

Europäisches Patentamt

European Patent Office

Office européen des brevets

(11) EP 1 026 242 A1

(12)

EUROPEAN PATENT APPLICATION

published in accordance with Art. 158(3) EPC

(43) Date of publication: 09.08.2000 Bulletin 2000/32

(21) Application number: 98950331.3

(22) Date of filing: 21.10.1998

(51) Int. Cl.⁷: **C12N 15/10**

(86) International application number: PCT/JP98/04772

(87) International publication number: WO 99/20750 (29.04.1999 Gazette 1999/17)

(84) Designated Contracting States: DE FR GB

(30) Priority: 22.10.1997 JP 28998297

(71) Applicant:
Helix Research Institute
Chiba 292-0812 (JP)

(72) Inventors:

OTA, Toshio
 Kisarazu-shi Chiba 292-0801 (JP)

- NISHIKAWA, Tetsuo
 Kisarazu-shi Chiba 292-0833 (JP)
- SALAMOV, Asaf
 Saffron Walden Essex CB10 2AP (GB)
- ISOGAI, Takao
 Kisarazu-shi Chiba 292-0833 (JP)
- (74) Representative:
 VOSSIUS & PARTNER
 Siebertstrasse 4
 81675 München (DE)

(54) METHOD FOR SCREENING FULL-LENGTH cDNA CLONES

A method for efficiently screening full-length (57) cDNA clones which comprises: determining the base sequence in the 5'-region of each clone contained in a cDNA library prepared by a method for constructing a cDNA library involving full-length ones at a high ratio; examining the presence/absence of initiation ATG in this 5'-region and the location thereof by using an originally developed software for anticipating initiation codons in cDNA; thus exactly judging the presence/absence of the initiation codon and the location thereof; and screening the cDNAs thus judged as carrying the initiation codon from the cDNA library. Moreover, a cDNA library containing full-length ones at an extremely high ratio can be constructed by mixing the clones thus selected above.

Description

Technical field

[0001] The present invention belongs to the field of genetic engineering, and relates to a method for screening full-length cDNA clones.

Background Art

[0002] Recently, genome projects targeting various animals, plants, and microorganisms have been in progress. Numerous genes have been isolated and their functions are under investigation. In order to efficiently analyze the functions of isolated genes, it is important to efficiently obtain cDNA clones capable of expressing complete proteins, that is, full-length cDNA clones.

[0003] The followings are known as methods for constructing a full length-enriched cDNA library: the oligo capping method in which an RNA linker is enzymatically bound to Cap of mRNA (Sugano & Maruyama, Proteins, Nucleic Acids and Enzymes, 38: 476-481, 1993, Suzuki & Sugano, Proteins, Nucleic Acids and Enzymes, 41: 603-607, 1996, M. Maruyama and S. Sugano, Gene, 138, 171-174, 1994); the modified oligo capping method developed by combining the oligo capping method with Okayama-Berg method (S. Kato et al., Gene, 150, 243-250, 1994, Kato & Sekine, Unexamined Published Japanese Patent Application (JP-A) NO. Hei 6-153953, published June 3, 1994); and the linker chemical-binding method in which a DNA linker is bound to Cap (N. Merenkova and D. M. Edwards, WO 96/34981 Nov. 7, 1996), the cap chemical modification method by biotin modification of Cap (P. Carninci et al., Genomics, 37, 327-336, 1996, P. Carninci et al., DNA Research, 4, 61-66, 1997). These are all methods to modify Cap of eukaryotic mRNA and to prepare a full length-enriched cDNA library. A known method for constructing a full length-enriched cDNA library by trapping Cap is the method using Cap-binding proteins derived from yeast or Hela cells for labeling a 5'-cap site (I. Edery et al., MCB, 15, 3363-3371, 1995). Also known is Cap Finder (Clontech) that is the Cap Switch oligonucleotide method in which the Cap Switch oligonucleotide is annealed by C-tailing the 5' end of a first strand cDNA.

[0004] A cDNA library constructed by these methods is rich in full-length cDNAs compared to that obtained by the conventional methods. However, incomplete-length clones are also contained to some extent. To efficiently analyze the functions of genes and to efficiently clone novel useful genes, development of methods for easily confirming whether each clone contained in a cDNA library is full-length or not has been desired.

Disclosure of the Invention

[0005] An objective of the present invention is to provide a method for efficiently screening full-length cDNA clones, and a method for constructing a full length-enriched cDNA library.

[0006] The present inventors have studied to achieve the above objective and contemplated efficiently screening full-length cDNAs from a cDNA library by the presence or absence of a translation initiation codon as an index based on the fact that a cDNA deficient in a certain 5'-region is likely to lack a translation initiation codon, whereas a full-length cDNA contains an initiation codon. Especifically, the inventors assumed that a full-length cDNA could be efficiently screened from a cDNA library constructed by a method for preparing a full length-enriched cDNA library. Specifically, the inventors thought that full-length cDNA clones could be efficiently isolated by constructing a cDNA library by a method for preparing a full length-enriched cDNA library, determining several hundreds of base pairs of a DNA nucleotide sequence from the 5' end, and analyzing the presence or absence of an initiation codon in this region to screen the clones containing initiation codons.

However, few programs for predicting an initiation site of cDNA have been developed (e.g., "A. G. Pedersen, Proceedings of fifth international conference on intelligent systems for molecular biology, p226-233, 1997, held in Halkidiki, Greece, June 21-26, 1997). Though some programs for exons prediction have been developed ("Gene Finder". V. V. Solovyev et al., Nucleic Acids Res., 22, 5156-5163, 1994, "Grail" Y. Xu et al., Genet-Eng-N-Y., 16, 241-253, 1994), an initiation site cannot be accurately determined relying solely on these programs.

[0008] The present inventors have developed a program for cDNA initiation codon prediction by themselves and determined nucleotide sequences of the 5'-region of clones contained in a cDNA library constructed by a method for preparing a full length-enriched cDNA library to examine whether an initiation codon exists in this 5'-region using this software program.

[0009] More specifically, a full length-enriched cDNA library was constructed by the oligo capping method and nucleotide sequences of the 5'-regions of some clones contained in the cDNA library were determined. Based on the determined sequences, the clones were divided into known and novel ones through a database search. The presence or absence of an initiation codon and its location in the determined nucleotide sequences of the 5'-regions were judged using the initiation codon prediction program. For the known clones, whether the location of the initiation codon recog-

nized by the initiation codon prediction program coincides with that of the initiation codon in databases is examined. Indeed, the presence or absence and location of the initiation codon in the known clones predicted by the program coincided with the information in the databases.

[0010] Thus, the software program developed by the present inventors can accurately recognize the presence or absence of an initiation codon and its location, and full-length cDNA clones can be efficiently screened by selecting the clones that are recognized to contain an initiation codon by the program from the cDNA library. Moreover, a cDNA library extremely rich in full-length cDNAs can be constructed by combining the screened clones.

[0011] The present invention relates to a method for screening full-length cDNA clones from a cDNA library and a method for constructing a full-length cDNA library by combining cDNA clones screened by the screening method. More specifically, it relates to:

- (1) A method for isolating a full-length cDNA clone, the method comprising:
 - (a) determining a nucleotide sequence from the 5'-region of a cDNA clone contained in a cDNA library,
 - (b) determining the presence or absence of an initiation codon in the nucleotide sequence determined in (a) using an initiation codon prediction program, and
 - (c) selecting clones recognized as containing the initiation codon in (b);
- (2) The method of (1), wherein the cDNA library is constructed by a method for preparing a full length-enriched cDNA library;
- (3) The method of (1), wherein a cDNA library is constructed by a method comprising a step of modifying Cap of mRNA;
- (4) A method for constructing a full length cDNA library, the method comprising:
 - (a) determining a nucleotide sequence from the 5'-region of a cDNA clone contained in a cDNA library,
 - (b) determining the presence or absence of an initiation codon in the nucleotide sequence determined in (a) using an initiation codon prediction program,
 - (c) selecting clones recognized as containing the initiation codon in (b), and
 - (d) combining the clones selected in (c);

15

20

25

30

35

(5) The method of (4), wherein the cDNA library is prepared by a method for constructing a full length-enriched cDNA library;

(6) The method of (4), wherein the cDNA library is constructed by a method comprising a step of modifying Cap of mRNA; and

(7) A cDNA library obtainable by the method of (4).

[0012] The present invention is based on the inventors' findings that full-length cDNA clones can be efficiently isolated by analyzing nucleotide sequences of the 5-region of cDNAs in a cDNA library, specifically a full length-enriched cDNA library, by using a software program for accurately predicting a translation initiation codon, and a full length-enriched cDNA library can be constructed by combining the isolated cDNA clones. The method for screening full-length cDNA clones by the present invention comprises (a) determining a nucleotide sequence from the 5'-region of a cDNA clone contained in a cDNA library, (b) determining the presence or absence of an initiation codon in the determined nucleotide sequence using an initiation codon prediction program, and (c) selecting clones recognized as containing the initiation codon. The method for constructing a full-length cDNA library of the present invention comprises, in addition to above steps (a) to (c), step (d) of combining the screened clones.

[0013] In the method of the present invention, a "cDNA clone" whose nucleotide sequence of the 5'-region is to be determined is not particularly limited. Full-length cDNAs cannot be efficiently isolated from clones derived from a library not rich in full-length cDNAs, compared with clones derived from a full length-enriched cDNA library. Therefore, a cDNA clone is preferably derived from a library constructed by the above-described methods for preparing a full length-enriched cDNA library, including, for example, the oligo capping method in which an RNA linker is enzymatically bound to Cap of mRNA (Sugano & Maruyama, Proteins, Nucleic Acids and Enzymes, 38: 476-481, 1993, Suzuki & Sugano, Proteins, Nucleic Acids and Enzymes, 41: 603-607, 1996, M. Maruyama and S. Sugano, Gene, 138, 171-174, 1994), the modified oligo capping method developed by combining the oligo capping method with Okayama-Berg method (S. Kato et at, Gene, 150, 243-250, 1994, Kato & Sekine, JP-A-Hei 6-153953, June 3, 1994), the linker chemical-binding method in which a DNA linker is chemically bound to Cap (N. Merenkova and D. M. Edwards, WO 96/34981 Nov. 7, 1996), the Cap chemical modification method in which Cap is modified with biotin (P. Carninci et al., Genomics, 37, 327-336, 1996, P. Carninci et al., DNA Research, 4, 61-66, 1997), the method using Cap binding proteins drived from yeast or Hela cells (I. Edery et al, MCB, 15, 3363-3371, 1995), or a library prepared by Cap Finder using Cap Switch oligo-

nucleotide method.

[0014] A cDNA clone can be isolated from a cDNA library by standard methods described in, for example, J. Sambrook, E. F. Fritsch & T. Maniatis, Molecular Cloning, Second Edition, Cold Spring Harbor Laboratory Press, 1989.

[0015] A nucleotide sequence can be determined from the 5'-region of a clone by, for example, standard methods using DNA sequencer available from Applied Discustores and a DNA sequencer available from Applied Discustores and a DNA sequencer available from Applied Discustores.

using DNA sequencing reagents and a DNA sequencer available from Applied Biosystems, etc. A whole nucleotide sequence of the clone dose not have to be determined, and determining about 1,000 nucleotides from the 5' end is sufficient. The high accuracy can be expected by determining about 500 nucleotides, even about 300 nucleotides.

[0016] An "initiation codon prediction program" used for application and the sequence of the clone dose not have to be determined, and determining about 1,000 nucleotides from the 5' end is sufficient. The high accuracy can be expected by determining about 500 nucleotides, even about 300 nucleotides.

[0016] An "initiation codon prediction program" used for analyzing a nucleotide sequence from the 5'-region of a clone is preferably the program developed by the present inventors as described in Example 1 below. The presence or absence of an initiation codon in a determined sequence is judged by a score deduced from the results of analysis with the program. A cDNA clone with a high score, recognized as containing an initiation codon in the determined sequence, is usually comprised of a full-length cDNA, while one with a low score, recognized as not containing an initiation codon in the determined sequence, contains an incomplete-length cDNA. Thus, a full-length cDNA can be efficiently isolated by screening a cDNA from a cDNA library, judged as containing an initiation codon in the nucleotide sequence. Indeed, in one embodiment of the analysis with the program described in Example 1 below where a cDNA library with the full-length cDNA content of 51% was used to screen clones (the highest score was 0.94), the content of full-length clones among the screened clones was 71% when clones showing a score of 0.5 or higher were selected, 77% with a score of 0.70 or higher, 81% with a score of 0.80 or higher, and 85% with a score of 0.90 or higher. Therefore, full-length cDNA clones can be screened with a high accuracy by selecting clones with high scores using the program described in Example 1.

[0017] Moreover, a cDNA library re-constructed by combining clones selected by the method for screening full-length cDNA clones of the present invention is extremely rich in full-length cDNAs compared with the parent cDNA library used for screening clones. By expressing whole cDNAs capable of expressing proteins in the thus-obtained library, a system for efficiently analyzing gene functions containing a mixture of expressed proteins can be obtained. This system enables efficiently cloning useful genes.

Best Mode for Carrying out the Invention

[0018] The present invention is illustrated in detail below with reference to the following examples, but is not to be construed as being limited thereto.

Example 1. Preparation of a program for predicting a translation initiation codon of cDNA

[0019] The translation initiation codon prediction program of the present invention recognizes a putative authentic initiation codon among all ATGs contained in a given cDNA sequence fragment. The program predicts based on A) information on similarity of given regions (several tens to several hundreds base pairs) at both sides of a putative ATG to translational regions and B) information on similarity of regions near a putative ATG to those near an authentic initiation codon. Characteristics of sequences in a translational region and regions near an initiation codon are extracted beforehand by from information of numerous sequences whose translational and non-translational regions have been identified. The program predicts an initiation codon based on the information about the above characteristics.

[0020] The linear discriminant analysis used in Gene Finder, a program for genomic exon prediction (Solovyev V. V., Salamov A. A., Lawrence C. B. Predicting internal exons by oligonucleotide composition and discriminant analysis of spliceable open reading frames. Nucleic. Acids Res, 1994, 22: 5156-63), was applied to optimize prediction. In the linear discriminant analysis, information on some characteristics derived from data is digitized, weighted, and then culculated a score. Here, a score is converted into a probability of similarity to an initiation codon (the probability is a rate of correct answers obtained from data of sequences whose initiation codon has been identified). Specifically, a probability of similarity to an initiation codon is determined whether a probability of similarity to an initiation codon is above a given threshold value or not. A threshold value is established depending on the plan of the following analyses, that is, depending on the extent of noises acceptable for the following analysis. For example, when 40% of noise is acceptable, a threshold value of 0.6 can be used. A parameter of weight is determined so as to maximize the prediction system using data of sequences whose initiation codon has been identified as a training datum. The above information of A) and B) were each embodied into the following three information and used as information about characteristics.

A) information on similarity of given regions (several tens to several hundreds base pairs) at both sides of a putative ATG to translational regions

[0021]

5

10

- 1: a frequency of six nucleotide base letters contained in a sequence from ATG to a stop codon (within 300 bp downstream of ATG at longest)
- 2: discrepancy of the information on a frequency of six nucleotide base letters contained in 50 nucleotide bases upstream and downstream of ATG
- 3: an index of similarity to a signal peptide [a hydrophobicity index of the most hydrophobic eight amino acids letters among 30 amino acids (90 nucleotide bases) downstream of ATG]
- B) information on similarity of regions near a putative ATG to those near an authentic initiation codon

15 [0022]

- 1: information on a weighted matrix as using three nucleotide base letters in the region from 14 nucleotide bases upstream of ATG to 5 nucleotide bases downstream of ATG as a unit
- 2) the presence or absence of other ATGs upstream of ATG in a same frame (the presence is 1 and the absence is 0)
- 3: a frequency of cytosine contained in the region from 36 bases upstream of ATG to 7 bases downstream of ATG.

Example 2: Preparation of cDNA by the oligo capping method and analysis thereof by the program for initiation codon prediction

25

20

[0023] A cDNA library was prepared by the oligo capping method and the plasmid DNA was extracted from each clone by the standard method. Specifically, mRNA was extracted from human placenta and human cultured cells (Tetratocarcinoma NT-2 and neuroblatoma SK-N-MC) by the method described in the reference (J. Sambrook, E. F., Fritsch & T. Maniatis, Molecular Cloning, Second Edition, Cold Spring Harbor Laboratory Press, 1989). An oligo cap linker (SEQ ID NO. 1) with an oligo dT adaptor primer (SEQ ID NO. 2) in the case of Tables 1 & 2, or with a random adaptor primer (SEQ ID NO. 3) in the case of Tables 3 & 4 were subjected to BAP treatment, TAP treatment, RNA ligation, synthesis of a first strand cDNA, and removal of RNA according to the methods described in the references (Suzuki & Sugano, Proteins, Nucleic Acids, and Enzymes, 41, 603-607, 1996, p606, Y. Suzuki et al., Gene, 200, 149-156, 1997). The first strand cDNA was then converted into the double-stranded DNA by PCR, digested with *SFi*I, and cloned into vectors, such as pME18SCG, pMFL etc. digested with *Dral*III in the determined direction (Sugano & Maruyama, Proteins, Nucleic Acids, and Enzymes, 38, 472-481, 1993, p480). The obtained DNA was subjected to the sequencing reaction using a DNA sequencing reagent (DyeTerminatoir Cycle Sequencing FS Ready Reaction Kit, PE Applied Biosystems) following the manual and sequenced with a DNA sequencer (ABIPRISM 377, PE Applied Biosystems). The DNA sequence of the 5'-region of each clone was analyzed once.

[0024] The presence or absence of an initiation codon in the DNA sequence of each clone was analyzed using the developed program for cDNA initiation codon prediction (ATGpr). In this analyzing program, the higher the score is, the higher the probability of being an initiation codon is. The maximum score is 0.94.

(1) Analysis of translation initiation codons in the clones whose open reading frames are known in database among cDNA prepared by the oligo capping method

[0025] Among the results for all analyzed clones, the result for the clones that are known to contain the initiation codon in the determined sequences in databases (F-NT2RP1000020, F-NT2RP1000025, F-NT2RP1000039, and F-NT2RP1000046) are shown in Table 1. F-NT2RP1000020 (880 bp) has 96% identity at nucleotide positions 88 to 690 to "human neuron-specific gamma-2 enolase" (GenBank accession No. M22349); F-NT2RP1000025 (645 bp), 97% homology at positions 29 to 641 to "human alpha-tubulin mRNA" (GenBank accession No. K00558); F-NT2RP1000039 (820 bp), 96% identity at positions 12 to 820 to "human mRNA for elongation factor 1 alpha subunit (EF-1 alpha) (GenBank accession No. X03558); and F-NT2Rp1000046 (788 bp), 97% identity at positions 3-788 to "human M2-type pyruvate kinase mRNA" (GenBank accession No. M23725). The sequences of the 5'-region in these clones are shown in SEQ ID Nos: 4, 5, 6, and 7.

Table 1

10

5

	F-NT2RP1000020		F-NT2RP1000025		F-NT2RP1000039		F-NT2RP1000046	
ATG No.	Location of ATG	ATGpr Score						
1	1	0.05	96	(0.94)	65	(0.90)	111	(0.94)
2	162	(0.84)	148	0.13	154	0.05	174	0.82
3	292	0.05	193	0.05	209	0.11	198	0.19
4	313	0.05	201	0.09	231	0.05	300	0.16
5	441	0.05	232	0.05	321	0.05	315	0.11

Note 1: () means translation initiation codon

Note 2: Location of ATG means the nucleotide base position of ATG in the 5'-region of a DNA sequence.

ATG No. means the number of ATG from the 5'-region of a DNA sequence.

[0026] As show in Table 1, among the cDNA prepared by the oligo capping method, the full-length clones whose open reading frames are known in databases, containing initiation codons were accurately recognized by the initiation codon prediction program (ATGpr) (coincident with the initiation codons in databases).

(2) Analysis of initiation codons in the clones whose open reading frames are known in database among cDNA prepared by the oligo capping method

[0027] Among the results for the clones analyzed, the results for the clones whose initiation codon is known to absent in the determined sequence in databases (F-NT2RP1000013, F-NT2RP1000054, and F-NT2RP1000122) are shown in Table 2. F-NT2RP1000013 (608 bp) has 97% identity at positions 1 to 606 to "human nuclear matrix protein 55 (nmt55) mRNA" (GenBank accession No.U89867); F-NT2RP1000054 (869 bp), 96% identity at positions 1 to 869 to "human signal recognition particle (SRP54) mRNA" (GenBank accession No. U51920); and F-NT2RP1000122 (813 bp), 98% identity at positions 1 to 813 to "H. sapiens mRNA for 2-5A binding protein" (GenBank accession No. X76388). The sequences of the 5' region of these clones are shown in SEQ ID Nos: 8, 9, and 10.

Table 2

				Idole 2			
		F-NT2RF	F-NT2RP1000013 FNT2RP1000054		F-NT2RP1000122		
40	ATG No.	Location of ATG	ATGpr Score	Location of ATG	ATGpr Score	Location of ATG	ATGpr Score
	1	21	0.05	31	0.12	23	0.07
	2	27	0.05	60	0.20	100	0.05
	3	32	0.32	87	0.05	166	0.05
45	4	56	0.11	97	0.05	235	0.06
	5	119	0.10	146	0.05	316	0.05
	6	125	0.08	172	0.05	346	0.05
50	7	141	0.05	180	0.11	406	0.05
	8	155	0.06	218	0.07	431	0.05
	9	161	0.06	272	0.05	469	0.06
	10	176	0.08	319	0.07	546	0.12
55	11	203	0.07	346	0.05	553	0.05
	12	290	0.20	363	0.07	574	0.05

Table 2 (continued)

	F-NT2RP1000013		FNT2RP1000054		F-NT2RP1000122	
ATG No.	Location of ATG	ATGpr Score	Location of ATG	ATGpr Score	Location of ATG	ATGpr Score
13	311	0.16	409	0.05		
14	314	0.12	480	0.07		

[0028] As shown in Table 2, among cDNA prepared by oligo capping method, the initiation codon prediction program (ATGpr) did not recognize by mistake the initiation codons in incomplete-length cDNAs whose open reading frames are known in databases and which do not contain any initiation codons.

(3) Analysis of initiation codons in novel clones among the cDNA prepared by the oligo capping method

5

15

20

25

30

35

40

45

50

55

[0029] Among the results for analyzed clones, the results for novel clones that were predicted to contain initiation codons (F-ZRV6C1000408, F-ZRV6C1000454, F-ZRV6C1000466, F-ZRV6C1000615, and F-ZRV6C1000670) are shown in Table 3. The sequences of the 5' region of these clones are shown in SEQ ID Nos: 11, 12, 13, 14, 15.

Table 3

			Table				
	F-ZRV6	C1000408	F-ZRV6	C1000454	F-ZRV6C1000466		
ATG	Location	ATGpr	Location	ATGpr	Location	ATGpr	
No.	of ATG	Score	of ATG	Score	of ATG	Score	
1	85	<0.94>	5	0.05	162	<0.86>	
2	208	0.22	107	<0.87>	182	0.05	
3	386	0.05	153	0.05	207	0.08	
4	518	0.11	201	0.08	244	0.05	
5	545	0.05	211	0.05	262	0.05	
6			236	0.07	303	0.11	

(cont'd)

Tahla	36	ont'd)

	F-ZRV6	C1000615	F-ZRV6C1000670			
ATG	Location	ATGpr	Location	ATGpr		
No.	of ATG	Score	of ATG	Score		
1	85	<0.94>	120	<0.94>		
2	208	0.26	187	0.54		
3	386	0.05	312	0.06		
4	518	0.09	388	0.05		
5	545	0.05	445	0.05		

Note: means predicted initiation codon.

[0030] As shown in Table 3, the predicted initiation codons in F-ZRV6C1000408, F-ZRV6C1000454, F-ZRV6C1000466, F-ZRV6C1000615, and F-ZRV6C1000670 are "ATG" starting with "A" at positions 85, 107, 162, 85, and 120, respectively. Therefore, these clones were judged as full-length cDNA clones.

In addition, among the results for analyzed clones the results for novel clones predicted as not containing [0031] initiation codons (F-ZRV6C1001410, F-ZRV6C1001197, and F-ZRV6C1001472) are shown in Table 4. The sequences of the 5' region of these clones are shown in SEQ ID Nos: 16, 17 and 18.

5

Table 4

	F-ZRV6C1001410		F-ZRV6C1001197		F-ZRV6C1001472	
ATG No.	Location of ATG	ATGpr Score	Location of ATG	ATGpr Score	Location of ATG	ATGpr Score
1	23	0.05	5	0.24	77	0.25
2	31	0.07	141	0.25	126	0.05
3	71	0.06	202	0.05	149	0.05
4	178	0.05	219	0.05	194	0.05
5	214	0.05	228	0.05	213	0.22
6					249	0.05
7			[338	0.09
8					344	0.05
9					351	0.05
10				;	365	0.05
	1 2 3 4 5 6 7 8 9	ATG No. Location of ATG 1 23 2 31 3 71 4 178 5 214 6 7 8 9	ATG No. Location of ATG ATGpr Score 1 23 0.05 2 31 0.07 3 71 0.06 4 178 0.05 5 214 0.05 6 7 8 9 9	ATG No. Location of ATG ATGpr Score Location of ATG 1 23 0.05 5 2 31 0.07 141 3 71 0.06 202 4 178 0.05 219 5 214 0.05 228 6 7 8 9	ATG No. Location of ATG ATGpr Score Location of ATG ATGpr Score 1 23 0.05 5 0.24 2 31 0.07 141 0.25 3 71 0.06 202 0.05 4 178 0.05 219 0.05 5 214 0.05 228 0.05 6 7 8 9 0.05 0.05	ATG No. Location of ATG ATGpr Score Location of ATG ATGpr Score Location of ATG 1 23 0.05 5 0.24 77 2 31 0.07 141 0.25 126 3 71 0.06 202 0.05 149 4 178 0.05 219 0.05 194 5 214 0.05 228 0.05 213 6 249 7 338 8 344 9 351

As shown in Table 4, F-ZRV6C1001410, F-ZRV6C1001197, and F-ZRV6C1001472 were recognized as not [0032] containing initiation codons. These clones were thus judged as incomplete-length clones.

Industrial Applicability

The present invention provides a method for efficiently selecting full-length cDNAs. Clones selected by the [0033] method of the present invention can express complete proteins. Therefore, the present invention enables efficiently analyzing the functions of isolated genes.

35

40

45

50

SEQUENCE LISTING

5	<110> Helix Research Institute, Inc.	
	<120> Method for screening full-length cDNA clones	
10	<130> H1-806PCT	
15	<150> JP 09-289982	
13	<151> 1997-10-22	
	<160> 18	
20	<170> PatentIn version 2.0	
	<210> 1	•
25	<211> 30	
	<212> DNA	
	<213> Artificial Sequence	
30	<220>	
	<223> Oligo-capping linker sequence	
35	<400> 1	
	AGCAUCGAGU CGGCCUUGUU GGCCUACUGG	30
	<210> 2	
40	<211> 42	
	<212> DNA	
	<213> Artificial Sequence	
45		
	<220>	
	<223> Oligo(dT) adapter primer sequence	
50	<400> 2	
	GCGGCTGAAG ACGGCCTATG TGGCCTTTTT TTTTTTTTT TT	42

9

	<210> 3	
5	<211> 32	
3	<212> DNA	
	<213> Artificial Sequence	
10	<220>	
	<223> Random adapter primer sequence	
15	<400> 3	
	GCGGCTGAAG ACGGCCTATG TGGCCNNNNN NC	32
	<210> 4	
20		
	<211> 880	
	<212> DNA	
25	<213> Homo sapiens	
	<400> 4	
30	ATGCGCCCGC GCGGCCCTAT AGGCGCCTCC TCCGCCCGCC GCCCGGGAGC CGCAGCCGCC	60
	GCCGCCACTG CCACTCCCGC TCTCTCAGCG CCGCCGTCGC CACCGCCACC GCCACTGCCA	120
	CTACCACCGT CTGAGTCTGC AGTCCCGAGA TCCCAGCCAT CATGTCCATA GAGAAGATCT	180
	GGGCCCGGGA GATCCTGGAC TCCCGCGGGA ACCCCACAGT GGAGGTGGAT CTCTATACTG	240
35	CCAAAGGTCC TTTCCGGGCT GCAGTGCCCA GTGGAGCCTC TACGGGCATC TATGAGGCCC	300
	TGGAGCTGAG GGATGGAGAC AAACAGCGTT ACTTAGGCAA AGGTGTCCTG AAGGCAGTGG	360
	ACCACATCAA CTCCACCATC GCGCCAGCCC TCATCAGCTC AGGTCTCTCT GTGGTGGAGC	420
40	AAGAGAAACT GGACAACCTG ATGCTGGAGT TGGATGGGAC TGAGAACAAA TCCAAGTTTG	480
	GGGCCAATCC ATCCTGGGTG TGTCTCTGGC CGTGTGTAAG GCANGGGCAA CTGAACNGGA	540
	ACTGCCCCTG TATCGCCACA TTGCTCAGCT TGGNCGGGAA CTCANACCTC ATCCTGCCTG	600
	TTGCCGGCCT TCAACGTGAT CAATGGTTGG CTTCTCATGC CTGGCAACAA ANCTGGCCAT	660
45	TGCNGGAATT TTCATGATCC TCCCCNTTGG GAAACTGAAA AACTTTCCGG AATGCCCNTC	720
	CAACTAAGTT GCAAAAGGTC TACCNATACC CCCCAAGGGG AATTCCTCCA AGGGAACAAA	780
	TNCCCGGGAA AGGAATGCCC CCCAATTNTT NGGGGGAATA AAAGGTGGGC TTTGCCCCCC	840
50	CATTTCCTG GAAAAACNA TNAAAACCCT TGGGAAACTT	880
	<210> 5	

	<211> 645	
-	<212> DNA	
5	<213> Homo sapiens	
	<400> 5	
10	TGTGCGTTAC TTACCTCNAC TCTTAGCTTG TCGGGGACGG TAACCGGGAC CCGGTGTCTG	60
	CTCCTGTCGC CTTCGCCTCC TAATCCCTAG CCACTATGCG TGAGTGCATC TCCATCCACG	120
	TTGGCCAGGC TGGTGTCCAN ATTGGCAATG CCTGCTGGGA GCTCTACTGC CTGGAACACG	180
15	GCATCCAGCC CGATGGCCAG ATGCCAAGTG ACAAGACCAT TGGGGGAGGA GATGACTCCT	240
15	TCAACACCTT CTTCAGTGAG ACGGGCGCTG GCAANCACGT GCCCCGGGCT GTGTTTGTAG	300
	ACTTGGAACC CACAGTCATT GATGAAGTTC GCACTGGCAC CTACCGCCAG CTCTTCCACC	360
	CTGAGCAGCT CATCNCAGGC AAGGAAGATG CTGCCAATAA CTATGCCCGA GGGCACTACA	420
20	CCATTGGCAA GGAGATCATT GACCTTGTGT TGGACCGAAT TCGCAAGCTG GCTGACCANT	480
	GCACCGGTCT TCANGGCTTC TTGGTTTTCC ACAGCTTTGG TGGGGGAACT GGTTCTGGGT	540
	TCACCTCCCT GCTCATGGAA CGTCTCTCAG TTGATTATGG CAAGAAATCC AAGCTGGAGT	600
25	TCTCCATTTA CCCAGCACCC CNGGTTTCCN CNGCTGTANT TNGAA	645
	<210> 6	
30	<211> 820	
	<212> DNA	
	<213> Homo sapiens	
35		
	<400> 6	
	CTTTTTCGC AACGGGTTTG CCGCCAGAAC ACAGGTGTCG TGAAAACTAC CCCTAAAAGC	60
40	CAAAATGGGA AAGGAAAAGA CTCATATCAA CATTGTCGTC ATTGGACACG TAGATTCGGG	120
40	CAAGTCCACC ACTACTGGCC ATCTGATCTA TAAATGCGGT GGCATCGACA AAAGAACCAT	180
	TGAAAAATTT GAGAAGGAGG CTGCTGAGAT GGGAAAGGGC TCCTTCAAGT ATGCCTGGGT	240
	CTTGGATAAA CTGAAAGCTG AGCGTGAACG TGGTATCACC ATTGATATCT CCTTGTGGAA	300
45	ATTTGAGACC AGCAAGTACT ATGTGACTAT CATTGATGCC CCAGGACACA GAGACTTTAT	360
	CAAAAACATG ATTACAGGGA CATCTCAGGC TGACTGTGCT GTCCTGATTG TTGCTGCTGG	420
	TGTTGGTGAA TTTGAAGCTG GTATCTCCAA GAATGGGCAG ACCCGAGAGC ATGCCCTTCT	480
50	GGCTTACACA CTGGGTGTGA AACAACTAAT TGTCGGTGTT AACAAAATGG ATTCACTGAN	540
- -	CCACCCTACA GCCAGAAGAA ATATGANGAA ATTGTTAAGG AAGTCAGCAC TTACATTAAG	600
	AAAATTGGCT ACAACCCCGA CACAGTANCA TTTGTGCCAA TTTCTGGTTG GAATGGTGAC	660
	•	

	AACATGCTGG	AACCAANTGC	TAACATGCCT	TGGTTCCAGG	GATGGAAAAT	CCCCCNTTAA	720
	GGATGGCNAT	GCCATTGGAA	CCCCCTGCT	TGAAGGCTCT	GGANTGCATC	CTANCACCAA	780
5	CTCCTTCAAA	TTGAAAAACC	CCTTGCNCCC	GCCTCCNCCA			840
	<210> 7						
	12107 I						
10	<211> 788						
	<211> 700						
	<213> Homo	canienc					
15	LIOP HOMO	Sapiens					
	<400> 7						
	GAGGCTGAGG	CAGTGGCTCC	TTGCACAGCA	GCTGCACGCG	CCGTGGCTCC	GGATCTCTTC	60
20	GTCTTTGCAG	CGTAGCCCGA	GTCGGTCAGC	GCCGGAGGAC	CTCAGCAGCC	ATGTCGAAGC	120
	CCCATAGTGA	AGCCGGGACT	GCCTTCATTC	AGACCCAGCA	GCTGCACGCA	GCCATGGCTG	180
	ACACATTCCT	GGAGCACATG	TGCCGCCTGG	ACATTGATTC	ACCACCCATC	ACAGCCCGGA	240
	ACACTGGCAT	CATCTGTACC	ATTGGCCCAG	CTTCCCGATC	AGTGGAGACG	TTGAAGGAGA	300
25	TGATTAAGTC	TGGAATGAAT	GTGGCTCGTC	TGAACTTCTC	TCATGGAACT	CATGAGTACC	360
	ATGCGGAGAC	CATCAAGAAT	GTGCGCACAG	CCACGGAAAG	CTTTGCTTCT	GACCCCATCC	420
	TCTACCGGCC	CGTTGCTGTG	GCTCTAGACA	CTAAAGGACC	TGAGATCCGA	ACTGGGCTCA	480
30	TCAAGGGCAG	CGGCACTGCA	GAGGTGGAGC	TGAAGAATGG	AGCCACTCTC	AAAATCACGC	540
	TGGATAATGC	CTACATGGAA	AAGTGTGACG	AGAACATCCT	GTGGCTGGAC	TACAAGAACA	600
	TCTGCAAGGT	GGTGGAAGTG	GGCAACAAGA	TCTACGTGGA	TGATGGGCTN	ATTTCTCTCC	660
	AGGTGAACAC	AAAGGTGCCG	ACTTCCTGGG	TGACNGANGT	GGAAAATGGT	GGCTCCTTGG	720
35	GCNCAAGAAA	GGTGTGAACT	TCCTGGGGCT	GCTGTGGANT	TGCCTGCTGT	GTCNGAAAAA	780
	GACATCCA						788
40	<210> 8						
	<211> 608						
	<212> DNA				•		
45	<213> Ново	sapiens		r			
	<400> 8						
50		ጥር የጥጥጥር ልርጥ	ልጥር ል ልጥ ልጥር ሳ		1100010001	TTGAGATGGA	-
, v						AGCTGGAGAT	60
							120
	O GUODI GUMA	ANTANACACO	ATANAMAN TA	OUTOWING	AIUAUAUAUAG	ATTTGATGAG	180

	GCGCCAAGAA GAACTTCGGA GGATGGAAGA GCTGCACAAC CAAGANGTGC AAAAACGAAA 24	40
	GCAACTGGAG CTCAGGCAGG AGGAANAGCG CAGGCGCCGT GAAGAANAGA TGCGGCGGCA 30	00
5	GCAAGAAGAA ATGATGCGGC GACNGCAGGA AGGATTCAAG GGAACCTTCC CTGATGCGAG 30	60
	AGAGCAGGAG ATTCGGATGG GTCNGATGGC TATGGGAGGT GCTATGGGCA TAAACNACAG 4	20
	ATGTGCCATG CCCCCTGCTC CTGTGCCAGC TGGTACCCCA GCTCCTCCAG GACCTGCCAC 4	80
10	TATTATGCCG GATGGAACTT TGGGATTGAC CCCACCNACA ACTGAACGCT TTGGTCNGGC 5	40
	TGCTACNATG GAANGAATTG GGGCAATTGG TGGAACTCCT CCTGCATTCN ACCGTGCAGC 6	00
	TCCTGGGA	808
15	<210> 9	
	<211> 869	
20	<212> DNA	٠
	<213> Homo sapiens	
	<400> 9	
25	ATATTAAACT AGTGAAGCAA CTAAGAGAAA ATGTTAAGTC TGCTATTGAT CTTGAAGAGA	60
	TGGCATCTGG TCTTAACAAA AGAAAAATGA TTCAGCATGC TGTATTTAAA GAACTTGTGA	120
	Additolism: Additoring in the control of the contro	180
30	INTITUTION WILDOWS WAS A STATE OF THE STATE	240
	Montaleman under 10 man 1 man	300
	II WISOMEN'T INTERIOR CONTINUES CONT	360
-	Manday Agrange and the control of th	420
35	AAATTATTAT TGTTGATACA AGTGGCCGCC ACAAACAAGA AGACTCTTTG TTTGAAGAAA	480
	TGCTTCAAGT TGCTAATGCT ATACAACCTG ATAACATTGT TTATGTGATG GATGCCTCCA	540
	TTGGGCAGGC TTGTGAAGCC CAGGCTAAGG CTTTTAAAGA TAAAGTAGAT GTACCTCAGT	600
40	AATAGTGACA AAACTTGATG GCCATGCAAA ANGAAGTGGT GCACTCAGTG CAGTCGCTGC	720
	CACAAAAAT CCGATTATTT TCATTGGTAC AGGGGGAACA TATANATGAC TTTGAACCTT	780
	TCAAAAACAC AGCCTTTTAT TAACAAACTT CTTGGTATNG GCGACATTGA AAGAACTGAT	840
45	AAATAAAGTC CACNAATTGA AATTTGGATG ACNATGNAAA CCCTTATTGA AAAAATTGAA	869
40	ACATNGTCCA GTTTTACTTT GCGAAACNT	00.
	<210> 10 ·	
50	.011. 010	
	<211> 813	
	<212> DNA	

<213> Homo sapiens

	<400> 10	
	GTTGTGGTAT CTGTATTAAG AAATGCCCCT TTGGCGCCCTT ATCAATTGTC AATCTACCAA	60
	GCAACTTGGA AAAAGAAACC ACACATCGAT ATTGTGCCAA TGCCTTCAAA CTTCACAGGT	120
10	TGCCTATCCC TCGTCCAGGT GAAGTTTTGG GATTAGTTGG AACTAATGGT ATTGGAAAGT	180
	CAACTGCTTT AAAAATTTTA GCAGGAAAAC AAAAGCCAAA CCTTGGAAAG TACGATGATC	240
	CTCCTGACTG GCAGGAGATT TTGACTTATT TCCGTGGATC TGAATTACAA AATTACTTTA	300
45	CAAAGATTCT AGAAGATGAC CTAAAAGCCA TCATCAAACC TCAATATGTA GACCAGATTC	360
15	CTAAGGCTGC AAAGGGGACA GTGGGATCTA TTTTGGACCG AAAAGATGAA ACAAAGACAC	420
	AGGCAATTGT ATGTCAGCAG CTTGATTTAA CCCACCTAAA AGAACGAAAT GTTGAAGATC	480
	TTTCAGGAGG AGAGTTGCAG AGATTTGCTT GTGCTGTCGT TTGCATACAG AAAGCTGATA	540
20	TTTTCATGTT TGATGAGCCT TCTAGTTACC TAGATGTCAA GCAGCGTTTA AAGGCTGCTA	600
	TTACTATACG ATCTCTAATA AATCCAGATA GATATATCAT TGTGGTGGAA CATGATCTAA	660
	GTGTATTAGA CTATCTCTCC GACTTCATCT GCTGTTTATA TGGTGTACCA AGCGCCTATG	720
	GAATTGTCAC TATGCCTTTT AGTGTTAGAA AAGGCATAAA CNTTTTTTGG ATGGGTATGT	780
25	TCCAACAGAA AACTTGANAA TCNNAAATGC NTC	813
	<210> 11	
30	<211> 655	
	<212> DNA	
	<213> Homo sapiens	
35		
	<400> 11	
	AGACTCTCAC CGCAGCGCC AGGAACGCCA GCCGTTCACG CGTTCGGTCC TCCTTGGCTG	60
	ACTCACCGCC CTCGCCGCCG CACCATGGAC GCCCCCAGGC AGGTGGTCAA CTTTGGGCCT	
40	GGTCCCGCCA AGCTGCCGCA CTCAGTGTTG TTAGAGATAC AAAAGGAATT ATTAGACTAC	180
	AAAGGAGTTG GCATTAGTGT TCTTGAAATG AGTCACAGGT CATCAGATTT TGCCAAGATT	240
	ATTAACAATA CAGAGAATCT TGTGCGGGAA TTGCTAGCTG TTCCAGACAA CTATAAGGTG	300
45	ATTTTTCTGC AAGGAGGTGG GTGCGGCCAG TTCAGTGCTG TCCCCTTAAA CCTCATTGGC	360
	TTGAAAGCAG GAAGGTGTGC GGACTATGTG GTGACAGGAG CTTGGTCAGC TAAGGCCGCA	420
	GAAGAAGCCA AGAAGTTTGG GACTATAAAT ATCGTTCACC CTAAACTTGG GAGTTATACA	480
	AAAATTCCAG ATCCAAGCAC CTGGAACCTC AACCCANATG CCTCCTACGT GTTTTATTGC	540
50	NCAAATGAAA CGGTGCATGG TGTTGANTTT GACTTTATAC CCNATGTCAA GGGAACANTA	600
	CTGGTTTGTG ACATTTTCCT CCAACTTCCT GTCCAANCCA ATTGNATGTT TCCAA	655

	<210> 12	
5	<211> 599	
	<212> DNA	
	<213> Homo sapiens	
10	(LIO) Homo suprems	
70	<400> 12	
		60
		20
15		80
		40
	•	800
20		360
		120
		180
	GTCAAAGGTC ACCAAAGTGA AAACAGATCN ACCTTTACCG GANAATCCCT ATCACTCAAG 5	540
<i>25</i>	AACAAGAACG GATCCCAGCC CTGANATCNA AGGAAATCTG CANCCTGCCA CACATGGCA	599
	<210> 13	
30		
	<211> 597	
	<212> DNA	
	<213> Homo sapiens	
<i>35</i>		
	<400> 13	
	ATATCCGGAG TAGACGGAGC CGCAGTAGAC GGATCCGCGG CTGCACCAAA CACTGCCCCT	60
40	CGGAGCCTGG TAGTGGGCCA CAAGCCCCCA GTCCCAGAGG CGTGATTTTC TGGCATCCTT	120
	AAATCTTGTG TCAAGGATTG GTTATAATAT AACCAGAAAC CATGACGGCG GCTGAGAACG	180
	TATGCTACAC GTTAATTAAC GTGCCAATGG ATTCAGAACC ACCATCTGAA ATTAGCTTAA	240
45	AAAATGATCT AGAAAAAGGA GATGTAAAGT CAAAGACTGA AGCTTTGAAG AAAGTAATCA	300
45	TTATGATTCT GAATGGTGAA AAACTTCCTG GACTTCTGAT GACCATCATT CGTTTTGTGC	360
	TACCTCTTCA GGATCACACT ATCAAGAAAT TACTTCTGGT ATTTTTGGGAG ATTGTTCCTA	420
	AAACAACTCC AGATGGGAGA CTTTTACATG AGATGATCCT TGTATGTGAT GCATACAGAA	480
50	AGGATETTEA ACATECTAAT GAATTTATTE NAAGGATETA ETETTEGTTT TETTTGEAAA	540
	TTGAAANAAA CANAATTGCT AAAACCTTTA ATGCCANCTA TNCCTGCATT TTTGGGA	597

	<210> 14	
5	<211> 634	
	<212> DNA	
	<213> Homo sapiens	
10		
	<400> 14	
	AGACTCTCAC CGCAGCGCC AGGAACGCCA GCCGTTCACG CGTTCGGTCC TCCTTGGCTG	60
45	ACTCACCGCC CTCGCCGCCG CACCATGGAC GCCCCCAGGC AGGTGGTCAA CTTTGGGCCT	120
15	GGTCCCGCCA AGCTGCCGCA CTCAGTGTTG TTAGAGATAC AAAAGGAATT ATTAGACTAC	180
	AAAGGANTTG GCATTAGTGT TCTTGAAATG AGTCACAGGT CATCAGATTT TGCCAAGATT	240
	ATTAACAATA CAGAGAATCT TGTGCGGGAA TTGCTAGCTG TTCCAGACAA CTATAAGGTG	300
20	ATTTTTCTGC AAGGAGGTGG GTGCGGCCAG TTCAGTGCTG TCCCCTTAAA CCTCATTGGC	360
	TTGAAAGCAG GAANGTGTGC GGACTATGTG GTGACAGGAG CTTGGTCAGC TAAGGCCGCA	420
	NAANAAGCCA AGAANTTTGG GACTATAAAT ATCGTTCACC CTAAACTTGG GAGTTATACA	480
25	AAAATTCCAG ATCCAAGCAC CTGGAACCTC AACCCAGATG CCTCCTACGT GTATTATTGC	540
	GCNAATGAAA CNGTGCATGG TGTGGANTCT GACTTTATAC CCGATGTCNA GGGAACATAC	600
	TGGTTTGTGA CATGTCCTCA AACTTCCCGT CCNA	634
30	<210> 15	
	< 211> 757	
<i>35</i>	<212> DNA	
	<213> Homo sapiens	
	< 400> 15	
40	AGTCTGCGGT GGGCTANCGG ACGGTCCGGC TTCCGGCGGC CGTTTCTGTC TCTTGCTGGC	. 60
	TGTCTCGCTG AATCGCGGCC GCCTTCTCAT CGCTCCTGGA AGGTCCCGAG CGCGACACCA	120
	TGTCGGAACC CGGGGGGGGG GGCGGCGAAG ACNGCTCGGC CGGATTGGAA GTGTCGGCCG	180
45	TGCANAATGT GGCGGACGTG TCGGTGCTGC ANAAGCACCT GCGCAAGCTG GTGCCGCTGC	240
	TGCTGGAGGA CGGCGGCGAA GCGCCGGCCG CGCTGGAGGC GGCGCTGGAG GAGAAGAGCG	300
	CCCTGGAGCA GATGCGCAAG TTCCTTTCGG ACCCGCACGT CCACACGGTG CTGGTGGAGC	360
	GCTCCACGCT CAAAGTGGAC GTCGGTGATG AAGGAGAAGA AGAAAAAGAA TTCATTTCCT	420
50	ATAACATCAA CNTAGACATT CACTATGGGG TTAAATCCAA TAGCTTGGCA TTCATTAAAC	480
	GTACTCCCGT GATTGATGCA GATAAACCCG TGTCTTCTCA NCTCCGGGTC CTTACACTCA	
	ATTIONOR OUTTOURN AUTHORIST TOTAL TOTAL MOTORIST CLINCALIST	94(

	GTGAANACTC NCCCTACNAA AACTITGCAT TCTTTCATTA ACAATGCAGT GGCTCCTTTT	טטט
E	TTTAANTCCT ACATTAAAAA ATCTGGCAAG GCAAACAGGG ATGGTGATAA AATGGCTCCT (660
5	TCCHTTGAAA AAAAAATTGC CGAACTCNAA ATNGGACTCC TTCCCTTGCA NCAAAATTTT '	720
	TGAAATTCCG GAAAATCANC CTGCCCAATT CCTCCCC	757
10	<210> 16	
	<211> 300	
45	<212> DNA	
15	<213> Homo sapiens	
	<400> 16	
20	ATCATTTCCT TATTTATATT TCATGTTGGA ATGCTTAAAT CGATAACCTT TGTATTTTGA	60
	AGTGCGCGAC ATGGAAGGTG ATCTGCAAGA GCTGCATCAG TCAAACACCG GGGGATAAAT	120
	CTGGATTTGG GTTCCGGCGT CAAGGTGAAG ATAATACCTA AAGAGGAACA CTGTAAAATG	180
	CCAGAAGCAG GTGAANAGCA ACCACAAGTT TAAATGAAGA CAAGCTGAAA CAACGCAAGC	240
25	TGGTTTTATA TTAGATATTT GACTTAAACT ATCTCAATAA AGTTTTGCAG CTTTCACCAC	300
	<210> 17	
30		
	<211> 313	
	<212> DNA	
	<213> Homo sapiens	
35		
	<400> 17	
	AAAGATGGCG GCGGGGGAGG TAGGCAGAGC AGGACGCCGC TGCTGCCGCC GCCACCGCCG	60
40	CCTCCGCTCC AGTCGCCTCC GGTCCTTCAA ACTCACACCT CCCGGGAGGA GCTGTCCTGG	120
	CGCCGGGTCC CGCGGGGAAA ATGGTGGAGC CAGGGCAAGA TTTACTGCTT GCTGCTTTGA	180
	GTGAGAGTGG AATTAGTCCG AATGACTCTT TGATATTGAT GGTGGAGATG CANGGCTTGC	240
	AACTCCAATG CCTACCCCGT CAGTTCAGCA NTCAGTGCCA CTTANTGCAT TANAACTANG	300
45	TTTGGAGACC GAA	313
	<210> 18	
50	<211> 667	
	<212> DNA	
	~616/ DIA	

<213> Homo sapiens

<400> 18	
ACTGCCGGGC TCGGCGTGAG TCGCTGCGGG GCTGACGGGG TGGCAGTGCG GCGGGTTACG	60
GCCTGGTCAG ACCATAATGA CTTCAGCAAA TAAAGCAATC GAATTACAAC TACAAGTGAA	120
ACAAAATGCA GAAGAATTAC AAGACTTTAT GCGGGATTTA GAAAACTGGG AAAAAGACAT	180
TAAACAAAAG GATATGGAAC TAAGAAGACA GAATGGTGTT CCTGAAGAGA ATTTACCTCC	240
TATTCGAAAT GGGAATTTTA GGAAAAAGAA GAAAGGCAAA GCTAAAGAGT CTTCCCCAAA	300
ACCANAGAGG AAAACACNAA AAACAGGATA AAATCTTATG ATTATGANGC ATGGGCAAAA	360
CTTGATGTGG ACCGTATCCT TGATGAGCTT GACAAAGACG ATAGTACCCA TGAGTCTCTG	420
TCTCAAGAAT CAGAGTCGGA AGAAGATGGG ATTCATGTTG ATTCNCNAAA GGCTCTTGTT	480
TTAAAAGAAA AGGGCNATAA ATACTTCCAC AAGGAAAATA TGATGAAGCA ATTGACTGCT	540
ACACNAAAGG CNTGGATGCC GATCCATATN ATCCCGTGTT GCCAACGAAC ANAACNTCCG	600
CATATTTTAG ACTGAAAAAA TTTGCTGTTG CTGAATCTGA TTGTTATTTAN CANTTGCCT	660
TGAAATA	667
	ACTGCCGGGC TCGGCGTGAG TCGCTGCGGG GCTGACGGGG TGGCAGTGCG GCGGGTTACG GCCTGGTCAG ACCATAATGA CTTCAGCAAA TAAAGCAATC GAATTACAAC TACAAGTGAA ACAAAATGCA GAAGAATTAC AAGACTTTAT GCGGGATTTA GAAAACTGGG AAAAAGACAT TAAACAAAAG GATATGGAAC TAAGAAGACA GAATGGTGTT CCTGAAGAGA ATTTACCTCC TATTCGAAAT GGGAATTTTA GGAAAAAGAA GAAAGGCAAA GCTAAAGAGT CTTCCCCAAA ACCANAGAGG AAAACACNAA AAACAGGATA AAATCTTATG ATTATGANGC ATGGGCAAAA CTTGATGTGG ACCGTATCCT TGATGAGCTT GACAAAGACG ATAGTACCCA TGAGTCTCTG TCTCAAGAAT CAGAGTCGGA AGAAGATGGG ATTCATGTTG ATTCNCNAAA GGCTCTTGTT TTAAAAGAAA AGGGCNATAA ATACTTCCAC AAGGAAAATA TGATGAAGCA ATTGACTGCT ACACNAAAGG CNTGGATGCC GATCCATATN ATCCCGTGTT GCCAACGAAC ANAACNTCCG CATATTTTAG ACTGAAAAAA TTTGCTGTTG CTGAATCTGA TTGTTATTTAN CANTTGCCT

30 Claims

35

50

- 1. A method for isolating a full-length cDNA clone, the method comprising:
 - (a) determining a nucleotide sequence from the 5'-region of a cDNA clone contained in a cDNA library;
 - (b) determining the presence or absence of an initiation codon in the nucleotide sequence determined in (a) using an initiation codon prediction program; and
 - (c) selecting clones recognized as containing the initiation codon in (b).
- 2. The method of claim 1, wherein the cDNA library is constructed by a method for preparing a full length-enriched cDNA library.
 - 3. The method of claim 1, wherein a cDNA library is constructed by a method comprising a step of modifying Cap of mRNA.
- 45 4. A method for constructing a full length cDNA library, the method comprising:
 - (a) determining a nucleotide sequence from the 5'-region of a cDNA clone contained in a cDNA library;
 - (b) determining the presence or absence of an initiation codon in the nucleotide sequence determined in (a) using an initiation codon prediction program;
 - (c) selecting clones recognized as containing the initiation codon in (b); and
 - (d) combining the clones selected in (c).
 - 5. The method of claim 4, wherein the cDNA library is prepared by a method for constructing a full length-enriched cDNA library.
 - 6. The method of claim 4, wherein the cDNA library is constructed by a method comprising a step of modifying Cap of mRNA.
 - 7. A cDNA library obtainable by the method of claim 4.

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/04772

		<u> </u>		
	A. CLASSIFICATION OF SUBJECT MATTER Int.Cl ⁶ Cl2N15/10			
According to	International Patent Classification (IPC) or to both nat	ional classification and IPC		
	SEARCHED			
	ocumentation searched (classification system followed b	y classification symbols)		
Documentati	Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched			
	ata base consulted during the international search (name IS (DIALOG), WPI/L (DIALOG)	e of data base and, where practicable, se	arch terms used)	
C. DOCU	MENTS CONSIDERED TO BE RELEVANT			
Category	Citation of document, with indication, where app	ropriate, of the relevant passages	Relevant to claim No.	
A	WO, 94/08001, Al (The Kanagaw 14 April, 1994 (14. 04. 94) & JP, 6-153953, A & EP, 625	_	1-7	
A	WO, 96/34981, A2 (GENSET), 7 November, 1996 (07. 11. 96) & EP, 824598, A2 & PR, 2733 & PR, 2733765, A1	1-7		
A	Maruyama, K., et al., "Oligo-capping: a simple method to replace the cap structure of eukaryotic mRNAs with oligoribo-nucleotides", Gene, Vol. 138 (1994), p.171-174		1-7	
A	Kato, S., et al., "Construction cDNA bank", Gene, Vol. 150 (_	1-7	
A	Carnincle, P., et al., "Righ-for cDNA Cloning by Biotinylated CF Vol. 37 (1996), p.327-336	_	1-7	
X Furth	er documents are listed in the continuation of Box C.	See patent family annex.		
*Special categories of cited documents: "A" document defining the general state of the art which is not considered to be of particular relevances "E" cartier document but published on or after the international filing date document which may throw doubts on priority claims(s) or which is cited to establish the publication date of another citation or other special reason (as specified) "O" document referring to an oral disclosure, use, exhibition or other means "P" document published prior to the international filing date but later then the priority date claimed. "C" document published after the international filing date or priority date and not in conflict with the application but cited to undenstand the principle or theory underlying the invention cannot be considered novel or cannot be considered novel or cannot be considered to involve an inventive step when the document is taken alone document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the document is combined with one or more other such documents, such combination being obvious to a passon stilled in the art document member of the sums patent family				
Date of the actual completion of the international search 13 January, 1999 (13. 01. 99) Date of mailing of the international search report 26 January, 1999 (26. 01. 99)				
Name and mailing address of the ISA/ Japanese Patent Office Authorized officer				
Facsimile	No.	Telephone No.		

Form PCT/ISA/210 (second sheet) (July 1992)

INTERNATIONAL SEARCH REPORT

International application No.
PCT/JP98/04772

		PCT/JP	98/04772
C (Continua	tion). DOCUMENTS CONSIDERED TO BE RELEVANT		······································
Category*	Citation of document, with indication, where appropriate, of the relevan	it passages	Relevant to claim No
A	Edery, I., et al., "An Efficient Strategy To Isolate Full-Length cDNAs Based on an mRNA Cap Retention Procedure (CAPture)", Molecular and Cellular Biology, Vol. 15 (1995), p.3363-3371		1-7
A	oligo-nucleotide composition and discriming analysis of spliceable open reading frames.	ovyev, V., et al., "Predicting internal exons by go-nucleotide composition and discriminant alysis of spliceable open reading frames", Nucleic ds Research, Vol. 22 (1994), No. 24, p.5156-5163	
A	Heindell, H.C., et al., "The Primary Sequence Rabbit α -Globin mRNA", Cell, Vol. 15 (1978)		1-7
A	Minoru Suzuki et al., "RT-PCR Process: Clonend of mRNA by Oligocapping Procedure (in Jap Protein, Nucleic Acid and Enzyme, Vol. 41 (1996), p.603-607	oanese)".	1-7
A	Sumio Sugano et al., "Aiming at Full-leng Library: Substitution of Capped Structure Oligonucleotide (in Japanese)", Protein, Acid and Enzyme, Vol. 38, No. 3 (1993), p	by Nucleic	1-7
A	Carninci, P., et al., "High Efficiency Sele Full-length cDNA by Improved Biotinylated Trapper", DNA Research, Vol. 4, No. 1 (1997)	Cap	1-7
:			

Form PCT/ISA/210 (continuation of second sheet) (July 1992)