Curs 13

Grafuri euleriene și grafuri hamiltoniene. Colorarea grafurilor. Polinoame cromatice

21 decembrie 2018

Grafuri euleriene

Fie G = (V, E) un graf neorientat.

- O cale euleriană este o cale care conține fiecare muchie a lui G o singură dată.
- Un ciclu eulerian este un ciclu care conține fiecare muchie a lui *G* o singură dată.
- G este graf eulerian dacă are un ciclu eulerian.

Exemple:

1 1 5 3 - 4

nu este graf eulerian (de ce?) are calea euleriană (2,5,4,3,1,2,3)

2 1 5 6

este graf eulerian: (2,3,1,2,4,5,3,2,5,6,4,3,2) este ciclu eulerian

- **3** Orice graf ciclic C_n cu $n \ge 3$ este eulerian.
- 4 Nici un graf P_n cu $n \ge 2$ nu este eulerian.

Grafuri euleriene Cum recunoaștem grafurile euleriene?

Teorema de caracterizare a grafurilor euleriene

Pentru un graf conex G = (V, E), afirmațiile următoare sunt echivalente:

- G este graf eulerian.
- Piecare nod al lui G are grad par.
- Muchiile lui G pot fi partiționate în cicluri care nu au muchii în comun.

Demonstrația lui $1 \Rightarrow 2$: Presupunem că

ightharpoonup G este Eulerian $\Leftrightarrow \exists$ un ciclu care conține toate muchiile lui G

De exemplu, $(v_1, v_3, v_4, v_1, v_2, v_6, v_1)$ este un ciclu al grafului

$$deg(v_2) = deg(v_3) = deg(v_4) = deg(v_6) = 2$$

 $deg(v_1) = 4$

Ori de câte ori ciclul eulerian intră în un nod v pe o muchie, trebuie să plece din acel nod pe altă muchie. Deoarece nici o muchie nu apare de 2 ori în ciclu, nr. de muchii incidente la v este par \Rightarrow deg(v) este par.

Grafuri euleriene

Demonstrație a Teoremei de Caracterizare (continuare)

DEMONSTRAȚIA LUI $2 \Rightarrow 3$: Presupunem că fiecare nod al lui G are grad par. Gândim inductiv după numărul de cicluri disjuncte ale lui G.

G nu are noduri de grad $1 \Rightarrow G$ nu este arbore $\Rightarrow G$ are cel puțin un ciclu C_{n_1} .

Fie G' graful produs din G prin eliminarea muchiilor lui $C_{n_1} \Rightarrow$ toate nodurile lui G' au grad par \Rightarrow se deduce recursiv că G' poate fi partiționat în cicluri disjuncte C_{n_2}, \ldots, C_{n_k} .

Rezultă că $C_{n_1}, C_{n_2}, \ldots, C_{n_k}$ este o partiție a lui G în cicluri (cu muchii) disjuncte.

Demonstrația lui $3 \Rightarrow 1$: evident.

Detecția ciclurilor euleriene

Algoritmul lui Hierholzer

Se dă: un graf eulerian G = (V, E)

Sa caută un ciclu eulerian al lui G.

- Se identifică un circuit R_1 al lui G și se marchează muchiile lui R_1 . Fie i=1.
- ② Dacă R_i conține toate muchiile lui G, stop: R_i este Eulerian.
- 3 Dacă R_i nu conține toate muchiile lui G, fie v_i un nod al R_i incident la o muchie nemarcată e_i .
- **3** Se construiește un ciclu de muchii nemarcate Q_i , pornind de la nodul v_i de-a lungul muchiei e_i . Se marchează muchiile lui Q_i .
- **5** Se crează un ciclu nou R_{i+1} înlănțuind Q_i în R_i la nodul v_i .
- **o** Se incrementează i cu 1 și se revine la pasul (2).

Detecția ciclurilor euleriene Algoritmul lui Hierholzer: exemplu ilustrat

Cicluri:

$$Q_1 = (3, 6, 7, 8, 2, 4, 9, 3)$$

 $Q_2 = (3, 8, 5, 1, 3)$
 $Q_3 = (6, 2, 7, 9, 5, 6)$
 $Q_4 = (4, 5, 7, 4)$

- Primele 2 cicluri au nodul comun $3 \Rightarrow$ ciclul $R_2 = (3, 8, 5, 1, 3, 6, 7, 8, 2, 4, 9, 3)$
- R_2 are nodul 6 în comun cu al 3-lea ciclu \Rightarrow ciclul $R_3 = (3, 8, 5, 1, 3, 6, 2, 7, 9, 5, 6, 7, 8, 2, 4, 9, 3)$
- R_3 are nodul 4 în comun cu a 4-lea ciclu \Rightarrow ciclul eulerian $R_4 = (3, 8, 5, 1, 3, 6, 2, 7, 9, 5, 6, 7, 8, 2, 4, 5, 7, 4, 9, 3)$

Detecția căilor euleriene

Întrebare: Cum detectăm dacă un graf conține o cale euleriană?

Detecția căilor euleriene

Întrebare: Cum detectăm dacă un graf conține o cale euleriană?

Răspuns: Se observă că:

- Un graf eulerian conţine un o cale euleriană deoarece orice ciclu eulerian este şi cale euleriană.
- Există grafuri ne-euleriene care conțin căi euleriene.

Detecția căilor euleriene

Întrebare: Cum detectăm dacă un graf conține o cale euleriană?

Răspuns: Se observă că:

- Un graf eulerian conţine un o cale euleriană deoarece orice ciclu eulerian este şi cale euleriană.
- Există grafuri ne-euleriene care conțin căi euleriene.

Observație

Un graf conex G conține o cale euleriană dacă și numai dacă are cel mult 2 noduri cu grad impar.

Grafuri hamiltoniene

Fie G = (V, E) un graf neorientat.

- O cale hamiltoniană este o cale care conține fiecare nod a lui G o singură dată.
- Un ciclu hamiltonian este un ciclu care trece prin fiecare nod a lui G
 o singură dată.
- G este traversabil dacă conține o cale hamiltoniană.
- G este graf hamiltonian dacă are un ciclu hamiltonian.

Observații:

- Toate grafurile hamiltoniene sunt traversabile.
- 2 Există grafuri traversable care nu sunt hamiltoniene; De exemplu, P_3 .

- Nu se cunosc condiții necesare și suficiente de caracterizare a grafurilor hamiltoniene.
- Se cunosc condiții suficiente pentru ca un graf să fie sau să nu fie hamiltonian:
 - Teorema lui Dirac
 - Teorema lui Dirac generalizată
 - Teorema lui Chvátal şi Erdös
 - Teorema Goodman şi Hedetniemi
 - Teorema lui Duffus, Gould şi Jacobson

. . .

Teorema lui Dirac

Fie G un graf simplu cu ordinul $n \ge 3$. Dacă $\delta(G) \ge n/2$ atunci G este hamiltonian.

DEMONSTRAȚIE. Presupunem că G satisface condițiile date, însă G nu este hamiltonian. Fie $P=(v_1,\ldots,v_p)$ o cale simplă în G de lungime maximală \Rightarrow toți vecinii lui v_1 și ai lui v_p sunt în P. Deasemenea, v_1 și v_p au cel puțin n/2 vecini în P fiindcă $\delta(G) \geq n/2$.

Demonstrăm că $\exists j \in \{1,\dots,p-1\}$ astfel încât $v_j \in N(v_p)$ și $v_{j+1} \in N(v_1)$. Dacă n-ar fi așa, atunci pentru fiecare vecin v_i de pe P al lui v_p (reținem că sunt $\geq n/2$ astfel de v_i), v_{i+1} **nu** este vecin al lui v_1 . Ar rezulta că $\deg(v_1) \leq p-1-\frac{n}{2} < n-\frac{n}{2}=\frac{n}{2}$, contradicție cu faptul că $\delta(G) \geq n/2$. Deci, există un astfel de j, pentru care avem situația ilustrată în figura de mai jos:

Teorema lui Dirac (continuare)

Teorema lui Dirac

Fie G un graf simplu cu ordinul $n \geq 3$. Dacă $\delta(G) \geq n/2$ atunci G este hamiltonian.

DEMONSTRAȚIE. (CONTINUARE)

Fie C ciclul $v_1, v_2, \ldots, v_j, v_p, v_{p-1}, \ldots, v_{j+1}, v_1$. Presupunând că G nu este hamiltonian, există un nod al lui G care nu este în P.

- Se observă că, dacă $\delta(G) \ge n/2$ atunci G este conex.
- \Rightarrow G are un nod w care nu-i în P și este adiacent la un nod v_i din P. Dar atunci calea care pornește cu w, v_i și continuă în jurul ciclului C este mai lungă decât P, contradicție.
- În concluzie G trebuie să fie graf hamiltonian.

Alte criterii și noțiuni auxiliare

Teorema lui Dirac generalizată

Fie G un graf simplu cu ordinul $n \ge 3$. Dacă $\deg(x) + \deg(y) \ge n$ pentru toate perechile de noduri neadiacente x, y, atunci G este hamiltonian.

Alte criterii și noțiuni auxiliare

Teorema lui Dirac generalizată

Fie G un graf simplu cu ordinul $n \ge 3$. Dacă $\deg(x) + \deg(y) \ge n$ pentru toate perechile de noduri neadiacente x, y, atunci G este hamiltonian.

O mulțime de noduri a unui graf G este independentă dacă nu conține noduri adiacente. Numărul de independență $\alpha(G)$ al unui graf G este mărimea cea mai mare posibilă a unei mulțimi independente a lui G.

Exemplu

Se consideră grafurile

Cea mai mare mulțime independentă a lui G_1 este $\{c,d\}$, deci $\alpha(G_1)=2$. Există 2 mulțimi independente cu mărimea 3 în $G_2:\{a,c,e\}$ și $\{b,d,f\}$, și nici una cu mărimea 4, deci $\alpha(G_2)=3$.

Alte criterii și noțiuni auxiliare. Teorema lui Chvátal și Erdös

Conectivitatea $\kappa(G)$ unui graf G este este mărimea minimă a unei mulțimi de tăiere a lui G. Spunem că G este k-conectat dacă $k \leq \kappa(G)$.

Teoremă (Chvátal și Erdös, 1972)

Fie G un graf conectat cu ordinal $n \geq 3$, conectivitatea $\kappa(G)$, și numărul de independență $\alpha(G)$. Dacă $\kappa(G) \geq \alpha(G)$, atunci G este hamiltonian.

Exercițiu (Jocul icosian al lui Hamilton)

Să se arate că graful ilustrat în cercul de mai jos este hamiltonian.

Detecția grafurilor hamiltoniene Două definiții și trei grafuri speciale

- Date fiind două grafuri G şi H, spunem că G este liber de H dacă G nu conține subgraful H.
- Dacă S este o colecție de grafuri, spunem că G este liber de S dacă G nu conține nici unul din grafurile lui S ca subgraf.

Teoremă (Goodman și Hedetniemi, 1974)

Dacă G este un graf 2-conectat și liber de $\{K_{1,3}, Z_1\}$ atunci G este hamiltonian.

DEMONSTRAȚIE. Fie G un astfel de graf, și fie C un ciclu de lungime maximă în G. Deoarece G este 2-conectat, un astfel de ciclu C există. Demonstrăm că C este ciclu hamiltonian.

Dacă G nu ar fi hamiltonian, ar exista un nod v care nu este în C și care este adiacent la un nod w din C. Fie a și b succesorul și predecesorul imediat al lui w în ciclul C.

- Dacă $\{a,b\} \cap N(v) \neq \emptyset \Rightarrow \exists$ un ciclu mai lung decât $C \Rightarrow \{a,b\} \cap N(v) = \emptyset$.
- Dacă a, b nu sunt adiacente atunci subgraful indus de {w, v, a, b} este K_{1,3}, contradicție cu ipoteza că G este liber de K_{1,3} ⇒ ab trebuie să fie muchie în G. Însă în acest caz subgraful indus de {w, v, a, b} este Z₁, contradicție cu ipoteza că G este liber de Z₁.
- \Rightarrow C este ciclu hamiltonian.

Teoremă (Duffus, Gould și Jacobson, 1981)

Fie G un graf liber de $\{K_{1,3}, N\}$.

- 1 Dacă G este conectat atunci G este traversabil.
- 2 Dacă G este 2-conectat atunci G este hamiltonian.

Teoremă (Duffus, Gould și Jacobson, 1981)

Fie G un graf liber de $\{K_{1,3}, N\}$.

- 1 Dacă G este conectat atunci G este traversabil.
- 2 Dacă G este 2-conectat atunci G este hamiltonian.

Observații.

• Ultimele 2 teoreme interzic ca graful $K_{1,3}$ să apară ca subgraf. De obicei, graful $K_{1,3}$ se numește *gheară*, și este un graf interzis să apară în numeroase teoreme din teoria grafurilor.

Problemă motivantă

Adi, Barbu, Călin, Dan, Eugen, Florin, Gelu și Ion sunt senatori ai unui stat, și fac parte din 7 comitete:

```
 \begin{array}{l} \textit{C}_1 = \{ \mathsf{Adi}, \, \mathsf{Barbu}, \, \mathsf{C} \mathsf{\Delta} \mathsf{lin} \}, \, \textit{C}_2 = \{ \mathsf{C} \mathsf{\Delta} \mathsf{lin}, \, \mathsf{Dan}, \, \mathsf{Eugen} \}, \\ \textit{C}_3 = \{ \mathsf{Dan}, \mathsf{Florin} \}, \, \textit{C}_4 = \{ \mathsf{Adi}, \, \mathsf{Gelu} \}, \, \textit{C}_5 = \{ \mathsf{Eugen}, \, \mathsf{lon} \}, \\ \textit{C}_6 = \{ \mathsf{Eugen}, \mathsf{Barbu}, \mathsf{Gelu} \}, \, \textit{C}_7 = \{ \mathsf{lon}, \, \mathsf{C} \mathsf{\Delta} \mathsf{lin}, \, \mathsf{Florin} \}. \\ \end{array}
```

Fiecare comitet trebuie să fixeze o oră la care să se întâlnească toți membrii săi.

Întrebare: Care este numărul minim de ore ce trebuiesc fixate pentru întâlniri, dacă se știe că nici un membru nu poate participa simultan la două întâlniri fixate la aceeași oră?

Observații:

- Două comitete C_i și C_j nu se pot întâlni la aceeași oră dacă și numai dacă au un membru comun (adică $C_i \cap C_j = \emptyset$).
- \Rightarrow Putem considera graful neorientat G cu
 - noduri = comitetele $C_1, C_2, C_3, C_4, C_5, C_6, C_7$
 - muchii $\{C_i, C_j\}$ dacă C_i și C_j au un membru comun (adică $C_i \cap C_j \neq \emptyset$) \Rightarrow muchiile $\{C_1, C_2\}, \{C_1, C_4\}, \{C_1, C_6\}, \{C_1, C_7\}, \{C_2, C_3\}, \{C_2, C_5\}, \{C_2, C_7\}, \{C_3, C_7\}, \{C_4, C_6\}, \{C_5, C_6\}, \{C_5, C_7\}$
 - Colorăm fiecare nod C_i cu o culoare care reprezintă ora la care are loc întâlnirea comitetului C_i
 - ⇒ problema se poate reformula astfel: care este numărul minim de culori pentru nodurile lui *G*, astfel încât nici o muchie să nu aibă capetele colorate la fel?

Definiție (colorare de noduri, număr cromatic)

O k-colorare a nodurilor unui graf G=(V,E) este o funcție $K:V \to \{1,\ldots,k\}$ astfel încât $K(u) \neq K(v)$ dacă $(u,v) \in E$. Numărul cromatic $\chi(G)$ al unui graf G este valoarea minimă a lui $k \in \mathbb{N}$ pt. care există o k-colorare a lui G.

$$K(C_1) = K(C_3) = K(C_5) = 1$$

$$K(C_2) = K(C_4) = 2$$

$$K(C_6)=K(C_7)=3$$

Definiție (colorare de noduri, număr cromatic)

O k-colorare a nodurilor unui graf G=(V,E) este o funcție $K:V \to \{1,\ldots,k\}$ astfel încât $K(u) \neq K(v)$ dacă $(u,v) \in E$. Numărul cromatic $\chi(G)$ al unui graf G este valoarea minimă a lui $k \in \mathbb{N}$ pt. care există o k-colorare a lui G.

$$K(C_1) = K(C_3) = K(C_5) = 1$$

$$K(C_2)=K(C_4)=2$$

$$K(C_6) = K(C_7) = 3$$

⇒ nr. minim de date este 3. (sunt necesare 3 culori)

Definiție (colorare de noduri, număr cromatic)

O k-colorare a nodurilor unui graf G=(V,E) este o funcție $K:V \to \{1,\ldots,k\}$ astfel încât $K(u) \neq K(v)$ dacă $(u,v) \in E$. Numărul cromatic $\chi(G)$ al unui graf G este valoarea minimă a lui $k \in \mathbb{N}$ pt. care există o k-colorare a lui G.

Colorări de noduri

Calculul lui $\chi(G)$ este o problemă dificilă (NP-completă).

- Birkhoff (\approx 1900) a descoperit o metodă de calcul al unui polinom $c_G(z)$ pentru orice graf G, numit polinomul cromatic al lui G, astfel încât
 - $c_G(k) =$ numărul de k-colorări ale nodurilor lui G
- $\Rightarrow \chi(G) = \text{valoarea minimă a lui } k \text{ pentru care } c_G(k) > 0.$

Colorări de noduri

Calculul lui $\chi(G)$ este o problemă dificilă (NP-completă).

- Birkhoff (\approx 1900) a descoperit o metodă de calcul al unui polinom $c_G(z)$ pentru orice graf G, numit polinomul cromatic al lui G, astfel încât
 - $c_G(k) =$ numărul de k-colorări ale nodurilor lui G
- $\Rightarrow \chi(G) = \text{valoarea minimă a lui } k \text{ pentru care } c_G(k) > 0.$

Vom prezenta

- formule simple de calcul al lui $c_G(z)$ pentru grafuri speciale G.
- ② doi algoritmi recursivi de calcul al lui $c_G(z)$ pentru orice graf G.

• Graful vid E_n : v_1 v_2 ... v_n pentru fiecare nod, putem alege oricare din z culori:

$$\Rightarrow c_{E_n}(z) = z^n \text{ si } \chi(E_n) = 1$$

- Graful vid E_n : v_1 v_2 \cdots v_n pentru fiecare nod, putem alege oricare din z culori:
 - $\Rightarrow c_{E_n}(z) = z^n \text{ si } \chi(E_n) = 1$
- 2 Arbore T_n cu n noduri:
 - z opțiuni pentru culoarea rădăcinii
 - ullet orice alt nod poate fi colorat cu orice culoare diferită ce cea a nodului părinte $\Rightarrow z-1$ opțiuni pentru colorarea lui

$$\Rightarrow c_{\mathcal{T}_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(\mathcal{T}_n) = \left\{ \begin{array}{ll} 1 & \text{dacă } n=1, \\ 2 & \text{dacă } n>1. \end{array} \right.$$

- Graful vid E_n : v_1 v_2 \cdots v_n pentru fiecare nod, putem alege oricare din z culori:
 - $\Rightarrow c_{E_n}(z) = z^n \text{ si } \chi(E_n) = 1$
- 2 Arbore T_n cu n noduri:
 - z opțiuni pentru culoarea rădăcinii
 - ullet orice alt nod poate fi colorat cu orice culoare diferită ce cea a nodului părinte $\Rightarrow z-1$ opțiuni pentru colorarea lui

$$\Rightarrow c_{T_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(T_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$$

- **3** Caz special: graful $\frac{P_n}{p_n}$ (cale cu n noduri) este un arbore special cu n noduri: $\frac{(v_1) \cdots (v_n)}{p_n} \cdots \frac{(v_n)}{p_n}$
 - $\Rightarrow c_{P_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(P_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$

- Graful vid E_n : v_1 v_2 v_n pentru fiecare nod, putem alege oricare din z culori: $z \in C_{E_n}(z) = z^n$ și $z \in C_{E_n}(z) = z^n$
- 2 Arbore T_n cu n noduri:
 - z opțiuni pentru culoarea rădăcinii
 - ullet orice alt nod poate fi colorat cu orice culoare diferită ce cea a nodului părinte $\Rightarrow z-1$ opțiuni pentru colorarea lui

$$\Rightarrow c_{T_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(T_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$$

3 Caz special: graful $\frac{P_n}{r}$ (cale cu n noduri) este un arbore special cu n noduri: $\frac{V_1}{r}$ $\frac{V_2}{r}$ \cdots $\frac{V_n}{r}$

$$\Rightarrow c_{P_n}(z) = z \cdot (z-1)^{n-1} \text{ si } \chi(P_n) = \begin{cases} 1 & \text{dacă } n = 1, \\ 2 & \text{dacă } n > 1. \end{cases}$$

• Graful complet K_n : $c_{K_n}(z) = z \cdot (z-1) \cdot \ldots \cdot (z-n+1)$ și $\chi(K_n) = n$.

Calculul polinoamelor cromatice

Operații speciale asupra unui graf

Fie G = (V, E) un graf neorientat și e = (x, y) o muchie din E

- ightharpoonup G e este graful obținut din G prin eliminarea muchiei e
- ▶ G/e este graful obținut din G astfel:
 - Se înlocuiesc nodurile x şi y cu un singur nod, care se învecinează cu vecinii lui x şi ai lui y.

Calculul polinoamelor cromatice

Formule de calcul recursiv

Se observă că, pentru orice $e \in E$: $c_G(z) = c_{G-e}(z) - c_{G/e}(z)$ \Rightarrow doi algoritmi de calcul recursiv al polinomului cromatic:

① Se reduce G eliminând pe rând câte o muchie $e \in E$:

$$c_G(z) = c_{G-e}(z) - c_{G/e}(z)$$

până când se obțin grafuri speciale E_n sau T_n :

- Cazuri de bază: $c_{E_n}(z) = z^n$ și $c_{T_n}(z) = z \cdot (z-1)^{n-1}$
- Se extinde G adăugând pe rând muchii e care lipsesc din G:

$$c_G(z) = c_{\bar{G}}(z) + c_{\bar{G}/e}(z)$$

unde e este o muchie lipsă din G, și $\bar{G} = G + e$

• Caz de bază:
$$c_{K_n}(z) = z \cdot (z-1) \cdot \ldots \cdot (z-n+1)$$

Calculul polinomului cromatic prin reducere Exemplu ilustrat

$$G: \bigoplus_{a = b}^{d} c \quad c_{G}(z) = c_{G_{1}}(z) - c_{G_{2}}(z), \text{ unde}$$

$$G_{1}: \bigoplus_{a = b}^{d} c \quad c_{G_{1}}(z) = c_{G_{11}}(z) - c_{G_{12}}(z) \quad G_{2}: \bigoplus_{a = b}^{d} c \quad c_{G_{2}}(z) = c_{G_{21}}(z) - c_{G_{22}}(z) \quad \text{unde } G_{21} = G_{2} - (a\&b,c)$$

$$a \mapsto G_{12} = G_{1}/(b,c) \quad a\&b \quad \text{si } G_{22} = G_{2}/(a\&b,c)$$

Calculul polinomului cromatic prin reducere

$$G: \overset{\mathsf{d}}{\underset{\mathsf{a} \longrightarrow \mathsf{b}}{\bigcirc}} c \quad c_G(z) = c_{G_1}(z) - c_{G_2}(z), \text{ unde}$$

$$G_1: \overset{\mathsf{d}}{\underset{\mathsf{a} \longrightarrow \mathsf{b}}{\bigcirc}} c \quad c_{G_1}(z) = c_{G_{11}}(z) - c_{G_{12}}(z) \quad G_2: \overset{\mathsf{d}}{\underset{\mathsf{a} \longrightarrow \mathsf{b}}{\bigcirc}} c \quad c_{G_2}(z) = c_{G_{21}}(z) - c_{G_{22}}(z) \quad \text{unde } G_{21} = G_2 - (a\&b,c)$$

$$G_1: \overset{\mathsf{d}}{\underset{\mathsf{a} \longrightarrow \mathsf{b}}{\bigcirc}} c \quad G_{12}: \overset{\mathsf{d}}{\underset{\mathsf{a} \longrightarrow \mathsf{b}}{\bigcirc}} c \quad G_{21}: \overset{\mathsf{d}}{\underset{\mathsf{a} \longrightarrow \mathsf{b}}{\bigcirc}} c \quad G_{22}: \overset{\mathsf{d}}{\underset$$

Grafurile următoare sunt izomorfe: $G_{12} \equiv G_{21}$ și $G_{22} = K_3$, deci:

$$c_G(z) = c_{G_{11}}(z) - 2 \cdot c_{G_{12}}(z) + \underbrace{z(z-1)(z-2)}_{c_{K_3}(z)}$$

Calculul polinomului cromatic prin reducere Exemplu ilustrat (continuare)

$$c_G(z) = c_{G_{11}}(z) - 2 \cdot c_{G_{12}}(z) + z(z-1)(z-2)$$

$$c_{G_{11}} = c_{G_{11}} \cdot c_{G_{12}} \cdot c_{G_{12}$$

Se observă că

•
$$c_{G_{11}}(z) = c_{T_5}(z) - c_{T_4}(z) = z(z-1)^4 - z(z-1)^3$$

•
$$c_{G_{12}}(z) = c_{T_4}(z) - c_{T_3}(z) = z(z-1)^3 - z(z-1)^2$$

$$\Rightarrow c_G(z) = z(z-1)^4 - z(z-1)^3 - 2(z(z-1)^3 - z(z-1)^2) + z(z-1)(z-2) = z^5 - 7z^4 + 18z^3 - 20z^2 + 8z$$

Calculul polinomului cromatic prin extindere

$$G: egin{array}{c} \mathsf{d} & \mathsf{c} & \mathsf{c}_G(z) = \mathsf{c}_{G_1}(z) + \mathsf{c}_{G_2}(z), \text{ unde} \\ & \mathsf{d} & \mathsf{c} & \mathsf{d} \\ & \mathsf{d} & \mathsf{c} & \mathsf{d} \\ & \mathsf{d} & \mathsf{c} & \mathsf{d} & \mathsf{c} \\ & \mathsf{d} & \mathsf{d} & \mathsf{c} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{c} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} & \mathsf{d} & \mathsf{d} & \mathsf{d} \\ & \mathsf{d} &$$

$$c_{G_2}(z) = z(z-1)(z-2)(z-3) \text{ deoarece } G_2 \equiv K_4, \text{ i}$$

$$c_{G_1}(z) = c_{G_{11}}(z) + c_{G_{12}}(z) \text{ unde } G_{11} : e \downarrow c \downarrow c \downarrow c$$

$$c_{G_{11}}(z) = c_{G_{111}}(z) + c_{G_{112}}(z) = c_{K_5}(z) + c_{K_4}(z) \text{ unde } G_{111} : e \downarrow c \downarrow c$$

$$G_{111} \equiv K_5 \qquad G_{112} \equiv K_4$$

Calculul polinomului cromatic prin extindere Exemplu ilustrat (continuare)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

unde
$$G_{12}$$
: $\begin{pmatrix} c \\ c \end{pmatrix}$

Calculul polinomului cromatic prin extindere Exemplu ilustrat (continuare)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

unde
$$G_{12}$$
: $\begin{array}{c} d \\ c \\ c \\ G_{12}(z) = c \\ G_{121}(z) + c \\ G_{122}(z) = c \\ K_4(z) + c \\ K_3(z) \end{array}$ unde C_{122} : $\begin{array}{c} d \\ c \\ a \\ b \\ c \\ G_{121} \equiv K_4 \end{array}$ unde C_{122} : $\begin{array}{c} d \\ c \\ a \\ G_{122} \equiv K_3 \end{array}$

Calculul polinomului cromatic prin extindere Exemplu ilustrat (continuare)

$$c_G(z) = c_{G_1}(z) + c_{G_2}(z) = (c_{G_{11}}(z) + c_{G_{12}}(z)) + c_{K_4}(z)$$

= $c_{K_5}(z) + c_{K_4}(z) + c_{G_{12}}(z) + c_{K_4}(z)$

$$\Rightarrow c_G(z) = c_{K_5}(z) + 3c_{K_4}(z) + c_{K_3}(z) = z^5 - 7z^4 + 18z^3 - 20z^2 + 8z$$

Proprietăți ale polinomului cromatic

Dacă G = (V, E) este un graf neorientat cu n noduri și q muchii atunci polinomul cromatic $c_G(z)$ satisface condițiile următoare:

- ► Are gradul *n*.
- Coeficientul lui zⁿ este 1.
- ► Coeficienții săi au semne alternante.
- ▶ Termenul constant este 0.
- ▶ Coeficientul lui z^{n-1} este -q.

Exemplu

$$G: \begin{array}{c} e \\ \downarrow \\ a \\ b \end{array}$$

$$\begin{array}{ll}
 & n = 5, \ q = 7 \\
 & c_G(z) = z^5 - 7z^4 + 18z^3 - 20z^2 + 8z
\end{array}$$

Rezultate remarcabile

- Fiecare țară a unei hărți se reprezintă ca nod al unui graf
- Două noduri se conectează dacă și numai dacă ţările respective au o graniţă nebanală (mai mult decât un punct)
- \Rightarrow graf neorientat G_H corespunzător unei hărți H. De exemplu:

Observații:

- Un graf *G* este planar dacă poate fi redesenat astfel încât muchiile să nu i se intersecteze.
- ② H este hartă dacă și numai dacă G_H este graf planar.

Observații:

- Un graf *G* este planar dacă poate fi redesenat astfel încât muchiile să nu i se intersecteze.
- ② H este hartă dacă și numai dacă G_H este graf planar.

Observații:

- Un graf *G* este planar dacă poate fi redesenat astfel încât muchiile să nu i se intersecteze.
- ② H este hartă dacă și numai dacă G_H este graf planar.

- Una dintre cele mai faimoase teoreme din Teoria Grafurilor
 - Demonstrație extrem de lungă și complexă
 - Problemă propusă in 1858, rezolvată de-abia în 1976 (Appel & Haken)
 - Echivalentă cu faptul că graful planar *G_H* este 4-colorabil.

Observații:

- Un graf *G* este planar dacă poate fi redesenat astfel încât muchiile să nu i se intersecteze.
- ② H este hartă dacă și numai dacă G_H este graf planar.

- Una dintre cele mai faimoase teoreme din Teoria Grafurilor
 - Demonstrație extrem de lungă și complexă
 - Problemă propusă in 1858, rezolvată de-abia în 1976 (Appel & Haken)
 - Echivalentă cu faptul că graful planar G_H este 4-colorabil.
- Teorema este echivalentă cu afirmația:

$$\chi(G) \leq 4$$
 pentru orice graf planar G .

Țările unei hărți H pot fi colorate cu 5 culori, astfel încât să nu existe țări învecinate colorate la fel. sau, echivalent: $\chi(G) \leq 5$ pentru orice graf planar G.

DEMONSTRAŢIE: Inducție după n= numărul de noduri din G. Teorema este evidentă pt. $n \le 5$, deci considerăm doar $n \ge 6$. $\delta(G) \le 5$ datorită consecintți 4, deci G are un nod V cu $\deg(V) \le 5$. Fie G' graful obținut prin eliminarea lui V din $G \Rightarrow G'$ are N-1 noduri, deci $\chi(G') \le 5$ conform ipotezei inductive. Deci putem presupune că G' are o 5-colorare cu culorile 1,2,3,4,5. CAZUL 1: $\deg(V) = d \le 4$. Fie V_1, \ldots, V_d vecinii lui V, cu culorile C_1, \ldots, C_d .

pentru nodul v putem alege orice culoare $c \in \{1, 2, 3, 4, 5\} - \{c_1, \dots, c_d\}$ $\Rightarrow G$ este 5-colorabil.

CAZUL 2: deg(v) = 5, deci v are 5 vecini v_1, v_2, v_3, v_4, v_5 pe care-i presupunem colorați cu culorile c_1, c_2, c_3, c_4, c_5 .

- **1** Dacă $\{c_1, c_2, c_3, c_4, c_5\}$ ≠ $\{1, 2, 3, 4, 5\}$, putem să-l colorăm pe v cu orice culoare $c \in \{1, 2, 3, 4, 5\} \{c_1, c_2, c_3, c_4, c_5\}$ ⇒ G este 5-colorabil.
- ② Dacă $\{c_1, c_2, c_3, c_4, c_5\} = \{1, 2, 3, 4, 5\}$, putem presupune că $c_1 = 1, c_2 = 2, c_3, c_4 = 4, c_5 = 5$.

Idee de bază: Vom rearanja culorile lui G' pentru a face disponibilă o culoare pentru v.

Colorarea hărții cu 5 culori Continuarea demonstrației

Considerăm toate nodurile lui G' care sunt colorate cu 1 (roșu) și 3 (verde). CAZUL 2.1. G' nu are nici o cale de la v_1 la v_3 colorată doar cu 1 și 3. Fie H subgraful lui G' care conține toate căile ce pornesc din v_1 și sunt colorate doar cu 1 (roșu) și 3 (verde).

Considerăm toate nodurile lui G' care sunt colorate cu 1 (roșu) și 3 (verde). CAZUL 2.1. G' nu are nici o cale de la v_1 la v_3 colorată doar cu 1 și 3. Fie H subgraful lui G' care conține toate căile ce pornesc din v_1 și sunt colorate doar cu 1 (roșu) și 3 (verde).

• $V[v_3] \cap V(H) = \emptyset$, adică nici v_3 și nici vecinii lui v_3 nu sunt noduri din H.

Considerăm toate nodurile lui G' care sunt colorate cu 1 (roșu) și 3 (verde). CAZUL 2.1. G' nu are nici o cale de la v_1 la v_3 colorată doar cu 1 și 3. Fie H subgraful lui G' care conține toate căile ce pornesc din v_1 și sunt colorate doar cu 1 (roșu) și 3 (verde).

- $V[v_3] \cap V(H) = \emptyset$, adică nici v_3 și nici vecinii lui v_3 nu sunt noduri din H.
- Putem interschimba culorile 1 și 3 în H, iar apoi să atribuim culoarea 1 (roșu) lui $v \Rightarrow G$ este 5-colorabil.

Considerăm toate nodurile lui G' care sunt colorate cu 1 (roșu) și 3 (verde).

CAZUL 2.1. G' nu are nici o cale de la v_1 la v_3 colorată doar cu 1 și 3.

Fie H subgraful lui G' care conține toate căile ce pornesc din v_1 și sunt colorate doar cu 1 (roșu) și 3 (verde).

- $V[v_3] \cap V(H) = \emptyset$, adică nici v_3 și nici vecinii lui v_3 nu sunt noduri din H.
- Putem interschimba culorile 1 și 3 în H, iar apoi să atribuim culoarea 1 (roșu) lui $v \Rightarrow G$ este 5-colorabil.

CAZUL 2.2. G' are o cale de la v_1 la v_3 colorată doar cu culorile 1 și cu $3 \Rightarrow$ una din următoarele situații are loc:

În ambele cazuri, nu poate exista o cale de la v_2 la v_4 colorată doar cu culorile 2 și 4 \Rightarrow cazul 2.1 este aplicabil pentru nodurile v_2 și $v_4 \Rightarrow G$ este 5-colorabil și în cazul acesta.