Customer Churn

...and how Machine Learning can prevent it.

Agenda

Intro

What is customer churn?

- Customer churn happens when customers stop using a company's products or services
- Churn rate is an important metric because **losing customers** equals **losing revenue**
- Hence, losing customers requires gaining new customers
- Acquiring a new customer could **cost 10 times more** than retaining an existing one
- Thus, companies who prevent churn can build a **competitive advantage** in the market

What should companies do?

- Companies need a **retention strategy** in order to avoid an increase in churn rates
- Churn rates vary by industry and knowing your market is key to reducing churn
- Understanding **potential churn signs** and being **proactive** could be key
- The scope of this project is to identify **patterns** between churned customers in telecom
- Ultimately, see if we can successfully detect and prevent churn using machine learning

Data

Customer Demographics

- Gender
- Age
- Partners
- Dependents
- etc.

Account Information

- Tenure
- Contract type
- Charges
- Payment method
- etc.

Service Information

- Phone service
- Multiple lines
- Internet service
- Tech support
- etc.

Analysis

Classes

There is an **imbalance** in our dataset between loyal and churned customers.

This is something we need to address **before** training our model, otherwise it will introduce **bias** into the results.

We will explain later how we will try to fix this issue using an **undersampling** technique with **cluster centroids**.

Demographics		Population	% Churned
Gender	F	3483	27 %
Gender	М	3549	26 %
Coning Cities	N	5890	24 %
Senior Citizen	Υ	1142	42 %
Llas Dastasa	N	3639	33 %
Has Partner	Y	3393	20 %
Line December	N	4933	31 %
Has Dependents	Y	2099	16 %

- Approx. 1 out of 2 **senior citizens** seem to churn
- Also, customers with **dependents** are more likely to churn

- Customers tend to churn more often during the **first few months** of their tenure
- In addition, **higher monthly charges** seem to push customers away

Core Services		Population	% Churned
Has Phone Service	N	680	25 %
Has Phone Service	Υ	6352	27 %
Handata and Camina	N	1520	7 %
Has Internet Service	Υ	5512	32 %
DCI	N	4616	31 %
Has DSL	Υ	2416	19 %
	N	3936	15 %
Has Flber Optic	Υ	3096	42 %

- Customers with **no internet service** does not seem to churn, however...
- Customers with **internet service**, and especially with **fiber optic**, are quite likely to churn

Extra Services		Population	% Churned
Llas Oplina Sagurity	N	5017	31 %
Has Online Security	Y	2015	15 %
Has Oalias Baskus	N	4607	29 %
Has Online Backup	Υ	2425	22 %
Use Tech Coreset	N	4992	31 %
Has Tech Support	Υ	2040	15 %
Llas Chananian TV	N	4329	24 %
Has Streaming TV	Υ	2703	30 %

- Approx. 1 out of 3 customers without **online security** or **tech support** seem to churn
- None of the other services seem to significantly drive customer churning

Contract		Population	% Churned
	Month to Month	3875	43 %
Duration	One Year	1472	11 %
	Two Years	1685	3 %

- Approx. 1 out of 2 customers with **month-to-month** contracts are more likely to churn
- On the other hand, customers with **long-term** contracts seem to be more loyal

Payment Method		Population	% Churned
Flootspain Chark	N	4667	17 %
Electronic Check	Υ	2365	45 %
Mailed Cheek	N	5428	29 %
Mailed Check	Υ	1604	19 %
Dook Transfer	N	5490	29 %
Bank Transfer	Y	1524	17 %
Candit Cand	N	5511	30 %
Credit Card	Υ	1521	15 %

- Customers who pay their bill via **electronic check** tend to churn
- On the contrary, customers who pay by **credit card** are more loyal

Key Findings

- The dataset is highly **imbalanced** and we need to handle this before model training
- **Senior citizens** and customers with **dependents** are more likely to churn
- Customers with **smaller tenure** and **short-term contracts** are more prone to churn
- Moreover, customers with **higher monthly charges** have a higher chance of leaving
- Customers with **internet service**, and especially **fiber optic**, are very prone to churn
- **Electronic check** is the preferred payment method, but those who use it tend to churn

Modeling

Methodology

Data Preprocessing

- Data Cleansing
- One-Hot Encoding

Feature Engineering

- Feature Augmentation
- Feature Transformation
- Feature Scaling

Class Imbalance

Cluster Centroids

Models & Evaluation

- Cross Validation
- HP Tuning
- Modeling

Preparing the dataset

Train (80%) - Validation (20%)

80%

Test

20%

Handling class imbalance

Why using cluster centroids?

Pros

- The two classes are now equally balanced, hence no risk of introducing
 bias during model training
- Cluster centroids can be more representative data points for the abundant class case

Cons

- After reducing the number of data points within the "abundant" class, the dataset has been **decreased**
- Reducing the size of the dataset can lead to less accurate results due to loss of information

Whatever method we use will help in some ways, but hurt in others.

There is no best approach or model for all problems.

It is strongly recommended to try different techniques and models to evaluate what works best.

How did we evaluate the results?

Before we dive into the results of our models, let's try to understand some of our metrics:

Precision: How many of the predicted customers had actually churned?

Recall: How many of the customers that had actually churned the model predicted right?

F1 Score: The harmonic mean of precision and recall

AUC: Shows how much the model is capable of distinguishing between the two classes

Model	Precision	Recall	F1 Score	AUC	Accuracy
Logistic Regression	0.51	0.80	0.62	0.76	0.74
SVC	0.47	0.82	0.60	0.74	0.70
RandomForest	0.45	0.82	0.58	0.73	0.69
KNN	0.44	0.85	0.58	0.73	0.67
LightGBM	0.42	0.89	0.57	0.73	0.65

^{*} Results sorted by F1 Score

Model 1: Logistic Regression

Logistic Regression shows the **highest F1 Score** compared to the rest of the models, which means that it has the **best balance** between **precision** and **recall** metrics.

Also, compared to LightGBM, it has a **lower** number of **False Positive (FP)**, which means that it makes **less mistakes** on predicting a customer as churned, helping the company be more cost-effective in its retention campaigns.

Log. Reg.	Predicted: 0	Predicted: 1
Actual: 0	741	292
Actual: 1	75 FN	299

Comment

Cost-effective as it will hardly label a non churned customer as churned, however it will not "catch" a lot of potentially churned ones.

Model 2: LightGBM

LightGBM model leads to a **higher** number of **False Positive (FP)** predictions. In practice, this can be bad because it means that the model includes in his predictions as churned customers, customers who did not churn.

On the other hand, it returns a **higher** number of **True Positive (TP)** predictions, which is good, since it gives a more accurate number of churned customers than the previous model.

LightGBM	Predicted: 0	Predicted: 1
Actual: 0	584	449
Actual: 1	43	331 TP

Comment

Will "catch" more potentially churned customers, but will make more mistakes in predicting one as churned, increasing costs.

- The majority of the important features are, indeed, what we also found during the analysis
- Tenure, charges, short-term contracts and fiber optic service seem to be the main indicators

Recommendation

What is the best model?

To evaluate which model is better, let's calculate the expected profit from each of them:

- Assume that a customer who renews his contract brings the company 65€ per month
- The promotional activity (to prevent them from churning) has a cost of 1€
- If a customer responds positively, then the net profit amounts to **64€ per month**
- The cost of non-response of the customer to the promotional campaign is 1€
- The cost of acquiring a new customer is 10x higher than retaining an existing one, thus 10€

Case A: Logistic Regression

$$P(TP) = 299/1047 = 0.286$$

P(FP) = 292/1047 = 0.279

Expected Profit per Customer

0.286 * 64 - 0.279 * 1 = **18.0€**

Total Expected Profit

299 * 64 - 292 * 1 - 75 * 10 = **18,094€**

Log. Reg.	Predicted: 0	Predicted: 1
Actual: 0	741	292
Actual: 1	75 FN	299

Comment

If a company contacts customers labeled as potential churned, then it can expect a profit of about **18.0€ on average per customer.**

Case B: LightGBM

$$P(TP) = 331/1047 = 0.316$$

$$P(FP) = 449/1047 = 0.429$$

Expected Profit per Customer

0.316 * 64 - 0.429 * 1 = **19.8€**

Total Expected Profit

331 * 64 - 449 * 1 - 43 * 10 = **20,305€**

LightGBM	Predicted: 0	Predicted: 1
Actual: 0	584	449
Actual: 1	43	331

Comment

If a company contacts customers labeled as potential churned, then it can expect a profit of about 19.8€ on average per customer.

Thank you!