EE 628 Deep Learning Fall 2019

Lecture 11 11/07/2019

Assistant Prof. Sergul Aydore

Department of Electrical and Computer Engineering

Overview

- Last lecture we covered
 - Data Preparation for RNNs
 - Implementing RNNs from scratch
- Today, we will cover
 - Finish implementing RNN
 - GRUs and LSTMs
 - Attention Mechanism

Open notebook IN_CLASS_implementation_of_RNNs_from_scratch

Backpropagation Through Time

 Now we will delve a bit more deeply into the details of backpropagation for sequence models and why (and how) the math works.

Backpropagation Through Time

- Now we will delve a bit more deeply into the details of backpropagation for sequence models and why (and how) the math works.
- Forward propagation in a recurrent neural network is relatively straightforward.

Backpropagation Through Time

- Now we will delve a bit more deeply into the details of backpropagation for sequence models and why (and how) the math works.
- Forward propagation in a recurrent neural network is relatively straightforward.
- Back-propagation through time is actually a specific application of back propagation in recurrent neural networks.

The computation graph

Fig. 10.7.2: Computational dependencies for a recurrent neural network model with three time steps. Boxes represent variables (not shaded) or parameters (shaded) and circles represent operators.

• In a simple linear latent variable model, we have:

$$\mathbf{h}_t = \mathbf{W}_{hx}\mathbf{x}_t + \mathbf{W}_{hh}\mathbf{h}_{t-1} \text{ and } \mathbf{o}_t = \mathbf{W}_{oh}\mathbf{h}_t$$

j

• In a simple linear latent variable model, we have:

$$\mathbf{h}_t = \mathbf{W}_{hx}\mathbf{x}_t + \mathbf{W}_{hh}\mathbf{h}_{t-1} \text{ and } \mathbf{o}_t = \mathbf{W}_{oh}\mathbf{h}_t$$

• Given an objective function $L(\mathbf{x}, \mathbf{y}, \mathbf{W}) = \sum_{t=1}^{T} l(\mathbf{o}_t, y_t)$

J

• In a simple linear latent variable model, we have:

$$\mathbf{h}_t = \mathbf{W}_{hx}\mathbf{x}_t + \mathbf{W}_{hh}\mathbf{h}_{t-1} \text{ and } \mathbf{o}_t = \mathbf{W}_{oh}\mathbf{h}_t$$

- Given an objective function $L(\mathbf{x}, \mathbf{y}, \mathbf{W}) = \sum_{t=1}^{T} l(\mathbf{o}_t, y_t)$
- Derivatives wrt \mathbf{W}_{oh} is straightforward:

$$\partial_{\mathbf{W}_{oh}} L = \sum_{t=1}^{T} \operatorname{prod} \left(\partial_{\mathbf{o}_{t}} l(\mathbf{o}_{t}, y_{t}), \mathbf{h}_{t} \right)$$

j.

• In a simple linear latent variable model, we have:

$$\mathbf{h}_t = \mathbf{W}_{hx}\mathbf{x}_t + \mathbf{W}_{hh}\mathbf{h}_{t-1} \text{ and } \mathbf{o}_t = \mathbf{W}_{oh}\mathbf{h}_t$$

- Given an objective function $L(\mathbf{x}, \mathbf{y}, \mathbf{W}) = \sum_{t=1}^{T} l(\mathbf{o}_t, y_t)$
- Derivatives wrt \mathbf{W}_{oh} is straightforward:

$$\partial_{\mathbf{W}_{oh}} L = \sum_{t=1}^{I} \operatorname{prod} \left(\partial_{\mathbf{o}_{t}} l(\mathbf{o}_{t}, y_{t}), \mathbf{h}_{t} \right)$$

• The dependency on \mathbf{W}_{hh} and \mathbf{W}_{hx} is a bit tricky

$$\partial_{\mathbf{W}_{hh}} L = \sum_{t=1}^{T} \operatorname{prod} \left(\partial_{\mathbf{o}_{t}} l(\mathbf{o}_{t}, y_{t}), \mathbf{W}_{oh}, \partial_{\mathbf{W}_{hh}} \mathbf{h}_{t} \right)$$
$$\partial_{\mathbf{W}_{hx}} L = \sum_{t=1}^{T} \operatorname{prod} \left(\partial_{\mathbf{o}_{t}} l(\mathbf{o}_{t}, y_{t}), \mathbf{W}_{oh}, \partial_{\mathbf{W}_{hx}} \mathbf{h}_{t} \right)$$

• In a simple linear latent variable model, we have:

$$\mathbf{h}_t = \mathbf{W}_{hx}\mathbf{x}_t + \mathbf{W}_{hh}\mathbf{h}_{t-1} \text{ and } \mathbf{o}_t = \mathbf{W}_{oh}\mathbf{h}_t$$

- Given an objective function $L(\mathbf{x}, \mathbf{y}, \mathbf{W}) = \sum_{t=1}^{T} l(\mathbf{o}_t, y_t)$
- Derivatives wrt \mathbf{W}_{oh} is straightforward:

$$\partial_{\mathbf{W}_{oh}} L = \sum_{t=1}^{I} \operatorname{prod} \left(\partial_{\mathbf{o}_{t}} l(\mathbf{o}_{t}, y_{t}), \mathbf{h}_{t} \right)$$

• The dependency on \mathbf{W}_{hh} and \mathbf{W}_{hx} is a bit tricky

$$\partial_{\mathbf{W}_{hh}} L = \sum_{t=1}^{T} \operatorname{prod}\left(\partial_{\mathbf{o}_{t}} l(\mathbf{o}_{t}, y_{t}), \mathbf{W}_{oh}, \partial_{\mathbf{W}_{hh}} \mathbf{h}_{t}\right)$$

$$\partial_{\mathbf{W}_{hx}} L = \sum_{t=1}^{T} \operatorname{prod} \left(\partial_{\mathbf{o}_{t}} l(\mathbf{o}_{t}, y_{t}), \mathbf{W}_{oh}, \partial_{\mathbf{W}_{hx}} \mathbf{h}_{t} \right)$$

$$\partial_{\mathbf{W}_{hx}} \mathbf{h}_{t} = \sum_{j=1}^{t} \left(\mathbf{W}_{hh}^{\top} \right)^{t-j} \mathbf{x}_{j}.$$

$$\partial_{\mathbf{W}_{hh}}\mathbf{h}_{t}=\sum_{j=1}^{t}\left(\mathbf{W}_{hh}^{\top}
ight)^{t-j}\mathbf{h}_{j}$$

$$\partial_{\mathbf{W}_{hx}} \mathbf{h}_t = \sum_{j=1}^t \left(\mathbf{W}_{hh}^{\top} \right)^{t-j} \mathbf{x}_j$$

Problems with these gradients

- It pays to store intermediate results
 - i.e. powers of \mathbf{W}_{hh}

Problems with these gradients

- It pays to store intermediate results
 - i.e. powers of \mathbf{W}_{hh}
- Even this simple linear example involves potentially very large powers of \mathbf{W}_{hh}^{j} .
 - In it, eigenvalues smaller than 1 vanish for large j and eigenvalues larger than 1 diverge.
 - This is numerically unstable and gives undue importance to potentially irrelevant past detail.

Problems with these gradients

- It pays to store intermediate results
 - i.e. powers of \mathbf{W}_{hh}
- Even this simple linear example involves potentially very large powers of \mathbf{W}_{hh}^{j} .
 - In it, eigenvalues smaller than 1 vanish for large j and eigenvalues larger than 1 diverge.
 - This is numerically unstable and gives undue importance to potentially irrelevant past detail.
- One way to address this is to truncate the sum at a computationally convenient size.
 - That is why we detached the gradients in the code

• We found that long products of matrices can lead to vanishing or divergent gradients.

- We found that long products of matrices can lead to vanishing or divergent gradients.
- What such gradient anomalies mean in practice:

- We found that long products of matrices can lead to vanishing or divergent gradients.
- What such gradient anomalies mean in practice:
 - We might encounter a situation where an early observation is highly significant for predicting all future observations -> memory cell

- We found that long products of matrices can lead to vanishing or divergent gradients.
- What such gradient anomalies mean in practice:
 - We might encounter a situation where an early observation is highly significant for predicting all future observations -> memory cell
 - We might encounter situations where some symbols carry no pertinent observation -> skipping such symbols

- We found that long products of matrices can lead to vanishing or divergent gradients.
- What such gradient anomalies mean in practice:
 - We might encounter a situation where an early observation is highly significant for predicting all future observations -> memory cell
 - We might encounter situations where some symbols carry no pertinent observation -> skipping such symbols
 - We might encounter situations where there is a logical break between parts of a sequence -> resetting our internal state

- We found that long products of matrices can lead to vanishing or divergent gradients.
- What such gradient anomalies mean in practice:
 - We might encounter a situation where an early observation is highly significant for predicting all future observations -> memory cell
 - We might encounter situations where some symbols carry no pertinent observation -> skipping such symbols
 - We might encounter situations where there is a logical break between parts of a sequence -> resetting our internal state
- A number of methods have been proposed to address this.
 - One of the earliest is the Long Short Term Memory (LSTM).

- We found that long products of matrices can lead to vanishing or divergent gradients.
- What such gradient anomalies mean in practice:
 - We might encounter a situation where an early observation is highly significant for predicting all future observations -> memory cell
 - We might encounter situations where some symbols carry no pertinent observation -> skipping such symbols
 - We might encounter situations where there is a logical break between parts of a sequence -> resetting our internal state
- A number of methods have been proposed to address this.
 - One of the earliest is the Long Short Term Memory (LSTM).
- The Gated Recurrent Unit (GRU) is a slightly more streamlined variant that often offers comparable performance and is significantly faster to compute.

• In GRUs, we have dedicated mechanisms for when the hidden state should be updated and also when it should be reset.

- In GRUs, we have dedicated mechanisms for when the hidden state should be updated and also when it should be reset.
- These mechanisms are learned.

- In GRUs, we have dedicated mechanisms for when the hidden state should be updated and also when it should be reset.
- These mechanisms are learned.
 - For instance, if the first symbol is of great importance we will learn not to update the hidden state after the first observation.

- In GRUs, we have dedicated mechanisms for when the hidden state should be updated and also when it should be reset.
- These mechanisms are learned.
 - For instance, if the first symbol is of great importance we will learn not to update the hidden state after the first observation.
 - Likewise, we will learn to skip irrelevant temporary observations.

- In GRUs, we have dedicated mechanisms for when the hidden state should be updated and also when it should be reset.
- These mechanisms are learned.
 - For instance, if the first symbol is of great importance we will learn not to update the hidden state after the first observation.
 - Likewise, we will learn to skip irrelevant temporary observations.
 - Lastly, we will learn to reset the latent state whenever needed.

• We engineer them to be vectors with entries in (0, 1) such that we can perform convex combinations.

- We engineer them to be vectors with entries in (0, 1) such that we can perform convex combinations.
- For instance, a reset variable would allow us to control how much of the previous state we might still want to remember.

- We engineer them to be vectors with entries in (0, 1) such that we can perform convex combinations.
- For instance, a reset variable would allow us to control how much of the previous state we might still want to remember.
- Likewise, an update variable would allow us to control how much of the new state is just a copy of the old state.

- We engineer them to be vectors with entries in (0, 1) such that we can perform convex combinations.
- For instance, a reset variable would allow us to control how much of the previous state we might still want to remember.
- Likewise, an update variable would allow us to control how much of the new state is just a copy of the old state.

- We engineer them to be vectors with entries in (0, 1) such that we can perform convex combinations.
- For instance, a reset variable would allow us to control how much of the previous state we might still want to remember.
- Likewise, an update variable would allow us to control how much of the new state is just a copy of the old state.

$$\mathbf{R}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xr} + \mathbf{H}_{t-1}\mathbf{W}_{hr} + \mathbf{b}_{r})$$
$$\mathbf{Z}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xz} + \mathbf{H}_{t-1}\mathbf{W}_{hz} + \mathbf{b}_{z})$$

• In a conventional RNN we would have an update of the form

$$\mathbf{H}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh} + \mathbf{b}_h).$$

• In a conventional RNN we would have an update of the form

$$\mathbf{H}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh} + \mathbf{b}_h).$$

• If we want to be able to reduce the influence of the previous states we can multiply \mathbf{H}_{t-1} with \mathbf{R}_t elementwise.

In a conventional RNN we would have an update of the form

$$\mathbf{H}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh} + \mathbf{b}_h).$$

- If we want to be able to reduce the influence of the previous states we can multiply \mathbf{H}_{t-1} with \mathbf{R}_t elementwise.
 - Whenever the entries in \mathbf{R}_t are close to 1 we recover a conventional deep RNN.

In a conventional RNN we would have an update of the form

$$\mathbf{H}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh} + \mathbf{b}_h).$$

- If we want to be able to reduce the influence of the previous states we can multiply \mathbf{H}_{t-1} with \mathbf{R}_t elementwise.
 - Whenever the entries in \mathbf{R}_t are close to 1 we recover a conventional deep RNN.
 - For all entries of \mathbf{R}_t that are close to 0 the hidden state is the result of an MLP with \mathbf{X}_t as input.

Reset Gate in action

In a conventional RNN we would have an update of the form

$$\mathbf{H}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh} + \mathbf{b}_h).$$

- If we want to be able to reduce the influence of the previous states we can multiply \mathbf{H}_{t-1} with \mathbf{R}_t elementwise.
 - Whenever the entries in \mathbf{R}_t are close to 1 we recover a conventional deep RNN.
 - For all entries of \mathbf{R}_t that are close to 0 the hidden state is the result of an MLP with \mathbf{X}_t as input.
- This leads to the following candidate for a new hidden state

$$\tilde{\mathbf{H}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + (\mathbf{R}_t \odot \mathbf{H}_{t-1}) \mathbf{W}_{hh} + \mathbf{b}_h)$$

Reset Gate in action

In a conventional RNN we would have an update of the form

$$\mathbf{H}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + \mathbf{H}_{t-1} \mathbf{W}_{hh} + \mathbf{b}_h).$$

- If we want to be able to reduce the influence of the previous states we can multiply \mathbf{H}_{t-1} with \mathbf{R}_t elementwise.
 - Whenever the entries in \mathbf{R}_t are close to 1 we recover a conventional deep RNN.
 - For all entries of \mathbf{R}_t that are close to 0 the hidden state is the result of an MLP with \mathbf{X}_t as input.
- This leads to the following candidate for a new hidden state

$$\tilde{\mathbf{H}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xh} + (\mathbf{R}_t \odot \mathbf{H}_{t-1}) \mathbf{W}_{hh} + \mathbf{b}_h)$$

• This determines the extent to which the new state \mathbf{H}_t is just the old state \mathbf{H}_{t-1} and by how much the new candidate state $\widetilde{\mathbf{H}}_t$ is used.

- This determines the extent to which the new state \mathbf{H}_t is just the old state \mathbf{H}_{t-1} and by how much the new candidate state $\widetilde{\mathbf{H}}_t$ is used.
- The gating variable \mathbf{Z}_t can be used for this purpose leads to the final update equation for the GRU

- This determines the extent to which the new state \mathbf{H}_t is just the old state \mathbf{H}_{t-1} and by how much the new candidate state $\widetilde{\mathbf{H}}_t$ is used.
- The gating variable \mathbf{Z}_t can be used for this purpose leads to the final update equation for the GRU

$$\mathbf{H}_t = \mathbf{Z}_t \odot \mathbf{H}_{t-1} + (1 - \mathbf{Z}_t) \odot \tilde{\mathbf{H}}_t.$$

- This determines the extent to which the new state \mathbf{H}_t is just the old state \mathbf{H}_{t-1} and by how much the new candidate state $\widetilde{\mathbf{H}}_t$ is used.
- The gating variable \mathbf{Z}_t can be used for this purpose leads to the final update equation for the GRU

$$\mathbf{H}_t = \mathbf{Z}_t \odot \mathbf{H}_{t-1} + (1 - \mathbf{Z}_t) \odot \tilde{\mathbf{H}}_t.$$

In summary

- GRUs have the following two distinguishing features:
 - Reset gates help capture short-term dependencies in time series.
 - Update gates help capture long-term dependencies in time series

• It shares many of the properties of the Gated Recurrent Unit (GRU).

- It shares many of the properties of the Gated Recurrent Unit (GRU).
- Its design is slightly more complex.

- It shares many of the properties of the Gated Recurrent Unit (GRU).
- Its design is slightly more complex.
- Arguably it is inspired by logic gates of a computer. To control a memory cell we need a number of gates.

- It shares many of the properties of the Gated Recurrent Unit (GRU).
- Its design is slightly more complex.
- Arguably it is inspired by logic gates of a computer. To control a memory cell we need a number of gates.
 - One gate is needed to read out the entries from the cell -> output gate

- It shares many of the properties of the Gated Recurrent Unit (GRU).
- Its design is slightly more complex.
- Arguably it is inspired by logic gates of a computer. To control a memory cell we need a number of gates.
 - One gate is needed to read out the entries from the cell -> output gate
 - A second gate is needed to decide when to read data into the cell -> input gate

- It shares many of the properties of the Gated Recurrent Unit (GRU).
- Its design is slightly more complex.
- Arguably it is inspired by logic gates of a computer. To control a memory cell we need a number of gates.
 - One gate is needed to read out the entries from the cell -> output gate
 - A second gate is needed to decide when to read data into the cell -> input gate
 - Lastly, we need a mechanism to reset the contents of the cell -> forget gate

• Three gates are introduced in LSTMs: the input gate, the forget gate, and the output gate.

- Three gates are introduced in LSTMs: the input gate, the forget gate, and the output gate.
- The gates are defined as follows: the input gate $\mathbf{I}_t \in R^{n \times h}$, the forget gate is $\mathbf{F}_t \in R^{n \times h}$, and the output gate is $\mathbf{O}_t \in R^{n \times h}$.

- Three gates are introduced in LSTMs: the input gate, the forget gate, and the output gate.
- The gates are defined as follows: the input gate $\mathbf{I}_t \in R^{n \times h}$, the forget gate is $\mathbf{F}_t \in R^{n \times h}$, and the output gate is $\mathbf{O}_t \in R^{n \times h}$.

$$\mathbf{I}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xi} + \mathbf{H}_{t-1}\mathbf{W}_{hi} + \mathbf{b}_{i}),$$

$$\mathbf{F}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xf} + \mathbf{H}_{t-1}\mathbf{W}_{hf} + \mathbf{b}_{f}),$$

$$\mathbf{O}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xo} + \mathbf{H}_{t-1}\mathbf{W}_{ho} + \mathbf{b}_{o}),$$

- Three gates are introduced in LSTMs: the input gate, the forget gate, and the output gate.
- The gates are defined as follows: the input gate $\mathbf{I}_t \in R^{n \times h}$, the forget gate is $\mathbf{F}_t \in R^{n \times h}$, and the output gate is $\mathbf{O}_t \in R^{n \times h}$.

$$\mathbf{I}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xi} + \mathbf{H}_{t-1}\mathbf{W}_{hi} + \mathbf{b}_{i}),$$

$$\mathbf{F}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xf} + \mathbf{H}_{t-1}\mathbf{W}_{hf} + \mathbf{b}_{f}),$$

$$\mathbf{O}_{t} = \sigma(\mathbf{X}_{t}\mathbf{W}_{xo} + \mathbf{H}_{t-1}\mathbf{W}_{ho} + \mathbf{b}_{o}),$$

Candidate memory cell is defined as

$$\tilde{\mathbf{C}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$$

t

Candidate memory cell is defined as

$$\tilde{\mathbf{C}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$$

In GRUs we had a single mechanism to govern input and forgetting.

Candidate memory cell is defined as

$$\tilde{\mathbf{C}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$$

- In GRUs we had a single mechanism to govern input and forgetting.
- Here we have two parameters, \mathbf{I}_t which governs how much we take new data into account via $\tilde{\mathbf{C}}_t$ and the forget parameter \mathbf{F}_t which addresses how much we of the old memory cell content \mathbf{C}_{t-1} we retain.

 \mathfrak{I}_t

Candidate memory cell is defined as

$$\tilde{\mathbf{C}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$$

- In GRUs we had a single mechanism to govern input and forgetting.
- Here we have two parameters, \mathbf{I}_t which governs how much we take new data into account via $\tilde{\mathbf{C}}_t$ and the forget parameter \mathbf{F}_t which addresses how much we of the old memory cell content \mathbf{C}_{t-1} we retain.

$$\mathbf{C}_t = \mathbf{F}_t \odot \mathbf{C}_{t-1} + \mathbf{I}_t \odot \tilde{\mathbf{C}}_t$$
.

Candidate memory cell is defined as

$$\tilde{\mathbf{C}}_t = \tanh(\mathbf{X}_t \mathbf{W}_{xc} + \mathbf{H}_{t-1} \mathbf{W}_{hc} + \mathbf{b}_c)$$

- In GRUs we had a single mechanism to govern input and forgetting.
- Here we have two parameters, \mathbf{I}_t which governs how much we take new data into account via $\tilde{\mathbf{C}}_t$ and the forget parameter \mathbf{F}_t which addresses how much we of the old memory cell content \mathbf{C}_{t-1} we retain.

$$\mathbf{C}_t = \mathbf{F}_t \odot \mathbf{C}_{t-1} + \mathbf{I}_t \odot \tilde{\mathbf{C}}_t.$$

• Lastly we need to define how to compute the hidden state \mathbf{H}_t

- Lastly we need to define how to compute the hidden state \mathbf{H}_t
- This is where the output gate comes into play.

$$\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t).$$

- Lastly we need to define how to compute the hidden state \mathbf{H}_t
- This is where the output gate comes into play.

$$\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t).$$

 Whenever the output gate is 1 we effectively pass all memory information through to the predictor

- Lastly we need to define how to compute the hidden state \mathbf{H}_t
- This is where the output gate comes into play.

$$\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t).$$

- Whenever the output gate is 1 we effectively pass all memory information through to the predictor
- whereas for output 0 we retain all information only within the memory cell and perform no further processing.

- Lastly we need to define how to compute the hidden state \mathbf{H}_t
- This is where the output gate comes into play.

$$\mathbf{H}_t = \mathbf{O}_t \odot \tanh(\mathbf{C}_t).$$

- Whenever the output gate is 1 we effectively pass all memory information through to the predictor
- whereas for output 0 we retain all information only within the memory cell and perform no further processing.

Deep Recurrent Neural Networks

 Consider a deep recurrent neural network with L hidden layers.

Deep Recurrent Neural Networks

- Consider a deep recurrent neural network with L hidden layers.
- Each hidden state is continuously passed to the next time step of the current layer and the next layer of the current time step.

$$\mathbf{H}_{t}^{(1)} = f_{1}\left(\mathbf{X}_{t}, \mathbf{H}_{t-1}^{(1)}\right)$$

$$\mathbf{H}_{t}^{(l)} = f_{l}\left(\mathbf{H}_{t}^{(l-1)}, \mathbf{H}_{t-1}^{(l)}\right)$$

$$\mathbf{O}_{t} = g\left(\mathbf{H}_{t}^{(L)}\right)$$

Deep Recurrent Neural Networks

- Consider a deep recurrent neural network with L hidden layers.
- Each hidden state is continuously passed to the next time step of the current layer and the next layer of the current time step.

$$\mathbf{H}_{t}^{(1)} = f_{1}\left(\mathbf{X}_{t}, \mathbf{H}_{t-1}^{(1)}\right)$$

$$\mathbf{H}_{t}^{(l)} = f_{l}\left(\mathbf{H}_{t}^{(l-1)}, \mathbf{H}_{t-1}^{(l)}\right)$$

$$\mathbf{O}_{t} = g\left(\mathbf{H}_{t}^{(L)}\right)$$

• So far we assumed that our goal is to model the next word given what we've seen so far.

- So far we assumed that our goal is to model the next word given what we've seen so far.
- While this is a typical scenario, it is not the only one we might encounter.

- So far we assumed that our goal is to model the next word given what we've seen so far.
- While this is a typical scenario, it is not the only one we might encounter.
- Consider the following three tasks of filling in the blanks in a text:

```
1. I am ____
```

- 2. I am ____ very hungry.
- 3. I am ____ very hungry, I could eat half a pig.

- So far we assumed that our goal is to model the next word given what we've seen so far.
- While this is a typical scenario, it is not the only one we might encounter.
- Consider the following three tasks of filling in the blanks in a text:

```
    I am _____
    I am _____ very hungry.
    I am _____ very hungry, I could eat half a pig.
```

• Clearly the end of the phrase (if available) conveys significant information about which word to pick.

Bidirectional Model

 Instead of running an RNN only in forward mode starting from the first symbol we start another one from the last symbol running back to front.

Bidirectional Model

- Instead of running an RNN only in forward mode starting from the first symbol we start another one from the last symbol running back to front.
- Bidirectional recurrent neural networks add a hidden layer that passes information in a backward direction to more flexibly process such information.

Bidirectional Model

- Instead of running an RNN only in forward mode starting from the first symbol we start another one from the last symbol running back to front.
- Bidirectional recurrent neural networks add a hidden layer that passes information in a backward direction to more flexibly process such information.

$$\overrightarrow{\mathbf{H}}_{t} = \phi(\mathbf{X}_{t}\mathbf{W}_{xh}^{(f)} + \overrightarrow{\mathbf{H}}_{t-1}\mathbf{W}_{hh}^{(f)} + \mathbf{b}_{h}^{(f)}),$$

$$\overleftarrow{\mathbf{H}}_{t} = \phi(\mathbf{X}_{t}\mathbf{W}_{xh}^{(b)} + \overleftarrow{\mathbf{H}}_{t+1}\mathbf{W}_{hh}^{(b)} + \mathbf{b}_{h}^{(b)}),$$

$$\mathbf{O}_t = \mathbf{H}_t \mathbf{W}_{hq} + \mathbf{b}_q,$$

Bidirectional Model

- Instead of running an RNN only in forward mode starting from the first symbol we start another one from the last symbol running back to front.
- Bidirectional recurrent neural networks add a hidden layer that passes information in a backward direction to more flexibly process such information.

$$\overrightarrow{\mathbf{H}}_{t} = \phi(\mathbf{X}_{t}\mathbf{W}_{xh}^{(f)} + \overrightarrow{\mathbf{H}}_{t-1}\mathbf{W}_{hh}^{(f)} + \mathbf{b}_{h}^{(f)}),$$

$$\overleftarrow{\mathbf{H}}_{t} = \phi(\mathbf{X}_{t}\mathbf{W}_{xh}^{(b)} + \overleftarrow{\mathbf{H}}_{t+1}\mathbf{W}_{hh}^{(b)} + \mathbf{b}_{h}^{(b)}),$$

$$\mathbf{O}_t = \mathbf{H}_t \mathbf{W}_{hq} + \mathbf{b}_q,$$

• The encoder-decoder architecture is a neural network design pattern.

- The encoder-decoder architecture is a neural network design pattern.
- The encoder's role is encoding the inputs into state, which often contains several tensors.

- The encoder-decoder architecture is a neural network design pattern.
- The encoder's role is encoding the inputs into state, which often contains several tensors.
- Then the state is passed into the decoder to generate the outputs.

- The encoder-decoder architecture is a neural network design pattern.
- The encoder's role is encoding the inputs into state, which often contains several tensors.
- Then the state is passed into the decoder to generate the outputs.
- In machine translation, the encoder transforms a source sentence, e.g. "Hello world.", into state, e.g. a vector, that captures its semantic information.

- The encoder-decoder architecture is a neural network design pattern.
- The encoder's role is encoding the inputs into state, which often contains several tensors.
- Then the state is passed into the decoder to generate the outputs.
- In machine translation, the encoder transforms a source sentence, e.g. "Hello world.", into state, e.g. a vector, that captures its semantic information.
- The decoder then uses this state to generate the translated target sentence,
 e.g. "Bonjour le monde.".

- The encoder-decoder architecture is a neural network design pattern.
- The encoder's role is encoding the inputs into state, which often contains several tensors.
- Then the state is passed into the decoder to generate the outputs.
- In machine translation, the encoder transforms a source sentence, e.g. "Hello world.", into state, e.g. a vector, that captures its semantic information.
- The decoder then uses this state to generate the translated target sentence, e.g. "Bonjour le monde.".

• The sequence to sequence (seq2seq) model is based on the encoderdecoder architecture to generate a sequence output for a sequence input.

- The sequence to sequence (seq2seq) model is based on the encoderdecoder architecture to generate a sequence output for a sequence input.
- Both the encoder and the decoder use recurrent neural networks to handle sequence inputs.

- The sequence to sequence (seq2seq) model is based on the encoderdecoder architecture to generate a sequence output for a sequence input.
- Both the encoder and the decoder use recurrent neural networks to handle sequence inputs.
- The hidden state of the encoder is used directly to initialize the decoder hidden state to pass information from the encoder to the decoder.

- The sequence to sequence (seq2seq) model is based on the encoderdecoder architecture to generate a sequence output for a sequence input.
- Both the encoder and the decoder use recurrent neural networks to handle sequence inputs.
- The hidden state of the encoder is used directly to initialize the decoder hidden state to pass information from the encoder to the decoder.

Fig. 10.14.1: The sequence to sequence model architecture.

Seq2SeqEncoder

```
# Saved in the d2l package for later use
class Seq2SeqEncoder(d2l.Encoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 dropout=0, **kwarqs):
        super(Seg2SegEncoder, self). init (**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = rnn.LSTM(num hiddens, num layers, dropout=dropout)
   def forward(self, X, *args):
        X = self.embedding(X) # X shape: (batch size, seg len, embed size)
        X = X.swapaxes(0, 1) # RNN needs first axes to be time
        state = self.rnn.begin state(batch size=X.shape[1], ctx=X.context)
        out, state = self.rnn(X, state)
        # The shape of out is (seg len, batch size, num hiddens).
        # state contains the hidden state and the memory cell
        # of the last time step, the shape is (num layers, batch size, num hiddens)
        return out, state
```

Seq2SeqEncoder

Seq2SeqDecoder

```
# Saved in the d2l package for later use
class Seq2SeqDecoder(d21.Decoder):
    def __init__(self, vocab_size, embed_size, num_hiddens, num_layers,
                 dropout=0, **kwargs):
        super(Seq2SeqDecoder, self).__init__(**kwargs)
        self.embedding = nn.Embedding(vocab_size, embed_size)
        self.rnn = rnn.LSTM(num_hiddens, num_layers, dropout=dropout)
        self.dense = nn.Dense(vocab_size, flatten=False)
    def init_state(self, enc_outputs, *args):
        return enc_outputs[1]
    def forward(self, X, state):
        X = self.embedding(X).swapaxes(0, 1)
        out, state = self.rnn(X, state)
        # Make the batch to be the first dimension to simplify loss computation.
        out = self.dense(out).swapaxes(0, 1)
        return out, state
```

Add dense layer with the hidden size to be the vocabulary size

Seq2SeqDecoder

```
((4, 7, 10), 2, (2, 4, 16), (2, 4, 16))
```

• So far, we encode the source sequence input information in the recurrent unit state and then pass it to the decoder to generate the target sequence.

- So far, we encode the source sequence input information in the recurrent unit state and then pass it to the decoder to generate the target sequence.
- A token in the target sequence may closely relate to some tokens in the source sequence instead of the whole source sequence.
 - For example, when translating "Hello world." to "Bonjour le monde.", "Bonjour" maps to "Hello" and "monde" maps to "world".

- So far, we encode the source sequence input information in the recurrent unit state and then pass it to the decoder to generate the target sequence.
- A token in the target sequence may closely relate to some tokens in the source sequence instead of the whole source sequence.
 - For example, when translating "Hello world." to "Bonjour le monde.", "Bonjour" maps to "Hello" and "monde" maps to "world".
- In the seq2seq model, the decoder may implicitly select the corresponding information from the state passed by the decoder.

- So far, we encode the source sequence input information in the recurrent unit state and then pass it to the decoder to generate the target sequence.
- A token in the target sequence may closely relate to some tokens in the source sequence instead of the whole source sequence.
 - For example, when translating "Hello world." to "Bonjour le monde.", "Bonjour" maps to "Hello" and "monde" maps to "world".
- In the seq2seq model, the decoder may implicitly select the corresponding information from the state passed by the decoder.
- The attention mechanism, however, makes this selection explicit.

 Attention is a generalized pooling method with bias alignment over inputs.

- Attention is a generalized pooling method with bias alignment over inputs.
- The core component in the attention mechanism is the attention layer.

- Attention is a generalized pooling method with bias alignment over inputs.
- The core component in the attention mechanism is the attention layer.
- An input of the attention layer is called a query.

- Attention is a generalized pooling method with bias alignment over inputs.
- The core component in the attention mechanism is the attention layer.
- An input of the attention layer is called a query.
- For a query, the attention layer returns the output based on its memory, which is a set of key-value pairs.

- Attention is a generalized pooling method with bias alignment over inputs.
- The core component in the attention mechanism is the attention layer.
- An input of the attention layer is called a query.
- For a query, the attention layer returns the output based on its memory, which is a set of key-value pairs.
- Assume a query $\mathbf{q} \in \mathbb{R}^{d_q}$

- Attention is a generalized pooling method with bias alignment over inputs.
- The core component in the attention mechanism is the attention layer.
- An input of the attention layer is called a query.
- For a query, the attention layer returns the output based on its memory, which is a set of key-value pairs.
- Assume a query $\mathbf{q} \in \mathbb{R}^{d_q}$
- The memory contains n key-value pairs $(\mathbf{k}_1, \mathbf{v}_1), \dots, (\mathbf{k}_n, \mathbf{v}_n)$ with $\mathbf{k}_i \in \mathbb{R}^{d_k}, \ \mathbf{v}_i \in \mathbb{R}^{d_v}$

- Attention is a generalized pooling method with bias alignment over inputs.
- The core component in the attention mechanism is the attention layer.
- An input of the attention layer is called a query.
- For a query, the attention layer returns the output based on its memory, which is a set of key-value pairs.
- Assume a query $\mathbf{q} \in \mathbb{R}^{d_q}$
- The memory contains n key-value pairs $(\mathbf{k}_1, \mathbf{v}_1), \dots, (\mathbf{k}_n, \mathbf{v}_n)$ with $\mathbf{k}_i \in \mathbb{R}^{d_k}$, $\mathbf{v}_i \in \mathbb{R}^{d_v}$
- The attention layer then returns an output $\mathbf{o} \in \mathbb{R}^{d_v}$

• To compute the output, we first assume there is a score function α which measures the similarity between the query and a key. Then we compute all n scores a_1, \ldots, a_n by

$$a_i = \alpha(\mathbf{q}, \mathbf{k}_i).$$

• To compute the output, we first assume there is a score function α which measures the similarity between the query and a key. Then we compute all n scores a_1, \ldots, a_n by

$$a_i = \alpha(\mathbf{q}, \mathbf{k}_i).$$

Next we use softmax to obtain the attention weights

$$b_1, \ldots, b_n = \operatorname{softmax}(a_1, \ldots, a_n).$$

• To compute the output, we first assume there is a score function α which measures the similarity between the query and a key. Then we compute all n scores a_1, \ldots, a_n by

$$a_i = \alpha(\mathbf{q}, \mathbf{k}_i).$$

Next we use softmax to obtain the attention weights

$$b_1, \ldots, b_n = \operatorname{softmax}(a_1, \ldots, a_n).$$

Then the output is the weighted sum of the values.

$$\mathbf{o} = \sum_{i=1}^{n} b_i \mathbf{v}_i.$$

• To compute the output, we first assume there is a score function α which measures the similarity between the query and a key. Then we compute all n scores a_1, \ldots, a_n by

$$a_i = \alpha(\mathbf{q}, \mathbf{k}_i).$$

Next we use softmax to obtain the attention weights

$$b_1, \ldots, b_n = \operatorname{softmax}(a_1, \ldots, a_n).$$

Then the output is the weighted sum of the values.

$$\mathbf{o} = \sum_{i=1}^{n} b_i \mathbf{v}_i.$$

Different choices of the score function lead to different attention layers.

Dot Product Attention

• The dot product assumes the query has the same dimension as the keys, namely $\mathbf{q}, \mathbf{k}_i \in \mathbb{R}^d$

Dot Product Attention

- The dot product assumes the query has the same dimension as the keys, namely $\mathbf{q}, \mathbf{k}_i \in \mathbb{R}^d$
- It computes the score by an inner product between the query and a key, often then divided by \sqrt{d} to make the scores less sensitive to the dimension d.

$$\alpha(\mathbf{q}, \mathbf{k}) = \langle \mathbf{q}, \mathbf{k} \rangle / \sqrt{d}.$$

Dot Product Attention

- The dot product assumes the query has the same dimension as the keys, namely $\mathbf{q}, \mathbf{k}_i \in \mathbb{R}^d$
- It computes the score by an inner product between the query and a key, often then divided by \sqrt{d} to make the scores less sensitive to the dimension d.

$$\alpha(\mathbf{q}, \mathbf{k}) = \langle \mathbf{q}, \mathbf{k} \rangle / \sqrt{d}.$$

• Assume $\mathbf{Q} \in \mathbb{R}^{m \times d}$ contains m queries and $\mathbf{K} \in \mathbb{R}^{n \times d}$ has all n keys. We can compute all mn scores by

$$\alpha(\mathbf{Q}, \mathbf{K}) = \mathbf{Q}\mathbf{K}^T / \sqrt{d}.$$

Multilayer Perceptron Attention

• In multilayer perceptron attention, we first project both query and keys into \mathbb{R}^h .

Multilayer Perceptron Attention

- In multilayer perceptron attention, we first project both query and keys into \mathbb{R}^h .
- Given learnable parameters $\mathbf{W}_k \in \mathbb{R}^{h \times d_k}$, $\mathbf{W}_q \in \mathbb{R}^{h \times d_q}$, and $\mathbf{v} \in \mathbb{R}^p$, the score function is defined by

$$\alpha(\mathbf{k}, \mathbf{q}) = \mathbf{v}^T \tanh(\mathbf{W}_k \mathbf{k} + \mathbf{W}_q \mathbf{q}).$$

Sequence to Sequence with Attention Mechanism

• Now, we add the attention mechanism to the sequence to sequence model.

Sequence to Sequence with Attention Mechanism

- Now, we add the attention mechanism to the sequence to sequence model.
- The memory of the attention layer consists of the encoder outputs of each time step.

Sequence to Sequence with Attention Mechanism

- Now, we add the attention mechanism to the sequence to sequence model.
- The memory of the attention layer consists of the encoder outputs of each time step.
- During decoding, the decoder output from the previous time step is used as the query, the attention output is then fed into the decoder.

Transformer

- The Transformer model is also based on the encoder-decoder architecture.
- The transformer replaces the recurrent layers in seq2seq with attention layers.
- Each item in the sequential is copied as the query, the key and the value.
- We call such an attention layer as a self-attention layer.

Transformer

- The source sequence embeddings are fed into n repeated blocks.
- The outputs of the last block are then used as attention memory for the decoder.
- The target sequence embeddings are similarly fed into *n* repeated blocks in the decoder.
- The final outputs are obtained by applying a dense layer with vocabulary size to the last block's outputs.

