Document made available under the Patent Cooperation Treaty (PCT)

International application number: PCT/EP04/053448

International filing date: 14 December 2004 (14.12.2004)

Document type: Certified copy of priority document

Document details: Country/Office: EP

Number: 04008494.9

Filing date: 07 April 2004 (07.04.2004)

Date of receipt at the International Bureau: 29 April 2005 (29.04.2005)

Remark: Priority document submitted or transmitted to the International Bureau in

compliance with Rule 17.1(a) or (b)

Europäisches **Patentamt**

European **Patent Office** Office européen des brevets

Bescheinigung

Certificate

Attestation

Die angehefteten Unterlagen stimmen mit der ursprünglich eingereichten Fassung der auf dem nächsten Blatt bezeichneten europäischen Patentanmeldung überein.

The attached documents are exact copies of the European patent application conformes à la version described on the following page, as originally filed.

Les documents fixés à cette attestation sont initialement déposée de la demande de brevet européen spécifiée à la page suivante.

Patentanmeldung Nr.

Patent application No. Demande de brevet nº

04008494.9

Der Präsident des Europäischen Patentamts; Im Auftrag

For the President of the European Patent Office

Le Président de l'Office européen des brevets p.o.

R C van Dijk

Europäisches Patentamt European
Patent Office

Office européen des brevets

Anmeldung Nr:

Application no.:

04008494.9

Demande no:

Anmeldetag:

Date of filing: 07.04.04

Date de dépôt:

Anmelder/Applicant(s)/Demandeur(s):

Deutsche Thomson Brandt Hermann Schwer Strasse 3 78048 Villingen ALLEMAGNE

Bezeichnung der Erfindung/Title of the invention/Titre de l'invention: (Falls die Bezeichnung der Erfindung nicht angegeben ist, siehe Beschreibung. If no title is shown please refer to the description. Si aucun titre n'est indiqué se referer à la description.)

Method and apparatus for generating look-up table data in the video picture field

In Anspruch genommene Prioriät(en) / Priority(ies) claimed /Priorité(s) revendiquée(s)
Staat/Tag/Aktenzeichen/State/Bate/File no./Pays/Date/Numéro de dépôt:

EP/18.12.03/EP 03293217

Internationale Patentklassifikation/International Patent Classification/Classification internationale des brevets:

G09G3/28

Am Anmeldetag benannte Vertragstaaten/Contracting states designated at date of filing/Etats contractants désignées lors du dépôt:

AT BE BG CH CY CZ DE DK EE ES FI FR GB GR HU IE IT LU MC NL PL PT RO SE SI SK TR LI

The second section of the second section of the second section	manuning same was grant and a second second		
 	 	 - "-	
			į
			į
			ı
			ı

מו - שבע-צממל דסי אד בעחון וווחויסטי ווסרי זוורחזי

5

10

15

20

25

30

METHOD AND APPARATUS FOR GENERATING LOOK-UP TABLE DATA IN THE VIDEO PICTURE FIELD

The present invention relates to a method for generating look-up table data in the video picture field. It also relates to a circuit for implementing said method.

The present invention is particularly useful in the field of plasma display panels (PDPs) or other display devices wherein each video level is represented by a combination of bits according to a specific coding. In this case, when the algorithms used to improve picture quality are based on data stored in memories such as look-up tables (LUTs), the size of such tables may be quite huge.

BACKGROUND OF THE INVENTION

To understand the problem, the present invention will be described in relation with PDP but may be applicable to other types of display or other apparatus processing video data and requiring memories with huge size.

To improve picture quality in PDPs, a lot of algorithms have been developed, using data stored in look-up tables. For example, in EP patent application 1 353 314, is described a method for improving grey scale fidelity portrayal based on a modification of the coding approach for each average power level (APL) that occurs at each frame. It is based on a Metacode concept wherein the subfield code based on subfield weights is replaced by a metacode based on subfield actual luminance. More specifically, for a given peak white level, the sustain pulses are distributed among the sub-fields, the number of pulses of a sub-field corresponding to its weighting. Then, the subfield codes are mapped to luminance codes, which are re-ordered in a definite order. Moreover, the video levels are mapped to the available luminance codes and processed to achieve intermediate levels of luminance. Then, the luminance codes are mapped to the output sub-field codes. In this case, look-up tables are used at least for mapping the video levels to the luminance codes and for mapping the luminance codes to the output sub-

10

15

20

25

30

22272022324400

field codes. These look-up tables, which contain, for example, luminance codes to be loaded for each new APL value, are stored in an external memory. These tables, called metacode look-up tables, are quite huge.

Figure 1 is a standard implementation circuit of a metacode coding unit as described in EP patent application 1 353 314. This unit comprises a first memory 100 comprising 1024 x 12 bits for handling 10 bits of input video resolution. A first metacode look up table is stored in this memory and is used for mapping the video levels to available luminance codes. It can include or not a degamma function. A new metacode look up table is loaded in the memory 100 each time the APL value changes. At the output of the memory 100, 12 bits video signal is obtained. The available 12-bits correspond to 8-bits integer resolution and 4-bits fractional resolution. Then, the 12-bits of video signal YA [11-0] are forwarded to a dithering circuit 110. In this circuit 110, the 4-bits of fractional resolution are added with the 4-bits of dithering and then truncated.

The video signal YB[7,0] from the circuit 110 is then forwarded to a second memory 120 comprising 256 x 16 bits. A second look-up table is stored in the memory 120 and is used to implement the transcoding step that is the step of mapping luminance codes to the output subfield codes.

As mentioned previously, the memory 100 needs to be updated with a new metacode look-up table each time the APL value changes. A look-up table is provided for each APL value. These look-up tables are stored in an external memory 130, e.g. a FLASH memory, EEPROM,... A metacode look-up table defines, for each video level and for a given APL value, a 12 bit code representative of the luminance code to be generated for achieving the video level. In case of a 10 bit APL value, an external memory with a size of 1024x1024x12 = 12 Mbit is needed.

Moreover, if different metacode look-up tables are needed for each color, it increases the total size of the memory 130 to 36Mbit. Furthermore, since the metacode look-up tables are different for each display mode used in the Plasma Display Panel, e.g. 60Hz, 50Hz, 75Hz... it further increases the needs in terms of external memory: 108Mbit for 3 modes.

Therefore, one major problem of the implementation circuit of Figure 1 is the large size of the external memory 130.

It is the purpose of the present invention to propose a way to reduce the amount of data needed for implementing said metacode method by using a low number of metacode look-up tables and by extrapolating the other ones.

In a general manner, the invention relates to a method for generating a look-up table data for a input video data and a given value of a parameter among N different values.

The method of the invention can be used for generating a metacode look-up table data for a given value of average power level.

It can also be used for generating other look-up table data in the video picture field.

SUMMARY OF THE INVENTION

So, the invention proposes a method for generating a look-up table data for an input video data and for a given value of a parameter among N different values, characterized in that said look-up table data is generated from two look-up tables defined for the two bound values of said parameter and an extrapolation coefficient, said look-up tables comprising an output data for each possible input video data.

If the look-up table data can be approximated by a piecewise linear function of a variable depending on the given value, the method of the invention comprises the following steps

- dividing the set of N values into P subsets of consecutive values, each piece of the piecewise linear function being in a different subset;
- defining a look-up table for the two bound values of each subset i, called primary look-up table and secondary look-up table respectively, each of said primary and secondary look-up tables comprising an output data for each possible input video data (YI).

5

10

15

20

25

10

15

20

- defining, for each subset i, a delta look-up table corresponding to the difference between the secondary look-up table and the primary look-up table related to the subset i,
- defining, for each one of said N values, an extrapolation coefficient in accordance with the value of a variable S for the given value and the values of the variable S for the two bound values of the subset i comprising the given value; and
- computing the look-up table data for said input video data and for the given value in accordance with the extrapolation coefficient defined for the given value and the output data of the primary look-up table and the delta look-up table for said for said input video data.

In the embodiment described here, the generated look-up table data is a Metacode look-up table data, the parameter is an average power level and the variable is a number of sustain pulses corresponding to the given value of the parameter.

The bound level related to the primary look-up table of a subset of average power level values is the highest average power level value of the subset and the bound level related to the secondary look-up table of a subset of average power level values is the lowest average power level value of the subset.

Preferably, the ratio between the value of the variable for one bound value in the subset i and the value of the variable S for the same bound value in the subset i+1 equals to a fixed parameter α . The parameter

25 α is defined as followed $\alpha = \sqrt{\frac{S_{MAX}}{S_{MIN}}}$ where S_{MAX} is the value of the variable S

for a peak white image and S_{MIN} is the value of the variable S for a full white image. The extrapolation coefficient is proportional to

 $\frac{S(VAL) - S(PMTC_i)}{S(SMTC_i) - S(PMTC_i)}$ where $S(PMTC_i)$ is the value of the variable S for the

highest bound value of the subset i; S(SMTC_i) is the value of the variable S

שודתרבטטא

5

10

15

20

25

The computed look-up table data equals to the sum of the output data of the primary look-up table for the given value VAL and the output data of the delta look-up table for the input video data and the given value VAL weighted by the extrapolation coefficient for the given value VAL.

The invention concerns also a device for generating a look-up table data for an input video data and for a given value of a parameter among N different values, said output data being approximated by a piecewise linear function of a variable depending on the given value, the set of N values being divided into P subsets of consecutive values, each piece of the piecewise linear function being in a different subset, characterized in that it comprises:

- a first memory for storing, for each subset i, a primary look-up table associated to a bound value of the subset i and comprising an output data for each possible input video data,
- a second memory for storing, for each subset i, a delta look-up table corresponding to the difference between a secondary look-up table and the primary look-up table related to the subset i, the secondary look-up table being associated to the other bound value of the subset i and comprising an output data for each possible input video data,
- a third memory for storing, for each of said N values, an index indicating which primary look-up table in the first memory and which delta look-up table in the second memory have to be used for extrapolation,
- a fourth memory for storing an extrapolation coefficient for each one of said N values, the extrapolation coefficient associated to a given value being defined in accordance with the value of a variable S for said given value and the values of the variable S for the two bound values of the subset i comprising said given value; and
- a computing block for generating a look-up table data for said input video data and for the given value in accordance with the extrapolation

coefficient defined for the given value and the output data of the primary lookup table and the delta look-up table for said input video data.

The above-mentioned method can be implemented in this device.

DRAWINGS

5

10

15

20

25

30

Exemplary embodiments of the invention are illustrated in the drawings and are explained in more detail in the following description.

In the figure:

Figure 1 is a schematic showing an implementation of a prior art method; and

Figure 2 is a schematic showing a possible implementation of the method according to the invention.

DESCRIPTION OF PREFERRED EMBODIMENTS

The present invention will be described with reference to the generation of metacode look-up tables for different Average Power Level or APL values.

The goal of the invention is to reduce the number of look-up tables needed. Only some look-up tables will be predefined for some APL values and, for the other APL values, new look-up tables will be extrapolated from these predefined look-up tables.

In the following specification, a metacode LUT, defined for a given APL value, defines for each input video level an output level expressing a luminance code to be used.

According to the invention and as illustrated by Figure 2, four lookup tables with a total size inferior to the size of the memory 130 of Figure 1 and an evaluation block are used to implement the metacode look-up tables for all APL values:

- a first look-up table LUT1 which comprises itself 16 metacode LUTs, called primary metacode LUTs; each primary metacode LUT

10

15

20

25

30

comprises metacodes related to a specific APL value, called primary APL value; the primary APL values will be described below in the specification;

- a second look-up table LUT2 which comprises 16 delta LUTs corresponding to the difference between secondary metacode LUTs and said primary metacode LUTs; each secondary metacode LUT comprises metacodes related to a specific APL value, called secondary APL value; the secondary APL values will be described below in the specification;
- a third look-up table LUT3 which comprises, for each APL value, an index indicating which primary metacode LUT in LUT1 and which delta LUT in LUT2 have to be used for the extrapolation,
- a fourth look-up table LUT4 which comprises, for each APL value, the coefficient to be used for the extrapolation, and
 - an extrapolation block EXTRAPOL for calculating a LUT.

As mentioned above, each subset of APL values comprises a primary APL value and a secondary APL value. The set of APL values comprises for example 1024 values from 0 to 1023 and is for example divided into 16 subsets of consecutive APL values. The primary APL value is the highest APL value (corresponding to the smallest number of sustain pulses) of the subset and the secondary APL value is the lowest APL value (corresponding to the highest number of sustain pulses) of the subset. A primary metacode LUT is defined for each primary APL value. These primary metacode LUTs are stored in the LUT1. A secondary metacode LUT is defined for each secondary APL value but these secondary metacode LUTs are not stored in the LUT1 or LUT2. They are only used for calculating the delta LUTs stored in LUT2.

The Look-up table LUT3 delivers, for each APL value, a pointer on the primary Metacode LUT which has to be used for generating the Metacode LUT of this APL value. The LUT 3 has a 10-bit input and a 4-bit output for selecting one of the 16 primary metacode LUTs.

The notations used in the specification are the following ones:

10

15

20

25

30

- PMTC_i represents the primary metacode LUT related to the subset i of APL values,
- S(PMTC_i) represents the number of sustain pulses for the APL value (primary APL value) corresponding to the primary metacode LUT PMTC_i;
- PMTC_i(V) represents the output of the primary metacode LUT PMTC_i for the video level V;
- SMTC_i represents the secondary metacode LUT related to the subset i of APL values,
- S(SMTC_i) represents the number of sustain pulses for the APL value corresponding to the secondary metacode LUT SMTC_i;
 - SMTC_i(V) represents the output of the secondary metacode LUT SMTC_i for the video level V; and
 - S(X) represents of the number of sustain pulses for the APL value X.

Some jumps can appear when switching from one primary metacode LUT to another one. For example, the smallest sub-field code value (1 sustain pulse for example) has a different relative value (which is equal to 1/total amount of sustain pulses) in comparison with the smallest sub-field code value used for another primary metacode LUT) since the total amount of sustain pulses changes from one primary Metacode level to another one (from one APL value to another). The ratio of these two different values (which is equal to the ratio of the two different total amounts of sustain pulses of the two primary metacode LUTs) could create a jump.

In order to have nearly the same visibility of possible jumps when switching from one primary Metacode to another one, these ratios should be equal as follows:

$$\frac{S(PMTC_0)}{S(PMTC_1)} = \frac{S(PMTC_1)}{S(PMTC_2)} = \dots = \frac{S(PMTC_1)}{S(PMTC_{H1})} = \dots = \frac{S(PMTC_{14})}{S(PMTC_{15})} = \alpha$$

This means that the division is made in a logarithmic way. The previous formula means that the 2nd, the 3rd, ... and the 15th subsets of APL values have the same ratio between the number of sustain pulses of their smallest

APL value and their highest value. If this ratio α is also imposed to the first subset, we have

$$\alpha = \frac{S_{MAX}}{S(PMTC_0)} = \frac{S(PMTC_0)}{S(PMTC_1)} = \dots = \frac{S(PMTC_1)}{S(PMTC_{14})} = \dots = \frac{S(PMTC_{14})}{S(PMTC_{15})}$$

where S_{MAX} is the number of sustain pulses for a peak white (low APL value)

When multiplying all terms together, we find that:

$$\alpha^{16} = \frac{S_{MAX}}{S(PMTC_{1S})} = \frac{S_{MAX}}{S_{MIN}} \text{ where } S_{MIN} \text{ is the number of sustain pulses for a full}$$

white image.

5

15

25

So
$$\alpha = \frac{16}{\sqrt{\frac{S_{MAX}}{S_{MIN}}}}$$
 and $S(PMTC_i) = S_{MIN} \times \alpha^{15-i}$

This division in a logarithmic way is only a suggestion in order to have the same visibility of possible jumps when switching from one primary metacode LUT to another one; but it is possible to use a different division of the APL set. For example, it is possible to use a different division in order to have more subsets for the low values of APL, and less for the high values of APL.

In an example given in the annex below, the set of APL values is divided in 16 subsets. The primary APL values (lowest APL value of each subset) are marked in bold characters and the secondary APL values (highest APL value of each subset) are marked in black areas.

20 This example is given for the following inputs:

- Peak white image: 1100 sustain pulses
- Full white image: 200 sustain pulses.

The parameter α is equal to:

$$\alpha = \sqrt[16]{\frac{S_{\text{MAX}}}{S_{\text{MIN}}}} = \sqrt[16]{\frac{1100}{200}} \approx 1.1135.$$

The 16 primary APL values, used for the primary Metacode LUTs, are determined as indicated in the annex table. The maximal number of sustain

pulses of the primary metacode LUT PMTC₁ is $200 \times \alpha^{i}$ sustain pulses, with i = 0..15.

The APL values are distributed as follows:

5	APL values from 0 to 135	→ Subset 15
	APL values from 136 to 230	→ Subset 14
	APL values from 231 to 318	→ Subset 13
	APL values from 319 to 398	-> Subset 12
	APL values from 399 to 473	→ Subset 11
10	APL values from 474 to 540	→ Subset 10
	APL values from 541 to 604	→ Subset 9
	APL values from 605 to 663	→ Subset 8
	APL values from 664 to 716	→ Subset 7
	APL values from 717 to 766	→ Subset 6
15	APL values from 767 to 812	→ Subset 5
	APL values from 813 to 856	→ Subset 4
	APL values from 857 to 898	→ Subset 3
	APL values from 899 to 938	→ Subset 2
	APL values from 939 to 978	→ Subset 1
20	APL values from 979 to 1023	→ Subset 0

As an example, for the subset 15, the primary APL value is 135 and the secondary APL value is 0. The maximal number of sustain pulses for the primary metacode LUT is 988 and for the secondary metacode LUT is 1100.

The metacode LUTs related to APL values comprised between 1 and 134 of subset 15 are computed by extrapolation. It is an extrapolation in the sense that it is not an interpolation between two metacode LUTs related to different subsets. These metacode LUTs related to APL values 1...134 can be achieved by an interpolation between the primary metacode LUT related to the APL value 135 and the secondary Metacode LUT related to the APL value 0. The secondary metacode LUT is only used for the extrapolation.

In a preferred embodiment, the extrapolation for the APL values of a subset is made between the primary metacode LUT PMTC_i and a delta LUT corresponding to the difference between primary metacode LUT PMTC_i and the secondary metacode LUT SMTC_i. This difference LUT, noted LUT2_i, is stored in the look up table LUT2. The values in the delta LUTs contained in this LUT2 can be positive or negative, but a 8 bit resolution is enough.

The value stored in the delta LUT related to the subset i in the LUT2 and precalculated for a video level V is:

10
$$LUT2_{i}(V) = \frac{64 \times (SMTC_{i}(V) - PMTC_{i}(V))}{63}$$

The coefficients 64 and 63 are used here for hardware considerations because the coefficient used for the extrapolation is coded on 6 bits and because it is easier to make a division by 64 than by 63 in hardware in the following final extrapolation.

Preferably, for evaluating the look-up table LUT2, more resolution should be used for PMTC_i(V) and SMTC_i(V) than available for the LUT1.

The extrapolation coefficient for an APL value VAL belonging to the subset i, referenced C(VAL), used for the extrapolation is the ratio of the difference between the number of sustain pulses of the APL value VAL, S(VAL), and S(PMTC_i) to the difference between S(SMTC_i) and S(PMTC_i). 6 bit resolution is enough for this coefficient.

$$C(VAL) = 63 \times \frac{S(VAL) - S(PMTC_i)}{S(SMTC_i) - S(PMTC_i)}$$

25 The final extrapolation is:

$$output(V) = LUT1_i(V) + (LUT2_i(V) \times C(VAL))/64$$

It is possible to remove all the factors 64 and 63 in these expressions of LUT2_i(V), V(VAL) and OUTPUT(V).

5

15

ビビビイフロフとしフライチロし

The primary Metacode LUTs are independent of the principle of the invention. Only, the other metacode LUTs are achieved from these primary metacode LUTs.

A possible implementation of the method of the invention is illustrated by Figure 2 as indicated below. The look-up tables LUT1, LUT2, LUT3 and LUT4 are stored in four memories 101, 102, 103 and 104. They can be included in an external memory (EPROM or FLASH) that can be read bit sequentially by a controller. The extrapolation is calculated by an extrapolation block 105. This block is connected to the dithering block 110 of figure 1. In normal operation, at the end of every frame, new LUT1; and LUT2; data have to be downloaded by the controller depending on the APL value that has been computed during the active part of the video signal based on the video data.

15

5

10

For each new input video input YI and APL value VAL, the memory 101, 102, 103 and 104 delivers to the block 105 respectively a new primary metacode, a new delta code, an new index of subset and a new extrapolation coefficient C and a new metacode data is computed by the block 105.

20

This method needs only $(16 \times 1024 \times (12+8) + 1024 \times (6+4)) \times 3 \times 3 = 2.9$ Mbit for 3 modes instead of 108Mbit with the method implemented in Figure 1.

ANNEX

1							
, ;	Sustain	Sub	set#		С	1	
	pulses						
	1100		15		63		
	1100		15		63		
	1100		15		63		ĺ
	1100		15		63		
	1100		15		63		
	1100		15		63		
Τ	1100		15		63		
Τ	1100		15		63		ļ
\top	1100		15		63		
	1100		15		63	_ · 	
1	1100		15	\perp	63		
	1100		15		63		
	1100		15		63		
	1100	floor	15		63		
	1100		15		63		
1	1100		15		63		
	1100		15		63		
\neg	1100		15		63		
	1100		15		63		_
	1100		15		63		
	1100		15		63		
	1100		15	\perp	63		
	1100		15	\bot	63		
,	1100		15		63		
	1100		15		63		
5	1100		15		63		
3	1100		15		63	1	
	1100		15		63		
	1100		15		63	·	_
	1100		15		63		
	_	1100 1100	1100 1100	1100 15 1100	1100 15 1100	1100 15 63 1100 15 63 1	1100 15 63 1100 15 63 1

A	PL		Sustain	Sut	set#		С	٦	
			pulses						
3	30		1100		15		63		
3	31		1100		15	_	63		
-;	32		1100		15		63	_	
	33		1098		15		61		
	34		1097		15		61		
	35		1096		15		60		
	36		1095		15		60		
	37	Γ	1094		15_	$oldsymbol{\perp}$	59		
	38		1093		15		59		
T	39	T	1092		15		58		
	40	T	1091		15	\perp	57		1
	41	T	1090		15		57		
Γ	42	1	1089		15		56		
Γ	43	1	1088		15		56]
	44		1086		15		55		1
T	45	1	1085		15		54		
	46		1084		15		54		
ľ	47	T	1083		15		53		
ſ	48		1082		15		52		
Ī	49		1081		15		52		
	50		1080		15		51		
	51		1079		15	\bot	51		
	52		1078		15		50		_
	53		1077		15		50		
	54		1076		15		49		
	55		1074		15		48		
	56		1073		15		47		
	57		1072		15		47		
	58		1071		15		46		
ļ	59)	1070		15		46		
	60)	1069		15		45		
	61		1068		15		45		
	62	2	1067		15		44		

APL	Sustain	Subset#	С
	pulses		
63	1066	15	43
64	1065	15	43
l	1064	15	42
65		 	42
66	1063	15	41
67	1061	15	
68	1060	15	40
69	1059	15	39
70	1058	15	39
71	1057	15	38
72	1056	15	38
73	1055	15	37
74	1054	15	37
7 5	1053	15	36
76	1052	15	36
77	1051	15	35
78	1050	15	34
79	1049	15	34
80	1047	15	33
81	1046	15	32
82	1045	15	32
83	1044	15	31
84	1043	15	30
85	1042	15	30
86	1041	15	29
87	1040	15	29
88	1039	15	28
89	1038	15	28
90	1037	15	27
91	1036	15	27
92	1035	15	26
93	1033	15	25
94	1032	15	24
95	1031	15	24

APL	Sustain	Subset#	C
	pulses		
96	1030	15	23
97	1029	15	23
98	1028	15	22
99	1027	15	21
100	1026	15	21
101	1025	15	20
102	1024	15	20
103	1023	15	19
104	1022	15	19
105	1021	15	18
106	1019	15	17
107	1018	15	16
108	1017	15	16
109	1016	15	15
110	1015	15	15
111	1014	15	14
112	1013	15	14
113	1012	15	13
114	1011	15	12
115	1010	15	12
116	1009	15	11
117	1008	15	11
118	1007	15	10
119	1006	15	10_
120	1004	15	9
121	1003	15	8
122	1002	15	7
123	1001	15	7
124	1000	15	6
125	999	15	6
126	998	15	5
127	997	15	5
128	996	15	4

								\neg	
A	PL			Sut	set#		С	1	
		!	oulses	_				\dashv	
_	29		995	 	15		3	ᅱ	
	130		994	-	15		3		i
_	131		993	_	15	_			
	132		992	_	15	-			
L	133	L	991	_	15	_	1		
L	134		990	_	15	_	1		1
L	135		988		15	<u> </u>	0		
	136	Ļ	987		14	_	63		4
	137	_	986	1	14	\downarrow	62		-
	138	L	985	1	14	-	61		\cdot
	139		984	\bot	14	\downarrow	61		4
	140		983	\perp	14	1	60		4
	141		982	\perp	14	\bot	59		4
	142		981	\perp	14	4	59		4
	143		980	\perp	14	\perp	58		4
	144		979		14	1	57		4
	145		978	1	14	1	57	_	4
	146		977		14	┛	56		4
	147		976		14	\perp	56		_
	148		975		14	\perp	55		4
	149		974	\perp	14	\perp	54		4
	150		972		14	_	53		_
	151		971		14	\perp	52		_
	152	2	970		14	_	52		_
	15	3	969		14	\perp	51		_
	15	4	968		14		50		_
	15	5	967		14		50		
	15	6	966		14		49		
	15	7	965		14		49		
	15	8	964		14		48		
	15	9	963		14		47		
	16	0	962		14	-	47		
	16	51	961		14	<u> </u>	46		
	ا		J						

	APL		Sustain	Sul	oset#		С		
	1		pulses						
	162		960		14		45	\Box	
	163		959		14		45		
Γ	164		958		14	L	44		
Γ	165		957		14		43		
l	166		956	\	14		43	_	
T	167		954		14		42		
T	168		953		14		41		
T	169	T	952		14		40		
Ī	170		951		14	\perp	40		
	171		950		14		39		ļ
Ī	172		949		14	\perp	38		1
1	173		948		14	\perp	38		
	174		947		14		37		1
	175		946		14	_	36		
	176		945	\perp	14	\perp	36		1
	177		944		14		35		1
	178		943		14		35		4
	179	,	942		14		34		
	180	,	941	\perp	14	\bot	33		_
	181		940		14		33		╛
	182	2	939		14	\perp	32		_
	183	3	938		14	\bot	31		
	184	4	937		14		31		4
	18	5	935		14	_	29	,,, -	_
	18	6	934		14		29		
	18	7	933		14		28	_	
	18	8	932		14		28		
	18	9	931		14		27		
	19	0	930		14		26		
	19	1	929		14		26		
	19	2	928		14	-	25		
	19	3	927		14	<u> </u>	24		
	19	4	926		14	<u> </u>	24		_

APL	Şustain	Subset#	С
	pulses		
195	925	14	23
196	924	14	22
197	923	14	22
198	922	14	21
199	921	14	21
200	920	14	20
201	919	14	19
202	918	14	19
203	917	14	18
204	915	14	17
205	914	14	16
206	913	14	15
207	912	14	15
208	911	14	14
209	910	14	14
210	909	14	13
211	908	14	12
212	907	14	12
213	906	14	11
214	905	14	10
215	904	14	10
216	903	14	9
217	902	14	8
218	901	14	8
219	900	14	7
220	899	14	7
221	898	14	6
222	897	14	5
223	896	14	5
224	895	14	4
225	893	14	3
226	892	14	2
227	891	14	11

		1	
APL	Sustain	Subset#	С
	pulses		
228	890	14	1
229	889	14	0
230	888	14	0
231	887	13	63
232	886	13	62
233	885	13	61
234	884	13	60
235	883	13	60
236	882	13	59
237	881	13	58
238	880	13	58
239	879	13	57
240	878	13	56
241	877	13	55
242	876	13	55
243	875	13	54
244	874	13	53
245	873	13	53
246	872	13	52
247	871	13	51
248	870	13	50
249	869	13	50
250	867	13	48
251	866	13	48
252	865	13	47
253	864	13	46
254	863	13	46
255	862	13	45
256	861	13	44
257	860	13	43
258	859	13	43
259	858	13	42
260	857	13	41

								٦	
A	PL.	S	sustain	Sut	set#		C	١	
			oulses					\dashv	
2	61		856		13		41		
2	62		855		13		40		
2	263		854	<u> </u>	13	_	39	_	
2	264		853		13	-	38		
2	265		852		13	_	38		
;	266		851	_	13	-	37		
	267		850		13_	_	36		
	268		849	_	13	-	36		-
	269		848		13		35		-
Γ	270		847		13	1	34		1
	271		846		13	\perp	33		4
Γ	272		845		13	\perp	33		4
T	273		844		13	\perp	32		4
	274	T	843		13		31		4
T	275		842		13		31		4
T	276		841		13		30		4
ľ	277		840		13		29		_
t	278		839		13		29		_
Ī	279	_	838		13		28		
İ	280	,	837		13		27		
ı	281		835		13	$oldsymbol{\perp}$	26		_
Ì	282	2	834		13		25		
	283	3	833		13		24		
	284	4	832		13		24		
	28	5	831		13		23		
	28	6	830		13		22		
	28	7	829		13		21		
	28	8	828		13	<u>; </u>	21		
	28	9	827		13	3	20		
	29		826		13	3	19		
	29		825		13	3	19		
	29		824		13	3	18		
		3	823		1:	3	17		

APL		Sustain	Sut	set#		С	7	
		pulses						
294		822		13		16		
295		821		13		16		
296		820		13		15		
297		819		13		14		
298		818		13		14		
299		817		13		13		
300		816		13		12	_	
301	T	815		13	L	12		
302		814		13		11		
303		813		13		10		
304		812	\perp	13	\perp	9		
305		811	\perp	13	\perp	9		
306		810		13	\perp	8		
307		809		13	_	7		
308		808		13		7		
309		807	\perp	13		6		
310		806		13		5		
311		805		13	\dashv	4		
312	2	804		13	_	4		4
313	3	803	_	13	_	3		-
314	4	802	_	13	_	2		1
31	5	801		13	_	2		4
31	6	800		13	_	1		4
31	7	799	_	13		0		4
31	8	798		13		0		
31	9	797		12		63		Ą
32	0	796		12		62		_
32	:1	795		12		61		_
32	22	794		12		60		_
32	23	793		12		59	·····	_
32	24	792		12	2	59		
32	25	790		12	?	57		
32	26_	789		12	<u> </u>	56		

APL	Sustain	Subset#	С
`	pulses		-
327	788	12	55
328	787	12	55
329	786	12	54
330	785	12	53
331	784	12	52
332	783	12	51
333	782	12	51
334	781	12	50
335	780	12	49
336	779	12	48
337	778	12	48
338	7 77	12	47
339	776	12	46
340	775	12	45
341	774	12	44
342	773	12	44
343	772	12	43
344	771	12	42
345	770	12	41
346	769	12	40
347	768	12	40
348	767	12	39
349	766	12	38
350	765	12	37
351	764	12	37
352	763	12	36
353	762	12	35
354	761	12	34
355	760	12	33
356	759	12	33
357	758	12	32
358	757	12	31
359	756	12	30

APL	Sustain pulses	Subset#	С
360	755	12	29
361	754	12	29
362	753	12	28
363	752	12	27
364	752	12	26
365	750	12	25
366	749	12	25
367	748	12	24
368	747	12	23
369	746	12	22
370	745	12	22
371	744	12	21
372	743	12	20
373	742	12	19
374	741	12	18
375	740	12	18
376	739	12	17
377	738	12	16
378	737	12	15
379	736	12	14
380	735	12	14
381	734	12	13
382	733	12	12
383	732	12	11
384	731	12	11
385	730	12	10
386	729	12	9
387	728	12	8
388	7 27	12	7
389	726	12	7
390	725	12	6
391	724	12	5
392	723	12	4

	PL	S	ustain	Subs	set#	, 	C	
^			ulses					
-	93	<u> </u>	722	1	2		3	1
-	394		721	1	2		3	
┢╌	395		720	1	2		2	
-	396	-	719		12		1	
-	397		718	1	12		0	_
1	398	\vdash	717	1	12		0	
	399	1	716		11		63	
	400		715		11		62	4
	401	1	714		11		61	
r	402		713	floor	11		60	_
t	403	1	712		11		59	4
t	404	1	711		11		58	_
t	405	_	710		11_	1	57	_
Ì	406		709		11		56	_
	407		708		11		56	_
	408	3	707		11		55	-
	409	,	706		11	_	54	
	410	,	705		11	\perp	53	_
	41	1	704	\perp	11	_	52	4
	413	2	703		11	\perp	51	_
	41	3	702		11	\dashv	50	
	41	4	701		11	_	49	_4
	41	5	700		11		49	
	41	6	699		11		48	
	41	7	698		11		47	
	41	8	697		11		46	
	4	19	696		1	1	45	
	4:	20	695		1	1	44	
	4:	21	694		1	1	43	
	4	22	693		1	1	42	
	4	23	692	:	1	1	42	
	4	24	691		1	1	41	
	4	25	690)	1	1	40	

ALLECTOR TO.AA (IZOH) HURINAN HOFITHENTA

-	APL.	s	ustain	Sut	oset#		С		
	Ì	F	ulses					_	
_	426		689		11		39	_	
	427		688		11		38	_	
Г	428		687		11		37	_	
┞	429		686		11		36		
r	430		685		11		35	_	
T	431		684		11		35		
T	432		684		11		35		
r	433	T	683		11	\perp	34		
I	434		682		11		33		
Ī	435	T	681		11	_	32		
	436		680		11	\perp	31		
	437		679		11	\perp	30		
	438		678		11		29		1
	439		677		11		28		1
	440		676		11	1	28		4
	441		675		11	1	27		4
	442	2	674		11	_	26		-
	443	3	673		11	\perp	25		4
	44	4	672		11	\bot	24		4
	44	5	671		11	_	23		4
	44	6	670		11		22		4
	44	7	669		11	_	21		4
	44	8	668		11	_	21		4
	44	9	667		11		20		4
	45	50	666		11		19	-	_
	45	51	665		11		18		
	4:	52	664		11	<u> </u>	17		_
	4	53	663		1	<u> </u>	16		_
	4	54	662		1	1	15	-	_
	4	55	661		1	1	14		
	4	56	660		1	1	14		
	4	57	659		1	1	13		
	4	58	658	<u> </u>	1	1	12		

APL	Sustain	Subset#	С
	pulses		
459	657	11	11
460	656	11	10
461	655	11	9
462	654	11	8
463	653	11	7
464	652	11	7
465	651	11	6
466	650	11	5
467	649	11	4
468	648	11	3
469	647	11	2
470	646	11	1
471	645	11	0
472	644	11	0
473	644	11	0
474	643	10	63
475	642	10	62
476	641	10	61
477	640	10	60
478	639	10	59
479	638	10	58
480	637	10	57
481	636	10	56
482	635	10	55
483	634	10	54
484	633	10	53
485	632	10	52
486	631	10	5 1
487	630	10	50
488	629	10	49
489	628	10	48
490	627	10	47
491	626	10	46

1				
	APL	Sustain	Subset#	C
		pulses		
Ì	492	625	10	45
	493	624	10	44
ı	494	623	10	43
	495	622	10	42
	496	621	10	41
	497	620	10	40
	498	619	10	39
	499	618	10	38
	500	617	10	37
	501	617	10	37
	502	616	10	36
	503	615	10	35
	504	614	10	34
	505	613	10	33
	506	612	10	32
	507	611	10	31
	508	610	10	30
	509	609	10	29
L	510	608	10	28
L	511	607	10	27
L	512	606	10	26
L	513	605	10	25
L	514	604	10	24
L	515	603	10	23
L	516	602	10	22
L	517	601	10	21
L	518	600	10	20
L	519	599	10	19
L	520	598	10	18
L	521	597	10	17
L	522	596	10	16
_	523	596	10	16
	524	595	10	15

						1
ΑP	L	Sustain	Subset#		С	
		pulses				1
52	5	594	10		14	4
52	26	593	10		13	4
52	27	592	10	1_	12	4
52	28	591	10		11	4
5:	29	590	10		10	4
5	30	589	10		9	4
5	31	588	10		8	4
5	32	587	10		7	
 	533	586	10		6	_
\vdash	534	585	10		5	_
-	535	584	10		4	_
\vdash	536	583	10		3	4
\vdash	537	582	10		2	_
	538	581	10)	1	_
	539	580	10)	0	_
 	540	579	10	10 0		
h	541	578	9		63	
r		578	5			•
	542	1 370			63	
+	542 543	577	9	-	63 61	
	543	577		-		
	543 544	577 576	9	,	61	
	543 544 545	577 576 575	9)	61 60	
	543 544 545 546	577 576 575 574	9	9	61 60 59	
	543 544 545	577 576 575 574 573	9	9	61 60 59 58	
	543 544 545 546 547 548	577 576 575 574 573 572	9	9 9	61 60 59 58 57	
	543 544 545 546 547 548 549	577 576 575 574 573 572 571	9	9 9	61 60 59 58 57 56	
	543 544 545 546 547 548 549 550	577 576 575 574 573 572 571 570	9	9 9 9	61 60 59 58 57 56 55	
	543 544 545 546 547 548 549 550	577 576 575 574 573 572 571 570 1 569	9	9 9 9	61 60 59 58 57 56 55 54	
	543 544 545 546 547 548 549 550	577 576 575 574 573 572 571 570 1 569 2 568	9	9 9 9 9	61 60 59 58 57 56 55 54 53	
	543 544 545 546 547 548 549 550 557 553	577 576 575 574 573 572 571 570 1 569 2 568 3 567		9 9 9 9 9	61 60 59 58 57 56 55 64 53 52	
	543 544 545 546 547 548 549 550 551 553	577 576 575 574 573 572 571 570 1 569 2 568 3 567 4 566		9 9 9 9 9	61 60 59 58 57 56 55 54 53 52 51	
	543 544 545 546 547 548 550 550 550 550 550 550 550	577 576 575 574 573 572 571 570 1 569 2 568 3 567 4 566 5 565		9 9 9 9 9	61 60 59 58 57 56 55 54 53 52 51 49	
	543 544 545 546 547 548 549 550 551 553	577 576 575 574 573 572 571 570 1 569 2 568 3 567 4 566 5 565 6 564		9 9 9 9 9 9	61 60 59 58 57 56 55 64 53 52 51 49	

Α	PL	s	ustain	Sub	set#	-	С		
		\$	oulses	ļ					
	558		562		9		45		
_	559		562		9		45		
	560		561		9	L_	44		
	561		560		9	_	43	_	
	562		559		9	_	42	4	
	563		558		9		41	4	
Ī	564		557		9		40	4	
Ī	565		556		9	_	39	4	
Ī	566		555		9	_	38	_	
	567		554	\perp	9	1	36	4	
	568		553		9	_	35	4	
I	569		552		9	\perp	34	4	
I	570		551		9	1	33	4	
Ì	571		550		9		32		
	572	:	549		9		31		
	573	3	548		9		30		
	574	1	548		9		30		
	578	5	547		9		29		
	576	6	546		9		28		
	57	7	545		9		27		
	57	8	544		9		26		1
	57	9	543		9		24		-
	58	10	542		9		23		1
	58	31	541		9		22		1
	58	32	540		9		21		1
	58	33	539		9		20		1
	58	34	538		9		19		1
	51	85	537		9		18		
	5	86	536		9		17		1
	5	87	535		9		16		_
	5	88	535		g	}	16		_
	5	89	534		9)	15		_
	5	90	533		5)	14		لــ

APL Sustain pulses Subset# C 591 532 9 13 592 531 9 10 593 530 9 10 594 529 9 9 595 528 9 8 596 527 9 7 597 526 9 6 598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611				
591 532 9 13 592 531 9 11 593 530 9 10 594 529 9 9 594 529 9 9 595 528 9 8 596 527 9 7 597 526 9 6 598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 513	APL	Sustain	Subset#	C
592 531 9 11 593 530 9 10 594 529 9 9 595 528 9 8 596 527 9 7 597 526 9 6 598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 613 512		puises		
593 530 9 10 594 529 9 9 595 528 9 8 596 527 9 7 597 526 9 6 598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 613 512 8 54 614 511 8 53 615 510	591	532	9	13
594 529 9 9 595 528 9 8 596 527 9 7 597 526 9 6 598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511	592	531	9	11
595 528 9 8 596 527 9 7 597 526 9 6 598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 56 612 513 8 55 613 512 8 54 614 511 8 53 615 510	593	530	9	10_
596 527 9 7 597 526 9 6 598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509	594	529	9	9
597 526 9 6 598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 60 617 508	595	528	9	8
598 525 9 5 599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507	596	527	9	7
599 524 9 4 600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 60 617 508 8 49 618 507 8 48 619 506	597	526	9	6
600 524 9 4 601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 503 8 43 <td>598</td> <td>525</td> <td>9</td> <td>5</td>	598	525	9	5
601 523 9 3 602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 503 <td>599</td> <td>524</td> <td>9</td> <td>4</td>	599	524	9	4
602 522 9 2 603 521 9 1 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 </td <td>600</td> <td>524</td> <td>9</td> <td>4</td>	600	524	9	4
603 521 9 0 604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 60 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	601	523	9	3
604 520 9 0 605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 60 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	602	522	9	2
605 519 8 63 606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	603	521	9	1
606 518 8 61 607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 60 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	604	520	9	0
607 517 8 60 608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 60 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	605	519	8	63
608 516 8 59 609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	606	518	8	61
609 515 8 58 610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	607	517	8	60
610 514 8 56 611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 60 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	608	516	8	59
611 513 8 55 612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 60 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	609	515	8	58
612 513 8 55 613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	610	514	8	56
613 512 8 54 614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	611	513	8	55
614 511 8 53 615 510 8 52 616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	612	513	8	55
615 510 8 52 616 509 8 60 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	613	512	8	54
616 509 8 50 617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	614	511	8	53
617 508 8 49 618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	615	510	8	52
618 507 8 48 619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	616	509	8	50
619 506 8 47 620 505 8 46 621 504 8 44 622 503 8 43	617	508	8	49
620 505 8 46 621 504 8 44 622 503 8 43	618	507	8	48
621 504 8 44 622 503 8 43	619	506	8	47
622 503 8 43	620	505	8	46
	621	504	8	44
623 502 8 42	622	503	8	43
	623	502	8	42

APL	Sustain	Subset#	С
	pulses		
624	502	8	42
625	501	8	41
626	500	8	39
627	499	8	38
628	498	8	37
629	497	8	36
630	496	8	35
631	495	8	33
632	494	8	32
633	493	8	31
634	493	8	31
635	492	8	30
636	491	8	29
637	490	8	27
638	489	8	26
639	488	. 8	25
640	487	8	24
641	486	8	23
642	485	8	21 .
643	484	8	20
644	484	8	20
645	483	8	19
646	482	8	18
647	481	8	16
648	480	8	15
649	479	8	14
650	478	8	13
651	477	8	12
652	476	8	10
653	475	8	9
654	475	8	9
655	474	8	8
656	473	8	7
			·-

	PL		Sustain	Sul	oset#		С	٦	
			pulses						
	E-7		472		8		6		
	57		471		8		4	٦	
	558			$\overline{}$	8		3	ヿ	
	559		470	-	8		2	ᅥ	
⊢	360	-	469	├		╁	1	一	
-	361	-	468	╁	88	+	0	ᅱ	
-	662	-	467	\vdash	8	-	0	一	
-	663		467		8	<u> </u>			
	664		466	1	7		63		İ
	665	$oldsymbol{\perp}$	465	+	7	+-	61		
L	666	\perp	464	-	7	╄	60		l
	667	_	463	\perp	7	+	58		
	668		462	\perp	7	_	57		
	669		461	\perp	7	\bot	56		l
	670		460		7		54		4
ſ	671		459		7	1	53		-
	672	T	459		7	\perp	53		1
Ī	673	7	458	\perp	7		52		1
Ī	674		457		7		50		1
Ì	675	T	456		7		49		
l	676	\neg	455		7		47		
	677	-	454	٦	7		46		╛
	678	-	453		7		45		
	679	,	452		7		43		
	680	-	451		7		42		
	68		451		7		42		
	682		450		7		41		
	683	-1	449		7		39		
	68	_	448		7		38		
	68		447		7		36		
	68		446		7		35	,,,,,	
	68		445		7		34		
			444		7		32		
	68		444		7		32		
	68	A			1		L		

Al	PL	Sustain	Su	bset#	•	С	7	
		pulses						
6	90	443		7		31		
	91	442	1	7		30		
	92	441		7		28		
-	93	440		7		27		
<u> </u>	94	439		7		26		
6	95	438		7		24		
F	396	437		7		23		
	697	437		7	L	23		
	698	436		7		21		
	699	435		7		20		
	700	434		7		19		
	701	433		7		17		
	702	432		7		16		
	703	431		7		15		
Γ	704	430		7		13		1
Γ	705	430		7	1	13		
Ī	706	429		7		12		1
Γ	707	428		7		10		
ſ	708	427		7	1	9		
	709	426		7	_	8		1
	710	425		7	_	6		1
	711	424		7		5		4
	712	424		7	_	5		4
	713	423		7	_	4		4
l	714	422		7		2		_
	715	5 421		7	_	1		4
	710	6 420		7		0		
	71	7 419		6		63		
	718	8 418		6		61		
	719	9 417		6		59		
	72	0 417		6		59		
	72	1 416		6		58		
	72	2 415		6		56		_

APL	Sustain	Subset#	С
/ · · · -	pulses		J
723	414	6	55
724	413	6	53
		 	
725	412	6	52
726	411	6	50
727	411	6	50
728	410	6	49
729	409	6	47
730	408	6	46
731	407	6	44
732	406	6	43
733	405	6	41
734	405	6	41
735	404	6	39
736	403	6	38
737	402	6	36
738	401	6	35
739	400	6	33
740	400	6	33
741	399	6	32
742	398	6	30
743	397	6	29
744	396	6	27
745	395	6	26
746	394	6	24
747	394	6	24
748	393	6	23
749	392	6	21
750	391	6	19
751	390	6	18
752	389	6	16
753	389	6	16
754	388	6	15
755	387	6	13
100	301		10

APL	Sustain	Subset#	С
	pulses		
756	386	6	12
757	385	6	10
758	384	6	9
759	384	6	9
760	383	6	7
761	382	6	6
762	381	6	4
763	380	6	3
764	379	6	1.
765	379	6	1
766	378	6	0
767	377	5	63
768	376	5	61
769	375	5	59
770	374	5	57
771	374	5	57
772	373	5	56
773	372	5	54
774	371	_ 5	52
775	370	5	51
776	369	5	49
777	369	5	49
778	368	5	47
779	367	5	45
780	366	5	44
781	365	5	42
782	364	5	40
783	364	5	40
784	363	5	39
785	362	5	37
786	361	5	35
787	360	5	34
788	360	5	34

					т			٦	
Αl	PL	9	Sustain	Sul	ose#		С		
			pulses					_	
7	89		359		5		32	4	
7	90		358	<u> </u>	5	_	30	4	
7	91		357	L	5	_	28	_	
7	92		356		5	_	27	4	
7	93		355		5		25	4	
7	794		355		5		25	4	
1	795		354		5		23	_	
,	796	Γ	353		5	_	22	_	
	797		352		5	1	20	_	
	798	T	351		5	\perp	18	_	
Γ	799		351		5	1_	18	_	
Γ	800		350		5	\perp	17		
T	801	1	349		5	\perp	15	_	
	802	T	348		5	\perp	13		
T	803		347		5	\perp	11	_	i
T	804		347		5		11		
Ī	805		346		5		10		
	806		345		5		88		
	807		344		5		6		
	808	,	343		5_		5		
	809	,	343		5	\perp	5		l
	810	\prod	342		5_		3		1
Ì	811	1	341		5		1		1
	81	2	340		5		0		
	81	3	339		4		63		Į
	814	4	339		4		63		
	81		338		4		61		
	81		337		4		59		
	81		336		4		57		
	81		335		4		55		_
	81		335		4		55		
	82	20	334		4		53		
	82		333		4		51		

				Sub	set#		C		
А	PL		Sustain	Sui	35001		_		İ
_			pulses	_	4		49		
	22		332	-	4		47		
	323	_	331	╁╴	4	-	47		
	324	\vdash	331	+-	4	\vdash	45		
_	325	-	330	+	4		43		1
 	B26	├-	329	╁	4	+	42		1
Ι-	827	-	328	十	4	╁	40		1
┡	828	╀╌	327	+	4	╁	40		1
H	829	\vdash	327	+-		╀	38		1
L	830	-	326	+	4	╁	36		1
F	831	+	325		4	+			1
F	832	+	324	+	4	+	34		1
L	833	-	324	+	4	╀	34		-
L	834	_	323	+	4	╬	32	<u>_</u>	4
	835	_	322	4	4	-	30		4
L	836		321	\perp	4	_	28		4
	837		320	\perp	4	4	26		4
	838		320		4	\perp	26		4
	839		319	_	4	_	24		4
	840		318		4	\perp	22		_
I	841		317		4	_	21		
Ì	842	:	316		4		19		
	843	3	316		4		19		
	844	1	315		4		17		
	845	5	314		4		15		
	846	3	313		4		13		
	84	7	313		4		13		
	84	В	312		4		11		
	84		311		4		9		
	85	\neg	310		4		7		
	85		310	_	4		7		
	85		309		4		5		
	85	3	308		4		3		
	85		307		4		1		
	<u> </u>								

r	1		
APL	Sustain	Subset#	С
	pulses		
855	306	4	0
856	306	4	0
857	305	3	63
858	304	3	60
859	303	3	58
860	303	3	58
861	302	3	56
862	301	3	54
863	300	3	52
864	300	3	52
865	299	3	50
866	298	3	48
867	297	3	46
868	297	3	46
869	296	3	44
870	295	3	42
871	294	3	39
872	294	3	39
873	293	3	37
874	292	3	35
875	291	3	33
876	291	3	33
877	290	3	31
878	289	3	29
879	288	3	27
880	288	3	27
881	287	3	25
882	286	3	23
883	285	3	21
884	285	3	21
885	284	3	18
886	283	3	16
887	283	3	16

APL	Sustain	Subset#	С
	pulses	ļ <u></u>	
888	282	3	14
889	281	3	12
890	280	3	10
891	280	3	10
892	279	3	8
893	278	3	6
894	277	3	4
895	277	3	4
896	276	3	2
897	275	3	0
898	275	3	0
899	274	2	63
900	273	2	60
901	272	2	58
902	272	2	58
903	271	2	56
904	270	2	53
905	270	2	53
906	269	2	51
907	268	2	49
908	267	2	46
909	267	2	46
910	266	2	44
911	265	2	42
912	265	2	42
913	264	2	39
914	263	2	37
915	262	2	35
916	262	2	35
917	261	2	32
918	260	2	30
919	260	2	30
920	259	2	28

ים ו <u>רממא. עו וער</u> ו מ	10.20	1 15001	רוטכו וטו וו	11041	11 16-20-2 77

								7	
A.	PL	Ş	ustain	Su	set#		С		
_		F	oulses					4	
9	21		258		2		25	4	
9	22		258	_	2		25	4	
9	23		257		2	_	23	_	
ç	24		256		2	_	21	_	İ
ξ	25		256		2	_	21		
Ξ,	26		255		2	_	18		
•	927		254	_	2	$oldsymbol{\perp}$	16		1
,	928		253	1	2	_	14		
	929		253	\perp	2_	_	14		1
	930		252	_	2	1	11		
_	931		251		2	1	9		4
	932		251		2	\perp	9		4
	933		250		2	\perp	7		1
	934		249		2		4		4
Ī	935		249		2	4	4		4
	936		248		2	\perp	2		4
Ī	937		247	\perp	2	\perp	0		4
Ī	938		247		2		0		
	939	}	246		1		63		,
	940		245		1_	_	60		_
	941		245	_	1		60		
	942	2	244		1		57		
	943	3	243		1		55		
	944	4	243		1		55		_
	94	5	242		1		52		
	94	6	241		1		49		
	94	7	241		1		49	,	
	94	8	240		1		47		
	94	9	239		1		44		
	95	0	239		1		44		_
	95	1	238		1		42		_
	95	52	238		1		42		
	95	53	237		1		39		

		-	1					\neg	
Α	PL	5	Sustain	Sul	set#		С	١	
		ا	pulses					\dashv	
9	54		236	_	1		36	\dashv	
ę	55		236		1		36	{	
Ş	56		235	_	1	<u> </u>	34		
?	957		234	_	1	-	31	_	
	958		234		1	_	31	_	
!	959		233		1	_	28		ļ
	960		232	1_	1	\downarrow	26		ļ
	961		232	_	1	\perp	26		
Γ	962		231	_	1	\perp	23		
Γ	963		231	\perp	1	\perp	23		
	964		230		1	\perp	21		1
Γ	965		229		1		18		
T	966		229		1_		18		
	967		228		1		15		1
T	968		228		1		15		1
1	969		227		1_		13		
ľ	970	\top	226		1		10		╛
İ	971	1	226		1		10		╛
Ì	972	:	225		1		7		
t	973	,	224		1		5		
	974		224		1		5		
Ì	975	5	223		1		2		
	976	3	223		1		2		
	977	7	222		1		0		
	97	-	222		1		0		
	97	9	221		0		63		
	98		220		0		60		
	98		220		0		60		
	98		219		0		57		
	98		219		0	*****	57		
	98		218		0		54		
	98		217		0		51		
	98		217		0		51		
			1						

APL Sustain pulses Subset# C 987 216 0 48 988 216 0 48 989 215 0 45 990 215 0 45 991 214 0 42 992 214 0 42 993 213 0 39 994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1006 206 0 18 1				
987 216 0 48 988 216 0 48 989 215 0 45 990 215 0 45 991 214 0 42 992 214 0 42 993 213 0 39 994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 18 1007	APL	Sustain	Subset#	c
988 216 0 48 989 215 0 45 990 215 0 45 991 214 0 42 992 214 0 42 993 213 0 39 994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007		pulses		
989 215 0 45 990 215 0 45 991 214 0 42 992 214 0 42 993 213 0 39 994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009	987	216	0	48
990 215 0 45 991 214 0 42 992 214 0 42 993 213 0 39 994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1010	988	216	0	48
991 214 0 42 992 214 0 42 993 213 0 39 994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1010 204 0 12 1011	989	215	0	45
992 214 0 42 993 213 0 39 994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1010 204 0 12 1011 204 0 12 1012	990	215	0	45
993 213 0 39 994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1010 204 0 12 1011 204 0 12 1013 203 0 9 1014	991	214	0	42
994 212 0 36 995 212 0 36 996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013	992	214	0	42
996 211 0 36 997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1013 203 0 9 1014 203 0 9 1015	993	213	0	39
996 211 0 33 997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016	994	212	0	36
997 211 0 33 998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016	995	212	0	36
998 210 0 30 999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018	996	211	0	33
999 210 0 30 1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	997	211	0	33
1000 209 0 27 1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	998	210	0	30
1001 209 0 27 1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	999	210	0	30
1002 208 0 24 1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1000	209	0	27
1003 208 0 24 1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1001	209	0	27
1004 207 0 21 1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1002	208	0	24
1005 207 0 21 1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1003	208	0	24
1006 206 0 18 1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1004	207	0	21
1007 206 0 18 1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1005	207	0	21
1008 205 0 15 1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1006	206	0	18
1009 205 0 15 1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1007	206	0	18
1010 204 0 12 1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1008	205	0	15
1011 204 0 12 1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1009	205	0	15
1012 204 0 12 1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1010	204	0	12
1013 203 0 9 1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1011	204	0	12
1014 203 0 9 1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1012	204	0	12
1015 202 0 6 1016 202 0 6 1017 201 0 3 1018 201 0 3	1013	203	0	9
1016 202 0 6 1017 201 0 3 1018 201 0 3	1014	203	0	9
1017 201 0 3 1018 201 0 3	1015	202	0	6
1018 201 0 3	1016	202	0	6
	1017	201	0	3
1019 201 0 3	1018	201	0	3
	1019	201	0	3

APL	Sustain pulses	Subset#	С
1020	200	0	0
1021	200	0	0
1022	200	0	0
1023	200	0	0

15

20

25

30

CLAIMS

- 1. Method for generating a look-up table data for an input video data (YI) and for a given value (VAL) of a parameter (APL) among N different values, characterized in that said look-up table data is generated from two look-up tables defined for the two bound values of said parameter (APL) and an extrapolation coefficient, said look-up tables comprising an output data for each possible input video data (YI).
- 2. Method according to claim 1, characterized in that said look-up table data can be approximated by a piecewise linear function of a variable (S(VAL)) depending on the given value and that it comprises the following steps:
- dividing the set of N values into P subsets of consecutive values, each piece of the piecewise linear function being in a different subset;
- defining a look-up table for the two bound values of each subset i, called primary look-up table (PMTC_i) and secondary look-up table (SMTC_i) respectively, each of said primary and secondary look-up tables comprising an output data (PMTC, SMTC) for each possible input video data (YI),
- defining, for each subset i, a delta look-up table corresponding to the difference between the secondary look-up table (SMTC_i) and the primary look-up table (PMTC_i) related to the subset i,
- defining, for each one of said N values, an extrapolation coefficient (C(VAL)) in accordance with the value (S(VAL)) of a variable S for the given value (VAL) and the values (S(PMTC_i),S(SMTC_i)) of the variable S for the two bound values of the subset i comprising the given value; and
- computing the look-up table data for said input video data (YI) and for the given value (VAL) in accordance with the extrapolation coefficient (C(VAL)) defined for the given value (VAL) and the output data of the primary look-up table (PMTC_i) and the delta look-up table for said input video data (YI).

3. Method according to claim 2, characterized in that the look-up table data is a Metacode look-up table data, the parameter is an average power level and the variable (S(VAL)) is a number of sustain pulses corresponding to the given value (VAL) of the parameter.

5

10

15

- 4. Method according to claim 3, characterized in that the bound level related to the primary look-up table (PMTCi) of a subset of average power level values is the highest average power level value of the subset and the bound level related to the secondary look-up table (SMTCi) of a subset of average power level values is the lowest average power level value of the subset.
- 5. Method according to one of the claims 2 to 4, characterized in that the ratio between the value (S(PMTCi)) of the variable for one bound value in the subset i and the value (S(PMTCi+1)) of the variable for the same bound value in the subset i+1 equals to a fixed parameter α .
- 6. Method according to the claim 5, characterized in that the parameter α is defined as followed: $\alpha = \sqrt{\frac{S_{MAX}}{S_{MIN}}}$

20

where S_{MAX} is the value of the variable (S) for a peak white image and S_{MIN} is the value of the variable (S) for a full white image.

7. Method according to one of the claims 2 to 6, characterized in that the extrapolation coefficient (C(VAL)) is proportional to:

- S(PMTC_i) is the value of the variable for the highest bound where value of the subset i:
- S(SMTCi) is the value of the variable for the lowest bound value of the subset i; and
- 30 - S(VAL) is the value of the variable for the given value.

10

15

20

25

- 8. Method according to one of the claims 2 to 7, characterized in that the computed look-up table data equals to the sum of the output data of the primary look-up table (PMTC_i) and the output data of the delta look-up table (PMTC_i) for said input video data (YI) and the given value (VAL) weighted by the extrapolation coefficient for the given value (VAL).
- 9. Device for generating a look-up table data for an input video data (YI) and for a given value (VAL) of a parameter (APL) among N different values, said output data being approximated by a piecewise linear function of a variable (S(VAL)) depending on the given value, the set of N values being divided into P subsets of consecutive values, each piece of the piecewise linear function being in a different subset, characterized in that it comprises:
- a first memory (101) for storing, for each subset i, a primary lookup table (PMTC_i) associated to a bound value of the subset i and comprising an output data (PMTC) for each possible input video data (YI),
- a second memory (102) for storing, for each subset i, a delta look-up table corresponding to the difference between a secondary look-up table (SMTC_i) and the primary look-up table (PMTC_i) related to the subset i, the secondary look-up table (SMTC_i) being associated to the other bound value of the subset i and comprising an output data (SMTC) for each possible input video data (YI),
- a third memory (103) for storing, for each of said N values, an index indicating which primary look-up table in the first memory (101) and which delta look-up table in the second memory (102) have to be used for extrapolation,
- a fourth memory (104) for storing an extrapolation coefficient (C) for each one of said N values, the extrapolation coefficient (C(VAL)) associated to a given value being defined in accordance with the value (S(VAL)) of a variable S for said given value (VAL) and the values (S(PMTC_i),S(SMTC_i)) of the variable S for the two bound values of the subset i comprising said given value; and

10

15

- a computing block (105) for generating a look-up table data for said input video data (YI) and for the given value (VAL) in accordance with the extrapolation coefficient (C(VAL)) defined for the given value (VAL) and the output data of the primary look-up table (PMTC_i) and the delta look-up table for said input video data (YI).
- 10. Device according to claim 9, characterized in that the parameter is an average power level and the variable (S(VAL)) is a number of sustain pulses corresponding to the given value (VAL) of the parameter

and that it generates a Metacode look-up table data for each average power level value.

- 11. Device according to claim 10, characterized in that the bound level related to the primary look-up table (PMTC_i) of a subset of average power level values is the highest average power level value of the subset and the bound level related to the secondary look-up table (SMTC_i) of a subset of average power level values is the lowest average power level value of the subset.
- 12. Device according to one of the claims 9 to 11, characterized in that the ratio between the value (S(PMTC_i)) of the variable for one bound value in the subset i and the value (S(PMTC_{i+1})) of the variable for the same bound value in the subset i+1 equals to a fixed parameter α.
- 25 13. Device according to the claim 12, characterized in that the parameter α is defined as followed: $\alpha = \sqrt[N]{\frac{S_{MAX}}{S_{MIN}}}$

where S_{MAX} is the value of the variable (S) for a peak white image and S_{MIN} is the value of the variable (S) for a full white image.

14. Device according to one of the claims 9 to 13, characterized in that the extrapolation coefficient (C(VAL)) is proportional to:

 $\frac{S(VAL) - S(PMTC_i)}{S(SMTC_i) - S(PMTC_i)}$

where - S(PMTC_i) is the value of the variable for the highest bound value of the subset i;

- S(SMTC_i) is the value of the variable for the lowest bound value of the subset i; and
 - S(VAL) is the value of the variable for the given value.
- 15. Device according to one of the claims 9 to 14, characterized in that the look-up table data computed by the computing block (105) equals to the sum of the output data of the primary look-up table (PMTC_i) and the output data of the delta look-up table (PMTC_i) for said input video data (YI) the given value (VAL) weighted by the extrapolation coefficient for the given value (VAL).

15

ABSTRACT

METHOD AND APPARATUS FOR GENERATING LOOK-UP TABLE DATA IN THE VIDEO PICTURE FIELD

5

10

15

The present invention is particularly useful in the field of plasma display panels (PDPs) or other display devices wherein each video level is represented by a combination of bits according to a specific coding. In this case, when the algorithms used to improve picture quality are based on data stored in memories such as look-up tables (LUTs), the size of such tables may be quite huge. To improve picture quality in PDPs, an algorithm using metacode LUTs has been developed, using data stored in look-up tables. The invention proposes a way to reduce the amount of look-up tables needed for implementing metacodes. According to the invention, only some look-up tables of low size are stored and the other ones are achieved by extrapolation.

FIG.2

ひじじょうひつとしょうりょうしい

51 TIN-E884

1/1

FIG.1 (Prior art)

FIG.2

	n an an an an an an an an an an an an an	
		,
		·
		•
		:
		!
		2
		Ì
		1
		4
		i i
		i i
		3
•		
		į.
		i
		3
		4
		4
		-