Bewijzen in de wiskunde inleveropgave 4

Casper Bakker

6413978

Laat p en q twee verschillende priemgetallen zijn en definieer voor gehele getallen a, b de relatie aRb door: aRb wanneer b-a deelbaar is door zowel p als q. Voor deze relatie R laten we zien:

- \bullet dat R een equivalentierelatie is
- dat de equivalentieklassen van R overeenkomen met de elementen van \mathbb{Z}_{pq} . Dat wil zeggen: [a] = [b] als equivalentieklassen van R dan en slechts dan als [a] = [b] als elementen van \mathbb{Z}_{pq} .

Hierbij gebruiken we het volgende lemma: Als p een priemgetal is en p|mn dan p|m of p|n.

i)

Om te bewijzen dat R een equivalentie relatie is moeten we laten zien dat R reflexief, symmetrisch en transitief is.

Reflexiviteit

Om te laten zien dat R reflexief is moeten we aantonen dat aRa voor alle $a \in \mathbb{Z}$. Dit betekent dat voor een willekeurige $a \in \mathbb{Z}$ moet gelden dat p|a-a en q|a-a. Merk op dat a-a=0=0p en 0 is een geheel getal. Dus omdat $\frac{a-a}{p}=\frac{0}{p}=0$ concluderen we dat R reflexief is.

Symmetrie

Om te laten zien dat R symmetrisch is moeten we laten zien dat als $a, b \in \mathbb{Z}$ zodat aRb dan ook bRa.

We gebruiken een bewijs uit het ongerijmde. Stel dat er $a,b \in \mathbb{Z}$ bestaan zodat aRb en $b \not R a$. Als aRb dan weten we dat p|b-a dus $\frac{b-a}{p}=k$ met $k \in \mathbb{Z}$ hieruit volgt a-b=-pk. Dan zien we dat $\frac{a-b}{p}=\frac{-pk}{p}=-k$. Echter hadden we aangenomen dat $p \not \mid a-b$ dus uit deze tegenspraak kunnen we concluderen dat als p|b-a dan ook p|a-b. Op dezelfde wijze is te demonstreren dat als q|b-a dan q|a-b (het enige verschil is het priemgetal q in plaats van p). We concluderen dat R symmetrisch is.

Transitiviteit

Om te laten zien dat R transitief is moeten we aantonen dat als aRb en bRc dan aRc met $a,b,c\in\mathbb{Z}$. Laat $a,b,c\in\mathbb{Z}$ zodat aRb en bRc. Omdat aRb weten we dat p|b-a dus $\frac{b-a}{p}=k$. Dan ook b=pk+a. we weten dat p|c-b dus ook p|c-pk-a ofwel $\frac{c-pk-a}{p}=r$ met $r\in\mathbb{Z}$. Hieruit volgt dat $\frac{c-a}{p}=r+k$ dus p|c-a. Op een zelfde manier is aan te tonen dat q|c-a. We concluderen dat R transitief is.

Omdat R reflexief, symmetrische en transitief is concluderen we dat R een equivalentie relatie is.

ii)

We laten zien dat de equivalentieklassen van R overeenkomen met de elementen van \mathbb{Z}_{pq} . Dit is equivalent met laten zien dat de equivalentie klasse relatie R gelijk is aan de gehele getalen modulo pq. We laten dus zien dat p|b-a en q|b-a dan en slechts dan als pq|b-a.

We bewijzen eerst dat als p|b-a en q|b-a dan pq|b-a. Laat $b,a\in\mathbb{Z}$ en p en q twee verschillende willekeurige priemgetallen zodat p|b-a en q|b-a. Omdat p|b-a weten we dat $\frac{b-a}{p}=k$ waarbij $k\in\mathbb{Z}$. Dit betekent ook dat b-a=kp. We weten dat q|b-a dus ook q|kp. Omdat q een priemgetal is volgt uit het lemma dat q|k of q|p. Omdat p en q priemgetallen zijn weten we dat q geen deler is van p dus weten we dat q|k. Omdat q|k volgt dat $\frac{k}{q}=r$ waarbij $r\in\mathbb{Z}$.

Omdat $\frac{b-a}{p}=k$ en k=qr concluderen we dat $\frac{b-a}{pq}=r$ met $r\in\mathbb{Z}$ dus pq|b-a.

We laten zien dat als pq|b-a dan p|b-a en q|b-a. Laat $b,a\in\mathbb{Z}$ en p en q twee verschillende priemgetallen zodat pq|b-a. Als pq|b-a dan $\frac{b-a}{pq}=k$ waarbij $k\in\mathbb{Z}$. Dan volgt dat $\frac{b-a}{p}=qk$ en $\frac{b-a}{q}=pk$. Omdat pk en qk beide gehele getalen zijn is het duidelijk dat p|b-a en q|b-a. We concluderen dat als pq|b-a dan p|b-a en q|b-a.

We hebben bewezen dat p|b-a en q|b-a dan en slechts dan als pq|b-a. Omdat voor $x,y\in [a]$ van R geldt dat xRy weten we dat pq|x-y en pq|y-x dus komt [a] overeen met een element van \mathbb{Z}_{pq}