TECNICAS DE INTEGRACION

Ing. Iván Jaramillo J.

<u>ijaramilloj@unal.edu.co</u>

<u>www.gmun.unal.edu.co/ijaramilloj</u>

II-2013

EVOLUCION EN COMPLEJIDAD

TENDENCIAS DE INTEGRACIÓN

LEY DE MOORE PARA MICROPROCESADORES

Transistors on Lead Microprocessors double every 2 years

TAMAÑO DEL DADO

FRECUENCIA

Lead Microprocessors frequency doubles every 2 years

DISIPACIÓN DE POTENCIA

Lead Microprocessors power continues to increase

LA POTENCIA: EL MAYOR PROBLEMA

Power delivery and dissipation will be prohibitive

Telefonía Celular

<u>1996 1997 1998 1999 2000 2010</u>

Units 48M 86M 162M 260M 435M 900M

(data from Texas Instruments)

DISEÑO: NIVELES DE ABSTRACCIÓN

Desarrollo del Dado

COSTO POR TRANSISTOR

ANTECEDENTES ENCAPSULADOS MODERNOS

Figura 1. Parte de arriba de una tarjeta de memoria usando DIP's

TIPOS DE MONTAJE

Figura 2. Calculadora PWB mostrando encapsulados de cuatro lados con componentes de inserción (Thru-hole).

Figura 3. Terminal de un encapsulado "Ala de gaviota"

TECNOLOGÍA BGA

Clasificación de los Materiales

Gap de Energía (eV)

Aisladores	eV	Semiconductores	eV
Diamante	5,33	Silicio	1,14
Oxido de Zinc	3,2	Germanio	0,67
Cloruro de Plata	3,2	Telurio	0,33
Sulfuro de Cadmio	2,42	Antimoniuro de Indio	0,23

Tabla 1 Gap de energía de algunos aisladores y semiconductores.

Bandas de Energía – Valores Típicos

Símbolo	Nombre	Ancho BP (eV)	Mov. elec. (cm²/V.s)	Mov. huecos (cm²/V.s)	Dist. crist. (Å)
SPb	Galena	0,37	<i>575</i>	200	5,93
SZn	Blenda	3,60	110	-	5,41
Ge	Germanio	0,67	3900	1900	5,65
Si	Silicio	1,11	1350	480	5,43
AsGa	Arseniuro de Galio	1,43	8500	400	5,65

ADICIÓN DE IMPUREZAS

INTRINSECO

Aceptores: Grupo III

Boro Galio Indio

TIPO-P

TIPO-N

Donadores: Grupo V

Antimonio

Arsénico

Fósforo

Materiales tipo P

MATERIALES TIPO N

JUNTURA PN

COMPORTAMIENTO JUNTURA PN

EL DIODO

Cross-section of n-junction in an IC process

diode symbol

TEMA DE TRABAJO

- Tipos de diodos que se utilizan para hacer osciladores
 - Características
 - Construcción
 - Principio de operación.

