תאריך הבחינה: 17/07/2016

שם המרצה: פרופי מרק לסט

שם הקורס: כריית נתונים ומחסני נתונים

מספר הקורס: 372-1-3105

שנה: <u>תשעייו (2016)</u> סמסטר: <u>בי</u> מועד: <u>אי</u>

משך הבחינה: 3 שעות

חומר עזר: דף נוסחאות (מצורף לבחינה) + מחשבון

חלק 1 [50 נקודות]

- יש לענות על כל השאלות •
- משקל של כל שאלה 5 נקודות
- יש לבחור **בתשובה הנכונה ביותר**
- יש לנמק בקצרה את התשובה בכתב-יד ברור במקום המיועד לכך על-גבי שאלון הבחינה בלבד.
 ניתן להשתמש בטיוטה לצורך עריכת התשובה. תשובה לא מנומקת (גם אם הבחירה נכונה)
 תקבל ציון של אפס
 - א. איזו משימה <u>אינה מהווה</u> משימה של חיזוי / רגרסיה (prediction / regression) !
 - 1) חיזוי שער החליפין בין דולר לשקל
 - 2) חיזוי המועמד הזוכה בבחירות לנשיאות ארהייב
 - 3) חיזוי משך אשפוז של חולה בבית-חולים
 - חיזוי ציון ממוצע של סטודנט בלימודים באוניברסיטה (4

: הסבר

- ב. מה <u>איננו מוגדר</u> כתפקיד (role) של תכונה בתוכנת RapidMiner !
 - Attribute (1
 - Id (2
 - Label (3
 - Real (4

: הסבר

- (binning) חלוקה לאינטרוולים.
- 1) מגדילה את שונות הנתונים
- 2) מקטינה את שונות הנתונים
 - 3) מזהה נתונים חריגים
 - 4) מנקה את הנתונים

: הסבר

- ליכם לחזות את הצלחת המועמד/ת ללימודים אקדמיים. באיזה טווח נמצאת האינפורמציה עליכם לחזות את הצלחת בין ציון פסיכומטרי לבין ציון מאוני ממוצע באוניברסיטה?
 - [0, 1] (1
 - [6, 7] (2)
 - [9, 10] (3
 - [90, 100] (4

: הסבר

- ה. הערך המקסימלי של מדד ה-Gini של משתנה סיווג בינארי שווה ל-
 - 0.25 (1
 - 0.50 (2
 - 0.75 (3
 - 1.00 (4

: הסבר

- IFN ברשת Minimum significance level העלייה בערכו של הפרמטר .
 - 1) עשויה להגדיל את מספר השכבות ברשת
 - 2) עשויה להגדיל את מספר הקודקודים ברשת
 - 3) שתי התשובות נכונות
 - 4) אף תשובה אינה נכונה

: הסבר

- מה אנחנו יודעים על משתנה חבוי (hidden variable) ברשת בייסיאנית!
 - ו יודעים רק שהמשתנה קיים (1
 - 2) יודעים רק שהמשתנה קיים ואיך הוא משפיע על משתנים אחרים
 - 3) את הערך שלו
 - 4) אף תשובה אינה נכונה

: הסבר

- ח. עקרון Apriori אומר:
- 1) תת-קבוצה של קבוצת פריטים שכיחה חייבת להיות שכיחה
- 2) קבוצת-על של קבוצת פריטים שכיחה חייבת להיות שכיחה
 - שתי התשובות נכונות
 - 4) אף תשובה אינה נכונה

: הסבר

- ט. משמעות התכונה Non-volatility (ייאי-נדיפותיי) של מחסני נתונים היא
 - 1) לא ניתן לגשת לנתונים במחסן
 - 2) לא ניתן להוסיף נתונים למחסן
 - לא ניתן לעדכן נתונים במחסן
 - 4) לא ניתן למחוק נתונים מהמחסן

: הסבר

- י. השימוש בטבלאות סיכום (aggregation / summary tables) תורם ל-
 - 1) מהירות הרצת השאילתות
 - 2) איכות הנתונים במחסן
 - 2) צמצום היקף הנתונים במחסן
 - 4) אף תשובה אינה נכונה

: הסבר

חלק 2 [50 נקודות]

- יש להציג את כל התוצאות עם שלוש ספרות אחרי נקודה עשרונית אלא אם צוין אחרת!
 - יש לרשום את כל התשובות **על-גבי שאלון הבחינה בלבד**
 - טיוטות החישוב ייגרסו ללא בדיקה

: להלן נתונים אמיתיים של רעידות אדמה שנרשמו באחד מאזורי הארץ

No	YEAR	Max_Magnitude	Avg_ Magnitude	Num_Events	Class
1	1996	4.5	2.952	14	1
2	1997	5.5	2.900	22	0
3	1998	3.5	2.700	12	0
4	1999	4.2	2.771	17	1
5	2000	4.3	2.910	10	1
6	2001	4.3	3.108	12	0
7	2002	4.2	2.667	12	0
8	2003	4.2	2.775	16	1
9	2004	4.5	3.038	8	0
10	2005	4.2	2.714	7	1
11	2006	4.3	3.065	20	0
12	2007	4	2.713	16	0
13	2008	4.2	2.642	12	0
14	2009	4.2	2.750	12	0
15	2010	4.1	2.783	12	1

- העמודה Max_Magnitude מייצגת את העוצמה מייצגת את מייצגת את מייצגת את העוצמה מסוימת
 - העמודה Avg_ Magnitude מייצגת את העוצמה מייצגת את העוצמה Avg_ Magnitude מסוימת
 - העמודה Num_Events מייצגת את כמות הרעידות שנרשמו במהלך שנה מסוימת
- 0) מייצגת את העוצמה המקסימלית של רעידות אדמה במהלך השנה העוקבת Class העמודה מייצגת את העוצמה המסרה מתחת לחציון, 1 –מעל לחציון) ומהווה את משתנה המטרה
- א. האלגוריתם IFN הורץ על טבלת הנתונים הנ"ל עם רמת-המובהקות של 0.10 ושלוש תכונות קלט . Num_Events , Avg_ Magnitude , Max_Magnitude : (candidate input attributes) מועמדות עבור השכבה הראשונה של הרשת נבחרה התכונה 0.038. התכונה פוצלה ע"י עבור השכבה הראשונה של הרשת נבחרה התכונה 0.038. (מא האלגוריתם לשלושת האינטרוולים הבאים: 0.038,

j' / j	0	Cond.	Joint	1	Cond.	Joint	Total	Cond.
[2.642, 2.714)								
[2.714, 3.038)								
> 3.038								
Total								

Mutual Information

j' / j	0	1	Total
[2.642, 2.714)			
[2.714, 3.038)			
> 3.038			
Total			

ב. יש לחשב את הסטטיסטי Likelihood-Ratio Statistic עבור האינפורמציה ההדדית שחושבה בסעיף הקודם ואת מספר דרגות החופש שלה. **5 נקודות.**

G ² =	DF =	

ג. יש לנרמל את התכונות Max_Magnitude , Avg_ Magnitude , Num_Events ג. יש לנרמל את התכונות התכונות שבין 0 נקודות.

	Max_Magnitude	Avg_ Magnitude	Num_Events
Min			
Max			

הערכים המנורמלים:

No	YEAR	Max_Magnitude	Avg_ Magnitude	Num_Events
1	1996			
2	1997			
3	1998			
4	1999			
5	2000			
6	2001			
7	2002			
8	2003			
9	2004			
10	2005			
11	2006			
12	2007			
13	2008			
14	2009			
15	2010			

ד. יש להריץ את האיטרציה הראשונה של האלגוריתם k-means תוך שימוש בערכים המנורמלים של שלוש התכונות שחישבתם לעיל. אין להתייחס ליתר התכונות בטבלה! יש לחשב את מרכזי האשכולות לפני ואחרי ביצוע האיטרציה. 20 נקודות

No	YEAR	Old	Distance to 1	Distance to 2	New
		cluster			cluster
1	1996	1			
2	1997	1			
3	1998	1			
4	1999	1			
5	2000	1			
6	2001	1			
7	2002	1			
8	2003	2			
9	2004	2			
10	2005	2			
11	2006	2			
12	2007	2			
13	2008	2			
14	2009	2			
15	2010	2			

לפני האיטרציה:

	Max_Magnitude	Avg_ Magnitude	Num_Events
Centroid 1			
Centroid 2			

:אחרי האיטרציה

	Max_Magnitude	Avg_ Magnitude	Num_Events
Centroid 1			
Centroid 2			

דף נוסחאות – הבחינה הסופית

ב' מסטר ב"ו, סמסטר ב' מחסני נתונים - תשע"ו, סמסטר ב' 372-1-3105

Information Theory

- Conditional Entropy $H(Y/X) = -\Sigma$ p(x,y)*log p(y/x)
- Mutual Information I(X;Y) =

$$\sum_{x,y} p(x,y) \bullet \log \frac{p(y/x)}{p(y)}$$

Conditional Mutual Information I(X;Y/Z) =

$$\sum_{x,y} p(x,y,z) \bullet \log \frac{p(x,y/z)}{p(x/z) \bullet p(y/z)}$$

- Fano's Inequality: $H(Y/X_1...X_n) \le H(P_e) + P_e \log_2(m-1)$
- The MDL Principle $h_{MDL} = \underset{h \in H}{\operatorname{arg \, min}} \{L_{C_1}(h) + L_{C_2}(D/h)\}$

Decision Trees

• Expected information needed to classify a tuple in *D* (after using *A*):

$$Info_A(D) = \sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times I(D_j)$$

• Expected number of records in C_i , for class j:

$$e'_{ij} = \frac{e_j}{\sum_{i=1}^{c} e_j} \sum_{j=1}^{c} o_{ij}$$

• Chi-Square Statistic:

$$\sum_{i=1}^{c} \sum_{j=1}^{v} \frac{(o_{ij} - e'_{ij})^{2}}{e'_{ii}} \Big|_{H_{0}} \sim \chi_{\alpha}^{2}((v-1)(c-1))$$

• Apparent (pessimistic) error rate:

$$q = \frac{N - n_C + 0.5}{N}$$

• Entropy induced by threshold *T*:

$$E(A,T;S) = \frac{|S_1|}{|S|} Ent(S_1) + \frac{|S_2|}{|S|} Ent(S_2)$$

• Split Information:

SplitInfo_A(D) =
$$-\sum_{j=1}^{\nu} \frac{|D_j|}{|D|} \times \log_2 \left(\frac{|D_j|}{|D|} \right)$$

• Gini index: $gini(T) = 1 - \sum_{i=1}^{n} p_j^2$

• Gini split (*T*):

$$gini_{split}(T) = \frac{N_1}{N}gini(T_1) + \frac{N_2}{N}gini(T_2)$$

• Twoing Splitting Rule:

$$\frac{p_L p_R}{4} \left[\sum_{j} \left| p(j/t_L) - p(j/t_R) \right| \right]^2$$

• Cost-complexity function (CART):

$$R_{\alpha}(T) = R(T) + \alpha \cdot \left| \widetilde{T} \right|$$

IFN

• IFN Conditional mutual information at a node z:

$$MI(A_{i'}; A_{i}/z) =$$

$$\sum_{j=0}^{M_{i}-1} \sum_{j'=0}^{M_{i'}-1} P(V_{ij}; V_{i'j'}; z) \bullet \log \frac{P(V_{i'j'}^{ij} / z)}{P(V_{i'j'} / z) \bullet P(V_{ij} / z)}$$

• IFN Likelihood-Ratio Statistic:

$$G^{2}(A_{i'}; A_{i} / z) = 2 \bullet (\ln 2) \bullet E^{*} \bullet MI(A_{i'}; A_{i} / z)$$

$$G^{2}|_{H_{i}} \sim \chi^{2}((NI_{i'}(z) - 1) \cdot (NT_{i}(z) - 1))$$

• Conditional Mutual Information in a Layer *i* ':

$$MI(A_{i'}; A_i) = \sum_{\substack{z \in Layer_{i'} \\ Split(z) = true}} MI(A_{i'}; A_i / z)$$

• IFN Connection Weight:

$$w_z^{ij} = P(V_{ij}; z) \bullet \log \frac{P(V_{ij}/z)}{P(V_{ii})}$$

• Conditional Mutual Information (Split)

$$\sum_{t=0}^{M_{i}-1} \sum_{y=1}^{2} P(S_{y}; C_{t}; z) \bullet \log \frac{P(S_{y}; C_{t} / S, z)}{P(S_{y} / S, z) \bullet P(C_{t} / S, z)}$$

Bayesian Learning

• Naïve Bayes Classifier:

$$C_{NB} = \underset{C_i}{\operatorname{arg \, max}} \quad P(C_i) * \prod_{k=1}^{n} P(x_k \mid C_i)$$

• m-estimate: $\frac{n_c + mp}{n + m}$

- Laplacian-estimate: $\frac{n_c + 1}{n + K}$
- Joint probability in Bayesian network:

$$P(x_1,...,x_n) = \prod_{i=1}^{n} P(x_i | Parents(X_i))$$

k - Nearest Neighbors

• Distance-weighted k-NN:

$$\hat{f}(q) = \arg\max_{v \in V} \sum_{i=1}^{k} w_i \delta(v, f(x_i))$$

$$w_i = \frac{1}{d(x_q - x_i)^2}$$

SVM

• Linear SVM:

$$\mathbf{w} = \sum_{i=1}^{n} \alpha_i y_i \mathbf{x}_i$$
$$(\mathbf{w}^T \mathbf{x}_i + \mathbf{h}) > 1$$

$$y_j(w^T x_j + b) \ge 1$$

• Nonlinear SVM:

$$g(x_j) = \sum_{i \in SV} \alpha_i y_i K(x_i, x_j) + b$$

• Polynomial kernel:

$$K(\mathbf{x}_{i},\mathbf{x}_{i}) = (1 + \mathbf{x}_{i}^{T}\mathbf{x}_{i})^{p}$$

Clustering

• Distance measure for <u>symmetric</u> binary variables:

$$d(i,j) = \frac{b+c}{a+b+c+d}$$

• Distance measure for <u>asymmetric</u> binary variables:

$$d(i,j) = \frac{b+c}{a+b+c}$$

• Distance measure for nominal variables:

$$d(i,j) = \frac{p-m}{p}$$

• Distance measure for variables of mixed types:

$$d(i,j) = \frac{\sum_{f=1}^{p} \delta_{ij}^{(f)} d_{ij}^{(f)}}{\sum_{f=1}^{p} \delta_{ij}^{(f)}}$$

• Rank for an ordinal variable:

$$z_{if} = \frac{r_{if} - 1}{M_f - 1}$$

Cluster centroid: $C_m = \frac{\sum_{i=1}^{N} (t_{i_p})}{N}$

Data Preparation

• min-max normalization:

$$v' = \frac{v - min_{A}}{max_{A} - min_{A}} (new _max_{A} - new _min_{A}) + new _min_{A}$$

• z-score normalization:

$$v' = \frac{v - mean_A}{stand _ dev_A}$$

normalization by decimal scaling:

$$v' = \frac{v}{10^{j}}$$

• Simple Moving Average:

$$\hat{Y}_{t+1} = \frac{Y_t + Y_{t-1} + \dots + Y_{t-k+1}}{k}$$

Weighted Moving Average:

$$\hat{Y}_{t+1} = w_t Y_t + w_{t-1} Y_{t-1} + \dots + w_{t-k+1} Y_{t-k+1}$$
where: $w_t + w_{t-1} + \dots + w_{t-k+1} = 1$

Exponential Moving Average:

$$F_{t} = \alpha Y_{t-1} + (1-\alpha)F_{t-1}$$