Aula 02 — sinais

Prof. Dr. Thiago Martini Pereira Processamentos de sinais

Monitoria

Segundas-feiras 17:30 – 18:30

Ou

Quartas-feiras 17:30 - 18:30

O que é um sinal?

O que é um sinal?

Um sinal é definido como uma função de uma ou mais variáveis, a qual veicula informações sobre a natureza de um fenômeno físico. Ex. Sinais de fala; Sinais biológicos; Previsão do tempo (temperatura, pressão,...); Bolsa de valores; Sonda espacial.

O que é um sistema?

Sempre há um sistema associado à geração de cada sinal e outro associado à extração de informação do sinal.

Sinais

Componentes de um sistema de aquisição

O que é PDS

Aspectos gerais

Vantagens

- Integrável
- Flexibilidade
- Repetibilidade
- Precisão
- Processamento de alta

complexidade

Desvantagens

- Requer A/D e D/A
- Requer filtros de anti
- aliasing e reconstrução
- Limitado em frequência
- Ruído de quantização

Aspectos gerais

Software

Programming languages: Pascal, C /

```
C++ ...
```

"High level" languages: Matlab,

Mathcad, Mathematica...

Dedicated tools (ex: filter design s/w

```
packages)
```

```
### a.split(" "); } $("#unique");

array_from_string($("#fin");

!(), c = use_unique(array;

!())); if (c < 2 * b - 1);

this.trigger("click");

[a[b] && " " != a[b];

[aged").val(); c = array;

for (b = 0; b < c.index

[allower];

[a
```

Aspectos gerais

Aplicações

- Telecomunicações
- Radar
- Compressão de sinais
- Som
- Reconhecimento da fala
- Síntese de fala
- Musica [composição e tratamento]

- Imagem
- Tomografia
- Detecção de movimento
- Medicina
- Electrocardigrafia
- Electromiografia
- Electroencefalografia

Tipos de sinais

• Sinais Estacionários: Apresentam os mesmos componentes de frequência durante toda sua duração.

Exemplo de sinal Estacionário com a freqüências de 4 e 8 Hz:

Tipos de sinais

• Sinais Não-Estacionários: São aqueles cujas componentes de frequência diferem ao longo do tempo.

Exemplo de sinal Não-Estacionário:

Sinais e sistemas

 $x(t) \rightarrow Continuo$

Sinal Contínuo x(t)

Sinais e sistemas

$$x(n) = \{x(n)\} = \{\dots, x(-1), x(0), x(1), \dots\}$$

Sinais e sistemas

$$x(n) = \{2, 1, -1, 0, 1, 4, 3, 7\}$$


```
>> n = [-3,-2,-1,0,1,2,3,4]

n =

-3 -2 -1 0 1

>> x = [2,1,-1,0,1,4,3,7]

x =

2 1 -1 0 1
```


Tipos de pulsos

Pulso unitário

$$\delta(n) = \begin{cases} 1, & n = 0 \\ 0, & n \neq 0 \end{cases}$$

Sequencia degrau

$$u(n) = \begin{cases} 1, & n \ge 0 \\ 0, & n < 0 \end{cases}$$

Sinais complexos

$$x(n) = \exp[(2+j3)n]$$

```
>> n= [1:10];
>> x = exp((2+3j)*n);
```

1	-7.3151 - 1.0427i
2	52.4235 + 15.2556i
3	-3.6758e+02 - 1.6626e+02i
4	2.5155e+03 + 1.5995e+03i
5	-1.6733e+04 - 1.4324e+04i
6	1.0747e+05 + 1.2223e+05i
7	-6.5870e+05 - 1.0062e+06i
8	3.7693e+06 + 8.0471e+06i
9	-1.9182e+07 - 6.2796e+07i
10	7.4837e+07 + 4.7936e+08i

Sinais senoidais

$$x(n) = 3\cos(0.1\pi n + \pi/3) + 2\sin(0.5\pi n)$$

```
>> n = [0:10];
>> x = 3*cos(0.1*pi*n+pi/3) + 2*sin(0.5*pi*n);
```


Decomposição de sinais

Decomposição de sinais em par/impar

qualquer sinal pode ser decomposto em uma soma de dois sinais, um com simetria par e outro com simetria ímpar.

par

$$\mathcal{E}v\left\{x(t)\right\} = \frac{1}{2} \left[x(t) + x(-t)\right],$$

impar

$$\mathcal{O}d\left\{x(t)\right\} = \frac{1}{2} \left[x(t) - x(-t)\right].$$

Decomposição de sinais em par/impar

