Payload TTN formatos

Descrição sobre a decodificação do pacote e significado de cada campo. O pacote terá tamanho variável a depender da porta em que é recebido, sendo cada byte formado por dois algarismos em hexadecimais (0 - F).

1. Uplink Keep Alive: Porta 1

OF F5 FA 30 00

- Bateria = Byte 1 e 2: os dois primeiros bytes (primeiro e segundo) são referentes a bateria. O valor dos 4 bytes em hexadecimal forma um valor numérico, chamado batEnconded. Para encontrar o valor da tensão em volts, é realizado uma decodificação como abaixo:
 - o Battery = $\left(\frac{batEnconded \times 3}{4096}\right) \times 1,22 + compensação de erro (0,1)$ o OXff5 = 4085d.

 - $\circ \quad \left(\frac{4085 \times 3}{4096}\right) \times 1,22 = 3,66 + 0,1 = 3,66$
 - o Corresponde a bateria da figura 1.
- Temperatura = Byte 3 e 4 O terceiro e o quarto byte são usados para formar o valor da temperatura em graus Celsius. Usando os 2 bytes forma-se um valor numérico em complemento de 2 (verifica-se o primeiro bit desse valor e então decide se o valor é negativo ou não), com o nome de valor_temp. Para encontrar o valor em celsius segue a fórmula abaixo:
 - Se primeiro bit for 1 (ou seja, é negativo):
 - $auxiliar = valor_{temp} 65536 (0x10000).$
 - $Temperatura_{Celsius} = \frac{auxiliar}{256} + 25,00.$
 - Se primeiro bit for 0:
 - $Temperatura_{Celsius} = \frac{valor_{temp}}{256} + 25,00.$
 - OXfa30 = 64048. Auxiliar = 64048 65536 = -1488
 - $\frac{-1488}{256} + 25 = 25 5,8125 = 19,1875$
 - o Corresponde ao Temperatura da figura 1.
- Flag = Byte 5: O último byte contém as flags (alertas) de algumas situações que podem ocorrer no dispositivo. Essas flags são representadas pelos bits desse byte, nesse caso temos um total de 6 flags, deixando 3 bits sem significado. O byte então será trabalhado na forma b7 b6 b5 b4 b3 b2 b1 b0, em que b indica byte e o número sua posição. Cada bit (7 a 0) indicará algum tipo de ocorrência de flag.
 - Bit 7 = Interrupção de luminosidade.
 - o Bit 6 = Interrupção de movimento.
 - o Bit 5 = Alerta de bateria.
 - Bit 4 = Sem uso.
 - \circ Bit 3 = Sem uso.
 - Bit 2 = Alerta de erro de leitura em algum dos sensores.

```
    Bit 1 = Sem uso.
```

```
\circ Bit 0 = Sem uso.
```

```
■ 11:41:06 33 1 payload: OF F5 FA 30 00

Uplink
Payload

OF F5 FA 30 00  

Fields

Fields

| "Battery": "3.66 V",
    "Temperatura": "19.19 °C",
    "statusBateria": "0K",
    "statusLuminosidade": "0K",
    "statusMovimento": "0K",
    "statusSensor": "0K",
    "statusSenso
```

Figura 1 - Uplink na porta 1 - Padrão keep alive

2. Uplink estado de alerta: Porta 2

80 FF 00 F9 00 3B 3F 97

- Flag = Byte 1: O primeiro byte contém as flags (alertas) de algumas situações que podem ocorrer no dispositivo. Essas flags são representadas pelos bits desse byte, nesse caso temos um total de 6 flags, deixando 3 bits sem significado. O byte então será trabalhado na forma b7 b6 b5 b4 b3 b2 b1 b0, em que b indica byte e o número sua posição. Cada bit (7 a 0) indicará algum tipo de ocorrência de flag.
 - Bit 7 = Interrupção de luminosidade.
 - o Bit 6 = Interrupção de movimento.
 - o Bit 5 = Alerta de bateria.
 - Bit 4 = Sem uso.
 - \circ Bit 3 = Sem uso.
 - Bit 2 = Alerta de erro de leitura em algum dos sensores.
 - Bit 1 = Sem uso.
- Luminosidade = Byte 2 O segundo byte é usado para formar o valor da temperatura.
 Neste caso, basta formar o valor numérico usando o byte, o valor formado está na unidade (0 até 255) lux.
 - Se 0xFF indicará que está acima de ou igual a 255 lux.
 - o Corresponde ao Luminosity da figura 2.
 - o Logo, 0xFF = 255 lux (Acima de 255).
- Movimento de aceleração eixo X = Byte 3 e 4 Os bits três e quatro formam o valor de aceleração do eixo X. Mais uma vez, com esse valor é em complemento de dois, o valor numérico será chamado mov_acc_X.

- Se primeiro bit for 1 (ou seja, é negativo):
 - $auxiliar = mov_acc_X 65536 (0x10000).$

•
$$AccX_{ms^2} = \frac{auxiliar}{100} \times 0,061$$

Se primeiro bit for 0:

$$AccX_{ms^2} = \frac{mov_acc_X}{100} \times 0,061.$$

$$\circ$$
 OXf9 = $\frac{249}{100}$ × 0,061 = 0,15189

- Corresponde ao MovimAccelerationX da figura 2.
- Movimento de aceleração eixo Y = Byte 5 e 6 Os bits cinco e seis formam o valor de aceleração do eixo Y. Similar ao Movimento de aceleração eixo X.
 - Se primeiro bit for 1 (ou seja, é negativo):
 - $auxiliar = mov_acc_Y 65536 (0x10000).$

•
$$AccY_{ms^2} = \frac{auxiliar}{100} \times 0,061$$

Se primeiro bit for 0:

$$AccY_{ms^2} = \frac{mov_acc_Y}{100} \times 0,061.$$

$$\circ$$
 0x3b = $\frac{59}{100}$ × 0,061 = 0,03599

- o Corresponde ao MovimAccelerationY da figura 2.
- Movimento de aceleração eixo Z = Byte 7 e 8 Os bits nove e dez formam o valor de aceleração do eixo Z. Similar ao Movimento de aceleração eixo X.
 - Se primeiro bit for 1 (ou seja, é negativo):
 - $auxiliar = mov_acc_Z 65536 (0x10000).$

•
$$AccZ_{ms^2} = \frac{auxiliar}{100} \times 0,061$$

- Se primeiro bit for 0:
 - $AccZ_{ms^2} = \frac{mov_acc_Z}{100} \times 0,061.$
- o $0x3F97 = \frac{16297}{100} \times 0,061 = 9,94117$
- o Corresponde ao MovimAccelerationZ da figura 2.

Figura 2 - Uplink na porta 2 - Padrão estado alerta

3. Uplink do estado atual: Porta 3 (ativado via downlink)

Figura 3 - Downlink na porta 3 como o valor 00 11 (estado atual)

OF FF 00 D2 03 A7 03 66 3F 26

- Bateria = Byte 1 e 2: os dois primeiros bytes (primeiro e segundo) são referentes a bateria. O valor dos 4 bytes em hexadecimal forma um valor numérico, chamado batEnconded. Para encontrar o valor da tensão em volts, é realizado uma decodificação como abaixo:
 - o Battery = $\left(\frac{batEnconded \times 3}{4096}\right) \times 1,22 + compensação de erro (0,1)$ o $\left(\frac{4095 \times 3}{4096}\right) \times 1,22 = 3,66 + 0,1 = 3,67$
 - o Corresponde a bateria da figura 4.
- Temperatura = Byte 3 O terceiro byte é usado para formar o valor da temperatura em graus Celsius. Usando o byte forma-se um valor numérico em complemento de 2 (verifica-se o primeiro bit desse valor e então decide se o valor é negativo ou não), com o nome de valor temp. Para encontrar o valor em celsius segue a fórmula abaixo:
 - Se primeiro bit for 1 (ou seja, é negativo):
 - $auxiliar = valor_{temp} 256 (0x100).$
 - $Temperatura_{Celsius} = \frac{auxiliar}{256} + 25,00.$
 - Se primeiro bit for 0:
 - $Temperatura_{Celsius} = \frac{valor_{temp}}{256} + 25,00.$
 - $0 \quad 0 \times 00 = 00 = \frac{00}{256} + 25 = 25 + 0.0 = 25.00$
 - o Corresponde ao *Temperatura* da figura 4.
- Luminosidade = Byte 4 O quarto byte é usado para formar o valor da temperatura.
 Neste caso, basta formar o valor numérico usando o byte, o valor formado está na unidade (0 até 255) lux.
 - Se 0xFF indicará que está acima de ou igual a 255 lux.
 - o Corresponde ao Luminosity da figura 2.
 - Logo, 0xd2 = 210 lux.
- Movimento de aceleração eixo X = Byte 5 e 6 Os bits cinco e seis formam o valor de aceleração do eixo X. Mais uma vez, com esse valor é em complemento de dois, o valor numérico será chamado mov acc X.
 - Se primeiro bit for 1 (ou seja, é negativo):
 - $auxiliar = mov_acc_X 65536 (0x10000).$
 - $AccX_{ms^2} = \frac{auxiliar}{100} \times 0.061$

- Se primeiro bit for 0:
 - $AccX_{ms^2} = \frac{mov_acc_X}{100} \times 0,061.$
- o Corresponde ao MovimAccelerationX da figura 4.
- Movimento de aceleração eixo Y = Byte 7 e 8 Os bits sete e oito formam o valor de aceleração do eixo Y. Similar ao Movimento de aceleração eixo X.
 - Se primeiro bit for 1 (ou seja, é negativo):
 - $auxiliar = mov_acc_Y 65536 (0x10000).$
 - $AccY_{ms^2} = \frac{auxiliar}{100} \times 0.061$
 - Se primeiro bit for 0:
 - $AccY_{ms^2} = \frac{mov_acc_Y}{100} \times 0,061.$
 - $0 \times 366 = \frac{870}{100} \times 0,061 = 0,5307$
 - o Corresponde ao MovimAccelerationY da figura 4.
- Movimento de aceleração eixo Z = Byte 9 e 10 Os bits nove e dez formam o valor de aceleração do eixo Z. Similar ao Movimento de aceleração eixo X.
 - Se primeiro bit for 1 (ou seja, é negativo):
 - $auxiliar = mov_acc_Z 65536 (0x10000).$
 - $AccZ_{ms^2} = \frac{auxiliar}{100} \times 0,061$
 - o Se primeiro bit for 0:
 - $AccZ_{ms^2} = \frac{mov_acc_Z}{100} \times 0,061.$
 - $0 \quad 0 \times 3F26 = \frac{16166}{100} \times 0.061 = 9.86126$
 - o Corresponde ao MovimAccelerationZ da figura 4.

■ 10:04:02 41 3 devid: placa antena porco payload: 0F FF 00 D2 03 A7 03 66 3F 26

Uplink

Payload

ØF FF 00 D2 03 A7 03 66 3F 26

Fields

{
 "Battery": "3.67 V",
 "Luminosity": "210.00 lx",
 "MovimAccelerationX": "0.57 m/s²",
 "MovimAccelerationY": "0.53 m/s²",
 "MovimAccelerationZ": "9.86 m/s²",
 "Temperatura": "25.0 °C"
}

Figura 4 - Uplink na porta 3 - Estado do dispositivo

5. Uplink das versões de HW e SW: Porta 5 (ativado via downlink)

1 0:04:05	42	5	devid: <u>placa antena porco</u>	payload: 00 10 01 00
▼ 10:04:04		5	devid: <u>placa antena porco</u>	payload: 00 33

Figura 5 - Downlink na porta 5 como o valor 00 33 (informações de dispositivo)

00 10 01 00

- Versão de HW = Byte 1 e 2 Os dois bytes serão usados da seguinte forma cada nibble (valor em hexa) corresponderá a um valor de versão. [nibble1]. [nibble2]. [nibble3]. [nibble4], podendo ir da versão 0.0.0.0 até 15.15.15.
 - o Corresponde a "versãoHW" na figura 6.
 - \circ 0x0010 = 0.0.1.0 = 1.0
- Versão de SW = Byte 3 e 4 Os dois bytes serão usados da seguinte forma cada nibble (valor em hexa) corresponderá a um valor de versão. [nibble1]. [nibble2]. [nibble3]. [nibble4], podendo ir da versão 0.0.0.0 até 15.15.15.15.
 - o Corresponde a "versãoSW" na figura 6.
 - \circ 0x0100 = 0.1.0.0 = 1.0.0

Figura 6 - Uplink na porta 5 - Versão de Hardware e firmware

6. Uplink das informações de limiares e tempos: Porta 6 (ativado via downlink)

Figura 7 - Downlink na porta 6 como o valor 00 77 (informações de timers e limiares)

00 60 05 01 31 40 F3 D2 BC

- Keep Alive = Primeiro byte e primeira metade do segundo byte Corresponde um valor em decimal que será multiplicado por 30 segundos para dar o resultado atual do tempo de keep alive.
 - \circ 0x006. Corresponde 30s * 6 = 3 minutos.
 - Corresponde ao Keep_Alive_Timer da figura 8.
- Warn Period = primeira metade do segundo byte e o terceiro byte Corresponde um valor em decimal que será multiplicado por 5 segundos para dar o resultado atual do tempo de envio de mensagem dentro do estado de alerta.
 - \circ 0x005. Corresponde 5s * 5 = 25 segundos.
 - Corresponde ao Warn_Period da figura 8.
- Warn Tx = quarto byte e primeira metade do quinto byte Corresponde um valor em decimal que será multiplicado por 5 segundos para dar o resultado atual do tempo do estado de alerta.
 - 0x013. Corresponde 5s * 0x13 = 5s * 19 = 95 segundos = 1 minuto e 35 segundos.
 - Corresponde ao Warn_Tx_Timeout da figura 8.
- Limiar de bateria = segunda metade do quinto byte e sexto byte Corresponde ao limiar da bateria, valor corresponde ao valor da bateria em centivolts. Logo, para transformar para volts é necessário dividir esse valor por 100.
 - \circ 0x140 = 320/100 = 3,2 V.
 - Corresponde ao Battery_threshold da figura 8.
- Limiar de movimento Correspondente aos limiares de movimento, a saber, (a) limiar de detecção de mudança de ângulo, (b) limiar de detecção de queda livre e (c) tempo de duração para detecção de queda livre. O byte e meio de limiares informa acerca desses limites da seguinte forma:
 - (hexadecimal)XX X = <u>aabb</u> <u>b0cc</u> <u>cccc</u> (binário)
- (a) Os dois primeiros bits informam o limiar de detecção de mudança de ângulo da seguinte forma:
 - o (binário) aa = Y (decimal)

- $0 \rightarrow limiar de 80^{\circ}$
- 1 → limiar de 70º
- $2 \rightarrow limiar de 60^{\circ}$
- $3 \rightarrow limiar de 50^{\circ}$
- (b) Os três bits seguintes informam o limiar de detecção de queda livre da seguinte forma:

bbb (binário)	Limite	bbb (binário)	Limite		
000	156 m <i>g</i>	100	344 m <i>g</i>		
001	219 m <i>g</i>	101	406 m <i>g</i>		
010	250 m <i>g</i>	110	469 m <i>g</i>		
011 312 mg		111	500 m <i>g</i>		

- (c) Os seis últimos bits informam o tempo de duração para detecção de queda livre da seguinte forma:
 - o (bináriol) cc cccc = Y (decimal),
 - Tempo para detecção de queda livre = Y*ODR_Time
 - o Onde ODR_Time está configurado em 0,625 segundos.
 - O tempo para detecção de queda livre vai de 0 segundos com o código 00 até
 39,375 segundos com o código 3F.
 - \circ F3D = $\frac{1111}{0011}$ $\frac{1101}{1101}$ $\frac{$
 - Corresponde ao Mov_threshold da figura 8.
- Limiar de luminosidade = meio byte do sétimo byte e oitavo byte Corresponde ao limiar da luminosidade, valor corresponde ao valor limite em valores unitários de lux. Logo, para saber qual o limiar basta ver qual o decimal correspondente do hexa.
 - o 0x2BC 1000 lux.
 - o Corresponde ao Lux_threshold da figura 8

Figura 8 - Uplink na porta 6 - Limiares e timers configurados

9. Uplink das informações de erro no envio de downlink: Porta 9 (ativado via erro no envio de downlink)

00 10

- Flag de erro de downlink: Este byte indica se houve algum erro no envio de downlink, ou seja, seu envio está condicionado a existência de falha na hora do downlink. Além indicar que houve erro é especificado o erro, sendo assim, cada um de seus bits representará um erro.
 - o Bit 7 = Warn Period deve ser menor que Keep Alive. (+ 0x80)
 - Bit 6 = Limiar de duração de queda livre não deve ultrapassar 0x40. (+ 0x40)
 - o Bit 5 = Limiar de queda livre não deve ultrapassar 8. (+ 0x20)
 - o Bit 4 = Limiar de angulo não deve ultrapassar 4. (+ 0x10)
 - o Bit 3 = Comando inexistente ou porta errada. (+ 0x08)
 - o Bit 2 = KeepAlive deve ser maior que WarnTx. (Sem uso) (+ 0x04)
 - o Bit 1 = Warn Period deve ser maior que warnTx. (+ 0x02)
 - Bit 0 = KeepAlive deve ser maior que Warn Period. (+ 0x01)

1 1:57:49	38	9		payload: 08 00 downlink_failed: " Comando inexistente ou porta errada "						
▼ 11:57:28		21		payload: 00 33						
1 1:57:46	37	1		payload: 0F F6	FA 3A 00	Battery: "3.66 V"	Temperatura:	"19.23 °C"	statusBateria: "OK'	statusLuminosida
4										+
▼ 11:56:11		21	scheduled	payload: 00 33						
11:53:36	36	1		payload: OF F5	FA 3E 00	Battery: "3.66 V"	Temperatura:	"19.24 °C"	statusBateria: "OK"	' statusLuminosida

Figura 9 - Simulação de erro no downlink

Figura 10 - Uplink na porta 9 - Erros de downlink