Tema 6: Autocorrelación

Econometría 2021-2022

Grado Ingenierías & ADE

Naturaleza de la Autocorrelación

$$y = X\beta + u$$

con $\mathbb{E}[u]=0$ y $\mathrm{var}[u]=\mathbb{E}[uu^t]=\sigma^2I_n$, lo que implica:

$$\maltese$$
 $\mathbb{E}[u_t] = 0, \, \forall t \in 1, \ldots, n$

$$\mathbb{H} \ \mathbb{E}[u_t^2] = \sigma^2, \, orall t \in 1, \ldots, n \, \, ext{(Homocesdasticidad)}$$

$$m{\mathbb{H}} \ \mathbb{E}[u_i,u_j] = \mathrm{Cov}[u_i,u_j] = 0, \, orall i
eq j \in 1,\ldots,n \, ext{(Incorrelación)}.$$

Si
$$\operatorname{Cov}[u_t, u_{t-k}] \neq 0 \ \forall k > 0 \rightarrow \operatorname{Autocorrelación}$$
.

Suponemos entonces que: $u_t = \rho u_{t-1} + \varepsilon_t$ donde ε_t verifica que es un ruido blanco gaussiano.

U

- Error en la especificación del modelo, es decir, se han omitido en la construcción del modelo variables exógenas que son relevantes con el fin de estudiar el comportamiento de la variable endógena.
- Existencia de ciclos y tendencias. Si la variable endógena presenta ciclos, y éstos no están correctamente explicados por el conjunto de las variables exógenas, entonces el término de perturbación presentará autocorrelación.
- Existencia de relaciones no lineales.
- Existencia de relaciones dinámicas.

Consecuencias de la Autocorrelación

Los estimadores MCO son insesgados pero no óptimos. El estimador por Mínimos Cuadrados Generalizados (MCG)

$$\widehat{\beta}_{MCG} = \left[X^t \Omega^{-1} X \right]^{-1} \left[X^t \Omega^{-1} y \right]$$

cuya matriz de varianzas-covarianzas viene dada por

$$\operatorname{var}\left[\widehat{\boldsymbol{\beta}}_{MCG}\right] = \sigma^2 \left[\boldsymbol{X}^t \boldsymbol{\Omega}^{-1} \boldsymbol{X}\right]^{-1}$$

Sí es óptimo.

Detección de la Autocorrelación

K Gráficamente

- ◇ Gráfico temporal de los residuos obtenidos por MCO. Si los residuos están incorrelados deben distribuirse de forma aleatoria alrededor de cero.
- Gráfico de dispersión de los mismo frente a algún retardo suyo. Los residuos estarán autocorrelacionados cuando el gráfico presenta una tendencia creciente o decreciente.

* Analíticamente

- ♦ Contraste de Durbin-Watson.
- ♦ Estadístico H de Durbin.
- ♦ Contraste de Wallis.

Métodos Gráficos

- Gráfico temporal de los residuos: si los residuos están incorrelados deben distribuirse de forma aleatoria alrededor de cero. Sin embargo, si están correlacionados:
 - observaremos rachas de residuos por debajo y por encima de la media (correlación positiva).
 - ◇ obervaremos una alternancia en el signo de los residuos (correlación negativa).
- Gráficos de dispersión: el gráfico de dispersión de los residuos, e_t , frente algún retardo suyo, e_{t-k} (normalmente se considera k=1), puede mostrar la existencia de autocorrelación positiva (tendencia creciente en el gráfico) o negativa (tendencia decreciente).

C: Consumo de Energía Eléctrica (miles de TEP)

$$C = eta_0 + eta_1 \mathrm{PIB} + u$$
 $\ \downarrow\downarrow$ $\ \widehat{C}_t = -6234.54 + 0.0426873 \cdot PIB_t$ $\ R^2 = 0.992408$

Año	C	PIB
1987	9427	355312
1988	9876	373412
1989	10410	391443
1990	10974	406252
1991	11372	416582
1992	11488	420462
1993	11569	416126
1994	11999	426041
1995	12462	437787
1996	12827	448457
1997	13331	466513
1998	14290	486785
1999	15364	507346
2000	16309	528714
2001	17282	543746
2002	17756	554852

Ejemplo

Figure: Gráfico temporal de los residuos

Figure: Gráfico de dispersión

Contraste de Durbin-Watson

El contraste de Durbin-Watson resulta adecuado si suponemos que la autocorrelación que presenta el término de perturbación pudiera ser descrito mediante un proceso autorregresivo de orden uno:

$$u_t = \rho u_{t-1} + \varepsilon_t$$

donde ε_t es ruido blanco.

Estudiamos si el coeficiente ρ es significativo o no mediante los contrastes:

$$\begin{cases} H_0: \rho = 0 & \text{(Incorrelación)} \\ H_1: \rho < 0 & \text{(Correlación negativa)} \end{cases} \begin{cases} H_0: \rho = 0 & \text{(Incorrelación)} \\ H_1: \rho > 0 & \text{(Correlación positiva)} \end{cases}$$

Estadístico de Contraste de Durbin-Watson:

$$DW = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2} = \frac{\sum_{t=2}^{n} (e_t^2 - 2e_t e_{t-1} + e_{t-1}^2)}{\sum_{t=1}^{n} e_t^2}$$

siendo e_t los residuos MCO: $e_t = y_t - \widehat{y}_t = y_t - x\widehat{\beta}$.

Contrastes de Durbin-Watson

Si la muestra seleccionada es suficientemente grande, se puede considerar que $\sum_{t=2}^{n} e_t^2 \simeq \sum_{t=2}^{n} e_{t-1}^2$, ya que ambas sumatorias difieren únicamente en la primera de las observaciones muestrales:

$$DW = \frac{2\sum_{t=2}^{n} e_t^2 - 2\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2} = 2\left(\frac{\sum_{t=2}^{n} e_t^2}{\sum_{t=1}^{n} e_t^2} - \frac{\sum_{t=2}^{n} e_t e_{t-1}}{\sum_{t=1}^{n} e_t^2}\right) = 2(1-\widehat{\rho})$$

donde $\widehat{\rho}$ es la estimación del parámetro ρ .

Como $|\rho| < 1$:

- $\not\vdash DW \simeq 0$ cuando $\widehat{\rho} \simeq 1$ (correlación positiva)
- $\not\vdash DW \simeq 2$ cuando $\widehat{\rho} \simeq 0$ (residuos incorrelacionados)
- $\nearrow DW \simeq 4$ cuando $\widehat{\rho} \simeq -1$ (correlación es negativa)

from statsmodels.stats.stattools import durbin_watson
durbin watson(mco.resid)

Contrastes de Durbin-Watson

Las tablas estadísticas nos proporcionan una cota inferior, d_L , y otra cota superior, d_U . Si:

- $ightharpoonup 0 < DW < d_L$, se mantiene la hipótesis ho > 0, autocorrelación positiva.
- $\bigstar d_L < DW < d_U$, test no concluyente.
- $\not\vdash d_U < DW < 4 d_U$, se mantiene que $\rho = 0$, residuos incorrelados.
- \maltese 4 $d_U < DW < 4 d_L$, test no concluyente.
- $4 d_L < DW < 4$, mantenemos que $\rho < 0$, autocorrelación negativa.

Estadístico de Durbia-Watson - Puntos críticos de d_L y d_n al nivel de significación del 5 k^* corresponde al mímero de regresores del modelo excluído el término independiente (es decir, $k^* - k -$												
	I k* − 1 I k* − 2		$k^* - 3$		$k^* = 4$		l k* - 5		l k*			
n	d_L	d_u	d_L	d_u	d_L	d_u	d_L	d_u	d_L	d_u	d_L	d _u
- 6	0.610	1.400		_	_	_	-	_	_	_	_	
7	0.700	1.356	0.467	1.896								
8	0.763	1.332	0.559	1.777	0.368	2.287	l				l	
9	0.824	1.320	0.629	1.699	0.455	2.128	0.296	2.588	l			
10	0.879	1.320	0.697	1.641	0.525	2.016	0.376	2.414	0.243	2.822	l	
11	0.927	1.324	0.658	1.604	0.595	1.928	0.444	2.283	0.316	2.645	0.203	3.005
12	0.971	1.331	0.812	1.579	0.658	1.864	0.512	2.177	0.379	2.506	0.268	2.832
13	1.010	1.340	0.861	1.562	0.715	1.816	0.574	2.094	0.445	2.390	0.328	2.692
14	1.045	1.350	0.905	1.551	0.767	1.779	0.632	2.030	0.505	2.296	0.389	2.572
15	1.077	1.361	0.946	1.543	0.814	1.750	0.685	1.977	0.562	2.220	0.447	2.472
16	1.106	1.371	0.982	1.539	0.857	1.728	0.734	1.935	0.615	2.157	0.502	2.388
17	1.133	1.381	1.015	1.536	0.897	1.710	0.779	1.900	0.664	2.104	0.554	2.318
18	1.158	1.391	1.046	1.535	0.933	1.696	0.820	1.872	0.710	2.060	0.603	2.257
19	1.180	1.401	1.074	1.536	0.967	1.685	0.859	1.848	0.752	2.023	0.649	2.206
20	1.201	1.411	1.100	1.537	0.998	1.676	0.894	1.828	0.792	1.991	0.692	2.162
21	1.221	1.420	1.125	1.538	1.026	1.669	0.927	1.812	0.829	1.964	0.732	2.124
22	1.239	1.429	1.147	1.541	1.053	1.664	0.958	1.797	0.863	1.940	0.769	2.090
23	1.257	1.437	1.168	1.543	1.078	1.660	0.986	1.785	0.895	1.920	0.804	2.061
24	1.273	1.446	1.188	1.546	1.101	1.656	1.013	1.775	0.925	1.902	0.837	2.035
25	1.288	1.454	1.206	1.550	1.123	1.654	1.038	1.767	0.953	1.886	0.868	2.012
26	1.302	1.461	1.224	1.553	1.143	1.652	1.062	1.759	0.979	1.873	0.897	1.992
27	1.316	1.469	1.240	1.556	1.162	1.651	1.084	1.753	1.004	1.861	0.925	1.974
28	1.328	1.476	1.255	1.560	1.181	1.650	1.104	1.747	1.028	1.850	0.951	1.958
29	1.341	1.483	1.270	1.563	1.198	1.650	1.124	1.743	1.050	1.841	0.975	1.944
30	1.352	1.489	1.284	1.567	1.214	1.650	1.143	1.739	1.071	1.833	0.998	1.931
31	1.363	1.496	1.297	1.570	1.229	1.650	1.160	1.735	1.090	1.825	1.020	1.920
32	1.373	1.502	1.309	1.574	1.244	1.650	1.177	1.732	1.109	1.819	1.041	1.909
33	1.383	1.508	1.321	1.577	1.258	1.651	1.193	1.730	1.127	1.813	1.061	1.900
34	1.393	1.514	1.333	1.580	1.271	1.652	1.208	1.728	1.144	1.808	1.080	1.891
35 36	1.402	1.519	1.343	1.584	1.283	1.653	1.222	1.726	1.160	1.803	1.097	1.884 1.877
36	1.411	1.525	1.364	1.590	1.307	1.655	1.236	1.724	1.175	1.799	1.114	1.877
38	1.427	1.535	1.373	1.594	1.318	1.656	1.249	1.722	1.204	1.792	1.146	1.864
39	1.435	1.540	1.382	1.597	1.328	1.658	1.273	1.722	1.218	1.789	1.161	1.859
40	1.442	1.544	1.382	1.600	1.328	1.659	1.273	1.722	1.218	1.789	1.161	1.859
45	1.475	1.566	1.430	1.615	1.383	1.666	1.336	1.720	1.287	1.776	1.238	1.835
50	1.503	1.585	1.462	1.628	1.421	1.674	1.378	1.721	1.335	1.771	1.235	1.822
55	1.528	1.601	1.490	1.641	1.452	1.681	1.414	1.724	1.374	1.768	1.334	1.814
60	1.549	1.616	1.514	1.652	1.480	1.689	1.444	1.727	1.408	1.767	1.372	1.808
65	1.567	1.629	1.536	1.662	1.503	1.696	1.471	1.731	1.438	1.767	1.404	1.805
70	1.583	1.641	1.554	1.672	1.525	1.703	1.494	1.735	1.464	1.768	1.433	1.802
.0	1.500	1.650	1.071	1.500	1.543	1.700	1.535	1.730	1.107	1.770	1.000	1.001

Contraste de Ljung-Box

Si los residuos son independientes, sus primeras m autocorrelaciones son cero, para cualquier valor de m. El test de Ljung-Box contrasta la hipótesis nula de que las primeras m autocorrelaciones, ρ_m , son cero. Esto es:

$$H_0:
ho_1 =
ho_2 = \cdots =
ho_m = 0 \ H_1: \exists \ i \in \{1, 2, \ldots, m\} \ ext{ tal que }
ho_i
eq 0$$

Se rechaza la hipótesis nula (de incorrelación) si $Q_{LB}=n(n+2)\sum\limits_{s=1}^{m}rac{r(s)^2}{n-s}> \chi^2_{m-1}(1-lpha)$ donde

$$r(s) = rac{\sum\limits_{t=s+1}^{n} e_{t}e_{t-s}}{\sum\limits_{t=1}^{n} e_{t}^{2}},$$

es el coeficiente de autocorrelación muestral de orden k.

Si las observaciones son independientes (incorrelación), los coeficientes r(s) serán próximos a cero, por lo que no se rechazaría la hipótesis nula.

from statsmodels.stats.diagnostic import acorr_ljungbox acorr ljungbox(mco.resid, lags=3)

Ejemplo

Consideremos el modelo que ajusta el consumo energético en función del PIB para aplicar el anterior contraste para m=3.

De este ejemplo ya sabemos que $\sum_{t=1}^{n} e_t^2 = 765312'5$. Además, a partir de los residuos podemos construir la siguiente tabla:

Año	e_t	e_{t-1}	e_{t-2}	e_{t} 3	$e_t \cdot e_{t-1}$	$e_t \cdot e_{t-2}$	$e_t \cdot e_{t-3}$
1987	494'1584						
1988	170'5190	494'1584			84263'40		
1989	-65'1749	170'5190	494'1584		-11113'56	-32206'724	
1990	-133'3305	-65'1749	170'5190	494'1584	8689'80	-22735'383	-65886'386
1991	-176'2899	-133'3305	-65'1749	170'5190	23504'82	11489'676	-30060'777
1992	-225'9164	-176'2899	-133'3305	-65'1749	39826'78	30121'546	14724'078
1993	40'1755	-225'9164	-176'2899	-133'3305	-9076'31	-7082'534	-5356'619
1994	46'9314	40'1755	-225'9164	-176'2899	1885'49	-10602'572	-8273'531
1995	8'5268	46'9314	40'1755	-225'9164	400'18	342'568	-1926'343
1996	-81'9462	8'5268	46'9314	40'1755	-698'74	-3845'849	-3292'229
1997	-348'7073	-81'9462	8'5268	46'9314	28575'23	-2973'357	-16365'321
1998	-255'0634	-348'7073	-81'9462	8'5268	88942'46	20901'476	-2174'874
1999	-58'7561	-255'0634	-348'7073	-81'9462	14986'52	20488'681	4814'839
2000	-25'8974	-58'7561	-255'0634	-348'7073	1521'63	6605'478	9030'612
2001	305'4278	-25'8974	-58'7561	-255'0634	-7909'78	-17945'746	-77903'453
2002	305'3431	305'4278	-25'8974	-58'7561	93260'26	-7907'592	-17940'769
Total					357073'5	-15350'3338	-200610'77

A partir de la cual podemos obtener:

$$r(1) = \frac{\sum\limits_{t=2}^{n} e_t \cdot e_{t-1}}{\sum\limits_{t=1}^{n} e_t^2} = \frac{357073'5}{765312'5} = 0'4666,$$

$$r(2) = \frac{\sum\limits_{t=3}^{n} e_t \cdot e_{t-2}}{\sum\limits_{t=1}^{n} e_t^2} = \frac{-15350'3338}{765312'5} = -0'0201,$$

$$r(3) = \frac{\sum_{t=4}^{n} e_t \cdot e_{t-3}}{\sum_{t=1}^{n} e_t^2} = \frac{-200610'77}{765312'5} = -0'2622.$$

Ejemplo

De forma que:

$$Q_{LB} = n(n+2) \sum_{s=1}^{m} \frac{r(s)^{2}}{n-s} = 16 \cdot 18 \cdot \left(\frac{r(1)^{2}}{15} + \frac{r(2)^{2}}{14} + \frac{r(3)^{2}}{13}\right)$$

$$= 288 \cdot \left(\frac{0'21771556}{15} + \frac{0'00040401}{14} + \frac{0'06874884}{13}\right)$$

$$= 288 \cdot (0'01452 + 0'000028 + 0'0053) = 288 \cdot 0'01983$$

$$= 5'7115.$$

Como $Q_{LB}=5'7115 \not> 5'991=\chi_2^2(0'95)$, no rechazo la hipótesis nula de incorrelación.

Adviértase que para m=2, se tiene que $Q_{LB}=4'1885>3'841=\chi_1^2(0'95)$. Por tanto, en tal caso si se rechazaría la hipótesis nula de incorrelación.

$$y = X\beta + u$$

con:

$$\mathbb{E}[u]=0$$
,

$$\mathbb{E}[u_i u_j] \neq 0 \ (i \neq j \ \text{con} \ i, j \in \{1, \dots, n\}) \ \text{y}$$

$$\maltese$$
 var[u] = $\sigma^2 \Omega$.

(no se verifican los supuestos de MCO)

Por el método de Mínimos Cuadrados Generalizado: necesitamos calcular P tal que $\Omega^{-1} = P^t P$.

Suponemos que u_t viene determinada por un proceso autorregresivo de orden 1, AR(1): $u_t = \rho u_{t-1} + \varepsilon_t$ (ε_t un ruido blanco) y ρ el coeficiente de autocorrelación con $-1 < \rho < 1$.

Estimación bajo Autocorrelación

$$u_t \cdot u_{t-1} = (\rho u_{t-1} + \varepsilon_t) \cdot u_{t-1} = \rho u_{t-1}^2 + \varepsilon_t \cdot u_{t-1} \Rightarrow \mathbb{E}[u_t u_{t-1}] = \rho \sigma^2$$

De la misma forma:

$$\mathbb{E}[u_t u_{t-2}] = \mathbb{E}[(\rho u_{t-1} + \varepsilon_t) \ u_{t-2}] = \rho \mathbb{E}[u_{t-1} u_{t-2}] = \rho(\rho \sigma^2) = \rho^2 \sigma^2$$

$$\mathbb{E}[u_t u_{t-3}] = \mathbb{E}[(\rho u_{t-1} + \varepsilon_t) u_{t-3}] = \rho \mathbb{E}[u_{t-1} u_{t-3}] = \rho(\rho^2 \sigma^2) = \rho^3 \sigma^2$$

$$\mathbb{E}[u_t u_{t-k}] =
ho^k \sigma^2$$
 $\Omega = egin{pmatrix} 1 &
ho &
ho^2 &
ho^3 & \cdots &
ho^{n-1} \
ho & 1 &
ho &
ho^2 & \cdots &
ho^{n-2} \
ho^2 &
ho & 1 &
ho & \cdots &
ho^{n-3} \ & \ddots & & & \
ho^{n-1} &
ho^{n-2} & \cdots &
ho^2 &
ho & 1 \end{pmatrix}$

Ü

$$\Rightarrow \Omega^{-1} = rac{1}{1-
ho^2} egin{pmatrix} 1 & -
ho & 0 & 0 & \cdots & 0 \ -
ho & 1+
ho^2 & -
ho & 0 & \cdots & 0 \ 0 & -
ho & 1+
ho^2 & -
ho & \cdots & 0 \ & & \ddots & & 1+
ho^2 & -
ho \ 0 & 0 & \cdots & 0 & -
ho & 1 \end{pmatrix}$$

Estimación bajo Autocorrelación

Suponemos;

$$y_t = \beta_1 + \beta_2 X_{2t} + \dots + \beta_k X_{kt} + u_t$$

У

$$y_{t-1} = \beta_1 + \beta_2 X_{2t-1} + \dots + \beta_k X_{kt-1} + u_{t-1}$$

Luego:

$$y_t - \rho y_{t-1} = \beta_1 (1 - \rho) + \beta_2 (X_{2t} - \rho X_{2t-1}) + \dots + \beta_k (X_{kt} - \rho X_{kt-1}) + u_t - \rho u_{t-1}$$

Esto es, llamando $y_t^* = y_t - \rho y_{t-1}$ y $X_{it}^* = X_{it} - \rho X_{it-1}$:

$$y_t^* = \beta_1 + \beta_2 X_{1t}^* + \dots + \beta_k X_{kt}^* + \varepsilon_t$$

donde ahora ε cumple las hipótesis para aplicar MCO.

Nota: Se perdería la primera observación, para ello Prais-Wistem proponen $y_1^* = \sqrt{1-\rho^2}y_1$, $X_{i1}^* = \sqrt{1-\rho^2}X_{i1}...$

Modificación Prais-Winsten

- **1** Estimando por MCO y se obtienen los residuos e_t .
- 2 Se estima $u_t = \rho u_{t-1} + \varepsilon_t$ el valor de ρ empleando los e_t :

$$\widehat{
ho} = rac{\sum_{t=2}^n e_t e_{t-1}}{\sum\limits_{t=2}^n e_t^2}$$

- 3 Se estima por MCO $y^* = X^*\beta + u^*$: e_t^* .
- 3 Se estima por MOO g 1. ρ 4 Estimamos $\widehat{\rho}$ de la regresión $e_t^* = \widehat{\rho} e_{t-1}^* + \varepsilon_t^*$: $\widehat{\widehat{\rho}} = \frac{\sum_{t=2}^n e_t^* e_{t-1}^*}{n}$. $\sum_{t=2}^n (e_t^*)^2$
- \bullet Repetimos... La estimación de ρ es el valor que estabiliza la secuencia $\widehat{\rho}$, $\widehat{\widehat{\rho}}$, $\widehat{\widehat{\widehat{\rho}}}$, (hasta que la diferencia sea $< 10^{-3}$).

Proceso iterativo de Cochrane-Orcutt: Obviamos la primera observación en las transformaciones.

sm.GLSAR(y, sm.add_constant(x), rho=rho).iterative_fit(maxiter=100)

Ejemplo

Ejemplo

El número de pequeños accidentes, Y, ocurridos en las calles de una ciudad y el número de coches que han sido matriculados, X, en la misma durante 10 años están recogidos en la siguiente tabla:

Y	X
25	510
27	520
28	528
32	540
33	590
36	650
38	700
40	760
41	800
45	870

Dado el modelo $Y_t = \beta_1 + \beta_2 X_t + u_t$:

- M Contrastar la hipótesis de no autocorrelación por medio de Durbin-Watson.
- H En caso de detectar problemas de autocorrelación, obtenga una estimación aplicando MCG.

Ejemplo

Primero estimamos el modelo $Y_t = \beta_1 + \beta_2 X_t + u_t$ empleando el método de mínimos cuadrados ordinarios.

$$\hat{Y}_t = 2.56755 + 0.0493699X_t \quad (R^2 = 0.942095)$$

Y	\widehat{Y}	e_t	e_{t-1}	$(e_t-e_{t-1})^2$	e_t^2
25	27.7462	-2.7462			7.5416
27	28.2399	-1.2399	-2.7462	2.2689	1.5374
28	28.6349	-0.6349	-1.2399	0.3661	0.4030
32	29.2273	2.7727	-0.6349	11.6115	7.6879
33	31.6958	1.3042	2.7727	2.1565	1.7010
36	34.6580	1.3420	1.3042	0.0014	1.8010
38	37.1265	0.8735	1.3420	0.2195	0.7630
40	40.0887	-0.0887	0.8735	0.9258	0.0079
41	42.0635	-1.0635	-0.0887	0.9502	1.1310
45	45.5194	-0.5194	-1.0635	0.2961	0.2697
				18.7960	22.8435

$$DW = \frac{\sum_{t=2}^{n} (e_t - e_{t-1})^2}{\sum_{t=1}^{n} e_t^2} = \frac{18.7960}{22.8435} = 0.8228 \overset{\text{k=1,n=10}}{\underset{\alpha=5\%}{\Rightarrow}} \left\{ \begin{array}{c} d_L = 0.879 & \text{\tiny DW} < d_L \\ d_U = 1.320 & \Rightarrow \end{array} \right. \left\{ \begin{array}{c} \text{Autocorrelación} \\ \text{Positiva} \end{array} \right.$$

Ejemplo

Estima la regresión $e_t = \rho e_{t-1} + \varepsilon_t$:

$$\widehat{e}_t = 0.4226 e_{t-1} \Rightarrow \widehat{\rho} = 0.4226$$

Como el n es pequeño usamos la Modificación Prais-Winsten (transformación):

$$y_t^* = egin{cases} \sqrt{1-(0.4226)^2}y_t & t=1 \ y_t-0.4226y_{t-1} & t>1 \end{cases}$$
 $X_t^* = egin{cases} \sqrt{1-(0.4226)^2}X_t & t=1 \ X_t-0.4226X_{t-1} & t>1 \end{cases}$ $cte_t^* = egin{cases} \sqrt{1-(0.4226)^2}cte_t & t=1 \ cte_t-0.4226cte_{t-1} & t>1 \end{cases}$

U

Y^*	cte^*	X^*
22.61101004	0.904440402	461.2646048
16.335	0.5734	302.434
16.4818	0.5734	306.168
20.0552	0.5734	314.7552
19.3488	0.5734	359.636
21.9222	0.5734	398.306
22.6424	0.5734	422.71
23.7892	0.5734	461.38
23.936	0.5734	475.784
27.5094	0.5734	528.72

 $Y_t^* = \beta_3 + \beta_4 X_t^* + u_t^* \Rightarrow \widehat{Y}^* = 2.1071 + 0.04975 X^*.$

Nota: Como el valor de ρ ha sido estimado deberíamos realizar el proceso iterativo. Otra alternativa es calcular de nuevo, con el modelo estimado utilizando las variables transformadas, el estadístico de D-W y comprobar si se ha eliminado el problema de autocorrelación. Si optamos por esta opción se tiene que DW=1.5305, indicando pues que la autocorrelación ha desaparecido.