

Natural Language Processing with Transformers

TRANSFORMER ARCHITECTURE AND DATA UTILITIES

- Quiz
- Transformer Architecture
- Data Visualization
- Importing Data
- Saving Models

QUIZ

https://forms.office.com/r/CyNs7LQG0A

WHY EMBEDDINGS AND THE DOT PRODUCT?

The one-hot encoding technique has two main drawbacks:

- For high-cardinality variables those with many unique categories – the dimensionality of the transformed vector becomes unmanageable.
- 2. The mapping is completely uninformed: "similar" categories are not placed closer to each other in embedding space.

DOT PRODUCT SIMILARITY

POSITIONAL ENCODING

Important Criteria:

- It should output a unique encoding for each time-step (word's position in a sentence)
- Distance between any two time-steps should be consistent across sentences with different lengths.
- Our model should generalize to longer sentences without any efforts. Its values should be bounded.
- · It must be deterministic.

POSITIONAL ENCODING FUNCTION

$$\overrightarrow{p_t}^{(i)} = f(t)^{(i)} := egin{cases} \sin(\omega_k.t), & ext{if } i = 2k \ \cos(\omega_k.t), & ext{if } i = 2k+1 \end{cases}$$

where

$$\omega_k = \frac{1}{10000^{2k/d}}$$

Figure 2 - The 128-dimensional positional encoding for a sentence with the maximum length of 50. Each row represents the embedding vector $\overrightarrow{p_t}$

RELATIVE POSITIONING

DATA VISUALIZATION

 Li, S. (2019, April 27). A Complete Exploratory Data Analysis and Visualization for Text Data. Medium. https://towardsdatascience.com/a-completeexploratory-data-analysis-and-visualization-for-textdata-29fb1b96fb6a

Example data using E-commerce reviews on cloth

UNIGRAMS BEFORE REMOVING STOPWORDS

UNIGRAMS AFTER REMOVING STOPWORDS

BIGRAMS BEFORE REMOVING STOPWORDS

BIGRAMS AFTER REMOVING STOPWORDS

TRIGRAMS BEFORE REMOVING STOPWORDS

TRIGRAMS AFTER REMOVING STOPWORDS

COUNTS OF PART-OF-SPEECH TAGS USING TEXTBLOB

See also: https://textblob.readthedocs.io/en/dev/quickstart.html

COMBINATION OF POSSIBLY RELEVANT VARIABLES

Hwang, J. P. (2020, March 30). NLP visualisations for clear, immediate insights into text data and outputs. *Plotly*. https://medium.com/plotly/nlp-visualisations-for-clear-immediate-insights-into-text-data-and-outputs-9ebfab168d5b

IMPORTING DATA

From CSV

```
load_dataset("csv", data_files="my_file.csv")
```

From JSON

```
load_dataset("json", data_files="my_file.jsonl")
```

From Pandas (Pickle)

```
load_dataset("pandas", data_files="my_dataframe.pkl")
Dataset.from pandas(my dataframe)
```

APACHE ARROWS

Backbone of the Huggingface Datasets library

an efficient form of Pandas

optimized for modern CPU and GPU hardware

DATASET METHODS

SAVING MODELS

GitHub, GitLab, Bitbucket, or a similar service using

git and git LFS

Hugging Face Hub using

- huggingface_hub library (based on git and git FLS)
- push_to_hub API

HUGGING FACE HUB LIBRARY

```
# authentication
from huggingface hub import notebook login
notebook login()
# saving via callback method
from transformers import PushToHubCallback
callback = PushToHubCallback(
    "bert-finetuned-mrpc",
                                 save strategy="epoch",
    tokenizer=tokenizer
model.fit(train_dataset, epochs=2, callbacks=callbacks)
# saving manually
model.push_to_hub("bert-finetuned-mrpc, commit="End of training")
```

PROJEKTPRÄSENTATION

- ca. 15 Minuten pro Projekt
- Der Inhalt sollte dem einer "Model Card" entsprechen:
 - Model description
 - Intended uses & limitations
 - How to use
 - Limitations and bias
 - Training data
 - Training procedure
 - Evaluation results

Check this section <u>here</u> for more details.