

Subscripts

s = species (H = Hake)

x = northing

y = easting

d = depth

i = biological replicate

r = technical replicate

p = qPCR plate

m = mock community sample

j = qPCR standard aliquote sample

Parameters

 $|\psi|$ = mean hake eDNA concentration

 δ = biological replicate random effect

 V_i = volume filtered and aliquote dilution offset

 $\phi = \text{qPCR}$ amplification parameter

 $\sigma_Y = \text{standard deviation of qPCR Ct values}$

 $\beta_{0p},\beta_{1p}=$ intercept and slope defining mean qPCR - DNA concentration relationship

 $\gamma 0, \gamma 1$ = intercept and slope defining standard deviation of qPCR - DNA concentration relationship

 α_s = amplification efficiency relative to reference species

 α_s = amplification emclency relative to reference species π = predicted sequence proportions at the end of PCR

 ν = sequence proportions at the end of PCR (additive log-ratio)

 ζ = ethanol wash effect

 $\tau =$

 $\eta = \text{spatial field}$

 $\varepsilon={\rm depth}$ specific spatial field

Observations

Z = qPCR amplification (yes=1; no=0)

Y = qPCR Ct values

 $K = \text{Known DNA conc. } (\log (\text{copies}/\mu L))$

 $L = \text{Known DNA conc.} (\log (\text{copies}/\mu L))$

R =metabarcoding sequencing reads

T = total number sequencing reads