Homework 2

Forecasting: Principles and Practice - The Forecasters Toolbox

Paul Perez 2/21/2021

Exercise 3.7 - 1

For the following series, find an appropriate Box-Cox transformation in order to stabilise the variance.

- usnetelec
- usgdp
- mcopper
- enplanements

usnetelec

autoplot(usnetelec)

The lambda for the usnetelec Box-Cox is 0.5167714.

usgdp

autoplot(usgdp)

lambda <- BoxCox.lambda(usgdp)
autoplot(BoxCox(usgdp, lambda))</pre>

The lambda for the usgdp Box-Cox is 0.366352.

mcopper

autoplot(mcopper)

lambda <- BoxCox.lambda(mcopper)
autoplot(BoxCox(mcopper, lambda))</pre>

The lambda for the $\tt mcopper$ Box-Cox is 0.1919047.

enplanements

autoplot(enplanements)

lambda <- BoxCox.lambda(enplanements)
autoplot(BoxCox(enplanements, lambda))</pre>

The lambda for the $\tt enplanements$ Box-Cox is -0.2269461.

Exercise 3.7 - 2

Why is a Box-Cox transformation unhelpful for the cangas data?

autoplot(cangas)

lambda <- BoxCox.lambda(cangas)
autoplot(BoxCox(cangas, lambda))</pre>

Looking at both plots, the original and Box-Cox transformation, there does not appear to be much of a change. Specifically looking at the window of the mid 1970's through to 1990, the variance seems to increase on both plots. We'll need to use a different transformation to handle this dataset.

Exercise 3.7 - 3

What Box-Cox transformation would you select for your retail data (From Exercise 3 in Section 2.10)?

```
retaildata <- readxl::read_excel("retail.xlsx", skip=1)

myts <- ts(retaildata[,"A3349414R"],
    frequency=12, start=c(1982,4))</pre>
```

```
autoplot(myts)
```



```
lambda <- BoxCox.lambda(myts)
autoplot(BoxCox(myts, lambda))</pre>
```


Looking into my retail data from exercise 3 in section 2.10, the BoxCox.lamnda() function provides us with an ideal lambda of -0.04159144. Being that this is negative, and our BoxCox() function allows for negative values, we're going to use a Power Transformation using a sign function in the formula. Please see below.

$$w_t = \begin{cases} \log(y_t) & \text{if } \lambda = 0; \\ \operatorname{sign}(y_t)(|y_t|^{\lambda} - 1)/\lambda & \text{otherwise.} \end{cases}$$

Exercise 3.7 - 8

For your retail time series (from Exercise 3 in Section 2.10):

a. Split the data into two parts using

```
myts.train <- window(myts, end=c(2010,12))
myts.test <- window(myts, start=2011)</pre>
```

b. Check that your data have been split appropriately by producing the following plot.

```
autoplot(myts) +
autolayer(myts.train, series="Training") +
autolayer(myts.test, series="Test")
```


c. Calculate forecasts using snaive applied to myts.train.

```
fc <- snaive(myts.train)</pre>
```

d. Compare the accuracy of your forecasts against the actual values stored in myts.test.

```
accuracy(fc,myts.test)
```

```
## Training set 4.455255 8.699864 5.818619 6.15400 9.948117 1.000000 ## Test set 19.170833 22.956217 19.520833 11.59039 11.813322 3.354891 ## Training set 0.7261600 NA ## Test set 0.5801161 0.7479721
```

e. Check the residuals.

checkresiduals(fc)

Residuals from Seasonal naive method

##

```
## Ljung-Box test
##
## data: Residuals from Seasonal naive method
## Q* = 783.91, df = 24, p-value < 2.2e-16
##
## Model df: 0. Total lags used: 24</pre>
```

Do the residuals appear to be uncorrelated and normally distributed?

While there is a slight skew to the right on the residuals distribution plot, there seems to be strong significant of correlation in the lags of the ACF plot.

f. How sensitive are the accuracy measures to the training/test split?

```
myts.train <- window(myts, end=c(2010,12))</pre>
myts.test <- window(myts, start=2011)</pre>
myts.train2 <- window(myts, end=c(2006,12))</pre>
myts.test2 <- window(myts, start=2007)</pre>
myts.train3 <- window(myts, end=c(2008,12))</pre>
myts.test3 <- window(myts, start=2009)</pre>
fc <- snaive(myts.train)</pre>
fc2 <- snaive(myts.train2)</pre>
fc3 <- snaive(myts.train3)</pre>
accuracy(fc, myts.test)
##
                        ME
                                 RMSE
                                            MAE
                                                      MPE
                                                                MAPE
                                                                         MASE
## Training set 4.455255 8.699864 5.818619 6.15400 9.948117 1.000000
                 19.170833 22.956217 19.520833 11.59039 11.813322 3.354891
## Test set
                      ACF1 Theil's U
##
## Training set 0.7261600
## Test set
                0.5801161 0.7479721
accuracy(fc2, myts.test2)
##
                       ME
                                RMSE
                                          MAE
                                                    MPE
                                                             MAPE
                                                                      MASE
                                                                                 ACF1
## Training set 3.298947 6.037997 4.557193 5.784881 9.901433 1.000000 0.6028602
                 5.904167 14.129800 8.604167 4.290980 7.069659 1.888041 0.5801372
## Test set
                 Theil's U
## Training set
                        NΑ
## Test set
                 0.7066347
accuracy(fc3, myts.test3)
                                                       MPE
                                                                 MAPE
                        ME
                                 RMSE
                                            MAE
                                                                           MASE
## Training set 3.468608 6.893273 4.862783 5.641569 9.679051 1.000000
```

28.770833 30.430926 29.237500 21.592543 21.827284 6.012503

Test set

```
## Training set 0.5475324 NA
## Test set 0.4978109 1.549617

autoplot(myts) +
  autolayer(fc, series = "Original Split") +
  autolayer(fc2, series = "Second Split") +
  autolayer(fc3, series = "Third Split")
```

ACF1 Theil's U

##

The second split created looks to be the best prediction in this example. I think given these various timeframes to predict against and the varied results, we can say that this accuracy mesaures between the training and test split are sensitive.