FORMULA DI GRASSMANN (DIMOSTRAZIONE ALTERNATIVA AL LIBRO)

Definizione 1. Dato U spazio vettoriale su campo \mathbb{K} e V,W sottospazi, definiamo l'insieme diagonale

$$\Delta(V, W) = \{ (\mathbf{v}, \mathbf{w}) \in V \times W \mid \mathbf{v} = \mathbf{w} \} = \{ (\mathbf{v}, \mathbf{v}) \in V \times W \} \subseteq V \times W.$$

Proposizione 2. $\Delta(V, W)$ è un sottospazio dello spazio prodotto $V \times W$ ed è isomorfo a $V \cap W$.

Dimostrazione. $\Delta(V, W)$ è un sottospazio:

- $(0,0) \in \Delta(V,W)$;
- $(\mathbf{v}, \mathbf{v}) + (\mathbf{w}, \mathbf{w}) = (\mathbf{v} + \mathbf{w}, \mathbf{v} + \mathbf{w}) \in \Delta(V, W);$
- $t(\mathbf{v}, \mathbf{v}) = (t\mathbf{v}, t\mathbf{v}) \in \Delta(V, W)$.

Definiamo la funzione

$$i: V \cap W \longrightarrow \Delta(V, W)$$

 $\mathbf{v} \longmapsto (\mathbf{v}, \mathbf{v})$

Valgono le seguenti proprietà:

- $i(t_1\mathbf{v_1} + t_2\mathbf{v_2}) = (t_1\mathbf{v_1} + t_2\mathbf{v_2}, t_1\mathbf{v_1} + t_2\mathbf{v_2}) = t_1(\mathbf{v_1}, \mathbf{v_1}) + t_2(\mathbf{v_2}, \mathbf{v_2}) = t_1i(\mathbf{v_1}) + t_2i(\mathbf{v_2});$
- $\ker(i) = \{0\}$, quindi i è iniettiva;
- dato $(\mathbf{v}, \mathbf{v}) \in \Delta(V, W)$, per definizione si ha $\mathbf{v} \in V$ e $\mathbf{v} \in W$, quindi $\mathbf{v} \in V \cap W$. Questo implica che $(\mathbf{v}, \mathbf{v}) = i(\mathbf{v})$, quindi i è suriettiva.

Abbiamo dimostrato che i è lineare e biunivoca, pertanto i è un isomorfismo.

Corollario 3. $\dim(V \cap W) = \dim(\Delta(V, W))$.

Lemma 4. Dati V e W spazi vettoriali su campo \mathbb{K} , vale $\dim(V \times W) = \dim(V) + \dim(W)$.

Dimostrazione. siano $\mathcal{B}_V = \{\mathbf{v_1}, \dots, \mathbf{v_n}\} \subset V$ e $\mathcal{B}_W = \{\mathbf{w_1}, \dots, \mathbf{w_m}\} \subset W$ basi dei rispettivi spazi. Allora, è lasciato al lettore verificare che $\mathcal{B}_{V \times W} = \{(\mathbf{v_1}, \mathbf{0}), \dots, (\mathbf{v_n}, \mathbf{0}), (\mathbf{0}, \mathbf{w_1}), \dots, (\mathbf{0}, \mathbf{w_m})\} \subset V \times W$ è una base di $V \times W$. Pertanto $\dim(V \times W) = n + m = \dim(V) + \dim(W)$.

Esempio 5. $\dim(\mathbb{K}^m \times \mathbb{K}^n) = \dim(\mathbb{K}^m) + \dim(\mathbb{K}^n) = m+n$. Pertanto, per il teorema di isomorfismo, $\mathbb{K}^m \times \mathbb{K}^n \simeq \mathbb{K}^{m+n}$.

Teorema 6. Dato U spazio vettoriale su campo \mathbb{K} e V,W sottospazi, allora

$$\dim(V) + \dim(W) = \dim(V + W) + \dim(V \cap W).$$

Dimostrazione. Definiamo la funzione

$$j: V \times W \longrightarrow V + W$$

$$(\mathbf{v}, \mathbf{w}) \longmapsto \mathbf{v} - \mathbf{w}$$

Valgono le seguenti proprietà:

- j è una applicazione lineare (esercizio);
- $\ker(j) = \{(\mathbf{v}, \mathbf{w}) \in V \times W \mid \mathbf{v} \mathbf{w} = \mathbf{0}\} = \Delta(V, W) \simeq V \cap W$, quindi $\dim(\ker(j)) = \dim(V \cap W)$;
- dato $\mathbf{u} \in V + W$, per definizione esistono $\mathbf{v} \in V$ e $\mathbf{w} \in W$ tali che $\mathbf{u} = \mathbf{v} + \mathbf{w}$. Questo implica che $\mathbf{u} = j(\mathbf{v}, -\mathbf{w})$, quindi j è suriettiva e $\mathbf{r}(j) = \dim(V + W)$.

Applicando ora il teorema di nullità più rango alla funzione j, otteniamo:

$$\dim(V \times W) = \dim(\ker(j)) + \mathrm{r}(j) \qquad \Longrightarrow \qquad \dim(V) + \dim(W) = \dim(V \cap W) + \dim(V + W).$$

Corollario 7. Se $U = V \oplus W$, l'applicazione j è un isomorfismo tra $V \times W$ e U e vale $\dim(V \oplus W) = \dim(V) + \dim(W)$.

Dimostrazione. Se $U = V \oplus W$ allora $\ker(j) \simeq U \cap W = \{0\}$, cioè j è anche iniettiva e quindi un isomorfismo. \square