Phylogenetics: quantifying evolution

Mikael Bodén

Phylogenetics: quantifying evolution (Part 1)

Context: distances and models

Evolutionary distance and corrections (p-distance, Poisson and Gamma)

Molecular clock

Bear in mind...

most related sequences have *many* positions that have mutated, *some* of which have mutated several times

We need to effectively capture such dynamic changes

Metric of distance v. model of change

- The evolutionary distance between two sequences is an estimate of the number of mutations that has occurred since they diverged from their common ancestor
- While largely random, general rules may be governing which mutations lead to changes over time, imprinted in DNA, RNA and amino acid sequence
- **Evolutionary models** attempt to formalise tendencies of *change* in <INSERT-ALPHABET-HERE> sequences
 - DNA: A,C,G,T
 - RNA: A, C, G, U
 - Protein: A, R, N, D, ...
 - more...

Sets of species/sequences: Distance matrices

- Define sequence distance
- Calculate all pairwise distances

Suppose we have three species i, j and k and a distance metric D

$$D = \left[egin{array}{cccc} D_{i,i} & D_{i,j} & D_{i,k} \ D_{j,i} & D_{j,j} & D_{j,k} \ D_{k,i} & D_{k,j} & D_{k,k} \end{array}
ight]$$

p-distance (fractional alignment difference)

The simplest "evolutionary distance" between two sequences is the <u>observed</u> number of mutations since diverged.

$$p = \frac{D}{L}$$

Positions at which sequences differ

Total number of positions

$$1-p = \frac{L-D}{L}$$

Positions at which sequences are the same

Total number of positions

The probability of "no change"

p-distance (fractional alignment difference)

$$p = \frac{D}{L}$$

- Example
 - AAABBA
 - ABABAA
 - p = 2/6 = 1/3 = 0.333
- Two conditions for evolutionary time to be proportional to number of changes observed from an alignment
 - 1. all sequences mutate at a constant rate
 - 2. no position has mutated more than once

Poisson distance correction accounts for multiple mutations at site

- Mutation rate per site: r
- After time t, expected number of mutations at site: rt
- No mutation at $t: e^{-rt}$ Euler's number (constant)
- Two sequences share ancestor at t,

so
$$2rt$$
 away $t < Seq1$ $Seq2$ $1-p = e^{-2rt} = e^{-d}$ \leftarrow The probability of "no change" $d_p = -\ln(1-p)$

Distance varies when p is corrected

Gamma distance correction Accounts for site-specific rates

- Poisson only had one r for whole sequence
- The Gamma distribution can model how r varies across sites using a parameter a

$$d_{\Gamma} = a[(1-p)^{-1/a} - 1]$$

Gamma corrects distance estimate for changes that can be explained by a variable rate (a can be found by inspecting relevant data)

Distance varies when p is corrected

Distance = Time? Molecular clock and rate variation

- Zuckerkandl and Pauling noticed that the number of amino acid differences between different lineages changes roughly linearly with time; the <u>rate of evolutionary change</u> was approx. <u>constant over time</u> and <u>over different lineages</u> this is known as the molecular clock hypothesis
- This is challenged by
 - Changing generation times, population size, species-specific differences (metabolism, ecology, etc), change in function and in the intensity of natural selection

Phylogenetics: quantifying evolution (Part 2)

DNA models

Evolutionary models and rate matrices

Probabilistic meaning

Transition vs. transversion

Transition vs. transversion

Different codon positions have different mutation rates

From "Understanding Bioinformatics", Zvelebil & Baum, p241.

Evolutionary models

Model name	Base Composition	Different transition and transversion rates	All transition rates identical	All transversion rates identical	Reference
Jukes-Cantor (JC69)	1:1:1:1	No	Yes	Yes	Jukes and Cantor (1969)
Felsenstein 81 (F81)	Variable	No	Yes	Yes	Felsenstein (1981)
Kimura 2 Param (K80)	1:1:1:1	Yes	Yes	Yes	Kimura (1980)
HKY85	Variable	Yes	No	No	Hasegawa et al. (1985)
Tamura-Nei (TN)	Variable	Yes	No	Yes	Tamura and Nei (1993)
K3P (K81)	Variable	Yes	No	Yes	Kimura (1981)
SYM	1:1:1:1	Yes	No	No	Zharkikh (1994)
REV (GTR)	Variable	Yes	No	No	Rodriguez et al. (1990)

Models of (DNA) evolution (based on rate)

JC69 model (Jukes and Cantor 1969)

K81 model (Kimura 1981)

$$Q = egin{pmatrix} {
m A} & {
m G} & {
m C} & {
m T} \ * & \pi_G & \pi_C & \pi_T \ \pi_A & * & \pi_C & \pi_T \ \pi_A & \pi_G & * & \pi_T \ \pi_A & \pi_G & \pi_C & * \end{pmatrix} egin{pmatrix} {
m A} & {
m C} & {
m C} & {
m C} \ {
m C} & {
m C} & {
m C} & {
m C} \end{pmatrix} egin{pmatrix} {
m A} & {
m C} & {
m C} & {
m C} \ {
m C} & {
m C} & {
m C} \end{array}$$

F81 model (Felsenstein 1981)

$$Q = \begin{pmatrix} -(\alpha\pi_G + \beta\pi_C + \gamma\pi_T) & \alpha\pi_G & \beta\pi_C & \gamma\pi_T \\ \alpha\pi_A & -(\alpha\pi_A + \delta\pi_C + \epsilon\pi_T) & \delta\pi_C & \epsilon\pi_T \\ \beta\pi_A & \delta\pi_G & -(\beta\pi_A + \delta\pi_G + \eta\pi_T) & \eta\pi_T \\ \gamma\pi_A & \epsilon\pi_G & \eta\pi_C & -(\gamma\pi_A + \epsilon\pi_G + \eta\pi_C) \end{pmatrix}$$

GTR model (Tavaré 1986)

Models of (DNA) evolution: as rate matrix

https://en.wikipedia.org/wiki/Models of DNA evolution

Imaginary (DNA) lineage over (discrete) time

G ← Present time

A ← Ancient time						
A				То		
A			Α	С	G	Т
A		Α	-0.3	0.1	0.1	0.1
G	_	С	0.1	-0.3	0.1	0.1
G	From	G	0.1	0.1	-0.3	0.1
С		т	0.1	0.1	0.1	-0.3
С		•			•	
G		_				
G	Note: Theo	ry ot	contin	uous	time	Mar

Note: Theory of continuous time Markov chain (CTMC)

- models change of state of a single discrete random variable
- defines probabilities of state changes, satisfying the Markov property (i.e. decision of future state depends only on current state)

The Jukes-Cantor (JC) model

- Treats substitutions uniformly
- Sites have identical rates, but depend on nucleotide identity

P(A) = ? \leftarrow Ancient time

Evolutionary model

P(A) = 0.25 \leftarrow Ancient time

Evolutionary model

P(A) = 0.25 \leftarrow Ancient time

Evolutionary model

$$P(C|A) = ? \leftarrow T = 0.4$$

P(A) = 0.25 \leftarrow Ancient time

Evolutionary model

$$P(C|A) = ? \leftarrow T = 1.0$$

Probabilities come from the model

 $P_{ij}(T)$ can be written as a matrix $\mathbf{P}(T)$

T=1

A 0.75 0.08 0.08 0.08
C 0.08 0.75 0.08 0.08
G 0.08 0.08 0.75 0.08
T 0.08 0.08 0.08 0.75

In discrete time:

$$\mathbf{P}(T+dT) = \mathbf{P}(T)(\mathbf{I} + \mathbf{Q}dT)$$

Probabilities come from the model

 $P_{ij}(T)$ can be written as a matrix $\mathbf{P}(T)$

In discrete time:

$$\mathbf{P}(T+dT)=$$

$$\mathbf{P}(T)(\mathbf{I} + \mathbf{Q}dT)$$

Rate matrix for proteins

Dayhoff (remember PAM)

Zvelebil and Baum, sec 5.1

```
W
Α
       0.01
             0.04
                    0.06
                           0.01
                                 0.03
                                        0.10
                                               0.21
                                                      0.01
                                                            0.02
                                                                   0.04
                                                                          0.02
                                                                                0.01
                                                                                       0.01
                                                                                              0.13
                                                                                                     0.28
                                                                                                           0.22
                                                                                                                  0.00
                                                                                                                         0.01
                                                                                                                               0.13
-1.33
             0.01
                    0.00
                           0.01
                                 0.09
                                        0.00
                                               0.01
                                                      0.08
                                                            0.02
                                                                   0.01
                                                                          0.37
                                                                                0.01
                                                                                       0.01
                                                                                              0.05
                                                                                                     0.11
                                                                                                           0.02
                                                                                                                  0.02
                                                                                                                         0.00
                                                                                                                               0.02
0.09
      0.01
            -1.78
                    0.42
                           0.00
                                 0.04
                                        0.07
                                               0.12
                                                     0.18
                                                            0.03
                                                                   0.03
                                                                          0.25
                                                                                0.00
                                                                                       0.01
                                                                                              0.02
                                                                                                    0.34
                                                                                                           0.13
                                                                                                                  0.00
                                                                                                                         0.03
                                                                                                                                0.01
      0.00
             0.36 -1.41
                          0.00
                                 0.05
                                        0.56
                                               0.11
                                                      0.03
                                                            0.01
                                                                   0.00
                                                                          0.06
                                                                                0.00
                                                                                       0.00
                                                                                              0.01
                                                                                                    0.07
                                                                                                           0.04
                                                                                                                  0.00
                                                                                                                         0.00
                                                                                                                               0.01
0.11
      0.01
             0.00
                    0.00
                          -0.27
                                 0.00
                                               0.01
                                                      0.01
                                                            0.02
                                                                   0.00
                                                                          0.00
                                                                                0.00
                                                                                       0.00
                                                                                              0.01
                                                                                                    0.11
                                                                                                           0.01
                                                                                                                  0.00
                                                                                                                               0.03
                                        0.00
                                                                                                                         0.03
      0.10
             0.04
                    0.06
                           0.00 -1.24
                                        0.35
                                               0.03
                                                      0.20
                                                            0.01
                                                                   0.06
                                                                          0.12
                                                                                0.02
                                                                                       0.00
                                                                                              0.08
                                                                                                    0.04
                                                                                                           0.03
                                                                                                                  0.00
                                                                                                                         0.00
                                                                                                                               0.02
      0.00
             0.06
                           0.00
                                 0.27 -1.36
                                               0.07
                                                      0.02
                                                            0.02
                                                                   0.01
                                                                          0.07
                                                                                0.00
                                                                                       0.00
                                                                                              0.03
                                                                                                           0.02
                                                                                                                  0.00
                                                                                                                         0.01
                                                                                                                               0.02
0.17
                    0.53
                                                                                                     0.06
                           0.00
                                 0.01
                                                                   0.01
                                                                          0.02
                                                                                       0.01
                                                                                              0.02
                                                                                                           0.02
                                                                                                                  0.00
                                                                                                                               0.04
0.21
      0.00
             0.06
                    0.06
                                        0.04
                                              -0.65
                                                      0.00
                                                            0.00
                                                                                0.00
                                                                                                    0.16
                                                                                                                         0.00
             0.21
                           0.01
                                 0.23
                                        0.02
                                               0.01
                                                     -0.88
                                                            0.00
                                                                   0.04
                                                                          0.02
                                                                                0.00
                                                                                       0.02
                                                                                              0.05
                                                                                                     0.03
                                                                                                           0.01
                                                                                                                  0.00
                                                                                                                                0.03
0.02
      0.10
                    0.04
                                                                                                                         0.04
      0.03
             0.03
                    0.01
                           0.02
                                 0.01
                                        0.03
                                               0.00
                                                      0.00 -1.28
                                                                   0.22
                                                                          0.04
                                                                                0.05
                                                                                       0.08
                                                                                              0.01
                                                                                                    0.02
                                                                                                           0.11
                                                                                                                  0.00
                                                                                                                         0.01
                                                                                                                               0.57
                           0.00
                                 0.03
                                               0.01
                                                            0.09
                                                                                       0.06
                                                                                              0.02
                                                                                                    0.01
                                                                                                           0.02
      0.01
             0.01
                    0.00
                                        0.01
                                                      0.02
                                                                   -0.53
                                                                          0.02
                                                                                0.08
                                                                                                                  0.01
                                                                                                                         0.01
                                                                                                                               0.11
      0.19
             0.13
                    0.03
                           0.00
                                 0.06
                                        0.04
                                               0.02
                                                      0.01
                                                            0.02
                                                                   0.02
                                                                         -0.75
                                                                                0.04
                                                                                       0.00
                                                                                              0.02
                                                                                                    0.07
                                                                                                           0.08
                                                                                                                  0.00
                                                                                                                         0.00
                                                                                                                               0.01
      0.04
             0.00
                    0.00
                           0.00
                                 0.04
                                        0.02
                                               0.02
                                                      0.00
                                                            0.12
                                                                   0.45
                                                                          0.19 -1.25
                                                                                       0.04
                                                                                              0.01
                                                                                                    0.04
                                                                                                           0.06
                                                                                                                  0.00
                                                                                                                         0.00
                                                                                                                               0.17
0.02
      0.01
             0.01
                    0.00
                           0.00
                                 0.00
                                        0.00
                                               0.01
                                                      0.02
                                                            0.07
                                                                   0.13
                                                                          0.00
                                                                                0.01
                                                                                      -0.55
                                                                                              0.01
                                                                                                    0.03
                                                                                                           0.01
                                                                                                                  0.01
                                                                                                                         0.21
                                                                                                                               0.01
      0.04
             0.02
                    0.01
                           0.01
                                 0.06
                                        0.03
                                               0.03
                                                      0.03
                                                            0.00
                                                                   0.03
                                                                          0.03
                                                                                0.00
                                                                                       0.00
                                                                                             -0.75
                                                                                                    0.17
                                                                                                           0.05
                                                                                                                  0.00
                                                                                                                         0.00
                                                                                                                                0.03
0.22
0.35
      0.06
             0.20
                    0.05
                           0.05
                                 0.02
                                        0.04
                                               0.21
                                                      0.01
                                                            0.01
                                                                   0.02
                                                                          0.08
                                                                                0.01
                                                                                       0.02
                                                                                              0.12 -1.60
                                                                                                           0.32
                                                                                                                  0.01
                                                                                                                         0.01
                                                                                                                               0.02
                                                                                0.02
      0.01
             0.09
                    0.03
                           0.01
                                 0.02
                                        0.02
                                               0.03
                                                      0.01
                                                            0.07
                                                                   0.03
                                                                          0.11
                                                                                       0.01
                                                                                              0.04
                                                                                                     0.38
                                                                                                          -1.29
                                                                                                                  0.00
                                                                                                                         0.01
                                                                                                                               0.10
      0.08
             0.01
                    0.00
                           0.00
                                 0.00
                                        0.00
                                               0.00
                                                      0.01
                                                            0.00
                                                                   0.04
                                                                          0.00
                                                                                0.00
                                                                                       0.03
                                                                                              0.00
                                                                                                     0.05
                                                                                                           0.00
                                                                                                                 -0.24
                                                                                                                         0.02
                                                                                                                               0.00
       0.00
             0.04
                    0.00
                           0.03
                                 0.00
                                        0.01
                                               0.00
                                                      0.04
                                                            0.01
                                                                   0.02
                                                                          0.01
                                                                                0.00
                                                                                       0.28
                                                                                              0.00
                                                                                                     0.02
                                                                                                           0.02
                                                                                                                  0.01
                                                                                                                        -0.55
                                                                                                                                0.02
      0.01
                           0.02
                                 0.01
                                        0.02
                                               0.05
                                                      0.02
                                                            0.33
                                                                   0.15
                                                                          0.01
                                                                                0.04
                                                                                       0.01
                                                                                              0.03
                                                                                                     0.02
                                                                                                           0.09
                                                                                                                  0.00
```

On what are protein models based?

DYISWWQQQ
DYISSWQEQ
DYISLWQEQ
DYISLWQDD

Δ	A ← Ancient time
Δ	1
Δ	1
Δ	1
G	ì
G	ì
C	
C	
G	ì
/ G	ì
4 6	← Present time

- Answer: Counts of character pairs from alignments of closely related sequences
- When sequences are really close (in time) the rates and probabilities of change are approximately linear
- Counts scaled based on sequence divergence, and averaging across many alignments

Probabilities come from the model

 $P_{ij}(T)$ can be written as a matrix $\mathbf{P}(T)$

In discrete time:

$$\mathbf{P}(T+dT) = \mathbf{P}(T)(\mathbf{I} + \mathbf{Q}dT)$$

$$\mathbf{Q} = \begin{pmatrix} -1.12 & 0.03 & 0.02 & 0.04 & 0.02 & 0.04 & 0.10 & 0.12 & 0.01 & 0.01 & 0.04 & 0.06 & 0.06 \\ 0.05 & -0.97 & 0.03 & 0.01 & 0.01 & 0.12 & 0.03 & 0.05 & 0.06 & 0.01 & 0.05 & 0.35 & 0.04 \\ 0.05 & 0.03 & -1.45 & 0.32 & 0.01 & 0.06 & 0.06 & 0.01 & 0.10 & 0.03 & 0.01 & 0.20 & 0.04 \\ 0.07 & 0.01 & 0.22 & -0.99 & 0.00 & 0.02 & 0.38 & 0.08 & 0.02 & 0.00 & 0.01 & 0.03 & 0.01 \\ 0.09 & 0.02 & 0.01 & 0.00 & -0.49 & 0.00 & 0.00 & 0.03 & 0.01 & 0.01 & 0.04 & 0.01 \\ 0.08 & 0.14 & 0.06 & 0.04 & 0.00 & -1.38 & 0.33 & 0.03 & 0.11 & 0.01 & 0.08 & 0.25 \\ 0.14 & 0.02 & 0.04 & 0.37 & 0.00 & 0.21 & -1.24 & 0.05 & 0.02 & 0.01 & 0.01 & 0.04 \\ 0.13 & 0.03 & 0.05 & 0.05 & 0.01 & 0.01 & 0.04 & -0.50 & 0.01 & 0.00 & 0.01 & 0.02 & 0.4 \\ 0.03 & 0.10 & 0.16 & 0.06 & 0.01 & 0.17 & 0.04 & 0.02 & -0.99 & 0.01 & 0.05 & 0.06 & 0.01 \\ 0.04 & 0.02 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.04 & -0.23 & 0.09 & 0.02 \\ 0.04 & 0.02 & 0.01 & 0.01 & 0.01 & 0.03 & 0.01 & 0.01 & 0.01 & 0.01 & -0.73 & 0.02 & 0.0 \\ 0.08 & 0.33 & 0.01 & 0.01 & 0.01 & 0.03 & 0.01 & 0.01 & 0.01 & 0.16 & -0.73 & 0.02 & 0.0 \\ 0.08 & 0.03 & 0.01 & 0.01 & 0.01 & 0.06 & 0.02 & 0.02 & 0.01 & 0.02 & 0.44 & 0.06 & -1.3 \\ 0.08 & 0.03 & 0.01 & 0.01 & 0.01 & 0.06 & 0.02 & 0.02 & 0.01 & 0.02 & 0.44 & 0.06 & -1.3 \\ 0.08 & 0.03 & 0.01 & 0.01 & 0.01 & 0.06 & 0.02 & 0.02 & 0.01 & 0.02 & 0.04 & 0.04 & 0.0 \\ 0.13 & 0.03 & 0.01 & 0.03 & 0.00 & 0.15 & 0.16 & 0.02 & 0.02 & 0.01 & 0.04 & 0.04 & 0.0 \\ 0.13 & 0.03 & 0.01 & 0.03 & 0.00 & 0.04 & 0.04 & 0.02 & 0.02 & 0.01 & 0.04 & 0.04 & 0.0 \\ 0.19 & 0.03 & 0.08 & 0.02 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.07 & 0.03 & 0.09 & 0.0 \\ 0.18 & 0.01 & 0.01 & 0.01 & 0.02 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.02 & 0.04 & 0.01 & 0.02 & 0.04 \\ 0.01 & 0.05 & 0.05 & 0.02 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.04 & 0.04 & 0.02 & 0.02 & 0.04 & 0.01 & 0.04 \\ 0.02 & 0.02 & 0.05 & 0.02 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.04 & 0.04 & 0.01 & 0.04 \\ 0.02 & 0.02 & 0.05 & 0.02 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.01 & 0.04 & 0.04 & 0.01 & 0.04 \\$$

Probabilities come from the model

 $P_{ij}(T)$ can be written as a matrix $\mathbf{P}(T)$

In discrete time:

$$\mathbf{P}(T+dT)=$$

$$P(T)(I + QdT)$$

So: there is a probability matrix for all possible time lapses.

Rate matrix for proteins Whelan & Goldman

	Α	R	N	D	С	Q	E	G	н	ı	L	K	М	F	P	S	Т	w	Υ	w
Α	-1.12	0.03	0.02	0.04	0.02	0.04	0.10	0.12	0.01	0.01	0.04	0.06	0.02	0.01	0.07	0.25	0.14	0.00	0.01	0.15
R	0.05	-0.97	0.03	0.01	0.01	0.12	0.03	0.05	0.06	0.01	0.05	0.35	0.01	0.00	0.03	0.09	0.04	0.02	0.01	0.02
N	0.05	0.03	-1.45	0.32	0.01	0.06	0.06	0.10	0.10	0.03	0.01	0.20	0.00	0.00	0.01	0.29	0.13	0.00	0.04	0.02
D	0.07	0.01	0.22	-0.99	0.00	0.02	0.38	0.08	0.02	0.00	0.01	0.03	0.00	0.00	0.02	0.08	0.02	0.00	0.01	0.01
C	0.09	0.02	0.01	0.00	-0.49	0.00	0.00	0.03	0.01	0.01	0.04	0.01	0.01	0.02	0.01	0.10	0.03	0.01	0.02	0.08
Q	0.08	0.14	0.06	0.04	0.00	-1.38	0.33	0.03	0.11	0.01	0.08	0.25	0.03	0.00	0.05	0.08	0.06	0.00	0.01	0.02
E	0.14	0.02	0.04	0.37	0.00	0.21	-1.24	0.05	0.02	0.01	0.01	0.17	0.01	0.00	0.03	0.05	0.05	0.00	0.01	0.04
G	0.13	0.03	0.05	0.05	0.01	0.01	0.04	-0.50	0.01	0.00	0.01	0.02	0.00	0.00	0.01	0.10	0.02	0.01	0.00	0.01
Н	0.03	0.10	0.16	0.06	0.01	0.17	0.04	0.02	-0.99	0.01	0.05	0.06	0.01	0.03	0.03	0.05	0.03	0.00	0.14	0.01
I	0.02	0.01	0.02	0.00	0.00	0.01	0.01	0.00	0.00	-1.23	0.29	0.02	0.09	0.04	0.01	0.02	0.09	0.00	0.02	0.58
L	0.04	0.02	0.01	0.01	0.01	0.03	0.01	0.01	0.01	0.16	-0.73	0.02	0.10	0.09	0.02	0.03	0.02	0.01	0.02	0.13
K	0.08	0.25	0.12	0.03	0.00	0.15	0.16	0.03	0.02	0.02	0.02	-1.12	0.02	0.00	0.03	0.07	0.09	0.00	0.01	0.02
M	0.08	0.03	0.01	0.01	0.01	0.06	0.02	0.02	0.01	0.22	0.44	0.06	-1.32	0.05	0.01	0.04	0.10	0.01	0.02	0.15
F	0.02	0.01	0.00	0.00	0.01	0.00	0.01	0.00	0.02	0.05	0.19	0.01	0.02	-0.72	0.01	0.04	0.01	0.02	0.24	0.05
P	0.13	0.03	0.01	0.03	0.00	0.04	0.04	0.02	0.02	0.01	0.04	0.04	0.00	0.01	-0.61	0.12	0.05	0.00	0.01	0.02
S	0.31	0.06	0.16	0.06	0.03	0.04	0.04	0.12	0.02	0.02	0.03	0.06	0.01	0.02	0.08	-1.39	0.28	0.01	0.03	0.02
T	0.19	0.03	0.08	0.02	0.01	0.03	0.05	0.02	0.01	0.07	0.03	0.09	0.03	0.01	0.04	0.32	-1.16	0.00	0.01	0.10
W	0.01	0.05	0.00	0.01	0.02	0.01	0.01	0.03	0.01	0.01	0.06	0.01	0.01	0.06	0.01	0.04	0.01	-0.47	0.09	0.03
Y	0.02	0.02	0.05	0.02	0.01	0.01	0.01	0.01	0.10	0.02	0.04	0.01	0.01	0.26	0.01	0.06	0.02	0.04	-0.73	0.02
W	0.18	0.01	0.01	0.01	0.02	0.01	0.04	0.02	0.00	0.40	0.16	0.02	0.04	0.03	0.02	0.02	0.09	0.01	0.01	-1.09

Transition probability matrix (CTMC) Whelan & Goldman

	Α	R	N	D	С	Q	E	G	н		L	К	М	F	Р	S	т	w	γ	w
Α	0.37	0.02	0.02	0.03	0.01	0.02	0.05	0.07	0.01	0.02	0.03	0.04	0.01	0.01	0.04	0.10	0.07	0.00	0.01	0.07
R	0.04	0.40	0.03	0.02	0.01	0.05	0.03	0.04	0.03	0.01	0.03	0.14	0.01	0.01	0.02	0.05	0.03	0.01	0.01	0.02
N	0.05	0.03	0.27	0.12	0.01	0.03	0.05	0.06	0.04	0.02	0.02	0.08	0.01	0.01	0.02	0.10	0.06	0.00	0.02	0.02
D	0.05	0.01	0.08	0.42	0.00	0.03	0.14	0.05	0.02	0.01	0.01	0.04	0.00	0.00	0.02	0.05	0.03	0.00	0.01	0.02
C	0.06	0.02	0.01	0.01	0.62	0.01	0.01	0.03	0.01	0.02	0.03	0.01	0.01	0.01	0.01	0.06	0.03	0.01	0.02	0.05
Q	0.06	0.07	0.04	0.05	0.00	0.28	0.11	0.03	0.04	0.01	0.04	0.10	0.01	0.01	0.03	0.05	0.04	0.00	0.01	0.02
E	0.07	0.03	0.04	0.14	0.00	0.07	0.34	0.04	0.02	0.01	0.02	0.08	0.01	0.01	0.02	0.04	0.04	0.00	0.01	0.03
G	0.07	0.02	0.03	0.04	0.01	0.01	0.03	0.62	0.01	0.01	0.01	0.02	0.00	0.00	0.01	0.06	0.02	0.00	0.01	0.02
Н	0.03	0.05	0.06	0.04	0.01	0.06	0.04	0.03	0.38	0.01	0.03	0.05	0.01	0.02	0.02	0.04	0.03	0.01	0.07	0.02
I	0.04	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.35	0.15	0.02	0.04	0.03	0.01	0.02	0.05	0.00	0.01	0.21
L	0.03	0.02	0.01	0.01	0.01	0.02	0.01	0.01	0.01	0.08	0.52	0.02	0.04	0.05	0.02	0.02	0.02	0.01	0.02	0.09
K	0.05	0.10	0.05	0.04	0.00	0.06	0.07	0.03	0.02	0.01	0.03	0.36	0.01	0.01	0.02	0.05	0.05	0.00	0.01	0.02
M	0.05	0.02	0.01	0.01	0.01	0.03	0.02	0.02	0.01	0.09	0.19	0.03	0.28	0.03	0.01	0.03	0.05	0.01	0.01	0.09
F	0.02	0.01	0.01	0.01	0.01	0.01	0.01	0.01	0.02	0.04	0.11	0.01	0.02	0.51	0.01	0.03	0.02	0.02	0.12	0.04
Р	0.08	0.02	0.01	0.02	0.00	0.02	0.03	0.03	0.01	0.01	0.03	0.03	0.01	0.01	0.55	0.06	0.04	0.00	0.01	0.02
S	0.12	0.03	0.06	0.04	0.02	0.03	0.04	0.07	0.02	0.02	0.03	0.04	0.01	0.01	0.04	0.29	0.10	0.01	0.02	0.03
Т	0.10	0.02	0.04	0.03	0.01	0.02	0.04	0.03	0.01	0.04	0.03	0.05	0.02	0.01	0.03	0.12	0.35	0.00	0.01	0.06
W	0.02	0.03	0.01	0.01	0.01	0.01	0.01	0.02	0.01	0.01	0.05	0.01	0.01	0.04	0.01	0.03	0.01	0.63	0.06	0.02
Υ	0.02	0.02	0.03	0.02	0.01	0.01	0.01	0.01	0.05	0.02	0.04	0.01	0.01	0.13	0.01	0.03	0.02	0.02	0.51	0.02
W	0.08	0.01	0.01	0.01	0.01	0.01	0.02	0.02	0.01	0.14	0.10	0.02	0.03	0.02	0.01	0.03	0.05	0.01	0.01	0.40

Maximum likelihood can be used to determine the tree and ancestors

Consider a single site (independent of all others)

Summary

- Various distance metrics available to quantify sequence similarity
 - Fractional (*p*-distance)
 - Poisson corrected
 - Gamma corrected
- Also need to account for chemical nature of sequence
 - Transitions/transversion
 - Codon dynamics
 - "Fixed" DNA models
- Evolutionary models based on real data capture similar trends
- Transition rate matrices help model evolution probabilistically

Reading

- Zvelebil & Baum (2008) *Understanding Bioinformatics*
 - **Chapter 7** (7.1-3)
 - Chapter 8 (8.1)
- Kelley and Didulo, Computational Biology: A Hypertextbook
 - Chapter 6