NASA CR 121104

SPACE VEHICLE INTEGRATED THERMAL PROTECTION/STRUCTURAL/ METEOROID PROTECTION SYSTEM

APPENDIXES TO FINAL REPORT

by D. H. Bartlett & D. K. Zimmerman

April 1973

Prepared for

NATIONAL AERONAUTICS AND SPACE ADMINISTRATION

NASA LEWIS RESEARCH CENTER

Contract NAS3-13316

J. R. Barber, Project Manager

1 Report No NASA CR-121104 2 Government Accession No	3 Recipient's Catalog No
4 Title and Subtitle Appendixes To Final Report	5 Report Date April 1973
Space Vehicle Integrated Thermal Protection/Struct Meteoroid Protection System	6 Performing Organization Code
7 Author(s) D. H. Bartlett, D. K. Zimmerman	8 Performing Organization Report No D180-15172-2
9 Performing Organization Name and Address	10 Work Unit No
Boeing Aerospace Company (A division of The Boeing Company) P.O. Box 3999 Seattle, Washington 98124	11 Contract or Grant No NAS 3-13316
12 Sponsoring Agency Name and Address	13 Type of Report and Period Covered Final Contractor Report
National Aeronautics & Space Administration Lewis Research Center	14 Sponsoring Agency Code

15 Supplementary Notes

J. R. Barber, Project Manager

16 Abstract

A program was conducted to determine the merit of a combined structure/thermal meteoroid protection system for a cryogenic space vehicle propulsion module. Structural concepts were evaluated to identify leastweight designs. Thermal analyses determined optimum tank arrangements and insulation materials. Meteoroid penetration experiments provided data for design of protection systems. Preliminary designs were made and compared on the basis of payload capability. Thermal performance tests demonstrated heat transfer rates typical for the selected design. Meteoroid impact tests verified the protection characteristics. A mockup was made to demonstrate protection system installation. The best design found combined multilayer insulation with a truss structure vehicle body. The multilayer served as the thermal/meteoroid protection system.

17 Key Words (Suggested by Auth	or(s))		18 Distribution Statemer	nt	
Meteoroid Protection	Design S	on Vehicle		sified - Unlimite	ed
19 Security Classif (of this report) Unclassified		20 Security Classif (d Uncla	of this page) ssified	21 No of Pages 277	\$3.50

TABLE OF CONTENTS

		Page
INTRODUCTION	İ	1
APPENDIX A		3
APPENDIX B		17
APPENDIX C		79
APPENDIX D		129
APPENIDIY F		179

INTRODUCTION

This is a companion document to Volume I, NASA CR-121103, "Final Report". The appendixes contained herein supplement the technical discussion in that document.

Appendix A is a description of the TATE (Tank Arrangement Thermal Efficiency) computer program. The results of the TATE analysis were discussed in Sections 1.1.2, 1.2.3, 1.3.2, 1.3.5 and 3.2 of Volume I.

Appendix B contains the detailed results of the Vehicle Structure Evaluation for the ten preliminary designs. Vehicle configurations and dimensions are shown. Tabulated weights for various construction methods and materials are presented. Structural concept weights are summarized in tables which include end attachment weight adjustments. The material in this appendix supplements the discussion and summary charts of Section 1.2.3 of Volume 1.

Appendix C presents a description of the meteoroid environment, derivation of the earth-mars trajectory for this study and the entire quantity of design curves developed from the test data of this program. This material supplements the discussion of Sections 1.2.3 and 1.3.4 of Volume 1.

Appendix D contains the detail design drawings and a discussion of the ten vehicle preliminary designs. These results were summarized in Section 1.2.3 of Volume 1.

Appendix E contains the temperature data obtained in the thermal performance tests. This appendix also contains a description of the thermal model used in the analysis of results and gives the temperatures predicted for each test case. The test results are discussed in Section 2.2.3 of Volume 1.

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX A

TANK ARRANGEMENT THERMAL EFFICIENCY COMPUTER PROGRAM

This appendix discusses the construction and operation of the TATE program used to derive optimized weights for tanks, insulation, propellant vapor, helium and helium tank. The results obtained through use of this program were described in Sections 1.1.2, 1.2.3, 1.3.2, 1.3.5 and 3.2 of Volume I "Final Report", NASA CR-121103.

The program was designed to arrive at a least weight case for any vehicle configuration through an iterative random search process where search limits were narrowed after evaluation of every 2000 cases. This process was continued for 10 iterations or a total of 20,000 cases. A computerized search technique was necessary in order to find optimum values of multiple, independent variables, each with arbitrary constraints.

The program randomly selected thicknesses of insulation for all locations on a given vehicle and calculated heat flow to the cryogens. Two mission phases were considered, ascent and coast. Ascent heating included the effects of residual purge gas in the MLI (Multilayer Insulation) and higher temperatures due to near earth environment and random orientation. A thermal balance was maintained, therefore, heat could flow in or out of the propellants. The program calculated tank pressures and determined the critical point of the mission, i.e., launch, end boost, or end of mission. The tank sizes and gages were determined and a summary of insulation, tanks, propellant vapor and helium weights were made.

The assumptions for the study were:

- 1) The spacecraft was oriented during coast so that the payload was between the sun and the propulsion vehicle. The only heat to the propulsion vehicle came from the payload and the solar panels which were assumed to be 520° R (289° K) with $\epsilon = 1.0$, and 620° F (344° K) with $\epsilon = 0.05$, respectively.
- 2) The net heat that penetrated the insulation blanket was considered the heat into the cryogenic tank.

The internal and external insulation surface temperatures used in the analysis were derived from the steady state solution of the BETA (Boeing Engineering Thermal Analyzer) program.

The thickness of MLI on all surfaces was determined by:

RUNIF(A) is a subroutine that selects random numbers uniformly between 0 and 1.

$$t_{MAXLIM} = t_{MAX} + S(t_{MAX} - t_{MIN}) \le 2.0 IN.$$

$$t_{MINLIM} = t_{MIN} - S(t_{MAX} - t_{MIN}) \ge 0.01 IN.$$

t_{MAX} Extreme thicknesses obtained from 5 best cases t_{MIN} from previous 2000 iterations.

t MAXLIM lnsulation thickness limits to be used for next 2000 iterations.

S = 0.5 Factor to control search limit reduction rate.

After every 2000 cases T_{MAX-LIM} and T_{MINLIM} were modified and set equal to the minimum and maximum thickness of the 5 leastweight cases. Each configuration was run for 20,000 cases.

The total heat transfer into the propellant tanks included heat transfer through the MLI during the ascent phase plus heat transfer through the MLI combined with heat leaks through tank supports and fluid lines during the coast phase.

The equations for heat transfer were:

$$\dot{Q}_{T} = (Q_{I_{M}} + Q_{I_{A}} + Q_{S} + Q_{P} + Q_{H_{L}}) / 4992 \text{ (Hours)}$$

where \dot{Q}_{T} = Total average heat transfer rate to fuel or oxidizer.

Q_{1,M} = Total heat transferred thru MLI during coast.

Q₁ = Total heat transferred thru MLI during ascent.

 Q_{ς} = Total heat transferred thru tank supports.

Q_D = Total heat transferred thru plumbing lines.

 Q_{H_1} = Total heat transferred thru MLI by any other form.

Modifying the MLI heat transfer equation

$$\dot{Q}_{ii} = \begin{pmatrix} \frac{k_{ii}}{t_{ii}} + \kappa_{PEN} \end{pmatrix} A_{ii} (T_{l_{ii}} - T_{l_{ii}})$$

and $Q_{ij} = 4992 \sum_{i} \dot{Q}_{i}$ (for the coast phase)

where T_{l} = Temperature on outside of MLI

T_{2:} = Temperature on inside of MLI

A = Surface area of MLI

t = Thickness of MLI

k = Thermal conductivity of MLI

 K_{PEN} = Thermal conductance of nylon fasteners per unit MLI area

Q = Average heat transfer rate to fuel or oxidizer during coast phase of mission

T₁ and T₂ are input constants for each insulation panel. These were obtained by a separate thermal analysis.

The insulation conductivity was generalized as

$$k_{i}^{\dagger} = K_{R_{i}^{\dagger}} (T_{i}^{2} + T_{2_{i}^{\dagger}}^{2}) (T_{i}^{\dagger} + T_{2_{i}^{\dagger}}^{\dagger}) + K_{C_{i}^{\dagger}} (T_{i}^{\dagger} + T_{2_{i}^{\dagger}}^{\dagger})$$

The subscripts on the constants were required to identify the different types of MLI used on the vehicles.

The term K_{PEN} was assumed to be a constant.

$$\frac{Q_{|A|}}{Q_{|A|}} = A_{|i|} \left(\frac{Q_{A1_{|i|}}}{t_{|i|}} + Q_{A2_{|i|}} t_{|i|} \right)$$

$$Q_{A} = \sum_{i} Q_{A_{ii}}$$
 (for the ascent phase)

Q = heat transferred thru MLI during ascent phase of mission for panel ji.

Q_{A1} = constant which depended on the type of MLI and location on vehicle.

Q_{A2} = Term required for use with perforated radiation shields

 Q_{A1} and Q_{A2} were constants which depended on the type of insulation and location on the vehicle. These constants were determined by a curve fit to data from the evacuation analyses. In most cases, $Q_{A2} = 0$.

$$\frac{Q_{S}}{Q_{S}} = 4992 \sum_{i} \dot{Q}_{Sii}$$

$$\dot{Q}_{S} = K_{S} (T_{I_{i}} - T_{FU})$$
OR OX

where: K_c was an input constant for each configuration,

T₁ was one of the boundary temperatures specified for the MLI,

 T_{FU} was fuel temperature

T_{OX} was oxidizer temperature

 $\mathbf{Q}_{\mathbf{S}}$ was heat leak through structure

 $\frac{Q_{\mathbf{p}}}{\mathbf{p}}$

$$Q_{p} = 4992 \sum \dot{Q}_{p}$$

$$Q_{p} = K_{FILL}(T_{1} - T_{FU}) + K_{VENT}(T_{1} - T_{FU}) + K_{VENT}(T_{$$

where KFILL was thermal conductivity of fill line

 $K_{\mbox{VENT}}$ was thermal conductivity of vent line

 K_{FFFD} was thermal conductivity of feed line

T_{ENG} was engine temperature

These were all input constants.

$$Q_{HL}$$

$$\dot{Q}_{HL} = K_{HL} (T_1 - T_2)$$

where

Τ, was temperature outside

T₂ was temperature inside

K_{HI} was conductivity from BETA program

This form of Q was used for special cases, e.g., where the LF_2 feed line penetrated the LH₂ compartment on Vehicle 1-14.

which was divided into:

 $^{\rm K}_{\rm HL_1}$ $^{\rm (T}_{\rm OX}$ - $^{\rm T}_{\rm 2})$ where $^{\rm T}_{\rm 2}$ was the temperature on the feed line in the LH $_{\rm 2}$ compartment.

$$K_{HL_2} (T_2 - T_3)$$

 K_{HL_2} $(T_2 - T_3)$ where T_3 was a point near the engine but outside the MLI.

$$K_{HL_3} (T_4 - T_2)$$

 K_{HL_3} $(T_4 - T_2)$ where T_4 was a feed line support.

The representative Q's were accumulated and the Q was determined by dividing by the mission time and checked against the Q constraints. The Q constraints were the heat flow values which resulted in limiting pressures (5 psia (34.5 kN/m²) minimum pressure and critical maximum pressure). If either of the Q's was outside the constraints then the case was cancelled and the program proceeded to the next case. If the constraints were satisfied then the MLI weight was calculated.

WT_{ins} =
$$\sum_{i}$$
 (A_it_i)
A_i = Area of panel
t_i = Thickness of MLI
 ρ = Density of MLI

With non-vented tanks, any heat added to the propellant was reflected in a change in internal energy, U. Assuming saturated liquid and vapor always in equilibrium, the pressure, temperature, liquid density and vapor density was also changed continuously with change in U. The total internal energy was made up of contributions of the liquid and the vapor:

or
$$U = U_L + U_G$$

$$uM = u_L M_L + u_G M_G$$

$$u = u_L (\frac{M_L}{M} + u_G (\frac{M_G}{M}) = u_L m_L + u_G m_G$$

The mass ratios m_L and m_G could be defined in terms of the specific volume of liquid (ν_L) , gas (ν_G) and total system (ν) :

$$\nu = \frac{\nabla}{M} = \frac{\nu_L M_L + \nu_G M_G}{M} = \nu_L M_L + \nu_G M_G$$

Since the sum of the liquid and vapor masses was equal to the total mass,

substituting

$$u = u_{L} + m_{G}(u_{G} - u_{L})$$

$$u = u_{L} + \frac{\nu - \nu_{L}}{\nu_{G} - \nu_{L}} (u_{G} - u_{L})$$

At any given set of conditions, the only unknown was $oldsymbol{
u}$

A table of Q versus vapor pressure was derived for both cryogens, assuming that the liquid and vapor existed in equilibrium. Also used were tables of pressure versus densities of vapor and liquid in addition to helium gas used to pressurize tanks for the engine burn. The helium gas was assumed to be at the cryogen temperature and pressure plus N.P.S.P. From this information was found:

1. Vapor Weight =
$$\frac{x M_p}{(1-x)} (\frac{\rho_v}{\rho_I})$$

M_p = mass propellant usable plus residuals

x = ullage required at mission end

 ρ_{v} = density of vapor

 ρ_1 = density of liquid

2. Helium Weight =
$$M_p = \frac{\rho_{he}}{\rho_{l}}$$

$$\rho_{he}$$
 = density of helium gas

This assumed the required helium equalled the replacement of all the cryogenic liquid.

3. Helium bottle weight = 2.74 (wt. helium) assuming:

5000 psia (34.5 MN/m² design limit pressure

$$f_{ty} = 265 \text{ KSI } @ -320^{\circ}\text{F} (1827 \text{ MN/m}^2 @ 77.7^{\circ}\text{K})$$

yield F.S = 1.33

$$2.74 = \frac{\text{wt. helium bottle}}{\text{wt. helium}}$$

The sizing and weighing of the fuel and oxidizer tanks is shown below:

LH₂ - LF₂ System

Fuel Tank

The helium was stored in the oxidizer tank

 W_{he} in fuel tank = 0

Then call tank sizing subroutine corresponding to the kind of tank.

Oxidizer Tank

W_{he} = wt, helium in oxidizer tank

Oxidizer tank operating pressure = $P_{\text{oxidizer vapor}}$ + NPSP \geq 14.7 psia (101.3 kN/m²)

Call Tank sizing subroutine corresponding to the kind of tank.

The sizing of the oxidizer tank included the volume of helium.

CH_A - FLOX Uninsulated System (Both propellants at same temperature)

Fuel Tank

The helium was stored in the oxidizer tank

 W_{he} in fuel tank = 0

Fuel tank operating pressure = $P_{\text{fuel vapor}}$ + 14.7* (101.3 kN/m²)

Call fuel tank sizing subroutine corresponding to the kind of tank,

Oxidizer Tank

 W_{he} = wt, helium for oxidizer tank plus wt, helium for fuel tank Oxidizer tank operating pressure = $P_{\text{oxy vapor}} + NPSP \ge 14.7 \text{ psia}$ (101.3 kN/m^2)

Call tank sizing subroutine corresponding to the kind of tank.

Based on initially adding helium to prevent tank collapse prior to launch due to vapor pressure less than one atmosphere.

CH₄ - FLOX Insulated System

Fuel Tank

The helium was stored in the fuel tank

Fuel tank operating pressure = P_{FV} + NPSP \ge 14.7 psia (101.3 kN/m²)

Call tank sizing subroutine corresponding to the kind of tank

Oxidizer Tank

 $W_{he} = 0$ since it was stored in fuel tank

Oxidizer tank operating pressure = $P_{\text{oxy vapor}} + NPSP \ge 14.7 \text{ psia}$ (101.3 kN/m²)

Call tank sizing subroutine corresponding to the kind of tank.

The kinds of tanks included in this program were spherical, cylindrical, oblate spheroid, toroidal, and a common bulkhead tank. Following is a description of the sizing and weighing of each.

The baseline tank parameters were:

Factors

$$PROOF = F_{ty} = 1.25 P_{op}$$

Allowables (2219-T6E46 Aluminum Alloy)

	F _{ty} psi (MN/m ²)	$\frac{F_{ty}}{ty}$ psi (MN/m^2)
Room Temp.	39,000 (268.9)	54,000 (372.3)
Methane – 260°F	43,500 (299.9)	61,700 (425.4)
F ₂ -FLOX -306°F	44,900 (309.6)	64,800 (446.8)
H ₂ -423°F	51,900 (357.8)	75,600 (521.2)

Pressures

$$P_{op} = P_{vp} + P_{npsh}$$

Oxidizers - $P_{op} = P_{vp} + 12.0$ psia (82.7 kN/m²)

Fuels - $P_{op} = P_{vp} + 8.0$ psia (55.2 kN/m²)

Design pressure = proof pressure = 1.25 P_{op}

Weight

Based on calculated or minimum gage x area x density

$$\rho = 0.102 \text{ lb/in}^3 (2823 \text{ kg/m}^3)$$

Minimum Gage = 0.025 in (0.064 cm)

Spherical Tank 1.

$$V = 1728 \left(\frac{M_L}{.95 \rho_1} + \frac{W_{he}}{7.7} \right)$$

V = total volume stored in all tanks (in³) M_L = mass of liquid (lbs) ρ_L = density of liquid (lbs/ft³)

W_{he} = wt. helium stored in tank (lbs)

$$R = \left(\frac{V}{AN (4.1888)}\right)^{1/3}$$

radius of each tank (in)

AN number of tanks

$$T = \frac{1.25 (P_{op}) R}{2 F_{ty}}$$

T = wall thickness (in)

 P_{op} = operating pressure of tank

 F_{tv} = yield stress of tank (psi)

WT = AN (1.2818)
$$R^2T$$

WT = weight of all tanks (lbs)

2. Cylindrical Tank - Oblate Spheroid Heads

$$V = 1728 \left(\frac{M_L}{.95 \rho_L} + \frac{W_{he}}{7.7} \right)$$

R = Radius is fixed (in.)

$$H = \frac{(\frac{V}{AN} - 2.9600 \text{ R}^3)}{3.1416 \text{ R}^2}$$

H = height of cylindrical portion of tank (in.)

$$T_s = \sqrt{2}(1.25) (P_{op}) R/2 F_{ty} \ge .025$$

 T_c = thickness of cylindrical wall (in.)

 T_s = thickness of spherical cap wall (in.)

WT = AN (1.0392
$$R^2$$
 $T_s + .64089 R H T_c$)

WT = weight of all tanks

3. Oblate Spheroid Tank

$$V = 1728 \left(\frac{M_L}{.95 \rho_L} + \frac{W_{he}}{7.7} \right)$$

$$A = (\frac{V}{AN(2.96)})^{1/3}$$

$$B = .7071 A$$

A = major radius of tank

B = minor radius of tank

$$T = \frac{\sqrt{2}(1.25) P_{op} A}{2 F_{ty}} \ge .025$$

T = thickness of wall (in.)

$$WT = AN (1.0392 A^2T)$$

WT = weight of all tanks (lbs)

A is fixed major radius

CH₄

FLOX

 T_{FH}

$$V = 1728 \left(\frac{M_L}{.95 \rho_L} + \frac{W_{he}}{7.7} \right)$$

$$B = \left(\frac{V}{AN (19.739) A}\right)^{1/2}$$

$$T = \frac{1.25 \text{ P}_{op} \text{ B}}{F_{ty}} \left(\frac{2 - B/A}{2 - 2 B/A}\right) \ge .025$$

WT = AN (4.0268 ABT)

$$V_{\text{FLOX}} = 1728 \left[\frac{M_{\text{FLOX}}}{.95 \, \rho_{\text{L}}} + \frac{W_{\text{he}}}{7.7} \right]$$

$$V_{CH_4} = 1728 \left[\frac{^{M}_{CH_4}}{.95 \rho_{CH_4}} \right]$$

$$R = (V_{FLOX}/2.528)^{1/3}$$

$$H = V_{CH_4}/(3.1416 R^2)$$

$$T_{FH} = \frac{(\sqrt{2}) (1.25) P_{op CH_4}^R}{2 F_{ty}_{FLOX}} \ge .025$$

$$T_{FC} = \frac{1.25 P_{op CH_4}^R}{F_{ty} FLOX} \ge .025$$

$$T_{OH} = \frac{(\sqrt{2}) (1.25) P_{op_{FLOX}} R}{2 F_{ty} FLOX} > .025$$

$$T_{OC} = \frac{(\sqrt{2}) (1.25) P_{op FLOX} R}{F_{ty FLOX}} > .025$$

WT = 0.5196
$$R^2 (T_{FH} + T_{OH}) + .64089 RH T_{FC} + .4531 R^2 T_{OC}$$

6. Common Bulkhead Tank - Oblate Spheroid Heads

$$V_{FLOX} = 1728 \left(\frac{M_{FLOX}}{.95 \, \rho_{L}} + \frac{W_{he}}{7.7} \right)$$

$$V_{CH_4} = 1728 \left(\frac{M_{CH_4}}{.95 \, \rho_{L_{CH_4}}} \right)$$

$$R = \left(\frac{V_{FLOX}}{2.961} \right)^{1/3}$$

$$H = V_{CH_4} / (3.1416 \, R^2)$$

$$T_{O} = \frac{(\sqrt{2}) (1.25) P_{\text{op FLOX}} R}{2 F_{\text{ty FLOX}}} \ge .025$$

$$T_{FC} = \frac{1.25 P_{\text{op CH}_{4}} R}{F_{\text{ty FLOX}}} \ge .025$$

$$T_{FS} = \frac{(\sqrt{2}) (1.25) P_{\text{op CH}_{4}} R}{2 F_{\text{ty FLOX}}} \ge .025$$

$$WT = 1.0392 R^{2} T_{O} + .64089 RH T_{FC} + .5196 R^{2} T_{FS}$$

At this point, all weights were accumulated (insulation weight, vapor weights, helium weights, helium bottle weight and fuel and oxidizer tank weights). If this total weight was less than any of the 5 previous least weight cases, then it was inserted in its appropriate place and the heaviest previous case was dropped.

APPENDIX B

VEHICLE STRUCTURE EVALUATION - PRELIMINARY DESIGN

Section 1.2.3 of Volume I, "Final Report", NASA CR-121103, described the structural evaluation for the ten preliminary vehicle designs. Structural weights for the main body and Centaur adaptor for each of the study vehicles were summarized in Figures 1.2-10 and 1.2-11 of that report.

This appendix presents sketches of the vehicles, the major dimensions and weight assignments, and the detailed results of the computer aided OPTRAN (Optimization by Random Search) structural optimization program. The OPTRAN program operations were discussed in Section 1.1.3 of the Volume I document.

Three payload heights were evaluated for each of the study vehicles. These heights were approximately 1/2 and 1/5 of the vehicle diameter and a minimum case of 4 inches (10.2 cm) above the top deck insulation. Two continuous shell construction methods, and truss structures were evaluated in combination with three materials. The shells consisted of honeycomb sandwich and ring stiffened corrugations. The materials were aluminum, carbon/epoxy, and fiberglass/epoxy composites.

Sketches of the vehicle configurations with the dimensions and weights used for the study are shown in Figures B-1 through B-10.

The results of the study are presented in Tables B-1 through B-13. The case numbers refer to payload heights, Case 1 being the lowest payload position. The limits on member sizes as well as the optimum design point are shown. The results of the honeycomb sandwich evaluation indicated that shell loading was too low to make this approach competitive on a weight basis. In the majority of the cases, minimum gage configurations were selected. Examination of the weight results shows that optimum configurations were not achieved in all cases. For example, in Table B-1 for Vehicle 1-14 (upper body) with an aluminum structure, the highest shell loading produced the least weight case. To achieve more nearly optimum designs for all cases the design limits were narrowed as shown in Table B-4 with the result that minimum gages were selected for all vehicles and all payload heights. Finalized shell weights are also shown in Table B-4. Several "non-optimum" cases were noted in the truss structure data also; however, since these cases tended towards minimum gage designs, it was concluded that the least weight case could be used where discrepancies existed.

It should be noted that the weights of Tables B-1 through B-13 do not include end attachments. The weights are for the structural configuration, extending between the panel points shown in Figures B-1 through B-10.

Vehicle 2-19 carried axial, bending and internal pressure loads in the tank wall, therefore, a stiffened skin was necessary to avoid shell buckling. It appeared that this configuration could combine tank mounted and shell mounted MLI effectively.

An analysis was made to determine stiffener size and spacing options for the three payload heights and vehicle configuration shown in Figure B-10. The stiffener chosen was a 1.00 inch high leg, integral with the tank wall and aligned with the longitudinal axis of the vehicle. Several design points were evaluated to establish stiffener proportions in terms of compression load carrying capacity. The results are presented in Figure B-11. A tank gage of .025 in. (0.064 cm) stiffener thickness of .040 in. (0.10 cm) and spacing of 2.00 in. (5.1 cm) were set as minimum values. The table below shows the compression loads and stiffener proportions at the top and bottom of the cylindrical shell for the three loading conditions (three payload heights).

			•	•
		28.5 in (0.7 m)	37.5 in (0.9m)	67.5in(1.7m)
	$N_{x} \sim lb/in (kN/m)$	260 (45.5)	288 (50.5)	377 (66.0)
Top of Cylindrical Shell	tskin~ in (cm)	.029 (.074)	.031 (.079)	.040 (.102)
	t _{stiff} ~ in (cm)	.046 (.117)	.049 (.125)	.060 (.152)
	Spacing ∼ in (cm)	2.30 (5.85)	2.50 (6.35)	3.00 (7.60)
	$\bar{f} \sim in (cm)$.050 (.013)	.052 (.013)	.060 (.152)
	$N_{x} \sim lb/in (kN/m)$	300 (52.5)	326 (57.0)	417 (73.0)
Bottom of	t in (cm)	.032 (.081)	.035 (.089)	.044 (.112)
Cylindrical Shell	t _{stiff} ~in (cm)	.051 (.130)	.053 (.135)	.064 (.163)
	Spacing ∼in (cm)	2.50 (6.35)	2.70 (6.85)	3.22 (8.18)
	t̄∼in (cm)	.053 (.135)	.055 (.140)	.064 (.163)

The \bar{t} values defined the shell thickness assuming the stiffeners were "smeared" over the surface. The average dimensions between top and bottom of the cylindrical shell were used in the vehicle design and meteoroid protection evaluation of the Volume I document.

The conical shell was checked for buckling stability when subjected to an engine thrust load of 12,500 lbs (55.5 kN). The minimum gage required for internal pressure loads was found to be adequate for the thrust load condition. A "Y"

ring was necessary at the intersection of the conical and cylindrical surfaces to carry the radial loads. A cross section of 0.26 square inches (1.68 cm²) was required. The weights of the "Y" rings, shell stiffening and tank skirt plus ring were respectively;

```
Case 1: 5.1 lb (2.3 kg), 4.5 lb (2.0 kg), 7.1 lb (3.2 kg)
Case 2: 5.1 lb (2.3 kg), 4.6 lb (2.1 kg), 7.2 lb (3.3 kg)
Case 3: 5.1 lb (2.3 kg), 6.1 lb (2.8 kg), 8.0 lb (3.6 kg)
```

The Vehicle Structure Evaluation was concluded by calculating end fitting and attachment bracket weights for all of the vehicles and adaptors using the curves of Figures 1.2-6 and 1.2-7, and the methods described in Section 1.2.2 of the Volume I document. The final results are presented in Tables B-14 through B-23.

Figure B-1: VEHICLE 1-3

Figure B-2: VEHICLE 1-2A

Figure B-3: VEHICLE 1-2B

Figure B-5: VEHICLE 1-14

Figure B-6: VEHICLE 2-14

Figure B-8: VEHICLE 1-7

Figure B-9: VEHICLE 2-18

Figure 8-10: VEHICLE 2-19

Figure B-11: VEHICLE 2-19 STIFFENER PROPORTIONS

Page intentionally left blank

Table B-1: HONEYCOMB SANDWICH DATA (Cont)

VEHICLE CONFIG	MATERIAL	CASE	SHE		ULT LOAD N _X	CORE	CORE DEPTH						FACE SK THICKNE (in)			IN SS		RIBBO	N TH		KNESS		CE	LL (in		Œ,	WEIGHT
COAFIG			(4	n)	(lb/in)	(Ib/ft ³) *	M	AX.	X MIN D		DES	MAX		М	N	DE	S	MAX	MIN		DES	ES MA		MIN		DES	(lb/ft ²)
		1	50		287	1.58	0.500		0.250 0.25		0.255	0.040		0.0	20	0 020		0 003	0 001		0.001	0.3	75	0 25	50	0.338	0 605
	ALUMINUM	2			311	1.95					0.250					1				\perp						0 283	0 6 1 0
		3		Π	365	1.50					0.262														I	0 358	0 604
1 7 6		1		Г	287	1 47			Г		0.250												\Box			0 365	0 334
3 E S	CARBON/ EPOXY	2	Г		311	1 42			Г		0.257							Ţ								0 374	0 334
VEHICLE 1-14 (UPPER BODY)		3			365	1 44					0.251							0.003	0 00	1	0 001					0 373	0 334
>=		1	Г		287	3.33					0.252		,					0.005	0.00	3	0 003			T		0 317	0 439
	FIBERGLASS	2			311	2.86	1				0.254							0 005	0 00	3	0 003			1		0 369	0 432
		3	54	•	365	2.86	0 :	500			0.253	Q.C	¥ 0					0.005	0 00	3	0 003			0 2	50	0.372	0.431
		1	3	6.5	478	1 41	0.3	270			0.251	0.0	121					0.003	0.00	1	0.001			0 37	75	0 375	0 601
1	ALUMINUM	2			519	1 41					0.251										_			1	$_{ m I}$		0 601
- 5		3			571	1.41					0.251																0 601
VEHICLE 1-14 (LOWER BODY)	64.0004	1			476	1 42					0.250								Ш								0 332
3,5	CARBON/ EPOXY	2			519	1 42																					0 332
ĬŠ		3			571	1 42	0.:	270										0 003	o òc	1	0 001						0.332
>=		1			478	2.81	0.	300		L	Ш							0 005	0.00	В	0 003	Ц			_		0 430
J	FIBERGLASS	2			519	2.81	0.	300		L		L						0 005	0.00	3	0.003			_		_	0 430
L		3	3	B.5	571	2.81	Q.	300		L	0.250	00	221					0.005	0.00	3	0.003			0.3	75	0.375	0 430
		1	4	2.5	296	144	0	500			0.251	00)40					0 003	0 00	11	0.001			0 2	50	0 371	0 602
l	ALUMINUM	2		L	322	1 55	L	L		L	0.253	Ľ		Ц					Ц		_			_		0 344	0 605
		3		L	377	1 58	L	L	L	L	0.253	L							Ш							0 338	0 605
8.7		1		L	296	144	L	L	L		0.254								Ш					╛		0 374	0 334
VEHICLE 2-14 (UPPER BODY)	CARBON/ EPOXY	2	<u> </u>	L	322	143	L				0.252	L														0.372	0.334
34		3		L	377	1 42	L	L	L	L	0.251		Ш					0 003	0 00	1	0 001					0 373	0 334
 > ≈		1	L	L	296	2.90	L	L	Ľ	L	0.251	L						0 005	0.00	3	0.003					0 366	0 432
	FIBERGLASS	2	Ц		322	2.81	L	L	L	L	0.251	L	Ц			Ц		0.005	0.00	3	0 003					0 374	0 430
<u></u> _		3	4:	2 5	377	2.84	L	L	$oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}$	L	0.251	L	Ц			Ц		0 005	0.00	3	0.003		_	\perp		0.371	0.431
1		1	3	B.5	437	154	L	L	L		0.252	L						0.003	0.00	11	0.001		┙			0 349	0 604
l	ALUMINUM	2	Ľ		462	1 47	L	L		L	0.250	L.		Ц				0.003				Ц				0 370	0.602
3-5		3		<u> </u>	519	1 48	L		L	_	0.251	L		Ц		Ц			\sqcup	_	\Box	Ц		\perp		0 366	0.602
<u>7</u> 8	CARRONY	'			437	1 42	L	L	L	L	0.250	L	L	Ц		Ц			Ц			Ц	_	\perp		0.374	0.334
VEHICLE 2-14 (LOWER BODY)	CARBON/ EPOXY	2	_	_	462	1 43	L	$oldsymbol{ol}}}}}}}}}}}}}}}}}}$	lacksquare	$oldsymbol{oldsymbol{oldsymbol{eta}}}$	0.250	L	L	Ц		Ц			$oxed{oxed}$			Ц	_]	\perp	_[0 375	0 334
置		3	<u> </u>	_	519	1 44	L	$oldsymbol{ol{ol{ol}}}}}}}}}}}}}}}}$	L	L	0.250	L	Ц	Ц			Ш	0 003	000)1	0 001					0.370	0 334
5=		,	$oldsymbol{ol}}}}}}}}}}}}}}}}}$		437	2.87	L	$oxed{oxed}$	$oxed{igspace}$	匚	0.252	L	L	Ц				0 005	0 00	ε	0 003			$oxed{I}$		0 375	0 432
1	FIBERGLASS	2	<u> </u>	<u> </u>	462	2.85	L	L	L	_	0.251	L		Ц				0 005	0 00	8	0.003	Ы				0 371	0.432
		3	36	Ľ5	519	2.81	Q.	500	Q.	250	0 256	00	X 0	00	20	0.0	20	0 005	0 00	3	0 003	0.3	75	0.25	50	0 374	0 432

*ALUM CORE WITH ALUM & CARBON FACES HRP (F.G.) CORE WITH F.G. FACES

Table B-1: HONEYCOMB SANDWICH DATA

VEHICLE		0465	SHE		ULT LOAD	CORE DENSITY	Γ	œ		DEI	тн		FA	CE :	SKI NE:	N SS		RIE	во	N THIC	KNE	ss		CE	LL:		ZE	WEIGHT
CONFIG	MATERIAL	CASE	(c		N _X (N/m)	(Kg/m ³)*	M	٩x	M	_	DES	M/	x	MI		DI	ES	M	٩X	MIN	DE	s	MA	χŢ	MIN	_	DES	(Kg/m ²)
		1	12	7	5.023	25,31	1.	27	06	35	0.65	0.1	02	00	51	00	151	00	008	0 003	0.00	23	0 9	53	0 63	35	0 858	2 95
	ALUMINUM	2			5,443	31,24		1	П	Г	0 635	П	П	1		П				1	T	┪	1	ヿ	+	7	0 7 18	2 98
_		3			6 388	24 03	r	T			0.665		П			Г		Г			\Box	\neg	1	ヿ	T	٦	0 909	2 948
VEHICLE 1-14 (UPPER BODY)		1			5,023	23 55		T			0 635	Г				T					П	┪	1	7	7		0 927	1 63
3. E	CARBON/	2			5 443	22 75	\vdash	T	_	Г	0 653		П			Г					\Box		7	7	1	┪	0 95	1 63
E	EPOXY	3			6 388	23 07	Γ	1	Г	Г	0 638							00	008	0 003	0 0	03		╗	\Box		0 947	1 63
اکج		1	T		5 005	53.35	Γ		Ι,		0.64							00	13	0 008	0 0	28	T	\exists	$ \top $		0 805	2 14
	FIBERGLASS	2			5 443	45.82	Γ,		0 6	35	0.645							00	13	0 008	0 00	28		\neg	\neg		0 937	2 108
		3	12	7	6 388	45 82	1.	27	Q.6	14	0 643	0 1	02					0.0)13	0 008	0 00	28		٦	0 63	5	0 945	2 103
		1	9	2.7	8,330	22 59	a	69			0 638	0.0	53					00	108	0 003	0.00	23	Ī		0 95	3	0 953	2 933
l	ALUMINUM	2			9 083	22 59					0.638																	2 933
_5		3			9,993	22 59					0.638																	2 933
VEHICLE 1-14 (LOWER BODY)		1			8,330	22 75	L			L	0.635						L	L			Ш							1 62
38.8	CARBON/	2			9,083	22 75	L.																					1 62
18€		3			9,993	22 75	0	69	_		Ш							00	008	0 003	0 00	03						1 62
>=		1			8 330	45 02	0	76		L					L	L	L	0.0	113	0 008	000	D8	\perp	╝	\perp			2 10
	FIBERGLASS	2			9,083	45 02	0.	76				Ы			L		L	00	113	0 008	0 0	90						2 10
		3	9:	2.7	9 993	45 02	۵	76	L		0.635	00	53					00	13	0.008	0 00	08			0 95	3	0 953	2 10
		1	10	95	5,180	23 07	1	27	0 (34	0.638	0 1	82				L	00	908	0 003	0 00	03			0 63	5	0 942	2 94
	ALUMINUM	2	L	_	5,635	24 83	L	L	0 6	35	0 643	\Box			L	_		L	_		Li		\perp		_		0 874	2 95
		3		$oxed{oxed}$	6,598	25 31	L	L.	Ľ	L	0.643			Ш		L	L	L	L		Ц		ightharpoons	_	\perp		0 859	2 95
7.6		1	L		5,180	23 07	L	L		L	0 645					L	L	L			Ш	_	\perp		\perp		0 95	1 63
78	CARBON/ EPOXY	2		L	5,635	22 91	L	L		L	0.64)						L	L							\perp		0 945	1 63
VEHICLE 2-14 (UPPER BODY)		3	L		6,598	22 75		L	L		0 638					L		00	i08	0.003	οò	03					0 947	1 63
>=		1	L		5 180	46 46	L	L			0 638	L.				L	L	0.0	113	0 008	0.00	08		$oldsymbol{ol}}}}}}}}}}}}}}}}}}$			0 93	2 108
	FIBERGLASS	2	L	_	5,635	45 02	L	L			0.638							00	113	0 008	00	08		\Box			0 95	2 10
		3	107	95	6,598	45 50	L	L			0 638			Ц		L	L	0.0	113	0 008	00	08		\bot	┙		0 942	2 103
		1	97	79	7 648	24 67	<u> </u>				0.664					L	L	0.0	008	0.003	0.0	03					0 886	2 948
Į.	ALUMINUM	2	Ľ	<u> </u>	8,085	23.55	L	L	L	_	0 635					L	L.,						\perp	┙	\perp		0 94	2 94
		3	<u></u>	<u></u>	9,083	23.71	L	L	Ц	L	0.638	Ш			L	L	L	L	L		Ц	_]	_[$oldsymbol{ol}}}}}}}}}}}}}}}}}}}}}$		J	0 93	2 94
- 2 6		1		L_	7,648	22 75	_	L	Ц		0 635	Ц				$oxed{oxed}$	L				Ц	[\perp		0 95	1 63
VEHICLE 2-14 (LOWER BODY)	CARBON/ EPOXY	2	$ldsymbol{ldsymbol{ldsymbol{eta}}}$		8,085	22 91	L	L.	Ц	_	0.635					<u> </u>	L	L				_[\downarrow	ot	\perp		0 953	1 63
E		3	L	匚	9,083	23.07	L	L	Ц		0 635				L		L	0.0	08	0.003	00	ထဒ					0 94	1 63
25		1	<u>L</u>		7,648	45 98	$oxed{oxed}$		Ц		0.64)					<u> </u>	L	00	113	0 008	0 0	08	$ \rfloor $	$ \rfloor $	\prod		0 953	2 108
	FIBERGLASS	2			8 085	45.66	L	L	Ц		0.638					\Box		00)13	0 008	0.0	08		$oxed{J}$	I		0 942	2 108
		3	97	79	9,083	45.02	1	27	0 6	35	0 65	0	02	00	51	00	051	00	113	0 008	0.0	08	0 9	53	0.63	5	0 95	2 108

*ALUM CORE WITH ALUM & CARBON FACES HRP (F G) CORE WITH F G FACES

Table B-2: HONEYCOMB SANDWICH DATA (Cont)

VEHICLE	MATERIAL	CASE	SHE		ULT LOAD N _X	CORE DENSITY		œ	RE (ir		TH .			ACE HICK (in	(NE			RIBBO		THIC	KNESS			L SIZ	?E	WEIGHT
CONFIG				n.)	(IP/w)	(Ib/ft ³) •	MA	٩X	М	N	DES	M/	١X	МІ	N	DES	5	MAX	N	IIN	DES	KAM	(N	IIN	DES	(lb/ft ²)
		1	3≅	3.5	119	1 52	0 5	00	0.2	50	0.251	0.0	40	0.02	20	0 02	20	0 003	0	001	0.001	0.37	5 0.	250	0 354	0 603
	ALUMINUM	2	,	1	136	1 84		1		1	0.253	1	Ī	4		4		1		1	1	1		4	0.293	0 609
		3			165	1 48					0.260	Г										П			0 361	0 603
?		1			119	1 45					0.250								T				T	T	0 366	0 332
CLE	CARBON/ EPOXY	2			136	1 48			-		0.252							1	1	1	1		Ī		0 365	0.334
VEHICLE	COAT	3			165	1 44		Г			0.251						_1	0 003	0	001	0 001	П	Ť	1	0 373	0 334
		1			119	2.84		Г			0.256							0 005	0	003	0 003	П	T	Τ	0 369	0 431
	FIBERGLASS	2	,		136	2.88		Γ			0.253			Ī				0 005	0	003	0 003	П	T		0 372	0 431
		3	35	3.5	165	2.99		Γ			0.250					T	\neg	0,005	0	003	0 003	П	T	T	0 363	0 433
		1	17	70	142	1 42		Γ			0.250							0 003	0	001	0 001		T	1	0 349	0 604
	ALUMINUM	2		1	159	1 48					0.253		П					$\overline{}$	T	1	1		Τ.		0.367	0 602
_ '		3			188	1 79					0.255								Ι				Ī		n 299	0 609
- 5 2-5		1			142	1 48		Γ			0.250								Τ						0 368	0 334
VEHICLE 1-2 (LH ₂ ON TOP)	CARBON/ EPOXY	2			159	1 46		Γ			0.253								Ι	1			T	Π	0 370	0 334
FE		3			188	1 43		Γ			0.254							0 003	0	001	0 001			Г	0 372	0 334
7-		1			142	2.85					0.251							0 005	0	003	0 003				0 372	0 431
	FIBERGLASS	2		1	159	2.82					0.253							0 005	0	.003	0.003				0 372	0 430
		3	17	70	188	2.85					0.261							0.005	0	003	0 003				0 369	0 434
		1	33	3.5	113	1 43					0.258							0.003	0	001	0 001		Π	П	0 371	0 603
	ALUMINUM	2		ļ .	129	1,51					0.252							4	Γ	<u> </u>	_				0 357	0 603
		3			159	1.68					0.250									Ι					0 321	0 606
1.0		1			113	1 44					0.253														0 369	0 334
S C	CARBON/ EPOXY	2			129	1 44		L			0.252							1		1	1				0.373	0.334
VEHICLE 1-2 (LF ₂ ON TOP)		3			159	1 45					0.251							0 003	0	001	0.001				0.366	0 334
		1			113	2.82					0.251							0 005	0	.003	0 003			\mathbf{L}	0 373	0 430
	FIBERGLASS	2	'	†	129	2.84					0.250							0 005	0	003	0 003				0 371	0 431
		3	3	3.5	159	2.85					0.250							0.005	0	.003	0.003		I		0.375	0.431
		1	Z	2.0	306	1 45					0.251	\square						0.003	0	001	0 001	\coprod	$oxed{\mathbb{L}}$		0 374	0 603
	ALUMINUM	2		1	326	1 57					0.251	Ш						1		1	1	\coprod			0 345	0 604
		3			360	1.82	L	L			0.253]					\prod	Ι		0 293	0 609
🚡	CA DECOV	1			306	1 42	L	L	L	L	0.250	Ц				П						\Box			0.375	0 333
VEHICLE 2-2	CARBON/ EPOXY	2	L		326	1 44	L,	L		L.	0.252	Ц				\sqcup		•		†		Щ	\perp	\perp	0 371	0 334
VE		3	L.	L_	360	1 48	L	L	L.		0.252					Ш		0.003	0	.001	0.001				0.361	0 334
		1		L	306	2.82	L	L	L	L	0.272					\sqcup		0 005	0	003	0 003		\perp		0 373	0 436
	FIBERGLASS	2	\sqcup	!	326	2,92	\square	<u> </u>		_	0.277		_	_ 1			_	0.005	0	003	0.003	1		1	0 366	0 438
		3	22	2.0	360	2.84	0.5	500	0.2	50	0.297	0 0	40	0.0	20	0 02	20	0.005	0	003	0.003	0 37	5 0	250	0 371	0 441

*ALUM CORE WITH ALUM OR CARBON FACES HRP (F.G.) CORE WITH F.G. FACES

Table B-2: HONEYCOMB SANDWICH DATA

VEHICLE	MATERIAL	CASE	SHE		ULT LOAD N _X	CORE DENSITY		œ		DEI m)	тн		F	ACE HIC	KNI KNI	IN ESS		RIBB		سر HiC	KNESS			LL SI (cm)	ZE	WEIGHT
CONFIG			1.	m)	(N/m)	(Kg/m ³)°	M	AX	М	IN	DES	M	١X	M	IN	DI	S	MAX	M	IIN_	DES	MA	x]	MIN	DES	(Kg/m ²)
		1	97	79	2,083	24,35	2	27	0.6	335	0.638	0.1	02	QO	51	00	51	0.000	3 O.	003	0.003	0.95	3	0.635	0 876	2 943
	ALUMINUM	2			2,380	29 48		1		_	0.643				L			1		1			$oxed{oxed}$	1	0 744	2.972
_		3			2,888	23 71					0.661														0.917	2 943
?		1			2,083	23.23					0.635														0 93	1 620
G.	CARBON/ EPOXY	2			2,380	23.39					0.643							•		ì					0 927	1 630
VEHICLE	4.0/1	3			2 888	23.07					0.638							0.006	ı O	003	0.003			Ι	0.947	1 630
		1			2 083	45 50		L	L		0.650	L						0.013	0	008	0.008				0 937	2 103
	FIBERGLASS	2		1	2 380	45.82				L.	0.643	L.			_			0.013	0	008	0 008			\perp	0 945	2.103
		3	97	79	2 888	47 90					0 635							0 013	0	900	0 008				0 922	2 113
		1	43	L18	2,485	22 75					0.635							0.008	Q.	003	0 003				0 886	2 947
	ALUMINUM	2		<u> </u>	2,783	23,36					0 643							Ī		1	1				0 932	2 938
		3			3,290	28 76		L			0.648								L						0.76	2 972
- Q		1			2 485	23.39		L		L	0 635	L	L	L	L					L	Ш			┙	0 935	1 630
VEHICLE 1-2 (LH ₂ ON TOP)	CARBON/ EPOXY	2			2,783	23.39		L		L	0.643	L			L			1	1	•	1		\perp		0 94	1 630
₹ 7		3			3,290	22 91		L		L	0.645							0 008	Q.	003	0 003				0 945	1 630
>=		1			2 485	45 66		L			0.639	L						0.013	Q.	800	0 008				0 945	2 103
	FIBERGLASS	2	<u> </u>	<u> </u>	2 783	45 18		L		L	0.843		L		L	Ц	_	0 013	Q.	800	0 008				0 945	2 098
		3	43	L18	3,290	45 66		L		L	0.663							0.013	Q.	800	0.008				0 937	2 1 18
		1	85	.08	1,978	22.91		L		L	0 655				L			0 008	Q	003	0.003				0 942	2.943
	ALUMINUM	2			2,258	24 19		L	L		0.640	L						1	L	1	1				0 907	2 943
		3			2,783	26 91		L		L	0 635				L	Ш								\perp	0815	2 957
- P		1			1,978	23 07					0.643												1	\perp	0 937	1 63C
28	CARBON/ EPOXY	2		L	2 <i>,2</i> 58	23,07				L	0.640							•	\perp					\perp	0 947	1 63C
VEHICLE 1-2 (LF ₂ ON TOP)		3			2,783	23.39					0.638							0 008	a	003	0 003				0 93	1 63C
		1			1,978	45.18		L			0 638							0 013	0	800	0 008				0 947	2 098
	FIBERGLASS	2	1		2,258	45 50		Ĺ			0.635							0.013	Q.	008	0 008				0 942	2 103
		3	86	.09	2 783	45.66					0 635							0.013	Q.	800	0.008				0.953	2 103
		1	55	.88	5,365	23.23		L	L	Ĺ	0 638							0.008	a	003	0 003				0 95	2 943
	ALUMINUM	2			5 706	25 15					0 638							1		1	4				0 876	2.947
		3			6 300	29 16					0.643												Ι		0.744	2 972
22		1			5,365	22.75					0.635														0 953	1 625
VEHICLE	CARBON/ EPOXY	2			5,705	23 07					0.640							1			1				0 942	1 630
EK.		3			6,300	23.71					0.640							0.008	a	003	0.003				0 9 1 7	1 630
		1			5 355	45 18					0.691							0,013	a	006	0 008				0 947	2.128
,)	FIBERGLASS	2		1	5,705	46.78				1	0.704			7				0.013	a	008	0 008	1		1	0.93	2 137
,		3	56	88.6	6 300	45.50	1.2	27	ae	335	0.754	0.1	02	00	6 1	QΟ	51	0.013	a	008	0.008	0 95	3 (635	0 942	2,152

*ALUM CORE WITH ALUM OR CARBON FACES HRP (F.G.) CORE WITH F.G. FACES

Table B-3: HONEYCOMB SANDWICH DATA (Cont)

MATERIAL	CASE		. ^ .	CORE		(1	n.)		TH	HICK	(NE	SS				(in)		_		(in.)		WEIGHT
744.		(in)	(lb/in)	(lb/ft ³)*	MAX	┿				₩	_		_	MA	<u>X</u>	MIN		-	-	MIN		(lb/ft ²)
	1	47	152	1.61	0.500	0.:	250	0 252	0 040	00	20	00	20	0 00	23	0.001	0.001	0.3	75	0.250	0.337	0.605
ALUMINUM	2		169	1 86	4		4	0.253	1		A			1		1				1	0.287	0.610
	3		203	1.53				0.254		-	1				1						0.354	0.604
	1		152	1 46				0.251													0 366	0.334
	2		169	1 42				0.252						1		1	1				0.374	0 334
	3		203	1 43				0.253						0 00	03	0.001	0.001				0.373	0.334
	1		152	2.85				0.251						0.00)5	0.003	0.003				0.372	0 431
FIBERGLASS	2	•	169	2.81		T		0.255						0.00	05	0.003	0.003				0.375	0.431
	3	47	203	2.89		1		0.252						0.00)5	0.003	0.003	\vdash			0.370	0.431
	1	51	379	1 43		T		0 250						0.00)3	0.001	0.001			_	0.373	0.602
ALUMINUM	2	4	405	1.43		1		0.262		1	 			4	7	4	1				0.373	0.603
	3		458	1 48		†	†	0 256		1					\dashv	+			П		0.375	0.603
	1		379	1 44		1		0.251		1					7			\vdash			0 373	0.334
CARBON/	2		405	1 44		†-		0 252							1	+				_	0.373	0.334
EFUX	3		458	1 44		†	†	0 256	-	-				0 00)3	0.001	0 001					0 334
	1		379	2.82		+	1	0 251		 	-				\dashv					-	├	0 432
FIBERGLASS	2		405	2 90			 			1										+		0.431
	3		458	2 97	0.500	0.:	250	0.251	0.040	0.0	·)20	0 0	20		-+			0.3	375	0.250		0 433
						\dagger				 					\dashv							
ŀ				<u> </u>		+		L.,		,					\dashv			-			 	
_ / _ F _ / _	CARBON/ EPOXY FIBERGLASS ALUMINUM CARBON/ EPOXY	1 ALUMINUM 2 3 1 1 EIBERGLASS 2 3 1 1 CARBON/ EPOXY 3 1 1 EIBERGLASS 2 2 1 1 EIBERGLASS 2 2 EIBERGLASS 2 2 EIBERGLASS 2	MATERIAL CASE HEIGHT (in) 1 47 ALUMINUM 2 1 CARBON/ 2 2 3 1 FIBERGLASS 2 1 ALUMINUM 2 3 CARBON/ 2 4 MATERIAL CASE HEIGHT N _X (Ib/ In)	MATERIAL CASE HEIGHT N _X (lb/in) DENSITY (lb/ft ³)* ALUMINUM 2	MATERIAL CASE HEIGHT NX (Ib/In) DENSITY (Ib/ft ³)* MAX 1 47 152 1.61 0.500 2 169 186 3 203 1.53 CARBON/EPOXY 1 152 146 2 169 142 3 203 143 1 152 2.85 FIBERGLASS 2 169 2.81 3 47 203 2.89 1 51 379 143 ALUMINUM 2 405 1.43 3 458 144 1 379 2.82 FIBERGLASS 2 405 2.90	MATERIAL CASE HEIGHT N _X (lb/in) DENSITY (lb/ft ³)* MAX M 1 47 152 1.61 0.500 0. ALUMINUM 2 169 186 1 3 203 1.53 1 CARBON/ 2 169 142 1 3 203 1.43 1 FIBERGLASS 2 169 2.81 1 ALUMINUM 2 169 1.43 1 ALUMINUM 2 169 2.81 1 ALUMINUM 2 169 1.43 1 CARBON/ 2 169 2.81 1 ALUMINUM 2 169 1.43 1 ALUMINUM 2 169 1.43 1 CARBON/ 2 169 1.43 1 ALUMINUM 2 169 1.43 1 ALUMINUM 2 169 1.43 1 ALUMINUM 2 169 1.44 1 CARBON/ 2 169 1.44 1 ALUMINUM 2 169 1.46 1 ALUMINUM 2 169 1 ALUMINUM 2 169 1 ALUMINUM 2 169 1 ALUMINUM 2 169 1 ALUMI	MATERIAL CASE HEIGHT (III) (III) (III) (III) (IIII) (IIII) (IIII) (IIIII) (IIIIIIIIII	MATERIAL CASE HEIGHT NX IIb/III CIN. (III) (III) (IIb/III CIN. CIN.	MATERIAL CASE HEIGHT NX (IIb/III) DENSITY (III) MAX MIN DES MAX ALUMINUM 2	MATERIAL CASE HEIGHT (in) DENSITY (lb/in) DEN	MATERIAL CASE HEIGHT NX (IIb/III) DENSITY (III.) (I	MATERIAL CASE HEIGHT N _X (Ib/In) DENTY (Ib/IT) MAX MIN DES MAX MI	MATERIAL CASE HEIGHT NX (In) (Ib/In) (MATERIAL CASE HEIGHT N	MATERIAL CASE HEIGHT NX (IIb/Ir) (Ib/ft³)* MAX MIN DES MAX MIN DES MAX ALUMINUM 2	MATERIAL CASE HEIGHT (III) (Ib/III) (Ib/III) (Ib/III) (IIII) (IIII) (IIIIIIIIIIII	MATERIAL CASE HEIGHT NX (Ib/In) (Ib/IT) (Ib/IT	MATERIAL CASE HEIGHT N	MATERIAL CASE HEIGHT N	MATERIAL CASE HEIGHT N	MATERIAL CASE HEIGHT NX (IIb/In) (II	

*ALUM CORE WITH ALUM AND CARBON FACES HRP (F G.) CORE WITH F G FACES

Table B-3: HONEYCOMB SANDWICH DATA (Cont)

VEHICLE CONFIG	MATERIAL	CASE	SHE	LL GHT	ULT LOAD N _X	CORE DENSITY	(COF	RE DI	PTH			HIÇI	SK KNE m)			RIB	BO	THIC	KNES	S	C		SIZE m)	E	WEIGHT
5011110				m)	(N/m)	(Kg/m ³)*	MA	Χ	MIN	DES	N	/AX	М	IN	DI	ES	MA	·Χ	MIN	DES	M	AX	MII	N	DES	(Kg/m ²)
		1	119	.38	2,660	25.79	1.2	7	0.63	0.64	0	.102	0.0)51	0.0)51	0.0	108	0.003	0.003	0.9	9 53	0 63	35	0.856	2.953
	ALUMINUM	2		1	2,958	29,80	4		4	0.643	3	1		1		1	1		4	A		A	Å	7	0.729	2.977
		3			3,553	24.51				0.649	5													1	0 899	2.948
: 2-3		1			2,660	23.39				0.638	3						П				1			<u> </u>	0.93	1.630
VEHICLE	CARBON/ EPOXY	2			2,958	22.75				0.64							1		1		\top			1	0.95	1.630
/EH		3			3,553	22.91	П	ı		0.643	3						0.0	80	0.003	0.00				7	0.948	1.630
		1			2,660	45.66				0.63	3						0.0	113	0.008	0 000	3	<u> </u>		7	0.945	2.103
F	FIBERGLASS	2			2,958	45.02				0.64	3						0.0	13	0.008	0.008	1			7	0.948	2.103
	Î	3	119	9.38	3,553	46.30				0.64	3						0.0	13	0.008	0.001	3		\Box	1	0.94	2.103
		1	129	9.54	6,633	22.91				0.63	5						0.0	08	0.003	0.003	1			7	0.948	2.938
[4	ALUMINUM	, 2		1	7,088	22.91		T		0.64	1						1		4	1	1		\Box	1	0 948	2.943
_		3			8,015	23.71		1		0.65	T										†			1	0.953	2.943
2-18		1			6,633	23.07		T	1	0.63	В										1			1	0.948	1.630
	CARBON/	2			7,088	23.07			1	0.64							П				1			1	0.948	1 630
VEHICLE		3			8,015	23.07	П	1		0.65							0.0	08	0.003	0.00	3				0.943	1.630
> [1			6,633	45.18				0.63	В	1					0.0	113	800.0	0.00	3			1	0.95	2 113
 	BERGLASS	2	1		7,088	46.46	1	1	1	0.63	в	1	П		1		0.0	13	0.008	0.00	3 1		1	1	0.953	2.103
1	ľ	3	129	9.54	8,015	47.58	1.2	7	0.63	0.63	в о	.102	0.0)51	0.0)51	0.0	13	800.0	0.001	0.9	953	0.6	35 (0.943	2.113
								1			\dagger									_	\dagger		<u> </u>	\top		
	ļ		-					7			\dagger										\dagger			\dashv		

^{*}ALUM CORE WITH ALUM AND CARBON FACES HRP (F.G.) CORE WITH F.G. FACES

THIS PAGE INTENTIONALLY LEFT BLANK

Table B-4: HONEYCOMB SANDWICH DATA (NARROW LIMITS)

	CORE DENSITY LB/FT3.	1	RE DEF		TI	ACE SK HICKNE IN. (CN	:SS	TH	IIBBON ICKNE N. (CN	SS	i	LL SIZ		WEIGHT LB/FT ²
	(kg/m ³)	MAX	MIN	DE SIGN	MAX	MIN	DE SIGN	MAX		DE SIGN	MAX	MIN	DE SIGN	(kg/m²)
ALUM	1,41	.270	.250	.251	.021	020	.020	.003	001	001	,375	.375	.375	.601
ALL STUDY VEHICLES AND CARBON	(24,68) 1,42	(,686) .270	(.635) .250	(.638) .250	(.003) .021	,051) ,020	.020	(800,) .003	.003)	,003) ,001	(<u>.953)</u> .375	(953) .375	(.953) .375	(2.93) .333
ALL PAYLOAD HEIGHTS	(24,85)	(.686)	(.635)		(.053)	(,051)	(051)	(800.)	(.003)		(,953)		(.953)	(1,625)
FIBER	2,81 (49,18)	.300	.250 (.635)	(835)	.021	.020	,020	.005	.003	.003	,375	.375 (.953)	.375	.430 (2.098)
		(.,,02,	1,000/	1,000/	1.0007	1.0017	(,001)	(.013)	(.006)	1.006)	(,353)	1.533)	(.393)	(2.098)
		ļ							-					
										į				
						ļ 1								
			İ											
				દ										
		-										-		
		<u> </u>												
												 		
*ALUM CORE WITH ALUM AND GARDON FACTOR														i

^{*}ALUM CORE WITH ALUM AND CARBON FACES

Table B-5: TRUSS STRUCTURE DATA

	VEHICLE CONFIG-	MATERIAL	CASE	MEM- BER	LENGTI	LOAD		THICKI		TU	IBE RAD	IUS	WEIGHT PER MEMBER
	URATION			QTY	(in.)	(lp)	MAX	MIN	DES	MAX	MIN	DES	(IP)
		ALUMINUM	1	24	42	3,246	0,200	0 020	0 020	2 50	1 00	1 01	0 526
ł		ρ = 0.10 LB/IN. ³ E = 10 x 10 ⁵	2			3,319	0 200	0 020	0 020	2 50	1.00	1 03	0 538
ļ	_	LB/IN.2	3			3,520	0.200	0 020	0 021	2 50	1 00	1 00	0 547
1	7	CARBON-EPOXY	1			3,246	0 070	0 028	0 028	2 25	0 75	0 788	0 317
	ICLE	ρ= 0.055 LB/IN. ³ E = 28 x 10 ⁶	2			3,319	0 070	0.028	0 028	2 25	0 75	0.793	0 319
J	VEHICLE 1-3	LB/IN ²	3			3,520	0.070	0 028	0 028	2 25	0 75	0 809	0 325
J		FIBERGLASS	1			3,246	0.054	0 030	0 030	2 50	1 00	1 02	0 526
		ρ= 0.066 LB/IN 9 E = 7 5 x 10 ⁶	2			3,319	0 054	0.030	0 030	2 50	1 00	1 04	0 532
1		LB/IN. ²	3		42	3,520	0.054	0 030	0 030	2 50	1 00	1 05	0 541
1			1		56	3,885	0.200	0.020	0 020	2 50	1 00	1 24	0.874
Ш		ALUMINUM	2			3,954	0 200	0 020	0.020	2 50	1 00	1 24	0 881
¥	~. \ ~		3			4,079	0 200	0 020	0 020	2 50	1 00	1 26	0 890
PAYLOAD SUPPORT	VEHICLE 1-2 UPPER BODY (LH ₂ ON TOP)		1			3,885	0 070	0 028	0 028	2 25	0 75	1 02	0 558
જ્{	CLE ON	CARBON/ EPOXY	2			3,954	0 070	0 028	0 028	2 25	0.75	1 03	0 560
	/EHI JPPE LH2	-	3			4,079	0 070	0.028	0 028	2 25	0 75	1 04	0 566
₹	/) (1			3,885	0 054	0 030	0 030	2 50	1 00	1 33	0 926
- "		FIBERGLASS	2			3,954	0 054	0 030	0 030	2 50	1 00	1 33	0 930
U		:	3		56	4,079	0 054	0 030	0 030	2 50	1 00	1 35	0 948
			1		23	3,223	0 200	0 020	0.020	2 50	1 00	1 02	0 291 •
		ALUMINUM	2			3,467	0 200	0 020	0 020	2 50	1 00	1 05	0 301 •
	a ż a		3			4,046	0 200	0 020	0 020	2 50	1 00	1 00	0 286
	800 TO		1			3,223	0 070	Ó 028	0 028	2 25		0 532	0 1 19
	S E R	CARBON/ EPOXY	2			3,467	0 070	0 028	0 028	2 25	_	0 544	0 123
	VEHICLE 1-2 LOWER BODY (LH ₂ ON TOP)		3			4,046	0 070	0 028	0 028	2 25	-	0 6 1 4	0 138
			1			3,223	0 054	0 030	0 030	2 50	1 00	1 00	0 288
		FIBERGLASS	2			3,467	0 054	0 030	0 030	2 50	1.00	1 00	0 288
			3		23	4,046	0 054	0 030	0 030	2 50	1 00	1 00	0 288
			1		3,7	2,997	0 200	0 020	0 020	2 50	1 00	1 07	0 495 •
		ALUMINUM	2			3,070	0 200	0 020	0 020	2 50	1 00	102 •	0 472
	A. 6		3			3,329	0 200	0 020	0 020	2 50	1 00	1 03	0 476
	10.		1			2,997	0 070	0 028	0 028	2 25	_	0 709	0 254
	VEHICLE 1-2 (LF ₂ ON TOP)	CARBON/ EPOXY	2			3,070	0 070	0 028	0 028	2 25		0715	0 256
	VEH LF2		3			3,329	0 070	0 028	0 028	2 25	_	0 734	0 263
			1			2,997	0 054	0 030	0 030	2 50	1 00	1 00	0 460
		FIBERGLASS	2			3,070	0 054	0 030	0 030	2 50	1 00	1 00	0 461
			3	24	37	3,329	0 054	0 030	0 030	2 50	1 00	1 00	0 462

*NON-OPTIMUM CASE

Table B-5: TRUSS STRUCTURE DATA

	VEHICLE CONFIG-	MATERIAL	CASE	MEM BER		GTH	LOAD		THICKI	NESS	TU	JBE RAD (cm)	IUS	WEIGHT PER MEMBER
	URATION			OTY	(crr	n)	(N)	MAX	MIN	DES	MAX	MIN	DES	(kg)
		ALUMINUM	1	24	106	68	14,438	0 508	0 051	0 051	6 35	2 54	2 57	0 239
		ρ= 10 LB/IN ³ E = 10 x 10 ⁶	2	1	1		14,763	0 508	0 051	0 051	6 35	2 54	2 62	0 244
		LB/IN 2	3				15,657	0 508	0 051	0 053	6.35	2.54	2.54	0 248
	VEHICLE 1-3	CARBON-EPOXY	1				14,438	0 179	0 071	0 071	5 72	1.90	2 00	0.144
	CLE	ρ= 055 LB/IN ³	2				14,763	0.179	0 071	0 071	5 72	1 90	2 01	0 145
	ÆHI	E = 28 x 10 ⁶ LB/IN ²	3				15,657	0 179	0 071	0 071	5 72	1.90	2 05	0 148
		FIBERGLASS	1				14,438	0 137	0 076	0 076	6 35	2 54	2 59	0 239
		P= 066 LB/IN 3	2				14,763	0 137	0 076	0 076			2 64	0 245
		E = 75 x 10 ⁶ LB/IN ²	3		106	.68	15,657	0 137	0.076	0 076			2.68	0 247
			1		142	24	17,281	0.508	0 051	0 051			3 15	0 397
1		ALUMINUM	2				17,587	0 508	0 051	0 051			3 15	0 400
#		1	3				18,143	0.508	0 051	0 051	6 35	2 54	3 20	0 404
PAYLOAD SUPPORT	VEHICLE 1-2 UPPER BODY (LH ₂ ON TOP)		1				17,281	0 179	0 071	0 071	5 72	1 90	2 59	0 253
್ಡ{	S B B S	CARBON/ EPOXY	2				17,587	0 179	0 071	0 071	5 72	1 90	2 62	0 254
ĕ,	FEH JPPE LH2	3. 5	3				18,143	0.179	0 071	0 071	5 72	1 90	2 64	0 257
¥			1				17,281	0 137	0 076	0 076	6 35	2 54	3 38	0 420
٦		FIBERGLASS	2			1	17,587	0 137	0.076	0 076			3 38	0 422
U		1	3		142	24	18,143	0 137	0 076	0 076			3 43	0 431
			1		58	.40	14,336	0 508	0 051	0 051			2 62	0 132 *
:		ALUMINUM	2				15,421	0 508	0.051	0.051			2 68	0 137*
			3				17,997	0 508	0 051	0 051	6 35	2 54	2 54	0 130
	1-2 00 TOP		1				14,336	0 178	0 071	0 071	5 72	-	1 35	0 054
	VEHICLE 1-2 LOWER BODY (LH ₂ ON TOP)	CARBON/ EPOXY	2				15,421	0 178	0 071	0 071	5.72	_	1 38	0 558
	EHI OWE		3				17,997	0 178	0 071	0 071	5 72	-	1 56	0 627
	> 7 =		1				14,336	0 137	0 076	0 076	6 35	2 54	2 54	0 131
		FIBERGLASS	2				15,421	0 137	0 076	0 076			2 54	0 131
			3		58	40	17,997	0 137	0 076	0 076			2 54	0 131
			1		94	00	13,331	0 508	0 051	0 051			2.72	0 225°
		ALUMINUM	2				13,655	0 508	0 051	0.051			2 59	0 214
	~ 6		3				14,807	0 508	0 051	0 051	6 35	2 54	2 62	0 216
	VEHICLE 1-2 (LF ₂ ON TOP)		1				13,331	0 178	0 071	0 071	5 72	-	1 80	0 115
	IC I	CARBON/ EPOXY	2		\prod		13,655	0 178	0 071	0 071	5.72	_	1 82	0 116
	VEH	L	3				14,807	0 178	0 071	0 071	5 72	_	1 86	0 119
			1				13,331	0 137	0 076	0 076	6 35	2 54	2 54	0 209
		+FIBERGLASS	2				13,655	0 137	0 076	0 076	6 35	2 54	2 54	0 2092
		}	2	24	94	00	14 807	0 137	0 076,	0 076	6 35	2 54	2 54	0 2097

* NON-OPTIMUM CASE

TABLE B-6: TRUSS STRUCTURE DATA (Cont)

VEHICLE CONFIG-	MATERIAL	CASE	MEM BER	LEN	GТН	LOAD		THICK		TU	IBE RAD	ius	WEIGHT PER MEMBER
URATION			QTY	(in	1.)	(ІЬ)	MAX	MIN	DES	MAX	MIN	DES	(IP)
		1	24	2!	5	2,698	0 200	0 020	0 020	2.50	1.00	1.02	0.318 *
	ALUMINUM	2	1	1		2,767	0.200	0.020	0.021	2.50	1.00	1 03	0.320 *
		3				3,118	0.200	0.020	0 021	2 60	1.00	1.00	0.312
VEHICLE 2-2		1				2,698	0.070	0 028	0.028	2.25	0.75	0.533	0 130
CLE	CARBON/ EPOXY	2				2,767	0.070	0.028	0 028	2 25	0 75	0.536	0.131
ÆH.		3				3,118	0 070	0 028	0.028	2,25	0 75	0 557	0.137
	-	1				2,698	0.054	0 030	0.030	2 50	1.00	1 00	0.314
	FIBERGLASS	2				2,767	0.054	0 030	0.030			1 00	0 3 1 4
		3	24	2	5	3,118	0.054	0 030	0 030			1.00	0 315
	•	1	12	5	3	6,656	0 200	0.020	0 021			1.35	0 936
	ALUMINUM	2				6,656	0,200	0 020	0 021			1.35	0 936
₹ €		3				6,679	0.200	0 020	0.020	2 50	1 00	1,43	0 945
1-1 00	CA BROW	1				6,656	0.070	0.028	0 028	2 25	0 75	1.18	0.606
VEHICLE 1-14 (UPPER BODY)	CARBON/ EPOXY	2				6,656	0.070	0 028	0.028	2 25	0 75	1.18	0.606
ZEHI UPPI		3		\perp		6,679	0.070	0 028	0.028	2 25	0 75	1.18	0 606
75		1		1		6,656	0.054	0.030	0 036	2.50	1.00	1.42	1.132
	FIBERGLASS	2				6,656	0.054	0 030	0 036	1		1.42	1.132
		3		5	3	6,679	0 054	0 030	0 036			1 42	1 132
		1		4	1	8,824	0.200	0.020	0 021			1 29	0 692
	ALUMINUM	2				9,077	0.200	0 020	0 021			1,29	0 692
4.5	·	3				9,582	0.200	0 020	0 022	2 50	1.00	1.30	0 730
1-1 300	CARRON/	1		\perp		8,824	0.070	0 028	0 042	2 25	0 75	0 866	0.512
EHICLE 1-14 .OWER BODY)	CARBON/ EPOXY	2		1 1		9,077	0.070	0 028	0 042	2 25	0 75	0 874	0518
		3		\perp		9,582	0.070	0 028	0 042	2 25	0 75	0.890	.0 526
>=		1				8,824	0.054	0 030	0 036	2.50	1 00	1 39	0.845
	FIBERGLASS	2				9,077	0 054	0 030	0 042			1.24	0 882
		3		4	1	9,582	0 054	0 030	0 042			1 27.	0 899
:	ı	1		4	6	6,119	0.200	0 020	0 020		<u> </u>	1.24	0 710
	ALUMINUM	2		11		6,119	0.200	0 020	0 020			1 24	0710
4 ×		3		$\downarrow \downarrow$		6,220	0.200	0.020	0 021	2.50	1 00	1 24	0 746
VEHICLE 2-14 (UPPER BODY)	CARBON/	1		\perp		6,119	0.070	0 028	0 028	2 25	0.75	1,03	0 456
IICL YER	EPOXY	2		1_1		6,119	0.070	0 028	0 028	2 25	0 75	1.03	0 456
VEH		3		\bot		6,220	0.070	0.028	0 028	2 25	0.75	1 04	0.457
		1	<u> </u>	$\downarrow \downarrow$		6,119	0.054	0 030	0,036	2 50	1 00	1.25	0 848
	FIBERGLASS	2	<u> </u>	1		6,119	0.054	0 030	0 036	2 50	1.00	1 25	0 848
L	<u> </u>	3	12	4		6,220 N-OPTIMUI	0 054	0 030	0 036	2 50	1 00	1 25	0 850

		Table		3-6	<u> </u>	RUS	S STRUC	TURE C	ATA (Cont)				
VEHICLE CONFIG	MATERIAL	CASE	ME! BE!		LEN	СТН	LOAD	TUBE	THICKI	NESS	TL	JBE RAD (cm)	IUS	WEIGHT PER MEMBE F
URATION			ידם	Y	(cr	n)	(N)	MAX	MIN	DES	MAX	MIN	DES	(kg)
		1	24)	63	5	12,000	0,508	0 051	0 051	6 35	2.54	2 59	0.144°
	ALUMINUM	2	1				12,308	0.508	0 051	0 053	6 35	2 54	2 62	0.145*
		3					13,869	0 508	0 051	0.053	6.35	2 54	2 54	0.142
VEHICLE 2-2		1					12,000	0 179	0 071	0.071	5 72	1 91	1.35	0.059
CLE	CARBON/ EPOXY	2					12,308	0 179	0 071	0 071	5 72	1.91	1,36	0.0594
ÆНІ	E. O.A.	3	П				13,869	0.179	0 071	0 071	5.72	1 91	1 41	0.062
		1					12,000	0 137	0 076	0.076	6 35	2 54	2.54	0.143
	FIBERGLASS	2			1		12,308	0.137	0 076	0 076	1	1	2 54	0.143
		3	24	,	63	.5	13,869	0 137	0 076	0 076			2 54	0 143
		1	12	!	134	62	29,606	0 508	0 051	0 053			3.43	0 425
	ALUMINUM	2	1		1		29,606	0 508	0 051	0 053			3 43	0 425
		3					29,708	0 508	0 051	0 051	6 35	2 54	3 63	0.429
VEHICLE 1-14 (UPPER BODY)		1	\Box	-			29,606	0 179	0 071	0 071	5 72	1 91	3 00	0 275
7. E 8. B.C	CARBON/ EPOXY	2					29,606	0 179	0 071	0 071	5 72	1 91	3 00	0 275
HE SE	2, 0	3					29,708	0.179	0 071	0 071	5 72	1.91	3.00	0 275
25		1					29,606	0 137	0 076	0 091	6 35	2 54	3 61	0 5 1 4
	FIBERGLASS	2			1		29,606	0.137	0 076	0 091	1	1	3 61	0.514
ł		3			134	62	29,708	0.137	0 076	0 091			3.61	0 514
		1			104	1 14	39,249	0 508	0,051	0 053			3 28	0.314
	ALUMINUM	2					40,375	0.508	0 051	0 053			3 28	0 314
		3					42,621	0.508	0 051	0 059	6 35	2 54	3 30	0.331
-14 20 Y		ī					39,249	0 179	0 071	0 107	5 72	1 91	2 20	0 232
LE 1 R B(CARBON/ EPOXY	2	\Box				40,375	0 179	0 071	0 107	5 72	1 91	2 22	0 235
VEHICLE 1-14 (LOWER BODY)		3					42,621	0 179	0 071	0 107	5 72	1.91	2 26	0.239
%5		1					39,249	0.137	0 076	0 091	6 35	2 54	3 53	0.384
	FIBERGLASS	2			1		40,375	0 137	0 076	0 107	1	1	3.15	0 400
		3			104	1 14	42,621	0 137	0 076	0 107			3.23	0.408
		1			116	84	27,217	0 508	0 051	0 051			3.15	0,322
	ALUMINUM	2					27,217	0 508	0 051	0 051			3.15	0.322
		3		-			27,667	0 508	0 051	0 053	6 35	2 54	3 15	0 339
2-14 20 Y		1					27,217	0 179	0 071	0 071	5 72	1 91	2 62	0 207
VEHICLE 2-14 (UPPER BODY)	CARBON/ EPOXY	2	-				27,217	0 179	0 0/1	0 071	5 72	1 91	2 62	0 207
PPE	2.00.1	3					27 667	0 179	0 071	0 071	5 72	1 91	2 64	0 207
> 2		1					27,217	0 137	0 076	0 091	6 35	2 54	3 18	0.385
	FIBERGLASS	2				H	27,217	0 137	0 076	0 091	6 35	2 54	3 18	0 365
		3	12	?	116	6 R4	27,667	0 137	0 076	0 091	6 35	2 54	3 18	0 386
		NON			<u> </u>								<u> </u>	L

Table B-7: TRUSS STRUCTURE DATA (Cont)

VEHICLE CONFIG-	MATER	IAI	CASE	MLM BER	L ENGTH	LOAD		THICKI	<u> </u>	TU	IBE RAD	ius	WEIGHT PER
URATION	WATE!		Unic	ΥτΩ	(in.)	(IP)	MAX	MIN	DES	MAX	MIN	DES	MEMBER (Ib)
-			1	12	42	6,947	0.200	0 020	0 020	2 50	1.00	1.23	0 651
	ALUMIN	UM	2	1	1	7,168	0.200	0.020	0 020	2.50	1 00	1.24	0 662
_ 5			3			7,719	0.200	0 020	0 020	2 50	1 00	1 28	0.672
2-14 00			1			6,947	0.070	0 028	0.028	2 25	0 75	1 05	0 4 2 6
SLE ER B	CARBO EPOXY		2			7,168	0 070	0.028	0 028	2 25	0 75	1 09	0 440
VEHICLE 2-14 (LOWER BODY)	Zi OX i		3			7,719	0 070	0 028	0 028	2 25	0.75	1 17	0 475
>=			1			6,947	0 054	0.030	0,036	2.50	1 00	1 31	-
	FIBERGL	.ASS	2			7,168	0.054	0.030	0 036			1.24	0 775
			3	12	42	7,719	0 054	0 030	0 036			1 28	0 794
			1	24	49	3,760	0 200	0 020	0 020			1 11	0 691 *
	ALUMIN	UM	2			3,822	0 200	0.020	0 020			1 12	0 689
			3			3,947	0 200	0.020	0 021	2 50	1 00	1 12	0 707
VEHICLE 2-3			1			3,760	0 070	0 028	0 028	2 25	0 75	0 921	0 435
CLE	CARB(EPOX)		2			3,822	0 070	0 028	0 028	2 25	0 75	0 926	0 437
Ë	2.0%		3			3,947	0 070	0 028	0 028	2.25	0 75	0 936	0 443
^			1			3,760	0 054	0 030	0 030	2 50	1 00	1 19	0 726
	FIBERGL	_ĄSS	2			3,822	0 054	0 030	0.030	1		1 20	0.728
,		:	3	24	49	3,947	0 054	0 030	0 030			1.21	0 736
			1	12	53	7,020	0 200	0.020	0,020			1 45	0 981
	ALUMIN	IUM	2	1		1	0.200	0 020	0 020			1 45	0 981
_			3				0 200	0 020	0 020	2 50	1 00	1 45	0.981
2-18			1				0 070	0 028	0 028	2 25	0 75	1 20	0.620
). CE	CARB(EPOX)		2				0 070	0 028	0 028	2 25	0 75	1 20	0 620
EHICLE 2-18	LIOX	•	3				0 070	0.028	0 028	2 25	0 75	1 20	0 620
>			1				0.054	0 030	0 036	2 50	1 00	1 45	1 153
	FIBERGL	ASS	2				0 054	0 030	0 036	1		1 45	1 153
			3	12	53	7,020	0 054	0 030	0 036			1.45	1 153
		æ	1	8	37	16,210	0 200	0 020	0 029			1 34	0 908
		MEMBER 1	2	8	37	17,400			0 031			1 33*	0 978
		M	3	8	37	18,590			0 035			1 32	1.073
1	₹ 5	Œ	1	4	47	9,100			0 022			141	0911
וכרו	Ž	MEMBER 2	2	4	47	10,480			0 023			1 46	0 994
VEHICLE 1-7	ALUMINUM	ME	3	4	47	13,340			0 026			1 52	1.160
-	`	Œ	1	4	35	22,700			0 039			1 38	1 190
		MEMBER 3	2	4	35	25,350			0 048			1.26	1 325
,				4			4 — I						

Table B-7: TRUSS STRUCTURE DATA (Cont)

VEHICLE CONFIG-	MATERI	IAL	CASE	MEM- BER	LENGTH	ì	TUBE	THICK (cm)	NESS	TU	IBE RAD	IUS	WEIGHT PER MEMBER
URATION				QTY	(cm)	(N)	MAX	MIN	DES	MAX	MIN	DES	(Kg)
			1	12	106 68	30,900	0.508	0.051	0,051	6.35	2.54	3,12	0 297
	ALUMIN	UM	2	1	1	31 883	9 508	0 051	0.051	6.35	2.54	3.15	0 300
-			3			34,334	0 508	0 051	0 051	6 35	2 54	3 25	0 305
VEHICLE 2-14 (LOWER BODY)			1			30,900	0 178	0.071	0.071	5.72	1 91	2 67	0.193
CLE SR B	CARBO EPOXY	N/	2			31,883	0 178	0 071	0 071	5 72	1.91	2.77	0 199
EHIC	2.0%		3			34,334	0 178	0.071	0 071	5 72	1,91	2 97	0 216
> =			1			30,000	0 137	0 076	0 091	6 35	2 54	3 33	-
	FIBERGL	ASS	2			31,883	0 137	0 076	0.091			3 15	0 352
			3	12	106 68	34,334	0 137	0 076	0 091			3 25	0 360
			1	24	124 46	16,724	0 508	0.051	0.051			2 82	0 314*
	ALUMIN	UM	2			17,000	0 508	0.051	0 051			2.84	0 313
			3			17,556	0 508	0 051	0.051	6 35	2 54	2.84	0 321
2-3			1			16,724	0.178	0 071	0 071	5 72	1 91	2 34	0 197
VEHICLE 2-3	CARBC EPOXY		2			17,000	0 178	0 071	0 071	5 72	1 91	2 35	0.198
ĨĦ.			3			17,556	0 178	0 071	0 071	5 72	1 91	2 38	0 201
			1			16,724	0 137	0 076	0 076	6 35	2 54	3 02	0 329
	FIBERGL	ASS	2			17,000	0 137	0 076	0 076			3 05	0 330
			3	24	124 46	17,556	0 137	0.076	0 076			3 07	0 334
			1	12	134 62	31,225	0 508	0 051	0 051			3 68	0 445
	ALUMINI	UM	2				0 508	0 051	0.051			3 68	0 445
8			3				0 508	0.051	0 051	6 35	2 54	3 68	0 445
2-1	04.000		1				0 178	0 071	0 071	5 72	1 91	3 05	0 282
CLE	CARBO EPOXY		2				0 178	0 071	0 071	5 72	1 91	3 05	0 282
VEHICLE 2-18			3				0 178	0 071	0 071	5 72	1 91	3 05	0 282
_			1				0 137	0 076	0 091	6 35	2 54	3 68	0 523
<u> </u>	FIBERGL	ASS	2				0 137	0 076	0 091			3 68	0 523
			3	12	134 62	31,225	0 137	0.076	0 091			3 68	0 523
		E	1	8	93 98	72,102	0 508	0 051	0 074			3 40	0 412
		MEMBER 1	2	8	93 98	77,395			0 079			3 38 •	0 444
		Æ	3	8	93 98	84,290			. 0 090			3 35	0 487
VEHICLE 1-7	ALUMINUM	E	1	4	119 38	40,477			0 056			3 58	0 414
וֹכ <u>ר</u>	MIN	MEMBER 2	2	4	119 38	46,615			0 058			371	0 451
VEH	ALL	ME	3	4	119 38	59,336			0 066			3 86	0 527
		ER	1	4	88 90	100,970			0 099			3 5 1	0 540
		MENIBER 3	2	4	88 90	112,757			0 122			3 20	0 602
		Σ	3	4	88 90	125,211	0 508	0 051	0 132	6 35	2 54	3 28	0 670
		•	NON OP	TIMIIM	CASE								

Table B-8: TRUSS STRUCTURE DATA (Cont)

VEHICLE CONFIG-	MATERI	AL	CASE	MEM- BER QTY	LENGT	H LOAD		E THICK			JBE RAD	ius	WEIGHT PER MEMBER
URATION		·		5	(,	(1.5)	MAX	MIN	DES	MAX	MIN	DES	(IP)
		in.	1	4	48	15,100	0.200	0.020	0.028	2 50	1 00	1 57	1 311
1		MEMBER 4	2	4	48	15,100	0 200	0.020	0 028	2 50	1 00	1 57	1 311
		Σ	3	4	48	15,100	0.200	0 020	0 028	2 50	1 00	1 57	1 311
		H	1	4	44	2,350	-	-	0 035	-		0 750	0 725
		MEMBER 5	2	4		2,350						0.750	0 725
		ž	3	4		2,350						0 750	0 725
ļ) S	8	1	4		2,453						0813	0 785
]	ALUMINUM	MEMBER 6	2	4		2,453						0813	0 785
	ALL	Σ	3	4		2,453						0 813	0 785
		ER	1	8		4,483						0 938	0 905
1		MEMBER 7	2	8	1	4,483						0 938	0 905
		₹	3	8	44	4,483			0.035			0 938	0 905
		ER	1	8	53	5,700			0 049			1 12	0 9 1 5
l.		MEMBER 8	2	8	53	5,700			0 049			1 12	0 915
		Σ	3	8	53	5,700	<u> </u>	<u> </u>	0 049	<u>'</u>	<u>'</u>	1 12	0 9 1 5
		æ	1	8	37	16,210	0 90	0 0 1 8	0 054	2 50	1 00	1 29	1 082
7-		MEMBER 1	2	8	37	17,400			0 054			1 33	1 109
LE 1		Σ	3	8	37	18590			0 054			1 36	1 134
VEHICLE 1-7	:	E	1	4	47	9,100			0 042			1 37	1 118
>		MEMBER 2	2	4	47	10,480			0 042			1 43	1 172
		Σ	3	4	47	13,340			0 048			1 48	1 383
		E .	1	4	35	22,700			0 060			1 33	1.163
		MEMBER 3	2	4	35	25,350			0 066			1 34	1 281
	40	Σ	3	4	35	28,150			0 066			1 39	1 328
	Y Y	EB	1	4	48	15,100			0 048			1 56	1 490
	FIBERGLASS	MEMBER 4	2	4	48	15,100			0 048			1 56	1 490
	FIBE	Σ	3	4	48	15,100			0 048			1 56	1 490
	_	æ	1	4	44	2,350			0 024			1 04	0 456
		MEMBER 5	2	4		2,350						1 04	0 456
		Σ	3	4		2,350						1 04	0 456
		ER	1	4		2,453						1 06	0 463
		MEMBER 6	2	4		2,453						1 06	0 463
}		Σ	3	4		2,453			0 024			1 06	0 463
		ER	1	8		4,483			0 030			1 18	0 645
1		MEMBER 7	2	8	1	4,483			0 030			1 18	0 645
	<u> </u>	Σ	3	8	44	4,483	0 90	0 0 18	0 030	2 50	1 00	1 18	0 645

Table B-8: TRUSS STRUCTURE DATA (Cont)

VEHICLE CONFIG-	MATERIA	AL	CASE	MEM- BER		GTH		י	UBE		ICK m)	NESS			TU		RAD m)	ius	WEIGHT PER MEMBER
URATION				QTY	(CI	n)	(N)	M	X	М	IN	DES	1	MA	<u>×</u>	М	IN	DES	(Kg)
		Æ	1	4	121	92	67,165	0.5	08	0,0)51	0 07	1	63	5	2 !	54	3 99	0 595
		MEMBER 4	2	4	121	92	67,165					0 07	1	1				3 99	0 595
1		Σ	3	4	121	92	67,165					0 07	1					3 99	0 595
1	!	ER	1	4	111	76	10,453					0 08	9					1 91	0 329
		MEMBER 5	2	4			10,453											1 91	0 329
1	_	Σ	3	4			10,453								_]			1 91	0 329
	ALUMINUM	ER	1	4	<u> </u>		10,911	_						\bot	\bot			2 07	0 356
	N S	MEMBER 6	2	4	<u> </u>		10,911			L				1	\perp			2 07	0 356
1	ALI		3	4			10,911	L		L.			1	\downarrow	4			2 07	0 356
		MEMBER 7	1	8			19,940			L.,		lacksquare	1	4	4		<u> </u>	2 38	0 411
		EMB	2	8	Ш		19,940	<u> </u>		_	_		4	\downarrow	\dashv			2 38	0411
		— —	3	8	⊢–	76	19,940	_		<u> </u>	_	0 08	-	\downarrow	\dashv			2 38	0 411
		MEMBER 8	1	8	├	62	25,354	_		_	_	0 12		4	4		ļ 	2 84	0 415
		EM 8	2	8		62	25,354	<u> </u>		ш		0 12	+	-	_			2 84	0 415
		├ ──	3	8		62	25,354	⊢-	80	0.0		0 12		\dashv	4	_		2 84	0 415
		MEMBER 1	1	8		98	72,102	02	29	00)46 	0 13		+	\dashv			3 28	0 491
VEHICLE 1-7		AEM 1	2	8		98	77,395					0 13	+	\dashv	4			3 38	0 503
CLE		 	3	8		98	82,688	ļ		_		0 13		+	4			3 45	0 5 1 5
EH		MEMBER 2	1	4		38	40,477					0 10	-	+	4			3 48	0 508
		MEM 2	2	4	├	38	46,615	<u> </u>				0 10		+	┪	-	ļ	3 63	0 532
	!		3	4	├	38	59,336					0 12	-	+	4			3 77	0 628
		BER	1	4	<u> </u>	90	100 969	_				0 16	-+-	+	\dashv			3 38	0 528
1		MEMBER 3	2	4	├	90	112,757 125,211	_		\mathbb{H}		0 16	-	+	+			3 40	0 582 0 603
	8	├ ──	1	4	-	92	67,165	<u> </u>		-		0 12	-	╁	╁			3 53 3 96	0 676
	\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \	ABEI	2	4		92	67,165	\vdash		\vdash		0 12	-	+	\dashv			3 96	0 676
]	FIBERGLASS	MEMBER 4	3	4		92	67,165	-		Н		0 12	4	+	+			3 96	0 676
	Ē	— —	1	4	 	76	10,453					0 06		+	\dashv			2 64	0 207
		MEMBER 5	2	4		<u> </u>	10,453			H		1	\dagger	+	+			2 64	0 207
		ME	3	4			10,453	-	_	H		-	+	\dagger	7		-	2 64	0 207
		-	1	4			10,911				_	$\vdash +$	十	\dagger	+	_		2 69	0 210
		MEMBER 6	2	4			10,911				Н	$\vdash \uparrow$	+	\dagger	+			2 69	0 210
		ME	3	4			10,911					0 06	, †	\dagger	7			2 69	0 210
			1	8	-		19,940				Н	0 07	→-	\dagger	+			3 00	0 293
1		MEMBER 7	2	8		,	19,940		,			0 07	+	1	+	\exists		3 00	0 293
		M	3	8	111	76	19,940	0 2	29	00	46	0 07	-	63	5	2	54	3 00	0 293

THIS PAGE INTENTIONALLY LEFT BLANK

Table B-9: TRUSS STRUCTURE DATA (Cont)

VEHICLE CONFIG	MATERIAI	L	CASE	MEM- BER	LENGTH	LOAD	TUBE	THICK	NESS	τυ	BE RAD	IUS	WEIGHT PER MEMBER
URATION				QTY	(in.)	(lb)	MAX	MIN	DES	MAX	MIN	DES	(lb)
		ER	1	8	53	5,700	0 090	0.018	0.030	2.50	1 00	1 44	0.953
VEHICLE 1-7			2	8	53	5,700	0.090	0 0 1 8	0.030	2 50	1.00	1 44	0.953
		Σ	3	8	53	5,700	0.090	0.018	0.030	2.50	1.00	1 44	0.953

Table B-9: TRUSS STRUCTURE DATA (Cont)

VEHICLE CONFIG	MATERIA	\L	CASE	MEM BER	LENGTH	LOAD	TUBE	THICK (cm)	NESS	TU	BE RAD (cm)		WEIGHT PER MEMBER
URATION				QTY	(cm)	(N)	MAX	MIN	DES	MAX	MIN	DES	· (Kg)
		ER	1	8	134.62	25,354	0.229	0.046	0 076	6.35	2.54	3.67	0.433
VEHICLE 1-7	FIBERGLASS	8 W	2	8	134.62	25,354	0 229	0.046	0.076	6.35	2.54	3 67	0.433
		ME	3	8	134.62	25,354	0 229	0 046	0.076	6.35	2:54	3.67	0.433

Table B-10: CORRUGATED SHELL DATA

	\		SHELL	ULT						CORRU	GATION	_										RI	NGS (A	LUMINU	M**)			
VEHICLE CONFIG	MATERIAL	CASE	HEIGHT	LOAD N _X		DEPTI	н	7	SKIN HICKNE (m.)	ss		WIJTI (in)	4			ANGLE (deg)		NO	SPAC ING	THICK- NESS	RI	NG HEIO	энт		FORCEN ICKNES (in)		WIDTH	WEIGH
	<u> </u>		(m)	(tb/in)	MAX	MIN	DES	MAX	MIN	OES	MAX	MIN	DES	MA	×	MIN	DES	L	(in)	(in)	MAX	MIN	DES	MAX	MIN	DES	(m j	(Ib/te
	ALUMINUM	1	38.5	119	2.00	0 500	0 746	0.050	0.020	0 020	2 50	0 500	1 67	B	0	45	46	0	-	-	-	-	-	-	-	-	-	0 328
	P = 0 10 LB/IN 3	2		138			0 890			0 020			1 54				46											0 33
	LB/IN ²	3		165			0 922			0 020			1 43	\prod			46											0 33
2	CARBON EPOXY	1		119			0811			0 020			1 69				52	\prod										D 18
VEHICLE	P=0055 LB/IN 3 E=112 x 10 ⁸	2		136		\prod	0 909			0 020			1 59	П		\neg	49	П										0 18
₹	LB/IN 2	3		165			0 971			0 020			1 02				47											0 19
•	FIBERGLASS	1		119		Ш	1 16	$\Box\Box$	П	0 026			1 33	\Box	П		60											0 32
	ρ+0 068 LB/IN 3 E+3 x 10 ⁶	2		136		\prod	1 18		$\Box \Box$	0 027			1 38	П			60	П										0 34
	LB/IN 2	3	38 5	165	ΓT		1 26			0 030			1 45				60					1					T^{-}	0 38
		1	17 0	142			0 521			0.020			1 42				47										<u> </u>	0 32
	ALUMINUM	2		159		$\Pi\Pi$	0 579		\prod	0 020			1 43				45											0 32
. =		3		188			0.514			0 020			1 25				45	П										0 32
VEHICLE 1-2 (LM ₂ ON TOP)		1		142			0 549			0 020	П		1 47	\Box			45											0 17
36	CARBON EPOXY	2		159			0.513			0.020	\Box		1 40	\top	\neg		46	T		T -								0 17
£ 5		3		188			0.501			0 020		П	1 36		\Box		47	П										0 17
7=		1		142			0.707			0.021			0.875		\Box		48	Π	!		1	\vdash						0 23
	FIBERGLASS	2		159			0.684			0 020			0.845	\sqcap			64	П					1					0 26
		3	17 0	188			0.747			0.021			0.848				58	П	l — —								T	0 26
		1	33.5	113			0.898			0 020			161		\neg		50	T	1									0 33
	ALUMINUM	2		129			0 694			0 020			1 59		\Box		47	\sqcap	ļ ——							 	\vdash	0 32
		3		159			0.847			0 020			1 43	П			46	П									1	0 33
VEHICLE 1-2 (LF ₂ ON TOP)		1		113			0 608			0.020			170	1-1			48	П	<u> </u>				T -	<u> </u>			1	0 17
28	CARBON EPOXY	2		129		\sqcap	0.701			0.020			164	\top			47	П	†				1	T			1	017
£ 5		3		159	П	Π	0.725			0.020	\sqcap	\sqcap	1 52	\sqcap			48	Π		 		 	 				<u> </u>	0 18
/-		1		113		\Box	1 05			0 023			1 27	17	\neg		66	1	 	†	1		†	\vdash		<u> </u>		0.30
	FIBERGLASS	2		129			1 13			0.024			1 16	\dagger	一		59	6	<u> </u>			 	 	 		 	 	0 31
		3	33 5	159			0.628			0 020			0813	1	\neg		50	1	168	0 030	3.00	100	109	0 100	-	0 025	Ун	0 32
		1	22	306		\sqcap	0.710			0.020			1 05	††	\vdash	_	47	0	<u> </u>	† — <u> </u>	1	1.33	 	T	<u> </u>	1	 ,	034
~	ALUMINUM	2		326		\sqcap	0.810			0.020	\Box	\vdash	1 02	$\dagger \dagger$		\top	49	1	t	 	 	 	t^-	 	\vdash	 	t	034
VEHICLE 2-2	"	3		360	 	+	0.788		 	0.020	 -	 -	100	†+	\vdash	\vdash	51	 	 	 	 	 		 	 	 	 	0.3
덜		1		306			0.719	\vdash	\Box	0 020			109	†-†			48	\vdash	†	†	 	 	t	 		†	 	0 11
Ä	CARBON EPOXY	2		326			0 761		 	0 021		\vdash	1 13	†-			49	\vdash	 	 	 	 	+	 	 	 	+	0 1
		3	22	360	200	0 500	0.773	0.050	0.020	0 021	2.50	0 500	+	- I		45	48	 -	├ ──	+	 	╁	┼	+-	 	 -	+	0 15

Table B-10: CORRUGATED SHELL DATA

			SHELI	ULT					··-	CORRU	GATION						T				Ri	NGS (AL	LUMINU	u**)			
VEHICLE CONFIG	MATERIAL	CASE	HEIGH		[]	JEPT (cm)	н		SKIN THICKNE (cm)	ss		WIJTI (cm)	4		ANG (rac		NO	SPAC ING	THICK- NESS	Rit	(cm)	нт		FORCEN ICKNES (cm)		WIDTH	WEIGH
	<u> </u>		(cm)	{N/m}	MAX	MIN	DES	MAX	MIN	DES	MAX	MIN	DES	MAX	MI	DES]_	(cm)	(cm)	MAX	MIN	DES	MAX	MIN	DES	(cm)	(Kg/M
_	P- 0.10 LB/IN 3	1_	97 79	2 083	5 08	1 27	1 89	0 127	0 051	0 051	5 08	1 27	4 24	14	0.7	9 081	9										1 600
	E = 10 x 10 ⁵	2		2 380			2.26						3 91			0.81											1 610
_	LB/IN 2	3	Ш	2 888			2 34				<u> </u>		3 63	$\Box \Box$	\coprod	0.81											1 645
53	P- 0 065 LB/IN 3	1		2 083			2 06					Ш	4 29	LT	\prod	0 91											0 90
VEHICLE	E = 11.2 x 10 ⁶	2	L.L.	2,380			2 31						4 04	LT		0 86											0 91
£	LB/IN 2	3	Ш	2 888			2 47			0 051			2.59	$\Gamma \Gamma$	\prod	0 82											0 92
-	FIBERGLASS P+0.068 LB/IN 3	1	\Box	2 083			2 95			0 066			3 38	LT		1 05											1 60
	E = 3 x 10 ⁶	2	1	2 380		\Box	3 00	$\Box \bot$		0 069	\coprod		3 51			1 05	\prod										1 66
	LB/IN 2	3	97 79	2 888	11		3.20			0 076			3 68		_11	1 05	\perp l_		L								1 85
	1	1	43.18	2 485	11-		1 32		Ш.	0 051		$oldsymbol{ol}oldsymbol{ol}oldsymbol{oldsymbol{oldsymbol{ol}oldsymbol{ol}oldsymbol{ol}oldsymbol{ol{ol}}}}}}}}}}}}}}}}}$	3 61			0 82	$\perp \! \! \perp$										1 57
	ALUMINUM	2		2 696			1 47		$\perp \perp$			$\sqcup \bot$	3 63	LJ.		0 79	Ш.						I				1 58
~ ~		3		3 290		\perp	1 31						3 18			0 79	Ш		I								1 58
VEHICLE 1-2 (LH ₂ ON TOP)		1	Ш	2 485			1 39						3 73	$\Box \Box$	\prod	0 79	\coprod										0 85
<u> </u>	CARBON EPOXY	2		2 695			1 30						3 56	Γ	Π	081	П					1					0.86
#3 <u>'</u>		3		3 290			1 27			0 051			3 45	LT	\prod	0 82	П										0 86
		1	Ш	2 485			1 80	\prod		0 053		П	2 22	П	\Box	0.84	П										1 16
	FIBERGLASS	2		2 695	Ш	L	1 74			0 051			2 15	ПТ	TT	1 12	П					T					1 26
		3	43,18	3 290	Ш		1 90	$\Gamma\Gamma$	\coprod	0 053			2 15	П		1 02	П									T -	1 29
		1	85 09	1 978			2 28			0 051	П	П	4 09		\top	0.88		T									1 65
	ALUMINUM	2		2 258		\prod	1 76		\coprod		\prod_{-}	$\Box\Box$	4 04			0 82	П						1	1			1 60
~=		3		2 783			2 15				Π		3 63	П	П	0.81	П						1				1 62
VEHICLE 1-2 (LF ₂ ON TOP)		-		1 978	Ш		1 54	$\Box \Box$	\prod				4 32	\Box	П	0 84	TT	1							1		0 86
25.8	CARBON EPOXY	2		2 258	$\perp \perp$		1 78				$\prod_{i=1}^{n}$	$\Gamma \Gamma$	4 17			0 82	\top		T								0.87
7.7		3		2 783	Ш.	$I \perp$	1 84	\Box	Ш	0 051		П	3 86	TT	\Box	0.84	Π	1					1		1	1	0 88
	}	1		1 978			2 67			0.058			3.23	$\Gamma \top$		1 16	11		1						<u> </u>		1 48
	FIBERGLASS	2		2,258		Π	2.87		\coprod	0 061		\Box	2 95	T^{T}	11	1 03	6	T		1				 	†		1 52
		3	85 09	2 783			1 60	$\Gamma \Gamma$	TT	0.051			2 07	TT	\top	0 88	1	42 67	0 076	7 62	2 54	2,77	0 254	0	0 064	ЖН	1 57
		1	55.88	5 355		\prod	1 80						2 68	T T	1 1	0 82	0	 		1				<u> </u>	†	†	1 65
2-2	ALUMINUM	2	1	5 706		\Box	2 06						2 59	TT	11	0 86									<u> </u>	t	1 69
VEHICLE 2-2		3		6 300	\prod		2.00		TT		\sqcap		2 54	1	\top	0 89	77	1		1	i —	T^{-}	1		T	1	1 72
Ī	CARRON	1		5 355			1 83	$\Gamma \uparrow$	Π	0.051			2 77		11	0 84	77		† · · · ·	1	T	1	T		T^{T}	1	0.91
>	CARBON EPOXY	2		5 705			1 93			0 053		\sqcap	2 87	T	1-1	0 86	77		t^{-}	†	 	t^{-}	1	 	 	†	0 95
	1 1	3	55.88	6 300	5.08	1 27	1 96	0 127	0.051	0 053	5 08	1 27	2.32	14	107	9 084	15	 		 			1-	/	\leftarrow	1	0 96

Table B-11: CORRUGATED SHELL DATA (Cont)

		Ţ	SHELL	ULT		-	-			CORRU	GAT'ON	1	-			-		Τ				RI	NGS					Ī
VEHICLE CONFIG	MATERIAL	CASE	HEIGHT	LOAD N _X		DEPT	н		SKIN THICKNE			WID (in				ANGLE (deg)		NO	SPAC-	THICK- NESS	R	ING HEI	SHT		FORCE IICKNE		міртн	WFIGHT
			(in)	(1 b /in)	MAX	MIN	DES	MAX	MIN	DES	MAX	MII	N DE	M/	AX	MIN	DES	1	(in)	(in)	MAX	MIN	DES	MAX	MIN	DES	(in)	(lb/ft ²)
			22	306	2 00	0 500	0 960	0 050	0 020	0 031	2 50	0 50	00 1 12	8	٥	45	60	0	-	-	-	-	-	-	_	_	-	0 393
VEHICLE 2-2	FIBERGLASS	2	22	326			0 980			0 032			1 13				60										i	0 406
		3	22	360		\prod	1 00		\prod	0 033			1 16	П			60											0 4 18
		1	50	287			0 644		\prod	0 020		\Box	1 13				56	1	25	0 030	3 00	100	1 00	0 100	0	0 055	жн	0413
	ALUMINUM	2	1	311		TT	0.765		П	0 022		П	0 960	\Box	П		49	1	25		1	1	111	1	1	0 037	ЖН	0 442
→ =		3		365		П	0 757			0 021		! _	0 983		П		56	1	25				1 11			0 055	ЖН	0 448
1.00		1		287			1.26			0.024			1 45		П		60											0 253
VEHICLE 1-14 (UPPER BODY)	CARBON EPOXY	2		311		\prod	1 29			0 025		TT	1 48	\top	П													0 263
H H		3		365			1 33			0.027			1 55													1		0 285
7.5		1		297			0.620			0 023			0 720					3	125				1 09			0 032	'nн	0 4 12
	FIBERGLASS	2	1	311			0.630			0 024			0.730					3	125				1 09			0 032		0 424
		3	50	365		\coprod	0 660			0 026			0 760	Ī			60	3	12 5			Π	1 09	\prod		0 032		0 449
	ı	1	36 5	478		Ш	0 644			0.021		П	0 908				47	1	18 3				1 01	П		0 027		0 440
	ALUMINUM	2		519		\coprod	0.683	\prod	\prod	0.021		ΙТ	0 794				48	1	18 3				1 05			0 075		0 459
→ £		3		571			0 730	\prod		0 021		П	0 779				51	1	18 3				1 07			0 044	χн	0 471
VEHICLE 1-14 (LOWER BODY)	640000			476			1 13			0 026			1 30				60	0							П			0 273
25	CARBON EPOXY	2		519			1 15			0 027		П	1 33	\top			60							П				0 284
£,9		3		571			1 20			0 028		П	1 39		П		60						1					0 295
		1		476		\prod	0.546		П	0 023		П	0 626	\top			66	3	91				100			0 044	ЖН	0 467
1	FIBERGLASS	2		519		$\Box \Box$	0 596			0 029			0 685	П			45	3	91				106		П	0 006	νян	0 475
		3	36.5	571			0 988			0.034		П	1 02	П	П		66	3	91				1 01			0 025	жн	0 538
		1	42 5	298		\prod	1 18			0 023			1 37		П		60	0								1		0 440
ł	ALUMINUM	2	4	322			1 21		П	0 024		П	1 40										i					0 460
±₽		3	$\perp \perp$	377			1 26		\prod	0 026			1 45					1									1	0 498
-7 g		1		296		\coprod	1 13		П	0 022		П	1 30	\top	П			1								1		0 231
35 25	CARBON EPOXY	2		322			1 15	П		0 023		П	1 33					Т										0 242
VEHICLE 2-14 (UPPER BODY)		3		377		\prod	1 19			0 025			1 37				60	T			П	11	1	11	\sqcap			0 263
		1		296	$\Box \Box$		0 644		\Box	0.022			0 672				67	2	14.2		\sqcap	11	1 05		1-1-	0 063	ЖН	0 407
	FIBERGLASS	2	1	322	[.	\prod	0.612			0 021			0.634				66	3	10 6		1	1 1	106	11	 	0 003	ЖН	0 407
		3	42 5	377		Ш	0 568		Π	0 021			0 560	1			65	3	106	0 030	3 00	100	1 02	0 100	0	0 028	ЖН	0 4 1 6
		1	38.5	437			1 21			0 026			1 40				60	0		i —	1	 	1					0 498
VEHICLE 2-14 (LOWER BODY)	ALUMINUM	2	38 5	462			1.23			0.027			1 42	\top			60	T		†	\vdash		T		1		1	0517
1		3	38 5	519	2 00	0.500	1 26	0.050	0.020	0 029	2 50	0 50	10 1 46	8	•	45	60	1	1	\vdash	1	1	 -	 	 		1	0 557

Table B-11: CORRUGATED SHELL DATA (Cont)

			SHELL	ULT						CORRU	GATION										RI	NGS					
VEHICLE CONFIG	MATERIAL	CASE	HEIGHT	LOAD N _X		OEPT (cm)	н	1	SKIN THICKNE (cm)	ss		WIDTH (cm)	1		ANGLE	•	NO	SPAC-	THICK- NESS	RI	NG HEI(SHT		FORCEI ICKNES (cm)		WIDTH	WEIGH
			(cm)	(N/m)	WAX	MIN	DES	MAX	~~~	DES	MAX	MIN	DES	MAX	MIN	DES	1	(cm)	(cm)	MAX	MIN	DES	MAX	MIN	DES	(cm)	(Kg/M ²
		1	55,88	5,355	5 08	1.27	2.44	0.127	0.051	0.079	6 35	1.27	2.84	14	0.79	1 06											1 918
VEHICLE 2-2	FIBERGLASS	2	56 88	5 705			2.49			0.081	1	1	2 87	1		1 05											1 981
		3	55.88	6 300			2.54			0.084			2.95			1 06						}					2 039
		1	127 0	5 023			1 64			0.051	\prod	П	2 87			0.98		635	0 076	7 62	2 54	2 54	0,254	0	0 140		2 015
	ALUMINUM	2		5 443		\coprod	1 94	Ш		0.066		ГТ	2.44			0.86		63.5		·	1	2 82	1	1	0 094		2.157
••		3		6,388			1 92	\prod		0.053			2.50			0.98		63 5				2.82			0 140	t	2 186
VEHICLE 1-14 (UPPER BODY)		1		5 023		\prod	3.20	Ш		0.061			3.68		П	1.05											1 235
3.5	CARBON EPOXY	2		5 443	Ш		3.28			0 064			3.76			Π											1 283
<u> </u>		3		6,388	Ш		3.38	Ш	Ш	0.069			3.94														1 391
) =		<u>_</u>	<u> </u>	5 023			1 57	$\perp \perp$		0.058			1.83					31 7"				2.77	\prod		0 082		2 016
j	FIBERGLASS	2		5,443	\sqcup		1 60	Ш		0.061			1 85		\prod	\prod		31 75		Γ		2,77			0 082		2 069
		3	127 0	6 368	\Box		1 68	Ш		0.068			1 93			1 06		31 75				2 77			0 082		2 191
		1	92.71	8 330			1 64	Ш		0 053			2 31			0.82		45 48				2.57			0 069		2 147
	ALUMINUM	2		9 083		LŁ	1 73	Щ	\coprod	0.053			2.02			0.84		46 48			П	2.67		П	0 191		2 240
-5		3		9 983	$\perp \perp$	Ш	1.85	Щ		0 053			1 98			0.89		46 48				2.72			0 112		2 298
i g	CARBON		$\sqcup \sqcup$	8,330			2.87	Ш		0.068			3.30		\prod	1 05							П	П			1 332
ER	EPOXY	2		9,083	Ш	\coprod	2.92			0,062			3.38		П	1 06				П							1 386
VEHICLE 1-14 (LOWER BODY)		3		9 993			3.05		\coprod	0.071			3.53		$\Gamma \Gamma$	1 06				П			\Box				1 440
>=		1	L _	8 330			1.39		11.	0.058		\coprod	1 59			1 16		23 11			I i .	2.54			0 112		2 279
	FIBERGLASS	2		9 083	$\bot \bot$	$oxed{oxed}$	151		Ш	0 074			174			0 78		23 11				2 69	\prod	\prod	0 15		2.318
		3	92.71	9 993		Ш	2.51	Ш		0.088			2.59			1 16	<u>l</u>	23.11				2.57	\coprod	$\Gamma \perp$	0 064		2 618
		<u> </u>	107 95	5 180	$oxed{oxed}$		3.00	\Box		0.068			3 48			1 05		I					П				2,147
ĺ	ALUMINUM	2		5 635		$\sqcup \!\!\! \perp$	3.07	\sqcup		0.061		\Box	3.56		Ш						$\Box\Box$		$\Box\Box$	П			2.245
45		3	$\sqcup \downarrow$	8 598		\sqcup	3.20			0.068			3 68		\coprod						\Box						2.430
VEHICLE 2-14 (UPPER BODY)	CARRON	1		5 180	ot	$\sqcup \bot$	2.87			0.066			3,30		\coprod			I							T		1 127
10 E	CARBON EPOXY	2		5,635		$\sqcup \!\!\! \perp$	2.92			0 058			3.38											П			1 181
# E		3	\Box	6,598	Ш		3.02			0.064			3.53		\prod	1 05	Π			П		T					1 283
, =		1	Ш.	5,180			1 64			0.056			1 71			1 17		37 08				2 67			0 160		1 986
Í	FIBERGLASS	2		5,635			1.56		\coprod	0.053			1 61		\Box	1 18	Π	26 92			1	2.69	1	1	0.008		1 988
		3	107.95	6,598			144			0.053			1 42			1 14		26 92	0.076	7 62	2.54	2.59	0.254	0	0 071		2.030
(EU)() 6 3 44		<u>'</u>	97 79	7 648			3.07		\coprod	0.086			3.56		\Box	1 06	П				1						2 430
EHICLE 2-14 LOWER BODY)	ALUMINUM	2	97 79	8 086		T	3.12	T		0.069			3.61		1	105									1	1	2 523
	_	3	97 79	9 083	5,08	1.27	3.20	0,127	0.061	0.074	6.35	1 27	3.71	14	0 79	106	1	T	1		t -	t	T	1	1	1	2 718

Table B-12: CORRUGATED SHELL DATA (Cont)

					ULT	_					CORRU	GATION	!									RI	NGS			_		
VEHICLE CONFIG	MATERIAL	CASE	SHE HEI	GHT	N _X		DEPT	н		SKIN THICKNE	ss		WJD1			ANGL (deg)	-	N	SPAC-	THICK-	R	ING HEI	GHT		FORCEN HCKNES		WIDTH	WEIGHT
					,	MAX	MIN	DES	MAX	MIN	DES	MAX	MIN	DES	MAX	MIN	DE	s	(in)	(in)	MAX	MIN	DES	MAX	MIN	DES	(in)	(Ib/ft ²)
			38	5	437	2,00	0 500	1 15	0 050	0 020	0 025	2 50	0 50	1 32	80	45	60	0	-	-	-	-		_	-	_	-	0 263
VEHICLE 2-14 (LOWER BODY)	CARBON EPOXY	2	L		462			1 17			0 026	1	1	1 34			60)		Ι'.								0 274
E B B B		3	L.,	Ц	519	lacksquare	$\bot \bot$	1 20	\sqcup	 	0 028		Ш	1 39		$oxed{oxed}$	60	<u> </u>	<u> </u>							<u> </u>		0 295
N N		1	Ш	Ш	437	Ш	$\perp \downarrow$	0 556	Ц.	$\perp \perp$	0 022			0 598			60) 3	96	0 030	3 00	1 00	1 04	0 100	0	0 009	%н	0 435
25	FIBERGLASS	2	Ш		462	ot	$\bot \bot$	0 559	\Box	\sqcup	0 023	Ш.		0 561			67	/ 3	96				1 05			0 0 1 6	'sH	0 461
		3	38	8 5	519		$\perp \perp$	0710	L.L.	\sqcup	0.024			0 696	\prod		78	3 3	96				1 08			0.043	%н	0 501
		1	4	7	152	Щ_	$\sqcup \bot$	1 06	oxdot	$\bot \bot$	0 020			1 55			46	3 0	<u> </u>	11						<u></u>		0 342
	ALUMINUM	2	\Box		169		↓ ↓	1 13	\sqcup		0 020	<u> </u>		1 47	$\sqcup \bot$	$\perp \perp$	49	,	_	\bot	oxdot		<u> </u>	Ш_	\Box	<u> </u>	<u> </u>	0 350
,		3	Ш		203		\bot	1.20	$\vdash \vdash$	11	0 021	$oxed{oxed}$	\sqcup	1 40		11	50	<u> </u>					<u> </u>	Li_				0 379
VEHICLE 2-3	CARBON	1	Щ		152	-	╽-	1 01	Ц.	\bot	0 020	\sqcup		1 59	1	\bot	45	•	1	$\bot \downarrow$	\sqcup	↓	ļ	igsqcut	<u> </u>	ļ		0 187
ਊ	EPOXY	2	Ш		169	$oldsymbol{\perp}$	1	1 06	$\sqcup \bot$	$\bot \bot$	0 020	\sqcup	$\sqcup \bot$	1 45	\perp	$\perp \perp$	52	<u> </u>		$\perp \perp$	oxdot	$\bot \bot$	<u> </u>		$\sqcup \downarrow$			0 197
•	ļ	3	Ш		203	Ц.		1 22	<u> </u>	$\bot\bot$	0 020	Ц.	$\downarrow \downarrow$	1 37	$\perp \downarrow$	1	52	-		$\bot \bot$		$\bot \bot$	ļ	Ц_				0 205
İ		<u> </u>	Н	\dashv	152		+	0.617		ـ	0 022		\sqcup	0 880	1	$\downarrow \downarrow$	45	5 2	15.7	4-4-			1 05	$oxed{oxed}$	1-1-	0 070	%H	0 349
ľ	FIBERGLASS	2	H		169	-	\vdash	0 630	$\sqcup \bot$	$\downarrow \downarrow$	0 023	\sqcup	\vdash	0 890	11	\downarrow	1-1	2	15 7	↓ ↓	$\sqcup \bot$		1 05			0 070	∐ _	0 360
ļ		3	4	-+	203		 	0.650	1	+	0 024	\sqcup	\sqcup	0 920	$\bot \bot$	1 1	-	2	15 7	\perp	igspace	$\bot\bot$	1 05	$\sqcup \!\!\! \perp$		0 070		0 371
ĺ	1	<u> </u>	5	<u>'</u>	379	\vdash	↓ _↓	0.830	$\vdash \downarrow$	\bot	0 022	$\sqcup \bot$	\sqcup	1 17	$\bot\bot$	\bot	11		25 5	$\bot \bot$		↓↓	1 04	$\sqcup \bot$		0 092		0 447
ļ	ALUMINUM			_	405		\vdash	0.700	$\vdash \downarrow$	$\downarrow \downarrow$	0 024	\sqcup	$\bot \bot$	0 990	14	$\downarrow \downarrow$	$\downarrow \downarrow$	12	17		$\bot \bot$	\sqcup	1 02	↓ ↓		0.043	lacksquare	0 498
		3		4	458	-	\sqcup	0.720		₩.	0 026	\sqcup		1 02	 	$\bot \bot$	45	5 2	17	$\bot \bot$	$\sqcup \!\!\! \perp$	$\bot \bot$	1 05	\perp		0 0 1 2	%Н	0 520
E 2	CARBON	<u> </u>	Ш	_	379		$\sqcup \bot$	1 38		++	0 027	\vdash		1 58	$\bot\bot$	1 1	60) 0	4	1	 	$\bot \dotplus$		\sqcup	$\sqcup \bot$	ļ	<u> </u>	0 285
VEHICLE 2 18	EPOXY	2	${oxdot}$		405		\vdash	1 40		$\bot \bot$	0 028	<u> </u>	\Box	1 61		↓ ↓	60	<u>'</u>		$\bot \bot$	$\sqcup \bot$		<u> </u>	\sqcup		<u> </u>	<u> </u>	0 295
VE.		3	\sqcup		458		$\bot \bot$	1 44		-	0 030	<u> </u>	\sqcup	1 67	$\bot\bot$	14	60	<u> </u>			\sqcup	$\perp \perp$	<u> </u>	11	LL.			0 316
		<u> </u>	$\vdash \downarrow$		379	\bot	↓	0 591	_		0,022	$\sqcup \!\!\! \perp$	\sqcup	0 520	↓	$\perp \downarrow$	61	1 4	10 2	\bot	$\sqcup \bot$	$\perp \perp$	1 02			0 011	%н	0 417
	FIBERGLASS	2	1	-	405		-	0.632			0 025	-		0 708	1-4-		54	• •	10 2	1			1 02			0011	%H	0 427
		3	51	-	458	2.00	0.500	+	0 050	0.020	0.028	2.50	0 500	0 621	80	45	49	9 4	102	0 030	3 00	1 00	1 01	0 100	o'	0 021	15H	0 453
			85	<u> </u>	544			2 08		<u> -</u>	0 041		<u> </u>	2.40	<u> </u>	<u> </u>	60	0 0	·	<u> </u>	-	<u> </u>		<u> </u>	-	-	<u> </u>	0 780
	ALUMINUM	2		_	601		—	2.14		L	0 043	L	L_	2 47	\perp _	 	11			<u> </u>		<u> </u>						0 820
_	ļ	3		_	658			2.20		<u> </u>	0 045		L	2 53	<u> </u>		\perp					<u> </u>						0 860
E 1-7	CARBON	1		4	544			2.02			0.038	<u> </u>		2.33														0 400
VEHICLE	EPOXY	2		_	601			2 08			0 040			2 39					_1									0 420
KEH VEH		3	\sqcup	\perp	658	_		2.13			0 042			2.45														0 440
-		1		\perp	544		<u> </u>	283		<u> </u>	0 073		L	3.25														0 930
	FIBERGLASS	2	_	_	601			290			0 077			3.33														0 980
		3	83		658			2 95		<u> </u>	0 081			3.40			60	7	j									1 03

Table B-12 CORRUGATED SHELL DATA (Cont)

			SHELL	ULT						CORRU	GATION						Г				RI	NGS					
VEHICLE CONFIG	MATERIAL	CASE	HEIGH			DEPTI	4	т	SKIN HICKNE (cm)	ss		WIDTH (cm)]		ANGLE (rad)		NO	SPAC ING	THICK- NESS	RI	NG HEI	GHT		FORCE HICKNES (cm)		WIDTH	WEIGH
	J		(cm)	(N/m)	MAX	MIN	DES	MAX	MIN	DES	MAX	MIN	DES	MAX	MIN	DES		(cm)	(cm)	MAX	MIN	DES	MAN	MIN	DES	(cm)	(rg m²
	{	1	97 79	7 648	5 08	1.27	2 92	0 127	0 051	0 064	6 35	1 27	3 35	14	0 79	1 05	0	-	-		-	-	-	-	-	-	1 283
žά	CARBON EPOXY	2_		8 085	L	<u> </u>	2 97		<u> </u>	0 066			3 40		Γ	1 05											1 337
VEHICLE 2-14 (LOWER BODY)		3	\sqcup	9 083			3 05			0 071			3.53			1 05											1 440
OWE		1	Ц.	7 648		\coprod	1 41			0 056	oxdot		1 52			1 05	3	24 38	0 078	7 62	2 54	2 64	0 254	0	0 023	1/2 H	2 123
25	FIBERGLASS	2	1	8 086			1 42			0 058	$\sqcup \! \! \! \! \! \! \! \perp$		1 42			1 17	3	24 38	1		1	2 68			0 041	1/2 H	2 250
	ļ	3	97 79	9 083		$oxed{oxed}$	1 80			0.061	Ш	Ш	1 77			1 37	3	24 38				2 74			0 109	1/2 H	2 445
		<u></u>	119 38	2 660		$\perp \perp$	2 69	\sqcup		0.051	\sqcup		3,94		Ш	0.81											1 669
	ALUMINUM	2	-	2 958		oxdot	2 87	oxdot	Ц.	0 051	\sqcup		3.73			0.86	L					<u></u>		Ш			1 708
7		3	\vdash	3 553	\vdash	$\vdash \vdash$	3,05	lacksquare	Ш.	0 053	$\vdash \vdash$	1	3.56	$\perp \downarrow $	$\sqcup \bot$	0 88	\perp						\Box				1 250
VEHICLE 2-3	CARBON		₩-	\$ 660	+	$\vdash \vdash$	2.56	$\vdash \vdash$	Щ.	0.051	\vdash		4 04	⊢.	$\sqcup \!\!\! \perp$	0 79	<u>_</u>	1	\sqcup	<u> </u>		ļ	1	$\perp \perp$	<u> </u>		0 9125
Ĕ	EPOXY	2	├	2 958	\sqcup	$\perp \perp$	2 69	igwdap	$\perp \perp$	0.051	├	\sqcup	3 04	├ -	\sqcup	091	丄		Ш_		Ц.	ļ			ļ		0 9614
N	ļ	3_	├ -	3 553	\sqcup	$\vdash \vdash$	3.10	$oxed{oxed}$	Ц.	0 051	 		3 48		Ш.	0 96	L	<u> </u>	Ц.,	<u> </u>	<u> </u>	ļ	<u> </u>	1_1_	<u> </u>		1 000
		1	∐ -	2 660	 	++	1 57	 	1	0 056	\vdash	\vdash	2 24	- -	\sqcup	0.79	2	39 88	<u> </u>	\vdash	Ц.	2 68	-	1-1-	0 178	1/2 H	1 703
	FIBERGLASS	2	1	2 958	$\vdash \vdash$	$\vdash \vdash$	1 60		 	0 058	\vdash	\vdash	2 26	Ц-	├ ├	<u> </u>	2	39 88	igspace	\sqcup	<u> </u>	2 68	1 _	$\perp \perp$	0 178		1 757
		3	119.38	+	\vdash	$\vdash \vdash$	1 65	\vdash	├- ├-	0.061	₩.	1	2 34	Ц_	├ -├-	\sqcup	2	39 88	Ц.		<u> </u>	2 68	1_	11	0 178		1 810
		<u></u>	129.54	1 7 7 7 7	+	₽₽	2 11	\vdash	\vdash	0 056	╌	├ -	2 97	!	\sqcup	$\sqcup \bot$	<u> '</u> -	64 77	↓_	$\sqcup \bot$	<u> </u>	2 64	↓	1	0 234		2 181
	ALUMINUM	2	-	7 088	├	╁╁	1 78	\vdash	\vdash	0.061	\vdash		2.52	—⊢	ـ	1	2	43 18	 		<u> </u>	2 59	1_	\bot	0 109		2 430
2-18		3	₩-	8 015	$\vdash \vdash$	╀	1,83		\vdash	0 066	├ -	\vdash	2 59	-	₩.	0 79	2	43.18	$\vdash \vdash$	- -	 	2 68	 	$\bot \bot$	0 031	1/2 H	2 440
ν, w	CARBON	1	₩-	6 633	 	\vdash	3.51	$\vdash \vdash$	\vdash	0.069	├-	├	4 01	├	 -	1 05		ļ	\vdash	$\vdash \vdash$		Ь—	$\downarrow \downarrow$	+		<u> </u>	1 391
VEHICLE	EPOXY	3	╁┼-	7 088	+	╁	3,56	\vdash		0 071	$\vdash +$	₩.	4 09	₩-	$\vdash\vdash$	1 05	╄	<u> </u>	-	$\vdash \vdash$	\vdash		 	$\perp \perp$	—	<u> </u>	1 440
Š		+	₩-	8 015	₩	╁┼	3.67		₩.	0 076	\vdash	\vdash	4 24		 	1 05	╄	ļ	1	 		ļ	 	1-1-	 	1	1 542
	FIREDC: ACC	1 2	╁╌╁╌	6 633 7 089	╁┷	 	1 50	┿	├ ─ ∮ ─	0 056		+-	1 32	 	 	1 07	14	25 91	\vdash	}- ↓_		2 59	1.	1	0 028	1/2 H	2,035
	FIBERGLASS	3	1.000	1	1	 	161	-		0.064		-	1 80		├ ─	0 95	↩	25.81	<u> </u>	<u> </u>	,	2 59	-	↓ ′	0 028	1/2 H	2 084
	 	+	129 54 210.82	+	5 38	1.27	1 47	0.127	0.051	0 071	6.35	1 27	1 58	14	0 79	0.86	1-	25 91	0 076	7 62	2 54	2 56	0 254	10	0 053	1/2 H	2 211
	ALUMINUM	1 2	210.82	9 520	\vdash	\leftarrow	5.28	-		0 104	├ ─	 -	6.10	<u> </u>	├ ─	1 05	⊢	<u> </u>	- -	<u>-</u>	-	ļ <u>-</u>	<u> </u>	 -	 - -	<u> </u>	3 806
	ALUMINUM	3	-	11 515	 	├	544	-	<u> </u>	0 109	├		6.27	 	├ ─	1	⊢		├ ─-			—-	↓		—	<u> </u>	4 002
7	 	1	₩-	9 520	├	\vdash	5 60			0.114	├		.643				╄		 		<u> </u>	ļ	 	ļ	↓		4 197
	CARBON	2	┝┼╌	10 518	 	├	5 13	L		0 097		 	5 92		├	\vdash	├-	1	<u> </u>		<u> </u>	<u> </u>	↓	↓	 	<u> </u>	1 952
VEHICLE	EPOXY	3	\vdash	11 515	├	├	5.28	-		0.102	 	 	6 07	 	\vdash	 		 	<u> </u>	ļ	ļ	├	↓	 		 	2 049
7		1	├-├~	9 520	\vdash	├		.	├	0.107		 	6 22	-	\vdash	├-├-		 	├	-		ļ	↓		┼	1	2 147
	FIBERGLASS	1 2	├	10 518		 	7 19			0.185	\vdash		8.26	<u> </u>	├		├-	 _	<u> </u>	<u> </u>	ļ	 	↓	-	₩,	ļ	4 539
		3	210.82	+	 	├ ──	7 37		<u> </u>	0 196		├—	8 46		<u> </u>	 ' -	├-	 	<u> </u>	<u> </u>		↓	 	 	1	↓	4 782
	L		214.42	11 515	<u> </u>	Ц	/48	ł	L	0.206	<u> </u>		8 64	<u> </u>	<u> </u>	1 05	<u></u>	L	<u></u>	L	L	1	<u> </u>		1	<u> </u>	5 026

Table B-13: ADAPTER TRUSS DATA

VEHICLE CONFIG	MATE	RIAL	CASE	MEM	LENGTH	LOAD	_	UBE	TH			s		TU	BE (RAD	ius	WEIGHT PER MEMBER
URATION				QTY	(in)	(10)	M	٩X	м	IN	DE	S	M	AX	М	IN	DES	(ІЬ)
	CARBON EPOXY		1	24	43	5,404	00	070	00)28	00	28	2	25	07	50	0 953	0 396
VEHICLE 1-3		5 LB/IN 3	2		43	5,604		4		4	1			A		4	0 965	0 402
1	E = 28 x	10 ⁶ PSI	3		43	5,963											0 985	0 408
			1		54	6,434											1 18	0 620
VEHICLE 1-2 (LH ₂ ON TOP)			2		54	6,633											1 20	0 627
(2.1.2 0.1 1 0.1 /			3		54	6,977					00	28					1 22	0 638
			1		103	9,490				L.	00	42					1 65	2 47
VEHICLE 1-2 (LF ₂ ON TOP)			2		103	9,675					0.0	42					1 66	2 48
			3		103	10,010					0.0	42					1 68	2 5 1
			1		38	5,748					00	28			<u> </u>		0 899	0 331
VEHICLE 2-2			2		38	5,923	L				00	28					0 906	0 333
			3	24	38	6,260	<u> </u>				00	28					0 949	0 347
V511101.5			1	12	73	13,520					00	42					1 47	1 57
VEHICLE 1-14			2		73	14,280					0.0	42					1 50	1 60
			3		73	15,140					0.0	42					1 53	1 63
VE11101 E			1		70	13,350					00	56					1 25	1 70
VEHICLE 2-14			2		70	13,740					00	56	L.,				1 44	1 95
			3	12	70	14,660					00	56					1 48	2 0 1
			1	24	31	4,686					00	28					0 750	0 225
VEHICLE 2-3			2	24	31	4,868					0.0	28					0 750	0 225
			3	24	31	5,231					00	28					0 760	0 227
			1	12	75	12,260					00)42					1 45	1 57
VEHICLE 2-18			2		75	12,660					Ĺ '						1 46	1 58
			3		75	13,610											1 50	1 63
			1		86	12,386											1 59	1 99
VEHICLE 2-19			2		86	12,732										<u> </u>	1 61	2 01
			3	12	86	13,613					00	42					1 65	2 06
			1	24	35 4	7,447				L	00	28			<u> </u>		0 934	0 320
VEHICLE 1-7	EPO:	BON XY	2	24	35 4	7,995	L	<u> </u>	!	<u> </u>	00	28		<u> </u>		<u> </u>	0 956	0 327
			3	24	35 4	8,542	0.0	070	00	028	00	28	2	25	0.7	50	0 978	0 335
											_							
			<u> </u>				_		<u> </u>		<u> </u>		_				L	
]			\				_		_		_		_		_		ļ <u>-</u>	
						<u> </u>	L		<u> </u>				_		_			
			_	ļ	 -				<u> </u>						_			
				<u></u>		<u> </u>	<u> </u>		<u> </u>				L		<u> </u>		<u> </u>	

Table B-13: ADAPTER TRUSS DATA

<u> </u>			1 :	able	_	1-13: AL	DAPTER				IICK	NES		Γ-	Ti	IDE	RAD	1116	WEIGHT
VEHICLE CONFIG-	MAT	ERIAL	CASE	ME BE	R	LENGTH	LOAD	_	UBE		m)	NES	.				m)		PER MEMBER
URATION				ΩT	Υ	(cm)	(N)	M	٩Χ	м	IN	DE	S	М	AX	N	IIN	DES	(Kg)
	CARBON EPOXY	l	1	2	4	109 22	24,037	0	178	0 (071	0 ()71	5	72	1	91	2 42	0 180
VEHICLE 1-3	P = 0 05	is LB/IN ³	2		5	109 22	24,927											2 45	0 182
	E = 28 >	(10 ⁶ PSI	3			109 22	26,528											2 50	0 185
			1			137 16	28,618											3 00	0 281
VEHICLE 1-2 (LH ₂ ON TOP)			2			137 16	29,504					Γ,						3 04	0 285
12.12 011 101 /			3			137 16	31,034					00	71					3 10	0 290
			1			261 62	42,212					0	07					4 19	1 121
VEHICLE 1-2 (LF ₂ ON TOP)			2			261 62	43,034					0 .	07					4 22	1 126
ici 2014 TOP)			3			261 62	44,524					0	107					4 27	1 140
			1			96 52	25 567					0.0	071					2 28	0 150
VEHICLE 2-2			2		,	96 52	26,346					0.0	71					2 30	0 151
			3	2	4	96 52	27,844					00	71					2 4 1	0 158
			1	1	2	185 42	60,137					0 :	07					3 73	0 713
VEHICLE 1-14			2			185 42	63,517					0	07					3 80	0 726
			3			185 42	67,343					0 1	07					3 90	0 740
			1			177 80	59,381					0 1	42					3 18	0 772
VEHICLE 2-14			2		,	177 80	61,115					0 1	42					3 67	0 885
2-17			3	1	2	177 80	65,208					0	42					3 76	0 913
			1	2	4	78 74	20,843					0.0	071					1 905	0 102
VEHICLE 2-3			2	2	4	78 74	21,653				ļ —	0.0	71					1 905	0 102
İ			3	2.	4	78 74	23,267					00	771					1 93	0 103
			†	1:	2	190 50	54,532					0 1	07					3 68	0713
VEHICLE			2		1	190 50	54,532					7						371	0 717
2-18			3			190 50	60,537											1 50	0 740
			1			218 44	55,092											4 04	0 903
VEHICLE 2-19			2			218 44	56,632					١.,	,					4 09	0 913
2-19			3		2	218 44	60,551					0 1	07	Г	-			4 19	0 935
	1		1	2	4	89 92	33,124					0.0	71					2 37	0 145
VEHICLE 1-7	CAR EPO	BON XY	2	2	4	89 92	35,562					0.0	71					2 43	0 148
		.,,	3	2	4	89 92	37,995	0	78	00	071	0.0	71	5	72	1	91	2 49	0 152
										<u> </u>		\Box							
	 									T									
1												Г							
]														 					
]																		
·	ļ							-				 		\vdash					
														Ь_		_			

Table B-14: STRUCTURAL WEIGHT SUMMARY

			MATERIAL	WEIGHT	WT/MEM	AREA	MEMBER QTY	BODY WT	AD- JUSTED WT	TOTAL WEIGHT
				(lb/ft ²)	(1Ь)	(ft ²)		(Ib)	(lb)**	(lb) †
			ALUM	0.328	_	101		33.1	41.8	65.8
		CORRUG.	CARBON EPOXY	0.186	_	4		18.8	35.2	59 2
	>	<u></u>	FIBERGLASS	0.304	-			30.7	47.1	71.1
	300		ALUM	0.601	_			60.6	79.9	103.9
	SE 1	H C SANDWICH	CARBON EPOXY	0.333	_			33.6	48.5	72.5
	VEHICLE BODY (CASE 1)*		FIBERGLASS	0.430	_			43.4	58.3	82.3
	>		ALUM		0.526		24	12.6	25.3	49.3
		TRUSS	CARBON EPOXY	_	0.317		24	7.6	19 7	43.7
			FIBERGLASS	_	0.526		24	12 6	25.3	49.3
	ADAPTER	TRUSS	CARBON EPOXY	_	0.396		24	9.5	24.0	-
		_	ALUM	0.330	_			33.3	43.2	67 5
۳		CORRUG	CARBON EPOXY	0.187	_			18.9	37.6	61.9
E 1-3	VEHICLE BOĎY (CASE 2)*		FIBERGLASS	0.316	_			31.9	50.6	74.9
VEHICLE			ALUM	0.601	_			60.6	82.7	107.0
VE	HICLE BO	H C. SANDWICH	CARBON EPOXY	0.333	_			33.6	50.7	75.0
	CA EH		FIBERGLASS	0.430	_			43.4	60.5	84.8
ļ	>		ALUM	-	0.538		24	12.9	25.7	50.0
		TRUSS	CARBON EPOXY	_	0.319		24	7.7	19.9	44.2
			FIBERGLASS	_	0.532		24	12.8	25 6	49.9
	ADAPTER	TRUSS	CARBON EPOXY	_	0.402		24	9.7	24.3	_
			ALUM	0.337	_			34.0	46.0	70.7
	<u></u>	CORRUG.	CARBON EPOXY	0.190				19.2	41.9	66.6
	VEHICLE BODY (CASE 3)*		FIBERGLASS	0.322	_			32.5	55.2	79.9
	ASE		ALUM	0.601	-			60.6	87.4	112.1
	VEH (C	H.C. SANDWICH	CARBON EPOXY	0.333	-			33,6	54 3	79.0
			FIBERGLASS	0.430	,-	101		43.4	64.1	88.8
	•		W'PAYLOAD -	<u>4"</u>	<u> </u>	† BODY	PLUS AD	APTER	<u> </u>	<u> </u>

^{*} CASE 1 - LOW PAYLOAD - 4"

CASE 2 - MED PAYLOAD - L/D = 0.2

CASE 3 - HIGH PAYLOAD - L/D = 0.5

^{**} INCLUDING END FTG'S AND ATTACHMENTS

Table B-14: STRUCTURAL WEIGHT SUMMARY

			MATERIAL		WT/MEM	AREA	MEMBER QTY	BODY WT	AD- JUSTED WT	TOTAL WEIGHT
				(Kg/m ²)	(Kg)	(m ²)		(Kg)	(Kg) **	(Kg) †
			ALUM	1.60		9.38		15.1	19.0	29.9
		CORRUG	CARBON EPOXY	0 91		<u> </u>	<u> </u>	8.54	16 0	26.8
	_		FIBERGLASS	1.48	4			13.8	21 4	32.3
	300,		ALUM	2.93	1			27.5	35.3	46.7
ļ	SE 1	H C. SANDWICH	CARBON EPOXY	1.65	-			15.5	218	32 9
	VEHICLE BODY (CASE 1)*		FIBERGLASS	2,10	-			19.8	26 4	37.4
ŀ	>		ALUM	_	0.24		24	5 7	11.5	22.4
		TRUSS	CARBON EPOXY	_	0.144		24	34	88	19.7
			FIBERGLASS	_	0.24		24	5 7	11.5	22 3
1	ADAPTER	TRUSS	CARBON EPOXY	_	0 18		24	4.3	10.9	-
			ALUM	1.62	-			15.2	19 6	30 7
_		CORRUG.	CARBON EPOXY	0.91	-			8 54	17.2	28 1
VEHICLE 1-3			FIBERGLASS	1.54				14 5	22 8	33.0
걸	, QQ.		ALUM	2.92	_			27 5	37 6	48 6
\ VE	VEHICLE BODY (CASE 2)*	H.C SANDWICH	CARBON EPOXY	1 65				15 5	22.8	33.1
	EHIC (CA)		FIBERGLASS	2.10	_			19 3	27.5	38 6
	>		ALUM	_	0.245		24	58	1,1 7	22 7
		TRUSS	CARBON EPOXY	_	0 145		24	3 4	8.9	20 3
			FIBERGLASS	_	0.245		24	5.77	11.6	22 6
	ADAPTER	TRUSS	CARBON EPOXY	_	0.185		24	4 4	11.05	-
1			ALUM	1.65	_			15 6	20.9	32 1
	>	CORRUG	CARBON EPOXY	0.93				87	19.1	30.2
Ì	3)*		FIBERGLASS	1.57				14.7	25 2	36 3
•	VEHICLE BODY (CASE 3)*		ALUM	2.92	-			27.5	39 8	51.1
	VEH (C	H. C. SANDWICH	CARBON EPOXY	1.65				15 5	24.7	35 9
			FIBERGLASS	2.10	_	9.38		19.3	29.2	40 7

^{*} CASE 1 - LOW PAYLOAD - 4"

† BODY PLUS ADAPTER

CASE 2 - MED PAYLOAD - L/D = 0.2

CASE 3 - HIGH PAYLOAD - L/D = 0.5

^{**} INCLUDING END FTG'S AND ATTACHMENTS

Table B-15: WEIGHT SUMMARY (Cont)

		' `	inie P-19:		SUMMA					
			MATERIAL	WEIGHT	WT/MEM	AREA	MEMBER QTY	BODY WT	AD- JUSTED WT	TOTAL WEIGHT
				(lb/ft ²)	(lb)	(ft ²)		(lp)	(lb) *	(lb) †
	LE (^ 3)		ALUM	 	0 547		24	13 1	26 2	50 9
VEHICLE 1-3	VEHICLE BODY (CASE 3)	TRUSS	CARBON EPOXY	_	0 325		24	78	20 3	45 0
ᇤᅼ	¥ 3 0		FIBERGLASS	_	0 541		24	130	26 1	50 8
	ADAPTER	TRUSS	CARBON EPOXY	_	0.408		24	98	24 7	_
			ALUM	0.440		132 2		58.2	78 5	108 4
{		CORRUG.	CARBON EPOXY	0.273				36 1	74 4	104 3
	>		FIBERGLASS	0 467				61 8	100 1	130 0
	30D	·	ALUM	0.601				79 5	124 5	154 4
	VEHICLE BODY (CASE 1)	H C. SANDWICH	CARBON EPOXY	0.333				44 0	78.8	108 7
	EHIO (CA		FIBERGLASS	0 430		132 2		56 9	91 7	121 6
	>		ALŲM		0 936 0.692		- 12 12	19 6 ⁻	37 0	66 9
		TRUSS	CARBON EPOXY		0 606 0 512		12 12	13 4	29.0	58 9
			FIBERGLASS		1.132 0.845		12 12	23 8	42 0	719
	ADAPTER	TRUSS	CARBON EPOXY		1 57		12	18 9	29 9	-
4			ALUM	0.459		132.2		60 5	82 6	11 <u>3</u> 1
VEHICLE 1-14		CORRUG	CARBON EPOXY	0 284				37.6	79 3	109 8
5	>		FIBERGLASS	0.475	l			62.8	104 5	135 0
 	VEHICLE BODY (CASE 2)		ALUM	0.601				79 5	128.5	159 0
.	CLE ASE 2	H.C SANDWICH	CARBON EPOXY	0.333				44 0	81 9	112 4
	/EHI (C.		FIBERGLASS	0.430		132 2		56 9	94 8	125 3
			ALUM		0.936 0.692		12 12	19.6	37 2	67 7
		TRUSS	CARBON EPOXY		0.606 0.518		12 12	13 5	29 4	59 9
			FIBERGLASS		1.132 0 882		12 12	24 2	41 4	71 9
	ADAPTER	TRUSS	CARBON EPOXY		1 60		12	19 2	30 5	_
	LE (ALUM	0.471		132 2	٠.	62 4	86 8	118.0
	VEHICLE BODY (CASE 3)	CORRUG.	CARBON EPOXY	0.295		132 2		39 0	85 0	116 2
	5 - 5	. ,	FIBERGLASS	0.536	<u> </u>	132.2		71 0	117 0	148 2
		I CACE 1								

^{*} CASE 1 — LOW PAYLOAD — 4" T BODY PLUS ADAPTER

CASE 2 - MED PAYLOAD - L/D = 0.2

Table B-15: WEIGHT SUMMARY (Cont)

		1	5/6 B-15. V				, 		7	
			MATERIAL		WT/MEM	_	MEMBER QTY	BODY	AD- JUSTED WT	TOTAL WEIGHT
				(Kg/m ²)	(Kg)	(m ²)		(Kg)	(Kg)*	(Kg)†
	3) 3)		ALUM		0 248		24	5 9	118	23 8
CLE	VEHICLE BODY (CASE 3)	TRUSS	CARBON EPOXY	-	0 148		24	3 5	92	20 4
VEHICLE 1-3	VE B (C		FIBERGLASS	_	0.246		24	5.8	11 75	23 8
	ADAPTER	TRUSS	CARBON EPOXY	-	0 185		24	4 5	11 2	_
			ALUM	2.15		12.3		26 3	36 7	49.1
		CORRUG	CARBON EPOXY	1 34		1		16 4	33 9	47 2
		t	FIBERGLASS	2 33				28 1	45 5	59 0
	ОБУ		ALUM	2 94				36 2	56 6	70 0
	LE 8 ie 1)	H C SANDWICH	CARBON EPOXY	1 62				20 0	35 8	49 0
	VEHICLE BODY (CASE 1)	JANDWICH	FIBERGLASS	2 10		12.3		25 8	416	' 55 0
	>		ALUM		0.425 0.315		12 12	8 9	168	30 8
		TRUSS	CARBON EPOXY		0 273 0 232		12 12	61	13 2	26 7
			FIBERGLASS		0.514 0.374		12 12	10 9	19 1	32 7
	ADAPTER	TRUSS	CARBON EPOXY		0 708		12	86	13 6	_
-14			ALUM	2.24		12.3		27 5	37 5	51 4
VEHICLE 1-14		CORRUG	CARBON EPOXY	1.39				17 2	36 0	49 5
ËĦ	> -		FIBERGLASS	2 32				28 5	47.3	61 4
	30D'		ALUM	2.94				36 2	58 1	72 3
	VEHICLE BODY (CASE 2)	H C SANDWICH	CARBON EPOXY	1 62				20 0	37 2	51 0
	EHIC (CA	l į	FIBERGLASS	2 15		12.3		25 8	43.0	56 8
	>		ALUM		0 425 0.315		12 12	89	16 8	30 8
		TRUSS	CARBON EPOXY		0 273 0 235		12 12	6 2	13 3	27 2
			FIBERGLASS		0 514 0 402		12 12	11 0	18 8	32 3
	ADAPTER	TRUSS	CARBON -EPOXY		0 726		12	8 7	138	-
	э. 🤨		ALUM	2.35		12.3		28.3	39 5	53 7
	VEHICLE BODY (CASE 3)	CORRUG	CARBON EPOXY	1.44		12 3		17 7	38 6	52.3
	V B Q	ł	FIBERGLASS	2.62		12.3		32.2	53 2	67 3
 -i		ASE 1 - LOW	·				1	<u> </u>	<u></u>	

^{*} CASE 1 - LOW PAYLOAD - 4"

† BODY PLUS ADAPTER

CASE 2 - MED PAYLOAD - L/D = 0.2

CASE 3 - HIGH PAYLOAD - L/D = 0.5

Table B-16: WEIGHT SUMMARY (Cont)

Table B to: WEIGHT SOMMANT (CONT.)										
			MATERIAL	WEIGHT	WT/MEM	AREA	MEMBER QTY	BODY WT	AD- JUSTED WT	TOTAL WEIGHT
		· · · · · · · · · · · · · · · · · · ·		(lb/ft ²)	(lb)	(ft ²)		(lb)	(lp) *	(lb) †
	-		ALUM	0.601		132 2		79 5	133 5	164 7
	>	H C SANDWICH	CARBON EPOXY	0 333		132.2		44 0	85 7	1169
1-14	3)		FIBERGLASS	0.430		132 2		56 9	98 6	129 8
CLE	VEHICLE BODY (CASE 3)		ALUM		0.945 0.730		12 12	20 1	38 5	69 7
VEHICLE 1-14	VEH (C	TRUSS	CARBON EPOXY		0 606 0 526		12 12	13 6	29 6	60 8
			FIBERGLASS		1 132 0 899		12 12	24 4	41 8	730
	ADAPTER	TRUSS	CARBON EPOXY		1 63		12	19 6	31 2	-
			ALUM	0 322		44 5		14 3	24 7	56 0
	į	CORRUG	CARBON EPOXY	0 176		4		7 8	27 4	58 7
			FIBERGLASS	0 239				10.7	30 3	616
	100		ALUM	0 601				26 8	49 8	81 1
ļ i	EHICLE B (CASE 1)	H C SANDWICH	CARBON EPOXY	0 333				148	32 6	63.9
	VEHICLE BODY (CASE 1)		FIBERGLASS	0 430		44 5		19 2	37 0	68 3
O _O	>		ALUM		0.286		24	6.9	20 0	513
NO T		TRUSS	CARBON EPOXY		0 119		24	29	13 9	45 2
-Н2			FIBERGLASS		0.288		24	6 9	20 1	51 4
1-2 (LH ₂ ON TOP)	ADAPTER	TRUSS	CARBON EPOXY		0 620		24	14.9	31 3	
HICLE .			ALUM	0.324		44 5		14 4	26 0	58 2
VEHIC		CORRUG	CARBON EPOXY	0 177				7 9	29 9	62 1
	>		FIBERGLASS	0 260				11 6	33 6	65 8
	BOD'		ALUM	0 601				26 8	52 6	84 8
	VEHICLE BODY (CASE 2)	H C SANDWICH	CARBON EPOXY	0,333				14 8	34 7	66.9
	EHI(C		FIBERGLASS	0 430		44.5		19.2	39 1	71 3
	_		ALUM		0.286		24	69	20 2	52 4
		TRUSS	CARBON EPOXY		0 123		24	30	14 2	46 4
			FIBERGLASS		0 288		24	69	20 3	52 5
	ADAPTER	TRUSS	CARBON EPOXY		0.627		24	15 1	32 2	_

^{*} CASE 1 - LOW PAYLOAD - 4"

[†] BODY PLUS ADAPTER

CASE 2 - MED PAYLOAD - L/D = 0 2

CASE 3 - HIGH PAYLOAD - L/D = 0.5

Table B-16: WEIGHT SUMMARY (Cont)

										
			MATERIAL	WEIGHT (Kg/m ²)	WT/MEM (Kg)	AREA	MEMBER QTY	BODY WT (Kg)	AD- JUSTED WT (kg)*	TOTAL WEIGHT (Kg) †
									50.5	74.5
	1	H.C	CARBON	2 94		12 3	ļ	36 1	60 5	74 5
	λQC	SANDWICH	EPOXY	1 63		12 3		20 0	39.0	53 0
Ī	E B(FIBERGLASS	2 15		123		25 8	44 8	58 6
CE	VEHICLE BODY (CASE 3)		ALUM		0 430 0 332		12 12	9 2	17 5	31 7
VEHICLE 1-14	VEF	TRUSS	CARBON EPOXY		0 273 0.238		12 12	6.17	13.4	27 4
			FIBERGLASS		0 514 0 407		12 12	11 2	19 0	33 2
	ADAPTER	TRUSS	CARBON EPOXY	•	0 741		12	8 9	14 3	_
			ALUM	1 57		0.42		6 5	11 2	25 4
	ī.	CORRUG	CARBON EPOXY	0 865		4		35	12 4	26 7
			FIBERGLASS	1 17				4 9	139	27 8
	γdo		ALUM	2 94				12.3	22.6	36 9
	LE 8 SE 1)	H.C SANDWICH	CARBON EPOXY	1 63			<u> </u>	67	14.8	29 0
	VEHICLE BODY (CASE 1)		FIBERGLASS	2 15		0.42		8 7	168	30 9
			ALUM	-	0.130		24	3.2	9 1	23 3
Ď.		TRUSS	CARBON EPOXY		0 054		24	1 3	6.3	20 5
No			FIBERGLASS		0.132		24	3 2	9.12	23 4
1-2 (LH ₂ ON TOP)	ADAPTER	TRUSS	CARBON EPOXY		0.282		24	68	14 4	_
1-2			ALUM	1 58		0 42		6 7	118	26 4
IICLE		CORRUG	CARBON EPOXY	0 865		1	<u> </u>	3 6	13 6	28.2
VEH		i I	FIBERGLASS	1 27				5 3	15 3	29 9
	300		ALUM	2 94			<u> </u>	12 3	23 9	38 5
	VEHICLE BODY (CASE 2)	H.C. SANDWICH	CARBON EPOXY	1 63				6 7	15 7	30 4
	EHIC (CA		FIBERGLASS	2 15		0 42		8 7	178	32 3
	>		ALUM		0.130		24	3 13	92	23 8
1		TRUSS	CARBON EPOXY		0 056		24	1 36	6 45	21 1
]			FIBERGLASS		0.132		24	3 13	9 2	23 9
	ADAPTER	TRUSS	CARBON EPOXY		0 285		24	6 75	14 6	-

^{*} CASE 1 – LOW PAYLOAD – 4" † BODY PLUS ADAPTER

CASE 2 - MED PAYLOAD - L/D = 0.2 CASE 3 - HIGH PAYLOAD - L/D = 0.5

Table B-17: WEIGHT SUMMARY (Cont)

Table B-17. WEIGHT SOMMANT (CONG)										
			MATERIAL	WEIGHT	WT/MEM	AREA	МЕМВЕР ОТУ	BODY WT	AD- JUSTED WT	TOTAL WEIGHT
				(lb/ft ²)	(lb)	(ft ²)		(1Ь)	(lb)	(lb) †
			ALUM	0 324		44 5		14 4	28 1	60 7
		CORRUG	CARBON EPOXY	0 177		Å		7.9	33 9	66 5
l do			FIBERGLASS	0 265		_		11 8	37 8	70 4
Z	00		ALUM	0.601				26 8	57 3	89 9
H ₂ C	VEHICLE BODY (CASE 3)	H C SANDWICH	CARBON EPOXY	0.333				14 8	38 4	71 0
-2 (EHIC (CA	<u> </u> 	FIBERGLASS	0 430		44 5		19.2	42 8	75 4
<u> </u>	>		ALUM		0 286		24	69	20 7	53 3
VEHICLE 1-2 (LH ₂ ON TOP)		TRUSS	CARBON EPOXY		0 138		24	3 3	15 4	48 0
			FIBERGLASS		0 288		24	69	20 8	53 4
	ADAPTER	TRUSS	CARBON EPOXY	·	0.638		24	15 3	32.6	-
	!	_	-ALUM	0 328	} -	87.5	j i	28 7	36 9	67 8
} '		CORRUG	CARBON EPOXY	0 177				15.5	31 1	62 0
l i	>		FIBERGLASS	0.304	}			26 6	42 2	73 1
	(doi		ALUM	0.601				52 5	70.9	101.8
li	VEHICLE BODY (CASE 1)	H C SANDWICH	CARBON EPOXY	0.333				29 1	43 3	74 2
<u>a</u>	EHI(-	FIBERGLASS	0 430	l	87.5	<u> </u>	37 6	51 8	82 7
ON TOP)	>		ALUM		0 472		24	11 4	23 8	54 7
(LF ₂ 0)		TRUSS	CARBON EPOXY		0 254		24	61	17 7	48.6
-5 (L		<u> </u>	FIBERGLASS	İ	0 460		24	110	23 5	54 4
LE 1-2	ADAPTER	TRUSS	CARBON EPOXY		2 47		24	5 9	30.9	-
VEHICLE		<u> </u>	ALUM	0.328		87 5		28 7	38 1	69.8
\ \	>	CORRUG	CARBON EPOXY	0.179				15.7	33 5	65 2
	BOD		FIBERGLASS	0 312				27.3	45 1	76.8
	EHICLE B		ALUM	0.601				52 5	73 5	105 2
	VEHICLE BODY (CASE 2)	H C. SANDWICH	CARBON EPOXY	0 333				29 1	45 3	77.0
			FIBERGLASS	0 430		87.5		37 6	53 8	85 5
			+ BODY PLUS							

† BODY PLUS ADAPTER

Table B-17: WEIGHT SUMMARY (Cont)

Table B-17. WEIGHT SOWIWATT (COIL)										
			MATERIAL		WT/MEM		MEMBER QTY	WI	AD- JUSTED WT	TOTAL WEIGHT
				(Kg/m ²)	(Kg)	(m ²)		(Kg)	(Kg)	(Kg) †
			ALUM	1.58		0 42		65	12 7	27 7
		CORRUG	CARBON EPOXY	0.87		•		3.6	15 4	30 2
ا ھ			FIBERGLASS	1.29				5 45	16.8	32.0
N N	, do		ALUM	2.94				12 4	27.0	40 8
⁴ 20	LE B SE 3)	H C SANDWICH	CARBON EPOXY	1.63				6 72	17.4	32 3
1-2 (LH ₂ ON TOP)	VEHICLE BODY (CASE 3)		FIBERGLASS	2.15		0 42		8.72	19.5	34 3
<u> </u>	>		ALUM		0 130		24	3.2	94	24 2
VEHICLE		TRUSS	CARBON EPOXY		0.063		24	1 5	7.0	21 8
>		<u> </u>	FIBERGLASS		0 132		24	3.2	9.38	24 3
	ADAPTER	TRUSS	CARBON EPOXY		0.290		24	6.95	14 8	_
			ALUM	1 61		0 813		13 1	16 7	30 9
	VEHICLE BODY (CASE 1)	CORRUG	CARBON EPOXY	0.865		4	†	7 04	14 3	28 2
			FIBERGLASS	0.148			†	12.2	19 4	33 3
			ALUM	2.94				23.8	32.2	46 2
	CASE 1)	H C SANDWICH	CARBON EPOXY	1 63				132	19.7	33 7
<u>6</u>	EHIO (CA)		FIBERGLASS	2.15		0.813		17 2	23 6	37 7
N O	>		ALUM		, 0 214		24	5.18	10 8	24 8
(LF ₂ ON TOP)		TRUSS	CARBON EPOXY		0 116		24	27	8 04	22 1
-2 (FIBERGLASS		0 208		24	50	10 7	24 7
LE 1	ADAPTER	TRUSS	CARBON EPOXY		1 13		24	27	14 1	_
VEHICLE	· · · · · · · · · · · · · · · · · · ·		ALUM	1.61		0.813		13 1	17 6	31 7
	>	CORRUG	CARBON EPOXY	0.87		1	1	7 14	15.3	29 6
1	300 g		FIBERGLASS	1 53			1	12 5	20.4	34.9
	CLE		ALUM	2.94			1	23.8	33 4	47 8
	VEHICLE BODY (CASE 2)	H C. SANDWICH	CARBON EPOXY	1.63		V	1	134	2Ò 6	36 0
	7	JANJWICH .	FIBERGLASS	2.15		0.813		17 2	24.4	38 8
			+ BODY BLUE	<u> </u>	<u> </u>		٠	<u> </u>		<u> </u>

[†] BODY PLUS ADAPTER

Table B-18: WEIGHT SUMMARY (Cont)

		•	MATERIAL	WEIGHT	WT/MEM	AREA	MEMBER QTY	BODY WT	AD- JUSTED WT (lb)	TOTAL WEIGHT
 -							24			
1 1	VEHICLE		CARBON		0.472		24	11 3	23.8	55 5
	BODY (CASE 2)	TRUSS	EPOXY		0 256		24	6.2	17 7	49 4
			FIBERGLASS		0.461		24	11 1	23.6	55 3
	ADAPTER	TRUSS	CARBON EPOXY		2 48		24	60	31 7	
(do			ALUM	0.333		87 5		29.1	40 7	727
NO.		CORRUG	CARBON EPOXY	0 182		•		15 9	37 8	69 8
(LF ₂ ON TOP)			FIBERGLASS	0 322				28 2	50 1	82 1
-2 (1	(00)		ALUM	0 601				52 5	78 3	110 3
VEHICLE 1-2	VEHICLE BODY (CASE 3)	H C SANDWICH	CARBON EPOXY	0.333				29 1	49 1	81 1
E E	EHIC (CAS	07.11.0771011	FIBERGLASS	0.430		87 5		37 6	57 6	89 6
>	>		ALUM		0 476		24	11 4 -	- 24 2	56 2
	1	TRUSS	CARBON		0 263	· 	24	63	18 2	50 2
			FIBERGLASS		0 462		24	11 1	24 0	56 0
	ADAPTER	TRUSS	CARBON EPOXY		2 51		24	6.0	32 0	-
			ALUM	0 340		45 5		15 5	33 1	55 2
		CORRUG	CARBON EPOXY	0 187		A		8 5	41 9	64.0
			FIBERGLASS	0.393				17 9	51 3	73 4
	BODY 1)		ALUM	0 601				27 4	66.6	88.7
),LE B SE 1)	H C SANDWICH	CARBON EPOXY	0 333				15 2	45.5	67 6
2-5	VEHICLE (CASE		FIBERGLASS	0.430		45 5		19 6	49.9	72.0
ICLE	>		ALUM		0 312		24	7 5	19 5	41 6
VEHICLE		TRUSS	CARBON EPOXY		0 130		24	31	13 5	35 6
			FIBERGLASS		0 314		24	7 5	19 5	41 6
	ADAPTER	TRUSS	CARBON EPOXY		0 331		24	7 9	22 1	-
	VELUCIE		ALUM	0 348		45 5		158	34 5	56 7
	VEHICLE BODY	COBBLIC	CARBON EPOXY	0 195		45.5		89	44 4	66 6
	(CASE 2)		FIBERGLASS	0 406		45 5		18 5	54 0	76 2

[†] BODY PLUS ADAPTER

Table B-18: WEIGHT SUMMARY (Cont)

VEHICLE RODY TRUSS CARBON CORRUG CARBON CORRUG CARBON CARBON CORRUG CARBON CARBON CARBON CORRUG CARBON CARBON CARBON CORRUG CARBON CARBON CARBON CARBON CARBON CARBON CARBON CORRUG CARBON CARBON CARBON CORRUG CARBON CAR			1							· · · · · · · · · · · · · · · · · · ·	
VEHICLE BODY (CASE 2)				MATERIAL	WEIGHT	N/T/11EM				JUSTED	TOTAL WEIGHT
VEHICLE ROLY TRUSS CARBON EPOXY FIBERGLASS 0 209 24 50 10 7 25	,		· · · · · · · · · · · · · · · · · · ·		(Kg/m ²)	(Kg)	(m ²)		(Kg)	(Kg)	(Kg) †
BODY TRUSS CARBON CARB		VEHICLE		ALUM		0 215		24	5.1	10.8	25.2
FIBERGLASS 0 209	1	BODY	TRUSS			0 1 1 6		24	2.7	8.05	22 4
ADAPTER TRUSS EPOXY 1.13 24 27 14 8 14 16 16 16 16 16 16 16	i	(CASE 2)				0 209		24	50	10 7	25 1
ALUM		ADAPTER	TRUSS			1.13		24	2 7	14 8	_
ALUM	_				1 63		0 813		13 4	18 3	33 0
ALUM	TOP		CORRUG		0 89		1	†	7.2	17 3	31 7
H C SANDWICH CARBON EPOXY 1 63	2 ON			FIBERGLASS	1.57				12 8	22 8	37 3
TRUSS ALUM 0.216 24 5.2 110 25	(LF	7007	-	ALUM	2 94				24.8	35 5	50.0
TRUSS ALUM 0.216 24 5.2 110 25	E 1-2	LE B SE 3)			1 63			†	13 2	22 3	37 9
TRUSS CARBON CARB	HCL	EHIC (CA)			2 15		0 813		16 6	26 1	40 6
RIUSS EPOXY 0119 24 27 8.3 22	VE	>		ALUM		0.216	· · · · · · · · · · · · · · · · · · ·	24	5.2	110	25 5
ADAPTER TRUSS CARBON 114 24 2.7 145		c	TRUSS			0 1 19		24	27	8.3	22 8
ADAPTER THUSS EPOXY ALUM 166 0.42 7.0 15.0 25 CARBON EPOXY 0.914 3.9 19 0 29 FIBERGLASS 1.92 81 23.2 33 ALUM 2.94 124 30 8 40 CARBON EPOXY 163 69 20.7 30 FIBERGLASS 2.10 0.42 89 22.6 32 ALUM 0.143 24 34 8.85 18 CARBON EPOXY 0.059 24 14 61 16 FIBERGLASS 0.144 24 34 8.85 18 ADAPTER TRUSS CARBON EPOXY 0.151 24 36 10 1 VEHICLE BODY (CASE 2) CARBON EPOXY 0.952 0.42 4 1 20.1 30				FIBERGLASS		0.209		24	5.0	108	25 4
CORRUG CARBON 0.914 3.9 19 0 29		ADAPTER	TRUSS			1 14		24	2.7	14 5	_
CORRUG EPOXY 0.914 3.9 190 29				ALUM	1 66		0.42		7.0	15.0	25 3
ALUM 2.94 12 4 30 8 40 CARBON EPOXY 163 69 20.7 30 FIBERGLASS 2.10 0.42 89 22.6 32 ALUM 0.143 24 34 8.85 18 CARBON EPOXY 0.059 24 14 61 16 FIBERGLASS 0.144 24 34 8.85 18 ADAPTER TRUSS CARBON EPOXY 0.151 24 36 10 1 — VEHICLE BODY (CASE 2) CARBON EPOXY 0.952 0.42 4 1 20.1 30			CORRUG	CARBON EPOXY	0.914		4		3.9	19 0	29 1
TRUSS ALUM 0.143 24 34 8 85 18 18 24 14 6 1 16 24 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 36 10 1 24 36 10 1 24 26 26 26 26 26 26 26			_	FIBERGLASS	1.92				8 1	23.2	33 3
TRUSS ALUM 0.143 24 34 8 85 18 18 24 14 6 1 16 24 24 34 8 85 18 24 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 36 10 1 24 36 10 1 24 26 26 26 26 26 26 26		9		ALUM	2.94				12 4	30 8	40 4
TRUSS ALUM 0.143 24 34 8 85 18 18 24 14 6 1 16 24 24 34 8 85 18 24 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 36 10 1 24 36 10 1 24 26 26 26 26 26 26 26		SE 1)			1 63		•		69	20.7	30.6
TRUSS ALUM 0.143 24 34 8 85 18 18 24 14 6 1 16 24 24 34 8 85 18 24 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 34 8 85 18 24 36 10 1 24 36 10 1 24 26 26 26 26 26 26 26	E 2-2	EHC GA		FIBERGLASS	2.10		0.42		89	22.6	32.7
FIBERGLASS 0 144 24 3 4 8.85 18	IICL	>		ALUM		0.143		24	3 4	8 85	18.8
FIBERGLASS 0 144 24 3 4 8.85 18	/EH		TRUSS			0.059		24	14	61	16 6
ADAPTER						0 144		24	34	8.85	18.8
VEHICLE BODY (CASE 2) CARBON EPOXY 0.952 0 42 4 1 20.1 30		ADAPTER	TRUSS	CARBON EPOXY		0 151		24	3 6	10 1	_
BODY CORRUG CARBON 0.952 0.42 4.1 20.1 30				ALUM	0.170		0.42		7 2	15.7	25.7
TIDED OF ACT ACT		BODY	CORRUG C	CARBON EPOXY	0.952		0 42		4 1	20.1	30 8
		(CASE 2)		FIBERGLASS	1 97		0.42		8 4	24 5	34.6

[†] BODY PLUS ADAPTER

Table B-19: WEIGHT SUMMARY (Cont)

							· · · ·			
			MATERIĂL	WEIGHT	WT/N1EN	AREA	MEMBER QTY	BODY WT	AD- JUSTED WT	TOTAL WEIGHT
				(lb/ft ²)	(IP)	(ft ²)		(lb)	(lb)	(lb) †
			ALUM	0.601		45.5		27.4	69.1	91 3
	ЭDY	H C. SANDWICH	CARBON EPOXY	0.333		45.5		15.2	47.4	69 6
	VEHICLE BODY (CASE 2)		FIBERGLASS	0 430		45.5		19.6	518	74 0
	HICI (CAS		ALUM		0.312		24	7 5	19.7	419
	VE	TRUSS	CARBON EPOXY		0 131		24	3 1	13.7	35 9
			FIBERGLASS		0 314		24	7.5	19 7	41 9
	ADAPTER	TRUSS	CARBON EPOXY		0'333		24	80	22 2	1
			ALUM	0 353		45.5		16 1	36.8	60 6
E 2-2		CORRUG	CARBON EPOXY	0 197				90	48.3	72,1
VEHICLE			FIBERGLASS	0 418				19.0	58.3	82 1
\ E	gop (ALUM	0 601				27 4	73 4	97 2
	CE B	H.C SANDWICH	CARBON EPOXY	0.333		•		15 2	50 9	74 7
	VEHICLE BODY (CASE 3)		FIBERGLASS	0.430		45.5		19.6	55.3	79 1
	>		ALUM		0 312	 	24	7 5	20.2	44.0
		TRUSS	CARBON EPOXY		0.137		24	33	14 8	38.6
			FIBERGLASS		0 315		24	76	20.2	44.0
	ADAPTER	TRUSS	CARBON EPOXY		0 347		24	83	23.8	-
			ALUM	0.498		112.4		56 0	73.0	102.6
		CORRUG	CARBON EPOXY	0.263		4		29.5	61 7	91.3
			FIBERGLASS	0 435				48.9	81 1	110.7
4	000		ALUM	0.601				67.5	105 4	135 0
£ 2-14	VEHICLE BODY (CASE 1)	H C. SANDWICH	CARBON EPOXY	0 333				37 4	66 7	96.3
VEHICLE	EHIC (CA		FIBERGLASS	0 430		112.4	T	48 4	77 7	107.3
\ \A) >		ALUM		0.710 0.651		12 12	16 3	33 0	62.6
		TRUSS	CARBON EPOXY		0 456 0 426		12 12	10 6	25 9	55 5
}			FIBERGLASS		0.848 0 775		12 12	195	35 8	65 4
	ADAPTER	TRUSS	CARBON EPOXY		1.70		12	20.4	29 6	-

[†] BODY PLUS ADAPTER

Table B-19. WEIGHT SUMMARY (Cont)

ALUM								, 		,	
ALUM 2 94 0.42 12.8 314 41 CARBON EPOXY 1.63 0 42 6.9 215 31 CARBON EPOXY 1.63 0 42 6.9 215 33 ALUM 0.142 24 34 894 19 TRUSS CARBON EPOXY 0.059 24 1.4 63 16 FIBERGLASS 0.0143 24 3.6 10.1				MATERIAL	WEIGHT	WT/MEM	AREA			JUSTED	TOTAL WEIGHT
H C SANDWICH FIBERGLASS 2 10 0.42 8.9 23.5 33.					(Kg/m ²)	(Kg)	(m ²)		(Kg)	(kg)	(kg) †
SANDWICH FPOXY 1.63 0.42 8.9 21.5 31	VEHICLE BODY CASE 3)			ALUM	2 94		0.42		12.8	31 4	41 4
ADAPTER TRUSS CARBON PIBERGLASS 0 143 24 34 8 95 19 ADAPTER TRUSS CARBON 0 0.152 24 3.6 10.1 — ALUM 173 0 42 7.3 168 27 CARBON POXY 0 963 4 4.1 219 32 FIBERGLASS 1 99 8 66 264 37 ALUM 2.94 12.5 33 3 44 CARBON POXY 1 63 0 6.9 23 1 33. FIBERGLASS 2 10 0 42 8 9 25 1 36 ALUM 0 142 24 34 9 17 19 CARBON POXY 0 059 24 1.5 6.7 17 FIBERGLASS 0 0 143 24 34 9 17 19 ADAPTER TRUSS CARBON POXY 0 0 157 24 37 10 8 — ALUM 2 43 11 5 25 4 34 1 46. CARBON POXY 1 28 13 4 28 1 41. FIBERGLASS 2 10 0 157 24 37 10 8 50 CARBON POXY 1 28 13 4 28 1 41. FIBERGLASS 2 12 13 68 50 ALUM 2.94 1 15 13 4 28 1 41. FIBERGLASS 2 10 11 5 21.9 34 3 48 ALUM 2.94 1 15 15 6.7 17 FIBERGLASS 2 10 11 5 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 15 21.9 34 3 48 ALUM 2.94 1 2 24 3 3.6 16 3 29. ALUM 2.94 1 2 48 13 6 25 FIBERGLASS 2 10 19 11 5 21.9 34 3 48 ALUM 2.94 1 2 48 13 6 25 FIBERGLASS 2 10 0 11 5 21.9 34 3 48 ALUM 2.94 1 2 48 13 6 25 FIBERGLASS 2 10 0 11 5 21.9 34 3 48 ALUM 2.94 1 2 48 13 6 25 FIBERGLASS 2 10 0 11 5 21.9 34 3 48 ALUM 2.94 1 2 48 13 6 25 FIBERGLASS 2 10 0 11 5 21.9 34 3 48 ALUM 2.94 1 2 48 13 6 25 FIBERGLASS 0 0.385 12 8.85 16 3 29.		λdc	1		1.63		0 42		6.9	21 5	31 6
ADAPTER TRUSS CARBON 1983 4 1.1 219 32 FIBERGLASS 199 042 7.3 168 27 FIBERGLASS 199 866 264 37 FIBERGLASS 199 866 264 37 FIBERGLASS 199 866 264 37 FIBERGLASS 210 042 89 251 36 FIBERGLASS 210 042 89 251 36 FIBERGLASS 210 042 89 251 36 ADAPTER TRUSS CARBON EPOXY 0059 24 1.5 6.7 17 FIBERGLASS 0143 24 34 917 19 ADAPTER TRUSS CARBON EPOXY 0059 24 1.5 6.7 17 FIBERGLASS 0143 24 34 917 19 ADAPTER TRUSS CARBON EPOXY 0157 24 37 108 — ALUM 243 115 254 341 46. CORRUG CARBON EPOXY 128 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 343 48 ALUM 2.94 1 15 221 368 50 FIBERGLASS 210 115 21.9 343 48 ALUM 2.94 1 15 221 368 50 FIBERGLASS 210 115 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 FIBERGLASS 2 10 115 21.9 343 48 ALUM 0.322 12 7.4 149 28. FIBERGLASS 2 10 0.322 12 7.4 149 28. FIBERGLASS 0.385 12 48 136 25 FIBERGLASS 0.385 12 8.85 163 29.		E B(FIBERGLASS	2 10		0.42		89	23 5	33.6
ADAPTER TRUSS CARBON 1983 4 1.1 219 32 FIBERGLASS 199 042 7.3 168 27 FIBERGLASS 199 866 264 37 FIBERGLASS 199 866 264 37 FIBERGLASS 199 866 264 37 FIBERGLASS 210 042 89 251 36 FIBERGLASS 210 042 89 251 36 FIBERGLASS 210 042 89 251 36 ADAPTER TRUSS CARBON EPOXY 0059 24 1.5 6.7 17 FIBERGLASS 0143 24 34 917 19 ADAPTER TRUSS CARBON EPOXY 0059 24 1.5 6.7 17 FIBERGLASS 0143 24 34 917 19 ADAPTER TRUSS CARBON EPOXY 0157 24 37 108 — ALUM 243 115 254 341 46. CORRUG CARBON EPOXY 128 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 368 50 FIBERGLASS 210 115 221 343 48 ALUM 2.94 1 15 221 368 50 FIBERGLASS 210 115 21.9 343 48 ALUM 2.94 1 15 221 368 50 FIBERGLASS 210 115 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 ALUM 2.94 1 15 21.9 343 48 FIBERGLASS 2 10 115 21.9 343 48 ALUM 0.322 12 7.4 149 28. FIBERGLASS 2 10 0.322 12 7.4 149 28. FIBERGLASS 0.385 12 48 136 25 FIBERGLASS 0.385 12 8.85 163 29.		HICI (CA)	HICL	ALUM		0.142		24	3 4	8 94	19 0
ADAPTER TRUSS CARBON 173 042 7.3 168 27 CORRUG CARBON 173 042 7.3 168 27 CORRUG CARBON 173 042 7.3 168 27 FIBERGLASS 199 866 264 37 FIBERGLASS 199 12.5 333 44 CARBON 2.94 12.5 333 44 CARBON 2.94 12.5 333 44 CARBON 2.94 042 89 251 36 ALUM 2.94 042 89 251 36 ALUM 0.142 24 34 917 19 TRUSS CARBON 2.059 24 1.5 6.7 17 FIBERGLASS 0.143 24 34 917 19 CARBON 2.94 0.157 24 37 108 - FIBERGLASS 0.143 24 34 917 19 CARBON 2.94 1.5 6.7 17 FIBERGLASS 0.143 24 34 917 19 CARBON 2.94 1.5 6.7 17 FIBERGLASS 0.143 24 34 917 19 CARBON 2.94 1.5 254 341 46. CARBON 2.94 1.5 254 341 46. CARBON 2.94 1.5 6.7 17 FIBERGLASS 2.12 22 1 368 50 ALUM 2.94 1.15 254 341 46. CARBON 2.94 1.15 254 341 41. FIBERGLASS 2.12 22 1 368 50 TRUSS CARBON 2.94 1.15 21.9 343 48 ALUM 2.94 1.15 21.9 343 48 ALUM 0.322 1.2 7.4 149 28. CARBON 2.90 194 112 48 136 25 FIBERGLASS 0.385 112 8.85 163 29.		VE	TRUSS			0 059		24	1.4	63	166
ADAPTER TRUSS EPOXY 0.152 24 3.8 10.1 ALUM 1.73 0.42 7.3 16.8 27 CORRUG CO			1	FIBERGLASS		0 143		24	3 4	8 95	19 0
CORRUG CARBON 0 963		ADAPTER	TRUSS			0.152		24	3.6	10.1	-
FIBERGLASS 199		VEHICLE BODY (CASE 3)		ALUM	1 73		0 42		7.3	16 8	27 3
H C SANDWICH CARBON 163			CORRUG		0 963		4		4.1	21 9	32 7
H C SANDWICH CARBON 163				FIBERGLASS	1 99				86	26 4	37 3
TRUSS CARBON 0 0 142 24				ALUM	2.94				12.5	33 3	44 1
TRUSS CARBON 0 0 142 24			H C SANDWICH		1 63		•		6.9	23 1	33.9
TRUSS CARBON 0 0 142 24				FIBERGLASS	2 10		0 42		8 9	25 1	36 0
TRUSS EPOXY 0 059 24 1.5 6.7 17 19				[0 142		24	3 4	9 17	19 9
ADAPTER TRUSS CARBON EPOXY 0 157 24 3 7 10 8 — ALUM 2 43 11 5 25 4 34 1 46. CARBON EPOXY 1 28 13 4 28 1 41. FIBERGLASS 2 12 22 1 36 8 50 ALUM 2.94 30.6 47 8 61 CARBON EPOXY 1.63 16 9 30.8 43. FIBERGLASS 2 10 11 5 21.9 34 3 48 ALUM 0.322 0.296 12 7.4 14 9 28. CARBON EPOXY 0 194 12 4 8 13 6 25 FIBERGLASS 0 352 12 8.85 16 3 29.			TRUSS			0 059		24	1.5	6.7	17 5
ADAPTER TRUSS EPOXY 0 157 24 37 108 — ALUM 2 43 11 5 25 4 34 1 46. CARBON EPOXY 1 28 134 28 1 41. FIBERGLASS 2 12 22 1 36 8 50 ALUM 2.94 30.6 47 8 61 CARBON EPOXY 1.63 16 9 30.8 43. FIBERGLASS 2 10 11 5 21.9 34 3 48 ALUM 0 296 12 7.4 14 9 28. TRUSS CARBON EPOXY 0 194 12 4 8 13 6 25 FIBERGLASS 0 355 12 8.85 16 3 29.				FIBERGLASS		0 143		24	3 4	9 17	19 9
CORRUG CARBON 1 28 1 13 4 28 1 41. FIBERGLASS 2 12 22 1 36 8 50 ALUM 2.94 30.6 47 8 61 CARBON EPOXY 1.63 16 9 30.8 43. FIBERGLASS 2 10 11 5 21.9 34 3 48 ALUM 0.322 12 7.4 14 9 28. CARBON EPOXY 0 194 12 7.4 14 9 28. FIBERGLASS 0 352 12 8.85 16 3 29.		ADAPTER	TRUSS			0 157		24	3 7	108	
FIBERGLASS 2 12 22 1 36 8 50 ALUM 2.94 30.6 47 8 61 CARBON EPOXY 1.63 16 9 30.8 43. FIBERGLASS 2 10 11 5 21.9 34 3 48 ALUM 0.322 12 7.4 14 9 28. TRUSS CARBON 0.207 12 4 8 13 6 25 FIBERGLASS 0 352 12 8.85 16 3 29.				ALUM	2 43		11 5		25 4	34 1	46.5
ALUM 2.94 30.6 47 8 61 CARBON EPOXY 1.63 16 9 30.8 43. FIBERGLASS 2 10 11 5 21.9 34 3 48 ALUM 0.322 12 7.4 14 9 28. CARBON EPOXY 0 194 12 4 8 13 6 25 FIBERGLASS 0 352 12 8.85 16 3 29.			CORRUG		1 28		4		13 4	28 1	41.3
TRUSS CARBON 0.207 12 7.4 14 9 28. CARBON 0.207 12 4 8 13 6 25 FIBERGLASS 0.385 12 8.85 16 3 29.				FIBERGLASS	2 12				22 1	36 8	50 2
TRUSS CARBON 0.207 12 7.4 14 9 28. CARBON 0.207 12 4 8 13 6 25 FIBERGLASS 0.385 12 8.85 16 3 29.	-14	, dob,		ALUM	2.94				30.6	47 8	61 3
TRUSS CARBON 0.207 12 7.4 14 9 28. CARBON 0.207 12 4 8 13 6 25 FIBERGLASS 0.385 12 8.85 16 3 29.	E 2-	LE E		CARBON EPOXY	1.63				16 9	30.8	43.7
TRUSS CARBON 0.207 12 7.4 14 9 28. CARBON 0.207 12 4 8 13 6 25 FIBERGLASS 0.385 12 8.85 16 3 29.	HIC	EHIC (CA		FIBERGLASS	2 10		11 5		21.9	34 3	48 6
FIBERGLASS 0 385 12 8.85 16 3 29.	۶	>		L		0 296		12	7.4	14 9	28.4
FIBERGLASS 0 385 12 8.85 16 3 29.			TRUSS	CARBON EPOXY		0 194	L	12	4 8	13 6	25 5
				L		0 385 0 352		12	8.85	16 3	29.3
ADAPTER TRUSS CARBON 0.771 12 9 25 13 4 -		ADAPTER	TRUSS	CARBON EPOXY		0.771			9 25	13 4	-

[†] BODY PLUS ADAPTER

Table B-20: WEIGHT SUMMARY (Cont)

			MATERIAL	WEIGHT (lb/ft ²)	WT/MEM	AREA	MEMBER QTY	BODY WT (lb)	AD- JUSTED WT (lb)	TOTAL WEIGHT (lb) †
VEHICL			ALUM	0 517		112.4		58 1	76 1	109 6
		CORRUG	CARBON EPOXY	0 274		1		30 8	64 9	98 4
			FIBERGLASS	0 461		 		51 8	85 9	1194
	gog (ALUM	0 601				67 5	107 6	141 1
	SLE E	H C SANDWICH	CARBON EPOXY	0 333				37 4	68 4	101 9
	EHIC (C, C)	SANDWICH	FIBERGLASS	0 430		112 4		48 4	79 4	1129
	>		ALUM		0 7 1 0 0 6 6 2		12 12	16 4	33.1	66 6
		TRUSS	CARBON EPOXY		0 456 0 440		12 12	108	26 3	59 8
			FIBERGLASS		0 848 0 775		12 12	19 5	35 8	69 3
	ADAPTER	TRUSS	CARBON EPOXY		1 95		12	23 4	33 5	_
	VEHICLE BODY (CASE 3)		ALUM	0 557		112 4		62 5	82 7	117 4
		CORRUG	CARBON EPOXY	0 295		•		33 2	71 4	106 1
			FIBERGLASS	0 501				56 4	94 6	129 3
		CASE 3) (CASE 3) (CASE 3) (CASE 3) (CASE 3)	ALUM	0 601				67 5	112 5	147 2
			CARBON EPOXY	0 333				37 4	72 2	106 9
			FIBERGLASS	0 430		112.4		48 4	83 2	1179
			ALUM		0 746 0 672		12 12	17 0	33 9	68 6
			CARBON EPOXY		0 457 0 475		12 12	11 2	26 9	61 6
			FIBERGLASS		0 850 0 794		12 12	19 7	35.9	70 6
	ADAPTER	TRUSS	CARBON EPOXY		2 01		12	24 1	34 7	_
			ALUM	0.342		104 5		35 7	45 1	63 8
2.3		CORRUG	CARBON EPOXY	0.187				19 5	37 3	56 0
	, oo		FIBERGLASS	0 349				36 4	54 2	729
CLE	VEHICLE BODY (CASE 1)		ALUM	0.601				62 7	83 7	102 4
VEHICLE	HIC	H C SANDWICH	CARBON EPOXY	0 333				34 8	51 0	69 7
	>		FIBERGLASS	0.430		104.5		45 0	61 2	79 9
L										

[†] BODY PLUS ADAPTER

Table B-20: WEIGHT SUMMARY (Cont)

			MATERIAL	WEIGHT (Kg/m ²)	WT/MEM (Kg)	AREA	МЕМВЕЯ QTY	BODY WT (Kg)	AD- JUSTED WT (Kg)	TOTAL WEIGHT (Kg) †
				, ,						
VEHICLE 2-14			ALUM	2.57		11 5		26.4	34 5	49 8
	1	CORRUG	CARBON EPOXY	1 34				14 0	29 5	44 7
			FIBERGLASS	2.25				23 5	39 0	54 2
	OD)		ALUM	2 94				30.6	48 9	64 1
	VEHICLE BODY (CASE 2)	H C SANDWICH	CARBON EPOXY	1 63				17 0	31 1	46 3
	EHIC (CA:		FIBERGLASS	2 10		11 5		22 0	36 1	51 2
	>		ALUM		0 322 0 300	1	12 12	7 5	15 0	30 2
		TRUSS	CARBON EPOXY		0 206 0 199		12 12	4 9	119	27 2
			FIBERGLASS		0 385 0 352		12 12	8 9	16 3	31 5
	ADAPTER	TRUSS	CARBON EPOXY		0 885		12	10 6	15 2	_
	VEHICLE BODY (CASE 3)	CORRUG	ALUM	2 72		11 5		28 4	37 5	53 3
			CARBON EPOXY	1 44				15 1	32 4	48 2
			FIBERGLASS	2 45				25 6	43 0	58 7
		CASE 3) (CASE 3) HOPMON D HOPMON D	ALUM	2 94				30 6	51 1	66 8
			CARBON EPOXY	1 63				17 0	32 8	48 5
1			FIBERGLASS	2 10		11 5		22 0	37 8	53 5
			ALUM		0 339 0 305		12 12	7.7	15 4	31 1
		TRUSS	CARBON EPOXY		0 207 0 216		12 12	5 1	12 2	28 0
			FIBERGLASS		0 386 0 360		12 12	8 9	16 3	32 1
	ADAPTER	TRUSS	CARBON EPOXY		0 913		12	10 9	15 8	_
			ALUM	1 67		9 65		16 2	20.5	29 0
1	_	CORRUG	CARBON EPOXY	0.915				8 9	17 0	25 4
2-3	80D.		FIBERGLASS	1 70				16.5	24 6	33 1
CLE	CLE I		ALUM	2.94				28 5	38 0	46 5
VEHICLE	VEHICLE BODY (CASE 1)	H C SANDWICH	CARBON EPOXY	1 63				15.8	23 2	31 6
			FIBERGLASS	2 10		9.65		20 4	27 8	36.3
<u> </u>		Ļ 	1			<u> </u>				<u> </u>

¹ BODY PLUS ADAPTER

Table B-21: WEIGHT SUMMARY (Cont)

MATERIAL WEIGHT WT WT WT (Ib) WT WT WT WT WT WT WT W	49 1 42 5 50 8 66 1 59 4 76 4
TRUSS CARBON 0 435 24	42 5 50 8 66 1 59 4 76 4
TRUSS CARBON 0 435 24 10 5 23 8	50 8
ADAPTER TRUSS CARBON 0.225 24 54 18 7 ALUM 0.350 104.5 36 6 47 1 CORRUG CARBON 0 197 20 6 40 4 FIBERGLASS 0.360 37 6 57 4 ALUM 0.601 62 7 86 0 1 ALUM 0.601 62 7 86 0 1 FIBERGLASS 0.430 104 5 45 0 63 0 ALUM 0.689 24 16 5 30 4 TRUSS CARBON 20 689 24 10 5 23 8 FIBERGLASS 0.728 24 17 5 32 1 ADAPTER CARBON 0.005 0.005 0.005 0.005 ADAPTER CARBON 0.005 0.005 0.005 ADAPTER CARBON 0.005 0.005 0.005 ALUM 0.601 0.005 0.005 0.005 ADAPTER CARBON 0.005 0.005 0.005 ADAPTER CARBON 0.005 0.005 0.005 ADAPTER CARBON 0.005 0.005 0.005 ADAPTER CARBON 0.005 0.005 0.005 ALUM 0.601 0.005 0.005 0.005 ADAPTER CARBON 0.005 0.005 0.005 ADAPTER CARBON 0.005 0.005 ADAPTER CARBON 0.005 0.005 ADAPTER CARBON 0.005 0.005 ADAPTER CARBON 0.005 0.005 ADAPTER CARBON 0.005 0.005 ADAPTER CARBON 0.005 0.005 ADAPTER CARBON 0.005 0.005 ADAPTER CARBON 0.005 ADAP	66 1 59 4 76 4
ADAPTER TRUSS CARBON EPOXY 0.225 24 5.4 18.7 ALUM 0.350 104.5 36.6 47.1 CARBON EPOXY 0.197 20.6 40.4 FIBERGLASS 0.360 37.6 57.4 ALUM 0.601 62.7 86.0 1 CARBON EPOXY 0.333 34.8 52.8 FIBERGLASS 0.430 104.5 45.0 63.0 ALUM 0.689 24 16.5 30.4 TRUSS CARBON EPOXY 0.437 24 10.5 23.8 FIBERGLASS 0.728 24 17.5 32.1	59 4 76 4
CORRUG CARBON 0 197 20 6 40 4 FIBERGLASS 0.360 37 6 57 4 ALUM 0.601 62 7 86 0 1 CARBON EPOXY 0 333 34 8 52 8 FIBERGLASS 0.430 104 5 45 0 63 0 ALUM 0 689 24 16 5 30 4 TRUSS CARBON EPOXY 0 437 24 10 5 23 8 FIBERGLASS 0.728 24 17 5 32 1	59 4 76 4
FIBERGLASS 0.360 37 6 57 4 ALUM 0.601 62 7 86 0 1 CARBON EPOXY 0 333 34 8 52 8 FIBERGLASS 0.430 104 5 45 0 63 0 ALUM 0 689 24 16 5 30 4 CARBON EPOXY 0 437 24 10 5 23 8 FIBERGLASS 0 728 24 17 5 32 1	76 4
FIBERGLASS 0.360 37 6 57 4 ALUM 0.601 62 7 86 0 1 CARBON EPOXY 0 333 34 8 52 8 FIBERGLASS 0.430 104 5 45 0 63 0 ALUM 0.689 24 16 5 30 4 TRUSS CARBON EPOXY 0 437 24 10 5 23 8 FIBERGLASS 0.728 24 17 5 32 1	
TRUSS CARBON 0 689 24 16 5 30 4 10 5 23 8 FIBERGLASS 0 728 24 17 5 32 1	105 0
TRUSS CARBON 0 689 24 16 5 30 4 10 5 23 8 FIBERGLASS 0 728 24 17 5 32 1	. 55 0
TRUSS CARBON 0 689 24 16 5 30 4 10 5 23 8 FIBERGLASS 0 728 24 17 5 32 1	71 8
TRUSS CARBON 0 689 24 16 5 30 4 10 5 23 8 FIBERGLASS 0 728 24 17 5 32 1	82 0
FIBERGLASS 0 728 24 10 5 23 8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	49 4
FIBERGLASS 0 728 24 17 5 32 1 ADAPTER TRUSS CARBON EPOXY 0 225 24 5 4 19 0	42 8
ADAPTER TRUSS CARBON 0 225 24 54 19 0	51 1
	-
ALUM 0 379 104.5 39 6 52 2	71 5
CORRUG CARBON 0 205 21 4 45 2	64 5
	81 9
1 1 0- 1	110.0
H C CARBON DANDWICH EPOXY 0 333 34 8 56 4	75 7
SANDWICH EPOXY 0 333 34 8 56 4 FIBERGLASS 0.430 104 5 45 0 66 6	85.9
ALUM 0707 24 17.0 31 0	50 3
TRUSS CARBON 0 443 24 10 6 24.6	43 9
	51 8
ADAPTER TRUSS CARBON 0 227 24 5 5 19 3	_
및 비 및 급 ALUM 0.447 66 8 29 9 43 7	73.2
FIBERGLASS 0.417 66 8 27 8 54 0	74 8

Table B-21: WEIGHT SUMMARY (Cont)

		(<u>' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' ' </u>	··		
			MATERIAL	WEIGHT (Kg/m ²)	WT/MEM	AREA	MEMBER QTY	BODY WT (Kg)	AD- JUSTED WT (Kg)	TOTAL WEIGHT (Kg) †
				(Kg/m ⁻)	(Kg)	(m /		(Ng)	(Rg)	(Kg/)
	LE (ALUM		0 313	<u>.</u>	24	7 5	138	22 3
	VEHICLE BODY (CASE 1)	TRUSS	CARBON EPOXY		0 198		24	48	108	19 3
			FIBERGLASS		0 330		24	7 9	14 6	23 1
]	ADAPTER	TRUSS	CARBON EPOXY		0 102		24	2 5	8 5	_
VEHICLE 2-3			ALUM	1 70		9 65		16 6	21 4	30 0
		CORRUG	CARBON EPOXY	0 096				9 4	18 3	27 0
	VEHICLE BODY (CASE 2)		FIBERGLASS	1 76				17 1	26 1	34 7
		H C SANDWICH	ALUM	2 93				28 5	39 0	47 7
			CARBON EPOXY	1 63				15 8	24 0	32 6
			FIBERGLASS	2 09		9 65		20 4	28 6	37 2
			ALUM		0 313		24	7 5	138	22.4
		TRUSS	CARBON EPOXY		0 198		24	48	108	19 4
			FIBERGLASS		0 330		24	79	14 6	23 2
	ADAPTER	TRUSS	CARBON EPOXY		0 102		24	2.6	8 6	_
	λαc	CORRUG	ALUM	1 85		9 65		18 0	23 7	32 5
			CARBON EPOXY	1.00				9.7	20 5	29 3
			FIBERGLASS	1 81				17.6	28 4	37 2
		33) HC C	ALUM	2 93				28.5	41 2	49.9
	LE B SE 3)	H C SANDWICH	CARBON EPOXY	1 63				158	25 6	34.4
	VEHICLE (CASE (FIBERGLASS	2 10		9.65		20 4	30 2	39 0
	>		ALUM		0 321		24	77	14.1	22 8
		TRUSS	CARBON EPOXY		0 201		24	48	11 2	20 0
			FIBERGLASS		0 334		24	8.0	14 8	23 5
	ADAPTER	TRUSS	CARBON EPOXY		0 103		24	2 5	88	-
E	ш _		ALUM	2.18		0 62		13 6	198	33 2
VEHICLE 2-18	VEHICLE BODY (CASE 1)	CORRUG	CARBON EPOXY	1 39		0 62		8 7	20 6	34 0
VEI 2-1	VE B(CA		FIBERGLASS	2 03		0 62		12 6	24 5	37 9
	· · · · · · · · · · · · · · · · · · ·		† BODY PLU	CADART			` 			

Table B-22: WEIGHT SUMMARY (Cont)

F MATERIAL MAREDIAL MAREDITARITANTAN AREA (= 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	TOTAL WEIGHT (lb) † 100 5 75.6 82 0 50 9 45 5 52 6 77 6 77 4 86·2 102 9
H C SANDWICH CARBON PROXY 0 333 66 8 22 3 46 1 FIBERGLASS 0 430 66 8 22 3 46 1 FIBERGLASS 0 430 66 8 28 7 52.5 ALUM 0 981 12 11 8 21 4 12 12 13.8 23 1 15 12 13.8 23 1 15 12 13.8 23 1 15 12 13.8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 15 12 18 8 29 5 15 15 15 15 15 15 15 15 15 15 15 15 1	75.6 82 0 50 9 45 5 52 6 - 77 6 77 4 86·2
H C SANDWICH CARBON PROXY 0 333 66 8 22 3 46 1 FIBERGLASS 0 430 66 8 22 3 46 1 FIBERGLASS 0 430 66 8 28 7 52.5 ALUM 0 981 12 11 8 21 4 12 12 13.8 23 1 15 12 13.8 23 1 15 12 13.8 23 1 15 12 13.8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 12 18 8 29 5 15 15 15 12 18 8 29 5 15 15 15 15 15 15 15 15 15 15 15 15 1	75.6 82 0 50 9 45 5 52 6 - 77 6 77 4 86·2
SANDWICH EPOXY 0 333 66 8 22 3 46 1	82 0 50 9 45 5 52 6 - 77 6 77 4 86·2
ADAPTER TRUSS CARBON - 1 57 12 18 8 29 5 ADAPTER TRUSS CARBON - 1 57 12 18 8 29 5 ALUM 0 498 66 8 33.2 47 9 CORRUG CARBON EPOXY 0 295 19 7 47 7 FIBERGLASS 0 427 28 5 56 5 ALUM 0 601 40.2 73.2 CARBON EPOXY 0 333 22 3 47 7 FIBERGLASS 0 430 66 8 28 7 54 1 ALUM 0.981 12 11 8 21.4 TRUSS CARBON EPOXY 0 620 12 7 5 16 0	50 9 45 5 52 6 - 77 6 77 4 86·2
ADAPTER TRUSS CARBON - 1 57 12 18 8 29 5 ADAPTER TRUSS CARBON - 1 57 12 18 8 29 5 ALUM 0 498 66 8 33.2 47 9 CORRUG CARBON EPOXY 0 295 19 7 47 7 FIBERGLASS 0 427 28 5 56 5 ALUM 0 601 40.2 73.2 CARBON EPOXY 0 333 22 3 47 7 FIBERGLASS 0 430 66 8 28 7 54 1 ALUM 0.981 12 11 8 21.4 TRUSS CARBON EPOXY 0 620 12 7 5 16 0	45 5 52 6 - 77 6 77 4 86·2
ADAPTER TRUSS CARBON - 1 57 12 18 8 29 5 ADAPTER TRUSS CARBON - 1 57 12 18 8 29 5 ALUM 0 498 66 8 33.2 47 9 CORRUG CARBON EPOXY 0 295 19 7 47 7 FIBERGLASS 0 427 28 5 56 5 ALUM 0 601 40.2 73.2 CARBON EPOXY 0 333 22 3 47 7 FIBERGLASS 0 430 66 8 28 7 54 1 ALUM 0.981 12 11 8 21.4 TRUSS CARBON EPOXY 0 620 12 7 5 16 0	52 6 - 77 6 77 4 86·2
ADAPTER TRUSS CARBON - 1 57 12 18 8 29 5 ADAPTER TRUSS CARBON - 1 57 12 18 8 29 5 ALUM 0 498 66 8 33.2 47 9 CORRUG CARBON EPOXY 0 295 19 7 47 7 FIBERGLASS 0 427 28 5 56 5 ALUM 0 601 40.2 73.2 CARBON EPOXY 0 333 22 3 47 7 FIBERGLASS 0 430 66 8 28 7 54 1 ALUM 0.981 12 11 8 21.4 TRUSS CARBON EPOXY 0 620 12 7 5 16 0	- 77 6 77 4 86·2
ADAPTER TRUSS EPOXY 157 12 18 8 29 5 ALUM 0 498 66 8 33.2 47 9 CORRUG CARBON 0 295 19 7 47 7 FIBERGLASS 0 427 28 5 56 5 ALUM 0 601 40.2 73.2 CARBON 601 22 3 47 7 FIBERGLASS 0 430 66 8 28 7 54 1 ALUM 0.981 12 11 8 21.4 CARBON 600 12 7 5 16 0	77 4 86·2
CORRUG CARBON 0 295 197 477 FIBERGLASS 0 427 285 565 ALUM 0 601 40.2 73.2 CARBON EPOXY 0 333 22 3 477 FIBERGLASS 0 430 668 287 54-1 ALUM 0.981 12 118 21.4 TRUSS CARBON EPOXY 0 620 12 75 16 0	77 4 86·2
POXY 0 295 19 7 47 7 19 7 1	86.2
ALUM 0 601 40.2 73.2 H C SANDWICH FIBERGLASS 0 430 66 8 28 7 54 1 ALUM 0.981 12 11 8 21.4 CARBON D.981 12 7 5 16 0	·······
TRUSS ALUM 0.981 12 11 8 21.4	102 9
ALUM 0.981 12 11 8 21.4 CARBON CARBON FPOXY 0 620 12 7 5 16 0	1
TRUSS CARBON 0.981 12 11 8 21.4 CARBON 620 12 7 5 16 0	77 4
TRUSS CARBON 0.981 12 11 8 21.4 CARBON 620 12 7 5 16 0	83 8
	51 1
	45 7
1 1 1 100110011001 1 100 231	52 8
ADAPTER TRUSS CARBON 1 58 12 19 0 29 7	_
ALUM 0 520 66 8 34.7 51 5	82 3
CORRUG CARBON 0 316 21 1 52 8	83 6
FIBERGLASS 0 453 30 3 62 0	92 8
ALUM 0 601 40 2 77 4	108.2
ALUM 0 601 40 2 77 4 H.C SANDWICH EPOXY 0 333 22 3 51.0 FIBERGLASS 0.430 66.8 28 7 57 4	81 8
FIBERGLASS 0.430 66.8 28 7 57 4	88.2
ALUM 0981 12 11 8 21 4	52 2
TRUSS CARBON 0 620 12 7.5 16.0	46.8
FIBERGLASS 1 15 12 13 8 23 1	
ADAPTER TRUSS CARBON 1 63 12 19 6 30 8	53 9

Table B-22: WEIGHT SUMMARY (Cont)

		1 abic B-22.		11 301011		Cont				
			MATERIAL	WEIGHT (Kg/m ²)	WT/MEM (Kg)	AREA	MEMBER QTY	BODY WT (Kg)	AD- JUSTED WT (Kg)	TOTAL WEIGHT (Kg) †
			ALUM	2 93		0 62		18 3	32 2	45 7
VEHICLE 2-18	, ,	нс	CARBON	1.63		0 62		10 1	20 9	34 3
	BODY 1)	SANDWICH	EPOXY FIBERGLASS	2 10		0 62		13.0	23 8	37 2
	SLE I		ALUM		0 445	0 02	12	5 4	97	23 1
	VEHICLE E	TRUSS	CARBON		0 282	<u> </u>	12	3 4	7 3	20 6
	>	,,,,,,,,	FIBERGLASS		0 522		12	63	10.5	23 9
	ADAPTER	TRUSS	CARBON		0 713		12	85	13.4	23 3
	ADALIEN		ALUM ALUM	2 43	0713	0 62	12	15 1	21 7	35 2
	VEHICLE BODY (CASE 2)	CORRUG	CARBON	1 44		4	 	8 9	21 7	35 1
			EPOXY FIBERGLASS	2 08			 	12.9	25 7	39 1
			ALUM	2 93				18 3	33 2	<u> </u>
		нс	CARBON	1 63		- 	 	10 1	 	46 7
		SANDWICH	FIBERGLASS	2 10		0.00	ļ	13 0	21 7	35 1
	VEH (TRUSS	ALUM	210	0.445	0.62			24 6	38 0
			CARBON		0 445		12	5 4	97	23 2
			EPOXY		0 282		12	3 4	7 3	20 7
			FIBERGLASS		0 522		12	63	10 5	24 0
	ADAPTER	TRUSS	EPOXY		0.717		12	86	13 5	
			CARBON	2.54	<u></u>	0 62	-	15 8	23 4	37 4
		CORRUG	EPOXY	1 54		1		9.6	24 0	38 0
	>		FIBERGLASS	2 21	<u> </u>			13 8	28 2	42 1
	800 8		ALUM	2.93				18 3	35 2	49 4
	SLE I	H C SANDWICH	CARBON EPOXY	1 63				10.1	23 1	37 1
	VEHICLE BODY (CASE 3)		FIBERGLASS	2 10		0.62		13.0	26 1	40 0
1	>		ALUM		0.445		12	5 4	97	23 7
1		TRUSS	CARBON EPOXY		0 281		12	3.4	7 3	21 2
			FIBERGLASS		0 522		12	6.3	10 5	24 5
	ADAPTER	TRUSS	CARBON EPOXY		0 740		12	8.9	14 0	

[†] BODY PLUS ADAPTER

Table B-23: WEIGHT SUMMARY (Cont)

			able B-23. WEIGHT SOMMANT (COIL)							
			MATERIAL		WT/MEM	AREA	MEMBER OTY	BODY WT	M1 M2 12 M1 12	1 ,
				(lb/ft ²)	(lb)	(ft ²)		(lp)	(lb)	(ІБ) †
			ALUM	0 780		1130		88.0	108 6	131 7
		CORRUG	CARBON EPOXY	0 400		113.0		45.2	84 2	107 3
			FIBERGLASS	0 930		113 0		105 0	144 0	167 1
VEHICLE BODY	γ o o γ		ALUM		_		44	41 5	71 0	94 1
	LE B SE 1)	TRUSS								İ
	HIC (CA)		FIBERGLASS		_		44	40 2	723	95 4
	VE									
	:									
										
[ADAPTER	TRUSS	CARBON EPOXY		0.320		24	77	23 1	-
E 1-7		CORRUG	ALUM	0 820		113.0		92.6	1154	139 5
			CARBON EPOXY	0.420		113.0		47.4	90 4	114 5
			FIBERGLASS	0.980		113.0		111 0	154 0	178 1
VEHICLE	(dog)		ALUM		_		44	43 0	72 8	96 9
VEH	LE E	(CASE 2) (CASE 2) SSURIT SSURIT		, i						1
	EHIC (CA		FIBERGLASS		_		44	41 1	73 6	97 7
	>									<u> </u>
							 		1	
	ADAPTER	TRUSS	CARBON EPOXY		0 327		24	79	24.1	-
			ALUM	0.860		113.0		97 0	122 0	147 1
	<u>}</u>	CORRUG	CARBON EPOXY	0.440	<u> </u>	113.0		49 6	96.6	121 7
1	VEHICLE BODY (CASE 3)		FIBERGLASS	1.03		1130		116 2	163 2	188 3
! .	CASE		ALUM		_		44	45 0	75 1	100.2
	VEH S	TRUSS								
		i.	FIBERGLASS		-	<u> </u>	44	423	75.8	100 9
	ADAPTER	TRUSS	CARBON EPOXY		0.335	<u> </u>	24	80	25 1	<u>-</u>
<u> </u>	L		I LLOVI	L	<u> </u>	L		L	4	

Table B-23: WEIGHT SUMMARY (Cont)

	f		Table B-20: WEIGHT SOMMATT (CONT)							
			MATERIAL	WEIGHT (Kg/m ²)	WT/MEM (Kg)	AREA	MEMBER QTY	BODY WT (Kg)	AD- JUSTED WT (Kg)	TOTAL WEIGHT (Kg) †
VEHICLE 1-7			ALUM	3 80		10 5		40 0	49 3	59 8
		CORRUG	CARBON	1 95		10 5	<u> </u>	20 5		48 7
		COMMOG	FIBERGLASS	 		10 5	 	47 7	38 2	75 9
	>			4 54	_	10.5	44		65 4	42 7
	BOD 1)	TRUSS	ALUM				44	188	32 2	42 /
	VEHICLE BODY (CASE 1)	10055		<u> </u>						
	EHIC (C/		FIBERGLASS	<u> </u>			44	18 3	32 8	43 3
	>			ļ						
				ļ					 	
		-	CARBON			· - · · - · ·				
	ADAPTER	TRUSS	EPOXY		0 145		24	35	10 5	_
			ALUM	4 00		10 5		42 0	52 4	63 3
	•	CORRUG	CARBON EPOXY	2.05		105		21 5	41 1	52 0
	· -		FIBERGLASS	4 78		10 5		50 4	70 0	80 9
	30D,	TRUSS	ALUM				44	19 5	33.1	44 0
	VEHICLE BODY (CASE 2)									
			FIBERGLASS				44	18 7	33 4	44 4
			-							
	ADAPTER	TRUSS	CARBON EPOXY		0 148	· 	24	3 6	10 9	_
			ALUM	4.20		105		44 0	55 4	66.8
	>	CORRUG	CARBON EPOXY	2.15		10 5		22 5	43 9	55 3
	VEHICLE BODY (CASE 3)		FIBERGLASS	 		10.5		52 8	74.1	85 5
!	CLE I	SE 3	ALUM	 			44	20 4	34 1	45 5
	EHIC (C	TRUSS		 					† · · ·	
	>		FIBERGLASS	 			44	19 2	34 4	45.8
	4040750	TRUCC	CARBON	-	0.150		 	36		-
	ADAPTER	TRUSS	EPOXY	<u> </u>	0 152	L	24		11 4	

[†] BODY PLUS ADAPTER

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX C

METEOROID PROTECTION

This appendix discusses the meteoroid environment and the method of laboratory simulation, derivation of the Earth-Mars trajectory for the study vehicles, the design meteoroid sizes for the study, a tabulation of weights for the materials used in the tests, and the design curves developed in the course of the study.

METEOROID ENVIRONMENT

Meteoroid experimental information comes from two primary sources: meteors in the Earth's upper atmosphere and satellite impact records. None of the sources of the information provide meteoroid mass directly except meteorite finds which are of no interest here.

The most important sources of information on meteors are the photographic observations. This covers a mass range down to about 0.01 grams. Figure C-1 is a cumulative distribution of a sample of sporadic photographic meteors as a function of brightness, using the stellar magnitude scale (Reference C-1). Since the total collecting rate of the cameras is known, the cumulative flux as a function of magnitude can be approximated (Reference C-2) as

$$log N = 0.537 M_p - 4.34 (km^{-2} hr^{-1})$$

The equations of meteor physics and an average meteor velocity (variously taken as 16.5, 20, 35, 40 km/sec) can be used to obtain a mass flux curve. These average values are usually obtained from the raw data: 35 km/sec from photographic data, 40 km/sec from radar data, and the other values resulting from various data weighting schemes.

A derivation of the velocity distribution (Reference C-3) was considered here. From Figure C-1 note that the sample appeared to be complete only to magnitude one. The roll-off was not a real effect. Rather, it was caused by the limiting sensitivity of the photographic system.

If the sensitivity were independent of velocity, the raw data would provide a velocity distribution at constant brightness. However, slow meteors are easier to see, and the limiting magnitude extends to much fainter meteors for low velocities than for high velocities. The sensitivity dependence is essentially inversely as the velocity, as would be expected. To eliminate those observational biases, the total sample of Figure C-1 is divided into small velocity intervals with distributions of the same form in each. The velocity distribution of the raw data was obtained from the total number in each velocity interval. This is called the observed distribution in Figure C-2. Next, the portion of the distribution where the data was complete was fitted by a straight line in each

interval with the same slope as in Figure C-1. From these straight lines the constants in equations of the form shown in Figure C-1 are obtained, but now for each velocity interval. From the theory of meteor physics (Reference C-4) a relationship among magnitude $M_{\rm p}$, velocity V, and mass m is obtained. By this means the number per unit velocity interval at constant mass is then obtained with the observational bias removed. The average velocity of meteors in the earth's atmosphere is computed to be 16.5 km/sec. The average velocity for impact on a near earth satellite is 17.8 km/sec.

The velocity distribution in the absence of the Earth's field is also shown in Figure C-2. The average of this distribution is 14.1 km/sec, however, the average for impact is 17.0 km/sec. Meteoroid velocities relative to a space-craft can range from 0 to 70 km/sec; however, 90 percent of the population is in the range 0 to 20 km/sec.

Taking the appropriate average over the velocity distribution, the luminous flux of Figure C-1 is converted to a mass flux, given by

$$\log N = -1.21 \log m - 13.85 (M^{-2} sec^{-1})$$

where m was in grams. When the influence of the Earth's field on the flux is removed:

$$log N = -1.21 log m - 14.20$$

which is shown as the straight line portion of Figure C-3. This is the flux encountered by a spacecraft at Earth's distance from the sun, but not near Earth itself.

The meteoroid satellites such as Explorer 16 and 23, Pegasus 1, 2, and 3, and also the Lunar Orbiters provide flux rates by recording the number of perforations in thin metal sheets of several thicknesses. These measurements automatically give the cumulative penetration flux, since particles larger than the threshold size also penetrated. The sensors on Lunar Orbiter were the same as the .001 inch (.0025 cm) be-cu pressure cans on Explorer 16. The penetration rate of Explorer 16 was 2.0 times that recorded by the Lunar Orbiter (44 penetrations on Explorer 16 and 22 on Lunar Orbiter with almost the same effective exposure). This result was due to the increase in the meteor flux by the Earth's field and, to a lesser extent, the greater velocity of the near Earth satellites. Since this effect is velocity dependent, something can be inferred about the average speed from the experimental result.

To analyze this problem, the meteor flux is taken to be effectively isotropic. The meteoroids are in hyperbolic orbits and the satellites were in elliptic orbits. The penetrated thickness is given by the empirical formula:

$$p = km^{1/3} (V \cos \lambda)^{\beta}$$

The satellite penetrating flux is approximately of the form:

$$\log F = -\delta \log p + \log F_1 \tag{1}$$

The penetration rate of a satellite is given by Reference C-5

$$\Delta F = \frac{N_1 k^{\delta} p^{-\delta}}{2 + \beta \delta} \quad \forall \beta \delta \quad \left[1 + \frac{V_e^2}{V^2} \left(\frac{2R}{r} - \frac{R}{2\alpha} - 1 \right) \right]^{\frac{1 + \beta \delta}{2}} \times$$

$$\left[\left(1 - \frac{V_e^2}{V^2} \left(1 - \frac{R}{r}\right)\right)^{1/2} + \left(1 - \frac{R^2}{r^2} - \frac{V_e^2}{V^2} \left(1 - \frac{R}{r}\right)\right)^{1/2}\right] F(V) \Delta V \qquad (2)$$

Integrating over V using the bias free velocity distribution (the near-Earth curve) in Figure C-2 and averaging over the orbits of Lunar Orbiter and over Explorer 16 and computing the ratio $F_{\text{exp}}/F_{\text{lo}}$ the function of $\beta \delta$ shown in Figure C-4 is obtained. The best value of $\beta \delta$ is 0.64 ($\beta = 2/3$ from impact data, $\delta = 0.96$ from satellite data) which checks the experimental result exactly. However, the extreme range of possible values ($0.43 \le \beta \delta \le 0.96$) gives good comparison. The dashed curves were computed using unique values for the velocity rather than a distribution in Equation 2. These curves illustrate the velocity dependence. It can be seen that the bias free velocity distribution obtained from the photographic range is confirmed by the comparison of Lunar Orbiter and Explorer 16 data.

The satellite data is available in the form of Equation 1. From the integral of Equation 2 the parameter N_1 can be evaluated and hence the mass flux results in the form:

$$\log N = -1/3 \delta \log m + \log N_1 \tag{3}$$

The curve for the satellite range in Figure C-3 was obtained by using Equation 3 over short intervals of mass.

The mass range of importance in spacecraft design is from about 10^{-6} grams to one gram. The flux curve was established on the satellite and the photographic data; an interpolation was used between these ranges. Radar data appears to be improperly corrected, especially for low velocity meteors. Radar meteors appear to have velocities which are too high and flux rates which are too low.

Meteors of the photographic and radar range, because of their behavior in the atmosphere, appear to be fragile and of very low density, ranging from less than 0.25 gm/cc at one gram to around 0.8 gm/cc at 10⁻⁴ grams. They crumble and burn up in the 80 to 120 km altitude region. They are believed to be cometary debris; the association of some meteor streams with comets bears this out.

Annual meteor streams do not appear to be a significant hazard to spacecraft (Reference C-6). Although some streams have very high visual rates, this is primarily because of the high luminosity of even the very small particles in those streams which have large velocities relative to Earth.

EXPERIMENTAL SIMULATION

The Boeing Company Meteoroid Protection Laboratory was developed for the primary purpose of generating data suitable for design of meteoroid protection systems. Little emphasis was placed on the study of the physics of hypervelocity impact as such. Within the physical limitations, meteoroid impact was simulated as closely as possible.

As shown in the previous section, most meteoroids have velocities ranging up to 20 km/sec, densities from 0.25 to 0.8 gm/cc, and very little strength. These conditions could not be simulated in the laboratory. Although speeds up to 10 km/sec were occasionally reported, a practical upper limit for routine testing is about 8.5 km/sec. The minimum density projectile that can be routinely launched is polyethylene (sp. gr. = 0.95), although inlyte (sp. gr. = 0.7) has been launched with some success in other laboratories (Reference C-7).

Most laboratories used spherical projectiles because they gave symmetrical and repeatable damage patterns. This was necessary for the study of hypervelocity impact phenomena. However, there is no reason to believe that meteoroids are spheres. Indeed, the current theory that they are cometary fragments would preclude this possibility except for those few which come close enough to the sun to be melted but not vaporized. Cylindrical projectiles with random attitudes at impact give random damage patterns, which should be more representative of meteoroid damage. Reference C-8 concluded that cylindrical projectiles caused greater damage than spherical projectiles, thus the use of the latter projectiles could yield non-conservative results. Since cylindrical polyethylene projectiles were easy to launch, these were selected by Boeing as the best projectiles to simulate meteoroid impact.

A family of small light-gas guns, which were simple and economical to operate, were available. With polyethylene and Lexan projectiles, velocities up to 9 km/sec were achieved. The 1/16 and 3/32-inch (.16 and .24cm) projectiles were launched with basically the same gun. It was powered by a .375 magnum case loaded with Bullseye powder. The guns were shock compression types using hydrogen gas. The most important factor in their economical operation was the disposable launch tube consisting of commercial tubing.

Velocity Dependence - Meteor speeds relative to a spacecraft have a wide range. From Figure C-2 it was seen that velocities up to 20 km/sec must be considered to include 90 percent of the meteoroid population. Since the test data effectively ends at 8.5 km/sec an extrapolation is required. In Reference C-9 a theoretical treatment based on blast loading of the second sheet was given. This resulted in a linear increase of the threshold thickness of the second wall with velocity. However, this approach did not determine the constant. This linear dependence is included in an empirical relation in Reference C-10, resulting in a very conservative penetration threshold at approximately 20 km/sec. This is a consequence of the fact that in the test range, the blast loading contributes only a small part of the damage to the second sheet. A more realistic treatment is given in Reference C-11 where experimental thresholds, using glass spheres, were determined with sufficient accuracy so that extrapolation was possible. Here the second wall thickness was found to vary with velocity as:

$$\frac{T_2}{D} \sim V^{0.278}$$

This weak dependence on velocity was in keeping with Boeing test results. Since the Boeing data was valid up to about 8 km/sec, the following expression could be written:

$$\frac{T_2}{D} = f_1\left(\frac{T_1}{D}, \frac{S}{D}\right) f_2(\rho) \qquad 4 < V < 8 \text{ km/sec}$$

$$\frac{T_2}{D} = f_1\left(\frac{T_1}{D}, \frac{S}{D}\right) f_2(\rho) \left(\frac{V}{8}\right)^{0.278} V > 8 \text{ km/sec}$$

Density Dependence - Very little accurate work has been done on the density dependence of low density projectiles. This is because low density (sp. gr. < 1) materials have little strength and testing is difficult. Reference C-7 compared Inlyte (sp. gr. = 0.7) with aluminum projectiles (sp. gr. = 2.8). Several configurations were considered, and it was found that total thickness varied as

$$(T_1 + T_2) / D \approx \rho^{0.6}$$

for very small mass and low density projectiles. This was a somewhat stronger dependence on density than would have been the case if damage depended only on the projectile mass; i.e., $\rho^{1/3}$. The second sheet thickness was not given separately as a function of density.

However, in spite of the value of this work, there was insufficient supporting test data to include this density dependence in the penetration equation of this study. It did demonstrate, though, that a threshold dependence on projectile mass is conservative. Consequently, the penetration equation is:

$$\frac{T_2}{D} = f_1\left(\frac{T_1}{D}, \frac{S}{D}\right)\left(\frac{\rho}{0.95}\right)^{1/3} \qquad 4 < V < 8 \text{ km/sec}$$

$$\frac{T_2}{D} = f_1\left(\frac{T_1}{D}, \frac{S}{D}\right)\left(\frac{\rho}{0.95}\right)^{1/3} \left(\frac{V}{8}\right)^{0.278} V > 8 \text{ km/sec}$$

since test data was obtained with polyethylene (sp. gr. = 0.95) projectiles.

DETERMINATION OF THE METEOROID ENVIRONMENT FOR EARTH TO MARS TRAJECTORY

The meteoroid flux varies in the solar system as a function of distance from the sun. The reliability requirement for this study was stated for the total mission. Therefore, an average flux was used in the meteoroid protection analysis. This average was not very sensitive to the particular mission, but specifically the computation was based on a feasible 208-day trajectory starting on Earth on October 7, 1975. This trajectory was not necessarily a practical one, but served the purposes of computing the average meteoroid flux for the study.

The desired trajectory was an ellipse satisfying the two end conditions. Earth distance from the sun would be very close to one A.U. on October 7. Mars distance from the sun on May 2, 1976 was computed. The equation for the mean anomaly was

$$M = nt + \varepsilon - \tilde{\omega}$$

For epoch January 15, 1960, this was

$$M = .524033 + - 76.5554$$

for Mars' orbit. On May 2, 1976, M = 169.535°.

Other data for Mars' orbit were:

semi-major axis,
$$a = 1.523691$$

Mars distance was computed from

$$r = a(1 - e cos E_M)$$

where E_{M} was the eccentric anomaly which was determined from Kepler's equation

$$M = E_M - e \sin E_M$$

which was solved by iteration. The result was r = 1.664 A.U. on May 2, 1976.

The trajectory, that is a and e, of the spacecraft was next computed. It was assumed that perihelion of this trajectory was at Earth; hence was

$$1 = a(1 - e)$$

At intercept

$$1.664 = a(1 - e \cos E_S)$$

where E_S was the eccentric anomaly of the spacecraft trajectory at intercept. It was related to time by

$$t = 208 = \frac{365}{2\pi} a^{3/2} (E_S - e \sin E_S) days.$$

These three equations were solved for a, e, and E_S by iteration. Starting with $E_S = \pi$, the solutions converged in four steps to:

$$E_S = 2.389 \text{ rad } (136.8^{\circ})$$

a = 1.383 A.U.
e = .275

The orbits of Earth, Mars, and the spacecraft are shown in Figure C-5. A plot of the equations

$$R = 1.383 (1 - .275 \cos E)$$
 A.U. (1)

giving R as a function of t is shown in Figure C-6.

The model of the cumulative meteoroid flux in interplanetary space was assumed to have the functional form

$$N = f(m) f(R)$$
 (3)

where N was the total rate on a surface of unit area by meteoroids of mass m and larger at a distance R from the sun. This implied that the mass distribution was independent of the distance R. Hence, the near Earth flux model gave f(m). Strictly speaking, this was the flux relative to an object in a direct circular orbit such as Earth; however, the spacecraft's elliptic trajectory would produce only a very small deviation in the relative flux. This model also assumed that the flux was isotropic relative to the spacecraft. Meteoroids are primarily in direct orbits. However, most of the orbits are very eccentric and the relative flux is approximately isotropic.

The total number of hits per unit area during the mission was

$$\int f(m) f(R) dt$$

hence the average rate was

$$\langle N \rangle = \frac{f(m)}{\tau} \int_{0}^{\tau} f(R) dt$$
 (4)

Over the relatively small distance from Earth to Mars the space dependence could be approximated as

$$f(R) = R$$

where R was in A.U. From Equation 1

$$f(R) = \left[1.383 (1 - .275 \cos E)\right]^{\gamma}$$
 (5)

and from Equation 2

$$dt = 94.5 (1 - .275 \cos E) dE$$

Substituting in Equation 4

$$\langle N \rangle = f(m) F(\gamma)/F(0)$$
 (6)

where

$$F(\gamma) = (1.383)^{\gamma} \int_{0}^{E_{S}} (1 - .275 \cos E) dE$$

and $E_S = 2.389$ rad. For the purpose of computation, the integrand could be expanded in a series and integrated term by term as

$$\int_{0}^{E_{S}} (1 - .275 \cos E)^{1+\gamma} dE =$$
2.389 - .1879 (\gamma+1) + .03574 (\gamma+1) \gamma - .002 (\gamma+1)(\gamma-1)(\gamma-1)(\gamma-2)\gamma.

The quantity $F(\gamma)/F(0)$ is plotted in Figure C-7.

The average of the relative meteoroid velicity over the trajectory was next calculated. An approximation suitable for the purpose was that the relative meteoroid speed depended on distance from the sun as

$$V = V_1 R^{-1/2}$$
 (7)

This result was exact for a particular (fictitious) distribution of meteoroid orbital elements. The velocity relative to an object in a circular orbit varied as

$$V = R^{-1/2} \left[3 - R/\alpha - 2\sqrt{(1 - e^2) \alpha/R} \cos i \right]^{1/2}$$

If the distribution was such that the average semi-major axis "a" was proportional to the distance R at each point in space, then Equation 7 was exact.

The average over the trajectory was defined as

$$\langle v \rangle = \frac{f N V dt}{\int N dt}$$

From (3), (4) and (7) this became

$$\langle v \rangle = \frac{v_1 \int R^{\gamma} e^{-1/2} dt}{\int R^{\gamma} dt}$$

and by means of Equation (6) this was represented by

$$\langle V \rangle = V_1 F(\gamma - 1/2)/F(\gamma)$$

which is plotted in Figure C-7.

The curves of Figure C-7 were used to determine the sensitivity of the meteoroid protection requirement to variations in the model of the environment as described in Section 1.3.4 of the Volume I document.

For instance, various published models of the environment corresponded to a range of γ from -2 (Reference C-12) to an unrealistic extreme of +5 (Reference C-13). A nominal value of γ was selected, and the flux from the near-Earth model multiplied by $F(\gamma)/F(0)$ to give the average flux over the trajectory (the nominal value of γ was most likely between 0 and -2). This was used to determine the design meteoroid mass. The average velocity for penetration based on the near-Earth flux was multiplied by $F(\gamma-1/2)/F(\gamma)$ to give the average velocity over

the trajectory. The amount of meteoroid protection required was computed from these values. Another value, $\gamma=3$ for instance, would then be used for a similar calculation. A comparison of the two results gave a measure of the sensitivity of the weight to the model used.

DESIGN METEOROID SIZES

Section 1.3.4 of the Volume I document described how the spherical diameter of the polyethylene design projectile was computed. The nominal values of the meteoroid environment and velocity dependence, β and γ , were used to derive design meteoroids for all study vehicles with varying payload heights. These values were $\beta=0.182, \gamma=-2$, and the design probability of no failure was 0.999. The resulting design meteoroid diameters are listed in Table C-1.

METEOROID PROTECTION MATERIALS

The meteoroid protection design curves presented in this Appendix were developed from a wide range of materials. The weights and description of materials are listed in Table C-2.

DESIGN CURVES

Figures C-8 through C-12 present meteoroid protection design curves for the various MLI materials of the program. The 3 σ curve and the arithmetic mean curves are shown as well as the individual data points. The experimental results were developed in terms of an equivalent thickness of aluminum protection system (T_1) necessary to protect a certain aluminum tank wall thickness (T_2) . Both thicknesses $(T_1$ and $T_2)$ were normalized to meteoroid diameter (D) so the data could be used to evaluate protection systems for various vehicles and probabilities of mission success. The normalized penetration depth is also shown on the ordinate.

The aluminized mylar/nylon net curve, Figure C-8, had a very steep slope, indicating a substantial increase in protection efficiency with a slight increase in thickness. Figure C-12 shows the arithmetic mean curve for multiple discrete shields of 1/2 mil aluminized mylar with 1/4 inch (0.64 cm) spacing. This concept was very weight efficient; however, it would be difficult to maintain the spacing in a vehicle installation.

Figures C-13, C-14 and C-15 are the curves for single sheet materials. The characteristic decrease in protection efficiency as aluminum sheet thickness was increased is evident in Figure C-14. Figures C-16 and C-17 represent fiberglass honeycomb sandwich with different thickness face skins. Figure C-18 is for aluminum honeycomb sandwich. Fiberglass honeycomb sandwich provided considerably more protection than an equivalent weight of aluminum honeycomb sandwich. Fiberglass sandwich approximately 1/7 the weight of the aluminum

sandwich shown in the curve provided equal protection. Continuous shell concepts were not tested in more detail because of prohibitive structural weight.

Figures C-19 through C-22 present the test data for combinations of Beta fiber cloth in front of MLI. The curves show a reduction in protection system efficiency with initial additions of MLI, moving from left to right on the curves. As more MLI was added there was a corresponding increase in efficiency. There was no apparent explanation for this. Figures C-23 through C-31 present data for combinations of aluminum skin in front of MLI, and Figures C-32 through C-42 for fiberglass laminate skin in front of MLI.

Figures C-43 through C-48 show the data for combined honeycomb sandwich and MLI. The honeycomb sandwich was in front of the MLI and was impacted first. Fiberglass honeycomb shows greater efficiency in combination with MLI than aluminum honeycomb.

Figure C-49 shows data for one thickness of carbon composite bidirectional laminate.

Figures C-50 and C-51 show data for MLI in front of an aluminum skin. This configuration was representative of vehicles with MLI on the outside of the structural shell. Figure C-52 is for vehicles with MLI on the outside of a fiber-glass laminate structural shell.

Figures C-53 and C-54 show data for MLI in front of aluminum and fiberglass honeycomb sandwich. The results were about the same as for MLI located behind the honeycomb sandwich shell.

Figures C-55 through C-57 represent a combination of metallic bumpers in front of MLI, located on the outside of an aluminum vehicle shell. The curves show the trend towards less efficiency as an aluminum bumper is added, except for Figure C-57. In this case, the downward turn of the curve could have been due to an increased effectiveness of MLI. Figures C-58 through C-60 show similar data for fiberglass laminate structural shells. In this configuration, improved efficiency was experienced because spallation consisted of low mass particles.

Figures C-61 through C-66 represent vehicles constructed with honeycomb sandwich shells and incorporating a metallic bumper and MLI on the outside. Observations made previously for fiberglass and aluminum honeycomb sandwich are also applicable for these configurations.

Figures C-67 through C-78 present final design curves for material combinations where the thickness of MLI and bumper material were varied. The curves identified as T_R/D or T_{FG}/D represent constant Beta fiber cloth or fiberglass laminate

thickness with varying amounts of MLI. The interpolation formula used to derive these curves was described in Section 2.1.2 of the Volume I document. The curves were constructed with 3σ values.

Figures C-79 through C-81 are the final design curves for MLI and bumper combinations located in front of fiberglass laminate structural shells. The curves labeled T_{S}/D represent a fixed laminate skin thickness with varying thickness of MLI.

Figure C-82 is the design curve for MLI located outside of an aluminum structural shell.

REFERENCES

- C-1 Hawkins, G.S. and Southworth, R.B.; "Statistics of Meteors in the Earth's Atmosphere", Smithsonian Contrib. Astrophys., 2(11), 349, 1958.
- C-2 Hawkins, G.S. and Upton, E.K.L.; "The Influx Rate of Meteors in The Earth's Atmosphere", Astrophys. J., 128, 727, 1958.
- C-3 Erickson, J.E.; "Velocity Distribution of Sporadic Photographic Meteors", J. Geophys. Res. 73 (12), 3721, 1968.
- C-4 Jacchia, L.G., Verniani, F., and Briggs, R.E.; "An Analysis of the Atmospheric Trajectories of 413 Precisely Reduced Photographic Meteors", Smithsonian Contrib. Astrophys. 10 (1), 1967.
- C-5 Erickson, J.E.; "Analysis of the Meteoroid Flux Measured by Explorer 16 and Lunar Orbiter", Astron. J. 74 (2), 279, 1969.
- C-6 Erickson, J.E.; "Mass Influx and Penetration Rate of Meteor Streams", J. Geophys. Res. 74 (2), 576, 1969.
- C-7 Arenz, R.J.; "Influence of Hypervelocity Projectile Size and Density on the Ballistic Limit of Dual-Sheet Structures", 69-376 AIAA Hypervelocity Impact Conference, 1969.
- C-8 Morrison, R.H.; "A Preliminary Investigation of Projectile Shape Effects in Hypervelocity Impact of a Double Sheet Structure", NASA TN D-6944, August 1972.
- C-9 McMillan, A.R.; "Experimental Investigation of Simulated Meteoroid Damage to Various Spacecraft Structures", NASA CR-915, 1968.
- C-10 Cour-Palais, B.G.; "Meteoroid Protection by Multiwall Structures", 69-372, AIAA Hypervelocity Impact Conference, 1969.
- C-11 Nysmith, C.R.; "An Experimental Investigation of Aluminum Double-Sheet Structures", 69-375, AIAA Hypervelocity Impact Conference, 1969.
- C-12 Southworth, R.B.; "Space Density of Radio Meteors", NASA SP-150, p. 179, 1967, Symposium.
- C-13 Wall, J.K.; "The Meteoroid Environment Near the Ecliptic", NASA SP-150, p. 343, 1967.

FIGURE C-1: CUMULATIVE DISTRIBUTION OF METEORS AS A FUNCTION OF MAGNITUDE

FIGURE C-2: METEOROID VELOCITY DISTRIBUTIONS

FIGURE C-3: METEOROID ENVIRONMENT NEAR EARTH, BUT IN THE ABSENCE OF EARTH'S GRAVITATIONAL FIELD

FIGURE C-4: COMPUTED EXPLORER 16 METEOROID FLUX/LUNAR ORBITER FLUX

FIGURE C-5: SPACECRAFT TRAJECTORY

FIGURE C-6: SPACECRAFT TRAJECTORY DATA

FIGURE C-7 DEPENDENCE OF THE AVERAGE FLUX ON THE METEOROID ENVIRONMENT PARAMETER, Y

FIGURE C-8: METEOROID PROTECTION
DESIGN DATA - MLI

FIGURE C-9: METEOROID PROTECTION
DESIGN DATA - MLI

FIGURE C-10: METEOROID PROTECTION DESIGN DATA - MLI

FIGURE C-11: METEOROID PROTECTION DESIGN DATA - ML

FIGURE C-12: METEOROID PROTECTION DESIGN DATA - MLI

FIGURE C-13: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEETS

102

101

FIGURE C-16: METEOROID PROTECTION DESIGN DATA-SANDWICH

FIGURE C-17: METEOROID PROTECTION DESIGN DATA-SANDWICH

β Cloth + NRC-2

1.2 .6 8 .4 .2 0 Cloth Along A

T₂ P D

1.6 .8

FIGURE C-18: METEOROID PROTECTION DESIGN DATA-SANDWICH

FIGURE C-19: METEOROID PROTECTION
DESIGN DATA-SINGLE
SHEET AND MLI

FIGURE C-20: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-21: METEOROID PROTECTION DESIGN DATA - SINGLE SHEET AND MLI

FIGURE C-22: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

105

FIGURE C-23: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-24: METEOROID PROTECTION, DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-25: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-26: METEOROID PROTECTION DESIGN

DATA - SINGLE SHEET AND MLI

FIGURE C-27: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-28: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-29: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-30: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-31: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET AND MLI

FIGURE C-32: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET AND MLI

FIGURE C-33: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET AND MLI

FIGURE C-34: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET AND MLI

FIGURE C-35: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET AND MLI

FIGURE C-36: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET AND MLI

FIGURE C-37: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET AND MLI

FIGURE C-38: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-39: METEOROID PROTECTION DESIGN

DATA - SINGLE SHEET AND MLI

FIGURE C-40: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-41: METEOROID PROTECTION DESIGN
DATA - SINGLE SHEET AND MLI

FIGURE C-42: METEOROID PROTECTION DESIGN DATA - SINGLE SHEET AND MLI

AND MLI

FIGURE C-43: METEOROID PROTEC TION DESIGN DATA - SANDWICH AND MLI

FIGURE C-45: METEOROID PROTECTION DESIGN DATA - SANDWICH AND MLI

FIGURE C-46: METEOROID PROTECTION
DESIGN DATA-SANDWICH
AND MLI

FIGURE C-47: METEOROID PROTECTION DESIGN DATA-SANDWICH AND MLI

FIGURE C-48: METEOROID PROTECTION
DESIGN DATA-SANDWICH
AND MLI

FIGURE C-49: METEOROID PROTECTION DESIGN DATA-SANDWICH SINGLE SHEET AND MLI

FIGURE C-50: METEOROID PROTECTION FIGURE C-51: METEOROID PROTECTION
DESIGN DATA - MLI AND SINGLE SHEET DESIGN DATA - MLI AND SINGLE SHEET

FIGURE C-52: METEOROID PROTECTION
DESIGN DATA - MLI AND SINGLE SHEET

FIGURE C-53: METEOROID PROTECTION
DESIGN DATA - MLI AND SANDWICH

FIGURE C-54: METEOROID PROTECTION
DESIGN DATA-MLI AND
SANDWICH

FIGURE C-55: METEOROID PROTECTION
DESIGN DATA-SINGLE
SHEETS AND MLI

FIGURE C-57: METEOROID PROTECTION
DESIGN DATA-SINGLE
SHEETS AND MLI

FIGURE C-58: METEOROID PROTECTION DESIGN DATA - SINGLE SHEETS AND MLI

FIGURE C-59: METEOROID PROTECTION DESIGN DATA - SINGLE SHEETS AND MLI

FIGURE C-60: METEOROID PROTECTION DESIGN DATA-SINGLE SHEETS AND MLI

FIGURE C-61: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET,
MLI AND SANDWICH

FIGURE C-64: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET,
MLI AND SANDWICH

FIGURE C-62: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET,
MLI AND SANDWICH

FIGURE C-65: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET,
MLI AND SANDWICH

FIGURE C-63: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET,
MLI AND SANDWICH

FIGURE C-66: METEOROID PROTECTION
DESIGN DATA - SINGLE SHEET,
MLI AND SANDWICH

FIGURE C-67: METEOROID PROTECTION DESIGN
DATA - MATERIAL COMBINATIONS

FIGURE C-68: METEOROID PROTECTION DESIGN
DATA - MATERIAL COMBINATIONS

FIGURE C-69: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-70: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-71: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-72: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-73: METEOROID PROTECTION DESIGN DATA-MATERIAL COMBINATIONS

FIGURE C-74: METEOROID PROTECTION DESIGN DATA -MATERIAL COMBINATIONS

FIGURE C-75: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-76: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-77: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-78: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-79: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-80: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-81: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

FIGURE C-82: METEOROID PROTECTION DESIGN DATA - MATERIAL COMBINATIONS

TABLE C-1
DESIGN METEOROID SIZES

VEHICLE	PAYLOAD HEIGHT		METEOROID DIA	
	in	cm	in	cm
1-14	4	10	.0644	.1636
	14	36	.0648	.1646
	35	89	.0655	.1664
	4	10	.0615	.1562
1 <i>-</i> 2B	24	61	.0626	.1590
	60	152	.0638	.1621
	4	10	.0626	.1590
1-2A	24	61	.0637	.1618
	60	152	.0648	.1646
	4	10	.0588	.1494
1-3	24	61	.0602	.1529
	60	152	.0619	.1572
	4	10	.0610	.1549
1-7	24	61	.0644 .0648 .0655 .0615 .0626 .0638 .0626 .0637 .0648 .0588 .0602	.1554
	35	89	.0616	.1565

	PAYLOAD		METEOROID			
VEHICLE	HEI	GHT	DI	Α		
	in	cm	in	cm		
2-14	4	10	.0605	.1537		
	13	33	.0609	.1547		
	32	81	.0615	.1562		
2-3	4	10	.0538	.1367		
	20	51	.0541	.1374		
	50	127	.0548	.1392		
	4	10	.0539	.1369		
2-18	12	30	.0609 .0615 .0538 .0541 .0548 .0539 .0543 .0555 .0577 .0586 .0598	.1379		
	32	81	.0555	.1410		
2-2	4	10	.0577	.1466		
	9	23	.0586	.1488		
	48	122	.0598	.1519		
	4	10	.0539	.1369		
2-19	9 13 33	33	.0544	.1382		
	43	109	.0559	.1420		

TABLE C-2: METEOROID PROTECTION MATERIALS

TABLE C-2: METEOROID PROTECTION MATERIALS						
MATERIAL	WEIGHT		SOURCE	DESCRIPTION		
	oz/in ²	kg/m ²	JOOKEL	DESCRIPTION		
Nylon net	3.186×10^{-4}	1.400×10^{-2}	Sears Catalog #36P1000	Bridal Veil - 0.41 oz/yd ² 0.007 inch (.178 mm) Nominal Thickness		
15 gage double aluminized mylar	1.320×10^{-4}	5.800×10^{-3}	National Metallizing Spec. 1003	48" (1.219 m) roll stock		
Sliced foam	4.802×10^{-4}	2.110×10^{-2}	Industrial Rubber and Supply Co.	1/32 inch (.159 cm) polyester foam 48" Roll Stock		
Silk net	6.860 × 10 ⁻⁵	3.014×10^{-3}	Boeing Stores			
NRC-2	2.253×10^{-4}	9.900×10^{-3}	Boeing Stores	25 gage crinkled 48" aluminized mylar wide rol		
50 gage aluminized mylar	4.415×10^{-4}	1.940×10^{-2}	Boeing Stores	48" (1.219 m) roll stock		
Beta fiber cloth	4.916 x 10 ⁻³	2.160×10^{-1}	J. P. Stevens	Style 15035 fabric, 6.3 oz/yd ² 10 yd sample		
Fiberglass/epoxy laminate	2.464×10^{-2}	1.083	Boeing Stores	Fiberglass cloth layup		
Aluminum	1.607 x 10 ⁻³	7.061×10^{-2}		0.001 inch (.0254 mm) thick sheet		
Aluminum Honeycomb	2.060×10^{-2}	9.052 x 10 ⁻¹		Hexcell - 3/16" (.476 cm) cell size		
Fiberglass Honeycomb	3.640×10^{-2}	1.599	Boeing Stores	Hexcell - 3/16" (.476 cm) cell size		
One layer nylon net + one layer 15 gage Alm.	4.506×10^{-4}	1.980 x 10 ⁻²				
2 layers silk net + one layer 15 gage Alm.	2.700×10^{-4}	1.186 x 10 ⁻²				
One layer sliced foam + one layer 15 gage Alm.	6.122 x 10 ⁻⁴	2.690×10^{-2}				

APPENDIX D

VEHICLE PRELIMINARY DESIGNS

Section 1.2.3 of Volume I, "Final Report" NASA CR-121103, summarized the weight data for ten vehicle preliminary designs. This appendix presents the design drawings, discusses some of the main features and includes a detailed weight statement for each vehicle configuration.

LH₂-LF₂ Propellants

Vehicle 1-14 - Figure D-1 shows the vehicle structural arrangement and fluid line details. A median height payload position was selected for design. A possible design improvement was the elimination of upper ring and payload supports. The payload supports would then originate at the mid-body ring and would be constructed of fiberglass. This feature was incorporated in the final designs discussed in Section 1.3.1 of Volume I. The ring weight saved by this change would be offset to some extent by the addition of a MLI support ring between the payload and the LF₂ tank. It was estimated that the net effect was a weight reduction of 7 lbs (3.2 kg).

Figure D-2 shows insulating details. Internal MLI was selected and the meteoroid protection was provided by the MLI. The top deck, compartment separation and bottom blankets were supported by X-850 film laminate. A fiberglass laminate ring was added at the mid-body point to support the compartment separation blanket. This ring was totally enclosed within the MLI blanket, thus there were no bracket penetrations through the multilayer. The ring rested on a pair of fluid line support beams which spanned the vehicle at the mid-body location. The innermost radiation shields were joined at this location, shown in Detail I, to provide thermal continuity around the corner and to act as a purge seal.

A 90° corner and blanket overlap was provided at the intersection of top deck and sidewall MLI. It was necessary to add strips of fiberglass laminate to the upper ring to produce this type of joint.

Vehicle 1-2A - The structural arrangement is shown in Figure D-3. It was necessary to provide secondary structure in the form of an insulation support framework over and under the LH₂ tank. The vehicle body was only 17 in. (0.43 m) high, with a 52 in. (1.32 m) centaur adaptor below and a 58 in. (1.48 m) payload support bay above. A six-truss member structure supported the engine and some of the tank load. The LF₂ tanks were manifolded together for engine feed and venting functions.

Figure D-4 shows the insulation design. The conical surface above the LH₂ tank was insulated with six large panels and six filler panels. The smaller panels were

necessary due to material width limitations and the arrangement of MLI support members. A more efficient design could be possible by splicing aluminized mylar roll stock to greater widths and by relocating some MLI support structure; however, a minimum of six panels still appeared necessary.

This insulation design located the MLI on the outside of the vehicle structure, therefore, it is necessary to provide penetrations for the payload supports and for the adaptor. Hand-fitting at these penetrations would be necessary to produce a thermally efficient joint. Access to the LH₂ tank would necessitate removal of several panels with the attendant problems of replacement to produce a thermally efficient joint.

Vehicle 1-2B - The structural arrangement of this vehicle eliminated the internal truss construction of its counterpart, Vehicle 1-2A. Instead, the tanks were suspended from the main body rings, and engine loads were applied through a conical framework. It was necessary, however, to provide secondary structural support for the MLI blanket separating the two propellants. Figure D-5 shows these details. As in the case of the previous vehicle, there was a considerable amount of unused volume between the LF₂ tanks.

Figure D-6 shows insulation details. External MLI was used and meteoroid protection was provided by the addition of MLI with non-aluminized radiation shields. That portion of the blanket using clear mylar films was used as a structural support for the remainder of the MLI. The compartment separation blanket utilized X-850 film laminate for support. This blanket would be applied in two pieces. The top deck blanket was also supported by X-850 film and would be applied as one piece. It would be necessary to splice the mylar to produce this panel.

Vehicle 1-3 - Figure D-7 shows the structural arrangement. The vehicle was divided into four bays by trusses. The tanks were supported partially on the trusses and partially on the external ring. A manifold system connected pairs of oxidizer and fuel tanks. The manifold system was located above the tanks for simplicity, however, this necessitated some additional MLI support structure.

Figure D-8 shows the insulating details for this vehicle. External MLI was chosen and non-aluminized mylar was used in the MLI added for meteoroid protection. The top deck blanket thicknesses were different for the fuel and oxidizer compartments, therefore, foam block shims were used along abutting edges to maintain panel alignment. A fiberglass laminate support structure was devised to elevate the MLI above the plumbing lines. The sidewall blankets were all the same thickness for meteoroid protection, however, the number of radiation shields varied between oxidizer and fuel compartments. This necessitated four panels to insulate the sidewall. Compartment separation blankets within the vehicle were located inside the LH2 tank enclosure. The intersection of these blankets at the center, and the joints with top and bottom panels, would present severe insulating problems.

Vehicle 1-7 - The structure of this vehicle is arranged in a square configuration, with four corner posts supporting tank and engine loads. Fiberglass tubular struts were selected for the design because the structural trades indicated this was the least weight approach. The two LH2 tanks were suspended externally by a system of fiberglass struts and tension straps. Figure D-9 shows the structural arrangement.

Figure D-10 shows the insulation details for this vehicle. It was necessary to add fiberglass laminate structure to support the MLI blankets around the perimeter of the LH₂ tanks. It appeared that this configuration could be efficiently insulated with tank mounted MLI, at least for the LH₂ tanks. Producing thermally efficient MLI joints at sidewall, top deck and the intersection of compartment separation blankets would be very difficult.

FLOX-CH4 PROPELLANTS

Vehicle 2-19 - The structure is shown in Figure D-11. This configuration was unique in that tank mounted insulation appeared to be more adaptable to all the surfaces except possibly the upper deck. Primary boost loads would be carried through the cylindrical portion of the tank which necessitated a tank gage increase and the integral stiffening ribs shown on the drawing. There were obvious pressure vessel weight penalties associated with this approach, however, such items as structural members, MLI supports, tank support and engine thrust structure were minimized, thus offsetting the tank weight increases. The structure was relatively simple, consisting of a tank shell extension (skirt), payload supports and an adaptor. A design review revealed that the skirt shown on the drawing was 5 in. (12.7 cm) longer than necessary. Shortening the skirt and lengthening the payload support struts resulted in a weight reduction of 4 lbs (1.82 kg). The weights of Table D-1 do not reflect this reduction. The reduction was included in the weight summary, Figure 1.2-42, of the Volume I report.

Figure D-12 shows insulation details. External MLI was selected. The MLI blanket on the sidewall and cone consisted partly of aluminized shields for thermal protection and non-aluminized shields for meteoroid protection. The non-aluminized shield portion of the blanket was used to support the thermal protection portions and incorporated a zipper joint to aid installation and obtain a close fitting joint.

The top deck blanket was supported by an aluminized laminate film, Schjedahl X-850. The film was reinforced around the perimeter with fiberglass laminate and riveted to an insulation mounting ring. The MLI blanket was attached to the laminate with nylon retainers. A 90° corner was incorporated in the top deck blanket. This comer was formed during construction by cutting and taping the edges of shields and spacers. The insulation extension along the sidewall was held in place with hollow nylon studs and the edges restrained by sewing several net spacers to the sidewall blanket. Aluminized mylar roll stock was

not wide enough to make a complete radiation shield. It would be necessary to splice this material for the top deck of all vehicles. The splice would be made by overlapping and taping sheets of aluminized mylar. The overlapped joints would be staggered to avoid excessive thickness.

Payload support members penetrated the top deck blanket and were wrapped with MLI. The external plumbing lines and those within the insulation enclosure were also wrapped with MLI.

Venting of the purge gas used during prelaunch operations would be accomplished along the edges of the blankets. The mylar films (but not the radiation shields) would be perforated in the zipper area to aid in evacuation.

Vehicle 2-18 - Figure D-13 shows the structural arrangement for this vehicle. Payload supports and the adaptor attached to a common ring. The tanks, as well as the engine thrust structure, were also connected to the same ring.

Figure D-14 shows insulation details. Internal MLI was used. A fiberglass mounting ring was added to support the top deck and sidewall blankets. X-850 film was used to support the top deck blanket and a group of mylar films and net spacers were used for sidewall blanket suspension. The sidewall blanket was separated at the top so that the top deck blanket could be overlapped outside of the radiation shields and spacers. The sidewall meteoroid protection (mylar films and net spacers) was on the outside so a zipper could be used for closing the longitudinal joint. The MLI on the inside, above the separation point, was held in place with hollow nylon studs and washers.

The conical base MLI blanket was envisioned as two pieces, with appropriate cuts and taped joints in the aluminized mylar to produce the correct shape. The net spacers could be cut and sewn, or formed to the desired contour. The mylar films and spacers which were added for meteoroid protection were also used here to support the blanket. Structural members were external to the MLI blanket, therefore, they were uninsulated. This simplified fabrication as compared to Vehicles 2-2 and 2-3.

Vehicle 2-14 - Figure D-15 shows the structural arrangement. The vehicle is divided into two bays with rings enclosing each bay. Further structural weight reductions appeared possible by omission of the uppermost ring, changing the upper bay truss members to fiberglass and connecting them directly to the payload. It was not expected that these changes would improve the ranking of this vehicle significantly, based on similar changes to Vehicle 1-14.

Figure D-16 shows insulation blanket and mounting details. The multilayer was located inside the structure and the entire blanket incorporated aluminized shields. The top deck blanket was suspended from an X-850 film and was held in place at the corners with velcro tape. The sidewall blanket was suspended

at the top from hollow nylon studs. A blanket joint was necessary at the midbody ring because of aluminized mylar roll stock width limitations. Velcro tape was used for suspending the lower sidewall blanket and restraining the bottom of both upper and lower sidewall blankets. A lacing joint was used on the sidewall. The outer and inner net layers were reinforced with X-850 in this area to support the nylon retainers.

The bottom insulation panel employed X-850 film for support since it was nearly perpendicular to the direction of maximum acceleration forces. Velcro patches attached the panel to the engine thrust members.

Vehicle 2-3 - The body structure of this vehicle (Figure D-17) consisted of two rings separated by aluminum truss members. A crossed truss arrangement supported the tanks and engine thrust loads.

Figure D-18 shows the insulation arrangement. External MLI was used which made it necessary to insulate all of the structural members. This task was complicated because of the numerous joints, and because external portions of the members had to be left exposed to permit attachment of sidewall and bottom blankets to velcro patches. Sidewall and top blankets were both suspended from the upper vehicle ring, thus additional MLI support structure was unnecessary in this area. A fiberglass ring was added in the engine recess to hold the blanket clear of the engine. The engine recess MLI joints would require considerable hand work to obtain thermally efficient joints.

Vehicle 2-2 - A six beam structural arrangement was employed to support tank and engine thrust loads of this vehicle. An insulation cage covered the FLOX tank and also supported the fluid lines. The details are shown in Figure D-19. The payload height of this vehicle was found to be excessive and a reduction of 27.1 lbs (12.3 kg) was possible with shorter payload support members. This change was incorporated in the weight summary, Figure 1.2-42 of Volume I, but not in Table D-1 of this appendix.

Figure D-20 shows MLI and meteoroid protection details. External MLI was used, therefore the difficulties of insulating structural members described for Vehicle 2-3 were encountered for this vehicle also. The top deck blanket was penetrated diagonally by the twelve payload support members. This resulted in a large cut, which would need to be prepared carefully to avoid heat shorts. The conical blankets were supported by X-850 film and were assembled in six units. A scarf joint, attached by velcro tape, was employed at the longitudinal edges of these panels. The scarf joint was held together on the outside by sewing adjacent panels. Sidewall, bottom and engine recess panels were supported by the non-aluminized mylar films and net spacers added for meteoroid protection.

Weight Statement

The weight data for the ten vehicle preliminary designs is summarized in Table D-1. The weights breakdown is confined to major systems in this table. Tables D-2, D-3, D-4 and D-5 show secondary structure and MLI weights. The latter item consists of additions to the basic MLI panel weights derived by the TATE program discussed in Appendix A. Tables D-6 through D-8, and D-9 through D-11 show FLOX-CH₄ and LH₂-LF₂ vehicle plumbing weights.

NOTES

- FILL FEED VENT & ETC LINES ARE CRES
- 2 TANK STRUTS & PAYLOAD SUPPORTS ARE FIBERGLASS
- 3. TANKS ARE 2819-TGE46 AL.
- 4 MYLAR, ALUMINIZED & NON ALUMINIZED, IS IS MIL THICK
- 5 NYLON NET, SEARS ROEBUCK & CO, WT = 3702/12, OO7 AVG THICKNESS

Figure D-7:

VEHICLE 1-3 PRELIMINARY DESIGN

141

NOTES.

- I TANKS ARE 2219 TGE4G AL L. 025
- 2 FILL FEED, VENT & ETC, LINES ARE CRES
- 3 TANK SUPPORT STRUTS ARE FIBERGLASS
- 4 MYLAR, ALIMINIZED & NON-ALIMINIZED =
 15 MIL THICK
 5 NYLON NET, SEARS ROEBUCK Co, WT = .37 -4/42,
 007 AVG THICKNESS

Figure D-13:

VEHICLE 2-18 PRELIMINARY DESIGN

147

Figure D-15: VEHICLE 2-14 PRELIMINARY DESIGN 149

THIS PAGE INTENTIONALLY LEFT BLANK

TABLE D-1: SUMMARY WEIGHT COMPARISON

TYPE PROPELLANT		FLC	X/CH ₄				L	F2/LH2			COMMENT
CONFIGURATION NO.	2-2	2–3	2–14	2–18	2–19	1-2A	1-2B	1-3	1-7	1-14	COMMENT
STRUCTURE GROUP	180.1	132.3	1193	86.2	93.5	199.8	169.2	166.4	135 2	150.7	
Primary Structure	41 6	49.1	62.6	29 5	56.1	51 3	54.7	49 3	95 4	67 7	Including Adapter
Secondary Structure	91 5	72.3	45.8	28.1	28.4	117.7	103.6	106.2	32.5	73.9	Including Thrust Structure, Propellant Tank
Payload Support	47.5	10.9	109	28 6	9.0	30.8	10.9	109	7.3	91	Supts., Main Body Rings Including F.G. Structure Between P/L and Upper Ring
THERMAL SYSTEM GROUP	81.2	89.5	65.5	58.7	65.0	112.5	103 0	125 0	110.7	76.8	rand Opper King
					,						Including Propellant Tank Membrana Wt., Vapor
Primary Components	57.2	64.0	59.5	47.6	51.8	75.2	66 1	78 2	88.4	64.8	Helium & Helium Tank, Basic Insul (as sized by tate program).
Secondary Insul. AWeight	167	14.6	6.0	7.0	9.6	37.3	20.4	33.2	22 3	12.0	Including Misc."Overlap" Penalties, Velcro and Other Insul Attachments, Insul, Over Internal
Protection Δ Weight	6.3	10.9		4.1	3.6	•	16.5	13.6	•	•	Structure and Plumbing. Including Non-aluminized or Aluminized Shields as required for Meteoroid Protection."
PROPULSION SYSTEM GROUP	281.7	294.2	247.2	254.1	245.5	331.7	338.8	360.6	317.1	278.5	as required for metaorala riotaction
Engine	108.0	108.0	108.0	108.0	108.0	108.0	108.0	108.0	108.0	108.0	Including Thrust Vector Control
Fuel System	80.4	67.3	51.4	44.2	44.9	68.5	67.9	120.6	119.7	62.5	Including Vent, Feed & Fill Plumbing, Support
Oxidizer System	60 0	86.6	56.2	71.1	61 8	122.5	130.6	99.6	56 2	76.4	& Propellant Tank Outlet Penalties
Penumatic Control	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	16.0	
Pressurization Δ Weight	17 3	16.3	15 6	14.8	148	16.7	16.3	16.4	17.2	15.6	Total System Except Helium & Helium Tank
TOTAL HARDWARE	542.0	516 0	432.0	399.0	404 0	644 0	611.0	652.0	563 0	506.0	
PROPELLANT	2,440.0	2,440 0	2,440 0	2,440.0	2,440 0	2,170.0	2,170.0	2,170 0	2,170.0	2,170 0	
TOTAL SYSTEM	2.982.0	2.856.0	2,872.0	2.839 0	2.844.0	2.814.0	2.781.0	2,822 0	2.733.0	2.676.0	
**	2,002.0	2,000.0	_,0,2.0	2,000 0	2,0 11.0	2,01-1.0	2,701.0	2,022 0	2,733.0	2,070.0	1
RELATIVE HARDWARE WEIGHT	1.36	1 29	1.08	1.00	1.01	1.27	1 21	1.29	1 11	1.00]
					,		 	 			1

Included in Primary Thermal System Components

^{**} Config. Hardware Weight/Lightest Config. Hardware Weight

TABLE D-1: SUMMARY WEIGHT COMPARISON

TYPE PROPELLANT			FLOX/CH	4				LF 2/LH	2		COMMENTS
CONFIGURATION NO.	2-2	2-3	2-14	2-18	2-19	1-2A	1-2B	1-3	1-7	1-14	COMMENTS
STRUCTURE GROUP	81.8	60.0	54 2	39.1	42.5	90 7	76.8	75.5	84.1	68 4	
STRUCTURE GROUP	81.8	60.0	54.2	39.1	42.5	90 /	76.8	75.5	54.1	004	1
Primary Structure	18.9	22 3	28.4	13.4	25.5	23.4	24 8	22 4	43.3	30.7	
Secondary Structure	41.5	32 8	20.8	12.8	12.9	53.4	47.0	48.2	14.8	33.6]
Payload Support	21.6	4.9	4.9	13.0	4.1	13.9	4.9	49	3.3	4.1	
THERMAL SYSTEM GROUP	36.9	40.6	29.7	26.6	29.5	51.1	46.8	56.8	50.3	34 9	See Johla D. 1 for Commons
THE SHALE STOTEM GROOF	1 33.5	170.0	23.7	20.0	25.5	1-31-1	40.6	30.6	50.3	34 5	See Table D-1 for Comments
Primary Components	26.0	29,1	27.0	21.6	23.5	34.1	30.0	35.5	40.1	29.4	1
Secondary Insul \(\Delta \text{Weight} \)	7.6	6.6	2.7	3.2	4.4	16.9	9.3	15.1	12.4	54	
Protection \(\Delta \text{Weight} \)	2.9	4.9	•	1.9	16	•	7.5	6.2	•	•]
PROPULSION SYSTEM GROUP	127.9	133.6	112.2	115.4	111.5	150.6	153.8	163.7	144.0	126.4	
Engine	49.0	40.0	49.0	49.0	49.0	49,0	49.0	49 0	49.0	49.0	1
Fuel System	36.5	30.5	23.3	20.0	20.4	31 1	30.8	54.8	53.9	28.4	1
Oxidizer System	27.2	39.3	25.5	32.3	28.0	55.6	59.3	45.2	25.5	34 7	1
Pneumatic Control	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	7.3	1
Pressurization & Weight	78	7.4	71	6.7	6.7	7.6	7.4	7.4	7.8	7,1	
TOTAL HARDWARE	246.0	234.3	196.0	191.1	183.4	292 4	277.4	296 1	255.6	229.7	}
PROPELLANT	1107.8	1107.8	1107.8	1107.8	1107.8	985.2	985.2	985.2	985.2	985 2	
TOTAL SYSTEM	1353.8	1296.6	1303.9	1288.9	1291.2	1277.6	1262.6	1281.2	1240.8	1214.9	1
RELATIVE HARDWARE WT **	1.36	1 29	1.08	1 00	1.01	1.27	1.21	1.29	1.11	1.00	

^{••} Config. Hardware Weight/Lightest Config. Hardware Weight.

TABLE D-2: SECONDARY STRUCTURE AND INSULATION DETAIL WEIGHTS

						(CONFIGU	RATION N	IUMBER						
		1-2/	`		1-2B			1-3			17			1-14	
SECONDARY STRUCTURE			1177			103.6			106.2			32.5			73 9
Main Body Rings		57.54			66.17			48.12			11.11			57.72	
Upper Ring	28.77	07.04		29 41			24.06			1.71*			8.40		
Mid Ring												 	23 00		
Lower Ring	28.77			36.76			24.06			9 40			26.32		
Tank Support Structure		7.81			6.13			6,16			7.73			3.76	
Thrust Structure		52.35			31.30			51.92			13.66			12 42	
Engine Ring	9.10			-											
Thrust Ring Assy,	8.00			8 00			12.03			9.07			7.12		
Thrust Truss/Tube Assy.	33.00			23 30			28.56			4.59			5.30		
Torsion Tubes & Braces	2.25						11.33						_=_		
SECONDARY INSULATION			37.3			20.4			33.2			22.3			12.0
Insulation Support Structure	-	25.63			9.37			17.77			7.73				
Rings	10.81			4 89			_			3.27			_		
Support Tubes	8.57			1 64			i								
Misc. Supports	6.25			2.84			17.77	-		4.46					
Additional Insulation		4.37			3.61			4.29			1 26			0.70	
Tank Support Str. Insulation	0.51			0.50			0.32			0.34			0.17		
Thrust Str. Insulation	0.78			0.64			1.14	1			l				
Plumbing Insulation	0.94			0.91			1.06			0.65			0.35		
Insulation on Other Int. Str.	0.61	į		0.17			0.38			0.27					
Misc Overlaps, Etc.	1.53			1.39			1.39						0 18		
	.						· ' }								

Upper Diagonal Brace

TABLE D-2: SECONDARY STRUCTURE AND INSULATION DETAIL WEIGHTS

	L						CONFIG	JRATION	NUMBER	<u> </u>				-	
		1–2	A		1-2	В		1-3	,		1-7	,		1-14	4
SECONDARY STRUCTURE			53.44		· · · ·	47 03			48 21			14 76			33
Main Body Rings		26.12			30 0			21 85			5 04			26 20	
Upper Ring	13 06			13.35			10 92			0 776			3.81		
Mid Ring									1				10 44		
Lower Ring	13 06			16 69			10 92			4 27			11 95		
Tank Support Structure		3 55			2.78			2 80			3 51			171	
Thrust Structure		23.77			14 21			23.57	<u> </u>		6 20			5 64	
Engine Ring	4 13								L						L
Thrust Ring Assy	3.63			3 63			5 46			4 12			3 23		
Thrust Truss/Tube Assy	14 98			10.58			12 97			2 08			2 40		
Torsion Tubes & Braces	1 02			-			5 14								
SECONDARY INSULATION			16.93			9.26			15.07			10 12			5 4
Insulation Support Structure		11.64			4.25		 	8.07		 	3.51	 			
Rings	4 91			2 22			_			1.48	1				Γ
Support Tubes	3.89			0.74] -			_			_		
Misc. Supports	284			1 29			8.07			2.02		1	=		
Additional Insulation		1 98			1.64			1 95			0.57			0 32	
Tank Support Str Insulation	0.231			0 227			0 145			0.154	1		0 077		
Thrust Structure Insulation	0.354			0.291		<u></u>	0.518						_		
Plumbing Insulation	0.426			0.413		L	0.481			0 30			0 158		
Insulation on Other Int. Str	0 277			0.077			0 173			0 123			=		
Misc. Overlaps, Etc.	0.695			0.631			0 631			=			0 082		ļ
·									 			ļ			
	1 1			1		1	1	i	Į.	l	I	1			

TABLE D-3: SECONDARY STRUCTURE & INSULATION DETAIL WEIGHTS

İ					CONFIG	URATION NUN	MBER			
		1-2A		1-28		1-3		1-7		114
CONDARY INSULATION (Cont.)										
Major Joint Assemblies		0.72		351	_	6 34		6 34		8.31
Sidewall & Base	0.02		0.03		0.76		0.12		0.08	
At Upper Ring	013		1 40		3 22				2 12	1
At Mid Ring	-				_		_	i	5 79	
At Lower Ring	013		0 66		0 66				0 19	
At Engine & Thrust Rings	0.35		0.09		1.70				0 13	
Other	0.09		1 33				6 22			
X-850 Film		2.75		2.16		2 15		4 59		1.11
Misc., Attachments		2.35		0.10		0 36		0.13		0.08
Velcro	0.37		0.03		0.03		0.03		0.03	
Clamps, Retainers, Studs, Etc.	0.10		0.07		0.33		0.10		0 05	
Misc Fiberglass Rings, Etc.	1.88									ļ
Miscellaneous Insulation Items		1.48		1 65		2.29		2 25		1.80
(Bond. Etc)										
						·				
			_							
										1

Includes items not accounted for under major joints.

TABLE D-3: SECONDARY STRUCTURE AND INSULATION DETAIL WEIGHTS

					CONI	FIGURAT	ION NUMI	BER						
		1-2A		1-2E	3		1-3			1-7			1-14	
SECONDARY INSULATION (Cont)				<u> </u>										
Major Joint Assemblies		0 33		1 59		<u> </u>	2 88			2.88			3 77	
Sidewall & Base	0.009		0 000			0 35			0.054			036		
At Upper Ring	0.059	<u> </u>	0.630		<u> </u>	1 46		<u> </u>			0			
At Mid Ring					<u> </u>							63		
At Lower Ring	0.059		0 299			0 30	<u> </u>					083	!	
At Engine & Thrust Rings	0 159		0 041			0.77		<u> </u>			0	059		
Other	0.041		0.149	<u>'</u>		<u> </u>	ļ	<u> </u>	2.82			∤		
X-850 Film		1 25		0.98			0 97			2 08			0.504	_
Misc. Attachments		1.07		0.0454		<u> </u>	0 163			0.059		-+	0.036	
Velcro	0 168		0 009	1		0.009		i	0 014		0.0	14		
Clamps, Retainers, Studs, Etc.	0.0454		0 032			0 0149			0 0454		0.0			
Misc. Fiberglass Rings, Etc	0.85					=			=					
Miscellaneous Insulation Items		0.67		0 75	 		1 04			1 02			0.82	
(Bonds, Etc.)														
				ļ	ļ		 							
				 		ļ	 							
				 			l						 -	
												_		
				 		 -								
				Ţ										
				1			L	l	l			_ [!	

TABLE D-4: SECONDARY STRUCTURE & INSULATION DETAIL WEIGHTS

							CONFIGL	JRATION	NUMBER	l					
		2-2			2-3			2-14			2-18			2-19	
SECONDARY STRUCTURE			91.5			72.3			45.8			28 1			28 4
Main Body Rings		50.70			21.38	 		27 21	 -		10 71	 	1	25 80°	
Upper Ring	13.12			10 69			2 78				<u> </u>		12 90		
Mid Ring	_				· · · ·		2.78			10 71		 		 	
Lower Ring	37 58			10 69			21.65						12.90		
Tank Support Structure		7 73			8.60			3 33			3.34				
Thrust Structure		33.07		 	42.32			15 26		ļ	14.05			2.60	
Engine Ring	3.30			13 18			_								Ī
Thrust Ring Assy	7.53			8.32			9.76			9.33		1	2.60		
Thrust Truss/Tube Assy	20.28			20.12			5.50		•	4.72			T =		
Torsion Tubes & Braces	1.96			.70											
SECONDARY INSULATION			16.7			14.6			6.0			70			9.6
Insulation Support Structure		8.45								 -		 	ļ	 -	
Rings	0.92										- -			1	
Support Tubes	4.64	_										1	<u> </u>		
Misc. Supports	2.89														
Additional Insulation		3.58			3.65			1.08		 	0 66			1.90	
Tank Support Structure Insul.	0.37			0 40			0.16			0.14		T	T -		
Thrust Structure Insulation	0.50			0.52						T =]	 	1	
Plumbing Insulation	0.54			0.61			0.23		L	0.25]	0 28		
Insulation on Other Int. Str.	0.70			0.61			0 05			Ī —	<u> </u>]	0.33		[
Misc. Overlaps, Etc.	1 47			1.51			0.64			0 27			1 29		
												<u> </u>	 	1	

TABLE D-4: SECONDARY STRUCTURE AND INSULATION DETAIL WEIGHTS

							CONFIGU	RATION	NUMBER						
		2-2			2-3			2-14	 		2-18	3		2-19)
SECONDARY STRUCTURE			41.5			32 8			20 7			128			12 9
Main Body Rings		23 1	 -	 	9.71	 	 	12.35			4 86		 -	11.71	
Upper Ring	5.96			4 85	 	 	1 26			 		 	5.86		
Mid Ring			 -	 		 -	1 26			4 86		 	† 		
Lower Ring	17.06			4 85			9 83			-		 	5.86		
Tank Support Structures		3.50		ļ	3 90			1.51			1.52				
Thrust Structure		15.01	 -		21.03	<u> </u>	 	6.93			6.38			1.18	
Engine Ring	1.50]	5.98		Ì	-						1		Ī
Thrust Ring Assembly	3.42			1.51			4.43			4.24			1.18		
Thrust Truss/Tube Assembly	9.21			9 13			2 50			2 14					
Torsion Tubes & Braces	3.61			0.32			=						==		
SECONDARY INSULATION			7 58			6.62			2.72			3.18			4 36
Insulation Support Structure		3.84	 	 	 		 		 -	 		 			
Rings	0.42						!					 			
Support Tubes	2.11			<u> </u>			T _			i – –		·			
Misc. Supports	1.31			=			ļi			==			-		1
Additional Insulation		1.63			1.66		†	0 49			0 30	 	<u> </u>	0.86	
Tank Support Structure Insulation	0.17			0.18			0.073			0 064			_		
Thrust Structure Insulation	0.23			0.24	<u> </u>										I
Plumbing Insulation	0.25			0 28			0 104		L	0.0114		I	0.0127		
Insulation on Other Int. Str.	0.32			0.28	1		0.0023			-]	0.0150		
Misc. Overlaps, Etc	0.67			0.69			0.29			0.0126		-	0.586		
				İ	L	1				†					

TABLE D-5: SECONDARY STRUCTURE & INSULATION DETAIL WEIGHTS

ì					С	ONFIGU	RATION	NUMBER						
		2–2		2-3	3		2-	14		2-	18		2-	19
CONDARY INSULATION (Continued)														
Major Joint Assemblies		1.47		4.49			3.30			4 47			4.88	
Sidewall & Base	0.11		0.14			0.08			0.08			0 11		
At Upper Ring	0.27		3.47			1.78			3.97			4 57		
At Mid Ring			_			1.04			0.29			-		
At Lower Ring	0.27		0.58			0.27			-			0.18		
At Engine & Thrust Rings	0.14	T	0.30			0.13			0.13			0.02		
Other	0.68								-			_		_
X-850 Film		1.24		1.84			0.62			0.23			0.29	
Misc. Attachments		0.61		2.30			0.07			0.56			1.04	
Velcro	0.02		0.03			0.03			0.03			0.02		
Clamps, Retainers, Studs, Etc.	0.13		0 07			0.04			0.53			1.02		
Misc. Fiberglass Rings, Etc.	0.46		2.20						=					_
Muscellaneous Insulation Items		1.35	 }	2.32			0.93			1.08			1.49	-
(Bond, Etc.)														
												·		
														-
														-
	I		I -	1	j									1

TABLE D-5: SECONDARY STRUCTURE AND INSULATION DETAIL WEIGHTS

					CONFIGU	RATION NUM	MBER				
		2–2		2–3		2-14		2-18		2-19	
SECONDARY INSULATION (Continued)											
Major Joint Assemblies		0.68		2.04		1 50		2 03		2.22	
Sidewall and Base	0.049		0.064		0.036		0.036		0.049		
At Upper Ring	0.123		1.575		0.81		1.80		2 075		
At Mid Ring	_				0.47		0.132		_		_
At Lower Ring	0.123		0.263		0.123				0.082		
At Engine & Thrust Rings	0.064		0.136		0.059		0.059		0.009		
Other	0.31										_
X-850 Film		0.56		0.83		0.28		0.104		0.132	_
Misc. Attachments 1>		0.28		1.04		0.032		0.29		0.47	
Velcro	0.009		0.0136		0.0136		0.0136	-	0,009		
Clamps, Retainers, Studs, Etc.	0.59		0.032		0.0182		0.0.00	0.24		0.46	
Misc. Fiberglass Rings, Etc.	0,21		0.99							-	_
Miscellaneous Insulation Items		0.613		1.05		0.42		0.49		0.68	
(Bonds, Etc.)											
											
								<u></u>			
								·			_

TABLE D-6: CH4 SYSTEM WEIGHTS

							CON	NFIGURA	TION						
	QTY	2-2		QTY	2-3		QTY	2-1	4	ΩΤΥ	2-1	3	ατγ	2-19	,
/ENT			40.3			33.2			22 7			21.6			22 0
Line 2.00 x 0.035 (0.0613 lb/in.)	150 in	9.2		90 in	55		35 ın.	2.1		20 in	12		30 in	18	
Flanges 0.130 lb/ea.	26	3.4		9	1.2		6	0.8		6	08	i	4	0.5	
Solenoid Valve 8.0		8.0			8.0			8.0			80	Ì		80	
Bellows 5.0 ea.	2	10.0		2	10.0			50			50			50	
Disconnect Valve 3.0	·	3.0			3.0	<u> </u>		3.0			3.0			3.0	
Supports 20%		6.7			5.5			3.8			3.6			3.7	
FEED			26.2			20.5			16.0			9.6			102
Manifold 1.25 x 0.025 0.027 lb/in.	40" x 3	3.2		90 in.	2.4					-					
Feed 0.80 x 0.020 0.014 lb/in.	15 in.	0.2		20 in.	0.3		100 in.	1.4		20 in.	0.3		50 in.	0.7	
Flanges-Manifold 0.067 lb/ea.	18	1.2		6	0.4					-					
Feed 0.042 lb/ea.	2	0.1		2	0.1		9	0.4		5	0.2		6	0.3	
Bellows 1.25D 3.2	3	9.6		2	2.4		_			-		1	-		
0.8 D 2.0		2.0			2.0		3	6.0			2.0			2.0	
Shutoff Valve 5.5		5.5			5.5			5.5			55		1	5.5	
Supports 20%		4.4			3.4			2.7			1.6			1.7	
FILL			12.1			12.4			12.1			12.4	 		12.1
Line 0.75 x 0.020 0.013	42 in	0.6		55'in.	2.7		35 ın.	05		50 in	0.7		35 in.	0.5	
Flange 0.040	2	0.1		4	0.2		4	0.2		4	0.2		4	0.2	
Disconnect 1.9		1.9			1.9			1.9			1.9			1.9	
Fill Valve 5.5		5.5			5.5			5.5		J	55		T	5.5	
Bellows 2.0		2.0			2.0			2.0			2.0			2.0	
Supports 20%		2.0			2.1			2.0			2.1		Į	2.0	
TANK OUTLET AWEIGHT			1.8			1.2			0.6			0.6			0.6
Vent (3) (0.13)/Tank	3	1.2		2	0.8	l		0.4			0.4			0.4	
Feed (3) (0.067)/Tank	3	0.6		2	0.4			0.2			0.2		-	0.2	
TOTAL			80.4			67.3			51.4			44.2	<u> </u>		44 9

TABLE D-6: CH4 SYSTEM WEIGHTS

							_	CONFIGU	JRATION	l						
		QTY	2-2	2	QTY	2-:	3	QTY	2-1	4	ΩΤΥ	2-1	8	QTY	2-1	9
VENT				18,3			15,1			10,3			9.8		T	10,0
Line 5,08 x ,089 cm	(.028 kg/cm)	381 cm	4.18	1	228 cm	2,50		88.9 cm			50.8 cm			76.2 cm		
Flanges	(.059 kg/ea	26	1.54		9	0.54		6	0.363		6	0,363		4	0.227	
Solenoid Valve	3.6 kg/ea.		3.63			3.63			3,63			3.63			3.63	
Bellows	2.27 kg/ea.	2	4.54	1	2	4.54			2,27			2.27			2.27	T
Disconnect Valve	1.36 kg/ea.		1.36			1.36			1.36			1.36			1.36	
Supports	20%		3.04	Į		2.50			1.73	 		1.63	ļ		1.68	
FEED		 	 -	11.89	 -		9.31			7.26		 -	4.36			4.63
Manifold 3,17 x .064	cm (.012 kg/cm)	101.6 ×	1.45	1	228.6 cm	1.09	1	 _ 		 		 	1	 	-	4.05
······································		7.6 cm					<u> </u>						1		1	1
Feed	(.006 kg/cm)	38.1 cm	0.091		50.8 cm	0.136		254.0	0.64		50.8 cm	0.136		127 cm	0.32	
Flanges—Manifold	.034 kg/ea.	18	0.54		6	0.182					_			_	T	
Feed	.019 kg/ea.	2	0.045	I	2	0.045		9	0.182		5	0.091		6	0.136	
Bellows 3,170	1.45 kg	3	4.36		2	1.09										
2,030	.91 kg		0.908			0.91		3	2.72			0.91			0.91	
Shutoff Valve	2.50 kg		2.50			2.50			2,50			2.50			2.50	
Supports	20%		1.99			1.59			1.27						Į	
FILL				5,5			5.6	 		5.5	 		5.6	 		5.5
Line 1.91 x .051 cm	(.006 kg/cm)	10.7 cm	0.27		13,7 cm	0.32		8.9 cm	0,23		12,7 cm	0.32		8.9 cm	0.23	1
Flance	.002 kg/ea	2	0.045		4	0,091		4	0.041		4	0.091		4	0.091	
Disconnect	.86 ka]	0.86			0.86	1		0.86	$T^{}$		0.86	7		0.86	
Fill Valve	2,49 kg		2.5	Ţ		2.49			2.49			2.49			2.49	
Bellows	0.91 kg		0.91			0.91			0.91			0.91			0.91	Ţ
Supports	20%		0.91	ļ		0.91	ļ		0.91			0.91			0.91	Ţ
ANK OUTLET A WEIG	HT	 		0.817	 		0.544	 -		0.272		 	0.272		ļ	0.272
	/.059/Tank	3	0.544		2	0.383	 		0.363		<u> </u>	0.363			0.363	1
Feed 3	/.031/Tank	3	0.272		2	0.181			0.091			0.091			0.091	1
		 			 		 -	 	 	 		 	 		 	
TOTAL				36.50			30.55	1	 	23,34	 	 -	20.07	 	 	20.2

TABLE D-7: FLOX SYSTEM WEIGHTS

		<u> </u>						CONI	IGURA	TION						
		QTY	2-2		QTY	2-3		ΩΤΥ	2-1	14	QTY	2-1	8	QTY	2-1	9
VENT				25.9			33.0			22.4			23.9			26,0
Line 2.00 x 0.035	(0.0613 lb/in.)	78 in.	4.8		90 in.	5.5		35 ın.	2.1		50 in.	3.1		80 in.	4.9	
Flanges	0.13 lb/ea.	6	0.8		8	1.0		6	0.8		6	0.8		6	0.8	
Solenoid Valves	8.0 lb/ea.	1	8.0			8.0			8.0			8.0			8.0	
Disconnect Valves	3.0 lb/ea.		3.0			3.0			3.0			3.0			3.0	
Bellows	5.0 lb/ea.	1	5.0		2	10.0		1	5.0		<u> </u>	5.0			5.0	1
Supports	20%		4.3			5.5			3.5	-		4.0			4.3	-
FEED				15.6			34.2			15.6	1		29.9			17.6
Line 1,60 x 0,03	5 0.0497	25 in.	1.2		25 in.	1.2	† 	25 in.	1.2	1	90 in.	4.5	1	50 in.	2.5	1
Flanges	0.10 lb/ea.	3	0.3	1	8	0.9	 	3	0.3	1	8	0.9	1	6	0.7	
Bellows	4.0	 	4.0	 	3	12.0	 	 	4.0	 	3	12.0	+	<u> </u>	4.0	+
Shutoff Valve	7.5	†	7.5	 	 	7.5	 	†	7.5		 	7.5	 	 	7.5	
Supports	20%	 	2.6	+	 	5.7		 	2.6	 -	†	5.0	1	 	2.9	+
Manifold 2.50 x Q	035 0,0769			-	90 in,	6.9	1	_			 _	1		<u> </u>	1	+
FILL		1		17.8			17.9	1		17.5	†		16.6			17.5
Line 1.50 x 0.020	0.0264	50 in.	1.3		55 in.	1.4		40 in.	1.1		15 in.	0.4	 	35 in.	0.9	1
Flanges	0.060	4	0.2	<u> </u>	4	0.2	†	4	0.2	 	4	0.2		6	0.4	
Bellows	3.8		3.8			3.8		†	3.8		<u> </u>	3.8			3.8	+
Fill Valve	7.0		7.0			7.0			7.0		†	7.0			7.0	
Disconnect Valve	2.5		2.5			2,5			2.5		† — — —	2.5	1		2.5	
Supports	20%		3.0			3.0			2.9		1	2.7			2.9	1
TANK OUTLET DELT				0.7			1.5			0.7	<u> </u>		0.7	<u> </u>		0.7
Vent	(3) (0,13)/Tank	<u> </u>	0.4	<u> </u>	2	0.8	<u> </u>		0.4		ļ	0.4			0.4	
Feed	(3) (0.14)/Tank		0.3		2	0.7			0.3			0.3			0.3	
											ļ. <u> </u>	<u> </u>	-			+
TOTAL				60.0			86.6			56.2	-		71 1	-		61.8

TABLE D-7: FLOX SYSTEM WEIGHTS

		[CO	NFIGURA	TION NUM	/BER						•	
		QTY	2-2		QTY	2–3	·	ΩΤΥ	2-14	4	QTY	2-18		QTY	2-19	3
VENT				11 76			14.98			10.17			10.85			11 80
Line 5 08 x .089 cm	(.028 kg/cm)	198 cm	2.18		229 cm	2.50		89 cm	0.95		127 cm	1 41		203 cm	2.22	
Flange	.059 kg/ea	6	0.36		8	0.45		6	0.36		6	0 36		6	0.36	
Solenoid Valves	3.6 kg/ea.		3.63			2.62			3.63			3.63			3.63	
Disconnect Valves	1 36 kg/ea.		1.36			1.36			1.36			1.36			1.36	
Bellows	2 27 kg/ea.		2 27		2	4.54			2.27			2.27			2 27	
Supports	20%		1.95			2.50			1 60			1.82			1.95	
FEED				71			15.53			7.1			13.57			7.99
Line 4.06 x .089 cm	(026 kg/cm)	63.5 cm	0.55		63.5 cm	0.55		63.5 cm	0.55		229 cm	20.4		127 cm	1.14	
Flanges	.045 kg/ea.	3	014		8	0.41		3	0 14		8	0 41		6	0.32	
Bellows	1.81 kg/ea.		1.81		3	5.45			1 81		3	5.45	<u> </u>		1.81	
Shut-Off Valve	3.4 kg/ea		3.4			3.4			34			3.4	·		3.4	
Supports	20%	i	1.18			2.68			0 99	·		2 27			1.32	
Manifold 6.35 x .089	cm (.0349 kg/cm		1		228 cm	3.13										
FILL		 	 	8.78			8,13			7.95			7.54			7.95
Line 3.81 x .051 cm	(.012 kg/cm)	127 cm	0.59		140 cm		!	102 cm			38 cm			89 cm		·
Flanges	027 kg/ea.	4	0.09		4	0.09	<u> </u>	4	0.09		4	0 09		6	0 18	†—-
Bellows	1.73 kg/ea.		1.73			1.73			1.73	ļ ————		1.73			1.73	
Fill Valve	3.18		3.18			3.18			3.18		1	3.18			3.18	<u> </u>
Disconnect Valve	1.14		1 14			1.14			1.14			1.14			1 14	
Supports	20%		1.36			1.36			1 32			1 23			1 32	
TANK OUTLET AWE	IGHT		i	0.32			0.68	 i		0.32			0.32			0.32
Vent (3) .059 kg/Tank		0.18		2	0.36	T		0.18	<u> </u>		0.18		 	0 18	 -
Feed	(3) .064 kg/Tank		0.14		2	0.32			0.14			0.14			0 14	
										 -				 		
TOT	TAL			27.24			39.32			25 51			32 28			28.06
																
		-								<u> </u>			 			

TABLE D-8: PNEUMATIC CONTROL AND PRESSURIZATION WEIGHTS

	[CONFIG	URATIO	N						
			2-2			2-3	3		2-14			2-1	8		2-1	9
		QTY			QTY			QTY			QTY			QTY		
PNEUMATIC CONT	ROL			16.0			16.0			16 0			16.0			16 0
He PRESSURIZATION	ON DELTA WEIGHT			17.3			16.3			15.6			148			14.8
Lines ½ XD,020 ½ x 0.020	0.0085 0.0041	180 in. 85 in.	1.5		150 in 20 ın.	1.3		110 in. 110 in.	0.9		60 in. 45 in	0.5 0.2		65 ın. 20 in.	0.6 0 1	
							 								0.5	
Fittings	75%		1.4			1.1			0.8			05	ļ		0.5	
Regulators	3.5 lb/ea.	_ 2	7,0		2	7.0		2	7.0		2	7.0		2	7.0	
Filter	1.0 еа.		1.0			1.0			1.0			1.0			1.0	
½ " Squib	0.7 ea.		0.7			0.7			07			0.7			0 7	
Check Valves	0.6 ea.	2	1.2		2	1.2		2	1.2		2	1.2		2	1,2	
Disconnects	0.6 ea.	2	1.2		2	1.2		2	12		2	1.2		2	12	ļ
Supports	20%		2.9			2.7			2.6			2.5			2.5	ļ
TOTAL PRO	PELLANT FEED			173.7			186.2			139.5			146 2			137 5
							 									

TABLE D-8: PNEUMATIC CONTROL AND PRESSURIZATION WEIGHTS

								CONFIGU	RATION	NUMBER						
			2-2			2-3			2-14			2-18			2-19	•
		QTY			QTY			QTY			QTY			QTY		
PNEUMATIC CON	TROL			7.26			7 26			7.26			7.26			7.26
He PRESSURIZATION	ON AWEIGHT			7.85			7,40			7.08			6.72			6.72
	1 cm (.0039 kg/cm)	457 cm	0.68		381 cm			279 cm			152 cm			165 cm		
0.635 x .09	51 cm (.0019 kg/cm)	216 cm	0.18		50.8cm			102 cm			114 cm			50.8 cm		
Fittings	75%		0.64													
Regulators	1.60 kg/ea.	2	3.19		2	3.19		2	3,19		2	3,19		2	3.19	
Filter	0.454 kg/ea.		0.454			0.454			0.454			0 454			0.454	
Squib .635 cm	.318 kg/ea.		0.318			0.318			0.318			0.318			0.318	
Check Valves	.272 kg/ea.	2	0.544		2	0.544		2	0.544		2	0.544		2	0.544	
Disconnect	.272 kg/ea.	2	0.544		2	0.544		2	0.544		2	0.544		2	0 544	
Supports	20%		1.32			1.23			1.18			1.14			1.14	
TOTAL PROPELL	ANT FEED			78.86			84.53			63.33			66.37			62 46
																
	•	LL						<u> </u>			<u> </u>		L	<u> </u>		

TABLE D-9: LH₂ SYSTEM WEIGHTS

									CONFIC	URATIO	N .				•	
		QTY	1-2A		QTY	1-2B		QTY	1-3	3	QTY	1-7		QTY	1-14	
VENT				26.4			24 7			348			34 6			22.
LINE 2.00 x 0 035	(0.0613 Lb/In)	8 5 in	5.2		65 ın	40		110 m.	67		1 0 5 in	64		35 in	21	
Flanges	0.130 Lb/Ea	6	0.8		5	0.6		10	13		11	14		4	05	
Solenoid Valve	8 0 Lb/Ea.		80			8.0			8.0			80			8.0	
Bellows	5.0 Lb/Ea.		5.0		•	5.0		2	10.0		2	10.0			50	
Disconn Valve	3.0 Lb/Ea.		30			30			3 0			30			30	i
Supports	20%		4.4			4.1			5.8			58			37	
FEED				167			16.7			59 4			60 0			17 0
Manifold 3.25 x 0 0	249 (0.1386 lb/in.)				-			120 in	166		135 in	18 7	1	_		
Feed 2.1 x 0.035	(0.0644 lb/in)	35	2.2		35	2.2		50 in.	3 2		25 ın.	1.6		35 in	2.2	
Flanges-Manifold	0 26 lb/ea				-			10	26		10	26		_		
Feed	0.14 lb/ea	2	03		2	0.3		2	03		2	0.3		4	06	i
Bellows -	5 2 lb/ea.		5.2			5.2			5 2			5.2			5 2	
	7 7 lb/ea.	_			-			2	15 4		2	15 4				
Shutoff Valve	6.2 lb/ea.		6.2			6.2			6.2			62			6.2	
Supports	20%		2.8			2.8			9.9			100	·		28	
FILL				24.6			25.7			24 0			22.7			22 4
Line 2.00 x 0.035	(0.0613 lb/in.)	65 in.	4.0	- 	80 in	4.9		55 in	3.4		38 ın	2.3		35 in.	2 1	
Flanges	0.130	4	0.5		4	0.5		5	0.6		5	0.6		5	06	i
Disconnect	3.0		3.0			3.0			30			30			30	j
Fill Valve	8.0		80			8.0			8.0			80	t		80	
Bellows	5.0		5.0			5.0			50			50			50	i
Supports	20%		4.1			4.3			4.0			38			3 7	
TANK OUTLET AW	aucht -			08			08			24	- ———		24			0.8
Vent	(3) (0 130) lb/tank		04			0.4		2	08		2	08			0 4	
Feed	(3) (0,140) lb/tank		04			0.4									0.4	
	(3) (0.26) lb/tank					- 0.4		2	16		2	16			-	
				68.5			67.0									
	TOTAL			06.5			67 9			120 6			119 7			62 5

(WEIGHT IN LBS)

TABLE D-9: LH2 SYSTEM WEIGHTS

	į							CONFIGU	RATION	NUMBER						
		QTY	1-2A		ατν	1-28	i	QTY	1-3		QTY	1-7		QTY	1-14	
VENT				120			11.2	j		15.8			15.7			10 1
Line 5.08 x 089 cm	(.028 kg/cm)	216 cm	2.36		165 cm	1.82		279 cm	3 04		268 cm	291		89 cm	0.95	
Flange	059 kg ea.	6	0.36		5	0.27		10	0.59		11	0.64		4	0 23	
Solenoid Valve	3.6 kg ea.		3.63			3.36			3.36			3 36			3.36	
Bellows	2,27 kg ea.		2.27			2.27		2	4.54		2	4.54			2 27	1
Disconnect Valve	1.36 kg ea.		1.36			1.36		Ĭ	1.36			1 36	1		1.36	1
Supports	20%		2,00			1 86			2 63			2 63			1 68	Ţ
FEED				7 58			7,58			27,0			27.24			7.72
Manifold 8.26 x .124	cm (.063 kg/cm)]						305 cm	7.54		343 cm	8,44		_		
Feed 5.33 x .089 cm	(029 kg/cm)	89 cm	1.0		89 cm	1.0		127 cm	1.45	1	66 cm	0,73	1	89 cm	10	
Flanges - Manifold	.118 kg ea.	_			_			10	1.18		10	1 18		-]
- Feed	.064 kg ea.	2	0.14		2	0 14		2	0 14		2	0.14		4	0.27	
Bellows	2.361 kg ea.		2.36			2.36			2.36			2.36			2.36	1
	3.5 kg ea.	_						2	7.0	1	2	7.0	1	_		
Shut-Off Valve	2,82 kg ea		2.82		1	2.82			2.82			2.82			2.82	
Supports	20%		1 27			1.27			4.50			4.54			1.27	
FILL				11,17			11.66			10.9			10,31			10.17
Line 5.08 x .089cm	(.028 kg/cm)	165 cm	1.82		203 cm	2.22		140 cm	1,54		97 cm	1.04		89 cm	0,95	
Flanges	.059 kg ea	4	0.23		4	0.23		5	0,27		5	0.27		5	0,27	I
Disconnect	1.362 kg ea.		1.36		<u> </u>	1,36	<u> </u>	[1 36	1		1.36	L		1,36	
Fill Valve	3.63 kg ea.		3,63	· :	<u> </u>	3.36_	LI	1	3.36			3.36			3.36	
Bellows	2.27 kg es.		2,27	! 		2.27			2.27			2,27			2,27	I
Supports	20%		1,86		 	1.95	i		1.82	 		1.73	ļ — — .		1.68	ļ
TANK OUTLET Δ WE				0.36	 		0,36			1.09			1.09			0.36
	3) 059 kg/Tank	i	0.18	L	<u> </u>	0,18	 	2	0.36	 _	2	0.36			0.18	
Feed (3) .064 kg/tank		0.18		L	0.18	<u> </u>								0.18	
	3) 118 kg/Tank					=-	 -	2	0 73		2	0.73				-
TOTAL		· '		31 1			30.83			<u>5</u> 4 75	- 		54.34			28.38

TABLE D-10: LF₂ SYSTEM WEIGHTS

								CONFI	GURATI	ON						
	<u> </u>	QTY	1-2/	4	QTY	126	3	QTY	1-3	3	QTY	1-7	7	QTY	1-14	1
VENT				53.6			46 3			35 3			22 0		-	22.7
Line 2 00 x 0 035	(0.0613 lb/in.)	195 in	12.0		180 m.	11.0		115 m	70		25 in	1 5		35 in	2.1	
Flanges	0.13 lb/ea.	13	17		12	1 6		11	1.4		6	08		6	8.0	
Solenoid Valves	8 lb/ea.		8.0			80			80			8.0			8.0	
Disconnect	3 lb/ea		3.0			30			3.0			3.0			30	
Bellows	5 lb/ea	4	20.0		3	15.0		2	10.0			50			50	
Supports	20%		8.9			77			5.9			3.7	1		3.8	
													1			
FEED				48 5			64 9			44.8			163			35 5
Line 1 60 x 0.035	(0.0497 lb/in.)	35 m.	17		65 ın	3.2		50 in	25		35 ın	17		105 in.	5 2	
Manifold 2.50 x 0	.035 (0 0769 lb/in	175 ın.	13.4		175 in.	13.4		125 in	9.6							
Flanges	0.111 lb/ea.	4	0.4		3	0.3		2	0,2		4	0.4		8	0.8	
	0.153 lb/ea.	9	1.4		11	1.7		10	1,5		_			_		
Bellows-Feed	4 0 lb/ea.		4.0			4.0			4.0			4.0		4	16.0	
Shut-off Valve	7.5 lb/ea.		7.5			75			7.5	<u> </u>		7 5			75	
Supports	20%		8.1			10.8			7.5			27			5 9	
Bellows-Manifold	6.0 lb/ea.	2	12.0		4	24.0		2	120							
										1			i	1		
FILL				178			16.8			17.8			17.0			17 3
Line 1 50 x 0.020	(0 0264 lb/in)	50 in	1.3		20 in	0.5		50	1.3		25 ın	07		35 in	0.8	!
Flanges	0.060 lb/ea.	_ 4	0.2		3	0.2		3	02		4	0.2		4	02	
Bellows	3.8 lb/ea.		3.8			3.8			3.8			38			38	
Fill Valve	7.0 lb/ea		7.0			7.0			70			70			7.0	1
Disconnect	2 5 lb/ea.		25			25			2.5			25		1	25	
Support	20%		3.0			2.8			3.0			2.8	1		29	
														1		
ANK OUTLET DELTA	WEIGHT			2.6			26			1.7			09			0
Vent	(3) (0.13) lb/Tank	3	1.2		3	12		2	0.8			0 4			04	
Feed	(3) (0.153) lb/Tank	3	1.4		3	1.4		2	09			05		L	0.5	i
																i
														Γ]
DTAL				122 5			130 6			99 6			56 2	T		76

TABLE D-10: LF₂ SYSTEM WEIGHTS

						_		CONFIGU	RATION	NUMBER						
		ατγ	1-2/	4	QTY	12	В	'QTY	1-3		QTY	1-7		QTY	1-14	1
VENT				24 3			21.02			16 03			9.99			10 31
Line 5.08 x .08	9 cm (.028 kg/cm)	495 cm	5.45		457 cm	4.99		292 cm	3 18		63 cm	0 68		89 cm	0 95	
Flanges	059 kg/ea.	13	0.77		12	0.73		11	0.64		6	0 36		6	0.36	
Solenoid Valve	3.60 kg/ea.		3.63			3 60			3.60			3 60			3.60	
Disconnect	1.36 kg/ea.		1 36			1.36			1.36			1 36			1.36	
Bellows	2.27 kg/ea.	4	9.08		3	6.81		2	4 54			2 27			2.27	
Supports	20%		4 04			3.49			2.68			1.68			1.73	
FEED				22.10	 		29.5	<u></u>		20 34			7.4			16.12
Line 4 06 × .089	cm (023 kg/cm)	89 cm	0 77		165 cm	1.45		127 cm	1.14	<u> </u>	89 cm	077	 	268 cm	2.36	
Manifold	(035 kg/cm)	445 cm	6.08		445 cm			318 cm	4.36	1			<u> </u>			
Flanges	.054 kg/ea.	4	0.18		3	0.14		2	0 09		4	0 18		8	0.41	
	.0695 kg/ea,	4	6.36		11	0.77		10	0.68	 	_					
Bellows-Feed	1.816 kg/ea.	h	1.82			1 82			1.82	·		1 82	· · · · · ·	4	1.82	
Shut-Off Valve	3.405 kg/ea.		3.41			3.41		<u> </u>	3.41			341	 		3,41	
Support	20%		3.68			4.90		t	3.41			1.23	1		2.68	
Bellows-Manifoli	d 2.72 kg/ea.	2	5.44		4	10.88		2								
FILL				8.08	<u> </u>		7 63			8.08			7 72			7 85
Line 3.81 x .051	cm (.012 kg/cm)	127 cm	0.59		50.8 cm	0.23		127 cm	0.59		63 cm	0.32	 -	89 cm	0.36	
Flanges	.0272 kg/ea.	4	0.091		3	0.091	 	3	0.091		4	0.091		4	0.091	
Bellows	1.725 kg/ea.		1.73			1.73		1	1.73			1 73			1.73	
Fill Valve	3.178 kg/ea.		3.18			3.18			3.18			3.18			3.18	
Disconnect	1.135 kg/ea.		1.14			1.14			1.14			1 14	t1		1.14	
Supports	20%		1.36			1 27			1 36			1 27			1.32	
TANK OUTLET A	WEIGHT			1.18			1 18			0.772			0.409			0 40
Vent	(3) .059 kg/tank	3	0.54		3	0.54	 -	2	0.36			0 18	†		0.18	1
Feed	(3) .069 kg/tank	3	0.64		3	0.64		2	0.41			0.23			0 23	
					<u> </u>											
TOTAL				55.62			59 29			45.22			25.51			34 69

TABLE D-11: PNEUMATIC CONTROL AND PRESSURIZATION WEIGHTS

							CONF	IGURAT	ION						
		12/	4		1-26	3		1-3			1-7			1-14	ļ
	QTY			QTY			QTY			QTY			QTY		
PNEUMATIC CONTROL			16.0			16.0			16.0			16.0			16
Pressurization Delta Weight			16,7			16.3			16.4			17.2			15
Lines 1/2 × 0.020 0.0085 lb/in.	175 in			160 in	. 1.4		160 m			200 i	17		105 10	0.9	
½ x 0.020 0.0041 lb/in.	25 in	. 0.1		10 1	. Neg.		35 ın	. 01		35 1	0.1	 	40 in	0.2	
Fittings 75%		1.2			1.1			1.1			1.4			0.8	
Regulators, Filters, Squib															
Check Valves & Disconnect (See Table D-8)		11.1			11.1			11.1			11.1			11.1	
															
Supports 20%		2.8			2.7			2.7			2.9			2.6	
· · · · · · · · · · · · · · · · · · ·		-													
TOTAL PROPELLANT FEED			223.7			230.8			252.6			209.1			170.
												1			

TABLE D-11: PNEUMATIC CONTROL & PRESSURIZATION WEIGHTS

							CONFIGL	RATION	NUMBER						
		1-2/	`		1-2	3		1-3			1-7			1-14	
	QTY			QTY			QTY			QTY			QTY		
PNEUMATIC CONTROL			7.26			7 26			7.26			7.26			7.26
Pressurization \(\Delta \text{Weight} \)	 		7.58			7.40			7.45			7 81			7 08
Lines 1.37 x .051 cm (.0039 kg/cm)	446 cm	0.68		406 cm	0.64		406 cm	0.64		508 cm	0.77		267 cm	0.41	
.635 x .05i cm (.0019 kg/cm)	63 cm	0.045		25 cm	Neg.		89 cm	0.045		89 cm	0.045		102 cm	0 091	
Fittings 75%		0.545			0 499			0.499			0.636			0.363	
Regulators, Filters, Squibs,		·····												 	
Check Valves, Disconnect		0.504			0.504			0.504			0 504			0.504	
(See Table D-8)															
Supports 20%		1.27			1.23			1.23			1 32			1.18	
															
						<u> </u>						 -		_ 	
												ļ			
TOTAL DOORS LANTESCO			101 FC			404.70			444.00						
TOTAL PROPELLANT FEED			101.56			104.78			114 68			94.93			77.41

THIS PAGE INTENTIONALLY LEFT BLANK

APPENDIX E

THERMAL TEST RESULTS AND ANALYSIS

This appendix presents the temperature data obtained in the thermal performance tests. The material is organized by test number, in the order discussed in Section 2.2.3 of the Volume I document, NASA CR-121103. This material supplements the discussion on correlation of analysis and results in Section 2.2.3 of that document. Figure E-I is a drawing of the test article showing locations of the thermocouples discussed in this appendix.

The analytical models used in the analysis of results, and the temperatures predicted by means of these models are also described here.

Test Results

Test T-1 - This was the first of a baseline test series consisting of Tests T-1, T-2 and T-3. The test series was intended to evaluate heat transfer rates of the test article with two different warm boundaries and two cryogenic fluids. Test T-1 used LH₂ in the test tank and guard and $\approx 70^{\circ}$ F (295°K) water in the thermal shroud.

The temperatures measured at points on the thermal shroud, and the ambient temperature are shown in Figure E-2. The temperature spike at 3300 minutes was due to an over-adjustment of the shroud thermostat. A gradual drift downwards had been noted in the shroud temperatures and in an attempt to correct this situation the water heater was activated.

Figure E-3 shows the temperatures on the outside of the MLI at the upper edge of the test article. These temperatures reflect the fluctuations in the shroud, including the spike at 3300 minutes. The MLI surface ranged from one to three degrees colder than the shroud as measured by Thermocouple T13.

Figure E-4 represents the temperatures on the inside of the MLI at the same locations as in Figure E-3. These values had become very stable after about 2600 minutes, indicating thermal equilibrium had been attained.

Figure E-5 shows temperatures on the exterior of the MLI, across the lap joint. Figure E-6 shows the temperatures on the inside of the MLI at the same locations. The outside temperatures followed the same general pattern as the shroud except with somewhat greater deviations. The inside temperatures were very stable except for the period at 3300 minutes.

Figure E-7 is the temperature of the wet test meter exhaust gas. The heat exchanger, water saturator and wet test meter were located in an environmentally controlled room, therefore the gas temperature was expected to remain constant.

However, the door was opened several times during the test to make adjustments, which accounts for the variations in the plot.

Figure E-8 gives the pressure in the guard tank and Figure E-9 shows vacuum chamber pressure. Normally, when a test series was started, the chamber pumps were started on a Friday and allowed to pump over the weekend. A decision was then made on the following Monday whether to load the cryogen into the tanks or to continue pumping.

Figure E-10 shows the temperature in the guard tank during the test.

Test T-2 - This was a repeat of Test T-1 except that LN₂ was used in the guard and test tanks. The thermal shroud and ambient temperatures are shown in Figure E-11. External and internal MLI temperatures at two locations are shown in Figures E-12 through E-15. The external temperatures followed the shroud whereas the internal temperatures were very stable.

Wet test meter exhaust gas temperature is shown in Figure E-16. Figure E-17 shows the guard tank pressure. A mistake was made in filling the water manometer which controlled the guard pressure. This is evident at 1200 minutes, where the pressure rose abruptly.

Figure E-18 shows vacuum chamber pressure and Figure E-19 shows the temperature in the guard tank.

Test T-3 - In this test the fluid in the tanks was LH₂ and the thermal shroud was filled with LN₂ to represent the warm boundary temperature of the propulsion vehicle sidewall. The thermal shroud and ambient temperatures are shown in Figure E-20. There was no explanation for the discrepancy noted for Thermocouple T-705.

External and internal MLI temperatures are shown in Figures E-21 through E-24. The external temperatures did not reach the shroud temperature in this test, instead they were approximately 25°F (14°K) warmer.

Temperature of the wet test meter exhaust gas is shown in Figure E-25. Figures E-26 and E-27 show altitude chamber and guard tank pressures, respectively. Figure E-28 gives the temperature data in the guard tank.

Test T-4 - This was a repeat of Test T-1, after the simulated launch loads were applied to the test article. Thermal shroud and ambient temperatures are shown in Figure E-29.

The temperatures on the external surface of the MLI in Figure E-30 follow the shroud temperatures. Internal MLI temperatures are shown in Figure E-31.

Figure E-32 shows temperatures on the aluminum tubing framework. These temperatures are reasonably uniform regardless of location. T-45 was located on a different part of the framework than the other thermocuples shown.

Figures E-33, E-34, and E-35 show wet test meter gas temperature, altitude chamber pressure and guard tank pressure, respectively. Figure E-36 gives the temperatures in the guard tank.

Test T-5 - The test article was modified to add a fiberglass tubular strut connected between the aluminum framework and the test tank. A cutout of the MLI was necessary to attach the strut to the framework. The strut was equipped with a heater at the outboard (warm) end and was instrumented with thermocouples for about one-half its length.

Thermal shroud and ambient temperatures are shown in Figure E-37. The external and internal surface temperatures of the MLI are presented in Figures E-38 and E-39. The inner surface reflected the effects of the MLI penetration at the strut location, as evidenced by T-416, T-415 and T-413. The influence of the strut heater is evident at approximately 3100 minutes.

Figure E-40 shows the temperatures on the aluminum framework. The effect of heater activation at 3100 minutes is very apparent in this figure. Thermocouple T-45 was located on an adjacent framework member and was used as a control for application of heater power.

Figure E-41 shows the temperature distribution along the fiberglass strut. The thermocouple nearest the heater (T-41) reflected the addition of heater power at 3100 minutes as was expected. This effect was essentially "washed-out" at Thermocouple T-43.

Figure E-42 shows the heater power settings.

Figures E-43, E-44 and E-45 show gas temperature at the wet test meter, vacuum chamber pressure and guard tank pressure, respectively. Figure E-46 shows the guard tank temperature.

Test T-6 - The test article was modified for this series by adding a stainless steel fluid line section. The line connected between the aluminum framework and the test tank, and a cutout in the MLI was necessary. The fluid line was equipped with a heater at the warm end and was instrumented with thermocouples. The test was run with the heaters off during the initial phase, then the heaters were activated.

Figure E-47 shows the thermal shroud and ambient temperatures.

Figures E-48, E-49 and E-50 show temperatures on the inside and outside of the MLI during the test. In Figure E-48, Thermocouple T-519 was closest to the cut in the MLI which was made to represent an assembly joint. This thermocouple was warmer than the other two which were farther away from the joint. All of these curves reflect the heater activation point at 5000 minutes. Thermocouple T-55 in Figure E-50 was closest to the pipe penetration and was considerably warmer than other thermocouples farther away. This location was also influenced more by heater activation.

Figure E-51 shows temperatures on the aluminum framework in the vicinity of the line penetration, and at more remote locations. Thermocouple T-532 was located farthest away from the penetration.

Figure E-52 shows the temperature on the fluid line support plate at the warm end (T-525) and temperatures along the fluid line. The influence of heater activation is evident at 5000 minutes.

Figure E-53 shows the heater power settings.

Figures E-54, E-55 and E-56 present wet test meter gas temperature results, pressure in the guard tank and vacuum chamber pressure, respectively.

Test T-7 - This was a repeat of the preceding test, except that LN_2 was the fluid rather than LH_2 . Figure E-57 shows thermal shroud and ambient temperatures.

Figure E-58 shows the external and internal temperatures on the MLI near the fluid line penetration. The heaters were not used in this test. Figures E-59 and E-60 show more MLI temperatures.

Figure E-61 shows temperatures on the aluminum framework. Figure E-62 shows the temperature distribution along the fluid line and on the mounting plate (T-525) at the warm end.

Figures E-63, E-64 and E-65 show wet test meter gas temperature, vacuum chamber pressure and guard tank pressure, respectively.

Test T-8 - This test incorporated a new base MLI blanket which was lapped over the outside of the sidewall blanket. The joint resembled the top deck lap joint of the vehicle final designs described in Volume I. The base section of the thermal shroud was isolated from the sidewall section by micarta blocks. Warm water was used in the base section and LN₂ was used in the sidewall section to represent the flight thermal environment. Figure E-66 shows the shroud and ambient temperatures.

Figures E-67 and E-68 show MLI temperatures on the outside and inside at the lap joint location. The heaters were inactive during this test.

Figure E-69 shows temperatures on the aluminum framework and on the fluid line.

Figures E-70 and E-71 show the wet test meter gas temperature, the guard tank pressure and the vacuum chamber pressure.

Analysis

Figures E-72 through E-81 illustrate the nodal networks that formed the basis for analytical models used for theoretical predictions of temperatures and heat flow at the test conditions. Symbolism used throughout the figures is as follows:

The temperature nodes were the points at which temperatures were evaluated. Incremental surface areas involved in radiant heat interchange were assumed concentrated at the temperature nodes. The conductance value of each thermal conductor was based on the cross section area normal to the heat flow, length between temperature node terminals, and thermal conductivity of the segment of material represented by that conductor. Where necessary these areas, lengths, and conductivities were determined as the appropriate mean values for the conductor span.

Radiation connectors, which included the effects of incremental areas, geometric view factors, and material emittances upon thermal radiation interchange, were not shown in the figures. In general, radiation connectors joined each pair of temperature nodes lying on surfaces absorbing or emitting thermal radiation. Some radiation connectors, where very small radiative interchange factors would have resulted in insignificant heat transfer, were omitted for simplification. Radiation through the MLI was accounted for in the MLI effective conductivity property.

The nodal network representing the basic MLI assembly with the original miter base joint, shown in Figure E-72, was a two-dimensional network, a simplification made possible by the assumption of axial symmetry of the tank-insulation-

shroud assembly. This network was representative of the configuration of Tests T-1 through T-7 and was used in the analytical predictions for Tests T-1 through T-4.

Figure E-73 shows the nodal network used to analyze the longitudinal joint for Tests T-1 through T-4 and for Test T-8. The use of a two-dimensional network here was based on the assumption of invariance of properties, geometry, and boundary conditions along the length of the joint.

The network used for analyzing typical nylon pin fasteners for Tests T-1 through T-4 and for Test T-8 is shown in Figure E-74. Axial symmetry about the pin centerline was assumed, again permitting the use of a two-dimensional model. The figure shows the addition of a one-dimensional model for heat flow through the MLI at a location remote from fastener (or other) influence. This feature was added to the fastener analysis to provide an accurate basis for computing the net heat flow attributable to the fastener and for checking the adequacy of the fastener model in isolating the fastener influence. Results of the remote-location one-dimensional analysis were also used as baseline values for assessing longitudinal joint incremental heat flow.

The nodal network used for analyzing the strut penetration for Tests T-5, T-7 and T-8 is shown in part in Figure E-75. For the purpose of these analyses, the MLI surrounding the penetration was divided into 3 layers, each one node thick, in the same manner as for the basic MLI of Figure E-72. These layers are shown schematically in Figure E-75 and are illustrated as a developed view in Figure E-76. Note that the strut itself is considered a one-dimensional conductor and that the nodes on the inner surface of the strut MLI were identical to the strut nodes, consistent with the assumptions made for this model. Heat flow between the main MLI and the strut attach pad, the strut bracket, and the upper strut end fitting was assumed to occur by radiation only; hence, no conductors were shown connecting the main MLI and the strut heat flow path. The symmetry of the strut MLI permitted representing all circumferential conductors with a set lying on only one-half of the MLI tube.

The nodal network for the plumbing line penetration, used in analyzing tests T-6, T-7 and T-8, is illustrated in Figures E-77 and E-78, in a manner similar to the strut penetration network in the two previous figures. In the case of the plumbing line penetration, conduction paths were assumed to exist between the main MLI and the plumbing line MLI. Therefore, the diagram included a subnetwork representing the joint resistances between these two components. In a manner similar to the strut and strut MLI network, the nodes on the plumbing line MLI inner surface were identical to the plumbing line nodes.

The nodal network for the basic MLI assembly with the lap base joint made extensive use of the network for the original basic MLI configuration. The network for the revised joint, used for the analysis of Test T-8, is shown in Figures E-79

through E-81. In addition to the obvious changes in the MLI network and the inclusion of the base joint support assembly, the model for Test T-8 also differed from that of the earlier tests in that the shroud side wall and base, having different temperatures, could no longer be represented by a common node.

The predicted steady state temperatures from the thermal analyses are listed in Tables E-1 through E-13. The node identification is that used on the diagrams of the nodal networks, Figures E-72 through E-81.

Details of both the computed and the measured heat flow results are presented in Table E-14. This table is a more detailed version of the heat flow summary, Table 2.2-2 of the Volume I report. The analytical basic heat flow (\dot{Q}_{Basic}) , the additional heat flow due to the longitudinal joint $(\Delta \dot{Q}_{Long.\ Joint})$, and the additional heat flow due to the fasteners $(\Delta \dot{Q}_{Fasteners})$ were all evaluated at the inner surface of the main MLI.

The predicted additional heat flow associated with the strut penetration (ΔQ_{Strut}) consisted of three components. The first two, the heat conducted into the strut itself and the heat conducted into the strut MLI, were evaluated at the intersection of the plane of the main MLI inner surface with these components. The third component of the incremental heat flow was the additional heat radiated from the inner surface of the main MLI, that heat having entered the MLI by radiation or conduction at the opening for the strut bracket.

The predicted additional heat flow due to the plumbing line ($\Delta \, \dot{Q}_{\mbox{\footnotesize{Plumb}}} \, \mbox{\footnotesize{Line}})$ penetration was synthesized from three components in a manner very similar to that for the strut heat flow. The entry in Table E-11 for heat conducted into the plumbing line includes that heat transfer by radiation in the line interior at the heat flow evaluation plane.

Examination of the three components of incremental heat flow in the case of the strut and plumbing line penetrations permitted limited assessment of the effectiveness of the insulation designs for those components. The heat conducted into the penetrating member (strut or plumbing line) and into its MLI were interrelated and depended upon the length, cross-section area, and conductivity of the member and upon the thickness of the MLI wrap. The additional heat radiated by the main MLI, on the other hand, was primarily a function of the design at the penetration.

The advantage of the low conductivity strut material was quite evident, while the strong heat leak contribution of the relatively heavy metal plumbing line was also clear. Because of the high conductance of the plumbing line, most of the heat conducted into its upper end probably continued through the length of the line. Therefore, there appeared to be little advantage to increasing the thickness of the plumbing line MLI. Insulation of the plumbing line from the structure

at its support points and increasing the length of insulated line inside or outside the main MLI assembly would have reduced the heat leak.

In cases of tests with no applied heat, it was seen that the additional heat radiated from the main MLI was greater near the strut than near the plumbing line, even though the plumbing line penetration required a larger opening. The difference was probably due to the extension of the plumbing line MLI through the opening in the main MLI and indicated an advantage of this feature.

The total measured heat flow (\dot{Q}_{Meas}) was computed from two components. Part of the heat reaching the test vessel was absorbed in vaporizing the liquid cryogen and is identified as \dot{Q}_{Vap} . The remainder of the heat, $\dot{Q}_{\Delta T}$ acted to raise the temperature of the resulting gas prior to its discharge from the insulated part of the system. The sum of \dot{Q}_{Vap} and $\dot{Q}_{\Delta T}$ constituted the total measured heat flow.

Table E-1: PREDICTED STEADY STATE TEMPERATURES TEST T-1 & T-4,
BASIC MLI ASSEMBLY

Boundary Nodes (Temperatures Input)

NODE	TEMPE	RATURE	NODE	TEMPE	RATURE	work	TEMPE	RATURE	NODE	TEMPE	RATURE
NODE	°R	°K	NODE	OR	°к	NODE	OR	°K	NODE	°R	°K
T1	527	292.8	T23	421	233.9	T45	531	293 9	T70°	37.0	20 4
T2	429	238.3	T24	243	135	T46	520	288.9	T71°	532	295 6
Т3	257	1428	T25	526	292 2	T47	530	294 4	T72	209	116.1
T4	527	292.8	T26	420	233.3	T48	498	276.6	T73	219	121 6
T5	429	238.3	T27	229	127 25	T49	366	203.3	176	526	292.2
T6	259	144 9	T28	526	292.2	T50°	37 0	20 4	177	526	292.2
T7	527	292.8	T29	419	232.8	T51	529	293 8			<u> </u>
Т8	429	238.8	T30	213	118.3	T52	480	266 6			<u> </u>
T9	258	143 3	T31	526	292 2	T53	528	293 3			
TIO	527	292.8	T32	418	232.3	T54	443	246.1			1
T11	428	237 8	T33	223	132.5	T55	166	92.2			1
T12	255	141 65	T34	526	292 2	T56	206	114 5			
T13	527	292.8	T35	415	⁻ 230 5	T57	220	122 1	1		
T14	428	237 8	T36	250	1164	T58	195	108.3			1
T15	254	141 1	T37	519	288.4	T59	219	121 6			
T16	527	292.8	T38	402	223 3	T60	179	97 8			
T17	427	237 2	T39	268	148.9	T61	213	118.3			
T18	254	141 1	T40	464	257 8	T62	160	88.9			
T19	527	292 8	T41	382	2122	T63	179	99 4			
T20	423	235 0	T42	316	175.5	T84	138	76 6	1		†
T21	251	139 5	T43	532	295 5	T65	108	60.0	İ		
T22	527	292.8	T44	526	292.2	T66	75.1	41 5	1		

Table E-2: PREDICTED STEADY STATE TEMPERATURES TEST T-1 & T-4, MLI LONGITUDINAL JOINT

* Boundary Nodes (Temp. Input) TEMPERATURE TEMPERATURE NODE NODE TEMPERATURE TEMPERATURE NODE NODE T23 272 2 T45 260 O T67 239 4 T1 499 293 8 529 240 0 260 0 T46 T2 500 277 8 T24 468 432 T68 389 216 1 240 6 T47 2173 T69 339 188.3 T25 391 **T3** 458 260 0 433 T4 T26 390 216 7 T48 341 189 5 T70 276 153 4 238 9 430 154 0 T5 2139 727 340 188.9 T49 277 T71 527 292.8 385 1528 T50 527 292.8 T72 T6 330 183 3 T28 275 499 272.2 T29 292.8 260 0 **T7** 254 141 1 527 T51 499 272 2 **T73** 468 T8 Ť30 499 272 2 239 4 293.8 T52 468 260 0 431 529 T74 T9 277 8 T31 469 260.6 T53 432 240 0 389 216 1 500 T75 240 6 T32 433 187 8 T10 468 260 0 T54 390 2176 T76 338 T33 391 217 3 189 5 273 151 6 T11 T55 341 431 239 4 **T77** T12 **T34** 340 188 9 293.8 215 5 T56 277 154 0 T78 529 388 T13 T35 276 153 4 T57 527 292 8 **T79** 500 277.8 334 185.6 292 8 T36 260 0 T14 258 143.3 527 T58 499 272 2 T80 468 T37 272.2 239 4 499 431 T15 T59 468 527 292 8 260 0 T81 T38 468 260 0 215.5 T16 277 2 T60 431 239 4 388 T82 499 T61 260 0 T39 433 T17 240 6 389 468 216 1 T83 333 185 0 T18 240 0 T40 390 216 7 T62 340 188.9 T84 432 258 198.9 216 7 T41 341 T63 277 154 0 T85 T19 189 5 293.8 390 529 T20 187 B T42 277 154 0 T64 527 292.8 T86 277 8 338 500 151 6 T43 527 T65 272 2 T21 273 292.6 499 TR7 467 259 4 T66 T22 292.8 T44 499 272 2 468 260 0 T88 430 238.9 527 T89 385 213.9 T98 432 240 0 389 216.1 T94 469 260 6 T102 T90 330 183.3 188.9 T99 391 2173 T103 340 254 **T95** 240 6 433 T91 141 1 T100 342 190.0 532 295.6 T96 272.2 T104 499 T92 526 292.2 37 0 T97 T101 154 6 T105 469 260.6 T93 490 272.2

Table E-3: PREDICTED STEADY STATE TEMPERATURES TEST T-1 & T-4, FASTENER AND SURROUNDING MLI

*Boundary Nodes (Temp. Input)

					- 00	undary Node	(trainips mp	J.17
NODES		RATURE	NODE		RATURE	NODE	TEMPE	RATURE
	OR	οκ		OR.	°K	1	O _R	°К
Tı	290	161 1	T25	492	273 4	T47	403	223 8
T2	341	189 5	T26	526	292 2	T48	451	250 8
T3	401	222.6	T27	269	143.9	T49	492	273 4
T4	450	250.0	T28	342	190.1	T50	527	292.8
T6	491	272 8	T29	403	223 8	T51	268	143 3
T6	522	290.0	T30	461	250.6	T52	342	190 1
T8	287	159.5	T31	492	273.4	T53	403	223 8
T9	342	190.1	T32	527	292 8	T54	451	250 6
T10	401	222.6	T33	258	143 3	T65	492	273 4
T11	450	250 0	T34	342	190 1	T58	527	292 8
T12	491	272 8	T35	403	223 8	T60	284	157 8
T13	522	290 0	T36	451	250 6	T61	277	153 9
T15	271	150 5	T37	492	273.4	T62	276	153 3
T16	342	190 1	T38	527	292 8	T63	276	153 3
T17	402	223.2	T39	258	143.3	T84	525	291 6
T18	451	250 6	T40	342	190 1	T65	529	293 9
T19	492	273 4	T41	403	223 8	T68	529	293 9
T20	525	291 8	T42	451	250 6	T67	529	293 9
T21	262	145.5	T43	492	273 4	T58°	532	295 6
T22	342	190.1	T44	527	292 8	T67°	37 0	20 4
T23	402	223 2	T45	258	143.3	1		T -
T24	451	250 6	T46	342	190 1	11		

Table E-4: PREDICTED STEADY STATE TEMPERATURES TEST T-2, BASIC MLI ASSEMBLY

* Boundary Nodes (Temp. Input)

NODE	TEMPERA	TURES	NODE	TEMPERA	ATURES	NODE	TEMPER	ATURES
	°R	ок] [°R	°κ		^O R	οκ
T1	627	292 8	T23	423	235 0	T45	531	293 9
T2	430	240 0	T24	251	139 5	T46	520	288 9
Т3	262	145.5	T25	527	292.8	T47	530	294 4
	527	292 8	T26	422	234 5	T48	499	277 2
T5	430	240 0	T27	241	1739	T49_	373	207 2
T6	264	146.7	T28	527	292 8	T50°	_ 140	77.8
T 7	527	292.8	T29	422	234 5	T51	529	293 9
TB	430	240 0	T30	229	127 2	T52	482	267 6
Т9	264	146 7	T31	526	292 2	T53	528	293 3
T10	527	292 8	T32	421	233 9	T54	448	248 9
T11	429	238 3	T33	237	131 6	T55_	197	109 4
T12	260	144 5	T34	526	292 2	T56	224	124 5
T13	527	292 8	T35	417	231 7	T57	234	130 0
T14	429	238 3	T36	257	1428	T58	217	120 5
T15	260	144 5	T37	519	288 4	T59	231	128 3
T16	527	292 8	T38	406	225 5	T60	206	114 5
T17	428	237 7	T39	274	152 2	T61	226	125 5
T18	260	144 5	T40	466	258 9	T62	194	107 8
T19	527	292 8	T41	387	215 0	T63	204	1134
T20	425	236 1	T42	322	178 9	T64	181	100 5
T21	258	143 3	T43	532	295 6	T65	165	91 6
T22	ა27	292 8	T44	527	292 8	T66	151	83 9
T70"	140	77.8	T73	234	130 0			1
T71*	532	295 6	T76	526	292 2			†
T72	227	126 1	T77	527	292 8	-		1

Table E-5: PREDICTED STEADY STATE TEMPERATURES TEST T-2, MLI LONGITUDINAL JOINT

* Boundary Node (Temp Input)

	TEMPE	RATURE		TEMPER	RATURE		TEMPER	ATURE		TEMPE	RATURE
NODE	°R	°к	NODE	o _R	°к	NODE	^o R	°κ	NODE	^o R	°κ
T1	529	293 9	T28	279	155.0	T55	344	195 6	T82	389	216.1*
T2	500	277 8	T29	527	292.8	T56	281	156 2	T83	336	186.6*
Т3	468	260.0	T30	499	277.2	T57	527	292.8	T84	263	146 1
T4	431	240 6	T31	469	260.6	T58	499	277 2	T85	529	293 9
T5	387	215 0	T32	434	242.2	T59	468	260 0	T86	501	278 4
T6	333	185.0	T33	392	217.9	T60	433	240.5	T87	468	260 0
T7	259	143.9	T34	343	195.0	T61	391	217 3	T88	431	240 6
T8	529	293.9	T35	280	155 6	T62	343	195 0	T89	387	2150
Т9	500	277.8	T36	527	292.8	T63	281	156 2	T90	333	185.0
T10	469	260.6	T37	499	277 2	T64	527	292.8	T91	259	143 9
T11	433	241.8	T38	469	260.6	T65	499	277.2	T92	526	293.9
T12	390	216 7	T39	434	242.2	T66	468	260 0	T93	499	277 2
T13	337	187 2	T40	392	217.9	T67	432	241.2	T94	469	260.6
T14	263	146.2	T41	343	195.0	T68	391	2173	T95	434	242.2
T15	527	292.8	T42	281	155.0	T69	342	190 0	T96	499	277 2
T16	500	277.8	T43	527	292 8	T70	280	155 6	T97	469	260 6
T17	469	260.6	T44	499	277.2	T71	527	292 8	T98	433	240 5
T18	433	241.8	T45	469	260.6	T72	500	277 8	T99	392	217.7
T19	391	217.3	T46	433	240.5	T73	468	260.0	T100	344	195 6
T20	341	189.5	T47	392	217 9	T74	432	241 2	T101	282	155 6
T21	278	154 5	T48	344	195 6	T75	391	2173	T102	391	217.3
T22	527	292.8	T49	281	156.2	T76	340	188 9	T103	343	190.7
T23	499	277 2	T50	527	292.8	T77	277	153.9	T104*	532	295.6
T24	469	260 6	T51	499	277.2	T78	529	293 9	T105*	140	77.8
T25	434	242.2	T52	469	260 6	T79	500	277 8			1
T26	392	217 9	T53	433	240.5	T80	468	260 0			
T27	342	190 1	T54	392	217.9	T81	432	241 2			

Table E-6: PREDICTED STEADY STATE TEMPERATURES TEST T-2, FASTENER AND SURROUNDING MLI

Boundary Nodes (Temperatures Input)

NODE	TEMPER	ATURE	NODE	TEMPERA	TURE	NODE	TEMPER	ATURE
[o _B	°K] [o _R	OK.]	°R	°K
TI	294	163.4	T25	492	273.3	T47	405	226 1
T2	344	191 1	T26	526	292 2	T48	452	261 1
T3	403	223.9	T27	263	146.2	T49	492	273 3
T4	451	250.6	T28	345	191 7	T50	527	292 8
T5	492	273.3	T29	404	224 5	T51	262	145 6
TB	522	290.0	T30	452	251 1	T52	345	191 7
T8	290	161 1	T31	492	273 3	T63	405	225 1
T9	344	191 1	T32	527	292 8	T54	452	251 1
T10	403	223 9	T33	263	146 2	T65	492	273 3
Tii	451	250.5	T34	345	191 7	T56	527	292 8
T12	492	273.3	T35	405	225.1	T60	288	160.0
T13	523	290.6	T36	452	251 1	T61	280	155 6
T15	276	152 8	T37	492	273 3	T62	280	155 6
T16	345	191 7	T38	527	292.8	T63	280	155 8
T17	404	224 5	T39	263	146 2	T64	525	291 7
T18	452	251 1	T40	345	191 7	T65	529	293 9
T19	492	273.3	T41	405	225 1	T68	529	293 9
T20	525	291 7	T42	452	251 1	T67	529	293 9
T21	267	148.4	T43	492	273 3	T57°	140	77.8
T22	345	191 7	T44	527	292 8	T58*	532	295 6
T23	404	224 5	T45	263	146 2		-	-
T24	452	251 1	T46	345	191 7			1

Table E-7: PREDICTED STEADY STATE TEMPERATURES TEST T-3, BASIC MLI ASSEMBLY

* Boundary Nodes (Temperatures Input)

NODE	TEMPERA	TURE	NODE	TEMPER	ATURE	NODE	TEMPERA	ATURE
	°R	οK	7	°R	°K	1 [OR	°κ
Ti	133	73 9	T23	109	60 5	T45	138	75 5
T2	118	65.5	T24	84 0	46 6	T46	127	70 5
T3	100	65.6	T25	129	71.6	T47	134	74 5
T4	133	73 9	T26	108	61 1	T48	119	66 1
T5	118	65.5	T27	77.4	430	T49	82 5	458
T6	101	58 1	T28	129	71 6	T50*	37 0	20 6
T7	133	73.9	T29	107	59 4	T51	133	73.9
T8	118	65.5	T30	71 4	38.6	T52	113	62 8
Tg	101	56 1	T31	129	71 6	T53	129	71 8
T10	133	73.9	T32	107	59 4	T54	103	57 2
T11	117	64 9	T33	74 6	41 6	T55	58 6	32.5
T12	99 3	65.2	T34	127	70 5	T58	69 0	38.3
T13	133	73 9	T35	105	58 3	T57	73 ?	40 6
T14	117	64 9	T36	84 0	46.6	T58	65 9	36.7_
T15	98.9	65 4	T37	120	66 6	T59	72 2	401_
T16	132	73 3	T38	97 9	54 4	T60	61 3	35 2
T17	115	63 9	T39	84 9	47 1	T61	68 1	38 0
T18	97 8	64 3	T40	100	65 5	T62	56 1	31 2
			T41	89 0	49 5	T63	55 6	31 0
T19	131	72 7	T42	83 1	48 1	T64	51 2	29 6
T20	111	61 6		137	76 1	T65	45 6	
T21	91 0	50 6	T43		71 6	T68	40 7	25 3
T22	130	72 2	T44	129			40 /	22 6
T70°	37 0	20 6	T73	73 5	408	_		
T71*	140	77.8	T76	129	71 6	.		ļ <u></u> -
T72	70 3	39 1	T77	129	716			l

Table E-8: PREDICTED STEADY STATE TEMPERATURES TEST T-3 & T-8, MLI LONGITUDINAL JOINT

Boundary Nodes (Temperatures Input) NODE TEMPERATURE TEMPERATURE NODE NODE TEMPERATURE NODE TEMPERATURE OR οĸ OR OK OR OR oĸ 136 130 T1 75.5 T23 722 **T45** T67 121 125 69 5 67.2 T2 131 72.7 T24 125 69 5 T46 T68 116 121 67 2 64 5 126 T47 110 T3 70.0 T25 121 67 2 116 64 5 T69 **T4** 120 116 64 5 T48 T70 105 T26 111 66 7 61 6 58 4 **T5** 115 63.9 T27 111 616 T49 106 58.9 T71 134 74 5 **T6** 108 60 0 T28 105 58.4 T50 134 74 5 T72 130 72,2 **T**7 102 134 74 5 T29 T51 T73 125 56.6 130 722 69 5 T8 136 75 5 T30 130 72.2 T52 T74 121 125 69 5 67 2 T4 131 72.7 T31 125 69 5 T53 121 67 2 T75 115 64 0 T10 126 T32 121 67 2 T54 70.0 776 110 116 64 5 61 1 121 116 64 5 T55 T77 105 T11 67 3 T33 111 61 6 58.4 115 63 9 T34 111 61 6 T56 106 T12 58.9 75 5 109 60 6 T35 106 728 T13 T57 134 60 O 74 5 **T79** 131 103 57 2 T36 134 72 2 T14 74 5 T58 130 TBO 126 70 O 134 74 5 T15 T37 130 72 2 T59 125 69 5 66 7 T81 120 130 72 2 T38 T16 125 69 5 T60 121 64 0 67 2 T82 115 125 69 5 T39 121 67 2 116 60 5 T61 64 5 T83 T17 109 121 67 2 T40 116 T62 111 61 6 103 57 2 T18 64 5 T84 116 64.5 T41 75.5 T19 111 61 6 T63 106 58.9 T85 136 110 61 1 T42 106 72.7 60 0 T64 134 74 5 T20 T86 131 T21 105 58.4 T43 134 74 5 T65 130 722 TR7 126 70 0 T22 134 74 5 T44 130 72 2 T68 125 66 7 69 5 T88 120 T89 114 63.3 125 T98 69 5 121 67 2 T102 T94 116 64 5 T90 108 60.0 121 67 2 T99 116 64 5 61 6 T95 T103 111 T91 102 56.6 T100 61 6 T96 111 T104* 140 77 8 T92 130 72 2 134 74 5 **T97** 125 106 58.9 T105* 37 20.6 T101 69.5 130 72.2

Table E-9: PREDICTED STEADY STATE TEMPERATURES TEST T-3, FASTENER AND SURROUNDING MLI

* Boundary Nodes (Temperatures Input)

NODE	TEMPER	RATURE	NODE	TEMPER	RATURE	NODE	TEMPE	RATURE
ſ	OR	°K	7 [o _R	o _K	1 [°R	°κ
T1	111	61 6	T25	127	70 6	T47	115	63.9
T2	112	62.2	T26	132	73 3	T48	121	67.3
Т3	117	65 0	T27	102	56 6	T49	127	70 6
T4	122	67 8	T28	109	60 5	T50	133	73.9
T5	127	70.6	T29	116	64 5	T51	101	56 1
TG	130	72.2	T30	122	67 8	T52	108	600
Т8	110	61 1	T31	127	70 6	T53	115	63.9
T9	112	62.2	T32	133	73.9	T54	121	67.3
T10	117	65 0	T33	102	56 6	T55	127	70.6
T11	122	67.8	T34	109	60 5	T56	133	73.9
T12	127	70 6	T35	115	63.9	T60	111	61 6
T13	130	72.2	T36	121	67 3	T61	112	62.2
T15	106	58.9	T37	127	70.6	T62	112	62.2
T16	111	61 6	T38	133	73.9	T63	112	62.2
T17	116	64 5	T39	101	56 1	T64	130	72.2
T18	122	67 8	T40	109	60 5	T65	131	728
T19	127	70 6	T41	115	63.9	T66	131	72.8
T20	132	73 3	T42	121	67.3	T67	131	72.8
T21	104	57 8	T43	127	70.6	T57*	37 0	20 6
T22	110	61 1	T44	133	73.9	T58*	140	77.8
T23	116	64 5	T45	101	56.1			† · · · · ·
T24	122	678	T46	108	60.0	 		

Table E-10: PREDICTED STEADY STATE TEMPERATURES TEST T-5, TANK SUPPORT STRUT AND SURROUNDING MLI

* Boundary Nodes (Temp. Input)

*****	I		2005			NODE	TENDE	RATURE	NODE	TEMPE	RATURE
NODE		RATURE	NODE		RATURE	MODE	OR OR	OK	, wort	Op.	OK.
	°A	°K		°R	°K						
T001°	632	296.6	T023	101	56.1	T045	102	98.7	T112	526	297.2
T005'	27.D	20,4	1034	114	63.4	TD46	118	84.0	T113	526	297.2
T008	40.1	22.3	T025	128	70.0	T047	128	71.2	T114	526	792.2
T007	442	34.6	T006	135	78.8	T048	140	77.3	T115	526	282.2
TOOR	110	66.1	T027	140	82.7	T049	157	84.4	T116	526	292.2
T002	834 (529)	291 (294)	1028	160	88.8	T050	164	91 1	T117	526	792 2
T003	624 (529)	291 (294)	TODB	171	95.0	T081	178	97.8	T118	525	292.2
T004	524 (529)	291 (294)	T030	182	101 1	T052	187	103.9	T119	525 (526)	291 7 (292.2)
TOOP	184	102.2	T031	192	105.8	T053	197	109.5	T120	524 (529)	291 1 (293.9)
TOIO	236	121 1	T032	203	112.2	T084	207	115.0	T121	524 (529)	291 1 (293.9)
TOIT	2863	187.2	TODO	311	117.2	TOSS	216	120.0	T122	524 (529)	291 1 (293.0)
T012	330	184.5	1004	220	122.2	T101	526	2972.2	T123	625 (526)	291 7 (292.2
1013	394	2123				T102	526	292.2	T124	526	292.2
1014	438 1438	343.31				T103	528	292.2	T125	528	292.2
TO18	461 (464)	267.2 (269.8)				T104	526	292.2	T126	526	292 2
TOIS	617 (530)	297.2 (200.8)				1105	525 (526)	291 7 (292-2)	T127	528	797.2
7017	619 (S22)	288.4 (290)				7106	824 (529)	291 1 (293,8)	T128	525	292.2
TOIS	620 (525)	255.0 (291.7)				T107	524 (528)	291 1 (293.9)	T129	526	202.2
1019	621 (529)	200.5 (291 7)				TICS	524 (529)	291 1 (293.9)	T130	526	292.2
1020	634 (525)	291 1 (293.8)				T109	525 (526)	291 7 (292,2)	T131	526	292.2
TODI	624 (528)	291 1 (293.9)				T110	526	792.2	T132	526	1792.2
T022	524 (529)	2911(293.29	T044	en.	49.0	T111	526	292.2	T133	525 (526)	291 7 (292,2)
T134	525 (526)	291 7 (292.2	T156	528	292.2	T178	526	297.2	T216	428	237.8
T136	525 (526)	291 7 (292.2	T157	536	292.2	T179	576	792,2	T217	428	237.B
T136	525 (526)	291 7 (292.2)	T158	526	292.2	T180	5.26	292.2	T218	429	238.3
T137	525 (528)	291 7 (292.2)	T159	526	292.2	T181	526	292.2	T219	434	241 1
T138	526	202.2	T160	626	292.2	T182	526	292.2	T220	441 (448)	245 (249)
7130	526	252.2	T181	526	792.2	T183	626	292.2	T221	441 (448)	245 (249)
T140	526	252.2	T162	53%	7972.3	T184	5.26	292.2	T222	441 (44B)	245 (249)
T141	526	280.2	T163	526	292.3	T201	428	237.8	1773	436 (437)	242 (242.7)
T142	520	292.2	T184	526	292.2	T202	428	237.8	T224	433	240.5
T143	526	202.2	T185	526	297.2	7203	428	237.8	T225	432	740.0
T144	528	792.2	T186	526	282.2	T204	479	2363	T226	430	228.9
T146	1,36	292.2	T167	526	792.7	T205	434	241 1	T227	430	238.9
T146	528	250,2	T168	526	292.2	T206	441 (448)	245 (249)	T228	428	237.8
T147	638	292.2	T169	526	29/2.2	T207	441 (448)	245 (249)	T729	428	237.8
T148	626	292.2	T170	E28	797,2	T208	441 (44E)	246 (249)	T230	428	237,8
T149	9226	292.2	T171	5.26	792.2	T209	437 14403	242.7 (744.4)	T231	478	237.8
T190	626	297.2	T172	526	292.2	T210	(31	243.3	T232	429	238.3
		25/2,2	T173	526	292.3	T211	43	240.5	T733	436	241 7
T151	628	1			292.2	T212	452	240.0	T234	436	242.1
T151 T152	526 526	292,2	T174	520	24.2						1
		292.2 293.2	T174 T178	526 526	292.2	T213	430	238.0	1735	436	242.1
T152	528					T213 T214	430 439	238.3	1736 7736	436	242.1 242.1

NODE	TEMPE	RATURE	NODE	TEMPE	BATURE	NODE		RATURE
	°R	٥ĸ		°R	°ĸ		o _R	۰ĸ
T238	431	239.5	T260	428	237.8	¥282	428	237.0
T239	430	238.9	T261	429	237.8	T283	428	237.8
1340	430	238.9	T267	€22	237 8	T 284	426	237.8
T241	429	238.3	T 263	428	237.8	T301	256	142.7
T242	429	238.3	T264	428	237 8	T302	250	142,7
T243	478	237 8	1765	476	237.8	T303	256	142 7
T244	428	237.8	T266	428	237.8	T304	750	143.9
17245	426	237.8	T267	428	237.6	T 305	272	151 1
T746	428	237 8	T268	428	237.8	T306	309 (218)	171 6 (176 6)
T247	429	238.3	T269	428	237.8	T307	309 (318)	171 6 (176 6)
T748	430	238.9	7270	425	237 8	T 308	309 (318)	171 6 (176 6)
T749	430	238.0	1271	428	237 8	T 309	292 (294)	162 2 (163.3)
T250	430	238.9	1272 T273	428	237 8	T310	279	155.0
T251	430	738.9		428	 		269	149 5
T252	429	238.3	T274	428	237 8	7312	264	145.6
T253	429	238.3	1775	428	237.8	7313	261	145.0
T254	428	237.8	1276	428	237.8	T314	258	143.3
T256	428	237.6	T277	428	237 8	T315	256	142 2
T 256	428	237.8	1278	42B	237 8	T316	256	142 2
T257	428	237.8	1279	4.28	237.8	T317	256	142.2
T258	428	237 8	T290	428	237 B	T318	259	143.9
T250	428	237 8	. 281	428	237 8	T319	272	151 1
T320	309 (318)	171 6 (176 6)	T342	258	143.3	T364	256	142 2
T321	309 (318)	171 6 1176 6	- 43	256	142.7	T365	256	142.2
T327	309 (318)	171 6 (176,6)	<u> </u>	256	142 7	T366	256	142 2
7323	275 (276)	152.8 (153.3)	T345	256	142.2	T367	256	142.7
T324	268	148.9	T346	257	142.7	T368	256	142.7
1325	766	147.8	1347	258	1433	7369	256	142.2
T326	267	145.5	T348	260	144.4	T370	256	142.2
	760	164.5	T349	260	144.4	T371	256	142 2
1378	758	143.3	7350			T372	256	142.7
T329	756	142.2	7351	260	144.4	T373	756	142.2
7330	756 256	142.2	T352	259	143.9	T374	256	142.7
T332	258	142.2	T353	756	143.3	T375	756	142 2
7333		143.3	T354	257	142.7	T376	756	142.2
1334	270	150 0	T355	257	142,7	7377	266	142.2
7335	272	151 1	1356	257	142.7	T378	756	142.2
T336	272		T357	756	1427	T379	256	
7337	268	151 1	T358	256	142.2	T380	256	142.2
F338	263	·	T359	758 256	142.7	T381 T382	256	142.2
1339		146.1	T360	756	142.2	1383	256	142.2
T340	760	144.5	7367	256	1427	1383	256	
T341	759	143.0	T363	256 256	142.2		756	142.7
1 341	758	143.3	1303	736	194.5	<u> </u>		1

Table E-11: PREDICTED STEADY STATE TEMPERATURES TEST T-6, PLUMBING LINE AND SURROUNDING MLI

Boundary Nude (Temp Input)

NOB STANPERATURE NOB STANPERATURE NOB STANPERATURE NOB STANPERATURE NOB STANPERATURE NOB STANPERATURE NOB					,			,		() Heat	ers On	
Top Sec Page Pa	NODE	TEMPE	RATURE	NODE	TEMPE	RATURE	NODE	TEMPE	RATURE	NODE		BATURE
Trans. Sept. 200.0 Trans. 200.002 Trans. Trans. 43.146.1 Trans. 19.0 20.002 Trans. Trans. 43.146.1 Trans. 43.146.1 Trans. 43.146.1 Trans. 19.0 Trans]			1]	°R	°K]	o _A	o _K
1962 1964 1965 1966		<u> </u>	لـــــــــــــــــــــــــــــــــــــ		<u> </u>	<u> </u>	 		<u> </u>	 	↓	
1907 1908	T001*	637	295.6	T023	468 (528)	260 (293)	T048	78 (83)	43.3 (46.1)	7103	526	292.2
March Marc					61		·	+		1	525 (526)	291 6 (292 2)
1967 1968 1969				l		<u> </u>			·	·		
									 		+	
	T004											
1500 1501 150	1005	74 (95)	41 1 (52 7)		138 (139)			+		7110		1
1902 1902	1006	95 (131)	62 7 (72.8)	T028	159 (164)	1 88 3 (8 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	T050	17311871	95 (104)		575	1
	T007	139 (173)	77 2 (96.1)	T029	182 (189)	101 (105)	1061	185 (198)	103 (110)	7112	525	291.6
	T008	170 (710)	94 4 (116.8)	T030	198 (205)	110 (114)	T052	196 (208)	109 (116)	7113	525	291.5
1991 1992 1993 1993 1993 1994 1995 1994 1995 1994 1995		198 (247)	110 (137 2)	TO31	213 (223)	118 (174)	T053	211 (728)	117 (127)	T114	528	291 6
1901 1901 1901 1901 1902 1902 1903 1904 1904 1904 1904 1904 1904 1904 1904 1904 1904 1904 1905 1904 1904 1905		 		T032		125 (131)	T054	220 (238)	122 (132)	T115	525	291.6
1971 1971 1972		 _					T066	·			 -	797 2
1701-1701-1701-1701-1701-1701-1701-1701				[J	·	1		+	
Triple 235 237 100 1	T012			T034	 	+ -						
Tell	T013		172 2 (207 2)	T038	265 (280)		1067				+	
Total	T014	336 (397)	188.7 (215)	T036	290 (295)	156 (164)	T068	297 (316)	165 (176)	T119	522 (525)	
Triple	T018	361 (420)	200.5 (233.3)	T037	296 (312)	166 (173)	T059	320 (326)	178 (181)	T120	520 (524)	288 9 (291 1)
Total Contro	T016	385 (491)	213.9 (272 6)	T038	310 (329)	172 (183)	T060	336 (353)	186 (196)	T122	520 (524)	288.9 (291 1)
Total		408 (459)	226,7 (310,5)			183.6 (192)	T051	344 (363)	 	T123	616 (520)	288 6 (288.9)
Type						}				T124		291 1
1700 462 1702 761 771 702 703 303 306 706 706 707 707 707 707 708 70		<u> </u>							 -			
Year Add 1670 311 1283 TOLS SSS 1700 1971 1000 TOLS TOLS SSS 1700 1971 1000 TOLS TOLS SSS 1700 TOLS TOLS SSS TOLS TOls			1		349 (365)		1083	363 (371)	196 (206)		<u> </u>	l
TOTAT A63 10231 2017 (2018) TOSA 60 (87) 31 (131 6) TOSA TOSA TOSA TOSA STORE TOSA			251 (273)	T042	353 (388)		1	L				1
1198 688 792 7161 678 8912 7170 618 7308 7278 621 (622) 7239 (12348)	T021	469 (610)	311 (283)	T043	355 (370)	197 (206)	T101	626	291 8			
T129	T022	463 (522)	257 (290)	T044	56 (57)	31 1 (31 6)	T102	526	291.0	T128	626	701.6
1102 1103 1006 202 1702 415 130.6 1727 416 23 1		·					<u> </u>			7-7-0	484 /	
Till R28	T129	626	797 2		626		 		230.6			
T122 088 392 7114 020 292 3 7704 438 (429) 228 1728 0 7729 413 278 2 278 1713		<u> </u>	l	T152	626	292 2	T202	415	230.5	1227	416	
1712 528 792 7114 520 292 7204 428 429 12940 7729 413 229.8 71133 524 529 780 791 7115 528 227 7700 428 4491 242 1247 7731 418 4202 222 222 7700 428 4491 242 1248 7722 423 429 229 222 223 423 429 71136 527 528 790 791 61	T131	526	202.2	T163	626	292 2	T203	421	233.0	1228	416	231 1
Tibal	T132	626	292 2	7154	526	292 2	T204	425 (426)	236 1 (236 6)	1729	413	729.5
Tible		624 (526)		T155	626	292 2	1206	437 (445)	242.8 (247.2)	77231		232.3 (233 4)
T155 672 (828) 200 (281.6)						297.2	T209					236 (236.6)
Tip				1130	 -						· —	
Ti37 \$25 (5228 70 61292 72 Ti59 \$629 292.2 Ti21 \$422 (478) 7248 \$438 (468) \$43.2 (1247 3) \$138 \$620 791.6 \$100 \$628 792.2 \$713 \$417 \$231.7 \$729 \$438 (464) \$43.2 (1247 3) \$139 \$929 \$29.2 \$7118 \$118 \$220 \$727 \$438 (464) \$43.2 (1247 3) \$139 \$929 \$29.2 \$7118 \$418 \$230.9 \$727 \$729 \$438 (464) \$43.2 (1247 3) \$139 \$13						ļ						
T138 625 791.8 T160 626 792.2 T213 417 7217 T256 438 (445) 743 (217 3)		·		ļ		L						
T150 520 22.2 T161 626 292.2 T216 418 230.6 T237 430 (443) 242 (1246) T140 526 292.2 T162 526 292.2 T216 418 230.6 T238 422 (1241) 234.5 (1237.6 1238.3 1241 526 292.2 T163 526 292.2 T216 418 230.6 T238 422 (1241) 234.5 (1237.6 1238.3 1241 1238.3 T240 420 (422) 234.5 (1237.6 1238.3 1241 1238.3 T240 420 (422) 234.5 (1237.6 1238.3 1238.3 T240 420 (422) 234.5 (1237.6 1238.3 1238.3 T240 420 (422) 234.5 (1237.6 1238.3 1238.3 T240 420 (422) 234.6 (1237.6 1238.3 1238.3 T240 420 (422) 234.6 (1237.6 1238.3 1238.3 T240 420 (422) 234.6 (1237.6 1238.3	T137	626 (526)	291 6 (292 2)	T159	626	292.2		422 (425)	234 8 (238 1)	T235	438 (445)	243.2 (247 3)
Ti40 Sed 792.2 Ti62 626 792.2 T215 415 230.6 T228 427 (428) 231 (328.3)	T138	625	291.6	T160	626	292.2	T213	417	231 7	1236	438 (445)	243 2 (247 3)
Ti40 876 707.7 Ti62 626 292.2 T215 418 230.6 T238 427 [429] 227 1 [128.3] T441 526 702.2 T163 826 729.2 T216 413 229.6 T239 422 [424] 234.5[237.6] T442 526 727.2 T165 620 222.2 T217 421 233.9 T240 419 420 [429] 234.6 [229.1] T165 620 222.2 T218 426 [427] 236.5 [237.1] T241 418 221 T165 620 222.2 T218 426 [427] 236.5 [237.1] T241 418 221 T166 526 222.2 T218 426 [427] 236.5 [237.1] T241 418 220.6 T148 529 T272 T168 626 222.2 T272 428 [427] 234.6 [428.8] T249 419 230.6 T247 T248 T249 417 231.7 T241 520.6 T247 T248 T249 T247 419 220.6 T247 T248 T249 T247 T248 T249 T247 T248 T249 T248 T249 T248 T249 T248 T249 T248 T249 T248 T249 T248 T249 T248 T249 T249 T248 T249 T249 T248 T249	T139	626	292.2	T161	626	292 2	T214	418	230.6	1237	436 (443)	242 2 (246)
T141 526 292.2 T163 526 292.2 T210 413 226 7235 427 (424) 234.6 (237) 23.8 T740 420 (428) 23.4 (128.1) 23.4 (128.1) 740 400 (428) 23.3 (128.1) 740 400 (428) 23.3 (128.1) 740 400 (428) 23.3 (128.1) 740 400 (428) 23.3 (128.1) 740 400 (428) 23.3 (128.1) 740 400 (428) 23.3 (128.1) 740 400 (428) 23.4 (124.8) 740 400 (428) 23.4 (124.8) 741 416 23.1 741 416 23.1 741 416 23.1 741 416 23.1 744 417 231.7 744 417 231.7 744 418 231.7 744 416 231.7 744 417 231.7 248.4 417.2 234.8 231.7 231.7 231.7 242.4 231.7 231.7 231.7 242.7 234.8 231.7 231.7 231.7 232.7 232.7 232.7 <th< td=""><td>T140</td><td>526</td><td>292,2</td><td></td><td>526</td><td>292.2</td><td>T215</td><td>415</td><td></td><td>7738</td><td>† </td><td>237 1 (239.3)</td></th<>	T140	526	292,2		526	292.2	T215	415		7738	† 	237 1 (239.3)
Timestage	T141	526	292.2	_					!			
T185 820 297.2 7718 420 (427) 724.0 418 721												
T148 529 22.2 T167 626 292.2 T167 626 292.2 T270 438 (447) 243.4 (248.6) T246 417 231.7 T146 528 292.2 T168 528 292.2 T270 438 (447) 243.4 (248.6) T246 417 231.7 T147 528 392.2 T169 528 292.2 T272 428 (447) 337 6 (248.6) T247 422 234.5 T148 528 292.2 T169 528 292.2 T272 428 (447) 337 6 (248.6) T247 422 234.5 T148 528 292.2 T170 528 292.2 T272 428 (447) 337 6 (248.6) T247 422 234.5 T149 528 292.2 T170 528 292.2 T272 428 (427) 238.1 (227.7) T248 427 234.5 T180 528 292.2 T272 428 (427) 238.1 (227.7) T248 427 234.5 T180 528 292.2 T272 428 (427) 238.1 (227.7) T260 424 727 236.5 T180 424 227.8 T301 264 146.6 T327 267 148.3 T362 278 152.6 T281 424 227.8 T302 764 146.6 T328 267 147.3 T383 271 150.8 T283 423 232.1 T203 273 170 181 6 (183) T328 267 142.8 T364 268 146.8 T284 421 232.9 T305 312 (228) 171 181 181 181 181 181 181 181 181 181		620	202.2		528							
T148 578 297.2 T167 626 292.2 T220 438 (447) 243.4 (248.6) T246 417 231 7 T146 626 297.2 T168 626 297.2 T221 T240 422 234.8 T147 528 292.2 T168 626 292.2 T223 478 (447) 237 6 (248.5) 7247 422 234.8 T140 826 292.2 T170 636 292.2 T223 437 (439) 247.8 (124.5) 7248 422 234.8 T140 826 292.2 T170 636 292.2 7228 426 (427) 238.1 (237.6) 7249 426 (427) 238.1 (237.6) 726 726 726 726 7276 424 227.6 423 237.6 7276 424.62 227.6 7276 146.6 7278 267 142.8 736 7276 157.6 7276 142.8 736 2776 150.8 7276 7276 7276 </td <td>_</td> <td></td> <td></td> <td>T186</td> <td>628</td> <td>292 2</td> <td>T218</td> <td>426 (427)</td> <td>236.6 (237 1)</td> <td></td> <td>418</td> <td>231 1</td>	 _			T186	628	292 2	T218	426 (427)	236.6 (237 1)		418	231 1
T146 628 3972 T168 526 292.2 T224 428 (447) 37 (128,8) 724.7 422 734.8 T147 928 392.2 T169 6.26 292.2 T222 427 (447) 337 (128,8) 724.7 422 734.8 T148 826 292.2 T170 6.26 292.2 T223 457 (439) 224.8 (124,9) 724.7 422 734.8 737.8 738.9 73		l	ł l	T166	826	292 2	T219	439 (448)	243.9 (248 9)	T242	415	230 6
T147 528 292 T169 628 292.2 T222 428 (447) 237 6 (249.5) T247 422 734.5 T140 528 292.2 T170 526 292.2 T223 437 (439) 242.8 (243.5) T746 427 234.6 T140 526 292.2 T224 426 (427) 236.1 (227 1) 7240 423 236 T180 526 292.2 T226 424 (425) 237.6 (125.1) 7260 424 237.6 424 237.6 424 237.8 T301 264 146.6 7328 265 147.3 7353 271 150.8 7283 423 237.1 7300 273 (279) 161.6 (183) 7229 267 142.8 736.4 268 147.2 735.3 271 150.8 7283 423 232.1 7300 273 (181) 732.1 297 (142.8 736.4 268 146.8 7284 421 233.9 730<	T145	626	297.2	T167	626	292.2	T220	438 (447)	243.4 (248.6)	T248	417	231 7
T147 S26	T146	620	297 2	T158	626	292.2				17/46	422	234.8
T148 528 202.2 T170 626 202.2 T223 437 (439) 242.8 (227) 7248 422 738 T169 826 202.2 7224 428 (427) 238.1 (237) 7249 423 738 T180 626 782.2 720 7226 424 (425) 237.6 (236.1) 7260 424 237.8 T281 424 227.6 T301 264 146.6 T327 267 149.2 7362 271 150.8 T283 423 237.1 T303 273 (170) 161.6 (163) T320 265 147.2 7362 271 150.8 T284 423 237.1 T303 273 (170) 161.6 (163) T320 267 142.8 7364 208 148.8 T284 421 223.9 T304 283 (286) 167 (160) T331 271 (274) 180 (163) T320 267 (241) 148.8 T285 417 221.7 T20			-	T180		292.2	T722	47R (447)	237 6 (248 B)			
T149 878 292.2 7224 425 (427) 236.1 (237) 7249 423 238 T180 626 282.2 1226 1226 424 (428) 237 6 (238.1) 7260 424 237 6 737 6 T281 424 227.8 T301 264 146.6 7327 267 140.3 7362 278 152.6 T283 424 227.8 T302 264 146.6 7329 266 147.3 7363 271 160.8 T283 423 227.1 7300 273 [276) 181 (163) 7329 266 147.3 7363 271 160.8 7250 423 227.1 7300 273 [276) 181 (163) 7329 267 142.8 7364 269 146.8 7250 418 232.3 7300 318 (331) 777 (184) 7333 507 (218) 157 (177) 7368 267 146.3 7250 421 233.8 <td< td=""><td></td><td></td><td>-</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>			-									
T180 528 792.2 T281 424 (426) 237 6 (238.1) 7280 424 737 8 7281 424 227 6 T301 284 146.6 T327 267 148.3 T362 278 152.6 7282 424 227.6 T302 294 148.6 Y329 265 147 3 T363 271 150.8 7283 423 237 1 T303 273 (276) 161.6 (183) Y329 267 142.8 T364 208 146.8 7284 421 233.9 T304 283 (289) 157 (169) T331 271 (274) 150 (165) 736 262 146.8 7286 418 232.3 T306 312 (229) 177 (181) T333 280 (284) 156 (166) 7386 260 146.8 7286 421 233.9 T310 284 (387) 169 (160) 7334 312 (326) 173 (171) 7386 267 146.8 7324 312 (326)					620							
T281 424 227 6 T301 264 146.6 T327 267 149.3 T352 278 152.6 T282 424 237.8 T302 284 146.6 T328 286 147.3 T363 271 150.8 T283 423 237.1 T303 273 (276) 181.6 (183) T329 287 142.8 T364 288 148.8 T284 421 223.9 T304 283 (289) 187 (189) T331 271 (274) 180 (182) T366 282 148.8 T286 418 232.9 T306 312 (3278) 173 (181) T332 280 (284) 186 (183) 7380 280 148.8 280 144.8 280 280 144.8 280 280 144.8 280 280 144.8 280 280 144.8 280 280 144.8 280 144.8 280 280 144.8 280 144.8 280 144.8 280												
T282 424 237.8 T302 294 146.6 T328 286 147.3 T383 271 180.8 T283 423 237.1 T303 273 (278) 181.6 (183) T329 267 142.8 T384 288 148.8 T284 421 233.9 T304 283 (288) 187 (189) T331 271 (274) 190 (182) T360 282 146.8 T286 418 232.3 T306 312 (328) 173 (181) T332 280 (284) 186 (188) T380 280 144.8 T286 417 221.7 T306 312 (328) 173 (181) 7333 367 (318) 173 (181) 7386 280 144.8 T286 421 232.9 T311 279 (282) 168 (183) T334 312 (328) 173 (181) T381 280 148.8 T280 421 232.9 T312 276 (279) 163 (180) T336 312 (328) 173 (181) T381	T180	628	292.2		L		T226	424 (425)	237 6 (236.1)	1250	424	237 6
T282 424 237.8 T302 294 146.6 T328 286 147.3 T383 271 180.8 T283 423 237.1 T303 273 (278) 181.6 (183) T329 267 142.8 T384 288 148.8 T284 421 233.9 T304 283 (288) 187 (189) T331 271 (274) 190 (182) T360 282 146.8 T286 418 232.3 T306 312 (328) 173 (181) T332 280 (284) 186 (188) T380 280 144.8 T286 417 221.7 T306 312 (328) 173 (181) 7333 367 (318) 173 (181) 7386 280 144.8 T286 421 232.9 T311 279 (282) 168 (183) T334 312 (328) 173 (181) T381 280 148.8 T280 421 232.9 T312 276 (279) 163 (180) T336 312 (328) 173 (181) T381	7781	654	227.5	7701	764	140.0	TTOT	141	149.2	7-94-9		
T283 423 237 1 T203 273 (276) 181 6 (183) T329 267 142.8 T384 268 148.8 T284 421 223.9 T304 283 (286) 187 (190) T331 271 (274) 180 (182) T365 262 148.8 T286 418 232.3 T306 312 (328) 173 (181) T332 280 (294) 186 (188) T380 280 144.8 T286 417 221.7 T300 312 (321) 172 (184) T333 37 (218) 177 (177) T388 267 146.3 T280 421 233.9 T310 284 (287) 188 (160) T333 37 (218) 173 (181) T300 288 148.3 T280 421 233.9 T311 279 (287) 185 (183) T336 312 (228) 173 (181) T300 288 148.8 T281 421 233.9 T314 285 147.3 T336 312 (228) 173 (181) T307 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
T284 421 233.8 T304 283.1285 187 (189) T331 271 (274) 180 (182) T366 262 140.8 7286 418 232.3 7306 312 (328) 173 (181) T332 280 (284) 166 (168) T380 280 144.5 7280 417 2317 7309 318 (331) 177 (184) 7333 307 (318) 177 (177) 7380 287 148.3 7280 421 233.9 7310 284 (287) 186 (1697) 7334 312 (225) 173 (181) 7360 280 148.3 7280 421 233.0 7312 276 (279) 163 (185) 7336 312 (225) 173 (181) 7367 289 140.6 7281 421 233.0 7313 267 186 7337 208 (320) 172 (178) 7363 269 140.6 7283 421 233.0 7316 265 147.3 7338 264 (260) 180 (180) 7364												
T256 418 232.3 T206 312 (325) 173 (181) T332 280 (294) 156 (158) T380 280 144.8 T258 417 221.7 T300 218 (331) 777 (184) T333 307 (318) 771 (177) T388 287 148.3 T280 421 233.9 T210 284 (287) 188 (160) T334 312 (325) 173 (181) T360 288 148.8 T280 421 233.9 T311 270 (287) 165 (187) T336 312 (226) 173 (181) T361 269 148.8 T281 421 233.9 T312 270 (279) 165 (185) T336 312 (226) 172 (1181) T361 269 148.6 T282 421 233.9 T314 265 147.3 T337 208 (280) 172 (1181) T363 209 148.6 T283 421 233.9 T316 265 147.3 T338 264 (280) 158 (180) T365<												
7250 417 2217 7300 218 (331) 177 (184) 7333 307 (218) 171 (177) 7389 287 146 3 7250 421 233.0 7310 284 (287) 188 (160) 7334 312 (325) 173 (181) 7360 208 148.8 7280 421 233.0 7311 279 (279) 163 (180) 7338 312 (226) 173 (181) 7361 269 149.6 7281 421 233.0 7312 277 (279) 163 (180) 7338 312 (226) 173 (181) 7362 269 149.6 7282 421 233.0 7313 267 186 7337 308 (220) 172 (178) 7363 269 149.6 7283 421 233.0 7314 265 147.3 7339 274 (278) 188 (180) 7304 278 149.8 7304 272 (278) 152 (184 7305 269 149.8 7206 421 233.0 7316 <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td>363</td><td>146.8</td></td<>											363	146.8
T280 421 233.8 T310 284 (287) 188 (160) T334 312 (220) 173 (161) T360 208 148.8 T280 421 223.9 T311 279 (282) 165 (157) T338 312 (225) 173 (181) T361 209 149.8 T281 421 233.9 T312 276 (279) 163 (185) T338 312 (225) 173 (181) T362 209 149.8 T282 421 233.9 T313 267 186 T337 308 (220) 172 (181) T363 209 149.8 T283 421 233.9 T314 265 147.3 T338 264 (280) 168 (150) T364 709 149.8 T284 421 233.9 T316 265 147.3 T338 274 (278) 152 (164) T365 269 149.8 T286 421 233.9 T316 269 143.8 T340 272 (279) 153 (185) 7365 270 <td>T256</td> <td>418</td> <td>237.3</td> <td>T305</td> <td>312 (325)</td> <td>173 (181)</td> <td>T332</td> <td>360 (284)</td> <td>156 (158)</td> <td>T350</td> <td>260</td> <td>144.8</td>	T256	418	237.3	T305	312 (325)	173 (181)	T332	360 (284)	156 (158)	T350	260	144.8
T280 421 233.0 T210 294 (287) 198 (1803) T234 312 (325) 173 (181) T360 208 148.8 T280 421 223.0 T311 270 (279) 163 (185) T336 312 (325) 173 (181) T361 209 149.5 T281 421 233.0 T313 267 185 T337 300 (220) 172 (181) T363 209 140.6 T282 421 233.0 T314 265 147.3 T338 200 (220) 172 (1781) T363 209 140.6 T283 421 233.0 T314 265 147.3 T338 204 (278) 158 (1501) T364 209 140.6 T284 421 233.0 T316 265 147.3 T338 204 (278) 158 (1501) T364 209 140.6 T286 421 233.0 T316 269 143.8 T340 272 (279) 151 (150) 7367 208	7250	417	231 7	7300	318 (331)	177 (184)	7333	307 (310)	171 (177)	7350	267	148.3
T280 421 233.0 T311 279 (282) 155 (187) T338 312 (228) 173 (181) T361 269 140.6 T281 421 233.0 T312 276 (279) 163 (186) T338 312 (228) 173 (181) T362 269 140.6 T282 421 233.0 T314 265 147.3 T338 264 (280) 150 (160) T364 269 140.6 T264 421 233.0 T316 265 147.3 T338 264 (280) 150 (160) T364 269 140.6 T264 421 233.0 T316 265 147.3 T338 264 (280) 150 (160) T364 269 140.6 T264 421 233.0 T316 265 147.3 T338 274 (278) 152 (164) T368 269 140.6 T266 421 233.0 T316 269 143.8 T340 272 (279) 180.0 279 180.0	T259	421	233.0		284 (287)	159 (160)	T234		173 (181	Taken		
T281 421 233.0 T312 276 (279) 163 (186) T336 312 (228) 173 (181) T387 269 140.0 T282 421 233.0 T313 267 186 T337 208 (320) 172 (178) T363 269 140.0 T283 421 233.0 T314 265 147.3 T338 264 (289) 158 (159) T364 769 140.0 T264 421 233.0 T316 265 147.3 T338 274 (278) 152 (154) T365 269 140.0 T265 421 233.0 T316 268 143.0 T340 272 (278) 151 (150) T368 270 150.0 T286 421 233.0 T316 269 143.0 T340 272 (278) 151 (150) T368 270 150.0 T286 422 234.0 T317 273 (276) 151.6 (152.0) T340 265 147.3 T357 268 140.0 T287 421 223.0 T318 283 (280) 157 (159) T342 263 146 T368 204 140.0 T288 419 232.0 T319 312 (320) 172 (181) T348 268 (260) 140 (149.0) T369 260 144.0 T289 417 231.7 T320 312 (325) 173 (181) T346 272 (274) 151 (152) T370 256 143.3 T270 418 231 T322 312 (325) 173 (181) T346 272 (274) 151 (152) T370 256 143.3 T270 418 231 T322 316 (326) 175 (183) T348 278 (278) 152.0 (164.0) T324 284 (287) 166 (160) T349 278 (178) 152.0 (164.0)	-											
7282 421 233.8 7313 267 186 7337 308 (220) 172 (178) 7363 269 140.6 7783 421 233.8 7314 265 147.3 7338 284 (286) 188 (180) 7304 799 140.6 7264 421 233.9 7316 285 147.3 7338 274 (278) 182 (184 7300 208 140.6 7266 421 233.0 7316 289 143.8 7340 272 (279) 181 (185) 7306 270 180.0 7267 421 233.0 7318 283 (286) 187 (186) 7342 263 146 7300 204 140.8 7268 419 232.8 7319 312 (326) 172 (181) 7348 263 146 7300 204 140.8 7269 419 232.8 7319 312 (326) 172 (181) 7348 269 (280) 140 (149.6) 7300 200 144.5 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>												
T263 421 238.8 T314 265 147.3 T338 284 (280) 158 (160) T364 260 149.8 T264 421 233.9 T316 286 147.3 T338 274 (278) 152 (164 T385 269 148.8 T286 421 233.9 T316 289 143.8 T340 272 (279) 151 (185) T368 270 180.0 T286 422 234.8 T317 273 (278) 181.6 (182.8) T341 265 147.3 T387 288 168.8 T287 421 233.9 T318 233 (286) 157 (189) T342 263 146 T389 264 146.8 T289 418 232.8 T319 312 (326) 172 (181) T348 265 (269) 140 (149.6) T369 264 146.8 T289 419 232.8 T319 312 (326) 172 (181) T348 265 (269) 140 (149.6) T369 260												
T284 421 233.9 T315 265 147.2 T339 274 (278) 162 (184) T365 269 149.8 T286 421 233.0 T316 209 143.8 T340 272 (279) 151 (185) 7306 270 180.0 T286 422 234.8 T317 273 (278) 151.6 (182.0) T341 268 147.3 T367 208 148.8 T287 421 232.0 T318 233 (286) 157 (189) T342 263 146 T308 204 146.6 T288 419 232.8 T319 312 (326) 173 (181) T348 265 (269) 140 (149.6) T300 200 144.5 T289 417 2317 T220 312 (326) 173 (181) T348 226 (269) 140 (149.6) T300 200 144.5 T270 418 231 1 T327 312 (326) 173 (181) T348 272 (274) 151 (152) T370	1262				267			309 (320)		7363	200	149.6
1286 421 233.8 7316 209 143.8 7340 272 (278) 181 (180) 7308 270 180.0 1286 422 234.8 7317 273 (278) 181.6 (182.6) 7341 265 147.3 7367 208 149.8 1287 421 233.9 7318 283 (280) 187 (180) 7342 263 146 7308 294 146.6 1288 419 232.8 7319 312 (328) 172 (181) 7348 268 (280) 149 (149.6) 7369 260 144.8 1289 417 221.7 7320 312 (326) 172 (181) 7346 277 (274) 181 (182) 7370 256 143.3 1270 418 231 1 7322 312 (326) 173 (181) 7347 274 (277) 182 (182) 1289 419 231 1 7322 312 (326) 173 (181) 7349 273 (274) 1280 7324 234 (287) 188 (180) 7348 278 184.8 1280 7324 234 (287) 188 (180) 7348 278 184.8 1280 7326 279 (281) 188 (180) 7348 278 184.8	1763		2332.0	T314	265		T338	264 (266)	158 (158)	T364	700	149.0
T280 421 223.0 T316 289 143.8 T340 272 (279) 151 (185) T368 270 180.0 T280 422 224.8 T217 273 (278) 161.6 (182.6) T341 266 147.3 T367 288 148.8 T207 421 223.0 T318 283 (280) 167 (189) T342 263 146 T369 264 146.6 T208 419 222.8 T319 312 (326) 172 (181) T348 268 (269) 140 (149.6) T369 260 144.5 T208 417 231 7 T220 312 (325) 173 (181) T348 226 (269) 140 (149.6) T370 280 143.3 T270 418 231 1 T322 312 (326) 173 (181) T348 272 (274) 151 (152) 7370 280 143.3 T270 418 231 1 T322 316 (326) 173 (181) T348 278 (1274) 151 (162) 7370	T264	421	233.0	T315	285	147.3	T330	274 (278)	152 154	7365	200	149.6
T200 422 234.8 T317 273 (276) 151.6 (152.6) T341 265 147.3 T357 266 149.8 T207 421 223.9 T318 283 (285) 187 (189) T342 263 146 T308 204 146.6 T208 419 222.8 T319 312 (326) 173 (181) T346 265 (266) 140 (149.6) T309 260 144.6 T208 417 227.7 T220 312 (325) 172 (181) T346 277 (274) 151 (152) T370 256 143.3 T270 418 231 T222 312 (325) 173 (181) T346 277 (274) 151 (152) T370 256 143.3 T270 418 231 T322 316 (326) T36 (183) T348 278 (278) 152.8 (164.6) T324 224 (287) 168 (160) T348 278 T34.8 T328 279 (281) 168 (160) T380 278 154.6	T266	421	233.0	7316	200	143.8	7340	272 (279)	161 (188)			
T207 421 233.9 T318 233.1280 157 (182) T342 263 146 T388 264 146,6 T208 419 232.8 T319 312 (326) 173 (181) T348 268 (269) 149 (149,6) T369 260 144,6 T208 417 231.7 T320 312 (326) 173 (181) T346 272 (274) 181 (152) T370 256 143,3 T270 418 231.1 T322 312 (326) 175 (182) T348 275 (1276) 152,6 (164,6) T223 316 (326) 175 (182) T349 276 (184,6) T324 264 (267) 188 (160) T349 278 T34.8 T328 279 (281) 185 (187) T360 278 184.8		422				151 6 (122 4)						
T208 419 232.8 T319 312 (326) 173 (181) T348 228 (269) 149 (149.6) T369 260 144.8 T209 417 231.7 T320 312 (326) 173 (181) T346 272 (274) 181 (182) T370 256 143.3 T270 418 231.1 T322 312 (326) 173 (181) T347 274 (277) 152 (154) T223 318 (326) 175 (182) T349 275 (1276) 152.6 (164.6) T324 264 (287) 188 (180) T349 278 T34.8 T328 279 (281) 185 (187) T360 278 184.8			L					$\overline{}$				
T288 417 231 7 T320 312 (225) 173 (181) T346 272 (274) 181 (182) T370 258 143.3 T270 418 231 1 T322 312 (325) 173 (181) T347 274 (277) 182 (184)												
7270 418 231 1 7322 312 (376) 779 (181) 7347 274 (277) 152 (184) 7223 316 (326) 175 (182) 7348 275 (278) 162,6 (184,8) 7324 284 (287) 186 (180) 7348 278 184 8 7228 279 (281) 186 (187) 7360 278 184.8						173 (181)			149 (149.6)			144.8
7223 316 (326) 775 (192) 7349 278 (278) 12 (104.6) 7324 284 (287) 186 (180) 7349 278 184 8 728 728 728 728 728 728 728 728 728 7	_					173 (181)	1346		151 (152)	1370	250	143.3
T223 318 (226) 175 (192) T349 275 (278) 152,6 (164,6) T324 294 (297) 188 (180) T349 278 184 8 T229 279 (281) 185 (187) T360 278 184.8	T270	418	231 1	T322	312 (326)	173 (181)	7347	274 (277)	152 (154)			
T324 294 (297) 169 (1601 T349 278 154.9 T229 279 (281) 155 (157) T350 279 154.6				7223	318 (326)	175 (182)		278 (278)				
T226 279 (281) 155 (187) T350 278 154.8				T324	284 (287)			272				
			<u> </u>									
1.04 279 (279) 100 1.001 277 134		<u> </u>	├							!		
			i		2/4 (2/8)		1.501	211	104			

Table E-12: PREDICTED STEADY STATE TEMPERATURES TEST T-7, PLUMBING LINE AND SURROUNDING MLI

* Boundary Nodes - Temp Input

			т		A71105	·	75465	ATURE	· · · · · ·	Trunca	ATURE
NODE	TEMPER OR	**	NODE	**************************************	RATURE OK	NODE	OR TEMPE	PATURE	NODE	TEMPER	OK
			7000			724-	158		T103	526	
T001	632	295.6 77 8	T023 T024	601 167	278.3 87 3	T045 T048	166	87 8 92.2	T103	525	292 3 291 7
T002*	140	82.2	T026	181	100.6	T047	182	101 1	T105	620	288 9
1	170		T026	202		T048	200	111 1	T109	613	285
T004	189	106	T027	218	112.2 121 1	T049	220	122 2	T110	524	291 2
T006	212	117.7	T028	233	129 6	T050	238	131 1	T111	525	291 7
T007	240	133 3	T029	247	137 3	T051	262	140.0	T112	525	291 7
T008	265	152 8	T030	260	144 5	T052	268	148 9	T113	525	291 7
T009	289	160.6	T031	272	151 1	T053	283	157 2	T114	525	291 7
T010	314	174 5	T032	288	158.9	T054	297	168.1	T115	526	292 3
T011	334	185.5	T033	301	167 1	T055	309	171 6	T118	627	292 8
T012	353	196.1	T034	311	172.7	T056	310	172 2	T117	527	292 8
T013	372	206.6	T035	320	179 7	T057	332	184 5	T116	526	292 3
T014	392	2178	T036	330	183 4	T058	344	191 1	T119	622	290
T015	411	228.4	T037	339	188.3	T059	352	195.5	T120	520	288.9
T018	430	238.9	T038	350	194.5	T060	358	198.9	T122	520	288 9
T017	447	248.4	T039	363	201 6	T061	365	202 8	T123	521	289 5
T018	466	258.9	T040	373	208.4	T062	374	207 8	T124	524	291 2
T019	478	265.5	T041	379	210 5	T063	383	212 8	T125	525	291 7
T020	487	270 8	T042	383	212 7	l- <u></u> -	 	 	T128	626	291 7
T021	493	273.9	T043	385	213.9	T101	525	291 7	T127	525 525	291 7
T022	498	276.6	T044	152	84 5	T102	525	291 7	-T128-	020	291 7
T129	527	292 8	T154	526	292 3	l	 	ļ	T232	440	244 4
T131	527	292 8	T155	527	292 8	T209	461	265 2	T233	442	245 6
T132	527	292 8	T158 T159	527 527	292 8	T210	452	251 1	T234	461 463	255 2
T133	524 522	291 4 290	T160	627	292 8	T211 T212	442	245 5 243.4	T236	460	257 2 255 6
T135	522	290	T181	527	292 8	T213	434	241.1	1237	443	24B.L
T138	622	290	T162	527	292.8	T214	431	239 5	T238	442	245 5
T137	523	290 8	T163	527	292 8	T215	430	238.9	T239	441	245
T138	525	291 7	T164	627	292 8	T218	429	238 3	T240	438	242 2
T139	528	292.3	T166	527	292 8	T217	438	243 4	T241	433	240 5
T140	626	292.3	T166	527	292 8	T218	443	246 1	T242	432	240
T141	628	292.3	T167	527 627	292.8 292.8	T219 T220	458	253 4	 		
T145	526 527	292 3 292.8	T168	527	292.8	T222	478	284 4 184 4	T245	434	241 1
T146	627	292.8	T170	527	292 8	T223	475	263 9	T246	439	243 9
T147	526	292.3	T201	431	239 5	T224	448	247 7	T247	439	243 9
T148	526	292.3	T202	431	239 5	T225	442	245.5	T248	442	245 5
T149	526	292.3	T203	438	243.4	T228	438	243.4	T249	443	246 1
T150	528	292 3	T204	442	245 5	T227	434	241 1	T250	444	246 7
T151	526	292.3	T205	455	262 8	T228	431	239 5	T251	443	246 1
T152	526 528	292.3	ļ. 	ļ 		T229 T231	434	2411	T252	442	245 6
		292.3	 					242 2	T253	439	243 9
T254	434	241 1	T309	330	183.4	T333	289	180.7	T359	268	148.9
T258	431	239.5	T310	299	166.1	T334	320	177 7	T380	275	152.6
1200	430	238.9	T311	287 279	159.6 155.1	T335 T338	324 320	179.9 177.7	T361 T362	275	152.6
			T313	272	151 1	T337	291	161 6	T383	275 275	152.6 152.6
T259	433	240.6	T314	268	147.8	T338	268	160.1	T384	276	152.0
T260	437	242.8	T315	263	148.1	1339	284	175.8	T385	276	162.6
T261	437	242.8	T316	260	144 5	T340	274	152 2	T388	275	152.8
T282	437	2428	T317	277	153.9	T341	268	148.9	T387	273	151 7
T283	437	242.8	7318	288	160.1	T342	268	147.8	T368	268	148.9
T264	437	242.0	T319	320 358	177 7	T348	269	149.5	T389 T370	282 280	145.6 144.5
T265 T266	437 437	242.8 242.8	T322	355	197 2 197 2	1348 T347	279 281	155.1 156.0	1370	700	144.0
T267	438	242.2	T323	325	180.5	T348	288	158.9			
T268	435	241 7	T324	298	164.6	T349	289	180.7			
T269	438	241 7	1325	287	159.6	T350	291	181.8			
T270	434	241 1	T326	270	158.1	T361	288	180.1			
T301	266	147 8	T327	272	151 1	T352	287	159.6			
T302	268	147 2	1328	260	144.5	T353	281	158.0			
T303	278	154.5	T329	260	144.5	T354	270	150.1			
T304	288	160 177 2	T331	272	151 1	T355	264	148.6			———
1303	319	1774	T332	404	156.6	T356	262	145.4			

Table E-13: PREDICTED STEADY STATE TEMPERATURES TEST T-8, BASIC MLI ASSEMBLY, INCLUDING BASE JOINT SUPPORT RINGS

* Boundary Nodes - Temp, Input

NODE	TEMPERATURE		NODE	TEMPE	RATURE	NODE	TEMPE	RATURE	NODE	TEMPERATURE	
	ОR	°К	1	°R	°К	1 1	^o R	οκ	[°R	°К
T1	525	291.7	T28	133	69.9	T55	74	41.2	T105	358	198 9
T2	385	213.9	T29	121	67.2	T56	93	51 7	T106	189	105.0
Т3	183	101.7	T30	96	55.3	T57	106	58.9	T107	189	105 0
T4	505	280.6	T31	132	73.3	T58	89	49.3	T108	185	102.8
T5	367	203.9	T32	119	66 1	T59	109	60 5	T109	174	96 7
T6	186	103.3	T33	93	51 6	T60	84	46.7	T110	159	88.3
T7	233	129.5	T34	130	72.2	T61	107	59 4	T111	160	88.9
T8	183	101.7	T35	113	62 8	T62	76	42.3	T112_	142	78 9
Т9	159	88.4	T36	94	52 2	T63	87	48.3	T113	141	78 4
T10	144	80.0	T37	121	67.2	T64	67	37 2	T114	142	78 9
T11	147	81 7	T38	103	57.2	T65	56	31.1	T115	139	77 2
T12	138	76.7	T39	90	50.0	T66	46	25.5	T116	139	77.2
T13	140	77.8	T40	102	66.6	T67	470	261.1	T117	138	76.7
T14	140	77.8	T41	92	51.1	T68	389	216.1	T118	143	79.4
T15	139	77.2	T42	86	47.8	T69	326	181 1	T123	178	98.9
T16	138	76.7	T43	137	74 2	T70*	37	20.6	T124	190	105.5
T17	134	74.5	T44	129	716	T71*	140	77.8	T125	363	201.6
T18	134	74.5	T45	136	73.6	T72	92	51.1	T126	338	187 8
T19	136	73.6	T46	127	70 5	T73	100	55.5	T127	346	192 2
T20	130	72 2	T47	134	74 5	T76	133	69.9	T128	186	103 3
T21	125	69.5	T48	120	66.6	T77	133	69.9	T129	348	193.4
T22	134	74.5	T49	85	47.2	T78	290	161.1	T130	352	195.5
T23	125	69.5	T50*	37	20 6	T79	269	149.5	T131	403	223 9
T24	115	63.9	T51	133	69 9	T101	521	290.6	T132	190	105 5
T25	134	74 5	T52	114	63 4	T102	376	210.6	T172*	532	295.6
T26	122	67 8	T53	129	71.6	T103	186	103.3			†
T27	106	58.9	T54	103	57 2	T104	447	248.4			

TABLE E-14: HEAT FLOW DETAILS

ALL VALUES ARE HEAT FLOW TO TEST TANK IN BTU/HR

Test	Test Gastc		Δά Long⊢	Δά Fasteners	∆a Strut			Δά Plumbing Line				Q Total	Q Measured			Notes		
	Analytical	Empirical	tudinal Joint		Conducted Into Strut	Conducted Into Strut	Additional Radiation from Main MLt	Total	Conducted Into Pipe	Conducted Into pipe MLI	Additional Redistron from Main MLI	Total	Predicted	Q _{vap}	O _1T	Total		
T-1	6.568		1537	.884				0				0		7 739	.516			
1-1													7 596			8 255		
T-2	6.477		1324	.963				0				0		8 60	233			
													7 572			8 833	l	
T-3	.1294		0805	.0423				0				٥		670	145			
1-3													2522			.815		
T-4	8.558		1537	.884				0				0		8 47	478			
													7 596			8 948	<u></u>	
T-5					.056	0307	0640										0 15 0	
No		8.948°						1507				0		9 60	806		OBasic is OTotal measured from Test 4	
Heat													9 0939			10 406	measured from Fest 4	
T-5					056	.0307	0640											
Hoster		8.948°						1507				0		9 60	90		Q _{Basic} is Q Total	
On										L			9 0999			10 50	measured from Test 4	
T-8									1.952	145	058					<u> </u>	00	
No Heet		10.406*			ļ							2 155	1	12.13	675		Q Basic IS Q Total	
NO HEEL					ļ								12 561	<u></u>		12 805	Measured from Test 5	
T-6					ļ		•		2,427	198	074		ļ				Basic is a Total Magnured from Test 5 Included assumed 273 10 Conducted Fig.	
Heater		10.406*								├		2.699		13 03	598	.	Included assumes 273 AC Conduction Flo	
On				<u> </u>	 					<u> </u>			13 384		ļ	13 528	Truss & Eventually Read ing Tank	
Ť-7				L	0494	0251	0599		1.865	0201	0262		 				Op., is O Tarel	
		8.833°		l				1344		 		1 9113	L	12 35	200		O _{Basic} is Ó Total Measured from Test 2	
													10 88		L	12 55		
T-8	7000			1 200	.00421	.00105	00123		.377	0082	000556					Ļ	1	
	.7025		,0805	.1318				006445		 		.3858	ļ	2.94	202		4	
				L	L					<u> </u>	L		1.307			3.142		

^{*} Included in OBASIC

7591 10 TEST T-4 T-5 INSTRUMENTATION SECT C.C. OUTSIDE VIEW- STRUT ATTACHMENT Orši CTEIS TEST F6 4T-7-INSTRUMENTATION INSIDE VIEW PROPELLANT LINE ATTACHMENT TEST T-8 INSTRUMENTATION TO DECL JOHN SIMULATION TEST SECT A-A (FUL 526) SECT E-E SECT D-D

INSTRUMENTATION SCHEDULE

FIGURE E-1: TEST ARTICLE INSTRUMENTATION PLAN

FIGURE E-2: TEST #1 - TEMPERATURES

FIGURE E-3: TEST #1 - TEMPERATURES

FIGURE E-4: TEST #1 - TEMPERATURES

FIGURE E-5: TEST #1 - TEMPERATURES

FIGURE E-6: TEST #I - TEMPERATURES

FIGURE E-9: TEST I - ALTITUDE CHAMBER PRESSURE

FIGURE E-10: TEST #1 - TEMPERATURE

FIGURE E-12: TEST #2 - TEMPERATURES

FIGURE E-I3: TEST #2 - TEMPERATURES

207

Time ~ Minutes FIGURE E-15: TEST #2 - TEMPERATURES

FIGURE E-16: TEST #2 - TEMPERATURES

FIGURE E-17: TEST #2 - GUARD TANK PRESSURE

FIGURE E-18: TEST #2 - ALTITUDE CHAMBER PRESSURE

FIGURE E-19: TEST #2 - TEMPERATURES

FIGURE E-20: TEST #3 - TEMPERATURES

FIGURE E-20: TEST #3 - TEMPERATURES

FIGURE E-21: TEST #3 - TEMPERATURES

FIGURE E-21: TEST #3 - TEMPERATURES

FIGURE E-22: TEST #3 - TEMPERATURES

FIGURE E-22: TEST #3 - TEMPERATURES (Continued)

FIGURE E-23: TEST #3 - TEMPERATURES

FIGURE E-23: TEST #3 - TEMPERATURES

FIGURE E-24: TEST #3 - TEMPERATURES

FIGURE E-25: TEST #3 - TEMPERATURES

FIGURE E-26: TEST #3 - ALTITUDE CHAMBER PRESSURE

FIGURE E-28: TEST #3 - TEMPERATURES

FIGURE E-29: TEST #4 - TEMPERATURES

FIGURE E-30: TEST #4 - TEMPERATURES

FIGURE E-31: TEST #4 - TEMPERATURES

FIGURE E-32: TEST #4 - TEMPERATURES

Time-Minutes
FIGURE E-34: TEST #4 - ALTITUDE CHAMBER PRESSURE

FIGURE E-39: TEST #5 - TEMPERATURES

FIGURE E-40: TEST #5 - TEMPERATURES

FIGURE E-43: TEST #5 - TEMPERATURE

FIGURE E-44: TEST #5 ALTITUDE CHAMBER PRESSURE

FIGURE E-45: TEST #5 GUARD TANK PRESSURE

FIGURE E-46: TEST #5 - TEMPERATURE

FIGURE E-47: TEST #6 - TEMPERATURES

FIGURE E-48: TEST #6 - TEMPERATURES

FIGURE E-48: TEST #6 - TEMPERATURES (Continued)

FIGURE E-49: TEST #6 - TEMPERATURES

FIGURE E-50: TEST #6 - TEMPERATURES

FIGURE E-51: TEST #6 - TEMPERATURES

FIGURE E-52: TEST #6 - TEMPERATURES

Time ~ Minutes
FIGURE E-52: TEST #6 - TEMPERATURES (Continued)

FIGURE E-53: TEST #6 - HEATER POWER

FIGURE E-54: TEST 6 - TEMPERATURE

FIGURE E-55: TEST #6 - GUARD TANK PRESSURE

FIGURE E-56: TEST #6 - ALTITUDE CHAMBER PRESSURE

FIGURE E-57: TEST #7 - TEMPERATURES

. .

FIGURE E-58: TEST #7 - TEMPERATURES

FIGURE E-60: TEST 7 - TEMPERATURES

FIGURE E-61: TEST #7 - TEMPERATURES

FIGURE E-62: TEST #7 - TEMPERATURES

FIGURE E-63: TEST #7 - TEMPERATURE

FIGURE 64: TEST #7 - ALTITUDE CHAMBER PRESSURE

FIGURE E-65: TEST #7 - GUARD TANK PRESSURE

FIGURE E-66: TEST #8 - TEMPERATURES

FIGURE E-66: TEST #8 - TEMPERATURES (Continued)

FIGURE E-68: TEST #8 - TEMPERATURES

259

FIGURE E-69: TEST #8 - TEMPERATURES

FIGURE E-70: TEST #8 - TEMPERATURES

FIGURE E-71: TEST #8 - GUARD TANK AND ALTITUDE CHAMBER PRESSURE

FIGURE E-71: TEST #8 - GUARD TANK AND ALTITUDE CHAMBER PRESSURE (Continued)

_

FIGURE E-72. NODAL NETWORK - BASIC MLI ASSEMBLY, MITER BASE JOINT

FIGURE E-73. NODAL NETWORK - MLI LONGITUDINAL JOINT

FIGURE E-74. NODAL NETWORK - TYPICAL NYLON FASTENER AND SURROUNDING MLI

FIGURE E-75 NODAL NETWORK - TANK SUPPORT STRUT ASSEMBLY AND SURROUNDING MLI

FIGURE E-76: NODAL NETWORK - MLI IN VICINITY OF TANK SUPPORT STRUT PENETRATION

FIGURE E-77. NODAL NETWORK - PLUMBING LINE ASSEMBLY AND SURROUNDING MLI
268

FIGURE E-78. NODAL NETWORK - MLI IN VICINITY OF PLUMBING LINE PENETRATION

FIGURE E-79. NODAL NETWORK - BASIC MLI ASSEMBLY, LAP BASE JOINT 270

FIGURE E-80: NODAL NETWORK - MLI LAP BASE JOINT

FIGURE E-81: NODAL NETWORK - BASE JOINT SUPPORT ASSEMBLY

DISTRIBUTION LIST FOR FINAL REPORT

NAS3-13316

Boeing

CR 121104 Vol. II

NO.		NO. C	DECIDIENT
1 5 1 1 2 2	National Aeronautics & Space Administration Lewis Research Center 21000 Brookpark Road Cleveland, Ohio 44135 Attn Contracting Officer, MS 500-313 E. A Bourke, MS 500-205 Technical Report Control Office, MS 5-5 Technology Utilization Office, MS 3-16 AFSC Liaison Office, 501-3 Library	1	National Aeronautics & Space Administration Ames Research Center Moffett Field, California 94035 Attn Library National Aeronautics & Space Administration Flight Research Center P.O. Box 273 Edwards, California 93523 Attn Library
1 3 1 1 1	Office of Reliability & Quality Assurance MS 500-211 J. W. Gregory, Chief, MS 500-203 J. R. Barber, Project Manager, MS 500-203 D. Petrash, MS 500-204 A. V. Zimmerman, MS 500-318 N. T. Musial, MS 500-113 Director, Physics & Astronomy Programs, SG	1 3 1	Director, Technology Utilization Division Office of Technology Utilization NASA Headquarters Washington, D.C. 20546 Office of the Director of Defense Research & Engineering Washington, D. C. 20301 Attn Office of Asst. Dir. (Chem Technology)
	Office of Space Science NASA, Headquarters Washington, D.C. 20546	1	Office of Aeronautics & Space Technology, R NASA Headquarters Washington, D. C. 20546
1	Director, Planetary Programs, SL Office of Space Science NASA Headquarters Washington, D. C. 20546	10	NASA Scientific and Technical Information Facility P. O. Box 33 College Park, Maryland 20740 Attn. NASA Representative
1	Director, Manned Space Technology Office, RS Office of Aeronautics & Space Technology NASA Headquarters Washington, D. C. 20546	1	National Aeronautics & Space Administration Goddard Space Flight Center Greenbelt, Maryland 20771 Attn Library
2	Director Space Prop and Power, RP Office of Aeronautics & Space Technology NASA Headquarters Washington, D. C. 20546	1	National Aeronautics & Space Administration John F. Kennedy Space Center Cocoa Beach, Florida 32931 Attn Library
1	Director, Launch Vehicles & Propulsion, SV Office of Space Science NASA Headquarters Washington, D. C. 20546	1	National Aeronautics & Space Administration Langley Research Center Langley Station Hampton, Virginia 23365
1	Director, Materials & Structures Div. RW Office of Aeronautics & Space Technology NASA Headquarters Washington, D.C. 20546		Attn Library National Aeronautics & Space Administration Lyndon B Johnson Space Center Houston, Texas 77001
1	Director, Advanced Programs, MT Office of Manned Space Flight NASA Headquarters Washington, D. C. 20546	1 1 1	Attn Library W. Chandler W. Dusenberry C. Yodzis

1

1

1

1

1

NO. OF

National Aeronautics & Space Administration George C. Marshall Space Flight Center Huntsville, Alabama 35912

l Attn Library

J. M. Stuckey

I. G. Yates

E. H. Hyde

Jet Propulsion Laboratory 4800 Oak Grove Drive Pasadena, California 91103

1 Attn Library

L Stimson

J Kelly

R. Breshears

Defense Documentation Center
Cameron Station
Building 5
5010 Duke Street
Alexandria, Virginia 22314
Attn TISIA

1 RTD (RTNP)
Bolling Air Force Base
Washington, D. C. 20332

 Arnold Engineering Development Center Air Force Systems Command Tullahoma, Tennessee 37389 Attn. Library

Advanced Research Projects Agency Washington, D. C. 20525 Attn. Library

Aeronautical Systems Division Air Force Systems Command Wright-Patterson Air Force Base Dayton, Ohio 45433

1 Attn Library

1

AFML (MAAE)

1 AFML (MAAM)

- 1 Air Force Rocket Propulsion Laboratory (RPM) Edwards, California 93523 Attn Library
- 1 Air Force FTC (FTAT-2) Edwards Air Force Base, California 93523 Attn Library
- Air Force Office of Scientific Research Washington, D. C. 20333
 Attn. Library

- Space & Missile Systems Organization Air Force Unit Post Office Los Angeles, California 90045 Attn Technical Data Center
- Office of Research Analyses (OAR) Holloman Air Force Base, New Mexico 88330 Attn. Library
- 1 U.S. Air Force Washington, D.C. Attn Library
- Commanding Officer
 U.S. Army Research Office (Durham)
 Box CM, Duke Station
 Durham, North Carolina 27706
 Attn Library
- Bureau of Naval Weapons
 Department of the Navy
 Washington, D.C.
 Attn Library
- Director (Code 6180)
 U.S. Naval Research Laboratory Washington, D.C. 20390
 Attn Library
- 1 Picatinny Arsenal Dover, New Jersey 07801 Attn Library
- 1 Air Force Aero Propulsion Laboratory Research & Technology Division Air Force Systems Command United States Air Force Wright-Patterson AFB, Ohio 45433 Attn APRP (Library)
- 1 Electronics Division
 Aerojet-General Corporation
 P.O. Box 296
 Azusa, California 91703
 Attn Library
- 1 Space Division
 Aerojet-General Corporation
 9200 East Flair Drive
 El Monte, California 91734
 Attn Library
- 1 Aerojet Ordnance and Manufacturing Aerojet-General Corporation 11711 South Woodruff Avenue Fullerton, California 90241 Attn Library

NO. OF

RECIPIENT

- Aerojet Liquid Rocket Company
 P. O. Box 15847
 Sacramento, California 95813
 Attn Technical Library 2484-2015A
- 1 Aeronutronic Division of Philco Ford Corp.
 Ford Road
 Newport Beach, California 92663
 Attn Technical Information Department
- 1 Aerospace Corporation 2400 E. El Segundo Blvd. Los Angeles, California 90045 Attn Library-Documents

Arthur D. Little, Inc.
20 Acorn Park
Cambridge, Massachusetts 02140
Attn Library

| Aftn Library

R. B. Hinckley

- Astropower Laboratory McDonnell-Douglas Aircraft Company 2121 Paularino Newport Beach, California 92163 Attn Library
- ARO, Incorporated
 Arnold Engineering Development Center
 Arnold AF Station, Tennessee 37389
 Attn Library
- Susquehanna Corporation Atlantic Research Division Shirley Highway & Edsall Road Alexandria, Virginia 22314 Attn Library
- 1 Beech Aircraft Corporation Boulder Facility Box 631 Boulder, Colorado Attn. Library
- 1 Bell Aerosystems, Inc.
 Box 1
 Buffalo, New York 14240
 Attn Library
- Instruments & Life Support Division
 Bendix Corporation
 P.O. Box 4508
 Davenport, Iowa 52808
 Attn Library
- 1 Boeing Company 1625 K Street, N.W. Washington, D.C. 20006

NO. OF

RECIPIENT

- Chemical Propulsion Information Agency Applied Physics Laboratory
 8621 Georgia Avenue
 Silver Spring, Maryland 20910
- 1 Chrysler Corporation
 Missile Division
 P.O. Box 2628
 Detroit, Michigan
 Attn Library
- 1 Chrysler Corporation
 Space Division
 P.O. Box 29200
 New Orleans, Louisiana 70129
 Attn: Librarian
- Curtiss-Wright Corporation
 Wright Aeronautical Division
 Woodridge, New Jersey
 Attn. Library
- 1 University of Denver Denver Research Institute P.O. Box 10127 Denver, Colorado 80210 Attn. Security Office
- 1 Fairchild Stratos Corporation Aircraft Missiles Division Hagerstown, Maryland Attn Library
- Research Center Fairchild Hiller Corporation Germantown, Maryland Attn Library
- Republic Aviation
 Fairchild Hiller Corporation
 Farmington, Long Island
 New York

General Dynamics/Convair P.O. Box 1128 San Diego, California 92112

1 Attn Library

R. Tatro

- Missiles and Space Systems Center General Electric Company Valley Forge Space Technology Center P. O. Box 8555 Philadelphia, Pa. 19101 Attn Library
- General Electric Company Flight Propulsion Lab. Department Cincinnati, Ohio Attn. Library

RECIPIENT

- Grumman Aircraft Engineering Corporation Bethpage, Long Island, New York 11714 Attn Library
- Honeywell Inc.
 Aerospace Division
 2600 Ridgeway Road
 Minneapolis, Minnesota 55436
 Attn Library
- 1 IIT Research Institute Technology Center Chicago, Illinois 60616 Attn Library
- Ling-Temco-Vought Corporation
 P. O. Box 5907
 Dallas, Texas 75222
 Atta Library
- Linde-Div of Union Carbide
 P O. Box 44
 Tonawanda, N. Y. 11450
 Attn G. Nies
- 1 Lockheed Missiles and Space Co. P O. Box 504 Sunnyvale, Calif. 94088 Attn. Library
- R. T. Parmley
 Marquardt Corporation

Marquardt Corporation
 16555 Saticoy Street
 Box 2013 - South Annex
 Van Nuys, California 91409

Denver Division
Martin-Marietta Corporation
P C. Box 179
Denver, Colorado 80201

I Attn Library
I G. C. Skartvedt

Western Division
McDonnell Douglas Astronautics
5301 Bolsa Ave.
Huntington Beach, California 92647

l Attn Library l P. Klevatt

> McDonnell Douglas Aircraft Corporation P. O. Box 516 Lambert Field, Missouri 63166

1 Attn Library
1 L. F. Kohrs

1 Rocketdyne Division North American Rockwell Inc. 6633 Canoga Avenue Canoga Park, California 91304 Attn., Library, Department 596–306 NO. OF

RECIPIENT

Space & Information Systems Division North American Rockwell 12214 Lakewood Blvd. Downey, California

- 1 Attn Library
- 1 E. Hawkinson AC10
- Northrop Space Laboratories 3401 West Broadway Hawthorne, California 90250 Attn Library
- Purdue University
 Lafayette, Indiana 47907
 Attn Library (Technical)
- Goodyear Aerospace Corporation
 1210 Massilon Road
 Akron, Ohio 44306
 Attn C. Shriver
- 1 Hamilton Standard Corporation Windsor Locks, Connecticut 06096 Attn Library
- Stanford Research Institute
 333 Ravenswood Avenue
 Menlo Park, California 94025
 Attn. Library
- TRW Systems Inc.
 Space Park
 Redondo Beach, California 90278
 Attn Tech. Lib. Doc. Acquisitions
- United Aircraft Corporation Pratt & Whitney Division Florida Research & Development Center P. O. Box 2691 West Palm Beach, Florida 33402 Attn. Library
- 1 United Aircraft Corporation
 United Technology Center
 P. O. Box 358
 Sunnyvale, California 94038
 Attn Library
- 1 Vickers Incorporated Box 302 Troy, Michigan 48081
- Airesearch Mfg. Div.
 Garrett Corp.
 9851 Sepulveda Blvd
 Los Angeles, California 90009
 Attn· Library

NO. OF

RECIPIENT

- 1 Airesearch Mfg. Div. Garrett Corp. 402 South 36th Street Phoenix, Arizona 85034 Attn Library
- Commanding Officer
 U.S. Naval Underwater Ordnance Station
 Newport, Rhode Island 02844
 Attn Library
- National Science Foundation, Engineering Div. 1800 G. Street NW Washington, D.C. 20540
 Attn Library
- G. T. Schjeldahl Company Northfield, Minn. 55057
 Attn Library
- 1 General Dynamics P. O. Box 743 Fort Worth, Texas 76101
- 1 Cryonetics Corporation Northwest Industrial Park Burlington, Massachusetts 01803
- 1 Institute of Aerospace Studies
 University of Toronto
 Toronto 5, Ontario
 Attn Library
- 1 FMC Corporation Chemical Research & Development Center P. O. Box 8 Princeton, New Jersey 08540
- Westinghouse Research Laboratories Buelah Road, Churchill Boro Pittsburgh, Pa. 15235
- 1 Cornell University
 Department of Material Science & Engr.
 Ithaca, New York 14850
 Attn: Library
- Marco Research & Development Co. Whittaker Corporation
 151 N. Ludlow Street Dayton, Ohio 45402
- 1 General Electric Company Apollo Support Dept. P.O. Box 2500 Daytona Beach, Florida 32015 Attn. C. Pay

NO. OF

RECIPIENT

- E. I. DuPont, DeNemours and Company Eastern Laboratory
 Gibbstown, New Jersey 08027
 Attn Library
- Esso Research & Engineering Company Special Projects Unit P.O. Box 8 Linden, New Jersey 07036 Attn. Library
- 1 Minnesota Mining & Manufacturing Company 900 Bush Avenue St. Paul, Minnesota .55106 Attn. Library