Chapitre 11. Limites et continuité.

1 Limites : définitions

Sauf mention contraire:

- I désigne un intervalle de \mathbb{R} non vide, non réduit à un singleton $\{a\}$.
- a désigne un élément de I ou une borne de I. Par exemple si $I =]1, +\infty[$, a peut désigner un élément de $]1, +\infty[$ mais aussi 1 ou $+\infty$.

Rappel: Notion de voisinage

Soit $f: I \to \mathbb{R}$ et \mathcal{P} une propriété.

• Si $a \in \mathbb{R}$, on dit que f vérifie la propriété \mathcal{P} au voisinage de a si : $\exists \eta > 0$, f vérifie \mathcal{P} sur $I \cap]a - \eta, a + \eta[$.

Par exemple, cos est positive au voisinage de 0 car

Illustration:

• On dit que f vérifie la propriété \mathcal{P} au voisinage de $+\infty$ si : $\exists A \in \mathbb{R}$, f vérifie \mathcal{P} sur $I \cap]A, +\infty[$.

Par exemple, $f: x \mapsto (x-m)^2$ est croissante au voisinage de $+\infty$ car

Illustration:

• On dit que f vérifie la propriété \mathcal{P} au voisinage de $-\infty$ si : $\exists B \in \mathbb{R}, f$ vérifie \mathcal{P} sur $I \cap]-\infty, B[$.

1.a Limite finie

Définition :

Soient $f: I \to \mathbb{R}$ et $\ell \in \mathbb{R}$.

On dit que f admet ℓ comme limite en a si :

• Dans le cas $a \in \mathbb{R}$:

• Dans le cas $a = +\infty$:

• Dans le cas $a = -\infty$:

Notation : $f(x) \xrightarrow[x \to a]{} \ell$.

${\bf Remarques}:$

• Par définition, $f(x) \xrightarrow[x \to a]{} \ell \iff f(x) - \ell \xrightarrow[x \to a]{} 0.$

Donc, comme une fonction qui tend vers 0 en a se note o(1):

$$f(x) \xrightarrow[x \to a]{} \ell \Longleftrightarrow$$

• Si $a \in I$ (i.e. si f est définie en a), et si $f(x) \xrightarrow[x \to a]{} \ell \in \mathbb{R}$, alors ℓ est nécessairement égal à f(a).

Démonstration 1

 \triangle Cela n'est plus vrai si ℓ est seulement une limite à gauche ou une limite à droite, c.f. 1.c.

2

1.b Limites infinies

Définition:

Soient $f: I \to \mathbb{R}$. On dit que f admet $+\infty$ comme limite en a si :

• Dans le cas $a \in \mathbb{R}$:

• Dans le cas $a = +\infty$:

• Dans le cas $a = -\infty$:

Soient $f:I\to\mathbb{R}.\,$ On dit que f admet $-\infty$ comme limite en a si :

• Dans le cas $a \in \mathbb{R}$:

• Dans le cas $a = +\infty$:

• Dans le cas $a = -\infty$:

Notations : $f(x) \xrightarrow[x \to a]{} +\infty$, $f(x) \xrightarrow[x \to a]{} -\infty$.

1.c Limite à gauche, limite à droite, et limite en a lorsque f est définie sur $I \setminus \{a\}$

Définition:

Soient $f: I \to \mathbb{R}$; on suppose que a est un réel, élément ou extrémité de I. Soit $\ell \in \overline{\mathbb{R}}$. On dit que f admet ℓ comme <u>limite à gauche en a</u> si la restriction de f à $]-\infty, a[\cap I]$ admet pour limite ℓ en a.

Dans le cas $\ell \in \mathbb{R}$, cela revient à :

Idem dans les cas $\ell = +\infty$ et $\ell = -\infty$

(remplacer $\forall \varepsilon > 0$ par $\forall A \in \mathbb{R}$, et $|f(x) - l| \le \varepsilon$ par $f(x) \ge A$ ou $f(x) \le A$).

On a bien sûr des définitions similaires pour la limite à droite en parlant de la restriction de f à $]a, +\infty[\cap I$ (en remplaçant $]a - \eta, a[$ par $]a, a + \eta[$).

Notations:

Exemple:
$$f x \mapsto \begin{cases} e^x & \text{si } x < 0 \\ 2 & \text{si } x = 0 \\ \frac{3}{x+1} & \text{si } x > 0 \end{cases}$$

Définition:

(Extension de la définition de limite lorsque f n'est pas définie au point $a \in \mathbb{R}$)

4

Soit $a \in I$ qui ne soit pas une extrémité de I, et $f: I \setminus \{a\} \to \mathbb{R}.$

On dit que f admet ℓ pour limite en a si $\lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = \ell$.

Exemple:
$$f: \mathbb{R}^* \to \mathbb{R}$$

 $x \mapsto \frac{1}{x^2}$

$\mathbf{2}$ Propriétés et théorèmes autour de la notion de limite

Premières propriétés

Proposition:

(Unicité de la limite) Si f admet ℓ et ℓ' pour limites en a alors $\ell = \ell'$.

Démonstration 2

Les notations $\lim_{x\to a} f(x)$ ou $\lim_{a} f$ ont donc un sens.

Proposition:

Soit $f: I \to \mathbb{R}$.

Si f admet une limite finie en a alors f est bornée au voisinage de a.

Démonstration 3

Proposition:

Soit $f: I \to \mathbb{R}$, qui admet une limite finie $\ell > 0$ en a.

Alors, f est minorée au voisinage de a par $\ell/2$.

En particulier, elle est strictement positive au voisinage de a.

Démonstration 4

On a bien sûr une propriété similaire pour $\ell < 0$.

Proposition:

Si $|f(x)| \le g(x)$ au voisinage de a et si $\lim_{x \to a} g(x) = 0$, alors $\lim_{x \to a} f(x) = 0$.

Conséquence : Pour démontrer que f admet une limite finie ℓ en a, on peut majorer $|f(x) - \ell|$ par une fonction qui tend vers 0 en a.

5

2.b Limite et suite

Proposition:

Soient $f: I \to \mathbb{R}$ et $\ell \in \overline{\mathbb{R}}$.

On suppose que $f(x) \xrightarrow[x \to a]{} \ell$.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite réelles à valeurs dans I telle que : $u_n \underset{n\to+\infty}{\longrightarrow} a$.

Alors $f(u_n) \xrightarrow[n \to \infty]{} \ell$.

Démonstration 5

Utilisation : pour montrer qu'une fonction f n'admet pas de limite en a.

• Il suffit de trouver, par exemple, une suite (u_n) qui tend vers a mais telle que $(f(u_n))_{n\in\mathbb{N}}$ n'a pas de limite.

Exemple : $\cos en +\infty$.

• Il suffit de trouver, par exemple, deux suites (u_n) et (v_n) qui tendent vers a mais telles que $(f(u_n))_{n\in\mathbb{N}}$ et $(f(v_n))_{n\in\mathbb{N}}$ ont des limites différentes. Exemple : $f: x\mapsto \sin\frac{1}{x}$ en 0.

2.c Opérations

Proposition:

Soit $f:I\to\mathbb{R}$ et $\ell\in\mathbb{R}$.

• $f(x) \xrightarrow[x \to a]{} \ell \iff |f(x) - \ell| \xrightarrow[x \to a]{} 0.$

En particulier, $f(x) \xrightarrow[x \to a]{} 0 \iff |f(x)| \xrightarrow[x \to a]{} 0.$

• $f(x) \xrightarrow[x \to a]{} \ell \Longrightarrow |f(x)| \xrightarrow[x \to a]{} |\ell|.$

Proposition:

Soient $f, g: I \to \mathbb{R}$.

Si $f(x) \xrightarrow[x \to a]{} 0$ et si g est bornée au voisinage de a alors $f(x)g(x) \xrightarrow[x \to a]{} 0$.

Proposition:

Soient $f, g: I \to \mathbb{R}$. Soit $(\ell, \ell') \in \overline{\mathbb{R}}^2$.

On suppose que $\lim_{x\to a} f(x) = \ell$ et $\lim_{x\to a} g(x) = \ell'$. Soit $\lambda \in \mathbb{R}^*$.

- Pour $\lambda \in \mathbb{R}^*$, $\underset{x \to a}{\longrightarrow} \lambda f(x) \underset{x \to a}{\longrightarrow} \lambda \ell$
- Si $\ell + \ell'$ existe dans $\overline{\mathbb{R}}$, alors $(f+g)(x) \xrightarrow{x \to a} \ell + \ell'$
 - \rightarrow Formes indéterminées : $\infty \infty$
- Si $\ell\ell'$ existe dans $\overline{\mathbb{R}}$, alors $(fg)(x) \xrightarrow[x \to a]{} \ell\ell'$.
 - \rightarrow Formes indéterminées : $0 \times \infty$
- Si $\ell \in \mathbb{R}^*$ alors f ne s'annule pas au voisinage de a et $\lim_{x \to a} f(x) = \frac{1}{\ell}$.
- Si $\ell = 0$ et si, au voisinage de a, f(x) > 0, alors $\lim_{x \to a} \frac{1}{f(x)} = +\infty$.
- Si $\ell = 0$ et si, au voisinage de a, f(x) < 0, alors $\lim_{x \to a} \frac{1}{f(x)} = -\infty$

Proposition:

Soient $f: I \to \mathbb{R}, \ g: J \to \mathbb{R}$. On suppose $f(I) \subset J$.

Soit a un élément ou une extrémité de I, et b un élément ou une extrémité de J.

7

On suppose : $\begin{cases} f(x) \xrightarrow[x \to a]{} b \\ g(X) \xrightarrow[X \to b]{} \ell \end{cases}$. Alors, $g \circ f(x) \xrightarrow[x \to a]{} \ell$.

Démonstration 6

Exemple: Montrer que $\lim_{x\to +\infty} \frac{e^{-2x}+1}{(e^{-x}+1)^2}$ existe et la calculer.

2.d Limites et inégalités

Proposition:

(Passage à la limite) Soient $f, g: I \to \mathbb{R}$, et ℓ, ℓ' des réels. On suppose que $f(x) \xrightarrow[x \to a]{} \ell$ et $g(x) \xrightarrow[x \to a]{} \ell'$.

- Si, au voisinage de $a, f(x) \ge 0$, alors $\ell \ge 0$.
- Si, au voisinage de $a, f(x) \leq g(x)$, alors $\ell \leq \ell'$.

 \triangle Les inégalités strictes deviennent des inégalités larges lors d'un passage à la limite! Par exemple, pour tout $x>0,\,\frac{1}{x}>0,$ mais $\lim_{x\to+\infty}\frac{1}{x}=0...$

Théorème:

(Théorème d'encadrement/des gendarmes)

Soient $f,g,h:I\to\mathbb{R}.$ On suppose qu'au voisinage de a :

$$g(x) \le f(x) \le h(x)$$

et que $g(x) \xrightarrow[x \to a]{} \ell$ et $h(x) \xrightarrow[x \to a]{} \ell$, avec $\ell \in \mathbb{R}$.

Alors $f(x) \xrightarrow[x \to a]{} l$.

 \triangle C'est un théorème d'existence de limite : on ne suppose pas que f a une limite en a. Bien faire la différence avec un simple passage à la limite dans l'inégalité $g(x) \leq f(x) \leq h(x)$. Exemple : $x \left\lfloor \frac{1}{x} \right\rfloor$ en 0^+ .

Théorème:

Soient $f, g: I \to \mathbb{R}$. On suppose qu'au voisinage de a:

$$f(x) \le g(x)$$

8

- Si $f(x) \xrightarrow[x \to a]{} +\infty$, alors $g(x) \xrightarrow[x \to a]{} +\infty$.
- Si $g(x) \xrightarrow[x \to a]{} -\infty$, alors $f(x) \xrightarrow[x \to a]{} -\infty$.

2.e Limites et monotonie

${\bf Th\'{e}or\`{e}me}:$

Soient $(a,b) \in \overline{\mathbb{R}}^2$, avec a < b (donc $b \in \mathbb{R}$ ou $b = +\infty$). On pose I =]a,b[ou [a,b[. Soit $f: I \to \mathbb{R}$ croissante sur I.

- Si f est majorée sur I, alors f admet une limite finie en b. (Et on a $\lim_{x \to b} f(x) =$
- \bullet Si f n'est pas majorée sur I, alors

Ce théorème s'adapte pour les fonctions décroissantes : changer "majorée" en "minorée", et sup en inf.

Ce théorème s'adapte également pour la borne gauche de l'intervalle :

Théorème:

Soient $(a,b) \in \overline{\mathbb{R}}^2$, avec a < b (donc $a \in \mathbb{R}$ ou $a = -\infty$). On pose I =]a,b[ou]a,b[. Soit $f: I \to \mathbb{R}$ croissante sur I.

- \bullet Si f n'est pas minorée sur I, alors

Et pour les fonctions décroissantes : changer "minorée" en "majorée", et inf en sup.

3 Continuité : généralités

3.a Définitions

Définition:

(Continuité en un point) Soit I un intervalle de \mathbb{R} , et $a \in I$.

Soit $f: I \to \mathbb{R}$.

On dit que f est continue en a si :

Autrement dit, f est continue en a si et seulement si Sinon, on dit que f est discontinue en a.

Définition:

(Continuité sur un intervalle) Soit I un intervalle de $\mathbb{R},$ et $f:I\to\mathbb{R}.$

On dit que f est continue sur I si elle est continue en tout point de I.

L'ensemble des fonctions continues de I dans \mathbb{R} est noté $\mathcal{C}(I,\mathbb{R})$ ou $\mathcal{C}^0(I,\mathbb{R})$.

Exemples: Toutes les fonctions usuelles, sauf la partie entière...

Remarque : Une fonction continue en a est bornée au voisinage de a.

Définition:

Soit $f:I\to\mathbb{R}$. Soit $a\in I$. On suppose que a n'est pas l'extrémité droite de I.

On dit que \underline{f} est continue à droite en \underline{a} si $\lim_{x \to a^+} f(x) = f(a)$.

Cela revient à dire que la restriction de f à $[a, +\infty[\cap I \text{ est continue en } a]$.

On définit de manière similaire la continuité à gauche en a.

Proposition:

Soit $f:I\to\mathbb{R}$. Soit $a\in I$ tel que a n'est pas une extrémité de I.

f est continue en $a \iff f$ est continue à droite et à gauche en a

$$\iff \lim_{x \to a^+} f(x) = \lim_{x \to a^-} f(x) = f(a)$$

Exemples d'études :

La fonction partie entière.

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \begin{cases} e^x & \text{si } x < 0 \\ 2 & \text{si } x = 0 \\ \frac{3}{x+1} & \text{si } x > 0 \end{cases}$$

$$f: \mathbb{R}_{+} \to \mathbb{R}$$

$$x \mapsto \begin{cases} \sin \frac{1}{x} \sin x > 0 \\ 0 \sin x = 0 \end{cases}$$

3.b Prolongement par continuité

Si $a \in I$ et si f n'est définie que sur $I \setminus \{a\}$, on cherche s'il existe un prolongement de f à I entier, qui soit continu en a, c'est-à-dire une application $\tilde{f}: I \to \mathbb{R}$ continue en a et telle que : $\forall x \in I \setminus \{a\}, \tilde{f}(x) = f(x)$.

Exemple: la fonction sinus cardinal définie sur $\mathbb{R}^* = \mathbb{R} \setminus \{0\}$ par $f(x) = \frac{\sin x}{x}$.

Définition:

On dit que $f: I \setminus \{a\} \to \mathbb{R}$ est prolongeable par continuité en a si f a une limite finie ℓ en a.

Dans ce cas, l'unique prolongement sur I qui soit continu en a est : $\,\tilde{f}:\ I\ \to\ \mathbb{R}\,$

$$x \mapsto \begin{cases} x & \exists x \\ x & \exists x \end{cases}$$

Remarque : Souvent, on commet l'abus d'appeler encore f le prolongement \tilde{f} , et on dit qu'on a prolongé f par continuité en a.

Exemple: Reprenons l'exemple de la fonction sinus cardinal:

3.c Opérations

Proposition:

Soit f et $g: I \to \mathbb{R}$, continues en a (respectivement sur I). Alors:

- λf (pour tout $\lambda \in \mathbb{R}$), f + g, fg, |f|, sont continues en a (resp. sur I).
- Si $f(a) \neq 0$ (resp. si f ne s'annule pas sur I), alors $\frac{1}{f}$ est définie au voisinage de a (resp. sur I) et est continue en a (resp. sur I).

Proposition:

Soit $f: I \to \mathbb{R}, \ g: J \to \mathbb{R}$.

On suppose $f(I) \subset J$ de sorte que $g \circ f$ soit bien définie.

- Si f est continue en $a \in I$ et g continue en f(a) alors $g \circ f$ est continue en a.
- Si f est continue sur I et q est continue sur J alors $q \circ f$ est continue sur I.

Proposition:

Soit $f: I \to \mathbb{R}$ continue en $a \in I$.

Soit $(u_n)_{n\in\mathbb{N}}$ une suite à valeurs dans I, qui converge vers a. Alors on a $f(u_n)\underset{n\to\infty}{\longrightarrow} f(a)$.

Continuité: théorèmes fondamentaux 4

Théorème des valeurs intermédiaires 4.a

Théorème:

(TVI) Si $f:[a,b]\to\mathbb{R}$ est continue, alors f prend toute valeur comprise entre f(a) et f(b), c'est-à-dire :

Corollaire:

Si I est un intervalle et $f: I \to \mathbb{R}$ est continue, alors f(I) est un intervalle (Autrement dit, l'image d'un intervalle par une fonction continue est un intervalle).

Démonstration 7

Graphiquement:

Remarque: Lorsque f est continue et strictement monotone sur l'intervalle I, on sait facilement donner l'intervalle f(I):

I	[a,b]]a,b]	[a,b[]a,b[
cas f str. croissante	[f(a), f(b)]	$\lim_{x \to a} f(x), f(b)$	$[f(a), \lim_{x \to b} f(x)]$	$\lim_{x \to a} f(x), \lim_{x \to b} f(x)$
cas f str. décroissante	[f(b), f(a)]	$[f(b), \lim_{x \to a} f(x)]$	$\lim_{x \to b} f(x), f(a)$	$\Big] \lim_{x \to b} f(x), \lim_{x \to a} f(x) \Big[$

Utilisation classique : Existence d'un zéro.

Si f(a) et f(b) sont de signes contraires, alors 0 est compris entre f(a) et f(b): le TVI montre l'existence d'un zéro :

$$\exists x_0 \in [a, b], f(x_0) = 0.$$

⚠ Cela ne montre pas l'unicité d'un zéro.

Pour avoir l'unicité, penser plutôt au théorème de la bijection...

Corollaire à redémontrer à chaque fois : si une fonction continue ne s'annule pas sur un intervalle, alors elle garde un signe constant (c'est la contraposée).

13

Exercice 1: Montrer que la fonction $f: x \mapsto e^{-x}$ admet au moins un point fixe sur [0,1].

Démonstration 8

Exercice 2 : Montrer que toute fonction polynôme à coefficients réels de degré impair admet au moins une racine réelle.

Démonstration 9

Le théorème de la bijection est une conséquence du théorème des valeurs intermédiaires et des théorèmes d'existence de limite pour les fonctions monotones. Rappel :

Théorème:

(de la bijection) Soit I un intervalle, et $f:I\to\mathbb{R}$ une fonction continue et strictement

Alors f réalise une bijection de I sur l'intervalle f(I), et la réciproque f^{-1} est continue, de même stricte monotonie que f.

4.b Théorème des bornes atteintes

Théorème:

Soit $f:[a,b]\to\mathbb{R}$ une fonction continue.

Alors

Autrement dit:

Autrement dit:

On résume ce théorème par : "L'image d'un segment par une fonction continue est un segment." Illustration graphique

Exercice : Soit $f: \mathbb{R} \to \mathbb{R}$ continue et périodique de période T > 0. Montrer que f est bornée.

Démonstration 10

5 Brève extension aux fonctions à valeurs complexes

Soit I un intervalle de \mathbb{R} et $f: I \to \mathbb{C}$.

Rappelons quelques définitions :

f est dite bornée sur I si : $\exists K \in \mathbb{R}^+, \forall x \in I, |f(x)| \leq K$.

Définition:

Soit $\ell \in \mathbb{C}$ et a un élément ou une extrémité de I $(a \in \mathbb{R})$. On dit que f admet ℓ pour limite en a si

cas
$$a \in \mathbb{R}$$
: $\forall \varepsilon > 0$, $\exists \eta > 0$, $\forall x \in I$, $|x - a| \le \eta \implies |f(x) - \ell| \le \varepsilon$
cas $a = +\infty$: $\forall \varepsilon > 0$, $\exists A \in \mathbb{R}$, $\forall x \in I$, $x \ge A \implies |f(x) - \ell| \le \varepsilon$

cas
$$a = -\infty$$
: $\forall \varepsilon > 0, \exists B \in \mathbb{R}, \forall x \in I, x \leq B \implies |f(x) - \ell| \leq \varepsilon$

On définit aussi les notions de continuité en $a \in I$ et de continuité sur I.

Proposition:

(Caractérisation de la limite à l'aide de Re(f) et de Im(f))

Soit $f: I \to \mathbb{C}$ et $\ell \in \mathbb{C}$. Soit a un élément ou une extrémité de l'intervalle I.

La fonction f a pour limite ℓ en a si et seulement si Re(f) et Im(f) ont pour limites respectives $\text{Re}(\ell)$ et $\text{Im}(\ell)$ en a.

Ce résultat est intéressant car il permet de ramener l'étude d'une limite complexe à celle de deux limites réelles.

Corollaire:

On suppose $a \in I$. f est continue en a (respectivement sur I) si et seulement si Re(f) et Im(f) sont continues en a (resp. sur I).

Proposition:

Si f admet une limite finie en a (en particulier si f est continue en a) alors f est bornée au voisinage de a.

Opérations sur les limites (somme, produit, multiplication par un scalaire, quotient)

Elles sont similaires au cas réel, sauf qu'il n'y a jamais de limite infinie (en particulier pas de résultat pour $\lim_{x\to a} \frac{1}{f(x)}$ lorsque $\lim_{x\to a} f(x) = 0$).

Plan du cours

1	Limites: définitions				
	1.a	Limite finie	2		
	1.b	Limites infinies	3		
	1.c	Limite à gauche, limite à droite, et limite en a lorsque f est définie sur $I \backslash \{a\}$	4		
2	Propriétés et théorèmes autour de la notion de limite				
	2.a	Premières propriétés	5		
	2.b	Limite et suite	5		
	2.c	Opérations	6		
	2.d	Limites et inégalités	8		
	2.e	Limites et monotonie	9		
3	Continuité : généralités				
	3.a	Définitions	10		
	3.b	Prolongement par continuité	12		
	3.c	Opérations	12		
4	Continuité : théorèmes fondamentaux				
	4.a	Théorème des valeurs intermédiaires	13		
	4.b	Théorème des bornes atteintes	14		
5	Rr	Avo extension aux fonctions à valours compleves	15		