Exercice 2 : Formes linéaires continues

On considère l'espace $E = \mathcal{C}^1([0,1],\mathbb{R})$.

1) Construire une norme sur E pour laquelle l'application

$$f \to f'$$

est une application continue vers $C^0([0,1],\mathbb{R})$ (munie d'une norme de votre choix). Est ce que E est un espace de Banach pour cette choix de norme?

Rappel thm interversion des limites

- Si fn→f, fn cont ∀n alors f cont
 (vu
 → C°[0,1] fermē avec la norme (vu II lla
- 2) \hat{m} hypothese sur fn alors $g_n(t) = \int_0^t f_n(s) ds \rightarrow g(t) = \int_0^t f(s) ds$

Définition — Un **K**-espace vectoriel *E* est dit **normé** lorsqu'il est muni d'une norme, c'est-à-dire d'une application

$$\mathcal{N}:E o\mathbb{R}^+$$

satisfaisant les hypothèses suivantes :

- ullet séparation : $orall x \in E, \ \mathcal{N}(x) = 0 \Rightarrow x = 0_E$;
- homogénéité : $\forall (\lambda,x) \in \mathrm{K} \times E, \ \mathcal{N}(\lambda x) = |\lambda| \mathcal{N}(x)$; (facile à ve rifier)
- ullet sous-additivité (inégalité triangulaire) $orall (x,y) \in E^2, \ \mathcal{N}(x+y) \leq \mathcal{N}(x) + \mathcal{N}(y)$.

Separation
$$\|f\|_{S} = \|f\|_{\infty} + \|f'\|_{\infty} \ge \|f\|_{\infty}$$

On a $\|f\|_{S} = 0 \Rightarrow \|f\|_{\infty} = 0 \Rightarrow f = 0$

In in its triang
$$\|f+g\|_{S} = \|f+g\|_{\infty} + \|f'+g'\|_{\infty}$$

$$\leq \|f\|_{\infty} + \|g\|_{\infty} + \|f'\|_{\infty} + \|g'\|_{\infty}$$

$$\leq \|f\|_{\infty} + \|f'\|_{\infty} + \|g\|_{\infty} + \|g'\|_{\infty}$$

$$\leq \|f\|_{\infty} + \|f'\|_{\infty} + \|g\|_{\infty} + \|g'\|_{\infty}$$

$$= \|f\|_{S} + \|g\|_{S}$$

Continuité
$$\|f'\|_{\infty} < \|f'\|_{\infty} + \|f\|_{\infty} = \|f\|_{S}$$

Conclusion $f \mapsto f'$ bornée, norme ≤ 1
 $C'[0,1], \|\|g\|_{S} \rightarrow C'[0,1], \|\|g\|_{\infty}$

Finalement OUI
$$C'[0,1]$$
, $\| \| \|_{S}$ est complet $f'_{n} \rightarrow f_{\infty} \Rightarrow f_{\infty}$ cont

Plus malin
$$\phi$$
 $C' \rightarrow C^{\circ}$ est continue => $\phi^{-1}(F)$ ferme si F ferme $f \mapsto f'$ => $\phi^{-1}(C^{\circ}) \subset C^{\circ}$, || || ϕ ferme

2) Plus généralement, soient E et F des espaces de Banach munis de normes $||.||_E$ et $||.||_F$ et soit

$$\phi: E \to F$$

une application linéaire. Construire une norme $||.||_{E,\phi}$ sur E telle que

- 1. ϕ devient continue lorsqu'on munit E de la norme $||.||_{E,\phi}$
- 2. l'application identité de $(E, ||.||_{E,\phi})$ vers $(E, ||.||_E)$ est continue.

'/ On pose
$$\|f\|_{E,\phi} = \|f\|_{E} + \|\phi(f)\|_{F}$$

On a $\|\phi f\|_{F} \le \|f\|_{E,\phi} \Rightarrow \phi$ bornée (= cont)

$$||f||_{E} \leq ||f||_{E} + ||\phi(f)||_{F} = ||f||_{E, \ell}$$

$$\Rightarrow |'| dentite est bornee \Rightarrow continue$$