Mathematics Prerequisite

Jian Tang

HEC Montreal

Mila-Quebec AI Institute

Email: jian.tang@hec.ca

Mathematics

- Linear Algebra
- Probability and Statistics
- Machine Learning Basics
- Optimization

Linear Algebra and Probability

Scalars, Vectors, and Matrices

- Scalars: a single value, e.g., $x = 1.5 \in R$
- Vectors: An array of values. A vector x with n dimension:

$$\boldsymbol{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \in R^n$$

• Matrices: A matrix is a 2-D array of numbers, so each element is identified by two indices instead of just one

$$\mathbf{A} = \begin{bmatrix} A_{11}, A_{12} \\ A_{21}, A_{22} \end{bmatrix} \in \mathbb{R}^{2 \times 2}$$

Transpose of Vectors and Matrices

• Transpose of a vector x:

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \in R^n \qquad \mathbf{x}^T = (x_1, x_2, \dots, x_n)$$

• Transpose a matrix A: $\left(A^T\right)_{ij} = A_{ji}$

$$\mathbf{A} = \begin{bmatrix} A_{11}, A_{12} \\ A_{21}, A_{22} \end{bmatrix} \qquad \mathbf{A}^{T} = \begin{bmatrix} A_{11}, A_{21} \\ A_{12}, A_{22} \end{bmatrix}$$

Operations

$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$

• Given two vectors:
$$\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \in \mathbb{R}^n$$
 $\mathbf{y} = \begin{pmatrix} y_1 \\ y_2 \\ \dots \\ y_n \end{pmatrix} \in \mathbb{R}^n$

Then

$$x + y = \begin{pmatrix} x_1 + y_1 \\ x_2 + y_2 \\ \dots \\ x_n + y_n \end{pmatrix} \qquad x - y = \begin{pmatrix} x_1 - y_1 \\ x_2 - y_2 \\ \dots \\ x_n - y_n \end{pmatrix}$$

Inner Product

$$\mathbf{x} \cdot \mathbf{y} = x^T y = x_1 y_1 + x_2 y_2 + \dots + x_n y_n = \sum_{k=1}^{n} x_k y_k$$

Operations

Multiply scalar and vector

$$a \in R$$
 $x = \begin{pmatrix} x_1 \\ x_2 \\ \dots \\ x_n \end{pmatrix} \in R^n$ $ax = \begin{pmatrix} ax_1 \\ ax_2 \\ \dots \\ ax_n \end{pmatrix} \in R^n$

Multiplying Matrices and Vectors: C = AB

$$C_{ij} = \sum_{k} A_{ik} B_{kj}$$

 Note that the number of columns in A must be equal to the number of rows in B

Norms

• L^p norm of a vector \boldsymbol{x}

$$||\mathbf{x}||_p = \left(\sum_i |x_i|^p\right)^{\frac{1}{p}}$$

• A common one is L^2 norm

$$||x||_2 = \sqrt{\sum_i x_i^2}$$

Probabilities

- Many real-world events are not certain. Probabilities are used to capture the uncertainties.
- Example:
 - What would be the outcome if I roll a dice?
 - What would be the weather like next week?

	M	T	W	TH	F	S	S
Chance of rainfall	70%	80%	90%	80%	60%	20%	0%
	E 1707		ورواه			ಮ್	*

Random Variables & Probability Distributions

- A random variable is a variable that can take on different values randomly
- For example
 - X1 represents the outcome of rolling a dice $X1 \in \{1,2,3,4,5,6\}$
 - X2 represents tomorrow's weather
- A **probability distribution** is a description of how likely a random variable p(X) or a set of random variables is to take on each of its possible states p(X1, X2, ...)

Discrete Random Variables and Probability Mass Functions

- A discrete random variable takes on a finite number of values
- A probability distribution over discrete random variables can be described using a probability mass function (PMF): $p\left(X\right)$

$$p(X = x_i) \ge 0, \forall i$$
$$\sum_{i} p(X = x_i) = 1$$

• Example: discrete uniform distribution

$$p(X = x_i) = \frac{1}{n}, \forall i$$

Continuous Random Variables and Probability Density Functions

• The continuous random variables are described with probability density functions f(x):

$$f(x) \ge 0, \forall x \in X$$
$$\int f(x)dx = 1$$

• Example: continuous uniform distribution

$$f(x) = \frac{1}{b-a}, \forall a \le x \le b$$

Properties of Probability Distributions

• Sum rule: $p(x) = \sum_{y} p(x, y)$

• Product rule: p(x, y) = p(x|y)p(y)

• Bayes' Rule:
$$p(y|x) = \frac{p(x|y)p(y)}{p(x)}$$

Expectation, Variance

• **Expectation**: the average value of X when drawn from p(X)

$$E[X] = \sum_{i} p(X = x_i) x_i$$

• Variance: a measure of how much the value x vary as we sample different values of X from its probability distribution $p\left(X\right)$

$$Var[X] = E\left[\left(X - E(X)\right)^{2}\right]$$

Binary Variable

- A Binary variable $X \in \{0, 1\}$, e.g., Flipping a coin. X = 1 representing heads and X = 0 representing tails.
- Define the probability of obtaining heads as:

$$p(X = 1) = u$$
$$p(X = 0) = 1 - u$$

$$E[X] = \mu \qquad Var[X] = \mu(1 - \mu)$$

Binomial Distribution

- The distribution of the number of observations of X=1 (e.g. the number of heads).
- The probability of observing m heads given N coin flips and a parameter μ is given by:

$$p(m \ heads|N,\mu) = Bin(m|N,\mu) = {N \choose m} \mu^m (1-\mu)^{N-m}$$

The mean and variance can be easily derived as:

$$E[m] = \sum_{m=0}^{N} mBin(m|N,\mu) = N\mu$$

$$Var[m] = \sum_{m=0}^{N} (m - E[m])^{2}Bin(m|N,\mu) = N\mu(1 - \mu)$$

Example

• Histogram plot of the Binomial distribution as a function of m for N=10 and μ = 0.25.

Multinomial Variables

- Consider a random variable that can take on one of K possible mutually exclusive states (e.g. roll of a dice).
- We will use so-called 1-of-K encoding scheme.
- If a random variable can take on K=6 states, and a particular observation of the variable corresponds to the state $x_3=1$, then **x** will be resented as:

$$\mathbf{x} = (0, 0, 1, 0, 0, 0)^{\mathrm{T}}$$

• If we denote the probability of $x_k=1$ by the parameter μ_k , then the distribution over \mathbf{x} is defined as:

$$p(\mathbf{x}|oldsymbol{\mu}) = \prod_{k=1}^K \mu_k^{x_k} ~~ orall k: \mu_k \geqslant 0 ~~ ext{and} ~~ \sum_{k=1}^K \mu_k = 1$$

Multinomial Variables

 Multinomial distribution can be viewed as a generalization of Bernoulli distribution to more than two outcomes.

$$p(\mathbf{x}|\boldsymbol{\mu}) = \prod_{k=1}^{K} \mu_k^{x_k}$$

• It is easy to see that the distribution is normalized:

$$\sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu}) = \sum_{k=1}^{K} \mu_k = 1$$

and

$$\mathbb{E}[\mathbf{x}|\boldsymbol{\mu}] = \sum_{\mathbf{x}} p(\mathbf{x}|\boldsymbol{\mu})\mathbf{x} = (\mu_1, \dots, \mu_K)^{\mathrm{T}} = \boldsymbol{\mu}$$

Maximum Likelihood Estimation

- Suppose we observed a dataset $\mathcal{D} = \{\mathbf{x}_1, ..., \mathbf{x}_N\}$
- We can construct the likelihood function, which is a function of μ .

$$p(\mathcal{D}|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{(\sum_n x_{nk})} = \prod_{k=1}^{K} \mu_k^{m_k}$$

 Note that the likelihood function depends on the N data points only through the following K quantities:

$$m_k = \sum_{n} x_{nk}, \quad k = 1, ..., K.$$

- which represents the number of observations of $x_k=1$.
- These are called the sufficient statistics for this distribution.

Maximum Likelihood Estimation

$$p(\mathcal{D}|\boldsymbol{\mu}) = \prod_{n=1}^{N} \prod_{k=1}^{K} \mu_k^{x_{nk}} = \prod_{k=1}^{K} \mu_k^{(\sum_n x_{nk})} = \prod_{k=1}^{K} \mu_k^{m_k}$$

- To find a maximum likelihood solution for μ , we need to maximize the log-likelihood taking into account the constraint that $\sum_k \mu_k = 1$
- Forming the Lagrangian:

$$\sum_{k=1}^{K} m_k \ln \mu_k + \lambda \left(\sum_{k=1}^{K} \mu_k - 1 \right)$$

$$\mu_k = -m_k/\lambda$$
 $\mu_k^{\rm ML} = \frac{m_k}{N}$ $\lambda = -N$

which is the fraction of observations for which $x_k=1$.

Gaussian Univariate Distribution

• In the case of a single variable x, Gaussian distribution takes form:

The Gaussian distribution satisfies:

$$\mathcal{N}(x|\mu, \sigma^2) > 0$$
$$\int_{-\infty}^{\infty} \mathcal{N}(x|\mu, \sigma^2) dx = 1$$

Shannon Entropy

• The entropy H(X) of a distribution P(X) characterizes the amount of uncertainty of the random variable X.

$$H(X) = -\sum P(x) \log P(x) = -\mathbb{E}_{x \sim P} \log P(x)$$

Example: X is a binary variable

Kullback-Leibler (KL) divergence

 KL-divergence: measure the distance between two probability distributions P(x) and Q(x)

$$D_{KL}(P||Q) = \mathbb{E}_{x \sim P} \left[\log \frac{P(x)}{Q(x)} \right] = \mathbb{E}_{x \sim P} \left[\log P(x) - \log Q(x) \right]$$

- Note:
 - $D_{KL}(P||Q) \geq 0$
 - $D_{KL}(P||Q) = 0$ if and only if P=Q
 - $D_{KL}(P||Q) \neq D_{KL}(Q||P)$

Cross-Entropy H(P, Q)

Another distance function to measure two distributions P(x) and Q(x)

$$CE(P,Q) = -\mathbb{E}_{x\sim P} \log Q(x)$$

We can find that

$$CE(P,Q) = H(P) + D_{KL}(P||Q)$$

 Minimizing the cross-entropy with respect to Q is equivalent to minimizing the KL divergence.

Thanks! jian.tang@hec.ca