Module 26

JOINT MOMENT GENERATING FUNCTION OF R.V.'s AND EQUALITY IN DISTRIBUTION

• $\underline{X} = (X_1, \dots, X_p)'$: a *p*-dimensional random vector;

•
$$A = \{\underline{t} = (t_1, \ldots, t_p) \in \mathbb{R}^p : E(|e^{\sum_{i=1}^p t_i X_i}|) = E(e^{\sum_{i=1}^p t_i X_i}) < \infty\};$$

• Define the function $M_X: A \to \mathbb{R}$ by

$$M_{\underline{X}}(\underline{t}) = E\left(e^{\sum_{i=1}^{p} t_i X_i}\right), \ \underline{t} = (t_1, \dots, t_p) \in A.$$
 (1)

Definition 1: The function $M_{\underline{X}}: A \to \mathbb{R}$, defined by (1), is called the joint moment generating function (m.g.f.) of \underline{X} .

Remark 1:

- (a) $M_{\underline{X}}(\underline{0}) = 1$. Therefore, $\underline{0} \in A$ and $A \neq \phi$;
- (b) Let $\underline{X}=(X_1,\ldots,X_p)$, where X_1,\ldots,X_p are independent. For $\underline{a}=(a_1,\ldots,a_p)\in\mathbb{R}^p$, let $Y=\sum\limits_{i=1}^p a_iX_i$. Then

$$egin{aligned} M_Y(\underline{t}) &= E\Big(e^{t\sum\limits_{i=1}^p a_i X_i}\Big) \ &= E\Big(\prod\limits_{i=1}^p e^{ta_i X_i}\Big) \ &= \prod\limits_{i=1}^p E\Big(e^{ta_i X_i}\Big) \ &= \prod\limits_{i=1}^p M_{X_i}(ta_i), \ t \in \mathbb{R}. \end{aligned}$$

In particular, if $Z = \sum_{i=1}^{\nu} X_i$, then

$$M_Z(t) = \prod_{i=1}^p M_{X_i}(t), t \in \mathbb{R},$$

i.e. m.g.f. of sum of independent r.v.s is same as the product of marginal m.g.f.s.

(c) Let
$$\underline{X}=(X_1,\ldots,X_p)$$
 and $\underline{Y}=(X_1,\ldots,X_{p-1})$. Then
$$M_Y(t_1,\ldots,t_{p-1})=M_X(t_1,\ldots,t_{p-1},0),$$

provided the involved expectations are finite. Thus, one can obtain the marginal m.g.f.s from the joint m.g.f. by taking the argument of unwanted variable in the joint m.g.f to be 0. In particular,

$$M_{\underline{X}}(0,\ldots,0,t_{i},0,\ldots,0) = M_{X_{i}}(t_{i}), i = 1,\ldots,p,$$

$$M_{\underline{X}}(0,\ldots,0,t_{i},0,\ldots,0,t_{j},0,\ldots,0) = M_{X_{i},X_{j}}(t_{i},t_{j}), i,j \in \{1,\ldots,p\},$$

provided the expectations exist.

4□ > 4₫ > 4½ > 4½ > ½

(d) If X_1, \ldots, X_p are independent, then

$$M_{\underline{X}}(\underline{t}) = E\left(e^{t\sum_{i=1}^{p} X_{i}}\right) = E\left(\prod_{i=1}^{p} e^{tX_{i}}\right)$$

$$= \prod_{i=1}^{p} E\left(e^{tX_{i}}\right)$$

$$= \prod_{i=1}^{p} M_{X_{i}}(t_{i}), \ \underline{t} = (t_{1}, \dots, t_{p}) \in A.$$

Result 1: Suppose that the joint m.g.f. $M_{\underline{X}}(\underline{t})$ is finite in a rectangle $(-\underline{a},\underline{a})\subseteq\mathbb{R}^p$. Then, $M_{\underline{X}}(\underline{t})$ possesses partial derivatives of all orders in $(-\underline{a},\underline{a})$. Furthermore, for any non-negative integers k_1,\ldots,k_p , $E(|X_1^{k_1}\cdots X_p^{k_p}|)$ is finite and,

$$E(X_1^{k_1}\cdots X_p^{k_p}) = \left[\frac{\partial^{k_1+\cdots+k_p}}{\partial t_1^{k_1}\cdots \partial t_p^{k_p}} M_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}}.$$

4□ > 4□ > 4□ > 4□ > 4□ > 4□ > 4□

Result 2:

Under the assumption of Result 1, let $\psi_{\underline{X}}(\underline{t}) = \ln M_{\underline{X}}(\underline{t}), \ \underline{t} \in (-\underline{a},\underline{a}).$ Then

$$E(X_i^m) = \left[\frac{\partial^m}{\partial t_i^m} M_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}}, \ i = 1, \dots, p, \ m = 1, 2, \dots$$

$$\mathsf{Var}(X_i) = \left[\frac{\partial^2}{\partial t_i^2} \psi_{\underline{X}}(\underline{t})\right]_{\underline{t}=\underline{0}}, \ i = 1, \dots, p$$
and $\mathsf{Cov}(X_i, X_j) = \left[\frac{\partial^2}{\partial t_i \partial t_j} \psi_{\underline{X}}(\underline{t})\right]_{\underline{t}=0}, \ i, j = 1, \dots, p.$

Proof. The first assertion follows from Result 1.

$$\frac{\partial}{\partial t_i} \psi_{\underline{X}}(\underline{t}) = \frac{1}{M_X(\underline{t})} \frac{\partial}{\partial t_i} M_{\underline{X}}(\underline{t}),$$

$$\frac{\partial^2}{\partial t_i \partial t_j} \psi_{\underline{X}}(\underline{t}) = \frac{M_{\underline{X}}(\underline{t}) \frac{\partial^2}{\partial t_j \partial t_i} M_{\underline{X}}(\underline{t}) - \left[\frac{\partial}{\partial t_i} M_{\underline{X}}(\underline{t})\right] \frac{\partial}{\partial t_j} M_{\underline{X}}(\underline{t})}{[M_{\underline{X}}(\underline{t})]^2}.$$

Thus,

$$\begin{bmatrix} \frac{\partial^2}{\partial t_i^2} \psi_{\underline{X}}(\underline{t}) \end{bmatrix}_{\underline{t}=\underline{0}} = \begin{bmatrix} \frac{\partial^2}{\partial t_i^2} M_{\underline{X}}(\underline{t}) \end{bmatrix}_{\underline{t}=\underline{0}} - \begin{bmatrix} \left[\frac{\partial}{\partial t_i} M_{\underline{X}}(\underline{t}) \right]_{\underline{t}=\underline{0}} \right]^2 \\
= E(X_i^2) - (E(X_i))^2 \\
= Var(X_i)$$

and

$$\begin{bmatrix} \frac{\partial^2}{\partial t_i \partial t_j} \psi_{\underline{X}}(\underline{t}) \end{bmatrix}_{\underline{t}=\underline{0}} = \begin{bmatrix} \frac{\partial^2}{\partial t_j \partial t_i} M_{\underline{X}}(\underline{t}) \end{bmatrix}_{\underline{t}=\underline{0}} - \begin{bmatrix} \frac{\partial}{\partial t_i} M_{\underline{X}}(\underline{t}) \end{bmatrix}_{\underline{t}=\underline{0}} \begin{bmatrix} \frac{\partial}{\partial t_j} M_{\underline{X}}(\underline{t}) \end{bmatrix}_{\underline{t}=\underline{0}} \\
= E(X_i X_i) - E(X_i) E(X_i) = \text{Cov}(X_i, X_i).$$

Result 3:

Let $\underline{X}=(X_1,\ldots,X_p)$ be a p-dimensional r.v. with joint m.g.f. $M_{\underline{X}}(\underline{t})$ and marginal m.g.f.s $M_{X_i}(\cdot), i=1,\ldots,p$. Suppose that, for some $\underline{a}\in\mathbb{R}^p$,

$$M_{\underline{X}}(\underline{t}) = \prod_{i=1}^{p} M_{X_i}(t_i), \ \forall \ \underline{t} \in (-\underline{a}, \underline{a}).$$

Then X_1, \ldots, X_p are independent.

Remark 2: Remark 1 and Result 3 hold for random vectors as well.

7 / 14

Equality in Distribution:

Definition 2:

- (a) Two *p*-dimensional r.v.s \underline{X} and \underline{Y} are said to have the same distribution (written as $\underline{X} \stackrel{d}{=} \underline{Y}$) if $F_{\underline{X}}(\underline{x}) = F_{\underline{Y}}(\underline{x}), \ \forall \underline{x} \in \mathbb{R}^p$, where $F_{\underline{X}}(\cdot)$ and $F_{\underline{Y}}(\cdot)$ are d.f.s of \underline{X} and \underline{Y} , respectively.
- (b) R.V.s X_1, \ldots, X_p are said to be exchangeable iff $(X_1, \ldots, X_p) \stackrel{d}{=} (X_{\beta_1}, \ldots, X_{\beta_p})$, for any permutation $(\beta_1, \ldots, \beta_p)$ of (X_1, \ldots, X_p) .

Result 4:

Let \underline{X} and \underline{Y} be r.v.s having p.m.f./p.d.f. $f_{\underline{X}}(\cdot)$ and $f_{\underline{Y}}(\cdot)$, respectively. Then

(a)
$$f_{\underline{X}}(\underline{x}) = f_{\underline{Y}}(\underline{x}), \ \forall \ \underline{x} \in \mathbb{R}^p \Rightarrow \underline{X} \stackrel{d}{=} \underline{Y};$$

(b)
$$\underline{X} \stackrel{d}{=} \underline{Y} \Rightarrow \psi(\underline{X}) \stackrel{d}{=} \psi(\underline{Y})$$
, for any function $\psi : \mathbb{R}^p \to \mathbb{R}$;

(c)
$$M_{\underline{X}}(\underline{t}) = M_{\underline{Y}}(\underline{t}), \ \forall \ \underline{t} \in (-\underline{a},\underline{a}), \text{ for some } \underline{a} \in \mathbb{R}^p, \Rightarrow \underline{X} \stackrel{d}{=} \underline{Y}.$$

Example 1:

Let X_1, \ldots, X_p be i.i.d. r.v.s with common p.m.f./p.d.f. $f(\cdot)$. Then

- (a) X_1, \ldots, X_p are exchangeable;
- (b) $E\left(\frac{X_1}{\sum\limits_{i=1}^p X_i}\right) = 1$, provided the expectations exists;
- (c) $P(X_1 = \min\{X_1, ..., X_p\}) = \frac{1}{p}$, provided X_1 is A.C.

Solution.

(a) Suppose that X_1,\ldots,X_p are i.i.d. r.v.s with common p.m.f./p.d.f. $f(\cdot)$. Let $\underline{X}=(X_1,\ldots,X_p)$, $\underline{Y}=(X_{\beta_1},\ldots,X_{\beta_p})$ for a permutation (β_1,\ldots,β_p) of $(1,\ldots,p)$. Then,

$$f_{\underline{X}}(\underline{x}) = \prod_{i=1}^{p} f_{X_i}(x_i) = \prod_{i=1}^{p} f(x_i) = \prod_{i=1}^{p} f_{X_{\beta_i}}(x_i) = f_{\underline{Y}}(\underline{x}), \ \underline{x} \in \mathbb{R}^p,$$

implying that $\underline{X} \stackrel{d}{=} \underline{Y}$.

(b) By (a), we have for any permutation $(\beta_1, \ldots, \beta_p)$ of $(1, \ldots, p)$, $(X_1, \ldots, X_p) \stackrel{d}{=} (X_{\beta_1}, \ldots, X_{\beta_p})$

$$\Rightarrow E\left(\frac{X_1}{\sum\limits_{i=1}^{p} X_i}\right) = E\left(\frac{X_{\beta_1}}{\sum\limits_{i=1}^{p} X_{\beta_i}}\right)$$

$$\Rightarrow E\left(\frac{X_1}{\sum\limits_{i=1}^{p} X_i}\right) = E\left(\frac{X_j}{\sum\limits_{i=1}^{p} X_i}\right), \ j = 1, \dots, p$$

But
$$\sum_{j=1}^{p} E\left(\frac{X_j}{\sum\limits_{i=1}^{p} X_i}\right) = E\left(\frac{\sum\limits_{j=1}^{r} X_j}{\sum\limits_{i=1}^{p} X_i}\right) = 1$$

$$\Rightarrow E\left(\frac{X_j}{\sum\limits_{i=1}^{p} X_i}\right) = \frac{1}{p}, \ j = 1, \dots, p.$$

(c) Since X_1 is A.C., $\underline{X} = (X_1, \dots, X_p)'$ is A.C. Let $X_{1:p} \leq \dots \leq X_{p:p}$ denote the ranked values of X_1, \dots, X_p $(X_{1:p}, \dots, X_{p:p})$ are called order statistics of X_1, \dots, X_p). Then

$$P(X_{1:p} < \cdots < X_{p:p}) = 1$$
 (2)

$$P(X_1 = \min\{X_1, \dots, X_p\}) = P(X_i = \min\{X_1, \dots, X_p\}), i = 1, \dots, p$$

But due to (2),

$$\sum_{i=1}^{p} P(X_i = \min\{X_1, \dots, X_p\}) = 1$$

$$\Rightarrow P(X_i = \min\{X_1, \dots, X_p\}) = \frac{1}{p}, i = 1, \dots, p.$$

<ロ > < @ > < き > < き > こ の < @

Take Home Problems

- 1. Let X_1, X_2 and X_3 be i.i.d. random variables with $P(\{X_1 = X_2 = X_3\}) = \frac{1}{6}$ and $P(\{X_1 = X_2 < X_3\}) = \frac{1}{6}$. Find $P(\{X_3 < X_1 < X_2\})$.
- 2. Let $\underline{X} = (X_1, X_2)$ be an absolutely continuous r.v. with joint m.g.f.

$$M(t_1,t_2)=e^{\frac{t_1^2+t_2^2+2\rho t_1t_2}{2}}, \quad (t_1,t_2)\in\mathbb{R}^2.$$

Find correlation between X_1 and X_2 . Derive conditions under which X_1 and X_2 are independent.

Thank you for your patience

