

UiO Department of Informatics University of Oslo

IN5400 Machine learning for image classification

Lecture 4: Introduction to Pytorch

Tollef Jahren

February 6, 2019

About today

- You will get an introduction to Pytorch.
- Pytorch is a widely used deep learning framework, especially in academia.
- Pytorch version 1.0
- Python 3.6

Outline

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

Readings

- Text:
 - https://pytorch.org/tutorials/
- Note:
 - Don't be confused. A lot of the available code online is written in an older version of Pytorch. We are using Pytorch version 1.0.

Progress

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

Why do we need Deep learning frameworks?

- Speed:
 - Fast GPU/CPU implementation of matrix multiplication, convolutions and backpropagation
- Automatic differentiations:
 - Pre-implementation of the most common functions and it's gradients.
- Reuse:
 - Easy to reuse other people's models
- Less error prone:
 - The more code you write yourself, the more errors

Deep learning frameworks

• Deep learning frameworks does a lot of the complicated computation, remember last week....

Popularity

Deep Learning Framework Power Scores 2018

• https://towardsdatascience.com/deep-learning-framework-power-scores-2018-23607ddf297a

Why Pytorch

- Python API
- Can use CPU, GPU
- Supports common platforms:
 - Windows, Mac, Linux
- Pytorch is a thin framework which lets you work closely with programming the neural network
- Focus on the machine learn part not the framework itself
- Pythonic control flow
 - Flexible
 - Cleaner and more intuitive code
 - Easy to debug
- Python debugger
 - With Pytorch we can use the python debugger
 - It does not run all in a c++ environment abstracted way

Pytorch packages

Package	Description		
torch	The top-level PyTorch package and tensor library.		
torch.nn	A subpackage that contains modules and extensible classes for building neural networks.		
torch.autograd	A subpackage that supports all the differentiable Tensor operations in PyTorch.		
torch.nn.functional	A functional interface that contains typical operations used for building neural networks like loss functions, activation functions, and convolution operations.		
torch.optim	A subpackage that contains standard optimization operations like SGD and Adam.		
torch.utils	A subpackage that contains utility classes like data sets and data loaders that make data preprocessing easier.		
torchvision	A package that provides access to popular datasets, model architectures, and image transformations for computer vision.		

Progress

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

torch.Tensor class

Pytorch's tensors are similar to NumPy's ndarrays

```
import torch
In [1]:
         V = torch.tensor(1.3 )
Out[1]: tensor(1.3000)
In [1]: import torch
         V = torch.tensor([1., 2., 3.])
Out[1]: tensor([1., 2., 3.])
In [8]: import torch
       V = torch.tensor([[1., 2.], [4., 5.]])
Out[8]: tensor([[1., 2.],
               [4., 5.]])
```

```
In [2]: import numpy as np
         V = np.array(1.3)
Out[2]: array(1.3)
In [2]: import numpy as np
        V = np.array([1., 2., 3.])
Out[2]: array([1., 2., 3.])
In [9]: import numpy as np
        V = np.array([[1., 2.], [4., 5.]])
Out[9]: array([[1., 2.],
               [4., 5.]])
```

Creating an instance of torch. Tensor

```
In [1]:
        import torch
        import numpy as np
In [2]: data = np.array([1,2,3], dtype=np.int32)
In [3]: t1 = torch.Tensor(data)
                                      # Constructor
        t2 = torch.tensor(data)
                                      # Factory function
        t3 = torch.as_tensor(data)
                                      # Factory function
        t4 = torch.from numpy(data)
                                      # Factory function
In [4]:
         print(t1)
         print(t2)
         print(t3)
         print(t4)
        tensor([1., 2., 3.])
        tensor([1, 2, 3], dtype=torch.int32)
        tensor([1, 2, 3], dtype=torch.int32)
        tensor([1, 2, 3], dtype=torch.int32)
```

```
print(t1.dtype)
In [5]:
        print(t2.dtype)
        print(t3.dtype)
        print(t4.dtype)
        torch.float32
        torch.int32
        torch.int32
        torch.int32
  In [6]: torch.get default dtype()
  Out[6]: torch.float32
 In [9]: t2 = torch.tensor(data, dtype=torch.float64)
 Out[9]: tensor([1., 2., 3.], dtype=torch.float64)
```

Memory: Sharing vs Copying

```
In [2]: data = np.array([1,2,3])
         data
Out[2]: array([1, 2, 3])
In [3]: t1 = torch.Tensor(data)
        t2 = torch.tensor(data)
        t3 = torch.as tensor(data)
        t4 = torch.from numpy(data)
In [4]:
         data[:] = 0
         data
Out[4]: array([0, 0, 0])
```

```
In [5]: print(t1)
    print(t2)

    tensor([1., 2., 3.])
    tensor([1, 2, 3], dtype=torch.int32)

In [6]: print(t3)
    print(t4)

    tensor([0, 0, 0], dtype=torch.int32)
    tensor([0, 0, 0], dtype=torch.int32)
```

Sharing memory for performance: Share vs Copy

Creating instances of torch. Tensor without data

```
torch.eye(2)
 In [7]:
 Out[7]: tensor([[1., 0.],
                 [0., 1.]])
         torch.zeros(2,2)
 In [8]:
Out[8]: tensor([[0., 0.],
                 [0., 0.]
 In [9]:
         torch.ones(2,2)
Out[9]: tensor([[1., 1.],
                 [1., 1.]
In [10]: torch.rand(2,2)
Out[10]: tensor([[0.2696, 0.2011],
                 [0.5265, 0.4603]])
```

Tensor indexing

We can use «normal» indexing as in NumPy

Torch.tensor attributes

Attribute	Data type	Description
data	array_like	list, tuple, NumPy ndarray, scalar
dtype	torch.dtype	The tensor's data type
requires_grad	bool	Should autograd record operation
device	torch.device	Allocated on CPU or CUDA (GPU)

In [5]: torch.tensor(data=[1,2,3], dtype=torch.float32, device='cpu', requires_grad=False)

IN 5400

06.05.2019

Data types

Data type	dtype	CPU tensor	GPU tensor
32-bit floating point	torch.float32 or torch.float	torch.FloatTensor	torch.cuda.FloatTensor
64-bit floating point	torch.float64 or torch.double	torch.DoubleTensor	torch.cuda.DoubleTensor
16-bit floating point	torch.float16 or torch.half	torch.HalfTensor	torch.cuda.HalfTensor
8-bit integer (unsigned)	torch.uint8	torch.ByteTensor	torch.cuda.ByteTensor
8-bit integer (signed)	torch.int8	torch.CharTensor	torch.cuda.CharTensor
16-bit integer (signed)	torch.int16 or torch.short	torch.ShortTensor	torch.cuda.ShortTensor
32-bit integer (signed)	torch.int32 or torch.int	torch.IntTensor	torch.cuda.IntTensor
64-bit integer (signed)	torch.int64 or torch.long	torch.LongTensor	torch.cuda.LongTensor

Operations between tensors of different data type is not allowed

```
In [2]: t1 = torch.tensor([1, 2, 3], dtype=torch.int32)
        t1.dtype
Out[2]: torch.int32
In [3]: t2 = torch.tensor([1, 2, 3], dtype=torch.float32)
        t2.dtype
Out[3]: torch.float32
In [4]:
        t3 = t1 + t2
                                                  Traceback (most recent call las
        RuntimeError
        <ipython-input-4-8140cb83dabf> in <module>
        ---> 1 t3 = t1 + t2
        RuntimeError: expected type torch.FloatTensor but got torch.IntTensor
```

Device - CPU / CUDA

Allocating torch.tensor's on various devices

```
In [2]: t cpu = torch.tensor(data=[1,2,3], device='cpu')
        t cpu.device
Out[2]: device(type='cpu')
In [3]: t_cuda = torch.tensor(data=[1,2,3], device='cuda:0')
        t cuda.device
Out[3]: device(type='cuda', index=0)
In [4]: torch.cuda.current device()
Out[4]: 0
In [5]: t_cuda.to('cpu')
Out[5]: tensor([1, 2, 3])
In [6]: t_cpu.to('cuda:0')
Out[6]: tensor([1, 2, 3], device='cuda:0')
```

Operations between tensors on different devices is not allowed

Torch.tensor functionality

- Common tensor operations:
 - reshape
 - max/min
 - shape/size
 - etc
- Arithmetic operations
 - Abs / round / sqrt / pow / etc
- torch.tensor's support broadcasting
- In-place operations

Progress

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

What is a computational graph?

$$f(\vec{x}) = x_1 * x_2 + x_3 * x_4$$
 $f(\vec{x}) = z_1 + z_2$

$$f(\vec{x}) = z_1 + z_2$$

University of Oslo

Forward propagation

$$f(\vec{x}) = x_1 * x_2 + x_3 * x_4$$
 $f(\vec{x}) = z_1 + z_2$

$$f(\vec{x}) = z_1 + z_2$$

Forward propagation

$$f(\vec{x}) = x_1 * x_2 + x_3 * x_4$$

$$f(\vec{x}) = z_1 + z_2$$

Forward propagation

$$f(\vec{x}) = x_1 * x_2 + x_3 * x_4$$

$$f(\vec{x}) = z_1 + z_2$$

What if we want to get the derivative of f with respect to the different x values?

$$f(\vec{x}) = x_1 * x_2 + x_3 * x_4$$

$$z_1 = x_1 * x_2 z_2 = x_3 * x_4$$

$$\frac{\partial f(\vec{x})}{\partial x_1} = \frac{\partial f}{\partial z_1} \frac{\partial z_1}{\partial x_1} = x_2$$

$$\frac{\partial f(\vec{x})}{\partial x_3} = \frac{\partial f}{\partial z_2} \frac{\partial z_2}{\partial x_3} = x_4$$

Lets take the derivative of f with respect to x1

$$f(\vec{x}) = x_1 * x_2 + x_3 * x_4$$

$$f(\vec{x}) = z_1 + z_2$$

Progress

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

Autograd

- Autograd Automatic differentiation for all operations on Tensors
 - Static computational graph (TensorFlow)
 - Dynamic computational graph (Pytorch)
- The backward graph is defined by the forward run!

Example 1 (autograd)

```
In [1]: import torch
from torch.autograd import grad

x1 = torch.tensor(2, requires_grad=True, dtype=torch.float32)
x2 = torch.tensor(3, requires_grad=True, dtype=torch.float32)
x3 = torch.tensor(1, requires_grad=True, dtype=torch.float32)
x4 = torch.tensor(4, requires_grad=True, dtype=torch.float32)
```

```
In [2]: z1 = x1*x2
z2 = x3*x4

f = z1 + z2

df_dx = grad(outputs=f, inputs=[x1, x2, x3, x4])
```

```
In [3]: print(f'gradient of x1 = {df_dx[0]}')
    print(f'gradient of x2 = {df_dx[1]}')
    print(f'gradient of x3 = {df_dx[2]}')
    print(f'gradient of x4 = {df_dx[3]}')

gradient of x1 = 3.0
    gradient of x2 = 2.0
    gradient of x3 = 4.0
    gradient of x4 = 1.0
```


IN 5400

06.05.2019

Leaf tensor

A «leaf tensor» is a tensor you created directly, not as the result of an operation.

```
x = torch.tensor(2) # A leaf tensor
                    # Not a Leaf tensor
y = x + 1
```


Autograd

The need for specifying all tensors is inconvenient

```
df_dx = grad(outputs=f, inputs=[x1, x2, x3, x4])
```

• We use "tensor.backward()" or "torch.autograd.backward()"

```
In [1]: import torch
from torch.autograd import grad

x1 = torch.tensor(2, requires_grad=True, dtype=torch.float32)
x2 = torch.tensor(3, requires_grad=True, dtype=torch.float32)
x3 = torch.tensor(1, requires_grad=True, dtype=torch.float32)
x4 = torch.tensor(4, requires_grad=True, dtype=torch.float32)
```

```
z1 = x1*x2
z2 = x3*x4

f = z1 + z2
f.backward()
```

```
print(f'gradient of x1 = {x1.grad}')
print(f'gradient of x2 = {x2.grad}')
print(f'gradient of x3 = {x3.grad}')
print(f'gradient of x4 = {x4.grad}')

gradient of x1 = 3.0
gradient of x2 = 2.0
gradient of x3 = 4.0
gradient of x4 = 1.0
```


UiO Department of Informatics

University of Oslo

Autograd in depth (optional)

- https://www.youtube.com/watch?v=MswxJw-8PvE
- https://pytorch.org/docs/stable/autograd.html#torch.autograd.grad

Context managers

- We can locally disable/enable gradient calculation
 - torch.no_grad()
 - torch.enable_grad()

```
In [2]: x = torch.tensor([1.0], requires_grad=True)
y = x * 2
y.requires_grad

Out[2]: True

In [3]: x = torch.tensor([1.0], requires_grad=True)
with torch.no_grad():
    y = x * 2
y.requires_grad

Out[3]: False

In [4]: x = torch.tensor([1.0], requires_grad=True)
with torch.no_grad():
    with torch.enable_grad():
    y = x * 2
y.requires_grad

Out[4]: True
```

Note: Use «torch.no_grad()» during inference

University of Oslo

Example 2 - Solving a linear problem

```
In [2]: a ref = -1.5
          b ref = 8
          noise = 0.2*np.random.randn(50)
  In [3]: #Generat data
          x = np.linspace(1,4,50)
          y = a_ref * x + b_ref + noise
 In [4]: def MSE loss(pred, label):
              return (pred-label).pow(2).mean()
In [5]: #Get data as torch.tensors
         xx = torch.tensor(x, dtype=torch.float32)
         yy = torch.tensor(y, dtype=torch.float32)
         #Create our unknown variables
         a = torch.tensor(0, requires_grad=True, dtype=torch.float32)
         b = torch.tensor(5, requires_grad=True, dtype=torch.float32)
In [6]: # training Loop
         numbOfEpoch = 10000
        learning rate = 0.01
         for ii in range(numbOfEpoch):
            y_pred = a * xx + b
            loss = MSE loss(pred=y pred, label=yy)
            loss.backward()
             # Gradient descent update
             with torch.no grad():
                a = a - learning_rate * a.grad
                 b = b - learning_rate * b.grad
             a.requires grad = True
             b.requires_grad = True
             \#print(f'ii = \{ii\} \mid a = \{a:.2f\} \mid b = \{b:.2f\}')
        print(a)
        print(b)
        tensor(-1.5061, requires_grad=True)
```

tensor(8.0354, requires_grad=True)

time [months]

Other useful torch.tensor functions

If you want to detach a tensor from the graph, you can use «detach()»

```
In [2]: x = torch.tensor(2.5, requires_grad=True)

Out[2]: tensor(2.5000, requires_grad=True)

In [3]: y = x.detach()
    y

Out[3]: tensor(2.5000)
```

• If you want to get a python number from a tensor, you can use «item()»

```
In [6]: x = torch.tensor(2.5)
x
Out[6]: tensor(2.5000)
In [7]: x.item()
Out[7]: 2.5
```

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

Data loading and preprocessing

- The «torch.utils.data» package have two useful classes for loading and preprocessing data:
 - torch.utils.data.Dataset
 - torch.utils.data.DataLoader
- For more information visit:

https://pytorch.org/tutorials/beginner/data_loading_tutorial.html

torch.utils.data.Dataset

 Typical structure of the Dataset class

```
import torch
import CatDataset

dataPath = 'data/imagesOfCats/'
myCatDataset = CatDataset(dataPath)

#Iterating through the dataset
for sample in myCatDataset:
    sample
```

```
import glob
from torch.utils.data import Dataset
class CatDataset(Dataset):
   def __init__(self, dataPath):
       self.listOfPaths = glob.glob(dataPath)
       return
   def __len__(self):
       :return: The total number of samples
       return len(self.listOfPaths)
   def __getitem__(self, index):
       Args:
           index (int): Index
       Returns:
           tuple: (image, target) where target is index of the target class.
       data, target = load(self.listOfPaths[indes])
       #Do some augmentation
       data = crop_data(data)
       return img, target
```


torch.utils.data.DataLoader

- «DataLoader» is used to:
 - Batching the dataset
 - Shuffling the dataset
 - Utilizing multiple CPU cores/ threads

```
#Iterating through the dataset
for batch_of_samples in train_loader:
    batch_of_samples
```

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

torch.nn.functional

 The «torch.nn.functional» package includes many useful functions, some of them are listed in the table below.

Activation functions	Layers	Loss functions
functional.relu	functional.conv2d	functional.binary_cross_entropy
functional.sigmoid	functional.linear	functional.cross_entropy
functional.tanh	functional.batch_norm	functional.kl_div
functional.leaky_relu	functional.embedding	functional.l1_loss
functional.softmax	functional.dropout	functional.mse_loss

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

Creating the model

- A model is of a nn.Model class type. A model can contain other models. E.g. we can create the class "Model" based on the stacking nn.Modules of type nn.Linear()
- The nn.Module's weights as called "Parameters", and are similar to tensors with "requires grad=True"
- A nn.Module consists of an initialization of the Parameters and a forward function.

```
import torch.nn as nn
import torch.nn.functional as F
```

```
class Model(nn.Module):
    def __init__(self):
        super(Model, self).__init__()
        self.fc1 = nn.Linear(in_features=28*28, out_features=128, bias=True)
        self.fc2 = nn.Linear(in_features=128, out_features=64, bias=True)
        self.fc3 = nn.Linear(in_features=64, out_features=10, bias=True)

def forward(self, x):
        x = F.relu(self.fc1(x))
        x = F.relu(self.fc2(x))
        x = self.fc3(x)
        return x
```

nn.Module's member functions

Access information of a model:

```
In [3]: model = Model()
         list(model.children())
 Out[3]: [Linear(in_features=784, out_features=128, bias=True),
          Linear(in_features=128, out_features=64, bias=True),
          Linear(in_features=64, out_features=10, bias=True)]
In [15]: for key, value in model.state_dict().items():
             print(f'layer = {key:10s} | feature shape = {value.shape}')
         layer = fc1.weight
                              feature shape = torch.Size([128, 784])
         layer = fc1.bias
                              feature shape = torch.Size([128])
         layer = fc2.weight
                              feature shape = torch.Size([64, 128])
         layer = fc2.bias
                              feature shape = torch.Size([64])
         layer = fc3.weight | feature shape = torch.Size([10, 64])
         layer = fc3.bias
                              feature shape = torch.Size([10])
```

nn.Module's member functions

 Layers as e.g. "dropout" and "batch_norm" should operate differently during training and evaluation of the model. We can set the model in different state by the following functions.

```
In [7]: model.train()
model.eval()
```

Model parameters can be sent to the CPU/GPU similar as to torch.tensors

```
In [ ]: model.to('CPU')
```

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

Define an optimizer and train the model

Using Pytorch's optimizers is easy!

```
In [ ]: optimizer = optim.SGD(model.parameters(), lr = 0.01)
In [ ]: for input, target in dataset:
    optimizer.zero_grad()
    output = model(input)
    loss = loss_fn(output, target)
    loss.backward()
    optimizer.step()
```

List of optimization algorithms SGD ADAM RMSprop Adagrad

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

Save/load models

- Saving and loading can easily be don using "torch.save" and "torch.load"
- Pytorch uses "pickling" to serialize the data

```
In [ ]: model = Model()
    optimizer = optim.SGD(model.parameters(), lr = 0.01)

    checkpoint = torch.load('fileName.pt')
    model.load_state_dict(checkpoint['model_state_dict'])
    optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
```

- Deep learning frameworks
- Pytorch
 - torch.tensor
 - Computational graph
 - Automatic differentiation (torch.autograd)
 - Data loading and preprocessing (torch.utils)
 - Useful functions (torch.nn.functional)
 - Creating the model (torch.nn)
 - Optimizers (torch.optim)
 - Save/load models
- Miscellaneous

Visualization

Tensorboard:

Visdom:

Installing Pytorch

Visit: https://pytorch.org/get-started/locally/

Verifying the install

Use of CPU and GPU

- CPU only:
 - Preprosessing
 - Training
 - Evaluation
- CPU and GPU
 - CPU: preprosessing
 - GPU: Training
 - GPU: Evaluation

Building your own deep learning rig

- http://timdettmers.com/2018/12/16/deep-learning-hardware-guide/
- http://timdettmers.com/2018/11/05/which-gpu-for-deep-learning/

Device	Speed of training, examples/sec
2 x AMD Opteron 6168	440
i7-7500U	415
GeForce 940MX	1190
GeForce 1070	6500

https://medium.com/@andriylazorenko/tensorflow-performance-test-cpu-vs-gpu-79fcd39170c