Answers

June 23, 2025

1 Exam Preparation Q & A

1.1 Multiple Linear Regression

Q1. What is the main assumption behind multiple linear regression?

A. The expected response is a *linear* combination of the predictors (after any chosen transforms), and the errors are i.i.d., homoscedastic, normal, and uncorrelated, with no perfect multicollinearity.

Q2. How is the loss function in multiple linear regression defined?

A. Ordinary-Least-Squares minimises the mean-squared error $\mathcal{L}(\beta) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top} \beta)^2$.

Q3. When should multiple linear regression be avoided?

A. When the relationship is highly non-linear, residual variance is non-constant, predictors are strongly collinear, influential outliers dominate, or $p \gg n$.

Q4. How do you interpret the coefficients of a linear regression model?

A. Each β_j is the expected change in y for a one-unit increase in x_j holding all other predictors constant.

1.2 Polynomial & Spline Regression

Q5. Why use polynomial regression over linear regression?

A. It captures smooth curvature while keeping a model that is linear in the parameters.

Q6. What is the danger of using high-degree polynomials?

A. High variance: wild oscillations between data points, poor extrapolation, and multicollinearity.

Q7. How do splines improve over high-degree polynomials?

A. They fit *piece-wise* low-degree polynomials joined smoothly at knots, so flexibility is local and stable.

1.3 Ridge & Lasso Regression

Q8. What is the purpose of regularisation?

A. Add a penalty to shrink coefficients, reducing overfitting and multicollinearity.

Q9. How does Ridge differ from Lasso regression?

A. Ridge (L_2) shrinks all coefficients; Lasso (L_1) can set some exactly to zero, giving sparsity.

Q10. Which regularisation technique can be used for feature selection?

A. Lasso (or Elastic Net).

Q11. What does the alpha hyper-parameter control in Ridge and Lasso?

A. Penalty strength: larger α stronger shrinkage / more zeros; $\alpha = 0$ recovers OLS.

1.4 Logistic Regression

Q12. What type of problem does logistic regression solve?

A. Classification (binary, with soft-max extension to multi-class).

Q13. What is the output of a logistic regression model?

A. The estimated probability $\hat{p} = \sigma(\mathbf{x}^{\top}\beta) = \frac{1}{1 + e^{-\mathbf{x}^{\top}\beta}}$.

Q14. How does F1-score help with imbalanced datasets?

A. $F_1 = 2 \frac{PR}{P+R}$ balances precision P and recall R, so majority-class accuracy doesn't dominate.

Q15. Scenario where recall > precision is more important and why?

A. Medical screening: missing a sick patient (low recall) is costlier than extra false positives (lower precision).

1.5 Convolutional Neural Networks (CNNs)

Q17. What kind of data are CNNs best suited for?

A. Grid-like data with local spatial correlations (images, video frames, spectrograms, 1-D/3-D signals).

Q18. Name two common layers used in CNNs.

A. Convolutional layers and pooling (max or average) layers.

Q19. Name parameters used for defining a CNN.

A. Number & size of filters, kernel size, stride, padding, number of conv–pool blocks, learning rate, weight decay, batch size.

Q20. What is the role of filters in CNNs?

A. Learn local patterns (edges \rightarrow textures \rightarrow objects); stacking filters builds hierarchical features.

1.6 Recurrent Neural Networks (RNNs)

Q21. What makes RNNs different from feed-forward networks?

A. They pass a hidden state from one time-step to the next, giving memory of prior inputs.

Q22. What is a limitation of typical RNNs?

A. Vanishing/exploding gradients, so they struggle with long-range dependencies (mitigated by LSTM/GRU).

Q23. What data types are RNNs commonly used for?

A. Sequential data: text, speech, sensor or financial time-series, DNA.

Q24. Give three examples of sequential problems.

A. Language modelling, machine translation, stock-price prediction.

1.7 Ensemble Methods

Q25. What is the core idea behind ensemble methods?

A. Combine multiple diverse learners so their uncorrelated errors cancel out.

Q26. What are the main types of ensemble methods?

A. Bagging (e.g. Random Forest), Boosting (Ada/Gradient/XGBoost), Stacking/Voting.

Q27. What is stacking in ensemble learning?

A. Base models are trained; their out-of-fold predictions feed a meta-learner that blends them.

Q28. What are the advantages of using ensemble models?

A. Higher accuracy, lower variance, greater robustness, better feature-importance stability.

1.8 Random Forest

Q29. How does a Random Forest differ from a decision tree?

A. It builds many trees on bootstrap samples with random feature splits and averages/votes the results.

Q30. What is the role of max_features in Random Forest?

A. Sets how many predictors each split may test; smaller values decorrelate trees (reduce variance).

Q31. What is an out-of-bag (OOB) sample?

A. Data not included in a tree's bootstrap draw (\sim); used for internal error and feature-importance estimates.

Q32. What does increasing n_estimators typically do?

A. Reduces variance and OOB/test error until a plateau; after that it mostly increases compute cost.

1.9 Boosting

Q33. How does boosting work conceptually?

A. Learners are added sequentially, each focusing more on the mistakes of its predecessors.

Q34. Impact of learners on the final prediction in AdaBoost?

A. Each weak learner gets weight $\alpha_m = \ln(\frac{1-\text{err}_m}{\text{err}_m})$; better learners thus influence more.

Q35. What is the role of **learning_rate** in boosting?

A. Scales each learner's contribution; small values slow learning and act as regularisation.

Q36. Why is boosting more prone to overfitting than bagging?

A. It keeps fitting hard/noisy points, especially if base learners are too complex.

1.10 DBSCAN

Q37. What kind of clustering does DBSCAN perform?

A. Density-based clustering.

Q38. What does the eps parameter control in DBSCAN?

A. Neighbourhood radius within which points are considered neighbours of a *core* point.

Q39. How does DBSCAN handle outliers?

A. Points not density-reachable from any core point are labelled *noise*.

Q40. What type of datasets is DBSCAN ideal for?

A. Arbitrary-shaped clusters, noise, unknown k, low/medium-dimensional numeric data.

1.11 UMAP

Q41. What is the primary purpose of UMAP?

A. Non-linear dimensionality reduction / visualisation that preserves local and some global structure.

Q42. What does **n_neighbors** control in UMAP

A. Trade-off between local detail (small values) and global structure (large values).

Q43. Common application of UMAP?

A. Visualising single-cell RNA-seq, image or word embeddings; producing embeddings for clustering.

Q44. Is UMAP deterministic?

A. Not strictly; fixing the random seed gives repeatable results.

1.12 Multidimensional Scaling (MDS)

Q45. What is the main idea of MDS?

A. Place points in low-D so that pairwise Euclidean distances approximate a given dissimilarity matrix.

Q46. Difference between metric and non-metric MDS?

A. Metric preserves exact distances; non-metric preserves only their rank order via a monotone transform.

Q47. Example when metric MDS is recommended.

A. When dissimilarities are true Euclidean distances, e.g. great-circle distances between cities.

Q48. Computational speed of MDS vs. UMAP/t-SNE?

A. Classical MDS needs an $O(n^3)$ eigendecomposition, so it is much slower on large n.

1.13 Support-Vector Machines (SVM)

Q49. What does the SVM algorithm aim to maximise?

A. The margin (minimum distance) between classes.

Q50. What is a support vector?

A. A training point lying on or inside the margin that defines the decision boundary.

Q51. What does the kernel trick allow in SVMs?

A. Computes inner products in high/infinite-D feature space without explicit mapping, enabling non-linear separation.

Q52. What does the hyper-parameter C control?

A. Soft-margin penalty: small C wider margin, higher bias; large C narrow margin, lower bias but risk of overfitting.