TÀI LIỆU DÀNH CHO ĐỐI TƯỢNG HỌC SINH TRUNG BÌNH MỨC 5-6 ĐIỂM Dạng. Sử dụng tính chất, bảng nguyên hàm cơ bản để tính tích phân

1.Định nghĩa: Cho hàm số y = f(x) liên tục trên K; a,b là hai phần tử bất kì thuộc K, F(x) là một nguyên hàm của f(x) trên K. Hiệu số F(b) - F(a) gọi là tích phân của của f(x) từ a đến b và được kí hiệu: $\int_a^b f(x) dx = F(x) \Big|_a^b = F(b) - F(a).$

2. Các tính chất của tích phân:

$$+ \int_{a}^{a} f(x) dx = 0$$

$$+ \int_{a}^{b} \left[f(x) \pm g(x) \right] dx = \int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = -\int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

$$+ \int_{a}^{b} f(x) dx = \int_{a}^{b} f(x) dx$$

$$+ N \acute{e}u f(x) \ge g(x) \forall x \in [a;b] \text{ thi } \int_{a}^{b} f(x) dx \ge \int_{a}^{b} g(x) dx.$$

Bảng nguyên hàm của một số hàm thường gặp

$\int x^{\alpha} . dx = \frac{x^{\alpha+1}}{\alpha+1} + C$	$\int (ax+b)^{\alpha} dx = \frac{1}{a} \cdot \frac{(ax+b)^{\alpha+1}}{\alpha+1} + C$
$\int \frac{1}{x} dx = \ln x + C$	$\int \frac{1}{ax+b} dx = \frac{1}{a} . \ln ax+b + C$
$\int \frac{1}{x^2} dx = -\frac{1}{x} + C$	$\int \frac{1}{\left(ax+b\right)^2} dx = -\frac{1}{a} \cdot \frac{1}{ax+b} + C$
$\int \sin x. dx = -\cos x + C$	$\int \sin(ax+b).dx = -\frac{1}{a}.\cos(ax+b) + C$
$\int \cos x. dx = \sin x + C$	$\int \cos(ax+b).dx = \frac{1}{a}.\sin(ax+b) + C$
$\int \frac{1}{\sin^2 x} . dx = -\cot x + C$	$\int \frac{1}{\sin^2(ax+b)} dx = -\frac{1}{a} \cdot \cot(ax+b) + C$
$\int \frac{1}{\cos^2 x} dx = \tan x + C$	$\int \frac{1}{\cos^2(ax+b)} dx = \frac{1}{a} \cdot \tan(ax+b) + C$
$\int e^x . dx = e^x + C$	$\int e^{ax+b}.dx = \frac{1}{a}.e^{ax+b} + C$
$\int a^x . dx = \frac{a^x}{\ln a} + C$	$\int \frac{dx}{x^2 - a^2} = \frac{1}{2a} \ln \left \frac{x - a}{x + a} \right + C$

Nhận xét. Khi thay x bằng (ax+b) thì lấy nguyên hàm nhân kết quả thêm $\frac{1}{a}$.

Câu 1. (Đề Minh Họa 2020 Lần 1) Nếu
$$\int_{1}^{2} f(x) dx = -2$$
 và $\int_{2}^{3} f(x) dx = 1$ thì $\int_{1}^{3} f(x) dx$ bằng **A.** -3 . **B.** -1 . **C.** 1. **D.** 3.

Chọn B

Ta có
$$\int_{1}^{3} f(x) dx = \int_{1}^{2} f(x) dx + \int_{2}^{3} f(x) dx = -2 + 1 = -1.$$

(Đề Tham Khảo 2020 Lần 2) Nếu $\int_{0}^{1} f(x) dx = 4 \text{ thì } \int_{0}^{1} 2f(x) dx \text{ bằng}$ Câu 2.

A. 16.

- **<u>D</u>.** 8.

Chọn D

Ta có:
$$\int_{0}^{1} 2f(x) dx = 2 \int_{0}^{1} f(x) dx = 2.4 = 8$$
.

(**Mã 101 - 2020 Lần 1**) Biết $\int_{1}^{3} f(x) dx = 3$. Giá trị của $\int_{1}^{3} 2f(x) dx$ bằng Câu 3.

A. 5.

B. 9.

Lời giải

Ta có:
$$\int_{1}^{3} 2f(x) dx = 2 \int_{1}^{3} f(x) dx = 2.3 = 6$$
.

(Mã 101 - 2020 Lần 1) Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên $\mathbb R$. Giá trị của Câu 4.

$$\int_{1}^{2} \left[2 + f(x) \right] dx \text{ bằng}$$

A. 5.

- $\mathbf{C.} \frac{13}{3}.$

Ta có:
$$\int_{1}^{2} \left[2 + f(x) \right] dx = \left(2x + x^{2} \right) \Big|_{1}^{2} = 8 - 3 = 5$$

(**Mã 102 - 2020 Lần 1**) Biết $\int_{1}^{5} f(x) dx = 4$. Giá trị của $\int_{1}^{5} 3f(x) dx$ bằng Câu 5.

A. 7.

- **C.** 64.
- **D.** 12.

Lời giải

Chọn D

Ta có
$$\int_{1}^{5} 3f(x) dx = 3 \int_{1}^{5} f(x) dx = 3.4 = 12.$$

(Mã 102 - 2020 Lần 1) Biết $F(x) = x^3$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của Câu 6.

$$\int_{1}^{2} (2 + f(x)) dx$$
 bằng

- **B.** 7.
- **C.** 9.

D. $\frac{15}{4}$.

Ta có
$$\int_{1}^{2} (2+f(x)) dx = \int_{1}^{2} 2dx + \int_{1}^{2} f(x) dx = 2x \Big|_{1}^{2} + F(x) \Big|_{1}^{2} = 2x \Big|_{1}^{2} + x^{3} \Big|_{1}^{2} = 9$$

Câu 7. (**Mã 103 - 2020 Lần 1**) Biết $\int_{1}^{2} f(x) dx = 2$. Giá trị của $\int_{1}^{3} 3f(x) dx$ bằng

A. 5.

B. 6.

C. $\frac{2}{3}$.

D. 8.

Lời giải

Chọn B

Ta có:
$$\int_{1}^{2} 3f(x)dx = 3\int_{1}^{2} f(x)dx = 3.2 = 6$$
.

Câu 8. (Mã 103 - 2020 Lần 1) Biết $F(x) = x^3$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int\limits_{1}^{3} (1+f(x)) dx \, \text{bằng}$

A. 20.

B. 22.

C. 26.

D. 28.

Lời giải

Chọn D

Ta có
$$\int_{1}^{3} [1 + f(x)] dx = [x + F(x)]_{1}^{3} = [x + x^{3}]_{1}^{3} = 30 - 2 = 28$$
.

Câu 9. (**Mã 104 - 2020 Lần 1**) Biết $\int_{2}^{3} f(x) dx = 6$. Giá trị của $\int_{2}^{3} 2f(x) dx$ bằng.

A. 36.

B. 3

<u>C</u>. 12

D. 8.

Lời giải

Chọn C

Ta có:
$$\int_{2}^{3} 2f(x) dx = 2 \int_{2}^{3} f(x) dx = 12..$$

Câu 10. (**Mã 104 - 2020 Lần 1**) Biết $F(x) = x^2$ là một nguyên hàm của hàm số f(x) trên \mathbb{R} . Giá trị của $\int_{-\infty}^{3} [1+f(x)] dx$ bằng

A. 10.

B. 8.

C. $\frac{26}{3}$.

D. $\frac{32}{3}$.

Lời giải

$\underline{\mathbf{C}}$ họn $\underline{\mathbf{A}}$

Ta có
$$\int_{1}^{3} [1 + f(x)] dx = (x + F(x)) \Big|_{1}^{3} = (x + x^{2}) \Big|_{1}^{3} = 12 - 2 = 10.$$

Câu 11. (**Mã 101 - 2020 Lần 2**) Biết $\int_{2}^{3} f(x) dx = 4$ và $\int_{2}^{3} g(x) dx = 1$. Khi đó: $\int_{2}^{3} [f(x) - g(x)] dx$ bằng:

A. -3.

B. 3.

C. 4

D. 5.

Lời giải

Chon B

NGUYĒN <mark>BẢO</mark> VƯƠNG - 0946798489

Ta có
$$\int_{3}^{3} [f(x) - g(x)] dx = \int_{3}^{3} f(x) dx - \int_{3}^{3} g(x) dx = 4 - 1 = 3$$

Câu 12. (**Mã 101 - 2020 Lần 2**) Biết $\int_{0}^{1} [f(x) + 2x] dx = 2$. Khi đó $\int_{0}^{1} f(x) dx$ bằng:

<u>**A**</u>. 1.

B. 4

C. 2

D. 0.

Lời giải

Chọn A

Ta có
$$\int_{0}^{1} \left[f(x) + 2x \right] dx = 2 \Leftrightarrow \int_{0}^{1} f(x) dx + \int_{0}^{1} 2x dx = 2 \Leftrightarrow \int_{0}^{1} f(x) dx = 2 - x^{2} \Big|_{0}^{1} \Leftrightarrow \int_{0}^{1} f(x) dx = 2 - 1$$

$$\Leftrightarrow \int_{0}^{1} f(x) dx = 1$$

Câu 13. (Mã 102 - 2020 Lần 2) Biết $\frac{\int_{2}^{3} f(x) dx}{\int_{2}^{3} g(x) dx} = 1$. Khi đó $\frac{\int_{2}^{3} [f(x) + g(x)] dx}{\int_{2}^{3} [f(x) + g(x)] dx}$ bằng $\underline{\mathbf{A}}$. 4. B. 2. \mathbf{C} . -2. \mathbf{D} . 3. \mathbf{L} ời giải

Chọn A

Ta có:
$$\int_{2}^{3} [f(x) + g(x)] dx = \int_{2}^{3} f(x) dx + \int_{2}^{3} g(x) dx = 4$$
.

Câu 14. (**Mã 102 - 2020 Lần 2**) Biết $\int_{0}^{1} [f(x) + 2x] dx = 3$. Khi đó $\int_{0}^{1} f(x) dx$ bằng

A. 1.

R 5

C. 3.

D. 2.

Lời giải

Chon D

Ta có
$$\int_{0}^{1} \left[f(x) + 2x \right] dx = 3 \Leftrightarrow \int_{0}^{1} f(x) dx + 2 \int_{0}^{1} x dx = 3 \Leftrightarrow \int_{0}^{1} f(x) dx + 2 \cdot \frac{x^{2}}{2} \Big|_{0}^{1} = 3.$$
Suy ra $\int_{0}^{1} f(x) dx = 3 - x^{2} \Big|_{0}^{1} = 3 - (1 - 0) = 2.$

Câu 15. (**Mã 103 - 2020 Lần 2**) Biết $\int_{1}^{2} f(x) dx = 3$ và $\int_{1}^{2} g(x) dx = 2$. Khi đó $\int_{1}^{2} [f(x) - g(x)] dx$ bằng?

A. 6.

D 1

C. 5.

D. −1.

Lời giải

Chọn B

Ta có:
$$\int_{1}^{2} [f(x)-g(x)] dx = \int_{1}^{2} f(x) dx - \int_{1}^{2} g(x) dx = 3-2=1.$$

Câu 16. (**Mã 103 - 2020 Lần 2**) Biết $\int_0^1 [f(x) + 2x] dx = 4$. Khi đó $\int_0^1 f(x) dx$ bằng

<u>**A**</u>. 3.

B. 2.

C. 6.

D. 4.

Lời giải

Chọn A

$$\int_{0}^{1} \left[f(x) + 2x \right] dx = 4 \Leftrightarrow \int_{0}^{1} f(x) dx + \int_{0}^{1} 2x dx = 4 \Leftrightarrow \int_{0}^{1} f(x) dx = 4 - 1 = 3$$

Câu 17. (**Mã 104 - 2020 Lần 2**) Biết
$$\int_{1}^{2} f(x)dx = 2$$
 và $\int_{1}^{2} g(x)dx = 3$. Khi đó $\int_{1}^{2} [f(x) + g(x)]dx$ bằng

A. 1.

B. 5.

Lời giải

D. 6.

Chọn D

Ta có:
$$\int_{1}^{2} [f(x) + g(x)] dx = \int_{1}^{2} f(x) dx + \int_{1}^{2} g(x) dx = 2 + 3 = 5.$$

(**Mã 104 - 2020 Lần 2**) Biết $\int_{0}^{1} [f(x) + 2x] dx = 5$. Khi đó $\int_{0}^{1} f(x) dx$ bằng

A. 7.

D. 4.

Lời giải

Chọn D

$$\int_{0}^{1} \left[f(x) + 2x \right] dx = 5 \Leftrightarrow \int_{0}^{1} f(x) dx + \int_{0}^{1} 2x dx = 5$$

$$\int_{0}^{1} f(x) dx + x^{2} \Big|_{0}^{1} = 5 \Leftrightarrow \int_{0}^{1} f(x) dx + 1 = 5 \Leftrightarrow \int_{0}^{1} f(x) dx = 4.$$

(Mã 103 - 2019) Biết $\int_{1}^{2} f(x) dx = 2$ và $\int_{1}^{2} g(x) dx = 6$, khi đó $\int_{1}^{2} [f(x) - g(x)] dx$ bằng A. 8. B. -4. C. 4. D. -8.

Lời giải

Chon B

Ta có:
$$\int_{1}^{2} [f(x) - g(x)] dx = \int_{1}^{2} f(x) dx - \int_{1}^{2} g(x) dx = 2 - 6 = -4$$
.

(**Mã 102 - 2019**) Biết tích phân $\int_{0}^{1} f(x) dx = 3$ và $\int_{0}^{1} g(x) dx = -4$. Khi đó $\int_{0}^{1} [f(x) + g(x)] dx$

bằng

A. -7.

B. 7.

C. -1.

D. 1.

Lời giải

Chọn C

Ta có
$$\int_{0}^{1} \left[f(x) + g(x) \right] dx = \int_{0}^{1} f(x) dx + \int_{0}^{1} g(x) dx = 3 + (-4) = -1.$$

(**Mã 104 - 2019**) Biết $\int_0^1 f(x) dx = 2 \text{ và } \int_0^1 g(x) dx = -4$, khi đó $\int_0^1 [f(x) + g(x)] dx$ bằng

A. 6.

D. 2.

Lời giải

Chon C

$$\int_0^1 \left[f(x) + g(x) \right] dx = \int_0^1 f(x) dx + \int_0^1 g(x) dx = 2 + (-4) = -2.$$

(**Mã 101 2019**) Biết $\int_{0}^{1} f(x) dx = -2 \text{ và } \int_{0}^{1} g(x) dx = 3$, khi đó $\int_{0}^{1} [f(x) - g(x)] dx$ bằng

NGUYĒN BĀO VƯƠNG - 0946798489

A. -1.

B. 1.

$$C. -5.$$

Lời giải

D. 5.

Chon C

$$\int_{0}^{1} \left[f(x) - g(x) \right] dx = \int_{0}^{1} f(x) dx - \int_{0}^{1} g(x) dx = -2 - 3 = -5.$$

(Đề Tham Khảo 2019) Cho $\int_{0}^{1} f(x) dx = 2$ và $\int_{0}^{1} g(x) dx = 5$, khi $\int_{0}^{1} [f(x) - 2g(x)] dx$ bằng

A. –8

D. 12

Lời giải

Chon A

Có
$$\int_{0}^{1} [f(x) - 2g(x)] dx = \int_{0}^{1} f(x) dx - 2 \int_{0}^{1} g(x) dx = 2 - 2.5 = -8.$$

(THPT Ba Đình 2019) Khẳng định nào trong các khẳng định sau đúng với mọi hàm f, g liên Câu 24. tục trên K và a, b là các số bất kỳ thuộc K?

$$\underline{\mathbf{A}}. \int_{a}^{b} [f(x) + 2g(x)] dx = \int_{a}^{b} f(x) dx + 2 \int_{a}^{b} g(x) dx . \quad \underline{\mathbf{B}}. \int_{a}^{b} \frac{f(x)}{g(x)} dx = \frac{\int_{a}^{b} f(x) dx}{\int_{a}^{b} g(x) dx} .$$

B.
$$\int_{a}^{b} \frac{f(x)}{g(x)} dx = \frac{\int_{a}^{b} f(x) dx}{\int_{a}^{b} g(x) dx}$$

C.
$$\int_{a}^{b} [f(x).g(x)] dx = \int_{a}^{b} f(x) dx \cdot \int_{a}^{b} g(x) dx$$
. D. $\int_{a}^{b} f^{2}(x) dx = \left[\int_{a}^{b} f(x) dx \right]^{2}$.

$$\mathbf{D.} \int_{a}^{b} f^{2}(x) dx = \left[\int_{a}^{b} f(x) dx \right]^{2}$$

Theo tính chất tích phân ta có

$$\int_{a}^{b} [f(x) + g(x)] dx = \int_{a}^{b} f(x) dx + \int_{a}^{b} g(x) dx; \int_{a}^{b} kf(x) dx = k \int_{a}^{b} f(x) dx, \text{ v\'oi } k \in \mathbb{R}.$$

(THPT Cẩm Giàng 2 2019) Cho $\int_{-2}^{2} f(x) dx = 1$, $\int_{-2}^{4} f(t) dt = -4$. Tính $\int_{2}^{4} f(y) dy$. **A.** I = 5. **B.** I = -3. **C.** I = 3. **D.** I = -5. Câu 25.

A. I = 5.

Ta có:
$$\int_{2}^{4} f(t) dt = \int_{2}^{4} f(x) dx$$
, $\int_{2}^{4} f(y) dy = \int_{2}^{4} f(x) dx$.

Khi đó:
$$\int_{2}^{2} f(x) dx + \int_{2}^{4} f(x) dx = \int_{2}^{4} f(x) dx$$
.

$$\Rightarrow \int_{2}^{4} f(x) dx = \int_{-2}^{4} f(x) dx - \int_{-2}^{2} f(x) dx = -4 - 1 = -5.$$

 $V_{ay} \int f(y) dy = -5.$

(THPT Cù Huy Cận -2019) Cho $\int_0^2 f(x) dx = 3$ và $\int_0^2 g(x) dx = 7$, khi đó $\int_0^2 [f(x) + 3g(x)] dx$ Câu 26. bằng

A. 16.

B. −18.

C. 24.

D. 10.

Lời giải

$$\int_0^2 \left[f(x) + 3g(x) \right] dx = \int_0^2 f(x) dx + 3 \int_0^2 g(x) dx = 3 + 3.7 = 24.$$

Câu 27. (THPT - YÊN Định Thanh Hóa 2019) Cho
$$\int_{0}^{1} f(x) dx = -1$$
; $\int_{0}^{3} f(x) dx = 5$. Tính $\int_{1}^{3} f(x) dx$

A. 1.

- **B.** 4.

Ta có
$$\int_{0}^{3} f(x) dx = \int_{0}^{1} f(x) dx + \int_{1}^{3} f(x) dx \Rightarrow \int_{1}^{3} f(x) dx = \int_{0}^{3} f(x) dx - \int_{0}^{1} f(x) dx = 5 + 1 = 6$$

$$V_{ay} \int_{1}^{3} f(x) \, dx = 6$$

- (THPT Quỳnh Lưu 3 Nghệ An 2019) Cho $\int_{1}^{2} f(x) dx = -3$ và $\int_{2}^{3} f(x) dx = 4$. Khi đó $\int_{1}^{3} f(x) dx$ Câu 28.
 - bằng
 - **A.** 12.

- Lời giải

D. -12.

$$\int_{1}^{3} f(x) dx = \int_{1}^{2} f(x) dx + \int_{2}^{3} f(x) dx = -3 + 4 = 1.$$

Câu 29. Cho hàm số f(x) liên tục, có đạo hàm trên [-1;2], f(-1) = 8; f(2) = -1. Tích phân $\int f'(x) dx$

bằng

A. 1.

- B. 7. <u>C</u>. –9. Lời giải
- **D.** 9.

Ta có
$$\int_{-1}^{2} f'(x) dx = f(x)|_{-1}^{2} = f(2) - f(-1) = -1 - 8 = -9.$$

- (Sở Thanh Hóa 2019) Cho hàm số f(x)Câu 30. liên tuc trên có và $\int_{0}^{2} f(x)dx = 9; \int_{2}^{4} f(x)dx = 4. \text{ Tinh } I = \int_{0}^{4} f(x)dx.$
 - **A.** I = 5.
- C. $I = \frac{9}{4}$.
- **<u>D</u>**. I = 13.

Ta có:
$$I = \int_{0}^{4} f(x) dx = \int_{0}^{2} f(x) dx + \int_{2}^{4} f(x) dx = 9 + 4 = 13.$$

- **Câu 31.** Cho $\int_{-1}^{0} f(x) dx = 3 \int_{0}^{3} f(x) dx = 3$. Tích phân $\int_{1}^{3} f(x) dx$ bằng

D. 0

Có
$$\int_{-1}^{0} f(x) dx = 3$$
; $\int_{0}^{3} f(x) dx = 1$; $\int_{-1}^{3} f(x) dx = \int_{-1}^{0} f(x) dx + \int_{0}^{3} f(x) dx = 3 + 1 = 4$

(Chuyên Nguyễn Trãi Hải Dương 2019) Cho hàm số f(x) liên tục trên $\mathbb R$ và $\int f(x) dx = 10$,

$$\int_{3}^{4} f(x) dx = 4$$
. Tích phân $\int_{0}^{3} f(x) dx$ bằng

A. 4.

<u>D</u>. 6.

Theo tính chất của tích phân, ta có: $\int_{a}^{3} f(x) dx + \int_{a}^{4} f(x) dx = \int_{a}^{4} f(x) dx.$

Suy ra:
$$\int_{0}^{3} f(x) dx = \int_{0}^{4} f(x) dx - \int_{3}^{4} f(x) dx = 10 - 4 = 6.$$

$$V_{a}^{2}y\int_{0}^{3} f(x) dx = 6.$$

- (THPT Hoàng Hoa Thám Hưng Yên 2019) Nếu $F'(x) = \frac{1}{2x-1}$ và F(1) = 1 thì giá trị của F(4) bằng
 - **A.** ln 7.
- **<u>B.</u>** $1 + \frac{1}{2} \ln 7$. **C.** $\ln 3$.
- **D.** $1 + \ln 7$.

Ta có:
$$\int_{1}^{4} F'(x) dx = \int_{1}^{4} \frac{1}{2x - 1} dx = \frac{1}{2} \ln |2x - 1| \Big|_{1}^{4} = \frac{1}{2} \ln 7.$$

Lại có:
$$\int_{1}^{4} F'(x) dx = F(x)|_{1}^{4} = F(4) - F(1)$$
.

Suy ra
$$F(4)-F(1)=\frac{1}{2}\ln 7$$
. Do đó $F(4)=F(1)+\frac{1}{2}\ln 7=1+\frac{1}{2}\ln 7$.

(THPT Đoàn Thượng - Hải Dương -2019) Cho hàm số f(x) liên tục trên $\mathbb R$ thoả mãn Câu 34. $\int_{0}^{3} f(x) dx = 9$, $\int_{0}^{12} f(x) dx = 3$, $\int_{0}^{3} f(x) dx = 5$.

Tính
$$I = \int_{1}^{12} f(x) dx$$
.

Ta có:
$$I = \int_{1}^{12} f(x) dx = \int_{1}^{8} f(x) dx + \int_{8}^{12} f(x) dx = \int_{8}^{8} f(x) dx + \int_{4}^{12} f(x) dx - \int_{4}^{8} f(x) dx = 9 + 3 - 5 = 7$$
.

Câu 35. (THPT Quang Trung Đống Đa Hà Nội 2019) Cho hàm số f(x) liên tục trên [0;10] thỏa mãn

$$\int_{0}^{10} f(x) dx = 7, \int_{2}^{6} f(x) dx = 3. \text{ Tính } P = \int_{0}^{2} f(x) dx + \int_{6}^{10} f(x) dx.$$
A. $P = 10$.
B. $P = 4$.
C. $P = 7$.
D. $P = -6$.
Lòi giải

Ta có
$$\int_{0}^{10} f(x) dx = \int_{0}^{2} f(x) dx + \int_{2}^{6} f(x) dx + \int_{6}^{10} f(x) dx$$

Suy ra
$$\int_{0}^{2} f(x) dx + \int_{6}^{10} f(x) dx = \int_{0}^{10} f(x) dx - \int_{2}^{6} f(x) dx = 7 - 3 = 4$$
.

(Chuyên Lê Quý Đôn Điện Biên 2019) Cho f, g là hai hàm liên tục trên đoạn [1;3] thoả:

$$\int_{1}^{3} [f(x) + 3g(x)] dx = 10, \int_{1}^{3} [2f(x) - g(x)] dx = 6. \text{ Tinh } \int_{1}^{3} [f(x) + g(x)] dx.$$
A. 7. **B.** 6. **C.** 8. **D.** 9.

$$\int_{1}^{3} \left[f(x) + 3g(x) \right] dx = 10 \iff \int_{1}^{3} f(x) dx + 3 \int_{1}^{3} g(x) dx = 10 \quad (1).$$

$$\int_{1}^{3} \left[2f(x) - g(x) \right] dx = 6 \iff 2 \int_{1}^{3} f(x) dx - \int_{1}^{3} g(x) dx = 6 \quad (2).$$

Đặt
$$X = \int_{1}^{3} f(x) dx$$
, $Y = \int_{1}^{3} g(x) dx$.

Từ (1) và (2) ta có hệ phương trình:
$$\begin{cases} X + 3Y = 10 \\ 2X - Y = 6 \end{cases} \Leftrightarrow \begin{cases} X = 4 \\ Y = 2 \end{cases}.$$

Do đó ta được:
$$\int_{1}^{3} f(x) dx = 4 \text{ và } \int_{1}^{3} g(x) dx = 2.$$

Vậy
$$\int_{1}^{3} [f(x)+g(x)]dx = 4+2=6$$
.

(Chuyên Vĩnh Phúc 2019) Cho hàm số f(x) liên tục trên đoạn [0;10] và $\int_{0}^{10} f(x) dx = 7$;

$$\int_{2}^{6} f(x) dx = 3. \text{ Tinh } P = \int_{0}^{2} f(x) dx + \int_{6}^{10} f(x) dx.$$

$$\underline{\mathbf{A}} \cdot P = 4 \qquad \underline{\mathbf{B}} \cdot P = 10$$

D. P = -4

Ta có:
$$\int_{0}^{10} f(x) dx = \int_{0}^{2} f(x) dx + \int_{2}^{6} f(x) dx + \int_{6}^{10} f(x) dx.$$

$$\Rightarrow 7 = P + 3 \Rightarrow P = 4$$

Câu 38. Cho f,g là hai hàm số liên tục trên [1;3] thỏa mãn điều kiện $\int [f(x)+3g(x)]dx=10$ đồng thời

$$\int_{1}^{3} \left[2f(x) - g(x) \right] dx = 6. \text{ Tính } \int_{1}^{3} \left[f(x) + g(x) \right] dx.$$
A. 9. **B.** 6. **C.**

D. 8.

Ta có: $\int_{0}^{3} \left[f(x) + 3g(x) \right] dx = 10 \Leftrightarrow \int_{0}^{3} f(x) dx + 3 \int_{0}^{3} g(x) dx = 10.$

$$\int_{1}^{3} \left[2f(x) - g(x) \right] dx = 6 \Leftrightarrow 2 \int_{1}^{3} f(x) dx - \int_{1}^{3} g(x) dx = 6.$$

Đặt
$$u = \int_{1}^{3} f(x) dx$$
; $v = \int_{1}^{3} g(x) dx$.

NGUYĒN BẢO VƯƠNG - 0946798489

Ta được hệ phương trình:
$$\begin{cases} u + 3v = 10 \\ 2u - v = 6 \end{cases} \Leftrightarrow \begin{cases} u = 4 \\ v = 2 \end{cases} \Rightarrow \begin{cases} \int_{1}^{3} f(x) dx = 4 \\ \int_{1}^{3} g(x) dx = 2 \end{cases}$$

Vậy
$$\int_{1}^{3} \left[f(x) + g(x) \right] dx = 6.$$

(THPT Đông Sơn Thanh Hóa 2019) Cho f, g là hai hàm liên tục trên [1;3] Câu 39.

thỏa:
$$\int_{1}^{3} [f(x) + 3g(x)] dx = 10 \text{ và } \int_{1}^{3} [2f(x) - g(x)] dx = 6$$
. Tính $I = \int_{1}^{3} [f(x) + g(x)] dx$.

A. 8. **B.** 7. **C.** 9. **D.** 6.

Đặt
$$a = \int_{1}^{3} f(x) dx$$
 và $b = \int_{1}^{3} g(x) dx$.

Khi đó,
$$\int_{1}^{3} [f(x) + 3g(x)] dx = a + 3b$$
, $\int_{1}^{3} [2f(x) - g(x)] dx = 2a - b$.

Theo giả thiết, ta có
$$\begin{cases} a+3b=10 \\ 2a-b=6 \end{cases} \Leftrightarrow \begin{cases} a=4 \\ b=2 \end{cases}.$$

Vậy
$$I = a + b = 6$$
.

(Mã 104 2017) Cho $\int_{0}^{\frac{\pi}{2}} f(x) dx = 5. \text{ Tính } I = \int_{0}^{\frac{\pi}{2}} \left[f(x) + 2\sin x \right] dx = 5.$

A.
$$I = 7$$

B.
$$I = 5 + \frac{\pi}{2}$$
 C. $I = 3$ **D.** $I = 5 + \pi$

C.
$$I = 3$$

D.
$$I = 5 + \pi$$

Chọn A

Ta có

$$I = \int_{0}^{\frac{\pi}{2}} \left[f(x) + 2\sin x \right] dx = \int_{0}^{\frac{\pi}{2}} f(x) dx + 2 \int_{0}^{\frac{\pi}{2}} \sin x dx = \int_{0}^{\frac{\pi}{2}} f(x) dx - 2\cos x \Big|_{0}^{\frac{\pi}{2}} = 5 - 2(0 - 1) = 7.$$

(Mã 110 2017) Cho $\int_{-1}^{2} f(x) dx = 2$ và $\int_{-1}^{2} g(x) dx = -1$. Tính $I = \int_{-1}^{2} \left[x + 2f(x) - 3g(x) \right] dx$. A. $I = \frac{17}{2}$ B. $I = \frac{5}{2}$ C. $I = \frac{7}{2}$ D. $I = \frac{11}{2}$

A.
$$I = \frac{17}{2}$$

B.
$$I = \frac{5}{2}$$

C.
$$I = \frac{7}{2}$$

D.
$$I = \frac{11}{2}$$

Chọn A

Ta có:
$$I = \int_{-1}^{2} \left[x + 2f(x) - 3g(x) \right] dx = \frac{x^2}{2} \Big|_{-1}^{2} + 2 \int_{-1}^{2} f(x) dx - 3 \int_{-1}^{2} g(x) dx = \frac{3}{2} + 2.2 - 3(-1) = \frac{17}{2}.$$

(THPT Hàm Rồng Thanh Hóa 2019) Cho hai tích phân $\int_{0}^{5} f(x) dx = 8 \text{ và } \int_{0}^{-2} g(x) dx = 3$. Tính

$$I = \int_{-2}^{5} \left[f(x) - 4g(x) - 1 \right] dx$$

D. 3.

$$I = \int_{-2}^{5} \left[f(x) - 4g(x) - 1 \right] dx = \int_{-2}^{5} f(x) dx - \int_{-2}^{5} 4g(x) dx - \int_{-2}^{5} dx = \int_{-2}^{5} f(x) dx - 4 \int_{-2}^{5} g(x) dx - \int_{-2}^{5} dx$$
$$= \int_{-2}^{5} f(x) dx + 4 \int_{-2}^{-2} g(x) dx - \int_{-2}^{5} dx = 8 + 4.3 - x \Big|_{-2}^{5} = 8 + 4.3 - 7 = 13.$$

Câu 43. (Sở Bình Phước 2019) Cho $\int_{1}^{2} f(x)dx = 2$ và $\int_{1}^{2} g(x)dx = -1$, khi đó $\int_{1}^{2} [x + 2f(x) + 3g(x)]dx$ bằng

 $\underline{\mathbf{A}}$. $\frac{5}{2}$

B. $\frac{7}{2}$

C. $\frac{17}{2}$

Lời giải

Chọn A

Ta có
$$\int_{-1}^{2} [x + 2f(x) + 3g(x)] dx = \int_{-1}^{2} x dx + 2 \int_{-1}^{2} f(x) dx + 3 \int_{-1}^{2} g(x) dx = \frac{3}{2} + 4 - 3 = \frac{5}{2}$$

(Sở Phú Thọ 2019) Cho $\int_{0}^{2} f(x) dx = 3$, $\int_{0}^{2} g(x) dx = -1$ thì $\int_{0}^{2} \left[f(x) - 5g(x) + x \right] dx$ bằng: **A.** 12. **B.** 0. **C.** 8. **D.** 10

Lời giải

Chọn D

$$\int_{0}^{2} \left[f(x) - 5g(x) + x \right] dx = \int_{0}^{2} f(x) dx - 5 \int_{0}^{2} g(x) dx + \int_{0}^{2} x dx = 3 + 5 + 2 = 10$$

(Chuyên Lê Hồng Phong Nam Định 2019) Cho $\int_{0}^{3} f(x) dx = -2$. Tích phân $\int_{0}^{3} \left[4f(x) - 3x^{2} \right] dx$

bằng

A. -140.

C. −120. <u>D</u>. −133. Lời giải

$$\int_{0}^{5} \left[4f(x) - 3x^{2} \right] dx = 4 \int_{0}^{5} f(x) dx - \int_{0}^{5} 3x^{2} dx = -8 - x^{3} \Big|_{0}^{5} = -8 - 125 = -133.$$

(Chuyên Lê Hồng Phong Nam Định -2019) Cho $\int_{1}^{2} \left[4f(x) - 2x \right] dx = 1$. Khi đó $\int_{1}^{2} f(x) dx$ bằng:

A. 1.

B. -3.

C. 3.

D. −1.

Lời giải

Chon A

NGUYĒN BẢO VƯƠNG - 0946798489

$$\int_{1}^{2} \left[4f(x) - 2x \right] dx = 1 \Leftrightarrow 4\int_{1}^{2} f(x) dx - 2\int_{1}^{2} x dx = 1 \Leftrightarrow 4\int_{1}^{2} f(x) dx - 2 \cdot \frac{x^{2}}{2} \Big|_{1}^{2} = 1$$
$$\Leftrightarrow 4\int_{1}^{2} f(x) dx = 4 \Leftrightarrow \int_{1}^{2} f(x) dx = 1$$

Câu 47. Cho $\int_{0}^{1} f(x) dx = 1$ tích phân $\int_{0}^{1} (2f(x) - 3x^{2}) dx$ bằng

D. -1.

Chon.

$$\int_{0}^{1} (2f(x) - 3x^{2}) dx = 2 \int_{0}^{1} f(x) dx - 3 \int_{0}^{1} x^{2} dx = 2 - 1 = 1.$$

(THPT Yên Phong 1 Bắc Ninh 2019) Tính tích phân $I = \int_{1}^{8} (2x+1) dx$.

- $\underline{\mathbf{A}}$. I = 0.

- **C.** I = 2. **D.** $I = -\frac{1}{2}$.

Lời giải

$$I = \int_{-1}^{0} (2x+1) dx = (x^2 + x) \Big|_{-1}^{0} = 0 - 0 = 0.$$

Câu 49. Tích phân $\int_{0}^{1} (3x+1)(x+3) dx$ bằng **A.** 12. **B.** 9. **C.** 5. **Lời giải**

- **D.** 6.

Ta có:
$$\int_{0}^{1} (3x+1)(x+3) dx = \int_{0}^{1} (3x^{2}+10x+3) dx = (x^{3}+5x^{2}+3x)\Big|_{0}^{1} = 9.$$

Vậy:
$$\int_{0}^{1} (3x+1)(x+3) dx = 9$$
.

(KTNL GV Thpt Lý Thái Tổ -2019) Giá trị của $\int \sin x dx$ bằng

A. 0.

B. 1.

C. -1.

Lời giải

Chọn B

+ Tính được
$$\int_{0}^{\frac{\pi}{2}} \sin x dx = -\cos x \left| \frac{\pi}{2} = 1 \right|.$$

(KTNL GV Bắc Giang 2019) Tính tích phân $I = \int_{a}^{b} (2x+1) dx$

- **A.** I = 5.
- **C.** I = 2.
- **D.** I = 4.

Lời giải

Ta có
$$I = \int_{0}^{2} (2x+1)dx = (x^{2}+x)\Big|_{0}^{2} = 4+2=6$$
.

Câu 52. Với a,b là các tham số thực. Giá trị tích phân $\int_{a}^{b} (3x^2 - 2ax - 1) dx$ bằng

$$\underline{\mathbf{A}}$$
. $b^3 - b^2 a - b$

B.
$$b^3 + b^2 a + b$$
.

A.
$$b^3 - b^2 a - b$$
. **B.** $b^3 + b^2 a + b$. **C.** $b^3 - ba^2 - b$. **D.** $3b^2 - 2ab - 1$. **Lòi giải**

D.
$$3b^2 - 2ab - 1$$
.

Ta có
$$\int_{0}^{b} (3x^2 - 2ax - 1) dx = (x^3 - ax^2 - x)\Big|_{0}^{b} = b^3 - ab^2 - b$$
.

Câu 53. (THPT An Lão Hải Phòng 2019) Giả sử $I = \int_{0}^{\frac{\pi}{4}} \sin 3x dx = a + b \frac{\sqrt{2}}{2} (a, b \in \mathbb{Q})$. Khi đó giá trị của

$$a-b$$
 là

A.
$$-\frac{1}{6}$$

$$\underline{\mathbf{B}} \cdot -\frac{1}{6}$$

D.
$$\frac{1}{5}$$

Lời giải

Chọn B

Ta có
$$\int_{0}^{\frac{\pi}{4}} \sin 3x dx = -\frac{1}{3} \cos 3x \Big|_{0}^{\frac{\pi}{4}} = \frac{1}{3} + \frac{1}{3} \frac{\sqrt{2}}{2}$$
. Suy ra $a = b = \frac{1}{3} \Rightarrow a - b = 0$.

(Chuyên Nguyễn Tất Thành Yên Bái 2019) Cho hàm số f(x) liên tục trên $\mathbb R$ và Câu 54. $\int_{0}^{2} (f(x) + 3x^{2}) dx = 10. \text{ Tính } \int_{0}^{2} f(x) dx.$ **A.** 2. **B.** -2.

Lời giải

Ta có:

$$\int_{0}^{2} (f(x) + 3x^{2}) dx = 10 \iff \int_{0}^{2} f(x) dx + \int_{0}^{2} 3x^{2} dx = 10 \iff \int_{0}^{2} f(x) dx = 10 - \int_{0}^{2} 3x^{2} dx$$
$$\iff \int_{0}^{2} f(x) dx = 10 - x^{3} \Big|_{0}^{2} \iff \int_{0}^{2} f(x) dx = 10 - 8 = 2.$$

(Chuyên Nguyễn Trãi Hải Dương 2019) Cho $\int_{0}^{m} (3x^2 - 2x + 1) dx = 6$. Giá trị của tham số m thuộc Câu 55.

khoảng nào sau đây?

A.
$$(-1;2)$$
.

B.
$$(-\infty;0)$$
. **C.** $(0;4)$. **D.** $(-3;1)$.

$$\underline{\mathbf{C}}$$
. $(0;4)$

D.
$$(-3;1)$$
.

Lời giải

Ta có:
$$\int_{0}^{m} (3x^{2} - 2x + 1) dx = 6 \Leftrightarrow (x^{3} - x^{2} + x) \Big|_{0}^{m} = 6 \Leftrightarrow m^{3} - m^{2} + m - 6 = 0 \Leftrightarrow m = 2$$
.
Vậy $m \in (0; 4)$.

NGUYĒN BẢO VƯƠNG - 0946798489

Câu 56. (**Mã 104 2018**) $\int_{1}^{2} \frac{dx}{2x+3}$ bằng

A.
$$\frac{1}{2} \ln 35$$
 B. $\ln \frac{7}{5}$

B.
$$\ln \frac{7}{5}$$

C.
$$\frac{1}{2} \ln \frac{7}{5}$$
 D. $2 \ln \frac{7}{5}$

D.
$$2 \ln \frac{7}{5}$$

Lời giải

Chọn C

Ta có
$$\int_{1}^{2} \frac{dx}{2x+3} = \frac{1}{2} \ln |2x+3|^{2} = \frac{1}{2} (\ln 7 - \ln 5) = \frac{1}{2} \ln \frac{7}{5}$$
.

Câu 57. (**Mã 103 2018**) $\int_{1}^{2} \frac{dx}{3x-2}$ bằng

B.
$$\frac{1}{3} \ln 2$$

B.
$$\frac{1}{3} \ln 2$$
 C. $\frac{2}{3} \ln 2$

Chọn C

Ta có
$$\int_{1}^{2} \frac{dx}{3x-2} = \frac{1}{3} \ln |3x-2|_{1}^{2} = \frac{1}{3} (\ln 4 - \ln 1) = \frac{2}{3} \ln 2.$$

(Đề Tham Khảo 2018) Tích phân $\int_{0}^{2} \frac{dx}{x+3}$ bằng

A.
$$\frac{2}{15}$$

B.
$$\frac{16}{225}$$

C.
$$\log \frac{5}{3}$$

D.
$$\ln \frac{5}{3}$$

$$\int_{0}^{2} \frac{dx}{x+3} = \ln|x+3| \Big|_{0}^{2} = \ln \frac{5}{3}$$

(Mã 105 2017) Cho $\int_{a}^{1} \left(\frac{1}{x+1} - \frac{1}{x+2} \right) dx = a \ln 2 + b \ln 3$ với a,b là các số nguyên. Mệnh đề nào

dưới đây đúng?

A.
$$a + 2b = 0$$

B.
$$a + b = 2$$

C.
$$a-2b=0$$
 D. $a+b=-2$

D.
$$a+b=-2$$

Lời giải

$$\int_{0}^{1} \left(\frac{1}{x+1} - \frac{1}{x+2} \right) dx = \left[\ln|x+1| - \ln|x+2| \right]_{0}^{1} = 2 \ln 2 - \ln 3; \text{ do d\'o } a = 2; b = -1$$

(THPT An Lão Hải Phòng 2019) Tính tích phân $I = \int_{1}^{6} \left(\frac{1}{x} - \frac{1}{x^2} \right) dx$

$$\underline{\mathbf{A}}$$
. $I = \frac{1}{e}$

B.
$$I = \frac{1}{e} + 1$$

C.
$$I = 1$$

D.
$$I = e$$

Lời giải

Chọn A

$$I = \int_{1}^{e} \left(\frac{1}{x} - \frac{1}{x^{2}} \right) dx = \left(\ln|x| + \frac{1}{x} \right) \Big|_{1}^{e} = \frac{1}{e}.$$

(THPT Hùng Vương Bình Phước 2019) Tính tích phân $I = \int_{0}^{\infty} \frac{dx}{x+2}$.

A.
$$I = -\frac{21}{100}$$

$$\mathbf{\underline{B}}. I = \ln \frac{5}{2}$$

A.
$$I = -\frac{21}{100}$$
. **B.** $I = \ln \frac{5}{2}$. **C.** $I = \log \frac{5}{2}$. **D.** $I = \frac{4581}{5000}$.

D.
$$I = \frac{4581}{5000}$$
.

Lời giải

$$I = \int_{0}^{3} \frac{\mathrm{d}x}{x+2} = \ln(x+2)\Big|_{0}^{3} = \ln 5 - \ln 2 = \ln \frac{5}{2}.$$

Câu 62. (THPT Đoàn Thượng - Hải Dương - 2019) $\int_{1}^{2} \frac{dx}{3x-2}$ bằng

$$\underline{\mathbf{B}} \cdot \frac{2}{3} \ln 2$$
.

D.
$$\frac{1}{3} \ln 2$$
.

Lời giải

Ta có:
$$\int_{1}^{2} \frac{dx}{3x-2} = \frac{1}{3} \ln |3x-2| \Big|_{1}^{2} = \frac{2}{3} \ln 2.$$

Câu 63. Tính tích phân $I = \int_{1}^{2} \frac{x-1}{x} dx$.

A.
$$I = 1 - \ln 2$$
. **B.** $I = \frac{7}{4}$.

B.
$$I = \frac{7}{4}$$
.

C.
$$I = 1 + \ln 2$$
. **D.** $I = 2 \ln 2$.

D.
$$I = 2 \ln 2$$
.

Ta có
$$I = \int_{1}^{2} \frac{x-1}{x} dx = \int_{1}^{2} \left(1 - \frac{1}{x}\right) dx = \left(x - \ln|x|\right)\Big|_{1}^{2} = \left(2 - \ln 2\right) - \left(1 - \ln 1\right) = 1 - \ln 2$$
.

Câu 64. Biết $\int_{-\infty}^{3} \frac{x+2}{x} dx = a+b \ln c$, với $a,b,c \in \mathbb{Z},c < 9$. Tính tổng S = a+b+c.

A.
$$S = 7$$
.

B.
$$S = 5$$

C.
$$S = 8$$
.

D.
$$S = 6$$
.

Lời giải

Ta có
$$\int_{1}^{3} \frac{x+2}{x} dx = \int_{1}^{3} \left(1 + \frac{2}{x}\right) dx = \int_{1}^{3} dx + \int_{1}^{3} \frac{2}{x} dx = 2 + 2\ln|x||_{1}^{3} = 2 + 2\ln 3.$$

Do đó $a = 2, b = 2, c = 3 \Rightarrow S = 7.$

(Mã 110 2017) Cho F(x) là một nguyên hàm của hàm số $f(x) = \frac{\ln x}{x}$. Tính: I = F(e) - F(1)?

A.
$$I = \frac{1}{2}$$

B.
$$I = \frac{1}{a}$$

C.
$$I = 1$$

$$\mathbf{D.}\ I = e$$

Lời giải

Chọn A

Theo định nghĩa tích phân: $I = F(e) - F(1) = \int_{1}^{e} f(x) dx = \int_{1}^{e} \frac{\ln x}{x} dx = \int_{1}^{e} \ln x d (\ln x) = \frac{\ln^2 x}{2} \left[= \frac{1}{2} \right]$

Câu 66. (**Mã 102 2018**) $\int_{0}^{1} e^{3x+1} dx$ bằng

A.
$$\frac{1}{3}(e^4+e)$$

B.
$$e^{3} - e^{3}$$

C.
$$\frac{1}{3}(e^4 - e)$$
 D. $e^4 - e$

D.
$$e^4 - e$$

Lời giải

$$\int_{0}^{1} e^{3x+1} dx = \frac{1}{3} \int_{0}^{1} e^{3x+1} d(3x+1) = \frac{1}{3} e^{3x+1} \Big|_{0}^{1} = \frac{1}{3} (e^{4} - e).$$

Câu 67. (**Mã 101 2018**) $\int_{1}^{2} e^{3x-1} dx$ bằng

A.
$$\frac{1}{3}(e^5 + e^2)$$
 B. $\frac{1}{3}(e^5 - e^2)$ **C.** $\frac{1}{3}e^5 - e^2$ **D.** $e^5 - e^2$

B.
$$\frac{1}{3} (e^5 - e^2)$$

C.
$$\frac{1}{3}e^5 - e^2$$

D.
$$e^5 - e^2$$

Lời giải

Chọn B

Ta có
$$\int_{1}^{2} e^{3x-1} dx = \frac{1}{3} e^{3x-1} \Big|_{1}^{2} = \frac{1}{3} (e^{5} - e^{2}).$$

(Mã 123 2017) Cho $\int_{0}^{6} f(x)dx = 12$. Tính $I = \int_{0}^{2} f(3x)dx$.

A.
$$I = 5$$

B.
$$I = 36$$

C.
$$I = 4$$

D.
$$I = 6$$

Lời giải

Chọn C

Ta có:
$$I = \int_{0}^{2} f(3x)dx = \frac{1}{3} \int_{0}^{2} f(3x)d3x = \frac{1}{3} \int_{0}^{6} f(t)dt = \frac{1}{3}.12 = 4.$$

(Chuyên Lê Hồng Phong Nam Định 2019) Tích phân $I = \int_0^1 \frac{1}{x+1} dx$ có giá trị bằng

A.
$$\ln 2 - 1$$
.

B.
$$-\ln 2$$

Chon C

Cách 1: Ta có:
$$I = \int_0^1 \frac{1}{x+1} dx = \int_0^1 \frac{d(x+1)}{x+1} = \ln|x+1|_0^1 = \ln 2 - \ln 1 = \ln 2$$
. Chọn đáp án **C.**

(THPT Hoàng Hoa Thám Hưng Yên -2019) Tính $K = \int_{2}^{3} \frac{x}{x^2 - 1} dx$.

A.
$$K = \ln 2$$
.

B.
$$K = \frac{1}{2} \ln \frac{8}{3}$$
. **C.** $K = 2 \ln 2$. **D.** $K = \ln \frac{8}{3}$.

C.
$$K = 2 \ln 2$$

D.
$$K = \ln \frac{8}{3}$$
.

$$K = \int_{2}^{3} \frac{x}{x^{2} - 1} dx = \frac{1}{2} \int_{2}^{3} \frac{1}{x^{2} - 1} d(x^{2} - 1) = \frac{1}{2} \ln|x^{2} - 1| \Big|_{2}^{3} = \frac{1}{2} \ln \frac{8}{3}$$

BẠN HỌC THAM KHẢO THÊM DẠNG CÂU KHÁC TẠI

Thttps://drive.google.com/drive/folders/15DX-hbY5paR0iUmcs4RU1DkA1-7QpKIG?usp=sharing

Theo dõi Fanpage: Nguyễn Bảo Vương & https://www.facebook.com/tracnghiemtoanthpt489/

Hoặc Facebook: Nguyễn Vương * https://www.facebook.com/phong.baovuong

Tham gia ngay: Nhóm Nguyễn Bào Vương (TÀI LIỆU TOÁN) * https://www.facebook.com/groups/703546230477890/

Án sub kênh Youtube: Nguyễn Vương

https://www.youtube.com/channel/UCQ4u2J5gIEI1iRUbT3nwJfA?view as=subscriber

Tải nhiều tài liệu hơn tại: http://diendangiaovientoan.vn/

ĐỂ NHẬN TÀI LIỆU SỚM NHẤT NHÉ!

Agy to Dio Vilone