Class 5: Data Viz with ggplot

Medhini Sosale (PID: A69034757)

R has lots of ways to make figures and graphs in particular. One that comes with R out of the box is called "base" R - the plot() function.

plot(cars)

A very popular package in this area is called ggplot2

Before I can use any add-on package like this I must install it with the install.packages("ggplot2") command/function.

Then to use the package I need to load it with a library(ggplot2) call.

```
# install.packages('ggplot2')
library(ggplot2)
```

Warning: package 'ggplot2' was built under R version 4.3.3

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point()
```


For "simple" plots like this one base R code will be much shorter than ggplot code. Let's fit a model and show it on my plot:

```
ggplot(cars) +
  aes(x=speed, y=dist) +
  geom_point() +
  geom_smooth()
```

 $[\]ensuremath{\tt `geom_smooth()`}\ using method = 'loess' and formula = 'y ~ x'$

Every ggplot has at least 3 layers

- data (data.frame with the numbers and stuff you want to plot)
- aesthetics (mapping of your data columns to your plot)
- geoms (theres are tons of these, basics are geom_point(), geom_line(), geom_col())

head(mtcars)

```
mpg cyl disp hp drat
                                             wt
                                                qsec vs am gear carb
Mazda RX4
                  21.0
                            160 110 3.90 2.620 16.46
                  21.0
Mazda RX4 Wag
                            160 110 3.90 2.875 17.02
                                                                    4
Datsun 710
                  22.8
                            108 93 3.85 2.320 18.61
                                                                    1
Hornet 4 Drive
                  21.4
                            258 110 3.08 3.215 19.44
                                                               3
                         6
                                                                    1
Hornet Sportabout 18.7
                            360 175 3.15 3.440 17.02
                                                               3
                                                                    2
                         8
                                                       0
                            225 105 2.76 3.460 20.22
                                                               3
Valiant
                  18.1
                                                                    1
```

```
ggplot(mtcars) +
  aes(x=mpg, y=disp, size=hp, color=am) +
  geom_point()
```


Now color all points blue

```
library(ggrepel)
```

Warning: package 'ggrepel' was built under R version 4.3.3

```
ggplot(mtcars) +
  aes(x=mpg, y=disp, col=am, label=rownames(mtcars)) +
  geom_point(aes(size=hp)) +
  facet_wrap(~am) +
  geom_text_repel()
```


In-Class Lab

```
url <- "https://bioboot.github.io/bimm143_S20/class-material/up_down_expression.txt"
genes <- read.delim(url)
head(genes)</pre>
```

```
Gene Condition1 Condition2 State
1 A4GNT -3.6808610 -3.4401355 unchanging
2 AAAS 4.5479580 4.3864126 unchanging
3 AASDH 3.7190695 3.4787276 unchanging
4 AATF 5.0784720 5.0151916 unchanging
5 AATK 0.4711421 0.5598642 unchanging
6 AB015752.4 -3.6808610 -3.5921390 unchanging
```

nrow(genes)

[1] 5196

colnames(genes)

```
[1] "Gene" "Condition1" "Condition2" "State"

ncol(genes)

[1] 4

table(genes$State) # using unique will tell you the names but not how many

down unchanging up
    72     4997     127

# making a simple ggplot
p <- ggplot(genes) +</pre>
```

aes(x=Condition1, y=Condition2, col=State) +

geom_point()

р

Gene Expression Changes Upon Drug Treatment

There are 5196 genes in this dataset.

The table() function is a super useful utility to determine how many entries of each type there are.

```
round(table(genes$State) / nrow(genes), 3) # rounds to 3 decimal places
```

```
down unchanging up 0.014 0.962 0.024
```

File location online

url <- "https://raw.githubusercontent.com/jennybc/gapminder/master/inst/extdata/gapminder.

```
gapminder <- read.delim(url)
library(dplyr)

Warning: package 'dplyr' was built under R version 4.3.3

Attaching package: 'dplyr'

The following objects are masked from 'package:stats':
    filter, lag

The following objects are masked from 'package:base':
    intersect, setdiff, setequal, union

gapminder_2007 <- gapminder %>% filter(year==2007)

# basic scatter plot
library(ggplot2)
ggplot(gapminder_2007) +
    aes(x=gdpPercap, y=lifeExp) +
    geom_point()
```



```
# making points a bit transparent
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp) +
  geom_point(alpha=0.5)
```



```
# adding aesthetic variables
ggplot(gapminder_2007) +
  aes(x=gdpPercap, y=lifeExp, color=continent, size=pop) +
  geom_point(alpha=0.5)
```



```
# changing aesthetics / what we color by
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, color = pop) +
  geom_point(alpha=0.8)
```



```
# changing point size
ggplot(gapminder_2007) +
  aes(x = gdpPercap, y = lifeExp, size = pop) +
  geom_point(alpha=0.5)
```



```
gapminder_top5 <- gapminder %>%
  filter(year==2007) %>%
  arrange(desc(pop)) %>%
  top_n(5, pop)

gapminder_top5
```

```
country continent year lifeExp
                                            pop gdpPercap
1
         China
                    Asia 2007 72.961 1318683096 4959.115
2
         India
                    Asia 2007 64.698 1110396331
                                                 2452.210
3 United States Americas 2007 78.242 301139947 42951.653
     Indonesia
                    Asia 2007 70.650
                                       223547000
                                                 3540.652
        Brazil Americas 2007 72.390 190010647
5
                                                 9065.801
```

```
# basic bar chart
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop))
```



```
# adding color fill
ggplot(gapminder_top5) +
geom_col(aes(x = country, y = pop, fill = continent))
```



```
# changing to a numeric variable for color
ggplot(gapminder_top5) +
  geom_col(aes(x = country, y = pop, fill = lifeExp))
```



```
# changing the fill again
ggplot(gapminder_top5) +
  aes(x=country, y=pop, fill=gdpPercap) +
  geom_col()
```



```
# change bar order
ggplot(gapminder_top5) +
  aes(x=reorder(country, -pop), y=pop, fill=gdpPercap) +
  geom_col()
```



```
# fill by country
ggplot(gapminder_top5) +
aes(x=reorder(country, -pop), y=pop, fill=country) +
geom_col(col="gray30") +
guides(fill="none")
```


head(USArrests)

	${\tt Murder}$	${\tt Assault}$	${\tt UrbanPop}$	Rape
Alabama	13.2	236	58	21.2
Alaska	10.0	263	48	44.5
Arizona	8.1	294	80	31.0
Arkansas	8.8	190	50	19.5
California	9.0	276	91	40.6
Colorado	7.9	204	78	38.7

```
USArrests$State <- rownames(USArrests)
ggplot(USArrests) +
  aes(x=reorder(State,Murder), y=Murder) +
  geom_col() +
  coord_flip()</pre>
```


library(patchwork)

Warning: package 'patchwork' was built under R version 4.3.3

'geom_smooth()' using method = 'loess' and formula = 'y ~ x'


```
ggplot(mtcars) +
  aes(mpg, disp) +
  geom_point()
```


ggsave('myplot.pdf')

Saving 5.5 x 3.5 in image