Price-Setting with Menu Costs

Matthew Rognlie (based on Auclert, Rigato, Rognlie, Straub 2022)

NBER Heterogeneous-Agent Macro Workshop, Spring 2022

(TD) **Time dependent**: Pr(price change) depends on time since last adjustment

• tractable, e.g. for Calvo with constant probability get Phillips curve

$$\pi_t = \kappa \widehat{mc}_t + \beta \mathbb{E}_t \pi_{t+1}$$
 (NK-PC)

- $\kappa =$ slope of the Phillips curve, rises with probability
- $\widehat{\mathit{mc}}_{\mathsf{t}} = \mathsf{arbitrary}$ real marginal cost \sim output gap \to easy to embed in DSGE

(TD) **Time dependent**: Pr(price change) depends on time since last adjustment

• tractable, e.g. for Calvo with constant probability get Phillips curve

$$\pi_t = \kappa \widehat{mc}_t + \beta \mathbb{E}_t \pi_{t+1}$$
 (NK-PC)

- $\kappa =$ slope of the Phillips curve, rises with probability
- $\widehat{\mathit{mc}}_{\mathsf{t}} = \operatorname{\mathsf{arbitrary}}$ real marginal cost \sim output gap \rightarrow easy to embed in DSGE
- (SD) **State dependent**: Pr(price change) depends on a state, eg price gap $p_{it} p_{it}^*$
 - better micro fit (e.g. menu cost), but hard to simulate \rightarrow no NK-PC!
 - simpler experiments: e.g. permanent nominal MC shocks
 - key result: "selection effect", price level more flexible than Calvo
 [Golosov-Lucas, Klenow-Kryvtsov, Nakamura-Steinsson, Midrigan, Alvarez-Lippi...]

(TD) **Time dependent**: Pr(price change) depends on time since last adjustment

• tractable, e.g. for Calvo with constant probability get Phillips curve

$$\pi_t = \kappa \widehat{mc}_t + \beta \mathbb{E}_t \pi_{t+1}$$
 (NK-PC)

- $\kappa =$ slope of the Phillips curve, rises with probability
- $\widehat{\mathit{mc}}_{t} = \mathsf{arbitrary}$ real marginal cost \sim output gap \to easy to embed in DSGE
- (SD) **State dependent**: Pr(price change) depends on a state, eg price gap $p_{it} p_{it}^*$
 - ullet better micro fit (e.g. menu cost), but hard to simulate o no NK-PC!
 - simpler experiments: e.g. permanent nominal MC shocks
 - key result: "selection effect", price level more flexible than Calvo
 [Golosov-Lucas, Klenow-Kryvtsov, Nakamura-Steinsson, Midrigan, Alvarez-Lippi...]

This paper characterizes the **analogue of the NK-PC** for **menu cost models**

• Introduce **generalized Phillips curve** (GPC): linear map from $\{\widehat{\mathsf{mc}}_t\}$ to $\{\pi_t\}$, represented as matrix **K** in the space of $\mathsf{MA}(\infty)$ coefficients:

$$\pi = \mathbf{K} \cdot \widehat{\mathbf{mc}}$$
 (GPC)

- here, π , $\widehat{\mathbf{mc}}$ are coefficients of MA(∞) representation, stacked in vector
- first order + certainty equivalence \Rightarrow can think of $\widehat{\mathbf{mc}}$ as small MIT shock
- **K** exists for any pricing model, including menu cost models
- Calvo NK-PC is a special case of GPC for some K

- Introduce generalized Phillips curve (GPC)
- (1) **Menu cost GPC** = GPC of a mixture of **two TD models**
 - gives exact sense in which SD and TD are "the same" for small shocks
 - ullet TD's depend on steady state moments o "exact sufficient statistics" for **K**

- Introduce generalized Phillips curve (GPC)
- (1) **Menu cost GPC** = GPC of a mixture of **two TD models**
- (2) Menu cost GPC pprox Calvo NK-PC: for some κ

$$\pi_t \approx \kappa \widehat{mc}_t + \beta \mathbb{E}_t \pi_{t+1}$$

- ullet holds for all shocks $\widehat{mc}_{t}
 ightarrow \kappa$ is "approximate sufficient statistic" for **K**
- new models, same old Phillips curve (just a higher κ)
- extends Gertler-Leahy result to much larger set of models

- Introduce generalized Phillips curve (GPC)
- (1) **Menu cost GPC** = GPC of a mixture of **two TD models**
- (2) Menu cost GPC \approx Calvo NK-PC
- (3) Measuring **K**, κ directly from the data
 - can measure sufficient statistics for **K** straight from cross-sectional data on price changes; no need to simulate the menu cost model

- Introduce generalized Phillips curve (GPC)
- (1) **Menu cost GPC** = GPC of a mixture of **two TD models**
- (2) Menu cost GPC \approx Calvo NK-PC
- (3) Measuring **K**, κ directly from the data

(1) **Generalized Phillips curve** (GPC) **K** shows how to embed menu cost models in GE, with three ways to obtain **K**

- (1) **Generalized Phillips curve** (GPC) **K** shows how to embed menu cost models in GE, with three ways to obtain **K**
- (2) For quantitative macro literature, approximate equivalence result rationalizes the Calvo New Keynesian Phillips curve with better microfoundations

- (1) **Generalized Phillips curve** (GPC) **K** shows how to embed menu cost models in GE, with three ways to obtain **K**
- (2) For quantitative macro literature, approximate equivalence result rationalizes the Calvo New Keynesian Phillips curve with better microfoundations
- (3) For literature trying to match both micro and macro, both optimism and caution
 - **Optimism**, because micro-based menu cost models can be taken to the macro data using the generalized Phillips curve
 - Caution, because these seem so close to the Calvo model that they suffer from the same macro deficiencies, like lack of internal persistence and extreme forward-lookingness

- (1) **Generalized Phillips curve** (GPC) **K** shows how to embed menu cost models in GE, with three ways to obtain **K**
- (2) For quantitative macro literature, approximate equivalence result rationalizes the Calvo New Keynesian Phillips curve with better microfoundations
- (3) For literature trying to match both micro and macro, both optimism and caution
- (4) **Limitation**: following Phillips curve literature, aggregate analysis is mostly first-order

Pricing models and GPC

- Discrete time, quadratic approximation to firm's objective function
- Firm *i* chooses **price gap** $x_{it} = p_{it} p_{it}^*$:
 - log price p_{it} net of idiosyncratic optimum $p_{it}^* = p_{it-1}^* + \epsilon_{it}$, $\epsilon_{it} \sim f(\epsilon)$ iid
 - if p_{it} is unchanged, x_{it} inherits random walk, $x_{it} = x_{it-1} \epsilon_{it}$
 - static optimum: $x_{it} = \log MC_t$, where $\log MC_t$ is MIT shock to nominal marginal cost

- Discrete time, quadratic approximation to firm's objective function
- Firm *i* chooses **price gap** $x_{it} = p_{it} p_{it}^*$:
 - log price p_{it} net of idiosyncratic optimum $p_{it}^* = p_{it-1}^* + \epsilon_{it}$, $\epsilon_{it} \sim f(\epsilon)$ iid
 - if p_{it} is unchanged, x_{it} inherits random walk, $x_{it} = x_{it-1} \epsilon_{it}$
 - static optimum: $x_{it} = \log MC_t$, where $\log MC_t$ is MIT shock to nominal marginal cost

$$\min_{\{x_{it}\}} \mathbb{E}_{o} \sum_{t=o}^{\infty} \beta^{t} \left[\frac{1}{2} \left(x_{it} - \log MC_{t} \right)^{2} + \xi_{it} \cdot \mathbf{1}_{\{x_{it} \neq x_{it-1} - \epsilon_{it}\}} \right]$$

• $\xi_{it} \in \{0, \xi\}$ iid random menu cost, $\mathbb{P}(\xi_{it} = 0) = \lambda$

- Discrete time, quadratic approximation to firm's objective function
- Firm *i* chooses **price gap** $x_{it} = p_{it} p_{it}^*$:
 - log price p_{it} net of idiosyncratic optimum $p_{it}^* = p_{it-1}^* + \epsilon_{it}$, $\epsilon_{it} \sim f(\epsilon)$ iid
 - if p_{it} is unchanged, x_{it} inherits random walk, $x_{it} = x_{it-1} \epsilon_{it}$
 - static optimum: $x_{it} = \log MC_t$, where $\log MC_t$ is MIT shock to nominal marginal cost

$$\min_{\{x_{it}\}} \mathbb{E}_{o} \sum_{t=0}^{\infty} \beta^{t} \left[\frac{1}{2} \left(x_{it} - \log MC_{t} \right)^{2} + \xi_{it} \cdot \mathbf{1}_{\{x_{it} \neq x_{it-1} - \epsilon_{it}\}} \right]$$

- $\xi_{it} \in \{0, \xi\}$ iid random menu cost, $\mathbb{P}(\xi_{it} = 0) = \lambda$
 - $\lambda = o$ is Golosov-Lucas (GL), $\lambda \in (o, 1)$ is Nakamura-Steinsson (NS)

- Discrete time, quadratic approximation to firm's objective function
- Firm *i* chooses **price gap** $x_{it} = p_{it} p_{it}^*$:
 - log price p_{it} net of idiosyncratic optimum $p_{it}^* = p_{it-1}^* + \epsilon_{it}$, $\epsilon_{it} \sim f(\epsilon)$ iid
 - ullet if p_{it} is unchanged, x_{it} inherits random walk, $x_{it} = x_{it-1} \epsilon_{it}$
 - static optimum: $x_{it} = \log MC_t$, where $\log MC_t$ is MIT shock to nominal marginal cost

$$\min_{\{x_{it}\}} \mathbb{E}_{\mathsf{O}} \sum_{t=\mathsf{O}}^{\infty} \beta^{t} \left[\frac{1}{2} \left(x_{it} - \log \mathsf{MC}_{\mathsf{t}} \right)^{2} + \xi_{it} \cdot \mathbf{1}_{\{x_{it} \neq x_{it-1} - \epsilon_{it}\}} \right]$$

- $\xi_{it} \in \{0, \xi\}$ iid random menu cost, $\mathbb{P}(\xi_{it} = 0) = \lambda$
 - $\lambda = 0$ is Golosov-Lucas (GL), $\lambda \in (0,1)$ is Nakamura-Steinsson (NS)
- Price index and inflation: $\log P_t = \int x_{it} di$, $\pi_t = \log P_t \log P_{t-1}$

Solution to menu cost model

- Optimal pricing policy consists of three objects: $(\underline{x}_t, \overline{x}_t, x_t^*)$
 - $[\underline{x}_t, \overline{x}_t] = \text{Ss band, } x_t^* = \text{reset point}$
- Law of motion based on these policies:
 - xit follows random walk (no adjustment)
 - ... until it leaves $[\underline{x}_t, \overline{x}_t]$ or free adjustment is drawn
 - ... then price gap jumps to x_t^*
- Steady state: $\underline{x} = -\overline{x}$, $x^* = MC_{ss} = o$. Distribution: $\pi(x)$ before adjustment.

Ss bands and steady state price gap distribution

General time dependent model

• Exogenous probability of adjusting after s periods without adjustment

[Whelan, Sheedy, Carvalho-Schwartzman, Alvarez-Borovičková-Shimer]

• Parametrize with survival function Φ_s : Prob. that price survives for s periods

General time dependent model

• Exogenous probability of adjusting after s periods without adjustment

[Whelan, Sheedy, Carvalho-Schwartzman, Alvarez-Borovičková-Shimer]

- Parametrize with survival function Φ_s : Prob. that price survives for s periods
- When resetting at *t*, firm *i* solves

$$\min_{\left\{x_{it}\right\}} \mathbb{E}_{t} \sum_{s=0}^{\infty} \beta^{s} \left[\frac{1}{2} \Phi_{s} \left(x_{it+s} - \log MC_{t+s} \right)^{2} \right]$$

- Calvo: $\Phi_s = (1 \lambda)^s$ (constant adjustment hazard λ)
- Hazard rate can have any shape: increasing (e.g. Taylor model), decreasing...

- Start in steady state, consider MIT shock to nominal cost $\{MC_s\}_{s\geq 0}$
- ullet Both models boil down to functions \mathcal{P}_t such that

$$P_t = \mathcal{P}_t\left(\{MC_s\}\right)$$

- Start in steady state, consider MIT shock to nominal cost $\{MC_s\}_{s\geq 0}$
- Both models boil down to functions \mathcal{P}_t such that

$$P_t = \mathcal{P}_t (\{MC_s\})$$
 \Rightarrow for small shocks: $\hat{P}_t = \sum_{s=0}^{\infty} \frac{\partial \log \mathcal{P}_t}{\partial \log MC_s} \widehat{MC}_s$

- Start in steady state, consider MIT shock to nominal cost $\{MC_s\}_{s\geq 0}$
- ullet Both models boil down to functions \mathcal{P}_t such that

$$P_t = \mathcal{P}_t \left(\{ MC_s \} \right) \quad \Rightarrow \quad \text{for small shocks:} \quad \hat{P}_t = \sum_{s=0}^{\infty} \frac{\partial \log \mathcal{P}_t}{\partial \log MC_s} \widehat{MC}_s$$

• Define the pass-through matrix Ψ as sequence-space Jacobian with elements $\Psi_{t,s} \equiv \frac{\partial \log P_t}{\partial \log MC_s}$. Then:

$$\hat{\boldsymbol{P}} = \boldsymbol{\Psi} \cdot \widehat{\boldsymbol{MC}}$$
 where $\hat{\boldsymbol{P}} \equiv \left(\hat{P}_{o}, \hat{P}_{1}, \hat{P}_{2}, \ldots\right)'$, $\widehat{\boldsymbol{MC}} \equiv \left(\widehat{MC}_{o}, \widehat{MC}_{1}, \ldots\right)'$

9

- Start in steady state, consider MIT shock to nominal cost $\{MC_s\}_{s\geq 0}$
- ullet Both models boil down to functions \mathcal{P}_t such that

$$P_t = \mathcal{P}_t (\{MC_s\})$$
 \Rightarrow for small shocks: $\hat{P}_t = \sum_{s=0}^{\infty} \frac{\partial \log \mathcal{P}_t}{\partial \log MC_s} \widehat{MC}_s$

• Define the pass-through matrix Ψ as sequence-space Jacobian with elements $\Psi_{t,s} \equiv \frac{\partial \log P_t}{\partial \log MC_s}$. Then:

$$\hat{\boldsymbol{P}} = \boldsymbol{\Psi} \cdot \widehat{\boldsymbol{MC}}$$
 where $\hat{\boldsymbol{P}} \equiv \left(\hat{P}_{o}, \hat{P}_{1}, \hat{P}_{2}, \ldots\right)'$, $\widehat{\boldsymbol{MC}} \equiv \left(\widehat{MC}_{o}, \widehat{MC}_{1}, \ldots\right)'$

- column s = IRF of price level to small aggregate nominal cost shock at date s
- IRF to permanent shock: $\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \mathbf{1}$ [Golosov-Lucas, Alvarez-Le Bihan-Lippi, ...]
- flexible prices $\Leftrightarrow \Psi = I$

$$x_{t}^{*} = \frac{\sum_{s \geq 0} \beta^{s} \Phi_{s} \widehat{MC}_{t+s}}{\sum_{s \geq 0} \beta^{s} \Phi_{s}}$$
 (Policy equation)

$$x_t^* = \frac{\sum_{s \ge 0} \beta^s \Phi_s \widehat{MC}_{t+s}}{\sum_{s \ge 0} \beta^s \Phi_s}$$
 (Policy equation)

• Price level: (notice the same Φ_s appears!)

$$\hat{P}_t = \frac{\sum_{s=o}^t \frac{\Phi_s X_{t-s}^*}{\sum_{s>o} \Phi_s}}{\sum_{s>o} \Phi_s}$$
 (Law of motion)

$$x_t^* = \frac{\sum_{s \ge 0} \beta^s \Phi_s \widehat{MC}_{t+s}}{\sum_{s \ge 0} \beta^s \Phi_s}$$
 (Policy equation)

• Price level: (notice the same Φ_s appears!)

$$\hat{P}_t = \frac{\sum_{s=0}^t \Phi_s X_{t-s}^*}{\sum_{s>0} \Phi_s}$$
 (Law of motion)

Implies rank-one fake news matrix:

$$\mathbf{F}^{\Phi} \equiv \frac{1}{\left(\sum_{s \geq 0} \Phi_{s}\right) \left(\sum_{s \geq 0} \beta^{s} \Phi_{s}\right)} \begin{pmatrix} \Phi_{0} \\ \Phi_{1} \\ \Phi_{2} \\ \vdots \end{pmatrix} \begin{pmatrix} \Phi_{0} & \beta \Phi_{1} & \beta^{2} \Phi_{2} & \cdots \end{pmatrix}$$

$$x_t^* = \frac{\sum_{s \ge o} \beta^s \Phi_s \widehat{MC}_{t+s}}{\sum_{s \ge o} \beta^s \Phi_s}$$
 (Policy equation)

• Price level: (notice the same Φ_s appears!)

$$\hat{P}_t = \frac{\sum_{s=0}^t \Phi_s X_{t-s}^*}{\sum_{s>0} \Phi_s}$$
 (Law of motion)

$$\Psi^{\Phi} \equiv \frac{1}{\left(\sum_{s \geq 0} \Phi_{s}\right) \left(\sum_{s \geq 0} \beta^{s} \Phi_{s}\right)} \begin{pmatrix} \Phi_{0} & 0 & 0 & \cdots \\ \Phi_{1} & \Phi_{0} & 0 & \cdots \\ \Phi_{2} & \Phi_{1} & \Phi_{0} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix} \begin{pmatrix} \Phi_{0} & \beta \Phi_{1} & \beta^{2} \Phi_{2} & \cdots \\ 0 & \Phi_{0} & \beta \Phi_{1} & \cdots \\ 0 & 0 & \Phi_{0} & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

Can read off $\{\Phi_s\}$ from IRF to permanent shock: $(\Psi^{\Phi} \cdot \mathbf{1})_t = \sum_{s=0}^t \Phi_s / \sum_{s=0}^\infty \Phi_s$

- In simple GE models, $\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \mathbf{1}$ gives IRF of price level to money shock
- In std NK models, want response of π_t to real marginal cost $\widehat{mc}_t = \widehat{MC}_t \hat{P}_t$

- In simple GE models, $\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \mathbf{1}$ gives IRF of price level to money shock
- In std NK models, want response of π_t to real marginal cost $\widehat{mc}_t = \widehat{MC}_t \hat{P}_t$
- Get \hat{P}_t via fixed point equation

$$\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \left(\widehat{\mathbf{mc}} + \hat{\mathbf{P}} \right)$$

- In simple GE models, $\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \mathbf{1}$ gives IRF of price level to money shock
- In std NK models, want response of π_t to real marginal cost $\widehat{mc}_t = \widehat{MC}_t \hat{P}_t$
- Get \hat{P}_t via fixed point equation

$$\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \left(\widehat{\mathbf{mc}} + \hat{\mathbf{P}} \right)$$

solution

$$\hat{\mathbf{P}} = \left(\sum_{k=1}^{\infty} \mathbf{\Psi}^{k}\right) \cdot \widehat{\mathbf{mc}} = (\mathbf{I} - \mathbf{\Psi})^{-1} \mathbf{\Psi} \cdot \widehat{\mathbf{mc}}$$

- In simple GE models, $\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \mathbf{1}$ gives IRF of price level to money shock
- In std NK models, want response of π_t to real marginal cost $\widehat{mc}_t = \widehat{MC}_t \hat{P}_t$
- Get \hat{P}_t via fixed point equation

$$\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \left(\widehat{\mathbf{mc}} + \hat{\mathbf{P}}\right)$$

solution

$$\hat{\mathbf{P}} = \left(\sum_{k=1}^{\infty} \mathbf{\Psi}^{k}\right) \cdot \widehat{\mathbf{mc}} = (\mathbf{I} - \mathbf{\Psi})^{-1} \mathbf{\Psi} \cdot \widehat{\mathbf{mc}}$$

• Get inflation π_t using lag matrix **L**. Find **Generalized Phillips Curve (GPC) K**

$$\pi = (\mathbf{I} - \mathbf{L})(\mathbf{I} - \mathbf{\Psi})^{-1}\mathbf{\Psi} \cdot \widehat{\mathbf{mc}} \equiv \mathbf{K} \cdot \widehat{\mathbf{mc}}$$

- In simple GE models, $\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \mathbf{1}$ gives IRF of price level to money shock
- In std NK models, want response of π_t to real marginal cost $\widehat{mc}_t = \widehat{MC}_t \hat{P}_t$
- Get \hat{P}_t via fixed point equation

$$\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \left(\widehat{\mathbf{mc}} + \hat{\mathbf{P}}\right)$$

solution

$$\hat{\mathbf{P}} = \left(\sum_{k=1}^{\infty} \mathbf{\Psi}^{k}\right) \cdot \widehat{\mathbf{mc}} = (\mathbf{I} - \mathbf{\Psi})^{-1} \mathbf{\Psi} \cdot \widehat{\mathbf{mc}}$$

• Get inflation π_t using lag matrix **L**. Find **Generalized Phillips Curve (GPC) K**

$$\pi = (\mathbf{I} - \mathbf{L})(\mathbf{I} - \mathbf{\Psi})^{-1}\mathbf{\Psi} \cdot \widehat{\mathbf{mc}} \equiv \mathbf{K} \cdot \widehat{\mathbf{mc}}$$

• Models with the same Ψ also have the same K.

Exact equivalence: Menu cost $model = 2 \times TD$

• Permanent nominal shock: $(\underline{x}, \overline{x}, x^*)$ all shift up by 1 (infinitesimal unit)

Split up into only shift in Ss bands ("extensive margin")

- Split up into only shift in Ss bands ("extensive margin")
- ... and only shift in reset point ("intensive margin")

- Split up into only shift in **Ss bands ("extensive margin")** $\rightarrow \{\Phi_t^e\}$
- ullet ... and only shift in reset point ("intensive margin") $o \left\{ \Phi_t^i
 ight\}$

- Split up into only shift in **Ss bands ("extensive margin")** $\rightarrow \{\Phi_t^e\}$
- ullet ... and only shift in reset point ("intensive margin") $o \left\{ \Phi_t^i
 ight\}$
- ullet Let lpha be the long-run price level in the extensive margin experiment

Equivalence result

• Our first result shows that Φ^e and Φ^i are "structural": we can use them to obtain the impulse response to **any other shock**

Equivalence result

• Our first result shows that Φ^e and Φ^i are "structural": we can use them to obtain the impulse response to **any other shock**

Proposition

The pass-through matrix Ψ of the canonical menu cost model with any λ, ξ and any symmetric f is the weighted average of the two TD pass-through matrices

$$\Psi = \alpha \Psi^{\Phi^e} + (1 - \alpha) \Psi^{\Phi^i}$$

Equivalence result

• Our first result shows that Φ^e and Φ^i are "structural": we can use them to obtain the impulse response to **any other shock**

Proposition

The pass-through matrix Ψ of the canonical menu cost model with any λ, ξ and any symmetric f is the weighted average of the two TD pass-through matrices

$$\Psi = \alpha \Psi^{\Phi^e} + (1 - \alpha) \Psi^{\Phi^i}$$

- Menu cost model = 2 \times TD model. Also: Menu cost GPC = GPC of 2 \times TD
- Next: Proof idea + what Φ^e and Φ^i look like

- Key objects in the proof: expected price gaps
- $E^{t}(x) \equiv \mathbb{E}[x_{t}|x_{0} = x]$ is the expected price gap in t periods starting from any x

• Start from $\log P_t = \mathbb{E}\left[x_{it}\right]$

- Start from $\log P_t = \mathbb{E}\left[x_{it}\right]$
- Consider a shock that only affects $\underline{x}_0, \overline{x}_0$. What is its effect on price at t?

$$\log P_{t} = \int_{\underline{X}_{0}}^{\overline{X}_{0}} E^{t}(x) \pi(x) dx + \underbrace{\left(1 - \int_{\underline{X}_{0}}^{\overline{X}_{0}} \pi(x)\right)}_{\text{freq}} \underbrace{E^{t}(0)}_{0}$$

Given **steady state policies**, transition dynamics are governed by $E^{t}(x)$

[Alvarez-Le Bihan-Lippi, Alvarez-Lippi]

- Start from $\log P_t = \mathbb{E}\left[x_{it}\right]$
- Consider a shock that only affects $\underline{x}_0, \overline{x}_0$. What is its effect on price at t?

$$\log P_{t} = \int_{\underline{X}_{0}}^{\overline{X}_{0}} E^{t}(x) \pi(x) dx + \underbrace{\left(1 - \int_{\underline{X}_{0}}^{\overline{X}_{0}} \pi(x)\right)}_{\text{freq}} \underbrace{E^{t}(0)}_{0}$$

Given **steady state policies**, transition dynamics are governed by $E^{t}(x)$

[Alvarez-Le Bihan-Lippi, Alvarez-Lippi]

• For a small shock, using symmetry

$$d \log P_t = \pi \left(\overline{x} \right) \left(d\underline{x}_{\mathsf{O}} + d\overline{x}_{\mathsf{O}} \right) E^t \left(\overline{x} \right)$$

- Start from $\log P_t = \mathbb{E}\left[x_{it}\right]$
- Consider a shock that only affects $\underline{x}_0, \overline{x}_0$. What is its effect on price at t?

$$\log P_{t} = \int_{\underline{X}_{0}}^{\overline{X}_{0}} E^{t}(x) \pi(x) dx + \underbrace{\left(1 - \int_{\underline{X}_{0}}^{\overline{X}_{0}} \pi(x)\right)}_{\text{freq}} \underbrace{E^{t}(0)}_{\text{o}}$$

Given **steady state policies**, transition dynamics are governed by $E^{t}(x)$

[Alvarez-Le Bihan-Lippi, Alvarez-Lippi]

• For a small shock, using symmetry

$$d \log P_t = \pi \left(\overline{x} \right) \left(d\underline{x}_{\mathsf{O}} + d\overline{x}_{\mathsf{O}} \right) E^t \left(\overline{x} \right)$$

• With many changes at dates t - s, get law of motion:

$$d \log P_t = \pi(\bar{x}) \sum_{s>0} E^s(\bar{x}) \cdot (d\underline{x}_{t-s} + d\bar{x}_{t-s})$$

Extensive margin policies and summary

• How are $d\bar{x}_t$, $d\underline{x}_t$ optimally determined? (Policy equation?)

Extensive margin policies and summary

- How are $d\bar{x}_t$, $d\underline{x}_t$ optimally determined? (Policy equation?)
- Using envelope theorem, can show:

$$d\underline{x}_{t} = d\overline{x}_{t} = \frac{\sum_{s \geq 0} \beta^{s} E^{s}\left(\overline{x}\right) \cdot \widehat{MC}_{t+s}}{\sum_{u \geq 0} \beta^{u} E^{u}\left(\overline{x}\right)}$$

The same "virtual survival rate" matters as for l.o.m., just with extra β

Extensive margin policies and summary

- How are $d\bar{x}_t$, $d\underline{x}_t$ optimally determined? (Policy equation?)
- Using envelope theorem, can show:

$$d\underline{x}_{t} = d\overline{x}_{t} = \frac{\sum_{s \geq 0} \beta^{s} E^{s}(\overline{x}) \cdot \widehat{MC}_{t+s}}{\sum_{u \geq 0} \beta^{u} E^{u}(\overline{x})}$$

The same "virtual survival rate" matters as for l.o.m., just with extra β

• Use to rewrite law of motion as

$$d \log P_{t} = 2\pi(\bar{x}) \sum_{s \geq 0} E^{s}(\bar{x}) \frac{\sum_{s \geq 0} E^{s}(\bar{x}) \cdot d\bar{x}_{t}}{\sum_{s \geq 0} E^{s}(\bar{x})}$$

• Extensive margin acts like a TD model, scaled by α , with $\Phi_t^e \equiv E^t(\overline{x})/\overline{x}$.

• Intensive margin is similar. Consider first shock that only affects x_0^* .

- Intensive margin is similar. Consider first shock that only affects x_0^* .
- Mass equal to fraction freq of prices adjusts to dx_0^* rather than 0 at t = 0
- Raises price level by $E^{t}\left(O+dx_{o}^{*}\right)-E^{t}\left(O\right)=\left(E^{t}\right)'\left(O\right)dx_{o}^{*}$ and so $d\log P_{t}=\operatorname{freq}\cdot\left(E^{t}\right)'\left(O\right)dx_{o}^{*}$

- Intensive margin is similar. Consider first shock that only affects x_0^* .
- Mass equal to fraction freq of prices adjusts to dx_0^* rather than 0 at t = 0
- Raises price level by $E^{t}(O + dx_{O}^{*}) E^{t}(O) = (E^{t})'(O) dx_{O}^{*}$ and so $d \log P_{t} = \operatorname{freq} \cdot (E^{t})'(O) dx_{O}^{*}$
- With many changes at dates $s \le t$, get TD law of motion

$$d\log P_t = \operatorname{freq} \cdot \sum_{s \geq 0} \left(E^s\right)'(0) \, dx^*_{t-s} = \left(1 - \alpha\right) \frac{\sum_{s \geq 0} \left(E^s\right)'(0) \cdot dx^*_{t-s}}{\sum_{s \geq 0} \left(E^s\right)'(0)}$$

- Intensive margin is similar. Consider first shock that only affects x_0^* .
- Mass equal to fraction freq of prices adjusts to dx_0^* rather than 0 at t=0
- Raises price level by $E^t(o + dx_o^*) E^t(o) = (E^t)'(o) dx_o^*$ and so

$$d \log P_t = \operatorname{freq} \cdot \left(E^t \right)'(o) \, dx_o^*$$

• With many changes at dates $s \le t$, get TD law of motion

$$d \log P_{t} = \operatorname{freq} \cdot \sum_{s \geq o} (E^{s})'(o) \, dx^{*}_{t-s} = (1 - \alpha) \, \frac{\sum_{s \geq o} (E^{s})'(o) \cdot dx^{*}_{t-s}}{\sum_{s \geq o} (E^{s})'(o)}$$

Meanwhile, envelope theorem shows policy is

$$dx_{t}^{*} = \frac{\sum_{s \geq 0} \beta^{s}(E^{s})'(0) \cdot \widehat{MC}_{t+s}}{\sum_{u \geq 0} \beta^{u}(E^{u})'(0)}$$

• Intensive margin acts like a TD model, scaled down by $(1 - \alpha)$, $\Phi_t^i \equiv (E^t)'(0)$.

• "virtual" survival functions Φ_t^e , Φ_t^i + implied hazards \neq actual ones! The difference is the "selection effect"

- "virtual" survival functions Φ_t^e , Φ_t^i + implied hazards \neq actual ones! The difference is the "selection effect"
- Average survival function $\alpha \Phi_t^e + (1 \alpha) \Phi_t^i$ is close to exponential in practice

Numerical equivalence: Menu cost model pprox Calvo

Calvo

• Ultimately interested in the menu cost GPC $\mathbf{K} = (\mathbf{I} - \mathbf{L})(\mathbf{I} - \mathbf{\Psi})^{-1}\mathbf{\Psi}$

- Ultimately interested in the menu cost GPC $\mathbf{K} = (\mathbf{I} \mathbf{L}) (\mathbf{I} \mathbf{\Psi})^{-1} \mathbf{\Psi}$
- To compare, consider Calvo NK-PC:

$$\pi_{\mathsf{t}} = \kappa \widehat{m\mathsf{c}}_{\mathsf{t}} + \beta \mathbb{E}_{\mathsf{t}} \pi_{\mathsf{t+1}} = \sum_{\mathsf{s}=\mathsf{o}}^{\infty} \kappa \beta^{\mathsf{s}} \mathbb{E}_{\mathsf{t}} \widehat{m\mathsf{c}}_{\mathsf{t+s}}$$

which gives the GPC

$$\mathbf{K}^{Calvo}(\kappa) = \left(\frac{\partial \pi_t}{\partial \widehat{mc}_{t+s}}\right)_{t,s} = \begin{pmatrix} \kappa & \kappa\beta & \kappa\beta^2 & \cdots \\ 0 & \kappa & \kappa\beta & \cdots \\ 0 & 0 & \kappa & \cdots \\ \vdots & \vdots & \vdots & \ddots \end{pmatrix}$$

ightarrow inflation is purely & strongly forward looking, no "intrinsic" persistence

Visualizing GPC for Calvo model

• **Q**: how "far" are our menu cost models from a simple Calvo in practice?

GPC in our two calibrated menu cost models

• Menu cost GPCs "look" very similar to Calvo with different slope parameters!

Finding closest-distance Calvo model

• Let's look for κ that minimizes

$$\mathsf{dist} = \min_{\kappa} \| \| \mathbf{K} - \mathbf{K}^{\mathsf{Calvo}} \left(\kappa \right) \|_{2} / \| \| \mathbf{K} \|_{2}$$

- if $\mathbf{K} = \mathbf{K}^{Calvo}(\tilde{\kappa})$, then dist $= (\tilde{\kappa} \kappa)/\tilde{\kappa}$
- Recall that two models that share the exact same K also share the same:
 - pass-through matrix Ψ
 - IRF to any shock to MC or mc
 - IRF to any fundamental shock once integrated in a broader macro model

(so, they are also indistinguishable in estimation based on macro data)

[Reported R^2 from predicting π_t with $\kappa \widehat{mc}_t + \beta \mathbb{E}_t \pi_{t+1}$ on **K** simulated data]

Extensions

- Strategic complementarities \rightarrow •
- Steady state inflation \rightarrow \square
- Infrequent shocks \rightarrow •
- Multi-product models \rightarrow •
- Multi-sector models →
- Large shocks \rightarrow \square

Measuring the GPC exactly using $E^{t}(x)$

- For **K**, we can measure $E^t(x)$ in the data.
- One option: use data on price changes alone + model law of motion
- To do this, first enrich model to allow for general cdf $\xi_{it}\sim G\left(\cdot\right)$
 - \rightarrow leads to a generalized state-dependent adjustment hazard $\Lambda(x)$

[Caballero-Engel, Alvarez-Lippi-Oskolkov, Karadi-Schoenle-Wursten]

Measuring the GPC exactly using $E^{t}(x)$

- For **K**, we can measure $E^t(x)$ in the data.
- One option: use data on price changes alone + model law of motion
- To do this, first enrich model to allow for general cdf $\xi_{it}\sim G\left(\cdot\right)$
 - ightarrow leads to a generalized state-dependent adjustment hazard Λ (x) [Caballero-Engel, Alvarez-Lippi-Oskolkov, Karadi-Schoenle-Wursten]
- $\Lambda(x)$, $\pi(x)$, σ_{ϵ} can all be backed out from data on price changes

Measuring the GPC exactly using $E^{t}(x)$

- For **K**, we can measure $E^t(x)$ in the data.
- One option: use data on price changes alone + model law of motion
- To do this, first enrich model to allow for general cdf $\xi_{it} \sim G(\cdot)$
 - \rightarrow leads to a generalized state-dependent adjustment hazard $\Lambda(x)$ [Caballero-Engel, Alvarez-Lippi-Oskolkov, Karadi-Schoenle-Wursten]
- $\Lambda(x)$, $\pi(x)$, σ_{ϵ} can all be backed out from data on price changes
 - \rightarrow recover expected price gaps $E^{t}(x)$ from this
- Plug into generalized decomposition

$$\Psi = \alpha \int \frac{\Lambda'(x)\pi(x)G(x)}{\int \Lambda'(\tilde{x})\pi(\tilde{x})G(\tilde{x})d\tilde{x}} \cdot \Psi^{\Phi^{e}(x)}dx + (1-\alpha) \cdot \Psi^{\Phi^{i}}$$

where $\Phi_t^e(x) = E^t(x)/x$ and $\Phi_t^i = (E^t)'(0)$ similar to before $G(x) \equiv \sum_t E^t(x)$ 26

Fitted hazard function $\Lambda(x)$ and (GPC)

• Apply this to Israeli price change distribution [Bonomo-Carvalho-Kryvtsov-Ribon-Rigato]

Conclusion

• Calvo:

$$\pi_{\mathsf{t}} = \kappa^{\mathsf{Calvo}} \widehat{\mathsf{mc}}_{\mathsf{t}} + \beta \mathbb{E}_{\mathsf{t}} \pi_{\mathsf{t+1}}$$

• Menu cost:

$$\pi_t = \sum_{s \geq o} \mathbf{K}_{t,s} \cdot \widehat{\mathit{mc}}_s \approx \kappa \widehat{\mathit{mc}}_t + \beta \mathbb{E}_t \pi_{t+1}, \qquad \kappa > \kappa^{\mathit{Calvo}}$$

Conclusion

• Calvo:

$$\pi_{\mathsf{t}} = \kappa^{\mathsf{Calvo}} \widehat{\mathsf{mc}}_{\mathsf{t}} + \beta \mathbb{E}_{\mathsf{t}} \pi_{\mathsf{t+1}}$$

• Menu cost:

$$\pi_t = \sum_{s \geq o} \mathbf{K}_{t,s} \cdot \widehat{\mathit{mc}}_s \approx \kappa \widehat{\mathit{mc}}_t + \beta \mathbb{E}_t \pi_{t+1}, \qquad \kappa > \kappa^{\mathit{Calvo}}$$

 \bullet Sequence-space Jacobians Ψ and \boldsymbol{K} give new insights!

Conclusion

• Calvo:

$$\pi_{\mathsf{t}} = \kappa^{\mathsf{Calvo}} \widehat{\mathsf{mc}}_{\mathsf{t}} + \beta \mathbb{E}_{\mathsf{t}} \pi_{\mathsf{t+1}}$$

• Menu cost:

$$\pi_t = \sum_{s>o} \mathbf{K}_{t,s} \cdot \widehat{mc}_s \approx \kappa \widehat{mc}_t + \beta \mathbb{E}_t \pi_{t+1}, \qquad \kappa > \kappa^{\text{Calvo}}$$

- Sequence-space Jacobians Ψ and K give new insights!
- ightarrow Menu cost models suffer from similar shortcomings as Calvo....
 - ... more work needed to get model that matches micro prices and macro inflation

Calibration of random menu cost model

- For calibration, assume idiosyncratic shock distribution is $\phi \sim \mathcal{N}\left(\mathsf{O}, \sigma\right)$
- Given λ ; calibrate ξ , σ to match:
- Average frequency of price change of 23.9% quarterly ("freq")
 - Median price adjustment of 8.5%
 [regular price changes for median sector in US CPI, see Nakamura-Steinsson]
- Two benchmarks: $\lambda = 0$ (GL) and $\lambda = 0.75 \cdot \text{freq (NS)}$
- Notes:
 - only two effective parameters are λ/freq and ξ/σ^2 , ξ then determines scale
 - for convenience, we reparameterize by λ/freq and freq (or duration=1/freq)

- Another use of Ψ : permanent cost shock but strategic complementarities
- ullet As in Alvarez-Lippi-Souganidis (2022): parameterize by heta
 - from either Kimball demand or I-O with common input
- Get \hat{P}_t via fixed point equation

$$\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \left(\mathbf{1} + \theta \hat{\mathbf{P}} \right)$$

- Another use of Ψ : permanent cost shock but strategic complementarities
- ullet As in Alvarez-Lippi-Souganidis (2022): parameterize by heta
 - from either Kimball demand or I-O with common input
- Get \hat{P}_t via fixed point equation

$$\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \left(\mathbf{1} + \theta \hat{\mathbf{P}} \right)$$

solution

$$\hat{\mathbf{P}} = \left(\sum_{k=0}^{\infty} (\theta \mathbf{\Psi})^k\right) \cdot \mathbf{\Psi} \mathbf{1} = (\mathbf{I} - \theta \mathbf{\Psi})^{-1} \cdot \hat{\mathbf{P}}_0$$

where $\hat{\mathbf{P}}_{o}$ is response without strategic complementarities

- Another use of Ψ : permanent cost shock but strategic complementarities
- ullet As in Alvarez-Lippi-Souganidis (2022): parameterize by heta
 - from either Kimball demand or I-O with common input
- Get \hat{P}_t via fixed point equation

$$\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \left(\mathbf{1} + \theta \hat{\mathbf{P}} \right)$$

solution

$$\hat{\mathbf{P}} = \left(\sum_{k=0}^{\infty} (\theta \mathbf{\Psi})^k\right) \cdot \mathbf{\Psi} \mathbf{1} = (\mathbf{I} - \theta \mathbf{\Psi})^{-1} \cdot \hat{\mathbf{P}}_{0}$$

where $\hat{\mathbf{P}}_{o}$ is response without strategic complementarities

• ALS use self-adjointness of Ψ to write with eigenvalues-eigenfunctions

- Another use of Ψ : permanent cost shock but strategic complementarities
- ullet As in Alvarez-Lippi-Souganidis (2022): parameterize by heta
 - from either Kimball demand or I-O with common input
- Get \hat{P}_t via fixed point equation

$$\hat{\mathbf{P}} = \mathbf{\Psi} \cdot \left(\mathbf{1} + \theta \hat{\mathbf{P}} \right)$$

solution

$$\hat{\mathbf{P}} = \left(\sum_{k=0}^{\infty} (\theta \mathbf{\Psi})^k\right) \cdot \mathbf{\Psi} \mathbf{1} = (\mathbf{I} - \theta \mathbf{\Psi})^{-1} \cdot \hat{\mathbf{P}}_0$$

where $\hat{\mathbf{P}}_{o}$ is response without strategic complementarities

- ALS use self-adjointness of ♥ to write with eigenvalues-eigenfunctions
- When $\theta =$ 1, we get the GPC K

Gertler-Leahy

• Gertler and Leahy (2008 JPE) assume the mixture distribution

$$\phi = (\mathbf{1} - \eta) \cdot \mathbf{0} + \eta \cdot \mathcal{U} [-\mathbf{M}, \mathbf{M}]$$

where M is large

• This implies

$$E^{t}\left(x\right)=\left(1-\eta\right)^{t}x$$

SO

$$\Phi_t^e = \frac{E^t(\overline{X})}{\overline{X}} = (1 - \eta)^t$$
 $\Phi_t^i = (E^t)'(0) = (1 - \eta)^t$

so pass-through matrix Ψ is a Calvo with reset frequency 1 $-\eta$

Response of Ss bands

- Reason for shock at s affecting date o, then sum across s and shift
- Start with upper Ss band. Value matching implies

$$V_{o}\left(\overline{X_{o}}\right) = V_{o}\left(X_{o}^{*}\right) + \xi$$

Differentiate and use $V'(o) = dV_o(o) = o$

$$dV_{O}(\overline{x}) + V'(\overline{x}) d\overline{x_{t}} = O$$

Next, envelope theorem implies

$$V'(x) = \sum_{t} \beta^{t} E^{t}(x)$$

$$dV_{o}(x) = -\beta^{s} E^{s}(x) dM \hat{C}_{s}$$

Conclude that

$$d\overline{x_0} = \frac{\beta^s E^s(\overline{x})}{\sum_{u} \beta^u E^u(\overline{x})} dM \hat{C}_s$$

Response of reset points

• For reset point, FOC is

$$V_{o}^{\prime}\left(x_{o}^{st}\right) =\mathsf{o}$$

Differentiate

$$dV_{o}^{\prime}\left(o\right)+V^{\prime\prime}\left(o\right)dx_{o}^{*}=o$$

Envelope theorem again

$$V''(x) = \sum_{t} \beta^{t} (E^{t})'(x)$$
$$dV'_{0}(x) = -\beta^{s} (E^{s})'(x) dM \hat{C}_{s}$$

Conclude that

$$dx_{o}^{*} = \frac{\beta^{s} (E^{s})'(o)}{\sum_{u} \beta^{u} (E^{u})'(o)} d\hat{MC}_{s}$$

Menu costs in a Smets-Wouters model (Back)

What determines κ ? A sufficient statistic approach

• Implementing with $\beta = 0.99$, find κ to be: • performance vs model

$$Freq (\Delta p) \begin{vmatrix} Kur (\Delta p) \\ 2 & 3 & 4 \end{vmatrix}$$

$$0.2 \begin{vmatrix} 0.40 & 0.17 & 0.09 \\ 0.3 & 1.02 & 0.40 & 0.22 \\ 0.4 & 2.26 & 0.77 & 0.40 \end{vmatrix}$$

- For reference:
 - In data, quarterly Freq (Δp) \simeq 0.2 to 0.3 (model = 0.24)
 - In data: $Kur(\Delta p)$ between 3 and 4

[Alvarez-Le Bihan-Lippi, Bonomo-Carvalho-Kryvtsov-Ribon-Rigato]

• In models: $Kur(\Delta p)$ is 1.3 for GL, 2.3 for NS, 2 for Midrigan

What determines κ ? A sufficient statistic approach

• Implementing with $\beta = 0.99$, find κ to be: • performance vs model

$$Freq (\Delta p) \begin{vmatrix} & Kur (\Delta p) \\ \hline 2 & 3 & 4 \\ & 0.2 & 0.40 & 0.17 & 0.09 \\ & 0.3 & 1.02 & 0.40 & 0.22 \\ & 0.4 & 2.26 & 0.77 & 0.40 \end{vmatrix}$$

- For reference:
 - In data, quarterly Freq (Δp) \simeq 0.2 to 0.3 (model = 0.24)
 - In data: $Kur(\Delta p)$ between 3 and 4

[Alvarez-Le Bihan-Lippi, Bonomo-Carvalho-Kryvtsov-Ribon-Rigato]

- In models: $Kur(\Delta p)$ is 1.3 for GL, 2.3 for NS, 2 for Midrigan
- Contrast to recent macro full-sample IV estimate of $\kappa = 0.0031!$

• Standard resolution to adjust size: **strategic complementarities**.

- Standard resolution to adjust size: **strategic complementarities**.
- These work very well with GPCs. Suppose now:

$$p_{it}^{*\text{compl}} = \zeta p_{it}^* + (1 - \zeta) \log P_t$$

- $\zeta \in (0,1)$ implies firms like to set price close to aggregate price level
- ullet can microfound in GE with intermediate input share 1 ζ

- Standard resolution to adjust size: **strategic complementarities**.
- These work very well with GPCs. Suppose now:

$$p_{it}^{*\text{compl}} = \zeta p_{it}^* + (1 - \zeta) \log P_t$$

- $\zeta \in (0,1)$ implies firms like to set price close to aggregate price level
- ullet can microfound in GE with intermediate input share 1 $-\zeta$

Proposition

Generalized Phillips Curve scales with ζ :

$$\mathbf{K}^{compl} = \zeta \mathbf{K}$$

- Standard resolution to adjust size: **strategic complementarities**.
- These work very well with GPCs. Suppose now:

$$p_{it}^{*\text{compl}} = \zeta p_{it}^* + (1 - \zeta) \log P_t$$

- $\zeta \in (0,1)$ implies firms like to set price close to aggregate price level
- ullet can microfound in GE with intermediate input share 1 $-\zeta$

Proposition

Generalized Phillips Curve scales with ζ :

$$\mathbf{K}^{compl} = \zeta \mathbf{K}$$

• Note **shape** of Phillips curve is unchanged by ζ , e.g. no more persistence

Arbitrary parameters

Steady state inflation of 2% - Impulse responses

Steady state inflation of 5% - Impulse responses

Infrequent shocks

• Midrigan model: 2 products.

Multi-sector models

Sectors	Golosov-Lucas		Nakamura-Steinsson		Sectors	Golosov-Lucas		Nakamura-Steinsson	
	Real Norm	$\kappa^{\sf Calvo}$	Real Norm	κ^{Calvo}		Real Norm	$\kappa^{\it Calvo}$	Real Norm	κ Calvo
Vehicle fuel, used cars	-	-	-	-	Services (2)	0.001	1.60	0.010	0.44
Utilities	0.212	618.8	0.003	98.82	Hh. furnishings	0.002	0.97	0.010	0.26
Travel	0.071	294.6	0.001	44.13	Services (3)	0.002	0.89	0.010	0.23
Unprocessed food	0.002	23.24	0.003	5.19	Recreation goods	0.002	0.86	0.010	0.23
Transp. goods	0.001	13.31	0.004	3.27	Services (4)	0.003	0.56	0.010	0.15
Services (1)	0.001	14.07	0.004	3.42	Apparel	0.007	0.31	0.012	0.08
Processed food, other	0.001	3.23	0.009	0.90	Services (5)	0.011	0.20	0.015	0.05

Large nominal cost shock and the price level

• 5% shock size with persistence \in {0.3, 0.6, 1}.