# RO202 - Initiation à la Recherche Opérationnelle

Zacharie Ales, Nidhal Gammoudi 2019 - 2020

**EXERCICES 2 - Flots** 

## Exercise 1 Ford-Fulkerson

On donne le graphe avec capacités suivant :



On utilisera les graphes dessinés au dos de la feuille pour traiter cet exercice.

- 1. Trouver un flot complet (en prenant obligatoirement les sommets selon l'ordre alphabétique).
- 2. Donner une borne supérieure de la valeur d'une coupe minimale (considérer les arcs incidents à s puis à t).
- 3. Appliquer l'algorithme de Ford-Fulkerson pour trouver un flot maximal (en marquant obligatoirement les sommets selon l'ordre alphabétique) et en déduire la coupe minimale.
- 4. On a la possibilité d'augmenter la capacité d'un arc. Lequel choisir pour pouvoir augmenter le flot au maximum?

## Answer of exercise 1

1. 8 en haut, 1 au milieu, 2 en bas



- 2. borne supérieure : 16 = min(18, 16)
- 3. (et) et (bt) permettent d'augmenter le flot de 2.

## **Exercise 2** Implémentation de Ford-Fulkerson

- 1. Inclure à votre projet java RO202 le fichier FordFulkerson.java.
- 2. Compléter la méthode public static Graph fordFulkerson() permettant d'appliquer l'algorithme de Ford-Fulkerson à un graphe g entre une source s et un puits t.

  Remarque: Pour simplifier, vous commencerez avec un flot initial nul plutôt que complet.
- 3. Vérifier que votre méthode retourne le même résultat que celui obtenu à l'exercice précédent.
- 4. Utiliser cette méthode pour résoudre le problème de flot maximal des graphes représentés en Figure 1.

#### Answer of exercise 2

```
/* Seek improving chain while an improving chain has been found at last step
* (i.e., while t has been reached by a mark) */
        System.out.println("---_New_iteration");
        boolean newNodeMarked;
        /* Set all the nodes as unmarked */
        for(int i = 0; i < g.n; i++)</pre>
                mark[i] = Integer.MAX_VALUE;
        mark[s] = 0;
        /* While a new node has been marked at the previous step and t
        is not marked, try to mark another node */
        do{
                /* Browse all the arcs to find a new mark */
                newNodeMarked = false;
                int idArc = 0;
                /\star While no new node is marked and all the arcs have not been browsed \star/
                while(!newNodeMarked && idArc < arcs.size()) {</pre>
                        Edge arc = arcs.get(idArc);
                        int i = arc.id1;
                        int j = arc.id2;
                        /* If j must be marked +i */
                        if (mark[i] != Integer.MAX_VALUE
                                         && mark[j] == Integer.MAX_VALUE
                                        && flow.adjacency[i][j] < g.adjacency[i][j]) {
                                mark[i] = i;
                                newNodeMarked = true;
                        /* If i must be marked +j */
                        else if(mark[i] == Integer.MAX_VALUE
                                         && mark[j] != Integer.MAX_VALUE
                                         && flow.adjacency[i][j] > 0) {
                                mark[i] = -j;
                                newNodeMarked = true;
                        else
                                idArc++;
        }while (newNodeMarked && mark[t] == Integer.MAX_VALUE);
        /* If node t has been marked (i.e., if an improving chain has been found) */
        if (mark[t] != Integer.MAX_VALUE) {
                List<Integer> chain = new ArrayList<>();
                chain.add(t);
                int j;
                int i = t;
                double chainImprovement = Integer.MAX_VALUE;
                /* While the path is not over */
                do{
                        /* Get the next arc (ij) */
                        j = i;
                        i = (int)Math.abs(mark[j]);
                        /* Add i in the chain */
                        chain.add(0, i);
                        /st See how much the flow can be improved along this arc st/
                        double potentialImprovement = g.adjacency[i][j] - flow.adjacency[i][j];
```

```
if(mark[j] < 0)
                                  potentialImprovement = flow.adjacency[j][i];
                          /* Update the chain improvement if necessary */
                          if(potentialImprovement < chainImprovement)</pre>
                                  chainImprovement = potentialImprovement;
                 }while(i != s);
                 System.out.println("Improving_chain:_"+ chain);
                 System.out.println("Improvement_along_that_chain:_" + chainImprovement);
                 /* Update the flow along the chain */
                 for(int id = 0; id <= chain.size() - 2; id++) {</pre>
                          i = chain.get(id);
                          j = chain.get(id+1);
                          if(mark[j] >= 0)
                                  flow.adjacency[i][j] += chainImprovement;
                          else
                                  flow.adjacency[i][j] -= chainImprovement;
}while(mark[t] != Integer.MAX_VALUE);
   Solution du premier graphe en Figure 1
   Flot maximal: 23
   s - 1 (12.0)
   s - 2 (11.0)
   1 - 3 (12.0)
   2 - 4 (11.0)
   3 - t (19.0)
   4 - 3 (7.0)
   4 - t (4.0)
   Solution du second graphe en Figure 1
   Flot maximal: 28
   s - A (10.0)
   s - C (8.0)
   s - E (10.0)
   A - B (9.0)
   A - D (1.0)
   B - t (9.0)
   C - D (8.0)
   D - t (9.0)
   E-F (10.0)
   F - t (10.0)
```

FIGURE 1 – Graphes pour lesquels on cherche un flot maximal.

Un coffre-fort est composé de r serrures qu'il faut déverrouiller simultanément pour l'ouvrir. On dispose de l clefs de sorte que toute clef ouvre au moins une serrure, une serrure peut être ouverte par au moins une clef et  $l \geq r$ . Sachant quelles serrures chaque clef ouvre, on se demande si l'on peut ouvrir le coffre. On représente la situation à l'aide d'un graphe biparti  $G = (V_1, V_2, A)$  où les sommets de  $V_1$  sont les clefs, les sommets de  $V_2$  sont les serrures et il y a un arc dans A d'un sommet clef de  $V_1$  vers et un sommet serrure de  $V_2$  si l'une permet d'ouvrir l'autre. Proposez une méthode générale qui permet d'obtenir une solution s'il en existe une, et montre comment déverrouiller un maximum de serrures dans le cas contraire.

#### Answer of exercise 3

### On ajoute

- s relié à tous les sommets de  $V_1$
- t relié à tous les sommets de  $V_2$
- l'arc fictif ts de capacité  $+\infty$

Les arcs ont des capacités de 1.

## **Exercise 4** Chemins disjoints

- 1. Donner une méthode générale permettant de trouver un nombre maximum de chemins arcsdisjoints entre un sommet source s et une destination t dans un réseau.
- 2. Appliquez la méthode pour le réseau ci-dessous (d'abord à la main, puis en utilisant votre implémentation de l'algorithme de Ford-Fulkerson).
- 3. Comment faire si on veut en plus que les chemins soient sommets-disjoints?
- 4. Appliquez cette seconde méthode pour le réseau ci-dessous (d'abord à la main, puis en utilisant votre implémentation de l'algorithme de Ford-Fulkerson).



Answer of exercise 4

- 1. Trouver un flot maximal quand tous les arcs ont une capacité de [1].
- 2. 2 chemins maximum
- 3. Remplacer chaque sommet a par deux sommets  $a_1$  et  $a_2$  de telle sorte que :
  - Tous les arcs entrant en a entrent en  $a_1$ ;
  - Tous les arcs sortant en a sortnt en  $a_2$ ;
  - l'arc  $(a_1a_2)$  a une capacité de [1].

