Tópicos de Matemática Discreta

2008/2009 -Exercícios

- 1. Das seguintes frases indique aquelas que são proposições:
 - (a) "A Terra é redonda."
 - (b) "Hoje está sol."
 - (c) "2 + x = 3 e 2 é par."
 - (d) " $(25 \times 2) + 7$ "
 - (e) "2 é ímpar ou 3 é múltiplo de 4."
 - (f) "Qual é o conjunto de soluções inteiras da equação $x^2 1 = 0$?"
 - (g) "4 < 3."
 - (h) "Se $x \ge 2$ então $x^3 \ge 1$."
 - (i) "A U.M. é a melhor academia do país."
- 2. Sejam p: "Eu gosto de leite.", q: "Eu não gosto de cereais." e r: "Eu sei fazer crepes.". Traduza as seguintes proposições em palavras:
 - (a) $p \wedge q$

- (b) $q \vee r$

- $\begin{array}{lll} \text{(c)} \neg r & \text{(e)} \neg p \vee \neg q & \text{(g)} (r \wedge p) \vee q \\ \text{(d)} \neg (p \vee q) & \text{(f)} \neg p \vee q & \text{(h)} r \wedge (p \vee q) \end{array}$
- 3. Considerando que p representa a proposição "O João caiu" e que q representa a proposição "O João magoou-se", escreva simbolicamente as seguintes proposições:
 - (a) "O João caiu e magoou-se".
 - (b) "O João caiu mas não se magoou".
 - (c) "Não é verdade que o João caiu e se magoou".
 - (d) "Sempre que o João cai, magoa-se".
 - (e) "O João só se magoa se cair".
- 4. Sejam e = "A casa é azul.", f = "A casa tem 30 anos." e g = "A casa é feia.". Traduza as seguintes proposições em símbolos:
 - (a) "Se a casa tem 30 anos então é feia."
 - (b) "Se a casa é azul então a casa é feia ou tem 30 anos."
 - (c) "Se a casa é azul então é feia ou a casa tem 30 anos."
 - (d) "A casa só não é feia se não tem 30 anos."
 - (e) "A casa tem 30 anos se for azul e a casa não é feia se tem 30 anos."
 - (f) "Para a casa ser feia é necessário e suficiente que tenha 30 anos."
- 5. Das seguintes proposições indique as que são verdadeiras:
 - (a) $(e < 4) \land (e^2 < 9)$.
 - (b) 1 e -1 são soluções da equação $x^3 1 = 0$.
 - (c) 64 é múltiplo de 3 ou de 4.

- (d) $\sqrt{530} < 25 \Rightarrow 530 < 25^2$
- (e) 7^4 é par se e só se $7^4 + 1$ é impar.
- 6. Construa tabelas de verdade para cada uma das seguintes fórmulas proposicionais:
 - (a) $p \vee (\neg p)$.

(g) $(p \Rightarrow q) \Leftrightarrow (\neg p \lor q)$

(b) $\neg (p \lor q)$.

(h) $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p)$

(c) $p \land \neg (p \lor q)$.

(i) $p \Rightarrow (q \Rightarrow r)$.

(d) $p \wedge (\neg p \vee q)$.

(j) $p \land \neg (q \Rightarrow r)$

(e) $\neg (p \Rightarrow \neg q)$.

(k) $(p \Leftrightarrow \neg r) \lor (q \land r)$

(f) $p \Leftrightarrow (q \vee p)$

- (1) $(p \Rightarrow (q \Rightarrow r)) \Rightarrow ((p \land q) \Rightarrow r)$.
- 7. Suponha que p é uma proposição verdadeira, q é uma proposição falsa, r é uma proposição falsa e s é uma proposição verdadeira. Quais das seguintes proposições são verdadeiras e quais são falsas?

- $\begin{array}{llll} \text{(a)} \ p \lor r & \text{(b)} \ (r \land s) \lor q & \text{(c)} \ \neg (p \land q) \\ \text{(d)} \ \neg s \lor \neg r & \text{(e)} \ (s \land p) \lor (q \land r) & \text{(f)} \ r \lor (s \lor (p \land q)) \\ \text{(g)} \ r \Rightarrow q & \text{(h)} \ p \Leftrightarrow r & \text{(i)} \ (q \Leftrightarrow s) \land p \\ \text{(j)} \ s \Rightarrow (p \Rightarrow \neg s) & \text{(k)} \ ((q \Rightarrow s) \Leftrightarrow s) \land \neg p & \text{(l)} \ (s \Rightarrow p) \Leftrightarrow \neg (r \lor q) \end{array}$
- 8. Suponha que o Manuel gosta da cor azul, não gosta da cor vermelha, gosta da cor amarela e não gosta da cor verde. Quais das seguintes proposições são verdadeiras e quais são falsas?
 - (a) O Manuel gosta de azul e de vermelho.
 - (b) O Manuel gosta de amarelo ou verde e o Manuel não gosta de vermelho.
 - (c) O Manuel gosta de vermelho ou o Manuel gosta de azul e amarelo.
 - (d) O Manuel gosta de azul ou amarelo e o Manuel gosta de vermelho ou verde.
 - (e) Se o Manuel gosta de azul então gosta de amarelo.
 - (f) O Manuel gosta de amarelo se e só se gosta de vermelho.
 - (g) O Manuel gosta de verde e se o Manuel gosta de amarelo então gosta de azul.
 - (h) Se o Manuel gosta de amarelo então gosta de verde ou o Manuel gosta de amarelo se e só se gosta de vermelho.
- 9. De entre as seguintes fórmulas proposicionais, indique aquelas que são tautologias e aquelas que são contradições:
 - (a) $p \Rightarrow (p \lor q)$;

- (d) $(p \Rightarrow (p \lor q)) \land q$;
- (e) $(p \lor \neg p) \Rightarrow (p \land \neg p)$;
- (b) $\neg (p \land q) \Rightarrow (p \lor q);$ (c) $(p \Rightarrow q) \Leftrightarrow (\neg q \Rightarrow \neg p);$
- (f) $\neg (p \Rightarrow (q \Rightarrow p))$.
- 10. Indique quais dos pares de fórmulas proposicionais que se seguem são logicamente equivalen-
 - (a) $\neg (p \land q); \neg p \land \neg q$.
 - (b) $p \Rightarrow q$; $q \Rightarrow p$.
 - (c) $\neg (p \Rightarrow q)$; $p \land (q \Rightarrow (p \land \neg p))$.
 - (d) $p \Rightarrow (q \Rightarrow r); \neg(\neg r \Rightarrow \neg q) \Rightarrow \neg p$.
- 11. Encontre uma fórmula que seja logicamente equivalente à fórmula $p \lor \neg q$ e que envolva apenas os conectivos \wedge e \neg .

- 12. Numa cidade os habitantes são de dois tipos: os que mentem sempre (F) e os que dizem sempre a verdade (V). Consideremos 3 habitantes A, B e C dessa cidade. Em cada uma das alíneas, diga se é possível determinar o tipo (V ou F) de cada um desses habitantes, sabendo que eles disseram:
 - (a) A: B e C são F's B: A é V
 - C: A é F

- (b) A: B e C são do mesmo tipo
 - B: eu e C somos V's
 - C: B é F
- 13. Mostre que a soma de dois números ímpares é um número par.
- 14. Mostre que o produto de números ímpares é um número ímpar.
- 15. Sejam a,b e c três números reais tais que a>b. Mostre, por contraposição, que se $ac \leq bc$ então $c \leq 0$.
- 16. Prove que, para todo o natural n, n^2 é impar se e só se n é impar.
- 17. Encontre um contra-exemplo para cada das afirmações seguintes:
 - (a) Se $n = p^2 + q^2$, com p, q primos, então n é primo.
 - (b) Se a > b, com $a, b \in \mathbb{R}$, então $a^2 > b^2$.
 - (c) Se $x^4 = 1$, com $x \in \mathbb{R}$, então x = 1.
- 18. Considere o seguinte predicado p(n) sobre os números inteiros: " $n < 5 \Rightarrow n < 2$ ". Para cada valor de n, indique se a correspondente proposição é ou não verdadeira.
- 19. Suponha que os possíveis valores de x são coelhos e considere os predicados na variável x: p(x): "x tem pêlo branco", q(x): "x gosta de cenouras". Traduza as seguintes quantificações por palavras:
 - (a) $\forall x \ p(x)$
 - (b) $\exists x \ q(x)$
 - (c) $\forall x \ (p(x) \land q(x))$
 - (d) $\exists x \ (p(x) \lor q(x))$
 - (e) $\forall x \ (p(x) \Rightarrow q(x))$
 - (f) $\exists x \ (q(x) \Leftrightarrow \neg p(x))$
- 20. Suponha que os possíveis valores de x são cães e sejam p(x): "x é preto", q(x): "x tem quatro anos", r(x): "x tem manchas brancas". Traduza as seguintes quantificações para linguagem simbólica.
 - (a) Existe um cão preto.
 - (b) Todos os cães têm quatro anos de idade.
 - (c) Existe um cão preto com manchas brancas.
 - (d) Todos os cães com quatro anos têm manchas brancas.
 - (e) Existe um cão tal que se tem quatro anos então não tem manchas brancas.
 - (f) Todos os cães são pretos se e só se não têm quatro anos.
 - (g) Não existem cães pretos.
- 21. Exprima cada uma das seguintes proposições como quantificações:
 - (a) A equação $x^3 = 28$ tem solução nos números naturais.

- (b) A equação $x^2 4 = 0$ tem uma solução positiva.
- (c) 1000000 não é o maior número natural.
- (d) A soma de três números naturais consecutivos é um múltiplo de 3.
- (e) Entre cada dois números racionais distintos existe um outro número racional.
- 22. Construa provas para as proposições (b), (c) e (d) do exercício anterior.
- 23. Escreva afirmações que sejam a negação das proposições que se seguem:
 - (a) Todos os peixes nadam.
 - (b) Alguns jornais exageram a realidade.
 - (c) Existe um gato sem cauda.
 - (d) Todas as peças de Shakespeare são comédias.
- 24. Considere a seguinte proposição:

"Todos os Hobbits são criaturas pacíficas".

Indique qual ou quais das seguintes proposições equivale à negação da proposição anterior:

- (a) "Todos os Hobbits são criaturas conflituosas".
- (b) "Nem todos os Hobbits são criaturas pacíficas".
- (c) "Existem Hobbits que são criaturas conflituosas".
- (d) "Nem todos os Hobbits são criaturas conflituosas".
- Escreva a negação de cada uma das seguintes proposições sem aplicar a palavra "não" aos objectos quantificados.
 - (a) "Todos os rapazes são simpáticos."
 - (b) "Existem morcegos que pesam 50 ou mais quilogramas".
 - (c) "A inequação $x^2 2x > 0$ verifica-se para todo o número real x."
 - (d) "Existe um inteiro n tal que n^2 é um número perfeito."
 - (e) "Todo o OVNI tem o objectivo de conquistar alguma galáxia."
 - (f) "Existe uma casa tal que qualquer pessoa que lá entre fica com sardas."
 - (g) "Existe um número natural que é maior que todos os outros números naturais".
- 26. Considere as seguintes proposições, em que o universo de cada uma das quantificações é o conjunto dos números reais.
 - (a) $\forall x \exists y \ x + y = 0$
 - (b) $\exists x \forall y \ x + y = 0$
 - (c) $\exists x \forall y \ x + y = y$
 - (d) $\forall x \ (x > 0 \Rightarrow \exists y \ xy = 1)$

Para cada proposição p acima (i) indique se p é ou não verdadeira e (ii) apresente, sem recorrer ao conectivo negação, uma proposição que seja equivalente a $\neg p$.

4

(b) Nenhum el(c) A tem um			В.		
(d) $A \text{ tem exact}$					
30. De entre os conjuntos que se seguem, indique aqueles que são iguais.					
(a) $\{x \in \mathbb{R} \mid x^2 \}$ (b) $\{r, t, s\}, \{s\}$ (c) $\emptyset, \{0\}, \{\emptyset\}$	$\{t,r,s\}, \{t,s,t\}$			4}.	
31. Seja $A = \{5, 11, $ é ou não verdad (a) $5 \in A$ (e) $\{5, 11\} \subseteq A$	leira. (b) $\{5\}$	$\in A$ (c) $\{5$	$\{1,1\}\in A$	(d) $A \subseteq \mathbb{R}$	mações que se seguem $\subseteq A$
32. Investigue a veracidade de cada uma das seguintes proposições.					
(a) $\emptyset \in \{\emptyset\}$	(b) $\emptyset \subseteq \{\emptyset\}$	(c) $\emptyset \notin \emptyset$	$(\mathrm{d}) \ \emptyset \in \{\{$	Ø}}	
33. Prove que se A	$\subseteq \emptyset$ então $A =$	= Ø.			
que $a \in A, b \in$ necessariamente	$B, c \in C$ e que verdadeiras?	ue $d \notin A$, $e \notin$	$B \in f \notin C$.	Quais das afir	e C. Considere ainda mações seguintes são
(a) $a \in C$	(b) $b \in A$	(c) $c \notin A$	(d) $d \in B$	(e) $e \notin A$	(f) $f \notin A$
35. Dê exemplos de (a) $A \subseteq B$ e A					$A \subseteq B \in A \in B$
36. Considere conju é ou não verdad		. Diga, justific	ando, se cada	uma das afirm	nações que se seguem,
 (a) Se A ∈ B ∈ (b) Se A ∈ B ∈ (c) Se A ⊆ B ∈ (d) Se A ⊆ B ∈ 	e $B \subseteq C$ então e $B \in C$ então	$A \subseteq C.$ $A \in C.$			
37. Sejam $A = \{2, 4, 6, 8\}, B = \{x \in \mathbb{N} \mid \exists y \in \mathbb{N}, x = 2y\} \in C = \{x^2 \mid x \in A\}.$ Determine					
	(b) $A \cup A$ (g) $B \cap B$	(c) $A \cup B$ (h) $A \setminus B$	(d) $C \cup B$ (i) $C \setminus A$	(e) $B \cup C \cup$ (j) $B \setminus B$	$\cup A$

27. Considere o conjunto $A=\left\{1,-1,\frac{1}{4},2,0,-\frac{1}{2}\right\}$. Indique todos os elementos de cada um dos

(a) $\{a \in A \mid a^2 \in \mathbb{Z}\}\$ (b) $\{a \in A \mid \sqrt{a} \in A\}\$ (c) $\{a^2 \mid a \in A \land a^2 \in A\}\$ (d) $\{x \in \mathbb{R} \mid \exists a \in A \quad a^2 \in A \land x = \sqrt{a}\}\$ (e) $\{b \in \mathbb{Z} \mid \exists a \in A \quad b = a^2\}\$ (f) $\{b \in \mathbb{R} \mid \exists a \in A \quad b^2 = a\}$

28. Descreva, por compreensão, cada um dos conjuntos que se seguem:

29. Sejam A e B dois conjuntos. Simbolize convenientemente:

(a) $A \in B$ têm um elemento em comum.

 $\begin{array}{ll} \text{(a) } A=\{-1,1\} \\ \text{(c) } C=\{2,3,5,7,11,13,17,\ldots\} \end{array} \qquad \begin{array}{ll} \text{(b) } B=\{3,6,9,12,15,\ldots\} \\ \text{(d) } D=\{4,9,16,25\} \end{array}$

conjuntos seguintes.

- 38. Sejam $A, B \in C$ subconjuntos de um conjunto X. Prove que
 - (a) $A \cup A = A$

(b) $A \cup B = B \cup A$

(c) $A \cap \emptyset = \emptyset$

(d) se $A \cup B = \emptyset$ então $A = \emptyset$ e $B = \emptyset$

(e) $A \backslash B \subseteq A$

(f) $A \setminus \emptyset = A$

(g) $(A \backslash B) \cap B = \emptyset$

(h) $A \cap (B \setminus C) = (A \cap B) \setminus C$

(i) $A = (A \cap B) \cup (A \setminus B)$

- (j) se $A \subseteq B$ então $A \cup (B \setminus A) = B$
- (k) $X \setminus (A \cup B) = (X \setminus A) \cap (X \setminus B)$
- (1) $X \setminus (X \setminus A) = A$
- 39. Sejam A, B e C conjuntos. Mostre que se $A \cup B = A \cup C$ e $A \cap B = A \cap C$ então B = C.
- 40. Sejam $A, B \in C$ conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes.
 - (a) Se $C \subseteq A \cup B$ então $C \subseteq A$ e $C \subseteq B$.
- (b) Se $C \subseteq A$ ou $C \subseteq B$ então $C \subseteq A \cup B$.
- (c) Se $A \subseteq C$ e $B \subseteq C$ então $A \cup B \subseteq C$.
- (d) Se $A \cup B \subseteq C$ então $A \subseteq C$ e $B \subseteq C$.
- (e) Se $A \subseteq C$ ou $B \subseteq C$ então $A \cup B \subseteq C$.
- (f) Se $C \subseteq A \cap B$ então $C \subseteq A$ e $C \subseteq B$.
- (g) Se $C \subseteq A$ ou $C \subseteq B$ então $C \subseteq A \cap B$.
- (h) Se $A \subseteq C$ e $B \subseteq C$ então $A \cap B \subseteq C$.
- (i) Se $A \cap B \subseteq C$ então $A \subseteq C$ e $B \subseteq C$.
- (j) Se $A \subseteq C$ ou $B \subseteq C$ então $A \cap B \subseteq C$.
- 41. Dê exemplos de conjuntos $A, B \in C$ para os quais se tenha, respectivamente:
 - (a) $A \cup (B \setminus C) \neq (A \cup B) \setminus (A \cup C)$
- (b) $A \setminus (B \cap C) \neq (A \setminus B) \cap (A \setminus C)$
- 42. Sejam $A = \{1,5,7\}$ e $B = \{\emptyset,7,\{1,5,7\}\}$. Indique $\mathcal{P}(A)$ e $\mathcal{P}(B)$ e diga, justificando, se $A \in \mathcal{P}(B), A \in \mathcal{P}(\mathbb{N}) \text{ ou } \mathcal{P}(A) \subseteq \mathcal{P}(\mathbb{N}).$
- 43. Determine todos os elementos de $\mathcal{P}(\mathcal{P}(\mathcal{P}(\emptyset)))$.
- 44. Sejam A, B e C conjuntos. Diga, justificando, se é verdadeira ou falsa cada uma das afirmações seguintes:

(a)
$$\mathcal{P}(A \cap B) = \mathcal{P}(A) \cap \mathcal{P}(B)$$
 (b) $\mathcal{P}(A \cup B) = \mathcal{P}(A) \cup \mathcal{P}(B)$

(b)
$$\mathcal{P}(A \sqcup B) = \mathcal{P}(A) \sqcup \mathcal{P}(B)$$

- 45. Considere os conjuntos $A = \{1, 2, 3\}, B = \{a, b\} \in C = \{5\}.$
 - (a) Determine

i)
$$A \times C \in C \times A$$

i)
$$A \times C$$
 e $C \times A$ ii) $(A \times C) \setminus (C \times A)$ iii) $A \times B \times C$ iv) $A \times \emptyset \times C$ v) C^3 vi) $C^3 \times B$

iii)
$$A \times B \times C$$

iv)
$$A \times \emptyset \times C$$

v)
$$C^3$$

$$vi) C^3 \times B$$

- (b) Verifique que os conjuntos $C^3 \times B$ e $B \times C^3$ não são iguais.
- (c) Qual o número de elementos dos conjuntos $A^4 \times B \times C^2$ e $C^3 \times B \times A$?
- 46. Sejam $A, B \in C$ conjuntos. Prove que
 - (a) se $A \subseteq B$ então $A \times C \subseteq B \times C$
 - (b) se $A \subseteq B$ então $C \times A \subseteq C \times B$
 - (c) $C \times (A \cup B) = (C \times A) \cup (C \times B)$
 - (d) $(A \cap B) \times C = (A \times C) \cap (B \times C)$
- 47. Sejam A e B conjuntos. Prove que $(A \times A) \setminus (B \times B) = ((A \setminus B) \times A) \cup (A \times (A \setminus B))$.
- 48. Sejam $A \in B$ conjuntos tais que $A \neq B$. Suponha que C é um conjunto tal que $A \times C = B \times C$. Mostre que $C = \emptyset$.
- 49. Seja A um conjunto finito. Qual dos conjuntos $\mathcal{P}(A \times A) \in \mathcal{P}(A) \times \mathcal{P}(A)$ tem mais elementos?
- 50. Prove, por indução, as seguintes propriedades dos números naturais:

- (a) $1+3+5+...+(2n-1)=n^2$, para todo $n \ge 1$.
- (b) 2+4+6+...+2n = n(n+1), para todo $n \ge 1$.
- (c) $n^3 n$ é múltiplo de 3, para todo $n \ge 1$.
- 51. Mostre que, para todo número natural $n \ge 3$, $n^2 > 2n + 1$
- 52. Para $n \in \mathbb{N}$, define-se n! por 0! = 1 e $(n+1)! = n! \cdot (n+1)$. Indique, justificando, quais os naturais n para os quais $2^n < n!$.
- 53. O seguinte exemplo é bem conhecido como uma alegada "prova" por indução que claramente não pode ser válida. Indique onde se encontra o erro.

Vamos provar que todos os gatos são da mesma cor. Mais precisamente, vamos provar que a afirmação "para qualquer colecção de n gatos, todos os gatos têm a mesma cor" é verdadeira para todo o $n \in \mathbb{N}$. Uma vez que só há um número finito de gatos no mundo inteiro, segue que todos os gatos do mundo têm a mesma cor. Suponhamos que n=1. É certamente verdade que para qualquer colecção com um gato, todos os gatos têm a mesma cor. Supondo o resultado válido para n, vamos agora mostrar o resultado para n+1. Consideremos a colecção $\{G_1,\ldots,G_{n+1}\}$ de n+1 gatos. As colecções $\{G_1,\ldots,G_n\}$ e $\{G_2,\ldots,G_{n+1}\}$ têm ambas n gatos. Então, todos os gatos das duas colecções têm a mesma cor e, portanto, os gatos de $\{G_1,\ldots,G_{n+1}\}$ têm a mesma cor. Fica assim provado por indução que todos os gatos do mundo têm a mesma cor.

- 54. Considere os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$.
 - (a) Dê exemplo de uma correspondência de A para B que não seja função.
 - (b) Quantas funções existem de A para B e quantas de B para A?
- 55. Seja $g: \mathbb{R} \longrightarrow \mathbb{R}$ definida por $g(x) = x^2 1$. Determine:

(a)
$$g(\{-1,0,1\})$$
 (b) $g(]-\infty,0]$) (c) $g(\mathbb{R})$ (d) $g^{-1}(\{0\})$ (e) $g^{-1}(]-\infty,0]$)

56. Sejam f, g e h as funções de $\mathbb N$ para $\mathbb N$ definidas por:

$$f\left(n\right)=n+1;$$
 $g\left(n\right)=2n;$ $h\left(n\right)=\left\{ egin{array}{ll} 0, \ \mbox{se } n \ \mbox{\'e par} \\ 1, \ \mbox{se } n \ \mbox{\'e impar} \end{array}
ight.$

Determine:

(a)
$$f \circ f$$
 (b) $f \circ g$ (c) $g \circ f$ (d) $g \circ h$ (e) $f \circ g \circ h$

- 57. Dê exemplos de:
 - (a) Duas funções $f, g : \mathbb{R} \longrightarrow \mathbb{R}$ tais que f e g não sejam constantes e $f \circ g$ seja constante.
 - (b) Uma função $f: \mathbb{R} \longrightarrow \mathbb{R}$ tal que $f \neq id_{\mathbb{R}}$ mas $f \circ f = id_{\mathbb{R}}$.
- 58. Considere os conjuntos $A = \{1, 2, 3\}$ e $B = \{a, b, c, d\}$. Indique, caso exista, uma função de A para B que seja:
 - i) não injectiva; ii) injectiva; iii) sobrejectiva; iv) não sobrejectiva.
- 59. Diga, justificando, quais das seguintes funções são injectivas, sobrejectivas ou bijectivas:

$$f_1: \mathbb{N} \setminus \{0\} \longrightarrow \mathbb{N}, f_1(x) = 2x - 1; \qquad f_2: \mathbb{N} \longrightarrow \mathbb{N}, f_2(x) = x + 1; f_3: \mathbb{Q} \setminus \{0\} \longrightarrow \mathbb{Q} \setminus \{0\}, f_3(x) = \frac{1}{x}; \qquad f_4: \mathbb{Z} \longrightarrow \mathbb{Z}, f_4(x) = x + 1; f_5: \mathbb{R} \longrightarrow [0, +\infty[, f_5(x) = x^2; \qquad f_6: \mathbb{Z} \longrightarrow \mathbb{N}, f_6(x) = |x| + 2.$$

60. Considere as seguintes funções

$$f: [0,1] \xrightarrow{\longrightarrow} [0,1] \qquad g: \mathbb{R} \xrightarrow{\longrightarrow} \mathbb{R} \qquad h: \mathbb{Z} \xrightarrow{\longrightarrow} \mathbb{N}$$

$$x \longmapsto x^3 \qquad x \longmapsto 2x-3 \qquad x \longmapsto \begin{cases} 2x, & \text{se } x \geq 0 \\ -2x-1, & \text{se } x < 0 \end{cases}$$

Verifique que f, g e h são funções bijectivas e determine as respectivas funções inversas.

- 61. Seja $f:D\to E$ uma função. Suponha que $D\neq\emptyset$. Mostre que
 - (a) f é injectiva se e só se existe uma função $g: E \to D$ tal que $g \circ f = id_D$;
 - (b) f é sobrejectiva se e só se existe uma função $g: E \to D$ tal que $f \circ g = id_E$.
- 62. Sejam A e B dois conjuntos equipotentes. Mostre que $\mathcal{P}(A)$ e $\mathcal{P}(B)$ são equipotentes.
- 63. Sejam A um conjunto e $b \in A$.
 - (a) Mostre que $\mathcal{P}(A \setminus \{b\})$ e $\{X \subset A \mid b \notin X\}$ são equipotentes.
 - (b) Suponha que A é finito. Mostre que $\mathcal{P}(A)$ é finito e que $card(\mathcal{P}(A)) = 2^{card(A)}$.
- 64. Para cada uma das relações seguintes indique o respectivo domínio e imagem.
 - (a) $S \notin \text{a relação } S = \{(0,1),(1,1),(2,2),(3,2),(4,3)\} \text{ de } A = \{0,1,2,3,4,5\} \text{ para } B = \{0,1,2,3,4,5\}$ $\{1,2,3\}.$
 - (b) R é a relação em \mathbb{R} dada por $R = \{(x, y) \in \mathbb{R}^2 | y = x^2\}.$
 - (c) \mid é a relação "divide" em $\{2, 3, 4, 6, 9, 10, 12, 20\}$ definida por

$$a \mid b \Leftrightarrow \exists n \in \mathbb{N} \quad b = na.$$

- (d) Dado um conjunto A, T é a relação de A para $\mathcal{P}(A)$ dada por $\{(x, X) \mid x \in X\}$.
- (e) < é a relação "menor" usual em \mathbb{N} .
- 65. Seja $A = \{2, 4, 6, 8, 10\}$. Considere as seguintes relações em $A: R = \{(2, 2), (2, 4), (2, 6), (10, 8)\}$, $S = \{(10, 2), (10, 8)\}\ e\ T = \{(6, 2), (6, 4), (8, 10)\}.$ Determine
 - (a) R^{-1}
- (b) $R^{-1} \cup S^{-1}$ (c) $T \setminus S^{-1}$ (d) $T^{-1} \cap S$ (f) $R \circ T$ (g) $S^{-1} \circ T^{-1}$ (h) $S^{-1} \circ S$

- (e) $S \circ T$

- 66. Sejam $A = \{1, 2, 3\}$ e $B = \{x, y, w, z\}$. Considere as relações binárias de A para B e de B para A, respectivamente:

$$R = \{(1,x), (1,z), (2,y), (2,z)\}$$

$$S = \{(x,1), (x,3), (y,2), (w,2), (z,3)\}.$$

Sejam $T = S \circ R \in U = R \circ S$.

- (a) Determine:
 - i) R^{-1}

- ii) S^{-1} iii) T iv) $T \circ T$ v) U vi) $U \circ U$.
- (b) Verifique que $T^{-1} = R^{-1} \circ S^{-1}$.
- (c) Indique o domínio e a imagem de R.
- (d) Indique todas as relações binárias de A para B cujo domínio é $\{2,3\}$ e cuja imagem é
- (e) Dê um exemplo de relações binárias não vazias R' de A para B e S' de B para A, tais que $S' \circ R' \neq \emptyset$ e $R' \circ S' = \emptyset$.

- 67. Investigue se as igualdades que se seguem são verdadeiras, para quaisquer relações R_1, R_2 e R_3 definidas em conjuntos apropriados.

- (a) $(R_1 \circ R_2)^{-1} = (R_1^{-1} \circ R_2^{-1})$ (b) $(R_1 \circ R_2) \circ R_3 = R_1 \circ (R_2 \circ R_3)$ (c) $(R_1 \cap R_2) \cup R_3 = R_1 \cap (R_2 \cup R_3)$ (d) $(R_1 \cup R_2) \cup R_3 = R_1 \cup (R_2 \cup R_3)$
- 68. Considere o conjunto $A = \{1, 2, 3, 4\}$ e as seguintes relações em A:

$$R_1 = \{(1,4), (2,2), (2,3), (3,2), (4,1)\},$$
 $R_2 = \{(2,3)\},$ $R_3 = \{(1,2), (2,3), (3,2), (1,3), (2,2), (3,3)\},$ $R_4 = \{(a,a) \mid a \in A\} = \mathrm{id}_A.$

Diga, justificando, se cada uma das relações apresentadas é ou não uma relação

- (a) reflexiva;
- (b) simétrica:
- (c) anti-simétrica;
- (d) transitiva.
- 69. Sejam $A = \{1,2,3\}$ e $R = \{(1,2),(3,1)\}$ uma relação binária em A. Determine a menor relação binária em A que inclua R e que seja reflexiva (respectivamente, simétrica, transitiva e de equivalência).
- 70. Sejam A um conjunto e R uma relação simétrica e transitiva em A. Mostre que
 - (a) R não é necessariamente reflexiva.
 - (b) Se o domínio de $R \in A$, então $R \in R$ eflexiva.
- 71. Considere as relações R_1, R_2 e R_3 apresentadas a seguir:

 R_1 é a relação em $A = \{1, 2, 3, 4, 5, 6, 8\}$ definida por x R_1 y se e só se x e y têm o mesmo resto na divisão inteira por 3;

 R_2 é a relação em $\mathbb{R} \times \mathbb{R}$ definida por (x,y) R_2 (z,w) se e só se y=w;

 R_3 é a relação em $\mathbb{Z} \times (\mathbb{Z} \setminus \{0\})$ definida por (a,b) R_3 (c,d) se e só se ad = bc.

- (a) Verifique que R_1 , R_2 e R_3 são relações de equivalência.
- (b) Para as relações \mathcal{R}_1 e \mathcal{R}_2 descreva cada classe de equivalência e indique o conjunto quociente.
- (c) Mostre que a correspondência $[(a,b)] \mapsto \frac{a}{b}$ define uma bijecção $(\mathbb{Z} \times (\mathbb{Z} \setminus \{0\}))/R_3 \to \mathbb{Q}$.
- 72. Seja $A = \{1, 2, 3\}$ e considere a relação \sim em $\mathcal{P}(A)$ definida por $X \sim Y$ se e só se $X \cup \{1, 2\} = Y \cup \{1, 2\}.$
 - (a) Mostre que \sim é uma relação de equivalência em $\mathcal{P}(A)$.
 - (b) Indique todos os elementos da classe [{1}]...
 - (c) Determine o conjunto quociente $\mathcal{P}(A) / \sim$.
- 73. Seja $A = \{2, 3, 4, 6, 7\}$ e sejam

$$\begin{split} \Pi_1 &= \left\{ \left\{ 2,4 \right\}, \left\{ 3 \right\}, \left\{ 4,6 \right\}, \left\{ 3,6,7 \right\} \right\}, & \Pi_2 &= \left\{ \left\{ 2,4,6 \right\}, \left\{ 3,7 \right\} \right\}, \\ \Pi_3 &= \left\{ \left\{ 2 \right\}, \left\{ 3,4,7 \right\} \right\}, & \Pi_4 &= \left\{ \left\{ 2 \right\}, \left\{ 3 \right\}, \left\{ 4 \right\}, \left\{ 6 \right\}, \left\{ 7 \right\} \right\}, \\ \Pi_5 &= \left\{ \left\{ 2 \right\}, \emptyset, \left\{ 3,4 \right\}, \left\{ 6,7 \right\} \right\}, & \Pi_6 &= \left\{ \left\{ 2,6 \right\}, \left\{ 3,7 \right\}, \left\{ 4 \right\} \right\}. \end{split}$$

- (a) Diga, justificando, quais dos conjuntos Π_j $(1 \le j \le 6)$ são partições de A.
- (b) Para os conjuntos Π_i ($1 \le j \le 6$) que são partições, determine a relação de equivalência em A associada a Π_i .
- 74. Sejam $A = \{1, 2, 3, 6, 7, 9, 10, 11, 26\}$ e ~ a relação de equivalência em A definida por $x \sim y \Leftrightarrow x$ e y têm o mesmo número de divisores naturais

Determine a partição de A associada a \sim , isto é, o conjunto quociente A/\sim .

75. Considere a relação \sim em \mathbb{Z} definida por $x \sim y$ se e só se |x| = |y|.

- (a) Mostre que \sim é uma relação de equivalência.
- (b) Determine a partição de \mathbb{Z} associada a \sim , isto é, o conjunto quociente \mathbb{Z}/\sim .
- 76. Sejam $A = \{1, 2, 3, 4\}$ e sejam ρ_1, ρ_2, ρ_3 e ρ_4 as seguintes relações em A:

```
\rho_{1} = \{(1,1), (4,1), (2,2), (4,2), (3,3), (4,4)\} 

\rho_{2} = \{(1,1), (1,4), (2,2), (4,2), (3,3), (4,4), (2,4)\} 

\rho_{3} = \{(1,1), (2,2), (3,3), (4,4)\} 

\rho_{4} = \{(1,1), (2,3), (2,2), (2,1), (3,3), (4,4), (3,1)\}
```

Indique se cada uma destas relações é ou não uma ordem parcial e, para cada ordem parcial, apresente o correspondente diagrama de Hasse.

- 77. Determine todas as ordens parcias possíveis num conjunto com três elementos e construa os diagramas de Hasse correspondentes.
- 78. Sejam $A = \{1, 2, 3, 4, 5, 6, 7, 8\}, X = \{1, 2, 6\}$ e $Y = \{2, 3, 4, 8\}$. Considere o c.p.o. (A, \preceq) com o seguinte diagrama de Hasse:

Para cada um dos conjuntos X e Y determine, caso existam, os majorantes e minorantes, os elementos maximais e minimais e o máximo e o mínimo.

- 79. Indique, ou justifique que não existe, um grafo cujos vértices têm graus
 - (a) $2, 2 \in 2$
 - (b) $3, 3, 3, 3 \in 3$
 - (c) $1, 2, 2 \in 3$
 - (d) 2,5 e 5
- 80. Mostre que não existe nenhum grafo simples cujos vértices têm graus
 - (a) $7, 6, 5, 4, 3, 3 \in 2$
 - (b) $6, 6, 5, 4, 3, 3 \in 1$
- 81. Considere o grafo $G = (V, A, \varepsilon)$ definido por $V = \{a, b, c, d, e\}$, $A = \{ab, ac, bc, bd, ca, cd, ce, de, ee\}$ $\in \varepsilon(ab) = \{a, b\}$, $\varepsilon(ac) = \{a, c\}$, $\varepsilon(bc) = \{b, c\}$, $\varepsilon(bd) = \{b, d\}$, $\varepsilon(ca) = \{c, a\}$, $\varepsilon(cd) = \{c, d\}$, $\varepsilon(ce) = \{c, e\}$, $\varepsilon(de) = \{d, e\}$, $\varepsilon(ee) = \{e\}$.
 - (a) Represente G graficamente.
 - (b) Determine um caminho em G com 10 arestas.
 - (c) Determine um trilho em G com 6 arestas.
 - (d) Determine um trilho simples em G com 4 arestas.
 - (e) Qual o número de caminhos diferentes de a para e?
 - (f) Determine um ciclo em G com 1 (respectivamente 2, 3, 4, 5) arestas.
- 82. Verdadeiro ou falso? Cada grafo com n vértices e n-1 arestas é uma árvore. Justifique a sua resposta.

10