EFECTO FOTOELÉCTRICO

Método y recomendaciones

- Una radiación monocromática que tiene una longitud de onda de 600 nm penetra en una célula fotoeléctrica de cátodo de cesio cuyo trabajo de extracción es 3,2×10⁻¹⁹ J. Calcula:
 - a) La longitud de onda umbral para el cesio.
 - b) La energía cinética máxima de los electrones emitidos.
 - c) La velocidad máxima con la que son emitidos los electrones.
 - d) El potencial de frenado.
 - e) Representa gráficamente la energía cinética máxima de los electrones emitidos en función de la frecuencia de la luz incidente.
 - f) La longitud de onda de De Broglie asociada a los electrones emitidos por el metal con velocidad máxima.

DATOS:
$$h = 6.62 \times 10^{-34} \text{ J·s}$$
; $c = 3 \times 10^8 \text{ m·s}^{-1}$; $q_e = -1.6 \times 10^{-19} \text{ C}$; 1 nm = 10^{-9} m

Problema modelo basado en A.B.A.U. Jun. 18

Rta.: a) $\lambda_0 = 621$ nm; b) $E_c = 1.1 \cdot 10^{-20}$ J; c) $v = 1.6 \cdot 10^5$ m/s; d) V = 0.069 V; e) $\lambda_d = 4.7$ nm

Datos	Cifras significativas: 3
Longitud de onda de la radiación	$\lambda = 600 \text{ nm} = 6,00 \cdot 10^{-7} \text{ m}$
Trabajo de extracción del metal	$W_{\rm e} = 3.20 \cdot 10^{-19} { m J}$
Constante de Planck	$h = 6.62 \cdot 10^{-34} \text{ J} \cdot \text{s}$
Velocidad de la luz en el vacío	$c = 3,00 \cdot 10^8 \text{ m/s}$
Carga del electrón	$q_{\rm e} = -1.60 \times 10^{-19} {\rm C}$
Incógnitas	
Longitud de onda umbral	λο
Energía cinética máxima con la que son emitidos los electrones	$E_{\mathbf{c}}$
Velocidad máxima de los electrones emitidos	ν
Potencial de frenado	V
Longitud de onda de De Broglie de los electrones	$\lambda_{ m d}$
Ecuaciones	
Ecuación de Planck (energía del fotón)	$E_{\rm f} = h \cdot f$
Ecuación de Einstein del efecto fotoeléctrico	$E_{ m f}=W_{ m e}+E_{ m c}$
Relación entre la frecuencia de una onda luminosa y la longitud de onda	$f = c / \lambda$
Energía cinética	$E_{\rm c} = \frac{1}{2} m \cdot v^2$
Relación entre la energía cinética de los electrones y el potencial de frenado	$E_{\rm c} = e \cdot V$
Longitud de onda de De Broglie	$\lambda_{\rm d} = \frac{h}{m \cdot v}$

Solución:

a) La longitud de onda umbral corresponde a una radiación con la energía mínima para provocar el efecto fotoeléctrico. Combinando las ecuaciones de Planck y Einstein, se obtiene la frecuencia umbral:

$$W_{\rm e} = h \cdot f_{\rm o}$$

$$f_0 = \frac{W_e}{h} = \frac{3,20 \cdot 10^{-19} \text{ J}}{6.62 \cdot 10^{-24} \text{ J} \cdot \text{s}} = 4,83 \cdot 10^{14} \text{ s}^{-1}$$

La longitud de onda umbral:

$$\lambda_0 = \frac{c}{f_0} = \frac{3,00 \cdot 10^8 \text{ m} \cdot \text{s}^{-1}}{4,83 \cdot 10^{-14} \text{ s}^{-1}} = 6,21 \cdot 10^{-7} \text{ m} = 621 \text{ nm}$$

b) La energía cinética máxima de los electrones emitidos se calcula a partir de la ecuación de Einstein del efecto fotoeléctrico:

$$E_{\rm c} = E_{\rm f} - W_{\rm e}$$

La energía de los fotones, después de sustituir la frecuencia por su expresión en función de la longitud de onda, es:

$$E_{\rm f} = h \cdot f = \frac{h \cdot c}{\lambda} = \frac{6.62 \cdot 10^{-34} \,[\,\text{J} \cdot \text{s}\,] \cdot 3.00 \cdot 10^8 \,[\,\text{m} \cdot \text{s}^{-1}\,]}{6.00 \cdot 10^{-7} \,[\,\text{m}\,]} = 3.31 \cdot 10^{-19} \,\text{J}$$

La energía cinética máxima de los electrones emitidos vale:

$$E_c = 3.31 \cdot 10^{-19} [J] - 3.20 \cdot 10^{-19} [J] = 1.1 \cdot 10^{-20} J$$

c) Se calcula la velocidad a partir de la expresión de la energía cinética:

$$E_{\rm c} = \frac{1}{2} m \cdot v^2 \implies v = \sqrt{\frac{2E_{\rm c}}{m}} = \sqrt{\frac{2 \cdot 1, 1 \cdot 10^{-20} [\rm J]}{9, 11 \cdot 10^{-31} [\rm kg]}} = 1,6 \cdot 10^5 \,\mathrm{m/s}$$

d) Se calcula el potencial de frenado en la ecuación que lo relaciona con la energía cinética:

$$E_{\rm c} = |e| \cdot V \Longrightarrow V = \frac{E_{\rm c}}{|e|} = \frac{1.1 \cdot 10^{-20} [\rm J]}{1.60 \cdot 10^{-19} [\rm C]} = 0.069 \text{ V}$$

e) La representación gráfica es la siguiente:

f) Se calcula la longitud de onda asociada a los electrones usando la <u>ecuación de De Broglie</u>

$$\lambda_3 = \frac{h}{m \cdot v} = \frac{6,63 \cdot 10^{-34} [\text{J} \cdot \text{s}]}{9,10 \cdot 10^{-31} [\text{kg}] \cdot 1,6 \cdot 10^5 [\text{m/s}]} = 4,7 \cdot 10^{-9} \text{ m} = 4,7 \text{ nm}$$

La mayor parte de las respuestas puede calcularse con la hoja de cálculo <u>FisicaBachEs.ods</u>
Cuando esté en el índice, mantenga pulsada la tecla «↑» (mayúsculas) mientras hace clic en la celda <u>Efecto fotoeléctrico</u>

do capítulo

Física moderna Fotoelectr <u>Efecto fotoeléctrico</u>

Haga clic en las celdas de color salmón y elija las opciones como se muestra. Escriba los datos en las celdas de color blanco y borde azul.

Trabajo de extracción $W_0 = 3,20 \cdot 10^{-19}$ J

Longitud de onda de los fotones $\lambda = 600$ nm

Los resultados son:

a) Longitud de onda umbral $\lambda_o = 6,21 \cdot 10^{-7}$ m

Energía de los fotones $E = 3,31 \cdot 10^{-19}$ J

b) Energía cinética $E = 1,11 \cdot 10^{-20}$ J

Haciendo clic en la celda de color salmón se pueden elegir los valores pedidos en los otros apartados.

c)	Velocidad máxima	ν =	$1,56 \cdot 10^5 \text{ m/s}$	
d)	Potencial de frenado	V =	0,0691 V	
f)	Longitud de onda de De Broglie	λ. =	4 66·10 ⁻⁹ m	

La gráfica que aparece, si no elige un valor máximo de la frecuencia, es:

Cuestiones y problemas de las <u>Pruebas de evaluación de Bachillerato para el acceso a la Universidad</u> (A.B.A.U. y P.A.U.) en Galicia.

Respuestas y composición de Alfonso J. Barbadillo Marán.

Algunos cálculos se hicieron con una <u>hoja de cálculo</u> de <u>LibreOffice</u> u <u>OpenOffice</u> del mismo autor.

Algunas ecuaciones y las fórmulas orgánicas se construyeron con la extensión <u>CLC09</u> de Charles Lalanne-Cassou.

La traducción al/desde el gallego se realizó con la ayuda de <u>traducindote</u>, de Óscar Hermida López.

Se procuró seguir las <u>recomendaciones</u> del Centro Español de Metrología (CEM)

Actualizado: 20/01/22