Electronics Lab Course Experiment #0: Introduction and Preparational Experiment

Christopher Jörn

April 12, 2015

Contents

1	Aims of the experiment	2
2	Theoretical background	3
3	Preperational exercises	4
4	Experiment set-up	6
5	Procedure	7
6	Measurement	8
7	Evaluation	9
8	Conclusion	10

1 Aims of the experiment

2 Theoretical background

3 Preperational exercises

0.2.1.A

$$U(t) = U_0 \cdot \sin(\omega t)$$

$$U_{PP} = 2 \cdot U_0$$

$$U_P = U_0$$

$$U_{RMS} = \frac{U_0}{\sqrt{2}}$$

0.2.1.B

For a symmetrical rectangular voltage from U_P to $-U_P^1$

$$U_{RMS} = 0$$

0.2.2.C

To proof:
$$R_i = \frac{U_2 - U_1}{I_1 - I_2}$$

$$U_n = U_0 \frac{R_n}{R_n + R_i}$$

$$I_n = \frac{U_n}{R_n}$$

$$\Leftrightarrow I_n = U_0 \frac{1}{R_n + R_i}$$

$$U_2 - U_1 = U_0 \left(\frac{R_2}{R_2 + R_i} - \frac{R_1}{R_1 + R_i}\right)$$

$$I_1 - I_2 = U_0 \left(\frac{1}{R_1 + R_i} - \frac{1}{R_2 - R_i}\right)$$

$$\Rightarrow \frac{U_2 - U_1}{I_1 - I_2} = \frac{\left(\frac{R_2}{R_2 + R_i} - \frac{R_1}{R_1 + R_i}\right)}{\left(\frac{1}{R_1 + R_i} - \frac{1}{R_2 + R_i}\right)}$$

$$= \frac{R_2 (R_1 + R_i) - R_1 (R_2 + R_i)}{R_2 + R_i - R_1 - R_i}$$

$$= \frac{R_i (R_2 - R_1)}{R_2 - R_1}$$

$$= R_i$$

¹In this case with $U_P = 10 \,\mathrm{V}$

0.3.3.E

4 Experiment set-up

Procedure

6 Measurement

Evaluation

8 Conclusion