Оглавление

1	Графы	2
	1.1 Продолжение про деревья	2
	1.2 Реализация алгоритмов Прима и Крастера	3

Глава 1

Графы

1.1 Продолжение про деревья

Алгоритм (Прима).

- 1. Выбираем $i \in M$ $\operatorname{num}(i) := 0$
- 2. Рассмотрим рёбра (u,v) : помечена ровно одна из вершин \overline{N} кайма
- 3. $l(\overline{e}) = \min_{l \in \overline{N}} l(e)$
- 4. Добавляем \overline{e} к решению $N'=N'\cup\{\,\overline{e}\,\}$

Теорема 1. Алгоритм Прима строит оптимальное остовное дерево

Теорема 2. Следующие определения дерева эквивалентны:

- 1. Связный граф без циклов
- 2. Максимальный граф без циклов a
- 3. Любые две вершины соединены единственной цепью
- 4. Минимальный связный граф b
- 5. Связный граф: |N| = |M| 1
- 6. Граф без циклов: |N| = |M| 1

Доказательство.

- $1 \implies 2$ Если в связный граф добавить ребро, то он замкнётся
- $2 \implies 3$ Граф максимальный без циклов, значит, любые две вершины соединены (если добавить ребро, они будут соединены двумя цепями)

Отсюда же следует единственность

- $3 \implies 4$ Любые две вершины соединены цепью \implies граф связный Минимальность следует из единственности
- \bullet 4 \Longrightarrow 5

 $^{^{}a}$ Если добавить ребро между любыми двумя вершинами, то появится цикл

 $[^]b \mbox{Если убрать любое ребро, то связность пропадёт$

```
-|N|>|M|-1\implies есть цикл -|N|<|M|-1\implies граф не связный  \bullet \ 5\implies 6   \bullet \ 6\implies 1
```

1.2 Реализация алгоритмов Прима и Крастера