Study guide: Generalizations of exponential decay models

Hans Petter Langtangen^{1,2}

Center for Biomedical Computing, Simula Research Laboratory 1 Department of Informatics, University of Oslo 2

Sep 13, 2016

Model extensions

2 Computing convergence rates

Methods for general first-order ODEs

Extension to a variable coefficient; Forward and Backward Euler

$$u'(t) = -a(t)u(t), \quad t \in (0, T], \quad u(0) = I$$
 (1)

The Forward Euler scheme:

$$\frac{u^{n+1}-u^n}{\Delta t}=-a(t_n)u^n \tag{2}$$

The Backward Euler scheme:

$$\frac{u^n - u^{n-1}}{\wedge t} = -a(t_n)u^n \tag{3}$$

Extension to a variable coefficient; Crank-Nicolson

Evaluting $a(t_{n+\frac{1}{2}})$ and using an average for u:

$$\frac{u^{n+1} - u^n}{\Delta t} = -a(t_{n+\frac{1}{2}})\frac{1}{2}(u^n + u^{n+1}) \tag{4}$$

Using an average for a and u:

$$\frac{u^{n+1}-u^n}{\Delta t}=-\frac{1}{2}(a(t_n)u^n+a(t_{n+1})u^{n+1})$$
 (5)

Extension to a variable coefficient; θ -rule

The θ -rule unifies the three mentioned schemes,

$$\frac{u^{n+1}-u^n}{\Delta t} = -a((1-\theta)t_n + \theta t_{n+1})((1-\theta)u^n + \theta u^{n+1})$$
 (6)

or,

$$\frac{u^{n+1} - u^n}{\Delta t} = -(1 - \theta)a(t_n)u^n - \theta a(t_{n+1})u^{n+1}$$
 (7)

Extension to a variable coefficient; operator notation

$$[D_t^+ u = -au]^n,$$

$$[D_t^- u = -au]^n,$$

$$[D_t u = -a\overline{u}^t]^{n+\frac{1}{2}},$$

$$[D_t u = -\overline{a}\overline{u}^t]^{n+\frac{1}{2}}$$

Extension to a source term

$$u'(t) = -a(t)u(t) + b(t), \quad t \in (0, T], \quad u(0) = I$$
 (8)

$$[D_t^+ u = -au + b]^n,$$

$$[D_t^- u = -au + b]^n,$$

$$[D_t u = -a\overline{u}^t + b]^{n+\frac{1}{2}},$$

$$[D_t u = \overline{-au + b}^t]^{n+\frac{1}{2}},$$

Implementation of the generalized model problem

$$u^{n+1} = ((1 - \Delta t(1 - \theta)a^n)u^n + \Delta t(\theta b^{n+1} + (1 - \theta)b^n))(1 + \Delta t\theta a^{n+1})^{-1}$$
(9)

Implementation where a(t) and b(t) are given as Python functions (see file decay_vc.py):

```
def solver(I, a, b, T, dt, theta):
                   Solve u' = -a(t) * u + b(t), u(0) = I.
                  for t in (0, T) with steps of dt.
                   a and b are Python functions of t.
                  dt = float(dt)
                                                                                                                                              # avoid integer division
                  Nt = int(round(T/dt)) # no of time intervals
                  T = Nt*dt
                                                                                                                                # adjust T to fit time step dt
                                                                                                                             # array of u[n] values
                  u = zeros(Nt+1)
                  t = linspace(0, T, Nt+1) # time mesh
                  \mathbf{u}[0] = \mathbf{I}
                                                                                                                                   # assign initial condition
                  for n in range (0, Nt): # n=0,1,...,Nt-1
                                     u[n+1] = ((1 - dt*(1-theta)*a(t[n]))*u[n] + (1-theta)*a(t[n]))*u[n] + (1-theta)*a(t[n])*u[n])*u[n] + (1-theta)*a(t[n])*u[n])*u[n] + (1-theta)*a(t[n])*u[n])*u[n] + (1-theta)
                                                                                     dt*(theta*b(t[n+1]) + (1-theta)*b(t[n])))/
                                                                                      (1 + dt*theta*a(t[n+1]))
```

Implementations of variable coefficients; functions

Plain functions:

```
def a(t):
    return a_0 if t < tp else k*a_0

def b(t):
    return 1</pre>
```

Implementations of variable coefficients; classes

Better implementation: class with the parameters a0, tp, and k as attributes and a special method $_$ call $_$ for evaluating a(t):

```
class A:
    def __init__(self, a0=1, k=2):
        self.a0, self.k = a0, k

    def __call__(self, t):
        return self.a0 if t < self.tp else self.k*self.a0

a = A(a0=2, k=1) # a behaves as a function a(t)</pre>
```

Implementations of variable coefficients; lambda function

Quick writing: a one-liner lambda function

a = lambda t: a_0 if t < tp else k*a_0

```
In general,
 f = lambda arg1, arg2, ...: expressin
is equivalent to
 def f(arg1, arg2, ...):
     return expression
One can use lambda functions directly in calls:
 u, t = solver(1, lambda t: 1, lambda t: 1, T, dt, theta)
for a problem u' = -u + 1, u(0) = 1.
A lambda function can appear anywhere where a variable can
appear.
```

Verification via trivial solutions

- Start debugging of a new code with trying a problem where $u = \text{const} \neq 0$.
- Choose u = C (a constant). Choose any a(t) and set b = a(t)C and I = C.
- "All" numerical methods will reproduce $u =_{const}$ exactly (machine precision).
- Often u = C eases debugging.
- In this example: any error in the formula for u^{n+1} make $u \neq C$!

Verification via trivial solutions; test function

```
def test_constant_solution():
    Test problem where u=u_const is the exact solution, to be
    reproduced (to machine precision) by any relevant method.
    m = \overline{n} = m
    def u exact(t):
        return u const
    def a(t):
        return 2.5*(1+t**3) # can be arbitrary
    def b(t):
        return a(t)*u const
    u const = 2.15
    theta = 0.4; I = u_const; dt = 4
    Nt = 4 # enough with a few steps
    u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
    print u
    u_e = u_exact(t)
    difference = abs(u_e - u).max() # max deviation
    tol = 1E-14
    assert difference < tol
```

Verification via manufactured solutions

- Choose any formula for u(t)
- Fit I, a(t), and b(t) in u' = -au + b, u(0) = I, to make the chosen formula a solution of the ODE problem
- Then we can always have an analytical solution (!)
- Ideal for verification: testing convergence rates
- Called the method of manufactured solutions (MMS)
- Special case: u linear in t, because all sound numerical methods will reproduce a linear u exactly (machine precision)
- u(t) = ct + d. u(0) = I means d = I
- ODE implies c = -a(t)u + b(t)
- ullet Choose a(t) and c, and set b(t)=c+a(t)(ct+l)
- Any error in the formula for u^{n+1} makes $u \neq ct + l!$

Linear manufactured solution

 $u^n = ct_n + I$ fulfills the discrete equations!

First,

$$[D_t^+ t]^n = \frac{t_{n+1} - t_n}{\Delta t} = 1, \tag{10}$$

$$[D_t^- t]^n = \frac{t_n - t_{n-1}}{\Delta t} = 1, \tag{11}$$

$$[D_t t]^n = \frac{t_{n+\frac{1}{2}} - t_{n-\frac{1}{2}}}{\Delta t} = \frac{(n+\frac{1}{2})\Delta t - (n-\frac{1}{2})\Delta t}{\Delta t} = 1$$
 (12)

Forward Euler:

$$[D^+u = -au + b]^n$$

 $a^n = a(t_n), b^n = c + a(t_n)(ct_n + I),$ and $u^n = ct_n + I$ results in

$$c = -a(t_n)(ct_n + I) + c + a(t_n)(ct_n + I) = c$$

Test function for linear manufactured solution

```
def test_linear_solution():
    Test problem where u=c*t+I is the exact solution, to be
    reproduced (to machine precision) by any relevant method.
    m = \overline{n} = m
    def u exact(t):
        return c*t + T
    def a(t):
        return t**0.5 # can be arbitrary
    def b(t):
        return c + a(t)*u_exact(t)
    theta = 0.4; I = 0.1; dt = 0.1; c = -0.5
    T = 4
    Nt = int(T/dt)  # no of steps
    u, t = solver(I=I, a=a, b=b, T=Nt*dt, dt=dt, theta=theta)
    u_e = u_exact(t)
    difference = abs(u_e - u).max() # max deviation
    print difference
    tol = 1E-14 # depends on c!
    assert difference < tol
```

Model extensions

2 Computing convergence rates

3 Methods for general first-order ODEs

Computing convergence rates

Frequent assumption on the relation between the numerical error E and some discretization parameter Δt :

$$E = C\Delta t^r, \tag{13}$$

- Unknown: C and r.
- Goal: estimate r (and C) from numerical experiments, by looking at consecutive pairs of $(\Delta t_i, E_i)$ and $(\Delta t_{i-1}, E_{i-1})$.

Estimating the convergence rate r

Perform numerical experiments: $(\Delta t_i, E_i)$, i = 0, ..., m-1. Two methods for finding r (and C):

- Take the logarithm of (13), $\ln E = r \ln \Delta t + \ln C$, and fit a straight line to the data points $(\Delta t_i, E_i)$, $i = 0, \ldots, m-1$.
- ② Consider two consecutive experiments, $(\Delta t_i, E_i)$ and $(\Delta t_{i-1}, E_{i-1})$. Dividing the equation $E_{i-1} = C\Delta t_{i-1}^r$ by $E_i = C\Delta t_i^r$ and solving for r yields

$$r_{i-1} = \frac{\ln(E_{i-1}/E_i)}{\ln(\Delta t_{i-1}/\Delta t_i)}$$
 (14)

for i = 1, = ..., m - 1.

Method 2 is best.

Brief implementation

We embed the code in a real test function

```
def test_convergence_rates():
    # Create a manufactured solution
    # define u_exact(t), a(t), b(t)
    dt_values = [0.1*2**(-i) for i in range(7)]
    I = u_exact(0)
    for theta in (0, 1, 0.5):
        E_{values} = []
        for dt in dt_values:
            u, t = solver(I=I, a=a, b=b, T=6, dt=dt, theta=theta)
            u = u exact(t)
            e = u e - u
            E = sqrt(dt*sum(e**2))
            E_values.append(E)
        r = compute_rates(dt_values, E_values)
        print 'theta=%g, r: %s' % (theta, r)
        expected_rate = 2 if theta == 0.5 else 1
        to1 = 0.1
        diff = abs(expected_rate - r[-1])
        assert diff < tol
```

The manufactured solution can be computed by sympy

```
We choose u_e(t) = \sin(t)e^{-2t}, a(t) = t^2, fit b(t) = u'(t) - a(t):

# Create a manufactured solution with sympy import sympy as sym t = sym.symbols('t') u_exact = sym.sin(t)*sym.exp(-2*t) a = t**2 b = sym.diff(u_exact, t) + a*u_exact

# Turn sympy expressions into Python function u_exact = sym.lambdify([t], u_exact, modules='numpy') a = sym.lambdify([t], a, modules='numpy') b = sym.lambdify([t], b, modules='numpy')
```

Complete code: decay_vc.py.

Execution

```
Terminal> python decay_vc.py ... theta=0, r: [1.06, 1.03, 1.01, 1.01, 1.0, 1.0] theta=1, r: [0.94, 0.97, 0.99, 0.99, 1.0, 1.0] theta=0.5, r: [2.0, 2.0, 2.0, 2.0, 2.0, 2.0]
```

Debugging via convergence rates

Potential bug: missing a in the denominator,

```
u[n+1] = (1 - (1-theta)*a*dt)/(1 + theta*dt)*u[n]
```

Running decay_convrate.py gives same rates.

```
Why? The value of a... (a = 1)
```

0 and 1 are bad values in tests!

Better:

Forward Euler works...because $\theta = 0$ hides the bug.

Extension to systems of ODEs

Sample system:

$$u' = au + bv$$
 (15)
$$v' = cu + dv$$
 (16)

The Forward Euler method:

$$u^{n+1} = u^n + \Delta t(au^n + bv^n) \tag{17}$$

$$v^{n+1} = u^n + \Delta t(cu^n + dv^n)$$
 (18)

The Backward Euler method gives a system of algebraic equations

The Backward Euler scheme:

$$u^{n+1} = u^n + \Delta t(au^{n+1} + bv^{n+1})$$
 (19)

$$v^{n+1} = v^n + \Delta t(cu^{n+1} + dv^{n+1})$$
 (20)

which is a 2×2 linear system:

$$(1 - \Delta ta)u^{n+1} + bv^{n+1} = u^n$$
 (21)

$$cu^{n+1} + (1 - \Delta td)v^{n+1} = v^n$$
 (22)

Crank-Nicolson also gives a 2×2 linear system.

Model extensions

2 Computing convergence rates

Methods for general first-order ODEs

Generic form

The standard form for ODEs:

$$u' = f(u, t), \quad u(0) = I$$
 (23)

u and f: scalar or vector.

Vectors in case of ODE systems:

$$u(t) = (u^{(0)}(t), u^{(1)}(t), \dots, u^{(m-1)}(t))$$

$$f(u,t) = (f^{(0)}(u^{(0)}, \dots, u^{(m-1)})$$

$$f^{(1)}(u^{(0)}, \dots, u^{(m-1)}),$$

$$\vdots$$

$$f^{(m-1)}(u^{(0)}(t), \dots, u^{(m-1)}(t)))$$

The θ -rule

$$\frac{u^{n+1}-u^n}{\Delta t} = \theta f(u^{n+1}, t_{n+1}) + (1-\theta)f(u^n, t_n)$$
 (24)

Bringing the unknown u^{n+1} to the left-hand side and the known terms on the right-hand side gives

$$u^{n+1} - \Delta t \theta f(u^{n+1}, t_{n+1}) = u^n + \Delta t (1 - \theta) f(u^n, t_n)$$
 (25)

This is a *nonlinear* equation in u^{n+1} (unless f is linear in u)!

Implicit 2-step backward scheme

$$u'(t_{n+1}) \approx \frac{3u^{n+1} - 4u^n + u^{n-1}}{2\Delta t}$$

Scheme:

$$u^{n+1} = \frac{4}{3}u^n - \frac{1}{3}u^{n-1} + \frac{2}{3}\Delta t f(u^{n+1}, t_{n+1})$$

Nonlinear equation for u^{n+1} .

The Leapfrog scheme

Idea:

$$u'(t_n) \approx \frac{u^{n+1} - u^{n-1}}{2\Delta t} = [D_{2t}u]^n$$
 (26)

Scheme:

$$[D_{2t}u=f(u,t)]^n$$

or written out,

$$u^{n+1} = u^{n-1} + 2\Delta t f(u^n, t_n)$$
 (27)

- Some other scheme must be used as starter (u^1) .
- Explicit scheme a nonlinear f (in u) is trivial to handle.
- Downside: Leapfrog is always unstable after some time.

The filtered Leapfrog scheme

After computing u^{n+1} , stabilize Leapfrog by

$$u^{n} \leftarrow u^{n} + \gamma(u^{n-1} - 2u^{n} + u^{n+1})$$
 (28)

2nd-order Runge-Kutta scheme

Forward-Euler + approximate Crank-Nicolson:

$$u^* = u^n + \Delta t f(u^n, t_n), \tag{29}$$

$$u^{n+1} = u^n + \Delta t \frac{1}{2} \left(f(u^n, t_n) + f(u^*, t_{n+1}) \right)$$
 (30)

4th-order Runge-Kutta scheme

- The most famous and widely used ODE method
- 4 evaluations of f per time step
- Its derivation is a very good illustration of numerical thinking!

2nd-order Adams-Bashforth scheme

$$u^{n+1} = u^n + \frac{1}{2}\Delta t \left(3f(u^n, t_n) - f(u^{n-1}, t_{n-1})\right)$$
 (31)

3rd-order Adams-Bashforth scheme

$$u^{n+1} = u^n + \frac{1}{12} \left(23f(u^n, t_n) - 16f(u^{n-1}, t_{n-1}) + 5f(u^{n-2}, t_{n-2}) \right)$$
(32)

The Odespy software

Odespy features simple Python implementations of the most fundamental schemes as well as Python interfaces to several famous packages for solving ODEs: ODEPACK, Vode, rkc.f, rkf45.f, Radau5, as well as the ODE solvers in SciPy, SymPy, and odelab.

Typical usage:

```
# Define right-hand side of ODE
def f(u, t):
   return -a*u
import odespy
import numpy as np
# Set parameters and time mesh
I = 1; a = 2; T = 6; dt = 1.0
Nt = int(round(T/dt))
t_mesh = np.linspace(0, T, Nt+1)
# Use a 4th-order Runge-Kutta method
solver = odespy.RK4(f)
solver.set_initial_condition(I)
u, t = solver.solve(t_mesh)
```

Example: Runge-Kutta methods

Plots from the experiments

The 4-th order Runge-Kutta method (RK4) is the method of choice!

Example: Adaptive Runge-Kutta methods

- Adaptive methods find "optimal" locations of the mesh points to ensure that the error is less than a given tolerance.
- Downside: approximate error estimation, not always optimal location of points.
- "Industry standard ODE solver": Dormand-Prince 4/5-th order Runge-Kutta (MATLAB's famous ode45).

