《光学导言》内容概要

理论内容总结:

♣ § 1.1 光学发展简史

- ♣ § 1.3 费马原理、透镜的等光程性
- ♣ § 1.2 光的电磁特性、波的数学描述

练习题总结

本章练习题可分为二大类

第一类

基本概念(波长、波速等)

第二类

波的数学表达形式及意义(相位差、波矢、波强等)

第三类

费马原理,对光的直线传播、反射、折射现象的解释 凸透镜成像——等光程性

基土	光速、波长、	$\upsilon = \lambda f$
本	频率三者关系	
概		
念		
(波	均匀介质中光	
长波速等)	速	$\upsilon = 1/\sqrt{\varepsilon_0 \mu_0 \varepsilon_r \mu_r} = \frac{c}{n}$
	折射率	$n = \sqrt{\varepsilon_r \mu_r} = \frac{c}{\upsilon}$
	介质中波长	$\lambda = \frac{\lambda_0}{n}$
	波强	$I \propto E_0^2$

1.1.		, ,
波	平面波	$U = A\cos(\omega t - \vec{k} \cdot \vec{r} + \omega)$
的		$U = A\cos(\omega t - \vec{k} \cdot \vec{r} + \varphi)$ = $A\cos(\omega t - k_x x - k_y y - k_z z + \varphi)$
数		$= A\cos(\omega t - k_x x - k_y y - k_z z + \varphi)$
学		2π
表		波数: $k = \frac{2\pi}{\lambda}$
达		λ
形	球面波	
1	外叫伙	$U(r,t) = A\cos(\omega t - kr + \varphi)$
式		A =
及		$=\frac{A_0r_0}{\cos(\omega t-kr+\varphi)}$
意		r
义	波动的复数表	$U = A\cos(\omega t - kx + \varphi) = Ae^{i(\omega t - kx + \varphi)}$
	示	$c = 11\cos(\omega t + \varphi) = 11c$
		复数的模 ↔ 振幅; 复数的辐角 ↔ 相位
		复数的实部 ↔ 振动或波

费	费马原理	光从空间一点传播到另一点是沿着光程为极值的路
马		径传播的。
原		光程可以是极小、极大或稳定值
理	光程	$L = \sum_{i} s_{i} n_{i} , \text{id} L = \int_{Q}^{P} n \mathrm{d}s$
		光程等于相同时间内光在真空中传播的距离
	光程最短	直线传播、反射和折射
	光程稳定	凸透镜成像——等光程性

07~08-1 基物 2 期末试卷

一、选择题(将正确答案的字母填在空格内,每题3分,共30分)

 *4 、 在真空中波长为 λ 的单色光,在折射率为 n 的透明介质中从 A 沿某路径传播到 B,若 A、B 两点相位差为 3π ,则此路径 AB 的光程为

- (A) 1.5λ .
- (B) $1.5 \ \lambda/n$.
- (C) $1.5 n \lambda$.
- (D) 3 λ .

[A]