" Prawdopodobieństwo, że X wynosi X:"

- Statystyka
- Analiza mocy testu
- Rozkłady prawdopodobieństwa
- Rozkład dwumianowy
- N,Pi, X, $P'' \Rightarrow (X <=) / "1-p" \Rightarrow (X >)$

Prawdopodobieństwo: N(Śr, Od.std.)

- Statystyka
- Statystyki podstawowe i tabele
- Kalkulator prawdopodobieństwa
- Z (Normalny)
- X, Śr., Od.std., "P" => (X<=_) / "1-p" => (X>_)

współczynnik ufności, przedziały -> przedziałowo średnia / od. stan.

	(>	xi	ni	xi * ni	(xi-średnia)^2 *ni			
	0	2	1	5	5	62,42222222			
	2	4	3	11	33	25,86222222			
	4	6	5	2	10	0,43555556			
	6	8	7	10	70	60,84444444			
	8	10	9	2	18	39,90222222			
suma:				30	136	189,4666667			
				s1	52	s3			
Opis:					Nazwa:	Wartość:			
s2 / s1					średnia	4,533333333			
s3 / s1					wariancja	6,315555556			
pierwiastek(wariancja)					od.stnd.	2,51307691			
ROZKŁ.NORMALNY.S.ODWR(1-alfa/2)					ualfa	2,326347874			
średnia - (ualfa * od.stnd / pierwiastek(s1)					a(pocz)	3,465951491			
średnia + (ualfa * od.stnd / pierwiastek(s1)					b(kon)	5,600715176			
ROZKŁ.CHI.ODWR.PS(alfa/2 ; s1-1)					Lewe	49,58788447			
ROZKŁ.CHI.ODWR.PS(1-alfa/2 ; s1-1)					Prawe	14,25645458			
pierwiastek(s1 * wariancja / lewe)					a(pocz)	1,954693266			
pierwiastek(s1 * wariancja / prawe)					b(kon)	3,645529693			
Przedział	od 3,47 do	5,60 w 98%	wyjaśnia r	nam niezna	iną wartość	średniej czasu stania	a w kolejce		
		(kon) 1-alf				-			
Przedział	od 1,95 do	3,65 w 98%	wyjaśnia r	nam niezna	ina wartość	odchylenia standaro	lowego cza	isu stania v	v kolejo
		(kon) 1-alf				,	3		

współczynnik ufności -> przedziałowo średnia / od. stan.

- Statystyka
- Statystyki podstawowe i tabele
- Statystyki opisowe
- więcej
- zmienna
- PU dla odchylenia/średniej
- Odp: Przedział od X do X w X% wyjaśnia X...

Korelacja Pearsona:

- Statystyka
- Statystyki podstawowe i tabele
- Macierze korelacji
 - Wykresy, zmienne, Podsumowanie
 - Opcje, Wyświetl dokładną tabelę wyników, Podsumowanie
- patrzymy na "r" (wsp. korelacji) na obrazku:

```
H0 = wsp.korelacji = 0, brak korelacji
```

H1 = wsp.korelacji != 0, korelacja jest

(np. r=0,11 "słaba korelacja dodatnia", r=0 "korelacja zerowa")

- patrzymy na "p" w tabeli:

p > alfa, nie ma podstaw do odrzucenia H0

p < alfa, odrzucamy H0 na rzecz H1

(przy systemie 2-stronnym (!=) bierzemy p,

przy systemie 1-stronnym (> , <) bierzemy p/2)

- "r2" (współczynnik determinacji) w tabeli = w ilu % cecha1 jest wyjaśniona cechą2,
 np. "ilośc białka jest w 1,4% jest wyjaśniona wielkością pola w ha"

Regresja:

- Statystyka
- Regresja wieloraka
- zmienne (zmienna 2 zależy od zmienna 1) (PATRZEĆ NA ZADANIE)
- ok, ok, Podsumowanie: wyniki regresji
- w raporcie: funkcja regresji: y = ax + b (ha, nad wykresami) +/- błąd std. estymacji (na tabelce)

Przedział ufności:

- Statystyka
- Statystyki podstawowe i tabele
- Statystyki opisowe
- zmienne
- PU dla odchylenia/średniej
- przedział od X do X w X % wyjaśnia średnią wartość / odchylenie standardowe X

Hipoteza:

- czy rozkład jest normalny:

H0n: rozkład jest normalny

H1n: rozkład nie jest normalny

- wykresy, wykresy 2W, wykresy normalności, zmienne, test Shapiro-Wilka
- p > alfa, nie ma podstaw do odrzucenia H0n / p < alfa, odrzucamy H0n na rzecz H1n
- H0: np.średnia = X

H1: np.średnia !=, <, > X

- statystyka, statystyki podstawowe i tabele, test t dla pojedynczej próby, zmienna, więcej, testuj zmienne względem (liczba)
- p/2 > alfa, nie ma podstaw do odrzucenia H0 / p/2 < alfa, odrzucamy H0 na rzecz H1
- podsumowanie: np. "Na poziomie istotności 0,05 średnia nie jest mniejsza niż X."

"Utworzyć szereg rozdzielczy przedziałowy i histogram":

- Statystyka
- Statystyki podstawowe i tabele
- Tabele liczności
- zmienne
- więcej
- krok
- Podsumowanie
- Histogramy

"Wyznaczyć podstawowe miary statystyczne i ich interpretacje":

- Statystyka
- Statystyki podstawowe i tabele
- Statystyki opisowe
- zmienne
- więcej

	Statystyki opisowe (zad1 (1))											
1	Nważnych	Średnia	Mediana	Moda	Liczność	Minimum	Maksimum	Dolny	Górny	Odch.std	Wsp.zmn.	Skośność
Zmienna					Mody			Kwartyl.	Kwartyl.			
dawka	32	13,18750	13,50000	Wielokr.	5	4,000000	21,00000	11,50000	15,00000	3,855767	29,23804	-0,339415

Średnia dobowa dwaka promieniowania wynosi 13,2 MED.

Współczynnik zemienności 29,2% - odchylenie standardowe stanowi 29,2% wartości średniej.

Mediana 13,5: w co najmniej 50% miejscowośći dawka promieniowa wynosi co najwyżej 13,5 MED (w co najmniej 50% miejscowośći dawka promieniowania wynosi co najmniej 13,5 MED).

Kwartyl dolny 11,5: w co najmniej 25% miejscowośći dawka promieniiowa wynosi co najmyżej 11,4 MED(i w co najmniej 75% mejscowości dawka promieniowania wynosi co najmniej 11,5 MED)

Kwartyl górny 15: w co najmniej 75% mejscowości dawka promieniowa wynosi co najwyżej 15 MED (i w co najmniej 25% miejscowości dawka promieniowania wynosi co najmniej 15 MED)

Współczynnik skośności -0.34

Jest asymetria lewostronna: w więcej niż 50% miejscowości dawka promieniownia przekracza średnią.

Wykres ramka-wąsy:

- Wykresy
- Wykresy 2W
- Wykresy ramka-wąsy
- zmienne (lewa)

Donings intotación o comuna vanishad vanasalass.

Poziom istotności -> czy ma rozkład normalny:

- wykresy, wykresy 2W, wykresy normalności, zmienne, test Shapiro-Wilka

Poziom istotności -> hipoteza średniej (np. średnia > jakaś wartość)

- HO - np. średnia czegoś = jakaś wartość

H1 - np. średnia czegoś >,<,!= jakaś wartość

- czy badana zmienna ma rozkład normalny:
 - H0n ma rozkład normalny
 H1n nie ma rozkładu normalnego
 - Poziom istotności -> czy ma rozkład normalny:
- p > alfa, nie ma podstaw do odrzucenia H0n, na poziomie istotniości 0.05 można przyjąć, że rozkład jest normalny
- rozkład t-studenta:
 - Statystyka, statystyki podstawowe i tabele, Test t dla pojedynczej próby, testuj średnie względem (liczba z zadania), zmienna
- p/2 < alfa , Odrzucamy H0 na rzecz H1, (np. Średnia czagoś jest >,<,!= niż ileś)
 (przy < i > bierzemy p/2, a przy != samo p)

średnia, od.stand., n, powinna średnia -> czy średnia spełnia normę?

- Statystyka
- Statystyki podstawowe i tabele
- Inne testy istotności
- Różnica między 2 średnimi (jednostronny <,> / dwustronny !=)
- Ho m=x

2 zestawy wartości -> hipoteza porównująca

- H0 m1 = m2 H1 - m1!=, >, < m2
- Sprawdzamy rozkłady normalne dla obu cech, 2 zmienne, wiele wykresów na 1 rys.
- pm1 > alfa -> nie ma podstaw do odrzucenia H0m1
 pm2 > alfa -> nie ma podstaw do odrzucenia H0m2
- Sprawdzamy jednorodność wariancji:
- Statystyka, statystyki podstawowe i tabele, Test t dla prób niezależnych wzgl. zmiennych, opcje, test levena, test browna i forsytha, zmienne
- jeśli p Browna-Forsytha, p Levene'a i p wariancje > alfa to nie ma podstaw do odrzucenia hipotezy o równości wariancji
- równość wariancji = test t dla prób niezależnych
 wariancje są różne = test t z uwzględnieniem wariancji
- t-studenta z tabelki powyżej: p,p/2>alfa, nie ma podstaw, p,p/2<alfa odrzucamy (jeżeli byłoby 2 różne cechy np. czas snu i płeć wtedy sprawdzamy normalność: wykresy -> wykresy skategoryzowane -> wykresy normalności i tam zaznaczamy test shearera wilka)

2 zestawy różnych cech -> zależność/korelacja + istotność

- statystyka, statystyki podstawowe i tabele, macierze korelacji, dwie listy zm., więcej
 - 2W rozrzutu
 - opcje, wyswietl dokładną tabelę wyników, podsumowanie
- Współczynnik korelacji r(X,Y) wynosi ... co świadczy, o (silnej zależności, jak jest bliżej 1, słabej jak jest bliżej 0)

Współczynnik determinacji r2 wynosi ... , co oznacza, że ... jest wyjaśniona w ..% przez ... (Jagger najlepiej smakuje z redbulem)

- H0: wsp korelacji = 0

H1: wsp korelacji != 0

p < alfa, współczynnik korelacji jest istotnie rozny od zera

p > alfa, współczynnik korelacji nie jest znacznie rozny od zera

"znaleśc oszacowanie liniowej funcji regresji cechy Y względem cechy X":

- błąd standardowy estymacji: Statystyka, regresja wieloraka, zmienne (najpierw podejmy zmienna zależna), ok, podsumowanie (powinna być czerwona tabelka)
- Zależność cechy Y od cechy X można zapisać wzorem:

y=(xi,b) * x + (W.wolny,b) +/- (bład estymacji)

(np. y = 0.62x + 1.62 + -0.21)