관계형 데이터베이스 설계

배을 내용

- □ 릴레이션 정련화(refinement)
 - □ 함수 종속
 - □ 제 1 정규형
 - □ 제 2 정규형
 - □ 제 3 정규형
 - BCNF

데이터의 논리적 표현

- 관계 스킴(relational scheme)의 설계
 - 관계 모델을 이용하여 어떻게 실세계를 정확히 표현할 것인가?
 - 1) 애트리뷰트, 엔티티, 관계성을 파악
 - 2) 관련된 애트리뷰트들을 릴레이션으로 묶음
 - 데이터 종속성: 애트리뷰트들 간의 관계성
 - □ 효율적인 데이터 처리
 - □ 데이터의 중복성
 - 3) 변칙적 성질의 예방
 - □ 이상(anomaly) 현상

이상(anomaly) 현상

예: 수강 릴레이션

기본키: <u>학번</u>, <u>과목번호</u>

학번	과목 번호	성적	학년
100	C413	Α	4
100	E412	Α	4
200	C123	В	3
300	C312	Α	1
300	C324	С	1
300	C413	Α	1
400	C312	Α	4
400	C324	Α	4
400	C413	В	4
400	C412	С	4
500	C312	В	2

- □ 삭제이상(deletion anomaly)
 - 200번 학생이 'C123'의 등록을 취소
 - ▶ 3학년이라는 정보도 함께 삭제됨
- □ 삽입이상(insertion anomaly)
 - □ 600번 학생이 2학년이라는 사실을 삽입
 - 어떤 과목을 등록하지 않는 한 삽입 불가능(과 목번호가 기본 키)
 - □ 원하지 않는 정보의 강제 삽입
- □ 갱신이상(update anomaly)
 - □ 400번 학생의 학년을 4에서 3으로 변경
 - ▶ 학번이 400인 4개의 투플 모두 갱신시켜야 함
 - □ 중복 데이터의 일부 갱신으로 정보의 모순성 (inconsistency) 발생

이상 현상의 원인과 해결책

□ 원인

□ 애트리뷰트들 간에 존재하는 여러 종속관계를 하나의 릴레이션에 표현

□ 이상의 해결

□ 애트리뷰트들 간의 종속관계를 분석하여 여러 개의 릴레이션으로 분해 (decomposition) → 정규화(normalization)

릴레이션 스키마의 설계와 변환

- □ 스키마 설계: 데이터베이스의 논리적 설계
 - □ 애트리뷰트들과 이들의 제약 조건 (종속성)들을 수집
 - □ 수집된 결과를 <u>명시된 제약 조건</u>에 따라 여러 개의 릴레이션으로 분할
 - → 스키마 변환 (schema transformation)

- □ 스키마 변환의 원리
 - □ 정보의 무손실
 - □ 데이터의 중복성 감소
 - □ 분리의 원칙

배을 내용

- □ 릴레이션 정련화(refinement)
 - □ 함수 종속
 - □ 제 1 정규형
 - □ 제 2 정규형
 - □ 제 3 정규형
 - BCNF

함수 중속(Functional Dependency)(I)

- □ 어떤 릴레이션 R에서, 애트리뷰트 X의 값 각각에 대해 애트리뷰 트 Y의 값이 하나만 연관되면
 - □ 애트리뷰트 Y는 애트리뷰트 X에 함수적 종속 관계
 - □ X → Y로 표현
 - □ X는 Y를 (함수적으로) 결정함
 - X는 Y의 결정자(determinant)
 - □ X, Y는 복합 애트리뷰트일 수 있음
 - \square X가 키이면, R의 모든 애트리뷰트 Y에 대해 X \rightarrow Y 성립
 - □ 애트리뷰트 X가 반드시 키(유일 값)라는 것을 요건으로 하지 않음

함수 쫑속(11)

- 🖵 (예) 수강 릴레이션
 - □ 기본키: (<u>학번</u>, <u>과목번호</u>)
 - □ 함수 종속:

(<u>학번</u>, <u>과목번호</u>) → 성적

학번 → 학년

<u>학번</u>	과목 번호 번호	성적	학년
100	C413	Α	4
100	E412	Α	4
200	C123	В	3
300	C413	А	4

완전 함수 쫑속과 부분 함수 쫑속(I)

- 복합 애트리뷰트 X에 대하여 X → Y가 성립할 때
 - 완전 함수 종속 (full functional dependency)
 - $\square X' \subset X$ 이고 $X' \to Y$ 를 만족하는 애트리뷰트 X'이 존재하지 않음
 - □ 부분 함수 종속 (partial functional dependency)
 - □ X' ⊂ X 이고 X' → Y 를 만족하는 애트리뷰트 X'이 존재함
 - □ 예) 수강 릴레이션에서
 - □ 함수 종속:

학번 → 학년, ______

(학번, 과목번호) → 성적, (학번, 과목번호) → 학년

(학년)은 (학번)에 완전 함수 종속,

(학년)은 {학번,과목번호}에는 부분 함수 종속,

5.10

(성적)은 {학번,과목번호}에 완전 함수 종속

완전 함수 쫑속과 부분 함수 쫑속(II)

- □ 함수 종속에 대한 추론 규칙
 - 世사(reflexive): A
 B이면 A → B이다.
 - \square 첨가(augmentation) : A \rightarrow B이면 AC \rightarrow BC이고 AC \rightarrow B이다.
 - \square 이행(transitive) : A \rightarrow B이고 B \rightarrow C이면 A \rightarrow C이다.
 - \square 분해(decomposition) : A \rightarrow BC이면 A \rightarrow B이고 A \rightarrow C이다.
 - □ 결합(union) : $A \rightarrow B$ 이고 $A \rightarrow C$ 이면 $A \rightarrow BC$ 이다.

Note

- □ 함수 종속은 데이터의 의미(data semantics) 를 표현
 - □ 예: "학번 → 학년"의 의미는 "학생은 하나의 학년에만 속한다"
 - □의미적 제약 조건
- □ DBMS는 함수 종속을 유지하기 위하여 함수 종속을 스키마에 명세하는 방법과 함수 종속을 보장하는 방법을 제공하여야 함

정규할(Normalization)

- □ 정규형(Normal Form)
 - □ 어떤 일련의 제약 조건을 만족하는 릴레이션
- □ 정규화(Normalization) : 스키마 변환 (S → S')
- □ 정규화의 원칙
 - □ 무손실 표현
 - □ 같은 의미의 정보 유지
 - □ 더 바람직한 구조
 - □ 데이터의 중복성 감소
 - □ 분리의 원칙
 - □독립적인 관계는 별개의 릴레이션으로 표현
 - 릴레이션 각각에 대해 독립적 조작이 가능

예제 릴레이션

- □ 수강지도 릴레이션
 - □ 기본키 : { 학번, 과목번호 }
 - □ 함수 종속 :
 - **□**{ <u>학번</u>, <u>과목번호</u> } → 성적
 - □학번 → 지도교수
 - □학번 → 학과
 - □지도교수 → 학과

학번	지도 교수	학과	<u>과목</u> 번호	성적
100	P1	컴퓨터	C413	Α
			E412	Α
200	P2	전기	C123	В
300	P3	컴퓨터	C312	Α
			C324	С
			C413	Α
400	P1	컴퓨터	C312	Α
			C324	Α
			C413	В
			C412	С

배을 내용

- □ 릴레이션 정련화(refinement)
- □ 함수 종속
- □ 제 1 정규형
- □ 제 2 정규형
- □ 제 3 정규형
- BCNF
- □ 고급 정규형

제1정규형(INF) (I)

- □ 제1정규형 정의
 - □ 모든 도메인이 원자값(atomic value)만으로 된 릴레이션
- □ 수강지도 릴레이션
 - □ 기본키 : { 학번, 과목번호 }
 - □ 함수 종속:
 - □{ <u>학번</u>, <u>과목번호</u> } → 성적
 - □ 학번 → 지도교수
 - □ 학번 → 학과
 - □ 지도교수 → 학과

학번	지도 교수	학과	<u>과목</u> 번호	성적
100	P1	컴퓨터	C413	Α
100	P1	컴퓨터	E412	Α
200	P2	전기	C123	В
300	P3	컴퓨터	C312	Α
300	Р3	컴퓨터	C324	С
300	P3	컴퓨터	C413	Α
400	P1	컴퓨터	C312	Α
400	P1	컴퓨터	C324	Α
400	P1	컴퓨터	C413	В
400	P1	컴퓨터	C412	С

제1정규형 (11)

- □ 삽입이상
 - □ 500번 학생의 지도교수가 P4라는 사실의 삽입은 어떤 교과목을 등록하지 않는 한 삽입 불가능
- □ 삭제이상
 - □ 200번 학생이 C123의 등록을 취소하여 이 투플을 삭제할 경우 지도교수가 P2라는 정보까지 손실됨
- □ 갱신이상
 - □ 400번 학생의 지도교수를 P1에서 P3로 변경할 경우 학번이 400인 4개 투플의 지도교수 값을 모두 P3로 변경해야 함

<u>학번</u>	지도 교수	학과	<u>과목</u> 번호	성적
100	P1	컴퓨터	C413	Α
100	P1	컴퓨터	E412	Α
200	P2	전기	C123	В
300	P3	컴퓨터	C312	Α
300	P3	컴퓨터	C324	С
300	P3	컴퓨터	C413	Α
400	P1	컴퓨터	C312	Α
400	P1	컴퓨터	C324	Α
400	P1	컴퓨터	C413	В
400	P1	컴퓨터	C412	С

제1정규형(III)

- □ 이상현상의 원인
 - □ 기본키에 <u>부분 함수 종속</u>된 애트리뷰트가 존재

- → 기본키로 식별되는 개체와 무관한 애트리뷰트가 존재
- → 두 가지 상이한 정보가 포함
- □ 이상현상의 해결방법
 - □ 프로젝션으로 릴레이션을 분해 (부분 함수 종속을 제거)
 - **→** 2NF

배을 내용

- □ 릴레이션 정련화(refinement)
- □ 함수 종속
- □ 제 1 정규형
- □ 제 2 정규형
- □ 제 3 정규형
- BCNF
- □ 고급 정규형

제2정규형(2NF) (I)

- □ 정의
 - □ 1NF이고, 키에 속하지 않는 애트리뷰트들이 기본키에 완전 함수 종속
- □ 1NF→2NF: 부분 함수 종속을 제거하여 여러 개의 테이블로 분해
 - □ { <u>학번</u>, <u>과목번호</u> } → 성적
 - □ 학번 → 지도교수
 - □ 학번 → 학과
 - □ 지도교수 → 학과
 - → { <u>학번</u>, <u>과목번호</u> } → 지도교수, 학과, 성적

제2정규형(2NF) (I-1)

- □ 1NF→2NF (계속)
 - □ 주키에 속하는 속성을 각 줄로 나열한다

학번 과목번호 (학번, 과목번호) → 각각에 완전 종속되는 속성 나열한다

학번 →지도교수,학과 과목번호 (학번, 과목번호) →성적

제2정규형(II)

□ 예: 수강지도 ⇒ 지도, 수강 릴레이션으로 분해

□ 지도 (<u>학번</u>, 지도교수, 학과)

학번 → 지도교수

학번 → 학과

지도교수 🗲 학과

수강 (<u>학번, 과목번호</u>, 성적) { 학번, 과목번호 } → 성적

학번	지도교수	학과
100	P1	컴퓨터
200	P2	전기
300	Р3	컴퓨터
400	P1	컴퓨터

_		
학번	과목번호	성적
100	C413	Α
100	E412	Α
200	C123	В
300	C312	Α
300	C324	С
:	•	:

제2정규형(III)

□ 무손실 분해(nonloss decomposition)

- □ 프로젝션하여 분해된 릴레이션들은 자연 조인을 통해 원래의 릴레이션으로 복귀 가능
- □ 원래의 릴레이션에서 얻을 수 있는 정보는 분해된 릴레이션들로부터도 얻을 수 있음 그러나, 그 역은 성립하지 않음

(500번 학생의 지도교수가 P4라는 정보는 원래의 릴레이션에서 표현할 수 없음)

- Heath의 무손실 분해
 - □ 릴레이션 R을 R1과 R2로 분해하였을 때

 $R_1 \cap R_2 \rightarrow R_1 이거나$

 $R_1 \cap R_2 \rightarrow R_2$ 이면 무손실 조인 분해임을 보장

제2정규형(IV) - 이상현상

지도 릴레이션

학번	지도 교수	학과
100	P1	컴퓨터
200	P2	전기
300	Р3	컴퓨터
400	P1	컴퓨터

수강 릴레이션

학번	과목 번호	성적
100	C413	Α
100	E412	Α
200	C123	В
300	C312	Α
300	C324	С
300	C413	Α
400	C312	Α
400	C324	Α
400	C413	В
400	C412	С

<u>지도 릴레이션에서</u>

- □ 삽입이상
 - 어떤 지도교수가 특정 학과에 속한다는 사실의 삽입 불가능
- □ 삭제이상
 - □ 300번 학생의 투플을 삭제하면 지도교수 P3가 컴퓨터공학과에 속한다는 정보 손실
- □ 갱신이상
 - □ 지도교수 P1의 소속이 컴퓨터과에서 전기과로 변경되면 학번이 100과 400번인 두 개의 투플을 모두 변경해야 함

제2정규형(V) - 이상현상

- □ 이상현상의 원인
 - □ <u>이행적 함수종속(TD, Transitive Dependency</u>)이 존재

$$A \rightarrow B \mathfrak{D} \quad B \rightarrow C \quad \Rightarrow \quad A \rightarrow C$$

(즉, 애트리뷰트 C는 애트리뷰트 A에 이행적 함수 종속)
학번 \rightarrow 지도교수 \rightarrow 학과 \Rightarrow 학번 \rightarrow 학과

- □ 이상현상의 해결 방법
 - □ 프로젝션으로 릴레이션 분해(<u>이행적 함수 종속을 제거</u>)
 - 예) 학번 \rightarrow 지도교수 \rightarrow 학과 \Rightarrow 학번 \rightarrow 학과

학번 → 지도교수

지도교수 → 학과

→ 3NF

5.24

배을 내용

- □ 릴레이션 정련화(refinement)
- □ 함수 종속
- □ 제 1 정규형
- □ 제 2 정규형
- □ 제 3 정규형
- BCNF
- □ 고급 정규형

제3정규형(3NF) (I)

- □ 정의
 - □ 2NF이고, 키가 아닌 모든 애트리뷰트들은 기본키에 이행적 함수 종속되지 않음
- □ 무손실 분해

□ 원래의 릴레이션에서 얻을 수 있는 정보는 분해된 릴레이션들로부터도 얻을 수 있으나 그 역은 성립하지 않음

(지도교수 P4가 수학과에 속한다는 정보의 표현)

제3정규형(II)

- □ 지도 ⇒ 학생지도, 지도교수학과 릴레이션으로 분해
 - □ 학생지도 릴레이션 = (학번, 지도교수)
 - □ 함수 종속: 학번 → 지도교수

학번	지도교수
100	P1
200	P2
300	P3
400	P1

- □ 지도교수학과 릴레이션 = (지도교수, 학과)
 - □ 함수 종속: 지도교수 → 학과

지도교수	학과
P1	컴퓨터
P2	전기
Р3	컴퓨터

지도교수 학과

제3정규형(III)

Note

- □ 키가 아닌 애트리뷰트 값의 갱신 시 불필요한 부작용(이상현상) 발생 없음
- □ 모든 이진 릴레이션은 3NF에 속함

■ 3NF의 약점

- □ 복수의 후보키를 가지고 있고,
- □ 후보키들이 복합 애트리뷰트들로 구성되며,
- □ 후보키들이 서로 중첩되는 경우
- → 적용 불가능
- → 보다 일반적인 Boyce/Codd Normal Form(BCNF)을 제안

배을 내용

- □ 릴레이션 정련화(refinement)
- □ 함수 종속
- □ 제 1 정규형
- □ 제 2 정규형
- □ 제 3 정규형
- ☐ BCNF
- □ 고급 정규형

BCNF (I)

- □ 정의
 - □ 릴레이션 R의 모든 결정자가 후보키이면 릴레이션 R은 BCNF에 속함
- □ 릴레이션 R이 BCNF에 속하면 R은 제1, 제2, 제3 정규형에 속함
- □ 강한 제3정규형(strong 3NF)이라고도 함

BCNF (II)

□ 예(3NF)

□ 수강과목 릴레이션 = (학번, 과목, 교수)

□ 후보키 : {학번, 과목}, {학번, 교수}

□ 기본키 : {학번, 과목}

□ 함수종속 : {학번, 과목} → 교수, 교수 → 과목

학번	과목	교수
100	프로그래밍	P1
100	자료구조	P2
200	프로그래밍	P1
200	자료구조	Р3
300	자료구조	Р3
300	프로그래밍	P4

BCNF (III)

□ 수강과목 릴레이션(3NF)에서의 이상 현상

학번	과목	교수
100	프로그래밍	P1
100	자료구조	P2
200	프로그래밍	P1
200	자료구조	Р3
300	자료구조	Р3
300	프로그래밍	P4

- □ 삽입이상
 - □ 교수 P5가 자료구조를 담당한다는 사실의 삽입은 학번(수강 학생)이 있어야 가능
- □ 삭제이상
 - □ 100번 학생이 자료구조를 취소하여 투플을 삭제하면 P2가 담당교수라는 정보도 삭제됨
- □ 갱신이상
 - □ P1이 프로그래밍 과목 대신 자료구조를 담당하게 되면 P1이 나타난 모든 투플을 변경하여야 함
- → 원인: 교수가 결정자이지만 후보키가 아님

BCNF (IV)

□ 수강과목 릴레이션을 <u>학번교수</u>, <u>교수과목</u> 릴레이션으로 분해

학번 교수

학번	교수	
100	P1	
100	P2	
200	P1	
200	Р3	
300	P3	
300	P4	

교수	과목	
P1	프로그래밍	
P2	자료구조	
Р3	자료구조	
P4	프로그래밍	

배을 내용

- □ 릴레이션 정련화(refinement)
- □ 함수 종속
- □ 제 1 정규형
- □ 제 2 정규형
- □ 제 3 정규형
- BCNF

고급 정규형(1)

교과목 목록

과목(C)	교수(P)	교재(T)
화일처리	(P1	(T1)
	\ \ P1 \	(T2 }
데이타베이스	P3	(T3)
		{ T4 }
		^l T5

← 비정규형

(Rpeating Croup)

개설 교과목

과목(C)	교수(P)	교재(T)
화일처리	P1	T1
화일처리	P1	T2
화일처리	P2	T1
화일처리	P2	T2
데이타베이스	Р3	Т3
데이타베이스	P3	T4
데이타베이스	P3	T5

 \Leftarrow BCNF

∵(키에 속하지 않는 결정자 애트리뷰트가 없음)

기본키: (과목, 교수, 교재)

고급 정규형(II)

- □ 개설교과목에서의 변경 이상
 - □ P4가 데이타베이스를 담당한다는 정보삽입 시 3개의 교재에 대한 투플을 삽 입해야 함
- □ BCNF 이상의 원인
 - □ 즉, 과목은 교수나 교재의 값 하나를 결정하는 것이 아니라 값의 집합(set of values)을 결정

과목→→교수|교재

(화일처리) □ { P1, P2 }

(화일처리) □ { T1, T2 }

고급 정규형(III)

- □ 다치 종속 (MVD, Multi-Valued Dependency)
 - □ 정의

릴레이션 <u>R(A,B,C)</u>에서 어떤 <u>(A, C)값</u>에 대응하는 <u>B값의</u> <u>집합</u>이 A값에만 종 속되고 C값에 독립이면

다치 종속 A B가 성립, 즉 (A,C) □ { B } □ A □>{ B }

- □ A→→B이면 A→→ C도 성립 즉, A→→ BIC
- □ 모든 FD는 MVD이나, 역은 성립하지 않음

즉, A □ B이면 A→→ B가 성립

- □ MVD를 가진 릴레이션의 분해(Fagin의 정리)
 - □ R(A,B,C)에서 MVD A→→B|C이면 R1(A,B)와 R2(A,C)로 무손실 분해 가능

제4정규형(4NF)(I)

- □ 정의
 - □ 릴레이션 R에서 MVD A→→ B가 존재할 때 R의 모든 애트리뷰트들이 A에 함수 종속(FD)이면 R은 4NF (즉 R의 모든 애트리뷰트 X에 대해 A□ X 이고 A가 후보키)
- □ BCNF를 이용한 정의
 - □ 릴레이션 R이 BCNF에 속하고 모든 MVD가 FD이면 R은 4NF

- □ 의미
 - □ 어떤 릴레이션 R이 4NF이라면 MVD가 없거나, MVD A→→ B|C가 있을 경우 A에 대응되는 B와 C의 값은 하나씩 이어야 하며 이때 A는 후보키라는것을 의미

5.38

제4정규형(II)

□ 예

개설 교과목

과목(C)	교수(P)	교재(T)
화일처리	P1	T1
화일처리	P1	T2
화일처리	P2	T1
화일처리	P2	T2
데이타베이스	P3	T3
데이타베이스	P3	T4
데이타베이스	P3	T5

\Leftarrow BCNF

∵(키에 속하지 않는 결정자 애트리뷰트가 없음)

기본키: (과목, 교수, 교재) MVD 과목 ---> 교수|교재

교과목 교수

과목(C)	교수(P)
화일처리	P1
화일처리	P2
데이타베이스	P3

교과목교재

과목(C)	교재(T)	↓ 4NF
화일처리	T1	,
화일처리	T2	
데이타베이스	T3	
데이타베이스	T4	
데이타베이스	T5	

제5정규형(5NF)(I)

- □ 예 : 릴레이션 SPC(4NF)
 - □ SPC를 프로젝션하여 세 개의 SP,PC,CS를 생성
 - □ 세 개의 릴레이션 SP,PC,CS를 조인해서는 SPC의 재생성이 가능하나 그 어느 두 개의 조인만으로는 재생성 불가능

5.41

제5정규형(II)

□ 3-분해 릴레이션

□ 릴레이션 SPC가 세 개의 프로젝션 SP,PC,CS의 조인과 동등하다는 것은

(s1,p1) ☐ SP

(p1,c1) ☐ PC ☐ (s1,p1,c1) ☐ SPC

(c1,s1) ☐ CS

□ 즉 다음의 순환적 제약조건(3D)을 만족

(<u>s1,p1</u>,c2) ☐ SPC

 $(s2,p1,c1) \square SPC \square (s1,p1,c1) \square SPC$

(<u>s1</u>,p2,<u>c1</u>) ☐ SPC

■ SPC : 3-분해 릴레이션

: 3D 제약조건을 만족

제5정규형(III)

- □ n-분해 릴레이션(n>2)
 - □ n개의 프로젝션으로만 무손실 분해될 수 있으며 m(m<n)개의 프로젝션으로 는 무손실 분해가 불가능한 릴레이션

제5정규영(IV)

- 조인 종속(JD, Join Dependency)
 - □ 릴레이션 R이 그의 프로젝션 A, B, ..., Z의 조인과 동일하면 R은 JD *(A, B, ..., Z)을 만족 이때 A,B,...,Z는 R의 애트리뷰트들에 대한 부분 집합.
 - □ 릴레이션 R(A,B,C)가 JD *(AB,AC)을 만족하면, 한 쌍의 MVD A→→ B|C도 성립.
 - □ JD는 MVD의 일반형, MVD는 JD의 특별한 경우(2-분해)
 - □ SPC 릴레이션은
 - □ JD *(SP, PC, CS)를 만족
 - □ 3-분해 릴레이션
 - □ JD를 만족하는 n-분해 릴레이션은 n개의 프로젝션으로 분해해야 함.

제5정규형(V)

- □ 릴레이션에서의 갱신이상
 - □ ① 삽입이상
 - □ 릴레이션 SPC'에서 (S2,P1,C1)의 삽입시 (S1,P1,C1)의 삽입 필요
 - □ 역은 성립 않음

SPC'

SK	PK	CK
S1	P1	C2
S1	P2	C1

제5정규형(VI)

- □ 릴레이션의 갱신이상(con't)
 - ② 삭제이상
 - □ 릴레이션 SPC에서 (S1,P1,C1)의 삭제시 다른 투플 중 어느 하나를 함께 삭제하여 야 함
 - □ (S2,P1,C1)의 삭제는 이상 없이 가능

SPC

SK	PK	CK
S1	P1	C2
S1	P2	C1
S2	P1	C1
S1	P1	C1

□ 이상의 원인 : SPC는 3-분해 릴레이션

□ 이상의 해결 : 릴레이션 SPC를 3-분해함

제5정규형(VII)

- 제5정규형(5NF)
 - □ 정의
 - □ 릴레이션 R에 존재하는 모든 조인 종속이 R의 후보키를 통해 성립되면, R은 5NF
 - □ 프로젝션-조인 정규형(PJ/NF)
 - □ 예1:
 - □ SPC : JD *(SP,PC,CS)는 후보키 (S,P,C)를 통하지 않으므로 5NF이 아님
 - ☐ SP,PC,SC: 5NF

제5정규형(VIII)

- □ 제5정규형 (5NF) (con't)
 - □ 예2:

학생(학번,이름,학과,학년) 릴레이션의 후보키가 학번과 이름일 경우

JD *((학번,이름,학과), (학번,학년))

JD *((학번,이름), (학번,학년), (이름,학과))

위의 JD는 모두 후보키를 통해 성립되므로 5NF

정규형를 간의 관계(I)

□ 정규화 과정 (무손실 분해)

정규형를 간의 관계(Ⅱ)

□ 정규형들 간의 포함 관계

정규형들 간의 관계(III)

Note

- □ 릴레이션의 정규화는 실제 데이터 값이 아니라 개념적인 측면에서 다루어져 야 함
- □ 실제 정규화 과정은 정규형의 순서와 다를 수 있음

정규형들 간의 관계(IV)

Note

- □ 현실적으로 모든 릴레이션을 반드시 5NF에 속하도록 분해할 필요는 없음
- □ 학생주소(학번,이름,주소,전화번호): 5NF이 아님

기본키: 학번

FD : 전화번호→주소

학생전화(학번,이름,전화번호): 5NF

전화주소(전화번호,주소) : 5NF

□ 이름, 전화번호, 주소는 분리하지 않고 사용하는 것이 편리하므로 위의 5NF 으로의 분해는 무의미함

요약

- □ 릴레이션 정련화(refinement)
- □ 함수 종속
- □ 제 1 정규형
- □ 제 2 정규형
- □ 제 3 정규형
- BCNF

다음 배울 내용:데이터베이스 설계