Homework 2

Due date: 11th Oct, 2022

Turn in your homework in class

Rules:

- Work on your own. Discussion is permissible, but extremely similar submissions will be judged as plagiarism.
- Please show all intermediate steps: a correct solution without an explanation will get zero credit.
- Please submit on time. No late submission will be accepted.
- Please prepare your submission in English only. No Chinese submission will be accepted.

- 1. For the circuit below,
- (a) Use superposition theorem to find the voltage drop between a and b, namely V_{ab}
- (b) Use source transformation (at least twice) to find V_{ab}
- (c) Find the Norton equivalent circuit at terminals a and b

- 2. (a) Apply superposition to find V_{θ} in the circuit below when $R_L=250\Omega$.
- (b) Find the Thevenin equivalent circuit for the left hand side circuit of node a and node b.
 - (c) Determine the value of R_L when maximum power could be transferred to it.
- (d) for the situation in (c), find the power absorbed by the 520V voltage source and the 1A current source, **respectively**.

- 3. (a) Find the Thevenin equivalent circuit at the terminals **a** and **b**.
- (b) If a load resistor \mathbf{R}_L is connected at terminals \mathbf{a} and \mathbf{b} , what is the maximum power that could be transferred to it by this circuit, and what is the value of \mathbf{R}_L in this situation? Also, find the power absorbed by the three sources, **respectively**.

4. For the circuit below, find the Norton equivalent with respect to the terminals **a**, **b**.

- 5. The values of V_S , R_1 , R_2 , R_3 , R_4 are known positive constants. Use them to find:
- (a) The Thevenin equivalent circuit between node a and b.
- (b) The resistance of R_L that absorbs the maximum power, and the maximum power P_{max} absorbed by the load R_L

6. Find the voltage gain V_{out}/V_{in} of the following circuit, if R_1 =1k Ω , R_2 = R_3 =2k Ω , R_4 = R_5 =4k Ω .

7. For the following circuit, find the output voltage V_{out} in terms of V_1 to V_4 . Note that all the resistors in the circuit have the same resistance of $1k\Omega$. (Also, please pay attention to the given reference direction of the independent voltage sources)

