Intelligent Robotics Module Overview

Mohan Sridharan

University of Birmingham, UK

m.sridharan@bham.ac.uk

Motivation

- Increasing demand for autonomous systems:
 - Surveillance, navigation, assistive technology.
- Main challenge:
 - Systems that *learn* and *adapt* in response to uncertain sensing and actuation.
- Probabilistic methods provide a strong mathematical basis.

The Stars...

Module Overview

- Model uncertainty in integrated systems that sense and interact with the world
- Understand mathematical basis of probabilistic state estimation algorithms.
- Apply algorithms to challenging problems:
 - Perception and actuation.
 - Localization and mapping.
 - Learning and representation.
 - Control and coordination.

What it is... and is not...

- Collective learning and investigation.
- Individual initiative and teamwork: need to be able to work alone and with others.
- Analyze and criticize existing/prior work.
- Ask questions, discuss and help each other learn.
- Everybody will be treated as postgrad students.

Content – Subject to change!

- Probabilistic state estimation.
- Gaussian and non-parametric filters.
- Robot motion and perception.
- Localization, mapping and SLAM.

 \bigcirc

Probabilistic sequential decision making.

Content – Discussed in two parts...

- Part I: material to work on projects.
 - Weeks 1-6 (approximate).
 - 2-3 lectures + 1-2 tutorials each week.
 - Relevant reading material.

- Part II: understanding mathematical basis.
 - Weeks 7-11 (approximate).
 - 1-2 lectures + 1 tutorial each week.
 - Relevant reading material.

Assessment

Intelligent Robotics:

- 100% CA.
- Based on 2-3 programming assignments (includes final project), writing tasks.

Intelligent Robotics Extended:

- 50% CA, 50% final exam.
- CA based on 2-3 programming assignments (includes final project), writing tasks.

Programming assignments:

Software, demo, viva, report.

Timetable/Schedule is Confusing!

- Class size changing. Please inform instructor of updates.
- Schedules for online/in-person sessions may change.
- Topics and assignments will be revised accordingly.
- Check Canvas page for teaching team, PGTAs, office hours, zoom sessions.
- Please keep track of announcements on Canvas and those made in lectures.

How to do well in the course?

- Keep up with lectures and tutorials.
- Complete assignments (programming, reading, writing) on time.
- Read chapters and other material.
- Participate in discussions.

Action Items I

- Review programming concepts and Linux environment;
 <u>proficiency is expected!</u>
- Review probability, calculus, linear algebra, statistics:
 - Level of first/second-year mathematics module.
 - Textbooks; Gilbert Strang's lectures on linear algebra.
 - Proficiency expected!
- Make sure you have access to resources!
- Look at the website of book:
 - Probabilistic Robotics: Thrun, Burgard and Fox (2005)
 http://www.probabilistic-robotics.org/
 - Other resources made available as needed.
 - Problem solutions, errata, additional resources.

Action Items II

Project groups:

- Organize in groups of five; inform TAs (CC instructor).
- Let TAs know if you want them to allocate you to groups.
- Programming assignments and final project.
- Understand responsibilities and expectations.

Preparation:

- Follow up on announcements.
- Consider resources, schedules; <u>take module iff you meet</u>
 <u>prerequisites and the time commitments</u>.
- Set up software environment.