



# Modules



### **Example Model - Paris Windstorm**



Example Model - 3 Events LA VILLETTE DANUBE Le Pré-Saint-FAUROURG-DU-ROULF · CHAILLOT 2ND ARR. 15TH ARR. FALGUIÈRE

## Example Model – 4 Area Perils



Example Model - Footprint



### **Model Files - Hazard**



#### areaperil dict

| areaperil_id | lat   | lon  |
|--------------|-------|------|
| 1            | 48.88 | 2.31 |
| 2            | 48.88 | 2.34 |
| 3            | 48.85 | 2.31 |
| 4            | 48.85 | 2.34 |

footprint

| event_id | areaperil id | intensity_bin_index | prob |
|----------|--------------|---------------------|------|
| 1        | 1            | 1                   | 0.1  |
| 1        | 1            | 2                   | 0.2  |
| 1        | 1            | 3                   | 0.7  |
| 1        | 2            | 1                   | 0.8  |
| 1        | 2            | 2                   | 0.2  |
| 1        | 2            | 3                   | 0    |
| 2        | 1            | 1                   | 0.75 |
| 2        | 1            | 2                   | 0.25 |
| 2        | 1            | 3                   | 0    |
| 2        | 2            | 1                   | 0.1  |
| 2        | 2            | 2                   | 0.2  |
| 2        | 2            | 3                   | 0.7  |
| 3        | 3            | 1                   | 0.9  |
| 3        | 3            | 2                   | 0.1  |
| 3        | 3            | 3                   | 0    |

intensity\_bin\_dict

| bin_index | bin_from | bin_to |
|-----------|----------|--------|
| 1         | 50       | 60     |
| 2         | 60       | 70     |
| 3         | 70       | 80     |

event

| event_id |
|----------|
| 1        |
| 2        |
| 3        |



# Vulnerability

- Two simple vulnerability functions
  - 1 Good
  - 2 Not so good
- Common intensity bins with hazard
  - {1,2,3}
- Binned damage factor ranges
  - 0 40%
  - 40 100%





# | Model Files - Vulnerability







| inte | nsity | nıd | aict |
|------|-------|-----|------|
|      |       |     |      |

| bin_index | bin_from | bin_to |
|-----------|----------|--------|
| 1         | 50       | 60     |
| 2         | 60       | 70     |
| 3         | 70       | 80     |

vulnerability dict

| vulnerability_id | construction_scheme | construction_code |
|------------------|---------------------|-------------------|
| 1                | OED                 | 5150              |
| 2                | OED                 | 5050              |

vulnerability

| vulnerability_id | intensity_bin_index | damage_bin_index | prob |
|------------------|---------------------|------------------|------|
| 1                | 1                   | 1                | 0.9  |
| 1                | 1                   | 2                | 0.1  |
| 1                | 2                   | 1                | 0.8  |
| 1                | 2                   | 2                | 0.2  |
| 1                | 3                   | 1                | 0.7  |
| 1                | 3                   | 2                | 0.3  |
| 2                | 1                   | 1                | 0.8  |
| 2                | 1                   | 2                | 0.2  |
| 2                | 2                   | 1                | 0.5  |
| 2                | 2                   | 2                | 0.5  |
| 2                | 3                   | 1                | 0.1  |
| 2                | 3                   | 2                | 0.9  |

damage\_bin\_dict

| bin_index | bin_from | bin_to | interpolation |
|-----------|----------|--------|---------------|
| 1         | 0        | 0.4    | 0.2           |
| 2         | 0.4      | 1      | 0.7           |

## | Model files – putting it all together





### **Example Exposures**

| LocNumber | LocName              | Latitude  | Longitude | ConstructionCode | BuildingTIV |
|-----------|----------------------|-----------|-----------|------------------|-------------|
| 1         | Hôtel Ronceray Opéra | 48.874979 | 2.308870  | 5150             | 1,000,000   |
| 2         | Gare Du Nord         | 48.876918 | 2.324729  | 5050             | 2,000,000   |
| 3         | Art Supply Store     | 48.853240 | 2.387931  | 5150             | 500,000     |



# Open Exposure Data (OED)



Example Model - Keys Lookup



vulnerability\_dict

| vulnerability_id | construction_scheme | construction_code |
|------------------|---------------------|-------------------|
| 1                | OED                 | 5150              |
| 2                | OED                 | 5050              |



| item_id | areaperil_id | vulnerability_id | tiv       |
|---------|--------------|------------------|-----------|
| 1       | 1            | 1                | 1,000,000 |
| 2       | 2            | 2                | 2,000,000 |
| 3       | 4            | 1                | 500,000   |

### **Data Flow - Preparation 1 Keys Lookup**





## ktools



- Calculation kernel
- Modular
- Example implementation

## getmodel

- Function to generate "effective damageability distribution"
- Extracts relevant data from model files (footprint and vulnerability) based on input exposures and convolves into a single distribution
- For our example
  - No events in area\_peril 4
  - No items in area\_peril 3
  - Of interest:
    - Events {1,2}
    - Areaperils {1,2}
    - Vulnerabilities{1,2}



## getmodel – extraction (event 1, areaperil 1, vulnerability 1)



### getmodel example – convolution

footprint

| event_id | areaperil_id | intensity_bin_index | prob |
|----------|--------------|---------------------|------|
| 1        | 1            | 1                   | 0.1  |
| 1        | 1            | 2                   | 0.2  |
| 1        | 1            | 3                   | 0.7  |

vulnerability

| vulnerability_id | intensity_bin_index | damage_bin_index | prob |
|------------------|---------------------|------------------|------|
| 1                | 1                   | 1                | 0.9  |
| 1                | 1                   | 2                | 0.1  |
| 1                | 2                   | 1                | 0.8  |
| 1                | 2                   | 2                | 0.2  |
| 1                | 3                   | 1                | 0.7  |
| 1                | 3                   | 2                | 0.3  |

damage bin dict

| bin_index | bin_from | bin_to | interpolation |
|-----------|----------|--------|---------------|
| 1         | 0        | 0.4    | 0.2           |
| 2         | 0.4      | 1      | 0.7           |





**PDF** 







#### A note on PDF to CDF conversions

#### **Probability Distribution Function**



#### **Cumulative Distribution Function**



### getmodel example - cumulative distribution function



# gulcalc

- Ground Up Loss calculation
- Randomly samples from the generated CDF
- Performs Monte Carlo simulation
- Outputs simulated losses

# gulcalc example - sampling



# gulcalc example - sample calculation



loss= (bin\_from + ((random - prob\_from) / (prob\_to - prob\_from) \* (bin\_to - bin\_from))) \* tiv

Sample 1: Loss = (0.4 + ((0.82 - 0.74) / (1 - 0.74) \* (1 - 0.4))) \* 1,000,000 = 584,615

## gulcalc example - Event 1, Item 1, 8 samples



| event id | item id | sample no | random no | bin | bin from | bin to | bin mean | prob from | prob to | damage factor | tiv       | loss    |
|----------|---------|-----------|-----------|-----|----------|--------|----------|-----------|---------|---------------|-----------|---------|
| 1        | 1       | 1         | 0.82      | 2   | 0.4      | 1      | 0.7      | 0.74      | 1       | 0.584615      | 1,000,000 | 584,615 |
| 1        | 1       | 2         | 0.81      | 2   | 0.4      | 1      | 0.7      | 0.74      | 1       | 0.561538      | 1,000,000 | 561,538 |
| 1        | 1       | 3         | 0.94      | 2   | 0.4      | 1      | 0.7      | 0.74      | 1       | 0.861538      | 1,000,000 | 861,538 |
| 1        | 1       | 4         | 0.44      | 1   | 0        | 0.4    | 0.2      | 0         | 0.74    | 0.237838      | 1,000,000 | 237,838 |
| 1        | 1       | 5         | 0.37      | 1   | 0        | 0.4    | 0.2      | 0         | 0.74    | 0.200000      | 1,000,000 | 200,000 |
| 1        | 1       | 6         | 0.74      | 1   | 0        | 0.4    | 0.2      | 0         | 0.74    | 0.400000      | 1,000,000 | 400,000 |
| 1        | 1       | 7         | 0.01      | 1   | 0        | 0.4    | 0.2      | 0         | 0.74    | 0.005405      | 1,000,000 | 5,405   |
| 1        | 1       | 8         | 0.3       | 1   | 0        | 0.4    | 0.2      | 0         | 0.74    | 0.162162      | 1,000,000 | 162,162 |

loss= (bin\_from + ((random - prob\_from) / (prob\_to - prob\_from) \* (bin\_to - bin\_from))) \* tiv

Sample 1: Loss = (0.4 + ((0.82 - 0.74) / (1 - 0.74) \* (1 - 0.4))) \* 1,000,000 = 584,615

### fmcalc

- Financial Module calculation
- Applies (re)insurance terms and conditions to simulated ground up losses
- Applies hierarchical structures
- Outputs simulated insured losses

## fmcalc example - Event 1, Item 1, 8 samples



#### **Location Level Terms**

| item_id | sample no | Ground Up Loss | Deductible | Limit     | Gross Loss |
|---------|-----------|----------------|------------|-----------|------------|
| 1       | 1         | 584,615        | 10,000     | 500,000   | 500,000    |
| 1       | 2         | 561,538        | 10,000     | 500,000   | 500,000    |
| 1       | 3         | 861,538        | 10,000     | 500,000   | 500,000    |
| 1       | 4         | 237,838        | 10,000     | 500,000   | 227,838    |
| 1       | 5         | 200,000        | 10,000     | 500,000   | 190,000    |
| 1       | 6         | 400,000        | 10,000     | 500,000   | 390,000    |
| 1       | 7         | 5,405          | 10,000     | 500,000   | 0          |
| 1       | 8         | 162,162        | 10,000     | 500,000   | 152,162    |
| 2       | 1         | 448,054        | 25,000     | 1,000,000 | 423,054    |
| 2       | 2         | 1,977,185      | 25,000     | 1,000,000 | 1,000,000  |
| 2       | 3         | 658,093        | 25,000     | 1,000,000 | 633,093    |
| 2       | 4         | 867,394        | 25,000     | 1,000,000 | 842,394    |
| 2       | 5         | 1,263,411      | 25,000     | 1,000,000 | 1,000,000  |
| 2       | 6         | 345,894        | 25,000     | 1,000,000 | 320,894    |
| 2       | 7         | 141,051        | 25,000     | 1,000,000 | 116,051    |
| 2       | 8         | 1,048,963      | 25,000     | 1,000,000 | 1,000,000  |

#### **Account Level Terms**

| Aggregate | 7 |
|-----------|---|
|           |   |
|           |   |

| sample no | Gross Loss | Deductible | Limit     | Gross Loss |
|-----------|------------|------------|-----------|------------|
| 1         | 923,054    | 50,000     | 2,000,000 | 873,054    |
| 2         | 1,500,000  | 50,000     | 2,000,000 | 1,450,000  |
| 3         | 1,133,093  | 50,000     | 2,000,000 | 1,083,093  |
| 4         | 1,070,232  | 50,000     | 2,000,000 | 1,020,232  |
| 5         | 1,190,000  | 50,000     | 2,000,000 | 1,140,000  |
| 6         | 710,894    | 50,000     | 2,000,000 | 660,894    |
| 7         | 116,051    | 50,000     | 2,000,000 | 66,051     |
| 8         | 1,152,162  | 50,000     | 2,000,000 | 1,102,162  |

# MDK Workflow



