

Facultad de Ingeniería Universidad de Buenos Aires

66.44 Instrumentos Electrónicos

Trabajo Práctico N°3: Mediciones de impedancias

Integrantes:

Padrón	Nombre	Email	
92903	Sanchez, Eduardo Hugo	hugo_044@hotmail.com	
91227	Soler, José Francisco	franciscotw@hotmail.com	
XXX	Wawrynczak, Claudio	claudiozak@gmail.com	

Índice

1.	Obj	etivo	3	
2.	Des	arrollo	4	
	2.1.	Medición 1- Inductancia de una bobina usando el Q-metro	4	
	2.2.	Medición 2- Inductancia de una bobina usando el LCR	5	
	2.3.	Medición 3- Inductancia de una bobina usando el puente de im-		
		pedancias	5	
	2.4.	Medición 4- Frecuencia de resonancia de una bobina	5	
	2.5.	Medición 4- Paramétros de una línea de transmisición	5	
	2.6.	Medición 4- Inductancia de una bobina con nucleo de ferrite	5	
	2.7.	Medición 4- Capacidad de un capacitor electroítico	5	
	2.8.	Medición 4- Capacidad de un capacitor cerámico	5	
3	Con	clusiones	5	

1. Objetivo

El objetivo del presente trabajo práctico es determinar las diferentes impedancias medidas utilizando un osciloscopio con técnicas de reflectometría.

2. Desarrollo

Para llevar a cabo las mediciones, se utilizan los siguientes instrumentos:

- algo
- algo
- algo
- Cable coaxil para realizar las distintas conexiones entre instrumentos.

2.1. Medición 1- Inductancia de una bobina usando el Qmetro

El circuito simplificado de un Q-metro se muestra en la Figura 1

Figura 1: Esquema simplificado del Q-metro

Donde el valor máximo obtenido de tensión para un determinado inductor L_x de inductancia L se da cuando $f=\frac{1}{2\pi\sqrt{LC}}$. Por otra parte puede mostrarse que el valor de Q es $Q=\frac{\omega L}{R}$.

que el valor de Q es $Q = \frac{\omega L}{R}$. Conocidos los valores de la capacidad, C, y la frecuencia, f, puede obtenerse el valor de la inductancia de L_x y también su resistencia serie equivalente con las siguientes expresiones

$$L = \frac{1}{(2\pi)^2 f^2 C}$$

$$L = \frac{2\pi f L}{Q}$$

En la tabla 1 se muestran los resultados obtenidos para un inductor utilizando 2 frecuencias

Frecuencia	С	Q	L	R
7,9722~MHz	75 pF	200	$5,31~\mu Hy$	$1,33~\Omega$
13,3~MHz	25 pF	182	$5,72~\mu Hy$	$2,62~\Omega$

Cuadro 1: Mediciones con el Q-metro

- 2.2. Medición 2- Inductancia de una bobina usando el LCR
- 2.3. Medición 3- Inductancia de una bobina usando el puente de impedancias
- 2.4. Medición 4- Frecuencia de resonancia de una bobina
- 2.5. Medición 4- Paramétros de una línea de transmisición
- 2.6. Medición 4- Inductancia de una bobina con nucleo de ferrite
- 2.7. Medición 4- Capacidad de un capacitor electroítico
- 2.8. Medición 4- Capacidad de un capacitor cerámico
- 2.9. Medición 4- Parámetros de un cristal
- 2.10. Medición 4- Mediciones en un circuito activo

3. Conclusiones

Viva Venezuela!