Sveučilište u Zagrebu

PMF - Matematički odjel

Ime i Prezime

Naslov rada

Diplomski rad

Sveučilište u Zagrebu

PMF - Matematički odjel

Ime i Prezime

Naslov rada

Diplomski rad

Voditelj rada: prof. dr. sc. Ime i Prezime

Zagreb, mjesec godina

Ovaj diplomski rad obranjen je dana povjerenstvom u sastavu:		pred nastavničkim
1.	, predsjednik	
2	, član	
3	, član	
Povjerenstvo je rad ocijenilo ocjenom Potpisi članova povjerenstva:		·
1.		
2		
3		

Sadržaj

U	Vod	i
Ι	Naziv prvog poglavlja1 Prvi naslov	
ΙΙ	Naziv drugog poglavlja 3 Treći naslov	2
$\mathbf{Z}_{\mathbf{z}}$	aključak	3

$\mathbf{U}\mathbf{vod}$

Lagani uvod ...

Poglavlje I

Naziv prvog poglavlja

1 Prvi naslov

Za bilo koji homogeni polinom F(x,y,z) neka je f(x,y)=F(x,y,1). Tada iz jednadžbe 1.5 dobivamo

$$f(x,y) = \sum e_{ij} x^i y^j.$$

Točka euklidske ravnine (x, y) leži na grafu od f(x, y) = 0 ako i samo ako odgovarajuća točka projektivne ravnine (x, y, 1) leži na grafu od F(x, y, z) = 0. Dakle, krivulje f = 0 i F = 0 sadrže iste točke euklidske ravnine pa f zovemo **restrikcijom** krivulje F.

2 Drugi naslov

$$F(x, y, 1) = f(x, y). (2.1)$$

Sada je očito da F = 0 i f = 0 sadrže iste točke euklidske ravnine. Krivulju F = 0 zovemo **proširenje** krivulje f u projektivnu ravninu ili jednostavnije proširenje od f.

Broj presjeka između dvije krivulje u ishodištu ne bi se trebao promijeniti ako krivulju restriktiramo iz projektivne ravnine u euklidsku ravninu i zamjenimo homogene koordinate sa uobičajnim (x, y) koordinatama.

Poglavlje II

Naziv drugog poglavlja

3 Treći naslov

Teorem 3.1 (Pappusov teorem [2]). Neka su e i f dva pravca koji leže u projektivnoj ravnini. Neka su A, B i C točke koje leže na pravcu e, različite od točke $e \cap f$ i neka su A', B' i C' tri točke pravca f različite od točke $e \cap f$. Tada su točke $Q = AB' \cap A'B$, $R = BC' \cap B'C$ i $S = CA' \cap C'A$ kolinearne.

Slika 3.1

Zaključak

Lagani zaključak ...

Bibliografija

- [1] Richard Bix. Conics and Cubics. Springer, New York, 1998.
- [2] P.J. Ryan. Euclidean and non-euclidean geometry. Cambridge university press, Melbourne, 1991.
- [3] R. J. Walker. Algebric curves. Princeton, New Jersey, 1950.