Introduction to Machine Learning

Ens'IA

Ensimag 2022-2023

24 octobre 2022

Outline

Presentation

2 Introduction

3 First Neuron

Outline

Presentation

2 Introduction

3 First Neuron

Ens'IA

Who are we?

- Association founded in may 2019
- Promote artificial intelligence and its learning
- Share knowledge between students

Ens'IA

Why join us?

- Showing off at the coffee machine
- Impress your grandparents
- Add a line to your resume
- Eventually learn to do AI

No need to be an expert to help us!

Outline

Presentation

2 Introduction

3 First Neuron

Supposes we want to create a program capable of classifying images...

Supposes we want to create a program capable of classifying images...

How so we do that?

Solution: Allow the computer to learn from data without having to code it explicitly.

Solution: Allow the computer to learn from data without having to code it explicitly.

In other words: Machine Learning!

Types of Machine Learning

Outline

Presentation

2 Introduction

3 First Neuron

Goal

We'll be doing Supervised Learning :
$$f(x) = y$$

Goal

We'll be doing Supervised Learning :
$$f(x) = y$$

How to find f ?

We'll be doing Supervised Learning : f(x) = yHow to find f?

FIGURE 1 – Neural network

Neural network

 \rightarrow Succession of neuron layers

$$a_1, ..., a_n, s \in 0, 1$$

$$s = \begin{cases} 1 & \text{if } \sum_{i=0}^n a_i * w_i + b > 0 \\ 0 & \text{otherwise.} \end{cases}$$

If $a_1 * w_1 + a_2 * w_2 + a_3 * w_3 + b > 0, s = 1$ We go to the party!

$$a_1, ..., a_n, s \in 0, 1$$

$$s = \begin{cases} 1 & \text{if } \sum_{i=0}^n a_i * w_i + b > 0 \\ 0 & \text{otherwise.} \end{cases}$$

- \rightarrow Capable of reproducing logical gates!
- \rightarrow Finding the w and b by hand is a pain

- \rightarrow Capable of reproducing logical gates!
- \rightarrow Finding the w and b by hand is a pain

You have to "learn" the w and b.

How to learn? Small change of w and b \rightarrow small change of the output?

How to learn? Small change of w and b \rightarrow small change of the output?

Not possible here

Sigmoid neuron

$$a_1, ..., a_n \in [0, 1]$$

 $s = \sigma(\sum_{i=0}^n a_i * w_i + b)$ with $\sigma(x) = \frac{1}{1 + e^{-x}}$

Sigmoid neuron

Small change of w and $b\to small change of the output <math display="inline">\checkmark$

Sigmoid neuron

Small change of w and b \rightarrow small change of the output \checkmark Goal how do we train?

Objective : minimize the error on the predictions !

Objective: minimize the error on the predictions!

$$\left\{\omega, b | E(\omega, b) = \min_{\omega', b'} E(\omega', b')\right\}$$

Problems to solve:

• How to quantify the error?

Problems to solve:

- How to quantify the error?
 - \rightarrow Quadratic loss : Average over multiple inputs

$$L = \frac{1}{n} \sum (desired - predicted)^2$$

Problems to solve:

- How to quantify the error?
 - \rightarrow Quadratic loss: Average over multiple inputs

$$L = \frac{1}{n} \sum (desired - predicted)^2$$

How to minimize?

Problems to solve:

- How to quantify the error?
 - \rightarrow Quadratic loss : Average over multiple inputs

$$L = \frac{1}{n} \sum (desired - predicted)^2$$

- How to minimize?
 - \rightarrow Backpropagation

Gradient Descent

Gradient Descent

Idea : reach the minimum of a function iteratively

Gradient Descent

Idea: reach the minimum of a function iteratively

Gradient Descent

Idea: reach the minimum of a function iteratively

For each neuron:

$$\omega' = \omega - \eta \frac{\partial L}{\partial \omega}$$

$$b' = b - \eta \frac{\partial L}{\partial b}$$
(1)

$$b' = b - \eta \frac{\partial L}{\partial b} \tag{2}$$

For each neuron:

$$\omega' = \omega - \eta \frac{\partial L}{\partial \omega} \tag{1}$$

$$\omega' = \omega - \eta \frac{\partial L}{\partial \omega}$$

$$b' = b - \eta \frac{\partial L}{\partial b}$$
(1)

Objective : Compute ∇L

For each neuron:

$$\omega' = \omega - \eta \frac{\partial L}{\partial \omega}$$

$$b' = b - \eta \frac{\partial L}{\partial b}$$
(1)

$$b' = b - \eta \frac{\partial L}{\partial b} \tag{2}$$

Objective : Compute ∇L

 \rightarrow one layer \checkmark

For each neuron:

$$\omega' = \omega - \eta \frac{\partial L}{\partial \omega} \tag{1}$$

$$\omega' = \omega - \eta \frac{\partial L}{\partial \omega}$$

$$b' = b - \eta \frac{\partial L}{\partial b}$$
(1)

Objective : Compute ∇L

- \rightarrow one layer \checkmark
- \rightarrow multiple layers :

For each neuron:

$$\omega' = \omega - \eta \frac{\partial L}{\partial \omega}$$

$$b' = b - \eta \frac{\partial L}{\partial b}$$
(1)

$$b' = b - \eta \frac{\partial L}{\partial b} \tag{2}$$

Objective : Compute ∇L

- \rightarrow one layer \checkmark
- \rightarrow multiple layers: Propagation of the gradient upstream of the network with the chain rule : $Backpropagation \rightarrow cs231$

• 1st approach

For each entry:

- \rightarrow Compute the error (loss)
- \rightarrow Compute the gradient
- \rightarrow Update the parameters

• 1st approach

For each entry:

- \rightarrow Compute the error (loss)
- \rightarrow Compute the gradient
- \rightarrow Update the parameters

• 2nd approach

For each batch:

- \rightarrow Compute the mean error
- \rightarrow Compute the gradient
- \rightarrow Update the parameters

Summary:

- \rightarrow Select a batch
- \rightarrow For each entry, compute the output : Forward propagation
- \rightarrow Compute the mean error (loss)
- ightarrow Compute the gradient and update the parameters : Backpropagation

Summary:

- \rightarrow Select a batch
- \rightarrow For each entry, compute the output : Forward propagation
- \rightarrow Compute the mean error (loss)
- \rightarrow Compute the gradient and update the parameters : Backpropagation

And now, it's your turn!

Discord

Join our Discord server!

Useful to ask questions, contact Ens'IA team, and to share news!

 $\rightarrow \rm https://discord.gg/UgTRbRFqNv$

