

Família exponencial - continuação

Componente aleatório de um GLM

Consiste em uma variável aleatória Y, com distribuição pertencente à família exponencial.

Família exponencial extra

A função densidade da v.a Y pode ser expressa da seguinte forma:

$$f(x; \theta; \phi) = \exp\{\phi^{-1}[y\theta - b(\theta)] + c(y, \phi)\}$$

Sabemos que a família exponencia da forma canônica é dada por:

$$f(x; \theta) = h(x) \cdot \exp[\theta x - b(\theta)]$$

Ou seja, é uma reparametrização da família exponencial canônica.

Componente aleatório de um GLM

$$f(x; \theta; \phi) = \exp\{\phi^{-1}[y\theta - b(\theta)] + c(y, \phi)\}$$

em que $\phi>0$ é um parâmetro extra de perturbação - medida de dispersão da distribuição.

Quando ϕ é conhecido, a família de distribuição será idêntica à família exponencial na forma canônica.

Quando temos $\phi = 1$, temos que:

$$f(x; \theta; \phi) = \exp\{\phi^{-1}[y\theta - b(\theta)] + c(y, \phi)\}$$
$$f(x; \theta) = h(x) \cdot \exp[\theta x - b(\theta)]$$

Componente aleatório de um GLM

$$f(x; \theta; \phi) = \exp\{\phi^{-1}[y\theta - b(\theta)] + c(y, \phi)\}$$

Reparametrização da família exponencial na forma canônica

Esse modelo é chamado de família exponencial linear ou família exponencial de dispersão na forma canônica

Propriedades do componente aleatório

Temos que valor esperado e a variância estarão associado as derivadas em relação a função θ .

Assim como ocorria na Família exponencial na forma canônica.

A média (valor esperado) e a variância da variável aleatória Y, com distribuição na família exponencial de dispersão pode ser dadas por:

$$E(Y) = \mu = b'(\theta)$$
 e $Var(Y) = \phi \cdot b''(\theta)$

Obs. 1.: A partir da expressão da variância temos que ϕ é um parâmetro de dispersão do modelo e seu inverso ϕ^{-1} , é uma medida de precisão.

*Modelos sobre dispersos.

Obs. 2.: A função que relaciona o parâmetro canônico (θ) com a média (μ) é denotada por :

$$\theta = q(\mu)$$

Uma vez que $E(Y) = \mu = b'(\theta)$, temos que $q(\mu)$ é a inversa da b' (θ) .

Obs. 3 : Assim a variância de Y pode ser fatorada em dois componentes:

- 1 . O **parâmetro** ϕ está associado exclusivamente à dispersão de Y
- 2. A **função da média** μ na variância é representada por b''(θ) = $V(\mu)$, denominada de **função variância**. Obtendo θ a partir da função de variância temos:

$$\theta = \int V^{-1}(\mu)d\mu$$

Obs.4 : Cada distribuição pertencente à família exponencial de dispersão tem sua **particular função de variância** e vice-versa (unicidade) **– é uma função única**.

Distribuição conjunta da Família Exponencial de Dispersão

Sejam $Y_1,...,Y_n$ variáveis aleatória independentes que seguem distribuição pertencente à família exponencial de dispersão. A distribuição conjunta de $Y_1,...,Y_n$ é dada por:

$$f(y; \theta, \phi) = \prod_{i=1}^{n} f(y; \theta, \phi) = \exp\left\{\phi^{-1} \sum_{i=1}^{n} [y_i \theta_i - b(\theta_i)] + \sum_{i=1}^{n} c(y_{i'} \phi)\right\}$$

Pelo teorema da fatoração de Neyman, tem-se que $\sum_{i=1}^{n} Y_i$ é uma estatística suficiente para θ_i se ϕ for conhecido.

