Scalability Problems In Shared Memory

José Alves, Rui Brito

Universidade do Minho

Braga, March 2013

Index

- 1 Memory Bandwidth and Computational Intensity
- Measure Task Granularity
- Measure Programs Without Synchronization
- 4 Measure Loads Per Task
- Conclusion

The OpenFoam Computational Fluid Dynamics (CFD) software package

- Highly Modular
- By scientists, for scientists
- Fluid dynamics problems, involving chemical reactions, turbulence and heat transfer
- Has many other applications

Memory Bandwidth

```
\label{eq:mem_bandwidth} Mem\_bandwidth = ((PAPI\_LLC\_TCM) \times 64 \times 1 \times 10-9)/exec\_time \\ measured\_mem\_bandwidth = (3826100 \times 64 \times 1 \times 10^{-9})/0.942194 = 0.2599\,GB/s \\ System memory avail bandwidth = 14.8473\,GB/s
```

Instructions per cycle

 $Total\ Instructions = 211932871\ Number\ of\ cycles = 1548$ $Instruction\ per\ cycle = 136907$

As seen in the December presentation, conv-diff has some locality problems (has it can also be seen by the high number of L1 misses (14037146))

Scalability Problems In Shared Memory Memory Bandwidth and Computational Intensity

The Questions Computational Fluid Dynamics (CFD) whose package a highly behaling a highly behaling a stage behaling a stage of the package and the package and has been package and has to trader a state on the package and t

Beat

Vender peixe, basicamente

 Com alta modularidade entende-se que é composto por várias bibliotecas, e cada função da biblioteca pode ser aplicada a uma grande variedade de tipos de dados. E ser resolvido com solvers e esquemas diferentes

Figure: Roofline for rMBP and conv_diff

Task Granularity

In conv diff:

- Only two parallel pieces of code run in parallel
- Large chunks of code
- Thread creation overhead is thus minimized

conv_diff is unsuitable for this sort of optimization:

Excessive task synchronization

- Reduction can't be used because values are updated in an array of pointers
- Synchronization must be forced on attributions

Loads Per Task

- Slight improvement using dynamic and guided scheduling
- Workload distribution also isn't the biggest problem

Figure: Scalability of the parallel region (original implementation)

Figure: Total execution time (original implementation)

Figure: Scalability of the parallel region (without atomic directive)

Figure: Total execution time (without atomic directive)

Conclusion

- Bad data locality hinders the entire application performance
- Implementation either AoS or SoA is expected to improve performance dramatically
- High chance that locality problem hides other problems
- Maybe what is not a problem now will prove to be so in the near future

Scalability Problems In Shared Memory

José Alves, Rui Brito

Universidade do Minho

Braga, March 2013