МИНИСТЕРСТВО НА ОБРАЗОВАНИЕТО И НАУКАТА

държавен зрелостен изпит по

ЖЕЛАНИЕ

Учебен предмет - математика май 2009 г.

ВАРИАНТ № 2

Ключ с верните отговори

Въпроси с изборен отговор

Въпрос №	Верен отговор	Брой точки
1.	В	2
2.	A	2
3.	A	2
4.	В	2
5.	Б	2
6.	Γ	2
7.	Γ	2
8.	A	2
9.	В	2
10.	Б	2
11.	В	2
12.	В	2
13.	Б	2
14.	Γ	2
15.	A	2
16.	Γ	2
17.	A	2
18.	A	2
19.	Γ	2
20.	A	2
21.	у	3
22.	5408	3
23.	13 14	3
24.	0.8	3
25.	не повече от 60	3

Въпрос №	Верен отговор	Брой точки
26.	$-\frac{1}{2}$	15
27.	$P = \frac{90}{451}$	15
28.	$S_{PCQ} = \frac{5\sqrt{3}}{2}cm^2$	15

Въпроси с решения

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 26

Полагане
$$\sqrt{2x^2 + x + 4} = y$$
 (3т.)

Изразяване на
$$2x^2 + x = y^2 - 4$$
 (2т.)

Решаване на уравненето $y^2 + y - 30 = 0$

$$y = 5, y = -6$$
 (3T.)

Уравнението
$$\sqrt{2x^2 + x + 4} = -6$$
 няма решение (2т.)

За уравнението $\sqrt{2x^2 + x + 4} = 5$ -намиране на корени

$$x_1 = 3, x_2 = -\frac{7}{2}$$
 и проверка кои от тях са корени на даденото уравнение (4т.)

За сбора
$$3 + \left(-\frac{7}{2}\right) = -0.5$$
 (1т.)

Отговор: - 0,5

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 27

- определяне на броя на трицифрените числа (451) от интервала [250;700] (3т.)
- определяне на елементите на аритметичната прогресия :

$$a_1 = 254, d = 5, a_n = 699$$
 (3T.)

• съставяне на уравнението
$$699 = 254 + (n-1)5, n \in \mathbb{N}$$
 (3т.)

• определяне на броя (90) на трицифрените числа с посоченото

• определяне на вероятността на събитието
$$P(A) = \frac{90}{451}$$
 (3т.)

КРИТЕРИИ ЗА ОЦЕНЯВАНЕ НА ЗАДАЧА 28

Нека ∠BAC = α

Тъй като $\angle APB = \angle AQB = 90^{\circ}$, то четириъгълникът ABPQ е вписан

в окръжност. Тогава
$$\angle CPQ = \alpha$$
 и $\sphericalangle BPQ = 180^{\circ} - \alpha$ (3 т.)

Следователно
$$\triangle PQC \sim \triangle ABC$$
, (2 т.)

откъдето намираме
$$\frac{S_{PQC}}{S_{APC}} = \left(\frac{CP}{AC}\right)^2$$
 (2 т.).

От правоъгълния
$$\triangle APC$$
 намираме $\frac{CP}{AC} = \cos 60^{\circ} = \frac{1}{2}$ (2 т.).

Следователно
$$\frac{S_{PQC}}{S_{ABC}} = \left(\frac{1}{2}\right)^2 \Rightarrow S_{PQC} = \frac{1}{4}S_{ABC}$$
 (2 т.).

$$S_{ABC} = \frac{1}{2} AC.BC \sin 60^{\circ} = \frac{1}{2} 8.5 \frac{\sqrt{3}}{2} = 10\sqrt{3}$$
 (2 т.).

Следователно
$$S_{PQC} = \frac{5\sqrt{3}}{2} \text{ cm}^2$$
 (2 т.).

*Забележка:

Доказването на подобието на $\triangle PQC$ и $\triangle ABC$ по втори признак с коефициент на подобие $\cos 60^\circ$ се оценява с 5 точки.