- . PS2 ! Will be marked by the weekend! .TTZ? Hard to say ... the TAs are working hard but it's still too early to tell...

 PSI & TTI remarks: same as TT2...

 Updates will be provided on Piazza Algorithm analysis - mutime Goal: Given an algorithm, find a simple function $f: \mathbb{N} \to \mathbb{R}^3$ such that the "running time" of the algorithm is in $\Theta(f)$ — where "mining time" = # steps executed,
 as a function of input site
 - · Input size?

- rigorously, "standard size" = total #
of bits required to represent the entire input - in practice, we rely on conventions 1. integers have fixed size (really that's not time) 2. strings have size = # characters 3. lists have size = length (again, "tme site" = sum of the sizes of all elements)

. # steps!

- 1 step = any group of statements that always execute to gether and whose runtime does not depend on input size NOTE: THERE IS NO ABSOLUTE DEFINITION OF "ONE STEP" -> what is NOT constant? · loops
· function calls } CSC165

· tunction calls)
· recursion — CSC 236

· complex data structures — CSC 263, a little in CSC 148

for i in range (10): # Loop 1 2. tor j in range (n*n): # Loop 2 3 4, r = r + jfor i in range (n/2): # Loop 3 5. for j in range (i *i): # Loop 4 6. 7. retum r 8. In CSC165, when we analyse

Jef f(n:int) -> int: # Assume n > 0

Example:

nuntime of algorithms with a single integer input — express the nuntime as a function of the value of the input; not its site. - analyze loops inside-out . loop 2: - body takes time: 1 (line 4) (lines 3-4) - loop iterates (n^2) times - botal time is $1+1+...+1=(n^2)$

·loop |: -body (lines 3-4) takes time = n^2 (lines 2-4) - # iterations = 10-btal time = $n^2 + n^2 + ... + n^2 = 10$ n^2

· loop 4: -body takes time: 1 (line 7)
(lines 6-7) - # iterations:
$$i^2$$

- body time: $1 \cdot i^2 = i^2$
· loop 3: -body (lines 6-7) takes time: i^2
(lines δ -7) -# iterations: $\left\lfloor \frac{n}{2} \right\rfloor$
- total time = $0^2 + 1^2 + 2^2 + \dots + \left(\left\lfloor \frac{n}{2} \right\rfloor - 1 \right)^2$
all the values of i in range $(n/2)$
= $\sum_{i=0}^{\lfloor \frac{n}{2} \rfloor - 1} i^2 = \frac{\left(\left\lfloor \frac{n}{2} \right\rfloor - 1 \right) \left\lfloor \frac{n}{2} \right\rfloor \left(2 \left\lfloor \frac{n}{2} \right\rfloor - 1 \right)}{6}$
= \dots = $a \cdot n^3 + b \cdot n^2 + c \cdot n + d$

Overall: $10 n^2 + an^3 + bn^2 + cn + d + 1$ $(1mes 2-4) \quad (1mes 5-7) \quad (1mes 1,8)$ $\Theta(u^3)$