Векторная функция векторного аргумента – это соответствие r, при котором \forall точке $x \in \Omega$ евклидова пространства R^m сопостовляется вектор r(x) множества Q евклидова пространства R^p .

$$x \in \Omega = \{(x_1, \dots, x_m)\} \subset R^m \to r(x) \in Q = \{(r_1, \dots, r_p)\} \subset R^p$$

При этом множество Ω область задания, а Q множество значений. Если $\Omega = \{x\}$ – множество точек на прямой, то имеем функцию одного скалярного аргумента r(x).

Если $\Omega = \{(x_1, \dots, x_m)\} \subset \mathbb{R}^m$ – множество точек евклидова пространства, то имеем векторную функцию нескольких скалярных аргументов $r(x_1, \dots, x_m)$.

Годограф векторной функции

Пусть (r_1,\ldots,r_p) – координаты $r(x)\in Q\subset R^p$. Задание векторной функции r(x) равносильно заданию скалярных функций $r_1(x_1,\ldots,x_m),\ldots,r_p(x_1,\ldots,x_m)$, и если начала этих векторов совместить с началом соответствующей ДПСК, то точечное множество концов рассматриваемых радиус векторов будем называть годографом векторной функции.

If p=3 годограф векторной функции есть кривая, p=2 – поверхность.

Способы задания кривых

Элементарной кривой называют множество точек пространства, являющееся образом отрезка при топологическом отображении его в пространство.

Точки соответствующие конечным точкам отрезка, называют конечными точками элементарной кривой. Элементарные кривые – примыкающие если одна или обе пары их конечных точек совпадают между собой.

Кривой линией называется множество точек пространства, которое состоит из конечного или счетного множества элементарных кривых, примыкающих друг к другу.

Пусть γ – элементарная кривая, являющаяся образом промежутка a < t < b при топологическом отображении f его в пространство R^3 . x(t), y(t), z(t) – координаты точки на кривой γ соответствующей значению $t \in (a,b)$.

Тогда систему равенств x(t), y(t), z(t), $t \in (a,b)$ называют уравнениями кривой γ в параметрической форме или параметризацией кривой (кривая γ параметризована этими уравнениями).

Если же считать x(t), y(t), z(t) координатами радиус-вектора $\overrightarrow{r}(t)$ соответствующей точки кривой γ , мы получим векторную функцию $\overrightarrow{r}(t)$, $t \in (a,b)$, годографом которой является данная кривая. (способ задания кривой через векторную функцию скалярного аргумента по сути эквивалентный параметрическому способу).

Допустим, что кривая γ задается векторной функцией $\overrightarrow{r}(t), t \in (a,b)$.

Тогда заменив параметр t параметром u через отношение $t=g(u),\ u\in(\alpha,\beta),$ где g – строго возрастающая и непрерывная функция. Тогда получится новая параметризация, одну кривую можно задать множеством параметризаций.

Касательная к кривой

Пусть γ — некторая кривая, P — фиксированная точка и M — подвижная точка на кривой γ , PM — хорда кривой. Прямая PM стремится к прямой PT при $M \to P$, если угол ϕ между этими прямыми стремится к нулю, когда $M \to P$. Касательной к кривой γ в точке P называют прямую PT, к которой стремится хорда PM, когда $M \to P$.

Нормальной плоскостью кривой в точке P называется плоскость, проходящая через точку P перпендикулярно касательной в данной точке.

Векторное уравнение нормальной плоскости π в точке $P(\overrightarrow{r}(t))$ имеет вид: $(\overrightarrow{\rho}-\overrightarrow{r}(t))\cdot\overrightarrow{r}'(t)=0$, где $\overrightarrow{\rho}$ – радиус-вектор произвольной точки плоскости π .

Соприкасающаяся плоскость

Пусть γ — некоторая кривая, $P \in \gamma$ — фиксированная точка, $M \in \gamma$ — подвижная, PT — касательная к кривой в точке P, PTM — плоскость проведенная через касательную PT и точку M.

Плоскость RTM стремится к плоскости π при $M \to P$, если угол между этими плоскостями стремится к нулю, когда $M \to P$. Плоскость π , к которой стремится плоскость PTM, когда $M \to P$, называют соприкасающейся плоскостью кривой γ в точке P.

Puc. 8.2