Analyse

Fonctions continues ou

dérivables sur un

intervalle

Question 1/13

Théorème de Rolle itéré

Réponse 1/13

Si
$$n \in \mathbb{N}^*$$
, $f \in \mathcal{C}^0([a,b])$ et $f \in \mathcal{D}^n(]a,b[)$, et il existe $a \leq a_0 < \cdots < a_n \leq b$ tel que $f(a_0) = \cdots = f(a_n)$, alors il existe $c \in]a,b[$ tel que $f^{(n)}(c) = 0$

Question 2/13

Théorème de Rolle sur \mathbb{R}

Réponse 2/13

Si
$$f \in \mathcal{D}^1(\mathbb{R})$$
, et $\lim_{x \to -\infty} (f(x)) = \lim_{x \to +\infty} (f(x))$, alors il existe $c \in \mathbb{R}$ tel que $f'(c) = 0$

Question 3/13

Continuité uniforme

Réponse 3/13

Si
$$X \subset \mathbb{R}$$

 $\forall \varepsilon > 0, \ \exists \eta > 0, \ \forall (x, y) \in X^2$
 $|x - y| < \eta \Rightarrow |f(x) - f(y)| < \varepsilon$

Question 4/13

Compact

Réponse 4/13

 $K \subset \mathbb{R}$ est un compact si de toute suite (k_n) de K, on peut extraire une suite convergente vers un élément de K

Question 5/13

Théorème de compacité

Réponse 5/13

Soit $f \in \mathcal{C}^0([a,b])$ à valeurs dans \mathbb{R} , alors f est bornée et atteint ses bornes

Question 6/13

Théorème de Rolle pour un intervalle infini d'un côté

Réponse 6/13

Si
$$f \in \mathcal{C}^0([a, +\infty[) \text{ et } f \in \mathcal{D}^1(]a, +\infty[), \text{ et}$$

$$f(a) = \lim_{x \to +\infty} (f(x)), \text{ alors il existe } c \in]a, +\infty[$$
tel que $f'(c) = 0$

Question 7/13

Inégalité des acroissements finis

Réponse 7/13

Si
$$f \in \mathcal{C}^0([a,b])$$
 et $f \in \mathcal{D}^1(]a,b[)$, M un majorant de f' sur $]a,b[$, m un minorant de f' sur $]a,b[$, alors $m(b-a) \leqslant f(b)-f(a) \leqslant M(b-a)$

Question 8/13

Inégalité des acroissements finis dans $\mathbb C$

Réponse 8/13

Si
$$f \in \mathcal{C}^0([a,b])$$
 et $f \in \mathcal{D}^1(]a,b[)$, M un majorant de $|f'|$ sur $]a,b[$, alors $|f(b)-f(a)| \leq M|b-a|$

Question 9/13

Théorème des valeurs intermédiaires Si $f \in \mathcal{C}^0(I)$, avec I un intervalle d'extrémités $(a,b) \in \overline{\mathbb{R}}$

Réponse 9/13

Si
$$f(a)f(b) < 0$$
, il existe $c \in]a, b[$ tel que
$$f(c) = 0$$

$$f(c) = 0$$
 Pour tout $x \in \left[\inf_{x \in I} (f(x)), \sup_{x \in I} (f(x)) \right]$, il existe $c \in \left[a, b \right[$ tel que $f(c) = x$ L'image d'un intervalle par f est un intervalle

Question 10/13

Homéomorphisme

Réponse 10/13

Si $A \subset \mathbb{R}$, $B \subset \mathbb{R}$, alors $f:A \to B$ est un homéomorphisme si c'est une application continue, bijective et dont la réciproque est continue

Question 11/13

Théorème de Rolle

Réponse 11/13

Si
$$f \in \mathcal{C}^0([a,b])$$
 et $f \in \mathcal{D}^1(]a,b[)$, et $f(a) = f(b)$, alors il existe $c \in]a,b[$ tel que $f'(c) = 0$

Question 12/13

Théorème des acroissements finis

Réponse 12/13

Si
$$f \in \mathcal{C}^0([a,b])$$
 et $f \in \mathcal{D}^1(]a,b[)$, il existe $c \in]a,b[$ tel que $f(b)-f(a)=(b-a)f'(c)$

Question 13/13

Théorème de Heine Dans \mathbb{R} ou \mathbb{C}

Réponse 13/13

Si
$$f \in \mathcal{C}^0([a,b])$$
, alors f est uniformément continue sur $[a,b]$