Lecture 4: MSE, Prediction Error Github Tools

Big Data and Machine Learning for Applied Economics Econ 4676

Ignacio Sarmiento-Barbieri

Universidad de los Andes

August 20, 2020

Agenda

- 1 Motivation
- 2 Mean Square Error
- 3 Prediction Error
- 4 Train and Test Samples
- 5 Example: Predicting House Prices in R
- 6 Further Readings

Recap

- ► We started shifting paradigms
- ► Linear Regression
- ► Prediction vs Estimation
- ► Train and Test Samples
- Example in R

Motivation

Working model is

$$y = f(X) + u \tag{1}$$

► Linear regression is the "work horse" of econometrics and (supervised) machine learning.

$$y = X\beta + u \tag{2}$$

- \blacktriangleright All the interest is on β
- ► Gauss-Markov Theorem says that under classical assumptions it is BLUE

Mean Square Error

$$MSE(\beta) = E(\hat{\beta} - \beta)^2 \tag{3}$$

$$= E(\beta - E(\hat{\beta}))^2 + Var(\hat{\beta}) \tag{4}$$

- ► Intuitively, the result says that how wrong is the estimate (MSE) depends on:
 - how uncentered it is (bias) and
 - ▶ how dispersed it is around its center (variance).

Mean Square Error

Source: https://tinyurl.com/y3xlh87o

- Now suppose that the goal is to predict Y with another random variable \hat{Y} .
- ► The *prediction error* is defined as:

$$Err(\hat{Y}) \equiv E(Y - \hat{Y})^2$$
 (5)

- ► Conceptually the prediction error is equal to the MSE
 - ► MSE compares a RV $(\hat{\beta})$ with a parameter (β)
 - $ightharpoonup Err(\hat{Y})$ involves two RV

Then

$$Err(\hat{Y}) = E(Y - \hat{f})^2 \tag{6}$$

$$= MSE(\hat{f}) + \sigma^2 \tag{7}$$

$$= Bias^2(\hat{f}) + V(\hat{f}) + \sigma^2 \tag{8}$$

Two parts:

- ▶ the error from estimating f with \hat{f} . (*reducible*)
- ▶ the error from not being able to observe *u*. (*irreducible*)

This is an important result, predicting Y properly we need a good estimate of f.

Source: https://tinyurl.com/y4lvjxpc

A very interesting discussion in a recent Twitter thread by Daniela Witten:

https://twitter.com/daniela_witten/status/1292293102103748609?s=20

- ► Model $y = X\beta + u$
- $\hat{y} = \hat{X}\beta$ is the prediction
- ► The estimated prediction error is

$$\hat{E}rr(\hat{Y}) = \sum (y_i - \hat{y}_i)^2 \tag{9}$$

- Common alternatives involve: the mean or the square root
- ► In Econometrics

$$\hat{E}rr(\hat{Y}) = \sum_{i=1}^{n} e_i^2 \tag{10}$$

- $ightharpoonup R^2 = 1 \frac{Err(\hat{Y})}{TSS}$
- ▶ OLS minimizes $\hat{E}rr(\hat{Y})$ and maximizes $R^2 \to$ minimizing the predictive error is to maximize fit in the sample

Challenge:

- ▶ The goal of machine learning is *out of sample* prediction
- ▶ Minimize the prediction error outside of the sample
- OLS designed to minimize inside the sample
- Predicting well in sample doesn't mean that it would work outside
- ► There are estimators that work very well in sample but very badly outside (Overfit) more on this later

Train and Test Samples

- ► Problem with OLS (and other estimators)
 - ▶ Minimize the prediction error outside of the sample
 - OLS designed to minimize inside the sample
- ► A workaround: split the data
 - ► Training sample: to build/estimate/train the model
 - ► Test sample: to evaluate its performance

Predicting House Prices in R

Example: Predicting House Prices in R (switch to RStudio)

Review & Next Steps

- Mean Square Error
- Prediction Error
- ► Train and Test Samples
- Example in R
- ► Intro to Git (Hub)
- ► **Next Class:** Big Data intro, OLS Numerical Properties Computation.
- Questions? Questions about software?

Further Readings

- ▶ Davidson, R., & MacKinnon, J. G. (2004). Econometric theory and methods (Vol. 5). New York: Oxford University Press.
- ▶ James, G., Witten, D., Hastie, T., & Tibshirani, R. (2013). An introduction to statistical learning (Vol. 112, p. 18). New York: springer.
- ▶ Friedman, J., Hastie, T., & Tibshirani, R. (2001). The elements of statistical learning (Vol. 1, No. 10). New York: Springer series in statistics.
- ▶ Git tutorials from BDEEP group at NCSA. Mimeo.
- ▶ Git tutorial from Prof. Grant McDermott.