or hydrogen;

A4 is methyl or hydroxymethyl; and

 R^7 and n are as defined in relation to formula (I).

When any variable occurs more than one time in formula (I) or in any substituent, its definition on each occurrence is independent of its definition at every other occurrence.

As used herein, the term "alkyl" or "alkoxy" as a group or part of a group means that the group is straight or branched. Examples of suitable alkyl groups include methyl, ethyl, n-propyl, i-propyl, n-butyl, s-butyl and t-butyl. Examples of suitable alkoxy groups include methoxy, ethoxy, n-propoxy, i-propoxy, n-butoxy, s-butoxy and t-butoxy.

10

15

As used herein, the terms "fluoroC₁₋₆alkyl" and fluoroC₁₋₆alkoxy" means a C₁₋₆alkyl or C₁₋₆alkoxy group in which one or more (in particular, 1 to 3) hydrogen atoms have been replaced by fluorine atoms. Similarly, the term "fluoroC₁₋₄alkyl" means a C₁₋₄alkyl group in which one or more (in particular 1 to 3) hydrogen atoms have been replaced by fluorine atoms. Particularly preferred are fluoroC₁₋₃alkyl and fluoroC₁₋₃alkoxy groups, for example, CF₃, CH₂CH₂F, CH₂CHF₂, CH₂CF₃, OCF₃, OCH₂CH₂F, OCH₂CHF₂ or OCH₂CF₃, and most especially CF₃, OCF₃ and OCH₂CF₃.

The cycloalkyl groups referred to herein may represent, for example, cyclopropyl, cyclobutyl, cyclopentyl or cyclohexyl. A suitable cycloalkylalkyl group may be, for example, cyclopropylmethyl.

Similarly cycloalkoxy groups referred to herein may represent, for example, cyclopropoxy or cyclobutoxy.

As used herein, the terms "alkenyl" and "alkynyl" as a group or part of a group means that the group is straight or branched. Examples of suitable alkenyl groups include vinyl and allyl. A suitable alkynyl group is propargyl.

When used herein the term "halogen" means fluorine, chlorine, bromine and iodine. The most apt halogens are fluorine and chlorine of which fluorine is preferred, unless otherwise stated.

Specific compounds within the scope of this invention include:

(2R,3S,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-3-phenyl-4vinyltetrahydropyran;

(2R,3R,4S,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-3-phenyl-4vinyltetrahydropyran;

25 (2R,3S,4S,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-hydroxymethyl-3-phenyltetrahydropyran;
(2R,3S,4S,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(methanesulfonyloxy)methyl-3-phenyltetrahydropyran;

(2RS,3SR,4SR,8RS)-4-azidomethyl-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)-

30 oxy)-3-phenyltetrahydropyran;

(2RS, 3SR, 4SR, 8RS) - 4-aminomethyl - 2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)-ethyl) oxy) - 3-phenyltetrahydropyran;

(2RS, 3SR, 4SR, 8RS) - 2 - (1 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (dimethylamino)methyl - 3 - phenyltetrahydropyran;

(2RS,3SR,4SR,8RS)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(pyrrolidin-1-yl)methyl-3-phenyltetrahydropyran; (2RS,3SR,4SR,8RS)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(1,2,4-triazol-1-yl)methyl-3-phenyltetrahydropyran;

- 5 (2R,3S,4S,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(2-hydroxyethyl)-3-phenyltetrahydropyran;
 (2R,3S,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(2-methanesulfonyloxy)ethyl-3-phenyltetrahydropyran;
 (2R,3R,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-
- hydroxymethyl-3-phenyltetrahydropyran;
 (2R,3R,4R,8R)-2-(1-(1-(3,5-is(trifluoromethyl)phenyl)ethyl)oxy)-4(methanesulfonyloxy)methyl-3-phenyltetrahydropyran;
 (2R,3R,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(2-hydroxyethyl)-3-phenyltetrahydropyran;
- 15 (2R,3R,4S,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(2-methanesulfonyloxy)ethyl-3-phenyltetrahydropyran; and pharmaceutically acceptable salts thereof.

Further specific compounds of the present invention include:

(2R, 3S, 4R, 8R) - 2 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 4 - (2 - iodoethyl) - 3 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 4 - (2 - iodoethyl) - 3 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 4 - (2 - iodoethyl) - 3 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 4 - (2 - iodoethyl) - 3 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 4 - (4 - iodoethyl) - 3 - (4 - iodoethyl) - (4 - iodoeth

- 20 phenyltetrahydropyran;
 - (2R, 3R, 4R, 8R) 2 (1 (3, 5 bis(trifluoromethyl)phenyl)ethyl)oxy) 4 (iodomethyl) 3 phenyltetrahydropyran;
 - (2R,3R,4S,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(2-iodoethyl)-3-phenyltetrahydropyran;
- 25 (2R,3S,4S,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-formyl-3-phenyltetrahydropyran; (2R,3S,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(2-formylmethyl)-3-phenyltetrahydropyran;

(2R,3R,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-formyl-3-index of the control of the contr

- 30 phenyltetrahydropyran;
 - (2R, 3S, 4R, 8R) 2 (1 (1 (3, 5 bis(trifluoromethyl)phenyl)ethyl)oxy) 4 carboxymethyl 3 phenyltetrahydropyran;

(2R,3R,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-carboxy-3-phenyltetrahydropyran;

PCT/GB00/00977

(2R, 3R, 4R, 8R) - 2 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (4 - methyl - 4 - methyl) - 4 - (4 - methyl) - (4 - methylcarboxypiperidin-1-yl)methyl-3-phenyltetrahydropyran; (2R, 3R, 4R, 8R) - 2 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (4 - bis(trifluoromethyl)phenyl)ethyl)oxy) - (4 - bis(trifluoromethyl)phenyl)ethylloxy)ethylloxy - (4 - bis(trifluoromethylloxy)ethylloxy - (4 $ethoxy carbonyl piperid in \hbox{-}1-yl) methyl-\hbox{3-phenyl tetrahydropyran};$ 5 carboxypiperidin-1-yl)methyl-3-phenyltetrahydropyran; (2R, 3R, 4R, 8R, 9(3'R)) - 2 - (1 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (3 - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2 $ethoxy carbonyl-3-methyl piperid in \hbox{-}1-yl) methyl-3-phenyl tetrahydropyran;$ (2R, 3R, 4R, 8R, 9(3°S)) - 2 - (1 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (3 - (3 - bis(trifluoromethyl)phenyl)ethyl)oxy) - (3 - (3 - bis(trifluoromethyl)phenyl)ethylloxy) - (3 - (3 - bis(trifluoromethylloxy)ethylloxy) - (3ethoxy carbonyl-3-methyl piperid in-1-yl) methyl-3-phenyl tetra hydropyran;10 (2R, 3R, 4R, 8R, 9(3'R)) - 2 - (1 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (3 - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2) - (3 - 2) - (3 - 2) - (3 - 2) - (3 - (3 - 2) - (3 - 2carboxy-3-methylpiperidin-1-yl) methyl-3-phenyltetrahydropyran; (2R, 3R, 4R, 8R, 9(3'S)) - 2 - (1 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (3 - (3 - bis(trifluoromethyl)phenyl)ethyl)oxy) - (3 - (3 - bis(trifluoromethyl)phenyl)ethylloxy) - (3 - (3 - bis(trifluoromethyl)phenyl)ethylloxy) - (3 - (3 - bis(trifluoromethylloxy)ethylloxy) - (3 - (3 - bis(trifluoromethylloxy)ethylloxy)carboxy-3-methylpiperidin-1-yl)lmethyl-3-phenytetrahydropyran; (2R, 3R, 4R, 8R) - 2 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl - (3, 5 - bis(trifluoromethyl)phenyl)ethyl) oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl)ethylloy oxy) - 3 - (3, 5 - bis(trifluoromethylloy oxy) - (3, 5 - bis(trifluoromethyll15 (1,2,4-triazol-3-yl)methyltetrahydropyran; (2R, 3S, 4S, 8R) - 2 - (1 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - 3 - (3, 5 - bis(trifluoromethyl)phenyl) - (3, 5 - bis(trifluoromethyl)phenyl) ethyl oxy) - (3, 5 - bis(trifluoromethyl)phenyl ethyl ethyl oxy) - (3(1,2,4-triazol-3-yl)methyltetrahydropyran; (2R, 3R, 4R, 8R) - 2 - (1 - (3, 5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) oxy) - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) ethyl) ethyl) ethyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) ethyl) ethyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl) ethyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl) ethyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 3 - phenyl - 4 - (5 - bis(trifluoromethyl)phenyl - 4 - (5 - bis(trifluoro20 methoxycarbonyl-1,2,3-triazol-1-yl)ethyltetrahydropyran; (2R, 3R, 4R, 8R) - 2 - (1 - (3, 5 - bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (4 - bis(trifluoromethyl)phenyl)ethyl)oxy) - (4 - bis(trifluoromethyl)phenyl)ethylloxy)ethylloxy - (4 - bis(trifluoromethylloxy)ethylloxy - (4 - bis(methoxy carbonyl-1, 2, 3-triazol-1-yl) ethyl-3-phenyl tetrahydropyran;and pharmaceutically acceptable salts thereof.

In a further aspect of the present invention, the compounds of formula (I) may be prepared in the form of a pharmaceutically acceptable salt, especially an acid addition salt.

For use in medicine, the salts of the compounds of formula (I) will be non-toxic pharmaceutically acceptable salts. Other salts may, however, be useful in the preparation of the compounds according to the invention or of their non-toxic pharmaceutically acceptable salts. Suitable pharmaceutically acceptable salts of the compounds of this invention include acid addition salts which may, for example, be formed by mixing a solution of the compound according to the invention with a solution of a pharmaceutically acceptable acid such as hydrochloric acid, fumaric acid, p-toluenesulphonic acid, maleic acid, succinic

25

10

15

20

acid, acetic acid, citric acid, tartaric acid, carbonic acid, phosphoric acid or sulphuric acid. Salts of amine groups may also comprise quaternary ammonium salts in which the amino nitrogen atom carries a suitable organic group such as an alkyl, alkenyl, alkynyl or aralkyl moiety. Furthermore, where the compounds of the invention carry an acidic moiety, suitable pharmaceutically acceptable salts thereof may include metal salts such as alkali metal salts, e.g. sodium or potassium salts; and alkaline earth metal salts, e.g. calcium or magnesium salts.

The salts may be formed by conventional means, such as by reacting the free base form of the product with one or more equivalents of the appropriate acid in a solvent or medium in which the salt is insoluble, or in a solvent such as water which is removed *in vacuo* or by freeze drying or by exchanging the anions of an existing salt for another anion on a suitable ion exchange resin.

The present invention includes within its scope solvates of the compounds of formula (I) and salts thereof, for example, hydrates.

The compounds according to the invention have at least three asymmetric centres, and may accordingly exist both as enantiomers and as diastereoisomers. It is to be understood that all such isomers and mixtures thereof are encompassed within the scope of the present invention.

The preferred compounds of the formula (I) and (Ia) will have the stereochemistry of the 2-, 3-, 4- and 8-positions as shown in formulae (Ib) and (Ic)

It will be appreciated that the preferred definitions of the various substituents recited herein may be taken alone or in combination and, unless

10

15

20

25

30

WO 00/56728

12

PCT/GB00/00977

otherwise stated, apply to the generic formula for compounds of the present invention as well as to the preferred classes of compound represented by formula (Ia), formula (Ib) and formula (Ic).

The present invention further provides pharmaceutical compositions comprising one or more compounds of formula (I) in association with a pharmaceutically acceptable carrier or excipient.

Preferably the compositions according to the invention are in unit dosage forms such as tablets, pills, capsules, powders, granules, solutions or suspensions, or suppositories, for oral, parenteral or rectal administration, or administration by inhalation or insufflation. Oral compositions such as tablets, pills, capsules or wafers are particularly preferred.

For preparing solid compositions such as tablets, the principal active ingredient is mixed with a pharmaceutical carrier, e.g. conventional tableting ingredients such as corn starch, lactose, sucrose, sorbitol, talc, stearic acid, magnesium stearate, dicalcium phosphate or gums, and other pharmaceutical diluents, e.g. water, to form a solid preformulation composition containing a homogeneous mixture of a compound of the present invention, or a non-toxic pharmaceutically acceptable salt thereof. When referring to these preformulation compositions as homogeneous, it is meant that the active ingredient is dispersed evenly throughout the composition so that the composition may be readily subdivided into equally effective unit dosage forms such as tablets, pills and capsules. This solid preformulation composition is then subdivided into unit dosage forms of the type described above containing from 0.1 to about 500 mg of the active ingredient of the present invention. The tablets or pills of the novel composition can be coated or otherwise compounded to provide a dosage form affording the advantage of prolonged action. For example, the tablet or pill can comprise an inner dosage and an outer dosage component, the latter being in the form of an envelope over the former. The two components can be separated by an enteric layer which serves to resist disintegration in the stomach and permits the inner component to pass intact into the duodenum or to be delayed in release. A variety of materials can be used for such enteric layers or coatings, such materials including a number of polymeric acids and mixtures of polymeric acids with such materials as shellac, cetyl alcohol and cellulose acetate.

10

15

20

25

30

WO 00/56728

13

PCT/GB00/00977

The liquid forms in which the novel compositions of the present invention may be incorporated for administration orally or by injection include aqueous solutions, suitably flavoured syrups, aqueous or oil suspensions, and flavoured emulsions with edible oils such as cottonseed oil, sesame oil, coconut oil or peanut oil, as well as elixirs and similar pharmaceutical vehicles. Suitable dispersing or suspending agents for aqueous suspensions include synthetic and natural gums such as tragacanth, acacia, alginate, dextran, sodium carboxymethylcellulose, methylcellulose, polyvinyl-pyrrolidone or gelatin.

Preferred compositions for administration by injection include those comprising a compound of formula (I), as the active ingredient, in association with a surface-active agent (or wetting agent or surfactant) or in the form of an emulsion (as a water-in-oil or oil-in-water emulsion).

Compositions for inhalation or insufflation include solutions and suspensions in pharmaceutically acceptable, aqueous or organic solvents, or mixtures thereof, and powders. The liquid or solid compositions may contain suitable pharmaceutically acceptable excipients as set out above. Preferably the compositions are administered by the oral or nasal respiratory route for local or systemic effect. Compositions in preferably sterile pharmaceutically acceptable solvents may be nebulised by use of inert gases. Nebulised solutions may be breathed directly from the nebulising device or the nebulising device may be attached to a face mask, tent or intermittent positive pressure breathing machine. Solution, suspension or powder compositions may be administered, preferably orally or nasally, from devices which deliver the formulation in an appropriate manner.

The present invention further provides a process for the preparation of a pharmaceutical composition comprising a compound of formula (I), which process comprises bringing a compound of formula (I) into association with a pharmaceutically acceptable carrier or excipient.

The compounds of formula (I) are of value in the treatment of a wide variety of clinical conditions which are characterised by the presence of an excess of tachykinin, in particular substance P, activity.

Thus, for example, compounds of formula (I) are of use in the treatment or prevention of a variety of disorders of the central nervous system. Such disorders include mood disorders, such as depression or more particularly

WO 00/56728

14

PCT/GB00/00977

depressive disorders, for example, single episodic or recurrent major depressive disorders and dysthymic disorders, or bipolar disorders, for example, bipolar I disorder, bipolar II disorder and cyclothymic disorder; anxiety disorders, such as panic disorder with or without agoraphobia, agoraphobia without history of panic disorder, specific phobias, for example, specific animal phobias, social phobias, 5 obsessive-compulsive disorder, stress disorders including post-traumatic stress disorder and acute stress disorder, and generalised anxiety disorders; schizophrenia and other psychotic disorders, for example, schizophreniform disorders, schizoaffective disorders, delusional disorders, brief psychotic disorders, shared psychotic disorders and psychotic disorders with delusions or 10 hallucinations; delirium, dementia, and amnestic and other cognitive or neurodegenerative disorders, such as Alzheimer's disease, senile dementia, dementia of the Alzheimer's type, vascular dementia, and other dementias, for example, due to HIV disease, head trauma, Parkinson's disease, Huntington's disease, Pick's disease, Creutzfeldt-Jakob disease, or due to multiple aetiologies; 15 Parkinson's disease and other extra-pyramidal movement disorders such as medication-induced movement disorders, for example, neuroleptic-induced parkinsonism, neuroleptic malignant syndrome, neuroleptic-induced acute dystonia, neuroleptic-induced acute akathisia, neuroleptic-induced tardive dyskinesia and medication-induced postural tremour; substance-related 20 disorders arising from the use of alcohol, amphetamines (or amphetamine-like substances) caffeine, cannabis, cocaine, hallucinogens, inhalants and aerosol propellants, nicotine, opioids, phenylglycidine derivatives, sedatives, hypnotics, and anxiolytics, which substance-related disorders include dependence and abuse, intoxication, withdrawal, intoxication delirium, withdrawal delirium, 25 persisting dementia, psychotic disorders, mood disorders, anxiety disorders, sexual dysfunction and sleep disorders; epilepsy; Down's syndrome; demyelinating diseases such as MS and ALS and other neuropathological disorders such as peripheral neuropathy, for example diabetic and chemotherapy-induced neuropathy, and postherpetic neuralgia, trigeminal 30 neuralgia, segmental or intercostal neuralgia and other neuralgias; and cerebral vascular disorders due to acute or chronic cerebrovascular damage such as cerebral infarction, subarachnoid haemorrhage or cerebral oedema.

10

15

20

25

WO 00/56728

Cited Doc: WO 0056728A1 I

Cited in: GB0303098

15

PCT/GB00/00977

Tachykinin, and in particular substance P, activity is also involved in nociception and pain. The compounds of the present invention will therefore be of use in the prevention or treatment of diseases and conditions in which pain predominates, including soft tissue and peripheral damage, such as acute trauma, osteoarthritis, rheumatoid arthritis, musculo-skeletal pain, particularly after trauma, spinal pain, myofascial pain syndromes, headache, episiotomy pain, and burns; deep and visceral pain, such as heart pain, muscle pain, eye pain, orofacial pain, for example, odontalgia, abdominal pain, gynaecological pain, for example, dysmenorrhoea, and labour pain; pain associated with nerve and root damage, such as pain associated with peripheral nerve disorders, for example, nerve entrapment and brachial plexus avulsions, amputation, peripheral neuropathies, tic douloureux, atypical facial pain, nerve root damage, and arachnoiditis; pain associated with carcinoma, often referred to as cancer pain; central nervous system pain, such as pain due to spinal cord or brain stem damage; low back pain; sciatica; ankylosing spondylitis, gout; and scar pain.

The compounds of formula (I) may also be of use in the treatment of respiratory diseases, particularly those associated with excess mucus secretion, such as chronic obstructive airways disease, bronchopneumonia, chronic bronchitis, cystic fibrosis and asthma, adult respiratory distress syndrome, and bronchospasm; inflammatory diseases such as inflammatory bowel disease, psoriasis, fibrositis, osteoarthritis, rheumatoid arthritis, pruritis and sunburn; allergies such as eczema and rhinitis; hypersensitivity disorders such as poison ivy; ophthalmic diseases such as conjunctivitis, vernal conjunctivitis, and the like; ophthalmic conditions associated with cell proliferation such as proliferative vitreoretinopathy; cutaneous diseases such as contact dermatitis, atopic dermatitis, urticaria, and other eczematoid dermatitis.

The compounds of formula (I) may also be of use in the treatment of neoplasms, including breast tumours, neuroganglioblastomas and small cell carcinomas such as small cell lung cancer.

The compounds of formula (I) may also be of use in the treatment of gastrointestinal (GI) disorders, including inflammatory disorders and diseases of the GI tract such as gastritis, gastroduodenal ulcers, gastric carcinomas, gastric lymphomas, disorders associated with the neuronal control of viscera, ulcerative colitis, Crohn's disease, irritable bowel syndrome and emesis, including acute,

10

15

20

25

30

WO 00/56728

16

PCT/GB00/00977

delayed or anticipatory emesis such as emesis induced by chemotherapy, radiation, toxins, viral or bacterial infections, pregnancy, vestibular disorders, for example, motion sickness, vertigo, dizziness and Meniere's disease, surgery, migraine, variations in intercranial pressure, gastro-oesophageal reflux disease, acid indigestion, over indulgence in food or drink, acid stomach, waterbrash or regurgitation, heartburn, for example, episodic, nocturnal or meal-induced heartburn, and dyspepsia.

The compounds of formula (I) may also be of use in the treatment of a variety of other conditions including stress related somatic disorders; reflex sympathetic dystrophy such as shoulder/hand syndrome; adverse immunological reactions such as rejection of transplanted tissues and disorders related to immune enhancement or suppression such as systemic lupus erythematosus; plasma extravasation resulting from cytokine chemotherapy, disorders of bladder function such as cystitis, bladder detrusor hyper-reflexia and incontinence; fibrosing and collagen diseases such as scleroderma and eosinophilic fascioliasis; disorders of blood flow caused by vasodilation and vasospastic diseases such as angina, vascular headache, migraine and Reynaud's disease; pain or nociception attributable to or associated with any of the foregoing conditions, especially the transmission of pain in migraine; obesity; bulimia nervosa; and compulsive eating disorders.

The compounds of formula (I) are also of value in the treatment of a combination of the above conditions, in particular in the treatment of combined post-operative pain and post-operative nausea and vomiting.

The present invention further provides a compound of formula (I) for use in therapy.

According to a further or alternative aspect, the present invention provides a compound of formula (I) for use in the manufacture of a medicament for the treatment of physiological disorders associated with an excess of tachykinins, especially substance P.

The present invention also provides a method for the treatment or prevention of physiological disorders associated with an excess of tachykinins, especially substance P, which method comprises administration to a patient in need thereof of a tachykinin reducing amount of a compound of formula (I) or a composition comprising a compound of formula (I).

10

15

20

25

30

WO 00/56728

17

PCT/GB00/00977

According to a further aspect of the present invention, it may be desirable to treat any of the aforementioned conditions with a combination of a compound according to the present invention and one or more other pharmacologically active agents suitable for the treatment of the specific condition. The compound of formula (I) and the other pharmacologically active agent(s) may be administered to a patient simultaneously, sequentially or in combination.

The excellent pharmacological profile of the compounds of the present invention offers the opportunity for their use in therapy at low doses thereby minimising the risk of unwanted side effects.

In the treatment of the conditions associated with an excess of tachykinins, a suitable dosage level is about 0.001 to 50 mg/kg per day, in particular about 0.01 to about 25 mg/kg, such as from about 0.05 to about 10 mg/kg per day.

For example, in the treatment of conditions involving the neurotransmission of pain sensations, a suitable dosage level is about 0.001 to 25 mg/kg per day, preferably about 0.005 to 10 mg/kg per day, and especially about 0.005 to 5 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

In the treatment of emesis, a suitable dosage level is about 0.001 to 10 mg/kg per day, preferably about 0.005 to 5 mg/kg per day, and especially 0.01 to 3 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

In the treatment of psychiatric disorders, a suitable dosage level is about 0.001 to 10 mg/kg per day, preferably about 0.005 to 5 mg/kg per day, and especially 0.01 to 3 mg/kg per day. The compounds may be administered on a regimen of 1 to 4 times per day, preferably once or twice per day.

It will be appreciated that the amount of a compound of formula (I) required for use in any treatment will vary not only with the particular compounds or composition selected but also with the route of administration, the nature of the condition being treated, and the age and condition of the patient, and will ultimately be at the discretion of the attendant physician.

According to a general process (A), compounds of formula (I), in which n is 1, may be prepared by the reaction of a compound of formula (II)

10

15

WO 00/56728

wherein LG is a suitable leaving group such as an alkyl- or arylsulfonyloxy group (e.g. mesylate or tosylate) or a halogen atom (e.g. bromine, chlorine or iodine); by reaction with an appropriate amine of the formula HNR¹¹R¹², or a heteroaromatic compound suitable for the addition of a five or six-membered nitrogen containing heteroaromatic ring as defined in relation to formula (I), or an azide such as sodium azide.

In each case, the reaction is preferably effected at an elevated temperature, for example, between 40°C and 80°C, especially between 50°C and 60°C. The reaction with a heteroaromatic compound is preferably effected in the presence of a suitable organic solvent such as dimethylformamide. The reaction with an azide is preferably effected in the presence of dimethylsulfoxide.

A particularly preferred compound of formula (II) is that wherein the group LG is mesylate - i.e. a compound of formula (I) in which R^7 is the group - OSO₂CH₃.

According to another general process (B), compounds of formula (I), in which R⁷ is hydroxy and n is 1 or 2, may be prepared by the interconversion of a corresponding compound of formula (I) in which n is zero and R⁷ is vinyl,

20 hereinafter referred to as formula (III)

WO 00/56728

19

PCT/GB00/00977

$$R^{6}$$
 R^{9}
 R^{10}
 R^{8}
 R^{10}
 R^{8}
 R^{5}
(III)

by reaction with ozone, followed by a reaction with a reducing agent such as sodium borohydride (n is 1), or by reaction with a reducing agent such as borane.tetrahydrofuran complex, followed by hydrogen peroxide in the presence of a base such as sodium hydroxide.

According to another general process (C), compounds of formula (I) may be prepared by the reaction of a compound of formula (IV) with a compound of formula (V)

10

5

$$R^{10}$$
 R^{10}
 R^{10}

preferably in the presence of a resin catalyst such as Amberlyst™ 15, and 3 Angstrom molecular sieves.

The reaction is conveniently effected in a suitable solvent such as a halogenated hydrocarbon, for example, dichloromethane, conveniently at room temperature.

15

20

According to another general process (D), compounds of formula (I), in which R^6 is either methyl or hydroxymethyl, may be prepared by the reaction of a compound of formula (VI)

$$R^{10}$$
 R^{10}
 R^{10}

wherein R^{7a} is as defined for R^7 in relation to formula (I) or, more preferably, is a precursor therefor; under either:

- (a) (where R^6 is methyl) catalytic hydrogenation conditions (e.g. H_2 , $Pd(OH)_2$ on carbon) in a suitable solvent such as an ester, for example, ethyl acetate; or
 - (b) (where R⁶ is hydroxymethyl) reducing conditions (e.g. borane or BH₃.THF) followed by treatment with hydrogen peroxide and a base such as sodium hydroxide, conveniently in a solvent such as an ether, for example, tetrahydrofuran.

Where R^{7a} is a precursor group (such as a TBDMS-protected hydroxyl group) deprotection is conveniently effected by treatment with an organic acid such as tetrabutylammonium fluoride.

Further details of suitable procedures will be found in the accompanying Examples.

Compounds of formula (II) may be prepared by conventional methods from, for example, a corresponding compound of formula (I) in which R^7 is a hydroxyl group. Thus, for example, when LG is a mesylate group a corresponding compound of formula (I) in which R^7 is hydroxyl may be reacted with methanesulfonyl chloride in the presence of a base, such as triethylamine.

10

15

The reaction is conveniently effected in a solvent such as a halogenated hydrocarbon, for example, dichloromethane.

Compounds of formula (III) may be prepared, for example, by the method of general process (C), above

Compounds of formula (IV) may be prepared by the reduction of a compound of formula (VII)

using conventional conditions such as sodium borohydride in the presence of a transition metal catalyst such as cerium chloride hexahydrate, in a solvent such as alcohol, for example, ethanol; or using DiBAL in a solvent such as a halogenated hydrocarbon, for example, dichloromethane.

Compounds of formula (VII) in which R^7 is vinyl, R^8 is hydrogen and n is 1 may be prepared from a compound of formula (VIII)

by reaction with a vinyl Grignard reagent such as vinylMgBr, preferably in the presence of copper(I)iodide, and a suitable solvent such as an ether, for example, tetrahydrofuran. This reaction is effected at reduced temperature, for example, below -40°C and preferably at -78°C.

Compounds of formula (VI) may be prepared by the reaction of a compound of formula (X)

WO 00/56728

22

PCT/GB00/00977

 R^{10} R^{10}

with dimethyltitanocene in a solvent such as toluene, pyridine or tetrahydrofuran, or a mixture thereof.

Compounds of formula (X) may be prepared by the reaction of a compound of formula (VII) with L-SelectrideTM (lithium tri-sec-butylborohydride) followed by treatment with a compound of formula (XI)

10 (XI)

wherein Hal is a halogen atom, preferably chlorine.

Compounds of formula (V), (VIII) and (XI) are either known compounds or may be prepared by methods analogous to those described herein.

It will be appreciated that the general methodology described above may
be adapted, using methods that are readily apparent to one of ordinary skill in
the art, in order to prepare further compounds of the present invention.

During any of the above synthetic sequences it may be necessary and/or desirable to protect sensitive or reactive groups on any of the molecules concerned. This may be achieved by means of conventional protecting groups, such as those described in *Protective Groups in Organic Chemistry*, ed. J.F.W.

10

Cited Doc: WO 0056728A1 I

23

Cited in: GB0303098

WO 00/56728

PCT/GB00/00977

McOmie, Plenum Press, 1973; and T.W. Greene and P.G.M. Wuts, *Protective Groups in Organic Synthesis*, John Wiley & Sons, 1991. The protecting groups may be removed at a convenient subsequent stage using methods known from the art.

The exemplified compounds of this invention were tested by the methods set out at pages 36 to 39 of International Patent Specification No. WO 93/01165. The compounds were found to be active with IC₅₀ at the NK₁ receptor of less than 100nM on said test method.

The following non-limiting Examples serve to illustrate the preparation of compounds of the present invention:

DESCRIPTION 1

3-Phenyl-4-vinyl-3,4,5,6-tetrahydropyran-2-one

Vinylmagnesium bromide (77ml, 1M THF) was added to a slurry of copper (I) 15 iodide (7.37g) in tetrahydrofuran (80ml) at -78°C under a nitrogen atmosphere. This mixture was stirred at -40°C for 30 minutes, then re-cooled to -78°C. A solution of 3-phenyl-5,6-dihydro-2-pyrone (J. Org. Chem. 1967, 32, 2354) (4.6g) and chlorotrimethylsilane (3.28ml) in THF (80ml) was added to the stirred mixture. Thin layer chromatography showed all starting material had reacted. 20 The mixture was quenched with ammonium chloride (saturated aqueous solution) at -78°C and the resulting mixture was allowed to come to room temperature and was stirred for 2 hours until the aqueous layer became dark blue. The mixture was filtered through CeliteTM to remove any insoluble inorganics and the solution was extracted with ethyl acetate (3x100ml). The 25 pooled organic extracts were washed with brine, dried (MgSO₄) and concentrated to give a yellow oil. This was purified on silica using 30-40% ether in hexane as eluant to afford the title compound (4.9g, crystallised on standing) as a mixture of cis and trans isomers (2:1). Recrystallisation of this mixture from etherhexane afforded the pure cis isomer as white prisms.

30 Signals for the *cis* lactone: ¹H NMR (360MHz, CDCl₃) δ 1.95–2.15 (2H, m), 2.91-3.00 (1H, m), 3.51 (1H, d, J 5.8Hz), 4.59-4.65 (2H, m), 4.93-5.00 (2H, m), 5.48-5.58 (1H, m), 7.17-7.19 (2H, m), 7.26-7.35 (3H, m).

WO 00/56728

24

PCT/GB00/00977

Signals for the *trans* lactone: ¹H NMR (360MHz, CDCl₃) δ 1.89-1.99 (1H, m), 2.10-2.18 (1H, m), 2.79-2.85 (1H, m), 3.51 (1H, d, J 10.3Hz), 4.43-4.57 (2H, m), 4.90-5.01 (2H, m), 5.66 (1H, hept, J 17.2, 10.4, 7.0Hz), 7.16-7.20 (2H, m), 7.23-7.36 (3H, m).

5

10

15

DESCRIPTION 2

trans 3-Phenyl-4-vinyl-3,4,5,6-tetrahydropyran-2-one

A mixture of *cis*- and *trans*-3-phenyl-4-vinyl-5,6-dihydropyran-2-one (Description 1; 5.25g; ratio 2:1) in tetrahydrofuran (10ml) was heated in an oil bath (80°C) with 1,8-diazabicyclo[5.4.0]undec-7-ene (0.2g) for 30 minutes. The cooled solution was evaporated *in vacuo* and a solution of the residue in dichloromethane (50ml) was filtered through a pad of silica gel. After washing the silica with dichloromethane (50ml), the combined filtrate was evaporated to dryness (4.8g, *cis:trans* ratio 1:19) and used without further purification.

¹H NMR (360MHz, CDCl₃) δ 1.99-1.89 (1H,m), 2.18-2.10(1H,m), 2.88-2.79(1H,m), 3.50(1H, d J 10.3Hz), 4.57-4.443(2H,m), 5.03-4.90(2H,m), 5.71-5.63(1H,m), 7.36-7.16(5H,m).

DESCRIPTION 3

20 trans 3-Phenyl-4-vinyl-tetrahydropyran-2-ol

To a cooled (-30°C) solution of *trans* 3-phenyl-4-vinyl-5,6-dihydropyran-2-one (Description 2; 0.97g) in ethanol (21ml) was added a solution of cerium chloride hexahydrate (1.79g) in water (7ml) followed by a slow addition of sodium borohydride (0.18g) (so as to maintain an internal temperature of -20°C to -

- 30°C). After stirring the solution for 30 minutes at -30°C acetone (2ml) was added. The solution was evaporated and the residue partitioned between ethyl acetate and water. The organic phase was dried (MgSO₄) and evaporated to dryness (0.92g) giving a mixture of 2,3-cis:trans lactol isomers (approximately 30:70 by NMR).
- 30 ¹H NMR (360MHz, CDCl₃) δ 1.67-1.80(m), 2.35(d J 2.0Hz), 2.38(1.6H, dd J 11.4Hz and 8.3Hz), 2.6(1.9H, m), 2.8(dd J 12.0Hz and 2.7Hz), 3.2(m), 3.75(m) 4.15(m), 4.24(dd J 12.2Hz and 3.0Hz), 4.78-4.87(m), 4.95(dt J 17.2Hz and 1.36Hz), 5.20(dd J 5.8Hz and 2.9Hz), 5.46-5.57(m), 7.18-7.34(m).

Cited in: GB0303098

WO 00/56728

25

PCT/GB00/00977

DESCRIPTION 4

Benzyl 4-methylpiperidine-4-carboxylate

(i) N-Butoxycarbonylpiperidine-4-carboxylic acid

- Isonipecotic acid (6.42g) was dissolved in a 4:1 mixture of tetrahydrofuran:water (100ml), potassium carbonate (10.3g) and di-tert-butyl dicarbonate (11.4g) were added and stirred at room temperature over night. The tetrahydrofuran was removed *in vacuo* and the residue dispersed between water (100ml) and ethyl acetate (100ml), the aqueous phase was extracted with ethyl acetate (3x75ml).
- The combined organics were washed with brine and dried (MgSO₄). The solution was filtered, evaporated to dryness to afford a white solid of N-butoxycarbonylpiperidine-4-carboxylic acid(11.6g).
 1H NMR (360MHz, CDCl₃) δ 1.46(9H, s), 1.58-1.71(2H, m), 1.87-1.95(2H, m), 2.45-2.53(1H, m), 2.81-2.90(2H, m), 3.97-4.04(2H, m).

15

20

25

(ii) Benzyl N-butoxycarbonylpiperidine-4-carboxylate

N-Butoxycarbonyl-4-piperidinecarboxylic acid (4.6g) was dissolved in dimethylformamide (20ml) and placed under an atmosphere of nitrogen. Benzyl bromide (2.9ml) and potassium carbonate (8.3g) were added and heated at 60°C for 3 hours. The dimethylformamide was removed *in vacuo* and azeotroped with toluene (three times). The residue was dispersed between ethyl acetate and water and the aqueous phase was extracted with ethyl acetate (3x100ml). The combined organic phases were washed with brine and dried (MgSO₄). The solution was filtered, evaporated to dryness and the residue was purified by chromatography on silica gel (eluting with isohexane containing increasing concentrations amounts of ethyl acetate 5-30%) to give benzyl N-butoxycarbonylpiperidine-4-carboxylate as a clear oil (7.68g).

¹H NMR (400MHz, CDCl₃) δ 1.45(9H, s), 1.61-1.70(2H, m), 1.87-1.94(2H,m), 2.45-2.53(1H,m), 2.77-2.87(2H, m), 23.96-4.06(2H, m), 5.13(2H, s)7.28-7.38(5H, m).

30

(iii) Benzyl N-butoxycarbonyl-4-methylpiperidine-4-carboxylate The benzyl ester (5.18g) was dissolved in tetrahydrofuran (40ml) under an

atmosphere of nitrogen and cooled to -78 °C, potassium bis(trimethylsilyl)amide

10

WO 00/56728

26

PCT/GB00/00977

(32.5ml 0.5M in toluene) was added dropwise keeping the internal temperature below -60°C. The reaction was stirred at -78°C for 15 minutes, methyl iodide (2.5ml) was added and the temperature was allowed to warm to room temperature. Water (5ml) was added, the solvent was removed in vacuo, and the residue was dispersed between ethyl acetate (100ml) and water (100ml). The aqueous layer was extracted with ethyl acetate (3x60ml), the combined organics were washed with brine and dried over MgSO₄. The solution was filtered, evaporated to dryness and the residue was purified by chromatography on silica gel (eluting with isohexane containing increasing concentrations of ethyl acetate 2.5-5%) to give a clear oil (3.4g).

 1H NMR (400MHz, CDCl₃) δ 1.22(3H, s), 1.33-1.42(2H, m), 1.44(9H, s), 2.05-2.12(2H,m), 2.95-3.03(2H, m), 3.68-3.78(2H, m), 5.14(2H, s), 7.30-7.39(5H, m).

(iv) Benzyl 4-methylpiperidine-4-carboxylate

- The Boc-protected amine (2.8g) was dissolved in dichloromethane (4ml) and cooled to 0°C, trifluoroacetic acid (2ml) was added dropwise and the reaction allowed to warm to room temperature. After 1hour the solvent was removed in vacuo and the residue dispersed between ethyl acetate (50ml) and sat. K₂CO₃ (50ml). The aqueous layer was extracted with ethyl acetate (3x30ml), the combined organics were washed with brine and dried over MgSO₄. The solution was filtered, evaporated to dryness to afford a white solid (1.91g). MS m/z (ES+) 234 (M+H).
 - ¹H NMR (400MHz, CDCl₃) δ 1.22(3H, s), 1.40(2H, ddd J 10Hz 10 Hz 3.9Hz), 1.98(1H, s), 2.10(2H, dm J 16.5Hz), 2.67(2H, ddd J 10.3Hz 10.3Hz 2.8Hz), 2.91(2H, m) 5.14(2H, s), 7.98.7.29(5H, s)
- 25 2.91(2H, m), 5.14(2H, s), 7.28-7.39(5H, m).

EXAMPLE 1

(2R,3S,4R,8R)-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-3-phenyl-4-vinyltetrahydropyran; and

30 (2R,3R,4S,8R)-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-3-phenyl-4-vinyltetrahydropyran

A solution of the mixture of lactol isomers of *trans* 3-phenyl-4-vinyltetrahydropyran-2-ol (Description 3; 15.8g) and (R)-1-(3,5-

WO 00/56728

27

PCT/GB00/00977

bis(trifluoromethyl)phenyl)ethanol (20g) in dichloromethane (200ml) was stirred with Amberlyst™ 15 resin (5g) and 3Å molecular sieves (15g) for 72 hours. The solution was filtered, evaporated to dryness and the residue purified by column chromatography on silica gel (eluting with increasing amounts of dichloromethane in isohexane, 0-20%).

isomer 1

 $(2R,3S,4R,8R)\ 3,4-trans-2,3-cis\ (earlier\ eluting)\ isomer:\ ^1H\ NMR\ (400MHz,CDCl_3)\ \delta\ 1.45(3H,\ d\ J\ 6.6Hz),\ 1.75(1H,\ qd\ J\ 12.3Hz\ and\ 4.9Hz),\ 2.71(1H,\ dd\ J\ 12.0Hz\ and\ 3.1Hz),\ 3.14(1H,m),\ 3.76(1H,\ dd\ J\ 11.3Hz\ and\ 4.0Hz),\ 4.06(1H,\ td\ J\ 11.3Hz\ and\ J\ 11.3Hz),\ 4.06(1H,\ td\ J\ 11.3Hz\ and\ J\ 11.3Hz),\ 4.06(1H,\ td\ J\ 11.3Hz\ and\ J\ 11.3Hz),\ 4.06(1H,\ td\ J\ 11.3Hz),\ 4.$

10 13.3Hz and 2.52Hz), 4.48(1H, d J 3.08Hz), 4.86(2H,m), 4.97(1H, d J 17.2Hz), 5.52(1H, m), 7.27-7.18(7H,m), 7.59(1H, s).

isomer 2 and 3

(approximately 1:1 mixture of isomers with undetermined relative stereochemistry): ¹H NMR (400MHz, CDCl₃) δ 1.00(3H, d J 6.5Hz), 1.07(3H, d J 6.4Hz), 1.72(4H, m), 2.55(1H, dd J 11.5Hz and 7.9Hz), 2.62(1H,m), 2.81(1H,dd J 12.0Hz and 3.2Hz), 3.02(1H,m), 3.60(2H,m), 3.75(1H, td J 11.3Hz and 3.8Hz), 4.07(1H, dm J approx. 11.4Hz), 4.59(1H, d J 8.0Hz), 4.67(1H, q J 6.41Hz), 4.73(1H, q J 6.4Hz), 4.82-4.97(5H,m), 5.47-5.57(2H,m), 7.20-7.65(12H,m), 7.65(2H,s), 7.71(1H,s), 7.77(2H,s), 7.78(1H,s).

20 isomer 4

(2R,3R,4S,8R) 3,4-trans-2,3-trans (later eluting) isomer: ¹H NMR (360MHz, CDCl₃) δ 1.36(3H, d J 6.6Hz), 1.73-1.67(2H, m), 2.55-2.42(2H, m), 3.62-3.55(1H,m), 4.13(1H, dt J 11.8Hz and 3.6Hz), 4.23(1H, d J 8.0Hz),4.77(1H, d, J 2.2Hz), 4.81(1H, apparent s), 4.96(1H, q J 6.6Hz), 4.48(1H,m), 6.99-7.02(2H,m), 7.25-7.18(5H, m), 7.66(1H, s).

EXAMPLE 2

(2R,3S,4S,8R)-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-4hydroxymethyl-3-phenyltetrahydropyran

30 (2R,3S,4S,8R) 2-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl-1-oxy)-3-phenyl-4-vinyltetrahydropyran (3,4-trans-2,3-cis; isomer1; Example 1; 3.95g) was dissolved in dichloromethane (40ml) and methanol (40ml). This solution was cooled to -78°C under an inert atmosphere and through the solution was bubbled

WO 00/56728

28

PCT/GB00/00977

ozone until the solution produced a persistent blue colouration. The solution was then purged with nitrogen followed by careful addition of sodium borohydride (1.68g). The solution was stirred at room temperature for 1 hour and then evaporated to dryness. The residue was partitioned between ethyl acetate and water and the organic phase was washed further with brine and the dried (MgSO₄). After removal of the solvent *in vacuo* the residue was purified by chromatography on silica (eluting with increasing concentrations (5-15%) of ethyl acetate in isohexane).

¹H NMR (360MHz, CDCl₃) δ 1.07 (1H, t, J 5.4Hz), 1.46 (3H, d, J 6.6Hz), 1.66-1.80 (1H, m), 1.92-2.00 (1H, m), 2.58-2.72 (1H, m), 2.75 (1H, dd, J 12.0, 3.0Hz), 3.27-3.32 (1H, m), 3.48-3.52 (1H, m), 3.79 91H, dd, J 11.1, 3.6Hz), 4.06 (1H, t app, J 10.8Hz), 4.46 (1H, d, J 3.1Hz), 4.89 (1H, q, J 6.6Hz), 7.22 (2H, s), 7.25-7.29 (5H, m), 7.60 (1H, s).

15

20

EXAMPLE 3

(2R, 3S, 4S, 8R) - 2 - (1 - (1 - (3, 5 - Bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (methanesulfonyloxy)methyl - 3 - phenyltetrahydropyran

The compound of Example 2 (2.63mg) was dissolved in dichloromethane (20ml) and triethylamine (1.23ml) was added. Methanesulfonyl chloride (0.68ml) was added dropwise and the mixture was stirred for 1 hour. The mixture was washed with water, brine and dried (MgSO₄) and concentrated *in vacuo* to afford the title compound as a colourless oil (3.18g).

¹H NMR (400MHz, CDCl₃) δ 1.46 (3H, d, J 6.6Hz), 1.79 (1H, dddd, J 12.0, 12.0, 12.0, 5.1Hz), 1.98 (1H, d br), 2.77 (3H, s), 2.77 (1H, dd, J 12.0, 3.1Hz), 2.87-2.97

25 (1H, m), 3.78-3.85 (2H, m), 4.02-4.10 (2H, m), 4.47 (1H, d, J 3.1Hz), 4.89 (1H, q, J 6.6Hz), 7.20 (2H, s), 7.23-7.34 (5H, m), 7.60 (1H, s).

EXAMPLE 4

(2R,3R,4R,8R)-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-Bis(trifluoromethyloxy)-4-

30 hydroxymethyl-3-phenyltetrahydropyran

The title compound was prepared from isomer 4 in Example 1 by a procedure analogous to that described in Example 2.

WO 00/56728

PCT/GB00/00977

29

¹H NMR (CDCl₃, 360MHz): δ 1.07(1H,t J 5.5Hz), 1.37(3H, d J 6.6Hz), 1.63(1H,m),1.81(1H, dm), 1.97(1H,m), 2.55(1H, dd J 11.6Hz and 8.4Hz), 3.26(1H,m), 3.40(1H,m), 3.57(1H,td J12.0Hz and 2.4Hz), 4.18(1H,dm), 4.25(1H, d J 8.4Hz), 4.95(1H, q J 6.6Hz), 7.03(1H,m),7.18(2H, s), 7.22-7.27(3H, m), 7.66(1H,s).

EXAMPLE 5

(2R,3R,4R,8R)-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(methanesulfonyloxy)methyl-3-phenyltetrahydropyran

The title compound was prepared from the compound of Example 4 by a procedure analogous to that described in Example 3.
¹H NMR (CDCl₃, 360MHz): δ 1.37(3H,d J 6.6Hz), 1.73(1H, qd J 11.8Hz and 4.6Hz), 1.83(1H, dm, J 11.5Hz), 2.2(1H,m), 2.58(1H, dd J 11.7Hz and 8.3Hz), 2.83(3H, s), 3.56(1H, td J 12Hz and 2.5Hz), 3.80(1H, dd J 9.8Hz and 6.8Hz), 3.94(1H, dd J 9.9Hz and 3.4Hz),4.17(1H, dm J 11.9Hz), 4.24(1H,d J 8.3Hz), 4.95(1H,q J 6.59Hz), 7.04(2H, m), 7.17(2H,s), 7.27(3H,m), 7.67(1H, s).

EXAMPLE 6

(2R,3R,4R,8R,9(3'R))-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-420 (3-ethoxycarbonyl-3-methylpiperidin-1-yl)methyl-3phenyltetrahydropyran
and

EXAMPLE 7

(2R,3R,4R,8R,9(3'S))-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-4-25 (3-ethoxycarbonyl-3-methylpiperidin-1-yl)methyl-3phenyltetrahydropyran

A mixture of the compound of Example 5 (0.2g) and ethyl 3-methylpiperidine-3-carboxylate (Description 4, 0.2g) were heated at 90°C for 16 hours. The cooled residue was purified by chromatography on silica gel eluting with ethyl acetate in isohexane (5% to 10%) to give two separated diastereomers.

Example 6 (faster eluting) (2R,3R,4R,8R,9(3'R))-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-ethoxycarbonyl-3-methylpiperidin-1-yl)methyl-3-phenyltetrahydropyran

WO 00/56728

30

PCT/GB00/00977

¹H NMR (360MHz, CDCl₃) δ 1.06 (3H, s, CH3), 1.23 (3H, t, J 7.2Hz), 1.35 (3H, d, J 6.6Hz, CH3), 1.4-1.6 (5H, m), 1.62-1.79 (1H, m), 1.88-1.97 (5H, m), 2.33-2.38 (2H, m), 2.57-2.69 (1H, m), 3.49 (1H, brt), 4.08-4.14 (3H, m), 4.15 (1H, d, J 8.3Hz), 4.93 (1H, q, J 6.5Hz), 6.99-7.02 (2H, m), 7.15 (2H, s), 7.19-7.22 (3H, m), 7.65 (1H, s).

MS (ES+) m/z 602 (M+H, 100%).

 $\label{eq:example 7} \textbf{Example 7} (slower eluting) (2R,3R,4R,8R,9(3'S))-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-ethoxycarbonyl-3-methylpiperidin-1-yl)methyl-3-phenyltetrahydropyran$

10 ¹H NMR (400MHz, CDCl₃) δ 1.04(3H, s),1.27(4H, m), 1.32(3H, d J 6.6Hz), 1.41-1.47(2H, m), 1.61-1.68(2H, m), 1.82-2.07(6H, m), 2.35(2H, dd J 10.3Hz and 8.3Hz), 2.95(1H, d J 10.7Hz), 3.54(1H td J 10.7Hz and 2.1Hz), 3.99-4.20(4H, m), 4.96(1H, q J 6.6Hz), 7.02(2H,m), 7.17(2H,s), 7.22-7.26(3H,m), 7.66(1H, s). MS (ES+) m/z 602 (M+H, 100%).

15

EXAMPLE 8

(2R, 3R, 4R, 8R, 9(3'R)) - 2 - (1 - (1 - (3, 5 - Bis(trifluoromethyl)phenyl)ethyl)oxy) - 4 - (3, 5 - Bis(trifluoromethyl)phenyl)ethyl)oxy) - (3, 5 - Bis(trifluoromethyl)phenyl)ethyloxy) - (3, 5 - Bis(trifluoromethyl)phenylyethyloxy) - (3, 5 - Bis(trifluoromethyloxy) - (3, 5 - Bis(triflu $(3\hbox{-} carboxy\hbox{-} 3\hbox{-} methyl piperid in\hbox{-} 1\hbox{-} yl) methyl\hbox{-} 3\hbox{-} phenyl tetra hydropyran$ The product of Example 6 (0.13g) was heated in methanol (3ml) and 4M-NaOH $(0.5 \mathrm{ml}, \mathrm{aqueous})$ at $60 {}^{\circ}\mathrm{C}$ for $16 \mathrm{\ hours}$. The solution was cooled to room 20 temperature and the methanol removed by evaporation. The solution was adjusted to pH 7.0 by addition of solid CO_2 and then extracted with ethyl acetate (three times). The combined organic phases were dried (Na₂SO₄) and evaporated to dryness. The residue was purified by chromatography on silica gel (eluting with increasing concentrations of CH2Cl2/MeOH/conc. aqueous NH3 (100:10:0.4) 25 in CH_2Cl_2 (0% - 100%) to give the title compound as the free base. 1 H NMR (360MHz, CDCl₃) δ 1.09(3H, s), 1.35(3H, d J 6.6Hz), 1.45-1.75(5H,m), 1.90(2H, v broad d J 13.1Hz), 2.0(1H, d J 11.7Hz), 2.1-2.25(3H, m), 2.38(1H, dd J 11.2Hz and 9.2Hz),2.75(1H, d J 11.8Hz), 2.90(1H, d J 9.2Hz), 3.55(1H, td J 12.1 Hz and $2.2 Hz), <math display="inline">4.16 (1 H\ dd\ J\ 12.0 Hz\ and\ 3.1 Hz),\ 4.95 (1 H\ q\ J\ 6.5 Hz),$ 30 7.00(2H, m), 7.16(2H, s), 7.25(3H, m), 7.66(1H, s).

WO 00/56728

31

PCT/GB00/00977

To a solution of the free base (87mg) in CH₂Cl₂ was added 1M-ethereal HCl (0.16ml). The solution was evaporated to dryness and the product as the hydrochloride salt crystallised from diethyl ether. mp 166-167°C.

- 1H NMR (400MHz, MeOH) δ 1.19 (3H, s, CH3), 1.33 (3H, d, J 6.6Hz, CH3), 1.40 5 (1H, ddd, J 3.9, 3.9, 13.7Hz), 1.60-1.71 (2H, m), 1.76-1.81 (1H, m), 2.01-2.12 (2H, m), 2.45-2.51 (2H, m), 2.56 (1H, ddd, J 3.0, 3.0, 12.7Hz), 2.72 (1H, d, J 13.2Hz), 2.77 (1H, d, 12.4Hz), 3.01-3.07 (1H, m), 3.24-3.27 (1H, m), 3.50 (1H, d, J 12.4Hz), 3.69 (1H, ddd, J 1.9, 1.9, 12.0Hz), 4.17 (1H, dd, J 3.0, 12.0Hz), 4.42 (1H, d, J 10 7.8Hz), 5.04 (1H, q, J 6.5Hz), 7.15-7.17 (2H, m), 7.24-7.32 (3H, m), 7.33 (2H, s),
- 7.74 (1H, s).

MS (ES+) m/z 574 (MH+, 100%).

EXAMPLE 9

- 15 (2R,3R,4R,8R,9(3'S))-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-4.(3-carboxy-3-methylpiperidin-1-yl)methyl-3-phenyltetrahydropyran The product of Example 7 (0.087g) was deprotected and isolated by a procedure analogous to that described for Example 8. ¹H NMR (360MHz, CDCl₃) δ 1.08 (3H, s), 1.35 (3H, d J 5.9Hz), 1.54 (1H, ddd J 20 11.1Hz and 3.6Hz), 1.60 (2H, d J 11.7Hz), 1.88 (2H, m), 2.0-2.2 (4H, m), 2.32 (2H, m), 2.87(m), 3.56 (td J 11.0Hz and 1.6Hz), 4.12 (2H, m), 4.21(1H, d J 7.5Hz), J 4.94(1H, q J 5.9Hz), 7.01(2H, m), 7.16(2H s), 7.26(3H, m), 7.66(1H, s). MS (ES+) m/z 574 (MH+, 100%).
- 25 To a solution of the free base (74mg) in CH₂Cl₂ was added 1M-ethereal HCl (0.16ml). The solution was evaporated to dryness and the product as the hydrochloride salt crystallised from ethyl acetate. mp 166°C.

30

EXAMPLE 10

PCT/GB00/00977

fluor ophenyl) tetra hydropyran

Prepared by methods analogous to those described in Example 8 from corresponding intermediates containing the 4-fluorophenyl group.

¹H NMR (360MHz, CDCl₃) δ 1.16-1.20 (3H, s), 1.34 (3H, d, J 6.6Hz), 1.37-1.48 (1H, m), 1.55-1.84 (3H, m), 2.08 (2H, t, J 14.0Hz), 2.40-2.63 (3H, m), 2.69 (1H, d, J 13.1Hz), 2.78 (1H, d, J 12.4Hz), 3.04 (1H, dd, J 13.4, 9.5Hz), 3.46-3.55 (1H, m), 3.68 (1H, td, J 12.0, 1.9Hz), 4.15 (1H, dd, J 11.9, 2.9Hz), 4.37 (1H, d, J 7.7Hz),

10 5.04 (1H, q, J 6.5Hz), 7.01 (2H, t, J 8.7Hz), 7.16-7.20 (2H, m), 7.34 (2H, s), 7.76 (1H, s).

MS (ES+) m/z 592 (MH+, 100%).

EXAMPLE 11

15 (2R,3R,4R,8R,9(3'S))-2-(1-(1-(3,5-Bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-carboxy-3-methylpiperidin-1-yl)methyl-3-(4-

fluorophenyl)tetrahydropyran

Prepared by methods analogous to those described in Example 9 from corresponding intermediates containing the 4-fluorophenyl group.

20 MS (ES+) m/z 592 (MH+, 100%).

Cited in: GB0303098

WO 00/56728

PCT/GB00/00977

CLAIMS:

1. A compound of the formula (I):

$$R^{6}$$
 R^{6}
 R^{7}
 R^{10}
 R^{8}
 R^{7}
 R^{8}
 R^{5}
 R^{5}
 R^{5}

wherein

5

10

15

R¹ is hydrogen, halogen, C₁₋₆alkyl, C₁₋₆alkoxy, fluoroC₁₋₆alkyl, fluoroC₁₋₆alkoxy, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, NO₂, CN, SR^a, SOR^a, SO₂R^a, CO₂R^a, CO₂R^a, CO₂R^a, CO₂R^a, ConRaRb, C₂₋₆alkenyl, C₂₋₆alkynyl or C₁₋₄alkyl substituted by C₁₋₄alkoxy, wherein Ra and Rb each independently represent hydrogen or C₁₋₄alkyl;

 R^2 is hydrogen, halogen, $C_{1\text{-}6}$ alkyl, fluoro $C_{1\text{-}6}$ alkyl or $C_{1\text{-}6}$ alkoxy substituted by $C_{1\text{-}4}$ alkoxy;

R³ is hydrogen, halogen or fluoroC_{1.6}alkyl;

R⁴ is hydrogen, halogen, C₁₋₆alkyl, C₁₋₆alkoxy, fluoroC₁₋₆alkyl, fluoroC₁₋₆alkoxy, hydroxy, NO₂, CN, SR^a, SOR^a, SO₂R^a, CO₂R^a, CO₂R^a, CONR^aR^b, C₂₋₆alkenyl, C₂₋₆alkynyl or C₁₋₄alkyl substituted by C₁₋₄alkoxy, wherein R^a and R^b are as previously defined;

20 R⁵ is hydrogen, halogen, C₁₋₆alkyl, fluoroC₁₋₆alkyl or C₁₋₆alkoxy substituted by C₁₋₄alkoxy;

R⁶ represents hydrogen or a C₁₋₄alkyl group optionally substituted by a hydroxy group;

R⁷ represents halogen, hydroxy, C₂₋₄alkenyl, N₃, -NR¹¹R¹², -NR²COR^b,

-OSO₂R^a, -(CH₂)_pNR^a(CH₂)_qCOOR^b, COR^a, COOR^a, or a five membered or six

10

15

20

25

30

PCT/GB00/00977

membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroaroms selected from N, O and S which heteroaromatic ring is optionally substituted at any substitutable position by a substituent selected from =O, =S, halogen, hydroxy, -SH, COR^a, CO₂R^a, -ZNR¹¹R¹², C₁₋₄alkyl, hydroxyC₁₋₄alkyl, fluoroC₁₋₄alkyl, C₁₋₄alkoxy, fluoroC₁₋₄alkoxy or C₁₋₄alkoxy substituted by a C₁₋₄alkoxy or hydroxyl group:

R⁸ represents hydrogen, C₁₋₆alkyl, fluoroC₁₋₆alkyl, hydroxy, C₁₋₆alkoxy or hydroxyC₁₋₆alkyl;

 R^9 and R^{10} each independently represent hydrogen, halogen, $C_{1\text{-}6}$ alkyl, CH_2OR^c , oxo, CO_2R^a or $CONR^aR^b$ where R^a and R^b are as previously defined and R^c represents hydrogen, $C_{1\text{-}6}$ alkyl or phenyl;

R¹¹ is hydrogen, C₁₋₄alkyl, C₃₋₇cycloalkyl, C₃₋₇cycloalkylC₁₋₄alkyl, C₂₋₄alkyl substituted by a C₁₋₄alkoxy or hydroxyl group, or R¹¹ is a five membered or six membered nitrogen-containing heteroaromatic ring as previously defined;

 R^{12} is hydrogen or $C_{1\text{-}4}$ alkyl, $C_{3\text{-}7}$ cycloalkyl, $C_{3\text{-}7}$ cycloalkyl $C_{1\text{-}4}$ alkyl, or $C_{2\text{-}4}$ alkyl substituted by a $C_{1\text{-}4}$ alkoxy or hydroxyl group;

or R¹¹, R¹² and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms, optionally substituted by one or two groups selected from hydroxy, CORe, CO₂Re, C₁₋₄alkyl optionally substituted by a C₁₋₄alkoxy or hydroxyl group, or C₁₋₄alkoxy optionally substituted by a C₁₋₄alkoxy or hydroxyl group, or a five membered or six membered nitrogen-containing heteroaromatic ring as previously defined, or said heteroaliphatic ring is substituted by a spiro-fused lactone ring, and said heteroaliphatic ring optionally containing a double bond, which heteroaliphatic ring may optionally contain an oxygen or sulphur ring atom, a group S(O) or S(O)₂ or a second nitrogen atom which will be part of a NH or NR^d moiety, where R^d is C₁₋₄alkyl optionally substituted by hydroxy or C₁₋₄alkoxy, and where Re is hydrogen, C₁₋₄alkyl or benzyl;

or R^{11} , R^{12} and the nitrogen atom to which they are attached form a non-aromatic azabicyclic ring system of 6 to 12 ring atoms;

or R¹¹, R¹² and the nitrogen atom to which they are attached form a heteroaliphatic ring of 4 to 7 ring atoms to which is fused a benzene ring or a five membered or six membered nitrogen-containing heteroaromatic ring optionally containing 1, 2 or 3 additional heteroatoms selected from N, O and S;

WO 00/56728

PCT/GB00/00977

Z represents a bond, C1-6alkylene or C3-6cycloalkylene;

n is zero, 1 or 2;

p is 1 or 2; and

q is 1 or 2;

5 and pharmaceutically acceptable salts thereof.

2. A compound of the formula (Ia):

$$A^{4}$$

$$C$$

$$CH_{2}$$

$$R^{7}$$

$$(Ia)$$

10

wherein

A¹ is fluorine or CF₃;

A² is fluorine or CF₃;

A³ is fluorine or hydrogen;

15 A4 is methyl or hydroxymethyl; and

R⁷ and n are as defined in Claim 1;

or a pharmaceutically acceptable salt thereof.

3. A compound as claimed in Claim 1 selected from:

 $20 \qquad (2R,3S,4S,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(3,5-bis(trifluoromethyloxy)-4-(3,5-$

(methanesulfonyloxy)methyl-3-phenyltetrahydropyran;

(2R,3R,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5-bis(trifluo

hydroxymethyl-3-phenyltetrahydropyran;

(2R,3R,4R,8R)-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyl)phenyl)ethyloxy)-4-(1-(3,5-bis(trifluoromethyloxy)-4-(1-(3,5

25 (methanesulfonyloxy)methyl-3-phenyltetrahydropyran;

(2R,3R,4R,8R,9(3'R))-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-ethoxycarbonyl-3-methylpiperidin-1-yl)methyl-3-phenyltetrahydropyran;
(2R,3R,4R,8R,9(3'S))-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-ethoxycarbonyl-3-methylpiperidin-1-yl)methyl-3-phenyltetrahydropyran;
(2R,3R,4R,8R,9(3'R))-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-carboxy-3-methylpiperidin-1-yl)methyl-3-phenyltetrahydropyran;
(2R,3R,4R,8R,9(3'S))-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-carboxy-3-methylpiperidin-1-yl)methyl-3-phenyltetrahydropyran;
(2R,3R,4R,8R,9(3'R))-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-carboxy-3-methylpiperidin-1-yl)methyl-3-(4-fluorophenyl)tetrahydropyran; and (2R,3R,4R,8R,9(3'S))-2-(1-(1-(3,5-bis(trifluoromethyl)phenyl)ethyl)oxy)-4-(3-carboxy-3-methylpiperidin-1-yl)methyl-3-(4-fluorophenyl)tetrahydropyran; or a pharmaceutically acceptable salt thereof.

4. A compound as claimed in Claim 1 wherein the stereochemistry of the 2-, 3-, 4- and 8-positions is as shown in formulae (Ib) and (Ic):

20

A compound as claimed in any preceding claim for use in therapy.

WO 00/56728

37

- 6. A pharmaceutical composition comprising a compound as claimed in any one of Claims 1 to 4, together with at least one pharmaceutically acceptable carrier or excipient.
- 7. A method for the treatment or prevention of pain or inflammation, migraine, emesis, postherpetic neuralgia, depression or anxiety, which method comprises administration to a patient in need thereof of a tachykinin reducing amount of a compound as claimed in any one of Claims 1 to 4.
- 8. The use of a compound as claimed in any one of Claims 1 to 4 for the manufacture of a medicament for the treatment or prevention of pain or inflammation, migraine, emesis, postherpetic neuralgia, depression or anxiety.
- 9. A process for the preparation of a compound as claimed in Claim 1 which comprises:
 - (A), where n is 1, reaction of a compound of formula (II)

$$R^{6}$$
 R^{9}
 R^{10}
 R^{10}

(II)

wherein LG is a suitable leaving group; with an appropriate amine of the formula HNR¹¹R¹², or a heteroaromatic compound suitable for the addition of a five or six-membered nitrogen containing heteroaromatic ring as defined in relation to Claim 1, or an azide; or

NSDOCID: <WO___0056728A1_I_>

PCT/GB00/00977

(B), where R⁷ is hydroxy and n is 1 or 2, interconversion of a corresponding compound of formula (I) in which n is zero and R⁷ is vinyl, hereinafter referred to as formula (III)

$$R^{10}$$
 R^{10}
 R^{10}

by reaction with ozone, followed by a reaction with a reducing agent, or by reaction with a reducing agent followed by hydrogen peroxide in the presence of a base; or

(III)

10

5

(C) reaction of a compound of formula (IV) with a compound of formula (V)

$$R^{10}$$
 OH R^{10} R^{8} R^{7} R^{5} R^{5}

$$R^{6}$$
 R^{3}
 R^{3}
 R^{3}

in the presence of a resin catalyst; or

(D), where R^6 is either methyl or hydroxymethyl, reaction of a compound of formula (VI)

wherein R^{7a} is as defined for R^7 in relation to Claim 1 or a precursor therefor; under either:

- (a) (where R⁶ is methyl) catalytic hydrogenation conditions; or
- (b) (where R⁶ is hydroxymethyl) reducing conditions followed by treatment with hydrogen peroxide and a base;
- each process being followed, where necessary, by the removal of any protecting group where present;

and when the compound of formula (I) is obtained as a mixture of enantiomers or diastereoisomers, optionally resolving the mixture to obtain the desired enantiomer;

and/or, if desired, converting the resulting compound of formula (I) or a salt thereof, into a pharmaceutically acceptable salt thereof.

			d Doc: WO 00			OD/00977	3
A. CLASSIFICAT	ON OF SUBJECT M 070309/10	C07D405/06	A61K31/351	A61P25/22	2		 1

According to International Patent Classification (IPC) or to both national classification and IPC

B. FIELDS SEARCHED

 $\begin{array}{ccc} \text{Minimum documentation searched (classification system followed by classification symbols)} \\ IPC 7 & C07D & A61K & A61P \end{array}$

Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched

Electronic data base consulted during the international search (name of data base and, where practical, search terms used)

CHEM ABS Data, EPO-Internal

C. DOCUME	ENTS CONSIDERED TO BE RELEVANT	
Category °	Citation of document, with indication, where appropriate, of the relevant passages	Relevant to claim No.
A	A. YAMASHITA: "SYNTHESIS OF CYCLOPENTANONES" TETRAHEDRON LETTERS., vol. 29, no. 28, 1988, pages 3403-6, XP002142389 ELSEVIER SCIENCE PUBLISHERS, AMSTERDAM., NL ISSN: 0040-4039 example 15; table SCH.3	1
A	EP 0 610 059 A (GORINSKI,C.) 10 August 1994 (1994-08-10) page 0; claims	1,5-8
Furthe	or documents are listed in the continuation of box C. X Patent family members are listed in	n annex.

pecial categories of cited documents :	
document defining the general state of the art which is not considered to be of particular relevance earlier document but published on or after the international	"T" later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the invention
filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filing date but later than the priority date claimed	"X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a person skilled in the art. "&" document member of the same patent family.
te of the actual completion of the international search	
13 July 2000	28/07/2000
European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+31-70) 340-2040, Tx. 31 651 epo nl.	Authorized officer François J
which is died to establish the publication date of another citation or other special reason (as specified) document referring to an oral disclosure, use, exhibition or other means document published prior to the international filling date but later than the priority date claimed te of the actual completion of the international search 13 July 2000 me and mailing address of the ISA European Patent Office, P.B. 5818 Patentlaan 2 NL – 2280 HV Rijswijk	involve an inventive step when the docum "Y" document of particular relevance; the claim cannot be considered to involve an invent document is combined with one or more of ments, such combination being obvious to in the art. "&" document member of the same patent fam Date of mailing of the international search 28/07/2000

Form PCT/ISA/210 (second sheet) (July 1992)

Cited in: GB0303098

plication No patent family members PCT/G 0/00977 Patent document Patent family **Publication Publication** cited in search report member(s) date date EP 610059 10-08-1994 US 5786385 A 28-07-1998

Form PCT/ISA/210 (patent family annex) (July 1992)

THIS PAGE BLANK (USPTO)