a: Numer indeksu:	Grupa ¹ :			
	s. 103	s. 104	s. 105	
	s. 139	s. 140	s. 141	
Logika dla informatyków				
Sprawdzian nr 1, 25 listopada 20 Czas pisania: 30+60 minut	022			
upełnym zbiorem spójników, to w prostokąt poniżej wp	oisz dowolne ta	akie dwa		
$S_1=\{\lnot\},S_2=\{\land\}$				
Zadanie 2 (2 punkty). Niech $\varphi = (\neg p \Leftrightarrow \neg q) \land (p \Rightarrow q)$. W prostokąty poniżej wpisz formuły równoważne φ , odpowiednio w koniunkcyjnej (CNF) i dysjunkcyjnej (DNF)postaci normalnej.				
$(\neg p \lor q) \land (p \lor \neg q)$				
	Logika dla informatyków Sprawdzian nr 1, 25 listopada 20 Czas pisania: $30+60$ minut nie 1 (2 punkty). Jeśli istnieją takie dwa niezupełne zbio upełnym zbiorem spójników, to w prostokąt poniżej wpzeciwnym przypadku wpisz uzasadnienie, dlaczego takie zl $S_1 = \{\neg\}, S_2 = \{\land\}$ nie 2 (2 punkty). Niech $\varphi = (\neg p \Leftrightarrow \neg q) \land (p \Rightarrow q)$. W poważne φ , odpowiednio w koniunkcyjnej (CNF) i dysjunkcy	Logika dla informatyków Sprawdzian nr 1, 25 listopada 2022 Czas pisania: 30+60 minut mie 1 (2 punkty). Jeśli istnieją takie dwa niezupełne zbiory spójników S upełnym zbiorem spójników, to w prostokąt poniżej wpisz dowolne tazeciwnym przypadku wpisz uzasadnienie, dlaczego takie zbiory nie istniej $S_1 = \{\neg\}, S_2 = \{\wedge\}$ mie 2 (2 punkty). Niech $\varphi = (\neg p \Leftrightarrow \neg q) \wedge (p \Rightarrow q)$. W prostokąty poniże ważne φ , odpowiednio w koniunkcyjnej (CNF) i dysjunkcyjnej (DNF) postokąty.	Logika dla informatyków Sprawdzian nr 1, 25 listopada 2022 Czas pisania: $30+60$ minut mie 1 (2 punkty). Jeśli istnieją takie dwa niezupełne zbiory spójników S_1 i S_2 , że upełnym zbiorem spójników, to w prostokąt poniżej wpisz dowolne takie dwa zeciwnym przypadku wpisz uzasadnienie, dlaczego takie zbiory nie istnieją. $S_1 = \{\neg\}, S_2 = \{\wedge\}$ mie 2 (2 punkty). Niech $\varphi = (\neg p \Leftrightarrow \neg q) \wedge (p \Rightarrow q)$. W prostokąty poniżej wpisz ważne φ , odpowiednio w koniunkcyjnej (CNF) i dysjunkcyjnej (DNF)postaci nor	

Zadanie 3 (2 punkty). Wpisz słowo "TAK" w te prostokąty, które odpowiadają logicznym konsekwencjom zbioru formuł $\{p\Rightarrow q, \neg q\}$. W pozostałe prostokąty wpisz słowo "NIE".

 $(p \wedge q) \vee (\neg p \wedge \neg q)$

p	NIE	$\neg p$	TAK
$\neg q \Rightarrow \neg p$	TAK	$\neg q \Rightarrow p$	NIE

 DNF

 $^{^{1}\}mathrm{Prosz}$ ę zakreślić właściwą grupę ćwiczeniową.

Wersja:

Numer	indeksu:	

$Grupa^1$	

s. 103	s. 104	s. 105
s. 139	s. 140	s. 141

Zadanie 6 (5 punktów). Rozważmy odwzorowanie τ przyporządkowujące formułom zbudowanym ze zmiennych zdaniowych ze zbioru V oraz spójników \wedge, \neg formuły zbudowane ze zmiennych z tego samego zbioru oraz spójników \Rightarrow, \neg w następujący sposób.

$$\begin{array}{rcl} \tau(p) &=& p, & \text{dla wszystkich zmiennych } p \in V \\ \tau(\varphi \wedge \psi) &=& \neg(\tau(\varphi) \Rightarrow \neg \tau(\psi)) \\ \tau(\neg \varphi) &=& \neg \tau(\varphi) \end{array}$$

- (a) Sformułuj zasadę indukcji, z której skorzystasz w punkcie b).
- (b) Udowodnij indukcyjnie, że dla wszystkich formuł φ zbudowanych ze zmiennych zdaniowych oraz spójników \wedge , \neg formuły φ oraz $\tau(\varphi)$ są równoważne.

Zadanie 7 (5 punktów).

- (a) Sformułuj zasadę indukcji, z której skorzystasz w punkcie b).
- (b) Udowodnij indukcyjnie, że jeśli wyrazy ciągu spełniają warunki $a_0 = 2$, $a_1 = 5$ i $a_{n+1} = 5a_n 6a_{n-1}$ dla $n \ge 1$, to $a_n = 3^n + 2^n$ dla wszystkich liczb naturalnych n.

Zadanie 8 (5 punktów). Powiemy, że formuła φ rachunku zdań nad zbiorem zmiennych zdaniowych V jest prawie tautologią jeśli istnieje co najwyżej jedno wartościowanie zmiennych ze zbioru V niespełniające φ .

- (a) Czy koniunkcja dowolnych dwóch prawie tautologii jest prawie tautologią? Uzasadnij odpowiedź: podaj dowód lub odpowiedni kontrprzykład.
- (b) Czy alternatywa dowolnych dwóch prawie tautologii jest prawie tautologią? Uzasadnij odpowiedź: podaj dowód lub odpowiedni kontrprzykład.

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Wersj	a:	Numer indeksu:	G	rupa ¹ :		
	<u></u>			s. 103	s. 104	s. 105
)			s. 139	s. 140	s. 141
		Logika dla informat	yków		,	
		Sprawdzian nr 1, 25 listo Czas pisania: 30+60	•			
		ednio w koniunkcyjnej (CNF) i o				
CNF		$(\neg p \lor r) \land (p \lor$	$\neg r)$			
DNF		$(p \wedge r) \lor (\neg p \land$	$\neg r)$			
	nie 2 (2 punkty) temie naturalnej o). W prostokąt poniżej wpisz dow dedukcji.	vód tautologii (p	$\Rightarrow q \Rightarrow$	$rr) \Rightarrow (p$	$h \land q \Rightarrow r)$
nie je	Zadanie 3 (2 punkty). Jeśli istnieją takie dwa zupełne zbiory spójników S_1 i S_2 , że $S_1 \cap S_2$ nie jest zupełnym zbiorem spójników, to w prostokąt poniżej wpisz dowolne takie dwa zbiory. W przeciwnym przypadku wpisz uzasadnienie, dlaczego takie zbiory nie istnieją.					
		$S_1=\{\lnot,\lor\},S_2=\{\lnot$	$\neg, \wedge \}$			

¹Proszę zakreślić właściwą grupę ćwiczeniową.

Zadanie 4 (2 punkty). Wpisz słowo "TAK" w te prostokąty, które odpowiadają logicznym konsekwencjom zbioru formuł $\{p \lor q, \neg p\}$. W pozostałe prostokąty wpisz słowo "NIE".

Zadanie 5 (2 punkty). W prostokąty obok tych zbiorów klauzul, które są sprzeczne, wpisz rezolucyjny dowód sprzeczności danego zbioru. W pozostałe prostokąty wpisz wartościowanie spełniające dany zbiór.

(a)
$$\begin{cases} p \lor q \lor r, \quad \neg q \lor \neg r, \\ \neg r \lor \neg p, \ q \lor \neg r, \ \neg q \lor r \end{cases}$$

$$\sigma(p) = \mathsf{T}, \sigma(q) = \mathsf{F}, \sigma(r) = \mathsf{F}$$

(b)
$$\{p \lor q \lor r, \neg q \lor \neg r, \\ r \lor \neg p, \ q \lor \neg r, \neg q \lor r\}$$

$$\{p \lor q \lor r, \neg q \lor \neg r, \\ r \lor \neg p, \ q \lor \neg r, \neg q \lor r\}$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 6. \neg r \qquad \text{Res.}(2, 4)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 6. \neg r \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 6. \neg r \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 6. \neg r \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 6. \neg r \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 6. \neg r \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 6. \neg r \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 6. \neg r \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 7. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor r, \neg q \lor r, \\ 9. \neg q \qquad \text{Res.}(5, 6)$$

$$\{p \lor q \lor q, \\ 9. \neg q,$$

1. $p \lor q \lor r$

Wersj	a

U
$\overline{\mathbf{D}}$

$Grupa^1$

s. 103	s. 104	s. 105
s. 139	s. 140	s. 141

Zadanie 6 (5 punktów).

- (a) Sformułuj zasadę indukcji, z której skorzystasz w punkcie b).
- (b) Udowodnij indukcyjnie, że jeśli wyrazy ciągu spełniają warunki $a_0 = 0$, $a_1 = 2$ i $a_{n+1} = 4a_n 4a_{n-1}$ dla $n \ge 1$, to $a_n = n2^n$ dla wszystkich liczb naturalnych n.

Zadanie 7 (5 punktów). Rozważmy odwzorowanie F przyporządkowujące formułom zbudowanym ze zmiennych zdaniowych ze zbioru V oraz spójników \vee , \neg formuły zbudowane ze zmiennych z tego samego zbioru oraz spójników \Rightarrow , \neg w następujący sposób.

$$F(p)=p,$$
 dla wszystkich zmiennych $p\in V$
$$F(\varphi\vee\psi)=\neg F(\varphi)\Rightarrow F(\psi)$$

$$F(\neg\varphi)=\neg F(\varphi)$$

- (a) Sformułuj zasadę indukcji, z której skorzystasz w punkcie b).
- (b) Udowodnij indukcyjnie, że dla wszystkich formuł φ zbudowanych ze zmiennych zdaniowych oraz spójników \vee , \neg formuły φ oraz $F(\varphi)$ są równoważne.

Zadanie 8 (5 punktów). Powiemy, że formuła φ rachunku zdań nad zbiorem zmiennych zdaniowych V jest prawie sprzeczna jeśli istnieje co najwyżej jedno wartościowanie zmiennych ze zbioru V spełniające φ .

- (a) Czy koniunkcja dowolnych dwóch prawie sprzecznych formuł jest prawie sprzeczna? Uzasadnij odpowiedź: podaj dowód lub odpowiedni kontrprzykład.
- (b) Czy alternatywa dowolnych dwóch prawie sprzecznych formuł jest prawie sprzeczna? Uzasadnij odpowiedź: podaj dowód lub odpowiedni kontrprzykład.

¹Proszę zakreślić właściwą grupę ćwiczeniową.