

ADA-121601

MEMORANDUM REPORT ARBRL-MR-03218 (Supersedes IMR No. 643)

INSTRUMENTATION FOR MEASURING PRESSURE WAVES IN GUNS

James W. Evans

November 1982

BALLISTIC RESEARCH LABORATORY ABERDEEN PROVING GROUND, MARYLAND

Approved for public release; distribution unlimited.

Destroy this report when it is no longer needed. Do not return it to the originator.

Secondary distribution of this report is prohibited.

Additional copies of this report may be obtained from the National Technical Information Service, U. S. Department of Commerce, Springfield, Virginia 22161.

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

The use of trade names or manufacturers' names in this report does not constitute indorsement of any commercial product.

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

REPORT DOCUMENTATION PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM							
1. REPORT NUMBER 2. GOVT ACCESSION NO								
Memorandum Report ARBRL-MR-03218								
4. TITLE (and Subtitle)	5. TYPE OF REPORT & PERIOD COVERED							
Instrumentation For Measuring Pressure Waves								
Instrumentation for measuring pressure waves	6. PERFORMING ORG. REPORT NUMBER							
in duns	5. PERFORMING ORG. NEFORT NUMBER							
7. AUTHOR(e)	8. CONTRACT OR GRANT NUMBER(e)							
Y								
James W. Evans	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS							
9. PERFORMING ORGANIZATION NAME AND ADDRESS U.S. Army Ballistic Research Laboratory	AREA & WORK UNIT NUMBERS							
ATTN: DRDAR-BLI	1L162618AH80							
Aberdeen Proving Ground, MD 21005								
11. CONTROLLING OFFICE NAME AND ADDRESS U.S. Army Armament Research & Development Command	12. REPOPT DATE							
U.S.Army Ballistic Research Laboratory (DRDAR-BL)	November 1982							
Aberdeen Proving Ground, MD 21005	13. NUMBER OF PAGES							
14. MONITORING AGENCY NAME & ADDRESS(If different from Controlling Office)	15. SECURITY CLASS. (of this report)							
	UNCLASSIFIED							
	15a. DECLASSIFICATION/DOWNGRADING SCHEDULE							
16. DISTRIBUTION STATEMENT (of this Report)								
Approved for public release; distribution unlim	ited							
17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, if different fr	om Report)							
	<u> </u>							
18. SUPPLEMENTARY NOTES								
	i i							
Supersedes BRL IMR 643	=							
19. KEY WORDS (Continue on reverse elde if necessary and identify by block number Transducer Calibration	7)							
Piezoelectric								
Charge Amplifier								
Differential Pressure								
Pressure Measurement								
20. ABSTRACT (Continue on reverse side if necessary and identify by block number. The continuous measurement of the pressure different) uce between the breech and							
forward ends of a cannon chamber is used by the cha	arge designer to make an							
evaluation of the ignition process and to determine	e the existence of pressure							
waves. The technique of making this measurement in								
of two optimally located transducers with a record								
adjusted, calibrated, and scaled. The resulting de								
time relationship reveals wave structure that may n								
inspection of the two original pressure-time curves	5.							

DD FORM 1473

EDITION OF 1 NOV 65 IS OBSOLETE

TABLE OF CONTENTS

																											Page
	LIST C	F F	I GUR	ES.		•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	5
I.	INTROD)UCT	ION				•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	7
II.	PRESSU	JRE N	MEAS	URI	EMEN	T	TE	СН	ΝI	QU	IES				•		•	•	•	•	•	•	•	•		•	8
	Α.	Basi	ic P	re	ssui	e:e	Me	as	ur	en	ien	t		•	•	•	•			•	•	•	•	•	•	•	8
	В.	Dif	fere	nt:	ia1	Pr	es	su	re	N	le a	เรน	ıre	eme	en t		•	•		٠	•	•	•		•		10
III.	RESULT	ΓS.				٠	•	•	•	•	•	•	•	•	•	•	•	•	•	٠	•	•	•	٠	•	•	14
	DISTR	I BUT	ION	LI	ST	•	•	•	•	•	٠	٠	•	•		•	•	•	•	•	•					•	17

LIST OF FIGURES

No.								Page
1.	Pressure Transducer Locations		•		•	•	•	7
2.	Data Format	•	•	•		•	•	9
3.	Basic Piezoelectric Pressure Measurement	•	•	•	•	•		9
4.	Differential Pressure Measurement	•	•		•	•	•	11
5.	Pressure-Analog Voltage Relationship	•	•	•	•	•	•	12
6.	Differential Pressure-Analog Voltage Relationship		•			•	•	14
7.	Typical Data, No Pressure Waves	•		•		•	•	15
8.	Typical Data, Large Pressure Waves						•	16

I. INTRODUCTION

During the study of interior ballistic phenomena, it is desirable at times to difference two analog pressure signals and display the calibrated output. This technique is particularly useful in the study of propellant charge ignition^{1,2}. From the difference of a pressure transducer located in the breech of a gun and one located in the side wall of the chamber near the rear of the projectile (Figure 1), the charge designer can make an evaluation of the ignition process and determine the existence of pressure waves, even if they are of very low amplitude. The resulting differential pressure versus time relationship reveals wave structures that would not be obvious by visual inspection of two original pressure-time curves.

Figure 1. Pressure Transducer Locations

The technique described here is particularly useful when operating in the field where data are recorded on analog magnetic tape and played back at reduced speed on a chart recorder. An initial appraisal of the data can be made on site without the necessity of processing at a data reduction facility.

¹I. W. May, E. V. Clarke, Jr., H. Hassmann, "A Case History: Gun Ignition Related Problems and Solutions for the XM-198 Howitzer," Proceedings of the International Symposium on Gun Propellants, Picatinny Arsenal, 15-19 October 1973.

²I. W. May, E. V. Clarke, Jr., "The Reverse Chamber Pressure Gradient: A Tool for Assessing the Effects of Wave Dynamics on the Ballistic Performance of Guns," Proceedings of the Second International Symposium on Ballistics, Sponsored by the American Defense Preparedness Association, Daytona Beach, Florida, 9-11 March 1976.

II. PRESSURE MEASUREMENT TECHNIQUES

A. Basic Pressure Measurement

In order to keep the data reduction process compatible with existing in-house hardware, data reduction programs, and procedures; a standard format is used. This format has five linear calibration steps, each with a 50-millisecond duration, preceding the analog voltage data as shown in Figure 2. When a piezoelectric transducer and charge amplifier are used for making the pressure measurement, the calibration is realized through the charge amplifier calibration port (Figure 3). This input is coupled to the charge amplifier through a built-in 1000-picofarad capacitor and the top step calibration voltage is chosen to induce a charge on this capacitor somewhat greater than the charge that will be generated by the transducer at the maximum expected pressure. The calibration voltage is determined by the relationship:

$$V_{c} = q_{c}/C \tag{1}$$

Where:

V_c = Calibration voltage, top step (volts)

 q_c = Charge induced by the top step calibration voltage (picocoulombs)

C = Capacitance of the calibration capacitor (picofarads)

The charge generated by the transducer at an "even" value of pressure somewhat greater than the maximum pressure is:

$$q_t = k P_t$$
 (2)

Where:

 q_{t} = Charge generated by the transducer at P_{t} (picocoulombs)

k = Transducer linear calibration constant (picocoulombs/1b/in.2)

P_t = Pressure at top calibration step (1b/in.²)

if:
$$q_c = q_t$$

Then:
$$V_c = k P_t/C$$
 (3)

³C.L. Henry, R. L. Martz, E. M. Wineholt, "An Improved Procedure for the Reduction of Interior Ballistic Data Recorded on Analog Tape," Ballistic Research Laboratories Memorandum Report No. 2374, April 1974 (AD#919924L)

⁴"Model 504E4 Dual-Mode Amplifier Instruction Manual," Sundstrand Data Control, Inc., Redmond, Washington 98052

XDUCER

RANGE
SW.

TRANSDUCER

TRANSDUCER
SENSITIVITY

CHARGE
AMPLIFIER

PRECISION
VOLTAGE
SOURCE

N.O. KI K2 K4 K5 K6 K7 K8 K9

N.C. K1 K2 K4 K5 K6 K7 K8 K9

Figure 3. Basic Piezoelectric Pressure Measurement

The charge amplifier's analog voltage output can be adjusted to the desired magnitude with the "range switch" (R) and the "transducer sensitivity" (S) setting⁴. The overall gain of the charge amplifier is the product of R and S, which is set to the desired gain by:

$$RS = kP_t/V_o = V_cC/V_o$$
 (4)

Where:

R = Charge amplifier range switch setting $(\frac{1b/in.^2}{volt})$ (R = 1, 2, 5, 10,....,5K)

S = Charge amplifier transducer sensitivity setting S = 1 to 11 (picocoulombs/1b/in.²)

 V_o = Required analog output for P_t (volts)

Note: English units are used here since most commercial charge amplifiers and transducers are calibrated using these units.

Just prior to calibration, the charge amplifier's feedback capacitor is remotely shorted for several milliseconds to eliminate any stray charge. This is done with two relay stages (K_1 and K_2) of a pre-programmed sequence timer. The voltage staircase is generated from a precision voltage source and series connected precision resistors. The pre-programmed sequence timer energizes in sequence the relays (K_4 through K_9) that are connected as shown in Figure 3. An amplifier with unity gain is used to insure that the calibration circuit is not overloaded since it may be used to calibrate more than one amplifier. This is a so-called "end-to-end" calibration and calibrates the entire data circuit with the exception of the transducer.

B. Differential Pressure Measurement

The pressure difference of two analog pressure signals is derived using the system shown in Figure 4. It is important that the paths of the analog signals are identical to avoid errors due to phase shifts and slew rates. The two charge amplifiers $(Q_1 \text{ and } Q_2)$ use the same calibration and remote short circuits. When selecting the calibration voltage, consideration must be given to the fact that the calibration constants for the transducers may be different and the greater value should be used to calculate the calibration voltage. It is desirable that the transducers have nearly the same parameters and those selected have the most linear outputs. It is necessary that the magnitude of the input voltages (V₁ and V₂) to the differential amplifier (A₃) represent the same pressure magnitude and that they be compatible with the recording device. For an FM channel of a magnetic tape recorder, the required input signal is usually one volt RMS. In this general case it is selected as plus and minus a band edge voltage (±V_E). To make the analog data from the two transducers compatible, every circuit in the system must be precisely adjusted. Assuming that from the calibration of the selected transducers, pressure (Pt1) is greater than pressure (Pt2) for the top calibration step. This will serve as a basis for adjusting the various circuits. The output of charge amplifier (Q1) is adjusted to have

Figure 4. Differential Pressure Measurement

the following values:

@ Calibration baseline
$$P_{b_{1}} = 0 ; V_{b_{1}} = 0$$
@ Top Calibration step
$$P_{t_{1}} = V_{c}C/k_{1} ; V_{t_{1}} = 2 V_{E}$$

This is accomplished by calculating the charge amplifier settings (R and S) using Equation (4) with $2V_E$ as the required output for the top calibration step. Several combinations of R and S are possible for each calculated condition. Once the selected R and S combination is set, the output conditions can be monitored while manually operating sequence timer stage K_8 to impress the top calibration step. It may be necessary to adjust the amplifier zero and the transducer sensitivity setting to compensate for dial inaccuracies. The remote short should be activated just before making zero adjustments to remove any stray charge. From the conditions adjusted into Q_1 and assuming that the system is linear, it follows that the relationship of the pressure to the analog voltage is:

$$v = 2V_E(k_1/V_cC)p$$
 (5)

Where:

v = variable voltage output (volts)

 $P = variable pressure (1b/in.^2)$

This is graphically depicted in Figure 5 as the linear equation that passes through the point (0,0) and (P_{t_1}, V_{t_1}) . Using this relationship and manually operating sequence times stages K_4 through K_9 while observing Q_1 output, the linearity of the system can be determined. Charge amplifier

 Q_2 is then adjusted to have the same pressure-voltage relationship as $\mathsf{Q}_1.$ It is obvious that the calibration baseline should have the values:

$$P_{b_2} = 0$$
 ; $V_{b_2} = 0$

Using Equations (3) and (5), the top calibration step values are determined as follows:

$$P_{t_2} = V_c C/k_2$$
; $V_{t_2} = 2V_E(k_1/k_2)$

This is shown as point (P_{t_2}, V_{t_2}) on figure 5.

Figure 5. Pressure-Analog Voltage Relationship

Amplifiers A_1 and A_2 should be adjusted for unity gain with the analog signals fed into the non-inverting inputs. A voltage source is fed into the inverting inputs to offset the output by the negative band edge voltage (-V_E) for compatibility with the recording device. (On some amplifiers, this function is internally incorporated). The expression for the pressure-voltage relationship at the outputs of A_1 and A_2 is:

$$v' = -V_E + 2V_E (k_1/V_cC)p$$
 (6)

This relationship is shown graphically on Figure 5. The calibration baseline values for amplifiers $\rm A_1$ and $\rm A_2$ are:

$$P_{b_1} = 0$$
 ; $V_{b_1} = -V_E$
 $P_{b_2} = 0$; $V_{b_2} = -V_E$

Using Equations (3) and (6), the top calibration step values are determined as follows:

$$P_{t_1} = V_c C/K_1$$
; $V_{t_1} = V_E$
 $P_{t_2} = V_c C/K_2$; $V_{t_2} = V_E [(2k_1/k_2)-1]$

The output of differential amplifier A_3 is the analog voltage (Δv) of the differential pressure (Δp). The inputs, in this configuration, are from amplifiers A_1 and A_2 , but could have been from Q_1 and Q_2 . The former configuration was selected for convenience since the recording system had monitor points at the A_1 and A_2 outputs. This additional rank of amplifiers that the differential signal must pass was insignificant because of the relatively wide bandwidth and fast slew rate of the amplifiers. The analytical expression for the output of A_3 is:

$$\Delta v = G(v'_1 - v'_2)$$

$$= G[2V_E (k_1/V_cC) (p_1 - p_2)]$$

$$= 2GV_E(k_1/V_cC) \Delta p$$
Where: G = Voltage gain of A₃
(7)

To make the differential pressure data consistent with the data format 3 , it is necessary that the analog signal be preceded by calibration steps. The signal is interrupted by switching to a voltage staircase during the normal calibration cycle and switching back to the amplifier output when calibration is completed. This is done by two stages of the pre-programmed sequence timer (K3 and K10). The voltage staircase is generated by a circuit similar to the one that calibrates the charge amplifier and is time-coordinated with it. Baseline (-V_E) and top-step voltages (+V_E) are adjusted to the same magnitude as the calibration staircase of \texttt{A}_1 .

The quiescent state of amplifier (A_3) at zero differential pressures is zero volts and during the dynamic event can swing both positive and negative. This implies that zero pressure does not coincide with the baseline but lies mid-way between the baseline and the top calibration step. This is depicted graphically as Figure 6. Values at the calibration baseline and calibration top step, calculated from Equation 7, are as follows:

$$\Delta V_{b} = -V_{E}$$
 ; $\Delta P_{b} = -\frac{1}{2G_{1}} (V_{c}C/k_{1})$

@ Top Calibration step

$$\Delta V_{t} = +V_{E}$$
 ; $\Delta P_{t} = \frac{1}{2G_{1}} (V_{c}C/k_{1})$

Since the analog of the differential pressure is a function of amplifier A_3 gain, it is necessary that the gain be precisely known and that it is adjusted for the expected differential pressure.

III. RESULTS

Typical examples of data acquired using the described techniques are shown in Figures 7 and 8. These data are from experimental propelling charge and igniter configurations. From the Δp versus time plots, the charge designer can evaluate the ignition process as described in References 1 and 2. Figure 7 is an example of a good ignition as evidenced by the normal non-oscillatory positive pressure difference. Figure 8 is an example where abnormal pressure waves exist with the substantial negative pressure gradient indicating poor ignition.

Figure 6. Differential Pressure-Analog Voltage Relationship

Figure 7. Typical Data, No Pressure Waves

Figure 8. Typical Data, Large Pressure Waves

DISTRIBUTION LIST

No. Of		No. Of	
Copies	Organization	Copies	Organization
			
12	Administrator	•	D.L L
12		3	Director
	Defense Technical Info Center		US Army ARRADCOM Benet
	ATTN: DTIC-DDA		Weapons Laboratory
	Cameron Station		ATTN: DRDAR-LCB-TL
	Alexandria, VA 22314		DRDAR-LCB, Mr. W. Austin
	, , , , , , , , , , , , , , , , , , , ,		
1	Commander		DRDAR-LCB-RM, D. Kendall
I			Watervliet, NY 12189
	US Army Materiel Development		
	and Readiness Command		
	ATTN: DRCDMD-ST		
	5001 Eisenhower Avenue	1	Commander
	Alexandria, VA 22333	1	
	nichalita, vii 22555		US Army Aviation Research
0	2		and Development Command
9	Commander		ATTN: DRDAV-E
	US Army Armament R&D Command		4300 Goodfellow Blvd.
	ATTN: DRDAR-TSS (2 cys)		St. Louis, MO 63120
	DRDAR-TDC		be. Hours, no 05120
	DRDAR-LCA, S.Westley		m.t
		1	Director
	D.Gulliksen		US Army Air Mobility Research
	D.Collette		And Development Laboratory
	DRDAR-LCA-G,		Ames Research Center
	K. Klingaman		Moffett Field, CA 94035
	S. Bernstein		noticee field, on 94039
	DRDAR-BE-IA,		0- 1
		1	Commander
	L. Goldsmith		US Army Communications
	Dover, NJ 07801		Research and Development
			Command
3	Commander		ATTN: DRDCO-PPA-SA
	US Army Armament R&D Command		Fort Monmouth, NJ 07703
	ATTN: DRCPM-CAWS,		Fore monitoticit, NJ 07703
	F. Menke	1	Commander
	H. Noble		US Army Electronics Research
	Dover, NJ 07801		and Development Command
			Technical Support Activity
3	Project Manager		ATTN: DELSD-L
	Cannon Artillery Weapons		
			Fort Monmouth, NJ 07703
	System		
	DRCPM-CAWS-AM,	2	Commander
	R. DeKleine		US Army Missile Command
	H. Hassmann		ATTN: DRSMI-R
	Dover, NJ 07801		
	20.02, 10 0/001		DRSMI-YDL
1	0		Redstone Arsenal, AL 35898
1	Commander		
	US Army Armament Materiel	3	Commander
	Readiness Command		US Army Dugway Proving Ground
	ATTN: DRSAR-LEP-L, Tech Lib		ATTN: STEDP-MT, Mr. W. Dyer
	Rock Island, IL 61299		
			Mr. J. Deale
			Mr. C. Dewitt
	1	~	Dugway, UT 84022

DISTRIBUTION LIST

No. Of		No. Of	
Copies		Copies	Organization
2	Commander		
	US Army Materiel Testing	1	Princeton Combustion Research
	Directorate		Lab., Inc.
	ATTN: STEJP-MT, V. Gudkese		ATTN: M. Summerfield
	M. Shepherd		1041 US Highway One North
	Jefferson Proving Ground Madison, IN 47251		Princeton, NJ 08540
•		1	Commander
2	Commander		Naval Ordnance Station
	US Army Materiel Testing		ATTN: Code 5254 E,
	Directorate		F. Drinkard
	ATTN: SEEYP-MC, W. Phillips		Indian Head, MD 20640
	J. Gallett		
	Yuma Proving Ground Yuma AZ 85364	A1 :	
•	Talle A2 05504	Abero	deen Proving Ground
1	Commander	Din	TICAMCAA
	Hawthorne Army Ammo Plant	·	USAMSAA [N: DRXSY-D
	ATTN: Mr. V. C. Miller	All	DRXSY-MP, H. Cohen
	Hawthorne, CA 90250	Cdr.	USATECOM . Conen
		•	IN: DRSTE-TO-F
1	Commander		DRSTE-AD-M, J. Gehrig
	US Army Tank Automotive		STEAP-MT, S. Walton
	Research and Development		D. Lacey
	Command		C. Herud
	ATTN: DRDTA-UL		K. Balliet
	Warren, MI 48090	Dir,	USACSL, Bldg. E3516, EA
1	P. C.	ATT	IN: DRDAR-CLB-PA
1	Director		
	US Army TRADOC Systems		
	Analysis Activity ATTN: ATAA-SL, Tech Lib		
	White Sands Missile Range,		
	NM 88002		
	111 00002		
2	Commander		
	Naval Surface Weapons Center		
	ATTN: Code G33, J. L. East		
	D. McClure		
	Dahlgren, VA 22448		
1	Commander		
	Naval Surface Weapons Center		
	Silver Spring MD 20010		

Silver Spring, MD 20910

USER EVALUATION OF REPORT

Please take a few minutes to answer the questions below; tear out this sheet, fold as indicated, staple or tape closed, and place in the mail. Your comments will provide us with information for improving future reports.

1. BRL Report Number
2. Does this report satisfy a need? (Comment on purpose, related project, or other area of interest for which report will be used.)
3. How, specifically, is the report being used? (Information source, design data or procedure, management procedure, source of ideas, etc.)
4. Has the information in this report led to any quantitative savings as far as man-hours/contract dollars saved, operating costs avoided, efficiencies achieved, etc.? If so, please elaborate.
5. General Comments (Indicate what you think should be changed to make this report and future reports of this type more responsive to your needs, more usable, improve readability, etc.)
6. If you would like to be contacted by the personnel who prepared this report to raise specific questions or discuss the topic, please fill in the following information.
Name:
Telephone Number:
Organization Address: