

Cálculo Diferencial e Integral III 1º Semestre 2023/2024

Michael Paluch

Departamento de Matemática Instituto Superior Técnico Universidade de Lisboa

Conteúdo

1	Su	perncies	e Integração	1
1	Subvariedades			
	1.1	Superfíci	ies e curvas	1
	1.2	Vetores t	angentes e normais	4
	1.3	Integral o	de Superfície	5
	1.4	Partições	s da Unidade	7
	1.5	Domínio	Regular	9
	1.6	Teorema	Fundamental de Cálculo	11
	1.7	Teorema	da Divergência de Gauss	15
2	Teorema de Stokes			18
	2.1	Orientaç	ão	18
	2.2	Rotacion	nal de um campo vetorial	19
	2.3 Teorema Integral de Stokes		21	
	2.4	Potencia	26	
II	E	quações	Diferenciais Ordinárias	30
3	Equações diferenciais da primeira ordem			30
	3.1	Problema	a de valor inicial	30
	3.2 Equações Diferenciais Lineares da Primeira Ordem			31
	3.3	3.3 Existência e Unicidade de Soluções de Equações Não Lineares		35
		3.3.1 E	Equação integral	36
		3.3.2 I	teradas de Picard	37
		3.3.3 U	Unicidade de soluções de PVI	40
		3.3.4 F	Prolongamento de soluções a intervalos máximos	42
		3.3.5 I	Dependência das Condições Iniciais	45
		3.3.6	Comparação de Soluções	46
		3.3.7	Campos de Direções	49
	3.4	Equaçõe	s Separáveis	50

	3.5	Equações Exatas	55	
	3.6	Redutível a exata	57	
	3.7	Equações Diferenciais Vetoriais da Primeira Ordem	57	
	3.8	Sistemas de Equações Lineares de Coeficientes Constantes	59	
	3.9	Método de Variação de Constantes	65	
	3.10	O Método de coeficientes Indeterminados	66	
4	Equações Diferenciais de Ordem Superior			
	4.1	Equações Lineares da Segunda Ordem	67	
	4.2	Redução de Ordem	68	
	4.3	Variação das constantes II	71	
	4.4	Método dos Coeficientes Indeterminados	73	
5	Transformada de Laplace			
	5.1	Definição e Exemplos	79	
	5.2	Existência da Transformada de Laplace	80	
	5.3	Propriedades da Transformada de Laplace	82	
	5.4	Soluções de Equações Diferenciais Ordinárias	84	
	5.5	Inversa da Transformada de Laplace	85	
II	I E	quações Diferenciais Parciais	88	
6	EDP de 1 ^a Ordem Quasi-lineares			
	6.1	Método de Características	88	
7	EDP de 2ª Ordem lineares			
	7.1	Unicidade de Soluções	96	
	7.2	Propriedade de Funçcões Harmónicas	99	
		7.2.1 Valor Médio	99	
		7.2.2 Princípio do Máximo	100	
	7.3	Separação da Variáveis	101	
		7.3.1 Equação de calor	101	
		7.3.2 Equação de ondas	102	
		7.3.3 Equação de Laplace	104	

8	Série de Fourier			
	8.1 Sistemas de Funções Ortogonais	105		
	8.2 Convergência Pontual, Uniforme e em Norma Média Quadrática	108		
9	Resolução da Equação de Calor	115		
	9.1 Equação de Calor Não-Homogénea	116		
10	Resolução da Equação de Ondas	119		
11	Resolução da Equação de Laplace	121		

PARTE I

Superfícies e Integração

1 Subvariedades

Comecemos com algumas definições. O símbolo $\mathbb R$ representa o conjunto dos números reais. A *norma* de $\mathbf x = (x,y,z) \in \mathbb R^3$ é

$$||\mathbf{x}|| = \sqrt{x^2 + y^2 + z^2}.$$

Para $\mathbf{x} \in \mathbb{R}^3$ e r > 0 um número real, a *bola aberta* de centro \mathbf{x} e raio r é o subconjunto

$$B_r(\mathbf{x}) = \{ \mathbf{y} \in \mathbb{R}^3 : ||\mathbf{x} - \mathbf{y}|| < r \}.$$

Um subconjunto $U \subseteq \mathbb{R}^3$ é *aberto* se para cada ponto $\mathbf{x} \in U$ existe r > 0 tal que $B_r(\mathbf{x}) \subseteq U$. Dizemos que um subconjunto $V \subseteq \mathbb{R}^3$ é uma *vizinhança aberta* de um ponto $\mathbf{x} \in \mathbb{R}^3$ se $\mathbf{x} \in V$ e V é aberta.

1.1 Superfícies e curvas

- **1.1.1 Definição.** Dizemos que um subconjunto $S \subset \mathbb{R}^3$ é uma *superfície* de classe C^1 se para cada ponto $\mathbf{x} \in S$ existe um subconjunto aberto $U \subset \mathbb{R}^2$, uma vizinhança aberta $V \subset \mathbb{R}^3$ de \mathbf{x} e uma função $\varphi \colon U \to \mathbb{R}^3$ de classe C^1 tal que
 - (i) φ é injetiva,
 - (ii) $D\varphi(\mathbf{y})$ tem característica 2 para cada $\mathbf{y} \in U$,

(iii)

$$S \cap V = \{ \varphi(\mathbf{y}) : \mathbf{y} \in U \}.$$

Dizemos que um subconjunto $C \subset \mathbb{R}^3$ é uma *curva* de classe C^1 se para cada ponto $\mathbf{x} \in C$ existe um subconjunto aberto $U \subset \mathbb{R}^1$, uma vizinhança aberta $V \subset \mathbb{R}^3$ de \mathbf{x} e uma função $\varphi \colon U \to \mathbb{R}^3$ de classe C^1 tal que

- (iv) φ é injetiva,
- (v) $D\varphi(\mathbf{v})$ tem característica 1 para cada $\mathbf{v} \in U$,

(vi)

$$C \cap V = \{ \varphi(\mathbf{y}) \colon \mathbf{y} \in U \}.$$

Dizemos que $C \subset \mathbb{R}^3$ é *seccionalmente* uma curva de classe C^1 se existe um conjunto $P = \{p_i\} \subset C$ finito ou numerável de pontos tal que $C \setminus P$ é uma curva de classe C^1 .

Dizemos que $S \subset \mathbb{R}^3$ é *seccionalmente* uma superfície de classe C^1 se existe um conjunto $C = \{p_i, D_j\}$ finito ou numerável de pontos $p_i \in S$ e curvas $D_j \subset S$ seccionalmente de classe C^1 tal que $S \setminus C$ é uma superfície de classe C^1 .

- **1.1.1 Nota.** A função φ em Definition 1.1.1 chama-se uma parametrização local.
- **1.1.2 Exemplo.** Se f(x,y) é uma função de classe C^1 definida num aberto $U\subseteq \mathbb{R}^2$, então o subconjunto

$$S = \{(x, y, f(x, y)) : (x, y) \in U\}$$

é uma superfície de \mathbb{R}^3 . De fato

$$\varphi(x,y) = (x,y,f(x,y))$$

é um função injetiva e

$$D\varphi(x,y) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix}.$$

Por outro lado se $S \subset \mathbb{R}^3$ é uma superfície e $\varphi \colon U \to \mathbb{R}^3$ é uma parametrização local de S, então para $\varphi(u,v) = (\varphi_1(u,v), \varphi_2(u,v), \varphi_3(u,v)) = (x,y,z)$ a matriz

$$D\varphi = \begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \\ \frac{\partial z}{\partial u} & \frac{\partial z}{\partial v} \end{pmatrix}$$

tem característica 2. Se

$$\det\begin{pmatrix} \frac{\partial x}{\partial u} & \frac{\partial x}{\partial v} \\ \frac{\partial y}{\partial u} & \frac{\partial y}{\partial v} \end{pmatrix} \neq 0$$

num ponto $(a,b) \in U$, então o teorema da função inversa implica que a função

$$(u,v) \mapsto (\varphi_1(u,v),\varphi_2(u,v)) = (x,y)$$

tem uma inversa definida numa vizinhança aberta de $(\varphi_1(a,b),\varphi_2(a,b))$. Seja então $\psi(x,y)=(\psi_1(x,y),\psi_2(x,y))=(u,v)$ a inversa. Obtemos

$$\varphi(\psi_1(x,y),\psi_2(x,y)) = (x,y,\varphi_3 \circ \psi(x,y)).$$

Portanto S é localmente um gráfico de uma função. Segue que $S \subset \mathbb{R}^3$ é uma superfície se e só se localmente S é um gráfico de uma função de classe C^1 .

1.1.3 Definição. Um subconjunto $S \subset \mathbb{R}^3$ chama-se um subconjunto de *nível zero* quando existe

um aberto $V \subseteq \mathbb{R}^3$ e uma função $\varphi \colon V \to \mathbb{R}^{3-k}$, com k=1 ou 2, de classe C^1 tal que

$$S = \{ \mathbf{x} \in V : \varphi(\mathbf{x}) = \mathbf{0} \in \mathbb{R}^{3-k} \}.$$

Seja $U \subseteq \mathbb{R}^2$ e seja $f: U \to \mathbb{R}$ uma função de classe C^1 . Se $S \subset \mathbb{R}^3$ é o gráfico de f então S é um conjunto de nível zero. De facto podemos definir $\varphi: U \times \mathbb{R} \to \mathbb{R}$ por

$$\varphi(x,y,z) = z - f(x,y).$$

Portanto S é um conjunto de nível zero. Por outro lado se S é um conjunto de nível zero de uma função $\varphi \colon V \to \mathbb{R}$ e $\nabla \varphi(\mathbf{x}) \neq \mathbf{0}$, então o teorema da função implícita implica que localmente S é um gráfico de uma função de classe C^1 . Logo S é uma superfície em \mathbb{R}^3 .

1.1.4 Exemplo.

1. Uma parábola de revolução ou *parabolóide* é uma superfície $S \subset \mathbb{R}^3$ com uma parametrização da forma

$$(r,\theta) \mapsto (r\cos\theta, r\sin\theta, r^2).$$

Notamos que S pode ser definida pela equação

$$\{(x,y,z): x^2 + y^2 - z = 0\}.$$

- 2. O conjunto S de nível zero definido pela função $F(x,y,z)=x^2+y^2-z^2$ é *seccionalmente* uma superfície. Temos $\nabla F(x,y,z)=2(x,y,z)=\mathbf{0}$ se e só se (x,y,z)=(0,0,0) e F(0,0,0)=0. O superfície $S\setminus\{(0,0,0)\}$ é de classe C^1 .
- 3. O conjunto de nível zero definido por

$$(x^2 + y^2 + z^2 - 5)^2 + 16(z^2 - 1)$$

é um toro e tem uma parametrização

$$(\theta, \phi) \mapsto (\cos \theta (2 + \cos \phi), \sin \theta (2 + \cos \phi), \sin \phi).$$

1.1.2 Nota. Em geral se $S \subset \mathbb{R}^3$ é uma **superfície fechada e limitada**, então existe um aberto $U \subseteq \mathbb{R}^3$ com $S \subset U$ e uma função $g \colon U \to \mathbb{R}$ de classe C^1 tal que $S = g^{-1}(0)$ e

$$\nabla g(a,b,c) = \left(\frac{\partial g}{\partial x}(a,b,c), \frac{\partial g}{\partial y}(a,b,c), \frac{\partial g}{\partial z}(a,b,c)\right) \neq (0,0,0) \in \mathbb{R}^3$$

para cada $(a,b,c) \in S$.

Vetores tangentes e normais 1.2

Seja $S \subset \mathbb{R}^3$ uma superfície e seja $\varphi \colon U \to S$ é uma parametrização local. Se $\mathbf{p} = \varphi(\mathbf{u})$, o espaço tangente de S no ponto \mathbf{p} é o espaço afim

$$\mathbf{p} + t_1 \frac{\partial \varphi}{\partial u_1}(\mathbf{u}) + t_2 \frac{\partial \varphi}{\partial u_2}(\mathbf{u}), \quad t_1, t_2 \in \mathbb{R},$$

que se designa por $T_{\mathbf{p}}S$. Notamos que o espaço tangente $T_{\mathbf{p}}S$ não depende de parametrização φ .

Se a superfície $S \subset \mathbb{R}^3$ é dada localmente por f(x,y,z)=0, onde f é uma função de classe C^1 definida num aberto $U \subseteq \mathbb{R}^3$, então para $\mathbf{p} \in S \subset U$ temos

$$T_{\mathbf{p}}S = \{\mathbf{v} \in \mathbb{R}^3 : \langle \nabla f(\mathbf{p}), \mathbf{v} - \mathbf{p} \rangle = 0\}.$$

1.2.1 Exemplo. Consideremos a esfera $S = \{\mathbf{x} \in \mathbb{R}^3 : ||\mathbf{x}|| = 1\}$. A função $\varphi(x,y) = (x,y,\sqrt{1-x^2-y^2})$, onde $x^2+y^2<1$, é uma parametrização local de S no subconjunto $V=\{(x,y,z)\in S:z>0\}$. Sendo $z=\sqrt{1-x^2-y^2}$ temos

$$D\varphi = \left(\frac{\partial \varphi}{\partial x} \frac{\partial \varphi}{\partial y}\right) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ -x/z & -y/z \end{pmatrix}.$$

No ponto $(0,0,1) = \varphi(0,0)$ temos

$$\frac{\partial \varphi}{\partial x}(0,0) = \begin{pmatrix} 1\\0\\0 \end{pmatrix}, \quad \frac{\partial \varphi}{\partial y}(0,0) = \begin{pmatrix} 0\\1\\0 \end{pmatrix}.$$

Portanto o espaço tangente $T_{(0,0,1)}S$ é

$$\{(t_1,t_2,1):t_1,t_2\in\mathbb{R}\}.$$

No outro lado como S é o conjunto definido por $f(x,y,z)=x^2+y^2+z^2=1$ e $\nabla f(x,y,z)=$ 2(x,y,z), temos $\nabla f(0,0,1) = 2(0,0,1)$ e

$$\langle \nabla f(0,0,1), (x,y,z) - (0,0,1) \rangle = 2(z-1) = 0 \iff z = 1.$$
 Logo $T_{(0,0,1)}S = \big\{ (t_1,t_2,1) : t_1,t_2 \in \mathbb{R} \big\}.$

Dizemos que um vetor $\mathbf{v} \in \mathbb{R}^3$ é um vetor normal à superfície S no ponto $\mathbf{p} \in S$ se para qualquer

parametrização local $\varphi \colon U \to S \text{ com } \varphi(\mathbf{u}) = \mathbf{p} \text{ temos}$

$$D\varphi(\mathbf{u})^t \cdot \mathbf{v} = \begin{pmatrix} 0 \\ 0 \end{pmatrix}.$$

Aqui $D\varphi(\mathbf{u})^t$ é a matriz transposta.

Designa-se por

$$T_{\mathbf{p}}S^{\perp} = \{\mathbf{p} + \mathbf{v} : \mathbf{v} \in \mathbf{m} \text{ vetor normal a } S \in \mathbf{p}\}.$$

Notamos que $T_{\mathbf{p}}S^{\perp}$ é uma reta que contém \mathbf{p} e é ortogonal ao espaço tangente $T_{\mathbf{p}}S$, e se S é definida localmente numa vizinhança aberta $U \subseteq \mathbb{R}^3$ de S por uma função f(x,y,z) de classe C^1 então a reta normal no ponto **p** é

$$T_{\mathbf{p}}S^{\perp} = \{\mathbf{p} + t\nabla f(\mathbf{p}) : t \in \mathbb{R}\}.$$

1.3 Integral de Superfície

Sejam $\mathbf{v} = (v_1, v_2, v_3), \mathbf{u} = (u_1, u_2, u_3) \in \mathbb{R}^3$ linearmente independentes e seja $0 < \alpha < \pi$ o ângulo entre ${\bf u}$ e ${\bf v}$. Recordamos que a área do paralelogramo P, no plano com lados definidos pelos vetores ${\bf v}$ e ${\bf u}$ é

$$\operatorname{área}(P) = \|\mathbf{v}\| \cdot \|\mathbf{u}\| \cdot |\operatorname{sen} \alpha| = \sqrt{\det \begin{pmatrix} \|\mathbf{v}\| & \langle \mathbf{v}, \mathbf{u} \rangle \\ \langle \mathbf{v}, \mathbf{u} \rangle & \|\mathbf{u}\| \end{pmatrix}}$$

Notamos que para

$$J = \begin{pmatrix} v_1 & u_1 \\ v_2 & u_2 \\ v_3 & u_3 \end{pmatrix}$$

temos

$$J^t J = \begin{pmatrix} \|\mathbf{v}\| & \langle \mathbf{v}, \mathbf{u} \rangle \\ \langle \mathbf{v}, \mathbf{u} \rangle & \|\mathbf{u}\| \end{pmatrix}.$$

Seja agora $S\subset\mathbb{R}^3$ uma superfície. Para $\varphi\colon U\to S\subset\mathbb{R}^3$ uma parametrização local com

$$\varphi(x,y) = (\varphi_1(x,y), \varphi_2(x,y), \varphi_3(x,y))$$

sejam

$$D\varphi = \begin{pmatrix} D_x \varphi \ D_y \varphi \end{pmatrix} = \begin{pmatrix} \frac{\partial \varphi_1}{\partial x} & \frac{\partial \varphi_1}{\partial y} \\ \frac{\partial \varphi_2}{\partial x} & \frac{\partial \varphi_2}{\partial y} \\ \frac{\partial \varphi_3}{\partial x} & \frac{\partial \varphi_3}{\partial y} \end{pmatrix}.$$

Definimos

$$\omega_{\varphi} = \sqrt{\det D\varphi^t \cdot D\varphi} = \sqrt{\|D_x \varphi\|^2 \cdot \|D_y \varphi\|^2 - \langle D_x \varphi, D_y \varphi \rangle^2} = \|D_x \varphi \times D_y \varphi\|,$$

onde $D\varphi^t$ é a transposta de $D\varphi$. A função $(x,y) \mapsto \omega_{\varphi}(x,y)$ chama-se a *área Euclidiana infintesimal* de $\varphi(U)$.

Se $\psi\colon V\to S\subset\mathbb{R}^3$ é uma segunda parametrização com $\psi(V)=\varphi(U)$, então temos que

$$\varphi^{-1}\psi\colon V\to U$$

é um isomorfismos e

$$D\psi(x,y) = D(\varphi(\varphi^{-1}\psi))(x,y) = D\varphi(\varphi^{-1}\psi(x,y)) \cdot D(\varphi^{-1}\psi)(x,y),$$

e

$$\omega_{\psi}(u,v) = |\det D(\varphi^{-1}\psi)(u,v)| \cdot \omega_{\varphi}(\varphi^{-1}\psi(u,v)).$$

Pelo teorema de mudança de variáveis temos para cada função contínua $f \colon S \to \mathbb{R}$ com suporte compacta

$$\int_{U} f(\varphi(x,y)) \cdot \omega_{\varphi}(x,y) \, dxdy = \int_{V} f(\psi(u,v)) \cdot \omega_{\psi}(u,v) \, dudv.$$

1.3.1 Definição. Se $S \subset \mathbb{R}^3$ é uma superfície limitada com uma parametrização $\varphi \colon U \to S \subset \mathbb{R}^3$, então a área de S é

$$\operatorname{vol}_2(S) = \int_U \omega_\varphi \, dx dy.$$

Notamos que a área de *S* é *independente* da parametrização.

Por exemplo, se $U \subset \mathbb{R}^2$ é limitado e aberto, e se $S \subset \mathbb{R}^3$ é o gráfico de uma função $f \colon U \to \mathbb{R}$ de classe C^1 , então S é uma superfície e $\varphi(x,y) = (x,y,f(x,y))$ é uma parametrização de S. Temos

$$D\varphi = \begin{pmatrix} 1 & 0 \\ 0 & 1 \\ \frac{\partial f}{\partial x} & \frac{\partial f}{\partial y} \end{pmatrix}.$$

Logo

$$|\det D\varphi^t D\varphi| = \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2},$$

e

$$\operatorname{vol}_2(S) = \int_U \sqrt{1 + \left(\frac{\partial f}{\partial x}\right)^2 + \left(\frac{\partial f}{\partial y}\right)^2} dx dy.$$

Se
$$U = \{(x,y) : x^2 + y^2 < r^2\}$$
 e $f(x,y) = \sqrt{r^2 - x^2 - y^2}$, então

$$\frac{\partial f}{\partial x} = \frac{-x}{\sqrt{r^2 - x^2 - y^2}}$$
 e $\frac{\partial f}{\partial y} = \frac{-y}{\sqrt{r^2 - x^2 - y^2}}$.

Obtemos que a área da semi-esfera $S = \{(x, y, z) : x^2 + y^2 + z^2 = r^2 \text{ e } z > 0\}$ é

$$vol_2(S) = \int_U \frac{r}{\sqrt{r^2 - x^2 - y^2}} dx dy.$$
 (1.1)

Usando coordenadas polares, $x = \rho \cos \theta$ e $y = \rho \sin \theta$, obtemos

$$\operatorname{vol}_{2}(S) = \int_{0}^{2\pi} \int_{0}^{r} \frac{r}{\sqrt{r^{2} - \rho^{2}}} \rho d\rho d\theta = 2\pi r \sqrt{r^{2} - \rho^{2}} \bigg|_{r}^{0} = 2\pi r^{2}.$$

1.3.2 Definição. Se $S \subset \mathbb{R}^3$ é uma superfície limitada **com uma parametrização** $\varphi \colon U \to S \subset \mathbb{R}^3$ e se $f: S \to \mathbb{R}$ é uma função contínua e limitada define-se

$$\int_{S} f(\mathbf{x}) = \int_{U} f(\varphi(\mathbf{u})) \cdot \omega_{\varphi} d\mathbf{u}.$$

O integral em Definition 1.3.2 é independente da parametrização φ .

1.3.1 Nota. Se $S \subset U \subset \mathbb{R}^3$, com U limitado, é seccionalmente uma superfície de classe C^1 com

- (i) $S = S_1 \cup S_2 \cup \cdots \cup S_n$;
- (ii) $\partial S_j \subset \mathbb{R}^3$ é seccionalmente uma curva para cada $j = 1, \dots, n$;
- (iii) $int S_j \cap int S_k = \emptyset para j \neq k;$
- (iv) φ_j : int $D_j \to \text{int } S_j$ é uma parametrização de classe C^1 para cada j;

então pela propriedade aditiva do integral temos

$$\operatorname{vol}_2(S) = \sum_{j} \operatorname{vol}_2(S_j)$$

e $vol_2(S_j)$ pode ser calculado pela fórmula (1.1).

Por exemplo, a esfera $S^2 = \{(x,y,z) \in \mathbb{R}^3 : x^2 + y^2 + z^2 = 1\}$ tem uma partição finita $S_1 \cup S_2$ com $S_1 = \{(x, y, z) \in S^2 : z \ge 0\} \text{ e } S_2 = \{(x, y, z) \in S^2 : z \le 0\}. \text{ Segue que } \text{vol}_2(S^2) = 4\pi.$

Se $S \subset \mathbb{R}^3$ é uma superfície com as propriedades da Nota 1.3.1 e se $f: S \to \mathbb{R}$ é uma função contínua e limitada define-se

$$\int_{S} f(\mathbf{x}) = \sum_{j} \int_{\text{int } U_{j}} f(\varphi_{j}(u, v)) \cdot \omega_{\varphi_{j}}(u, v) \, du dv. \tag{1.2}$$

1.4 Partições da Unidade

A fórmula em equação (1.2) é muito prática. Em geral para definir o integral de uma função numa superfície que não possui uma parametrização global vamos usar uma ferramenta técnica, que se chama

partição da unidade. Se $S \subset \mathbb{R}^3$ é uma superfície compacta, então existe um número finito N de parametrizações

$$\varphi_i \colon U_i \to \mathbb{R}^3$$

de S tal que $S = \bigcup_{i=1}^{N} \varphi_i(U_i)$.

- **1.4.1 Teorema.** Seja $S \subset \mathbb{R}^3$ uma superfície compacta. Existem abertos V_1, \ldots, V_n de \mathbb{R}^3 tais que $S \subset V = V_1 \cup \cdots \cup V_N$ e funções $\phi_1, \ldots, \phi_N \colon V \to \mathbb{R}$ de classe C^{∞} tais que para cada ponto $\mathbf{x} \in S$ tem-se
 - (i) $0 \le \phi_k(\mathbf{x}) \le 1$;
 - (ii) se $\mathbf{x} \notin V_k$, então $\phi_k(\mathbf{x}) = 0$;
- (iii) $\sum_{i=1}^{N} \phi_i(\mathbf{x}) = 1$ para cada $\mathbf{x} \in S$.

As funções ϕ_1, \ldots, ϕ_N chamam-se uma partição da unidade subordinada a V_1, \ldots, V_N .

Demonstração. Sejam $V_k = B_{r_k}(\mathbf{x}_k)$, com k = 1,...,N, bolas aberta tais que $\mathbf{x}_k \in S$ e $S \subset \bigcup_{k=1}^N V_k$. Define-se $f \colon \mathbb{R} \to \mathbb{R}$ por

$$f(x) = \begin{cases} \exp\left(\frac{1}{x^2 - 1}\right), & \text{se } |x| < 1; \\ 0, & \text{se } |x| \ge 1. \end{cases}$$

Para $\mathbf{x} \in V$ seja

$$\psi_k(\mathbf{x}) = f\left(\frac{\|\mathbf{x} - \mathbf{x}_k\|}{r_k}\right).$$

Para cada \mathbf{x} temos $0 < \psi_1(\mathbf{x}) + \cdots + \psi_N(\mathbf{x})$ e portanto a função

$$\phi_k(\mathbf{x}) = \frac{\psi_k(\mathbf{x})}{\psi_1(\mathbf{x}) + \dots + \psi_N(\mathbf{x})}$$

é bem definida. As funções ϕ_1, \dots, ϕ_n verificam as propriedades (i) – (iii).

Agora podemos definir o integral em superfícies.

1.4.2 Definição. Para $S\subset \mathbb{R}^3$ uma superfície e f uma função contínua limitada com suporte compacta define-se

$$\int_{S} f = \sum_{k=1}^{N} \int_{S} \phi_k \cdot f,$$

onde ϕ_1,\ldots,ϕ_N é uma partição da unidade subordinada a V_1,\ldots,V_N com $\mathrm{supp}(f)\cap S\subset V_1\cup\cdots V_N$.

- **1.4.1 Nota.** Definition 1.4.2 não depende da partição da unidade $\phi_1, ..., \phi_N$. Em praticamente todos os casos concretos não utilizamos partições da unidade para calcular integrais.
- **1.4.3 Exemplo.** Seja $S \subset \mathbb{R}^3$ o toro de Exemplo 1.1.4. Consideremos a parametrização

$$\varphi \colon U \to S \subset \mathbb{R}^3$$

 $com U =]-\pi,\pi[\times]-\pi,\pi[e$

$$\varphi(\alpha,\beta) = (\cos\alpha(2+\cos\beta), \sin\alpha(2+\cos\beta), \sin\beta).$$

Temos $\omega_{\varphi}(\alpha,\beta) = 2 + \cos\beta \, \mathrm{e} \, S \setminus \varphi(U)$ é uma curva seccionalmente. Notamos que $\partial U = \{-\pi,\pi\} \times [-\pi,\pi] \cup [-\pi,\pi] \times \{-\pi,\pi\}$ e podemos prologar φ a ∂U . Temos

$$\varphi(\pm \pi, \beta) = (2 + \cos \beta, 0, \sin \beta), \qquad \varphi(\alpha, \pm \pi) = (3\cos \alpha, 3\sin \alpha, 0).$$

Sendo $C_1 = \{(\varphi(\pi,\beta)) : 0 \le \beta \le 2\pi\}$ e $C_2 = \{(\varphi(\alpha,\pm\pi)) : 0 \le \alpha \le 2\pi\}$ temos $\varphi(U) = S \setminus C_1 \cup C_2$. A área de S é

 $\int_{S} 1 = \int_{-\pi}^{\pi} \int_{-\pi}^{\pi} (2 + \cos \beta) \, d\alpha d\beta = 2 \cdot 2\pi \cdot 2\pi = 8\pi^{2}.$

1.5 Domínio Regular

Recordamos que se f é uma função de classe C^1 em $[a,b]\subset \mathbb{R}$, então o Teorema Fundamental de Cálculo (TFC) diz

$$\int_{a}^{b} \frac{df}{dx} dx = f(b) - f(a).$$

Notamos que o bordo do aberto]a,b[é $\{a,b\}$. Também notamos que a *direção exterior* do bordo no ponto a é à esquerdo e no ponto b é à direita, e portanto TFC indica que o integral da derivada de um função num intervalo aberto é igual ao valor da função no bordo contado com orientação da direção exterior. Para obter um teorema análogo vamos estudar agora abertos apropriados de \mathbb{R}^3 que se chama *domínios regular*.

Para $\Omega \subset \mathbb{R}^3$ aberto temos $\partial \Omega = \overline{\Omega} \setminus \Omega$. Agora vamos supor que o subconjunto $\partial \Omega \subset \mathbb{R}^3$ é uma superfície. Para $\mathbf{x} \in \partial \Omega$, o espaço tangente $T_{\mathbf{x}}\Omega$ é um plano, e portanto o complemento ortogonal $T_{\mathbf{x}}\Omega^{\perp}$ é uma reta. Um *vetor normal unitário* a $\partial \Omega$ em $\mathbf{x} \in \partial \Omega$ é um vetor $v(\mathbf{x}) \in \mathbb{R}^3$ tal que

$$v(\mathbf{x}) \perp T_{\mathbf{x}} \partial \Omega$$
 e $||v(\mathbf{x})|| = 1$.

Notamos que se $v(\mathbf{x})$ é normal unitário a $\partial \Omega$ em \mathbf{x} , então $-v(\mathbf{x})$ também é.

Sejam $D \subset \mathbb{R}^2$, $U \subset \mathbb{R}^3$ abertos e $\varphi \colon D \to U$ é uma parametrização local de um ponto $\mathbf{p} \in \partial \Omega$ com

$$U \cap \partial \Omega = \varphi(D)$$
.

Se $\mathbf{x} = \varphi(\mathbf{y})$, então as duas colunas $D_1 \varphi(\mathbf{y})$ e $D_2 \varphi(\mathbf{y})$ são linearmente independentes e determinam o plano tangente $T_{\mathbf{x}} \partial \Omega \subset \mathbb{R}^3$. Seja $\mathbf{p} = \varphi(\mathbf{q})$ e seja $\mathbf{v} \in \mathbb{R}^3$ qualquer vetor não nulo que não pertence ao

plano gerado por $D_1\varphi(\mathbf{q})$ e $D_2\varphi(\mathbf{q})$. Definimos

$$\Psi(t,\mathbf{y}) = t\mathbf{v} + \varphi(\mathbf{y}).$$

Temos $D\Psi(t, \mathbf{q})$ é a matriz com coluns $v, D_1\varphi(\mathbf{q})$ e $D_2\varphi(\mathbf{q})$, e portanto det $D\Psi(t, \mathbf{q}) \neq 0$. Pelo teorema da função inversa existe $\delta > 0$ e uns abertos $D' \subset D \subset \mathbb{R}^2$ e $U' \subset U \subseteq \mathbb{R}^3$ e um isomorfismo

$$\Psi:]-\delta, \delta[\times D' \to U'.$$

Além disso,

$$U' \cap \partial \Omega = \Psi(0 \times D').$$

1.5.1 Definição. Dizemos que um aberto $\Omega \subset \mathbb{R}^3$ é um *domínio regular* se $\partial \Omega$ é um superfície e para cada $\mathbf{x} \in \partial \Omega$ e cada vetor $\mathbf{v} \notin T_{\mathbf{x}} \partial \Omega$ existem uma vizinhança aberta U de \mathbf{x} , uma parametrização local $\varphi \colon D \to U$ de $\partial \Omega$ em \mathbf{x} e $\delta > 0$ tais que

- i) $\Omega \cap U = \{t\mathbf{v} + \varphi(\mathbf{y}) : -\delta < t < 0, \mathbf{y} \in D\}$ ou
- ii) $\Omega \cap U = \{t\mathbf{v} + \varphi(\mathbf{y}) : 0 < t < \delta, \mathbf{y} \in D\}.$

Intuitivamente, $\Omega \subset \mathbb{R}^3$ é um domínio regular quando $\partial \Omega$ é uma superfície e Ω pertence a um lado de $\partial \Omega$. Um exemplo de um aberto $\Omega \subset \mathbb{R}^3$ que **não** é um domínio regular, mas $\partial \Omega$ é um superfície é

$$\Omega = \{(x, y, z) \in \mathbb{R}^3 : z \neq 0\}.$$

Temos $\partial \Omega = \{(x, y, 0) \in \mathbb{R}^2\}$ é um plano, portanto uma superfície, mas Ω pertence a dois lados de $\partial \Omega$ e por isso não satisfaz as condições de Definition 1.5.1.

- **1.5.2 Teorema.** Seja $\Omega \subset \mathbb{R}^3$ um subconjunto aberto. As afirmações seguintes são equivalentes.
 - i) Ω é um domínio regular.
 - ii) Localmente $\partial\Omega$ é um conjunto de nível zero definido por uma função $g\colon U\to\mathbb{R}$ de classe C^1 e

$$\Omega \cap U = \{ \mathbf{x} \in U : g(\mathbf{x}) < 0 \}.$$

Demonstração. i) \Longrightarrow ii). Se $\Psi(t,\mathbf{y}) = tv + \varphi(\mathbf{y})$ é uma isomorfismo com φ uma parametrização local de Ω podemos definir $g = \pi_1 \circ \Psi^{-1}$, isto é se $\mathbf{x} = \Psi(t,\mathbf{y})$ então $\Psi^{-1}(\mathbf{x}) = (t,\mathbf{y})$ e $g(\mathbf{x}) = t$.

ii) \implies i). Sejam $U \subset \mathbb{R}^3$ aberto, $g \colon U \to \mathbb{R}$ uma função de classe C^1 tal que $\partial \Omega \cap U = \{\mathbf{x} : g(\mathbf{x}) = 0\}$ e $U \cap \Omega = \{\mathbf{x} : g(\mathbf{x}) < 0\}$ e $\mathbf{x} \in \partial \Omega$ com $g(\mathbf{x}) = 0$. Definimos uma curva por

$$t \mapsto \gamma(t) = \mathbf{x} + t \cdot \nabla g(\mathbf{x}).$$

Temos $g(\gamma(0)) = 0$ e

$$\left. \frac{d}{dt} g(\gamma(t)) \right|_{0} = \|\nabla g(\mathbf{x})\|^{2} > 0.$$

Logo $0 \neq \nabla g(\mathbf{x}) \perp T_{\mathbf{x}} \partial \Omega$ e segue que localmente Ω é um domínio regular.

- **1.5.3 Definição.** Seja $\Omega \subset \mathbb{R}^3$ um domínio regular. Se $\mathbf{x} \in \partial \Omega$, $v \in \mathbb{R}^3 \setminus T_{\mathbf{x}} \partial \Omega$, dizemos que v é um *vetor exterior* de Ω no ponto \mathbf{x} se existe uma função $g \colon U \to \mathbb{R}$ de classe C^1 definida numa vizinhança aberta $U \subset \mathbb{R}^3$ de \mathbf{x} tal que
 - (i) $U \cap \partial \Omega = \{ \mathbf{x} \in U : g(\mathbf{x}) = 0 \},$
 - (ii) $U \cap \Omega = \{ \mathbf{x} \in U : g(\mathbf{x}) < 0 \},$
- (iii) $\langle \nabla g(\mathbf{x}), v \rangle > 0$.

Quando (i) e (ii) são validos mas $\langle \nabla g(\mathbf{x}), v \rangle < 0$, dizemos que v é um vetor interior.

Notamos que se $t\mapsto \gamma(t)$ é uma curva de classe C^1 em \mathbb{R}^3 tal que

- i) $\gamma(0) = \mathbf{x}$,
- ii) $\gamma'(0) = v$,
- iii) existe $\delta > 0$ com $-\delta < t < 0 \implies \gamma(t) \in \Omega$ e $0 < t < \delta \implies \gamma(t) \notin \overline{\Omega}$,

então v é um um vetor exterior de Ω no ponto $\mathbf{x} \in \partial \Omega$.

Se $v \in \mathbb{R}^3$ é um vetor exterior de Ω no ponto $\mathbf{x} \in \partial \Omega$ e ||v|| = 1, então dizemos que v um vetor normal unitário exterior. Notamos que se Ω é um domínio regular, $\mathbf{x} \in \partial \Omega$ e localmente $\partial \Omega$ é definida por $\{\mathbf{x} : g(\mathbf{x}) = 0\}$, então

$$\frac{\nabla g(\mathbf{x})}{\|\nabla g(\mathbf{x})\|}$$

é um vetor normal unitário, e se $\varphi \colon D \to \partial \Omega$ é uma parametrização local então

$$\frac{D_1\varphi(\mathbf{y})\times D_2\varphi(\mathbf{y})}{\|D_1\varphi(\mathbf{y})\times D_2\varphi(\mathbf{y})\|},$$

é um vetor normal unitário de $\partial \Omega$ no ponto $\mathbf{x} = \varphi(\mathbf{y})$.

1.6 Teorema Fundamental de Cálculo

1.6.1 Teorema. Seja $\Omega \subset \mathbb{R}^3$ um domínio regular e limitado. Seja $\nu() = (\nu_1(), \nu_2(), \nu_3()) \in \mathbb{R}^3$ um campo normal unitário exterior de $\partial \Omega$. Se $f: V \to \mathbb{R}$ é uma função de classe C^1 com $V \subset \mathbb{R}^3$ aberto e $\overline{\Omega} \subset V$, então

$$\int_{\Omega} Df(\mathbf{x}) d\mathbf{x} = \int_{\partial \Omega} f(\mathbf{y}) \cdot \nu(\mathbf{y})^t,$$

onde

$$v(\mathbf{x})^t = \begin{pmatrix} v_1(\mathbf{x}) \\ v_2(\mathbf{x}) \\ v_3(\mathbf{x}) \end{pmatrix}.$$

Demonstração. Começamos a notar que a fórmula acima é equivalente a

$$\int_{\Omega} Df(\mathbf{x}) \cdot \mathbf{w} d\mathbf{x} = \int_{\partial \Omega} f(\mathbf{y}) \langle v(\mathbf{y}), \mathbf{w} \rangle$$

para qualquer $\mathbf{w} \in \mathbb{R}^3$ ou se $\{\mathbf{w}_1, \mathbf{w}_2, \mathbf{w}_3\}$ é uma base de \mathbb{R}^3 então

$$\int_{\Omega} Df(\mathbf{x}) \cdot \mathbf{w}_i d\mathbf{x} = \int_{\partial \Omega} f(\mathbf{y}) \langle v(\mathbf{y}), \mathbf{w}_i \rangle$$

para i = 1, 2, 3. Também é equivalente a

$$\int_{\Omega} \frac{\partial f}{\partial x_i} d\mathbf{x} = \int_{\partial \Omega} f(\mathbf{y}) \cdot \nu_i(\mathbf{y})$$

para i = 1, 2, 3. Para provar o teorema vamos considerar dois casos particulares.

Caso 1. Existe um ponto $\mathbf{x} \in \Omega$ e um intervalo aberto

$$\mathbf{x} \in I = \left| a_1, b_1 \right| \times \left| a_2, b_2 \right| \times \left| a_3, b_3 \right| \subset \Omega$$

com supp $(f) \subset I$. Obtemos

$$\int_{\Omega} \frac{\partial f}{\partial x_1} d\mathbf{x} = \int_{a_2}^{b_2} \int_{a_3}^{b_3} \int_{a_1}^{b_1} \frac{\partial f}{\partial x_1} dx_1 dx_3 dx_2$$

$$= \int_{a_2}^{b_2} \int_{a_3}^{b_3} \left(f(b_1, x_2, x_3) - f(a_1, x_2, x_3) \right) dx_3 dx_2$$

$$= 0$$

e

$$\int_{\Omega} \frac{\partial f}{\partial x_2} d\mathbf{x} = \int_{a_1}^{b_1} \int_{a_3}^{b_3} \int_{a_2}^{b_2} \frac{\partial f}{\partial x_2} dx_2 dx_3 dx_1$$

$$= \int_{a_1}^{b_1} \int_{a_3}^{b_3} \left(f(x_1, b_2, x_3) - f(x_1, a_2, x_3) \right) dx_3 dx_1$$

$$= 0,$$

etc. como suporte $(f) \subset I$. Também temos que $f|_{\partial\Omega} = 0$. Assim deduzimos a validade da fórmula no caso 1.

Caso 2. Seja $\mathbf{x} \in \partial \Omega$ e seja $\varphi \colon D \to U$ uma parametrização local de $\partial \Omega$ com $D \subset \mathbb{R}^2$ e U uma

vizinhança aberta de \mathbf{x} . Sendo $\mathbf{x} = \varphi(\mathbf{u}_0)$ e $\mathbf{v}_1 = D_1 \varphi(\mathbf{u}_0)$ e $\mathbf{v}_2 = D_2 \varphi(\mathbf{u}_0)$ vetores fixos, define-se $\mathbf{v}_3 = \mathbf{v}_1 \times \mathbf{v}_2$ se $\mathbf{v}_1 \times \mathbf{v}_2$ é um vetor normal exterior de $\partial \Omega$ em \mathbf{x} . Caso contrário, seja $\mathbf{v}_3 = \mathbf{v}_2 \times \mathbf{v}_1$. Obtemos uma base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ de \mathbb{R}^3 . Sejam agora $\mathbf{w}_1 = \mathbf{v}_1 + \mathbf{v}_3$, $\mathbf{w}_2 = \mathbf{v}_2 + \mathbf{v}_3$ e $\mathbf{w}_3 = \mathbf{v}_3$. Se \mathbf{w}_1 (respetivamente \mathbf{w}_2) não é um vetor exterior, troque-o multiplicando por -1. Obtemos três vetores exteriores \mathbf{w}_1 , \mathbf{w}_2 e \mathbf{w}_3 , estes vetores são linearmente independentes e cada um é um vetor exterior de Ω .

Seja $\mathbf{w} = \mathbf{w}_1$. Existe $\delta > 0$ tal que a função $\Psi(t, \mathbf{u}) = t \cdot \mathbf{w} + \varphi(\mathbf{u})$ define um isomorfismo

$$\Psi:]-\delta, \delta[\times D \to U_1 \subseteq U,$$

 $\Psi(t, \mathbf{u}) \in \Omega$ para $-\delta < t < 0$ e $\frac{\partial \Psi}{\partial t} = \mathbf{w}$.

Agora vamos supor que supp $f \subset U_1$. Temos

$$\int_{\Omega} Df(\mathbf{x}) \cdot \mathbf{w} d\mathbf{x} = \int_{D} \int_{-\delta}^{0} Df(\Psi(t, \mathbf{u})) \cdot \mathbf{w} \cdot |\det D\Psi| dt d\mathbf{u}$$

$$= \int_{D} \int_{-\delta}^{0} Df(\Psi(t, \mathbf{u})) \cdot \frac{\partial \Psi}{\partial t} \cdot |\det D\Psi| dt d\mathbf{u}$$

$$= \int_{D} \int_{-\delta}^{0} \frac{\partial}{\partial t} (f \circ \Psi) \cdot |\det D\Psi| dt d\mathbf{u}$$

Como $D\Psi$ é a matriz com colunas \mathbf{w} , $D_1\varphi(\mathbf{u})$ e $D_2\varphi(\mathbf{u})$ temos $\det D\Psi = \langle \mathbf{w}, D_1\varphi(\mathbf{u}) \times D_2\varphi(\mathbf{u}) \rangle$ que não depende da variável t. Portanto

$$\int_{\Omega} Df(\mathbf{x}) \cdot \mathbf{w} d\mathbf{x} = \int_{D} (f \circ \Psi)(0, \varphi(\mathbf{u}) - (f \circ \Psi)(-\delta, \varphi(\mathbf{u}))) \cdot \langle D_{1}\varphi(\mathbf{u}) \times D_{2}\varphi(\mathbf{u}) \rangle d\mathbf{u}$$

$$= \int_{D} f \circ \varphi(\mathbf{u}) \cdot \langle \mathbf{w}, D_{1}\varphi(\mathbf{u}) \times D_{2}\varphi(\mathbf{u}) \rangle d\mathbf{u}$$

Como

$$\nu(\mathbf{y}) = \frac{D_1 \varphi(\mathbf{u}) \times D_2 \varphi(\mathbf{u})}{\|D_1 \varphi(\mathbf{u}) \times D_2 \varphi(\mathbf{u})\|} \quad \mathbf{e} \quad \omega_{\varphi} = \|D_1 \varphi(\mathbf{u}) \times D_2 \varphi(\mathbf{u})\|,$$

obtemos

$$\int_{D} f \circ \varphi(\mathbf{u}) \cdot \langle \mathbf{w}, D_{1} \varphi(\mathbf{u}) \times D_{2} \varphi(\mathbf{u}) \rangle d\mathbf{u} = \int_{D} f \circ \varphi(\mathbf{u}) \cdot \langle \mathbf{w}, \nu(\mathbf{u}) \rangle \cdot \omega_{\varphi} d\mathbf{u}$$
$$= \int_{\partial \Omega} f(\mathbf{y}) \cdot \langle \mathbf{w}, \nu(\mathbf{y}) \rangle d\mathbf{y}.$$

Analogamente existem vizinhanças U_2 e U_3 de \mathbf{x} tais que para $\mathbf{w} = \mathbf{w}_i$, i = 2, 2 a função

$$(t, \mathbf{u}) \mapsto t \cdot \mathbf{w} + \varphi(u)$$

é um isomorfismo de $]-\delta,\delta[\times D\to U_i$ e se supp $f\subset U_i$ então

$$\int_{\Omega} Df(\mathbf{x}) \cdot \mathbf{w} \, d\mathbf{x} = \int_{\partial \Omega} f(\mathbf{y}) \langle v(\mathbf{y}), \mathbf{w} \rangle.$$

Se supp $f \subset U_1 \cap U_2 \cap U_3$, então

$$\int_{\Omega} Df(\mathbf{x}) d\mathbf{x} = \int_{\partial \Omega} f(\mathbf{y}) \cdot \nu(\mathbf{y})^t,$$

Para terminar a demonstração do teorema notamos que $\overline{\Omega}$ é fechado e limitado, e portanto existe uma família finita $\mathcal{V} = \{V_1, \dots, V_N\}$ de abertas de \mathbb{R}^3 tais que $\overline{\Omega} \subset \bigcup_i V_i$ e a fórmula do teorema e valida para funções com suporte em V_i , $i=1,\dots,N$. Seja $\{\phi_i\}$ uma partição de unidade subordinada \mathcal{V} . Como $f=\sum_i \phi_i f$, temos $Df=\sum_i D(\phi_i f)$ e supp $(\phi_i f)$, supp $(D(\phi_i f)) \subset V_i$. Assim deduzimos a validade da formula.

1.6.2 Exemplo. Consideremos os abertos $I=]0,1[\subset \mathbb{R} \text{ e } \Omega=I^3\subset \mathbb{R}^3.$ O bordo $\partial\Omega$ não é uma superfície. Temos

$$\partial \Omega = S_1 \cup \cdots \cup S_6$$

com e vetor normal v(x,y,z)

$$S_{1} = \{(1, y, z) \in \mathbb{R}^{3} : 0 \le y, z \le 1\}, \qquad v(x, y, z) = (1, 0, 0),$$

$$S_{2} = \{(x, 1, z) \in \mathbb{R}^{3} : 0 \le x, z \le 1\}, \qquad v(x, y, z) = (0, 1, 0),$$

$$S_{3} = \{(x, y, 1) \in \mathbb{R}^{3} : 0 \le x, y \le 1\}, \qquad v(x, y, z) = (0, 0, 1),$$

$$S_{4} = \{(0, y, z) \in \mathbb{R}^{3} : 0 \le y, z \le 1\}, \qquad v(x, y, z) = (-1, 0, 0),$$

$$S_{5} = \{(x, 0, z) \in \mathbb{R}^{3} : 0 \le x, z \le 1\}, \qquad v(x, y, z) = (0, -1, 0),$$

$$S_{6} = \{(x, y, 0) \in \mathbb{R}^{3} : 0 \le x, y \le 1\}, \qquad v(x, y, z) = (0, 0, -1).$$

Se $f \colon \mathbb{R}^3 \to \mathbb{R}$ é uma função diferençável e $\mathbf{e}_1 = (1,0,0), \, \mathbf{e}_2 = (0,1,0)$ e $\mathbf{e}_3 = (0,0,1),$ temos

$$\int_{\Omega} \nabla f(\mathbf{x}) d\mathbf{x} = \int_{0}^{1} \int_{0}^{1} \int_{0}^{1} \left(\frac{\partial f}{\partial x}, \frac{\partial f}{\partial y}, \frac{\partial r}{\partial z} \right) dx dy dz$$

$$= \int_{0}^{1} \int_{0}^{1} f(1, y, z) \mathbf{e}_{1} dy dz - \int_{0}^{1} \int_{0}^{1} f(0, y, z) \mathbf{e}_{1} dy dz$$

$$+ \int_{0}^{1} \int_{0}^{1} f(x, 1, z) \mathbf{e}_{2} dx dz - \int_{0}^{1} \int_{0}^{1} f(x, 1, z) \mathbf{e}_{2} dx dz$$

$$+ \int_{0}^{1} \int_{0}^{1} f(x, y, 1) \mathbf{e}_{3} dx dy - \int_{0}^{1} \int_{0}^{1} f(x, y, 0) \mathbf{e}_{3} dx dy$$

$$= \int_{S_{1}} fv + \dots + \int_{S_{6}} fv$$

$$= \int_{\partial \Omega} f(x, y, z) \cdot v(x, y, z)$$

Notamos que $\partial\Omega$ menos doze segmentos de reta é uma superfície.

Para muitas aplicações temos o seguinte teorema.

1.6.3 Teorema. Seja $\Omega \subset \mathbb{R}^3$ um subconjunto aberto e limitado com bordo $\partial \Omega$. Se $S \subset \partial \Omega$ é fechado e localmente uma subvariedade de dimensão < 2 e se $\partial' \Omega = \partial \Sigma \setminus S$ é um superfície com um vetor normal exterior ν , então

$$\int_{\Omega} Df(\mathbf{x}) d\mathbf{x} = \int_{\partial' \Omega} f(\mathbf{y}) \nu(\mathbf{y})^t d\mathbf{y},$$

onde $f \colon \Omega \to \mathbb{R}$ é uma função de classe C^1 tal que f e Df podem ser prologadas as funções contínuas em $\overline{\Omega}$.

1.7 Teorema da Divergência de Gauss

1.7.1 Definição. Seja $U \subset \mathbb{R}^n$ aberto e seja $f \colon U \to \mathbb{R}^n$ uma função de classe C^1 a divergência de f é

$$\operatorname{div} f = \operatorname{traco} Df$$
.

Para $\mathbf{x} = (x_1, \dots, x_n) \in U$ e $f(\mathbf{x}) = (f_1(\mathbf{x}), \dots, f_n(\mathbf{x}))$ temos

$$\operatorname{div} f = \sum_{i=1}^{n} \frac{\partial f_i}{\partial x_i}.$$

Para a base canónica $\mathbf{e}_1, \dots, \mathbf{e}_n$ de \mathbb{R}^n e

$$\nabla = \sum \frac{\partial}{\partial x_i} \mathbf{e}_i = \begin{pmatrix} \frac{\partial}{\partial x_1} \\ \vdots \\ \frac{\partial}{\partial x_n} \end{pmatrix}$$

temos

$$\operatorname{div} f = \nabla \cdot f = \langle \nabla, f \rangle.$$

1.7.1 Nota. Para $g: U \to \mathbb{R}$ uma função de classe C^2 definida num aberto $U \subseteq \mathbb{R}^n$ temos um campo vetorial $\nabla g = \nabla g$ de classe C^1 e

$$\operatorname{div} \nabla g = \langle \nabla, \nabla g \rangle = \sum_{i=1}^{n} \frac{\partial^{2} g}{\partial x_{i}^{2}}.$$

O operador

$$\Delta = \langle \nabla, \nabla \rangle = \nabla \cdot \nabla = \sum_{i=1}^{n} \frac{\partial^2}{\partial x_i^2}$$

chama-se o *Operador de Laplace* e $\Delta g = \operatorname{div} \nabla g$ chama-se a *Laplaciana* de g.

Agora seja $\Omega \subset \mathbb{R}^3$ um domínio regular e seja $f \colon \Omega \to \mathbb{R}^3$ uma função de classe C^1 . Vamos supor ainda que f e Df podem ser prolongadas a funções contínuas em $\overline{\Omega}$. Para $x \in \partial \Omega$ e

$$f(\mathbf{x}) = \begin{pmatrix} f_1(\mathbf{x}) \\ f_2(\mathbf{x}) \\ f_3(\mathbf{x}) \end{pmatrix}, \qquad \nu(\mathbf{x}) = \begin{pmatrix} \nu_1(\mathbf{x}) \\ \nu_2(\mathbf{x}) \\ \nu_3(\mathbf{x}) \end{pmatrix}$$

temos

$$f(\mathbf{x})\nu(\mathbf{x})^{t} = \begin{cases} f_{1}(\mathbf{x})\nu_{1}(\mathbf{x}) & f_{1}(\mathbf{x})\nu_{2}(\mathbf{x}) & f_{1}(\mathbf{x})\nu_{3}(\mathbf{x}) \\ f_{2}(\mathbf{x})\nu_{1}(\mathbf{x}) & f_{2}(\mathbf{x})\nu_{2}(\mathbf{x}) & f_{2}(\mathbf{x})\nu_{3}(\mathbf{x}) \\ f_{3}(\mathbf{x})\nu_{1}(\mathbf{x}) & f_{3}(\mathbf{x})\nu_{2}(\mathbf{x}) & f_{3}(\mathbf{x})\nu_{3}(\mathbf{x}) \end{cases}.$$

Obtemos

traço
$$f(\mathbf{x})\nu(\mathbf{x})^t = \langle f(\mathbf{x}), \nu(\mathbf{x}) \rangle$$
.

Pelo Teorema 1.6.1 temos para i = 1,2,3

$$\int_{\Omega} \left(\frac{\partial f_i}{\partial x}, \frac{\partial f_i}{\partial y}, \frac{\partial f_i}{\partial z} \right) (\mathbf{x}) d\mathbf{x} = \int_{\partial \Omega} f_i(\mathbf{y}) (\nu_1, \nu_2, \nu_3) (\mathbf{y}) d\mathbf{y}.$$

Obtemos

$$\int_{\Omega} Df(\mathbf{x}) d\mathbf{x} = \int_{\partial \Omega} (f \cdot v^t) (\mathbf{y}) d\mathbf{y}.$$

Aplicando o traço obtemos o teorema de Gauss.

1.7.2 Teorema. Para $\Omega \subset \mathbb{R}^3$ um domínio regular e $f \colon \Omega \to \mathbb{R}^3$ uma função de classe C^1 tal que f e Df podem ser prolongadas a funções contínuas em $\overline{\Omega}$ temos

$$\int_{\Omega} \operatorname{div} f(\mathbf{x}) \, d\mathbf{x} = \int_{\partial \Omega} \langle f, \nu \rangle(\mathbf{y}) \, d\mathbf{y}.$$

A função $\mathbf{y}\mapsto \langle f, v\rangle(\mathbf{y})$ é a componente do campo vetorial f perpendicular à superfície $\partial\Omega$ e

chama-se o fluxo de f através de $\partial \Omega$.

1.7.3 Exemplo.

1. Para $\Omega = \{(x,y,z) : ||(x,y,z)|| < 1\}$ e f(x,y,z) = (x,y,z) temos div f(x,y,z) = 3, v(x,y,z) = (x,y,z) e portanto $\langle f,v \rangle = 1$. Assim obtemos

$$\operatorname{vol}_3(\Omega) = \frac{1}{3} \int_{\Omega} 3 d\mathbf{x} = \frac{1}{3} \int_{\partial \Omega} d\mathbf{y} = \text{área de } S^2.$$

2. Sejam a > 0, $\Omega = \{(x, y, z) \in \mathbb{R}^3 : ||(x, y, z)|| = a \text{ e } z > 0\} \text{ e } f(x, y, z) = (xz^2, x^2y - z^3, 2xy + y^2z)$. Temos $\partial \Omega = S_1 \cup S_2$ com

$$S_1 = \{(x, y, z) \in \mathbb{R}^3 : ||(x, y, z)|| = a \text{ e } z \ge 0\}, \quad S_2 = \{(x, y, 0) \in \mathbb{R}^3 : x^2 + y^2 \le a^2\}.$$

div $f = x^2 + y^2 + z^2$, v(x,y,0) = (0,0,-1) para $(x,y,0) \in S_2$ e v(x,y,z) = (x,y,z)/a para $(x,y,z) \in S_1$. Em S_2 temos $\langle f,v \rangle = -2xy$. Temos

$$\int_{\Omega} \operatorname{div} f \, d\mathbf{x} = \int_{0}^{2\pi} \int_{0}^{\pi/2} \int_{0}^{a} r^{2} r^{2} \operatorname{sen} \psi \, dr d\psi d\theta$$

$$= \frac{2\pi}{5} a^{5}$$

$$\int_{S_{2}} \langle f, v \rangle \, d\mathbf{y} = \int_{0}^{2\pi} \int_{0}^{a} -2r^{2} \cos \theta \cdot \sin \theta \, dr d\theta$$

$$= -\frac{2}{3} a^{3} \cdot \frac{1}{2} \operatorname{sen} \theta \Big|_{0}^{2\pi} = 0.$$

Aplicando o teorema de Gauss obtemos

$$\int_{S_1} \langle f, \nu \rangle \, d\mathbf{y} = \frac{2\pi}{5} a^5.$$

3. Consideremos o campo de Newton $f(\mathbf{x}) = \frac{\mathbf{x}}{\|\mathbf{x}\|^3}$ definida para $0 \neq \mathbf{x} \in \mathbb{R}^3$. Calculemos

$$\operatorname{div} f(x, y, z) = \frac{1}{\|\mathbf{x}\|^3} - 3\frac{x^2}{\|\mathbf{x}\|^5} + \frac{1}{\|\mathbf{x}\|^3} - 3\frac{y^2}{\|\mathbf{x}\|^5} + \frac{1}{\|\mathbf{x}\|^3} - 3\frac{z^2}{\|\mathbf{x}\|^5} = 0.$$

Portanto se $\Omega \subset \mathbb{R}^3$ é um domínio regular e $0 \notin \Omega$, então o fluxo de f através $\partial \Omega$ é zero, ou seja

$$\int_{\partial \Omega} \langle f, \nu \rangle d\mathbf{y} = 0.$$

Se $0 \in \Omega$ então existe $\epsilon > 0$ com $B_{\epsilon}(0) \subset \Omega$, e portanto $\Omega \setminus \overline{B_{\epsilon}(0)}$ é um domínio regular que

não contém a origem. Logo o fluxo de f através de $\partial \Omega$ é

$$\begin{split} \int_{\partial\Omega} \langle f, \nu \rangle d\mathbf{y} &= \int_{\partial B_{\epsilon}(0)} \langle f, \nu \rangle d\mathbf{y} \\ &= \int_{\partial B_{\epsilon}(0)} \left\langle \frac{\mathbf{x}}{\|\mathbf{x}\|^3}, \frac{\mathbf{x}}{\epsilon} \right\rangle d\mathbf{x} \\ &= \int_0^{2\pi} \int_0^{\pi} \frac{1}{\epsilon^2} \epsilon^2 \operatorname{sen} \psi \, d\psi d\theta \\ &= 4\pi. \end{split}$$

2 Teorema de Stokes

2.1 Orientação

Sejam $\mathbf{v}_1 = (v_{11}, v_{21}, v_{31}), \mathbf{v}_2 = (v_{12}, v_{22}, v_{32}), \mathbf{v}_3 = (v_{13}, v_{23}, v_{33}) \in \mathbb{R}^3$ vetores linearmente independentes. Dizemos que a base $\{\mathbf{v}_1, \mathbf{v}_2, \mathbf{v}_3\}$ tem *orientação positiva* se

$$\det \begin{pmatrix} v_{11} & v_{12} & v_{13} \\ v_{21} & v_{22} & v_{23} \\ v_{31} & v_{32} & v_{33} \end{pmatrix} > 0.$$

No caso contrário dizemos que a base tem orientação negativa.

Seja $S \subset \mathbb{R}^3$ uma superfície. Dizemos que S é *orientável* se existe um campo vetorial $v: S \to \mathbb{R}^3$ tal que $v(\mathbf{p})$ é um normal unitário. Quando tal campo v existe dizemos que S é *orientada* por v ou v é uma *orientação* de S. Seja v uma orientação de S. Dizemos que uma parametrização local $\varphi: D \to S \subset \mathbb{R}^3$ tem *orientação coerente* com v, se para cada ponto $\mathbf{u} \in D$ a base

$$\left\{ v\left(\varphi(\mathbf{u})\right), \frac{\partial \varphi}{\partial u_1}(\mathbf{u}), \frac{\partial \varphi}{\partial u_2}(\mathbf{u}) \right\}$$

de \mathbb{R}^3 tem orientação positiva.

2.1.1 Nota. Se $S \subset \mathbb{R}^3$ é uma superfície e ν é uma orientação de S, então $-\nu$ também é uma orientação de S, e $\varphi \colon D \to S$ é uma parametrização local que tem orientação coerente com ν então

$$\left\{-\nu\left(\varphi(\mathbf{u})\right), \frac{\partial \varphi}{\partial u_1}(\mathbf{u}), \frac{\partial \varphi}{\partial u_2}(\mathbf{u})\right\}$$

tem orientação negativa.

2.1.1 Exemplo. Seja $f: \mathbb{R}^3 \to \mathbb{R}$ uma função de classe C^1 tal que para cada $\mathbf{x} \in \mathbb{R}^3$ com $f(\mathbf{x}) = 0$ temos $\nabla f(\mathbf{x}) \neq (0,0,0)$. Segue que $S = \left\{ \mathbf{x} \in \mathbb{R}^3 : f(\mathbf{x}) = 0 \right\}$ é uma superfície e

$$\nu(\mathbf{x}) = \frac{\nabla f(\mathbf{x})}{\|\nabla f(\mathbf{x})\|}$$

é uma orientação de S.

Um exemplo mais especifico é $f(x,y,z)=x^2+y^2+z^2-1$. Temos $\nabla f=2(x,y,z)$ e se $x^2+y^2+z^2=1$, então

$$v(x,y,z) = (x,y,z).$$

2.1.2 Exemplo. Seja $g: \mathbb{R}^2 \to \mathbb{R}$ uma função de classe C^1 . O gráfico de g

$$S = \{(x, y, z) \in \mathbb{R}^3 : z = g(x, y)\}$$

é uma superfície orientada por

$$\nu(x,y,z) = \frac{\left(-\partial g/\partial x, -\partial g/\partial y, 1\right)}{\|\left(-\partial g/\partial x, -\partial g/\partial y, 1\right)\|}.$$

De facto, temos

$$\left(-\frac{\partial g}{\partial x}, -\frac{\partial g}{\partial y}, 1\right) = \left(1, 0, \frac{\partial g}{\partial x}\right) \times \left(0, 1, \frac{\partial g}{\partial y}\right),$$

e $\varphi(x,y) = (x,y,g(x,y))$ é uma parametrização de S.

2.2 Rotacional de um campo vetorial

Seja $U \subset \mathbb{R}^2$ aberto e limitado e vamos supor que ∂U é uma união disjunto de curvas simples, fechadas e de classe C^1 . Seja $v \colon \partial U \to \mathbb{R}^2$ o vetor norma unitário exterior, i.e., para cada ponto $\mathbf{x} \in \partial U$ existe $\delta > 0$ tal que $\mathbf{x} + \delta \cdot \nu(\mathbf{x}) \in \mathbb{R}^2 \setminus U$. Seja $\mathbf{F}(x,y) = (P(x,y),Q(x,y))$ um campo de classes C^1 em $\overline{U} \subset \mathbb{R}^2$. Escrevemos por

$$\oint_{\partial U} \mathbf{F} \cdot d\boldsymbol{\gamma}$$

o integral de linha com parametrização $\gamma \colon I \to \partial U$ tal para cada $t \in I$ temos

$$\langle \gamma'(t), J\nu(\gamma(t)) \rangle > 0, \quad J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix},$$

ou seja $\{\nu(\gamma(t)), \gamma'(t)\}\$ é uma base de \mathbb{R}^2 com orientação positiva. Notamos a transformação linear $J\colon \mathbb{R}^2 \to \mathbb{R}^2$ é uma rotação por $\pi/2$ no sentido positivo, i.e., $J(\mathbf{e}_1) = \mathbf{e}_2$ e $J(\mathbf{e}_2) = -\mathbf{e}_1$ e $\det J = 1$.

2.2.1 Exemplo. Se $U = \{(x,y) : 1 < x^2 + y^2 < 4\}$. Temos

$$\partial U = \{(x,y): x^2 + y^2 = 1 \text{ ou } 4\}$$

 $t\mapsto 2(\cos t, \sin t)$, se $0\le t\le 2\pi$, e $t\mapsto (\cos t, -\sin t)$, se $3\pi\le t\le 5\pi$, é uma orientação positiva de ∂U .

2.2.2 Lema. Seja $\mathbf{p} \in U$ com $U \subseteq \mathbb{R}^2$ aberto e seja r > 0 com $B_r(\mathbf{p}) \subset U$. Para um campo

 $\mathbf{F} = (P,Q) \colon \bar{U} \to \mathbb{R}^2$ de classe C^1 temos

$$\lim_{r\to 0} \frac{1}{\pi r^2} \oint_{\partial B_r(\mathbf{p})} \mathbf{F} \cdot d\mathbf{y} = \frac{\partial Q}{\partial x}(\mathbf{p}) - \frac{\partial P}{\partial y}(\mathbf{p}).$$

Demonstração. Pelo teorem de Green temos

$$\oint_{\partial B_r(\mathbf{p})} \mathbf{F} \cdot d\mathbf{\gamma} = \iint_{B_r(\mathbf{p})} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Como P e Q são de classe C^1 , para qualquer $\epsilon>0$ existe $\delta>0$ tal que

$$\|\mathbf{x} - \mathbf{p}\| < \delta \implies \left| \frac{\partial Q}{\partial x}(\mathbf{x}) - \frac{\partial P}{\partial y}(\mathbf{x}) - \left(\frac{\partial Q}{\partial x}(\mathbf{p}) - \frac{\partial P}{\partial y}(\mathbf{p}) \right) \right| < \epsilon.$$

Para $\|\mathbf{x} - \mathbf{p}\| < \delta$ obtemos

$$\left| \frac{1}{\pi r^2} \oint_{\partial B_r(\mathbf{p})} \mathbf{F} \cdot d\mathbf{y} - \left(\frac{\partial Q}{\partial x}(\mathbf{p}) - \frac{\partial P}{\partial y}(\mathbf{p}) \right) \right| = \left| \frac{1}{\pi r^2} \int_{B_r(\mathbf{p})} \left[\frac{\partial Q}{\partial x}(\mathbf{x}) - \frac{\partial P}{\partial y}(\mathbf{x}) - \left(\frac{\partial Q}{\partial x}(\mathbf{p}) - \frac{\partial P}{\partial y}(\mathbf{p}) \right) \right] d\mathbf{x} \right| \\
\leq \frac{1}{\pi r^2} \int_{B_r(\mathbf{p})} \left| \frac{\partial Q}{\partial x}(\mathbf{x}) - \frac{\partial P}{\partial y}(\mathbf{x}) - \left(\frac{\partial Q}{\partial x}(\mathbf{p}) - \frac{\partial P}{\partial y}(\mathbf{p}) \right) \right| d\mathbf{x} \\
\leq \frac{1}{\pi r^2} \iint_{B_r(\mathbf{p})} \epsilon d\mathbf{x} = \epsilon.$$

Segue que

$$\lim_{r\to 0} \frac{1}{\pi r^2} \oint_{\partial B_r(\mathbf{p})} \mathbf{F} \cdot d\mathbf{\gamma} = \frac{\partial Q}{\partial x}(\mathbf{p}) - \frac{\partial P}{\partial y}(\mathbf{p}).$$

2.2.3 Definição. Seja $\mathbf{F}(x,y,z) = (P(x,y,z), Q(x,y,z), R(x,y,z))$ um campo vetorial de classe C^1 definindo num aberto $V \subseteq \mathbb{R}^3$. A *rotacional* de \mathbf{F} é o campo vetorial

$$\operatorname{rot} \mathbf{F} = \nabla \times \mathbf{F} = (R_1(x, y, z), R_2(x, y, z), R_3(x, y, z))$$

definido em V por

$$R_{1}(\mathbf{p}) = \lim_{r \to 0} \frac{1}{\pi r^{2}} \oint_{\gamma_{1}} \mathbf{F} \cdot d\gamma_{1}$$

$$R_{2}(\mathbf{p}) = \lim_{r \to 0} \frac{1}{\pi r^{2}} \oint_{\gamma_{2}} \mathbf{F} \cdot d\gamma_{2}$$

$$R_{3}(\mathbf{p}) = \lim_{r \to 0} \frac{1}{\pi r^{2}} \oint_{\gamma_{3}} \mathbf{F} \cdot d\gamma_{3}$$

onde

$$\gamma_1(t) = \mathbf{p} + r(0,\cos t, \sin t)$$

$$\gamma_2(t) = \mathbf{p} + r(\cos t, 0, -\sin t)$$

$$\gamma_3(t) = \mathbf{p} + r(\cos t, \sin t, 0).$$

Sendo $D_r = \{(u,v) \in \mathbb{R}^2 : u^2 + v^2 \le r^2\}$ e $\varphi_1(u,v) = \mathbf{p} + (0,u,v), \ \varphi_2(u,v) = \mathbf{p} + (u,0,-v)$ e $\varphi_3(u,v) = \mathbf{p} + (u,v,0)$ temos

$$\oint_{\gamma_1} \mathbf{F} \cdot d\gamma_1 = \oint_{\partial D_r} Q \, du + R \, dv = \iint_{D_r} \left(\frac{\partial R}{\partial u} - \frac{\partial Q}{\partial v} \right) du \, dv$$

$$\oint_{\gamma_2} \mathbf{F} \cdot d\gamma_2 = \oint_{\partial D_r} P \, du - R \, dv = \iint_{D_r} \left(-\frac{\partial R}{\partial u} - \frac{\partial P}{\partial v} \right) du \, dv$$

$$\oint_{\gamma_3} \mathbf{F} \cdot d\gamma_3 = \oint_{\partial D_r} P \, du + Q \, dv = \iint_{D_r} \left(-\frac{\partial Q}{\partial u} - \frac{\partial P}{\partial v} \right) du \, dv$$

Na parametrização φ_2 temos $(x,y,z)=\mathbf{p}+(u,0,-v)$ e portanto

$$\frac{\partial P}{\partial v}(\varphi(u,v)) = -\frac{\partial P}{\partial z}(\varphi(u,v)).$$

Pelo lemma 2.2.2 temos

$$R_{1}(\mathbf{p}) = \frac{\partial R}{\partial y}(\mathbf{p}) - \frac{\partial Q}{\partial z}(\mathbf{p})$$

$$R_{2}(p) = \frac{\partial P}{\partial z}(\mathbf{p}) - \frac{\partial R}{\partial x}(\mathbf{p})$$

$$R_{3}(p) = \frac{\partial Q}{\partial x}(\mathbf{p}) - \frac{\partial P}{\partial y}(\mathbf{p}).$$

2.3 Teorema Integral de Stokes

Em Definition 1.5.1 definimos um domínio regular $\Omega \subset \mathbb{R}^3$. Notamos que também podemos dizer que $\Omega \subset \mathbb{R}^2$ é uma domínio regular se Ω é aberto, $\partial\Omega$ é uma curva e para cada $\mathbf{x} \in \partial\Omega$ e vetor $\mathbf{v} \notin T_{\mathbf{x}}\partial\Omega$ existe uma parametrização local $\varphi \colon I \to \partial\Omega$ em \mathbf{x} e $\delta > 0$ tais que

i)
$$\Omega \cap U = \{tv + \varphi(\mathbf{y}) : -\delta < t < 0, \mathbf{y} \in D\}$$
 ou

ii)
$$\Omega \cap U = \{tv + \varphi(\mathbf{v}) : 0 < t < \delta, \mathbf{v} \in D\}.$$

Seja $\Omega \subset \mathbb{R}^2$ um domínio regular com $\overline{\partial\Omega}$ limitado, e seja $v \colon \partial\Omega \to \mathbb{R}^2$ o vetor normal unitário exterior. Dizemos que uma parametrização local $\mathbf{y} \colon I \to \partial\Omega$ é *positiva* se para cada $t \in I$

$$\det(v \circ \mathbf{y} \ \mathbf{y'})(t) > 0.$$

Recordamos que

$$J = \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix}$$

é a matriz que representa a rotação por $\pi/2$.

2.3.1 Teorema (Green revisto). Seja $\Omega \subset \mathbb{R}^2$ um domínio regular limitado. Se $\mathbf{F}(x,y) = (P(x,y),Q(x,y))$ um campo vetorial definido num aberto $U \supset \overline{\Omega}$, então

$$\oint_{\partial\Omega} P \, dx + Q \, dy = \iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Demonstração. Seja $v: \partial \Omega \to \mathbb{R}^2$ o campo normal unitario exterior. O campo tangente $\tau: \partial \Omega \to \mathbb{R}^2$ é dado por $\tau = Jv$. Pelo teorema de Gauss obtemos

$$\oint_{\partial\Omega} P dx + Q dy = \oint_{\partial\Omega} \langle \mathbf{F}, \tau \rangle = \oint_{\partial\Omega} \langle \mathbf{F}, J \nu \rangle$$

$$= \oint_{\partial\Omega} \langle J^t \mathbf{F}, \nu \rangle$$

$$= \iint_{\Omega} \operatorname{div}(J^t \mathbf{F}) dx dy.$$

Temos

$$J^{t}\mathbf{F} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \begin{pmatrix} P \\ Q \end{pmatrix} = \begin{pmatrix} Q \\ -P \end{pmatrix}$$

e

$$\operatorname{div} J^t \mathbf{F} = \frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}.$$

Portanto

$$\oint_{\partial\Omega} P \, dx + Q \, dy = \iint_{\Omega} \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y} \right) dx dy.$$

Vamos continuar de supor que $\Omega \subset \mathbb{R}^2$ é um domínio regular e $\overline{\Omega}$ é limitado. Segue que o bordo $\partial\Omega$ é uma união disjunto de um número finito de curvas fechadas e simples. Seja $\mathbf{u}\colon I\to\partial\Omega$ uma parametrização positiva. Consideremos uma função

$$\varphi \colon \overline{\Omega} \to \mathbb{R}^3$$

de classe C^2 que é injetiva e $D\varphi(u,v)$ tem característica 2 para cada $(u,v) \in \Omega$. Portanto $\Sigma = \varphi(\Omega) \subset$

 \mathbb{R}^3 é uma superfície. O vetores $D_1\varphi(u,v),D_2\varphi(u,v)\in T_{\varphi(u,v)}\Sigma$ são linearmente independentes, e

$$\nu(\varphi(u,v)) = \frac{D_1\varphi(u,v) \times D_2\varphi(u,v)}{\|D_1\varphi(u,v) \times D_2\varphi(u,v)\|}$$

é um campo normal unitário de Σ. A função $\varphi \circ \mathbf{u} \colon I \to \partial \Sigma$ é uma parametrização de $\partial \Sigma$. Temos os campos seguintes:

$$\begin{split} & \tau_{\partial\Omega} = \frac{D\mathbf{u}}{||D\mathbf{u}||} = \frac{D\mathbf{u}}{\omega_u}, \\ & \tau_{\partial\Sigma} = \frac{D\varphi\tau_{\partial\Omega}}{||D\varphi\tau_{\partial\Omega}||} = \frac{D(\varphi \circ \mathbf{u})}{\omega_{\varphi \circ \mathbf{u}}}. \end{split}$$

2.3.2 Teorema (Stokes). Se $\mathbf{F} \colon \overline{\Sigma} \to \mathbb{R}^3$ é um campo vetorial de classe C^1 , então

$$\int_{\Sigma} \langle \operatorname{rot} \mathbf{F}, \nu \rangle = \oint_{\partial \Sigma} \langle \mathbf{F}, \tau \rangle.$$

Demonstração. Usando a parametrização $\varphi \circ \mathbf{u} \colon I \to \partial \Sigma$ temos

$$\oint_{\partial \Sigma} \langle \mathbf{F}, \tau \rangle = \int_{I} \langle \mathbf{F}(\varphi \circ \mathbf{u}), \tau(\varphi \circ \mathbf{u}) \rangle \omega_{\varphi \circ \mathbf{u}} dt$$

$$= \int_{I} \langle \mathbf{F}(\varphi \circ \mathbf{u}), D(\varphi \circ \mathbf{u}) \rangle dt$$

$$= \oint_{I} \langle \mathbf{F}(\varphi \circ \mathbf{u}), D(\varphi) \tau(\mathbf{u}) \rangle \omega_{u} dt$$

$$= \oint_{\partial \Omega} \langle D(\varphi)^{t} \mathbf{F}(\varphi \circ \mathbf{u}), \tau(\mathbf{u}) \rangle$$

$$= \iint_{\Omega} \operatorname{div}(J^{t} D(\varphi)^{t} \mathbf{F} \circ \varphi) du dv.$$

Sendo $\mathbf{F}(x,y,z)=(P,Q,R),\, \varphi(u,v)=(x,y,z),\, D_u\varphi=(x_u,y_u,z_u)$ e $D_v\varphi=(x_v,y_v,z_v)$ obtemos

$$J^{t}D\varphi^{t}\mathbf{F} = \begin{pmatrix} 0 & 1 \\ -1 & 0 \end{pmatrix} \cdot \begin{pmatrix} x_{u} & y_{u} & z_{u} \\ x_{v} & y_{v} & z_{v} \end{pmatrix} \cdot \begin{pmatrix} P \\ Q \\ R \end{pmatrix}$$
$$= \begin{pmatrix} Px_{v} + Qy_{v} + Rz_{v} \\ -Px_{u} - Qy_{u} - Rz_{u} \end{pmatrix}.$$

Portanto

$$\operatorname{div}(J^{t}D\varphi^{t}\mathbf{F}) = \frac{\partial}{\partial u}\left(Px_{v} + Qy_{v} + Rz_{v}\right) - \frac{\partial}{\partial v}\left(Px_{u} + Qy_{u} + Rz_{u}\right)$$

$$= \frac{\partial P}{\partial u}x_{v} - \frac{\partial P}{\partial v}x_{u} + \frac{\partial Q}{\partial u}y_{v} - \frac{\partial Q}{\partial v}y_{u} + \frac{\partial R}{\partial u}z_{v} - \frac{\partial R}{\partial v}z_{u}$$

$$= \frac{\partial P}{\partial y}\left(y_{u}x_{v} - y_{v}x_{u}\right) + \frac{\partial P}{\partial z}\left(z_{u}x_{v} - z_{v}x_{u}\right) + \frac{\partial Q}{\partial z}\left(x_{u}y_{v} - x_{v}y_{u}\right) + \frac{\partial Q}{\partial z}\left(z_{u}y_{v} - z_{v}y_{u}\right) + \frac{\partial R}{\partial y}\left(x_{u}z_{v} - x_{v}z_{u}\right) + \frac{\partial R}{\partial y}\left(y_{u}z_{v} - y_{v}z_{u}\right)$$

$$= \left(\frac{\partial R}{\partial y} - \frac{\partial Q}{\partial z}\right) \cdot \left(y_{u}z_{v} - y_{v}z_{u}\right) + \left(\frac{\partial P}{\partial z} - \frac{\partial R}{\partial x}\right) \cdot \left(z_{u}x_{v} - z_{v}x_{u}\right) + \left(\frac{\partial Q}{\partial x} - \frac{\partial P}{\partial y}\right) \cdot \left(x_{u}y_{v} - x_{v}u_{u}\right)$$

$$= \langle \operatorname{rot} \mathbf{F}(\varphi), D_{u}\varphi \times D_{v}\varphi \rangle.$$

Portanto

$$\oint_{\partial \Sigma} \langle \mathbf{F}, \tau \rangle = \iint_{\Omega} \langle \mathbf{F}(\varphi), D_u \varphi \times D_v \varphi \rangle du dv$$

$$= \iint_{\Omega} \langle \mathbf{F}(\varphi), \nu(\varphi) \rangle \omega_{\varphi} du dv$$

$$= \int_{\Sigma} \langle \mathbf{F}, \nu \rangle.$$

Notamos que em geral uma superfície pode não ter uma parametrização global, mas ainda pode aplicar o teorema de Stokes se é possível decompor uma superfície $\Sigma \subset \mathbb{R}^3$ com bordo $\partial \Sigma$ numa união finita

$$\Sigma_1 \cup \cdots \cup \Sigma_N = \Sigma$$

em que cada Σ_j tem uma parametrização e as parametrizações de superfícies com bordos em comum são compatíveis. Notamos superfícies com essa propriedade são **orientáveis**. Voltaremos a este tópico em § 2.4.

2.3.3 Exemplo. Calcule

$$\int_{\Sigma} \langle \operatorname{rot} \mathbf{F}, \nu \rangle$$
 onde $\mathbf{F}(x, y, z) = (xz + y^3 \cos z, x^3 e^z, xyz e^{x^2 + y^2 + z^2}),$
$$\Sigma = \{(x, y, z) : x^2 + y^2 + 2(z - 1)^2 = 6 \text{ e } z \ge 0\}$$

e v é o vetor normal exterior do domínio

$$\Omega = \{(x, y, z) : x^2 + y^2 + 2(z - 1)^2 < 6 \text{ e } z > 0\}.$$

A superfície Σ tem o bordo

$$\partial \Sigma = \{(x, y, 0) : x^2 + y^2 = 4\},\$$

e uma parametrização de $\partial \Sigma$ que é compatível com a orientação do vetor normal ν é $\gamma(t) = (2\cos t, 2\sin t, 0)$. Aplicando o teorema de Stokes obtemos

$$\int_{\Sigma} \langle \operatorname{rot} \mathbf{F}, \nu \rangle = \oint_{\partial \Sigma} \langle \mathbf{F}, \tau \rangle.$$

Temos

$$\mathbf{F} \circ \gamma(t) \cdot \gamma'(t) = \mathbf{F}(2\cos t, 2\sin t, 0) \cdot (-2\sin t, 2\cos t, 0)$$

= $16(\cos^4 t - \sin^4 t) = 16(\cos^2 t - \sin^2 t)(\cos^2 t + \sin^2 t)$
= $16\cos(2t)$.

Logo

$$\int_{\Sigma} \langle \operatorname{rot} \mathbf{F}, \nu \rangle = 16 \int_{0}^{2\pi} \cos(2t) \, dt = 0.$$

2.3.4 Exemplo. Seja P o plano em \mathbb{R}^3 definido por x + y + z = 1 e seja

$$\Sigma = \{(x, y, z) \in P : x, y, z > 0\}.$$

Calculo

$$\oint_{\partial \Sigma} \langle \mathbf{F}, \tau \rangle$$

onde $\mathbf{F}(x,y,z)=(xy,yz,zx)$ e a orientação de $\partial\Sigma$ e compatível com o vetor normal unitário $\nu=(1,1,1)/\sqrt{3}$ de Σ .

Temos

$$\operatorname{rot} \mathbf{F} = (-y, -z, -x), \qquad \langle \operatorname{rot} \mathbf{F}, \nu \rangle = \frac{1}{\sqrt{3}}.$$

Seja $D = \{(x,y) \in \mathbb{R}^2 : x,y > 0 \text{ e } x + y < 1\}$. Temos uma parametrização

$$\varphi \colon D \to \Sigma, \quad \varphi(x,y) = (x,y,1-x-y)$$

e $\omega_{\varphi}(x,y) = \sqrt{3}$. Obtemos

$$\begin{split} \oint_{\partial \Sigma} \langle \mathbf{F}, \tau \rangle &= \int_{\Sigma} \langle \operatorname{rot} \mathbf{F}, \nu \rangle \\ &= \int_{\Sigma} \frac{1}{\sqrt{3}} = \int_{D} \frac{\omega_{\varphi}}{\sqrt{3}} \, dx dy = \text{área de } D = \frac{1}{2}. \end{split}$$

2.4 Potencias Vetor

Seja $U \subseteq \mathbb{R}^3$ aberto. Recordamos que um campo vetorial $\mathbf{F} \colon U \to \mathbb{R}^3$ contínua chama-se *conservativa* se para quaisquer pontos $x, y \in U$ e quaisquer caminhos $\alpha, \beta \colon [0, 1] \to U$ de classe C^1 com $x = \alpha(0) = \beta(0)$ e $y = \alpha(1) = \beta(1)$ temos

$$\int_{\alpha} \langle \mathbf{F}, \tau \rangle = \int_{\beta} \langle \mathbf{F}, \tau \rangle.$$

2.4.1 Definição. Seja $U \subset \mathbb{R}^3$ aberto e seja $\mathbf{F} \colon U \to \mathbb{R}^3$ um campo contínuo. Dizemos que um campo $\mathbf{H} \colon U \to \mathbb{R}^3$ é um *potencial vetor* para \mathbf{F} se

$$\mathbf{F} = \operatorname{rot} \mathbf{H}$$
,

e dizemos que \mathbf{F} é solenoidal se para cada superfície $\Sigma \subset U$ fechada e orientável temos

$$0 = \int_{\Sigma} \langle \mathbf{F}, \nu \rangle,$$

onde $v: \Sigma \to \mathbb{R}^3$ é um vetor normal unitário.

Notamos que pelo teorema de Gauss um campo vetorial \mathbf{F} é solenoidal se e só se div $\mathbf{F} = 0$.

Dizemos que $f: U \to \mathbb{R}^3$ é irrotacional se rot $\mathbf{F} = 0$.

Notamos que se $\mathbf{F}(x,y,z) = (f_1(x,y,z), f_2(x,y,z), f_3(x,y,z))$ então

$$rot \mathbf{F} = (D_2 f_3 - D_3 f_2, D_3 f_1 - D_1 f_3, D_1 f_2 - D_2 f_1))$$

e portanto F é irrotacional se e só se

$$D_i f_j = D_j f_i.$$

Se **H** é de classe C^2 então

$$\operatorname{div}\operatorname{rot}(\mathbf{H})=0.$$

Portanto, se $\mathbf{F} \colon U \to \mathbb{R}^3$ é de classe C^1 um condição necessária para $\mathbf{F} = \operatorname{rot} \mathbf{H}$ é div $\mathbf{F} = 0$.

Recordamos que um aberto $U \subset \mathbb{R}^n$ chama-se *em estrela* se existe um ponto $p \in U$ tal que para cada $x \in U$ o segmento $\{(1-t)p + tx : 0 \le t \le 1\} \subset U$.

2.4.2 Proposição. Seja $U \subset \mathbb{R}^3$ aberto e em estrela.

i) Se $\mathbf{F} \colon U \to \mathbb{R}^3$ é de classe C^1 e div $\mathbf{F} = 0$, então existe um campo $\mathbf{H} \colon U \to \mathbb{R}^3$ tal que

$$\mathbf{F} = \operatorname{rot} \mathbf{H} = \nabla \times \mathbf{H}$$
.

ii) Se **F** é irroticional então existe um campo $\varphi \colon U \to \mathbb{R}$ tal que

$$\mathbf{F} = \nabla \varphi$$
.

2.4.1 Nota. Notamos que se $\operatorname{rot} \mathbf{H}_1 = \operatorname{rot} \mathbf{H}_2$, então $\operatorname{rot} (\mathbf{H}_1 - \mathbf{H}_2) = 0$. Logo, localmente $\mathbf{H}_1 = \mathbf{H}_2 + \nabla \varphi$.

Demonstração. Seja $U \subset \mathbb{R}$ um aberto e em estrela. Vamos supor que para cada ponto $p \in U$ o segmento $t \mapsto t \cdot p \in U$ com $0 \le t \le 1$.

i) $\mathbf{F} \colon U \to \mathbb{R}^3$ é um campo e div $\mathbf{F} = 0$ definimos

$$\mathbf{H}(x,y,z) = \int_0^1 \mathbf{F}(tx,ty,tz) \times (tx,ty,tz) dt.$$

Seja $\mathbf{F}=(f_1,f_2,f_3)$. Usando div $\mathbf{F}=(D_1f_1+D_2f_2+D_3f_3)(x,y,z)=0$ obtemos

$$\operatorname{rot}(\mathbf{F}(tx,ty,tz) \times (tx,ty,tz)) = t(D_2(yf_1 - xf_2) - D_3(xf_3 - zf_1),$$

$$D_3(zf_2 - yf_3) - D_1(yf_1 - xf_2),$$

$$D_1(xf_3 - zf_1) - D_2(zf_3 - yf_3))$$

$$= 2t\mathbf{F}(tx,ty,tz) + \frac{d}{dt}\mathbf{F}(tx,ty,tz) \cdot (x,y,z)$$

$$= \frac{d}{dt}(t^2\mathbf{F}(tx,ty,tz)).$$

Logo

$$\operatorname{rot} \mathbf{H}(x, y, z) = \int_0^1 \frac{d}{dt} (t^2 \mathbf{F}(tx, ty, tz)) dt = \mathbf{F}(x, y, z).$$

ii) Se $\mathbf{F}(x,y,z) = (f_1,f_2,f_3)$ é irrotacional, então a matriz Jocabiana

$$D\mathbf{F} = \left(\frac{\partial f_i}{\partial x_i}\right)$$

é simétrica, e portanto $D\mathbf{F} = (D\mathbf{F})^t$. Consideremos as funções

$$k(t,x,y,z) = \langle \mathbf{F}(tx,ty,tz), (x,y,z) \rangle = f_1(tx,ty,tz)x + f_2(tx,ty,tz)y + f_3(tx,ty,tz)z$$

e

$$\varphi(x,y,z) = \int_0^1 k(t,x,y,z) \, dt.$$

Temos

$$\frac{\partial k}{\partial x} = f_1(tx, ty, tz) + D_1 f_1(tx, ty, tz) tx + D_1 f_2(tx, ty, tz) ty + D_1 f_3(tx, ty, tz) tz$$

$$\left(\frac{\partial k}{\partial x}, \frac{\partial k}{\partial y}, \frac{\partial k}{\partial z}\right) = t D \mathbf{F}(tx, ty, tz)^t (x, y, z) + \mathbf{F}(tx, ty, tz)$$

$$= t D \mathbf{F}(tx, ty, tz) (x, y, z) + \mathbf{F}(tx, ty, tz)$$

$$= t \frac{d \mathbf{F}}{dt} + \mathbf{F}(tx, ty, tz)$$

$$= \frac{d}{dt} (t \mathbf{F})$$

$$\nabla \varphi(x, y, z) = \int_0^1 \nabla k(t, x, y, z) dt$$

$$= \int_0^1 \frac{d}{dt} (t \mathbf{F}) dt$$

$$= \mathbf{F}(x, y, z).$$

2.4.3 Exemplo. Seja $\mathbf{F} \colon \mathbb{R}^3 \to \mathbb{R}^3$ o campo definida por $\mathbf{F}(x,y,z) = (y,z,x)$. Como div $\mathbf{F} = 0$ e \mathbb{R}^3 é um conjunto em estrela, existe um campo $\mathbf{G}(x,y,z)$ tal que rot $\mathbf{G} = \mathbf{F}$. Sendo $\mathbf{G}(x,y,z) = (g_1,g_2,g_3)$ temos de resolver o sistema

$$y = \frac{\partial g_3}{\partial y} - \frac{\partial g_2}{\partial z}$$
$$z = \frac{\partial g_1}{\partial z} - \frac{\partial g_3}{\partial x}$$
$$x = \frac{\partial g_2}{\partial x} - \frac{\partial g_1}{\partial x}$$

Para simplificar o sistema podemos supor que g_1 , g_2 ou g_3 é a função nula. De facto, se $\mathbf{G}(x,y,z)=(g_1,g_2,g_3)$ satisfaz $\nabla \times \mathbf{G} = \mathbf{F}$ então o campo $\mathbf{H} \colon \mathbb{R}^3 \to \mathbb{R}^3$ definido por $\mathbf{H}(x,y,z)=(g_1,h_2,h_3)$ com

$$h_2(x,y,z) = \int_0^x \frac{\partial g_1}{\partial y}(t,y,z) dt$$

$$h_3(x,y,z) = \int_0^x \frac{\partial g_1}{\partial z}(t,y,z) dt$$

satisfaz $\nabla \times \mathbf{H} = 0$ e portanto existe uma função φ com $\nabla \varphi = \mathbf{H}$. Logo

$$(\mathbf{G} - \mathbf{H})(x, y, z) = (0, g_2 - h_2, g_3 - h_3)$$
 e $rot(\mathbf{G} - \mathbf{H}) = \mathbf{F}$.

Assim temos resolver

$$y = \frac{\partial g_3}{\partial y} - \frac{\partial g_2}{\partial z}$$
$$z = -\frac{\partial g_3}{\partial x}$$
$$x = \frac{\partial g_2}{\partial x}.$$

Obtemos

$$g_2(x,y,z) = \frac{x^2}{2} + \varphi(y,z)$$

$$g_3(x,y,z) = -xz + \psi(y,z)$$

$$y = \frac{\partial \psi}{\partial y} - \frac{\partial \varphi}{\partial z}.$$

Logo $\psi(y,z)=y^2/2$ e $\varphi(y,z)=0$ são soluções e

$$\mathbf{G}(x,y,z) = \left(0, \frac{x^2}{2}, \frac{y^2}{2} - xz\right)$$

satisfaz $\nabla \times \mathbf{G} = (y,z,x)$ e qualquer potencial vetor de \mathbf{F} é da forma

$$\mathbf{F}(x,y,z) = \left(\frac{\partial \gamma}{\partial x}, \frac{\partial \gamma}{\partial y} + \frac{x^2}{2}, \frac{\partial \gamma}{\partial z} + \frac{y^2}{2} - xz\right) = \mathbf{G} + \nabla \gamma.$$

PARTE II

Equações Diferenciais Ordinárias

3 Equações diferenciais da primeira ordem

Em geral, designa-se por I um intervalo aberto de \mathbb{R} , o conjunto dos números reais. Portanto I =]a,b[com $-\infty \le a \le b \le \infty$ e $t \in I$ se e só se a < t < b. Usamos a palavra região para um subconjunto conexo de \mathbb{R}^n , com n > 0 um inteiro.

Seja $f:]a,b[\to \mathbb{R}$ é uma função de classes C^k com a e b finitos. Se a derivada de ordem k a direita de f existe em a e é contínua à direita em a então dizemos que f é de classe C^k em [a,b[. Analogamente, se a derivada a esquerda de ordem k existe em k e é contínua à esquerda em k dizemos que k é de classe k0 em k1.

Escrevemos a logaritmo natural por $\log |t|$, com $0 \neq t \in \mathbb{R}$.

Vamos estudar agora o seguinte:

Problema. Seja $D \subset \mathbb{R}^2$ uma região e seja $f \colon D \to \mathbb{R}$ uma função contínua. Determine uma função φ de classe C^1 definida num intervalo $I \subset \mathbb{R}$ tal que

$$(t,\varphi(t)) \in D$$
 para cada $t \in I$; (3.1)

$$\frac{d\varphi}{dt} = f(t, \varphi(t)) \qquad \text{para cada } t \in I. \tag{3.2}$$

Equação (3.2) chama-se *equação diferencial ordinária* (EDO) *da primeira ordem* (EDO). Notamos que uma EDO muitos soluções. Por exemplo, o problema

$$f(t,x) = t,$$
 $com(t,x) \in D = \mathbb{R}^2;$
$$\frac{d\varphi}{dt} = t$$

tem, para cada numero real c uma solução

$$\varphi_c(t) = \frac{1}{2}t^2 + c$$

que é valida para t em qualquer intervalo $I \subset \mathbb{R}$. Mas, existe uma e só uma solução em qualquer intervalo aberto I que contêm $1 \in \mathbb{R}$ e satisfaz a condição $\varphi(1) = 1$, nomeadamente $\varphi_{1/2}(t) = (t^2 + 1)/2$.

3.1 Problema de valor inicial

Para estudar unicidade de soluções de equações diferencias temos de adicionar uma condição inicial.

Problema (de valor inicial PVI). Seja $D \subset \mathbb{R}^2$ uma região, $(\tau, \xi) \in D$ um ponto e $f : D \to \mathbb{R}$ uma função contínua. Determine uma função φ de classe C^1 definida num intervalo $I \subset \mathbb{R}$, que contêm τ , tal que

$$(t, \varphi(t)) \in D,$$
 para cada $t \in I;$ (3.3)

$$\frac{d\varphi}{dt} = f(t, \varphi(t)), \qquad \text{para cada } t \in I; \qquad (3.4)$$

$$\varphi(\tau) = \xi. \tag{3.5}$$

Quando existem um intervalo I e uma função $\varphi \colon I \to \mathbb{R}$ tais que equações (3.3) a (3.5) são validas, dizemos que o pvi tem uma solução.

3.2 Equações Diferenciais Lineares da Primeira Ordem

Uma equação diferencial da primeira ordem

$$x' = f(t, x)$$

chama-se *linear* se f(t,x) é uma função linear na variável x. Isto é f(t,ax+by)=f(t,a)x+f(t,b)y. Logo a equação é equivalente de

$$x' = f(t,x) = f(t,1 \cdot x + 0 \cdot 1) = f(t,1)x + f(t,0) = p(t)x + g(t).$$

3.2.1 Teorema. Seja $I \neq \emptyset$. Se $p,g: I \to \mathbb{R}$ são funções contínuas e $\tau \in I$, então para qualquer $\xi \in \mathbb{R}$, o problema de valor inicial

$$x' = p(t)x + g(t), \qquad x(\tau) = \xi,$$

tem uma e uma só solução definida em *I*.

Demonstração. A demonstração de Teorema 3.2.1 tem duas parte. Começamos pelo estudo da *equação homogénea* associada

$$x' = p(t)x$$
.

Notamos primeiro que dadas duas soluções $x_1(t)$ e $x_2(t)$ da equação homogénea, então a função $\varphi(t)=c_1x_1(t)+c_2x_2(t)$, onde c_1 e c_2 são constantes reais, é uma solução da equação homogénea. Ou seja o conjunto

$$S = \{ \varphi : \varphi \text{ \'e contínua em } I \text{ e } \varphi' = p(t)\varphi \}$$

é um espaço vetorial real. Notamos que a função nula $\varphi(t)=0$ é uma solução. Se $x_2(t)\in S$ é uma solução não nula então existe um subintervalo $J\subset I$ tal que $x_2(t)\neq 0$ para cada $t\in J$. Se $x_1(t)\in S$

é uma solução, então

$$\frac{d}{dt} \left(\frac{x_1}{x_2} \right) = \frac{x_1' x_2 - x_1 x_2'}{x_2^2}$$

$$= \frac{p x_1 x_2 - p x_1 x_2}{x_2^2}$$

$$= 0.$$

Portanto x_1/x_2 é constante em J. Segue que

$$x_1(t) = c \cdot x_2(t)$$
 para cada $t \in I$.

Logo S é um espaço real de dimensão ≤ 1 (Ainda temos de mostrar que exite uma solução não nula!). Seja $\tau \in I$. Temos

$$x' = p(t)x$$

$$\frac{x'}{x} = p(t)$$

$$\int_{\tau}^{t} \frac{x'(s)}{x(s)} ds = \int_{\tau}^{t} p(s) ds$$

$$\log |x(t)| - \log |x(\tau)| = \int_{\tau}^{t} p(s) ds$$

$$|x(t)| = |x(\tau)| \cdot \exp \int_{\tau}^{t} p(s) ds.$$

Obtemos que cada solução da equação homogénea pode ser escrita da forma

$$x(t) = K \exp \int_{\tau}^{t} p(s) ds$$
, onde K é uma constante.

Consideramos agora a equação não homogénea

$$x' = p(t)x + g(t). \tag{3.6}$$

Se $x_1(t)$ e $x_2(t)$ são soluções de (3.6), seja $\varphi(t)=x_1(t)-x_2(t)$. Temos

$$\frac{d\varphi}{dt} = x_1' - x_2'$$

$$= px_1 + g - px_2 - g$$

$$= p(x_1 - x_2)$$

$$= p\varphi.$$

Logo φ é uma soluções da equação homogénea, e portanto $\varphi = K \exp \int_{\tau}^{t} p(s) \, ds$. Obtemos

$$x_1 = x_2 + K \exp \int_{\tau}^{t} p(s) \, ds,$$

e segue que cada solução da equação (3.6) pode ser escrita da forma

$$x(t) = K \exp \int_{\tau}^{t} p(s) ds + x_p(t),$$

a função $K\exp\int_{\tau}^{t}p(s)\,ds$ chama-se a solução geral da equação homogénea e a função $x_{p}(t)$ chama-se uma solução particular.

Para determinar uma solução particular consideramos a função

$$\mu(t) = \exp\left(-\int_{\tau}^{t} p(s) \, ds\right),\,$$

que se chama um fator integrante. Temos $\mu = 1/\exp \int_{\tau}^{t} p(s) ds$ e

$$\frac{d\mu}{dt} = -\mu(t) \cdot p(t)$$

Logo

$$\frac{dx}{dt} = p \cdot x + g(t)$$

$$\frac{dx}{dt} - p \cdot x = g(t)$$

$$\mu \left(\frac{dx}{dt} - p \cdot x\right) = \mu \cdot g$$

$$\frac{d}{dt} (\mu \cdot x) = \mu \cdot g$$

Sendo

$$\int_{0}^{t} \mu(s) \cdot g(s) \, ds$$

uma primitiva de $\mu \cdot g$ obtemos uma solução particular

$$x_p(t) = \frac{1}{\mu(t)} \int_{-\infty}^{t} \mu(s) \cdot g(s) \, ds.$$

3.2.2 Exemplo. Determine a solução geral da equação

$$x' = 2x + 4 - t$$
.

e determinar a solução do problema de valor inicial x(0) = a. A função f(t,x) = 2x + 4 - t é linear na variável x. Escrevendo

$$f(t,x) = p(t)x + g(t) = 2 \cdot x + 4 - t$$

obtemos que a equação homogénea é x'=2x. A solução geral da equação homogénea é

$$x_h(t) = Ke^{2t}$$
.

Um fator integrante é e^{-2t} . Temos

$$\frac{d}{dt}(e^{-2t}x) = e^{-2t}(4-t)$$

$$e^{-2t}x = \int_0^t e^{-2s}(4-s) \, ds + C$$

$$= \frac{t-4}{2}e^{-2t} - \frac{1}{2}\int_0^t e^{-2s} \, ds + C$$

$$= e^{-2t}\frac{2t-7}{4} + C \quad \text{sendo } C = 0$$

$$x_p = \frac{2t-7}{4}$$

Logo a solução geral é

$$x = Ke^{2t} + \frac{2t - 7}{4}.$$

Para determinar a solução que satisfaz x(0) = a temos

$$a = Ke^0 - \frac{7}{4} = K - \frac{7}{4}.$$

Logo

$$x(t) = \left(a + \frac{7}{4}\right)e^{2t} + \frac{2t - 7}{4}.$$

3.2.3 Exemplo. Resolve $tx' - x = t^2 e^{-t}$, t > 0 e estude o limite $\lim_{t \to +\infty} x(t)$.

A equação é linear, e temos

$$x' = \frac{1}{t}x + te^{-t}.$$

A equação homogénea é x'=x/t e a solução geral é $x_h(t)=K\cdot t$. Um fator integrante é t^{-1} .

Logo

$$\frac{d}{dt} \left(\frac{x}{t} \right) = \frac{x't - x}{t^2}$$

$$= e^{-t}$$

$$= -\frac{d}{dt} e^{-t}$$

$$\frac{x}{t} = c - e^{-t}$$

$$x(t) = \left(c - e^{-t} \right) \cdot t.$$

Se a condição inicial é x(1) = 1, então a solução é $x(t) = (1 + e^{-1} - e^{-t}) \cdot t$, e

$$\lim_{x \to +\infty} x(t) - (e^{-1} + 1)t = 0.$$

Em geral $\lim_{t\to\infty} e^{-t}t = 0$, e portanto

$$\lim_{t\to\infty} x(t) - ct = \lim_{t\to\infty} -e^{-t}t = 0.$$

3.3 Existência e Unicidade de Soluções de Equações Não Lineares

No exemplo seguinte a equação diferencial é *não linear* e tem soluções que podem explodir, no sentido que $\lim_{t\to a} |x(t)| = \infty$ com $a \in \mathbb{R}$.

3.3.1 Exemplo. Consideramos o problema de valor inicial

$$x' = x^2$$
, $x(0) = \xi$.

Se $\xi=0$, então a função constante $\varphi(t)=0$ é uma solução, e se $\xi\neq0$, então a função

$$\varphi(t) = \frac{\xi}{1 - \xi t}, \quad t \in I,$$

onde $I=]-\infty,1/\xi[$ se $\xi>0$ e $I=]1/\xi,+\infty[$ se $\xi<0$ é uma solução. Para resolver a equação notamos que

$$x' = x^{2}$$

$$\frac{x'}{x^{2}} = 1$$

$$-\frac{d}{dt}x^{-1} = \frac{d}{dt}t$$

$$x^{-1} = c - t$$

$$x(t) = \frac{1}{c - t}$$

$$x(0) = \frac{1}{c}$$

No próximo exemplo, a solução do problema de valor inicial não é única.

3.3.2 Exemplo. O problema de valor inicial

$$x' = 3x^{2/3}, \qquad x(0) = 0,$$

tem mais de uma solução. Nomeadamente,

$$x(t) = 0$$
 and $x(t) = t^3$.

Temos

$$x^{-2/3}x' = 3$$

$$\frac{d}{dt}x^{1/3} = 1$$

$$x^{1/3} = t + c$$

$$x(t) = (t+c)^3.$$

Para obter unicidade de soluções de um problema de valor inicial vamos exigir a *condição de Lipschitz*.

3.3.3 Definição. Seja f uma função contínua numa região $D \subset \mathbb{R}^2$. Se existe um constante k > 0 tal que para quaisquer pontos $(t, x_1), (t, x_2) \in D$

$$|f(t,x_1) - f(t,x_2)| \le k|x_1 - x_2|$$

dizemos que f satisfaz a condição de Lipschitz em relação a x.

Dizemos que f é localmente Lipschitz quando f satisfaz a condição de Lipschitz em cada subconjunto compacto. Recordamos que $S \subset \mathbb{R}^2$ chama-se *compacto* quando é fecho e limitado.

Notamos que se $g: [a,b] \to \mathbb{R}$ é uma função de classe C^1 existe a < x < b tal que

$$g(b) - g(a) = g'(x)(b - a).$$

Uma região D chama-se *convexo* quando para dois pontos $p,q \in D$ o segmente $tp + (1-t)q \in D$ para $0 \le t \le 1$. Se uma região $D \subset \mathbb{R}^2$ é convexo e $f : D \to \mathbb{R}$ é uma função tal que $\frac{\partial f}{\partial x}$ existe, contínua e limitada em D, então f satisfaz a condição de Lipschitz.

3.3.1 Equação integral

Se φ é uma solução, definida num intervalo I, do problema de valor inicial

$$x' = f(t, x), \quad x(\tau) = \xi,$$

então para $t \in I$ temos

$$\varphi(\tau) = \xi$$

$$\varphi'(t) = f(t, \varphi(t))$$

$$\int_{\tau}^{t} \frac{d\varphi}{ds} ds = \int_{\tau}^{t} f(s, \varphi(s)) ds$$

$$\varphi(t) = \xi + \int_{\tau}^{t} f(s, \varphi(s)) ds$$
(3.7)

A equação na ultima aliena em (3.7) chama-se *equação integral*. No outro lado se φ é uma função que satisfaz a equação integral, então $\varphi(\tau) = \xi$ e

$$\frac{d\varphi}{dt} = f(t, \varphi(t)).$$

Obtemos uma correspondência entre soluções do problema de valor inicial e soluções da equação integral.

3.3.2 Iteradas de Picard

Consideramos agora uma sucessão de funções $\{\varphi_n\}_{n=0}^{\infty}$ com a propriedade que o limite $\lim_{n\to\infty}\varphi_n=\varphi$ é uma solução de PVI

$$x' = f(t, x), \quad x(\tau) = \xi;$$

onde f é uma função continua numa região D, localmente Lipschitz em D e $(\tau, \xi) \in D$.

Definimos as iteradas de Picard por

$$\varphi_0(t) = \xi;$$

$$\varphi_1(t) = \xi + \int_{\tau}^t f(s,\xi) ds$$

$$\varphi_2(t) = \xi + \int_{\tau}^t f(s,\varphi_1(s)) ds$$

$$\vdots$$

$$\varphi_n(t) = \xi + \int_{\tau}^t f(s,\varphi_{n-1}(s)) ds$$

3.3.4 Lema. Seja f uma função continua definida uma região D e seja $(\tau, \xi) \in D$. Vamso supor que f não é a função nula. Se o retângulo compacto

$$R = \{(t, x) : |t - \tau| \le a, |x - \xi| \le b\} \subseteq D,$$

então para

$$M = \max\{|f(t,x)| : (t,x) \in R\} > 0$$

e $\alpha = \min\{a, b/M\}$ a iteradas de Picard

$$\varphi_n(t) = \xi + \int_{\tau}^{t} f(s, \varphi_{n-1}(s)) ds$$

estão bem definidas no intervalo $I=\left] \tau -\alpha , au +\alpha \right[$ e

$$|\xi - \varphi_n(t, x)| < M|t - \tau| \le b, \quad t \in I.$$

Demonstração. Temos

$$\left| \xi - \varphi_1(t) \right| = \left| \int_{\tau}^{t} f(s, \xi) ds \right|$$

$$\leq \int_{\tau}^{t} \left| f(s, \xi) \right| |ds|$$

$$\leq M|t - \tau| \leq M\alpha \leq b.$$

Portanto $t \in I$ implica que $(t, \varphi_1(t)) \in R$. Seja $n \ge 1$. Por indução temos $t \in I$ implica que $(t, \varphi_n(t)) \in R$ e

$$\left| \xi - \varphi_{n+1}(t) \right| = \left| \int_{\tau}^{t} f(s, \varphi_{n}(s)) ds \right|$$

$$\leq \int_{\tau}^{t} \left| f(s, \varphi_{n}(s)) \right| |ds|$$

$$\leq M|t - \tau| \leq M\alpha \leq b.$$

Agora podemos mostrar a existência local de soluções do problema de valor inicial.

3.3.5 Teorema (Teorema de Picard-Lindelöf (existência local)). Se f e $\partial f/\partial x$ são contínuas numa região D (ou mais geral se f é contínua e localmente Lipschitz em relação à variavel x), então para cada ponto $(\tau, \xi) \in D$ as iteradas de Picard

$$\varphi_n(t) = \xi + \int_{\tau}^{t} f(s, \varphi_{n-1}(s)) ds$$

converge num intervalo I de τ a uma solução do problema de valor inicial

$$x' = f(t, x), \quad x(\tau) = \xi.$$

Demonstração. Usamos os valores a,b,M e α e o subconjunto $R \subset D$ do Lema 3.3.4, e seja K > 0 tal que para $(t,x_1),(t,x_2) \in R$ temos

$$|f(t,x_1) - f(t,x_2)| \le K|x_1 - x_2|.$$

Podemos escrever

$$\varphi_n(t) = \xi + (\varphi_1(t) - \xi) + \dots + (\varphi_n(t) - \varphi_{n-1}(t))$$

$$= \xi + \sum_{k=0}^{n-1} (\varphi_{k+1}(t) - \varphi_k(t))$$

e

$$|\varphi_{k+1}(t) - \varphi_k(t)| = \left| \int_{\tau}^{t} f(s, \varphi_k(s)) - f(s, \varphi_{k-1}(s)) ds \right|$$

$$\leq \int_{\tau}^{t} \left| f(s, \varphi_k(s)) - f(s, \varphi_{k-1}(s)) \right| |ds|$$

$$\leq K \int_{\tau}^{t} \left| \varphi_k(s) - \varphi_{k-1}(s) \right| |ds|.$$

Para k = 0, k = 1 e k > 1 temos

$$\begin{split} |\varphi_1(t) - \xi| &\leq M|t - \tau| \\ |\varphi_2(t) - \varphi_1(t)| &\leq K \int_{\tau}^t |\varphi_1(s) - \xi| |ds| \\ &\leq MK \int_{\tau}^t |s - \tau| |ds| \\ &\leq \frac{MK}{2} |t - \tau|^2 \\ &\vdots \\ |\varphi_k(t) - \varphi_{k-1}(t)| &\leq \frac{MK^{k-1}}{k!} |t - \tau|^k \leq \frac{M}{K} \cdot \frac{(K\alpha)^k}{k!}. \end{split}$$

Assim obtemos

$$\begin{aligned} |\varphi_n(t)| &\leq |\xi| + \sum_{k=0}^{n-1} \left| \varphi_{k+1}(t) - \varphi_k(t) \right| \\ &\leq |\xi| + \frac{M}{K} \sum_{k=1}^n \frac{(K\alpha)^k}{k!} \\ &\leq |\xi| + \frac{M}{K} \left(e^{K\alpha} - 1 \right). \end{aligned}$$

Pelo teorema de Weierstrass a serie $|\xi| + \sum_{k=1}^{\infty} |\varphi_k(t) - \varphi_{k-1}(t)|$ converge uniformemente, e portanto a sucessão $\{\varphi_n(t)\}$ converge uniformemente a uma função $\varphi(t)$ definida e continua em I.

Para $|t - \tau| < \alpha$ temos

$$\begin{aligned} \left| \varphi(t) - \varphi_n(t) \right| &= \left| \sum_{k=n}^{\infty} \varphi_{k+1}(t) - \varphi_k(t) \right| \\ &\leq \frac{M}{K} \sum_{k=n}^{\infty} \frac{(K\alpha)^{k+1}}{(k+1)!} \\ &= \frac{M}{K} \frac{(K\alpha)^{n+1}}{(n+1)!} \sum_{k=0}^{\infty} \frac{(K\alpha)^k}{k!} \\ &= \frac{M}{K} \frac{(K\alpha)^{n+1}}{(n+1)!} e^{K\alpha}. \end{aligned}$$

Portanto

$$\left| \int_{\tau}^{t} \left(f(s, \varphi(s)) - f(s\varphi_{n}(s)) \right) ds \right| \leq \int_{\tau}^{t} \left| \left(f(s, \varphi(s)) - f(s\varphi_{n}(s)) \right) \right| |ds|$$

$$\leq K \int_{\tau}^{t} \left| \varphi(s) - \varphi_{n}(s) \right| |ds|$$

$$\leq K \frac{M}{K} \frac{(K\alpha)^{n+1}}{(n+1)!} e^{K\alpha} |t - \tau|$$

$$\leq M \frac{(K\alpha)^{n+1}}{(n+1)!} e^{K\alpha} \alpha$$

Como α , M e K são constantes, segue-se que $\lim_{n\to\infty} M \frac{(K\alpha)^{n+1}}{(n+1)!} e^{K\alpha} \alpha = 0$, e portanto

$$\varphi(t) = \lim_{n \to \infty} \varphi_n(t)$$

$$= \lim_{n \to \infty} \xi + \int_{\tau}^{t} f(s, \varphi_{n-1}(s)) ds$$

$$= \xi + \int_{\tau}^{t} f(s, \varphi(s)) ds.$$

Logo $x = \varphi(t)$ é uma solução do problema de valor inicial

$$x' = f(t, x), \quad x(\tau) = \xi.$$

3.3.3 Unicidade de soluções de pvi

Agora vamos mostrar que o problema de valor inicial

$$x' = f(t, x), \quad x(\tau) = \xi$$

tem uma solução única quando f é contínua e localmente Lipschitz.

3.3.6 Lema (Desigualdade de Gronwall). Se f(t) e g(t) são funções não negativas em [a,b], $L \ge 0$ é constantes e

$$f(t) \le L + \int_a^t f(s)g(s) ds$$
, para $a \le t \le b$;

então

$$f(t) \le L \exp \left[\int_a^t g(s) \, ds \right], \quad \text{para } a \le t \le b.$$

Demonstração. Consideramos a função

$$h(t) = L + \int_a^t f(s)g(s) \, ds.$$

Temos h(a) = L, $0 \le f(t) \le h(t)$ e

$$h'(t) = f(t)g(t) \le h(t)g(t)$$
, para $a \le t \le b$.

Sendo

$$\mu(t) = \exp\left[-\int_{a}^{t} g(s) \, ds\right]$$

obtemos

$$\frac{d}{dt}\Big[h(t)\mu(t)\Big] = h'(t)\mu(t) + h(t)\mu'(t) = \mu(t)\left[h'(t) - h(t)g(t)\right] \le 0.$$

Portanto

$$\begin{split} \int_a^t \frac{d}{ds} \Big[h(s) \mu(s) \Big] ds &= h(t) \mu(t) - L \le 0 \\ h(t) &\le L / \mu(t) \\ f(t) &\le h(t) \le L \exp \bigg[\int_a^t g(s) \, ds \bigg], \quad \text{ para } a \le t \le b. \end{split}$$

3.3.7 Teorema (Unicidade). Para uma função contínua f(t,x) que é localmente Lipschitz o problema de valor inicial

$$x' = f(t, x), \quad x(\tau) = \xi,$$

tem uma solução única definida em $]\tau - \epsilon, \tau + \epsilon[$ para algum $\epsilon > 0.$

Demonstração. Sejam $\varphi(t)$ e $\psi(t)$ soluções do PVI definidas em $]\tau - \epsilon, \tau + \epsilon[$. Para $\tau \le t < \tau + \epsilon$ temos

$$\varphi(t) = \xi + \int_{\tau}^{t} f(s, \varphi(s)) ds, \quad \psi(t) = \xi + \int_{\tau}^{t} f(s, \psi(s)) ds,$$

e portanto

$$\left| \varphi(t) - \psi(t) \right| \le \int_{\tau}^{t} \left| f(s, \varphi(s)) - f(s, \psi(s)) \right| |ds|$$

$$\le K \int_{\tau}^{t} \left| \varphi(s) - \psi(s) \right| ds$$

Pela desigualdade de Gronwall temos $|\varphi(t) - \psi(t)| \le 0$ para $\tau \le t < \tau + \epsilon$. Logo $\varphi(t) = \psi(t)$ em $[\tau, \tau + \epsilon]$.

Para mostrar que $\varphi(t) = \psi(t)$ em $|\tau - \epsilon, \tau|$ definimos

$$\widetilde{\varphi}(t) = \varphi(2\tau - t)$$

$$\widetilde{\psi}(t) = \psi(2\tau - t)$$

$$\widetilde{f}(t, x) = -f(2\tau - t, x).$$

Temos \widetilde{f} é contínua e localmente Lipschitz.

$$\widetilde{\varphi}'(t) = \varphi'(2\tau - t)(-1)$$

$$= -f(2\tau - t, \varphi(2\tau - t))$$

$$= \widetilde{f}(t, \widetilde{\varphi}(t))$$

$$\widetilde{\psi}'(t) = \psi'(2\tau - t)(-1)$$

$$= -f(2\tau - t, \psi(2\tau - t))$$

$$= \widetilde{f}(t, \widetilde{\psi}(t))$$

$$\widetilde{\varphi}(\tau) = \varphi(\tau) = \xi$$

$$\widetilde{\psi}(\tau) = \psi(t) = \xi.$$

Logo $\widetilde{\phi}(t)=\widetilde{\psi}(t)$ para $\tau \leq t < \tau + \epsilon$, ou seja para $0 \leq \delta < \epsilon$ temos

$$\varphi(\tau - \delta) = \widetilde{\varphi}(\tau + \delta) = \widetilde{\psi}(\tau + \delta) = \psi(\tau - \delta).$$

Obtemos que $\varphi(t) = \psi(t)$ para $\tau - \epsilon < t < \tau + \epsilon$.

3.3.4 Prolongamento de soluções a intervalos máximos

O teorema de Picard-Lindelöf §3.3.2 Teorema 3.3.5 garante que o problema de valor inicial existe localmente. Além disso Teorema 3.3.7 implica num intervalo de τ a solução é única. Agora vamos estudar soluções globais.

3.3.8 Definição. Seja

$$x' = f(t, x), \quad x(\tau) = \xi \tag{3.8}$$

um problema de valor inicial, e seja $\varphi(t)$ uma soluções definida num intervalo aberto I=]a,b[,

 $a < \tau < b$. Dizemos que $\hat{\varphi}$ é um *prolongamento* de φ quando $\hat{\varphi}$ é uma solução de (3.8) definida num intervalo $\hat{I} \supset I$ e $\varphi = \hat{\varphi}|_{I}$.

3.3.1 Nota. Recordamos se $\emptyset \neq I =]a,b[$ e \hat{I} é um intervalo tal que $I \subset \hat{I}$ então $\hat{I} =]\alpha,\beta[$ com $\alpha \leq a < b \leq \beta$.

3.3.9 Lema. Seja f(t,x) uma função contínua e localmente Lipschitz numa região $D \subset \mathbb{R}^2$ e seja $\Phi = \{\varphi_\alpha\}$, com $\alpha \in A \neq \emptyset$, um conjunto de soluções do pvi

$$x' = f(t, x), \quad x(\tau) = \xi;$$

onde φ_{α} é definida no intervalo I_{α} . Se para $\alpha, \beta \in A$ tem-se

$$\varphi_{\alpha}(t) = \varphi_{\beta}(t) \quad \forall t \in I_{\alpha} \cap I_{\beta},$$

então exite uma solução única φ definida em $I = \bigcup_{\alpha} I_{\alpha}$ tal que φ é um prolongamento de φ_{α} para cada $\alpha \in A$.

Demonstração. Seja $I = \bigcup_{\alpha} I_{\alpha}$. Se $I_{\alpha} =]a_{\alpha}, b_{\alpha}[$, então I =]a,b[com $a = \inf_{\alpha} \{a_{\alpha}\}$ e $b = \sup_{\alpha} \{b_{\alpha}\}$. Definimos $\varphi \colon I \to \mathbb{R}$ na forma seguinte. Para cada $t \in I$ existe $\alpha \in A$ com $t \in I_{\alpha}$. Definimos $\varphi(t) = \varphi_{\alpha}(t)$. Notamos que se $t \in I_{\alpha} \cap I_{\beta}$, e portanto $\varphi_{\alpha}(t) = \varphi_{\beta}(t)$. Obtemos que φ é bem definida.

Para ver que φ é uma solução, notamos que para qualquer $t \in I$, existe $\alpha \in A$ com $t \in I_{\alpha}$. Portanto $[\tau, t] \subset I_{\alpha}$ e $\varphi|_{I_{\alpha}} = \varphi_{\alpha}$. Logo φ é uma solução. Pelo Teorema 3.3.7 a função φ é única.

- **3.3.2 Nota.** Notamos que se o conjunto Φ de Lema 3.3.9 é o conjunto de todas as soluções do PVI, então qualquer solução é a restrição da solução dada pelo lema.
- **3.3.10 Exemplo.** Consideremos a equação diferencial

$$x' = \frac{1 - x^2}{(1 - t)x}.$$

O domínio da função $f(t,x) = (1-x^2)/((1-t)x)$ é

$$D = \{(t, x) \in \mathbb{R}^2 : t \neq 1 \text{ ou } x \neq 0\}.$$

Vamos ver mais tarde que temos uma família de soluções definidas implicitamente por

$$1 = x^2 + K(1 - t)^2.$$

Por exemplo, dado a condição inicial $x(0) = \xi > 0$, temos

$$x = \sqrt{1 + (\xi^2 - 1)(1 - t)^2}$$

No caso que $\xi > 1$ temos duas soluções

$$\varphi_1(t) = \sqrt{1 + (\xi^2 - 1)(1 - t)^2}$$

$$\varphi_2(t) = \begin{cases} \sqrt{1 + (\xi^2 - 1)(1 - t)^2}, & t \le 1; \\ 1, & t > 1. \end{cases}$$

ambos definidas para $t \in \mathbb{R}$ e

$$\{t \in \mathbb{R} : \varphi_1(t) = \varphi_2(t)\} =]-\infty, 1] \neq \mathbb{R}.$$

Temos também

$$\lim_{t\to 1} f(t,\varphi_i(t)) = 0, \quad \text{para } i = 0, 1.$$

O seguinte lema é uma generalização deste exemplo.

3.3.11 Lema. Seja f(t,x) uma função contínua em $D \subset \mathbb{R}^2$.

i) Se φ é uma solução definida em a,b do PVI (3.8) e se

$$\{(t,\varphi(t)): a < t < b\} \subset C \subset D,$$

com C fechado e limitado, então φ pode ser prolongada a uma solução definida em [a,b].

ii) Se φ é uma solução definida em [a,b] do PVI (3.8), e se ψ é uma função definida em [b,c] tal que $\psi' = f(t,\psi)$ e $\varphi(b) = \psi(b)$, então

$$u(t) = \begin{cases} \varphi(t), & a \le t \le b; \\ \psi(t), & b < t \le c; \end{cases}$$

é uma solução do pvi (3.8) definida em [a,c].

Demonstração. (i) O conjunto C é fechado e limitado, e f é contínua em C. Portanto |f| é limitado em C. Seja M > 0 tal que $|f| \le M$ em C. Temos $|\varphi'| \le M$, e portanto φ é contínua uniformemente em]a,b[. Logo

$$\alpha = \lim_{t \to a^+} \varphi(t), \qquad \beta = \lim_{t \to b^-} \varphi(t)$$

existem. Definimos $\varphi(a) = \alpha$ e $\varphi(b) = \beta$. A função $f(t, \varphi(t))$ é contínua em [a, b] e

$$\varphi(t) = \xi + \int_{\tau}^{t} f(s, \varphi(s)) ds, \quad a < t < b.$$

Os limites quando $t \to a^+$ e $t \to b^-$ ambos existem e temos as derivadas de φ em [a,b].

(ii) Como a derivada à direita e à esquerda da função u no ponto b existem e ambos são igual a

 $f(b,\varphi(b))$, segue-se que u é uma solução.

3.3.12 Teorema. Seja f(t,x) uma função contínua em $D \subset \mathbb{R}^2$ e localmente Lipschitz. Para $(\tau,\xi) \in D$ o problema de valor inicial

$$x' = f(t, x), \quad x(\tau) = \xi;$$

tem uma solução que pode ser prolongada a um intervalo máximo]a,b[com $-\infty \le a < \tau < b \le +\infty$ de tal maneira que quando $t \to a$ ou $t \to b$ se tem, ou

- i) $\left\| \left(t, x(t) \right) \right\| \to \infty;$
- ii) (t, x(t)) tende para a fronteira de D.

3.3.3 Nota. Notamos que nos casos que a ou b são finitos e quando $t \to a$ ou $t \to b$ se tem $|x(t)| \to \infty$ dizemos que a solução explode.

Por exemplo, a solução do problema

$$x' = x^2$$
, $x(-1) = 1$;

é x = -1/t. O domínio D da função $f(t,x) = x^2$ é $D = \mathbb{R}^2$, e o intervalo máximo da solução é $]-\infty,0[$. A solução explode quando $t \to 0^-$.

3.3.5 Dependência das Condições Iniciais

A solução de x' = f(t, x), $x(\tau) = \xi$ depende continuamente do ponto (τ, ξ) . Por exemplo, a solução da equação linear

$$x' = 2tx, \quad x(\tau) = \xi$$

é $x = \xi e^{t^2 - \tau^2}$ é uma função contínua em t, τ e ξ .

O teorema seguinte dizemos que se $\varphi(t)$ e $\psi(t)$ são soluções de x' = f(t,x) e $|\varphi(\tau) - \psi(\tau)|$ é pequeno, então num intervalo de τ a variação do valor $|\varphi(t) - \psi(t)|$ ainda é pequeno.

3.3.13 Teorema. Seja f(t,x) uma função contínua e localmente Lipschitz numa região $D \subset \mathbb{R}^2$. Se $\varphi_1(t)$ é a solução de x' = f(t,x) que satisfaz $x(\tau_1) = \xi_1$ e $\varphi_2(t)$ é a solução que satisfaz $x(\tau_2) = \xi_2$ e ambos função estão num intervalo I = [a,b] com $\tau_1, \tau_2 \in I$, então para cada $\epsilon > 0$ existe $\delta > 0$ com a propriedade

$$|\tau_1 - \tau_2| < \delta \text{ e } |\xi_1 - \xi_2| < \delta \implies |\varphi_1(t) - \varphi_2(t)| < \epsilon \quad \text{ para cada } t \in I.$$

Demonstração. Temos

$$\varphi_{1}(t) - \varphi_{2}(t) = \xi_{1} - \xi_{2} + \int_{\tau_{1}}^{\tau_{2}} f(s, \varphi_{1}(s)) ds + \int_{\tau_{2}}^{t} [f(s, \varphi_{1}(s)) - f(s, \varphi_{2}(s))] ds
|\varphi_{1}(t) - \varphi_{2}(t)| \leq |\xi_{1} - \xi_{2}| + \left| \int_{\tau_{1}}^{\tau_{2}} f(s, \varphi_{1}(s)) ds \right| + \left| \int_{\tau_{2}}^{t} [f(s, \varphi_{1}(s)) - f(s, \varphi_{2}(s))] ds \right|
\leq |\xi_{1} - \xi_{2}| + M|\tau_{1} - \tau_{2}| + K \int_{\tau_{2}}^{t} |\varphi_{1}(s) - \varphi_{2}(s)| |ds|$$

para $|\tau_1 - \tau_2| < \delta$ e $|\xi_1 - \xi_2| < \delta$, então

$$\leq (M+1)\delta + \int_{\tau_2}^t |\varphi_1(s) - \varphi_2(s)| ds$$
, para $\tau_2 \leq t$.

Pelo Lemma 3.3.6 temos

$$|\varphi_1(t) - \varphi_2(t)| \le (M+1)\delta \exp\left[\int_{\tau_2}^t K ds\right] = (M+1)\delta \exp\left[K(t-\tau_2)\right].$$

Como $t - \tau_2 < b - a$ obtemos

$$|\varphi_1(t) - \varphi_2(t)| < (M+1)\delta e^{K(b-a)}.$$

Dado $\epsilon > 0$ podemos escolher $0 < \delta < \epsilon e^{-K(b-a)}/(M+1)$ para obter

$$|\varphi_1(t) - \varphi_2(t)| < \epsilon.$$

3.3.6 Comparação de Soluções

Há muitas equações diferenciais que não conseguimos resolver explicitamente. Por exemplo,

$$x' = t^2 + x^2, \quad x(0) = 1.$$
 (3.9)

Mas podemos obter informação qualitativa relevante sobre soluções por uma comparação a uma solução de uma equação mais simples. No caso da equação acima temos

$$0 \le x^2 \le t^2 + x^2.$$

A solução da equação $x' = x^2$, x(0) = 1 é

$$\varphi(t) = \frac{1}{1-t}.$$

Sendo x(t) a solução de equação (3.9), o estudo de declive implica que para $0 \le t$ temos

$$\frac{1}{1-t} \le x(t),$$

e portanto a solução x(t) explode.

3.3.14 Lema. Se $\varphi(t)$ é uma função de classe C^1 e satisfaz a designaldade

$$\varphi'(t) \le K\varphi(t), \quad a \le t \le b,$$

onde K é uma constante, então

$$\varphi(t) \le \varphi(a)e^{K(t-a)}, \quad a \le t \le b.$$

Demonstração. Temos

$$0 \ge \varphi'(t) - K\varphi(t)$$

$$0 \ge e^{-Kt} \Big(\varphi'(t) - K\varphi(t) \Big) = \frac{d}{dt} \Big(e^{-Kt} \varphi(t) \Big)$$

$$0 \ge \int_a^t \frac{d}{ds} \Big(e^{-Ks} \varphi(s) \Big) ds = e^{-Kt} \varphi(t) - e^{-Ka} \varphi(a)$$

$$\varphi(a) e^{K(t-a)} \ge \varphi(t).$$

3.3.15 Lema. Seja f(t,x) uma função contínua e localmente Lipschitz. Se $\gamma(t)$ é uma solução de x'=f(t,x) para $t\geq a$ e $\varphi(t)$ é uma função de classe C^1 que satisfaz

$$\varphi'(t) \le f(t, \varphi(t)), \quad t \ge a;$$

e $\varphi(a) = \gamma(a)$, então $\varphi(t) \le \gamma(t)$ para $t \ge a$.

Demonstração. Se existe $t_1 > a$ tal que $\varphi(t_1) > \gamma(t_1)$, então

$$t_0 = \max\{t : a \le t \le t_1 \in \varphi(t) \le \gamma(t)\}$$

existe e $\varphi(t_0) = \gamma(t_0)$. Seja $\sigma(t) = \varphi(t) - \gamma(t)$. Temos $\sigma(t_0) = 0$, $\sigma(t) \ge 0$ para $t_0 \le t \le t_1$ e

$$\sigma'(t) = \varphi'(t) - \gamma'(t) \le f(t, \varphi(t)) - f(t, \gamma(t)) \le K(\varphi(t) - \gamma(t)) = K\sigma(t)$$

Pelo Lemma 3.3.14 temos $\sigma(t) \leq \sigma(t_0)e^{K(t-t_0)} = 0$ para $t_0 \leq t \leq t_1$. Mas este contradiz que $\gamma(t_1) > \varphi(t_1)$. Portanto $\varphi(t) \leq \gamma(t)$.

3.3.16 Teorema. Seja f(t,x) e g(t,x) funções contínuas em $D\subset\mathbb{R}^2$ e localmente Lipschitz. Se

 $\varphi(t)$ e $\psi(t)$ são funções de classe C^1 em [a,b], $\varphi(a) = \psi(a)$,

$$\varphi(t) = f(t, \varphi(t)) \quad \psi(t) = g(t, \psi(t))$$

e $f(t,x) \le g(t,x)$, então $\varphi(t) \le \psi(t)$ para $a \le t \le b$.

Demonstração. Como $\varphi(t) = f(t, \varphi(t)) \le g(t, \varphi(t))$, pelo Lemma 3.3.15 temos $\varphi(t) \le \psi(t)$ para $a \le t \le b$.

Recordamos equação (3.9)

$$x' = t^2 + x^2$$
, $x(0) = 1$.

Usamos a desigualdade $x^2 \le t^2 + x^2$ para concluir que a solução $x = \varphi(t)$, que existe pelo Teorema de Picard-Lindelöf 3.3.5, é limitada, pelo menos para $t \ge 0$ pela função $\psi(t) = 1/(1-t)$ que é a solução do problema $x' = x^2$, x(0) = 1. Portanto a solução $\varphi(t)$ explode e o domínio de $\varphi(t)$ é limitado por t < 1. Assim, podemos aplicar a desigualdade

$$t^2 + x^2 \le 1 + x^2$$
, $0 \le t \le 1$

no estudo da equação (3.9). Consideramos agora o problema

$$x' = 1 + x^2$$
, $x(0) = 1$.

Escrevendo

$$\frac{x'}{1+x^2} = 1$$

$$\int_0^t \left(\frac{x'(s)}{1+x^2(s)}\right) ds = \int_0^t ds$$

$$\int_0^t \frac{d}{ds} (\arctan x) ds = t$$

$$\arctan(x(t)) - \arctan(1) = t$$

$$x(t) = tg\left(t + \frac{\pi}{4}\right)$$

podemos concluir

$$\frac{1}{1-t} \le x(t) \le \operatorname{tg}\left(t + \frac{\pi}{4}\right), \quad 0 \le t,$$

e portanto a solução explode quando t tende ao valor $a \in \mathbb{R}$ com $\frac{\pi}{4} < a < 1$.

O teorema seguinte compara soluções para $t \le a$.

3.3.17 Teorema. Seja f(t,x) e g(t,x) funções contínuas e localmente Lipschitz numa região $D \subset \mathbb{R}^2$. Se $\varphi(t)$ é uma solução de x' = f(t,x), $\psi(t)$ é uma solução de x' = g(t,x), ambos definida

num intervalo que contem $a \in \mathbb{R}$, $\varphi(a) = \psi(a)$ e

$$f(t,x) \ge g(t,x),$$

então

$$\varphi(t) \le \psi(t)$$
, para $t \le a$.

Demonstração. Sejam

$$\begin{split} \tilde{f}(t,x) &= -f(2a-t,x), \\ \tilde{g}(t,x) &= -g(2a-t,x), \\ \tilde{\varphi}(t) &= \varphi(2a-t), \\ \tilde{\psi}(t) &= \psi(2a-t). \end{split}$$

Temos $\tilde{\varphi}(a) = \varphi(a) = \psi(a) = \tilde{\psi}(a)$ e

$$\tilde{\varphi}(t) = -\varphi'(2a - t) = -f(t, \varphi(2a - t)) = \tilde{f}(t, \tilde{\varphi}(t))$$

$$\tilde{\psi}(t) = -\psi'(2a - t) = -g(t, \psi(2a - t)) = \tilde{g}(t, \tilde{\psi}(t))$$

Como $\tilde{f}(t,x) \leq \tilde{g}(t,x)$, obtemos pelo Teorema 3.3.16 que $\tilde{\phi}(t) \leq \tilde{\psi}(t)$ para $t \geq a$. Para $\epsilon \geq 0$, obtemos

$$\varphi(a - \epsilon) = \varphi(2a - (a + \epsilon)) = \tilde{\varphi}(a + \epsilon)$$

$$\leq \tilde{\psi}(a + \epsilon) = \psi(2a - (a + \epsilon))$$

$$\leq \psi(a - \epsilon).$$

Como $-1 \le t \le 1$ implica que $x^2 \le t^2 + x^2 \le 1 + x^2$ obtemos que a solução do problema (3.9) satisfaz

$$\frac{1}{1-t} \le x(t) \le \operatorname{tg}\left(t + \frac{\pi}{4}\right), \quad t \ge 0$$

e

$$\frac{1}{1-t} \ge x(t) \ge \operatorname{tg}\left(t + \frac{\pi}{4}\right), \quad t \le 0.$$

3.3.7 Campos de Direções

Consideramos o problema de valor inicial

$$x' = f(t, x), \quad x(0) = \xi,$$
 (3.10)

onde f(t,x) é uma função contínua em \mathbb{R}^2 e localmente Lipschitz na variável x. Se φ é a solução definida num intervalo I, podemos representá-la pela gráfica $t\mapsto (t,\varphi(t))$. Notamos que o declive da

tangente ao gráfica no ponto $(t, \varphi(t))$ é

50

$$\varphi'(t) = f(t, \varphi(t)),$$

e portanto podemos concluir que uma curva $t\mapsto \left(t,\psi(t)\right)$, de classe C^1 , é uma solução da equação x'=f(t,x) se e só se é tangente em cada ponto à reta com declive $f\left(t,\psi(t)\right)$ que passa por esse ponto.

Por exemplo, o campo de direções de $f(t,x) = t^2 + x^2$ é

3.4 Equações Separáveis

3.4.1 Definição. Uma equação diferencial

$$x' = f(t, x)$$

chama-se separável se f(t,x) = g(t)/h(x).

Para uma equação separável $x^\prime=g(t)/h(x)$ podemos escrevê-la na forma

$$h(x)x' = g(t).$$

Recordamos que a derivada da função composta

$$\frac{d}{dt}H(x(t)) = H'(x(t)) \cdot x'(t).$$

Portanto se H(t) é uma primitiva da função h(t) e τ é um ponto no domínio de h(t), então

$$\int_{\tau}^{t} h(x(s)) \cdot x'(s) ds = \int_{\tau}^{t} g(s) dt$$

$$H(x(t)) - H(x(\tau)) = \int_{\tau}^{t} g(s) ds$$
(3.11)

é uma solução implicitamente definida.

Recordamos o teorema da função implícita.

3.4.2 Teorema. Se F(t,x) é uma função de classe C^1 numa região $D \subset \mathbb{R}^2$ e se $(\tau,\xi) \in D$ é uma ponto onde

$$\frac{\partial F}{\partial x}(\tau,\xi) \neq 0,$$

então existe um intervalo aberto I que contém τ , uma função $\varphi\colon I\to\mathbb{R}$ de classe C^1 e uma vizinhança aberta U de (τ,ξ) tais que

$$\{(t,x)\in U\cap D: F(t,x)=F(\tau,\xi)\}=\{(t,\varphi(t)): t\in I\}.$$

O teorema diz que se a derivada parcial $\partial F/\partial x$ é não nula num ponto (τ,ξ) , então localmente o conjunto

$$\{(t,x): F(t,x) = F(\tau,\xi)\}$$

é o gráfico de uma função. Consideramos agora equação (3.11). Sendo

$$F(t,x) = H(x) - \int_{\tau}^{t} g(s) \, ds$$

temos

$$\frac{\partial}{\partial x}F(t,x)\Big|_{(\tau,\xi)} = H'(\xi) = h(\xi)$$

como f(t,x) = g(t)/h(x) é contínua em (τ,ξ) segue-se que $h(\xi) \neq 0$. Portanto existe um intervalo I que contém τ e uma função $\varphi \colon I \to \mathbb{R}$ tal

$$H(\varphi(t)) - H(\varphi(\tau)) = \int_{\tau}^{t} g(s) ds.$$

Logo

$$\frac{d\varphi}{dt} = \frac{g(t)}{h(t)} = f(t, x)$$

e φ é uma solução.

3.4.3 Exemplo. Voltemos ao exemplo 3.3.10. A equação diferencial separável

$$x' = \frac{1 - x^2}{(1 - t)x}.$$

Temos

$$\frac{x}{1-x^2} \cdot x' = \frac{1}{1-t}$$

$$\int_{\tau}^{t} \frac{x}{1-x^2} \cdot \frac{dx}{ds} ds = \int_{\tau}^{t} \frac{1}{1-s} ds$$

$$\frac{1}{2} \left(\log|1-x^2(t)| - \log|1-x^2(\tau)| \right) = \log|1-t| - \log|1-\tau|$$

$$\frac{1}{2} \log|1-x^2| = \log|1-t| + C$$

$$1-x^2 = K(1-t)^2$$

$$1 = x^2 + K(1-t)^2$$

O gráfico dos campos de direções de $\frac{1-x^2}{(1-t)x}$ é

Para K > 0 temos uma família de elipses, para K < 0 uma família de hipérboles e para K = 0 temos soluções constantes $x = \pm 1$.

No exemplo seguinte a equação não é separável, mas com uma mudança de variável podemos obter uma equação separável.

3.4.4 Exemplo.

$$x' = \frac{2xt + x^2}{t^2}, \quad x(1) = 1.$$

Sendo ty = x obtemos ty' + y = x'. Quando t = 1 temos y = 1. Logo

$$ty' + y = \frac{2yt^2 + y^2t^2}{t^2}$$
$$= 2y + y^2$$
$$y't = y + y^2$$
$$\frac{y}{y(1+y^2)} = \frac{1}{t}$$
$$\left(\frac{1}{y} - \frac{1}{1+y}\right)y' = \frac{1}{t}$$

integrando ambos lados e aplicando a condição inicial obtemos

$$\log \frac{y}{1+y} - \log \frac{1}{2} = \log t - \log 1$$

$$\log \frac{y}{1+y} = \log \frac{1}{2} + \log t$$

$$\frac{y}{1+y} = \frac{t}{2}$$

$$y = \frac{t}{2-t} = \frac{x}{t}$$

$$x = \frac{t^2}{2-t}$$

Para estudar a solução geral da equação do Exemplo 3.4.4 vamos supor que a condição inicial é $x(-1) = \xi$. Usando a mudança da variável y = x/t obtemos $y(-1) = -\xi$. Notamos para $\xi = 0$ ou 1 temos soluções constantes y(t) = 0 or -1 respetivamente. Logo x(t) = 0 or -t. Se $\xi \neq 0, 1$, então

$$\log \left| \frac{y}{1+y} \right| - \log \left| \frac{-\xi}{1-\xi} \right| = \log|t| - \log|-1|$$

$$\log \left| \frac{y}{1+y} \right| = \log \left| \frac{-\xi}{1-\xi} \right| + \log|t|$$

$$\frac{y}{1+y} = \frac{\xi}{1-\xi}t$$

$$y = \frac{\xi t}{1-\xi(1+t)}$$

$$x = \frac{\xi t^2}{1-\xi(1+t)}$$

Para $\xi < 0$ a função $x(t) = \frac{\xi t^2}{1 - \xi(1 + t)}$ está definida em $]-\xi^{-1} - 1, +\infty[$ e $\lim_{t \to 0} x(t) = 0, \quad \lim_{t \to 0} x'(t) = 0,$

e para $0 < \xi < 1$ a função $x(t) = \frac{\xi t^2}{1 - \xi(1+t)}$ está definida em $]-\infty, -\xi^{-1} - 1[$ e

$$\lim_{t \to 0} x(t) = 0, \quad \lim_{t \to 0} x'(t) = 0,$$

Portanto a solução dada em Exemplo 3.4.4 pode ser prolongada a intervalos máximos da forma $]2, -\infty[$ (com 0 < x(-1) < 1) ou da forma $]2, -x(-1)^{-1} - 1[$ (com x(-1) < 0).

O gráfico dos campos de direções de $2\frac{x}{t} + \left(\frac{x}{t}\right)^2$ é

Notamos que a função $f(t,x) = \frac{2xt + t^2}{t^2}$ tem a propriedade que para um parâmetro λ temos

$$f(\lambda \cdot t, \lambda \cdot x) = f(t, x),$$

e portanto

$$f(t,x) = f(1,x/t) = 2\frac{x}{t} + \left(\frac{x}{t}\right)^2$$

3.4.5 Definição. Uma função f(t,x) chama-se *homogénea* se

$$f(t,x) = f(\lambda \cdot t, \lambda \cdot x),$$

onde λ é uma parâmetro real.

Se

$$x' = f(t, x), \quad x(\tau) = \xi e \tau \neq 0$$
 (3.12)

é um problema de valor inicial e f é uma função homogénea contínua, então a substituição y = x/t transforma equação (3.12) à equação

$$ty' + y = f(1,y)$$

$$\frac{y'}{f(1,y) - y} = \frac{1}{t}$$

$$\int_{\tau}^{t} \frac{y'}{f(1,y) - y} ds = \log \left| \frac{t}{\tau} \right|$$

Para $y(\tau) = \xi/\tau$, obtemos a solução implícita

$$\int_{\xi/\tau}^{y} \frac{du}{f(1,u) - u} = \log \left| \frac{t}{\tau} \right|.$$

3.5 Equações Exatas

Consideremos uma equação diferencial da forma

$$M(t,x) + N(t,x)\frac{dx}{dt} = 0. ag{3.13}$$

3.5.1 Definição. Dizemos que a equação (3.13) é *exata* se existe uma função $\varphi(t,x)$ tal que

$$\frac{\partial \varphi}{\partial t} = M(t, x), \qquad \frac{\partial \varphi}{\partial x} = N(t, x).$$
 (3.14)

Se a equação (3.13) tem uma condição inicial $x(\tau) = \xi$ e as funções M(t,x) e N(t,x) são contínuas e se $N(\tau,\xi) \neq 0$, então temos uma solução implícita do pvi dada por

$$\varphi(t,x) = \varphi(\tau,\xi) \tag{3.15}$$

De fato a derivada implícita da equação $\varphi(t,x) = \varphi(\tau,\xi)$ é

$$0 = \frac{d}{dt}\varphi(t,x) = \frac{\partial \varphi}{\partial t} + \frac{\partial \varphi}{\partial x} \cdot \frac{dx}{dt} = M(t,x) + N(t,x)\frac{dx}{dt}.$$

Notamos se a equação (3.13) é exata e se φ é de classe C^2 , então

$$\frac{\partial M}{\partial x} = \frac{\partial^2 \varphi}{\partial x \partial t} = \frac{\partial^2 \varphi}{\partial t \partial x} = \frac{\partial N}{\partial t}.$$
 (3.16)

Portanto as derivadas parciais em (3.16) são necessárias, no caso que M e N são de classe C^1 , para a equação (3.13) seja exata. No caso as funções M e N são de classe C^1 em uma retângulo R e $(\tau, \xi) \in R$, a função

$$\varphi(t,x) = \int_{\varepsilon}^{x} N(\tau,s) \, ds + \int_{\tau}^{t} M(s,x) \, ds \tag{3.17}$$

tem a propriedades seguintes.

$$\frac{\partial \varphi}{\partial t} = M(t, x)$$

e

$$\frac{\partial \varphi}{\partial x} = N(\tau, x) + \int_{\tau}^{t} \frac{\partial M}{\partial x}(s, x) ds$$
$$= N(\tau, x) + \int_{\tau}^{t} \frac{\partial N}{\partial s}(s, x) ds$$
$$= N(\tau, x) + N(t, x) - N(\tau, x) = N(t, x).$$

Portanto em um retângulo uma equação é exata se e só se

$$\frac{\partial M}{\partial x} = \frac{\partial N}{\partial t}. (3.18)$$

3.5.2 Exemplo. Em $R = \{(t, x) : t, x > 0\}$ a equação

$$\frac{x}{t} + \log(x) + \left(\frac{t}{x} + \log(t)\right)x' = 0$$

é exata. Temos

$$\frac{\partial}{\partial x} \left(\frac{x}{t} + \log(x) \right) = \frac{1}{t} + \frac{1}{x}, \quad e \quad \frac{\partial}{\partial t} \left(\frac{t}{x} + \log(t) \right) = \frac{1}{x} + \frac{1}{t}.$$

E

$$\frac{\partial \varphi}{\partial t} = \frac{x}{t} + \log x$$

$$= x \log t + t \log x + f(x)$$

$$\frac{t}{x} + \log(t) = \frac{\partial}{\partial x} \left(x \log t + t \log x + f(x) \right)$$

$$= \log t + \frac{t}{x} + f'(x).$$

Logo f(x) é constante e $\varphi(t,x)=x\log t+t\log x$. A solução do PVI x(1)=1 é dada implicitamente por $\varphi(t,x)=\varphi(1,1)$ ou

$$0 = x \log t + t \log x.$$

3.5.3 Exemplo. Consideremos a equação $(xy^2+bx^2y)+(x+y)x^2y'=0$, com $b\in\mathbb{R}$. Como o domínio de xy^2+bx^2y e de $(x+y)x^2$ é \mathbb{R}^2 a equação é exata se e só se

$$\frac{\partial}{\partial y}(xy^2 + bx^2y) = \frac{\partial}{\partial x}((x+y)x^2)$$
$$2xy + bx^2 = x^2 + 2x(x+y).$$

Logo b = 3.

3.6 Redutível a exata

Se uma equação M(t,x) + N(t,x)x' = 0, com M N funções diferenciáveis em um retângulo, não é exata podemos tentar e multiplicá-la por uma função μ de tal forma que se torne exata. A função μ chama-se *fator integrante*. Temos de resolver

$$\frac{\partial}{\partial x} (\mu \cdot M) = \frac{\partial}{\partial t} (\mu \cdot N) \tag{3.19}$$

Por exemplo, $(3t^2x^2 + t) + (t^3 + 1)xx' = 0$ não é exata. De fato,

$$\frac{\partial}{\partial x}(3t^2x^2+t)=6t^2x$$
, e $\frac{\partial}{\partial t}(t^3+1)x=3t^2x$.

Mas

$$\frac{\partial}{\partial x} (\mu \cdot (3t^2x^2 + t)) = \frac{\partial}{\partial t} (\mu \cdot (t^3 + 1)x)$$

$$\mu_x \cdot (3t^2x^2 + t) + \mu \cdot 6t^2x = \mu_t \cdot (t^3 + 1)x + \mu \cdot 3t^2x$$

$$\mu \cdot 3t^2x = \mu_t \cdot (t^3 + 1)x - \mu_x \cdot (3t^2x^2 + t)$$

Temos um fator integrante $\mu(t,x) = t^3 + 1$ e

$$(t^3+1)(3t^2x^2+t)+(t^3+1)^2xx'=0$$

é exata. Para resolver o pvi x(0) = 1, temos

$$\frac{\partial \varphi}{\partial x} = (t^3 + 1)^2 x$$

$$\varphi = \frac{(t^3 + 1)^2 x^2}{2} + f(t)$$

$$(t^3 + 1)3t^2 x^2 + f'(t) = (t^3 + 1)(3t^2 x^2 + t)$$

$$\varphi(t, x) = \frac{(t^3 + 1)^2 x^2}{2} + \frac{t^5}{5} + \frac{t^2}{2}$$

$$x = \frac{\sqrt{1 - 2t^5/5 - t^2}}{t^3 + 1}.$$

3.7 Equações Diferenciais Vetoriais da Primeira Ordem

Agora vamos tratar equações diferenciais da forma

$$x' = f(t, x) \tag{3.20}$$

com $f: D \to \mathbb{R}^n$ um função contínua num aberto $D \subset \mathbb{R} \times \mathbb{R}^n$. Dizemos que f é *localmente Lipschitz* em $x = (x_1, ..., x_n)$, quando para subconjunto compacto $C \subset D$ existe uma constante K tal que

$$(t,x),(t,y) \in C \implies ||f(t,x) - f(t,y)|| \le K||x - y||.$$

Recordamos que

$$||x|| = ||(x_1, \dots, x_n)|| = \sqrt{x_1^2 + \dots + x_n^2}.$$

Para identificar funções f(t,x) que são localmente Lipschitz em x, temos o teorema seguinte de Cálculo Diferencial e Integral II. Recordamos que para uma matriz $A=(a_{ij}), m \times n$, definimos *norma euclidiana* de A por

$$||A|| = \sqrt{\sum_{i,j=1}^{m,n} a_{ij}^2}$$
 (3.21)

3.7.1 Teorema. Se $D \subset \mathbb{R}^{1+n}$ é um subconjunto aberto convexo e $f: D \to \mathbb{R}^n$ é de classe C^1 tal que ||Df(t,x)|| é limitada, então f é Lipschitz.

Para demonstrar Teorema 3.7.1 precisamos

3.7.2 Lema. Seja $D \subset \mathbb{R}^n$ é aberto convexo e seja $f: D \to \mathbb{R}^p$ uma função de classe C^1 . Sejam $x_0, x_1 \in D$. Para cada $a \in \mathbb{R}^p$ existe ξ no segemento da reta $x_0(1-t) + x_1t$, com $0 \le t \le 1$, tal que

$$\langle a, f(x_1) - f(x_0) \rangle = \langle a, Df(\xi)(x_1 - x_0) \rangle.$$

Demonstração. Seja $x_t = x_0(1-t) + x_1t$. Como D é aberto, existe $\delta > 0$ tal que $x_t \in R$ para $-\delta < t < 1 + \delta$. Dado um ponto $a \in \mathbb{R}^p$ definimos $g:]-\delta, 1 + \delta[\to \mathbb{R}$ por $g(t) = \langle a, f(x_t) \rangle$. A derivada é

$$g'(t) = \langle a, Df(x_t)(x_1 - x_0) \rangle$$

Aplicando o teorema de valor médio temos

$$g(1) - g(0) = g'(\tau)$$
$$\langle a, f(x_1) - f(x_0) \rangle = \langle a, Df(x_\tau)(x_1 - x_0) \rangle$$

Demonstração. [Teorema 3.7.1]

Pela desigualdade de Cauchy-Schwarz temos

$$\langle f(x_1) - f(x_0), Df(\xi)(x_1 - x_0) \rangle \le ||f(x_1) - f(x_0)|| \times ||Df(\xi)(x_1 - x_0)||$$

Pelo Lemma 3.7.2 temos

$$\langle f(x_1) - f(x_0), f(x_1) - f(x_0) \rangle = \langle f(x_1) - f(x_0), Df(\xi)(x_1 - x_0) \rangle,$$

e portanto

$$||f(x_1) - f(x_0)|| \le ||Df(\xi)(x_1 - x_0)||.$$

Para $A = (a_{ij})$ e $v = (v_1, ..., v_n)$ temos pela desigualdade de Cauchy-Schwarz

$$||Av||^2 = \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}v_j\right)^2 \le \sum_{i=1}^m \left(\sum_{j=1}^n a_{ij}^2 \times \sum_{k=1}^n v_k^2\right) = ||A||^2 ||v||^2.$$

Assim obtemos

$$||f(x_1) - f(x_0)|| \le \sup_{\xi \in D} ||Df(\xi)|| \cdot ||x_1 - x_0||,$$

e portanto f é Lipschitz.

Temos a seguinte generalização do Teorema 3.3.5 de existência local de soluções equações diferenciais vetoriais da primeira ordem.

3.7.3 Teorema (Teorema de Picard-Lindelöf (existência local)). Seja $D \subset \mathbb{R}^{1+n}$ uma região aberta e $f: D \to \mathbb{R}^n$ uma função contínua. Se f é localmente Lipschitz em $x = (x_1, \dots, x_n)$, então para cada ponto $(\tau, \xi) \in D$ o problema de valor inicial

$$x' = f(t, x), \quad x(\tau) = \xi$$

tem uma solução única definida num intervalo aberto I.

3.8 Sistemas de Equações Lineares de Coeficientes Constantes

3.8.1 Definição. Um sistema de equações lineares diferenciais de coeficientes constantes consiste de uma família

$$x'_1 = a_{11}x_1 + \dots + a_{1n}x_n + b_1(t)$$

 \vdots
 $x'_n = a_{n1}x_1 + \dots + a_{nn}x_n + b_n(t)$

ou seja uma equação

$$x' = A \cdot x + b(t)$$
.

Aqui $A=(a_{ij})$ é uma matriz e $b(t)=\big(b_1(t),\ldots,b_n(t)\big)$ é uma função contínua num intervalo $I\subset\mathbb{R}$.

Para um numero inteiro n > 0, designa-se por $M_{n \times n}(\mathbb{R})$ o espaço de matrizes $n \times n$ reais. Designa-se a matriz da identidade por $I \in M_{n \times n}(\mathbb{R})$.

Consideremos agora um problema de valor inicial

$$x' = Ax + b(t), \quad x(\tau) = \xi; \tag{3.22}$$

onde $A = (a_{ij}) \in M_{n \times n}(\mathbb{R})$ e $b \colon J \to \mathbb{R}^n$ é uma função contínua com J um intervalo que contém τ . Pelo Teorema 3.7.3 o PVI (3.22) tem uma solução única definida num intervalo que contém τ . Para determinar, explicitamente a solução, vamos começar com o estudo da equação homogénea

$$x' = A \cdot x. \tag{3.23}$$

A nossa primeira observação é o conjunto de soluções da equação homogénea (3.23) é um espaço vetorial real. Isto é se x(t) e y(t) são soluções, então

$$ax(t) + by(t)$$

também é uma solução.

3.8.2 Lema. Seja $A \in M_{n \times n}(\mathbb{R})$. Para cada vetor $\xi \in \mathbb{R}^n$ e cada $\tau \in \mathbb{R}$ existe uma solução única x(t) do PVI

$$x' = Ax, \quad x(\tau) = \xi$$

definida para todo os valores $t \in \mathbb{R}$.

Demonstração. Usando Teorema 3.3.5 e as iteradas de Picard obtemos a solução definida para todo os valore $t \in \mathbb{R}$. De fato temos

$$x^{(0)}(t) = \xi$$

$$x^{(1)}(t) = \xi + \int_{\tau}^{t} A\xi ds = \xi + A\xi t = (I + At)\xi$$

$$x^{(2)}(t) = \xi + \int_{\tau}^{t} A(I + At)\xi ds = \left(I + At + \frac{(At)^{2}}{2}\right)\xi$$

$$\vdots$$

$$x^{(k)}(t) = \left(\sum_{j=0}^{k} \frac{(At)^{j}}{j!}\right)\xi$$

$$\vdots$$

Mostre-se da mesma forma de Teorema 3.3.5 que a sucessão $\{x^{(k)}(t)\}$ converge

$$\lim_{k \to \infty} x^{(k)} = x(t)$$

para cada $t \in \mathbb{R}$ e $x(\tau) = \xi$.

3.8.3 Definição. Seja $A \in M_{n \times n}(\mathbb{R})$. Dizemos que uma função $X \colon \mathbb{R} \to M_{n \times n}(\mathbb{R})$ é uma *solução matricial fundamental* da equação diferencial

$$x' = Ax$$

se $X'(t) = A \cdot X(t)$ e existe $\tau \in \mathbb{R}$ tal que $\det X(\tau) \neq 0$.

Se $v_1, ..., v_n$ é uma base de \mathbb{R}^n e $\tau \in \mathbb{R}$, então pelo Lemma 3.8.2 existem soluções do PVI

$$x' = Ax, \quad x(\tau) = v_i \tag{3.24}$$

para $1 \le j \le n$. Seja X(t) a matriz cujo j-ésima coluna é a solução de (3.24). Segue-se que X(t) é uma solução matricial fundamental. No caso a base v_1, \ldots, v_n é a base canónica e_1, \ldots, e_n , $(e_1 = (1,0,\ldots,0),\ldots,e_n = (0,\ldots,0,1))$, e $\tau = 0 \in \mathbb{R}^n$, a associada solução matricial fundamental chama-se a matriz exponencial de A e escreve-se por

$$e^{At} = \exp(At)$$
.

Pelo Lemma 3.8.2 temos

$$\exp(At) = I + At + \frac{(At)^2}{2} + \frac{(At)^3}{3!} + \dots = \sum_{k=0}^{\infty} \frac{(At)^k}{k!}.$$

3.8.4 Proposição. Seja $A \in M_{n \times n}(\mathbb{R})$ e seja X(t) uma solução matricial fundamental da equação

$$x' = Ax$$
.

A função X(t) tem as propriedades seguintes:

- i) a função $t \mapsto \det X(t)$ é não nula;
- ii) $X(t+s) = X(t) \cdot X(0)^{-1} \cdot X(s);$
- iii) a solução do pvi

$$x' = Ax$$
, $x(\tau) = \xi$

e
$$x(t) = X(t)X(\tau)^{-1}\xi$$
.

iv) Se Y(t) é uma solução matricial fundamental de x' = Ax, então

$$Y(t)Y(\tau)^{-1} = X(t)X(\tau)^{-1}$$

para qualquer $\tau \in \mathbb{R}$;

v) se $B \in M_{n \times n}(\mathbb{R})$ e AB = BA, então

$$\rho^{At} \cdot \rho^{Bt} - \rho^{(A+B)t}$$

Demonstração. i) Seja X(t) uma solução matricial de x' = Ax e seja $\tau \in \mathbb{R}$ tal que det $X(\tau) \neq 0$. Se existe $\tau_1 \in \mathbb{R}$ tal que det $X(\tau_1) = 0$, então existe um vetor $\xi \neq 0$ tal que $X(\tau_1) \cdot \xi = 0 \in \mathbb{R}^n$.

Definimos

$$x(t) = X(t) \cdot \xi$$
.

Temos $x'(t) = A \cdot X(t) \cdot \xi = Ax(t)$ e $x(\tau_1) = X(\tau_1) \cdot \xi = 0$. Pela unicidade de soluções dos problemas de valor inicial segue-se x(t) = 0 para cada $t \in \mathbb{R}$. Mas $\xi \neq 0$ e det $X(\tau) \neq 0$, e portanto $x(\tau) \neq 0$. Assim, det $X(t) \neq 0$ para cada $t \in \mathbb{R}$.

Para mostrar ii) notamos que $\det X(t) \neq 0$ e portanto $X(t)^{-1}$ existe para cada $t \in \mathbb{R}$. Sejam F(t) = X(t+s) e $G(t) = X(t) \cdot X(0)^{-1} \cdot X(s)$. Temos

$$\frac{d}{dt}F(t) = A \cdot X(t+s) = A \cdot F(t)$$

$$\frac{d}{dt}G(t) = AX(t) \cdot X(0)^{-1} \cdot X(s) = A \cdot G(t).$$

Sendo t = 0 obtemos

$$F(0) = X(s) = X(0) \cdot X(0)^{-1} \cdot X(s) = G(0).$$

Pela unicidade de soluções temos $X(t + s) = X(t) \cdot X(0)^{-1} \cdot X(s)$.

Para mostrar iii) notamos

$$x'(t) = \frac{d}{dt}X(t)X(\tau)^{-1}\xi = AX(t)X(\tau)^{-1}\xi = A \cdot x(t)$$

e
$$x(\tau) = X(\tau)X(\tau)^{-1}\xi = \xi$$
.

Para mostrar iv) notamos que

$$\frac{d}{dt}Y(t)Y(\tau)^{-1} = AY(t)Y(\tau)^{-1}$$
$$\frac{d}{dt}X(t)X(\tau)^{-1} = AX(t)X(\tau)^{-1}$$
$$Y(\tau)Y(\tau)^{-1} = I = X(\tau)X(\tau)^{-1}.$$

Para mostrar (v) notamos que se AB = BA então

$$B\sum_{j=0}^{k} \frac{(At)^{j}}{j!} = \sum_{j=0}^{k} \frac{B(At)^{j}}{j!} = \sum_{j=0}^{k} \frac{(At)^{k}B}{j!} = \left(\sum_{j=0}^{k} \frac{(At)^{j}}{j!}\right)B.$$

Portanto

$$B\exp(At) = \exp(At)B$$
.

Logo

$$\frac{d}{dt}\exp(At)\cdot\exp(Bt) = A\exp(At)\cdot\exp(Bt) + \exp(At)B\exp(Bt)$$
$$= (A+B)\exp(At)\cdot\exp(Bt)$$
$$\frac{d}{dt}\exp((A+B)t) = (A+B)\exp((A+B)t).$$

Obtemos que $\exp(At) \cdot \exp(Bt)$ e $\exp((A+B)t)$.

3.8.1 Nota. Seja $A \in M_{n \times n}(\mathbb{R})$. Para qualquer $\xi \in \mathbb{R}^n$ e qualquer $\tau \in \mathbb{R}$ a função

$$x(t) = e^{A(t-\tau)}\xi$$

é a solução do PVI x' = Ax, $x(\tau) = \xi$. Como as colunas da matriz $e^{a(t-\tau)}$ são soluções linearmente independentes e $e^{A(t-\tau)}\xi$ é uma combinção linear das colunas da matriz $e^{A(t-\tau)}$, segue-se que o espção da soluções é um espaço vetorial real de dimensão n.

Para determinar e^{At} , recordamos que um vetor v chama-se vetor próprio de A se $v \neq 0$ e existe um numero real (ou complexo) λ tal que

$$A \cdot v = \lambda \cdot v$$
.

Notamos no caso $\lambda \in \mathbb{R}$ a função $x(t) = e^{\lambda t}v$ é uma solução de (3.23). De fato temos

$$\frac{d}{dt}x(t) = \lambda x(t)$$

$$A \cdot x(t) = e^{\lambda t} A \cdot v = e^{\lambda t} \lambda \cdot v$$

$$= \lambda x(t).$$

Logo $e^{At}v = e^{\lambda t}v$. Portanto se x_1, \dots, x_n é uma base de vetores próprias então a matriz X(t) cujo colunas são $e^{\lambda_k}x_k$ é uma solução matricial fundamental e

$$e^{At} = X(t) \cdot X(0)^{-1}.$$

Notamos que existe uma base de vetores próprio se e só se A é diagonalizável. Para tratar casos de matrizes que não estão diagonalizáveis recordamos que $v \in \mathbb{R}^n$ chama-se um *vetor próprio generalizado* se $v \neq 0$ e

$$(A - \lambda I)^k v = 0$$

para algum inteiro k > 0. Se $(A - \lambda I)^{k+1}v = 0$, então

$$\begin{aligned} e^{At}v &= e^{\lambda t}e^{(A-\lambda I)t}v \\ &= e^{\lambda t}\sum_{j=0}^{\infty}(A-\lambda I)^{j}v\frac{t^{j}}{j!} \\ &= e^{\lambda t}\bigg(v + (A-\lambda I)vt + \dots + (A-\lambda I)^{k}v\frac{t^{k}}{k!}\bigg) \end{aligned}$$

Temos o seguinte resultado de Álgebra Linear:

- i) Se $A \in M_{n \times n}(\mathbb{R})$ e cada valor próprio de A é real, então existe uma base $x_1, ..., x_n$ de \mathbb{R}^n de vetores próprio generalizados.
- ii) Se $\lambda = \alpha + i\omega$, com $\omega \neq 0$, é um valor próprio complexo e $0 \neq w \in \mathbb{C}^n$ é um vetor tal que $A \cdot w = \lambda \cdot w$, então $\overline{\lambda}$ é um valor próprio de A e $A \cdot \overline{w} = \overline{\lambda} \cdot \overline{w}$. Usando a fórmula de Euler

$$e^{i\omega} = \cos(\omega) + i \operatorname{sen}(\omega)$$

obtemos soluções da equação homogénea x' = Ax

$$e^{\lambda t}w = e^{\alpha t}(\cos(\omega t) + i\sin(\omega t))w, \qquad e^{\overline{\lambda}t}\overline{w} = e^{\alpha t}(\cos(\omega t) - i\sin(\omega t))\overline{w}.$$

Estas são soluções complexas. Sendo $w = u + iv \operatorname{com} u \operatorname{e} v$ vetores reais obtemos soluções seguintes são reais

$$e^{\alpha t} (\cos(\omega t)u - \sin(\omega t)v), \qquad e^{\alpha t} (\cos(\omega t)v + \sin(\omega t)u).$$

3.8.5 Exemplo. Seja

$$A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

O polinómio característico de A é $(\lambda^2 + 1)^2$, e portanto os valores próprios de A são i e -i. O vetor $v_1 = (0,0,1,-i)$ é um vetor próprio e $A \cdot v_1 = iv_1$. Logo temos duas soluções linearmente independentes

$$(0,0,\cos(t),\sin(t)),$$
 $(0,0,\sin(t),-\cos(t)).$

Como

$$(A - iI)^{2} = \begin{pmatrix} -2 & 2i & 0 & 0 \\ -2i & -2 & 0 & 0 \\ -2 & 2i & -2 & 2i \\ -2i & -2 & -2i & -2 \end{pmatrix}$$

e $v_2 = (1, -i, 0, 0)$ é um elemento do núcleo de $(A - iI)^2$ obtemos uma solução complexa

$$e^{it} (I + (A - iI)t) v_2 = e^{it} \begin{pmatrix} 1 \\ -i \\ it \\ t \end{pmatrix}$$

Logo

$$(\cos(t), \sin(t), -t\sin(t), t\cos(t)), \qquad (\sin(t), -\cos(t), t\cos(t), t\sin(t))$$

são duas soluções reais linearmente independentes. Segue-se que

$$e^{At} = \begin{pmatrix} 0 & 0 & \cos(t) & \sin(t) \\ 0 & 0 & \sin(t) - \cos(t) \\ \cos(t) & \sin(t) - t\sin(t) & t\cos(t) \\ \sin(t) - \cos(t) & t\cos(t) & t\sin(t) \end{pmatrix} \cdot \begin{pmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & -1 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & 0 \end{pmatrix}^{-1}$$

$$= \begin{pmatrix} \cos(t) & -\sin(t) & 0 & 0 \\ \sin(t) & \cos(t) & 0 & 0 \\ -t\sin(t) & -t\cos(t)\cos(t) - \sin(t) \\ t\cos(t) & -t\sin(t) & \sin(t) & \cos(t) \end{pmatrix}$$

3.9 Método de Variação de Constantes

Consideremos a equação seguintes

$$\mathbf{x}' = A\mathbf{x} + \mathbf{b}(t),\tag{3.25}$$

com A uma matriz $n \times n$ e **b**: $I \to \mathbb{R}^n$ uma função continua. A solução geral é da forma

$$\mathbf{x}(t) = X(t)\mathbf{v} + \mathbf{x}_n(t),\tag{3.26}$$

onde

- i) X(t) é uma solução matricial fundamental e portanto $X(t)' = A \cdot X(t)$ e $\det X(t) \neq 0$;
- ii) $\mathbf{v} \in \mathbb{R}^n$;
- iii) $\mathbf{x}_p(t)$ é uma solução particular de (3.25), i.e., $\mathbf{x}_p(t)' = A\mathbf{x}_p(t) + \mathbf{b}(t)$.

Para obter uma solução particular podemos usar o *método variação das constantes*. Isto é procurar uma solução da forma

$$\mathbf{x}_p(t) = X(t) \cdot \mathbf{u}(t).$$

Temos Xu é uma solução se e só se

$$\frac{d}{dt}(X\mathbf{u}) = AX\mathbf{u} + \mathbf{b}$$

$$X'\mathbf{u} + X\mathbf{u}' =$$

$$AX\mathbf{u} + X\mathbf{u}' = AX\mathbf{u} + \mathbf{b}$$

$$X\mathbf{u}' = \mathbf{b}$$

$$\mathbf{u}' = X^{-1}\mathbf{b}.$$

Sendo $\mathbf{u} = \int_{-\infty}^{t} X(s)^{-1} \mathbf{b}(s) ds$ uma primitiva, obtemos uma solução particular

$$\mathbf{x}_p(t) = X(t) \cdot \mathbf{u}(t).$$

3.10 O Método de coeficientes Indeterminados

Por exemplo, para resolver a equação

$$\mathbf{x}' = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix} \mathbf{x} + \mathbf{v}$$

basta determinar uma função $\mathbf{x}_p(t)$ tal que

$$\mathbf{x}_p' - A\mathbf{x}_p = \mathbf{v}.$$

Como zero não é um valor próprio da matriz

$$A = \begin{pmatrix} 0 & -1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & -1 & 0 & -1 \\ 1 & 0 & 1 & 0 \end{pmatrix}$$

a inversa A^{-1} existe e para $\mathbf{x}_p(t) = -A^{-1}\mathbf{v}$ (a função constante) temos

$$\mathbf{x}_p' - A\mathbf{x}_p = 0 - A(-A^{-1}\mathbf{v}) = \mathbf{v}.$$

Logo a solução geral é

$$\mathbf{x}(t) = e^{At}\mathbf{w} - A^{-1}\mathbf{v}, \quad \text{com } \mathbf{w} \in \mathbb{R}^4.$$

No caso temos a condição inicial $\mathbf{x}(\tau) = \boldsymbol{\xi}$, temos de resolver

$$\boldsymbol{\xi} = e^{A\tau} \mathbf{w} - A^{-1} \mathbf{v}.$$

Logo

$$\mathbf{x}(t) = e^{A(t-\tau)} \left(\boldsymbol{\xi} + A^{-1} \mathbf{v} \right) - A^{-1} \mathbf{v}.$$

4 Equações Diferenciais de Ordem Superior

4.0.1 Definição. Uma equação diferencial de ordem n escalar é uma equação da forma

$$x^{(n)} = f(t, x, x', \dots, x^{(n-1)}),$$

onde $x^{(k)}$ é derivada de ordem k e $f: D \to \mathbb{R}$ é uma função definida numa região $D \subset \mathbb{R}^{1+n}$.

Dizemos que uma função $\varphi \colon I \to \mathbb{R}$, onde $I \subset \mathbb{R}$ é um intervalo, é uma solução se todas as derivadas $x', \dots, x^{(n-1)}$ existem em I e para cada $t \in I$ temos

$$(x(t), x'(t), \dots, x^{(n-1)}(t)) \in D e x^{(n)}(t) = f(t, x(t), \dots, x^{(n-1)}(t)).$$

Sendo $y = (x, x', ..., x^{(n-1)})$, uma equação diferencial de ordem n escalar pode ser visto como uma equação diferencial da primeira ordem vetorial

$$y'_{1} = y_{2}$$

 $y'_{2} = y_{3}$
 \vdots
 $y'_{n} = f(t, y_{1}, ..., y_{n}).$

Sendo $y = (y_1, ..., y_n) = (x, x', ..., x^{(n-1)})$ e

$$y' = (y'_1, ..., y'_n) = (y_2, ..., y_n, f(t, y_1, ..., y_n)) = F(t, y)$$

o problema da valor inicial correspondente é

$$y(\tau) = (x(\tau), x'(\tau), \dots, x^{(n-1)}(\tau)).$$

Se f é contínua e se as derivadas $\partial f/\partial y_k$ são contínuas, então o Teorema 3.7.1 garante que o problema da valor inicial tem uma solução única definida num intervalo aberto que contém τ .

4.1 Equações Lineares da Segunda Ordem

Uma equação homogénea linear da segunda ordem é uma equação da forma

$$x'' + a_1(t)x' + a_2(t)x = 0, (4.1)$$

com a_1 e a_2 funções contínuas definidas num intervalo aberto $I \neq \emptyset$. Pelo estudo anterior sabemos que $\varphi(t)$ e $\varphi(t)$ são soluções, então $c_1\varphi(t) + c_2\varphi(t)$ é uma solução. Portanto, o conjunto de todas as

soluções é um espaço vetorial real. Além disso, o problema de valor inicial

$$x'' + a_1(t)x' + a_2(t)x = 0,$$
 $x(\tau) = \xi, x'(\tau) = \xi_1$

tem uma solução única definida numa vizinhança aberta de τ . Logo o espaço de soluções de (4.1) tem dimensão 2 ou seja a solução geral pode ser escrita da forma

$$x(t) = c_1 x_1(t) + c_2 x_2(t)$$

com $x_1(t)$ e $x_2(t)$ soluções linearmente independentes de (4.1).

A equação da primeira ordem associada é

$$\begin{pmatrix} x' \\ x'' \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ -a_2(t) & -a_1(t) \end{pmatrix} \cdot \begin{pmatrix} x \\ x' \end{pmatrix}.$$
 (4.2)

Se x_1 e x_2 são soluções, então

$$X(t) = \begin{pmatrix} x_1 & x_2 \\ x_1' & x_2' \end{pmatrix} \tag{4.3}$$

satisfaz X' = A(t)X e X(T), onde A(t) é a matriz em (4.2), é uma solução fundamental matricial se e só se

$$\det X(t) = x_1 x_2' - x_2 x_1 \neq 0 \text{ para cada } t.$$

Portanto x_1 e x_2 são linearmente independentes se e só se

$$x_1x_2' - x_2x_1 \neq 0.$$

A matriz em (4.3) chama-se matriz Wronskiana de x_1 e x_2 .

4.2 Redução de Ordem

Muitos vezes podemos encontrar facilmente uma solução de uma equação diferencial linear de ordem 2. Por exemplo, uma solução de

$$x'' - \frac{2t}{1 - t^2}x' + \frac{2}{1 - t^2}x = 0, (4.4)$$

é x(t) = t. De fato temos x'' = 0 e x' = 1. Portanto

$$0 - \frac{2t}{1 - t^2} \cdot 1 + \frac{2}{1 - t^2} \cdot t = 0.$$

Para determinar a solução geral de (4.4) ou seja para resolver o problema de valor inicial $x(\tau) = \xi$ e $x'(\tau) = \xi_1$, temos encontrar uma solução $x_2(t)$ tal que a matriz Wronskiana

$$\begin{pmatrix} t & x_2 \\ 1 & x_2' \end{pmatrix}$$

é não-singular.

O método seguinte que se chama *Redução de ordem* permite obter a solução geral quando temos pelo menos uma solução não nula. Consideremos uma equação geral como (4.1)

$$x'' + a_1(t)x' + a_2(t)x = 0.$$

Seja $x_1(t)$ uma solução não nula. Sendo $x_2 = u(t) \cdot x_1(t)$, temos

$$x'_{2} = u'x_{1} + ux'_{1}$$

$$x''_{2} = u''x_{1} + 2u'x'_{1} + ux''_{1}$$

$$x''_{2} + a_{1}x'_{2} + a_{2}x_{2} = u''x_{1} + 2u'x'_{1} + ux''_{1} + a_{1}(u'x_{1} + ux'_{1}) + a_{2}ux_{1}$$

$$= u(x''_{1} + a_{1}x'_{1} + a_{2}x_{1}) + u'(2x'_{1} + a_{1}x_{1}) + u''x_{1}$$

$$= u'(2x'_{1} + a_{1}x_{1}) + u''x_{1}.$$

Sendo v = u' obtemos uma equação linear de ordem 1.

$$x_1v' + (2x_1' + a_1x_1)v = 0$$

$$\frac{v'}{v} + 2\frac{x_1'}{x_1} = -a_1(t)$$

$$\frac{d}{dt}(\log|v| + 2\log|x_1|) = -a_1(t)$$

$$\log|v| + 2\log|x_1| = C - \int_0^t a_1(s) \, ds \quad C \text{ uma constante}$$

$$v = \frac{K}{x_1^2} \exp\left(-\int_0^t a_1(s) \, ds\right)$$

$$u(t) = \int_0^t v(s) \, ds$$

$$= \int_0^t \frac{K}{x_1^2(s)} \exp\left(-\int_0^s a_1(y) \, dy\right) \, ds.$$

Voltemos a equação (4.4). Sendo $x_2 = u \cdot t$ temos

$$(ut)'' - \frac{2t}{1 - t^2}(ut)' + \frac{2}{1 - t^2}tu = 0$$

$$u''t + 2u' - \frac{2t}{1 - t^2}(u't + u) + \frac{2}{1 - t^2}tu = 0$$

$$tu'' + u'\left(2 - \frac{2t^2}{1 - t^2}\right) = 0$$

$$\frac{u''}{u'} + \frac{2}{t} - \frac{2t}{1 - t^2} = 0$$

$$\log|u'| + 2\log|t| + \log|1 - t^2| = C$$

$$u' = \frac{K}{t^2(1 - t^2)}$$

Sendo K = 1 e usando a decomposição de frações simples obtemos

$$u' = \frac{1}{t^2} + \frac{1}{1 - t^2} = \frac{1}{t^2} + \frac{1}{2(1 + t)} + \frac{1}{2(1 - t)}$$
$$u = -\frac{1}{t} + \frac{1}{2}\log\left|\frac{1 + t}{1 - t}\right| + A.$$

Assim $x_2(t) = \frac{t}{2} \log \left| \frac{1+t}{1-t} \right| - 1$ e a matriz Wronskiana de $x_1(t)$ e x_2 é

$$W(x_1, x_2) = \begin{pmatrix} t & \frac{t}{2} \log \left| \frac{1+t}{1-t} \right| - 1 \\ 1 & \frac{1}{2} \log \left| \frac{1+t}{1-t} \right| + \frac{t}{1-t^2} \end{pmatrix}$$

$$\det W(x_1, x_2) = \frac{1}{1 - t^2}.$$

Logo a solução geral é

$$x(t) = C_1 t + C_2 \left(\frac{t}{2} \log \left| \frac{1+t}{1-t} \right| - 1 \right).$$

Se temos uma condição inicial $x(0)=\xi$ e $x'(0)=\xi_1$ então

$$\begin{pmatrix} \xi \\ \xi_1 \end{pmatrix} = W(x_1(0), x_2(0)) \cdot \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$
$$= \begin{pmatrix} 0 & -1 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} C_1 \\ C_2 \end{pmatrix}$$

Logo

$$x(t) = \xi t - \xi_1 \left(\frac{t}{2} \log \left| \frac{1+t}{1-t} \right| - 1 \right).$$

4.3 Variação das constantes II

A solução geral da equação não homogénea

$$x'' + a_1(t)x' + a_2(t)x = b(t)$$
(4.5)

é da forma

$$x(t) = c_1 x_1(t) + c_2 x_2(t) + x_p(t),$$

onde $x_1(t)$ e $x_2(t)$ são soluções linearmente independentes da equação homogénea e $x_p(t)$ é uma solução particular de (4.5). Sejam

$$A(t) = \begin{pmatrix} 0 & 1 \\ -a_2(t) & -a_1(t) \end{pmatrix}, \quad X(t) = \begin{pmatrix} x \\ x' \end{pmatrix}.$$

A equação (4.5) pode ser escrita na forma

$$X' = A(t) \cdot X + \begin{pmatrix} 0 \\ b(t) \end{pmatrix}.$$

A matriz Wronskiana $W(x_1, x_2)$ é uma solução matricial fundamental da equação

$$X' = A(t) \cdot X$$

ou seja $W' = A \cdot W$. Temos

$$0 = \frac{d}{dt}I$$

$$= \frac{d}{dt}(W^{-1}W)$$

$$= \frac{d}{dt}(W^{-1}) \cdot W + W^{-1}\frac{d}{dt}(W)$$

$$= \frac{d}{dt}(W^{-1}) \cdot W + W^{-1}A(t)W$$

$$\frac{d}{dt}(W^{-1}) = -W^{-1} \cdot A(t)$$

Aplicando o método de variação das constantes temos

$$\frac{d}{dt}(W^{-1}X) = -W^{-1}A \cdot X + W^{-1}X'$$

$$= W^{-1}(-A \cdot X + A \cdot X) + W^{-1} \cdot \begin{pmatrix} 0 \\ b(t) \end{pmatrix}$$

$$= W^{-1} \cdot \begin{pmatrix} 0 \\ b(t) \end{pmatrix}.$$

Como

$$W^{-1} = \frac{1}{x_1 x_2' - x_2 x_1'} \cdot \begin{pmatrix} x_2' & -x_2 \\ -x_1' & x_1 \end{pmatrix}$$

obtemos

$$\frac{d}{dt}(W^{-1}X) = \frac{1}{x_1x_2' - x_2x_1'} \cdot {\binom{-x_2}{x_1}}b(t).$$

Portanto a solução geral da equação (4.5) é

$$x(t) = c_1x_t + c_2x_2(t) + u_1(t)x_1(t) + u_2(t)x_2,$$

onde $x_1(t)$ e $x_2(t)$ são soluções linearmente independentes da equação homogénea $x'' + a_1x' + a_2x = 0$ e

$$\begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \frac{1}{x_1 x_2' - x_2 x_1'} \cdot \begin{pmatrix} -x_2 \\ x_1 \end{pmatrix} b(t).$$

4.3.1 Exemplo. Para determinar a solução geral de

$$t^2x'' - 2tx' + 2x = t, \quad t > 0.$$

Observamos que se $x=t^{\lambda}$, então $x'=\lambda t^{\lambda-1}$ e $x''=\lambda(\lambda-1)t^{\lambda-2}$. Portanto $x-t^{\lambda}$ é uma solução da equação homogénea se só se

$$\lambda(\lambda - 1)t^{\lambda} - 2\lambda t^{\lambda} + 2t^{\lambda} = 0$$

ou seja $\lambda^2 - 3\lambda + 2 = (\lambda - 2)(\lambda - 1) = 0$. Logo

$$x_1(t) = t, \quad x_2(t) = t^2$$

são duas soluções linearmente independentes. Para determinar uma solução particular, dividimos a equação por t^2 para obter

$$x'' - \frac{2}{t}x' + \frac{2}{t^2}x = \frac{1}{t}$$

temos de resolver

$$\begin{pmatrix} u_1' \\ u_2' \end{pmatrix} = \frac{1}{t^2} \begin{pmatrix} -t^2 \\ t \end{pmatrix} \frac{1}{t} = \begin{pmatrix} -1/t \\ 1/t^2 \end{pmatrix}.$$

 $(u_2') \quad t = (\iota),$ Logo $u_1 = -\log(t) + c_3$ e $u_2 = -1/t + c_4$ e a solução geral é $(1) = c_2 t + c_2 t^2 - t \log t.$

$$x(t) = c_1 t + c_2 t^2 - t \log t$$

4.4 Método dos Coeficientes Indeterminados

Designa-se por D o operador de derivação, isto é D(f) = f'. Para um polinómio $p(\lambda) = \lambda^n + a_{n-1}\lambda^{n-1} + \cdots + a_0$, onde a_0, \ldots, a_{n-1} são constantes reais, é uma função contínua b(t) definida num intervalo aberto I consideremos a equação diferencial linear de ordem n

$$p(D)x = x^{(n)} + a_{n-1}x^{(n-1)} + \dots + a_0x = b(t).$$
(4.6)

Como (4.6) é linear a solução geral é da forma

$$c_1 x_1(t) + \dots + c_n x_n(t) + x_p(t),$$
 (4.7)

onde $x_1(t), \dots, x_n(t)$ são soluções linearmente independentes da equação homogénea

$$p(D)x = 0 (4.8)$$

e $x_p(t)$ é uma solução particular de (4.6). Notamos que $x_1(t), \dots, x_n(t)$ são linearmente independentes se é só se a matriz Wronskiana

$$W(x_1,...,x_n) = \begin{pmatrix} x_1 & x_2 & \dots & x_n \\ x'_1 & x'_2 & \dots & x'_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1^{(n-1)} & x_2^{(n-1)} & \dots & x_n^{(n-1)} \end{pmatrix}$$

é não singular. Notamos que se $\{x_1(t), \dots, x_n(t)\}$ é um conjunto de soluções linearmente independentes de (4.8) então qualquer solução é da forma

$$c_1x_1(t) + \cdots + c_nx_n(t),$$

e portanto o espaço de soluções de (4.8) é um espaço linear real de dimensão n. A solução geral da equação não homogénea (4.6) é

$$c_1x_1(t) + \dots + c_nx_n(t) + u_1(t)x_1(t) + \dots + u_n(t)x_n(t),$$
 (4.9)

onde

$$\begin{pmatrix} u_1 \\ \vdots \\ u_{n-1} \\ u_n \end{pmatrix}' = W^{-1} \cdot \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b(t) \end{pmatrix}.$$

Para determinar uma base deste espaço notamos que

$$p(D)e^{at} = p(a)e^{at}. (4.10)$$

De fato temos $D^k e^{at} = a^k e^{at}$. Portanto para cada raiz ρ de $p(\lambda)$ temos uma solução $x(t) = e^{\rho t}$. Recordamos que no caso que ρ é uma raiz dupla de $p(\lambda)$ temos uma faturação

$$p(\lambda) = (\lambda - \rho)^2 q(\lambda),$$

e portanto

$$\frac{d}{d\lambda}p(\lambda)|_{\rho} = 2(\lambda - \rho)q(\lambda) + (\lambda - \rho)^{2}q'(\lambda)|_{\rho} = 0.$$

4.4.1 Definição. Seja $p(\lambda)$ um polinómio. Dizemos que ρ é uma raiz de $p(\lambda)$ de *ordem k* quando

$$0 = p(\rho) = p'(\rho) = \dots = p^{(k-1)}(\rho), \quad 0 \neq p^{(k)}(\rho).$$

Notamos que o teorema fundamental de álgebra diz-se que se $p(\lambda)$ é um polinómio de grau n com coeficientes reais, então existe números complexos ρ_1, \ldots, ρ_k e inteiros positivos m_1, \ldots, m_k tais que

$$p(\lambda) = (\lambda - \rho_1)^{m_1} \dots (\lambda - \rho_k)^{m_k}$$

e se $\rho_j = \alpha_j + i\beta_j$, $\beta_j \neq 0$, então existe uma raiz $\rho_l = \alpha_j - i\beta_j$ e $m_l = m_j$. Portanto

$$(\lambda - \rho_j)^{m_j} (\lambda - \rho_l)^{m_l} = ((\lambda - \alpha_j)^2 + \beta_j^2)^{m_j}.$$

4.4.2 Lema. Para n > 0 e G(t) uma função de classe C^n temos

$$D^{n}[G(t)e^{\alpha t}] = \left[\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} G^{(k)}(t) \alpha^{n-k}\right] e^{\alpha t}$$

Demonstração. Para n = 1 temos

$$D[G(t)e^{\alpha t}] = G'(t)e^{\alpha t} + \alpha G(t)e^{\alpha t} = [G(t) + G(t)'\alpha]e^{\alpha t}$$

Agora vamos supor que n > 1 e

$$D^{n-1}[G(t)e^{\alpha t}] = \left[\sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} G^{(k)}(t)\alpha^{n-1-k}\right] e^{\alpha t}.$$

Temos então

$$D^{n}[G(t)e^{\alpha t}] = D(D^{n-1}[G(t)e^{\alpha t}])$$

$$= D\left[\sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} G^{(k)}(t)\alpha^{n-1-k}\right] e^{\alpha t}$$

$$= \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} G^{(k+1)}(t)\alpha^{n-1-k} e^{\alpha t}$$

$$+ \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} G^{(k)}(t)\alpha^{n-k} e^{\alpha t}$$

sendo j = k + 1

$$\begin{split} &= \left[\sum_{j=1}^{n} \frac{(n-1)!}{(j-1)!(n-j)!} G^{(j)}(t) \alpha^{n-j} \right. \\ &\quad + \sum_{k=0}^{n-1} \frac{(n-1)!}{k!(n-1-k)!} G^{(k)}(t) \alpha^{n-k} \right] e^{\alpha t} \\ &= \left[G(t) \alpha^{n} \right. \\ &\quad + \sum_{j=1}^{n-1} \left(\frac{(n-1)!}{(j-1)!(n-j)!} + \frac{(n-1)!}{j!(n-1-j)!} \right) G^{(j)}(t) \alpha^{n-j} \\ &\quad + G^{(n)}(t) \right] e^{\alpha t}. \end{split}$$

Para 0 < j < n temos

$$\frac{(n-1)!}{(j-1)!(n-j)!} + \frac{(n-1)!}{j!(n-(j+1))!} = (n-1)! \frac{(j-1)!(n-j)! + j!(n-(j+1))!}{(j-1)!(n-j)!j!(n-(j+1))!}$$

$$= (n-1)! \frac{(n-j)! + j(n-(j+1))!}{(n-j)!j!(n-(j+1))!}$$

$$= (n-1)! \frac{(n-j)!j!(n-(j+1))!}{(n-j)!j!}$$

$$= \frac{n!}{(n-j)!j!}i,$$

e portanto

$$D^{n}[G(t)e^{\alpha t}] = \left[\sum_{k=0}^{n} \frac{n!}{k!(n-k)!} G^{(k)}(t)\alpha^{n-k}\right] e^{\alpha t}$$

4.4.3 Corolário. Para um polinómio $p(\lambda) = \sum_{k=0}^n a_k \lambda^n$ de grau $n \ge 0$ e uma função f(t) de classe

 C^n , tem-se

$$p(D)[f(t)e^{\alpha t}] = \left[\sum_{k=0}^{n} \frac{f^{(k)}(t) \cdot p^{(k)}(\alpha)}{k!}\right] e^{\alpha t}$$
(4.11)

Demonstração. Pelo Lema 4.4.2 temos

$$\begin{split} p(D)\left[f(t)e^{\alpha t}\right] &= \sum_{j=0}^{n} a_{j}D^{j}\left[f(t)e^{\alpha t}\right] \\ &= \sum_{j=0}^{n} a_{j} \left[\sum_{k=0}^{j} \frac{j!}{k!(j-k)!} f^{(k)}(t) \alpha^{j-k}\right] e^{\alpha t} \\ &= \sum_{k=0}^{n} f^{(k)}(t) \left[\sum_{j=k}^{n} a_{j} \frac{j!}{k!(j-k)!} \alpha^{j-k}\right] e^{\alpha t} \\ &= \sum_{k=0}^{n} f^{(k)}(t) \left[\frac{1}{k!} \sum_{j=k}^{n} a_{j} \frac{j!}{(j-k)!} \alpha^{j-k}\right] e^{\alpha t} \\ &= \left[\sum_{k=0}^{n} \frac{f^{(k)}(t) \cdot p^{(k)}(\alpha)}{k!}\right] e^{\alpha t} \end{split}$$

Seja $p(\lambda)=(\lambda-\rho_1)^{m_1}\dots(\lambda-\rho_k)^{m_k}$ Usando Corollary 4.4.3 obtemos que a solução geral de

$$p(D)x = 0$$

é

$$(c_{11} + \dots + c_{1m_1}t^{m_1-1})e^{\rho_1t} + \dots + (c_{k1} + \dots + c_{km_k}t^{m_k-1})e^{\rho_kt}.$$

No caso que $p(\lambda)$ tem raízes complexas, por exemplo $\rho_1 = \overline{\rho_2} = \alpha + i\beta$ temos

$$(c_{11} + \dots + c_{1m_1}t^{m_1-1})e^{\rho_1t} + (c_{21} + \dots + c_{2m_2}t^{m_2-1})e^{\rho_2t} = (b_{11} + \dots + b_{1m_1}t^{m_1-1})e^{\alpha t}\cos(\beta t) + (b_{21} + \dots + b_{2m_1}t^{m_1-1})e^{\alpha t}\sin(\beta t).$$

4.4.4 Exemplo. Para determinar a solução geral de x''' + x = 0 notamos que $\lambda^3 + 1 = (\lambda + 1)(\lambda^2 - \lambda + 1)$. Como as raízes de $\lambda^2 - \lambda + 1$ são $(1 \pm i\sqrt{3})/2$ a solução geral é

$$c_1e^{-t} + c_2e^{t/2}\cos(\sqrt{3}t/2) + c_3e^{t/2}\sin(\sqrt{3}t/2).$$

A solução geral (4.9) de p(D)x = b(t). Mas para obtê-la temos de calcular a inversa W^{-1} da matriz

Wronskiana e depois primitivar o produto

$$W^{-1} \cdot \begin{pmatrix} 0 \\ \vdots \\ 0 \\ b(t) \end{pmatrix}.$$

No caso que a função b(t) é uma combinação linear de funções da forma

$$q(t)e^{at}$$
, $q(t)e^{at}\cos(bt)$, $q(t)e^{at}\sin(bt)$

onde q(t) é um polinómio existe um método algébrica que se chama *coeficientes indeterminados* que produz uma solução particular. Se α não é uma raiz do polinómio $p(\lambda)$ procuramos uma solução de forma

$$g(t)e^{\alpha t} \tag{4.12}$$

onde g(t) é um polinómio do mesmo grau de f(t). Se α é uma raiz de $p(\lambda)$ de multiplicada s, então procuramos uma solução de forma

$$t^{s} \cdot g(t)e^{\alpha t} \tag{4.13}$$

onde g(t) é um polinómio do mesmo grau de f(t).

4.4.5 Exemplo. Determine a solução geral de

$$x'' + x = t\cos(2t). (4.14)$$

Considere a equação

$$x'' + x = te^{i2t}. (4.15)$$

A parte real de te^{i2t} é $t\cos 2t$ e os coeficientes da equação são reais, segue que a parte real de cada solução de (4.15) é uma solução de (4.14). Como $x'' + x = (D^2 + 1)x$ e a raízes de $\lambda^2 + 1$ são i e -i, a solução geral da equação homogénea é

$$c_1\cos(t) + c_2\sin(t). \tag{4.16}$$

Aplicando (4.11) ao polinómio $p(\lambda) = \lambda^2 + 1$ e obtemos

$$p(D)[(At+B) \cdot e^{i2t}] = [((i2)^2 + 1)(At+B) + (2(i2))A]e^{i2t}$$
$$= [-3(At+B) + i4 \cdot A]e^{i2t}$$

Portanto

$$-3(At + B) + 4iA = t$$

$$A = -1/3$$

$$B = -4i/9$$

Para $x_p = \Re\left[\left(-\frac{t}{3} - \frac{4i}{9}\right)e^{i2t}\right]$ obtemos a solução geral de (4.14)

$$x = c_1 \cos t + c_2 \sin t - \frac{t}{3} \cos(2t) + \frac{4}{9} \sin(2t).$$

4.4.6 Exemplo. Determine a solução geral de

$$x'' + x = t^2 \operatorname{sen}(t). (4.17)$$

Considere a equação

$$x'' + x = (D^2 + 1)(x) = t^2 e^{it}. (4.18)$$

A parte imaginária de t^2e^{it} é $t^2\operatorname{sen}(t)$ e os coeficientes da equação são reais, segue que a parte imaginária de cada solução de (4.18) é uma solução de (4.17). Como i é uma raiz de ordem 1 do polinómio λ^2+1 , segue que a solução de (4.17) é da forma $c_1\cos t+c_2\sin t+x_p$, com x_p a parte imaginária de uma função $t\cdot(At^2+Bt+C)e^{it}$. Aplicando (4.11) com $f(t)=At^3+Bt^2+Ct$ obtemos

$$(D^{2} + 1)[f(t)e^{it}] = [2i(3At^{2} + 2Bt + C) + 6At + 2B]e^{it}$$

$$2i(3At^{2} + 2Bt + C) + 6At + 2B = t^{2}$$

$$A = -i/6$$

$$B = 1/4$$

$$C = i/4$$

Para $x_p = \Im\left[\left(-\frac{t^3}{6}i + \frac{t^2}{4} + \frac{t}{4}i\right)e^{it}\right]$ obtemos a seguinte solução geral de (4.17).

$$x = c_1 \cos t + c_2 \sin t + \left(-\frac{t^3}{6} + \frac{t}{4}\right) \cos(t) + \frac{t}{4} \sin(t)$$

5 Transformada de Laplace

A idéia subjacente às transformações de Laplace é a seguinte:

- i) Converter uma equação diferencial que queremos resolver numa equação algébrica.
- ii) Resolva a equação algébrica.
- iii) Covertido a solução algébrica para uma solução da equação diferencial original.

5.1 Definição e Exemplos

Por definição a **transformada de Laplace** de uma função real f(t) definida para $t \ge 0$ é

$$\mathcal{L}[f(t)] = F(s) = \int_0^\infty e^{-st} f(t) dt$$
 (5.1)

Notamos que o integral impróprio (5.1) é definido por o limite

$$\lim_{a \to \infty} \int_0^a e^{-st} f(t) dt \tag{5.2}$$

Antes de analisar a convergência da transformada de Laplace vamos considerar alguns exemplos.

5.1.1 Exemplo. A transformada de Laplace de $f(t) = e^{kt}$, onde k é um constante real ou complexo, é

$$\mathcal{L}[e^{kt}] = \int_0^\infty e^{-st} e^{kt} dt = \int_0^\infty e^{-(s-k)t} dt$$
$$= \left[\frac{e^{-(s-k)t}}{-(s-k)} \right]_{t=0}^{t=\infty}.$$

Se $\Re s > \Re k$, então $e^{-(s-k)t} \to 0$ com $t \to \infty$, e portanto

$$\mathcal{L}[e^{kt}] = \frac{1}{s-k}$$
 se $\Re s > \Re k$.

Usando a fórmula de Euler $e^{i\omega t} = \cos \omega t + i \operatorname{sen} \omega t$ e o facto

$$\int_{a}^{b} \left(c \cdot f(t) + d \cdot g(t) \right) dt = c \int_{a}^{b} f(t) dt + d \int_{a}^{b} g(t) dt$$

obtemos

$$\mathcal{L}[\cos \omega t + i \sin \omega t] = \mathcal{L}[\cos \omega t] + i \mathcal{L}[\sin \omega t]$$

$$= \mathcal{L}[e^{i\omega t}]$$

$$= \frac{1}{s - i\omega} = \frac{s + i\omega}{s^2 + \omega^2}.$$

Portanto

$$\mathcal{L}[\cos \omega t] = \frac{s}{s^2 + \omega^2}, \quad \mathcal{L}[\sin \omega t] = \frac{w}{s^2 + \omega^2}, \quad \text{se } \Re s > 0$$

Temos também

$$\mathcal{L}[\cosh \omega t] = \frac{s}{s^2 - \omega^2}, \quad \mathcal{L}[\sinh \omega t] = \frac{w}{s^2 - \omega^2}, \quad \text{se } \Re s > |\omega|.$$

Recordamos

$$\cosh \omega t = \frac{e^{\omega t} + e^{-\omega t}}{2}, \quad \operatorname{senh} \omega t = \frac{e^{\omega t} - e^{-\omega t}}{2}.$$

5.1.2 Exemplo. Para $a \ge 0$, define-se a função **Gamma de Euler** por

$$\Gamma(a+1) = \int_0^\infty x^a e^{-x} dx. \tag{5.3}$$

Tem-se

$$\Gamma(1) = \int_0^\infty e^{-x} dx = -e^{-x} \Big|_0^\infty = 1.$$

Usando integração por partes tem-se

$$\Gamma(a+1) = \int_0^\infty x^a e^{-x} dx$$

$$= x^a e^{-x} a \Big|_0^\infty + a \int_0^\infty x^{a-1} e^{-x} dx$$

$$= a \int_0^\infty x^{a-1} e^{-x} dx$$

$$= a\Gamma(a).$$

Para n um inteiro positivo tem-se $\Gamma(n+1) = n\Gamma(n) = n(n-1)\Gamma(n-2) = \cdots = n!$. A transformada de Laplace de $f(t) = t^a$, com $a \ge 0$ um constante real, é

$$\mathcal{L}[t^a] = \int_0^\infty e^{-st} t^a dt$$

sendo x = st, e portanto dx = s dt, obtemos

$$= \int_0^\infty e^{-x} \left(\frac{x}{s}\right)^a \frac{1}{s} dx$$
$$= \frac{1}{s^{a+1}} \int_0^\infty e^{-x} x^a dx$$
$$\mathcal{L}[t^a] = \frac{\Gamma(a+1)}{s^{a+1}}.$$

5.2 Existência da Transformada de Laplace

Diz-se que uma função f(t) é de **ordem exponencial** em $[0, \infty[$ se existem constantes reais D > 0 e c tais que $|f(t)| < De^{ct}$ para $t \in [0, \infty[$

5.2.1 Teorema. Se f(t) é uma função seccionalmente contínua e de ordem exponencial em $[0, \infty[$, então a transformada de Laplace existe.

Demonstração. Para n = 1, 2, ..., definimos $\ell[f]_n(s)$ por

$$\ell[f]_n(s) = \int_0^n e^{-st} f(t) dt.$$

Vamos mostrar que $\ell[f]_n(s)$ é uma sucessão de Cauchy. Sejam $n \ge m > 0$, e sejam D > 0 e c constantes reais tais que $|f(t)| < De^{ct}$ para $t \in [0, \infty[$

$$|\ell[f]_{n}(s) - \ell[f]_{m}(s)| = \left| \int_{m}^{n} e^{-st} f(t) dt \right|$$

$$\leq \int_{m}^{n} \left| e^{-st} f(t) \right| dt$$

$$< \int_{m}^{n} De^{-(\Re s - c)t} dt$$

$$= \left[-\frac{De^{-(\Re s - c)t}}{\Re s - c} \right]_{m}^{n}$$

$$= \frac{De^{-(\Re s - c)m}}{\Re s - c} \left(1 - e^{-(\Re s - c)(n - m)} \right)$$

$$< \frac{De^{-(\Re s - c)m}}{\Re s - c}$$

se $\Re s > c$. Como $\frac{De^{-(\Re s - c)m}}{\Re s - c} \to 0$ quando $m \to \infty$, segue que $\ell[f]_n(s)$ é uma sucessão de Cauchy no semi-plano $\Re s > c$. Portanto

$$\lim_{n\to\infty} \ell[f]_n(s) = \mathcal{L}[f(t)]$$

existe para $\Re s > c$.

Recordamos que uma sucessão de funções $\{F_n(s)\}_n$ converge uniformemente a uma função F(s) se para cada $\epsilon > 0$ existe N tal que para qualquer s

$$m, n \ge N \implies |F_n(s) - F_m(s)| < \epsilon.$$

5.2.2 Corolário. Se f(t) é uma função seccionalmente contínua e de ordem exponencial em $[0,\infty[$, então a sucessão

$$\ell[f]_n(s) = \int_0^n e^{-st} f(t) dt$$

converge uniformemente à transformada de Laplace de f num semiplano $\Re s \ge x_0$.

Demonstração. Sejam $n \ge m > 0$, e sejam D > 0 e c constantes reais tais que $|f(t)| < De^{ct}$ para

 $t \in [0, \infty[$. Agora seja $x_0 > c$. Para $\Re s > x_0$ temos

$$\mathcal{R}e \, s - c > x_0 - c > 0$$

$$\frac{1}{\mathcal{R}e \, s - c} < \frac{1}{x_0 - c}$$

$$-(\mathcal{R}e \, s - c) < -(x_0 - c)$$

$$\frac{e^{-(\mathcal{R}e \, s - c)}}{\mathcal{R}e \, s - c} < \frac{e^{-(x_0 - c)}}{x_0 - c},$$

e portanto

$$|\ell[f]_n(s) - \ell[f]_m(s)| < \frac{De^{-(\Re s - c)m}}{\Re e \, s - c} < \frac{e^{-(x_0 - c)}}{x_0 - c}$$

se $\Re s > x_0$. Logo $\ell[f]_n(s) \to \mathcal{L}[f(t)](s)$ uniformemente no semiplano $\Re s > x_0$.

5.3 Propriedades da Transformada de Laplace

A transformada de Laplace é linear.

$$\mathcal{L}[a \cdot f(t) + b \cdot g(t)](s) = a\mathcal{L}[f(t)](s) + b\mathcal{L}[g(t)](s)$$

O seguinte resultado é o primeiro teorema de translação.

5.3.1 Teorema. Se $\mathcal{L}[f(t)](s) = F(s)$ para $\Re s > b$, então $\mathcal{L}[e^{at}f(t)] = F(s-a)$ para $\Re (s-a) > b$.

Demonstração. Aplicando a definição da transformada de Laplace temos

$$\mathcal{L}[e^{at}f(t)](s) = \int_0^\infty e^{-st}e^{at}f(t)\,dt$$
$$= \int_0^\infty e^{-(s-a)t}f(t)\,dt$$
$$= F(s-a).$$

5.3.2 Exemplo. Como $\mathcal{L}[\cos \omega t] = s/(s^2 + \omega^2)$, obtemos

$$\mathcal{L}[e^{at}\cos\omega t] = \frac{s-a}{(s-a)^2 + \omega^2}.$$

Definimos a função de Heaviside por

$$H(t) = \begin{cases} 0 & t < 0 \\ 1 & t \ge 0. \end{cases}$$

Definimos a função de **Dirac** $\delta(t)$ por

$$\int_{-\infty}^{\infty} \delta(t) f(t) dt = f(0).$$

O segundo teorema de translação é

5.3.3 Teorema.

i) Se $\mathcal{L}[f(t)](s) = F(s)$, então

$$\mathcal{L}[H(t-a)f(t-a)] = e^{-sa}F(s).$$

ii) Para $a \ge 0$ tem-se

$$\mathcal{L}[\delta(t-a)](s) = e^{-sa}.$$

Demonstração. Aplicando a definição da transformada de Laplace temos

$$\mathcal{L}[H(t-a)f(t-a)](s) = \int_0^\infty e^{-st} H(t-a)f(t-a) dt$$
$$= \int_a^\infty e^{-st} f(t-a) dt$$

Para $\tau = t - a$ obtemos

$$= \int_0^\infty e^{-s(\tau+a)} f(\tau) d\tau$$
$$= e^{-sa} F(s).$$

Seja F(s) uma função complexa de uma variável complexa s. Dizemos que F é holomorfa quando

$$\frac{dF}{ds}(s) = \lim_{h \to 0} \frac{F(s+h) - f(s)}{h}$$

existe.

5.3.4 Teorema (Derivada da transformada de Laplace). Se f(t) é uma função e a transformada de Laplace $\mathcal{L}[f(t)](s) = F(s)$ existe para $\Re s > c$, então a função F(s) é holomorfa no semiplano $\Re s > c$ e para n > 0

$$(-1)^n \frac{d^n}{ds^n} F(s) = \mathcal{L}[t^n f(t)](s).$$

Demonstração. [Esquema de demostração] Seja $s \in \mathbb{C}$ tal que $\Re s > c$, e seja $2\eta = \Re s - c$.

Para $h \text{ com } 0 < |h| < \eta$, tem-se $\Re(s+h) > c + \eta$, e portanto F(s+h) existe. Considere

$$\left| \frac{F(s+h) - F(s)}{h} + \int_{0}^{\infty} e^{-st} t f(t) dt \right| = \left| \int_{0}^{\infty} \frac{e^{-(s+h)t} f(t) - e^{-st} f(t)}{h} + e^{-st} t f(t) dt \right|$$

$$= \left| \int_{0}^{\infty} e^{-st} f(t) \left[\frac{e^{-ht} - 1}{h} + t \right] dt \right|$$

$$= \left| \int_{0}^{\infty} e^{-st} f(t) \sum_{n=2}^{\infty} \frac{(-ht)^{n}}{n!h} dt \right|$$

$$\leq \int_{0}^{\infty} \left| e^{-st} f(t) \right| \cdot t^{2} |h| \sum_{n=0}^{\infty} \frac{(-ht)^{n}}{(n+2)!} dt$$

$$\leq \int_{0}^{\infty} \left| e^{-st} f(t) \right| \cdot t^{2} |h| \sum_{n=0}^{\infty} \frac{|ht|^{n}}{(n+2)!} dt$$

$$\leq \int_{0}^{\infty} \left| e^{-st} f(t) \right| \cdot t^{2} |h| \sum_{n=0}^{\infty} \frac{(|ht|)^{n}}{n!} dt$$

$$\leq |h| \int_{0}^{\infty} e^{-(\Re s - |h|)t} |f(t)| \cdot t^{2} dt$$

$$\leq |h| \int_{0}^{\infty} e^{-(c+\eta)t} |f(t)| \cdot t^{2} dt$$

A função $e^{-ct}|f(t)$ é intergrável em $[0,\infty[$, e a função $t^2e^{-\eta t}$ é limitada em $[0,\infty[$. Portanto

$$\lim_{h \to 0} |h| \int_0^\infty e^{-(c+\eta)t} |f(t)| \cdot t^2 \, dt = 0,$$

e logo

$$F'(s) = \lim_{h \to 0} \frac{F(s+h) - F(s)}{h} = -\int_0^\infty e^{-st} t f(t) dt.$$

A demostração para derivadas de ordem superior é parecida.

5.4 Soluções de Equações Diferenciais Ordinárias

Para aplicar a transformada de Laplace a equações diferenciais ordinárias temos de calcular a transformada de Laplace à derivada de uma função. Por definição temos

$$\mathcal{L}[x'(t)](s) = \int_0^\infty e^{-st} x'(t) dt$$
 (5.4)

Usansando integração por partes obtemos

$$= \left[e^{-st} x(t) \right]_{t=0}^{t=\infty} + s \int_0^\infty e^{-st} f(t) dt$$
 (5.5)

$$= s \mathcal{L}[x](s) - x(0) \tag{5.6}$$

se a função f(t) é seccionalmente contínua e de ordem exponencial em $[0, \infty[$. Portanto

$$\mathcal{L}[x''](s) = s\mathcal{L}[x'](s) - x'(0) = s^2 X(s) - sx(0) - x'(0).$$

5.5 Inversa da Transformada de Laplace

Para utilizar a transformada de Laplace na resolução de equações diferenciais temos que invertê-la. Em geral a fórmula da inversa requer técnicas de Análise Complexa. No entanto, para certas classes de problemas a fórmula é facilmente acessível. O seguinte resultado afirma que a inversa da transformada é essencialmente única.

5.5.1 Teorema. Se f(t) e g(t) são funções seccionalmente contínuas de ordem exponencial e se existe uma constante $s_0 \in \mathbb{R}$ tal que

$$\Re(s) > s_0 \implies \mathcal{L}[f](s) = \mathcal{L}[g](s),$$

então f(t) = g(t) para t > 0 exceto num subconjunto finito de pontos onde as funções f(t) e g(t) não são contínuas. Portanto, se f e g são contínuas e satisfazem a condição acima, então f(t) = g(t) para t > 0.

O teorema seguinte é uma condição necessária para uma função F(s) seja uma transformada de Laplace de uma função f(t).

5.5.2 Teorema. Se f(t) é uma função seccionalmente contínua em $[0, +\infty[$ de ordem exponencial, então

$$\lim_{|\mathcal{R}e(s)|\to\infty} \mathcal{L}[f](s) = 0.$$

Demonstração. Temos $|f(t)| < De^{ct}$ e

$$\begin{aligned} \left| \mathcal{L}[f](s) \right| &= \left| \int_0^\infty e^{-st} f(t) \, dt \right| \le \int_0^\infty \left| e^{-st} f(t) \right| \, dt \\ &\le \int_0^\infty e^{-\Re e(s)t} |f(t)| \, dt < \int_0^\infty D e^{(c-\Re e(s))t} \\ &\le \frac{D}{c - \Re e(s)} e^{(c-\Re e(s))t} \Big|_0^\infty = \frac{D}{\Re e(s) - c} \end{aligned}$$

se
$$\Re(s) > c$$
. Logo $|\mathcal{L}[f](s)| \to 0$ como $|\Re(s)| \to \infty$.

Uma fórmula muito útil para \mathcal{L}^{-1} é o seguinte. Se

$$F(s) = \frac{P(s)}{Q(s)},$$

onde P(s) e Q(s) são polinómios tais que grau $(P) < \operatorname{grau}(Q)$ e $Q(s) = (s-r_1)^{n_1} \dots (s-r_k)^{n_k}$, então

$$\mathcal{L}^{-1}[F](t) = \sum_{i=1}^{k} \frac{1}{(n_i - 1)!} \frac{d^{n_j - 1}}{ds^{n_j - 1}} \left((s - r_j)^{n_j} e^{st} F(s) \right) \Big|_{s = r_j}.$$

5.5.3 Exemplo. Usando a transformada de Laplace podemos resolver o problema

$$x'' - 5x' + 6x = f(t)$$

$$f(t) = \begin{cases} t & 0 \le t \le 3 \\ t + 5 & 3 < t \end{cases}$$

$$x(0) = -2$$

$$x'(0) = 1.$$

Usando a transformada de Laplace e escrevendo $f(t) = t + 5 \cdot H(t - 3)$ e sendo $\mathcal{L}[x] = X(s)$ obtemos

$$\mathcal{L}[x'' - 5x' + 6x] = \int_0^\infty e^{-st} f(t) dt$$
$$(s^2 - 5s + 6)X(s) + 2s - 11 = \frac{1}{s^2} + \frac{5}{s}e^{-3s}$$

$$X(s) = \frac{-2s+11}{(s-3)(s-2)} + \frac{1}{s^2(s-2)(s-3)} + e^{-3s} \frac{5}{s(s-3)(s-2)}$$

sejam
$$F_1(s) = \frac{-2s+11}{(s-3)(s-2)}, F_2(s) = \frac{1}{s^2(s-2)(s-3)}, F_3(s) = \frac{5}{s(s-3)(s-2)}$$
 temos
$$\mathcal{L}^{-1}[F_1] = e^{st} \frac{-2s+11}{s-3} \Big|_{s=2} + e^{st} \frac{-2s+11}{s-2} \Big|_{s=3} = -7e^{2t} + 5e^{3t}$$

$$\mathcal{L}^{-1}[F_2] = \frac{e^{st}}{s^2(s-2)} \Big|_{s=3} + \frac{e^{st}}{s^2(s-3)} \Big|_{s=2} + \frac{d}{ds} \frac{e^{st}}{(s-2)(s-3)} \Big|_{s=0}$$

$$= \frac{e^{3t}}{9} - \frac{e^{2t}}{4} + \frac{te^{st}(s-2)(s-3) - e^{st}(-5)}{(s-2)^2(s-3)^2} \Big|_{s=0} = \frac{e^{3t}}{9} - \frac{e^{2t}}{4} + \frac{t}{6} + \frac{5}{36}$$

$$\mathcal{L}^{-1}[F_3] = \frac{5e^{st}}{s(s-3)} \Big|_{s=2} + \frac{5e^{st}}{s(s-2)} \Big|_{s+3} + \frac{5e^{st}}{(s-2)(s-3)} \Big|_{s=0} = 5\left(-\frac{e^{2t}}{2} + \frac{e^{3t}}{3} + \frac{1}{6}\right)$$
logo

$$x(t) = \frac{46}{9}e^{3t} - \frac{29}{4}e^{2t} + \frac{t}{6} + \frac{5}{36} + 5H(t-3)\left(\frac{e^{3(t-3)}}{3} - \frac{e^{2(t-3)}}{2} + \frac{1}{6}\right).$$

PARTE III

Equações Diferenciais Parciais

6 EDP de 1ª Ordem Quasi-lineares

Para uma função u(x,y) de classe C^1 sejam

$$\frac{\partial u}{\partial x} = u_x$$
 e $\frac{\partial u}{\partial y} = u_y$.

6.1 Método de Características

Consideremos uma equação com variáveis independentes x e y da forma

$$a(x,y,u)u_x + b(x,y,u)u_y - c(x,y,u) = 0$$
(6.1)

onde u = u(x,y) e $a,b,c : \mathbb{R}^3 \to \mathbb{R}$ são funções contínuas.

Para uma função u = u(x,y) de classe C^1 consideramos a função

$$f(x,y,z) = u(x,y) - z.$$

Temos $\nabla f = (u_x, u_y, -1) \neq (0, 0, 0)$, e portanto o conjunto de nível zero

$$\Sigma = \{(x, y, z) : z = u(x, y)\} \subset \mathbb{R}^3$$

é uma superfície. Notamos que Σ é o gráfico da função u. Sendo $\mathbf{v}(x,y,u)=(a,b,c)$, com a,b e c as funções em (6.1), temos

$$\langle \mathbf{v}, \nabla f \rangle = \mathbf{v} \cdot \nabla f = au_x + bu_y - c = 0.$$

Segue-se que o campo vetorial \mathbf{v} é ortogonal a ∇f ou seja \mathbf{v} é um campo tangente da superfície Σ . O campo \mathbf{v} chama-se *campo característico*. O sistema de equações

$$\frac{dx}{dt} = a(x, y, u), \quad \frac{dy}{dt} = b(x, y, u), \quad \frac{du}{dt} = c(x, y, u) \tag{6.2}$$

chama-se *equações características* da equação quasi-linear (6.1). A forma não paramétrico do sistema é

$$\frac{dx}{a} = \frac{dy}{b} = \frac{dz}{c}. ag{6.3}$$

Uma solução de (6.2) chama-se *curva característica*. Se as curvas características são dadas implicitamente por

$$\phi(x,y,u) = c_1, \quad \psi(x,y,u) = c_2$$

onde c_1 e c_2 são constantes, então

$$F(\phi, \psi) = 0$$
,

define-se uma solução implícita onde F é uma função arbitrária diferenciável tal que

$$F_{\phi}\phi_{u}+F_{\psi}\psi_{u}\neq0.$$

6.1.1 Exemplo. Consideremos a equação

$$x^2 u_x + y^2 u_y = (x + y)u.$$

A equação característica é

$$\frac{dx}{x^2} = \frac{dy}{y^2} = \frac{du}{(x+y)u}.$$

Temos

$$\frac{dx}{x^2} = \frac{dy}{y^2}$$

$$\frac{1}{x} = -\frac{1}{y} + c_1$$

$$\frac{x+y}{x^2} dx = \frac{du}{u}$$

$$\frac{1}{y} - \frac{1}{x} = c_1$$

$$\frac{dx}{x} + y \frac{dx}{x^2} = \frac{du}{u}$$

$$\frac{dx}{x} + y \frac{dx}{x^2} = \frac{du}{u}$$

$$\frac{dx}{x} + \frac{dy}{y} = \frac{du}{u}$$

$$\frac{ydx + xdy}{xy} = \frac{du}{u}$$

$$\frac{d(xy)}{xy} = \frac{du}{u}$$

$$\frac{u}{xy} = c_2.$$

Sendo $\phi(x,y)=(x-y)/xy=y^{-1}-x^{-1}$ e $\psi(x,y,u)=u/xy$ e $F(\phi,\psi)$ uma função diferenciável tal que

$$0 \neq F_{\phi}\phi_{u} + F_{\psi}\psi_{u} = F_{\phi} \cdot 0 + F_{\psi}\frac{1}{xu}$$

obtemos uma solução implicitamente definida por

$$F\left(\frac{x-y}{xy}, \frac{u}{xy}\right) = 0.$$

Usando a condição $F_{\psi} \neq 0$ o teorema da função implícita implica que $u/xy = f\left(\frac{x-y}{xy}\right)$, onde f é uma função diferenciável. Temos então

$$u(x,y) = xy \cdot f\left(\frac{x-y}{xy}\right).$$

Verificamos que

$$u_x = yf + xy\frac{f'}{x^2}$$

$$u_y = xf - xy\frac{f'}{y^2}$$

$$x^2u_x + y^2u_y = x^2yf + xyf' + xy^2f - xyf'$$

$$= xyf \cdot (x+y)$$

$$= u \cdot (x+y).$$

6.1.2 Teorema. A solução geral de

$$a(x,y,u)u_x + b(x,y,u)u_y - c(x,y,u) = 0. (6.4)$$

é dada por

$$F(\phi, \psi) = 0,$$

onde $\phi(x,y,u)=c_1$ e $\psi(x,y,u)=c_2$ são curvas das equações características

$$\frac{dx}{a} = \frac{dy}{b} = \frac{du}{c}. ag{6.5}$$

e F é uma função diferenciável arbitrária tal que $F_{\phi}\phi_{u} + F_{\psi}\psi_{u} \neq 0$.

Demonstração. Para $\phi(x,y,u) = c_1$ temos

$$0 = d\phi = \phi_x dx + \phi_u dy + \phi_u du.$$

Se ϕ satisfaz a equação característica (6.5), então $(dx, dy, du) = \lambda(a, b, c)$ para alguma constante $0 \neq \lambda \in \mathbb{R}$. Logo

$$a\phi_x + b\phi_u + c\phi_u = 0.$$

Analogamente

$$a\psi_x + b\psi_u + c\psi_u = 0.$$

Os campos (ϕ_x, ϕ_y, ϕ_u) e (ψ_x, ψ_y, ψ_u) são localmente linearmente independentes e ortogonais do campo (a, b, c). Portanto existe uma constante não nula λ tal que

$$(a,b,c) = \lambda \Big((\phi_x, \phi_y, \phi_u) \times (\psi_x, \psi_y, \psi_u) \Big) = \lambda \Big(\begin{vmatrix} \phi_y & \phi_u \\ \psi_y & \psi_u \end{vmatrix}, \begin{vmatrix} \phi_u & \phi_x \\ \psi_u & \psi_x \end{vmatrix}, \begin{vmatrix} \phi_x & \phi_y \\ \psi_x & \psi_y \end{vmatrix} \Big)$$

Se $0 = F(\phi(x, y, u), \psi(x, y, u))$, então

$$0 = \frac{\partial F}{\partial x} = F_{\phi} \cdot (\phi_{x} + \phi_{u} \cdot u_{x}) + F_{\psi} \cdot (\psi_{x} + \psi_{u} \cdot u_{x})$$

$$0 = \frac{\partial F}{\partial y} = F_{\phi} \cdot (\phi_{y} + \phi_{u} \cdot u_{y}) + F_{\psi} \cdot (\psi_{y} + \psi_{u} \cdot u_{y})$$

$$\begin{pmatrix} F_{x} \\ F_{y} \end{pmatrix} = \begin{pmatrix} \phi_{x} + u_{x}\phi_{u} \ \psi_{x} + u_{x}\psi_{u} \\ \phi_{y} + u_{y}\phi_{u} \ \psi_{y} + u_{y}\psi_{u} \end{pmatrix} \cdot \begin{pmatrix} F_{\phi} \\ F_{\psi} \end{pmatrix}$$

Aplicando a condição $0 \neq F_{\phi}\phi_{u} + F_{\psi}\psi_{u}$, e portanto $(F_{\phi}, F_{\psi}) \neq 0$ segue

$$0 = \begin{vmatrix} \phi_x + u_x \phi_u & \psi_x + u_x \psi_u \\ \phi_y + u_y \phi_u & \psi_y + u_y \psi_u \end{vmatrix}$$

$$= (\phi_x + u_x \phi_u)(\psi_y + u_y \psi_u) - (\psi_x + u_x \psi_u)(\phi_y + u_y \phi_u)$$

$$= \phi_x \psi_y - \psi_x \phi_y + (\phi_u \psi_x - \psi_u \phi_x)u_x + (\phi_x \psi_u - \psi_x \phi_u)u_y$$

$$= \begin{vmatrix} \phi_y & \phi_u \\ \psi_y & \psi_u \end{vmatrix} + \begin{vmatrix} \phi_u & \phi_x \\ \psi_u & \psi_x \end{vmatrix} u_x + \begin{vmatrix} \phi_x & \phi_y \\ \psi_x & \psi_y \end{vmatrix} u_y$$

$$= \lambda^{-1} (c - au_x - bu_y).$$

Como $F_{\phi}\phi_u + F_{\psi}\psi_u \neq 0$, o teorma da função implícita implica que $F(\phi,\psi) = 0$ define uma solução implicitamente.

6.1.3 Exemplo. Determine a solução geral de

$$2tu_t - xu_x = u^2, t, x > 0.$$

As equações características são

$$\frac{dt}{2t} = -\frac{dx}{x} = \frac{du}{u^2}.$$

Temos

$$\frac{dt}{2t} = -\frac{dx}{x}$$

$$\frac{dt}{2t} = \frac{du}{u^2}$$

$$\log t + \log x^2 = c_1$$

$$tx^2 = K_1$$

$$\frac{1}{2}\log t = -\frac{1}{u} + c_2$$

$$\frac{1}{2}\log t + \frac{1}{u} = c_2.$$

Logo temos solução implícitas da forma

$$F(tx^2, \frac{1}{2}\log t + \frac{1}{u}) = 0.$$

Ou seja $2^{-1}\log(t) + u^{-1} = f(tx^2)$.

Dada a condição inicial $u(p,p) = p^3$, com p > 0 obtemos

$$\frac{1}{2}\log t + \frac{1}{u} = f(tx^2)$$

$$\frac{1}{2}\log p + \frac{1}{p^3} = f(p^3)$$

$$\frac{1}{6}\log y + \frac{1}{y} = f(y)$$

$$\frac{1}{2}\log t + \frac{1}{u} = \frac{1}{6}\log tx^2 + \frac{1}{tx^2}$$

$$\frac{1}{u} = \left(\frac{1}{6} - \frac{1}{2}\right)\log t + \frac{1}{3}\log x + \frac{1}{tx^2}$$

$$u = \frac{1}{(tx^2)^{-1} + \log(x/t)/3} \cdot \frac{3tx^2}{3tx^2}$$

$$= \frac{3tx^2}{3 + tx^2\log(x/t)}.$$

Problema de Cauchy ou de Valor inicial

Mais uma vez vamos considerar a equação quasi-linear

$$a(x,y,u)u_x + b(x,y,u)u_y = c(x,y,u),$$
 (6.6)

mas agora vamos supor que temos uma curva regular $\Gamma \subset \mathbb{R}^3$

$$(\alpha(s),\beta(s),\gamma(s)), \quad s_1 \le s \le s_2, \quad -\infty < s_1 < s_2 < \infty.$$

Seja $C \subset \mathbb{R}^2$ a curva no plano \mathbb{R}^2 com $(\alpha(s),\beta(s))$. O problema de valor inicial de Cauchy ou simplesmente o problema de valor inicial é:

Problema (Valor Inicial). Determine uma solução u(x,y) de (6.6) tal que

$$u(\alpha(s),\beta(s)) = \gamma(s).$$

Dizemos que a curva Γ é uma curva *não característica* da equação (6.6) se os campos (α', β') e (a,b) são linearmente independentes, ou será equivalente se

$$\begin{vmatrix} \alpha'(s) & \beta'(s) \\ a(\alpha(s),\beta(s),\gamma(s)) & b(\alpha(s),\beta(s),\gamma(s)) \end{vmatrix} \neq 0.$$

6.1.4 Teorema. Se os coeficientes a,b,c são de classe C^1 e Γ é regular e não uma curva característica, então localmente exite uma e só uma solução do problema de valor inicial.

Demonstração. Consideremos o sistema de equações características

$$\frac{dx}{dt}(t) = a(x,y,z)$$
$$\frac{dy}{dt}(t) = b(x,y,z)$$
$$\frac{dz}{dt}(t) = c(x,y,z)$$

com a condição inicial $(x_0, y_0, z_0) = (\alpha(s), \beta(s), \gamma(s))$. Como as funções a(x, y, z), b(x, y, z) e c(x, y, z) são de classe C^1 temos soluções

$$x(s,t)$$
, $y(s,t)$, $z(s,t)$, com $s_1 \le s \le s_2$ e $|t| < \delta$, onde $\delta > 0$.

Sendo (x,y) = G(s,t) temos

$$DG(s,0) = \begin{pmatrix} x_s & x_t \\ y_s & y_t \end{pmatrix} = \begin{pmatrix} \alpha' & a \\ \beta' & b \end{pmatrix} = \begin{pmatrix} \alpha' & \beta' \\ a & b \end{pmatrix}^t.$$

Portanto DG(s,0) é não singular, e localmente G tem uma inversa. Assim temos (s,t) = H(x,y) ou seja s = s(x,y) e t = t(x,y). A função u(x,y) = z(s(x,y),t(x,y)) é uma solução que satisfaz

$$u(x,y)|_{t=0} = z(s,0) = \gamma(s).$$

Pela unicidade do problema de valor inicial de equações diferenciais ordinárias e a unicidade da função inversa, a função u é única.

6.1.5 Exemplo. Determine a solução de $u_x - u_y = 1$ que satisfaz a condição inicial $u(x,0) = x^2$. As equações características são

$$dx = -dy = du$$
,

e temos $\phi(x,y,u) = x + y = c_1$ e $\psi(x,y,u) = u + y = c_2$. Logo $F(\phi,\psi) = 0$ com

$$\frac{dF}{du} = \frac{\partial F}{\partial \phi} \cdot 0 + \frac{\partial F}{\partial \psi} \cdot 1 \neq 0.$$

Pelo teorema da função implícita obtemos que a condição F(x+y,u+y)=0 é dada por uma expresão da forma

$$u(x,y) = f(x+y) - y$$

e u=f(x+y)-y é uma solução de $u_x-u_y=1$. Dado a curva Γ com $\alpha(s)=s$, $\beta(s)=0$ e $\gamma(s)=s^2$. Temos

$$\begin{vmatrix} \alpha' & \beta' \\ a & b \end{vmatrix} = \begin{vmatrix} 1 & 0 \\ 1 & -1 \end{vmatrix} \neq 0.$$

Portanto Γ é uma curva não característica. Aplicando a condição $u(x,0)=x^2$, obtemos

$$u(x,y) = f(x+y) - y$$

$$u(x,0) = f(x)$$

$$= x^2$$

$$u(x,y) = (x+y)^2 - y.$$

6.1.6 Exemplo. Resolve o problema de Cauchy

$$(y-u)u_x + (u-x)u_y = x - y,$$
 $u(x,y) = 0 \text{ se } xy = 1.$

As equações características são

$$\frac{dx}{y-u} = \frac{dy}{u-x} = \frac{du}{x-y}.$$

Temos
$$\frac{dx}{y-u} = \frac{du}{x-y} \qquad \qquad \frac{dy}{u-x} = \frac{du}{x-y} \qquad \frac{dx}{y-u} = \frac{dy}{u-x}$$

$$(x-y)dx = (y-u)du \qquad \qquad (x-y)dy = (u-x)du \qquad (u-x)dx = (y-u)dy$$

$$(x-y)(dx+dy) = (y-u+u-x)du \qquad u(dx+dy) = ydy + xdx$$

$$(x-y)(dx+dy+du) = 0 \qquad \qquad -udu = xdx + ydy$$

$$dx+dy+du = 0 \qquad xdx+ydy+udu = 0.$$
 Portanto

$$x + y + u = c_1$$
, $x^2 + y^2 + u^2 = c_2$.

Aplicando a condição u = 0 e xy = 1 obtemos

$$c_1^2 = (x+y)^2 = x^2 + y^2 + 2xy = x^2 + y^2 + 2 = c_2 + 2.$$

Logo

$$x^{2} + y^{2} + u^{2} + 2 = (x + y + u)^{2} = (x + y)^{2} + u^{2} + 2u \cdot (x + y)$$
$$2 = 2xy + 2u \cdot (x + y)$$
$$u = \frac{1 - xy}{x + y}.$$

EDP de 2ª Ordem lineares 7

Uma equação parcial de segunda ordem é uma equação da forma

$$a(x,y)u_{xx} + 2b(x,y)u_{xy} + c(x,y)u_{yy} + d(x,y)u_x + e(x,y)u_y + f(x,y)u = g(x,y).$$
(7.1)

Aqui vamos estudar as equações seguintes com coeficientes constantes:

Nome	Equação
Equação de calor	$u_t = ku_{xx}$
Equação de ondas	$u_{tt} = c^2 u_{xx}$
Equação de Laplace	$u_{xx} + u_{yy} = 0$

A equação de calor $u_t = ku_{xx}$ é um modelo matemático a evolução no tempo da temperatura numa barra homogénea. Começamos a estudar o problema com a condição inicial e as condições na fronteira:

Equação de calor		
EDP	$u_t = ku_{xx},$	$0 < t, 0 \le x \le L;$
Condição inicial	u(x,0) = f(x),	0 < x < L;
Condição na fronteira	u(0,t)=0,	t > 0;
	u(L,t)=0,	t > 0.

A equação de ondas $u_{tt}=c^2u_{xx}$ é uma equação modela a evolução no tempo de uma corda vibrante. Um problema com condições iniciais e condições na fronteira é

Equação de ondas		
EDP	$u_{tt}=c^2u_{xx},$	$0 < t, 0 \le x \le L;$
Condição inicial	u(x,0) = f(x),	0 < x < L;
	$u_t(x,0)=g(x),$	0 < x < L;
Condição na fronteira	u(0,t)=0,	t > 0;
	u(L,t)=0,	t > 0.

A equação de Laplace $0 = u_{xx} + u_{yy} = \nabla \cdot \nabla u = \Delta u$ é uma equação modela a evolução um potencial escalar para a velocidade de escoamento de um fluido incompressível e irrotacional.

Seja $\Omega \subset \mathbb{R}^2$ um aberto limitado tal que $\partial \Omega \setminus \{p_1, \dots, p_n\} = \partial \Omega'$ é uma variedade de classe C^1 e seja $v: \partial \Omega' \to \mathbb{R}^2$ o campo vetorial normada exterior. A primeira condição na fronteira é as *condições* de Dirichlet:

Equação de Laplace com condições de Dirichlet		
EDP	$0 = \Delta u(x, y),$	$(x,y)\in\Omega;$
Condição de Dirichlet	u(x,y) = f(x,y),	$(x,y)\in\partial\Omega.$

A segunda condição na fronteira que vamos estudar é as *condições de Neumann*:

Equação de Laplace com condições de Neumann		
EDP	$0=\Delta u(x,y),$	$(x,y)\in\Omega;$
Condição de Neumann	$v(x,y) \cdot \nabla u(x,y) = \frac{\partial u}{\partial v}(x,y) = f(x,y),$	$(x,y)\in\partial\Omega.$

Notamos que uma função de classe C^2 num aberto Ω chama-se **harmónica** se $\Delta u(x,y)=0$ para cada ponto $(x, y) \in \Omega$.

7.1 Unicidade de Soluções

Equação de Calor Consideremos a equação de calor com a condição inicial e as condições na fronteira:

$$u_{t} = ku_{xx},$$
 $0 < t, 0 \le x \le L;$
 $u(x,0) = f(x),$ $0 < x < L;$
 $u(0,t) = 0,$ $t > 0;$
 $u(L,t) = 0,$ $t > 0.$ (7.2)

7.1.1 Proposição. Se u(x,t) é uma solução do problema (7.2) e u,u_t,u_{xx} são contínuas em $0 \le t$ e $0 \le x \le L$, então

$$\int_{0}^{L} u^{2}(x,t) dx \le \int_{0}^{L} f^{2}(x) dx.$$

Demonstração. Para $t \ge 0$ definimos

$$J(t) = \frac{1}{2k} \int_0^L u^2(x, t) \, dt.$$

Temos

$$J'(t) = \frac{1}{k} \int_0^L u(x,t) \cdot u_t(x,t) dx$$

$$= \int_0^L u(x,t) \cdot u_{xx}(x,t) dx$$

$$= u(x,t) \cdot u_{xx}(x,t) \Big|_{x=0}^{x=L} - \int_0^L u_x^2(x,t) dx$$

$$= -\int_0^L u_x^2(x,t) dx \le 0.$$

Logo $J(t) \le J(0)$ para t > 0, e portanto

$$\int_0^L u^2(x,t) \, dx \le \int_0^L u^2(x,0) \, dx = \int_0^L f^2(x) \, dx.$$

Obtemos a unicidade de soluções:

7.1.2 Teorema. O problema (7.2) tem no máximo uma solução u tal que u, u_t e u_{xx} são contínuas.

Demonstração. Se $u_1(x,t)$ e $u_2(x,t)$ são soluções consideremos a função $u(x,t)=u_1(x,t)$ –

 $u_2(x,t)$. A função u satisfaz a equação de calor e as condições

$$u(x,0) = 0,$$

 $u(0,t) = 0,$
 $u(L,0) = 0.$

Pela Proposição 7.1.1 para $t \ge 0$ temos

$$\int_0^L u^2(x,t) \, dx \le \int_0^L u^2(x,0) \, dx = 0.$$

Logo
$$u(x,t) = 0$$
 e $u_1(x,t) = u_2(x,t)$.

Equação de Ondas Consideremos a equação de ondas com as condições iniciais e as condições na fronteira:

$$u_{tt} = c^2 u_{xx},$$
 $0 < t, 0 \le x \le L;$
 $u(x,0) = f(x),$ $0 < x < L;$
 $u_t(x,0) = g(x),$ $0 < x < L;$
 $u(0,t) = 0,$ $t > 0;$
 $u(L,t) = 0,$ $t > 0.$ (7.3)

Se u(x,t) é uma solução de classe C^2 em $[0,L] \times [0,+\infty[$ podemos definir

$$E(t) = \frac{1}{2c^2} \int_0^L (c^2 u_x^2(x,t) + u_t^2(x,t)) dx$$
 (7.4)

Como u é de classe C^2 temos $u_{tx} = u_{xt}$. Obtemos

$$\frac{dE}{dt}(t) = \frac{1}{2c^2} \int_0^L (2c^2 u_x u_{tx} + 2u_t u_{tt}) dx
= \frac{1}{c^2} \int_0^L (c^2 u_x u_{xt} + c^2 u_t u_{xx}) dt
= \int_0^L \frac{\partial}{\partial x} (u_t u_x) dx
= u_t(x,t) \cdot u_t(x,t) \Big|_{x=0}^{x=L}
= u_t(L,t) \cdot u_x(L,t) - u_t(0,t) \cdot u_x(0,t).$$

Como u(0,t) = 0 e u(L,t) = 0 obtemos

$$u_t(0,t) = 0$$
 e $u_t(L,t) = 0$.

Logo E(t) é constante e para t > 0 temos

$$E(t) = E(0) = \frac{1}{2c^2} \int_0^L (c^2 u_x^2(x,0) + u_t^2(x,0)) dx$$
$$= \frac{1}{2c^2} \int_0^L (c^2 f_x^2(x) + g^2(x)) dx. \tag{7.5}$$

7.1.3 Teorema. O problema (7.3) tem no máximo uma solução de classe C^2 .

Demonstração. Se $u_1(x,t)$ e $u_2(x,t)$ são soluções de classe C^2 consideremos a função $u(x,t) = u_1(x,t) - u_2(x,t)$. A função u satisfaz a equação de ondas e as condições

$$u(x,0) = 0,$$
 $0 < x < L;$
 $u_t(x,0) = 0,$ $0 < x < L;$
 $u(0,t) = 0,$ $t > 0;$
 $u(L,t) = 0,$ $t > 0.$

Pela (7.5) temos

$$0 = E(0) = E(t) = \frac{1}{2c^2} \int_0^L (c^2 u_x^2(x, t) + u_t^2(x, t)) dx$$

Logo $u_t(x,t) = 0$ e $u_x(x,t) = 0$. Portanto u(x,t) é constante e

$$u(x,t) = u(0,0) = 0.$$

Ou seja $u_1(x,t) = u_2(x,t)$.

Equação de Laplace Consideramos o problema

$$0 = \Delta u(x, y), \qquad (x, y) \in \Omega;$$

$$f(x, y) = u(x, y), \qquad (x, y) \in \partial \Omega;$$

$$(7.6)$$

ou

$$f(x,y) = \frac{\partial u}{\partial y} \qquad (x,y) \in \partial \Omega.$$

7.1.4 Teorema. Se u_1 e u_2 são soluções de classe C^2 do problema (7.6), então $u_1 - u_2$ é constante em Ω .

Demonstração. Se $u_1(x,t)$ e $u_2(x,t)$ são soluções de classe C^2 consideremos a função $u(x,t) = u_1(x,t) - u_2(x,t)$. A função u satisfaz a equação de Laplace e uma das condições

$$u(x,y) = 0,$$
 $(x,y) \in \partial\Omega;$

ou

$$\frac{\partial u}{\partial y}(x,y) = 0,$$
 $(x,y) \in \partial \Omega.$

Como

$$\nabla \cdot (u\nabla u) = u\Delta u + \nabla u \cdot \nabla u = ||\nabla u||^2,$$

pelo Teorema de Gauss obtemos

$$\int_{\Omega} ||\nabla u||^2 = \int_{\partial \Omega} u \cdot \frac{\partial u}{\partial \nu} = 0.$$

Logo $\nabla u = (0,0)$ e u(x,y) é constante.

7.2 Propriedade de Funçcões Harmónicas

7.2.1 Valor Médio

A primeira propriedade de funções harmónicas é de valor médio

7.2.1 Teorema. Se u é uma função harmónica num domínio conexo $\Omega \subset \mathbb{R}^2$ então para cada ponto $(x_0, y_0) \in \Omega$ e cada r > 0 tal que

$$B_r(x_0, y_0) = \{(x, y) : ||(x - x_0, y - y_0)|| < r\} \subset \Omega$$

temos

$$u(x_0, y_0) = \frac{1}{2\pi r} \int_{\partial B_r(x_0, y_0)} u.$$

Demonstração. Para r > 0 consideremos a função definida por

$$f(r) = \frac{1}{2\pi r} \int_{\partial B_r(x_0, \mu_0)} u.$$

Usando a parametrização $\varphi(\theta) = (x_0 + r\cos\theta, y_0 + r\sin\theta)$, obtemos

$$(D\varphi)^t(D\varphi) = (-r \operatorname{sen} \theta \quad r \cos \theta) \cdot \begin{pmatrix} -r \operatorname{sen} \theta \\ r \cos \theta \end{pmatrix} = r^2$$

e portanto $\sqrt{\det(D\phi)^t(D\phi)} = r$. Logo

$$f(r) = \frac{1}{2\pi r} \int_0^{2\pi} u(x_0 + r\cos\theta, y_0 + r\sin\theta) r d\theta$$
$$= \frac{1}{2\pi} \int_0^{2\pi} u(x_0 + r\cos\theta, y_0 + r\sin\theta) d\theta.$$

Como $0 = \Delta u = \nabla \cdot \nabla u = \operatorname{div}(\nabla u)$ o teorema de Gauss implica que

$$0 = \int_{B_r(x_0, y_0)} \operatorname{div}(\nabla u)$$

$$= \int_{\partial B_r(x_0, y_0)} \langle \nabla u, v \rangle$$

$$= \int_{\partial B_r(x_0, y_0)} \frac{\partial u}{\partial v}$$

$$= \int_0^{2\pi} \left(\cos \theta \frac{\partial u}{\partial x} + \sin \theta \frac{\partial u}{\partial y} \right) (x_0 + r \cos \theta, y_0 + r \sin \theta) r d\theta$$

$$= \int_0^{2\pi} \frac{\partial}{\partial r} u(x_0 + r \cos \theta, y_0 + r \sin \theta) d\theta$$

$$= \frac{\partial}{\partial r} \int_0^{2\pi} u(x_0 + r \cos \theta, y_0 + r \sin \theta) d\theta$$

$$= \frac{\partial}{\partial r} 2\pi f(r).$$

Logo f(r) é constante para r > 0. Temos

$$\lim_{r \to 0} f(r) = \lim_{r \to 0} \frac{1}{2\pi} \int_0^{2\pi} u(x_0 + r\cos\theta, y_0 + r\sin\theta) \, d\theta = u(x_0, y_0).$$

Segue que

$$u(x_0, y_0) = \frac{1}{2\pi r} \int_{\partial B_r(x_0, y_0)} u.$$

7.2.2 Princípio do Máximo

A segunda propriedade de funções harmónicas é do princípio máximo

7.2.2 Teorema. Seja u(x,y) é uma função harmónica num aberto conexo Ω . Se existe um ponto $(p,q) \in \Omega$ tal que $u(p,q) \ge u(x,y)$ para cada $(x,y) \in \Omega$, então u é constante.

Demonstração. Vamos supor que existe um ponto $(p,q) \in \Omega$ tal que $u(x,y) \le u(p,q)$ para cada $(x,y) \in \Omega$. Seja r > 0 tal que $\overline{B_r(p,q)} \subset \Omega$. Para cada $0 < \rho \le r$ e cada $0 \le \theta \le 2\pi$ temos $u(p,q) - u(p + \rho \cos \theta, q + \rho \sin \theta) \ge 0$ e portanto

$$\frac{1}{2\pi} \int_0^{2\pi} \left(u(p,q) - u(p + \rho\cos\theta, q + \rho\sin\theta) \right) d\theta \ge 0 \tag{7.7}$$

Pelo Teorema 7.2.1 o valor do integral na alínea anterior é zero. Logo $u(p,q) = u(p + \rho \cos \theta, q + \rho \sin \theta)$ para cada $0 < \rho \le r$ e cada $0 \le \theta \le 2\pi$. Segue que u(x,y) é constante em $B_r(p,q)$. Como Ω é conexo podemos deduzir que u(x,y) é constante em Ω .

7.2.3 Corolário. Se Ω é aberto, conexo e limitado e u é uma função harmónica em Ω e é contínua em $\overline{\Omega}$ então o máximo de u em $\overline{\Omega}$ é necessariamente assumido na fronteira $\partial\Omega$.

7.2.4 Corolário. Se u_1 e u_2 são funções de classe C^2 num aberto limitado $\Omega \subset \mathbb{R}^2$ e são contínuas em $\overline{\Omega}$ e $u_1|_{\partial\Omega} = u_2|_{\partial\Omega}$ então $u_1(x,y) = u_2(x,y)$ para cada $(x,y) \in \Omega$.

7.3 Separação da Variáveis

Um método de separação das variáveis começa assumindo que

$$u(x,t) = X(x)T(t)$$
.

7.3.1 Equação de calor

Aplicando a equação de calor à função $u = X \cdot T$ obtemos

$$XT' = kX''T$$
.

ou seja

$$\frac{1}{k}\frac{T'}{T} = \frac{X''}{X}.$$

Com a única função de t que é igual a uma função de x é a função constante obtemos

$$T' - k\lambda T = 0,$$
 $X'' - \lambda X = 0.$

As soluções gerais são

$$\lambda > 0, \quad T(t) = Ae^{k\lambda t}, \quad X(x) = c_1 e^{\sqrt{\lambda}x} + c_2 e^{-\sqrt{\lambda}x};$$

$$\lambda < 0, \quad T(t) = Ae^{k\lambda t}, \quad X(x) = c_1 \cos(\sqrt{-\lambda}x) + c_2 \sin(\sqrt{-\lambda}x);$$

$$\lambda = 0, \quad T(t) = A, \qquad X(x) = c_1 + c_2 x.$$

Aplicando a condição 0 = u(0,t) = X(0)T(t) para t > 0 obtemos X(0) = 0, e aplicando a condição 0 = u(L,t) = X(L)T(t) para t > 0 obtemos X(L) = 0.

i) Para $\lambda > 0$ temos

$$\begin{pmatrix} X(0) \\ X(L) \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ e^{\sqrt{\lambda}L} & e^{-\sqrt{\lambda}L} \end{pmatrix} \cdot \begin{pmatrix} c_1 \\ c_2 \end{pmatrix}.$$

Como

$$\det\begin{pmatrix} 1 & 1 \\ e^{\sqrt{\lambda}L} & e^{-\sqrt{\lambda}L} \end{pmatrix} = e^{-\sqrt{\lambda}L} - e^{\sqrt{\lambda}L} \neq 0.$$

a única solução é $c_1 = c_2 = 0$.

- ii) Para $\lambda = 0$ é facil de ver que $X(x) = c_1 + c_2 x$ satisfaz X(0) = X(L) = 0 se e só se $c_1 = c_2 = 0$.
- iii) Para $\lambda < 0$ seja $\omega^2 = -\lambda$. Temos

$$X(x) = c_1 \cos \omega x + c_2 \sin \omega x.$$

Aplicando a condição 0 = X(0) segue que $c_1 = 0$, e aplicando a condição 0 = X(L) obtemos

$$0 = c_2 \operatorname{sen} \omega L$$
.

Para obter uma solução não trivial temos

$$\omega L = n\pi$$
, $n = 1, 2, \dots$

Sendo $\lambda_n = -(n\pi/L)^2$ obtemos uma família de soluções

$$u_n(x,t) = e^{\lambda_n t} \operatorname{sen}\left(\frac{n\pi}{L}x\right), \quad n = 1, 2, 3, \dots$$

que satisfaz a equação de calor a condição de fronteira. Obtemos uma solução formal (sem condições de convergência)

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{k\lambda_n t} \operatorname{sen}\left(\frac{n\pi}{L}x\right).$$

Para obter uma solução que satisfaz a condição inicial temos encontrar coeficientes b_n tais que

$$f(x) = \sum_{n=1}^{\infty} b_n \operatorname{sen}\left(\frac{n\pi}{L}x\right).$$

7.3.2 Equação de ondas

Consideremos a equação de ondas

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < t, 0 \le x \le L$$

com as condições u(0,t) = 0, u(L,t) = 0 na fronteira e as condições

$$u(x,0) = f(x), \quad \frac{\partial u}{\partial t}(x,0) = g(x)$$

iniciais. Usando o método de separação de variáveis u(x,t) = X(x)T(t) obtemos

$$XT'' = c^2 X''T$$

ou seja

$$\frac{1}{c^2} \frac{T''}{T} = \frac{X''}{X} = \lambda$$
 (constante).

Como vimos no caso da equação de calor $X''=\lambda X$ e as condições X(0)=X(L)=0 tem uma solução não nula

$$X_n(x) = \operatorname{sen} \frac{n\pi x}{L}, \quad \lambda_n = -\left(\frac{n\pi}{L}\right)^2.$$

Obtemos

$$T^{\prime\prime} + \left(\frac{n\pi c}{L}\right)^2 T = 0.$$

Sendo $\omega_n = n\pi c/L$, obtemos

$$T_n(t) = A_n \cos \omega_n t + B_n \sin \omega_n t,$$

e uma solução formal

$$u(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos \frac{n\pi ct}{L} + B_n \sin \frac{n\pi ct}{L} \right] \sin \frac{n\pi}{L} x$$

que satisfaz a equação de ondas e as condições na fronteira. Para obter uma solução que satisfaz as condições iniciais temos de resolver

$$f(x) = u(x,0) = \sum_{n=1}^{\infty} A_n \operatorname{sen} \frac{n\pi x}{L}$$

e

$$g(x) = \frac{\partial u}{\partial t}(x,0) = \sum_{n=1}^{\infty} \frac{n\pi c}{L} B_n \operatorname{sen} \frac{n\pi x}{L}.$$

Solução de d'Alembert Consideremos

$$\zeta = x + ct$$
 e $\eta = x - ct$.

Temos

$$u(x,t) = u\left(\frac{\zeta + \eta}{2}, \frac{\zeta - \eta}{2c}\right) = U(\zeta, \eta),$$

e

$$\begin{split} \frac{\partial u}{\partial x} &= \frac{\partial U}{\partial \zeta} \frac{\partial \zeta}{\partial x} + \frac{\partial U}{\partial \eta} \frac{\partial \eta}{\partial x} \\ &= U_{\zeta} + U_{\eta} \\ \frac{\partial^{2} u}{\partial x^{2}} &= U_{\zeta\zeta} + 2U_{\zeta\eta} + U_{\eta\eta} \\ \frac{\partial u}{\partial t} &= cU_{\zeta} - cU_{\eta} \\ \frac{\partial^{2} u}{\partial t^{2}} &= c^{2}U_{\zeta\zeta} - 2c^{2}U_{\zeta\eta} + c^{2}U_{\eta\eta}. \end{split}$$

Portanto

$$0 = \frac{\partial^2 u}{\partial t^2} - c^2 \frac{\partial^2 u}{\partial x^2} = -4c^2 U_{\zeta\eta}.$$

A solução

$$\frac{\partial}{\partial \eta} \left(\frac{\partial U}{\partial \zeta} \right) = 0$$

é

$$\frac{\partial U}{\partial \zeta} = F(\zeta)$$

e portanto

$$U(\zeta,\eta) = \Phi(\zeta) + \Psi(\eta).$$

Logo

$$u(x,t) = \Phi(x+ct) + \Psi(x-ct)$$

com Φ e Ψ funções de classe C^2 é uma solução geral da equação de ondas.

7.3.3 Equação de Laplace

Consideremos

Equação de Laplace

EDP	$u_{xx}+u_{yy}=0,$	$0 < x < L, 0 \le y \le H;$
Condição na fronteira	u(0,y)=0,	u(L,y)=0;
	u(x,0) = f(x),	u(x,H)=0.

Sendo u(x,y) = X(x)Y(y) obtemos

$$X''Y + XY'' = 0,$$

e

$$\frac{X''}{Y} = -\frac{Y''}{Y} = -\lambda.$$

Temos de resolver duas equações

$$X'' + \lambda X = 0 \tag{7.8}$$

$$Y'' - \lambda Y = 0. \tag{7.9}$$

As soluções de (7.8) e (7.9) são

$$X(x) = A + Bx$$

$$Y(y) = C + Dy;$$

$$X(x) = A\cos\sqrt{\lambda}x + B\sin\sqrt{\lambda}x$$

$$\lambda > 0,$$

$$Y(y) = C\cosh\sqrt{\lambda}y + D\sinh\sqrt{\lambda}y;$$

$$X(x) = A\cosh\sqrt{-\lambda}x + B\sinh\sqrt{-\lambda}x$$

$$\lambda < 0,$$

$$Y(y) = C\cos\sqrt{-\lambda}y + D\sin\sqrt{-\lambda}y.$$

Aplicando as condições na fronteira u(0,y) = 0 = u(L,y) obtemos X(0) = 0 = X(L), e uma série de soluções

$$X_n(x) = \operatorname{sen} \frac{n\pi x}{L}, \quad \lambda_n = \left(\frac{n\pi}{L}\right)^2, \quad n = 1, 2, 3, \dots$$

Aplicando a condição u(0,y) = 0, $\cosh y \neq 0$ e $\sinh y = 0$ se e só se y = 0, obtemos Y(H) = 0 e

$$Y_n(y) = \operatorname{senh} \frac{n\pi(y-H)}{L},$$

e uma solução formal

$$u(x,y) = \sum_{n=1}^{\infty} A_n \operatorname{sen} \frac{n\pi x}{L} \cdot \operatorname{senh} \frac{n\pi (H-y)}{L}.$$

Aplicando a condição u(x,0) = f(x) temos de resolver

$$f(x) = \sum_{n=1}^{\infty} A_n \operatorname{senh} \frac{n\pi H}{L} \cdot \operatorname{sen} \frac{n\pi x}{L}.$$

8 Série de Fourier

8.1 Sistemas de Funções Ortogonais

Seja L > 0. Uma função $f: [-L, L] \to \mathbb{R}$ diz-se *seccionalmante* contínua se existe uma partição de [-L, L] num conjunto finito $\{I_1, \ldots, I_n\}$ de subintervalos tal que

- i) $f|_{I_j}$ é contínua para cada j = 1, ..., n;
- ii) existem os limites laterais de f em cada extremo de cada subintervalo $I_j \subset [-L, L]$.

Notamos uma partição finita de [-L, L] é da forma $I_1 = [-L, x_1], \dots, I_n = [x_{n-1}, L]$ com $-L < x_1 < \dots < x_{n-1} < L$.

Vamos escrever $C_{\text{sec}}[-L,L]$ para o espaço linear real de todas as funções f definidas em [-L,L] tais que f é seccionalmente contínua.

8.1.1 Definição. Para $f \in C_{\text{sec}}[-L, L]$ definimos a *série de Fourier* de f por

$$\frac{a_0(f)}{2} + \sum_{n=1}^{\infty} a_n(f) \cos \frac{n\pi x}{L} + b_n(f) \sin \frac{n\pi x}{L},\tag{8.1}$$

onde

$$a_n(f) = \frac{1}{L} \int_{-L}^{L} f(x) \cos \frac{n\pi x}{L} dx$$
$$b_n(f) = \frac{1}{L} \int_{-L}^{L} f(x) \sin \frac{n\pi x}{L} dx.$$

Os números $a_n(f), b_n(f)$ são os coeficientes da série de Fourier de f.

Para $f, g \in C_{\text{sec}}[-L, L]$ consideremos

$$\langle f, g \rangle = \int_{-L}^{L} f(x)g(x) dx.$$

Temos

i)
$$\langle f, g \rangle = \langle g, f \rangle$$
;

ii)
$$\langle c \cdot f, g \rangle = c \langle f, g \rangle, c \in \mathbb{R};$$

iii)
$$\langle f_1 + f_2, g \rangle = \langle f_1, g \rangle = \langle f_2, g \rangle$$
;

iv)
$$\langle f, f \rangle \ge 0$$
;

v) $\langle f, f \rangle = 0$ se e só se f(x) = 0 para quase todos os pontos $x \in [-L, L]$.

Notamos que $\langle -, - \rangle$ não é um produto interno no espaço linear $C_{\text{sec}}[-L, L]$, mas se $f \in C_{\text{sec}}[-L, L]$ é contínuas então $\langle f, f \rangle = 0$ se e só se f é a função constante nula.

Recordamos

$$\langle \cos \frac{m\pi x}{L}, \cos \frac{n\pi x}{L} \rangle = \begin{cases} 0, & m \neq n; \\ L, & m = n \neq 0; \\ 2L, & m = n = 0. \end{cases}$$

$$\langle \operatorname{sen} \frac{m\pi x}{L}, \operatorname{sen} \frac{n\pi x}{L} \rangle = \begin{cases} 0, & m \neq n; \\ L, & m = n \neq 0. \end{cases}$$

Definamos $||f|| = \sqrt{\langle f, f \rangle}$. Notamos que ||-|| é uma *semi-norma* no espaço linear $C_{\text{sec}}[-L, L]$. Por exemplo, a função f(x) = 0 se $x \neq 0$ e f(0) = 1 é seccionalmente contínua e não nula, mas ||f|| = 0.

Dizemos que $f,g \in C_{\text{sec}}[-L,L]$ são equivalentes em média quadrática e escrevemos $f \sim g$ se

$$0 = ||f - g||^2 = \int_{-L}^{L} (f(x) - g(x))^2 dx.$$

Notamos que $f \sim g$ se e só se $\{x \in [-L, L] : g(x) \neq f(x) \notin \text{finito}\}.$

Seja $\widetilde{C}_{\rm sec}[-L,L]$ o espaço de funções seccionalmente contínuas em [-L,L], considerando identificadas as funções que são iguais em quase todos os pontos de [-L,L]. $\langle -,-\rangle$ é um produto interno em $\widetilde{C}_{\rm sec}[-L,L]$. Temos para n>0

$$\left\| \frac{1}{\sqrt{L}} \operatorname{sen} \frac{n\pi x}{L} \right\| = 1, \quad \left\| \frac{1}{\sqrt{L}} \cos \frac{n\pi x}{L} \right\| = 1, \quad \left\| \frac{1}{\sqrt{2L}} \right\| = 1$$

e

$$\frac{a_0(f)}{2} = \langle f, \frac{1}{\sqrt{2L}} \rangle \frac{1}{\sqrt{2L}}$$

$$a_n(f) \cos \frac{n\pi x}{L} = \langle f, \frac{1}{\sqrt{L}} \cos \frac{n\pi x}{L} \rangle \frac{1}{\sqrt{L}} \operatorname{sen} \frac{n\pi x}{L}$$

$$b_n(f) \operatorname{sen} \frac{n\pi x}{L} = \langle f, \frac{1}{\sqrt{L}} \operatorname{sen} \frac{n\pi x}{L} \rangle \frac{1}{\sqrt{L}} \operatorname{sen} \frac{n\pi x}{L},$$

e segue que a soma finita

$$\frac{a_0(f)}{2} + \sum_{k=1}^n a_k(f) \cos \frac{k\pi x}{L} + b_k(f) \sin \frac{k\pi x}{L}$$

é a projecção ortogonal de f sobre o subespaço gerado pelo conjunto de funções

$$\left\{ \frac{1}{\sqrt{2L}}, \frac{1}{\sqrt{L}} \cos \frac{k\pi x}{L}, \frac{1}{\sqrt{L}} \sin \frac{k\pi x}{L} \right\}_{k \le n}. \tag{8.2}$$

Seja $f \in \widetilde{C}_{sec}[-L, L]$ e seja

$$S(f)_n(x) = \frac{a_0(f)}{2} + \sum_{k=1}^n a_k(f) \cos \frac{k\pi x}{L} + b_k(f) \sin \frac{k\pi x}{L},$$
(8.3)

onde $a_k(f), b_k(f)$ são os coeficientes da série de Fourier de f. Para u uma função no conjunto (8.2) temos

$$\langle f - S(f)_n, u \rangle = \langle f, u \rangle - \langle S(f)_n, u \rangle = 0,$$

e portanto $\langle f - S(f)_n, S(f)_n \rangle = 0$. Pelo teorema de Pitágoras obtemos

$$||f||^{2} = ||f - S(f)_{n}||^{2} + ||S(f)_{n}||^{2} \ge ||S(f)_{n}||^{2} = L\left(\frac{a_{0}(f)^{2}}{2} + \sum_{k=1}^{n} a_{k}(f)^{2} + b_{k}(f)^{2}\right).$$

Logo a sucessão crescente

$$\left\{ \frac{a_0(f)^2}{2} + \sum_{k=1}^n a_k(f)^2 + b_k(f)^2 \right\}$$

é limitada por $||f||^2$. Segue que

$$\frac{a_0(f)^2}{2} + \sum_{k=1}^{\infty} a_k(f)^2 + b_k(f)^2 \le \frac{1}{L} ||f||^2.$$
 (8.4)

A desigualdade (8.4) chama-se a **Desigualdade de Bessel**.

8.2 Convergência Pontual, Uniforme e em Norma Média Quadrática

Para simplificar a análise da série de Fourier vamos supor que f é uma função integrável em $[-\pi,\pi[$ e é periódica com período 2π . Portanto

$$f(x+2k\pi)=f(x).$$

Para $n \ge 0$ consideremos

$$S(f)_{n}(x) = \frac{a_{0}(f)}{2} + \sum_{k=1}^{n} a_{k}(f) \cos nx + b_{k}(f) \sin nx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{2} + \sum_{k=1}^{n} \cos(kt) \cos(kx) + \sin(kt) \sin(kx) \right] dt$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f(t) \left[\frac{1}{2} + \sum_{k=1}^{n} \cos k(t - xt) \cos dt \right] dt.$$

O núcleo de Dirichlet é a função

$$D_n(x) = \frac{1}{2} + \sum_{k=1}^n \cos(kx) = \begin{cases} \frac{\sin(n+1/2)x}{2\sin x/2}, & x \neq 2m\pi; \\ n+1/2, & x = 2m\pi. \end{cases}$$

A função $D_n(x)$ é contínua, periódica com período 2π , $D_n(x) = D_n(-x)$ e

$$\int_{-\pi}^{\pi} D_n(x) \, dx = \pi.$$

Gráfico de $D_{11}(x)$

Temos

$$\pi S(f)_n(x) = \int_{-\pi}^{\pi} f(t) D_n(t-x) dt.$$

Sendo u = t - x obtemos

$$\pi S(f)_n(x) = \int_{-\pi-x}^{\pi-x} f(u+x) D_n(u) du$$

e como f e D_n são periódica de período 2π e $D_n(x) = D_n(-x)$ obtemos

$$\pi S(f)_n(x) = \int_{-\pi}^{\pi} f(x+u) D_n(u) du$$

$$= \int_{-\pi}^{0} f(x+u) D_n(u) du + \int_{0}^{\pi} f(x+u) D_n(u) du$$

$$= \int_{0}^{\pi} \left[f(x+u) + f(x-u) \right] D_n(x) dx$$

Para analisa $S(f)_n(x)$ temos o lema seguinte

8.2.1 Lema (Riemann-Lebesgue). Se f é uma função integrável em $[-\pi,\pi[$, periódica com pe-

ríodo 2π e $\lambda_n \to \infty$, então

$$\int_{-\pi}^{\pi} f(x) \operatorname{sen}(\lambda_n x) dx \to 0 \quad \text{como } n \to \infty.$$

8.2.2 Teorema. Se f satisfaz as condições do Lemma 8.2.1, então $S(f)_n(x) \to s(x)$ se e só se para qualquer $0 < \delta < \pi$

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_0^{\delta} \frac{f(x+u) + f(x-u) - 2s(x)}{u} \operatorname{sen} \frac{(2n+1)u}{2} du = 0.$$

Demonstração. Como $\int_{-\pi}^{\pi} D_n(u) du = \pi$ temos

$$S(f)_{n}(x) - s(x) = \frac{1}{2\pi} \int_{0}^{\pi} \left[f(x+u) + f(x-u) - 2s(x) \right] D_{n}(u) du$$

$$= \frac{1}{2\pi} \int_{0}^{\delta} \frac{f(x+u) + f(x-u) - 2s(x)}{\sin u/2} \sin \frac{(2n+1)u}{2} du$$

$$+ \frac{1}{2\pi} \int_{\delta}^{\pi} \frac{f(x+u) + f(x-u) - 2s(x)}{\sin u/2} \sin \frac{(2n+1)u}{2} du$$

Pelo Lemma 8.2.1 temos

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_{\delta}^{\pi} \frac{f(x+u) + f(x-u) - 2s(x)}{\sin u/2} \sin \frac{(2n+1)u}{2} du = 0.$$

Portanto

$$\lim_{n \to \infty} S(f)_n(x) - s(x) = \lim_{n \to \infty} \frac{1}{2\pi} \int_0^{\delta} \frac{f(x+u) + f(x-u) - 2s(x)}{\sin u/2} \sin \frac{(2n+1)u}{2} du$$

Consideremos a função

$$\phi(u) = \frac{1}{\sin(u/2)} - \frac{1}{u/2} = \frac{u - 2\sin(u/2)}{u\sin(u/2)}.$$

Pela regra de Cauchy função $\phi(u)$ é limitada em $[0,\delta]$ e portanto pelo Lemma 8.2.1

$$\lim_{n \to \infty} \left[f(x+u) + f(x-u) - 2s(x) \right] \phi(u) \operatorname{sen} \frac{(2n+1)u}{2} du = 0.$$

Logo

$$\lim_{n \to \infty} S(f)_n(x) - s(x) =$$

$$\lim_{n \to \infty} \frac{1}{2\pi} \int_{\delta}^{\pi} \frac{f(x+u) + f(x-u) - 2s(x)}{u} \operatorname{sen} \frac{(2n+1)u}{2} du$$

Notamos que

$$\lim_{u \to u^{+}} \frac{f(x+u) - f(x)}{u}$$
 é a derivada à direita
$$\lim_{u \to u^{+}} \frac{f(x-u) - f(x)}{-u}$$
 é a derivada à esquerda

e

$$\frac{f(x+u) + f(x-u) - 2f(x)}{u} = \frac{f(x+u) - f(x)}{u} - \frac{f(x-u) - f(x)}{-u}.$$

Portanto se f é seccionalmente diferenciável então a série de Fourier $S(f)_{\infty}$ converge pontualmente à função

$$s(x) = \lim_{u \to 0^+} \frac{f(x+u) + f(x-u)}{2}.$$

Notamos que se f é contínua em x então s(x) = f(x).

8.2.3 Lema. Se $f: [-\pi, \pi] \to \mathbb{R}$ é uma função contínua, $f(-\pi) = f(\pi)$, e f' é contínua seccionalmente, então os coeficientes da série de Fourier de f' são

$$a_0(f') = 0,$$

$$a_n(f') = nb_n(f),$$

$$b_n(f') = -na_n(f).$$

Demonstração. Por definição temos

$$a_{0}(f') = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) dx = f(\pi) - f(-\pi) = 0,$$

$$a_{n}(f') - ib_{n}(f') = \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) (\cos nx - i \sin nx) dx$$

$$= \frac{1}{\pi} \int_{-\pi}^{\pi} f'(x) e^{-inx} dx$$

$$= \frac{1}{\pi} f(x) e^{-inx} \Big|_{-\pi}^{\pi} + in \cdot \frac{1}{\pi} \int_{-\pi}^{\pi} f(x) e^{-inx} dx$$

$$= in (a_{n}(f) - ib_{n}(f))$$

$$= nb_{n}(f) - ina_{n}(f).$$

8.2.1 Nota. Se $f: [-\pi,\pi] \to \mathbb{R}$ é uma função de classe C^{m-1} e $f^{(k)}(-\pi) = f^{(k)}(\pi)$ para k=0

_

 $0,1,\ldots,m-1$ e se $f^{(m)}$ é seccionalmente contínua, então

$$a_k(f^{(m)}) = (ik)^m \left[\frac{1 + (-1)^m}{2} a_k(f) - i \frac{1 - (-1)^m}{2} b_k(f) \right]$$

$$b_k(f^{(m)}) = i \cdot (ik)^m \left[\frac{1 - (-1)^m}{2} a_k(f) - i \frac{1 + (-1)^m}{2} b_k(f) \right]$$

Pelo Lemma 8.2.3 para n > 0 podemos escrever

$$|a_n(f)| = \left| -\frac{1}{n} b_n(f') \right| = \frac{\alpha_n}{n}$$
$$|b_n(f)| = \left| \frac{1}{n} a_n(f') \right| = \frac{\beta_n}{n}.$$

Pela desigualdade de Bessel temos

$$\sum_{n=1}^{\infty} \alpha_n^2 < \infty \quad \text{e} \quad \sum_{n=1}^{\infty} \beta_n^2 < \infty.$$

Como

$$0 \le \frac{\alpha_n}{n} < \frac{1}{2} \left(\alpha_n^2 + \frac{1}{n^2} \right)$$
 $e \quad 0 \le \frac{\beta_n}{n} < \frac{1}{2} \left(\beta_n^2 + \frac{1}{n^2} \right)$

obtemos

$$\sum_{n=1}^{\infty} |a_n(f)| < \infty \quad \text{e} \quad \sum_{n=1}^{\infty} |b_n(f)| < \infty.$$

8.2.2 Nota. Aplicando o teorema de Weierstrass obtemos que a série de Fourier

$$\frac{a_0(f)}{2} + \sum_{n=1}^{\infty} a_n(f) \cos nx + b_n(f) \sin nx$$

converge uniformemente sempre que f é contínua, $f(-\pi) = f(\pi)$ e f' é seccionalmente contínua. Além disso, a convergência uniforme implica que

$$\lim_{n\to\infty} \int_{-\pi}^{\pi} S(f)_n(x) dx = \int_{-\pi}^{\pi} \lim_{n\to\infty} S(f)_n(x) dx.$$

Recordamos que $S(f)_n \to S(f)_\infty$ uniformemente se e só se

$$\sup_{-\pi \le x \le \pi} |S(f)_n(x) - S(f)_{\infty}(x)| \to 0 \quad \text{como } n \to \infty.$$

Obtemos a **Fórmula de Parseval**

$$\frac{1}{\pi}||f||^2 = \frac{a_0(f)^2}{2} + \sum_{n=1}^{\infty} a_n(f)^2 + b_n(f)^2.$$

8.2.4 Exemplo. Calcule a série de Fourier de $f(x) = x^2$, $-1 \le x \le 1$.

A função x^2 é par, e portanto

$$b_n(f)(x) = \int_{-1}^1 x^2 \sin(n\pi x) dx = 0.$$

Temos $a_0(f) = 2/3$ e para n > 0

$$a_n(f) = 2\int_0^1 x^2 \cos(n\pi x) dx = (-1)^n \frac{4}{n^2 \pi^2}.$$

A série de Fourier é

$$S(f)_{\infty}(x) = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2} \cos(n\pi x).$$

Como f(x) é contínua temos

$$S(f)_{\infty}(x) = \begin{cases} x^2, & \text{se } |x| \le 1; \\ y^2, & \text{se } x = 2k + y \text{ com } k \in \mathbb{Z} \text{ e } |y| \le 1. \end{cases}$$

Segue que

$$0 = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}$$

ou seja

$$\frac{\pi^2}{12} = -\sum_{n=1}^{\infty} \frac{(-1)^n}{n^2}.$$

Gráfico da série de Fourier

No ponto x = 1 obtemos

$$1 = \frac{1}{3} + \frac{4}{\pi^2} \sum_{n=1}^{\infty} \frac{1}{n^2},$$

ou seja

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}.$$

Aplicando a fórmula de Parseval obtemos

$$\frac{1}{2} \int_{-1}^{1} x^4 dx = \frac{2}{9} + \frac{\pi^4}{16} \sum_{n=1}^{\infty} \frac{1}{n^4}$$

ou seja

$$\frac{\pi^4}{16} = \sum_{n=1}^{\infty} \frac{1}{n^4}.$$

8.2.5 Exemplo. Determine a série de Fourier de f(x) = x em $[-\pi, \pi]$.

A função f(x) = x é impar e por isso $a_n(f) = 0$ para cada $n \ge 0$. Para n > 0 temos

$$b_n(f) = \frac{1}{\pi} \int_{-\pi}^{\pi} x \operatorname{sen} nx \, dx = \frac{2}{\pi} \int_{0}^{\pi} x \operatorname{sen} nx \, dx = -2 \frac{(-1)^n}{n}.$$

Logo a série de Fourier de f(x) = x em $[-\pi, \pi]$ é

$$-2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \operatorname{sen} nx.$$

Como f(x) é contínua mas $f(\pi) = \pi \neq -\pi = f(-\pi)$

$$S(f)_{\infty}(x) = \begin{cases} x, & \text{se } |x| < \pi; \\ 0, & \text{se } x = \pm \pi; \\ y, & \text{se } x = 2k\pi + y \text{ com } k \in \mathbb{Z} \text{ e } |y| < \pi; \\ 0, & \text{se } x = (2k+1)\pi \text{ com } k \in \mathbb{Z}. \end{cases}$$

Segue que

$$\frac{\pi}{2} = -2\sum_{n=1}^{\infty} \frac{(-1)^n}{n} \operatorname{sen} \frac{n\pi}{2}$$

ou seja

$$\frac{\pi}{4} = \sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1}.$$

Aplicando a fórmula de Parseval obtemos

$$\frac{1}{\pi} \int_{-1}^{1} x^2 dx = 4 \sum_{n=1}^{\infty} \frac{1}{n^2}$$

ou seja

$$\frac{\pi^2}{6} = \sum_{n=1}^{\infty} \frac{1}{n^2}$$

que já vimos no exemplo anterior.

8.2.6 Exemplo. A série de Fourier da função

$$f(x) = \begin{cases} -\pi, & -1 \le x < 0; \\ 0, & x = 0; \\ \pi, & 0 < x \le 1; \end{cases}$$

é

$$S(f)_{\infty}(x) = 4\sum_{n=0}^{\infty} \frac{(-1)^n}{2n+1} \operatorname{sen}(2n+1)\pi x.$$

Gráfico da série de Fourier

9 Resolução da Equação de Calor

Uma solução formal do problema

Equação de calor

EDP	$u_t = ku_{xx},$	$0 < t, 0 \le x \le L;$
Condição inicial	u(x,0) = f(x),	0 < x < L;
Condição na fronteira	u(0,t)=0,	t > 0;
	u(L,t)=0,	t > 0.

é

$$u(x,t) = \sum_{n=1}^{\infty} b_n e^{-k(n\pi/L)^2 t} \operatorname{sen}\left(\frac{n\pi}{L}x\right)$$

com

$$b_n = \frac{2}{L} \int_0^L f(x) \operatorname{sen}\left(\frac{n\pi}{L}x\right) dx.$$

A série de Fourier de f converge se f é contínua, 0=f(0)=f(L) e f' é seccionalmente contínua. Logo a série

$$\sum_{n=1}^{\infty} b_j e^{-k(n\pi/L)^2 t} \operatorname{sen}\left(\frac{n\pi}{L}x\right)$$
(9.1)

converge uniformemente em 0 < x < L e $t \ge t_0 > 0$, e portanto (9.1) á a solução.

9.1 Equação de Calor Não-Homogénea

Considere a equação não-homogénea com uma condição inicial

$$\frac{\partial u}{\partial t} - k \frac{\partial^2 u}{\partial x^2} = f(x, t), \qquad 0 \le x \le L, \quad t > 0;$$

$$u(x, 0) = \phi(x), \qquad 0 \le x \le L.$$

$$(9.2)$$

Recordamos que para resolver a equação

$$u'(t) + au(t) = f(t)$$
$$u(0) = \phi$$

usamos o fator integrante e^{at} para obter a solução

$$u(t) = e^{-at}\phi + \int_0^t e^{-a(t-s)} f(s) \, ds. \tag{9.3}$$

Sendo $S(t) \cdot \phi = e^{-at} \cdot \phi$ podemos escrever (9.3) na forma

$$u(t) = S(t) \cdot \phi + \int_0^t S(t-s) \cdot f(s) \, ds.$$

Agora consideremos a equação homogénea

$$\frac{\partial u}{\partial t} - k \frac{\partial^2 u}{\partial x^2} = 0, \qquad 0 \le x \le L, \quad t > 0;
 u(x,0) = \phi(x), \qquad 0 \le x \le L.$$
(9.4)

e vamos supor que existe um *operador* S(t) tal que $u(x,t) = S(t) \cdot \phi(x)$ é uma solução de (9.4). Portanto

$$u(x,0) = S(0) \cdot \phi(x)$$

$$= \phi(x)$$

$$u_t - ku_{xx} = \left(\frac{\partial}{\partial t} - k \frac{\partial^2}{\partial x^2}\right) \left(S(t) \cdot \phi(x)\right)$$

$$= 0$$

Para resolver (9.2) define-se

$$u(x,t) = S(t) \cdot \phi(x) + \int_0^t S(t-s) \cdot f(x,s) \, ds. \tag{9.5}$$

Temos

$$\left(\frac{\partial}{\partial t} - k \frac{\partial^2}{\partial x^2}\right) u(x,t) = 0 + S(t-t) \cdot f(x,t) + \int_0^t \left(\frac{\partial}{\partial t} - k \frac{\partial^2}{\partial x^2}\right) \left(S(t-s) \cdot f(x,s)\right)$$

$$= S(0) \cdot f(x,t) + 0$$

$$= f(x,t).$$

Por exemplo, para o problema (9.2) com as condições homogéneas de Dirichlet, isto é

$$0 = u(0,t) = u(L,t)$$

temos o operador

$$S(t) \cdot \phi(x) = \sum_{n=1}^{\infty} b_n \operatorname{sen}\left(\frac{n\pi}{L}x\right) e^{-kn^2\pi^2t/L^2}$$
$$b_n = \frac{2}{L} \int_0^L \phi(x) \operatorname{sen}\left(\frac{n\pi}{L}x\right) dx.$$

Obtemos uma solução particular da equação não-homogénea

$$u_p(x,t) = \int_0^t S(t-s) \cdot f(x,s) \, ds$$

$$S(t-s) \cdot f(x,s) = \sum_{n=1}^\infty B_n(s) \operatorname{sen}\left(\frac{n\pi}{L}x\right) e^{-kn^2\pi^2(t-s)/L^2}$$

$$B_n(s) = \frac{2}{L} \int_0^L f(x,s) \operatorname{sen}\left(\frac{n\pi}{L}x\right) dx.$$

Notamos que para o problema (9.2) com as condições homogéneas de Neumann, isto é

$$0 = u_{x}(0,t) = u_{x}(L,t),$$

temos o operador

$$S(t) \cdot \phi(x) = \frac{a_0}{2} + \sum_{n=1}^{\infty} a_n \cos\left(\frac{n\pi}{L}x\right) e^{-kn^2\pi^2t/L^2}$$
$$a_n = \frac{2}{L} \int_0^L \phi(x) \cos\left(\frac{n\pi}{L}x\right) dx.$$

Para resolver o problema com a condição inicial e as condições de Dirichlet não-homogreas

$$\begin{cases} \frac{\partial u}{\partial t} - k \frac{\partial^2 u}{\partial x^2} = 0, & 0 \le x \le L, \quad t > 0; \\ u(x,0) = \phi(x), & 0 \le x \le L; \\ u(0,t) = g(t), & t > 0; \\ u(L,t) = h(t), & t > 0; \end{cases}$$

$$(9.6)$$

define-se

$$U(x,t) = \frac{L-x}{L}g(t) + \frac{x}{L}h(t).$$

Temos U(0,t)=g(t) e U(L,t)=h(t). Sendo u(x,t) uma solução de (9.6) define-se v(x,t)=u(x,t)-U(x,t). Temos

$$v_{t} - kv_{xx} = -U_{t}$$

$$= -\frac{L - x}{L}g'(t) - \frac{x}{L}h'(t);$$

$$v(x,0) = u(x,0) - U(x,0)$$

$$= \phi(x) - \frac{L - x}{L}g(t) - \frac{x}{L}h(t);$$

$$v(0,t) = g(t) - g(t) = 0;$$

$$v(L,t) = h(t) - h(t) = 0.$$

Sendo v(x,t) uma solução da equção não-homogénea com condições homogéneas de Dirichlet

$$\begin{cases} \frac{\partial v}{\partial t} - k \frac{\partial^2 v}{\partial x^2} = -\frac{L - x}{L} g'(t) - \frac{x}{L} h'(t), & 0 \le x \le L, \quad t > 0; \\ v(x,0) = \phi(x) - \frac{L - x}{L} g(0) - \frac{x}{L} h(0), & 0 \le x \le L; \\ v(0,t) = 0 = v(L,t), & t > 0; \end{cases}$$

$$(9.7)$$

obtemos uma solução u(x,t) = v(x,t) + U(x,t) de (9.6).

Notamos que se uma solução de um dos problemas (9.4), (9.6) e (9.7) existe, então é única.

10 Resolução da Equação de Ondas

Uma solução formal da equação de ondas

$$\frac{\partial^2 u}{\partial t^2} = c^2 \frac{\partial^2 u}{\partial x^2}, \quad 0 < t, 0 \le x \le L$$

com as condições u(0,t) = 0, u(L,t) = 0 na fronteira e as condições

$$u(x,0) = f(x), \quad \frac{\partial u}{\partial t}(x,0) = g(x)$$

iniciais é

$$u(x,t) = \sum_{n=1}^{\infty} \left[A_n \cos \frac{n\pi ct}{L} + B_n \sin \frac{n\pi ct}{L} \right] \sin \frac{n\pi}{L} x$$

com

$$A_n = \frac{2}{L} \int_0^L f(x) \operatorname{sen}\left(\frac{n\pi}{L}x\right) dx,$$

$$B_n = \frac{2}{n\pi c} \int_0^L g(x) \operatorname{sen}\left(\frac{n\pi}{L}x\right) dx.$$

Sejam

$$u_1(x,t) = \sum_{n=1}^{\infty} A_n \cos \frac{n\pi ct}{L} \operatorname{sen} \frac{n\pi}{L} x$$

$$u_2(x,t) = \sum_{n=1}^{\infty} B_n \operatorname{sen} \frac{n\pi ct}{L} \operatorname{sen} \frac{n\pi}{L} x$$

temos $u(x,t) = u_1(x,t) + u_2(x,t)$. A função $u_1(x,t)$ é uma solução formal da equação das ondas com g(x) = 0 e $u_2(x,t)$ é uma solução formal com f(x) = 0.

Se f é de classe C^2 então

$$u(x,0) = f(x) = \sum_{n=0}^{\infty} A_n \operatorname{sen}\left(\frac{n\pi}{L}x\right)$$

converge absolutamente e uniformemente em [0,L]. Como

$$\operatorname{sen}\left(\frac{n\pi}{L}x\right) \cdot \cos\left(\frac{n\pi c}{L}t\right) = \frac{1}{2}\operatorname{sen}\frac{n\pi}{L}(x-ct) + \frac{1}{2}\operatorname{sen}\frac{n\pi}{L}(x+ct)$$

podemos escrever

$$u_1(x,t) = \frac{1}{2} \sum_{n=1}^{\infty} A_n \operatorname{sen} \frac{n\pi}{L} (x - ct) + \frac{1}{2} \sum_{n=1}^{\infty} A_n \operatorname{sen} \frac{n\pi}{L} (x + ct).$$

Sendo

$$F(x) = \begin{cases} f(x), & 0 \le x \le L; \\ -F(-x), & x \in \mathbb{R}; \\ F(x \pm 2L); \end{cases}$$

podem escrever

$$u_1(x,t) = \frac{F(x-ct) + F(x+ct)}{2}$$

Temos

$$\frac{\partial u_1}{\partial t} = \frac{1}{2} \left(-cF'(x - ct) + cF'(x + ct) \right)$$

e $\frac{\partial u_1}{\partial t}(x,0)=0$. Se além de $f\in C^2$ temos f''(0)=f''(L)=0, então F'' é contínua e

$$\frac{\partial^2 u_1}{\partial t^2} = \frac{c^2}{2} \left(F''(x - ct) + F''(x + ct) \right),$$

$$\frac{\partial^2 u_1}{\partial x^2} = \frac{1}{2} \left(F''(x - ct) + F''(x + ct) \right).$$

Agora se g é de classe C^1 e g(0)=g(L)=0, então a série

$$g(x) = \sum_{n=1}^{\infty} B_n \frac{n\pi c}{L} \operatorname{sen} \frac{n\pi}{L} x$$

converge absolutamente e uniformemente em [0,L]. Sendo $C_n=(n\pi c/L)B_n$ temos

$$u_2(x,t) = \frac{L}{\pi c} \sum_{n=1}^{\infty} \frac{C_n}{n} \operatorname{sen}\left(\frac{n\pi c}{L}t\right) \cdot \operatorname{sen}\left(\frac{n\pi x}{L}\right).$$

A derivada formal

$$\frac{\partial u_2}{\partial t} = \sum_{n=1}^{\infty} C_n \cos\left(\frac{n\pi c}{L}t\right) \cdot \sin\left(\frac{n\pi x}{L}\right)$$

pode se escrita da forma

$$\frac{\partial u_2}{\partial t} = \frac{1}{2} \sum_{n=1}^{\infty} C_n \operatorname{sen} \frac{n\pi}{L} (c - ct) + \frac{1}{2} \sum_{n=1}^{\infty} C_n \operatorname{sen} \frac{n\pi}{L} (x + ct)$$

estas duas séries convergem absolutamente e uniformemente. Portanto a derivada formal é a derivada partial de u_2 . Sendo

$$G(x) = \begin{cases} g(x), & 0 \le x \le L; \\ -G(-x), & x \in \mathbb{R}; \\ G(x \pm 2L); \end{cases}$$

obtemos

$$\frac{\partial u_2}{\partial t} = \frac{G(x-ct) + G(x+ct)}{2}$$

e

$$u_2(x,t) = \frac{1}{2} \int_0^t G(x-cs) \, ds + \frac{1}{2} \int_0^t G(x+cs) \, ds$$
$$= \frac{1}{2c} \int_{x-ct}^{x+ct} G(u) \, du.$$

Segue que $u_2(x,t)$ satisfaz

- i) a equação das ondas;
- ii) a condição $u_2(0,t) = 0$;
- iii) a condição $\frac{\partial u_2}{\partial t}(0,t) = g(t)$.

Logo $u(x,t) = u_1(x,t) + u_2(x,t)$ é uma solução.

11 Resolução da Equação de Laplace

Consideramos agora a equação de Laplace

$$u_{xx} + u_{yy} = 0,$$
 $0 < x < L,$ $0 < y < H;$
 $u(x,0) = f_1(x),$ $0 < x, L;$
 $u(x,H) = f_2(x),$ $0 < x < L;$
 $u(0,y) = g_1(y),$ $0 < y < H;$
 $u(L,y) = g_2(y),$ $0 < y < H.$ (11.1)

Podemos escrever uma solução u(x,y) da forma

$$u(x,y) = u_1(x,y) + u_2(x,y) + u_3(x,y) + u_4(x,y)$$

com u_1, u_2, u_3 e u_4 soluções da equação de Laplace com

$$u_1(x,0) = f_1(x),$$
 $u_1(x,H) = 0,$ $u_1(0,y) = 0,$ $u_1(L,y) = 0,$ $u_2(x,0) = 0,$ $u_2(x,H) = f_2(x),$ $u_2(0,y) = 0,$ $u_2(L,y) = 0,$ $u_3(x,0) = 0,$ $u_3(x,H) = 0,$ $u_3(x,H) = 0,$ $u_3(L,y) = 0,$ $u_4(x,0) = 0,$ $u_4(x,H) = 0,$ $u_4(x,H) = 0,$ $u_4(L,y) = g_2(y).$

A função é dada por

$$u_1(x,y) = \sum_{n=1}^{\infty} a_n \operatorname{sen} \frac{n\pi x}{L} \operatorname{senh} \frac{n\pi (H-y)}{L}$$

onde

$$a_n = \frac{2}{L \operatorname{senh} \frac{nhH}{L}} \int_0^L f_1(x) \operatorname{sen} \frac{n\pi x}{L} dx$$

Para a função $u_2(x,y) = X(x) \cdot Y(y)$ temos $\nabla^2 u_2 = 0$ e portanto

$$\frac{X''}{X} = -\frac{Y''}{Y} = \lambda.$$

Como X(0) = 0 = X(L) segue que $\lambda = -\left(\frac{n\pi}{L}\right)^2$ e

$$X_n(x) = \operatorname{sen} \frac{n\pi x}{L}, \quad n = 1, 2, \dots$$

Obtemos

$$Y_n(y) = a_n \cosh \frac{n\pi y}{L} + b_n \sinh \frac{n\pi y}{L}.$$

Pela condição $u_2(x,0) = 0$ obtemos

$$0 = Y_n(0) = a_n.$$

Portanto

$$u_2(x,y) = \sum_{n=1}^{\infty} b_n \operatorname{sen} \frac{n\pi x}{L} \operatorname{senh} \frac{n\pi y}{L}.$$

Aplicando a condição

$$f_2(x) = u_2(x, H) = \sum_{n=1}^{\infty} b_n \operatorname{sen} \frac{n\pi x}{L} \operatorname{senh} \frac{n\pi H}{L}$$

obtemos

$$b_n = \frac{2}{L \operatorname{senh} \frac{n\pi H}{L}} \int_0^L f_2(x) \operatorname{sen} \frac{n\pi x}{L} dx.$$

Para a função $u_3(x,y)$ que satisfaz as condições

$$u_3(x,0) = 0,$$
 $u_3(x,H) = 0,$ $u_3(0,y) = g_1(y),$ $u_3(L,y) = 0,$

temos

$$Y_n(y) = \operatorname{sen} \frac{n\pi y}{H}, \qquad X_n = c_n \operatorname{senh} \frac{n\pi (L-x)}{H}$$

e

$$u_3(x,y) = \sum_{n=1}^{\infty} c_n \operatorname{sen} \frac{n\pi y}{H} \operatorname{senh} \frac{n\pi (L-x)}{H}$$

com

$$c_n = \frac{2}{L \operatorname{senh} \frac{n\pi L}{H}} \int_0^H g_1(y) \operatorname{sen} \frac{n\pi y}{H} dy.$$

Para terminar temos

$$u_4(x,y) = \sum_{n=1}^{\infty} d_n \operatorname{sen} \frac{n\pi y}{H} \operatorname{senh} \frac{n\pi x}{H}$$

onde

$$d_n = \frac{2}{H \operatorname{senh} \frac{n\pi L}{H}} \int_0^H g_2(y) \operatorname{sen} \frac{n\pi y}{H} dy$$

A soma é

$$\sum_{n=1}^{\infty} \left[\left(a_n \operatorname{senh} \frac{n\pi(H-y)}{L} + b_n \operatorname{senh} \frac{n\pi y}{L} \right) \operatorname{sen} \frac{n\pi x}{L} \right]$$

$$+\left(c_n \operatorname{senh} \frac{n\pi L - x}{H} + d_n \operatorname{senh} \frac{n\pi x}{H}\right) \operatorname{sen} \frac{n\pi y}{H}$$
.

Referências

- [1] L. Barreira e C. Valls. *Equações Diferenciais via Análise Real e Complexa*. Coleção Ensino da Ciência e da Tecnologia 74. IST Press, 2021.
- [2] P. M. Girão. *Introdução à Análise Complexa, Séries de Fourier e Equações Diferenciais*. Coleção Ensino da Ciência e da Tecnologia 53. IST Press, 2ª edição 2022.