MA2102: LINEAR ALGEBRA

Lecture 3: Linear Subpace

21st August 2020

Functions as vectors: Let *S* be a set and consider

$$\mathscr{F}(S,\mathbb{R}) := \{ f : S \to \mathbb{R} \mid f \text{ is a function} \}.$$

- For $f, g \in \mathcal{F}(S, \mathbb{R})$, define (f+g)(s) := f(s) + g(s).
- The zero function, i.e., O(s) = O for any $s \in S$, is the additive identity.
 - (cf)(s) := cf(s) defines scaling.

Show that $\mathscr{F}(S,\mathbb{R})$ is a vector space over \mathbb{R} . Note that when $S = \{1,2,\cdots,n\}$, then $\mathscr{F}(S,\mathbb{R})$ looks like \mathbb{R}^n .

Question What is $\mathscr{F}(S,\mathbb{R})$ when $S = \{1,2,\cdots\} = \mathbb{N}$?

Answer The set of sequences of real numbers. This is a very *large* vector space.

Polynomials as vectors: Let n be a non-negative integer. Consider

$$P_n(\mathbb{R}) := \{p(x) \mid p \text{ is a polynomial with real coefficients, } \deg(p) \le n\}.$$

Show that $P_n(\mathbb{R})$ is a vector space over \mathbb{R} .

Question Is the set of polynomials of degree exactly n a vector space?

Answer No, for several reasons: not closed under addition, additive identity is not present, not closed under scaling.

Look at $P_2(\mathbb{R}) = \{a_0 + a_1x + a_2x^2 | a_i \in \mathbb{R}\}$. This *looks like* \mathbb{R}^3 and a bijection is given as follows

$$f: P_2(\mathbb{R}) \to \mathbb{R}^3, \ a_0 + a_1 x + a_2 x^2 \mapsto (a_0, a_1, a_2).$$

This map is compatible with the the structures on both sides.

Polynomials as vectors (continued): We have the following inclusions

$$P_0(\mathbb{R}) \subset P_1(\mathbb{R}) \subset P_2(\mathbb{R}) \subset \cdots \subset P_n(\mathbb{R}) \subset P_{n+1}(\mathbb{R}) \subset \cdots$$

Consider the union

$$P(\mathbb{R}) := \bigcup_{n \geq 0} P_n(\mathbb{R}),$$

the set of all polynomials. Note that

$$deg(p+q) \le max(deg(p), deg(q)).$$

Thus, $P(\mathbb{R})$ is closed under addition. Show that $P(\mathbb{R})$ is a vector space.

Question *Is* $P(\mathbb{R})$ *more than a vector space?*

Are these sets vector spaces? We shall look at three examples.

$$(1) V = [0, \infty) = \{t \in \mathbb{R} | t \ge 0\}$$

- no additive inverses
- not closed under scaling
- (2) $U = \text{unit vectors in } \mathbb{R}^3$

Remark This is a two dimensional sphere called the 2-sphere, denoted by S^2 . It is 2 because intrinsically we have two dimensions.

- no additive identity
- not closed under scaling or addition
- (3) Latitudes and longitudes
 - no additive identity
 - additive inverses do not make sense
 - not closed under scaling or addition

Question What are all the subsets of \mathbb{R}^2 which are vector spaces themselves?

Answer We look for subsets apart from $W = \{(0,0)\}$ and $W = \mathbb{R}^2$. Consider

$$W_1 = \{(a,0) \in \mathbb{R}^2 \mid a \in \mathbb{R}\}, \ W_2 = \{(0,a) \in \mathbb{R}^2 \mid a \in \mathbb{R}\}.$$

Note that we may also consider the lines through the origin, i.e.,

$$L = \{(x, y) \in \mathbb{R}^2 \mid y = mx\}.$$

Show that W_1 , W_2 and L are vector spaces.

Are these all the subsets of \mathbb{R}^2 which are vector spaces? Yes!

Let $W \neq \{(0,0)\}$ be a vector space. Choose $\mathbf{v} \neq (0,0)$ such that $\mathbf{v} \in W$. By scaling, the line through (0,0) and \mathbf{v} is contained in W. If $W = \{\lambda \mathbf{v} \mid \lambda \in \mathbb{R}\}$, then W is a line through the origin. Otherwise, choose $\mathbf{w} \in W$ outside $\{\lambda \mathbf{v} \mid \lambda \in \mathbb{R}\}$.

Show that any vector \mathbf{u} in \mathbb{R}^2 can be expressed as $\mathbf{u} = a\mathbf{v} + b\mathbf{w}$. This will be proved later in a more general form. This implies that $W = \mathbb{R}^2$.

Definition [Vector subspace] A subset W of a vector space V is called a (vector) subspace if W is a vector space.

Note that if $0' \in W$ is the additive identity, then choose any $\mathbf{w} \in W$. Since

$$\mathbf{w} + \mathbf{0}' = \mathbf{w}$$
 and $\mathbf{w} + \mathbf{0} = \mathbf{w}$

by cancellation law 0' = 0. Show that the additive inverse of $\mathbf{w} \in W$ is the same in W as in V.

Remark A vector subspace is often called a linear subspace. We shall simply call it a subspace in subsequent lectures.

Proposition A subset $W \subseteq V$ of a vector space V is a subspace if and only if the following holds:

- (i) $\mathbf{w}_1 + \mathbf{w}_2 \in W$ whenever $\mathbf{w}_1, \mathbf{w}_2 \in W$
- (ii) $\lambda \mathbf{w} \in W$ whenever $\mathbf{w} \in W$ and $\lambda \in \mathbb{R}$.

The proposition is essentially a repackaging of the definition of a subspace. Among various consequences of it, we mention two.

- $0 = 0 \cdot \mathbf{w}$ for any $\mathbf{w} \in W$. By (ii), $0 \in W$.
- The vector $(-1) \cdot \mathbf{w}$ is in W by (ii). Now,

$$\mathbf{w} + (-1) \cdot \mathbf{w} = 1 \cdot \mathbf{w} + (-1) \cdot \mathbf{w} = (1 + (-1)) \cdot \mathbf{w} = 0 \cdot \mathbf{w} = 0$$

implies that $(-1) \cdot \mathbf{w}$ is the additive inverse of \mathbf{w} .

Non-examples (a) Consider the integers $\mathbb{Z} \subset \mathbb{R}$. It is closed under addition but not closed under scaling.

- (b) Consider S = x-axis $\cup y$ -axis $\subset \mathbb{R}^2$. It is closed under scaling but not closed under addition.
- (c) Consider the unit circle S^1 with origin as its centre in \mathbb{R}^2 . Both (i) and (ii) do not hold.