การอบรมคอมพิวเตอร์โอลิมปิก สอวน. ค่ายที่ 2 ปีการศึกษา 2566

ศุนย์คอมพิวเตอร์โอลิมปิก สอวน.

โรงเรียนสามเสนวิทยาลัย – มหาวิทยาลัยธรรมศาสตร์ (ศูนย์คอมพิวเตอร์โอลิมปิก สอวน. ส.ส. – มธ.)

ภาควิชาวิทยาการคอมพิวเตอร์

คณะวิทยาศาสตร์และเทคโนโลยี ม.ธรรมศาสตร์

ช่วงที่ 3: อัลกอริทึม (Algorithms)

ผศ. ดร.วนิดา พฤทธิวิทยา

อ. ดร.พิสิษฐ์ มรรคไพสิษฐ์

ผศ. ดร.ฐาปนา บุญชู

อ. ดร.ศาตนาฎ กิจศิรานุวัตร

วัตถุประสงค์การเรียนรู้ (Our Goals)

- learn several algorithm design techniques by studying a standard set of important algorithms from different areas of computing (different problem types)
- discuss the general framework for efficiency analysis
- so that, students
 - can develop algorithms on their own when given a computational problem
 - can formally argue the correctness of their algorithms
 - can analyze the efficiency of their algorithms

เค้าโครงการอบรม

- บทน้ำ (Introduction)
- การวิเคราะห์ความซับซ้อนของอัลกอริทึม (Algorithmic Complexity)
- กลวิธีทางอัลกอริทึม
 - Brute Force
 - Divide-and-Conquer
 - Decrease-and-Conquer
 - Transform-and-Conquer
 - String Matching Algorithms

- Backtracking &Branch-and-Bound
- Greedy Algorithms
- Graph Algorithms
- Dynamic Programming

เค้าโครงการอบรม

- บทน้ำ (Introduction)
- การวิเคราะห์ความซับซ้อนของอัลกอริทึม (Algorithmic Complexity)
- กลวิธีทางอัลกอริทึม
 - Brute Force
 - Divide-and-Conquer
 - Decrease-and-Conquer
 - Transform-and-Conquer
 - String Matching Algorithms

- Backtracking &Branch-and-Bound
- Greedy Algorithms
- Graph Algorithms
- Dynamic Programming

บทน้ำ (Introduction)

Introduction: What Is an Algorithm?

- an algorithm is a sequence of unambiguous instructions for solving a well-specified computational problem
- an algorithm is a sequence of computational steps that transforms the *legitimate input* into the *desired output* in a *finite amount* of time

Introduction: Computational Problems

- In theoretical computer science, a *computational problem* is a problem that can be solved by *an algorithm* (a step-by-step procedure that can be executed by a computer).
- These *computational problems* have well-defined inputs and outputs, and there exists a *deterministic algorithm* that can produce the correct output for any given input.

Introduction: Computational Problems (2)

For example,

The Problem of Prime Factoring

Given a positive integer n, find a nontrivial prime factor of n.

(decision problem) The Problem of Primality Testing

Given a positive integer n, determine if n is prime.

- More examples:
 - Computing the greatest common divisor of a pair of integers
 - Finding the shortest path between a pair of nodes in a finite graph

Introduction: Computational Problems: Important Problem Types

- Sorting: re-arrange a given set of orderable items
- Searching: Solution consists of one or more values that satisfies a given condition.
 - String Processing: E.g., string matching searching for a given word in a text. Search patterns in DNA sequences database.
 - Combinatorial problems: consist in finding, among a finite set of objects, one that satisfies a set of constraints. Job scheduling problem. Assignment problem. Knapsack problem. Graph Coloring problem. Closest-pair problem.
 - Graph problems: E.g., find a path from one geometric location to another on a map
- Geometric and Numerical problems: E.g., is a given number n a prime?

Introduction: Computational Problems (5)

Advantages:

- Efficiency: may computable problems can be solved efficiently using algorithms.
- Predictability: since computable problems have well-defined inputs and outputs, the behavior of their algorithmic solutions is predictable. This makes it easier to reason about their properties and analyze their performance

Disadvantages:

- Limitations: not all problems are computable.
- Complexity: although computable problems can be solved, the efficiency of the algorithms can vary significantly. Some problems may have solutions that are computationally expensive, requiring a large amount of time or resources to compute the result.

Introduction: Computational Problems (6)

• A *computational problem* can be viewed as *a set of instances* or cases together with a, possibly empty, *set of solutions* for every instance/case.

For example, the problem of Prime Factoring can be viewed as follows:

 $\{[n, p], \text{ where } n \text{ is an integer } > 1 \text{ and } p \text{ is a set prime factors of } n \}$

The Problem of Prime Factoring

Given a positive integer n, find a nontrivial prime factor of n.

$$\{ [n=4, p=2 \times 2], [n=6, p=2 \times 3], [n=15, p=3 \times 5], [n=60, p=3 \times 4 \times 5], ... \}$$

Introduction: ตัวอย่าง Computational Problems : gcd(m, n)

Finding the greatest common divisor (gcd) of two non-negative, not both zero integers

- Problem Statement:
 - ullet Input: two non-negative, not both zero integers called $m{m}$ and $m{n}$, $m{m} \geq m{n}$
 - ullet Output: the greatest common divisor of $oldsymbol{m}$ and $oldsymbol{n}$
- a problem Instance: (18, 12), (60, 24), (12, 0)
- Algorithms: the intuitive algorithm, Euclid's Algorithm

Intuitively based on the definition of gcd

Algorithm $gcd(\mathbf{m}, \mathbf{n})$

If $\mathbf{n} = 0$ Return \mathbf{m} and stop.

While n > 1 do

Begin

If m is divisible by n Return n and stop.

Otherwise, decrease \boldsymbol{n} by one.

End

Return n.

Introduction: ตัวอย่าง Computational Problems: gcd(m, n): Euclid's algorithm

•
$$gcd(\mathbf{m}, \mathbf{n}) = gcd(\mathbf{n}, \mathbf{m} \bmod \mathbf{n})$$

 $gcd(\mathbf{m}, \mathbf{0}) = \mathbf{m}$

• Ex.
$$gcd(18, 12)$$

$$= gcd(12, 6)$$

$$= gcd(6, 0)$$

$$= 6$$

Algorithm
$$gcd(\mathbf{m}, \mathbf{n})$$
While $\mathbf{n} \neq 0$ do
Begin
$$\mathbf{r} = \mathbf{m} \mod \mathbf{n}$$

$$\mathbf{m} = \mathbf{n}$$

$$\mathbf{n} = \mathbf{r}$$
End.

Return **m**.

Introduction: ตัวอย่าง Computational Problems: The Sorting Problem (ปัญหาการเรียงลำดับข้อมูล)

- Sorting problem has a variety of interesting algorithmic solutions that embody many Computer Science ideas:
 - Comparison vs. non-comparison based strategies,
 - Iterative vs. Recursive implementation,
 - Divide-and-Conquer paradigm (e.g., Merge Sort or Quick Sort),
 - Best / Worst / Average-case Time Complexity analysis,
 - Randomized Algorithms, etc.
- various *Sorting Algorithms:* Insertion Sort, Selection Sort, Bubble Sort, Merge Sort, Quick Sort

Introduction: ตัวอย่าง Computational Problems: The Sorting Problem (2)

Sorting Problem (การเรียงลำดับข้อมูล)

- Problem Statement:
 - Input: a sequence of n numbers $\langle a_1, a_2, ..., a_n \rangle$
 - Output: a reordering of the input sequence $<a_1, a_2, ..., a_n>$ such that $a_i \le a_j$ whenever i < j
- a *problem Instance*: the sequence <31, 41, 59, 26, 41, 58>
- given a problem instance: the *input* sequence <31, 41, 59, 26, 41, 58>
- any sorting algorithm that works correctly would yield the desired *output*, that is, the sequence <26, 31, 41, 41, 58, 59>

The Sorting Problem: -- in action

- Bubble Sort
- Selection Sort
- Insertion Sort

See https://visualgo.net/en/sorting

The Sorting Problem: Quick Sort -- in action

The Sorting Problem: Quick Sort -- in action (2)

The Sorting Problem: Quick Sort -- in action (3)

• Worst-Case Scenario: ลิสต์มีข้อมูลจำนวน 7 ตัว

<10, 12, 13, 50, 57, 63, 100>

The Sorting Problem: Quick Sort -- in action (5)

• Worst-Case Scenario: จากตัวอย่าง ลิสต์มีข้อมูลจำนวน 7 ตัว จะพบว่า

<u>รอบที่ 1:</u> ทำการเปรียบเทียบ 6 ครั้ง

รอบที่ 2: ทำการเปรียบเทียบ 5 ครั้ง

<u>รอบที่ 3</u>: ทำการเปรียบเทียบ 4 ครั้ง

. . .

<u>รอบที่ 6</u>: ทำการเปรียบเทียบ 1 ครั้ง

เมื่อ
$$\mathbf{n}$$
 = 7, $\sum_{i=1}^{7-1} (7-i) = \sum_{i=1}^{n-1} (n-i) = \sum_{i=1}^{n-1} n - \sum_{i=1}^{n-1} i$

$$= \underbrace{(n+n+\cdots+n)}_{\mathbf{n}-\mathbf{1}} - \underbrace{\frac{(n-1)\times(n)}{2}}_{\mathbf{n}}$$

$$= (n \times (n-1)) - \frac{n^2 - n}{2} = \frac{n^2 - n}{2}$$

Introduction: ตัวอย่าง Computational Problems: The Sorting Problem: Merge Sort -- in action

Introduction:

Fundamentals of Algorithmic Problem Solving

- 1. Understand the problem
- 2. Choose between exact and approximate problem solving
- 3. Decide on algorithm design techniques and appropriate data structures
- 4. Specify the algorithm: natural language, pseudocode, flowcharts
- 5. Prove the algorithm's correctness
 - 1. Exact algorithms: the algorithm yields a required result for every legitimate input
 - 2. Approximate algorithms: the error produced by the algorithm does not exceed a pre-defined limit
- 6. Analyze the algorithm
- 7. Coding the algorithm

Introduction (19)

- several algorithms for solving the same problem may exist
 - different people have different ideas when solving a problem
 - different algorithm design techniques
- one algorithm can be implemented in several different ways using different data structures
- as a result, different algorithms that are based on different ideas and employ different data structures could produce the desired result with largely different speeds (different execution time or run time)

Introduction (20)

- given an algorithm implemented with one algorithm design technique using one type of data structure
- there are many factors that still play a role in the *running time* of the algorithm
- Let's look at the Sorting problem as our example
 - the number of items to be sorted (input size)
 - the extent to which the items are already somewhat sorted
 - the architecture of the computer
 - the kind of storage devices to be used: M/M, disks (magnetic or SSD), or tapes

พื้นฐานการวิเคราะห์ความซับซ้อนของอัลกอริทึม

What is an Analysis of Algorithms?

- "Analysis of algorithms" means an investigation of an algorithm's efficiency with respect to two resources: running time and memory space
 - การประเมินประสิทธิภาพของอัลกอริทึม
- time efficiency ประสิทธิภาพเชิงเวลา (time complexity) indicates how fast an algorithm in question runs
- space efficiency ประสิทธิภาพเชิงพื้นที่ (space complexity) refers to the amount of memory units the algorithm requires

Analysis of Algorithms: the Analysis Framework

• it is logical to investigate an algorithm's efficiency as "a function of some parameter *n* indicating the algorithm's input size"

T(n): time taken by the algorithm to run when input size = n

Analysis of Algorithms: the Analysis Framework (2) computer

- Example: the problem of sorting elements in a list
 - the algorithm's input size is indicated by the list's size
- Example: the problem of searching for the maximum element in a list
 - the algorithm's input size is indicated by the list's size
- Example: problems of matrix addition, matrix subtraction
 - the algorithm's input size is indicated by the matrix's size
- Example: problem of evaluating a polynomial degree k

$$p(x) = a_k x^k + a_{k-1} x^{k-1} + ... + a_1 x + a_0$$

• the algorithm's input size is indicated by the degree of polynomial

Analysis of Algorithms: the Analysis Framework: Time Efficiency

- Time efficiency is analyzed by counting the number of times an algorithm's basic operation is executed on input of size *n*
 - basic operation: the operation contributing the most to the total running time

Rule for finding algorithm's basic operation: it is the most time-consuming operation in the algorithm's innermost loop

Analysis of Algorithms: the Analysis Framework Time Efficiency (2)

Example: the problem of searching for the maximum element in a list

```
Algorithm FindMax(A[0..n-1])

max = A[0];

For (i = 1; i < n; i++) do

if (\max < A[i]) \max = A[i];
```

• basic operation: key comparison inside loop 'for'

Analysis of Algorithms: the Analysis Framework Time Efficiency (3)

Example: the problem of sorting all elements in a list

Algorithm BubbleSort(A[0..n-1])

For (i = 0; i < n-1; i++)

For (j = 0; j < n -
$$i$$
 - 1; j++)

if (A[j] > A[j+1])

Swap(A[j], A[j+1]);

• basic operations : key comparison inside the inner loop for swap operation inside the inner loop for

Analysis of Algorithms: the Analysis Framework:

Time Efficiency (4)

- let n be the algorithm's input size
- let c_{op} be the execution time of an algorithm's basic operation on a particular computer
- let C(n) be the number of times this basic operation needs to be executed for this algorithm Ex. C(n) = n
- then, the running time T(n) of a program implementing this algorithm on this particular computer can be estimated by the formula

$$T(n) \approx c_{op} \times C(n)$$

Analysis of Algorithms: the Analysis Framework:

Time Efficiency (5)

• We usually focus on how much the running time changes as the input size increases, not the running time for a particular input size

How much longer will the algorithm run if we double its input size?

$$\frac{T(2n)}{T(n)} = \frac{c_{op} \times C(2n)}{c_{op} \times C(n)}$$

note that we were able to answer the question w/o actually knowing the value of c_{op} : the value was neatly **cancelled out** in the ratio

Time Efficiency (6)

• it is for these reasons that the time efficiency analysis framework ignores multiplicative constants and concentrates on the count's order of growth to within a constant multiple for large-size inputs

$$T(n) \approx C(n)$$

Analysis of Algorithms: the Analysis Framework: Time Efficiency (7)

- •When discussing the count's order of growth to within a constant multiple for large-size inputs, we do not need to be exact
- •We usually use **asymptotic notations** to express the time efficiency of an algorithm (the count's order of growth)

Time Efficiency: Asymptotic Notations

- to compare and rank the orders of growth of an algorithm's basic operation counts, computer scientists use three notations:
- 1. O (big Oh)
- 2. Ω (big Omega)
- $3. \Theta$ (big Theta)

Time Efficiency: Asymptotic Notations: big-Oh computer

- O (g(n)) is the set of all functions with a smaller or same order of growth as g(n) (to within a constant multiple, as n goes to infinity).
- $f(n) \in O(g(n))$ as there exists C > 0 and n_0 such that $f(n) \le C g(n)$, whenever $n \ge n_0$
- g(n) is an "upper-bound".
- for example,

$$n \in O(n^2),$$
 $100n + 5 \in O(n^2),$ $\frac{1}{2}n(n-1) \in O(n^2)$
 $n^3 \notin O(n^2),$ $0.00001n^3 \notin O(n^2),$ $n^4 + n + 1 \notin O(n^2)$

Time Efficiency: Asymptotic Notations: big-Omega computer

- Ω (g (n)), stands for the set of all functions with a larger or same order of growth as g (n) (to within a constant multiple, as n goes to infinity).
- $f(n) \in \Omega(g(n))$ as there exists C>0 and n_0 such that $f(n) \geq C \ g(n) \ , \ \text{whenever} \ n \geq n_0$
- g(n) is a "lower-bound".
- for example,

$$n^3 \in \Omega(n^2), \qquad \frac{1}{2}n(n-1) \in \Omega(n^2), \qquad \text{but } 100n + 5 \not\in \Omega(n^2).$$

Time Efficiency: Asymptotic Notations: big-Theta computer

- Θ (g(n)) is the set of all functions that have the same order of growth as g(n) (to within a constant multiple, as n goes to infinity).
- $f(n) \in \Theta(g(n))$ as there exists C_1 and $C_2 > 0$ and n_0 such that C_1 $g(n) \le f(n) \le C_2$ g(n), whenever $n \ge n_0$

Time Efficiency: Asymptotic Notations: big-Theta computer

• thus, every quadratic function $an^2 + bn + c$ with a > 0 is in (n^2)

Asymptotic Notations: Informal Introduction: big-Theta (2)

Asymptotic Notations: Informal Introduction: big-Theta (3)

Asymptotic Notations: Informal Introduction: big-Theta (4)

Analysis of Algorithms: the Analysis Framework: Time Efficiency: Basic Asymptotic Efficiency Classes COMPL

Class	Name
1	Constant
log n	Logarithmic
n	linear
n log n	"n-log-n"
n^2	Quadratic
n^3	Cubic
2 ⁿ	exponential
n!	factorial

Time Efficiency: Order of Growth

TABLE 2.1 Values (some approximate) of several functions important for analysis of algorithms

Time Efficiency: Order of Growth (2)

- the function growing the slowest among these is the logarithmic function
- the function growing the fastest among these is the factorial function
- a program implementing an algorithm with a logarithmic basic-operation count runs practically on inputs of all realistic sizes
- a program implementing an algorithm that requires an exponential number of basic-operations are practical for only problems of very small sizes

Time Efficiency: Order of Growth (3)

 Example. See how functions C (n) with different growths react to a twofold increase in the value of their arguments (n)

	C(n)	C(2n)	
1. Logarithmic	log ₂ n	$log_2 2n = log_2 2 + log_2 n = 1 + log_2 n$ [i.e. increase by just 1]	
2. Linear	n	2n [i.e. twofold]	
3. Linearithmic	n log ₂ n	$2n(1 + log_2n) = 2n + 2 n log_2n$ [i.e. slightly more than twofold]	
4. Quadratic	n^2	$(2n)^2 = 4n^2$ [i.e. fourfold]	
5. Cubic	n ³	$(2n)^3 = 8n^3$ [i.e. eightfold]	
6. Exponential	2 ⁿ	$2^{2n} = (2^n)^2 = 2^n \times 2^n$ [i.e. 2^n -fold]	
7. Factorial	n!	(2n)!	53

Analysis of Algorithms: the Analysis Framework: Time Efficiency: Order of Growth (4)

© The McGraw-Hill Companies, Inc. all rights reserved.

Analysis of Algorithms: the Analysis Framework Time Efficiency: Example (1)

For an algorithm with C(n) = 0.5n(n-1)

- $C(n) = 0.5n^2 0.5n$
- big-Oh for the time efficiency of the algorithm is $O(n^2)$

Time Efficiency: Example (2)

Example: the problem of searching for the maximum element in a list

```
Algorithm FindMax(A[0..n-1])
```

```
max = A[0];
For (i = 1; i < n; i++) do
```

if
$$(max < A[i])$$
 max = A[i];

- basic operation: key comparison inside loop for
- C(n) = n 1
- big-Oh for the time efficiency of the algorithm is O(n)

COMPUTER THAMMASAT UNIVERSITY SCIENCE

Time Efficiency: Example (3)

Example: the problem of sorting all elements in a list

Algorithm BubbleSort(A[0..n-1])
$$C(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-i-2} 2 = \sum_{i=0}^{n-2} 2(n-i-1)$$

For (i = 0; i < n-1; i++) $= 2[\sum_{i=0}^{n-2} (n-i-1)] = (n-1)(n)$
if (A[j] > A[j+1]) big-Oh for the time efficiency of the algorithm = $O(n^2)$

• basic operation: key comparison inside the inner loop for swap operation inside the inner loop for

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-i-2} 2 = \sum_{i=0}^{n-2} 2(n-i-1)$$

$$= 2\left[\sum_{i=0}^{n-2} (n-i-1)\right]$$

$$= 2\left[(n-1) + (n-2) + \dots + 1\right]$$

$$= 2\left[\sum_{i=1}^{n-1} i\right]$$

$$= 2 \times \frac{(n-1)(n-1+1)}{2}$$

$$= (n-1)(n)$$

$$C(n) = \sum_{i=0}^{n-2} \sum_{i=0}^{n-i-2} 2 = \sum_{i=0}^{n-2} 2(n-i-1)$$

$$= 2 \left[\sum_{i=0}^{n-2} n - \sum_{i=0}^{n-2} i - \sum_{i=0}^{n-2} 1 \right]$$

$$= 2 \left[n(n-2-0+1) - \frac{(n-2)(n-1)}{2} - (n-2-0+1) \right]$$

$$= 2 \left[n(n-1) - \frac{(n-2)(n-1)}{2} - (n-1) \right] = n(n-1)$$

Time Efficiency: Worst-Case, Best-Case, Average-Case

- There are many algorithms for which running time depends *not only* on an *input size* but also on *the* specifics of a particular input:
 - worst-case, best-case, and average-case running time

Time Efficiency: Worst-Case

 the worst-case efficiency of an algorithm is its efficiency for the worst-case input of size n, which is an input of size n for which the algorithm runs the longest among all possible inputs of that size

Time Efficiency: Best-Case

- the best-case efficiency of an algorithm is its efficiency for the best-case input of size n, which is an input of size n for which the algorithm runs the fastest among all possible inputs of that size.
- best case does not mean the smallest input

Time Efficiency: Average-Case

- the average-case efficiency seeks to provide the algorithm's behavior on a "typical" or "random" input.
- to analyze the algorithm's average-case efficiency, we must make some assumptions about possible inputs of size n.

Time Efficiency: Worst-Case, Best-Case, Average-Case:

Example

• Example: Sequential Search Algorithm ALGORITHM SequentialSearch (A[0..(n-1)], K) // Search for a given value in a given array by sequential search // Input: an array A[0..n-1] and a search key K **// Output:** return the index of the first element of A that matches K or -1 if there are no matching elements i ← 0 while i < n and $A[i] \neq K$ do i ← i + 1 if i < n return i</pre> else return -1

Time Efficiency: Worst-Case, Best-Case, Average-Case:

Example (2)

- Sequential Search Algorithm: Worst Case:
 - when there are no matching elements or
 - the first matching element happens to be the last one on the list

$$C_{worst}(n) = n$$

• the worst-case analysis works as an upper-bound for the running time of an algorithm: it guarantees that for any instance of size n, the running time will not exceed $C_{worst}(n)$

Time Efficiency: Worst-Case, Best-Case, Average-Case:

Example (2)

- Sequential Search Algorithm: Best Case:
 - when the first element in the list equals to the search key

$$C_{\text{best}}(n) = 1$$

Time Efficiency: Worst-Case, Best-Case, Average-Case:

Example (3)

- Sequential Search Algorithm: Average Case:
- Standard assumptions
 - (1) the probability of a successful search is equal to p (0 <= p <= 1)

and

(2) the probability of the first match occurring in the i^{th} position of the list is the same for every i

Time Efficiency: Worst-Case, Best-Case, Average-Case:

Example (4)

- in the case of a successful search, the probability of the first match
 occurring in the ith position of the list is p/n for every i, and the number
 of comparisons made by the algorithm in such a situation is obviously i
- in the case of an unsuccessful search, the number of comparisons is n with the probability of such a search being (1-p).

• Therefore,
$$C_{avg}(n) = [1 \cdot \frac{p}{n} + 2 \cdot \frac{p}{n} + \dots + i \cdot \frac{p}{n} + \dots + n \cdot \frac{p}{n}] + n \cdot (1-p)$$

$$= \frac{p}{n}[1 + 2 + \dots + i + \dots + n] + n(1-p)$$

$$= \frac{p}{n}\frac{n(n+1)}{2} + n(1-p) = \frac{p(n+1)}{2} + n(1-p).$$

Brute Force

Introduction

- **Brute force** is a straightforward approach to solving a problem, usually directly based on the problem statement and definitions of the concepts involved.
- Brute force = "just do it"
- Often, the brute-force strategy is indeed the one that is easiest to apply.

Brute-Force Algorithm: Exponentiation


```
ALGORITHM Exponentiation (b, n)
 // Compute b^n = b \times b \times \dots \times b (total n times)
 // Input: a base b which is an integer and an exponent n which is a positive integer
 // Output: return the result of b to the power n, b<sup>n</sup>
 result \leftarrow 1
 for (i = 1; i \le n; i++) do
       result ← result * b
  return result
```

consider the multiplication to be the algorithm's basic operation

ลูปนี้ทำงาน
$$\mathbf n$$
 รอบ
แต่ละรอบทำงาน 'คูณ' 1 ครั้ง $\mathbf C(\mathbf n) = \sum_{i=1}^n 1 = n$
 \therefore big-Oh = O(n)

Brute-Force Algorithm: gcd(m, n):

the Consecutive Integers Checking algorithm


```
ALGORITHM gcd (m, n)
// Compute the Greatest Common Divisor (GCD) for two non-negative, not both zero
// integers m and n
// Input: two non-negative, not both zero integers called m and n AND m \ge n
// Output: return gcd(m, n)
If \mathbf{n} = 0 Return \mathbf{m} and stop.
While \mathbf{n} > 1 do
Begin
       If m is divisible by n Return n and stop.
       Otherwise, decrease n by one.
End
```

Return n.

consider the division to be the algorithm's basic operation

ลูปนี้ทำงาน **n** รอบ (worst-case) แต่ละรอบทำงาน 'หาร' 1 ครั้ง $C(n) = \sum_{i=1}^{n} 1 = n$ \therefore big-Oh = O(n)

Brute-Force Algorithm: Matrix Multiplication

$$C[i,j] = A[i,0]B[0,j] + ... + A[i,k]B[k,j] + ... + A[i,n-1]B[n-1,j]$$

where $0 \le i, j \le n-1$.

Brute-Force Algorithm: Matrix Multiplication (2)


```
ALGORITHM
                 MatrixMultiplication(A[0..n-1, 0..n-1], B[0..n-1, 0..n-1])
    //Multiplies two square matrices of order n by the definition-based algorithm
    //Input: Two n \times n matrices A and B
    //Output: Matrix C = AB
                                              consider the multiplication to be
    for i \leftarrow 0 to n-1 do
                                              the algorithm's basic operation
        for j \leftarrow 0 to n-1 do
             C[i, j] \leftarrow 0.0
             for k \leftarrow 0 to n-1 do
                  C[i, j] \leftarrow C[i, j] + A[i, k] * B[k, j]
```

return C

The measurement of the input size is 'n' (the matrix order)

Brute-Force Algorithm: Matrix Multiplication (3)

- just one multiplication is made for each repetition of the innermost loop, i.e., for each value of the loop's variable k between its limits 0 and n-1
- that is, the number of multiplications made for every specific pair of variables i and j is

$$\sum_{k=0}^{n-1} 1$$

• the total number of multiplications M(n) is expressed by the following:

$$M(n) = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} \sum_{k=0}^{n-1} 1 = \sum_{i=0}^{n-1} \sum_{j=0}^{n-1} n = \sum_{i=0}^{n-1} n^2 = n^3 \in \Theta(n^3)$$

Brute-Force Algorithm: Exercise 1

Matrix Multiplication: given one $n \times m$ matrix (called A) and one $m \times p$ matrix (called B),

- write a brute-force version of MatrixMultiplication algorithm for computing their product $C = A \times B$ and
- find the time efficiency of such definition-based algorithm

Brute-Force and The Sorting Problem

the application of the brute-force approach to the problem of sorting

The Sorting Problem: given a list of *n* orderable items, re-arrange them in non-decreasing order

 What would be the most straight-forward method for solving the sorting problem?

Brute-Force and The Sorting Problem: Sorting using Exhaustive Search

- This approach generates all permutations of the *n* orderable items
- Then, check for the one satisfying the non-decreasing condition

Brute-Force and The Sorting Problem:

Selection Sort

- The *selection sort algorithm* sorts an array by repeatedly finding the minimum element from unsorted part and putting it at the beginning.
- The algorithm maintains two subarrays in the given array.
- 1) The subarray which is already sorted.
- 2) Remaining subarray which is unsorted.
- In every iteration of selection sort, the minimum element from the unsorted subarray is picked and moved to the end of sorted subarray.
- After n-1 passes, the list is sorted

$$A_0 \le A_1 \le \cdots \le A_{i-1} \mid A_i, \dots, A_{min}, \dots, A_{n-1}$$
 in their final positions the last $n-i$ elements

Brute-Force and The Sorting Problem:

Selection Sort : Example

89	45	68	90	29	34	17
17	45	68	90	29	34	89
17	29	68	90	45	34	89
17	29	34	90	45	68	89
17	29	34	45	90	68	89
17	29	34	45	68	90	89
17	29	34	45	68	89	90

Brute-Force and The Sorting Problem: Selection Sort (3)


```
ALGORITHM SelectionSort(A[0..n-1])

//Sorts a given array by selection sort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in nondecreasing order

for i \leftarrow 0 to n-2 do

min \leftarrow i

for j \leftarrow i+1 to n-1 do

if A[j] < A[min] \quad min \leftarrow j

swap A[i] and A[min]
```

Brute-Force and The Sorting Problem:

Selection Sort (4)

- the input size is given by the number of elements in the list *n*
- the basic operation is the key comparison A[j] < A[min]

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=i+1}^{n-1} 1 = \sum_{i=0}^{n-2} [(n-1) - (i+1) + 1] = \sum_{i=0}^{n-2} (n-1-i).$$

$$= (n-1) + (n-2) + (n-3) + \dots + 3 + 2 + 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2}$$

$$\in O(n^2)$$

Brute-Force and The Sorting Problem: Bubble Sort

- Bubble Sort is the simplest sorting algorithm that works by repeatedly swapping the adjacent elements if they are in wrong order
- Pass i (0 $\leq i \leq n$ 2) of bubble sort can be represented by the following diagram:

$$A_0, \ldots, A_j \stackrel{?}{\leftrightarrow} A_{j+1}, \ldots, A_{n-i-1} \mid A_{n-i} \leq \cdots \leq A_{n-1}$$
 in their final positions

Brute-Force and The Sorting Problem: Bubble Sort (2)

• Example: sort the list (5, 1, 4, 2, 8) in non-decreasing order (เรียงจากน้อยไปมาก)

First Pass:	Second Pass:	Third Pass:
(51 428) -> (15 428),	(14 258) -> (14 258)	(12 458) -> (12 458)
(1 54 28) -> (1 45 28),	(1 42 58) -> (1 24 58),	(1 24 58) -> (1 24 58)
(14 52 8) -> (14 25 8),	(12 45 8) -> (12 45 8)	(12 45 8) -> (12 45 8)
(142 58) -> (142 58),	(124 58) -> (124 58)	(124 58) -> (124 58)

Brute-Force and The Sorting Problem:

Bubble Sort (3)


```
ALGORITHM BubbleSort(A[0..n-1])

//Sorts a given array by bubble sort

//Input: An array A[0..n-1] of orderable elements

//Output: Array A[0..n-1] sorted in nondecreasing order

for i \leftarrow 0 to n-2 do

for j \leftarrow 0 to n-2-i do

if A[j+1] < A[j] swap A[j] and A[j+1]
```

- consider key comparison and key swap as the basic operations of the algorithm
- consider the worst-case where key swaps are done at every iteration

Brute-Force and The Sorting Problem:

Bubble Sort (4)

$$C(n) = \sum_{i=0}^{n-2} \sum_{j=0}^{n-2-i} 1 = \sum_{i=0}^{n-2} (n-1-i)$$

$$= (n-1) + (n-2) + (n-3) + \dots + 3 + 2 + 1 = \sum_{i=1}^{n-1} i = \frac{(n-1)n}{2} \in O(n^2)$$

$$S_{worst}(n) = C(n) \in O(n^2)$$

The overall time complexity of the algorithm is $O(n^2)$

Brute-Force String Matching

• given a string of n characters called the **text** and a string of m characters $(m \le n)$ called the **pattern**, find a substring of the text that matches the pattern.

$$t_0 \dots t_i \dots t_{i+j} \dots t_{i+m-1} \dots t_{n-1}$$
 text T

$$\downarrow \qquad \downarrow \qquad \downarrow \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow \qquad \qquad$$

Brute-Force String Matching (2)


```
N O B O D Y _ N O T I C E D _ H I M
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T
N O T
```

Pattern = "NOT"

Brute-Force String Matching (3)


```
ALGORITHM BruteForceStringMatch(T[0..n-1], P[0..m-1])

//Implements brute-force string matching

//Input: An array T[0..n-1] of n characters representing a text and

// an array P[0..m-1] of m characters representing a pattern

//Output: The index of the first character in the text that starts a

// matching substring or -1 if the search is unsuccessful

for i \leftarrow 0 to n - m do

j \leftarrow 0

while j < m and P[j] = T[i+j] do
j \leftarrow j + 1

if j = m return i

return -1
```

- The basic operation is the comparison between each character in Pattern and those in the current text window.
- worst-case scenario: we need to make all m comparisons prior to realizing that this is not a match for every text window

Brute-Force String Matching (4)

• C(n) =
$$\sum_{i=0}^{n-m} (m) = m (n - m - 0 + 1)$$

= nm - m² + m

• Since $m \le n$, $C(n) \in O(n m)$

Exercise 1: Insertion Sort

• Given a list of N integers, sort the list in non-decreasing order.

Exercise 2: Prime Numbers

• Given a positive integer N > 1, check whether N is a prime number.

Definitions:

- I. A prime number is a whole number greater than 1 that **cannot** be made by multiplying other whole numbers.
- II. A prime number is a whole number greater than 1, that has only two factors, i.e. 1 and the number itself.
- III. A prime number is divisible only by the number 1 or itself.

Exercise 2: Prime Numbers: Method I

- from the definition of ${\rm N}$ being a prime number, we test whether ${\rm N}$ is divisible by another integer ${\rm x}$
- what do we know about the integer \times ?
 - \bullet x must be less than N.
 - ถ้าไม่นับรวม f 1 ตัวประกอบที่เล็กที่สุดที่เป็นได้สำหรับ f N คือ f 2 (The smallest f x is f 2).
- so, we set \times from 2 to N-1.
- Time complexity = O(N)

Exercise 2: Prime Numbers: Method II

- from the definition of ${\rm N}$ being a prime number, we test whether ${\rm N}$ is divisible by another integer ${\rm x}$
- what do we know about the integer \times ?
 - \bullet x must be less than N.
 - ถ้าไม่นับรวม 1 ตัวประกอบที่เล็กที่สุดที่เป็นได้สำหรับ N คือ 2 (The smallest x is 2).
 - what else do we know?
 - ดังนั้น ตัวประกอบที่ใหญ่ที่สุดที่เป็นไปได้สำหรับ N คือ N/2
- so, we know that we can set \times from 2 to $\mathbb{N}/2$
- Time complexity still = O(N)

Exercise 2: Prime Numbers: Method III

- So, we can set x from 2 to $|\sqrt{N}|$
- Time complexity is now $O(\sqrt{N})$

Exercise 3: Nugget Numbers

- ร้านฟาสต์ฟู้ดแห่งหนึ่งขายนักเก็ตเป็นกล่อง โดยมีกล่องนักเก็ตอยู่ **3** ขนาด ได้แก่ ขนาดเล็ก ขนาดกลาง และ ขนาดใหญ่ บรรจุนักเก็ต จำนวน 6 ชิ้น, 9 ชิ้น, และ 20 ชิ้น ตามลำดับ
- เลขนักเก็ต คือ เลขจำนวนเต็มบวกที่เกิดจากผลรวมของจำนวนชิ้นนักเก็ตในกล่องขนาดต่าง ๆ ยกตัวอย่างเช่น
 - เลข 6 เป็นเลขนักเก็ต เพราะเป็นจำนวนนักเก็ตในกล่องขนาดเล็กหนึ่งกล่อง
 - เลข 9 เป็นเลขนักเก็ต เพราะเป็นจำนวนนักเก็ตในกล่องขนาดกลางหนึ่งกล่อง
 - เลข 12 เป็นเลขนักเก็ต เพราะเกิดจากการรวมกันของจำนวนนักเก็ตในกล่องขนาดเล็ก 2 กล่อง
 - เลข 15 เป็นเลขนักเก็ต เพราะเกิดจากการรวมกันของจำนวนนักเก็ตในกล่องขนาดเล็ก และ ขนาดกลาง อย่างละหนึ่งกล่อง
 - เลข 20 เป็นเลขนักเก็ต เพราะเป็นจำนวนนักเก็ตในกล่องขนาดใหญ่หนึ่งกล่อง
 - เลข 4 และ 10 ไม่เป็นเลขนักเก็ต
- ให้นักศึกษาเขียนโปรแกรมเพื่อรับเลขจำนวนเต็มบวก N >= 6 และคำนวณพร้อมแสดงผลลัพธ์เป็นเลขนักเก็ต ทั้งหมดที่มีค่าน้อยกว่าหรือเท่ากับ **N** แบบเรียงตามลำดับจากน้อยไปมาก

Exercise 3: Nugget Numbers (2)

• <u>Challenge</u>: เขียนโปรแกรมเพื่อรับค่าเลขจำนวนเต็มบวก **N** และแสดงผลลัพธ์ว่า **N** เป็น เลขนักเก็ตหรือไม่?

Brute-Force: Exhaustive Search

Brute-Force: Exhaustive Search

- Exhaustive search is simply a brute-force approach to combinatorial problems.
- It suggests generating each and every element of the problem domain, selecting those of them that satisfy all the constraints, and then finding a desired element (e.g., the one that optimizes some objective function).

• Traveling Salesman Problem, Knapsack Problem, Assignment Problem

Exhaustive Search:

Traveling Salesman Problem

• Given a set of *n* cities, find the shortest tour through the whole city set such that the salesman visits each city only once before returning to the city where the tour started

Exhaustive Search:

Traveling Salesman Problem (2)

- The problem can be modeled a weighted undirected graph G=(V, E):
 - V represents the set of cities
 - E maintains the road information between cities
 - Each edge in E has an associated weight specifying distance between two cities
- Then, the problem can be stated as the problem of finding the shortest Hamiltonian circuit of the graph.
- a Hamiltonian circuit is defined as a cycle that passes through all the vertices of the graph exactly once.

Exhaustive Search:

Traveling Salesman Problem (3)

Tour

Length

$$a --> b --> c --> d --> a$$

$$I = 2 + 8 + 1 + 7 = 18$$

$$a \longrightarrow b \longrightarrow d \longrightarrow c \longrightarrow a$$
 $l = 2 + 3 + 1 + 5 = 11$

$$I = 2 + 3 + 1 + 5 = 11$$
 optimal

$$a \longrightarrow c \longrightarrow b \longrightarrow d \longrightarrow a$$

$$I = 5 + 8 + 3 + 7 = 23$$

$$a \longrightarrow c \longrightarrow d \longrightarrow b \longrightarrow a$$

$$I = 5 + 1 + 3 + 2 = 11$$
 optimal

$$a \longrightarrow d \longrightarrow b \longrightarrow c \longrightarrow a$$

$$I = 7 + 3 + 8 + 5 = 23$$

$$a \longrightarrow d \longrightarrow c \longrightarrow b \longrightarrow a$$
 $l = 7 + 1 + 8 + 2 = 18$

$$I = 7 + 1 + 8 + 2 = 18$$

Exhaustive Search: Knapsack Problem

• Given n items of known weights w_1, w_2, \ldots, w_n and values v_1, v_2, \ldots, v_n and a knapsack of capacity W, find the most valuable subset of the items that fit into the knapsack.

• <u>Example</u>: W = 10

	weight	value
1	7	\$42
2	3	\$12
3	4	\$40
4	5	\$25

Exhaustive Search: Knapsack Problem (2)

	weight	value
1	7	\$42
2	3	\$12
3	4	\$40
4	5	\$25

list all combinations:

$$C(n,0) + C(n,1) + C(n,2) + ... + C(n,n)$$

• \underline{Ex} n = 4 all combinations = 1 + 4 + 6 + 4 + 1 = 16 possible patterns

Subset	Total weight	Total value	
Ø	0	\$ 0	
{1}	7	\$42	
{2}	3	\$12	
{3}	4	\$40	
{4}	5	\$25	
{1, 2}	10	\$54	
{1, 3}	11	not feasible	
{1, 4}	12	not feasible	
{2, 3}	7	\$52	
{2, 4}	8	\$37	
{3, 4}	9	\$65	
$\{1, 2, 3\}$	14	not feasible	
$\{1, 2, 4\}$	15	not feasible	
$\{1, 3, 4\}$	16	not feasible	
$\{2, 3, 4\}$	12	not feasible	
$\{1, 2, 3, 4\}$	19	not feasible	

Exhaustive Search: Assignment Problem

- There are *n* people who need to be assigned to execute *n* jobs, one person per job. (That is, each person is assigned to exactly one job and each job is assigned to exactly one person.)
- The cost that would accrue if the i^{th} person is assigned to the j^{th} job is a known quantity C[i, j] for each pair i, j = 1, 2, ..., n.
- The problem is to find an assignment with the minimum total cost.

Exhaustive Search: Assignment Problem (2)

Example n = 4

- the exhaustive-search approach to the assignment problem would require *generating all the permutations* of integers 1, 2, . . . , n,
- computing the total cost of each assignment by summing up the corresponding elements of the cost matrix,
- and finally selecting the one with the smallest sum.

	Job 1	Job 2	Job 3	Job 4
Person 1	9	2	7	8
Person 2	6	4	3	7
Person 3	5	8	1	8
Person 4	7	6	9	4