Statistical Computing

Michael Mayer

March 2023

Statistical Computing: What will we do?

Chapters

- 1. R in Action
- 2. Statistical Inference
- 3. Linear Models
- 4. Model Selection and Validation
- 5. Trees
- 6. Neural Nets

Remarks

- Chapters 3 to 6: Statistical ML in Action
- Two weeks per chapter
- Exercises at end of chapter notes

Neural Nets

Outline

- Understanding Neural Nets
- Practical Considerations
- Extended examples

Neural Nets

- Around since the 1950ies
- Underwent different development steps, e.g.
- use of backpropagation (Werbos, 1974) use chainvule to use more

 GPUs (2009, ImageNet 2012)

 Black Box were them first win by deep learning by far
- ► TensorFlow/Keras, PyTorch

Google wrapper bacebook

"Swiss Army Knife" among ML Algorithms

Can fit linear models

Learn interactions and non-linear terms

>1 Responses possible

Flexible and mixed wat takes in- and output dimensions

Fit data larger than RAM

Non-linear ped (online)

dimension reduction (on the fix)

Sequential and spatial in- and output

Flexible loss functions

Understanding Neural Nets in three Steps

- 1. Linear regression as neural net
- 2. Hidden layers
- 3. Activation functions

Using diamonds data

Step 1: Linear Regression as Neural Net

- $ightharpoonup \mathbb{E}(\mathsf{price}) = \alpha + \beta \cdot \mathsf{carat}$
- OLS $\hat{\alpha} \approx -2256, \ \hat{\beta} \approx 7756$
- Represented as neural network graph

The Optimization Algorithm

Mini-batch gradient descent with backpropagation

Notation: Neural net f_{β} ; its total loss on data \underline{D} and loss function L:

$$Q(f_{eta},D) = \sum_{(y_i, \mathbf{x}_i) \in D} L(y_i, f_{eta}(\mathbf{x}_i))$$

boosed trees ore consex experime

- 1. Init: Randomly initialize parameter vector β by $\hat{\beta}$
- 2. Forward: Calculate $Q(f_{\hat{\beta}}, D_{\text{batch}})$ on batch
- 3. Backprop: Modify $\hat{\beta}$ to improve $Q(f_{\hat{\beta}}, D_{\text{batch}})$
 - 3.1 Calculate partial derivatives $\nabla \hat{\beta} = \frac{\partial Q(f_{\beta}, D_{\text{batch}})}{\partial \beta} |_{\beta = \hat{\beta}}$ using backprop (=?)
 - 3.2 Gradient descent: Move slightly into right direction: $\hat{\beta} \leftarrow \hat{\beta} \lambda \cdot \nabla \hat{\beta}$
- 4. Repeat Steps 2 and 3 until one epoch is over
 5. Repeat Step 4 until some stopping criterion triggers

for un: make a simple model to compare to

SGD? Local minima?

Step 2: Hidden Layers

- Add hidden layers for more parameters (= flexibility)
- Their nodes are latent/implicit variables
- Representational learning
- ► Encoding?/ = whole
- ► Deep neural net?

Step 3: Activation Functions

Non-linear transformations σ of node values necessary!

(Carat)

Two purposes

Imply interactions and non-linear terms

Example -> GLM

Inverse link as in GLMs

 v_5 $\alpha_5 + eta_5 ext{carat}$

merse legit

 $\gamma + \delta_1 \sigma(v_1) + \cdots + \delta_5 \sigma(v_5)$

Price

10 1 re X

Practical Considerations

no cross validation, to tit

Validation and tuning of main parameters

Callbacks

Overfitting and regularization

JB-100 rows/parameter

Input standardization is standardized

Missing values

Types of layers

Categorical input

Optimizer

Optimizer

The state on coordination

Choosing the architecture

Custom losses and evaluation metrics

for tabular data: m features

1) 10- un hidden words

- seam interactions un [50] 3m] 3.) un 4) 1

Example: Diamonds

Excursion: Model-Agnostic Importance Measure

no active way to measure voriable importance

Permutation importance of feature
$$X^{(j)}$$
, data D , and performance measure S :

$$PVI(j,D) = S(\hat{f},D^{(j)}) - S(\hat{f},D)$$

(i) RMSE on validation (fest) data

- $lackbrack D^{(j)}$ is version of D with randomly permuted values in j-th feature column
- Read: How much S worsens after shuffling column i? The larger, the more important. If 0, feature is unimportant
- Computationally cheap \rightarrow repeat m times
- Model is never refitted
- Training or test data? on keldate

Embeddings

Represent unordered categorical X with K levels by $m \ll K$ numeric features

Embedding layer

- X integer encoded
- ightharpoonup Dummy matrix \tilde{X} with K columns
- ▶ Multiply \tilde{X} with $(K \times m)$ matrix β
- ightharpoonup Embedding matrix β estimated like other parameters
- ▶ Trick: $\tilde{X}\beta$ is calculated via index slicing from X and β $\rightarrow \tilde{X}$ is never materialized
- ▶ Think: $X_1 = i \rightarrow \text{first row of } X\beta \text{ equals } i\text{-th row of } \beta \text{ etc.}$

Example

Taxi trips

Excursion: Analysis Scheme X

T(Y): quantity of interest

Steps

- 1. Calculate T(Y) on the full data
- 2. Calculate T(Y) stratified by covariates $X^{(j)} o$ bivariate associations
- 3. Accompany Step 2 by ML model \rightarrow multivariate associations
 - Study model performance
 - lacktriangle Study variable importance ightarrow sort results of Step 2
 - ightharpoonup Study PDP (or similar) for each $X^{(j)}$ and compare with Step 2

Comparison of ML Algorithms

Aspect	GLM	Neural Net	Decision Tree	Boosting	Random Forest	k-Nearest Neighbour
Scalable			<u>•</u>	<u>•</u>	•	©
Easy to tune	•	••	••	••	<u>•</u>	••
Flexible losses	•		<u>•</u>	<u>•</u>	•••	••
Regularization	✓	✓	✓	✓	✓	✓
Case weights	✓	✓	✓	✓	✓	✓
Missing input allowed	<u>©</u>	⇔	✓	✓	⇔	₩
Interpretation		••		••	••	••
Space on disk	*	*	*	<u>•</u>	©	©
Birth date (approx.)	1972 (Nelder & Wedderburn)	1974 Backprop (Werbos)	1984 (Breiman et al.)	1990 (Schapire)	2001 (Breiman)	1951 (Fix & Hodges)