Synchronous Sequential Logic

1) The D latch of Fig. 5.6 is constructed with four NAND gates and an inverter. Consider the following three other ways for obtaining a D latch. In each case, draw the logic diagram and verify the circuit operation.

2) Construct a JK flip-flop using a D flip-flop, a two-to-one-line multiplexer, and an inverter.

3) A sequential circuit with two D flip-flops A and B, two inputs, x and y; and one output z is specified by the following next-state and output equations:

4) A sequential circuit has two JK flip-flops A and B and one input x. The circuit is described by the following flip-flop input equations:

Answer of (a) on the left, and the answer of (b) on the right:

5) A sequential circuit has two JK flip-flops A and B, two inputs x and y, and one output z. The flip-flop input equations and circuit output equation are

(a)
$$J_A = Bx + B'y'$$
 $J_B = A'x$
 $K_A = B'xy'$ $K_B = A + xy'$ $z = Axy + Bx'y'$

Registers and Counters

6) Draw the logic diagram of a four-bit register with four D flip-flops and four 4×1 multiplexers with mode selection inputs s_1 and s_0 . The register operates according to the following function table.

Stage of register: (s1, s0): (0,0) – no change, (1,0) – complement outputs (0,1) – Synchronous clear, (1,1) = Load parallel data.

Stage logic diagram:

7) Design a serial 2's complementer with a shift register and a flip-flop. The binary number is shifted out from one side and it's 2's complement shifted into the other side of the shift register.

Note that y = x if Q = 0, and y = x' if Q = 1. Q is set on the first 1 from x. Note that $x \oplus 0 = x$, and $x \oplus 1 = x'$.

8) A binary ripple counter uses flip-flops that trigger on the positive-edge of the clock. What will be the count if:

Answer:

- (a) A count down counter.
- (b) A count up counter.
- 9) A digital system has a clock generator that produces pulses at a frequency of 80 MHz. Design a circuit that provides a clock with a cycle time of 50 ns.
- 10) Using JK flip flops, design a counter with the following repeated binary sequence: 0, 1, 2, 3, 4, 5, 6.

Present state	Next state	Flip-flop inputs					
ABC	ABC	$J_{_A}$	K_A	$J_{\scriptscriptstyle B}$	K_B	$J_{\mathcal{C}}$	K_C
000	001	0	x	0	x	1	x
001	010	0	\mathbf{x}	1	\mathbf{x}	\mathbf{x}	1
010	011	0	\mathbf{x}	\mathbf{x}	0	1	\mathbf{x}
011	100	1	\mathbf{x}	\mathbf{x}	1	\mathbf{x}	1
100	100	\mathbf{x}	\mathbf{x}	0	0	1	\mathbf{x}
101	110	\mathbf{x}	\mathbf{x}	1	\mathbf{x}	\mathbf{x}	1
110	000	\mathbf{x}	\mathbf{x}	\mathbf{x}	1	0	\mathbf{x}
111	$\mathbf{x}\mathbf{x}\mathbf{x}$	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}	\mathbf{x}

