Name: Albo, Russel Zen D. Course and Section: CPE32S9

Date of Submission: February 9, 2024 Instructor: Engr. Roman Richard

Objectives

Part 1: Import the Libraries and Data

Part 2: Plot the Data

Part 3: Perform Simple Linear Regression on the SURVIVAL feature column (you can check the internet on how you can perform simple linear regression)

→ Train

import numpy as np
import pandas as pd

import matplotlib.pyplot as plt

import seaborn as sns

train = "/content/titanic_train.csv"
TitanicTrain = pd.read_csv(train)

TitanicTrain.describe()

	PassengerId	Survived	Pclass	Age	SibSp	Parch	Fare
count	891.000000	891.000000	891.000000	714.000000	891.000000	891.000000	891.000000
mean	446.000000	0.383838	2.308642	29.699118	0.523008	0.381594	32.204208
std	257.353842	0.486592	0.836071	14.526497	1.102743	0.806057	49.693429
min	1.000000	0.000000	1.000000	0.420000	0.000000	0.000000	0.000000
25%	223.500000	0.000000	2.000000	20.125000	0.000000	0.000000	7.910400
50%	446.000000	0.000000	3.000000	28.000000	0.000000	0.000000	14.454200
75%	668.500000	1.000000	3.000000	38.000000	1.000000	0.000000	31.000000
mav	801 <u>000000</u>	1 000000	3 000000	ያለ በበበበበበ	8 000000	6 000000	512 22Q200 •

TitanicTrain.head()

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500	NaN	S
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.2833	C85	С
2	3	1	3	Heikkinen, Miss. Laina	female	26.0	0	0	STON/O2. 3101282	7.9250	NaN	S
3	4	1	1	Futrelle, Mrs. Jacques Heath (Lily May Peel)	female	35.0	1	0	113803	53.1000	C123	S
4	5	0	3	Allen, Mr. William Henry	male	35.0	0	0	373450	8.0500	NaN	S

sns.regplot(x="Fare", y="Survived", data=TitanicTrain);

sns.regplot(x="Age", y="Survived", data=TitanicTrain);

Test

test = "/content/titanic_test.csv"
TitanicTest = pd.read_csv(test)

TitanicTest.describe()

	PassengerId	Pclass	Age	SibSp	Parch	Fare
count	418.000000	418.000000	332.000000	418.000000	418.000000	417.000000
mean	1100.500000	2.265550	30.272590	0.447368	0.392344	35.627188
std	120.810458	0.841838	14.181209	0.896760	0.981429	55.907576
min	892.000000	1.000000	0.170000	0.000000	0.000000	0.000000
25%	996.250000	1.000000	21.000000	0.000000	0.000000	7.895800
50%	1100.500000	3.000000	27.000000	0.000000	0.000000	14.454200
75%	1204.750000	3.000000	39.000000	1.000000	0.000000	31.500000
max	1309.000000	3.000000	76.000000	8.000000	9.000000	512.329200

TitanicTest.head()

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cabin	Embarked
0	892	3	Kelly, Mr. James	male	34.5	0	0	330911	7.8292	NaN	Q
1	893	3	Wilkes, Mrs. James (Ellen Needs)	female	47.0	1	0	363272	7.0000	NaN	S
2	894	2	Myles, Mr. Thomas Francis	male	62.0	0	0	240276	9.6875	NaN	Q
3	895	3	Wirz, Mr. Albert	male	27.0	0	0	315154	8.6625	NaN	S
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	female	22.0	1	1	3101298	12.2875	NaN	S

→ Part 2

```
#Code cell 1
#import pandas
import pandas as pd
path = "/content/titanic_train.csv"
training = pd.read_csv(path)
```

#Code cell 2
#verify the contents of the training dataframe using the pandas info() method.
#training.?
training.info()

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890
Data columns (total 12 columns):

Data	columns (tota	ar iz columns):	
#	Column	Non-Null Count	Dtype
0	PassengerId	891 non-null	int64
1	Survived	891 non-null	int64
2	Pclass	891 non-null	int64
3	Name	891 non-null	object
4	Sex	891 non-null	object
5	Age	714 non-null	float64
6	SibSp	891 non-null	int64
7	Parch	891 non-null	int64
8	Ticket	891 non-null	object
9	Fare	891 non-null	float64
10	Cabin	204 non-null	object
11	Embarked	889 non-null	object
dtype	es: float64(2), int64(5), obj	ect(5)
memoi	ry usage: 83.	7+ KB	

Are there missing values in the data set?

• Yes, there are missing values in the dataset

```
#Code cell 3
#view the first few rows of the data
#
training.head(5)
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	male	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	female	38.0	1	0	PC 17599	71.283(

Next steps: View recommended plots

#code cell 4
training["Sex"] = training["Sex"].apply(lambda toLabel: 0 if toLabel ==
'male' else 1)

#code cell 5
#view the first few rows of the data again
training.head(5)

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833

Code cell 6
training["Age"].fillna(training["Age"].mean(), inplace=True)

#code cell 7
#verify that the missing values for the age variable have been eliminated.
training["Age"].head(10)

- 0 22.000000 1 38.000000 2 26.000000
- 2 26.000000 3 35.000000
- 4 35.000000
- 5 29.6991186 54.000000
- 7 2.000000
- 8 27.000000

9 14.000000 Name: Age, dtype: float64

#code cell 8
#create the array for the target values
y_target = training["Survived"].values

```
y_tanget
```

```
array([0, 1, 1, 1, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 0, 1,
           1, 1, 0, 1, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 1,
           1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 0, 0, 1, 0, 0, 1,
           1, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0,
           1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1,
           0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 0, 0,
           0, 1, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 0, 1, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0,
           0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 1, 1, 1, 0, 0,
           1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 1, 0,
           1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0, 1, 0, 0, 1,
           0, 0, 0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 1, 0, 0,
           0, 0, 0, 1, 1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0,
           1, 0, 1, 1, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 1, 0, 1, 1, 1,
           0, 1, 1, 1, 0, 0, 0, 1, 1, 0, 1, 1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 1,
           1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0,
           0, 0, 0, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0,
           0, 1, 1, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 1, 0,
           0, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1,
           0, 0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 1, 1, 1, 0, 0, 1, 0, 1, 0, 0,
           1, 0, 0, 1, 1, 1, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 1, 1, 0, 1, 0,
           0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 1,
           1, 0, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 0, 1, 0,
           1, 1, 0, 1, 1, 0, 1, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1, 0, 0, 1, 0,
           0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 1, 1, 0, 0, 1, 0, 0, 1, 1, 0, 1,
           1, 0, 0, 1, 1, 0, 1, 0, 1, 1, 0, 0, 0, 0, 0, 0, 0, 0, 0, 1, 1, 1,
           1, 1, 0, 0, 1, 1, 0, 1, 1, 1, 0, 0, 0, 1, 0, 1, 0, 0, 0, 1, 0, 0,
           0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 1, 0, 0, 1, 0, 0, 1,
           0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 0, 1, 0, 0,
           0, 0, 0, 1, 0, 1, 1, 1, 0, 1, 0, 1, 0, 1, 0, 1, 0, 0, 0, 0, 0, 0,
           1, 0, 0, 0, 1, 0, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 1, 0, 1, 0, 1,
           0, 0, 0, 0, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0,
           0, 0, 1, 1, 1, 1, 0, 1, 0, 0, 0, 1, 1, 0, 0, 1, 0, 0, 1, 0,
           1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 0, 1, 0, 0, 1,
           0, 0, 1, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 1, 0, 0, 0, 0,
           0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1, 0, 0, 0, 0, 1, 0, 1, 0, 0,
           0, 0, 0, 0, 1, 1, 0, 0, 0, 1, 1, 1, 1, 0, 0, 0, 0, 1, 0, 0, 0,
           0, 0, 0, 0, 0, 0, 1, 1, 0, 1, 0, 0, 0, 1, 1, 1, 1, 1, 0, 0, 0, 1,
           0, 0, 1, 1, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 1, 1, 1,
           1, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 1, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1,
           1, 0, 0, 0, 0, 0, 1, 0, 1, 0])
#code cell 9
columns = ["Fare", "Pclass", "Sex", "Age", "SibSp"]
#create the variable to hold the features that the classifier will use
X_input = training[list(columns)].values
X_input
                                   , 0.
                                                             , 1.
     array([[ 7.25
                       , 3.
                                                , 22.
                       , 1.
                                   , 1.
                                                , 38.
           [71.2833
                                                             , 1.
                       , 3.
                                   , 1.
                                                , 26.
                                                             , 0.
           [ 7.925
                                   , 1.
                       , 3.
                                               , 29.69911765, 1.
                                                                          ],
           [23.45
                                   , 0.
                                                        , 0.
           [30.
                         1.
                                                , 26.
                                                                          ],
                                    , 0.
           7.75
                       , 3.
                                                             , 0.
                                                , 32.
                                                                          ]])
#code cell 10
#import the tree module from the sklearn library
from sklearn import tree
#create clf_train as a decision tree classifier object
clf_train = tree.DecisionTreeClassifier(criterion="entropy", max_depth=3)
#train the model using the fit() method of the decision tree object.
#Supply the method with the input variable X_input and the target variable y_target
clf_train = clf_train.fit(X_input, y_target)
#code cell 11
clf_train.score(X_input,y_target)
```

0.8226711560044894

```
#code cell 12
from six import StringIO
with open("/content/titanic.dot", 'w') as f:
    f = tree.export_graphviz(clf_train, out_file=f, feature_names=columns)

#code cell 13
#run the Graphviz dot command to convert the .dot file to .png
!dot -Tpng /content/titanic.dot -o /content/titanic.png

#code cell 14
#import the Image module from the Ipython.display libary
from IPython.display import Image
#display the decison tree graphic
Image("/content/titanic.png")
```


What describes the group that had the most deaths by number? Which group had the most survivors?

• The group that had the most deaths by numbers are Male while the most survivors are Female

```
#code cell 15
#import the file into the 'testing' dataframe.
path = "/content/titanic_test.csv"
testing = pd.read_csv(path)
testing.info(5)
     <class 'pandas.core.frame.DataFrame'>
     RangeIndex: 418 entries, 0 to 417
     Data columns (total 11 columns):
         Column
                       Non-Null Count
     #
                                       Dtype
         PassengerId 418 non-null
     0
          Pclass
                       418 non-null
                                       int64
      1
                       418 non-null
     2
         Name
                                       object
      3
          Sex
                       418 non-null
                                       object
                       332 non-null
      4
          Age
                                       float64
      5
          SibSp
                       418 non-null
                                       int64
      6
          Parch
                       418 non-null
                                       int64
                       418 non-null
     7
          Ticket
                                       object
     8
          Fare
                       417 non-null
                                       float64
      9
                       91 non-null
                                       object
          Cabin
     10 Embarked
                       418 non-null
                                       object
     dtypes: float64(2), int64(4), object(5)
```

memory usage: 36.0+ KB

How many records are in the data set?

· there are 418 records in the dataset

Which important variables(s) are missing values and how many are missing?

• The missing values of age are 86 and fare had 1 missing values

```
#code cell 16
#replace the Gender labels in the testing dataframe
# Hint: look at code cell 4
testing["Sex"] = testing["Sex"].apply(lambda toLabel: 0 if toLabel == 'male' else 1)
training.head(5)
```

	PassengerId	Survived	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare
0	1	0	3	Braund, Mr. Owen Harris	0	22.0	1	0	A/5 21171	7.2500
1	2	1	1	Cumings, Mrs. John Bradley (Florence Briggs Th	1	38.0	1	0	PC 17599	71.2833
4										•

#code cell 17

#Use the fillna method of the testing dataframe column "Age"
#to replace missing values with the mean of the age values.
testing["Age"].fillna(testing["Age"].mean(), inplace=True)
testing["Fare"].fillna(testing["Fare"].mean(), inplace=True)

#code cell 18
#verify the data preparation steps. Enter and run both the info and head
#methods from here, by entering and running one and then the other.
testing.info()
testing.head(10)

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 418 entries, 0 to 417
Data columns (total 11 columns):
#
    Column
                  Non-Null Count
                                  Dtype
---
0
    PassengerId 418 non-null
                                  int64
1
    Pclass
                  418 non-null
                                  int64
                  418 non-null
                                  object
2
    Name
3
    Sex
                  418 non-null
                                  int64
4
                  418 non-null
                                  float64
    Age
5
    SibSp
                  418 non-null
                                  int64
6
    Parch
                  418 non-null
                                  int64
7
                  418 non-null
    Ticket
                                  object
8
    Fare
                  418 non-null
                                  float64
9
    Cabin
                  91 non-null
                                  object
10 Embarked
                  418 non-null
                                  object
dtypes: float64(2), int64(5), object(4)
memory usage: 36.0+ KB
```

PassengerId Pclass Name Sex Age SibSp Parch Ticket Fare Cabin Emba Kelly, Mr. 0 892 3 0 34.5 0 0 330911 7.8292 NaN James Wilkes, Mrs. 1 893 3 James 1 47.0 363272 7.0000 NaN (Ellen Needs) Myles, Mr. 2 894 2 Thomas 0 62.0 0 240276 9.6875 NaN Francis Wirz, Mr. 3 895 3 0 27.0 0 315154 8.6625 0 NaN Albert Hirvonen, Mrs.

#code cell 19

#create the variable X_{input} to hold the features that the classifier will use $X_{input} = testing[list(columns)].values$

#code cell 20

#apply the model to the testing data and store the result in a pandas datafrae. $\#Use\ X_input\ as\ the\ argument\ for\ the\ predict()\ method\ of\ the\ clf_train\ classifier\ object$

target_labels = clf_train.predict(X_input)

#convert the target array into a pandas dataframe using the pd.DataFrame() method and target as argument

target_labels = pd.DataFrame({'Est_Survival':target_labels, 'Name':testing['Name']})
testing.head(20)

	PassengerId	Pclass	Name	Sex	Age	SibSp	Parch	Ticket	Fare	Cab
0	892	3	Kelly, Mr. James	0	34.50000	0	0	330911	7.8292	Nŧ
1	893	3	Wilkes, Mrs. James (Ellen Needs)	1	47.00000	1	0	363272	7.0000	Na
2	894	2	Myles, Mr. Thomas Francis	0	62.00000	0	0	240276	9.6875	Nε
3	895	3	Wirz, Mr. Albert	0	27.00000	0	0	315154	8.6625	Nε
4	896	3	Hirvonen, Mrs. Alexander (Helga E Lindqvist)	1	22.00000	1	1	3101298	12.2875	Nŧ
5	897	3	Svensson, Mr. Johan Cervin	0	14.00000	0	0	7538	9.2250	Na
6	898	3	Connolly, Miss. Kate	1	30.00000	0	0	330972	7.6292	Νŧ
7	899	2	Caldwell, Mr. Albert Francis	0	26.00000	1	1	248738	29.0000	Nε
8	900	3	Abrahim, Mrs. Joseph (Sophie Halaut Easu)	1	18.00000	0	0	2657	7.2292	Νŧ
9	901	3	Davies, Mr. John Samuel	0	21.00000	2	0	A/4 48871	24.1500	Nε
10	902	3	llieff, Mr. Ylio	0	30.27259	0	0	349220	7.8958	Nŧ
4										•

<class 'pandas.core.frame.DataFrame'>
RangeIndex: 891 entries, 0 to 890

```
#code cell 21
#import the numpy library as np
import numpy as np
# Load data for all passengers in the variable all_data
path = "/content/titanic_train.csv"
all_data = pd.read_csv(path)
# Merging using the field Name as key, selects only the rows of the two datasets that refer to the same passenger
testing_results = pd.merge(target_labels, all_data[['Name','Survived']], on=['Name'])
# Compute the accuracy as a ratio of matching observations to total osbervations. Store this in in the variable acc.
acc = np.sum(testing_results['Est_Survival'] == testing_results['Survived']) /float(len(testing_results))
# Print the result
print(acc)
     1.0
#code cell 22
#import the titanic_all.csv file into a dataframe called all_data. Specify the list of columns to import.
path = "/content/titanic_train.csv"
all_data = pd.read_csv(path, usecols=['Survived','Pclass','Sex','Age','SibSp','Fare'])
#View info for the new dataframe
all_data.info()
```

Data columns (total 6 columns): Non-Null Count Dtype Column -----0 Survived 891 non-null int64 1 Pclass 891 non-null int64 891 non-null 2 Sex object 3 714 non-null float64 Age 891 non-null int64 4 SibSp 891 non-null float64 Fare dtypes: float64(2), int64(3), object(1) memory usage. A1 9± KR