

Network Layer Part I

Mark Allman mallman@case.edu

EECS 325/425 Fall 2018

"Got a beat up glove, a homemade bat, and a brand new pair of shoes ..."

These slides are more-or-less directly from the slide set developed by Jim Kurose and Keith Ross for their book "Computer Networking: A Top Down Approach, 5th edition".

The slides have been lightly adapted for Mark Allman's EECS 325/425 Computer Networks class at Case Western Reserve University.

All material copyright 1996-2010 J.F Kurose and K.W. Ross, All Rights Reserved

Reading Along ...

 Network layer is chapters 4 & 5

analogy: getting from
CLE to LAX via ORD

*forwarding: move packets from router's input to appropriate router output

analogy: getting from
CLE to LAX via ORD

*forwarding: move packets from router's input to appropriate router output

analogy: getting from CLE to LAX via ORD

*forwarding: process of getting through single interchange (i.e., ORD)

- *forwarding: move packets from router's input to appropriate router output
- *routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy: getting from CLE to LAX via ORD

*forwarding: process of getting through single interchange (i.e., ORD)

- *forwarding: move packets from router's input to appropriate router output
- *routing: determine route taken by packets from source to dest.
 - routing algorithms

analogy: getting from CLE to LAX via ORD

- *forwarding: process of getting through single interchange (i.e., ORD)
- *routing: process of planning trip from source to dest (i.e., from CLE to LAX)

Interplay between routing and forwarding

Q: What sort of service model should we use for the "channel" transporting datagrams from sender to receiver?

Q: What sort of service model should we use for the "channel" transporting datagrams from sender to receiver?

<u>example services for</u> <u>individual datagrams:</u>

- *guaranteed delivery
- *guaranteed delivery with less than 40 msec delay

Q: What sort of service model should we use for the "channel" transporting datagrams from sender to receiver?

<u>example services for</u> <u>individual datagrams:</u>

- *guaranteed delivery
- *guaranteed delivery with less than 40 msec delay

<u>example services for a</u> <u>flow of datagrams:</u>

- in-order datagram delivery
- guaranteed minimum bandwidth to flow
- *restrictions on changes in inter-packet spacing

- *Q: What service model does the Internet use?
 - minimalist
 - no guarantees on delivery, bandwidth, timing, ordering

- *The Internet uses the "best effort" model
 - keeps with the notion of a "thin waist"

- *no call setup at network layer
- *routers: no state about end-to-end connections
 - no network-level concept of "connection"
- *packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

- *no call setup at network layer
- *routers: no state about end-to-end connections
 - no network-level concept of "connection"
- *packets forwarded using destination host address
 - packets between same source-dest pair may take different paths

- *Fundamentally "dumb"
 - again, supports "thin waist"

- *Keep the smarts at the edges?
 - why?

table

table

4 billion IP addresses, so rather than list individual destination address list range of addresses (aggregate table entries)

Datagram Forwarding table

Destination Address Range	Link Interface
11001000 00010111 00010000 00000000 through 11001000 00010111 00010111 11111111	0
11001000 00010111 00011000 00000000 through 11001000 00010111 00011000 11111111	1
11001000 00010111 00011001 00000000 through	
through 11001000 00010111 00011111 11111111	2
otherwise	3

Q: but what happens if ranges don't divide up so nicely?

Datagram Forwarding table

Destination Address Range	Link Interface
200.23.16.0 through 200.23.23.255	0
200.23.24.0 through 200.23.24.255	1
200.23.25.0 0 through 200.23.31.255	2
otherwise	3

Q: but what happens if ranges don't divide up so nicely?

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *****	2
otherwise	3

Longest prefix matching

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *****	2
otherwise	3

Longest prefix matching

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** ******	2
otherwise	3

Examples:

Longest prefix matching

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** *****	2
otherwise	3

Examples:

DA: 11001000 00010111 00010110 10100001 Which interface?

Longest prefix matching

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 *****	1
11001000 00010111 00011*** ******	2
otherwise	3

Examples:

DA: 11001000 00010111 00010110 10100001

Which interface?

Longest prefix matching

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** ******	2
otherwise	3

Examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

Which interface? Which interface?

Longest prefix matching

when looking for forwarding table entry for given destination address, use longest address prefix that matches destination address.

Destination Address Range	Link interface
11001000 00010111 00010*** *****	0
11001000 00010111 00011000 ******	1
11001000 00010111 00011*** ******	2
otherwise	3

Examples:

DA: 11001000 00010111 00010110 10100001

DA: 11001000 00010111 00011000 10101010

Which interface? Which interface?