What Is Claimed Is:

receiving said analog signal; converting a sample of said analog signal into a N-bit digital code; generating a difference voltage of said sample and a voltage level represented by said N-bit digital code; converting said difference voltage into a P-bit digital code, wherein P is less than N and determining an accurate output digital code from said N-bit digital code and said P-b digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code.	1	1. A method of converting an analog signal to accurate output digital codes of N-bits
receiving said analog signal; converting a sample of said analog signal into a N-bit digital code; generating a difference voltage of said sample and a voltage level represented by said N-bit digital code; converting said difference voltage into a P-bit digital code, wherein P is less than N and determining an accurate output digital code from said N-bit digital code and said P-b digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code.	2	each, said method being performed in an analog to digital converter (ADC), said method
converting a sample of said analog signal into a N-bit digital code; generating a difference voltage of said sample and a voltage level represented by said N-bit digital code; converting said difference voltage into a P-bit digital code, wherein P is less than N and determining an accurate output digital code from said N-bit digital code and said P-b digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code. 3. The method of claim 2, wherein said difference voltage changes due to internal	3	comprising:
generating a difference voltage of said sample and a voltage level represented by sain N-bit digital code; converting said difference voltage into a P-bit digital code, wherein P is less than N and determining an accurate output digital code from said N-bit digital code and said P-b digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code. 3. The method of claim 2, wherein said difference voltage changes due to international codes.	4	receiving said analog signal;
N-bit digital code; converting said difference voltage into a P-bit digital code, wherein P is less than N and determining an accurate output digital code from said N-bit digital code and said P-b digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code.	5	converting a sample of said analog signal into a N-bit digital code;
converting said difference voltage into a P-bit digital code, wherein P is less than N and determining an accurate output digital code from said N-bit digital code and said P-b digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code.	6	generating a difference voltage of said sample and a voltage level represented by said
determining an accurate output digital code from said N-bit digital code and said P-b digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code. 3. The method of claim 2, wherein said difference voltage changes due to internation.	7	N-bit digital code;
determining an accurate output digital code from said N-bit digital code and said P-b digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code. 3. The method of claim 2, wherein said difference voltage changes due to internal	8	converting said difference voltage into a P-bit digital code, wherein P is less than N;
digital code. 2. The method of claim 1, further comprising: generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code. 3. The method of claim 2, wherein said difference voltage changes due to internal	9	and
2. The method of claim 1, further comprising: 2 generating said difference voltage at a plurality of time points; 3 performing said converting said difference voltage a corresponding number of time 4 to generate a corresponding plurality of P-bit digital codes; 5 determining an average of said plurality of P-bit digital codes; and 6 performing an addition operation based on said average and said N-bit digital code 7 to generate said accurate output digital code. 1 3. The method of claim 2, wherein said difference voltage changes due to internal	10	determining an accurate output digital code from said N-bit digital code and said P-bit
generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code. 3. The method of claim 2, wherein said difference voltage changes due to internal	11	digital code.
generating said difference voltage at a plurality of time points; performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code. 3. The method of claim 2, wherein said difference voltage changes due to internal		•
performing said converting said difference voltage a corresponding number of time to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code. 3. The method of claim 2, wherein said difference voltage changes due to internate	1	2. The method of claim 1, further comprising:
to generate a corresponding plurality of P-bit digital codes; determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code. 3. The method of claim 2, wherein said difference voltage changes due to internal	2	generating said difference voltage at a plurality of time points;
determining an average of said plurality of P-bit digital codes; and performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code. The method of claim 2, wherein said difference voltage changes due to internate	3	performing said converting said difference voltage a corresponding number of times
performing an addition operation based on said average and said N-bit digital code to generate said accurate output digital code. 3. The method of claim 2, wherein said difference voltage changes due to internate	4	to generate a corresponding plurality of P-bit digital codes;
to generate said accurate output digital code. 3. The method of claim 2, wherein said difference voltage changes due to internate the digital code.	5	determining an average of said plurality of P-bit digital codes; and
3. The method of claim 2, wherein said difference voltage changes due to internate	6	performing an addition operation based on said average and said N-bit digital code
	7	to generate said accurate output digital code.
2 noise in said ADC and said addition operation reduces the effect of said internal noise in the	1	3. The method of claim 2, wherein said difference voltage changes due to internal
	2	noise in said ADC and said addition operation reduces the effect of said internal poise in the

value generated	for	said	accurate	output	digital	code.
-----------------	-----	------	----------	--------	---------	-------

4. The method of claim 3, wherein said P is substantially smaller than said N, and
equals an integer not less than [log ₂ (6 * σtot)], wherein * represents a multiplication
operation, and σtot represents a total of said internal noise.

- 5. The method of claim 2, wherein said addition operation corrects said N-bit digital code in either positive direction or negative direction according to said P-bit digital code.
- 6. The method of claim 5, wherein said ADC comprises N first set of capacitors and P second set of capacitors, wherein said first set of capacitors are operated according to successive approximation principle (SAP) to determine said N bit digital code, and said second set of capacitors are thereafter operated according to said SAP to determine said P-bit digital code, said method further comprising:

sampling said sample on said first set of capacitors in a sampling phase, wherein said sampling is performed before converting said sample into said N-bit digital code;

connecting a first capacitor contained in said second set of capacitors to a Vref voltage and the remaining ones of said second set of capacitors to ground in said sampling phase, wherein said first capacitor corresponds to a most significant bit (MSB) of said P-bit digital code;

adding all but the MSB of said P-bit digital code to said N-bit digital code if the MSB of said P-bit digital code is of one logical value; and

subtracting all but the MSB of said P-bit digital code from said N-bit digital code if

1	5

7. A successive approximation type analog to digital converter (SAR ADC) converting a sample of an input analog signal into an accurate N-bit digital code, said SAR ADC comprising:

a comparator providing a comparison result of a first analog signal and said sample; a digital to analog converter (DAC) receiving an intermediate N-bit value and an intermediate P-bit value, said DAC generating said first analog signal based on said intermediate N-bit value and said intermediate P-bit value; and

a SAR logic determining a first N-bit digital code according to successive approximation principle (SAP) by sending said intermediate N-bit value in each of N iterations, said SAR logic then generating a first P-bit digital code according to said SAP by sending said intermediate P-bit value in each of P iterations, wherein said first N-bit digital code is corrected using said first P-bit digital code to generate said accurate N-bit digital code.

8. The SAR ADC of claim 7, wherein said SAR logic determines a plurality of P-bit digital codes including said first P-bit digital code, said plurality of P-bit digital codes being averaged to generate an average value, wherein said first N-bit digital code is corrected using said average value.

9. The SAR ADC of claim 8, wherein said DAC comprises:

N first set of capacitors, each having a capacitance value corresponding to a weight

of a corresponding one of a N-bit code;

N first set of switches, wherein each of said first set of switches connects a corresponding one of said first set of capacitors to said sample in a sampling phase of said SAP, each of said first set of switches connecting a corresponding one of said first set of capacitors to a ground or a reference voltage according to a corresponding bit of said intermediate N-bit value in a conversion phase of said SAP:

P second set of capacitors, each having a capacitance value corresponding to a weight of a corresponding one of a P-bit code, wherein P is less than N; and

P second set of switches, each of said second set of switches connecting a corresponding one of said second set of capacitors to a ground or a reference voltage according to a corresponding bit of said intermediate P-bit value.

10. The SAR ADC of claim 9, wherein another end of each of said first set of capacitors and said second set of capacitors is connected to a V_{mid} voltage by a third switch, wherein said third switch is in a closed state in said sampling phase and in an open state in said conversion phase, wherein an intermediate analog signal equaling the following voltage is generated by said DAC:

6
7
$$V_{top} = V_{mid} - V_{inp} + \sum_{i=1}^{N} b_i \underline{V_{ref}} + \sum_{j=1}^{P} b_j \underline{V_{ref}}$$
8
9
 $V_{top} = V_{mid} - V_{inp} + \sum_{j=1}^{N} b_j \underline{V_{ref}}$
wherein V_{ref} and V_{im} represent said reference vol

wherein V_{ref} and V_{inp} represent said reference voltage and voltage of said sample, and b_i represents the i^{th} bit of said intermediate N-bit value and b_j represents the j^{th} bit of said intermediate P-bit value.

Patent Page 31 of 38 TI-36218

2	unalog signal with said voltage to generate said companison result.
1	12. The SAR ADC of claim 11, wherein said average value is used to correct said first
2	N-bit digital code in either positive or negative direction.
1	13. The SAR ADC of claim 12, wherein SAR logic sets a most significant bit (MSB)
2	of said P-bit digital code to one in said sampling phase, and adds all but the MSB of said
3	average value to said N-bit digital code if the MSB of said average value is of one logical
4	value, said SAR logic subtracting all but the MSB of said average value from said N-bit
5	digital code if the MSB of said P-bit digital code is of the other logical value.
1	14. The SAR ADC of claim 13, wherein said DAC comprises more than P of said
2	second set of switches, and wherein P is determined by a noise introduced internally in said
3	SAR ADC.
1	15. The SAR ADC of claim 13, wherein said noise comprises components introduced
2	by said DAC and said comparator.
1	16. A successive approximation type analog to digital converter (SAR ADC)
2	converting an analog signal to accurate output digital codes of N-bits each, said SAR ADC
3	comprising:
4	means for receiving said analog signal;
5	means for converting a sample of said analog signal into a N-bit digital code;

Page 32 of 38

TI-36218

Patent

6	means for generating a difference voltage of said sample and a voltage level
7	represented by said N-bit digital code;
8	means for converting said difference voltage into a P-bit digital code, wherein P is less
9	than N; and
10	means for determining an accurate output digital code from said N-bit digital code and
11	said P-bit digital code.
1	17. The SAR ADC of claim 16, further comprising:
2	means for generating said difference voltage at a plurality of time points, wherein said
3	means for converting said difference voltage converts said difference voltage a corresponding
4	number of times to generate a corresponding plurality of P-bit digital codes;
5	means for determining an average of said plurality of P-bit digital codes; and
6	means for performing an addition operation based on said average and said N-bit
7	digital code to generate said accurate output digital code.
1	18. The SAR ADC of claim 17, wherein said difference voltage changes due to
2	internal noise in said SAR ADC and said addition operation reduces the effect of said internal
3 .	noise in the value generated for said accurate output digital code.
1	19. The SAR ADC of claim 18, wherein said P is substantially smaller than said N,
2	and equals an integer not less than $[\log_2 (6 * \sigma tot)]$, wherein * represents a multiplication
3	operation, and otot represents a total of said internal noise.

1	20. The SAR ADC of claim 17, wherein said addition operation corrects said N-bit
2	digital code in either positive direction or negative direction according to said P-bit digital
3	code.
1	21. The SAR ADC of claim 20, wherein said means for converting a sample
2	comprises N first set of capacitors and P second set of capacitors, wherein said first set of
3	capacitors are operated according to successive approximation principle (SAP) to determine
4	said N bit digital code, and said second set of capacitors are thereafter operated according to
5	said SAP to determine said P-bit digital code, said SAR ADC further comprising:
6	means for sampling said sample on said first set of capacitors in a sampling phase,
7	wherein said means for sampling is performed before converting said sample into said N-bit
8	digital code;
9	means for connecting a first capacitor contained in said second set of capacitors to a
10	Vref voltage and the remaining ones of said second set of capacitors to ground in said
11	sampling phase, wherein said first capacitor corresponds to a most significant bit (MSB) of
12	said P-bit digital code;
13	means for adding all but the MSB of said P-bit digital code to said N-bit digital code
14	if the MSB of said P-bit digital code is of one logical value; and
15	means for subtracting all but the MSB of said P-bit digital code from said N-bit digital
16	code if the MSB of said P-bit digital code is of the other logical value.
	·

22. A system comprising:

1

2

an analog processor processing an analog signal to generate an analog sample;

3	a successive approximation type analog to digital converter (SAR ADC) converting
4	said analog sample into an accurate N-bit digital code, said SAR ADC comprising:
5	a comparator providing a comparison result of a first analog signal and
6	said sample;
7	a digital to analog converter (DAC) receiving an intermediate N-bit
8	value and an intermediate P-bit value, said DAC generating said first analog
9	signal based on said intermediate N-bit value and said intermediate P-bit
10	value; and
11	a SAR logic determining a first N-bit digital code according to
12	successive approximation principle (SAP) by sending said intermediate N-bit
13	value in each of N iterations, said SAR logic then generating a first P-bit
14	digital code according to said SAP by sending said intermediate P-bit value
15	in each of P iterations, wherein said first N-bit digital code is corrected using
16	said first P-bit digital code to generate said accurate N-bit digital code; and
17	a processing unit receiving said accurate output digital code.
1	23. The system of claim 22, wherein said SAR logic determines a plurality of P-bit
2	digital codes including said first P-bit digital code, said plurality of P-bit digital codes being
3	averaged to generate an average value, wherein said first N-bit digital code is corrected using
4	said average value.
1	24. The system of claim 23, wherein said DAC comprises:
2	N first set of capacitors, each having a capacitance value corresponding to a weight

of a corresponding one of a N-bit code;

N first set of switches, wherein each of said first set of switches connects a corresponding one of said first set of capacitors to said sample in a sampling phase of said SAP, each of said first set of switches connecting a corresponding one of said first set of capacitors to a ground or a reference voltage according to a corresponding bit of said intermediate N-bit value in a conversion phase of said SAP;

P second set of capacitors, each having a capacitance value corresponding to a weight of a corresponding one of a P-bit code, wherein P is less than N; and

P second set of switches, each of said second set of switches connecting a corresponding one of said second set of capacitors to a ground or a reference voltage according to a corresponding bit of said intermediate P-bit value.

25. The system of claim 24, wherein another end of each of said first set of capacitors and said second set of capacitors is connected to a V_{mid} voltage by a third switch, wherein said third switch is in a closed state in said sampling phase and in an open state in said conversion phase, wherein an intermediate analog signal equaling the following voltage is generated by said DAC:

6
7
$$V_{top} = V_{mid} - V_{inp} + \sum_{i=1}^{N} b_i \underline{V_{ref}} + \sum_{j=1}^{P} b_j \underline{V_{ref}}$$
8
9
 $V_{top} = V_{mid} - V_{inp} + \sum_{j=1}^{N} b_j \underline{V_{ref}}$
wherein V_{ref} and V_{im} represent said reference vol

wherein V_{ref} and V_{inp} represent said reference voltage and voltage of said sample, and b_i represents the i^{th} bit of said intermediate N-bit value and b_j represents the j^{th} bit of said intermediate P-bit value.

26. The system of claim 25, wherein said comparator compares said intermediate

Patent

Page 36 of 38

TI-36218

1 27. The system of claim 26, wherein said average value is used to correct said first N-2 bit digital code in either positive or negative direction. 28. The system of claim 27, wherein SAR logic sets a most significant bit (MSB) of 1 2 said P-bit digital code to one in said sampling phase, and adds all but the MSB of said 3 average value to said N-bit digital code if the MSB of said average value is of one logical 4 value, said SAR logic subtracting all but the MSB of said average value from said N-bit 5 digital code if the MSB of said P-bit digital code is of the other logical value. 29. The system of claim 28, wherein said DAC comprises more than P of said second. 1 2 set of switches, and wherein P is determined by a noise introduced internally in said SAR 3 ADC. 1 30. The system of claim 28, wherein said noise comprises components introduced by 2 said DAC and said comparator. 1 31. The system of claim 30, wherein said system comprises a global positioning 2 system receiver, said system further comprising an antenna to receive said analog signal and 3 provide to said analog processor.

analog signal with said V_{mid} voltage to generate said comparison result.

2