$ds = |\mathbf{r}'| dt = \sqrt{1 + 4t^2} dt$, so the integral is

$$\int_0^2 f(t, t^2) \sqrt{1 + 4t^2} \, dt = \int_0^2 (t + t^2) \sqrt{1 + 4t^2} \, dt = \frac{167}{48} \sqrt{17} - \frac{1}{12} - \frac{1}{64} \ln(4 + \sqrt{17}).$$

This integral of a function along a curve C is often written in abbreviated form as

$$\int_C f(x,y) \, ds.$$

EXAMPLE 16.2.1 Compute $\int_C ye^x ds$ where C is the line segment from (1,2) to (4,7).

We write the line segment as a vector function: $\mathbf{r} = \langle 1, 2 \rangle + t \langle 3, 5 \rangle$, $0 \le t \le 1$, or in parametric form x = 1 + 3t, y = 2 + 5t. Then

$$\int_C ye^x \, ds = \int_0^1 (2+5t)e^{1+3t} \sqrt{3^2+5^2} \, dt = \frac{16}{9} \sqrt{34}e^4 - \frac{1}{9} \sqrt{34} \, e.$$

All of these ideas extend to three dimensions in the obvious way.

EXAMPLE 16.2.2 Compute $\int_C x^2 z \, ds$ where C is the line segment from (0, 6, -1) to (4, 1, 5).

We write the line segment as a vector function: $\mathbf{r} = \langle 0, 6, -1 \rangle + t \langle 4, -5, 6 \rangle$, $0 \le t \le 1$, or in parametric form x = 4t, y = 6 - 5t, z = -1 + 6t. Then

$$\int_C x^2 z \, ds = \int_0^1 (4t)^2 (-1+6t) \sqrt{16+25+36} \, dt = 16\sqrt{77} \int_0^1 -t^2+6t^3 \, dt = \frac{56}{3} \sqrt{77}.$$

Now we turn to a perhaps more interesting example. Recall that in the simplest case, the work done by a force on an object is equal to the magnitude of the force times the distance the object moves; this assumes that the force is constant and in the direction of motion. We have already dealt with examples in which the force is not constant; now we are prepared to examine what happens when the force is not parallel to the direction of motion.