

Support Vector Machines

IF-3270 Pembelajaran Mesin

Teknik Informatika ITB

Modul 5: Support Vector Machine

Fariska Z. Ruskanda, S.T., M.T. (fariska@informatika.org)

KK IF -Teknik Informatika - STEI ITB

01 SVM: What & Why?

IF3270 - Pembelajaran Mesin (Machine Learning)

Outline

Sejarah SVM

Bidang Pemisah Terbaik

Tujuan SVM

Klasifikasi Biner – Linear Separability

Hyperplane Classifier

Support Vector Machine

- SVM diperkenalkan tahun 1992 oleh Vapnik, Boser, & Guyon
- Kinerja baik di berbagai aplikasi seperti *bioinformatics*, klasifikasi teks, pengenalan tulisan tangan dan lain-lain.

SVM

• 1980an

- DTL dan NN memungkinkan pembelajaran nonlinear yang efisien
- Kurang didukung dasar teoritis dan memungkinkan terjadinya local minima

• 1990an

 Algoritma pembelajaran yang efisien untuk fungsi non linier berbasis teori komputasi

SVM Introduction

- Boser, B. E., Guyon, I. M., & Vapnik, V. N. (1992, July). A training algorithm for optimal margin classifiers. In *Proceedings of the fifth* annual workshop on Computational learning theory (pp. 144-152). ACM.
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. *Machine learning*, *20*(3), 273-297.

Klasifikasi Biner

Given training data (\mathbf{x}_i,y_i) for $i=1\dots N$, with $\mathbf{x}_i\in\mathbb{R}^d$ and $y_i\in\{-1,1\}$, learn a classifier $f(\mathbf{x})$ such that $f(\mathbf{x}_i)\left\{\begin{array}{l} \geq \mathbf{0} & y_i=+1\\ < \mathbf{0} & y_i=-1 \end{array}\right.$

i.e. $y_i f(\mathbf{x}_i) > 0$ for a correct classification.

Linear Separability

linearly separable

not linearly separable

Linear Classifier

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

- in 2D the discriminant is a line
- · W is the normal to the line, and b the bias
- W is known as the weight vector

Linear Classifier

A linear classifier has the form

$$f(\mathbf{x}) = \mathbf{w}^{\top} \mathbf{x} + b$$

• in 3D the discriminant is a plane, and in nD it is a hyperplane

For a K-NN classifier it was necessary to `carry' the training data

For a linear classifier, the training data is used to learn w and then discarded

Only w is needed for classifying new data

Perceptron Weakness

- Perceptron biggest weakness is that it will not find the same hyperplane every time.
 - Not all separating hyperplanes are equals.
 - If the Perceptron gives you a hyperplane that is very close to all the data points from one class, you have a right to believe that it will generalize poorly when given new data.
- After an accurate hyperplane is found, the training process will stop and it is considered to have converged.

Bidang Pemisah Terbaik?

• Mengapa?

Bidang Pemisah Terbaik (lanj)

Kiri: semua bidang pemisah valid karena memisahkan kedua kelas pada training data. Kanan: real-life data. Bidang pemisah hitam lebih baik daripada hijau.

SVM Objective

- Objective of the SVM is to find the optimal separating hyperplane which maximizes the margin of the training data. There will never be any data point inside the margin.
- Menggunakan optimasi kuadratik untuk menghindari 'local minimum' isu yang ada pada NN (Greedy)
- Menggunakan fungsi kernel untuk memisahkan non-linear region

Hyperplane Classifier

- Hipotesis:
- $x1, x2 \in training data$

$$f(x) = sign(\vec{w}.\vec{x} + b); \vec{w}, \vec{x} \in \Re^N; b \in \Re$$

Vector Direction

Figure 4 - direction of a vector

u(u1,u2) with u1=3 and u2=4

$$cos(heta) = rac{u_1}{\|u\|} \qquad \qquad cos(lpha) = rac{u_2}{\|u\|}$$

- Naive definition 1: The direction of the vector u is defined by the angle θ with respect to the horizontal axis, and with the angle α with respect to the vertical axis.
- Naive definition 2: The direction of the vector u is defined by the cosine of the angle θ and the cosine of the angle α .

02 SVM for Linearly Separable Data

IF3270 Pembelajaran Mesin

