Theory of Computation LEIC 010 2023-2024

Jácome Cunha & Luís Antunes

DEI@FEUP – DCC@FCUP Universidade do Porto

Class 9
Proprieties of Context-Free Languages and More (16/4/24)

Covered Concepts

1 Pumping Lemma for CFLs

Chomsky Normal Form for CFGs

Outline

1 Pumping Lemma for CFLs

2 Chomsky Normal Form for CFGs

Pumping Lemma for CFLs

Let's assume that L is a CFL:

- there exists a constant *n* such that,
- for every z in L with $|z| \ge n$
- we can write z = uvwxy in which
- $|vwx| \le n$ (the middle part is not too long)
- $vx \neq \epsilon$ (v and x are not simultaneously the empty word)
- for every $i \ge 0$, $uv^i wx^i y \in L$.

- Let's focus on the length of the string z, and on terminals alone (i.e., only in productions like $A \rightarrow a$).
- With *n* variables and without repetition:
 - ▶ The longest string z considering n variables occurs with $V_1 \rightarrow V_2 \dots V_n$, and $|z| \le n-1$.
 - ▶ For $|z| \ge n$, variables need to be repeated.
- If the string z is sufficiently long, there must be a repetition of symbols (variables).

Given a grammar containing n variables and a string z in L with $|z| \ge n$:

- The tree path $A_0 \dots A_k$ (length k+1) is the longest path for z.
- Since $k \ge n$ (as per Theorem 7.17 in Hopcroft's book), there are at least n+1 occurrences of $A_0 \dots A_k$.
- Given there are only *n* variables, at least one variable is repeated.
- To have a yield of length $\geq n$, there must be repetitions of variables in the tree (this implies recursivity).

Class 9

Let's split the parse tree:

- Suppose the repeated variable in the tree is $A_i = A_i$.
- w is the string at the leaves of the subtree rooted at A_i .
- v and x are such that vwx is the string represented by the subtree rooted at A_i (at least one of v or x is not null).
- u and y are the parts of z to the left and right of vwx, respectively.

As $A_i = A_i$, we can:

- Substitute the subtree rooted at A_i with the subtree rooted at A_j , obtaining the case i = 0, uwy.
- Substitute the subtree rooted at A_j with the subtree rooted at A_i , obtaining the case i = 2, uv^2wx^2y , and repeat for $i = 3, \ldots$ (pumping).

With repetitions of at least one variable A, one can have $S \to uAy$ and $A \to w \mid vAx$ where $|vx| \neq \epsilon$.

- Previously, we considered that the terminals were alone in each variable (productions $A \rightarrow a$).
- The general case, where terminals may exist in any variable and in a finite number,
 - \triangleright only means that the length of string z is proportional to the number of variables (i.e., it might be the number of variables, n, plus the length of the yield of the terminals in the variables)
 - similar when we repeat variables in productions but without recursivity.

Pumping Lemmas

In the case of Regular Languages (RLs):

- The pumping lemma results from the fact that the number of states in a Deterministic Finite Automaton (DFA) is finite.
- To accept a sufficiently long string, the processing within the DFA needs to repeat states.

In the case of Context-Free Languages (CFLs):

- The pumping lemma results from the fact that the number of symbols in a Context-Free Grammar (CFG) is finite.
- To accept a sufficiently long string, the derivations within the CFG must repeat variables.

Example

Let's use the lemma to show that the language $L = \{0^k 1^k 2^k \mid k \ge 1\}$ is not a CFL.

- Assume that L is a CFL.
- Then, there exists a constant *n* as described in the lemma.
- Let's choose $z = 0^n 1^n 2^n$, which belongs to L and $|z| = 3n \ge n$.
- We can then decompose z = uvwxy, such that $|vwx| \le n$ and v and x are not simultaneously the empty word.
- Then, vwx cannot simultaneously contain 0 and 2.
 - In the case that vxw does not contain 2, then vx includes only 0 and/or 1.
 - Choosing i = 0, the word $uv^i wx^i y = uwy$ will have fewer 0 or 1 than 2.
 - Therefore, uv^iwx^iy , i=0, does not belong to L, thus L does not comply with the lemma's statement.
 - Finding this contradiction, we can only conclude that our assumption that L is a CFL is wrong. Consequently, L is not a CFL.
 - ▶ In the case that vxw does not contain 0, the argument is analogous.

Cunha & Antunes (UP) Theory of Computation Class 9 11/34

Exercise

Consider $L = \{0^i 1^j 2^i 3^j \mid i \ge 1, j \ge 1\}$. Show L is not a CFL.

Exercise

Consider $L = \{0^i 1^j 2^i 3^j \mid i \ge 1, j \ge 1\}$. Show L is not a CFL.

- If L is a CFL, then there exists a constant n > 0 such that for all z in L with $|z| \ge n$, we can write z as uvwxy where $|vwx| \le n$, v and x are not both the empty string, and uv^iwx^iy belongs to L for all $i \ge 0$.
- Let's pick $w = 0^n 1^n 2^n 3^n$. Then $|w| = 4n \ge n$.
- Since $|vwx| \le n$, vx can contain at most two different symbols at a time (either 0 and 1, or 1 and 2, or 2 and 3).
- If vx contains two different symbols, by choosing i = 0, we are removing a repetition of such symbols, and thus they will have one fewer repetition than the others.
- If vx contains only one symbol, choosing i = 0 will remove one repetition of such symbol, making it have fewer repetitions than the others.
- Thus, L cannot be regular.

Cunha & Antunes (UP) Theory of Computation Class 9 12/34

Outline

Pumping Lemma for CFLs

Chomsky Normal Form for CFGs

Cunha & Antunes (UP) Theory of Computation Class 9 13/34

Chomsky Normal Form for CFGs

- Any CFL that does not include the empty word can be generated by a CFG G = (V, T, P, S) where all productions are of the form $A \to BC$ or $A \to a$, with $A, B, C \in V$ and $a \in T$.
- This grammar is said to be in *Chomsky Normal Form* (CNF).
- Starting from any CFG, we can apply various simplifications until we reach CNF:
 - It is necessary to eliminate useless symbols, i.e., those variables or terminals that do not appear in any derivation of a terminal string from the start symbol;
 - **②** It is necessary to eliminate ϵ **productions**, i.e., those of the form $A \to \epsilon$, for some variable A;
 - **1** It is necessary to eliminate **unit productions**, i.e., those of the form $A \rightarrow B$ for variables A and B.

Useless Symbols

- X is **useful** for a grammar G = (V, T, P, S) if there exists some derivation $S \Rightarrow^* \alpha X \beta \Rightarrow^* w$, with $w \in T^*$, $X \in V \cup T$.
- If X is not useful, then it is **useless**.
- Omitting useless symbols from a grammar does not change the generated language.
- Therefore, we can detect and eliminate all useless symbols.

1. Elimination of Useless Symbols

- To eliminate useless symbols, it's necessary to identify the two capabilities a symbol needs to be considered useful:
 - **1** X is **generating** if $X \Rightarrow^* w$ for some word w.
 - All terminals are generating since w can be generated by themselves, which is a derivation in zero steps.
 - **2** If $A \to \alpha$ and α consists only of generating symbols, then A is generating (including $\alpha = \epsilon$).
 - ② X is **reachable** if there is a derivation $S \Rightarrow^* \alpha X \beta$ for some α and β .
 - S is reachable.
 - ② If A is reachable, then for $A \to \alpha$, all symbols in α are reachable.
- A symbol that is both generating and reachable is useful.
- To eliminate useless symbols, we first remove non-generating symbols, then eliminate non-reachable ones.

Example

$$S \rightarrow AB \mid a$$

 $A \rightarrow b$

- a and b generate themselves
- S generates a
- A generates b
- B is not generating, so the production $S \to AB$ can be eliminated.

$$A \rightarrow b$$

- S reachable
- a reachable
- But A and b are not, so the production $A \rightarrow b$ can be eliminated.
- The final grammar without useless symbols is

 $S \rightarrow a$

Eliminate the useless symbols from the following CFG:

$$S \rightarrow AB \mid CA$$

 $A \rightarrow a$

$$B \to BC \mid AB$$

$$C
ightarrow aB \mid b$$

Eliminate the useless symbols from the following CFG:

$$S \rightarrow AB \mid CA$$

 $A \rightarrow a$
 $B \rightarrow BC \mid AB$
 $C \rightarrow aB \mid b$

$$S \rightarrow CA$$

$$A \rightarrow a$$

$$C \rightarrow b$$

ϵ -Productions

- A variable A is nullable if $A \Rightarrow^* \epsilon$.
- If A is nullable and appears in the body of a production, say $B \to CAD$, we create two productions:
 - lacktriangledown B o CAD
 - $m{2}$ $B \rightarrow CD$
- Subsequently, we remove all productions that derive ϵ .
- Algorithm:
 - ▶ If $A \rightarrow \epsilon$, then A is nullable.
 - ▶ If $B \to C_1 C_2 \dots C_k$ and all C_i are nullable, then B is nullable.

2. Elimination of ϵ -Productions

- To eliminate ϵ productions:
 - Identify all nullable productions.
 - ▶ For each $A \to X_1 X_2 \dots X_k$, if $m X_i$ are nullable, replace the production with 2^m productions including all combinations of presence and absence of the X_i .
 - ***** Exception: if m = k, do not include cases where all X_i are absent.
 - ightharpoonup Productions in the form $A \to \epsilon$ are removed.

Example

Consider the CFG

$$S o AB$$

 $A o aAA \mid \epsilon$
 $B o bBB \mid \epsilon$

A and B are nullable, so S is also nullable, resulting in:

$$S \rightarrow AB \mid A \mid B$$

 $A \rightarrow aAA \mid aA \mid aA \mid a$
 $B \rightarrow bBB \mid bB \mid b$

CFG without ϵ productions:

$$S \rightarrow AB \mid A \mid B$$

 $A \rightarrow aAA \mid aA \mid a$
 $B \rightarrow bBB \mid bB \mid b$

In this case, the language of the new CFG is the language of the original CFG minus ϵ

Consider the CFG

$$S \rightarrow ASB \mid \epsilon$$

 $A \rightarrow aAS \mid a$
 $B \rightarrow SbS \mid A \mid bb$

Find an equivalent grammar without ϵ productions.

Consider the CFG

$$S
ightarrow ASB \mid \epsilon$$

 $A
ightarrow aAS \mid a$
 $B
ightarrow SbS \mid A \mid bb$

Find an equivalent grammar without ϵ productions.

$$S \rightarrow ASB \mid AB$$

 $A \rightarrow aAS \mid aA \mid a$
 $B \rightarrow SbS \mid bS \mid Sb \mid b \mid A \mid bb$

Unit Productions

- Unit production: $A \rightarrow B$, where A and B are variables.
- They can be useful in eliminating ambiguity (example: language of arithmetic expressions).
- However, they are not essential, as they introduce extra steps in derivations.

3. Elimination of Unit Productions

- Oetermine all unit pairs, derived only with unit productions:
 - \bullet (A, A) is a unit pair.
 - **9** If (A, B) is a unit pair and $B \to C$, where C is a variable, then (A, C) becomes a unit pair.
- ② Elimination: replace existing productions so that each unit pair (A, B) includes all productions of the form $A \to \alpha$, where $B \to \alpha$ is a non-unit production (includes A = B).

Example

Consider the CFG

$$E \rightarrow T \mid E + T$$
 $T \rightarrow F \mid T \times F$
 $F \rightarrow I \mid (E)$
 $I \rightarrow a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

The unit pairs are as follows:

- Base unit pairs:
 - (E, E), (T, T), (F, F), (I, I)
 - Inductive unit pairs:
 - (E, E) and $E \rightarrow T \rightsquigarrow (E, T)$
 - (E, T) and $T \rightarrow F \rightsquigarrow (E, F)$
 - \blacktriangleright (E,F) and $F \rightarrow I \rightsquigarrow (E,I)$
 - ightharpoonup (T,T) and $T \to F \leadsto (T,F)$
 - ightharpoonup (T, F) and $F \rightarrow I \rightsquigarrow (T, I)$
 - \blacktriangleright (F,F) and $F \rightarrow I \rightsquigarrow (F,I)$

cont.

From the unit pairs on the last slide, the following productions are formed:

Pair	Productions
(E, E)	E o E + T
(E,T)	$E \rightarrow T \times F$
(E,F)	E o (E)
(E,I)	$E ightarrow a\mid b\mid$ la \mid lb \mid l0 \mid l1
(T,T)	T o T imes F
(T,F)	T o (E)
(T, I)	$T ightarrow$ a \mid b \mid Ia \mid Ib \mid I0 \mid I1
(F,F)	F o (E)
(F, I)	$ extit{F} ightarrow extit{a} \mid extit{b} \mid extit{I0} \mid extit{I1}$
(I,I)	$I ightarrow a\mid b\mid Ia\mid Ib\mid I0\mid I1$

cont.

The final CFG is:

$$E \to E + T \mid T \times F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

 $T \to T \times F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $F \to (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Cunha & Antunes (UP) Theory of Computation Class 9 27/34

Consider the CFG

$$S \rightarrow ASB \mid AB$$

 $A \rightarrow aAS \mid aA \mid a$
 $B \rightarrow SbS \mid bS \mid Sb \mid b \mid A \mid bb$

Find an equivalent CFG without unit productions.

Consider the CFG

$$S \rightarrow ASB \mid AB$$

 $A \rightarrow aAS \mid aA \mid a$
 $B \rightarrow SbS \mid bS \mid Sb \mid b \mid A \mid bb$

Find an equivalent CFG without unit productions.

$$S o ASB \mid AB$$

 $A o aAS \mid aA \mid a$
 $B o SbS \mid bS \mid Sb \mid b \mid aAS \mid aA \mid a \mid bb$

Simplification Sequence

If G is a CFG that generates a language with at least one string different from ϵ , then there exists a CFG G_1 without ϵ productions, unit productions, and useless symbols such that $L(G_1) = L(G) - \{\epsilon\}$.

In this order:

- **1** Eliminate ϵ -productions
- Eliminate unit productions
- Eliminate useless symbols

Chomsky Normal Form

All CFGs G = (V, T, P, S) without ϵ can have a grammar in CNF, free of useless symbols, where all productions are of the form:

- $A \rightarrow BC$, where A, B, $C \in V$
- $A \rightarrow a$, where $A \in V$ and $a \in T$

To achieve this, start with a grammar free of ϵ -productions, unit productions, and useless symbols. Then:

- For each terminal a that appears in a production body of length 2 or more, create a new variable A.
 - ▶ This variable has only one production: $A \rightarrow a$.
 - ▶ Now, use A to replace a in production bodies of length 2 or more.
- For productions $A \to B_1 B_2 \dots B_k$, with $k \ge 3$, break down the bodies into cascading productions in the form:

$$A \to B_1 \, C_1$$

$$C_1 \rightarrow B_2 C_2$$

$$C_2 \rightarrow B_3 C_3$$

. .

Example

Consider the CFG of expressions

$$E \to E + T \mid T \times F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$$

 $T \to T \times F \mid (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $F \to (E) \mid a \mid b \mid Ia \mid Ib \mid I0 \mid I1$
 $I \to a \mid b \mid Ia \mid Ib \mid I0 \mid I1$

Create variable for the terminal symbols that appear in productions' bodies:

$$egin{array}{lll} A
ightarrow a & B
ightarrow b \ Z
ightarrow 0 & O
ightarrow 1 \ P
ightarrow + & M
ightarrow imes \ L
ightarrow (& R
ightarrow) \end{array}$$

cont.

Substitute the terminal by those variables:

$$E \rightarrow EPT \mid TMF \mid LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$$

 $T \rightarrow TMF \mid LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$
 $F \rightarrow LER \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$
 $I \rightarrow a \mid b \mid IA \mid IB \mid IZ \mid IO$

Substitute the bodies of production with size greater than 3:

$$E
ightarrow EC_1 \mid TC_2 \mid LC_3 \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$$
 $T
ightarrow TC_2 \mid LC_3 \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$
 $F
ightarrow LC_3 \mid a \mid b \mid IA \mid IB \mid IZ \mid IO$
 $C_1
ightarrow PT$
 $C_2
ightarrow MF$
 $C_3
ightarrow ER$

CNF for Languages with ϵ

- When the language L of the original grammar includes ϵ , the language of the CNF grammar excludes ϵ .
- In practice, it's common to add a new initial variable to the CNF grammar that has two productions, one producing the initial variable of the CNF grammar and the other producing ϵ .
- For example, if $S \to AB$ is the start variable of the CNF grammar, you can add the following variable to generate ϵ :

$$S_1 \rightarrow S \mid \epsilon$$

 S_1 is now the start variable.

Leituras

[HMU07] Chap. 7.1, 7.2

John E. Hopcroft, Rajeev Motwani, and Jeffrey D. Ullman. *Introduction to Automata Theory, Languages and Computation.* 3rd edition, 2007.