The calculus of deterministic equivalents and its applications to high-dimensional statistics

Edgar Dobriban

University of Pennsylvania

September 15, 2021

Overview

Motivation

Calculus of deterministic equivalents

Distributed linear regression

Distributed ridge regression

ANOVA decomposition of the test error

Outline

Motivation

Calculus of deterministic equivalents

Distributed linear regression

Distributed ridge regression

ANOVA decomposition of the test error

Motivation

- ▶ Standard linear model $Y = X\beta + \varepsilon$, where
 - 1. Y is $n \times 1$ outcome, X is $n \times p$ feature matrix.
 - 2. β is *p*-dim parameter
- Ordinary least squares

$$\hat{\beta} = (X^{\top}X)^{-1}X^{\top}Y$$

▶ Mean squared error of OLS, assuming $\mathbb{E}\varepsilon = 0$, $cov(\varepsilon) = \sigma^2 I_n$

$$\mathbb{E}\|\hat{\beta} - \beta\|^2 = \sigma^2 \operatorname{tr}[(X^\top X)^{-1}]$$

► How large is this?

Motivation ctd

▶ When $X_{ij} \sim \mathcal{N}(0,1)$ are iid standard normal,

$$\mathbb{E}\operatorname{tr}[(X^{\top}X)^{-1}] = \frac{p}{n-p-1}.$$

- More general data distributions? There are only approximate expressions.
- $x_i = \Sigma^{1/2} z_i \in \mathbb{R}^p$, where z_i have independent standardized entries, for i = 1, ..., n. Then with $\hat{\Sigma} = n^{-1} X^{\top} X$,

$$\widehat{\Sigma}^{-1} \asymp \frac{n}{n-p} \cdot \Sigma^{-1}$$
.

and
$$\operatorname{tr}[(X^{\top}X)^{-1}] \asymp \frac{p}{n-p} \cdot \operatorname{tr} \Sigma^{-1}/p$$
.

Calculus of deterministic equivalents

- ▶ Deterministic equivalents are a powerful tool in random matrix theory (Serdobolskii 1980s, Hachem et al 2007, etc). Here we develop a systematic approach.
- ▶ We have sequences of (not necessarily symmetric) $k_n \times k_n$ random matrices A_n and deterministic matrices B_n of growing dimensions
- **Definition**: B_n is a deterministic equivalent for A_n ,

$$A_n \simeq B_n$$

if

$$\lim_{n\to\infty} |\operatorname{tr}(C_n A_n) - \operatorname{tr}(C_n B_n)| = 0$$

almost surely, for any $k_n \times k_n$ sequence C_n of (not necessarily symmetric) deterministic real matrices with bounded trace norm, i.e.,

$$\lim\sup_{n\to\infty}\|C_n\|_{tr}=\lim\sup_{n\to\infty}\sum_{i}|\sigma_i(C_n^\top C_n)^{1/2}|<\infty.$$

e.g,
$$C_n = c_n c_n^{\top}$$
, $||c_n||_2$ bounded

Calculus of deterministic equivalents

- ightharpoonup tr (C_nA_n) is a linear combination of entries of A_n
- ▶ $A_n \times B_n$ if each linear combination of entries of A_n can be approximated by the same linear combination of entries of B_n

Sample covariance matrices

Example 1. (Mestre et al., 2011)

Let $\hat{\Sigma}=X^{\top}X/n$, where $X=Z\Sigma^{1/2}$ and Z is an $n\times p$ random matrix with iid entries of zero mean, unit variance and finite $8+\eta$ moment. Also, $\Sigma^{1/2}$ is any sequence of $p\times p$ positive semi-definite matrices satisfying sup $\|\Sigma\|_2<\infty$. As $n,p\to\infty$ proportionally, for any $\lambda>0$

$$(\widehat{\Sigma} + \lambda I_p)^{-1} \asymp (q_p \Sigma + \lambda I_p)^{-1},$$

where q_p is the solution of a fixed point equation.

- 1. Similar results for elliptical model, where datapoints can have different scalings: $x_i = g_i^{1/2} \Sigma^{1/2} z_i$.
- 2. This is the simplest way I know how to think of a broad class of results in random matrix theory.

Rules of calculus

The calculus of deterministic equivalents has the following properties.

- 1. **Sum.** If $A_n \simeq B_n$ and $C_n \simeq D_n$, then $A_n + C_n \simeq B_n + D_n$.
- 2. **Product.** If $\limsup \|A_n\|_{op} < \infty$, A_n is independent of B_n , C_n , and $B_n \times C_n$, then $A_nB_n \times A_nC_n$.
- 3. **Trace.** If $A_n \times B_n$, then $\operatorname{tr}\{k_n^{-1}A_n\} \operatorname{tr}\{k_n^{-1}B_n\} \to 0$ almost surely.
- 4. **Derivative.** If $f(A_n, z) \simeq g(B_n, z)$, for analytic f, g on an open domain of \mathbb{C} , then $\partial_z f(A_n, z) \simeq \partial_z g(B_n, z)$.

Outline

Motivation

Calculus of deterministic equivalents

Distributed linear regression

Distributed ridge regression

ANOVA decomposition of the test error

Setup

- ▶ Standard linear model $Y = X\beta + \varepsilon$
- Samples distributed across k machines. The i-th machine has matrix X_i $(n_i \times p)$ and outcomes Y_i .

$$X = \begin{bmatrix} X_1 \\ \dots \\ X_k \end{bmatrix}, \ Y = \begin{bmatrix} Y_1 \\ \dots \\ Y_k \end{bmatrix}$$

- Global least squares infeasible
- ▶ Local least squares estimator $\hat{\beta}_i = (X_i^\top X_i)^{-1} X_i^\top Y_i$ (assume $n_i > p$)
- Send to parameter server, average
- How does this compare to OLS on full data?

Parameter estimation

▶ Weighted distributed estimator, $\sum_{i=1}^{k} w_i = 1$

$$\hat{\beta}_{dist} = \sum_{i=1}^{k} w_i \hat{\beta}_i.$$

MSE on i-th machine is

$$\mathbb{E}\|\hat{\beta}_i - \beta\|^2 = \sigma^2 \operatorname{tr}[(X_i^\top X_i)^{-1}]$$

- ▶ Optimal "inverse variance weighting": $w_i^* \propto 1/[\sigma^2 \operatorname{tr}[(X_i^\top X_i)^{-1}]]$
- Relative efficiency

$$RE(X_1, ..., X_k) = \frac{\mathbb{E}\|\hat{\beta} - \beta\|^2}{\mathbb{E}\|\hat{\beta}_{dist} - \beta\|^2} = tr[(X^{\top}X)^{-1}] \left[\sum_{i=1}^k \frac{1}{tr[(X_i^{\top}X_i)^{-1}]} \right]$$

How does this depend on n, p, k?

Discoveries under asymptotics

► CDE: $\operatorname{tr}[(X_i^\top X_i)^{-1}] \approx \frac{p}{n_i - p} \cdot \operatorname{tr} \Sigma^{-1}/p$. The RE has a simple approximation (n samples, p dimensions, k machines)

$$\frac{\mathbb{E}\|\hat{\beta} - \beta\|^2}{\mathbb{E}\|\hat{\beta}_{dist} - \beta\|^2} \approx \frac{n - kp}{n - p}$$

▶ Can be computed conveniently in practice. e.g., $n=10^9$, $p=10^6$, k=100, then $RE\approx 10/11\approx 0.91$, so we keep 90% efficiency

A general framework

- Important to study not only estimation, but also prediction/test error, residual error, confidence intervals etc
- Predict the linear functional

$$L_A = A\beta + Z$$

Using the plug-in estimator

$$\hat{L}_A(\hat{\beta}_0) = A\hat{\beta}_0$$

- ► A fixed $d \times p$ matrix; mean and covariance of Z has the structure: $Z \sim (0, h\sigma^2 I_d), h \geqslant 0$
- ▶ The noise can be correlated with ε : Cov $[\varepsilon, Z] = N$ (e.g., to study residuals)
- Relative efficiency:

$$E(A; X_1, \dots, X_k) := \frac{\mathbb{E} \|L_A - \hat{L}_A(\hat{\beta})\|^2}{\mathbb{E} \|L_A - \hat{L}_A(\hat{\beta}_{dist})\|^2}.$$

Examples: Predict $L_A = A\beta + Z$ by $\hat{L}_A(\hat{\beta}_0) = A\hat{\beta}_0$

Statistical learning problem	L _A	ĴΑ	Α	h	N
Parameter estimation	β	\hat{eta}	I_p	0	0
Regression function estimation	Xβ	Xβ̂	X	0	0
Confidence interval for marginal effect	β_j	\hat{eta}_j	$E_j^{ op}$	0	0
Test error	$x_t^{\top} \beta + \varepsilon_t$	$x_t^{\top} \hat{\beta}$	x_t^{\top}	1	0
Training error/Residual	$X\beta + \varepsilon$	Xβ̂	X	1	$\sigma^2 I_n$

Finite sample results

When h = 0 (no noise), the MSE of estimating $L_A = A\beta$ by OLS $\hat{L}_A = A\hat{\beta} = A(X^\top X)^{-1}X^\top Y$ is

$$M(\hat{\beta}) = \sigma^2 \cdot \operatorname{tr}\left[(X^{\top} X)^{-1} A^{\top} A \right].$$

▶ For the distributed estimator $\hat{\beta}_{dist}(w) = \sum_i w_i \hat{\beta}_i$, $\sum_i w_i = 1$

$$M(\hat{\beta}_{dist}) = \sigma^2 \cdot \sum_{i=1}^k w_i^2 \cdot \operatorname{tr}\left[(X_i^\top X_i)^{-1} A^\top A \right].$$

So optimal efficiency is

$$E(A; X_1, \dots, X_k) = \operatorname{tr}\left[(X^\top X)^{-1} A^\top A\right] \cdot \sum_{i=1}^k \frac{1}{\operatorname{tr}\left[(X_i^\top X_i)^{-1} A^\top A\right]}.$$

CDE:
$$\operatorname{tr}[(X_i^\top X_i)^{-1} A^\top A] \asymp \frac{p}{n_i - p} \cdot \operatorname{tr}[\Sigma^{-1} A^\top A]/p$$
.

Plot efficiencies

The loss of efficiency is much worse for estimation $\left(\frac{\mathbb{E}\|\hat{\beta}-\beta\|^2}{\mathbb{E}\|\hat{\beta}_{dist}-\beta\|^2}\right)$ than for test error $\left(\frac{\mathbb{E}(\mathbf{x}_t^T\hat{\beta}-\mathbf{y}_t)^2}{\mathbb{E}(\mathbf{x}_t^T\hat{\beta}_{dist}-\mathbf{y}_t)^2}\right)$.

Outline

Motivation

Calculus of deterministic equivalents

Distributed linear regression

Distributed ridge regression

ANOVA decomposition of the test error

Distributed ridge regression

- ▶ Global ridge estimator $\hat{\beta}(\lambda) = (X^{\top}X + n\lambda I_p)^{-1}X^{\top}Y$
- ▶ Local ridge estimator $\hat{\beta}_i(\lambda_i) = (X_i^\top X_i + n_i \lambda_i I_p)^{-1} X_i^\top Y_i$
- One-shot weighted estimator

$$\hat{\beta}_{dist}(w) = \sum_{i=1}^{k} w_i \hat{\beta}_i$$

- Key point: no constraints on the weights w because ridge estimator is biased!
- This leads to some surprising consequences, e.g. optimal weights do not sum to unity
- ▶ Also, do not require $n_i > p$ anymore

Optimal weights and MSE

- ▶ Goal: find optimal weights w to minimize $\mathbb{E}\|\hat{\beta}_{dist}(w) \beta\|^2$
- ▶ Optimal weights $w^* = (A + R)^{-1}v$, where $Q_i = (\widehat{\Sigma}_i + \lambda_i I_p)^{-1}\widehat{\Sigma}_i$

$$\mathbf{v}_i = \boldsymbol{\beta}^{\top} \mathbf{Q}_i \boldsymbol{\beta}, \quad A_{ij} = \boldsymbol{\beta}^{\top} \mathbf{Q}_i \mathbf{Q}_j \boldsymbol{\beta}, \quad R_{ii} = \frac{\sigma^2}{n_i} \operatorname{tr}[(\widehat{\Sigma}_i + \lambda_i I_p)^{-2} \widehat{\Sigma}_i]$$

- Assume β is random and independent of ε . Mean and variance: $\mathbb{E}\varepsilon_i = 0$, $\mathbb{E}\varepsilon_i^2 = \sigma^2$, $\mathbb{E}\beta_i = 0$, $\mathbb{E}\beta_i^2 = \sigma^2\alpha^2/p$
- ► Concentration of quadratic forms:

$$\beta^{\top} M \beta - \frac{\alpha^2 \sigma^2}{p} \cdot \operatorname{tr}(M) \to_{a.s.} 0$$

Need to know the limits of

$$\operatorname{tr} Q_i = \operatorname{tr}[(\widehat{\Sigma}_i + \lambda_i I_p)^{-1} \widehat{\Sigma}_i], \quad \operatorname{tr} Q_i Q_j, \quad R_{ii}$$

Use product rule and differentiation rule of CDE

Findings

- ► How to choose the tuning parameters λ_i ? When $\Sigma = I$, the MSE decouples over k machines, which means locally optimal λ_i are also globally optimal!
- ▶ Again, when $\Sigma = I$, the efficiency is positive when $k \to \infty$ infinite-worker limit

Landscape of RE for infinite-worker limit

- Suggests that one-shot learning is practical and has good performance
- ► In the "low dimension and high SNR" region, one should use other methods, e.g. iterative ones

Outline

Motivation

Calculus of deterministic equivalents

Distributed linear regression

Distributed ridge regression

ANOVA decomposition of the test error

Bias-variance decomposition

Choose \hat{f} based on the training set, and decompose the test error into bias and variance $(\mathbb{E}_{x,y} = \mathbb{E}_{(x,y) \sim \text{test}})$:

$$\begin{split} \mathbb{E}_{x,y} \mathbb{E}(y - \hat{f}(x))^2 &= \mathbb{E}_{x,y} \mathbb{E}(y - \mathbb{E}\hat{f}(x))^2 + \mathbb{E}_{x,y} \text{Var}(\hat{f}(x)) \\ &= \text{Bias}^2 + \text{Variance}. \end{split}$$

Figure: Bias and variance contributing to total error.¹

Our approach

- Variance depends on randomness in: initialization, input features, outcomes/labels... and other aspects: randomness in optimization algorithm, ...
- ▶ Decompose the variance into its ANOVA components (R.A. Fisher, 1918)

Three-way ANOVA: how is a response affected by three factors?²

Setup

▶ **Data:** n datapoints $(x_i, y_i) \in \mathbb{R}^d \times \mathbb{R}$ i.i.d. from $y = f^*(x) + \varepsilon = x^\top \theta + \varepsilon$, where x has i.i.d. standardized entries, $\varepsilon \sim \mathcal{N}(0, \sigma^2)$ is label noise:

$$Y = X\theta + \mathcal{E}.$$

► **Training**: Fit a two-layer linear (later nonlinear) random features model

$$f(x) = (\mathbf{W}x)^{\top} \beta.$$

• Weights $W \in \mathbb{R}^{p \times d}$, $p \leq d$ drawn uniformly from partial orthonormal matrices, $WW^{\top} = I_p$. Assume $\theta \sim \mathcal{N}(0, \alpha^2 I_d/d)$. Train β with L_2 loss, L_2 regularization λ to get predictor:

$$f(x) = (Wx)^{\top} \hat{\beta}_{\lambda, \mathcal{T}, W} = x^{\top} W^{\top} \left(\frac{WX^{\top} XW^{\top}}{n} + \lambda I_p \right)^{-1} \frac{WX^{\top} Y}{n}.$$

ANOVA: Symmetric variance decomposition

Denote (X, W, \mathcal{E}) by (s, i, l) respectively. We decompose the variance of \hat{f} in a symmetric way via the analysis of variance (ANOVA):

$$Var[\hat{f}(x)] = V_s + V_l + V_i + V_{sl} + V_{si} + V_{li} + V_{sli},$$

where

$$\begin{split} V_{a} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{a} [\mathbb{E}_{-a}(\hat{f}(x)|a)], & a \in \{s,l,i\} \\ V_{ab} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{ab} [\mathbb{E}_{-ab}(\hat{f}(x)|a,b)] - V_{a} - V_{b}, & a,b \in \{s,l,i\}, a \neq b. \\ V_{abc} &= \mathbb{E}_{\theta,x} \mathrm{Var}_{abc} [\mathbb{E}_{-abc}(\hat{f}(x)|a,b,c)] - V_{a} - V_{b} - V_{c} - V_{ab} - V_{ac} - V_{bc} \\ &= \mathrm{Var}[\hat{f}(x)] - V_{s} - V_{l} - V_{i} - V_{sl} - V_{si} - V_{li}, & \{a,b,c\} = \{s,l,i\}. \end{split}$$

- \triangleright V_a : the effect of varying a alone (main effect).
- V_{ab}: the second-order interaction effect between a and b beyond their main effects.
- V_{abc}: interaction effect among a, b, c beyond their pairwise interactions.

Calculation of the variance components

Define

$$\tilde{M} := W^{\top} (n^{-1}WX^{\top}XW^{\top} + \lambda I_p)^{-1}WX^{\top}/n \qquad M := \tilde{M}X.$$

Then we have $\hat{f}(x) = x^{\top} \tilde{M} Y = x^{\top} M \theta + x^{\top} \tilde{M} \mathcal{E}$. For V_s ,

$$\begin{aligned} V_s &= \mathbb{E}_{\theta,x} \mathsf{Var}_X(\mathbb{E}_{\mathcal{E},W}(\hat{f}(x)|X)) = \mathbb{E}_{\theta,x,X}[x^\top (\mathbb{E}_W M - \mathbb{E} M)\theta]^2 \\ &= \frac{\alpha^2}{d} \mathbb{E}_X \|\mathbb{E}_W M - \mathbb{E} M\|_F^2. \end{aligned}$$

Evaluate $\mathbb{E}M$ in two steps:

- 1. When X is Gaussian, express in terms of eigenvalues of $\widehat{\Sigma}$; then use Marchenko-Pastur theorem.
- 2. Let $\tilde{R}_{\tau} = \left(\frac{X(W^{\top}W+\tau)X^{\top}}{n} + \lambda I_n\right)^{-1}$, $M_{\tau} = W^{\top}WX^{\top}\tilde{R}_{\tau}\frac{X}{n}$.
 - (1). $\stackrel{CDE}{CDE}$: $\lim_{\tau \to 0} \lim_{d \to \infty} \mathbb{E} \operatorname{tr} M_{\tau} M_{\tau}^{\top} / d$ is independent of the dist. of X.
 - (2). $\lim_{d\to\infty} \mathbb{E} \operatorname{tr}(MM^{\top})/d = \lim_{\tau\to 0} \lim_{d\to\infty} \mathbb{E} \operatorname{tr} M_{\tau} M_{\tau}^{\top}/d$

Calculus of deterministic equivalents for Haar projections

Example 2. (Couillet et al., 2012)

Let $W \in \mathbb{R}^{p \times d}$ be the first p rows of a unitary Haar distributed random matrix. Suppose $R^{d \times d}$ is a sequence of positive semi-definite random matrices such that $\sup \|R\|_2 < \infty$, almost surely. As $p, d \to \infty$ proportionally, for any $\lambda > 0$

$$(R^{1/2}W^\top WR^{1/2} + \lambda I_d)^{-1} \stackrel{w}{\asymp} (\bar{e}_d R + \lambda I_d)^{-1},$$

where \bar{e}_d is the solution of a fixed point equation.

Main result: ANOVA for two-layer linear NN

- Asymptotics: $d \to \infty, p/d \to \pi \in (0,1], d/n \to \delta$.
- Let $\gamma := \pi \delta = \lim p/n$ and the resolvent moments: $\theta_j(\gamma,\lambda) := \int (x+\lambda)^{-j} dF_{\gamma}(x)$ where $F_{\gamma}(x)$ is the Marchenko-Pastur distribution with parameter γ .
- ► Let

$$\tilde{\lambda} := \lambda + \frac{1-\pi}{2\pi} \left[\lambda + 1 - \gamma + \sqrt{(\lambda + \gamma - 1)^2 + 4\lambda} \right],$$

and $\tilde{\theta}_1 := \theta_1(\delta, \tilde{\lambda}), \tilde{\theta}_2 := \theta_2(\delta, \tilde{\lambda}).$

Theorem. Denoting s: features X; i: initialization W; l: label noise \mathcal{E} :

$$\begin{split} &\lim_{d \to \infty} V_s = \alpha^2 [1 - 2\tilde{\lambda}\tilde{\theta}_1 + \tilde{\lambda}^2 \tilde{\theta}_2 - \pi^2 (1 - \lambda \theta_1)^2] \\ &\lim_{d \to \infty} V_l = 0 \\ &\lim_{d \to \infty} V_i = \alpha^2 \pi (1 - \pi) (1 - \lambda \theta_1)^2 \\ &\lim_{d \to \infty} V_{sl} = \sigma^2 \delta(\tilde{\theta}_1 - \tilde{\lambda}\tilde{\theta}_2) \\ &\lim_{d \to \infty} V_{li} = 0 \\ &\lim_{d \to \infty} V_{si} = \alpha^2 [\pi (1 - 2\lambda \theta_1 + \lambda^2 \theta_2 + (1 - \pi)\delta(\theta_1 - \lambda \theta_2)) \\ &- \pi (1 - \pi) (1 - \lambda \theta_1)^2 - 1 + 2\tilde{\lambda}\tilde{\theta}_1 - \tilde{\lambda}^2\tilde{\theta}_2] \\ &\lim_{d \to \infty} V_{sli} = \sigma^2 \delta[\pi(\theta_1 - \lambda \theta_2) - (\tilde{\theta}_1 - \tilde{\lambda}\tilde{\theta}_2)]. \end{split}$$

ANOVA for two-layer linear NN

Cumulative figure of the bias and variance components, as fn of $\delta = \lim d/n$. **Parameters**: signal strength $\alpha = 1$, noise level $\sigma = 0.3$, regularization parameter $\lambda = 0.01$, parametrization level $\pi = 0.8$.

What is the effect of regularization?

- \triangleright Large reduction in V_{si}
- V_{si} : The part of variance that can be reduced via ensembling over the sample X or initialization W.

Summary

- ► Calculus of Deterministic Equivalents: precise calculations of certain functionals of random matrices under mean-field asymptotics
- Compared to AMP: allows data distributions with more general covariance structure, but only for more specific trace functionals.
- Applications to distributed linear & ridge regression, random feature models.
- Other researchers' works in light of CDE: high-dimensional interpolation by Hastie et al 2019.

References I

- Ben Adlam and Jeffrey Pennington. Understanding double descent requires a fine-grained bias-variance decomposition. arXiv preprint arXiv:2011.03321, NeurIPS 2020, 2020.
- David Barber, David Saad, and Peter Sollich. Finite-size effects and optimal test set size in linear perceptrons. *Journal of Physics A: Mathematical and General*, 28(5):1325, 1995.
- Robert PW Duin. Small sample size generalization. In *Proceedings of the Scandinavian Conference on Image Analysis*, volume 2, pages 957–964. PROCEEDINGS PUBLISHED BY VARIOUS PUBLISHERS, 1995.
- Lars Kai Hansen. Stochastic linear learning: Exact test and training error averages. *Neural Networks*, 6(3):393–396, 1993.
- JA Hertz, A Krogh, and GI Thorbergsson. Phase transitions in simple learning. *Journal of Physics A: Mathematical and General*, 22(12): 2133, 1989.
- M Opper, W Kinzel, J Kleinz, and R Nehl. On the ability of the optimal perceptron to generalise. *Journal of Physics A: Mathematical and General*, 23(11):L581, 1990.

References II

- Manfred Opper. Statistical mechanics of learning: Generalization. *The Handbook of Brain Theory and Neural Networks*,, pages 922–925, 1995.
- Manfred Opper and Wolfgang Kinzel. Statistical mechanics of generalization. In *Models of neural networks III*, pages 151–209. Springer, 1996.
- Sarunas Raudys and Robert PW Duin. Expected classification error of the fisher linear classifier with pseudo-inverse covariance matrix. *Pattern recognition letters*, 19(5-6):385–392, 1998.