ДЗ к семинару 29

Задача 1. Пусть оператор $\mathcal A$ на $\mathbb R^2$ в базисе $a_1=(-3,7),\,a_2=(1,-2)$ имеет матрицу $\begin{pmatrix} 2 & -1 \\ 5 & -3 \end{pmatrix}$.

Оператор \mathcal{B} в базисе $b_1 = (6, -7), b_2 = (-5, 6)$ имеет матрицу $\begin{pmatrix} 1 & 3 \\ 2 & 7 \end{pmatrix}$. Найти матрицу оператора \mathcal{AB} в стандартном базисе.

Задача 2. Найти собственные значения и собственные векторы оператора над \mathbb{R} , заданного в некотором базисе матрицей

 $\begin{pmatrix} 1 & -3 & 4 \\ 4 & -7 & 8 \\ 6 & -7 & 7 \end{pmatrix}.$

Задача 3. Найти собственные значения и собственные векторы оператора над \mathbb{R} , заданного в некотором базисе матрицей

 $\begin{pmatrix} 4 & -5 & 7 \\ 1 & -4 & 9 \\ -4 & 0 & 5 \end{pmatrix}.$

Задача 4. Найти собственные значения и собственные векторы оператора над \mathbb{R} , заданного в некотором базисе матрицей

 $\begin{pmatrix} 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \end{pmatrix}.$

Задача 5. Пусть $a,b\in\mathbb{R}$ — некоторые числа и $a\neq 1$. Доказать, что в пространстве $\mathbb{R}[x]_{\leq n}$ линейный оператор \mathcal{A} , заданный правилом

$$f(x) \mapsto f(ax+b),$$

имеет множество собственных значений $1, a, \dots, a^n$.

Указание. Подберите такой многочлен вида $f(x) = x + s, s \in \mathbb{R}$, что f(ax + b) = af(x).

Задача 6. Найти все инвариантные подпространства для оператора дифференцирования \mathcal{A} в пространстве $\mathbb{R}[x]_{\leq n}$.

 $У \kappa a s a h u e$. В инвариантном подпространстве U рассмотрите многочлен наибольшей степени и примените к нему \mathcal{A} .