3.4.1 Force, energy and momentum

3.4.1.1 Scalars and vectors

- Vector
 - Any physical quantity that has a direction as well as a magnitude
 - e.g. velocity, force / weight, acceleration, displacement
- Scalar
 - · Any physical quantity that is not directional
 - e.g. speed, mass, distance, temperature
- Conditions for equilibrium
 - For an object to be in equilibrium, the sum of all the forces acting on an it must be 0
 - e.g. 3 forces form a closed triangle

- · Explaining what forces balance each other
 - · e.g. child on swing
 - o Pull force balances with the **horizontal component** of tension
 - Weight balances with the vertical component of tension

3.4.1.2 Moments

- Moment formula
 - Moment of a force about a point
 - = force \times perpendicular distance from the pivot point to the line of action of the force
- Couple
 - A pair of equal and opposite parallel / coplanar forces acting on a body along different points
 - Exerts a turning force on a body
 - Moment of couple
 - = force × perpendicular distance between the lines of action of the forces
- Principle of moments
 - For an object in equilibrium, the sum of anticlockwise moments about a pivot is equal to the sum of clockwise moments
- Centre of mass
 - The point at which an object's mass acts
 - The point through which a single force on the body has no turning effect
- Finding centre of mass

- · Uniform regular solid
 - o Centre of mass at the centre
- Non-regular card
 - o Hang object (and plumb line) by first pivot
 - o Draw first line vertically below pivot (by sketching a plumb line hang from the pivot)
 - o Hang object (and the plumb line) by second pivot
 - o Draw second line vertically below pivot
 - o Intersection of lines is the centre of mass
- Multiple mass on a rod

- Equilibrium stability
 - Stable
 - Object returns to its equilibrium position if displaced (a little)
 - Wide base, low centre of gravity
 - Tilted for a certain angle before centre of mass crosses the pivot point and topple
 - Unstable
 - · Object does not return to its equilibrium position if displaced
 - Topple immediately after being tilted
 - Neutral
 - · Stay in place when left alone
 - Stay in the new position when moved
 - The object's centre of mass is always exactly over the point which is its 'base'

Stable equilibrium

Unstable equilibrium

- Tilting / topping
 - Tilting
 - An object resting on a surface is acted on by a force that raises it up on 1 side
 - For an object to tilt: $Fd > \frac{Wb}{2}$ (b =width of base)

- Toppling
 - Tilted too far
 - Line of action of its weight passes beyond the pivot = topple over if allowed to
- Two support problems
 - When an object is in equilibrium and supported by 2 points then the 2 supports add up to the weight of the object
 - The support closer to the centre of mass provides more of the support force
- On a slope
 - The line of action of weight must lie inside the base of the object to prevent tilting

- $S_x > S_y$ since x is lower than y (more moment is needed to be produced from x as it is closer to the centre of mass)
- Conditions for equilibrium
 - No resultant force
 - No resultant moment / torque (the principle of moments must apply)

3.4.1.3 Motion along a straight line

• Terms

	Term	Definition		
	Speed	A scalar quantity describing how quickly an object is travelling		
	Displacement (s)	The overall distance travelled from the starting position (includes a direction, vector quantity)		
	Velocity (v)	Rate of change of displacement (= $\frac{\Delta s}{\Delta t}$)		
•	Instantaneous velocity	The velocity of an object at a specific point in time		
	Average velocity	The velocity of an object over a specified time frame		
	Acceleration (a)	Rate of change of velocity (= $\frac{\Delta v}{\Delta t}$)		
	Uniform acceleration	The acceleration of an object is constant		

• SUVAT equations

- For uniform acceleration
- v = u + at

•
$$s = \left(\frac{u+v}{2}\right)t$$

$$\bullet \quad s = ut + \frac{1}{2}at^2$$

•
$$s = vt - \frac{1}{2}at^2$$

•
$$v^2 = u^2 + 2as$$

Motion graphs

		Displacement-time	Velocity-time	Acceleration-time
•	Gradient	Velocity	Acceleration	/
	Area	/	(Change in) displacement	Change in velocity

- Free fall
 - u = 0
 - a = g
- Light gate

• speed through the light gate = $\frac{\text{length of the object}}{\text{time for the light to be obscured}}$

Required practical 3 - determining g

- Equipment
 - Stand
 - Bosses and clamps
 - Electromagnet
 - · Steel ball bearing
 - · Light gate
 - Timer (connected to the light gate)
 - · Soft cushion pad
- How to determine g by free fall
 - Set up the apparatus as shown

- The position of the lower light gate should be adjusted such that the height *h* is 0.500m, measured using the metre rule
- Turn on the electromagnet and attach the ball bearing
- Reset the timer to zero and switch off the electromagnet
- Read and record the time t on the timer for the ball to pass through the 2 light dates
- Reduce h by 0.050m by moving the lower light gate upwards and repeat this, reducing h by

0.050m each time until h reaches 0.250m (at least 5-10 values of h)

- Repeat the experiment twice more for each value of h and find and record the mean t for each
- Plot a graph of $\frac{2h}{t}$ against t and draw a line of best fit $(\frac{2h}{t} = 2u + gt)$
- Gradient = g, y-intercept = 2u
 - · (You might want to draw lines of maximum and minimum gradient and find the mean gradient)

• Errors

- Systematic
 - Residue magnetism after the electromagnet is switched off may cause t to be recorded as longer than it should be
 - Air resistance reduces the value of g determined
- Random
 - Large uncertainty in h from using a metre rule with a precision of 1 mm
 - Parallax error from reading h
 - The ball may not fall accurately down the centre of each light gate (less time obscuring the light)
 - Random errors are reduced through repeating the experiment for each value of h at least 3-5 times and finding an average time, t

Safety

- The electromagnetic requires current
 - No water near it
 - Only switch on the current to the electromagnet once everything is set up to avoid electrocution
- A cushion or a soft surface must be used to catch the ball-bearing so it doesn't roll off / damage the surface
- The tall clamp stand needs to be attached to a surface with a G clamp so it stays rigid

3.4.1.4 Projectile motion

- · Motion equations ignoring air resistance
 - $v_x = u \cos \theta$
 - $x = ut \cos \theta$
 - $v_y = u \sin \theta gt$
 - $y = ut \sin \theta \frac{1}{2}gt^2$
- Range and maximum height

 - Maximum height = $\frac{u^2 \sin^2 \theta}{2g}$ Horizontal range = $\frac{u^2 \sin^2 \theta}{g}$
 - Time to maximum height = $\frac{u \sin \theta}{g}$
 - Time back to starting height = $\frac{2u \sin \theta}{a}$

Friction

- A force which opposes the motion of an object
- AKA drag / air resistance
- Convert KE into other forms of energy such as heat and sound (work done on the surface / fluid)

Lift

- An upward force which acts on objects travelling in a fluid
- Caused by the object creating a change in the direction of the fluid flow
- Happens if the shape of the projectile causes the air to flow faster over the top of the object than underneath it
 - Pressure of air on the top surface < pressure of the air on the bottom surface
 - Produces a net upward force

· Acts perpendicular to the direction of fluid flow

- Effect of air resistance (friction)
 - Air resistance / drag force acts in the opposite direction of motion of the projectile
 - Increases as the projectile's speed increases
 - Reduces both the horizontal speed of the projectile and its range
 - Has both horizontal and vertical components
 - Reduces the maximum height of the projectile if its initial direction is above the horizontal and makes its descent steeper than its ascent

- · Terminal velocity
 - Occurs where the frictional forces acting on an object and the driving forces are equal
 - No resultant force → no acceleration → travels at constant speed / velocity
- · Terminal velocity for objects falling
 - Start initially with free fall (uniform acceleration) briefly
 - The only force acting on the object is weight
 - (Other forces are very small and negligible)
 - · Speed still increases but acceleration decreases
 - Air resistance increase because speed increase
 - Resultant force gets smaller
 - Eventually the object falls in uniform velocity (reached terminal velocity)
 - Weight balanced exactly by resistive force upwards
 - Resultant force = 0 so there is no acceleration
 - Air resistance is not increasing anymore because speed is not increasing
 - Potential energy of the object is transferred to the internal energy of the fluid by drag forces
 - · Effect of parachute
 - Increase air resistance due to larger area perpendicular to direction of travelling
 - Resultant force upwards so deceleration
 - Air resistance falls as speed falls
 - Decelerates until air resistance get as big as speed so the object falls at uniform speed again
 - Graph
 - Gradient should start with gradient 9.81 m s⁻² not bigger than 9.81 m s⁻²

- (Same to other situations moving through a fluid resistance increase until the maximum speed is reached)
- Factors affecting terminal velocity
 - Higher mass → higher acceleration → higher terminal velocity
 - Higher volume / CSA → more air resistance → less acceleration →' lower terminal velocity

3.4.1.5 Newton's laws of motion

- Newton's 1st law of motion
 - If no resultant external force are acting on a body, it will
 - o If at rest, remain at rest
 - If moving, keep moving at constant speed in a straight line
- Newton's 2nd law of motion
 - The acceleration of an object is proportional to the resultant force experienced by the object
 - Acceleration is in the same direction as the resultant force
 - resultant force = mass × acceleration
 - F = ma
- Newton's 3rd law of motion
 - When two objects interact, they exert equal and opposite forces on each other

3.4.1.6 Momentum

- Momentum calculation
 - Momentum = mass × velocity
 - p = mv
- The principle of conservation of momentum
 - Momentum is always conserved for a system of interacting objects provided that no external resultant force acts on the system
 - Total final momentum = total initial momentum
- Types of collisions
 - Elastic
 - There is no loss of kinetic energy during the collision
 - o Both momentum and KE are conserved
 - $\circ m_1u_1 + m_2u_2 = m_1v_1 + m_2v_2$
 - Inelastic: only momentum is conserved, some KE is lost
 - Stick together: $m_1u_1 + m_2u_2 = (m_1 + m_2)v_{1+2}$
 - o Colliding objects have less KE after the collision than before the collision
- Explosion
 - $m_1v_1 + m_2v_2 = 0$
 - KE of the objects has increased
- Newton's 2nd law of motion with momentum
 - The rate of change of momentum of an object is proportional to the resultant force on it
 - (The resultant force is proportional to the change of momentum per second)
 - $F = \frac{\Delta(mv)}{\Delta t}$
- Impulse
 - The change in momentum
 - Impulse = $F\Delta t = \Delta(mv)$
- · Force-time graph

- Area = $F\Delta t$ = change in momentum
- Stopping distances
 - Thinking distance $s_1 = \text{speed} \times \text{reaction time} = ut_0$
 - Braking distance $s_2 = \frac{u^2}{2a}$
 - Stopping distance = $s_1 + s_2 = ut_0 + \frac{u^2}{2a}$
- · Contact and impact time
 - impact time = $\frac{2s}{u+v} = \frac{2 \times \text{distanced moved by cars}}{\text{initial velocity + final velocity}}$

 - $a = \frac{v u}{t}$ $F = ma = \frac{mv mu}{t}$
 - (These calculations only need to be applied onto one car)
- Why airbags / seatbelts / etc. work
 - With no seat belt / airbag / etc. the person would not start to change their momentum until they hit the dashboard or windscreen
 - The person comes to stop quickly (short impact time)
 - \circ Large change of momentum in a short time = large resultant force = large injury (F =
 - With the seatbelt / airbag / etc. they will have a longer impact time (comes to stop more slowly)
 - They will experience a smaller resultant force and so less injury

3.4.1.7 Work, energy and power

- Work
 - Work done = force × distance moved in the direction of the force
 - Unit = joules (J)
 - $W = Fs \cos \theta = \text{force} \times \text{displacement} \times \text{angle between force and direction of motion}$
- Force-displacement graphs
 - Area under line = work done
- Power
 - Rate of doing work = rate of energy transfer

•
$$P = \frac{\Delta E}{\Delta t} = \frac{\Delta W}{\Delta t} = Fv \cos \theta = \text{driving force} \times \text{velocity} \times \cos \theta$$

- Efficiency
 - Efficiency = $\frac{\text{Useful work done}}{\text{Total energy input}} = \frac{\text{Useful energy output}}{\text{Total energy input}} = \frac{\text{Useful power output}}{\text{Total power input}}$
 - Can be expressed as a percentage

3.4.1.8 Conservation of energy

- Principle of conservation of energy
 - · Energy cannot be created or destroyed but transferred from one store to another
- Kinetic energy
 - $E_k = \frac{1}{2}mv^2$
- · (Gravitational) potential energy
 - $E_p = mg\Delta h$