Il Teorema Fondamentale del Calcolo

È davvero possibile che la strada più breve per la verità passi attraverso qualcosa di falso ?

F. Zanasi¹

¹ Corso di Laurea in Didattica e Comunicazione delle Scienze Università di Modena e Reggio Emilia

26 Novembre 2021 / Corso di Fondamenti di Matematica

Sommario

- Introduzione
 - Senza formule
 - Storia
 - Infinitesimi
- 2 Il teorema del moto
 - Oresme
 - Torricelli
- 3 Tangenti e aree
 - Cartesio
 - Fermat
 - Cavalieri
- Prime versioni del TFC
 - Newton
 - Leibniz

Senza formule

Storia

Origine

Il teorema nacque nel XVII secolo, quando si scoprì che i processi per determinare

- la tangente a una curva.
- l'area racchiusa da una curva.

erano l'uno l'inverso dell'altro.

Sviluppo

Nelle prime formulazioni il teorema stabiliva che la differenziazione e l'integrazione di funzioni rappresentano operazioni inverse. In seguito la formulazione del teorema continuò a trasformarsi e parallelamente si precisarono e ampliarono le nozioni di differenziazione, integrazione e funzione.

Storia

Origine

Il teorema nacque nel XVII secolo, quando si scoprì che i processi per determinare

- la tangente a una curva.
- l'area racchiusa da una curva.

erano l'uno l'inverso dell'altro.

Sviluppo

Nelle prime formulazioni il teorema stabiliva che la differenziazione e l'integrazione di funzioni rappresentano operazioni inverse. In seguito la formulazione del teorema continuò a trasformarsi e parallelamente si precisarono e ampliarono le nozioni di differenziazione, integrazione e funzione.

Infinitesimi

Una delle caratteristiche più salienti della storia di questo teorema è il ruolo problematico e in qualche modo irritante delle grandezze infinitesimali, un concetto che sembrò per lungo tempo assurdo, per quanto indispensabile.

Definizione

Infinitesimo in Matematica, si dice di quantità variabile che, in opportune condizioni, ha per limite lo zero. La definizione del concetto di i. è dovuta ad A.-L. Cauchy (1821). Secondo tale definizione, l'i. non va inteso in senso di i. attuale (quantità infinitamente piccola, evanescente, e tuttavia diversa dallo zero), ma nel senso di potenziale (quantità che tende ad annullarsi).

Ex malo, bonum

La ricerca di una soluzione al problema degli infinitesimi condusse non solo a chiarire il concetto di funzione, ma anche a precisare il concetto di *numero*.

Importanza

Il teorema fondamentale del Calcolo, (TFC) fu dunque all'origine della revisione della matematica, e ciò ne fa uno dei teoremi più importanti della sua storia.

Infinitesimi

Una delle caratteristiche più salienti della storia di questo teorema è il ruolo problematico e in qualche modo irritante delle grandezze infinitesimali, un concetto che sembrò per lungo tempo assurdo, per quanto indispensabile.

Definizione

Infinitesimo in Matematica, si dice di quantità variabile che, in opportune condizioni, ha per limite lo zero. La definizione del concetto di i. è dovuta ad A.-L. Cauchy (1821). Secondo tale definizione, l'i. non va inteso in senso di i. attuale (quantità infinitamente piccola, evanescente, e tuttavia diversa dallo zero), ma nel senso di i. potenziale (quantità che tende ad annullarsi).

Ex malo. bonum

La ricerca di una soluzione al problema degli infinitesimi condusse non solo a chiarire il concetto di funzione, ma anche a precisare il concetto di *numero*.

Importanza

Il teorema fondamentale del Calcolo, (TFC) fu dunque all'origine della revisione della matematica, e ciò ne fa uno dei teoremi più importanti della sua storia.

Infinitesimi

Una delle caratteristiche più salienti della storia di questo teorema è il ruolo problematico e in qualche modo irritante delle grandezze infinitesimali, un concetto che sembrò per lungo tempo assurdo, per quanto indispensabile.

Definizione

Infinitesimo in Matematica, si dice di quantità variabile che, in opportune condizioni, ha per limite lo zero. La definizione del concetto di i. è dovuta ad A.-L. Cauchy (1821). Secondo tale definizione, l'i. non va inteso in senso di i. attuale (quantità infinitamente piccola, evanescente, e tuttavia diversa dallo zero), ma nel senso di i. potenziale (quantità che tende ad annullarsi).

Ex malo, bonum

La ricerca di una soluzione al problema degli infinitesimi condusse non solo a chiarire il concetto di funzione, ma anche a precisare il concetto di *numero*.

Importanza

Il teorema fondamentale del Calcolo, (TFC) fu dunque all'origine della revisione della matematica, e ciò ne fa uno dei teoremi più importanti della sua storia.

Infinitesimi

Una delle caratteristiche più salienti della storia di questo teorema è il ruolo problematico e in qualche modo irritante delle grandezze infinitesimali, un concetto che sembrò per lungo tempo assurdo, per quanto indispensabile.

Definizione

Infinitesimo in Matematica, si dice di quantità variabile che, in opportune condizioni, ha per limite lo zero. La definizione del concetto di i. è dovuta ad A.-L. Cauchy (1821). Secondo tale definizione, l'i. non va inteso in senso di i. attuale (quantità infinitamente piccola, evanescente, e tuttavia diversa dallo zero), ma nel senso di i. potenziale (quantità che tende ad annullarsi).

Ex malo, bonum

La ricerca di una soluzione al problema degli infinitesimi condusse non solo a chiarire il concetto di funzione, ma anche a precisare il concetto di *numero*.

Importanza

Il teorema fondamentale del Calcolo, (TFC) fu dunque all'origine della revisione della matematica, e ciò ne fa uno dei teoremi più importanti della sua storia.

Oresme

Nel 1361,il matematico Oresme rappresentò il moto con una serie di grafici in cui la velocità dipendeva dal tempo.

Egli dedusse che la distanza percorsa da un corpo *A* che si muove con accelerazione costante è pari a quella di un corpo *B* che si muove con velocità costante pari alla media delle velocità iniziale e finale del corpo a.

TFC secondo Oresme

Oresme assume che la distanza percorsa da un corpo qualsiasi è pari all' area sottesa dal grafico velocità-tempo.

Oresme

Nel 1361,il matematico Oresme rappresentò il moto con una serie di grafici in cui la velocità dipendeva dal tempo.

Egli dedusse che la distanza percorsa da un corpo A che si muove con accelerazione costante è pari a quella di un corpo B che si muove con velocità costante pari alla media delle velocità iniziale e finale del corpo a.

TFC secondo Oresme

Oresme assume che la distanza percorsa da un corpo qualsiasi è pari all' area sottesa dal grafico velocità-tempo.

Oresme

Nel 1361,il matematico Oresme rappresentò il moto con una serie di grafici in cui la velocità dipendeva dal tempo.

Egli dedusse che la distanza percorsa da un corpo A che si muove con accelerazione costante è pari a quella di un corpo B che si muove con velocità costante pari alla media delle velocità iniziale e finale del corpo a.

TFC secondo Oresme

Oresme assume che la distanza percorsa da un corpo qualsiasi è pari all' area sottesa dal grafico velocità-tempo.

Torricelli

Dato il grafico distanza-tempo di un punto che si muove, diciamo con velocità v al tempo t,

il coefficiente angolare misura l'inclinazione della tangente al tempo t. La velocità è il coefficiente angolare della curva nel grafico distanza-tempo) (Torricelli 1640)

TFC secondo Torricelli

- La distanza è l'area della velocità (in relazione al tempo)
- La velocità è il coefficiente angolare della tangente alla distanza (in relazione al tempo)

Cartesio

Geometria Algebrica

Descartes, in Francia, intorno al 1630, introduce la geometria algebrica che permette di definire e classificare la classe delle *curve algebriche* in base al loro *grado*. Una curva algebrica piana è l'insieme dei punti (x, y) che soddifano l'equazione

$$p(x, y) = 0$$
, dove $p(x, y)$ è un polinomio

Retta tangente a una curva

Il problema delle tangenti è, per Descartes

il problema più utile e generale [...] in Geometria

La sua soluzione, pubblicata nel 1637 nella *Géométrie* è di considerare la circonferenza tangente alla curva in un punto dato $P_0 = (x_0, y_0)$. Una volta trovata quest'ultima, il suo raggio per P_0 sarà normale alla curva, e quindi la tangente sarà perpendicolare al raggio.

Abbandono

Il metodo comporta calcoli piuttosto complicati, anche nei casi più semplici. Si tratta di un metodo di geometria algebrica e non di, come in Fermat, di calcolo differenziale.

Cartesio

Geometria Algebrica

Descartes, in Francia, intorno al 1630, introduce la geometria algebrica che permette di definire e classificare la classe delle *curve algebriche* in base al loro *grado*. Una curva algebrica piana è l'insieme dei punti (x, y) che soddifano l'equazione

$$p(x, y) = 0$$
, dove $p(x, y)$ è un polinomio

Retta tangente a una curva

Il problema delle tangenti è, per Descartes,

il problema più utile e generale [...] in Geometria

La sua soluzione, pubblicata nel 1637 nella *Géométrie* è di considerare la circonferenza tangente alla curva in un punto dato $P_0 = (x_0, y_0)$. Una volta trovata quest'ultima, il suo raggio per P_0 sarà normale alla curva, e quindi la tangente sarà perpendicolare al raggio.

Abbandono

Il metodo comporta calcoli piuttosto complicati, anche nei casi più semplici. Si tratta di un metodo di geometria algebrica e non di, come in Fermat, di calcolo differenziale.

Cartesio

Geometria Algebrica

Descartes, in Francia, intorno al 1630, introduce la geometria algebrica che permette di definire e classificare la classe delle *curve algebriche* in base al loro *grado*. Una curva algebrica piana è l'insieme dei punti (x, y) che soddifano l'equazione

$$p(x, y) = 0$$
, dove $p(x, y)$ è un polinomio

Retta tangente a una curva

Il problema delle tangenti è, per Descartes,

il problema più utile e generale [...] in Geometria

La sua soluzione, pubblicata nel 1637 nella *Géométrie* è di considerare la circonferenza tangente alla curva in un punto dato $P_0 = (x_0, y_0)$. Una volta trovata quest'ultima, il suo raggio per P_0 sarà normale alla curva, e quindi la tangente sarà perpendicolare al raggio.

Abbandono

Il metodo comporta calcoli piuttosto complicati, anche nei casi più semplici. Si tratta di un metodo di geometria algebrica e non di, come in Fermat, di calcolo differenziale.

Introduzione dell'infinitesimo

Fermat, intorno al 1630, ha già un suo metodo per trovare la tangente, grazie ad un espediente algebrico, che divenne un concetto nuovo: l'infinitesimo.

Cerchiamo il coefficiente

angolare della retta tangente a una parabola $y=x^2$ nel punto x=1. Dato il punto $P_0=(1,1)$, che giace sulla curva e ha ascissa x=1 si consideri un punto *infinitamente vicino ad esso*, che ha per ascissa x=1+dx (ove con dx indichiamo appunto un *infinitesimo*). L'ordinata sarà, secondo l'equazione data della parabola, $y=(1+dx)^2=1+2dx+(dx)^2$. Il coefficiente angolare che congiunge questi due punti $P_0=(1,1)$ e $P_1=(1+dx,(1+dx)^2)$

$$\frac{(1+dx)^2-1}{dx} = \frac{2dx+(dx)^2}{dx} = 2+dx$$

è dato dal rapporto fra le differenze fra le coordinate:

che è infinitamente vicino a 2. Sembra dunque ragionevole affermare che il coefficiente angolare della tangente nel punto $P_0=(1,1)$ è 2 e quindi l'equazione della retta tangente in questo punto è (y-1)=2(x-1), ovvero y=2x-1

Cavalieri-Torricelli

Tangente e area di $y = x^n$

Con il suo metodo, Fermat, trovò che il coefficiente angolare della curva $y=x^n$ in x=a è na^{n-1} . Bonaventura Cavalieri, nella sua *Geometria indivisibilium* (1635) considerò l'area sottesa alla curva $y=x^n$ come la somma di una collezione di "indivisibili", e giunse a determinare che l'area sottesa alla curva $y=x^n$, delimitata dalle ascisse x=0 e x=1 per ogni valore di n è $\frac{1}{n+1}$.

Torricelli, nel 1640, considerò la curva $y=x^n$ come un grafico velocità-tempo, dove l'area rappresenta la distanza. Per il TFC, versione "Teorema fondamentale del moto", la velocità è il coefficiente angolare del grafico distanza-tempo. Quale curva ha coefficiente angolare x^n ? Torricelli mostrò che $y=\frac{x^{n+1}}{n+1}$ ha ha coefficiente angolare x^n . Quindi l'equazione del grafico distanza-tempo è

$$y = \frac{x^{n+1}}{n+1}$$

L'area sottesa da $y = x^{n+1}$ per n = 0, 1, 2, 3.

Newton

De methodis serierum et fluxionum. 1670-1672

Per illustrare l'arte analitica non rimane ora che affrontare alcuni problemi ad essa inerenti che emergono soprattutto a causa della natura delle curve [...] tali difficoltà possono essere ricondotte a due soli problemi, che vorrei presentare in relazione allo spazio percorso con un qualsiasi moto locale, sia esso accelerato o ritardato:

- Data la lunghezza della traiettoria in maniera continua (cioè, in ogni istante), trovare la velocità del moto in ogni istante.
- Data la velocità del moto in maniera continua, trovare la lunghezza della traiettoria descritta (cioè della distanza percorsa) in ogni istante.

II TFC secondo Newton

Theorem

Teorema Per ogni serie di potenze, l'operazione di differenziazione è inversa all'operazione di integrazione.

Α

ssumendo che sia sempre possibile differenziare e integrare termine a termine.

TFC secondo Newton

Per ogni serie di potenze, l'operazione di differenziazione è inversa all'operazione di integrazione. Assumendo che sia sempre possibile differenziare e integrare termine a termine.

Questo teorema è una conseguenza diretta del fatto che la differenziazione è l'operazione inversa dell'integrazione per ogni potenza xⁿ. Tuttavia occorre avere una serie di potenze in forma esplicita

TFC secondo Newton

Per ogni serie di potenze, l'operazione di differenziazione è inversa all'operazione di integrazione. Assumendo che sia sempre possibile differenziare e integrare termine a termine.

Questo teorema è una conseguenza diretta del fatto che la differenziazione è l'operazione inversa dell'integrazione per ogni potenza x^n . Tuttavia occorre avere una serie di potenze in forma esplicita.

Leibniz

Nova Methodus

Nel 1684 Leibniz diede alle stampe l'opera *Nova Methodus pro maximis e minimis*, la prima pubblicazione sul calcolo differenziale inteso nell'accezione moderna: un metodo e un simbolismo generali per il calcolo delle tangenti alle curve.

Prima esposizione moderna del Calcolo Differenziale

Troviamo la notazione $\frac{dy}{dx}$, le regole di differenziazione e il concetto di funzione (anzi la parola stessa). Leibnizintroduce la notazione dx per denotare un incremento infinitesimo di x (la "d" sta per differenza).

Adesione agli infinitesimi

Per esempio se y = uv dove u,v sono funzioni della x. L'incremento dy diventa:

$$dy = (u + du)(v + dv) - uv = udv + vdu + dudv$$

e il coefficiente angolare $\frac{dy}{dx}$ della retta che passa per il punto (x, y) e il punto infinitamente vicino (x + dx, y + dy) si ottiene, a meno di un infinitesimo, semplicemente dividendo per dx:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Nova Methodus

Nel 1684 Leibniz diede alle stampe l'opera *Nova Methodus pro maximis e minimis*, la prima pubblicazione sul calcolo differenziale inteso nell'accezione moderna: un metodo e un simbolismo generali per il calcolo delle tangenti alle curve.

Prima esposizione moderna del Calcolo Differenziale

Troviamo la notazione $\frac{dy}{dx}$, le regole di differenziazione e il concetto di funzione (anzi la parola stessa). Leibniz introduce la notazione dx per denotare un incremento infinitesimo di x (la "d" sta per differenza).

Adesione agli infinitesimi

Per esempio se y = uv dove u,v sono funzioni della x. L'incremento dy diventa:

$$dy = (u + du)(v + dv) - uv = udv + vdu + dudv$$

e il coefficiente angolare $\frac{dy}{dx}$ della retta che passa per il punto (x, y) e il punto infinitamente vicino (x + dx, y + dy) si ottiene, a meno di un infinitesimo, semplicemente dividendo per dx:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

Leibniz

Nova Methodus

Nel 1684 Leibniz diede alle stampe l'opera *Nova Methodus pro maximis e minimis*, la prima pubblicazione sul calcolo differenziale inteso nell'accezione moderna: un metodo e un simbolismo generali per il calcolo delle tangenti alle curve.

Prima esposizione moderna del Calcolo Differenziale

Troviamo la notazione $\frac{dy}{dx}$, le regole di differenziazione e il concetto di funzione (anzi la parola stessa). Leibniz introduce la notazione dx per denotare un incremento infinitesimo di x (la "d" sta per differenza).

Adesione agli infinitesimi

Per esempio se y = uv dove u,v sono funzioni della x. L'incremento dy diventa:

$$dy = (u + du)(v + dv) - uv = udv + vdu + dudv$$

e il coefficiente angolare $\frac{dy}{dx}$ della retta che passa per il punto (x, y) e il punto infinitamente vicino (x + dx, y + dy) si ottiene, a meno di un infinitesimo, semplicemente dividendo per dx:

$$\frac{dy}{dx} = u\frac{dv}{dx} + v\frac{du}{dx}$$

L'integrale secondo Leibniz

La definizione

Nel 1686 Leibniz da alle stampe la prima pubblicazione sul Calcolo integrale. Introduce la notazione $\int y dx$ per indicare la funzione y di x, dove \int , una S allungata sta per "somma". Il termine seguente, ydx, indica l'area di un rettangolo infinitesimo di altezza y e base dx. Quindi $\int y dx$ denota la somma di queste aree infinitesime: l'area sottesa alla curva la cui altezza in x è y.

Il TFC secondo Leibniz

Domanda

Che cosa significa $d \int y dx$?

Teorema

Poiché d significa "incremento infinitesimo" e \int significa "somma", allora $d\int ydx$ significa "incremento Infinitesimo della somma (di infiniti ydx)", La risposta é sicuramente :

$$d \int y dx = y dx$$

Quindi

$$\frac{d}{dx} \int y dx = y$$

In parole: Se si integra una funzione y e poi si differenzia il risultato si ottiene di nuovo la funzione y

Bibliografia

A. Salomaa.

Formal Languages.

Academic Press, 1973.

E. Dijkstra.

Smoothsort, an alternative for sorting in situ.

Science of Computer Programming, 1(3):223–233, 1982.