Electronic Devices

Lectures 1&2 Semiconductors

Dr. Roaa Mubarak

The Course Grades

- ➤ The Total Course grades 150 Marks
- Midterm (أعمال السنة) 30 Marks.
- Laboratory (عملي) 20 Marks
- Final Exam (الامتحان النهائي) 100 Marks

خطة الدراسة للفرقة الاولي ـ قسم هندسة الالكترونيات والاتصالات

										راسسى الأول	القصىل الدر
المساعات	مجبوع	عدد ساعات	جات	زيع الدر	توز	وعية	ت الأسب	الساعان		اسم المقرر	عد الدق
A	درجات المقرر	الامتحان التحريري	تحريرى	عمل <i>ی</i> وشفوی	أعمال سنة	مجموع	قات معمل	تطبيا تمرين	محاضرة	استم المقرر	كود المقرر
2	150	3	100	20	30	4	1	1	2	النبائط الإلكترونية	إلك 1405

The course includes:

- 1. Semiconductor Materials.
- 2. P-N Junction and Diodes.
- 3. Bipolar Junction Transistor (BJT).
- 4. Field Effect Transistor (FET).
- 5. Applications.

Reference:

Micro Electronics by 'Jacob Millman'

Semiconductors Materials

Electronics

• It is the science and Technology of the motion of charges in gas, vacuum, or Semiconductors.

Materials:

The materials can be classified into:

- Conductors.
- Insulators.
- Semiconductors.

Conductor -

Any material that allows electric current to pass through it

•copper insulator conductor

any metal

•aluminum

steel

Conductors:

- Conductors are the materials that support a flow of free charges (Free electrons) when voltage source is applied across its terminal ex: Copper, Aluminum, Silver, and Gold.
- Electron is the principle negatively charged particle whose charge, or quantity of electricity, has been determined as $1.6\,x10^{-19}$ coulombs
- The No. of electrons per coulomb is the reciprocal of electronic charge or approximately 6×10^{18} .
- Since Current of 1 ampere is 1 col/sec, a current of 1 Pico-ampere represents the motion of about 6 million electrons.
- Carriers: Electrons.

Current in Conductors

$$I = \frac{N \ q}{T}$$

$$I = \frac{N q}{T}$$
 & $vd = \frac{L}{T}$ drift velocity

$$I = \frac{N \ q \ vd}{L}$$

$$q = 1.6 \times 10^{-19} \text{C}.$$

T: Time in sec.

Current Density
$$J = \frac{I}{A} = \frac{N \ q \ vd}{L \ A} = n \ q \ vd$$
 $n = \frac{N}{L \ A}$ electron concentration $vd = \mu \ E$ μ : electron mobility , E : Electric field

$$n = \frac{N}{LA}$$
 electron concentration
E: Electric field

$$J = n \ q \ vd = n \ q \ \mu \ \mathcal{E} = \sigma \ \mathcal{E}$$

$$\sigma(material \ conductivity) = n \ q \ \mu = \frac{1}{\rho} \qquad (Electric \ field) \ \mathcal{E} = \frac{V}{L}$$

$$I = J A = \sigma \, \mathcal{E} A = \sigma \, \mathcal{E} A \, \frac{L}{L} = \frac{\sigma \, A}{L} \, V = \frac{V}{R}$$
 $R = \frac{L}{\sigma \, A}$ σ : material resistivity conductivity

Insulators:

 They are materials that offer a very low level of conductivity when voltage is applied.

Ex: Glass – Plastic - Ceramic

Semiconductors:

• They are the materials that have a conductivity level some where between the extremes of an insulator and conductor.

Ex: Carbon 'C' – Silicon 'Si' – Germanium 'Ge'

Carriers: Electrons & Holes.

Semiconductors:

 Atoms link together with one another sharing their outer electrons to form physical structure called a crystal lattice, these links are called covalent bonds.

Semiconductors:

Semiconductors classified into:

➤ Pure Semiconductors (Intrinsic Semiconductors).

➤ Impure Semiconductors (Extrinsic Semiconductors).

Intrinsic Semiconductors:

- Intrinsic Semiconductors is made of pure Silicon or Germanium.
- Free Electrons due to natural causes (Temperature- Energy- Light Energy) can be results.
- An increase in temperature of semiconductor results in increase in No. of free electrons.

$$n = p = ni$$

n: electron concentration,

p: hole concentration,

ni: intrinsic concentration.

Mass Action law:

$$n * p = ni^2.$$

$$ni^2 = Ao T^3 e^{-Ego/KT}$$
.

Ao: constant related to the semiconductor.

T: Temperature in Kelvin.

K: Boltzman constant = $8.62 \times 10^{-6} ev/K$

Ego: Band gap energy (ev)

Extrinsic Semiconductors:

- They are obtained by adding (doping) impurity atoms to intrinsic semiconductor.
- Adding one impure atom to one million of Si. These impurities can totally change the electrical properties of semiconductors.
- These materials are doped to create excess or luck of electrons.
- Extrinsic semiconductors made computer chips both for CPU and memory, and doped Semiconductors make it possible to **miniaturize** electronic component such as diodes and transistors.
- Miniaturize means (less space, faster and require less energy).

Impurities:

☐ Trivalent materials (acceptors):

Boron – Gallium – Indium ----- produce **P-type** semiconductors.

□Pentavalent Materials (Donor):

Phosphors – Arsenic – Antimony -----produce **n-type** semiconductors.

Extrinsic Semiconductors:

N-type

P-type

Extrinsic Semiconductors:

N-Type Semiconductor	P-type Semiconductor			
Donor Atoms = ND	Acceptor Atoms = NA			
Majority Carriers : Electrons	Majority Carriers: Holes			
Minority Carriers : Holes	Minority Carriers : Electrons			
n = p + ND	p = n + NA			
n >>>>p	P >>>> n			
n ≈ ND	P ≈ NA			
For mass action law	For mass action law			
$ND * p = ni^2$	$n * NA = ni^2$			
$Pn = ni^2/ND$	$np = ni^2/NA$			

Conductivity in Semiconductors

Metal's Current:

The current comes from the movement of free electrons.

Semiconductor's Current:

The current comes from both Electrons and Holes.

Currents in semiconductors:

- > Drift Current due to applied electric field.
- > Diffusion current due to non-uniform concentration.

Drift Current:

• Drift current density for **Conductors** $J = \frac{I}{A} = n \ q \ \mu \ \Xi$

• Drift current density for **Semiconductors** $J = \frac{I}{A} = n \ q \ \mu n \ \mathcal{E} + p \ q \ \mu p \ \mathcal{E}$

$$J = q(n \mu n + p \mu p) \mathcal{E} = \sigma \mathcal{E}$$

$$\sigma = q(n \mu n + p \mu p) = \frac{1}{\rho}$$

 μn : Mobility of Electrons

 μp : Mobility of holes

Diffusion Current

- In semiconductors, the flow of carriers from one region of higher concentration to lower concentration results in a "Diffusion Current".
- Diffusion of Electrons:

$$Jn = q \, Dn \, \frac{dn}{dx}$$

Dn: Electrons diffusion coefficient.

• Diffusion of Holes:

$$Jp = -q Dp \frac{dp}{dx}$$

Dp: Holes diffusion coefficient.

• Einstein Relation: $\frac{Dn}{\mu n} = \frac{Dp}{\mu p} = \frac{KT}{q} \approx 0.026 \text{ V} = \text{VT}$

Semiconductor's Currents:

 Total Current for Semiconductors = Drift currents + Diffusion Currents.

• Drift Current= $Jdrift = n q \mu n \mathcal{E} + p q \mu p \mathcal{E}$

• Diffusion Current = $Jdiff = q Dn \frac{dn}{dx} - q Dp \frac{dp}{dx}$

$$Jtotal = Jdrift + Jdiff$$

Properties of Silicon and Germanium

Properties of Silicon and Germanium

Property	Silicon	Germanium 32	
Atomic number	14		
Atomic weight	28.1	72.6	
Density	2,330 kg/m ³	5,320 kg/m ³	
Dielectric constant	12	16	
Atoms/m ³	5.0×10^{28}	4.4×10^{28}	
E _{G0} at 0 K	1.21 eV	0.785 eV	
E _G at 300 K	1.12 eV	0.72 eV	
Intrinsic concentration n _i at 300 K	$1.5 \times 10^{16} / \text{m}^3$	$2.5 \times 10^{19} / \text{m}^3$	
Intrinsic resistivity ρ_i at 300 K	2,300 Ω-m	0.45 Ω-m	
Electron mobility, µe	0.13 m ² / V-s	0.38 m ² / V-s	
Hole mobility, μ_h	0.05 m ² /V-s	0.18 m ² /V-s	
Diffusion constant, De	0.0034 m ² /s	0.0099 m ² /s	
Diffusion constant, Dh	0.0013 m ² /s	0.0047 m ² /s	