Math 660—Jim Fowler

Friday, August 13, 2010

Lecture 39: Schwarz' theorem

$$P_*(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{re} \frac{e^{i\theta} + z}{e^{i\theta} - z} U(\theta) d\theta.$$

$$P_*(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{re} \frac{e^{i\theta} + z}{e^{i\theta} - z} U(\theta) d\theta.$$

$$P_{U+V} = P_U + P_V$$

$$P_*(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{re} \frac{e^{i\theta} + z}{e^{i\theta} - z} U(\theta) d\theta.$$

- $P_{U+V} = P_U + P_V$
- $ightharpoonup P_{kU} = kP_U$

$$P_*(z) = \frac{1}{2\pi} \int_0^{2\pi} \operatorname{re} \frac{e^{i\theta} + z}{e^{i\theta} - z} U(\theta) d\theta.$$

- $P_{U+V} = P_U + P_V$
- $ightharpoonup P_{kU} = kP_U$
- $P_c = c$

$$P_*(z) = rac{1}{2\pi} \int_0^{2\pi} \operatorname{re} rac{e^{i\theta} + z}{e^{i\theta} - z} U(\theta) \, d\theta.$$

- $P_{U+V} = P_U + P_V$
- $ightharpoonup P_{kU} = kP_U$
- $ightharpoonup P_c = c$
- ▶ $P_U \ge 0$ if $U \ge 0$.

Schwarz' theorem

The function $P_U(z)$ is harmonic in the interior of the disk $B_1(0)$, and continuous on the closed disk (provided U is continuous).

If u(z) is harmonic, then $u(\overline{z})$ is harmonic.

If u(z) is harmonic, then $u(\overline{z})$ is harmonic.

If f(z) is analytic, then $f(\overline{z})$ is analytic.

If u(z) is harmonic, then $u(\overline{z})$ is harmonic.

If f(z) is analytic, then $\overline{f(\overline{z})}$ is analytic.

Consider $f(z) - \overline{f(\overline{z})}$.

Suppose v(x) is continuous in $\Omega^+ \cup \sigma$, harmonic in Ω^+ , and zero on σ .

Suppose v(x) is continuous in $\Omega^+ \cup \sigma$, harmonic in Ω^+ , and zero on σ .

Then v has a harmonic extension to Ω which satisfies the symmetry relation $v(\overline{z} = -v(z)$.

Suppose v(x) is continuous in $\Omega^+ \cup \sigma$, harmonic in Ω^+ , and zero on σ .

Then v has a harmonic extension to Ω which satisfies the symmetry relation $v(\overline{z} = -v(z)$.

In the same situation, if v is the imaginary part of an analytic function f(z) in Ω^+ , then f(z) has an analytic extension which satisfies $f(z) = \overline{f(\overline{z})}$.