Basic Circuit Elements

Mohammad Hadi

mohammad.hadi@sharif.edu @MohammadHadiDastgerdi

Spring 2022

Mohammad Hadi Electrical Circuits Spring 2022

Overview

- Signals
- 2 Resistor
- Capacitor
- 4 Inductor
- Memristor
- 6 Power and Energy
- Elements Interconnections

Mohammad Hadi Electrical Circuits Spring 2022

Signals

3/96

Figure: Constant signal $c(t) = 1, \forall t$.

Figure: Step signal $u(t) = \begin{cases} 1, t \ge 0 \\ 0, t < 0 \end{cases}$

Figure: Step signal
$$r(t) = \begin{cases} t, t \geq 0 \\ 0, t < 0 \end{cases} = tu(t) = \int_{-\infty}^{t} u(\lambda) d\lambda.$$

Figure: Exponential signal $f(t) = Ae^{at}$.

Example (Rectangular signal)

$$\Box(t) = u(t+0.5) - u(t-0.5).$$

Mohammad Hadi Electrical Circuits Spring 2022 6/96

Example (Triangle signal)

$$\Lambda(t) = r(t+1) - 2r(t) + r(t-1).$$

$$\Lambda(t) = (t+1)[u(t+1)-u(t)]+(1-t)[u(t)-u(t-1)] = r(t+1)-2r(t)+r(t-1)$$

7/96

Mohammad Hadi Electrical Circuits Spring 2022

Figure: Impulse signal $\delta(t)$.

- **Surface**: $\int_{-\infty}^{+\infty} \delta(t) dt = \int_{0-}^{0+} \delta(t) dt = 1$
- **Sampling:** $\int_{-\infty}^{+\infty} f(t)\delta(t)dt = \int_{t_1}^{t_2} f(t)\delta(t)dt = f(0), 0 \in (t_1, t_2), \quad f(t)\delta(t) = f(0)\delta(t)$
- **Scaling**: $\delta(at) = \frac{1}{|a|}\delta(t)$
- **1** Integral: $u(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda$
- **1** Derivative: $\delta'(t) = \frac{d\delta(t)}{dt}$

Figure: Doublet signal $\delta'(t)$.

- **1** Definition: $\delta(t) = \lim_{T \to 0} \frac{1}{T} \Lambda(\frac{t}{T}) = \begin{cases} \infty, & t = 0 \\ 0, & t \neq 0 \end{cases}$, $\delta'(t) = \frac{d\delta(t)}{dt}$
- **Surface:** $\int_{-\infty}^{+\infty} \delta'(t)dt = \int_{0-}^{0+} \delta'(t)dt = 0$
- **3** Sampling: $\int_{t_1}^{t_2} f(t)\delta'(t)dt = -f'(0), 0 \in (t_1, t_2), \quad f(t)\delta'(t) = -f'(0)\delta(t) + f(0)\delta'(t)$

Mohammad Hadi Electrical Circuits Spring 2022 9/96

Example (Sampling property of $\delta'(t)$)

The sampling property of $\delta'(t)$ can be roughly verified as the limit of $\frac{1}{T}\Lambda(\frac{t}{T})$.

$$0 \in (t_1, t_2)$$

$$\int_{t_1}^{t_2} f(t)\delta'(t)dt = \lim_{T \to 0} [f(-0.5T) \frac{1}{T^2} T - f(0.5T) \frac{1}{T^2} T]$$

$$= \lim_{T \to 0} \frac{f(-0.5T) - f(+0.5T)}{T}$$

$$= -\lim_{T \to 0} \frac{f(0.5T) - f(-0.5T)}{0.5T - (-0.5T)} = -f'(0)$$

Mohammad Hadi Electrical Circuits Spring 2022 1

Example (Relations of singular functions)

Singular functions relate to each other using derivative and integral operations.

$$\cdots$$
, $\delta'(t) = \frac{d\delta(t)}{dt}$, $\delta(t) = \frac{du(t)}{dt}$, $u(t) = \frac{dr(t)}{dt}$, \cdots

$$\cdots, \quad \delta(t) = \int_{-\infty}^{t} \delta'(\lambda) d\lambda, \quad u(t) = \int_{-\infty}^{t} \delta(\lambda) d\lambda, \quad r(t) = \int_{-\infty}^{t} u(\lambda) d\lambda, \quad \cdots$$

Mohammad Hadi Electrical Circuits Spring 2022 11/96

Example (Derivative and integral of discontinuous function)

Singular functions can be used in derivative and integral calculations.

$$f(t) = 4u(t) - 6u(t-1) + 2u(t-2) + 4\delta(t-3)$$

$$\frac{df(t)}{dt} = 4\delta(t) - 6\delta(t-1) + 2\delta(t-2) + 4\delta'(t-3)$$

$$f(\lambda)d\lambda = 4tu(t) - 6(t-1)u(t-1) + 2(t-2)u(t-2) + 4u(t-3)$$

Periodic Signals

Figure: Sinusoidal periodic signals with period T.

- **1** Expression: $f(t) = A\cos(\omega t + \theta) \equiv A\sin(\omega t + \theta)$
- Period: $T = \frac{2\pi}{\omega} = \frac{1}{f}$
- Frequency: $f = \frac{\omega}{2\pi} = \frac{1}{T}$
- **1** Phase: θ
- Amplitude: A
- Peak to peak amplitude: 2A
- **Average**: $f_{av} = \frac{1}{T} \int_{T} f(t) dt = \frac{1}{T} \int_{T} A \cos(\omega t + \theta) dt = 0$
- **3** RMS: $f_{rms} = \sqrt{\frac{1}{T} \int_{T} |f(t)|^2 dt} = \sqrt{\frac{1}{T} \int_{T} A^2 \cos^2(\omega t + \theta) dt} = \frac{A}{\sqrt{2}}$

Figure: Sinusoidal, sawtooth, and pulse train periodic signals with period T.

Periodic Signals

Example (Pulse train)

A pulse train can be characterized in terms of its average, rms, and duty cycle.

Other Signals

Example (Underdampled signal)

An underdamped signal can be expressed as the multiplication of sinusoidal and exponential signals.

$$f(t) = A + Be^{-\alpha t}\cos(\omega t + \phi)$$

Mohammad Hadi Electrical Circuits Spring 2022 16 / 96

Other Signals

Example (Complex exponential signal)

A complex signal can be described using its polar or Cartesian presentations.

$$f(t) = Ae^{-\alpha t}e^{j(\omega t + \phi)} = \Re\{f(t)\} + j\Im\{f(t)\} = |f(t)|e^{j\angle f(t)}$$

$$\Re\{f(t)\} = Ae^{-\alpha t}\cos(\omega t + \phi)$$

$$\Im\{f(t)\} = Ae^{-\alpha t}\sin(\omega t + \phi)$$

$$|f(t)| = |A|e^{-\alpha t}$$

$$\angle f(t) = \omega t + \phi + \pi u(-A)$$

18/96

Statement (Linear Function)

The function f(x) is (map-) linear if it is homogeneous, i.e., $f(\alpha x) = \alpha f(x)$, and additive, i.e., $f(x_1 + x_2) = f(x_1) + f(x_2)$.

Statement (Continuous Function)

The function f(x) is continuous if $\lim_{x\to x_0} f(x) = f(x_0), \forall x_0$.

Statement (Bounded Function)

The function f(x) is bounded if $|f(x_0)| < M, \forall x_0$.

- f(x) = ax is a linear function.
- ② $f(x) = ax + b, b \neq 0$ is not a linear function.
- $f(x(t)) = \frac{dx(t)}{dt}$ is a linear function.
- f(x) = u(x) is not continuous but is bounded.

Figure: LTI, LTV, NTI, NTV resistors. The units of voltage, current, resistance, and conductance are V, A, Ω , \mho .

- **1** Linear time-invariant resistor: $v(t) = Ri(t) \equiv i(t) = Gv(t)$
- **2** Linear time-variant resistor: $v(t) = R(t)i(t) \equiv i(t) = G(t)v(t)$
- **1** Nonlinear time-invariant resistor: f(v(t), i(t)) = 0
- **1** Nonlinear time-variant resistor: f(v(t), i(t), t) = 0
- Voltage-controlled resistor: i(t) = f(v(t), t)
- Current-controlled resistor: v(t) = f(i(t), t)
- **O** Bilateral resistor: f(v(t), i(t)) = f(-v(t), -i(t))

Figure: LTI, LTV, NTI, NTV resistors. The units of voltage, current, resistance, and conductance are V, A, Ω , \mho .

- Linear time-invariant resistor: $v(t) = Ri(t) \equiv i(t) = Gv(t)$
- **2** Linear time-variant resistor: $v(t) = R(t)i(t) \equiv i(t) = G(t)v(t)$
- **1** Nonlinear time-invariant resistor: f(v(t), i(t)) = 0
- **Nonlinear time-variant resistor**: f(v(t), i(t), t) = 0
- **5** Voltage-controlled resistor: i(t) = f(v(t), t)
- Current-controlled resistor: v(t) = f(i(t), t)
- **O** Bilateral resistor: f(v(t), i(t)) = f(-v(t), -i(t))

21/96

Example (Open circuit)

Open circuit is a voltage-controlled bilateral LTI resistor with G = 0.

Mohammad Hadi Electrical Circuits Spring 2022 22 / 96

Example (Short circuit)

Short circuit is a current-controlled bilateral LTI resistor with R=0.

Mohammad Hadi Electrical Circuits Spring 2022 23 / 96

Example (DC voltage source)

DC voltage source is a current-controlled NTI resistor.

Example (AC voltage source)

AC voltage source is a current-controlled NTV resistor.

Mohammad Hadi Electrical Circuits Spring 2022 25/96

Example (DC current source)

DC current source is a voltage-controlled NTI resistor.

Mohammad Hadi Electrical Circuits Spring 2022 26 / 96

Example (AC current source)

AC current source is a voltage-controlled NTV resistor.

Mohammad Hadi Electrical Circuits Spring 2022 27/96

Example (Ideal diode)

An ideal diode is an NTI resistor.

Spring 2022

Example (Ideal diode)

A real diode with the characteristic curve $i=I_s(e^{\frac{qv}{kT}}-1)=I_s(e^{\frac{v}{V_T}}-1)$ is an NTI resistor, where the thermal voltage equals $V_T=kT/q\approx 26$ mV in room temperature.

29 / 96

Example (Battery)

A battery can be modeled as a series connection of a resistor and a voltage source.

$$v(t) = V_0 + V_R(t) = V_0 + Ri(t)$$

$$i(t) = -I_0 + i_R(t) = -\frac{V_0}{R} + \frac{v(t)}{R}$$

Example (Time-variant resistor)

A time-variant resistor can create new frequencies from an input single-frequency tone signal.

$$i_s(t) = I\sin(2\pi f_1 t)$$

$$R = 1 \Rightarrow v(t) = I \sin(2\pi f_1 t)$$

$$R(t) = 1 + 2\cos(2\pi f_2 t) \Rightarrow$$

$$v(t) = I\sin(2\pi f_1 t) + I\sin(2\pi (f_1 + f_2)t) + I\sin(2\pi (f_1 - f_2)t)$$

Mohammad Hadi Electrical Circuits Spring 2022 31/96

Example (Nonlinear resistor)

The characteristic curve of a nonlinear resistor can be used to draw its voltage or current.

Example (Dependent sources)

Linear dependent sources can be usually considered as NTV resistors.

Mohammad Hadi Electrical Circuits Spring 2022 33/96

Example (Circuit with dependent sources)

Tellegen's theorem can be verified for the circuit below.

$$i_6 = 20, i_2 = \frac{10}{2} = 5, i_3 = 2i_2 = 10, i_4 = -i_3 = -10, i_1 = i_2 - i_4 = 15, i_5 = 20 - i_4 = 30$$

 $v_1 = 10, v_2 = 10, v_4 = 3i_4 = -30, v_5 = 4i_1 = 60, v_6 = v_5 = 60, v_3 = -v_4 + v_5 - v_2 = 80$
 $p_1 = -10i_1 = -150, p_2 = v_2i_2 = 50, p_3 = -v_3i_3 = -800$
 $p_4 = v_4i_4 = 300, p_5 = v_5i_5 = 1800, p_6 = -v_6i_6 = -1200$
 $p_1 + p_2 + p_3 + p_4 + p_5 + p_6 = 0$

Mohammad Hadi Electrical Circuits Spring 2022 34 / 96

Example (Small-signal analysis)

Circuits with nonlinear resistors can be investigated using small-signal analysis.

$$i = f(v) i(t) = f(V_0 + v_s(t)), |v_s(t)| \ll |V_0| i(t) \approx f(V_0) + \frac{df}{dv}|_{v=V_0} v_s(t) i(t) \approx l_0 + gv_s(t)$$

35 / 96

Capacitor

36 / 96

Figure: LTI, LTV, NTI, NTV capacitors. The units of charge, voltage, capacitance, and elastance are C, V, F, F^{-1} .

- **1** Linear time-invariant capacitor: $q(t) = Cv(t) \equiv v(t) = Sq(t)$
- **②** Linear time-variant capacitor: $q(t) = C(t)v(t) \equiv v(t) = S(t)q(t)$
- Nonlinear time-invariant capacitor: f(q(t), v(t)) = 0
- **Nonlinear time-variant capacitor**: f(q(t), v(t), t) = 0
- **1** Voltage-controlled capacitor: q(t) = f(v(t), t)
- **1** Charge-controlled capacitor: v(t) = f(q(t), t)
- **O** Bilateral capacitor: f(q(t), v(t)) = f(-q(t), -v(t))

Figure: LTI, LTV, NTI, NTV capacitors. The units of charge, voltage, capacitance, and elastance are C, V, F, F^{-1} .

- Linear time-invariant capacitor: $q(t) = Cv(t) \equiv v(t) = Sq(t)$
- **②** Linear time-variant capacitor: $q(t) = C(t)v(t) \equiv v(t) = S(t)q(t)$
- **3** Nonlinear time-invariant capacitor: f(q(t), v(t)) = 0
- **1** Nonlinear time-variant capacitor: f(q(t), v(t), t) = 0
- **Output** Voltage-controlled capacitor: q(t) = f(v(t), t)
- Charge-controlled capacitor: v(t) = f(q(t), t)
- Bilateral capacitor: f(q(t), v(t)) = f(-q(t), -v(t))

38 / 96

Figure: LTI, LTV, NTI, NTV capacitors. The units of charge, voltage, capacitance, and elastance are C, V, F, F^{-1} .

- Linear time-invariant capacitor:
 - Current equation: $i(t) = \frac{dq(t)}{dt} = C \frac{dv(t)}{dt}, \quad v(t_0)$
 - Voltage equation: $v(t) = v(t_0) + \frac{1}{C} \int_{t_0}^t i(\lambda) d\lambda$
 - Full description by capacitance C and initial voltage $v(t_0)$
 - Memory element
 - Linearity of current in terms of voltage
 - Continuity of voltage for bounded current
- **Q** Linear time-variant capacitor: $i(t) = C(t) \frac{dv(t)}{dt} + v(t) \frac{dC(t)}{dt}, \quad v(t_0), C(t_0)$
- **3** Voltage-controlled capacitor: $i(t) = \frac{\partial f}{\partial v} \frac{dv(t)}{dt} + \frac{\partial f}{\partial t}$

Example (LTI capacitor)

A capacitor integrates its flowing current.

Mohammad Hadi Electrical Circuits Spring 2022 40 / 96

Example (LTI capacitor)

The capacitor voltage remains continuous for the bounded flowing current.

Example (LTI capacitor)

The capacitor voltage experiences discontinuity for the unbounded flowing current.

Example (Initial condition modeling)

The initial voltage can be modeled using an independent voltage source.

$$\begin{array}{c|c}
i(t) & & i(t) \\
+ & V_0 & + & V_0 \\
\hline
- & & V(t) & + & C \\
\hline
- & & V_c(t) & - & - & - \\
v(0) = V_0 & & V_c(0) = 0
\end{array}$$

$$v(t) = v(0) + \frac{1}{C} \int_0^t i(\lambda) d\lambda = V_0 + \frac{1}{C} \int_0^t i(\lambda) d\lambda$$

Mohammad Hadi Electrical Circuits Spring 2022 43 / 96

Example (Thevenin-Norton Equivalency)

The two circuits below are equivalent if $i_s(t) = C \frac{dv_s(t)}{dt} \equiv v_s(t) = \frac{1}{C} \int_0^t i_s(\lambda) d\lambda$ and $v_c(0) = 0$

Figure: LTI, LTV, NTI, NTV inductors. The units of flux, current, inductance, and reciprocal inductance are Wb, A, H, H^{-1} .

- **1** Linear time-invariant inductor: $\phi(t) = Li(t) \equiv i(t) = \Gamma \phi(t)$
- **2** Linear time-variant inductor: $\phi(t) = L(t)i(t) \equiv i(t) = \Gamma(t)\phi(t)$
- **Solution** Nonlinear time-invariant inductor: $f(\phi(t), i(t)) = 0$
- **1** Nonlinear time-variant inductor: $f(\phi(t), i(t), t) = 0$
- **Our Current-controlled inductor:** $\phi(t) = f(i(t), t)$
- Flux-controlled inductor: $i(t) = f(\phi(t), t)$
- **Obliate** Bilateral inductor: $f(\phi(t), i(t)) = f(-\phi(t), -i(t))$

46 / 96

Figure: LTI, LTV, NTI, NTV inductors. The units of flux, current, inductance, and reciprocal inductance are Wb, A, H, H^{-1} .

- **1** Linear time-invariant inductor: $\phi(t) = Li(t) \equiv i(t) = \Gamma \phi(t)$
- **2** Linear time-variant inductor: $\phi(t) = L(t)i(t) \equiv i(t) = \Gamma(t)\phi(t)$
- **Nonlinear time-invariant inductor**: $f(\phi(t), i(t)) = 0$
- **Nonlinear time-variant inductor**: $f(\phi(t), i(t), t) = 0$
- **Solution** Current-controlled inductor: $\phi(t) = f(i(t), t)$
- **1** Flux-controlled inductor: $i(t) = f(\phi(t), t)$
 - **Bilateral inductor**: $f(\phi(t), i(t)) = f(-\phi(t), -i(t))$

Figure: LTI, LTV, NTI, NTV inductors. The units of flux, current, inductance, and reciprocal inductance are Wb, A, H, H^{-1} .

- Linear time-invariant inductor:
 - Voltage equation: $v(t) = \frac{d\phi(t)}{dt} = L\frac{di(t)}{dt}, \quad i(t_0)$
 - Current equation: $i(t) = i(t_0) + \frac{1}{L} \int_{t_0}^{t} v(\lambda) d\lambda$
 - Full description by inductance L and initial current $i(t_0)$
 - Memory element
 - Linearity of voltage in terms of current
 - Continuity of current for bounded voltage
- **Q** Linear time-variant inductor: $v(t) = L(t) \frac{di(t)}{dt} + i(t) \frac{dL(t)}{dt}, \quad i(t_0), L(t_0)$
- **3** Current-controlled inductor: $i(t) = \frac{\partial f}{\partial i} \frac{di(t)}{dt} + \frac{\partial f}{\partial t}$

Example (LTI inductor)

An inductor differentiates its flowing current.

49 / 96

Example (NTI inductor)

An NTI inductor can be described by its characteristic curve.

Spring 2022

Example (Initial condition modeling)

The initial current can be modeled using an independent current source.

$$i(t) = i(0) + \frac{1}{L} \int_0^t v(\lambda) d\lambda = I_0 + \frac{1}{L} \int_0^t v(\lambda) d\lambda$$

Mohammad Hadi Electrical Circuits Spring 2022 5

Example (Thevenin-Norton Equivalency)

The two circuits below are equivalent if $v_s(t) = L \frac{di_s(t)}{dt} \equiv i_s(t) = \frac{1}{L} \int_0^t v_s(\lambda) d\lambda$ and $i_L(0) = 0$

$$i(t) = -i_s(t) + \frac{1}{L} \int_0^t v(\lambda) d\lambda$$
 $v(t) = v_s(t) + L \frac{di(t)}{dt}$

Example (Hysteresis)

An inductor with hysteresis characteristic is an NTI inductor.

Example (DC steady state)

If a DC driven inductor (capacitor) reaches its steady state situation, it acts like a short (open) circuit.

Mohammad Hadi Electrical Circuits Spring 2022 54/96

Memristor

55/96

Memristor

Figure: Basic one-port circuit elements.

• Nonlinear time-variant memristor: $f(q(t), \phi(t), t) = 0$

56 / 96

Figure: A general one-port element with passive sign convention.

- **1** Absorbed power: $p(t) = v(t)i(t) = \frac{d\epsilon(t)}{dt}$
- **a** Absorbed energy: $w(t_0, t) = \epsilon(t) \epsilon(t_0) = \int_{t_0}^t p(\lambda) d\lambda$
- **3** Absolute energy: $\epsilon(t) = \epsilon(t_0) + w(t_0, t)$

58 / 96

Mohammad Hadi Electrical Circuits Spring 2022

Figure: LTI, LTV, NTI, NTV resistors. Resistors dissipate power.

- **1** LTI resistor absorbed energy: $w(t_0, t) = \int_{t_0}^t v(\lambda)i(\lambda)d\lambda = R \int_{t_0}^t i^2(\lambda)d\lambda$
- **Q** LTI resistor passivity condition: $w(t_0, t) = R \int_{t_0}^t i^2(\lambda) d\lambda \ge 0 \Rightarrow R \ge 0$
- **Solution** LTV resistor passivity condition: $R(t) \ge 0, \forall t$
- **NTV** resistor passivity condition: $w(t_0, t) = \int_{t_0}^t p(\lambda) d\lambda \ge 0 \Rightarrow p(t) = v(t)i(t) \ge 0, \forall t$

Mohammad Hadi Electrical Circuits Spring 2022

Figure: LTI, LTV, NTI, NTV capacitors. Capacitors store electrical energy.

- **1** LTI capacitor absorbed energy: $w(t_0, t) = \int_{t_0}^{t} v(\lambda)i(\lambda)d\lambda =$ $\int_{t_0}^t v(\lambda) C \frac{dv(\lambda)}{d\lambda} d\lambda = C \int_{v(t_0)}^{v(t)} u du = \frac{C}{2} (v^2(t) - v^2(t_0))$
- **2** LTI capacitor absolute energy: $\epsilon_E(t) = \frac{C}{2}v^2(t) = \frac{1}{2C}q^2(t)$
- **1** LTI capacitor passivity condition: $\epsilon_E(t) = \frac{C}{2}v^2(t) > 0 \Rightarrow C > 0$
- LTV capacitor passivity condition: C(t), C'(t) > 0, $\forall t$
- **Solution** NTI capacitor passivity condition: $q(t)v(t) \geq 0, \forall t$

Figure: LTI, LTV, NTI, NTV inductors. Inductors store magnetic energy.

LTI inductor absorbed energy:

$$w(t_0,t) = \int_{t_0}^t v(\lambda)i(\lambda)d\lambda = \int_{t_0}^t L\frac{di(\lambda)}{d\lambda}i(\lambda)d\lambda = L\int_{i(t_0)}^{i(t)} udu = \frac{L}{2}(i^2(t) - i^2(t_0))$$

- **2** LTI inductor absolute energy: $\epsilon_M(t) = \frac{L}{2}i^2(t) = \frac{1}{2L}\phi^2(t)$
- **1** LTI inductor passivity condition: $\epsilon_M(t) = \frac{L}{2}i^2(t) \ge 0 \Rightarrow L \ge 0$
- **1** LTV inductor passivity condition: $L(t), L'(t) \ge 0, \forall t$
- **NTI** inductor passivity condition: $\phi(t)i(t) \geq 0, \forall t$

Mohammad Hadi Electrical Circuits Spring 2022

Example (Activity)

A DC voltage source with the voltage V_0 is active since $p(t)=v(t)i(t)=V_0(-V_0)=-V_0^2<0$.

Example (Passivity)

The NTI resistor with the characteristic curve $i(t) = 2(v(t))^3$ is passive since $p(t) = v(t)i(t) = 2(v(t))^4 \ge 0$.

Example (Activity)

The LTV resistor with the resistance R(t) = -(2t+1) is active since R(0) = -1 < 0.

4□▶ 4□▶ 4 ≥ ▶ 4 ≥ ▶ 9 Q ○

Mohammad Hadi Electrical Circuits Spring 2022 62

Example (Power and Energy)

The energy and power curves for the shown inductor are plotted as below.

Example (Power and Energy)

For the circuit below, i(t) = 3t, t > 0, $v_C(0) = 3$, and $i_L(0) = 0$. $w_R(0,1) = 6$, $p_L(2) = 54$, and $\epsilon_C(4) = 225$.

$$w_R(0,1) = 2 \int_0^1 (3\lambda)^2 d\lambda = 6$$

$$i_L(2) = 6, v_L(2) = 3i'_L(2) = 9 \Rightarrow \rho_L(2) = v_L(2)i_L(2) = 54$$

$$v_c(4) = 3 + \frac{1}{2} \int_0^4 3\lambda d\lambda = 15 \Rightarrow \epsilon_C(4) = \frac{1}{2}(2)v_C^2(4) = 225$$

Mohammad Hadi Electrical Circuits Spring 2022 64

Elements Interconnections

65 / 96

Mohammad Hadi Electrical Circuits Spring 2022

Equivalent One-ports

Figure: A same equation governs ports of two equivalent one-ports.

Figure: Same equations govern ports of two equivalent two-ports.

Mohammad Hadi Electrical Circuits Spring 2022 66/96

Figure: Two series resistors with $i=i_1=i_2$ and $v=v_1+v_2$. Series connection of two current-controlled resistors has the characteristic curve $v=v_1+v_2=f_1(i_1)+f_2(i_2)=f(i)$.

Figure: Two parallel resistors with $v=v_1=v_2$ and $i=i_1+i_2$. Parallel connection of two voltage-controlled resistors has the characteristic curve $i=i_1+i_2=f_1(v_1)+f_2(v_2)=f(v)$.

Example (Series connection of LTI resistors)

If the LTI resistors R_1 , R_2 , ..., R_N are connected in series, they can be replaced with the equivalent LTI resistor $R_{eq} = \sum_{k=1}^{N} R_k$.

$$i \downarrow_{+} \begin{matrix} R_{1} & R_{2} & R_{N} \\ & & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & & \\ & & \\ & & & \\ &$$

$$v = \sum_{k=1}^{N} v_k = \sum_{k=1}^{N} R_k i_k = i \sum_{k=1}^{N} R_k = R_{eq} i$$

Mohammad Hadi Electrical Circuits Spring 2022

Example (Parallel connection of LTI resistors)

If the LTI resistors G_1 , G_2 , ..., G_N are connected in parallel, they can be replaced with the equivalent LTI resistor $G_{eq} = \sum_{k=1}^{N} G_k$.

$$i = \sum_{k=1}^{N} i_k = \sum_{k=1}^{N} G_k v_k = v \sum_{k=1}^{N} G_k = G_{eq}i$$

Mohammad Hadi Electrical Circuits Spring 2022 7

Example (Series connection of voltage sources)

If the voltage sources v_{s1} , v_{s2} , ..., v_{sN} are connected in series, they can be replaced with the equivalent voltage source $v_s = \sum_{k=1}^{N} v_{sk}$.

Mohammad Hadi Electrical Circuits Spring 2022 71/96

Example (Parallel connection of voltage sources)

The parallel connection of the voltage sources v_{s1} , v_{s2} , ..., v_{sN} is possible if $v_{s1} = v_{s2} = \cdots = v_{sN}$.

$$v_s = v_{s1} = v_{s2} = \cdots = v_{sN}$$

Mohammad Hadi Electrical Circuits Spring 2022 72 / 96

Example (Series connection of current sources)

The series connection of the current sources i_{s1} , i_{s2} , ..., i_{sN} is possible if $i_{s1} = i_{s2} = \cdots = i_{sN}$.

$$i_s = i_{s1} = i_{s2} = \cdots = i_{sN}$$

Example (Parallel connection of current sources)

If the current sources i_{s1} , i_{s2} , ..., i_{sN} are connected in parallel, they can be replaced with the equivalent current source $i_s = \sum_{k=1}^{N} i_{sk}$.

$$i_s = \sum_{k=1}^{N} i_{sk}$$

Example (Series connection of diodes)

Series connection of two ideal diodes results in an equivalent ideal diode or open circuit.

Example (Parallel connection of diodes)

Parallel connection of two ideal diodes results in an equivalent ideal diode or short circuit.

Example (Series connection of several elements)

The direction of elements is important in elements interconnection.

Example (Parallel connection of several elements)

The direction of elements is important in elements interconnection.

Example (Interconnection of several elements)

Interconnection of various elements leads to interesting characteristic curves.

Example (Circuit Synthesis)

A desired circuit can be synthesized in different ways.

Example (Circuit Synthesis)

A desired circuit can be synthesized in different ways.

Example (Rectifier)

Diodes can be used for rectification.

$$v_o = v_i u(v_i)$$

Figure: Resistive Δ (triangle, \prod) and Y (star, T) networks. If the two networks are equivalent, then the port voltages and currents must be equal.

$$R_{A} = \frac{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}{R_{2}} \qquad R_{1} = \frac{R_{A}R_{B}}{R_{A} + R_{B} + R_{C}}$$

$$R_{B} = \frac{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}{R_{3}} \qquad R_{2} = \frac{R_{B}R_{C}}{R_{A} + R_{B} + R_{C}}$$

$$R_{C} = \frac{R_{1}R_{2} + R_{1}R_{3} + R_{2}R_{3}}{R_{1}} \qquad R_{3} = \frac{R_{C}R_{A}}{R_{A} + R_{B} + R_{C}}$$

Figure: Two series NTI capacitors with $i=i_1=i_2$ and $v=v_1+v_2$. Series connection of two charge-controlled capacitors has the characteristic curve $v=v_1+v_2=f_1(q_1)+f_2(q_2)=f(q)$ provided that $q_1(0)=q_2(0)$.

$$i = i_1 = i_2 \Rightarrow \frac{dq}{dt} = \frac{dq_1}{dt} = \frac{dq_2}{dt} \Rightarrow q(t) - q(0) = q_1(t) - q_1(0) = q_2(t) - q_2(0)$$

$$q(0) = q_1(0) = q_2(0) \Rightarrow q(t) = q_1(t) = q_2(t)$$

Figure: Two parallel NTI capacitors with $v=v_1=v_2$ and $i=i_1+i_2$. Parallel connection of two voltage-controlled capacitors has the characteristic curve $q=q_1+q_2=f_1(v_1)+f_2(v_2)=f(v)$.

$$i = i_1 + i_2 \Rightarrow \frac{dq}{dt} = \frac{dq_1}{dt} + \frac{dq_2}{dt} \Rightarrow q(t) - q(0) = q_1(t) - q_1(0) + q_2(t) - q_2(0)$$

 $q(0) = q_1(0) + q_2(0) \Rightarrow q(t) = q_1(t) + q_2(t)$

Example (Series connection of LTI capacitors)

If the LTI capacitors S_1 , S_2 , ..., S_N with the initial voltages $v_1(0)$, $v_2(0)$, ..., $v_N(0)$ are connected in series, they can be replaced with the equivalent LTI capacitor $S_{eq} = \sum_{k=1}^{N} S_k$ with the initial voltage $v(0) = \sum_{k=1}^{N} v_k(0)$.

$$v = \sum_{k=1}^{N} v_k = \sum_{k=1}^{N} \left[v_k(0) + S_k \int_0^t i_k(\lambda) d\lambda \right] = \sum_{k=1}^{N} v_k(0) + \left(\sum_{k=1}^{N} S_k \right) \int_0^t i(\lambda) d\lambda$$

Example (Parallel connection of LTI capacitors)

If the LTI capacitors C_1 , C_2 , ..., C_N with the initial voltages $v_1(0^-)$, $v_2(0^-)$, ..., $v_N(0^-)$ are connected in parallel, they can be replaced with the equivalent LTI capacitor $C_{eq} = \sum_{k=1}^N C_k$ with a suitable initial voltage $v(0^+) = v_1(0^+) = \cdots = v_N(0^+)$.

$$i = \sum_{k=1}^{N} i_k = \sum_{k=1}^{N} C_k \frac{dv_k}{dt} = \left(\sum_{k=1}^{N} C_k\right) \frac{dv}{dt}$$

Example (Initial voltage of two parallel LTI capacitors)

If the LTI capacitors C_1 and C_2 with the initial voltages $v_1(0^-)$ and $v_2(0^-)$ are connected in parallel, they can be replaced with the equivalent LTI capacitor $C_{eq} = C_1 + C_2$ with having the initial voltage $v(0^+) = \frac{C_1 v_1(0^-) + C_2 v_2(0^-)}{C_1 + C_2}$.

$$q(0^{-}) = q(0^{+}) \Rightarrow C_1 v_1(0^{-}) + C_2 v_2(0^{-}) = C_1 v_1(0^{+}) + C_2 v_2(0^{+}) = (C_1 + C_2) v_1(0^{+})$$

Example (Initial voltage of two parallel LTI capacitors)

If the LTI capacitors C_1 and C_2 with the initial voltages $v_1(0^-)$ and $v_2(0^-)$ are connected in parallel, they can be replaced with the equivalent LTI capacitor $C_{eq} = C_1 + C_2$ with having the initial voltage $v(0^+) = \frac{C_1 v_1(0^-) + C_2 v_2(0^-)}{C_1 + C_2}$.

$$i_1(t) + i_2(t) = C_1 \frac{dv_1}{dt} + C_2 \frac{dv_2}{dt} = 0 \Rightarrow \int_{0^-}^{0^+} \left[C_1 \frac{dv_1}{dt} + C_2 \frac{dv_2}{dt} \right] dt = 0 \Rightarrow C_1 \int_{v_1(0^-)}^{v_1(0^+)} dv_1 + C_2 \int_{v_2(0^-)}^{v_2(0^+)} dv_2 = 0$$

$$C_1[v_1(0^+) - v_1(0^-)] + C_2[v_2(0^+) - v_2(0^-)] = 0 \Rightarrow C_1v_1(0^-) + C_2v_2(0^-) = (C_1 + C_2)v(0^+)$$

 4 □ →

Inductors

Figure: Two series NTI inductors with $i=i_1=i_2$ and $v=v_1+v_2$. Series connection of two current-controlled inductors has the characteristic curve $\phi=\phi_1+\phi_2=f_1(i_1)+f_2(i_2)=f(i)$.

$$v = v_1 + v_2 \Rightarrow \frac{d\phi}{dt} = \frac{d\phi_1}{dt} + \frac{d\phi_2}{dt} \Rightarrow \phi(t) - \phi(0) = \phi_1(t) - \phi_1(0) + \phi_2(t) - \phi_2(0)$$
$$\phi(0) = \phi_1(0) + \phi_2(0) \Rightarrow \phi(t) = \phi_1(t) + \phi_2(t)$$

Inductors

Figure: Two parallel NTI inductors with $v=v_1=v_2$ and $i=i_1+i_2$. Parallel connection of two flux-controlled inductors has the characteristic curve $i=i_1+i_2=f_1(\phi_1)+f_2(\phi_2)=f(\phi)$ provided that $\phi_1(0)=\phi_2(0)$.

$$v = v_1 = v_2 \Rightarrow \frac{d\phi}{dt} = \frac{d\phi_1}{dt} = \frac{d\phi_2}{dt} \Rightarrow \phi(t) - \phi(0) = \phi_1(t) - \phi_1(0) = \phi_2(t) - \phi_2(0)$$
$$\phi(0) = \phi_1(0) = \phi_2(0) \Rightarrow \phi(t) = \phi_1(t) = \phi_2(t)$$

Example (Series connection of LTI inductors)

If the LTI inductors L_1 , L_2 , ..., L_N with the initial currents $i_1(0^-)$, $i_2(0^-)$, ..., $i_N(0^-)$ are connected in series, they can be replaced with the equivalent LTI inductor $L_{eq} = \sum_{k=1}^N L_k$ with a suitable initial current $i(0^+) = i_1(0^+) = \cdots = i_N(0^+)$.

$$v = \sum_{k=1}^{N} v_k = \sum_{k=1}^{N} L_k \frac{di_k}{dt} = \left(\sum_{k=1}^{N} L_k\right) \frac{di}{dt}$$

Inductors

Example (Initial current of two series LTI inductors)

If the LTI inductors L_1 and L_2 with the initial currents $i_1(0^-)$ and $i_2(0^-)$ are connected in series, they can be replaced with the equivalent LTI inductor $L_{eq} = L_1 + L_2$ with having the initial current $i(0^+) = \frac{L_1 i_1(0^-) + L_2 i_2(0^-)}{L_1 + L_2}$.

$$\phi(0^{-}) = \phi(0^{+}) \Rightarrow L_1 i_1(0^{-}) + L_2 i_2(0^{-}) = L_1 i_1(0^{+}) + L_2 i_2(0^{+}) = (L_1 + L_2) i(0^{+})$$

Example (Initial current of two series LTI inductors)

If the LTI inductors L_1 and L_2 with the initial currents $i_1(0^-)$ and $i_2(0^-)$ are connected in series, they can be replaced with the equivalent LTI inductor $L_{eq} = L_1 + L_2$ with having the initial current $i(0^+) = \frac{L_1 i_1(0^-) + L_2 i_2(0^-)}{L_1 + L_2}$.

$$v_1(t) + v_2(t) = L_1 \frac{di_1}{dt} + L_2 \frac{di_2}{dt} = 0 \Rightarrow \int_{0^-}^{0^+} \left[L_1 \frac{di_1}{dt} + L_2 \frac{di_2}{dt} \right] dt = 0 \Rightarrow L_1 \int_{i_1(0^-)}^{i_1(0^+)} di_1 + L_2 \int_{i_2(0^-)}^{i_2(0^+)} di_2 = 0$$

$$L_1 [i_1(0^+) - i_1(0^-)] + L_2 [i_2(0^+) - i_2(0^-)] = 0 \Rightarrow L_1 i_1(0^-) + L_2 i_2(0^-) = (L_1 + L_2) i(0^+)$$

Inductors

Example (Parallel connection of LTI inductors)

If the LTI inductors Γ_1 , Γ_2 , ..., Γ_N with the initial currents $i_1(0)$, $i_2(0)$, ..., $i_N(0)$ are connected in parallel, they can be replaced with the equivalent LTI inductor $\Gamma_{eq} = \sum_{k=1}^N \Gamma_k$ with the initial current $i(0) = \sum_{k=1}^N i_k(0)$.

$$i = \sum_{k=1}^{N} i_k = \sum_{k=1}^{N} \left[i_k(0) + \Gamma_k \int_0^t v_k(\lambda) d\lambda \right] = \sum_{k=1}^{N} i_k(0) + \left(\sum_{k=1}^{N} \Gamma_k \right) \int_0^t v(\lambda) d\lambda$$

The End