

LEETC - Licenciatura em Engenharia Eletrónica de Telecomunicações e de Computadores

Relatório Inicial

Semestre de Verão 2024/2025

Sistema de Cálculo de Captura de CO2 pelo Coberto Vegetal em Ambiente Urbano

Diogo Fonseca, 49345

Tiago Pereira, 49368

Orientadores: Prof. João Casaleiro

Prof. António Serrador

Março 2025

Índice

1.	Intr	odução	3
1	.1.	Motivações	3
1	.2.	Enquadramento	4
1	.3.	Caracterização do projeto	4
2.	Proj	jeto a desenvolver	5
		grama para Automatização e Quantificação dos Valores de CO nicial)	_
2	.2	Fase Inicial – Utilização de Dados de Satélite	5
	2.2.	1 Recolha e Processamento de Dados	5
	2.2.	2 Identificação e Classificação da Vegetação	5
	2.2.	3 Cálculo da Captação de CO ₂	5
2	.3	Fase Futura – Integração do Drone com LIDAR	6
3.	Obj	etivos do Projeto	6
	Aut	omatização e Eficiência	6
	Moı	nitorização Ambiental	6
	Evo	lução Tecnológica	6
4.	Cal	endarização do Projeto	7

1. Introdução

1.1. Motivações

O desenvolvimento deste projeto tem diversas contribuições positivas para a sociedade nomeadamente a sua contribuição no combate das alterações climáticas ajudando a quantificar o papel da vegetação urbana nas cidades, o dióxido de carbono (CO2) é um dos principais gases responsáveis pelo efeito estufa e pelo aquecimento global e através do desenvolvimento deste projeto será possível quantificar o papel da vegetação na absorção deste mesmo gás (CO2).

Este projeto permitirá às entidades responsáveis realizar um planeamento urbano mais sustentável e inteligente e tomar decisões informadas sobre a necessidade de áreas verdes, corredores ecológicos e reflorestamento em zonas urbanas criando zonas equilibradas ecologicamente e tendo diversos benefícios para a saúde publica como a melhoria da qualidade do ar e a regulação da temperatura urbana, com a melhoria da qualidade de vida da população vêm também outros benefícios como a valorização imobiliária e económica da zona.

Muitos municípios e países possuem também metas ambientais como de redução de emissões de CO2 para cumprir acordos climáticos, como o Acordo de Paris. O cálculo da captura de carbono pela vegetação permite monitorizar o impacto das políticas ambientais e justificar investimentos em infraestruturas verdes.

Este projeto revela-se também bastante versátil, pois após ser desenvolvido será possível aplicar o estudo que iremos realizar da zona de Oeiras a qualquer espaço no globo que tenha cobertura dos satélites utilizados.

1.2. Enquadramento

Esta proposta teve origem na <u>U!REKA European University</u> e é desenvolvida em colaboração com a <u>Câmara Municipal de Oeiras</u>, tendo como principal objetivo calcular a capacidade de captura de carbono (CO₂) da mancha vegetal do concelho. Para tal, serão avaliadas as diferentes capacidades de captura de CO₂ associadas a várias espécies de árvores presentes na região.

1.3. Caracterização do projeto

Inicialmente, o grupo irá identificar o desafio e explorar soluções para o cálculo da cobertura vegetal e a identificação das espécies associadas, recorrendo a imagens aéreas e de satélite. As imagens de satélite, nomeadamente as provenientes dos satélites Sentinel-1 e Sentinel-2, serão utilizadas para realizar uma estimativa aproximada das áreas e do tipo de vegetação, permitindo assim calcular de forma preliminar o valor de CO₂ capturado.

Numa segunda fase, será recorrida à utilização de um drone equipado com tecnologia LIDAR para medir a volumetria das espécies vegetais. Estas medições irão complementar e refinar as estimativas obtidas através das imagens de satélite, contribuindo assim para uma análise mais precisa e fiável da capacidade de captura de carbono na área de estudo.

2. Projeto a desenvolver

2.1 Programa para Automatização e Quantificação dos Valores de CO₂ (Fase Inicial)

O presente projeto centra-se no desenvolvimento de um programa informático destinado a automatizar a recolha, o processamento e a análise de dados para quantificar a captação de carbono (CO₂) pela vegetação urbana. Numa primeira fase, a aplicação será implementada com base em dados e imagens provenientes dos satélites Sentinel-1 e Sentinel-2, permitindo a identificação das áreas de vegetação e a estimativa inicial dos valores de CO₂ captado.

2.2 Fase Inicial – Utilização de Dados de Satélite

2.2.1 Recolha e Processamento de Dados

Iremos implementar módulos para a aquisição automática de imagens dos satélites Sentinel (nomeadamente Sentinel-1 e Sentinel-2), pertencentes à ESA (Agência Espacial Europeia). O processamento inicial será efetuado através da aplicação SNAP — Sentinel Application Platform, permitindo a correção, preparação e extração de dados relevantes para uma análise posterior, que servirá de base para o processamento destas imagens e para o cálculo da captação de CO₂ pela vegetação.

2.2.2 Identificação e Classificação da Vegetação

Desenvolvimento de algoritmos para processar as imagens e identificar as áreas de cobertura vegetal, bem como classificar as diferentes espécies presentes.

2.2.3 Cálculo da Captação de CO₂

Aplicação de modelos matemáticos e métodos automatizados para estimar a quantidade de CO₂ sequestrado pela vegetação, com base nos dados recolhidos.

2.3 Fase Futura – Integração do Drone com LIDAR

Embora a aplicação seja inicialmente desenvolvida com dados de satélite, a integração de um drone equipado com tecnologia LIDAR está planeada para fases posteriores. Esta integração permitirá:

A obtenção de dados volumétricos mais precisos das espécies vegetais.

A complementação e validação das estimativas obtidas através dos satélites, aprimorando a fiabilidade dos resultados.

3. Objetivos do Projeto

Automatização e Eficiência: Reduzir a intervenção manual através da automatização dos processos de recolha e análise de dados ambientais.

Monitorização Ambiental: Fornecer uma ferramenta robusta para a monitorização contínua da captação de CO₂ pela vegetação urbana, contribuindo para estratégias de sustentabilidade.

Evolução Tecnológica: Preparar o terreno para a futura integração do drone com LIDAR, permitindo uma análise cada vez mais detalhada e precisa.

Esta abordagem faseada garante que a aplicação esteja operacional e a contribuir para a monitorização ambiental desde a sua implementação inicial, enquanto possibilita a evolução do sistema com a incorporação de tecnologias adicionais, como o drone LIDAR, num momento mais oportuno.

4. Calendarização do Projeto

Em termos de planeamento, o projeto irá ser divido em diversas fases com um total de 8 tarefas e respetivas durações como apresentado na Tabela 1 e no gráfico da Figura 1.

Tabela 1 - Lista de tarefas com duração e calendarização

Tarefa - Descrição	Duração [dias]	Inicio	Fim	Fase	
A - Entrega e realização do Relatório Inicial	15	17/02	03/03		
B - Estudo dos métodos de processamento a serem aplicados	18	25/02	14/03		
B - Manipulação do s <i>oftwar</i> e SNAP				1 ^a	
C - Processamento e calculo seguindo os métodos estudados	18	15/03	01/04		
D - Planeamento e estruturação do programa a desenvolver	31	02/04	02/05		
D - Resolução do programa					
E- Entrega e realização do Relatório de Progresso	15	01/04	15/04		
E - Planeamento da/e Apresentação Intermédia	8	25/04	02/05		
Monitorização com drone LIDAR 31		03/05	02/06		
F-Volumetria das espécies a partir das imagens do drone	31	03/03	02/00	2 ^a	
G-Acreditação/comparação da 1º fase com a 2º fase	40	03/06	12/07		
G-Entrega e realização do relatório Final					
H-Apresentação Final	7	13/07	19/07		

Figura 1 - Calendarização das tarefas