ECOLES PRIVEES ELMAARIF- ERRAJA

مدارس الرجاء والمعارف الحرة

|--|

La qualité de la rédaction, la clarté et la précision des raisonnements entreront pour une part importante dans l'appréciation de la copie du candidat.

Exercice 1 (3 points)

Dans le tableau suivant, une seule des réponses proposées à chaque question est correcte. Ecrire le numéro de chaque question et donner (sans justification), la réponse qui lui correspond.

N°	Questions	Réponses			
17	Questions				
		a) b	С	d
1	La forme algébrique de	\sim 10i + 11	8-3i	8 + 3i	11–10i
	(4+i)(2-3i) est	5/10/7			
2	Le module de $\frac{\left(\sqrt{3}+i\right)^3}{2+2i}$ est	$\frac{1}{2\sqrt{2}}$	$\frac{4}{3\sqrt{2}}$	$2\sqrt{2}$	$\frac{1}{\sqrt{8}}$
	Un argument de $z = (-1+i)e^{i\frac{\pi}{3}}$	π	$\frac{13\pi}{12}$	$-\frac{\pi}{3}$	-
3	est	3	12	3	π
	L'ensemble des points M d'affixe	un cercle de	un cercle de	un cercle de	La médiatrice
4	z tel que z-2+3i = 1+2i est	rayon 2	centre (2,3)	rayon $\sqrt{5}$	d'un segment
5	Si $\frac{z_A - z_B}{z_C - z_B} = -\frac{1}{2} + i \frac{\sqrt{3}}{2}$, alors le	isocèle	équilatéral	rectangle	rectangle isocèle
	triangle ABC est				
6	Si $A = \frac{e^{i3x} + e^{-i3x}}{6}$, alors	$A = \frac{1}{6}\cos 3x$	$A = \cos 3x$	$A = (\cos x)^3$	$A = \frac{1}{3}\cos 3x$

Exercice 2 (5 points)

- 1.a) Résoudre dans l'ensemble des nombres complexes \mathbb{C} l'équation (E) : $z^2-2z+2=0$.
- b) Résoudre dans l'ensemble des nombres complexes \mathbb{C} l'équation (E') : $z^2 z\sqrt{6} + 2 = 0$.
- 2.a) Ecrire sous forme trigonométrique chacun des nombres u=1+i, $v=\sqrt{6}+i\sqrt{2}$ et $w=\frac{1+i}{\sqrt{6}+i\sqrt{2}}$.
- b) Ecrire w sous forme algébrique.
- c) En déduire les valeurs exactes de $\cos \frac{\pi}{12}$ et $\sin \frac{\pi}{12}$.
- 3) Justifier les affirmations suivantes :
- a) Le nombre w²⁰¹⁶ est un réel positif.
- b) Le nombre u^{2018} est imaginaire pur.

Exercice 3 (5 points)

Le plan complexe est rapporté à un repère orthonormé direct (O; u, v).

- 1) Soient les points A, B, C et D d'affixes respectives : $z_A = 3$, $z_B = -3i$, $z_C = 3i$ et $z_D = 3 + 6i$.
- a) Placer les points A, B, C et D dans le repère.
- b) Déterminer l'affixe du point E tel que A soit le milieu de [EB].
- c) Préciser la nature des quadrilatères ABCD et ACDE.
- d) Calculer $Z = \frac{z_C z_B}{z_C z_E}$ et interpréter graphique ment.
- 2) Pour tout nombre complexe z on pose: $P(z) = z^3 3z^2 + 9z 27$.
- a) Calculer P(3).
- b) Déterminer les réels a et b tels que pour tout z on a:

$$P(z) = (z-3)(z^2 + az + b)$$
.

- c) Résoudre l'équation P(z) = 0.
- d) Déterminer la nature du triangle dont les sommets sont les points images des solutions de l'équation P(z) = 0.

Exercice 4 (5 points)

Le plan complexe est muni d'un repère orthonormé direct $(O; \vec{u}, \vec{v})$.

- 1) Pour tout nombre $z \neq -3i$ on pose : $P(z) = \frac{z+1+2i}{z+3i}$
- a) Donner la forme algébrique de chacun des nombres $z_1 = P(2)$, $z_2 = P(1-i)$ et $z_3 = P(-3)$.
- b) Résoudre l'équation $P(z) = \frac{2+4i}{1+5i}$.
- 2.a) Déterminer et construire Γ_1 l'ensemble des points M du plan d'affixe z tel que |P(z)| = 1.
- b) Déterminer et construire Γ_2 l'ensemble des points M d'affixe z tel que P(z) soit imaginaire pur.
- c) Déterminer et construire Γ_3 l'ensemble des points M d'affixe z tel que $|P(z)-1|=\sqrt{2}$.
- d) Déterminer et construire Γ_{\downarrow} l'ensemble des points M d'affixe z tel que |P(iz)| = 1.

Présentation: 2 points

Fin.