ECE259 Winter 2024

ECE259: Electromagnetism

Vector calculus quiz - January 29th, 2024 Instructor: Prof. Piero Triverio

This is the version "B" of the quiz with "vector-calclus-quiz" written near the QR code

Marking scheme:

0.5 points for choosing the correct answer 0.5 points for the justification

Instructions

- Duration: 15 minutes
- Exam Paper Type: A. Closed book. Only the aid sheet provided at the end of this booklet is permitted.
- Calculator Type: 2. All non-programmable electronic calculators are allowed.
- Only answers that are fully justified will be given full marks!
- Please write with a **dark** pen or pencil. This test will be scanned.

Winter 2024 ECE259

Question 1 [1 pt]

Consider the closed surface S made by the union of the following two surfaces:

$$S_1: R = 1 \quad \theta \in [\pi/2, \pi] \quad \varphi \in [0, 2\pi] \tag{1}$$

$$S_2: R \in [0,1] \quad \theta = \pi/2 \quad \varphi \in [0,2\pi]$$
 (2)

The normal vector to the surface, pointing **outwards** is:

- (a) $+\mathbf{a}_R$ on S_1 , $+\mathbf{a}_z$ on S_2
- (b) $+\mathbf{a}_R$ on S_1 , $-\mathbf{a}_z$ on S_2
- (c) $-\mathbf{a}_R$ on S_1 , $+\mathbf{a}_z$ on S_2
- (d) $-\mathbf{a}_R$ on S_1 , $-\mathbf{a}_z$ on S_2

Please justify your answer by sketching the two surfaces and the normal vectors on S_1 and S_2 .

ECE259 Winter 2024

Question 2 [1 pt]

The unit vector \mathbf{a}_R is equal to:

- (a) $-\sin\varphi \mathbf{a}_x + \cos\phi \mathbf{a}_y$;
- (b) $\cos \varphi \, \mathbf{a}_x + \sin \phi \mathbf{a}_y$;
- (c) $\cos \theta \cos \varphi \, \mathbf{a}_x + \cos \theta \sin \varphi \, \mathbf{a}_y \sin \theta \, \mathbf{a}_z$;
- (d) $\sin \theta \cos \varphi \, \mathbf{a}_x + \sin \theta \sin \varphi \, \mathbf{a}_y + \cos \theta \, \mathbf{a}_z;$

Please provide a brief justification.

$$\overline{Q}_{R} = (\overline{Q}_{R} \cdot \overline{Q}_{X}) \overline{Q}_{X} + (\overline{Q}_{R} \cdot \overline{Q}_{Y}) \overline{Q}_{Y} + (\overline{Q}_{R} \cdot \overline{Q}_{Z}) \overline{Q}_{Z}$$

Winter 2024 **ECE259**

 $-\varphi a_{\varphi}$

Question 3 [1 pt]

Let S be the boundary of the volume $r \in [0, 1], \varphi \in [0, \pi/2], z \in [0, 1]$.

Calculate the **outward** flux through S of the vector field $\mathbf{F} = \mathbf{I}$

The flux is equal to:

(a)
$$\int_S \mathbf{F} \cdot \mathbf{dS} = \pi/2$$

(b)
$$\int_S \mathbf{F} \cdot \mathbf{dS} = -\pi/2$$

(c)
$$\int_{S} \mathbf{F} \cdot \mathbf{dS} = 0$$

(d)
$$\int_{S} \mathbf{F} \cdot \mathbf{dS} = \pi$$

(e)
$$\int_{S} \mathbf{F} \cdot \mathbf{dS} = -\pi$$

Please justify your answer.

· No Plux on upper base, Cower

· No flux on face on y=0, since ==0 • Flux on face on X=0: $\int_{S}^{\mp} dS = \int_{S}^{1} \int_{S}^{1} -\varphi \bar{a} \varphi \cdot (+\bar{a} \varphi) dv dz =$ ECE259 Winter 2024

Question 4 [1 pt]

Consider two points P_1 and P_2 with coordinates

$$P_1 = (r = 5, \varphi = -\pi/2, z = 1)$$
 (3)

$$P_2 = (x = 2, y = -2, z = 2) (4)$$

Which expression is correct for the distance vector \mathbf{d} which goes from P_1 to P_2 ?

(a)
$$\mathbf{d} = (2\sqrt{2} - 5)\mathbf{a}_r + \mathbf{a}_z$$

(b)
$$\mathbf{d} = (5 - 2\sqrt{2})\mathbf{a}_r - \mathbf{a}_z$$

(c)
$$\mathbf{d} = +2\mathbf{a}_x - 3\mathbf{a}_y + \mathbf{a}_z$$

(c)
$$d = +2a_x - 3a_y + a_z$$
(d) $d = MMMMMM 2a_y + 3a_y + 3a_y + 4a_z$

Since $\varphi = -\frac{\pi}{2}$

Please provide a brief justification

Please provide a brief justification.
$$\overline{Q}_1 = 5 \overline{Q}_1 + \overline{Q}_2 = -5 \overline{Q}_1 + \overline{Q}_2$$

$$\overline{Q}_2 = 2\overline{q}_x - 2\overline{q}_y + 2\overline{q}_z$$

$$\overline{J} = \overline{R}_2 - \overline{R}_1 = 2\overline{a}_X + 3\overline{a}_y + \overline{a}_{\overline{z}}$$

ECE259 Winter 2024

1. Coordinate Systems

1.1 Cartesian coordinates

Position vector: $\mathbf{R} = x\mathbf{a}_x + y\mathbf{a}_y + z\mathbf{a}_z$

Differential length elements: $d\mathbf{l}_x = \mathbf{a}_x dx$, $d\mathbf{l}_y = \mathbf{a}_y dy$, $d\mathbf{l}_z = \mathbf{a}_z dz$

Differential surface elements: $d\mathbf{S}_x = \mathbf{a}_x dy dz$, $d\mathbf{S}_y = \mathbf{a}_y dx dz$, $d\mathbf{S}_z = \mathbf{a}_z dx dy$

Differential volume element: dV = dxdydz

1.2 Cylindrical coordinates

Position vector: $\mathbf{R} = r\mathbf{a}_r + z\mathbf{a}_z$

Differential length elements: $\mathbf{dl}_r = \mathbf{a}_r dr$, $\mathbf{dl}_{\phi} = \mathbf{a}_{\phi} r d\phi$, $\mathbf{dl}_z = \mathbf{a}_z dz$

Differential surface elements: $d\mathbf{S}_r = \mathbf{a}_r r d\phi dz$, $d\mathbf{S}_\phi = \mathbf{a}_\phi dr dz$, $d\mathbf{S}_z = \mathbf{a}_z r d\phi dr$

Differential volume element: $dV = rdrd\phi dz$

1.3 Spherical coordinates

Position vector: $\mathbf{R} = R\mathbf{a}_R$

Differential length elements: $\mathbf{dl}_R = \mathbf{a}_R dR$, $\mathbf{dl}_\theta = \mathbf{a}_\theta R d\theta$, $\mathbf{dl}_\phi = \mathbf{a}_\phi R \sin\theta d\phi$

Differential surface elements: $d\mathbf{S}_R = \mathbf{a}_R R^2 \sin \theta d\theta d\phi$, $d\mathbf{S}_{\theta} = \mathbf{a}_{\theta} R \sin \theta dR d\phi$, $d\mathbf{S}_{\phi} = \mathbf{a}_{\phi} R dR d\theta$

Differential volume element: $dV = R^2 \sin \theta dR d\theta d\phi$

2. Relationship between coordinate variables

-	Cartesian	Cylindrical	Spherical		
x	x	$r\cos\phi$	$R\sin\theta\cos\phi$		
y	y	$r\sin\phi$	$R\sin\theta\sin\phi$		
z	z	z	$R\cos\theta$		
r	$\sqrt{x^2+y^2}$	r	$R\sin heta$		
ϕ		ϕ	ϕ		
z	z	z	$R\cos\theta$		
R	$\sqrt{x^2 + y^2 + z^2}$	$\sqrt{r^2 + z^2}$	R		
θ	$\sqrt{x^2 + y^2 + z^2}$ $\cos^{-1} \frac{z}{\sqrt{x^2 + y^2 + z^2}}$ $\tan^{-1} \frac{y}{x}$	$\sqrt{r^2 + z^2}$ $\tan^{-1}\frac{r}{z}$	θ		
ϕ		ϕ	ϕ		

Winter 2024 **ECE259**

3. Dot products of unit vectors

or products of unit vectors											
	\mathbf{a}_x	\mathbf{a}_y	\mathbf{a}_z	\mathbf{a}_r	\mathbf{a}_{ϕ}	\mathbf{a}_z	\mathbf{a}_R	$\mathbf{a}_{ heta}$	\mathbf{a}_{ϕ}		
\mathbf{a}_x	1	0	0	$\cos \phi$	$-\sin\phi$	0	$\sin \theta \cos \phi$	$\cos \theta \cos \phi$	$-\sin\phi$		
\mathbf{a}_y	0	1	0	$\sin \phi$	$\cos \phi$	0	$\sin\theta\sin\phi$	$\cos\theta\sin\phi$	$\cos \phi$		
\mathbf{a}_z	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0		
\mathbf{a}_r	$\cos \phi$	$\sin \phi$	0	1	0	0	$\sin \theta$	$\cos \theta$	0		
\mathbf{a}_{ϕ}	$-\sin\phi$	$\cos \phi$	0	0	1	0	0	0	1		
\mathbf{a}_z	0	0	1	0	0	1	$\cos \theta$	$-\sin\theta$	0		
\mathbf{a}_R	$\sin \theta \cos \phi$	$\sin\theta\sin\phi$	$\cos \theta$	$\sin \theta$	0	$\cos \theta$	1	0	0		
$\mathbf{a}_{ heta}$	$\cos \theta \cos \phi$	$\cos\theta\sin\phi$	$-\sin\theta$	$\cos \theta$	0	$-\sin\theta$	0	1	0		
\mathbf{a}_{ϕ}	$-\sin\phi$	$\cos \phi$	0	0	1	0	0	0	1		

4. Differential operators

4.1 Gradient

$$\nabla V = \frac{\partial V}{\partial x}\vec{a}_x + \frac{\partial V}{\partial y}\vec{a}_y + \frac{\partial V}{\partial z}\vec{a}_z = \frac{\partial V}{\partial r}\vec{a}_r + \frac{1}{r}\frac{\partial V}{\partial \phi}\vec{a}_\phi + \frac{\partial V}{\partial z}\vec{a}_z = \frac{\partial V}{\partial R}\vec{a}_R + \frac{1}{R}\frac{\partial V}{\partial \theta}\vec{a}_\theta + \frac{1}{R\sin\theta}\frac{\partial V}{\partial \phi}\vec{a}_\phi$$

4.2 Divergence

$$\nabla \cdot \vec{A} = \frac{\partial A_x}{\partial x} + \frac{\partial A_y}{\partial y} + \frac{\partial A_z}{\partial z} = \frac{1}{r} \frac{\partial (rA_r)}{\partial r} + \frac{1}{r} \frac{\partial A_\phi}{\partial \phi} + \frac{\partial A_z}{\partial z} = \frac{1}{R^2} \frac{\partial (R^2 A_R)}{\partial R} + \frac{1}{R \sin \theta} \frac{\partial (\sin \theta A_\theta)}{\partial \theta} + \frac{1}{R \sin \theta} \frac{\partial A_\phi}{\partial \phi} + \frac{1}$$

4.3 Laplacian

$$\nabla^2 V = \frac{\partial^2 V}{\partial x^2} + \frac{\partial^2 V}{\partial y^2} + \frac{\partial^2 V}{\partial z^2} = \frac{1}{r} \frac{\partial}{\partial r} \left(r \frac{\partial V}{\partial r} \right) + \frac{1}{r^2} \frac{\partial^2 V}{\partial \phi^2} + \frac{\partial^2 V}{\partial z^2} = \frac{1}{R^2} \frac{\partial}{\partial R} \left(R^2 \frac{\partial V}{\partial R} \right) + \frac{1}{R^2 \sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial V}{\partial \theta} \right) + \frac{1}{R^2 \sin^2 \theta} \frac{\partial^2 V}{\partial \phi^2}$$

$$\nabla \times \vec{A} = \begin{pmatrix} -1 & -1 \\ -1 & -1 \end{pmatrix}$$

$$\nabla \times \vec{A} = \left(\frac{\partial A_z}{\partial y} - \frac{\partial A_y}{\partial z}\right) \vec{a}_x + \left(\frac{\partial A_x}{\partial z} - \frac{\partial A_z}{\partial x}\right) \vec{a}_y + \left(\frac{\partial A_y}{\partial x} - \frac{\partial A_x}{\partial y}\right) \vec{a}_z$$

$$= \left(\frac{1}{r} \frac{\partial A_z}{\partial \phi} - \frac{\partial A_\phi}{\partial z}\right) \vec{a}_r + \left(\frac{\partial A_r}{\partial z} - \frac{\partial A_z}{\partial r}\right) \vec{a}_\phi + \frac{1}{r} \left(\frac{\partial (rA_\phi)}{\partial r} - \frac{\partial A_r}{\partial \phi}\right) \vec{a}_z$$

$$= \frac{1}{R \sin \theta} \left(\frac{\partial (\sin \theta A_\phi)}{\partial \theta} - \frac{\partial A_\theta}{\partial \phi}\right) \vec{a}_R + \frac{1}{R} \left(\frac{1}{\sin \theta} \frac{\partial A_R}{\partial \phi} - \frac{\partial (RA_\phi)}{\partial R}\right) \vec{a}_\theta$$

$$+ \frac{1}{R} \left(\frac{\partial (RA_\theta)}{\partial R} - \frac{\partial A_R}{\partial \theta}\right) \vec{a}_\phi$$