AMENDMENTS TO THE CLAIMS:

r)

The following listing of claims replaces all prior versions and listings of claims in the application. Please amend claims 4, 6, and 11; and add new claims 13-39, as follows:

Claims 1-3 (Canceled).

4. (Currently Amended) An etching method for exposing a layer of Cu by etching a layer of SiN_x on the layer of Cu with an etching gas constituted of C, H, and F, and O_2 , wherein;

said gas constituted of C, H, and F is CHF_3 , and the O_2 suppresses oxidation of the layer of Cu exposed by the etching of the layer of SiN_x .

Claim 5 (Canceled).

6. (Currently Amended) An etching method for exposing a layer of Cu by etching a layer of SiN_x on the layer of Cu, the method, wherein;

a step in which a processing gas containing a gas constituted of C, H, and F_1 and O_2 is raised to plasma and an SiN_X layer on a Cu layer is etched using a photoresist layer having a specific pattern formed therein, thereby exposing said Cu layer; and

a step in which H₂ is introduced into said processing chamber and an H₂ plasma process is implemented on said Cu layer that has become exposed by raising the H₂ to plasma,

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

wherein implementing the H₂ plasma process on the Cu layer that has become exposed removes C atoms and F atoms introduced into the Cu layer that has become exposed during etching.

- 7. (Previously Presented) An etching method according to claim 6, wherein; said gas constituted of C, H and F is CH₂F₂.
- 8. (Previously Presented) An etching method according to claim 6, wherein; said gas constituted of C, H and F is CH₃F.
- 9. (Previously Presented) An etching method according to claim 6, wherein; said gas constituted of C, H and F is CHF₃.
- 10. (Previously Presented) An etching method according to claim 6, wherein; an inert gas is added into said processing gas.
- 11. (Currently Amended) An etching method according to claim 6, wherein; said photoresist layer is removed during an ashing step, and wherein said etching step, said ashing step, and said H₂ etching step plasma process are implemented inside a single processing chamber.
- 12. (Previously Presented) An etching method according to claim 6, wherein; a step implemented after said etching step and before said H₂ plasma processing step, in which said photoresist layer is ashed.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

13. (New) A method for etching an SiN_x layer on a Cu layer of a workpiece placed inside a processing chamber, the method comprising:

introducing a processing gas comprising C, H, and F, and O_2 into a processing chamber; and

raising the processing gas introduced into the processing chamber to plasma to etch the SiN_x layer such that a portion of the Cu layer is exposed,

wherein introducing the O_2 into the processing chamber suppresses injection of C atoms and F atoms of the processing gas into the exposed portion of the Cu layer.

- 14. (New) The method of claim 13, wherein processing gas is CH₂F₂.
- 15. (New) The method of claim 13, wherein the processing gas is CH₃F.
- 16. (New) The method of claim 13, wherein the processing gas is CHF₃.
- 17. (New) The method of claim 13, further comprising introducing an inert gas into the processing chamber.
- 18. (New) The method of claim 13, further comprising treating the exposed portion of the Cu layer with H₂ plasma by introducing H₂ into the processing chamber after etching and raising the H₂ to plasma such that the exposed portion of the Cu layer is exposed to the H₂ plasma, wherein exposing the exposed portion of the Cu layer to

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

the H₂ plasma removes C atoms and F atoms introduced into the exposed portion of the

Cu layer during etching.

19. (New) The method of claim 18, wherein etching the SiN_x layer comprises

providing a photoresist layer having a specific pattern on the SiN_x layer; and the method

further comprises ashing the photoresist layer after etching the SiN_x layer and before

treating the exposed portion of the Cu layer with H₂ plasma.

20. (New) The method of claim 19, wherein the etching, the ashing, and the

treating of the exposed portion of the Cu layer with H₂ plasma are implemented inside a

single processing chamber.

21. (New) The method of claim 19, further comprising setting the workpiece to a

temperature less than or equal to 100° C during the ashing step.

22. (New) A method for etching an SiN_x layer on a Cu layer of a workpiece

placed inside a processing chamber, the method comprising:

introducing a processing gas comprising C, H, and F, and O₂ into a processing

chamber; and

raising the processing gas introduced into the processing chamber to plasma to

etch the SiN_x layer such that a portion of the Cu layer is exposed,

wherein introducing the O₂ into the processing chamber suppresses oxidation of

the exposed portion of the Cu layer.

HENDERSON FARABOW GARRETT & DUNNER LLP

FINNEGAN

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

-5-

- 23. (New) The method of claim 22, wherein processing gas is CH₂F₂.
- 24. (New) The method of claim 22, wherein the processing gas is CH₃F.
- 25. (New) The method of claim 22, wherein the processing gas is CHF₃.
- 26. (New) The method of claim 22, further comprising introducing an inert gas into the processing chamber.
- 27. (New) The method of claim 22, further comprising treating the exposed portion of the Cu layer by introducing H₂ into the processing chamber after etching and raising the H₂ to plasma such that the exposed portion of the Cu layer is exposed to the H₂ plasma, wherein exposing the exposed portion of the Cu layer to the H₂ plasma removes C atoms and F atoms introduced into the exposed portion of the Cu layer during etching.
- 28. (New) The method of claim 27, wherein etching the SiN_x layer comprises providing a photoresist layer having a specific pattern on the SiN_x layer; and the method further comprises ashing the photoresist layer after etching the SiN_x layer and before treating the exposed portion of the Cu layer with H_2 plasma.
- 29. (New) The method of claim 28, wherein the etching, the ashing, and the treating of the exposed portion of the Cu layer with H₂ plasma are implemented inside a single processing chamber.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

30. (New) The method of claim 28, further comprising setting the workpiece to a

temperature less than or equal to 100° C during the ashing step.

31. (New) A method for etching an SiN_x layer on a Cu layer of a workpiece

placed inside a processing chamber, the method comprising:

introducing a processing gas comprising C, H, and F, and O₂ into a processing

chamber; and

raising the processing gas introduced into the processing chamber to plasma to

etch the SiN_x layer such that a portion of the Cu layer is exposed,

wherein introducing the O₂ into the processing chamber suppresses oxidation of

the exposed portion of the Cu layer and suppresses injection of C atoms and F atoms of

the processing gas into the exposed portion of the Cu layer.

32. (New) The method of claim 31, wherein processing gas is CH₂F₂.

33. (New) The method of claim 31, wherein the processing gas is CH₃F.

34. (New) The method of claim 31, wherein the processing gas is CHF₃.

35. (New) The method of claim 31, further comprising introducing an inert gas

into the processing chamber.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNERLLP

36. (New) The method of claim 31, further comprising treating the exposed

portion of the Cu layer by introducing H₂ into the processing chamber after etching and

raising the H₂ to plasma such that the exposed portion of the Cu layer is exposed to the

H₂ plasma, wherein exposing the exposed portion of the Cu layer to the H₂ plasma

removes C atoms and F atoms introduced into the exposed portion of the Cu layer

during etching.

37. (New) The method of claim 36, wherein etching the SiN_x layer comprises

providing a photoresist layer having a specific pattern on the SiN_x layer; and the method

further comprises ashing the photoresist layer after etching the SiN_x layer and before

treating the exposed portion of the Cu layer with H₂ plasma.

38. (New) The method of claim 37, wherein the etching, the ashing, and the

treating of the exposed portion of the Cu layer with H₂ plasma are implemented inside a

single processing chamber.

39. (New) The method of claim 37, further comprising setting the workpiece to a

temperature less than or equal to 100° C during the ashing step.

FINNEGAN HENDERSON FARABOW GARRETT & DUNNER LLP

1300 I Street, NW Washington, DC 20005 202.408.4000 Fax 202.408.4400 www.finnegan.com

-8-