

Hadoop Overview for Managers

PART 1

Outline

PART 1

- Hadoop Overview
 - Traditional Computing Systems and Limitations
 - Why Big Data?
 - Why Hadoop?
 - Hadoop Basic Concepts
 - Where Hadoop fits in the Enterprise
- Hadoop Architecture
 - Building blocks
 - HDFS
 - Demo
- Break

PART 2

- YARN Architecture
 - Yarn Overview
 - MapReduce
 - Demo
- Tools and technology for Hadoop ecosystem
- Hadoop Real Life Use Cases
- Establishing a Big Data Center of Excellence
 - Justifying business value for your organization
 - Challenges on building a production solution
 - Recommended organizational structure
 - Best Practices: Steps to effectively deploy Hadoop
- Recap and Q&A

ERA OF BIG DATA

Era of Big-Data

Source: Microsoft TechEd North America 2014

Exabytes (10E18)

Petabytes (10E15)

Volume

Terabytes (10E12)

Gigabytes (10E9)

Storage/GB

Social Sentiment Internet of things

Sensors / RFID / Devices Clickstream

WEB 2.0 Mobile Advertising

ERP / CRM

eCommerce

Collaboration

Digital Marketing

Audio / Video

Search Marketing Web Logs and Wikis

Recommendations

Knowledge Graph

Log Files

Spatial & GPS Coordinates

Data Market Feeds

eGov Feeds

Weather

Text/Image

Deal Tracking

Contacts

Velocity - Variety

ERP / CRM WEB 2.0 Internet of things 1990 2000 2010 1980 9.000\$ 15\$ 0.07\$ 190,000\$

Who is generating so much data?

SOCIAL SHARING

SITE THAT HAS

COMMUNICATING WITH

USERS SHARE

EVERY 20 MINUTES

MICRO BLOGGING **SOCIAL SITE** THAT LIMITS EACH

INSTAGRAM

SOCIAL SHARING SITE ALL AROUND

ARE PARTICIPATING

THROUGH THE USE OF # HASHTAGS

AND POSTING

MOST FOLLOWED

BRAND IS

SOCIAL NETWORK **BUILT BY GOOGLE** THAT ALLOWS FOR

TO BUILD CIRCLES **NOT AS MANY BUT THE ONES THAT ARE** GOOD FIT WITH A

A PLACE TO **NETWORK**

USERS ARE:

83% *****C

US

Big Data in Healthcare - Asthmapolis

Collects data from patients (inhalers) and using analytics help them better manage their Asthma

Big Data Solution – key

ZALONI

characteristics

- Must Scale with increasing volume
 - Performance
 - Availability
 - Cost
- Support variety of data
 - Structured
 - Unstructured
 - Semi Structured

"Shared Everything" Architecture

(Is) Distributed Systems the solution

- Programming Model is complex
- Data exchange requires synchronization
- Failures are expensive and needs to be managed
- Does not scale for Large volumes of data network interconnects in a datacenter are expensive!

New Approach to Distributed

Systems

Must Scale with increasing volume

Performance

Availability

Cost

Support variety of data

Structured

Unstructured

Semi Structured

- Shared Nothing Architecture
- Data Locality
- No synchronization requirement among the nodes
- Designed for failure Multiple copies of data
- Consistent individual failures does not fail the job
- Support "commodity" hardware
 & heterogeneous

Shared Nothing Architecture

- Data is sharded (partitioned) amongst the nodes
- Computation is local to the nodes no need to get the data from elsewhere
- No synchronization, Simple implementation

HADOOP OVERVIEW

Hadoop Core Components

- Hadoop Common: A set of common libraries and utilities used by Hadoop modules.
- Hadoop Distributed File System (HDFS): A scalable and fault tolerant distributed filesystem to data in any form.
- Yet Another Resource Negotiator (YARN): From Hadoop 2.0, YARN is the cluster management layer to handle various workloads on the cluster.
- MapReduce: MapReduce is a framework that allows parallel processing of data in Hadoop.

Growing number of eco-system Projects

HDFS Overview

Distributed Storage

- Designed to store very large files
- Sharded storage for high throughput
- Replicated storage for failure protection
- Self healing
- Add new disks or nodes to scale

YARN Overview

Distributed Compute

- Yet Another Resource Negotiator
- Run Java code on arbitrary node(s) depending on availability
- "Cloud without the Virtualization"
- Applications can occupy resources as per need.
- Common model of distributing code and accessing Data
- Self healing

MapReduce Overview

- Model for processing large amount of data in parallel
- Oriented towards batch processing
- Programming Model derived from functional programming
- Built on top of YARN
- I/O on HDFS and others

Timeline

Why Hadoop?

- Runs on commodity hardware (and the cloud)
 - Low cost
 - Ease of maintenance
- Scales well
- Strong Ecosystem
- Open Source
 - Apache 2.0 License
 - Strong Community
- Runs on the JVM

When to use

Relational Databases:

Use when:

- Interactive OLAP Analytics (<1sec)
- Multistep ACID Transactions
- 100% SQL Compliance

Hadoop:

Use when:

- Structured or Not (Flexibility)
- Scalability of Storage/Compute
- Complex Data Processing

HADOOP DISTRIBUTION AND FRAMEWORKS

Cloudera CDH

Hortonworks HDP

MapR M5

(0)

Management

APACHE HADOOP AND OSS ECOSYSTEM

MapR-FS

Data Platform

MapR-DB

*Developer preview ‡ Certified on MapR

Pivotal HD

IBM BigInsights

Visualization & Discovery	Development Tools Eclipse Plug-ins	Systems Management	Connectors
BigSheets	Text Analytics MapReduce	Web Admin Console	JDBC
	Jaql Hive Query		Netezza
Advanced Engines	Text Processing Engine and Extractor Library		DB2
	Extractor Elbrary		Streams
Workload Optimization			
Integrated Installer	Enhanced Security IBM-LZO Compression	Adaptive MapReduce	R
ZooKeeper	Oozie Jaql	Flexible Scheduler	Flume
Lucene	Pig Hive	BigIndex	
Runtime			
Data Store			
File System HDF8			

Open Data Platform

PI ATINUIA

THE OPEN DATA PLATFORM WILL

- Accelerate the delivery of Big Data solutions by providing a well-defined core platform to target.
- Define, integrate, test, and certify a standard "ODP Core" of compatible versions of select Big Data open source projects.
 - Provide a stable base against which Big Data solutions providers can qualify solutions.
 - Produce a set of tools and methods that enable members to create and test differentiated offerings based on the ODP Core.

- Reinforce the role of the Apache
 Software Foundation (ASF) in the
 development and governance of
 upstream projects.
- 6 Contribute to ASF projects in accordance with ASF processes and Intellectual Property guidelines.
- 7 Support community development and outreach activities that accelerate the rollout of modern data architectures that leverage Apache Hadoop®.
- 8 Will help minimize the fragmentation and duplication of effort within the industry.

Ecosystem

splunk> loggly sumologic

Hortonworks

cloudera

N NETEZZA

IBM

Autonomy

QlikView

Chart.io

HDFS

ARCHITECTURE DEEP-DIVE

Topology of a Hadoop Cluster

ropology of a Hadoop (Mapk)

Cluster

HDFS: Architecture

- File consists of Metadata and Data
- Data is broken into fixed sized blocks
- Blocks stored by DataNodes
- DataNodes
 - Host and serve blocks
 - All operations go to NN
 - No idea of files / directory / metadata
- NameNode holds (in memory)
 - Directory, Files Listing
 - Block replica locations
- Secondary NameNode
 - Assists NameNode

HDFS Storage Details

HDFS: Data Write

Source: Hadoop, The Definitive Guide

HDFS: Data Read

Alternatives to HDFS

- Any FileSystem that has implements the Apache Hadoop "FileSystem" API can interoperate with Hadoop
 - MapR File System (mapr-fs)
 - Amazon Simple Storage Service (S3)
 - Azure Blobstorage
 - Tachyon

MapR's Distributed NameNode

- Each container contains
 - **Directories & files**
 - Data blocks
- Replicated on servers
- No need to manage directly

Container Location and Replication

Container location database (CLDB) keeps track of nodes hosting each container and replication chain order

MapR Distributed NameNode Scaling

Containers represent 16 - 32GB of data

- Each can hold up to 1 Billion files and directories
- 100M containers = ~ 2 Exabytes (a very large cluster)

250 bytes DRAM to cache a container

- 25GB to cache all containers for 2EB cluster
 - But not necessary, can page to disk
- Typical large 10PB cluster needs 2GB

Container-reports are 100x - 1000x < HDFS block-reports

- Serve 100x more data-nodes
- Increase container size to 64G to serve 4EB cluster
 - Map/reduce not affected

MapR Distributed NameNode HA vs Hadoop

MapR

1. apt-get install mapr-cldb while cluster is online

Apache Hadoop*

- Stop cluster very carefully
- Move fs.checkpoint.dir onto NAS (eg. NetApp)
- 3. Install, configure DRBD + Heartbeat packages
 - i. yum -y install drbd82 kmod-drbd82 heartbeat
 - ii. chkconfig -add heartbeat (both machines)
 - iii. edit /etc/drbd.conf on 2 machines

iv-xxxix. make raid-0 md, ask drbd to manage raid md, zero it if drbd dies & try again

xxxx. mkfs ext3 on it, mount /hadoop (both machines) xxxxi. install all rpms in /hadoop, but don't run them yet (chkconfig of f)

xxxxii. umount /hadoop (!!)

xxxxiii. edit 3 files /etc/ha.d/* to configure heartbeat

. . .

40. Restart cluster. If any problems, start at /var/log/ha.log for hints on what went wrong.

http://www.slideshare.net/mcsrivas/design-scale-and-performance-of-maprs-distribution-for-hadoop

^{*}As described in www.cloudera.com/blog/2009/07/hadoop-ha-configuration Author: Christophe Bisciglia, Cloudera.

MapR Volumes

Volumes allow management attributes to be applied in a scalable way at a very granular level and with flexibility

- Replication factor
- Scheduled mirroring
- Scheduled snapshots
- Data placement control
- User access and tracking
- Administrative permissions

MapR NFS advantage for data import/export

With MapR, use NFS

 mount /mapr real-time, HA

Otherwise, use Flume/Scribe

- 1. Set up sinks (find unused machines??)
- 2. Set up intrusive agents
 - tail("xxx"), tailDir("y")
 - ii. agentBESink
- 3. All reliability levels lose data
 - i. best-effort
 - ii. one-shot
 - iii. disk fail-over
 - iv. end-to-end
- 4. Data not available now

http://www.slideshare.net/mcsrivas/design-scale-and-performance-of-maprs-distribution-for-hadoop

When to use HDFS

- Store large structured and unstructured files
 - Server logs
 - Relational Files
 - Data Feeds
 - Archive
 - Satellite images

When to not use HDFS

- HDFS is not suited for:
 - Large number of small files
 - Small files can always be concatenated
 - Files that are modified often
 - Create new files instead
 - Files that are randomly accessed
 - ✓ B-Trees, etc.

Accessing HDFS

- Command line tools
- Java API
- WebDFS API
- Third-party access
 - FUSE
 - Web UI
 - HDFS over FTP

HDFS Characteristics: Review

- Designed for modest number of Large files (millions instead of billions)
- Sequential access not Random access
- Write Once, Read Many
- Data is split into chunks and stored in multiple nodes as blocks
- Namenode maintains the block locations
- Blocks get replicated over the data nodes
- HDFS 2.x Features:
 - High Availability with Active and Standby NameNode
 - Namespace Federation for scalability
 - Snapshots to enable point-in-time recovery
 - NFS Gateway


```
ServerLogFiles — root@sandbox:~ — ssh — 80×24
ServerLogFiles
System_Log_Demo
System_Log_Demo-2013-05-25
System_Log_Demo-2013-05-25.zip
elasticsearch-0.90.0
elasticsearch-0.90.0.zip
kibana-master
kibana-master.zip
lahman591-csv
lahman591-csv.zip
loaner:Hortonworks_data dhoyle$ cd ServerLogFiles
loaner:ServerLogFiles dhoyle$ ls
flume.conf
                       generate_logs.py
loaner:ServerLogFiles dhoyle$ scp -P 2222 flume.conf root@127.0.0.1:/etc/flume/c
onf/flume.conf
root@127.0.0.1's password:
flume.conf
                                            100% 1013
                                                         1.0KB/s 00:00
loaner:ServerLogFiles dhoyle$ scp -P 2222 generate_logs.py root@127.0.0.1:
root@127.0.0.1's password:
                                            100% 6794
                                                          6.6KB/s 00:00
generate_logs.py
loaner:ServerLogFiles dhoyle$ ssh -p 2222 root@127.0.0.1
root@127.0.0.1's password:
Last login: Sun Aug 11 13:10:59 2013 from 10.0.2.2
[root@sandbox ~]#
```

HDFS

DEMO

END OF PART 1