Demostración de $\delta(C)$ coincide con el mínimo de columnas LD de la matriz de chequeo de C

Nicolás Cagliero

26 de junio de 2024

Theorem 1. Sea H la matriz de chequeo de C, entonces $\delta(C) = Min\{j : \exists un \ conjunto \ de \ j \ columnas \ LD \ de \ H\}$

Demostración. Sea m= mínimo número de columnas LD de H, $\delta=\delta(C)$. Como C es lineal, $\delta=min\{|x|,x\in C,x\neq 0\}$

Sea $x \in C, x \neq 0$ con $|x| = \delta$.

Como $|x| = \delta \Rightarrow x$ tiene $\delta 1's$.

 $\Rightarrow \exists i_1, i_2, ..., i_\delta : x = e_{i_1} + ... + e_{i_\delta}$

Como $x \in C$ y $C = Nu(H) \Rightarrow Hx^t = 0 \Rightarrow 0 = H^{i_1} + ... + H^{i_\delta}$. De esta forma ya tenemos un conjunto de δ columnas LD $\Rightarrow m \leq \delta$

Sean $H^{j_1}+\ldots+H^{j_m}$ m columnas LD. Sea $x=e_{j_1}+\ldots+e_{j_m}\Rightarrow Hx^t=0\Rightarrow x\in Nu(H)=C.$ De esta forma $\delta\leq |x|=m$

Luego $m = \delta$