CS234: Reinforcement Learning – Problem Session #1

Spring 2023-2024

Problem 1

Suppose we have an infinite-horizon, discounted MDP $\mathcal{M} = \langle \mathcal{S}, \mathcal{A}, \mathcal{R}, \mathcal{T}, \gamma \rangle$ with a finite state-action space, $|\mathcal{S} \times \mathcal{A}| < \infty$ and $0 \le \gamma < 1$. For any two arbitrary sets \mathcal{X} and \mathcal{Y} , we denote the class of all functions mapping from \mathcal{X} to \mathcal{Y} as $\{\mathcal{X} \to \mathcal{Y}\} \triangleq \{f \mid f : \mathcal{X} \to \mathcal{Y}\}$. In the questions that follow, let $Q, Q' \in \{\mathcal{S} \times \mathcal{A} \to \mathbb{R}\}$ be any two arbitrary action-value functions and consider any fixed state $s \in \mathcal{S}$. Without loss of generality, you may assume that $Q(s, a) \ge Q'(s, a), \forall (s, a) \in \mathcal{S} \times \mathcal{A}$.

1. Prove that
$$|\max_{a \in \mathcal{A}} Q(s, a) - \max_{a' \in \mathcal{A}} Q'(s, a')| \le \max_{a \in \mathcal{A}} |Q(s, a) - Q'(s, a)|$$
.

2. Prove that
$$|\min_{a\in\mathcal{A}}Q(s,a)-\min_{a'\in\mathcal{A}}Q'(s,a')|\leq \max_{a\in\mathcal{A}}|Q(s,a)-Q'(s,a)|.$$

3. Prove that
$$\left|\frac{1}{|\mathcal{A}|}\sum_{a\in\mathcal{A}}Q(s,a)-\frac{1}{|\mathcal{A}|}\sum_{a'\in\mathcal{A}}Q'(s,a')\right|\leq \max_{a\in\mathcal{A}}|Q(s,a)-Q'(s,a)|.$$

4. Prove that, for any parameter $\omega \in \mathbb{R}^1$,

$$\left|\frac{1}{\omega}\log\left(\frac{1}{|\mathcal{A}|}\sum_{a\in\mathcal{A}}\exp\left(\omega\cdot Q(s,a)\right)\right) - \frac{1}{\omega}\log\left(\frac{1}{|\mathcal{A}|}\sum_{a'\in\mathcal{A}}\exp\left(\omega\cdot Q'(s,a')\right)\right)\right| \leq \max_{a\in\mathcal{A}}|Q(s,a) - Q'(s,a)|.$$

Hint: define and introduce $\Delta(a) = Q(s, a) - Q'(s, a)$ for $a \in \mathcal{A}$.

¹For any $x \in \mathbb{R}$, $\exp(x) = e^x$ and all logarithms are base e.

The remainder of this question focuses on Algorithm 1, which takes as input an operator

$$\bigotimes: \{\mathcal{S} \times \mathcal{A} \rightarrow \mathbb{R}\} \rightarrow \{\mathcal{S} \rightarrow \mathbb{R}\}$$

that adheres to the following property²:

$$|| \bigotimes Q - \bigotimes Q'||_{\infty} \le ||Q - Q'||_{\infty}, \qquad \forall Q, Q' \in \{S \times A \to \mathbb{R}\}.$$
 (1)

Algorithm 1:

```
Data: Finite MDP \mathcal{M}, Operator \bigotimes satisfying Equation 1
Initialize V_0(s) = 0, \forall s \in \mathcal{S}
                                                                                                         ▷ Initial value function estimate
Initialize k = 1
                                                                                                                             ▶ Iteration counter
while not converged do
     for each state s \in \mathcal{S} do
          V_k(s) = \bigotimes_{a \in \mathcal{A}} \left( \mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s' \mid s, a) V_{k-1}(s') \right).
     k = k + 1
\mathbf{end}
Return V_k
```

5. For any value function $V \in \{S \to \mathbb{R}\}$, define the operator $\mathcal{B} : \{S \to \mathbb{R}\} \to \{S \to \mathbb{R}\}$ as follows:

$$\mathcal{B}V(s) = \bigotimes_{a \in \mathcal{A}} \left(\mathcal{R}(s, a) + \gamma \sum_{s' \in \mathcal{S}} \mathcal{T}(s' \mid s, a) V(s') \right),$$

where \bigotimes satisfies Equation 1. Prove that \mathcal{B} is a γ -contraction with respect to the L_{∞} -norm.

²As always, $||\cdot||_{\infty}$ denotes the L_{∞} -norm.

6. Let \bigotimes , \bigotimes : $\{S \times A \to \mathbb{R}\} \to \{S \to \mathbb{R}\}$ be two operators satisfying Equation 1. Prove that, for any $0 \le \lambda \le 1$,

$$\bigotimes_{\lambda} = \lambda \bigotimes_{1} + (1 - \lambda) \bigotimes_{2}$$

also satisfies Equation 1.

7. For any $0 \le \varepsilon \le 1$, define your own operator $\bigotimes_{\varepsilon} : \{\mathcal{S} \times \mathcal{A} \to \mathbb{R}\} \to \{\mathcal{S} \to \mathbb{R}\}$ and prove that running Algorithm 1 with your \bigotimes_{ε} returns the value function associated with the ε -greedy optimal policy (where the optimal policy maximizes the expected sum of future discounted rewards).