Recent Changes in Firm Dynamics and the Nature of Macroeconomic Trends

Markus Kondziella University of St. Gallen

December 2024

- Many advanced economies have experienced similar macroeconomic trends
 - A fall in the firm entry rate
 - A rise in the average firm size
 - A fall in the aggregate labor income share
 - An increase in industry concentration
- What causes these trends?

- One view in the literature: falling population growth
 Hopenhayn, Neira, Singhania (Ecma, 2022); Karahan, Pugsley, Sahin (AER, 2024); Peters, Walsh (2024)
 - Falling population growth lowers firm entry
 - Falling firm entry shifts the firm-age distribution toward older firms
 - Older firms are larger, less likely to exit, feature lower labor shares
 - Rising share of old firms: avg. firm size \uparrow , indus. concentration \uparrow , agg. labor share \downarrow

- One view in the literature: falling population growth
 Hopenhayn, Neira, Singhania (Ecma, 2022); Karahan, Pugsley, Sahin (AER, 2024); Peters, Walsh (2024)
 - Falling population growth lowers firm entry
 - Falling firm entry shifts the firm-age distribution toward older firms
 - Older firms are larger, less likely to exit, feature lower labor shares
 - Rising share of old firms: avg. firm size \uparrow , indus. concentration \uparrow , agg. labor share \downarrow
- Literature provides suggestive evidence from U.S. Census data in support of this view
 - Shift in the firm-age distribution toward older firms. . .
 - ... While firm characteristics conditional on firm age have remained stable

Fraction of firms aged 11+

Notes: U.S. Census data. Business Dynamics Statistics (2021).

Log employment per firm by firm age

Notes: U.S. Census data. Business Dynamics Statistics (2021).

- The stability of firm characteristics (e.g., size) conditional on firm age suggests that
 - Agg. trends (e.g., rise in avg. firm size) are driven by shift in firm-age distribution
 - ... And not by changes within firm-age groups
- Attributes incumbent firms a somewhat passive role in agg. trends
 - \bullet Age distribution shifts in response to falling entry w/o changes in incumbent behavior

- The stability of firm characteristics (e.g., size) conditional on firm age suggests that
 - Agg. trends (e.g., rise in avg. firm size) are driven by shift in firm-age distribution
 - ...And not by changes within firm-age groups
- Attributes incumbent firms a somewhat passive role in agg. trends
 - ullet Age distribution shifts in response to falling entry w/o changes in incumbent behavior
- Contrasts alternative explanations behind agg. trends that stress active role of incumbents
 - Most efficient incumbents expand into new product markets
 Aghion, Bergeaud, Boppart, Klenow, Li (REStud, 2023); De Ridder (AER, 2024); Hsieh, Rossi-Hansberg (JPE Macro, 2023) . . .
 - Incumbent firms expand relative to laggard firms within product markets
 Liu, Mian, Sufi (Ecma, 2022); Olmstead-Rumsey (R&R REStud, 2022); Akcigit, Ates (JPE, 2023) ...

This paper

- Revisit the stability of firm size conditional on age
 - Large heterogeneity in firm-size dynamics across sectors
 - But, almost all sectors experienced an increase in firm size conditional on age

6

This paper

- Revisit the stability of firm size conditional on age
 - Large heterogeneity in firm-size dynamics across sectors
 - But, almost all sectors experienced an increase in firm size conditional on age
- Build a structural model
 - Which forces drive the changes in firm size conditional on age and the agg. economy?

Related literature

Trends in firm size (growth)
 Sterk, Sedlácek and Pugsley (2021), Karahan, Pugsley and Sahin (2022), Hopenhayn, Neira and Singhania (2022)

• Explaining recent macroeconomic trends

Davis (2017), Gutiérrez and Philippon (2018), Bloom, Jones, Van Reenen and Webb (2020), Liu, Mian and Sufi (2022), Olmstead-Rumsey (2022), Peters and Walsh (2022), Akcigit and Ates (2023), Aghion, Bergeaud, Boppart, Klenow and Li (2023), De Ridder (2024), . . .

- Quantifying the sources of economic growth
 Akcigit and Kerr (2018), Garcia-Macia, Hsieh and Klenow (2019), Peters (2020)
- Macroeconomic implications of reallocation
 Restuccia and Rogerson (2008), Hsieh and Klenow (2009), Song, Storesletten and Zilibotti (2011), Acemoglu,
 Akcigit, Alp, Bloom and Kerr (2018)

Outline

Revisiting firm-size dynamics

Model

Explaining the changes in firm-size dynamics across BGPs Implications for the macroeconomy (long run) Transition dynamics

Discussion

Outline

Revisiting firm-size dynamics

Mode

Explaining the changes in firm-size dynamics across BGPs Implications for the macroeconomy (long run) Transition dynamics

Discussion

7

Revisiting firm-size dynamics

- As the previous literature
 - Study trends in firm size conditional on firm age
 - Use U.S. Census Data (publicly available Business Dynamism Statistics)
- In contrast to the previous literature
 - Study trends by sector

Log employment per firm by firm age (normalized)

Log employment per firm by firm age (normalized)

Log employment per firm by firm age (normalized)

Δ Log employment per firm (1992–2017), ages 11-15 relative to entrants

Accommodation and Food sector accounts for 9% of firms (but only 3% of GDP) in U.S.

Evidence from Swedish adminstrative data

- The rise in firm size conditional on firm age is not just a U.S. phenomenon
- Using high-quality Swedish administrative data at the firm level, I document that
 - Firm size **increased** relative to the size of entrants for any firm age (in avg. industry)
 - Relative size increased by more when measured by employment rather than sales
 - Firms aged eight are 0.29 (0.47) log points larger than entrants in 1990s (2010s)
 - Firms aged eight are 0.56 (0.67) log points larger than entrants in 1990s (2010s)
 - Patterns hold for different entrant classifications and are not due to Great Recession

Outline

Revisiting firm-size dynamics

Model

Explaining the changes in firm-size dynamics across BGPs Implications for the macroeconomy (long run) Transition dynamics

Discussion

Model overview

Build a model that includes several channels highlighted in the literature behind agg. trends

• Firm entry and exit

• Incumbent firms expanding into new product markets

• Firm markup growth affecting firm employment relative to sales

Heterogeneity in the production efficiency of firms

Which forces explain the increase in firm size conditional on age?

Model overview

Build a model that includes several channels highlighted in the literature behind agg. trends

- Firm entry and exit
 - Changes in the entry costs
- Incumbent firms expanding into new product markets
 - Changes in the cost of firm expansion
- Firm markup growth affecting firm employment *relative* to sales
 - Changes in firm markup growth
- Heterogeneity in the production efficiency of firms
 - Subset of firms gains productivity advantage

Which forces explain the increase in firm size conditional on age?

Aggregate economy

Household preferences

$$U = \int_0^\infty \exp(-\rho t) \ln C_t dt$$

• Final good production

$$Y_t = \exp\left(\int_0^1 \ln\left(q_{it}y_{it}\right)di\right)$$

 q_{it} denotes the quality of product i.

• Firms increase q_{it} through innovation

Market structure within product markets

• Firm f produces in product market i with

$$y_{ift} = \varphi_f L_{ift}$$

ullet Innate heterogeneity in firm productivity $arphi_f$

$$\varphi_{\mathbf{f}} \in \{\varphi^{\mathbf{h}}, \varphi^{\ell}\}$$

- Firms compete in prices (Bertrand competition)
 - ightarrow firm with the highest quality adjusted productivity is producing in market i

Static allocation, product level

• Incumbent f in market i sets price according to

$$p_{ift} = \frac{q_{ift}}{q_{if't}} \frac{w_t}{\varphi_{f'}}$$

Incumbent f in market i sets markup according to

$$\mu_{ift} \equiv rac{p_{ift}}{w_t/arphi_f} = rac{q_{ift}}{q_{if't}} rac{arphi_f}{arphi_{f'}}$$

- → Markup is increasing in incumbent quality and productivity
- Labor demand by incumbent f in market i

$$I_{if} = \frac{Y}{w} \mu_{if}^{-1}$$

Static allocation, firm level

Firm sales

$$\sum_{i\in N_f} p_i y_i \propto |N_f|$$

• Firm employment

$$I_f = \sum_{i \in N_f} I_{if} = \frac{Y}{w} \left(\sum_{i \in N_f} \mu_{if}^{-1} \right)$$

• Firm markup

$$\mu_f = \frac{\sum_{i \in N_f} p_i y_i}{w l_f} = \left(\frac{1}{n} \sum_{k=1}^n \mu_{kf}^{-1}\right)^{-1}$$

$$r_t V_t^h(n,\boldsymbol{\mu},S_t) - \dot{V}_t^h(n,\boldsymbol{\mu},S_t) =$$

$$r_t V_t^h(n, \mu, S_t) - \dot{V}_t^h(n, \mu, S_t) = \sum_{k=1}^n \underbrace{\pi(\mu_k)}_{\mathsf{Flow profits}} +$$

$$r_{t}V_{t}^{h}(n, \mu, S_{t}) - \dot{V}_{t}^{h}(n, \mu, S_{t}) = \sum_{k=1}^{n} \underbrace{\pi(\mu_{k})}_{\text{Flow profits}} + \sum_{k=1}^{n} \underbrace{\tau_{t} \left[V_{t}^{h} \left(n - 1, \mu_{-k}, S_{t} \right) - V_{t}^{h}(n, \mu, S_{t}) \right]}_{\text{Agg. creative destruction}}$$

$$\begin{split} r_{t}V_{t}^{h}(n,\mu,S_{t}) - \dot{V}_{t}^{h}(n,\mu,S_{t}) &= \\ &\sum_{k=1}^{n} \underbrace{\pi(\mu_{k})}_{\text{Flow profits}} + \sum_{k=1}^{n} \underbrace{\tau_{t} \left[V_{t}^{h} \left(n - 1, \mu_{-k}, S_{t} \right) - V_{t}^{h}(n,\mu,S_{t}) \right]}_{\text{Agg. creative destruction}} \\ &+ \max_{\left[I_{k}, \times_{k} \right]} \left\{ \sum_{k=1}^{n} \underbrace{I_{k} \left[V_{t}^{h} \left(n, \left[\mu_{-k}, \mu_{k} \times \lambda \right], S_{t} \right) - V_{t}^{h}(n,\mu,S_{t}) \right]}_{\text{Internal R&D}} \right. \end{split}$$

Firm chooses its internal (vertical) and expansion (horizontal) R&D efforts (I_k, x_k)

$$\begin{split} r_{t}V_{t}^{h}(n,\boldsymbol{\mu},S_{t}) &- \dot{V}_{t}^{h}(n,\boldsymbol{\mu},S_{t}) = \\ & \sum_{k=1}^{n} \underbrace{\pi(\mu_{k})}_{\text{Flow profits}} + \sum_{k=1}^{n} \underbrace{\tau_{t}\left[V_{t}^{h}\left(n-1,\mu_{-k},S_{t}\right)-V_{t}^{h}(n,\mu,S_{t})\right]}_{\text{Agg. creative destruction}} \\ & + \max_{\left[I_{k},\mathbf{x}_{k}^{h}\right]} \left\{\sum_{k=1}^{n} \underbrace{I_{k}\left[V_{t}^{h}\left(n,\left[\mu_{-k},\mu_{k}\times\lambda\right],S_{t}\right)-V_{t}^{h}(n,\boldsymbol{\mu},S_{t})\right]}_{\text{Internal R\&D}} \right. \\ & + \sum_{k=1}^{n} \underbrace{\times_{k}\left[S_{t}V_{t}^{h}\left(n+1,\left[\mu,\lambda\right],S_{t}\right)+\left(1-S_{t}\right)V_{t}^{h}\left(n+1,\left[\mu,\lambda\times\varphi^{h}/\varphi^{\ell}\right],S_{t}\right)-V_{t}^{h}(n,\mu,S_{t})\right]}_{\text{Expansion R\&D}} \end{split}$$

 S_t is the share of product lines operated by high-productivity firms

Firm chooses its internal (vertical) and expansion (horizontal) R&D efforts (I_k, x_k)

$$\begin{split} r_{t}V_{t}^{h}(n,\boldsymbol{\mu},S_{t}) &- \dot{V}_{t}^{h}(n,\boldsymbol{\mu},S_{t}) = \\ &\sum_{k=1}^{n} \underbrace{\pi(\mu_{k})}_{\text{Flow profits}} + \sum_{k=1}^{n} \underbrace{\tau_{t}\left[V_{t}^{h}\left(n-1,\mu_{-k},S_{t}\right)-V_{t}^{h}(n,\boldsymbol{\mu},S_{t})\right]}_{\text{Agg. creative destruction}} \\ &+ \max_{\left[l_{k},\mathbf{x}_{k}\right]} \left\{\sum_{k=1}^{n} \underbrace{l_{k}\left[V_{t}^{h}\left(n,\left[\mu_{-k},\mu_{k}\times\lambda\right],S_{t}\right)-V_{t}^{h}(n,\boldsymbol{\mu},S_{t})\right]}_{\text{Internal R&D}} \right. \\ &+ \underbrace{\sum_{k=1}^{n} \underbrace{\mathbf{x}_{k}\left[S_{t}V_{t}^{h}\left(n+1,\left[\boldsymbol{\mu},\lambda\right],S_{t}\right)+(1-S_{t})V_{t}^{h}\left(n+1,\left[\boldsymbol{\mu},\lambda\times\varphi^{h}/\varphi^{\ell}\right],S_{t}\right)-V_{t}^{h}(n,\boldsymbol{\mu},S_{t})\right]}_{\text{Expansion R&D}} \\ &- \underbrace{w_{t}\Gamma\left(\left[l_{i},\mathbf{x}_{i}\right];n,\boldsymbol{\mu}\right)}_{\text{R&D costs}} \right\} \end{split}$$

 S_t is the share of product lines operated by high-productivity firms

R&D costs

• R&D costs in labor units

$$\Gamma([x_i, t_i]; n, [\mu_i]) = \sum_{k=1}^{n} \left[\mu_k^{-1} \frac{1}{\psi_i} (t_k)^{\zeta} + \frac{1}{\psi_x} (x_k)^{\zeta} \right]$$

 ζ innovation cost curvature, ψ_I and ψ_X internal and expansion R&D efficiency

• ψ_I and ψ_X discipline firm markup, sales and employment growth

► Analytical characterization

Firm entry and exit

- Entrants improve the quality of a randomly chosen product line
- \bullet Flow rate of entry z determined by a linear technology z = $\psi_{\rm z}\ell_{\rm z}$
- ullet ψ_z governs the entry efficiency
- ullet Entrants get assigned the high productivity type with probability p^h , revealed after entry
- The free entry condition ties the expected value of a product line to the entry costs

$$\rho^h \times E\left[V^h(1,\mu,S)\right] + (1-\rho^h) \times E\left[V^\ell(1,\mu,S)\right] = \frac{w_t}{\psi_z}$$

A firm exists when losing its last product to competitors

Value of a product line

Proposition

Along a BGP, the value of a product line of firm productivity type $d \in \{h, \ell\}$ is

$$V_t^d(1, \mu_i, S) = \frac{1}{\rho + \tau} \left[\underbrace{Y_t \left(1 - \frac{1}{\mu_i} \right)}_{Profits} + \underbrace{\frac{\zeta - 1}{\psi_x} (x^d)^\zeta w_t}_{Continuation \ value \ expansion \ R\&D} + \underbrace{\frac{\zeta - 1}{\psi_I} I^\zeta w_t \mu_i^{-1}}_{Continuation \ value \ internal \ R\&D} \right]$$

with $x^h > x^\ell$ and $I \equiv I^h = I^\ell$.

More productive firms

- charge higher markups and enjoy greater profits per product (on average)
- choose higher expansion R&D rates, $x^h > x^\ell$

▶ BGP definition

Stationary distribution of productivity types

Proposition

Along a BGP, the constant share of product lines operated by high-productivity incumbents is

$$S = \frac{zp^h}{(1-S)(x^\ell - x^h) + z}$$

 \bullet Given the firm entry rate, z, the difference in expansion R&D rates determines S

Growth rate of the economy

Proposition

Along a BGP, the constant growth rate of the economy is

$$g = \frac{\dot{Y}_t}{Y_t} = \left(\underbrace{I}_{Incumbent\ internal\ R\&D} + \underbrace{Sx^h + (1-S)x^\ell}_{Incumbent\ expansion\ R\&D} + \underbrace{z}_{Entry}\right) \times \ln(\lambda)$$

- Share of product lines operated by each productivity type affects aggregate growth rate
- The rate of aggregate creative destruction $\tau = Sx^h + (1-S)x^\ell + z$

24

Outline

Revisiting firm-size dynamics

Model

Explaining the changes in firm-size dynamics across BGPs

Implications for the macroeconomy (long run)
Transition dynamics

Discussion

GMM estimation: initial balanced growth path

	Data	Model
Moments (Sweden)		
Avg. sales age 8 relative to entrants in logs (cohorts 1997–2000)	0.559	0.558
Avg. employment age 8 relative to entrants in logs (cohorts 1997–2000)	0.288	0.288
Cross-sectional SD of log labor shares across entrants (1997–2005)	0.053	0.053
TFP growth g in % (1997–2005; FRED)	3.02	3.02
Entry rate in % (1997–2005)	14.3	14.3
Agg. markup μ in $\%$ (Sandström, 2020; De Loecker and Eeckhout, 2018)	7.5	7.5
Parameters		
ψ_I Internal R&D efficiency		0.144
ψ_{x} Expansion R&D efficiency		0.282
ψ_{z} Entry efficiency		1.483
λ Step size of innovation		1.136
$arphi^h/arphi^\ell$ Productivity gap		1.091
ph Share of high type firms among entrants		0.683
Set exogenously		
ho Discount rate		0.02
ζ R&D cost curvature		2

Average employment relative to entrants in logs (untargeted)

Notes: graph shows the employment dynamics in the model (initial BGP) and data (cohorts 1997–2000).

BGP outcomes in response to a 5% parameter change

	Rel. employment	Rel. sales	Entry rate	S	g
Fall in expansion R&D costs $\frac{1}{\eta_{bc}} \downarrow$	+0.018	+0.019	-0.19	+0.94	+0.02
Rise in internal R&D costs $\frac{1}{\psi_I}$	+0.002	-0.002	-0.07	+0.10	-0.03
Rise in entry costs $\frac{1}{\psi_z}\uparrow$	+0.024	+0.020	-1.02	+1.84	-0.06
Rise in productivity gap $\frac{arphi^h}{arphi^\ell}$ \uparrow	+0.034	+0.028	-1.56	+6.31	-0.09
Fall in share high prod. entrants $p^h \downarrow$	+0.002	+0.002	-0.15	-1.81	-0.01

- Avg. employment at age 8 relative to entrants (Δ in logs)
- ullet Avg. sales at age 8 relative to entrants (Δ in logs)
- Firm entry rate (Δ in percentage points)
- ullet Share of product lines operated by high-productivity firms (Δ in percentage points)
- Aggregate growth rate (Δ in percentage points)
- $\frac{1}{\psi_{\mathbf{z}}}\uparrow$ and $\frac{\varphi^h}{\varphi^\ell}\uparrow$ lead to size expansion, $\frac{1}{\psi_l}\uparrow$ to expansion in employment relative to sales

GMM estimation: new balanced growth path

	Data	Model	ΔBGPs
Moments (Sweden) Avg. employment age 8 relative to entrants in logs (cohorts 2009–2012) Avg. sales age 8 relative to entrants in logs (cohorts 2009–2012)	0.466 0.674	0.466 0.674	+0.178 +0.115
Parameters ψ_z Entry efficiency (Δ in %) ψ_l Internal R&D efficiency (Δ in %)			-22.0 -51.0

- Estimation points to rising costs of firm entry and internal R&D
 - Rising entry costs account for the increase in employment and sales cond. on age
 - Rising internal R&D costs increase employment *relative* to sales for any firm age
- Potential drivers behind rising entry costs: increasing bureaucracy costs
 - "Excessive regulatory and administrative burden can hinder the competitiveness of EU companies [...] raising barriers to entry for new companies" (Draghi report, 2024)

Page count of the U.S. Federal Register

- Register publishes new federal rules and regulations (flow of regulatory burden)
- Similar examples in EU countries. Estimate of the Regulatory Control Council (Germany):
 - Administrative costs for firms tripled over the last ten years

Outline

Revisiting firm-size dynamics

Model

Explaining the changes in firm-size dynamics across BGPs Implications for the macroeconomy (long run)
Transition dynamics

Discussion

Implications for the macroeconomy (long run)

	Initial BGP (in %)	ΔBGPs (in pp.)
Share of product lines operated by high-prod. firms, S	80.6	+17.1
Agg. markup, μ	7.5	-1.2
Entry rate	14.3	-8.1
Agg. growth rate, g	3.02	-0.6

- Reallocation of market shares to high-productivity (high-markup) firms
 Baqaee, Farhi (QJE, 2020); De Loecker, Eeckhout, Unger (QJE, 2020); Kehrig, Vincent (QJE, 2021)
- Agg. markup roughly unchanged (reallocation vs. slower within-firm markup growth)
- ullet Agg. growth rate falls (but agg. productivity increases). Δ Welfare ambiguous
- Fall in entry rate (agg. growth rate) accounts for 80% (60%) of that in the data

Decomposing the fall in the aggregate growth rate

 \bullet Write the agg. growth rate g as

$$g=Sg^h+(1-S)g^\ell+g^z,$$
 where $g^h\equiv (I+x^h)\ln(\lambda)$, $g^\ell\equiv (I+x^\ell)\ln(\lambda)$ and $g^z\equiv z\ln(\lambda)$.

ullet Shift-share decomposition of $\Delta g \equiv g_{new} - g_{old}$

$$\Delta g = \underbrace{S_{old} \Delta g^h + (1 - S_{old}) \Delta g^\ell}_{\Delta \text{Within}} + \underbrace{g^h_{old} \Delta S - g^\ell_{old} \Delta S}_{\Delta \text{Between}} + \underbrace{\Delta g^h \Delta S - \Delta g^\ell \Delta S}_{\Delta \text{Cross}} + \underbrace{\Delta g^z}_{\Delta \text{Entry}}$$

- ΔWithin: changes in incumbents' innovation rates
- Δ Reallocation = Δ Between + Δ Cross: reallocation across productivity types
- ullet Δ Entry: changes in the entry rate

Decomposing the fall in the aggregate growth rate

	Δg (in pp.)
ΔWithin ΔReallocation ΔEntry	+0.22 +0.27 -1.10
Total	-0.62

- Incumbents' average innovation rates increase
 - More productive firms expand faster into new product markets, $x^h \uparrow$
- ullet The reallocation of market shares, ΔS , increases long-run growth
 - Sales shares increasingly concentrated among productive firms that innovate faster
 - Positive long-run growth effects due to changes in industry concentration
- Firm entry rate falls by 8pp. across BGPs, lowering g by 1.1pp.

Outline

Revisiting firm-size dynamics

Model

Explaining the changes in firm-size dynamics across BGPs Implications for the macroeconomy (long run)

Transition dynamics

Discussion

Transition dynamics

- Economy converges to a new BGP with a lower growth rate of aggregate productivity
- Reallocation to more productive incumbents increases the productivity level
- Opposing level and growth effects on aggregate productivity
- What are the welfare effects associated with the changes in firm-size dynamics?

Transition dynamics

(a) Output and quality growth

(c) Rate of creative destruction, τ_t

(b) Change in concentration, $S_t - S_{initial}$

(d) Rate of entry, z_t

Δ Welfare

- Perm. consumption change that yields indifference b/w initial and transition to new BGP
- Transition to new BGP equivalent to permanent 23.3% consumption loss in initial BGP
- Welfare loss sizable
 - Caveat: interpreted high-growth period of late 1990s as initial BGP
 - Transition is quick and no further burst in growth (consistent with data)

Outline

Revisiting firm-size dynamics

Mode

Explaining the changes in firm-size dynamics across BGPs Implications for the macroeconomy (long run) Transition dynamics

Discussion

Discussion

- Firm-size dynamics in Sweden 🕟
- Changes in firm growth vs. selection conditional on survival
- Further evidence for estimated cost changes: sector level
- Further evidence for estimated cost changes: firm level
- Alternative comparative statics estimation: rising productivity gaps

Conclusion

- In addition to a shift in the firm-age distribution. . .
- ... Firm characteristics (in particular size) conditional on firm age have changed, too
- Suggests that falling entry and the expansion of incumbent firms drive the agg. trends
- Model identifies rising entry costs, e.g., due to rising bureaucracy costs, as the main cause
- Firm entry falls, lowering long-run productivity growth and welfare
 - Edmond, Midrigan, Xu (JPE, 2023): small effect of entry subsidies on agg. markup
 - Entry subsidies more effective policy to increase long-run productivity growth?

- Backup Slides -

Data

- Universe of Swedish firms 1997–2017
- Information from balance sheets and profit and loss statements
- Restrict to firms in the private economy with at least one employee
- Birth year defined as year when firm hires its first employee

Data: summary statistics

	25th Pct.	50th Pct.	75th Pct.	Mean	SD	Obs.
Sales*	1.2	2.7	7.8	27.8	568.2	4,918,996
Value added*	0.5	1.1	2.9	7.6	142.3	4,918,996
Employment	1	2	5	9.9	131.1	4,918,996
Wage bill*	0.2	0.6	1.6	3.7	53.0	4,918,996
Capital stock*	0.04	0.2	1.1	9.3	277.0	4,918,996
Intermediate Inputs*	0.4	0.9	2.6	10.8	270.0	4,918,996

Note: variables marked with * are in units of million 2017-SEK (1 SEK pprox 0.1 US dollars). The capital stock is defined as fixed assets minus depreciation.

The dynamics of firm size

• Characterize firm size as a function of firm age in the unbalanced panel of firms

$$\ln \mathsf{Size}_{f,t} = \gamma_0 + \sum_{a_f=1}^{20} \gamma_{a_f} \mathbb{1}_{\mathsf{Age}_{f,t} = a_f} + \theta_c + \theta_k + \epsilon_{f,t} \tag{1}$$

- $Size_{f,t} \in \{Employment_{f,t}, Sales_{f,t}\}$ for firm f
- $\mathbb{1}_{\mathsf{Age}_{f,t}=a_f}$ age dummies
- θ_c cohort c fixed effects
- θ_k 5-digit industry k fixed effects
- $\gamma_{a_1}, \ldots, \gamma_{a_f}, \ldots \gamma_{a_{20}}$ capture the average firm size conditional on age relative to entry

$$\gamma_{\mathbf{a_f}} = E\left[\ln \mathsf{Size}_{f,t} | \mathsf{Age}_{f,t} = \mathbf{a_f}, c, k \right] - E\left[\ln \mathsf{Size}_{f,t} | \mathsf{Age}_{f,t} = 0, c, k \right]$$

• Divide cohorts 1997–2017 into five groups and estimate (1) by cohort group

Average firm size relative to entry: log employment

Notes: graph shows γ_{a_f} indicating the difference in average log employment at age a_f and zero. 95% confidence intervals shown.

Average firm size relative to entry: log sales

Notes: graph shows γ_{a_f} indicating the difference in average log sales at age a_f and zero. Nominals sales deflated to 2017-SEK. 95% confidence intervals shown.

Firm size regressions, cohort \times industry fixed effects

Firm size regressions, year \times industry fixed effects

Firm size regressions, log employment relative to age < 2

Firm size regressions, post Great Recession

Balanced growth path definition

Definition

A balanced growth path (BGP) is a set of allocations $[x_{it}, I_{it}, \ell_{it}, z_t, S_t, y_{it}, C_t]_{it}$ and prices $[r_t, w_t, p_{it}]_{it}$ such that firms choose $[x_{it}, I_{it}, p_{it}]$ optimally, the representative household maximizes utility choosing $[C_t, y_{it}]_{it}$, the growth rate of aggregate variables is constant, the free-entry condition holds, all markets clear and the distribution of quality and productivity gaps is stationary.

▶ Back

Characterization of firm dynamics

• Markups (high and low productivity firms)

$$\begin{split} E\left[\mu_f^h|\text{firm age} = a_f,\varphi^h\right] &= \underbrace{\ln\lambda\times\left(1+I\times E[a_P^\ell|a_f]\right)}_{\text{Quality improvements}} + \underbrace{\left(1-S\right)\times\ln\left(\varphi^h/\varphi^\ell\right)}_{\text{Productivity advantage}} \\ E\left[\mu_f^I|\text{firm age} = a_f,\varphi^\ell\right] &= \underbrace{\ln\lambda\times\left(1+I\times E[a_P^\ell|a_f]\right)}_{\text{Quality improvements}} + \underbrace{S\times\ln\left(\varphi^\ell/\varphi^h\right)}_{\text{Productivity disadvantage}} \end{split}$$

• Sales growth productivity type $f \in \{h, \ell\}$

$$E\left[\ln npy|a_f,\varphi^f\right] - E\left[\ln npy|0,\varphi^f\right] = \underbrace{g \times a_f}_{\text{Aggregate growth}} + \underbrace{\sum_{n=1}^{n=1} \ln n \times \rho^f\left(n|a_f\right)}_{\text{Firm's product growth}}$$

• Employment growth productivity type $f \in \{h, l\}$

$$E[\ln l_f | a_f, \varphi^f] - E[\ln l_f | 0, \varphi^f] = \underbrace{E\left[\ln n | a_f, \varphi^f\right]}_{\text{Firm's product growth}} - \underbrace{\left(E\left[\ln \mu_f | a_f, \varphi^f\right] - E\left[\ln \mu_f | 0, \varphi^f\right]\right)}_{\text{Firm's markup growth}}$$

Rising productivity gaps

- Aghion et al. (2023): $\varphi^h/\varphi^\ell\uparrow$ as a driver behind rising concentration and falling growth
- Estimate alternative new BGP where φ^h/φ^ℓ (instead of ψ_z) and ψ_I are subject to change
- Estimated fall in internal R&D efficiency almost identical to before (-54% vs. -51%)
- Increase in productivity gap qualitatively consistent with changes in firm growth

	Data	Model
Moments Avg. sales age 8 relative to entry in logs (cohorts 2009–2012) Avg. employment age 8 relative to entry in logs (cohorts 2009–2012)	0.674 0.466	0.579 0.362
Parameters ψ_l Internal R&D efficiency (Δ in %) φ^h/φ^ℓ Productivity gap (Δ in %)		-54 +6

Rising productivity gaps

- Long-run macroeconomic implications in line with recent trends
 - The aggregate growth rate g falls by 0.49pp (0.42pp in Aghion et al., 2023)
 - The entry rate falls by 3pp
 - Concentration *S* rises
- ullet Decomposing the fall in the growth rate g as before

	$\mid \Delta g (\psi_I \downarrow, \varphi^h/\varphi^\ell \uparrow)$	\mid Δ g $(\psi_I \downarrow)$	$\Delta \mathrm{g} \; (arphi^h/arphi^\ell \uparrow)$
ΔWithin	-0.13	-0.24	+0.11
Δ Reallocation	+0.18	+0.01	+0.13
$\Delta Entry$	-0.53	-0.12	-0.35
Total	-0.49	-0.35	-0.11

Selection among entrants

- Selection among entrants (instead of selection among incumbents)
- Acceleration of firm size growth could be due to more productive firms entering
- Equivalent to increase in p^h
- Selection of productivity types should be reflected in employment of entrants
- Employment of entrants has been relatively stable in U.S. Census data
- Suggests that there are no systematic changes in the types of entrants

Selection among entrants

Notes: average log employment of entrants in U.S. Census data.

Decomposing the avg. firm size conditional on age relative to entry

$$E\left[\ln \mathsf{Size}_{f,t}|\mathsf{Age}_{f,t} = a_f\right] - E\left[\ln \mathsf{Size}_{f,t}|\mathsf{Age}_{f,t} = 0\right] = \\ s^h(a_f) \times \underbrace{\left(E\left[\ln \mathsf{Size}_{f,t}|\mathsf{Age}_{f,t} = a_f, \varphi_f = \varphi^h\right] - E\left[\ln \mathsf{Size}_{f,t}|\mathsf{Age}_{f,t} = 0, \varphi_f = \varphi^h\right]\right)}_{\mathsf{Size growth cond. on survival (high productivity)}}$$

$$+ \left(1 - s^h(a_f)\right) \times \underbrace{\left(E\left[\ln \mathsf{Size}_{f,t} | \mathsf{Age}_{f,t} = a_f, \varphi_f = \varphi^\ell\right] - E\left[\ln \mathsf{Size}_{f,t} | \mathsf{Age}_{f,t} = 0, \varphi_f = \varphi^\ell\right]\right)}_{\mathsf{Size growth cond. on survival (low productivity)}}$$

$$+\left(s^{h}(a_{f})-s^{h}(0)\right)\times\underbrace{\left(E\left[\ln\mathsf{Size}_{f,t}|\mathsf{Age}_{f,t}=0,\varphi_{f}=\varphi^{h}\right]-E\left[\ln\mathsf{Size}_{f,t}|\mathsf{Age}_{f,t}=0,\varphi_{f}=\varphi^{\ell}\right]\right)}_{\mathsf{Firm \ exit \ correction \ term}}$$

where $s^h(a_f)$ denotes the share of high-productivity firms among firms of age a_f (selection).

Size growth conditional on survival over the first eight years

	Initial BGP (logs)	New BGP (logs)
Sales (high productivity)	0.625	0.792
Sales (low productivity)	0.370	0.317
Employment (high productivity)	0.357	0.585
Employment (low productivity)	0.096	0.106

- Sales of high-productivity firms grow faster, that of low-productivity firms slower
- Employment of high-productivity firms grows faster
- Size growth conditional on survival of high-productivity firms accelerated

Share of high-productivity firms among firms of age a_f

• Share of high-productivity firms among surviving firms increases for any age

Potential causes behind rising entry costs

- Rising stock of fixed assets (e.g. IPP, structures) increases the cost of firm startups
 - Relative firm size increased the most in U.S. sectors with largest rise in fixed assets
 - Sectors with largest rise in fixed assets experienced greatest decline in GDP growth

Potential causes behind rising internal R&D costs

- Structural transformation to service economy
 - Swedish manufacturing firms increasingly offer services
 - Volvo offering car maintenance, insurance, leasing, car sharing
 - H&M offering clothing repair and recycling, clothing rentals . . .
 - Agg. level: workforce employed in services from 72% to 79% (1997–2012)
 - U.S. firms responded to China-Shock by increasing employment in services
 - Harder to distance competitor within product markets in services than manufacturing
- Falling R&D output relative to R&D inputs in the U.S. (Bloom et al., 2020)
 - Model points to rising internal rather than expansion R&D costs
 - $\varphi_I \downarrow$ consistent with trends in firm growth
 - $\varphi_{\mathsf{x}} \downarrow$ would counterfactually slow firm growth and reduce concentration

Firm productivity and firm growth in the data

- Model suggests that a firm's productivity type is captured by the markup at entry
- Test relation between firm's productivity and firm growth in the data

$$\Delta \ln \mathsf{Size}_{\mathsf{Age}_{f,t}=8} = \beta_0 + \beta_1 \log \left(\frac{py}{wl}\right)_{\mathsf{Age}_{f,t}=0} + \beta_2 \mathbbm{1}_{c>2003} \log \left(\frac{py}{wl}\right)_{\mathsf{Age}_{f,t}=0} + \theta_c + \theta_k + \epsilon_{f,t}.$$

- Use employment growth of firms that survive up to age eight
- ullet eta_1 captures the effect of firm productivity on firm growth conditional on survival

Firm productivity and firm growth in the data

	Δ In Size _{Age=8}			
$\log\left(\frac{py}{wl}\right)_{Age=0}$	0.066	0.095	0.104	0.113
	(0.006)	(0.006)	(0.006)	(0.006)
$\mathbb{1}_{c>2003}\log\left(\frac{py}{wl}\right)_{\text{Age}=0}$	0.011	0.015	0.017	0.017
, Age=0	(800.0)	(800.0)	(0.008)	(0.008)
$\log K_{Age=0}$			-0.031	-0.009
			(0.002)	(0.003)
$\log M_{ m Age=0}$				-0.053
				(0.003)
Cohort fixed effects	✓	✓	✓	✓
Industry fixed effects	✓	✓	✓	✓
$\log\left(rac{ ho y}{wl} ight)_{Age=0}>0$		✓	✓	✓
N	63,521	62,692	58,304	58,192
R^2	0.04	0.05	0.05	0.05

- More productive firms grow faster in size than less productive ones
- Size growth of productive firms has accelerated over time

