COMP2610 / COMP6261 - Information Theory ASSIGNMENT OF THE P

21 August, 2018

Last time

Assignment Project Exam Help

Markov's inequality

Chebysh https://powcoder.com

Law of large numbers

Add WeChat powcoder

Law of Large Numbers

Theorem

Let X_1, \ldots, X_n be a sequence of iid random variables, with Assignment Project Exam Help

and $\mathbb{V}[X_i] < \infty$. Define

https://powcoder.com

Then, for any $\beta > 0$.

$\underset{\text{This is also called } \bar{X}_n \rightarrow \mu}{\text{Add}} \overset{\text{lim}}{\underset{\text{in probability.}}{p(\mid \bar{X}_n - \mu \mid < \beta)}} = 1.$

Definition: For random variables v_1, v_2, \ldots , we say $v_n \to v$ in probability if for all $\beta > 0$ $\lim_{n\to\infty} P(|v_n - v| > \beta) = 0$.

 β is fixed (not shrinking like $\frac{1}{n}$). Not max/min. Reduction in variability.

This time

Assignment Project Exam Help

https://powcoder.com

Add WeChat powcoder

• Asymptotic Equipartition Property (AEP)

Ensembles and sequences

Assignment Project Exam Help

https://powcoder.com

3 Asymptotic Equipartition Property (AEP)

Add WeChat powcoder

5/31

Ensembles

Assignment Project Exam Help

Ensemble

We will call A the alphabet of the ensemble powcoder

Ensembles

Example: Bent Coin

Assignment Project Exam Help

Let X be an ensemble with outcomes ${\tt h}$ for heads with probability 0.9 and ${\tt t}$ for tails

https://poweoder.com

- The outcome set is $A_X = \{h, t\}$
- The probabilities are

Add WeCharpowcoder

We can also consider blocks of outcomes, which will be useful to describe sequences:

Assignment Project Exam Help

Example (Coin Flips):

```
hhhhthhththh \rightarrow hh hh th ht ht hh \leftarrow (6 \times 2 outcome blocks)

The shift property of the control of the cont
```

Add WeChat powcoder

We can also consider blocks of outcomes, which will be useful to describe

Assignment Project Exam Help

Example (Coin Flips):

```
hhhhthhththh \rightarrow hh hh th ht ht hh \leftarrow (6 \times 2 outcome blocks)

\rightarrow hhhh thht hthh (3 \times 4 outcome blocks)
```

Extended Englished WeChat powcoder

Let X be a single ensemble. The **extended ensemble** of blocks of size N is denoted X^N . Outcomes from X^N are denoted $\mathbf{x} = (x_1, x_2, \dots, x_N)$. The **probability** of \mathbf{x} is defined to be $P(\mathbf{x}) = P(x_1)P(x_2)\dots P(x_N)$.

Example: Bent Coin

Assignment Projector with outcomes Help

Consider X^4 – i.e., 4 flips of the coin.

https://powcode.rhcomt

Add WeChat powcoder

Example: Bent Coin

Assignment Assignment

Consider X^4 – i.e., 4 flips of the coin.

https://powcoder.com.t

$$\textit{P}(\texttt{hthh}) = 0.9 \cdot 0.1 \cdot 0.9 \cdot 0.9 = (0.9)^3 (0.1) \approx 0.0729$$

$$P(\text{htht}) = 0.9 \cdot 0.1 \cdot 0.9 \cdot 0.1 = (0.9)^2 (0.1)^2 \approx 0.0081.$$

Example: Bent Coin

the ensemble X

Thus,

$$H(X^4) = 4H(X) = 4H($$

More generally,

$$H(X^N) = NH(X).$$

Assignment Project Exam Help

The order of outcomes in the sequence is irrelevant

Let X be an ensemble with alphabet $A_X = \{a_1, \dots, a_l\}$.

Assignment Project Exam Help

For a sequence $\mathbf{x} = x_1, x_2, \dots, x_N$, how to compute $p(\mathbf{x})$?

let
$$n_i = \#https://powscooler.com$$

Given the n_i 's, we can compute the probability of seeing \mathbf{x} :

Add We Chat powcoder

$$= P(a_1)^{n_1} \cdot P(a_2)^{n_2} \cdot \ldots \cdot P(a_l)^{n_l} = p_1^{n_1} \cdot p_2^{n_2} \ldots p_l^{n_l}$$

Sufficient statistics: $\{n_1, n_2, \dots, n_l\}$. Use it as a criteria of partitioning.

Sequence Types

Each unique choice of (n_1, n_2, \dots, n_l) gives a different type of sequence

As stugneshed by Law et Looper Exam Help

For a given type of sequence how many sequences are there with these symbol chittps://powcoder.com

of sequences with n_i copies of $a_i = \frac{N!}{n_1! n_2! \dots n_l!}$ Add WeChat powcoder

$${N \choose n_1} {N-n_1 \choose n_2} {N-n_1-n_2 \choose n_3} \dots$$

$$= \frac{N!}{n_1!(N-n_1)!} \cdot \frac{(N-n_1)!}{n_2!(N-n_1-n_2)!} \cdot \frac{(N-n_1-n_2)!}{n_3!(N-n_1-n_2-n_3)!} \dots$$

Arshingfirment Project Exam Help Let $A = \{a, b, c\}$ with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

https://powcoder.com

Add WeChat powcoder

Example

Assignment Project Exam Help

Let $A = \{a, b, c\}$ with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

Each sequence gree (h), $(0.2)^2(0.3)^1(0.9)^3=0.0045$.

Add WeChat powcoder

Example

Assignment Project Exam Help

Let $A = \{a, b, c\}$ with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

Each security $(0.2)^2(0.3)^1(0.9)^3 = 0.0045$.

There are $A^{\frac{6!}{4!1!3!}} = 60$ such sequences. powcoder

Example

Assignment Project Exam Help

Let $A = \{a, b, c\}$ with P(a) = 0.2, P(b) = 0.3, P(c) = 0.5.

Each sequence gree (h, 1, 1, 1) W= (3) Par length and probability $(0.2)^2(0.3)^1(0.9)^3 = 0.0045$.

There are Add We Chat powcoder

The probability **x** is of type (2, 1, 3) is $(0.0015) \cdot 60 = 0.09$.

Study probabilities at the level of types (most likely, average/typical)

Ensembles and sequences

Assignment Project Exam Help

Typical sets https://powcoder.com

3 Asymptotic Equipartition Property (AEP)

Add WeChat powcoder

Assignment Project Exam Help

```
hh https://powcoder.com

ht 0.1875

th 0.1875

th A.06051 WeChat powcoder
```

Example

Assignment Project Exam Help

$\mathbf{x} P(\mathbf{x})$		$P(\mathbf{x})$
hh 7545 S	hhi	JOWN COUCH. COILL
ht 0.1875	hht	0.1406
th 0.1875	hth	0.1406
tt (0.06251	Thh	0:1406 of poyygodon
Add	htt	eChat powcoder
	tht	0.0469
	tth	0.0469
	ttt	0.0156

Example

hh ht th

Assignment Project Exam Help

$P(\mathbf{x})$		$P(\mathbf{x})$	X_	$P(\mathbf{x})$	X	$P(\mathbf{x})$
7545S	hhi	0)48/0	(D)(D)(C)	1.364	ill t	0.0352
0.1875	hht	0.1406	hhht	0.1055	thth	0.0352
0.1875	hth	0.1406	hhth	0.1055	tthh	0.0352
0.06251	thh	0.1406	hthh	0.1055	httt	0.0117
Add	Yh t	0461	l th b h	000055	LHE	0.0117
	tht	0.0469	htht	0.0352	ttht	0.0117
	tth	0.0469	htth	0.0352	ttth	0.0117
	ttt	0.0156	hhtt	0.0352	tttt	0.0039

Observations

Assignment Project Exam Help As N increases, there is an increasing spread of probabilities

The most likely single sequence will always be the all h's $\frac{1}{1}$ However, for N = 4, the most likely sequence type is 3 h's and 1 t

Not surprished causely exchange made and exchange coader

Symbol Frequency in Long Sequences

To judge if a sequence is typical/average, a natural question to ask is:

How often does each symbol appear in a sequence **x** from X^N ?

Intuitively in a sequence of length N, let A, appear for A, times. Help

Then in expectation

 $\underset{\mathsf{Note}\; p_i \,=\, P(a_i),\; \mathsf{and}}{\text{https://powcoder.com}}$

Add Wethat powcoder

Symbol Frequency in Long Sequences

To judge if a sequence is typical/average, a natural question to ask is:

How often does each symbol appear in a sequence **x** from X^N ?

A SSIGNMENT Project Fxam Help

Then in expectation

 $\underset{\mathsf{Note}\; p_i \,=\, P(a_i),\; \mathsf{and}}{\text{https://powcoder.com}}$

Add Wechat powcoder

So the information content $-\log_2 P(\mathbf{x})$ of that sequence is approximately

$$-p_1 N \log_2 p_1 - \ldots - p_l N \log_2 p_l = -N \sum_{i=1}^l p_i \log_2 p_i = NH(X)$$

Assist graph element P that f exclose P is P to P a super to P and P are to P to P and P are to P and P are to P are to P and P are to P and P are to P are to P are to P and P are to P are to P and P are to P are to P are to P and P are to P are to P are to P are to P and P are to P are to P are to P are to P and P are to P and P are to P are to P are to P and P are to P are to P and P are to P are to P and P are to P are the P are

Union of types

We want to consider elements \mathbf{x} that have $-\log_2 P(\mathbf{x})$ "close" to NH(X)

Typical Set Assorganne netypere jeet Exam Help

 $T_{N\beta} \stackrel{\text{def}}{=} \{ \mathbf{x} : |-\log_2 P(\mathbf{x}) - NH(X)| < N\beta \}$

https://poweodericom

Union of types

Add WeChat powcoder

What when $\beta = 0$ (and replace < by \le)?

Criterion based on information content. Other criterion (KL divergence)?

The name "typical" is used since $\mathbf{x} \in T_{N\beta}$ will have roughly $p_1 N$ occurrences of symbol $a_1, p_2 N$ of $a_2, \ldots, p_K N$ of a_K .

-37.3-65.9-56.4-53.2-43.7-56.4-37.3-43.7-59.5-46.8-15.2-332.1

Randomly drawn sequences for P(1) = 0.1. Note: $H(X) \approx 0.47$

Assignment Project Exam Help

 $\underset{\text{Variation is small when }\beta}{\underbrace{https://powcoder.com}} \leq \textit{P}(\textbf{x}) \leq 2^{-\textit{N}(\textit{H}(\textit{X})-\beta)}.$

Number of sequences in the typical set: For any N, β , Add Wechanton Powcoder

Proof of Cardinality Bound

For every $\mathbf{x} \in T_{N\beta}$,

Assignment Project Exam Help

Add We Chart powcoder

$$=2^{-N(H(X)-\beta)}\cdot |T_{N\beta}|.$$

Thus

$$|T_{N\beta}| \leq 2^{N(H(X)+\beta)}$$

Typical Sets Most Likely Sequence

Assignmenta Projecte Exam Help

e.g. with $p_{\rm h}=$ 0.75, we have

https://powcoder.com

whereas H(X) = 0.8113The most likely single sequence \rightarrow hhhh

The most likely single sequence type \rightarrow {hhht, hthh,...}

Most Likely Sequence

Probability of most likely sequence decays like $(p_h)^N$ $(p_h = 0.75)$

Assignments Projecto Examin Help

Blue curve corresponds to typical set with $\beta = 0$. What if $\beta > 0$?

Ensembles and sequences

Assignment Project Exam Help

https://powcoder.com

3 Asymptotic Equipartition Property (AEP)

Add WeChat powcoder

Asymptotic Equipartition Property Eventually Equally Divided Informally

Asymptotic Equipartition P operty (Informal) As $N \to \mathbb{R}$, $\log_2 P(x_1, \dots, x_N)$ is close to -NH(X) with high probability.

For large block sizes "almost all sequences are typical" (i.e., in $T_{N\beta}$) https://powcoder.com

Probability sequence **x** has r heads for N = 100 (left) and N = 1000 (right). Here P(X = head) = 0.1.

Asymptotic Equipartition Property Formally

Asymptotic Equipartition Property

Assignment Project Power Help

$$-\frac{1}{N}\log_2 P(x_1,\ldots,x_N)\to H(X).$$

Exactly the addity we hat powcoder

Asymptotic Equipartition Property

Formally

Asymptotic Equipartition Property

Assignments Project Exim Help

$$-\frac{1}{N}\log_2 P(x_1,\ldots,x_N)\to H(X).$$

Exactly the dility we Chat powcoder

Recall definition: for random variables v_1, v_2, \ldots , we say $v_N \rightarrow v$ in **probability** if for all $\beta > 0 \lim_{N \to \infty} P(|v_N - v| > \beta) = 0$

Here v_N corresponds to $-\frac{1}{N}\log_2 P(x_1,\ldots,x_N)$.

Asymptotic Equipartition Property

Assignmenta Project Exam Help

For an ensemble with binary outcomes, and low entropy,

https://pow/coder.com

i.e. the typical set is a small fraction of all possible sequences

AEP says that with large we a private of to draw a sequence from this small set

Significance in information theory

Asymptotic Equipartition Property

Since x_1, \ldots, x_N are independent,

Assignment, Project Fixam Help

https://powcodenced

Let $Y = -\log p(X)$ and $y_n = -\log p(x_n)$. Then, $y_n \sim Y$, and

Add We hat powcoder

But then by the law of large numbers,

$$(\forall \beta > 0) \lim_{N \to \infty} \rho \left(\left| \frac{1}{N} \sum_{n=1}^{N} y_n - H(X) \right| > \beta \right) = 0.$$

Ensembles and sequences

Assignment Project Exam Help

https://powcoder.com

3 Asymptotic Equipartition Property (AEP)

Add WeChat powcoder

30/31

Summary & Conclusions

Assignment-Project Exam Help

- Typilattps://powcoder.com
- · AsymAtotid duitative Collectia (*Powcoder

Next: Source Coding.