

Plants Care Application

Graduation Project, Part-I (CS)

Computer Science Department

FCI LUXOR UNIVERSITY

Supervised By:

Dr. Mohmmed Atta

Submitted by:

- 1. Hany Abdou Saad
- 2. Mahmoud Ahmed Abdullah
- 3. Hazem Taha Basher
- 4. Moaz Wahed Ramadan
- 5. Mohmmed Ahmed Hashem
- 6. Hassan Nour Hassan

1.1 Abstract

The global food demand is expected to be increased sharply by 2100 in addition to the population size is predicted to be over 9 billion people, so human society needs to increase food production by an estimated 70% by 2050 to feed the expected population. On the other hand, Infectious diseases reduce the potential yield by an average of 40% which led to that many farmers in the developing world experiencing yield losses as high as 100%. Because of these problems, a farmer is usually using the normal solution, which is hiring agricultural engineers, to help him with these problems which are costly.

By the advancement of technology, we can make use of that by providing methods to help the farmers to get rid of these issues, such as using an application that can take a photo for a plant, and the application, in turn, presents you with the result of this plant is infected with a pest or disease, or it is healthy. This is our application, but it doesn't just do this process only, you can also ask about anything related to your plant by creating a post in the post area and get answers from other users who have a previous experience, finally, you can calculate the amount of required fertilizer to the agriculture land based on the type of plant and land area on different periods of plant growth.

Table of Contents

Content	Page			
Chapter 1: System Overview				
1.1 Abstract	2			
1.2 Key Words	6			
1.3 Introduction	7			
1.4 Background	9			
Chapter 2: Related Work				
2.1 Related Work	. 11			
Chapter 3: Domani Analysis and Technique				
3.1 Domain Analysis	. 19			
3.2 Risk/Constraints	. 21			
3.3 Project Plan				
3.4 Quality Assurance Plan				
3.5 System Requirements	25			
3.5.1 Functional Requirements	25			
3.5.2 Nonfunctional Requirements	. 26			
3.6 Techniques	. 27			
3.7 System Request	28			
Chapter 4: Proposed System and Methodology				
4.1 System Architecture				
4.2 System Use-Case	. 31			

4.3 Use Case Description (Use-Case Scenario)	3
4.4 Analysis Class	14
4.4.1 Context Diagram	14
4.4.2 State Diagram	14
4.4.3 level 0 diagram	15
4.5 Interaction Diagram (Sequence Diagram)	46
4.6 Design Class	17
4.6.1 Class Diagram	ŀ7
4.6.2 Domain Diagram	18
4.7 ER Diagram	19
4.8 Database Schema	50
4.9 Design Mockup (User Interface)	51
Chapter 5: Reference	
5.1 Reference	51

List of Figures

Content	Page
Figure 1. System architecture	30
Figure 2. Application/User Use case	31
Figure 3. Server use case	32
Figure 4. Context diagram	44
Figure 5. State diagram	44
Figure 6. Level 0 diagram	45
Figure 7. Sequence Diagram	46
Figure 8. Class diagram	47
Figure 9. Domain diagram	48
Figure 10. ER Diagram	49
Figure 11. Database Schema	50
Figure 12. Registration page	51
Figure 13. Login page	51
Figure 14. Profile page	52
Figure 15. Posts page	52
Figure 16. Model page	53
Figure 17. Fertilization Calculate page	53

1.2 Key Words

ML Model	A machine learning model is a file that has been
	3
	trained to recognize certain types of patterns.
	You train a model over a set of data, providing it
	an algorithm that it can use to reason over and
	learn from those data.
Classifier	Classifier is an algorithm that automatically orders or
	categorizes data into one or more of a set of
	"classes".
Fertilizer	They are the percentages that the application will
appropriate	give, which is a percentage of each fertilizer so that
	the farmer puts these percentages to get the best
	fertilizer without an increase or decrease in the
	amount of fertilizer.

1.3 Introduction

The global population has been expanding rapidly for many years, standing at around 7.3 billion in 2016, due to several factors, such as advanced maternity and healthcare so human society needs to increase food production by an estimated 70% by 2050 to feed an expected population. To feed a world population growing by up to 160 people per minute, with >90% of them in developing countries, will require an astonishing increase in food production. Unfortunately, Infectious diseases reduce the potential yield by an average of 40% with many farmers in the developing world experiencing yield losses as high as 100%. Plants act as an important resource for everyone in terms of food. If disease occurs, then it is very necessary to detect plant diseases in the early stage. There exist many models that help in detecting and classifying plant diseases. In recent days, Machine learning is a great way to detect diseases it gives the computers the ability to learn without being explicitly programmed. There exist many models in machine learning to detect plant diseases. Some of them are K-means, KNN for classifying the leaves are healthy or diseased. Later, there is advancement in the field of machine learning which results in the evolution of deep learning. Deep learning algorithms are learning the features from input images during the training stage and exhibit results with suitable metrics. The working of deep learning is as follows in deep learning the information is passed through some layers. The output of the previous layer is given as input to the next layer. It passes the learned features from one layer to the next layers using activation functions till the output layer produces the desired outcomes. This idea can be extended for plant disease detection systems to manage and monitor wirelessly in largescale agriculture production with the use of drones for surveillance, the use

of sensors for managing the quantity of water, as well as fertilizers and light necessary for a qualitative production outcome. For this issue using our app, you can take a photo of the plant and by- processing, if the plant is infected, or not if it is then showing the type of disease and methods of organic and chemical treatment.

In addition, you can create a post according to the category you have chosen (plant type) or others. Asking for help or posting some information.

Finally, the calculator part of the amount of fertilizer you use is based on the nature of the plant and the area of the cultivated land. Plus, the best fertilization plan you can use.

1.4 Background

The ratio of food demand overproduction is the main factor affecting the level of food security. The global population has been expanding rapidly for many years, standing at around 7.3 billion in 2016, due to many factors, such as advanced maternity and healthcare. However, the rise brings with it several challenges around global sustainability, including the need for more food. Agriculture contributes to 6.4% of the entire world's economic production. In at least nine countries of the world, agriculture is the dominant sector of the economy.

Agriculture not only provides the fuel for billions of people but also employment opportunities for many people. The agricultural industries are seeking innovative approaches for improving crop yielding because of unpredictable climatic changes, the rapid increase in population growth, and food security concerns. Thus, artificial intelligence in agriculture also called "Agriculture Intelligence" is progressively emerging as a part of the industry's technological revolution.

The spread of agricultural diseases that destroy all agricultural crops and lack of arable land are the most problem which faces our planet, today's so we try by our project to use modern solutions using internet and technologies to beat these problems and increasing the productivity of the crops and trying to help farmers and providing them with the necessary experience to identify diseases before they occur and giving them suggestions to ensure the best productivity.

ML-driven image processing allows farmers to rely upon digital tools to recognize weed species and to determine which crops are healthy and which ones are infested with disease caused by fungi, bacteria, or viruses We focus on using machine learning algorithms and computer vision to build models which have the ability to detect diseases and give users the best solution to its problem and try also to connect experienced agricultural engineers with simple farmers which helps to decrease time and cost to anyone who needs the advice by posting any questions, these posts appear to any user by its interesting and he can interact with these posts, save them if want.

2.1 Related Work

Through the application of artificial intelligence (AI) and machine learning (ML), growers can access increasingly sophisticated data and analytics tools, which enables better decisions, improved efficiencies, and reduced waste in food, all while minimizing negative environmental consequences.

Name	Authors	Year	Abstract
An Improved	-Anjanadevi		In this paper, we have focused on
Deep Learning	Bondalapati		plant data images in agricultural
model for plant			field. Agriculture is one of major
disease detection			living source in India. To increase the
			yield by preventing diseases and
			detection of diseases place major role
			in agriculture domain. By using
			Improved and customized DCNN
		March	model (improved-detect), We trained
		2020	plant Doc and plant village datasets.
			Mainly we used Tomato, Corn and
			potato plant for model training and
			testing. we have experimented on
			plant image data set tomato leaves
			both healthy and diseased ones.
			Experimental results are compared
			with state of the architectures like
			Mobile Net, Dark Net-19, ResNet
			and proposed model in location and
			detection of plant diseases.

Г	1	T	_
Using Deep	-Sharada		Using a public dataset of 54,306
Learning for	Prasanna		images of diseased and healthy plant
Image-Based	Mohanty.		leaves collected under controlled
Plant Disease	-David Peter		conditions, we train a deep
Detection	Hughes.		convolutional neural network to
Bettethen	-Marcel Salathe		identify 14 crop species and 26
			diseases (or absence thereof). The
			trained model achieves an accuracy
			of 99.35% on a held-out test set,
			demonstrating the feasibility of this
		April 15	approach. When testing the model on
		2016	a set of images collected from trusted
			online sources - i.e., taken under
			conditions different from the images
			used for training the model still
			achieves an accuracy of 31.4%.
			While this accuracy is much higher
			than the one based on random
			selection (2.6%), a more diverse set
			of training data is needed to improve
			the general accuracy.

Plant Disease	-Mohamet Faye.		The combination of high-end smart-
Detection with	-Chen Bingcai.		phones and computer vision via Deep
Deep Learning	-Kane Amath		Learning has made possible what can
and Feature	Sada		be defined as "smartphone-assisted
Extraction Using			disease diagnosis". In the area of
Plant Village			Deep Learning, multiple architecture
			models have been trained, some
			achieving performance reaching
		January	more than 99.53%. In this study, we
		2020	evaluate CNN's architectures
			applying transfer learning and deep
			feature extraction. All the features
			obtained will also be classified by
			SVM and KNN. Our work is feasible
			using the open-source Plant Village
			Data set. The result obtained shows
			that SVM is the best classifier for
			leaf disease detection.

Plant Disease	-Shima Ramesh		we make use of Random Forest in
Detection Using	Maniyath.		identifying between healthy and
Machine Learning	-Vinod P V		diseased leaf from the data sets
			created. Our proposed paper includes
			various phases of implementation
			namely dataset creation, feature
			extraction, training the classifier and
			classification. The created datasets of
		April 2018	diseased and healthy leaves are
			collectively trained under Random
			Forest to classify the diseased and
			healthy images. For extracting
			features of an image, we use
			Histogram of an Oriented Gradient
			(HOG). Overall, using machine
			learning to train the large data sets
			available publicly gives us a clear
			way to detect the disease present in
			plants in a colossal scale

Plant Disease	-P. Prathusha.		Machine learning is a trending area
Detection Using	-K. E. Srinivasa		where the technological benefits can
Machine Learning	-K. Srinivas		be imparted to the agriculture field
Algorithms			also. It is rather inexpensive to detect
Mgontiniis			the diseases in plants using machine
			learning techniques rather than using
			chemical pesticides. This paper
		July 2020	makes a review on the existing
			techniques and suggests the best
			technique which can be implemented
			by farmers to recognize the disease
			faster and which proves to be
			economical to them. In this work we
			use KNN algorithm which is one of
			the best machine learning
			algorithms.
Plant Disease	-Aravindhan		we present a Deep Learning approach
Detection and	Venkataramanan.		to detect and classify plant diseases
Classification	-Pooja Agarwal		by examining the leaf of a given
Using Deep	-Pooja Agaiwai		plant. The classification is performed
Neural Networks			in multiple stages to eliminate
			possibilities at every stage, hence
			providing better accuracy during
		August	predictions. A YOLOv3 object
		2019	detector is used to extract a leaf from
			the input image. The extracted leaf is
			analysed through a series of
			ResNet18 models. These ResNet18
			models were trained using transfer
			learning. One layer identifies the type
			of leaf and the following layer checks
			for the possible diseases that could
			occur in the plant.

Plant disease	G.Saradhambl.		We propose an enhanced k-mean
detection and its	R. Dhivya.		clustering algorithm to predict the
solution using	S. Latha.		infected area of the leaves. A colour-
image	R. Rajesh.		based segmentation model is defined
classification			to segment the infected region and
			placing it to its relevant classes.
			Experimental analyses were done on
			samples images in terms of time
		January	complexity and the area of infected
		2018	region. Our project is used to detect
			the plant diseases and provide
			solutions to recover from the disease.
			It shows the affected part of the leaf
			in percentage. We planned to design
			our project with voice navigation
			system, so a person with lesser
			expertise in software should also be
			able to use it easily.

		T	
Image-Based	-Rehanullah		The technology used in medical
Detection of Plant	Khan.		procedures has not been adequate to
Diseases: From	-Khalil Khan.		detect all diseases on time, and that is
Classical Machine	-Waleed		why some diseases turn out to
Learning to Deep	Albattah.		become pandemics because they are
Learning Journey	-Ali Mustafa		hard to detect on time. Our focus is to
Bearing vouriey	Qamar		clarify the details about the diseases
			and how to detect them promptly
			with artificial intelligence. We
			discuss the use of machine learning
		June 2021	and deep learning to detect diseases
			in plants automatically. Our study
			also focuses on how machine
			learning methods have been moved
			from conventional machine learning
			to deep learning in the last five years.
			Furthermore, different data sets
			related to plant diseases are discussed
			in detail. The challenges and
			problems associated with the existing
			systems are also presented.
			systems are also presented.

Deep learning	-Konstantinos		convolutional neural network models
models for plant	Ferentinos		were developed to perform plant
disease detection			disease detection and diagnosis using
and diagnosis			simple leaves images of healthy and
and diagnosis			diseased plants, through deep
			learning methodologies. Training of
			the models was performed with the
			use of an open database of 87,848
		February	images, containing 25 different plants
		2018	in a set of 58 distinct classes of
			[plant, disease] combinations,
			including healthy plants. Several
			model architectures were trained,
			with the best performance reaching a
			99.53% success rate in identifying
			the corresponding [plant, disease]
			combination (or healthy plant).

3.1 Domain Analysis

The widespread distribution of smartphones among crop growers around the world with an expected 5 billion smartphones by 2020 offers the potential of turning the smartphone into a valuable tool for diverse communities growing food. One potential application is the development of mobile disease diagnostics through machine learning and crowdsourcing.

The main issue: is trying to help farmers know the type of pests that affect their crops, in addition to knowing the appropriate treatment for this pest as soon as possible. Some new farmers also suffer from lack of experience in some agricultural matters, so they need someone to exchange experience within order to have the best crop. It can be obtained in these conditions and using the appropriate tools and equipment available, present an experienced community where people can help each other in the faced problems.

Identification of the pest: The farmer will be able to take a picture with his smart phone of the leaf of the plant that he wants to know the type of pest infecting it. And then he uploads this image to the application on his phone so that the application analyzes the image and gives him the results of its analysis of the image and gives him the best solutions and suggestions to treat this scourge.

Applying Machine learning algorithms and classifiers, they showed promising results in image classification and decision-making to assist growers in their diagnosis, which will serve as a boost in improving plant care services through effective image analysis of symptoms (pests) suffered by the plant.

Helping others/asking for help: Any farmer or anyone who wants opinion or even advice on his plant or anything related to the plant he is interested in can ask a general question to all present or users of the application and one of them will respond to him, which increases him with general information, or it saves him the trouble of searching in vain.

Fertilization: Calculating the appropriate amount of fertilizer for the cultivated land; some plants suffer from a lack or increase in the percentage of fertilizer used, so the application will provide the correct standards that you can use in the cultivated land area to obtain the best fertilization.

3.2 Risks and Constrains

> Risks

Risk	Strategy	Priority
User may not know	Show electronic	High
how to use the	pictures to how use	
application	the application at	
	the first use.	
Malfunction with the	Hosting the	High
servers that host the	database and the	
database, the posts, and	several servers.	
users' information		
User may scan an	We told him that	Low
untrained picture or	can't recognize this	
unclear one to the	disease.	
application		
Malfunction with the	Hosting the model	High
server or the API	and the API on	
hosting the Machine	several servers.	
Learning Model		
Internet for signed user	We will show him	High
may be failed	the saved posts and	
	details about	
	pictures he scanned	
	them before.	

> Constrains

- The application should provide friendly and easy interface with not many icons and images to help people who don't know use the app directly.
- User should scan objects clearly as possible
- User should have internet to deal with all application features.
- User should have the application on his device
- Maintenance of an end-to-end encryption mechanism for providing confidentiality is a must.

3.3 Project Plan

phase	Oct	Nov	Dec	Jan	Feb	Mar	Apr	May	Jun
Gathering Information									
Define Requirements									
analysis									
design									
implementation									
Develop ML Model System									
Testing and Final Discussion									

3.4 Quality Assurance Plan

Black box: In this stage we use test dataset as input to our ML model to ensure the accuracy of output of the system.

White box:

Unity Testing: - In this stage of testing, we will take every component of our system such as web service, machine learning model, android application to test them separately.

Integration Testing: - In this stage of testing, we will take every component of our system such as web service, machine learning model, android application to test them separately.

Validation Testing: - Validation testing is the process of ensuring if the tested and developed application satisfies its functionality requirements. The business requirement logic or scenarios must be tested in detail. All the critical functionalities of an application must be tested here.

Alpha: - In this part, a group of testers in our team test the product in a laboratory environment to ensure efficiency of product and fix errors.

Beta: - At this stage we will test the application on real users, farmers and people who have some plants at home, retrieve feedback to our team.

3.5 System Requirements

3.5.1 Functional requirements

- 1- A user interface that enables users create accounts, add their information, the planets they are interested and the location of the users.
- 2- Verification email is sent to user whenever he/she registers for the first time on some software system.
- 3- The application allows user to enter password and username to login to app.
- 4- Authentication of a user when he/she tries to log into the system.
- 5- The application must store all Users' data
- 6- The application shows to the user all posts of plants in which he is interested.
- 7- Machine learning model to allow user to capture / upload the plant image for plant type detection and classification. The model is also used for plant examination from pests and diseases, if plant is diseased, it returns details about this disease and recommends Treatments.
- 8- A Server stores users' data and Machine Learning Models.
- 9- The user enters the plant type and agricultural area, and the application outputs the best time plan and quantity of fertilizer to grow well.

3.5.2 Nonfunctional requirements

- 1- Emails should be sent with a latency of no greater than 12 hours.
- 2- The application shows the post by the order of the tag plants and the location of the users.
- 3- User can search for posts with plant tag.

Performance requirement

• The application must respond any operation in less than 4 seconds.

Safety and security requirements

• The application must not affect, harm, or damage users and their mobiles.

Availability

• The application must be available within 24 hours every day.

Usability

• The application allows to users interact with the application to achieve required goals effectively and efficiently.

3.6 Techniques

ML Model: Applying Machine learning algorithms and classifiers, they showed promising results in image classification and decision making to assist growers in their diagnosis, which will serve as a boost in improving plant care services through effective image analysis of symptoms (pests) suffered by the plant.

Application components:

- **❖ Login page:** This page has the username and password, and it also has a button for the registration page if the user is not registered.
- ❖ **Registration page:** A page that enables the user to register, to be able to use the application.
- ❖ Plant Fertilization Page: Every plant has certain conditions in its composting, and that's why fertilizing a plant is different from the other and that the app will provide you that you know the appropriate amounts of fertilizer in relation to the area of the land for each plant.

Posts Page:

- each user will be able to view other people's questions, advice, and responses to them, according to the latest date of the user interested plants, so that you can find environmental content that is close to him in the environment, climate, plants, and crops that you are related to, so that it will be more useful to you.
- He can also create a question (post) or inquiry that will appear to all users of the application; If you want to search for specific questions or inquiries related to a particular plant, you can search by the plant tag that will be available in any question or consultation.
- Anyone can interact with the post and comment on it.

3.7 System Request

The application helps framers to improve the quality of the plants by providing them good care, fertilizer and tips. It also helps farmers specially who grow a small area of the land or who grow certain plants at home to save money from consulting agricultural engineers, which makes it a good saver of money for those who do not have the financial ability to consult. The application is also a time saver, because it contributes to obtaining consultations quickly through the interaction of specialists on the post. This makes the application very important in critical times for plants that need quick consultations before they die.

> Functionality

- 1- The Ability to Examinate plants and recommend a treatment for free.
- 2- The speed of obtaining the plants diseases.
- 3- The ability to generate full reports about plant diseases and treatments.
- 4- The ability to share benefits by other users.
- 5- The ability to get best time plan and best fertilizer for the plant to get a good yield.

> Expected Value

- 1- Less-cost plants examinations process.
- 2- Lost cost plant cultivation plan.
- 3- More organized posts about benefits of plants.
- 4- Ease-to-use application and friendly User-interfaces.
- 5- Increase productivity.
- 6- Customer-satisfaction.

4.1 System Architecture

Figure 1. System architecture

- The main connection point is the Web Service (API) that connects all the system components.
- The user can make a post or can view the posts by sending a request to the API to make/view posts from/to the database server.
- User can upload the plant IMG to the API and the ML model will retrieve the treatment and the plant pest type.
- User can send the plant type and the cultivated area to the API, and it will retrieve the required fertilizer percentage.

4.2 System Use-Case

4.2.1 Application/User Use case

Figure 2. Application/User Use case

4.2.2 Server Use case

Figure 3. Server use case

4.3 Use Case Description

Use Case ID:	PlantsCare-ML01	
Use Case Name:	Preprocessing the photo and Extract features	
Area:	Server	
Actor:	ML	
Description:	Extract the features from received photo	
Preconditions:	A valid photo	
Postconditions:	ML module has successfully extracted features from	
	received photo	
Triggering Event:	API send a photo	
Main Flow:	Receive the photo from API	
	2. Preprocess the photo	
	3. Extract the features from the photo	
	4. Return the result of the health status of the plant	
Alternative Flow:	If user upload invalid photo, warning message should	
	appear to the user to reupload the data.	
	If the plant not included with our plants, warning	
	message should appear to the user that app couldn't	
	check the data.	

Use Case ID:	PlantsCare-Fertilizer_Calc01	
Use Case Name:	Calculate the amount of fertilizer.	
Area:	Server	
Actor:	Fertilizer Calculator	
Description:	Getting the land area and the plant then type return the	
	amount of fertilizer	
Preconditions:	There are no preconditions.	
Postconditions:	Return the amount of the fertilizer.	
Triggering Event:	API send the land area and plant type to Fertilizer	
	Calculator.	
Main Flow:	1. Received the land area.	
	2. Received the plant type.	
	3. Calculate the fertilizer amount.	
	4. Return the amount of the fertilizer amount.	
Alternative Flow:	If the land area not valid number, a warning message	
	should appear to the user.	

Use Case ID:	PlantsCare-API01
Use Case Name:	Return the result and save posts.
Area:	Server
Actor:	API
Description:	API save user posts and return the result diseases,
	Fertilizer quantity.
Preconditions:	There are no preconditions.
Postconditions:	API return the result of plant status.
Triggering Event:	Received a photo and plant type or land area.
Main Flow:	Users take or upload a plant photo.
	API send a photo to ML module.
	Users enter land area and plant type.
	API send land area to Fertilizer Calculator
Alternative Flow:	If the land area not valid number, a warning message
	should appear to the user.
	If user upload invalid photo, warning message should
	appear to the user to reupload the data.

* Register

Use Case ID:	PlantsCare-User001
Use Case Name:	Register
Area:	Application
Actor:	User
Description:	User creates an account
Preconditions:	User needs to download the application
	User needs an internet access
Post conditions:	User has successfully created an account
Triggering Event:	User clicks "Register" button.
Main Flow:	1. Open the application
	2. User enters his data
	3. Users submit his data to system
	4. The system validates the user data
	5. The system sends a verification mail to the user
Additional info for	Step 2: data is name, username, password, email.
steps:	
Alternative Flow:	-if user enter non-valid data, an error message should
	appear to him.

& Login

Use Case ID:	PlantsCare-User002
Use Case Name:	Login
Area:	Application
Actor:	User
Description:	User login to the application using it's account
Preconditions:	User must download the application
	User must an internet access
	User must have an account
Post conditions:	User has successfully logged into the application
	The system displays the main page of application
Triggering Event:	User clicks "Login" button.
Main Flow:	1. Open the application
	2. User enters his data
	3. Users submit his data to system
	4. The system validates the user data
Additional info for	Step 2: data is username and password.
steps:	
Alternative Flow:	If user enter non-valid data, an error message should
	appear to him.

***** Edit interested plants

Use Case ID:	PlantsCare-User003
Use Case Name:	Edit interested plants
Area:	Application
Actor:	User
Description:	Users edit the pre-selected interested plants.
Preconditions:	User must download the application
	User must an internet access
	User must have an account
	User must login to the application
Post conditions:	Application updates the selected interested plants
	to the user.
Triggering Event:	Users click "Update" button.
Main Flow:	User login to the application
	Users select the items
	Users submit the items
	The application validates the items
	The system updates the selected items
Additional info for	Step 2, 3, 4, and 5: items are interested plants.
steps:	
Alternative Flow:	If user doesn't select any item, an error message will be
	appeared.

Publish a post

Use Case ID:	PlantsCare-User004
Use Case Name:	Publish a post
Area:	Application
Actor:	User
Description:	Users publish a post in the community area to get help in
	specific plant.
Preconditions:	User must download the application
	User must an internet access
	User must have an account
	User must login to the application
Post conditions:	Application will make the post available to all users of
Post conditions:	the application
Triggering Event:	Users click "Post" button.
Main Flow	1. User login to the application
	2. Users choose plant type
	3. Users submit the post
	4. The system validates the post
Alternative Flow:	If user doesn't choose a plant type or doesn't write any
	text in the post, an error message will be appeared.

Capture/Upload plant image

Use Case ID:	PlantsCare-User005
Use Case Name:	Capture/Upload plant image
Area:	Application
Actor:	User
Description:	User upload or take an image of plant to see if it has a
	disease or pest.
Preconditions:	User must download the application
	User must an internet access
	User must have an account
	User must login to the application
Post conditions:	The User will have a paragraph shows the result.
Triggering Event:	Users click "Take Photo" button.
Main Flow	1. User login to the application
	2. User upload or take a photo
	5. Users submit the photo
	6. The system validates the photo
	7. The photo is sent to the API.
Alternative Flow:	If user doesn't upload a plant image the application will
	display an error message.

Calculate required Fertilizer

Description:	User wants to know the amount of fertilizer suitable to
	his land area.
Preconditions:	User must download the application
	User must an internet access
	User must have an account
	User must login to the application
Post conditions:	User will have the required amount of fertilizer.
Triggering Event:	Users click "Calculate" button.
Main Flow	1. User login to the application
	2. Users enter data
	3. Users submit the data
	4. The system validates the data
	5. The data is sent to the API.
Additional info for	Step 2, 3, 4, and 5: data is the plant type and the land
steps:	area.
Alternative Flow:	If user enters invalid data, an error message will be
	appeared.

***** Manage Profile information

Use Case ID:	PlantsCare-User007
Use Case Name:	User Information
Area:	Application
Actor:	User
Description:	Manage Profile Info
Preconditions:	User must have an account on the application
	User must be logged into the application
	successfully.
Post conditions:	User has successfully logged to his/her account
Triggering Event:	User clicks "Update profile data" button.
Main Flow:	1. Open the application
	2. User enters his data
	3. Users submit his data and photo to the system
	4. The system validates the user data
Additional info for steps:	Step 2: data is name, profile image, password.
Alternative Flow:	If user enter non-valid data, an error message should
	appear to him.
	Ex: If the user uploads a file in the place designated for
	uploading a profile photo.

! Interaction With a post

Use Case ID:	PlantsCare-User008
Use Case Name:	Posts actions
Area:	Application
Actor:	User
Description:	Interaction with a post
Preconditions:	User must have an account on the application
	• User must be logged into the application successfully.
Post conditions:	User has successfully logged to his/her account
Triggering Event:	User clicks "react" icon.
Main Flow:	5. Open the application
	6. User enters his data
	7. Users submit his data and photo to the system
	8. The system validates the user data
Additional info for steps:	User can react on any post. Step 2:

4.4 Analysis Class

4.4.1 Context Diagram

Figure 4. Context diagram

4.4.2 State Diagram Required fertilization percentage Visual Paradigm Online Free Edition enterThe cultivated area and Plant type ertilizer Page Open fertilizer page Open profile page Have an account Open post page Open ML Model Page Register Create post, comment or react -Registered ML Modell Page Enter Plant type and upload plant image ML Model Process

Figure 5. State diagram

The plant is infected with a pest

Visual Paradigm Online Free Edition

The plant is not infected with a pest

4.4.3 Level 0 Diagram

Level Zero Daigram

Figure 6. Level 0 diagram

4.5 Interaction Diagram (Sequence Diagram)

Interaction Diagram (Sequence Diagram)

Figure 7. Sequence Diagram

4.6 Design Class

4.6.1 Class Diagram

Figure 8. Class diagram

4.6.2 Domain Diagram

Figure 9. Domain diagram

4.7 ER Diagram

Figure 10. ER Diagram

4.8 Database Schema

Figure 11. Database Schema

4.9 Design Mockup

Figure 12. Registration page

Figure 13. Login page

Figure 14. profile page

Figure 15. Posts page

Figure 16. Model page

Figure 17. Fertilization Calculate page

5.1 References

- ➤ https://www.researchgate.net/publication/342601699_An_Improved_ Deep_Learning_model_for_plant_disease_detection
- https://www.researchgate.net/publication/301879540_Using_Deep_L earning_for_Image-Based_Plant_Disease_Detection
- https://www.researchgate.net/publication/342234677_Plant_Disease _Detection_with_Deep_Learning_and_Feature_Extraction_Using_Pl ant_Village
- https://www.researchgate.net/publication/327065422_Plant_Disease _Detection_Using_Machine_Learning
- https://www.researchgate.net/publication/342710656_Plant_Disease _Detection_Using_Machine_Learning_Algorithms
- https://www.researchgate.net/publication/337858290_Plant_Disease _Detection_and_Classification_Using_Deep_Neural_Networks
- https://www.researchgate.net/publication/325580687_Plant_disease_detection_and_its_solution_using_image_classification
- ➤ https://www.researchgate.net/publication/352108134_Image-Based_Detection_of_Plant_Diseases_From_Classical_Machine_Lear ning_to_Deep_Learning_Journey
- https://www.researchgate.net/publication/322941653_Deep_learning _models_for_plant_disease_detection_and_diagnosis