

UNIVERSIDADE FEDERAL DA GRANDE DOURADOS Cálculo Diferencial e Integral III — Avaliação P1 Prof. Adriano Barbosa

EDERAL DA GRANDE DOURADOS	2	
ial e Integral III — Avaliação P1	3	
of. Adriano Barbosa	4	
09/04/2021	5	
	Nota	

Aluno(a):....

Todas as respostas devem ser justificadas.

Engenharia Civil

- 1. Determine se as afirmações abaixo são verdadeiras ou falsas e justifique sua resposta.
 - (a) (1 ponto) A função $f(x,y) = \ln(x-y+1)$ pode ser calculada para qualquer $(x,y) \in \mathbb{R}^2$.
 - (b) (1 ponto) A função $f(x,y)=\frac{x^2y^2}{\sqrt{16-x^2-y^2}}$ é contínua no conjunto $D=\{(x,y)\in\mathbb{R}^2\mid x^2+y^2\neq 16\}.$
 - (c) (1 ponto) $\lim_{(x,y)\to(0,0)} y \ln(1+x) = 0.$
- 2. (1 ponto) Calcule as derivadas parciais da função $f(x, y, z) = z \ln(x^2 y \cos z)$.
- 3. (2 pontos) Encontre a equação do plano tangente ao elipsóide $2x^2 + 3y^2 + z^2 = 9$ em (1, 1, 2).
- 4. (2 pontos) Seja w = f(u), onde u = 3x + 2y + z. Mostre que

$$\frac{\partial w}{\partial x} + \frac{\partial w}{\partial y} + \frac{\partial w}{\partial z} = 6\frac{dw}{du}$$

5. A temperatura em uma placa de metal no ponto (x, y) é dada por

$$T(x,y) = \frac{xy}{1 + x^2 + y^2}.$$

- (a) (1 ponto) Calcule a taxa de variação da temperatura no ponto (-1,-1) na direção (1,2).
- (b) (1 ponto) A partir do ponto (-1,-1), calcule a direção a qual a temperatura cai mais rapidamente.