Graph Algorithms II

Summer 2018 • Lecture 07/24

A Few Notes

Midterm Review Session office hours

Today 12-1:20 p.m. in STLC 115

Homework 3

Due today (you can't use late days!)

What is the **shortest path** between u and v in a weighted graph?

The cost of a path is the sum of the weights along that path.

The shortest path is the one with the minimum cost.

What is the **shortest path** between u and v in a weighted graph?

The cost of a path is the sum of the weights along that path.

The shortest path is the one with the minimum cost.

Claim: A subpath of a shortest path is also a shortest path.

Intuition:

Suppose **this** is a shortest path from **s** to **t**.

Claim: A subpath of a shortest path is also a shortest path.

Intuition:

Suppose **this** is a shortest path from **s** to **t**.

Then **this** is a shortest path from **s** to **x**.

Claim: A subpath of a shortest path is also a shortest path.

Intuition:

Suppose **this** is a shortest path from **s** to **t**.

Then **this** is a shortest path from **s** to **x**.

Claim: A subpath of a shortest path is also a shortest path.

Intuition:

Suppose **this** is a shortest path from **s** to **t**.

Then **this** is a shortest path from \mathbf{s} to \mathbf{x} .

Why? By contradiction, suppose there exists a shorter path from **s** to **x**, namely **this** one.

Claim: A subpath of a shortest path is also a shortest path.

Intuition:

Suppose **this** is a shortest path from **s** to **t**.

Then **this** is a shortest path from **s** to **x**.

Why? By contradiction, suppose there exists a shorter path from **s** to **x**, namely **this** one.

But then this is shorter than this shortest path from s to t.

Single-Source Shortest Path

Single-Source Shortest Path

Application: Finding the shortest path from Palo Alto to [somewhere else] for a commuter using BART, Caltrain, bike, walking, Uber, Lyft, etc.

Edge weights are a function of time, money, hassle that change depending on the commuter's mood on that day.

Application: Finding the shortest path from my computer to the desired server for packets using the Internet.

Edge weights are a function of link length, traffic, other costs, etc.

Dijkstra's Algorithm solves the single-source shortest path problem.

Why does this work?

Let s be the single source.

Theorem: After running Dijkstra's Algorithm, the estimate d[v] is the actual distance d(s, v).

Proof Outline:

Claim 1: For all $v, d[v] \ge d(s, v)$.

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Together, claims 1 and 2 imply the theorem.

Why does this work?

Let s be the single source.

Theorem: After running Dijkstra's Algorithm, the estimate d[v] is the actual distance d(s, v).

Proof Outline:

Claim 1: For all $v, d[v] \ge d(s, v)$.

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Together, claims 1 and 2 imply the theorem.

d[v] never increases, so **Claim 1** and **2** imply that d[v] weakly decreases until d[v] = d(s, v) then never changes again.

Why does this work?

Let s be the single source.

Theorem: After running Dijkstra's Algorithm, the estimate d[v] is the actual distance d(s, v).

Proof Outline:

Claim 1: For all $v, d[v] \ge d(s, v)$.

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Together, claims 1 and 2 imply the theorem.

d[v] never increases, so **Claim 1** and **2** imply that d[v] weakly decreases until d[v] = d(s, v) then never changes again.

By the time we're sure about "done" about v, d[v] = d(s, v).

Why does this work?

Let s be the single source.

Theorem: After running Dijkstra's Algorithm, the estimate d[v] is the actual distance d(s, v).

Proof Outline:

Claim 1: For all $v, d[v] \ge d(s, v)$.

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Together, claims 1 and 2 imply the theorem.

d[v] never increases, so **Claim 1** and **2** imply that d[v] weakly decreases until d[v] = d(s, v) then never changes again.

By the time we're sure about "done" about v, d[v] = d(s, v).

All vertices are eventually "done" (stopping condition in algorithm).

Why does this work?

Let s be the single source.

Theorem: After running Dijkstra's Algorithm, the estimate d[v] is the actual distance d(s, v).

Proof Outline:

Claim 1: For all $v, d[v] \ge d(s, v)$.

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Together, claims 1 and 2 imply the theorem.

d[v] never increases, so **Claim 1** and **2** imply that d[v] weakly decreases until d[v] = d(s, v) then never changes again.

By the time we're sure about "done" about v, d[v] = d(s, v).

All vertices are eventually "done" (stopping condition in algorithm).

Therefore, all vertices end up with d[v] = d(s, v).

Why does this work?

Claim 1: For all $v, d[v] \ge d(s, v)$.

Proof:

We proceed by induction on t, the number of iterations completed by the algorithm.

Why does this work?

Claim 1: For all $v, d[v] \ge d(s, v)$.

Proof:

We proceed by induction on t, the number of iterations completed by the algorithm.

After t = 0 iterations, d(s, s) = 0 and $d(s, v) \le \infty$ which satisfy $d[v] \ge d(s, v)$.

Why does this work?

Claim 1: For all $v, d[v] \ge d(s, v)$.

Proof:

We proceed by induction on t, the number of iterations completed by the algorithm.

After t = 0 iterations, d(s, s) = 0 and $d(s, v) \le \infty$ which satisfy $d[v] \ge d(s, v)$.

For the inductive step, suppose the inductive hypothesis holds for iteration t.

Why does this work?

Claim 1: For all $v, d[v] \ge d(s, v)$.

Proof:

We proceed by induction on t, the number of iterations completed by the algorithm.

After t = 0 iterations, d(s, s) = 0 and $d(s, v) \le \infty$ which satisfy $d[v] \ge d(s, v)$.

For the inductive step, suppose the inductive hypothesis holds for iteration t. Then at iteration t + 1, the algorithm picks a vertex u and for each of its neighbors v sets: $d[v] = min(d[v], d[u] + w(u, v)) \ge d(s, v)$.

Thus, the induction holds for t + 1.

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof:

We proceed by induction on t, the number of vertices marked as "done."

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof:

We proceed by induction on t, the number of vertices marked as "done."

For the base case, note that after s is marked as "done", d[s] = d(s, s) = 0, which satisfies d[v] = d(s, v).

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof:

We proceed by induction on t, the number of vertices marked as "done."

For the base case, note that after s is marked as "done", d[s] = d(s, s) = 0, which satisfies d[v] = d(s, v).

For the inductive step, assume that for all vertices v already marked as "done", d[v] = d(s, v). Let x be the vertex with minimum distance estimate. We must prove d[x] = d(s, x).

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof, cont.:

We proceed by contradiction. Suppose $d[x] \neq d(s, x)$.

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof, cont.:

We proceed by contradiction. Suppose $d[x] \neq d(s, x)$.

Let p be the shortest path from s to x. There must exist some z on p such that d[z] = d(s, z). Let z be the closest such vertex to x. We know $d[z] = d(s, z) \le d(s, x) < d[x]$.

z must exist since, at the very least, s is part of the shortest path, and d[s] = d(s, s).

Weights are non-negative.

Claim 1 implies $d(s, x) \le d[x]$ and we assumed that $d[x] \ne d(s, x)$.

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof, cont.:

We proceed by contradiction. Suppose $d[x] \neq d(s, x)$.

Let p be the shortest path from s to x. There must exist some z on p such that d[z] = d(s, z). Let z be the closest such vertex to x. We know $d[z] = d(s, z) \le d(s, x) < d[x]$.

z must exist since, at the very least, s is part of the shortest path, and d[s] = d(s, s).

Weights are non-negative.

Claim 1 implies $d(s, x) \le d[x]$ and we assumed that $d[x] \ne d(s, x)$.

Otherwise, z would be the vertex with minimum distance estimate.

Therefore, d[z] < d[x]. But this can't be the case. Why not? Since d[z] < d[x] and x is the vertex with minimum distance estimate, z must be already marked "done."

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof, cont.:

Since z is already marked "done," the edges out of z, including the edge (z, z') (where z' is also on p) have been relaxed by the algorithm

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof, cont.:

Since z is already marked "done," the edges out of z, including the edge (z, z') (where z' is also on p) have been relaxed by the algorithm i.e. $d[z'] \le d(s, z) + w(z, z') = d(s, z')$ since z is on the shortest path from s to z' and the distance estimate of z' must be correct.

Why does this work?

Claim 2: When a vertex v gets marked "done", d[v] = d(s, v).

Proof, cont.:

Since z is already marked "done," the edges out of z, including the edge (z, z') (where z' is also on p) have been relaxed by the algorithm i.e. $d[z'] \le d(s, z) + w(z, z') = d(s, z')$ since z is on the shortest path from s to z' and the distance estimate of z' must be correct.

However, this contradicts z being the closest vertex on p to x satisfying d[z] = d(s, z). Thus, our assumption that d[z] < d[x] must be false, and it follows that d[x] = d(s, x).

Another wording of Claim 2

- When a vertex v gets marked "done", d[v] must be d(s, v).

- When a vertex v gets marked "done", d[v] must be d(s, v).
- By contradiction, assume there exists an x such that when it gets marked as "done," $d[x] \neq d(s, x)$.
- Consider the shortest path p from s to x.

- When a vertex v gets marked "done", d[v] must be d(s, v).
- By contradiction, assume there exists an x such that when it gets marked as "done," $d[x] \neq d(s, x)$.
- Consider the shortest path p from s to x.
- There must exist a vertex z closest to x on p for which d[z] = d(s, z). Notice, by our assumption that $z \neq x$.

- When a vertex v gets marked "done", d[v] must be d(s, v).
- By contradiction, assume there exists an x such that when it gets marked as "done," $d[x] \neq d(s, x)$.
- Consider the shortest path p from s to x.
- There must exist a vertex z closest to x on p for which d[z] = d(s, z). Notice, by our assumption that $z \neq x$.
- But z cannot be the closest vertex to x on p; simply consider the next vertex z' along the path.

- When a vertex v gets marked "done", d[v] must be d(s, v).
- By contradiction, assume there exists an x such that when it gets marked as "done," $d[x] \neq d(s, x)$.
- Consider the shortest path p from s to x.
- There must exist a vertex z closest to x on p for which d[z] = d(s, z). Notice, by our assumption that $z \neq x$.
- But z cannot be the closest vertex to x on p; simply consider the next vertex z' along the path.
 - Since the subpath of a shortest path is also a shortest path, and p is a shortest path from s to z' to x, then the subpath s to z' must also be a shortest path.

- When a vertex v gets marked "done", d[v] must be d(s, v).
- By contradiction, assume there exists an x such that when it gets marked as "done," $d[x] \neq d(s, x)$.
- Consider the shortest path p from s to x.
- There must exist a vertex z closest to x on p for which d[z] = d(s, z). Notice, by our assumption that $z \neq x$.
- But z cannot be the closest vertex to x on p; simply consider the next vertex z' along the path.
 - Since the subpath of a shortest path is also a shortest path, and p is a shortest path from s to z' to x, then the subpath s to z' must also be a shortest path.
 - z must have been marked as "done" since it's on the subpath to x and weights are non-negative.

- When a vertex v gets marked "done", d[v] must be d(s, v).
- By contradiction, assume there exists an x such that when it gets marked as "done," $d[x] \neq d(s, x)$.
- Consider the shortest path p from s to x.
- There must exist a vertex z closest to x on p for which d[z] = d(s, z). Notice, by our assumption that $z \neq x$.
- But z cannot be the closest vertex to x on p; simply consider the next vertex z' along the path.
 - Since the subpath of a shortest path is also a shortest path, and p is a shortest path from s to z' to x, then the subpath s to z' must also be a shortest path.
 - z must have been marked as "done" since it's on the subpath to x and weights are non-negative.
 - Before z was marked as "done", d[z'] was updated to d[z] + w(z, z'), which must equal d(s, z') since s to z to z' is a shortest path.

- When a vertex v gets marked "done", d[v] must be d(s, v).
- By contradiction, assume there exists an x such that when it gets marked as "done," $d[x] \neq d(s, x)$.
- Consider the shortest path p from s to x.
- There must exist a vertex z closest to x on p for which d[z] = d(s, z). Notice, by our assumption that z ≠ x.
- But z cannot be the closest vertex to x on p; simply consider the next vertex z' along the path.
 - Since the subpath of a shortest path is also a shortest path, and p is a shortest path from s to z' to x, then the subpath s to z' must also be a shortest path.
 - z must have been marked as "done" since it's on the subpath to x and weights are non-negative.
 - Before z was marked as "done", d[z'] was updated to d[z] + w(z, z'), which must equal d(s, z') since s to z to z' is a shortest path.
- Thus, contradiction!

Bellman-Ford

Dijkstra's algorithm solves the single-source shortest path problem in weighted graphs.

Sometimes it works on graphs with negative edge weights, but sometimes it doesn't work.

Bellman-Ford also solves the SSSP problem in weighted graphs.

Always works on graphs with negative edge weights (when a solution exists).

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1. $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1. $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

How do we use $d^{(k-1)}$ to fill in $d^{(k)}[b]$?

Recall d^(k)[b] is the cost of the shortest path from s to b with at most k edges.

Case 1: the shortest path from s to b with at most k edges actually has at most

k - 1 edges.

Suppose k = 3.

 $d^{(k)}[b] = d^{(k-1)}[b]$ i.e. the shortest path of at most k-1 edges is at least as short as any path of at most k edges.

Case 2: the shortest path from s to b with at most k edges really has k edges.


```
def bellman_ford(G):
    d(k) = [] for k = 0 to |V|-1
    d(0)[v] = \infty for all v \neq s
    d(0)[s] = 0
    for k = 1 to |V|-1:
        for b in V:
        d(k)[b] = min{d(k-1)[b], min_a{d(k-1)[a] + w(a,b)}}
    return d(|V|-1)
```

```
 \begin{aligned} &\text{def bellman\_ford}(G): \\ &d^{(k)} = [] \text{ for } k = 0 \text{ to } |V| - 1 \end{aligned} \end{aligned}  This is a simplification to make the pseudocode nice. In reality, we'd only keep two of them at a time.  d^{(\theta)}[v] = \infty \text{ for all } v \neq s  only keep two of them at a time.  d^{(\theta)}[s] = 0  for k = 1 to |V| - 1: for b in V:  d^{(k)}[b] = \min\{d^{(k-1)}[b], \min_a\{d^{(k-1)}[a] + w(a,b)\} \}  return d^{(|V|-1)}
```

Runtime: O(|V||E|)

```
Slower than Dijkstra's

O(|E| + |V|log(|V|))
```

```
for k = 1 to |V|-1:

for b in V:

d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\}\}
```



```
for k = 1 to |V|-1:

for b in V:

d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\} \}
```



```
for k = 1 to |V|-1:

for b in V:

d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\}\}
```



```
for k = 1 to |V|-1:

for b in V:

d^{(k)}[b] = min\{d^{(k-1)}[b], min_a\{d^{(k-1)}[a] + w(a,b)\}\}
```


We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1. Recall $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1.

Recall d^(k)[b] is the cost of the shortest path from s to b with at most k edges.

The shortest path from s to t with 1 edge has cost ∞ (no path exists).

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1.

Recall $d^{(k)}[b]$ is the cost of the shortest path from s to b with at most k edges.

The shortest path from s to t with 1 edge has cost ∞ (no path exists).

The shortest path from s to t with 2 edges has cost 3 (s-v-t).

We maintain a list $d^{(k)}$ of length n for each k = 0, 1, ..., |V|-1.

Recall d^(k)[b] is the cost of the shortest path from s to b with at most k edges.

The shortest path from s to t with 1 edge has cost ∞ (no path exists).

The shortest path from s to t with 2 edges has cost 3 (s-v-t).

The shortest path from s to t with 3 edges has cost 2 (s-u-v-t).

We need to prove our main argument.

 $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

For our inductive step, assume that at the start of iteration k, $d^{(k-1)}[b]$ is the cost of the shortest path from s to b with at most k - 1 edges. We consider two cases:

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

For our inductive step, assume that at the start of iteration k, $d^{(k-1)}[b]$ is the cost of the shortest path from s to b with at most k - 1 edges. We consider two cases:

Case 1: $d^{(k-1)}[b] < \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains fewer than k edges. Then our algorithm correctly sets $d^{(k)}[b] = d^{(k-1)}[b]$.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

For our inductive step, assume that at the start of iteration k, $d^{(k-1)}[b]$ is the cost of the shortest path from s to b with at most k - 1 edges. We consider two cases:

Case 1: $d^{(k-1)}[b] < \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains fewer than k edges. Then our algorithm correctly sets $d^{(k)}[b] = d^{(k-1)}[b]$.

Case 2: $d^{(k-1)}[b] \ge \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains exactly k edges. Then our algorithm correctly sets $d^{(k)}[b] = \min_a \{d^{(k-1)}[a] + w(a, b)\}$, which minimizes the sum of the shortest path with at most k-1 edges to an in-neighbor of b and the weight from a to b.

Lemma: $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

Proof: We proceed by induction on k, the number of iterations completed by the algorithm.

For our base case, at the start of iteration k = 1, the shortest path from s to s with 0 edges has cost 0. The path from s to all vertices $v \ne s$ contains at least 1 edge; there doesn't exist a path from s to v with 0 edges, and this path costs ∞ . Therefore, $d^{(0)}$ is correct.

For our inductive step, assume that at the start of iteration k, $d^{(k-1)}[b]$ is the cost of the shortest path from s to b with at most k - 1 edges. We consider two cases:

Case 1: $d^{(k-1)}[b] < \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains fewer than k edges. Then our algorithm correctly sets $d^{(k)}[b] = d^{(k-1)}[b]$.

Case 2: $d^{(k-1)}[b] \ge \min_a \{d^{(k-1)}[a] + w(a, b)\}$. This corresponds to the case in which the shortest path contains exactly k edges. Then our algorithm correctly sets $d^{(k)}[b] = \min_a \{d^{(k-1)}[a] + w(a, b)\}$, which minimizes the sum of the shortest path with at most k-1 edges to an in-neighbor of b and the weight from a to b.

At the start of iteration k = |V|, the algorithm terminates and $d^{(|V|-1)}$ is correct.

We need to prove our main argument.

 $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

What else to do? 🤔

We need to prove our main argument.

 $d^{(|V|-1)}[b]$ is the cost of the shortest path from s to b with at most |V|-1 edges.

What else to do? 🤔

We still need to prove that this argument implies bellman_ford is correct i.e. $d^{(|V|-1)}[a] = distance(s, a)$.

To show this, we'll prove that the shortest path with at most |V|-1 edges is the shortest path with any number of edges (if a shortest path exists).

If the graph has a negative cycle, a shortest path might not exist!

But if there's no negative cycle.

But if there's no negative cycle.

There's always a simple shortest path.

A simple path in a graph with |V| vertices has at most |V|-1 edges in it.

But if there's no negative cycle.

There's always a simple shortest path.

A simple path in a graph with |V| vertices has at most |V|-1 edges in it.

We can't add another edge to this s-t path without making a cycle (an edge from s to b wouldn't be along the path).

Theorem: bellman_ford is correct as long as the graph has no negative cycles.

Proof:

By our lemma, $d^{(|V|-1)}[b]$ contains the cost of the shortest path from s to b with at most |V|-1 edges. If there are no negative cycles, then the shortest path must be simple, and all simple paths have at most |V|-1 edges. Therefore, the value the algorithm returns, $d^{(|V|-1)}[b]$, is also the cost of the shortest path from s to b with any number of edges.

Bellman-Ford gets used in practice.

e.g. Routing Information Protocol (RIP) uses it. Each router keeps a table of distances to every other router. Periodically, we do a Bellman-Ford update.

Dynamic Programming

Bellman-Ford is an example of **dynamic programming**!

Dynamic programming is an algorithm design paradigm.

Often it's used to solve optimization problems e.g. **shortest** path.