

Модуль 1. Математические основы помехоустойчивого кодирования

Структура конечных полей. Основные свойства и теоремы о конечных полях.

Иванов Ф. И. к.ф.-м.н., доцент

Национальный исследовательский университет «Высшая школа экономики»

12 июня 2020 г.

Свойства бинома Ньютона в конечном поле

Как известно, $(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^k b^{n-k}$, однако в конечном поле характеристики p справедлива:

Теорема

$$(a+b)^{p^s}=a^{p^s}+b^{p^s}, \forall s\in\mathbb{N}$$

Данное равенство доказывается индукцией по s: s=1:

$$(a+b)^p = a^p + b^p + pab^{p-1} + \binom{p}{2}a^2p^{p-2} + \dots + pa^{p-1}b =$$

$$= a^p + b^p + p * T \equiv a^p + b^p \mod p$$

для s > 1:

$$(a+b)^{p^s} = ((a+b)^{p^{s-1}})^p = (a^{p^{s-1}})^p + (b^{p^{s-1}})^p = a^{p^s} + b^{p^s}.$$

Минимальные функции

Определение

Минимальной функцией (минимальным многочленом) для элемента $\beta \in GF(q^m)$ называется такой нормированный многочлен m(x) над GF(q) минимальной степени, что $m(\beta)=0$.

Важные особенности минимальных функций:

- ullet Это многочлены над GF(q)
- Но их корни лежат в расширении $GF(q^m)$
- Минимальные функции важнейший класс многочленов над конечными полями
- Все основные алгебраические коды основаны на минимальных функциях

Важнейшие свойства минимальных функций

Теорема

- Минимальная функция для β неприводимый многочлен над GF(q).
- Если многочлен f(x) таков, что $f(\beta) = 0$, то m(x)|f(x), где m(x) минимальная функция для β .
- Минимальная функция для β единственна (обратное вообще говоря неверно!)
- Для каждого элемента $\beta \in GF(q^m)$ существует минимальная функция.
- Степень минимальной функции элемента $\beta \in GF(q^m)$ делитель m.

Теорема о корнях многочленов в GF(q)

Теорема

Если f(x) многочлен над GF(q), $\beta \in GF(q^m)$ и $f(\beta) = 0$, то $f(\beta^q) = 0$.

Доказательство

Пусть $f(x) = a_0 + a_1 x + ... + a_n x^n$ Согласно теореме о биноме Ньютона над конечным полем:

$$(f(x))^q=(a_0)^q+(a_1)^qx^q+...+(a_n)^qx^{nq}=a_0+a_1x^q+...+a_nx^{nq}=f(x^q),$$
 так как $a_i\in GF(q)$, а потому $a_i^{q-1}=1$, и $a_i^q=a_i.$

Делители $x^{q^m} - x$

Теорема

Неприводимые над GF(q) многочлены p(x), степени n которых делят m, и только они, являются делителями многочлена $x^{q^m}-x$. T. e. многочлен $x^{q^m}-x$ распадается на произведение минимальных функций всех элементов поля $GF(q^m)$.

Пример

Пусть m=3. $x^{2^3}-x=x(x+1)(x^3+x+1)(x^3+x^2+1)$. Мы перечислили 2 неприводимых многочлена степени 1, которые являются минимальными функциями 0 и 1, а также все 2 неприводимых многочлена 3 степени, которые являются минимальными функциями для $\{\alpha,\alpha^2,\alpha^4\}$ и $\{\alpha^3,\alpha^5,\alpha^6\}$ (для поля из примера 1).

Пример для $x^{16} - x$

При
$$m = 4$$

$$x^{2^4} - x = x(x+1)m_5(x)m_1(x)m_7(x)m_3(x),$$

где

$$m_5(x) = x^2 + x + 1$$

$$m_1(x)=x^4+x+1$$

$$m_7(x) = x^4 + x^3 + 1$$

$$m_3(x) = x^4 + x^3 + x^2 + x + 1.$$

Корнями минимальных функций $m_5(x), m_1(x), m_7(x), m_3(x)$ будут соответственно В примере 1:

$$(\alpha^{\mathbf{5}},\alpha^{\mathbf{10}});(\alpha,\alpha^{\mathbf{2}},\alpha^{\mathbf{4}},\alpha^{\mathbf{8}});(\alpha^{\mathbf{7}},\alpha^{\mathbf{14}},\alpha^{\mathbf{13}},\alpha^{\mathbf{11}});(\alpha^{\mathbf{3}},\alpha^{\mathbf{6}},\alpha^{\mathbf{12}},\alpha^{\mathbf{9}})$$

В примере 2:

$$(\beta^{5},\beta^{10});(\beta^{7},\beta^{14},\beta^{13},\beta^{11});(\beta,\beta^{2},\beta^{4},\beta^{8});(\beta^{3},\beta^{6},\beta^{12},\beta^{9})$$

Сопряженные элементы поля

Определение

Элементы поля, являющиеся корнями одного и того же неприводимого многочлена, называются сопряженными элементами поля.

Теорема

Все корни одного и того же неприводимого многочлена имеют одинаковый порядок.

Как строить минимальные функции?

Требуемые результаты:

Теорема

Все корни $\beta, \beta^q, ..., \beta^{q^{m1}} \in GF(q^m)$ неприводимого над GF(q) многочлена p(x) степени m различны.

Теорема

Если f(x) многочлен над GF(q), $\beta \in GF(q^m)$ и $f(\beta) = 0$, то $f(\beta^q) = 0$.

Теорема

Степень минимальной функции элемента $\beta \in GF(q^m)$ — делитель m.

Алгоритм построения минимальной функции

- 1. Фиксируем $\beta \in GF(q^m)$ для которого строится минимальная функция
- 2. Вычисляем последовательность: β , β^q , β^{q^2} , ... β^{q^i} , ... до тех пор, пока не найдем такой j : $\beta^{q^j}=\beta$. Такой номер всегда найдется (почему?)
- 3. Всего получим n различных β , β^q , ..., β^{q^n} , где n некоторый делитель m (почему?)
- 4. Тогда $m_{\beta}(x) = (x \beta)(x \beta^q)...(x \beta^{q^n})$

Проверка: после раскрытия скобок многочлен $m_{\beta}(x)$ должен быть над GF(q)!

Пример

построения минимальной функции - начало

Построим минимальный многочлен $m_7(x)$ для элемента $\gamma=\alpha^7\in GF(2^4)$ (Пример 1)

Вначале найдем все корни минимального многочлена. Имеем последовательно:

$$\gamma = \alpha^{7},$$

$$\gamma^{2^{1}} = (\alpha^{7})^{2} = \alpha^{14},$$

$$\gamma^{2^{2}} = (\alpha^{7})^{4} = \alpha^{28} = \alpha^{15} * \alpha^{13} = \alpha^{13},$$

$$\gamma^{2^{3}} = (\alpha^{7})^{8} = \alpha^{56} = (\alpha^{15})^{3} \alpha^{11},$$

а уже

$$\gamma^{2^4} = (\alpha^7)^{16} = \alpha^{112} = (\alpha^{15})^7 \alpha^7 = \alpha^7,$$

то есть мы зациклились. Это значит, что вместе с корнем α^7 корнями минимальной функции $m_7(x)$ будут также $\alpha^{14}, \alpha^{13}, \alpha^{11}$.

Пример построения минимальной функции - продолжение

Теперь нам необходимо вычислить:

$$m_7(x) = (x + \alpha^7)(x + \alpha^{11})(x + \alpha^{13})(x + \alpha^{14})$$

Умножим скобки попарно и сгруппируем:

$$m_7(x) = (x^2 + (\alpha^7 + \alpha^{11})x + \alpha^7 \alpha^{11})(x^2 + (\alpha^{13} + \alpha^{14})x + \alpha^{13}\alpha^{14}),$$

применим таблицу сложения: $lpha^7 + lpha^{11} = lpha^8$, $lpha^{13} + lpha^{14} = lpha^2$, тогда

$$m_7(x) = (x^2 + \alpha^8 x + \alpha^3)(x^2 + \alpha^2 x + \alpha^{12}),$$

$$m_7(x) = x^4 + (\alpha^2 + \alpha^8)x^3 + (\alpha^{12} + \alpha^3 + \alpha^{10})x^2 + (\alpha^5 + \alpha^5)x + 1,$$

далее $\alpha^5+\alpha^5=0$, $\alpha^2+\alpha^8=1$, $\alpha^{12}+\alpha^3+\alpha^{10}=\alpha^{10}+\alpha^{10}=0$ Таким образом,

$$m_7(x) = x^4 + x^3 + 1$$

Примитивные

многочлены и примитивные элементы поля

Определение

Порядок корней неприводимого многочлена называется показателем, которому этот многочлен принадлежит. Если корни неприводимого многочлена являются порождающими (образующими) элементами мультипликативной группы поля, то корни называются примитивными, а сам неприводимый многочлен — примитивным.

Пример

Два неприводимых многочлена x^4+x+1, x^4+x^3+1 — примитивные. Неприводимый многочлен $x^4+x^3+x^2+x+1$ не является неприводимым. Его корни порождают подгруппу 5 порядка:

$$\xi^4 + \xi^3 + \xi^2 + \xi + 1 = 0$$

отсюда

$$\xi^{5}=\xi^{4}+\xi^{3}+\xi^{2}+\xi=1,$$

а значит $\xi^5=1$. порождает подгруппу 5 порядка мультипликативной группы $GF^*(2^4)$.

Циклотомические классы

Определение

Комплект показателей степеней в комплекте сопряженных элементов называется циклотомическим классом. Если i минимальный показатель в этом комплекте, то циклотомическим классом будет $i, i^q, i^{q^2}, ..., i^{q^{t-1}}$, где t — степень неприводимого многочлена, корнями которого являются упомянутые сопряженные элементы. В случае поля $GF(q^m)$ указанные показатели степеней приводятся по модулю q^m-1 .