Homework 2 - Advanced LP & Network Flow Models Adv. Analytics and Metaheuristics

Daniel Carpenter and Christopher Ferguson

February 2022

Contents

1	- Pr	roblem 1	1
2	- Pı	roblem 2	2
3	- Pı	roblem 3	3
	3.1	Mathematical Formulation	3
	3.2	Code and Output	5
4	- Pı	roblem 4	7
	4.1	Model Overview	7
	4.2	Mathematical Formulation	9
	4.3	Code and Output	10

1 - Problem 1

2 - Problem 2

3 - Problem 3

3.1 Mathematical Formulation

3.1.1 Parameters

Parameter Name	Description	Unit
NUM_DAYS P N	Total number of days available, (e.g. 4) Price of purchasing new tires Cost of normal service on used tires Cost of quick service on used tires	Dollars per Tire Dollars per Tire Dollars per Tire
r_j	Demand of tires	Tires per day $(j \in Days)$

3.1.2 Decision Variables

Variable Name	Description
$\overline{purch_j}$	Number of tires to purchase on day
	$(j \in Days)$
$norm_j$	Number of tires to reshape using the
	normal service on day $(j \in Days)$
$quick_j$	Number of tires to reshape using the
	quick service on day $(j \in Days)$

3.1.3 Objective Function

• Minimize total cost by when using the three types of tire services

$$Minimize\ cost:\ \sum_{j}^{NUM_DAYS}(purch_{j}\times P)\ +\ (norm_{j}\times N)\ +\ (quick_{j}\times Q)$$

3.1.4 Constraints

C1: Purchase everything on the first day

$$purchaseDay1: purch_1 = r_1$$

C2: Can't use normal service on first 2 days (Since day 1 = purchase, then takes a day to reshape w/Normal)

$$normStartsAtDay2: norm_j = 0, \ for \ j \ in \ 1, 2$$

C3: Can only reshape all tires from a full 24-hour day ago (not yesterday's tires since > 24 hrs.)

$$normLag: norm_j \leq purch_{j-2} + norm_{j-2} + quick_{j-2}, \ for \ j \ in \ 3, \dots, NUM_DAYS$$

C4: Meet Daily Demand r_i

$$\label{eq:dailyDemand} dailyDemand: \sum_{j}^{NUM_DAYS} [purch_j \ + \ norm_j \ + \ quick_j] = r_j$$

C5: Non-Negativity Constraints

$$r_j, purch_j, norm_j, quick_j \ge 0$$

3.2 Code and Output

3.2.1 Code

3.2.2 Output

- Total minimized cost total 395,200
- Interpretation of each day:
 - 1. 320 tires purchased
 - 2. 240 tires reshaped with Quick Service from previous day
 - 3. 80 Reshaped with quick service from previous day. 320 tires used from reshaping via Normal service from day 1.
 - 4. 280 Reshaped with quick service from previous day. 240 tires used from reshaping via Normal service from day 2.

```
ampl: model 'C:\Users\daniel.carpenter\OneDrive - the Chic
CPLEX 20.1.0.0: optimal solution; objective 395200
O dual simplex iterations (O in phase I)
Tires used that were Purchased:
purch [*] :=
     320
1
2
3
        0
        0
4
        0
Tires used that were Reshaped w/Normal Service:
norm [*] :=
1
2
3
        0
    320
     240
Tires used that were Reshaped w/Quick Service:
quick [*] :=

1 0

2 240

3 80
     280
```

4 - Problem 4

4.1 Model Overview

4.1.1 Network Flow Diagram

4.1.2 Calculations for Network Flow Diagram

Goal of below tables are to put all data on a per unit of product basis

Labor, Manufacturing, and Transportation Cost Calculations for Arcs

Labor (Cost per Unit Output and Total Supply Available)							
	C	ost per	Unit Output			Total Labor	TTL Product
Туре	ı	Person	per Person	Co	st / Unit	Avail	Supply
Specialist	\$	2,000	12	\$	166.67	100	1,200
Generalist	\$	1,700	10	\$	170.00	200	2,000

Cost of Transportation							
Scranton, PA Utica, NY Stamford, CT							
Per Person		300		250		275	
Per Unit of Product (trans. Cost / unit output by type)							
Specialist	\$	25.00	\$	20.83	\$	22.92	
Generalist	\$	30.00	\$	25.00	\$	27.50	

Cost of Transportation + Labor per Unit of Output						
	Scr	anton, PA	U	tica, NY	Star	mford, CT
Specialist	\$	191.67	\$	187.50	\$	189.58
Generalist	\$	200.00	\$	195.00	\$	197.50

Scranton, PA Utica, NY Stamford, CT (191.67,0,-) (187.50,0,-) (189.58,0,-) (200.00,0,-) (195.00,0,-) (197.50,0,-)

Plant Production Limits							
	Base	ОТ	OT Mult				
Scranton	505	100	1.5				
Utica	465	100	1.5				
Stamford	570	100	1.5				

Manufacturing and Transportation Costs							
	Manu	ıfacture		Goggle	Fac	eblock	
Scranton	\$	90	\$	8	\$	15	
Utica	\$	105	\$	14	\$	18	
Stamford	\$	115	\$	24	\$	20	

Man. + Trans Cost					
Go	ggle	Fac	eblock		
\$	98	\$	105		
\$	119	\$	123		
\$	139	\$	135		

4.2 Mathematical Formulation

4.2.1 Sets, Parameters, Decision Vars

Set Name	Description
NODES	Set of all nodes in above network flow diagram: Specialist, Generalist, ScranMult1x, UticaMult1x, StamMult1x, ScranMultOT, UticaMultOT, StamMultOT, dumPlant, Scranton, Utica, Stamford

The set A is a set of arcs, e.g. (i,j) for $i \in N, j \in N$ each of which may carry flow of a commodity

Decision variable: x_{ij} determines the units of flow on arc (i, j)

Arc(i,j)

- cost c_{ij} per unit of flow on arc (i, j)
- upper bound on flow of u_{ij} (capacity)
- lower bound on flow of ℓ_{ij} (usually 0)

4.2.2 Objective, and Constraints

$$\begin{aligned} & \text{minimize } \sum_{(i,j) \in A} c_{ij} x_{ij} \\ & \text{subject to } \sum_{j:(i,j) \in A} x_{ij} - \sum_{j:(j,i) \in A} x_{ji} = b_i \quad \forall i \in N \\ & l_{ij} \leq x_{ij} \leq u_{ij} \qquad \quad \forall (i,j) \in A \end{aligned}$$

4.3 Code and Output

4.3.1 Model: group12_HW2_p4.mod

- Used mcnfp.txt from course website and renamed to group12 HW2 p4.mod.
- Added data group12_HW2_p4.dat; solve; and display x;

4.3.2 Data: group12_HW2_p4.dat

```
set ARCS :=
                       (Specialist, *) ScranMult1x UticaMult1x StamMult1x
(Generalist, *) ScranMult1x UticaMult1x StamMult1x
(ScranMult1x, *) Scranton dumPlant
(UticaMult1x, *) Utica dumPlant
(StamMult1x, *) Stamford dumPlant
                   (Specialist, *) ScranMultOT UticaMultOT StamMultOT (Generalist, *) ScranMultOT UticaMultOT StamMultOT (ScranMultOT,*) Scranton dumPlant (UticaMultOT,*) Utica dumPlant (StamMultOT, *) Stamford dumPlant
                     # Plants to demanders and dumBus for un
(Scranton, *) Goggle Faceblock dumBus
(Utica, *) Goggle Faceblock dumBus
(Stamford, *) Goggle Faceblock dumBus
             # Transshippment (Plants or OT Multiplier)
ScranMult1x 0 # Not using OT
             UticaMult1x 0
              StamMult1x 0
              ScranMultOT 0 # Using OT
             UticaMultOT 0
             StamMultOT 0
              Scranton 0 # Plant Arrival
             Utica
              Stamford 0
```

Data Continued:

```
F group12_HW2_p4.mod M
                                  F group12_HW2_p4.dat M ●
              dumPlant
  58
              Goggle
                              -1000
              Faceblock
 61
              dumBus
                                                             1 u:=
              [Specialist, ScranMult1x] 191.67 . . # Supply -> Mult
             [Specialist, UticaMult1x] 187.5 . . . [Specialist, StamMult1x] 189.58 . . . [Generalist, ScranMult1x] 200 . . . [Generalist, UticaMult1x] 195 . . . [Generalist, StamMult1x] 197.5 . .
              [ScranMult1x, Scranton]
              [UticaMult1x, Utica]
              [StamMult1x, Stamford]
              [ScranMult1x, dumPlant]
              [UticaMult1x, dumPlant]
 79
              [StamMult1x, dumPlant]
              [Specialist, ScranMultOT] 191.67 . . # Supply -> Mult
[Specialist, UticaMultOT] 187.5 . .
[Specialist, StamMultOT] 189.58 . .
[Generalist, ScranMultOT] 200 . .
[Generalist, UticaMultOT] 195 . .
[Generalist, StamMultOT] 197.5 . .
              [UticaMultOT, Utica]
                                                    1.5
                                                                   100 # Mult -> Plant
              [ScranMultOT, Scranton]
              [StamMultOT, Stamford]
 91
              [ScranMultOT, dumPlant]
              [UticaMultOT, dumPlant]
 93
              [StamMultOT, dumPlant]
              [Scranton,
                             Goggle]
              [Scranton,
                              Faceblock]
 98
              [Scranton,
                              dumBus]
              [Utica,
                               Goggle]
                              Faceblock]
              [Utica,
101
              [Utica,
                              dumBus]
              [Stamford, Goggle]
              [Stamford,
                             Faceblock]
104
              [Stamford,
                             dumBus]
```

4.3.3 Output

Shows the Objective, as well the flow from Node i to Node j for all Arcs:

- Total minimized cost: \$806,192.95
- Each Column shows the source node and how much it sent to the destination node (which is shown for each row.)
- The values show the flow from source to destination (reference flow diagram for comparison)

```
ampl: model 'C:\Users\daniel.carpenter\OneDrive - the Chickasaw Nation\Documents\GitHu
CPLEX 20.1.0.0: optimal solution; objective 806192.95
13 dual simplex iterations (0 in phase I)
x [*,*] (tr)
# $1 = Generalist
# $2 = ScranMultor
   $3 = ScranMultOT
   $4 = Scranton
   $5 = Specialist
   $6 = StamMult1x
   $7 = StamMultOT
# $8 = Stamford
# $10 = UticaMult1x
# $11 = UticaMultOT
                                $2
                                                   $4
                                                            $5
                                                                     $6
                                                                                        $8
                       $1
                                          $3
                                                                              $7
                                                                                             Utica
                                                                                                          $10
                                                                                                                    $11 :=
Faceblock
                                                                                        430
                                                                                                170
Goggle
                                                   605
                                                                                          0
                                                                                                 395
                                                            505
ScranMult1x
                          0
                          Ō
ScranMult0T
                                                            100
                                505
                                          100
Scranton
StamMult1x
                                                            495
StamMult0T
                          0
                                                            100
Stamford
                                                                     570
                                                                              100
                                                                                                           465
                                                                                                                    100
Utica
                                                               0
UticaMult1x
                      1825
UticaMult0T
                       100
                                                               0
dumBus
                                                     0
                                                                                        240
                                                                                                   0
                                   0
                                            0
                                                                        0
                                                                                 0
                                                                                                                       0
dumPlant
                                                                                                          1360
```