CMP(N)302: Design and Analysis of Algorithms

Lecture 07: Minimum Spanning Trees

Ahmed Hamdy

Computer Engineering Department

Cairo University

Fall 2019

Minimum Spanning Trees (MST)

- Problem arouse from many applications
- Given distances between cities, choose which roads to construct in order for all cities to be reachable with minimum construction cost.

	Alexandria	Cairo	Matrouh	Aswan	Assiut	Hurghada
Alexandria	0	220	320	1,080	580	680
Cairo	220	0	450	860	360	450
Matrouh	320	450	0	1,300	800	900
Aswan	1,080	860	1,300	0	500	400
Assiut	580	360	800	500	0	300
Hurghada	680	450	900	400	300	0

Definition

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown, and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This minimum spanning tree is not unique: removing the edge (b, c) and replacing it with the edge (a, h) yields another spanning tree with weight 37.

- What is the use of this?!!
 - In electronic circuit design, we need to wire the electric components together

Definition

Figure 23.1 A minimum spanning tree for a connected graph. The weights on edges are shown, and the edges in a minimum spanning tree are shaded. The total weight of the tree shown is 37. This minimum spanning tree is not unique: removing the edge (b, c) and replacing it with the edge (a, h) yields another spanning tree with weight 37.

- How to write it as a definition for the problem?
 - Find an acyclic subset $T \subseteq E$ that connects all the vertices with minimum $w(T) = \sum_{(u,v) \in T} w(u,v)$

Main concept

```
GENERIC-MST (G, w)

1 A = \emptyset

2 while A does not form a spanning tree

3 find an edge (u, v) that is safe for A

4 A = A \cup \{(u, v)\}

5 return A
```

- Follows which approach??
 - Greedy approach

Kruskal's algorithm

Kruskal's algorithm

• Each iteration: a) have a forest and b) add the least-weight safe edge connecting two different components

Kruskal's algorithm

• Algorithm: MST-KRUSKAL(G, w) $O(1) \rightarrow 1 \quad A = \emptyset$ $o(V) \rightarrow 2$ for each vertex $v \in G.V$ 3 MAKE-SET(ν) $O(E \log E) \rightarrow 4$ sort the edges of G.E into nondecreasing order by weight w for each edge $(u, v) \in G.E$, taken in nondecreasing order by weight if FIND-SET $(u) \neq$ FIND-SET(v) $A = A \cup \{(u, v)\}$ UNION(u, v)return A

- Complexity: $O(E \log E) = O(E \log V)$
- Read disjoint-sets (Chapter 21)

Prim's algorithm

During each iteration:

- a) have a tree
- b) add the least-weight safe edge connecting the tree to vertex not in tree

Prim's algorithm

Binary heap

 $\Theta(1)$

 $\Theta(\lg n)$

 $\Theta(1)$

 $\Theta(\lg n)$

 $\Theta(n)$

 $\Theta(\lg n)$

 $\Theta(\lg n)$

Fibonacci heap

(amortized)

 $\Theta(1)$

 $\Theta(1)$

 $\Theta(1)$

 $O(\lg n)$

 $\Theta(1)$

 $\Theta(1)$

 $O(\lg n)$

• Algorithm:

```
MST-PRIM(G, w, r)
                                                            Procedure
                                                                               (worst-case)
                                                            MAKE-HEAP
    O(V) \rightarrow 1 for each u \in G.V
                       u.key = \infty
                                                            INSERT
                                                            MINIMUM
                       u.\pi = NIL
                  r.key = 0
                                                            EXTRACT-MIN
              5 \quad Q = G.V
                                                            UNION
    O(V) \longrightarrow 6 while Q \neq \emptyset
                                                            DECREASE-KEY
O(\log V) \rightarrow 7  u = \text{EXTRACT-MIN}(Q)
                                                            DELETE
   O(E) \longrightarrow 8 for each v \in G.Adj[u]
Lines 6 - 8 	 9
                           if v \in Q and w(u, v) < v. key
             10
                                \nu.\pi = u
                                v.key = w(u, v)
O(\log V) \rightarrow 11
```

- Complexity: $O(V \log V + E \log V) = O(E \log V)$
 - Using Fibonacci heaps: $O(E + V \log V)$