PCA

PCA stands for Principal Component Analysis. It is a dimensionality reduction technique and a fundamental tool in machine learning and statistics. PCA is used to simplify complex datasets by reducing the number of variables (or dimensions) while retaining the most important information and patterns in the data. Here's how PCA works:

1. Data Standardization:

 Before applying PCA, it's common practice to standardize the data by subtracting the mean and scaling to unit variance. Standardization ensures that all variables have the same scale, which is important for PCA to work effectively.

2. Covariance Matrix Calculation:

 PCA calculates the covariance matrix of the standardized data. The covariance matrix represents the relationships and dependencies between the variables.

3. **Eigendecomposition**:

 PCA performs an eigendecomposition (eigenvalue decomposition) of the covariance matrix. This decomposition results in a set of eigenvectors and corresponding eigenvalues.

4. Selecting Principal Components:

- The eigenvectors represent the principal components of the data. These components are orthogonal (uncorrelated) and sorted by their corresponding eigenvalues in descending order. The eigenvector with the highest eigenvalue is the first principal component, the second highest eigenvalue corresponds to the second principal component, and so on.
- By selecting a subset of these principal components, you can reduce the dimensionality of the data while preserving as much variance (information) as possible.

5. **Projecting Data**:

To reduce the dimensionality of the data, you can project it onto a lower-dimensional subspace defined by the selected principal components. This projection retains the most significant information in the data while reducing noise and redundancy.

6. **Explained Variance**:

 PCA provides information about the explained variance for each principal component. This information helps you understand how much of the total variance in the data is retained by each component. You can use this to determine how many principal components to keep to achieve a desired level of data compression or dimensionality reduction.

PCA is commonly used in various applications, including:

- **Data Visualization**: Reducing high-dimensional data to 2D or 3D for visualization and exploration.
- **Noise Reduction**: Removing noise and irrelevant features from data.

- **Feature Engineering**: Creating new features (principal components) that capture the most important information in the data.
- **Dimensionality Reduction**: Reducing the computational complexity of machine learning models and improving their generalization.
- **Face Recognition**: Reducing the dimensionality of image data while retaining essential facial features.

PCA is a powerful technique but should be used with careful consideration, as it may not always be appropriate for all datasets or tasks. It assumes linear relationships between variables and may not capture non-linear patterns effectively. In such cases, nonlinear dimensionality reduction techniques like t-SNE or autoencoders may be more suitable.

Dimension reduction is a fundamental technique in machine learning and data analysis that involves reducing the number of variables (dimensions) in a dataset while preserving important information. This reduction can lead to several benefits, including simplifying the data, improving model performance, reducing computational complexity, and enhancing interpretability. There are two primary approaches to dimension reduction:

1. Feature Selection:

- Feature selection involves selecting a subset of the original features (variables)
 and discarding the rest. The selected features are considered the most relevant or
 informative for the task at hand.
- Common methods for feature selection include:
 - Univariate feature selection: Selecting features based on statistical tests or measures like chi-squared, ANOVA, or mutual information.
 - Recursive feature elimination (RFE): Iteratively removing the least important features based on the performance of a machine learning model.
 - Feature importance scores from tree-based models: Extracting feature importance scores from decision trees or ensemble methods like Random Forest.
 - Correlation-based methods: Removing highly correlated features to reduce redundancy.
- Feature selection is particularly useful when there are clear domain-specific reasons to focus on specific variables or when you want to improve the interpretability of a model.

2. Feature Extraction:

- Feature extraction transforms the original features into a new set of features, typically of lower dimension, while retaining as much relevant information as possible. These new features are called "derived features" or "latent variables."
- Principal Component Analysis (PCA) is a widely used technique for feature extraction. It identifies the principal components (linear combinations of the original features) that capture the maximum variance in the data. These principal components can be used as new features.
- Other feature extraction methods include Independent Component Analysis (ICA), Linear Discriminant Analysis (LDA), and autoencoders in deep learning.

 Feature extraction is valuable when you want to reduce the dimensionality of the data while preserving important patterns and relationships. It's often used in tasks like image recognition, natural language processing, and signal processing.

The choice between feature selection and feature extraction depends on the nature of the data, the problem you're trying to solve, and your specific goals. In some cases, a combination of both techniques may be beneficial.

Dimension reduction is crucial when dealing with high-dimensional datasets, as the "curse of dimensionality" can lead to increased computational complexity and overfitting in machine learning models. By reducing the number of features, you can often improve the efficiency, accuracy, and interpretability of your models while maintaining or even enhancing their predictive power.

Importing Packages

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
%matplotlib inline
```

Importing Datasets

```
from sklearn import datasets
dir(datasets)
[' all ',
    builtins_',
    _cached___',
 '__doc__',
'__file__'
    getattr
    loader
   name
 '__package_
   path '
  _spec_'
 'arff_parser',
 '_base',
   california housing',
 ' covtype',
 ' kddcup99',
 'lfw',
 ' olivetti_faces',
 ' openml',
```

```
' rcv1',
' samples generator',
'_species_distributions',
'_svmlight_format_fast',
'_svmlight_format_io',
'_twenty_newsgroups',
'clear data home',
'dump symlight file',
'fetch 20newsgroups',
'fetch 20newsgroups vectorized',
'fetch california_housing',
'fetch_covtype',
'fetch_kddcup99'
'fetch lfw pairs'
'fetch_lfw_people',
'fetch_olivetti_faces',
'fetch openml',
'fetch rcv1',
'fetch species distributions',
'get data_home',
'load breast cancer',
'load diabetes',
'load_digits',
'load files',
'load_iris',
'load linnerud',
'load_sample_image',
'load sample images',
'load_svmlight_file'
'load_svmlight_files',
'load wine',
'make biclusters',
'make blobs',
'make checkerboard',
'make circles',
'make classification',
'make friedman1',
'make friedman2',
'make_friedman3',
'make gaussian quantiles',
'make_hastie_10_2',
'make low rank matrix',
'make_moons',
'make_multilabel_classification',
'make_regression',
'make_s_curve',
'make sparse coded signal',
'make sparse spd matrix',
'make sparse uncorrelated',
```

```
'make spd matrix',
 'make swiss roll',
 'textwrap']
from sklearn.datasets import load digits
digits=load digits()
digits
{'data': array([[ 0., 0., 5., ..., 0., 0., 0.],
        [ 0., 0., 0., ..., 10., 0., 0.],
        [ 0., 0., 0., ..., 16., 9., 0.],
              0., 1., ..., 6., 0., 0.],
        [ 0.,
               0., 2., ..., 12., 0., 0.],
        [0., 0., 10., \ldots, 12., 1., 0.]]),
 'target': array([0, 1, 2, ..., 8, 9, 8]),
 'frame': None,
 'feature names': ['pixel 0 0',
  'pixel 0 1',
  'pixel 0 2',
  'pixel_0_3',
  'pixel_0_4',
  'pixel_0_5'
  'pixel 0 6'
  'pixel 0 7'
  'pixel 1 0'
  'pixel_1_1'
  'pixel_1_2'
  'pixel_1_3'
  'pixel 1 4'
  'pixel 1 5'
  'pixel 1 6'
  'pixel 1 7'
  'pixel 2 0',
  'pixel 2 1'
  'pixel 2 2'
  'pixel_2_3'
  'pixel 2 4'
  'pixel 2 5'
  'pixel_2_6'
  'pixel_2_7'
  'pixel_3_0'
  'pixel 3 1'
  'pixel_3_2'
  'pixel 3 3'
  'pixel_3_4',
  'pixel_3_5',
  'pixel 3 6',
```

```
'pixel 3_7',
 'pixel 4 0',
 'pixel 4 1',
 'pixel 4 2',
 'pixel_4_3'
 'pixel_4_4'
 'pixel 4 5'
 'pixel 4 6'
 'pixel 4 7'
 'pixel_5_0'
 'pixel_5_1'
 'pixel_5_2'
 'pixel_5_3'
 'pixel 5 4'
 'pixel_5_5'
 'pixel 5 6'
 'pixel_5_7'
 'pixel_6_0'
 'pixel_6_1',
 'pixel_6_2'
 'pixel 6 3'
 'pixel 6 4'
 'pixel 6 5'
 'pixel_6_6',
 'pixel_6_7'
 'pixel 7 0'
'pixel_7_1'
 'pixel 7 2',
 'pixel_7_3',
'pixel_7_4',
 'pixel_7_5',
 'pixel_7_6'
 'pixel_7_7'],
'target_names': array([0, 1, 2, 3, 4, 5, 6, 7, 8, 9]),
'images': array([[[ 0., 0., 5., ..., 1., 0., 0.],
        [ 0., 0., 13., ..., 15., 5.,
                                           0.],
                3., 15., ..., 11., 8.,
        [ 0.,
                4., 11., ..., 12.,
                                           0.],
                                     7.,
        [ 0.,
                2., 14., ..., 12.,
                                           0.],
                                     0.,
        [ 0.,
                0., 6., ..., 0.,
                                     0.,
                                           0.]],
       [[ 0.,
                0.,
                     0., ...,
                                5.,
                                     0.,
                                           0.],
        [ 0.,
                0.,
                     0., ...,
                                9.,
                                     0.,
                                           0.],
        [ 0.,
                     3., ...,
                0.,
                                6.,
                                     0.,
                                           0.],
                     1., ..., 6.,
                0.,
                                     0.,
                                           0.],
        [ 0.,
        [ 0.,
                     1., ..., 6.,
                0.,
                                     0.,
                                           0.],
        [ 0.,
                0.,
                     0., ..., 10.,
                                     0.,
                                           0.]],
```

```
0.,
                    0., ..., 12.,
                                   0.,
               0.,
                    3., ..., 14.,
                                   0.,
                                       0.],
        [ 0.,
               0., 8., ..., 16.,
                                   0.,
        . . . ,
               9., 16., ..., 0.,
                                   0.,
               3., 13., ..., 11.,
                                  5.,
                                       0.],
               0., 0., ..., 16.,
                                   9.,
         [ 0.,
                                       0.]],
        . . . ,
        [[ 0.,
               0., 1., ..., 1.,
                                   0.,
               0., 13., ..., 2.,
        [ 0.,
                                  1.,
               0., 16., ..., 16.,
               0., 16., ..., 15.,
                                   0.,
         [ 0.,
                                       0.],
         [ 0.,
               0., 15., ..., 16.,
                                   0.,
                                       0.],
        [ 0.,
               0., 2., ..., 6.,
                                       0.]],
                                   0.,
               0., 2., ..., 0.,
                                       0.],
        [[ 0.,
                                   0.,
               0., 14., ..., 15.,
        [ 0.,
                                   1.,
                                       0.],
        [ 0.,
               4., 16., ..., 16.,
                                   7.,
                                       0.],
                    0., ..., 16.,
         [ 0.,
               0.,
                                   2.,
                                       0.],
        [ 0.,
                    4., ..., 16.,
                                       0.],
               0.,
                                   2.,
        [ 0.,
                    5., ..., 12.,
               0.,
                                   0.,
                                       0.]],
               0., 10., ..., 1.,
        [[ 0.,
                                   0.,
                                       0.],
               2., 16., ..., 1.,
        [ 0.,
                                   0.,
                                       0.],
               0., 15., ..., 15.,
        [ 0.,
                                   0.,
                                       0.],
               4., 16., ..., 16.,
                                   6.,
        [ 0., 8., 16., ..., 16., 8.,
                                       0.],
        [0., 1., 8., ..., 12., 1., 0.]]),
 'DESCR': ".. digits dataset:\n\nOptical recognition of handwritten
n**Data Set Characteristics:**\n\n :Number of Instances: 1797\
     :Number of Attributes: 64\n :Attribute Information: 8x8 image
of integer pixels in the range 0..16.\n :Missing Attribute Values:
        :Creator: E. Alpaydin (alpaydin '@' boun.edu.tr)\n
July; 1998\n\nThis is a copy of the test set of the UCI ML hand-
written digits
datasets\nhttps://archive.ics.uci.edu/ml/datasets/Optical+Recognition+
of+Handwritten+Digits\n\nThe data set contains images of hand-written
digits: 10 classes where\neach class refers to a digit.\n\
nPreprocessing programs made available by NIST were used to extract\
nnormalized bitmaps of handwritten digits from a preprinted form. From
a\ntotal of 43 people, 30 contributed to the training set and
different 13\nto the test set. 32x32 bitmaps are divided into
```

nonoverlapping blocks of \n4x4 and the number of on pixels are counted in each block. This generates\nan input matrix of 8x8 where each element is an integer in the range\n0..16. This reduces dimensionality and gives invariance to small\ndistortions.\n\nFor info on NIST preprocessing routines, see M. D. Garris, J. L. Blue, G.\nT. Candela, D. L. Dimmick, J. Geist, P. J. Grother, S. A. Janet, and C.\nL. Wilson, NIST Form-Based Handprint Recognition System, NISTIR 5469,\ n1994.\n\n|details-start|\n**References**\n|details-split|\n\n- C. Kaynak (1995) Methods of Combining Multiple Classifiers and Their\n Applications to Handwritten Digit Recognition, MSc Thesis, Institute of\n Graduate Studies in Science and Engineering, Bogazici University.\n- E. Alpaydin, C. Kaynak (1998) Cascading Classifiers, Kybernetika.\n- Ken Tang and Ponnuthurai N. Suganthan and Xi Yao and A. Kai Oin.\n Linear dimensionalityreduction using relevance weighted LDA. School of\n Electrical and Electronic Engineering Nanyang Technological University.\n 2005.\n- Claudio Gentile. A New Approximate Maximal Margin Classification\n Algorithm. NIPS. 2000.\n\ n|details-end|"}

plt.imshow(digits.images[0],cmap=plt.cm.gray)
<matplotlib.image.AxesImage at 0x151288eda60>

df=pd.DataFrame(digits.data)

```
df
                           3
                                         5
                                               6
                                                    7
                                                          8
        0
           1
                    2
                                  4
                                                                9
                                                                           54
55
0
       0.0
            0.0
                   5.0
                         13.0
                                 9.0
                                        1.0
                                              0.0
                                                   0.0
                                                         0.0
                                                               0.0
                                                                          0.0
0.0
       0.0
            0.0
                   0.0
                         12.0
                                13.0
                                        5.0
                                             0.0
                                                   0.0
                                                         0.0
                                                               0.0
                                                                          0.0
1
0.0
2
       0.0
            0.0
                   0.0
                          4.0
                                15.0
                                       12.0
                                             0.0
                                                   0.0
                                                         0.0
                                                                          5.0
                                                               0.0
0.0
3
       0.0
            0.0
                   7.0
                         15.0
                                13.0
                                        1.0
                                              0.0
                                                   0.0
                                                         0.0
                                                                          9.0
                                                               8.0
0.0
       0.0
                                        0.0
                                                                          0.0
4
            0.0
                   0.0
                          1.0
                                11.0
                                             0.0
                                                   0.0
                                                         0.0
                                                               0.0
0.0
. . .
1792
       0.0
            0.0
                   4.0
                         10.0
                                13.0
                                        6.0
                                             0.0
                                                   0.0
                                                         0.0
                                                               1.0
                                                                          4.0
                                                                     . . .
0.0
1793
       0.0
            0.0
                   6.0
                         16.0
                                13.0
                                       11.0
                                              1.0
                                                   0.0
                                                         0.0
                                                               0.0
                                                                          1.0
0.0
1794
       0.0
            0.0
                   1.0
                         11.0
                                15.0
                                        1.0
                                             0.0
                                                   0.0
                                                         0.0
                                                                          0.0
                                                               0.0
0.0
1795
       0.0
            0.0
                   2.0
                         10.0
                                 7.0
                                        0.0
                                              0.0
                                                   0.0
                                                         0.0
                                                               0.0
                                                                          2.0
0.0
1796
                                 8.0
       0.0
            0.0
                  10.0
                         14.0
                                        1.0
                                             0.0
                                                   0.0
                                                         0.0
                                                               2.0
                                                                          8.0
0.0
        56
             57
                   58
                          59
                                 60
                                        61
                                              62
                                                   63
                                       0.0
0
       0.0
                  6.0
                        13.0
                               10.0
                                            0.0
                                                  0.0
            0.0
1
       0.0
            0.0
                  0.0
                        11.0
                               16.0
                                      10.0
                                            0.0
                                                  0.0
2
       0.0
            0.0
                  0.0
                         3.0
                               11.0
                                      16.0
                                            9.0
                                                  0.0
3
       0.0
            0.0
                  7.0
                        13.0
                               13.0
                                       9.0
                                            0.0
                                                  0.0
4
       0.0
            0.0
                  0.0
                         2.0
                               16.0
                                       4.0
                                            0.0
                                                  0.0
1792
       0.0
                  2.0
                        14.0
                               15.0
                                       9.0
                                            0.0
                                                  0.0
            0.0
1793
       0.0
            0.0
                  6.0
                        16.0
                               14.0
                                       6.0
                                                  0.0
                                            0.0
1794
       0.0
            0.0
                  2.0
                         9.0
                               13.0
                                       6.0
                                            0.0
                                                  0.0
1795
       0.0
            0.0
                  5.0
                        12.0
                               16.0
                                      12.0
                                                  0.0
                                            0.0
1796
       0.0
            1.0
                  8.0
                        12.0
                               14.0
                                      12.0
                                            1.0
                                                  0.0
[1797 rows x 64 columns]
plt.figure(figsize=(15,5))
for index,(image,label) in
enumerate(zip(digits.data[0:5],digits.target[0:5])):
    plt.subplot(1,5,index+1)
    plt.imshow(np.reshape(image, (8,8)), cmap=plt.cm.gray)
    plt.title(f'Training: {label}',fontsize=20)
```



```
plt.figure(figsize=(15,5))
for index,(image,label) in
enumerate(zip(digits.data[15:20],digits.target[15:20])):
    plt.subplot(1,5,index+1)
    plt.imshow(np.reshape(image,(8,8)),cmap=plt.cm.gray)
    plt.title(f'Training: {label}',fontsize=20)
```


df.des	cribe()									
count mean std min 25% 50% 75% max	0 1797.0 0.0 0.0 0.0 0.0 0.0 0.0	0.3 0.0 0.0 0.0	1 000000 803840 907192 000000 000000 000000	5 4 0 1 4 9	2 .000000 .204786 .754826 .000000 .000000 .000000	11 4 0 10 13 15	3 .000000 .835838 .248842 .000000 .000000 .000000	11 4 0 10 13 15	4 .000000 .848080 .287388 .000000 .000000 .000000 .000000	\
V		5		6		7		8		9
count	1797.000	0000	L797.000	0000	1797.0	00000	1797.00	0000	1797.00	0000
mean	5.78	1859	1.362	2270	0.1	29661	0.00	5565	1.99	3879
std	5.666	5418	3.325	5775	1.0	37383	0.09	4222	3.19	6160
min	0.000	9000	0.000	0000	0.0	00000	0.00	0000	0.00	0000
25% 	0.000	9000	0.000	0000	0.0	00000	0.00	0000	0.00	0000

50%	4.000000	0.000000	0.000000	0.000000	0.000000
 75%	11.000000	0.000000	0.000000	0.000000	3.000000
max	16.000000	16.000000	15.000000	2.000000	16.000000
	54	55	56	57	58
\ count	1797.000000	1797.000000	1797.000000	1797.000000	1797.000000
mean	3.725097	0.206455	0.000556	0.279354	5.557596
std	4.919406	0.984401	0.023590	0.934302	5.103019
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	0.000000	0.000000	0.000000	0.000000	1.000000
50%	1.000000	0.000000	0.000000	0.000000	4.000000
75%	7.000000	0.000000	0.000000	0.000000	10.000000
max	16.000000	13.000000	1.000000	9.000000	16.000000
	59	60	61	62	63
count	1797.000000	1797.000000	1797.000000	1797.000000	1797.000000
mean	12.089037	11.809126	6.764051	2.067891	0.364496
std	4.374694	4.933947	5.900623	4.090548	1.860122
min	0.000000	0.000000	0.000000	0.000000	0.000000
25%	11.000000	10.000000	0.000000	0.000000	0.000000
50%	13.000000	14.000000	6.000000	0.000000	0.000000
75%	16.000000	16.000000	12.000000	2.000000	0.000000
max	16.000000	16.000000	16.000000	16.000000	16.000000
-	s x 64 column	s]			
c 0 17			min 25% 0.0 0.0 0.0 0.0	0.0 0.0	nax 9.0 3.0

```
2
    1797.0
             5.204786
                                  0.0
                                        1.0
                                              4.0
                                                     9.0
                                                          16.0
                        4.754826
3
    1797.0
            11.835838
                       4.248842
                                  0.0
                                       10.0
                                              13.0
                                                    15.0
                                                          16.0
4
    1797.0
            11.848080
                       4.287388
                                  0.0
                                       10.0
                                              13.0
                                                    15.0
                                                          16.0
            12.089037
59
    1797.0
                        4.374694
                                  0.0
                                       11.0
                                              13.0
                                                    16.0
                                                          16.0
    1797.0
            11.809126
                       4.933947
                                  0.0
                                              14.0
                                                    16.0
                                                          16.0
60
                                       10.0
    1797.0
             6.764051
                                        0.0
                                              6.0
                                                    12.0
                                                          16.0
61
                        5.900623
                                  0.0
62
    1797.0
             2.067891
                        4.090548
                                  0.0
                                        0.0
                                               0.0
                                                     2.0
                                                          16.0
63 1797.0
             0.364496 1.860122 0.0
                                        0.0
                                               0.0
                                                     0.0
                                                          16.0
[64 rows x 8 columns]
digits.data.shape
(1797, 64)
digits.images.shape
(1797, 8, 8)
x=digits.data
y=digits.target
Χ
array([[ 0.,
              0.,
                   5., ..., 0.,
                                   0.,
                   0., ..., 10.,
       [ 0.,
              0.,
                                   0.,
                                        0.],
       [ 0.,
              0.,
                   0., ..., 16.,
                                   9.,
                                        0.1,
       [ 0.,
              0., 1., ..., 6.,
                                   0.,
                                        0.],
       [ 0., 0., 2., ..., 12., 0., 0.],
[ 0., 0., 10., ..., 12., 1., 0.]])
У
array([0, 1, 2, ..., 8, 9, 8])
from sklearn.preprocessing import StandardScaler
x std=StandardScaler().fit transform(x)
x std.shape
(1797, 64)
x std
                    , -0.33501649, -0.04308102, ..., -1.14664746,
array([[ 0.
        -0.5056698 , -0.19600752],
                   , -0.33501649, -1.09493684, ..., 0.54856067,
       [ 0.
        -0.5056698 , -0.19600752],
                   , -0.33501649, -1.09493684, ..., 1.56568555,
         1.6951369 , -0.19600752],
```

```
, -0.33501649, -0.88456568, ..., -0.12952258,
       [ 0.
        -0.5056698 , -0.19600752],
                   , -0.33501649, -0.67419451, ..., 0.8876023 ,
        -0.5056698 , -0.19600752],
                    -0.33501649, 1.00877481, ..., 0.8876023,
        -0.26113572, -0.19600752]])
x1=x std.T
x1
array([[ 0.
                      0.
                                   0.
                      0.
         0.
       [-0.33501649, -0.33501649, -0.33501649, ..., -0.33501649,
        -0.33501649, -0.33501649],
       [-0.04308102, -1.09493684, -1.09493684, ..., -0.88456568,
        -0.67419451, 1.00877481],
       [-1.14664746, 0.54856067, 1.56568555, ..., -0.12952258,
         0.8876023 , 0.8876023 ],
       [-0.5056698 , -0.5056698 ,
                                  1.6951369 , ..., -0.5056698 ,
        -0.5056698 , -0.26113572],
       [-0.19600752, -0.19600752, -0.19600752, ..., -0.19600752,
        -0.19600752, -0.1960075211)
cov mat=np.cov(x std.T)
cov mat
                      0.
                                   0. , ..., 0. ,
array([[ 0.
         0.
                      0.
                      1.00055679,
                                   0.55692803, ..., -0.02988686,
       [ 0.
         0.02656195, -0.04391324],
                      0.55692803, 1.00055679, ..., -0.04120565,
       [ 0.
         0.07263924,
                     0.082569081,
                   , -0.02988686, -0.04120565, ..., 1.00055679,
       [ 0.
                     0.26213704],
         0.64868875,
                      0.02656195, 0.07263924, ...,
                                                     0.64868875,
       [ 0.
         1.00055679,
                     0.62077355],
                    -0.04391324,
                                   0.08256908, ..., 0.26213704,
       [ 0.
         0.62077355, 1.00055679]])
eig vals,eig vecs=np.linalg.eig(cov mat)
eig vals
array([7.34477606, 5.83549054, 5.15396118, 3.96623597, 2.9663452,
       2.57204442, 2.40600941, 2.06867355, 1.82993314, 1.78951739,
       1.69784616, 1.57287889, 1.38870781, 1.35933609, 1.32152536,
```

```
1.16829176, 1.08368678, 0.99977862, 0.97438293, 0.90891242,
       0.82271926, 0.77631014, 0.71155675, 0.64552365, 0.59527399,
       0.5765018 , 0.52673155 , 0.5106363 , 0.48686381 , 0.45560107 ,
       0.44285155, 0.42230086, 0.3991063 , 0.39110111, 0.36094517,
       0.34860306, 0.3195963 , 0.29406627, 0.27692285, 0.05037444,
      0.06328961, 0.258273 , 0.24783029, 0.2423566 , 0.07635394,
       0.08246812, 0.09018543, 0.09840876, 0.10250434, 0.11188655,
       0.11932898, 0.12426371, 0.13321081, 0.14311427, 0.217582
       0.15818474, 0.16875236, 0.20799593, 0.17612894, 0.2000909
       0.18983516, 0. , 0. , 0. ])
eig_vecs
array([[ 0.
                     0.
                                  0.
        0.
                     0.
                               ],
                    -0.04702701,
       [ 0.18223392,
                                  0.02358821, ...,
                                                    0.
                     0.
                               ],
                    -0.0595648 , -0.05679875, ...,
       [ 0.285868
                     0. ],
        0.
       [ 0.103198
                     0.24261778, -0.02227952, ...,
                     0.
        0.
                               ],
       [ 0.1198106 ,
                     0.16508926, 0.10036559, ...,
                                                    0.
                     0.
                               ],
                     0.07132924, 0.09244589, ...,
       [ 0.07149362,
                                                    0.
                     0.
                               11)
tot=sum(eig vals)
var_exp=[(i/tot)*100 for i in sorted (eig_vals,reverse=True)]
#individual explained variance
var_exp
[12.033916097734924,
9.561054403097929,
8.444414892624557,
 6.498407907524173,
 4.860154875966378,
 4.214119869271917,
 3.9420828035673727,
 3.389380924638341,
 2.99822101162524,
 2.932002551252232,
 2.781805463550298,
 2.5770550925820013,
 2.275303315764233,
 2.227179739514354,
 2.1652294318492604,
 1.9141666064421274,
 1.7755470851681776,
 1.6380692742844212.
```

```
1.5964601688623297,
 1.4891911870878158,
1.3479695658179398,
 1.2719313702347623,
1.1658373505919524,
1.0576465985363175,
0.9753159471981054,
0.9445589897320013,
0.8630138269707204,
0.8366428536685098,
0.7976932484112416,
 0.7464713709260621,
0.725582151370273,
 0.6919112454811898,
0.6539085355726164,
0.6407925738459953,
 0.5913841117223396,
0.5711624052235232,
 0.5236368034166312,
0.4818075864451403,
 0.45371925985844797,
0.42316275323278074,
0.40605306997903756,
0.397084808275829,
0.356493303142619,
 0.34078718147030146,
0.32783533528795433,
 0.3110320073453561,
 0.28857529410893434,
0.2764892635235449,
 0.25917494088146487,
0.23448300553563436,
 0.2182568577120083,
0.2035976345253764,
0.19551242601981672,
0.18331849919718188,
0.16794638749558172,
 0.16123606225672593,
0.14776269410608878,
 0.13511841133708571,
0.12510074249730258,
0.10369573015571854,
0.08253509448180095,
0.0,
0.0,
0.0]
cum var exp=np.cumsum(var exp)
cum var exp
```

```
array([ 12.0339161 ,
                       21.5949705 ,
                                      30.03938539,
                                                     36.5377933
        41.39794818,
                       45.61206805,
                                      49.55415085,
                                                     52.94353177,
        55.94175279,
                       58.87375534,
                                      61.6555608 ,
                                                     64.23261589,
        66.50791921.
                       68.73509895.
                                      70,90032838,
                                                     72.81449499.
        74.59004207,
                       76.22811135.
                                      77.82457152,
                                                     79.3137627 .
        80.66173227,
                       81.93366364.
                                      83.09950099,
                                                     84.15714759,
        85.13246353,
                       86.07702252,
                                      86.94003635,
                                                     87.77667921,
        88.57437245,
                       89.32084382,
                                                     90.73833722.
                                      90.04642598,
                                                     93.19558485,
        91.39224576,
                       92.03303833,
                                      92.62442244,
        93.71922165,
                       94.20102924,
                                      94.6547485 ,
                                                     95.07791125,
        95.48396432,
                       95.88104913,
                                      96.23754243,
                                                     96.57832961,
        96.90616495,
                       97.21719696,
                                      97.50577225,
                                                     97.78226151,
                       98.27591946,
        98.04143645,
                                      98.49417632,
                                                     98.69777395,
        98.89328638,
                       99.07660488,
                                      99.24455127,
                                                     99.40578733,
        99.55355002,
                       99.68866843,
                                      99.81376918,
                                                     99.91746491,
       100.
                      100.
                                     100.
                                                    100.
plt.figure(figsize=(8,3))
plt.bar(range(len(cum var exp)),var exp,label='IEV')
plt.step(range(len(cum var exp)),cum var exp,label='CEV')
plt.vlabel('Explained variance ratio')
plt.xlabel('Principal component')
plt.legend()
plt.show()
```



```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x_std,y,train_size=0.8)
from sklearn.tree import DecisionTreeClassifier
from sklearn.decomposition import PCA
pca=PCA(n_components=25)
```

```
pca x train=pca.fit transform(x train)
pca x test=pca.transform(x test)
rf=DecisionTreeClassifier().fit(pca x train,y train)
predicted=rf.predict(pca x test)
predicted
array([6, 1, 7, 5, 7, 5, 0, 2, 7, 5, 9, 0, 9, 4, 7, 6, 6, 4, 6, 5, 2,
0,
       9, 3, 0, 2, 5, 3, 5, 8, 1, 1, 3, 3, 0, 8, 1, 1, 8, 7, 8, 5, 1,
7,
       6, 8, 4, 6, 8, 6, 2, 4, 1, 4, 0, 2, 6, 7, 8, 5, 0, 9, 6, 9, 4,
2,
       8, 0, 1, 9, 4, 8, 3, 5, 3, 1, 5, 2, 9, 5, 9, 7, 4, 7, 8, 4, 6,
8,
       1, 9, 0, 9, 4, 6, 1, 2, 8, 1, 9, 5, 5, 4, 1, 6, 2, 8, 3, 4, 4,
9,
       9, 2, 6, 4, 8, 2, 0, 8, 8, 8, 1, 2, 6, 7, 5, 8, 9, 8, 2, 7, 7,
5,
       0, 9, 6, 7, 2, 1, 9, 6, 9, 2, 0, 8, 0, 3, 5, 3, 7, 9, 7, 1, 8,
8,
       3, 6, 0, 1, 5, 0, 7, 1, 9, 9, 8, 2, 7, 7, 2, 5, 7, 2, 7, 1, 3,
1,
       5, 3, 1, 5, 3, 6, 4, 5, 0, 8, 7, 3, 3, 9, 6, 3, 5, 7, 5, 9, 5,
9,
       4, 3, 6, 4, 0, 7, 1, 7, 6, 0, 2, 1, 5, 9, 5, 5, 1, 7, 9, 9, 8,
1,
       1, 2, 3, 7, 9, 3, 5, 8, 8, 5, 9, 3, 9, 4, 1, 4, 7, 8, 5, 4, 6,
9,
       8, 7, 1, 4, 4, 1, 9, 0, 3, 8, 6, 8, 4, 4, 6, 4, 3, 5, 4, 4, 3,
0,
       3, 9, 0, 3, 6, 5, 1, 3, 1, 8, 7, 1, 8, 5, 0, 5, 8, 4, 8, 4, 0,
3,
       4, 5, 1, 5, 3, 0, 7, 2, 2, 9, 1, 7, 5, 8, 4, 0, 4, 1, 2, 6, 9,
3,
       1, 3, 6, 3, 1, 2, 3, 0, 3, 8, 9, 4, 1, 4, 2, 1, 7, 5, 6, 7, 5,
5,
       8, 1, 7, 0, 9, 6, 3, 4, 0, 4, 2, 5, 6, 2, 9, 0, 6, 1, 3, 0, 8,
0,
       1, 6, 2, 2, 2, 7, 9, 5])
y train
array([1, 0, 8, ..., 2, 8, 9])
from sklearn.metrics import
accuracy score, confusion matrix, classification report
accuracy score(predicted, y test)
```

```
0.8222222222222
classification report(y test,predicted)
               precision
                             recall f1-score
                                                 support\n\n
0.87
          0.84
                     0.86
                                 32\n
                                                         0.81
                                                                    0.87
0.84
            39\n
                            2
                                               0.80
                                                         0.80
                                    0.80
                                                                      30\
                               0.69
                                          0.70
            3
                     0.71
                                                      36\n
                                                                      4
0.92
          0.87
                     0.89
                                 38\n
                                                 5
                                                         0.83
                                                                    0.81
0.82
            43\n
                                    0.88
                                               0.88
                                                         0.88
                                                                      32\
                            6
                     0.94
                               0.85
                                          0.89
                                                      39\n
                                                                      8
n
                     0.71
                                                 9
                                                         0.79
                                                                    0.88
0.69
          0.73
                                 37\n
0.83
            34\n\n
                                                            0.82
                       accuracy
360\n
                                   0.82
                                              0.82
                                                         360\nweighted
        macro avg
                         0.82
                     0.82
                                           360\n'
avg
          0.83
                               0.82
def get misclassifed index(y_pred,y_test):
    misclassification=[]
    for index,(predicted,actual) in enumerate(zip(y pred,y test)):
        if predicted!=actual:
            misclassification.append(index)
    return misclassification
misclassification=get_misclassifed_index(predicted,y_test)
len(misclassification)
64
misclassification[0:5]
[22, 25, 26, 28, 29]
def plot misclassification(misclassification):
    plt.figure(figsize=(20,4))
    for index,wrong in enumerate(misclassification[0:5]):
        plt.subplot(1,5,index+1)
        plt.imshow(np.reshape(pca x test[wrong],
(5,5)),cmap=plt.cm.gray)
        plt.title('predicted:{}Actual:
{}'.format(predicted[wrong],y_test[wrong]))
plot misclassification(misclassification)
```



```
def get_classifed_index(y_pred,y_test):
    classification=[]
    for index,(predicted,actual) in enumerate(zip(y_pred,y_test)):
        if predicted==actual:
            classification.append(index)
    return classification
 classification=get_classifed_index(predicted,y_test)
for i in range(len(classification)):
    print(classification[i])
0
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
23
24
27
31
32
33
34
36
37
38
39
40
41
42
43
44
```

105		
105		
103		
106		
107		
-07		
108		
100		
109		
110		
110		
111		
111		
112		
112		
113		
113		
114		
T T -		
116		
117		
110		
118		
120		
120		
122		
122		
123		
125		
124		
125		
126		
126		
120		
128		
129		
129		
130		
130		
131		
131 132		
132		
122		
133 134		
12/		
134		
135		
133		
176		
1.50		
136		
137		
137		
137 138		
137 138		
137 138 139		
137 138 139		
137 138 139 140		
137 138 139 140		
137 138 139 140 141		
137 138 139 140 141 142		
137 138 139 140 141 142		
137 138 139 140 141 142 143		
137 138 139 140 141 142 143		
137 138 139 140 141 142 143 145		
137 138 139 140 141 142 143 145		
137 138 139 140 141 142 143 145 146		
137 138 139 140 141 142 143 145 146		
137 138 139 140 141 142 143 145 146 147		
137 138 139 140 141 142 143 145 146 147 148		
137 138 139 140 141 142 143 145 146 147 148		
137 138 139 140 141 142 143 145 146 147 148 151		
137 138 139 140 141 142 143 145 146 147 148 151		
137 138 139 140 141 142 143 145 146 147 148 151 152		
137 138 139 140 141 142 143 145 146 147 148 151 152		
137 138 139 140 141 142 143 145 146 147 148 151 152 153		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156 157		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156 157		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156 157 158		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156 157 158 160 161		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156 157 158 160 161 163		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156 157 158 160 161 163		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156 157 158 160 161		
137 138 139 140 141 142 143 145 146 147 148 151 152 153 156 157 158 160 161 163		

165		
165		
100		
166		
167		
167		
168		
100		
169		
103		
170		
171		
171		
172		
1/2		
173		
1/3		
174		
174 175		
1/5		
176		
1/0		
178		
170		
179		
100		
180		
181		
101		
182		
102		
183		
104		
184		
185		
102		
186		
100		
187		
100		
188		
190		
190		
191		
101		
191 192		
102		
193		
193 195		
195		
195		
195 196		
195 196 198		
195 196 198		
195 196 198 199		
195 196 198 199		
195 196 198 199 200		
195 196 198 199 200 201		
195 196 198 199 200 201		
195 196 198 199 200 201 202		
195 196 198 199 200 201 202		
195 196 198 199 200 201 202 203		
195 196 198 199 200 201 202 203		
195 196 198 199 200 201 202 203 204		
195 196 198 199 200 201 202 203 204 205		
195 196 198 199 200 201 202 203 204 205		
195 196 198 199 200 201 202 203 204 205 206		
195 196 198 199 200 201 202 203 204 205 206		
195 196 198 199 200 201 202 203 204 205 206 207		
195 196 198 199 200 201 202 203 204 205 206 207 208		
195 196 198 199 200 201 202 203 204 205 206 207 208		
195 196 198 199 200 201 202 203 204 205 206 207 208 209		
195 196 198 199 200 201 202 203 204 205 206 207 208 209		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215		
195 196 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216		

219 220 221 223 224 225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 255 256 266 268 269 270 260 261 262 263 264 265 266 268 269 270 271 274 274 276 277 278 279 280 281				
220 221 223 224 225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 267 277 278 279 280 281				
220 221 223 224 225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 267 277 278 279 280 281	219			
221 223 224 225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 257 260 261 262 263 264 265 266 267 277 278 279 280 281	220			
221 223 224 225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 257 260 261 262 263 264 265 266 267 277 278 279 280 281	220			
223 224 225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 255 256 257 260 261 262 263 264 265 257 260 261 262 263 264 265 267 271 274 276 277 278 279 280 281	221			
224 225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 245 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 274 276 277 278 279 280 281	221			
224 225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 245 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 274 276 277 278 279 280 281	223			
225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 267 270 271 274 274 276 277 278 279 280 281	223			
225 226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 267 270 271 274 274 276 277 278 279 280 281	224			
226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 261 262 263 264 265 266 268 269 270 271 274 277 278 279 280 281	225			
226 229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 261 262 263 264 265 266 268 269 270 271 274 277 278 279 280 281	225			
229 230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 555 256 257 260 261 262 263 264 265 263 264 265 267 277 278 279 280 281	226			
230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 257 260 261 262 263 264 265 268 269 270 271 274 274 276 277 278 279 280 281	220			
230 232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 257 260 261 262 263 264 265 268 269 270 271 274 274 276 277 278 279 280 281	229			
232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	220			
232 234 235 236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	230			
236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 267 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	ววว			
236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 267 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	232			
236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 267 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	234			
236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 267 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	231			
236 237 238 239 240 241 242 243 245 246 248 249 252 254 255 266 267 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	235			
237 238 239 240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 277 277 278 279 280 281	226			
237 238 239 240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 277 277 278 279 280 281	230			
238 239 240 241 242 243 245 246 248 249 252 254 255 266 267 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	237			
239 240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	237			
239 240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	238			
240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	220			
240 241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	239			
241 242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	240			
242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	2 10			
242 243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	241			
243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	242			
243 245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	242			
245 246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	2/13			
246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	243			
246 248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	245			
248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	2.46			
248 249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	240			
249 252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	2/18			
252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	240			
252 254 255 256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281	249			
256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	252			
256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	252			
256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	25/			
256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	234			
256 257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	255			
257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	256			
257 260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	256			
260 261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	257			
261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	231			
261 262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	260			
262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	261			
262 263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	261			
263 264 265 266 268 269 270 271 274 276 277 278 279 280 281 282	262			
265 268 269 270 271 274 276 277 278 279 280 281 282	202			
265 268 269 270 271 274 276 277 278 279 280 281 282	263			
265 268 269 270 271 274 276 277 278 279 280 281 282	264			
265 268 269 270 271 274 276 277 278 279 280 281 282	264			
266 268 269 270 271 274 276 277 278 279 280 281 282	265			
268 269 270 271 274 276 277 278 279 280 281 282	203			
268 269 270 271 274 276 277 278 279 280 281 282	266			
269 270 271 274 276 277 278 279 280 281 282	260			
269 270 271 274 276 277 278 279 280 281 282	268			
270 271 274 276 277 278 279 280 281 282	260			
271 274 276 277 278 279 280 281	209			
271 274 276 277 278 279 280 281	270			
274 276 277 278 279 280 281	271			
274 276 277 278 279 280 281	2/1			
276 277 278 279 280 281	274			
277 278 279 280 281 282				
277 278 279 280 281 282	276			
278 279 280 281 282	273			
278 279 280 281 282	2//			
279 280 281 282	270			
280 281 282	2/8			
280 281 282	279			
281 282	273			
281 282	280			
282	201			
282	∠81			
283	282			
283	202			
	283			

284		
701		
704		
205		
285		
200		
286		
286 288		
288		
200		
289		
290		
290		
291		
291		
292		
232		
293		
294		
205		
295		
206		
296		
297		
291		
298		
230		
299		
300		
201		
301		
202		
302		
303		
202		
304		
JU 4		
306		
300		
307		
200		
308		
309		
209		
210		
310		
312		
312		
312		
312		
312 313 317		
312 313 317		
312 313 317 318		
312 313 317 318		
312 313 317 318 319		
312 313 317 318 319 320		
312 313 317 318 319 320		
312 313 317 318 319 320 321		
312 313 317 318 319 320 321		
312 313 317 318 319 320 321 322		
312 313 317 318 319 320 321 322		
312 313 317 318 319 320 321 322 323		
312 313 317 318 319 320 321 322 323		
312 313 317 318 319 320 321 322 323 324		
312 313 317 318 319 320 321 322 323 324 325		
312 313 317 318 319 320 321 322 323 324 325		
312 313 317 318 319 320 321 322 323 324 325 326		
312 313 317 318 319 320 321 322 323 324 325 326		
312 313 317 318 319 320 321 322 323 324 325 326 329		
312 313 317 318 319 320 321 322 323 324 325 326 329		
312 313 317 318 319 320 321 322 323 324 325 326 329 331		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337 338		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337 338		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337 338 339		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337 338 339 340		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337 338 339 340		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337 338 339		
312 313 317 318 319 320 321 322 323 324 325 326 329 331 332 333 334 335 336 337 338 339 340		

```
343
345
346
347
348
349
350
351
352
354
357
358
359
len(classification)
288
def plot_classification(classification):
    plt.figure(figsize=(20,4))
    for index,correct in enumerate(classification[0:5]):
        plt.subplot(1,5,index+1)
        plt.imshow(np.reshape(pca_x_test[correct],
(5,5)),cmap=plt.cm.gray)
        plt.title('predicted:{}Actual:
{}'.format(predicted[correct],y_test[correct]))
plot classification(classification)
```

