Student Name: Mohammad Mohammad Beigi

Student ID: 99102189

Subject: Reinforcement Learning

Advanced Topics in Neuroscience - Dr. Ali Ghazizadeh Assignment 6

Learning the Water Maze:

As an example of generalized reinforcement learning, we consider the water maze task. This is a navigation problem in which rats are placed in a large pool of milky water and have to swim around until they find a small platform that is submerged slightly below the surface of the water. The opaqueness of the water prevents them from seeing the platform directly, and their natural aversion to water (although they are competent swimmers) motivates them to find the platform. After several trials, the rats learn the location of the platform and swim directly to it when placed in the water. We are going to simulate a simple model of navigation problem.

1. Plot the paths before and after training.(assign demo files (video format))

The video format demo is in zip file. In the figures below rat's path has been plotted in several trials:

2. Plot the gradients and contour plot of the learned values.

3. What is the effect of the learning rate (α) and discount factor (γ) in this problem?

We should consider a criterion for the minimum number of iterations needed for reaching the optimal paths. Our criterion is that mean of number of actions of the last 40 iteration should get to less than 14.(14 is chosen by the fact that reward cell is located in [5, 5] and somehow a mean number of actions for the best possible path has been calculated).

				minimum n	umber of itera	tions needed 1	for reaching th	ne optimal patl	hs heat map				_	_
0.2	820	607	390	493	478	404	446	363	385	404	334	296		- 8
0.25	515	308	556	444	327	369	467	308	317	271	233	315		
0.3	542	434	321	246	276	337	277	235	292	253	273	196		
0.35	322	437	410	317	409	221	258	252	264	284	253	255		- 7
0.4	349	325	245	251	253	339	199	259	228	236	185	204		
0.45	359	380	311	175	227	254	248	161	208	205	183	222		- 60
0.5	345	367	226	240	208	215	227	208	194	191	170	186		, ,
0.55	351	233	295	222	200	245	209	177	252	201	154	178		
9.0 age	219	157	201	235	227	196	155	231	167	146	160	196		- 50
0.65 0.7	308	219	283	231	227	202	171	216	206	189	135	227		
0.7	186	240	144	258	190	180	168	164	152	208	155	178		
0.75	172	223	227	179	202	210	126	146	167	223	122	157		- 40
0.8	234	198	184	221	164	157	161	191	184	208	144	211		
0.85	205	199	180	215	142	189	171	211	162	137	138	172		- 3
0.9	173	154	176	149	167	173	158	136	162	165	156	151		- 3
0.95	113	117	152	139	181	147	167	162	152	124	151	120		
1	174	136	122	128	172	156	171	128	134	152	129	155		- 2
1.05	189	182	147	186	169	117	118	116	133	121	123	115		
1.1	189	147	196	149	153	152	217	152	124	130	133	147		
	0.5	0.55	0.6	0.65	0.7	0.75	0.8	0.85	0.9	0.95	1	1.05		_

discount factor

The learning rate (α) controls how much the Q-value of a state-action pair is updated based on the observed reward. If the learning rate is too high, the algorithm will respond more rapidly to changes in the environment, but may also oscillate or diverge. On the other hand, if the learning rate is too low, the algorithm will take a longer time to converge, which may be acceptable in some cases, but may not be desirable in time-sensitive or critical applications.

The discount factor (γ) controls how much importance is placed on future rewards versus immediate rewards. A high discount factor values future rewards more, meaning that the agent will be more forward-looking and focus on actions that lead to higher cumulative rewards over time, whereas low

discount factor values immediate rewards more, potentially leading to more myopic policies.

A larger value of the discount factor generally encourages the agent to take longer-term actions that lead to greater rewards. However, setting the discount factor too high can lead to slow learning and convergence issues. Conversely, a smaller value of the discount factor may lead to more short-sighted actions, reducing the overall performance of the algorithm.

In summary, adjusting the values of the learning rate and discount factor can significantly impact the performance of Q-learning. The optimal values of these parameters may depend on the specific problem and dataset. Therefore, it is important to choose appropriate values for these hyperparameters through experimentation and iterative tuning. In general, decreasing and over time or using adaptive learning rates can help improve the convergence rate of Q-learning and lead to better performance.

learning rate = 0.8:

4. Consider two target squares with different positive values; what is the effect of and in the learning procedure?

We plot gradients and contour plot of the learned values per different amounts of α and γ :

The learning rate controls the adjustment of Q-values based on the observed rewards. Since there are two target cells with different rewards, the learning rate can affect how the agent learns the relative value of each target. A high learning rate can skew the agent towards prioritizing the target with the highest reward, while a low learning rate can increase the exploration and help the agent learn the values of both targets more equally.

The discount factor γ , on the other hand, balances the importance of immediate rewards versus future rewards. When there are two target cells with different rewards, a high discount factor may prioritize the target with the highest long-term reward, while a low discount factor may put more emphasis on the immediate reward. However, the optimal value of γ depends on the rewards' difference between the two targets as a high γ can undermine the importance of low-reward targets, leading to sub-optimal policies.

As you see in the figures, the lower discount factor has caused not to find optimal path when the

rat is not near the targets (Somehow higher learning rate can compensate this issue). On the other hand lower learning rate has caused to learn the water maze more accurate and based on relative values of targets and cat.

5. Implement $TD(\lambda)$ algorithm and compare with previous section.

As you see in the following figure, approximately there is no difference between the final results of values when we have different λ s.

So we check the effect of lambda in number of trials needed to find optimal path(the criterion is that we used in part 3 of this homework).

 $TD(\lambda)$ is used to speed up the learning procedure.

When λ is set high in $TD(\lambda)$, it means that the eligibility trace will assign more weight to the past TD errors and less weight to the current TD error. This has the effect of making the learning more biased towards long-term estimates, which means that the agent is more likely to consider future rewards when making its decisions. As a result, the agent may be more willing to explore new actions and take a longer time before converging to a policy that maximizes the expected reward.

On the other hand, when λ is set low, the eligibility trace will assign more weight to the current TD error and less weight to the past TD errors. This leads to a more myopic learning approach, where the agent focuses more on short-term estimates of the expected reward, rather than considering future rewards. In this case, the agent may converge to a policy that maximizes the short-term reward faster, but with a higher risk of missing out on potentially larger rewards in the future.