Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application.

Listing of Claims:

- 1-9 (Canceled)
- 10. (Currently Amended) A method of combating phytopathogenic fungi at a locus infested or liable to be infested therewith, which comprises applying to the locus a compound of the general formula I:

$$A^{1} - C - R^{2}$$

$$R^{1}$$
(I)

wherein:

A¹ is 2-pyridyl substituted with from one to four moieties independently selected from the group consisting of halogen and haloalkyl, provided that at least one moiety is haloalkyl;

Y is a moiety selected from the group consisting of $-L-A^2$ and $-L^1-A^3$ wherein:

A² is selected from the group consisting unsubstituted or substituted phenyl, naphthyl, cyclopropyl, cyclohexyl, biphenylyl, thienyl, imidazolyl, toyl tolyl, and

wherein:

any substituents on A² are independently selected from the group consisting of alkyl, halogen, haloalkyl, phenoxy, alkoxy, nitro, acetyl, -PhSO₂, -NMe₂, -MeSO₂, -MeSO₂, and -PrSO₂;

A³ is selected from the group consisting unsubstituted or substituted phenyl, biphenylyl, benzoyl, benzyloxycarbonyl, isopropoxycarbonyl, benzoxazolyl, pyridyl, 2-pyridyl, thiodiazolyl, triazolyl, fluorenyl, tolyl, tetrazolyl, pyrimidinyl, imidazolyl, benzthiazolyl, quinolinyl, and

wherein:

any substituents on A³ are selected from the group consisting of alkyl, halogen, haloalkyl, hydroxyl, and phenyl;

L is a 3-atom linker selected from the group consisting of $-N(R^5)C(=X)N(R^6)$ -, $-N(R^5)C(=X)CH(R^3)$ -, $-CH(R^3)N(R^5)CH(R^4)$ -, $-CH(R^3)N(R^5)C(=X)$ -, $-ON(R^5)C(=X)$ -; wherein the left hand side of L is attached to the central carbon atom of formula I;

 L^1 is a 4-atom linker selected from the group consisting of $-N(R^9)C(=X)X^1CH(R^7)-, -N(R^9)C(=X)CH(R^7)CH(R^8)-; -N(R^9)C(R^7)=C(R^8)C(=X)-, \\ -N(R^9)C(=X)C(R^7)(R^8)SO_2-, \text{ and } -N(R^9)C(=X)C(R^7)(R^8)X^1; \text{ wherein the left hand side of } L^1 \text{ is attached to the central carbon atom of formula I;}$

 R^1 , R^2 , R^3 , R^4 , R^7 , and R^8 are independently selected from the group consisting of halogen, R^b , and OR^b ;

R⁵ and R⁶, which may be the same or different, are R^b;

R^b is selected from the group consisting of hydrogen, alkyl, and

acyl;

X is selected from the group consisting of oxygen and sulfur;

 X^1 is selected from the group consisting of oxygen and $-N(R^9)$ -;

R⁹ is R^b:

or a complex or salt thereof.

- 11. (Previously Presented) The method of claim 10 wherein the compound is applied at an application rate of from 5 to 1000 grams per hectare.
- 12. (Previously Presented) A fungicidal composition comprising one or more compounds as defined in claim 10, or a complex or salt thereof, in admixture with an agriculturally acceptable diluent or carrier.
- 13. (Currently Amended) A compound of formula I as defined in claim 10 or a complex or salt thereof of the general formula I:

$$A^{1} - C - R^{2}$$

$$R^{1}$$
(I)

wherein:

A¹ is 2-pyridyl substituted with from one to four moieties independently selected from the group consisting of halogen and trifluoromethyl, provided that at least one moiety is trifluoromethyl;

Y is a moiety selected from the group consisting of $-L-A^2$ and $-L^1-A^3$ wherein:

A² is selected from the group consisting of unsubstituted or substituted phenyl, cyclohexyl, cyclopropyl, thienyl, imidazolyl, tolyl, and

wherein any substituents on A² are independently selected from the group consisting of alkyl, halogen, and haloalkyl;

A³ is selected from the group consisting of unsubstituted or substituted phenyl, pyridyl, 2-pyridyl, thiodiazolyl, triazolyl, fluorenyl, tolyl, tetrazolyl, pyrimidinyl, imidazolyl, benzthiazolyl, quinolinyl, and

wherein any substituents on A³ are selected from the group consisting of alkyl, halogen, haloalkyl, hydroxyl, and phenyl;

L is a 3-atom linker selected from the group consisting of $-N(R^5)C(=X)N(R^6)$ -, $-N(R^5)C(=X)CH(R^3)$ -, $-CH(R^3)N(R^5)CH(R^4)$ -, $-CH(R^3)N(R^5)C(=X)$ -, $-ON(R^5)C(=X)$ -; wherein the left hand side of L is attached to the central carbon atom of formula I;

L¹ is a 4-atom linker selected from the group consisting of $-N(R^9)C(=X)X^1CH(R^7)$, $-N(R^9)C(=X)CH(R^7)CH(R^8)$ -; $-N(R^9)C(R^7)=C(R^8)C(=X)$. $-N(R^9)C(=X)C(R^7)(R^8)SO_2$ -, and $-N(R^9)C(=X)C(R^7)(R^8)X^1$; wherein the left hand side of L¹ is attached to the central carbon atom of formula I;

R¹, R², R³, and R⁴ are independently selected from the group consisting of hydrogen or alkyl,

R⁵, R⁶, R⁷, and R⁸ are independently selected from the group consisting of hydrogen, alkyl, and acyl; and

X is selected from the group consisting of oxygen and sulfur;

 X^1 is selected from the group consisting of oxygen and $-N(R^9)$ -; and

R⁹ is selected from the group consisting of hydrogen and alkyl.

14. (Currently Amended) A compound of formula I as defined in claim 10 or a complex or salt thereof of the general formula I:

$$A^{1} - C - R^{2}$$

$$R^{1}$$
(I)

wherein:

A¹ is 2-pyridyl substituted with from one to four moieties independently selected from the group consisting of halogen and haloalkyl, provided that at least one moiety is haloalkyl.

R¹ and R² are independently selected from the group consisting of halogen, R^b, and OR^b, wherein R^b is selected from the group consisting of hydrogen, alkyl, and acyl;

Y is -L-A²- wherein:

A) L is -NHC(=X)NH-; and

A² is selected from the group consisting of:

1) phenyl, optionally substituted by halogen, haloalkyl, phenoxy, alkoxy, alkyl, nitro, -MeS, -PhSO₂, dialkylamino, alkylsulfonyl, benzylsulfonyl, S(phenyl substituted by halogen); and

2) cyclopropyl, cyclohexyl, and naphthyl, each of which is optionally substituted by nitro; or

B) L is $-NHC(=O)CH(R^3)$ -;

wherein R³ is selected from the group consisting of hydrogen, alkyl,

halogen, and acyloxy; and

A² is selected from the group consisting of:

- 1) phenyl, optionally substituted by halogen, nitro, or alkoxy;
- 2) thienyl;
- 3) imidazolyl; and
- 4)

C) L is $-CH(R^3)N(R^5)CH_2$ -

wherein:

R³ is N-alkylcarbamoyl or alkoxycarbonyl; and

R⁵ is hydrogen or acyl; and

A² is selected from the group consisting of

1) phenyl, optionally substituted by alkyl, alkoxy,

halogen, nitro, haloalkyl, or phenoxy; and

- 2) naphthyl; or
- D) L is $-CH(R^3)NHC(=O)$ -;

wherein R^3 is N-alkylcarbamoyl or alkoxycarbonyl; and

A² is selected from the group consisting of:

- phenyl, optionally substituted by alkoxy, halogen, nitro, haloalkyl, phenoxy, or phenyl; and
 - 2) cycloalkyl; or
 - E) L is -O-NHC(=O)-; and
 A² is phenyl substituted by alkyl;

or Y is-L¹-A³- wherein:

- A) L^1 is -NHC(=0)(CH₂)₂- and A^3 is phenyl substituted by alkyl; or
- B) L^1 is -NHC(=S)NHCH₂-, and A^3 is phenyl; or
- C) L¹ is -NHC(=O)CH(alkyl)S- and A³ is phenyl; or
- D) L¹ is selected from the group consisting of:
 - 1) -NHC(=O)OCH₂-,
 - 2) -NHC(=0)(CH₂)₂-,
 - 3) -NHC(=0)NHCH₂-,
 - 4) -NHC(=S)NHCH₂-,

Page 12 of 16

- 5) $-N(alkyl)C(=O)CH_2O_{-}$, and
- 6) $-NHC(=O)CH_2O-;$

R1 is hydrogen;

R² is selected from the group consisting of hydrogen and alkoxycarbonyl;
A³ is selected from the group consisting of:

1) phenyl, optionally substituted by halogen, alkyl, phenyl, or

hydroxyl;

- 2) fluorenyl;
- 3) pyridyl, optionally substituted by halogen or haloalkyl;
- 4) thiadiazolyl substituted by alkyl;
- 5) benzthiazolyl, optionally substituted by halogen or by phenyl

substituted by halogen;

- 6) quinolinyl substituted by haloalkyl;
- 7) triazolyl substituted by alkyl or phenyl;
- 8) tetrazolyl substituted by alkyl or cycloalkyl;
- 9) pyrimidmyl substituted by alkyl;
- 10) benzoxazolyl;
- 11) imidazolyl substituted by alkyl; and

12)

or

E) L^1 is -NHC(=O)CHCR⁸)R⁹)-;

R1 is hydrogen;

R², R⁸, and R⁹ are independently selected from the group consisting of

hydrogen and alkyl; and

A³ is selected from the group consisting of

- 1) benzoyl optionally substituted by alkyl, ans
- 2) benzyloxycarbonyl; or
- F) L^1 is $\frac{-NHC(=O)CH(alkyl)SO}{-NHC(=O)CH(alkyl)SO}$

R1 and R2 are each hydrogen; and

A³ is phenyl;

wherein the left hand sides of L and L¹ are attached to the central carbon atoms of formula I.