Esercitazione sulle reti sequenziali

- Progettare una rete sequenziale per il controllo di un motore elettrico.
- La rete riceve in input i segnali relativi a due pulsanti A e S
 - A=1 ⇒ accendi
 - S=1 ⇒ spegni
 - In caso di pressione simultanea, S prevale.
- Se il motore è acceso (o spento) e arriva un altro segnale di accensione (o spegnimento), la rete deve ignorare il segnale.
- La rete deve dare in output il segnale O:
 - O = 0 ⇒ motore spento
 - O = 1 \Rightarrow motore acceso
- Si richiede di:
 - 1. Disegnare la macchina a stati finiti
 - 2. Scrivere la tabella di verità
 - 3. Trovare le forme SP minime
 - 4. Disegnare il circuito

Macchina a stati finiti di Moore

- 2 stati

- F=0 : motore spento

– F=1: motore acceso

F	Α	S	F*
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

Mimimizzazione

F	Α	S	F*
0	0	0	0
0	0	1	0
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	1
1	1	1	0

F_	
0	0
1	1

Circuito

- Progettare una rete sequenziale che comanda l'accensione e lo spegnimento di tre lampadine (Lamp_s,Lamp_p,Lamp_c) in sequenza
- L'output del circuito sono tre bit che per comodità chiamiamo: S,C,D.
 - Quando questi sono affermati, le lampadine corrispondenti sono accese
- Il ritmo del circuito è determinato dal periodo di clock
- · La rete riceve un segnale di ingresso I tale che:
 - se I = 0 ⇒ le lampadine devono accendersi in sequenza, una alla volta, partendo (la prima volta) da S

$$100 \rightarrow 010 \rightarrow 001 \rightarrow 100 \rightarrow \dots$$

se I = 1 ⇒ le lampadine devono accendersi in sequenza, due alla volta, partendo (la prima volta) da S e C

$$110 \rightarrow 011 \rightarrow 101 \rightarrow 110 \rightarrow \dots$$

Determinare: Macchina a stati di Moore + Tabelle + Equazioni minime

- Macchina a stati finiti di Moore
 - 6 stati, corrispondenti alle possibili combinazione degli output

Tabella di verità per NextState

S0	S1	S2	I	S0*	S1*	S2*
0	0	0	0	X	X	X
0	0	1	0	1	0	0
0	1	0	0	0	0	1
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	0	X	X	X
0	0	0	1	X	X	X
0	0	1	1	1	1	0
0	1	0	1	1	1	0
0	1	1	1	1	0	1
1	0	0	1	1	1	0
1	0	1	1	1	1	0
1	1	0	1	0	1	1
1	1	1	1	X	X	X

$$50*=50 S1 \sim I + S2 + \sim S0 I + \sim S1 I$$

Tabella di verità per NextState

S0	S1	S2	!	S0*	S1*	S2*
0	0	0	0	X	X	X
0	0	1	0	1	0	0
0	1	0	0	0	0	1
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	0	X	X	X
0	0	0	1	X	X	X
0	0	1	1	1	1	0
0	1	0	1	1	1	0
0	1	1	1	1	0	1
1	0	0	1	1	1	0
1	0	1	1	1	1	0
1	1	0	1	0	1	1
1	1	1	1	X	X	X

$$S1* = ~S2 \cdot I + ~S1 \cdot ~S2 + ~S1 \cdot I$$

Tabella di verità per NextState

S0	S1	S2	ı	S0*	S1*	S2*
0	0	0	0	X	X	X
0	0	1	0	1	0	0
0	1	0	0	0	0	1
0	1	1	0	1	0	0
1	0	0	0	0	1	0
1	0	1	0	1	0	0
1	1	0	0	1	0	0
1	1	1	0	X	X	X
0	0	0	1	X	X	X
0	0	1	1	1	1	0
0	1	0	1	1	1	0
0	1	1	1	1	0	1
1	0	0	1	1	1	0
1	0	1	1	1	1	0
1	1	0	1	0	1	1
1	1	1	1	X	X	X

$$S2*=\sim S0 \sim S2 \sim I + S0 S1 I + S1 S2 I$$

· Tabella di verità per Output

S0	S1	S2	S	С	D
0	0	0	X	X	X
0	0	1	0	0	1
0	1	0	0	1	0
0	1	1	0	1	1
1	0	0	1	0	0
1	0	1	1	0	1
1	1	0	1	1	0
1	1	1	X	X	X

- Progettare una rete sequenziale di Moore che
 - riceva in ingresso due segnali 1, 1, e
 - Restituisca in uscita due segnali O₁ e O₂ tali che:
- Se l'uscita precedente era (O₁ O₂) = (0 _) ⇒
 - O₁ O₂ dovranno essere il complemento di I₁ I₂
- Altrimenti ⇒
 - O₁ O₂ saranno il risultato della somma di I₁ + I₂
- All'inizio: $O_1 = O_2 = 0$

- Si richiede di:
 - 1. Disegnare la macchina a stati finiti
 - 2. Scrivere la tabella di verità
 - 3. Trovare le forme SP minime
 - 4. Disegnare il circuito

- Macchina a stati finiti di Moore
 - Uno stato per ogni possibile output

Tabelle di verità per NextState

S0	S1	l1	I2	S0* S1*
0	0	0	0	1 1
0	0	0	1	1 0
0	0	1	0	0 1
0	0	1	1	0 0
0	1	0	0	1 1
0	1	0	1	1 0
0	1	1	0	0 1
0	1	1	1	0 0
1	0	0	0	0 0
1	0	0	1	0 1
1	0	1	0	0 1
1	0	1	1	1 0
1	1	0	0	0 0
1	1	0	1	0 1
1	1	1	0	0 1
1	1	1	1	1 0
				1

$$S1* = ~S0 \cdot ~I2 + I1 \cdot I2 + S0 \cdot ~I1 \cdot I2$$

Tabelle di verità per NextState

S0	S1	l1	12	S0* S1*	
0	0	0	0	1 1	
0	0	0	1	1 0	
0	0	1	0	0 1	
0	0	1	1	0 0	
0	1	0	0	1 1	
0	1	0	1	1 0	
0	1	1	0	0 1	
0	1	1	1	0 0	
1	0	0	0	0 0	
1	0	0	1	0 1	
1	0	1	0	0 1	
1	0	1	1	1 0	
1	1	0	0	0 0	
1	1	0	1	0 1	
1	1	1	0	0 1	
1	1	1	1	1 0	

$$S0^* = ~S0 \cdot ~I1 + I1 \cdot I2 \cdot S0$$

Tabelle di verità per Output (O1 e O2)

S0	S1	01	02
0	0	0	0
0	1	0	1
1	0	1	0
1	1	1	1

$$01 = S0$$

$$02 = S1$$

Circuito finale

$$S1* = ~S0 \cdot ~l2 + l1 \cdot l2 + S0 \cdot ~l1 \cdot l2$$

 $S0* = ~S0 \cdot ~l1 + l1 \cdot l2 \cdot S0$
 $O1 = S0$
 $O2 = S1$

- Progettare una rete sequenziale che
 - riceva in input un segnale I
 - rilevi la presenza delle sequenze 101 e 110, anche sovrapposte.
- La rete ha un solo segnale di output R tale che:
 - R = 1 se una delle due sequenze è stata rilevata
 - R = 0 altrimenti
- Si richiede di:
 - 1. Disegnare la macchina a stati finiti
 - 2. Scrivere la tabella di verità
 - 3. Trovare le forme SP minime
 - 4. Disegnare il circuito

- Macchina a stati finiti di Mealy, con a stato iniziale
- Sequenze sovrapposte 101 e 110

es. I =001111101100101

sovrapposizione

Tabella di verità, con due bit (F₁,F₂) per memorizzare lo stato

	F ₁	F_2	I	R	F ₁ *	F ₂ *
a	0	0	0	0	0	0
	0	0	1	0	0	1
b	0	1	0	0	1	0
	0	1	1	0	1	1
d	1	0	0	0	0	0
	1	0	1	1	0	1
C	1	1	0	1	1	0
	1	1	1	0	1	1

$$R = F_1 \sim F_2 I + F_1 F_2 \sim I$$

$$F_1^* = \sim F_1 F_2 \sim I + \sim F_1 F_2 I + F_1 F_2 \sim I + F_1 F_2 I$$

$$F_2^* = \sim F_1 \sim F_2 I + \sim F_1 F_2 I + F_1 \sim F_2 I + F_1 F_2 I$$

Minimizzazione di R

	$\mathbf{F_1}$	F_2	I	R	F ₁ *	F_2^*
a	0	0	0	0	0	0
	0	0	1	0	0	1
b	0	1	0	0	1	0
_	0	1	1	0	1	1
d	1	0	0	0	0	0
_	1	0	1	1	0	1
C	1	1	0	1	1	0
	1	1	1	0	1	1

$$R = F_1 F_2 \sim I + F_1 \sim F_2 I$$

Minimizzazione di F₁*

	F ₁	F ₂	I	R	F ₁ *	F_2^*
a	0	0	0	0	0	0
	0	0	1	0	0	1
b	0	1	0	0	1	0
_	0	1	1	0	1	1
d	1	0	0	0	0	0
_	1	0	1	1	0	1
C	1	1	0	1	1	0
	1	1	1	0	1	1

$$F_1^* = F_2$$

Minimizzazione di F₂*

	$\mathbf{F_1}$	F_2	I	R	F ₁ *	F ₂ *
a	0	0	0	0	0	0
	0	0	1	0	0	1
b	0	1	0	0	1	0
_	0	1	1	0	1	1
d	1	0	0	0	0	0
_	1	0	1	1	0	1
C	1	1	0	1	1	0
	1	1	1	0	1	1
				I		

$$F_{2}^{*} = I$$

Circuito finale

$$R = F_1 \sim F_2 I + F_1 F_2 \sim I$$

 $F_1^* = F_2$
 $F_2^* = I$

- Disegnare una macchina a stati finiti di Mealy per il controllo di un distributore automatico di bibite
 - Il costo di una bibita è di 50 centesimi
 - Il distributore accetta monete da 10, 20, 50 centesimi.
 - I segnali di ingresso I₁₀, I₂₀ e I₅₀ vengono settati in corrispondenza della moneta introdotta. Può essere introdotta una sola moneta alla volta.
 - L'uscita O vale
 - 1 se la cifra totale introdotta è >= 50
 - · 0 altrimenti.
 - Quando O=1
 - la cifra introitata viene ridotta di 50 centesimi e la bibita viene restituita
 - Fare in modo che l'eventuale resto possa essere utilizzato dal cliente successivo.
- Scrivere le tabelle di verità relative alla macchina a stati finiti progettata.

Automa di Mealy

Resto=0 Stato a: Stato b: Resto=10 Stato c: Resto=20 I10 I20 I50 Resto=30 Stato d: Stato e: Resto=40 010 | 0010 | 0 010 | 0061_1 001 | 1001 | 1**601**11 100 I O 100 | O 100 | 0100 | 0e Ъ d 8 **ნ**0010 00010 00010 000 | 000010 $0\overline{10} \mid 1$ $0\overline{10} \mid 1$ 100 | 1

26

Tabella di verità parziale (per il primo stato...)
3 bit (S0 S1 S2) per rappresentare ogni stato.

	S0	S1	S2	I10	120	150	0	S1*	S2*	S3*
a	0	0	0	0	0	0	0	0	0	0
	0	0	0	0	0	1	1	0	0	0
	0	0	0	0	1	0	0	0	1	0
	0	0	0	0	1	1	X	X	X	X
	0	0	0	1	0	0	0	0	0	1
	0	0	0	1	0	1	X	X	X	X
	0	0	0	1	1	0	X	X	X	X
	0	0	0	1	1	1	X	X	X	X
b	0 etc	0 :	1	0	0	0				