Computer Science 311 Recitation 3

Weisi Fan

Alvin Chon

02-15-2020

1 Review Notes

Please review the methods of solving recurrences

1. Master Theorem

Let a > 1 and b > 1 be constants, let f(n) be a function, and let T(n) be defined on the nonnegative integers by the recurrence

$$T(n) = aT(n/b) + f(n)$$

- a) If $f(n) = O(n^{\log_b a \epsilon})$ for some constant $\epsilon > 0$, then $T(n) = \Theta(n^{\log_b a})$
- b) If $f(n) = O(n^{\log_b a})$, then $T(n) = \Theta(n^{\log_b a} \log n)$
- c) If $f(n) = O(n^{\log_b a + \epsilon})$ for some constant $\epsilon > 0$, and if $af(n/b) \le cf(n)$ for some constant c < 1 and all sufficiently large n, then $T(n) = \Theta(f(n))$

2. Substitution

Guess a bound and then use mathematical induction to prove that guess is correct. Remember that you must solve the exact form of your guess.

3. Recursion Tree

Convert the recurrence into a tree whose nodes represent the costs incurred at various levels of the recursion. Then add up the work over all nodes in the tree.

2 Master Theorem Practice

4 practice problems, 1 for each case of the Master Theorem. Decide which problem is which case (a, b, or c) from the Review Notes section.

So why are there 4 problems? It helps to write out what a, b, and f(n) are. Take about 6 mins and then we'll discuss them. Solutions are at the end of the document.

- 1. $T(n) = T(\frac{n}{2}) + 2^n$
- 2. $T(n) = 3T(\frac{n}{2}) + n$
- 3. $T(n) = 64T(\frac{n}{8}) nlgn$
- 4. $T(n) = 4T(\frac{n}{2}) + n^2$

3 Solving Recurrences

3.1 False Proof: Pitfall

 $T(n) = 2T(\frac{n}{2}) + n$

We know this is O(nlgn) where the base of the log is 2.

Prove T(n) = O(n) by guessing $T(n) \le cn$.

Argue $T(n) \le 2(\frac{cn}{2}) + n = cn + n = O(n)$. This works right?

Unfortunately we had to prove T(n) = O(n) and not T(n) = (c+1)n.

They are not the same thing.

3.2 CHANGING VARIABLES

Changing variables

Consider T(n) defined by the recurrence

$$T(n) = 2T(2^{\lfloor (\lg n)/2 \rfloor}) + \lg n.$$

We simplify the recurrence by changing the variable $n=2^m$

$$T(2^m) = 2T(2^{\lfloor m/2 \rfloor}) + m.$$

By defining $S(m) = T(2^m)$, we obtain the new recurrence

$$S(m) = 2S(|m/2|) + m.$$

It can be shown by mathematical induction that S(m) is in $O(m \lg m)$.

Changing back from
$$S(m)$$
 to $T(n)$, we obtain

$$T(n) = T(2^m) = S(m) = O(m \lg m) = O(\lg n \lg \lg n).$$

3.3 Solve the following recurrences and indicate the running time of each T(n).

- 1. T(n) = T(n/3) + n; T(1) = 1.
- 2. T(n) = T(n-2) + n; T(n) = 1 for $n \le 2$.
- 3. T(n) = 2T(n/2 + 2) + n; T(n) = 1 for $n \le 6$.
- 4. $T(n) = 4T(n/4) + 3\log_4 n$; T(n) = 1 for $n \le 4$.
- 5. $T(n) = T(n-2) + 4 \log n$; T(n) = 1 for $n \le 2$.
- 6. $T(n) = T(\alpha n) + T((1 \alpha)n)$; T(1) = 1 and $0 < \alpha < 1$.

4 Solutions: Master Theorem Practice

$$T(n)=T(\frac{n}{2})+2^n$$
 $a=1,b=2,f(n)=2^n,n^{\log_2 1}=1$ Third case of the Master Theorem. Also, $af(\frac{n}{b})=2^{\frac{n}{2}}\leq 2^n=f(n)$ for all $n>0$. $T(n)=\Theta(2^n)$

$$T(n)=3T(\frac{n}{2})+n$$

$$a=3,b=2,f(n)=n,n^{log_23}=n^{log_23}$$
 First case of the Master Theorem. $T(n)=\Theta(n^{log_23})$

$$T(n) = 64T(\frac{n}{8}) - nlgn$$

 $a = 64, b = 8, f(n) = -nlgn, n^{log_864} = n^2$

Master Theorem does not apply since f(n) is not positive.

$$T(n) = 4T(\frac{n}{2}) + n^2$$

$$a = 4, b = 2, f(n) = n^2, n^{\log_2 4} = n^2$$
Second case of the Master Theorem. $T(n) = \Theta(n^2 \log n)$