Web Traffic Time Series Forecasting

Problem

Web traffic can be defined as the number of visits to a website, including requests sent and received by web users. We aim to predict future web traffic for approximately a total of 145k Wikipedia articles to make better traffic control decisions. The increase in traffic for the websites could cause a lot of inconvenience for the users by a crashed site or very slow loading time. Therefore, a traffic management technique or plan should be put in place to reduce the risk of such problems.

Client

The accurate forecasting of future web traffic will help website servers optimize traffic management effectively, and thus maintain their regular customer service level.

Data

The data is collected from the Kaggle competition and can be found at https://www.kaggle.com/competitions/web-traffic-time-series-forecasting/overview

The training dataset consists of approximately 145k time series. Each of these time series represent a number of daily views of a different Wikipedia article for a total of 803 days from July 1st, 2015 to September 10th, 2017. In the competition, the challenge was to build a model on it and predict future traffic on each of the page for 62 days from September 13th to November 13th, 2017.

Approach

- clean the dataset by imputing the missing data if any.
- separate the time series dataset into the groups that contain a certain language.
- explore the raw data of each group to check if there is any pattern on time.
- check stationarity by Augmented Dicky-Fuller (ADF) test.
- converting the data into stationary format by detrending, differencing, and transformation.
- build three different types of Time series models: ARIMA (Auto-Regressive Integrated Moving Average), Prophet Facebook, and LSTM (Long Short-Term Memory).
- compare the different models to find a better solution.
- forecast future web traffic by using the models and interpret the results.

Doosoo Yoon Date: 2023.01.03

Deliverables

- Jupyter notebook that contains exploratory data analysis, feature engineering, and modeling.
- Final report that includes the entire process from data cleaning to model solutions.
- Slide deck for presentation.