# Controling Complexity: Feature Selection and Regularization

Mengye Ren

NYU

September 19, 2023

### Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

### Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

- Bigger  $\mathcal{F}$ : better approximation but can overfit (need more samples)
- Smaller  $\mathcal{F}$ : less likely to overfit but can be farther from the true function

## Complexity of Hypothesis Spaces

What is the trade-off between approximation error and estimation error?

- Bigger  $\mathcal{F}$ : better approximation but can overfit (need more samples)
- ullet Smaller  $\mathcal{F}$ : less likely to overfit but can be farther from the true function

To control the "size" of  $\mathcal{F}$ , we need some measure of its complexity:

- Number of variables / features
- Degree of polynomial

# General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathfrak{F}_1\subset \mathfrak{F}_2\subset \mathfrak{F}_n\cdots\subset \mathfrak{F}$$

# General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$$

Example: Polynomial Functions

- $\mathcal{F} = \{\text{all polynomial functions}\}$
- $\mathcal{F}_d = \{\text{all polynomials of degree } \leq d\}$

# General Approach to Control Complexity

1. Learn a sequence of models varying in complexity from the training data

$$\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$$

**Example: Polynomial Functions** 

- $\mathcal{F} = \{\text{all polynomial functions}\}\$
- $\mathcal{F}_d = \{\text{all polynomials of degree } \leqslant d\}$
- 2. Select one of these models based on a score (e.g. validation error)

### Feature Selection in Linear Regression

Nested sequence of hypothesis spaces:  $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$ 

- $\mathcal{F} = \{\text{linear functions using all features}\}\$
- $\mathcal{F}_d = \{\text{linear functions using fewer than } d \text{ features} \}$

4 / 60

### Feature Selection in Linear Regression

Nested sequence of hypothesis spaces:  $\mathcal{F}_1 \subset \mathcal{F}_2 \subset \mathcal{F}_n \cdots \subset \mathcal{F}$ 

- $\mathcal{F} = \{\text{linear functions using all features}\}\$
- $\mathcal{F}_d = \{\text{linear functions using fewer than } d \text{ features}\}$

#### Best subset selection:

- Choose the subset of features that is best according to the score (e.g. validation error)
  - Example with two features: Train models using  $\{\}$ ,  $\{X_1\}$ ,  $\{X_2\}$ ,  $\{X_1, X_2\}$ , respectively
- Not an efficient search algorithm; iterating over all subsets becomes very expensive with a large number of features

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 4/60

### Forward selection:

1. Start with an empty set of features S

#### Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
  - Learn a model using features  $S \cup i$
  - Compute score of the model:  $\alpha_i$

#### Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
  - Learn a model using features  $S \cup i$
  - Compute score of the model:  $\alpha_i$
- 3. Find the candidate feature with the highest score:  $j = \arg\max_i \alpha_i$

#### Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature *i* not in *S* 
  - Learn a model using features  $S \cup i$
  - Compute score of the model:  $\alpha_i$
- 3. Find the candidate feature with the highest score:  $j = \arg\max_i \alpha_i$
- 4. If  $\alpha_j$  improves the current best score, add feature  $j: S \leftarrow S \cup j$  and go to step 2; return S otherwise.

#### Forward selection:

- 1. Start with an empty set of features S
- 2. For each feature i not in S
  - Learn a model using features  $S \cup i$
  - Compute score of the model:  $\alpha_i$
- 3. Find the candidate feature with the highest score:  $j = \arg\max_i \alpha_i$
- 4. If  $\alpha_j$  improves the current best score, add feature  $j: S \leftarrow S \cup j$  and go to step 2; return S otherwise.

#### **Backward Selection:**

• Start with all features; in each iteration, remove the worst feature

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 5 / 60

• Number of features as a measure of the complexity of a linear prediction function

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
  - Define a score that balances training error and complexity

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
  - Define a score that balances training error and complexity
  - Find the subset of features that maximizes the score

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
  - Define a score that balances training error and complexity
  - Find the subset of features that maximizes the score
- Forward & backward selection do not guarantee to find the best solution.

- Number of features as a measure of the complexity of a linear prediction function
- General approach to feature selection:
  - Define a score that balances training error and complexity
  - Find the subset of features that maximizes the score
- Forward & backward selection do not guarantee to find the best solution.
- Forward & backward selection do not in general result in the same subset.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 6 / 60

 $\ell_2$  and  $\ell_1$  Regularization

7/60

An objective that balances number of features and prediction performance:

$$score(S) = training_loss(S) + \lambda |S|$$
 (1)

An objective that balances number of features and prediction performance:

$$score(S) = training_loss(S) + \lambda |S|$$
 (1)

 $\lambda$  balances the training loss and the number of features used:

- ullet Adding an extra feature must be justified by at least  $\lambda$  improvement in training loss
- Larger  $\lambda \to \text{complex models}$  are penalized more heavily

Goal: Balance the complexity of the hypothesis space  $\mathcal F$  and the training loss

Complexity measure:  $\Omega: \mathcal{F} \to [0, \infty)$ , e.g. number of features

Goal: Balance the complexity of the hypothesis space  $\mathcal{F}$  and the training loss

Complexity measure:  $\Omega: \mathcal{F} \to [0, \infty)$ , e.g. number of features

### Penalized ERM (Tikhonov regularization)

For complexity measure  $\Omega: \mathcal{F} \to [0, \infty)$  and fixed  $\lambda \geq 0$ ,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

As usual, we find  $\lambda$  using the validation data.

9 / 60

Goal: Balance the complexity of the hypothesis space  ${\mathcal F}$  and the training loss

Complexity measure:  $\Omega: \mathfrak{F} \to [0, \infty)$ , e.g. number of features

### Penalized ERM (Tikhonov regularization)

For complexity measure  $\Omega: \mathfrak{F} \to [0, \infty)$  and fixed  $\lambda \geqslant 0$ ,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i) + \lambda \Omega(f)$$

As usual, we find  $\lambda$  using the validation data.

Number of features as complexity measure is hard to optimize—other measures?

9 / 60

# Weight Shrinkage: Intuition



• Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?

# Weight Shrinkage: Intuition



- Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?
- More conservative: small change in the input does not cause large change in the output

# Weight Shrinkage: Intuition



- Why would we prefer a regression line with smaller slope (unless the data strongly supports a larger slope)?
- More conservative: small change in the input does not cause large change in the output
- If we push the estimated weights to be small, re-estimating them on a new dataset wouldn't cause the prediction function to change dramatically (less sensitive to noise in data)

# Weight Shrinkage: Polynomial Regression



- Large weights are needed to make the curve wiggle sufficiently to overfit the data
- $\hat{y} = 0.001x^7 + 0.003x^3 + 1$  less likely to overfit than  $\hat{y} = 1000x^7 + 500x^3 + 1$

(Adapated from Mark Schmidt's slide)

11/60

# Linear Regression with $\ell_2$ Regularization

We have a linear model

$$\mathcal{F} = \left\{ f : \mathsf{R}^d \to \mathsf{R} \mid f(x) = w^T x \text{ for } w \in \mathsf{R}^d \right\}$$

- Square loss:  $\ell(\hat{y}, y) = (y \hat{y})^2$
- Training data  $\mathcal{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$

# Linear Regression with $\ell_2$ Regularization

We have a linear model

$$\mathcal{F} = \left\{ f : \mathsf{R}^d \to \mathsf{R} \mid f(x) = w^T x \text{ for } w \in \mathsf{R}^d \right\}$$

- Square loss:  $\ell(\hat{y}, y) = (y \hat{y})^2$
- Training data  $\mathfrak{D}_n = ((x_1, y_1), \dots, (x_n, y_n))$
- Linear least squares regression is ERM for square loss over  $\mathcal{F}$ :

$$\hat{w} = \underset{w \in \mathbb{R}^d}{\arg \min} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

• This often overfits, especially when d is large compared to n (e.g. in NLP one can have 1M features for 10K documents).

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

12 / 60

### Linear Regression with L2 Regularization

### Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where  $||w||_2^2 = w_1^2 + \cdots + w_d^2$  is the square of the  $\ell_2$ -norm.

• Also known as ridge regression.

### Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where  $||w||_2^2 = w_1^2 + \cdots + w_d^2$  is the square of the  $\ell_2$ -norm.

- Also known as ridge regression.
- Equivalent to linear least square regression when  $\lambda = 0$ .

### Penalizes large weights:

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_2^2,$$

where  $||w||_2^2 = w_1^2 + \cdots + w_d^2$  is the square of the  $\ell_2$ -norm.

- Also known as ridge regression.
- Equivalent to linear least square regression when  $\lambda = 0$ .
- $\ell_2$  regularization can be used for other models too (e.g. neural networks).

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 13/60

 $\ell_2$  regularization reduces sensitivity to changes in input

•  $\hat{f}(x) = \hat{w}^T x$  is **Lipschitz continuous** with Lipschitz constant  $L = \|\hat{w}\|_2$ : when moving from x to x + h,  $\hat{f}$  changes no more than  $L\|h\|$ .

 $\ell_2$  regularization reduces sensitivity to changes in input

- $\hat{f}(x) = \hat{w}^T x$  is **Lipschitz continuous** with Lipschitz constant  $L = ||\hat{w}||_2$ : when moving from x to x + h,  $\hat{f}$  changes no more than L||h||.
- $\ell_2$  regularization controls the maximum rate of change of  $\hat{f}$ .

 $\ell_2$  regularization reduces sensitivity to changes in input

- $\hat{f}(x) = \hat{w}^T x$  is **Lipschitz continuous** with Lipschitz constant  $L = ||\hat{w}||_2$ : when moving from x to x + h,  $\hat{f}$  changes no more than L||h||.
- ullet  $\ell_2$  regularization controls the maximum rate of change of  $\hat{f}$ .
- Proof:

$$\begin{split} \left| \hat{f}(x+h) - \hat{f}(x) \right| &= \left| \hat{w}^T(x+h) - \hat{w}^T x \right| = \left| \hat{w}^T h \right| \\ &\leqslant \|\hat{w}\|_2 \|h\|_2 \quad \text{(Cauchy-Schwarz inequality)} \end{split}$$

 $\ell_2$  regularization reduces sensitivity to changes in input

- $\hat{f}(x) = \hat{w}^T x$  is **Lipschitz continuous** with Lipschitz constant  $L = ||\hat{w}||_2$ : when moving from x to x + h,  $\hat{f}$  changes no more than L||h||.
- $\ell_2$  regularization controls the maximum rate of change of  $\hat{f}$ .
- Proof:

$$\begin{split} \left| \hat{f}(\mathbf{x} + \mathbf{h}) - \hat{f}(\mathbf{x}) \right| &= \left| \hat{w}^T (\mathbf{x} + \mathbf{h}) - \hat{w}^T \mathbf{x} \right| = \left| \hat{w}^T \mathbf{h} \right| \\ &\leqslant \|\hat{w}\|_2 \|\mathbf{h}\|_2 \quad \text{(Cauchy-Schwarz inequality)} \end{split}$$

• Other norms also provide a bound on L due to the equivalence of norms:  $\exists C > 0 \text{ s.t. } \|\hat{w}\|_2 \leqslant C \|\hat{w}\|_p$ 

# Linear Regression vs. Ridge Regression

#### Objective:

- Linear:  $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge:  $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

# Linear Regression vs. Ridge Regression

#### Objective:

- Linear:  $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge:  $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

#### Gradient:

- Linear:  $\nabla L(w) = X^T(Xw y)$
- Ridge:  $\nabla L(w) = X^T(Xw y) + \lambda w$ 
  - Also known as weight decay in neural networks

# Linear Regression vs. Ridge Regression

#### Objective:

- Linear:  $L(w) = \frac{1}{2} ||Xw y||_2^2$
- Ridge:  $L(w) = \frac{1}{2} ||Xw y||_2^2 + \frac{\lambda}{2} ||w||_2^2$

#### Gradient:

- Linear:  $\nabla L(w) = X^T(Xw y)$
- Ridge:  $\nabla L(w) = X^T(Xw y) + \lambda w$ 
  - Also known as weight decay in neural networks

#### Closed-form solution:

- Linear:  $X^T X w = X^T y$
- Ridge:  $(X^TX + \lambda I)w = X^Ty$ 
  - $(X^TX + \lambda I)$  is always invertible

# Ridge Regression: Regularization Path



$$\hat{w}_r = \underset{\|w\|_2^2 \le r^2}{\arg \min} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$$

$$\hat{w} = \hat{w}_{\infty} = \text{Unconstrained ERM}$$

- For r = 0,  $||\hat{w}_r||_2 / ||\hat{w}||_2 = 0$ .
- For  $r = \infty$ ,  $||\hat{w}_r||_2 / ||\hat{w}||_2 = 1$

16 / 60

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

### Lasso Regression

Penalize the  $\ell_1$  norm of the weights:

Lasso Regression (Tikhonov Form, soft penalty)

$$\hat{w} = \arg\min_{w \in \mathbb{R}^d} \frac{1}{n} \sum_{i=1}^n \left\{ w^T x_i - y_i \right\}^2 + \lambda ||w||_1,$$

where  $||w||_1 = |w_1| + \cdots + |w_d|$  is the  $\ell_1$ -norm.

("Least Absolute Shrinkage and Selection Operator")

### Ridge vs. Lasso: Regularization Paths

### Lasso yields sparse weights:





18 / 60

Modified from Hastie, Tibshirani, and Wainwright's Statistical Learning with Sparsity, Fig 2.1. About predicting crime in 50 US cities.

The coefficient for a feature is  $0 \implies$  the feature is not needed for prediction. Why is that useful?

• Faster to compute the features; cheaper to measure or annotate them

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)
- Interpretability: identifies the important features

- Faster to compute the features; cheaper to measure or annotate them
- Less memory to store features (deployment on a mobile device)
- Interpretability: identifies the important features
- Prediction function may generalize better (model is less complex)

Why does  $\ell_1$  Regularization Lead to Sparsity?

# Regularization as Constrained Empirical Risk Minimization

### Constrained ERM (Ivanov regularization)

For complexity measure  $\Omega: \mathcal{F} \to [0, \infty)$  and fixed  $r \geqslant 0$ ,

$$\min_{f \in \mathcal{F}} \frac{1}{n} \sum_{i=1}^{n} \ell(f(x_i), y_i)$$
s.t.  $\Omega(f) \leq r$ 

#### Lasso Regression (Ivanov Form, hard constraint)

The lasso regression solution for complexity parameter  $r \geqslant 0$  is

$$\hat{w} = \underset{\|w\|_1 \le r}{\arg\min} \frac{1}{n} \sum_{i=1}^n \{w^T x_i - y_i\}^2.$$

CSCI-GA 2565

r has the same role as  $\lambda$  in penalized ERM (Tikhonov).

- $\bullet$  Let  $L\!:\!\mathcal{F}\!\to\!\mathsf{R}$  be any performance measure of f
  - $\bullet$  e.g. L(f) could be the empirical risk of f

- Let  $L: \mathcal{F} \to \mathbb{R}$  be any performance measure of f
  - e.g. L(f) could be the empirical risk of f
- For many L and  $\Omega$ , Ivanov and Tikhonov are equivalent:
  - Any solution  $f^*$  we can get from Ivanov, we can also get from Tikhonov.
  - Any solution  $f^*$  we can get from Tikhonov, we can also get from Ivanov.

- Let  $L: \mathcal{F} \to R$  be any performance measure of f
  - e.g. L(f) could be the empirical risk of f
- For many L and  $\Omega$ , Ivanov and Tikhonov are equivalent:
  - Any solution  $f^*$  we can get from Ivanov, we can also get from Tikhonov.
  - Any solution  $f^*$  we can get from Tikhonov, we can also get from Ivanov.
- The conditions for this equivalence can be derived from Lagrangian duality theory.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 22 / 60

- Let  $L: \mathcal{F} \to \mathbb{R}$  be any performance measure of f
  - e.g. L(f) could be the empirical risk of f
- For many L and  $\Omega$ , Ivanov and Tikhonov are equivalent:
  - Any solution  $f^*$  we can get from Ivanov, we can also get from Tikhonov.
  - Any solution  $f^*$  we can get from Tikhonov, we can also get from Ivanov.
- The conditions for this equivalence can be derived from Lagrangian duality theory.
- In practice, both approaches are effective: we will use whichever one is more convenient for training or analysis.

# The $\ell_1$ and $\ell_2$ Norm Constraints

- Let's consider  $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$  space)
- We can represent each function in  $\mathcal{F}$  as a point  $(w_1, w_2) \in \mathbb{R}^2$ .
- Where in  $R^2$  are the functions that satisfy the Ivanov regularization constraint for  $\ell_1$  and  $\ell_2$ ?

# The $\ell_1$ and $\ell_2$ Norm Constraints

- Let's consider  $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$  space)
- We can represent each function in  $\mathcal{F}$  as a point  $(w_1, w_2) \in \mathbb{R}^2$ .
- Where in  $R^2$  are the functions that satisfy the Ivanov regularization constraint for  $\ell_1$  and  $\ell_2$ ?

• 
$$\ell_2$$
 contour:  
 $w_1^2 + w_2^2 = r$ 



• 
$$\ell_1$$
 contour:  $|w_1| + |w_2| = r$ 



# The $\ell_1$ and $\ell_2$ Norm Constraints

- Let's consider  $\mathcal{F} = \{f(x) = w_1x_1 + w_2x_2\}$  space)
- We can represent each function in  $\mathcal{F}$  as a point  $(w_1, w_2) \in \mathbb{R}^2$ .
- Where in  $R^2$  are the functions that satisfy the Ivanov regularization constraint for  $\ell_1$  and  $\ell_2$ ?

• 
$$\ell_2$$
 contour:  
 $w_1^2 + w_2^2 = r$ 



• 
$$\ell_1$$
 contour:  $|w_1| + |w_2| = r$ 



• Where are the sparse solutions?

# Visualizing Regularization

•  $f_r^* = \operatorname{arg\,min}_{w \in \mathbb{R}^2} \sum_{i=1}^n (w^T x_i - y_i)^2$  subject to  $w_1^2 + w_2^2 \leqslant r$ 



- Blue region: Area satisfying complexity constraint:  $w_1^2 + w_2^2 \leqslant r$
- Red lines: contours of the empirical risk  $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$ .

KPM Fig. 13.3

# Why Does $\ell_1$ Regularization Encourage Sparse Solutions?

•  $f_r^* = \arg\min_{w \in \mathbb{R}^2} \frac{1}{n} \sum_{i=1}^n (w^T x_i - y_i)^2$  subject to  $|w_1| + |w_2| \leqslant r$ 



- Blue region: Area satisfying complexity constraint:  $|w_1| + |w_2| \le r$
- Red lines: contours of the empirical risk  $\hat{R}_n(w) = \sum_{i=1}^n (w^T x_i y_i)^2$ .
- $\ell_1$  solution tends to touch the corners.

KPM Fig. 13.3

# Why Does $\ell_1$ Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto diamond encourages solutions at corners.

•  $\hat{w}$  in red/green regions are closest to corners in the  $\ell_1$  "ball".



Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

# Why Does $\ell_1$ Regularization Encourage Sparse Solutions?

Geometric intuition: Projection onto  $\ell_2$  sphere favors all directions equally.



Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

# Why does $\ell_2$ Encourage Sparsity? Optimization Perspective

#### For $\ell_2$ regularization,

- As w<sub>i</sub> becomes smaller, there is less and less penalty
  - What is the  $\ell_2$  penalty for  $w_i = 0.0001$ ?
- The gradient—which determines the pace of optimization—decreases as  $w_i$  approaches zero
- Less incentive to make a small weight equal to exactly zero

# Why does $\ell_2$ Encourage Sparsity? Optimization Perspective

#### For $\ell_2$ regularization,

- As w<sub>i</sub> becomes smaller, there is less and less penalty
  - What is the  $\ell_2$  penalty for  $w_i = 0.0001$ ?
- The gradient—which determines the pace of optimization—decreases as  $w_i$  approaches zero
- Less incentive to make a small weight equal to exactly zero

#### For $\ell_1$ regularization,

- The gradient stays the same as the weights approach zero
- This pushes the weights to be exactly zero even if they are already small

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 28 / 60

• We can generalize to  $\ell_q$ :  $(\|w\|_q)^q = |w_1|^q + |w_2|^q$ .

• We can generalize to  $\ell_q$ :  $(\|w\|_q)^q = |w_1|^q + |w_2|^q$ .







$$\gamma = 1$$



$$q = 0.5$$
  $q = 0.1$ 



• We can generalize to  $\ell_q$  :  $(\|w\|_q)^q = |w_1|^q + |w_2|^q$ .



• Note:  $\|w\|_q$  is only a norm if  $q \geqslant 1$ , but not for  $q \in (0,1)$ 

• We can generalize to  $\ell_q$  :  $(\|w\|_q)^q = |w_1|^q + |w_2|^q$ .



- Note:  $||w||_q$  is only a norm if  $q \ge 1$ , but not for  $q \in (0,1)$
- When q<1, the  $\ell_q$  constraint is non-convex, so it is hard to optimize; lasso is good enough in practice

# Regularization

• We can generalize to  $\ell_a$ :  $(\|w\|_a)^q = |w_1|^q + |w_2|^q$ .



- Note:  $||w||_q$  is only a norm if  $q \ge 1$ , but not for  $q \in (0,1)$
- When q < 1, the  $\ell_q$  constraint is non-convex, so it is hard to optimize; lasso is good enough in practice
- $\ell_0$  ( $||w||_0$ ) is defined as the number of non-zero weights, i.e. subset selection

Mengve Ren (NYU) CSCI-GA 2565 September 19, 2023 Minimizing the lasso objective

# Minimizing the lasso objective

- The ridge regression objective is differentiable (and there is a closed form solution)
- Lasso objective function:

$$\min_{w \in \mathbb{R}^d} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda ||w||_1$$

•  $||w||_1 = |w_1| + \ldots + |w_d|$  is not differentiable!

# Minimizing the lasso objective

- The ridge regression objective is differentiable (and there is a closed form solution)
- Lasso objective function:

$$\min_{w \in R^d} \sum_{i=1}^{n} (w^T x_i - y_i)^2 + \lambda ||w||_1$$

- $||w||_1 = |w_1| + \ldots + |w_d|$  is not differentiable!
- We will briefly review three approaches for finding the minimum:
  - Quadratic programming
  - Projected SGD
  - Coordinate descent

- Consider any number  $a \in R$ .
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^{-} = -a1(a \leq 0).$$

- Consider any number  $a \in R$ .
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^{-} = -a1(a \leq 0).$$

• Is it always the case that  $a^+ \ge 0$  and  $a^- \ge 0$ ?

- Consider any number  $a \in R$ .
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0)$$
.

- Is it always the case that  $a^+ \ge 0$  and  $a^- \ge 0$ ?
- How do you write a in terms of  $a^+$  and  $a^-$ ?

- Consider any number  $a \in R$ .
- Let the **positive part** of a be

$$a^+ = a1(a \geqslant 0).$$

• Let the **negative part** of a be

$$a^- = -a1(a \leqslant 0)$$
.

- Is it always the case that  $a^+ \ge 0$  and  $a^- \ge 0$ ?
- How do you write a in terms of  $a^+$  and  $a^-$ ?
- How do you write |a| in terms of  $a^+$  and  $a^-$ ?

Substituting  $w = w^+ - w^-$  and  $|w| = w^+ + w^-$  results in an equivalent problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left( \left( w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda 1^T \left( w^+ + w^- \right)$$
subject to  $w_i^+ \geqslant 0$  for all  $i$  and  $w_i^- \geqslant 0$  for all  $i$ ,

- This objective is differentiable (in fact, convex and quadratic)
- How many variables does the new objective have?
- This is a quadratic program: a convex quadratic objective with linear constraints.
- Quadratic programming is a very well understood problem; we can plug this into a generic QP solver.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 33 / 60

## Are we missing some constraints?

We have claimed that the following objective is equivalent to the lasso problem:

$$\min_{w^+,w^-} \quad \sum_{i=1}^n \left( \left( w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left( w^+ + w^- \right)$$
subject to  $w_i^+ \geqslant 0$  for all  $i$   $w_i^- \geqslant 0$  for all  $i$ ,

- When we plug this optimization problem into a QP solver,
  - it just sees 2d variables and 2d constraints.
  - Doesn't know we want  $w_i^+$  and  $w_i^-$  to be positive and negative parts of  $w_i$ .
- Turns out that these constraints will be satisfied anyway!
- To make it clear that the solver isn't aware of the constraints of  $w_i^+$  and  $w_i^-$ , let's denote them  $a_i$  and  $b_i$

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

(Trivially) reformulating the lasso problem:

(Trivially) reformulating the lasso problem:

$$\min_{w} \min_{a,b} \sum_{i=1}^{n} \left( (a-b)^{T} x_{i} - y_{i} \right)^{2} + \lambda 1^{T} (a+b)$$
subject to  $a_{i} \geqslant 0$  for all  $i$   $b_{i} \geqslant 0$  for all  $i$ ,
$$a - b = w$$

$$a + b = |w|$$

Claim: Don't need the constraint a + b = |w|.

Exercise: Prove by showing that the optimal solutions  $a^*$  and  $b^*$  satisfies  $\min(a^*, b^*) = 0$ , hence  $a^* + b^* = |w|$ .

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

Claim: Can remove min<sub>w</sub> and the constraint a - b = w.

Exercise: Prove by switching the order of the minimization.

### Projected SGD

- Now that we have a differentiable objective, we could also use gradient descent
- But how do we handle the constraints?

$$\min_{\substack{w^+,w^- \in \mathbb{R}^d \\ w^+ \neq 0}} \sum_{i=1}^n \left( \left( w^+ - w^- \right)^T x_i - y_i \right)^2 + \lambda \mathbf{1}^T \left( w^+ + w^- \right)$$
 subject to  $w_i^+ \geqslant 0$  for all  $i$   $w_i^- \geqslant 0$  for all  $i$ 

- Projected SGD is just like SGD, but after each step
  - We project  $w^+$  and  $w^-$  into the constraint set.
  - In other words, if any component of  $w^+$  or  $w^-$  becomes negative, we set it back to 0.

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 37 / 60

#### Coordinate Descent Method

Goal: Minimize  $L(w) = L(w_1, ..., w_d)$  over  $w = (w_1, ..., w_d) \in \mathbb{R}^d$ .

#### Coordinate Descent Method

Goal: Minimize 
$$L(w) = L(w_1, ..., w_d)$$
 over  $w = (w_1, ..., w_d) \in \mathbb{R}^d$ .

• In gradient descent or SGD, each step potentially changes all entries of w.

Goal: Minimize 
$$L(w) = L(w_1, ..., w_d)$$
 over  $w = (w_1, ..., w_d) \in \mathbb{R}^d$ .

- In gradient descent or SGD, each step potentially changes all entries of w.
- In coordinate descent, each step adjusts only a single coordinate  $w_i$ .

$$w_i^{\text{new}} = \arg\min_{w_i} L(w_1, \dots, w_{i-1}, w_i, w_{i+1}, \dots, w_d)$$

- Solving the argmin for a particular coordinate may itself be an iterative process.
- Coordinate descent is an effective method when it's easy (or easier) to minimize w.r.t. one coordinate at a time

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

**Goal:** Minimize 
$$L(w) = L(w_1, \dots w_d)$$
 over  $w = (w_1, \dots, w_d) \in \mathbb{R}^d$ .

- Initialize  $w^{(0)} = 0$
- while not converged:
  - Choose a coordinate  $j \in \{1, \ldots, d\}$
  - $\bullet \ \textit{w}_{j}^{\mathsf{new}} \leftarrow \arg\min_{\textit{w}_{j}} L(\textit{w}_{1}^{(t)}, \ldots, \textit{w}_{j-1}^{(t)}, \textit{w}_{j}, \textit{w}_{j+1}^{(t)}, \ldots, \textit{w}_{d}^{(t)})$
  - $w_j^{(t+1)} \leftarrow w_j^{\text{new}}$  and  $w^{(t+1)} \leftarrow w^{(t)}$
  - $t \leftarrow t + 1$
- Random coordinate choice  $\Longrightarrow$  stochastic coordinate descent
- Cyclic coordinate choice  $\implies$  cyclic coordinate descent

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

#### Coordinate Descent Method for Lasso

The lasso objective coordinate minimization has a closed form! If

$$\hat{w}_{j} = \arg\min_{w_{j} \in \mathbb{R}} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2} + \lambda |w|_{1}$$

Then

$$\hat{w}_j = egin{cases} (c_j + \lambda)/a_j & \text{if } c_j < -\lambda \\ 0 & \text{if } c_j \in [-\lambda, \lambda] \\ (c_j - \lambda)/a_j & \text{if } c_j > \lambda \end{cases}$$

$$a_j = 2\sum_{i=1}^n x_{i,j}^2$$
  $c_j = 2\sum_{i=1}^n x_{i,j}(y_i - w_{-j}^T x_{i,-j})$ 

where  $w_{-j}$  is w without the j-th component, and  $x_{i,-j}$  is  $x_i$  without the j-th component.

• In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement

- In general, coordinate descent is not competitive with gradient descent: its convergence rate is slower and the iteration cost is similar
- But it works very well for certain problems
- Very simple and easy to implement
- Example applications: lasso regression, SVMs

Maximum Margin Classifier

#### Linearly Separable Data

Consider a linearly separable dataset  $\mathfrak{D}$ :



Find a separating hyperplane such that

- $w^T x_i > 0$  for all  $x_i$  where  $y_i = +1$
- $w^T x_i < 0$  for all  $x_i$  where  $y_i = -1$

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

### The Perceptron Algorithm

- Initialize  $w \leftarrow 0$
- While not converged (exists misclassified examples)
  - For  $(x_i, y_i) \in \mathcal{D}$ 
    - If  $y_i w^T x_i < 0$  (wrong prediction)
    - Update  $w \leftarrow w + y_i x_i$
- Intuition: move towards misclassified positive examples and away from negative examples
- Guarantees to find a zero-error classifier (if one exists) in finite steps
- What is the loss function if we consider this as a SGD algorithm?

### Maximum-Margin Separating Hyperplane

For separable data, there are infinitely many zero-error classifiers.

Which one do we pick?



(Perceptron does not return a unique solution.)

# Maximum-Margin Separating Hyperplane

We prefer the classifier that is farthest from both classes of points



- Geometric margin: smallest distance between the hyperplane and the points
- Maximum margin: largest distance to the closest points

#### Geometric Margin

We want to maximize the distance between the separating hyperplane and the closest points.

Let's formalize the problem.

#### Definition (separating hyperplane)

We say  $(x_i, y_i)$  for i = 1, ..., n are **linearly separable** if there is a  $w \in \mathbb{R}^d$  and  $b \in \mathbb{R}$  such that  $y_i(w^Tx_i + b) > 0$  for all i. The set  $\{v \in \mathbb{R}^d \mid w^Tv + b = 0\}$  is called a **separating hyperplane**.

#### Definition (geometric margin)

Let H be a hyperplane that separates the data  $(x_i, y_i)$  for i = 1, ..., n. The **geometric margin** of this hyperplane is

$$\min_{i} d(x_i, H),$$

the distance from the hyperplane to the closest data point.



• Any point on the plane p, and normal vector  $w/||w||_2$ 



- Any point on the plane p, and normal vector  $w/||w||_2$
- Projection of x onto the normal:  $\frac{(x'-p)^T w}{\|w\|_2}$

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 48 / 60



- Any point on the plane p, and normal vector  $w/||w||_2$
- Projection of x onto the normal:  $\frac{(x'-p)^T w}{\|w\|_2}$
- $(x'-p)^T w = x'^T w p^T w = x'^T w + b$  (since  $p^T w + b = 0$ )



- Any point on the plane p, and normal vector  $w/||w||_2$
- Projection of x onto the normal:  $\frac{(x'-p)^T w}{\|w\|_2}$
- $(x'-p)^T w = x'^T w p^T w = x'^T w + b$  (since  $p^T w + b = 0$ )
- Signed distance between x' and Hyperplane H:  $\frac{w^Tx'+b}{\|w\|_2}$



- Any point on the plane p, and normal vector  $w/||w||_2$
- Projection of x onto the normal:  $\frac{(x'-p)^T w}{\|w\|_2}$
- $(x'-p)^T w = x'^T w p^T w = x'^T w + b$  (since  $p^T w + b = 0$ )
- Signed distance between x' and Hyperplane H:  $\frac{w^T x' + b}{\|w\|_2}$
- Taking into account of the label y:  $d(x', H) = \frac{y(w^T x' + b)}{\|w\|_2}$

We want to maximize the geometric margin:

maximize  $\min_{i} d(x_i, H)$ .

We want to maximize the geometric margin:

maximize 
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane 
$$H = \{v \mid w^T v + b = 0\}$$
, we have

maximize 
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

We want to maximize the geometric margin:

maximize 
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane  $H = \{v \mid w^T v + b = 0\}$ , we have

maximize 
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

Let's remove the inner minimization problem by

$$\begin{array}{ll} \text{maximize} & M \\ \text{subject to} & \frac{y_i(w^Tx_i+b)}{\|w\|_2} \geqslant M \quad \text{for all } i \end{array}$$

We want to maximize the geometric margin:

maximize 
$$\min_{i} d(x_i, H)$$
.

Given separating hyperplane  $H = \{v \mid w^T v + b = 0\}$ , we have

maximize 
$$\min_{i} \frac{y_i(w^T x_i + b)}{\|w\|_2}$$
.

Let's remove the inner minimization problem by

maximize 
$$M$$
  
subject to  $\frac{y_i(w^Tx_i+b)}{\|w\|_2} \geqslant M$  for all  $i$ 

Note that the solution is not unique (why?).

Let's fix the norm  $||w||_2$  to 1/M to obtain:

Let's fix the norm  $||w||_2$  to 1/M to obtain:

It's equivalent to solving the minimization problem

Note that  $y_i(w^Tx_i + b)$  is the (functional) margin. The optimization finds the minimum norm solution which has a margin of at least 1 on all examples.

# Not linearly separable

What if the data is not linearly separable?

For any w, there will be points with a negative margin.



Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

Introduce slack variables  $\xi$ 's to penalize small margin:

$$\begin{array}{ll} \text{minimize} & \frac{1}{2} \|w\|_2^2 + \frac{C}{n} \sum_{i=1}^n \xi_i \\ \text{subject to} & y_i (w^T x_i + b) \geqslant 1 - \xi_i \quad \text{for all } i \\ & \xi_i \geqslant 0 \quad \text{for all } i \\ \end{array}$$

- If  $\xi_i = 0 \ \forall i$ , it's reduced to hard SVM.
- What does  $\xi_i > 0$  mean?
- What does C control?

#### Slack Variables

 $d(x_i, H) = \frac{y_i(w^T x_i + b)}{\|w\|_2} \geqslant \frac{1 - \xi_i}{\|w\|_2}$ , thus  $\xi_i$  measures the violation by multiples of the geometric margin:

- $\xi_i = 1$ :  $x_i$  lies on the hyperplane
- $\xi_i = 3$ :  $x_i$  is past 2 margin width beyond the decision hyperplane



53 / 60

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

Minimize the Hinge Loss

#### Perceptron Loss

$$\ell(x, y, w) = \max(0, -yw^T x)$$



If we do ERM with this loss function, what happens?

## Hinge Loss

- SVM/Hinge loss:  $\ell_{\text{Hinge}} = \max\{1-m, 0\} = (1-m)_{+}$
- Margin m = yf(x); "Positive part"  $(x)_+ = x1(x \ge 0)$ .



Hinge is a **convex**, **upper bound** on 0-1 loss. Not differentiable at m=1. We have a "margin error" when m<1.

• The SVM optimization problem is equivalent to

minimize 
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to 
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

• The SVM optimization problem is equivalent to

minimize 
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to 
$$\xi_i \geqslant \left(1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n$$
$$\xi_i \geqslant 0 \text{ for } i = 1, \dots, n$$

which is equivalent to

minimize 
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to 
$$\xi_i \geqslant \max(0, 1 - y_i \lceil w^T x_i + b \rceil) \text{ for } i = 1, \dots, n.$$

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023

minimize 
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
  
subject to 
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n.$$

minimize 
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
subject to 
$$\xi_i \geqslant \max(0, 1 - y_i [w^T x_i + b]) \text{ for } i = 1, \dots, n.$$

Move the constraint into the objective:

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

minimize 
$$\frac{1}{2}||w||^2 + \frac{c}{n}\sum_{i=1}^n \xi_i$$
  
subject to 
$$\xi_i \geqslant \max\left(0, 1 - y_i \left[w^T x_i + b\right]\right) \text{ for } i = 1, \dots, n.$$

Move the constraint into the objective:

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

- The first term is the L2 regularizer.
- The second term is the Hinge loss.

#### Using ERM:

- Hypothesis space  $\mathcal{F} = \{ f(x) = w^T x + b \mid w \in \mathbb{R}^d, b \in \mathbb{R} \}.$
- $\ell_2$  regularization (Tikhonov style)
- Hinge loss  $\ell(m) = \max\{1-m, 0\} = (1-m)_+$
- The SVM prediction function is the solution to

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} ||w||^2 + \frac{c}{n} \sum_{i=1}^n \max (0, 1 - y_i [w^T x_i + b]).$$

Not differentiable because of the max

#### Summary

Two ways to derive the SVM optimization problem:

- Maximize the margin
- Minimize the hinge loss with  $\ell_2$  regularization

Both leads to the minimum norm solution satisfying certain margin constraints.

- Hard-margin SVM: all points must be correctly classified with the margin constraints
- Soft-margin SVM: allow for margin constraint violation with some penalty

Mengye Ren (NYU) CSCI-GA 2565 September 19, 2023 60 / 60