Университет ИТМО

Институт прикладных компьютерных наук Глубокое обучение и генеративный искусственный интеллект

ОТЧЕТ ПО 5-Й ЛАБОРАТОРНОЙ РАБОТЕ курса «Эволюционные вычисления»

ПРОЕКТИРОВАНИЕ Э	ВОЛЮЦИОННОГО	АЛГОРИТМА	ДЛЯ ЗАДАЧИ
	РАССТАНОВКИ ФЕ	РЗЕЙ	

Студент: *Группа № М4130*

Батурина Ксения Александровна

СОДЕРЖАНИЕ

BI	ВЕДЕ	НИЕ	3
1	PEA	ЛИЗАЦИЯ И РЕЗУЛЬТАТЫ	4
	1.1	Выбор фреймворка и эволюционного алгоритма	4
	1.2	Анализ задачи и выделение критерия оптимизации	4
	1.3	Представление решения	4
	1.4	Условия терминации и характеристики для измерения	
		эффективности	5
	1.5	Настройка параметров и результаты экспериментов	5
2	BOI	ТРОСЫ	6
	2.1	Является ли задача оптимизационной или ограниченной?	6
	2.2	Как растет сложность задачи при увеличении размерности?	6

ВВЕДЕНИЕ

Код доступен в репозитории на GitHub: https://github.com/xeniabaturina/ITMO EVOL/tree/main/lab5.

Цель работы:

Освоить весь цикл разработки эволюционных алгоритмов, начиная с анализа проблемы и проектирования, заканчивая настройкой параметров и анализом эффективности.

Задачи работы:

- 1. Выбрать фреймворк (можно продолжить в Watchmaker).
- 2. Выбрать эволюционный алгоритм (ГА или другой).
- 3. Проанализировать задачу, выделить критерий для оптимизации или ограничения.
- 4. Спроектировать решение поставленной задачи, вид решения, способы вариаций и обработки возможных ограничений.
- 5. Сформировать условия терминации или сходимости к алгоритму.
- 6. Установить характеристики для измерения эффективности алгоритма.
- 7. Настроить параметры алгоритма.
- 8. Провести серии запусков при разных значениях N и провести анализ эффективности.
- 9. Ответить на вопросы:
 - Является ли задача оптимизационной или ограниченной?
 - Как растет сложность задачи при увеличении размерности?

1 РЕАЛИЗАЦИЯ И РЕЗУЛЬТАТЫ

1.1 Выбор фреймворка и эволюционного алгоритма

Для решения задачи были выбраны фреймворк Watchmaker и генетический алгоритм.

1.2 Анализ задачи и выделение критерия оптимизации

Основная задача состоит в такой расстановке N ферзей на доске, чтобы исключить взаимные атаки по горизонтали, вертикали и диагонали. Критерием оптимизации была выбрана минимизация количества конфликтов между ферзями.

1.3 Представление решения

Решение задачи — массив, где каждый элемент соответствует одному ряду шахматной доски, а значение элемента — номеру столбца, в котором находится ферзь в данном ряду. Таким образом, каждая конфигурация доски может быть однозначно описана этим массивом, это обеспечивает простое и эффективное представление решения.

Оператор кроссовера (QueenCrossover) ответственен за создание новых потомков из двух родителей (решений). Он случайным образом выбирает точку и обменивает две части родительских решений для формирования двух потомков.

Оператор мутации (QueenMutation) выполняет случайные изменения в решении, представляя случайное перемещение ферзя в другой столбец.

Фитнес-функция (QueenFitnessFunction) оценивает качество расстановки ферзей. Эта функция подсчитывает количество конфликтов, где конфликтом считается совпадение по горизонтали, вертикали или диагонали.

1.4 Условия терминации и характеристики для измерения эффективности

Процесс эволюции завершается после заданного числа поколений.

Основной характеристикой эффективности является количество конфликтов в лучшем найденном решении. Также важно учитывать количество итераций, потребовавшихся для сходимости.

1.5 Настройка параметров и результаты экспериментов

В соответствии с заданием была проведена серия запусков для решения задачи с размерностями 4, 8, 16, 32 и 64. В таблице ниже приведены размер доски, размер популяции, количество итераций алгоритма для всех запусков и количество конфликтов. Были подобраны оптимальные параметры алгоритма, такие как размер популяции и количество поколений, с учетом требований экспериментов.

Таблица 1 — Результаты производительности алгоритма.

N	Размер популяции	Количество итераций	Количество конфликтов
4	5	31,9	0,2
8	10	376,4	0,8
16	10	1210,7	1,9
32	5	2819,0	3,6
64	2	7682,8	6,4

2 ВОПРОСЫ

2.1 Является ли задача оптимизационной или ограниченной?

Рассматриваемая задача является оптимизационной, поскольку стремится к минимизации числа конфликтов.

2.2 Как растет сложность задачи при увеличении размерности?

Сложность задачи увеличивается экспоненциально с ростом размерности доски, что подчеркивает значимость эволюционных методов для решения подобных задач.