GEOMETRÍA Capítulo 2

5° SAN MARCOS

Líneas notables asociadas al triángulo

GEOMETRÍA SACO OLIVEROS

LÍNEAS NOTABLES EN EL TRIÁNGULO

CEVIANA

Es el segmento cuyos extremos son un vértice y un punto cualquiera de lado opuesto a dicho vértice.

MEDIANA

Es el segmento cuyos extremos son un vértice del triángulo y el punto medio del lado opuesto.

GEOMETRÍA

SACO OLIVEROS

ALTURA

Es el segmento perpendicular a la recta que contiene a uno de los lados y que tiene por extremos un punto de esta recta y el vértice opuesto a dicho lado.

 TRIÁNGULO ACUTÁNGULO

 TRIÁNGULO RECTÁNGULO

 TRIÁNGULO OBTUSÁNGULO

GEOMETRÍA

তিয়

HELICO | THEORY BISECTRIZ INTERIOR

Es el segmento de una bisectriz de un ángulo de un triángulo, cuyos extremos son el vértice del ángulo y un punto del lado opuesto.

BISECTRIZ EXTERIOR

Es el segmento de una bisectriz de un ángulo externo de un triángulo cuyos extremos son el vértice del ángulo y un punto de la recta que contiene al lado opuesto, solo si no es equilátero y no es isósceles.

 \overline{BE} : Bisectriz exterior

GEOMETRÍA

SACO OLIVEROS

HELICO | THEORY

MEDIATRIZ

Es la recta perpendicular a un lado del triángulo en su punto medio y coplanar con el triángulo.

HELICO | THEORY

01

TEOREMAS

$$x = 90^{\circ} + \frac{a}{2}$$

$$x = \frac{a}{2}$$

$$x = 90^{\circ} - \frac{a}{2}$$

$$x = \frac{a+b}{2}$$

HELICO | THEORY

Nota:

HELICO | PRACTICE

[O]

1. En un triángulo acutángulo ABC, se traza la altura \overline{BD} , tal que: $m \not ABD - m \not BCD = 20^{\circ}$. Halle $m \not ABC - m \not BAD$.

Resolución

Dato:
$$\theta - \alpha = 20^{\circ}$$

Piden m \angle DBC - m \angle BAD = x - y
En \triangle BDC :
 $x + \alpha = 90^{\circ}$...(I)
En \triangle BDA :
 $y + \theta = 90^{\circ}$...(II)
(I) =(II)
 $x + \alpha = y + \theta$
 $\rightarrow x - y = \theta - \alpha$
 20°

$$x - y = 20^{\circ}$$

2. En un triángulo ABC, AB = 9, m∡BAC = 70° y m∡BCA = 30°. Luego se traza la bisectriz interior BD. Halle BD.

Resolución

Piden BD = x
En
$$\triangle$$
ABC
 $70^{\circ} + \alpha + \alpha + 30^{\circ} = 180^{\circ}$
 $\rightarrow \alpha = 40^{\circ}$
En \triangle BDC:
m \angle BDA = 70°

3. En un triángulo ABC, AB = 9, m \not BAC = 40° y m \not ABC = 20°. Luego se traza la bisectriz exterior \overline{BD} , (D en la prolongación de \overline{AC}). Halle BD.

Resolución

Piden: BD

En B : $2\alpha + 20^{\circ} = 180^{\circ}$

 $\rightarrow \alpha = 80^{\circ}$

En el ∆ABD :

→ m 4BDA = 40°

En el ABD es isósceles

HELICO | PRACTICE

4. En un triángulo ABC, se traza la ceviana interior \overline{BD} , tal que BD = 6, m \not ABD = 40°, m \not DBC = 15° y m \not BCD = 55°. Halle AC.

Resolución

Piden AC = X

En el ∆BDC:

En el ∆ ABD :

 $m \angle BDA + 40^{\circ} + 70^{\circ} = 180^{\circ}$

En ABD es isósceles

 \rightarrow AB = 6

En el ∆ABC;

→m∡ABC= 55°

En ABAC es isósceles

x = 6

HELICO | PRACTICE

5. En un triángulo ABC se traza la ceviana interior \overline{BD} , tal que: BD = DC, AB = AD y m \not BCD = 25°. Halle la m \not BAD.

6. En la figura, halle el valor de x si \overrightarrow{MN} es mediatriz de \overline{AC} , NC = 5 y AC = 8.

Resolución

Piden x

Dato: MN es mediatriz de AC

 \rightarrow AM = MC= 4 y m \angle NMC = 90°

En AMNC notable de 37°y 53°

0

B

66°

82°

D

16°

b

32°

a + b

a + b

- Piden: x
- △ABD:

$$m \angle ADB + 32^{\circ} + 66^{\circ} = 180^{\circ}$$

Se prolonga DA hasta E.

$$AB = AE = a$$

- ΔBAE: Isósceles
- ABED: Isósceles

$$EB = ED = a + b$$

$$x = 16^{\circ}$$

16°

9. En un triángulo ABC, m \angle BAC = 2(m \angle BCA) se traza la bisectriz \overline{BD} , si AB = 8 m. Calcule el máximo valor entero \overline{CD} .

B

 $\alpha + \beta$

a

α

2α

β

D

α

X

- Piden: x_{máx}
- ∆BCD:

$$m \not ADB = \alpha + \beta$$

- Se prolonga DA hasta E.
- ∆BAE: Isósceles
- ABED: Isósceles
- ∆EBC: Isósceles
- △ABC: T. de la existencia

$$a + 8 - 8 < x + a < a + 8 + 8$$

$$a < x + a < a + 16$$

$$x_{m\acute{a}x} = 15 m$$

α

8

a + 8

10.En un triángulo ABC, se traza la ceviana interior \overline{BD} , de modo que m $\not\equiv$ BCA = 20°, m $\not\equiv$ BDC = 40° y AC = BD + BC. Calcule m $\not\equiv$ ABD.

Resolución

- Piden: x
- Se prolonga CB hasta E.

$$BE = BD = a$$

- ∆BDE: Equilátero
- ACE: Isósceles
- AAED: Isósceles
- AAEB: Isósceles

$$x + 50^{\circ} = 60^{\circ}$$

$$x = 10^{\circ}$$