- *35. Si $p_1, p_2, ..., p_m$ genera \mathbb{P}_m , demuestre que $m \ge n + 1$.
- 36. Demuestre que si \mathbf{u} y \mathbf{v} están en gen $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$, entonces $\mathbf{u} + \mathbf{v}$ y $\alpha \mathbf{u}$ están en gen $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k\}$. [Sugerencia: Utilizando la definición de espacio generado, escriba $\mathbf{u} + \mathbf{v}$ y $\alpha \mathbf{u}$ como combinaciones lineales de $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_k$.]
- 37. Demuestre que el conjunto infinito $\{1, x, x^2, x^3, ...\}$ genera P, el espacio vectorial de polinomios
- 38. Sea H un subespacio de V que contiene a $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$. Demuestre que gen $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\} \subseteq H$. Es decir, gen $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ es el subespacio m as pequen0 de V que contiene a $\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n$.
- **39.** Sean $\mathbf{v}_1 = (x_1, y_1, z_1)$ y $\mathbf{v}_2 = (x_2, y_2, z_2)$ en \mathbb{R}^3 . Demuestre que si $\mathbf{v}_2 = c\mathbf{v}_1$, entonces gen $\{\mathbf{v}_1, \mathbf{v}_2\}$ es una recta que pasa por el origen.
- **40. En el problema 39 suponga que \mathbf{v}_1 y \mathbf{v}_2 no son paralelos. Demuestre que $H = \text{gen } \{\mathbf{v}_1, \mathbf{v}_2\}$ es un plano que pasa por el origen. ¿Cuál es la ecuación del plano? [Sugerencia: Si $(x, y, z) \in H$, escriba $\mathbf{v} = a_1\mathbf{v}_1 + a_2\mathbf{v}_2$ y encuentre una condición respecto a x, y y z tal que el sistema de 3×2 resultante tenga una solución.]
 - **41.** Pruebe el teorema 5.3.2. [*Sugerencia*: Si $\mathbf{v} \in V$, escriba \mathbf{v} como una combinación lineal de \mathbf{v}_1 , \mathbf{v}_2 , ..., \mathbf{v}_n , \mathbf{v}_{n+1} con el coeficiente de \mathbf{v}_{n+1} igual a cero.]
 - **42.** Demuestre que M_{22} se puede generar con matrices invertibles.
 - 43. Sean $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\}$ y $\{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}$ dos *n*-vectores en un espacio vectorial V. Suponga que

$$\begin{aligned} \mathbf{v}_1 &= a_{11} \mathbf{u}_1 + a_{12} \mathbf{u}_2 + \dots + a_{1n} \mathbf{u}_n \\ \mathbf{v}_2 &= a_{21} \mathbf{u}_1 + a_{22} \mathbf{u}_2 + \dots + a_{2n} \mathbf{u}_n \\ \vdots &\vdots &\vdots \\ \mathbf{v}_n &= a_{n1} \mathbf{u}_1 + a_{n2} \mathbf{u}_2 + \dots + a_{nn} \mathbf{u}_n \end{aligned}$$

Demuestre que si

$$\begin{vmatrix} a_{11} & a_{12} & \cdots & a_{1n} \\ a_{21} & a_{22} & \cdots & a_{2n} \\ \vdots & \vdots & & \vdots \\ a_{n1} & a_{n2} & \cdots & a_{nn} \end{vmatrix} \neq 0$$

Entonces gen $\{\mathbf{u}_1, \mathbf{u}_2, ..., \mathbf{u}_n\} = \text{gen } \{\mathbf{v}_1, \mathbf{v}_2, ..., \mathbf{v}_n\}.$

EJERCICIOS CON MATLAB 5.3

- М
- 1. Visualización de las combinaciones lineales
 - a) Vuelva a trabajar con los problemas 2 y 3 de MATLAB 4.1.
 - b) (*Use el archivo combo.m*) El archivo *combo.m* ilustra la combinación lineal a * u1 + b * u2 + c * u3. A continuación se presenta el código de la función combo.m: