Estructura de Desglose del Trabajo (EDT)

1. Inicio del proyecto

1.1 Reunión inicial de equipo

→ Presentación del proyecto, aclaración de roles, discusión preliminar de ideas y expectativas.

1.2 Redacción del acta de constitución

→ Documento base que establece el propósito, objetivos, alcance, responsables y entregables del proyecto.

1.3 Establecimiento de objetivos y alcance

→ Definición clara de lo que se realizará en el proyecto y de las limitaciones o exclusiones.

1.4 Definición de herramientas colaborativas

→ Selección y configuración de las plataformas que se utilizarán para colaborar (GitHub, SolidWorks, Fusion 360, Microsoft Teams, etc.).

1.5 Identificación inicial de interesados

→ Reconocimiento de las personas, equipos o instituciones que tienen interés o influencia sobre el proyecto.

2. Planificación y gestión

2.1 Elaboración de la EDT

→ Desglose jerárquico del trabajo del proyecto en fases y tareas manejables.

2.2 Desarrollo del cronograma

→ Estimación de tiempos, secuencia lógica de actividades y creación del cronograma base. |

2.3 Planificación de recursos

→ Identificación de recursos humanos, técnicos y materiales necesarios por fase del proyecto.

2.4 Estimación y asignación del presupuesto

→ Estimación de costos por tarea y planificación de los recursos económicos disponibles.

2.5 Análisis de riesgos

→ Identificación de posibles riesgos técnicos, de tiempo, de recursos, etc., y elaboración de estrategias de mitigación.

2.6 Plan de comunicaciones

→ Definición de los canales (GitHub, correo, reuniones), frecuencia y responsables de la comunicación del equipo.

2.7 Plan de adquisiciones

→ Identificación de piezas, materiales o servicios a adquirir para el prototipo o simulaciones.

2.8 Asignación de roles y responsabilidades

→ Asignación formal de funciones específicas a cada miembro del equipo con base en fortalezas e intereses.

3. Diseño, modelado y simulación del mecanismo rotatorio

3.1 Investigación y análisis de mecanismos similares

- → Revisión de mecanismos existentes en VTOLs comerciales, patentes o literatura académica.
- → Identificación de principios mecánicos aplicables (cardanes, bisagras, engranajes, etc.).

3.2 Diseño conceptual del mecanismo

- → Bocetos iniciales del sistema rotatorio, análisis cinemático preliminar y criterios de diseño.
- → Evaluación de posibles configuraciones con ventajas y desventajas.

3.3 Selección del diseño final

- → Matriz de decisión para elegir el concepto más viable (considerando peso, complejidad, factibilidad de fabricación, etc.).
- → Validación técnica con el equipo.

3.4 Modelado CAD 3D del mecanismo

- → Creación del modelo 3D detallado en SolidWorks o Fusion 360.
- → Uso de parámetros para facilitar ajustes.

3.5 Simulación de movimiento y esfuerzos

- → Análisis de interferencias y colisiones.
- → Simulación de trayectorias, esfuerzos mecánicos, deformaciones y posibles fallas.
- → Iteración de diseño si es necesario.

3.6 Optimización del diseño

- → Reducción de peso, mejora de la manufactura, revisión de tolerancias.
- → Adaptación a condiciones reales de montaje y operación.

3.7 Exportación de planos y renders

- → Generación de planos técnicos para fabricación o impresión 3D.
- → Creación de renders e imágenes animadas para uso en presentaciones.

3.8 Revisión técnica interna del modelo

- → Verificación por parte del equipo de que el diseño cumple con los objetivos establecidos.
- → Aprobación para pasar a la fase de prototipado.

4. Prototipado físico

4.1 Selección de materiales y componentes

- → Elección de materiales para las partes móviles, estructuras, ejes y piezas de soporte.
- → Definición de componentes comerciales necesarios (rodamientos, motores, uniones, etc.).

4.2 Evaluación de métodos de fabricación

- → Decisión entre impresión 3D, mecanizado, corte láser, fabricación manual u otros.
- → Consideración de proveedores, tiempos de entrega y costos.

4.3 Generación de archivos para fabricación

- → Exportación de archivos STL, DXF o planos técnicos según el método de fabricación.
- → Preparación de archivos para impresión 3D o CNC.

4.4 Adquisición de materiales y componentes

- → Compra o solicitud de piezas y materiales seleccionados.
- → Registro de gastos para seguimiento presupuestal.

4.5 Fabricación de piezas

- → Impresión, corte, mecanizado o fabricación de componentes del mecanismo.
- → Control de calidad básico de las piezas fabricadas.

4.6 Montaje del prototipo

- → Ensamblaje de las piezas físicas del mecanismo.
- → Registro de observaciones, ajustes o problemas durante el ensamblado.

4.7 Verificación del ensamblaje

- → Revisión del alineamiento, libertad de movimiento, resistencia mecánica básica.
- → Validación para pasar a pruebas funcionales.

4.8 Documentación del proceso

- → Registro fotográfico o en video del proceso de construcción y montaje.
- → Notas técnicas relevantes para futuras iteraciones.

5. Pruebas y validación

5.1 Definición de criterios de prueba

- → Establecer qué aspectos se van a evaluar (movimiento, resistencia, precisión, repetibilidad, etc.).
- → Redacción de un protocolo de pruebas con criterios de éxito.

5.2 Preparación del entorno de pruebas

- → Instalación del prototipo en un entorno seguro y controlado.
- → Preparación de herramientas de medición y registro.

5.3 Ejecución de pruebas funcionales

- → Prueba del mecanismo rotatorio con condiciones controladas.
- → Verificación de rotación, estabilidad, y respuesta del sistema.
- → Registro de resultados.

5.4 Análisis de resultados

- → Comparación con los objetivos del diseño.
- → Detección de fallos o áreas de mejora (pérdidas de energía, fricción excesiva, deformaciones, etc.).

5.5 Iteración del diseño (si es necesario)

- → Retroalimentación hacia el modelo CAD o la fabricación si se identifican problemas críticos.
- → Registro de las modificaciones realizadas.

5.6 Validación técnica final

- → Confirmación de que el diseño cumple con los requisitos establecidos en la etapa de planificación.
- → Aprobación para proceder al cierre del proyecto o siguiente etapa.

5.7 Registro audiovisual de pruebas

- → Captura de video o fotografía de las pruebas clave.
- → Apoyo visual para informes, presentaciones o documentación técnica.

6. Documentación y cierre

6.1 Compilación de entregables del proyecto

- → Reunión de planos, renders, modelos CAD, reportes de pruebas, fotografías del prototipo y demás archivos relevantes.
- → Verificación de que todos los documentos estén completos y actualizados.

6.2 Redacción del informe final

- → Documento resumen que describe: objetivos, metodología, desarrollo del diseño, pruebas realizadas, resultados y conclusiones.
- → Incluir imágenes, gráficas y anexos relevantes.

6.3 Organización del repositorio del proyecto

- → Estructurar claramente las carpetas y archivos en GitHub u otra plataforma colaborativa.
- → Incorporar archivos README y licencias si aplica.

6.4 Reunión de cierre de proyecto

- → Evaluación conjunta del trabajo realizado.
- → Identificación de aprendizajes y retroalimentación del equipo.

6.5 Presentación de resultados

- → Preparación de presentación visual para comunicar el trabajo a asesores, jurado o partes interesadas.
- → Exposición oral y/o defensa técnica si es requerido.

6.6 Archivo y respaldo de información

- → Copia de seguridad de todos los archivos del proyecto.
- → Registro de rutas o accesos a documentación para futuras consultas.

Work Breakdown Structure - Tasks

TASK ID	DESCRIPCIÓN	DURACIÓN ESTIMADA	FECHA DE INICIO	FECHA FINAL	RESPONSABLE	DEPENDENCIA
1.1	Definir propósito del proyecto	3 días	19/05/2025	22/05/2025	Todos	N/A
1.2	Redactar acta constitución	7 días	19/05/2025	26/05/2025	Todos	1.1
1.4	Establecer entregables principales	4 días	22/05/2025	26/05/2025	Kenia	1.1
2.5	Realizar análisis de riesgos	3 días	19/05/2025	22/05/2025	Carlos y Kenia	N/A
3.1	Investigación de mecanismos	5 días	22/05/2025	27/05/2025	Cesar y Santiago	1.1
3.2	Realizar diseño conceptual del mecanismo	8 días	27/05/2025	04/06/2025	Kenia, Cesar, Santiago	3.1
3.4	Modelado 3D en software CAD	7 días	04/06/2025	11/06/2025	Juan Pablo y Cesar	3.2
3.5	Simulación de movimiento y esfuerzos	5 días	11/06/2025	16/06/2025	Kenia y Carlos	3.4

3.6	Optimización del diseño	3 días	16/06/2025	19/06/2025	Juan Pablo y Santiago	3.5
4.1 A 4.4	Preparación del prototipado	7 días	19/06/2025	26/06/2025	Kenia y Carlos	3.6
4.5	Fabricación de piezas	11 días	26/06/2025	07/07/2025	Todos	4.4
4.6 Y 4.7	Montaje y verificación del prototipo	4 días	07/07/2025	11/07/2025	Kenia, Cesar y Carlos	4.5
5.2	Pruebas y ajustes	4 días	11/07/2025	15/07/2025	Kenia, Carlos	4.7
5.3	Ejecución de pruebas funcionales	4 días	11/07/2025	15/07/2025	Cesar, Santiago	4.7
6.2	Documentación final e informe	7 días	15/07/2025	22/07/2025	Kenia, Carlos	5.3
6.5	Preparación y entrega de presentación final	7 días	22/07/2025	29/07/2025	Juan Pablo, Cesar	6.2
6.5	Revisión y cierre del proyecto	7 días	29/07/2025	05/08/2025	Todos	6.2