

南京拓微集成电路有限公司

DATASHEET

(TP83 升压系列)

DC/DC 升压变换芯片 —TP83 系列

一、概述

TP83 系列芯片是采用 CMOS 工艺制造的静态电流极低的 VFM 开关型 DC/DC 升压转换器。

该芯片由振荡器、VFM模式控制电路、Lx 开关驱动晶体管、基准电压单元、误差比较放大器、电压采样电阻及 V_{Lx} 限幅电路等组成。

TP83 系列升压转换器采用变频的方式,因此较国内外同类产品具有更低的纹波、更强的驱动能力、效率高等特点,应用时外围只需接三个元件(电感、电容及二极管各一个)。

输入电压最低 0.8V,并且可以根据要求调整输出电压 3V—6V 可选。

二、芯片特性及主要参数

该设计产品 TP83 系列 DC/DC 升压转换器芯片在应用中具有优越的性能:

1. 外接元件少:

需肖特基管、电感及电容各一个,外接元件建议选择: 低直流电阻电感 $20\sim220\,\mu$ H,钽电容 $47\sim200\,\mu$ F,肖特基二极管。

- 2. 极低的静态电流: 4uA
- 3. 低噪声及低纹波: 纹波典型值为 100mV
- 4. 驱动能力强: Vtyp=3.3V, Vin=1.0V 时, Iout=100mA Vtyp=3.3V, Vin=3.0V 时, Iout=750mA
- 5. 启动工作电压低: 最大 0.8V
- 6. 高效率: 85%(Typ)
- 7. 封装体积小: SOT89, SOT23 (窄体)

三、 应用范围

TP83 系列芯片适用于要求大驱动能力、低静态电流、低电磁辐射的电池供电设备:

- 1、电池供电设备的电源部分。
- 2、玩具、照相机、摄像机、PDA及手持电话等便携式设备的电源部分。
- 3、要求提供电压比电池所能提供电压高的设备的电源部分。

四、 命名规则

内置 MOS 管命名:

外置 MOS 管命名:

五、 芯片模型及引脚介绍

本设计芯片封装样式如下图, 其引脚说明亦如下表所示

引脚说明:

Vss:接地引脚 Lx:	开关引脚(或 Ext 外置 Tr)		OUT:升压输出引脚	
封装	PIN1	PIN2	PIN3	
SOT89	Vss	OUT	Lx (Ext)	
SOT23(窄体,见封装	Vss	Lx (Ext)	OUT	
结构尺寸)				

六、 极限参数

对地输入电压 $V_{\rm IN}$ 10V 输出电流 Iout 800mA

功耗 Pd

SOT-23 0.25W SOT-89 0.50

工作温度 T_A -40℃~145℃

导线焊接温度(10秒) 260℃

七、工作原理

利用电感对能量的存储,并通过其与输入端电源共同的泄放作用,从而获得高于输入电压的输出电压。如图:

八、电性能参数

其主要参数测试如下表:

测试条件: VIN=2.2V, Vss=0V, Iload=10mA, Topt= 25℃, Cout=100 μF(胆电容或使用 100uF 电解电容和 0.1uF-1uF 陶瓷电容并联), L= 47 μH(内阻 0.1 欧姆)。有特别说明除外。

TP8330 (电路见图一):

参数	符号	测试状态	最小值	典型值	最大值	单位
输出电压	Vout		2.925	3.000	3.075	V
开启电压	V_{start}	$I_L=1 mA$	0.5	0.8	0.9	V
		$V_{IN}: 0 \to 0.98V$				
保持电压	V_{hold}	$I_L=1 \text{ mA}$	0.3	0.5	0.6	V
		V _{IN} : 0.98→0V				
无负载输入电流	I_{IN1}	V _{IN} =2.2V 空载	6	10	25	μΑ
静态输入电流	I_{IN2}		2	4	8	μA
开关管导通电流	I_{LX}	$V_{LX}=0.4V$		450		mA
开关管漏电流	I_{Lxleak}	$V_{LX}=6V$			1	μA
振荡频率	Fosc		150	200	250	kHz
占空比	Dty			80		%
效率	η			85		%

TP8333:

参数	符号	测试状态	最小值	典型值	最大值	单位
输出电压	Vout		3.217	3.300	3.383	V
开启电压	V_{start}	$I_L=1 \text{mA}$	0.5	0.8	0.9	V
		$V_{IN}: 0 \to 0.98V$				
保持电压	V_{hold}	$I_L=1 \text{mA}$	0.3	0.5	0.6	V
		V _{IN} : 0.98→0V				
无负载输入电流	I_{IN1}	V _{IN} =2.2V 空载	8	10	25	μA
静态输入电流	I_{IN2}		2	4	8	μA
开关管导通电流	I_{LX}	$V_{LX}=0.4V$		450		mA
开关管漏电流	I_{Lxleak}	$V_{LX}=6V$			1	μA
振荡频率	Fosc		150	200	250	kHz
占空比	Dty			80		%
效率	η			85		%

TP8350:

参数	符号	测试状态	最小值	典型值	最大值	单位
输出电压	Vout		4.875	5.000	5.125	V
开启电压	V_{start}	$I_L=1 \text{ mA}$	0.5	0.8	0.9	V
		$V_{IN}: 0 \to 0.98V$				
保持电压	V_{hold}	$I_L=1 \text{mA}$		0.5	0.6	V
		V _{IN} : 0.98→0V				
无负载输入电流	I_{IN1}	V _{IN} =2.2V 空载	8	15	25	μA
静态输入电流	I_{IN2}		2	4	8	μA
开关管导通电流	I_{LX}	$V_{LX}=0.4V$		570		mA
开关管漏电流	I _{Lxleak}	$V_{LX}=6V$			1	μA
振荡频率	Fosc		150	200	250	kHz
占空比	Dty			80		%
效率	η			85		%

TP8356X(电路见图二):

参数	符号	测试状态	最小值	典型值	最大值	单位
输出电压	Vout		5.460	5.600	5.740	V
无负载输入电流	I_{IN1}	V _{IN} =2.2V 空载	8	15	25	μA
静态输入电流	I_{IN2}		1	4	8	μA
CMOS 驱动输出管	I _{EXT N}	$V_{DS}=0.4V$		22		mA
导通电流	I _{EXT P}	V_{DS} =-0.4V		20		mA
振荡频率	Fosc		150	200	250	kHz
占空比	Dty			80		%

工作特性曲线如下:

测试条件: L=47uH(内阻 0.1 欧姆) Cout=100uF(胆电容或使用 100uF 电解电容和 0.1uF-1uF 陶瓷电容并联)

九、 TP83 系列升压芯片应用实例

典型应用电路:

L=47uH (内阻 0.1ohm)、Cout=100uF 电解电容并接 0.1uF 陶瓷电容、Diode 为肖特基二极管 TP8330 典型应用电路(TP8350、TP8356 电路见附件):

(测试输入电流时,输入电容 Cin=47uF 必须接入)

TP8356X 典型应用电路(外置 NMOS 管为低阈值开启电压,例 GE2300):

升压/降压电路:

降压电路

注:以上电路中的启动电路

十、 使用注意事项

外围电路对 TP83 系列升压转换芯片性能影响很大,需合理选择外部器件:

- 1) 外接电容值不宜小于 47 μ F (电容值过小将导致输出纹波过大),同时要有良好的频率特性(最好使用钽电容或高频电容)。此外,由于 LX 开关驱动晶体管关断时会产生一尖峰电压,电容的容压值至少为设计输出电压的 3 倍;(普通的铝电解电容 ESR 值过高,所以可选购专门应用于开关式 DC/DC 转换器的铝电解电容)。
- 2) 外接电感值要足够小以便即使在最低输入电压和最短的 LX 开关时间内能够存储足够的能量,同时,电感值又要足够大从而防止在最高输入电压和最长的 LX 开关时间时 ILXMAX 超出最大额定值。此外,外接电感的直流阻抗要小、容流值要高且工作时不至于达到磁饱和。
 - 3) 外接二极管宜选择具有较高切换速度的肖特基二极管。
 - 4) 客户若驱动大电流负载(大于150mA),而纹波要求不高,则可以减小电感(22uH左右);客户若驱动小电流负载(小于50mA)并想得到低纹波的输出电压,则可增大电感值

注意事项:

- 1)该芯片为驱动大负载而设计,所以外围元器件与芯片距离越小越好,连线越短越好。特别是接到 OUT 端的元器件应尽量减短与电容的连线长度;
 - 2)特别建议使用钽电容;如果在芯片 OUT 和 Vss 两端并接电解电容时需要并接 0.1-1μ 的陶瓷电容。 3)Vss 端应充分接地,否则芯片内部的零电位会随开关电流而变化,造成工作状态不稳定。

十一、封装结构尺寸图示

Symbol	Dimensions I	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	1.397	1.600	0.055	0.063	
b	0.356	0.483	0.014	0.019	
В	2.388	2.591	0.094	0.102	
b1	0.406	0.533	0.016	0.021	
С		4.242		0.167	
C1	0.787	1.194	0.031	0.047	
D	4.394	4.597	0.173	0.181	
D1	1.397	1.753	0.055	0.069	
е	1.448	1.549	0.057	0.061	
Н	0.355	0.432	0.014	0.017	

SOT-23 (窄体)

Crawhal	Dimensions	In Millimeters	Dimensions In Inches		
Symbol	Min	Max	Min	Max	
Α	0.900	1.150	0.035	0.045	
A1	0.000	0.100	0.000	0.004	
A2	0.900	1.050	0.035	0.041	
b	0.300	0.500	0.012	0.020	
С	0.080	0.150	0.003	0.006	
D	2.800	3.000	0.110	0.118	
E	1.200	1.400	0.047	0.055	
E1	2.250	2.550	0.089	0.100	
e	0.950	0.950 TYP		7 TYP	
e1	1.800	2.000	0.071	0.079	
L	0.550 REF		0.022	2 REF	
L1	0.300	0.500	0.012	0.020	
θ	0°	8°	0°	6°	

附件:

内置 MOS 管 TP8350、TP8356 驱动大电流高效率方案

输入电源为锂电池 (3.2v≤Vin≤4.2v)

- 1. 驱动负载 150mA≤Io≤500mA
 - (1) TP8350 典型应用电路

锂电池输入条件下 TP8350 驱动大负载电路

建议各器件参数 L=47uH(内阻<0.1ohm), Cin=47uF(实际应用中可不接该电容),

Diode=1N5817\1N5818\1N5819,

Cout 为 20uF 电解电容(或 20uF 胆电容串联 0.5 欧姆电阻)和 0.1uF 陶瓷电容并联。 驱动 400mA 负载下,效率高于 80%

(2) TP8356 典型应用电路

锂电池输入条件下 TP8350 驱动大负载电路

建议各器件参数 L=100uH(内阻<0.1ohm), Cin=47uF(实际应用中可不接该电容),

Diode=1N5817\1N5818\1N5819,

Cout 为 20uF 电容(不分电解电容、胆电容)串联 0.5 欧姆电阻和 0.1uF 陶瓷电容并联。 驱动 400mA 负载下,效率高于 80%

2. 驱动负载 Io<150mA 时

TP8350、TP8356 外围器件参数参照 TP83 规格书中典型应用电路的参数。

注意: TP8350、TP8356应用中陶瓷电容 0.1uF~1uF 必须接上,并且靠近芯片输出端。