Sample Questions (PCA)

appeared on at least one of the dice is

(A) 1/9

(B) 4/7

1. A person throws a pair of fair dice. If the sum of the numbers on the dice is a perfect square, then the probability that the number 3

(C) 1/18

(D) 7/36

2.	Consider the system. Then	m of linear equation	ons: $x+y+z=5$, 2s	x + 2y + 3z = 4.
	(A) the system is	inconsistent		
	(B) the system ha	_		
	(C) the system ha		solutions	
	(D) none of the a	bove is true		
3.	If $g'(x) = f(x)$ the	en $\int x^3 f(x^2) dx$ is	given by	
	(A) $x^2g(x^2) - \int g(x^2) - \int g($	$xg(x^2)dx + C$ $2xg(x^2)dx + C$	(B) $\frac{1}{2}x^2g(x^2) - \int$ (D) $x^2g(x^2) - \frac{1}{2}\int$	$xg(x^2)dx + C$ $xg(x^2)dx + C$
4.	If $({}^{n}C_{0} + {}^{n}C_{1})({}^{n}C_{0})$ then k is equal to	$_1 + ^n C_2) \cdots (^n C_{n-1})$	$_{-1} +^n C_n) = k ^n C_0 ^n$	$C_1 \cdots {}^n C_{n-1},$
	$(A) \frac{(n+1)^n}{n!}$	(B) $\frac{n^n}{n!}$	(C) $\frac{(n+1)^n}{nn!}$	$(D) \frac{(n+1)^{n+1}}{n!}$
5.		y subsets $X_1,, $	The number of way X_n of S can be chosen	
	$(A) \binom{n}{1} \binom{n}{2} \cdots \binom{n}{n}$	(B) 1	(C) n!	(D) 2^{n}
6.	Let A be a 4×4 m det $A = 0$, then the		both A and $\mathrm{Adj}(A)$ a	re non-null. If
	(A) 1	(B) 2	(C) 3	(D) 4
7.	Suppose a, b, c are $a + b + c = \frac{3}{2}$, then		c^2, c^2 are in G.P. If c^2	a < b < c and
	$(A) \frac{1}{2\sqrt{2}} $	$B) -\frac{1}{2\sqrt{2}}$	(C) $\frac{1}{2} - \frac{1}{\sqrt{3}}$	(D) $\frac{1}{2} - \frac{1}{\sqrt{2}}$

8.	The	set o	of all	a	satisfyi	ng	the	inequality	7
					1	f^a	73		

$$\frac{1}{\sqrt{a}} \int_1^a \left(\frac{3}{2}\sqrt{x} + 1 - \frac{1}{\sqrt{x}}\right) dx < 4$$

is equal to the interval

- (A) (-5, -2) (B) (1, 4) (C) (0, 2) (D) (0, 4)
- 9. Let C_0 be the set of all continuous functions $f:[0,1] \to \mathbb{R}$ and C_1 be the set of all differentiable functions $g:[0,1] \to \mathbb{R}$ such that the derivative g' is continuous. (Here, differentiability at 0 means right differentiability and differentiability at 1 means left differentiability.) If $T:C_1 \to C_0$ is defined by T(g)=g', then
 - (A) T is one-to-one and onto
 - (B) T is one-to-one but not onto
 - (C) T is onto but not one-to-one
 - (D) T is neither one-to-one nor onto.
- 10. The number of distinct even divisors of

$$\prod_{k=1}^{5} k!$$

is

11. A straight line passes through the intersection of the lines given by 3x-4y+1=0 and 5x+y=1 and makes equal intercepts of the same sign on the coordinate axes. The equation of the straight line is

(A)
$$23x - 23y + 11 = 0$$

(B) $23x - 23y - 11 = 0$
(C) $23x + 23y + 11 = 0$
(D) $23x + 23y - 11 = 0$

12. Suppose A and B are two square matrices such that the largest eigenvalue of (AB - BA) is positive. Then the smallest eigen value of (AB - BA)

- 13. A fair die is rolled five times. What is the probability that the largest number rolled is 5?
 - (A) 5/6 (B) 1/6 (C) $1 (1/6)^6$ (D) $(5/6)^5 (2/3)^5$
- 14. The series

$$\sum_{n} \frac{3 \cdot 6 \cdot 9 \cdots 3n}{7 \cdot 10 \cdot 13 \cdots (3n+4)} x^{n}, \quad x > 0$$

- (A) converges for $0 < x \le 1$ and diverges for x > 1
- (B) converges for all x > 0
- (C) converges for $0 < x < \frac{1}{2}$ and diverges for $x \ge \frac{1}{2}$
- (D) converges for $\frac{1}{2} < x < 1$ and diverges for $0 < x \le \frac{1}{2}, x \ge 1$.
- 15. Given a real number $\alpha \in (0,1)$, define a sequence $\{x_n\}_{n\geq 0}$ by the following recurrence relation:

$$x_{n+1} = \alpha x_n + (1 - \alpha)x_{n-1}, \quad n \ge 1.$$

If $\lim_{n\to\infty} x_n = \ell$ then the value of ℓ is

- A) $\frac{\alpha x_0 + x_1}{1 \alpha}$ (B) $\frac{(1 \alpha)x_0 + x_1}{2 \alpha}$ (C) $\frac{\alpha x_0 + x_1}{1 \alpha}$ (D) $\frac{(1 \alpha)x_1 + x_0}{1 \alpha}$
- C) $\frac{\alpha x_0 + x_1}{2 \alpha}$ (D) $\frac{(1 \alpha)x_1 + x_0}{2 \alpha}$
- 16. Suppose that a 3×3 matrix A has an eigen value -1. If the matrix A+I is equal to

$$\left[\begin{array}{ccc}
1 & 0 & -2 \\
0 & 0 & 0 \\
0 & 0 & 0
\end{array}\right]$$

then the eigen vectors of A corresponding to the eigenvalue -1 are in the form,

(A)
$$\begin{bmatrix} 2t \\ 0 \\ t \end{bmatrix}$$
, $t \in \mathbb{R}$ (B) $\begin{bmatrix} 2t \\ s \\ t \end{bmatrix}$, $s, t \in \mathbb{R}$

(C)
$$\begin{bmatrix} t \\ 0 \\ -2t \end{bmatrix}$$
, $t \in \mathbb{R}$ (D) $\begin{bmatrix} t \\ s \\ 2t \end{bmatrix}$, $s, t \in \mathbb{R}$

	(A)	0	(B)	1		(C)	2		(D)	3
18.	differ	rows of n clent ways the sits direct	at n cou	iples ca	an sit on	these	chair			
	(A) n	n!	(B) n!	/2	((C) 2^{n}	n!	((D) 2n	n!.
19.	Cons	ider two rea	l valued	functio	ons f and	g give	en by			
		$f(x) = \frac{x}{x}$	$\frac{c}{-1}$ for $x > c$	> 1, a	and $g(x)$	(x) = 7	$-x^3$ f	for $x \in \mathbb{R}$.		
	(A) (B) (C)	The of the following Neither f^{-1} exists, f^{-1} does not both f^{-1} and	nor g^{-1} out not g t exist, h	exists g^{-1} out g^{-1}		invers	se func	ctions is t	rue?	
20.	Let			A =	$\begin{bmatrix} a & 1 & 1 \\ b & a & 1 \\ 1 & 1 & 1 \end{bmatrix}$].				
	The 1	number of e								
		$\{(a,$	$b) \in \mathbb{Z}^2$	$0 \le a,$	$b \leq 2021$	l, ranl	$\kappa(A) =$	= 2}		
	is									
	(A) 2	2021 (B) 2020		(C) 2021	$a^2 - 1$		(D) 2020	0 × 20	21
21.	and (, Bhola, Ch Chaitali atte d, then Am e following i	end, then ir will no	n Deepa ot atter	ak will a nd. If De	ttend t	too. I	f Bhola d	loes n	ot

17. The number of real roots of the polynomial $x^3 - 2x + 7$ is

(B) Amir does not attend

(D) None of the above

(A)

Chaitali does not attend

(C) Either (a) or (b), or both

24.	-		jacency matri			ed graph with n cona graph with	
	. , ,	(2 compone + 1) comp				(n-1) components n components	
25.	neighbor Each eve Your co to take cannot b clash in events a To do th are the e you plan	uring instituent takes plantingent is part in a specific part of the timings. Yes possible. its, you decive events and	ution. Several ace through the multi-talente subset of the ender team for two four aim is to ender the edges representatives a member of the edges and the edges and the edges and the edges are the e	team events ne day with r d and each vents. Howe d different evereate teams ne problem as t pairs of events	many indivever, eents to to the sa greents	cultural festival at a part of the program. velimination rounds. vidual has the skills the same individual because of a possible take part in as many eaph where the nodes where the team that , the graph theoretic	
	(B) Fin (C) Fin	nd an indep nd a vertex	ng tree with n endent set of cover of mining colouring with	maximum ca num cardina	ardin ality.	ality.	
26.	Which of $b(a+b)^{n}$		s below match	es the regula	ır exp	pression $a(a+b)*b+$	
	(A) aba		(B) bab	(C) a	abba	(D) aabb	
			5				

22. Let G=(V,E) be an undirected simple graph, and s be a designated vertex in G. For each $v \in V$, let d(v) be the length of a shortest path between s and v. For an edge (u,v) in G, what can not be the value

23. Which of the following degree sets is NOT possible for a graph of order

(A) 0, 1, 2, 2, 3 (B) 2, 2, 2, 2, 2 (C) 2, 2, 2, 3, 3 (D) 2, 2, 3, 3, 3

(C) 0

(D) 1

(B) -1

of d(u) - d(v)?

(A) 2

5?

- 27. Let the regular expression of all the strings generated from English lowercase letters, which starts with a vowel, and has odd number of letters can be expressed as $[a + e + i + o + u][a + b + \cdots + z]^n$. Which of the following expressions is correct about n?
 - (A) $n \ge 0$ and n is odd

(B) $n \ge 0$ and n is even

(C) n > 0 and n is odd

- (D) n > 0 and n is even
- 28. Which of the following properties is always applicable to the numbers generated by the regular expression 1[3+6+9]*8?
 - (A) Odd (B) Divisible by 3 (C) Divisible by 8 (D) Divisible by 9
- 29. Assume that the Boolean operator & performs bitwise AND on the 8-bit unsigned variables associated with it. If for some n > 0, we have $n \ll (n-1) = 0$, which of the following statements is necessarily true?
 - (A) n is even

(B) n is odd

(C) n is a power of 2

- (D) n is a power of 3
- 30. What does the following function compute in terms of n and d, for integer values of n and d, n > 1, d > 1? Note that a//b denotes the quotient (integer part) of $a \div b$, for integers a and b. For instance 7//3 is 2.

```
function foo(n,d){
  x := 0;
  while (n >= 1) {
    x := x+1;
    n := n//d;
  }
  return(x);
}
```

- (A) The number of ways of choosing d elements from a set of size n.
- (B) The number of ways of rearranging d elements from a set of size n.
- (C) The number of digits in the base d representation of n.
- (D) The number of ways of partitioning n elements into groups of size d.

31.	Suppose a machine generates an integer $\{0, 1,, n\}$ and whenever it is less than a If it prints "OK" with a probability 0.5, who between n and k ?	n i	nteger k it prints "OK".
			k = (n-1)/2 Nothing can be inferred
32.	Let the variables x and y vary over the solution Consider the formulas expressing properties and (ii) $\exists y \forall x (x \leq y)$. Which of the following	s al	pout \mathbb{N} : (i) $\forall x \exists y (x < y)$,
	(A) Both (i) and (ii) hold.		
	(B) (i) holds but (ii) does not hold.		
	(C) (ii) holds but (i) does not hold.		
	(D) Both (i) and (ii) do not hold.		
33.	Let L be a regular language and F be a function Consider the statements: (i) $L \cup F$ is regular, where F^c denotes the complement of statements is correct?	ılar	, and (ii) $L \cup F^c$ is reg-
	(A) Both (i) and (ii) are true.		
	(B) (i) is true but (ii) is false.		
	(C) (ii) is true but (i) is false.		
	(D) Both (i) and (ii) are false.		
34.	Let a, b, c be members of a Boolean algebra Which of the following statements is correct		. Define $a \to b \stackrel{\text{def}}{=} \neg a \lor b$.
	(A) $a \to (b \to c) = b \to (a \to c)$		
	(B) $a \to (b \to c) = a \to (c \to b)$		
	(C) $a \to (b \to c) = b \to (c \to a)$		
	(D) $a \to (b \to c) = c \to (a \to b)$		
35.	Let P be a set of propositional variables. $\neg q, \neg s \rightarrow \neg r, s \rightarrow t \mid p, q, r, s, t \in P$ be a set mulas. Which of the following formulas is of propositional logic?	et o	of propositional logic for-

(A) $s \to q$ (B) $r \to p$ (C) $p \to t$ (D) $s \to p$

36.	Let us consider the language $\{\epsilon, a, a^2, \dots, a^{10}\}$, where ϵ denotes the
	empty string, and a^n denotes $\underline{aa\cdots a}$. What is the minimum number
	of states required by a DFA to accept this language?

- 37. Let A be the adjacency matrix of a directed acyclic graph G. Then A_{ij}^k (the value at position (i,j) of the matrix A^k) denotes:
 - (A) the number of paths from i to j in G of length exactly k
 - (B) the number of paths from i to j in G of length at most k
 - (C) the number of vertices whose removal breaks all paths of length at most k from i to j
 - (D) the number of vertices that are both reachable from i as well from whom j is reachable using paths of length at most k
- 38. The diameter of a tree on n vertices in which every vertex has degree either 1 or 3 is:
 - (A) at least $2\log_3(n+1)$ and at most $\frac{n}{2}$.
 - (B) at least $2\log_2(\frac{n+2}{3})$ and at most $\frac{n}{3}$.
 - (C) at least $2\log_2(\frac{n+2}{3})$ and at most $\frac{n}{2}$.
 - (D) at least $2\log_3(n+1)$ and at most $\frac{n}{3}$.
- 39. Consider the following program fragment:

```
1. i = 1;
2. while (i <= n) do
3. begin
4. sum = sum + a[i];
5. i = i + 1;
6. end</pre>
```

Let (i) \boldsymbol{A} represent the initialization in line 1, (ii) \boldsymbol{T} represent the test implied by line 2, (iii) \boldsymbol{B} represent the statement in line 4, and (iv) \boldsymbol{I} represent the increment in line 5. Which of the following regular expressions represents all possible sequences of steps taken by this program?

(A)
$$AT(BIT)^+$$
 (B) $AT(BIT)^*$ (C) $A(TBI)^+$ (D) $A(TBI)^*$

40.	What is the minimum number of elementary Boolean operations (AND
	/ OR $/$ NOT) required to construct an equivalent Boolean expression
	of $AB + A\overline{B} + \overline{A}C$ (\overline{X} denotes the complement of X)?

(D) 7

(A) 1 (B) 3 (C) 5