TTK4135 – Optimalization and Control

Sondre Bø Kongsgård sondrebk@stud.ntnu.no

Contents

Equations 1 **Algorithms** 1

Equations

Remember to read the task closely, and see whether it asks for the given resources to be fullyutilized. If not, then introduce slack variables in your constraints.

Elements of Analysis

Lipschitz continuous

$$||f(x_1) - f(x_0)|| \le L||x_1 - x_0||, \quad \forall x_0, x_1 \in \mathcal{N}$$
 (1)

Mean value theorem

$$f(x+p) = f(x) + \nabla f(x+\alpha p)^{\top} p \tag{2}$$

Matrix calculus

Derivative

$$\nabla(c^{\top}\mathbf{x}) = c$$
$$\nabla(\mathbf{x}^{\top}c) = c$$

$$\nabla \left(\frac{1}{2} \mathbf{x}^{\top} G \mathbf{x} \right) = \frac{1}{2} G \mathbf{x} + \frac{1}{2} G^{\top} \mathbf{x}$$

Gradient

$$\nabla f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial \mathbf{x}} \end{bmatrix} = \begin{bmatrix} \frac{\partial f}{\partial x_1} \\ \vdots \\ \frac{\partial f}{\partial x_n} \end{bmatrix}$$

Hessian

$$\nabla_{xx} f(\mathbf{x}) = \begin{bmatrix} \frac{\partial f}{\partial x_1^2} & \frac{\partial f}{\partial x_1 \partial x_2} & \cdots \\ \frac{\partial f}{\partial x_2 \partial x_1} & \frac{\partial f}{\partial x_2^2} \\ \vdots & \ddots \end{bmatrix}$$
(6)

Jacobian

$$Jf(\mathbf{x}) = \begin{bmatrix} \frac{\partial f_1}{\partial x_1} & \frac{\partial f_1}{\partial x_2} & \dots \\ \frac{\partial f_2}{\partial x_1} & \frac{\partial f_2}{\partial x_2} & \dots \\ \vdots & \ddots & \ddots \end{bmatrix}$$
(7)

Algorithms

Simplex

ONE STEP OF SIMPLEX()

- Given $\mathcal{B}, \mathcal{N}, x_B = B^{-1}b \ge, x_N = 0;$
- Solve $B^{\top}\lambda = C_B for \lambda$,
- Compute $s_N = c_N N^{\top} \lambda$; (* pricing *) (3)
 - if $s_N \geq 0$
 - stop; (* optimal point found *)
 - Select $q \in \mathcal{N}$ with $s_q < 0$ as the entering index;
- (4)Solve $Bd = A_q$ for d;
 - 8 if d < 0
 - 9 stop; (* problem is unbounded *)
 - Calculate $x_q^+ = \min_{i|d_i>0} (x_B)_i/d_i$, and use p to denote the minimizing i;
- Update $x_B^+ = x_B dx_q^+, x_N^+ = (0, \dots, 0, x_q^+, 0, \dots, 0)^\top;$ Change \mathcal{B} by adding q and removing the basic (5)
 - variable corresponding to column p of B