Examples for 11/19/15, Part 4

Kruskal-Wallis test for equivalence of means:

Let f(x) be a density of a continuous random variable with mean 0.

Assume Y_{ij} , $i = 1, 2, ..., n_j$, j = 1, 2, ..., J, are independent random variables with density $f(x - \mu_j)$.

(The J populations have no parametric assumptions, they are assumed to have densities with a common shape, but perhaps different centers.)

$$H_0: \mu_1 = \mu_2 = \dots = \mu_J$$
 $H_1:$ not all of the μ_j are equal.
$$\mu_i \neq \mu_j \text{ for at least one pair } i \text{ and } j.$$

Let r_{ij} be the respective rank of a data point when all the data is ranked from smallest to largest.

Let r_j be the mean of the ranks for each group. Let $r = \frac{N+1}{2}$ be the grand mean of the ranks.

Test statistic:

$$K = \frac{12}{N(N+1)} \sum_{j=1}^{J} n_j (\bar{r}_j - \bar{r})^2 = \frac{12}{N(N+1)} \sum_{j=1}^{J} n_j (\bar{r}_j - \frac{N+1}{2})^2 = \frac{12}{N(N+1)} \sum_{j=1}^{J} n_j \bar{r}_j^2 - 3(N+1).$$

Reject H_0 if $K > \chi_{\alpha}^2 (J-1)$.

1. Six samples of each of four types of cereal grain grown in a certain region were analyzed to determine thiamin content, resulting in the following data ($\mu g/g$):

Does this data suggest that at least two of the grains differ with respect to true average thiamin content? Use $\alpha = 0.05$.

W	M	M	W	M	В	О	W	M	В	W	M
4.5	4.7	4.9	5.2	5.2	5.6	5.6	5.7	5.8	5.9	6.0	6.0
1	2	3	4.5	4.5	6.5	6.5	8	9	10	11.5	11.5

W	В	О	M	В	W	O	O	В	О	В	О
			6.4								
14	14	14	16	17	18	19	20	21	22	23	24

Wheat $r_{W} = 9.5$ Maize $r_{M} = 7.6666\overline{6}$ Barley $r_{B} = 15.25$ Oats $r_{O} = 17.5833\overline{3}$ $r_{C} = 12.5$

$$K = \frac{12}{24 \cdot 25} \left[6 \cdot (9.5 - 12.5)^2 + 6 \cdot (15.25 - 12.5)^2 + 6 \cdot (7.6666\overline{6} - 12.5)^2 + 6 \cdot (17.5833\overline{3} - 12.5)^2 \right] = 7.89166\overline{6}.$$

A correction for ties can be made, but this correction usually makes little difference in the value of K unless there are a large number of ties.

$$\chi_{\alpha}^{2}(J-1) = \chi_{0.05}^{2}(3) = 7.815.$$

$$K > 7.815$$
.

Reject H₀ at
$$\alpha = 0.05$$
.

```
Wheat <- c(5.2,4.5,6.0,6.1,6.7,5.7)
Barley <- c(6.5,8.0,6.1,7.5,5.9,5.6)
Maize <- c(5.8,4.7,6.4,4.9,6.0,5.2)
Oats <- c(8.3,6.1,7.8,7.0,5.6,7.2)

Grain <- c(rep("Wheat",6), rep("Barley",6), rep("Maize",6), rep("Oats",6))
Thiamin <- c(Wheat, Barley, Maize, Oats)

Cereal <- data.frame(Grain, Thiamin)

kruskal.test(Thiamin ~ Grain, data = Cereal)

##
## Kruskal-Wallis rank sum test
##
## data: Thiamin by Grain
## Kruskal-Wallis chi-squared = 7.9158, df = 3, p-value = 0.04779</pre>
```