HPC ARCHITECTURES

Darren White d.white@epcc.ed.ac.uk

Overview

- HPC Architecture course aims to cover:
 - Basic components of HPC systems: processors, memory, interconnect, storage.
 - Classification of architectures: SIMD/MIMD, shared vs distributed memory, clusters
 - System software: OSs, processes, threads, scheduling.
 - Brief history of HPC systems, including Moore's Law.
 - CPU design: functional units, instructions sets, pipelining, branch prediction, ILP (superscalar, VLIW, SIMD instructions), multithreading.
 - Caches: operation and design features
 - Memory: operation and design features, including cache coherency and consistency
 - Multicore CPUs, including cache and memory hierarchy
 - GPGPUs: operation and design features
 - Interconnects: operation and design features
 - Filesystems and associated hardware
 - Data focussed hardware and system integration
 - Batch systems
 - Energy and power performance and monitoring
 - Current HPC architectures

Overview

- Timetable:
 - Monday 11:10-12:00 lecture (Bayes G.03)
 - Tuesday 14:10-15:00 practical (Appleton 5.05)
 - Friday 11:10-12:00 lecture (Bayes G.03)
- Assessed through exam
 - 4 question, 25 marks each question
- Reading resources
 - Introduction to High Performance Computing for Scientists and Engineers Georg Hager, Gerhard Wellein
 - Introduction to High Performance Scientific Computing Victor Eijkhout, http://www.tacc.utexas.edu/~eijkhout/Articles/EijkhoutIntroToHPC.pdf

Performance Trend

This graph is borrowed from Wikipedia ©Lucas wilkins

Quantifying Performance

- Serial computing concerned with complexity
 - how execution time varies with problem size N
 - adding two arrays (or vectors) is O(N)
 - matrix times vector is $O(N^2)$, matrix-matrix is $O(N^3)$
- Look for clever algorithms
 - naïve sort is O(N²)
 - divide-and-conquer approaches are O(N log (N))
- Parallel computing also concerned with scaling
 - how time varies with number of processors P
 - different algorithms can have different scaling behaviour
 - but always remember that we are interested in minimum time!

Performance Measures

T(N,P) is execution time for size N on P processors

- Speedup
 - typically S(N,P) < P

$$S(N,P) = \frac{T(N,1)}{T(N,P)}$$

- Parallel Efficiency
 - typically *E(N,P)* < 1

$$E(N,P) = \frac{S(N,P)}{P} = \frac{T(N,1)}{PT(N,P)}$$

- Serial Efficiency
 - typically E(N) <= 1

$$E(N) = \frac{T_{best}(N)}{T(N,1)}$$

Parallel Scaling

Scaling describes how the runtime of a parallel application changes as the number of processors is increased

Can investigate two types of scaling:

- Strong Scaling (increasing P, constant N):
 - problem size/complexity stays the same as the number of processors increases, decreasing the work per processor
- Weak Scaling (increasing P, increasing N):
 - problem size/complexity increases at the same rate as the number of processors, keeping the work per processor the same

The Serial Component

Amdahl's law

"the performance improvement to be gained by parallelisation is limited by the proportion of the code which is serial"

Gene Amdahl, 1967

Amdahl's law

- Assume a fraction α is completely serial
 - time is sum of serial and potentially parallel
- Parallel time

$$T(N,P) = \alpha T(N,1) + \frac{(1-\alpha)T(N,1)}{P}$$

Parallel speedup

$$S(N,P) = \frac{T(N,1)}{T(N,P)} = \frac{P}{\alpha P + (1-\alpha)}$$

- for $\alpha = 0$, S = P as expected (i.e. E = 100%)
- otherwise, speedup limited by 1/ α for any P
- impossible to effectively utilise large parallel machines?

Gustafson's Law

Need larger problems for larger numbers of CPUs

Utilising Large Parallel Machines

• Assume parallel part is O(N), serial part is O(1)

- time
$$T(N,P) = T_{serial}(N,P) + T_{parallel}(N,P)$$

$$= \alpha T(1,1) + \frac{(1-\alpha)NT(1,1)}{P}$$

• speedup
$$S(N,P) = \frac{T(N,1)}{T(N,P)} = \frac{\alpha + (1-\alpha)N}{\alpha + (1-\alpha)\frac{N}{P}}$$

Scale problem size with CPUs, ie set N = P Weak Scaling

• speedup
$$S(P,P) = \alpha + (1-\alpha)P$$

• efficiency
$$E(P,P) = \frac{\alpha}{P} + (1-\alpha)$$

Maintain constant efficiency (1-α) for large P

Performance Summary

- Useful definitions
 - Speed-up
 - Efficiency
- Amdahl's Law "the performance improvement to be gained by parallelisation is limited by the proportion of the code which is serial"
- Gustafson's Law to maintain constant efficiency we need to scale the problem size with the number of CPUs.

Parallel Computers at Edinburgh

- 1981 ICL DAP (SIMD; 4K processors)
- 1986 Meiko T800 CS (MIMD-DM; 400 processors)
- 1988 AMT DAP608 (SIMD; 1K processors)
- 1990 Meiko i860 CS (MIMD-DM; 64 processors)
- 1991 TMC CM-200 (SIMD: 16K processors)
- 1992 Meiko i860 CS (MIMD-DM; 16 processors)
- 1994 Cray T3D (MIMD-NUMA; 512 processors), Cray Y-MP (Vector)
- 1995 Meiko CS-2 (MIMD-DM)
- 1996 Cray J90 (Vector)
- 1997 Cray T3E (MIMD-NUMA; 344 processors)
- 1998 Hitachi SR2201 (MIMD-DM)
- 2000 Sun UltraSPARC III Cluster (SMP Cluster; 66 processors)
- 2001 Sun Fire 15K (MIMD-SMP; 52 processors)
- 2002 IBM p690 cluster (SMP cluster; 1280 processors)
- 2004 QCDOC (MIMD-DM; ~14,000 processors)
- 2005 IBM BlueGene/L (MIMD-DM; 2048 processors)
- 2006 IBM p575 cluster (SMP cluster; 2560 processors)
- 2007 Cray XE6 (MIMD-DM; 90,112 cores)
- 2013 Cray XC30 (MIMD-DM; 118,080 cores)

ICL DAPs

ICL DAPs

Facts and Figures

- Lifetime: 1981/1982--1988
- Processors: 4096 single bit processors (in each of 2 systems)
- Peak Performance: 0.03 GFlops
- Architecture: SIMD
- Memory: 2 MBytes
- Programming: Data Parallel (DAP Fortran)

- one of the earliest production parallel computers
- ICL made ~10 before AMT took the DAP technology forward
- EPCC had a significant upgrade in 1988 to AMT DAP (1024 processors with 4 MBytes and a peak of ~60 Mflops)

Meiko CS-1

Meiko CS-1

Facts and Figures

• *Lifetime:* 1986--1994

Processors: 400 x T800 Transputers

Peak Performance: 0.4 GFlops

Architecture: MIMD-DM

Memory: 400 MBytes

Programming: OCCAM special purpose language/OS

- T800 was first processor to have a peak of 1 MFlops and also had built-in support for passing messages
- focus for Edinburgh Concurrent Supercomputer Project which was pre-cursor to EPCC

Meiko i860

Meiko i860

Facts and Figures

- Lifetime: 1990--1995
- Processors: 64 x 80 MHz i860 (+ T800s for communication)
- Peak Performance: 5.1 GFlops
- Architecture: MIMD-DM
- Memory: 1 Gbyte
- Programming: Message Passing (CSTools)

- split between QCD and Materials Grand Challenges
- QCD code sustained more than 1 GFlop making it one of the fastest applications codes in the world!

TMC CM-200

TMC CM-200

Facts and Figures

- Lifetime: 1991--1996
- Processors: 16,584 single bit processors + 512 FPUs
- Peak Performance: 5 GFlops
- Architecture: SIMD
- Memory: 512 MBytes
- Programming: Data Parallel (CM Fortran, C*)

- largest SIMD machine in Europe
- state-of-the-art Data Vault with 10 GBytes of storage

Cray T3D

Cray T3D

Facts and Figures

- Lifetime: 1994-1999
- Processors: 512 x 150 MHz EV5 Alphas
- Peak Performance: 76 GFlops
- Architecture: MIMD-NUMA
- Memory: 32 GBytes
- Programming: Message Passing (PVM/MPI), Work Sharing, Data Parallel (CRAFT)

- first UK national parallel computing service
- at various times, this was the largest T3D in Europe
- choice of programming paradigms

Cray J90

Facts and Figures

• Lifetime: 1996--2002

Processors: 10 x 100 MHz Vector

Peak Performance: 2 GFlops

Architecture: MIMD-SMP/MISD?

Memory: 2 GBytes

Programming: serial/vector

Notes

 EPCC primarily had vector facilities in support of the Cray HPC systems

Cray T3E

Cray T3E

Facts and Figures

- *Lifetime:* 1997--2002
- Processors: 344 x 450 MHz EV56 Alphas
- Peak Performance: 310 GFlops
- Architecture: MIMD-NUMA
- Memory: ~40 GBytes
- Programming: Message Passing (MPI), Data Parallel (CRAFT)

- supported multiple services for various communities
- different processors had 64, 128 or 256 MBytes of memory

IBM p690 Cluster (HPCx Phase 1)

IBM p690 Cluster (HPCx Phase 1)

- Facts and Figures
 - Lifetime: 12/2002--7/2004
 - Processors: 1280 x 1.3 GHz Power 4s
 - Peak Performance: 6.7 TFlops
 - Architecture: SMP cluster
 - Memory: 1280 GBytes
 - Programming: Message Passing (MPI), Mixed Mode (OpenMP+MPI)

- UK national HPC service run by UoE/EPCC, DL and IBM
- EPCC lead partner, although system is located at DL
- focus on capability computing
- upgrades to Power 4+ (2004) and then Power 5 (2005/06)

QCDoC

Quantum ChromoDynamics on a Chip

QCDoC

Facts and Figures

- Lifetime: 10/2004 ---
- Processors: >14,000 x 400 MHz special-purpose chips
- Peak Performance: ~11 TFlops
- Architecture: MIMD-DM
- Memory: ~1750 GBytes
- Programming: Non-standard Message Passing (nearest-neighbour communications plus collectives)

- multiple systems (largest had 12K processors)
- designed by IBM, University of Edinburgh and Columbia
- QCD sustains up to 4 TFlops

IBM BlueGene (Blue Sky)

IBM BlueGene (Blue Sky)

Facts and Figures

- Lifetime: 1/2005-1/2018
- Processors: 2048 x 700 MHz PowerPCs
- Peak Performance: 5.6 TFlops
- Architecture: MIMD-DM
- Memory: 512 GBytes
- Programming: Message Passing (MPI)

- first BlueGene system in Europe
- low power requirements and high density of processors
- capable of scaling to extremely large systems
 - many BlueGene systems of >100 TF

IBM p575 Cluster (HPCx Phase 3)

IBM p575 Cluster (HPCx Phase 3)

Facts and Figures

- Lifetime: 7/2006—2010
- Processors: 2560 x 1.5 GHz Power 5s
- Peak Performance: 15.3 TFlops
- Architecture: SMP cluster
- Memory: 5120 GBytes
- Programming: Message Passing (MPI), Mixed Mode (OpenMP+MPI)

- double the memory per processor of Phase 1/2
- significantly improved interconnect
- focussed on Complementary Capability Computing
- closes in January 2010

Cray XT4 (HECToR Phase 1)

Cray XT4 (HECToR Phase 1)

Facts and Figures

- Lifetime: 9/2007— 6/2009
- Processors: 5664 x 2.8 GHz dual-core Opterons
 - i.e. 11,328 cores
- Peak Performance: 63.4 TFlops
- Architecture: MIMD-DM
- Memory: 34 TBytes
- Programming: Message Passing (MPI)

- UK's previous national HPC facility
- regular upgrades to 2013+
- initially one of Top 20 systems worldwide
- supplemented by Cray X2 (BlackWidow) vector system

Cray XT5 (HECToR Phase 2a)

Facts and Figures

- Lifetime: 6/2009 06/2010
- Processors: 5664 x 2.3 GHz quad-core Opterons
 - i.e. 22,656 cores
- Peak Performance: 208 TFlops
- Architecture: MIMD-DM
- Memory: 45.3 TBytes
- Programming: Message Passing (MPI)

- reduced in size from 60 to 33 cabinets in 2Q10
 - to allow for Phase 2b

Cray XE6 (HECToR Phase 2b)

Facts and Figures

Lifetime: 6/2010 — 12/2011

Processors: 3712 x 2.1 GHz 12-core (Magny-Cours) Opterons

• i.e. 44,544 cores

Peak Performance: 374 TFlops

Architecture: MIMD-DM

Memory: 59.4 TBytes

Programming: MPI

- 20 XT6 cabinets
- Gemini interconnect

Cray XE6 (HECToR Phase 3)

Facts and Figures

• Lifetime: 12/2011 — 2014

Processors: 5632 x 2.3GHz 16-core (Interlagos) Opterons

• i.e. 90,112 cores

Peak Performance: >800 TFlops

Architecture: MIMD-DM

Memory: 90 TBytes

Programming: MPI

- 30 XE6 cabinets
- Gemini interconnect

Cray XC30 (ARCHER)

Facts and Figures

• Lifetime: 11/2013 — 2020

Processors: 9840 x 2.7 GHz 12-core Intel Xeon

• i.e. 118,080 cores

Peak Performance: >2.5 PFlops

Architecture: MIMD-DM

Memory: 400 TBytes

Programming: MPI

- 26 XC30 cabinets
- Aries interconnect

Experiences of EPCC

- New generation of machines every 3-4 years
- Each generation providing
 - significantly greater compute power and larger memories
 - better tools and more stable programming environment
 - ... but number of processors has increased only modestly
- Useful lifetime of machines around 5 years
- (Nearly) missed out on vector architectures

Peak Performance

Peak Performance

- EPCC has managed to stay ahead of Moore's Law for the last 25 years!
- Most of the major systems were initially in the top 20 or so worldwide
 - see www.top500.org
- GFlops in 1990
- TFlops in 2002
- PFlops in 2012 (DiRAC Bluegene/Q)
- Eflops by 2022-2024

The Future

- The end of Moore's Law?
 - rise of multi-core processors
- HPC increasingly mainstream
 - animation for Shrek, Lord of the Rings, etc.
 - PlayStation 3 based on multi-core Cell architecture
 - Multicore CPUs and GPGPUs
 - Big data, big cloud, etc...
- Exciting range of HPC-oriented architectures
 - Massively parallel (BlueGene, XC)
 - Accelerators (Xeon Phi, GPGPU)
 - Shared memory clusters (SGI UV)
 - Low power (ARM)
 - Big data (Hadoop, Spark)

Summary

- Parallel computing started as a range of weird and wacky architectures
 - with their own unique languages, OS, tools, etc.
 - each required substantial investment of time to port to
- Standardisation of programming paradigms was vital for parallel computing to mature
 - MPI, HPF, OpenMP,...
- Edinburgh/EPCC has been at the forefront of parallel computing and HPC for 30 years
- The future appears extremely exciting for HPC, computational science and EPCC

