

Community-Based Transactive Coordination Mechanism for Enabling Grid-Edge Systems

John R. Theisen, Anjan Bose, Monish Mukherjee, Dan Burgess, Kenneth Wilhelm, and Michael Diedesch

Overview

- Motivation
- How are communities defined
- What is the mechanism
- How is this simulated
- Results/Interpretation

How can we leverage DERs to lower prices for consumers and provide grid services?

Eco District Bids (DA & B District #1 Bids (DA & RT) Cleared Price / Quantity Bids (DA & RT) District #n Cleared Price / Quantity

Community Architecture

In market cycle (~5/15 minutes)

AVISTA

LSE

- LSE collects bids from all communities
- LSE runs a retail market operation
 - Optimal allocation
 - Maximize Social Welfare
- LSE send dispatch to all communities
 - Cleared price and quantities.

Community District Optimization

Min.
$$\sum_{t=1}^{24} \left[P^{forecast}(t) * Q^{Loadforecast}(t) - P^{forecast}(t) * Q^{PV forecast}_i(t) \pm P^{forecast}(t) * Q^{BESS}_i(t) \right]$$
Building Load - inflexible PVs - estimate BESS - flexible

Constraints:

- BESS SOC dynamics
- PV Forecast Data-driven
- Plug Forecast Data-driven

Outputs:

- BESS DA schedules
 - Active Power (Q_{DA}^{BESS})
 - SOC (SOC_{DA}^{BESS})

LSE Market Optimization

$$\begin{split} & \underset{Q_{LSE},Q_{c}^{j}}{\text{minimize}} \; \left(P_{t}^{actual} * Q_{LSE,t}\right) - \sum_{j=1}^{N} Cost^{j}(Q_{c,t}^{j}) \\ & \text{Subject To:} \quad Q_{LSE,t} + \sum_{j=1}^{N} Q_{c,t}^{j} = 0; \\ & Q_{LSE,t} \geq 0; \quad Q_{c,t}^{j,min} \leq Q_{c,t}^{j} \leq Q_{c,t}^{j,max} \end{split}$$

An Example Real-Time Bid Curve for a Singular Community District

Test System and Community Boundaries

- Communities will leverage wholesale energy market forecasts, building forecasts, and weather forecasts
- Communities will lower prices for eachother by communicating these flexibilities

District Area	Asset Type	Asset Capacity	Inverter Efficiency	Inverter rating
District 1	PV	254.35 kW	0.98	254.35 kW
District 1	Battery	1320 kWHr	0.95	660.00 kW
District 2	Battery	334.8 kWHr	0.95	168.15 kW
District 3	Battery	334.8 kWHr	0.95	168.15 kW

Use-Case Description

1) Schedule 21

Normal customer flat-rate electricity charge with demand charge

2) Prices to Devices

Wholesale Prices with no demand charge

3) Transactive Market

Wholesale Prices and no demand charge with Market Coordination

Substation Demand over 5-day interval

Transactive Market Cleared Prices

Cleared Prices over 5-day interval

When wholesale prices are volatile, the DERs can respond by lowering system demand and therefore prices for eachother

Net Community Demand over 24h interval

	Price Scenario	District 1	District 2	District 3	Total Cost
Base Case	Schedule 21	\$2,802.38	\$3,397.43	\$2,447.91	\$8,647.72
Case 1	Schedule 21	\$2,679.96	\$3,415.35	\$2,437.17	\$8,532.48
Case 2	Prices-to-Devices	\$2,314.59	\$3,357.54	\$2,2547.28	\$7,919.41
Case 3	Transactive	\$2,277.54	\$3,238.39	\$2,161.48	\$7,677.41

Resulting in a 12% reduction in operating costs over 5-day interval

Future Work

- Plan to extend this work by implementing realworld on-site battery control field-testing.
- Implement 3-phase power flow constraints into the community DER optimization formulations.
- Changes to agent objective functions can be extended to include other ancillary services (such as Volt-VAR support, spinning reserve, etc.).

Questions?

Community District 1 supports other two Communities with the larger DER asset profile

Community Demand over 5-day interval

Schedule 21 Pricing Scenario

minimize
$$\sum_{Q_{c,t}^{j}}^{T} \left(\$0.753 \times Q_{c,t}^{j} + \frac{7}{30} Q_{c,t}^{j,max} \right)$$

Community District Optimization

$$\operatorname{Min} \sum_{t=1}^{24} \left[P^{forecast}(t) * Q^{Load}(t) - P^{forecast}(t) * Q^{PV forecast}_i(t) + P^{forecast}(t) * Q^{BESS}_i(t) \right]$$

Building Load - inflexible PVs - estimate

BESS - flexible

$$\underset{\hat{Q_{c,t}}}{\text{minimize}} \sum_{t=1}^{T} [P_t^{forecast} \times Q_{c,t}]$$
 (1a)

$$Q_{c,t} = Q_{Load,t}^{forecast} + Q_{PV,t}^{forecast} + Q_{BESS,t}$$
 (1b)

$$0 \le Q_{BESS,t}^+ \le Q_{BESS,t}^{max,+} \quad \forall t = 1, ..., T \quad (1c)$$

$$0 \le Q_{BESS,t}^- \le Q_{BESS,t}^{max,-} \quad \forall t = 1, ..., T \quad (1d)$$

$$Q_{BESS,t} = Q_{BESS,t}^{+} - Q_{BESS,t}^{-} \quad \forall t = 1, ..., T \quad (1e)$$

$$q_{batt,t} = \frac{Q_{BESS,t}^{+}}{\eta^{+}} - Q_{BESS,t}^{-} \eta^{-} \quad \forall t = 1, ..., T \quad (1f)$$

$$l_t = l_{t-1} - \frac{1}{E_s} q_{batt,t}; \quad \underline{L_t} \le l_t \le \overline{L_t} \quad \forall t = 1, ..., T \quad (1g)$$

$$l_{desired} \le l_T$$
 (1h)

Constraints:

- BESS SOC dynamics
- PV Forecast Data-driven
- Plug Forecast Data-driven

Outputs:

- BESS DA schedules
 - Active Power (Q_{DA}^{BESS})
 - $SOC (SOC_{DA}^{BESS})$