

Enfermedad Dengue en la República Argentina

Aplicación de Machine Learning para su estudio y predicción de casos

Fresca Lorenzo ¹, Mojico Ailín¹, Rosselló Matías ¹

¹Universidad Tecnológica Nacional, Facultad Regional Buenos Aires

Introducción

El virus del dengue afecta a las zonas con climas tropicales y subtropicales. Para el estudio y predicción de casos de dengue en la República Argentina se utilizaron los registros de casos de los últimos 3 años y los registros de cada centro de medición del Servicio Meteorológico Nacional.

El objetivo es poder predecir la cantidad de casos de dengue que puedan contabilizarse en cada provincia argentina, según determinadas variables meteorológicas y basándonos en los casos históricos.

Datasets

Los datasets se obtuvieron del portal de datos de la Nación. Además, se solicitaron nuevos datos al Ministerio de Salud y al Servicio Meteorológico Nacional.

Dataset	Significado samples	Año		
		2018	2019	2020
Vigilancia_dengue	Reportes semanales de casos de Dengue	679	807	9.002
Exp_horarios	Mediciones de meteorológicas cada 6 horas por estación	97.690	98.179	48.128
Exp_precipitaciones	Mediciones de precipitaciones mensuales por estación	840	840	840
Exp_observatorios	Estaciones y su localización	70		

Métodos

Se realizaron 7 métodos distintos de Machine Learning: Regresión lineal, Ridge Regression (L1), Lasso (L2), Super Vector Regression (SVR), KNN Regression, Regresión Polinómica y Random Forest Regression.

Particularmente para KNN Regression, para definir el valor de K se aplicó un proceso de iteración. Desde K=0 hasta K=15. El valor que mejor resultado trajo fue K=2.

Con el parámetro K definido, se entrenó el modelo y luego se testeó calculando, a raíz de esto el MSE, el MAE y el R2.

Análisis Exploratorio de Datos

Se tomaron las features de temperatura, humedad y cantidad de casos y se observó la relación entre ellas a través de un gráfico de dispersión. Cuanto más grande el círculo, mayor la cantidad de casos.

Resultados

El modelo KNN con K=2, resultó ser el algoritmo de aprendizaje más preciso y con menores errores de predicción.

Modelo	R2	RMSE	MAE
KNN (K=2)	0.320381	99391.862500	95.441667
SVR	0.317942	99748.575227	164.337727
Random Forest Regressor	0.241314	110955.225157	124.674517
Lasso	0.062751	137069.401930	231.725174
Ridge Regression	0.060763	137360.102330	232.822357
Linear	0.056678	137957.510123	234.022931
Polynomial Regression	-3.246194	788.029767	620990.913268

Conclusiones

No se encontró una relación directa entre las variables meteorológicas y la cantidad de casos. Asimismo, no se descarta que exista una relación adicionando variables como la flora y fauna de cada región.

Se observa que en los primeros seis meses del año son los que engloban más del 98% de los casos reportados en un año, con un pico entre los meses de marzo y mayo.

