Wavelet basics

Hennie ter Morsche

- 1. Introduction
- 2. The continuous/discrete wavelet transform
- 3. Multi-resolution analysis
- 4. Scaling functions
- 5. The Fast Wavelet Transform
- 6. Examples

1. Introduction

For a given univariate function f, the Fourier transform of f and the inverse are given by

$$\hat{f}(\omega) = \int_{-\infty}^{\infty} f(t)e^{-i\omega t} dt.$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \hat{f}(\omega) e^{i\omega t} d\omega.$$

Parseval:
$$(f, g) = (\hat{f}, \hat{g})/2\pi$$
, $(f, g) = \iint f(t) \overline{g(t)} dt$.

$$e_{\omega}(t) = e^{-i\omega t}, \, \delta_{\omega_0}(\omega) = \delta(\omega - \omega_0)$$

$$\hat{f}(\omega_0) = (f, e_{\omega_0}) = (\hat{f}, \delta_{\omega_0})$$

Figure 1: The frequency break and its amplitude-spectrum

The short time Fourier transform

Given a Window function g

$$g \in L^2(\mathbb{R}), ||g|| = 1$$
 g is real-valued.

The short time Fourier transform $F(u, \tau)$ of a function f is defined by

$$F(u,\tau) = \int_{-\infty}^{\infty} f(t)e^{-iut}g(t-\tau) dt,$$

$$f(t) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \int_{-\infty}^{\infty} F(u,\tau)e^{iut}g(t-\tau) d\tau du,$$

$$g_{u,\tau}(t) := e^{iut}g(t-\tau), F(u,\tau) = (f, g_{u,\tau})$$

$$(f, g_{u,\tau}) = \frac{1}{2\pi} (\hat{f}, \hat{g}_{u,\tau})$$
 (Parseval).

$$\hat{g}_{u,\tau}(\omega) = e^{-i(\omega-u)\tau} \hat{g}(\omega-u).$$

Fixed "window width" in time and frequency.

2. The continous/discrete Wavelet transform

The continuous Wavelet transform

Given ψ in $L^2(\mathbb{R})$.

Introduce a family of functions $\psi_{a,b}$ $(a > 0, b \in \mathbb{R})$ as follows

$$\psi_{a,b}(t) = \frac{1}{\sqrt{a}} \psi((t-b)/a) \quad (t \in \mathbb{R}),$$

 $\|\psi_{a,b}\| = \|\psi\|.$

The continuous wavelet transform F(a, b) of a function f is defined by

$$F(a,b) = (f, \psi_{a,b}) = \frac{1}{\sqrt{a}} \int_{-\infty}^{\infty} f(t) \, \psi((t-b)/a) \, dt.$$

$$(f, \psi_{a,b}) = \frac{1}{2\pi} (\hat{f}, \hat{\psi}_{a,b})$$
 Parseval.

where

$$\hat{\psi}_{a,b}(\omega) = \sqrt{a} \, e^{-i\omega b} \hat{\psi}(a\omega),$$

The inverse wavelet transform

$$f(t) = C_{\psi}^{-1} \int_{-\infty}^{\infty} \int_{0}^{\infty} \frac{1}{a^2} F(a, b) \, \psi_{a, b}(t) \, da \, db.$$

$$C_{\psi} = \int_{0}^{\infty} \frac{|\hat{\psi}(\omega)|^{2}}{\omega} d\omega.$$

Needed $\hat{\psi}(0) = 0$, i.e.,

$$\int_{-\infty}^{\infty} \psi(t) \, dt = 0.$$

This is the reason why the functions $\psi_{a,b}$ are called wavelets. ψ is called the Motherwavelet.

Example: The Mexican hat (Morlet wavelet)

$$\psi(t) = \frac{2}{\sqrt{3}} \pi^{-\frac{1}{4}} (1 - t^2) e^{-t^2/2}.$$

Figure 2: The Mexican hat

The wavelet transform of the frequency break using the Mexican hat

Figure 3: frequency break

Figure 4: Grey value picture of the waveletcoëfficiënten

Horizontal b-axis contains 1000 samples on interval [0, 1].

The vertical axis contains the *a*-values: $2, 4, \ldots, 128$.

The discrete wavelet transform Sampling in the *a-b* plane.

$$a_0 > 1, b_0 > 0$$

 $a = a_0^{-\ell}, \quad b = k a_0^{-\ell} b_0, \quad (k, \ell \in \mathbb{Z}).$
The translation step is adapted to the scale

$$\psi_{k,\ell}(t) = a_0^{\ell/2} \psi(a_0^{\ell}t - k b_0).$$

Dyadic wavelets: $a_0 = 2$, $b_0 = 1$.

$$\psi_{k,\ell}(t) = 2^{\ell/2} \, \psi(2^{\ell}t - k).$$

 $(f, \psi_{k,\ell})$ are called *waveletcoefficients*.

Discrete Wavelet transform: $f \to (f, \psi_{k,\ell})$

a. Problem of reconstruction:

$$f = \sum_{k,\ell} (f, \psi_{k,\ell}) \tilde{\psi}_{k,\ell}.$$

b. Problem of decomposition:

$$f = \sum_{k,\ell} a_{k,\ell} \psi_{k,\ell}$$

It would be nice if the functions $\psi_{k,\ell}$ constitute an orthonormal basis of $L^2(\mathbb{R})$. (orthogonal wavelets)

For orthogonal wavelets the reconstruction formula and the decomposition formula coincide.

A biorthogonal wavelets system consists of two sets of wavelets generated by a mother wavelet ψ and a dual wavelet $\tilde{\psi}$, for which

$$(\tilde{\psi}_{k,\ell}, \psi_{m,n}) = \delta_{k,m} \delta_{\ell,n},$$

for all integer values k, ℓ , m en n.

We assume that $(\psi_{k,\ell})$ constitute a so called Riesz basis (numerically stable) of $L^2(\mathbb{R})$, i.e.

$$A(f, f) \le \|\sum_{k,\ell} \xi_{k,\ell}\|^2 \le B(f, f)$$

for positive constants A en B, where $f = \sum_{k,\ell} \xi_{k,\ell} \psi_{k,\ell}$.

The reconstruction formula now reads

$$f = \sum_{k,\ell} (f, \psi_{k,\ell}) \tilde{\psi}_{k,\ell}.$$

Examples of biorthogonal wavelets are the bior family implemented in the MATLAB Toolbox

3. Multi-resolution analysis

For a given function f, let

$$f_{\ell} = \sum_{k=-\infty}^{\infty} (f, \tilde{\psi}_{k,\ell}) \psi_{k,\ell},$$

Then

$$f = \sum_{\ell = -\infty}^{\infty} f_{\ell}.$$

 f_{ℓ} can be interpreted as that part of f which belongs to the scale ℓ .

So, $f = \sum_{\ell=-\infty}^{\infty} f_{\ell}$ is a decomposition of f to different scale levels ℓ .

The function f_{ℓ} belongs to the scale space W_{ℓ} spanned by $(\psi_{k,\ell})$ with fixed ℓ .

The space W_0 is spanned by the integer translates of the mother wavelet ψ .

For integer n the function

$$g_n(t) = \sum_{\ell=-\infty}^{n-1} f_{\ell}(t)$$

contains all the information of f up to scale level n-1. So $g_n \in V_n$, where

$$V_n = \sum_{\ell=-\infty}^{n-1} W_{\ell}.$$

It follows that $V_n = V_{n-1} \oplus W_{n-1}$ $(n \in \mathbb{Z})$ direct sum.

Properties of the sequence (V_n)

a)
$$V_{n-1} \subset V_n$$
 (*n* geheel),

b)
$$\overline{\bigcup_{n\in\mathbb{Z}}V_n}=L^2(\mathbb{R}),$$

$$c) \bigcap_{n \in \mathbb{Z}} V_n = \{0\},\$$

d)
$$f(t) \in V_n \Leftrightarrow f(2t) \in V_{n+1}$$
,

e)
$$f(t) \in V_0 \Rightarrow f(t+1) \in V_0$$
.

If a sequence of subspaces (V_n) satisfies the properties a) to e), then it is called a *Multi-Resolution-Analysis* (MRA) of $L^2(\mathbb{R})$.

If there exists a function ϕ such that V_0 is spanned by the integer translates of ϕ , then ϕ is called a scaling function for the MRA.

As a consequence one has that V_n is spanned by $\phi_{k,n}$, (*n* fixed),

$$\phi_{k,n} = 2^{n/2} \, \phi(2^n \, t - k)$$

4. Scaling functions

Sufficient conditions for a compactly supported function ϕ to be a scaling function for an MRA.

1. There exists a sequence of numbers (p_k) , from which only a finite number differs from zero, such that

$$\phi(t) = \sum_{k=-\infty}^{\infty} p_k \phi(2t - k)$$
 2-scale relation.

2. The so-called Riesz function has no zeros on the unit circle. Autocorrelation function of ϕ : $\rho(\tau) := \int_{-\infty}^{\infty} \phi(t+\tau) \, \phi(t) \, dt$. Riesz function

$$R(z) = \sum_{m=-\infty}^{\infty} \rho(m) z^{m}.$$

3. Partition of the unity

$$\sum_{k} \phi(t - k) \equiv 1.$$

The Laurent polynomial $P(z) = \frac{1}{2} \sum_{k} p_k z^k$ is called the two scale symbol of ϕ .

Examples

B-splines of order m:

$$P(z) = \left(\frac{z+1}{2}\right)^m$$

The Daubechies scaling function of order 2

$$P_2(z) = \frac{1}{2} \left\{ \frac{1 + \sqrt{3}}{4} + \frac{3 + \sqrt{3}}{4}z + \frac{3 - \sqrt{3}}{4}z^2 + \frac{1 - \sqrt{3}}{4}z^3 \right\}.$$

For an orthonormal system one has

$$R(z) \equiv 1,$$

 $|P(z)|^2 + |P(-z)|^2 \equiv 1 \ (|z| = 1)$

Based on a given MRA with scaling function ϕ one may construct wavelets by first completing the spaces V_{ℓ} to a space $V_{\ell+1}$ by means of a space W_{ℓ} , i.e. $V_{\ell+1} = V_{\ell} \oplus W_{\ell}$ in such a way that there exists a function ψ such that W_{ℓ} is spanned by $(\psi(2^{\ell} t - k))$.

To satisfy $V_1 = V_0 \oplus W_0$ the following conditions are necessary and sufficient:

- 1. $W_0 \subset V_1$,
- 2. $W_0 \cap V_0 = \{0\},\$
- 3. $\phi(2t) \in V_0 \oplus W_0$ and $\phi(2t 1) \in V_0 \oplus W_0$.

It follows that

$$\psi(t) = \sum_{k=-\infty}^{\infty} q_k \phi(2t - k),$$

$$\phi(2t) = \sum_{k=-\infty}^{\infty} (a_k \phi(t-k) + b_k \psi(t-k)) \quad (t \in \mathbb{R}),$$

$$\phi(2t-1) = \sum_{k=-\infty}^{\infty} (c_k \phi(t-k) + d_k \psi(t-k)) \quad (t \in \mathbb{R}).$$

By introducing the Laurent series $A(z) = \sum_k a_k z^k$, $B(z) = \sum_k b_k z^k$, $C(z) = \sum_k c_k z^k$ and $D(z) = \sum_k d_k z^k$ and the symbol $Q(z) = \sum_k q_k z^k$ for the wavelet ψ , the application of the Fourier-transform to the previous equations and the 2-scale relation for the scaling function ϕ finally lead to the following set of equations, which must hold for complex z with |z| = 1.

$$A(z^{2}) P(z) + B(z^{2}) Q(z) = 1/2,$$

$$A(z^{2}) P(-z) + B(z^{2}) Q(-z) = 1/2,$$

$$C(z^{2}) P(z) + D(z^{2}) Q(z) = z/2,$$

$$C(z^{2}) P(-z) + D(z^{2}) Q(-z) = -z/2,$$

Now let (assuming the inverse exists)

$$\left(\begin{array}{cc} P(z) & Q(z) \\ P(-z) & Q(-z) \end{array}\right)^{-1} = \left(\begin{array}{cc} H(z) & H(-z) \\ G(z) & G(-z) \end{array}\right),$$

where

$$H(z) = \sum_{k} h_{k} z^{k},$$
$$G(z) = \sum_{k} g_{k} z^{k}.$$

Then

$$A(z^{2}) = (H(z) + H(-z))/2,$$

$$B(z^{2}) = (G(z) + G(-z))/2,$$

$$C(z^{2}) = z (H(z) - H(-z))/2,$$

$$D(z^{2}) = z (G(z) - G(-z))/2,$$

We now have

$$\phi(2t-k) = \sum_{m=-\infty}^{\infty} \left(h_{2m-k} \phi(t-m) + g_{2m-k} \psi(t-m) \right) \quad (t \in \mathbb{R}).$$

It can be shown that the symbol $\tilde{P}(z)$ for the dual scaling $\tilde{\phi}$ and the symbol $\tilde{Q}(z)$ for the dual wavelet $\tilde{\psi}$ will satisfy

$$\tilde{P}(z) = H(z^{-1}),$$

$$\tilde{Q}(z) = Q(z^{-1}).$$

For orthogonal wavelets based on an orthogonal scaling function one may choose

$$q_k = (-1)^k p_{1-k}.$$

5. The Fast Wavelet Transform

To obtain a wavelet decomposition of a function f in practice, one first approximates f by a function from a space V_n , which is close to f. So let us assume that f itself belongs to V_n . So

$$f = \sum_{k=-\infty}^{\infty} a_{k,n} \phi_{k,n}$$

Since $V_n = \sum_{\ell=-\infty}^{n-1} W_{\ell}$, one has

$$f = \sum_{\ell=-\infty}^{n-1} \sum_{k=-\infty}^{\infty} d_{k,\ell} \psi_{k,\ell}$$

 $V_n = V_{n-1} \oplus W_{n-1}$ implies

$$f = \sum_{k=-\infty}^{\infty} a_{k,n} \phi_{k,n} = \sum_{k=-\infty}^{\infty} a_{k,n-1} \phi_{k,n-1} + \sum_{k=-\infty}^{\infty} d_{k,n-1} \psi_{k,n-1}.$$

Due to

$$\phi_{k,n} = \sum_{m=-\infty}^{\infty} \sqrt{2} h_{2m-k} \phi_{m,n-1} + \sqrt{2} g_{2m-k} \psi_{m,n-1}.$$

we obtain

$$f = \sum_{k=-\infty}^{\infty} a_{k,n} \phi_{k,n} = \sum_{k=-\infty}^{\infty} a_{k,n} \sqrt{2} \left(\sum_{m=-\infty}^{\infty} (h_{2m-k} \phi_{m,n-1} + g_{2m-k} \psi_{m,n-1}) \right).$$

Our conclusion is

$$a_{m,n-1} = \sum_{k=-\infty}^{\infty} \sqrt{2} h_{2m-k} a_{k,n}, \quad d_{m,n-1} = \sum_{k=-\infty}^{\infty} \sqrt{2} g_{2m-k} a_{k,n}.$$

convolution and subsequently downsampling $(m \to 2 m)$ yields the two sequences $a^{(n-1)} = (a_{m,n-1})$ en $d^{(n-1)} = (d_{m,n-1})$.

A repeated application of the previous operation leads to a decomposition of f to coarser levels, which can be expressed by the following scheme and filtering proces.

Figure 5: Decomposition

Filter coefficients are $\sqrt{2} h_k$ for the low pass filter and $\sqrt{2} g_k$ for the high pass filter.

Reconstruction

If $a^{\ell-1}$ and $d^{\ell-1}$ are given then we may reconstruct the approximation coefficients a^{ℓ} .

$$f_{\ell} = f_{\ell-1} + w_{\ell-1}$$

$$f_{\ell} = \sum_{k=-\infty}^{\infty} a_{k,\ell} \phi_{k,\ell}$$

$$= \sum_{k=-\infty}^{\infty} a_{k,\ell-1} \phi_{k,\ell-1} + \sum_{k=-\infty}^{\infty} d_{k,\ell-1} \psi_{k,\ell-1}$$

$$= \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} a_{k,\ell-1} \frac{1}{\sqrt{2}} p_m \phi_{2k+m,\ell}$$

$$+ \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} d_{k,\ell-1} \frac{1}{\sqrt{2}} q_m \phi_{2k+m,\ell}.$$

Hence,

$$\sum_{k=-\infty}^{\infty} a_{k,\ell} \phi_{k,\ell}$$

$$= \sum_{k=-\infty}^{\infty} \sum_{m=-\infty}^{\infty} \frac{1}{\sqrt{2}} \left(a_{k,\ell-1} p_{m-2k} + d_{k,\ell-1} q_{m-2k} \right) \phi_{m,\ell}.$$

Conclusion:

$$a_{k,\ell} = \frac{1}{\sqrt{2}} \sum_{m=-\infty}^{\infty} (a_{m,\ell-1} p_{k-2m} + d_{m,\ell-1} q_{k-2m}).$$

upsampling and subsequently convolution

Figure 6: Reconstruction

6. Examples

1. Haar wavelet

General characteristics:

Orthogonal Support width 1 Filters length 2

Number of vanishing moments for ψ : 1

Scaling function yes

Figure 7: Haar wavelet

2. Daubechies family

General characteristics:

Order $N=1,\ldots$ Orthogonal Support width 2N-1Filters length 2NNumber of vanishing moments for ψN Scaling function yes

Figure 8: $Daubechies\ order\ 4$

3. Coiflet family

General characteristics:

Order N = 1, ..., 5Orthogonal Support width 6N - 1Filters length 6NSymmetry near from Number of vanishing moments for $\psi 2N$

Figure 9: Coiflet order 4

Meyer wavelet

General characteristics:

Orthogonal
Compact support no
Effective support [-8, 8]
Symmetry yes
Scaling function yes

Figure 10: Meyer