Tugas Queue

- 1. Write the algorithm of queue mechanism using
 - Single linked list
 - Array alternative 1
 - Array alternative 2
 - Array alternative 3
- 2. Use the same infotype as before
- 3. Each member is to write 1 mechanism

Jawaban

A. Single Linked List

Algoritma:

- Simpan 2 reference: front $\rightarrow ... \rightarrow ... \rightarrow$ back
- enqueue(Benda x):
 - Buat sebuah node baru N yang datanya x
 - if queue sebelumnya empty, maka front = back = N
 - else tambahkan N di akhir (dan update back)
- dequeue():
 - Hapus elemen pertama: front = front.next

B. Array alternative 1

Algoritma:

Add(P,3)
Add(P,4)
Add(P,2)
Del(P)
Del(P)
Add(P,5)
Del(P)
Del(P)

1	2	3	4	5
3	4	2		
Head = 1				

Head = 1Tail = 3

Is empty = True

1	2	3	4	5
2				

Head = 1

Tail = 0

Is empty = True

1	2	3	4	5
5	2			

Head = 1

Tail = 2

Is empty = True

1	2	3	4	5

Head = 0

Tail = 0

Is empty = False

C. Array Alternative 2

Algoritma:

Add(P,3)
Add(P,4)
Add(P,2)
Del(P)
Del(P)
Add(P,5)
Del(P)
Add(P,6)
Add(P,7)
Del(P)
Del(P)
Del(P)

1	2	3	4	5
3	4	2		
Head = 1				
Tail $= 3$				
Is $empty = True$				
1	2	3	4	5
2				
Head = 1				
Tail $= 0$				
Is $empty = True$				
1	2	3	4	5
5	2			
Head = 1				
Tail $= 2$				
Is $empty = True$				
1	2	3	4	5
2				
Head = 1				
Tail $= 0$				
Is $empty = True$				
1	2	3	4	5
7	6	2		
Head = 1				
Tail $= 3$				

3

4

5

 $\begin{array}{ll} \text{Head} &= 0 \\ \text{Tail} &= 0 \end{array}$

 $Is \ empty = False$

 $Is \underline{empty = True}$

1

2

D. Array alternative 3

Algoritma:

Add(P,3)
Add(P,4)
Add(P,2)
Del(P)
Del(P)
Add(P,5)
Del(P)
Add(P,6)
Add(P,7)
Add(P,8)
Del(P)
Del(P)
Del(P)
Del(P)

1	2	3	4	5
3	4	2		
Head = 1				
Tail $= 3$				
Is $empty = True$				
1	2	3	4	5
2				
Head = 1				
Tail $= 0$				
Is $empty = True$				
1	2	3	4	5
5	2			
Head = 1				
Tail $= 2$				
Is $empty = True$				
1	2	3	4	5
2				
Head = 1				
Tail $= 0$				
Is $empty = True$				
1	2	3	4	5
8	7	6	2	
Head = 1				
Tail $= 3$				
Is empty = True				

 $\begin{aligned} \text{Head} &= 0 \\ \text{Tail} &= 0 \end{aligned}$

Is empty = False