算法与数据结构体系课程

liuyubobobo

MSD基数排序和桶排序

LSD Least Significant Digit

从最后向前计数排序

只适用于等长字符串

CA BAC CA AC BAC AC **BCA BCA** BCA CA BAC AC CA BAC BAC BCA BCA AC AC

LSD Least Significant Digit

从最后向前计数排序

只适用于等长字符串

CA	CA	BAC	AC	BAC	AC
BCA	BCA	AC	CA	BCA	BAC
BAC	BAC	CA	BAC	AC	BCA
AC	AC	BCA	BCA	CA	CA

LSD Least Significant Digit

从最后向前计数排序

只适用于等长字符串

CA	CA	BAC	AC	BAC	AC
BCA	BCA	AC	CA	BCA	BAC
BAC	BAC	CA	BAC	AC	BCA
AC	AC	BCA	BCA	CA	CA

Least Significant Digit

LSD

从最后向前计数排序

只适用于等长字符串

BCA

MSD Most Significant Digit AC

从前向后计数排序 BAC

可用于不等长字符串 CA

BCA

CBAA

AC

BADFE

ABC

CBA

BCA

CBAA

AC

BADFE

ABC

CBA

BCA AC

CBAA ABC

AC BCA

BADFE BADFE

ABC CBAA

CBA CBA

BCA AC ABC

CBAA ABC AC

AC BCA

BADFE BADFE

ABC CBAA

CBA

CBA

CBAA CBA

CBA

边界处理:空(长度不够)对应的"字符的值"最小

每轮计数排序 字符取值范围: [0...R - 1] R 种可能

添加一种可能:空(长度不够)

字符取值范围: [1...R]; 0表示空; R+1种可能

递归进行计数排序

实践: 实现 MSD 基数排序

实践: 完成 MSD 基数排序

MSD基数排序性能分析

MSD基数排序性能分析

0(w*n) w 是最长的字符串的长度 大量的递归提前结束

基数排序 LSD 123 123 效率差

45 045

6 006

MSD 123

45

6

MSD 不适用于数字

MSD 不适用于数字

在 arr[left, right] 的范围, 根据 r 位字符, 分成 256 类

让 MSD 的思想适用于数字

数字没有 r 位字符, 直接根据大小关系分成 B 份?

桶排序

MSD: B = R = 256 + 1

数字没有r位字符, 直接根据大小关系分成 B 份? 桶排序

12

32 29 13 9

30 27

B = 5

在 5 个桶中,元素取值范围: 32 - 6 + 1 = 27

每个桶能盛放: ceil(27 / 5) = 6 个元素可能

6 12 32 29 13 9 30 27 B = 5

每个桶能盛放: ceil(27/5) = 6 个元素可能

桶 0 [6, 11]:

桶 1 [12, 17]:

桶 2 [18, 23]:

桶 3 [24, 29]:

桶 4 [30, 35]:

6 12 32 29 13 9 30 27 B = 5

每个桶能盛放: ceil(27/5) = 6 个元素可能

桶 0 [6, 11]: 6 (6 - 6) / 6 = 0

桶 1 [12, 17]:

桶 2 [18, 23]:

桶 3 [24, 29]:

桶 4 [30, 35]:

12 32 29 13 9

30 27

B=5

每个桶能盛放: ceil(27 / 5) = 6 个元素可能

桶 0 [6, 11]: 6

桶 1 [12, 17]: 12

桶 2 [18, 23]:

桶 3 [24, 29]:

桶 4 [30, 35]:

(12 - 6) / 6 = 1

6 12 32 29 13 9 30 27 B = 5

每个桶能盛放: ceil(27/5) = 6 个元素可能

桶 0 [6, 11]: 6 (32 - 6) / 6 = 4

桶 1 [12, 17]: 12

桶 2 [18, 23]:

桶 3 [24, 29]:

桶 4 [30, 35]: 32

12 32 29 13 9

30 27

B=5

每个桶能盛放: ceil(27 / 5) = 6 个元素可能

桶 0 [6, 11]: 6

(29 - 6) / 6 = 3

桶 1 [12, 17]: 12

桶 2 [18, 23]:

桶 3 [24, 29]:

桶 4 [30, 35]: 32

12 32 29 13 9 30 27

B = 5

每个桶能盛放: ceil(27 / 5) = 6 个元素可能

桶 0 [6, 11]: 6

桶 1 [12, 17]: 12 13

桶 2 [18, 23]:

桶 3 [24, 29]:

桶 4 [30, 35]:

32 30 对每个桶,递归下去

和 MSD 的思想一样

每一轮本质也在做计数排序

不需要考虑字符空的问题

实现桶排序

实践:实现桶排序

MSD 桶排序

不需要递归的桶排序

回忆之前的课程,快排或者归并排序,当数据量小的时候,转成插入排序反而更快

MSD 桶排序

MSD 桶排序

MSD 桶排序

桶排序的性能分析

桶排序的性能分析

桶排序的性能分析

每个桶有 c 个元素 一共 n / c 个桶

每个桶的排序: c^2

整体: O(n / c * c^2) = O(cn) = O(n)

更多关于桶排序

Leetcode 164

处理浮点数?

总结

计数排序

基数排序 LSD

基数排序 MSD

桶排序

其他

欢迎大家关注我的个人公众号:是不是很酷

算法与数据结构体系课程

liuyubobobo