Introduction to Numerics/Numerical Computation

Markus Faustmann

TU Wien
Institute for Analysis and Scientific Computing

Formalities

Format

VU: lecture with integrated exercise

- Visual Computing 2h (blocked until christmas as 2h lecture + 1h exercise)
- Informatics/Geodesics 3h (2h lecture + 1h exercise)
- CSE 4h (3h lecture + 1h exercise)

TUWEL course! - you can self-enroll

In person format

- Attendance in the lecture hall at all times possible
- No camera in the lecture hall unfortunately, no streaming

Format

VU: lecture with integrated exercise

- Visual Computing 2h (blocked until christmas as 2h lecture + 1h exercise)
- Informatics/Geodesics 3h (2h lecture + 1h exercise)
- CSE 4h (3h lecture + 1h exercise)

TUWEL course! - you can self-enroll

In person format

- Attendance in the lecture hall at all times possible
- No camera in the lecture hall unfortunately, no streaming

Format

VU: lecture with integrated exercise

- Visual Computing 2h (blocked until christmas as 2h lecture + 1h exercise)
- Informatics/Geodesics 3h (2h lecture + 1h exercise)
- CSE 4h (3h lecture + 1h exercise)

TUWEL course! - you can self-enroll

In person format

- Attendance in the lecture hall at all times possible
- No camera in the lecture hall unfortunately, no streaming

Dates

1h academic = 45 minutes

Dates - Lecture

- Tuesday 8:15-9:55 (2h academic, including 10min break) for everybody!
 - room: FH HS 3
- Wednesday 9:15-10:00 (1h academic) CSE only!
 - room: FH HS 4 (only tomorrow 5.10.)
 - room: Sem.R. DA grün 03 B (Freihaus, 3rd floor green)

Dates - Exercise

various groups (register in TISS!!), either

- Monday 10:00-11:00
- Tuesday 10:00-11:00
- rooms: Sem.R. DA grün 03 A or Sem.R. DA grün 04 (Freihaus, green)

note: we do a full hour of exercise, to account for missing weeks!

- 2 - Slides

Dates

1h academic = 45 minutes

Dates - Lecture

- Tuesday 8:15-9:55 (2h academic, including 10min break) for everybody!
 - room: FH HS 3
- Wednesday 9:15-10:00 (1h academic) CSE only!
 - room: FH HS 4 (only tomorrow 5.10.)
 - room: Sem.R. DA grün 03 B (Freihaus, 3rd floor green)

Dates - Exercise

various groups (register in TISS!!), either

- Monday 10:00-11:00
- Tuesday 10:00-11:00
- rooms: Sem.R. DA grün 03 A or Sem.R. DA grün 04 (Freihaus, green)

note: we do a full hour of exercise, to account for missing weeks!

- 2 - Slides

Dates

1h academic = 45 minutes

Dates - Lecture

- Tuesday 8:15-9:55 (2h academic, including 10min break) for everybody!
 - room: FH HS 3
- Wednesday 9:15-10:00 (1h academic) CSE only!
 - room: FH HS 4 (only tomorrow 5.10.)
 - room: Sem.R. DA grün 03 B (Freihaus, 3rd floor green)

Dates - Exercise

various groups (register in TISS!!), either

- Monday 10:00-11:00
- Tuesday 10:00-11:00
- rooms: Sem.R. DA grün 03 A or Sem.R. DA grün 04 (Freihaus, green)

note: we do a full hour of exercise, to account for missing weeks!

- 2 - Slides

Exercise

In person format

- You should come to the lecture hall
- Attendance is mandatory, without reason you can miss one exercise
- In case of missing the exercise please send your scanned solutions BEFORE the exercise to the teacher of your group

Exercises start on 17.10./18.10.!

Checkmark format

- You have to check the examples you can present until Monday 9:00 of the exercise week
- Checkmarks done in TUWEL
- Exercise sheets on TUWEL

Exercise

In person format

- You should come to the lecture hall
- Attendance is mandatory, without reason you can miss one exercise
- In case of missing the exercise please send your scanned solutions BEFORE the exercise to the teacher of your group

Exercises start on 17.10./18.10.!

Checkmark forma

- You have to check the examples you can present until Monday 9:00 of the exercise week
- Checkmarks done in TUWEL
- Exercise sheets on TUWEL

Exercise

In person format

- You should come to the lecture hall
- Attendance is mandatory, without reason you can miss one exercise
- In case of missing the exercise please send your scanned solutions BEFORE the exercise to the teacher of your group

Exercises start on 17.10./18.10.!

Checkmark format

- You have to check the examples you can present until Monday 9:00 of the exercise week
- Checkmarks done in TUWEL
- Exercise sheets on TUWEL

Tests

Tests

Two written tests

- Friday 25.11.2022 room and time TBA
- Thursday 26.01.2023

Re-test

- only for those who miss one test or did fail not to horribly!
- Friday 24.02.2023

- 4 - Slides

Grading

- Total 100 points
 - Exercise part: max. 34 points
 - ▶ Each test: max. 33 points

Grading (positive)

- more than 60% of checkmarks
- overall positive grade for your presentation
- overall > 50 points
- \blacksquare at least > 33 points in the written examinations

Final grades: (50, 62.5] grade 4, (62.5, 75] grade 3, (75, 87.5] grade 2, (87.5, 100] grade 1

Grading

- Total 100 points
 - Exercise part: max. 34 points
 - ▶ Each test: max. 33 points

Grading (positive)

- more than 60% of checkmarks
- overall positive grade for your presentation
- overall > 50 points
- lacksquare at least >33 points in the written examinations

Final grades: (50, 62.5] grade 4, (62.5, 75] grade 3, (75, 87.5] grade 2, (87.5, 100] grade 1

- 5 - Slides

Course Materials

- Everything uploaded to TUWEL
- Exercise sheets one week before exercise online
- Lecture notes from Prof. Melenk from last year used

Why take this lecture?

Numerical simulation

Numerical simulation

Numerical simulation is the third pillar of science and technology besides theory and experiment to understand the world around us, e.g., if

- properties/structures are not experimentally accessible
- experiments are expensive/time-consuming (and thus only few can be done)
- theories have to checked by testing their predictions
- engineering: structural and fluid mechanics, material science, wave propagation, . . .
- physics: astrophysics, quantum mechanics
- chemisty, medicine: drug development, structural analysis of proteines, CT, ...
- geology, ecology: seismic analysis, climate calculations, weather predictions

Numerical simulation

Numerical simulation

Numerical simulation is the third pillar of science and technology besides theory and experiment to understand the world around us, e.g., if

- properties/structures are not experimentally accessible
- experiments are expensive/time-consuming (and thus only few can be done)
- theories have to checked by testing their predictions
- engineering: structural and fluid mechanics, material science, wave propagation, ...
- physics: astrophysics, quantum mechanics
- chemisty, medicine: drug development, structural analysis of proteines, CT, ...
- geology, ecology: seismic analysis, climate calculations, weather predictions

- 7 - Slides

Numerics

Numerics

Numerics is concerned with the development and analysis of algorithms that realize mathematical calculations and methods on computers.

the bigger picture:

$$\mathsf{reality} \hspace{.2cm} \rightarrow \hspace{.2cm} \mathsf{math.} \hspace{.2cm} \mathsf{model} \hspace{.2cm} \rightarrow \hspace{.2cm} \hspace{.2cm} \mathsf{numer.} \hspace{.2cm} \mathsf{simulation} \hspace{.2cm} \rightarrow \hspace{.2cm} \mathsf{assessment}$$

some core questions in numerics

- convergence of algorithms; a priori error estimates
- efficiency of algorithms
- reliability of algorithms; a posteriori error estimation

Numerics

Numerics

Numerics is concerned with the development and analysis of algorithms that realize mathematical calculations and methods on computers.

the bigger picture:

some core questions in numerics

- convergence of algorithms; a priori error estimates
- efficiency of algorithms
- reliability of algorithms; a posteriori error estimation

Numerics

Numerics

Numerics is concerned with the development and analysis of algorithms that realize mathematical calculations and methods on computers.

the bigger picture:

some core questions in numerics:

- convergence of algorithms; a priori error estimates
- efficiency of algorithms
- reliability of algorithms; a posteriori error estimation

- 8 - Slides

Convergence and efficiency: zeros of a function

example: bisection method and Newton's method for solving $x^2 - 2 = 0$

$$x_{i+1} := \frac{1}{2} \left(x_i + \frac{2}{x_i} \right), \quad i = 0, 1, \dots,$$

Slides

Convergence and efficiency: zeros of a function

example: bisection method and Newton's method for solving $x^2 - 2 = 0$

$$x_{i+1} := \frac{1}{2} \left(x_i + \frac{2}{x_i} \right), \quad i = 0, 1, \dots,$$

	Newton's method	bisection method
	$(x_0 = 2)$	$(I_0 = [1, 2])$
$\overline{x_1}$	1.5	1.5
x_2	1.416666666666667	1.2500000000000000
x_3	1.41421 5686274510	1.3750000000000000
x_4	1.41421356237 4690	1.4375000000000000
:		:
		1.414215087890625
x_{15}		
x_{37}		1.41421356237 697
	quadr. convergence	linear convergence

bisection method 1 addition, 1 division by 2, 1 multiplication, 1 comparison

Newton's method 1 addition, 1 division by 2, 1 division

Convergence and efficiency: zeros of a function

example: bisection method and Newton's method for solving $x^2 - 2 = 0$

$$x_{i+1} := \frac{1}{2} \left(x_i + \frac{2}{x_i} \right), \quad i = 0, 1, \dots,$$

	Newton's method	bisection method
	$(x_0=2)$	$(I_0 = [1, 2])$
$\overline{x_1}$	1.5	1.5
x_2	1.416666666666667	1.2500000000000000
x_3	1.41421 5686274510	1.3750000000000000
x_4	1.41421356237 4690	1.4375000000000000
:		:
x_{15}		1.414215087890625
x_{37}		1.41421356237 697
	quadr. convergence	linear convergence

bisection method	1 addition, 1 division by 2, 1 multiplication, 1 comparison
Newton's method	1 addition, 1 division by 2, 1 division

- 9 - Slides

Numerical integration: convergence, efficiency, error estimation

goal: approximate $\int_a^b f(x) dx$

partition [a,b] in N intervals $[x_i,x_{i+1}]$ of length h

trapezoidal rule

- 10 - Slides

Convergence of the trapezoidal and box rules

a priori estimates:

$$\left| \int_{a}^{b} f(x) dx - R(h) \right| \leq \frac{b-a}{2} h \|f'\|_{\infty}$$
$$\left| \int_{a}^{b} f(x) dx - T(h) \right| \leq \frac{b-a}{6} h^{2} \|f''\|_{\infty}$$

– 11 – Slides

Efficiency of the trapezoidal rule

number of function evaluations F is

- F = N 1 for box rule
- $lackbox{ } F=N \hspace{1cm} ext{for trapezoidal rule}$

In both cases $F \approx N \sim h^{-1}$

Thus, trapezoidal rule is more efficient (less evaluations for same accuracy)!

- 12 - Slides

Error estimation for box rule (a-posteriori)

fact:
$$\int_a^b f(x) dx - R(h) \approx Ch$$
 for all sufficiently small h and suitable C .

idea: compute C. We assume equality above, then

$$\int_{a}^{b} f(x) dx - R(h) = Ch$$

$$\int_{a}^{b} f(x) dx - R(h/2) = Ch/2$$

Hence, by subraction: R(h/2) - R(h) = Ch/2. Therefore, we obtain

$$\underbrace{\int_{a}^{b} f(x) \, dx - R(h)}_{\text{not computable}} \approx Ch = \underbrace{2 \left[R(h/2) - R(h) \right]}_{\text{computable}}$$

– 13 – Slides

Error estimation for box rule (a-posteriori)

fact: $\int_{-b}^{b} f(x) dx - R(h) \approx Ch$ for all sufficiently small h and suitable C.

idea: compute C. We assume equality above, then

$$\int_{a}^{b} f(x) dx - R(h) = Ch$$

$$\int_{a}^{b} f(x) dx - R(h/2) = Ch/2$$

$$\underbrace{\int_{a}^{b} f(x) \, dx - R(h)}_{\text{not computable}} \approx Ch = \underbrace{2 \left[R(h/2) - R(h) \right]}_{\text{computable}}$$

Slides

Error estimation for box rule (a-posteriori)

fact: $\int_a^b f(x) dx - R(h) \approx Ch$ for all sufficiently small h and suitable C.

idea: compute C. We assume equality above, then

$$\int_{a}^{b} f(x) dx - R(h) = Ch$$

$$\int_{a}^{b} f(x) dx - R(h/2) = Ch/2$$

Hence, by subraction: R(h/2) - R(h) = Ch/2. Therefore, we obtain

$$\underbrace{\int_a^b f(x) \, dx - R(h)}_{\text{not computable}} \approx Ch = \underbrace{2 \left[R(h/2) - R(h) \right]}_{\text{computable}!}$$

.3 – Slides

Bad numerics

Sleipner oil platform 1991

Sleipner oil platform 1991

damage: \$ 700,000,000

reason: underestimation of the forces inside a

part during the numerical simulation

simulation: commercial FE-code NASTRAN

without error estimation and adaptive

control of the simulation to ensure

reliability of the results

- 14 - Slides

Contents of the lecture

Content I

lacktriangle Polynomial interpolation of function f

find polynomial
$$p$$
 s. t. $p(x_i) = f(x_i)$

e.g. used for plotting!

Numerical integration

approximate
$$\int_a^b f(x)dx$$

Newton's method for zeros of non-linear equations

- 15 - Slides

Content II

- Solution of linear systems of equations Ax = b
 - Gaussian elimination
 - least-squares methods (optimization) for over-/underdetermined systems
 - iterative methods for efficient approximative solution
- Computation of eigenvalues of matrices, i.e., find

$$\lambda, v$$
 s.t. $Av = \lambda v$

Numerical solution of differential equations

- 16 - Slides