Dynamic Programming - 1

Dynamic i regramming i

Debarka Sengupta

Origin

"Thus, I thought dynamic programming was a good name. It was something not even a Congressman could object to. So I used it as an umbrella for my activities"

- Richard E. Bellman

Origin

- A method for solving complex problems by breaking them into smaller, easier, sub problems
- Term Dynamic Programming coined by mathematician Richard Bellman in early 1950s
 - employed by <u>Rand Corporation</u>
 - Rand had many, large military contracts
 - Secretary of Defense, <u>Charles Wilson</u> "against research, especially mathematical research"
 - how could anyone oppose "dynamic"?

Fibonacci

- Computing the nth Fibonacci number recursively:
 - \circ F(n) = F(n-1) + F(n-2)
 - \circ F(0) = 0
 - \circ F(1) = 1
 - Top-down approach

Recursive calls

Naive recursive solution

```
naive\_fibo(n):

if n=0: return 0

else if n=1: return 1

else: return naive\_fibo(n-1) + naive\_fibo(n-2).
```

Failing spectacularly

```
fibonnaci number:
                           Time: 4.467E-6
   fibonnaci number:
                           Time:
                                  4.47E-7
   fibonnaci number:
                           Time:
                                  4.46E-7
    fibonnaci number: 3 -
                           Time: 4.46E-7
   fibonnaci number: 5 -
                                 4.47E-7
                           Time:
6th fibonnaci number: 8 -
                           Time:
                                  4.47E-7
                            Time: 1.34E-6
   fibonnaci number: 13 -
    fibonnaci number:
                             Time:
                                  1.787E-6
9th fibonnaci number: 34 -
                             Time: 2,233E-6
10th fibonnaci number: 55 -
                              Time: 3.573E-6
                              Time: 1.2953E-5
11th fibonnaci number: 89 -
    fibonnaci number:
                               Time: 8.934E-6
     fibonnaci number: 233 -
                               Time: 2.9033E-5
14th fibonnaci number:
                               Time:
                                    3.7966E-5
     fibonnaci number:
                                     5.0919E-5
     fibonnaci number:
                               Time: 7.1464E-5
                                Time: 1.08984E-4
    fibonnaci number:
                       1597 -
```

Failing spectacularly

```
fibonnaci number: 14930352
                                    Time: 0.045372057
                                          0.071195386
     fibonnaci number:
    fibonnaci number:
                       39088169
                                          0.116922086
39th fibonnaci number:
                       63245986
                                    Time: 0.186926245
    fibonnaci number:
                       102334155 -
                                     Time: 0.308602967
    fibonnaci number:
                       165580141
                                     Time: 0.498588795
                       267914296 -
    fibonnaci number:
                                     Time: 0.793824734
                                     Time: 1.323325593
43th fibonnaci number: 433494437
     fibonnaci number:
                                     Time: 2.098209943
                       701408733
    fibonnaci number:
                                            3.392917489
     fibonnaci number:
                       1836311903
                                      Time: 5.506675921
    fibonnaci number: -1323752223
                                       Time: 8.803592621
     fibonnaci number:
                       512559680
                                     Time: 14,295023778
     fibonnaci number: -811192543
                                            23.030062974
                                            37.217244704
     fibonnaci number: -298632863
                                       Time: 60.224418869
    fibonnaci number: -1109825406
```

Analysis

- What is the Recurrence relationship?
 - \circ T(n) = T(n-1) + T(n-2) + 1
- What is the solution to this?
 - Clearly it is O(2ⁿ), but this is not tight.
 - A lower bound is $\Omega(2^{n/2})$.
 - You should notice that T(n) grows very similarly to F(n), so in fact $T(n) = \Theta(F(n))$.
- Obviously not very good, but we know that there is a better way to solve it!

Computing Fibonacci using bottom-up

Computing the nth Fibonacci number using a bottom-up approach:

```
\circ F(0) = 0
```

$$\circ$$
 F(1) = 1

$$\circ$$
 F(2) = 1+0 = 1

0

$$\circ$$
 F(n) = F(n-1) + F(n-2)

• Efficiency:

- \circ Time O(n)
- Space O(n)

Inefficiency of the recursive solution

- The bottom-up approach is only Θ(n).
- Why is the top-down so inefficient?
 - Recomputes many sub-problems.
 - Check out F(n-2) and F(n-3)
- When calculating the 40th Fibonacci number the algorithm calculates the 4th Fibonacci number 24,157,817 times!!!

Overlapping subproblems - the magnitude

Memoization

```
memo = \{ \}
fib(n):
       if n in memo: return memo[n]
       else if n=0: return 0
           else if n=1: return 1
           else: f = fib(n-1) + fib(n-2)
                                 free of charge!
           memo[n] = f
           return f
```

Fast

```
1th fibonnaci number: 1 - Time: 4.467E-6
2th fibonnaci number: 1 - Time: 4.47E-7
3th fibonnaci number: 2 - Time: 7.146E-6
4th fibonnaci number: 3 - Time: 2.68E-6
5th fibonnaci number: 5 - Time: 2.68E-6
6th fibonnaci number: 8 - Time: 2.679E-6
                           Time: 3.573E-6
7th fibonnaci number: 13 -
8th fibonnaci number: 21 - Time: 4.02E-6
9th fibonnaci number: 34 - Time: 4.466E-6
10th fibonnaci number: 55 - Time: 4.467E-6
11th fibonnaci number: 89 - Time: 4.913E-6
12th fibonnaci number: 144 - Time: 6.253E-6
13th fibonnaci number: 233 - Time: 6.253E-6
14th fibonnaci number: 377 - Time: 5.806E-6
15th fibonnaci number: 610 - Time: 6.7E-6
16th fibonnaci number: 987 - Time: 7.146E-6
17th fibonnaci number: 1597 - Time: 7.146E-6
```

Fast

```
Time: 1.7419E-5
45th fibonnaci number: 1134903170 -
46th fibonnaci number: 1836311903 -
                                      Time: 1.6972E-5
47th fibonnaci number: 2971215073 -
                                      Time: 1.6973E-5
                                       Time: 2.3673E-5
48th fibonnaci number:
                        4807526976 -
    fibonnaci number: 7778742049 -
                                       Time: 1.9653E-5
50th fibonnaci number: 12586269025 -
                                        Time: 2.01E-5
51th fibonnaci number: 20365011074 -
                                       Time: 1.9207E-5
52th fibonnaci number: 32951280099 -
                                       Time: 2.0546E-5
67th fibonnaci number: 44945570212853 -
                                         Time: 2.3673E-5
68th fibonnaci number:
                      72723460248141
                                         Time: 2.3673E-5
69th fibonnaci number:
                      117669030460994 -
                                          Time: 2.412E-5
70th fibonnaci number: 190392490709135 -
                                          Time: 2.4566E-5
                                          Time: 2.4566E-5
    fibonnaci
              number:
                      308061521170129 -
    fibonnaci number:
                      498454011879264 -
                                          Time: 2.5906E-5
    fibonnaci number: 806515533049393 -
                                          Time: 2.5459E-5
                                           Time: 2.546E-5
    fibonnaci number:
                      1304969544928657
```

Runtime

- Memoization does not invoke redundant calls
- Therefore does exactly same operations as bottom up
- Complexity is same as bottom-up i.e., O(n)

When to use DP

Dynamic Programming is an algorithm design method that can be used when the solution to a problem may be viewed as the result of a sequence of decisions.

Shortest path in a multi-stage graph

To find a shortest path in a multi-stage graph

Apply the greedy method: the shortest path from S to T:

$$1 + 2 + 5 = 8$$
.

Example

- e.g. The greedy method cannot be applied to this case: (S, A, D, T) 1 + 4 + 18 = 23.
- The real shortest path is:

$$(S, C, F, T)$$
 $5 + 2 + 2 = 9$.

Dynamic programming approach

- Top down
- $d(S, T) = min\{1+d(A, T), 2+d(B, T), 5+d(C, T)\}$
- $d(A,T) = min\{4 + d(D,T), 11 + d(E,T)\} = min\{4 + 18, 11 + 13\} = 22.$

Continued ...

- d(B, T) = min{9+d(D, T), 5+d(E, T), 16+d(F, T)}= min{9+18, 5+13, 16+2} = 18.
- $d(C, T) = min\{2+d(F, T)\} = 2+2 = 4$
- d(S, T) = min{1+d(A, T), 2+d(B, T), 5+d(C, T)}
 = min{1+22, 2+18, 5+4} = 9.

Bottom up

- d(S, A) = 1; d(S, B) = 2; d(S, C) = 5
- $d(S,D)=min\{d(S,A)+d(A,D),d(S,B)+d(B,D)\}=min\{1+4,2+9\}=5$
- $d(S,E)=min\{d(S,A)+d(A,E),d(S,B)+d(B,E)=min\{1+11,2+5\}=7$
- $d(S,F)=min\{d(S,A)+d(A,F),d(S,B)+d(B,F)\}=min\{2+16,5+2\}=7$

Continued ...

```
    d(S,T) = min{d(S, D)+d(D, T),d(S,E) + d(E,T), d(S, F)+d(F, T)}
    = min{ 5+18, 7+13, 7+2 }
    = 9
```


Optimal substructure

 Principle of optimality: Suppose that in solving a problem, we have to make a sequence of decisions D₁, D₂, ..., D_n. If this sequence is optimal, then the last k decisions, 1 < k < n must be optimal.

e.g. in the shortest path problem, if i, i₁, i₂, ..., j is a shortest path from i to j, then i₁, i₂, ..., j must be a shortest path from i₁ to j

 In summary, if a problem can be described by a multi-stage graph, then it can be solved by dynamic programming.

DP when

- Optimal substructure
- Overlapping subproblems

Binary knapsack

Take as many item as you can with weight limit.

i	\mathbf{W}_{i}	$\mathbf{P_{i}}$	
1	10	40	M=10
2	3	20	
3	5	30	

Same as MSG

0/1 Knapsack - example

Optimization

```
How to optimize?

Try all possibilities?

O(2<sup>n</sup>)
```

Optimal substructure

- To show this for the 0-1 problem, consider the most valuable load weighing at most W pounds
 - If we remove item j from the load, what do we know about the remaining load?
 - A: remainder must be the most valuable load weighing at most W - w_j that thief could take from museum, excluding item j

Recurrence

c[i][M] = value of solution for items 1...i with max weight M

$$c[i][M] = \begin{cases} 0 & \text{If } i=0, M=0 \\ \\ c[i-1][M] & \text{If } w_i > M \end{cases}$$

$$max(v_i + c[i-1][M-w_i], c[i-1][M])$$

$$If i > 0 \text{ and } w_i < M$$

An instance

Tracking the solution

Solution: {4, 3}

Complexity

Done!

O(n*M)