

Fatec Itapira – Ogari de Castro Pacheco

Desenvolvimento de Software Multiplataforma

Data: 25/06/2023

Gabriela Marques Florencio

RA: 2781392213007 | E-mail: gabriela.florencio01@fatec.sp.gov.br

Mariana de Moraes Cardoso

RA: 2781392213006 | E-mail: mariana.cardoso15@fatec.sp.gov.br

PLANO DE GERENCIAMENTO DO PROJETO

1. INTRODUÇÃO

Este documento descreve o PI-3, Projeto Integrador do 3º período do curso de Desenvolvimento de Software Multiplataforma, e integra os conhecimentos obtidos nas disciplinas Gestão Ágil de Projetos, Desenvolvimento Web III, Banco de Dados não Relacional e Interface Humano-Computador. O tema selecionado para o projeto foi Cidades Inteligentes. O desafio proposto foi o desenvolvimento de um produto de software com potencial para contribuir com o tema. O planejamento preliminar do projeto foi feito com o PMCanvas. Os requisitos foram tratados com histórias de usuário, modelagem de casos de uso e o diagrama de atividades da UML.

A aplicação foi desenvolvida usando linguagens HTML, CSS, JavaScrip. Para construção do Front-end foi utilizado React.

Os requisitos obrigatórios estabelecidos foram: consumo de API, utilização de banco de dados não relacional, utilização dos conceitos e práticas da gestão ágil de projetos e de interface humano-computador.

Os artefatos gerados no desenvolvimento do projeto estão no repositório do projeto no github https://github.com/gabrielamflorencio/ProjetoYby. Nesse documento foram organizadas as informações do planejamento, análise e construção do produto.

2. ESCOPO

O escopo do projeto consistiu na entrega de uma plataforma online para monitoramento de sensores de umidade no solo, visando emissão de alerta em casos de umidade crítica. O objetivo foi que o usuário receba um alerta em até 5 minutos por e-mail ao atingir o valor de umidade (%) crítica captada pelo sensor. Além disso, com treinamento de 1 hora, usuário deve ser capaz de instalar o sensor e utilizar o sistema.

A linha de base do escopo é composta pela EAP – Estrutura Analítica do Projeto e o Backlog do Produto.

2.1 EAP - ESTRUTURA ANALÍTICA DO PROJETO

A EAP é a decomposição hierárquica do trabalho necessário para que os objetivos do projeto sejam atingidos. O trabalho é dividido em partes que podem ser entendidas, gerenciadas e estimadas mais facilmente. É uma estrutura hierárquica que assegura a visão completa do projeto em cada nível de análise. O nível mais baixo da EAP corresponde aos pacotes de trabalho. A decomposição em pacotes de trabalho permite obter estimativas mais precisas de esforço, duração e custos e definir os responsáveis pela execução. A EAP é a base para a elaboração da lista de atividades do projeto.

2.2 BACKLOG

ID	Prioridade	Cartão	Descrição	Confirmação
01	60	Cadastro de usuário	Eu, como usuário, preciso conseguir me cadastrar na plataforma. As informações que preciso preencher são: - Nome Completo; - Endereço; - E-mail; - Celular (com WhatsApp de preferência); - Senha da plataforma	Redirecionamento para tela de login
02	50	Login do usuário na plataforma	Eu, como usuário, preciso conseguir logar na plataforma após o cadastro. O login deverá ser através do email e senha informados no cadastro.	Após validação do login, o usuário consegue ter acesso ao seu perfil logado na plataforma.
03	70	Tela inicial usuário	Eu, como usuário, preciso conseguir acessar as informações gerais dos meus sensores na tela inicial do meu perfil	O usuário consegue visualizar os sensores cadastrados em sua tela inicial
04	100	Cadastro de novo sensor	Eu, como usuário, preciso conseguir cadastrar meus sensores na plataforma. As informações a serem preenchidas são: - SN do sensor - Coordenadas da instalação do sensor - Profundidade da instalação	Novo sensor, após ser cadastrado, deve aparecer no painel inicial do usuário
05	90	Consultar e alterar as informações de sensor específico	Eu, como usuário, preciso conseguir consultar e alterar as informações de um sensor já cadastrado	O usuário, após clicar no sensor desejado no painel inicial, é direcionado para tela do sensor. Caso faça alterações, estas deverão aparecer no sistema após clicar em Salvar
06	80	Alerta de umidade crítica	Eu, como usuário, preciso receber alerta via e-mail e visualizar na plataforma quando a umidade crítica for atingida por algum sensor	O usuário recebe notificação e o sensor na plataforma ganha destaque quando atinge umidade crítica

3. PLANEJAMENTO PRELIMINAR

O planejamento preliminar do projeto foi elaborado com a técnica PMCanvas – Project Model Canvas, que consiste no preenchimento de um quadro com as principais informações sobre o plano do projeto. O quadro é composto por 13 quadrantes organizados em 5 colunas.

As informações de cada coluna contribuem para responder as principais questões relacionadas com o plano do projeto: 1 – Por quê ?, 2- O que ?, 3- Quem ?, 4- Como ?, 5- Quando e Quanto.

3.1 ORGANIZAÇÃO DO PROJETO E MATRIZ DE RESPONSABILIDADES

O fato de o projeto ter sido desenvolvido apenas por duas pessoas proporcionou a possibilidade de desenvolvimento por pares, ou seja, todos os códigos foram desenvolvidos em conjunto. Visando facilitar a identificação de erros, foram utilizados dois computadores, um para cada membro, durante o desenvolvimento.

4. DESENVOLVIMENTO

4.1 FERRAMENTAS UTILIZADAS

Front-End

- Linguagens: HTML, CSS com SASS, JavaScript

- Frameworks: Bulma, React

- Bibliotecas: React Router, RBX, Moment

- API: Open Street Map

Back-End

- Linguagem: JavaScript (com NodeJS)
- Bibliotecas: ExpressJS, Axios, Mongoose
- API: SendGrid, desenvolvimento de API própria para interação com front-end

Banco de Dados

- Utilização 100% de banco de dados não-relacional com MongoDB
- Definição de Schemas para cada um dos tipos de dados (Sensores, Umidade, Usuários).

4.2 TELAS DO SISTEMA

Tela inicial

Cadastro de Usuário

Login

Tela inicial após login do usuário

Menu lateral com sensores já cadastrados (possibilidade de alterar sensor selecionado) e botões: cadastro de novo sensor e exclusão de sensor.

Tela de cadastro de novo sensor

Tela de editar sensor

Tela de edição das informações do usuário

5. CRONOGRAMA DE EXECUÇÃO E ORÇAMENTAÇÃO

O cronograma contém todas as atividades do projeto e é construído pela técnica de decomposição da EAP. Decompõe-se cada entrega da EAP, em atividades sumárias que são decompostas em atividades e assim por diante até obter-se o nível de detalhe desejado. Para cada atividade identificada, identificam-se os recursos necessários e suas respectivas quantidades, que irão compor o orçamento do projeto.

O projeto será desenvolvido em duas fases, com 6 meses de duração cada. A primeira consiste na criação da Plataforma Web que proporcionará a interface entre usuário e sensor. Na segunda fase será programado e integrado o sensor à plataforma desenvolvida.

O presente documento refere-se apenas às atividades a serem desenvolvidas na 1º fase do Projeto. A primeira fase será desenvolvida em 6 Sprints com duração de 1 semana cada.

As atividades a serem desenvolvidas em cada Sprint são:

Sprint 1: Documentação do Projeto (TAP, CANVAS, Histórias de Usuário, EAP)

<u>Sprint 2:</u> Modelagem e criação do Banco de Dados. Criação das funções de aquisição e salvamento de dados no BD (CRUD)

Sprint 3: Conexão do Back-End com APIs escolhidas

Sprint 4: Criação do Front-End

Sprint 5: Conexão entre Front-End e Back-End

Sprint 6: Testes do sistema

A ferramenta de gestão utilizada foi o Trello.

O desenvolvimento da 1ª fase do projeto demandou aproximadamente 90 horas de cada aluno-desenvolvedor, totalizando 180 horas. Com base no tempo gasto para desenvolvimento do projeto e considerando um valor de hora para cada aluno-desenvolvedor de R\$ 50,00, tem-se um custo para a primeira etapa de R\$ 9.000,00.

6. GESTÃO DE RISCOS E PROBLEMAS

O principal risco identificado na 1ª etapa do projeto foi a escolha da linguagem de desenvolvimento (JavaScript). As disciplinas ministradas durante o semestre abordaram o desenvolvimento web utilizando o PHP para back-end. Assim, utilizar o JavaScript implicou na ausência de suporte dos professores e colegas de sala em momentos de dificuldade.

Para minimizar o risco, o desenvolvimento do projeto foi pautado em um case disponível no curso One Bit Code, ao qual é desenvolvido um clone do Evernote totalmente do zero, utilizando o JavaScript (com NodeJS) no back-end e banco não-relacional (MongoDB).

7. CONCLUSÃO

O grupo desafiou-se ao encarar uma linguagem totalmente diferente da ministrada em aula. Entende-se o quanto essa escolha poderia ter implicado na não entrega do projeto. Contudo, acreditamos que o resultado foi muito além do esperado, atendendo plenamente os requisitos obrigatórios impostos pelos professores.

8. BIBLIOGRAFIA

ONE BIT CODE. Projeto Evernote. https://pro.onebitcode.com

SendGrid. https://app.sendgrid.com

Open Street Map. https://www.openstreetmap.org

Dúvidas pontuais: https://stackoverflow.com/ | https://stackoverflow.com/

Materiais de aula.

