

Краткие сведения

Сингулярное разложение (SVD)

Неотрицательное вещественное число σ называется *сингулярным числом* матрицы A, когда существуют два вектора единичной длины $u \in \mathbb{R}^m$ и $v \in \mathbb{R}^n$ такие, что:

$$Av = \sigma u$$
, и $A^*u = \sigma v$

Векторы u и v называются, соответственно, *левым сингулярным вектором* и *правым сингулярным вектором*, соответствующим сингулярному числу σ .

Сингулярное разложение (Singular Value Decomposition - SVD) матрицы A размера $m \times n$ – разложение вида:

$$A = U\Sigma V^T$$
,

где $\Sigma = \mathrm{diag}(\sigma_1, ..., \sigma_p, 0, ..., 0) \in \mathbb{R}^{m \times n}$, где $\sigma_1 \geq \sigma_2 \geq ... \geq \sigma_n \geq 0$. $U \in \mathbb{R}^{m \times m}$, $V \in \mathbb{R}^{n \times n}$; U, V — матрицы, чьи столбцы представляют собой векторы, образующие ортонормированные базисы в пространствах \mathbb{R}^m и \mathbb{R}^n соответственно.

Собственные числа и собственные векторы

Пусть V — векторное пространство над полем F, а A — линейный оператор в пространстве V. Вектор $x \in V$ называется **собственным вектором** оператора A, если $x \neq 0$ и существует скаляр $t \in F$ такой, что

$$A(x) = tx$$

Скаляр $t \in F$ называется собственным значением.

Связь сингулярных чисел и собственных векторов

- 1. Столбцы матрицы V являются собственными векторами матрицы AA^{T} .
- 2. Столбцы матрицы U являются собственными векторами матрицы $A^T A$.
- 3. Сингулярные числа являются квадратными корнями из собственных значений матриц AA^T и A^TA .

Косвенный метод

Предполагается, что A является матрицей размера $m \times n$.

Когда m < n, можно получить собственные значения и векторы AA^T , после чего оротогонализировать собственные векторы, чтобы сформировать V. Далее U находится через формулу $U_i = Av_i/\sigma_i$, где σ_i – сингулярные значения матрицы A, которые в то же время являются квадратными корнями собственных значений AA^T .

Когда m > n, столбцы матрицы U заполняются единицами, а затем ортогонализируются с использованием алгоритма Грама-Шмидта.

На вход алгоритма поступает матрица A размера $m \times n$.

На выходе ожидаются матрица D размером $m \times n$ с сингулярными значениями, а также ортогональные матрицы U размера $m \times m$ с левыми сингулярными векторами и V размера $n \times n$ с правыми сингулярными векторами.

Опишем пошагово алгоритм:

1. Определяем размер матрицы A, где m – количество строк, а n – количество столбцов, и инициализируем переменную sinflag = 0.

2. Если m > n

- Вычисляем собственные значения и векторы A^TA и заносим значения в матрицы D и U соответственно.
- Производим ортогонализацию матрицы U с использованием алгоритм Грамма-Шмидта, чтобы получить ортонормированный набор векторов.
- Меняем порядок столбцов матрицы U на обратный.
- Инициализируем матрицу D1 размером $n \times (m-n)$ и заполняем ее нулями.
- Извлекаем диагональные элементы матрицы D и возводим их в степень $\frac{1}{2}$.
- Размещаем полученные квадратные корни собственных значений на диагонали матрицы *D*1 в соответствующие места.
- Присваиваем матрице D, полученную ранее матрицу D1, теперь D будет содержать диагональ с сингулярным числами.
- Запускаем цикл по каждому сингулярному числу и соответствующему собственному вектору. Для i от 1 до n:

- а. Если сингулярное значение не равно 0, вычисляем соответствующий столбец матрицы V как $(A^T * U[:,i])/D[i,i]$
- b. Если сингулярное число равно нулю, то sinflag = 1 и столбец матрицы V устанавливается равным вектору, содержащему единицы.
- Ортогонализируем матрицу V.
- Если signflag = 1, повторяем ортогонализацию для V.
- Транспортируем матрицу D для окончательного вида диагональной матрицы сингулярных чисел.
- Возвращаем матрицы U, D, V

$3. Если <math>m \leq n$

- Вычисляем собственные значения и векторы A^TA и заносим значения в матрицы D и V соответственно.
- Производим ортогонализацию матрицы V с использованием алгоритма Грамма-Шмидта, чтобы получить ортонормированный набор векторов.
- Меняем порядок столбцов матрицы *V* на обратный.
- Инициализируем матрицу D1 размером $m \times n$ и заполняем ее нулями.
- Извлекаем квадратные корни собственных значений, записываем их в вектор dd и затем переворачиваем этот вектор справа налево.
- Размещаем вектор dd на главную диагональ матрицы D1. D1 теперь представляет собой диагональную матрицу с этими значениями.
- Запускаем цикл по каждому сингулярному числу и соответствующему собственному вектору. Для i от 1 до n:
 - а. Если сингулярное значение не равно 0, вычисляем соответствующий столбец матрицы U как (A * V[:,i]) / D[i,i]
 - b. Если сингулярное число равно нулю, то sinflag = 1 и столбец матрицы U устанавливается равным вектору, содержащему единицы.
- Ортогонализируем матрицу U.
- Если signflag = I, повторяем ортогонализацию для U.
- Транспортируем матрицу D для окончательного вида диагональной матрицы сингулярных чисел.
- Возвращаем матрицы U, D, V

Список литературы

- 1. Wen Zhang, Anastasios Arvanitis and Asif Al-Rasheed. Singular Value Decomposition and its numerical computations, 2011.
- 2. P. Deift, J. Demmel, C. Li and C. Tomei. The bidiagonal singular value decomposition and Hamiltonian mechanics, 1991.
 - 3. M. Gu, S. Eisenstat. A divide-and-conquer algorithm for the bidiagonal SVD, 1995.