Dysarthria detection

MFCC + Excitation features

Team 4 Jyothi, Druvitha

Dysarthria Datase: Acoustic and articulatory speech from speakers with dysarthria

- dysarthria_female: 500 samples of dysarthric female audio recorded on different sessions.
- dysarthria_male: 500 samples of dysarthric male audio recorded on different sessions.
- non _dysarthria _female: 500 samples of non-dysarthric female audio recorded on different sessions.
- non _dysarthria _male: 500 samples of nondysarthric male audio recorded on different sessions.

Setup

Model: Support Vector Machine

We have total of 2000 data points, which is quite low, thus SVM. Also are suitable for binary classification (can learn non-linearity with kernels like rbf) and prevent overfitting for equally distributed data.

Hyperparameter tuning: GridSearchCV

Using gridsearchCV, we find the best performing (on basis of accuracy of 5-fold validation) on a predefined grid -param_grid.

param_grid=[{'C':[0.5,1,10,100, 1000], 'gamma':[10,1,0.1,0.001,0.00001, 0.000001], 'kernel':['rbf'], }]

Here, C is the regularization parameter for allowing misclassifications within a margin. kernel-type: 'rbf' (Radial Basis Function) for non-linear data. gamma: defines the influence of a single training example. small gamma -> a far influence.

MFCC

mfccs = librosa.feature.mfcc(y=signal, sr=fs, n_mfcc=n_mfcc)

- Extracted **52** MFCC features from speech signals.
- Training Data: X_train consists of 52 MFCC features (mean of all frames) + Gender, while y_train represents Dysarthria classification.
- Pre-Emphasis

 Framing and Windowing

 Mel Filter Bank

 MFCC Features

 DCT

 Logarithm
- By hyperparameter Tuning, Optimized SVM parameters:
 - C = 10, gamma = 0.001, kernel = rbf
- Achieved 98.25% accuracy on the test set.

Extracting Epoch locations

Reference: https://ieeexplore.ieee.org/stamp/stamp.jsp?arnumber=4648930

zff_output = zero_frequency_filter(speech, fs)
epochs = detect_epochs(zff_output)

Step 1: Difference the speech signal (to remove any time-varying low frequency bias in the signal) x[n] = s[n] - s[n-1]

Step 2: Pass the differenced speech signal twice through an ideal resonator at zero frequency. $y_1[n] = -\sum_{k=1}^{2} a_k y_1[n-k] + x[n]$ $y_2[n] = -\sum_{k=1}^{2} a_k y_2[n-k] + y_1[n]$

Step 3: Remove the trend in by subtracting the average over 10 ms at each sample. $y[n] = y_2[n] - \frac{1}{2N+1} \sum_{m=-\infty}^{N} y_2[n+m]$

Step 4: Negative to positive zero-crossings are the epoch locations!

After extracting epoch locations —

Pitch perturbation features:

- T0 is the pitch period
- Computed Mean F0, Std F0, Jitter, RAP, PPQ, and PPF from detected epochs.
- **Jitter**: Measures frequency variation between cycles.
- RAP & PPQ: Local pitch period variations (3-frame & 5-frame).
- **PPF**: Ratio of pitch periods exceeding 0.005s threshold.

Reference: <u>Dysarthric speech detection from telephone quality speech using epoch-based pitch perturbation features</u>

1. Mean $F_0(\mu)$ is computed by:

$$\mu = \frac{1}{n} \sum_{i=1}^{n} F_{0_i} \tag{4}$$

2. Standard deviation of F_0 contour (σ) is computed by:

$$\sigma = \frac{1}{n-1} \sum_{i=1}^{n} (F_{0_i} - \mu)^2$$
 (5)

3. Jitter is computed by:

$$jitter = \frac{\frac{1}{n-1} \sum_{i=1}^{n-1} |F_{0_i} - F_{0_{i+1}}|}{\mu}$$
 (6)

RAP and PPQ are computed similarly to Jitter but with 3 and 5 pitch cycles respectively.

4. PPF is computed by:

$$PPF = \frac{N_{p \ge threshold}}{N} \times 100 \tag{7}$$

The numerator and denominator represents the pitch values greater than the given threshold and the total number of extracted pitch values, respectively.

Results: Pitch perturbation features

- Extracted those 6 PP features from speech signals.
- Trained only on these 6 PP features.

Achieved 76.75% accuracy on the test set.

• Combining these 6 PP features with 52 MFCC features.

Achieved 97.5% accuracy on the test set.

After extracting epoch locations —

Other Epoch features:

- Extracts key statistical features from the time intervals (T0) between detected epochs.
- Features:
 - Minimum, Maximum, Mean, and Median intervals
 - Standard Deviation (Variability)
 - Interquartile Range (IQR)
- These features help analyze the periodicity and timing characteristics of the speech signal.

Results: Other Epoch features

- Extracted those 6 epoch based features from speech signals.
- Trained only on these **6 features**.

Achieved 81% accuracy on the test set.

• Combining these 6 features with 52 MFCC features.

Achieved 97.75% accuracy on the test set.

Observation:

Dysarthric speech often shows uneven pitch periods and unstable timing, which are better captured by these features than just frequency-based measures. While PP features detect small-scale irregularities, they might not fully capture the larger-scale pitch period disruptions seen in dysarthria, making epoch-based features more effective.

Finding Residual Cepstral Coefficients

a = librosa.lpc(signal_data, order=order)
residual = signal.lfilter([1] + -1 * a[1:].tolist(), [1], signal_data)

$$e(n) = x(n) - \sum_{i=1}^p a_i \cdot x(n-i)$$

Step 1: Finding LP residual (after preemphasis)

$$x(n)pprox -\sum_{i=1}^p a_i\cdot x(n-i)$$
 (Linear Predictive Coding)

The function librosa.lpc(signal_data, order) returns an array of LPC coefficients:

$$A=\left[a_{0},a_{1},a_{2},...,a_{p}
ight] \,\,\,a_{0}$$
 is always 1

Apply inverse filter

$$H(z)=1-\sum_{i=1}^{r}a_{i}z^{-i}$$
 to get lp residual (e[n])

Finding Residual Cepstral Coefficients

residual = lp_residual(signal_data) (used order 10 here)
rccs = librosa.feature.mfcc(y=residual, sr=fs, n_mfcc=n_rcc)
return np.mean(rccs, axis=1)

Step 2: By passing this residual through the MFCCs inbuilt librosa function, we obtain Mel RCC's

Results: RCCs

- Extracted those 52 RCCs from speech signals.
- Trained only on these **52 RCCs**.

Achieved 98.5% accuracy on the test set.

• Combining these **52 RCCs with 52 MFCC features**.

Achieved 98.25% accuracy on the test set.

Observation:

RCCs focus on the excitation signal rather than vocal tract resonances, making them highly sensitive to irregularities (breaks, breathiness, etc.) in vocal fold vibration, which are common in dysarthria.

Finding LFRCC

Step 1: Finding LP residual (after preemphasis)

Step 2: FFT

Step 3: Linear filter banks (equally spaced triangular)

Step 4: log + DCT

Results: LFRCCs

- Extracted those 52 LFRCCs from speech signals.
- Trained only on these **52 LFRCCs**.

Achieved 87.25% accuracy on the test set.

• Combining these **52 LFRCCs with 52 MFCC features**.

Achieved 98.25% accuracy on the test set.

What next? +

Explore more excitation features and implement them.

THANK YOU