Álgebra Clase 8

Tomás Ricardo Basile Álvarez 316617194

7 de octubre de 2020

Ejercicio 8.18

a) Sea $H \leq G$, y $x_1, ..., x_n \in H$. Prueba por inducción sobre n que $x_1 \cdot x_2 \cdot ... \cdot x_n \in H$

Para n=1 tenemos directamente que $x_1 \in H$ Suponemos que el teorema es válido para $n=k \in \mathbb{N}$. Es decir, $x_1 \cdot x_2 \cdots x_k \in H$.

Ahora lo probamos para n = k + 1. Hay que probar que $x_1 \cdot x_2 \cdots x_k \cdot x_{k+1} \in H$. Para esto observamos que por la hipótesis de inducción, $x_1 \cdots x_k \in H$. Además, tenemos directamente que $x_{k+1} \in H$.

Luego, como estos son dos elementos de H y H es un grupo (que por tanto, es cerrado bajo productos), concluimos que $(x_1 \cdots x_k) \cdot x_{k+1} \in H$.

Podemos omitir los paréntesis porque el producto es asociativo. $x_1 \cdots x_k \cdot x_{k+1} \in H$. Y queda probada la inducción.

b) Si H es un grupo no cíclico, entonces existen $a, b \in H$ tales que $a \notin \langle b \rangle$.

Probamos la contrapuesta. Suponemos que no existe $a \in H$ tal que $a \notin \langle b \rangle$. Es decir, todo $a \in H$ cumple que $a \in \langle b \rangle$.

El enunciado de arriba dice que todo elemento de H es elemento de $\langle b \rangle$, o lo que es lo mismo, $H \subset \langle b \rangle$.

La contención opuesta $\langle b \rangle \subset H$ es evidente. Ya que $b \in H$ y por tanto $b^{-1} \in H$. Además, $\langle b \rangle$ es el conjunto de todas las palabras de $\{b\}$, que están formadas por los productos de puras b y b^{-1} . Usando el resultado a), todos estos productos pertenecen a H.

Entonces, se concluye que $H=\langle b\rangle$ y por tanto H es cíclico.

Con lo que se demuestra la contrapuesta.

c) Si $H \leq G$, entonces $\langle H \rangle = H$.

Por definición, $\langle H \rangle = \bigcap_{K \in F} K$ donde $F = \{K \leq G | H \subset K\}$.

Y como vimos en las notas esto implica que $\langle H \rangle$ es el subgrupo más pequeño que contiene a H.

Sin embargo, el propio H es un subgrupo y claramente contiene a H. Además, no puede haber otro conjunto más pequeño que H que también contenga a H. Por tanto, $\langle H \rangle = H$

d) Prueba que si $A \subset B \subset G$ donde G es grupo, $\langle A \rangle \leq \langle b \rangle$. Muestra un ejemplo donde $A \subseteq B$ pero $\langle A \rangle = \langle B \rangle$.

Como vimos en las notas, $\langle A \rangle$ es el conjunto de todas las palabras en A y $\langle B \rangle$ es el conjunto de todas las palabras en B. Pero como $A \subset B$, toda palabra de A es una palabra de B (porque los elementos que forman la palabra de A están en A y por tanto, están en B).

Luego, $\langle A \rangle \subset \langle B \rangle$

Para el ejemplo mencionado, usamos $G=(\mathbb{Z},+)$ y sea $A=\{2\}$, $B=\{2,4\}$

Entonces, $\langle A \rangle$ es el conjunto de todas las palabras formadas por 2 y -2, que nos dará todos los múltiplos de 2.

Por otro lado, $\langle B \rangle$ son todas las palabras en B, que se consiguen haciendo sumas de 2, -2, 4, -4. Es fácil ver que esto nos dará nuevamente a todos los múltiplos de 2. Por lo tanto, $\langle A \rangle = \langle B \rangle$.

g) Encuentra todos los subgrupos de Q_8 .

Primero recordamos todas las relaciones que se probaron en las notas y que usaremos: $I^2=-E$, $J^2=-E$, $K^2=-E$, IJ=K , JK=I , KI=J , JI=-K , KJ=-I , IK=-J.

Primero encontramos los grupos generados por un solo elemento:

- $\langle E \rangle = \{E\}$
- $\langle -E \rangle = \{-E, (-E)^2, (-E)^3, ...\} = \{-E, E\}$
- $\langle I \rangle = \{I, I^2, I^3, I^4, ...\} = \{I, -E, -E(I), (-E)(-E), ...\} = \{I, -E, -I, E\}$
- $\langle -I \rangle = \{-I, (-I)^2, (-I)^3, (-I)^4, ...\} = \{-I, -E, -E(-I), (-E)(-E), ...\} = \{-I, -E, I, E\}$
- $\bullet \ \langle J \rangle = \{J, (J)^2, (J)^3, (J)^4, \ldots\} = \{J, -E, -E(J), (-E)(-E), \ldots\} = \{J, -E, -J, E\}$
- $\langle -J \rangle = \{-J, (-J)^2, (-J)^3, (-J)^4, ...\} = \{-J, -E, -E(-J), (-E)(-E), ...\} = \{-J, -E, J, E\}$
- $\bullet \ \, \langle K \rangle = \{K, (K)^2, (K)^3, (K)^4, \ldots\} = \{K, -E, -E(K), (-E)(-E), \ldots\} = \{K, -E, -K, E\}$
- $\langle -K \rangle = \{-K, (-K)^2, (-K)^3, (-K)^4, ...\} = \{-K, -E, -E(-K), (-K)(-K), ...\} = \{-K, -E, K, E\}$

Entonces, omitiendo los repetidos y agregando el grupo completo Q_8 , hasta ahora los grupos son:

- {*E*}
- $\{E, -E\}$
- $\{E, -E, I, -I\}$
- $\{E, -E, J, -J\}$
- $\{E, -E, K, -K\}$
- $Q_8 = \{E, -E, I, -I, J, -J, K, -K\}$

Además, podemos ver que en realidad estos son todos los subgrupos de Q_8 .

Para esto, consideremos un conjunto $S \subset Q_8$ que usaremos de generador que tenga por lo menos 2 elementos (los de un elemento ya los consideramos) y veamos que cualquiera que sea el conjunto, su generado ya está en la lista. Tenemos las siguientes opciones para S:

- S contiene solamente a E y a -E: Entonces el generado será $\{E, -E\}$
- $S \subset \{E, -E, I, -I\}$ pero $S \neq \{E, -E\}$: Entonces, el generado será claramente $\{E, -E, I, -I\}$.
- $S \subset \{E, -E, J, -J\}$ pero $S \neq \{E, -E\}$: Entonces, el generado será claramente $\{E, -E, J, -J\}$.
- $S \subset \{E, -E, K, -K\}$ pero $S \neq \{E, -E\}$: Entonces, el generado será claramente $\{E, -E, K, -K\}$.

Fuera de esto, el único caso que queda es que S contenga a dos letras diferentes de entre $\{\pm I, \pm J, \pm K\}$.

Pero con sólamente contener a dos letras distintas, el generado será todo Q_8 . Por ejemplo, si S contiene a I, J, entonces K = IJ y -K = JI son elementos del generado y ya el generado contiene a todo Q_8 .

Similarmente se puede ver que con cualesquiera dos letras distintas $\{I, J, K\}$ en un conjunto S, el generado será todo Q_8 . Ya que con el producto entre dos de estas letras distintas, se obtiene la otra.