浙江大学 20_19_ - 20_20_学年_春夏_学期 《电磁场与电磁波》课程期中考试试卷

课程号: ___11120010______, 开课学院: ____信电学院______

考试形式: 一纸开卷, 允许带一张 A4 大小手写稿入考场

考试日期	朝: <u>2019</u> 全	F <u>5</u> 月 <u>18</u>	_日,考试时间]: <u>120</u> 分	钟	
		诚信考试,	沉着应考,村	土绝违纪。		
考生姓名:_		学号:		「属院系:		_
题序	_	=	Ξ	四	五	总 分
得分						
评卷人						
 一、单项选择题(每小题 2 分, 共 20 分) 1.一传输线其终端反射系数为-0.2,则驻波系数为 () A. 1 B. 1.5 C. 2 D. 2.5 2.终端短路的 50Ω 传输线,电流驻波最小点的位置位于 () 						
A.终端处	B.离终	端 $\frac{\lambda}{4}$ 处 C	.离终端 $\frac{\lambda}{2}$ 处	D.离终端	λ处	
3.已知有一平面波,电场方向为 2x-y,磁场方向为 x+2y+z,问以哪个方向为纵向时,可看成 TM 波? () A. x+2y 方向 B. y+2z 方向 C.z 方向 D.y-2z 方向						
4. 在射频电路领域,阻抗匹配技术具有更重要的意义。在设计微波阻抗匹配电路时,不能使用()						
A. 电容	B. 电阻	C. 电感	D. 传输线			
5.对于群速 v_g 与相速 v_p ,以下说法 正确 的是() A. 真正体现信息传播速度的是相速 B. 群速一定大于相速						
C. 无色情	 数时,群速与标	相速不相等	D. 无耗同轴	曲线工作于 TE	EM 模时,相速	与群速相等

$\frac{\lambda_{g}}{8}$ $\frac{\lambda_{g}}{8}$ 处的电压					
反射系数为()					
A1, +j B1, -j C. +1, +j D. +1, -j					
7.已知在介电常数为 $e=2e_0$ 的均匀介质中存在电场强度分布 $\vec{E}=\hat{x}x+\hat{y}(2y+x^2)$,则介质					
中的自由电荷体密度为(
A. $2e_{\scriptscriptstyle 0}$ B. $3e_{\scriptscriptstyle 0}$ C. $4e_{\scriptscriptstyle 0}$ D. $6e_{\scriptscriptstyle 0}$					
8. 有关复介电常数 $\varepsilon' = \varepsilon - j \frac{\sigma}{\omega}$ 的描述错误的是()					
A.实数部分代表位移电流的贡献					
B.虚数部分是传导电流的贡献					
C.实数部分引起电磁波功率的耗散					
D.虚数部分引起电磁波功率的耗散					
9. 下列电磁波为右旋极化波的是()					
A. $E_x = 10\cos(\omega t - kz + \phi)$, $E_y = -10\sin(\omega t - kz + \phi)$					
B. $E_x = 10\cos(\omega t + kz + \phi), E_y = -10\sin(\omega t + kz + \phi)$					
C. $E_x = 10\sin(\omega t - kz + \phi), E_y = 10\cos(\omega t - kz + \phi)$					
D. $E_x = 10\sin(\omega t + kz + \phi), E_y = -10\cos(\omega t + kz + \phi)$					
10. 下面对于导体趋肤效应的说法错误的是() A. 趋肤深度是指波进入到导体内,幅度衰减为导体表面幅度的1/e处的深度 B. 导体导电性越好,波在导体中的衰减越慢 C. 频率越高,导体趋肤深度越小 D. 导体导电性越好,趋肤深度越小					
二、 填空题(每个空 2 分, 共 20 分)					
1.假设有矢量 $\vec{A} = (z^3 + \cos 2y + 1)\vec{y_0}$,则 $\nabla \cdot \vec{A} = \underline{\qquad}$, $\nabla \times \vec{A} = \underline{\qquad}$ 。					
2.根据边界条件,对于完纯导体,其磁感应强度矢量的分量和电场强度矢量的					
分量都必须等于零,假设表面磁感应强度矢量为 \overrightarrow{H} ,导体表面的法向量法向量为 $\overrightarrow{n_0}$,则其					
表面电流为 $J_{s}=$ 。					

3.对于波的传播常数 $k = k_r - jk_i$ 而言,其实部 k_r 称为波的______,虚部 k_i 称为波的_____。

4.在介电常数为 $\varepsilon_r \varepsilon_0$,磁导率为 μ_0 的介质中,电场强度矢量为 $\overrightarrow{E} = \overrightarrow{x_0} E_0 e^{j2k_0 z}$,其中 $k_0 = \omega \sqrt{\mu_0 \varepsilon_0}$, f = 1MHz ,则该介质的相对介电常数为 $\varepsilon_r = \underline{\hspace{1cm}}$,波长 $\lambda = \underline{\hspace{1cm}}$,相速 $v_p = \underline{\hspace{1cm}}$ 。

三、计算题(每道大题20分,共60分)

1.已知自由空间($\varepsilon_r = 1, \mu_r = 1$)中有一均匀平面波,该平面波的电场为:

$$\vec{E}(\vec{r}) = (j5x_0 + 4y_0 + 3\hat{z}_0)e^{-j(ax+by+4z)}V/m$$
, \vec{x} :

- (1) 该电磁波传播方向的单位矢量k;
- (2) 该电磁波的波长λ;
- (3) 该电磁波的角频率 ω ;
- (4) 该电磁波的极化状态,并给出证明;
- (5) 该电磁波的磁场强度的复数表达式、瞬时表达式以及电场强度的瞬时表达式;
- (6) 该电磁波的时间平均坡印廷功率流 $\left\langle \overrightarrow{S}\left(t
 ight)
 ight
 angle$ 。

2. 在高频通信系统中,阻抗匹配技术是非常重要的技术之一。各种样式的天线、放大器等微波器件都需要用到阻抗匹配电路。现有一款天线,其阻抗为 $Z_L=(150+50\,j)\Omega$,要求利用双枝节匹配电路实现天线和源的匹配,源电压为U=5V,源阻抗和传输线的特征阻抗均为 $Z_C=50\Omega$ 。

图 1 双枝节匹配电路

- (1) 计算负载(天线)导纳,并将其表示在下面的导纳圆图上;
- (2) 在信号源和天线之间无匹配电路的情况下,计算天线端口的驻波比 ρ ,第一个电压驻

波最小点距离负载的位置 d_{\min} (用 λ 表示),负载透射功率和入射功率之比 $\frac{P^t}{P^i}$;

(3) 有如图 1 匹配电路,借助圆图,得到短路双枝节长度 l_{l} 和 l_{2} 。

3.已知空气中磁场强度为 $\overrightarrow{H}_i = -y_0 e^{-j\pi \left(\sqrt{3}x+z\right)} A/m$ 的均匀平面波,向位于z=0处的理想导体斜入射(如图 2 所示)。求:

(1) 入射角 θ_i ;

- (2) 入射波电场 \vec{E}_i ;
- (3) 反射波磁场 \overrightarrow{H}_r 和反射波电场 \overrightarrow{E}_r ;
- (4) 交界面处表面电流密度 \vec{J}_s 。(注:理想导体边界条件)