Prova scritta di Fisica 2

21/12/2021

FILA B

Esercizio 1 Una sfera solida di raggio 40 cm ha una carica positiva di 26 μ C distribuita uniformemente in tutto il suo volume. Si calcoli l'intensità del campo elettrico alle seguenti distanze dal centro della sfera: (a) 0 cm; (b) 10 cm; (c) 60 cm.

Soluzione

la densità di carica vale: $\rho = 26 \mu C/4/3 \pi^* (0.4)^3$

(a),(b)

scelgo una gaussiana sferica di raggio r < 0.4 m.

 $E4\pi r^2 {=} \rho 4/3\pi r^3/\epsilon_0 {\,\rightarrow\,} E = r\rho/3~\epsilon_0$

Se r=0, E=0, sostituire poi r=0.1 m per ottenere $E = 3.65 \times 10^5 \text{ V/m}$

Per r = 0.6 m usare formula carica puntiforme $E=1/4\pi \ \epsilon_0 \ Q/r^2$

Esercizio 2. Si trovi la capacità equivalente tra i punti a e b per il sistema di condensatori collegati come in Figura, se C_1 = 5 mF, C_2 = 10 mF e C_3 = 2 mF. (b) Se la differenza di potenziale tra i punti a e b è 60 V, quale carica è immagazzinata su C_3 ?

Ho 2 serie di C1 e C2 ciascuna in parallelo a C3 ed in serie a sua volta col parallelo di C2:

Per il primo blocco : $2C_1C_2/(C_1+C_2) + C_3 = 26/3 \text{ mF}$

Per il secondo: 2*C2=20 mF

Ceq = (26/3)*20/((26/3)+20)

Carica immagazzinata nel sistema di condensatori: Qeq=CeqVab

Osservo che la carica nel primo blocco è uguale alla carica del secondo blocco, e ciascuna è uguale a Q_{eq} .

La carica su C_2 (secondo blocco) vale $Q_{eq}/2$. Pertanto la d.d.p. ai capi di C_2 in questo secondo blocco è $V_2 = Q_{eq}/2C_2$.

La d.d.p. ai capi del primo blocco vale: 60-V₂.

Ma questa è anche la d.d.p ai capi di C3 e la carica su C3 si puo' calcolare banalmente.

Esercizio 3

3) Per misurare il campo magnetico terrestre con una sonda di Hall, si orienta da ovest a est una barra di rame di sezione quadrata pari 0.25 cm². Se con una corrente di 8 A si misura una tensione di Hall di 5.1 pV, quale è il valore del campo magnetico misurato? (si assuma n=8.48 10²8 e/m³ e che il piano della barra sia ortogonale a B). Se invece di far circolare una corrente, si facesse muovere la barra da est verso ovest con velocità v=10 m/s quale tensione comparirebbe fra i due lati della striscia?

Soluzione

(a)
$$J = I/S = 32 \times 10^4 \text{ A/m}^2$$

Ma J = nev \rightarrow v = J/ne = 2.39 \times 10⁻⁵ m/s è la velocità degli elettroni che attraversano la barra di Hall.

Ma dall'analisi dell'effetto Hall, sappiamo che all'equilibrio : eBv = eE

Da cui B= E/v= $V_H/lv = 4.27 \times 10^{-5}$ T, dove l è il lato della barra e V_H è la tensione di Hall.

(b) nota velocità e campo B, ora ricaviamo $V_{\rm H} = {\rm Bvl} = 21.35 \times 10^{-5} {\rm V}$

Esercizio 4. La figura mostra una bacchetta di massa 0.2 kg che scivola senza attrito su una coppia di rotaie distanti l=1.2 m, appoggiate su un piano inclinato di $\theta=25^{\circ}$ rispetto all'orizzontale. La resistenza del resistore è $R=1 \Omega$. Il sistema è immerso in un campo magnetico verticale rivolto verso il basso di intensità B=0.5 T. A quale velocità costante v la bacchetta scivola sulle rotaie?

Soluzione

A regime, la risultante delle forze (magnetica, gravitazionale) agente sulla bacchetta deve essere nulla.

 $IlB \sin 65^{\circ} = mg \sin 25^{\circ}$

Sia la velocità della barretta $\Delta x/\Delta t = v_0$. Ad ogni variazione Δx , corrisponde una variazione del flusso magnetico concatenato col circuito pari a $\Delta \Phi = l\Delta x B \sin 65^\circ$. Per cui ci sarà una f.e.m. indotta di modulo l v_0 $B \sin 65^\circ$, da cui I = (l v_0 $B \sin 65^\circ$)/R. Sostituendo nell'equazione sopra, si ricava la velocità:

 $v_0 = \text{mg (sin } 25^\circ/\text{sin } 65^\circ)^*(1/l^2B^2)$