Advanced Bayesian Learning

Gaussian Process Regression and Classification - Lecture 1

Mattias Villani

Department of Statistics Stockholm University

Department of Computer and Information Science Linköping University

Course overview

■ Four topics

- Gaussian Process Regression and Classification
- **▶** Bayesian Nonparametrics
- Variational Inference
- Bayesian Model Inference

Examination

- ► Individual Lab/Exercise for each topic
- ▶ Deadline for submission: day before new topic starts.
- Extra deadline for all four topics: Sept 15, 2020.

Topic overview

- Gaussian Process Regression
- Gaussian Process Classification

Nonlinear regression

Linear regression

$$y = f(\mathbf{x}) + \epsilon$$
$$f(\mathbf{x}) = \mathbf{x}^T \mathbf{w}$$

and $\epsilon \sim N(0, \sigma_n^2)$ and iid over observations.

Polynomial regression: $\phi(\mathbf{x}) = (1, x, x^2, x^3, ..., x^k)$:

$$f(\mathbf{x}) = \phi(\mathbf{x})^T \mathbf{w}$$

- More generally: splines with basis functions.
- **Example:** thin plate splines with knots $\kappa_1, ..., \kappa_N$ in x-space

$$\phi_k(\mathbf{x}) = \ln \left(\|\mathbf{x} - \kappa_k\| \right) \|\mathbf{x} - \kappa_k\|^2$$

Recap: Bayesian linear regression

Prior

$$\mathbf{w} \sim \mathcal{N}\left(0, \Sigma_{p}\right)$$

Posterior [X is $D \times n$]

$$\begin{split} \mathbf{w}|\mathbf{X}, &\mathbf{y} \sim \mathcal{N}\left(\bar{\mathbf{w}}, \mathbf{A}^{-1}\right) \\ \mathbf{A} &= \sigma_n^{-2} \mathbf{X} \mathbf{X}^T + \Sigma_p^{-1} \\ \bar{\mathbf{w}} &= \sigma_n^{-2} \mathbf{A}^{-1} \mathbf{X} \mathbf{y} = \left(\mathbf{X} \mathbf{X}^T + \sigma_n^2 \Sigma_p^{-1}\right)^{-1} \mathbf{X} \mathbf{y} \end{split}$$

Predictive density for mean $f(\mathbf{x}_*) = \mathbf{x}_*^T \mathbf{w}$ at new \mathbf{x}_*

$$f(\mathbf{x}_*)|\mathbf{x}_*, \mathbf{X}, \mathbf{y} \sim N\left(\mathbf{x}_*^T \bar{\mathbf{w}}, \mathbf{x}_*^T \mathbf{A}^{-1} \mathbf{x}_*\right)$$

■ Predictive density for new response y_*

$$\mathbf{y}_* | \mathbf{x}_*, \mathbf{X}, \mathbf{y} \sim \mathcal{N}\left(\mathbf{x}_*^T ar{\mathbf{w}}, \mathbf{x}_*^T \mathbf{A}^{-1} \mathbf{x}_* + \sigma_n^2
ight)$$

A prior on w is really a prior over functions

Non-parametric regression

- Non-parametric: avoid a parametric form for $f(\cdot)$.
- Treat f(x) as an unknown parameter for every x.

- A new parameter for every x!
- Instead of restricting to linear, impose "prior smoothness".

Two views on GPs

- Weight space view
 - ▶ Restrict attention to a grid of x-values: $x_1, ..., x_k$.
 - ▶ Put a joint prior on the vector of *k* function values

$$f(x_1), ..., f(x_k)$$

- **■** Function space view
 - ► Treat f as an unknown function.
 - Put a prior over a set of functions (thank you, Kolmogorov!)

Gaussian process and its kernel

A GP implies:

$$\begin{pmatrix} f(x_1) \\ \vdots \\ f(x_k) \end{pmatrix} \sim N(\mathbf{m}, \mathbf{K})$$

But how do we specify the $k \times k$ covariance matrix **K**?

$$Cov\left(f(x_p),f(x_q)\right)$$

■ Squared exponential covariance function

$$Cov\left(f(x_p), f(x_q)\right) = k(x_p, x_q) = \sigma_f^2 \exp\left(-\frac{1}{2}\left(\frac{x_p - x_q}{\ell}\right)^2\right)$$

- Nearby x's have highly correlated function ordinates f(x).
- We can compute $Cov(f(x_p), f(x_q))$ for any x_p and x_q .

Gaussian processes

Definition

A Gaussian process (GP) is a collection of random variables, any finite number of which have a multivariate Gaussian distribution.

- A GP is a probability distribution over functions.
- A GP is specified by a mean and a covariance function

$$m(x) = \mathrm{E}\left[f(x)\right]$$

$$k(x,x') = E\left[\left(f(x) - m(x) \right) \left(f(x') - m(x') \right) \right]$$

for any two inputs x and x'.

A Gaussian process is denoted by

$$f(x) \sim GP(m(x), k(x, x'))$$

 $f(x) \sim GP$ encodes prior beliefs about the unknown $f(\cdot)$.

Gaussian processes

- Let r = ||x x'||.
- **Squared exponential (SE)** kernel ($\ell > 0$, $\sigma_f > 0$)

$$K_{SE}(r) = \sigma_f^2 \exp\left(-rac{r^2}{2\ell^2}
ight)$$

■ Matérn kernel ($\ell > 0$, $\sigma_f > 0$, $\nu > 0$)

$$\mathcal{K}_{\mathit{Matern}}(r) = \sigma_f^2 rac{2^{1-
u}}{\Gamma(
u)} \left(rac{\sqrt{2
u}r}{\ell}
ight)^
u \mathcal{K}_
u \left(rac{\sqrt{2
u}r}{\ell}
ight)$$

- Simulate draw from $f(x) \sim GP(m(x), k(x, x'))$ by:
 - form a grid $\mathbf{x}_* = (x_1, ..., x_n)$
 - simulate function values from multivariate normal:

$$f(\mathbf{x}_*) \sim N(m(\mathbf{x}_*), K(\mathbf{x}_*, \mathbf{x}_*))$$

Simulating a GP

The length scale ℓ - the correlation distance

SE: expected number of zero-crossings on [0,1]: $(2\pi\ell)^{-1}$ (Eq. 4.3)

The scale factor σ_f determines the variance

The mean can be sin(3x). Or whatever.

Sequential simulation of GPs

The joint way: Choose a grid $x_1, ..., x_k$. Simulate the k-vector

$$\begin{pmatrix} f(x_1) \\ \vdots \\ f(x_k) \end{pmatrix} \sim N(\mathbf{m}, \mathbf{K})$$

More intuition from the conditional decomposition

$$p(f(x_1), f(x_2),, f(x_k)) = p(f(x_1)) p(f(x_2)|f(x_1)) \cdots \times p(f(x_k)|f(x_1), ..., f(x_{k-1}))$$

Simulating from $p(f(x_1))$

Simulating from $p(f(x_2)|f(x_1))$

Simulating from $p(f(x_3)|f(x_1), f(x_2))$

Simulating from $p(f(x_4)|f(x_1), f(x_2), f(x_3))$

Multivariate normal distribution

The density of the *p*-variate $x \sim N(\mu, \Sigma)$ is

$$f(\mathbf{x}) = \left(\frac{1}{2\pi}\right)^{p/2} \frac{1}{\sqrt{\det \Sigma}} \exp\left\{-\frac{1}{2}(\mathbf{x} - \mu)' \Sigma^{-1}(\mathbf{x} - \mu)\right\}$$

Linear combinations. Let y = Bx + b, then

$$\mathbf{y} \sim N(\mathbf{B}\mu + \mathbf{b}, \mathbf{B}\Sigma\mathbf{B}')$$

Let $\mathbf{x} = \begin{pmatrix} \mathbf{x}_1 \\ \mathbf{x}_2 \end{pmatrix}$ where \mathbf{x}_1 is $p_1 \times 1$ and \mathbf{x}_2 is $p_2 \times 1$ and

$$\mu=\left(egin{array}{c} \mu_1 \ \mu_2 \end{array}
ight) \ ext{and} \ \Sigma=\left(egin{array}{cc} \Sigma_{11} & \Sigma_{12} \ \Sigma_{21} & \Sigma_{22} \end{array}
ight)$$

■ Marginals are normal. Let $\mathbf{x} \sim N(\mu, \Sigma)$, then

$$\mathbf{x}_1 \sim N(\mu_1, \Sigma_{11})$$

Conditionals are normal. Let $x \sim N(\mu, \Sigma)$, then

$$\mathbf{x}_2|\mathbf{x}_1 = \mathbf{x}_1^* \sim N\left[\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{x}_1^* - \mu_1), \ \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\right]$$

The posterior for a Gaussian Process Regression

Model

$$y_i = f(x_i) + \varepsilon_i, \quad \varepsilon \stackrel{iid}{\sim} N(0, \sigma_n^2)$$

Prior

$$f(x) \sim GP(0, k(x, x'))$$

- **Observed**: $\mathbf{x} = (x_1, ..., x_n)^T$ and $\mathbf{y} = (y_1, ..., y_n)^T$.
- **Goal**: posterior of $f(\cdot)$ over test data: $\mathbf{f}_* = \mathbf{f}(\mathbf{x}_*)$.
- Posterior

$$\begin{aligned} f_* | \mathbf{x}, \mathbf{y}, \mathbf{x}_* &\sim & \mathcal{N} \left(\overline{\mathbf{f}}_*, \operatorname{cov}(\mathbf{f}_*) \right) \\ \overline{\mathbf{f}}_* &= & \mathcal{K}(\mathbf{x}_*, \mathbf{x}) \left[\mathcal{K}(\mathbf{x}, \mathbf{x}) + \sigma_n^2 \mathbf{I} \right]^{-1} \mathbf{y} \\ \operatorname{cov}(\mathbf{f}_*) &= & \mathcal{K}(\mathbf{x}_*, \mathbf{x}_*) - \mathcal{K}(\mathbf{x}_*, \mathbf{x}) \left[\mathcal{K}(\mathbf{x}, \mathbf{x}) + \sigma_n^2 \mathbf{I} \right]^{-1} \mathcal{K}(\mathbf{x}, \mathbf{x}_*) \end{aligned}$$

Predictive distribution for new test data

$$\mathbf{y}_*|\mathbf{x},\mathbf{y},\mathbf{x}_* \sim \mathcal{N}\left(\overline{\mathbf{f}}_*,\operatorname{cov}(\mathbf{f}_*) + \sigma_n^2 I\right)$$

Sketch for proof of posterior

- Idea: obtain joint $p(y, f_*)$ and then $p(f_*|y)$ by conditioning.
- Model

$$y_i = f(x_i) + \varepsilon_i, \quad \varepsilon \stackrel{iid}{\sim} N(0, \sigma_n^2)$$

Prior

$$f(x) \sim GP(0, k(x, x'))$$

■ Joint distribution of (y, f_{*})

$$\left(\begin{array}{c} \mathbf{y} \\ \mathbf{f}_* \end{array} \right) \sim \mathbf{N} \left[\left(\begin{array}{c} \mathbf{0} \\ \mathbf{0} \end{array} \right), \left(\begin{array}{cc} K(\mathbf{x},\mathbf{x}) + \sigma_n^2 \mathbf{I} & K(\mathbf{x},\mathbf{x}_*) \\ K(\mathbf{x}_*,\mathbf{x}) & K(\mathbf{x}_*,\mathbf{x}_*) \end{array} \right) \right]$$

Complete proof by result:

$$\mathbf{x}_2|\mathbf{x}_1 = \mathbf{x}_1^* \sim \textit{N}\left[\mu_2 + \Sigma_{21}\Sigma_{11}^{-1}(\mathbf{x}_1^* - \mu_1), \; \Sigma_{22} - \Sigma_{21}\Sigma_{11}^{-1}\Sigma_{12}\right]$$

Example - LIDAR data

GP fit to LIDAR data $\ell = 0.5$, $\sigma_f = 0.5$, $\sigma_n = 0.05$

GP fit to LIDAR data $\ell = 0.2$, $\sigma_f = 0.5$, $\sigma_n = 0.05$

GP fit to LIDAR data $\ell = 1, \sigma_f = 0.5, \sigma_n = 0.05$

Matern32 vs SquaredExp for $\ell = 0.2$

Inference for the hyperparameters

Kernel depends on hyperparameters $\theta = (\sigma_f, \ell)^T$. Example

$$k(\mathbf{x}, \mathbf{x}') = \sigma_f^2 \exp\left(-\frac{1}{2} \frac{\|\mathbf{x} - \mathbf{x}'\|^2}{\ell^2}\right)$$

Common: maximize the marginal likelihood wrt θ :

$$p(\mathbf{y}|\mathbf{X},\theta) = \int p(\mathbf{y}|\mathbf{X},\mathbf{f},\theta)p(\mathbf{f}|\mathbf{X},\theta)d\mathbf{f}$$

f = f(X) is a vector of function values in the training data.

For Gaussian process regression: $\mathbf{y}|\mathbf{X}, \theta \sim N(\mathbf{0}, K + \sigma_n^2 I)$ so

$$\log p(\mathbf{y}|\mathbf{X},\theta) = -\frac{1}{2}\mathbf{y}^{T}\left(K + \sigma_{n}^{2}I\right)^{-1}\mathbf{y} - \frac{1}{2}\log\left|K + \sigma_{n}^{2}I\right| - \frac{n}{2}\log(2\pi)$$

■ Proper Bayesian inference for hyperparameters (HMC?)

$$p(\theta|\mathbf{y}, \mathbf{X}) \propto p(\mathbf{y}|\mathbf{X}, \theta)p(\theta).$$

Choice of kernel family by Bayesian model inference. For kernel $K \in \mathcal{K} \in \mathcal{K}$ $(K \mid \mathbf{v} \mid \mathbf{X}) \propto p(\mathbf{v} \mid \mathbf{X} \mid K) p(K)$

Advanced Bayesian Learning Gaussian Process Regression and Classification

GP fit LIDAR $\ell_{opt} = 0.61$, $\sigma_{f,opt} = 0.44$, $\sigma_n = 0.05$

log marginal likelihood surface $\sigma_n = 0.05$

log marginal likelihood surface $\sigma_n = 0.05$

GP fit to LIDAR data $\ell = 0.9, \sigma_f = 0.70, \sigma_n = 0.05$

Advanced Bayesian Learning

log marginal likelihood surface $\sigma_n = 0.05$

GP fit to LIDAR data $\ell = 0.3$, $\sigma_f = 0.4$, $\sigma_n = 0.05$

GP computations

- Covariance matrix K often numerically singular.
- Noise helps: $K + \sigma_n^2 I$.
- Artificial jittering $K + \epsilon I$ for small ϵ .
- Algorithm 2.1 and 3.1 in GPML for stable computations.
- We need to compute:
 - \triangleright $(K + \sigma_n^2 I)^{-1} \mathbf{y}$ (posterior)
 - $\mathbf{y}^T \left(K + \sigma_n^2 I\right)^{-1} \mathbf{y}$ (log marginal likelihood)
 - $ightharpoonup \left| \log K + \sigma_n^2 I \right|$ (log marginal likelihood)
- $(K + \sigma_n^2 I)^{-1} \mathbf{y}$ corresponds to solving $(K + \sigma_n^2 I) \mathbf{x} = \mathbf{y}$ wrt \mathbf{x} .

Cholesky + Forward and Backward substitution

- Solving $\mathbf{A}\mathbf{x} = \mathbf{b}$ by $\mathbf{x} = \mathbf{A}^{-1}\mathbf{b}$ is numerically unstable.
- **Cholesky factorization** $\mathbf{A} = \mathbf{L}\mathbf{L}^T$ where \mathbf{L} is lower triangular.
- Let $\mathbf{A}\mathbf{x} = \mathbf{L}\mathbf{L}^{\mathsf{T}}\mathbf{x} = \mathbf{L}\mathbf{z} = \mathbf{b}$ if we define $\mathbf{z} = \mathbf{L}^{\mathsf{T}}\mathbf{x}$.
- Solve Lz = b wrt z by forward substitution: $z = L \setminus b$
- Solve $\mathbf{L}^T \mathbf{x} = \mathbf{z}$ wrt \mathbf{z} by backward substitution: $\mathbf{x} = \mathbf{L}^T \setminus \mathbf{z}$.
- $|\mathbf{A}| = |\mathbf{L}\mathbf{L}^T| = |\mathbf{L}|^2 = (\prod_{i=1}^p L_{ii})^2.$
- Cholesky also preserves sparsity.¹
- Pre-conditioned conjugate gradient (PCG). $Ax \approx b$. Fast.

¹Rue and Held (2005). Gaussian Markov random fields. C&H.