

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE | PUNE -41 | INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

Que . No	Question Statement	Que. No	Question Statement				
	SHORT ANSWER QUETIONS						
1	State and explain active forces, reactive forces and	d free bo	ody diagram with suitable example.				
2	State and explain Two Force and Three Force Prir	nciple fo	r equilibrium with sketches.				
3	State and Explain Lami's Theorem with net sketch	1.					
4	Explain types of loads acting on the beams						
5	Explain types of Beams with neat sketches						
6	Explain types of supports and their Reactions wit	h neat s	ketches				
7	Differentiate between statically determinate and	staticall	y indeterminate beams.				
8	Write Conditions of Equilibrium for Co-planer Co	ncurren	t Force System				
9	Write Conditions of Equilibrium for Co-planer No	n-Concu	irrent Force System				
10	Write Conditions of Equilibrium Concurrent Spac	e Force	System				
11	Write Conditions of Equilibrium for Parallel Space	e Force S	System				
12	Write Conditions of Equilibrium Non-Concurrent	Space F	orce System				
13	Determine the magnitude and position of force F so that the force system shown in Fig. maintain equilibrium. F 4.5 kN 7.5 kN 2.5 kN	14	Determine the magnitude of F_1 and F_2 so that the particle is in equilibrium. Refer Fig. $F_2 = \frac{1}{300 \text{N}}$				

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE | PUNE -41 | INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

Que . No	Question Statement	Que. No	Question Statement
	Determine the magnitude and direction θ of force F so that the particle is in equilibrium. Refer Fig.		The boom is intended to support two vertical loads, F_1 and F_2 as shown in Fig. if the cable CB can sustain a maximum load of 1500 N before it fails, determine the critical loads F_1 and F_2 if F_1 = 2 F_2 . Also determine the reaction at A.
15	7 kN 4 5 3 kN F	16	$\frac{C}{3}$ $\frac{3}{4}$ $\frac{1}{1}$ $\frac{1}$
17	Three cables are joined at the junction C as shown in Fig. Determine the tension in cable AC and BC caused by the weight of the 30 kg cylinder.	18	Determine the reactions at all the point of contacts for a sphere of 200 N kept in a trough as shown in the Fig. 200 N 35°
	BEAM & SUPPO	RT REA	CTIONS
19	Determine reaction at A and B for the beam loaded and supported as shown in Fig. 50 kNm 20 kNm A 2 m 2 m	20	Determine reaction at A and B for the beam loaded and supported as shown in Fig. Moments are acting at point C, D and E. A C D E B 10 Nm 20 Nm 40 Nm

(d) none of these

ZEAL EDUCATION SOCITY's

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE | PUNE -41 | INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

Que . No	Question Statement	Que. No	Question Statement			
21	Determine reaction at for the beam loaded and supported as shown in Fig. 20 kN/m C D 4 m 2 m B	22	A simply supported beam loaded and supported is as shown in Fig. If the reactions at supports are equal in magnitude, determine the overhang 'a'.			
23	A simply supported beam AB of span 6 m is loaded and supported as shown in Fig. Find the reactions at support A and B.	24	Determine the support reaction of the beam loaded and supported as shown in Fig.			
	Multiple Cho	ice Que	stions			
Q. 1	called as		on which active and reactive forces are drawn			
	· · · · · · · · · · · · · · · · · · ·		dy diagram (d) none of these			
Q. 2	called as		on which active and reactive forces are drawn dy (d) none of these			
Q. 3	If the resultant of the force system acting on the body is zero then that body is in					
Q. 4	If the resultant of the force system acting on the body is zero then that body is in					
Q. 5	If the resultant of the force system acting on the body is not zero then that body is in					
Q. 6	If the resultant of the force system acting on the body is not zero then that body is in					
Q. 7	If coplaner concurrent force system is in equilibrium then following conditions are used (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy $					

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE \mid PUNE -41 \mid INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

Subject: EM Unit No. 3: Equilibrium Class: F.E.

	Subject: EM Unit No. 3:	Unit No. 3: Equilibrium Class: F.			
Que . No	Question Statement	Que. No	Question Statement		
Q. 8	If coplaner concurrent force system is in equil (a) $\Sigma Fx = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ (c) $\Sigma Fz = 0$		<u> </u>		
Q. 9	 If coplaner non concurrent force system is in equilibrium then following conditions are used (a) ΣFx = 0, ΣFy = 0 b) ΣFx = 0, ΣFy = 0, ΣFz = 0 (c) ΣFx = 0, ΣFy = 0, ΣMz = 0, (d) none of these 				
Q. 10	If coplaner non concurrent force system is in (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ (d) none of these		_		
Q. 11	If coplaner parallel force system is in equilibria (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$		_		
Q. 12	If coplaner parallel force system is in equilibrium (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ (d) none of these				
Q. 13	If concurrent space force system is in equilibria (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ (d) none of these		-		
Q. 14	If concurrent space force system is in equilibration (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fz = 0$ (c) $\Sigma Fz = 0$		_		
Q. 15 = 0,			then following conditions are used		
Q. 16	If non concurrent space force system is in equal (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ (d) none of these		_		
Q. 17	If parallel space force system is in equilibrium (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ (d) none of these		_		
Q. 18	If parallel space force system is in equilibrium (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ (d) none of these		•		
Q. 19	If three concurrent coplaner forces are in equivalent (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) Lamis theorem (c) both		· ·		
Q. 20	If two concurrent coplaner forces are in equilibrium.	orium the	en following method is used		

(d) none of these

(a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) Lamis theorem (c) both a and b

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE \mid PUNE -41 \mid INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

	Subject: EM Unit No. 3:	Equilib	rium	Class: F.E.	
Que . No	Question Statement	Que. No		Question Statement	
Q. 21	 If more than three concurrent coplaner forces are in equilibrium then following method is used (a) ΣFx = 0, ΣFy = 0 b) Lamis theorem (c) both a and b (d) none of these 				
Q. 22	Q. 22 If three concurrent space forces are in equilibrium then following method is used (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$ b) Lamis theorem (c) both a and b (d) none of these				
Q. 23	If three concurrent space forces are in equilib (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ b) Lamis theore		_	ethod is used (d) none of these	
Q. 24	If three parallel space forces are in equilibrium (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ b) Lamis theorem		•	d is used (d) none of these	
Q. 25	If three non concurrent space forces are in eq. (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ b) Lamis theorem			g method is used (d) none of these	
Q. 26	If three non concurrent coplaner forces are in (a) $\Sigma Fx = 0$, $\Sigma Fy = 0$, $\Sigma Fz = 0$ b) Lamis theore	•		ring method is used (<mark>d) none of these</mark>	
Q. 27	between contact surface is equal to	nooth co		then normal reaction developed	
Q. 28	normal reaction developed between contact s		equal to	at an angle θ wrt horizontal then	
Q. 29	normal reaction developed between contact s		equal to	at an angle θ wrt horizontal then	
Q. 30	Smooth surface develops reactions (a) normal reaction b) normal and friction	(c) botl	n (d) no	ne of these	
Q. 31	Rough surface develops reactions (a) normal reaction b) normal and friction	(c) botl	n (d) no	ne of these	
Q. 32	Hinge support develops reactions (a) normal and transverse b) vertical (c)	both	(d) none of	these	
Q. 33	Roller supports develops reactions (a) normal b) normal and friction (c) both	n (c	l) none of the	se	
Q. 34	Fixed support develops reactions (a) normal and transverse b) normal and transverse	friction (c) both	(d) none of these	
Q. 35	Cable develops reactions (a) normal b) normal and friction (c) both	ո <mark>(c</mark>	l) none of the	e <mark>se</mark>	

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE | PUNE -41 | INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Ouestion Bank

onit wise Question Bank							
	Subject: EM Unit No. 3: Equilibrium Class: F.E.						
Que . No	Question Statement		Que. No			Question Statement	
Q. 36	Cables develops reactions (a) compressive b) tensile (c) both (d) none of these						
Q. 37	If unknown reaction components are determined by using conditions of equilibrium only then these structures are called as						
	(a) Determinate structures b) Indeterm	ninate	structu	ires	(c) both	(d) none of these	
Q. 38	structures are called as						
	<u> </u>				• •	(d) none of these	
Q. 39	If unknown reaction components are not do structures are called as	eterm	nined by	usin/	g condition	ons of equilibrium only then	these
	(a) Indeterminate structures b) Redund	dants	structur	es (c) both	(d) none of these	
Q. 40	Simply supported beam is the example of						
	(a) Determinate beam b) Indeterminate	e bea	m (c)	both	(d)	none of these	
Q. 41	Cantilever beam is the example of						
	(a) Determinate beam b) Indeterminate	e bea	ım (c)	both	(d)	none of these	
Q. 42	Propped cantilever beam is the example o	of					
	(a) Determinate beam b) Indeterminate	e bea	m (c)	both	(d)	none of these	
Q. 43	Compound beam is the example of						
	(a) Determinate beam b) Indeterminate	e bea	m (c)	both	(d)	none of these	
Q. 44	Continuous beam is the example of						
	(a) Determinate beam b) Indeterminate	e bea	ım (c)	both	(d)	none of these	
Q. 45	Fixed beam is the example of						
	(a) Determinate beam b) Indeterminate	e bea	ım (c)	both	(d)	none of these	
Q. 46	Overhanging beam is the example of						
	(a) Determinate beam b) Indeterminate	e bea	m (c)	both	(d)	none of these	
Q. 47	Simply supported beam is the example of						
	(a) Determinate beam b) Perfect beam	n (c)	both	(d) none	of these	
Q. 48	Simply supported beam is the example of (a) Indeterminate beam b) Imperfect b	eam	(c) bot	th	(d) no	ne of these	
Q. 49	Cantilever beam is the example of						
	(a) Determinate beam b) Perfect beam	n (c)	both	(d) none	of these	
Q. 50	Cantilever beam is the example of						
	(a) Indeterminate beam b) I	[mpe	rfect be	eam	(c) both	(d) none of these	

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE | PUNE -41 | INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Ouestion Bank

	Subject: EM	Unit No. 3: E	Equilib	rium	Class: F.E.
Que . No	Question Statemen	t	Que. No		Question Statement
Q. 51	Compound beam is the example (a) Determinate beam b) Pe	e of rfect beam (c)) both	(d) non	e of these
Q. 52	Compound beam is the example (a) Indeterminate beam	e of b) Imperfe	ct beam	(c) both	(d) none of these
Q. 53	Fixed beam is the example of (a) Determinate beam b) Pe	rfect beam (c)) both	(d) non	e of these
Q. 54	Fixed beam is the example of (a) Indeterminate beam	b) Imperfe	ct beam	(c) both	(d) none of these
Q. 55	Continuous beam is the exampl (a) Determinate beam b) Pe	e of rfect beam (c)) both	(d) non	e of these
Q. 56	Continuous beam is the exampl (a) Indeterminate beam	e of b) Imperfe	ct beam	(c) both	(d) none of these
Q. 57	Propped cantilever beam is the (a) Determinate beam b) Pe	example of rfect beam (c)) both	(d) non	e of these
Q. 58	Propped cantilever beam is the (a) Indeterminate beam b) In	example of mperfect beam	(c) bot	h (d)	none of these
Q. 59	Overhanging beam is the exam(a) Determinate beam b) Per	ole of fect beam (c)	both	(d) none	e of these
Q. 60	Overhanging beam is the exam (a) Indeterminate beam b)	ole of Imperfect bear	m (c) b	oth <mark>(d</mark>)	none of these
Q. 61	Self-weight of pedestrian on bea		ple of one of th	nese	
Q. 62	Self-weight of beam is the exam (a) Point load b) UDL (c) b	•	one of th	nese	

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE \mid PUNE -41 \mid INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

Que . No	Question Statement	Que. No	Question Statement			
Q. 63	Floor supported by four columns at the ends is the example of (a) Coplaner parallel force system b) Parallel space force system (c) both (d) none of these					
Q. 64 (a) Un	 Q. 64 Floor supported by four columns at the ends is the example of (a) Unlike parallel force system b) Parallel space force system (c) both (d) none of these 					
Q. 65 (a) Co	Q. 65 Electric pole supported by three cables is the example of (a) Coplaner concurrent force system b) Concurrent space force system (c) both (d) none of these					
Q. 66 (a) Co	,		mple of system (c) both (d) none of these			
Q. 67 (a) Co	Q. 67 Building Floors supported by columns at the ends is the example of (a) Coplaner parallel force system (b) Parallel space force system (c) both (d) none of these					
Q. 68 (a) Co	 Q. 68 A table supported by four columns at the ends is the example of (a) Coplaner parallel force system b) Parallel space force system (c) both (d) none of these 					
Q. 69 (a) Co						

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE \mid PUNE -41 \mid INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

		Offic	MISC &	105010	ii baiiii	
	Subject: EM	Un	it No. 3: F	Equilib	rium	Class: F.E.
Que . No	Quest	tion Statement		Que. No	Question	Statement
Q. 70	If the cantilever be the reacting mome			u.d.l. of	w N/m for half of the s	oan from free end, then
	(a) $\frac{\text{wL}^2}{8}$	(b) $\frac{WL^2}{4}$	(c) $\frac{3wL^2}{4}$		(d) $\frac{3wL^2}{8}$	
Q. 71	For a simply supp both ends will be	orted beam loade	d with two e	equal po	oint loads 'W' N at quar	er span, the reaction at
	(a) 2W	(b) $\frac{W}{2}$	(c) W		(d) none of these.	
Q. 72	A simply supported then reaction at right (a) vertically upwn (c) towards right	ght support is dire vard(b) <mark>vertically</mark>	cted <mark>downward</mark>	nticlock	wise moment at L/3 fr	om left end of the span
Q. 73	A concentrated clubeam of span 2 m (a) 5 N (↓)		right end wi	ll be	_	e of a simply supported
Q. 74	_			_	one end and the other ne member horizontal w	free, is w N/m then the
	(a) w N	(b) wL N	(c) $\frac{2w}{L}$ N		(d) <mark>wL</mark> N	
Q. 75	A simply supporte (a) 9 kN, 6 kN	d beam of length (-	y u.d. <i>l.</i> of 3 kN/m. The r (d) 9 kN, 27 kN.	eactions at A and B are
Q. 76	A beam of span L intensity at Left su					y varying load with zero
	(a) $\frac{2wL}{3}$ kN \uparrow	(b) $\frac{\text{wL}}{3}$ kN \uparrow	(c) $\frac{\text{wL}^2}{3}$ ki	Ν↑	(d) $\frac{\text{wL}^2}{10}$ kN \uparrow	
Q. 77	A beam of length	n 10 m is subject	ed to u. v.	/ which	is varying from 3 $\frac{kN}{m}$	at A to 8 $\frac{kN}{m}$ at B. The
	reactions at A and (a) 20 kN, 25 kN (c) 31.66 kN, 23	l B are	(b) 20 kN (d) 15 kN	, 35 kN		
Q. 78	A cantilever of L is B. The reactive m			s subjec	eted to u.v.l. of intensity	zero at A and w N/m at
	(a) $\frac{\text{wL}^2}{2}$ Nm			m	(d) $\frac{\text{WL}^2}{5}$ Nm	
Q. 79	A cantilever of L is			subject	ed to u.v.l of intensity ze	ero at A and w N/m at B.

(a) $\frac{\text{wL}^2}{2} \text{ Nm}$ (b) $\frac{\text{wL}^2}{3} \text{ Nm}$ (c) $\frac{\text{wL}^2}{4} \text{ Nm}$ (d) $\frac{\text{wL}^2}{5} \text{ Nm}$

ZEAL COLLEGE OF ENGINEERING AND RESEARCH, NARHE | PUNE -41 | INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

Que . No	Question Statement	Que. No	Question Statement
Q. 80	A cantilever of L is fixed at A and free at B. It is B. The reactive moment at fixed support is, (a) $\frac{\text{wL}^2}{2}$ Nm (b) $\frac{\text{wL}^2}{3}$ Nm (c) $\frac{\text{wL}^2}{4}$ N		eted to u.v.l. of intensity zero at A and w N/m at $ (d) \frac{wL^2}{5} Nm $
Q. 81	A cantilever of L is fixed at A and free at B. It is B. The reactive moment at fixed support is, (a) $\frac{\text{WL}^2}{2}$ Nm (b) $\frac{\text{WL}^2}{3}$ Nm (c) $\frac{\text{WL}^2}{4}$ N		Sted to u.v.l. of intensity zero at A and w N/m at (d) $\frac{WL^2}{5}$ Nm

ZEAL COLLEGE OF ENGINEERING AND RESEARCH,

NARHE | PUNE -41 | INDIA

DEPARTMENT OF ENGINEERING SCIENCES

Unit wise Question Bank

	Subject: EM	Un	it No. 3: I	Equilib	rium	Class: F.E.
Que . No	Quest	ion Statement		Que. No	Qı	estion Statement
Q. 82	the cantilever bea	•		d.l. of w	N/m for half of th	ne span from free end, then the
	(a) $\frac{WL^2}{8}$	(b) $\frac{\text{wL}^2}{4}$	(c) $\frac{3wL^2}{4}$		(d) $\frac{3wL^2}{8}$	
Q. 83	For a simply supposed both ends will be	orted beam loade	ed with two	equal po	oint loads 'W' N	at quarter span, the reaction at
	(a) 2W	(b) $\frac{W}{2}$	(c) 3W		(d) none of the	se.
Q. 84	A simply supporte reaction at right su (a) vertically upw (c) towards right	ipport is directed <mark>ard</mark> (b) vertically	downward	ockwise	moment at L/3	from left end of the span then
Q. 85	A concentrated an beam of span 2 m (a) 5 N (↓)		right end wi	ll be	Nm is acting at the (d) 10 N (1)	ne centre of a simply supported
Q. 86	If the self weight of minimum vertical f					other free, is w N/m then the ontal will be
	(a) w N	(b) wL N	(c) $\frac{2w}{L}$ N		(d) $\frac{\text{wL}}{2}$ N	
Q. 87	A simply supporte are	d beam of length	10 m is ac	ted upo	n by u.d. <i>l</i> . of 3 k	N/m. The reactions at A and B
	(a) 9 kN, 6 kN	(b) 9 kN, 9 kN	(c) 6 kN, 6	6 kN	(d) 15 kN, 15 kN	I .
Q. 88	intensity at Left su	pport A and 2 w (kN/m) at B.	The rea	action at A is,	niformly varying load with zero
	(a) $\frac{2wL}{3}$ kN ↑	(b) $\frac{\text{wL}}{3}$ kN \uparrow	(c) $\frac{\text{WL}^2}{3}$ kl	Ν↑	(d) None of the	ese
Q. 89	A beam of length	12 m is subject	ed to u. v.	/ which	is varying from	3 $\frac{kN}{m}$ at A to 8 $\frac{kN}{m}$ at B. The
	reactions at A and (a) 20 kN, 25 kN (c) 31.66 kN, 23.		(b) 20 kN (d) None)	
Q. 90	A cantilever of L is B. The verticle rea			s subjec	ted to u.v.l. of in	tensity zero at A and w N/m at
	(a) $\frac{\text{wL}^2}{2}$ Nm	(b) $\frac{\text{wL}^2}{3}$ Nm	(c) $\frac{\text{wL}^2}{4}$ N	m	(d) None of the	ese