Digital Signal Processing for Music Part 15: Digital Filters I

alexander lerch

introduction 1/2

filter — broad description

system that amplifies or attenuates certain components/aspects of a signal

filter — narrow

linear time-invariant system for changing the magnitude and phase of specific frequency regions

- example for other type of filters:
 - adaptive and time-variant (e.g., denoising)
- examples for "real-world" filters
 - reverberation
 - absorption
 - echo

introduction 1/2

filter — broad description

system that amplifies or attenuates certain components/aspects of a signal

filter — narrow

linear time-invariant system for changing the magnitude and phase of specific frequency regions

- example for other type of filters
 - adaptive and time-variant (e.g., denoising)
- examples for "real-world" filters
 - reverberation
 - absorption
 - echo

introduction 1/2

filter — broad description

system that amplifies or attenuates certain components/aspects of a signal

filter — narrow

linear time-invariant system for changing the magnitude and phase of specific frequency regions

- example for other type of filters:
 - adaptive and time-variant (e.g., denoising)
- examples for "real-world" filters
 - reverberation
 - absorption
 - echo

introduction 2/2

- audio equalization
 - parametric EQs
 - graphic EQs

introduction 2/2

- audio equalization
 - parametric EQs
 - graphic EQs
- removal of unwanted components
 - remove DC, rumble
 - remove hum
 - remove hiss

introduction 2/2

audio equalization

- parametric EQs
- graphic EQs
- removal of unwanted components
 - remove DC, rumble
 - remove hum
 - remove hiss
- pre-emphasis/de-emphasis
 - Vinyl
 - old Dolby noise reduction systems
- weighting function
 - dBA, dBC, ...
- (parameter) smoothing
 - smooth sudden changes

Center for Music

Tech | Technology

College of Design

filters

introduction 2/2

- audio equalization
 - parametric EQs
 - graphic EQs
- removal of unwanted components
 - remove DC, rumble
 - remove hum
 - remove hiss
- pre-emphasis/de-emphasis
 - Vinyl
 - old Dolby noise reduction systems
- weighting function
 - dBA, dBC, . . .

f [Hz] \rightarrow

Georgia |

introduction 2/2

- audio equalization
 - parametric EQs
 - graphic EQs
- removal of unwanted components
 - remove DC, rumble
 - remove hum
 - remove hiss
- pre-emphasis/de-emphasis
 - Vinyl
 - old Dolby noise reduction systems
- weighting function
 - dBA, dBC, . . .
- (parameter) smoothing
 - smooth sudden changes

intro

reminder: system theory

 output of a system (filter) y computed by convolution of input x and impulse response h

$$y(t) = x(t) * h(t)$$

$$Y(j\omega) = X(j\omega) \cdot H(j\omega)$$

 $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$

- transfer function $H(i\omega)$ is complex, often represented as

filters reminder: system theory

Georgia Center for Music Tech College of Design

ullet output of a system (filter) y computed by **convolution** of input x and impulse response h

$$y(t) = x(t) * h(t)$$

this is equivalent to a frequency domain multiplication

$$Y(j\omega) = X(j\omega) \cdot H(j\omega)$$

 $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$

- transfer function $H(j\omega)$ is complex, often represented as
 - magnitude $|H(i\omega)|$ and
 - phase $\Phi_{\rm H}({\rm j}\omega)$

reminder: system theory

filters

Georgia Center for Music Tech Tech College of Design

 output of a system (filter) y computed by convolution of input x and impulse response h

$$y(t) = x(t) * h(t)$$

• this is equivalent to a frequency domain multiplication

$$Y(j\omega) = X(j\omega) \cdot H(j\omega)$$

 $H(j\omega) = \frac{Y(j\omega)}{X(j\omega)}$

- transfer function $H(j\omega)$ is complex, often represented as
 - magnitude $|H(j\omega)|$ and
 - phase $\Phi_{\rm H}({\rm j}\omega)$

common transfer function shapes

Georgia Center for Music Tech Technology
College of Design

filters common transfer function shapes

Georgia Center for Music Tech College of Design

- very common:
 - low/high pass

filters common transfer function shapes

- very common:
 - low/high pass
- common for non-audio:
 - band pass/band stop

Georgia Center for Music Technology

common transfer function shapes

- low/high pass
- common for non-audio:
 - band pass/band stop
- also common in audio apps:
 - low/high shelving

Georgia Center for Music Technology

common transfer function shapes

- very common:
 - low/high pass
- common for non-audio:
 - band pass/band stop
- also common in audio apps:
 - low/high shelving
 - peak filter

Georgia Center for Music Tech Calles of Design

common transfer function shapes

- very common:
 - low/high pass
- o common for non-audio:
 - band pass/band stop
- also common in audio apps:
 - low/high shelving
 - peak filter
 - resonance/notch

filters common transfer function shapes

Georgia Center for Music Technology College of Design

filters filter banks

filters filter banks

Georgia Center for Music Tech Technology College of Design

filter parameters — lowpass/highpass

- **cut-off** frequency f_c
 - frequency marking the transition of pass to stop band
 - -3 dB of pass band level
- slope/steepness
 - measured in dB/Octave or dB/Decade
 - typically directly related to filter order
- sometimes: resonance
 - level increase in narrow band around cut-off frequency

filter parameters — bandpass/bandstop

Georgia Center for Music Tech College of Pesign

- **center** frequency f_c
 - frequency marking the center of the pass or stop band
- bandwidth ΔB
 - width of the pass band
 - at -3 dB of max pass band level
- possibly: slope
 - typically directly related to filter order

- **Q** factor or bandwidth ΔB
 - width of the bell
 - at -3 dB of max gain

$$Q = \frac{f_{\rm c}}{\Delta B}$$

- gain
 - amplification/attenuation in dB

filters filter parameters — overview

Georgia Center for Music Tech Technology
College of Design

parameter	lowpass	low shelving	band pass	peak	resonance
frequency	cut-off	cut-off	center	center	center
bandwidth/Q	res. gain	_	ΔB	Q	_
gain	_	yes	_	yes	_

filters digital filter description

filter is defined by its

- complex transfer function $H(j\omega)$, or its
- impulse response h(t), or its
- list of pole and zero positions in the Z-plane

$$H(j\omega) = \mathfrak{F}\{h(t)\}$$

filters digital filter description

Georgia Center for Music Tech College of Design

filter is defined by its

- complex transfer function $H(j\omega)$, or its
- impulse response h(t), or its
- list of pole and zero positions in the Z-plane

$$H(j\omega) = \mathfrak{F}\{h(t)\}$$

filters example 1

Georgia Center for Music Tech Technology

filters example 1

Georgia Center for Music Technology College of Design

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i-1)$$

example 1: transfer function 1/2

Georgia Center for Music Tech Technology

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

Georgia Center for Music Tech College of Design

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

Georgia Center for Music Tech College of Design

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

Georgia Center for Music Tech Tech College of Design

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

Georgia Center for Music Tech College of Design

$$y(i) = 0.5 \cdot x(i) + 0.5 \cdot x(i - 1)$$

$$H(z) = 0.5 + 0.5 \cdot z^{-1}$$

$$H(j\omega) = 0.5 + 0.5 \cdot e^{-j\omega}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \cdot \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= 0.5 \cdot \left| e^{-j\frac{\omega}{2}} \right| \cdot \left| \left(e^{j\frac{\omega}{2}} + e^{-j\frac{\omega}{2}} \right) \right|$$

$$= \left| \cos \left(\frac{\omega}{2} \right) \right|$$

filters example 2

Georgia Center for Music Tech Technology

Georgia Center for Music Tech College of Design

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i-1)$$

 $H(z) = 0.5 - 0.5 \cdot z^{-1}$

Georgia Center for Music Tech College of Design

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i-1)$$

$$H(z) = 0.5 - 0.5 \cdot z^{-1}$$

$$|H(j\omega)| = \left| \sin\left(\frac{\omega}{2}\right) \right|$$

filters

example 2: transfer function

Georgia Center for Music Tech Technology
College of Design

filters

example 3

Georgia Center for Music Tech Technology

Georgia Center for Music Tech College of Design

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i - N)$$

 $H(z) = 0.5 - 0.5 \cdot z^{-N}$

Georgia Center for Music Tech College of Design

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i - N)$$

$$H(z) = 0.5 - 0.5 \cdot z^{-N}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{N\omega}{2}} \cdot \left(e^{j\frac{N\omega}{2}} - e^{-j\frac{N\omega}{2}} \right) \right|$$

Georgia Center for Music Tech Tech College of Design

$$y(i) = 0.5 \cdot x(i) - 0.5 \cdot x(i - N)$$

$$H(z) = 0.5 - 0.5 \cdot z^{-N}$$

$$|H(j\omega)| = 0.5 \cdot \left| e^{-j\frac{N\omega}{2}} \cdot \left(e^{j\frac{N\omega}{2}} - e^{-j\frac{N\omega}{2}} \right) \right|$$

$$= \left| \sin\left(\frac{N\omega}{2}\right) \right|$$

filters example 3: transfer function

Georgia Center for Music Tech Technology

example 4

Georgia Center for the Tech College of Design

filters

example 4: transfer function

Georgia Center for Music Tech Technology

$$H(j\omega) = e^{-j\mathcal{J}rac{\omega}{2}}rac{\sin\left(\mathcal{J}\cdotrac{\omega}{2}
ight)}{\mathcal{J}\cdot\sin\left(rac{\omega}{2}
ight)}$$

Georgia Center for Music Tech Technology

$$y(i) = \sum_{j=0}^{\mathcal{J}-1} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + \sum_{j=1}^{\mathcal{J}} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + y(i-1)$$

Georgia Center for Music Tech College of Design

$$y(i) = \sum_{j=0}^{\mathcal{J}-1} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + \sum_{j=1}^{\mathcal{J}} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + y(i-1)$$

Georgia Center for Music Tech College of Design

$$y(i) = \sum_{j=0}^{\mathcal{J}-1} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + \sum_{j=1}^{\mathcal{J}} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + y(i-1)$$

$$y(i) = \sum_{j=0}^{\mathcal{J}-1} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + \sum_{j=1}^{\mathcal{J}} \frac{1}{\mathcal{J}} \cdot x(i-j)$$

$$= \frac{1}{\mathcal{J}} \cdot (x(i) - x(i-\mathcal{J})) + y(i-1)$$

Georgia Center for Music Tech Technology

Georgia Center for Music Tech Technology College of Design

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

= $x(i) + \alpha \cdot (y(i - 1) - x(i))$

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

$$H(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}$$

$$H(j\omega) = \frac{1 - \alpha}{1 - \alpha e^{-j\omega}}$$

$$H(j\omega) = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega}} \right|$$

$$= \frac{1 - \alpha}{\sqrt{(1 + \alpha^2 - 2\alpha \cos(\omega))}}$$

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

$$H(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}$$

$$H(j\omega) = \frac{1 - \alpha}{1 - \alpha e^{-j\omega}}$$

$$H(j\omega)| = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega}} \right|$$

$$= \frac{1 - \alpha}{\sqrt{(1 + \alpha^2 - 2\alpha \cos(\omega))}}$$

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

$$H(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}$$

$$H(j\omega) = \frac{1 - \alpha}{1 - \alpha e^{-j\omega}}$$

$$|H(j\omega)| = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega}} \right|$$

$$= \frac{1 - \alpha}{\sqrt{(1 + \alpha^2 - 2\alpha \cos(\omega))}}$$

$$y(i) = (1 - \alpha) \cdot x(i) + \alpha \cdot y(i - 1)$$

$$H(z) = \frac{1 - \alpha}{1 - \alpha z^{-1}}$$

$$H(j\omega) = \frac{1 - \alpha}{1 - \alpha e^{-j\omega}}$$

$$|H(j\omega)| = \left| \frac{1 - \alpha}{1 - \alpha e^{-j\omega}} \right|$$

$$= \frac{1 - \alpha}{\sqrt{(1 + \alpha^2 - 2\alpha \cos(\omega))}}$$

filters example 5: transfer function 2/2

Georgia Center for Music Technology College of Design

$$y(i) = b_0 \cdot x(i) - a_N \cdot y(i - N)$$

filters

example 6: transfer function

Georgia Center for Music Technology College of Design

$$H(j\omega) = \frac{b_0}{1 - a_N \cdot e^{-j\omega N}}$$

College of Design

(a)

biquad: structure

diff eq :
$$y(i) = \sum_{k=0}^{K_1} b_k \cdot x(i-k) + \sum_{k=1}^{K_2} -a_k \cdot y(i-k)$$

trans. fct : $H(z) = \frac{Y(z)}{X(z)} = \frac{\sum_{k=0}^{K_1} b_k \cdot z^{-k}}{1 + \sum_{k=1}^{K_2} a_k \cdot z^{-k}}$

Georgia Center for Music Tech College of Design

summary

- filter (equalization) can be used for various tasks
 - changing the sound quality of a signal
 - hiding unwanted frequency components
 - smoothing

equalization

- processing for measurement and transmission
- most common audio filter types are
 - nost common audio fliter types are
 - 0 000

summary

- shelving
- filter parameters includ
 - frequency (mid. cutoff)
 - la a saludable au
 - bandwidth or G
 - gain
- filter orders
 - a typical orders are 1st 2nd maybe 4th
 - higher order give more flexibility wrt transfer function
 - higher orders are difficult to design and control

Georgia Center for Music Tech Tech College of Design

summary

- filter (equalization) can be used for various tasks
 - changing the sound quality of a signal
 - hiding unwanted frequency components
 - smoothing
 - processing for measurement and transmission
- most common audio filter types are
 - low/high pass
 - peak

summary

- shelving
- filter parameters includ
 - frequency (mid cutoff)
 - frequency (find, cu
 - bandwidth or G
 - gair
- filter order
 - a typical orders are 1st 2nd maybe 4th
 - higher order give more flexibility wrt transfer function
 - higher orders are difficult to design and control

Georgia | Center for Music Tech | Technology College of Design

summary

- filter (equalization) can be used for various tasks
 - changing the sound quality of a signal
 - hiding unwanted frequency components
 - smoothing

equalization

- processing for measurement and transmission
- most common audio filter types are
 - low/high pass
 - peak

summary

- shelving
- filter parameters include
 - frequency (mid, cutoff)

 - bandwidth or Q
 - gain

• filter (equalization) can be used for various tasks

summary

- changing the sound quality of a signal
- hiding unwanted frequency componentssmoothing
- a processing for measurement and t
- processing for measurement and transmission
- most common audio filter types are
 - law/high rage
 - low/high pass
 - peakshelving

equalization

- a filter parameters includ
- filter parameters include
 - frequency (mid, cutoff)
 - bandwidth or Q
- gain
- filter orders
 - typical orders are 1st, 2nd, maybe 4th
 - higher order give more flevibility wet transfer functi
 - higher order give more flexibility wrt transfer function
 - higher orders are difficult to design and control