- **Definition 1.** A category C, consists of the following data:
- 1. A collection of *objects* ob \mathcal{C} ,
- 2. For every two objects $x, y \in \text{ob } C$ a collection of morphisms $\text{Hom}_{\mathcal{C}}(x, y)$.
- 3. For every $x \in \mathcal{C}$, the identity morphism $\mathrm{id}_x \in \mathrm{Hom}_{\mathcal{C}}(x,x)$.
- 5 4. A composition map $\circ: \operatorname{Hom}_{\mathcal{C}}(y,z) \times \operatorname{Hom}_{\mathcal{C}}(x,y) \longrightarrow \operatorname{Hom}_{\mathcal{C}}(x,z)$
- Such that, for all $x, y \in \mathcal{C}$ and $f \in \text{Hom}_{\mathcal{C}}(x, y)$:

$$f \circ \mathrm{id}_x = f \ \mathrm{id}_y \circ f = f$$

And for all x, y, z, v with $f \in \text{Hom}_{\mathcal{C}}(x, y), g \in \text{Hom}_{\mathcal{C}}(y, z), h \in Homzv$:

$$h\circ (g\circ f)=(h\circ g)\circ f$$

- **Definition 2.** A functor $F: \mathcal{C} \longrightarrow \mathcal{D}$ is a map $ob\mathcal{C} \rightarrow ob\mathcal{D}$ and a map of morphisms $Hom_{\mathcal{C}}(x,y) \rightarrow ob\mathcal{D}$
- Hom_{\mathcal{D}}(F(x), F(y)). Such that $F(\mathrm{id}_x) = \mathrm{id}_{F(x)}$ and $F(g \circ f) = F(g) \circ F(f)$.
- Definition 3. $F: \mathcal{C} \to \mathcal{D}$ is faithful if for all $x, y \in \mathcal{C}$, $\operatorname{Hom}_{\mathcal{C}}(x, y) \to \operatorname{Hom}_{\mathcal{D}}(F(x), F(y))$ is injective. It
- is full if every such map is surjective.
- Definition 4. A functor $F: \mathcal{C} \to \mathcal{D}$ is essentially surjective if for all $d \in \mathcal{D}$ there is $c \in \mathcal{C}$ such that
- $F(x) \cong d.$
- **Definition 5.** For two functors $F,G:\mathcal{C}\to\mathcal{D}$, a natural transformation $\eta:F\Rightarrow D$ is a collection of
- morphisms $\eta_x \in \operatorname{Hom}_{\mathcal{D}}(F(x), G(x))$ such that for every $x \xrightarrow{f} y$, $\eta_y \circ F(f) = G(f) \circ \eta_x$.
- It is a natural isomorphism if all morphisms η_x are isomorphisms.
- Definition 6. Equivalence of categories: $F: \mathcal{C} \to \mathcal{D}$ and $G: \mathcal{D} \to \mathcal{C}$ with natural isomorphisms $e: \mathrm{id}_{\mathcal{C}} \Rightarrow$
- ¹⁸ GF, $\epsilon: FG \Rightarrow \mathrm{id}_{\mathcal{D}}$. An adjoint equivalence is an equivalence where $F \dashv G$.
- Proposition 7. The following are equivalent: \mathcal{C} and \mathcal{D} are equivalent, \mathcal{C} and \mathcal{D} are adjoint equivalent
- and there is $F: \mathcal{C} \to \mathcal{D}$ that is fully faithful and essentially surjective.
- Definition 8. For a locally small category \mathcal{C} , the Yoneda Embedding is given by a functor $Y:\mathcal{C}\longrightarrow$
- Fun(\mathcal{C}^{op} , Set), where $Y(x) = \text{Hom}_{\mathcal{C}}(-, x)$ and $Y(x \xrightarrow{f} y) = (g \mapsto f \circ g)$.
- Definition 9. A functor is representable if it is in the essential image of the Yoneda functor.
- Lemma 10. The Yoneda lemma states that for any presheaf $F: \mathcal{C}^{op} \to \operatorname{Set}$, the map $\operatorname{Fun}(Y(x), F) \to \operatorname{Set}$
- F(x) given by $\eta \mapsto \eta_x(\mathrm{id}_x)$, is an isomorphism.
- 26 Proof. To construct the inverse, let $f \in F(x)$, then define natural transformation $\epsilon \colon Y(x) \Rightarrow F$ given by
- $\epsilon_y \colon Y(x)(y) \to F(y)$ and $g \mapsto F(g)(f)$. Show this is natural by F preserving composition. One inverse is

- easy, for the other take η arbitrary, make diagram with $x \xrightarrow{g} y$ and claim $\eta_y(g) = F(g)(\eta_x(\mathrm{id}_x))$.
- ²⁹ Corollary 11. The Yoneda functor is full and faithful.
- Proof. For x_1, x_2 , we have that $\operatorname{Hom}(Y(x_1), Y(x_2)) \longrightarrow Y(x_1)(x_2)$ is an isomorphism by Yoneda. \square
- Proposition 12. A formal right adjoint to $F: \mathcal{C} \to \mathcal{D}$ is a functor $G^{formal}: \mathcal{D} \to \operatorname{Fun}(\mathcal{C}^{op}, \operatorname{Set})$ with
- $y \mapsto (x \mapsto \operatorname{Hom}_{\mathcal{D}}(F(x), y))$. A right adjoint G to F exists if and only if $G^{formal}(y)$ is representable for
- 33 all y.
- Definition 13. Let $D: I \to \mathcal{C}$. A limit of D is an object $\lim_I D \in \mathcal{C}$ along with maps $f_i: \lim_I D \to D(i)$,
- such that for every $g: i \to j$, $D(g) \circ f_i = f_j$. It is universal as for any other object W with compatible
- maps $W \to D(i)$, there is a unique morphism $W \to \lim_I F$.
- Proposition 14. The diagonal functor $\Delta \colon \mathcal{C} \to \operatorname{Fun}(I,\mathcal{C})$ is $\Delta(x)(i) = x$. Then $\operatorname{Hom}_{\operatorname{Fun}(\mathcal{I},\mathcal{C})}(\Delta(W),F) \cong$
- ³⁸ $\operatorname{Hom}_{\mathcal{C}}(W, \lim_I F)$, so $\Delta \vdash \lim_I$.

- **Proposition 15.** Suppose \mathcal{C} has limits for diagrams of shape I and J. Then it has limits of diagrams of
- shape $I \times J$ and

$$\lim_{I\times J}F\cong \lim_{I}\lim_{J}F\cong \lim_{I}\lim_{I}F$$

- For the proof use Δ as an adjoint.
- Theorem 16. C has limits iff it has products and equalisers. C has finite limits if it has binary products,
- 5 final object and equalisers.
- 6 Proof. For $F: I \to \mathcal{C}$, for every morphism $f: i \to j$, let $\prod_{k \in I} F(k) \to F(j)$ the projection map and the
- composite map $\prod_{k\in I} F(k) \to F(i) \xrightarrow{F(f)} F(j)$. Then, by the universal property of the product we get
- 8 unique maps:

10

$$\prod_{k \in I} F(k) \rightrightarrows \prod_{(i \to j) \in \operatorname{Fun}([1], J)} F(j)$$

By the equalisers, we get E the limit of F.

Limits		Colimits	
Final	$\mathrm{Set}:\{1\},\mathrm{Grp}:\{e\}$	Initial	$\operatorname{Set}:\varnothing,\operatorname{Grp}:\{e\}$
Products	× in Grp, Set, Vect	Co-products	Set: \sqcup , Grp: free product, Ab: \times
Equal	Set: x with $f(x) = g(x)$,	\mathbf{Coeq}	Set: $Y/f(x) \sim g(x)$, Grp: Y/S $f(x)g(x)^{-1}$
Pullback	$\{(x,y) \mid f(x) = g(y)\}$	Pushout	

Theorem 17. Let $F \vdash G$ then F preserves colimits and G preserves limits.