1. Let $f(x, y) = 3x^3y^2$. Find

(a) $f_x(x, y)$

(b) $f_{y}(x, y)$

(c) $f_x(1, y)$

(d) $f_x(x, 1)$

(e) $f_y(1, y)$

(f) $f_{y}(x, 1)$

(g) $f_x(1, 2)$

(h) $f_y(1,2)$.

2. Let $z = e^{2x} \sin y$. Find

(a) $\partial z/\partial x$

(b) $\partial z/\partial y$

(c) $\partial z/\partial x|_{(0,v)}$

(d) $\partial z/\partial x|_{(x,0)}$

(e) $\partial z/\partial y|_{(0,y)}$

(f) $\partial z/\partial y|_{(x,0)}$

(g) $\partial z/\partial x|_{(\ln 2,0)}$

(h) $\partial z/\partial y|_{(\ln 2.0)}$.

3–10 Evaluate the indicated partial derivatives. ■

3.
$$z = 9x^2y - 3x^5y$$
; $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

4.
$$f(x, y) = 10x^2y^4 - 6xy^2 + 10x^2$$
; $f_x(x, y)$, $f_y(x, y)$

5.
$$z = (x^2 + 5x - 2y)^8$$
; $\frac{\partial z}{\partial x}$, $\frac{\partial z}{\partial y}$

6.
$$f(x, y) = \frac{1}{xy^2 - x^2y}$$
; $f_x(x, y), f_y(x, y)$

7.
$$\frac{\partial}{\partial p}(e^{-7p/q}), \frac{\partial}{\partial q}(e^{-7p/q})$$

8.
$$\frac{\partial}{\partial x}(xe^{\sqrt{15xy}}), \frac{\partial}{\partial y}(xe^{\sqrt{15xy}})$$

9.
$$z = \sin(5x^3y + 7xy^2); \ \frac{\partial z}{\partial x}, \frac{\partial z}{\partial y}$$

10.
$$f(x, y) = \cos(2xy^2 - 3x^2y^2)$$
; $f_x(x, y)$, $f_y(x, y)$

11. Let
$$f(x, y) = \sqrt{3x + 2y}$$
.

- (a) Find the slope of the surface z = f(x, y) in the x-direction at the point (4, 2).
- (b) Find the slope of the surface z = f(x, y) in the y-direction at the point (4, 2).

12. Let
$$f(x, y) = xe^{-y} + 5y$$
.

- (a) Find the slope of the surface z = f(x, y) in the x-direction at the point (3, 0).
- (b) Find the slope of the surface z = f(x, y) in the y-direction at the point (3, 0).

13. Let $z = \sin(y^2 - 4x)$.

- (a) Find the rate of change of z with respect to x at the point (2, 1) with y held fixed.
- (b) Find the rate of change of z with respect to y at the point (2, 1) with x held fixed.

EXCERCISE 13.3

Partial Derivatives

13.3: Definition-13.3.1,Examples: 1-5, 10-14 Exercise Set 13.3: 1-13, 25-52, 85-92, 95-104

25–30 Find $\partial z/\partial x$ and $\partial z/\partial y$.

25.
$$z = 4e^{x^2y^3}$$

26.
$$z = \cos(x^5y^4)$$

27.
$$z = x^3 \ln(1 + x)$$

27.
$$z = x^3 \ln(1 + xy^{-3/5})$$
 28. $z = e^{xy} \sin 4y^2$

29.
$$z = \frac{xy}{x^2 + y^2}$$

30.
$$z = \frac{x^2 y^3}{\sqrt{x+y}}$$

31–36 Find $f_x(x, y)$ and $f_y(x, y)$.

31.
$$f(x, y) = \sqrt{3x^5y - 7x^3y}$$
 32. $f(x, y) = \frac{x + y}{x - y}$

32.
$$f(x, y) = \frac{x + y}{x - y}$$

33.
$$f(x, y) = y^{-3/2} \tan^{-1}(x/y)$$

34.
$$f(x, y) = x^3 e^{-y} + y^3 \sec \sqrt{x}$$

35.
$$f(x, y) = (y^2 \tan x)^{-4/3}$$

36.
$$f(x, y) = \cosh(\sqrt{x}) \sinh^2(xy^2)$$

37–40 Evaluate the indicated partial derivatives.

37.
$$f(x, y) = 9 - x^2 - 7y^3$$
; $f_x(3, 1)$, $f_y(3, 1)$

38.
$$f(x, y) = x^2 y e^{xy}$$
; $\partial f/\partial x(1, 1)$, $\partial f/\partial y(1, 1)$

39.
$$z = \sqrt{x^2 + 4y^2}$$
; $\partial z/\partial x(1, 2)$, $\partial z/\partial y(1, 2)$

40.
$$w = x^2 \cos xy$$
; $\partial w/\partial x \left(\frac{1}{2}, \pi\right)$, $\partial w/\partial y \left(\frac{1}{2}, \pi\right)$

41. Let
$$f(x, y, z) = x^2y^4z^3 + xy + z^2 + 1$$
. Find

(a)
$$f_x(x, y, z)$$

(a)
$$f_x(x, y, z)$$
 (b) $f_y(x, y, z)$ (c) $f_z(x, y, z)$

(c)
$$f_z(x, y, z)$$

(d)
$$f_x(1, y, z)$$

(e)
$$f_{y}(1, 2, z)$$

(f)
$$f_z(1,2,3)$$
.

42. Let $w = x^2 y \cos z$. Find

(a)
$$\partial w/\partial x(x, y, z)$$

(b)
$$\partial w/\partial y(x, y, z)$$

(c)
$$\partial w/\partial z(x, y, z)$$

(d)
$$\partial w/\partial x(2, y, z)$$

(e)
$$\partial w/\partial y(2, 1, z)$$

(f)
$$\partial w/\partial z(2,1,0)$$
.

43–46 Find f_x , f_y , and f_z .

43.
$$f(x, y, z) = z \ln(x^2 y \cos z)$$

44.
$$f(x, y, z) = y^{-3/2} \sec\left(\frac{xz}{y}\right)$$

45.
$$f(x, y, z) = \tan^{-1}\left(\frac{1}{xy^2z^3}\right)$$

46.
$$f(x, y, z) = \cosh(\sqrt{z}) \sinh^2(x^2 yz)$$

47–50 Find $\partial w/\partial x$, $\partial w/\partial y$, and $\partial w/\partial z$.

$$47. \ w = ye^z \sin xz$$

48.
$$w = \frac{x^2 - y^2}{y^2 + z^2}$$

49.
$$w = \sqrt{x^2 + y^2 + z^2}$$

50.
$$w = y^3 e^{2x+3z}$$

51. Let
$$f(x, y, z) = y^2 e^{xz}$$
. Find

(a)
$$\partial f/\partial x|_{(1,1,1)}$$
 (b) $\partial f/\partial y|_{(1,1,1)}$ (c) $\partial f/\partial z|_{(1,1,1)}$.

(b)
$$\partial f/\partial y|_{(1,1,1)}$$

(c)
$$\partial J / \partial Z|_{(1,1,1)}$$

52. Let
$$w = \sqrt{x^2 + 4y^2 - z^2}$$
. Find

(a)
$$\partial w/\partial x|_{(2,1,-1)}$$

(b)
$$\partial w/\partial y|_{(2,1,-1)}$$

(c)
$$\partial w/\partial z|_{(2,1,-1)}$$
.

85-92 Confirm that the mixed second-order partial derivatives of f are the same.

85.
$$f(x, y) = 4x^2 - 8xy^4 + 7y^5 - 3$$

86.
$$f(x, y) = \sqrt{x^2 + y^2}$$
 87. $f(x, y) = e^x \cos y$

87.
$$f(x, y) = e^x \cos y$$

88.
$$f(x, y) = e^{x-y^2}$$

88.
$$f(x, y) = e^{x-y^2}$$
 89. $f(x, y) = \ln(4x - 5y)$

90.
$$f(x, y) = \ln(x^2 + y^2)$$

91.
$$f(x, y) = (x - y)/(x + y)$$

92.
$$f(x, y) = (x^2 - y^2)/(x^2 + y^2)$$

95. Given
$$f(x, y) = x^3y^5 - 2x^2y + x$$
, find

(a)
$$f_{xxy}$$

(b)
$$f_{vxv}$$

(c)
$$f_{yyy}$$

(a)
$$f_{xxy}$$
 (b) f_{yxy} (c) f_{yyy} .
96. Given $z = (2x - y)^5$, find
(a) $\frac{\partial^3 z}{\partial y \partial x \partial y}$ (b) $\frac{\partial^3 z}{\partial x^2 \partial y}$ (c) $\frac{\partial^4 z}{\partial x^2 \partial y^2}$.

(a)
$$\frac{\partial^3 z}{\partial v \partial x \partial v}$$

(b)
$$\frac{1}{a}$$

(c)
$$\frac{\partial^4 z}{\partial x^2 \partial y^2}$$

97. Given
$$f(x, y) = y^3 e^{-5x}$$
, find

(a)
$$f_{xyy}(0,1)$$

(b)
$$f_{rrr}(0, 1)$$

(a)
$$f_{xyy}(0,1)$$
 (b) $f_{xxx}(0,1)$ (c) $f_{yyxx}(0,1)$.

98. Given
$$w = e^y \cos x$$
, find

98. Given
$$w = e^y \cos x$$
, find
(a) $\frac{\partial^3 w}{\partial y^2 \partial x} \Big|_{(\pi/4,0)}$
(b) $\frac{\partial^3 w}{\partial x^2 \partial y} \Big|_{(\pi/4,0)}$

(b)
$$\frac{\partial^3 w}{\partial x^2 \partial y} \Big|_{(\pi/4,0)}$$

99. Let
$$f(x, y, z) = x^3 y^5 z^7 + xy^2 + y^3 z$$
. Find

(a)
$$f_{xy}$$
 (b) f_{yz} (c) f_{xz} (d) f_{zz} (e) f_{zyy} (f) f_{xxy} (g) f_{zyx} (h) f_{xxyz} .

100. Let $w = (4x - 3y + 2z)^5$. Find
(a) $\frac{\partial^2 w}{\partial x \partial z}$ (b) $\frac{\partial^3 w}{\partial x \partial y \partial z}$ (c) $\frac{\partial^4 w}{\partial z^2 \partial y \partial x}$.

(a)
$$\frac{\partial^2 w}{\partial x \partial z}$$

(b)
$$\frac{\partial^3 w}{\partial x^2}$$

(c)
$$\frac{\partial^4 w}{\partial x^2 \partial x^2}$$

101. Show that the function satisfies Laplace's equation

$$\frac{\partial^2 z}{\partial x^2} + \frac{\partial^2 z}{\partial y^2} = 0$$

(a)
$$z = x^2 - y^2 + 2xy$$

(b)
$$z = e^x \sin y + e^y \cos x$$

(c)
$$z = \ln(x^2 + y^2) + 2\tan^{-1}(y/x)$$

102. Show that the function satisfies the heat equation

$$\frac{\partial z}{\partial t} = c^2 \frac{\partial^2 z}{\partial x^2} \quad (c > 0, \text{ constant})$$

(a)
$$z = e^{-t} \sin(x/c)$$

(b)
$$z = e^{-t} \cos(x/c)$$

103. Show that the function $u(x, t) = \sin c\omega t \sin \omega x$ satisfies the wave equation [Equation (6)] for all real values of ω .

104. In each part, show that u(x, y) and v(x, y) satisfy the Cauchy-Riemann equations

$$\frac{\partial u}{\partial x} = \frac{\partial v}{\partial y} \quad \text{and} \quad \frac{\partial u}{\partial y} = -\frac{\partial v}{\partial x}$$
(a) $u = x^2 - y^2$, $v = 2xy$
(b) $u = e^x \cos y$, $v = e^x \sin y$
(c) $u = \ln(x^2 + y^2)$, $v = 2 \tan^{-1}(y/x)$

(a)
$$u = x^2 - y^2$$
,

$$\frac{\partial}{\partial y} = -$$

(a)
$$u = x^2 - y^2$$
,

$$v = e^x \sin x$$

(c)
$$u = \ln(x^2 + v^2)$$

$$v = 2 \tan^{-1}(v)$$