Singular values of some modular functions*

Noburo Ishii and Maho Kobayashi

1 Introduction

For a positive integer N, let $\Gamma_0(N)$ and $\Gamma_1(N)$ be the subgroups of $\mathrm{SL}_2(\mathbf{Z})$ defined by

$$\Gamma_0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid c \equiv 0 \mod N \right\},$$

$$\Gamma_1(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \operatorname{SL}_2(\mathbf{Z}) \mid a - 1 \equiv c \equiv 0 \mod N \right\}.$$

We denote by $A_1(N)$ and $A_0(N)$ the modular function fields with respect to $\Gamma_1(N)$ and $\Gamma_0(N)$ respectively. Let \mathfrak{E} be a set of triples of integers $\mathfrak{a} = [a_1, a_2, a_3]$ with the properties $0 < a_i \le N/2$ and $a_i \ne a_j$ for $i \ne j$. For an element τ of complex upper half plane \mathfrak{H} , we denote by L_{τ} the lattice in \mathbf{C} generated by 1 and τ . Let $\wp(z; L_{\tau})$ be the Weierstrass \wp -function relative to the lattice L_{τ} . For $\mathfrak{a} \in \mathfrak{E}$, consider a function $W_{\mathfrak{a}}(\tau)$ on \mathfrak{H} defined by

$$W_{\mathfrak{a}}(\tau) = \frac{\wp(a_1/N; \tau) - \wp(a_3/N; \tau)}{\wp(a_2/N; \tau) - \wp(a_3/N; \tau)}.$$

This function is a modular function with respect to $\Gamma_1(N)$, referred in Chapter 18, §6 of Lang [6]. He pointed out that it is interesting to investigate its

^{*2000} Mathematics Subject Classification 11F03,11G15

special values at imaginary quadratic points. In [4] and [5], to construct generators of $A_1(N)$ and $A_0(N)$, we used the function $W_{\mathfrak{a}}(\tau)$ and the function $T_{\mathfrak{a}_1,\mathfrak{a}_2}(\tau)$ which is the trace of the product $W_{\mathfrak{a}_1}W_{\mathfrak{a}_2}$ $(\mathfrak{a}_i\in\mathfrak{E})$ relative to the extension $A_1(N)/A_0(N)$. Further we provided an explicit representation of the modular j-function $j(\tau)$ with those generators. In this article, we study the properties of singular values of $W_{\mathfrak{a}}$ and those of a function $T_{\mathfrak{A},F}$ which is a generalization of the function $T_{\mathfrak{a}_1,\mathfrak{a}_2}$. See §2 for the precise definition of $T_{\mathfrak{A},F}$. Our results in this article are as follows. In Theorem 3.7 and Corollary 4.6 we prove, for imaginary quadratic points $\alpha \in \mathfrak{H}$ and sets $\mathfrak{a}, \mathfrak{A}$ satisfying some conditions, that singular values $W_{\mathfrak{a}}(\alpha)$ are units of the ray class field \mathfrak{K}_N modulo N over K and that singular values $T_{\mathfrak{A},F}(\alpha)$ are algebraic integers in \mathfrak{K}_N . In particular, consider the triples $\mathfrak{a}_1 = [2,3,1]$ and $\mathfrak{a}_2 = [2,5,1]$. Then we prove in Theorem 4.4 that $W_{\mathfrak{a}_1}(\alpha)$ and $W_{\mathfrak{a}_2}(\alpha)$ generate \mathfrak{K}_N over the field $K(\exp(2\pi i/N))$. Let $A_0(N)_{\mathbf{Q}}$ be the subfield of $A_0(N)$ consisting of modular functions with Fourier coefficients in \mathbf{Q} . In Proposition 4.2 we show for prime numbers N that $A_0(N)_{\mathbf{Q}} = \mathbf{Q}(T_{\mathfrak{a}_1}, T_{\mathfrak{a}_2}) = \mathbf{Q}(T_{\mathfrak{a}_i}, T_{\mathfrak{a}_1, \mathfrak{a}_2})$ (i = 1, 2).Further put $\mathfrak{A}_0 = [\mathfrak{a}_1, \mathfrak{a}_2]$ and $F_0 = X_1^m X_2^n$ for non-negative integers m and n. In Theorem 4.3, without the assumption N are prime, we show that $A_0(N)_{\mathbf{Q}} = \mathbf{Q}(j, T_{\mathfrak{A}_0, F_0})$. We deduce from those results that singular values of those functions generate ring class fields over K (see Theorem 4.7). Finally in §5 we study class polynomials of $T_{\mathfrak{A},F}$ with respect to Schertz N-systems.

In the followings, for a function $f(\tau)$ and a matrix $A = \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in \mathrm{SL}_2(\mathbf{Z})$, we shall denote

$$f[A]_2 = f\left(\frac{a\tau + b}{c\tau + d}\right)(c\tau + d)^{-2}$$
 and $f \circ A = f\left(\frac{a\tau + b}{c\tau + d}\right)$.

2 Modular functions $W_{\mathfrak{a}}(\tau)$ and $T_{\mathfrak{A},F}(\tau)$

Let $W_{\mathfrak{a}}(\tau)$ be the function defined in §1. In [4], we showed the function $W_{\mathfrak{a}}$ is a modular function with respect to $\Gamma_1(N)$ and it has neither zeros nor poles on \mathfrak{H} . Let us consider the factor group $G(N) = \Gamma_0(N)/\{\pm E_2\}\Gamma_1(N)$, where E_2 is the unit matrix. Put $\mathfrak{S}_N = (\mathbf{Z}/N\mathbf{Z})^{\times}/\{\pm 1\}$. Then

$$G(N) \cong \left\{ \left. \begin{pmatrix} \lambda^{-1} & 0 \\ 0 & \lambda \end{pmatrix} \right| \lambda \in \mathfrak{S}_N \right\}.$$

For $\lambda \in \mathfrak{S}_N$, let $M_{\lambda} \in \Gamma_0(N)$ such that $M_{\lambda} \equiv {\binom{\lambda^{-1} \ 0}{0}} \mod N$. For a tuple $\mathfrak{A} = [\mathfrak{a}_1, \dots, \mathfrak{a}_n] \ (\mathfrak{a}_i \in \mathfrak{E})$ and a polynomial $F = F(X_1, X_2, \dots, X_n) \in \mathbf{Z}[X_1, X_2, \dots, X_n]$, we define a function

$$T_{\mathfrak{A},F}(\tau) = \sum_{\lambda \in \mathfrak{S}_N} F(W_{\mathfrak{a}_1} \circ M_{\lambda}, \cdots, W_{\mathfrak{a}_n} \circ M_{\lambda}).$$

Then obviously $T_{\mathfrak{A},F}(\tau)$ is a modular function with respect to $\Gamma_0(N)$ and has no poles on \mathfrak{H} . For $\lambda \in \mathfrak{S}_N$, $\mathfrak{a} = [a_1, a_2, a_3] \in \mathfrak{E}$, define an element $\lambda \mathfrak{a}$ of \mathfrak{E} by

$$\lambda \mathfrak{a} = [\{\lambda a_1\}, \{\lambda a_2\}, \{\lambda a_3\}],$$

where $\{\lambda a_i\}$ is the integer such that $\{\lambda a_i\} \equiv \pm \lambda a_i \mod N, \ 0 < \{\lambda a_i\} \leq \frac{N}{2}$.

Proposition 2.1. (i) $W_{\mathfrak{a}}(M_{\lambda}\tau) = W_{\lambda\mathfrak{a}}(\tau)$.

(ii)
$$T_{\mathfrak{A},F}(\tau) = \sum_{\lambda \in \mathfrak{S}_N} F(W_{\lambda \mathfrak{a}_1}(\tau), \cdots, W_{\lambda \mathfrak{a}_n}(\tau)).$$

Proof. The assertion (i) is showed in $\S 2$ of [4]. The assertion (ii) is obvious from (i).

We denote by $T_{\mathfrak{a}}$ and $T_{\mathfrak{a}_1,\mathfrak{a}_2}$ the function $T_{\mathfrak{A},F}$ with $\mathfrak{A} = [\mathfrak{a}], F = X_1$ and $\mathfrak{A} = [\mathfrak{a}_1,\mathfrak{a}_2], F = X_1X_2$ respectively.

3 Modular equations

Let j be the modular j-function. Let Γ be a subgroup of $\mathrm{SL}_2(\mathbb{Z})$ of finite index. For a modular function f with respect to Γ , we define the modular equation of f relative to j by

$$\Phi[f](X,j) = \prod_{B} (X - f \circ B),$$

where B runs over a transversal of the coset decomposition of $\mathrm{SL}_2(\mathbf{Z})$ by Γ . Obviously the coefficients of $\Phi[f](X,j)$ with respect to X are in $\mathbf{C}(j)$. If f has no poles on \mathfrak{H} , then the coefficients of $\Phi[f](X,j)$ are polynomials of f. Hereafter to avoid tedious notation, we denote by $\Phi_{\mathfrak{A},F}(X,j)$ the equation $\Phi[T_{\mathfrak{A},F}](X,j)$. Since $W_{\mathfrak{a}}$ and $T_{\mathfrak{A},F}$ have no poles on \mathfrak{H} , we have

 $\Phi[W_{\mathfrak{a}}](X,j), \ \Phi_{\mathfrak{A},F}(X,j) \in \mathbf{C}[j][X].$ We shall show that $\Phi[W_{\mathfrak{a}}](X,j)$ and $\Phi_{\mathfrak{A},F}(X,j) \in \mathbf{Z}[j][X]$ under some conditions imposed on N and \mathfrak{A} . For a positive divisor t of N, let Θ_t be a set of $\varphi((t,N/t))$ pairs of integers (u,v) such that $(u,t)=1,\ uv\equiv 1 \mod t$ and u are inequivalent to each other modulo (t,N/t). For $(u,v)\in\Theta_t$ and $k\in\mathbf{Z}$, consider a matrix in $\mathrm{SL}_2(\mathbf{Z})$

$$B(t, u, v, k) = \begin{pmatrix} u & (uv - 1)/t + uk \\ t & v + tk \end{pmatrix}.$$

We denote by \mathfrak{M}_{Θ_t} the set of matrices

$$\{B(t, u, v, k) \mid (u, v) \in \Theta_t, \ k \bmod N/(t^2, N)\}.$$

- **Lemma 3.1.** (i) The set of matrices $\bigcup_{t|N} \mathfrak{M}_{\Theta_t}$ is a transversal of the coset decomposition of $\mathrm{SL}_2(\mathbf{Z})$ by $\Gamma_0(N)$.
 - (ii) The set of matrices $\{M_{\lambda}B \mid \lambda \in \mathfrak{S}_N, B \in \bigcup_{t \mid N} \mathfrak{M}_{\Theta_t}\}$ is a transversal of the coset decomposition of $\mathrm{SL}_2(\mathbf{Z})$ by $\Gamma_1(N)\{\pm E_2\}$.

Proof. The number of elements of the set is $\sum_{t|N} \frac{N}{(t^2,N)} \varphi((t,N/t))$. This is equal to $[\operatorname{SL}_2(\mathbf{Z}):\Gamma_0(N)]$ (see Exercises 11.9 [1]). It is easy to see that any distinct matrices in the set $\bigcup_{t|N} \mathfrak{M}_{\Theta_t}$ are not in the same coset. Thus we have (i). The assertion (ii) is obvious from (i).

Let ℓ_t be an integer prime to t and ℓ_t^* an integer such that $\ell_t \ell_t^* \equiv 1 \mod t$. For the set Θ_t , put

$$\ell_t \Theta_t = \{ (\ell_t^* u, \ell_t v) | (u, v) \in \Theta_t \}.$$

Then obviously the set of matrices $\bigcup_{t|N} \mathfrak{M}_{\ell_t\Theta_t}$ is also a transversal of the coset decomposition. For an integer s not congruent to $0 \mod N$, let

$$\phi_s(\tau) = \frac{1}{(2\pi i)^2} \wp\left(\frac{s}{N}; L_\tau\right) - 1/12.$$

Put $q = \exp(2\pi i \tau/N)$ and $\zeta = \exp(2\pi i/N)$. To consider the q-expansion of the function $\phi_s[B(t,u,v,k)]_2$, for an integer s, we define two integers $\{s\}$ and

 $\mu(s)$ by the following conditions:

$$0 \leq \{s\} \leq \frac{N}{2}, \quad \mu(s) = \pm 1,$$

$$\begin{cases} \mu(s) = 1 & \text{if } s \equiv 0, N/2 \mod N, \\ s \equiv \mu(s)\{s\} \mod N & \text{otherwise.} \end{cases}$$

By Lemma 1 of [4], we have, with $s^* = \mu(st)s(v + tk)$,

$$\phi_{s}[B(t, u, v, k)]_{2} = \begin{cases} \frac{\zeta^{s^{*}}}{(1 - \zeta^{s^{*}})^{2}} - \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(1 - \zeta^{s^{*}n})(1 - \zeta^{-s^{*}n})q^{mnN} & \text{if } \{st\} = 0, \\ \sum_{n=1}^{\infty} n\zeta^{s^{*}n}q^{\{st\}n} & \\ -\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n(1 - \zeta^{s^{*}n}q^{\{st\}n})(1 - \zeta^{-s^{*}n}q^{-\{st\}n})q^{mnN} & \text{otherwise.} \end{cases}$$

In particular we note the function $\phi_s[B(t, u, v, k)]_2 \in \mathbf{Q}(\zeta)[[q]]$.

For an integer ℓ prime to N, let σ_{ℓ} be the automorphism of $\mathbf{Q}(\zeta)$ over \mathbf{Q} defined by $\zeta^{\sigma_{\ell}} = \zeta^{\ell}$. On a function $f = \sum_{m} a_{m} q^{m}$ with $a_{m} \in \mathbf{Q}(\zeta)$, σ_{ℓ} acts

by
$$f^{\sigma_{\ell}} = \sum_{m} a_{m}^{\sigma_{\ell}} q^{m}$$
.

Lemma 3.2. Let ℓ be an integer prime to N and ℓ^* an integer such that $\ell\ell^* \equiv 1 \mod N$. Then for $(u,v) \in \Theta_t$ and $k \in \mathbf{Z}$,

$$\phi_s[B(t,u,v,k)]_2^{\sigma_\ell} = \begin{cases} \phi_{ls}[B(t,u,v,k)]_2 & \text{if } \{st\} = 0, \\ \phi_s[B(t,\ell^*u,\ell v,\ell k)]_2 & \text{if } \{st\} \neq 0 \end{cases}$$

Proof. The q-expansion of $\phi_s[B(t,u,v,k)]_2^{\sigma_\ell}$ is given by substituting s^* by ℓs^* in the equation (1). If $\{st\} = 0$, then we see $\ell s^* = (\ell s)^*$. If $\{st\} \neq 0$, then $\ell s^* = \mu(st)\ell s(v+tk) = \mu(st)s(\ell v+\ell tk)$. By comparing the q-expansion of $\phi_{ls}[B(t,u,v,k)]_2$ or $\phi_s[B(t,\ell^*u,\ell v,\ell k)]_2$ in each case, we have our assertion.

We consider two subsets \mathfrak{E}_1 and \mathfrak{E}_2 of \mathfrak{E} given by

$$\mathfrak{E}_1 = \{ \mathfrak{a} \in \mathfrak{E} \mid (a_1 a_2 a_3, N) = 1 \},$$

 $\mathfrak{E}_2 = \{ \mathfrak{a} \in \mathfrak{E}_1 \mid (a_i \pm a_3, N) = 1 \text{ for } i = 1, 2 \}.$

It is noted $\mathfrak{E}_1 \neq \emptyset$ for $N \geq 7$ (resp.10) if N is odd (resp.even) and $\mathfrak{E}_2 \neq \emptyset$ for N such that $(N,6) = 1, N \geq 7$. Further if N is a prime number and $N \geq 7$, then $\mathfrak{E}_1 = \mathfrak{E}_2 = \mathfrak{E}$.

Example 3.3. Let $\mathfrak{a}_1 = [2,3,1]$, $\mathfrak{a}_2 = [2,5,1]$, $\mathfrak{a}_3 = [1,(N-3)/2,(N-1)/2]$. If N is a positive integer such that $(N,6) = 1, N \geq 7$. Then $\mathfrak{a}_1, \mathfrak{a}_3 \in \mathfrak{E}_2$. Further if (N,30) = 1, then $\mathfrak{a}_2 \in \mathfrak{E}_2$. The functions $T_{\mathfrak{a}_i}$ and $T_{\mathfrak{a}_1,\mathfrak{a}_2}$ are not constant. See Proposition 4.2.

Proposition 3.4. Let ℓ be an integer prime to N and ℓ^* an integer such that $\ell\ell^* \equiv 1 \mod N$. Further let $(u,v) \in \Theta_t$ and $k \in \mathbf{Z}$.

(i) For $\mathfrak{a} = [a_1, a_2, a_3] \in \mathfrak{E}_1$, we have

$$(W_{\mathfrak{a}} \circ B(t, u, v, k))^{\sigma_{\ell}} = \begin{cases} W_{\ell \mathfrak{a}} \circ B(t, u, v, k) & \text{if } t = N, \\ W_{\mathfrak{a}} \circ B(t, \ell^* u, \ell v, \ell k) & \text{if } t \neq N, \end{cases}$$

where $\ell \mathfrak{a} = [\{\ell a_1\}, \{\ell a_2\}, \{\ell a_3\}].$

(ii) For a tuple $\mathfrak{A} = [\mathfrak{a}_1, \dots, \mathfrak{a}_n]$ $(\mathfrak{a}_i \in \mathfrak{E}_1)$, we have

$$(T_{\mathfrak{A},F} \circ B(t,u,v,k))^{\sigma_{\ell}} = \begin{cases} T_{\mathfrak{A},F} \circ B(t,u,v,k) & \text{if } t = N, \\ T_{\mathfrak{A},F} \circ B(t,\ell^*u,\ell v,\ell k) & \text{if } t \neq N. \end{cases}$$

Proof. By definition of $W_{\mathfrak{a}}$ we have

$$W_{\mathfrak{a}}(\tau) = \frac{\phi_{a_1}(\tau) - \phi_{a_3}(\tau)}{\phi_{a_2}(\tau) - \phi_{a_3}(\tau)}.$$

Therefore, (i) follows from Lemma 3.2 and (ii) is obvious from (i) and Proposition 2.1.

It is noted that for t = 1, N to obtain the results in Proposition 3.4, we do not need the condition $\mathfrak{a}_i \in \mathfrak{E}_1$.

Proposition 3.5. For \mathfrak{A} with $\mathfrak{a}_i \in \mathfrak{E}$, $T_{\mathfrak{A},F}$ and $T_{\mathfrak{A},F} \circ B(1,1,1,-1)$ have Fourier coefficients in \mathbb{Q} .

Proof. Since $B(N, u, v, k) \in \Gamma_0(N)$, by Proposition 3.4 (ii), $T_{\mathfrak{A},F}^{\sigma_{\ell}} = T_{\mathfrak{A},F}$. By the same proposition, we have $(T_{\mathfrak{A},F} \circ B(1,1,1,-1))^{\sigma_{\ell}} = T_{\mathfrak{A},F} \circ B(1,\ell^*,\ell,-\ell)$. Since $B(1,1,1,-1)B(1,\ell^*,\ell,-\ell)^{-1} \in \Gamma_0(N)$, we see $(T_{\mathfrak{A},F} \circ B(1,1,1,-1))^{\sigma_{\ell}} = T_{\mathfrak{A},F} \circ B(1,1,1,-1)$. □

Put

$$\Phi[W_{\mathfrak{a}}](X,j) = X^{\Psi_1(N)} + \sum_{i=1}^{\Psi_1(N)} C[\mathfrak{a}]_i X^{\Psi_1(N)-i},$$

$$\Phi_{\mathfrak{A},F}(X,j) = X^{\Psi_0(N)} + \sum_{i=1}^{\Psi_0(N)} C_{\mathfrak{A},i} X^{\Psi_0(N)-i},$$

where
$$\Psi_0(N) = [\mathrm{SL}_2(\mathbf{Z}) : \Gamma_0(N)] = N \prod_{p|N} \left(1 + \frac{1}{p}\right), \ \Psi_1(N) = [\mathrm{SL}_2(\mathbf{Z}) :$$

$$\Gamma_1(N)$$
] = $\frac{\varphi(N)\Psi_0(N)}{2}$ and p are prime divisors of N .

Theorem 3.6. (i) If $\mathfrak{a} \in \mathfrak{E}_1$, then the modular equation $\Phi[W_{\mathfrak{a}}] \in \mathbf{Q}[j][X]$. Further if N is odd and $\mathfrak{a} \in \mathfrak{E}_2$, then $\Phi[W_{\mathfrak{a}}] \in \mathbf{Z}[j][X]$.

(ii) Let $\mathfrak{A} = [\mathfrak{a}_1, \dots, \mathfrak{a}_n]$. If $\mathfrak{a}_k \in \mathfrak{E}_1$ for all k, then the modular equation $\Phi_{\mathfrak{A},F} \in \mathbf{Q}[j][X]$. Further if N is odd and $\mathfrak{a}_k \in \mathfrak{E}_2$ for all k, then $\Phi_{\mathfrak{A},F} \in \mathbf{Z}[j][X]$.

Proof. We know the coefficients $C[\mathfrak{a}]_i$, $C_{\mathfrak{A},i} \in \mathbf{Q}(\zeta)((q))$. To show (i), we have only to prove that they are invariant under the action of σ_{ℓ} for all ℓ prime to N. By (i) of Proposition 2.1, we see $W_{\mathfrak{a}} \circ (M_{\lambda}B) = W_{\lambda\mathfrak{a}} \circ B$. Thus by Proposition 3.4, we have

$$(W_{\mathfrak{a}} \circ (M_{\lambda}B(t, u, v, k)))^{\sigma_{\ell}} = \begin{cases} W_{\mathfrak{a}} \circ (M_{\overline{\ell}\lambda}B(t, u, v, k)) & \text{if } t = N, \\ W_{\mathfrak{a}} \circ (M_{\lambda}B(t, \ell^*u, \ell v, \ell k)) & \text{if } t \neq N, \end{cases}$$

where $\overline{\ell}$ is the element of \mathfrak{S}_N induced by ℓ . Since $C[\mathfrak{a}]_i$ is an elementary symmetric polynomial of $W_{\mathfrak{a}} \circ (M_{\lambda} B(t, u, v, k))$, we know that $C[\mathfrak{a}]_i^{\sigma_{\ell}} = C[\mathfrak{a}]_i$. Therefore We have $C[\mathfrak{a}]_i \in \mathbb{Q}[j]$. Assume that N is odd. Let us consider the q-expansions of the function $\phi_a[B]_2 - \phi_b[B]_2$ for $a, b \in \mathbb{Z}$, $(ab(a \pm b), N) = 1$ and

 $B \in \mathfrak{M}_{\Theta_t}$. First of all, let $t \neq N$. Then $\{at\} \neq \{bt\}$. Let $l = \min(\{at\}, \{bt\})$. Then by (1), for an integer s

$$\phi_a[B]_2(\tau) - \phi_b[B]_2 = \pm \zeta^s q^l + O(q^{l+1}) \in \mathbf{Z}[\zeta][[q]].$$

Thus, $W_{\mathfrak{a}} \circ B \in \mathbf{Z}[\zeta]((q))$. Next we shall consider the case t = N. We can take $M_{\Theta_N} = \{\begin{pmatrix} 1 & 0 \\ N & 1 \end{pmatrix}\}$. Put $B = \begin{pmatrix} 1 & 0 \\ N & 1 \end{pmatrix}$. By (1), we see

$$\phi_{a}[B]_{2}(\tau) - \phi_{b}[B]_{2}$$

$$= \frac{\zeta^{a}(1 - \zeta^{b-a})(1 - \zeta^{b+a})}{(1 - \zeta^{a})^{2}(1 - \zeta^{b})^{2}}$$

$$- \sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n\{(1 - \zeta^{an})(1 - \zeta^{-an}) - (1 - \zeta^{bn})(1 - \zeta^{-bn})\}q^{mnN}.$$

Let

$$\theta_{a,b} = \frac{\zeta^a (1 - \zeta^{b-a})(1 - \zeta^{b+a})}{(1 - \zeta^a)^2 (1 - \zeta^b)^2},$$

$$h(q) = -\sum_{m=1}^{\infty} \sum_{n=1}^{\infty} n\{(1 - \zeta^{an})(1 - \zeta^{-an}) - (1 - \zeta^{bn})(1 - \zeta^{-bn})\}q^{mnN}.$$

Then

$$\phi_a[B]_2 - \phi_b[B]_2 = \theta_{a,b} \left(1 - \frac{1}{\theta_{a,b}} h(q)\right).$$

Since $\frac{1-\zeta^s}{1-\zeta^r} \in \mathbf{Z}[\zeta]^{\times}$ for integers r, s such that (rs, N) = 1, we see

$$\frac{1}{\theta_{a,b}} = \frac{(1-\zeta^a)(1-\zeta^b)}{\zeta^a(1-\zeta^{b-a})(1-\zeta^{b+a})}(1-\zeta^a)(1-\zeta^b) \in \mathbf{Z}[\zeta].$$

Therefore for some $h(q), f(q) \in \mathbf{Z}[\zeta][[q]]$

$$W_{\mathfrak{a}} \circ B = \frac{\theta_{a_1,a_3}(1-h(q))}{\theta_{a_2,a_3}(1-f(q))} = \frac{\theta_{a_1,3}}{\theta_{a_2,3}}(1+f(q)+f(q)^2+\cdots)(1-h(q)).$$

Since

$$\frac{\theta_{a_{1,3}}}{\theta_{a_{2,3}}} = \frac{\zeta^{a_{1}}}{\zeta^{a_{2}}} \left(\frac{1 - \zeta^{a_{2}}}{1 - \zeta^{a_{1}}} \right)^{2} \frac{(1 - \zeta^{a_{3} - a_{1}})(1 - \zeta^{a_{3} + a_{1}})}{(1 - \zeta^{a_{3} - a_{2}})(1 - \zeta^{a_{3} + a_{2}})} \in \mathbf{Z}[\zeta]^{\times},$$

 $W_{\mathfrak{a}} \circ B \in \mathbf{Z}[\zeta][[q]]$. Therefore by (i) of Proposition 2.1, we have $W_{\mathfrak{a}} \circ (M_{\lambda}B) \in \mathbf{Z}[\zeta]((q))$ for all $\lambda \in \mathfrak{S}_n$ and $B \in \bigcup_{t \mid N} \Theta_t$. Thus $C[\mathfrak{a}]_i \in \mathbf{Z}[\zeta]((q))$. By applying the above argument, we have $C[\mathfrak{a}]_i \in \mathbf{Z}[j]$. This shows (i). Next we shall prove (ii). By (ii) of Proposition 3.4, we have

$$\{(T_{\mathfrak{A},F} \circ B)^{\sigma_{\ell}} \mid B \in \mathfrak{M}_{\Theta_t}\} = \{T_{\mathfrak{A},F} \circ B \mid B \in \mathfrak{M}_{\ell\Theta_t}\}.$$

Since $\bigcup_{t|N} \mathfrak{M}_{\ell\Theta_t}$ is a transversal of coset decomposition of $\mathrm{SL}_2(\mathbf{Z})$ by $\Gamma_0(N)$, we obtain $C_{\mathfrak{A},i}^{\sigma_\ell} = C_{\mathfrak{A},i}$. This shows $C_{\mathfrak{A},i} \in \mathbf{Q}[j]$. If N is odd and $\mathfrak{a} \in \mathfrak{E}_2$, $\lambda \in \mathfrak{S}_N$, then $\lambda \mathfrak{a} \in \mathfrak{E}_2$. Proposition 2.1 shows $T_{\mathfrak{A},F} \circ B \in \mathbf{Z}[\zeta]((q))$. Therefore $C_{\mathfrak{A},i} \in \mathbf{Z}[\zeta]((q))$. Since $C_{\mathfrak{A},i}^{\sigma_\ell} = C_{\mathfrak{A},i}$, this shows $C_{\mathfrak{A},i} \in \mathbf{Z}[j]$.

Let K be an imaginary quadratic field and \mathfrak{K}_N the ray class field modulo N over K.

Theorem 3.7. Assume that N is odd. Let α be an element of \mathfrak{H} such that $K = \mathbf{Q}(\alpha)$.

- (i) If $\mathfrak{a} \in \mathfrak{E}_2$, then $W_{\mathfrak{a}}(\alpha)$ is a unit of \mathfrak{K}_N .
- (ii) Let $\mathfrak{A} = [\mathfrak{a}_1, \dots, \mathfrak{a}_n]$. If $\mathfrak{a}_k \in \mathfrak{E}_2$ for all k, then $T_{\mathfrak{A},F}(\alpha)$ is an algebraic integer of \mathfrak{K}_N .

Proof. By Complex multiplication theory, $j(\alpha)$ is an algebraic integer. Theorem 3.6 shows that $\Phi[W_{\mathfrak{a}}](X,j(\alpha))$ and $\Phi_{\mathfrak{A},F}(X,j(\alpha))$ are monic polynomials with algebraic integer coefficients. Thus $W_{\mathfrak{a}}(\alpha), T_{\mathfrak{A},F}(\alpha)$ are algebraic integers. By Corollary to Theorem 2 in §10.1 of [6], they are in \mathfrak{K}_N . Let $\mathfrak{a}' = [a_2, a_1, a_3]$. Since $W_{\mathfrak{a}}^{-1} = W_{\mathfrak{a}'}$ and $\mathfrak{a}' \in \mathfrak{E}_2$, $W_{\mathfrak{a}}(\alpha)^{-1}$ is an algebraic integer. Hence it is a unit.

4 Ray class field and ring class field

Let K be a subfield of \mathbb{C} and Γ a subgroup of $\mathrm{SL}_2(\mathbf{Z})$ of finite index. We denote by $A(\Gamma)_K$ the field of all modular functions with respect to Γ having Fourier coefficients in K. Further put $A_0(N)_K = A(\Gamma_0(N))_K$, $A_1(N)_K = A(\Gamma_1(N))_K$. Let $\zeta = \exp(2\pi i/N)$.

Proposition 4.1. Put $\mathfrak{a}_1 = [2, 3, 1], \mathfrak{a}_2 = [2, 5, 1].$ If $N \ge 11, N \ne 12$, then $A_1(N)_{\mathbf{Q}(\zeta)} = \mathbf{Q}(\zeta)(j, W_{\mathfrak{a}_1}) = \mathbf{Q}(\zeta)(j, W_{\mathfrak{a}_2}) = \mathbf{Q}(\zeta)(W_{\mathfrak{a}_1}, W_{\mathfrak{a}_2}).$

Proof. The assertion is deduced from the result $A_1(N)_{\mathbf{C}} = \mathbf{C}(j, W_{\mathfrak{a}_i}) = \mathbf{C}(W_{\mathfrak{a}_1}, W_{\mathfrak{a}_2})$ and $W_{\mathfrak{a}_i} \in A_1(N)_{\mathbf{Q}(\zeta)} (i = 1, 2)$ in Lemma 1 and Theorems 1 and 5 of [4].

Let m and n be non-negative integers. Put $F = X_1^m X_2^n$ and $\mathfrak{A} = [\mathfrak{a}_1, \mathfrak{a}_2]$ with $\mathfrak{a}_1 = [2, 3, 1], \mathfrak{a}_2 = [2, 5, 1]$. For a while we shall consider the function $T_{\mathfrak{A},F}$. By Theorem 3.2 of [5], for any $\mathfrak{b} = [b_1,b_2,b_3] \in \mathfrak{E}$, the order of the q-expansion of $W_{\mathfrak{b}}$ at the point u/t is equal to $\min(\{tb_1\},\{tb_3\}) - \min(\{tb_2\},\{tb_3\})$. In particular, the order of q-expansion of $W_{\mathfrak{b}} \circ B(t,u,v,k)$ depends only on t and it equals to that of $W_{\mathfrak{b}}$ at the point 1/t. For any integers a,b and c, we see $\{\{ab\}c\} = \{a\{bc\}\}\}$. Thus the order of q-expansion of $W_{\mathfrak{a}_i} \circ B(t,u,v,k)$ is that of $W_{\mathfrak{a}_i}$ at the point $1/\{\lambda t\}$. Let $\omega_i(\ell)$ be the order of q-expansion of $W_{\mathfrak{a}_i}$ at the point $1/\ell$ for $\ell \in \mathbb{Z}$, $1 \leq \ell \leq N/2$. By §3 of [4], we know $\omega_i(\ell) < 0$ if and only if $\ell > \frac{2N}{5}$ (resp. $\frac{3N}{7}$) for i = 1 (resp. i = 2). We have $\omega_i(\ell) = (i+1)N - (2i+3)\ell$ for $2N/5 < \ell \leq N/2$ and ,in this range, obviously $\omega_i(\ell)$ is a strictly decreasing function of ℓ . Furthermore $\omega_i(\ell) \equiv 0 \mod (\ell, N)$.

Proposition 4.2. Assume that N is a prime number and N > 7. Put $\mathfrak{a}_1 = [2, 3, 1], \mathfrak{a}_2 = [2, 5, 1]$ and $\mathfrak{a}_3 = [1, (N-3)/2, (N-1)/2]$. Then for i = 1, 3 and j = 1, 2, 3

$$A_0(N)_{\mathbf{Q}} = \mathbf{Q}(T_{\mathfrak{a}_i}, T_{\mathfrak{a}_2}) = \mathbf{Q}(T_{\mathfrak{a}_j}, T_{\mathfrak{a}_1, \mathfrak{a}_2}).$$

Proof. Put $T_i = T_{\mathfrak{a}_i}$ for i = 1, 2, 3 and $T_4 = T_{\mathfrak{a}_1,\mathfrak{a}_2}$. Since N is a prime number, the group $\Gamma_0(N)$ has two cusps represented by $i\infty$ and 1. By Theorem 3.2 of [5], for any $\mathfrak{b} = [b_1, b_2, b_3] \in \mathfrak{E}$, $W_{\mathfrak{b}}$ is regular at the point $i\infty$. Therefore the functions T_i ($i = 1, \ldots, 4$) are regular at $i\infty$. Let us denote by d_i the order of the pole of T_i at the cusp 1. We know $\omega_i(\lambda)$ has the smallest value only for $\lambda = (N-1)/2$. Thus, we have $d_1 = (N-5)/2$, $d_2 = (N-7)/2$ and $d_4 = N-6$. Let us determine d_3 . The function $W_{\mathfrak{a}_3}$ has a pole of order (N-5)/2 at 1. Let $\lambda > 1$. The function $W_{\lambda\mathfrak{a}_3}$ has a pole at 1 if $\lambda < \{\lambda(N-1)/2\} < \{\lambda(N-3)/2\}$ or $\lambda < \{\lambda(N-3)/2\} < \{\lambda(N-1)/2\}$. In the former case, the order d_{λ} of pole of $W_{\mathfrak{a}_3}$ at $1/\lambda$ is $\{\lambda(N-1)/2\} - \lambda$. Since $\{\lambda(N-1)/2\} < \{\lambda(N-3)/2\}$, we know $\{\lambda(N-1)/2\} \le (N-3)/2$. Thus $d_{\lambda} < (N-5)/2$. In the latter case, $d_{\lambda} = \{\lambda(N-3)/2\} - \lambda$. Since $\lambda > 1$, $\{\lambda(N-3)/2\} \le (N-3)/2$, we know $d_{\lambda} < (N-5)/2$. Therefore we have $d_3 = (N-5)/2$. Proposition 3.5 shows that $T_i \in A_0(N)_{\mathbf{Q}}$. Since the modular curve $X_0(N)$ of $\Gamma_0(N)$ is defined over \mathbf{Q} , by Proposition 2.6 (a) in

Chapter II of [9], $d_i = [A_0(N)_{\mathbf{Q}} : \mathbf{Q}(T_i)]$. Since ((N-5)/2, (N-7)/2) = 1 and ((N-5)(N-7), (N-6)) = 1, we have our assertion.

Theorem 4.3. Let m and n be non-negative integers. Assume that N does not divide 5m + 7n (resp. 2(5m + 7n)) and N > 9 (resp. 36) in the case N is odd (resp. even). Put $\mathfrak{A} = [\mathfrak{a}_1, \mathfrak{a}_2]$ and $F = X_1^m X_2^n$. Further assume that $N \not\equiv 0 \mod 4$ in the case m+n is even. Then we have $A_0(N)_{\mathbf{Q}} = \mathbf{Q}(j, T_{\mathfrak{A},F})$.

Proof. Put $T = T_{\mathfrak{A},F}$. By Theorem 3 of Chapter 6 of [6], the field $A(\Gamma(N))_{\mathbf{Q}(\zeta)}$ is a Galois extension over $\mathbf{Q}(j)$ with the Galois group $\mathrm{GL}_2(\mathbf{Z}/N\mathbf{Z})/\{\pm E_2\}$ and the field $A_0(N)_{\mathbf{Q}}$ is the fixed field of the subgroup $\left\{\begin{pmatrix} * & * \\ 0 & * \end{pmatrix}\right\}/\{\pm E_2\}$. Since $T \in A_0(N)_{\mathbb{Q}}$, to prove the assertions, it is sufficient to show that if $T \circ A = T$ for $A \in SL_2(\mathbf{Z})$, then $A \in \Gamma_0(N)$. Let us consider the transversal $\{B(t,u,v,k)\}\$ of the coset decomposition of $\mathrm{SL}_2(\mathbf{Z})$ by $\Gamma_0(N)$. Let $\omega(\ell)$ be the order of q-expansion of $W_{\mathfrak{a}_1}^m W_{\mathfrak{a}_2}^n$ at the point $1/\ell$. Then obviously $\omega(\ell) = m\omega_1(\ell) + n\omega_2(\ell)$. Let t be a divisor of N. If λ runs over \mathfrak{S}_N , then $\{\lambda t\}$ runs over all integers u such that $0 \le u \le N/2$, (u, N) = t. Therefore $d \ge 1$ $\min\{\omega(\ell)\mid 0\leq \ell\leq N/2,\ (\ell,N)=u\}$. Furthermore if $\omega(\ell)$ has the smallest value for only one ℓ , then we have equality. Let u_t be the greatest integer such that $(u_t, N) = t$ and $u_t \leq N/2$. Let $t \neq N$. Assume that $T \circ B(t, u, v, k) = T$. Put $L = B(1, 1, 1, -1) = \begin{pmatrix} 1 & -1 \\ 1 & 0 \end{pmatrix}$. Then $T \circ (B(t, u, v, k)L) = T \circ L$. We know $B(t, u, v, k)L = \begin{pmatrix} & * & * \\ t(k+1) + v & -t \end{pmatrix}$. Let $\delta = (t(k+1) + v, N)$. Then we can take an integer ξ so that $\xi((k+1)t+v) + \delta t \equiv 0 \mod N$ and $(\xi, \delta) = 1$. For an integer η such that $\xi \eta \equiv 1 \mod \delta$, put $A = \begin{pmatrix} \eta & (\xi \eta - 1)/\delta \\ \delta & \xi \end{pmatrix}$. Since $B(t,u,v,k)LA^{-1}\in\Gamma_0(N)$, we have $T\circ A=T\circ L$. Let d be the order of q-expansion of $T \circ A$ and d_1 the order of q-expansion of $T \circ L$. In particular, the assumption implies that $d = d_1 \equiv 0 \mod \delta$. In the case $\delta \neq 1$, we shall show that $d \neq d_1$. If N is even, then $u_{N/2} = N/2$. If $\delta \neq N/2$, then u_{δ} is as follows.

$N \mod 4$	$N/\delta \mod 4$	u_1	u_{δ}
1,3	1, 3	(N-1)/2	$(N-\delta)/2$
2	0, 2	(N-4)/2	$(N-4\delta)/2$
2	1, 3	(N-4)/2	$(N-\delta)/2$
0	1, 3	(N-2)/2	$(N-\delta)/2$
0	2	(N-2)/2	$(N-4\delta)/2$
0	0	(N-2)/2	$(N-2\delta)/2$

If we put $u_1 = (N - \epsilon)/2$ with $\epsilon = 1$ (resp. 2,4) in the case N is odd (resp. even), we see easily $d_1 = \omega(u_1) = ((5m + 7n)\epsilon - (m + n)N)/2$ and $d \ge \min(0, \omega(u_\delta))$. It is noted that our assumption implies $d_1 < 0$. If $\delta = N$, then $d \ge 0$. Thus $d \ne d_1$. If $\delta = N/2$, then $d \equiv 0 \mod N/2$. By assumption, $d_1 \not\equiv 0 \mod N/2$. This implies $d \ne d_1$. Let $\delta \ne 1, N/2, N$. Except the case $N \equiv 2 \mod 4$ and $\delta = 2$, we have $u_\delta < u_1$. Thus $d \ne d_1$. In the exceptional case, we have $u_\delta > u_1$. Since there exists only one λ such that $\{2\lambda\} = u_2$, we have $d < d_1$. Let us consider the case $\delta = 1$. Then $d = d_1$. By (1), for a matrix $M = \begin{pmatrix} * & * \\ 1 & k \end{pmatrix}$ of $\mathrm{SL}_2(\mathbf{Z})$ and $0 < s \le N/2$, we have

$$\varphi_s \circ M = \zeta^{s^*} q^s + \zeta^{-s^*} q^{N-s} + 2\zeta^{2s^*} q^{2s} + 2\zeta^{-2s^*} q^{2(N-s)} - q^N + \text{(higher terms)},$$

where $s^* = \mu(s)sk = sk$. If we put $s = s_r = \{ru_1\}$ for r = 1, 2, 3, 5, then $s_r = (N - r\epsilon)/2, s_r^* = ru_1k$ for r = 1, 3, 5 and $s_2 = \epsilon, s_2^* = -2u_1k$. Since $(N - \epsilon)/2 > 2\epsilon$, we have

$$(\varphi_{s_{2}} - \varphi_{s_{1}}) \circ M = \zeta^{-2u_{1}k} q^{\epsilon} (1 + 2\zeta^{-2u_{1}k} q^{\epsilon} + O(q^{\epsilon+1})),$$

$$(\varphi_{s_{3}} - \varphi_{s_{1}}) \circ M = \zeta^{3u_{1}k} q^{(N-3\epsilon)/2} (1 - \zeta^{-2u_{1}k} q^{\epsilon} + O(q^{\epsilon+1})),$$

$$(\varphi_{s_{5}} - \varphi_{s_{1}}) \circ M = \zeta^{5u_{1}k} q^{(N-5\epsilon)/2} (1 + O(q^{\epsilon+1})),$$
(2)

where the notation $O(q^n)$ denotes a q-series of order greater than or equal to n. Because the assumption for N implies $d_1 + \epsilon < 0$, $\omega(u_1 - 1)$, we see by (2),

$$T \circ M = \zeta^{-(5m+7n)u_1k} q^{d_1} (1 + (3m+2n)\zeta^{-2u_1k} q^{\epsilon} + O(q^{\epsilon+1})).$$

If we compare the coefficients of $T \circ A$ $(k = \xi)$ with those of $T \circ L(k = 0)$, we see $\zeta^{-(5m+7n)u_1\xi} = \zeta^{-2u_1\xi} = 1$. If (5m+7n) is odd, then, since $(u_1, N) = 1$, we have $\xi \equiv 0 \mod N$. Since $\xi(t(k+1)+v)+t \equiv 0 \mod N$, we have $t \equiv 0$

mod N. This gives a contradiction. Obviously if (5m+7n,N)=1, we have also a contradiction. For the case 5m+7n is even, we have $\zeta^{-2u_1\xi}=1$. This shows $2t\equiv 0 \mod N$. Therefore if N is odd, we have a contradiction. Let $N\equiv 2 \mod 4$ and t=N/2. It is noted $\Theta_{N/2}=\{B(N/2,1,1,k)\mid k=0,1\}$. Since (N/2,2)=1, we can take integers x and y such that (N/2)x+2y=1. Consider a matrix $A=\begin{pmatrix} x & -1\\ 2y & t \end{pmatrix}$ of $\mathrm{SL}_2(\mathbf{Z})$. It is easy to see that $B(N/2,1,1,k)AB(1,1,1,k(N/2)^2-1)^{-1}$, $AB(2,1,1,-y)^{-1}\in\Gamma_0(N)$. Therefore we have $T\circ B(1,1,1,k(N/2)^2-1)=T\circ B(2,1,1,-y)$. However the above argument for $N\equiv 2 \mod 4$ and $\delta=2$ shows the order of q-expansions of the functions $T\circ B(1,1,1,k(N/2)^2-1)$ and $T\circ B(2,1,1,-y)$ are distinct.

Theorem 4.4. Let $\alpha \in \mathfrak{H}$ such that $\mathbf{Z}[\alpha]$ is a maximal order of K. Further let $\mathfrak{a}_1 = [2, 3, 1]$ and $\mathfrak{a}_2 = [2, 5, 1]$. If N = 11 or $N \geq 13$, then

$$\mathfrak{K}_N = K(\zeta, j(\alpha), W_{\mathfrak{a}_1}(\alpha)) = K(\zeta, j(\alpha), W_{\mathfrak{a}_2}(\alpha)) = K(\zeta, W_{\mathfrak{a}_1}(\alpha), W_{\mathfrak{a}_2}(\alpha)).$$

Proof. Our assertion follows from Theorems 1 and 2 of [3] and Proposition 4.1.

For a positive integer m, let O_m be the order of conductor m of K and R_m the ring class field associated with the order O_m . Consider the group

$$\Gamma^0(N) = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in SL(2, \mathbf{Z}) \middle| b \equiv 0 \mod N \right\}.$$

Proposition 4.5. Let $\theta \in \mathfrak{H}$ such that $O_f = \mathbf{Z}[\theta]$ and $f_{\theta}(X) = X^2 + BX + C$ $(B, C \in \mathbf{Z})$ the minimal polynomial of θ .

- (i) If $h \in A_0(N)_{\mathbf{Q}}$ and h is pole-free at θ , then $h(\theta) \in R_{fN}$.
- (ii) If $h \in A(\Gamma^0(N))_{\mathbf{Q}}$, h is pole-free at θ and N|C, then $h(\theta) \in R_f$.

Proof. Let us use the notation in $\S 2$ of [3]. For a prime number p, consider groups

$$U_p = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{Z}_p) \middle| c \in N\mathbf{Z}_p \right\},$$

$$V_p = \left\{ \begin{pmatrix} a & b \\ c & d \end{pmatrix} \in GL_2(\mathbf{Z}_p) \middle| b \in N\mathbf{Z}_p \right\}.$$

Put $U = \prod_p U_p$, $V = \prod_p V_p$. Then U (resp.V) is the subgroup of $\prod_p \operatorname{GL}_2(\mathbf{Z}_p)$ with fixed field $F_0 = A_0(N)_{\mathbf{Q}}$ (resp. $F^0 = A(\Gamma^0(N))_{\mathbf{Q}}$). Let $O = O_f$ be the order of K of conductor f. By Theorems 5.5 and 5.7 of [8], we have an exact

$$1 \longrightarrow O^* \longrightarrow \prod_{p} O_p^* \longrightarrow \operatorname{Gal}(K^{ab}/K(j(\theta)) \longrightarrow 1.$$

Let $g_{\theta} = \prod_{p} (g_{\theta})_{p} : \prod_{p} O_{p}^{*} \longrightarrow \prod_{p} \operatorname{GL}_{2}(\mathbf{Z}_{p})$ be the map defined by (4) and (5) in [3]. Since by the definition, for $s, t \in \mathbf{Z}_{p}$,

$$(g_{\theta})_p(s\theta+t) = \begin{pmatrix} t - Bs & -Cs \\ s & t \end{pmatrix},$$

we have $(g_{\theta})_{p}^{-1}(U_{p}) = (\mathbf{Z}_{p}^{*} + N\mathbf{Z}_{p}\theta) \cap O_{p}^{*} = (O_{fn})_{p}^{*}$. Therefore we have $g_{\theta}^{-1}(U) = \prod_{p} (O_{Nf})_{p}^{*}$. If N|C, then $(g_{\theta})_{p}^{-1}(V_{p}) = O_{p}^{*}$ and $g_{\theta}^{-1}(V) = \prod_{p} O_{p}^{*}$. By

class field theory the groups $\prod_{p} O_p^*$ and $\prod_{p} (O_{fN})_p^*$ correspond to $\operatorname{Gal}(K^{ab}/R_f)$

and $\operatorname{Gal}(K^{ab}/R_{fN})$ respectively. By Theorem 2 of [3], we see $R_f = K(F^0(\theta))$ and $R_{fN} = K(F_0(\theta))$. Therefore we have our assertions.

Corollary 4.6. Let the notation be the same as in Proposition 4.5. Let $\mathfrak{A} = [\mathfrak{a}_1, \ldots, \mathfrak{a}_n]$ with $\mathfrak{a}_i \in \mathfrak{E}_1$ for all i. Then we have the followings.

(i) $T_{\mathfrak{A},F}(\theta) \in R_{fN}$.

sequence

(ii) If N|C, then $T_{\mathfrak{A},F}(-1/\theta) \in R_f$.

Proof. Since $\Gamma^0(N) = S^{-1}\Gamma_0(N)S$ with $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T_{\mathfrak{A},F} \circ S$ is a modular function with respect to $\Gamma^0(N)$. By the result for t = N in (ii) of Proposition 3.4, we know $T_{\mathfrak{A},F} \in \mathbf{Q}((q))$. Since $B(1,1,1,-1)S^{-1} \in \Gamma_0(N)$, we have $T_{\mathfrak{A},F} \circ S = T_{\mathfrak{A},F} \circ B(1,1,1,-1)$. By Proposition 3.5, we know $T_{\mathfrak{A},F} \in A_0(N)_{\mathbf{Q}}$ and $T_{\mathfrak{A},F} \circ S \in A(\Gamma^0(N))_{\mathbf{Q}}$. Our assertions follow from Proposition 4.5. \square

Theorem 4.7. Put $\mathfrak{a}_1 = [2,3,1]$, $\mathfrak{a}_2 = [2,5,1]$, $\mathfrak{a}_3 = [1,(N-3)/2,(N-1)/2]$ and $\mathfrak{A} = [\mathfrak{a}_1,\mathfrak{a}_2]$. Put $F = X_1^m X_2^n$ with non-negative integers m and n. Let $\theta \in \mathfrak{H}$ such that $O_f = \mathbf{Z}[\theta]$ and $f_{\theta}(X) = X^2 + BX + C$ $(B,C \in \mathbf{Z})$ the minimal polynomial of θ . Then we have followings.

(i) If N is a prime number and N > 7, then

$$R_{fN} = K(T_{\mathfrak{a}_i}(\theta), T_{\mathfrak{a}_2}(\theta)) = K(T_{\mathfrak{a}_j}(\theta), T_{\mathfrak{a}_1, \mathfrak{a}_2}(\theta)),$$

for i = 1, 3 and j = 1, 2, 3. Further if N|C, then

$$R_f = K(T_{\mathfrak{a}_i}(-1/\theta), T_{\mathfrak{a}_2}(-1/\theta)) = K(T_{\mathfrak{a}_i}(-1/\theta), T_{\mathfrak{a}_1, \mathfrak{a}_2}(-1/\theta)),$$

for i = 1, 3 and j = 1, 2, 3.

(ii) Assume that N does not divide 5m + 7n (resp. 4(5m + 7n)) and N > 9 (resp. 36) in the case N is odd (resp. even). Further assume that N is not divided by 4 in the case m + n is even. Then $R_{fN} = K(j(\theta), T_{\mathfrak{A},F}(\theta))$. Further if N|C, then $R_f = K(j(\theta), T_{\mathfrak{A},F}(-1/\theta))$

Proof. In the proof of Propositions 4.5 we showed $R_{Nf} = K(F_0(\theta)), R_f = K(F^0(\theta))$. Therefore the assertions follow from Propositions 4.2 and Theorem 4.3.

5 Class polynomials of $T_{\mathfrak{A},F}$

Let O be the order of conductor f of an imaginary quadratic field K. Let D be the discriminant and C(O) the (proper) ideal class group of O. We denote by h(D) the class number of O. Let $\alpha \in K \cap \mathfrak{H}$ and $AX^2 + BX + C = 0$ be the primitive minimal equation with integral coefficients of α over \mathbb{Q} . If $D = B^2 - 4AC$, then we say α is an element of discriminant D. We put $I_{\alpha} = [A, (-B + \sqrt{D})/2] = \mathbb{Z}A + \mathbb{Z}((-B + \sqrt{D})/2)$. Then I_{α} is an ideal of O. To compute the singular values of the functions $T_{\mathfrak{A},F}$, we use an N-system for O introduced by Schertz [7].

Definition 5.1. Let \mathfrak{N} be a set of h(D) elements $\alpha_i \in K \cap \mathfrak{H}$ of discriminant D. Let $A_iX^2 + B_iX + C_i = 0$ be the primitive integral minimal equation of α_i and $I_{\alpha_i} = [A_i, (-B_i + \sqrt{D})/2]$. We say \mathfrak{N} is an N-system for O if following conditions are satisfied:

- 1. $(A_i, N) = 1$, $N|C_i, B_i \equiv B_j \mod 2N$ for every i, j,
- 2. the set of ideals $\{I_{\alpha_i}\}$ is a transversal of C(O).

Let \mathfrak{N} be an N-system for O. Then by Complex multiplication theory, for each $\alpha_i \in \mathfrak{N}$, $j(\alpha_i)$ is an algebraic integer and generates the ring class field R_f associated with the order of conductor f and they are conjugate to each other over \mathbf{Q} (see §11.D of [1]). For singular values $T_{\mathfrak{A},F}(-1/\alpha_i)$ we have

Theorem 5.2. Let N be a positive integer such that \mathfrak{E}_2 is not empty. Put $\mathfrak{A} = [\mathfrak{a}_1, \ldots, \mathfrak{a}_n]$ with $\mathfrak{a}_i \in \mathfrak{E}_2$. Let $\mathfrak{N} = \{\alpha_i\}$ be an N-system for O. Then we have $T_{\mathfrak{A},F}(-1/\alpha_i) \in R_f$ and they are conjugate to each other over K.

Proof. Since $\Gamma^0(N) = S^{-1}\Gamma_0(N)S$ with $S = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$, $T_{\mathfrak{A},F} \circ S$ is a modular function with respect to $\Gamma^0(N)$. In the proof of Corollary 4.6, we showed $T_{\mathfrak{A},F} \circ S \in \mathbf{Q}((q))$. Therefore the assertion follows from Theorem 3.1 of [2] and Theorem 3.7.

For a modular function $g(\tau)$ with respect to $\Gamma_0(N)$ and an N-system $\mathfrak{N} = \{\alpha_i\}$, we define the class polynomial $H_{\mathfrak{N}}[g](X)$ of $g(\tau)$ by

$$H_{\mathfrak{N}}[g](X) = \prod_{i=1}^{h(D)} (X - g(-1/\alpha_i)).$$

The next assertion follows from Theorem 5.2.

Theorem 5.3. Let O_K be the maximal order of K. Then the class polynomial $H_{\mathfrak{N}}[T_{\mathfrak{A},F}](X) \in O_K[X]$.

Let B be an integer such that $B^2 \equiv D \pmod{4N}$. Proposition 3 of [7] shows the existence of N-system containing the number $(-B+\sqrt{D})/2$. By Lemma 3.1 of [10], we know the class polynomials of a modular function g related to N-systems depend only on integers B, considered mod 2N. We shall fix an N-system containing $(-B+\sqrt{D})/2$ and denote it by \mathfrak{N}_B . In the followings, we give some examples of modular equations and class polynomials of the functions $f = T_{\mathfrak{a}}$ or $T_{\mathfrak{a}_1,\mathfrak{a}_2}$. We shall denote by $H_B(X)$ the class polynomial $H_{\mathfrak{N}_B}[f]$ in the case the function f is clearly indicated and any confusion can not occur.

Example 5.4. (1) Let N = 7, $\mathfrak{a} = [2, 3, 1]$. Consider the function $T_{\mathfrak{a}}$. Then the modular equation $\Phi(X, j)$ of $T_{\mathfrak{a}}$ is given by

$$\Phi(X,j) = X^8 - 36X^7 + 546X^6 - 4592X^5 + 23835X^4 - 80304X^3 + 176050X^2 - (j + 232500)X + 140625 + 8j.$$

(a) Let D = -3, B = 5. Then $h(-3) = 1, \mathfrak{N}_5 = \{(-5 + \sqrt{-3})/2\}$. We have the class polynomial

$$H_5(X) = X - 3(1 + \sqrt{-3})/2.$$

Thus $T_{\mathfrak{a}}((5+\sqrt{-3})/14)=3(1+\sqrt{-3})/2$. Since $j((1+\sqrt{-3})/2)=0$, we have $\Phi(X,0)=(X^2-3X+9)(X^2-11X+25)^3$. In fact, $T_{\mathfrak{a}}((5+\sqrt{-3})/14)$ is a root of the factor $X^2-3X+9=0$.

(b) Let D = -59, B = 5. Then we have h(-59) = 3 and

$$\mathfrak{N}_5 = \{(-5 + \sqrt{-59})/2, (-5 + \sqrt{-59})/6, (23 + \sqrt{-59})/6\}$$

$$H_5(X) = X^3 + \frac{15 - 7\sqrt{-59}}{2}X^2 + \frac{-357 + 45\sqrt{-59}}{2}X + \frac{717 + \sqrt{-59}}{2}.$$

(2) Let $N=13, D=-3, B=7, \mathfrak{a}=[5,3,1]$. Take $\mathfrak{N}_7=\{(-7+\sqrt{-3})/2\}$. Then the modular equation $\Phi(X,j)$ of $T_{\mathfrak{a}}$ and the value $T_{\mathfrak{a}}(7+\sqrt{-3})/26)$ are given by

$$\Phi(X,j) = (X^2 - 9X + 27)(X^4 - 21X^3 + 167X^2 + -604X + 848)^3 - j(X - 7),$$

$$T_a((7 + \sqrt{-3})/26) = (9 + 3\sqrt{-3})/2.$$

Thus in fact $T_{2LF}((7+\sqrt{-3})/26)$ is a root of $X^2-9X+27=0D$

(3) Let N = 11, $\mathfrak{a} = [2, 5, 1], D = -7, B = 9$. Then $\mathfrak{N}_9 = \{(-9 + \sqrt{-7})/2\}$ and we have $T_{\mathfrak{a}}((9 + \sqrt{-7})/44) = (5 + \sqrt{-7})/2$ and the modular equation

$$\begin{split} &\Phi(X,j) = X^{12} - 84X^{11} + 2970X^{10} - 57772X^9 + 680559X^8 - 5062728X^7 \\ &- (22j - 24250028)X^6 + (561j - 75844824)X^5 - (2981j - 157525071)X^4 \\ &- (1177j + 217265444)X^3 + (26477j + 193124250)X^2 \\ &- (j^2 + 31316j + 101227452)X + 18j^2 + 4261j + 24137569. \end{split}$$

Since $j((1+\sqrt{-7})/2) = -15^3$, we have

$$\Phi(X, -15^3) = (X^{10} - 79X^9 + 2567X^8 - 44305X^7 + 438498X^6 - 2515798X^5 + 8237304X^4 - 16425295X^3 + 19561039X^2 + 15914486X + 26848493) \times (X^2 - 5X + 8).$$

Therefore, we know $T_{\mathfrak{a}}((9+\sqrt{-7})/44)$ is a root of the factor X^2-5X+8 .

Example 5.5. Let N=11, $\mathfrak{a}=[2,3,1], \mathfrak{b}=[2,3,5]$. Consider the function $T_{\mathfrak{a},\mathfrak{b}}$. Then we give the coefficients C_i of the modular equation $\Phi(X,j)=X^{12}+$

$$\sum_{i=1}^{12} C_i X^{12-i} \text{ in the table below.}$$

i

(1) Let
$$D = -83$$
, $B = 7$. Then we have $h(-83) = 3$ and
$$\mathfrak{N}_7 = \{(-7 + \sqrt{-83})/2, (-7 + \sqrt{-83})/6, (-29 + \sqrt{-83})/6\},$$
$$H_7(X) = X^3 - (361481 + 7136\sqrt{-83})X^2 + (57020581 + 25984608\sqrt{-83})X + 1683573861 - 404390656\sqrt{-83}.$$

(2) Let
$$D = -39$$
, $B = 7$. Then we have $h(-39) = 4$ and
$$\mathfrak{N}_7 = \{(-7 + \sqrt{-39})/2, (-7 + \sqrt{-39})/4, (-29 + \sqrt{-39})/4, (-51 + \sqrt{-39})/8\}, H_7(X) = X^4 + (-4720 + 231\sqrt{-39})X^3 + (1491643 - 329343\sqrt{-39})X^2/2 + (-38934427 + 9970611\sqrt{-39})X/2 + 64994911 - 47480958\sqrt{-39}.$$

U	C_i	u			
1	3660	2	4754178		
3	21879j + 2517699932	4	8917579j + 450023862255		
5	$10912j^2 - 21727187108j + 28522470464664$				
6	$18536243j^2 + 439266301210j + 155307879800348$				
7	$1419j^3 + 6356028822j^2 - 4268224633178j - 22718073239498472$				
8	$1663761j^3 + 70427463557j^2 - 129554423289764j + 430444117263292143$				
9	$66j^4 - 100966360j^3 + 544875974962j^2 + 1322596244939332j - 4047340123195216100$				
10	$82687j^4 - 2985616392j^3 + 3765768493971j^2 - 9777105305922130j + 21981914597781276930$				
11	$j^5 + 1956838j^4 - 26707875453j^3 + 49826805469384j^2 + 21725643544520963j$				
	-67067772106836815988				
12	$1229j^5 + 29053078j^4 - 41072974661j^3 - 92728235099098j^2 + 68572479313531217j$				
	+93554961663154376449				

Example 5.6. Let
$$N = 17$$
, $\mathfrak{a} = [1, 2, 7]$, $\mathfrak{b} = [1, 2, 3]$. Consider the function $T_{\mathfrak{a}, \mathfrak{b}}$. Let $D = -84$, $B = 8$. Then we have $h(-84) = 4$ and

$$\mathfrak{N}_8 = \{-8 + \sqrt{-21}, (43 + \sqrt{-21})/11, (-8 + \sqrt{-21})/5, (9 + \sqrt{-21})/3\},$$

$$H_8(X) = X^4 + (779 - 157\sqrt{-21})X^3 + (-41194 - 175\sqrt{-21})X^2 + (690208 + 81256\sqrt{-21})X - 3246464 - 566976\sqrt{-21}.$$

References

i C_i

[1] D.Cox, Primes of the form $x^2 + ny^2$, A Wiley-Interscience Publication, John Wiley and Sons,Inc.,1989

- [2] A.Enge and R.Schertz, Constructing elliptic curves over finite fields using double eta-quotients, J.Théor.Nombres Bordeaux 16 (2004), 555–568.
- [3] A.Gee, Class invariants by Shimura's reciprocity law, J.Théor.Nombres Bordeaux 11 (1990),45-72.
- [4] N.Ishida and N.Ishii, Generators and defining equation of the modular function field of the group $\Gamma_1(N)$, Acta Arith. 101.4 (2002),303-320.
- [5] N.Ishii, Rational expression for J-invariant function in terms of generators of modular function fields, Int.Math. Forum 2 (2007) no. 38, 1877 1894.
- [6] S.Lang, Elliptic Functions, Springer-verlag, 1987.
- [7] R.Schertz, Weber's class invariants revisited, J.Théor. Nombres de Bordeaux 14(1) (2002), 325–343.
- [8] G.Shimura, Introduction to the Arithmetic Theory of Automorphic Functions, Iwanami-Shoten and Princeton University Press,1971.
- [9] J.Silverman, The Arithmetic of Elliptic curves, Springer-verlag, 1986.
- [10] S.Yoshimura, A.Comuta and N.Ishii, N-systems, class polynomials of double eta-quotients and singular values of j-invariant function, Int.Math.Forum 4 (2009) no.8,367-376.

Faculty of Liberal arts and Sciences Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku Sakai Osaka, 599-8531 Japan e-mail: ishii@las.osakafu-u.ac.jp Graduate School of Science Osaka Prefecture University 1-1 Gakuen-cho, Naka-ku Sakai Osaka, 599-8531 Japan