Lecture 5

Lean and Six Sigma

Course Structure

Learning Objectives

- Explain what is JIT / lean operations.
- Identify the sources of waste and briefly describe the push / pull systems
- List some of the obstacles that might be encountered when converting to a JIT system.
- Explain the importance of RATER & SERVQUAL model
- Understand the Six Sigma approach to improving quality and productivity.

JIT / Lean Operations

Supplier

Customer

Lean Operations

Supplier

Customer

ELIMINATING WASTE

Waste

ム MU DA 無駄

"Anything that adds Cost to the product without adding Value"

Sources of Waste

JIT

- Just-in-time (JIT): A highly coordinated processing system in which goods move through the system, and services are performed, just as they are needed
- JIT = lean operations
- JIT pull (demand) system

Push vs Pull

Push System:

–produce in anticipation of downstream needs (or customer demand forecast)

Pull System:

-produce in response to the <u>actual</u> downstream need (or customer order)

Push vs Pull (Cont'd)

- Make-to-stock (Push)
 - -The unit Peter purchase was produced before he orders
- Make-to-order (Pull)
 - -Produce the unit for Peter only after Peter orders

Push-Pull Boundary

The Push-Pull Boundary in a Make-to-Stock Supply Chain

Push-Pull Boundary

The Push-Pull Boundary in a Make-to-Order Supply Chain

McDonald Push-Pull Process

Comparison of JIT and Traditional Systems

Factor	Traditional	JIT	
Inventory	Much, to offset forecast errors, late deliveries	Minimal necessary to operate	
Deliveries	Few, large	Many, small	
Lot sizes	Large	Small	
Setup; runs	Few, long runs	Many, short runs	
Vendors	Long-term relationships are unusual	Partners	
Workers	Necessary to do the work	Assets (cross-trained workers)	

Transitioning to a JIT System

- Get top management commitment
- Decide which parts need most effort
- Obtain support of workers
- Start by trying to reduce setup times
- Gradually convert operations
- Convert suppliers to JIT
- Prepare for obstacles

Obstacles to Conversion

- Management may not be committed
- Workers/management may not be cooperative
- Difficult to change company culture
- Suppliers may resist

Why Suppliers Resist JIT

- Unwilling to commit resources
- Uneasy about long-term commitments
- Frequent, small deliveries may be difficult
- Burden of quality control shifts to supplier
- Frequent engineering changes may cause
 JIT changes

Summary of Benefits of JIT

- Reduced inventory levels
- High quality
- Flexibility
- Reduced lead times
- Increased productivity

- Increased equipment utilization
- Reduced scrap and rework
- Reduced space requirements
- Pressure for good vendor relationships
- Reduced need for indirect labor (e.g. QC staff)

Examples of JIT Adopters

MARKS& **SPENCER**

ZARA

Quality Management - Six Sigma

Total Quality Management (TQM)

Managing the entire organization so that it excels on all dimensions of products and services that are important to the customer

Two fundamental operational goals:-

- 1. Careful design of the product or service
- 2. Ensuring that the organization's systems can consistently produce the design

Five Dimensions of Service Quality (RATER)

• Responsiveness: The willingness to help customers & to provide prompt service.

Example: avoid keeping customers waiting for no apparent reason.

Assurance: Ability to convey trust and confidence; competence and knowledge of work.

Example: competence, politeness & respect for customer, effective communication, bear customer interest at heart

Five Dimensions of Service Quality (cont.)

- Tangibles: The appearance of physical facilities, equipment, personnel and communication materials. The condition of the physical surroundings is tangible evidence. Example: cleanliness
- **Empathy:** The ability to provide care, individualized attention to customers. It includes approachability, sensitivity and effort to understand customer's need.

Example: being a good listener

Reliability: Perform promised service dependably and accurately.

Example: receive postal mail at same time each day.

Knowledge checkpoint: Self assessment

- When you notice a customer puzzling over a product and offer help and information, you show ______.
- When you are sensitive to an individual customer's needs when solving problem, you show _____.
- When you smile and tell a customer, "I can help you with that", you build ______.
- 4. When you fulfill a customer order on time, you show
- 5. When you take time to make yourself and your work area presentable, you are paying attention to the

_____.

Perceived Service Quality

Issues of Measuring Service Quality

Measuring service quality

- A challenge because customer satisfaction is determined by many intangible factors
- SERVQUAL, an effective tools for surveying customer satisfaction that is based on the service quality gap model for measuring the 5 dimensions of service quality

Service Quality Gap Model (SERVQUAL)

"I SLEPT HERE"

Six Sigma

- A philosophy and set of methods companies use to eliminate defects in their products and processes
- Seeks to reduce variation in the processes that lead to product defects
- The name, "Six Sigma," refers to the goal of no more than 3.4 defects per million units

Goal: Reduce variation

DMAIC

A six sigma methodology for improving quality by identifying and eliminating the root causes

DMAIC Cycle

Define - identify customers and their priorities

Measure - determine how to measure the process and how it is performing

Analyze - determine the most likely causes of defects

Improve - identify means to remove the causes of defects

Control - determine how to maintain the improvements

Six Sigma 7 Basic Tools

Flowchart - a diagram of the sequence of operations

Run chart - depict trends in data over time

Pareto chart - help to break down a problem into components

Checksheet - basic form to standardize data collection

Cause-and-effect
diagram - show
relationships
between causes and
problems

Opportunity flow diagram - used to separate value-added from non-value-added

Process control chart - used to assure that processes are in statistical control

Flowchart

Run Chart

Example 1:

A simple run chart showing data collected over time. The median of the observed data (73) is also shown on the chart.

Example 2: Average monthly volume of deliveries (per shop)

Check sheet

Example 1:

	Monday	Tuesday	Wednesday	Thursday	Friday	Saturday	Sunday
Wrong orders	///	Ш	####	1	//	////	## 11
Reworked orders		1	//	///		1	//
Late deliveries	HHT	1	///	//		///	//
Shipping damage						## ##	## 111
Late payments		1					
Totals	11	8	27	6	2	28	19

Example 2:

Pareto Chart

Measure

Pareto Chart**

Types of customer complaints Total = 2,520 October–December (across 6 shops)

Illustration note: Delivery time was defined by the total time from when the order was placed to when the customer received it.

Cause-and-Effect Diagram (Fishbone Diagram)

Opportunity Flow Diagram

Process Control Chart

Driving Operations Excellence

SIX SIGMA

Continually improving processes in relation to customer requirements

LEAN

Focus on reducing waste and its drivers throughout the organization

Results in faster creation of value at the lowest possible cost

Examples of Six Sigma Adopters

Certified Professionals

Key Take Away

- JIT / lean operations
- Sources of waste
- Push / pull systems
- RATER & SERVQUAL model
- Six Sigma DMAIC & 7 basic tools

