Университет ИТМО МФ КТиУ, Ф ПИиКТ

Лабораторная работа №5 Дисциплина «Вычислительная математика»

Интерполяция функции

Выполнил Касымов Тимур Шавкатович

Преподаватель: Машина Екатерина Алексеевна

Вычислительная реализация задачи

X	1.10	1.25	1.40	1.55	1.70	1.85	2.00
у	0.2234	1.2438	2.2644	3.2984	4.3222	5.3516	6.3867

n = 6

Таблица конечных разностей:

тиозищи коне ими ризностен.								
Xi	1.10	1.25	1.40	1.55	1.70	1.85	2.00	
Уi	0.2234	1.2438	2.2644	3.2984	4.3222	5.3516	6.3867	
Δy_i	1.0204	1.0206	1.034	1.0238	1.0294	1.0351	-	
Δ^2 yi	0.0002	0.0134	-0.0102	0.0056	0.0057	-	-	
Δ^3 yi	0.0132	-0.0236	0.0158	0.0001	_	-	-	
Δ^4 yi	-0.0368	0.0394	-0.0157	-	_	_	-	
Δ^5 yi	0.0762	-0.0551	-	-	_	_	_	
Δ^6 yi	-0.1313	-	-	-	_	-	-	

$$\Delta^k y_i = \Delta^{k-1} y_{i+1} - \Delta^{k-1} y_i$$

$$X_1 = 1.121$$

 $x_0 <= X_1 <= x_1 =>$ первая интерполяционная формула Ньютона

$$h = 1.25 - 1.10 = 0.15$$

 $t = (x - x0) / h = (x - 1.10) / 0.15$

$$\begin{split} N_n(\mathbf{x}) &= y_0 + t\Delta y_0 + \frac{\mathbf{t}(\mathbf{t}-1)}{2!} \Delta^2 y_0 + \frac{\mathbf{t}(\mathbf{t}-1)(\mathbf{t}-2)}{3!} \Delta^3 y_0 + \frac{\mathbf{t}(\mathbf{t}-1)(\mathbf{t}-2)(\mathbf{t}-3)}{4!} \Delta^4 y_0 \\ &+ \frac{\mathbf{t}(\mathbf{t}-1)(\mathbf{t}-2)(\mathbf{t}-3)(\mathbf{t}-4)}{5!} \Delta^5 y_0 \\ &+ \frac{\mathbf{t}(\mathbf{t}-1)(\mathbf{t}-2)(\mathbf{t}-3)(\mathbf{t}-4)(\mathbf{t}-5)}{6!} \Delta^6 y_0 \end{split}$$

$$x = 1.121 = t = (1.121 - 1.10) / 0.15 = 0.14$$

$$\begin{split} N_6(1.121) &= 0.2234 + 0.14 * 1.0204 + \frac{0.14(0.14-1)}{2} 0.0002 \\ &+ \frac{0.14(0.14-1)(0.14-2)}{6} 0.0132 \\ &+ \frac{0.14(0.14-1)(0.14-2)(0.14-3)}{24} (-0.0368) \\ &+ \frac{0.14(0.14-1)(0.14-2)(0.14-3)(0.14-4)}{120} 0.0762 \\ &+ \frac{0.14(0.14-1)(0.14-2)(0.14-3)(0.14-4)(0.14-5)}{720} (-0.1313) \end{split}$$

=0.2234+0.142856+0+0.00049+0.00098+0.00156+0.00219=0.3715

$$X_2 = 1.482$$

$$a = x_3 = 1.55$$

 $x_2 < X_2 < x_3 => X_2 < a =>$ вторая интерполяционная формула Гаусса

$$h = 1.25 - 1.10 = 0.15$$

 $t = (x - a) / h = (x - 1.55) / 0.15$

Таблица конечных разностей:

i	-3	-2	-1	0	1	2	3
Xi	1.10	1.25	1.40	1.55	1.70	1.85	2.00
Уi	0.2234	1.2438	2.2644	3.2984	4.3222	5.3516	6.3867
Δy_i	1.0204	1.0206	1.034	1.0238	1.0294	1.0351	-
Δ^2 yi	0.0002	0.0134	-0.0102	0.0056	0.0057	-	_
Δ^3 yi	0.0132	-0.0236	0.0158	0.0001	_	_	-
Δ^4 yi	-0.0368	0.0394	-0.0157	-	_	_	-
Δ^5 yi	0.0762	-0.0551	_	-	-	-	_
Δ^6 yi	-0.1313	-	-	-	-	-	-

$$G_n(x) = y_0 + t\Delta y_{-1} + \frac{t(t+1)}{2!} \Delta^2 y_{-1} + \frac{t(t+1)(t-1)}{3!} \Delta^3 y_{-2} + \frac{t(t+2)(t+1)(t-1)}{4!} \Delta^4 y_{-2} + \frac{t(t+2)(t+1)(t-1)(t-2)}{5!} \Delta^5 y_{-3} + \frac{t(t+3)(t+2)(t+1)(t-1)(t-2)}{6!} \Delta^6 y_{-3}$$

$$x = 1.482 \Rightarrow t = (1.482 - 1.55) / 0.15 = -0.453$$

$$G_6(\mathbf{x})$$

$$= 3.2984 - 0.453 * 1.034 + \frac{-0.453(-0.453 + 1)}{2}(-0.0102) + \frac{-0.453(-0.453 + 1)(-0.453 - 1)}{6}(-0.0236) + \frac{-0.453(-0.453 + 2)(-0.453 + 1)(-0.453 - 1)}{24}(-0.0394) + \frac{-0.453(-0.453 + 2)(-0.453 + 1)(-0.453 - 1)(-0.453 - 2)}{120}0.0762 + \frac{-0.453(-0.453 + 3)(-0.453 + 2)(-0.453 + 1)(-0.453 - 1)(-0.453 - 2)}{720}(-0.1313)$$

$$= 3.2984 - 0.4684 + 0.00126 - 0.00141 - 0.00091 - 0.00087 + 0.00063 =$$
2.8287

Программная реализация задачи

```
function lagrSolve() {
    let xsOut = ["x"]
    let ysOut = ["y"]
    document.getElementById('table-cont').innerHTML = ""
    for (let i = 0; i < xs.length - 1; i++) {
        let m = (`(\$\{xs[i]\} + \$\{xs[i+1]\}) / 2`)
        let sol = lagr(m)
        xsOut.push(m); ysOut.push(sol)
        calculator.setExpression({ id: 'methodPoint' + i, latex: `(${m}, ${sol})`, color:
Desmos.Colors.BLUE })
    document.getElementById('result-points').innerHTML = arrayToTable([xsOut, ysOut])
}
function newtonSepSolve() {
    let xsOut = ["x"]
    let ysOut = ["y"]
    document.getElementById('table-cont').innerHTML =
arrayToTable(rotate_table(table_for_neravnoots()))
    for (let i = 0; i < xs.length - 1; i++) {
        let m = (`(\$\{xs[i]\} + \$\{xs[i+1]\}) / 2`)
        let sol = neravnoots solve(m)
        xsOut.push(m); ysOut.push(sol)
        calculator.setExpression({ id: 'methodPoint' + i, latex: `(${m}, ${sol})`, color:
Desmos.Colors.GREEN })
    document.getElementById('result-points').innerHTML = arrayToTable([xsOut, ysOut])
}
function newtonFinSolve() {
    let xsOut = ["x"]
    let ysOut = ["y"]
    document.getElementById('table-cont').innerHTML =
arrayToTable(rotate_table(table_for_ravnoots()))
    for (let i = 0; i < Math.floor(xs.length / 2); i++) {</pre>
        let m = (`(\$\{xs[i]\} + \$\{xs[i+1]\}) / 2`)
        let sol = ravnootst_solve_right(m)
        xsOut.push(m); ysOut.push(sol)
        calculator.setExpression({ id: 'methodPoint' + i, latex: `(${m}, ${sol})`, color:
Desmos.Colors.BLACK })
    }
    for (let i = Math.floor(xs.length / 2); i < xs.length - 1; i++) {</pre>
        let m = (`(\$\{xs[i]\} + \$\{xs[i+1]\}) / 2`)
        let sol = ravnootst solve left(m)
        xsOut.push(m); ysOut.push(sol)
        calculator.setExpression({ id: 'methodPoint' + i, latex: `(${m}, ${sol})`, color:
Desmos.Colors.BLACK })
    }
    document.getElementById('result-points').innerHTML = arrayToTable([xsOut, ysOut])
}
```


Вывод

В ходе лабораторной работы я познакомился с интерполяцией функции разными методами (линейная, квадратичная, многочлен Лагранжа, многочлен Ньютона, многочлены Гаусса, Стирлинга и Бесселя).

Линейная и квадратичная интерполяция – простые методы, но неточные.

Многочлен Лагранжа – хороший метод, но много вычислений. Малая погрешность при небольших n, c изменением числа узлов все вычисления заново.

Многочлен Ньютона с разделёнными разностями — хороший метод. Используется для неравноотстоящих узлов. При добавлении новых узлов первые члены многочлена остаются неизменными.

Многочлен Ньютона с конечными разностями — хороший метод. Используется для равноотстоящих узлов. При добавлении новых узлов первые члены многочлена остаются неизменными. Есть формулы для интерполирования вперёд и назад. Можно использовать для экстраполирования (но будут бОльшие погрешности).