STRESSES IN SOILS DUE TO VERTICAL LOAD ON SINGLE PILE AND PILE GROUP

A Thesis Submitted
In Partial Fulfilment of the Requirements
for the Degree of

JUNE 76

MASTER OF TECHNOLOGY

IN

CIVIL ENGINEERING

by Virendra singh POST GRADANIA OFFICE
This thesis has been approved
for the award of a charge of
Master of Pearlo of (al Pearlo)
in accordance when the
regulations of the Indian
Institute of Technology Lapur
Dated.

CE-1970 - M-SIN-STR.

DEPARTMENT OF CIVIL ENGINEERING INDIAN INSTITUTE OF TECHNOLOGY, KANPUR

CERTIFICATE

Certified that work presented in this thesis has been carried out by Shri Virendra Singh under our supervision and has not been submitted elsewhere for a degree.

Levelamenous Los

M. P. Tedhan

This thesis has been approved for the award of the degree of Master of Technology in Civil Engineering in accordance with the regulations of the Indian Institute of Technology, Kanpur.

(N.S.V. Kameswara Rao) 2/6/20

M. L. Venderon

Department of Civil Engineering Indian Institute of Technology, Kanpur - 16

> POST GRADINATE OFFICE This thesis has been appleted for the award of the Degree of Master of Technology (M. Tech in accordance with the Master of Technology (M. Tech.) regulations of the Indian Institute of Technology Kampur Dated. 8/6/20

ACKNOWLEDGEMENT

Author is grateful to Dr. N.S.V. Kameswara Rao and Dr. M. R. Madhav for suggesting the topic of these investigations, for stimulating discussions and for continuous guidance and encouragement.

Author acknowledges Dr. C.R.Muthukrishnan for his help in the computational work and Shri R. P. Trivedi for typing the thesis.

DEDICATION

To my wife, Kokila Singh

NOTATIONS

- D Length of the pile.
- a Radius of the pile.
- Radial distance of the point under consideration for stress from axis of the pile.
- x Number of interval of the pile.
- v Length of the one interval of the pile.
- Ai Vertical displacement of any interval mid point i.
- dij- Vertical displacement of the soil at any location i due to unit force at location j.
- dij deflection of the pile at any point i due to unit load on the pile at j.
- F Interaction force.
- P Force.
- Z Distance of the point under consideration for stress from the surface of the soil media.
- Z' Distance of the point under consideration for stress from image surface.
- C' Distance of the force P from surface of the soil media.
- u Poisson's ratio.
- G Shear modulus.
- R₁ Distance of point under consideration for stress from the point of action of load on the shaft of the pile.
- R₂ Distance of point under consideration for stress from the image point of action of load corresponding to the point on shaft of the pile.
- R₁ Distance of point under consideration for stress from the point of action of load on the base of the pile.
- R₂ Distance of point under consideration for stress from the image point of action of the load corresponding to the point on base of the pile.
- R₃ Distance of point under consideration for stress from the inverted point of action of load.

- R₄ Distance of point under consideration for stress from the inverted image point of action of load.
- w Vertical displacement of the point.
- w' Additional vertical displacement.
- w" Vertical displacement of mid point i.
- P' Ring force.
- On Load on nth segment of the pile.
- T Tip load.
- Y_T Tipmovement.
- S₃T Load transfer in bottom segment.
- Pr Load transfer through shaft of the pile.
- Ph Load trransfer through base of the pile
- pe Intensity of pressure of shaft load.
- ph Intensity of pressure of base load.
 - Angle measure from centre axis of the pile.
- r' Distance of any point on the base of the pile measure from centre of central axis of the pile.
- dr' Incremental thickness of base ring.
- dh Incremental thickness of shaft ring.
- ZZ Vertical stress.
- ZZ1 Vertical stress due to shaft load.
- ZZ2 Vertical stress due to base load.
- TT Radial stress.
- rr. Radial stress due to shaft load.
- Tr2 Radial stress due to base load.
- dd Circumferential stress.
- $\overline{q}\overline{q}_1$ Circumferential stress due to shaft load.
- qq2 Circumferential stress due to base load.

- Tz Shear stress.
- rz, shear stress due to shaft load.
- TZ2 Shear stress due to base load.
- m = r/a, n = z/a, d = D/a, B=h/D, $\psi = r'/a$, S = r/D, Q = z/D.
- u Pore pressure.
- du Change in pore pressure.
- A Pore pressure coefficient.
- B Pore pressure coefficient.
- d 61 Change in major principal stress.
- d63 Change in minor principal stress.
- xk zz1- Stress coefficient for shaft load.
- wk zz2- Stress coefficient for base load.
- xk zzT- Stress coefficient for friction pile or for bearing pile.
- Pk zzT- Geddes stress coefficient for friction pile.
- Xi X co-ordinate of the i the pile.
- Yi Y co-ordinate of the i the pile.
- Xk X co-ordiname of point under consideration for stress.
- Yk Y co-ordinate of point under consideration for stress.
- Z Z co-ordinate of point under consideration for stress.
- N₁ Number of parts of the limit interval.
- C₁ Facter deciding the nature of the pile.
- C₁ 1, means pile is totally friction pile.
- C₁ 0 means pile in totally end bearing pile.

LIST OF TABLES

Table for vertical stress and radial stress

Table No.

- 3.1 $x \times z = x \cdot 10^6$ for u = 0.0 and $C_1 = 1.0$, D/a = 20
- 3.2 $xk zzT \times 10^6$ for $\mu = 0.0$ and $C_1 = 0.0$, D/a = 20
- 3.3 $xk zz_1 x 10^5$ for $\mu = 0.0$ and D/a=20
- 3.4 $xk zz_2 \times 10^5$ for $\mu = 0.0$ and D/a=20
- 3.5 $xk zzT \times 10^6$ for $\mu = 0.1$, $C_1=1.0$ and D/a = 20
- 3.6 $xk zzT \times 10^6$ for u = 0.1, $C_1 = 0.0$ and D/a = 20
- 3.7 $xk zz_1 \times 10^5$ for $\mu = 0.1$ and D/a = 20
- 3.8 $xk zz_2 \times 10^5$ for $\mu = 0.1$ and D/a = 20
- 3.9 $xk zzT \times 10^6$ for $\mu = 0.3$, $C_1 = 1.0$ and D/a = 20
- 3.10 $xk zzT \times 10^6$ for $\mu = 0.3$, $C_1 = 0.0$ and D/a = 20
- 3.11 $xk zz_1 \times 10^5$ for $\mu = 0.3$, D/a = 20
- 3.12 $xk zz_2 \times 10^5$ for u = 0.3 and D/a = 20
- 3.13 $xk zz^T \times 10^6$ for $\mu = 0.5$, $C_1 = 1.0$ and D/a = 20
- 3.14 $xk zzT \times 10^6$ for $\mu = 0.5$, C₁=0.0 and D/a=20
- 3.15 $xk zz_1 \times 10^5$ for n = 0.5 and D/a=20
- 3.16 $xk zz_2 \times 10^5$ for $\mu = 0.5$ and D/a=20
- 3.17 Pk zzT x 10^3 for $\mu = 0.1$, $C_1 = 1.0$ and D/a=20
- 3.18 $xk xxT \times 10^6$ for $\mu = 0.1$, C₁=1.0 and D/a=40
- 3.19 $xk zzT \times 10^6$ for $\mu = 0.1$, $C_1=0.0$ and D/a=40
- 3.21 $xk = xT \times 10^6$ for $\mu = 0.1$, $C_1 = 0.0$ and D/a = 80.
- 3.22 Value of Radial Stress Coefficients.
- 3.23 Value of xk zzT to Check the Convergence of the method.
- 4.1 Table for Vertical stress coefficients of Eigure 4.1, 4.2, 4.3.

LIST OF FIGURES

- 2.1 Interaction shear force.
- 2.2 Effect of force P in presence of rigid boundary at Depth D,
- 2.3 Axially loaded pile showing forces acting on segment of the pile.
- 2.4 Stresses in cylindrical co-ordinates caused by a surface, vertical, point load.
- 2.5 Showing different parameters involved in point load.
- 2.6 Showing different parameters involved in uniform skin friction type of loading.
- 2.7 Showing different parameters involved in linear variation of skin friction type of loading.
- 3.1 Showing length, diameter and force P acting on the pile.
- 3.2 Showing base detail of the pile.
- 3.3 Showing different parameters involved in shaft load.
- 3.4 Showing different parameters involved in base load.
- 4.1 Showing configuration of 4 piles.
- 4.2 Showing configuration of 3 piles.
- 4.3 Showing configuration of 5 piles.

TABLE OF CONTENTS

		rage
ACKNOWLEDGEM	ent	111
DEDICATION		iv
NOTATION		V
LIST OF TABLE	ES	viii
LIST OF FIGURE	RES	ix
ABSTRACT		x
CHAPTER :	I INTRODUCTION	
.*	1.1 General	1
•	1.2 Scope of the present work	2
CHAPTER I	I REVIEW OF LITERATURE	
	2.1 Introduction	3
	2.2 Load transfer through a pile	4
	2.3 Boussinesq solution	7
	2.4 Mindlin solution	8
•	2.5 Geddes solution	9
	2.6 Development of pore pressure due to applied stresses	10
	2.7 Consolidation due to stresses	11
CHAPTER II	I ANALYSIS OF STRESSES IN SOILS DUE TO VERTICAL LOADING ON A SINGLE PILE	
go ^{ri}	3.1 Introduction	12
	3.2 Formulation of the problem	12
	3.3 Stresses due to shaft load	13
	3.4 Stresses due to base base load	15
	3.5 Solution (Vertical Stress based on Euler's Formula of Summation)	17
	3.6 Results	18
	3.7 Conclusions	17

CHAPTER	IV	ANALYSIS OF STRESSES IN SOILS DUE TO VERTICAL LOADING ON GROUP OF PILES	i e
		4.1 Introduction	43
,		4.2 Formulation of the problem	43
		4.3 Results	44
		4.4 Conclusions	44
		4.5 Programme for N piles	45
CHAPTER	V	DISCUSSIONS AND RECOMMENDATIONS ABOUT THE INVESTIGATION	49
REFERENC	ES		46

.

.

•

CHAPTER I

INTRODUCTION

1.1 GENERAL:

Piles transfer the load from a footing to the soils. Stress developed in the soil should not exceed the permissible value for the safety of the structure. Estimates of the consolidation settlement are commonly based on these calculated values of the stress. Therefore the dependability of such estimates is directly dependent on the accuracy with which the stresses are calculated. Pile foundation is generally used to transfer the load from heavy structure to subsurface soil, Load has been assumed to act axially on the pile. Pile is assumed to transfer the load by skinfriction and bearing area at the base. Results are presented in terms of dimensionless stress coefficients. These coefficients mainly vertical stress coefficients have been presented in a tabular form. Some results have been given for radial stress coefficients and other stresses can be obtained in a similar way A brief literature review regarding the various aspects of load transfer is given in Chapter II. Stress at any point is a combined effect of load, partly transferred by the shaft and partly by the base of the pile. When it is assumed that the load transfer for the base of the pile is on zero, Pile becomes friction pile. For the friction pile the vertical stress coefficients have been compared with the results of Geddes (1966). A pile which transmits the load only through the base becomes a bearing pile. Tables

by the skinfriction and by the bearing area, the actual stress can be obtained by simple multiplication of these loads with the corresponding stress coefficient. This is discussed in Chapter III for an axially loaded single pile. Chapter IV gives the stresses in soil due to vertical load on a group of pile.

1.2 SCOPE OF THE PRESENT WORK:

Solution given in Chapter III) is more precise than earlier methods for computing stresses in soils. In this thesis solutions have been obtained for the stresses created by vertical loading on a single pile or a pile group by Euler's formula of summation using solutions given by Mindlin (1936) for a point load within a semi-infinite medium.

CHAPTER II

LITERATURE REVIEW

2.1 INTRODUCTION:

to vertical loads is largely based on the work of Boussinesq (1885) and Mindlin (1936). Boussinesq considered the case of vertical point load applied at the surface of a semi-infinite, isotropic and homogeneous medium obeying Hook's law where as Mindlin considered the case of a vertical point load acting below the surface of a semi-infinite medium. Although few of the assumptions regarding the properties of the medium are totally valid in the case of soils, experience has shown that the calculated values give a useful indication of the order of the stresses and their variation from point to point.

In practice few foundation apply their load at the ground surface yet Boussinesq equation has been used to find out the stresses caused by the subsurface loading. In case of piles, Terazaghi (1943) proposed a simpler method to find out stresses at a point due to shaft loading by numerical integration of the Boussinesq equation for a point load. To find out the stress due to shaft loading of a pile, a better method will be to integrate the Boussinesq equation for point load mathematically. Geddes (1966, 1969) has done the mathematical integration based on Mindlin and Boussinesq equation for point load respectively.

Literature review has been done for load trasfer, calculation of the stress and the effect of applied stress on pore pressure and consolidation.

2.2 LOAD TRANSFER THROUGH A PILE:

Piles receive their support in the form of shaft load from the side of the pile and tip load at the bottom of the pile. Friction pile is one where the tip load is small in comparison to the shaft load. End bearing pile is one where the shaft load is small in comparison to the tip load.

D Appolonia and Romaldi (1963) have presented a mathematical analysis of load transfer through pile. Following assumptions have been made. The tip of the pile is assumed not to move. The soil trapped between the flarges of the pile is assumed to act integrally with the pile and the surrounding soil is assumed to be a semi infinite elastic solid.

The theoretical load transfer between a point bearing steel pile and an elastic medium can be calculated from fundamental compatibility concepts in the theory of elasticity. An end bearing pile of length D is embeded in soil (Figure 2.1). Pile is divided in x equal parts having length v. The interaction shear stress between the pile and soil is assumed to be constant over the length v and the resultant force F is assumed to act at the mid point of the interval. Pile is free to move within the soil, Let A i be the vertical displacement of any interval mid point i. This is the displacement of any interval mid point i of the pile relative to the soil. But for calculating interaction forces assumption is made that there is no relative motion between pile and soil. The interaction force may be assumed to be the force of the soil on the pile (negative upward) or its equal and opposite reaction, the force of the pile on the soil.

Let did be the vertical displacement of the soil at any location i due to unit force at location j. did is the deflection of the pile at any point i due to unit load on the pile at j. Then the condition that the interaction forces F be of such magnitude that there be no relative displacement between the pale and soil at any position i is then

X
E dij F_j + E dij F_j =
$$\triangle$$
i (2.1)
j=1 j=1

or

This leads to a system of Msimultaneous equation for the forces F_1 , F_2 ---- F_M .

dij is calculated by use of the Mindlin equation.

The vertical displacement at depth Z due to force P at a distance C' from the free surface is

$$W = \frac{P}{16 \text{ W G (1-\mu)}} + \frac{(3-4\mu)}{R_1} + \frac{8(1-\mu)^2 - (3-4\mu)}{R_2} + \frac{(2-C')}{R_1^3} + \frac{(3-4\mu)}{R_2^3} + \frac{(2+C')^2}{R_2^5} + \frac{6 C'Z (Z+C')^2}{R_2^5}$$
(2.2)

Equation (2.2) assumes a semi-infinite media and in case of an end bearing pile there is a restraint at depth D. A surface at depth D can be assumed to be a surface of zero vertical displacement. This condition can be analytically approximated by adding a mirror image as shown in Figure 2.2.

Then the displacement given by equation (2.2.) must be corrected by the addition of w'.

$$W' = \frac{P}{16\pi G(1-u)} \left(\frac{(3-4u)}{R_3} + \frac{8(1-u) - (3-4u)}{R_4} + \frac{(Z^1-C^1)^3}{R_2^3} + \frac{(3-4u)}{R_4^3} + \frac{(Z^1+C^1)^2}{R_4^3} \right)$$

$$+ \frac{(3-4u)}{R_4^3} \left(\frac{Z^1+C^1}{2} - \frac{2}{2} \cdot \frac{C^1}{2} \cdot \frac{Z^1}{R_4^5} + \frac{6}{2} \cdot \frac{C^1}{2} \cdot \frac{Z^1}{R_4^5} + \frac{6}{2} \cdot \frac{C^1}{2} \cdot \frac{Z^1}{R_4^5} \right)$$
(2.3)

dij is obtained by the addition of equations (2.2) and (2.3) with the appropriate value of Z and C' corresponding to i and J respectively. The above method is not valid when Z = C' due to stress singularity at such points. An approximate solution can, however, be obtained by assuming the pile to be cylindrical and then the interaction stress is assumed to be uniform over the interval h. The desired displacement w" at the mid point of i along the centre of the pile due to the distributed unit stress is given by

$$w'' = \frac{1}{2 \pi a v} \tag{2.4}$$

Due to axial symmetry a solution is obtained by assuming tring force $P' = w'' (2\pi a) d\xi$ (2.5)

where d { is the thickness of small ring load. To avoid the complication arising from equation (2.2) it is assumed that the total force acts around the circumference.

Reese (1966) has presented a load - settlement curve to determine the load transfer by different segments of the pile and his method is explained by the aid of (Figure 2.3). In this method it is desired to compute the load Q_0 and δ at the top of the pile. Assuming small tip movement at the bottom segment, force and movement of each segment is calculated. Thus for a particular tip movement of the bottom segment Q_0 and δ is foundout. For different assumed tip movements different values of Q_0 and δ will be obtained and a load - settlement curve can be plotted. In figure 2.3, Q_0 , Q_1 , Q_2 , Q_3 are loads on corresponding segments.

$$Q_3 = S_3T + T \tag{2.6}$$

T = tip load

Y_T = tipmovement

S₃T = load transfer in bottom segment

knowing the way load is transferred, making certain assumptions, Boussinesq and Mindlin solutions have been used by Geddes to calculate the stresses in soil.

2.3 BOUSSINESQ SOLUTION:

The equations expressing the stress components caused by vertical point load applied at the surface of a semi-infinite, isotropic and homogeneous medium are given as

$$\frac{1}{2Z} = \frac{P}{2\pi} \frac{3 z^3}{(r^2+z^2)5/2}$$

$$\overline{rr} = \frac{P}{2^{\frac{1}{2}}} \left(\frac{3 r^2 z}{(r^2 + z^2) 5/2} - \frac{(1 - 2u)}{(r^2 + z^2 + z(r^2 + z^2) \frac{1}{2})} \right)$$

$$\frac{-}{qq} = -\frac{P(1-2u)}{2\pi} \left(\frac{z}{(r^2+z^2)^{3/2}} - \frac{1}{(r^2+z^2+z(r^2+z^2)^{\frac{1}{2}})} \right)$$

$$\vec{r}z = \frac{P}{2\pi} \frac{3 r z^2}{(r^2 + z^2)5/2}$$
 (2.7)

Solution for vertical stress for a point load acting at a distance D from the surface is arrived at from equation (2.7) neglection over burden as (Geddes)

$$\frac{3P}{2Z} = \frac{3P}{2\pi} \frac{(z-D)^3}{((r^2+(z-D)^2)^5/2}$$
 (2.8)

Geddes has non dimensionalised the equation (2.8) by putting S=r/D and Q=z/D and calculated stress coefficient $KB^1=$ stress D^2/P . Results have been presented in Tabular form.

$$KB' = -\frac{3}{2 T \sqrt{(s^2 + (s-1)^2)^{5/2}}}$$
 (2.9)

2.4 Mindlin Solution:

For a point load applied at depth D below the surface in an isotropic media, the various stresses given by Mindlin are

$$\frac{ZZ}{ZZ} = \frac{p}{8\pi(1-\mu)} \left(-\frac{(1-2\mu)(z-D)}{R_1^3} + \frac{(1-2\mu)(z-D)}{R_2^3} - \frac{3(z-D)^3}{R_1^5} \right) \\
-\frac{(3(3-4\mu)z(z+D)^2 - 3D(z+D)(5z-D)}{R_2^5} \\
-\frac{30zD(z+D)^3}{R_2^7} \right) (2.10)$$

$$\frac{p}{8\pi(1-\mu)} \left(\frac{(1-2\mu)(z-D)}{R_1^3} - \frac{(1-2\mu)(z+7D)}{R_2^3} - \frac{3r^2(z-D)}{R_1^5} \right)$$

$$+ \frac{4(1-u)(1-2u)}{R_2(R_2+z+D)} - \frac{3r^2(z+D) \cdot 10 \cdot z \cdot D}{R_2^7} + \frac{6 \cdot D(1-2 \cdot u) \cdot (z+D)^2 - 6 \cdot D^2(z+D) - 3(3-4 \cdot u) \cdot r^2(z-D)}{R_2^5}$$
(2.11)

$$\frac{1}{qq} = \frac{P}{8^{-17}(1-u)} \left(\frac{(1-2u)(z-D)}{R_1^3} + \frac{(1-2u)(3-4u) - 6D(1-2u)}{R_2^3} - \frac{4(1-u)(1-2u)}{R_2(R_2+z+D)} + \frac{(1-2u)(6D(z+D)^2 - 6D^2(z+D))}{R_2^5} \right)$$
(2.12)

$$\frac{P_{F}}{8 \pi (1-u)} = \frac{(1-2u)}{R_{1}^{3}} + \frac{(1-2u)}{R_{2}^{3}} - \frac{3(z-D)^{2}}{R_{1}^{5}} = \frac{30 \text{ zD}(z+D)^{2}}{R_{2}^{7}}$$

$$- \frac{(3(3-4u) \text{ z}(z+D)-3D(3 \text{ z} + D))}{R_{2}^{5}}$$
(2.13)

in which

$$R_1^2 = r^2 + (z - D)^2 (2.14)$$

$$R_2^2 = r^2 + (z + D)^2 (2.15)$$

see figure 2.5.

2.5 G.D. GEDDES SOLUTION FOR VARIOUS STRESSES DUE TO DIFFERENT TYPES OF LOADING:

Using Mindlin's equations the stresses have been found out by Geddles (1966) for point lead, uniform skin friction and linear variation of skin friction. Vertical stress due to uniform skin friction is found out as:

The incremental load over depth dh will be dp given by
$$dp = (P/D) dh$$
 (2.16)

stress due to total lead P is given by

$$zz = \left(\frac{P}{D}\right) \frac{1}{3\pi(1-u)} \int_{0}^{D} \left(-\frac{(1-2u)(z-h)}{C^{3}} + \frac{(1-2u)(z-h)}{E^{3}} - \frac{3(z-h)^{3}}{C^{5}}\right) dh \qquad (2.17)$$

$$= \frac{30 \text{ hz}(z+h)^{3}}{E^{7}} - \frac{(3(3-4u)z(z+h)^{2}-3h(z+h)(5z-h)}{E^{5}} dh \qquad (2.17)$$

in which

$$C^2 = (r^2 + (z-h)^2)$$
 (2.18)

$$E^{2} = (r^{2} + (z+h)^{2})$$
 (2.19)

Vertical stress due to linear variation of skin friction: Load per unit depth = $2P \frac{h}{D^2}$

Force applied over depth dh is

$$\frac{dp}{ZZ} = \frac{P}{4 \pi (1-u)} \int_{0}^{D} (-\frac{(1+2u)(z-h)h}{c^3} + \frac{(1-2u)(z-h)h}{E^3} - \frac{3h(z-h)^3}{c^5}$$

$$-\frac{(3(3-4u)zh(z+h)^2-3h^2(z+h)(5z-h))}{\pi^5}-\frac{30zh^2(z+h)^3}{\pi^7})dh (2.20)$$

The stress due to pile loading may be causing an increase in pore pressure which is important for the study of the consolidation of soil strata. These are briefly reviewed below.

2.6 DEVELOPMENT OF PORE PRESSURE IN SOILS BY APPLIED STRESSES:

In the case of clays it is of interest to compute the instantaneous excess pore-water pressure distribution in the soil due to the applied stress. With time, this fluid stress will dissipate, throwing increasing amounts of the applied stress on the soil skekton in the form of effective pressures, with resulting increasing settlement with time. Eventually all of the applied stresses are carried by the soil structure.

Expression for excess pore pressure is given by Skempton (36) as

$$du = B (da 63 + A(d 61 - d 63))$$
 (2.21)

where A and B are the pore pressure coefficients. A and B are not constant but vary with the amount of strain which takes place in the sample. Skempton has given the chart for the values of A and B for different soils. It should be kept in mind that

the pore pressure generated by an applied stress system depends on the way in which the final stress state is reached.

2.7 CONSOLIDATION DUE TO STRESS:

In the vicinity of the pile, stresses are predominant by load on pile. Due to these applied stresses excess pore water pressure is developed which dissipates with time, resulting in settlement of the soil near the pile. Due to this consolidation of the soil, interaction forces on the pile may be altered.

FIG. 2.1

FIG. 2-2 EFFECT OF FORCE PIN

PRESENCE OF RIGID
BOUNDARY AT DEPTH D

FIG. 2-3 AXIALLY LOADED PILE — SHOWING FORCES ACTING ON SEGMENT OF THE PILE

LOAD SURFACE VERTICAL POINT CO ORDINATES CAUSED BY A STRESSES IN CYLINDRICAL FIG. 2-5 POINT R SURFACE MEDIUM SKIN FRICTION FIG. 2.6 UNIFORM DIP SURFACE MEDIUM RN FIG. 2.7 LINEAR VARI D 29 ATION OF SPII FRICTION

RZ

1G. 2·4

CHAPTER III

ANALYSIS OF STRESS IN SOILS DUE TO VERTICAL LOAD ON STREET SINGLE PILE

3.1 INTRODUCTION:

In an actual situation, the pile transfers its load through the shaft and through the base. At any point the stress produced is a combined effect of these two loads transferred. Till now no mathematical solution has been presented taking these considerations into account. Geddes takes only shaft load into account and that too assuming the pile as a line neglecting the effect of diameter of the pile.

FORMULATION OF THE PROBLEM

3.2 BASIC EQUATIONS:

In this investigation it is assumed that the shaft load gets transferred to surrounding soils as ring load. The intensity of pressure pf for shaft load and pb for base load are assumed uniform. If P is the load acting on the pile then

$$P = Pf + Pb \tag{3.1}$$

Pf = load transferred by the pheriphery of the pile.

Pb = load transferred by the base of the pile.

$$Pf = bf \int_{0}^{\infty} a \, d \, \theta \, dh \qquad (3.2)$$

$$Pb = bb \int_{0}^{a} \int_{0}^{2\pi} dedr' \qquad (3.3)$$

pf = intensity of the pressure on the pheriphery of
 the pile

pb = antensity of the pressure on the base of the pile.
For above mentioned parameters see Fig. 3.1 and Fig. 3.2.

3.3 STRESSES DUE TO SHAPT LOAD:

Shaft load gets transferred to the soils as a ring load. So the distance between the point under consideration in soil media and the points on the preriphery of the ring load is not constant. It is varying from (r-a) to a maximum of (r+a) where a is the radius of the pile and r is the horizontal distance of the point under consideration from vertical axis of the pile. Suppose point P is taken into consideration on pile periphery and S' in soil media as shown in figure 3.3.

AS' = r
AB = a cos
$$\ominus$$

BS' = r = a cos \ominus
PB = a sin \ominus
PS' = ((r-a cos \ominus)²+(a sin \bigcirc)²)¹
(3.4)

Equation (3.4) is a general equation which takes into account the position of various points on pile. Due to shaft lead through pile vertical, radial, circumferential and shearing stresses at a point defined by cylindrical co-ordinates (r, 6.2) are given by using equation 3.2.

$$-\frac{3r^{2}(z-h)}{R_{1}^{5}}\frac{30Dr^{2}z(z+h)}{R_{2}^{7}}+\frac{6D(1-2u)(z+h)^{2}-6D^{2}(z+h)-3r^{2}(3-4u)(z-h)}{R_{2}^{5}}dodh$$

$$\frac{1}{qq} = \frac{a \text{ bf}}{8 \pi (1-\mu)} \int_{0}^{2\pi} \int_{0}^{2\pi} \frac{(1-2\mu)(z-h)}{(1-2\mu)(z-h)} + \frac{(1-2\mu)(3-4\mu)(z+h)-(1-2\mu)6h}{R_{2}^{3}} + \frac{4(1-\mu)(1-2\mu)}{R_{2}(R_{2}+z+h)} + \frac{(1-2\mu)6h(z+h)^{2}-6h^{2}(z+h)}{R_{2}^{5}} dedh \qquad (3.7)$$

$$\frac{1}{FZ} = \frac{a + bf}{8 \pi (1-u)} \left(\frac{(1-2u)}{C} + \frac{(1-2u)}{R_1^3} + \frac{3z(z-h)^2}{R_2^3} - \frac{30zh(z+h)^2}{R_1^3} - \frac{30zh(z+h)^2}{R_2^3} - \frac{(3(3-4u) + 2u)}{R_2^5} + \frac{(3(3-4u) + 2u)}{R_2^5} + \frac{(3-2u)}{R_2^5} + \frac{3z(z-h)^2}{R_2^5} - \frac{30zh(z+h)^2}{R_2^5} + \frac{30zh(z+$$

Where

$$R_1^2 = ((r - a \cos \theta)^2 + (a \sin \theta)^2 + (z - h)^2)$$

 $R_2^2 = ((r - a \cos \theta)^2 + (a \sin \theta)^2 + (z + h)^2)$

To compute the vertical stress equation 3.5 has been nondimensionalised. Let

$$\frac{r}{a} = m$$
, $\frac{s}{a} = n$, $\frac{D}{a} = 0$, $\frac{h}{D} = \beta$
 $h/a = B$
 $dh = Dd$

Limit of h is 0 to D

So limit of B is O to 1.

Now,

$$R_{1} = a(m^{2} + n^{2} + \sqrt{2}p^{2} + 2 \text{ m } \cos \theta - 2 \text{ n } \Delta \beta + 1) \frac{1}{2}$$

$$R_{2} = a(m^{2} + n^{2} + \sqrt{2}p^{2} - 2 \text{ m } \cos \theta + 2 \text{ n } \Delta \beta + 1) \frac{1}{2}$$

$$\frac{1}{2\pi} = \frac{b_{1}}{8\pi(1+u)} \int_{0}^{1} \frac{a^{2}(1-2a)(\frac{z}{a} - \frac{h}{a})}{(1-2a)(\frac{z}{a} - \frac{h}{a})} + \frac{a^{2}(1-2a)(\frac{z}{a} - \frac{h}{a})}{R_{2}^{3}}$$

$$\frac{3a^{4}(\frac{z}{a} - \frac{h}{a})^{3}}{R_{1}^{5}} \frac{30a^{6}}{a} \frac{h}{a} \frac{z}{a} \frac{(z+h)^{3}}{a}$$

$$\frac{R_{1}^{5}}{R_{2}^{7}}$$

$$\frac{R_{2}^{7}}{(3a^{4}(3-4u))^{2}(\frac{z}{a} + \frac{h}{a})^{2} - 3a^{3}h} \frac{(\frac{z}{a} + \frac{h}{a})^{3}}{a} \frac{a(\frac{z}{a} + \frac{h}{a})^{3}}{a}$$

(3.9)

3.4 BERTES THE TO BEARDED LOAD

In this case load get transferred from the applied area of the base. Various streepes, vertical, radial, circumferential and shearing streepes produced at the point are given by the following equations. by using equation 3.3.

$$\frac{69(1-3n)(n+0)^{2}-60^{2}(n+0)-3(3-4n)r^{2}(n+0)}{n_{s}^{2}})r^{2}(3-2n)}{n_{s}^{2}}$$
 (3.21)

$$\frac{1}{qq_2} = \frac{1}{8 \pi (1-2u)} \int_{0}^{1} \int_{0}^{2\pi} \frac{(1-2u)(z-D)}{R_1^{1/3}} + \frac{(1-2u)(3-4u)(z+D)-(1-2u)6D}{R_2^{1/3}} - \frac{4(1-u)(1-2u)}{R_2^{1}(R_2^{1}+z+D)} + \frac{(1-2u)6D(z+D)^2 - 6D^2(z+D)}{R_2^{1/5}}) r^{1}d dr^{1} (3.12)$$

$$\overline{rz}_{2} = \frac{bbr}{8\pi^{2}(1-\mu)} \int_{0}^{1} \int_{0}^{2} \frac{(1-2\mu)}{R_{1}^{2}3} + \frac{(1-2\mu)}{R_{2}^{2}3} - \frac{3(z-D)^{2}}{R_{1}^{2}5} - \frac{30zD(z+D)^{2}}{R_{2}^{2}7}$$

$$-\frac{3(3-4u)z(z+D) - 3D(3z+D)}{R!5}) r'd \theta dr'$$
 (3.13)

$$R_1^{i2} = ((r - r^i \cos \theta)^2 + (r^i \sin \theta)^2 + (z - D)^2)$$

$$R_2^{i2} = ((r - r^i \cos \theta)^2 + (r^i \sin \theta)^2 + (z + D)^2)$$

r' and o is shown in figure 3.2, and figure 3.4.

$$AM = a$$
, $AP = x'$, $\angle PAB = \Theta$

$$PC = ((r - r' \cos \theta)^{2} + (r' \sin \theta)^{2})^{\frac{1}{2}}$$
 (3.14)

To compute the vertical stress due to bearing load equation 3.10 has been nondimensionalised.

$$R_{1}^{s} = a(m^{2} + n^{2} + \chi^{2} + \chi^{2} + 2m + \cos \theta - 2n\chi)^{\frac{1}{2}}$$

$$R_{2}^{s} = a(m^{2} + n^{2} + \chi^{2} + \chi^{2} - 2m + \cos \theta + 2n\chi)^{\frac{1}{2}}$$

$$\overline{z}_{2} = \frac{bb}{8\pi(1-\mu)} \begin{cases} \frac{a^{2}\pi}{(1-2\mu)(z-D)} + \frac{(1-2\mu)(z-D)}{R_{1}^{13}} + \frac{3(z-D)^{3}}{R_{2}^{15}} + \frac{30zB(z+D)^{3}}{R_{2}^{15}} \end{cases}$$

$$\frac{3(3-4u)z(z+D)^{2}-3D(z+D)(5z-D)}{R^{15}}) r^{1}d \theta dr^{1}$$

$$\frac{1}{8} \frac{2\pi}{(1-\mu)} \int_{0}^{1} \frac{(-\frac{1}{(m^2+n^2+\sqrt{2}+\sqrt{2}-2m)(n-\alpha)})}{(-\frac{1}{(m^2+n^2+\sqrt{2}+\sqrt{2}-2m)(n-\alpha)}} + \frac{(1-2\mu)(n-\alpha)}{(m^2+n^2+2+2^2-2m)(\cos\beta+2n\alpha)^{3/2}} + \frac{(1-2\mu)(n-\alpha)}{(m^2+n^2+2+2^2-2m)(\cos\beta+2n\alpha)^{3/2}} + \frac{3+(n-\alpha)^3}{(m^2+n^2+2+2^2+2^2-2m)(\cos\beta-2n\alpha)^{5/2}} + \frac{30+(n+\alpha)^3}{(m^2+n^2+2+2^2+2^2-2m)(\cos\beta+2n\alpha)^{3/2}}$$

$$-\frac{3 \, \psi(3-4n) \, n \, (n+\alpha)^2 - 3 \, \psi(n+\alpha) \, (5n-\alpha)}{(m^2+n^2+\lambda^2 + \psi^2 - 2m \, \psi \cos \theta + 2n \, \alpha)^{5/2}}) \, dod \, \psi(3.15)$$

3.5 VERTICAL STRESS BASED ON EULER'S FORMULA OF SUMMATION:

$$\frac{2}{2} = \frac{2}{2} + \frac{2}{2} = \frac{2}{2} + \frac{2}{2} = \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} + \frac{2}{2} = \frac{2}{2} + \frac{2$$

$$=(P/a^2)$$
 xk zzT

xk zz_1 , xk zz_2 , xk zz_1 are called stress coefficients. Once we know xk zz_1 , xk zz_2 for a point and knowing C_1 we can calculate the stress. If C_1 is one it means pile is totally friction pile. If C_1 is zero it means the pile is totally end bearing pile. But in actual case pile is neither a friction pile nor an end bearing pile. Under field condition the value of C_1 has to be determined. Once the value of C_1 is

decided, stress can atonce we found by equation (3.16). For friction pile and end bearing pile for different value of a stress coefficient xk zzT has been presented in Tabular form, S and Q has been introduced.

$$S = r/D$$
, $Q = z/D$

Where r is the distance of the point from the axis of the pile. z is the vertical distance of point from the surface. Table for radial stress is also given. Similarily others stresses can be computed.

3.6 RESULTS:

For different value of S, Q, D/a, and μ the value of xk zzT are given in Tabular form. See the Tables (3.1-3.23). To compare the values with Geddes values (1966) a new stress coefficient Pk zzT has been introduced. According to Geddes, stress = $\frac{P}{PQ}$ Pk zzT.

According to investigation stress =
$$\frac{P}{a^2}$$
 xX zzT
PX zzT = χ^2 xk zzT (3.17)

For different value of S, Q, μ , C₁, κ k zzT has been Tabulated. A few graphs has been plotted between r/D and κ k zzT for a fixed vertical plane.

3.7 CONCLUSION:

Comparing the stress coefficient value with Geddes it is found that Geddes theory under estimates the stresses. Difference near the vicinity of the pile is quite large, larger value is jot for the solution obtained which is expected. With increasing D/a, the vertical stress is decreasing.

Top Super

Accuracy of the method for evaluating the double integral is tested by taking the number of intervals 20, 40 and 80 respectively and examining the values of xk zzT with these intervals. It is observed that the Euler's summation method gives converging results (Table 3.23).

TABLE 3.1: VALUE OF XK ZZT X 10° for μ = 0.0, C_1 =1 and D/a = 20(+Tension, otherwise compression).

18/0		·1 ·2 ·3 ·4 ·5 ·6 ·7 ·6	6	4	ङ्	19	F.		6		7	41.41.241.341	34.1	1	51.1	.6 <u>.</u>	7 1 1	.4\1.5\1.6\1.7\1.8\1.9	2	\$2.2}	2.4 \ 3	6 2	φ.
7	1845	806	436 232		135	84	54	3	24	17	12	0 0	v	4	m	0	~	;~ d	(•	0	0	0
4	1290	1022	740 514		353	243	368	118	83	8	5	7	23	11	2	္ရ	-	4	m	64		H	***
9	1297	1104	876	999	495	365	568	197 1	146 1	108	81	61	46	45	53	21 17	7 13	9	60	KA	4	C3	0
œ	1955	1403	500	747	563	428	327	251 1	193 1	144	116	8	71	is is	44	35 28	22	18	E C	9	-	ហ	(43
0.	3233	1565	1030	751	573	446	352	270 2	222	171	142 1	114	16	74	8	69 40	33	27	22	12	 1	ω	Ø
1.2	1535	1183	892	687	542	435	352	287 2	235 1	192	158 1	130 1	107	68	73	61 51	1 42	35	30	21	EG EG	1	00
1.4	881	789	678	52	477	398	333	279 2	234 1	197	166 1	139 1	117	66	2	71 60	51	43	37	23	20	15	7
1.6	594	559	210	455	900	348	302	260 2	224 1	193	166 1	142 1	122 1	105	8	78 67	57	္ထ	43	32	24	9	4
1.8	436	420	395	364	331	296	266 2	236 2	208	183	160 1	140 1	123 1	107	94	82 71	29	\$	48	36	28	22	17
9	337	328	314	296	276	254	231	210 1	189 1	169	151	136 1	120 1	106	94	83 74	9	8	21	4	31	23	20
2.2	271	265	256	245	231	213	201	185 1	170 1	155	140 1	127 1	114 1	103	22	83 74	99	20	23	4	3.4	27	8
2.4	223	219	213	206	961	186	175	163	152 1	140	129 1	118 1	108	86	66	81 73	99	9	40	44	36	53	4
2.6	187	185	181	175	169	161	153	144 1	136 1	127	118 1	109 1	101	93 (SS SS	78 71	29	9	40	45	37	31	23
2.8	159	158	155	151	146	141	135	128 1	121	114 1	101	100	46	87	81	75 69	63	28	54	45	38	32	27
3.0	138	136	134	132	128	124	611	114 1	109 1	103	98	20	68	91	26	71 66	61	53	52	45	8	32	27

TABLE 3.2 VALUE OF xk zzT x 10° for h = 0.0, c_1 =0.0 and D/a = 20 (+Tension, otherwise compression).

ω	_														1
¥ 2.	0	~	(4	4	9	σ	H	13	16	18	20	22	23	24	25
. 412.61.2 X X	0	8	m	9	O	11	74	17	20	22	24	26	28	53	53
21.2. X	,i	0	S.	Ø	12	12	19	63 C3	25	28	30	32	60	34	35
X 2 X	~	m	-	12	91	20	24	28	35	13 13	37	39	4	41	41
(4)	***	ស	7	16	2	27	32	36	3	43	46	48	48	8	4 8
6:1	N	-	61	20	26	W .	33	1	45	64	51	53	53	23	52
11.8/11.9/ X X)	~	ထ	16	23	30	37	42	47	51	ស	51	58	60	28	28
17.179 X X	m	9	6	28	36	4	6	54	8	62	64	65	64	63	61
9:1	4	2	53	8	42	6.4	52	61	99	70	72	72	7.1	69	99
X1.51.1	M	12	200	39	49	87	64	70	75	19	8	80	78	75	71
3.1.4.1 X	Ø	13	3.4	C)	23	92	2	8	98	89	90	68	86	82	11
		23	\$	5	99	75	28	92	9	101	101	66	90	60	83
1:23	9	23	47	49	11	07	16	107	113	116101	114101	110	104	16	80
[1.1]1.2] Y	9	31	52	74	60	100	113	125	132	133	129	122	114	105	9
	4	35	7	82	101	116	132	147	154	153	146	136	125	113	103
6.	-	in m	65	76	115	135	158	176	182	111	165	151	136	122	109
26°	Ø	9	25	100	Q	158	192	215	0	206	187	167	148	131	911
K.	4	14	46	66	145 13	190 1	242 1	268 2	262 21	239 2	211 1	184 1	160 1	140 1	123 1
**	Ø	8	4	22	160 1	239 1	319 2	342 2	318 2	277 2	237 2	201 1	172 1	148 1	129 1
	+	+								N	N				
e.	28	82	68	50	174	324	446	446	386	319	263	218	184	156	134
2. 1. 4.	94 + 57 + 28	321 +182 +	46	559 +127	186	50	663	286	464	363	289	234	194	163	139
~ ~	+	+	7	7											
r.		321	611	559	191	96	1029	762	55	904	312	248	203	169	144
	*	*	+	4	io	-		- 69	4	ev	**	G/	Ö	4	-
~	+ 13	60	+1130	+188	206	2301	1579	953	624	442	400	259	210	174	141
	+ 162 + 132 +	.4 + 622 + 483 +	.6 +1734 +1139 + 611 +274 + 89	+5389 +1882 +	211	5819	2187	1110	680	466	344	366	214	176	148
/s/.1 I	+	+	7 %	·8 +5					Ø	0	Ŋ	4	ø	ø	o,
ि	•	•	•	•	0.1	1.2	1.4	7.6	1.8	2	2.2	2.4	2.6	60	0,0

TABLE 3.3; VALUE OF xk $zz_1 \times 10^5$ for $\mu = 0.0$, D/a = 20 (+ Tension otherwise compression)

18	1. X	M 	7	>=0==	.4 4 .5	9.	-	- 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2 - 2	∞ . ∞.	.9 X	11.0 1	11.1	12.	11.3 I	11.4 I	11.5 X	1.6	¥1.7	11.8X1.9 X		X2.0X2.2 X X	2.8	12.412	(2.6) X	2.8
6	23 189	11416	5485	5 2917	7 1702	2 1056		682	452	305	209	145	102	1 73	52	38	38	21	16	12	Ø	Ŋ	m	7	-1
•	16213	12846	9536	6459	9 4436	6 3052		2115 1	1479 1	1044	744	536	390	286	212	159	120	92	20	55	43	27	17	12	æ
ě	16303	13879	11004	1 8367	7 4224	4 4585		3369 2	2480 1	1833 1	1362]	1079	767	582	445	342	265	207	163	129	103	19	45	با ا	21
60	24568	17633	12674	9383	2 7672	2 5380		4112 3	3154 2	2427 1	1875 1	1454	1132	886	169	551	438	350	281	227	185	124	92	9	42
1.0	40627	19669	12946	5 9438	8 7197	7 5607	37 4417		3501 2	2785 2	2223	1778	1427	1148	927	751	611	499	409	337	278	193	135	16	70
4	19292	14865	11203	8635	5 6813	3 5462	52 4423		3604 2	2947 2	2416 1	1984	1633	1347	1112	921	765	636	531	445	373	266	192	140 1	104
	11076	9926	8218	3 7165	5 5989	5005	35 41	4188 3	3510 2	2946 2	2475	2081	1751	1475	1243	1050	887	751	638	542	462	337	299	186 1	140
1.6	7463	7028	6413	5720	0 5626	6 4377		3790 2	2371 2	2818 2	2423 2	2083	1789	1536	1319	1133	974	838	722	622	537	403	304	231 1	177
5	5480	5272	4960	4588	8 4164	4 3744	14 3339		2959 2	2611 2	2296 2	2013	1763	1541	1346	1175	1026	968	782	683	297	458	353	273 2	13
2.0	4241	4126	3948	3 3721	1 3462	2 3186		2907 2	2633 2	2371 2	2126 1	1891	1692	1503	1334	1182	1046	926	819	724	640	502	394	311 2	246
73	3400	3331	3221	3076	6 2907	7 2720	20 25	2525 2	2326 2	2131 1	1942 1	1762	1594	1437	1293	1161	1041	932	834	746	667	533	427	342 2	275
2.4	2798	2753	2680	2584	4 2468	8 2338		2198 20	2053 1	1906 1	1761	1619	1484	1355	1234	1222	1017	921	833	753	680	554	451	367 2	294
<i>6</i>	2349	2318	2268	3 2201	1 2119	9 2025		1923 10	1815 1	1703 1	1591	1480	1371	1266	1165	1070	981	897	819	747	681	564	467	386 3	319
2	2003	1981	1945	1 1 897	7 1837	7 1768		1692 1	1610 1	1525 1	1437 1	1349	1261	1175	1092	1012	936	864	976	732	673	266	475	398 3	3. 4.
3.0	1731	1714	1688	1652	2 1608		1556 14	1498 1	1435 1	1368 1	1299 1	1229	1158	1088	1019	952	888	825	166	710	657	261	478	405 3	344

TABLE 3.4: VALUE OF XK ZZ2 X 10⁵ for /a = 0.0 and D/a = 20 (+Tension, otherwise compression)

Sanke &

	4		Constitution of the last																							
N	+ 51	+	42	42 + 30	+ 18		o₁ +	+		-	M	*	•	m	m	N	N	p-f	ğiriğ.	#4	~4	end.	0	0	0	0
*	+ 195	+	152	+101+	+ 57		+ 26	+	ø	4	ø	Ħ	-	9	0	-	Ø	រណ	タ	m	m	0	4	- 4	/ 1	-
+	+ 545	+	358	+192	4 86		+ 28		red red	15	20	20	2	13	in in	9	**** ****	Ø	-	Ø	w	*	m	ĸ	0	***
ø	+1693	*	165	+176	+ 38	m	Ø		26 31		32	30	13	60	8	17	2	12	2	0	-	9	ın	4	m	C4
1.0	99		65	629	20	A	55		S 4	455	~	36	es es	9	2	12	9	15	13	7	91	00	-	ហ	4	er)
4	1828	4	723	302	158	ch	102		75 0	8	S	42	36	23	23	24	12	C	r S	23		2	0	ø	សា	4
7.4			496	323	208	ബ	140		100	08	3	20	42	35	ri M	26	23	20	11	57	23	12	10	Ø	Ø	S
9.1			299	239	184	4	140		107 8	25	88	55	46	30	34	29	25	23	5	11	15	C	-	O.	-	យ
0.	•		961	172	146	w	121	*	100 8	82	99	E	40	41	36	31	27	24	12	78	97	7	23	10	00	Ø
2.0			139	128	114	4	100		120	15	65	26	48	42	36	32	28	25	22	19	11	18	14	-1	Ø	-
2			104	98	16	***	8		74 6	99	8	22	46	4	36	32	28	25	22	20	18	16	14	12	Ø	00
2.4		*	10	78	74	4	8		63	98	52	47	43	38	is e	23	28	25	53	20	100	17	5	12	10	6 D
2.	63		99	79	19	-1	8		54 5	S	47	43	36	46	33	30	2	N N	63	20	18	17	13	13	9	O \
8	55		52	23	ri in		\$		47 4	44	41	38	36	33	30	28	36	24	8	20	18	17	15	13	11	Ø.
3.0	47		46	45		44	42		&	39	37	34	33	30	28	26	24	22	7	61	18	16	15	13	11	01

TABLE 3.5: VALUE OF XK ZZT X 106 for M = 0.1, D/a = 20 & C1=10(+Tension otherwise compression)

2.8	0	- -1	N	m	ហ	Ø	11	14	17	19	63	24	25	26	25
2.6	0	 1	N	4	-	11	14	00	21	24	27	53	16	32	32
12.212.412.612 X X X X X X 1	0	-4	M	9	10	12	19	Si A	28	31	34	36	3.1	38	38
7.2	0	N	'n	Ö	12	20	56	H	36	0	42	44	45	55	4 70
2 X	<i>p</i> =4	M	00	14	es es	29	3	42	47	in in	53	54	54	2	63
6 ×	***	4	9	11	26	34	45	49	54	23	29	8	8	50	21
61.71.1.81.1.91 1 1 1 1 1 1 1	41 8	S	77	21	32	41	S	23	62	99	99	99	99	79	62
K.X	N	-	16	tz	39	20	8	99	7.1	74	14	74	72	69	9
8-	63	Ø	20	34	47	S	2	11	82	8	83	82	11	75	71
1.511.	, m	77	26	3	82	72	83	8	96	96	69	8	98	83	F
4	4	16	34	54	2	88	98	50	108	101	9	66	96	88	8
F	9	23	\$	8	8	106	117	122105	123	121107	116104	109	8	95	88
1.2X1.31	2	30	S S	60	112	129	139	143	141	136	128	120	111	102	4
11.11	H	42	8	115	141	158	166	167	162	153	142	131	120	119	199
11,7	16	60	0						185			143	129	116	105
T.×			5 108	148	2 176	5 192	6 198	7 195		2 172	3 157				
0.	28	63	145	193	222	235	236	1 227	211	192	173	155	138	124	111
ത	36	118	198	20	279	289	283	264	240	214	189	167	147	131	116
F:	55	169	270	329	353	356	338	307	270	236	205	179	156	138	122
9	\$8	245	368	432	450		406	356	305	38	222	190	165	144	126
R.	137	351	502 368	570 432	580 450	551 441	488	410	340 305	283	237	201 190	173	150 144	131 126
4.	234	520	667		763	703	286	527 468 410 356 307	375	304	251	211	179	155	134
E.	\$	749	893 667	1031 759	150	917 703	700 586 488 406	527	407	323	264	219	185	159	137
~	912 440 234	.4 1304 1034 749 520 357	1130	1449 1	1605 1051 763		618	573	433	338	273	225	189	162	140
>-<>	10	2	11	77	91	2									
-	.2 1847	130	1331	2030	3341	1.2 1600 1225	916	616	451	348	279				
0/51 .1 4 .2 4 .3 4.4 4 .51.6 4.7 4.8	7 "	4.	ø	60	1.0	1.2	1.4	1.6	4	0	2.2	2,4	1 0	, c	9 O E

TABLE 3.6: VALUE OF XK ZZT X 10⁶ for M=0.1, D/a=20 and $C_1=0.0$ (+Fension otherwise compression)

8/8	7	0/8 1 1 2 1 3 1 4 X 5	6.7	4.	×××	¥.6	***	7.7	8 5∼	2.4	17.7	Ę-	27.		T.	11.1/11.2/11.3/14/11.5/1.6/11/11.8/19	7	11.8	37	N	222	12.22.412.	62 X	اشا
1 "	+ 172	.2 + 172 + 140 + 99 + 59 + 28 +	66 +	÷	+	+	109	เก	11	13	23	Ħ	0		•	10 4	m	(4	CA.	r-4	e-1		0	O
*	+657	.4 +657 + 509 +336 +#87 + 82 +	+336	1487	4	4	11	8	34	38	2	9	33	24 2	20 16	2 13	2	00	-	ហ	m	64	gard.	er.
9	+1828	.6 +1828 +1192 +630 +275 + 83	+630	+275	4		12	54	8	2	8	9	S	4 0	35 29	23	63	9	23	10	-	in.	eri.	N
ø	.8 +5637	+1922 +548 +109	+548	+109	₹		93 10	108 10	107	66	68	E	5	27	48 40	33	28	23	19	16	7	0	0	**
1.0	218	213	204	193	33		165 1	\$	134 1	118 1	104	8	20	5	57 49	42	35	90	25	22	16 1		60	ø
1,2	6082	2356	963	200	321		237 1	190 1	158 1	135 1	116 1	101	63	75	65 56	6 49	42	36	TE	23	20 1	15 11		6 0
7.4			1064	679	453		322 2	243 1	192 1	158 1	132 1	113	5	84 7	73 63	3 85	48	41	36	31	24 1	18 14	***	-
1.6			794	607	459		350 2	273 2	218 1	178 1	148 1	125 1	101	92	80 69	61	23	46	41	36	28 2	21 17	13	eis.
4			572	483	400		328 2	69	22	1961	156 1	133 1	114	9	86 7	2 66	58	15	45	\$	41 2	24 19	51	M
0,0	489	463	424	379	332		287 2	247 2	17 77	181	156 1	135 1		102	90 79	07 6	62	55	3	43	34 2	27 2	2 17	
2	360	347	326	301	274		245 2	218 1	193 1	170 1	150 1	132 1	116 1	103 9	8	1 72		1 57	51	9	37 3	36 24	19	Ø.
2,4	278	3 271	652	244	1 227		209 1	190 1	172 1	155 1	140 1	125 1	112 1	101	90 81	1 73	65	50	53	8	39 3	32 26	6 21	-4
2,6			211	202	191		179 1	166 1	153 1	160	128 1	117 1	106	96	87 79	9 72	69	53	54	65	603	3 27	1 23	M
2 60			1 176	170		162 1	154 1	195 1	135 1	126 1	117	108	66	16	83 7	76 70	79 0	29	23	\$	41 3	34 29	24	❤
3.0		152	149	145	5 140		134 1	127 1	120 1	113 1	106	6	35	80	79 73	3 67	7 62	51	53	48	41 3	5 29	N	ហ

S S 241 179 448 364 ~ 466 384 \$-5 11.6 11.711.811.912.0 12.2 12.41 395 297 452 347 IJ 969 832 715 615 530 737 676 552 452 1025 927 837 755 681 904 824 751 683 936 836 746 H 255 198 155 624 519 1025 893 778 1049 926 817 878 741 627 870 820 1 1 4 6 1024 946 \$ 1.4 X 3551 2971 2488 2086 1750 1470 1236 2046 1943 1792 1645 1505 1372 1248 ß 2854 2447 2097 1797 1539 1318 2971 2686 2413 2159 1924 1710 1517 1343 1853 1737 1620 1504 1392 1283 1180 1453 1305 1728 1643 1554 1463 1372 1281 1193 1107 1250 1177 1104 1033 2417 1980 1624 1336 1.31 3410 3014 2652 2326 2035 1777 3510 2784 2214 1766 1413 .9 J. 1.0 J. 0 J. 0 J. 2 J 1439 1117 2484 1828 1352 1007 754 2575 2171 1975 1789 1463 1394 1323 2128 1482 1042 738 **>~<** > œ, ×, ×; 5114 4711 4214 3834 2752 2651 2530 2394 1993 1942 1880 1808 2326 2255 2170 2072 9412 6540 4487 3081 7364 6128 5100 3311 3160 2982 2786 2944 1719 1066 1690 1643 1589 . 5 . 5 11524 8831 6934 9590 7285 12955 9537 7157 3826 3553 4. . 1.2 20110 15395 ,2 23216 11463 ୍ଷ .6 16725 1.4 11515 8 25509 1.0 41980 1,6 7735 2,0 a/sx 3,0 2 \$ 3 2,4

for $\mu = 0.1$, D/a = 20 (+ Tension otherwise compression)

TANK 3.7: VALUE OF XK ZZ1 X 105

TABLE 3.8: VALUE OF xk $zz_2 \times 10^5$ for A = 0.1, D/a = 20 (+ Tension otherwise compression)

999										- 4	1	ł	1		1		1	1.	- [1	X	7		
\$ \$ \$	7.	7	7	* >-<>-<	,	ri F	9	×. 7	18 T	6.	11	¥1.14	1.2	1.3	1.4	1.5	61		1.8	6:1	N .	7.2	107 X 75 X		0
7.	3 +	+ 44	+ 31	+	9	4	+		M	₹.	*	m	M	· (24	N	21	*~4	H	**	***	0	0	0	0	0
**	+ 201	+160	+105	*	22	+ 26	ب +	9	H	12	12	77	Ò	-	Ø	ហ	4	m	m	N	14	-4	-	0	0
4	+ 574	+375	+198	4	8	+ 26	*	11	22	22	21	2	16	2	#	O.		ø	NO.	4	m	W	H	-1	e-4
œ	+1771	+604	+172	+	34	2	8	34	St.	31	78	24	21	22	9	2	-i	Ó	E-	•	W)	4	N	₩.	***
1.0	69	6	64		19	36	52	47	42	23	33	28	25	21	9	2	13	77	O	0	-	ហ	4	m	C)
7.2	1910	4	302		157	101	74	8	S	4	2 37	32	23	24	2	10	5	13	-	2	9	ø	un	(L)	er)
4.	722	218	534		213	142	101	94	8	ß	42	20	30	26	23	20	13	15	13	17	2	~	ø	4	m
1.6	367	314	250		191	144	110	98	3	20	46	30	34	29	25	22	9	17	5	13	4	Ø	1	ស	4
1.0		206	180		152	126	103	92	70	80	3	3	36	Ħ.	27	24	27	100	9	14	12	9	Ø	9	S)
0	154	145	133		199	104	8	7	99	53	6	42	37	32	28	25	22	19	F	12	16	11	O)	-	រោ
20	113	109	103		93	98	F	8	9	23	3 47	41	37	82	39	25	23	8	18	16	14	12	Ø.	00	ø
2.4	87	82	16			77	99	8	ru 4	4	44	39	33	32	8	20	23	27	2	17	5	12	20	00	-
2.6	5	69	3	e gris	8	9	20	22	48	4	\$	37	33	30	12	200	23	8	12	11	15	13	10	o.	-
6	88	5	55	10	S	S	S	3 45	43	4	100	34	***	29	26	24	22	20	18	C	15	13	11 9	_	œ
0,	\$	3	4	-	46	44	3	3	36	S C	E	H	29	27	25	23	21	90	97	17	15	13	러	0	60
										į										l				1	1

TABLE 3.9: VALUE OF M' ZZT m 106 for M = .3, D/a = 20 and C1 = 1(+ Tension otherwise compression)

0/51	.1 \ .2 \ .3 \ 4.4 \ .5 \ .6\ .7\	.2 X	E.	***	>-4>-4	S. XX	9.		¥.	0	H	-	1,1,2	E	1.3 1.4 1.5 1.6 X		97	F. 1	1.71.81.9	16	2 X2	12.212. X	4,25,2 X	777	o
4.	1854	923	4.	448 240	\$	141	87	20	36	24	91	ㅋ		LO.	m	64	· 67		r-t		0	0	0	0	0
4	1344	1068		775 5	539	369	252	172	119	82	5	\$	28	8	15	11	œ	9	49	m	~	 1	***	0	0
9	1427	1204	ð	943 7	708	520	520 378	274	199	144	105	11	ត	3	32	24	13	14	10	CD	ø	4	0	N	urd.
œ	2244	1564	1095	75 7	794	539	442	333	252	191	146	111	85	99	51	30	31	4	10	15	12	00	រោ	m	W
1.0	3648	1719	77	1111 798		900	461	359	281	221	174	138	100	8	8	85	44	36	50	23	19	13	Ø	vo	4
1.2	1786	1346		990 7	147	579	579 458	366	294	238	193	156	121	104	9	69	15	47	39	32	26	8	(1)	O,	٢
1.4	1016	901	7	762 6	10	519	631 519 4880353	3353	292	242	201	167	139	116	16	81	89	15	8	\$	34	24	18	13	0
9	213	534	່ເກ	574 5	90	440	378	506 440 378 324	276	235	200	100	145	123	105	60	16	65	22	43	Ş	30	23	16	12
1.8	493	473	4	442 4	405	365	325	287	252	220	192	167	145	125	109	94	60	2	19	53	46	3	202	20	15
2,0	378	367	ñ	350 3	328	304	277	251	226	202	179	159	140	124	100	96	84	74	65	23	တ္တ	39	30	23	18
2.2	301	295	7	284 2	270	254	237	218	200	182	165	148	133	119	101	95	85	75	15	8	23	42	33	56	21
2	247	242	2	235 2	226	215	203	190	177	163	150	137	125	113	102	92	83	75	150	61	54	44	35	28	23
9	206	203	Ä	198 1	192 184	184	176	166	156	146	135	125	116	106	16	88	83	74	67	63	S S	45	37	30	25
89	175	173	Ä	169 165 159	59	159	153	147	138	130	122	114	106	66	16	8	76	71	65	Q.	55	4	38	E E	26
3.0	150	149	H	146]	143	139	134	129	123	117		104	96	92	ထ	20	74	89	63	58	54	1	38	32	17
																								and the same	

is/o	7	2.	E:	3 1 .4 1 .51 .6 1 .Th	. 5. X	9.	X X	œ	6.	74 74 74 74 74	1 11.111.211.3 11.41.4.4.4.4.4.	77	F. 1	3	B7	정거		岩	¥2.	X X	7.2 7.2	1 22/2.4 2.6/2	(2.8
~	+ 201	+ 201 + 162 +	+ 113	113 + 66	+30	9	60	12	23	2	2	: ***** *****	Ó	-	in	4	ю	N	~	eril eril	H	Ø	0
4.	4 78	+ 760 + 584 + 378	+ 378	+204	1 82	4	29	45	8	45	\$	8	23	22		14 1	T	80	10	eri vo	~		-
4	+ 209	+ 2092+1343 + 689	689 +	+280	191	34	16	88	8	2	6	95	43	8	31	25 2	20 16	6 13	30	-	4	m	C4
o o	46345	+2037	1515	8	80	121	135	128	115	8	8	2	19	51	42	34 2	28 23	3 19	16	10	-	w	ო
0,1	241	234	4	211	196	179	161	144	126	110	9	85	Ş	28	8	42 3	35 29	9 25	2 21	14	10	4	N)
4.2	6836	2515	971	483	312	232	188	158	136	113	19	88	16	88	26	48 4	41 35	5 30	25	18	13	2	-
7.	2620	1849	1165	724	472	329	245	193	8	132	112	8	83	72	3	54	46 40	24	30	22	11	12	0
7.0	1330	1129	888	999	497	373	286	225	182	S	136	101	92	2	89	50	52 45	5 39	34	26	20	15	12
	811	740	642	537	4	357	583	236	195	162	13.7	117	8	90	75 (65	57 50	44	38	30	23	18	14
2.0	254	522	477	423	366	315	266	228	194	165	142	122	106	25	8	70 6	62 84	4 48	3 42	33	9	20	16
2	904	390	366	336	304	271	239	210	183	31	140	122	101	96	63	73 6	65 58	9 51	2	36	29	23	18
2.4	313	304	290	272	252	231	209	108	169	150	134	119	106	40	48	75 6	67 60	S	48	38	31	25	20
2.6	250	244	236	225	212	197	182	167	153	139	126	113	102	92	63	75 6	67 61	1 55	6	40	43	27	22
60	205	201	196	188	8	130	159	148	137	128	116	106	16	68	81	73 6	19 19	1 55	S S	41	34	28	23
3.0	172	81	165	160	154	147	139	131	123	118	107	8	4	94	11	71 6	65 60	58 0	20	42	4	29	22

2.8 231 163 116 550 442 356 476 395 304 220 161 12.212.41 434 329 485 375 523 413 11.411.5 11.6 11.711.811.912.0 239 190 715 588 485 401 4590 4090 3613 3171 2770 2413 2096 1818 1576 1364 1181 100223884 766 664 814 715 3398 3195 2974 2744 2512 2286 2069 1864 1674 1499 1339 1194 1063 946 840 747 2705 2552 2388 2218 2048 1881 1720 1566 1422 1287 1162 1048 943 848 761 2412 2315 2206 2086 1960 1832 1703 1575 1452 1333 1221 1115 1016 924 840 762 975 895 820 751 851 713 599 954 813 694 F----226 172 4125 3814 3486 3156 2836 2534 2253 1996 1764 1555 1368 1203 1057 928 6526 5373 4434 3669 3043 2527 2101 1749 1458 1217 1016 6363 5527 4755 4069 3472 2957 2516 2140 1819 1547 1316 1120 2071 2001 1921 1832 1737 1639 1538 1438 1338 1242 1148 1059 9392 7281 5750 4594 3696 2987 2421 1966 1600 1304 1065 1797 1746 1685 1618 1546 1469 1390 1310 1230 1151 1074 1 . 3 7537 5798 4512 3534 2779 2191 1731 1372 1090 1.2 9981 7401 5549 4184 3166 2404 1830 1398 1072 X1.0 X1.1 X 6770 4633 3163 2167 1492 1034 722 8897 6534 4750 3442 2495 1814 Φ, بر: ص ... 3019 1766 1093 Ŋ .6 17930 15124 11850 1,2 22446 16909 12441 ~ .4 16891 13427 28197 19653 .2 23292 11598 1.0 45846 21607 1.4 12768 3.0 2.4 2,0 2.8

TABLE 3.11: VALUE OF xk zz1 x 105 for a = 0.3, D/a=20 (+ Tension otherwise compression)

TABLE 3.12: VALUE OF xk zzz x 105 for A = 0.3, D/a = 20 (+ Tension otherwise compression)

2/8 <u>7</u>	τ. Χ.	5.	.2 ½ .3 ½ .4 ½ .5 ½	4. XX	ς. ××	.6 X.7	127	××.	×	1 ×⊶	44		413	12	1-1	5,16,17	ا اسسا	.e.	×	2 12.	12212.41	(2.6)	2.8
N	6	+ 61	+ 61 + 34	+ 21	o. +	+	N	m	4	សា	in.	45	m	74	8	pr4		r-1	r-I	0	0	0	0
4	+ 239	+183	+183 +119	+ 64	+ 26	+	m	6	4	15	14 12	2 10	0	-	in.	4	m	(A)	N	~	 1	0	0
9	+ 659	+422	+422 +216	+ 88	+ 21	#*** t	7 7	24 2	28	27 23	24 21	1 18	3 15	12	9	Ø	ø	2		6	#4		met.
9	+1993	+640	+162	4,19	9	*	\$	42 4	60	w	32 27	7 23	2	16	13	7	0	9		m	Ø	N	- -1
1.0	76	7.	77	99	62	<i>91</i>	56	51 4	45	&	35 30	26	\$ 22	19	16	13		8		S	er)	N	0
1.2	2148	790	305	153	8	A.	73 5	59 50		43 3	37 3	2 28	24	20	18	15.1	~	0		9	4	m	~
1.4	823	581	366	228	148	¥	103 7	77 61	.,	8	41 39	5 30	26	23	2	17	15 1	13 11	Ø	-	ហ	4	m
1.6	418	355	279	210	156	=		90 7	-4	57 4	47 40	34	29	25	61	2	16 1	4 12	कार्यं	60	Q	EQ.	m
1.8	255	233	202	169	138	## ##	112 9	91 7	4	61 5	1 43	33	31	27	24	21	18 1	16 14	12	Ø	-	9	*
2.0	174	164	150	133	116	Ör	8	84 72	9		52 44	9	33	59	20	22	101	17 15	13	9	60	ø	ហ
63	128	123	115	106	9	w	95 7	75 66	,	20	50 45	38	34	30	26	23	20	18 16	14	111	O	-	vo
2.4	8	9	16	98	79	-	73 6	66 59	53		47 42	33	33	30	26	24 2	21 19	9 17	2	12	10	60	ø
5.0	78	-	74	71	99	₩.	62 5	57 53	-	48 4	4 39	9	32	29	26	24 2	11 19	9 17	16	13	10	00	-
20	39	8	3	S	20	41	53 5	50 47	7 43		40 37	33	6	30	25	23 2	1 13	71 6	9	13	11	O	1
3,0	40	53	82	8	48	4	46 4	44 41	1 39	17	6 34		29	56	24	22	20 19	9 17	19	27		Ø	00
			,												ĵ.								

TABLE 3.13 : VALUE OF XK ZZT X 10^6 for μ = .5, D/a = 20 and C_1 =1(+ Tension otherwise compression)

\$ **	X X X X X X X X X X X X X X X X X X X				_	><		> <	×	×	4	×	> <		X	Cont	**************************************	-	2		×	-	~		- 4
~	1864	942	464 251 147	25	1 14	7 91	1 21		50	24	5	9	Ø	4	N	N	i-l	-4	0	0	0	Ø	0	0	
4	1416	1130	823	3 572	2 390	0 263	3 178	8 120		8	55	33	25	1	12	0	ស	4	N	***	~1	0	0	0	
9	1599	1336		3 76	1033 764 553		396 282	2 200		142 1(101	R	25	33	S	2	14	9	-	w	4	N	~	0	
ø	2629	1778	1210	88	8 62	858 624 459	9 341	1 253		189 1	140 1	105	2	20	3	34	20	10	9	-	60	ıń	M	N	•
1.0	1.0 4202	1925	1219		860 636	6 482	2 369	9 265		220 1	171 1	133 1	103	91	8	\$	38	30	24	19	5	Ø	9	4	
7.7	2121	1562	1121	1 82	828 629	9 488	384	4 304		241 19	193 1	155	124	60	8	79	23	C)	34	27	22	5	10	-	
7.	1196	1049	875	2 71	712 576	6 467		370 300		252 2	207	169 1	139 1	***	56	2	64	23	44	36	30	2	14	2	
1.6	789	734	658	3 575	5 493	3 419	353	3 298		250 2	210 1	176 1	148	124	104	88	14	62	25	7	37	27	13	4	
1.8	200	543	208		459 411	1 362	2 317	7 275		237 20	204 1	176 1	151	129	2	95	8	8	8	5	43	32	24	0	
5.0	345	334	321	Ö	304 285	5 264	4 242	2 220		198 1	176 1	159 1	142	126	777	00	63	11	9	20	52	42	et e	2	
2.4	278	273	265	254	4 240	0 226	6 210	0 194		178 1	163 1	148 1	133 1	120	108	46	23	113	6	19	52	43	34	27	
2.6	231	227	222		214 205	5 195	5 183	3 191		159 1	147 1	136 1	124 1	113	103	40	82	36	8	29	56	45	36	29	
0	195	192	189	183	3 17	177 169	191 6	1 152		143 1	133 1	124 1	115 1	901	16	8	85	15	89	62	26	96	00	H	
3.0	167	165	162	158	8 154	4 188	9 142	2 135		128 1	120 1	113 1	106	96	To	98	78	72	99	19	56	46	39	32	

Ze/o	7:	.2 ,	E.	*.	(.5 X	1 1 2 1 3 1 4 1 5 1 6 X	7.	8	5	77	1.1	**	1.1/1.2/1.3/1.4	1 1), 15 ji.6		1.7/1.9/2/2	9		2.2X	P. 2/2.4/2.6/2	2.6	100
લ	+ 252	+ 252 + 202 + 138	+ 138	4 75	+ 79 + 23	m +	14	83	z	2	5	2	111	· 00	•	N.	60	2		-	0	0	0
4.	+ 945	+ 945 + 717 + 454	+ 454	+234	+ 83	ហ	49	92	99	S	3	4	60	56	20	15 1	12 9	-	in.	m	~ 1	-	0
•	+2584	+2589 +1615 + 788 +289	+ 788	+289	+ 37	in the	917	122	114	8	8	8	S	7	35	27	71 10	e e	9	9	m	N	v-1
0	+7619	+2242	+ 455	30	191	188	182	1664143		121	102	84	8	26	6	36	29 23	19	5	6 N	9	m	C)
1.0	280	273	261	244	226	205	183	162	141	122	104	00	74	62	21	42 35	28	23	19	12	00	ĸ	m
1.2	8193	2800	986	467	293	224	198	158	133	113	2	8	26	53	50.	46 39	33	23	23	91	**4		w
4.	3196	2208	1348	908	50	342	250	195	156	132	111	S)	60	20	8	51 44	4 37	32	23	9	*	20	-
1.6	1622	1364	1055	5 780	265	416	310	229	190	3	128 1	107	5	0	19	57 49	9 42	36	d	23		2	6
6	987	995	769	635	512	408	325	261	211	2	144 1	121	102	6	75	64 55	5 48	41	36	23	20	ä	11
2.0	670	630	57.1	1 502	432	366	304	287	215	181	153 1	130 1	111	50	82 1	71 6	1 53	46	\$	Te	23	8	14
2.5	489	468	438	3 3 3 9 9	358	316	276	239	201	179	154 1	133 1	115	100	87 7	76 66	929	15	45	35	23	21	16
S	375	363	346	5 323	297	270	243	516	192	270	149 1	132 1	116	102	7 06	07 67	62	54	48	38	30	23	Ø
2.6	298	291	280	266	249	231	212	193	175	157	141 1	126 1	113	101	90	80 72	2 64	27	5	3	32	26 2	-
N •	243	239	231	1 222	211	198	185	17.1	157	144	131 1	119 1	108	0	88	80 72	8	8	25	42 3	4	28	23
3.0	203	800	195	188	180	171	162	152	141	131	121 1	111 1	102	60	85 7	78 71	1 64	58	ß	44 3	36	29 2	4

(4 (4 (M) 11.711.811.912.012.2 12.4 12.6 12.8 3.4.2 4.20 181 128 240 174 395 307 458 369 477 391 Ø 136 186 776 705 779 656 870 744 1093 963 849 1026 937 853 1071 931 1064 961 Ţ 1.6 1.5 1 1623 1415 1414 1295 1582 1401 1511 1357 1330 1223 1622 1388 1235 1147 1561 1311 Š 11.0 11.1 11.2 6195 5260 4441 3739 3142 2639 2216 2423 2126 2220 2124 2019 1907 1791 1673 1556 1930 1858 1779 1694 1604 1512 1419 2577 2446 2303 2154 2026 1851 1703 1.0 52803 24190 15322 10802 7990 6052 4639 3578 2770 2148 1669 3036 2760 2492 2238 20m1 9604 6948 4970 3539 2516 1790 1275 7185 4895 3311 2235 1510 1021 :692 10400 7905 6134 4821 3820 3040 2427 8951 7241 5863 4763 3882 3172 2597 4283 3885 3489 3108 2751 2641 2434 2238 6. *8 33037 22346 15205 10778 7838 5774 4280 3183 .7 1853 1141 5772 5159 4551 LE 3.151 VALUE OF XX ZZ1 X 10⁵ , 5 × 3187 3022 ⊲jı ¢ .4 17795 14202 10340 20094 16785 12978 1,2 26651 19634 14091 1.4 25025 13188 10993 ~ ,2 23430 11839 N 1.8 2.6 2.8 3,0 6

compression)

for \u = 0.5, D/a = 20 (+ Tension otherwise

3.16: VALUE OF $xk zz_2 \times 10^5$ for $\mu = 0.5$, D/a= 20 (+ Tension otherwise compression) TABLE

0

œ.	0	0	0	-4	s=1	N	~	m	4	4	មា	v	7	7	ထ
2.612	0	0	-4	**	M	N	m	4	ம	w	•	~	ග	O	0
2.4X	0	0	***	Q	m	m	•	w	•	-	æ	Ø	9	-	11
2.21 X	0	**	N	es	4	ហ	9	5-	œ	10	H	CZ CZ	et	13	74
2	0	N	m.	ហ	Ø	-	Ø	10	~! ~!	13	14	12	9	16	17
Te H	g-4	N	*	9	29	Óì	9	-	13	12	16	17	18	18	100
138	4-4	ers "	Ŋ	-	O	10	12	9	13	11	18	13	20	20	20
. 641.7.189	eres	4	*	•	-	2	14	E.	11	2	7	22	22	63	22
	74	K)	00	-4	13	N	16	60	20	23	24	(S)	50 FU	25	24
411.3	7	Ø	e-4	14	97	17	50	2	(C)	9	23	28	28	28	27
4	m	0	7	0	9	50	2	26	23	30	31	32	32		29
21.34	m	S		22	23	24	26	50	33	9	36	36	10	34	22
72.	*	~	21	26	28	28	30	77	30	41	42	4	\$	37	35
	9	91	56	32	33	32	35	3	45	48	48	47	7	41	38
	v	19	3	38	38	37	41	30	54	23	56	20	8	45	7
6.7	-	21	36	45	44	43	20	8	99	89	65	Q	22	6	4
6. X	9	20	38	22	51	8	19	72	82	16	75	9	61	54	9
Ŀ.	4	15	36	23	28	28	79	6	102	96	81	16	6	88	15
.6 X		W	24	29	79	70	108	130	128	115	66	8	72	62	\$
.5 X	10	56	12	20	7.1	73	159	177	191	136	112	93	18	99	5
	+	+	+	Ø	-		m					المب	jan.	_	•
4.	+ 25	+ 73	+ 91		F	147	253	244	200	158	125	101	63	20	S
××.	+ 43	+143	+247	+143	82	310	423	331	242	179	137	109	80	73	5
.2 X	+ 63	+225	+807	+704	98	880	694	429	281	198	147	114	6	75	8
#	79	270	911	+2393	80	2574	1004	510	310	210	154	118	40	16	49
	+	+	+	7		N	***	N	(L)	C	e-1	-			
/s/0	7	च्या • .	9	0	1.0	1.2	1.4	9	1.0	2.0	4	2	2.6	8	0.6

TABLE 3.17: VALUE OF PKzzT x 10 for μ = 0.1, D/a=20 and C_1 =1.0(+ Tension otherwise compression)

18/8	2/5/11 1 .2 1 .3 4 4 5 1.6 1.7 1.8	.2	χ̃ε•	4.	.5	>=<>= 0	7	>~<>~	.9 1.1	77	St.	*	2 T	4/2.5/4	급	8	7 18 h	E.	York	12.4	e.	2.6	2.612	œ <u>`</u>	2.9
2	739	365	365 176	94	52	40	22	7	2	F-	ın	, es	CV.	N	g=1	***	ri	0	0	0	0	0	0	0	0
4	522	414	300	208	143	8	68	47	33	24	11	12	0	•	w	4	m	N	M	****	0	8	0	0	0
ø	532	452	357	271	201	147	108	79	8	2	32	24	18	14 1		00	w	in .	 	N	e-1	 1	ed	H	0
00	812	578	412	304	228	173	131	100	F	S	9	36	200	22 1	17 1	14 1	g-d	0	•	4	m	N	01	7*1	H
1,0	1336	642	420	305	232	180	141	77	81	2	56	2	36	29	23 1	19 1	15 13	3 10	0	Ø	4	M	m	N	O
4.2	640	490	369	281	221	176	142	115	4	11	3	52	3	35	29 2	4 20	0 17	7 14	12	0	ø	ស	4	m	m
1.4	367	237	280	234	195	162	135	113	S)	2	99	56	47	39 3	33 2	28 2	4 20	2 17	14	10	60	1	ø	4	4
1.6	246	231	211	181	991	142	123	106	5	26	69	in.	\$	42 3	36 3	7	9	3 20	H	13	Ó	ග	-	ហ	ıń
1	180	173	163	S	136	122	109	96	8	74	65	23	\$	43 3	-	33 28	4	5 22	2	14	Ħ	10	Ø	-	ø
5	139	135	129	122	113	104	95	92	111	8		32	48	43 3	38 3	3 29	2	6 23	8	16	12	e-1	9	Ø	1
2.2	111	109	105	101	96	18	82	76	3	8	23	21	9	42 3	5	3 30	0 27	1 24	64	17	13	12	 1	0	00
2.4	92	90	88	4	6	36	72	67	29	23	25	48	44	40 3	9	3 30	N	7 24	23	18	14	13	12	Ø	O)
2.6	£	76	76	12	8	99	69	29	52	47	44		80	60 60 60	(r)	30 28	4	6 23	22	18	15	74	13	H	2
2	8	65	8	62	8	58	52	22	49	43	77	4	89	35n3.	(V)	30 28	N	6 23	22	18	S	14	E	11	10
3.0	26	99	6	3	23	21	\$	47	7	8	33	37	50	33 3	e-4	29 27	0	5 23	21	18	15	4	13	-	10

TABLE 3,18: VALUE OF xk zzT x 10⁶ for u = 0.1, D/a=40 and C_1 = 1.0 (+ Tension otherwise compression)

Ω/S X	-1 X	.2 X	.3 X	.4 X	.5) .6 X	.7	8.	.9	(1.0 (
.2	475	225	108	58	34	21	14	9	6	4
.4	330	260	188	130	89	61	42	29	21	15
.6	336	284	224	169	125	92	67	49	36	27
,8	517	362	257	189	142	108	82	63	48	37
1.0	794	399	262	190	145	112	88	70	53	44
1.2	406	307	229	176	138	110	89	72	59	48
1,4	231	206	175	147	122	101	85	71	59	50
1.6	155	145	132	117	103	89	77	66	57	49
1.8	113	109	102	94	85	76	68	60	53	46
2.0	87	85	81	76	71	65	59	53	48	43
2.2	70	68	66	63	59	56	51	47	43	39
2.4	57	56	5 5	53	50	48	45	42	39	36
2.6	48	47	46	45	43	41	39	37	35	32
2.8	41	40	40	39	37	36	34	33	31	29
3.0	3 5	35	34	34	33	32	30	29	28	26

TABLE 3.19: VALUE OF xk zzT x 10⁶ for μ = 0.1, D/a=40, C₁=0.0 (+ Tension otherwise compression)

0/SX	·1 X	.2 X	.3 X	.4 X	.5 X	.6	X.7 X	.8	(.9	1.0	
.2	+ 43	+ 35	+ 25	+ 15	+ 7	+ 2	1	3	3	3	
.4	+ 166	+ 128	+ 84	+ 47	+ 20	+ 4	5	9	10	9	
.6	+ 462	+ 299	+ 157	+ 68	+ 20	3	14	17	18	16	
.8	+1430	+ 473	+ 134	+ 26	11	24	27	27	25	22	
1.0	55	53	51	48	45	41	37	33	30	26	
1.2	1542	581	238	124	80	59	47	40	34	29	
1.4	580	413	266	169	113	80	61	48	39	33	
1.6	293	250	199	152	115	87	68	54	44	37	
1.8	179	164	143	121	100	82	67	56	46	39	
2.0	122	116	106	95	83	72	62	53	45	39	
2.2	90	87	82	75	68	61	55	48	43	37	
2.4	70	68	65	61	57	52	48	43	39	35	
2.6	56	55	53	51	48	45	41	38	35	32	
2.8	46	45	44	42	41	38	36	34	32	29	•
3.0	39	38	37	36	35	33	32	30	28	26	

TABLE 3.20: VALUE OF xk zzT x 10⁶ for μ =0.1, D/a=80 and C₁=1.0 (+ Tension otherwise compression)

Ω/s I	.1 X	.2 X	.3	I .4 }	.5) .6)	.7	.8	.9	1.0	
.2	120	56	27	14	8	5	3	2	2	1	
.4	83	65	47	32	22	15	11	7.	5	4	
.6	84	71	56	43	31	23	17	12	9	7	
.8	130	90	64	47	36	27	21	16	12	10	
1.0	196	99	65	48	36	28	22	17	14	11	
1.2	102	77	57	44	34	28	22	18	15	12	
1.4	58	51	48	37	31	25	21	18	15	12	
1.6	39	36	33	29	26	22	19	17	14	12	
1.8	28	27	26	24	21	19	17	15	13	12	
2.0	22	21	20	19	18	16	15	13	12	11	
2.2	17	17	17	16	15	14	13	12	11	10	
2.4	14	14	14	13	13	12	11	10	10	9	
2.6	12	12	12	11	11	10	10	9	9	8	
2.8	10	10	10	10	9	9	9	8	8	7	
3.0	9	9	9	8	8	8	8	7	7	7	

TABLE 3.21 : VALUE OF xk zzT x 10^6 for μ = 0.1, D/a=80 and C_1 =0.0 (+Tension otherwise compression)

Ω/sχ χ	.1 X	.2 X	.3 I	.4 X	.5) .6)	.71	.8 X	.9)	1.0
.2	+ 11	+ 9	+ 6	+ 4	+ 2	0	0	1	1	1
.4	+ 41	+ 32	+ 21	+ 12	+ 5	+1	1	2	2	2
.6	+116	+ 75	+ 39	+ 17	+ 5	1	3	4	4	4
.8	+3 59	+ 118	+ 33	+ 8	3	6	7	7	6	6
1.0	14	13	13	12	11	10	9	8	7	7
1.2	387	145	59	31	20	15	12	10	8	7
1.4	145	103	66	42	28	20	15	12	10	8
1.6	73	63	50	38	29	22	17	14	11	9
1.8	45	41	36	30	25	21	17	14	12	10
2.0	31	29	27	24	21,	18	15	13	11	10
2.2	23	22	20	19	17	15	14	12	11	9
2.4	17	17	16	15	14	13	12	11	10	9
2.6	14	14	13	13	12	11	10	10	9	8
2.8	12	11	11	11	10	10	9	9	8	7
3.0	10	10	9	9	9	8	8	8	7	7

TABLE 3.22: VALUE OF RADIAL STRESS COEFFICIENTS xk zzT x 10^6 , xk zz_1 x 10^5 , xk zz_2 x 10^5 for μ = .1 and D/a=20 (+ Tension otherwise compression)

s X	2	$l \times k \times 2T \times 10^6$ for $l \mu = .1$ and $C_1 = 1.0$	xk zzT x 10^6 $Au=.1$ and $C_1=0$	forlak zz ₁ x 10 ⁵ ; .0 IFOR µ=.1	(xk zz ₂ x 10 ⁵ (for n=.1
0. 1	.2	+ 594	478	+7470	150
"	.4	+ 400	406	+5022	128
. 7	.8	+ 370	456	+4654	143
"	.6	+ 338	500	+4242	157
Ŋ	1.0	722	61	9076	191
•/	1.2	+ 299	+325	+3757	+102
ŋ	1.4	+ 193	+337	+2425	+106
y	1.6	+ 132	+174	+1664	+ 55
'n	1.8	+ 97	+ 99	+1221	+ 31
. 11	2.0	+ 75	+ 62	+ 937	+ 20
,	2.2	+ 59	+ 42	+ 744	+ 13
ŋ	2.4	+ 48	+ 30	+ 605	+ 9
4	2.6	+ 40	+ 22	+ 502	+ 7
ሃ	2.8	+ 34	+ 17	+ 423	+ 5
y	3.0	+ 29	+ 13	+ 361	+

TABLE 3.23: VALUE OF xk ZZT TO CHECK THE CONVERGENCE OF THE METHOD FOR μ = .3, C_1 = 1.0 and D/a=20 (4Tension otherwise compression)

c ₁ §	S	Q	N ₁	xk zzT
1.0	1.0	0.2	20	0.00001601
1.0	1.0	0.2	40	0.00001609
1.0	1.0	0.2	80	0.00001614
1.0	1.0	0.4	20	0.00005744
1.0	1.0	0.4	40	0.00005736
1.0	1.0	0.4	80	0.00005733

adba

Δ

DIAMETER AND FORCE P ACTING ON THE PILE FIG.3-1 SHOWING LENGTH

DETAIL OF THE PILE FIG. 3.2 SHOWING BASE

F16. 3.3

AM = a $AP_{l} = r'$ $LP_{l}AB = \theta$ FIG. 3.4

CHAPTER IV

ANALYSIS OF STRESSES IN SOILS DUE TO VERTICAL LOAD ON GROUP OF PILES

4.1 INTRODUCTION:

Stresses has been found out in soils due to axially loaded single pile in Chapter III. In this chapter a general programme is developed for obtaining stressed due to orbitrary configurations of the piles. In the field load is transferred by a group of piles usually and not by a single pile. In this chapter stress coefficients are presented in tabular form for three different configurations of pile group just to illustrate the method.

4.2 FORMULATION OF PROBLEM:

Different configuration of the pile haw been shown in figures 4.1, 4.2 and 4.3. In each configuration the co-ordinates of each pile and also the co-ordinates of point at which stress has to be calculated is known. In general if the co-ordinates of the point is (xk, yk, z) and co-ordinates of any pile is (x_1, y_1) then the radial distance from the centre of the pile to point is given by

$$R = \{(xk - xi)^2 + (yk - yi)^2\}^{\frac{1}{2}}$$
 (4.1)

Stress at any point will be the algebraic addition of the stress produced at that point by different piles in a group. The general programme developed for N piles gives the final stress at the point under consideration. In this programme, single pile programme is taken as subroutine to calculate the stress for any group of piles.

4.3 RESULTS:

Values for the vertical stress coefficient for above three configurations has been tabulated in Table 4.1.
4.2 and 4.3.

4.4 CONCLUSION:

Results obtained by the general programme is in total agreement with results obtained by single pile analysis.

4.5 PROGRAMME: FOR N PILES:

TABLE 4.1: VALUE OF xk zzT x 10⁶ CORRESPONDING TO FIGURES 4.1, 4.2, 4.3 FOR μ = 0.1, D/a = 20 (+ Tension otherwise compression)

c ₁	<pre>ICo-ordinates of the I points in soil I(x,y,z)</pre>	Number of pile Igroup I	inľxk zzT x 10 ⁶ ľ
1.0	(4, 4, 4)	4	1292
1.0	(8, 4, 4)	4	1474
1.0	(16,4, 4)	4	562
1.0	(8, 8, 4)	4	1947
1.0	(42, 42, 60)	4	129
0.0	(4, 4, 4)	4	306
0.0	(8, 4, 4)	4	295
0.0	(16, 4, 4)	4	102
0.0	(8, 8, 4)	4	285
0.0	(42, 42, 60)	4	117
0.5	(4, 4, 4)	4	493
0.5	(8, 4, 4)	4	589
1.0	(8, 8, 4)	3	659
1.0	(16, 8, 4)	3	139
1.0	(40, 24, 4)	3	1
0.0	(8, 8, 4)	3	150
0.0	(16, 8, 4)	3	20
0.0	(40, 24, 4)	3	3
0.5	(8, 8, 4)	3	254
1.0	(8, 8, 4)	5	2778
0.0	(8, 8, 4)	5	420
0.5	(8, 8, 4)	5	.1179

FIG. 4.2

FIG. 4.3

CHAPTER V

DISCUSSIONS AND RECOMMENDATIONS

The values of stress coefficients are increasing with increase in μ of the soils. Near the pile stresses are predominant. Stresses are decreasing with increasing distance from the pile. Mostly compressive stresses are produced in case of friction pile. In case of bearing pile tension is produced in the soil above the base. Stresses are decreasing with increasing D/a. When S and Ω are more than 2.5, the stresses are insignificant and produce no major changes in soils.

In Chapter III to calculate the stresses at a point in soils due to pile - type of loading Mindlin solution for a point load is used rather than Boussinesq solutions, as it is more appropriate because pile transmints its load within the soil media and not at the surface of the soil. Pile dimensions have been taken into account in formulating the problem for the stress. Thus the solution presented is more precise than Geddes. In Chapter IV the principles of Chapter III are applied to compute the stresses due to a group of pile

The only major assumption in the investigation is the value of C_1 which determines the percentage of load getting transferred to soil through the shaft and the base of the pile. Unfortunately no rigorous method exists till now to find out the value of C_1 . So value of C_1 has to be determined by some methods.

Thus it can be said that the proposed investigation is a more accurate method to find out the stresses in soils due to vertical load on pile and pile-group.

REFERENCES

- 1. Geddes, J.D., "Stresses in Foundation Soils Due to Vertical Subsurface Loading," Geotechnique, 1966.
- 2. Geddes, J.D., "Boussinesq Based Approximations to the Vertical Stresses Caused by Pile Type Subsurface Loadings," Geotechnique, 1969.
- 3. Mindlin, R.D., "Force at a Point in the Interior of a Semi-infinite Solid," Physics, 7, 195 200, 1936.
- 4. Coyle, H.M. and Reese, L.C., "Load Transfer for Axially Loaded Piles in Clay," Jr. of Soil Mech. and Found. Div., ASCE, 1966, SM 2.1.
- 5. Appolonia, D. and Romoaldi, J.P., "Load Transfer in End Bearing Steel H. Piles," Proc. Am. Soc. Civ. Engg., 89, SM 2.1, 1963.
- 6. Golden, H.Q., "A Note on Piles in Sensitive Clay," Geotechnique, 1957.
- 7. Seed, H.B. and Reese, L.C., "The Action of the Soft Clay along Friction Piles," Proc. Am. Soc. of Civil Bogg. 81, 1955.
- 8. Teng, W.C., "Foundation Design," Prentice Hall of India (P) Ltd., New Delhi, 1962.
- 9. Vesic, A.B., "Beams on Elastic Subgrade and the Winkler's Hypothesis," Proc. 5th International Conference on Soil Mech. and Found. Engg., Paris, 1961, Vol. I.
- 10, Save, W.E., "Static and Dynamic Analysis of Pile Foundation," Proc. ASCE, Structural Div., Vol. 94, No. STS, May 1968.
- 11. Rowe, P.W., "The Single Pile Subjected to Horizontal Force,"
 Geotechnique, Institution of Civil Engineers, Vol. 6, No. 2,
 London, June 1956.
- 12. Prakash, S. and Agarwal, S.L., "Study of a Vertical Pile under Dynamic Lateral Load," Proc. of 3rd World Conf. on Earth Quake Engg, Vol. I, 1965.
- 13. Terzaghi, K., and Peck, R.B., "Soil Mechanics in Engineering Practice,".
- 14. Juhe, Heing, G., "Loads on Vertical pile Groups," Jr. of Stru. Div. ASCE, Vol 92, 1966.
- 15. Taylor, D.W., "Fundamental of Soil Mechanics",
- 16. Scott, R.F., "Principles of Soil Mechanics,".

```
NAMEV.SINGH
                            PAGES030.
                TIMEOO8,
      CEG106.
$10B
                MAP
SIBJOB
SIBFTC MAIN
      DIMENSION THETA(21), PSI(21)
      COMMON/W/G,S,C1,THETA,PSI,XKZ7,XKZ71,XK772
      COMMONAA,DD,R,Z
      THETA(1)=0.0
      PSI(1)=0.0
       DO51=2,21
       PSI(I) = PSI(I-1) + 1.0/20.0
       THETA(I)=THETA(I-1)+0.314159
 5
       DIMENSION A(15), D(15), X(15), Y(15)
       FORMAT(12)
 100
       READION, NPILES
       FORMAT(10F5.2)
   200
       READ200 (A(I), I=1, NPILES)
       READ200 . (D(I) , I = 1 , NPILES)
       READ200, (X(I), Y(I), I=1, MPILES)
```

```
FORMAT(1H1)
300
      PRINT300
     FORMAT(10X*NPILES = *13)
400
      PRINT400 NOILES
      FORMAT (/10X*RADIT *15F7.2)
500
      PRINT500 (A(I) , I=1 NPILES)
      FORMAT ( / 9X * LENGTH *15F7 - 2)
600
     PRINT600 . (D(1) . I=1 . NPILES)
      FORMATI/11X*X-CON#15F7.2)
700
      PRINT700 . (X(I) . I=1 .NRILES)
      FORMATE/11X*Y-CO *15F7.21
PRINTEROY/WITH-TELVARICES*
£ 30
      PRINT300
      D025L=1,10
       7=4×L
       DO35K=1,5
       YK=8*K
       DO45J=1,5
```