CLUSTAL 2.1 multiple sequence alignment

KC470224.1

KC470224.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470224.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470225.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470214.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470211.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470216.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470217.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470217.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470219.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470220.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470221.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470221.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470228.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470227.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470227.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470230.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470229.1	ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KX514433.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KU298886.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
KC470213.1	ATGCATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCC
RC170213.1	*** ****************************
KC470224.1	TCAAAATGAAATTCCGGTTGACCTTTTATGTCACGAGCAATTAAGCGACT
KC470223.1	TCAAAATGAAATTCCGGTTGACCTTTTATGTCACGAGCAATTAAGCGACT
KC470225.1	TCAAAATGACATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470214.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470215.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470216.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470217.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470218.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470219.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470220.1	${\tt TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT}$
KC470221.1	${\tt TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT}$
77.04.70.000 1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470222.1	TCAAATTAAATTTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470222.1 KC470228.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470228.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470228.1 KC470227.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470228.1 KC470227.1 KC470226.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470228.1 KC470227.1 KC470226.1 KC470230.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470228.1 KC470227.1 KC470226.1 KC470230.1 KC470229.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470228.1 KC470227.1 KC470226.1 KC470230.1 KC470229.1 KX514433.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT
KC470228.1 KC470227.1 KC470230.1 KC470229.1 KX514433.1 KU298886.1	TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT TCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT CCAAAATGAAATTCCGGTTGACCTTCTATGTCACGAGCAATTAAGCGACT

 ${\tt CAGAGGAAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA}$

CLUSTAL	2.1	multiple	sequence	alignment

KC470223.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470225.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470214.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470215.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470216.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470217.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470218.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470219.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470220.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470221.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470222.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470228.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470227.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470226.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470230.1	CAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470229.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KX514433.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KU298886.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
KC470213.1	CAGAGGAAGAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCA
1,0213.1	************
KC470224.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470223.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470225.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470214.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470215.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470216.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470217.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470217.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470219.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470219.1	GCCCGACGAGCCGAACCACAACGTCACACATGTTGTGTATGTGTTGTAA
KC470220.1 KC470221.1	GCCCGACGAGCCGAACCACAACGTCACACATGTTGTGTATGTGTTGTAA
KC470221.1 KC470222.1	GCCCGACGAGCCGAACCACAACGTCACACATGTTGTGTATGTGTTGTAA
KC470228.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470227.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470226.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470230.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KC470229.1	GCCCGACGAGCCGAACCACAACGTCACACAATGTTGTGTATGTGTTGTAA
KX514433.1	GCCCGACGAGCTGAACCACAACGTCACACAATGTTGTGTATGTTGTAA
KU298886.1	GCCCGACGAGCTGAACCACAACGTCACACAATGTTGTGTATGTTGTAA
KC470213.1	GCCCGACGAGCTGAACCACAACGTCACACAATGTTGTGTATGTTGTAA
	******* ******************
WG470004 1	
KC470224.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470223.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470225.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470214.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC

CLUSTAL	2.1	multiple	sequence	alignment
KC470215	. 1			ርጥርጥር እ እር

KC470215.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470216.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470217.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470218.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470219.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470220.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470221.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470222.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470228.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470227.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470226.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470230.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470229.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KX514433.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KU298886.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC
KC470213.1	GTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAGACGACCTTC

KC470224.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470223.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470225.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470214.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470215.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470216.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470217.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470218.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470219.1	GAGCATTCCAGCAGCTGTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470220.1	GAGCATTCCAGCAGCTGTTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470221.1	GAGCATTCCAGCAGCTGTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470222.1	GAGCATTCCAGCAGCTGTTCTGAGCACCCTGTCCTTTGTGTGTCCGTGG
KC470228.1	GAGCATTCCAGCAGCTGTTCTGAAAACCCTGTCCTTTGTGTGTCCGTGG
KC470227.1	GAGCATTCCAGCAGCTGTTCTGAAAACCCTGTCCTTTGTGTGTCCGTGG
KC470226.1	GAGCATTCCAGCAGCTGTTCTGAAAACCCTGTCCTTTGTGTGTCCGTGG
KC470230.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTGTCCGTGG
KC470229.1	GAGCATTCCAGCAGCTGTTTCTGAACACCCTGTCCTTTGTGTGTCCGTGG
KX514433.1	GAGCATTCCAGCAGCTGTTCTGAACACCCTGTCCTTTGTGTGTCCGTGG
KU298886.1	GAGCATTCCAGCAGCTGTTCTGAACACCCTGTCCTTTGTGTGTCCGTGG
KC470213.1	GAGCATTCCAGCAGCTGTTCTGAACACCCTGTCCTTTGTGTCCGTGG

KC470224.1	TGTGCATCCCAGCAGTAA
KC470223.1	TGTGCATCCCAGCAGTAA
KC470225.1	TGTGCATCCCAGCAGTAA
KC470214.1	TGTGCATCCCAGCAGTAA
KC470214.1 KC470215.1	TGTGCATCCCAGCAGTAA
KC470215.1 KC470216.1	TGTGCATCCCAGCAGTAA
KC470210.1	TGTGCATCCCAGCAGTAA
1.01/021/.1	TOTOCATCCCAGCAGTAA

CLUSTAL 2.1 multiple sequence alignment

KC470218.1	TGTGCATCCCAGCAGTAA
KC470219.1	TGTGCATCCCAGCAGTAA
KC470220.1	TGTGCATCCCAGCAGTAA
KC470221.1	TGTGCATCCCAGCAGTAA
KC470222.1	TGTGCATCCCAGCAGTAA
KC470228.1	TGTGCATCCCAGCAGTAA
KC470227.1	TGTGCATCCCAGCAGTAA
KC470226.1	TGTGCATCCCAGCAGTAA
KC470230.1	TGTGCATCCCAGCAGTAA
KC470229.1	TGTGCATCCCAGCAGTAA
KX514433.1	TGTGCATCCCAGCAGTAA
KU298886.1	TGTGCATCCCAGCAGTAA
KC470213.1	TGTGCATCCCAGCAGTAA

Consensus sequence

ATGTATGGACCTAAGGCAACATTGCAAGACATTGTATTGCATTTAGAGCCTCAAAATGAAATTCCGGTTGACCTTCTATGT CACGAGCAATTAAGCGACTCAGAGGAAGAAAACGATGAAATAGATGGAGTTAATCATCAACATTTACCAGCCCGACGAGC CGAACCACACGTCACACAATGTTGTGTATGTGTTGTAAGTGTGAAGCCAGAATTGAGCTAGTAGTAGAAAGCTCAGCAG

ACCEPTABLE LEFT PRIMERS

		0-based		#			self	self hair-	- qual-
#	sequence	start	ln	N	GC%	Tm	any_th	end_th pin	n lity
0	TGTATGGACCTAAGGCAACATTG	1	23	0	43.48	58.731	0.00	0.00 41.41	4.269
1	TGTATGGACCTAAGGCAACATT	1	22	0	40.91	57.415	0.00	0.00 41.41	4.585
2	ATGTATGGACCTAAGGCAACAT	0	22	0	40.91	57.204	0.00	0.00 41.41	4.796
3	ATGTATGGACCTAAGGCAACATTG	0	24	0	41.67	59.111	0.00	0.00 41.41	4.889
4	GTATGGACCTAAGGCAACATTG	2	22	0	45.45	57.099	0.00	0.00 41.41	4.901
5	ATGTATGGACCTAAGGCAACATT	0	23	0	39.13	57.871	0.00	0.00 41.41	5.129

ACCEPTABLE RIGHT PRIMERS

ACCEPTABLE RIGHT FRIMERS	0-based	#	self se	elf hair- qual-
# sequence	start ln		any_th end	-
0 GAAGGTCGTCTGCTGAGCTT	249 20	0 55.00 60.038		7 38.04 0.038
1 AGGTCGTCTGCTGAGCTTTC	247 20	0 55.00 60.038	0.00 0.0	
2 GGTCGTCTGCTGAGCTTTCT	246 20	0 55.00 60.038	0.00 0.0	
3 CTCGTCGGGCTGGTAAATGT	159 20	0 55.00 60.108	0.00 0.0	0 0.00 0.108
4 GGACAGGGTGCTCAGAAACA	284 20	0 55.00 59.891	0.00 0.0	0 0.00 0.109
5 CTGGAATGCTCGAAGGTCGT	260 20	0 55.00 60.109	0.00 0.0	0 43.45 0.109
6 TGGAATGCTCGAAGGTCGTC	259 20	0 55.00 60.109	0.00 0.0	0 43.45 0.109
7 ACAAAGGACAGGGTGCTCAG	289 20	0 55.00 59.891	0.00 0.0	0 31.83 0.109
8 GGAATGCTCGAAGGTCGTCT	258 20	0 55.00 59.826	0.00 0.0	0 43.45 0.174
9 ACACAAAGGACAGGGTGCTC	291 20	0 55.00 60.179	0.00 0.0	0 31.83 0.179
10 CACAAAGGACAGGGTGCTCA	290 20	0 55.00 60.179	0.00 0.	00 31.83 0.179
11 ACGGACACAAAGGACAGG	297 20	0 55.00 60.179	0.00 0.	00 0.00 0.179
12 CTCGAAGGTCGTCTGCTGAG	252 20	0 60.00 60.179	0.00 0.	00 43.45 0.179
13 GGACACAAAGGACAGGGT	295 20	0 55.00 59.817	0.00 0.	00 0.00 0.183
14 GTGCTCAGAAACAGCTGCTG	277 20	0 55.00 59.762	27.02 27.	02 37.79 0.238
15 CAGGGTGCTCAGAAACAGCT	281 20	0 55.00 60.251	3.10 0.	00 37.79 0.251
16 AGGGTGCTCAGAAACAGCTG	280 20	0 55.00 60.251	13.48 13.	48 37.79 0.251
17 TCGTCGGGCTGGTAAATGTT	158 20	0 50.00 59.678	0.00 0.	00 0.00 0.322
18 TTACTGCTGGGATGCACACC	317 20	0 55.00 60.322	0.00 0.	00 38.12 0.322
19 CACACCACGGACACAAAG	303 20	0 55.00 59.623	0.00 0.	00 0.00 0.377
20 TGCTGGAATGCTCGAAGGTC	262 20	0 55.00 60.392	0.00 0.	00 0.00 0.392
21 CTGCTGGAATGCTCGAAGGT	263 20	0 55.00 60.392	0.00 0.	00 0.00 0.392
22 AAGGTCGTCTGCTGAGCTTT	248 20	0 50.00 59.605	4.25 0.	00 34.76 0.395
23 CAAAGGACAGGGTGCTCAGA	288 20	0 55.00 59.602	0.00 0.	
24 AGGACAGGGTGCTCAGAAAC	285 20	0 55.00 59.602		00 24.24 0.398
25 CGTCGGGCTGGTAAATGTTG	157 20	0 55.00 59.554	0.00 0.	
26 CACCACGGACACAAAGGA	301 20	0 55.00 60.463	0.00 0.	
27 CCACGGACACACAAAGGACA	299 20	0 55.00 60.463		
28 ACCACGGACACAAAGGAC	300 20	0 55.00 60.463		
29 CACACAAAGGACAGGGTGCT	292 20	0 55.00 60.466		00 35.27 0.466
30 ACAGGGTGCTCAGAAACAGC	282 20	0 55.00 60.536		00 37.40 0.536
31 GCTCAGAAACAGCTGCTGGA	275 20	0 55.00 60.605		
32 TTGTGTGACGTTGTGGTTCG	180 20	0 50.00 59.278	0.00 0.	00 0.00 0.722

_							-			
μ	r	1	m	Р	r	æ	П	а	t	а

Pr	imers data										
33	AATGCTCGAAGGTCGTCTGC	256	20	0	55.	00	60.738	6.26	6.26	43.45	0.738
34	AGCTGCTGGAATGCTCGAAG	265	20	0	55.	00	60.744	0.00	0.00	30.41	0.744
35	ACACCACGGACACAAAGG	302	20	0	55.	00	60.747	0.00	0.00	0.00	0.747
36	ACACAAAAGGACAGGGTGC	293	20	0	55.	00	60.752	0.00	0.00	34.69	0.752
37	CGGACACAAAGGACAGGG	296	20	0	60.	00	60.885	0.00	0.00	0.00	0.885
38	AGAAACAGCTGCTGGAATGC	271	20	0	50.	00	59.113	11.85	0.18	35.51	0.887
39	GAAACAGCTGCTGGAATGCT	270	20	0	50.	00	59.113	12.08	0.00	35.51	0.887
40	AAACAGCTGCTGGAATGCTC	269	20	0	50.	00	59.113	31.00	0.00	35.51	0.887
41	TGCTCAGAAACAGCTGCTGG	276	20	0	55.	00	60.888	31.00	14.58	37.79	0.888
42	GGTGCTCAGAAACAGCTGCT	278	20	0	55.	00	60.888	1.22	0.00	37.79	0.888
43	CACGGACACAAAGGACAG	298	20	0	55.	00	59.063	0.00	0.00	0.00	0.937
44	CAGCTGCTGGAATGCTCGAA	266	20	0	55.	00	61.023	21.71	0.00	34.51	1.023
45	TGTGTGACGTTGTGGTTCGG	179	20	0	55.	00	61.085	0.00	0.00	0.00	1.085
46	GAAACAGCTGCTGGAATGCTC	270	21	0	52.	38	60.135	12.08	0.00	35.51	1.135
47	AAAGGACAGGGTGCTCAGAA	287	20	0	50.	00	58.860	0.00	0.00	31.83	1.140
48	AAGGACAGGGTGCTCAGAAA	286		0	50.	00	58.860	0.00		31.83	1.140
49		160			57.			10.59	0.00	0.00	1.153
50		255			57.		60.154	6.26		43.45	1.154
51		246	21		52.		59.797	0.00	0.00	0.00	1.203
52		288					60.203	0.00		31.83	1.203
53		286	21		52.		60.203	0.00		31.83	1.203
54		257			55.		58.727	0.00		43.45	1.273
55		265	19		52.		59.702	0.00	0.00	30.41	1.298
56		316					59.700	0.00		38.12	1.300
57		268	20				61.304			35.51	1.304
58		294					58.691	0.00		37.29	1.309
59		181					59.671	0.00	0.00	0.00	1.329
60		272					60.402			35.51	1.402
	GCTGGAATGCTCGAAGGTCG	261					61.424	0.00		44.56	1.424
	GCTCGTCGGGCTGGTAAATG	160					61.429		0.00	0.00	1.429
	CAGCTGCTGGAATGCTCGA	266					60.449			34.51	1.449
	TACTGCTGGGATGCACACCA	316					61.488	6.10		38.12	1.488
	AAAGGACAGGTGCTCAGAAA	287					59.505	0.00		31.83	1.495
	GACAGGGTGCTCAGAAACAG	283					58.483	0.00	0.00	0.00	1.517
	AGAAACAGCTGCTGGAATGCT	271					60.547			35.51	1.547
	GGTGCTCAGAAACAGCTGC	271					59.422			37.79	1.578
	GAAGGTCGTCTGCTGAGCT	249					59.411	5.83	0.00	0.00	1.589
	TGACGTTGTGGTTCGGCTC	175					60.593	0.00		35.95	1.593
		307					60.597		0.00	0.00	1.593
	GATGCACACCACGGACACA							0.00			
	ATGCTCGAAGGTCGTCTGCT	255					61.600			43.45	1.600
	GAAGGTCGTCTGCTGAGCTTT	249					60.607	8.40		36.71	1.607
	AAGGTCGTCTGCTGAGCTTTC	248					60.607	4.25		34.76	1.607
	GTGTGACGTTGTGGTTCGG	178					59.360	0.00	0.00	0.00	1.640
	GCACACCACGGACACAAA	304					61.649	0.00	0.00	0.00	1.649
77		159					60.675	0.00	0.00	0.00	1.675
78		262					59.321	0.00	0.00	0.00	1.679
/ 5	GCTGCTGGAATGCTCGAAGG	264	∠∪	U	bυ.	υÜ	61.713	0.00	0.00	0.00	1.713

Primers data	
--------------	--

Primers data		
80 GCTGCTGGAATGCTCGAAG	264 19 0 57.89 59.280 0.00 0.00 0.00 1.	720
81 CGTTTTCTTCCTCTGAGTCGC	114 21 0 52.38 59.278 0.00 0.00 0.00 1.	722
82 ACAGCTGCTGGAATGCTCG	267 19 0 57.89 60.744 31.00 5.48 35.51 1.	744
83 ACATTGTGTGACGTTGTGGT	183 20 0 45.00 58.255 0.00 0.00 0.00 1.	745
84 GCTCGAAGGTCGTCTGCTG	253 19 0 63.16 60.804 6.06 0.00 43.45 1.8	804
85 CGAAGGTCGTCTGCTGAGC	250 19 0 63.16 60.804 0.00 0.00 37.02 1.8	804
86 GTCGGGCTGGTAAATGTTGA	156 20 0 50.00 58.184 0.00 0.00 0.00 1.8	816
87 GTGACGTTGTGGTTCGGCTC	176 20 0 60.00 61.828 0.00 0.00 35.95 1.8	828
88 GATGCACACCACGGACACAC		842
89 GGGTGCTCAGAAACAGCTGC	279 20 0 60.00 61.860 15.27 0.00 37.79 1.8	860
90 GCTCAGAAACAGCTGCTGG		875
91 CTCGAAGGTCGTCTGCTGA		877
92 TCGAAGGTCGTCTGCTGAG		877
93 GGACAGGGTGCTCAGAAACAG		880
94 GTGACGTTGTGGTTCGGCT		886
95 CTCAGAAACAGCTGCTGGAA		888
96 ATGCACACCACGGACACAC		892
97 ACCACGGACACACAAAGGA		909
98 ACACAAAGGACAGGGTGCT		923
99 TCGTCGGGCTGGTAAATGTTG		942
100 CGTCGGGCTGGTAAATGTTGA		.942
101 TGGAATGCTCGAAGGTCGT		.972
102 TCGTCGGGCTGGTAAATGT		.972
103 TGAGTCGCTTAATTGCTCGTG		.993
104 AGTCGCTTAATTGCTCGTGAC		.993
105 CACCACGGACACAAAGG		.022
106 TCGGGCTGGTAAATGTTGATGA		.022
107 GAGTCGCTTAATTGCTCGTGAC		.027
108 CTGAGTCGCTTAATTGCTCGTG		.029
109 GGATGCACACCACGGACA		.029
110 CACACAAAGGACAGGGTGC		.033
111 CTGCTGGGATGCACACCA		.035
112 ACTGCTGGGATGCACACC		.035
113 AAGGTCGTCTGCTGAGCTT		.054
114 AGGTCGTCTGCTGAGCTTT		.054
115 CTGGAATGCTCGAAGGTCGTC		.064
116 GGAATGCTCGAAGGTCGTCTG		.064
117 GGACACACAAAGGACAGGGTG		.085
118 AACATTGTGTGACGTTGTGGT		.088
119 ACATTGTGTGACGTTGTGGTT		.088
120 TCTGAGTCGCTTAATTGCTCGT		.095
121 GTCGTCTGCTGAGCTTTCTACT		.095
122 ACATTGTGTGACGTTGTGGTTC		.097
123 GTCGGGCTGGTAAATGTTGATG		.097
124 GCACACCACGGACACAA		.110
125 AGGGTGCTCAGAAACAGCT		.150
126 CACAAAGGACAGGGTGCTCAG	290 21 0 57.14 61.150 0.00 0.00 31.83 2	.150

_							-			
μ	r	1	m	Р	r	æ	П	а	t	а

Pri	ners data								
127	GCTCAGAAACAGCTGCTGGAA	275	21 0	52.38	61.150	31.00	10.35	35.51	2.150
128	TCAGAAACAGCTGCTGGAATG	273	21 0	47.62	58.843	22.36	15.68	35.51	2.157
129	AGCTCAATTCTGGCTTCACAC	220	21 0	47.62	58.842	0.00	0.00	0.00	2.158
130	GCTCAATTCTGGCTTCACACT	219	21 0	47.62	58.842	0.00	0.00	0.00	2.158
131	ACAACATTGTGTGACGTTGTGG	186	22 0	45.45	60.159	5.36	0.00	41.89	2.159
132	CAACATTGTGTGACGTTGTGGT	185	22 0	45.45	60.159	0.00	0.00	0.00	2.159
133	CTCAGAAACAGCTGCTGGAATG	274	22 0	50.00	59.838	22.36	15.68	35.51	2.162
134	TCGTCTGCTGAGCTTTCTACT	244	21 0	47.62	58.836	0.18	0.00	0.00	2.164
135	TGTGACGTTGTGGTTCGGC	177	19 0	57.89	61.175	0.00	0.00	35.47	2.175
136	ACAGCTGCTGGAATGCTCGA	267	20 0	55.00	62.176	31.00	0.00	35.51	2.176
137	GCTCGAAGGTCGTCTGCTGA	253	20 0	60.00	62.201	6.06	0.00	43.45	2.201
138	TCGAAGGTCGTCTGCTGAGC	251	20 0	60.00	62.201	0.00	0.00	43.45	2.201
139	CGAAGGTCGTCTGCTGAGCT	250	20 0	60.00	62.207	5.83	0.00	37.02	2.207
140	AGCTCAATTCTGGCTTCACACT	220	22 0	45.45	60.225	0.00	0.00	0.00	2.225
141	ACAAAGGACAGGGTGCTCA	289	19 0	52.63	58.769	0.00	0.00	31.83	2.231
142	CAGGGTGCTCAGAAACAGC	281	19 0	57.89	58.748	0.00	0.00	37.40	2.252
143	GGGTGCTCAGAAACAGCTG	279	19 0	57.89	58.748	13.48	13.48	37.79	2.252
144	GTCGTCTGCTGAGCTTTCTAC	245	21 0	52.38	58.745	0.00	0.00	0.00	2.255
145	TGCTCGAAGGTCGTCTGC	254	18 0	61.11	59.741	6.26	6.26	43.45	2.259
146	GAGTCGCTTAATTGCTCGTGA	100	21 0	47.62	58.740	0.00	0.00	0.00	2.260
147	CTGAGTCGCTTAATTGCTCGT	102	21 0	47.62	58.737	0.00	0.00	0.00	2.263
148	GCTCGTCGGGCTGGTAAA	160	18 0	61.11	59.736	10.59	0.00	0.00	2.264
149	TGCTCGAAGGTCGTCTGCT	254	19 0	57.89	61.269	11.58	0.00	43.45	2.269
150	TGCTGGGATGCACACCAC	313	18 0	61.11	60.282	3.46	0.78	38.12	2.282
151	CCACGGACACAAAGGAC	299	19 0	57.89	58.683	0.00	0.00	0.00	2.317
152	ACAAAGGACAGGGTGCTCAGA	289	21 0	52.38	61.318	0.00	0.00	31.83	2.318
153	AGGACAGGGTGCTCAGAAACA	285	21 0	52.38	61.318	0.00	0.00	24.24	2.318
154	GGATGCACACCACGGACAC	308	19 0	63.16	61.325	6.86	0.00	0.00	2.325
155	CTGCTGGAATGCTCGAAGGTC	263	21 0	57.14	61.338	0.00	0.00	0.00	2.338
156	CTGCTGGGATGCACACCAC	314	19 0	63.16	61.338	3.46	0.78	38.12	2.338
157	TGAGTCGCTTAATTGCTCGTGA	101	22 0	45.45	60.352	0.00	0.00	0.00	2.352
158	TTGTGGTTCGGCTCGTCG	170	18 0	61.11	60.355	0.00	0.00	0.00	2.355
159	TGAGTCGCTTAATTGCTCGT	101	20 0	45.00	57.636	0.00	0.00	0.00	2.364
160	AGTCGCTTAATTGCTCGTGA	99	20 0	45.00	57.636	0.00	0.00	0.00	2.364
161	TCGGGCTGGTAAATGTTGATG	155	21 0	47.62	58.635	0.00	0.00	0.00	2.365
162	CGGGCTGGTAAATGTTGATGA	154	21 0	47.62	58.635	0.00	0.00	0.00	2.365
163	GTCGGGCTGGTAAATGTTGAT	156	21 0	47.62	58.634	0.00	0.00	0.00	2.366
164	GTGTGACGTTGTGGTTCGGC	178	20 0	60.00	62.369	0.00	0.00	35.47	2.369
165	TGTGTGACGTTGTGGTTCG	179	19 0	52.63	58.625	0.00	0.00	0.00	2.375
166	GCTGGAATGCTCGAAGGTC	261	19 0	57.89	58.612	0.00	0.00	0.00	2.388
167	CTGCTGGAATGCTCGAAGG	263	19 0	57.89	58.609	0.00	0.00	0.00	2.391
168	CCACGGACACACAAAGGACAG	299	21 0	57.14	61.406	0.00	0.00	0.00	2.406
169	CACGGACACAAAGGACAGG	298	21 0	57.14	61.406	0.00	0.00	0.00	2.406
170	CACACAAAGGACAGGGTGCTC	292	21 0	57.14	61.417	0.00	0.00	31.83	2.417
171	CTCAGAAACAGCTGCTGGAAT	274	21 0	47.62	58.566	31.00	17.58	35.51	2.434
172	AGGTCGTCTGCTGAGCTTTCT	247	21 0	52.38	61.436	0.00	0.00	0.00	2.436
173	CAACATTGTGTGACGTTGTGG	185	21 0	47.62	58.551	0.00	0.00	0.00	2.449

_				
	7-1	mers	data	
_		.welo	uaca	

Pri	mers data								
174	GGTCGTCTGCTGAGCTTTC	246	19 0	57.89	58.549	0.00	0.00	0.00	2.451
175	CACACCACGGACACAAA	303	19 0	52.63	58.528	0.00	0.00	0.00	2.472
176	GACAGGGTGCTCAGAAACAGC	283	21 0	57.14	61.478	0.00	0.00	37.40	2.478
177	TGCTCGAAGGTCGTCTGCTG	254	20 0	60.00	62.478	11.58	0.00	43.45	2.478
178	CAGGGTGCTCAGAAACAGCTG	281	21 0	57.14	61.480	13.48	13.48	37.79	2.480
179	AACATTGTGTGACGTTGTGGTT	184	22 0	40.91	59.510	0.00	0.00	0.00	2.490
180	TCCTCTGAGTCGCTTAATTGCT	106	22 0	45.45	59.502	3.66	0.00	0.00	2.498
181	TGGAATGCTCGAAGGTCGTCT	259	21 0	52.38	61.498	0.00	0.00	43.45	2.498
182	TGACGTTGTGGTTCGGCT	175	18 0	55.56	59.498	0.00	0.00	35.95	2.502
183	ATGCACACCACGGACACA				59.492	0.00	0.00	0.00	2.508
184	TGCACACCACGGACACAC	305	18 0		60.513	0.00	0.00	0.00	2.513
185	GCACACCACGGACACAC	304			60.513	0.00	0.00	0.00	2.513
186	TCTGAGTCGCTTAATTGCTCG	103	21 0		58.470	0.00	0.00	0.00	2.530
187	CTCTGAGTCGCTTAATTGCTCG	104			59.466	0.00	0.00	0.00	2.534
188	GCTCAATTCTGGCTTCACACTT	219	22 0		59.444	0.00	0.00	0.00	2.556
189	AACAGCTGCTGGAATGCTC	268			58.436	31.00	0.00		2.564
190	GCTCGAAGGTCGTCTGCT	253	18 0		59.431	6.06		43.45	2.569
191	TCAGAAACAGCTGCTGGAAT	273	20 0		57.426		17.58		2.574
	AGCTCAATTCTGGCTTCACA	273	20 0		57.426	0.00	0.00	0.00	2.574
192	TGTGACGTTGTGGTTCGGCT	177	20 0		62.581	0.00		35.95	2.574
		161			62.589				2.589
194			20 0			8.47	0.00	0.00	
195	TTGTGTGACGTTGTGGTTCGG	180	21 0		61.599	0.00	0.00	0.00	2.599
196	ATGCACACCACGGACACACA	306	20 0		62.601	0.00	0.00	0.00	2.601
197	TCGTTTTCTTCCTCTGAGTCGC	115	22 0		60.607	0.00	0.00	0.00	2.607
198	CGTTTTCTTCCTCTGAGTCGCT	114	22 0		60.608	0.00	0.00	0.00	2.608
	AGTCGCTTAATTGCTCGTGACA	99	22 0			11.57	0.00	0.00	2.609
200	CGGACACAAAGGACAGG	296	19 0			0.00	0.00	0.00	2.617
201	TGCTCAGAAACAGCTGCTG		19 0		58.375				2.625
	GCTCAATTCTGGCTTCACAC	219			57.374	0.00	0.00	0.00	2.626
	GTGCTCAGAAACAGCTGCT	277			58.373			37.79	2.627
	GTGACGTTGTGGTTCGGC	176			59.370	0.00		35.47	2.630
	CAGAAACAGCTGCTGGAATG	272			57.369				2.631
	CACAAAGGACAGGGTGCTC	290			58.366	0.00		31.83	2.634
207	GTCGTCTGCTGAGCTTTCTA	245			57.361	0.00	0.00	0.00	2.639
208	TCGTCTGCTGAGCTTTCTAC	244			57.361	0.00	0.00	0.00	2.639
209	CGTCTGCTGAGCTTTCTACT	243	20 0	50.00	57.354	0.18	0.00	0.00	2.646
210	GAATGCTCGAAGGTCGTCTGC	257	21 0	57.14	61.648	6.26	6.26	43.45	2.648
211	GACGTTGTGGTTCGGCTCG	174	19 0	63.16	61.655	0.00	0.00	31.86	2.655
212	CGTTGTGGTTCGGCTCGTC	172	19 0	63.16	61.655	0.00	0.00	0.00	2.655
213	GTTGTGGTTCGGCTCGTCG	171	19 0	63.16	61.655	0.00	0.00	0.00	2.655
214	ACGTTGTGGTTCGGCTCG	173	18 0	61.11	60.661	0.00	0.00	0.00	2.661
215	CGTTGTGGTTCGGCTCGT	172	18 0	61.11	60.661	0.00	0.00	0.00	2.661
216	GGAATGCTCGAAGGTCGTC	258	19 0	57.89	58.333	0.00	0.00	43.45	2.667
217	CACCACGGACACAAAGGAC	301	21 0	57.14	61.670	0.00	0.00	0.00	2.670
218	CTGGAATGCTCGAAGGTCG	260	19 0	57.89	58.329	0.00	0.00	44.56	2.671
219	CTCGTCGGGCTGGTAAATG	159	19 0	57.89	58.322	0.00	0.00	0.00	2.678
220	GACACAAAGGACAGGGTGC	294	21 0	57.14	61.682	0.00	0.00	34.69	2.682

_							-			
13	r	-	TVI	_	•	•	~	-	.t	•
_	ж.	_	ш	_	_	0	 ч	а		а

Pri	mers data								
221	GAGTCGCTTAATTGCTCGTG	100	20 0	50.00	57.297	0.00	0.00	0.00	2.703
222	CATTGTGTGACGTTGTGGTTC	182	21 0	47.62	58.285	0.00	0.00	0.00	2.715
223	GGGATGCACACCACGGAC	309	18 0	66.67	60.746	12.79	0.00	0.00	2.746
224	CTGGGATGCACACCACGG	311	18 0	66.67	60.747	2.08	0.00	0.00	2.747
225	CAAAGGACAGGGTGCTCAGAAA	288	22 0	50.00	60.749	0.00	0.00	31.83	2.749
226	AAAGGACAGGGTGCTCAGAAAC	287	22 0	50.00	60.750	0.00	0.00	31.83	2.750
227	ACACCACGGACACACAAAG	302	19 0	52.63	58.225	0.00	0.00	0.00	2.775
228	TCGGGCTGGTAAATGTTGAT	155	20 0	45.00	57.201	0.00	0.00	0.00	2.799
229	TGCACACCACGGACACAA	305	20 0	55.00	62.805	0.00	0.00	0.00	2.805
230	AAACAGCTGCTGGAATGCTCG	269	21 0	52.38	61.812	31.00	5.48	35.51	2.812
231	ACTGCTGGGATGCACACCA	315	19 0	57.89	61.833	6.10	4.92	38.12	2.833
232	AACATTGTGTGACGTTGTGG	184	20 0	45.00	57.158	0.00	0.00	0.00	2.842
233	CATTGTGTGACGTTGTGGTT	182	20 0		57.158	0.00	0.00	0.00	2.842
234	CGTCGGGCTGGTAAATGTT	157			58.151	0.00	0.00	0.00	2.849
235	CATTGTGTGACGTTGTGGTTCG	182	22 0		60.849	0.00	0.00	0.00	2.849
236	CGGGCTGGTAAATGTTGATG	154			57.150	0.00	0.00	0.00	2.850
237	AAAGGACAGGGTGCTCAGA	287	19 0		58.146	0.00		31.83	2.854
238	AAGGACAGGGTGCTCAGAA	286			58.146	0.00		31.83	2.854
239	AGGACAGGGTGCTCAGAAA	285	19 0		58.146	0.00	0.00	24.24	2.854
240	CCTCTGAGTCGCTTAATTGCTC	105	22 0		59.137	3.66	0.00	0.00	2.863
	ACACAAAGGACAGGGTGCTCA	291	21 0		61.869	0.00		31.83	2.869
242	TCCTCTGAGTCGCTTAATTGC	106			58.106	3.66	0.00	0.00	2.894
243	CCTCTGAGTCGCTTAATTGCT	105	21 0		58.101	3.66	0.00	0.00	2.899
243	CAGCTGCTGGAATGCTCGAAG	266			61.927	21.71			2.899
		282			61.933	3.10		34.51 37.79	2.927
245 246	ACAGGGTGCTCAGAAACAGCT GGACAGGGTGCTCAGAAAC	284			58.066				2.933
						0.00	0.00	0.00	
247	CACACCACGGACACACAAAGG	303	21 0		61.935	0.00	0.00	0.00	2.935
248	CAAAGGACAGGGTGCTCAG	288			58.062	0.00		31.83	2.938
249	CTGGCTTCACACTTACAACACA	211			59.058	0.00	0.00	0.00	2.942
	CGGGCTGGTAAATGTTGATGAT	154			59.048	0.00	0.00	0.00	2.952
	AGCTGCTGGAATGCTCGA	265			59.015	0.00		30.41	2.985
	CTGAGTCGCTTAATTGCTCG	102			57.013	0.00	0.00	0.00	2.987
	GGTCGTCTGCTGAGCTTTCTAC	246			60.987	0.00	0.00	0.00	2.987
	TGGCTTCACACTTACAACACA	210			58.007	0.00	0.00	0.00	2.993
	TTACTGCTGGGATGCACACCA	317			62.004	6.10		38.12	3.004
	ACTAGCTCAATTCTGGCTTCACA	223			59.992	2.49		33.07	3.008
257	TAGCTCAATTCTGGCTTCACACT	221			59.992	2.49	0.00	33.07	3.008
258	GGACACAAAGGACAGGG	295			57.979	0.00	0.00	0.00	3.021
259	GTTTTCTTCCTCTGAGTCGCT	113			57.967	0.00	0.00	0.00	3.033
260	AAACAGCTGCTGGAATGCT	269	19 0	47.37	57.953	31.00	8.45	35.51	3.047
261	TTCCTCTGAGTCGCTTAATTGCT	107	23 0	43.48	60.056	0.00	0.00	0.00	3.056
262	GGTGCTCAGAAACAGCTGCTG	278	21 0	57.14	62.068	27.02	27.02	37.79	3.068
263	GTGCTCAGAAACAGCTGCTGG	277	21 0	57.14	62.068	31.00	14.58	37.79	3.068
264	CACGGACACAAAGGACA	298	19 0	52.63	57.927	0.00	0.00	0.00	3.073
265	AATGCTCGAAGGTCGTCTGCT	256	21 0	52.38	62.099	11.58	0.55	43.45	3.099
266	CAGCTGCTGGAATGCTCG	266	18 0	61.11	58.901	21.71	0.00	34.51	3.099
267	ACACCACGGACACACAAAGGA	302	21 0	52.38	62.124	0.00	0.00	0.00	3.124

Primers dat	a
-------------	---

Pri	mers data						
268	ACCACGGACACAAAGGACA	300 21	0 52.38	62.124	0.00	0.00 0.00	3.124
269	GTCGTCTGCTGAGCTTTCTACTA	245 23	0 47.83	59.873	0.00	0.00 0.00	3.127
270	TCGTCTGCTGAGCTTTCTACTAC	244 23	0 47.83	59.873	0.18	0.00 0.00	3.127
271	CGTCTGCTGAGCTTTCTACTACT	243 23	0 47.83	59.872	0.18	0.00 0.00	3.128
272	ACAACATTGTGTGACGTTGTG	186 21	0 42.86	57.870	5.36	0.00 41.89	3.130
273	AGGTCGTCTGCTGAGCTTTCTA	247 22	0 50.00	61.142	0.00	0.00 0.00	3.142
274	ACACAAAGGACAGGGTGCT	293 21	0 52.38	62.146	0.00	0.00 35.27	3.146
275	TCTGGCTTCACACTTACAACAC	212 22	0 45.45	58.797	0.00	0.00 0.00	3.203
276	GACGTTGTGGTTCGGCTC	174 18	0 61.11	58.759	0.00	0.00 31.86	3.241
277	GTTGTGGTTCGGCTCGTC	171 18	0 61.11	58.759	0.00	0.00 0.00	3.241
278	TGGGATGCACACCACGGA	310 18	0 61.11	61.245	6.10	0.00 0.00	3.245
279	TTACTGCTGGGATGCACAC	317 19	0 52.63	57.752	0.00	0.00 38.12	3.248
280	CTGGGATGCACACCACGGA	311 19	0 63.16	62.253	2.08	0.00 0.00	3.253
281	GATGCACACCACGGACAC	307 18	0 61.11	58.746	0.00	0.00 0.00	3.254
282	CGTCGGGCTGGTAAATGTTGAT	157 22	0 50.00	61.256	0.00	0.00 0.00	3.256
283	TGCTCAGAAACAGCTGCTGGA	276 21	0 52.38	62.259	31.00	17.77 37.79	3.259
284	TTCCTCTGAGTCGCTTAATTGC	107 22	0 45.45	58.738	0.00	0.00 0.00	3.262
285	TCGTTTTCTTCCTCTGAGTCG	115 21	0 47.62	57.716	0.00	0.00 0.00	3.284
286	GGCTCGTCGGGCTGGTAAA	161 19	0 63.16	62.305	8.47	0.00 0.00	3.305
287	CTTCCTCTGAGTCGCTTAATTGC	108 23	0 47.83	59.692	0.00	0.00 0.00	3.308
288	TGCACACCACGGACACA	305 19	0 57.89		0.00	0.00 0.00	3.317
289	TAGCTCAATTCTGGCTTCACAC	221 22	0 45.45	58.662	2.49	0.00 33.07	3.338
290	TCGTCTGCTGAGCTTTCTACTA	244 22	0 45.45	58.655	0.18	0.00 0.00	3.345
291	TCTGGCTTCACACTTACAACACA	212 23	0 43.48	60.370	0.00	0.00 0.00	3.370
292	TCGGGCTGGTAAATGTTGATGAT	155 23	0 43.48		0.00	0.00 0.00	3.371
293		222 23	0 47.83		2.49	0.00 33.07	3.373
294	ACGGACACAAAGGACAG	297 19	0 52.63	57.620	0.00	0.00 0.00	3.380
295	CGGGCTGGTAAATGTTGATGATT	154 23	0 43.48		0.00	0.00 0.00	
	GTTTTCTTCCTCTGAGTCGCTT	113 22	0 45.45		0.00	0.00 0.00	
	GAAACAGCTGCTGGAATGC		0 52.63				
	AATGCTCGAAGGTCGTCTG	256 19	0 52.63		0.00		
	AACATTGTGTGACGTTGTGGTTC	184 23	0 43.48		0.00		
	TCCTCTGAGTCGCTTAATTGCTC	106 23	0 47.83		3.66	0.00 0.00	
	CGTCTGCTGAGCTTTCTACTAC	243 22		58.569	0.18		
	GCTGGGATGCACACCACG	312 18		61.434	3.27		
	ACGTTGTGGTTCGGCTCGT	173 19	0 57.89		0.00	0.00 0.00	
	GCTCAGAAACAGCTGCTGGAAT	275 22				17.58 35.51	
	AGAAACAGCTGCTGGAATGCTC	271 22		61.457			
	GAAGGTCGTCTGCTGAGCTTTC	249 22	0 54.55		3.04		
	ACACACAAAGGACAGGGTG	293 19	0 52.63		0.00		
	GTCGTCTGCTGAGCTTTCT	245 19		57.494	0.00		
	GCACACCACGGACACAAAG	304 21		62.514	0.00		
	ACGGACACACAAAGGACAGGG	297 21	0 57.14		0.00		
	CGGACACACAAAGGACAGGGT	296 21	0 57.14		0.00	0.00 0.00	
	TGGGATGCACACCACGACA	310 19	0 63.16		6.10		
	GGGATGCACACCACGGACA	309 19		62.545			
31 4	TGGCTTCACACTTACAACACAT	210 22	0 40.71	58.449	0.00	0.00 0.00	3.551

_							-			
13	r	-	TVI	_	•	•	~	-	.t	•
_	ж.	_	ш	_	_	0	 ч	а		а

Prin	mers data								
315	TCTGGCTTCACACTTACAACA	212	21 (42.86	57.448	0.00	0.00	0.00	3.552
316	CTGGCTTCACACTTACAACACAT	211	23 (43.48	59.435	0.00	0.00	0.00	3.565
317	CTAGCTCAATTCTGGCTTCACA	222	22 (45.45	58.396	2.49	0.00	33.07	3.604
318	ACTAGCTCAATTCTGGCTTCAC	223	22 (45.45	58.395	2.49	0.00	33.07	3.605
319	CTGGCTTCACACTTACAACAC	211	21 (47.62	57.391	0.00	0.00	0.00	3.609
320	CATCGTTTTCTTCCTCTGAGTCG	117	23 (47.83	59.390	0.00	0.00	0.00	3.610
321	CTCAGAAACAGCTGCTGGA	274	19 (52.63	57.380	31.00	17.77	35.51	3.620
322	TTCTGGCTTCACACTTACAACAC	213	23 (43.48	59.374	0.00	0.00	0.00	3.626
323	AACAGCTGCTGGAATGCTCGA	268	21 (52.38	62.651	31.00	0.00	35.51	3.651
324	ACAGCTGCTGGAATGCTCGAA	267	21 (52.38	62.651	31.00	0.00	35.51	3.651
325	TACTGCTGGGATGCACACCAC	316	21 (57.14	62.660	3.46	0.78	38.12	3.660
326	CGAAGGTCGTCTGCTGAGCTT	250	21 (57.14	62.671	7.47	7.47	38.04	3.671
327	CAACATTGTGTGACGTTGTGGTT	185	23 (43.48	60.672	0.00	0.00	0.00	3.672
328	TAGCTCAATTCTGGCTTCACA	221	21 (42.86	57.299	2.49	0.00	33.07	3.701
329	GACAGGGTGCTCAGAAACA	283	19 (52.63	57.294	0.00	0.00	0.00	3.706
330	TCAGAAACAGCTGCTGGAATGC	273	22 (50.00	61.711	22.78	10.47	35.51	3.711
331	ACAGGGTGCTCAGAAACAG	282	19 (57.286	0.00	0.00	0.00	3.714
	CAGAAACAGCTGCTGGAATGCT	272			61.715			35.51	3.715
333	GAATGCTCGAAGGTCGTCT	257		52.63	57.276	0.00		43.45	3.724
	ATGCTCGAAGGTCGTCTGCTG	255			62.738	11.58		43.45	3.738
335	AGCTCAATTCTGGCTTCACACTT	220	23 (43.48	60.750	0.00	0.00	0.00	3.750
	GCTCAATTCTGGCTTCACACTTA	219			59.247	0.00	0.00	0.00	3.753
337	TTTTCTTCCTCTGAGTCGCTT	112			57.247	0.00	0.00	0.00	3.753
338	CGTCTGCTGAGCTTTCTACTA	243			57.233	0.18	0.00	0.00	3.767
339	GGCTCGTCGGGCTGGTAA	161			61.767	8.47	0.00	0.00	3.767
340	AAGGTCGTCTGCTGAGCT	248	18 (55.56	58.215	5.83	0.00	0.00	3.785
341	AGGTCGTCTGCTGAGCTT	247			58.215	5.83	0.00	0.00	3.785
342	GACACACAAAGGACAGGGT	294	19 (52.63	57.199	0.00	0.00	0.00	3.801
343	CTCGTCGGGCTGGTAAATGTTG	159	22 (54.55	61.813	0.00	0.00	0.00	3.813
344	ACAAAGGACAGGGTGCTCAGAA	289	22 (50.00	61.821	0.00	0.00	31.83	3.821
345	AAGGACAGGGTGCTCAGAAACA	286	22 (50.00	61.821	0.00	0.00	31.83	3.821
346	ATCGTTTTCTTCCTCTGAGTCG	116			58.161	0.00	0.00	0.00	3.839
347	TTGTGGTTCGGCTCGTCGG	170			62.852	0.00	0.00	0.00	3.852
348	TTCTGGCTTCACACTTACAACA	213			58.120	0.00	0.00	0.00	3.880
349	ATTGTGTGACGTTGTGGTTCGG	181	22 (50.00	61.883	0.00	0.00	0.00	3.883
350	GCTGCTGGAATGCTCGAA	264	18 (55.56	58.105	0.00	0.00	0.00	3.895
351	ATCGTTTTCTTCCTCTGAGTCGC	116			60.919	0.00	0.00	0.00	3.919
352	AGTCGCTTAATTGCTCGTGACAT	99			60.923	11.57	0.17	0.00	3.923
353	AAGGTCGTCTGCTGAGCTTTCT	248		50.00	61.926	4.25		34.76	3.926
	CTCTGAGTCGCTTAATTGCTCGT	104		47.83	60.977	0.00	0.00	0.00	3.977
355	ACTAGCTCAATTCTGGCTTCA	223			57.011	0.00		33.07	3.989
	TCGAAGGTCGTCTGCTGA	251			57.925	0.00		43.45	4.075
	CGTTTTCTTCCTCTGAGTCGCTT	114			61.103	0.00	0.00	0.00	4.103
	TGTGACGTTGTGGTTCGG	177			57.888	0.00	0.00	0.00	4.112
	GAAGGTCGTCTGCTGAGC	249			57.823	0.00	0.00	0.00	4.177
	GTCGGGCTGGTAAATGTTGATGA	156			61.178	0.00	0.00	0.00	4.178
	AGGACAGGGTGCTCAGAAACAG	285			62.197	0.00		24.24	4.197
J J <u> </u>		200	`		/	3.00	3.00		_,_,,

_			-		
PΥ	1	mer:	3 0	a	t.a

Pri	ners data								
	CACACCACGGACACAA	303 18	8 0	55 56	57.790	0.00	0.00	0.00	4.210
363	TCTGAGTCGCTTAATTGCTCGTG	103 23			61.218	0.00	0.00	0.00	4.218
364		102 2			61.218	0.00	0.00	0.00	4.218
365	TACTAGCTCAATTCTGGCTTCACA	224 24			59.777	0.00		33.07	4.223
366	TCGTCGGGCTGGTAAATGTTGA	158 2			62.244	0.00	0.00	0.00	4.244
367	TGCTGAGCTTCTACTACTAGCT	239 23			58.726	5.83	0.00	0.00	4.274
368	ATTCTGGCTTCACACTTACAACAC	214 24			59.724	0.00	0.00	0.00	4.276
369	ACAGCTGCTGGAATGCTC	267 18			57.684			35.51	4.316
370	CGTCTGCTGAGCTTTCTACTACTA	243 24			59.667	0.18	0.00	0.00	4.333
370	TCTGCTGAGCTTTCTACTACTA	243 2			59.663	5.83	0.00	0.00	4.333
		239 24			59.663				4.337
372	TGCTGAGCTTTCTACTACTACTACTA	239 24			59.663				4.337
373	GCTGAGCTTTCTACTACTAGCTCA								
374	CTGCTGAGCTTTCTACTACTAGCT CTGGAATGCTCGAAGGTCGTCT	240 24			59.662	5.83	0.00	0.00 43.45	4.338
375		260 23			62.350	0.00			4.350
376	TGTGGTTCGGCTCGTCGG	169 18			62.352	0.00	0.00	0.00	4.352
377	GCTCAATTCTGGCTTCACACTTAC	219 24			60.379	0.00	0.00	0.00	4.379
378	CACAAAGGACAGGGTGCTCAGA	290 23			62.453	0.00		31.83	4.453
379	TGAGTCGCTTAATTGCTCGTGAC	101 23			61.459	4.62	4.62	0.00	4.459
380	GAGTCGCTTAATTGCTCGTGACA	100 23			61.459	11.57	0.00	0.00	4.459
381		214 23			58.540	0.00	0.00	0.00	4.460
382		252 18			57.533	0.00		43.45	4.467
383	CGAAGGTCGTCTGCTGAG	250 18			57.533	0.00		37.02	4.467
	ACTACTAGCTCAATTCTGGCTTCA	226 24			59.532	0.00		33.07	4.468
385	TAGCTCAATTCTGGCTTCACACTT	221 24			60.506	2.49		33.07	4.506
	AGCTCAATTCTGGCTTCACACTTA	220 24			60.506	0.00	0.00	0.00	4.506
387	TGGCTTCACACTTACAACACATAC	210 24			59.486	0.00	0.00	0.00	4.514
388	GGCTTCACACTTACAACACATACA	209 24			59.486	0.00	0.00	0.00	4.514
	ACCACGGACACAAAGG	300 18			57.448	0.00	0.00	0.00	4.552
	GTTTTCTTCCTCTGAGTCGCTTA	113 23			58.443	0.00	0.00	0.00	4.557
391	CCTCTGAGTCGCTTAATTGCTCG	105 23			61.577	3.66	0.00	0.00	4.577
392	CGGGCTGGTAAATGTTGATGATTA	154 24			59.421	0.00	0.00	0.00	4.579
393	ACACAAAGGACAGGGTGC	291 18			57.421	0.00		34.69	4.579
	TGGAATGCTCGAAGGTCGTCTG	259 22			62.599	0.00		43.45	4.599
395	CTGCTGAGCTTTCTACTACTAGC	240 23			58.393	5.83	0.00	0.00	4.607
396	CGTCGGGCTGGTAAATGT	157 18			57.390	0.00	0.00	0.00	4.610
397	TCATCGTTTTCTTCCTCTGAGTCG	118 24	4 0	45.83	60.616	0.00	0.00	0.00	4.616
398	TGCTGGAATGCTCGAAGG	262 18	8 0	55.56	57.376	0.00	0.00	0.00	4.624
399	AAGGTCGTCTGCTGAGCTTTCTA	248 23	3 0	47.83	61.624	4.25	0.00	34.76	4.624
400	GCTGGAATGCTCGAAGGT	261 18	8 0	55.56	57.374	0.00	0.00	0.00	4.626
401	GAAACAGCTGCTGGAATGCTCG	270 23	2 0	54.55	62.627	12.08	0.00	35.51	4.627
402	TGCTGAGCTTTCTACTACTAGC	239 23	2 0	45.45	57.359	5.83	0.00	0.00	4.641
403	AAGGACAGGGTGCTCAGA	286 18	8 0	55.56	57.352	0.00	0.00	31.83	4.648
404	AGGACAGGGTGCTCAGAA	285 18	8 0	55.56	57.352	0.00	0.00	24.24	4.648
405	ACAACATTGTGTGACGTTGTGGT	186 23	3 0	43.48	61.671	5.36	0.00	41.89	4.671
406	AGTCGCTTAATTGCTCGTGACATA	99 24	4 0	41.67	60.677	11.57	0.00	0.00	4.677
407	GGTCGTCTGAGCTTT	246 18	8 0	55.56	57.317	5.83	0.00	0.00	4.683
408	TCTGGCTTCACACTTACAACACAT	212 2	4 0	41.67	60.686	0.00	0.00	0.00	4.686

Primers da	ta
------------	----

Pri	mers data									
409	TGGCTTCACACTTACAACACATA	210	23	0	39.13	58.291	0.00	0.00	0.00	4.709
410	GTCTGCTGAGCTTTCTACTACT	242	22	0	45.45	57.288	0.00	0.00	0.00	4.712
411	TGCTCAGAAACAGCTGCTGGAA	276	22	0	50.00	62.712	31.00	10.35	37.79	4.712
412	TCAATTCTGGCTTCACACTTACA	217	23	0	39.13	58.286	0.00	0.00	0.00	4.714
413	ACACAAAGGACAGGGTGCTCAG	291	22	0	54.55	62.714	0.00	0.00	31.83	4.714
414	TCTTCCTCTGAGTCGCTTAATTG	109	23	0	43.48	58.251	0.00	0.00	0.00	4.749
415	CTGGCTTCACACTTACAACACATA	211	24	0	41.67	59.245	0.00	0.00	0.00	4.755
416	CTCAATTCTGGCTTCACACTTACA	218	24			59.243	0.00	0.00	0.00	4.757
417	TACTAGCTCAATTCTGGCTTCAC	224				58.240	0.00		33.07	4.760
418	GACAGGGTGCTCAGAAACAGCT	283				62.766	3.10		37.79	4.766
419	CTACTAGCTCAATTCTGGCTTCAC	225				59.192	2.49		33.07	4.808
420	AGGGTGCTCAGAAACAGC	280				57.191	0.00		37.40	4.809
421	GGGTGCTCAGAAACAGCT	279	18			57.191	3.10		37.79	4.809
422	TCATCGTTTTCTTCCTCTGAGTC	118	23	-		58.189	0.00	0.00	0.00	4.811
		268				57.163				
	AACAGCTGCTGGAATGCT								35.51	4.837
424	CGTTTTCTTCCTCTGAGTCGCTTA	114	24			60.851	0.00	0.00	0.00	4.851
425	CAAAGGACAGGGTGCTCAGAAAC	288				61.855	0.00		31.83	4.855
426	GCTGAGCTTTCTACTACTAGCTC	238				58.144				4.856
427	TCGTTTTCTTCCTCTGAGTCGCT	115				61.861	0.00	0.00	0.00	4.861
428	CTAGCTCAATTCTGGCTTCACACT	222				60.862	2.49	0.00	33.07	4.862
429	TTCTGGCTTCACACTTACAACACA	213		0	41.67	60.865	0.00	0.00	0.00	4.865
430	TTTTCTTCCTCTGAGTCGCTTA	112	22	0	40.91	57.133	0.00	0.00	0.00	4.867
431	TTTCTTCCTCTGAGTCGCTTAA	111	22	0	40.91	57.133	0.00	0.00	0.00	4.867
432	CCACGGACACAAAGGA	299	18	0	55.56	57.132	0.00	0.00	0.00	4.868
433	TCGGGCTGGTAAATGTTGATGATT	155	24	0	41.67	60.870	0.00	0.00	0.00	4.870
434	TCATCGTTTTCTTCCTCTGAGT	118	22	0	40.91	57.126	3.66	0.00	0.00	4.874
435	AATTCTGGCTTCACACTTACAACA	215	24	0	37.50	59.113	0.00	0.00	0.00	4.887
436	GAATGCTCGAAGGTCGTCTGCT	257	22	0	54.55	62.906	11.58	0.55	43.45	4.906
437	CACAAAGGACAGGGTGCT	290	18	0	55.56	57.093	0.00	0.00	35.27	4.907
438	TGGAATGCTCGAAGGTCG	259	18	0	55.56	57.089	0.00	0.00	44.56	4.911
439	GCTGAGCTTTCTACTACTAGCT	238	22	0	45.45	57.088	0.00	0.00	0.00	4.912
440	GGAATGCTCGAAGGTCGT	258	18	0	55.56	57.087	0.00	0.00	43.45	4.913
441	TCTTCCTCTGAGTCGCTTAATTGC	109	24	0	45.83	60.916	0.00	0.00	0.00	4.916
442	TTCCTCTGAGTCGCTTAATTGCTC	107	24	0	45.83	60.916	0.00	0.00	0.00	4.916
443	CTTCCTCTGAGTCGCTTAATTGCT	108	24	0	45.83	60.917	0.00	0.00	0.00	4.917
444	TCGTCGGGCTGGTAAATG	158	18	0	55.56	57.076	0.00	0.00	0.00	4.924
445	ACCACGGACACAAAGGACAG	300	22	0	54.55	62.945	0.00	0.00	0.00	4.945
446	GTCGTCTGCTGAGCTTTCTACTAC	245	24	0	50.00	60.962	0.00	0.00	0.00	4.962
447	CACACAAAGGACAGGGTGCTCA	292	22	0	54.55	62.966	0.00	0.00	31.83	4.966
448	GACACACAAAGGACAGGGTGCT	294	22	0	54.55	62.968	0.00	0.00	35.27	4.968
449	ACACACAAAGGACAGGGTGCTC	293		0	54.55	62.968	0.00	0.00	31.83	4.968
450		113				59.011	0.00	0.00	0.00	4.989
	GCTTCACACTTACAACACATACACA	208				59.993	0.00	0.00	0.00	5.007
	TCAATTCTGGCTTCACACTTACAAC	217				59.991	0.00	0.00	0.00	5.009
	CTACTAGCTCAATTCTGGCTTCA	225				57.984	0.00		33.07	5.016
	ACTACTAGCTCAATTCTGGCTTC	226				57.983	2.49		33.07	5.017
	GGCTTCACACTTACAACACATAC	209				57.969	0.00	0.00	0.00	5.017
1 33	OGC11CACAC11ACAACACA1AC	∠ ∪9	د ے	U	10.40	51.909	0.00	0.00	0.00	J.UJI

Pri	mers data									
456	CGGGCTGGTAAATGTTGATGATTAA	154	25	0	40.00	59.933	0.00	0.00	0.00	5.067
457	ACTAGCTCAATTCTGGCTTCACAC	223	24	0	45.83	61.100	2.49	0.00	33.07	5.100
458	TCGTCTGCTGAGCTTTCTACTACT	244	24	0	45.83	61.104	0.18	0.00	0.00	5.104
459	TCAATTCTGGCTTCACACTTACAA	217	24	0	37.50	58.870	0.00	0.00	0.00	5.130
460	GCTGAGCTTTCTACTACTAGCTCAA	238	25	0	44.00	60.164	21.58	9.71	44.95	5.164
461	TTCTTCCTCTGAGTCGCTTAATTG	110	24	0	41.67	58.829	0.00	0.00	0.00	5.171
462	TTTTCTTCCTCTGAGTCGCTTAA	112	23	0	39.13	57.790	0.00	0.00	0.00	5.210
463	CAATTCTGGCTTCACACTTACAAC	216	24	0	41.67	58.785	0.00	0.00	0.00	5.215
464	TTCATCGTTTTCTTCCTCTGAGT	119	23	0	39.13	57.785	3.66	0.00	0.00	5.215
465	CAATTCTGGCTTCACACTTACAACA	216	25	0	40.00	60.221	0.00	0.00	0.00	5.221
466	AATTCTGGCTTCACACTTACAACAC	215	25			60.221	0.00	0.00	0.00	5.221
467	AGGTCGTCTGCTGAGCTTTCTAC	247	23			62.224	0.00	0.00	0.00	5.224
468	GGTCGTCTGCTGAGCTTTCTACT	246	23			62.224	2.49	0.00	0.00	5.224
469	TTCATCGTTTTCTTCCTCTGAGTC	119	24			58.769	0.00	0.00	0.00	5.231
470	CTCAATTCTGGCTTCACACTTACAA	218	25	-		59.761	0.00	0.00	0.00	5.239
471	TAGCTCAATTCTGGCTTCACACTTA	221				60.280	2.49		33.07	5.280
	ACAAAGGACAGGTGCTCAGAAA	289	23			62.280	0.00		31.83	5.280
	AAAGGACAGGGTGCTCAGAAACA	287	23			62.280	0.00		31.83	5.280
474	CTCAATTCTGGCTTCACACTTAC	218	23			57.711	0.00	0.00	0.00	5.289
	ACATTGTGTGACGTTGTGGTTCG	183	23			62.310	0.00	0.00	0.00	5.310
476	CGTCGGGCTGGTAAATGTTGATG	157				62.314	0.00	0.00	0.00	5.314
477	CTGGCTTCACACTTACAACACATAC	211				60.334	0.00	0.00	0.00	5.334
478	TTTCTTCCTCTGAGTCGCTTAAT	111				57.593	0.00	0.00	0.00	5.407
479	TTCTTCCTCTGAGTCGCTTAATT	110	23			57.593	0.00		0.00	5.407
480	CAATTCTGGCTTCACACTTACAA	216	23			57.563	0.00	0.00	0.00	5.437
	AATTCTGGCTTCACACTTACAAC	215				57.561		0.00		5.439
_		215	23			58.559	0.00		0.00	
482	GCTTCACACTTACAACACATACAC		24				0.00	0.00	0.00	5.441
483	TCTACTACTAGCTCAATTCTGGCT	229	24			58.550	2.60	2.60	34.62	5.450
	TCTGGCTTCACACTTACAACACATA	212	_			60.454	0.00	0.00	0.00	5.454
						61.461	0.00		0.00	5.461
	CAACATTGTGTGACGTTGTGGTTC	185				61.480	0.00	0.00	0.00	5.480
	TCGTCGGGCTGGTAAATGTTGAT	158				62.497		0.00	0.00	5.497
488	CGTCTGCTGAGCTTTCTACTACTAG	243				60.503	0.18	0.00	0.00	5.503
489	CTGCTGAGCTTTCTACTACTAGCTC	240				60.506				5.506
490	GCTCAGAAACAGCTGCTGGAATG	275				62.510				5.510
	CTCAGAAACAGCTGCTGGAATGC	274				62.510				5.510
	CAGAAACAGCTGCTGGAATGCTC	272				62.510			35.51	5.510
	GGCTTCACACTTACAACACATACAC	209				60.560	0.00	0.00	0.00	5.560
494	TTTCATCGTTTTCTTCCTCTGAGT	120				58.389	3.66	0.00	0.00	5.611
495	CTACTAGCTCAATTCTGGCTTCACA	225				60.625	0.00		33.07	5.625
496	ACTACTAGCTCAATTCTGGCTTCAC	226	25			60.626	2.49	0.00	33.07	5.626
497	TCGGGCTGGTAAATGTTGATGATTA	155	25	0	40.00	60.630	0.00	0.00	0.00	5.630
498	AAGGACAGGTGCTCAGAAACAG	286	23	0	52.17	62.635	0.00	0.00	31.83	5.635
499	TTTCTTCCTCTGAGTCGCTTAATTG	111	25	0	40.00	59.360	0.00	0.00	0.00	5.640
500	GTTTTCTTCCTCTGAGTCGCTTAAT	113	25	0	40.00	59.360	0.00	0.00	0.00	5.640
501	TACTACTAGCTCAATTCTGGCTTCA	227	25	0	40.00	59.343	0.00	0.00	33.07	5.657
502	GCTTCACACTTACAACACATACA	208	23	0	39.13	57.333	0.00	0.00	0.00	5.667

Prin	mers data									
503	TTTCATCGTTTTCTTCCTCTGAGTC	120	25	0	40.00	59.303	0.00	0.00	0.00	5.697
504	GAAGGTCGTCTGCTGAGCTTTCT	249	23	0	52.17	62.716	5.55	0.00	36.71	5.716
505	GAGTCGCTTAATTGCTCGTGACAT	100	24	0	45.83	61.724	11.57	1.91	0.00	5.724
506	GTCTGCTGAGCTTTCTACTACTAGC	242	25	0	48.00	60.732	0.00	0.00	0.00	5.732
507	TCTACTACTAGCTCAATTCTGGC	229	23	0	43.48	57.224	0.00	0.00	0.00	5.776
508	CTACTACTAGCTCAATTCTGGCT	228	23	0	43.48	57.217	2.60	2.60	34.62	5.783
509	TTTTCTTCCTCTGAGTCGCTTAAT	112	24	0	37.50	58.205	0.00	0.00	0.00	5.795
510	TTTCTTCCTCTGAGTCGCTTAATT	111	24	0	37.50	58.205	0.00	0.00	0.00	5.795
511	GTCTGCTGAGCTTTCTACTACTAG	242	24	0	45.83	58.183	0.00	0.00	0.00	5.817
512	GTCTGCTGAGCTTTCTACTACTA	242	23	0	43.48	57.178	0.00	0.00	0.00	5.822
513	TACTAGCTCAATTCTGGCTTCACAC	224	25	0	44.00	60.855	0.00	0.00	33.07	5.855
514	TCGTCTGCTGAGCTTTCTACTACTA	244	25	0	44.00	60.857	0.18	0.00	0.00	5.857
515	TCTGCTGAGCTTTCTACTACTAGCT	241				60.864	5.83	0.00	0.00	5.864
516	TCACACTTACAACACATACACAACA	205	25			59.125	0.00	0.00	0.00	5.875
517	CACAAAGGACAGGGTGCTCAGAA	290	23			62.878	0.00		31.83	5.878
518	TTCTACTACTAGCTCAATTCTGGCT	230	25			59.106	2.60		34.62	5.894
519	TCTACTACTAGCTCAATTCTGGCTT	229	25			59.106	2.49		33.07	5.894
520	CATTGTGTGACGTTGTGGTTCGG	182				62.896	0.00	0.00	0.00	5.896
521	TGGCTTCACACTTACAACACATACA	210	25			60.917	0.00	0.00	0.00	5.917
522	GGTCGTCTGCTGAGCTTTCTACTA	246	24			61.927	2.49	0.00	0.00	5.927
	TGCTCAGAAACAGCTGCTGGAAT	276								5.948
523			23			62.948				
524	TCAGAAACAGCTGCTGGAATGCT	273	23			62.948				5.948
525	CATCGTTTTCTTCCTCTGAGTCGC	117				61.949	0.00	0.00	0.00	5.949
526	CTCTGAGTCGCTTAATTGCTCGTG	104				61.998	0.00	0.00	0.00	5.998
527	TCTACTACTAGCTCAATTCTGGCTTC	229	26			59.960	2.49		33.07	6.040
528	TTCATCGTTTTCTTCCTCTGAGTCG	119	25			61.074	0.00	0.00	0.00	6.074
529	TGCTGAGCTTTCTACTACTAGCTCA	239	25			61.094				6.094
530	GGGCTGGTAAATGTTGATGATTAACT	153	26	-		59.903	1.77	0.00	0.00	6.097
	ACAACATTGTGTGACGTTGTGGTT	186				62.107	5.36		41.89	6.107
	CACACTTACAACACATACACAACA	204	24			57.887	0.00			6.113
533	ATCGTTTTCTTCCTCTGAGTCGCT	116				62.118	0.00	0.00	0.00	6.118
534	TTTTCTTCCTCTGAGTCGCTTAATTG	112	26	0	38.46	59.852	0.00	0.00	0.00	6.148
535	GTTTTCTTCCTCTGAGTCGCTTAATT	113	26	0	38.46	59.852	0.00	0.00	0.00	6.148
536	ATTCTGGCTTCACACTTACAACACA	214	25	0	40.00	61.150	0.00	0.00	0.00	6.150
537	TTCTGGCTTCACACTTACAACACAT	213	25	0	40.00	61.150	0.00	0.00	0.00	6.150
538	TTCTACTACTAGCTCAATTCTGGC	230	24	0	41.67	57.850	0.00	0.00	0.00	6.150
539	TACTACTAGCTCAATTCTGGCTTC	227	24	0	41.67	57.850	2.49	0.00	33.07	6.150
540	CTACTACTAGCTCAATTCTGGCTT	228	24	0	41.67	57.845	2.49	0.00	33.07	6.155
541	CTACTACTAGCTCAATTCTGGCTTCA	228	26	0	42.31	60.183	0.00	0.00	33.07	6.183
542	CTACTACTAGCTCAATTCTGGCTTC	228	25	0	44.00	58.787	2.49	0.00	33.07	6.213
543	CTGAGTCGCTTAATTGCTCGTGAC	102	24	0	50.00	62.225	4.62	4.62	0.00	6.225
544	TTTTCTTCCTCTGAGTCGCTTAATT	112	25	0	36.00	58.769	0.00	0.00	0.00	6.231
545	ATTTCATCGTTTTCTTCCTCTGAGT	121	25	0	36.00	58.766	3.66	0.00	0.00	6.234
546	GGGCTGGTAAATGTTGATGATTAAC	153	25	0	40.00	58.727	0.00	0.00	0.00	6.273
547	TCGTTTTCTTCCTCTGAGTCGCTT	115	24	0	45.83	62.290	0.00	0.00	0.00	6.290
548	CGTTTTCTTCCTCTGAGTCGCTTAA	114	25	0	44.00	61.299	0.00	0.00	0.00	6.299
549	CTAGCTCAATTCTGGCTTCACACTT	222	25	0	44.00	61.316	2.49	0.00	33.07	6.316

PLTI	mers data									
550	TCACACTTACAACACATACACAAC	205	24	0	37.50	57.647	0.00	0.00	0.00	6.353
551	TTCTTCCTCTGAGTCGCTTAATTGC	110	25	0	44.00	61.364	0.00	0.00	0.00	6.364
552	ATTTCATCGTTTTCTTCCTCTGAGTC	121	26	0	38.46	59.630	0.00	0.00	0.00	6.370
553	TTCACACTTACAACACATACACAACA	206	26	0	34.62	59.628	0.00	0.00	0.00	6.372
554	TTTCTACTACTAGCTCAATTCTGGCT	231	26	0	38.46	59.619	2.60	2.60	34.62	6.381
555	TTCTACTACTAGCTCAATTCTGGCTT	230	26	0	38.46	59.619	2.49	0.00	33.07	6.381
556	TCTGAGTCGCTTAATTGCTCGTGA	103	24	0	45.83	62.394	0.00	0.00	0.00	6.394
557	GAAGGTCGTCTGCTGAGCTTTCTA	249	24	0	50.00	62.400	5.55	0.00	36.71	6.400
558	TACTACTAGCTCAATTCTGGCTTCAC	227	26	0	42.31	60.406	0.00	0.00	33.07	6.406
559	CTGAGCTTTCTACTACTAGCTCAA	237	24	0	41.67	57.556	21.58	9.71	44.95	6.444
560	GCTTCACACTTACAACACATACACAA	208	26	0	38.46	60.458	0.00	0.00	0.00	6.458
561	GAGTCGCTTAATTGCTCGTGACATA	100	25			61.461	11.57	0.00	0.00	6.461
562	GCTGAGCTTTCTACTACTAGCTCAAT	238	26			60.461		0.00		6.461
563	AGTCGCTTAATTGCTCGTGACATAG	99	25	0	44.00	61.464	11.57	0.00	0.00	6.464
	GGGCTGGTAAATGTTGATGATTAA	153				57.536	0.00	0.00	0.00	6.464
565	TCACACTTACAACACATACACAACAT		26			59.459	0.00	0.00	0.00	6.541
	AGCTCAATTCTGGCTTCACACTTAC		25			61.544	0.00	0.00	0.00	6.544
567	TTTCTACTACTAGCTCAATTCTGGC	231				58.426	0.00	0.00	0.00	6.574
568	CTTCACACTTACAACACATACACA	207				57.403	0.00	0.00	0.00	6.597
569	AAGGTCGTCTGCTGAGCTTTCTAC		24			62.636	4.25	0.00	34.76	6.636
570	CTTCCTCTGAGTCGCTTAATTGCTC	108				61.692	0.00	0.00	0.00	6.692
	GCTTTCTACTACTAGCTCAATTCTGG		26			59.300	0.00	0.00	0.00	6.700
	CTTTCTACTACTAGCTCAATTCTGGC	232				59.300	0.00	0.00	0.00	6.700
	AACATTGTGTGACGTTGTGGTTCG	184				62.712	0.00	0.00	0.00	6.712
	CACACTTACAACACATACACAACAT	204				58.276	0.00	0.00	0.00	6.724
	ATTCATCGTTTTCTTCCTCTGAG	121				57.266	0.00		0.00	6.734
		106				62.737		0.00		
	TCCTCTGAGTCGCTTAATTGCTCG						3.66	0.00	0.00	6.737
577	GCTCAATTCTGGCTTCACACTTACA		25			61.769	0.00	0.00	0.00	6.769
	TTCACACTTACAACACATACACAAC	206				58.223	0.00	0.00	0.00	6.777
	CTCAATTCTGGCTTCACACTTACAAC					60.785				6.785
	TGAGTCGCTTAATTGCTCGTGACA	101				62.859		2.96	0.00	6.859
	GTCGGGCTGGTAAATGTTGATGATT	156				61.891	0.00	0.00	0.00	6.891
	CTTCACACTTACAACACATACACAAC	207				59.095	0.00	0.00	0.00	6.905
	TTCTGGCTTCACACTTACAACACATA	213				60.910	0.00	0.00	0.00	6.910
	ACACTTACAACACATACACAACAT	203				57.064	0.00	0.00	0.00	6.936
	CGGGCTGGTAAATGTTGATGATTAAC	154				60.951	0.00	0.00	0.00	6.951
	CCTCTGAGTCGCTTAATTGCTCGT	105				62.972	3.66	0.00	0.00	6.972
	TTCACACTTACAACACATACACAA	206				57.013	0.00	0.00	0.00	6.987
588	TCGTTTTCTTCCTCTGAGTCGCTTA	115				62.001	0.00	0.00	0.00	7.001
589	CTTCACACTTACAACACATACACAA	207	25			57.989	0.00	0.00	0.00	7.011
590	CTGAGCTTTCTACTACTAGCTCAAT	237	25	0	40.00	57.962	21.58	0.00	44.95	7.038
591	TTCACACTTACAACACATACACAACAT	206	27	0	33.33	59.934	0.00	0.00	0.00	7.066
592	TCACACTTACAACACATACACAACATT	205				59.934	0.00	0.00	0.00	7.066
593	CTAGCTCAATTCTGGCTTCACACTTA	222	26	0	42.31	61.072	2.49	0.00	33.07	7.072
594	TCTTCCTCTGAGTCGCTTAATTGCT	109	25			62.076	0.00	0.00	0.00	7.076
595	TCGGGCTGGTAAATGTTGATGATTAA	155	26	0	38.46	61.081	0.00	0.00	0.00	7.081
596	TTTCTACTACTAGCTCAATTCTGGCTT	231	27	0	37.04	60.093	2.49	0.00	33.07	7.093

Pri	mers data									
597	GGCTGGTAAATGTTGATGATTAACT	152	25	0	36.00	57.900	1.77	0.00	0.00	7.100
598	GTCGTCTGCTGAGCTTTCTACTACT	245	25	0	48.00	62.102	0.14	0.00	0.00	7.102
599	GCTGGTAAATGTTGATGATTAACTCCA	151	27	0	37.04	60.148	3.92	3.92	0.00	7.148
600	ACACTTACAACACATACACAACATTGT	203	27	0	33.33	60.148	0.00	0.00	44.94	7.148
601	CACACTTACAACACATACACAACATTG	204	27	0	37.04	59.834	0.00	0.00	0.00	7.166
602	CACACTTACAACACATACACAACATT	204	26	0	34.62	58.807	0.00	0.00	0.00	7.193
603	ACACTTACAACACATACACAACATTG	203	26	0	34.62	58.807	0.00	0.00	0.00	7.193
604	CACTTACAACACATACACAACATTGT	202	26	0	34.62	58.807	0.00	0.00	44.94	7.193
605	GGCTGGTAAATGTTGATGATTAACTC	152	26	0	38.46	58.804	0.00	0.00	0.00	7.196
606	GCTGGTAAATGTTGATGATTAACTCC	151	26	0	38.46	58.804	0.00	0.00	0.00	7.196
607	CAATTCTGGCTTCACACTTACAACAC	216	26	0	42.31	61.220	0.00	0.00	0.00	7.220
608	ACTAGCTCAATTCTGGCTTCACACT	223	25			62.263	2.49		33.07	7.263
609		130	27			59.719	0.00	0.00	0.00	7.281
610	TAGCTCAATTCTGGCTTCACACTTAC	221				61.292	2.49		33.07	7.292
	ACACTTACAACACATACACAACATT	203				57.672	0.00	0.00	0.00	7.328
	ACTTACAACACATACACAACATTGT	201				57.672	0.00		44.94	7.328
613	TCCATCTATTTCATCGTTTTCTTCCT	128	26			58.661	0.00	0.00	0.00	7.320
614		236	27			59.659			43.75	7.341
615	TCAATTCTGGCTTCACACTTACAACA	217	26	-		61.356	0.00	0.00	0.00	7.356
616	TATTTCATCGTTTTCTTCCTCTGAGT	122	26			58.613	3.66	0.00	0.00	7.330
617	TGAGCTTTCTACTACTAGCTCAATT	236				57.589			43.75	7.411
618	CTTCACACTTACAACACATACACAACA	207	27			60.414	0.00	0.00	0.00	7.414
619	ATTCTGGCTTCACACTTACAACACAT	214				61.415	0.00	0.00	0.00	7.414
620	TTCTACTACTAGCTCAATTCTGGCTTC	230	27			60.417	2.49		33.07	7.415
	AGCTTTCTACTACTAGCTCAATTCTGG	234				60.417	0.00	0.00	0.00	7.417
622		234				60.417	2.60		34.62	7.417
		212		-		61.454				7.417
623						58.515	0.00	0.00	0.00	
624	TGAGCTTTCTACTACTAGCTCAATTC	236	26						43.75	7.485
	CTGAGCTTTCTACTACTAGCTCAATT	237				58.512			44.95	7.488
						58.512				
	TCCATCTATTTCATCGTTTTCTTCCTC	128				59.504	0.00	0.00	0.00	7.496
	TTTCATCGTTTTCTTCCTCTGAGTCG	120				61.497	0.00	0.00	0.00	7.497
	CTCCATCTATTTCATCGTTTTCTTCCT	129				59.503	0.00	0.00	0.00	7.497
	CCATCTATTTCATCGTTTTCTTCCTCT	127				59.503	0.00	0.00	0.00	7.497
	ATCGTTTCTTCCTCTGAGTCGCTT	116				62.521	0.00	0.00	0.00	7.521
	TGCTGAGCTTTCTACTACTAGCTCAA	239				61.526			44.95	7.526
	TATTTCATCGTTTTCTTCCTCTGAGTC	122				59.454	0.00	0.00	0.00	7.546
	CTATTTCATCGTTTTCTTCCTCTGAGT	123				59.453	3.66	0.00	0.00	7.547
635	CGTTTTCTTCCTCTGAGTCGCTTAAT	114				61.553	0.00	0.00	0.00	7.553
636	TCCATCTATTTCATCGTTTTCTTCC	128				57.446	0.00	0.00	0.00	7.554
637	CCATCTATTTCATCGTTTTCTTCCT	127	25	0	36.00	57.440	0.00	0.00	0.00	7.560
638	AATTCTGGCTTCACACTTACAACACA	215	26	0	38.46	61.579	0.00	0.00	0.00	7.579
639	CACTTACAACACATACACAACATTG	202	25	0	36.00	57.392	0.00	0.00	0.00	7.608
640	CTACTAGCTCAATTCTGGCTTCACAC	225	26	0	46.15	61.610	2.49	0.00	33.07	7.610
641	TCTATTTCATCGTTTTCTTCCTCTGA	124	26	0	34.62	58.388	0.00	0.00	0.00	7.612
642	TCGTCTGCTGAGCTTTCTACTACTAG	244	26	0	46.15	61.615	0.18	0.00	0.00	7.615
643	TCTGCTGAGCTTTCTACTACTAGCTC	241	26	0	46.15	61.625	14.27	14.27	40.31	7.625

Pri	mers data									
644	GTCGGGCTGGTAAATGTTGATGATTA	156	26	0	42.31	61.625	0.00	0.00	0.00	7.625
645	CTCCATCTATTTCATCGTTTTCTTCC	129	26	0	38.46	58.365	0.00	0.00	0.00	7.635
646	CCATCTATTTCATCGTTTTCTTCCTC	127	26	0	38.46	58.365	0.00	0.00	0.00	7.635
647	CTGAGCTTTCTACTACTAGCTCAATTC	237	27	0	40.74	59.352	21.58	0.92	44.95	7.648
648	GAGCTTTCTACTACTAGCTCAATTCTG	235	27	0	40.74	59.352	15.79	0.00	39.93	7.648
649	AGCTTTCTACTACTAGCTCAATTCT	234	25	0	36.00	57.346	0.00	0.00	0.00	7.654
650	CTGGCTTCACACTTACAACACATACA	211		0	42.31	61.674	0.00	0.00	0.00	7.674
651	GGGCTGGTAAATGTTGATGATTAACTC	153	27			60.682	0.00	0.00	0.00	7.682
652	GGCTGGTAAATGTTGATGATTAACTCC	152				60.682	0.00	0.00	0.00	7.682
653	GCTTTCTACTACTAGCTCAATTCTG	233	25			57.307	0.00	0.00	0.00	7.693
654		235	26			58.287			39.93	7.713
655	TCTATTCATCGTTTTCTTCCTCTGAG	124	27			59.238	0.00	0.00	0.00	7.762
656	TTTCTTCCTCTGAGTCGCTTAATTGC	111				61.778	0.00	0.00	0.00	7.778
	ACAACATTGTGTGACGTTGTGGTTC	186	25			62.821	5.36	0.00		7.821
	GTCGTCTGCTGAGCTTTCTACTACTA	245				61.832				7.832
658			26				0.14	0.00	0.00	
659	GTTTTCTTCCTCTGAGTCGCTTAATTG	113	27			60.832	0.00	0.00	0.00	7.832
660	TCTATTTCATCGTTTTCTTCCTCTG	124				57.166	0.00	0.00	0.00	7.834
661	CTATTTCATCGTTTTCTTCCTCTGA	123				57.166	0.00	0.00	0.00	7.834
662	TATTTCATCGTTTTCTTCCTCTGAG	122				57.166	0.00	0.00	0.00	7.834
663	CTGCTGAGCTTTCTACTACTAGCTCA	240	26			61.846	20.97		44.16	7.846
664	GTCTGCTGAGCTTTCTACTACTAGCT	242				61.847	0.00	0.00	0.00	7.847
665	GGTCGTCTGCTGAGCTTTCTACTAC	246	25			62.874	2.49	0.00	0.00	7.874
666	TGGCTTCACACTTACAACACATACAC	210	26	0	42.31	61.891	0.00	0.00	0.00	7.891
667	GGCTTCACACTTACAACACATACACA	209	26	0	42.31	61.891	0.00	0.00	0.00	7.891
668	GCTGAGCTTTCTACTACTAGCTCAATT	238	27	0	40.74	60.897	21.58	0.00	44.95	7.897
669	CTATTTCATCGTTTTCTTCCTCTGAG	123	26	0	38.46	58.096	0.00	0.00	0.00	7.904
670	GAGCTTTCTACTACTAGCTCAATTC	235	25	0	40.00	57.076	15.79	0.00	39.93	7.924
671	ACTACTAGCTCAATTCTGGCTTCACA	226	26	0	42.31	61.981	0.00	0.00	33.07	7.981
672	TACTAGCTCAATTCTGGCTTCACACT	224	26	0	42.31	61.981	0.00	0.00	33.07	7.981
673	CTACTACTAGCTCAATTCTGGCTTCAC	228	27	0	44.44	61.158	2.49	0.00	33.07	8.158
674	GCTCAATTCTGGCTTCACACTTACAA	219	26	0	42.31	62.169	0.00	0.00	0.00	8.169
675	GAGTCGCTTAATTGCTCGTGACATAG	100	26	0	46.15	62.174	11.57	0.00	0.00	8.174
676	ATTCTGGCTTCACACTTACAACACATA	214	27	0	37.04	61.174	0.00	0.00	0.00	8.174
677	ACTCCATCTATTTCATCGTTTTCTTC	130	26	0	34.62	57.797	0.00	0.00	0.00	8.203
678	ATCGTTTTCTTCCTCTGAGTCGCTTA	116	26	0	42.31	62.233	0.00	0.00	0.00	8.233
679	ATCTATTTCATCGTTTTCTTCCTCTGA	125	27	0	33.33	58.739	0.00	0.00	0.00	8.261
680	CTGGTAAATGTTGATGATTAACTCCA	150	26	0	34.62	57.720	3.92	3.92	0.00	8.280
681	TCTACTACTAGCTCAATTCTGGCTTCA	229	27	0	40.74	61.289	0.00	0.00	33.07	8.289
682	CATCTATTTCATCGTTTTCTTCCTCTG	126	27	0	37.04	58.666	0.00	0.00	0.00	8.334
683	TCGTTTTCTTCCTCTGAGTCGCTTAA	115	26	0	42.31	62.393	0.00	0.00	0.00	8.393
684	GCTTCACACTTACAACACATACACAAC	208	27	0	40.74	61.404	0.00	0.00	0.00	8.404
	CATCTATTTCATCGTTTTCTTCCTCT	126				57.569	0.00	0.00	0.00	8.431
	ATCTATTCATCGTTTTCTTCCTCTG	125				57.569	0.00	0.00	0.00	8.431
	TTCTTCCTCTGAGTCGCTTAATTGCT	110				62.469	0.00	0.00	0.00	8.469
	AGTCGCTTAATTGCTCGTGACATAGA		26			62.549		0.00	0.00	8.549
	AACTCCATCTATTCATCGTTTTCTT	131				57.433	0.00	0.00	0.00	8.567
	GCTTTCTACTACTAGCTCAATTCTGGC	233				61.632	0.00	0.00	0.00	8.632
090	GC111CIACIACIAGCICAAIICIGGC	<u> </u>	<u> </u>	U	17.77	01.032	0.00	0.00	0.00	0.034

Pri	mers data								
691	ACTAGCTCAATTCTGGCTTCACACTT	223 26	5 0	42.31	62.651	2.49	0.00	33.07	8.651
692	AACTCCATCTATTTCATCGTTTTCTTC	131 27	7 0	33.33	58.331	0.00	0.00	0.00	8.669
693	TACTACTAGCTCAATTCTGGCTTCACA	227 27	7 0	40.74	61.718	0.00	0.00	33.07	8.718
694	ATTTCATCGTTTTCTTCCTCTGAGTCG	121 27	7 0	40.74	61.736	0.00	0.00	0.00	8.736
695	TGAGTCGCTTAATTGCTCGTGACATA	101 26	5 0	42.31	62.762	11.57	2.02	0.00	8.762
696	TGCTGAGCTTTCTACTACTAGCTCAAT	239 27	7 0	40.74	61.769	21.58	0.00	44.95	8.769
697	TCTTCCTCTGAGTCGCTTAATTGCTC	109 26	5 0	46.15	62.773	0.00	0.00	0.00	8.773
698	AATTCTGGCTTCACACTTACAACACAT	215 27	7 0	37.04	61.819	0.00	0.00	0.00	8.819
699	TGGTAAATGTTGATGATTAACTCCAT	149 26	5 0	30.77	57.178	4.34	0.00	0.00	8.822
700	CGTCTGCTGAGCTTTCTACTACTAGC	243 26	5 0	50.00	62.842	0.18	0.00	0.00	8.842
701	TTCTGGCTTCACACTTACAACACATAC	213 27	7 0	40.74	61.852	0.00	0.00	0.00	8.852
702	AGCTCAATTCTGGCTTCACACTTACA	220 26	5 0	42.31	62.867	0.00	0.00	0.00	8.867
703	TGGTAAATGTTGATGATTAACTCCATC	149 27	7 0	33.33	58.097	7.15	7.15	0.00	8.903
704	CTGGTAAATGTTGATGATTAACTCCAT	150 27	7 0	33.33	58.093	4.98	0.00	0.00	8.907
705	CGTTTTCTTCCTCTGAGTCGCTTAATT	114 27	7 0	40.74	61.943	0.00	0.00	0.00	8.943
706	CTAGCTCAATTCTGGCTTCACACTTAC	222 27	7 0	44.44	62.000	2.49	0.00	33.07	9.000
707	GTCGGGCTGGTAAATGTTGATGATTAA	156 27	7 0	40.74	62.018	0.00	0.00	0.00	9.018
708	TCGGGCTGGTAAATGTTGATGATTAAC	155 27	7 0	40.74	62.018	0.00	0.00	0.00	9.018
709	CGGGCTGGTAAATGTTGATGATTAACT	154 27	7 0	40.74	62.022	1.77	0.00	0.00	9.022
710	CTCAATTCTGGCTTCACACTTACAACA	218 27	7 0	40.74	62.067	0.00	0.00	0.00	9.067
711	GGTAAATGTTGATGATTAACTCCATCT	148 27	7 0	33.33	57.875	12.60	0.00	0.00	9.125
712	TTTTCTTCCTCTGAGTCGCTTAATTGC	112 27	7 0	40.74	62.162	0.00	0.00	0.00	9.162
713	CTGCTGAGCTTTCTACTACTAGCTCAA	240 27	7 0	44.44	62.230	21.58	10.71	44.95	9.230
714	GGCTTCACACTTACAACACATACACAA	209 27	7 0	40.74	62.271	0.00	0.00	0.00	9.271
715	TCAATTCTGGCTTCACACTTACAACAC	217 27	7 0	40.74	62.275	0.00	0.00	0.00	9.275
716	TACTAGCTCAATTCTGGCTTCACACTT	224 27	7 0	40.74	62.365	0.00	0.00	33.07	9.365
717	ACTAGCTCAATTCTGGCTTCACACTTA	223 27	7 0	40.74	62.365	2.49	0.00	33.07	9.365
718	TGATGATTAACTCCATCTATTTCATCG	139 27	7 0	33.33	57.572	12.60	0.00	0.00	9.428
719	GATGATTAACTCCATCTATTTCATCGT	138 27	7 0	33.33	57.571	6.94	0.00	0.00	9.429
720	CAATTCTGGCTTCACACTTACAACACA	216 27	7 0	40.74	62.486	0.00	0.00	0.00	9.486
721	GTCGTCTGCTGAGCTTTCTACTACTAG	245 27	7 0	48.15	62.510	0.14	0.00	0.00	9.510
722	GTCTGCTGAGCTTTCTACTACTAGCTC	242 27	7 0	48.15	62.526	14.27	14.27	40.31	9.526
723	CTGGCTTCACACTTACAACACATACAC	211 27	7 0	44.44	62.568	0.00	0.00	0.00	9.568
724	TAGCTCAATTCTGGCTTCACACTTACA	221 27	7 0	40.74	62.575	2.49	0.00	33.07	9.575
725	ATCGTTTCTTCCTCTGAGTCGCTTAA	116 27	7 0	40.74	62.603	0.00	0.00	0.00	9.603
726	TCGTTTTCTTCCTCTGAGTCGCTTAAT	115 27	7 0	40.74	62.603	0.00	0.00	0.00	9.603
727	TGATTAACTCCATCTATTTCATCGTTT	136 27	7 0	29.63	57.387	0.00	0.00	0.00	9.613
728	CTACTAGCTCAATTCTGGCTTCACACT	225 27	7 0	44.44	62.667	0.00	0.00	33.07	9.667
729	TTAACTCCATCTATTTCATCGTTTTCT	133 27	7 0	29.63	57.333	0.00	0.00	0.00	9.667
730	TAACTCCATCTATTTCATCGTTTTCTT	132 27		29.63	57.333	0.00	0.00	0.00	9.667
731	TCTGGCTTCACACTTACAACACATACA	212 27	7 0	40.74	62.729	0.00	0.00	0.00	9.729
732	ATGATTAACTCCATCTATTTCATCGTT	137 27	7 0	29.63	57.215	0.00	0.00	0.00	9.785
733	TTTCTTCCTCTGAGTCGCTTAATTGCT	111 27	7 0	40.74	62.833	0.00	0.00	0.00	9.833
734	ACTACTAGCTCAATTCTGGCTTCACAC	226 27	7 0	44.44	62.875	2.49	0.00	33.07	9.875
735	TCTGCTGAGCTTTCTACTACTAGCTCA	241 27	7 0	44.44	62.901	20.97	20.97	44.16	9.901
736	TGTTGATGATTAACTCCATCTATTTCA	142 27	7 0	29.63	57.096	4.15	0.00	0.00	9.904
737	AGTCGCTTAATTGCTCGTGACATAGAA	99 27	7 0	40.74	62.905	11.57	0.00	0.00	9.905

Primers data			

BLASTN 2.6.1+

Reference: Stephen F. Altschul, Thomas L. Madden, Alejandro A. Schaffer, Jinghui Zhang, Zheng Zhang, Webb Miller, and David J. Lipman (1997), "Gapped BLAST and PSI-BLAST: a new generation of protein database search programs", Nucleic Acids Res. 25:3389-3402.

RID: PD1FUAAW015

Database: Nucleotide collection (nt)

43,336,626 sequences; 150,108,365,041 total letters

Query= Length=23

Score E

Sequences p	roducing significant alig	gnments:	(Bits)	Value
KX545354.1	Human papillomavirus ty	pe 18 isolate NGSk256-18 E6	42.8	0.060
KC470230.1	Human papillomavirus ty	pe 18 isolate BF226, comple	42.8	0.060
KC470229.1	Human papillomavirus ty	pe 18 isolate Qv39775, comp	42.8	0.060
KC470228.1	Human papillomavirus ty	pe 18 isolate BF380, comple	42.8	0.060
KC470227.1	Human papillomavirus ty	pe 18 isolate Qv12693, comp	42.8	0.060
KC470226.1	Human papillomavirus ty	pe 18 isolate Z125, complet	42.8	0.060
KC470225.1	Human papillomavirus ty	pe 18 isolate BF172, comple	42.8	0.060
KC470224.1	Human papillomavirus ty	pe 18 isolate BF288, comple	42.8	0.060
KC470223.1	Human papillomavirus ty	pe 18 isolate BF309, comple	42.8	0.060
KC470222.1	Human papillomavirus ty	pe 18 isolate Z100, complet	42.8	0.060
KC470221.1	Human papillomavirus ty	pe 18 isolate Qv28775, comp	42.8	0.060
KC470219.1	Human papillomavirus ty	pe 18 isolate Rw57, complet	42.8	0.060
KC470218.1	Human papillomavirus ty	pe 18 isolate Rw687, comple	42.8	0.060
KC470217.1	Human papillomavirus ty	pe 18 isolate Rw750, comple	42.8	0.060
KC470216.1	Human papillomavirus ty	pe 18 isolate Z53, complete	42.8	0.060
KC470215.1	Human papillomavirus ty	pe 18 isolate Z63, complete	42.8	0.060
KC470214.1	Human papillomavirus ty	pe 18 isolate Z52, complete	42.8	0.060
KC662605.1	Human papillomavirus ty	pe 18 isolate B8890 E7 (E7)	42.8	0.060
JN416175.1	Human papillomavirus is	olate LSCG E7 (E7) gene, co	42.8	0.060
JN416174.1	Human papillomavirus is	olate LSCE E7 (E7) gene, co	42.8	0.060
JN416165.1	Human papillomavirus is	olate LSM4 E7 (E7) gene, co	42.8	0.060
JN416163.1	Human papillomavirus is	olate LSM2 E7 (E7) gene, co	42.8	0.060
EF422144.1	Human papillomavirus ty	pe 18 strain P629 E7 protei	42.8	0.060
EF202155.1	Human papillomavirus ty	pe 18 isolate Qv04924, comp	42.8	0.060
EF202154.1	Human papillomavirus ty	pe 18 isolate Qv03814, comp	42.8	0.060
EF202153.1	Human papillomavirus ty	pe 18 isolate Qv21444, comp	42.8	0.060
EF202152.1	Human papillomavirus ty	pe 18 isolate Qv17199, comp	42.8	0.060

```
AF339137.1
           Homo sapiens clone CC-2 sequence flanking Human pa...
                                                                 42.8
                                                                          0.060
           Human papillomavirus type 18 strain 18CNTZ36 E6 (E... 37.4
KY457840.1
                                                                          2.5
KY457839.1 Human papillomavirus type 18 strain 18CNTZ35 E6 (E...
                                                                  37.4
                                                                          2.5
KY457838.1 Human papillomavirus type 18 strain 18CNTZ34 E6 (E... 37.4
                                                                          2.5
KY457837.1 Human papillomavirus type 18 strain 18CNTZ33 E6 (E... 37.4
                                                                         2.5
KY457836.1 Human papillomavirus type 18 strain 18CNTZ32 E6 (E...
                                                                  37.4
                                                                          2.5
KY457835.1 Human papillomavirus type 18 strain 18CNTZ31 E6 (E...
                                                                          2.5
                                                                 37.4
KY457834.1 Human papillomavirus type 18 strain 18CNTZ30 E6 (E... 37.4
                                                                         2.5
KY457833.1 Human papillomavirus type 18 strain 18CNTZ29 E6 (E...
                                                                  37.4
                                                                          2.5
KY457832.1 Human papillomavirus type 18 strain 18CNTZ28 E6 (E... 37.4
                                                                          2.5
KY457831.1 Human papillomavirus type 18 strain 18CNTZ27 E6 (E... 37.4
                                                                         2.5
KY457830.1 Human papillomavirus type 18 strain 18CNTZ26 E6 (E...
                                                                 37.4
                                                                          2.5
KY457829.1 Human papillomavirus type 18 strain 18CNTZ25 E6 (E... 37.4
                                                                          2.5
KY457828.1 Human papillomavirus type 18 strain 18CNTZ24 E6 (E... 37.4
                                                                         2.5
KY457827.1 Human papillomavirus type 18 strain 18CNTZ23 E6 (E...
                                                                 37.4
                                                                          2.5
KY457826.1 Human papillomavirus type 18 strain 18CNTZ22 E6 (E... 37.4
                                                                          2.5
KY457825.1 Human papillomavirus type 18 strain 18CNTZ21 E6 (E... 37.4
                                                                          2.5
KY457824.1 Human papillomavirus type 18 strain 18CNTZ20 E6 (E...
                                                                 37.4
                                                                          2.5
KY457823.1 Human papillomavirus type 18 strain 18CNTZ19 E6 (E... 37.4
                                                                          2.5
KY457822.1 Human papillomavirus type 18 strain 18CNTZ18 E6 (E... 37.4
                                                                          2.5
KY457821.1 Human papillomavirus type 18 strain 18CNTZ17 E6 (E... 37.4
                                                                          2.5
KY457820.1 Human papillomavirus type 18 strain 18CNTZ16 E6 (E... 37.4
                                                                          2.5
KY457819.1 Human papillomavirus type 18 strain 18CNTZ15 E6 (E... 37.4
                                                                          2.5
```

ALIGNMENTS

>KX545354.1 Human papillomavirus type 18 isolate NGSk256-18 E6 protein (E6) gene, complete cds; and E7 protein (E7) gene, partial cds Length=579

```
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
```

>KC470230.1 Human papillomavirus type 18 isolate BF226, complete genome Length=7837

```
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
```

```
Query 1 TGTATGGACCTAAGGCAACATTG 23
```

Sbjct 591 TGTATGGACCTAAGGCAACATTG 613

>KC470229.1 Human papillomavirus type 18 isolate Qv39775, complete genome Length=7837 Score = 42.8 bits (46), Expect = 0.060 Identities = 23/23 (100%), Gaps = 0/23 (0%) Strand=Plus/Plus TGTATGGACCTAAGGCAACATTG 23 Query 1 Sbjct 591 TGTATGGACCTAAGGCAACATTG 613 >KC470228.1 Human papillomavirus type 18 isolate BF380, complete genome Length=7844 Score = 42.8 bits (46), Expect = 0.060 Identities = 23/23 (100%), Gaps = 0/23 (0%) Strand=Plus/Plus TGTATGGACCTAAGGCAACATTG 23 Query 1 Sbjct 591 TGTATGGACCTAAGGCAACATTG 613 >KC470227.1 Human papillomavirus type 18 isolate Qv12693, complete genome Length=7844 Score = 42.8 bits (46), Expect = 0.060 Identities = 23/23 (100%), Gaps = 0/23 (0%) Strand=Plus/Plus TGTATGGACCTAAGGCAACATTG 23 Query 1 Sbjct 591 TGTATGGACCTAAGGCAACATTG 613 >KC470226.1 Human papillomavirus type 18 isolate Z125, complete genome Length=7844 Score = 42.8 bits (46), Expect = 0.060 Identities = 23/23 (100%), Gaps = 0/23 (0%)

Query 1 TGTATGGACCTAAGGCAACATTG 23

Strand=Plus/Plus

```
BLAST INFORMATION
```

```
Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470225.1 Human papillomavirus type 18 isolate BF172, complete genome
Length=7824
Score = 42.8 \text{ bits } (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470224.1 Human papillomavirus type 18 isolate BF288, complete genome
Length=7824
Score = 42.8 \text{ bits } (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470223.1 Human papillomavirus type 18 isolate BF309, complete genome
Length=7824
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470222.1 Human papillomavirus type 18 isolate Z100, complete genome
Length=7824
```

Score = 42.8 bits (46), Expect = 0.060Identities = 23/23 (100%), Gaps = 0/23 (0%)

Strand=Plus/Plus

```
TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470221.1 Human papillomavirus type 18 isolate Qv28775, complete genome
Length=7824
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470219.1 Human papillomavirus type 18 isolate Rw57, complete genome
KC470220.1 Human papillomavirus type 18 isolate Rw830, complete genome
Length=7824
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470218.1 Human papillomavirus type 18 isolate Rw687, complete genome
Length=7824
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470217.1 Human papillomavirus type 18 isolate Rw750, complete genome
Length=7824
```

Score = 42.8 bits (46), Expect = 0.060 Identities = 23/23 (100%), Gaps = 0/23 (0%)

Strand=Plus/Plus

```
Query 1
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470216.1 Human papillomavirus type 18 isolate Z53, complete genome
Length=7824
Score = 42.8 \text{ bits } (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470215.1 Human papillomavirus type 18 isolate Z63, complete genome
Length=7824
Score = 42.8 \text{ bits } (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC470214.1 Human papillomavirus type 18 isolate Z52, complete genome
Length=7824
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>KC662605.1 Human papillomavirus type 18 isolate B8890 E7 (E7) gene, complete
cds
Length=422
```

```
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
Query 1
          TGTATGGACCTAAGGCAACATTG 24
Sbjct 2
>JN416175.1 Human papillomavirus isolate LSCG E7 (E7) gene, complete cds
Length=318
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
          TGTATGGACCTAAGGCAACATTG 23
          TGTATGGACCTAAGGCAACATTG 24
Sbjct 2
>JN416174.1 Human papillomavirus isolate LSCE E7 (E7) gene, complete cds
Length=318
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
          TGTATGGACCTAAGGCAACATTG 23
          TGTATGGACCTAAGGCAACATTG 24
Sbjct 2
>JN416165.1 Human papillomavirus isolate LSM4 E7 (E7) gene, complete cds
JN416169.1 Human papillomavirus isolate LSC9 E7 (E7) gene, complete cds
JN416172.1 Human papillomavirus isolate LSCC E7 (E7) gene, complete cds
JN416177.1 Human papillomavirus isolate LSCI E7 (E7) gene, complete cds
JN416189.1 Human papillomavirus isolate LSCY E7 (E7) gene, complete cds
JN416201.1 Human papillomavirus isolate LSML1 E7 (E7) gene, complete cds
KC456641.1 Human papillomavirus type 18 strain 18-558 E7 protein (E7) gene,
complete cds
Length=318
Score = 42.8 bits (46), Expect = 0.060
```

Identities = 23/23 (100%), Gaps = 0/23 (0%)

Strand=Plus/Plus

```
BLAST INFORMATION
          TGTATGGACCTAAGGCAACATTG 23
Query 1
          TGTATGGACCTAAGGCAACATTG 24
Sbjct 2
>JN416163.1 Human papillomavirus isolate LSM2 E7 (E7) gene, complete cds
Length=318
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
Query 1
          Sbjct 2
          TGTATGGACCTAAGGCAACATTG 24
>EF422144.1 Human papillomavirus type 18 strain P629 E7 protein (E7) gene,
complete cds
JN416164.1 Human papillomavirus isolate LSM3 E7 (E7) gene, complete cds
JN416199.1 Human papillomavirus isolate LSCJ1 E7 (E7) gene, complete cds
JN416210.1 Human papillomavirus isolate LSCU1 E7 (E7) gene, complete cds
Length=318
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
          TGTATGGACCTAAGGCAACATTG 24
Sbjct 2
>EF202155.1 Human papillomavirus type 18 isolate Qv04924, complete genome
Length=7824
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
```

>EF202154.1 Human papillomavirus type 18 isolate Qv03814, complete genome Length=7824

Sbjct 591 TGTATGGACCTAAGGCAACATTG 613

```
Score = 42.8 \text{ bits } (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>EF202153.1 Human papillomavirus type 18 isolate Qv21444, complete genome
Length=7824
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>EF202152.1 Human papillomavirus type 18 isolate Qv17199, complete genome
Length=7844
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 591 TGTATGGACCTAAGGCAACATTG 613
>AF339137.1 Homo sapiens clone CC-2 sequence flanking Human papillomavirus
type 18 E6 protein (E6) gene, partial cds; and E7 protein
(E7) gene, complete cds
Length=1288
Score = 42.8 bits (46), Expect = 0.060
Identities = 23/23 (100%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 165 TGTATGGACCTAAGGCAACATTG 187
```

```
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
Query 1
          Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457839.1 Human papillomavirus type 18 strain 18CNTZ35 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
Query 1
          Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457838.1 Human papillomavirus type 18 strain 18CNTZ34 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
          Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457837.1 Human papillomavirus type 18 strain 18CNTZ33 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
```

>KY457840.1 Human papillomavirus type 18 strain 18CNTZ36 E6 (E6), E7 (E7),

```
TGTATGGACCTAAGGCAACATTG 23
Query 1
          Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457836.1 Human papillomavirus type 18 strain 18CNTZ32 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457835.1 Human papillomavirus type 18 strain 18CNTZ31 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbict 479 TGCATGGACCTAAGGCAACATTG 501
>KY457834.1 Human papillomavirus type 18 strain 18CNTZ30 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
         Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457833.1 Human papillomavirus type 18 strain 18CNTZ29 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
```

```
Length=2502
```

```
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
Query 1
         Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457832.1 Human papillomavirus type 18 strain 18CNTZ28 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
          TGTATGGACCTAAGGCAACATTG 23
         Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457831.1 Human papillomavirus type 18 strain 18CNTZ27 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457830.1 Human papillomavirus type 18 strain 18CNTZ26 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
          TGTATGGACCTAAGGCAACATTG 23
```

and L1 (L1) genes, complete cds

Score = 37.4 bits (40), Expect = 2.5

Length=2502

```
Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457829.1 Human papillomavirus type 18 strain 18CNTZ25 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
         TGTATGGACCTAAGGCAACATTG 23
Query 1
          Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457828.1 Human papillomavirus type 18 strain 18CNTZ24 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
         TGTATGGACCTAAGGCAACATTG 23
         Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457827.1 Human papillomavirus type 18 strain 18CNTZ23 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
          TGTATGGACCTAAGGCAACATTG 23
          Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457826.1 Human papillomavirus type 18 strain 18CNTZ22 E6 (E6), E7 (E7),
```

```
BLAST INFORMATION
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
          TGTATGGACCTAAGGCAACATTG 23
         Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457825.1 Human papillomavirus type 18 strain 18CNTZ21 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
          TGTATGGACCTAAGGCAACATTG 23
          Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457824.1 Human papillomavirus type 18 strain 18CNTZ20 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Ouerv 1
         TGTATGGACCTAAGGCAACATTG 23
          Sbjct 479 TGCATGGACCTAAGGCAACATTG 501
>KY457823.1 Human papillomavirus type 18 strain 18CNTZ19 E6 (E6), E7 (E7),
and L1 (L1) genes, complete cds
Length=2502
Score = 37.4 bits (40), Expect = 2.5
Identities = 22/23 (96%), Gaps = 0/23 (0%)
Strand=Plus/Plus
Query 1
          TGTATGGACCTAAGGCAACATTG 23
```

BLAST INFORMATION >KY457822.1 Human papillomavirus type 18 strain 18CNTZ18 E6 (E6), E7 (E7), and L1 (L1) genes, complete cds Length=2502 Score = 37.4 bits (40), Expect = 2.5Identities = 22/23 (96%), Gaps = 0/23 (0%) Strand=Plus/Plus TGTATGGACCTAAGGCAACATTG 23 Query 1 Sbjct 479 TGCATGGACCTAAGGCAACATTG 501 >KY457821.1 Human papillomavirus type 18 strain 18CNTZ17 E6 (E6), E7 (E7), and L1 (L1) genes, complete cds Length=2502 Score = 37.4 bits (40), Expect = 2.5Identities = 22/23 (96%), Gaps = 0/23 (0%) Strand=Plus/Plus TGTATGGACCTAAGGCAACATTG 23 Query 1 Sbjct 479 TGCATGGACCTAAGGCAACATTG 501 >KY457820.1 Human papillomavirus type 18 strain 18CNTZ16 E6 (E6), E7 (E7), and L1 (L1) genes, complete cds Length=2502 Score = 37.4 bits (40), Expect = 2.5Identities = 22/23 (96%), Gaps = 0/23 (0%) Strand=Plus/Plus TGTATGGACCTAAGGCAACATTG 23 Query 1 Sbjct 479 TGCATGGACCTAAGGCAACATTG 501

>KY457819.1 Human papillomavirus type 18 strain 18CNTZ15 E6 (E6), E7 (E7),

and L1 (L1) genes, complete cds

Score = 37.4 bits (40), Expect = 2.5

Identities = 22/23 (96%), Gaps = 0/23 (0%)

Length=2502

Strand=Plus/Plus

Query 1 TGTATGGACCTAAGGCAACATTG 23

Sbjct 479 TGCATGGACCTAAGGCAACATTG 501

Database: Nucleotide collection (nt)
Posted date: Jul 10, 2017 6:27 PM

Number of letters in database: 150,108,365,041 Number of sequences in database: 43,336,626

Lambda K H 0.634 0.408 0.912

Gapped

Lambda K H
0.625 0.410 0.780
Matrix: blastn matrix:2 -3

Gap Penalties: Existence: 5, Extension: 2

Number of Sequences: 43336626 Number of Hits to DB: 670218 Number of extensions: 189

Number of successful extensions: 189 Number of sequences better than 10: 0

Number of HSP's better than 10 without gapping: 0

Number of HSP's gapped: 189

Number of HSP's successfully gapped: 0

Length of query: 23

Length of database: 150108365041

Length adjustment: 20

Effective length of query: 3

Effective length of database: 149241632521

Effective search space: 447724897563

Effective search space used: 447724897563

A: 0

X1: 22 (20.1 bits) X2: 33 (29.8 bits) X3: 110 (99.2 bits) S1: 28 (26.5 bits) S2: 38 (35.6 bits)