# Chemie k maturitě

## Stanislava Pojerová\* 2020-2023

#### Abstrakt

Pouhý přepis zpracovaného materiálu paní učitelky RNDR<br/>r. Stanislavy Pojerové. Původní materiál je souborem pro kvintu a sextu víceletého gymnázia a byl zpracován během pandemie Covidu 19 v letech 2020 a 2021.

Skripta v této podobě mají sloužit především studentům plánujícím maturitu z chemie.

<sup>\*</sup>Sazba: Matyáš Levíček

# Obsah podle tématu

| 1 | Uvo               | d                                                         | 3          |
|---|-------------------|-----------------------------------------------------------|------------|
| 2 | Ato               | n                                                         | 4          |
|   | 2.1               | Erwin Schrödinger                                         | 4          |
|   | 2.2               | Kvantová čísla                                            | 4          |
|   |                   | 2.2.1 Slupky, energetické hladiny (dráhy)                 | 4          |
|   |                   | 2.2.2 Podslupky                                           | 4          |
|   |                   | 2.2.3 Tvary orbitů                                        | 4          |
|   | 2.3               | Výstavbový princip                                        | 4          |
|   |                   | 2.3.1 Znázornění orbitů a elektronů                       | 4          |
|   |                   | Příklad                                                   | 5          |
|   |                   | 2.3.2 Pravidla zaplňování orbitů                          | 5          |
|   |                   | 2.3.3 Elektronové konfigurace podle výstavbového principu | 5          |
|   |                   | 2.3.4 Zápis se vzácným plynem                             | 5          |
|   |                   | 2.3.5 Elektronové konfigurace podle valenčních elektronů  | 5          |
|   | 2.4               | Jádro atomu                                               | 6          |
|   |                   |                                                           |            |
| 3 | Prv               |                                                           | 7          |
|   | 3.1               | 1. Hlavní podskupina - Alkalické kovy (tvoří hydroxidy)   | 7          |
|   |                   | 3.1.1 Vlastnosti                                          | 7          |
|   |                   | 3.1.2 Výroba                                              | 7          |
|   |                   | 3.1.3 Analytické důkazu - zbarvení plamene                | 7          |
|   |                   | 3.1.4 Reakce                                              | 7          |
|   |                   |                                                           | 8          |
|   |                   | V                                                         | 8          |
|   |                   |                                                           | 8          |
|   | 3.2               |                                                           | 9          |
|   |                   |                                                           | 9          |
|   |                   | 3.2.2 Analytické důkazu - zbarvení plamene                | 9          |
|   |                   | 3.2.3 Výroba                                              | 9          |
|   |                   | 3.2.4 Reakce                                              | 9          |
|   |                   | 3.2.5 Význam                                              | 0          |
|   |                   | 3.2.6 Poznámka                                            | 0          |
|   | ъ.                |                                                           | -          |
| 4 | <b>Ra</b> o 4.1   |                                                           | . <b>1</b> |
|   | $\frac{4.1}{4.2}$ | v                                                         |            |
|   |                   | v                                                         | .1         |
|   | 4.3               |                                                           | 1          |
|   |                   | 4.3.1 Úloha o poločasu rozpadu                            |            |
|   | 4.4               | 1 ,                                                       | 2          |
|   |                   |                                                           | 2          |
|   | 4.5               | Umělá radioaktivita                                       | .3         |
| 5 | Pře               | nledy 1                                                   | .4         |
| _ |                   |                                                           | 5          |
|   |                   |                                                           |            |

# 1 Úvod

Skripta pokrývají učivo nutné pro obstání u profilové zkoušky z chemie. Odvíjejí se od otázek k tomuto předmětu z kánonu Gymnázia Joachyma Barranda v Berouně.

Učivo je systematizováno v pořadí, které odpovídá výkladu na semináři Systematizace poznatků z chemie v oktávě na GJB.

Výše je však kromě obsahu také obsah seřazený podle maturitních otázek - doporučuji proto elekronickou podobu, která umožňuje mezi tématy skákat přes hyperlinky a výrazně tak zjednodušuje orientaci v materiálu.

## 2 Atom

## 2.1 Erwin Schrödinger

Rakouský fyzik (1889 - 1961)

Definoval <u>ORBIT = ORBITAL</u> jako místo s 96% pravděpodobností výskytu e<sup>-</sup>

Matematicky vyjádřil vlnovou funkci $\Psi$  (psí)

Nositel Nobelovy ceny za fyziku 1933

## 2.2 Kvantová čísla

hlavní n  $1-\infty$ (zatím 7) udává energii orbitu

 $\mathbf{vedlejší}$  l 0-(n-1) udává  $\underline{\mathbf{tvar}}$  orbitu

magnetické m -l...0...+l udává počet orbitalů a jejich orientaci

**spinové s**  $-\frac{1}{2} - \frac{1}{2}$  udává spin e<sup>-</sup>

#### 2.2.1 Slupky, energetické hladiny (dráhy)

$$\begin{array}{ll} n=1\rightarrow K & n=3\rightarrow M \\ n=2\rightarrow L & n=4\rightarrow N \\ \vdots & \vdots & \vdots \end{array}$$

#### 2.2.2 Podslupky

$$\begin{array}{l} l=0\rightarrow s \\ l=1\rightarrow p \end{array} \qquad \begin{array}{l} l=2\rightarrow d \\ l=3\rightarrow f \end{array}$$

#### 2.2.3 Tvary orbitů

 $l=0 \rightarrow tvar orbitu s: kulově symetrický$ 



 $l=1 \rightarrow tvar orbitu p:$  "ležatá osmička"



 $l=2 \rightarrow tvar orbitu \ {\bf d}:$ "čtyřlístek"

 $l=3 \rightarrow$ tvar orbitu  $\mathbf{f} \colon$ "velmi složitý tvar"

## 2.3 Výstavbový princip

## 2.3.1 Znázornění orbitů a elektronů v nich (\(\frac{1}{2}\), \(\frac{1}{2}\), \(\frac{1}{2}\),



Příklad: Urči maximální počet e ve slupce N

$$\begin{array}{ll} N \Rightarrow n{=}4 \Rightarrow & 0(s) \Rightarrow m{=}0 \ (1 \ orbit) \\ & 1(p) \Rightarrow m{=}{-}1,0,1 \ (3 \ orbity) \\ & 2(d) \Rightarrow m{=}{-}2,-1,0,1,2 \ (5 \ orbity) \\ & 3(f) \Rightarrow m{=}{-}3,-2,-1,0,1,2,3 \ (7 \ orbity) \end{array}$$

Dohromady 16 orbitů \*  $2e^- = 32e^-$ 

...jelikož v každém orbitu mohou být 2 elektrony s opačným spinem (tzv. Pauliho vylučovací princip)

prázdný orbit = vakantní

#### 2.3.2 Pravidla zaplňování orbitů

- 1. Pauliho vylučovací princip
- 2. Hundovo pravidlo: Nejprve se zaplňují orbity jedním e<sup>-</sup> ⇒ nespárované e<sup>-</sup> mají stejný spin Příklad:  $3d^7$ :  $3 \mid \downarrow \uparrow \mid \downarrow \uparrow \mid \downarrow . \mid \downarrow . \mid \downarrow .$

Jedná se o tzv. DEGENEROVANÉ orbity (mají stejné n a l, liší se v m) ⇒

- ⇒ orbity s nesjou degenerované, orbity p jsou 3x degenerované, orbity d 5x, f 7x
- 3. Výstavbový princip: nejprve se zaplňují orbity s nízkou energií  $\doteq$  v tomto pořadí: 1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 5d, 4f, 6p, 7s, 6d ...
- 4. Pravidlo n+l: Když je součet n+l stejný, zaplňují se provně orbity s nižší hodnotou n.

#### 2.3.3 Elektronové konfigurace podle výstavbového principu

$$\underline{\underline{13}} \text{Al: } 1\text{s}^2, \, 2\text{s}^2, \, 2\text{p}^6, \, 3\text{s}^2, \, 3\text{p}^1 \text{ (součet } \text{e}^- = \underline{\underline{13}}\text{)} \\ \underline{\underline{26}} \text{Fe}^- \colon 1\text{s}^2, \, 2\text{s}^2, \, 2\text{p}^6, \, 3\text{s}^2, \, 3\text{p}^6, \, 4\text{s}^2, \, 3\text{d}^{\underline{7}} \text{ (součet } \text{e}^- = \underline{\underline{27}} \text{ - protože se jedná o záporný iont, má e}^- \text{ navíc!)}$$

#### 2.3.4 Elektronové konfigurace podle předcházejícího vzácného(inertního) plynu - 8.hlps

2.3.4 Elektronové konfigurace podle předcházejícího vzácného(inertního) plynu - 8. 
$$\underbrace{_{16}\text{S}\left[_{10}\text{Ne}\right]}_{16-10=6\text{e}^-}: 3\text{s}^2, 3\text{p}^4 \longrightarrow \mathbf{n} = \text{zároveň} \; \underline{\# \; \text{periody}} \; \text{ve které se prvek nachází (S je ve 3. řádku PSP.)}$$

Vždy se začíná orbitem s a pak další v pořadí výstavbového principu

$$\underbrace{{}_{35}\mathrm{Br}\left[{}_{18}\mathrm{Ar}\right]}_{35-18=17e^-}:4s^2,3d^{10},4p^5$$

$$\underbrace{_{53}\mathrm{I}\left[_{36}\mathrm{Kr}\right]}_{57-36=17\mathrm{e}^{-}}:5\mathrm{s}^{2},4\mathrm{d}^{10},5\mathrm{p}^{5}$$

#### 2.3.5 Elektronové konfigurace podle valenčních elektronů

Valenční vrstva(svéra, též hladina) je poslední od jádra pro daný atom

a) Konfigurace základních (hlavních) prvků (I.A - VIII.A):

Valenční e<sup>-</sup> zaplňují ns a np. (Kontrola hlavního kvantového # = # periody)

Počet valenčních e = číslo skupiny ve které se prvek nachází. Například:

$$_{13}\mathrm{Al}:3\mathrm{s}^2,3\mathrm{p}^1:$$
  $3$   $\downarrow\uparrow$ ,  $3$   $\downarrow\downarrow$   $\longleftarrow$  celkem  $3$   $\mathrm{e}^-\Rightarrow 3.\mathrm{hlavn\'i}$  podskupina  $_{10}\mathrm{Ne}:2\mathrm{s}^2,2\mathrm{p}^6:$   $2$   $\downarrow\uparrow$ ,  $2$   $\downarrow\uparrow$   $\downarrow\uparrow$   $\downarrow\uparrow$   $\longleftarrow$  plné orbity = inertn\'i plyn

 $_{6}\mathrm{C}:2\mathrm{s}^{2},2\mathrm{p}^{2}:\quad 2\downarrow\uparrow,\ 2\downarrow\downarrow\downarrow\qquad\longrightarrow {}_{6}\mathrm{C}^{*}:2\mathrm{s}^{2},2\mathrm{p}^{2}:\quad 2\downarrow\downarrow,\ 2\downarrow\downarrow\downarrow\downarrow$ 

Uhlík se vyskytuje jako 2-vazný jen v CO (C=O), jinak je vždy 4-vazný

\*= excitovaný stav  $\rightarrow$  e $^-$  přecházejí na vyšší energetické hladiny do nejbližšího vakantního(prázdného orbitu) v pořadí s $\rightarrow$ p $\rightarrow$ d $\rightarrow$ f

#### b) Konfigurace přechodných prvků (skupiny B)

Valenční elektrony lezí v ns $^{0-2}, (n-1)d^{1-10} \ \longrightarrow tzv. \ \underline{d} \ prvky$ 

Jejich konfigurace není zcela pravidelná a často se od systému liší. Například:

 $_{29}\mathrm{Cu}:4s^{1},3d^{10}$   $_{24}\mathrm{Cr}:4s^{1},3d^{5}$ 

 $_{46}\text{Pd}:5\text{s}^{0},4\text{d}^{10}$   $_{23}\text{V}:4\text{s}^{2},3\text{d}^{3}$ 

## c) Konfigurace vnitřně přechodných prvků (lanthanoidy, aktinoidy)

Prvky f., kde valenční elektrony leží v  $\mathrm{ns}^2, (\mathrm{n}-1)\mathrm{d}^{0-2}, (\mathrm{n}-2)\mathrm{f}^{0-14}$ 

Tyto vrstvy jsou poznaménány značnýmy nepravidelnostmi v obsazování orbitů...

#### 2.4 Jádro atomu

objev jádra: RUTHERFORD (1911-1920), planetární model apod. + objev protonu v jádře. Po něm provek  $_{104}{\rm Rf}({\rm Rutherfordium})$  v PSP.

objev <u>neutronu</u> v jádře: THOMSON (1932)

$${}_{4}^{9}\text{Be} + {}_{2}^{4}\alpha \rightarrow {}_{6}^{12}\text{C} + {}_{0}^{1}\text{n}$$

+ objevy dalších částic, které se dělí do skupin apod.: bosony, fermiony, hadrony, kvarky, piony

Jádro se skládá z protonů a neutronů - počet **protonů se uvání jako levý spodní index**, zatímco celkový počet částic v jádře(nukleonové číslo, **protony+neutrony**) **se uvádí v levém horním indexu** 

## 3 Prvky

## 3.1 1. Hlavní podskupina - Alkalické kovy (tvoří hydroxidy)

#### H, Li, Na, K, Rb, Cs, Fr (radioaktivní, 1940)

"Helenu Líbal Na Kolena Robot Cecil Franc"

- $s \uparrow Z(protonové \#): \uparrow \underline{m}, \uparrow r, \downarrow elektronegativita, \downarrow t_t, \downarrow t_v$
- $ns^1 \downarrow \rightarrow "s^1 prvky"$
- vystupují jako elektropozitivní malá IE, malá elektronegativita, vlevo v Behetovově řadě.
- ullet ox. č. ve sloučeninách I. o jsou redukčními činidly

#### 3.1.1 Vlastnosti

• stříbrolesklé měkké kovy s malou hustotou (Li, Na, K jsou lehčí než voda)

#### 3.1.2 Výroba

elektrolýza tavenin halogenidů:

•  $Na^+Cl^- \rightarrow na katodě^-$ 

#### 3.1.3 Analytické důkazu - zbarvení plamene

Plamenové zkoušky

- Li karmínově
- Na žlutá
- K fialová

Jsou **VELMI reaktivní**  $\rightarrow$  výskyt <u>jen ve sloučeninách</u> Musí se uchovávat v inertním prostředí  $N_2$ , petroleji... Sloučeniny:

- NaCl halit sůl kamenná
- KCl sylvín
- Na<sub>2</sub>CO<sub>3</sub> soda
- $\bullet$  NaHCO $_3$  jedlá soda
- K<sub>2</sub>CO<sub>3</sub> potaš
- sloučeniny s NO<sub>3</sub> ledky (výbuch v Bejrůtu 2020)
- $\bullet~{\rm NaNO_3}$  ledek chilský

Výskyt v Zemské kůře Na: 2,4%, K: 2,6%

#### 3.1.4 Reakce

1. s  $H_2 \rightarrow HYDRIDY$ :  $2Na + H_2 \rightarrow 2NaH$ 

2. s  $O_2 \rightarrow OXIDY$ :  $4Li + O_2 \rightarrow 2Li_2O$ s  $O_2 \rightarrow PEROXIDY$ :  $2Na + O_2 \rightarrow Na_2O_2$ 

s  $O_2 \rightarrow HYPEROXIDY$ :  $K + O_2 \rightarrow KO_2$ 

3. s  $N_2 \rightarrow NITRIDY$ :  $6Li + N_2 \rightarrow 2Li_3N$  (jen Li)

4. s halogeny  $\rightarrow$  HALOGENIDY:  $2Rb + Cl_2 \rightarrow 2RbCl$ 

5. s  $H_2O \rightarrow HYDROXIDY$  (bouřlivě):  $2K + 2H_2O \rightarrow 2KOH + H_2$ 

Jejich sloučeniny jsou často iontové, bazbarvé, rozpustné v  $H_2O$ 

#### 3.1.5 Hydroxidy (Louhy, "žíravé alkálie")

Leptají sklo, porcelán Výroba mýdel - zmýdelnění Jsou hydroskopické (přímají vzdušnou vlhkost):

$$2\underline{\text{NaOH}} + \underline{\text{CO}}_2 \rightarrow \underline{\text{Na}}_2\underline{\text{CO}}_3 + \underline{\text{H}}_2\underline{\text{O}}$$

**Výroba:** elektrolýza vodných ⊙ halogenidů: (H<sup>+</sup> redukce na katodě<sup>-</sup>, Cl<sup>-</sup> oxidace na anodě<sup>+</sup>)

$$H_2O \rightarrow H^+ + OH^-$$

$$NaCl \rightarrow Na^{+} + Cl^{-}$$

 $v \odot z$ ůstává Na $^+OH^-$  (Na se na katodě neredukuje  $\Longleftarrow$  postavení v Beketovově řadě) Síla hydroxidů roste s jejich Z (protonové #)

## 3.1.6 Význam

Li - výroba baterií (LiPo, LiFePo, LiIon), slouží při výrobě některých slitin

 $\mathbf{Na}$  - redukční činidlo:  $\mathrm{AlCl_3} + 3\mathrm{Na} \rightarrow \mathrm{Al} + 3\mathrm{NaCl}$ 

K, Na - biogenní prvky

- sodíková "pumpa"
- membránové potenciály šíření signálu v nervech

#### 3.1.7 Poznámka

 $\odot$  NaCl = solanka

Další dloučeniny:

- Na<sub>2</sub>B<sub>4</sub>O<sub>7</sub> · 10H<sub>2</sub>O (**Borax**)
- NaCN
- Na<sub>2</sub>SiO<sub>3</sub>
- $K_2Cr_2O_7$
- KO<sub>2</sub> (hyperoxid draselný)
- K<sub>3</sub>PO<sub>4</sub>
- $Na_2SO_4 \cdot 10H_2O$  (Glauberova sůl)

## 3.2 2. Hlavní podskupina - Kovy alkalických zemin

**Be, Mg, Ca, Sr, Ba, Ra** (radioaktivní 1898 - manželé Marie a Peter Curie, smolinec) "Běžela Magda Canyonem, Srážela Banány Ramenem"

- s  $\uparrow$  Z(protonové #):  $\uparrow \underline{m}$ ,  $\uparrow$  r,  $\downarrow$  elektronegativita
- $ns^2 \uparrow \downarrow \rightarrow "s^2 prvky"$
- elektropozitivní  $X+\downarrow IE \rightarrow X^{II}+2e^-$
- vystupují jako elektropozitivní (+II) malá IE, malá elektronegativita, vlevo v Beketovově řadě

#### 3.2.1 Vlastnosti

- stříbrolesklé měkké kovy, kromě Be
- Be se nejvíce podobá Al, má amfotermní charakter!

#### 3.2.2 Analytické důkazu - zbarvení plamene

Plamenové zkoušky

- Ca cihlová
- Sr karmínová
- Ba žlutozelená
- Mg silná záře (jako při řezání autogenem):  $2\text{Mg} + \text{O}_2 \rightarrow 2\text{MgO}$

Jsou reaktivní méně než prvky 1.hlps ⇒ výskyt ve sloučeninách:

- CaCO<sub>3</sub> vápenec (aragonit, sintr, mramor, travertin. kalcit...)
- $CaF_2$  fluorit = kazivec
- $BaSO_4$  barit
- MgCO<sub>3</sub> magnezit
- $CaCO_3 \cdot MgCO_3$  dolomit
- CaSO<sub>4</sub> · 2H<sub>2</sub>O sádrovec (sádra: CaSO<sub>4</sub> ·  $\frac{1}{2}$ H<sub>2</sub>O)

#### 3.2.3 Výroba

- a) elektrolýza tavenin jejich halogenidů: Ca<sup>2+</sup>Cl<sub>2</sub> (Ca<sup>2+</sup> redukce na katodě<sup>-</sup>)
- b) aluminotermie (Al je redukční činidlo):  $3BeO + Al \rightarrow 3Be + Al_2O_3$

#### 3.2.4 Reakce

1. s 
$$H_2 \rightarrow HYDRIDY$$
:  $Ca + H_2 \rightarrow CaH_2$   
2. s  $O_2 \rightarrow OXIDY$ :  $2Ba + O_2 \rightarrow 2BaO$   
s  $O_2 \rightarrow PEROXIDY$ :  $Ba + O_2 \rightarrow BaO_2$  (peroxid barnatý!)  
3. s  $N_2 \rightarrow NITRIDY$ :  $3Sr + N_2 \rightarrow Sr_3N_2$   
4. s  $H_2O \rightarrow HYDROXIDY$ :  $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$  (exotermická reakce)  $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$  (exotermická reakce)  $Ca + 2H_2O \rightarrow Ca (OH)_2 + H_2$ 

Sloučeniny Ca (stavebnictví)

$$\underbrace{\mathrm{CaCO_3}}_{\mathrm{vápenec}} \ \overline{800^{\circ}\mathrm{C}} \ \underbrace{\underbrace{\mathrm{CaO}}_{\mathrm{pálené}} \ \mathrm{vápno}}_{\mathrm{pálené}} + \mathrm{CO_2}$$

$$CaO + 2H_2O \rightarrow \underbrace{Ca (OH)_2}_{ha\S{e}n\acute{e}}$$
 vápno

$$\mathrm{Ca}\left(\mathrm{OH}\right)_{2} + \underbrace{\mathrm{CO}_{2} \downarrow}_{\mathrm{ze}\ \mathrm{vzduchu}} \ \rightarrow \ \mathrm{CaCO}_{3} + \mathrm{H}_{2}\mathrm{O}$$

...princip tvrdnutí malty

Podstata krasových jevů: Uhličitany jsou ve vodě nerozpustné, ale v přítomnosti  ${\rm CO}_2$  (vzduch) se rozpouštějí:

$$CaCO_3 + CO_2 + H_2O \rightleftharpoons Ca(HCO_3)_2$$

Zpětná rekristalizace na  ${\rm CaCO_3} = {\rm miner\'al} \; \underline{\rm sintr}$  - krápníky

- a) stalagnit ∧
- b) stalagtit V
- c) stalagnát spojený (..nenašel jsem vhodný znak x, btw proč všichni Češi znají krápníky, ale když se jich zeptáš na prvního prezidenta tak budou tupě čumět.)

#### 3.2.5 Význam

Ca, Mg - biogenní prvky

Ca - kosti, zuby

Mg - součást molekuly chlorofilu

 $\bf Be$  - lehký tvrdý kov (o 30% lehční než Al), slitiny se používají pro výrobu nástrojů i raket, sloučeniny jsou toxické

#### 3.2.6 Poznámka

Minerál beryl  $[3BeO \cdot Al_2O_3 \cdot 6SiO_2]$ 

- oxidy smaragd(zelený) a akvamarín(modrý)

## 4 Radioaktivita

Uranové paprsky - objev Becquerel (1896) → ozáření fotografické desky (kámen **smolinec** z Jáchymova)

<u>Marie Curie Sklodowská</u> + manžel <u>Pierre Curie</u> - objev  $_{84}$ Po (polonia) a  $_{88}$ Ra(radia)  $\rightarrow$  paprsek = <u>radioaktivita</u> - V roce 1903 udělení Nobelovy ceny pro Marii, Piera a Becquerela K maturitě je třeba znát stručný životopis rodiny Curie a Sklodowských.

## 4.1 Terminy

- IZOTOPY: Stejné Z(protonové #), liší se počtem neutronů
  - př. <sup>1</sup><sub>1</sub>H (vodík, protium), <sup>2</sup><sub>1</sub>H (deuterium), <sup>3</sup><sub>1</sub>H (tritium)
  - -př.  $^{12}_6\mathrm{C},\,^{13}_6\mathrm{C},\,^{14}_6\mathrm{C}$  (radioaktivní)  $\Rightarrow$ radiouklíkové datování (stanovení stáří organických materiálů)
  - př.  ${}^{235}_{92}$ U,  ${}^{237}_{92}$ U,  ${}^{238}_{92}$ U atd.
- IZOBARY: Jiné Z, stejná A(nukleonové #) př.  $^{40}_{20}\mathrm{Ca}$ a $^{40}_{19}\mathrm{K}$
- <u>IZOTONY</u>: Stejný počet neutronů př.  $^{12}_5\mathrm{B}$  a  $^{13}_6\mathrm{C}$  (oba mají  $7^1_0\mathrm{n})$

## 4.2 Druhy záření

 $\frac{4}{2}\alpha=\frac{4}{2}{\rm He}$ - alfa záření se šíří cca $\frac{1}{10}{\rm c}$  (rychlosti světla), zachytí se i listem papíru

β:

- $\bullet$   $\beta^-=\frac{0}{-1}$ e (elektron) šíří se cca $\frac{9}{10}$ c, záchyt kovovými fóliemi (alobal)
- $\beta^+ = {0 \atop +1} e \text{ (pozitron)}$

 $\gamma$  (gama) = elektromagnetické záření - proud fotonů, rychlost světla, záchyt olověnými deskami, betonem, zhoubné

## 4.3 Poločas rozpadu T

Lepší název je Poločas přeměny, jelikož né každá přeměna jádra musí být rozpadem (může se jednat třeba o emisy  $\gamma$  záření)

 $T_{\frac{1}{2}}=\frac{\ln 2}{\lambda}$ , konstanta určující dobu, za kterou se rozpadne  $\frac{1}{2}$  jader daného prvku  $\Rightarrow$  exponenciální graf.  $T_{\frac{1}{2}}$  jednodlivých prvků zle najít v tabulkách:

- př.  $^{14}_{6}\mathrm{C} \rightarrow \mathrm{T} \doteq 5.7$ tisíce let
- $\bullet\,$ př.  $^{208}_{84}\mathrm{Po}\rightarrow\mathrm{T}\doteq2.9\mathrm{roku}$
- př.  $^{209}_{84}$ Po  $\rightarrow$  T  $\doteq$  103let
- $\bullet\,$ př.  $^{210}_{84}\mathrm{Po}\rightarrow\mathrm{T}\doteq138.4\mathrm{dn}\acute{\mathrm{n}}$

## 4.3.1 Úloha o poločasu rozpadu

Víme, že při vzniku vzorku obsahoval 1 atom $^{14}_6\mathrm{C}$ na  $10^{12}$ atomů uhlíku  $^{12}_6\mathrm{C}$  (jelikož tento poměr je v organickém materiálu v atmosféře dlouhodobě stálý)

Při posledním měření bylo ve vzorku nameřen poměř 1 : 1.414 \*  $10^{12} = {}^{14}\text{C}$  : 1.2 °C.

Poločas rozpadu uhlíku <sup>14</sup>C je 5730let. Jak starý je vzorek?

- Původní koncentrace  $^{14}C \dots c_p = (10^{12})^{-1} = 10^{-12}$
- Naměřená koncentrace  $^{14}\mathrm{C}$  ...  $c_{\mathrm{m}}=(1.414\times10^{12})^{-1}\doteq7.07\times10^{-13}$
- Poločas rozpadu T $_{\frac{1}{2}}=5730 \mathrm{let}$
- $\bullet\,$  Uplynulá doba od smrti vzorku ... t =?

$$\begin{split} c_{m} &= c_{p} \times \left(\frac{1}{2}\right)^{t \; \div \; T_{\frac{1}{2}}} \\ &7.07 \times 10^{-13} = 10^{-12} \times \left(\frac{1}{2}\right)^{t \; \div \; 5730} \\ &\frac{7.07 \times 10^{-13}}{10^{-12}} = \left(\frac{1}{2}\right)^{t \; \div \; 5730} \\ &\log_{\frac{1}{2}} \left(\frac{7.07 \times 10^{-13}}{10^{-12}}\right) = t \; \div \; 5730 \\ &t = \log_{\frac{1}{2}} \left(\frac{7.07 \times 10^{-13}}{10^{-12}}\right) \times 5730 \\ &t \doteq 2866 let \end{split}$$

#### 4.4 Rozpadové řady

Přirozené:

Umělá:

#### 4.4.1 Příkad

Do které řady patří  $^{234}_{92}$ U?

$$234 \div 4 = 58$$
 
$$34$$
 
$$\underline{2} \longleftarrow 4n + \underline{2} \Rightarrow Uranová řada$$

Uran234 patří do uranové řady, protože zbytek po dělení jeho A (nukleonového #) čtyřmi je 2.

## 4.5 Umělá radioaktivita

dcera <u>Irene Curie</u> + manžel <u>F.J.Curie</u> Vznik umělých radioizotopů (medicína, konzervace potravin, sterilizace materiálů...)

$$^{27}_{13}\mathrm{Al} + \,^{4}_{2}\alpha \, \longrightarrow \,^{30}_{15}\mathrm{P} + \,^{1}_{0}\mathrm{n}$$

$$^{238}_{92} + ^{1}_{0}n \longrightarrow ^{237}_{92}U + ^{1}_{0}n$$

Součet čísel na obou stranách se MUSÍ rovnat

# 5 Přehledy

# 5.1 Vitaminy

| Název                             | Skupina                | Denní<br>dávka | Zdroj                                                                               | Význam                                                                                                                   | Projevy nedostatku                                                                                                                             | Poznámka                                                                                      |
|-----------------------------------|------------------------|----------------|-------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------|
| A (retinol)                       | tetraterpen            | 1.8-2mg        | mléčný tuk,<br>vaječný žloutek,<br>játra, rybí tuk i<br>maso, barevná ze-<br>lenina | zajišťuje vidění, tvoří oční purpur,<br>podílí se na tvoření bílkovin v kůži<br>a ve sliznicích                          | šeroslepost, rohovatění kůže a<br>sliznic, ucpávání vývodů žláz,<br>postižení skloviny i zuboviny                                              | nebezpečí hypervita-<br>minózy z předávkování<br>- bolest hlavy, koliky,<br>průjmy            |
| B (thiamin)                       | heterocykl             | 1.5mg          | obiloviny(zejména<br>klíčky), kvasnice,<br>játra, vepřové<br>maso                   | zasahuje především do metabolismu cukrů, zejména v centrálním nervstvu a ve svalech; podporuje činnost trávicího ústrojí | zvýšená únavnost, sklony ke<br>křečím svalstva, srdeční poru-<br>chy, trávicí poruchy, dispozice k<br>zánětům nervů až onemocnění<br>beri-beri |                                                                                               |
| B <sub>1</sub> (riboflavin)       |                        | 1.8mg          | mléko, maso,<br>kvasnice                                                            | jako účinná složka tzv. žlutého<br>dýchacího fermentu je v každé<br>buňce, kde se účastní oxidace<br>živin               | zardělost a palčivost jazyka,<br>zduření rtů, bolavé koutky, po-<br>ruchy sliznice hltanu a hrtanu                                             | v 1<br>litry mléka je okolo 1mg                                                               |
| B <sub>3</sub> (kys. pantotenová) | deriv. kys.<br>máselné | 7-10mg         | játra, kvasnice,<br>hrách, maso,<br>mléko, vejce                                    | účast v oxidoreduktázách a<br>umožňuje syntézu bílkovin+ jako<br>koenzym A má centrální postavení<br>v metabolizmu       | různé degenerace; u člověka pálení<br>chodidel                                                                                                 | je ve všech tkáních                                                                           |
| B <sub>6</sub> (pyridoxin)        |                        | 2mg            | kvasnice, obilné<br>klíčky, mléko,<br>luštěniny                                     | podporuje účinek vitaminů $B_1$ a $B_3$                                                                                  | pomalé hojení zánětů, zhoršení regenerace sliznic                                                                                              |                                                                                               |
| B <sub>12</sub> (kobala-<br>min)  |                        | 0.001mg        | játra, maso,<br>činností bakterií<br>vznik ve střevech                              | nutný pro udržení normální krvetvorby                                                                                    | "zhoubná" chudokrevnost                                                                                                                        | ke vstřebávání vita-<br>minu B <sub>12</sub> je nutná<br>přítomnost tzv.<br>vnitřního faktoru |
| Kys. nikotinová                   | heterocykl             | 15-20mg        | játra, ledviny,<br>maso, kvasnice,<br>houby                                         | klíčová pro syntézu ribonuk-<br>leových kyselin a bílkovin                                                               | záněty kůže, celková sešlost,<br>poškození mozku                                                                                               |                                                                                               |
| Kys. listová                      | heterocykl             | 0.5-1mg        | listová zelenina                                                                    | zasahuje do metabolismu ami-<br>nokyselin, je nutná pro tvorbu<br>červených krvinek                                      | chudokrevnost                                                                                                                                  |                                                                                               |

| Název                         | Skupina                  | Denní<br>dávka | Zdroj                                                                                        | Význam                                                                                             | Projevy nedostatku                                                                                                                          | Poznámka                                                                                  |
|-------------------------------|--------------------------|----------------|----------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------|
| C (kys. askorbová)            | Sacharid deriv.          | 50-70mg        | syrové ovoce a<br>zelenina                                                                   | katalyzuje oxidaci živin, udržuje<br>dobrý stav vaziva a chrupavek,<br>podporuje tvorbu protilátek | únava, snížená odolnost proti<br>nakažlivým nemocem, krvácení,<br>vypadávání zubů; při avitaminóze<br>vzniká smrtelné onemocnění<br>kurděje | předávkování C vitaminu může být i zdravý škodlivé                                        |
| D (vit. antira-<br>chitický)  | steroid                  | 400m.j.        | rybí tuk, vzinká<br>po ozáření UV v<br>malém množství i<br>v kůži                            | podílí se na řízení metabolismu Ca<br>a P v těle                                                   | ztrácí-li organismus Ca a P,<br>snaží se jej nahradit z kostí, za<br>vývoje vzniká křivice, v dospělosti<br>měknutí kostí, rachitis         | hypervitaminóza D vede k ukládání Ca v ledvinách, srdci, stěnách cév a může ohrozit život |
| E (tokoferol)                 | deriv. to-<br>kolu       | 5-20mg         | obilné klíčky                                                                                | podporuje činnost pohlavních žláz<br>a správný průběh těhotenství                                  | některé gestační poruchy                                                                                                                    |                                                                                           |
| H (Biotin)                    | heterocykl               | 0.15-0.3mg     | kvasnice, játra,<br>ledviny, bi-<br>osyntéza ve<br>střevech                                  | je ve všech živočišných buňkách,<br>podporuje jejich růst a dělení                                 | záněty kůže, atrofie papil jazyka,<br>unavenost, deprese, svalové bo-<br>lesti, nechutenství                                                |                                                                                           |
| K (vit. antihe-<br>moragický) | deriv. naf-<br>tochinonu | 1mg            | listové zele-<br>niny, kvasnice,<br>v tlustém střevě<br>je tvořen činností<br>mikroorganismů | oxidoreduktáza, tvorba pro-<br>tisrážlivé látky protrombinu                                        | krvácení do tkání a tělesných<br>dutin, krvácení do mozku může<br>zapříčinit smrt                                                           |                                                                                           |