CSE 318 - Max Cut

1905007 — Md Asib Rahman

August 20, 2023

1 Introduction

1.1 Randomized

In this approach, each vertex is randomly assigned to one of the sets. The probability of being assigned is 0.5. We run the randomized algorithm for 100 iterations and calculate the average result. However, this approach tends to perform poorly on most of the datasets.

1.2 Greedy

The algorithm begins by assigning a single vertex to each partition, labeled as X and Y. Initially, both partitions, X and Y, are empty. These assignments are performed to ensure that each partition includes an endpoint of an edge with one of the highest weights. Following this, the remaining |V|-2 vertices are considered individually to determine the optimal placement of each vertex into either partition. This decision is based on the criterion of maximizing the weight of the partial cut that is progressively being constructed. During each iteration, precisely one vertex is designated to be part of either the X or Y set.

1.3 Semi-Greedy

Instead of always selecting the edge with the maximum weight, a threshold value is calculated based on the minimum and maximum edge weights, along with a parameter α for the remaining graph. A random edge is then chosen among those edges with weights greater than the threshold. This approach yields promising results on the given dataset.

1.4 Local Search

The solution obtained through the semi-greedy approach might not be optimal. Hence, a local search is conducted on the solution. In each step, a vertex is selected, and its set assignment is changed if it enhances the max cut. This approach consistently outperforms the semi-greedy approach in all cases.

							local	local search			
1									GRASP	GRASF	
	Name	n	m	random	greedy	semi-greedy	Iteration	Value	Iteration	Value	Best
2	g11	800	1600	16.38	482	418.44	449.32	100	478	100	627
3	g12	800	1600	-0.86	478	401.29	432.67	100	457	100	621
4	g13	800	1600	15.28	494	426.11	460.72	100	496	100	645
5	g14	800	4694	2354.78	2940	2934.45	2965.7	100	2987	100	3187
6	g15	800	4661	2330	2917	2914.34	2946.38	100	2972	100	3169
7	g16	800	4672	2336.63	2901	2917.37	2950.01	100	2971	100	3172
8	g1	800	19176	9570.21	11275	11103.1	11361	100	11482	100	12078
9	g22	2000	19990	9986.39	12807	12628.5	12883.7	100	12980	100	14123
10	g23	2000	19990	9991.75	12777	12619.7	12885.3	100	12964	100	14129
11	g24	2000	19990	9987.51	12786	12622.9	12881.6	100	12985	100	14131
12	g2	800	19176	9582.8	11243	11105.5	11368	100	11441	100	12084
13	g32	2000	4000	8.68	1182	1026	1106.12	100	1150	100	1560
14	g33	2000	4000	-17.74	1162	996.07	1077.22	100	1115	100	1537
15	g34	2000	4000	-24.46	1184	990.23	1075.32	100	1115	100	1541
16	g35	2000	11778	5891.25	7370	7360.4	7438.37	100	7481	100	8000
17	g36	2000	11766	5881.86	7384	7349.27	7429.72	100	7470	100	7996
18	g37	2000	11785	5899.78	7385	7359.12	7439.84	100	7475	100	8009
19	g3	800	19176	9587.78	11292	11102.2	11359.6	100	11456	100	12077
20	g43	1000	9990	4996.94	6380	6299.1	6432.82	100	6510	100	7027
21	g44	1000	9990	4996.79	6386	6291.8	6427.48	100	6499	100	7022
22	g45	1000	9990	4992.46	6341	6284.91	6426.28	100	6496	100	70202
23	g48	3000	6000	3003.72	6000	5707.98	5713.4	100	6000	100	5988
24	g49	3000	6000	3003.04	6000	5699.6	5705.1	100	5940	100	6000
25	g50	3000	6000	2997.66	5880	5694.63	5699.33	100	5830	100	5988

Figure 1: Enter Caption

1.5 GRASP

In the GRASP approach, local search is performed for 100 iterations, and the best value achieved during these iterations is taken as the maximum cut. GRASP

2 Report

Here is the brief report. Full report is attached