STAT115 Content Speed-Run

Self-Study Pack (Active Recall + Micro Practice + R Mini-Kit)

Prepared for catch-up after a six-week absence

How to use this pack (learning-science built-in)

- Active recall first, reread last: answer from memory before checking. Speaking your answer out loud improves retention.
- **Dual coding:** sketch tiny diagrams (axes, curves, residual plots) alongside formulas and code.
- Spacing & interleaving: tick the review boxes (Day 0/2/7/14) and mix topics during review.
- Error log: when you miss a recall item, write why and how you will avoid it next time.

— Contents

1	Orientation & What Statistics Is	2
2	Statistical Software (R focus)	2
3	Contingency Tables & Basic Probability	3
4	Populations, Parameters, Normal Model (First Look)	3
5	Confidence Intervals (CIs), Confidence Level, SE, Sample Size	4
6	Two Independent Means (Welch Two-Sample t)	4
7	Paired Data (Within-Subject)	5
8	Simple Linear Regression (fit \rightarrow diagnose)	5
9	Checking SLR Assumptions (LINE) with Residuals	6
Fa	Fast Review Sheet	

Lecture 1 — Orientation & What Statistics Is

Core Content	(2–6 min skim)
 Statistics is learning from data and abou Tutorials are highly recommended; R is ava 	
• Final exam: 3 hours, about 90 multiple	
$Exam + 0.3 \times Assignments.$	
Active Recall	(cover Core Content above; answer from memory)
1. Complete: "Statistics is	
2. Besides learning from data, what two word	
3. What is the final-exam format and duration 4. How is the final mark calculated?	n!
5. One reason tutorials add value?	
Micro Practice	(5–10 min)
Find two tutorial slots you can attend and wr	ite them here. Commit on paper as well.
R Mini-Kit	(copy & run)
No code yet—just ensure you can open RStud	io and run: 1 + 1.
Lecture 2 — Statistical Software	e (R focus)
Core Content	(2–6 min skim)
 We will use R via RStudio. Excel is common but limited Minimal R toolkit suffices: read data, summarise, tabula 	· ·
Active Recall	(cover Core Content above; answer from memory)
1. Why is R preferred over pure spreadsheets for analysis?	
2. What does RStudio add on top of base R?3. Name two other statistical packages you know.	
Micro Practice	(5–10 min)
Create a new R script. Type the commands below and run	them without errors.
<pre># Reading and peeking at data D <- read.csv("yourfile.csv") head(D); summary(D)</pre>	
# Categorical tabulation	
<pre>T <- table(D\$A, D\$B); T prop.table(T) # overall proportions</pre>	
prop.table(T, 1) # row proportions prop.table(T, 2) # column proportions	
prop. cable(1, 2) # cotumn proportions	
Spaced Review: Day 0 Day 2 Day 7	Day 14

Lecture 3 — Contingency Tables & Basic Probability

Core Content (2–6 min skim)
 Contingency tables show counts and proportions; treat proportions as probabilities for practice. Marginal probabilities are in the margins; joint inside cells; conditional restrict to a row/column. Independence fails if Pr(Survival Sex) ≠ Pr(Survival).
Active Recall (cover Core Content above; answer from memory)
 Where do marginal probabilities live? If total = 2092 and female-survivors = 316, compute Pr(female ∧ survived). Explain in words why survival and sex are not independent in Titanic data. How do you convert a count table to proportions? Define "joint" vs "conditional" probability in one sentence each.
Micro Practice (5–10 min)
Using Titanic counts, calculate $\Pr(S), \Pr(M), \Pr(S \land M), \Pr(S \mid M)$, then check independence.
<pre># titanic: 2x2 table of counts, rows=sex, cols=survival Total <- sum(titanic) P <- titanic / Total; P # Marginals Pr_S <- margin.table(P, 2)["yes"] Pr_M <- margin.table(P, 1)["male"] # Conditional Pr_S_given_M <- P["male","yes"] / Pr_M</pre>
Lecture 4 — Populations, Parameters, Normal Model (First Look)
Core Content (2–6 min skim)
 Population vs sample; parameter (μ, σ) vs statistic (ȳ, s). Estimation targets parameters; the Normal distribution often models quantitative data.
Active Recall (cover Core Content above; answer from memory)
1. Give one parameter and its sample-statistic counterpart. 2. Why introduce a distributional model like the Normal? 3. What do \bar{y} and s estimate?
Micro Practice (5–10 min)
Sketch a bell curve; mark μ and $\pm 2\sigma$. Write what "about 95%" means under Normal.
R Mini-Kit (copy & run)
<pre>x <- rnorm(100, mean=0, sd=1) mean(x); sd(x) hist(x) # quick visual</pre>
Spaced Review: Day 0 Day 2 Day 7 Day 14

Lecture 5 — Confidence Intervals (CIs), Confidence Level, SE, Sample Size

Core Content (2–6 min skim) • t.test() yields CIs for a mean; increasing conf.level widens the CI. • Standard error of \bar{y} : s/\sqrt{n} . Larger s widens; larger n narrows (all else fixed). • Design question: choose n to hit a target margin of error (MOE). Active Recall 1. How does raising conf.level affect CI width? 2. Write $SE(\bar{y})$. 3. Two levers to narrow a CI? 4. Plain-English meaning of a 95% CI? 5. Why is it unethical to overstate n? Micro Practice (5-10 min)Run t.test(GAG\$conc, conf.level = 0.90/0.95/0.99). Which is widest? Why? out95 <- t.test(GAG\$conc, conf.level = 0.95)</pre> out99 <- t.test(GAG\$conc, conf.level = 0.99) out90 <- t.test(GAG\$conc, conf.level = 0.90)</pre> # Sample-size sketch for MOE (xi) using a pilot s $z \leftarrow qnorm(1-0.05/2); s \leftarrow sd(GAG\$conc); xi \leftarrow 0.04$ n_needed <- ceiling((z*s/xi)^2)</pre> Spaced Review: Day 0 Day 2 Lecture 6 — Two Independent Means (Welch Two-Sample t) Core Content (2–6 min skim) • Use t.test(x, y) for independent groups (Welch by default): outputs t, df, p, CI, and group means. • Interpretation: p-value measures incompatibility with H_0 ; CI indicates plausible effect size. • With small samples, normality matters more; be cautious. **Active Recall** (cover *Core Content* above; answer from memory) 1. State H_0 and H_A for comparing two means. 2. What does Welch guard against vs pooled-variance t? 3. Why doesn't the p-value tell "how big" the effect is? 4. Which parameter does the CI estimate here (write $\mu_1 - \mu_2$)? 5. One assumption to check in each group? Micro Practice (5-10 min)Given control\$Freq and solitary\$Freq, run t.test(control\$Freq, solitary\$Freq) and interpret: Is 0 inside the CI? Which group mean is higher and by how much (roughly)? out <- t.test(control\$Freq, solitary\$Freq)</pre> # group means (mind the order) out\$estimate out\$conf.int # CI for mu_control - mu_solitary out\$p.value

Spaced Review: Day 0 Day 2 Day 7 Day 14
Lecture 7 — Paired Data (Within-Subject)
Core Content (2–6 min skim)
 Paired design: each observation in A corresponds to one in B; analyze differences. Two equivalent paths: (1) compute differences and one-sample t; (2) t.test(A,B, paired=TRUE). The CI from both approaches is identical; wording differs.
Active Recall (cover Core Content above; answer from memory)
 Why analyze paired data via differences? What parameter is tested in paired t (write μ_d)? How do the two outputs differ in wording but not numbers? Give a real-world example that should be analyzed as paired. What goes wrong if you treat paired observations as independent?
Micro Practice (5–10 min)
For auditory/visual reaction times, create a difference variable and run both analyses. Confirm the same CI.
R Mini-Kit (copy & run)
AV <- read.csv("AV.csv") AV\$differ <- AV\$visual - AV\$auditory # Option 1 one <- t.test(AV\$differ) # Option 2 (equivalent CI) two <- t.test(AV\$visual, AV\$auditory, paired=TRUE) one\$conf.int; two\$conf.int
Spaced Review: \square Day 0 \square Day 2 \square Day 7 \square Day 14 Lecture 8 — Simple Linear Regression (fit \rightarrow diagnose)
Core Content (2–6 min skim)
 Model: y = β₀ + β₁x + ε. Fitted by least squares (minimise squared residuals). Interpret β₁ as expected change in y per 1-unit increase in x (when sensible). Be cautious interpreting β₀ if x = 0 lies outside observed range.
Active Recall (cover Core Content above; answer from memory)
 In words, what are fitted values and residuals? Explain β₁ in your own words. Why might β₀ be uninterpretable in some data sets?
Micro Practice (5–10 min)
Fit a line predicting possum head length from total length. Write one sentence interpreting β_1 .
R Mini-Kit (copy & run)
<pre>m <- lm(head_l ~ total_l, data=possum) coef(m); fitted(m); residuals(m)</pre>
Spaced Review: Day 0 Day 2 Day 7 Day 14

Lecture 9 — Checking SLR Assumptions (LINE) with Residuals

Core Content (2-6 min skim) \bullet Assumptions: **LINE** = Linearity, Independence, Normality, Equal variance of errors. • Use studentised residuals and residuals vs fitted to diagnose trend (linearity), funnel (variance), outliers. **Active Recall** (cover Core Content above; answer from memory) 1. Expand LINE. 2. Which plot do you look at first to check assumptions? 3. High-level meaning of a studentised residual? 4. Name one worrying pattern in residuals-vs-fitted. 5. Why check assumptions after fitting? Micro Practice (5–10 min) Make the residual plot for the possum model; add a horizontal line at 0. Note any trends or funnels. fit <- lm(head_l ~ total_l, data=possum)</pre> rvf <- rstudent(fit)</pre> plot(fitted(fit), rvf); abline(h=0) Spaced Review: Day 0 Day 2 Day 7 Day 14

— Fast Review Sheet (pin on your wall)

- Contingency tables \rightarrow marginal, joint, conditional; independence check: $Pr(A \mid B) \stackrel{?}{=} Pr(A)$.
- CIs: width \uparrow with conf.level \uparrow or $s \uparrow$; width \downarrow with $n \uparrow$.
- \bullet Welch two-sample t for independent groups; paired t for within-subject differences.
- SLR: fit with lm(y ~ x); check LINE via residual plots and studentised residuals.