

Workshop 12

COMP20008

Elements of Data Processing Zijie Xu

Agenda

- Recommender systems
 - Collaborative filtering
- Privacy
 - k-Anonymity and I-diversity
- Differential privacy
 - Privacy loss budget k, Global sensitivity G, G/k ratio

Recommender system

- Collaborative filtering is one of the approaches to recommend stuff to users
- Assumption: People who give similar ratings to stuff tends to like similar stuff
- Making predictions about a user according to the collective behaviour of many other users (c.f. content-based recommendations)
- Input data: Rating matrix (m users by n items)

	Item 1	Item 2		Item j		Item n
User 1	3	4	2	2		1
User 2	2					5
:	1	1	2	2		
User i	3	2		r_{ij} ??		
:				2		3
User m		5	3	4	3	

Recommender system

- Two approaches to predict rating of item j by user i, r_{ij}
 - Item-based:
 - Find k items similar to item j
 - Predict r_{ij} by combining ratings of the k-most similar items rated by user i
 - User-based:
 - Find k users similar to user i
 - Predict r_{ij} by combining ratings of the k-most similar users' ratings
- Need to choose: value of k, method of imputation, similarity measure, method to combine ratings
 - e.g. k=3, mean imputation, 1/(1+Euclidean), weighted average
- Imputed values should not be used in predict -> choose next best value

- Objective: protect individuals from being identified from public data releases that contain sensitive attributes
- A person may be identified by:
 - an explicit identifier (e.g. driver's license number)
 - some combination of Quasi-Identifiers QI (e.g. {Gender, DOB, zip code})

- Some strategies to improve privacy
 - *k*-anonymity: Each combination of QI values has at least "*k*" records
- Two methods to achieve *k*-anonymity
 - Generalisation
 - Suppression (i.e., deletion)

Age	Gender	Medical Condition
25	M	Diabetes
25	M	Diabetes
30	F	Heart Disease
30	F	Diabetes
40	M	Asthma
40	M	Asthma
45	F	Asthma
45	F	Diabetes

- Some strategies to improve privacy
 - *I*-diversity: Each combination of QI values (i.e. each *k*-anonymous group) has at least "*I*" different sensitive attributes

Age	Gender	Medical Condition
25	M	Diabetes
25	M	Asthma
30	F	Heart Disease
30	F	Diabetes
40	M	Asthma
40	M	Heart Disease
45	F	Asthma
45	F	Diabetes

- Consider the quasi-identifier
 {Favourite Genre, Year of Birth,
 Postcode}. The sensitive
 attribute is "Customer Value".
- Q1.1: What is the highest k for which this data is kanonymous? Explain and justify your answer.

Favourite Genre	Year of Birth	Postcode	Customer Value
Action	***	3100	High
Action	****	3100	High
Gore	1998	3104	Medium
Gore	1998	3104	Low
Action	2001	3100	Medium
Action	2001	3100	Low

- Consider the quasi-identifier
 {Favourite Genre, Year of Birth,
 Postcode}. The sensitive
 attribute is "Customer Value".
- Q1.1: What is the highest k for which this data is kanonymous? Explain and justify your answer.
 - k=2

Favourite Genre	Year of Birth	Postcode	Customer Value
Action	***	3100	High
Action	***	3100	High
Gore	1998	3104	Medium
Gore	1998	3104	Low
Action	2001	3100	Medium
Action	2001	3100	Low

- Consider the quasi-identifier
 {Favourite Genre, Year of Birth,
 Postcode}. The sensitive
 attribute is "Customer Value".
- Q1.2: Describe one possible privacy attack on this data.

Favourite Genre	Year of Birth	Postcode	Customer Value
Action	***	3100	High
Action	****	3100	High
Gore	1998	3104	Medium
Gore	1998	3104	Low
Action	2001	3100	Medium
Action	2001	3100	Low

- Consider the quasi-identifier
 {Favourite Genre, Year of Birth,
 Postcode}. The sensitive
 attribute is "Customer Value".
- Q1.2: Describe one possible privacy attack on this data.
- Homogeneity attack

Favourite Genre	Year of Birth	Postcode	Customer Value
Action	****	3100	High
Action	****	3100	High
Gore	1998	3104	Medium
Gore	1998	3104	Low
Action	2001	3100	Medium
Action	2001	3100	Low

- Consider the quasi-identifier {Gender, DoB, Postcode}. The sensitive attribute is "Customer Value".
- Q2: Apply generalisation to the following table to make it 3-anonymous. Use * to suppress certain identifiable fields and values.

Name	Gender	DoB	Postcode	Customer Value
Sophie	F	3/2/1998	3100	High
Jessica	F	24/12/1998	3100	High
Mia	F	4/04/1998	3104	High
Zachary	M	1/01/2001	3010	Medium
Nicholas	M	3/2/2001	3010	Medium
Joshua	M	31/12/2001	3000	Medium

- Consider the quasi-identifier {Gender, DoB, Postcode}. The sensitive attribute is "Customer Value".
- Q2: Apply generalisation to the following table to make it 3-anonymous. Use * to suppress certain identifiable fields and values.

Name	Gender	DoB	Postcode	Customer Value
Sophie	F	**/**/1998	31**	High
Jessica	F	**/**/1998	31**	High
Mia	F	**/**/1998	31**	High
Zachary	M	**/**/2001	30**	Medium
Nicholas	M	**/**/2001	30**	Medium
Joshua	M	**/**/2001	30**	Medium

- Consider the quasi-identifier {Age, Postcode} for the table below. The sensitive attribute is "Diagnosis".
- Q3 discussion:
- What it means for a dataset to be ℓ-diverse.
- Why medical data should be kept private? How can an adversary use this information maliciously?

Age Range	Postcode	Diagnosis
[21-28]	3***	COVID-19
[21-28]	3***	Flu
[21-28]	3***	Flu
[48-55]	31**	Cancer
[48-55]	31**	Obesity
[48-55]	31**	Obesity

- Consider the quasi-identifier
 {Age, Postcode} for the table
 below. The sensitive attribute is
 "Diagnosis".
- Q3.1: What is the highest k for which this data is k-anonymous?

Age Range	Postcode	Diagnosis
[21-28]	3***	COVID-19
[21-28]	3***	Flu
[21-28]	3***	Flu
[48-55]	31**	Cancer
[48-55]	31**	Obesity
[48-55]	31**	Obesity

- Consider the quasi-identifier
 {Age, Postcode} for the table
 below. The sensitive attribute is
 "Diagnosis".
- Q3.2: What is the highest I for which this data is I-diverse?

Age Range	Postcode	Diagnosis
[21-28]	3***	COVID-19
[21-28]	3***	Flu
[21-28]	3***	Flu
[48-55]	31**	Cancer
[48-55]	31**	Obesity
[48-55]	31**	Obesity

- Consider the quasi-identifier
 {Age, Postcode} for the table
 below. The sensitive attribute is
 "Diagnosis".
- Q3.3: Describe one possible privacy attack on this data

Age Range	Postcode	Diagnosis
[21-28]	3***	COVID-19
[21-28]	3***	Flu
[21-28]	3***	Flu
[48-55]	31**	Cancer
[48-55]	31**	Obesity
[48-55]	31**	Obesity

- Consider the quasi-identifier
 {Age, Postcode} for the table
 below. The sensitive attribute is
 "Diagnosis".
- Q3.3: Describe one possible privacy attack on this data
- Background attack

Age Range	Postcode	Diagnosis
[21-28]	3***	COVID-19
[21-28]	3***	Flu
[21-28]	3***	Flu
[48-55]	31**	Cancer
[48-55]	31**	Obesity
[48-55]	31**	Obesity

- Objective: ensures that the presence or absence of a particular person's data does not significantly affect the results
- Achieved by adding controlled noise to the released data

- Privacy loss budget k
 - A parameter on how private we want the result to be
 - $Pr(R=...|I participate) \le Pr(R=...|I don't participate) <math>2^k$
 - Chosen by the data owner
- Global sensitivity G
 - The maximum change in the query/function output due to the addition or removal of a single data point in the dataset
 - Determined by the property of data + query

- G/k ratio
 - Controls the spread/deviation of the added random noise
 - G/k = scale in Laplace noise = standard deviation in Gaussian Noise
 - High *G*
 - -> Output easily changed by addition/removal of one data point
 - -> Need more deviation in noise
 - Low k
 - -> small loss budget
 - -> Need stronger privacy guarantee
 - -> Need more deviation in noise

- Consider a query that outputs
 CountFemale + CountMarried.
- How much can adding or removing an individual affect the output? What is the global sensitivity G?

Sex	Marital Status
M	Single
M	Married
F	Single
M	Single
F	Married

- Consider a query that takes the survey database as input and outputs the statistics
 CountMaleMarried +
 CountMaleSingle +
 CountFemaleMarried +
 CountFemaleSingle.
- How much can adding or removing an individual affect the output? What is the global sensitivity?

Sex	Marital Status
M	Single
M	Married
F	Single
M	Single
F	Married

 Slides available on GitHub: ccijjj/COMP20008-23s2

Thank you and good luck to your exams!

Thank you

More Resources: Canvas

