

АГРЕГАТНОЕ СОСТОЯНИЕ ВЕЩЕСТВА

сублимация

навлению испарению ионизация +Q +Q +E

Твердое состояние Жидкое состояние газообразное состояние

плазменное состояние

Отвердевание

-Q Понденсация

рекомбинация

вещества по проводимости

проводники

это вещества, которые проводят электрический ток

есть свободные заряды

диэлектрики

это вещества, которые не проводят электрический ток

нет свободных зарядов

полупроводники.

Это вещества которые в определенных условиях проводят электрический ток

количество свободных зарядов зависит от внешни: условий Проводниками — называются вещества, по которым могут свободно перемещаться заряды. Они хорошо проводят электрический ток. К ним относятся:

- *металлы
- *тело человека
- *влажная земля
- *растворы солей и т.д.

Непроводниками (диэлектриками)- называются вещества которые не проводят электрический

TOK.

К ним относятся:

*воздух *газы

*фарфор *ткани и т.д.

*эбонит *оргстекло

*резина

Электрическое поле – это

форма материи, посредством которой осуществляется электрическое взаимодействие заряженных тел

Свойства электрического поля

- 1. Существует вокруг заряженных тел
- 2. Невидимо, определяется по действию и с помощью приборов

3. Изображается с помощью силовых линий

4. Линии указывают направление действия силы, действующей со стороны поля на помещенную в него положительно заряженную частицу.

Основные свойства электрического поля

 Действует на электрические заряды с некоторой силой.

 Поле неподвижных зарядов – электростатическое – не меняется со временем. Создается только электрическими зарядами.

Напряженность электрического поля

 Напряженностью Е электрического поля в данной точке называют физическую__ величину, равную отношению силы F, действующей со стороны поля на точечный пробный заряд q, помещенный в данную точку поля к величине этого заряда.

Потенциал

Потенциал – Энергетическая характеристика электрического поля – она определяет энергию, которую приобретает заряженная частица в электрическом поле.

$$oldsymbol{arphi}=rac{W_E}{q}$$
 $[oldsymbol{arphi}]=B$ (вольт) $1B=rac{1\mathcal{J}\mathcal{H}}{1K\mathcal{J}}$ $P_A=oldsymbol{arphi}_A$ $P_A=oldsymbol{arphi}_B$ $P_C $P_C$$

РАЗНОСТЬ ПОТЕНЦИАЛОВ (НАПРЯЖЕНИЕ)

 это разность потенциалов в начальной и конечной точках траектории заряда.

$$A = -(W_{n2} - W_{n1}) = -(q\varphi_2 - q\varphi_1) = q(\varphi_1 - \varphi_2).$$

$$\varphi_1 - \varphi_2 = U = \frac{A}{q}; \quad [U] = \frac{A}{K\pi} = B.$$

Напряжение между двумя точками (U) равно разности потенциалов этих точек и равно работе поля по перемещению единичного заряда.

$$U = \frac{A}{q}$$

- U напряжение на участке эл. цепи, В
- А работа эл. поля по перемещению заряда по участку цепи, Дж
- q величина заряда, перемещаемого по участку цепи, Кл

Наименование	Обознач	Множитель	
1	русское		
тера	T	Т	1012
гига	Γ	G	10 ⁹
мега	м	M	10 ⁶
кило	к	ĸ	10³
милли	м	m	10-3
микро	мк	μ	10-6
нано	н	n	10-9
пико	π	р	10-12

Милливольты	Вольты	Киловольты
1 мВ	0,001 B	0,000001 кВ
10 мВ	0,01 B	0,00001 кВ
100 мВ	0,1 B	0,0001 кВ
1000 мВ	1 B	0,001 кВ
10 000 мВ	10 B	0,01 кВ
100 000 мВ	100 B	0,1 кВ
1 000 000 мВ	1000 B	1 кВ

Задание №1 Выполнить перевод

1500 B	1000 мВ	600 кВ	0,005B	3000 MB	0,04 MB	1600 B	900 мВ
кВ	В	МВ	мкВ	мкВ	кВ	MB	В
380 B	9000 мВ	10000 кВ	0,03 mB	10000 мВ	0,01 MB	6000 B	2 B
кВ	В	MB	мкВ	мкВ	кВ	кВ	мВ

Электроемкость

Электроемкость – физическая величина, характеризующая способность проводника накапливать электрический заряд.

$$C = \frac{q}{U}$$

$$[C] = \Phi \quad (\phi a p a \partial) \qquad 1\Phi = \frac{1R}{1R}$$

Электроемкость двух проводников равна 1 Ф, если при сообщении им зарядов +1 Кл и -1Кл между ними возникает разность потенциалов 1В.

Фара́д (русское обозначение: Ф; международное обозначение: F; — единица измерения <u>электрической ёмкости</u> в Международной системе единиц (СИ), названная в честь английского физика Майкла Фарадея

Электроёмкость

зависит от:

- размеров и формы проводников
- диэлектрической проницаемости среды.

не зависит от:

- Q заряда
- U напряжения

КОНДЕНСАТОР

Конденсатор - элемент обладающий <u>электрической емкостью</u>.

ИОНИСТОР (суперконденсатор)

microFarads (µF)		nanoFarads (nF)		picoFarads (pF)
0.000001µF	=	0.001nF	=	1pF
0.00001µF	=	0.01nF	=	10pF
0.0001µF	=	0.1nF	=	100pF
0.001µF	=	1nF	=	1000pF
0.01µF	=	10nF	=	10,000pF
0.1μF	=	100nF	=	100,000pF
1μF	=	1000nF	=	1,000,000pF
10µF	=	10,000nF	=	10,000,000pF
100µF	=	100,000nF	=	100,000,000pF

Задание №2 Выполнить перевод

0,1μF	10nF	100pF	0,1nF	10000nF	1000μF	0,01F	3 μF
nF	pF	nF	pF	μF	F	μF	nF
0,5μF	0,006F	120nF	0,01μF	6nF	600pF	100nF	10nF
nF	μF	μF	nF	pF	μF	μF	μF

Простейший конденсатор с воздушным (слева) и твердым (справа) диэлектриком.

Емкость плоского конденсатора, состоящего из двух пластин, при условии, что расстояние между пластинами мало по сравнению с размерами пластин, определяется согласно следующему выражению:

$$C = 0.09 * S * \epsilon / d$$

где:

С-емкость конденсатора в пикофарадах (пф);

S—активная площадь одной пластины в см²;

Є—диэлектрическая постоянная диэлектрика(Диэлектрическая проницаемость), разделяющего пластины;

d—расстояние между пластинами или, что то же самое, толщина диэлектрика в см.

Диэлектрическая проницаемость некоторых материалов

Наименование	Ę
Воздух Трансформаторное масло Совол Вазелин Полиэтилен Лавсан Полихлорвинил (пластикаты) Парафин Эбонит Гетинакс	$ \begin{array}{c} 1\\ 2,1-2,4\\ 4,8-5\\ 2,2-2,6\\ 2,2-2,4\\ 3,0-3,5\\ 6-8\\ 2,0-2,2\\ 3,0-3,5\\ 6-8 \end{array} $

Определить емкость конденсатора по следующим параметрам:

- 1. Размер пластин 100х100 мм
- 2. толщина диэлектрика d = 1 мм
- 3. Материал диэлектрика полиэтилен

$$C = 0.09 * S * \epsilon / d$$

Находим площадь пластины S— площадь одной пластины в см 2 ; $S=10x10=100 \text{ cm}^2$ Е—диэлектрическая постоянная диэлектрика (Диэлектрическая проницаемость), для полиэтилена $\varepsilon = 2,2$ (справочные данные) d—расстояние между пластинами толщина диэлектрика в см. d = 0,1 CM Тогда емкость конденсатора в (пф):

$$C = \frac{0.09 \cdot 100 \cdot 2.2}{0.1} = 198 \text{ пф} = 1.98 \times 10^{-10} \text{ фарад}$$

Расчетная работа №1 ЭЛЕКТРОТЕХНИКА

ВАРИАНТ ЗАДАНИЯ №____

ТЕМА: Расчет емкости конденсатора

Определить емкость конденсатора по следующим параметрам:

Диэлектрическая проницаемость материалов

Наименование	٤٠
Воздух	1
Трансформаторное масло	2,1—2,4
Совол	4,8—5
Вазелин	2,2—2,6
Полиэтилен	2,2—2,4
Лавсан	3,0—3,5
Полихлорвинил (пластикаты)	6—8
Парафин	2,0—2,2
Эбонит	3,0—3,5
Гетинакс	6—8
Слюда (мусковит)	6,5—7,2

Nº	Материал	А	В	d
варианта	диэлектрика	(MM)	(MM)	(MM)
1	слюда	4000	100	0,2
2	воздух	3000	200	0,3
3	ПВХ	800	100	0,05
4	Полиэтилен	400	150	0,1

СОЕДИНЕНИЕ КОНДЕНСАТОРОВ

Конденсаторы

Параллельное соединение конденсаторов.

$$C = C_1 + C_2 + \dots$$

Последовательное соединение конденсаторов.

$$\frac{1}{C} = \frac{1}{C_1} + \frac{1}{C_2} + \dots$$

Параллельное соединение конденсаторов.

Общая емкость двух и более конденсаторов эквивалентная емкость или **С**экв.

$$C = C_1 + C_2 + ... C_n$$

Последовательное соединение конденсаторов

$$\frac{C1}{1 \text{uF}} + \frac{C2}{2 \text{uF}} + \frac{C3}{3 \text{uF}} = \frac{1}{0,54} \frac{1}{\text{uF}}$$

$$\frac{1}{\text{Сэкв.}} = \frac{1}{1}^6 + \frac{1}{2}^3 + \frac{1}{3}^2 = \frac{11}{6} = \text{Сэкв.} = \frac{6}{11} = 0,54 \text{ µF}$$

Последовательное соединение конденсаторов

Последовательное соединение конденсаторов

$$\begin{array}{c|c} C1 & + & C2 \\ \hline & 1 \text{uF} & 2 \text{uF} \end{array}$$

Если последовательно соединены 2 конденсатора то **С**экв. Будет:

$$C_{9KB} = \frac{C_{1} \cdot C_{2}}{C_{1} + C_{2}} = \frac{1 \cdot 2}{1 + 2} = 0,66 \ \mu F$$

Если последовательно соединены 2 одинаковых по емкости конденсатора то \mathbf{C} экв. Будет: C1 \bullet 0,5 или $\frac{\mathrm{C1}}{2}$

Пример расчета смешанного соединения конденсаторов

Рассчитать общую емкость конденсаторов изображенных на схеме, полученный результат перевести в фарад.

$$C1 = 10 \mu F$$

$$C2 = 20 \mu F$$

$$C3 = 30 \mu F$$

$$C4 = 120 \mu F$$

1. Расчет параллельно соединённых конденсаторов

$$C_{1,2,3} = C_1 + C_2 + C_3 = 10 + 20 + 30 =$$

$$=60 \, \mu F$$

2. Расчет последовательно соединённых конденсаторов

C9KB.=
$$\frac{C1,2,3 \cdot C4}{C1,2,3+C4} = \frac{60 \cdot 120}{60+120} = 40 \mu F$$

$$\frac{1}{\text{Сэкв.}} = \frac{1}{60} + \frac{1}{120} = \frac{3}{120} = \frac{120}{3} = 40 \text{ µF}$$

Ответ: Эквивалентная (общая) емкость конденсаторов 40 µF или 40•10⁻⁶ F (0,0004 F)

Расчетная работа №2 ЭЛЕКТРОТЕХНИКА

ТЕМА: Определение эквивалентной емкости конденсаторов

- 1. Вычертить схему соединения шести конденсаторов из задания.
- 2. Произвести расчет эквивалентной (общей) емкости соединенных конденсаторов. (подробная запись)
- 3. Полученный результат перевести в Фарад

