FISICA II-IS Prof. Daniel Cariatore

GUÍA 2: CAPACITORES

1. Tenemos un capacitor de placas paralelas cuadradas de área A y separación d, en el vacío. ¿Cuál es el efecto cualitativo de cada uno de los casos siguientes sobre su capacitancia?

- a) Si de se reduce la distancia entre las placas
- b) Si se coloca una lámina de cobre entre las placas, pero sin que toque ninguna de ellas
- c) Si se duplica el área de ambas placas
- d) Si se duplica el área de una sola placa
- e) Si se desliza a las placas paralelamente entre sí de modo que el área de traslape sea del 50%
- f) Si se duplica la diferencia de potencial entre las placas
- g) Si se inclina a una placa de modo que la separación permanezca, siendo d en un extremo pero $\frac{1}{2}d$ en el otro.
- 2. Analice las semejanzas y diferencias cuando se inserta entre las placas de un capacitor de placas paralelas. (Suponga que los espesores de la lámina son de la mitad de la separación entre placas)
 - a) Una lámina de dieléctrico
 - b) Una lámina conductora
- 3. Un capacitor de placas paralelas se carga mediante una batería, la cual después se desconecta. Entonces se desliza una lámina de material dieléctrico entre las placas. Describa <u>cualitativamente</u> lo que sucede a la carga, a la capacitancia, a la diferencia de potencial, al campo eléctrico y a la energía almacenada.
- 4. Un capacitor lleno de aire consiste en dos placas paralelas, cada una de 7,6 cm² y separadas 1,8 [mm]. Si a estas placas se le aplica una diferencia de potencial de 20 v, calcular:
 - a) El campo eléctrico entre las placas
 - b) La capacidad
 - c) La carga sobre cada placa
- 5. Dos condensadores de $10[\mu F]$ se conectan en paralelo y se cargan a una tensión de 100[V]. Tras ser desconectados del generador, se introduce un material aislante de constante dieléctrica K=3 entre las placas de uno de ellos. Calcular:
 - a) La carga de cada condensador antes y después de introducir el dieléctrico
 - b) La tensión tras introducir el dieléctrico
 - c) La energía de cada condensador antes y después de introducir el dieléctrico
- 6. Encontrar:
 - a) La capacidad equivalente de los capacitores de la figura
 - b) La carga sobre cada capacitor
 - c) La diferencia de potencial en cada capacitor

7. a) ¿Cuánta carga puede ser colocada en un capacitor con aire entre las placas antes de que se rompa si el área de cada placa es 5 cm²?

FISICA II-IS Prof. Daniel Cariatore

b) determinar la carga máxima en caso de utilizar polietileno entre las placas en lugar de aire. Suponga que la rigidez dieléctrica del aire es 3. 10⁶ V/m y la del polietileno es 24. 10⁶ V/m

- 8. Encontrar:
 - a) la capacidad equivalente entre los puntos a y b para el grupo de capacitores de la figura. Si $C_1=5~\mu F$, $C_2=10~\mu F$ y $C_3=2~\mu F$
 - b) si el potencial ente a y b es 60 V, ¿qué carga se almacena en C_3 ?

9. Cuando el interruptor S de la figura se mueve hacia la derecha las placas del capacitor C_1 adquieren una diferencia de potencial de V_0 . C_2 y C_3 están descargados inicialmente. Ahora el interruptor se mueve hacia la izquierda. ¿Cuáles son las cargas finales q_1,q_2 y q_3 de los capacitores correspondientes?

10. En la figura la batería suministra 12 V. $C_1=1~\mu F$, $C_2=2~\mu F$, $C_3=3~\mu F$, $C_4=4~\mu F$

- a) Hallar la carga sobre cada capacitor cuando el interruptor S₁ se cierra
- b) Y cuando más tarde el interruptor S₂ también se cierra
- 11. Hallar la expresión de la capacidad de los capacitores de las figuras

- 12. Un capacitor se construye a partir de placas cuadradas de lados t y separación t Un material de constante dielectrica t se inserta una distancia x dentro del capacitor, como muestra la figura. Determinar:
 - a) La capacidad equivalente
 - b) La energía almacenada en el capacitor si la diferencia de potencial es V
 - c) La direccion y magnitud de la fuerza ejercida sobre el dielectrico, suponiendo una diferencia de potencial constante V
 - d) Obtener un valor numérico para la fuerza suponiendo l=5 cm, V= 2000 V, d= 2 mm y el dielectrico es vidrio K= 4,5
 - e) ¿ como se modifican los items b) y c) si la carga es constante? (es decir que se conecta el capacitor a una diferencia de potencial hasta que adquiere una carga Q y luego se desconecta la batería)

