## Methods and applications of Bayesian spatio-temporal statistics for prioritised HIV prevention

## Imperial College London

Adam Howes

Imperial College London

A thesis submitted for the degree of  $Doctor\ of\ Philosophy$ 

2023



## Acknowledgements

Thanks to Jeff Eaton and Seth Flaxman for supervision of this research; staff and students of the StatML CDT at Imperial and Oxford; members of the HIV inference group at Imperial; Mike McLaren, Kevin Esvelt, the Nucleic Acid Observatory team, and the Sculpting Evolution lab for hosting my visit to MIT; Alex Stringer for hosting my visit to Waterloo; the Effective Altruism community; the Bill & Melinda Gates Foundation and EPSRC for funding this PhD; my friends and family for their support.

Adam Howes Imperial College London 2023

### Abstract

HIV remains a large problem. Disease burden is unevenly distributed. Effective public health response and prioritised prevention requires accurate, timely, high-resolution estimates of epidemic and demographic indicators. Thoughtful statistical modelling is required to overcome significant data challenges. In this thesis, I develop and apply Bayesian spatio-temporal methods for HIV surveillance.

## Contents

| L1                | st or                                                          | Figures                                        | VI  |
|-------------------|----------------------------------------------------------------|------------------------------------------------|-----|
| Li                | st of                                                          | Tables                                         | vii |
| Li                | List of Abbreviations                                          |                                                |     |
| List of Notations |                                                                |                                                | ix  |
| 1                 | Bac                                                            | kground                                        | 1   |
|                   | 1.1                                                            | Disease surveillance and small-area estimation | 1   |
|                   | 1.2                                                            | HIV/AIDS                                       | 1   |
|                   | 1.3                                                            | Bayesian spatio-temporal statistics            | 3   |
| 2                 | Uno                                                            | derstanding models for spatial structure       | 5   |
| 3                 | A multinomial spatio-temporal model for risk group proportions |                                                | 6   |
|                   | 3.1                                                            | Background                                     | 6   |
|                   | 3.2                                                            | Data                                           | 6   |
|                   | 3.3                                                            | Statistical model                              | 6   |
|                   | 3.4                                                            | Results                                        | 6   |
|                   | 3.5                                                            | Conclusions                                    | 6   |
| 4                 | Fas                                                            | t, approximate inference for the Naomi model   | 7   |
| 5                 | Fut                                                            | ure work and conclusions                       | 8   |
|                   | 5.1                                                            | Future work                                    | 8   |
|                   | 5.2                                                            | Conclusions                                    | 8   |
| Aı                | ppen                                                           | dices                                          |     |
| A                 | The                                                            | e First Appendix                               | 12  |
| <b>\ \ \ /</b>    | orks                                                           | Cited                                          | 12  |

## List of Figures

## List of Tables

### List of Abbreviations

 ${\bf HIV}$  . . . . . . Human Immunodeficiency Virus.

**AIDS** . . . . . Acquired Immune Deficiency Syndrome.

**PEPFAR** . . . President's Emergency Plan for AIDS Relief.

 ${\bf HIV}$  . . . . . . Demographic and Health Surveys.

**AIS** . . . . . . AIDS Indicator Survey.

MCMC . . . . Markov Chain Monte Carlo.

**INLA** . . . . . Integrated Nested Laplace Approximation.

**GP** . . . . . . . Gaussian Process.

**CAR** . . . . . . Conditionally Auto-regressive.

ANC . . . . . Antenatal Clinic.

**ART** . . . . . Antiretroviral Therapy.

**UNAIDS** . . . United Nations Joint Programme on HIV/AIDS.

**CDC** . . . . . . Centers for Disease Control and Prevention.

**UAT** . . . . . Unlinked Anonymous Testing.

**PMTCT** . . . Prevention of Mother-to-Child Transmission.

**PLHIV** . . . . People Living with HIV.

**MPES** . . . . . Multi-parameter Evidence Synthesis.

VI . . . . . . Variational Inference.

**SAE** . . . . . Small Area Estimation.

GMRF . . . . Gaussian Markov Random Field.

**HMC** . . . . . Hamiltonian Monte Carlo.

## List of Notations

## 1 Background

## 1.1 Disease surveillance and small-area estimation

- Disease surveillance is a central application of statistics
- Small-area estimation in health, epidemiology and environment
- The Small-Area Health Statistics Unit at Imperial was set-up to monitor health around point sources of environmental pollution in response to the Sellafield enquiry into the increased incidence of childhood leukemia leukaemia near a nuclear reprocessing plant (Elliott et al. 1992). This research has a focus on ratios of observed events to expected events, and testing hypothesis about hot-spots.

### 1.2 HIV/AIDS

- HIV/AIDS has a large disease burden
- The disease burden is unevenly distributed in space and across communities and individuals
- Surveillance techniques and statistical models have been used to respond to the epidemic

#### Background

- Key HIV indicators are HIV prevalence, HIV incidence, ART coverage and coverage of other interventions such as PrEP, PEP
- Data difficulties including sparsity in space and time, survey bias, conflicting information sources, hard to reach populations, demography
- Aims for HIV response going forward, and surveillance capabilities are needed to meet them
- Phasing out of nationally-representative household surveys for HIV
  - Bayesian survey design
- Importance of relying on multiple sources of information Creates requirement for for complex models e.g. evidence synthesis, Naomi, multivariate models
- Why isn't case-based surveillance included yet?
  - There aren't individual linked databases and patient records have to be consolidated
  - Passive case-based surveillance
  - Post-hoc matching and create a case-based surveillance record
- Drivers of transmission
- Possible interventions are ART, condoms, PrEP and PEP, education, economic empowerment, VMMC
- Geographic priorisation versus demographic priorisation: hotspots, key populations, screening and individual level risk characteristics
- Adolescent girls and young women identified as a key demographic, stratification by sexual risk
- Interventions more likely to be demographic specific rather than geographic specific so if majority of difference in effectiveness depends on intervention type then demographic targeting may be more priority
- The population strategy of Geoffrey Rose

#### 1.3 Bayesian spatio-temporal statistics

- The practice of doing Bayesian statistics primarily concerns construction of a generative model for the data we observe
- In spatio-temporal statistics, the data is indexed by spatial and or temporal location
- The independent and identically distributed (IID) assumptions commonly used for observations are rarely suitable in the spatio-temporal setting
- We expect there to be spatio-temporal structure
- Given a generative model, computation of the posterior distribution proceeds using approximate Bayesian inference methods
- Markov chain Monte Carlo (MCMC) is the most popular approach and works by simulating samples from a Markov chain which by construction has stationary distribution equal to the distribution of interest
- Variational Bayes approaches assume the posterior distribution belongs to some class and use optimisation to choose the best member of that class
- Laplace approximation and integrated nested Laplace approximation
- Empirical Bayes
- Definition of a latent Gaussian model (Rue et al. 2009)

(Observations) 
$$y_i \sim p(y_i \mid x_i, \boldsymbol{\theta}), \quad i = 1, \dots, n,$$
 (1.1)

(Latent field) 
$$\mathbf{x} \sim \mathcal{N}(\mathbf{x} \mid \mathbf{0}, \mathbf{Q}(\boldsymbol{\theta})^{-1}),$$
 (1.2)

(Parameters) 
$$\theta \sim p(\theta),$$
 (1.3)

- Common examples
- Examples of models used in HIV inference which are close to being latent Gaussian models, but aren't, and hence can't be fit using INLA
  - Disaggregation models
  - Evidence synthesis models like Naomi (Eaton, Dwyer-Lindgren, et al. 2021; Eaton, Bajaj, et al. 2019)

#### Background

- Compartmental models
- ART attendance models
- Multinomial models like for district-level risk factors
  - \* Multinomial logistic regression
- Other complex models from ecology that can't currently be fit using INLA
- Definition of extended latent Gaussian models (Stringer et al. 2021)
  - Many-to-one is not an issue for R-INLA, the latent field is implemented as a concatenation of many vectors already. For example, for  $\eta_i = \beta_0 + \phi_i$  with i = 1, ..., n the latent field is  $(\eta_1, ..., \eta_n, \beta_0, \phi_1, ..., \phi_n)^{\top}$  of dimension 2n + 1
  - For additive models, the only non-linearity is in the link function
- Particular properties of spatio-temporal models (and LGMs) which make INLA, if feasible, often the best option
- The increasing popularity of empirical Bayes approaches, like Template Model Builder (Osgood-Zimmerman and Wakefield 2021)
- Adaptive Gauss Hermite quadrature (AGHQ), like the central composite design (CCD) and grid strategies, is one way to choose the hyper-parameter integration points in the integrated nested Laplace approximation (INLA)
- Finn Lindgren is working on a method for non-linear predictors, called the iterative INLA method
  - More slides here
- Thesis work of Follestad that stayed as a preprint
- How does the ecological fallacy relate to aggregated output models

## Understanding models for spatial structure

Code for the analysis in this chapter is available from athowes/areal-comparison and supported by the R package arealutils. Include an edited version of the corresponding paper here.

## A multinomial spatio-temporal model for risk group proportions

In this chapter I describe an application of Bayesian spatio-temporal statistics to small-area estimation of HIV risk group proportions. This project was initially worked on by Kathryn Risher, who continues to lead dissemination of the results as a tool to be used by countries, as well as model development and data extensions, and is described in Howes, Risher, et al. (2022), which I draw from here. Code for the analysis in this chapter is available from athowes/multi-agyw and supported by the R package multi.utils.

- 3.1 Background
- 3.2 Data
- 3.3 Statistical model
- 3.4 Results
- 3.5 Conclusions

## Fast, approximate inference for the Naomi model

Code for the analysis in this chapter is available from athowes/elgm-inf and supported by the R package inf.utils. Include an edited version of the corresponding paper here.

### Future work and conclusions

#### 5.1 Future work

Avenues for future work include:

- 1. Extending the risk group model described in Chapter 3 to include all adults 15-49. This may involve modelling of age-stratified sexual partnerships (Wolock et al. 2021). Such a model would likely fall out of the scope of R-INLA, but may be possible using aghq with Laplace marginals as described in Chapter 4.
- 2. Evaluating the accuracy of aghq with Laplace marginals for a greater variety of extended latent Gaussian models.

#### 5.2 Conclusions

The spatial structure chapter is interesting because:

 I designed experiments to thoroughly compare models for spatial structure using tools for model assessment such as proper scoring rules and posterior predictive checks.

The risk group chapter is interesting because:

#### Conclusions

- I estimated HIV risk group proportions for AGYW, enabling countries to prioritise their delivery of HIV prevention services.
- I analysed the number of new infections that might be reached under a variety of risk stratification strategies.
- I used R-INLA to specify multinomial spatio-temporal models via the Poisson-multinomial transformation. This includes complex two- and three-way Kronecker product interactions defined using the group and replicate options.

The fast, approximate inference chapter is interesting because:

- I developed a novel Bayesian inference method, motivated by a challenging and practically important problem in HIV inference.
- The method enables integrated nested Laplace approximations to be fit to and studied on a wider class of models than was previously possible.
- My implementation of the method was straightforward, building on the TMB and aghq packages, and described completely and accessibly in Howes, Stringer, et al. (2023).

#### My final conclusions are:

- Modelling complex data, more often than not, pushes the boundaries of the statistical toolkit available
- One challenge I encountered was that of trying to implementing identical models across multiple frameworks with the aim of studying the inference method. Or, of a similarly fraught nature, comparing different models implemented in different frameworks with the aim of studying model differences. The frequently asked questions section of the R-INLA website (Rue 2023) notes that, "the devil is in the details". I have resolved this challenge by using a given TMB model template to fit models using multiple inference methodologies: empirical Bayes with Gaussian marginals (Kristensen et al. 2016), AGHQ with Gaussian marginals (Stringer 2021b), AGHQ with Laplace marginals (Howes,

#### Conclusions

Stringer, et al. 2023), and HMC using NUTS (Monnahan and Kristensen 2018). The benefits of such a ecosystem of packages are noted by Stringer (2021a). I would particularly highlight the benefit of enabling analysts to easily vary their choice of inference method based on the stage of model development that they are in.

• I have aimed to write this thesis, and the work described within it, in keeping with the principles of open science. I hope that doing so allows my work to be scrutinised, and, optimistically, built upon. This would not have been possible without a range of tools from the R ecosystem such as rmarkdown and rticles, as well as those developed within the MRC Centre for Global Infectious Disease Analysis like orderly and didehpc.

Appendices

# A

The First Appendix

### Works Cited

- Eaton, Jeffrey W, Sumali Bajaj, et al. (2019). "Joint small-area estimation of HIV prevalence, ART coverage and HIV incidence". In: Working paper.
- Eaton, Jeffrey W, Laura Dwyer-Lindgren, et al. (2021). "Naomi: A New Modelling Tool for Estimating HIV Epidemic Indicators at the District Level in Sub-Saharan Africa". In.
- Elliott, Paul et al. (1992). "The Small Area Health Statistics Unit: a national facility for investigating health around point sources of environmental pollution in the United Kingdom." In: Journal of Epidemiology & Community Health 46.4, pp. 345–349.
- Howes, Adam, Kathryn A Risher, et al. (2022). "Spatio-temporal estimates of HIV risk group proportions for adolescent girls and young women across 13 priority countries in sub-Saharan Africa". In: medRxiv.
- Howes, Adam, Alex Stringer, et al. (2023). "Integrated nested Laplace approximations for extended latent Gaussian models with application to the Naomi HIV model". In: arXiv.
- Kristensen, Kasper et al. (2016). "TMB: Automatic Differentiation and Laplace Approximation". In: *Journal of Statistical Software* 70.i05.
- Monnahan, Cole C and Kasper Kristensen (2018). "No-U-turn sampling for fast Bayesian inference in ADMB and TMB: Introducing the adnuts and tmbstan R packages". In: *PloS one* 13.5, e0197954.
- Osgood-Zimmerman, Aaron and Jon Wakefield (2021). A Statistical Introduction to Template Model Builder: A Flexible Tool for Spatial Modeling. arXiv: 2103.09929 [stat.ME].
- Rue, Havard (2023). "'R-INLA' Project FAQ". Accessed 23/01/2023. URL: https://www.r-inla.org/faq.
- Rue, Håvard, Sara Martino, and Nicolas Chopin (2009). "Approximate Bayesian inference for latent Gaussian models by using integrated nested Laplace approximations". In: *Journal of the Royal Statistical Society: Series B (Statistical Methodology)* 71.2, pp. 319–392.
- Stringer, Alex (2021a). "Implementing Approximate Bayesian Inference Using Adaptive Quadrature". Statistics Graduate Student Research Day 2021, The Fields Institute for Research in Mathematical Sciences. URL:
  - http://www.fields.utoronto.ca/talks/Implementing-Approximate-Bayesian-Inference-Using-Adaptive-Quadrature.
- (2021b). "Implementing Approximate Bayesian Inference using Adaptive Quadrature: the aghq Package". In: arXiv preprint arXiv:2101.04468.
- Stringer, Alex, Patrick Brown, and Jamie Stafford (2021). "Fast, Scalable Approximations to Posterior Distributions in Extended Latent Gaussian Models". In: arXiv preprint arXiv:2103.07425.
- Wolock, Timothy M et al. (June 2021). "Evaluating distributional regression strategies for modelling self-reported sexual age-mixing". In: *eLife* 10. Ed. by Eduardo Franco,

#### Works Cited

Talía Malagón, and Adam Akullian, e68318. DOI: 10.7554/eLife.68318. URL: https://doi.org/10.7554/eLife.68318.