

Estymatory

Statystyka i analiza danych 2017/2018

Jurek Błaszczyński 25 marca 2018

Estymator

Estymator $\hat{\theta}$ parametru θ to funkcja próby $\hat{\theta} = \hat{\theta}(X_1, \dots, X_n)$, która szacuje nieznaną wartość parametru rozkładu θ .

Estymator $\hat{\theta}$ jest więc (jako funkcja próby) **zmienną losową**.

Oznacza to, że ma swój rozkład, wartość oczekiwaną, wariancję, itp. (jak każda zmienna losowa).

θ nie jest zmienną losową.

Jest parametrem (nieznanym), który chcemy oszacować (estymować).

Estymator $\hat{\theta}$ parametru θ jest **nieobciążony**, jeśli

$$\mathbb{E}[\hat{\theta}] = \theta,$$

czyli obciążenie $\theta - \mathbb{E}[\hat{\theta}]$ jest równe 0.

Przykład 1

Pokażmy, że estymator $\hat{\mu}=\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ wartości oczekiwanej μ jest nieobciążony.

Przykład 1

Pokażmy, że estymator $\hat{\mu}=\overline{X}=\frac{1}{n}\sum_{i=1}^n X_i$ wartości oczekiwanej μ jest nieobciążony.

$$\mathbb{E}[\overline{X}] = \mathbb{E}\left[\frac{1}{n}\sum_{i=1}^{n}X_{i}\right] = \frac{1}{n}\sum_{i=1}^{n}\mathbb{E}[X_{i}] = \mu.$$

Przykład 2

Pokażmy, że estymator $\hat{\sigma}^2=S_n^2=\frac{1}{n}\sum_{i=1}^n(X_i-\overline{X})^2$ wariancji σ^2 jest obciążony.

Przykład 2

Pokażmy, że estymator $\hat{\sigma}^2 = S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest obciążony.

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2 - \overline{X}^2$$
 (1)

Przykład 2

Pokażmy, że estymator $\hat{\sigma}^2 = S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest obciążony.

$$S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = \left(\frac{1}{n} \sum_{i=1}^n X_i\right)^2 - \overline{X}^2$$
 (1)

$$\mathbb{E}[S_n^2] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i^2] - \mathbb{E}[\overline{X}^2] =$$
 (2)

$$= \frac{1}{n} n \mathbb{E}[X^2] - \mathbb{E}[\overline{X}^2] = \mathbb{E}[X^2] - \mathbb{E}[\overline{X}^2]$$
 (3)

Przykład 2

Pokażmy, że estymator $\hat{\sigma}^2 = S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest obciążony.

$$\mathbb{E}[S_n^2] = \frac{1}{n} \sum_{i=1}^n \mathbb{E}[X_i^2] - \mathbb{E}[\overline{X}^2] = \tag{4}$$

$$= \frac{1}{n} n \mathbb{E}[X^2] - \mathbb{E}[\overline{X}^2] = \mathbb{E}[X^2] - \mathbb{E}[\overline{X}^2]$$
 (5)

ponieważ $Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

$$\mathbb{E}[S_n^2] = Var(X) + (\mathbb{E}[X])^2 - Var(\overline{X}) - (\mathbb{E}[\overline{X}])^2$$
 (6)

Przykład 2

Pokażmy, że estymator $\hat{\sigma}^2 = S_n^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest obciążony.

$$\mathbb{E}[S_n^2] = Var(X) + (\mathbb{E}[X])^2 - Var(\overline{X}) - (\mathbb{E}[\overline{X}])^2 =$$
 (7)

$$= \sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 =$$
 (8)

$$=\sigma^2 - \frac{\sigma^2}{n} = \frac{n-1}{n}\sigma^2 \tag{9}$$

Przykład 3

Pokażmy, że estymator $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest nieobciążony.

Przykład 3

Pokażmy, że estymator $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest nieobciążony.

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \overline{X}^2$$
 (10)

Przykład 3

Pokażmy, że estymator $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest nieobciążony.

$$S_n^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2 = \frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \overline{X}^2$$
 (10)

$$\mathbb{E}[S_n^2] = \mathbb{E}\Big[\frac{1}{n-1} \sum_{i=1}^n X_i^2 - \frac{n}{n-1} \overline{X}^2\Big] = \tag{11}$$

$$=\frac{1}{n-1}\Big(\sum_{i=1}^{n}\mathbb{E}[X_{i}^{2}]-n\mathbb{E}[\overline{X}^{2}]\Big)=\tag{12}$$

$$= \frac{1}{n-1} \left(n \mathbb{E}[X_i^2] - n \mathbb{E}[\overline{X}^2] \right) \tag{13}$$

Przykład 3

Pokażmy, że estymator $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest nieobciążony.

$$\mathbb{E}[S_n^2] = \frac{1}{n-1} \left(n \mathbb{E}[X_i^2] - n \mathbb{E}[\overline{X}^2] \right)$$
 (14)

ponieważ $Var(X) = \mathbb{E}[X^2] - (\mathbb{E}[X])^2$

$$\mathbb{E}[S_n^2] = \frac{n}{n-1} \left(Var(X) + (\mathbb{E}[X])^2 - Var(\overline{X}) - (\mathbb{E}[\overline{X}])^2 \right)$$
 (15)

Przykład 3

Pokażmy, że estymator $\hat{\sigma}^2 = S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ wariancji σ^2 jest nieobciążony.

$$\mathbb{E}[S_n^2] = \frac{n}{n-1} \left(Var(X) + (\mathbb{E}[X])^2 - Var(\overline{X}) - (\mathbb{E}[\overline{X}])^2 \right) = (16)$$

$$= \frac{n}{n-1} \left(\sigma^2 + \mu^2 - \frac{\sigma^2}{n} - \mu^2 \right) = \frac{n}{n-1} \left(\sigma^2 - \frac{\sigma^2}{n} \right) = \tag{17}$$

$$= \frac{n\sigma^2}{n-1} - \frac{\sigma^2}{n-1} = \frac{n\sigma^2 - \sigma^2}{n-1} = \frac{\sigma^2(n-1)}{(n-1)} = \sigma^2$$
 (18)

Zamiast punktowego (pojedynczego) estymatora $\hat{\theta}$ tworzy się **przedział ufności** $[\hat{\theta}_L, \hat{\theta}_P]$ tak, aby prawdziwa wartość parametru θ znajdowałą się w stworzonym przedziale z prawdopodobieństwem $1-\alpha$ (α zwane **poziomem ufności**) :

$$\Pr(\hat{\theta}_L \leq \theta \leq \hat{\theta}_P) = 1 - \alpha.$$

Co tu jest losowe?

Przedział ufności tworzy się zwykle poprzez rozpięcie przedziału wokół estymatora punktowego $\hat{\theta}$:

$$\hat{\theta}_L = \hat{\theta} - \Delta, \qquad \hat{\theta}_P = \hat{\theta} + \Delta.$$

Zbudujmy estymator przedziałowy dla wartości oczekiwanej μ gdy dane pochodzą z rozkładu normalnego $N(\mu,\sigma)$ ze znaną wariancją σ^2 .

$$X \sim N(\mu, \sigma), \overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

Zbudujmy estymator przedziałowy dla wartości oczekiwanej μ gdy dane pochodzą z rozkładu normalnego $N(\mu,\sigma)$ ze znaną wariancją σ^2 .

$$X \sim N(\mu, \sigma), \overline{X} \sim N(\mu, \frac{\sigma}{\sqrt{n}})$$

Tworzymy przedział ufności $[\overline{X}-\Delta,\overline{X}+\Delta]$ taki, że:

$$P(\overline{X} - \Delta \le \mu \le \overline{X} + \Delta) = 1 - \alpha$$

Zbudujmy estymator przedziałowy dla wartości oczekiwanej μ gdy dane pochodzą z rozkładu normalnego $N(\mu,\sigma)$ ze znaną wariancją σ^2 .

$$P(\overline{X} - \Delta \le \mu \le \overline{X} + \Delta) = P(-\Delta \le \overline{X} - \mu \le \Delta)$$

Zbudujmy estymator przedziałowy dla wartości oczekiwanej μ gdy dane pochodzą z rozkładu normalnego $N(\mu, \sigma)$ ze znaną wariancją σ^2 .

$$P(\overline{X} - \Delta \le \mu \le \overline{X} + \Delta) = P(-\Delta \le \overline{X} - \mu \le \Delta)$$

Doprowadźmy do tego aby wyrażenie "w środku" nierówności miało rozkład N(0,1)

$$P\Big(-\frac{\Delta}{\sigma}\sqrt{n} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le \frac{\Delta}{\sigma}\sqrt{n}\Big)$$

Zbudujmy estymator przedziałowy dla wartości oczekiwanej μ gdy dane pochodzą z rozkładu normalnego $N(\mu,\sigma)$ ze znaną wariancją σ^2 .

$$P(\overline{X} - \Delta \le \mu \le \overline{X} + \Delta) = P(-\Delta \le \overline{X} - \mu \le \Delta)$$

Doprowadźmy do tego aby wyrażenie "w środku" nierówności miało rozkład N(0,1)

$$P\Big(-\frac{\Delta}{\sigma}\sqrt{n} \le \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \le \frac{\Delta}{\sigma}\sqrt{n}\Big)$$

Wprowadźmy $z_{\alpha} = \frac{\Delta}{\sigma} \sqrt{n}$

$$P\Big(-z_{\alpha} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha}\Big)$$

Zbudujmy estymator przedziałowy dla wartości oczekiwanej μ gdy dane pochodzą z rozkładu normalnego $N(\mu, \sigma)$ ze znaną wariancją σ^2 .

$$P\Big(-z_{\alpha} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha}\Big) = \Phi(z_{\alpha}) - (1 - \Phi(z_{\alpha})) = 2\Phi(z_{\alpha}) - 1$$

Zbudujmy estymator przedziałowy dla wartości oczekiwanej μ gdy dane pochodzą z rozkładu normalnego $N(\mu,\sigma)$ ze znaną wariancją σ^2 .

$$P\Big(-z_{\alpha} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha}\Big) = \Phi(z_{\alpha}) - (1 - \Phi(z_{\alpha})) = 2\Phi(z_{\alpha}) - 1$$

Możemy ustalić ile wynosi z_{α}

$$2\Phi(z_{\alpha}) - 1 = 1 - \alpha$$
$$\Phi(z_{\alpha}) = 1 - \frac{\alpha}{2}$$

Zbudujmy estymator przedziałowy dla wartości oczekiwanej μ gdy dane pochodzą z rozkładu normalnego $N(\mu, \sigma)$ ze znaną wariancją σ^2 .

$$P\Big(-z_{\alpha} \leq \frac{\overline{X} - \mu}{\sigma/\sqrt{n}} \leq z_{\alpha}\Big) = \Phi(z_{\alpha}) - (1 - \Phi(z_{\alpha})) = 2\Phi(z_{\alpha}) - 1$$

Możemy ustalić ile wynosi z_{α}

$$2\Phi(z_{\alpha}) - 1 = 1 - \alpha$$
$$\Phi(z_{\alpha}) = 1 - \frac{\alpha}{2}$$

Stąd
$$z_{lpha}=\Phi^{-1}(1-rac{lpha}{2}).$$
 $z_{lpha}=rac{\Delta}{\sigma}\sqrt{n},$ czyli $\Delta=z_{lpha}rac{\sigma}{\sqrt{n}}.$

Efektywność estymatorów

Weźmy dwa **nieobciążone** estymatory $\hat{\theta}_1$ i $\hat{\theta}_2$ parametru θ .

Mówimy, że $\hat{\theta}_1$ jest efektywniejszy 1 $\hat{\theta}_2$, jeśli $Var(\hat{\theta}_1) \leq Var(\hat{\theta}_2)$ przy każdej wartości parametru θ .

Estymator nieobciążony o minimalnej wariancji, czyli efektywniejszy od wszystkich nieobciążonych estymatorów, nazywamy estymatorem **efektywnym**.

¹ściślej, powinno być: "co najmniej tak efektywny jak".

Zgodność estymatorów

Estymator $\hat{\theta}$ parametru θ jest zgodny, jeśli gdy $n \to \infty$, to $\hat{\theta} \to \theta$, czyli estymator zbiega² do prawdziwej wartości parametru θ .

 $^{^2}$ Jeśli zbieżność jest prawie na pewno (z prawdoopodobieństwem 1), to estymator nazywa się silnie zgodnym, gdy zbieżność jest według prawdopodobieństwa, to estymator nazywa się słabo zgodnym.