

REFLECTIONPROOF FILM, OPTICAL ELEMENT AND DISPLAY DEVICE**Patent number:** JP2003205581**Publication date:** 2003-07-22**Inventor:** MIYATAKE MINORU; MASUDA TOMOAKI;
SHIGEMATSU TAKAYUKI; YOSHIOKA MASAHIRO**Applicant:** NITTO DENKO CORP**Classification:****- International:** B32B27/00; B32B7/02; G02B1/11; G02B5/02;
G02B5/30; G02F1/1335**- european:****Application number:** JP20020268043 20020913**Priority number(s):** JP20010320569 20011018; JP20020268043 20020913**Also published as:**

US6773121 (B2)

US2003076596 (A1)

[Report a data error here](#)**Abstract of JP2003205581**

<P>PROBLEM TO BE SOLVED: To provide a reflectionproof film which is structured of a transparent substrate having a hard coat layer and a reflectionproof layer with a low refractive index laminated on the surface of the hard coat layer by coating and which features the outstanding resistance to scratch and staining of the reflectionproof layer cured in a short time at a comparatively lower temperature though a sol-gel chemical reaction of alkoxy silane.

<P>SOLUTION: This reflectionproof film comprises the reflectionproof layer 3 which is formed of a dry cured film of a solution containing (A) a siloxane oligomer obtained by condensation-polymerizing a hydrolyzable alkoxy silane composed mainly of a tetraalkoxy silane represented by formula (1): Si(OR)₄ (wherein, R is a methyl group or an ethyl group) after partial hydrolysis and (B) a chemical compound having a fluoroalkyl structure and a polysiloxane structure.

<P>COPYRIGHT: (C)2003,JPO

Data supplied from the esp@cenet database - Worldwide

BEST AVAILABLE COPY

特開2003-205581

(P2003-205581A)

(43) 公開日 平成15年7月22日(2003.7.22)

(51) Int. C1.⁷
 B 32 B 27/00 101
 7/02 103
 G 02 B 1/11
 5/02
 5/30

審査請求 未請求 請求項の数 9

F I
 B 32 B 27/00 101 2H042
 7/02 103 2H049
 G 02 B 5/02 B 2H091
 5/30 2K009
 G 02 F 1/1335 500 4F100

(全12頁) 最終頁に続く

(21) 出願番号 特願2002-268043(P2002-268043)

(71) 出願人 000003964

日東電工株式会社

大阪府茨木市下穂積1丁目1番2号

(22) 出願日 平成14年9月13日(2002.9.13)

(72) 発明者 宮武 稔

大阪府茨木市下穂積1丁目1番2号 日東電工株式会社内

(31) 優先権主張番号 特願2001-320569(P2001-320569)

(72) 発明者 増田 友昭

大阪府茨木市下穂積1丁目1番2号 日東電工株式会社内

(32) 優先日 平成13年10月18日(2001.10.18)

(74) 代理人 100092266

(33) 優先権主張国 日本 (JP)

弁理士 鈴木 崇生 (外3名)

最終頁に続く

(54) 【発明の名称】反射防止フィルム、光学素子および表示装置

(57) 【要約】 (修正有)

【課題】 ハードコート層が設けられ透明基板のハードコート層の表面に、コーティングによって低屈折率の反射防止層が積層された反射防止フィルムであって、アルコキシランのゾルーゲル反応によって、比較的低温下における短時間の硬化によっても耐擦傷性、汚染性の良好な反射防止層が形成された反射防止フィルムを提供する。

【解決手段】 反射防止層3が、一般式(1) : S_i (OR) (式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシランを主成分する加水分解性アルコキシランを部分的に加水分解後縮重合させたシロキサンオリゴマー(A)と、フルオロアルキル構造およびポリシロキサン構造を有する化合物(B)を含有する溶液の乾燥硬化膜により形成されたものであることを特徴とする反射防止フィルム。

【特許請求の範囲】

【請求項1】 透明基板の片面に直接または他の層を介してハードコート層が設けられており、さらに当該ハードコート層の表面に反射防止層が積層された反射防止フィルムにおいて、前記反射防止層が、

一般式(1) : $S_i (OR)_n$ (式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシランを主成分する加水分解性アルコキシランを部分的に加水分解後縮重合させたシロキサンオリゴマー(A)と、フルオロアルキル構造およびポリシロキサン構造を有する化合物(B)を含有する溶液の乾燥硬化膜により形成されたものであることを特徴とする反射防止フィルム。

【請求項2】 前記溶液中に、前記シロキサンオリゴマー(A)が、反射防止層として形成される乾燥硬化膜中の乾燥硬化物として、固形分重量比が10～80重量%となるように配合されていることを特徴とする請求項1記載の反射防止フィルム。

【請求項3】 ハードコート層が、紫外線硬化型樹脂より形成されており、 n_d^{20} (20℃の屈折率)が1.49以上であることを特徴とする請求項1または2記載の反射防止フィルム。

【請求項4】 ハードコート層の表面が凸凹形状となっており光防眩性を有することを特徴とする請求項1～3のいずれかに記載の反射防止フィルム。

【請求項5】 ハードコート層中に微粒子を含有することを特徴とする請求項1～4のいずれかに記載の反射防止フィルム。

【請求項6】 請求項1～5のいずれかに記載の反射防止フィルムが、光学素子の片面又は両面に設けられることを特徴とする光学素子。

【請求項7】 請求項1～5のいずれかに記載の反射防止フィルムまたは請求項6記載の光学素子を装着した表示装置。

【請求項8】 一般式(1) : $S_i (OR)_n$ (式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシランを主成分する加水分解性アルコキシランを部分的に加水分解後縮重合させたシロキサンオリゴマー(A)と、フルオロアルキル構造およびポリシロキサン構造を有する化合物(B)を含有する溶液からなる反射防止層形成剤。

【請求項9】 請求項8記載の反射防止層形成剤の乾燥硬化膜により形成された反射防止層。

【発明の詳細な説明】

【0001】

【発明の属する技術分野】 本発明は、液晶ディスプレイ(LCD)、有機EL表示装置、PDPなどの表示装置において画面の視認性の低下を抑えるために用いられている反射防止フィルム、当該反射防止フィルムが設けられている光学素子に関する。また当該反射防止フィルム

または光学素子が装着されている表示装置に関する。さらには反射防止層形成剤、当該反射防止層形成剤により形成された反射防止層に関する。

【0002】

【従来の技術】 液晶パネルは近年の研究開発によりディスプレイとしての確固たる地位を確保しつつある。しかし、明るい照明下での使用頻度の高いカーナビゲーション用モニターやビデオカメラ用モニターは表面反射による視認性の低下が顕著である。そのため液晶パネルに用いる偏光板には反射防止処理を施すことが必要不可欠になりつつあり、屋外使用頻度の高い液晶ディスプレイのほとんどには反射防止処理を施した偏光板が使用されている。

【0003】 反射防止処理は、一般的に真空蒸着法やスペッタリング法、CVD法等のドライ処理法により、屈折率の異なる材料からなる複数の薄膜の多層積層体を作製し、可視光領域の反射をできるだけ低減させるような設計が行われている。しかし、上記のドライ処理での薄膜の形成には真空設備が必要であり、処理費用が非常に高価となる。そのため、最近ではウェットコーティングでの反射防止膜の形成により反射防止処理を行った反射防止フィルムを作製している。反射防止フィルムの構成は、通常、基材となる透明基板／ハードコート性付与のための樹脂層／低屈折率の反射防止層からなる構成となっている。かかる反射防止フィルムにおいて、反射率の観点からハードコート層には高屈折率が求められ、反射防止層にはより低い屈折率が求められる。

【0004】 前記反射防止層を形成する低屈折率材料としては、屈折率や防汚染性の観点からフッ素含有ポリマーなどが用いられている。また、より低い屈折率を満たす材料としてアルコキシランやオルガノアルコキシランのゾルゲル反応を利用してポーラスな構造によって低い屈折率を得る方法などが一般的になっている。しかし、上記ゾルゲル反応では、反応性を制御してポーラスな構造を得ようとするため低温で焼成しようすると、どうしても硬化に時間がかかり、短時間で十分な耐擦傷性の反射防止層を形成することができない。また上記ゾルゲル反応で得られる皮膜表面は汚染性の点でも問題があった。

【0005】 また、特開平9-208898号公報では、反射防止層にポリシロキサン構造を有するフッ素含有化合物を用いることが提案されている。かかるフッ素含有化合物による反射防止層の形成は、均一な反応であり、また液安定性と硬化後の膜の均一性に優れ、汚染性も良好である。しかし、かかるフッ素含有化合物は硬化反応速度がやや遅く、やはり低温での焼成では硬化に時間がかかる。たとえば、偏光板の保護フィルムとして貯用されるトリアセチルセルロースフィルムを透明基板として用い、この上にハードコート層を介して上記フッ素含有化合物による反射防止層を形成するときなどのよう

に、高い温度での焼成が難しい場合には、十分な耐擦傷性を得るのに、100℃前後の温度で数日のキュア(エージング)時間が必要となる。

【0006】

【特許文献1】特開平9-208898号公報(第1-2頁)

【発明が解決しようとする課題】本発明は、ハードコート層が設けられ透明基板のハードコート層の表面に、コーティングによって低屈折率の反射防止層が積層された反射防止フィルムであって、アルコキシランのゾルゲル反応によって、比較的低温下における短時間の硬化によっても耐擦傷性、汚染性の良好な反射防止層が形成された反射防止フィルムを提供することを目的とする。また、当該反射防止フィルムが設けられている光学素子を提供することを目的とする。また当該反射防止フィルムまたは光学素子が装着されている表示装置を提供することを目的とする。さらには、反射防止層形成剤、当該反射防止層形成剤により形成された反射防止層を提供することを目的とする。

【0007】

【課題を解決するための手段】本発明者らは前記課題を解決すべく鋭意検討を重ねた結果、以下に示す反射防止フィルムにより前記目的を達成できることを見出し、本発明を完成するに至った。

【0008】すなわち本発明は、透明基板の片面に直接または他の層を介してハードコート層が設けられており、さらに当該ハードコート層の表面に反射防止層が積層された反射防止フィルムにおいて、前記反射防止層が、一般式(1) : Si(O_R)_n(式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシランを主成分とする加水分解性アルコキシランを部分的に加水分解後縮合させたシロキサンオリゴマー

(A)と、フルオロアルキル構造およびポリシロキサン構造を有する化合物(B)とを含有する溶液の乾燥硬化膜により形成されたものであることを特徴とする反射防止フィルム、に関する。

【0009】上記本発明の反射防止フィルムは、前記化合物(B)を用いることにより、防汚性を向上させるとともに、これにシロキサンオリゴマー(A)を混合することにより、反応性の緩やかな化合物(B)中のポリシロキサンの硬化の遅さを、シロキサンオリゴマー(A)の反応性によって補っている。このように薄膜形成時の反応性を制御するタイプのゾルゲルコーティング材料(塗工液)によって比較的低温下における短時間の硬化によっても耐擦傷性、汚染性の良好な反射防止層形成でき、生産性よく反射防止フィルムが得られる。

【0010】また、こうして形成された低屈折率の反射防止層とハードコート層との密着性は、シロキサンオリゴマー(A)または化合物(B)を単独で用いた反射防止層に比べて向上しており、密着性の信頼性試験などで

ハードコート層と反射防止層の界面で剥離が生じることはない。

【0011】前記反射防止フィルムにおいて、反射防止層を形成する前記溶液中に、前記シロキサンオリゴマー(A)が、反射防止層として形成される乾燥硬化膜中の乾燥硬化物として、固形分重量比が10~80重量%となるように配合されていることが好ましい。

【0012】前記シロキサンオリゴマー(A)は反応性が早く、これを単独で反射防止層の形成に用いた場合には不均一な膜を形成しやすく、膜も緻密に形成されるため屈折率の値もn_d²⁰(20℃の屈折率)が=1.45前後になり、反射率(屈折率に依存)が上がる。そのため、反射防止層の形成には、反射率と硬化促進性のバランスの観点より、前記シロキサンオリゴマー(A)の前記配合比率を10~80重量%とするのが好ましい。前記シロキサンオリゴマー(A)の前記配合比率は、硬化促進性の点からは20重量%以上とするのがより好ましく、当該配合比率を上げれば上げるほど緻密な膜が形成され、膜強度もそれに伴い上昇する。一方、低反射の観

20 点を考慮すると、前記シロキサンオリゴマー(A)の前記配合比率は、80重量%以下とするのが好ましい。より好ましくは50重量%以下、さらに好ましくは40重量%以下である。なお反射防止層(低屈折率層)は、前記屈折率が、一般的に1.45以下程度、さらには1.41以下のものが好適である。また反射率は3%程度以下、さらには2.5%以下のものが好適である。

【0013】前記反射防止フィルムにおいて、ハードコート層が、紫外線硬化型樹脂より形成されており、n_d²⁰(20℃の屈折率)が1.49以上であることが好ましい。

【0014】ハードコート層の形成は、紫外線硬化型樹脂による硬化処理にて、簡単な加工操作にて効率よく樹脂皮膜層を形成することができる。また、低屈折率の反射防止層に対し、屈折率はn_d²⁰(20℃の屈折率)が1.49以上、さらには1.52以上であるものが好ましい。

【0015】前記反射防止フィルムにおいて、ハードコート層の表面が凸凹形状となっており光防眩性を有することが好ましい。また、前記反射防止フィルムにおいて、ハードコート層中に微粒子を含有することが好ましい。

【0016】ハードコート層の表面を凸凹形状とすることにより光拡散性を付与した防眩性フィルムとができる、微粒子を用いることにより、表面凹凸形状を有する樹脂皮膜層を簡易かつ確実に実現できる。

【0017】また本発明は、前記反射防止フィルムが、光学素子の片面又は両面に設けられていることを特徴とする光学素子に関する。本発明の反射防止フィルムは各種の用途に用いることができ、たとえば、光学素子に用いられる。本発明の反射防止フィルムを積層した偏光板

は、反射防止機能だけでなく、ハードコート性や耐擦傷性、耐久性などにも優れる。

【0018】さらに本発明は、前記反射防止フィルムまたは前記光学素子を装着した表示装置に関する。本発明の反射防止フィルム、光学素子は各種の用途に用いることができ、たとえば、表示装置の最表面等に設けられる。

【0019】また本発明は、一般式(1) : $S_i(O_R)_n$ (式中Rは、メチル基またはエチル基を示す)で表されるテトラアルコキシシランを主成分する加水分解性アルコキシシランを部分的に加水分解後縮重合させたシロキサンオリゴマー(A)とフルオロアルキル構造およびポリシロキサン構造を有する化合物(B)、を含有する溶液からなる反射防止膜形成剤、に関する。また当該反射防止膜形成剤の乾燥硬化膜により形成された反射防止膜、に関する。

【0020】

【発明の実施の形態】以下に本発明の好ましい実施形態を、図面を参照しながら説明する。図1は、透明基板1上のハードコート層2の表面に反射防止層3が積層された反射防止フィルムである。図2は、ハードコート層2中に微粒子4を分散させハードコート層2の表面を凹凸形状とした反射防止フィルムである。なお、図1、図2では、ハードコート層2を透明基板1上に直接積層しているが、ハードコート層2は複数設けることもでき、その間には、別途、易接着層、導電層等の他の層を形成することもできる。

【0021】透明基板1は、可視光の光線透過率に優れ(光線透過率90%以上)、透明性に優れるもの(ヘイズ値1%以下)であれば特に制限はない。透明基板1としては、例えばポリエチレンテレフタレート、ポリエチレンナフタレート等のポリエステル系ポリマー、ジアセチルセルロース、トリアセチルセルロース等のセルロース系ポリマー、ポリカーボネート系ポリマー、ポリメチルメタクリレート等のアクリル系ポリマー等の透明ポリマーからなるフィルムがあげられる。またポリスチレン、アクリロニトリル・スチレン共重合体等のスチレン系ポリマー、ポリエチレン、ポリプロピレン、環状ないしノルボルネン構造を有するポリオレフィン、エチレン・プロピレン共重合体等のオレフィン系ポリマー、塩化ビニル系ポリマー、ナイロンや芳香族ポリアミド等のアミド系ポリマー等の透明ポリマーからなるフィルムもあげられる。さらにイミド系ポリマー、スルホン系ポリマー、ポリエーテルスルホン系ポリマー、ポリエーテルエーテルケトン系ポリマー、ポリフェニレンスルフィド系ポリマー、ビニルアルコール系ポリマー、塩化ビニリデン系ポリマー、ビニルブチラール系ポリマー、アリレート系ポリマー、ポリオキシメチレン系ポリマー、エポキシ系ポリマーや前記ポリマーのブレンド物等の透明ポリマーからなるフィルムなどもあげられる。特に光学的に

複屈折の少ないものが好適に用いられる。偏光板の保護フィルムの観点よりは、トリアセチルセルロース、ポリカーボネート、アクリル系ポリマー、シクロオレフィン系樹脂、ノルボルネン構造を有するポリオレフィンなどが好適である。本発明は、トリアセチルセルロースのように、高い温度での焼成が難しい透明基材について好適である。なお、トリアセチルセルロースは、130℃以上ではフィルム中の可塑剤が揮発し特性が著しく低下する。

【0022】透明基板1の厚さは、適宜に決定しうるが、一般には強度や取扱性等の作業性、薄層性などの点より10~500μm程度である。特に20~300μmが好ましく、30~200μmがより好ましい。

【0023】ハードコート層2はハードコート性に優れ、皮膜層形成後に十分な強度を持ち、光線透過率の優れたものであれば特に制限はない。当該ハードコート層2を形成する樹脂としては、熱硬化型樹脂、熱可塑型樹脂、紫外線硬化型樹脂、電子線硬化型樹脂、二液混合型樹脂などがあげられるが、これらのなかでも紫外線照射による硬化処理にて、簡単な加工操作にて効率よくハードコート層を形成することができる紫外線硬化型樹脂が好適である。

【0024】紫外線硬化型樹脂としては、ポリエステル系、アクリル系、ウレタン系、アミド系、シリコーン系、エポキシ系等の各種のものがあげられ、紫外線硬化型のモノマー、オリゴマー、ポリマー等が含まれる。好ましく用いられる紫外線硬化型樹脂は、例えば紫外線重合性の官能基を有するもの、なかでも当該官能基を2個以上、特に3~6個有するアクリル系のモノマーやオリゴマーを成分を含むものがあげられる。また、紫外線硬化型樹脂には、紫外線重合開始剤が配合されている。

【0025】ハードコート層2の表面は微細凹凸構造にして防眩性を付与することができる。表面に微細凹凸構造を形成する方法は特に制限されず、適宜な方式を採用することができる。たとえば、前記ハードコート層2の形成に用いたフィルムの表面を、予め、サンドブラストやエンボスロール、化学エッティング等の適宜な方式で粗面化処理してフィルム表面に微細凹凸構造を付与する方法等により、ハードコート層2を形成する材料そのものの表面を微細凹凸構造に形成する方法があげられる。また、ハードコート層2上に別途ハードコート層2を塗工付加し、当該樹脂皮膜層表面に、金型による転写方式等により微細凹凸構造を付与する方法があげられる。また、図2のようにハードコート層2に微粒子4を分散含有させて微細凹凸構造を付与する方法などがあげられる。これら微細凹凸構造の形成方法は、二種以上の方法を組み合わせ、異なる状態の微細凹凸構造表面を複合させた層として形成してもよい。前記ハードコート層2の形成方法のなかでも、微細凹凸構造表面の形成性等の観点より、微粒子4を分散含有するハードコート層2を設

ける方法が好ましい。

【0026】以下、微粒子4を分散含有させてハードコート層2を設ける方法について説明する。微粒子4としては、各種金属酸化物、ガラス、プラスティックなどの透明性を有するものを特に制限なく使用することができる。例えばシリカ、アルミナ、チタニア、酸化ジルコニアム、酸化カルシウム、酸化錫、酸化インジウム、酸化アンチモン等の無機系酸化物微粒子、ポリメチルメタクリレート、ポリスチレン、ポリウレタン、アクリルースチレン共重合体、ベンゾグアナミン、メラミン、ポリカーボネート等の各種ポリマーからなる架橋又は未架橋の有機系微粒子やシリコーン系微粒子などがあげられる。なお、これらの形状は特に制限されずビーズ状の球形であってもよく、粉末等の不定型のものであってもよい。これら微粒子4は1種または2種以上を適宜に選択して用いることができる。微粒子の平均粒子径は1~10μm、好ましくは2~5μmである。また、微粒子には、屈折率制御や、導電性付与の目的で、金属酸化物の超微粒子などを分散、含浸しても良い。微粒子4の割合は、微粒子4の平均粒子径、ハードコート層の厚さ等を考慮して適宜に決定されるが、一般的に、樹脂100重量部に対して、1~20重量部程度であり、さらには5~15重量部とするのが好ましい。

【0027】前記紫外線硬化型樹脂（ハードコート層2の形成）には、レベリング剤、チクソトロピー剤、帯電防止剤等の添加剤を用いることができる。チクソトロピー剤を用いると、微細凹凸構造表面における突出粒子の形成に有利である。チクソトロピー剤としては、0.1μm以下のシリカ、マイカ、スメクタイト等があげられる。

【0028】ハードコート層2の形成方法は特に制限されず、適宜な方式を採用することができる。たとえば、前記透明基板1上に、樹脂（微粒子4を適宜に含有する）を塗工し、乾燥後、硬化処理する。微粒子4を含有する場合には表面に凹凸形状を呈するようなハードコート層2を形成する。前記樹脂の塗工は、ファンテン、ダイコーダー、キャスティング、スピンドル、ファンテンメタリング、グラビア等の適宜な方式で塗工される。なお、塗工にあたり、前記樹脂は、トルエン、酢酸エチル、酢酸ブチル、メチルエチルケトン、メチルイソブチルケトン、イソプロピルアルコール、エチルアルコール等の一般的な溶剤で希釈してもよく、希釈することなくそのまま塗工することができる。また、ハードコート層2の厚さは特に制限されないが、0.5~20μm程度、特に1~10μmとするのが好ましい。

【0029】ハードコート層2の表面には反射防止層3が積層される。反射防止層形成剤は、一般式(1)： $S_i(O R)_4$ （式中Rは、メチル基またはエチル基を示す）で表されるテトラアルコキシランを主成分する加水分解性アルコキシランを部分的に加水分解後縮重合

させたシロキサンオリゴマー（A）と、フルオロアルキル構造およびポリシロキサン構造を有する化合物（B）を含有しており、通常、これらが前記所定割合で配合されている。

【0030】シロキサンオリゴマー（A）は、加水分解性アルコキシランを大量のアルコール溶媒（たとえば、メタノール、エタノール等）に入れ、水と酸触媒（塩酸、硝酸など）の存在下、室温で数時間反応させ、部分的に加水分解後縮重合させることによって得られる。シロキサンオリゴマー（A）のGPCによるエチレングリコール/ポリエチレンオキサイド換算の相対分子量は900~1000の範囲であるのが好ましい。前記シロキサンオリゴマー（A）の相対分子量は加水分解性アルコキシランと水の添加量によって制御できる。

【0031】加水分解性アルコキシランは、一般式(1)： $S_i(O R)_4$ （式中Rは、メチル基またはエチル基を示す）で表されるテトラアルコキシランを主成分する。かかるテトラアルコキシランは、テトラメトキシランおよび/またはテトラエトキシランであり、加水分解性アルコキシランの、通常、80モル%以上とするのが好ましい。

【0032】前記テトラアルコキシラン以外に用いられる、加水分解性アルコキシランとしては、デトラブロポキシラン、デトラブトキシラン等のテトラアルコキシラン、メチルトリメトキシラン、メチルトリエトキシラン、エチルトリメトキシラン、エチルトリエトキシラン、プロピルトリメトキシラン、プロピルトリエトキシラン、ブチルトリメトキシラン、ブチルトリエトキシラン、ペンチルトリメトキシラン、ペンチルトリエトキシラン、ヘプチルトリメトキシラン、ヘプチルトリエトキシラン、オクチルトリメトキシラン、オクチルトリエトキシラン、ドデシルトリメトキシラン、ドデシルトリエトキシラン、ヘキサデシルトリメトキシラン、ヘキサデシルトリエトキシラン、オクタデシルトリメトキシラン、オクタデシルトリエトキシラン、フェニルトリメトキシラン、フェニルトリエトキシラン、ビニルトリメトキシラン、ビニルトリエトキシラン、 γ -アミノプロピルトリメトキシラン、 γ -アミノプロピルトリエトキシラン、 γ -グリシドキシプロピルトリメトキシラン、 γ -グリシドキシプロピルトリエトキシラン、 γ -メタクリロキシプロピルトリメトキシラン、 γ -メタクリロキシプロピルトリエトキシラン、ジメチルジメトキシラン、ジメチルジエトキシラン等があげられる。

【0033】フルオロアルキル構造およびポリシロキサン構造を有する化合物（B）は、たとえば、ゾルゲル反応によって縮合可能なアルコキシリル基を有するバーフルオロアルキルアルコキシランと、一般式(2)： $S_i(O R^1)_4$ （式中、R¹は炭素数1~5

のアルキル基を示す)で表されるテトラアルコキシシランを主成分とする加水分解性アルコキシシランを、アルコール溶媒(たとえば、メタノール、エタノール等)中で有機酸(たとえばシュウ酸等)やエステル類の存在下で加熱し縮重合させることにより得られる。得られた化合物(B)中には、ポリシロキサン構造が導入されている。

【0034】なお、これらの反応成分の比率は特に制限されないが、通常、パーフルオロアルキルアルコキシラン1モルに対して、加水分解性アルコキシラン1~100モル程度、さらには2~10モルとするのが好適である。

【0035】パーフルオロアルキルアルコキシランとしては、たとえば、一般式(3): $CF_3(CF_2)_nCH_2CH_2Si(OR^2)_3$ (式中、 R^2 は、炭素数1~5個のアルキル基を示し、nは0~12の整数を示す)で表される化合物があげられる。具体的には、たとえば、トリフルオロプロピルトリメトキシシラン、トリフルオロプロピルトリエトキシシラン、トリデカフルオロオクチルトリメトキシシラン、トリデカフルオロオクチルトリエトキシシラン、ヘプタデカフルオロデシルトリメトキシシラン、ヘプタデカフルオロデシルトリエトキシシランなどがあげられる。これらのなかでも前記nが2~6の化合物が好ましい。

【0036】一般式(2): $Si(OR^1)_4$ (式中、 R^1 は炭素数1~5のアルキル基を示す)で表されるテトラアルコキシシランとしては、テトラメトキシシラン、テトラエトキシシラン、テトラプロポキシシラン、テトラブロキシシランなどがあげられる。これらのなかでもテトラメトキシシラン、テトラエトキシシランなどが好ましい。なお、化合物(B)の調製にあたっては、前記一般式(2)で例示のテトラアルコキシシランを、加水分解性アルコキシシランの、通常、80モル%以上とし、これに一般式(2)に含まれない前述の加水分解性アルコキシシランを用いることができる。

【0037】前記シロキサンオリゴマー(A)と、フルオロアルキル構造およびポリシロキサン構造を有する化合物(B)を含有する反射防止層形成剤は、これらを好ましくは前記割合となるように混合した溶液として調製できるが、これらは塗工の直前に混合するのが溶液の安定性の観点からは望ましい。

【0038】また反射防止層形成剤にはシリカ、アルミナ、チタニア、ジルコニア、フッ化マグネシウム、セリア等をアルコール溶媒に分散したゾルなどを添加しても良い。その他、金属塩、金属化合物などの添加剤を適宜に配合することができる。

【0039】反射防止層形成剤(溶液)を、前記ハードコート層2に塗工し、乾燥、硬化することにより反射防止層3が形成される。反射防止層3が形成は、溶媒の揮発とともにシロキサンオリゴマー(A)と化合物(B)

のポリシロキサンの硬化が進むことにより被膜形成するものである。上記反射防止層形成剤の塗工方法は特に制限されず、通常の方法、例えば、ディップ法、スピンドル法、刷毛塗り法、ロールコート法、フレキソ印刷法などがあげられる。

【0040】乾燥、硬化温度は特に制限されないが60~150℃、さらには70~120℃の低温において、100時間以下、さらには0.5~10時間の短時間で行うことができる。なお、温度、時間は前記範囲に制限されず、適宜に調整できるのはもとよりである。加熱は、ホットプレート、オーブン、ベルト炉などの方法が適宜に採用される。

【0041】反射防止層の厚さは特に制限されないが、0.05~0.3μm程度、特に0.1~0.3μmとするのが好ましい。反射率低減の観点より、通常、厚み(nm)×屈折率の値が140nm程度となるように設定するのが好ましい。

【0042】また、前記図1または図2の反射防止フィルムの透明基板1には、光学素子を接着することができる(図示せず)。

【0043】光学素子としては、偏光子があげられる。偏光子は、特に制限されず、各種のものを使用できる。偏光子としては、たとえば、ポリビニルアルコール系フィルム、部分ホルマール化ポリビニルアルコール系フィルム、エチレン・酢酸ビニル共重合体系部分ケン化フィルム等の親水性高分子フィルムに、ヨウ素や二色性染料等の二色性物質を吸着させて一軸延伸したもの、ポリビニルアルコールの脱水処理物やポリ塩化ビニルの脱塩酸処理物等ポリエン系配向フィルム等があげられる。これらのなかでもポリビニルアルコール系フィルムとヨウ素などの二色性物質からなる偏光子が好適である。これら偏光子の厚さは特に制限されないが、一般的に、5~80μm程度である。

【0044】ポリビニルアルコール系フィルムをヨウ素で染色し一軸延伸した偏光子は、たとえば、ポリビニルアルコールをヨウ素の水溶液に浸漬することによって染色し、元長の3~7倍に延伸することで作製することができる。必要に応じてホウ酸やヨウ化カリウムなどの水溶液に浸漬することもできる。さらに必要に応じて染色の前にポリビニルアルコール系フィルムを水に浸漬して水洗してもよい。ポリビニルアルコール系フィルムを水洗することでポリビニルアルコール系フィルム表面の汚れやプロッキング防止剤を洗净することができるほかに、ポリビニルアルコール系フィルムを膨潤させることで染色のムラなどの不均一を防止する効果もある。延伸はヨウ素で染色した後に行っても良いし、染色しながら延伸してもよし、また延伸してからヨウ素で染色してもよい。ホウ酸やヨウ化カリウムなどの水溶液中や水浴中でも延伸することができる。

【0045】前記偏光子は、通常、片側または両側に透

明保護フィルムが設けられ偏光板として用いられる。透明保護フィルムは透明性、機械的強度、熱安定性、水分遮蔽性、等方性などに優れるものが好ましい。透明保護フィルムとしては前記例示の透明基板と同様の材料のものが用いられる。前記透明保護フィルムは、表裏で同じポリマー材料からなる透明保護フィルムを用いてもよく、異なるポリマー材料等からなる透明保護フィルムを用いてもよい。前記反射防止フィルムを、偏光子(偏光板)の片側または両側に設ける場合、反射防止フィルムの透明基板は、偏光子の透明保護フィルムを兼ねることができる。

【0046】その他、透明保護フィルムの偏光子を接着させない面は、ハードコート層やスティッキング防止を目的とした処理を施したものであってもよい。ハードコート処理は偏光板表面の傷付き防止などを目的に施されるものであり、例えばアクリル系、シリコーン系などの適宜な紫外線硬化型樹脂による硬度や滑り特性等に優れる硬化皮膜を透明保護フィルムの表面に付加する方式などにて形成することができる。また、スティッキング防止処理は隣接層との密着防止を目的に施される。なお、前記ハードコート層、スティッキング防止層等は、透明保護フィルムそのものに設けることができるほか、別途光学層として透明保護フィルムとは別体のものとして設けることもできる。

【0047】光学素子としては、実用に際して、前記偏光板に、他の光学素子(光学層)を積層した光学フィルムを用いることができる。その光学層については特に限定はないが、例えば反射板や半透過板、位相差板(1/2や1/4等の波長板を含む)、視角補償フィルムなどの液晶表示装置等の形成に用いられることがある光学層を1層または2層以上用いることができる。特に、偏光板に更に反射板または半透過反射板が積層されてなる反射型偏光板または半透過型偏光板、偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板、偏光板に更に視角補償フィルムが積層されてなる広視野角偏光板、あるいは偏光板に更に輝度向上フィルムが積層されてなる偏光板が好ましい。

【0048】反射型偏光板は、偏光板に反射層を設けたもので、視認側(表示側)からの入射光を反射させて表示するタイプの液晶表示装置などを形成するためのものであり、バックライト等の光源の内蔵を省略できて液晶表示装置の薄型化を図りやすいなどの利点を有する。反射型偏光板の形成は、必要に応じ、前記透明保護フィルム等を介して偏光板の片面に金属等からなる反射層を付設する方式などの適宜な方式にて行うことができる。

【0049】反射型偏光板の具体例としては、必要に応じマット処理した透明保護フィルムの片面に、アルミニウム等の反射性金属からなる箔や蒸着膜を付設して反射層を形成したものなどがあげられる。

【0050】反射板は前記偏光板の透明保護フィルムに

直接付与する方式に代えて、その透明フィルムに準じた適宜なフィルムに反射層を設けてなる反射シートなどとして用いることもできる。なお反射層は、通常、金属からなるので、その反射面が透明保護フィルムや偏光板等で被覆された状態の使用形態が、酸化による反射率の低下防止、ひいては初期反射率の長期持続の点や、保護層の別途付設の回避の点などより好ましい。

【0051】なお、半透過型偏光板は、上記において反射層で光を反射し、かつ透過するハーフミラー等の半透過型の反射層とすることにより得ることができる。半透過型偏光板は、通常液晶セルの裏側に設けられ、液晶表示装置などを比較的明るい雰囲気で使用する場合には、視認側(表示側)からの入射光を反射させて画像を表示し、比較的暗い雰囲気においては、半透過型偏光板のバックサイドに内蔵されているバックライト等の内蔵光源を使用して画像を表示するタイプの液晶表示装置などを形成できる。すなわち、半透過型偏光板は、明るい雰囲気下では、バックライト等の光源使用のエネルギーを節約でき、比較的暗い雰囲気下においても内蔵光源を用いて使用できるタイプの液晶表示装置などの形成に有用である。

【0052】偏光板に更に位相差板が積層されてなる楕円偏光板または円偏光板について説明する。直線偏光を楕円偏光または円偏光に変えたり、楕円偏光または円偏光を直線偏光に変えたり、あるいは直線偏光の偏光方向を変える場合に、位相差板などが用いられる。特に、直線偏光を円偏光に変えたり、円偏光を直線偏光に変える位相差板としては、いわゆる1/4波長板(λ/4板とも言う)が用いられる。1/2波長板(λ/2板とも言う)は、通常、直線偏光の偏光方向を変える場合に用いられる。

【0053】楕円偏光板はスペーシストネマチック(STN)型液晶表示装置の液晶層の複屈折により生じた着色(青又は黄)を補償(防止)して、前記着色のない白黒表示する場合などに有効に用いられる。更に、三次元の屈折率を制御したものは、液晶表示装置の画面を斜め方向から見た際に生じる着色も補償(防止)することができて好ましい。円偏光板は、例えば画像がカラー表示になる反射型液晶表示装置の画像の色調を整える場合などに有効に用いられ、また、反射防止の機能も有する。上記した位相差板の具体例としては、ポリカーボネート、ポリビニルアルコール、ポリスチレン、ポリメチルメタクリレート、ポリプロピレンやその他のポリオレフィン、ポリアリレート、ポリアミドの如き適宜なポリマーからなるフィルムを延伸処理してなる複屈折性フィルムや液晶ポリマーの配向フィルム、液晶ポリマーの配向層をフィルムにて支持したものなどがあげられる。位相差板は、例えば各種波長板や液晶層の複屈折による着色や視角等の補償を目的としたものなどの使用目的に応じた適宜な位相差を有するものであってよく、2種以上

の位相差板を積層して位相差等の光学特性を制御したものなどであってもよい。

【0054】また上記の楕円偏光板や反射型楕円偏光板は、偏光板又は反射型偏光板と位相差板を適宜な組合せで積層したものである。かかる楕円偏光板等は、(反射型)偏光板と位相差板の組合せとなるようにそれらを液晶表示装置の製造過程で順次別個に積層することによっても形成しうるが、前記の如く予め楕円偏光板等の光学フィルムとしたものは、品質の安定性や積層作業性等に優れて液晶表示装置などの製造効率を向上させうる利点がある。

【0055】視角補償フィルムは、液晶表示装置の画面を、画面に垂直でなくやや斜めの方向から見た場合でも、画像が比較的鮮明にみえるように視野角を広げるためのフィルムである。このような視角補償位相差板としては、例えば位相差フィルム、液晶ポリマー等の配向フィルムや透明基材上に液晶ポリマー等の配向層を支持したものなどからなる。通常の位相差板は、その面方向に一軸に延伸された複屈折を有するポリマーフィルムが用いられるのに対し、視角補償フィルムとして用いられる位相差板には、面方向に二軸に延伸された複屈折を有するポリマーフィルムとか、面方向に一軸に延伸され厚さ方向にも延伸された厚さ方向の屈折率を制御した複屈折を有するポリマー等傾斜配向フィルムのような二方向延伸フィルムなどが用いられる。傾斜配向フィルムとしては、例えばポリマーフィルムに熱収縮フィルムを接着して加熱によるその収縮力の作用下にポリマーフィルムを延伸処理又は及び収縮処理したものや、液晶ポリマーを斜め配向させたものなどが挙げられる。位相差板の素材原料ポリマーは、先の位相差板で説明したポリマーと同様のものが用いられ、液晶セルによる位相差に基づく視認角の変化による着色等の防止や良視認の視野角の拡大などを目的とした適宜なものを用いうる。

【0056】また視認の広い視野角を達成する点などより、液晶ポリマーの配向層、特にディスコティック液晶ポリマーの傾斜配向層からなる光学的異方性層をトリアセチルセルロースフィルムにて支持した光学補償位相差板が好ましく用いうる。

【0057】偏光板と輝度向上フィルムを貼り合わせた偏光板は、通常液晶セルの裏側サイドに設けられて使用される。輝度向上フィルムは、液晶表示装置などのバックライトや裏側からの反射などにより自然光が入射すると所定偏光軸の直線偏光または所定方向の円偏光を反射し、他の光は透過する特性を示すもので、輝度向上フィルムを偏光板と積層した偏光板は、バックライト等の光源からの光を入射させて所定偏光状態の透過光を得ると共に、前記所定偏光状態以外の光は透過せずに反射される。この輝度向上フィルム面で反射した光を更にその後ろ側に設けられた反射層等を介し反転させて輝度向上フィルムに再入射させ、その一部又は全部を所定偏光状態

の光として透過させて輝度向上フィルムを透過する光の増量を図ると共に、偏光子に吸収させにくい偏光を供給して液晶表示画像表示等に利用しうる光量の増大を図ることにより輝度を向上させうるものである。すなわち、輝度向上フィルムを使用せずに、バックライトなどで液晶セルの裏側から偏光子を通して光を入射した場合には、偏光子の偏光軸に一致していない偏光方向を有する光は、ほとんど偏光子に吸収されてしまい、偏光子を透過してこない。すなわち、用いた偏光子の特性によっても異なるが、およそ50%の光が偏光子に吸収されてしまい、その分、液晶画像表示等に利用しうる光量が減少し、画像が暗くなる。輝度向上フィルムは、偏光子に吸収されるような偏光方向を有する光を偏光子に入射せずに輝度向上フィルムで一旦反射させ、更にその後ろ側に設けられた反射層等を介して反転させて輝度向上フィルムに再入射されることを繰り返し、この両者間で反射、反転している光の偏光方向が偏光子を通過し得るような偏光方向になった偏光のみを、輝度向上フィルムは透過させて偏光子に供給するので、バックライトなどの光を効率的に液晶表示装置の画像の表示に使用でき、画面を明るくすることができる。

【0058】輝度向上フィルムと上記反射層等の間に拡散板を設けることもできる。輝度向上フィルムによって反射した偏光状態の光は上記反射層等に向かうが、設置された拡散板は通過する光を均一に拡散すると同時に偏光状態を解消し、非偏光状態となる。すなわち、拡散板は偏光を元の自然光状態にもどす。この非偏光状態、すなわち自然光状態の光が反射層等に向かい、反射層等を介して反射し、再び拡散板を通過して輝度向上フィルムに再入射することを繰り返す。このように輝度向上フィルムと上記反射層等の間に、偏光を元の自然光状態にもどす拡散板を設けることにより表示画面の明るさを維持しつつ、同時に表示画面の明るさのむらを少なくし、均一で明るい画面を提供することができる。かかる拡散板を設けることにより、初回の入射光は反射の繰り返し回数が程よく増加し、拡散板の拡散機能と相俟って均一の明るい表示画面を提供することができたものと考えられる。

【0059】前記の輝度向上フィルムとしては、例えば誘電体の多層薄膜や屈折率異方性が相違する薄膜フィルムの多層積層体の如き、所定偏光軸の直線偏光を透過して他の光は反射する特性を示すもの、コレステリック液晶ポリマーの配向フィルムやその配向液晶層をフィルム基材上に支持したものの如き、左回り又は右回りのいずれか一方の円偏光を反射して他の光は透過する特性を示すものなどの適宜なものを用いうる。

【0060】従って、前記した所定偏光軸の直線偏光を透過させるタイプの輝度向上フィルムでは、その透過光をそのまま偏光板に偏光軸を揃えて入射されることにより、偏光板による吸収ロスを抑制しつつ効率よく透過さ

せることができる。一方、コレステリック液晶層の如く円偏光を投下するタイプの輝度向上フィルムでは、そのまま偏光子に入射させることもできるが、吸収ロスを抑制する点よりその円偏光を位相差板を介し直線偏光化して偏光板に入射させることができ。なお、その位相差板として $1/4$ 波長板を用いることにより、円偏光を直線偏光に変換することができる。

【0061】可視光域等の広い波長範囲で $1/4$ 波長板として機能する位相差板は、例えば波長550nmの淡色光に対して $1/4$ 波長板として機能する位相差層と他の位相差特性を示す位相差層、例えば $1/2$ 波長板として機能する位相差層とを重疊する方式などにより得ることができます。従って、偏光板と輝度向上フィルムの間に配置する位相差板は、1層又は2層以上の位相差層からなるものであってよい。

【0062】なお、コレステリック液晶層についても、反射波長が相違するものの組み合わせにして2層又は3層以上重疊した配置構造とすることにより、可視光領域等の広い波長範囲で円偏光を反射するものを得ることができ、それに基づいて広い波長範囲の透過円偏光を得ることができる。

【0063】また、偏光板は、上記の偏光分離型偏光板の如く、偏光板と2層又は3層以上の光学層とを積層したものからなっていてよい。従って、上記の反射型偏光板や半透過型偏光板と位相差板を組み合わせた反射型梢円偏光板や半透過型梢円偏光板などであってよい。

【0064】前記光学素子への反射防止フィルムの積層、さらには偏光板への各種光学層の積層は、液晶表示装置等の製造過程で順次別個に積層する方式にても行うことができるが、これらを予め積層したのものは、品質の安定性や組立作業等に優れていて液晶表示装置などの製造工程を向上させうる利点がある。積層には粘着層等の適宜な接着手段を用いる。前記の偏光板やその他の光学フィルムの接着に際し、それらの光学軸は目的とする位相差特性などに応じて適宜な配置角度とすることができる。

【0065】前述した偏光板や、偏光板を少なくとも1層積層されている光学フィルム等の光学素子の少なくとも片面には、前記反射防止フィルムが設けられているが、反射防止フィルムが設けられていない面には、液晶セル等の他部材と接着するための粘着層を設けることができる。粘着層を形成する粘着剤は特に制限されないが、例えばアクリル系重合体、シリコーン系ポリマー、ポリエステル、ポリウレタン、ポリアミド、ポリエーテル、フッ素系やゴム系などのポリマーをベースポリマーとするものを適宜に選択して用いることができる。特に、アクリル系粘着剤の如く光学的透明性に優れ、適度な濡れ性と凝集性と接着性の粘着特性を示して、耐候性や耐熱性などに優れるものが好ましく用いる。

【0066】また上記に加えて、吸湿による発泡現象や

剥がれ現象の防止、熱膨張差等による光学特性の低下や液晶セルの反り防止、ひいては高品質で耐久性に優れる液晶表示装置の形成性などの点より、吸湿率が低くて耐熱性に優れる粘着層が好ましい。

【0067】粘着層は、例えば天然物や合成物の樹脂類、特に、粘着性付与樹脂や、ガラス繊維、ガラスピース、金属粉、その他の無機粉末等からなる充填剤や顔料、着色剤、酸化防止剤などの粘着層に添加されることの添加剂を含有していてもよい。また微粒子を含有して光拡散性を示す粘着層などであってよい。

【0068】偏光板、光学フィルム等の光学素子への粘着層の付設は、適宜な方式で行いうる。その例としては、例えばトルエンや酢酸エチル等の適宜な溶剤の単独物又は混合物からなる溶媒にベースポリマーまたはその組成物を溶解又は分散させた10～40重量%程度の粘着剤溶液を調製し、それを流延方式や塗工方式等の適宜な展開方式で光学素子上に直接付設する方式、あるいは前記に準じセパレータ上に粘着層を形成してそれを光学素子上に移着する方式などがあげられる。粘着層は、各層で異なる組成又は種類等のものの重疊層として設けることもできる。粘着層の厚さは、使用目的や接着力などに応じて適宜に決定でき、一般には1～500μmであり、5～200μmが好ましく、特に10～100μmが好ましい。

【0069】粘着層の露出面に対しては、実用に供するまでの間、その汚染防止等を目的にセパレータが仮着されてカバーされる。これにより、通常の取扱状態で粘着層に接触することを防止できる。セパレータとしては、上記厚さ条件を除き、例えばプラスチックフィルム、ゴムシート、紙、布、不織布、ネット、発泡シートや金属箔、それらのラミネート体等の適宜な薄葉体を、必要に応じシリコーン系や長鎖アルキル系、フッ素系や硫化モリブデン等の適宜な剥離剤でコート処理したものなどの、従来に準じた適宜なものを用いうる。

【0070】なお本発明において、上記した光学素子を形成する偏光子や透明保護フィルムや光学層等、また粘着層などの各層には、例えばサリチル酸エステル系化合物やベンゾフェノール系化合物、ベンゾトリアゾール系化合物やシアノアクリレート系化合物、ニッケル錯塩系化合物等の紫外線吸収剤で処理する方式などの方式により紫外線吸収能をもたせたものなどであってよい。

【0071】本発明の反射防止フィルムを設けた光学素子は液晶表示装置等の各種装置の形成などに好ましく用いることができる。液晶表示装置の形成は、従来に準じて行いうる。すなわち液晶表示装置は一般に、液晶セルと光学素子、及び必要に応じての照明システム等の構成部品を適宜に組立てて駆動回路を組込むことなどにより形成されるが、本発明においては本発明による光学素子を用いる点を除いて特に限定はなく、従来に準じうる。

50 液晶セルについても、例えばTN型やSTN型、π型な

どの任意なタイプのものを用いうる。

【0072】液晶セルの片側又は両側に前記光学素子を配置した液晶表示装置や、照明システムにバックライトあるいは反射板を用いたものなどの適宜な液晶表示装置を形成することができる。その場合、本発明による光学素子は液晶セルの片側又は両側に設置することができる。両側に光学素子を設ける場合、それらは同じものであってもよいし、異なるものであってもよい。さらに、液晶表示装置の形成に際しては、例えば拡散板、アンチグレア層、反射防止膜、保護板、プリズムアレイ、レンズアレイシート、光拡散板、バックライトなどの適宜な部品を適宜な位置に1層又は2層以上配置することができる。

【0073】次いで有機エレクトロルミネンス装置(有機EL表示装置)について説明する。一般に、有機EL表示装置は、透明基板上に透明電極と有機発光層と金属電極とを順に積層して発光体(有機エレクトロルミネンス発光体)を形成している。ここで、有機発光層は、種々の有機薄膜の積層体であり、例えばトリフェニルアミン誘導体等からなる正孔注入層と、アントラセン等の蛍光性の有機固体からなる発光層との積層体や、あるいはこのような発光層とペリレン誘導体等からなる電子注入層の積層体や、またあるいはこれらの正孔注入層、発光層、および電子注入層の積層体等、種々の組み合わせをもった構成が知られている。

【0074】有機EL表示装置は、透明電極と金属電極とに電圧を印加することによって、有機発光層に正孔と電子とが注入され、これら正孔と電子との再結合によって生じるエネルギーが蛍光物質を励起し、励起された蛍光物質が基底状態に戻るときに光を放射する、という原理で発光する。途中の再結合というメカニズムは、一般的のダイオードと同様であり、このことからも予想できるように、電流と発光強度は印加電圧に対して整流性を伴う強い非線形性を示す。

【0075】有機EL表示装置においては、有機発光層での発光を取り出すために、少なくとも一方の電極が透明でなくてはならず、通常酸化インジウムスズ(ITO)などの透明導電体で形成した透明電極を陽極として用いている。一方、電子注入を容易にして発光効率を上げるには、陰極に仕事関数の小さな物質を用いることが重要で、通常Mg-Ag、Al-Liなどの金属電極を用いている。

【0076】このような構成の有機EL表示装置において、有機発光層は、厚さ10nm程度ときわめて薄い膜で形成されている。このため、有機発光層も透明電極と同様、光をほぼ完全に透過する。その結果、非発光時に透明基板の表面から入射し、透明電極と有機発光層とを透過して金属電極で反射した光が、再び透明基板の表面側へと出るため、外部から視認したとき、有機EL表示装置の表示面が鏡面のように見える。

【0077】電圧の印加によって発光する有機発光層の表面側に透明電極を備えるとともに、有機発光層の裏面側に金属電極を備えてなる有機エレクトロルミネンス発光体を含む有機EL表示装置において、透明電極の表面側に偏光板を設けるとともに、これら透明電極と偏光板との間に位相差板を設けることができる。

【0078】位相差板および偏光板は、外部から入射して金属電極で反射してきた光を偏光する作用を有するため、その偏光作用によって金属電極の鏡面を外部から視認させないという効果がある。特に、位相差板を $1/4$ 波長板で構成し、かつ偏光板と位相差板との偏光方向のなす角を $\pi/4$ に調整すれば、金属電極の鏡面を完全に遮蔽することができる。

【0079】すなわち、この有機EL表示装置に入射する外部光は、偏光板により直線偏光成分のみが透過する。この直線偏光は位相差板により一般に梢円偏光となるが、とくに位相差板が $1/4$ 波長板でしかも偏光板と位相差板との偏光方向のなす角が $\pi/4$ のときには円偏光となる。

【0080】この円偏光は、透明基板、透明電極、有機薄膜を透過し、金属電極で反射して、再び有機薄膜、透明電極、透明基板を透過して、位相差板に再び直線偏光となる。そして、この直線偏光は、偏光板の偏光方向と直交しているので、偏光板を透過できない。その結果、金属電極の鏡面を完全に遮蔽することができる。

【0081】

【実施例】以下に、実施例によって本発明を具体的に説明するが、本発明はこれら実施例によって何等限定されるものではない。

【0082】実施例1

(反射防止層形成剤の調製) テトラメトキシシラン30gとメタノール240gを4つ口反応フラスコに入れ液温を30℃に保ちながら攪拌し、次いで、これに水6gに硝酸2gを加えた水溶液を加えて30℃で5時間攪拌し、シロキサンオリゴマーのアルコール溶液(溶液A)を得た。シロキサンオリゴマーのGPCによるエチレングリコール/ポリエチレンオキサイド換算の相対分子量は950であった。

【0083】別途、4つ口反応フラスコにメタノールを300gを入れた後、シュウ酸30gを攪拌しながら混合した。この溶液を加熱し環流させながらテトラメトキシシラン30gおよびトリデカフルオロオクチルトリメトキシシラン8gを滴下し5時間環流下で加熱した後、冷却し、フルオロアルキル構造およびポリシロキサン構造を有するフッ素化合物の溶液(溶液B)を得た。

【0084】溶液A30gおよび溶液B100gを攪拌混合して、混合塗工液中の固形分濃度が1重量%となるように酢酸ブチルにて希釈を行い反射防止層形成剤(塗工液)を得た。

【0085】(反射防止フィルムの作製) トリアセチル

セルロースフィルム上に、市販の紫外線硬化型アクリル系ハードコート樹脂のトルエン溶液をワイヤーバーを用いて塗布し溶媒乾燥後に低圧UVランプにて紫外線照射し5μm厚みのハードコート層を形成した。ハードコート層を形成した樹脂の屈折率は1.52であった。

【0086】 続いて、上記で調製した塗工液をワイヤーバーを用いて硬化後の厚みが約100nmとなるように塗工し、90℃で1時間加熱硬化して反射防止層を形成し反射防止フィルムを作製した。反射防止層の屈折率は1.40であった。また反射防止層は、乾燥硬化物として、シロキサンオリゴマーの固形分重量比が約30重量%であった。

【0087】 実施例2

実施例1の(反射防止フィルムの作製)において、ハードコート層を形成する際に樹脂の固形分100重量部に対して5重量部の粒子径2μmのシリカビーズを添加したトルエン溶液を用いたこと以外は実施例1と同様にして防眩機能付きハードコート層を形成し、また実施例1と同様にして反射防止フィルムを作製した。

【0088】 実施例3

実施例1の(反射防止層形成剤の調製)において、溶液A70gおよび溶液B30gを攪拌混合し、混合液中の固形分濃度を1重量%に調整したこと以外は実施例1と同様にして反射防止層形成剤(塗工液)を得た。また当該反射防止層形成剤を用いたこと以外は実施例1の(反射防止フィルムの作製)と同様にして反射防止フィルムを作製した。反射防止層の屈折率は1.42であった。また反射防止層は、乾燥硬化物として、シロキサンオリゴマーの固形分重量比が約70重量%であった。

【0089】 比較例1

実施例1の(反射防止フィルムの作製)において、塗工液として溶液Bのみを用いたこと以外は実施例1と同様にして反射防止フィルムを得た。反射防止層の屈折率は*

10

* 1.39であった。

【0090】 比較例2

実施例1の(反射防止フィルムの作製)において、塗工液として溶液Aのみを用いたこと以外は実施例1と同様にして反射防止フィルムを得た。反射防止層の屈折率は1.45であった。

【0091】 実施例および比較例で得られた反射防止フィルムについて下記の評価を行った。結果を表1に示す。

【0092】 (スチールウール試験) スチールウール#0000に加重0.05MPaをかけた状態で反射防止フィルム表面(反射防止層)を10回擦り、試験後の傷つき具合を以下の基準で目視にて判定した。

○：傷は認められない。

×：傷が認められる。

【0093】 (反射率) 反射防止フィルムの裏(反射防止層を形成していない面)をサンドペーパーで削り表面を荒らした後、黒ラッカーにて塗料を塗布し裏面の反射をなくしたサンプルを傾斜積分球付き分光光度計(島津製作所製、UV-2400)を用いて全反射率(%)を測定した。

【0094】 (指紋拭き取り性) 反射率測定に用いたサンプルの表面に皮脂を強制的に付けティッシュペーパーでの拭き取り性を以下の基準で目視にて判定した。

○：指紋の拭き取り後は認められない。

×：指紋を拭き取れないまたは拭き取りあとが認められる。

【0095】 (密着性) ハードコート層と反射防止層の密着性を、JIS K-5400記載の基盤目テープ剥離試験により行った。剥離数/100で表した。

【0096】

【表1】

20

30

	スチールウール試験	反射率(%)	拭き取り性	密着性
実施例1	○	2.0	○	0/100
実施例2	○	2.1	○	0/100
実施例3	○	2.4	○	0/100
比較例1	×	1.9	○	0/100
比較例2	○	3.0	×	0/100

上記、結果に示すとおり実施例の反射防止フィルムは、90℃で1時間の比較的低温下での短時間の硬化によって耐擦傷性、汚染性の良好な反射防止層が形成され、反射防止特性および実用特性に優れるものであることが分

かる。

【0097】 また、実施例1～3の反射防止フィルムを偏光板の保護層(保護フィルム)として用いたところ、上記特性を維持した、実用性の高い反射防止機能付きの

50

偏光板が得られた。

【図面の簡単な説明】

【図1】本発明の反射防止フィルムの断面図の一例である。

【図2】本発明の反射防止フィルムの断面図の一例である。

【符号の説明】

- 1 : 透明基板
- 2 : ハードコート層
- 3 : 反射防止層
- 4 : 微粒子

【図1】

【図2】

フロントページの続き

(51) Int.C1. 7 識別記号
G 02 F 1/1335 500

F I
G 02 B 1/10

テマコト(参考)
A

(72) 発明者 重松 崇之
大阪府茨木市下穂積1丁目1番2号 日東
電工株式会社内
(72) 発明者 吉岡 昌宏
大阪府茨木市下穂積1丁目1番2号 日東
電工株式会社内

F ターム(参考) 2H042 BA02 BA03 BA15 BA20
2H049 BA02 BA03 BA04 BA25 BA27
BA42 BA43 BB03 BB33 BB43
BB45 BB47 BB48 BB51 BB63
BB65 BC03 BC09 BC12 BC22
2H091 FA08X FA08Z FA31X FA37X
FB02 FB04 FD06 GA16 LA02
LA07
2K009 AA04 AA15 BB13 BB14 BB23
BB24 BB28 CC03 CC14 CC26
CC34 CC35 CC42 DD02 DD06
4F100 AH05D AH06D AJ06A AK01C
AK17D AK52D AL05D AR00A
AR00C AT00B BA04 BA07
BA10A BA10D DD07C DE01C
GB41 JB14C JK12C JN01A
JN06 JN18C JN30 YY00C
YY00D

**This Page is Inserted by IFW Indexing and Scanning
Operations and is not part of the Official Record**

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

- BLACK BORDERS**
- IMAGE CUT OFF AT TOP, BOTTOM OR SIDES**
- FADED TEXT OR DRAWING**
- BLURRED OR ILLEGIBLE TEXT OR DRAWING**
- SKEWED/SLANTED IMAGES**
- COLOR OR BLACK AND WHITE PHOTOGRAPHS**
- GRAY SCALE DOCUMENTS**
- LINES OR MARKS ON ORIGINAL DOCUMENT**
- REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY**
- OTHER:** _____

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.