Tópicos de Matemática

Lic. Ciências da Computação 2019/2020

2. Teoria Elementar de Conjuntos

A noção de conjunto é uma noção fundamental da matemática. O estudo de conjuntos, designado por Teoria de Conjuntos, foi introduzido por Georg Cantor nos finais do século XIX. A teoria de Cantor, um tanto intuitiva, foi posteriormente tratada de forma axiomática.

A Teoria de Conjuntos revela-se essencial não só em muitos campos da matemática, mas também em muitas outras áreas como as ciências da computação.

2.1 Noções Básicas

Nesta unidade curricular vamos considerar a noção de conjunto como um conceito primitivo, i.e., como uma noção intuitiva, a partir da qual serão definidas outras noções.

Intuitivamente, um **conjunto** é uma coleção de objetos, designados os **elementos** ou **membros** do conjunto.

Exemplo 2.1. São exemplos de conjuntos as coleções de:

- (1) disciplinas do primeiro ano curricular do plano de estudos de LCC;
- (2) pessoas presentes numa festa;
- (3) meses com 30 dias;
- (4) todos os números naturais.

Como exemplo, também podemos considerar cinco conjuntos que usamos regularmente: o conjunto $\mathbb N$ de todos os números naturais; o conjunto $\mathbb Z$ de todos os números inteiros; o conjunto $\mathbb Q$ de todos os números racionais; o conjunto $\mathbb R$ de todos os números reais; o conjunto $\mathbb C$ de todos os números complexos.

Ao longo deste capítulo, estamos interessados no estudo de conjuntos de forma mais abstracta. Sendo assim, representaremos os conjuntos por letras maiúsculas $A,\ B,\ C,\ ...,\ X,\ Y,\ Z$ (possivelmente com índices e os elementos de um conjunto serão representados por letras minúsculas $a,\ b,\ c,\ ...,\ x,\ y,\ z$ (também possivelmente com índices).

Dados um conjunto A um conjunto e um objeto x, diz-se que x **pertence a** A, e escrevemos $x \in A$, se x é um dos objetos de A. Caso x não seja um dos objetos de A, diz-se que x **não pertence a** A e escrevemos $x \notin A$.

Exemplo 2.2. Tem-se, por exemplo, $3 \in \mathbb{N}$, $0 \notin \mathbb{N}$, $\frac{1}{2} \in \mathbb{Q}$, $\sqrt{2} \notin \mathbb{Q}$.

Um conjunto fica determinado quando são conhecidos os seus elementos. Assim, se A e B são dois conjuntos com os mesmos elementos, A e B dizem-se conjuntos **iguais** e escreve-se A=B. Este facto, intuitivamente claro, é expresso sob a forma de um princípio.

Princípio da Extensionalidade

Sejam A, B conjuntos. Tem-se A=B se e só se A e B têm os mesmos elementos.

Simbolicamente, dois conjuntos A e B são iguais se a proposição

$$\forall_x (x \in A \leftrightarrow x \in B)$$

é uma proposição verdadeira. Dados dois conjuntos A e B, se existir um elemento num dos conjuntos que não pertença ao outro, então A e B dizem-se **diferentes**, e escreve-se $A \neq B$.

Um conjunto pode ser descrito de várias formas. Uma dessas formas consiste em enumerar explicitamente os seus elementos, os quais são colocados entre chavetas e separados por vírgulas - neste caso diz-se que o conjunto é descrito por **extensão**.

Exemplo 2.3. O conjunto A dos números naturais menores do que 5 e o conjunto B dos números reais que são solução da equação $x^2 - 2x + 1 = 0$ podem ser descritos por extensão do seguinte modo: $A = \{1, 2, 3, 4\}$, $B = \{-1, 1\}$.

Quando numa descrição por extensão não é possível ou praticável a enumeração de todos os elementos do conjunto, utiliza-se uma notação sugestiva e não ambígua que permita intuir os elementos não expressos.

Exemplo 2.4. O conjunto dos números naturais é usualmente representado usando a notação $\mathbb{N} = \{1, 2, 3, \ldots\}$. O conjunto dos números inteiros pode ser descrito utilizando a notação $\mathbb{Z} = \{\ldots, -2, -1, 0, 1, 2, \ldots\}$.

Um conjunto também pode ser descrito por **compreensão**, indicando um predicado p(x) que seja satisfeito exatamente pelos elementos do conjunto. Neste caso, estamos a usar o

Princípio da Abstração

Dado um predicado p(x), existe o conjunto dos objetos que satisfazem p(x). Tal conjunto representa-se por $\{x \mid p(x)\}$ ou por $\{x : p(x)\}$.

O Princípio da Abstração é usualmente aplicado no dia a dia, porém, a utilização deste princípio tal como está enunciado origina paradoxos como o conhecido paradoxo de Russel. Admitamos, por exemplo, que, usando este princípio, se define o conjunto R dos conjuntos que não pertencem a si próprios, i.e., $R = \{x \mid x \not\in x\}$. Relativamente a este conjunto podemos colocar a questão se R é um elemento de si mesmo, porém, qualquer uma das respostas possíveis, $R \in R$ e $R \notin R$, conduz a uma contradição. De facto,

- se $R \in R$, então, por definição de R, $R \notin R$;
- se $R \notin R$, novamente por definição de R, $R \in R$.

A teoria formal de conjuntos utiliza uma versão mais restrita do Princípio da Abstração que elimina este tipo de problema e que permite formar novos conjuntos a partir de um conjunto dado; trata-se do

Axioma da Separação

Dados um conjunto U e um predicado p(x), existe o conjunto dos elementos de U que satisfazem p(x). Tal conjunto representa-se por $\{x \in U \mid p(x)\}$ ou por $\{x \in U : p(x)\}$.

Exemplo 2.5. O conjunto dos números naturais divisores de 16 pode ser descrito, por extensão, por $\{1, 2, 4, 8, 16\}$. Em alternativa, o conjunto pode ser definido por compreensão da seguinte forma: $\{n \in \mathbb{N} \mid n \text{ divide } 16\}$.

O Axioma da Separação não origina paradoxos como o Paradoxo de Russel, uma vez que os elementos são escolhidos de entre os elementos de um conjunto previamente conhecido. De facto, dado um conjunto U, podemos definir o conjunto $R_U = \{x \in U \mid x \notin x\}$, mas a existência deste conjunto não conduz a uma contradição:

- se $R_U \in R_U$, então, por definição de R_U , vem $R_U \notin R_U$, pelo que temos uma contradição;
- se $R_u \notin R_U$, então, $R_U \notin U$ ou $R_U \in R_U$, donde se conclui que $R_U \notin U$.

Note-se que desta prova resulta que, para qualquer conjunto U, existe um conjunto que não é um elemento de U. Consequentemente, não existe um conjunto V tal que todo o conjunto é elemento de V, i.e. não existe o "o conjunto de todos os conjuntos".

Tal como já referimos antes, na teoria formal de conjuntos, o Princípio da Abstração é rejeitado, por conduzir a paradoxos tal como o Paradoxo de Russel, e em alternativa é utilizado o Axioma da Separação. No entanto, a aplicação do Axioma da Separação necessita, em alguns casos, de princípio adicionais que garantam a existência do conjunto U. No sentido de evitarmos, por agora, o estudo de tais princípios, continuaremos a usar o Princípio da Abstração, mas é conveniente referir que todos os argumentos aqui apresentados são igualmente válidos se substituirmos o Princípio da Abstração pelo Axioma da Separação juntamente com princípios de existência.

Ao único conjunto que não tem qualquer elemento chamamos **conjunto vazio** e será representado por \emptyset ou por $\{\}$. O conjunto vazio pode ser representado por compreensão, recorrendo a um predicado que não possa ser satisfeito. Por exemplo, $\emptyset = \{x \mid x \neq x\}$.

Definição 2.1. Sejam A e B conjuntos. Diz-se que A **está contido em** B ou que A **é subconjunto de** B, e escreve-se $A \subseteq B$, se todo o elemento de A é também elemento de B, i.e., $A \subseteq B$ se a proposição

$$\forall_x (x \in A \to x \in B)$$

é uma proposição verdadeira. Diz-se que A está propriamente contido em B ou que A é subconjunto próprio de B, e escreve-se $A \subsetneq B$ ou $A \subset B$, se $A \subseteq B$ e $A \neq B$.

Caso exista um elemento de A que não seja elemento de B diz-se que A não está contido em B ou que A não é subconjunto de B, e escreve-se $A \nsubseteq B$. Simbolicamente, $A \nsubseteq B$ se

$$\exists_{x \in A} \ x \notin B.$$

Exemplo 2.6.

- (1) $\{-1,1\} \subseteq \{x \mid x \in \mathbb{R} \land x^2 1 = 0\}.$
- (2) $\{0, -1, 1\} \nsubseteq \{x \mid x \in \mathbb{R} \land x^2 1 = 0\}.$
- (3) $\mathbb{N} \subset \mathbb{N}_0 \subset \mathbb{Z} \subset \mathbb{Q} \subset \mathbb{R} \subset \mathbb{C}$.

Apresentam-se seguidamente algumas propriedades básicas a respeito da relação de inclusão entre conjuntos.

Proposição 2.2. Sejam A, B e C conjuntos. Então são válidas as seguintes propriedades:

- (1) $\emptyset \subseteq A$.
- (2) $A \subseteq A$.
- (3) se $A \subseteq B$ e $B \subseteq C$, então $A \subseteq C$.
- (4) $(A \subseteq B \ e \ B \subseteq A)$ se e só se A = B.

Demonstração. (1) Mostremos, por redução ao absurdo, que $\emptyset \subseteq A$. Nesse sentido, admitamos que $\emptyset \not\subseteq A$. Então existe um elemento de \emptyset que não pertence a A. Mas \emptyset não tem elementos. Esta contradição resultou de admitirmos que $\emptyset \not\subseteq A$. Logo $\emptyset \subseteq A$.

(2) Todo o elemento de A é elemento de A. Logo a proposição

$$\forall_x (x \in A \to x \in A)$$

é verdadeira, ou seja, $A \subseteq A$.

(3) Admitamos que $A \subseteq B$ e $B \subseteq C$. Então as proposições

(i)
$$\forall_x (x \in A \to x \in B)$$
 e (ii) $\forall_x (x \in B \to x \in C)$

são verdadeiras. Pretendemos mostrar que $A\subseteq C$, ou seja, queremos mostrar que a proposição

$$\forall_x (x \in A \to x \in C)$$

é verdadeira. Seja $x \in A$. Então por (i) segue que $x \in B$ e por (ii) tem-se que $x \in C$. Assim, todo o elemento de A é elemento de C, ou seja, $A \subseteq C$.

(4) Pretendemos mostrar que

$$(A \subseteq B \in B \subseteq A)$$
 se e só se $A = B$.

- (\Rightarrow) Suponhamos que $A\subseteq B$ e $B\subseteq A$. Então todo o elemento de A é elemento de B e todo o elemento de B é elemento de A. Logo A e B têm exatamente os mesmos elementos, ou seja, A=B.
- (\Leftarrow) Admitamos que A=B. Então a proposição

$$\forall_x (x \in A \to x \in B) \land \forall_x (x \in B \to x \in A)$$

é verdadeira, i.e., $A \subseteq B$ e $B \subseteq A$.

2.2 Operações com Conjuntos

Seguidamente estudamos alguns processos de construção que permitem, a partir de conjuntos dados, obter novos conjuntos.

Definição 2.3. Sejam A e B conjuntos. Chama-se união ou reunião de A com B, e representa-se por $A \cup B$, o conjunto cujos elementos são os elementos de A e os elementos de B, ou seja,

$$A \cup B = \{x \mid x \in A \lor x \in B\}.$$

Exemplo 2.7. Dados os subconjuntos $A = \{-2, 0, 2, \pi, 7\}$, $B = \{-1, 0, 2\}$ e $C =]-\infty, 3]$ de \mathbb{R} , tem-se: $A \cup B = \{-1, -2, 0, 2, \pi, 7\}$, $A \cup C =]-\infty, 3] \cup \{\pi, 7\}$.

Apresentam-se de seguida algumas propriedades relativas à união de conjuntos.

Proposição 2.4. Sejam A, B e C conjuntos. Então,

- (1) $A \subseteq A \cup B$ e $B \subseteq A \cup B$.
- (2) $A \cup \emptyset = A$.
- (3) $A \cup A = A$.
- (4) $A \cup B = B \cup A$.
- (5) $(A \cup B) \cup C = A \cup (B \cup C)$.
- (6) se $A \subseteq B$, então $A \cup B = B$.

Demonstração. Demonstramos as propriedades (1), (2), (5) e (6), ficando a prova das restantes como exercício.

(1) Vamos mostrar que $A \subseteq A \cup B$. Seja $x \in A$. Então,

$$x \in A \lor x \in B$$

é uma proposição verdadeira, pelo que $x \in A \cup B$. Logo a proposição

$$\forall_x (x \in A \to x \in A \cup B)$$

também é verdadeira e, portanto, $A \subseteq A \cup B$. A prova de $B \subseteq A \cup B$ é semelhante.

(2) Mostremos que $A \cup \emptyset = A$. Da propriedade (1), sabe-se que $A \subseteq A \cup \emptyset$. Para termos a prova de $A \cup \emptyset = A$, resta mostrar que $A \cup \emptyset \subseteq A$. Consideremos $x \in A \cup \emptyset$. Então

$$x \in A \lor x \in \emptyset$$
.

Dado que \emptyset não tem elementos, podemos concluir que $x \in A$. Logo a proposição

$$\forall_x (x \in A \cup \emptyset \rightarrow x \in A)$$

é verdadeira e, portanto, $A \cup \emptyset \subseteq A$. De $A \subseteq A \cup \emptyset$ e $A \cup \emptyset \subseteq A$, tem-se $A \cup \emptyset = A$

(5) Facilmente se prova que $A \cup (B \cup C) = (A \cup B) \cup C$. De facto, para todo o objeto x, tem-se

$$x \in (A \cup B) \cup C \quad \Leftrightarrow \quad x \in A \cup B \ \lor \ x \in C \qquad \text{(definição de união)}$$

$$\Leftrightarrow \quad (x \in A \lor x \in B) \lor x \in C \qquad \text{(definição de união)}$$

$$\Leftrightarrow \quad x \in A \lor (x \in B \lor x \in C) \qquad \text{(associatividade de } \lor)$$

$$\Leftrightarrow \quad x \in A \lor (x \in B \cup C) \qquad \text{(definição de união)}$$

$$\Leftrightarrow \quad x \in A \cup (B \cup C). \qquad \text{(definição de união)}$$

Logo, $A \cup (B \cup C) = (A \cup B) \cup C$.

(6) Admitamos que $A\subseteq B$ e mostremos que $A\cup B=B$. Pela propriedade (1), temos $B\subseteq A\cup B$. Logo, resta mostrar que $A\cup B\subseteq B$. Dado que $A\subseteq B$, todo o elemento de A é também elemento de B, donde segue que, para todo o objeto x,

$$\begin{array}{lll} x \in A \cup B & \Rightarrow & x \in A \vee x \in B & \text{(definição de } A \cup B\text{)} \\ & \Rightarrow & x \in B \vee x \in B & \text{(} A \subseteq B\text{)} \\ & \Rightarrow & x \in B. & \text{(idempotência de } \vee\text{)} \end{array}$$

Portanto, $A \cup B \subseteq B$. De $B \subseteq A \cup B$ e $A \cup B \subseteq B$ tem-se $A \cup B = B$.

Definição 2.5. Sejam A e B conjuntos. Chama-se **interseção de** A **com** B, e representa-se por $A \cap B$, o conjunto cujos elementos pertencem simultaneamente a A e a B, isto é,

$$A \cap B = \{x \mid x \in A \land x \in B\}.$$

Exemplo 2.8. Dados os subconjuntos $A = \{-2, 0, 2, \pi, 7\}$, $B = \{-1, 0, 2, 6\}$ e $C =]2, \pi[$ de \mathbb{R} , tem-se: $A \cap B = \{0, 2\}$, $A \cap C = \emptyset$.

A definição seguinte formaliza a noção de dois conjuntos que não têm elementos em comum.

Definição 2.6. Sejam A e B conjuntos. Os conjuntos A e B dizem-se **disjuntos** se $A \cap B = \emptyset$.

No resultado seguinte listam-se algumas propriedades relativas à operação de intersecão de conjuntos.

Proposição 2.7. Sejam A, B e C conjuntos. Então,

- (1) $A \cap B \subseteq A$ e $A \cap B \subseteq B$.
- (2) $A \cap \emptyset = \emptyset$.
- (3) $A \cap A = A$.
- (4) $A \cap B = B \cap A$.
- (5) $(A \cap B) \cap C = A \cap (B \cap C)$.
- (6) se $A \subseteq B$, então $A \cap B = A$.

Demonstração. Apresentamos a prova das propriedades (1), (2) e (5). A prova das restantes propriedades fica ao cuidado do leitor.

(1) Mostremos que $A \cap B \subseteq A$. Dado $x \in A \cap B$, tem-se

$$x \in A \land x \in B$$
,

pelo que, $x \in A$ é uma proposição verdadeira. Logo, a proposição

$$\forall_x (x \in A \cap B \to x \in A)$$

também é verdadeira e, portanto, $A \cap B \subseteq B$. A prova de $B \subseteq A \cap B$ é análoga.

(2) Pretendemos mostrar que $A \cap \emptyset = \emptyset$. No sentido de fazer esta prova por redução ao absurdo, admitamos que $A \cap \emptyset \neq \emptyset$. Então, existe um objeto x tal que

$$x \in A \land x \in \emptyset$$
:

em particular, $x \in \emptyset$. Mas \emptyset não tem elementos. Esta contradição resultou de admitirmos que $A \cap \emptyset$ tinha elementos. Assim, $A \cap \emptyset = \emptyset$.

(5) Mostremos que $(A \cap B) \cap C = A \cap (B \cap C)$. De facto, para todo o objeto x, tem-se

$$x \in (A \cap B) \cap C \quad \Leftrightarrow \quad x \in A \land x \in (B \cap C) \qquad \text{(definição de interseção)} \\ \Leftrightarrow \quad x \in A \land (x \in B \land x \in C) \qquad \text{(definição de interseção)} \\ \Leftrightarrow \quad (x \in A \land x \in B) \land x \in C \qquad \text{(associatividade de } \land) \\ \Leftrightarrow \quad x \in (A \cap B) \land x \in C \qquad \text{(definição de interseção)} \\ \Leftrightarrow \quad x \in (A \cap B) \cap C \qquad \text{(definição de interseção)}$$

e, portanto, a proposição

$$\forall_x ((x \in A \cap B) \cap C \leftrightarrow x \in A \cap (B \cap C))$$

é verdadeira. Logo $(A \cap B) \cap C = A \cap (B \cap C)$.

Sejam A, B e C conjuntos. Tendo em conta que as operações de união e de interseção de conjuntos gozam da propriedade associativa, podemos escrever, sem ambiguidade, $A \cup B \cup C$ e $A \cap B \cap C$.

Definição 2.8. Sejam A e B conjuntos. Chama-se **complementar** de B **em** A, e representa-se por $A \setminus B$ ou $C_A(B)$, o conjunto cujos elementos pertencem a A mas não a B, ou seja,

$$A \setminus B = \{x \mid x \in A \land x \notin B\}.$$

Por vezes, o complementar de B em A é também designado por **diferença de** A **com** B e representado por A-B. Quando não existe ambiguidade relativamente ao conjunto A, é usual escrever \overline{B} ou B' para representar A-B.

Exemplo 2.9. Dados os subconjuntos $A = \{-2, 0, 2, \pi, 7\}$ e $B =]-\infty, 3]$ de \mathbb{R} , tem-se: $A \setminus B = \{\pi, 7\}$, $C_{\mathbb{R}}(A \cup B) =]3, \pi[\cup]\pi, 7[\cup]7, +\infty[$, $C_{\mathbb{R}}(A \cup B) \cap (A \cup B) = \emptyset$.

A respeito da operação de complementação, provam-se facilmente as propriedades seguintes.

Proposição 2.9. Sejam A, B e C conjuntos. Então são válidas as propriedades seguintes:

- (1) $A \setminus \emptyset = A$.
- (2) se $A \subseteq B$, então $A \setminus B = \emptyset$.
- (3) $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.
- (4) $A \setminus (B \cap C) = (A \setminus B) \cup (A \setminus C)$.

Demonstração. Apresentamos a prova das propriedades (1) e (3).

- (1) Por definição, $A\setminus\emptyset$ é o conjunto dos elementos que pertencem a A mas não pertencem a \emptyset . Mas \emptyset não tem elementos, pelo que não se retira qualquer elemento a A e, portanto, $A\setminus\emptyset=A$.
- (3) Pretendemos mostrar que $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$, isto é, pretende-se provar que a proposição

$$\forall_x \ (x \in A \setminus (B \cup C) \leftrightarrow x \in (A \setminus B) \cap (A \setminus C))$$

 $\acute{\text{e}}$ verdadeira. Ora, para todo o objeto x, tem-se

$$x \in A \setminus (B \cup C) \qquad \Leftrightarrow \qquad x \in A \land x \not\in (B \cup C) \qquad \qquad \text{(definição de complementar)}$$

$$\Leftrightarrow \qquad x \in A \land \neg (x \in B \lor x \in C) \qquad \qquad \text{(definição de união)}$$

$$\Leftrightarrow \qquad x \in A \land (x \not\in B \land x \not\in C) \qquad \qquad \text{(lei de De Morgan)}$$

$$\Leftrightarrow \qquad (x \in A \land x \in A) \land (x \not\in B \land x \not\in C) \qquad \text{(idempotência de } \land)$$

$$\Leftrightarrow \qquad (x \in A \land x \not\in B) \land (x \in A \land x \not\in C) \qquad \text{(associatividade e comutatividade de } \land)}$$

$$\Leftrightarrow \qquad x \in (A \setminus B) \land x \in (A \setminus C) \qquad \qquad \text{(definição de interseção)}$$

e, portanto, a proposição

$$\forall_x \ (x \in A \setminus (B \cup C) \leftrightarrow x \in (A \setminus B) \cap (A \setminus C))$$

é verdadeira. Logo $A \setminus (B \cup C) = (A \setminus B) \cap (A \setminus C)$.

Apresentam-se seguidamente outros processos para construir conjuntos a partir de conjuntos dados; em particular, estudamos o *conjunto potência* de um dado conjunto e o *produto cartesiano* de conjuntos.

Em certas situações pode ser útil considerar o conjunto de todos os subconjuntos de um determinado conjunto, o que motiva a definição seguinte.

Definição 2.10. Seja A um conjunto. Chamamos conjunto das partes de A ou conjunto potência de A, e representamos por $\mathcal{P}(A)$, ao conjunto de todos os subconjuntos de A, ou seja, $\mathcal{P}(A) = \{X \mid X \subseteq A\}$.

Exemplo 2.10. Sejam
$$A = \{a, b, c\}$$
, $B = \{1, \{2\}\}$ e $C = \emptyset$. Então

(1)
$$\mathcal{P}(A) = \{\emptyset, \{a\}, \{b\}, \{c\}, \{a, b\}, \{a, c\}, \{b, c\}, \{a, b, c\}\}.$$

(2)
$$\mathcal{P}(B) = \{\emptyset, \{1\}, \{\{2\}\}, \{1, \{2\}\}\}.$$

(3)
$$\mathcal{P}(C) = \{\emptyset\}.$$

Proposição 2.11. Sejam A e B conjuntos. Então

- (1) $\emptyset \in \mathcal{P}(A)$ $e A \in \mathcal{P}(A)$.
- (2) Se $A \subseteq B$, então $\mathcal{P}(A) \subseteq \mathcal{P}(B)$.
- (3) Se A tem n elementos, então $\mathcal{P}(A)$ tem 2^n elementos.

Demonstração. (1) Para qualquer conjunto A, tem-se $\emptyset \subseteq A$ e $A \subseteq A$. Logo \emptyset e A são elementos de $\mathcal{P}(A)$.

- (2) Admitamos que $A\subseteq B$. Vamos mostrar que $\mathcal{P}(A)\subseteq \mathcal{P}(B)$. Dado $X\in \mathcal{P}(A)$, temse $X\subseteq A$. Logo, como $A\subseteq B$, segue que $X\subseteq B$, o que significa que $X\in \mathcal{P}(B)$. Provámos, desta forma, que todo o elemento de $\mathcal{P}(A)$ é também elemento de $\mathcal{P}(B)$ e, portanto, $\mathcal{P}(A)\subseteq \mathcal{P}(B)$.
- (3) Seja A um conjunto com n elementos, digamos a_1, a_2, \ldots, a_n . Cada subconjunto B de A pode caracterizar-se por uma sequência de 0's e 1's de comprimento n: caso o i-enésimo elemento da sequência seja 1 tal significa que $a_i \in B$; caso o i-enésimo da sequência seja 0 tal significa que $a_i \notin B$. Basta agora observar que existem 2^n sequências de 0's e 1's de comprimento n. \square

Dados objetos a,b, os conjuntos $\{a,b\}$ e $\{b,a\}$ são iguais, não interessando a ordem pela qual os elementos ocorrem. No entanto, em certas situações, interessa considerar os objetos por determinada ordem. Sendo assim, introduz-se, em termos de conjuntos, a noção de par ordenado.

Definição 2.12. Sejam a, b objetos. O par ordenado de a e b, representado por (a,b), \acute{e} o conjunto $\{\{a\},\{a,b\}\}$.

Observe-se que o par (a, a) é o conjunto $\{\{a\}\}$. Reciprocamente, se (a, b) é um conjunto singular, tem-se $\{a\} = \{a, b\}$, donde $b \in \{a\}$ e, portanto, a = b.

Proposição 2.13. Para quaisquer objetos a, b, c, d, tem-se (a, b) = (c, d) se e só se a = c e b = d.

Num par ordenado a ordem dos elementos é relevante: dados dois objetos a, b, se $a \neq b$, tem-se $(a, b) \neq (b, a)$. Num par ordenado (a, b) designa-se o objeto a como a **primeira componente** (ou coordenada) e o objeto b como a **segunda componente** (ou coordenada).

Os pares ordenados permitem formar novos conjuntos a partir de conjuntos dados.

Definição 2.14. Sejam A, B conjuntos. O produto cartesiano de A por B, representado por $A \times B$, é o conjunto formado por todos os pares ordenados (a,b) em que $a \in A$ e $b \in B$, i.e., $A \times B = \{(a,b) | a \in A \land b \in B\}$.

Exemplo 2.11.

(1) Sejam $A = \{1, 2\}$ e $B = \{a, b, c\}$. Então

$$A \times B = \{(1,a), (2,a), (1,b), (2,b), (1,c), (2,c)\};$$

 $B \times A = \{(a,1), (a,2), (b,1), (b,2), (c,1), (c,2)\}.$

É claro que $A \times B \neq B \times A$.

(2) Sejam $A = \{2n \mid n \in \mathbb{N}\}\ e\ B = \{2m+1 \mid m \in \mathbb{N}\}.$ Então

$$A \times B = \{(2n, 2m + 1) \mid m, n \in \mathbb{N}\}.$$

(3) Sejam $A=B=\mathbb{R}$. Os elementos de $A\times B=\mathbb{R}\times\mathbb{R}$ podem ser representados geometricamente como pontos dum plano munido de um eixo de coordenadas.

Apresentam-se de seguida algumas propriedades relacionadas com o produto cartesiano.

Proposição 2.15. Para quaisquer conjuntos A, B, C e D, tem-se:

- (1) $A \times \emptyset = \emptyset = \emptyset \times A$.
- (2) Se $A, B \neq \emptyset$, então $A \subseteq C$ e $B \subseteq D$ se e só se $A \times B \subseteq C \times D$.
- (3) $C \times (A \cup B) = (C \times A) \cup (C \times B)$;
- (4) $(A \cup B) \times C = (A \times C) \cup (B \times C)$.
- (5) $C \times (A \cap B) = (C \times A) \cap (C \times B)$;
- (6) $(A \cap B) \times C = (A \times C) \cap (B \times C)$.
- (7) $C \times (A \setminus B) = (C \times A) \setminus (C \times B)$;
- (8) $(A \setminus B) \times C = (A \times C) \setminus (B \times C)$.

Demonstração. Apresentamos a prova das propriedades (2) e (7).

- (2) Sejam A e B conjuntos não vazios. Pretendemos mostrar que $A\subseteq C$ e $B\subseteq D$ se e só se $A\times B\subseteq C\times D$.
- (\Rightarrow) Suponhamos que $A\subseteq C$ e $B\subseteq D$ e mostremos que $A\times B\subseteq C\times D$. Seja $(a,b)\in A\times B$. Então, por definição de produto cartesiano, $a\in A$ e $b\in B$. Mas, por hipótese, todo o elemento de A é elemento de C e todo o elemento B é elemento de D. Logo $a\in C$ e $b\in D$ e, portanto, $(a,b)\in C\times D$. Assim, a proposição

$$\forall_{(a,b)} ((a,b) \in A \times B \to (a,b) \in C \times D)$$

é verdadeira, pelo que $A \times B \subseteq C \times D$.

(\Leftarrow) Admitamos que $A \times B \subseteq C \times D$. Queremos mostrar que $A \subseteq C$ e $B \subseteq D$. Seja $a \in A$. Uma vez que $B \neq \emptyset$, existe $b \in B$. Então, por definição de produto cartesiano, $(a,b) \in A \times B$.

Por hipótese, todo o elemento de $A \times B$ é elemento de $C \times D$. Logo $(a,b) \in C \times D$, pelo que $a \in C$ e $b \in D$. Assim, a proposição

$$\forall_a (a \in A \rightarrow a \in C)$$

é verdadeira e, portanto $A \subseteq C$. De modo análogo prova-se que $B \subseteq D$.

(7) Mostremos que $C \times (A \setminus B) = (C \times A) \setminus (C \times B)$. Para todo o par (x, y),

$$(x,y) \in (C \times A) \setminus (C \times B) \iff (x,y) \in C \times A \wedge (x,y) \notin C \times B$$

$$\Leftrightarrow (x \in C \wedge y \in A) \wedge (x \notin C \vee y \notin B)$$

$$\Leftrightarrow ((x \in C \wedge y \in A) \wedge x \notin C)$$

$$\vee ((x \in C \wedge y \in A) \wedge y \notin B)$$

$$\Leftrightarrow (x \in C \wedge y \in A) \wedge y \notin B$$

$$\Leftrightarrow x \in C \wedge (y \in A \wedge y \notin B)$$

$$\Leftrightarrow x \in C \wedge (y \in A \wedge y \notin B)$$

$$\Leftrightarrow (x,y) \in C \times (A/B).$$

Logo, a proposição

$$\forall_{(a,b)} \ (a,b) \in C \times (A \setminus B) \leftrightarrow (a,b) \in (C \times A) \setminus (C \times B)$$

é verdadeira e, portanto $C \times (A \setminus B) = (C \times A) \setminus (C \times B)$.

Observe-se que se A e B são conjuntos com p e q elementos $(p,q\in\mathbb{N}_0)$, respectivamente, então $A\times B$ tem $p\times q$ elementos.

2.3 Famílias de Conjuntos

Em diversas situações existe a necessidade de considerarmos conjuntos cujos objetos são conjuntos. A uma coleção de conjuntos dá-se a designação de família de conjuntos.

Definição 2.16. Um conjunto \mathcal{F} diz-se uma família de conjuntos se todos os seus elementos são conjuntos.

Definição 2.17. Sejam $\mathcal F$ e I conjuntos. O conjunto $\mathcal F$ diz-se uma família de conjuntos indexada por I se, para cada $i \in I$, existe um conjunto A_i tal que $\mathcal F = \{A_i \mid i \in I\}$. Escreve-se $\mathcal F = \{A_i\}_{i \in I}$. Ao conjunto I dá-se o nome de conjunto de índices.

Exemplo 2.12. Para cada $i \in \mathbb{N}_0$, seja $A_i = \{x \mid x \in \mathbb{N}_0 \land x \leq i\}$. Assim, $\{A_i\}_{i \in \mathbb{N}_0}$ é uma família de conjuntos indexada por \mathbb{N}_0 .

Embora, em geral, seja mais simples trabalhar com famílias indexadas, existem famílias de conjuntos para as quais não é natural encontrar um conjunto de índices, como é o caso da família seguinte

$$\mathcal{B} = \{B \mid B \subseteq A \text{ e } B \text{ \'e finito}\}.$$

No entanto, qualquer família de conjuntos pode ser indexada por algum conjunto; em particular, pode-se considerar qualquer família de conjuntos $\mathcal F$ indexada por $\mathcal F$, i.e. $\mathcal F=\{A_X\}_{X\in\mathcal F}$.

Vejamos, agora, de que forma se generalizam as noções de união e interseção a famílias de conjuntos.

Definição 2.18. Seja $\mathcal F$ uma família de conjuntos. A união de $\mathcal F$, representada por $\bigcup \mathcal F$, é o conjunto definido por

$$\bigcup \mathcal{F} = \{ x \, | \, \exists_{A \in \mathcal{F}} \ x \in A \}.$$

Se $\mathcal{F}=\{A_i\}_{i\in I}$ é uma família de conjuntos indexada por um conjunto I, escreve-se $\bigcup_{i\in I}A_i$ para representar $\bigcup\mathcal{F}$; em particular, no caso em que $I=\{1,\ldots,n\}$, escreve-se $A_1\cup\ldots\cup A_n$ para representar $\bigcup\mathcal{F}$.

Observe-se que: para qualquer família de conjuntos \mathcal{F} e para qualquer $A \in \mathcal{F}$, tem-se $A \subseteq \bigcup \mathcal{F}$; se $\mathcal{F} = \emptyset$, então $\bigcup \mathcal{F} = \emptyset$.

Definição 2.19. Seja \mathcal{F} uma família não vazia de conjuntos. A **interseção de** \mathcal{F} , representada por $\bigcap \mathcal{F}$, é o conjunto definido por

$$\bigcap \mathcal{F} = \{ x \, | \, \forall_{A \in \mathcal{F}} \ x \in A \}.$$

Se $\mathcal{F}=\{A_i\}_{i\in I}$ é uma família de conjuntos indexada por um conjunto I, escreve-se $\bigcap_{i\in I}A_i$ para representar $\bigcap\mathcal{F}$; no caso em que $I=\{1,\ldots,n\}$, escreve-se $A_1\cap\ldots\cap A_n$ para representar $\bigcap\mathcal{F}$.

Para qualquer família não vazia de conjuntos \mathcal{F} e para qualquer $A \in \mathcal{F}$, tem-se $\bigcap \mathcal{F} \subseteq A$. Caso \mathcal{F} seja uma família de subconjuntos de um conjunto U e $\mathcal{F} = \emptyset$, alguns autores convencionam que $\bigcap \mathcal{F} = U$.

Exemplo 2.13.

(1) Para cada $i \in \mathbb{N}_0$, seja $A_i = \{x \mid x \in \mathbb{N}_0 \land x \leq i\}$. Então:

(i)
$$\bigcup_{i\in I}A_i=\mathbb{N}_0;$$
 (ii) $\bigcap_{i\in I}A_i=\{0\}.$

(2) Para cada $i \in \mathbb{N}$, seja $B_i = \{x \mid x \in \mathbb{R} \land \frac{1}{i} < x < 8 + \frac{3}{i}\}$. Então:

(i)
$$\bigcup_{i \in I} B_i = (0, 11);$$
 (ii) $\bigcap_{i \in I} B_i = (1, 8].$

Muitas das propriedades válidas para a união e para a interseção são extensíveis a famílias de conjuntos.

Proposição 2.20. Sejam \mathcal{F} uma família não vazia de conjuntos e B um conjunto. Então

- $(1) \quad A \subseteq \bigcup_{X \in \mathcal{F}} X, \text{ para todo } A \in \mathcal{F}.$ $(3) \quad B \cap (\bigcup_{X \in \mathcal{F}} X) = \bigcup_{X \in \mathcal{F}} (B \cap X).$ $(4) \quad B \cup (\bigcap_{X \in \mathcal{F}} X) = \bigcap_{X \in \mathcal{F}} (B \cup X).$ $(5) \quad B \setminus (\bigcap_{X \in \mathcal{F}} X) = \bigcup_{X \in \mathcal{F}} (B \setminus X).$ $(6) \quad B \setminus (\bigcup_{X \in \mathcal{X}} X) = \bigcap_{X \in \mathcal{F}} (B \setminus X).$
- (7) $B \times (\bigcap_{X \in \mathcal{F}} X) = \bigcap_{X \in \mathcal{F}} (B \times X)$. (8) $B \times (\bigcup_{X \in \mathcal{F}} X) = \bigcup_{X \in \mathcal{F}} (B \times X)$.

Demonstração. Apresenta-se a prova das propriedades (3) e (5), ficando a prova das restantes ao cuidado do leitor.

- (3) Seja $x \in B \cap (\bigcup_{X \in \mathcal{F}} X)$. Então $x \in B$ e $x \in \bigcup_{X \in \mathcal{F}} X$. Daqui segue que $x \in Y$, para algum $Y \in \mathcal{F}$. Logo $x \in B \cap Y$, para algum $Y \in \mathcal{F}$, pelo que $x \in \bigcup_{X \in \mathcal{F}} (B \cap X)$. Portanto, $B \cap (\bigcup_{X \in \mathcal{F}} X) \subseteq \bigcup_{X \in \mathcal{F}} (B \cap X).$
- Reciprocamente, admitamos que $x \in \bigcup_{X \in \mathcal{F}} (B \cap X)$. Então existe $Y \in \mathcal{F}$ tal que $x \in B \cap Y$, isto é, existe $Y \in \mathcal{F}$ tal que $x \in B$ e $x \in Y$. Logo $x \in B$ e $x \in \bigcup_{X \in \mathcal{F}} X$ e, portanto, $x \in B \cap (\bigcup_{X \in \mathcal{F}} X)$. Assim, $\bigcup_{X \in \mathcal{F}} (B \cap X) \subseteq B \cap (\bigcup_{X \in \mathcal{F}} X)$.
- (5) Seja $x \in B \setminus (\bigcap_{X \in \mathcal{F}} X)$. Então $x \in B$ e $x \notin \bigcap_{X \in \mathcal{F}} X$. Logo $x \in B$ e $x \notin Y$, para algum $Y \in \mathcal{F}$, pelo que $x \in B \setminus Y$. Assim, $x \in \bigcup_{X \in \mathcal{F}} (B \setminus X)$. Por conseguinte, $B \setminus (\bigcap_{X \in \mathcal{F}} X) \subseteq \bigcup_{X \in \mathcal{F}} (B \setminus X).$

Reciprocamente, admitamos que $x\in\bigcup_{X\in\mathcal{F}}\left(B\setminus X\right)$. Então, para algum $Y\in\mathcal{F}$, $x\in B\setminus Y$, isto é, $x \in B$ e $x \notin Y$. Assim, $x \in B$ e $x \notin \bigcap_{X \in \mathcal{F}} X$, ou seja, $x \in B \setminus (\bigcap_{X \in \mathcal{F}} X)$. Portanto, $\bigcup_{X\in\mathcal{F}} (B\setminus X) \subseteq B\setminus (\bigcap_{X\in\mathcal{F}} X).$

Facilmente, pode-se verificar que as propriedades (1), (3) e (9) da proposição anterior são também válidas quando $I = \emptyset$.

A noção de produto cartesiano de conjuntos também pode ser generalizada. Nesta secção generalizamos a noção de produto cartesiano a famílias finitas de conjuntos, mas esta noção pode ser generalizada a famílias infinitas de conjuntos (de momento consideramos apenas a noção intuitiva de conjunto finito e conjunto infinito, estes conceitos serão definidos rigorosamente no capítulo 6).

Se A, B e C são conjuntos, podemos considerar os conjuntos $(A \times B) \times C$ e $A \times (B \times C)$. Rigorosamente, estes conjuntos são diferentes, uma vez que no primeiro caso temos elementos da forma ((a,b),c) e no segundo caso os elementos são da forma (a,(b,c)). Porém, uma vez que não existe diferença prática entre estes dois conjuntos, é usual representar qualquer um dos conjuntos por $A \times B \times C$ e os seus elementos por (a, b, c).

Mais geralmente, tem-se

Definição 2.21. Seja $\mathcal{F} = \{A_i\}_{i \in I}$ uma família de conjuntos indexada por $I = \{1, \dots, n\}$. Designa-se por produto cartesiano de A_1, \ldots, A_n , e representa-se por $A_1 \times \cdots \times A_n$ ou por $\prod A_i$, o conjunto formado pelos n-uplos ordenados (a_1,\ldots,a_n) em que $a_1\in A_1,\ldots$, $a_n \in A_n$, i.e.,

$$A_1 \times \cdots \times A_n = \{(a_1, \dots, a_n) \mid a_1 \in A_1, \dots, a_n \in A_n\}.$$

No caso em que $A_1 = \cdots = A_n = A$, escrevemos A^n em alternativa a $A_1 \times \cdots \times A_n$.

Se $I=\{1,\ldots,n\}$ e se cada conjunto A_i tem p_i elementos, então $\prod_{i\in I}A_i$ tem $p_1\times\cdots\times p_n$ elementos.

2.4 Axiomas da Teoria de Conjuntos

A noção de conjunto utilizada nas secções anteriores é uma noção intuitiva. Esta noção, adotada por Georg Cantor no desenvolvimento da teoria de conjuntos, é também adotada pela maioria dos matemáticos contemporâneos. Este conceito, embora seja adequado para a maioria dos resultados estudados ao longo do curso, nem sempre é suficiente; recordese que pelo Princípio da Abstração seria possível construir o conjunto $\{x \mid x \not\in x\}$, porém tal construção conduz a problemas como o do Paradoxo de Russel. Assim, no sentido de resolver problemas deste tipo e de se conseguir um estudo mais rigoroso da teoria de conjuntos, vários sistemas axiomáticos foram desenvolvidos ao longo do tempo. O sistema de axiomas de Zermelo-Fraenkel (ZF), desnvolvido por Ernst Zermelo e Abraham Fraenkel, é um desses sistemas.

Axiomas de Zermelo-Fraenkel

1. Axioma da Extensionalidade Dois conjuntos são iguais se e só se têm os mesmos elementos.

$$\forall_x \forall_y (x = y \leftrightarrow \forall z (z \in x \leftrightarrow z \in y)).$$

2. Axioma do Conjunto Vazio Existe um conjunto sem elementos.

$$\exists_x \forall_y (y \notin x).$$

3. Axioma do Par Para quaisquer dois conjuntos x e y, existe um conjunto cujos elementos são precisamente os conjuntos x e y.

$$\forall_x \forall_y \exists_z \forall_w (w \in z \leftrightarrow (w = x \lor w = y)).$$

4. Axioma da Separação Seja p(z) um predicado. Para qualquer conjunto x existe um conjunto cujos elementos são exatamente todos os conjuntos $z \in x$ para os quais p(z) se verifica.

$$\forall_x \exists_y \forall_z (z \in y \leftrightarrow (z \in x \land p(z))).$$

5. Axioma do Conjunto Potência Para todo o conjunto x existe um conjunto z constituído exatamente por todos os subconjuntos de x.

$$\forall_x \exists_y \forall_z (z \in y \leftrightarrow z \subseteq x).$$

6. Axioma da União Para qualquer conjunto x existe um conjunto y que é a união de todos os elementos de x.

$$\forall_x \,\exists_y \,\forall_z (z \in y \leftrightarrow \exists_w \, (z \in w \land w \in x)).$$

7. Axioma do infinito Existe um conjunto indutivo.

$$\exists_x (\emptyset \in x \land \forall y (y \in x \to y \cup \{y\} \in x)).$$

8. Axioma da substituição Seja p(x,y) um predicado nas variáveis x e y. Para qualquer conjunto z, se para qualquer $x \in z$ existe um único y tal que p(x,y), então existe um conjunto w constituído por todos os elementos y tais que p(x,y) para algum $x \in z$.

$$\forall_x ((\forall_{x \in z} \exists^1_y p(x, y)) \to \exists_w \forall_y (y \in w \leftrightarrow \exists_{x \in z} p(x, y))).$$

9. Axioma da regularidade Todo o conjunto não vazio x tem um elemento disjunto de x.

$$\forall_x \exists_y (y \in x \land y \cap x = \emptyset).$$

Para além dos axiomas incluídos no sistema ZF, Zermelo estabeleceu um outro axioma, o Axioma da Escolha, o qual desempenha um papel fundamental no estudo de conjuntos infinitos. O sistema de axiomas resultante de acrescentar o Axioma da Escolha ao sistema ZF é denotado por ZFC.

Axioma da Escolha Para qualquer família não vazia $(A_i)_{i \in I}$ de conjuntos não vazios, é possível escolher uma família $(x_i)_{i \in I}$ de elementos tais que, para cada $i \in I$, se tem $x_i \in A_i$.

Intuitivamente, este axioma estabelece que, dada uma coleção não vazia de conjuntos não vazios, é possível escolher simultaneamente um elemento de cada um dos conjuntos. O Axioma da Escolha admite várias formulações, como, por exemplo, a seguinte:

Seja $(A_i)_{i\in I}$ uma família não vazia de conjuntos não vazios. Então existe uma família de conjuntos $(C_i)_{i\in I}$ tal que $C_i\subseteq A_i$ e C_i tem exatamente um elemento, para todo $i\in I$.

Embora o Axioma da Escolha seja aceite pela maioria dos matemáticos e existam resultados importantes que são estabelecidos com base neste axioma, a aceitação do Axioma da Escolha não é consensual. Uma das razões pelas quais este axioma foi inicialmente controverso prendia-se com a hipótese de ser possível prová-lo a partir dos restantes axiomas de Zermelo-Fraenkel e, por isso, seria redundante. Porém, em 1963, Paul Cohen e Kurt Gödel vieram a provar que o Axioma da Escolha é independente dos restantes axiomas do sistema ZF. Outra das razões que levam alguns matemáticos a questionar este axioma prende-se com o facto de este não ser construtivo. Embora seja lícito escolher um elemento em cada um dos conjuntos de uma coleção finita de conjuntos não vazios, será que é possível garantir esta escolha quando se considera uma família infinita de conjuntos não vazios? Atendendo a que a aceitação do Axioma da Escolha não é consensual, é usual referir expressamente a utilização deste axioma sempre que é aplicado na prova de algum resultado.