Лабораторная работа №18 Библиотека NetworkX

1 Цель работы

Изучить библиотеку NetworkX и научиться применять полученные знания на практике.

2 Краткая теория

В данной лабораторной работе рассмотрим библиотеку NetworkX, предназначенную для создания, манипуляции и изучения структуры, динамики и функционирования сложных сетевых структур.

Будем использовать библиотеки NetworkX и Matplotlib:

```
import networkx as nx
import matplotlib.pyplot as plt
```

Пусть задан граф множеством смежности:

```
pos = {0: {1, 2},

1: {3, 4},

2: {1, 4},

3: {4},

4: {1, 3, 5},

5: {0, 2}}
```

Создадим соответствующий направленный граф:

```
N = len(pos)
G = nx.DiGraph()
a = [(i, j) for i in range(N) for j in pos[i]] # генерация списка рёбер
G.add_nodes_from(range(N))
G.add_edges_from(a)
nx.draw(G, with_labels=True)
plt.show()
```


2.1 Алгоритмы обхода графа

Во многих приложениях нужно уметь выписывать все вершины графа по одному разу, начиная с некоторой. Это делается с помощью обходов в глубину или в ширину.

Основная идея обходов:

- 1) на каждом шаге рассмотреть очередную необработанную вершину;
- 2) пометить эту вершину некоторым образом;
- 3) до/после обработки данной вершины осуществить обход из всех нерассмотренных соседей.

Для упорядочивания вершин используется очередь (обход в ширину) или стек (обход в глубину).

2.1.1 Поиск в ширину

Код программы, реализующей поиск в ширину (с записью предшественников):

И программы, восстанавливающей маршрут:

```
def path(end, parents):
    path = [end]
    parent = parents[end]
    while parent is not None:
        path.append(parent)
        parent = parents[parent]
    return path[::-1]
```

2.1.2 Поиск в глубину

Код программы, реализующей поиск в глубину (с записью предшественников):

```
print(dfs(pos, 0, 1))
1 {0: 0, 1: 1, 2: 1, 3: None, 4: None, 5: None} [1, 2]
2 {0: 0, 1: 1, 2: 1, 3: None, 4: 2, 5: None} [1, 4] 3 {0: 0, 1: 1, 2: 1, 3: 3, 4: 2, 5: 3} [1, 3, 5]
1 {0: 0, 1: 1, 2: 1, 3: 3, 4: 2, 5: 3} [1, 3]
2 {0: 0, 1: 1, 2: 1, 3: 3, 4: 2, 5: 3} [1]
2 {0: 0, 1: 1, 2: 1, 3: 3, 4: 2, 5: 3} []
\{0: 0, 1: 1, 2: 1, 3: 3, 4: 2, 5: 3\}
print(pos[2])
{1, 4}
      Определим с помощью поиска в ширину кратчайший маршрут:
level, parents = bfs(pos, 0, out=0)
print(level)
\{0: 0, 1: 1, 2: 1, 3: 2, 4: 2, 5: 3\}
print(parents)
{0: None, 1: 0, 2: 0, 3: 1, 4: 1, 5: 4}
PATH = path(5, parents)
print(PATH)
[0, 1, 4, 5]
      Визуализируем этот маршрут:
red node = set(PATH) # вершины маршрута
red edges = [(PATH[i], PATH[i + 1]) for i in range(len(PATH) - 1)] # pëσρa
маршрута
# разделение по цветам вершин и рёбер
node colours = ['g' if node not in red node else 'red' for node in G.nodes()]
black edges = [edge for edge in G.edges() if edge not in red edges]
# построение графа
\# p = nx.spring layout(G)
p = \{0: [0.38144628, -0.66882419],
     1: [0.23970166, 0.49135202],
     2: [0.41724407, 0.05678197],
     3: [-0.55966794, 1.],
     4: [-0.44016179, 0.07245783],
     5: [-0.03856228, -0.95176763]}
nx.draw networkx nodes(G, p, cmap=plt.get cmap('jet'),
node color=node colours, node size=500)
nx.draw networkx labels(G, p)
nx.draw networkx edges(G, p, edgelist=black edges, width=2.0, edge color='k',
arrows=True)
nx.draw networkx edges(G, p, edgelist=red edges, width=3.0, edge color='r',
arrows=True)
plt.show()
```



```
# координаты вершин на рисунке print(p) {0: [0.38144628, -0.66882419], 1: [0.23970166, 0.49135202], 2: [0.41724407, 0.05678197], 3: [-0.55966794, 1.0], 4: [-0.44016179, 0.07245783], 5: [-0.03856228, -0.95176763]}
```

Пример 1.

Две вершины (v и u) ориентированного графа называют сильно связными, если существует путь из v в u и существует путь из u в v. Ориентированный граф называется сильно связным, если любые две его вершины сильно связны.

Напишите функцию, использующую модифицированый алгоритм поиска в глубину (алгоритм Косарайю) для определения компонент сильной связности.

Алгоритм:

- 1. Инвертируем дуги исходного ориентированного графа.
- 2. Запускаем поиск в глубину на этом обращённом графе, запоминая, в каком порядке выходили из вершин.
- 3. Запускаем поиск в глубину на исходном графе, в очередной раз выбирая непосещённую вершину с максимальным номером в векторе, полученном в п. 2.

Полученные из п. 3 деревья и являются сильно связными компонентами. Находим и строим графически с помощью этой функции компоненты сильной связности графа:

```
6: {3, 0, 5},
7: {2, 1},
8: {0, 7, 3},
9: {2, 4, 6, 8}}

N = 10
G = nx.DiGraph()
a = [(i, j) for i in range(N) for j in pos2[i]] # генерация списка рёбер

G.add_nodes_from(range(N))
G.add_edges_from(a)

nx.draw(G, with_labels=True)

plt.show()
```



```
def kosaraju(g):
    size = len(g)
   vis = [False] * size
    l = [0] * size
   x = size
    t = [[]] * size
    def visit(g, vis, u, x, 1, t):
        if not vis[u]:
            vis[u] = True
            for v in g[u]:
                vis, x, l, t = visit(g, vis, v, x, l, t)
                t[v] = t[v] + [u]
            x -= 1
            l[x] = u
        return vis, x, 1, t
    for u in range(len(g)):
       vis, x, l, t = visit(g, vis, u, x, l, t)
    c = [0] * size
```

```
def assign(vis, c, t, u, root):
        if vis[u]:
            vis[u] = False
            c[u] = root
            for v in t[u]:
                vis, c, t = assign(vis, c, t, v, root)
        return vis, c, t
    for u in 1:
        vis, c, t = assign(vis, c, t, u, u)
    print('Компоненты сильной связности:')
    dup = {i: 0 for i in range(len(c))}
    for i in c:
        dup[i] += 1
    css = []
    for i in dup.keys():
        if dup[i] > 1:
            for j in range(len(c)):
                if c[j] == i:
                     print(j, ', ', sep='', end='')
                     css.append(j)
    return css
css = kosaraju(pos2)
Компоненты сильной связности:
0, 1, 2, 3, 4, 5,
N = len(pos2)
G = nx.DiGraph()
a = [(i, j) \text{ for } i \text{ in } range(N) \text{ for } j \text{ in } pos2[i]]
G.add nodes from (range (N))
G.add_edges_from(a)
p = nx.spring layout(G)
red node = set(css)
red_edges = [(css[i], css[i + 1]) for i in range(len(css) - 1)]
node colours = ['b' if node not in red node else 'red' for node in G.nodes()]
black edges = [edge for edge in G.edges() if edge not in red edges]
nx.draw networkx nodes(G, p, cmap=plt.get cmap('jet'),
node color=node colours, node size=500)
nx.draw networkx labels(G, p)
nx.draw networkx edges(G, p, edgelist=black edges, width=1.0, edge color='k',
arrows=True)
nx.draw networkx edges(G, p, edgelist=red edges, width=1.0, edge color='k',
arrows=True)
plt.show()
```


Пример 2.

Создадим две строки, комбинация которых даст нам обозначения всех клеток шахматного поля:

```
letters = 'abcdefgh'
numbers = '12345678'
```

Создадим структуру типа словарь для хранения графа в формате множества смежности:

```
graph = dict()
print(graph)
{ }
      Заполним имена вершин графа:
for 1 in letters:
    for n in numbers:
        graph[l + n] = set()
      Заполним множества смежности:
def add_edge(graph, v1, v2):
    graph[v1].add(v2)
    graph[v2].add(v1)
for i in range(8):
    for j in range(8):
        v1 = letters[i] + numbers[j]
        v2 = ''
        if 0 \le i + 2 \le 8 and 0 \le j + 1 \le 8:
            v2 = letters[i + 2] + numbers[j + 1]
            add_edge(graph, v1, v2)
        if 0 \le i - 2 \le 8 and 0 \le j + 1 \le 8:
            v2 = letters[i - 2] + numbers[j + 1]
```

add edge(graph, v1, v2)

Нарисуем граф, соответствующий маршрутам коня по шахматной доске, и отметим на нём найденный маршрут.

```
p = \{ \}
for l in range(len(letters)):
    for n in range(len(numbers)):
        p[letters[1] + numbers[n]] = [-1 + 1 * 0.25, -1 + n * 0.25]
G = nx.DiGraph()
a = [(i, j) for i in graph for j in graph[i]]
G.add edges from(a)
\# p = nx.spring layout(G)
red node = set(Kpath)
red edges = [(Kpath[i], Kpath[i + 1]) for i in range(len(Kpath) - 1)]
node colours = ['w' if not node in red node else 'r' for node in G.nodes()]
black edges = [edge for edge in G.edges() if edge not in red edges]
nx.draw networkx nodes(G, p, cmap=plt.get cmap('jet'),
node color=node colours, node size=500)
nx.draw networkx labels(G, p)
nx.draw networkx edges(G, p, edgelist=red edges, width=1.0, edge color='r',
arrows=True)
plt.show()
```

a8	b8	c8	d8	e8	f8	g8	h8
a7	b7	c7	d7	e7		g7	h7
a6	b6	c6	d6	e6	f6	g6	h6
a5	b5_	c5	d5	e5	f5	g5	h5
a4	b4	c4	d4	e4	f4	g4	h4
a3	b3	c3	d3	e3	f3	g3	h3
a2	b2	c2	d2	e2	f2	g2	h2
a1	b1	c1	d1	e1	fl	g1	h1

Пример 3.

Рассмотрим граф G(V, E), имеющий V вершин и E ребер. Раскраской графа G называется окрашивание вершин графа G такое, что никакие две смежные вершины не имеют одинаковый цвет. Хроматическое число графа X(G) — это наименьшее число цветов, которое используется для раскраски графа. Известен жадный алгоритм раскраски графа.

Жадный алгоритм последовательного раскрашивания:

Входные данные: граф G(V, E).

Выходные данные: массив с[v] раскрашенных вершин

Для всех вершин определить множество $A = \{1, 2, 3, ..., n\}$ всех цветов.

Выбрать стартовую вершину (с которой начинаем алгоритм). Раскрасить вершину в цвет color. Вычеркнуть этот цвет из множества цветов всех вершин, смежных со стартовой.

Выбрать нераскрашенную вершину у.

Раскрасить выбранную вершину в минимально возможный цвет из множества А. Вычеркнуть этот цвет из множества цветов всех вершин, смежных с вершиной v.

Проделать шаг 3, шаг 4 для всех нераскрашенных вершин графа.

На основе этого алгоритма раскрасьте граф из задачи про коня.

```
colors[i] = c
                 break
    return colors
r = ggca(graph)
print(r)
{'a1': 0, 'a2': 0, 'a3': 0, 'a4': 0, 'a5': 0, 'a6': 0, 'a7': 0, 'a8': 0,
'b1': 1, 'b2': 1, 'b3': 1, 'b4': 1, 'b5': 1, 'b6': 1, 'b7': 1, 'b8': 1, 'c1': 2, 'c2': 2, 'c3': 2, 'c4': 2, 'c5': 2, 'c6': 2, 'c7': 2, 'c8': 2, 'd1': 0,
'd2': 0, 'd3': 0, 'd4': 0, 'd5': 0, 'd6': 0, 'd7': 0, 'd8': 0, 'e1': 1, 'e2':
1, 'e3': 1, 'e4': 1, 'e5': 1, 'e6': 1, 'e7': 1, 'e8': 1, 'f1': 2, 'f2': 2,
'f3': 2, 'f4': 2, 'f5': 2, 'f6': 2, 'f7': 2, 'f8': 2, 'g1': 0, 'g2': 0, 'g3':
0, 'g4': 0, 'g5': 0, 'g6': 0, 'g7': 0, 'g8': 0, 'h1': 1, 'h2': 1, 'h3': 1,
'h4': 1, 'h5': 1, 'h6': 1, 'h7': 1, 'h8': 1}
G = nx.DiGraph()
a = [(i, j) for i in graph for j in graph[i]]
G.add edges from(a)
\# p = nx.spring layout(G)
node colours = ['b' if r[node] == 0 else 'r' if r[node] == 1 else 'g' for
node in G.nodes()]
nx.draw networkx nodes(G, p, cmap=plt.get cmap('jet'),
node color=node colours, node size=500)
nx.draw networkx labels(G, p)
plt.show()
```

for c in range(len(graph)):
 if c not in minimal set:

3 Задания для выполнения работы Задание 1.

Напишите функцию, реализующую алгоритм Дейкстры.

Рис. 4.8. Алгоритм Дейкстры для нахождения кратчайших путей.

```
процедура DIJKSTRA(G, l, s)
\{ B x o g : граф G(V, E) (ориентированный или нет) с неотрицательными 
  длинами рёбер \{l_e: e \in E\}; вершина s \in V.
\{ Bыход: для всех вершин <math>u, достижимых из s,
  \operatorname{dist}[u] будет равно расстоянию от s до u (и \infty для недостижимых).}
для всех вершин u \in V:
  dist[u] \leftarrow \infty
  prev[u] \leftarrow nil
dist[s] \leftarrow 0
H \leftarrow \text{MAKEQUEUE}(V) {в качестве ключей используются значения dist}
пока H не пусто:
  u \leftarrow \text{DELETEMIN}(H)
  для всех рёбер (u, v) \in E:
     если dist[v] > dist[u] + l(u, v):
       dist[v] \leftarrow dist[u] + l(u, v)
       prev[v] \leftarrow u
       DECREASEKEY(H, v, dist[v])
```

Залание 2.

Сгенерируйте случайный взвешенный граф. И определите на нём маршрут минимальной длины с помощью алгоритма Дейкстры.

Задание 3.

Проиллюстрируйте работу одного из алгоритмов (поиска в ширину или глубину, Дейкстры) с помощью визуализации действий с графом на каждой итерации с помощью библиотек NetworkX и Matplotlib, аналогично примеру 1.

Задание 4* (НЕОБЯЗАТЕЛЬНО).

Используйте какой-нибудь интересный алгоритм из библиотеки https://networkx.org/documentation/stable/reference/algorithms/index.html.

Задание 5* (НЕОБЯЗАТЕЛЬНО).

Напишите функцию, реализующую алгоритм Форда-Беллмана https://ru.wikipedia.org/wiki/Алгоритм Беллмана — Форда.

Задание 6* (НЕОБЯЗАТЕЛЬНО).

Найдите выход из лабиринта с помощью различных алгоритмов и сравните их. Вывести рёбра пропорционально их длине.

Рис. 6.5. Лабиринт, в котором надо пройти из точки ѕ в точку t

Рис. 6.6. Представление лабиринта на рис. 6.5 в виде графа Задание 7* (НЕОБЯЗАТЕЛЬНО).

У Еремея есть электросамокат, и он хочет доехать от дома до института, затратив как можно меньше энергии. Весь город расположен на холмистой местности и разделён на квадраты. Для каждого перекрёстка известна его высота в метрах над уровнем моря. Если ехать от перекрёстка с большей высотой до смежного с ним перекрёстка с меньшей высотой, то электроэнергию можно аккумулировать (заряжая скутер), а если наоборот, то расход энергии равен разнице высот между перекрёстками. Помогите Еремею спланировать маршрут, чтобы он затратил наименьшее возможное количество энергии от дома до института и определите это количество.