20-R-VIB-DY-11

A $1.81\ m$ bar is pinned by one end to the ceiling. Given that the mass of the bar is $2.9\ kg$, what is the natural frequency of the system?

Solution

$$I_O = \frac{1}{3} m L^2 = 3.167 \text{ [kg*m}^2\text{]}$$

$$T = \frac{1}{2} \, I_O \, \omega^2 = 1.583 \, \dot{\theta}^2$$

$$V = m g \frac{L}{2} (1 - \cos \theta) = 25.75 - 25.75 \cos \theta$$

$$T + V = \text{constant} = 1.583 \,\dot{\theta}^2 + 25.75 - 25.75 \,\cos\theta$$

Now taking the time derivative we have:

$$0 = 3.166 (\dot{\theta})(\ddot{\theta}) + 25.75 \sin(\theta)(\dot{\theta})$$

Now , dividing both sides by $\dot{\theta}$, we can approximate $\sin\theta=\theta$ for small θ and arrange our equation into standard form:

$$0 = \ddot{\theta} + 8.133\theta \implies \omega_n = \sqrt{8.133} = 2.85 \text{ [rad/s]}$$

