# Big data: architectures and data analytics

## Spark MLlib - Part 3

## Regression problem

## Regression problem

- Predict the value of a continuous attribute (the target attribute)
- Regression is a logical extension of classification:
  - Harder from a mathematical perspective since there are infinite number of possible output values
  - Aim at optimizing metrics of error between predicted and true values (no accuracy rate)

## Regression applications

- Use cases can be
  - Predicting usage of bike-sharing in an area and in a day
  - Predicting throughput of an internet connection
  - Predicting movie box-office takings
  - Predicting company revenue

- ...

- Spark MLlib provides also a set of regression algorithms
  - E.g., Linear regression
- A regression algorithm is used to predict the target continuous attribute by applying a model on the predictive attributes
- The model is trained on a set of training data
  - i.e., a set of data for which the value of the target attribute is know

- The regression algorithms available in Spark work only on numerical data
  - They work similarly to classification algorithms, but they predict continuous numerical values (the target attribute is a continuous numerical attribute)
- The input data must be transformed in a DataFrame having the following attributes:
  - label: double
    - The continuous numerical value to be predicted
  - features: Vector of doubles
    - Predictive features

- Many regression algorithms are available in Mllib
  - Linear regression
  - Decision tree regression
  - Random forest regression
  - Survival regression
  - Isotonic regression

- ...

- Many regression algorithms are available in Mllib
  - Linear regression
  - Decision tree regression
  - Random forest regression
  - Survival regression
  - Isotonic regression

- ...

These algos are shown in the slides

# Regression algorithms: scalability

| Model                    | Number of features | Training size |
|--------------------------|--------------------|---------------|
| Linear regression        | > millions         | No limit      |
| Decision tree regression | > 1 000            | No limit      |
| Random forest regression | > 10 000           | No limit      |
|                          | •••                | •••           |

# Regression and parameter setting

- The tuning approach that we used for the classification problem can also be used to optimize the regression problem
  - CrossValidation
  - TrainValidationSplit
- The only difference is given by the used evaluator
  - In this case the difference between the actual value and the predicted one must be computed

# Regression and performance evaluation

- As for classification, in order to test the goodness of algorithms there is an evaluator
- The evaluator is RegressionEvaluator from pyspark.ml.evaluation
- The instantiated estimator has the method evaluate() that is applied to a dataframe
- It compares the prediction with the true value
- Output: the double value of the performance

# Regression and Performance evaluation

- Parameters of RegressionEvaluator:
  - MetricName: string for metric name in evaluation. Supports:
    - "rmse" (default): root mean squared error
    - "mse": mean squared error
    - "r2": R2 metric
    - "mae": mean absolute error
  - labelCol: input column with the true double target
  - predictionCol: input column with the predicted double value

## Linear regression

## Linear regression

- Linear regression is a popular, effective and efficient regression algorithm
- It assumes a linear combination of your input features – sum of each feature multiplied by a weight
- The input features can be preprocessed (e.g, you can apply a non-linear function of them)
- Produce Gaussian error in the output

1-D example: suppose X is the feature and Y the target value

$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$



$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$



$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$



$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$



$$Y_i = \beta_0 + \beta_1 X_i + \varepsilon_i$$



# Linear regression: Least Squares

'Best Fit' means difference between actual Y values and predicted Y values are a minimum.

$$\sum_{i=1}^{n} (Y_i - \hat{Y}_i)^2 = \sum_{i=1}^{n} \hat{\varepsilon}_i^2$$

Least squares minimizes the sum of the squared differences (errors)

# Linear regression: Least Squares

LS minimizes 
$$\sum_{i=1}^{n} \hat{\varepsilon}_{i}^{2} = \hat{\varepsilon}_{1}^{2} + \hat{\varepsilon}_{2}^{2} + \hat{\varepsilon}_{3}^{2} + \hat{\varepsilon}_{4}^{2}$$

$$Y_{2} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{2} + \hat{\varepsilon}_{2}$$

$$\hat{Y}_{i} = \hat{\beta}_{0} + \hat{\beta}_{1}X_{i}$$

# Linear regression: interpretation of coefficients

#### 1) Slope ( $\beta_1$ )

- Estimated Y changes by  $\beta_1$  for each unit increase in X
  - -If  $\beta_1 = 2$ , then Y increase by 2 for each 1 unit increase in X

#### 2) Y-Intercept ( $\beta_0$ )

- Value of Y when X = 0-If  $\beta_0 = 4$ , then Y is 4 when X is 0

### Linear regression

- Strong points
  - Very fast to train
  - Simple and interpretable model
  - Hard to overfit
- Weak points
  - Linear assumption often does not hold
  - Even if it holds, the errors (the noise)
     might not be gaussian

#### Linear regression in MLlib

- How to instantiate a linear regression algorithm in Spark an apply it on unlabeled data using MLlib
- The input dataset is a structured dataset with a fixed number of attributes
  - One attribute is the target attribute (the label)
  - The others are predictive attributes that are used to predict the value of the target attribute

#### Linear regression in MLlib

- Use the LinearRegression estimator from pyspark.ml.regression on a DataFrame
- Explicitly specify input columns featuresCol (vector) and labelCol (double)
- Output column:
  - predictionCol with the predicted double value

#### Linear regression in MLlib

- (Some) parameters:
  - maxIter: maximum number of iterations to fit the data (>0)
  - **fitIntercept**: whether to fit an intercept term ("True" or "False")
  - **loss:** "squaredError" or "huber", i.e., the function to minimize

•

## Linear regression in Mllib: model characteristics and performance

- Model characteristics
  - IrModel.coefficients return a python list of the coefficients of the linear regressor
  - IrModel.intercept return the double value of the intercept
- We can get detailed information about the regressor we trained. The summary method of the transformer returns a summary object with many fields
- For examples:
  - Residuals of each training data (summary.residuals is a dataframe)
  - Root mean square error of residuals (summary.rootMeanSquaredError is a double)

Consider the following example file about bike sharing usage

| +              | +           | +            |
|----------------|-------------|--------------|
| weekDay distan | ceCenter re | ntals        |
| +              | +           | +            |
| Monday         | 1.5         | 358          |
| Saturday       | 1.0         | 272          |
| Saturday       | 0.5         | 390          |
| Monday         | 3.0         | 120          |
| Saturday       | 0.3         | 439          |
| Monday         | 0.9         | 509          |
| Saturday       | 1.9         | 102          |
| Saturday       | 2.7         | 43           |
| Monday         | 0.6         | 597          |
| +              | +           | <del>-</del> |

- It contains 10 records
- Each record has two predictive attributes and the target attribute
  - "rentals" is the target attribute
  - The other attributes are predictive attributes
  - They represent the day of the week and the distance of the station from the center in km.

#### **Preprocessing the data**

```
from pyspark.ml.feature import StringIndexer
from pyspark.ml.feature import OneHotEncoderEstimator
from pyspark.ml.feature import VectorAssembler
# Load training data
rentalsDF=spark.read.csv('rentals.txt',header=True,inferSchema=True)
indexer = StringIndexer(inputCol="weekDay",
 outputCol="weekDayIndex", handleInvalid="keep")
indexerModel = indexer.fit(rentalsDF)
indexedDF=indexerModel.transform(rentalsDF)
va=VectorAssembler(inputCols=["weekDayIndex","distanceCenter"],
 outputCol="features")
assembledDF=va.transform(indexedDF)
```

#### Input DataFrame

| +<br>  weekDay distan                                                                            | ceCenter re                                                 | +<br>ntals                                          |
|--------------------------------------------------------------------------------------------------|-------------------------------------------------------------|-----------------------------------------------------|
| ++<br>  Monday <br> Saturday <br> Saturday <br>  Monday <br> Saturday <br>  Monday <br> Saturday | 1.5 <br>1.0 <br>0.5 <br>3.0 <br>0.3 <br>0.9 <br>1.9 <br>2.7 | 358 <br>272 <br>390 <br>120 <br>439 <br>509 <br>102 |
| Monday <br>                                                                                      | 0.6                                                         | 597 <br>+                                           |

#### Preprocessed DataFrame

| ++       |                | +       |              | <del>-</del>   |
|----------|----------------|---------|--------------|----------------|
| weekDay  | distanceCenter | rentals | weekDayIndex | features       |
| ++       |                | +       | +            | + <del>-</del> |
| Monday   | 1.5            | 358     | 1.0          | [1.0,1.5]      |
| Saturday | 1.0            | 272     | 0.0          | [0.0,1.0]      |
| Saturday | 0.5            | 390     | 0.0          | [0.0,0.5]      |
| Monday   | 3.0            | 120     | 1.0          | [1.0,3.0]      |
| Saturday | 0.3            | 439     | 0.0          | [0.0,0.3]      |
| Monday   | 0.9            | 509     | 1.0          | [1.0,0.9]      |
| Saturday | 1.9            | 102     | 0.0          | [0.0,1.9]      |
| Saturday | 2.7            | 43      | 0.0          | [0.0,2.7]      |
| Monday   | 0.6            | 597     | 1.0          | [1.0,0.6]      |
| ++       |                | +       |              | ++             |

#### Input DataFrame

+----+

As we saw in the preprocessing part, scaling the attribute "distanceCenter" and encoding the "weekDay" to many binary features might produce better results

| Saturuay | 1.9 | 102 |
|----------|-----|-----|
| Saturday | 2.7 | 43  |
| Monday   | 0.6 | 597 |
| +        |     | +   |

#### Preprocessed DataFrame

| +        |                | +       |              | +         |
|----------|----------------|---------|--------------|-----------|
| weekDay  | distanceCenter | rentals | weekDayIndex | features  |
| +        | + <del>-</del> | +       |              | ++        |
| Monday   | 1.5            | 358     | 1.0          | [1.0,1.5] |
| Saturday | 1.0            | 272     | 0.0          | [0.0,1.0] |
| Saturday | 0.5            | 390     | 0.0          | [0.0,0.5] |
| Monday   | 3.0            | 120     | 1.0          | [1.0,3.0] |
| Saturday | 0.3            | 439     | 0.0          | [0.0,0.3] |
| Monday   | 0.9            | 509     | 1.0          | [1.0,0.9] |
| Saturday | 1.9            | 102     | 0.0          | [0.0,1.9] |
| Saturday | 2.7            | 43      | 0.0          | [0.0,2.7] |
| Monday   | 0.6            | 597     | 1.0          | [1.0,0.6] |
| +        | +              | +       |              | ++        |

#### **Training the linear regressor**

```
from pyspark.ml.regression import LinearRegression

Ir = LinearRegression(labelCol="rentals",featuresCol="features",maxIter=10)

# Fit the model
IrModel = Ir.fit(assembledDF)

# Create the predictions
predictionDF=IrModel.transform(assembledDF)
```

#### Preprocessed dataframe

| +             | +             | +                | +                    |
|---------------|---------------|------------------|----------------------|
| weekDay dista | anceCenter re | entals wee       | ekDayIndex  features |
| +             | +             | +                | +                    |
| Monday        | 1.5           | 358              | 1.0 [1.0,1.5]        |
| Saturday      | 1.0           | 272              | 0.0 [0.0,1.0]        |
| Saturday      | 0.5           | 390              | 0.0 [0.0,0.5]        |
| Monday        | 3.0           | 120              | 1.0 [1.0,3.0]        |
| Saturday      | 0.3           | 439              | 0.0 [0.0,0.3]        |
| Monday        | 0.9           | 509              | 1.0 [1.0,0.9]        |
| Saturday      | 1.9           | 102              | 0.0 [0.0,1.9]        |
| Saturday      | 2.7           | 43               | 0.0 [0.0,2.7]        |
| Monday        | 0.6           | 597              | 1.0 [1.0,0.6]        |
| +             | <del>-</del>  | · <del>·</del> · | +                    |

#### Output dataframe with regression

| 4 | +                                                                                  |                                               |                                              |                                                     |                                                                                         | ++                                                                                                                                                                                                     |
|---|------------------------------------------------------------------------------------|-----------------------------------------------|----------------------------------------------|-----------------------------------------------------|-----------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| ļ | weekDay                                                                            | distanceCenter                                | rentals                                      | weekDayIndex                                        | features                                                                                | prediction                                                                                                                                                                                             |
| 1 | Monday  Saturday  Saturday  Monday  Saturday  Monday  Saturday  Saturday  Saturday | 1.0<br>0.5<br>3.0<br>0.3<br>0.9<br>1.9<br>2.7 | 272<br>390<br>120<br>439<br>509<br>102<br>43 | 0.0 <br>0.0 <br>1.0 <br>0.0 <br>1.0 <br>0.0 <br>0.0 | [0.0,1.0]<br>[0.0,0.5]<br>[1.0,3.0]<br>[0.0,0.3]<br>[1.0,0.9]<br>[0.0,1.9]<br>[0.0,2.7] | 395.82984014193653     299.82396947108407     389.98082944364353     125.3592602242581     426.04357343266736     504.01807210900796     137.541621520477     -6.709354435618195     558.1121880925436 |
| 4 | +                                                                                  |                                               |                                              | +                                                   |                                                                                         | ++                                                                                                                                                                                                     |

#### Information about the created regressor

```
# Print the coefficients and intercept for linear regression print("Coefficients: %s" % str(lrModel.coefficients)) print("Intercept: %s" % str(lrModel.intercept))
```

```
# Summarize the model over the training set and print out some
metrics
trainingSummary = IrModel.summary
print("RMSE: %f" % trainingSummary.rootMeanSquaredError)
trainingSummary.residuals.show()
```

#### Output dataframe with regression

| ++-       | +             | +       | +            |           | ++                 |
|-----------|---------------|---------|--------------|-----------|--------------------|
| weekDay d | istanceCenter | rentals | weekDayIndex | features  | prediction         |
| ++-       | +             | +       | +            |           | ++                 |
| Monday    | 1.5           | 358     | 1.0          | [1.0,1.5] | 395.82984014193653 |
| Saturday  | 1.0           | 272     | 0.0          | [0.0,1.0] | 299.82396947108407 |
| Saturday  | 0.5           | 390     | 0.0          | [0.0,0.5] | 389.98082944364353 |
| Monday    | 3.0           | 120     | 1.0          | [1.0,3.0] | 125.3592602242581  |
| Saturday  | 0.3           | 439     | 0.0          | [0.0,0.3] | 426.04357343266736 |
| Monday    | 0.9           | 509     | 1.0          | [1.0,0.9] | 504.01807210900796 |
| Saturday  | 1.9           | 102     | 0.0          | [0.0,1.9] | 137.541621520477   |
| Saturday  | 2.7           | 43      | 0.0          | [0.0,2.7] | -6.709354435618195 |
| Monday    | 0.6           | 597     | 1.0          | [1.0,0.6] | 558.1121880925436  |
| ++-       | <del>+</del>  | +       | ·            | -<br>     | ++                 |

#### Regressor information

Coefficients: [186.162730643412, -180.31371994511898]

Intercept: 480.13768941620305

RMSE: 29.198876

| ++                   |
|----------------------|
| residuals            |
| ++                   |
| -37.82984014193653   |
| -27.82396947108407   |
| 0.019170556356471025 |
| -5.359260224258094   |
| 12.956426567332642   |
| 4.98192789099204     |
| -35.54162152047701   |
| 49.709354435618195   |
| 38.88781190745635    |

#### Test DataFrame

| +              | +-         | +            |
|----------------|------------|--------------|
| weekDay distan | ceCenter r | entals       |
| +              |            | +            |
| Monday         | 0.1        | 641.0        |
| Saturday       | 2.1        | 129.0        |
| Saturday       | 1.5        | 199.0        |
| Monday         | 2.0        | 231.0        |
| Sunday         | 0.5        | 393.0        |
| +              |            | <del>+</del> |

#### **Preprocess test**

```
# Load test data
rentalsTestDF=spark.read.csv('rentalsTest.txt',header=True,inferSchem
a=True)
```

indexedTestDF=indexerModel.transform(rentalsTestDF)

assembledTestDF=va.transform(indexedTestDF)

#### Test DataFrame

| +              | + -         | +      |
|----------------|-------------|--------|
| weekDay distar | nceCenter r | entals |
| +              | + -         | +      |
| Monday         | 0.1         | 641.0  |
| Saturday       | 2.1         | 129.0  |
| Saturday       | 1.5         | 199.0  |
| Monday         | 2.0         | 231.0  |
| Sunday         | 0.5         | 393.0  |
| +              | + -         | +      |

#### Test DataFrame preprocessed

#### Test DataFrame

"Sunday" does not produce an error since in the StringIndexer we selected to keep linvalid values. They are stored in another category (i.e., 2.0)

```
-----+
 weekDay|distanceCenter|rentals|weekDayIndex| features|
  Monday I
                        641.0
                                      1.0|[1.0,0.1]
|Saturday|
                   2.1
                        129.01
                                      0.0|[0.0,2.1]
Saturdayl
                   1.5l
                                      0.0|[0.0,1.5]|
                        199.0l
  Mondayl
                        231.01
                                      1.0|[1.0,2.0]|
                                      2.0|[2.0,0.5]
  Sunday
                   0.51
                        393.01
```

#### Apply model to test data

```
from pyspark.ml.evaluation import RegressionEvaluator
predictionTestDF=IrModel.transform(assembledTestDF)
```

```
# compute test error
evaluator = RegressionEvaluator(
    labelCol="rentals", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictionTestDF)
print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)
```

#### Test DataFrame

| ++<br>  weekDay                                              | distanceCenter | rentals                 |
|--------------------------------------------------------------|----------------|-------------------------|
| Monday <br> Saturday <br> Saturday <br>  Monday <br>  Sunday | 2.1<br>1.5     | 129.0<br>199.0<br>231.0 |

#### Output test DataFrame with predictions

| ++       |                | +       | +            |            | ++                 |
|----------|----------------|---------|--------------|------------|--------------------|
| weekDay  | distanceCenter | rentals | weekDayIndex | features   | prediction         |
| ++       |                | +       | ·+           |            | ++                 |
| Monday   | 0.1            | 641.0   | 1.0          | [1.0,0.1]  | 648.2690480651031  |
| Saturday | 2.1            | 129.0   | 0.0          | [0.0, 2.1] | 101.47887753145318 |
| Saturday | 1.5            | 199.0   | 0.0          | [0.0,1.5]  | 209.66710949852455 |
| Monday   | 2.0            | 231.0   | 1.0          | [1.0, 2.0] | 305.67298016937707 |
| Sunday   | 0.5            | 393.0   | 2.0          | [2.0,0.5]  | 762.3062907304675  |
| ++       |                | +       | +            |            | ++                 |

Root Mean Squared Error (RMSE) on test data = 169.049

- Decision trees applied to regression work similarly to the ones for classification
- In regression, the trees output a single number per leaf node instead of a label
- A tree can predict a non linear function

- Use the DecisionTreeRegressor estimator from pyspark.ml.regression on a DataFrame
- Explicitly specify input columns featuresCol (vector) and labelCol (double)
- Output column:
  - predictionCol with the predicted double value

- Parameters are the same as for the classification
- Only difference is:
  - impurity: it represents the metric for wheter or not the model should split a particular leaf node with a particular value. The only currently supported metric is "variance"

- Consider the same previous example about predicting bike sharing usage
- Let's start already from the preprocessed dataframe

| +        | +              | ++      | +            |           |
|----------|----------------|---------|--------------|-----------|
| weekDay  | distanceCenter | rentals | weekDayIndex | features  |
| +        | t              | ++      | +            | +         |
| Monday   | 1.5            | 358     | 1.0          | [1.0,1.5] |
| Saturday | 1.0            | 272     | 0.0          | [0.0,1.0] |
| Saturday | 0.5            | 390     | 0.0          | [0.0,0.5] |
| Monday   | 3.0            | 120     | 1.0          | [1.0,3.0] |
| Saturday | 0.3            | 439     | 0.0          | [0.0,0.3] |
| Monday   | 0.9            | 509     | 1.0          | [1.0,0.9] |
| Saturday | 1.9            | 102     | 0.0          | [0.0,1.9] |
| Saturday | 2.7            | 43      | 0.0          | [0.0,2.7] |
| Monday   | 0.6            | 597     | 1.0          | [1.0,0.6] |
| +        | +              | ++      | +            | +         |

#### Training the decision tree

```
from pyspark.ml.regression import DecisionTreeRegressor
from pyspark.ml.evaluation import RegressionEvaluator
# Train a DecisionTree model.
dt = DecisionTreeRegressor(labelCol="rentals",featuresCol="features",maxDepth=4)
# Fit the model
dtModel = dt.fit(assembledDF)
# Predict output
predictionDF=dtModel.transform(assembledDF)
# Compute training error
evaluator = RegressionEvaluator(
  labelCol="rentals", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictionDF)
print("Root Mean Squared Error (RMSE) on training data = %g" % rmse)
```

#### Preprocessed dataframe

| +            | +             | +         | +                    |
|--------------|---------------|-----------|----------------------|
| weekDay dist | anceCenter re | entals we | ekDayIndex  features |
| +            | +             | +         | +                    |
| Monday       | 1.5           | 358       | 1.0 [1.0,1.5]        |
| Saturday     | 1.0           | 272       | 0.0 [0.0,1.0]        |
| Saturday     | 0.5           | 390       | 0.0 [0.0,0.5]        |
| Monday       | 3.0           | 120       | 1.0 [1.0,3.0]        |
| Saturday     | 0.3           | 439       | 0.0 [0.0,0.3]        |
| Monday       | 0.9           | 509       | 1.0 [1.0,0.9]        |
| Saturday     | 1.9           | 102       | 0.0 [0.0,1.9]        |
| Saturday     | 2.7           | 43        | 0.0 [ [0.0, 2.7] ]   |
| Monday       | 0.6           | 597       | 1.0 [1.0,0.6]        |
| +            | +             | +         | +                    |

#### Output dataframe with regression

| +                  | +            | +   | LPayInday   faaturas   pro |       |
|--------------------|--------------|-----|----------------------------|-------|
| weekbay uista<br>+ | ecenter   re | +   | kDayIndex  features pre    |       |
| Monday             | 1.5          | 358 | 1.0 [1.0,1.5]              | 358.0 |
| Saturday           | 1.0          | 272 | 0.0 [0.0,1.0]              | 272.0 |
| Saturday           | 0.5          | 390 | 0.0 [0.0,0.5]              | 390.0 |
| Monday             | 3.0          | 120 | 1.0 [1.0,3.0]              | 120.0 |
| Saturday           | 0.3          | 439 | 0.0 [0.0,0.3]              | 439.0 |
| Monday             | 0.9          | 509 | 1.0 [1.0,0.9]              | 509.0 |
| Saturday           | 1.9          | 102 | 0.0 [0.0,1.9]              | 102.0 |
| Saturday           | 2.7          | 43  | 0.0 [0.0,2.7]              | 43.0  |
| Monday             | 0.6          | 597 | 1.0 [1.0,0.6]              | 597.0 |
| +                  |              | +   | +                          |       |

Root Mean Squared Error (RMSE) on training data = 0

#### Preprocessed dataframe

```
weekDay|distanceCenter|rentals|weekDayIndex| features|
                                            1.0|[1.0,1.5]|
  Monday|
                     1.5
                              3581
|Saturday|
                      1.0
                              272
                                            0.0|[0.0,1.0]|
                     0.5|
                                            0.0|[0.0,0.5]|
|Saturday|
                              3901
                                            1.0|[1.0,3.0]|
  Monday|
                      3.0
                              120|
|Saturday|
                      0.3|
                              439|
                                            0.0|[0.0,0.3]|
                                            1.0|[1.0,0.9]|
                      0.91
                              509 l
  Monday|
```

The model is perfect with respect to training data

+-----

#### Output dataframe with regression

```
weekDay|distanceCenter|rentals|weekDayIndex| features|prediction
                                            1 0 | [1.0, 1.5] |
  Monday|
                     1.5
                              358
                                                                358.0
|Saturday|
                     1.0
                              272
                                            0.0|[0.0,1.0]|
                                                                272.0
                                            0.0|[0.0,0.5]|
|Saturday|
                     0.5
                              390 l
                                                                390.0
  Mondayl
                     3.01
                              120
                                            1.0|[1.0,3.0]|
                                                                120.0
|Saturday|
                     0.31
                              439
                                            0.0|[0.0,0.3]|
                                                                439.0
  Mondayl
                     0.91
                              509
                                            1.0 [1.0,0.9]
                                                                509.0
|Saturday|
                     1.9
                              102
                                            0.0 \ [0.0, 1.9]
                                                                102.0
                                            0.0|[0.0,2.7]|
|Saturday|
                     2.7
                              43|
                                                                43.0
                                            1.0|1.0,0.6]|
  Mondayl
                     0.6
                              597
                                                                597.0
```

Root Mean Squared Error (RMSE) on training data = 0

#### Test DataFrame

| ++                                                                                                              | - +             |
|-----------------------------------------------------------------------------------------------------------------|-----------------|
| weekDay distanceCenter rental                                                                                   | s               |
| Monday  0.1  641.<br> Saturday  2.1  129.<br> Saturday  1.5  199.<br>  Monday  2.0  231.<br>  Sunday  0.5  393. | 0  <br>0  <br>0 |

#### Apply model to test data

```
from pyspark.ml.evaluation import RegressionEvaluator predictionTestDF=lrModel.transform(assembledTestDF)
```

```
# compute test error
evaluator = RegressionEvaluator(
    labelCol="rentals", predictionCol="prediction", metricName="rmse")
rmse = evaluator.evaluate(predictionTestDF)
```

print("Root Mean Squared Error (RMSE) on test data = %g" % rmse)

#### Test DataFrame

| +              | +-         | +      |
|----------------|------------|--------|
| weekDay distan | ceCenter r | entals |
| +              | +-         | +      |
| Monday         | 0.1        | 641.0  |
| Saturday       | 2.1        | 129.0  |
| Saturday       | 1.5        | 199.0  |
| Monday         | 2.0        | 231.0  |
| Sunday         | 0.5        | 393.0  |
| +              | +-         | +      |

#### Output test DataFrame with predictions

```
weekDay|distanceCenter|rentals|weekDayIndex| features|prediction|
                                   1.0|[1.0,0.1]|
0.0|[0.0.2.1]|
              0.1| 641.0|
2.1| 129.0|
  Mondayl
                                                         597.01
                                       0.0|[0.0,2.1]|
|Saturday|
                                                         102.0
|Saturday| 1.5| 199.0|
                                       0.0|[0.0,1.5]|
                                                         272.0
                  2.0| 231.0|
                                       1.0|[1.0,2.0]|
  Monday|
                                                         120.0
              0.5| 393.0|
                                       2.0|[2.0,0.5]|
  Sunday|
                                                         597.0
```

Root Mean Squared Error (RMSE) on test data = 111.293

# Unsupervised learning: clustering

## Unsupervised learning

- Learning "what normally happens"
- No output
- Clustering: Grouping similar instances
- Other applications: Summarization, Association Analysis



## Clustering

Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



## Clustering: use cases

- Finding users with similar behaviour without the need to set thresholds
- Finding anomalies in data
- Topic modelling

## Clustering: ambiguity

Notion of a cluster can be ambiguous



How many clusters?



Two Clusters



Six Clusters







## Clustering: weak points

- It is usually hard to define and measure success
- For big data, the problem is exacerbated
- Clustering in high dimensional space can create odd clusters
- Curse of dimensionality: as feature space expands in dimensionality, it become more sparse and not statistically significant

## Clustering

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

From: Algorithms for Clustering Data, Jain and Dubes

## Clustering algorithms

- Spark MLlib provides a (limited) set of clustering algorithms
  - K-means
  - Gaussian mixture models
  - Bisecting K-means
  - Latent Dirichlet Allocation
  - ...

## Clustering algorithms

- Spark MLlib provides a (limited) set of clustering algorithms
  - K-means
  - Gaussian mixture models
  - Bisecting K-means
  - Latent Dirichlet Allocation
  - . . .

These algos are shown in the slides

# Clustering model scalability

| Model                       | Statistical recommendation | Computation limits               | Training size |
|-----------------------------|----------------------------|----------------------------------|---------------|
| k-means                     | features<100               | Features x clusters < 10 million | No limit      |
| Bisecting k-means           | features<100               | Features x clusters < 10 million | No limit      |
| Gaussian Mixture models     | features<100               | Features x clusters< 10 million  | No limit      |
| Latent Dirichlet Allocation | An interpretable number    | > 1000 clusters                  | No limit      |

## Clustering

- Each clustering algorithm has its own parameters
- However, all the provided algorithms identify a set of groups of objects/clusters and assign each input object to one single cluster
- All the clustering algorithms available in Spark work only with numerical data
  - Categorical values must be mapped to integer values (i.e., numerical values)

## Clustering

- The input of the MLlib clustering algorithms is a DataFrame containing a feature column
  - Data type: pyspark.ml.linalg.Vectors
- The clustering algorithm clusters the input records by considering only the content of features
  - The other columns, if any, are not considered

## Clustering: Example

- Example: credit score
  - A set of customer profiles
  - For each customer we have savings and income
  - We want to automatically group customer in groups based on their characteristics

| +       |        | <b></b> + |
|---------|--------|-----------|
| Savings | Income | User      |
| 15000   |        | !         |
| 0       | 5000   | Luca      |
| 20000   | 800    | Martino   |
| 6000    | 1300   | Mike      |
| 50000   | 2500   | Francesca |
| 2000    | 1100   | Steve     |
| 700     | 1500   | Maria     |
| 75000   | 0      | Guido     |
| 4000    | 500    | Roberta   |
| 7000    | 3000   | Idilio    |
| 3000    | 900    | Marco     |
| 6000    | 1200   | Dena      |
| +       |        | +         |

## Clustering: Example

#### **Preprocess data for clustering**

```
from pyspark.ml.feature import StandardScaler
from pyspark.ml.feature import VectorAssembler
data=spark.read.csv('credit score cluster.txt',header=True,inferSche
  ma=True)
va=VectorAssembler(inputCols=["Savings","Income"],
  outputCol="features")
assembledDF=va.transform(data)
scaler = StandardScaler(inputCol="features",
  outputCol="scaledFeatures", withStd=True, withMean=True)
scalerModel = scaler.fit(assembledDF)
scaledDF=scalerModel.transform(assembledDF)
```

## Clustering: Example

#### Input DataFrame

| +<br> Savings | Income | +<br>  User |
|---------------|--------|-------------|
| +             |        | ++          |
| 15000         | 1000   | Paolo       |
| 0             | 5000   | Luca        |
| 20000         | 800    | Martino     |
| 6000          | 1300   | Mike        |
| 50000         | 2500   | Francesca   |
| 2000          | 1100   | Steve       |
| 700           | 1500   | Maria       |
| 75000         | 0      | Guido       |
| 4000          | 500    | Roberta     |
| 7000          | 3000   | Idilio      |
| 3000          | 900    | Marco       |
| 6000          | 1200   | Dena        |
| +             |        | ·           |

#### Preprocessed DataFrame

| +              | +         | +                | ++                 |
|----------------|-----------|------------------|--------------------|
| Savings Income | User      | features         | scaledFeatures     |
| +              | +         | ++               | +                  |
| 15000  1000    | Paolo     | [15000.0,1000.0] | [-0.0312169519277  |
| 0 5000         | Luca      | [0.0,5000.0]     | [-0.6770849228476] |
| 20000 800      | Martino   | [20000.0,800.0]  | [0.18407237171215] |
| 6000 1300      | Mike      | [6000.0,1300.0]  | [-0.4187377344796] |
| 50000 2500     | Francesca | [50000.0,2500.0] | [1.47580831355180] |
| 2000 1100      | Steve     | [2000.0,1100.0]  | [-0.5909691933916] |
| 700 1500       | Maria     | [700.0,1500.0]   | [-0.6469444175380] |
| 75000 0        | Guido     | [75000.0,0.0]    | [2.55225493175152] |
| 4000 500       | Roberta   | [4000.0,500.0]   | [-0.5048534639356] |
| 7000 3000      | Idilio    | [7000.0,3000.0]  | [-0.3756798697517] |
| 3000 900       | Marco     | [3000.0,900.0]   | [-0.5479113286636] |
| 6000  1200     | Dena      | [6000.0,1200.0]  | [-0.4187377344796] |
| +              | +         | +                | ++                 |

# Clustering performance: silhouette

- Silhouette measures consistency within clusters of data.
- The silhouette value is a measure of how similar an object is to its own cluster (cohesion) compared to other clusters (separation).
- It ranges from −1 to +1, where a high value indicates that the object is well matched to its own cluster and poorly matched to neighboring clusters.
- If most objects have a high value, then the clustering configuration is appropriate.
- The silhouette can be calculated with any distance metric

## Clustering performance in MLIib

- As for classification and regression, in order to test the goodness of clusters there is an evaluator
- The evaluator is ClusteringEvaluator from pyspark.ml.evaluation
- The instantiated estimator has the method evaluate() that is applied to a dataframe
- It compares the clusters with the input data
- It computes the silhouette measure

## Clustering performance in MLIib

- Parameters of ClusteringEvaluator:
  - metricName: string for metric name in evaluation. Only supports "silhouette"
  - distanceMeasure: param for distance measure to be used in evaluation. Supports "squaredEuclidean" (default) and "cosine"
  - featuresCol: input column with the features
  - **predictionCol**: input column with the cluster assignment

# K-means clustering algorithm

- K-means is one of the most popular clustering algorithms
- It is characterized by one important parameter
  - The number of clusters K
    - The choice of K is a complex operation
    - Often chosen by experimenting different values

- It uses proximity by Euclidean clustering
- It is able to identify only spherical shaped clusters
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid

#### The basic algorithm is very simple:

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

Most of the time, convergence happens in the first few iterations.

#### Importance of choosing initial centroids

#### Case 1:





At convergence

#### Importance of choosing initial centroids

#### Case 2:





At convergence

## Specific performance measure for K-means

Evaluating K-means cluster: Sum of Squared Error (SSE)

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

- x is a data point in cluster C<sub>i</sub> and m<sub>j</sub> is the centroid of the cluster C<sub>i</sub>
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters

## K-means clustering algorithm in MLlib

- The following slides show how to apply the K-means algorithm provided by Mllib
- The input dataset is a structured dataset with a fixed number of attributes
  - All the attributes are numerical attributes

### K-means in MLlib

- Use the Kmeans estimator from pyspark.ml.clustering on a DataFrame
- Explicitly specify input columns featuresCol (vector)
- Output column:
  - PredictionCol: with its predicted cluster center

### K-means in MLlib

- Parameters are:
  - k: number of clusters
  - initMode: initialization of the centroids.
     Supported are "random" and "k-means||"
  - initSteps: number of steps for "k-means||" initialization mode
  - maxIter: Total number of iterations over the data before stopping
  - tol: specifies threshold for keeping optimizing centroids position

### K-means: summary of results

- K-means include a summary class to evaluate our model
- It includes information about clusters created and relative size (number of data for each cluster)
- We can also compute the sum of squared error within cluster which measure how close values are from their cluster centroid (computeCost)
- Given k, k-means try to minimize the computeCost

- Example: credit score
  - Start from preprocessed dataframe

#### Preprocessed DataFrame

| ++      |        | <b></b>   | ·+               | +                  |
|---------|--------|-----------|------------------|--------------------|
| Savings | Income | User      | features         | scaledFeatures     |
| ++      |        |           | ++               | ·+                 |
| 15000   | 1000   | Paolo     | [15000.0,1000.0] | [-0.0312169519277  |
| 0       | 5000   | Luca      | [0.0,5000.0]     | [-0.6770849228476] |
| 20000   | 800    | Martino   | [20000.0,800.0]  | [0.18407237171215] |
| 6000    | 1300   | Mike      | [6000.0,1300.0]  | [-0.4187377344796  |
| 50000   | 2500   | Francesca |                  | [1.47580831355180  |
| 2000    | 1100   | Steve     | [2000.0,1100.0]  | [-0.5909691933916  |
| 700     | 1500   | Maria     | [700.0,1500.0]   | [-0.6469444175380  |
| 75000   | 0      | Guido     |                  | [2.55225493175152  |
| 4000    | 500    | Roberta   | [4000.0,500.0]   | [-0.5048534639356  |
| 7000    | 3000   | Idilio    |                  | [-0.3756798697517  |
| 3000    | 900    | Marco     |                  | [-0.5479113286636  |
| 6000    | 1200   | Dena      | [6000.0,1200.0]  | [-0.4187377344796  |
| ++      |        | +         | ++               | +                  |

from pyspark.ml.clustering import KMeans

```
# Trains a k-means model.
kmeans = KMeans(k=3,featuresCol="scaledFeatures",initMode="k-means||")
model = kmeans.fit(scaledDF)

# Make predictions
predictionsDF = model.transform(scaledDF)
```

### Preprocessed DataFrame

| +                                                                                                                                         | +                                      | .+                                                                                                                                                                        | ++                                                                                                                                                                                                                                                                                        |
|-------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Savings Inco                                                                                                                              | ome  User                              | features                                                                                                                                                                  | scaledFeatures                                                                                                                                                                                                                                                                            |
| 0   50<br>  20000   8<br>  6000   13<br>  50000   25<br>  2000   12<br>  700   15<br>  75000  <br>  4000   5<br>  7000   30<br>  3000   5 | 000  Luca<br>800  Martino<br>300  Mike | a [0.0,5000.0] b [20000.0,800.0] c [6000.0,1300.0] a [50000.0,2500.0] c [7000.0,1100.0] a [75000.0,00] b [75000.0,00] a [4000.0,500.0] b [7000.0,3000.0] b [3000.0,900.0] | [-0.0312169519277 <br>  [-0.6770849228476 <br>  [0.18407237171215 <br>  [-0.4187377344796 <br>  [1.47580831355180 <br>  [-0.5909691933916 <br>  [-0.6469444175380 <br>  [2.55225493175152 <br>  [-0.5048534639356 <br>  [-0.3756798697517 <br>  [-0.5479113286636 <br>  [-0.4187377344796 |
| +                                                                                                                                         | +                                      | .+                                                                                                                                                                        | ++                                                                                                                                                                                                                                                                                        |

### Output DataFrame with clusters

| ++         |              | +         |                  |                   | ++         |
|------------|--------------|-----------|------------------|-------------------|------------|
| Savings In | come         | User      | features         | scaledFeatures    | prediction |
| ++         |              |           |                  |                   | ++         |
| 15000      | 1000         | Paolo     | [15000.0,1000.0] | [-0.0312169519277 | 0          |
| 0          | 5000 j       | Luca      | [0.0,5000.0]     | [-0.6770849228476 | 1          |
| j 20000 j  | 800          | Martino   |                  | [0.18407237171215 | j oj       |
| j 6000 j   | 1300 j       | Mike      | [6000.0,1300.0]  | [-0.4187377344796 | j oj       |
| j 50000 j  | 2500 j       | Francesca | [50000.0,2500.0] | [1.47580831355180 | 2          |
| 2000       | 1100 j       | Steve     | [2000.0,1100.0]  | [-0.5909691933916 | 0          |
| 700        | 1500 j       | Maria     | [700.0,1500.0]   | [-0.6469444175380 | j 0 j      |
| 75000      | 0            | Guido     | [75000.0,0.0]    | [2.55225493175152 | j 2 j      |
| 4000       | 500          | Roberta   | [4000.0,500.0]   | [-0.5048534639356 | j 0 j      |
| 7000       | 3000 j       | Idilio    | [7000.0,3000.0]  | [-0.3756798697517 | j 1 j      |
| 3000       | 900          | Marco     | [3000.0,900.0]   | [-0.5479113286636 | j 0 j      |
| j 6000 j   | 1200 j       | Dena      |                  | [-0.4187377344796 | j 0 j      |
| ++         | <del>i</del> | -<br>     |                  | -<br>             | ++         |

from pyspark.ml.evaluation import ClusteringEvaluator

```
# Shows the result.
centers = model.clusterCenters()
print("Cluster Centers: ")
for center in centers:
  print(center)
print("Size of the clusters: ", model.summary.clusterSizes)
# Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(predictionsDF)
print("Silhouette with squared euclidean distance = " + str(silhouette))
print("SSE: ",model.computeCost(predictionsDF))
```

Output DataFrame with clusters +-----

| +             | .+             | +                 |                   | ++             |
|---------------|----------------|-------------------|-------------------|----------------|
| Savings Incom | e  User        | features          | scaledFeatures    | prediction     |
| +             | .+             | +                 |                   | +              |
| 15000  100    | Paolo          | [15000.0,1000.0]  | [-0.0312169519277 | 0              |
| 0 500         | D  Luca        | [0.0,5000.0]      | [-0.6770849228476 | 1              |
| 20000 80      | )<br>  Martino | [ [20000.0,800.0] | [0.18407237171215 | i 0 j          |
| 6000 130      | O  Mike        |                   | [-0.4187377344796 | i 0 j          |
| 50000 250     | Francesca      | [50000.0,2500.0]  | [1.47580831355180 | 2              |
| 2000 110      | ) Steve        | [ [2000.0,1100.0] | [-0.5909691933916 | i 0 j          |
| 700 150       | o  Maria       | [ 700.0,1500.0]   | [-0.6469444175380 | i 0 j          |
| 75000         | O  Guido       | [75000.0,0.0]     | [2.55225493175152 | 2              |
| 4000  50      | 0  Roberta     | [4000.0,500.0]    | [-0.5048534639356 | i 0 j          |
| 7000 300      | ) Idilio       | [ [7000.0,3000.0] | [-0.3756798697517 | 1              |
| j 3000 j 90   | oj Marco       | [3000.0,900.0]    | [-0.5479113286636 | i oi           |
| 6000 120      | Dena Dena      |                   | [-0.4187377344796 | 0 j            |
| +             | +              | +                 | +                 | + <del>-</del> |

87

#### Standard output

```
Cluster Centers:

[-0.37191231 -0.39159297]

[-0.5263824    1.80071098]

[ 2.01403162 -0.2343391 ]
```

Size of the clusters: [8, 2, 2]

Silhouette with squared euclidean distance = -0.09641007707651222

SSE: 4.404936191705298

#### Assign new data to existing clusters

```
+----+
|Savings|Income| User|
+----+
| 10000| 1860|Mariana|
| 4500| 1100| Nicola|
| 27000| 1000| Davide|
+----+
```

predictionsNewDF = model.transform(scaledNewDF)

```
# Load New data
dataNewDF=spark.read.csv('credit_score_cluster_Test.txt',header=Tr
    ue,inferSchema=True)

assembledNewDF=va.transform(dataNewDF)
scaledNewDF=scalerModel.transform(assembledNewDF)

# Make predictions
```

#### Assign new data to existing clusters

```
| Savings|Income| User|
| User|
| 10000| 1860|Mariana|
| 4500| 1100| Nicola|
| 27000| 1000| Davide|
```

#### Output dataframe with associated clusters

```
| Savings|Income| User| features| scaledFeatures|prediction|
| 10000| 1860|Mariana|[10000.0,1860.0]|[-0.2465062755677...| 0|
| 4500| 1100| Nicola| [4500.0,1100.0]|[-0.4833245315716...| 0|
| 27000| 1000| Davide|[27000.0,1000.0]|[0.48547742480807...|
```

# Gaussian mixture model

### Gaussian mixture model

- Gaussian mixture models (GMM) are another popular clustering algorithm
- It assumes each cluster produces data based upon random draws from a (multidimensional) Gaussian distribution
- Clusters should be less likely to have data at the edge
- Each Gaussian cluster has its own mean and standard deviation
- Allow for a more nuanced cluster associated with probability

### Gaussian mixture model



### **GMM** in MLlib

- Use the GaussianMixture estimator from pyspark.ml.clustering on a DataFrame
- Explicitly specify input columns featuresCol (vector)
- Output column:
  - PredictionCol: with its predicted cluster
  - ProbabilityCol: probability of each cluster

### **GMM** in MLlib

- Parameters are:
  - k: number of clusters that you would like to end up with
  - maxIter: Total number of iterations over the data before stopping
  - **tol**: specifies threshold for keeping optimizing weights of Gaussian mixtures

### **GMM:** summary of results

- Also GMM include a summary class to evaluate our model
- It includes information about weights of the Gaussian Mixtures and clusters created and relative size (number of data for each cluster)

- Example: credit score
  - Start from preprocessed dataframe

#### Preprocessed DataFrame

| ++      |        | <b></b>        | ++               | +                  |
|---------|--------|----------------|------------------|--------------------|
| Savings | Income | User           | features         | scaledFeatures     |
| ++      |        | +              | ++               | +                  |
| 15000   | 1000   | Paolo          | [15000.0,1000.0] | [-0.0312169519277  |
| 0       | 5000   | Luca           | [0.0,5000.0]     | [-0.6770849228476  |
| 20000   | 800    | Martino        | [20000.0,800.0]  | [0.18407237171215] |
| 6000    | 1300   | Mike           | [6000.0,1300.0]  | [-0.4187377344796] |
| 50000   | 2500   | Francesca      | [50000.0,2500.0] | [1.47580831355180] |
| 2000    | 1100   | Steve          | [2000.0,1100.0]  | [-0.5909691933916] |
| 700     | 1500   | Maria          | [700.0,1500.0]   | [-0.6469444175380] |
| 75000   | 0      | Guido          | [75000.0,0.0]    | [2.55225493175152] |
| 4000    | 500    | Roberta        | [4000.0,500.0]   | [-0.5048534639356] |
| 7000    | 3000   | Idilio         | [7000.0,3000.0]  | [-0.3756798697517] |
| 3000    | 900    | Marco          | [3000.0,900.0]   | [-0.5479113286636] |
| 6000    | 1200   | Dena           | [6000.0,1200.0]  | [-0.4187377344796  |
| ++      |        | + <del>-</del> | ·+               | +                  |

from pyspark.ml.clustering import GaussianMixture

```
# Trains a GMM model.
gmm = GaussianMixture(k=3,featuresCol="scaledFeatures")
model = gmm.fit(scaledDF)

# Make predictions
predictionsDF = model.transform(scaledDF)
predictionsDF.show(truncate=False)
```

### Preprocessed DataFrame

| ++                                                                                                       |                     | +                                                                           | +                                                                                                                                                        | +                                                                                                                                                                                                                                                                   |
|----------------------------------------------------------------------------------------------------------|---------------------|-----------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Savings                                                                                                  | Income              | User<br>+                                                                   | features                                                                                                                                                 | scaledFeatures                                                                                                                                                                                                                                                      |
| 15000 <br>  0 <br>  20000 <br>  6000 <br>  50000 <br>  7000 <br>  75000 <br>  4000 <br>  7000 <br>  3000 | 5000<br>800<br>1300 | Luca   Martino   Mike  Francesca   Steve   Maria   Guido   Roberta   Idilio | [0.0,5000.0] [20000.0,800.0] [6000.0,1300.0] [50000.0,2500.0] [2000.0,1100.0] [700.0,1500.0] [75000.0,0.0] [4000.0,500.0] [7000.0,3000.0] [3000.0,900.0] | [-0.0312169519277 <br>[-0.6770849228476 <br>[0.18407237171215 <br>[-0.4187377344796 <br>[1.47580831355180 <br>[-0.5909691933916 <br>[-0.6469444175380 <br>[2.55225493175152 <br>[-0.5048534639356 <br>[-0.3756798697517 <br>[-0.5479113286636 <br>[-0.4187377344796 |
| ++                                                                                                       |                     | +                                                                           | +                                                                                                                                                        | +                                                                                                                                                                                                                                                                   |

### Output DataFrame with clusters and probabilities

| Savings Income User | features                                                                                                                                                                                       |  | prediction                                              | <br> probability                                                |
|---------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|---------------------------------------------------------|-----------------------------------------------------------------|
| 0                   | [[0.0,5000.0]<br>[[20000.0,800.0]<br>[[6000.0,1300.0]<br>[[50000.0,2500.0]<br>[[2000.0,1100.0]<br>[[700.0,1500.0]<br>[[75000.0,0.0]<br>[[4000.0,500.0]<br>[[7000.0,3000.0]<br>[[7000.0,3000.0] |  | 1<br> 0<br> 2<br> 1<br> 2<br> 2<br> 2<br> 0<br> 2<br> 1 | [0.9997461383843239, 2.5339239436132E-4, 4.6922131486960353E-7] |

```
print("Gaussians weights shown as a DataFrame: ")
model.gaussiansDF.show(truncate=False)
print("Size of the clusters: ", model.summary.clusterSizes)
from pyspark.ml.evaluation import ClusteringEvaluator
# Evaluate clustering by computing Silhouette score
evaluator = ClusteringEvaluator()
silhouette = evaluator.evaluate(predictionsDF)
print("Silhouette with squared euclidean distance = " +
  str(silhouette))
```

#### Output DataFrame with clusters

```
|Savings|Income|User
                                          IscaledFeatures
                                                                                       |prediction|probability
                         |[15000.0,1000.0]|[-0.031216951927791736,-0.4193436518555962]|0
       1000
              |Paolo
                                                                                                  |[0.9997461383843239,2.5339239436132E-4,4.6922131486960353E-7]
        15000
              Luca
                         1[0.0,5000.0]
                                          | [-0.6770849228476208, 2.5407291847721423]
                                                                                                  [7.67384821545586E-15,0.99999999999847,7.67384821545586E-15]
                         [20000.0,800.0] [0.18407237171215127,-0.5673472936869831]
                                                                                       10
                                                                                                  [0.9997781944193962,2.2180558059577122E-4,8.08697666663197E-15]
120000
        1800
               |Martino
                          [6000.0,1300.0] [[-0.41873773447968915,-0.1973381891085158]
6000
        1300
               |Mike
                                                                                      12
                                                                                                  [3.370858048561919E-5,5.087928478827556E-5,0.9999154121347261]
150000
        12500
              [Francesca|[50000.0,2500.0]][1.4758083135518092,0.6906836618798058]
                                                                                       11
                                                                                                  [7.671883651274481E-15,0.99999999999847,7.671883651274481E-15]
12000
       11100
              Steve
                         [2000.0,1100.0] [-0.5909691933916436,-0.3453418309399027]
                                                                                                  [0.09756437460176307,2.851666521106474E-6,0.9024327737317159]
1700
       11500
              IMaria
                         [700.0,1500.0] [-0.6469444175380287,-0.04933454727712887] |2
                                                                                                  [1.414987519906597E-10,8.114221331490605E-5,0.9999188576451863]
                                          |[2.5522549317515244,-1.159361861012531]
                                                                                                   [0.9987350372281458, 0.0012649627718535413, 6.71135687338088E-16]
175000
               |Guido
                         [75000.0,0.0]
                                         [-0.5048534639356663, -0.7893527564340636]
                                                                                       2
                                                                                                   [2.9326429379156076E-16,4.3649700681163853E-7,0.9999995635029929]
4000
       1500
               |Roberta
                         [4000.0,500.0]
17000
        13000
              IIdilio
                         [7000.0,3000.0] [-0.37567986975170053,1.060692766458273]
                                                                                                  [7.66296622775793E-15,0.9999999226529782,7.734701413156046E-8]
        900
                         [3000.0,900.0] [-0.547911328663655,-0.49334547277128965]
                                                                                                  [4.378058313062203E-6,1.107903359412824E-6,0.9999945140383275]
13000
               |Marco
                         [6000.0,1200.0] [-0.41873773447968915,-0.27134001002420927] 2
                                                                                                  [0.020490483344952695,2.355096422577629E-5,0.9794859656908216]
```

#### Standard output

Silhouette with squared euclidean distance = 0.14433979161213353

#### Assign new data to existing clusters

```
+----+
|Savings|Income| User|
+----+
| 10000| 1860|Mariana|
| 4500| 1100| Nicola|
| 27000| 1000| Davide|
+----+
```

# Make predictions

```
# Load New data
dataNewDF=spark.read.csv('credit_score_cluster_Test.txt',header=Tr
    ue,inferSchema=True)

assembledNewDF=va.transform(dataNewDF)
scaledNewDF=scalerModel.transform(assembledNewDF)
```

predictionsNewDF = model.transform(scaledNewDF)

#### Assign new data to existing clusters

```
+-----+
|Savings|Income| User|
+-----+
| 10000| 1860|Mariana|
| 4500| 1100| Nicola|
| 27000| 1000| Davide|
+-----+
```

#### Output dataframe with associated clusters

| Savings Income               | User                                       | features                                                    | scaledFeatures                                         | prediction    | <br>probability <br>                                          |
|------------------------------|--------------------------------------------|-------------------------------------------------------------|--------------------------------------------------------|---------------|---------------------------------------------------------------|
| 10000  1860 <br>  4500  1100 | Mariana [100<br>Nicola  [45<br>Davide [270 | 000.0,1860.0] [-0<br>500.0,1100.0] [-0<br>000.0,1000.0] [0. | 0.2465062755677 <br>0.4833245315716 <br>48547742480807 | 2 <br>2 <br>0 | [9.83009952163732 <br>[1.32063772202194 <br>[0.99999756357385 |