# Repaso de Álgebra Lineal

Dr. Pablo Alvarado Moya

CE5506 Introducción al reconocimiento de patrones Área de Ingeniería en Computadores Tecnológico de Costa Rica

II Semestre, 2019



# Contenido

- Vectores y matrices
  - Definiciones

- Operaciones matriciales
  - Definiciones
  - Interpretaciones

#### Matriz

Matriz de  $n \times m$ ,  $\mathbf{A} \in \mathbb{R}^{m \times n}$ 

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

- m: filas
- n: columnas
- En notación  $a_{ij}$  primer subíndice i es la fila y segundo j la columna

## Vector columna

Vector de m dimensiones  $\mathbf{x} \in {\rm I\!R}^m$ 

$$\underline{\mathbf{x}} = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

## Vector fila

Vector de n dimensiones  $\underline{\mathbf{x}} \in \mathbb{R}^n$ 

$$\underline{\mathbf{x}}^T = \begin{bmatrix} x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

## Matriz en vectores

Matriz  $m \times n$  **A** se compone de m vectores fila

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \underline{\mathbf{a}}_{1,:}^T \\ \underline{\mathbf{a}}_{2,:}^T \\ \vdots \\ \underline{\mathbf{a}}_{m,:}^T \end{bmatrix}$$

o n vectores columna.

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} \underline{\mathbf{a}}_{:,1} & \underline{\mathbf{a}}_{:,2} & \underline{\mathbf{a}}_{:,n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{mn} & a_{mn} & \cdots & a_{mn} \end{bmatrix}$$

## Vectores como matrices

- Observe que todo vector es un tipo particular de matriz
  - Vector fila: matriz de dimensión  $1 \times n$
  - Vector columna: matriz de dimensión  $m \times 1$
- Propiedades de matrices aplicarán a vectores

Si

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix}$$

entonces su transpuesta es

$$\mathbf{A}^{T} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{m1} \\ a_{12} & a_{22} & \cdots & a_{m2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{1n} & a_{2n} & \cdots & a_{mn} \end{bmatrix}$$

- En otras palabras, si  $\mathbf{B} = \mathbf{A}^T$  entonces  $b_{ij} = a_{ji}$
- $\bullet (A^T)^T = A$

$$\bullet (\mathbf{A}\mathbf{B})^T = \mathbf{B}^T \mathbf{A}^T$$

$$\bullet \ (\mathbf{A} + \mathbf{B})^T = \mathbf{A}^T + \mathbf{B}^T$$

# Simetría y anti-simetría

• Matriz es simétrica si  $\mathbf{A} = \mathbf{A}^T$ 

$$\mathbf{A} = \begin{bmatrix} a_{11} & a_{21} & \cdots & a_{n1} \\ a_{21} & a_{22} & \cdots & a_{n2} \\ \vdots & \vdots & \ddots & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{bmatrix}$$

es decir  $a_{ij} = a_{ji}$ .

- La matriz es anti-simétrica si  $\mathbf{A} = -\mathbf{A}^T$
- ullet Para cualquier matriz cuadrada  $oldsymbol{A} \in {
  m I\!R}^{n imes n}$  se cumple
  - $\mathbf{A} + \mathbf{A}^T$  es simétrica
  - $\mathbf{A} \mathbf{A}^T$  es anti-simétrica
  - $\mathbf{A} = \mathbf{A}_e + \mathbf{A}_o = \frac{1}{2}(\mathbf{A} + \mathbf{A}^T) + \frac{1}{2}(\mathbf{A} \mathbf{A}^T)$
- $\mathbb{S}^n$ : conjunto de todas las matrices simétricas  $n \times n$

# Matriz diagonal

Matriz es diagonal si todos los elementos son cero excepto aquellos en la diagonal

$$\mathbf{A} = egin{bmatrix} a_{11} & & & & \ & a_{22} & & & \ & & \ddots & & \ & & & a_{nn} \end{bmatrix}$$

Se utiliza la notación  $\mathbf{A} = \text{diag}(a_{11}, a_{22}, \dots, a_{nn})$ 

# Matriz identidad

 Matriz es diagonal con todos sus elementos no nulos iguales a uno

$$\mathbf{I} = \begin{bmatrix} 1 & & & \\ & 1 & & \\ & & 1 & \\ & & & 1 \end{bmatrix}$$

- Se cumple AI = A = IA (I es el elemento neutro del producto matricial).
- I = diag(1,1,...,1)

# Operaciones con matrices y vectores

## Producto escalar-matriz

El producto sA es otra matriz con todos los componentes escalados

$$s\mathbf{A} = s \begin{bmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} & a_{m2} & \cdots & a_{mn} \end{bmatrix} = \begin{bmatrix} sa_{11} & sa_{12} & \cdots & sa_{1n} \\ sa_{21} & sa_{22} & \cdots & sa_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ sa_{m1} & sa_{m2} & \cdots & sa_{mn} \end{bmatrix}$$

# Suma de matrices

Suma definida para dos matrices de idéntico tamaño:

$$\mathbf{C} = \mathbf{A} + \mathbf{B} \Leftrightarrow c_{ij} = a_{ij} + b_{ij}$$

$$\begin{bmatrix} c_{11} & c_{12} & \cdots & c_{1n} \\ c_{21} & c_{22} & \cdots & c_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ c_{m1} & c_{m2} & \cdots & c_{mn} \end{bmatrix} = \begin{bmatrix} a_{11} + b_{11} & a_{12} + b_{12} & \cdots & a_{1n} + b_{1n} \\ a_{21} + b_{21} & a_{22} + b_{22} & \cdots & a_{2n} + b_{2n} \\ \vdots & \vdots & \ddots & \vdots \\ a_{m1} + b_{m1} & a_{m2} + b_{m2} & \cdots & a_{mn} + b_{mn} \end{bmatrix}$$

# Combinación lineal

 Una matriz <u>A</u> es la combinación lineal de un conjunto de m matrices si

$$\mathbf{A} = \sum_{i=1}^m s_i \mathbf{B}_i$$

con  $s_i$  los coeficientes de la combinación.

- El conjunto  $\mathcal{B} = \{\mathbf{B}_i \mid i = 1 \dots m\}$  engendra un espacio lineal  $\mathbb{V}$  compuesto de todas las combinaciones lineales posibles de las matrices en  $\mathcal{B}$ .
- Se dice que  $\mathcal{B}$  engendra a  $\mathbb{V}$ .



# Producto punto entre vectores

 El producto punto está definido para dos vectores de dimension n, y es un valor escalar calculado con:

$$\underline{\mathbf{x}} \cdot \underline{\mathbf{y}} = \underline{\mathbf{x}}^T \underline{\mathbf{y}} = x_1 y_1 + x_2 y_2 + \cdots + x_n y_n = \sum_{i=1}^n x_i y_i$$

- El producto punto es un tipo de producto interno y por tanto se puede denotar también como (x,y)
- Para matrices, el producto interno de Frobenius se define como:

$$\langle \mathbf{A}, \mathbf{B} \rangle_F = \sum_{i=1}^m \sum_{j=1}^n a_{ij} b_{ij}$$



# Ángulo entre dos vectores

ullet El ángulo lpha entre dos vectores  ${f x}$  e  ${f y}$  está dado por

$$\alpha = \arccos\left(\frac{\underline{\mathbf{x}}^T\underline{\mathbf{y}}}{\|\underline{\mathbf{x}}\| \cdot \|\underline{\mathbf{y}}\|}\right)$$

ullet La proyección ortogonal de  $\underline{y}$  sobre  $\underline{x}$  está dada por

$$y_{\underline{\mathbf{x}}} = \frac{\underline{\mathbf{x}}^T \underline{\mathbf{y}}}{\|\underline{\mathbf{x}}\|}$$

- Si  $\underline{\mathbf{x}}^T \mathbf{y} = 0$  ambos vectores son **ortogonales**
- Si  $\|\underline{\mathbf{x}}\| = 1$  se dice que  $\underline{\mathbf{x}}$  está normalizado
- Vectores son ortonormales si son ortogonales y normalizados



## Producto externo entre vectores

El producto **externo** está definido para dos vectores y es una **matriz** de dimensiones  $m \times n$  con m el tamaño del primer vector y n el tamaño del segundo vector:

$$\underline{\mathbf{x}}\underline{\mathbf{y}}^T = \begin{bmatrix} x_1y_1 & x_1y_2 & \cdots & x_1y_n \\ x_2y_1 & x_2y_2 & \cdots & x_2y_n \\ \vdots & \vdots & \ddots & \vdots \\ x_my_1 & x_my_2 & \cdots & x_my_n \end{bmatrix}$$

## Ejemplo

Dado el vector columna m-dimensional  $\underline{\mathbf{x}}$ , ¿con qué operaciones puede expresarse la réplica de ese vector en n columnas de una matriz? y ¿con qué operaciones puede expresarse la réplica de un vector fila n-dimensional  $\mathbf{x}$  en m filas de una matriz?

$$\mathbf{A} = \begin{bmatrix} \mathbf{x} & \mathbf{x} & \cdots & \mathbf{x} \end{bmatrix} = \mathbf{x} \mathbf{1}^{T} = \begin{bmatrix} x_{1} \\ x_{2} \\ \vdots \\ x_{m} \end{bmatrix} \begin{bmatrix} 1 & 1 & \cdots & 1 \end{bmatrix}$$

$$= \begin{bmatrix} x_{1} & x_{1} & \cdots & x_{1} \\ x_{2} & x_{2} & \cdots & x_{2} \\ \vdots & \vdots & \ddots & \vdots \\ \mathbf{x} & \mathbf{x} & \cdots & \mathbf{x} \end{bmatrix}$$

(2)

# Ejemplo: Uso de operaciones aritméticas

$$\mathbf{A} = \begin{bmatrix} \mathbf{\underline{x}}^T \\ \mathbf{\underline{x}}^T \\ \vdots \\ \mathbf{\underline{x}}^T \end{bmatrix} = \mathbf{\underline{1}}\mathbf{\underline{x}}^T = \begin{bmatrix} 1 \\ 1 \\ \vdots \\ 1 \end{bmatrix} \begin{bmatrix} x_1 & x_2 & \cdots & x_n \\ x_1 & x_2 & \cdots & x_n \\ \vdots & \vdots & \ddots & \vdots \\ x_1 & x_2 & \cdots & x_n \end{bmatrix}$$

#### Producto matricial

El producto entre una matriz **A** de dimensión  $m \times n$  por otra matriz **B** de dimension  $n \times l$  es la matriz

$$\mathbf{C} = \mathbf{A}\mathbf{B} = \begin{bmatrix} \underline{\mathbf{a}}_{1,:}^T \\ \underline{\mathbf{a}}_{2,:}^T \\ \vdots \\ \underline{\mathbf{a}}_{m,:}^T \end{bmatrix} \begin{bmatrix} \underline{\mathbf{b}}_{:,1} & \underline{\mathbf{b}}_{:,2} & \cdots & \underline{\mathbf{b}}_{:,l} \end{bmatrix}$$

$$= \begin{bmatrix} \underline{\mathbf{a}}_{1,:} \cdot \underline{\mathbf{b}}_{:,1} & \underline{\mathbf{a}}_{1,:} \cdot \underline{\mathbf{b}}_{:,2} & \cdots & \underline{\mathbf{a}}_{1,:} \cdot \underline{\mathbf{b}}_{:,l} \\ \underline{\mathbf{a}}_{2,:} \cdot \underline{\mathbf{b}}_{:,1} & \underline{\mathbf{a}}_{2,:} \cdot \underline{\mathbf{b}}_{:,2} & \cdots & \underline{\mathbf{a}}_{2,:} \cdot \underline{\mathbf{b}}_{:,l} \\ \vdots & \vdots & \ddots & \vdots \\ \underline{\mathbf{a}}_{m,:} \cdot \underline{\mathbf{b}}_{:,1} & \underline{\mathbf{a}}_{m,:} \cdot \underline{\mathbf{b}}_{:,2} & \cdots & \underline{\mathbf{a}}_{m,:} \cdot \underline{\mathbf{b}}_{:,l} \end{bmatrix}$$

que es una matriz de  $n \times I$ .

Note la similitud con el producto externo de vectores.

# Propiedades del producto matricial

El producto matricial NO es conmutativo

$$AB \neq BA$$

 Si las dimensiones lo permiten, el producto matricial sí es asociativo

$$(AB)C = A(BC)$$

 Si las dimensiones lo permiten, el producto matricial es distributivo

$$(A + B)C = AC + BC$$



# Interpretaciones del producto

(1)

Obsérvese primero el producto matriz-vector

$$\underline{\mathbf{c}} = \mathbf{A}\underline{\mathbf{b}} = \begin{bmatrix} \underline{\mathbf{a}}_{1:}^T \\ \underline{\mathbf{a}}_{2:}^T \\ \vdots \\ \underline{\mathbf{a}}_{m:}^T \end{bmatrix} \underline{\mathbf{b}} = \begin{bmatrix} \underline{\mathbf{a}}_{1:} \cdot \underline{\mathbf{b}} \\ \underline{\mathbf{a}}_{2:} \cdot \underline{\mathbf{b}} \\ \vdots \\ \underline{\mathbf{a}}_{m:} \cdot \underline{\mathbf{b}} \end{bmatrix}$$

 En el producto matriz-matriz AB, si <u>b</u>: j es la j-ésima columna de B, entonces el patrón anterior se cumple para la j-ésima columna del resultado.

# Producto como combinación lineal de columnas

 Otra forma de ver el producto matriz-vector es como combinación lineal de los vectores columna:

$$\underline{\mathbf{c}} = \mathbf{A}\underline{\mathbf{b}} = \begin{bmatrix} \underline{\mathbf{a}}_{:,1} & \underline{\mathbf{a}}_{:,2} & \cdots & \underline{\mathbf{a}}_{:,n} \end{bmatrix} \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$$
$$= b_1\underline{\mathbf{a}}_{:,1} + b_2\underline{\mathbf{a}}_{:,2} + \cdots + b_m\underline{\mathbf{a}}_{:,m}$$

- Observe la similitud con el producto punto.
- El espacio engendrado por las columnas de A se denomina espacio columna de A
- El espacio columna se conoce también como el alcance columna de A (range)



# Producto como combinación lineal de columnas

Por ejemplo:

$$\begin{bmatrix} 1 & 0 & 2 \\ 2 & 1 & 0 \\ 0 & 2 & 1 \end{bmatrix} \begin{bmatrix} 1 \\ \frac{1}{2} \\ 2 \end{bmatrix} = 1 \begin{bmatrix} 1 \\ 2 \\ 0 \end{bmatrix} + \frac{1}{2} \begin{bmatrix} 0 \\ 1 \\ 2 \end{bmatrix} + 2 \begin{bmatrix} 2 \\ 0 \\ 1 \end{bmatrix} = \begin{bmatrix} \frac{5}{2} \\ \frac{3}{3} \end{bmatrix}$$

(representación gráfica en gnuplot)

## Producto vector-matriz

Observese ahora el producto vector-matriz

$$\underline{\mathbf{c}}^T = \underline{\mathbf{b}}^T \mathbf{A} = \underline{\mathbf{b}}^T \begin{bmatrix} \underline{\mathbf{a}}_{:,1} & \underline{\mathbf{a}}_{:,2} & \cdots & \underline{\mathbf{a}}_{:,n} \end{bmatrix}$$
$$= \begin{bmatrix} \underline{\mathbf{b}} \cdot \underline{\mathbf{a}}_{:,1} & \underline{\mathbf{b}} \cdot \underline{\mathbf{a}}_{:,2} & \cdots & \underline{\mathbf{b}} \cdot \underline{\mathbf{a}}_{:,n} \end{bmatrix}$$

 En el producto matriz-matriz AB, si <u>a</u><sub>j,:</sub> es la j-ésima fila de A entonces el patrón anterior se cumple para la j-ésima fila del resultado.  Otra forma de ver el producto vector-matriz es como combinación lineal de los vectores fila:

$$\underline{\mathbf{c}}^{T} = \underline{\mathbf{b}}^{T} \mathbf{A} = \begin{bmatrix} b_{1} & b_{2} & \cdots & b_{n} \end{bmatrix} \begin{bmatrix} \underline{\mathbf{a}}_{1,:} \\ \underline{\mathbf{a}}_{2,:} \\ \vdots \\ \underline{\mathbf{a}}_{n,:} \end{bmatrix}$$
$$= b_{1} \underline{\mathbf{a}}_{1,:} + b_{2} \underline{\mathbf{a}}_{2,:} + \cdots + b_{n} \underline{\mathbf{a}}_{n,:}$$

• Observe de nuevo la similitud con el producto punto.



# Producto como combinación lineal de filas

#### Dos posibles interpretaciones

Lo anterior implica que el producto de dos matrices puede intepretarse como combinaciones lineales de las columnas de la primera matriz, o de las filas de la segunda matriz.



#### Resumen

- 1 Vectores y matrices
  - Definiciones

- Operaciones matriciales
  - Definiciones
  - Interpretaciones

Este documento ha sido elaborado con software libre incluyendo LATEX, Beamer, GNUPlot, GNU/Octave, XFig, Inkscape, GNU-Make y Subversion en GNU/Linux



Este trabajo se encuentra bajo una Licencia Creative Commons Atribución-NoComercial-Licenciarlgual 3.0 Unported. Para ver una copia de esta Licencia, visite http://creativecommons.org/licenses/by-nc-sa/3.0/ o envíe una carta a Creative Commons, 444 Castro Street, Suite 900, Mountain View, California, 94041, USA.

© 2017–2019 Pablo Alvarado-Moya Área de Ingeniería en Computadores Instituto Tecnológico de Costa Rica