ମାଧ୍ୟମିକ ଜ୍ୟାମିତି

ଦଶମ ଶ୍ରେଣୀ

ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ଓଡ଼ିଶା

ମାଧ୍ୟମିକ ଜ୍ୟାମିତି

ଦଶମ ଶ୍ରେଣୀ ନିମନ୍ତେ ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ଓଡ଼ିଶାଙ୍କ ଦ୍ୱାରା ଅନୁମୋଦିତ ଓ ପ୍ରକାଶିତ

© ସର୍ବସ୍ୱତ୍ୱ ସଂରକ୍ଷିତ

ଲେଖକମଣ୍ଡଳୀ:

ଡକ୍ଟର ଜଗନ୍ନାଥ ପ୍ରସାଦ ଦେବତା (ସମୀକ୍ଷକ) ଶ୍ରୀ ମଦନ ମୋହନ ମହାନ୍ତି ଶ୍ରୀ ନଗେନ୍ଦ୍ର କୁମାର ମିଶ୍ର ବୀଣାପାଣି ପଣ୍ଡା ଶ୍ରୀ ପ୍ରସନ୍ନ କୁମାର ମହାରଣା ଡକ୍ଟର ନଳିନୀକାନ୍ତ ମିଶ୍ର (ସଂଯୋଜକ)

ପ୍ରଥମ ପ୍ରକାଶ : ୨୦୧୩ ୨୦୧୯

ଆର୍ଟପୂଲ୍ : ଗ୍ରାଫ୍ ଏନ୍ ଗ୍ରାଫିକ୍ସ, ଓଡ଼ିଆ ବଜାର, କଟକ

ମୁଦ୍ରଣ :

ମୂଲ୍ୟ :

ପ୍ରୟାବନା

ଆଜିର ଯୁଗ ହେଉଛି ବିଜ୍ଞାନ ଓ ପ୍ରଯୁକ୍ତି ବିଦ୍ୟାର ଯୁଗ । ତାତ୍ତ୍ୱିକ ଓ ପ୍ରୟୋଗାତ୍ପକ – ଏ ଉଭୟ ଦିଗରେ ବିଜ୍ଞାନର ଅଗ୍ରଗତି ନିମନ୍ତେ ଗଣିତ ଶାସ୍ତ୍ରର ଏକ ବଳିଷ୍ଠ ଭୂମିକା ରହିଛି । ଗଣିତ ଶାସ୍ତ୍ରର ଜ୍ୟାମିତି ହେଉଛି ଏକ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ଅଙ୍ଗ । ବିଦ୍ୟାଳୟ ସ୍ତରରୁ ଜ୍ୟାମିତି ପାଠ୍ୟକ୍ରମ ଏକ ଉପଯୁକ୍ତ ଭିଭିଭୂମି ଉପରେ ପ୍ରତିଷ୍ଠିତ ହେବା ବାଞ୍ଚନୀୟ ।

ସାରା ବିଶ୍ୱରେ ଅନ୍ୟାନ୍ୟ ବିକାଶଶୀଳ ଦେଶମାନଙ୍କ ଭଳି ଭାରତ ମଧ୍ୟ ଏ କ୍ଷେତ୍ରରେ ଉଲ୍ଲେଖନୀୟ ଭୂମିକା ଗ୍ରହଣ କରିଛି । ମାଧ୍ୟମିକ ଶିକ୍ଷାୟର ପାଇଁ ଜାତୀୟ ୟରରେ ପ୍ରସ୍ତୁତ National Curriculum Frame Work - 2005 ରେ ଗଣିତ ଶିକ୍ଷାକୁ ଅଧିକ ଗୁରୁତ୍ୱ ଦିଆଯାଇଛି । ତଦନୁଯାୟୀ ଜାତୀୟ ଶିକ୍ଷା ଗବେଷଣା ଓ ତାଲିମ ପରିଷଦ (NCERT), ପାଠ୍ୟଖସଡ଼ା ଓ ପାଠ୍ୟପୁୟକ ପ୍ରଶୟନ କରିଛନ୍ତି । ଜାତୀୟ ଶିକ୍ଷାସ୍ରୋତକୁ ଦୃଷ୍ଟି ଦେଇ ଓଡ଼ିଶା ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, State Curriculum Framework-2007 ଅନୁଯାୟୀ ଦଶମ ଶ୍ରେଣୀ ପାଇଁ ସିଲାବସ୍ ପ୍ରସ୍ତୁତ କରି ତଦନୁଯାୟୀ ନୂତନ ଭାବରେ ମାଧ୍ୟମିକ କ୍ୟାମିତି ପାଠ୍ୟପୁୟକ ପ୍ରକାଶ କରିଛନ୍ତି । ପ୍ରକାଶ ଥାଉ କି, 2012-13 ଶିକ୍ଷାବର୍ଷ ପାଇଁ ଉକ୍ତ ପାଠ୍ୟଖସଡ଼ା ଅନୁଯାୟୀ ନବମ ଶ୍ରେଣୀ ନିମିତ୍ର ମାଧ୍ୟମିକ ଜ୍ୟାମିତି ପାଠ୍ୟପୁୟକ ପ୍ରକାଶିତ ହୋଇଯାଇଛି ।

ଅଭିଜ୍ଞ ଲେଖକମାନଙ୍କ ଦ୍ୱାରା ପାଠ୍ୟପୁଞ୍ଚକ ରଚନା କରାଯାଇ ପୁଞ୍ଚକର ପାଣ୍ଡୁଲିପିକୁ ସିଲାବସ୍କମିଟିରେ ପଠିତ ଓ ଆଲୋଚିତ ହୋଇଛି । ଆଲୋଚନା ଲହ୍ଧ ପରାମର୍ଶକୁ ପାଥେୟ କରି ପାଣ୍ଡୁଲିପିଟି ସଂଶୋଧିତ ହୋଇଛି ।

ଏହି ପୁଷକ ପ୍ରଷ୍ତୁତିରେ ଆନ୍ତରିକ ସହଯୋଗ କରିଥିବାରୁ ମୁଁ ଲେଖକମଣ୍ଡଳୀ, ସମୀକ୍ଷକ ଓ ସଂଯୋଜକଙ୍କୁ ଧନ୍ୟବାଦ ଜଣାଉଛି । ଆଶା କରୁଛି, ପୁଷକଟି ଛାତ୍ରଛାତ୍ରୀ ତଥା ଶିକ୍ଷକ–ଶିକ୍ଷୟିତ୍ରୀଙ୍କ ଦ୍ୱାରା ଆଦୃତ ହେବ ।

ସଭାପତି

ମାଧ୍ୟମିକ ଶିକ୍ଷା ପରିଷଦ, ଓଡ଼ିଶା

ମୁଖବନ୍ଧ

ଛାତ୍ରଛାତ୍ରୀଙ୍କର ଗଣିତ ଶିକ୍ଷାକୁ ଶୈଶବ କାଳରୁ ହିଁ ପ୍ରାଧାନ୍ୟ ଦିଆଯାଇ ଆସୁଛି । କାରଣ ଏହା ଶିଶୁର ଉପଯୁକ୍ତ ବୌଦ୍ଧିକ ବିକାଶ କରିବା ସଙ୍ଗେ ସଙ୍ଗେ ତାକୁ ଯୁକ୍ତିସଙ୍ଗତ ଚିନ୍ତାଧାରା ଓ ନିରପେକ୍ଷ ବିଚାର ସମ୍ପନ୍ନ କରିଥାଏ । ସଭ୍ୟତାର ଅଗ୍ରଗତି ସଙ୍ଗେ ସଙ୍ଗେ ନୂତନ ବୈଜ୍ଞାନିକ ଗବେଷଣା ଲବ୍ଧ ଜ୍ଞାନର ପ୍ରଭାବ ଶିକ୍ଷାଦାନ କ୍ଷେତ୍ରରେ ଉପଲବ୍ଧ ହେଉଛି । ଏହି ପରିପ୍ରେକ୍ଷୀରେ ମାଧ୍ୟମିକ ଷରରେ ଗଣିତ ଶିକ୍ଷାଦାନର ବିଷୟ ଓ ଉପସ୍ଥାପନା ଶୈଳୀ ମଧ୍ୟ ପ୍ରଭାବିତ ହୋଇଛି ।

ପୂର୍ବରୁ ନୂତନ ଭାବରେ ପ୍ରକାଶିତ 'ସରଳ ଜ୍ୟାମିତି' (ଅଷ୍ଟମ ଶ୍ରେଣୀ) ଓ 'ମାଧ୍ୟମିକ ଜ୍ୟାମିତି' (ନବମ ଶ୍ରେଣୀ)ରେ ଅନୁସୃତ ନୂତନ ଉପସ୍ଥାପନା ଶୈଳୀକୁ ଦଶମ ଶ୍ରେଣୀର 'ମାଧ୍ୟମିକ ଜ୍ୟାମିତି' ପୁଞ୍ଚକରେ ଅବ୍ୟାହତ ରଖାଯାଇଛି । ପ୍ରତ୍ୟେକ ଅଧ୍ୟାୟରେ ଆଲୋଚନା ଶେଷରେ ସୂଚିନ୍ତିତ ଉଦାହରଣ ଦିଆଯିବା ସଙ୍ଗେ ବଞ୍ଜୁନିଷ୍ଠ, ସଂକ୍ଷିପ୍ତ ଓ ଦୀର୍ଘ ଉଉରମୂଳକ ପ୍ରଶ୍ନସବୁ ସରଳରୁ କଠିନ କ୍ରମରେ ରଖି ଅନୁଶୀଳନୀରେ ଦିଆଯାଇଛି । ତ୍ରିଭୁଳରେ ସାଦୃଶ୍ୟ, ବୃତ୍ତ ଓ ସ୍ପର୍ଶକ ସୟନ୍ଧୀୟ ଆଲୋଚନା ବେଳେ କେତେକ ଉପାଦେୟ ତଥ୍ୟକୁ 15 ଗୋଟି ଉପପାଦ୍ୟ (Theorem) ଆକାରରେ ସ୍ଥାପିତ କରାଯାଇଛି । ପରୀକ୍ଷା ଦୃଷ୍ଟିରୁ ଏଗୁଡ଼ିକ ବିଶେଷଗୁରୁତ୍ୱ ବହନ କରେ । ଅନ୍ୟ କେତେକ ଜ୍ଞାତବ୍ୟ ତଥ୍ୟକୁ ଉପପାଦ୍ୟ ଶ୍ରେଣୀଭୁକ୍ତ କରା ନଯାଇ ସେଗୁଡ଼ିକୁ ପ୍ରମେୟ ରୂପେ ନାମିତ କରି ପୁଞ୍ଚକରେ ସ୍ଥାନିତ କରାଯାଇଛି । ଜ୍ୟାମିତିକ ଅବଧାରଣାର ପରିପୁଷ୍ଟତା ପାଇଁ ଉଭୟ ପ୍ରକାର ତଥ୍ୟ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ଅଟେ । ଆଲୋଚିତ କେତେକ ଉପପାଦ୍ୟର ପ୍ରମାଣ ପାଠ୍ୟକ୍ରମ ବହିର୍ଭୁକ୍ତ ଥିବାରୁ ଆଗ୍ରହୀ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ନିମନ୍ତେ ପ୍ରମାଣ ଗୁଡ଼ିକୁ ଅଧ୍ୟାୟ ଶେଷରେ 'ପରିଶିଷ୍ଟ'ରେ ଦିଆଯାଇଛି । ଆଶାକରାଯାଉଛି, ଯେଉଁମାନଙ୍କ ଲାଗି ପୁଞ୍ଚକଟି ଉଦିଷ୍ଟ ସେମାନେ ପୁଞ୍ଚକରେ ସନ୍ଦିବେଶିତ ନୃତନ ଚିନ୍ତାଧାର। ସହିତ ନିଜକୁ ପରିଚିତ କରାଇ ଉପକୃତ ହେବେ ।

ପୁଞ୍ଚକଟିକୁ ତ୍ରୁଟିଶୂନ୍ୟ କରିବାର ସମଞ୍ଚ ଉଦ୍ୟମ ସତ୍ତ୍ୱେ ଯଦି ଏଥିରେ କୌଣସି ପ୍ରକାର ତ୍ରୁଟି ପରିଲକ୍ଷିତ ହୁଏ ତାହାପ୍ରତି କର୍ତ୍ତୃପକ୍ଷଙ୍କ ଦୃଷ୍ଟି ଆକର୍ଷଣ କରାଗଲେ ପରବର୍ତ୍ତୀ ସଂୟରଣରେ ସେଗୁଡ଼ିକର ସଂଶୋଧନ କରିବା ପାଇଁ ଆବଶ୍ୟକ ପଦକ୍ଷେପ ନିଆଯିବ ।

ଲେଖକମଣ୍ଡଳୀ

ସୂଚୀ

ଅଧ୍ୟାୟ	ବିଷୟ	□\$\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	ପୃଷ୍ଠା
ପ୍ରଥମ ଅଧ୍ୟାୟ :	କ୍ୟାମିତିରେ ସାଦୃଶ୍ୟ	I DIT. SEE	1-36
ଦ୍ୱିତୀୟ ଅଧ୍ୟାୟ :	ବୃତ୍ତ		37-73
ତୃତୀୟ ଅଧ୍ୟାୟ :	ବୃତ୍ତର ସ୍ପର୍ଶକ		74-94
ଚତୁର୍ଥ ଅଧ୍ୟାୟ :	ତ୍ରିକୋଶମିତି		95-118
ପଞ୍ଚମ ଅଧ୍ୟାୟ :	ପରିମିତି		119-163
ଷଷ ଅଧାୟ :	ଅଙ୍କିନ		164-182
	ଉତ୍ତରମାଳା		183-186

ଭାରତର ସନ୍ଧିଧାନ

ପାକ୍ କଥନ:

ଆମେ ଭାରତବାସୀ ଭାରତକୁ ଏକ ସାର୍ବଭୌମ, ସମାଜବାଦୀ, ଧର୍ମ ନିରପେକ୍ଷ, ଗଣତାନ୍ତ୍ରିକ ସାଧାରଣତନ୍ତ୍ର ରୂପେ ଗଠନ କରିବା ପାଇଁ ଦୃଢ଼ ସଂକଳ୍ପ ନେଇ ଓ ଏହାର ସମୟ ନାଗରିକଙ୍କୁ

- ସାମାଜିକ, ଅର୍ଥନୈତିକ ଓ ରାଜନୈତିକ ନ୍ୟାୟ ;
- ଚିନ୍ତା, ଅଭିବ୍ୟକ୍ତି, ପ୍ରତ୍ୟୟ, ଧର୍ମୀୟ ବିଶ୍ୱାସ ଏବଂ ଉପାସନାର ସ୍ୱତନ୍ତତା;
- ସିତି ଓ ସୁବିଧା ସୁଯୋଗର ସମାନତାର ସୁରକ୍ଷା ପ୍ରଦାନ କରିବାକୁ ତଥା
- ବ୍ୟକ୍ତି ମର୍ଯ୍ୟାଦା ଏବଂ ରାଷ୍ଟ୍ରର ଐକ୍ୟ ଓ ସଂହତି ନିଷ୍ଟିତ କରି ସେମାନଙ୍କ ମଧ୍ୟରେ
 ଭ୍ରାତୃଭାବ ଉତ୍ସାହିତ କରିବାକୁ
 ସେ ସଂଗ୍ରେଟ୍ଟ ବ୍ୟବ୍ୟ ସଂଗ୍ରେଟ

ଏହି ୧୯୪୯ ମସିହା ନଭେୟର ୨୬ ତାରିଖ ଦିନ

ଆମର ସଂବିଧାନ ପ୍ରଣୟନ ସଭାରେ ଏତଦ୍ୱାରା

ଏହି ସନ୍ଦିଧାନକୁ ଗ୍ରହଣ ଓ ପ୍ରଣୟନ କରୁଅଛୁ ଏବଂ ଆମ ନିଜକୁ ଅର୍ପଣ କରୁଅଛୁ ।

ଚତୁର୍ଥ ଅଧ୍ୟାୟ (କ)

୫୧(କ) ଧାରା : ମୌଳିକ କର୍ତ୍ତବ୍ୟ

ଭାରତର ପ୍ରତ୍ୟେକ ନାଗରିକଙ୍କର କର୍ତ୍ତବ୍ୟ –

- (କ) ସମ୍ବିଧାନକୁ ମାନି ଚଳିବା ଏବଂ ଏହାର ଆଦର୍ଶ ଓ ଅନୁଷ୍ଠାନମାନଙ୍କୁ ଏବଂ ଜାତୀୟ ପତାକା ଓ ଜାତୀୟ ସଙ୍ଗୀତକୁ ସନ୍ନାନ ପଦର୍ଶନ କରିବା;
- (ଖ) ଯେଉଁସବୁ ମହନୀୟ ଆଦର୍ଶ ଆମ ଜାତୀୟ ସ୍ୱାଧୀନତା ସଂଗ୍ରାମକୁ ଅନୁପ୍ରାଣିତ କରିଥିଲା, ତାହାକୁ ସ୍ମରଣ ଓ ଅନୁସରଣ କରିବା;
- (ଗ) ଭାରତର ସାର୍ବଭୌମତ୍ୱ, ଏକତା ଓ ସଂହତି ବଜାୟ ଏବଂ ସ୍ୱରକ୍ଷିତ ରଖିବା;
- (ଘ) ଦେଶର ପ୍ରତିରକ୍ଷା କରିବା ଓ ଆବଶ୍ୟକ ସ୍ଥଳେ ଜାତୀୟ ସେବା ପଦାନ କରିବା;
- (ଙ) ଧର୍ମଗତ, ଭାଷାଗତ ଏବଂ ଆଞ୍ଚଳିକ କିନ୍ୟା ଗୋଷ୍ପୀଗତ ବିଭିନ୍ନତାକୁ ଅତିକ୍ରମ କରି ଭାରତର ଜନସାଧାରଣଙ୍କ ମଧ୍ୟରେ ଐକ୍ୟ ଓ ଭ୍ରାତୃଭାବ ପ୍ରତିଷ୍ଠା କରିବା ଏବଂ ନାରୀଜାତିର ମର୍ଯ୍ୟାଦାହାନୀସୂଚକ ବ୍ୟବହାର ପରିତ୍ୟାଗ କରିବା;
- (ଚ) ଆମର ସଂସ୍କୃତିର ମୁଲ୍ୟବାନ ଐତିହ୍ୟକୁ ସମ୍ମାନ ପ୍ରଦର୍ଶନ ଓ ସଂରକ୍ଷଣ କରିବା;
- (ଛ) ଅରଣ୍ୟ, ହ୍ରଦ, ନଦୀ, ବନ୍ୟପ୍ରାଣୀ ସମେତ ପ୍ରାକୃତିକ ପରିବେଶର ସୂରକ୍ଷା ଓ ଉନ୍ନତି କରିବା ଏବଂ ଜୀବଜଗତ ପ୍ରତି ଅନୁକମ୍ପା ପ୍ରଦର୍ଶନ କରିବା;
- (ଜ) ବୈଜ୍ଞାନିକ ମନୋଭାବ, ମାନବବାଦ ଏବଂ ଅନୁସନ୍ଧିତ୍ୟା ଓ ସଂସ୍କାର ମନୋଭାବ ପୋଷଣ କରିବା;
- (ଝ) ସର୍ବସାଧାରଣ ସମ୍ପଭିର ସ୍ୱରକ୍ଷା କରିବା ଓ ହିଂସା ପରିତ୍ୟାଗ କରିବା;
- (ଞ) ବ୍ୟକ୍ତିଗତ ଓ ସମଷ୍ଟିଗତ କାର୍ଯ୍ୟାବଳୀର ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ଉତ୍କର୍ଷ ସାଧନ କରିବା, ଯାହା ଦ୍ୱାରା ଆମ ଦେଶ ପ୍ରଚେଷ୍ଟା ଓ କୃତିତ୍ୱର ଉଚ୍ଚତର ସୋପାନକୁ ଅବିରତ ଉନ୍ନତି କରିପାରିବ;
- (ଟ) ମାତା ବା ପିତା ବା ଅଭିଭାବକ, ତାଙ୍କର ଛଅ ବର୍ଷରୁ ଚଉଦ ବର୍ଷ ବୟସ ମଧ୍ୟରେ ଥିବା ସନ୍ତାନ ବା ପାଳିତଙ୍କୁ ଶିକ୍ଷାଲାଭର ସୁଯୋଗ ଯୋଗାଇ ଦେବା ।

ଜ୍ୟାମିତିରେ ସାଦୃଶ୍ୟ

(SIMILARITY IN GEOMETRY)

1.1 ଉପକ୍ରମଣିକା :

ଅନେକ ସମୟରେ ଦୁଇଟି ବୟୁ ବା ଚିତ୍ରକୁ ଦେଖି, ''ସେ ଦୁଇଟି ଦେଖିବାକୁ ଏକାଭଳି'' ବୋଲି ଆମେ କହିଥାଉ । ଉଦାହରଣ ସ୍ୱରୂପ (i) କାନ୍ଥରେ ଟଙ୍ଗା ଯାଇଥିବା ଗୋଟିଏ ବୃହତ୍ ଆକାରର ଏବଂ ଗୋଟିଏ କ୍ଷୁଦ୍ର ଆକାରର ଓଡ଼ିଶାର ମାନଚିତ୍ର, (ii) 'ତାଜମହଲ୍' ଏବଂ ବଜାରରେ ମିଳୁଥିବା 'ତାଜମହଲ୍ର ଏକ ନମୁନା' । (iii) ଗୋଟିଏ ନେଗେଟିଭରୁ ପ୍ରସ୍ତୁତ ଗୋଟିଏ ବଡ଼ ଫଟୋଚିତ୍ର ଏବଂ ଗୋଟିଏ ଛୋଟ ଫଟୋଚିତ୍ର ଇତ୍ୟାଦି ।

ଏପରି ଦୁଇଟି ଚିତ୍ର କାହିଁକି ଏକା ଭଳି ଦେଖାଯାଏ କହି ପାରିବ କି ?

ଓଡ଼ିଶାର ଗୋଟିଏ ବଡ଼ ମାନଚିତ୍ର (ମାନଚିତ୍ର I) ଯେଉଁଥିରେ ରାଉରକେଲା, ପାରାଦ୍ୱୀପ ଓ ଗୋପାଳପୁର ତଥା ସମୟ ଜିଲ୍ଲାର ମୁଖ୍ୟ ସହର ଗୁଡ଼ିକ ଦର୍ଶାଯାଇଥିବ ଏବଂ ପୂର୍ବମାନଚିତ୍ରର ଏକ ଛୋଟ ଆକାରର ମାନଚିତ୍ର (ମାନଚିତ୍ର II) ଯେଉଁଥିରେ ପୂର୍ବୋକ୍ତ ସ୍ଥାନଗୁଡ଼ିକ ଦର୍ଶାଯାଇଥିବ ସଂଗ୍ରହ କରିବା । ମାନଚିତ୍ର - I ଓ ମାନଚିତ୍ର - II ରୁ ରାଉରକେଲା-ପାରଦ୍ୱୀପ ବିନ୍ଦୁ ଦ୍ୱୟ ମଧ୍ୟରେ ଥିବା ଦୂରତା ପୃଥକ୍ ଭାବେ ମାପି ଦୂରତା ଦ୍ୱୟର ଅନୁପାତ ନିର୍ଣ୍ଣୟ କରିବା । ସେହିପରି ପାରାଦ୍ୱୀପ-ଗୋପାଳପୁର ଓ ଗୋପାଳପୁର – ରାଉରକେଲା ମଧ୍ୟରେ ଉଭୟ ମାନଚିତ୍ରରୁ ପାଇଥିବା ଦୂରତାର ଅନୁପାତ ନିର୍ଣ୍ଣୟ କଲେ ଆମେ ଦେଖିବା ଯେ, ମାନଚିତ୍ର -I ଓ ମାନଚିତ୍ର II ରୁ ପାଇଥିବା ଡିନିଯୋଡ଼ା ବିନ୍ଦୁ ମଧ୍ୟରେ ଦୂରତାର ଅନୁପାତ ପରୟର ସମାନ ହେବେ ।

ଅନ୍ୟ ଯେ କୌଣସି ଦୁଇଟି ସ୍ଥାନ ମଧ୍ୟରେ ଦୂରତା ଉଭୟ ମାନଚିତ୍ରରୁ ମାପି ସେ ଦୁଇଟି ମଧ୍ୟରେ ଅନୁପାତ ନିର୍ଣ୍ଣୟ କଲେ ଆମେ ଦେଖିବା, ଆମେ ପାଇଥିବା ଭିନ୍ନ ଦୁଇଟି ସ୍ଥାନ ମଧ୍ୟରେ ମିଳିଥିବା ଦୂରତାର ଅନୁପାତ ମଧ୍ୟ ପୂର୍ବାଲୋଚିତ ଅନୁପାତ ସହ ସମାନ ହେବ । ଏହି କାରଣରୁ ହିଁ ଦୁଇଟି ଚିତ୍ର ଏକାଭଳି ଦେଖାଯାଇଥାଏ । ଆମେ କହୁ, ଚିତ୍ର ଦୁଇଟିର ଆକୃତି (Shape) ଅଭିନୁ ।

ଅଭିନ୍ନ ଆକୃତି ଥିବା ବସ୍ତୁ ଦୁଇଟି ବା ଚିତ୍ର ଦୁଇଟିକୁ **ସଦୃଶ ବସ୍ତୁ ବା ସଦୃଶ ଚିତ୍ର (Similar Figures)** କୁହାଯାଏ । ସଦୃଶ ହେବାର ଗୁଣକୁ **ସାଦୃଶ୍ୟ (Similarity)** କୁହାଯାଏ ।

1.2 କ୍ୟାମିତିରେ ଅନୁପାତ ଓ ସମାନୁପାତ (Ratio and Proportion in Geometry) :

ପୂର୍ବ ଶ୍ରେଣୀରେ ତୁମେ ପଢ଼ିଛ : a,b,c,d ଚାରିଗୋଟି ଧନାତ୍ମକ ସଂଖ୍ୟା ଏବଂ ସେଗୁଡ଼ିକ ସମାନୁପାତୀ ହେଲେ ଆମେ ଲେଖୁ a:b=c:d

ଉକ୍ତ ସମାନୁପାତିକ ଧର୍ମକୁ ଏଠାରେ ପ୍ରୟୋଗ କରିବା ।

ତୁମେ ଜାଣିଛ : ଏକ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2}$ ଭୂମିର ଦୈର୍ଘ୍ୟ imes ଉଚ୍ଚତା

ମନେକରାଯାଉ $\Delta_{_1}$ ରେ ଭୂମିର ଦୈର୍ଘ୍ୟ $b_{_1}$ ଏକକ ଏବଂ ଉଚ୍ଚତା $h_{_1}$ ଏକକ ।

$$\therefore \Delta_{_1}$$
ର କ୍ଷେତ୍ରଫଳ = $rac{1}{2}$ $b_{_1} h_{_1}$ ବର୍ଗ ଏକକ ।

ପୁନଣ୍ଟ $\Delta_{_2}$ ର ଭୂମିର ଦୈର୍ଘ୍ୟ $b_{_2}$ ଏକକ ଏବଂ ଉଚ୍ଚତା $h_{_2}$ ଏକକ ହେଲେ

$$\therefore \Delta_2$$
 ର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2}$ $b_2 h_2$ ବର୍ଗ ଏକକ ହେବ ।

ବର୍ତ୍ତମାନ ଧରି ନିଆଯାଉ ସେ $\Delta_{_1}$ ଓ $\Delta_{_2}$ ର ଉଚ୍ଚତା $\mathbf{h}_{_1} = \mathbf{h}_{_2}$ ।

ସେହିପରି ମନେକରାଯାଉ $\Delta_{_1}$ ଓ $\Delta_{_2}$ ର ଭୂମି ସମଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ, ଅର୍ଥାତ୍ $b_{_1}=b_{_2}$ ।

(1) ରୁ ସିଦ୍ଧାନ୍ତ ହେଲା -

ସମାନ ଉଚ୍ଚତା ବିଶିଷ ଦୁଇଟି ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ, ଉକ୍ତ ତ୍ରିଭୁଜ ଦ୍ୱୟର ଅନୁରୂପ ଭୂମିଦ୍ୱୟର ଦୈର୍ଘ୍ୟର ଅନୁପାତ ସହ ସମାନ ।

(2) ରୁ ସିଦ୍ଧାନ୍ତ ହେଲା -

ଦୁଇଟି ତ୍ରିଭୁକର ଭୂମିର ଦୈର୍ଘ୍ୟ ସମାନ ହେଲେ, ତ୍ରିଭୁକଦ୍ୱୟର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ, ଉକ୍ତ ତ୍ରିଭୁକଦ୍ୱୟର ଅନୁରୂପ ଉଚ୍ଚତା ଦ୍ୱୟର ଅନୁପାତ, ସହ ସମାନ ।

ଏକ ସ୍ୱତନ୍ତ୍ର ପରିସ୍ଥିତି :

ଚିତ୍ର 1.1 ରେ, D ବିନ୍ଦୁ $\overline{\mathrm{BC}}$ ଉପରେ ଅବସ୍ଥିତ ଏବଂ B - D - C ।

ଫଳରେ $\Delta {
m ABD}$ ର ଭୂମି $\overline{
m BD}$, $\Delta {
m ADC}$ ର ଭୂମି $\overline{
m DC}$

ଏବଂ ΔABC ର ଭୂମି \overline{BC} ଗୋଟିଏ ସରଳରେଖାରେ ଅବସ୍ଥିତ ।

B P D C (ଚିତ୍ର 1.1)

ପୁନଷ $\Delta {
m ABD}$, $\Delta {
m ADC}$ ଓ $\Delta {
m ABC}$ ପୁତ୍ୟେକର ଶୀର୍ଷ ${
m A}$ । ବର୍ତ୍ତମାନ $\overline{
m AP}$ \perp $\overline{
m BC}$ ଅଙ୍କନ କରିବା ।

ଅତଏବ ପ୍ରତ୍ୟେକ ତ୍ରିଭୁଜର ଉଚ୍ଚତା AP ହେବ । ଅର୍ଥାତ୍ ତିନୋଟିଯାକ ତ୍ରିଭୁଜ ସମଉଚ୍ଚତା ବିଶିଷ୍ଟ ହେବେ । ଫଳରେ ଆମେ ଦେଖିଲେ, ଦୁଇଟି (ବା ତହିଁରୁ ଅଧିକ) ତ୍ରିଭୁଜର ଭୂମିମାନ ଏକ ସରଳ ରେଖାରେ ରହିଲେ ଏବଂ ସେମାନଙ୍କର ଶୀର୍ଷ ବିନ୍ଦୁ ଅଭିନ୍ନ ହେଲେ, ତ୍ରିଭୁଜଗୁଡ଼ିକ ସମ ଉଚ୍ଚତା ବିଶିଷ୍ଟ ହେବେ ।

କ୍ୟାମିତି କ୍ଷେତ୍ରରେ ମଧ୍ୟ କେତେକ ସ୍ଥଳରେ ବିଭିନ୍ନ ମାପ ସମାନୁପାତୀ ହୋଇଥିବାର ଆମେ ଦେଖୁ । ଏହିପରି କେତେକ ଜ୍ୟାମିତିକ ପରିସ୍ଥିତିର ଆଲୋଚନା ନିମ୍ନରେ କରାଯାଇଛି ।

ଚିତ୍ର 1.2 ରେ ΔABC ର \overline{AB} ଓ \overline{AC} ବାହୁ ଉପରେ ଯଥାକୁମେ

P ଓ Q ବିନ୍ଦୁ ଅବସ୍ଥିତ, ଯେପରିକି \overline{PO} Π \overline{BC} 1

P ବିନ୍ଦୁ \overline{AB} କୁ AP:PB ଅନୁପାତରେ ଏବଂ Q ବିନ୍ଦୁ \overline{AC} କୁ AQ:QC ଅନୁପାତରେ ଅନ୍ତର୍ବିଭାଜନ

କରନ୍ତି । ଏହି ପରିସ୍ଥିତିରେ ଆମେ ନିମ୍ନ ଉପପାଦ୍ୟ (1) ରୁ ଜାଣିବା ଯେ, $\frac{\mathrm{AP}}{\mathrm{PR}} = \frac{\mathrm{AQ}}{\mathrm{OC}}$

ଅର୍ଥାତ୍ ଏକ ତ୍ରିଭୂଜର ଗୋଟିଏ ବାହୁ ସହ ସମାନ୍ତର ଏକ ରେଖାଖଣ ଅନ୍ୟ ଦୂଇବାହୁକୁ ଛେଦ କଲେ, ଭକ୍ତ ବାହୁଦ୍ୱୟ ଉପରେ ଉତ୍ପନ୍ନ ଛେଦିତାଂଶମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନୁପାତୀ ହେବେ ।

ଭାଷାଗତ ସୁବିଧା ଦୃଷ୍ଟିରୁ ଆମେ ଏହି କ୍ଷେତ୍ରରେ କହିବା :- '' \overline{PQ} ଦ୍ୱାରା \overline{AB} ଓ \overline{AC} ସମାନୁପାତରେ ବିଭାଜିତ ହୁଅନ୍ତି'' ଅଥବା, '' \overline{PQ} ରେଖାଖଣ୍ଡ, \overline{AB} ଓ \overline{AC} କୁ ସମାନୁପାତରେ ଛେଦ କରେ'' (\overline{PQ} divides \overline{AB} and \overline{AC} proportionally) |

ଆସ, ଉପରୋକ୍ତ ତଥ୍ୟର ଯୁକ୍ତି ଭିଭିକ ପ୍ରମାଣ (Logical Proof) କରିବା ।

ଉପପାଦ୍ୟ - 1 (ଥେଲିସ୍ ଉପପାଦ୍ୟ)

ଏକ ତ୍ରିଭୁଜର ଗୋଟିଏ ବାହୁ ସହ ସମାନ୍ତର ଏକ ସରଳରେଖା ଯଦି ତ୍ରିଭୁଜର ଅନ୍ୟ ଦୁଇ ବାହୁକୁ ଦୁଇଟି ଭିନ୍ନ ବିନ୍ଦୁରେ ଛେଦ କରେ, ତେବେ ଉକ୍ତ ସରଳରେଖା ଦ୍ୱାରା ଅନ୍ୟ ଦୃଇ ବାହୁ ସମାନୁପାତରେ ବିଭାଜିତ ହୁଅନ୍ତି ।

(If a line drawn parallal to a side of a triangle intersects the other two sides at two distinct points, then the line divides the other two sides proportionally.)

ଦର : ΔABC ର \overline{BC} ବାହୁ ସହ ସମାନ୍ତର ଏକ ସରଳରେଖା L, ଅନ୍ୟ ଦୁଇ ବାହୁ \overline{AB} ଓ \overline{AC} କୁ ଯଥାକ୍ମେ ଦୁଇଟି ଭିନ୍ନ ବିନ୍ଦୁ X ଓ Y ରେ ଛେଦ କରେ ।

ପ୍ରାମାଣ୍ୟ : L ରେଖା \overline{AB} ଓ \overline{AC} ବାହୁଦ୍ୱୟକୁ ସମାନୁପାତରେ

ଛେଦ କରେ; ଅର୍ଥାତ୍ $\frac{AX}{XB} = \frac{AY}{YC}$

ଅଙ୍କନ : $\overline{\mathrm{BY}}$ ଓ $\overline{\mathrm{CX}}$ ଅଙ୍କନ କର ।

(ଚିତ୍ର 1.3)

ପ୍ରମାଣ : ΔAXY ଓ ΔBXY ର ଭୂମି ଯଥାକ୍ରମେ \overline{AX} ଓ \overline{BX} ଏବଂ ଉଭୟ ଏକ ସରଳରେଖା \overleftarrow{AB} ରେ ଅବସ୍ଥିତ । ପୁନଷ୍ଟ ଉଭୟ ତ୍ରିଭୁଜର ଶୀର୍ଷବିନ୍ଦୁ (Y) ଏକ ଓ ଅଭିନ୍ନ ବିନ୍ଦୁ । ଏଣୁ ଉକ୍ତ ତ୍ରିଭୁଜ ଦ୍ୟ ସମଉଚ୍ଚତା ବିଶିଷ୍ଟ ହେବେ I

$$\therefore \frac{\Delta \text{ AXYର ସେତ୍ଫଳ}}{\Delta \text{ BXYର ସେତ୍ଫଳ}} = \frac{AX}{BX} \dots (1)$$

ପୁନଣ୍ଟ ΔAYX ଓ ΔCYX ର ଭୂମି ଯଥାକ୍ରମେ \overline{AY} ଓ \overline{CY} ଏବଂ ଉଭୟ ଏକ ସରଳରେଖା \overleftarrow{AC} ରେ ଅବସ୍ଥିତ । ଉଭୟ ତ୍ରିଭୁଜର ଶୀର୍ଷବିନ୍ଦୁ (X) ଏକ ଓ ଅଭିନ୍ନ । ଏଣୁ ଉକ୍ତ ତ୍ରିଭୁଜ ଦ୍ୱୟ ସମଉଚ୍ଚତା ବିଶିଷ୍ଟ ହେବେ ।

$$\therefore \frac{\Delta \text{ AYX ର ଷେତ୍ରଫଳ}}{\Delta \text{ CYXର ଷେତ୍ରଫଳ}} = \frac{\text{AY}}{\text{CY}} \dots (2)$$

ମାତ୍ର ΔBXY ଓ ΔCYX ଉଭୟ ଏକା ଭୂମି \overline{XY} ଉପରେ ଏବଂ \overline{XY} ସହ ଏକ ସମାନ୍ତର ସରଳରେଖା \overleftrightarrow{BC} ଓ \overline{XY} ମଧ୍ୟରେ ଅବସ୍ଥିତ ହେତୁ, ΔBXY ର କ୍ଷେତ୍ରଫଳ = ΔCYX ର କ୍ଷେତ୍ରଫଳ (3)

$$(2)$$
 ଓ (3) $\Rightarrow \frac{\Delta \text{ AYXର କ୍ଷେତ୍ରଫଳ}}{\Delta \text{ BXYର କ୍ଷେତ୍ରଫଳ}} = \frac{\text{AY}}{\text{CY}} \dots (4)$

$$(1)$$
 ଓ $(4) \Rightarrow \frac{AX}{BX} = \frac{AY}{CY}$ (ପ୍ରମାଶିତ)

ଅନୁସିଦ୍ଧାନ୍ତ : ଚିତ୍ର - 1.3 ରେ (i)
$$\frac{BX}{AB} = \frac{CY}{AC}$$
 (ii) $\frac{AX}{AB} = \frac{AY}{AC}$

ପ୍ରମାଣ : ଉପପାଦ୍ୟ –
$$1$$
 ଦ୍ୱାରା, $\frac{AX}{BX} = \frac{AY}{CY} \implies \frac{AX}{BX} + 1 = \frac{AY}{CY} + 1$

$$\Rightarrow \frac{AX + BX}{BX} = \frac{AY + CY}{CY} \Rightarrow \frac{AB}{BX} = \frac{AC}{CY} \text{ ql, } \frac{BX}{AB} = \frac{CY}{AC}$$
 [(i) ପ୍ରମାଶିତ]

ପୁନଣ୍ଟ, ଉପପାଦ୍ୟ – 1 ଦ୍ୱାରା, $\frac{AX}{BX} = \frac{AY}{CY} \Rightarrow \frac{BX}{AX} = \frac{CY}{AY}$ (ବ୍ୟୟ ଅନୁପାତ ନେଲେ)

$$\implies \frac{BX}{AX} + 1 = \frac{CY}{AY} + 1 \implies \frac{BX + AX}{AX} = \frac{CY + AY}{AY}$$

$$\Rightarrow \frac{AB}{AX} = \frac{AC}{AY}$$
 ବା, $\frac{AX}{AB} = \frac{AY}{AC}$ [(ii) ପ୍ରମାଣିତ]

ମନ୍ତବ୍ୟ : (i) ଉପପାଦ୍ୟ – 1 କୁ ଜ୍ୟାମିତିରେ "ମୌଳିକ ସମାନୁପାତିତା ଉପପାଦ୍ୟ" (Basic Proportionality theorem) କୁହାଯାଏ । ଗ୍ରୀକ୍ ଦାର୍ଶନିକ ଓ ଗଣିତଜ୍ଞ ଥେଲିସ୍ଙ୍କ ନାମାନୁସାରେ ଏହାକୁ ଥେଲିସ୍ଙ୍କ ଉପପାଦ୍ୟ କୁହାଯାଏ ।

(ii) ଉପପାଦ୍ୟ – 1 ର କଥନରେ ଆମେ L ରେଖା ନିମନ୍ତେ ଗୋଟିଏ ସର୍ତ୍ତ ଆରୋପ କରିଛୁ । ସର୍ତ୍ତଟି ହେଲା, $^{\circ}L$ ରେଖା \overline{AB} ଓ \overline{AC} ବାହୁଦ୍ୱୟକୁ ଦୁଇଟି ଭିନ୍ନ ବିନ୍ଦୁରେ ଛେଦ କରେ ।

ଏହି ସର୍ତ୍ତବିନା, L ରେଖା ଲାଗି ଦୁଇଟି ଭିନ୍ନ ଅବସ୍ଥିତି ସମ୍ଭବ । ଚିତ୍ର - 1.4 ଓ ଚିତ୍ର - 1.5 ରେ ଏହି ଦୁଇଟି ପରିସ୍ଥିତିକ୍ ଦର୍ଶାଯାଇଛି ।

(ଚିତ୍ର 1.4) (ଚିତ୍ର 1.5) ଚିତ୍ର -1.4 ରେ L ରେଖା ଓ \overline{BC} ସମାନ୍ତର ଏବଂ \overrightarrow{AB} ଓ \overrightarrow{AC} , L ରେଖାକୁ ଯଥାକ୍ରମେ X ଓ Y ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । [ଏଠାରେ \overline{AB} ଓ \overline{AC} କୁ L ରେଖା ବହିର୍ବିଭାଜନ କରେ ବୋଲି କୁହଯାଏ ଏବଂ \overline{AX} ଓ \overline{BX} କୁ \overline{AB} ର ବହିର୍ବିଭାଜିତ ଅଂଶ ରୂପେ ନିଆଯାଏ ।]

ଏହି କ୍ଷେତ୍ରରେ ପ୍ରମାଣଟି ନିମ୍ନମତେ କରଯାଇଥାଏ ।

ପ୍ରାମାଶ୍ୟ : $\frac{AX}{BX} = \frac{AY}{CY}$

ଅଙ୍କନ : $\overline{\mathrm{BY}}$ ଓ $\overline{\mathrm{CX}}$ ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଶ : $\frac{\Delta \text{ AXCର SAGGTA}}{\Delta \text{ BXCର SAGGTA}} = \frac{AX}{BX}$ (1)

 $[\widehat{\mathbb{G}}$ ଭୁଜଦ୍ୱୟର ଭୂମି ଏକ ସରଳରେଖା $\stackrel{\longleftarrow}{AB}$ ଉପରେ ଅବସ୍ଥିତ ଏବଂ ଉଭୟ ତ୍ରିଭୁଜର ଶୀର୍ଷ (C) ଅଭିନ୍ନ ହେତ୍ର]

ପୁନଣ୍ଟ,
$$\frac{\Delta \text{ AYBର X X YBS}}{\Delta \text{ CYBA X X YBS}} = \frac{\text{AY}}{\text{CY}}$$
(2) [ପୂର୍ବବର୍ତ୍ତୀ କାରଣ ସହ ଅନୁରୂପ କାରଣ ହେତୁ]

ମାତ୍ର ΔBXC ଓ ΔCYB ଉଭୟ ଏକା ଭୂମି \overline{BC} ଉପରେ ଓ ଦୁଇ ସମାନ୍ତର ରେଖା \overline{BC} ଓ L ମଧ୍ୟରେ ଅବସ୍ଥିତ ହେତୁ ΔBXC କ୍ଷେତ୍ରଫଳ = Δ CYB ର କ୍ଷେତ୍ରଫଳ - - - - - (3)

 $\Rightarrow \Delta$ BXC ର କ୍ଷେତ୍ରଫଳ + Δ ABC ର କ୍ଷେତ୍ରଫଳ = Δ CYB ର କ୍ଷେତ୍ରଫଳ + Δ ABC ର କ୍ଷେତ୍ରଫଳ [ଉଭୟ ପାର୍ଶ୍ୱରେ Δ ABC ର କ୍ଷେ.ଫ. ଯୋଗକଲେ]

 $\Longrightarrow \Delta {
m AXC}$ ର କ୍ଷେତ୍ରଫଳ = $\Delta {
m AYB}$ ର କ୍ଷେତ୍ରଫଳ - - - - - (4)

(3) ଓ (4) ରୁ ଆମେ ପାଇବା $\frac{\Delta \ AXCର \ SAO G C C}{\Delta \ BXCO \ SAO C C C} = \frac{\Delta \ AYBO \ SAO C C C}{\Delta \ CYBO \ SAO C C}$

$$\Rightarrow \frac{AX}{BX} = \frac{AY}{CY} \ [(1) \ 2) \ 2$$
ଅନୁଯାୟୀ] [ପ୍ରମାଶିତ]

ପରିସ୍ଥିତି (ii), ଅର୍ଥାତ୍ ଚିତ୍ର 1.5 ରେ ପ୍ରଦର୍ଶିତ ପରିସ୍ଥିତିରେ ନିଜେ ପ୍ରମାଣ କରିବାକୁ ଚେଷ୍ଟା କର ।

ଉପାପାଦ୍ୟ - 1 ର ବିପରୀତ ଉପପାଦ୍ୟ ସୟକ୍ଷୀୟ ଆଲୋଚନା :

ଉପପାଦ୍ୟ - 1 ର ବିପରୀତ କଥନ ନିମୁମତେ ହେବ ।

ଏକ ତ୍ରିଭୁଜର ଦୁଇ ବାହୁକୁ ସମାନୁପାତରେ ଅନ୍ତର୍ବିଭାଜନ କରୁଥିବା ରେଖା, ଉକ୍ତ ତ୍ରିଭୁଜର ତୃତୀୟ ବାହୁ ସହ ସମାନ୍ତର ।

ଚିତ୍ର - 1.6 ରେ $\angle {
m XOY}$ ଏକ ସୂକ୍ଷ୍ମ କୋଣ ।

 $\stackrel{
ightarrow}{
m ox}$ ଉପରେ P, Q, R ଓ S ବିନ୍ଦୁ ଚାରୋଟି ଏପରି ଅବସ୍ଥିତ ଯେପରିକି

$$OP = PQ = QR = RS$$

ସେହିପରି $\overset{
ightarrow}{\mathrm{OY}}$ ଉପରେ $\mathrm{K,L,M}$ ଓ N ବିନ୍ଦୁ ଚାରୋଟି ଏପରି

ଅବସ୍ଥିତ, ଯେପରିକି OK = KL = LM = MN.

 $\overline{\mathrm{RM}}$ ଓ $\overline{\mathrm{SN}}$ ରେଖାଖଣ୍ଡମାନ ଅଙ୍କନ କରାଯାଇଛି ।

$$\therefore \frac{OR}{RS} = \frac{3}{1}$$
(1), ଏବଂ $\frac{OM}{MN} = \frac{3}{1}$ (2)

$$(1)$$
 ଓ (2) ରୁ ପାଇବା $\frac{OR}{RS} = \frac{OM}{MN}$

ଅର୍ଥାତ୍, $\Delta {
m SON}$ ରେ $\stackrel{\longleftarrow}{
m RM}$ ରେଖା, $\overline{
m OS}$ ଓ $\overline{
m ON}$ ବାହୁଦ୍ୱୟକୁ ସମାନୁପାତରେ ଛେଦକରେ ।

ବର୍ତ୍ତମାନ ଆମେ ଏକ ପ୍ରୋଟ୍ରାକ୍ଟର ସାହାଯ୍ୟରେ ମାପକରି ଦେଖି ପାରିବା ଯେ m \angle ORM = m \angle OSN ଫଳରେ $\overline{\rm RM}$ । ବର୍ତ୍ତମାନ ଏହି କଥନର ଯୁକ୍ତିମୂଳକ ପ୍ରମାଣ କରିବା ।

(ଉପପାଦ୍ୟ - 1 ର ବିପରୀତ)

ଏକ ତ୍ରିଭୁକର ଦୁଇ ବାହୁକୁ ସମାନୁପାତରେ ଅନ୍ତର୍ବିଭାଜନ କରୁଥିବା ରେଖା, ଉକ୍ତ ତ୍ରିଭୁକର ତୃତୀୟ ବାହୁ ସହ ସମାନ୍ତର ।

(If a line divides two sides of a triangle internally in the same ratio, then it is parallel to the third side of the triangle.)

ଦତ୍ତ : ΔABC ର \overline{AB} ଓ \overline{AC} ବାହୁକୁ L ରେଖା ଯଥାକ୍ରମେ X ଓ Y ବିନ୍ଦୁରେ ସମାନୁପାତରେ ଅନ୍ତର୍ବିଭାଜନ

କରୁଛି ଅର୍ଥାତ୍
$$\frac{AX}{BX} = \frac{AY}{CY}$$

ପ୍ରାମାଣ୍ୟ : L ରେଖା \overline{BC} ସହ ସମାନ୍ତର ।

ଅଙ୍କନ : $\overline{\mathrm{BY}}$ ଓ $\overline{\mathrm{CX}}$ ଅଙ୍କନ କରଯାଉ ।

(ଚିତ୍ର 1.6)

ପ୍ରମାଣ : ΔAXY ଏବଂ ΔBXY ର ଭୂମି ଯଥାକ୍ରମେ \overline{AX} ଓ \overline{BX} ଏବଂ ଭୂମି ଦ୍ୱୟ ଏକ ସରଳରେଖା \overleftarrow{AB} ରେ ଅବସ୍ଥିତ । ପୁନଣ୍ଟ ଉଭୟ ତ୍ରିଭୁଜର ଶୀର୍ଷ ବିନ୍ଦୁ (Y) ଏକ ଓ ଅଭିନ୍ନ ବିନ୍ଦୁ । ଏଣୁ ଉକ୍ତ ତ୍ରିଭୁଜ ଦ୍ୱୟ ସମଉଚ୍ଚତା ବିଶିଷ୍ଟ ହେବେ ।

$$\therefore \frac{\Delta \text{ AXYର ଷେତ୍ରଫଳ}}{\Delta \text{ BXYର ଷେତ୍ରଫଳ}} = \frac{AX}{BX}$$
(1)

ସେହିପରି ΔAYX ଏବଂ ΔCYX ର ଭୂମି \overline{AY} ଓ \overline{CY} ଏବଂ ଭୂମିଦ୍ୱୟ ଏକ ସରଳରେଖା \overleftarrow{AC} ରେ ଅବସ୍ଥିତ । ଏକ ଶୀର୍ଷବିନ୍ଦୁ X ବିଶିଷ୍ଟ ହେତୁ ତିଭୁଜଦ୍ୱୟ ସମଉଚ୍ଚତା ବିଶିଷ୍ଟ ।

$$\therefore \frac{\Delta \text{ AYXର କ୍ଷେତ୍ରଫଳ}}{\Delta \text{ CYXର କ୍ଷେତ୍ରଫଳ}} = \frac{\text{AY}}{\text{CY}}$$
(2)

ମାତ୍ର
$$\frac{AX}{BX} = \frac{AY}{CY}$$
 (ଦତ୍ର)(3)

ଉତ୍ତି (1), (2) ଓ (3)
$$\Rightarrow \frac{\Delta \text{ AXYର ଷେତ୍ରଫଳ}}{\Delta \text{ BXYS ଷେତ୍ରଫଳ}} = \frac{\Delta \text{ AYXS ଷେତ୍ରଫଳ}}{\Delta \text{ CYXS ଷେତ୍ରଫଳ}}$$

 \Rightarrow $\Delta \mathrm{BXY}$ ର କ୍ଷେତ୍ଫଳ = $\Delta \mathrm{CYX}$ ର କ୍ଷେତ୍ଫଳ ।

ଏଠାରେ ତ୍ରିଭୁଜଦ୍ୱୟ ଏକା ଭୂମି $\overline{\mathrm{XY}}$ ଉପରିସ୍ଥ (ଏକ ତ୍ରିଭୁଜର ଯେ କୌଣସି ବାହୁକୁ ଏହାର ଭୂମି ବୋଲି ଧରାଯାଇପାରେ) ।

 \therefore $\Delta \mathrm{BXY}$ ଓ $\Delta \mathrm{CYX}$ ଉଭୟର ଉଚ୍ଚତା ସମାନ

$$\Rightarrow \stackrel{\longleftrightarrow}{XY} \parallel \overline{BC} \Rightarrow L$$
 ରେଖା, \overline{BC} ସହ ସମାନ୍ତର । (ପ୍ରମାଣିତ)

(ସମକ୍ଷେତ୍ରଫଳ ବିଶିଷ ତ୍ରିଭୁଜର ଭୂମିର ଦୈର୍ଘ୍ୟ ସମାନ ହେଲେ, ସେମାନଙ୍କର ଉଚ୍ଚତା ମଧ୍ୟ ସମାନ ହୁଏ)

ଅର୍ଥାତ୍, \mathbf{B} ଓ \mathbf{C} ଠାରୁ $\stackrel{\longleftarrow}{\mathbf{X}}\stackrel{\longrightarrow}{\mathbf{Y}}$ ପ୍ରତି ଲୟ-ଦୂରତା ସମାନ ।

ମନ୍ତବ୍ୟ (1) : କୌଣସି ରେଖା ଏକ ତ୍ରିଭୁଜର ଯେ କୌଣସି ଦୁଇଟି ବାହୁକୁ ସମାନୁପାତରେ ବହିର୍ବିଭାଜନ କଲେ, ଉକ୍ତ ରେଖା ତ୍ରିଭୁଜର ତୃତୀୟ ବାହୁ ସହ ସମାନ୍ତର ହେବ ।

ଟୀକା : ଏକ ରେଖା କୌଣସି ଏକ ରେଖାଖଣ୍ଡକୁ ବହିର୍ବିଭାଜନ କରିବା ଅର୍ଥ ଉକ୍ତ ରେଖାଖଣ୍ଡ- ସମ୍ପୃକ୍ତ ରଶ୍ମିକୁ (ରେଖାଖଣ୍ଡ ବ୍ୟତୀତ) ଛେଦ କରିବା ।

ଚିତ୍ର - 1.8 ରେ L ରେଖା, ΔABC ର \overline{CA} ଓ \overline{CB} ବାହୁକୁ ଯଥାକୁମେ

m Y ଓ m X ବିନ୍ଦୁରେ ବହିର୍ବିଭାଜନ କରେ, ଅର୍ଥାତ୍ $m \stackrel{
ightarrow}{CA}$ ଓ $m \stackrel{
ightarrow}{CB}$ କୁ ଛେଦ କରେ ।

ଦଭ ଅହି :
$$\frac{CY}{AY} = \frac{CX}{BX}$$
 ।

ପ୍ରମାଶ କରିବାକୁ ହେବ : L ସମାନ୍ତର \overline{AB} ।

 \overline{AX} ଏବଂ \overline{BY} ଅଙ୍କନ କରି, ଉପପାଦ୍ୟ – 2 ର ପ୍ରମାଣ ଅବଲୟନରେ ପ୍ରମାଣ କରିବା ଯେ L ରେଖା ଓ \overline{AB} ପରସ୍କର ସମାନ୍ତର ।

(ଚିତ୍ର 1.8)

(2) : ଯଦି L ରେଖା \overline{AC} ବାହୁକୁ ଅନ୍ତର୍ବିଭାଜନ ଏବଂ \overline{CB} ବାହୁକୁ ବହିର୍ବିଭାଜନ କରେ ଏବଂ ଅନୁପାତ ଦ୍ୱୟ ସମାନ ହୁଏ, \overline{AX} \overline{BY}

ଅର୍ଥାତ୍ $\frac{AX}{CX} = \frac{BY}{CY}$ ହୁଏ, ତେବେ L ରେଖା, ΔABC ର

ତୃତୀୟ ବାହୁ $\overline{\mathrm{AB}}$ ସହ ସମାନ୍ତର ହେବ କି ?

ଚିତ୍ର 1.9 ରୁ ସମ୍ପ ଯେ \overleftarrow{AB} ର C ପାର୍ଶ୍ୱରେ X ବିନ୍ଦୁ ଅବସ୍ଥିତ ଏବଂ ଏହାର ବିପରୀତ ପାର୍ଶ୍ୱରେ Y ବିନ୍ଦୁ ଅବସ୍ଥିତ । ଫଳରେ \overleftarrow{XY} , \overleftarrow{AB} କୁ ଛେଦ କରିବ ।

 $∴ \xrightarrow{\mathsf{XY}}$, $\xleftarrow{\mathsf{AB}}$ ସହ ସମାନ୍ତର ହେବ ନାହିଁ ।

1.3 ଛେଦକ ରେଖା ଓ ଛେଦିତାଂଶ (Transversal and Intercept) :

ଚିତ୍ର 1.10 ରେ, L_1 ଓ L_2 ରେଖାଦ୍ୱୟର \overrightarrow{AD} ଏକ **ଛେଦକ (transversal)**. L_1 ଓ L_2 ରେଖାକୂ ଛେଦକ \overrightarrow{AD} ଯଥାକୁମେ B ଓ C ବିନ୍ଦୁରେ ଛେଦ କରେ । \overrightarrow{BC} କୁ ଛେଦକ \overrightarrow{AD} ଉପରିସ୍ଥ **ଛେଦିତାଂଶ** (intercept) ବୋଲି କୁହାଯାଏ ।

ଚିତ୍ର -1.11 ରେ, L_3 ll L_4 ଏବଂ $\stackrel{\longleftarrow}{PS}$ ଏକ ଛେଦକ । ଏଠାରେ \overline{QR} ହେଉଛି ଛେଦକ $\stackrel{\longleftarrow}{PS}$ ଉପରିସ୍ଥ ଛେଦିତାଂଶ (intercept) ।

1.3.1 ଡିନୋଟି ରେଖାର ଛେଦକ ଉପରିସ୍ଥ ଛେଦିତାଂଶ

ଚିତ୍ର -1.12 ରେ, ଛେଦକ ରେଖା T ଉପରେ

(i) $L_{_1}$ ଓ $L_{_2}$ ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଛେଦିତାଂଶ \overline{AB} ;

(ii) $L_{_1}$ ଓ $L_{_3}$ ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଛେଦିତାଂଶ \overline{AC} ;

ଏବଂ (iii) L_2 ଓ L_3 ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଛେଦିତାଂଶ \overline{BC} I

ସଂଜ୍ଞା : ଏକ ଛେଦକ ଉପରିସ୍ଥ ଦୁଇଟି ଛେଦବିନ୍ଦୁ ଦ୍ୱାରା ନିର୍ଦ୍ଧାରିତ ରେଖାଖଣ୍ଡକୁ ଛେଦକର ଗୋଟିଏ ଛେଦାଂଶ ବା ଛେଦିତାଂଶ କୁହାଯାଏ ।

1.3.2 ତିନୋଟି ରେଖାର ଦୁଇଟି ଛେଦକ ଉପରିସ୍ଥ ଅନୁରୂପ ଛେଦିତାଂଶ :

ଚିତ୍ର-1.13ରେ, $\mathbf{L_1},\mathbf{L_2},\mathbf{L_3}$ ରେଖା ଡିନୋଟିକୁ $\mathbf{T_1}$ ଓ $\mathbf{T_2}$ ରେଖାଦ୍ୱୟ ଛେଦକରନ୍ତି । $L_{_1}, L_{_2}\!,\! L_{_3}$ କୁ ଛେଦକ $T_{_1}$ ଯଥାକ୍ରମେ A,B ଓ C ବିନ୍ଦୁରେ ଏବଂ ସେହି ରେଖା ତିନୋଟିକୁ ଛେଦକ $\mathrm{T_2}$ ଯଥାକ୍ରମେ D,E ଓ F ବିନ୍ଦୁରେ ଛେଦକରେ । $\mathrm{L_2}$ E ଚିତ୍ର - 1.13 ରେ T_1 ଓ T_2 ଛେଦକ ଦ୍ୟ ଉପରେ ଉତ୍ପନ୍ନ ହେଉଥିବା ଛେଦିତାଂଶ F C $\overline{\mathrm{AB}}$ ଓ $\overline{\mathrm{DE}}$ ଦୁଇଟି ଅନୁରୂପ ଛେଦିତାଂଶ । ସେହିପରି $\overline{\mathrm{BC}}$

ଓ $\overline{\mathrm{EF}}$ ଏବଂ $\overline{\mathrm{AC}}$ ଓ $\overline{\mathrm{DF}}$ ଦୁଇଯୋଡ଼ା ଅନୁରୂପ ଛେଦିତାଂଶ ।

ସଂଜ୍ଞା : ଦୁଇଟି ସରଳରେଖାକୁ ଦୁଇଟି ଛେଦକ ଛେଦକଲେ, ଛେଦକ ରେଖାଦ୍ୱୟ ଉପରେ ଉତ୍ପନ୍ନ ହୋଇଥିବା ଛେଦିତାଂଶ ଦ୍ୱୟକୁ ଅନୁରୂପ ଛେଦିତାଂଶ (Corresponding intercepts) କୁହାଯାଏ ।

(ଚିତ୍ର 1.13)

(c)

ତ୍ମ ପାଇଁ କେତୋଟି ପ୍ରଶ : ଚିତ୍ର :- T 🕈 (ଚିତ୍ର 1.14)

ପ୍ରଶ୍ନ -1 : ଚିତ୍ର 1.14(a) ରେ L_1 ଓ L_2 ରେଖା ଦ୍ୱୟକୁ ଛେଦକ T_1 ଯଥାକ୍ରମେ A ଓ B ବିନ୍ଦୁରେ ଏବଂ ଛେଦକ $\mathrm{T}_{_{2}}$ ଯଥାକ୍ରମେ A ଓ C ବିନ୍ଦୁରେ ଛେଦକରେ ।

(b)

ଏକ୍ଷେତ୍ରରେ ଅନୁରୂପ ଛେଦିତାଂଶ ଦୁଇଟିର ନାମ କୁହ ।

(a)

ପ୍ରଶ୍ନ - $\mathbf{2}$: ଚିତ୍ର -1.14(b) ରେ $\mathbf{L}_{_{\! 4}}$ ଓ $\mathbf{L}_{_{\! 4}}$ ରେଖା ଦ୍ୱୟକୁ ଛେଦକ $\mathbf{T}_{_{\! 4}}$ ଯଥାକ୍ରମେ \mathbf{D} ଓ \mathbf{E} ବିନ୍ଦୁରେ ଏବଂ ଛେଦକ $\mathrm{T}_{_4}$ ଯଥାକ୍ରମେ F ଓ G ବିନ୍ଦୁରେ ଛେଦକରେ । ଏକ୍ଷେତ୍ରରେ ଅନୁରୂପ ଛେଦିତାଂଶ ଦୁଇଟିର ନାମ କୁହ ।

ପ୍ରଶ୍ନ - $\bf 3$: ଚିତ୍ର - $\bf 1.14(c)$ ରେ $\bf L_{_5}$ ଓ $\bf L_{_6}$ ରେଖାଦ୍ୱୟକୁ ଛେଦକ $\bf T_{_5}$ ଯଥାକ୍ରମେ $\bf P$ ଓ $\bf Q$ ବିନ୍ଦୁରେ ଏବଂ ଛେଦକ $\operatorname{T}_{_6}$ ଯଥାକ୍ରମେ R ଓ S ବିନ୍ଦୁରେ ଛେଦକରେ । ଏ କ୍ଷେତ୍ରରେ ଅନୁରୂପ ଛେଦିତାଂଶ ଦୁଇଟିର ନାମ କୁହ ।

1.3.3 ଡିନୋଟି ସମାନ୍ତର ସରଳରେଖାର ଦୁଇଟି ଛେଦକ ଉପରିସ୍ଥ ଅନୁରୂପ ଛେଦିତାଂଶ ମଧ୍ୟରେ ସମ୍ପର୍କ :

ଆସ ତିନୋଟି ସମାନ୍ତର ସରଳରେଖା ଓ ସେମାନଙ୍କୁ ଛେଦକରୁଥିବା ଦୁଇଟି ଛେଦକ ଉପରିସ୍ଥ ଅନୁରୂପ ଛେଦିତାଂଶ ମଧ୍ୟରେ ଥିବା ସମ୍ପର୍କିକୁ ଅନୁଧ୍ୟାନ କରିବା I

ଚିତ୍ର - 1.15 ରେ $\mathrm{L_1 II L_2}$ $\mathrm{II L_3}$ ଏବଂ $\mathrm{T_1}$ ଓ $\mathrm{T_2}$ ଉକ୍ତ ସମାନ୍ତର ସରଳରେଖାମାନଙ୍କୁ ଛେଦ କରୁଥିବା ଦୁଇଟି ଛେଦକ । L_1,L_2 ଓ L_3 କୁ ଛେଦକ T_1 ଯଥାକ୍ରମେ A,B ଓ C ବିନ୍ଦୁରେ ଛେଦକରେ ଏବଂ ଛେଦକ T_2 ଯଥାକୁମେ D, E ଓ F ବିନ୍ଦୁରେ ଛେଦ କରେ ।

 $\mathbf{L_1}$ ଓ $\mathbf{L_2}$ କୁ $\mathbf{T_1}$ ଓ $\mathbf{T_2}$ ଛେଦ କରିବା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଅନୁରୂପ ଛେଦିତାଂଶ ହେଲେ $\overline{\mathbf{AB}}$ ଓ $\overline{\mathbf{DE}}$ $\mathbf{L_2}$ ଓ $\mathbf{L_3}$ କୁ $\mathbf{T_1}$ ଓ $\mathbf{T_2}$ ଛେଦକରିବା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଅନୁରୂପ ଛେଦିତାଂଶ ହେଲେ $\overline{\mathbf{BC}}$ ଓ $\overline{\mathbf{EF}}$ । $\mathbf{L_1}$ ଓ $\mathbf{L_3}$ କୁ $\mathbf{T_1}$ ଓ $\mathbf{T_2}$ ଛେଦକରିବା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଅନୁରୂପ ଛେଦିତାଂଶ ହେଲେ $\overline{\mathbf{AC}}$ ଓ $\overline{\mathbf{DF}}$ ।

ଏହିଭଳି ଏକ ଚିତ୍ର କରି (ୟେଲ ଓ କମ୍ପାସ ସାହାଯ୍ୟରେ)

ଛେଦିତାଂଶ \overline{AB} , \overline{BC} , \overline{DE} , \overline{EF} , \overline{AC} ଓ \overline{DF} ର ଦୈର୍ଘ୍ୟ ମାପିଲେ, ଆମେ ଦେଖିବା ଯେ

$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$
 ହେବ ।

ସିଦ୍ଧାନ୍ତ : ତିନୋଟି ପରୟର ସମାନ୍ତର ସରଳରେଖାକୁ ଦୁଇଟି ଛେଦକ ରେଖା ଛେଦ କରିବା ଦ୍ୱାରା ଛେଦକ ରେଖା ଦ୍ୱୟ ଉପରେ ଉତ୍ପନ୍ନ ହୋଇଥିବା ଅନୁରୂପ ଛେଦିତାଂଶଗୁଡ଼ିକର ଦୈର୍ଘ୍ୟର ଅନୁପାତ ସମାନ ।

ଅର୍ଥାତ୍
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$
 |

ପୁନଣ୍ଟ (i)
$$\frac{AB}{DE} = \frac{BC}{EF} \Longrightarrow \frac{AB}{BC} = \frac{DE}{EF}$$
 ,

(ii)
$$\frac{AB}{DE} = \frac{AC}{DF} \Rightarrow \frac{AB}{AC} = \frac{DE}{DF} \quad \text{Ag}$$

(iii)
$$\frac{BC}{EF} = \frac{AC}{DF} \implies \frac{BC}{AC} = \frac{EF}{DF}$$

ସମାନୁପାତର ଏକାନ୍ତର ପ୍ରକ୍ରିୟା ଅନୁଯାୟୀ, ଉକ୍ତ ସିଦ୍ଧାନ୍ତର ଯୁକ୍ତିଭିଭିକ ପ୍ରମାଣ କରିବା ।

ପ୍ରମେୟ - 1.1:

ତିନୋଟି ପରସ୍କର ସମାନ୍ତର ସରଳରେଖାକୁ ଦୁଇଟି ସରଳରେଖା ଛେଦକରିବା ଦ୍ୱାରା, ଛେଦକ ରେଖାଦ୍ୱୟ ଉପରେ ଉତ୍ପନ୍ନ ହୋଇଥିବା ଅନୁରୂପ ଛେଦିତାଂଶ ମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନୁପାତୀ ହୁଅନ୍ତି ।

(If two transversals intersect three mutually parallel straight lines, then the lengths of the corresponding intercepts formed on the transversals are proportional.)

ଦତ୍ତ : ସରଳରେଖା $\mathbf{L_{_1}}$ ll $\mathbf{L_{_2}}$ ll $\mathbf{L_{_3}}$; ଛେଦକ ରେଖା $\mathbf{T_{_1}}$ ଓ $\mathbf{T_{_2}}$,

 $\mathrm{L_1,L_2}$ ଓ $\mathrm{L_3}$ ତ୍ରୟକୁ ଯଥାକ୍ରମେ $\mathrm{A,B,C}$ ଓ $\mathrm{D,E,F}$ ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି ।

ପ୍ରାମାଶ୍ୟ :
$$\frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$$

ଅଙ୍କନ :
$$\overline{\mathrm{AF}}$$
 ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଣ :
$$\overline{AF}$$
 , L , କୁ ଛେଦ କରିବ

 $(A \ {\it G} \ F \ {\it \widehat{\sf q}}$ ନ୍ଦୁପ୍ନୟ L_2 ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଥିବାରୁ)

 $\overline{\mathrm{AF}}$ ଓ $\mathrm{L_2}$ ର ଚ୍ଛେଦ ବିନ୍ଦୁର ନାମ G ଦିଆଯାଉ ।

 Δ ACF ରେ L_2 \parallel \overline{CF}

$$\Rightarrow \frac{AB}{BC} = \frac{AG}{GF}$$
 (ଉପପାଦ୍ୟ - 1 ଅନୁଯାୟୀ) (1)

ପୁନଣ୍ଟ,
$$\Delta AFD$$
 ରେ, $L_2 II \overline{AD} \implies \frac{AG}{GF} = \frac{DE}{EF}$ (ଉପପାଦ୍ୟ - 1 ଅନୁଯାୟୀ) (2)

$$(1)$$
 ଓ $(2) \Rightarrow \frac{AB}{BC} = \frac{DE}{EF}$ $(3) \Rightarrow \frac{AB}{DE} = \frac{BC}{EF}$ (ଏକାନ୍ତର ପୁକ୍ରିୟା)...... (4)

ପୁନଣ୍ଟ
$$(3)$$
 $\Rightarrow \frac{\mathrm{AB} + \mathrm{BC}}{\mathrm{BC}} = \frac{\mathrm{DE} + \mathrm{EF}}{\mathrm{EF}}$ (ଯୋଗ ପ୍ରକ୍ରିୟା)

$$\Rightarrow \frac{AC}{BC} = \frac{DF}{EF} \Rightarrow \frac{AC}{DF} = \frac{BC}{EF} \dots (ଏକାନ୍ତର ପ୍ରକ୍ରିୟା) \qquad \dots (5)$$

$$(4)$$
 ଓ $(5) \Rightarrow \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$ (ପ୍ରମାଶିତ)

ଅନୁସିଦ୍ଧାନ୍ତ –(i) :
$$\frac{AB}{AC} = \frac{DE}{DF}$$
 (ii) $\frac{BC}{AC} = \frac{EF}{DF}$

ପ୍ରମାଶ :
$$\frac{AB}{DE} = \frac{AC}{DF}$$
 (ପ୍ରମେୟ 1.1 ରେ ପ୍ରମାଶିତ) $\Rightarrow \frac{AB}{AC} = \frac{DE}{DF}$ (i) ପ୍ରମାଶିତ

ପୁନଣ୍ଟ,
$$\frac{\mathrm{BC}}{\mathrm{EF}} = \frac{\mathrm{AC}}{\mathrm{DF}}$$
 (ପ୍ରମେୟ 1.1 ରେ ପ୍ରମାଶିତ) $\Rightarrow \frac{\mathrm{BC}}{\mathrm{AC}} = \frac{\mathrm{EF}}{\mathrm{DF}}$ (ii) ପ୍ରମାଶିତ

ଅନୁସିଦ୍ଧାନ୍ତ - (iii) : ଡିନୋଟି (ବା ଅଧିକ ସଂଖ୍ୟକ) ସମାନ୍ତର ସରଳରେଖାକୁ ଛେଦ କରୁଥିବା ଗୋଟିଏ ଛେଦକ ଉପରିସ୍ଥ ଛେଦିତାଂଶମାନେ ସମଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ହେଲେ, ଉକ୍ତ ସମାନ୍ତର ସରଳରେଖାମାନଙ୍କର ଅନ୍ୟ ଯେ କୌଣସି ଛେଦକ ଉପରିସ୍ଥ ଛେଦିତାଂଶମାନଙ୍କର ଦୈର୍ଘ୍ୟ ମଧ୍ୟ ସମାନ ।

ପ୍ରମାଣ : L_1 $\parallel L_2$ $\parallel L_3$ ଏବଂ T_1 ଓ T_2 ଦୁଇଟି ଛେଦକ । (ଚିତ୍ର 1.16 ଦେଖ)

$$\therefore$$
 ଅନୁରୂପ ଛେଦିତାଂଶ ମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନୁପାତୀ $\Rightarrow \frac{AB}{DE} = \frac{BC}{EF}$(1)

ମାତ୍ର T_1 ଉପରିସ୍ଥ ଛେଦିତାଂଶ ଦ୍ୱୟ ସମଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ । ଅର୍ଥାତ୍, AB = BC (ଦତ୍ତ) (2)

$$\therefore$$
 $(1) \Rightarrow \frac{AB}{DE} = \frac{AB}{EF}$ [(2) ଅନୁଯାୟୀ]

 \Rightarrow DE = EF (ପ୍ରମାଣିତ)

ମନ୍ତବ୍ୟ - (1): ପ୍ରମେୟଟିକୁ ପ୍ରମାଣ କଲାବେଳେ ନିଆଯାଇ ଥିବା ଚିତ୍ରରେ କୌଣସି ଦୁଇଟି ଅନୁରୂପ ଛେଦିତାଂଶ ପରୟରକୁ ଛେଦ କରି ନ ଥିଲାବେଳେ, ଚିତ୍ର 1.17 ରେ ଦୁଇଟି ଅନୁରୂପ ଛେଦିତାଂଶ ପରୟରକୁ ଛେଦ କରନ୍ତି । ଏ ପରସ୍ଥିତିରେ ମଧ୍ୟ $\overline{\rm AF}$ ଅଙ୍କନ କରି ଏବଂ Δ AFC ଓ Δ AFD ରେ ଉପପାଦ୍ୟ-1 ର ପ୍ରୟୋଗ କରି ଆମେ ପୂର୍ବ ପରି ପ୍ରମାଣ

କରିପାରିବା ଯେ,
$$\frac{AB}{BC} = \frac{DE}{EF}$$
 ।

(2) ତିନୋଟିରୁ ଅଧିକ ସଂଖ୍ୟକ ପରୟର ସମାନ୍ତରରେଖା କ୍ଷେତ୍ରରେ ମଧ୍ୟ ଉପରୋକ୍ତ ପ୍ରମେୟଟି ପ୍ରମାଣ ଯୋଗ୍ୟ ।

ପ୍ରମେୟ -1.1 ର ବିପରୀତ ଉକ୍ତି ସତ୍ୟ ନୁହେଁ । ଅର୍ଥାତ୍, ତିନୋଟି ରେଖାକୁ ଦୁଇଟି ଛେଦକ ରେଖା ଛେଦ କରିବା ଦ୍ୱାରା ଛେଦକ ରେଖାଦ୍ୱୟ ଉପରେ ଉତ୍ପନ୍ନ ଅନୁରୂପ ଛେଦିତାଂଶମାନ ସମାନୁପାତୀ ହେଲେ, ଛେଦିତ ରେଖା ତିନୋଟି ସମାନ୍ତର ହୋଇପାରନ୍ତି ବା ନ ହୋଇପାରନ୍ତି ମଧ୍ୟ । \uparrow T_1 \uparrow T_2

ନିମ୍ନ ଉଦାହରଣରୁ ତାହା ସଞ୍ଜ ।

ଚିତ୍ର - 1.18 ରେ T_1 ଓ T_2 ଛେଦକ ଦ୍ୱୟ ଦୁଇ ଅସମାନ୍ତର ସରଳରେଖ। L_1 ଓ L_2 କୁ ଯଥାକ୍ରମେ A,B ଏବଂ D,E ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ମନେକରାଯାଉ AB=x ଏକକ ଓ DE=y ଏକକ, ବର୍ତ୍ତମାନ T_1 ଓ T_2 ଛେଦକ ଉପରେ ଯଥାକ୍ରମେ C ଓ F ବିନ୍ଦୁ ଦୁଇଟି

ନିଆଯାଉ ଯେପରି BC = 2x ଏକକ ଏବଂ EF = 2y ଏକକ ହେବ । C, F କୁ ଯୋଗକରି $L_{_3}$ ସରଳରେଖା ଅଙ୍କନ କରାଯାଉ । ବର୍ତ୍ତମାନ

$$\frac{AB}{DE} = \frac{x}{y}$$
(1), $\frac{BC}{EF} = \frac{2x}{2y} = \frac{x}{y}$ (2) $\frac{AC}{DF} = \frac{AB + BC}{DE + EF} = \frac{3x}{3y} = \frac{x}{y}$ (3)

(1), (2)
$$\otimes$$
 (3) $\Rightarrow \frac{AB}{DE} = \frac{BC}{EF} = \frac{AC}{DF}$

ଏଠାରେ ଛେଦକ ରେଖା ଦ୍ୱୟ ଉପରେ ଉତ୍ପନ୍ନ ଅନୁରୂପ ଛେଦିତାଂଶ ଗୁଡ଼ିକ ସମାନୁପାତୀ ଅଟନ୍ତି । କିନ୍ତୁ $\rm L_1, L_2$ ଓ $\rm L_1$ ପରସ୍କର ସମାନ୍ତର ନୁହନ୍ତି ।

ତେଣୁ ଆମେ ଦେଖିଲେ, 'ଛେଦିତାଂଶଗୁଡ଼ିକ ସମାନୁପାତୀ ହେଲେ ମଧ୍ୟ ଛେଦିତାଂଶ ଉତ୍ପନ୍ନ କରୁଥିବା ରେଖାଗୁଡ଼ିକ ସର୍ବଦା ସମାନ୍ତର ନ ହୋଇ ପାରନ୍ତି ।'

ଉଦାହରଣ – $\mathbf{1}$: ଚିତ୍ର – 1.19 ରେ $\mathbf{L_1}$ $\parallel \mathbf{L_2}$ ଏବଂ $\frac{\mathbf{AB}}{\mathbf{BC}} = \frac{\mathbf{DE}}{\mathbf{EF}}$ ।

ପ୍ରମାଣ କର ଯେ, $\mathrm{L_{_1}, L_{_2}}$ ଓ $\mathrm{L_{_3}}$ ପରସ୍କର ସମାନ୍ତର ।

ପ୍ରାମାଶ୍ୟ : $\mathbf{L_1} \ \mathbf{II} \ \mathbf{L_2} \ \mathbf{II} \ \mathbf{L_3}$

ଅଙ୍କନ : $\overline{\mathrm{AF}}$ ଅଙ୍କନ କରଯାଉ ଏବଂ $\overline{\mathrm{AF}}$ ଓ $\mathrm{L_2}$ ପରୟରକୁ

G ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତୁ ।

ପ୍ରମାଣ : ΔAFD ରେ, \overline{EG} Π \overline{DA} $[\cdot : L_{_1} \Pi L_{_2}]$

$$\therefore \frac{AG}{GF} = \frac{DE}{EF}$$
 କିନ୍ତୁ ଦତ ଅଛି $\frac{AB}{BC} = \frac{DE}{EF}$

$$\Rightarrow$$
 L $_{1}$ II L $_{3}$ ମାତ୍ର L $_{1}$ II L $_{2}$ (ଦଉ)

$$\Rightarrow$$
 L₁ || L₂ || L₃

(ପ୍ରମାଣିତ)

(ଚିତ୍ର 1.19)

ଉଦାହରଣ - 2 : ଗୋଟିଏ ତ୍ରିଭୁଜର କୌଣସି ଏକ ବାହୁର ମଧ୍ୟବିନ୍ଦୁ ଦେଇ ତ୍ରିଭୁଜର ଅନ୍ୟ ଏକ ବାହୁ ସହ ସମାନ୍ତର ଭାବେ ଅଙ୍କିତ ସରଳରେଖା, ଉକ୍ତ ତ୍ରିଭୁଜର ତୃତୀୟ ବାହୁକୁ ସମଦ୍ୱିଖଣ୍ଡ କରିବ ।

ଦତ୍ତ : ΔABC ରେ \overline{AB} ବାହୁର ମଧ୍ୟ ବିନ୍ଦୁ P । P ବିନ୍ଦୁ ଦେଇ L ରେଖା ଅଙ୍କିତ ଏବଂ L, \overline{BC} ସହ ସମାନ୍ତର । L ଓ \overline{AC} ର ଛେଦ ବିନ୍ଦୁ Q ।

ପ୍ରାମାଶ୍ୟ : L ରେଖା \overline{AC} କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ । ଅର୍ଥାତ୍ AQ = QC ।

ଅଙ୍କନ : A ବିନ୍ଦୁ ଦେଇ ଓ L ରେଖା ସହ ସମାନ୍ତର କରି

 $\mathrm{L}_{_{\scriptscriptstyle{1}}}$ ରେଖା ଅଙ୍କନ କରାଯାଉ ।

ପୁମାଣ : L II BC (ଦତ୍ତ)(1)

ଏବଂ $L_{_1}$ II L (ଅଙ୍କନ ଅନୁଯାୟୀ)(2)

(1) ଓ $(2) \Rightarrow L_1 \parallel \overline{BC}$, ଅର୍ଥାତ, $L_1 \parallel L \parallel \overline{BC}$

 $\stackrel{\longleftarrow}{AB}$ ଓ $\stackrel{\longleftarrow}{AC}$ ଉକ୍ତ ସମାନ୍ତର ସରଳରେଖା ତ୍ରୟର ଛେଦକ

$$\therefore \frac{AP}{PB} = \frac{AQ}{QC} \implies \frac{AP}{AP} = \frac{AQ}{QC} \ [\because AP = PB ଦଭ ତଥ୍ୟ ଅନୁଯାୟୀ]$$

$$\Rightarrow 1 = \frac{AQ}{QC} \Rightarrow QC = AQ$$

ଅର୍ଥାତ, L ରେଖା \overline{AC} ବାହୁକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।

(ପ୍ରମାଣିତ)

ଅନୁଶୀଳନୀ - 1 (a)

1. ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର:

- (a)ଚିତ୍ର -1.21 ରେ $L_{_1} \coprod L_{_2} \coprod L_{_3}$ ଏବଂ $T_{_1}$ ଓ $T_{_2}$ ଛେଦକ ।
 - (i) AB = 2 ସେ.ମି., BC = 3 ସେ.ମି. ଓ DE = 3 ସେ.ମି. ହେଲେ EF =
 - $(ii) \ DE = 6 \ \mathsf{GQ}. \widehat{\mathsf{Q}}., \ EF = 8 \ \mathsf{GQ}. \widehat{\mathsf{Q}}. \ \mathsf{G} \ BC = 6 \ \mathsf{GQ}. \widehat{\mathsf{Q}}. \ \mathsf{GPGM}, \ AC = \ldots$ ା

- (b) ଚିତ୍ର 1.22 ରେ $\rm L_{_1}~II~L_{_2}~II~L_{_3}~$ ଏବଂ $\rm T_{_1}$ ଓ $\rm T_{_2}$ ଛେଦକ ।
 - (i) $AB = 1.5 \times BC$ ହେଲେ, $\frac{EF}{FD} = \dots$
 - (ii) \overline{AC} ର ମଧ୍ୟବିନ୍ଦୁ B ହେଲେ, EF ର \dots ଗୁଣ ହେଉଛି FD

- 3. ଚିତ୍ର 1.24 ରେ $L_{_1}$ $|| L_{_2}$ $|| L_{_3}$ ଏବଂ $T_{_1}$ ଓ $T_{_2}$ ଦୁଇଟି ଛେଦକ ଯଦି AB=BC ହୁଏ, ପ୍ରମାଣକର ଯେ $2\ BE=AD+CF$

- (i) ଚିତ୍ର 1.26(a) ରେ A-D-B ଏବଂ A-E-C | m∠DAE = 50° , m∠AED = m∠ABC= 65° | AD=3 ସେ.ମି. AE:EC=2:1 ହେଲେ, \overline{DB} ଓ \overline{AB} ର ଦୈର୍ଘ୍ୟ ନିର୍ଶ୍ୱୟ କର |
- (ii) ଚିତ୍ର -1.26(b) ରେ $\overline{\text{MN}}$ ll $\overline{\text{QR}}$, $\overline{\text{NR}} = \frac{2}{5}$ PR ଏବଂ PQ = 10 ସେ.ମି. ହେଲେ, PM ଓ QM ନିର୍ଣ୍ଣୟ କର ।
- (iii) ଚିତ୍ର -1.26(b) ରେ $PM = \frac{2}{3}PQ$, NR = 1.2 ସେ.ମି. ଓ \overline{MN} II \overline{QR} ହେଲେ, PR ସ୍ଥିର କର ।
- $6.~(i)\Delta ABC$ ରେ, \overline{AB} ଓ \overline{AC} ର ମଧ୍ୟବିନ୍ଦୁ ଯଥାକ୍ରମେ X ଓ Y ହେଲେ, ଦର୍ଶାଅ ଯେ, \overline{XY} II \overline{BC} I
 - (ii) ଏକ ତ୍ରିଭୁଜର ଗୋଟିଏ ବାହୁର ମଧ୍ୟବିନ୍ଦୁ ଦେଇ ଅନ୍ୟ ଏକ ବାହୁ ପ୍ରତି ଅଙ୍କିତ ସମାନ୍ତର ରେଖା, ତୃତୀୟ ବାହୁକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।
 - (iii) ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଜର କର୍ଣ୍ଣର ମଧ୍ୟବିନ୍ଦୁରୁ ଅନ୍ୟ ଏକ ବାହୁପ୍ରତି ଅଙ୍କିତ ଲୟ, ଉକ୍ତ ବାହୁକୁ ସମଦ୍ୱିଖଣ୍ଡକରେ, ପ୍ରମାଣ କର ।
- 7. ΔPQR ରେ, \overline{PQ} ଓ \overline{QR} ବାହୁଦ୍ୱୟର ମଧ୍ୟବିନ୍ଦୁ ଯଥାକ୍ରମେ M ଓ N । \overline{PR} ଉପରିସ୍ଥ S ଯେକୌଣସି ଏକ ବିନ୍ଦୁ ହେଲେ, ପ୍ରମାଣକର ଯେ \overline{MN} , \overline{QS} କୁ ସମଦ୍ୱିଖଣ୍ଡ କରିବ ।
- 8. ABCD ଟ୍ରାପିଜିୟମ୍ବର \overline{AB} ॥ \overline{CD} । କର୍ଷ \overline{AC} ଓ \overline{BD} ର ଛେଦବିନ୍ଦୁ P ହେଲେ, ପ୍ରମାଣ କର ଯେ, (i) AP:PC=BP:PD (ii) CP:AC=DP:BD
- 9. ABCD ଟ୍ରାପିଳିୟମ୍ବର, \overline{AB} ॥ \overline{DC} ଏବଂ \overline{AD} ର ମଧ୍ୟବିନ୍ଦୁ P । \overline{AB} ସହ ସମାନ୍ତର ଭାବେ ଅଙ୍କିତ \overrightarrow{PQ} , \overline{BC} କୁ Q ବିନ୍ଦୁରେ ଛେଦକଲେ, ପ୍ରମାଣ କର ଯେ Q ହେଉଛି \overline{BC} ର ମଧ୍ୟବିନ୍ଦୁ ।
- $10.\quad ABCD$ ଚତୁର୍ଭୁଜର \overline{AB} , \overline{BC} , \overline{CD} ଓ \overline{DA} ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁ ଯଥାକ୍ରମେ P, Q, R ଓ S ।
 - (a) ପ୍ରମାଣ କର ଯେ PQRS ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର ।
 - (b) ଉପରୋକ୍ତ ଚତୁର୍ଭୁକ ABCD ର କର୍ତ୍ତଦ୍ୱୟ ପରସ୍କର ପ୍ରତି ଲୟ ହେଲେ, ପ୍ରମାଣକର ଯେ, PQRS ଏକ ଆୟତ ଚିତ୍ର ।

11. ଚିତ୍ର - 1.27 ରେ, $\triangle ABC$ ର \overline{BA} ବାହୁ ସହ \overline{CM} ସମାନ୍ତର, \overline{AB} ର ମଧ୍ୟ ବିନ୍ଦୁ P । \overline{PQ} II \overline{AC} , \overline{QR} II \overline{CM} ; ପ୍ରମାଣକର ଯେ, \overline{PR} II \overline{AM} ।

1.4. ତ୍ରିଭୁଜର କୋଣର ସମଦ୍ୱିଖଣ୍ଡକ ସୟନ୍ଧୀୟ ଆଲୋଚନା :

ଗୋଟିଏ ତ୍ରିଭୁଳର ଏକ କୋଣର ସମଦ୍ୱିଖଞ୍ଚକ, ସେହି କୋଣର ସମ୍ମୁଖୀନ ବାହୁକୁ ଯେଉଁ ଦୁଇଟି ରେଖାଖଞ୍ଜରେ ଭାଗକରେ, ସେମାନଙ୍କର ଦୈର୍ଘ୍ୟର ଅନୁପାତ, ଅନୁରୂପ ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟର ଅନୁପାତ ସଙ୍ଗେ ସମାନ ।

(The bisector of an angle of a triangle divides the side opposite to the angle into two segments whose lengths are proportional to the lengths of the corresponding adjacent sides.)

ଦଉ : ΔABC ରେ, $\angle BAC$ ର ସମଦ୍ୱିଖଣ୍ଡକ \overrightarrow{AX} , \overline{BC} ବାହୁକୁ D ବିନ୍ଦୁରେ ଛେଦ କରେ ।

ପ୍ରାମାଶ୍ୟ :
$$\frac{BD}{CD} = \frac{AB}{AC}$$

ଅଙ୍କନ : \overrightarrow{CA} ଉପରେ ଏପରି ଏକ ବିନ୍ଦୁ E ଚିହ୍ନଟ କରାଯାଉ,

ପ୍ରମାଣ :
$$\overline{\mathrm{EB}}$$
 । $\overline{\mathrm{AD}}$ ଏବଂ $\overline{\mathrm{EC}}$ ଏକ ଛେଦକ ।

$$\therefore$$
 ଅନୁରୂପ ହେତୁ $\angle BEA \cong \angle DAC$ (1)

ପୁନଣ୍ଟ,
$$\overline{\operatorname{EB}}$$
 ॥ $\overline{\operatorname{AD}}$ ଏବଂ $\overline{\operatorname{AB}}$ ଏକ ଛେଦକ ।

$$\therefore$$
 ଏକାନ୍ତର $\angle ABE \cong \angle BAD$ (2)

ମାତ୍ର
$$\angle BAD\cong \angle DAC$$
(3) ($\angle BAC$ ର ସମଦ୍ୱିଖଣ୍ଡକ \overrightarrow{AX} ହେତୁ)

(2)
$$\Im$$
 (3) $\Rightarrow \angle ABE \cong \angle DAC \dots (4)$

(1)
$$\Im$$
 (4) $\Rightarrow \angle BEA \cong \angle ABE$

$$\therefore \Delta ABE$$
 ରେ $AE = AB$ (5) (ଏକ ତ୍ରିଭୁଜର ସର୍ବସମ କୋଶର ସମ୍ମୁଖୀନ ବାହୁ ହେତୁ)

 $\Delta {
m EBC}$ ରେ $\overline{
m AD}$ । $\overline{
m EB}$ (ଅଙ୍କନ ଅନୁଯାୟୀ)

$$\therefore \frac{\mathrm{BD}}{\mathrm{DC}} = \frac{\mathrm{EA}}{\mathrm{AC}}$$
 (ଭପପାଦ୍ୟ – 1 ଅନୁଯାୟୀ)

$$\Rightarrow rac{\mathrm{BD}}{\mathrm{DC}} = rac{\mathrm{AB}}{\mathrm{AC}} \ [(5) \ \mathtt{ଅନୁଯାୟୀ}] \ (\mathtt{ପ୍ରମାଶିତ})$$

ପ୍ରମେୟ - 1.2 : (ଉପପାଦ୍ୟ - 3 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ) :

ଏକ ତ୍ରିଭୁଜର କୌଣସି ଏକ କୋଣର ଶୀର୍ଷରୁ ଅଙ୍କିତ ରଶ୍ଚି ଉକ୍ତ କୋଣର ବିପରୀତ ବାହୁକୁ ଯେଉଁ ଦୁଇଟି ଅଂଶରେ ଭାଗ କରେ, ସେ ଦୁଇଟିର ଦୈର୍ଘ୍ୟ, ଅନୁରୂପ ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ସହ ସମାନୁପାତୀ ହେଲେ, ରଶିଟି ସମ୍ପକ୍ତ କୋଣକୁ ସମଦ୍ୱିଖ**ୟ କରେ** I

(If a ray drawn from the vertex of an angle of a triangle divides the side opposite to the angle into two segments such that their lengths are proportional to the lengths of the corresponding adjacent sides, then the ray bisects the angle concerned.)

ଦଉ : $\Delta {
m ABC}$ ରେ $\angle {
m BAC}$ ର ଶୀର୍ଷ ${
m A}$ ରୁ ଅଙ୍କିତ $\overrightarrow{
m AD}$, $\overline{
m BC}$ ବାହୁକୁ

$$D$$
 ବିନ୍ଦୁରେ ଛେଦକରେ ଯେପରିକି, $\frac{BD}{DC} = \frac{AB}{AC}$

ପ୍ରାମାଣ୍ୟ : $\overrightarrow{\mathrm{AD}}$, $\angle \mathrm{BAC}$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।

ଅଙ୍କନ : \overrightarrow{CA} ଉପରେ E ଏପରି ଏକ ବିନ୍ଦ୍ର,

ଯେପରିକି $C ext{-}A ext{-}E$ ଏବଂ AE = AB । \overline{BE} ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଶ :
$$\frac{\mathrm{BD}}{\mathrm{DC}} = \frac{\mathrm{AB}}{\mathrm{AC}}$$
 (ଦତ୍ତ)

$$\Rightarrow \frac{BD}{DC} = \frac{AE}{AC} \ (\because AB = AE : ଅଙ୍କନ)$$

 \therefore ΔEBC ରେ \overrightarrow{AD} \prod \overrightarrow{EB} (ଉପପାଦ୍ୟ - 2 ଦାରା)

ଏକାନ୍ତର $\angle EBA \cong \angle BAD \dots (1) \ (\overrightarrow{AD} \ || \ \overline{EB} \ \ \overline{AB} \ \ \ \widehat{S}_{\overline{A}} \widehat{B} \ \ \ \widehat{S}_{\overline{A}} \widehat{B}$

ଏବଂ
$$\angle BEA \cong \angle DAC$$
 (2) ($\overrightarrow{AD} \parallel \overline{EB}$ ଓ \overline{EC} ହେଦକ)

ମାତ୍ର $\angle EBA \cong \angle BEA$ (ଅଙ୍କନ)

$$\therefore$$
 (1) ଓ (2) \Rightarrow \angle BAD \cong \angle DAC ଅର୍ଥାତ୍ AD , \angle BAD ର ସମଦ୍ୱିଖଣ୍ଡକ (ପ୍ରମାଣିତ)

1.4.1 ତ୍ରିଭୁକର ବହିଃସ୍ଥ କୋଣର ସମଦ୍ୱିଖଣ୍ଡକ :

ତ୍ରିଭୁଜର ବହିଃସ୍ଥ କୋଣ ସମଦ୍ୱିଖଣ୍ଡକ ଦ୍ୱାରା ନିରୂପିତ ସମାନୁପାତ ସମ୍ଭନ୍ଧରେ ଆଲୋଚନା କରିବା ।

ଚିତ୍ର - 1.30(a) ରେ $\triangle ABC$ ରେ $\angle CAD$, A ଶୀର୍ଷବିନ୍ଦୁ ଠାରେ ଏକ ବହିଃସ୍ଥ କୋଣ ଏବଂ \overrightarrow{AX} ଉକ୍ତ ବହିଃସ୍ଥ କୋଣର ସମଦ୍ୱିଖଣ୍ଡକ । \overrightarrow{AX} କୁ $\angle BAC$ ର ଏକ **ବହିଃସମଦ୍ୱିଖଣ୍ଡକ** କୁହାଯାଏ ।

ସେହିପରି, ଚିତ୍ର 1.30(b) ରେ $\angle BAC$ ର ବହିଃସମଦ୍ୱିଖଣ୍ଡକ \overrightarrow{AX} ଏବଂ ଚିତ୍ର 1.30(c) ରେ A ଶୀର୍ଷ ଠାରେ ଦୂଇଟି ବହିଃସ୍ଥ କୋଣ ଦର୍ଶାଯାଇ ପ୍ରତ୍ୟେକର ସମଦ୍ୱିଖଣ୍ଡକ ଅଙ୍କନ କରାଯାଇଛି । ଏଣୁ ଏଠାରେ $\angle BAC$ ର ଦୁଇଟି ବହିଃସମଦ୍ୱିଖଣ୍ଡକ ହେଉଛି \overrightarrow{AX} ଏବଂ \overrightarrow{AY} ।

ସେହି ଚିତ୍ର ତିନୋଟିକୁ ଲକ୍ଷ୍ୟକଲେ ଦେଖିବା :

- (i) ଚିତ୍ର 1.30(a) ରେ ଥିବା ΔABC ର AB>AC । \overline{AC} ବାହୁ ସହ ସଂଲଗ୍ନ ବହିଃସ୍ଥ $\angle CAD$ ର ସମଦ୍ୱିଖଣ୍ଡକ \overrightarrow{AX} , \overrightarrow{BC} ରଶ୍ଚିକ୍ର ଛେଦ କରୁଛି ।
- (ii) ଚିତ୍ର 1.30(b) ରେ ଥିବା ΔABC ର AC>AB, \overline{AC} ସଂଲଗ୍ନ ବହିଃସ୍ଥ $\angle CAD$ ର ସମଦ୍ୱିଖଣ୍ଡକ \overrightarrow{AX} , \overline{BC} ବା \overrightarrow{BC} କୌଣସିଟିକୁ ଛେଦ କରିବ ବୋଲି ଜଣାପଡୁ ନାହିଁ ।
- (iii) ଚିତ୍ର 1.30(c) ରେ \overline{AB} ଓ \overline{AC} ର ଦୈର୍ଘ୍ୟ ସମାନ । ଏ କ୍ଷେତ୍ରରେ ଲକ୍ଷ୍ୟକଲେ ଦେଖିବା ଯେ A ଶୀର୍ଷଠାରେ ଉତ୍ପନ୍ନ ବହିଃସ୍ଥ କୋଣଦ୍ୱୟର ସମଦ୍ୱିଖଣ୍ଡକ \overrightarrow{AX} ଏବଂ \overrightarrow{AY} ପ୍ରତ୍ୟେକ \overline{BC} ସହ ସମାନ୍ତର । ଏଣୁ ଉପରୋକ୍ତ କୌଣସି ସମଦ୍ୱିଖଣ୍ଡକ \overline{BC} ବା \overrightarrow{BC} ବା \overrightarrow{CB} କୁ ଛେଦ କରିବ ନାହିଁ ।

ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ର - 1.31ରେ ତ୍ରିଭୁଜର ଏକ କୋଶର ବହିଃସମଦ୍ୱିଖଣ୍ଡକ, ସମ୍ମୁଖୀନ ବାହୁକୁ ଯେଉଁ ଦୁଇ ଭାଗରେ ପରିଶତ କରେ, ସେ ଦୁଇଟିର ଦୈର୍ଘ୍ୟ ସହ ଅନୁରୂପ ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟର କ'ଣ ସମ୍ପର୍କ ଅଛି ଦେଖିବା ।

ଏହିପରି ଏକ ΔABC (ଯେଉଁଥିରେ AC>AB) ନିଜେ ଅଙ୍କନ କର ଏବଂ \overrightarrow{A} ଶୀର୍ଷରେ ବହିଃସ୍ଥ $\angle BAD$ ଅଙ୍କନ କର (ଚିତ୍ର -1.31 ଦେଖ) । ଏହି ବହିଃସ୍ଥ କୋଣର ସମଦ୍ୱିଖଣ୍ଡକ \overrightarrow{AX} ଅଙ୍କନ କର ଯେପରି ଏହା \overrightarrow{CB} କୁ ଛେଦ କରିବ । ଛେଦ ବିନ୍ଦୁର ନାମ \overrightarrow{P} ଦିଅ । ଏଠାରେ \overrightarrow{AX} , \overrightarrow{CB} କୁ \overrightarrow{P} ବିନ୍ଦୁରେ **ବହିର୍ବିଭାଜନ** କରିଛି ବୋଲି କୁହାଯାଏ । \overrightarrow{CB} ର ବହିର୍ବିଭାଜନରୁ ଉତ୍ପନ୍ନ ଅଂଶ ଦୁଇଟି ହେଲା \overrightarrow{CP} ଏବଂ \overrightarrow{BP} । \overrightarrow{BP} । \overrightarrow{BP} ବିନ୍ଦୁଠାରେ \overrightarrow{AP} ସହିତ ସମାନ୍ତର ରେଖା ଅଙ୍କନ କର ଯେପରି ତାହା \overrightarrow{AC} କୁ \overrightarrow{E} ବିନ୍ଦୁରେ ଛେଦ କରିବ । ବର୍ତ୍ତମାନ ତୁମେ ଉପପାଦ୍ୟ-3ର ଅନୁରୂପ ଧାରାରେ ପ୍ରମାଣ କରିପାରିବ ଯେ $\frac{AB}{AC} = \frac{BP}{CP}$ ।

ଅର୍ଥାତ୍ ତ୍ରିଭୁଜର ଏକ କୋଶର ବହିଃସମଦ୍ୱିଖଣ୍ଡକ ନିମନ୍ତେ ଉପପାଦ୍ୟ – 3 ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ତ୍ରିଭୁଜର ଏକ କୋଶର ବହିଃ ସମଦ୍ୱିଖଣ୍ଡକ ନିମନ୍ତେ ପ୍ରମେୟ – 1.2ର ଅନୁରୂପ ସିଦ୍ଧାନ୍ତ ହେଲା –

 Δ ABC, \overrightarrow{CB} ଉପରେ E ଏପରି ଏକ ବିନ୍ଦୁ ଯେପରିକି C-B-E ଏବଂ EB : EC = AB : AC ହେଲେ, \angle BAD କୁ \overline{AE} ସମଦ୍ୱିଖଣ୍ଡ କରେ । \overline{E} (ଚିତ୍ର 1.32) \overline{B}

 ${
m B}$ ଠାରେ $\overline{
m AE}$ ସହିତ ସମାନ୍ତର ରେଖା ଅଙ୍କନ କରି ପ୍ରମେୟ - 1.2ର ଅନୁରୂପ ଧାରାରେ ଏହା ପ୍ରମାଣ କରିପାରିବ ।

ଏଣୁ ଆମେ ଜାଣିଲେ- ଏକ ତ୍ରିଭୁଜର ଦୁଇ ବାହୁର ଦିର୍ଘ୍ୟର ଅନୁପାତରେ ତୃତୀୟ ବାହୁକୁ ବହିର୍ବିଭାଜନ କରୁଥିବା ବିନ୍ଦୁ ଓ ଏହି ବାହୁର ବିପରୀତ ଶୀର୍ଷବିନ୍ଦୁର ସଂଯୋଜକ ରେଖାଖଣ୍ଡ ଦ୍ୱାରା ସେହି ଶୀର୍ଷରେ ଥିବା ବହିଃସ୍ଥ କୋଣ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ । ଅର୍ଥାତ୍ ପ୍ରମେୟ-1.2, ଏକ ତ୍ରିଭୁଜର କୌଣସି ବାହୁର ବହିର୍ବିଭାଜନ ପାଇଁ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ ।

ଅନୁଶୀଳନୀ - 1 (b)

1. ଚିତ୍ର 1.33 ରେ \triangle ABC ର \overline{BC} ବାହୁ ଉପରିସ୍ଥ D ଏକ ବିନ୍ଦୁ, ଯେପରିକି \overline{AD} , $\angle BAC$ ର ସମଦ୍ୱିଖଣ୍ଡକ । ତଳେ ଥିବା ଅନୁପାତ ମାନଙ୍କ ମଧ୍ୟରୁ ଠିକ୍ ଅନୁପାତଟି ବାଛି ନିମ୍ନରେ ଥିବା ଶୃନ୍ୟସ୍ଥାନ ପୂରଣ କର ।

 Δ ABD ଓ Δ ADC ର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ(AB : DC, BD : AC, AB : AC, AD : BC)

- 2. Δ ABC ର \angle ABC ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{AC} ବାହୁକୁ D ବିନ୍ଦୁରେ ଛେଦ କରେ । AB = 4 ସେ.ମି., BC = 6 ସେ.ମି. ଏବଂ AC = 5 ସେ.ମି. ହେଲେ, AD ଓ CD ନିର୍ଣ୍ଣୟ କର ।
- 3. Δ Δ Δ BC ର \overline{AB} , \overline{BC} ଓ \overline{CA} ବାହୁ ତ୍ରୟର ଦୈର୍ଘ୍ୟକୁ ଯଥାକ୍ରମେ c, a ଓ b ଏକକ ରୂପେ ସୂଚିତ କରାଯାଏ । \angle ACB ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{AB} କୁ M ବିନ୍ଦୁରେ ଛେଦ କଲେ, ପ୍ରମାଣ କର ଯେ,

(i)
$$AM = \frac{bc}{a+b}$$
 (ii) $BM = \frac{ca}{a+b}$

4. (i) ଚିତ୍ର -1.34 ରେ, \triangle ABC ର \overline{AC} ବାହୁ ପ୍ରତି ମଧ୍ୟମା \overline{BP} । $\angle BPC$ ଏବଂ $\angle BPA$ ର ଅନ୍ତଃସମଦ୍ୱିଖଣ୍ଡକ ଯଥାକ୍ରମେ \overline{BC} ଓ \overline{AB} କୁ X ଓ Y ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ପମାଣ କର ଯେ \overleftarrow{XY} । \overline{AC} ।

- (ii) ଚିତ୍ର -1.34 ରେ, $\angle APB$ ଏବଂ $\angle BPC$ ର ସମଦ୍ୱିଖଣ୍ଡକ ମାନ \overline{AB} ଓ \overline{BC} କୁ ଯଥାକୁମେ Y ଓ X ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ଯଦି \overleftarrow{XY} Π \overline{AC} ହୁଏ, ତେବେ ଦର୍ଶାଅ ଯେ, P, \overline{AC} ର ମଧ୍ୟବିନ୍ଦୁ ।
- 5. ଚିତ୍ର -1.34 ରେ \triangle ABC ର \overleftarrow{BP} ମଧ୍ୟମା । \angle APBର ସମଦ୍ୱିଖଣ୍ଡକ \overleftarrow{PY} , \overrightarrow{AB} କୁ Y ବିନ୍ଦୁରେ ଛେଦ କରେ । \overrightarrow{AC} ସହ ସମାନ୍ତର କରି Y ବିନ୍ଦୁରେ \overleftarrow{YX} ଅଙ୍କନ କରାଯାଇଛି, ଯେପରି ତାହା \overrightarrow{BC} କୁ X ବିନ୍ଦୁରେ ଛେଦ କରୁଛି । ପ୍ରମାଣ କର ଯେ, \overrightarrow{PX} , \angle BPC ର ସମଦ୍ୱିଖଣ୍ଡକ ।

- Δ ABC ରେ \angle BAC ର ସମଦ୍ୱିଖଣ୍ଡକ, \overline{BC} କୁ P ବିନ୍ଦୁରେ ଛେଦକରେ ଏବଂ \angle ABC ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{AP} କୁ Q ବିନ୍ଦୁରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ $\frac{AQ}{QP} = \frac{AB + AC}{BC}$ ।
- 7. ABCD ସାମାନ୍ତରିକ ଚିତ୍ରର $\angle BAD$ ର ସମଦ୍ୱିଖଣ୍ଡକ, \overline{BD} କର୍ଣ୍ଣକୁ K ବିନ୍ଦୁରେ ଛେଦକରେ ଏବଂ $\angle ABC$ ର ସମଦ୍ୱିଖଣ୍ଡକ, \overline{AC} କର୍ଣ୍ଣକୁ L ବିନ୍ଦୁରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ \overleftarrow{LK} II \overline{AB} ।
- 8. ABCD ଚତୁର୍ଭୁଳର $\angle DAB$ ଓ $\angle DCB$ କୋଣଦ୍ୱୟର ସମଦ୍ୱିଖଣ୍ଡକ ପରୟରକୁ \overline{BD} କର୍ଣ୍ଣ ଉପରେ ଛେଦକରନ୍ତି । ପ୍ରମାଣ କର ଯେ $\angle ABC$ ଓ $\angle ADC$ ର ସମଦ୍ୱିଖଣ୍ଡକ ଦ୍ୱୟ ପରୟରକୁ \overline{AC} କର୍ଣ୍ଣ ଉପରେ ଛେଦ କରିବେ ।
- 9. Δ ABC ରେ \angle B ର ସମଦ୍ୱିଖଣ୍ଡକ, \overline{AC} କୁ E ବିନ୍ଦୁରେ ଏବଂ \angle C ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{AB} କୁ F ବିନ୍ଦୁରେ ଛେଦ କରେ । \overline{FE} II \overline{BC} ପ୍ରମାଣ କର ଯେ, ΔABC ସମଦ୍ୱିବାହୁ ।
- 10. \triangle ABC ରେ \angle A, \angle B ଓ \angle Cର ସମଦ୍ୱିଖଣ୍ଡକ, \overline{BC} , \overline{CA} ଓ \overline{AB} କୁ ଯଥାକୁମେ D,E ଓ F ବିନ୍ଦୁରେ ଛେଦକଲେ ପ୍ରମାଣ କର ଯେ $\frac{BD}{DC}.\frac{CE}{EA}.\frac{AF}{FB}$ = 1

1.5 କ୍ୟାମିତିକ ଚିତ୍ର ମଧ୍ୟରେ ସାଦୃଶ୍ୟ (Similarity in Geometrical figures) :

କୌଣସି ଗୋଟିଏ ବସ୍ତୁ ବା ଚିତ୍ରକୁ ଦେଖିଲେ, ଆମେ ସେ ବସ୍ତୁ ବା ଚିତ୍ରଟି ସମ୍ଭନ୍ଧରେ ଦୁଇଟି ଧାରଣା କରିଥାଉ । ଯଥା – (i) ବସ୍ତୁ ବା ଚିତ୍ରଟି କିପରି ଦେଖାଯାଉଛି, ଅର୍ଥାତ୍ ତା'ର **ଆକୃତି** (shape) କିପରି;

(ii) ବସ୍ତୁ ବା ଚିତ୍ରଟି, କେତେ ବଡ଼, ଅର୍ଥାତ୍ ତା'ର ଆକାର (size) କେଡ଼େ;

ଦୂଇଟି କ୍ୟାମିତିକ ଚିତ୍ରର ଆକୃତି ତଥା ଆକାର ଉଭୟ ଅଭିନ୍ନ ହେଲେ, ସେ ଦୁଇଟିକୁ ସର୍ବସମ ଚିତ୍ର (Congruent figure) କୁହାଯାଏ, ଏ କଥା ତୁମେ ଜାଣିଛ ।

ସଂଜ୍ଞା : ଚିତ୍ର ଦୁଇଟିର ଆକାର ସମାନ ବା ଅସମାନ ହେଉ, ଯଦି ଉଭୟ ଚିତ୍ରର ଆକୃତି ସମାନ ହୁଏ, ତେବେ ଚିତ୍ର ଦୁଇଟିକୁ ସଦଶ (similar) ଚିତ୍ର କୁହାଯାଏ ।

	(କ) ସଦୃଶ ଚିତ୍ର	(ଖ) ସର୍ବସମ ଚିତ୍ର
(i)		
(ii)		
(iii)		
(iv)		

(ଚିତ୍ର 1.35)

ଚିତ୍ର -1.35 ରେ (କ) ୟୟରେ ଚିତ୍ରଗୁଡ଼ିକ ସଦୃଶ ଅଟନ୍ତି ଏବଂ (ଖ) ୟୟରେ ଥିବା ଚିତ୍ରଗୁଡ଼ିକ ସର୍ବସମ ଅଟନ୍ତି । ସଂଜ୍ଞାରୁ ଏହା ସୁକ୍ଷଷ୍ଟ ଯେ, <mark>ଦୁଇଟି ସଦୃଶ ଚିତ୍ର ସର୍ବସମ ନ ହୋଇପାରନ୍ତି କିନ୍ତୁ ଦୁଇଟି ସର୍ବସମ ଚିତ୍ର ସର୍ବଦା ସଦୃଶ ଅଟନ୍ତି ।</mark>

ତୁମେ ଜାଣିଛ ଯେ ଗୋଟିଏ ସୁଷମ ବହୁଭୁଜର ବାହୁଗୁଡ଼ିକ ସମଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଏବଂ କୋଣଗୁଡ଼ିକ ସମ ପରିମାଣ ବିଶିଷ୍ଟ । ସୁତରାଂ **ଦୂଇଟି ସମାନ ସଂଖ୍ୟକ ବାହୁ ବିଶିଷ୍ଟ ସୁଷମ ବହୁଭୁଜ ସଦଶ ଅଟନ୍ତି ।**

1.5.1 ସାଦୃଶ୍ୟର ସର୍ଦ୍ଧ (Conditions for Similarity) :

ଦୁଇଟି ତ୍ରିଭୁକ କେଉଁ କାରଣରୁ ସଦୃଶ ହେବେ ତାହା ଆଲୋଚନା କରିବା ପୂର୍ବରୁ ଦୁଇଟି ବହୁଭୁଜର ସାଦୃଶ୍ୟ ସମ୍ପର୍କରେ ଧାରଣା ପାଇବା ଆବଶ୍ୟକ ।

ବର୍ତ୍ତମାନ୍ ଚିତ୍ର 1.36 ରେ ABCD ଓ EFGH ଦୁଇଟି ସଦୃଶ ଚତୁର୍ଭୁଳ । ମାତ୍ର ସେମାନଙ୍କ ମଧ୍ୟରୁ କେହି ହେଲେ JKLM ଚତୁର୍ଭୁଳ ସହିତ ସଦୃଶ ନୁହେଁ । ABCD ଓ EFGH ଚତୁର୍ଭୁଳ ଦ୍ୱୟର ବାହୁମାନଙ୍କର ଦିର୍ଘ୍ୟ ଓ ଶୀର୍ଷବିନ୍ଦୁମାନଙ୍କରେ ଥିବା କୋଣମାନଙ୍କର ପରିମାଣ ମାପି ତୁଳନା କଲେ ଆମେ ଦେଖିବା –

(i)
$$\angle A \cong \angle E, \angle B \cong \angle F, \angle C \cong \angle G, \angle D \cong \angle H$$
 ଏବ° (ii) $\frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} = \frac{DA}{HE}$

ଏଠାରେ A ଓ E, B ଓ F, C ଓ G ଏବଂ D ଓ H ଶୀର୍ଷ ଯୋଡ଼ିମାନଙ୍କୁ ଅନୁରୂପ ଶୀର୍ଷ (Corresponding Vertices) କୁହାଯାଏ । ଯଥା – ଶୀର୍ଷ A ର ଅନୁରୂପ ଶୀର୍ଷ ହେଲା ଶୀର୍ଷ E, B ର ଅନୁରୂପ ଶୀର୍ଷ ହେଲା F ଇତ୍ୟାଦି । ଅନୁରୂପ ଶୀର୍ଷ ମାନଙ୍କରେ ଥିବା କୋଣମାନ ଅନୁରୂପ । ଯଥା \angle A ର ଅନୁରୂପ କୋଣ ହେଲା, \angle E, \angle B ର ଅନୁରୂପ କୋଣ \angle F ଇତ୍ୟାଦି । ଅନୁରୂପ ଶୀର୍ଷ ଯୋଡ଼ିମାନଙ୍କୁ ପ୍ରାନ୍ତବିନ୍ଦୁ ରୂପେ ନେଇ ଉତ୍ପନ୍ନ ହେଉଥିବା ବାହୁମାନଙ୍କୁ ଅନୁରୂପ ବାହୁ (Corresponding Sides) କୁହାଯାଏ । ଯଥା –

ସେହିପରି $\overline{\mathrm{BC}}$ ଅନୁରୂପ $\overline{\mathrm{FG}}$, $\overline{\mathrm{CD}}$ ଅନୁରୂପ $\overline{\mathrm{GH}}$ ଇତ୍ୟାଦି ।

ସାଦୃଶ୍ୟର ସଙ୍କେତ ନେଇ ଆମେ ଲେଖିବା : ABCD ଚତୁର୍ଭୁକ $\sim EFGH$ ଚତୁର୍ଭୁକ

ABCD ଚତୁର୍ଭୁଳ ଏବଂ EFGH ଚତୁର୍ଭୁଳ କ୍ଷେତ୍ରରେ (i) ସହ (ii) ସର୍ତ୍ତ ପୂରଣ ହେଉଥାଏ ତେବେ ABCD ଓ EFGH ଚତୁର୍ଭୁଳଦ୍ୱୟ ପରୟର ସଦୃଶ ହେବେ । ଅନୁରୂପ ଭାବରେ ପଞ୍ଚଭୁଳ, ଷଡ଼ଭୁଳ ବା ଅନ୍ୟାନ୍ୟ ବହୁଭୁଳମାନଙ୍କର ସାଦୃଶ୍ୟର ସର୍ତ୍ତ ଉଲ୍ଲେଖ କରିପାରିବା ।

ସଦୃଶ ବହୁଭୁଜ : ସମାନ ସଂଖ୍ୟକ ବାହୁଥିବା ଦୁଇଟି ବହୁଭୁଜ ସଦୃଶ ହେବେ ଯଦି ସେମାନଙ୍କର

(i) ଅନୁରୂପ କୋଣମାନେ ସର୍ବସମ ଏବଂ (ii) ଅନୁରୂପ ବାହୁମାନେ ସମାନୁପାତୀ ।

1.5.2 ସଦୃଶ ବହୁଭୁଜମାନଙ୍କର ନାମକରଣ (Naming Similar Polygons) :

ଚିତ୍ର - 1.37 ରେ ABCD ଓ EFGH ର ସାଦୃଶ୍ୟ ଦର୍ଶାଇ ABCD ଚର୍ତୁଭୁକ \sim EFGH ଚତୁର୍ଭୁକ ଲେଖିବା ସମୟରେ ଅନୁରୂପ ଶୀର୍ଷ ବିନ୍ଦୁଗୁଡ଼ିକୁ ସେମାନଙ୍କର କ୍ରମ ରକ୍ଷା କରି ଲେଖା ଯାଇଥାଏ । କାରଣ ଏ କ୍ଷେତ୍ରରେ $A \leftrightarrow E$, $B \leftrightarrow F$, $C \leftrightarrow G$ ଏବଂ $D \leftrightarrow H$ । ABCD ଚର୍ତୁର୍ଭୁକ ଓ EFGH ଚର୍ତୁର୍ଭୁକ ମଧ୍ୟରେ ଥିବା ସାଦୃଶ୍ୟକୁ ଆମେ ସଂକେତରେ ଲେଖିପାରିବା ABCD ଚତୁର୍ଭୁକ \sim EFGH ଚତୁର୍ଭୁକ କିୟା BCDA ଚତୁର୍ଭୁକ \sim FGHE ଚତୁର୍ଭୁକ କିୟା CDAB ଚର୍ତୁର୍ଭୁକ \sim GHEF ଚର୍ତୁର୍ଭୁକ ଲେଖିବା ଠିକ୍ ନୁହେଁ ।

1.6 ତ୍ରିଭୁଳମାନଙ୍କ ମଧ୍ୟରେ ସାଦୃଶ୍ୟ (Similarity in Triangles) :

ବର୍ତ୍ତମାନ ଆମେ ସ୍ୱତନ୍ତ ଭାବରେ ଦୁଇଟି ତ୍ରିଭୁଜ ମଧ୍ୟରେ ସାଦୃଶ୍ୟ ସୟନ୍ଧରେ ଆଲୋଚନା କରିବା । ତ୍ରିଭୁଜ ମଧ୍ୟ ଏକ ବହୁଭୁଜ (ଯାହାର ବାହୁ ସଂଖ୍ୟା ତିନି) । ଏଣୁ ସଦୃଶ ତ୍ରିଭୁଜର ସଂଜ୍ଞା ମଧ୍ୟ ସଦୃଶ ବହୁଭୁଜର

ତ୍ରଭୁଜ ମଧ୍ୟ ଏକ ବହୁଭୁଜ (ଯାହାର ବାହୁ ସଂଖ୍ୟା ତନ) । ଏଣୁ ସଦୃଶ ତ୍ରଭୁଜର ସଂଜ୍ଞା ମଧ୍ୟ ସଦୃଶ ବହୁଭୁଜତ ସଂଜ୍ଞାର ଅନୁରୂପ । ଏଣୁ ଆମେ କହିବା ଦୁଇଟି ତ୍ରିଭୁଜ ସଦୃଶ ହେବେ, ଯଦି ତ୍ରିଭୁଜ ଦୁଇଟିର –

(1) ଅନୁରୂପ ବାହୁମାନ ସମାନୁପାତୀ; (2) ଅନୁରୂପ କୋଣମାନ ସର୍ବସମ ।

ଯଥା : ΔABC ଓ ΔPQR ମଧ୍ୟରେ $\frac{AB}{PQ}=\frac{BC}{QR}=\frac{CA}{RP}$ ଏବଂ $\angle A\cong \angle P$, $\angle B\cong \angle Q$, $\angle C\cong \angle R$ ହେଲେ, $\Delta ABC\sim \Delta PQR$ ହେବ ।

ତ୍ରିଭୁଜଦ୍ୱୟ କ୍ଷେତ୍ରରେ - ଅନୁରୂପ ଶୀର୍ଷ $: A \leftrightarrow P, \ B \leftrightarrow Q, C \leftrightarrow R$

ଅନୁରୂପ ବାହୁ : $\overline{AB} \leftrightarrow \overline{PQ}, \ \overline{BC} \leftrightarrow \overline{QR}, \ \overline{CA} \leftrightarrow \overline{RP}$

ଅନୁରୂପ କୋଣ : $\angle A \leftrightarrow \angle P, \ \angle B \leftrightarrow \angle Q, \angle C \leftrightarrow \angle R$

ସଦୃଶ ତ୍ରିଭୁକ କ୍ଷେତ୍ରରେ ଅନ୍ୟାନ୍ୟ ଅନୁରୂପ ଅଙ୍ଗ : ଚିତ୍ର -1.38 ରେ, $\triangle ABC \sim \triangle PQR$ । $\triangle ABC$ ରେ, \overline{AD} , \overline{BC} ପ୍ରତି ଲୟ । \overline{AF} , $\angle BAC$ ର ସମଦ୍ୱିଖଣ୍ଡକ । \overline{AE} , \overline{BC} ପ୍ରତି ମଧ୍ୟମା ।

[22]

ସେହିପରି ΔPQR ରେ, \overline{PS} , \overline{QR} ପୃତି ଲୟ ।

 $\overline{\mathrm{PU}}$, ∠QPR ର ସମଦ୍ୱିଖଣ୍ଡକ । $\overline{\mathrm{PT}}$, $\overline{\mathrm{QR}}$ ପ୍ରତି ମଧ୍ୟମା ।

ଅନୁରୂପ ଶୀର୍ଷ A ଓ P ରୁ ସମ୍ମୁଖୀନ ବାହୁ ପ୍ରତି ଲୟ ହେତୁ \overline{AD} ଓ \overline{PS} ତ୍ରିଭୁକ ଦ୍ୱୟର **ଅନୁରୂପ ଉଚ୍ଚତା;** ଅନୁରୂପ ଶୀର୍ଷରୁ ଅଙ୍କିତ ମଧ୍ୟମା କାରଣରୁ, \overline{AE} ଓ \overline{PT} , ତ୍ରିଭୁକ ଦ୍ୱୟର **ଅନୁରୂପ ମଧ୍ୟମା**;

ଏବଂ $\overline{\mathrm{AF}}$ ଓ $\overline{\mathrm{PU}}$ ତ୍ରିଭୁଳ ଦ୍ୱୟର ଅନୁରୂପ କୋଣ ସମଦ୍ୱିଖଣ୍ଡକ ।

ଆଉ ଦୁଇ ଯୋଡ଼ା ଅନୁରୂପ ଲୟ, ଦୁଇଯୋଡ଼ା ଅନୁରୂପ ମଧ୍ୟମା, ଦୁଇଯୋଡ଼ା ଅନୁରୂପ କୋଣ-ସମଦ୍ୱିଖଣ୍ଡକ ମଧ୍ୟ ଅଛି । ନିଜେ ସେଗୁଡ଼ିକୁ ଚିତ୍ରକରି ଦେଖାଇବାକୁ ଚେଷ୍ଟା କର ।

ତ୍ରିଭୁଜ ସାଦୃଶ୍ୟ ସୟନ୍ଧୀୟ କେତୋଟି ଧର୍ମ :

- (i) ପ୍ରତ୍ୟେକ ତ୍ରିଭୁକ ନିଜ ସହ ସଦୃଶ, ଅର୍ଥାତ୍ Δ $ABC\sim\Delta$ ABC
- (ii) \triangle ABC \sim \triangle PQR \Leftrightarrow \triangle PQR \sim \triangle ABC
- (iii) \triangle ABC \sim \triangle DEF, \triangle DEF \sim \triangle PQR \Rightarrow \triangle ABC \sim \triangle PQR

ସାଦୃଶ୍ୟ ଧର୍ମ ଅନୁଯାୟୀ (i), (ii) ଏବଂ (iii) କୁ ଯଥାକ୍ରମେ ସାଦୃଶ୍ୟର ସ୍ୱତୂଲ୍ୟ, ପ୍ରତିସମ ଏବଂ ସଂକ୍ରମୀ ଧର୍ମ କୁହାଯାଏ । ଉକ୍ତ ଧର୍ମଗୁଡ଼ିକର ଗାଣିତିକ ବ୍ୟବହାର ଦୃଷ୍ଟିରୁ ସ୍ୱତନ୍ତ ଗୁରୁତ୍ୱ ରହିଛି ।

ପରବର୍ତ୍ତୀ ଉପପାଦ୍ୟ ବ୍ୟବହାର କରି ଏଗୁଡ଼ିକର ପ୍ରମାଣ ସହଜରେ କରାଯାଇପାରିବ ।

1.6.1 ତ୍ରିଭୁଜର ସାଦୃଶ୍ୟ ସୟନ୍ଧୀୟ ସର୍ତ୍ତ (Conditions on Triangle-Similarity) :

ଦୁଇଟି ବହୁଭୁଜର ସାଦୃଶ୍ୟ ଲାଗି ନିମ୍ନରେ ପ୍ରଦତ୍ତ ଦୁଇଟି ସର୍ତ୍ତ ଆରୋପ କରଯାଇଥିଲା ।

- 1. ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟର ସମାନୁପାତିତା,
- ଅନୁରୂପ କୋଣମାନଙ୍କର ସର୍ବସମତା ।
 ଆସ ଦେଖିବା ସର୍ଭଦ୍ୱୟ କିପରି ପରସ୍କର ନିରପେକ୍ଷ ଅଥବା
 ପରସ୍କର ନିର୍ଭରଶୀଳ । ନିମ୍ନ ପରୀକ୍ଷାଗୁଡ଼ିକୁ ଅନୁଧ୍ୟାନ କର ।

ପରୀକ୍ଷା - 1.

କେବଳ ସର୍ତ୍ତ – 1 କୁ ସିଦ୍ଧ କରୁଥିବା ଦୁଇଟି ଚତୁର୍ଭୁଜ ଚିତ୍ର 1.39 ରେ ନିଆଯାଇଛି ।

ଚିତ୍ର -1.39 (କ) ରେ m $\angle ABC$ =90 $^{\circ}$, AB = BC = 1 ଏକକ ଏବଂ AD = CD = 2 ଏକକ ନେଇ ଚତ୍ରର୍ଭୁକ ଅଙ୍କିତ ହୋଇଛି ।

ଚିତ୍ର 1.39 (ଖ) ରେ m \angle EFG = 45 $^{\circ}$, EF = FG = 2 ଏକକ ଏବଂ EH = GH = 4 ଏକକ ନେଇ ଚତୁର୍ଭୁଚ୍ଚ EFGH ଅଙ୍କିତ ହୋଇଛି ।

ଏହା ସୁକ୍ଷଷ୍ଟ ଯେ
$$\frac{AB}{EF} = \frac{BC}{FG} = \frac{CD}{GH} = \frac{DA}{HE}$$
;

କିନ୍ତୁ ଅନୁରୂପ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ନୃହଁନ୍ତି, ଯଥା : $\angle B$ ଓ $\angle F$ ସର୍ବସମ ନୃହଁନ୍ତି ।

ପରୀକ୍ଷା - 2

କେବଳ ସର୍ତ୍ତ - 2 କୁ ସିଦ୍ଧକରୁଥିବା ଦୁଇଟି ଚତୂର୍ଭୁଚ୍ଚ ଚିତ୍ର -1.40 ରେ ନିଆଯାଇଛି । ଏଠାରେ ABCD ଏକ ଆୟତଚିତ୍ର ଏବଂ EFGH ଏକ ବର୍ଗଚିତ୍ର । ଚିତ୍ରଦ୍ୱୟରେ, AB = EF ।

ଏହା ସୁକ୍ଷଷ୍ଟ ଯେ ABCD ଓ EFGH ଚତୁର୍ଭୁକ ଦୁଇଟିର ଅନୁରୂପ କୋଣମାନ ସର୍ବସମ (ପ୍ରତ୍ୟେକ ଏକ ସମକୋଣ), କିନ୍ତୁ ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟର ଅନୁପାତ ଗୁଡ଼ିକ ସମାନ ନୁହନ୍ତି । ଯଥା $\frac{AB}{EF}$ = 1, କିନ୍ତୁ $\frac{BC}{FG}$ \neq 1

ଉଭୟ ପରୀକ୍ଷାରୁ ହୃଦ୍ବୋଧ ହୋଇଥିବ ଯେ ଦୁଇଟି ଚତୁର୍ଭୁଜର ଅନୁରୂପ ବାହୁମାନଙ୍କର ସମାନୁପାତିତା ଏବଂ ଅନୁରୂପ କୋଣମାନଙ୍କର ସର୍ବସମତା ପରସ୍କର ନିର୍ଭରଶୀଳ ନୁହନ୍ତି । ସେ ଦୁଇଟି ସର୍ଭ ପରସ୍କର ନିରପେକ୍ଷ ।

କିନ୍ତୁ ଦୁଇଟି ତ୍ରିଭୁଚ୍ଚ ମଧ୍ୟରେ ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟର ସମାନୁପାତିତ। ଏବଂ ଅନୁରୂପ କୋଣମାନଙ୍କର ସର୍ବସମତା ସର୍ତ୍ତଦ୍ୱୟ ପରସ୍କର ନିର୍ଭରଶୀଳ । ଅର୍ଥାତ୍ ଗୋଟିଏ ସର୍ତ୍ତ ସିଦ୍ଧ ହେଲେ, ଅନ୍ୟ ସର୍ତ୍ତଟି ସ୍ୱତଃ ସିଦ୍ଧ ହୁଏ । ଉପପାଦ୍ୟ 4 ଓ 5 ରେ ଏହାର ପ୍ରମାଣ ଦିଆଯାଇଛି ।

1.6.2 ତ୍ରିଭୁଳ ସାଦୃଶ୍ୟ ସମ୍ପର୍କିତ ଉପପାଦ୍ୟ (Theorems on Triangle-Similarity) :

ବର୍ତ୍ତମାନ ଆମେ ତ୍ରିଭୁକ ଦୁଇଟି ମଧ୍ୟରେ ସାଦୃଶ୍ୟ ସୟନ୍ଧୀୟ ସର୍ତ୍ତକୁ ଯୁକ୍ତିମୂଳକ ଭାବେ ପ୍ରମାଣ କରିବା ।

ଗୋଟିଏ ତ୍ରିଭୁକର ତିନିକୋଣ, ଅନ୍ୟ ଏକ ତ୍ରିଭୁକର ଅନୁରୂପ କୋଣ ସହ ସର୍ବସମ ହେଲେ, ତ୍ରିଭୁକ ଦୁଇଟି ସଦ୍ଶ ହୁଅନ୍ତି ।

(If the angles of a triangle are congruent to the corresponding angles of another, then the triangles are similar.)

ଦଭ : $\triangle ABC$ ଓ $\triangle DEF$ ମଧ୍ୟରେ $\angle A\cong \angle D,\ \angle B\cong \angle E$ ଏବଂ $\angle C\cong \angle F$

ପ୍ରାମାଶ୍ୟ : $\Delta ABC \sim \Delta DEF$

ଅଙ୍କନ : ମନେକର AB>DE । \overline{AB} ଉପରେ X ବିନ୍ଦୁ ନିଆଯାଉ,

ଯେପରି A-X-B ଏବଂ AX=DE

 $\overline{\mathrm{XY}}$ ଅଙ୍କନ କରାଯାଉ ଯେପରି $\overline{\mathrm{XY}}$ Π $\overline{\mathrm{BC}}$ ଏବଂ A-Y-C

ପ୍ରମାଣ : \overline{XY} \overline{BC} (ଅଙ୍କନ)

 \Rightarrow $\angle AXY \cong \angle B$ (ଅନୁରୂପ କୋଣ)

 \Rightarrow $\angle AXY \cong \angle E \ (\because \angle B \cong \angle E \ QQ)(1)$

ସେହିପରି ପ୍ରମାଣ କରାଯାଇ ପାରେ ଯେ
$$\angle AYX \cong \angle F$$
 (2)

 ΔAXY ଓ ΔDEF ମଧ୍ୟରେ, $\angle AXY \cong \angle E$ [(1) ଅନୁଯାୟୀ]

$$\angle A\cong \angle D$$
 (ଦତ୍ତ) ଏବଂ $AX=DE$ (ଅଙ୍କନ) ।∴ $\Delta AXY\cong \Delta DEF$ (କୋ-କୋ-ବା ସର୍ବସମତା)
$$\Rightarrow AY=DF$$
 (ଅନୁରୂପ ବାହୁର ଦୈର୍ଘ୍ୟ) (3)

 $\triangle ABC$ ରେ, $\overleftarrow{X}\overrightarrow{Y}$ \blacksquare \overline{BC} (ଅଙ୍କନ)

$$\Rightarrow rac{AB}{AX} = rac{AC}{AY}$$
 (ଉପପାଦ୍ୟ - 1 ର ଅନୁସିଦ୍ଧାନ୍ତ)

$$\Rightarrow \frac{AB}{DE} = \frac{AC}{DF}$$
 [$\therefore AX = DE$ (ଅଙ୍କନ) ଓ $AY = DF$ ((3)ରେ ପ୍ରାପ୍ତ] (4)

 $\overline{
m BA}$ ଉପରେ Z ବିନ୍ଦୁ ନେଇ (ଯେପରି BZ = ED) ଏବଂ Z ବିନ୍ଦୁ ଦେଇ $\overline{
m AC}$ ସହ ସମାନ୍ତର ସରଳରେଖା ଅଙ୍କନ କରି ପ୍ରମାଣ କରାଯାଇ ପାରେ ଯେ $\frac{
m AB}{
m DE}$ = $\frac{
m BC}{
m EF}$ (5)

$$(4) \otimes (5) \Rightarrow \frac{AB}{DF} = \frac{AC}{DF} = \frac{BC}{FF} \qquad \dots (6)$$

 $\triangle ABC$ ଓ $\triangle DEF$ ମଧ୍ୟରେ $\angle A\cong \angle D$, $\angle B\cong \angle E$, $\angle C\cong \angle F$ (ଦତ୍ତ)

ଏବଂ ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନୁପାତୀ [(6) ଅନୁଯାୟୀ]

 $\therefore \Delta ABC \sim \Delta DEF$ (ପ୍ରମାଣିତ)

(ଯଦି $\mathrm{DE} > \mathrm{AB}$ ହୁଏ, ତେବେ $\overline{\mathrm{DE}}$ ଉପରେ X ବିନ୍ଦୁ ନେଇ ଅନୁରୂପ ଭାବେ ପ୍ରମାଣ କରାଯାଇ ପାରିବ ।)

ଟୀକା : ସଂକ୍ଷେପରେ ସାଦୃଶ୍ୟର ଏହି ସର୍ତ୍ତକୁ **'କୋ-କୋ-କୋ ସାଦୃଶ୍ୟ'** (A-A-A Similarity) ବୋଲି କୁହାଯାଏ ।

ଅନୁସିଦ୍ଧାନ୍ତ - (1) : ଗୋଟିଏ ତ୍ରିଭୁଜର ଦୁଇଟି କୋଣ ଯଥାକ୍ରମେ ଅନ୍ୟ ଏକ ତ୍ରିଭୁଜର ଦୁଇଟି କୋଣ ସହ ସର୍ବସମ ହେଲେ, ତୃତୀୟ କୋଣ ଦ୍ୱୟ ସ୍ୱତଃସର୍ବସମ ହୁଅନ୍ତି ।($\cdot\cdot$ ପ୍ରତ୍ୟେକ ତ୍ରିଭୁଜର ତିନିକୋଣର ପରିମାଣ ସମଷ୍ଟି 180° ।)

ଏଣୁ ଏ କ୍ଷେତ୍ରରେ ତ୍ରିଭୁଳଦ୍ୱୟ ମଧ୍ୟ ସଦୃଶ ହୁଅନ୍ତି । ସାଦୃଶ୍ୟର ଏହି ସର୍ଭକୁ ସଂକ୍ଷେପରେ **'କୋ-କୋ ସାଦୃଶ୍ୟ'** କୁହାଯାଏ ।

ଅନୁସିଦ୍ଧାନ୍ତ - (2) : ସଦୃଶକୋଣୀ ତ୍ରିଭୁଜ ଦ୍ୱୟ (ଗୋଟିକର ତିନିକୋଣ ଯଥାକ୍ରମେ ଅନ୍ୟଟିର ତିନିକୋଣ ସହ ସର୍ବସମ) ର ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନୁପାତୀ । ଉପପାଦ୍ୟ - 4 ର ପ୍ରମାଣରେ (6) ସୂଚିତ ଉକ୍ତି ଅନୁଯାୟୀ ସୁକ୍ଷଷ୍ଟ ।

ଗୋଟିଏ ତ୍ରିଭୁକର ତିନି ବାହୁର ଦୈର୍ଘ୍ୟ, ଅନ୍ୟ ଏକ ତ୍ରିଭୁକର ଅନୁରୂପ ତିନିବାହୁର ଦୈର୍ଘ୍ୟ ସହ ସମାନୁପାତୀ ହେଲେ, ତ୍ରିଭୁକ ଦୁଇଟି ସଦୃଶ ହୁଅନ୍ତି ।

(If the lengths of three sides of a triangle are proportional to the lengths of the three corresponding sides of another triangle, then the two triangles are similar.)

ଦଭ :
$$\Delta$$
 ABC ଓ Δ DEF ମଧ୍ୟରେ, $\frac{AB}{DE} = \frac{BC}{EF} = \frac{CA}{FD}$

ପ୍ରାମାଣ୍ୟ : $\Delta ABC \sim \Delta DEF$

ଅଙ୍କନ : Δ PQR ଅଙ୍କନ କରାଯାଉ, ଯେପରି $\overline{QR} \cong \overline{EF}$, $\angle Q \cong \angle B$ ଓ $\angle R \cong \angle C$

ପ୍ରମାଶ : ΔABC ଓ ΔPQR ମଧ୍ୟରେ, $\angle B\cong \angle Q$ ଓ $\angle C\cong \angle R$ (ଅଙ୍କନ)

 $\therefore \Delta ABC \sim \Delta PQR$ [ଉପପାଦ୍ୟ - 4, ଅନୁସିଦ୍ଧାନ୍ତ (1)](1)

$$\Rightarrow \frac{\mathrm{BC}}{\mathrm{OR}} = \frac{\mathrm{AC}}{\mathrm{PR}} = \frac{\mathrm{AB}}{\mathrm{PO}} \quad \left[$$
ଉପପାଦ୍ୟ - 4, ଅନୁସିଦ୍ଧାନ୍ତ (2)])

$$\Rightarrow \frac{BC}{EF} = \frac{AC}{PR} = \frac{AB}{PO} \ [QR = EF \ (ଅଙ୍କନ ଅନୁଯାୟୀ)](2)$$

ମାତ୍ର
$$\frac{BC}{EF} = \frac{AC}{DF} = \frac{AB}{DE}$$
 (ଦତ୍ତ)(3)

(2) ଏବଂ (3)
$$\Rightarrow \frac{AC}{PR} = \frac{AC}{DF}$$
 ଏବଂ $\frac{AB}{PQ} = \frac{AB}{DE} \Rightarrow PR = DF$ ଓ $PQ = DE$ (4)

$$\begin{cases} \Delta PQR & \text{3 } \Delta DEF \text{ ମଧ୍ୟରେ } QR = EF \text{ (ଅଙ୍କନ),} PR = DF & \text{49° } PQ = DE \text{ [(4) ଅନୁଯାୟୀ]} \\ \therefore \Delta PQR \cong \Delta DEF \text{ (. ବା-ବା-ବା ସର୍ବସମତା)} \Rightarrow \Delta PQR \sim \Delta DEF \dots (5) \end{cases}$$

ି (1) ଓ (5) \Rightarrow $\Delta {
m ABC}$ \sim $\Delta {
m DEF}$ (ସାଦୃଶ୍ୟର ସଂକ୍ରମୀ ଧର୍ମ) (ପ୍ରମାଣିତ)

ଦ୍ର**ଷ୍ଟବ୍ୟ :** ଉପପାଦ୍ୟ - 5 ରେ ଥିବା ତ୍ରିଭୁଜ ମଧ୍ୟରେ ସାଦୃଶ୍ୟର ସର୍ତ୍ତକୁ ସଂକ୍ଷେପରେ **'ବା-ବା-ବା ସାଦୃଶ୍ୟ'** (S-S-S SImilarity) କୁହାଯାଏ ।

ଗୋଟିଏ ତ୍ରିଭୁକର ଦୁଇ ବାହୁର ଦୈର୍ଘ୍ୟ, ଅନ୍ୟ ଏକ ତ୍ରିଭୁକର ଅନୁରୂପ ଦୁଇ ବାହୁର ଦୈର୍ଘ୍ୟ ସହ ସମାନୁପାତୀ ହେଲେ ଏବଂ ବାହୁମାନଙ୍କ ଅନ୍ତର୍ଗତ କୋଣ ଦୁଇଟି ସର୍ବସମ ହେଲେ, ତ୍ରିଭୁଜଦ୍ୱୟ ସଦୃଶ ହୁଅନ୍ତି I

(If the lengths of two sides of a triangle are proportional to the lengths of the corresponding two sides of another triangle and the angles included between those sides are congruent, then the triangles are similar.)

ଦଭ :
$$\triangle ABC$$
 ଓ $\triangle DEF$ ମଧ୍ୟରେ, $\frac{AB}{DE} = \frac{AC}{DF}$ ଓ $\angle A \cong \angle D$ ।

ପ୍ରାମାଣ୍ୟ : $\Delta ABC \sim \Delta DEF$ ା

ଅଙ୍କନ : ΔPQR ଅଙ୍କନ କରାଯାଉ, ଯେପରି $\overline{PQ}\cong \overline{DE}$, $\angle P\cong \angle A$, $\angle Q\cong \angle B$ ା

ପ୍ରମାଶ : $\triangle ABC$ ଓ $\triangle PQR$ ମଧ୍ୟରେ, $\angle A \cong \angle P$ ଓ $\angle B \cong \angle Q$ (ଅଙ୍କନ)

$$\Rightarrow$$
 $\Delta ABC \sim \Delta PQR$ (ଉପପାଦ୍ୟ - 4 ର ଅନୁସିଦ୍ଧାନ୍ତ (1)) (1)

$$\Rightarrow \frac{AB}{PQ} = \frac{BC}{QR} = \frac{AC}{PR} \quad (ଭପପାଦ୍ୟ - 4 ର ଅନୁସିଦ୍ଧାନ୍ତ (2)) \qquad (2)$$

$$\Rightarrow \frac{AB}{DE} = \frac{AC}{PR}$$
 $(\because DE = PQ$ ଅଙ୍କନ ଅନୁଯାୟୀ) ମାତ୍ର $\frac{AB}{DE} = \frac{AC}{DF}$ (ଦତ୍ତ) (3)

(3)
$$Q \Rightarrow \frac{AC}{PR} = \frac{AC}{DF} \Rightarrow PR = DF$$
 (4)

$${f \cdot \cdot} egin{aligned} & \Delta PQR \ rak G \ \Delta DEF \ \ PQ \cong \ \overline{DE} \ , \ & \overline{PR} \cong \ \overline{DF} \ ((4) \ ଅନୁଯାୟୀ) \ & \ \ \angle P \cong \angle D \ (\angle A \cong \angle D \ (\widehat{\mbox{$var}$QQ}), \ \angle P \cong \angle A \ (\mathbb{U}$$
କନ)) \end{aligned}

 $\therefore \Delta PQR \cong \Delta DEF$ (ବା-କୋ-ବା ସର୍ବସମତା)

$$\Rightarrow \Delta PQR \sim \Delta DEF$$
 (5)

(1) ଓ (5) \Rightarrow \triangle ABC \sim \triangle DEF (ସାଦୃଶ୍ୟର ସଂକ୍ରମୀ ଧର୍ମ) (ପ୍ରମାଣିତ)

ଦ୍ରଷ୍ଟବ୍ୟ : ଉପପାଦ୍ୟ – 6 ରେ ଥିବା ସାଦୃଶ୍ୟର ସର୍ତ୍ତକୁ ସଂକ୍ଷେପରେ 'ବା-କୋ-ବା ସାଦୃଶ୍ୟ' (S-A-S Similarity) କୁହାଯାଏ ।

1.6.3 ସଦ୍ଶ ତ୍ରିଭୁକ ସୟନ୍ଧୀୟ ଉପପାଦ୍ୟର ପ୍ରୟୋଗ :

ପୂର୍ବବର୍ତ୍ତୀ ଉପପାଦ୍ୟମାନଙ୍କରେ ଦୁଇଟି ତ୍ରିଭୁକ କେଉଁ କେଉଁ ସର୍ତ୍ତରେ ସଦୃଶ ହୁଅନ୍ତି ଆମେ ଜାଣିଲେ ଏବଂ ତହିଁରୁ ଉଦ୍ଭବ ଏକ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ତଥ୍ୟ ଆମେ ଜାଣିଲେ । ଉକ୍ତ ତଥ୍ୟଟି ହେଲା, ଦୁଇଟି ସଦୃଶ ତ୍ରିଭୁଜର ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନୁପାତୀ ଅଟନ୍ତି । ଏହି ଜ୍ଞାନର ଉପଯୋଗ କରି ଆଉ କେତେକ ଗୁରୁତ୍ୱ ପୂର୍ଣ୍ଣ ତଥ୍ୟ ଆମେ ପରବର୍ତ୍ତୀ ଆଲୋଚନାରେ ପଢ଼ିବା ।

ପ୍ରମେୟ - 1.3 : ଦୁଇଟି ସଦୃଶ ତ୍ରିଭୁକର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ, ସେମାନଙ୍କର ଅନୁରୂପ ବାହୁମାନଙ୍କ ଦୈର୍ଘ୍ୟର ବର୍ଗାନୁପାତ ସହ ସମାନ । (The areas of two similar triangles are proportional to the squares of the lenghts of their corresponding sides.)

ଦଭ : $\triangle ABC \sim \triangle DEF$ ଅର୍ଥାତ, $\angle A \cong \angle D, \angle B \cong \angle E, \angle C \cong \angle F$

ପ୍ରାମାଶ୍ୟ :
$$\frac{\Delta ABC$$
ର କ୍ଷେତ୍ରଫଳ $=\frac{AB^2}{DE^2}=\frac{BC^2}{EF^2}=\frac{CA^2}{FD^2}$

ଅଙ୍କନ : $\overline{\mathrm{AM}} \perp \overline{\mathrm{BC}}$ ଏବଂ $\overline{\mathrm{DN}} \perp \overline{\mathrm{EF}}$ ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଶ : ΔABM ଓ Δ DEN ମଧ୍ୟରେ

 $\angle AMB\cong \angle DNE$ (ପ୍ରତ୍ୟେକ ସମକୋଶ - ଅଙ୍କନ)

 $\angle ABM \cong \angle DEN$ (ସଦୃଶ ତ୍ରିଭୁଜର ଅନୁରୂପ କୋଣ)

$$ightharpoonup \Delta ABM \sim \Delta DEN$$
 (କୋ-କୋ ସାଦୃଶ୍ୟ) $\Rightarrow \frac{AM}{DN} = \frac{AB}{DE}$ (ସାଦୃଶ୍ୟର ସଂଜ୍ଞା)(1)

ପୁନଣ୍ଟ
$$\Delta ABC \sim \Delta DEF$$
 (ଦଉ) $\Rightarrow \frac{AB}{DE} = \frac{BC}{EF}$ (ସାଦୃଶ୍ୟର ସଂଜ୍ଞା).....(2)

(1)
$$(3) \Rightarrow \frac{AM}{DN} = \frac{BC}{EF}$$
(3)

$$\frac{\Delta ABCର ରେଡ଼ଫଳ}{\Delta DEFର ରେଡ଼ଫଳ} = \frac{\frac{1}{2}BCxAM}{\frac{1}{2}EFxDN} = \frac{BC}{EF}x\frac{AM}{DN} = \frac{BC}{EF}x\frac{BC}{EF} (3) ଅନୁଯାଯୀ)$$
$$= \frac{BC^2}{EF^2} \qquad(4)$$

ମାତ୍ର
$$\triangle ABC \sim \triangle DEF \ (\mathbf{GQ}) \Rightarrow \frac{BC}{EF} = \frac{AB}{DE} = \frac{AC}{DF}$$
(5)

$$(4)$$
 ଓ (5) $\Rightarrow \frac{\Delta ABC$ ର କ୍ଷେତ୍ରଫଳ $=\frac{BC^2}{EF^2} = \frac{AB^2}{DE^2} = \frac{AC^2}{DF^2}$ (ପ୍ରମାଶିତ)

ଅନୁଶୀଳନୀ - 1(c)

1.ବନ୍ଧନୀ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତର ବାହି ଶୃନ୍ୟସ୍ଥାନ ପୂରଣ କର :

- (i) ΔABC ଓ ΔDEF ମଧ୍ୟରେ, m∠A = m∠D, m∠B = m∠E, AB = 3 ସେ.ମି., BC = 5 ସେ.ମି. ଏବଂ DE = 7.5 ସେ.ମି. ହେଲେ, EF = ----- ସେ.ମି. (10, 10.5, 12, 12.5)
- (ii) $\triangle ABC$ ରେ AB=5 ସେ.ମି., BC=7 ସେ.ମି., CA=8 ସେ.ମି.; $\triangle PQR$ ରେ PQ=10 ସେ.ମି., QR=14 ସେ.ମି. | PR=---- ସେ.ମି. ହେଲେ, $\triangle ABC$ ଓ $\triangle PQR$ ସଦୃଶକୋଣୀ ହେବେ । (12,16,20,24)

(iii) $\triangle ABC$ ଓ $\triangle PQR$ ମଧ୍ୟରେ $\angle B\cong \angle Q$ । $\triangle ABC$ ର AB=8 ସେ.ମି. ଏବଂ BC=12 ସେ.ମି. । $\triangle PQR$ ର PQ=12 ସେ.ମି. ଏବଂ QR=18 ସେ.ମି. । $\triangle ABC$ ର କ୍ଷେତ୍ରଫଳ 48 ବର୍ଗ ସେ.ମି. ହେଲେ, $\triangle PQR$ ର କ୍ଷେତ୍ରଫଳ =ବର୍ଗ ସେ.ମି. ହେବ ।

(84, 96, 104, 108)

- (iv) $\triangle ABC$ ରେ $\angle ABC$ ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{AC} କୁ P ବିନ୍ଦୁରେ ଛେଦ କରେ । AB=12 ସେ.ମି. ଓ BC=9 ସେ.ମି. ହେଲେ, AP:AC...... (4:3, 3:4, 7:4, 4:7)
- (v) ଦୁଇଟି ସମବାହୁ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ 16 : 25 ହେଲେ, ସେହି ତ୍ରିଭୁଜ ଦ୍ୱୟର ଅନୁରୂପ ଯୋଡ଼ାର ଦୈର୍ଘ୍ୟର ଅନୁପାତ । (4:5, 2:5, 5:4, 5:2)
- (vi) ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରରେ, m \angle B = 50° , m \angle BDC = 100° ଓ Δ DBC $\sim \Delta$ CBA ହେଲେ, m \angle ACD...... $(60^{\circ},~70^{\circ},~80^{\circ},90^{\circ})$

 $(\Delta ADE, \Delta DOB, \Delta EOD, \Delta OEC)$

[BEA, ABD, BDC, AEC]

(x) $\triangle ABC$ ରେ $\angle BAC$ ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{BC} କୁ M ବିନ୍ଦୁରେ ଛେଦକରେ । AB:AC=2:3 ଏବଂ BC=15 ସେ.ମି. ହେଲେ, BM=...ସେ.ମି. (6, 9, 10, 12)

(ଖ - ବିଭାଗ)

- 2.~(i) ΔABC ରେ AB=2.5 ସେ.ମି., BC=2 ସେ.ମି., AC=3.5 ସେ.ମି.ଏବଂ ΔPQR ରେ PQ=5 ସେ.ମି., QR=4 ସେ.ମି., PR=7 ସେ.ମି.। $m\angle A=x^0$ ଓ $m\angle Q=y^0$ ହେଲେ, $m\angle B$, $m\angle C$, $m\angle P$ ଓ $m\angle R$ ନିର୍ଣ୍ଣୟ କର ।
- (ii) $\triangle ABC$ ଓ $\triangle DEF$ ରେ $\angle B\cong \angle E,\ AB=4$ ସେ.ମି., BC=6 ସେ.ମି., EF=9 ସେ.ମି. ଓ DE=6 ସେ.ମି. । $\triangle ABC$ ର କ୍ଷେତ୍ରଫଳ 20 ବର୍ଗ ସେ.ମି. ହେଲେ, $\triangle DEF$ ର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- (iii) ଦୁଇଟି ସଦୃଶ ତ୍ରିଭୁଜ ମଧ୍ୟରୁ ପ୍ରଥମଟିର କ୍ଷେତ୍ରଫଳ ଦ୍ୱିତୀୟଟିର କ୍ଷେତ୍ରଫଳର ୨ ଗୁଣ ହେଲେ, ତ୍ରିଭୁଜ ଦୁଇଟିର ଅନୁରୂପ ବାହୁ ଦ୍ୱୟର ଅନୁପାତ ନିର୍ଦ୍ଧୟ କର ।
- (iv) ଚିତ୍ର 1.51 ରେ, $\angle BAC\cong \angle ADC$, AC=12 ସେ.ମି. ଓ BC=15 ସେ.ମି. । $\angle ADC$ ର କ୍ଷେତ୍ରଫଳ 32 ବ.ସେ.ମି. ହେଲେ, $\triangle ABD$ ର କ୍ଷେତ୍ରଫଳ ନିର୍ଶ୍ଚୟ କର ।

- (v) ΔABC ର AB=5 ସେ.ମି., BC=7 ସେ.ମି. ଓ CA=9 ସେ.ମି. । $\Delta PQR \sim \Delta ABC$ ଏବଂ ΔPQR ର ପରିସୀମା 63 ସେ.ମି. ହେଲେ, PQ, QR ଓ PR ନିର୍ଣ୍ଣୟ କର ।
- (vi) $\Delta ABC \sim \Delta PQR$; AB = 5 ସେ.ମି., BC = 12 ସେ.ମି., AC = 13 ସେ.ମି., ଓ QR = 8 ସେ.ମି. ହେଲେ, ΔPQR କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- (vii) $\Delta ABC \sim \Delta PQR$ । ΔABC ପରିସୀମା 60 ସେ.ମି. ଓ କ୍ଷେତ୍ରଫଳ 81 ବର୍ଗ ସେ.ମି.ଏବଂ ΔPQR ର ପରିସୀମା 80 ସେ.ମି. ହେଲେ, ଏହାର କ୍ଷେତ୍ରଫଳ କେତେ ?
- 3. ପ୍ରମାଣ କର ଯେ ଦୁଇଟି ସଦୃଶ ତ୍ରିଭୁକର
 - (a) ଅନୁରୂପ ଉଚ୍ଚତାମାନଙ୍କର ଦୈର୍ଘ୍ୟ, ଉକ୍ତ ତ୍ରିଭୁଜ ଦ୍ୱୟର ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସହ ସମାନୁପାତୀ ।
 - (b) ଅନୁରୂପ କୋଶ ସମଦ୍ୱିଖଣ୍ଡକ ମାନଙ୍କର ଦୈର୍ଘ୍ୟ, ଉକ୍ତ ତ୍ରିଭୁଜ ଦ୍ୱୟର ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସହ ସମାନୁପାତୀ ।
 - (c) ଅନୁରୂପ ମଧ୍ୟମା ମାନଙ୍କର ଦୈର୍ଘ୍ୟ, ତ୍ରିଭୁଜ ଦ୍ୱୟର ଅନୁରୂପ ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସହ ସମାନୁପାତୀ ।
- 4. ଦୁଇଟି ସଦ୍ୱ ତୁଭୁଜର ପରିସୀମା ସମାନ ହେଲେ, ପ୍ରମାଣ କର ଯେ ତୁଭୁଜ ଦୁଇଟି ସର୍ବସମ ।
- 5. ଦୁଇଟି ସଦୃଶ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ ସମାନ ହେଲେ, ପ୍ରମାଣ କର ଯେ ତ୍ରିଭୁଜ ଦୁଇଟି ସର୍ବସମ ।
- 6. ପ୍ରମାଣ କର : ଦୁଇଟି ସଦୃଶ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ, ଉକ୍ତ ତ୍ରିଭୁଜ ଦ୍ୱୟର
 - (a) ଅନୁରୂପ ଉଚ୍ଚତାମାନଙ୍କର ଦୈର୍ଘ୍ୟର ବର୍ଗାନୁପାତ ସହ ସମାନ ।
 - (b) ଅନୁରୂପ କୋଣ-ସମଦ୍ୱିଖଣ୍ଡକମାନଙ୍କର ଦୈର୍ଘ୍ୟର ବର୍ଗାନୁପାତ ସହ ସମାନ ।

- (c) ଅନୁରୂପ ମଧ୍ୟମାମାନଙ୍କର ଦୈର୍ଘ୍ୟର ବର୍ଗାନୁପାତ ସହ ସମାନ ।
- (d) ପରିସୀମାର ବର୍ଗାନୁପାତ ସହ ସମାନ।
- 7. \triangle ABC ର \overline{AB} ଓ \overline{AC} ବାହୁ ଉପରେ P ଓ Q ଏପରି ଦୁଇଟି ବିନ୍ଦୁ ଯେପରିକି $\triangle BQP$ ଓ $\triangle CPQ$ ସମକ୍ଷେତ୍ରଫଳ ବିଶିଷ୍ଟ । ପ୍ରମାଣ କର ଯେ $\frac{PQ}{BC} = \frac{AP}{AB}$ ।
- 8. ଚିତ୍ର 1.52 ରେ \overline{AB} ଓ \overline{CD} ର ଛେଦ ବିନ୍ଦୁ O ।
 - (a) $AO \cdot OD = BO \cdot OC$ ହେଲେ, ପ୍ରମାଣକର ଯେ $\Delta AOC \sim \Delta BOD$ ।
 - $(b){
 m CO}$. ${
 m OD}={
 m AO}$. ${
 m OB}$ ହେଲେ, ପ୍ରମାଣକର ସେ $\Delta{
 m AOC}\sim\Delta{
 m DOB}$ $_{
 m Do}$
 - (c)ପୂର୍ବବର୍ତ୍ତୀ କେଉଁ କ୍ଷେତ୍ରରେ \overline{AC} ଓ \overline{DB} ସମାନ୍ତର ହେବେ ?

(ଚିତ୍ର 1.53)

- 9. ABCD ଟ୍ରାପିଜିୟମ୍ ର \overline{AB} II \overline{DC} । କର୍ଣ୍ଣ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ O ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । AO=3 ସେ.ମି. ଏବଂ OC=5 ସେ.ମି. । ΔAOB ର କ୍ଷେତ୍ରଫଳ 36 ବ.ସେ.ମି. ହେଲେ, ΔCOD ର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- 10. ଚିତ୍ର 1.53 ରେ ΔABC ଓ ΔDBC ଉଭୟ ଏକ ଭୂମି \overline{BC} ଉପରିସ୍ଥ । \overline{AC} ଓ \overline{BD} ର ଛେଦ ବିନ୍ଦୁ O ହେଲେ,

ପ୍ରମାଣ କର :
$$\frac{\Delta ABD$$
ର କ୍ଷେତ୍ରଫଳ $= \frac{AO}{OC}$

- 11. ପ୍ରମାଣ କର ଯେ ଏକ ତ୍ରିଭୁଜର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁର ସଂଯୋଜକ ରେଖାଖଣ୍ଡମାନଙ୍କ ଦ୍ୱାରା ତ୍ରିଭୁଜଟି ଯେଉଁ ଚାରୋଟି ତ୍ରିଭୁଜରେ ପରିଶତ ହୁଏ, ସେମାନେ ସର୍ବସମ ଓ ପ୍ରତ୍ୟେକ ମୂଳ ତ୍ରିଭୁଜ ସହ ସଦୃଶ । ପୁନଶ୍ଚ ପ୍ରମାଣ କର ଯେ ଉତ୍ପନ୍ନ ହୋଇଥିବା ପ୍ରତ୍ୟେକ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ, ମୂଳତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳର ଏକ ଚତୁର୍ଥାଂଶ ।
- 12. ଚିତ୍ର 1.54 ରେ, ΔABC ର $\angle ABC$ ଏକ ସମକୋଣ । PQRS ଏକ ଆୟତଚିତ୍ର ହେଲେ, ପ୍ରମାଣ କର ଯେ, $\Delta APS \sim \Delta QCR \sim \Delta PQB \sim \Delta ACB$
- 13. ଚିତ୍ର 1.55 ରେ, \overline{AB} Π \overline{DC} । $\Delta ADO \sim \Delta BCO$ ହେଲେ, ପ୍ରମାଣ କର ଯେ AD = BC (ସୂଚନା : ପ୍ରଶ୍ନ 5 ରେ ପ୍ରମାଣିତ ତଥ୍ୟକୁ ବ୍ୟବହାର କର)
- 14. ABCD ଟ୍ରାପିକିୟମ୍ରେ \overline{AD} $|| \overline{BC} || \angle ABD \cong \angle DCB$ ହେଲେ, ପ୍ରମାଣକର ଯେ $\overline{BD^2}=\overline{AD}$. BC ||

- 15. ΔABC ର \overline{AB} ଓ \overline{BC} ବାହୁ ଉପରେ ଯଥାକ୍ରମେ X ଓ Y ବିନ୍ଦୁ ଅବସ୍ଥିତ ଯେପରିକି \overline{XY} II \overline{BC} । ପ୍ରମାଣ କର ଯେ, ΔABC ର ମଧ୍ୟମା \overline{AD} , \overline{XY} କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।
- 16. $\triangle ABC$ ରେ \overline{AD} ଏକ ମଧ୍ୟମା ଏବଂ \overline{AD} ର ମଧ୍ୟବିନ୍ଦୁ E । \overrightarrow{BE} ରଶ୍ମି \overline{AC} କୁ X ବିନ୍ଦୁରେ ଛେଦକଲେ, ପ୍ରମାଣକର ଯେ $\overline{BE}=3EX$ ।
- 17. ΔABC ରେ $\overline{AD} \perp \overline{BC}$ ଏବଂ $AD^2 = DC$. BD ହେଲେ, ପ୍ରମାଣକର ଯେ (i) $\angle BAC$ ଏକ ସମକୋଣ (ii) ΔABD ର କ୍ଷେତ୍ରଫଳ ଓ ΔCAD ର କ୍ଷେତ୍ରଫଳ AB^2 ଓ AC^2 ସହ ସମାନୁପାତୀ ।
- 18. $\triangle ABC$ ଓ $\triangle DEF$ ରେ m $\angle A=m$ $\angle D$, m $\angle B=m$ $\angle E$ । \overline{BC} ଓ \overline{EF} ର ମଧ୍ୟବିନ୍ଦୁ ଯଥାକୁମେ X ଓ Y ହେଲେ, ପ୍ରମାଣ କର ଯେ (i) $\triangle AXC\sim \triangle DYF$ (ii) $\triangle AXB\sim \angle DYE$ ।
- 19. ଚିତ୍ର 1.56 ରେ $\triangle ABC$ ର \overline{AB} ଉପରିସ୍ଥ Q ଏକ ବିନ୍ଦୁ, $\overline{QR} \text{ II } \overline{BC} \text{ ସେପରିକି A-R-C, } \overline{DR} \text{ II } \overline{QC} \text{ ସେପରିକି A-D-B I}$ ପ୍ରମାଣକର ଯେ $AQ^2 = AD \times AB$

20. ଚିତ୍ର 1.57 ରେ \overline{AB} । \overline{CD} । \overline{EF} ଏବଂ \overline{AF} ଓ \overline{BE} ପରସ୍କରକୁ \overline{CG} ଚିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ \overline{EF} \mathbf{x} \mathbf{BD} \mathbf{p} \mathbf{p} \mathbf{p} \mathbf{p}

- 21. ଦୁଇଟି ସଦୃଶ ତ୍ରିଭୁଜର ଅନ୍ତଃବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ଅନୁପାତ, ଉକ୍ତ ତ୍ରିଭୁଜର ଦୁଇଟି ଅନୁରୂପ ବାହୁର ଦୈର୍ଘ୍ୟର ଅନୁପାତ ସହ ସମାନ, ପ୍ରମାଣ କର ।
- 22. A-P-B ଓ A-Q-B ହେଲେ ଏବଂ $\frac{AP}{PB} = \frac{AQ}{QB}$ ହେଲେ, ପ୍ରମାଣ କର ଯେ P ଓ Q ଅଭିନ୍ନ ।

- 24. ΔABC ର \overline{AB} ଓ \overline{AC} ଉପରେ ଯଥାକୁମେ X ଓ Y ବିନ୍ଦୁ ଅବସ୍ଥିତ, ଯେପରିକି \overline{XY} $|| \overline{BC}||$ ପ୍ରାପିଜିୟମ୍ XBCY ର କ୍ଷେତ୍ରଫଳ, ΔAXY ର କ୍ଷେତ୍ରଫଳର ଆଠଗୁଣ ହେଲେ, AX:BX ନିର୍ଣ୍ଣୟ କର ।
- 25. ABCD ଏକ ସାମାନ୍ତରିକ ଚିତ୍ର । \overrightarrow{AG} ରଶ୍ମି, \overrightarrow{BD} , \overrightarrow{CD} ଓ \overrightarrow{BC} କୁ ଯଥାକୁମେ E, F ଓ G ବିନ୍ଦୁରେ ଛେଦକଲେ, ପ୍ରମାଣ କର ଯେ \overrightarrow{AE} : \overrightarrow{EG} = \overrightarrow{AF} : \overrightarrow{AG} ।

- 1.7. ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ସହ ସମ୍ପୃକ୍ତ ସଦୃଶ ତ୍ରିଭୁଜମାନଙ୍କ ମଧ୍ୟରେ ଥିବା କେତେକ ଉପାଦେୟ ତଥ୍ୟ ନିମ୍ନ ପ୍ରମେୟ ଓ ଏହାର ଅନୁସିଦ୍ଧାନ୍ତରେ ଆଲୋଚନା କରାଯାଇଛି ।
- ପ୍ରମେୟ 1.4 : ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜର ସମକୋଣର ଶୀର୍ଷରୁ କର୍ଷ ପ୍ରତି ଅଙ୍କିତ ଲୟ ଦ୍ୱାରା ଯେଉଁ ଦୁଇଟି ତ୍ରିଭୁଜ ଉତ୍ପନ୍ନ ହୁଏ, ସେ ଦ୍ୱୟ ପ୍ରତ୍ୟେକ ମୂଳ ତ୍ରିଭୁଜ ସହିତ ସଦୃଶ ଓ ପରୟର ସଦୃଶ ।

(When a perpendicular is drawn from the vertex of the right angle of a right-triangle to its hyptenuse, each of the two triangles formed is similar to the original triangle and those are mutually similar.)

ଦଭ : $\triangle ABC$ ରେ $\angle ABC$ ସମକୋଣ । $\overline{BD} \perp \overline{AC}$ । ଉତ୍ପନ୍ନ ତ୍ରିଭୁଳ ଦ୍ୱୟ $\triangle ABD$ ଏବଂ $\triangle BCD$ ।

ପ୍ରାମାଶ୍ୟ : $(i) \Delta ABD \sim \Delta ACB$

- (ii) ΔBCD ~ ΔACB
- (iii) ΔABD ~ Δ BCD

ପ୍ରମାଣ : \triangle ABD ଓ \triangle ACB ମଧ୍ୟରେ,

$$\because \begin{cases} \angle BAD \cong \angle BAC \\ \angle ADB \cong \angle ABC \text{ (ପ୍ରତ୍ୟେକ ସମକୋଣ)} \end{cases}$$

 $\therefore \Delta \ ABD \sim \Delta \ ACB \ (କୋ-କୋ ସାଦୃଶ୍ୟ) (1) .((i)ପ୍ରମାଣିତ) <math>(\widehat{\Theta} \ \underline{\odot} \ 1.59)$

 Δ BCD ଓ Δ ACB ମଧ୍ୟରେ,

- $\therefore \Delta BCD \sim \Delta ACB$ (କୋ-କୋ ସାଦୃଶ୍ୟ) (2) ((ii) ପ୍ରମାଶିତ)
- (1) ଓ $(2)\Rightarrow \Delta ABD\sim \Delta BCD$ (ସାଦୃଶ୍ୟର ସଂକ୍ରମୀ ଧର୍ମ) ((iii) ପ୍ରମାଶିତ)

ଅନୁସିଦ୍ଧାନ୍ତ : ΔABC ର $\angle ABC$ ସମକୋଣ ଏବଂ $\overline{BD} \perp \overline{AC}$ ହେଲେ

(a)
$$AB^2 = AD \cdot AC$$
, (b) $BC^2 = CD \cdot AC$ ଏବଂ (c) $BD^2 = AD \cdot DC$

(a) ର ପ୍ରମାଣ : (ଚିତ୍ର 1.59 ଦୃଷ୍ଟବ୍ୟ)

ଉପପାଦ୍ୟରେ ପ୍ରମାଶିତ :
$$\triangle ABD \sim \triangle ACB \implies \frac{AB}{AC} = \frac{AD}{AB} = \frac{BD}{BC}$$

$$\frac{AB}{AC} = \frac{AD}{AB}$$
 ନେଇ, ପାଇବା $AB^2 = AD$. AC

(b) ର ପ୍ରମାଣ : (ଚିତ୍ର 1.59 ଦୃଷ୍ଟବ୍ୟ)

ଉପପାଦ୍ୟରେ ପ୍ରମାଣିତ :
$$\Delta BCD \sim \Delta ACB \implies \frac{BC}{AC} = \frac{DC}{BC} = \frac{BD}{AB}$$

$$\frac{BC}{AC} = \frac{DC}{BC}$$
 ନେଇ, ପାଇବା $BC^2 = AC$. DC

(c) ର ପ୍ରମାଣ : (ଚିତ୍ର 1.59 ଦୃଷ୍ଟବ୍ୟ)

ଉପପାଦ୍ୟରେ ପ୍ରମାର୍ଶିତ :
$$\Delta ABD \sim \Delta BCD \implies \frac{BD}{DC} = \frac{AD}{BD} = \frac{AB}{BC}$$

$$\frac{\mathrm{BD}}{\mathrm{DC}} = \frac{\mathrm{AD}}{\mathrm{BD}}$$
 ନେଇ, ପାଇବା $\mathrm{BD^2} = \mathrm{AD}$. DC

ସଦ୍ଶ ସୟନ୍ଧୀୟ କେତେକ ଉଦାହରଣ :

ଉଦାହରଣ - 1 : ପ୍ରମେୟ - 1.4 ର ପ୍ରୟୋଗ କରି, ପିଥାଗୋରାସ୍ ଉପପାଦ୍ୟ ପ୍ରମାଣ କର ।

ଦଭ : $\triangle ABC$ ରେ ∠ABC ଏକ ସମକୋଣ |

ପାମାଶ୍ୟ :
$$AC^2 = AB^2 + BC^2$$

ଅଙ୍କନ :
$$\overline{\mathrm{BD}} \perp \overline{\mathrm{AC}}$$
 (କର୍ଣ୍ଣ) ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଶ :
$$\triangle ABD \sim \triangle ACB$$
 (ପ୍ରମେୟ - 1.4)

$$\Rightarrow$$
 AB^2 = $AD \times AC$ (ଅନୁସିଦ୍ଧାନ୍ତ (a)).....(1)

ପୁନଷ୍ଟ
$$\Delta BCD \sim \Delta BAC$$
 (ପ୍ରମେୟ - 1.4)

$$\Rightarrow$$
 BC 2 = CD . CA (ଅନୁସିଦ୍ଧାନ୍ତ (b)).....(2)

$$\therefore$$
 AB² + BC² = AD x AC + CD . CA ((1) ଓ (2) ଅନୁଯାୟୀ)

$$= AC (AD + CD) = AC \times AC = AC^{2}$$

ଉଦାହରଣ - 2 : ଦୁଇଟି ସମକୋଣୀ ତ୍ରିଭୁଜ ମଧ୍ୟରେ ଗୋଟିକର କର୍ଷ ଓ ଏକ ବାହୁର ଦୈର୍ଘ୍ୟ ଅନ୍ୟ ତ୍ରିଭୁଜର କର୍ଷ ଓ ଏକ ବାହୁର ଦୈର୍ଘ୍ୟ ସହ ସମାନୁପାତୀ ହେଲେ. ପ୍ରମାଣକର ଯେ ତ୍ରିଭୁଜ ଦ୍ୱୟ ସଦୂଶ ଅଟନ୍ତି ।

ଦତ୍ତ :
$$\Delta ABC$$
 ର $\angle B$ ଏବଂ ΔDEF ର କୋଣ $\angle E$

ପ୍ରତ୍ୟେକ ସମକୋଣ ଏବଂ
$$\frac{AC}{AB} = \frac{DF}{DE}$$
 ।

ପ୍ରାମାଶ୍ୟ : ΔABC ~ ΔDEF

ପ୍ରମାଶ :
$$\frac{AC}{AB} = \frac{DF}{DE}$$
 (ଦ୍ର)

$$\Rightarrow rac{AC^2 - AB^2}{AB^2} = rac{DF^2 - DE^2}{DE^2} \Rightarrow rac{BC^2}{AB^2} = rac{EF^2}{DE^2}$$
 (ପିଥାଗୋରାସ୍ ଉପପାଦ୍ୟ)

(ପମାଣିତ)

C E

(ଚିତ୍ର 1.61)

$$\Rightarrow rac{\mathrm{BC}}{\mathrm{AB}} = rac{\mathrm{EF}}{\mathrm{DE}} \Rightarrow rac{\mathrm{BC}}{\mathrm{EF}} = rac{\mathrm{AB}}{\mathrm{DE}} \,. \,$$
 (ସମାନୁପାତର ଏକାନ୍ତର ପ୍ରକ୍ରିୟା)(1)

ΔABC ଓ ΔDEF ରେ

$$Arr$$
 $brace$ $brace B \cong \angle E$ (ପ୍ରତ୍ୟେକ ସମକୋଣ) $brace BC = rac{AB}{DE}$. ((1) ରେ ପ୍ରମାଣିତ)

$$\therefore \Delta ABC \sim \Delta DEF$$
 (ବା-କୋ-ବା ସାଦୃଶ୍ୟ)

(ପ୍ରମାଣିତ)

ଅନୁଶୀଳନୀ - 1 (d)

('କ' ବିଭାଗ)

- 1. ବନ୍ଧନୀ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତର ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।
- (i) ଚିତ୍ର 1.62 ରେ ଥିବା Δ ABC ରେ m \angle ABC = 90°

ଏବଂ
$$\overline{BD} \perp \overline{AC}$$
 ,

 $m\angle ABD = [m\angle BAD, m\angle DBC, m\angle DCB, 2m\angle BAD]$

- (a) $AB^2 = AD x$ [BC, CD, AC, BD]
- (b) $BC^2 = AC \times$ [DC, AD, BD, AB]
- (c) $BD^2 = DC x$ [AC, BC, AB, AD]

('ଖ' ବିଭାଗ)

- 2. ଚିତ୍ର 1.63 ରେ ଥିବା ΔPQR ର m $\angle PQR = 90^{\circ}$ ଏବଂ $\overline{QM} \perp \overline{PR}$
 - (i) QM = 12 ସେ.ମି., ଏବଂ PM = 6 ସେ.ମି. ହେଲେ, PR ନିର୍ଣ୍ଣୟ କର ।
 - (ii) PQ = 6 ସେ.ମି. ଏବଂ PM = 3 ସେ.ମି. ହେଲେ, PR ନିର୍ଣ୍ଣୟ କର ।
 - (iii)~QR=12~ସେ.ମି. ଏବଂ MR=9~ସେ.ମି. ହେଲେ, PM~ନିର୍ଣ୍ଣୟ କର । $_{O}$
 - $(iv) \ PQ = 12 \ {
 m Sq.}$ ମି. ଓ $RM = 7 \ {
 m Sq.}$ ମି. ହେଲେ, PM ନିର୍ଣ୍ଣୟ କର ।

- $(v) \ PQ = 8 \ \mathsf{GQ}.$ ଓ $QR = 15 \ \mathsf{GQ}.$ ହେଲେ, QM ଓ MR ନିର୍ଣ୍ଣୟ କର ।
- 3. ଚିତ୍ର 1.64 ରେ m∠ABC = m∠DCB = 90° \overline{AC} ଓ \overline{BD} ର ଛେଦ ବିନ୍ଦୁ O ଏବ° \overline{AC} \bot \overline{BD} l

OC = 6 ସେ.ମି. ଏବଂ OD = 4 ସେ.ମି. ହେଲେ,

- (i) BO ନିର୍ଣ୍ଣୟ କର; (ii) OA ନିର୍ଣ୍ଣୟ କର;
- (iii) BC ନିର୍ଣ୍ଣୟ କର; (iv) AB ନିର୍ଣ୍ଣୟ କର ଏବଂ
- (v) CD ନିର୍ଣ୍ଣୟ କର;

('ଗ' ବିଭାଗ)

 $4.\ \Delta ABC$ ରେ ∠ABC ସମକୋଣ ଏବଂ $\overline{BD} \perp \overline{AC} \mid AD = p$ ଏକକ ଏବଂ BD = q ଏକକ

ହେଲେ, ପ୍ରମାଣ କର : (i)
$$BC = \frac{q(p+q)}{\sqrt{p^2+q^2}}$$
 (ii) $AB = \frac{p(p+q)}{\sqrt{p^2+q^2}}$

(ii) AB =
$$\frac{p(p+q)}{\sqrt{p^2 + q^2}}$$

5. $\triangle ABC$ ରେ, m∠ABC = 90° ଏବ° $\overline{BD} \perp \overline{AC}$ ହେଲେ, ପ୍ରମାଶ କର ସେ, $AB^2 : BC^2 = AD : DC$ |

- $6.\ \Delta ABC$ ରେ, ∠ABC ସମକୋଶ ଏବଂ $BC^2 = AC$. BD ହେଲେ, ପ୍ରମାଶ କର ଯେ \overline{BD} ହେଉଛି ∠ABC ର ସମଦ୍ୱିଖଣ୍ଡକ ।
 - 7. ଚିତ୍ର 1.65 ରେ ଥିବା ଚତୁର୍ଭୁଜ ABCD ରେ

$$m\angle ABC = m\angle ADC = 90^{\circ} \ AB = AD$$
 |

କର୍ଣ୍ବୟର ଛେଦବିନ୍ଦୁ M ହେଲେ, ପ୍ରମାଣ କର ଯେ

 $AM \times MC = DM^2$ (ପ୍ରମେୟ -1.4 ର ପ୍ରୟୋଗ କରି ପ୍ରମାଣ କର) ।

 $8.\ \Delta\ ABC$ ରେ m $\angle ABC = 90^\circ$, $\overline{BD} \perp \overline{AC}$ ଏବଂ $\angle ABC$ ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{AC} କୁ E ବିହୁରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ $AE^2:EC^2=AD:DC$

9. \triangle ABC ରେ, m∠BAC = 90° ଏବ° $\overline{AD} \perp \overline{BC}$ ା

ପ୍ରମାଶ କର ଯେ
$$\Delta ADC$$
 ର କ୍ଷେତ୍ରଫଳ = $\frac{ABxAC^3}{2BC^2}$

 $10.\ \Delta\ ABC$ ର ∠ABC ସମକୋଣ, $\overline{BD} \perp \overline{AC}$ ଏବଂ ∠BAC ର ସମଦ୍ୱିଖଣ୍ଡକ \overline{BD} କୁ E ବିନ୍ଦୁରେ ଛେଦକରେ । ପ୍ରମାଶ କର ଯେ $BE^2:DE^2=AC:AD$ ।

<mark>ବୃତ୍ତ</mark> (CIRCLE)

2.1 ମୌଳିକ ଧାରଣା (Basic Concepts) :

ତୁମେ ପୂର୍ବରୁ କମ୍ପାସ୍ ସାହାଯ୍ୟରେ ବୃତ୍ତ ଅଙ୍କନ କରି ତା' ମଧ୍ୟରେ ତ୍ରିଭୁଚ୍ଚ ବର୍ଗଚିତ୍ର ଆଦି ଅନ୍ତର୍ଲିଖନ କରିବା ଶିଖିଛ । ଏହି ଅଧ୍ୟାୟରେ ଆମେ ବୃତ୍ତ ସମ୍ଭନ୍ଧୀୟ ଅଧିକ ତଥ୍ୟ ଆଲୋଚନା କରିବା । ସରଳରେଖା, ତ୍ରିଭୁଚ୍ଚ, ଆୟତଚିତ୍ର ଓ ବର୍ଗଚିତ୍ର ପରି, ବୃତ୍ତ ଏକ ସମତଳରେ ଥିବା କେତେଗୁଡ଼ିଏ ବିନ୍ଦୁର ସେଟ୍ ବା ସମାହାର ଅଟେ । ବର୍ତ୍ତମାନ କେଉଁ ବିନ୍ଦୁମାନଙ୍କର ସମାହାରରେ ବୃତ୍ତ ଗଠିତ, ତାହା ଆମେ ବୃତ୍ତର ସଂଜ୍ଞାରୁ ଜାଣିବା ।

ସଂଜ୍ଞା : ଗୋଟିଏ ସମତଳରେ ଅବସ୍ଥିତ କୌଣସି ଏକ ଦଉ ବିନ୍ଦୁଠାରୁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୂରତାରେ ଉକ୍ତ

ସମତଳରେ ଅବସ୍ଥିତ ସମୟ ବିନ୍ଦୁର ସେଟ୍କୁ ବୃତ୍ତ (Circle) କୁହାଯାଏ ।

ଚିତ୍ର 2.1 ରେ ବହି ପୃଷାର ସମତଳରେ O ଏକ ଦଉ ବିନ୍ଦୁ । O ବିନ୍ଦୁ ଠାରୁ r ଏକକ ଦୂରତାରେ ପୂର୍ବୋକ୍ତ ସମତଳରେ ଥିବା ସମୟ ବିନ୍ଦୁର ସେଟ୍ S କୁ ଆମେ ଏକ ବୃତ୍ତ କହିବା । S ଅନ୍ତର୍ଭୁକ୍ତ ଯେକୌଣସି ବିନ୍ଦୁ O ଠାରୁ r ଦୂରତାରେ ଅଛି । ଅର୍ଥାତ୍ OA = OB = OC = r । ଏଠାରେ O କୁ ବୃତ୍ତ S ର **କେନ୍ଦ୍ର (Centre)** ଏବଂ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୂରତା r କୁ ବୃତ୍ତର **ବ୍ୟାସାର୍ଦ୍ଦ (radius)** କୁହାଯାଏ ।

ସୁତରାଂ କେବଳ ବୃତ୍ତର କେନ୍ଦ୍ର ଓ ବ୍ୟାସାର୍ଦ୍ଧ ଦଉ ଥିଲେ ବୃତ୍ତଟି ସମ୍ପୂର୍ତ୍ତ ରୂପେ ନିର୍ଦ୍ଧିତ ହୋଇଥାଏ । ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ କହିଲେ ଆମେ ବୃତ୍ତର କେନ୍ଦ୍ର ଓ ବୃତ୍ତ ଉପରିସ୍ଥ ଯେ କୌଣସି ବିନ୍ଦୁର ଦୂରତାକୁ ବୁଝିଥାଉ ଏବଂ ବୃତ୍ତର ଏକ ବ୍ୟାସାର୍ଦ୍ଧ କହିଲେ ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ କେନ୍ଦ୍ର O ର ସଂଯୋଜକ ରେଖାଖଣ୍ଡକୁ ବୁଝିଥାଉ । ଅର୍ଥାତ **ବୃତ୍ତର** 'ବ୍ୟାସାର୍ଦ୍ଧ' ଏକ ଧନାମୂକ ବାୟବ ସଂଖ୍ୟା ଏବଂ 'ଏକ ବ୍ୟାସାର୍ଦ୍ଧ' ହେଉଛି ଏକ ରେଖାଖଣ୍ଡ ।

ଯଥା : ଚିତ୍ର 2.2ରେ ଥିବା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ହେଉଛି 2 ସେ.ମି.(ଯଦି OA=2 ସେ.ମି.) ଏବଂ \overline{OA} ଓ \overline{OB} ହେଉଛନ୍ତି ଉକ୍ତ ବୃତ୍ତର ଦୁଇଟି ବ୍ୟାସାର୍ଦ୍ଧ ।

ଦ୍ରଷ୍ଟବ୍ୟ :

- 1. ଆମର ସମୟ ଆଲୋଚନାରେ ବୃତ୍ତ ଏବଂ ଅନ୍ୟ ସମୟ ବିନ୍ଦୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ହେବେ ।
- 2. ପ୍ରମେୟ 2.2ରେ ଆମେ ପ୍ରମାଣ କରିବା ଯେ ଏକ ସରଳରେଖାରେ ନ ଥିବା ଯେକୌଣସି ତିନୋଟି ବିନ୍ଦୁ ଦେଇ ଗୋଟିଏ ମାତ୍ର ବୃତ୍ତ ଅଙ୍କନ କରାଯାଇପାରିବ । ତେଣୁ ବୃତ୍ତ ଉପରିସ୍ଥ ଯେକୌଣସି ତିନୋଟି ବିନ୍ଦୁ ଦ୍ୱାରା ବୃତ୍ତଟି ସୂଚିତ ହୁଏ । ଉପରୋକ୍ତ ବୃତ୍ତ S କୁ (ଚିତ୍ର 2.1) ଆମେ ABC ବୃତ୍ତ ନାମରେ ପ୍ରକାଶ କରିପାରିବା ।
 - 3. ABC ବୃତ୍ତକୁ ସାଙ୍କେତିକ ଚିହ୍ନ 'ABC ⊙' ଦ୍ୱାରା ମଧ୍ୟ ପ୍ରକାଶ କରାଯାଏ ।
 - କ୍ୟା (Chord) : ବୃତ୍ତର ଦୁଇଟି ପୃଥକ୍ ବିନ୍ଦୁର ସଂଯୋଜକ ରେଖାଖଣ୍ଡକୁ ବୃତ୍ତର ଏକ କ୍ୟା କୁହାଯାଏ । ବ୍ୟାସ (Diameter) : ଯେଉଁ କ୍ୟାରେ ବୃତ୍ତର କେନ୍ଦ୍ର ଅବସ୍ଥିତ ସେହି ଜ୍ୟାକୁ ବୃତ୍ତର ଏକ ବ୍ୟାସ କୁହାଯାଏ ।

ଚିତ୍ର 2.1ରେ \overline{AB} ଏକ ଜ୍ୟା ଏବଂ \overline{AC} ଏକ ବ୍ୟାସ । ଯେହେତୁ ବୃତ୍ତର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ, AO=OC । ଯଦି ABC ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ r=2 ସେ.ମି. ହୁଏ ତେବେ AC=AO+OC=4 ସେ.ମି. ହେବ । ଅର୍ଥାତ୍ **ଗୋଟିଏ ବୃତ୍ତରେ ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ ବ୍ୟାସ 2r ଏକକ ହେବ । ଫଳରେ ବୃତ୍ତର 'ଏକ ବ୍ୟାସ' ହେଉଛି ଏକ ରେଖାଖଣ୍ଡ ଯାହାର ପ୍ରାନ୍ତବିନ୍ଦୁ ଦ୍ୱୟ ବୃତ୍ତ ଉପରିସ୍ଥ ଏବଂ ମଧ୍ୟବିନ୍ଦୁ ହେଉଛି କେନ୍ଦ୍ର । ମାତ୍ର 'ବ୍ୟାସ' ହେଉଛି ଏକ ଧନାତ୍ମକ ବାଣ୍ଡବ ସଂଖ୍ୟା । ବୃତ୍ତର କେନ୍ଦ୍ର ପ୍ରତ୍ୟେକ ବ୍ୟାସର ମଧ୍ୟବିନ୍ଦୁ । ଚିତ୍ର 2.1ରେ A ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଅନେକ ଗୁଡ଼ିଏ ଜ୍ୟା ଅଙ୍କନ କରି ଲକ୍ଷ୍ୟ କରିପାରିବ ଯେ \overline{AC} ବ୍ୟାସର ଦୈର୍ଘ୍ୟ, ଉକ୍ତ ବୃତ୍ତର ଯେକୌଣସି ଜ୍ୟାର ଦୈର୍ଘ୍ୟଠାରୁ ବୃହ୍ତର । ଅର୍ଥାତ୍ ଗୋଟିଏ ବୃତ୍ତରେ ଏକ ବ୍ୟାସ ହେଉଛି ଏହାର ଦୀର୍ଘତମ କ୍ୟା ।**

ବୃତ୍ତର ଅନ୍ତଦେଶ ଓ ବହିଦେଶ:

ଏକ ବୃତ୍ତର ସମତଳରେ ଅବସ୍ଥିତ ବିନ୍ଦୁମାନଙ୍କର ଉକ୍ତ ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ ଦୂରତା ପରିପ୍ରେକ୍ଷୀରେ ସମତଳଟି ତିନୋଟି ଅଂଶରେ ବିଭକ୍ତ ହୁଏ । ଯଥା :

- (i) ଅନ୍ତର୍ଦେଶ : ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ ବୃତ୍ତର ସମତଳ ଉପରିସ୍ଥ ଯେଉଁ ସମଞ ବିନ୍ଦୁର ଦୂରତା ଉଦ୍ଧି ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧଠାରୁ କ୍ଷୁଦ୍ରତର ସେଗୁଡ଼ିକୁ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ (Interior Points) କୁହାଯାଏ । ଅର୍ଥାତ୍ କେନ୍ଦ୍ର ବିନ୍ଦୁ O ଥିବା ଏକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ ଉକ୍ତ ସମତଳସ୍ଥ ଏକ ବିନ୍ଦୁ P ଲାଗି ଯଦି OP < r ହୁଏ ତେବେ P ଉକ୍ତ ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହେବ । ଚିତ୍ର 2.3 ରେ P ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ । ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁମାନଙ୍କର ସମାହାରକୁ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶ (Interior) କୁହାଯାଏ ।
- (ii) **ବହିର୍ଦ୍ଦେଶ –** ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ ବୃତ୍ତର ସମତଳ ଉପରିସ୍ଥ ଯେଉଁ ବିନ୍ଦୁମାନଙ୍କର ଦୂରତା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧଠାରୁ ବୃହତ୍ତର ସେଗୁଡ଼ିକୁ ବୃତ୍ତର **ବହିଃସ୍ଥ ବିନ୍ଦୁ (Exterior points)** କୁହାଯାଏ । ଅର୍ଥାତ୍ ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ

ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ ଯଦି ବୃତ୍ତର ସମତଳସ୍ଥ ବିନ୍ଦୁ Q ଲାଗି OQ > r ହୁଏ ତେବେ Q ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ । ଚିତ୍ର 2.3ରେ Q ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ । ବୃତ୍ତର ବହିଃସ୍ଥ ବିନ୍ଦୁମାନଙ୍କର ସମାହାରକୁ ବୃତ୍ତର **ବହିର୍ଦ୍ଦେଶ (exterior)** କୁହାଯାଏ । ଏଠାରେ ମନେରଖିବା ଉଚିତ ହେବ ଯେ, ବୃତ୍ତ ଓ ଏହାର ଅନ୍ତର୍ଦ୍ଦେଶ ବ୍ୟତୀତ ସମତଳର ଅନ୍ୟ ସମୟ ବିନ୍ଦୁମାନଙ୍କୁ ବୃତ୍ତର ବହିଃସ୍ଥ ବିନ୍ଦୁ କୁହାଯାଏ ।

(iii) **ବୃତ୍ତ** ଉପରିସ୍ଥ ସମୟ ବିନ୍ଦୁ ।

ଚିତ୍ର 2.3ରେ ଚିତ୍ରିତ ଅଂଶଟି ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶ । \overline{AB} ବୃତ୍ତର ଯେକୌଣସି ଜ୍ୟା ହେଲେ A ଓ B ପ୍ରାନ୍ତ ଦ୍ୱୟ ବ୍ୟତୀତ ଜ୍ୟାର ଅନ୍ୟ ସମୟ ବିନ୍ଦୁ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ । ଏହାର ପ୍ରମାଣ ପ୍ରମେୟ – 2.1, ଅନୁସିଦ୍ଧାନ୍ତ – 2ର ପରବର୍ତ୍ତୀ ଅନୁଚ୍ଛେଦ ଦେଖ ।

ମନ୍ତବ୍ୟ - ଏକ ବୃଭର ଅନ୍ତଦେଶ ଏକ **ଭଭଳ** ସେଟ୍ ଅଟେ ।

ସଂଜ୍ଞା : 1. ସର୍ବସମ ବୃତ୍ତ : ଏକାଧିକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ସମାନ ହେଲେ ସେମାନଙ୍କୁ ସର୍ବସମ ବୃତ୍ତ (Congruent Circles) କୁହାଯାଏ ।

2. **ସର୍ବସମ ଜ୍ୟା :** ଗୋଟିଏ ବୃତ୍ତରେ ବା ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତରେ ଯେଉଁ ଜ୍ୟାମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ ସେମାନଙ୍କୁ **ସର୍ବସମ ଜ୍ୟା (Congruent Chords)** କୁହାଯାଏ ।

ପରବର୍ତ୍ତୀ ସମୟରେ ଆମେ ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତରେ ଥିବା ସର୍ବସମ ଜ୍ୟା ସୟକ୍ଷରେ ଆଲୋଚନା କରିବା । 2.2 ଜ୍ୟା ସୟକ୍ଷୀୟ କେତେକ ଉପପାଦ୍ୟ :

ଉପପାଦ୍ୟ - 7

ବୃତ୍ତର କେନ୍ଦ୍ରରୁ ଏହାର ବ୍ୟାସ ଭିନ୍ନ ଏକ ଜ୍ୟା ପ୍ରତି ଅଙ୍କିତ ଲୟ ଉକ୍ତ ଜ୍ୟାକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ I

[The perpendicular drawn from the centre of a circle to a chord, other than a diameter, bisects the chord.]

 ${f o}$ ଉ: S ବୃତ୍ତରେ ${f \overline{AB}}$ ବ୍ୟାସ ଭିନ୍ନ ଏକ ଜ୍ୟା, ବୃତ୍ତର କେନ୍ଦ୍ର O ଠାରୁ ${f \overline{AB}}$ ପ୍ରତି ଲୟ ${f \overline{OD}}$ ।

ପାମାଶ୍ୟ : AD = DB

ଅଙ୍କନ : $\overline{\mathrm{OA}}$ ଓ $\overline{\mathrm{OB}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OAD ଏବଂ Δ OBD ମଧ୍ୟରେ

OA = OB (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ), \overline{OD} ସାଧାରଣ ବାହୁ ।

 $\angle ODA \cong \angle ODB$ (ପ୍ରତ୍ୟେକ ଏକ ସମକୋଣ) ∴ $\triangle OAD \cong \triangle OBD$ (ସମକୋଣ-କର୍ଣ୍ଣ - ବାହୁ)

∴ AD = DB (ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ : ଗୋଟିଏ ସରଳରେଖା ବୃତ୍ତକୁ ଦୁଇଟିରୁ ଅଧିକ ବିନ୍ଦୁରେ ଛେଦ କରେ ନାହିଁ ।

ପ୍ରମାଣ : ଯଦି ସୟବ ହୁଏ ତେବେ ସରଳରେଖାଟି ବୃତ୍ତକୁ କ୍ରମାନ୍ୱୟରେ ତିନୋଟି ଭିନ୍ନ ବିନ୍ଦୁ A,B ଓ C ରେ ଛେଦ କରୁ । O ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ \overline{OD} , \overline{AB} ପ୍ରତି ଲୟ ହେଉ ।

ବର୍ତ୍ତମାନ \overline{AB} ଓ \overline{AC} ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ଏବଂ ଉପପାଦ୍ୟ – 7ରୁ ଏହା ସୁକ୍ଷୟ ଯେ $\overline{AD} = \overline{DB}$ ଏବଂ $\overline{AD} = \overline{DC}$ । ସୁତରାଂ $\overline{DB} = \overline{DC}$ । ମାତ୍ର \overline{D} -B-C ହେତୁ ଏହା ଅସୟବ । ସୁତରାଂ ସରଳରେଖାଟି ବୃତ୍ତକୁ ଦୁଇଟିରୁ ଅଧିକ ବିନ୍ଦୁରେ ଛେଦ କରିବ ନାହିଁ ।

(ସୂଚନା : ଏଠାରେ ଆମେ ପ୍ରାମାଣ୍ୟର ବିପରୀତ ଉକ୍ତିକୁ ଆଧାର କରି ତର୍କ ଦ୍ୱାରା ଏକ ଅସୟବ ପରିସ୍ଥିତିରେ ପହଞ୍ଚିଲେ; ଯାହା ପ୍ରାମାଣ୍ୟର ସତ୍ୟତାକୁ ପ୍ରମାଣ କରୁଛି । ଏହି ପ୍ରକାର ପ୍ରମାଣକୁ ଗଣିତରେ **ଅସୟବାୟନ ପ୍ରଣାଳୀ** (Method of contradiction) କୁହାଯାଏ ।

ପ୍ରମେୟ 2.1 (ଉପପାଦ୍ୟ - 7 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ) :

କୌଣସି ବୃତ୍ତର ବ୍ୟାସ ଭିନ୍ନ ଏକ କ୍ୟାର ମଧ୍ୟବିନ୍ଦୁ ଓ କେନ୍ଦ୍ରକୁ ଯୋଗ କରୁଥିବା ରେଖା ଉକ୍ତ କ୍ୟା ପ୍ରତି ଲୟ ଅଟେ ।

[The line joining the centre of a circle to the midpoint of a chord, other than a diameter, is perpendicular to the chord.]

ଦଉ : S ବୃତ୍ତରେ \overline{AB} ବ୍ୟାସ ଭିନ୍ନ ଏକ ଜ୍ୟା, O ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ D, \overline{AB} ର ମଧ୍ୟବିନ୍ଦ୍ର I

ପ୍ରାମାଣ୍ୟ : $\stackrel{\longleftarrow}{\mathrm{OD}} \perp \overline{\mathrm{AB}}$

ଅଙ୍କନ : $\overline{\mathrm{OA}}$ ଓ $\overline{\mathrm{OB}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OAD ଏବଂ Δ OBD ମଧ୍ୟରେ

$$:: \left\{ egin{aligned} \mathrm{OA} = \mathrm{OB} \ (\, orall \, \mathrm{e} \, \mathrm{e} \, \mathrm{o} \, \mathrm{a} \, \mathrm{e} \, \mathrm{e} \, \mathrm{e} \, \mathrm{e} \, \mathrm{o} \, \mathrm{e} \,$$

$$\therefore \Delta ADO \cong \Delta BDO$$
(ବାହୁ- ବାହୁ - ବାହୁ)

 \Rightarrow m \angle ADO = m \angle BDO

କିନ୍ତୁ m $\angle ADO + m\angle BDO = 180^{\circ}$ (ସନ୍ନିହିତ ପରିପୂରକ କୋଣ)

$$\Rightarrow$$
 m \angle ADO = m \angle BDO = 90 $^{\circ}$ ଅର୍ଥାତ୍ $\stackrel{\longleftarrow}{OD}$ \bot \overline{AB} (ପ୍ରମାଶିତ)

ଅନୁସିଦ୍ଧାନ୍ତ - 1 :

ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର ଏହାର ଯେକୌଣସି କ୍ୟାର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଉପରେ ଅବସ୍ଥିତ । କାରଣ ଯେ କୌଣସି କ୍ୟାର ମଧ୍ୟବିନ୍ଦୁଠାରେ କେବଳ ଗୋଟିଏ ମାତ୍ର ଲୟ ଅଙ୍କିତ ହୋଇପାରିବ ।

ଅନ୍ସିଦ୍ଧାନ୍ତ - 2:

- (i) ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଅସମାନ୍ତର କ୍ୟାର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଦୃୟ ବୃତ୍ତର କେନ୍ଦ୍ରରେ ମିଳିତ ହୁଅନ୍ତି । କାରଣ ଅନୁସିଦ୍ଧାନ୍ତ - 1 ଅନୁଯାୟୀ ବୃତ୍ତର କେନ୍ଦ୍ର ପ୍ରତ୍ୟେକ ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଉପରେ ଅବସ୍ଥିତ ।
- (ii) ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟାର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟଦ୍ୱୟ ବୃତ୍ତର କେନ୍ଦ୍ର ଦେଇ ଯାଇଥିବା ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ (କାହିଁକି ?) I

ବର୍ତ୍ତମାନ ଡୁମେ ପ୍ରମାଣ କରିପାରିବ ଯେ \overline{AB} ଏକ ବୃତ୍ତର ଜ୍ୟା ହେଲେ A ଓ B ଭିନ୍ନ ଜ୍ୟାଟିର ଅନ୍ୟ ସମସ୍ତ ବିନ୍ଦୁ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥୁ ବିନ୍ଦୁ । ଚିତ୍ର 2.7ରେ P, \overline{AB} ଜ୍ୟା ଉପରେ ପାନ୍ତ ବିନ୍ଦୁ ଭିନ୍ନୁ ଯେକୌଣସି ଏକ ବିନ୍ଦୁ । $\overline{OD} \perp \overline{AB}$ ହେଲେ $OP^2 = OD^2 + DP^2 \Rightarrow OP^2 < OD^2 + DB^2 \Rightarrow OP^2 < OB^2$ |

ସୁତରାଂ $\mathrm{OP} <$ ବ୍ୟାସାର୍ଦ୍ଧ । ଅର୍ଥାତ୍ P ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ । (ଚିତ୍ରରେ $\mathrm{D} ext{-}\mathrm{P} ext{-}\mathrm{B}$ ନିଆଯାଇଛି ।

ଯଦି P-D-B ହୁଏ ତେବେ ମଧ୍ୟ ପ୍ରମାଣ ଅନୁରୂପ ହେବ ।)

ଯଦି A ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ଓ P ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହୁଏ ତେବେ \overrightarrow{AP} ବୃତ୍ତକୁ ଅନ୍ୟ ଏକ ବିନ୍ଦୁରେ ଛେଦ କରିବ । ଏହା ସୃତଃସିଦ୍ଧ ମନେ ହେଉଥିଲେ ହେଁ ଏହାର ଯୁକ୍ତିମୂଳକ ପ୍ରମାଣ କିପରି କରାଯାଇପାରେ ଦେଖିବା । ଚିତ୍ର 2.8ରେ ଥିବା ବୃତ୍ତର କେନ୍ଦ୍ର ${\rm O}$ ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ ${\rm r}$ ।

P ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ, $\overrightarrow{OD} \perp \overrightarrow{AP}$ ଏବଂ OD = d ହେଉ \vdash ତେଣୁ $d \leq OP \leq r$ ହେବ । ସୂତରା $\sqrt{r^2 - d^2}$ ଏକ ଧନାତ୍ମକ ବାଞ୍ଚବ ସଂଖ୍ୟା । \therefore \overrightarrow{AP} ଉପରେ ଏପରି ଏକ ବିନ୍ଦୁ B ଅଛି ଯେପରିକି D-P-B (କିୟା P-D-B) ଏବଂ DB = $\sqrt{r^2-d^2}$ |

ଆମେ ଜାଣ୍ଡ, ଗୋଟିଏ ନିର୍ଦ୍ଦିଷ୍ଟ ସରଳରେଖା ଅଙ୍କନ କରିବା ନିମନ୍ତେ ଆମେ ଉକ୍ତ ସରଳରେଖା ଉପରିସ୍ଥ ଅତି କମ୍ବରେ ଦୂଇଟି ବିନ୍ଦୁର ଅବସ୍ଥିତି ଜାଣିବା ଆବଶ୍ୟକ । ଅନ୍ୟ ପକ୍ଷରେ ଦୂଇଟି ଦତ୍ତ ବିନ୍ଦୁ ଦେଇ ଆମେ କେବଳ ଗୋଟିଏ ମାତ୍ର ସରଳରେଖା ଅଙ୍କନ କରିପାରିବା । ବର୍ତ୍ତମାନ ପ୍ରଶ୍ର ଉଠେ ଯେ ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ କରିବା ନିମନ୍ତେ ଅତି କମ୍ବରେ କେତୋଟି ବିନ୍ଦୁର ଆବଶ୍ୟକ ଜାଣିବା ।

ଚିତ୍ର 2.9 ରେ A ଓ B ଦୁଇଟି ବିନ୍ଦୁ $\mid D, \overline{AB}$ ର ମଧ୍ୟବିନ୍ଦୁ ଏବଂ \overrightarrow{MN} ରେଖା D ବିନ୍ଦୁରେ \overline{AB} ପ୍ରତି ଲୟ ହୁଅନ୍ତୁ ।

ପ୍ରମେୟ 2.1 ଅନୁସିଦ୍ଧାନ୍ତ -1 ଅନୁସାରେ $\stackrel{\longleftarrow}{MN}$ ଉପରିସ୍ଥ ଯେକୌଣସି ବିନ୍ଦୁ O, A ଏବଂ B ବିନ୍ଦୁ ଦେଇ ଯାଇଥବା (ଅର୍ଥାତ୍ \overline{AB} ଜ୍ୟା ଥିବା) କୌଣସି ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର ହେବ । ଏହା ସୁକ୍ଷଷ୍ଟ ଯେ \overline{AB} ଉକ୍ତ ବୃତ୍ତର ଏକ ଜ୍ୟା ହେବ ଏବଂ OA = OB = ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ । ଅର୍ଥାତ୍ ଦୁଇଟି ବିନ୍ଦୁ A ଓ B ମଧ୍ୟ ଦେଇ ଅସଂଖ୍ୟ ବୃତ୍ତ ରହିଛି । ପରବର୍ତ୍ତୀ ପ୍ରମେୟରେ ଆମେ ପ୍ରମାଣ କରିବା ଯେ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବୃତ୍ତ ନିର୍ଣ୍ଣୟ କରିବା ନିମନ୍ତେ ଅତି କମ୍ବରେ ତିନୋଟି ବିନ୍ଦୁର ଅବସ୍ଥିତି ଜାଣିବା ଆବଶ୍ୟକ । ନିମ୍ନ ଆଲୋଚନାରୁ ଏହା ସୁକ୍ଷଷ୍ଟ ହେବ ।

ପ୍ରମେୟ 2.2 : ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ନ ଥିବା ଯେକୌଣସି ତିନୋଟି ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଗୋଟିଏ ଏବଂ କେବଳ ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ କରାଯାଇ ପାରିବ ।

[There is one and only one circle that passes through three non-collinear points.]

ଦଡ : A, B ଓ C ଏକ ସରଳରେଖାରେ ନ ଥିବା ତିନୋଟି ବିନ୍ଦୁ ।

ପ୍ରାମାଣ୍ୟ : A, B ଓ C ବିନ୍ଦୁ ତ୍ରୟ ଦେଇ ଗୋଟିଏ ଏବଂ କେବଳ ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ ସୟବ ।

ଅଙ୍କନ : \overline{AB} ଓ \overline{BC} ଅଙ୍କନ କର । \overrightarrow{PQ} ଏବଂ \overrightarrow{MN} ରେଖାଦ୍ୟ ଯଥାକ୍ରମେ \overline{AB} ଓ \overline{BC} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ହୁଅନ୍ତୁ । A, B ଓ C ଏକ ସରଳରେଖାରେ ନ ଥିବାରୁ \overrightarrow{PQ} ଏବଂ \overrightarrow{MN} ରେଖାଦ୍ୟ ପରସ୍ପରକୁ ଛେଦ କରିବେ ଏବଂ ସେହି ଛେଦବିନ୍ଦୁ O ହେଉ । \overline{OA} , \overline{OB} ଏବଂ \overline{OC} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : ଯେହେତୁ O ବିନ୍ଦୁ \overline{AB} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଉପରେ ଅବସ୍ଥିତ ତେଣୁ OA = OB । ସେହିପରି OB = OC । ସୁତରାଂ OA = OB = OC ।

ବର୍ତ୍ତମାନ O ବିନ୍ଦୁକୁ କେନ୍ଦ୍ର କରି OA ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ଏକ ବୃତ୍ତ S ଅଙ୍କନ କଲେ B ଓ C ଉକ୍ତ ବୃତ୍ତ ଉପରିସ୍ଥ ଦୁଇଟି ବିନ୍ଦୁ ହେବେ । ଅର୍ଥାତ୍ A, B ଓ C ବିନ୍ଦୁ ତ୍ରୟ S ବୃତ୍ତ ଉପରିସ୍ଥ ହେବେ ।

ବର୍ତ୍ତମାନ ପ୍ରମାଣ କରିବା ଯେ ଏହିପରି ମାତ୍ର ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ କରାଯାଇପାରିବ । ମନେକର ଆଉ ଏକ ବୃତ୍ତ S' ରହିଅଛି ଯାହା ଉପରେ A,B ଓ C ଅବସ୍ଥିତ । O' ଏହି ବୃତ୍ତ S' ର କେନ୍ଦ୍ର ହେଉ ।

ବର୍ତ୍ତମାନ $O'A = O'B \Rightarrow O'$, \overrightarrow{AB} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ \overrightarrow{PQ} ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ । ସେହିପରି O'B = O'C $\Rightarrow O'$, \overrightarrow{BC} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ \overrightarrow{MN} ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ । ଅର୍ଥାତ୍ O ଏବଂ O' \overrightarrow{PQ} ଏବଂ \overrightarrow{MN} ରେଖାଦ୍ୱୟର ଦୁଇଟି ଛେଦବିନ୍ଦୁ ଯାହାକି ଅସୟବ, କାରଣ ଦୁଇଟି ସରଳରେଖା ମାତ୍ର ଗୋଟିଏ ବିନ୍ଦୁରେ ପରସ୍କରକୁ ଛେଦ କରନ୍ତି । ସୁତରାଂ O ଏବଂ O' ଅଭିନ୍ନ ଅଟନ୍ତି । ଅତଏବ OA = O'A ତେଣୁ S ଓ S' ଅଭିନ୍ନ ଅଟନ୍ତି । (ପ୍ରମାଣିତ)

ସଂଜ୍ଞା : ଗୋଟିଏ ତ୍ରିଭୁଜର ଶୀର୍ଷବିନ୍ଦୁତ୍ରୟ ଦେଇ ଅଙ୍କିତ ବୃତ୍ତକୁ ଉକ୍ତ ତ୍ରିଭୁଜର ପରିବୃତ୍ତ (Circum-Circle) ଓ ଏହାର କେନ୍ଦ୍ରବିନ୍ଦୁକୁ ଉକ୍ତ ତ୍ରିଭୁଜର ପରିକେନ୍ଦ୍ର (Circum-Centre) କୁହାଯାଏ ।

ଚାରି ବା ତତୋଧିକ ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ସର୍ବଦା ବୃତ୍ତ ଅଙ୍କନ ସୟବ ହୋଇ ନ ପାରେ । ଅନ୍ୟ ପକ୍ଷରେ ଯଦି କୌଣସି ଚତୁର୍ଭୁଳ ବା ବହୁଭୁଳର ଶୀର୍ଷବିନ୍ଦୁମାନେ ଏକ ବୃତ୍ତ ଉପରେ ରହନ୍ତି ତେବେ ସେହି ଚତୁର୍ଭୁଳ ବା ବହୁଭୁଳକୁ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ (inscribed in a circle) ଚତୁର୍ଭୁଜ ବା ବହୁଭୁଜ କୁହାଯାଏ । ପ୍ରମେୟ - 2.2 ଅନୁଯାୟୀ ଏକ ତ୍ରିଭୁଜ ସର୍ବଦା ବୃଭାନ୍ତଲିଖିତ ହୁଏ ।

ଅନୁସିଦ୍ଧାନ୍ତ : ଦୁଇଟି ବୃତ୍ତ ପରୟରକୁ ଦୁଇଟିରୁ ଅଧିକ ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି ନାହିଁ ।

ଯଦି ଏକ ତୃତୀୟ ଛେଦବିନ୍ଦୁ ଥାଏ ତେବେ ଛେଦ ବିନ୍ଦୁ ତ୍ରୟ ଦୁଇଟି ବୃତ୍ତ ଉପରେ ରହିବେ । ପ୍ରମେୟ - 2.2 ଅନୁଯାୟୀ ଏହା ଅସୟବ ।

ପ୍ରଶ୍ମ : ଏକ ସରଳରେଖାରେ ଥିବା ତିନୋଟି ବିନ୍ଦୁ ଦେଇ ଗୋଟିଏ ବୃତ୍ତ ଅଙ୍କନ ସୟବ କି ? (ସୂଚନା : ଯଦି ସନ୍ତବ ତେବେ ସେପରି କ୍ଷେତ୍ରରେ ସରଳରେଖାଟି ସମ୍ଭାବ୍ୟ ବୃତ୍ତକୁ ତିନୋଟି ବିନ୍ଦୁରେ ଚ୍ଛେଦ କରିବ । ଉପପାଦ୍ୟ - 7ର ଅନୁସିଦ୍ଧାନ୍ତକୁ ଏହା ବିରୋଧ କରେ I)

ଉପପାଦ୍ୟ - 8

ଗୋଟିଏ ବୃତ୍ତର ସମାନ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଜ୍ୟାମାନେ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ I

[Chords of equal length in a circle are equidistant from the centre.]

ଦର : S ବୂତ୍ତରେ \overline{AB} ଓ \overline{CD} ଦୁଇଟି ଜ୍ୟା ଏବଂ $AB = CD \mid O$ ବୂତ୍ତର କେନ୍ଦ୍ର (ଚିତ୍ର 2.11)

 $\overline{\mathrm{OE}}$ ଏବଂ $\overline{\mathrm{OF}}$ ଯଥାକ୍ମେ $\overline{\mathrm{AB}}$ ଓ $\overline{\mathrm{CD}}$ ପ୍ରତି ଲୟ ।

ପାମାଶ୍ୟ : OE = OF |

ଅଙ୍କନ : $\overline{\mathrm{OB}}$ ଓ $\overline{\mathrm{OC}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : ଯେହେତୁ $\overline{\mathrm{OE}} \perp \overline{\mathrm{AB}}$,

 \overline{OE} , \overline{AB} କୁ ସମଦ୍ୱିଖଣ କରିବ । (ଉପପାଦ୍ୟ - 7)

ସୁତରା°
$$AE = EB \Rightarrow EB = \frac{1}{2} AB$$

ଯେହେତୁ $\overline{\mathrm{OF}} \perp \overline{\mathrm{CD}}$ ପୂର୍ବପରି ଆମେ ପାଇବା $\mathrm{CF} = \frac{1}{2}\mathrm{CD}$ ।

କିନ୍ତୁ
$$AB = CD$$
 (ଦଉ) ∴ $EB = CF$ |

ବର୍ତ୍ତମାନ Δ OEB ଏବଂ Δ OFC ମଧ୍ୟରେ EB = CF (ପୂର୍ବରୁ ପ୍ରମାଣିତ),

OB = OC (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ) ଏବଂ $m\angle OEB = m\angle OFC$ (ପ୍ରତ୍ୟେକ ସମକୋଣ)

$$:: \Delta \text{OEB} \cong \Delta \text{OFC}$$
 (ସମକୋଶ - ବାହୁ - କର୍ଣ୍ଣ)

(ଚିତ୍ର 2.11)

ମନ୍ତବ୍ୟ: ଉପରୋକ୍ତ ଉପପାଦ୍ୟ -8, ଦୁଇଟି (ବା ତତୋଧିକ) ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ମଧ୍ୟ ପ୍ରଯୁଙ୍ଖ । ଏହାକୁ ମୂଳ ଉପପାଦ୍ୟ-8ର ପ୍ରମାଣର ଧାରାରେ ସ୍ଥଳ ବିଶେଷରେ ସାମାନ୍ୟ ପରିବର୍ତ୍ତନ କରି ପ୍ରମାଣ କରାଯାଇ ପାରିବ । ପରବର୍ତ୍ତୀ ସମୟରେ ଆମେ ଦେଖିବା ବୃତ୍ତ ସମ୍ପନ୍ଧୀୟ ଅନେକ ଗୁଡ଼ିଏ ଉପପାଦ୍ୟ / ପ୍ରମେୟ ଯାହା ଗୋଟିଏ ବୃତ୍ତ ନିମନ୍ତେ ଉଲ୍ଲେଖ କରାଯାଇଛି ସେଗୁଡ଼ିକ ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ମଧ୍ୟ ପ୍ରଯୁଙ୍ଖ । ତେବେ ସେଗୁଡ଼ିକର ସ୍ୱତନ୍ତ ପ୍ରମାଣ ଦିଆଯାଇନାହିଁ । ସେଗୁଡ଼ିକ ମୂଳ ଉପପାଦ୍ୟର ପ୍ରମାଣର ଧାରାରେ ହେବ । କେବଳ ଉଦାହରଣ ସ୍ୱରୂପ ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଉପପାଦ୍ୟ - 8ର ଅନୁରୂପ କଥନ ଏବଂ ପ୍ରମାଣ ନିମ୍ବରେ ଦିଆଯାଇଛି ।

କଥନ : ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତର ସମାନ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଜ୍ୟାମାନେ ନିଜ ନିଜ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ।

ଦତ୍ତ : ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ $\mathbf{S_1}$ ଓ $\mathbf{S_2}$ ର କେନ୍ଦ୍ର ଯଥାକ୍ରମେ $\mathbf{O_1}$ ଏବଂ $\mathbf{O_2}$ (ଚିତ୍ର 2.12) ।

(ଚିତ୍ର 2.12)

 \overline{AB} ଓ \overline{CD} ଯଥାକୁମେ $S_{_1}$ ଓ $S_{_2}$ ର ଦୁଇଟି ଜ୍ୟା ଏବଂ AB=CD ।

 $\overline{\mathrm{O_1E}} \perp \overline{\mathrm{AB}}$ ଏବଂ $\overline{\mathrm{O_2F}} \perp \overline{\mathrm{CD}}$ ।

ପ୍ରାମାଶ୍ୟ : $O_1E = O_2F$

ଅଙ୍କନ : $\overline{\mathrm{O_{1}A}}$ ଏବଂ $\overline{\mathrm{O_{2}C}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : ଯେହେତୁ $\overline{\mathrm{O_{l}E}} \perp \overline{\mathrm{AB}}$ ତେଣୁ $\overline{\mathrm{O_{l}E}}$, $\overline{\mathrm{AB}}$ କୁ ସମଦ୍ୱିଖଣ କରିବ ।

ଅର୍ଥାତ୍ $AE = EB \Rightarrow AE = \frac{1}{2} AB$

ସେହେତୁ $\overline{\mathrm{O_2F}} \perp \overline{\mathrm{CD}}$ ତେଣୁ ପୂର୍ବପରି ଆମେ ପାଇବା $\mathrm{CF} = \frac{1}{2}\mathrm{CD}$

କିନ୍ତୁ AB = CD (ଦଉ) | ∴ AE = CF |

ବର୍ତ୍ତିମାନ $\Delta \ {
m O_1EA}$ ଏବଂ $\Delta \ {
m O_2FC}$ ମଧ୍ୟରେ

$${\rm Tr}\left\{ egin{aligned} &{\rm AE}={\rm CF}\;\left({
m Q}\mbox{\it e}\mbox{\it f}_{
m Q}\;{
m Q}\mbox{\it e}\mbox{\it f}_{
m Q}\;{
m Q}\mbox{\it e}_{
m Q}\mbox{\it$$

ପ୍ରମେୟ - 2.3 : ଉପପାଦ୍ୟ - 8ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ :

ଗୋଟିଏ ବୃତ୍ତରେ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ଜ୍ୟାମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ I

[Chords of a circle equidistant from the centre are of equal length.]

ଦଉ : S ବୃଉରେ \overline{AB} ଓ \overline{CD} ଦୁଇଟି ଜ୍ୟା $\mid O$ ବୃଉର କେନ୍ଦ୍ର \mid

 \overline{OE} ଏବଂ \overline{OF} ଯଥାକୁମେ \overline{AB} ଓ \overline{CD} ପ୍ରତି ଲୟ । $\overline{OE} = \overline{OF}$

ପ୍ରାମାଶ୍ୟ : AB = CD

ଅଙ୍କନ : $\overline{\mathrm{OA}}$ ଏବଂ $\overline{\mathrm{OC}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ Δ EO ଏବଂ Δ CFO ମଧ୍ୟରେ

 $\therefore \Delta \text{ AEO } \cong \Delta \text{ CFO } ($ ସମକୋଶ - କର୍ଷ - ବାହୁ $) \Rightarrow \text{AE} = \text{CF } \dots (1)$

 \cdots \overline{OE} \perp \overline{AB} , \overline{OE} , \overline{AB} ଜ୍ୟାକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ (ଉପପାଦ୍ୟ - 7)

 \Rightarrow AE = EB \Rightarrow AB = 2AE

ସେହିପରି $\overline{OF} \perp \overline{CD} \Rightarrow CF = FD \Rightarrow CD = 2CF$

କିନ୍ତୁ $AE = CF \ (1 \ g)$ । ସୁତରାଂ $AB = 2AE = 2CF = CD \ (ପ୍ରମାଶିତ)$

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ପ୍ରମେୟ - 2.3 ର କଥନ :

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତରେ ନିଜ ନିଜ କେନ୍ଦ୍ରଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ଜ୍ୟା ମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ ।

ଏହାର ପ୍ରମାଣ ମୂଳ ପ୍ରମେୟ - 2.3 ର ଅନୁରୂପ । ନିଜେ କର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 1 : ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ମଧ୍ୟରେ, କେନ୍ଦ୍ରଠାରୁ ଦୂରବର୍ତ୍ତୀ ଜ୍ୟାର ଦୈର୍ଘ୍ୟ ନିକଟତର ଜ୍ୟାର ଦୈର୍ଘ୍ୟଠାରୁ କ୍ଷୁଦ୍ରତର ।

[Of any two chords of a circle, the length of the one farther from the centre is smaller than the length of the other.] $A \longrightarrow C$

ଦଉ : O ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର ।
$$\overline{AB}$$
 ଓ \overline{CD} ଉକ୍ତ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା । $\overline{OE} \perp \overline{AB}$ ଏବଂ $\overline{OF} \perp \overline{CD}$ । $\overline{OF} > \overline{OE}$ (ଚିତ୍ର 2.14) ।

ପ୍ରାମାଶ୍ୟ: CD < AB

ଅଙ୍କନ : $\overline{\mathrm{OA}}$ ଏବଂ $\overline{\mathrm{OC}}$ ଅଙ୍କନ କର ।

(ଚିତ୍ର 2.13)

(ଚିତ୍ର 2.14)

ପ୍ରମାଣ : Δ OEA ଏବଂ Δ OFC ଦୃୟ ସମକୋଣୀ

$$OE^2 + EA^2 = OA^2$$
 ଏବଂ $OF^2 + FC^2 = OC^2$ (ପିଥାଗୋରାସ ଉପପାଦ୍ୟ ଅନୁଯାୟୀ)

କିନ୍ତୁ OA = OC (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ)

$$\therefore$$
 $OE^2 + EA^2 = OF^2 + FC^2 \implies EA^2 - FC^2 = OF^2 - OE^2 > 0 \ (\because OF > OE \ (ହଉ))$

$$\Rightarrow$$
 FC < EA $\Rightarrow \frac{\text{CD}}{2} < \frac{\text{AB}}{2} [\because \overline{\text{OF}} \perp \overline{\text{CD}} \ \sqrt[4]{9}^{\circ} \overline{\text{OE}} \perp \overline{\text{AB}}]$

$$\Rightarrow$$
 CD < AB (ପ୍ରମାଶିତ)

ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଅନୁସିଦ୍ଧାନ୍ତ -1ର ଅନୁରୂପ ପ୍ରମାଣ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ଏହାର କଥନ ଓ ପ୍ରମାଣ ନିଜେ କର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 2 : ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି କ୍ୟା ମଧ୍ୟରୁ କ୍ଷୁଦ୍ରତର ଜ୍ୟାଟି କେନ୍ଦ୍ରଠାରୁ ଅଧିକ ଦୂରବର୍ତ୍ତୀ ।

(ଅନୁସିଦ୍ଧାନ୍ତ - 1 ର ବିପରୀତ)

[Of any two chords of a circle the smaller one is farther from the centre than the other.]

ଦର : O ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର । \overline{AB} ଓ \overline{CD} ଉକ୍ତ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ।

$$CD < AB \mid \overline{OE} \perp \overline{AB}$$
 ଏବଂ $\overline{OF} \perp \overline{CD}$ (ଚିତ୍ର 2.14 ଦେଖ)

ପାମାଶ୍ୟ: OF > OE

ଅ**ଙ୍କନ :** $\overline{\mathrm{OA}}$ ଏବଂ $\overline{\mathrm{OC}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OEA ଏବଂ Δ OFC ଦୁଇଟି ସମକୋଣୀ ତ୍ରିଭୁଜରେ

$$m ... OE^2 + EA^2 = OA^2$$
 ଏବଂ $OF^2 + FC^2 = OC^2$ (i) (ପିଥାଗୋରାସଙ୍କ ସୂତ୍ର ଅନୁସାରେ)

କିନ୍ତୁ $\mathrm{OA} = \mathrm{OC}$ (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ)

$$\therefore$$
 (i) ରୁ $OE^2 + EA^2 = OF^2 + FC^2 \implies OF^2 - OE^2 = EA^2 - FC^2$

$$\Rightarrow$$
 OF² – OE² = $\left(\frac{AB}{2}\right)^2 - \left(\frac{CD}{2}\right)^2$ ($\because \overline{OE} \perp \overline{AB}$ ଏବ° $\overline{OF} \perp \overline{CD}$)

$$\Rightarrow$$
 OF $>$ OE (ପ୍ରମାଶିତ)

ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଅନୁସିଦ୍ଧାନ୍ତ – 2 ର ଅନୁରୂପ ପ୍ରମାଣ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ଏହାର କଥନ ଓ ପ୍ରମାଣ ନିଜେ କର ।

2.3 କ୍ୟା ଦ୍ୱାରା କେନ୍ଦ୍ରରେ ଉତ୍ପନ୍ନ କୋଶ (Angle subtended by the chord at the centre):

 \overrightarrow{AB} ଏକ ରେଖାଖଣ୍ଡ । \overrightarrow{P} , \overrightarrow{AB} ଉପରେ ନ ଥିବା ଯେ କୌଣସି ଏକ ବିନ୍ଦୁ ହେଉ । \overrightarrow{PA} ଓ \overrightarrow{PB} ଦ୍ୱାରା ଉତ୍ପନ୍ନ $\angle APB$ କୁ \overrightarrow{AB} ଦ୍ୱାରା P ଠାରେ ଉତ୍ପନ୍ନ କୋଶ (Angle subtended by \overrightarrow{AB} at P) କୁହାଯାଏ (ଚିତ୍ର 2.15(a)) ।

ସଂଜ୍ଞା : ଗୋଟିଏ ବୃତ୍ତର \overline{AB} ବ୍ୟାସ ଭିନ୍ନ ଏକ ଜ୍ୟା ଏବଂ O କେନ୍ଦ୍ର ବିନ୍ଦୁ ହେଲେ $\angle AOB$ କୁ ଜ୍ୟା \overline{AB} ଦ୍ୱାରା କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣ ଅଥବା \overline{AB} ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ କେନ୍ଦ୍ରସ୍ଥ କୋଣ (Central angle) କୁହାଯାଏ । ଚିତ୍ର 2.15(b) ଦୃଷ୍ଟବ୍ୟ ।

 $\angle {
m AOB}, \ \overline{
m AB} \$ ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ ଏକ କେନ୍ଦ୍ରସ୍ଥ କୋଣ । କେନ୍ଦ୍ରସ୍ଥ କୋଣ ସମ୍ବନ୍ଧୀୟ ବିଶଦ ଆଲୋଚନା ପରେ ହେବ ।

ଉପପାଦ୍ୟ - 9

ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସର୍ବସମ କ୍ୟା କେନ୍ଦ୍ରଠାରେ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ କରନ୍ତି ସେମାନେ ସର୍ବସମ । [In a circle the angles subtended by two congruent chords at the centre are congruent.]

ଦତ୍ତ : S ବୃତ୍ତରେ O କେନ୍ଦ୍ର ଏବଂ \overline{AB} ଓ \overline{CD} ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା (ଚିତ୍ର 2.16) । \overline{AB} ଓ \overline{CD} କେନ୍ଦ୍ରଠାରେ ଯଥାକ୍ମେ $\angle AOB$ ଏବଂ $\angle COD$ ଉତ୍ପନ୍ନ କରନ୍ତି ।

ପ୍ରାମାଶ୍ୟ : $\angle AOB \cong \angle COD$

ପ୍ରମାଣ : Δ AOB ଏବଂ Δ OCD ମଧ୍ୟରେ

$$\therefore \triangle \text{ OAB} \cong \triangle \text{ OCD } ($$
ବାହୁ-ବାହୁ-ବାହୁ) $\Rightarrow \angle \text{AOB} \cong \angle \text{COD}$

(ପ୍ରମାଶିତ)

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଉପପାଦ୍ୟ - 9 ର କଥନ : **ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତର ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା ନିଜ** ନିଜ କେନ୍ଦ୍ରଠାରେ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ କରନ୍ତି ସେମାନେ ସର୍ବସମ । ଏହାର ପ୍ରମାଣ ନିଜେ କର ।

ପ୍ରମେୟ - 2.4 : ଉପପାଦ୍ୟ - 9 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ :

ଗୋଟିଏ ବୃତ୍ତର ଦୂଇଟି ଜ୍ୟା ଦ୍ୱାରା କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣଦୂଇଟି ସର୍ବସମ ହେଲେ କ୍ୟା ଦୂଇଟି ସର୍ବସମ ହେବେ ।

(In a circle the chords subtending congruent angles at the centre are congruent.)

ଦର : S ବୃତ୍ତରେ O କେନ୍ଦ୍ର ଏବଂ \overline{AB} ଓ \overline{CD} ଦୁଇଟି ଜ୍ୟା । ∠ $AOB \cong \angle COD$ (ଚିତ୍ର 2.16)

ପ୍ରାମାଣ୍ୟ : AB = CD

ପ୍ରମାଣ : Δ OAB ଏବଂ Δ OCD ମଧ୍ୟରେ

- $\cdot\cdot\cdot$ OA = OC, OB = OD (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ) ଏବଂ $m\angle AOB = m\angle COD$ (ଦତ୍ତ)
- $\therefore \Delta OAB \cong \Delta OCD$ (ବାହୁ-କୋଣ-ବାହୁ)

$$\Rightarrow AB = CD$$
 (ପ୍ରମାଣିତ)

ଏକାଧିକ ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ପ୍ରମେୟ - 2.4 ର ଅନୁରୂପ ପ୍ରମାଣ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଏହାର କଥନ:

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ଦ୍ୱାରା ନିଜ ନିଜ କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣ ଦୁଇଟି ସର୍ବସମ ହେଲେ ଜ୍ୟା ଦୁଇଟି ସର୍ବସମ ହେବେ । ଏହାର ପ୍ରମାଣ ନିଜେ କର ।

ଅନୁଶୀଳନୀ - 2 (a)

(କ - ବିଭାଗ)

$1. \$ ଉକ୍ତିଟି ଠିକ୍ ଥିଲେ T ଏବଂ ଭୁଲ ଥିଲେ F ଲେଖ I

- i) ଏକ ସମତଳରେ ଥିବା ଏକ ବକ୍ରରେଖାର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ ଉକ୍ତ ସମତଳ ଉପରିସ୍ଥ ଏକ ଦଉ ବିନ୍ଦୁଠାରୁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୂରତାରେ ଥିଲେ ବକ୍ରରେଖାଟିକୁ ବୃତ୍ତ କୁହାଯାଏ ।
- ii) ବୃତ୍ତର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ କୌଣସି ଏକ ବ୍ୟାସାର୍ଦ୍ଧର ଏକ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ଅଟେ ।
- iii) ଏକ ବୃତ୍ତର ଅସଂଖ୍ୟ ବ୍ୟାସ ରହିଛି ।
- iv) କେନ୍ଦ୍ର, ବୃତ୍ତର ଏକମାତ୍ର ବିନ୍ଦୁ ଯାହା ବୃତ୍ତର ପ୍ରତ୍ୟେକ ବ୍ୟାସ ଉପରେ ଅବସ୍ଥିତ ।
- m v) ଏକ ଜ୍ୟା ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶକୁ ଯେଉଁ ଦୁଇ ଅଂଶରେ ବିଭକ୍ତ କରେ ସେମାନେ ପ୍ରତ୍ୟେକ ଉତ୍ତଳ ସେଟ୍ ଅଟନ୍ତି ।
- ${
 m vi}$) ବୃତ୍ତର ଏକ ବ୍ୟାସ ଗୋଟିଏ ଜ୍ୟାକୁ ସମଦ୍ୱିଖଣ୍ଡ କଲେ ସେମାନେ ପରୟର ପ୍ରତି ଲୟ ଅଟନ୍ତି ।
- vii) ପ୍ରତ୍ୟେକ ତ୍ରିଭୁଜର ପରିକେନ୍ଦ୍ର ଏହାର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ।
- ${
 m viii})$ ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର, ଏହାର ଏକମାତ୍ର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ଯାହାଠାରୁ ବୃତ୍ତର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁର ଦୂରତା ସମାନ ।
- ix) ଏକ ରଶ୍ମୀ ବୃତ୍ତକୁ ଗୋଟିଏ ମାତ୍ର ବିନ୍ଦୁରେ ଛେଦ କରେ । ତେବେ ରଶ୍ମୀର ଆଦ୍ୟ ବିନ୍ଦୁଟି ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହେବ ।
- x) ଏକ ବୃତ୍ତରେ \overline{AB} ଓ \overline{BC} ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା ହେଲେ B ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ, $\angle ABC$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।
- (xi) ଗୋଟିଏ ବିନ୍ଦୁ ଦୁଇ ବା ତତୋଧିକ ବୃତ୍ତର କେନ୍ଦ୍ର ହୋଇପାରିବ ନାହିଁ ।
- (xii) ଗୋଟିଏ ସରଳରେଖା ଗୋଟିଏ ବୃତ୍ତକୁ ସର୍ବଦା ଦୁଇଟି ବିନ୍ଦୁରେ ଛେଦ କରେ ।

2. ପ୍ରଦତ୍ତ ସୟାବ୍ୟ ଉତ୍ତରରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।					
i)	ଦୁଇଟି ଅସମାନ୍ତର ଜ୍ୟାର ଛେଦବିନ୍ଦୁ ଅଟେ ।				
	a) ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁc) ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ		••		
ii)	P ବିନ୍ଦୁ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ ହେଲେ ବୃତ୍ତ ଉପରେ P ଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ଯୋଡ଼ା ବିନ୍ଦୁ ଅଛି				
	a) 1 b) 2	c) 8	d) ଅସଂଖ୍ୟ		
iii)	ଗୋଟିଏ ରେଖାଖଣ୍ଡ ସର୍ବାଧିକ ଟି ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ହୋଇ ପାରିବ ।				
	a) 1 b) 2	c) 4	d) ଅସଂଖ୍ୟ		
iv)	ଗୋଟିଏ ରେଖାଖଣ୍ଡ ସର୍ବାଧିକ ଟି ବୃତ୍ତର ଜ୍ୟା ହୋଇପାରିବ ।				
	a) 1 b) 2	c) 4	d) ଅସଂଖ୍ୟ		
v)	ଗୋଟିଏ ବୃତ୍ତରେ ଏକ ଜ୍ୟାର ଗୋଟିଏ ପ୍ରାନ୍ତବିନ୍ଦୁ କେନ୍ଦ୍ରଠାରୁ 5 ସେ.ମି. ଦୂରରେ ଏବଂ ଜ୍ୟାଟିର ମଧ୍ୟବିନ୍ଦୁ କେନ୍ଦ୍ରଠାରୁ 3 ସେ.ମି ଦୂରରେ ଅଛି । ଜ୍ୟାଟିର ଦୈର୍ଘ୍ୟ ସେ.ମି. ।				
	a) 8 b) 1	2 c) 16	d) 20		
(ଖ - ବିଭାଗ)					
3.	ଏକ ବୃତ୍ତର 16 ସେ.ମି. ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଗୋଟିଏ ଜ୍ୟା ଏକ ବ୍ୟାସାର୍ଦ୍ଧ $\overline{\mathrm{OP}}$ ଦ୍ୱାରା D ବିନ୍ଦୂରେ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ । ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 10 ସେମି. ହେଲେ $\overline{\mathrm{DP}}$ ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।				
4.	ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର O । ଏକ ଜ୍ୟା \overline{AB} ର ମଧ୍ୟବିନ୍ଦୁ D ହେଲେ ପ୍ରମାଣ କର ଯେ \overline{OD} , $\angle AOB$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।				
5.	ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର O । ଏହାର \overline{AB} ଓ \overline{AC} ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା । ପ୍ରମାଣ କର ଯେ \overline{OA} , $\angle BAC$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।				
6.	ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର ${ m O}$ ଏବଂ ${ m \overline{AB}}$ ଓ ${ m \overline{CD}}$ ଏହାର ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟା । ${ m P}$ ଓ ${ m Q}$ ଯଥାକ୍ରମେ ${ m \overline{AB}}$ ଓ				
	$\overline{ ext{CD}}$ ର ମଧ୍ୟବିନ୍ଦୁ	$\stackrel{-}{\mathrm{D}}$ ର ମଧ୍ୟବିନ୍ଦୁ ହେଲେ ପ୍ରମାଣ କର ଯେ O ବିନ୍ଦୁ, $\stackrel{\longleftarrow}{\mathrm{PQ}}$ ଉପରିସ୍ଥ ହେବ ।			
7.	ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜର ପରିକେନ୍ଦ୍ରଠାରୁ ତ୍ରିଭୁଜର ବାହୁମାନେ ସମଦୂରବର୍ତ୍ତୀ – ପ୍ରମାଣ କର ।				
8.	ପ୍ରମାଶ କର ନେ	ଗ କର ଯେ ବୃତ୍ତରେ ଏକ ବ୍ୟାସ ଏହାର ବୃହତ୍ତମ ଜ୍ୟା । (ସୂଚନା : ଏକ ଜ୍ୟାର କେନ୍ଦ୍ରଠାରୁ ଦୂରତା			
	d≥0 ଏବଂ ବୃ	ତ୍ତର ବ୍ୟାସା	ର୍ଦ୍ଧ r ହେଲେ ଜ୍ୟାର ଦୈର୍ଘ୍ୟ	$2\sqrt{\mathbf{r}^2 - \mathbf{d}^2} \le 2\mathbf{r} = $ ବ୍ୟାସ)	
9.	ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟାର ଏକ ପାର୍ଶ୍ୱରେ ବୃତ୍ତର କେନ୍ଦ୍ର ଅବସ୍ଥିତ । ପ୍ରମାଣ କର ଯେ ଜ୍ୟା ଦ୍ୱୟ ସର୍ବସମ ନୁହଁନ୍ତି ।				

 \overline{AB} ଓ \overline{CD} ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟା । $\overline{AB} = \overline{CD} = 8$ ସେମି. । ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 5 ସେମି. ହେଲେ ଜ୍ୟା ଦ୍ୱୟର ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା ନିର୍ଣ୍ଣୟ କର ।

(ଗ - ବିଭାଗ)

- $11. \ 10$ ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟା \overline{AB} ଓ \overline{CD} ମଧ୍ୟରେ ଦୂରତା 10 ସେମି. । \overline{AB} ଜ୍ୟା କେନ୍ଦ୍ରଠାରୁ 6 ସେ.ମି. ଦୂରରେ ଅବସ୍ଥିତ ହେଲେ \overline{AB} ଓ \overline{CD} ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
- 12. ଗୋଟିଏ ବୃତ୍ତରେ $\triangle ABC$ ଅନ୍ତର୍ଲିଖିତ ହୋଇଛି । ଯଦି AB = AC ହୁଏ ପ୍ରମାଣ ଯେ $\angle BAC$ ର ସମଦ୍ୱିଖଣ୍ଡକ ରଶ୍ମି ବୃତ୍ତର କେନ୍ଦ୍ର ବିନ୍ଦୁଗାମୀ ଅଟେ ।
- 13. ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ଏକ ବ୍ୟାସ ଦ୍ୱାରା ସମଦ୍ୱିଖଣ୍ଡିତ ହେଲେ ପ୍ରମାଣ କରେ ଯେ ଜ୍ୟା ଦୁଇଟି ସମାନ୍ତର ।
- 14. ପ୍ରମାଣ କର ଯେ ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ପରସ୍କରକୁ ସମଦ୍ୱିଖଣ୍ଡ କଲେ ସେମାନଙ୍କ ଛେଦବିନ୍ଦୁ ବୃତ୍ତର କେନ୍ଦ୍ର ହେବ । (ସୂଚନା : ଅସୟବାୟନ ପ୍ରଣାଳୀ (Method of contradiction) ବ୍ୟବହାର କର)
- 15. ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା \overline{AB} ଓ \overline{BC} , B ଠାରେ 90° କୋଣ ଉତ୍ପନ୍ନ କରନ୍ତି । ବୃତ୍ତର କେନ୍ଦ୍ର O ହେଲେ ପ୍ରମାଣ କର ଯେ A , O ଏବଂ C ଏକ ଏକରେଖୀୟ ।
- 16. ପ୍ରମାଣ କର ଯେ ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜରେ କର୍ତ୍ତର ମଧ୍ୟବିନ୍ଦୁ, ଏହାର ପରିବୃତ୍ତର କେନ୍ଦ୍ର ଅଟେ ।
- \overline{PQ} ଗୋଟିଏ ବୃତ୍ତର କ୍ୟା । P ଓ Q ଠାରେ ଉକ୍ତ କ୍ୟା ପ୍ରତି ଅଙ୍କିତ ଲୟ ବୃତ୍ତକୁ ଯଥାକ୍ରମେ R ଓ S ଠାରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ PQSR ଏକ ଆୟତ ଚିତ୍ର ।
- 18. ଚିତ୍ର 2.17ରେ A ଓ B ଦୁଇଟି ପରସ୍କର ଛେଦୀ ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ P ଓ Q ବୃତ୍ତ ଦ୍ୱୟର ଛେଦବିନ୍ଦୁ ଅଟନ୍ତି । \overrightarrow{AB} , \overrightarrow{PQ} ସାଧାରଣ ଜ୍ୟାକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ

(ସୂଚନା : \overline{AB} ଓ \overline{PQ} ର ଛେଦବିନ୍ଦୁ C ହେଲେ ΔACP ଓ ΔACQ ଏବଂ ΔAPB ଓ ΔAQB ମଧ୍ୟରେ ତୁଳନା କର)

В

(ଚିତ୍ର 2.18)

- 19. ଚିତ୍ର 2.18ରେ ଦୁଇଟି ବୃତ୍ତ ପରସ୍କରକୁ P ଓ Q ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । P ଠାରେ \overline{PQ} ପ୍ରତି ଅଙ୍କିତ ଲୟ ବୃତ୍ତ ଦ୍ୱୟକୁ A ଓ B ଠାରେ ଛେଦ କରେ ଓ ସେହିପରି Q ଠାରେ \overline{PQ} ପ୍ରତି ଅଙ୍କିତ ଲୟ ବୃତ୍ତ ଦ୍ୱୟକୁ C ଓ D ଠାରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ AB = CD
- 20.~A ଓ B କେନ୍ଦ୍ର ବିଶିଷ୍ଟ ଦୁଇଟି ବୃତ୍ତ ପରସ୍କରକୁ P ଓ Q ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । P ମଧ୍ୟ ଦେଇ \overline{AB} ସହିତ ସମାନ୍ତର ସରଳରେଖା ବୃତ୍ତ ଦ୍ୱୟକୁ M ଓ N ବିନ୍ଦୁରେ ଛେଦ କଲେ ପ୍ରମାଣ କର ଯେ, MN=2AB । (ସୂଚନା : \overline{AC} ଓ \overline{BD} , \overline{MN} ପ୍ରତି ଲୟ ଅଙ୍କନ କରି ଦର୍ଶାଅ ଯେ, AB=CD)

21. ଚିତ୍ର 2.19 ରେ ଗୋଟିଏ ସରଳରେଖା ଦୁଇଟି ଏକ କେନ୍ଦ୍ରିକ ବୃତ୍ତ \mathbf{S}_1 ଓ \mathbf{S}_2 କୁ ଯଥାକ୍ରମେ $\mathbf{A},\mathbf{C},\mathbf{D}$ ଓ \mathbf{B} ବିନ୍ଦୁରେ ଛେଦ କରୁଛି । ପ୍ରମାଣ କର ଯେ $\mathbf{A}\mathbf{C}=\mathbf{D}\mathbf{B}$ ।

- 22. ଗୋଟିଏ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P ମଧ୍ୟ ଦେଇ ଅଙ୍କିତ ଦୁଇଟି ଛେଦକ ବୃତ୍ତକୁ A, B ଏବଂ C, D ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି ଯେପରି P-A-B ଏବଂ P-C-D । ଯଦି AB=CD ହୁଏ, ପ୍ରମାଣ କର ଯେ PA=PC ଏବଂ \overline{AC} । । \overline{BD} ।
- 23. ABC ବୃତ୍ତର କେନ୍ଦ୍ର O । ଏହାର ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା \overline{AB} ଓ \overline{CD} ପର୍ୟତ୍ତକୁ ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ P ଠାରେ ଚ୍ଛେଦ କରନ୍ତି । B ଓ C, \overline{OP} ର ଏକ ପାର୍ଶ୍ୱସ୍ଥ ହେଲେ ପ୍ରମାଣ କର ଯେ,(i) $\overline{PA} = \overline{PC}$ ଏବଂ (ii) \overline{AC} । \overline{BD} । (ସୂଚନା : $\overline{OE} \perp \overline{AB}$ ଏବଂ $\overline{OF} \perp \overline{CD}$ ଅଙ୍କନ କରି O, P ଯୋଗ କର)

2.4 ଚାପ (Arc):

ଚିତ୍ର 2.20ରେ S ଏକ ବୃତ୍ତ ଏବଂ ଉକ୍ତ ବୃତ୍ତ ଉପରେ A ଓ B ଦୁଇଟି ଭିନ୍ନ ବିନ୍ଦୁ ହେଲେ ବୃତ୍ତଟି A ଓ B ବିନ୍ଦୁ ଦ୍ୱାରା ଦୁଇ ଭାଗରେ ବିଭକ୍ତ ହୁଏ I A ଓ B ବିନ୍ଦୁ ସମେତ ପ୍ରତ୍ୟେକ ଭାଗକୁ ଆମେ ଗୋଟିଏ ଗୋଟିଏ ଚାପ କହିବା I ଅନ୍ୟ ପ୍ରକାର କହିଲେ A ଓ B ବିନ୍ଦୁ ଦ୍ୱୟ ସହିତ "A ଠାରୁ B ପର୍ଯ୍ୟନ୍ତ" ବୃତ୍ତର ଏକ ଅବିଚ୍ଛିନ୍ନ ଅଂଶ ହେଉଚ୍ଛି ଏକ ଚାପ I ଚିତ୍ର 2.21ରେ $\stackrel{\longleftarrow}{AB}$, S ବୃତ୍ତର ଏକ ହେଦକ (Secant) I

P, ଚ୍ଛେଦକ \overrightarrow{AB} ର ଏକ ପାର୍ଶ୍ୱରେ ବୃତ୍ତ ଉପରିସ୍ଥ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ ହେଉ । ବୃତ୍ତର ଯେଉଁ ଅଂଶରେ P ବିନ୍ଦୁ ଅଛି ସେହି ଅଂଶଟିକୁ APB ଅଥବା BPA ଚାପ କୁହାଯାଏ । ବର୍ତ୍ତମାନ ଆମେ ଚାପର ସଂଜ୍ଞା ନିମ୍ମମତେ କରିବା ।

ସଂଜ୍ଞା : ଏକ ବୃତ୍ତ ଉପରିସ୍ଥ \mathbf{A} ଓ \mathbf{B} ଦୁଇଟି ବିନ୍ଦୁ ହେଲେ \mathbf{A} ଓ \mathbf{B} ବିନ୍ଦୁ ସମେତ $\overline{\mathbf{A}}\overline{\mathbf{B}}$ କ୍ୟାର ଏକ ପାର୍ଶ୍ୱରେ ଥିବା ବୃତ୍ତ ଉପରିସ୍ଥ ବିନ୍ଦୁମାନଙ୍କ ସେଟ୍କୁ ଏକ ଚାପ କୁହାଯାଏ । ଉକ୍ତ ସେଟ୍ ଅନ୍ତର୍ଭୁକ୍ତ \mathbf{P} ଏକ ବିନ୍ଦୁ ହେଲେ ଉତ୍ପନ୍ନ ଚାପକୁ $\mathbf{A}\mathbf{P}\mathbf{B}$ କିନ୍ୟା $\mathbf{B}\mathbf{P}\mathbf{A}$ ବାପ ରୂପେ ନାମିତ କରାଯାଏ ଏବଂ ଉକ୍ତ ଚାପକୁ $\mathbf{A}\mathbf{P}\mathbf{B}$ କିନ୍ୟା $\mathbf{B}\mathbf{P}\mathbf{A}$ ସଂକେତ ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ ।

 \widehat{APB} ଏକ ଚାପ ହେଲେ \mathbf{A} ଓ \mathbf{B} , ଚାପର ଦୁଇଟି ପ୍ରାନ୍ତବିନ୍ଦୁ (End points) ଅଟନ୍ତି ଏବଂ ଚାପର ଅନ୍ୟ ସମୟ ବିନ୍ଦୁଙ୍କୁ ଚାପର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ (Interior points) କୁହାଯାଏ । \mathbf{Q} , ଛେଦକ \widehat{AB} ର ଅପର ପାର୍ଶ୍ୱରେ (ଚିତ୍ର 2.21) ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ହେଲେ \widehat{AQB} ଚାପକୁ \widehat{AQB} ବା \widehat{BQA} ସଂକେତ ଦ୍ୱାରା ପ୍ରକାଶ କରିବା ।

A ଓ B ଉଭୟ \overrightarrow{APB} ଏବଂ \overrightarrow{AQB} ଚାପର ପ୍ରାନ୍ତବିନ୍ଦୁ ଅଟନ୍ତି । \overrightarrow{APB} ଓ \overrightarrow{AQB} ଚାପଦ୍ୱୟକୁ ପରୟରର ବିପରୀତ ଚାପ (Opposite arc) କୁହାଯାଏ । ଉକ୍ତ ଚାପ ଦ୍ୱୟର ସଂଯୋଗରେ ସମ୍ପୂର୍ଣ୍ଣ ବୃଉଟି ଗଠିତ ହେଉଥିବାରୁ ଗୋଟିକୁ ଅପରର ପରିପୂରକ ଚାପ (Supplementary arc) ମଧ୍ୟ କୁହାଯାଏ । ଏହି ଚାପଦ୍ୱୟକୁ \overline{AB} କ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ବା ଛେଦିତ ଚାପ କୁହାଯାଏ ଏବଂ \overline{AB} କ୍ୟାକୁ ଉଭୟ ଚାପର ସମ୍ପୃକ୍ତ କ୍ୟା (Corresponding chord) କୁହାଯାଏ ।

2.4.1 କୁଦ୍ରଚାପ, ବୃହତ୍ଚାପ ଏବଂ ଅର୍ଦ୍ଧବୃତ୍ତ (Minor arc, Major arc and semi circle) : କୁଦ୍ରଚାପ, ବୃହତ୍ଚାପ :

ଯଦି କୌଣସି ଚାପ \widehat{APB} ର P ବିନ୍ଦୁ ଏବଂ ବୃତ୍ତର କେନ୍ଦ୍ର ବିନ୍ଦୁ ସମ୍ପୃକ୍ତ \overline{AB} ଜ୍ୟାର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ହୁଅନ୍ତି ତେବେ \widehat{APB} କୁ ଏକ **କ୍ଷୁଦ୍ରଚାପ (Minor arc)** କୁହାଯାଏ । ଏକ କ୍ଷୁଦ୍ରଚାପର ବିପରୀତ ଚାପକୁ **ବୃହତ୍ତାପ** (Major arc) କୁହାଯାଏ ।

ଚିତ୍ର 2.22ରେ \widehat{APB} କ୍ଷୁଦ୍ରଚାପ ଓ \widehat{AQB} ବୃହତ୍ ଚାପ ଅଟନ୍ତି । \widehat{APB} ଏକ କ୍ଷୁଦ୍ରଚାପ ହେଲେ ଏହାକୁ 'AB କ୍ଷୁଦ୍ରଚାପ' ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ ଓ ସେହିପରି \widehat{AQB} ବୃହତ୍ ଚାପକୁ "AB ବୃହତ୍ ଚାପ" ଦ୍ୱାରା ପ୍ରକାଶ କରାଯାଏ । ଅର୍ଦ୍ଧ**୍ୱର** :

ଏକ ବୃତ୍ତରେ କୌଣସି ଚାପର ସମ୍ପୃକ୍ତ ଜ୍ୟା ବୃତ୍ତର ଏକ ବ୍ୟାସ ହେଲେ ଚାପଟିକୁ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ (Semi circle) କୁହାଯାଏ । ଚିତ୍ର 2.22ରେ \widehat{CQD} ଏବଂ \widehat{CPD} ପ୍ରତ୍ୟେକ ଅର୍ଦ୍ଧବୃତ୍ତ ଅଟନ୍ତି । ସଂଜ୍ଞାନୁସାରେ ଅର୍ଦ୍ଧବୃତ୍ତ ଏକ କ୍ଷୁଦ୍ରଚାପ ବା ବୃହତ୍ତ ଚାପ ନୃହେଁ । ଏକ ଅର୍ଦ୍ଧବୃତ୍ତର ବିପରୀତ ଚାପ ମଧ୍ୟ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ ।

D

2.4.2 ଚାପର ଦୈର୍ଘ୍ୟ (Length of the arc) :

ଯେପରି ପ୍ରତ୍ୟେକ ରେଖାଖଣ୍ଡର ଦୈର୍ଘ୍ୟ ମାପ ରହିଅଛି ସେହିପରି ବୃତ୍ତରେ ପ୍ରତ୍ୟେକ ଚାପର ଦୈର୍ଘ୍ୟ ମାପ ରହିଅଛି । ଏହାର ମାପ ପ୍ରଣାଳୀ ପରିମିତିରେ ଆଲୋଚନା କରାଯିବ । ତେବେ \overline{AB} ଜ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଚାପ ଦ୍ୱୟ ମଧ୍ୟରୁ କ୍ଷୁଦ୍ର ଚାପର ଦୈର୍ଘ୍ୟ ବୃହତ୍ ଚାପର ଦୈର୍ଘ୍ୟଠାରୁ କ୍ଷୁଦ୍ରତର । ଚାପର **ଦୈର୍ଘ୍ୟ (length)କୁ**

ଚାପର ଦୈଘ୍ୟ ବୃହତ୍ ଚାପର ଦେଘ୍ୟଠାରୁ କ୍ଷୁଦ୍ରତର । ଚାଧର **ଦେଧ୍ୟ (lengtn)କୁ** $P(\widehat{\delta}_{\overline{Q}}|2.22)$ ℓ ଚିହ୍ନ ଦ୍ୱାରା ସୂଚିତ କରାଯାଏ । ℓ \widehat{A} PQ , \widehat{A} PQ ଚାପର ଦୈର୍ଘ୍ୟମାପକୁ ସୂଚାଏ । ଦୁଇ ବିପରୀତ ଚାପର ଦୈର୍ଘ୍ୟର ସମଷ୍ଟି ବୃତ୍ତର ଦୈର୍ଘ୍ୟ ଅଟେ । ବୃତ୍ତର ଦୈର୍ଘ୍ୟକୁ ବୃତ୍ତର **ପରିଧି (Circumference)** କୁହାଯାଏ । **ସନ୍ନିହିତ ଚାପ (Adjacent arcs):**

ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ଗୋଟିଏ ମାତ୍ର ସାଧାରଣ ବିନ୍ଦୁ ଥିଲେ ଉକ୍ତ ବିନ୍ଦୁଟି ପ୍ରତ୍ୟେକ ଚାପର ଏକ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ହେବ ଏବଂ ଏହିପରି ଦୁଇଟି ଚାପକୁ **ସନ୍ନିହିତ ଚାପ (Adjacent arcs)** କୁହାଯାଏ । ଦୁଇଟି ସନ୍ନିହିତ ଚାପର ସଂଯୋଗରେ ନୂତନ ଚାପ ଗଠିତ ହୁଏ । ଚିତ୍ର 2.22ରେ \widehat{QCA} ଏବଂ \widehat{APB} ଦୁଇଟି ସନ୍ନିହିତ ଚାପର ସଂଯୋଗରେ \widehat{QAB} ଗଠିତ ହେଉଅଛି ।

ମନେରଖ : ଦୂଇଟି ବୃହତ୍ ଚାପ କିୟା ଦୁଇଟି ଅର୍ଦ୍ଧବୃତ୍ତ ସନ୍ନିହିତ ଚାପ ହୋଇପାରିବେ ନାହିଁ ।

2.5 ଚାପ ଦ୍ୱାରା ଉତ୍ପନ୍ତ କୋଶ (Angle subtended by an arc):

ଗୋଟିଏ ବୃତ୍ତରେ (ଚିତ୍ର 2.23) \widehat{APB} ଏକ କ୍ଷୁଦ୍ର ଚାପ | X, \overline{AB} ଜ୍ୟା ଉପରେ ନ ଥିବା ବୃତ୍ତର ସମତଳରେ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ ହେଲେ $\angle AXB$ କୁ \widehat{APB} ଚାପ ଦ୍ୱାରା X ଠାରେ ଉତ୍ପନ୍ନ କୋଣ (angle subtended at X) କୁହାଯାଏ | ବୃତ୍ତର କେନ୍ଦ୍ର O ହେଲେ $\angle AOB$ କୁ \widehat{APB} ଦ୍ୱାରା କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣ ବା ସଂକ୍ଷେପରେ \widehat{APB} ର କେନ୍ଦ୍ରସ୍ଥ କୋଣ (Central angle) କୁହାଯାଏ | ଅର୍ଥାତ୍ ଏକ କ୍ଷୁଦ୍ର ଚାପ ଦ୍ୱାରା କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କୋଣ ଉକ୍ତ ଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣ |

 \overrightarrow{AB} ର P ଯେକୌଣସି ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହେଲେ $\angle APB$ କୁ \overrightarrow{AB} ଚାପର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣ (Inscribed angle) କୁହାଯାଏ । Q, \overrightarrow{APB} ର ବିପରୀତ ଚାପ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ହେଲେ $\angle AQB$ କୁ ନାପର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ ବା ପରିପୂରକ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ (Angle subtended at a point on the opposite arc or supplementary arc) କୁହାଯାଏ । (ଚିତ୍ର 2.23 ଦେଖ)

ଆମେ ପୂର୍ବରୁ ଜାଣିଛେ, $\angle AOB$ ଟି \overline{AB} ଜ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ କେନ୍ଦ୍ରସ୍ଥ କୋଣ । ଏହା ସମ୍ଭ ଯେ \overline{AB} ଜ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ କେନ୍ଦ୍ରସ୍ଥ କୋଣ ଏବଂ \widehat{AB} କ୍ଷୁଦ୍ରଚାପ ଦ୍ୱାରା ଉତ୍ପନ୍ନ କେନ୍ଦ୍ରସ୍ଥ କୋଣ ଦ୍ୱୟ ଅଭିନ୍ନ (ଚିତ୍ର 2.24 ଦେଖ) । ଚିତ୍ର 2.25ରେ \widehat{AQB} ଏକ ବୃହତ୍ ଚାପ ।

 \widehat{ARB} ଦ୍ୱାରା Q ଠାରେ ଉତ୍ପନ୍ନ କୋଣ $\angle AQB,\ \widehat{AQB}$ ର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣ । $\angle ARB,\ \widehat{AQB}$ ର ଏକ ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ ।

2.5.1 କୋଶ ଦ୍ୱାରା ଛେଦିତ ଚାପ (Arc intercepted by an angle) :

ଗୋଟିଏ କୋଣର ବାହୁଦ୍ୱୟ ଏକ ବୃତ୍ତକୁ ଛେଦ କଲେ, କୋଣର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଥିବା ଚାପ, ଯାହାର ପ୍ରାନ୍ତବିନ୍ଦୁଦ୍ୱୟ କୋଣର ଦୁଇବାହୁ ଉପରିସ୍ଥ ହୁଅନ୍ତି, ତାହାକୁ **ଉକ୍ତ କୋଣଦ୍ୱାରା ଛେଦିତ ଚାପ କୁହାଯାଏ ।** ଚିତ୍ର 2.26ରେ $\angle {
m EOF}$ କୋଣ ଦ୍ୱାରା ଛେଦିତ ଚାପ ହେଉଛି $\widehat{
m EQF}$ ଏବଂ $\angle {
m AXB}$ ଦ୍ୱାରା ଛେଦିତ ଚାପଦ୍ୱୟ ହେଲେ $\widehat{
m APB}$ ଏବଂ $\widehat{
m CQD}$ ।

2.6 ଚାପର ଡିଗ୍ରୀ ପରିମାପ (Degree measure of an arc):

ପ୍ରତ୍ୟେକ କ୍ଷୁଦ୍ରଚାପ କେନ୍ଦ୍ରଠାରେ ଏକ କୋଣ ଉତ୍ପନ୍ନ କରେ । କୋଣ ମାପ ପାଇଁ ତିନି ପ୍ରକାର ପରିମାପ; ଯଥା: ଡିଗ୍ରୀ, ରେଡ଼ିଆନ ଓ ଗ୍ରେଡ୍, ବ୍ୟବହୃତ ହୁଏ । ତଦନୁଯାୟୀ ଚାପର ତିନି ପ୍ରକାରର ପରିମାପର ସଂଜ୍ଞା ଦିଆଯାଇପାରିବ । ନିମ୍ବରେ ଯେକୌଣସି ଚାପର ଡିଗ୍ରୀ ପରିମାପର ସଂଜ୍ଞା ଦିଆଯାଇଛି ।

ସଂଜ୍ଞା : ଗୋଟିଏ ଚାପ \widehat{APB} ର ଡିଗ୍ରୀ ପରିମାପ 0 ଓ 360 ମଧ୍ୟବର୍ତ୍ତୀ ଏକ ବାୟବ ସଂଖ୍ୟା ଯାହା m \widehat{APB} ଦ୍ୱାରା ସୂଚିତ ହୁଏ ଏବଂ ନିମୁମତେ ସ୍ଥିରୀକୃତ ହୁଏ :

O ବୃତ୍ତର କେନ୍ଦ୍ର ହେଲେ,

ସଂଜ୍ଞାନୁଯାୟୀ ଏକ ଚାପ ଓ ଏହାର ବିପରୀତ ଚାପର ଡିଗ୍ରୀ ପରିମାପର ସମଷ୍ଟି 360° I

ଚିତ୍ର 2.27ରେ
$$\overline{AC}$$
 ବ୍ୟାସ ଓ m∠AOB = 120° ହେଲେ m \overrightarrow{APB} = 120° , m \overrightarrow{APC} = 180° , m \overrightarrow{APC} = 360° - 120° = 240° ହେବ ।

(ସୂଚନା: ଚାପର ଡିଗ୍ରୀ ପରିମାପ ପରି ଏହାର ରେଡ଼ିଆନ୍ ପରିମାପ 0 ଓ 2π ମଧ୍ୟରେ ଏକ ବାୟବ ସଂଖ୍ୟା ଏବଂ ଗ୍ରେଡ଼ ପରିମାପ 0 ଓ 400 ମଧ୍ୟରେ ଏକ ବାୟବ ସଂଖ୍ୟା । ଉଚ୍ଚତର ଗଣିତରେ ରେଡ଼ିଆନ୍ ପରିମାପର ବହୁଳ ବ୍ୟବହାର ହୁଏ । ଏହାର ଆଲୋଚନା ପରିମିତିରେ କରାଯିବ । ଏଠାରେ କେବଳ ଏତିକି କୁହାଯାଇପାରେ ଯେ ଗୋଟିଏ ଚାପର ଦୈର୍ଘ୍ୟ ସମ୍ପୃକ୍ତ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ସହ ସମାନ ହେଲେ ଚାପଟିର କେନ୍ଦ୍ରସ୍ଥ କୋଣର ରେଡ଼ିଆନ୍ ପରିମାଣ $1^{\rm c}$ ଅଟେ ଏବଂ ଡିଗ୍ରୀ ପରିମାଣ $\frac{180}{\pi}$ ଅଟେ । ସାଧାରଣ ଭାବେ ଯେକୌଣସି ଚାପ $\widehat{{\bf APB}}$ ର ରେଡ଼ିଆନ୍ ପରିମାଣ $\frac{{\it l} \widehat{{\bf APB}}}{{\it chill}}$)

ଚିତ୍ର 2.28ରେ \widehat{AXP} ଓ \widehat{PYB} ଦୁଇଟି ସନ୍ନିହିତ ଚାପ ଏବଂ P ସେମାନଙ୍କର ସାଧାରଣ ବିନ୍ଦୁ । ଉକ୍ତ ଚାପଦ୍ୱୟର ସଂଯୋଗରେ ଗଠିତ \widehat{APB} ର ଡିଗ୍ରୀ ପରିମାପ ସମ୍ପୃକ୍ତ ଚାପଦ୍ୱୟର ଡିଗ୍ରୀ ପରିମାପର ସମଷ୍ଟି ହେବ ।

ଅଧୀତ m
$$\widehat{APB} = m \widehat{AXP} + m \widehat{PYB}$$

ସେହିପରି ସନ୍ନିହିତ ଚାପର ଦୈର୍ଘ୍ୟକୁ ବିଚାରକୁ ନେଲେ ଆମେ ପାଇବା

$$\ell \stackrel{\frown}{APB} = \ell \stackrel{\frown}{AXP} + \ell \stackrel{\frown}{PYB}$$

ଏହାର ପ୍ରମାଣ ଆମର ଆଲୋଚନା ପରିସରଭୁକ୍ତ ନୁହେଁ ।

2.6.1 ଚାପର ସର୍ବସମତା (Congruence of arcs) :

ସଂଜ୍ଞା : ଗୋଟିଏ ବୃତ୍ତରେ (ଅଥବା ଦୁଇ ସର୍ବସମ ବୃତ୍ତରେ) ଦୁଇଟି ଚାପର ଡିଗ୍ରୀ ପରିମାପ ସମାନ ହେଲେ ଚାପ ଦୁଇଟି ସର୍ବସମ (Congruent) ହୁଅନ୍ତି ।

ଚିତ୍ର 2.29ରେ m∠AOB = m∠COD
$$\Leftrightarrow$$
 \overrightarrow{APB} \cong \overrightarrow{CQD} । ଏଥିରୁ ସୁସ୍କଷ୍ଟ ଯେ

- (i) ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି ସର୍ବସମ କ୍ଷୁଦ୍ରଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣଦ୍ୱୟ ସର୍ବସମ ଏବଂ ବିପରୀତ କ୍ରମେ ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି କ୍ଷୁଦ୍ରଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣଦ୍ୱୟ ସର୍ବସମ ହେଲେ କ୍ଷୁଦ୍ର ଚାପଦ୍ୱୟ ସର୍ବସମ ହେବେ ノ
- (ii) ଗୋଟିଏ ବୃତ୍ତର ଦୁଇଟି କ୍ଷୁଦ୍ରଚାପ ସର୍ବସମ ହେଲେ ସେମାନଙ୍କର ବିପରୀତ ବୃହତ୍ ଚାପ ଦ୍ୱୟ ମଧ୍ୟ ସର୍ବସମ ହେବେ । ଏହାର ବିପରୀତ ଉକ୍ତିଟି ମଧ୍ୟ ସତ୍ୟ ।

ମନେରଖ : ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଚାପର ଦୈର୍ଘ୍ୟ ସମାନ ହୁଏ ଏବଂ ବିପରୀତ କ୍ରମେ ସମାନ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଚାପଦ୍ୱୟ ସର୍ବସମ ହୁଅନ୍ତି ।

ଉପପାଦ୍ୟ - 10

ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଚାପ ସହ ସମ୍ପୃକ୍ତ କ୍ୟାଦ୍ୱୟ ସର୍ବସମ ।

(Corresponding chords of two congruent arcs in a circle are congruent.)

ଦତ୍ତ : \overline{ABC} ବୃତ୍ତରେ \overline{O} କେନ୍ଦ୍ର ଏବଂ \widehat{AXB} ଓ \widehat{CYD} ଦୁଇଟି ସର୍ବସମ କ୍ଷୁଦ୍ର ଚାପ । \overline{AB} ଓ \overline{CD} ଚାପଦ୍ୱୟର ସମ୍ପୃକ୍ତ ଜ୍ୟା (ଚିତ୍ର 2.30) ।

(ଯଦି \widehat{AXB} ଓ \widehat{CYD} ଦୁଇଟି ସର୍ବସମ ବୃହତ୍ ଚାପ ହୁଅନ୍ତି ତେବେ ସେମାନଙ୍କର ବିପରୀତ ଚାପଦ୍ୱୟ ସର୍ବସମ କ୍ଷୁଦ୍ରଚାପ ହେବେ । ସୁତରାଂ କେବଳ କ୍ଷୁଦ୍ର ଚାପ ପାଇଁ ପ୍ରମାଣ ଯଥେଷ୍ଟ ।)

ପ୍ରାମାଣ୍ୟ : $\overline{AB} \cong \overline{CD}$

ଅଙ୍କନ : $\overline{\mathrm{OA}}$, $\overline{\mathrm{OB}}$, $\overline{\mathrm{OC}}$ ଏବଂ $\overline{\mathrm{OD}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OAB ଏବଂ Δ OCD ମଧ୍ୟରେ

$$OA = OC, OB = OD$$
 (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ)

(ଚିତ୍ର 2.30) (m $\angle AOB = m$ $\angle COD$ $(\cdot \cdot \cdot \widehat{AXB} \cong \widehat{CYD})$ ହେତୁ ସେମାନଙ୍କର ଡ଼ିଗ୍ରୀ ପରିମାପ ସମାନ) ଅତଏବ $\triangle OAB \cong \triangle OCD$ (ବାହୁ - କୋଣ - ବାହୁ ସର୍ବସମତା)

$$\Rightarrow AB = CD \Rightarrow \overline{AB} \cong \overline{CD}$$

(ପ୍ରମାଣିତ)

- ମନ୍ତବ୍ୟ 1 : ଉପରୋକ୍ତ ଉପପାଦ୍ୟ –10 ରେ \widehat{AXB} ଓ \widehat{CYD} ଚାପଦ୍ୱୟ ଦୁଇଟି ଅର୍ଦ୍ଧବୃତ୍ତ ହେଲେ ସେମାନଙ୍କ ସହ ସମ୍ପୃକ୍ତ କ୍ୟା ଦ୍ୱୟ ସର୍ବସମ ହେବେ କାରଣ ସମ୍ପୃକ୍ତ କ୍ୟା ଦ୍ୱୟ ଏକା ବୃତ୍ତର ଦୁଇଟି ବ୍ୟାସ ଅଟନ୍ତି ।
- 2. ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଉପପାଦ୍ୟ 10 ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ । ଅର୍ଥାତ୍ **ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତରେ ଦୁଇଟି** ସର୍ବସମ ଚାପ ସହ ସମ୍ପୃକ୍ତ ଜ୍ୟା ଦୃୟ ସର୍ବସମ । ଏହାର ପ୍ରମାଣ ଉପପାଦ୍ୟ–10 ର ପ୍ରମାଣର ଅନୁରୂପ ହେବ ।

ପ୍ରମେୟ - 2.5 : ଉପପାଦ୍ୟ - 10 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ :

କୌଣସି ବୃତ୍ତର ଦୁଇଟି ଜ୍ୟା ସର୍ବସମ ହେଲେ ସେମାନଙ୍କ ସହ ସମ୍ପୃକ୍ତ (i) କ୍ଷୁଦ୍ରଚାପ ଦ୍ୱୟ ସର୍ବସମ ଏବଂ (ii) ବୃହତ୍ ଚାପ ଦ୍ୱୟ ସର୍ବସମ ।

[If two chords of a circle are congruent, then the corresponding (i) minor arcs are congruent and (ii) major arcs are congruent.]

ଦତ୍ତ : \overrightarrow{AB} ଓ \overrightarrow{CD} କ୍ୟା ସହ ସମ୍ପୃକ୍ତ କୁଦ୍ରଚାପ ଏବଂ \overrightarrow{AB} ଓ \overrightarrow{CD} ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା । \overrightarrow{AXB} ଓ \overrightarrow{CYD} ଯଥାକୁମେ \overrightarrow{AB} ଓ \overrightarrow{CD} ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ କୁଦ୍ରଚାପ ଏବଂ \overrightarrow{AYB} ଓ \overrightarrow{CXD} ସମ୍ପୃକ୍ତ ବୃହତ୍ ଚାପ । (ଚିତ୍ର 2.31)

ପ୍ରାମାଶ୍ୟ :
$$(i)$$
 \widehat{AXB} \cong \widehat{CYD} ଏବଂ (ii) \widehat{AYB} \cong \widehat{CXD}

ଅଙ୍କନ : \overline{OA} , \overline{OB} , \overline{OC} ଏବଂ \overline{OD} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : Δ OAB ଏବଂ Δ OCD ମଧ୍ୟରେ

 $\Rightarrow AYB \cong CXD$

ମନ୍ତବ୍ୟ : ପ୍ରମେୟ - 2.5, ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ମଧ୍ୟ ପ୍ରଯୁତ୍ତ୍ୟ । ଏହାର କଥନ ଲେଖି ନିଜେ ପ୍ରମାଣ କରିବାକୁ ଚେଷ୍ଟା କର ।

((ii) ପ୍ରମାଣିତ)

2.6. 2 ଗୋଟିଏ ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣ ସମ୍ପର୍କିତ ଏକ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ତଥ୍ୟ :

ପ୍ରମେୟ - 2.6 : ଏକ ବୃତ୍ତରେ କୌଣସି ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣର ପରିମାଣ ଏହାର ବିପରୀତ ଚାପର ଡିଗୀ ପରିମାପର ଅର୍ଦ୍ଧେକ ।

[In a circle, the measure of an inscribed angle of an arc is half the degree measure of the opposite arc.]

ଦ୍ର : APB ବୃତ୍ତରେ O କେନ୍ଦ୍ର । \angle APB, $\stackrel{\frown}{APB}$ ର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣ । $\stackrel{\frown}{AXB}$, $\stackrel{\frown}{APB}$ ର ବିପରୀତ ଚାପ (ଚିତ୍ର 2.32) ।

ପ୍ରାମାଶ୍ୟ : $m \angle APB = \frac{1}{2}m \widehat{AXB}$

ଅଙ୍କନ : \overrightarrow{PO} ବୃତ୍ତକୁ D ବିନ୍ଦୁରେ ଛେଦ କରୁ । \overline{AO} , \overline{BO} ଅଙ୍କନ କର । ପ୍ରମାଣ : ଏଠାରେ ତିନିଗୋଟି ସମ୍ଭାବନା ଅଛି । ସମ୍ଭାବନାତ୍ରୟ ହେଲେ –

- (i) APB ଏକ କ୍ଷୁଦ୍ରଚାପ (ଚିତ୍ର 2.32 (a)),
- (ii) \widehat{APB} ଏକ ଅର୍ଦ୍ଧିବୃତ୍ତ (ଚିତ୍ର 2.32 (b)) ଏବଂ
- (iii) \widehat{APB} ଏକ ବୃହତ୍ ଚାପ (ଚିତ୍ର 2.32 (c))

ବର୍ତ୍ତମାନ ଚିତ୍ର 2.32 (a), (b) ଓ (c) ନିମନ୍ତେ Δ OAP ରେ

$$AO = PO$$
 (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ) \Rightarrow m $\angle OAP = m\angle OPA$... (1)

 $\angle {
m AOD}$ ବହିଃସ୍ଥ କୋଣ $\Rightarrow {
m m} \angle {
m AOD} = {
m m} \angle {
m OAP} + {
m m} \angle {
m OPA}$ (ଅନ୍ତଃସ୍ଥ ଦୂରବର୍ତ୍ତୀ)

ସେହିପରି $\triangle OPB$ ରୁ ପାଇବା m $\angle BOD = 2m\angle OPB$ (3)

(2) ଓ (3)ରୁ ଆମେ ପାଇବା m $\angle AOD + m \angle BOD = 2m \angle OPA + 2m \angle OPB$

$$\Rightarrow$$
 m \angle AOD + m \angle BOD = 2m \angle APB (4)

ବର୍ତ୍ତମାନ ଚିତ୍ର (c) ରେ

$$2m\angle APB = m\angle AOD + m\angle BOD = m\angle AOB$$
 [(4) - ଦ୍ୱାରା]

$$\Rightarrow$$
 m \angle APB = $\frac{1}{2}$ m \angle AOB = $\frac{1}{2}$ m $\stackrel{\frown}{AXB}$ (ପ୍ରମାଣିତ) ପୁନଣ୍ଟ ଚିତ୍ର (b)ରେ

$$2m\angle APB = m\angle AOD + m\angle BOD [(4) - ଦ୍ୱାରା]$$
 $= 180^0 \ (\widehat{APB} \ ଅର୍ଦ୍ଧିବୃତ୍ତ ହେତୁ \overline{AB} ବ୍ୟାସ)$

$$\Rightarrow$$
 m $\angle APB = \frac{180}{2}^{\circ} = \frac{1}{2} \, \text{m} \, \widehat{AXB} \, (\because \widehat{AXB} \, \text{ମଧ୍ୟ ଏକ ଅର୍ଦ୍ଧିବୃତ୍ତ)} \, (ପ୍ରମାଶିତ)$

(∵ ∠AOD ଓ ∠AOP ପରସ୍କର ସନ୍ନିହିତ ପରିପୂରକ)

ସୁତରା°
$$2m\angle APB = m\angle AOD + m\angle BOD \ [(4) - ଦ୍ୱାରା]$$
$$= 360^{0} - (m\angle AOP + m\angle BOP) \ [(5) \ \Im \ (6) \ \ \Im]$$
$$= 360^{0} - m\angle AOB$$

[∠AOP ଓ ∠BOP ଦ୍ୟ ସନୁହିତ ଏବଂ P, ∠AOB ର ଅନ୍ତର୍ଦେଶରେ ଅବସ୍ଥିତ]

$$= m \stackrel{\frown}{AXB} \Rightarrow m \angle APB = \frac{1}{2} m \stackrel{\frown}{AXB} [Qମାଶିତ]$$

ଉଦାହରଣ ସ୍ୱରୂପ, ଚିତ୍ର 2.32 (a)ରେ \widehat{AXB} ର ବିପରୀତ ଚାପ \widehat{APB} ର P ଠାରେ ଉତ୍ପନ୍ନ କୋଣ $\angle APB$ ର ପରିମାଣ, \widehat{AXB} ର ଡିଗ୍ରୀ ପରିମାପର ଅର୍ଦ୍ଧେକ ।

ମନ୍ତବ୍ୟ : \widehat{APB} ବୃହତ୍ ଚାପ କ୍ଷେତ୍ରରେ ଦିଆଯାଇଥିବା ଚିତ୍ର 2.32 (c) ରେ O ବିନ୍ଦୁଟି $\angle APB$ ର ଅନ୍ତର୍ଦ୍ଦେଶରେ ରହିଅଛି । ଯଦି ବିନ୍ଦୁଟି $\angle APB$ ର ବହିର୍ଦ୍ଦେଶରେ ରହେ (ଚିତ୍ର 2.33) ତେବେ ପ୍ରମାଣରେ ସାମାନ୍ୟ ପରିବର୍ତ୍ତନ ହେବ ।

ଚିତ୍ର 2.33ରେ

(ଚିତ୍ର 2.33)

ଅନୁସିଦ୍ଧାନ୍ତ - 1 :

- (i) ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣଦ୍ୱୟ ସର୍ବସମ । ବିପରୀତ କ୍ରମେ, ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣଦ୍ୱୟ ସର୍ବସମ ହେଲେ ଚାପଦ୍ୱୟ ସର୍ବସମ । [ଚିତ୍ର 2.34 (a)]
- (ii) ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଚାପର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣଦ୍ୱୟ ସର୍ବସମ । ବିପରୀତ କ୍ରମେ, ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣଦ୍ୱୟ ସର୍ବସମ ହେଲେ ଚାପଦ୍ୱୟ ସର୍ବସମ । [ଚିତ୍ର 2.34~(b)]

(a) ପ୍ରମାଣ : (i) ଚିତ୍ର 2.34 (a) ନିମନ୍ତେ :

ଦତ୍ତ : $\widehat{AXB} \cong \widehat{CYD}$ । $\angle APB$ ଓ $\angle CQD$ ସେମାନଙ୍କର ଦୁଇଟି ଅନ୍ତର୍ଲିଖିତ କୋଣ ।

ପ୍ରାମାଣ୍ୟ: ∠APB ≅∠CQD

ପ୍ରମାଣ : $\widehat{AXB} \cong \widehat{CYD} \Rightarrow \widehat{AYB} \cong \widehat{CXD}$ (ବିପରୀତ ଚାପ)

$$\Rightarrow m \stackrel{\frown}{AYB} = m \stackrel{\frown}{CXD} (Q^{\circ}Q) \dots (1)$$

ସୁତରା $^{\circ}$ (1) \Rightarrow \angle APB \cong \angle CQD

ବିପରୀତ କ୍ରମେ $\angle APB \cong \angle CQD \Rightarrow m \angle APB = m \angle CQD$

$$\Rightarrow$$
 $\widehat{AYB} \cong \widehat{CXD}$ (ସଂଜ୍ଞା) \Rightarrow $\widehat{AXB} \cong \widehat{CYD}$ (ବିପରୀତ ଚାପ) (ପ୍ରମାଣିତ)

(ii) ଚିତ୍ର 2.34 (b) ନିମନ୍ତେ ପ୍ରମାଣ ନିଜେ କର ।

(ସୂଚନା: $\angle APB$ ଓ $\angle CQD$ ଯଥାକ୍ରମେ $\stackrel{\frown}{AXB}$ ଓ $\stackrel{\frown}{CYD}$ ର ବିପରୀତ ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣ ଅଟନ୍ତି ।)

ମନ୍ତବ୍ୟ : ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ ନିମନ୍ତେ ଅନୁସିଦ୍ଧାନ୍ତ – 1 ର ପ୍ରମାଣ ମଧ୍ୟ ପ୍ରଯୁଜ୍ୟ ।

ଦୁଇଟି ସର୍ବସମ ବୃତ୍ତ S_1 ଓ S_2 ରେ $\widehat{AXB}\cong\widehat{CYD}$ ଓ $\angle ARB$ ଏବଂ $\angle CSD$ ଯଥାକ୍ରମେ ସେମାନଙ୍କର ଦୁଇଟି ଅନ୍ତର୍ଲିଖିତ କୋଣ ହେଲେ $\angle ARB\cong\angle CSD$ ହେବ । ସେହିପରି \widehat{AXB} ଓ \widehat{CYD} ର ବିପରୀତ ଚାପଦ୍ୱୟର ଅନ୍ତର୍ଲିଖିତ ଦୁଇଟି କୋଣ $\angle APB$ ଏବଂ $\angle CQD$ ମଧ୍ୟ ସର୍ବସମ ହେବେ । ଏଥିପାଇଁ ପ୍ରମାଣ ନିଜେ କର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 2: (i) ଗୋଟିଏ ବୃତ୍ତରେ କୌଣସି ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ।

(ii) ଗୋଟିଏ ବୃତ୍ତରେ କୌଣସି ଚାପର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ।

ଚିତ୍ର 2.36ରେ \widehat{AXB} ର ଡିନୋଟି ଅନ୍ତର୍ଲିଖିତ କୋଣ $\angle APB, \angle AQB$ ଏବଂ $\angle ARB$ ମଧ୍ୟରୁ ପ୍ରତ୍ୟେକର ପରିମାଣ ବିପରୀତ ଚାପ \widehat{AYB} ର ଡିଗୀ ପରିମାପର ଅର୍ଦ୍ଧେକ (ପ୍ରମେୟ-2.6) ।

ସୁତରା° m
$$\angle$$
APB = m \angle AQB = m \angle ARB = $\frac{1}{2}$ m $\stackrel{\frown}{AYB}$ (i)

- $\Rightarrow \widehat{\mathsf{AYB}}$ ର ବିପରୀତ ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ।
- $\Rightarrow \widehat{AXB}$ ର ଅନ୍ତର୍ଲିଖିତ କୋଣଗୁଡ଼ିକ ସର୍ବସମ ।

ଅନୁସିଦ୍ଧାନ୍ତ - 3 : ଏକ ଅର୍ଦ୍ଧବୃତ୍ତର ଅନ୍ତର୍ଲିଖିତ କୋଣ ଏକ ସମକୋଣ ।

ଅନୁସିଦ୍ଧାନ୍ତ - 4 : କୌଣସି ଚାପର ଅନ୍ତର୍ଲିଖିତ କୋଣ ଏକ ସମକୋଣ ହେଲେ ଚାପଟି ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ ।

୍ର ପ୍ରମେୟ- 2.6ର ପ୍ରମାଣ ଅନ୍ତର୍ଗତ ସୟାବନା (ii) ଚିତ୍ର 2.32 (b) ରୁ ଏହା ସୁକ୍ଷଷ୍ଟ । ତଥାପି ଗୁରୁତ୍ୱ ଦୃଷ୍ଟିରୁ

ଅନୁସିଦ୍ଧାନ୍ତ – 3 ଓ 4 ର ସ୍ୱତନ୍ତ ପ୍ରମାଣ ନିମ୍ନରେ ଦିଆଯାଇଛି ।

ଅନୁସିଦ୍ଧାନ୍ତ - 3 ର ପ୍ରମାଣ :

ଦଉ : S ବୃଭରେ BAC ଏକ ଅର୍ଦ୍ଧବୃଭ । (ଚିତ୍ର 2.37)

ପ୍ରାମା**ଣ୍ୟ :** ∠BAC ଏକ ସମକୋଣ ।

ଅଙ୍କନ : O ବୃତ୍ତର କେନ୍ଦ୍ର ହେଲେ \overline{OA} , \overline{OB} ଓ \overline{OC} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : BAC ଅର୍ଦ୍ଧବୃତ୍ତ ହେତୁ $\overline{\mathrm{BC}}$ ବୃତ୍ତର ବ୍ୟାସ ।

 $\Delta {
m BAO}$ ରେ ${
m OB} = {
m OA}$ (ଏକା ବୂଉର ବ୍ୟାସାର୍ଦ୍ଧ) \Rightarrow m∠ ${
m OAB} =$ m∠ ${
m OBA}$

ସେହିପରି ΔCAO ରେ m $\angle OAC = m\angle OCA$

ସୁତରା $^{\circ}$ m \angle OAB + m \angle OAC = m \angle OBA + m \angle OCA

- \Rightarrow m \angle BAC = m \angle OBA + m \angle OCA
- $\Rightarrow 2m\angle BAC = m\angle BAC + m\angle OBA + m\angle OCA = 180^{0}$ [$\triangle ABC$ ର କୋଶମାନଙ୍କର ପରିମାଣର ସମଷ୍ଟି 180^{0}]

 \Rightarrow m $\angle BAC = 90^\circ$ ଅର୍ଥାତ୍ $\angle BAC$ ଏକ ସମକୋଶ । (ପ୍ରମାଶିତ) ଅନୁସିଦ୍ଧାନ୍ତ - 4ର ପ୍ରମାଶ :

ଦତ୍ତ: S ବୃତ୍ତରେ $\angle BAC,\;\widehat{BAC}$ ର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣ ଏବଂ $\angle BAC$ ଏକ ସମକୋଣ (ଚିତ୍ର 2.38) ।

ପ୍ରାମାଣ୍ୟ : $\widehat{B} A \widehat{C}$ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ ।

(ଚିତ୍ର 2.36)

ଅଙ୍କନ : O ବୃତ୍ତର କେନ୍ଦ୍ର ହେଲେ \overline{AO} , \overline{BO} ଏବଂ \overline{CO} ଅଙ୍କନ କର । \overrightarrow{AO} ବୃତ୍ତକୁ D ବିନ୍ଦୁରେ ଛେଦ କରୁ ।

ପ୍ରମାଣ : Δ ABO ରେ OB = OA (ଏକା ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ)

 \Rightarrow m \angle OBA = m \angle OAB(i)

∠BOD, △ABO ର ଏକ ବହିଃସ୍ଥ କୋଣ ।

 \therefore m \angle BOD = m \angle OBA + m \angle OAB = 2m \angle OAB [(i)ଦ୍ୱାରା]

ସେହିପରି ପ୍ରମାଣ କରାଯାଇପାରେ ଯେ, m∠COD = 2m∠OAC

 \therefore m \angle BOD + m \angle COD = 2m \angle OAB + 2m \angle OAC = 2m \angle BAC = 180⁰

 $[\cdot \cdot \cdot \text{m} \angle \text{BAC} = 90^{\circ} \text{ (ଦଉ)}]$

 $\Rightarrow \overrightarrow{OB}$ ଓ \overrightarrow{OC} ପରୟର ବିପରୀତ ରଶ୍ମୀ । ଅର୍ଥାତ $B,\,O,\,C$ ଏକ ରେଖୀୟ ।

O କେନ୍ଦ୍ର ହେତୁ \overline{BC} ଏକ ବ୍ୟାସ $\Rightarrow \widehat{BAC}$ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତ । (ପ୍ରମାଶିତ)

2.7 ବୃଉଖୟ, ବୃଉଖୟସୁ କୋଣ ଏବଂ ବୃଉକଳା

(Segment, angle inscribed in a segment and sector):

2.7.1 ବୃଉଖଣ :

ବୃତ୍ତର ଏକ କ୍ୟା ଏବଂ କ୍ୟା ସହ ସମ୍ପୃକ୍ତ କୌଣସି ଏକ ଚାପର ସଂଯୋଗରେ ଉତ୍ପନ୍ନ ସେଟ୍କୁ ଏକ ବୃତ୍ତଖଣ୍ଡ କୁହାଯାଏ । ଚିତ୍ର 2.39ରେ \overline{AB} କ୍ୟା ଦ୍ୱାରା ଉତ୍ପନ୍ନ ଏକ ବୃତ୍ତଖଣ୍ଡ ହେଉଛି AXBA। \widehat{AXB} ଏକ ବୃହତ୍ତ ଚାପ ହୋଇଥିବା ଯୋଗୁଁ AXBA ଏକ ବୃହତ୍ତ ବୃତ୍ତଖଣ୍ଡ (Major Segment) । ସେହିପରି ଅନୁରୂପ କାରଣରୁ AYBA ଏକ କ୍ଷୁଦ୍ର ବୃତ୍ତଖଣ୍ଡ (Minor Segment) ।

2.7.2 ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣ :

କୌଣସି ଚାପର ଏକ ଅନ୍ତର୍ଲିଖିତ କୋଣକୁ ସମ୍ପୃକ୍ତ ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣ (Angle inscribed in a segment) କୁହାଯାଏ । ଚିତ୍ର 2.39ରେ $\angle ACB$, AXBA ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣ ଅଟେ । X

ସେହିପରି ∠ADB, AXBA ବୃଭଖଣ୍ଡସ୍ଥ ଅନ୍ୟ ଏକ କୋଣ ଅଟେ ।

ପ୍ରମେୟ -2.6 ଅନୁସିଦ୍ଧାନ୍ତ -2 ର ନିମୁ ବିକଳ୍ପ କଥନଟି ସୁସ୍କଷ୍ଟ :

କୌଣସି ଏକ ବୃଭଖଣ୍ୟସୁ ସମୟ କୋଣ ସର୍ବସମ ।

ଚିତ୍ର 2.39 ରେ m∠ACB = m∠ADB |

ସେହିପରି ପ୍ରମେୟ - 2.6, ଅନୁସିଦ୍ଧାନ୍ତ - 3 ର ବିକଳ୍ପ କଥନଟି ମଧ୍ୟ ସୁକ୍ଷୟ ।

ଅର୍ଦ୍ଧ ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣ ଏକ ସମକୋଣ I

(ଚିତ୍ର 2.39)

2.7.3 ବୃତ୍ତକଳା :

ବୃତ୍ତର କୌଣସି ଏକ ଚାପ, ଚାପର ପ୍ରାନ୍ତବିନ୍ଦୁକୁ କେନ୍ଦ୍ର ସହିତ ଯୋଗ କରୁଥିବା ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ସଂଯୋଗରେ ବୃତ୍ତକଳା (Sector) ଗଠିତ ହୁଏ । ଚିତ୍ର 2.39 ରେ OAYB ଏକ ବୃତ୍ତକଳା ଅଟେ ।

ପରିମିତିରେ ବୃତ୍ତଖଣ୍ଡ ଓ ବୃତ୍ତକଳା ସମ୍ଭକ୍ଷରେ ବିଶଦ ଆଲୋଚନା କରାଯାଇଛି ।

2.8 ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ (Cyclic quadrilateral) :

ଆମେ ଜାଣୁ ଯେ ଏକ ସରଳରେଖାରେ ନ ଥିବା ଡିନୋଟି ବିନ୍ଦୁ ଦଉ ଥିଲେ ଉକ୍ତ ବିନ୍ଦୁମାନେ ସର୍ବଦା ଏକ ବୃତ୍ତ ଉପରେ ରହିବେ । ଅର୍ଥାତ୍ ସେହି ଡିନୋଟି ବିନ୍ଦୁ ଦେଇ ସର୍ବଦା ଏକ ବୃତ୍ତ ଅଙ୍କନ ସୟବ । କିନ୍ତୁ ଚାରିଟି ବିନ୍ଦୁ ଦଉ ଥିଲେ ସେମାନେ ସର୍ବଦା ଗୋଟଏ ବୃତ୍ତ ଉପରେ ରହିବେ କି ? ଏହା ସର୍ବଦା ସୟବ ନୁହେଁ । ନିମ୍ନରେ ଆଲୋଚିତ ସର୍ଭ ପୂରଣ କରୁଥିଲେ ଚାରିଟି ବିନ୍ଦୁ ଏକ ବୃତ୍ତ ଉପରିସ୍ଥ (Concyclic) ହେବେ ।

ପ୍ରମେୟ - 2.7: ଦୁଇଟି ବିନ୍ଦୁର ସଂଯୋଜକ ରେଖାଖଣ୍ଡ ତାର ଏକ ପାର୍ଶ୍ୱରେ ଅନ୍ୟ ଦୁଇଟି ବିନ୍ଦୁଠାରେ ଉତ୍ପନ୍ନ କରୁଥିବା କୋଣଦୃୟ ସର୍ବସମ ହେଲେ ବିନ୍ଦୁ ଚାରିଟି ଏକ ବୃତ୍ତ ଉପରେ ରହିବେ ।

[If the angles subtended by a line segment joining two points at two other points lying on the same side of the segment are congruent, then the four points lie on a circle.]

ଦର : A ଓ B ବିନ୍ଦୁ ଦ୍ୱୟର ସଂଯୋଜକ ରେଖାଖଣ୍ଡ \overline{AB} ଏହାର ଏକ ପାର୍ଶ୍ୱରେ ଥିବା C ଓ D ବିନ୍ଦୁଠାରେ $\angle ACB$ ଓ $\angle ADB$ ଉତ୍ପନ୍ନ କରୁଅଛି ଏବଂ $\angle ACB\cong \angle ADB$ (ଚିତ୍ର 2.40) ।

ସିଦ୍ଧାନ୍ତ : A, B, C ଓ D ବିନ୍ଦୁ ଚାରିଟି ଏକ ବୃତ୍ତ ଉପରିସ୍ଥ ହେବେ ।

ଏହାର ପ୍ରମାଣ ପାଠ୍ୟକ୍ରମ ବହିର୍ଭୁକ୍ତ ଥିବାରୁ ଏଠାରେ ଆଲୋଚନା କରାଯାଇ ନାହିଁ । ଆଗ୍ରହୀ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ନିମନ୍ତେ ଏହି ଅଧ୍ୟାୟର ପରିଶିଷ୍ଟରେ ପ୍ରମେୟ 2.7 ର ପ୍ରମାଣ ଦିଆଯାଇଛି ।

ଏକ ବୃତ୍ତ ଉପରେ ଥିବା ଚାରିଗୋଟି ବିନ୍ଦୁ A,B,C ଓ D ଏକ ଚତୁର୍ଭୁକ ABCD ଗଠନ କରୁଥିଲେ ଅର୍ଥାତ୍ \overline{AB} , \overline{BC} , \overline{CD} ଓ \overline{DA} ମଧ୍ୟରୁ କୌଣସି ଦୁଇଟି ପର୍ୟରକୁ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ଭିନ୍ନ ଅନ୍ୟତ୍ର ଛେଦ କରୁ ନ ଥିଲେ ABCD ଚତୁର୍ଭୁକକୁ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ କହିବା ।

ସଂଜ୍ଞା : ଏକ ଚତୁର୍ଭୁକର ଶୀର୍ଷବିନ୍ଦୁ ଗୁଡ଼ିକ ଏକ ବୃତ୍ତ ଉପରେ ଅବସ୍ଥିତ ହେଉଥିଲେ ଚତୁର୍ଭୁକଟିକୁ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ (Cyclic Quadrilateral) କୁହାଯାଏ ।

ଚିତ୍ର 2.41ରେ ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଚ୍ଚ । ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଚ୍ଚର କୋଣମାନଙ୍କ ମଧ୍ୟରେ ଥିବା ସମ୍ଭନ୍ଧ ଉପପାଦ୍ୟ- 11 ରେ ଦିଆଯାଇଛି ।

(ଚିତ୍ର 2.40)

ଉପପାଦ୍ୟ - 11

ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକର ବିପରୀତ କୋଣମାନ ପରୟର ପରିପୂରକ I

[The opposite angles of a cyclic quadrilateral are supplementary.]

ଦଉ : ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ (ଚିତ୍ର 2.42)

ପ୍ରାମାଶ୍ୟ : $m\angle A + m\angle C = 180^{\circ}$ ଏବଂ $m\angle B + m\angle D = 180^{\circ}$

ପ୍ରମାଣ : ABCD ଚତୁର୍ଭୁଜରେ \overline{AC} ଓ \overline{BD} କର୍ଣ୍ୟୁୟ ପରସ୍କରକୁ ଛେଦ କରନ୍ତି

(ପ୍ରମାଶ ନିମନ୍ତେ ମନ୍ତବ୍ୟ ଦେଖ) ।

 $m :: B \ ^{\it g} \ D$ ବିନ୍ଦୁ ଦ୍ୱୟ \overline{AC} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ।

ତେଣୁ ଚାପର ଡିଗୀ ପରିମାପର ସଂଜ୍ଞାନୁସାରେ

$$m \stackrel{\frown}{ABC} + m \stackrel{\frown}{ADC} = 360^{\circ} \Rightarrow \frac{1}{2} m \stackrel{\frown}{ABC} + \frac{1}{2} m \stackrel{\frown}{ADC} = 180^{\circ} \dots (1)$$

କିନ୍ତୁ m
$$\angle ADC = \frac{1}{2} m \stackrel{\frown}{ABC}$$
 ଏବଂ m $\angle ABC = \frac{1}{2} m \stackrel{\frown}{ADC}$ (ପ୍ରମେୟ - 2.6)

$$\Rightarrow$$
 m \angle ADC + m \angle ABC = $\frac{1}{2}$ m $\stackrel{\frown}{ABC}$ + $\frac{1}{2}$ m $\stackrel{\frown}{ADC}$ = 180° ((1) ଦ୍ୱାରା)

କିନ୍ତୁ ଆମେ ଜାଣୁ ଯେ ଏକ ଚତୂର୍ଭୁଜରେ m $\angle A + m\angle B + m\angle C + m\angle D = 360^{\circ}$

ସୁତରା
$$^{\circ}$$
 m \angle BAD + m \angle BCD = 180°

(ପ୍ରମାଶିତ)

(ଚିତ୍ର 2.42)

ମନ୍ତବ୍ୟ : ABCD ଚତୁର୍ଭୁଜ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେଲେ ଏହାର କର୍ଣ୍ଣଦ୍ୱୟ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ ଛେଦ କରନ୍ତି ।

ପ୍ରମାଣ : ଯଦି \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ ଛେଦ ନ କରନ୍ତି (ଚିତ୍ର 2.43 ଦେଖ) ତେବେ B ଓ D \overline{AC} ର ଏକ ପାର୍ଶ୍ୱରେ ରହିବେ । ଅର୍ଥାତ୍ D, \widehat{ABC} ଉପରେ ରହିବ । ମନେକର D, \widehat{BYC} ର ଅନ୍ତଃସ୍ଥ । A, \widehat{ABC} ର ଏକ ପ୍ରାନ୍ତବିନ୍ଦୁ ହୋଇଥିବାରୁ \widehat{BYC} ର ଅନ୍ତଃସ୍ଥ ହେବ ନାହିଁ ।

- \Rightarrow A ଓ D, $\overline{\mathrm{BC}}$ ର ବିପରୀତ ପାର୍ଶ୍ୱସ୍ଥ ହେବେ ।
- $\Rightarrow \overline{AD}$ ଓ \overline{BC} ପରସ୍କରକୁ ଛେଦ କରିବେ, ଯାହାକି ଚତୁର୍ଭୁକର ସଂଜ୍ଞାନୁଯାୟୀ ଅସୟବ । ତେଣୁ D, \overrightarrow{BYC} ର ଅନ୍ତଃସ୍ଥ ହେବ ନାହିଁ । ସେହିପରି D, \overrightarrow{AXB} ର ଅନ୍ତଃସ୍ଥ ହେବ ନାହିଁ । ସୁତରାଂ D, \overrightarrow{ABC} ଉପରେ ରହି ପାରିବ ନାହିଁ । ତେଣୁ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ ଛେଦ କରିବେ । (ପ୍ରମାଣିତ) ।

ଅନୁସିଦ୍ଧାନ୍ତ - 1 : ବୃଭାନ୍ତର୍ଲିଖିତ ସାମାନ୍ତରିକ ଚିତ୍ର ଏକ ଆୟତଚିତ୍ର ।

ପ୍ରମାଣ : ABCD ଏକ ବୃଢାନ୍ତର୍ଲିଖିତ ସାମାନ୍ତରିକ ଚିତ୍ର (ଚିତ୍ର 2.44)

 \Rightarrow m \angle A = m \angle C (ସାମାନ୍ତରିକ ଚିତ୍ର ସମ୍ମୁଖୀନ କୋଣମାନେ ସର୍ବସମ)

କିନ୍ତୁ m
$$\angle$$
A + m \angle C = 180° (ଉପପାଦ୍ୟ - 11)

$$\Rightarrow 2m\angle A = 180^{\circ} \Rightarrow m\angle A = 90^{\circ}$$

ସାମାନ୍ତରିକ ଚିତ୍ରର ଗୋଟିଏ କୋଣ ସମକୋଣ । : ABCD ଏକ ଆୟଡଚିତ୍ର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 2 : ବୃଭାନ୍ତଲିଖିତ ରୟସ ଏକ ବର୍ଗଚିତ୍ର ।

ଅନୁସିଦ୍ଧାନ୍ତ - 1 ଅନୁଯାୟୀ ରୟସର ଗୋଟିଏ କୋଶ ଏକ ସମକୋଶ ହେବ ।

ଅନୁସିଦ୍ଧାନ୍ତ - 3: ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକର ଏକ ବହିଃସ୍ଥ କୋଣର

ପରିମାଣ ଏହାର ଅତଃସ୍ଥ ବିପରୀତ କୋଶର ପରିମାଣ ସହ ସମାନ I

ଚିତ୍ର 2.45 ରେ ABCD ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଜର $\angle CBX$ ଏକ ବହିଃସ୍ଥ କୋଣ

କିନ୍ତୁ m \angle ABC + m \angle ADC = 180° (ଉପପାଦ୍ୟ - 11) \Rightarrow m \angle CBX = m \angle ADC

ପ୍ରମେୟ - 2.8 : (ଉପପାଦ୍ୟ - 11ର ବିପରୀତ କଥନ) :

ଗୋଟିଏ ଚତୁର୍ଭୁଳର ବିପରୀତ କୋଣମାନ ପରୟର ପରିପୂରକ ହେଲେ ଚତୁର୍ଭୁଳଟି ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେବ ।

[If the opposite angles of a quadrilateral are supplementary, then the quadrilateral is cyclic.]

ଦଭ : ABCD ଚତୁର୍ଭୁକରେ $m\angle A + m\angle C = 180^\circ$ ଏବଂ $m\angle B + m\angle D = 180^\circ$ (ଚିତ୍ର 2.41)

ସିଦ୍ଧାତତ୍ତ: ABCD ଚତୁର୍ଭୁଜଟି ବୃଭାନ୍ତର୍ଲିଖିତ ।

ପ୍ରମେୟ −2.8 ର ପ୍ରମାଣ ପାଠ୍ୟକ୍ରମ ବହିର୍ଭୂତ ଥିବାରୁ ଆଗ୍ରହୀ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ନିମନ୍ତେ ଏହି ଅଧ୍ୟାୟର ପରିଶିଷ୍ଟରେ ଉକ୍ତ ପ୍ରମେୟର ପ୍ରମାଣ ଦିଆଯାଇଛି ।

ବୃତ୍ତ ସୟନ୍ଧୀୟ କେତେଗୋଟି ଉଦାହରଣ :

ଉଦାହରଣ : - 1 ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଜ୍ୟା \overline{AB} ଓ \overline{CD} ପରସ୍କରକୁ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଠାରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ AP . PB=CP. PD ।

ସମାଧାନ : ଚିତ୍ର 2.46 ରେ \overline{AB} ଓ \overline{CD} ଜ୍ୟା ଦୃୟ ପରସ୍କରକୁ P ଠାରେ

ଛେଦ କରୁଛନ୍ତି । ପ୍ରମାଣ କରିବାକୁ ହେବ ଯେ PA . PB = PC .PD

ଅଙ୍କନ : $\overline{\mathrm{CA}}$ ଓ $\overline{\mathrm{BD}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଶ : Δ PAC ଓ Δ PBD ମଧ୍ୟରେ

 $m\angle ACP = m\angle PBD$ (ଏକା ଚାପ \widehat{ABD} ର ଅନ୍ତର୍ଲିଖିତ);

(ଚିତ୍ର 2.44)

(ଚିତ୍ର 2.45)

m∠PAC = m∠PDB (ଏକା ଚାପ $\stackrel{\frown}{BC}$ ର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ) ଏବଂ

 $m\angle APC = m\angle BPD$ (ପ୍ରତୀପ କୋଣ)

 \Rightarrow $\Delta PAC \sim \Delta \ PBD \ (କୋ-କୋ-କୋ ସାଦୃଶ୍ୟ)$

$$\Rightarrow \frac{AP}{PD} = \frac{PC}{PB} \Rightarrow PA \cdot PB = PC \cdot PD \text{ (ପ୍ରମାଶିତ)}$$

ଉଦାହରଣ - 2 : ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ P ବିନ୍ଦୁଗାମୀ ଦୁଇଟି ଛେଦକ ବୃତ୍ତକୁ ଯଥାକ୍ରମେ A, B ଏବଂ C, D ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି (ଚିତ୍ର 2.47) ପ୍ରମାଣ କର ଯେ, PA . PB = PC. PD ।

ସମାଧାନ : ଚିତ୍ର 2.47ରେ P ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଦୁଇଟି ଛେଦକ \overrightarrow{PB} ଓ \overrightarrow{PD} ବୃତ୍ତକୁ ଯଥାକ୍ରମେ A,B ଏବଂ C,D ବିନ୍ଦୁରେ ଛେଦ କରୁଛନ୍ତି ।

ପ୍ରାମାଶ୍ୟ : ପ୍ରମାଣ କରିବାକୁ ହେବ ଯେ $PA \cdot PB = PC \cdot PD$ |

ଅଙ୍କନ : $\overline{\mathrm{BC}}$ ଓ $\overline{\mathrm{AD}}$ ଅଙ୍କନ କର ।

ପ୍ରାମାଣ : ΔPAD ଓ ΔPCB ମଧ୍ୟରେ ∠APC ସାଧାରଣ ।

m∠ADP = m∠CBP (ଏକା ଚାପ \widehat{AC} ର ବିପରୀତ ଚାପାନ୍ତର୍ଲିଖିତ)

 \Rightarrow $\Delta {
m ADP} \sim \Delta \ {
m PCB} \ (କୋ-କୋ ସାଦୃଶ୍ୟ)$

$$\Rightarrow \frac{PA}{PC} = \frac{PD}{PB} \Rightarrow PA \cdot PB = PC \cdot PD$$
 (ପ୍ରମାଶିତ)

ଉଦାହରଣ - 3 : ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ P ବିନ୍ଦୁଗାମୀ ଦୁଇଟି ଛେଦକ ବୃତ୍ତକୁ ଯଥାକୁମେ A, B ଏବଂ C, D ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ m $\angle APC = \frac{1}{2}[m\ \ BD\ \ -m\ \ AC\ \]$

ସମାଧାନ : ଚିତ୍ର 2.47 ରେ P ବିନ୍ଦୁ ଦେଇ ଦୁଇଟି ଛେଦକ \overrightarrow{PB} ଓ \overrightarrow{PD} ବୃତ୍ତକୁ A,B ଏବଂ C,D ବିନ୍ଦୁରେ ଛେଦ କରୁଛନ୍ତି । ପ୍ରମାଣ କରିବାକୁ ହେବ ଯେ $m\angle APC = \frac{1}{2} \left[m \ \overrightarrow{BD} - m \ \overrightarrow{AC} \right]$

ଅଙ୍କନ : $\overline{\mathrm{AD}}$ ଅଙ୍କନ କର ।

ପ୍ରମାଣ : $\triangle PAD$ ରେ $m\angle APD = m\angle BAD - m\angle ADP$ $(\because \angle BAD$ ବହିଃସ୍ଥ କୋଣ)(1)

କିନ୍ତୁ m
$$\angle BAD = \frac{1}{2}$$
 m $\stackrel{\frown}{BD}$ ଏବଂ m $\angle ADP = m\angle ADC = \frac{1}{2}$ m $\stackrel{\frown}{AC}$

ସୁତରା°
$$m \angle APC = \frac{1}{2} \left[m \stackrel{\frown}{BD} - m \stackrel{\frown}{AC} \right] \left[(1) \left(\stackrel{\frown}{Q} \right) \right]$$
 (ପ୍ରମାଣିତ)

ପରିଶିଷ୍ଟ

ଆଗ୍ରହୀ ଛାତ୍ରଛାତ୍ରୀଙ୍କ ପାଇଁ ପ୍ରମେୟ 2.7 ଓ 2.8 ର ପ୍ରମାଣ ନିମ୍ନରେ ଦିଆଯାଇଛି ।

ପ୍ରମେୟ - 2.7ର ପ୍ରମାଣ :

ଦତ : C ଓ D ବିନ୍ଦୁ ଦ୍ୱୟ \overline{AB} ର ଏକ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ଏବଂ m∠ACB = m∠ADB |

ପ୍ରାମାଣ୍ୟ : A, B, C ଓ D ବିନ୍ଦୁ ଚାରିଟି ଏକ ବୃତ୍ତ ଉପରେ ରହିବେ ।

ଅଙ୍କନ : ଯେହେତୁ A, B ଓ C ଏକ ସରଳରେଖାରେ ନାହାନ୍ତି, ସେମାନଙ୍କ ମଧ୍ୟ ଦେଇ ABC ବୃତ୍ତ ଅଙ୍କିତ ହେଉ ।

ପ୍ରମାଣ : ବର୍ତ୍ତମାନ ଆମେ ଦର୍ଶାଇବା ଯେ D ବିନ୍ଦୁଟି ABC ବୃତ୍ତ ଉପରେ ରହିବ ।

ମନେକର D ବିନ୍ଦୁ ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶରେ ରହିବ (ଚିତ୍ର 2.48) ତେବେ \overrightarrow{BD} କିୟା \overrightarrow{AD} ବୃତ୍ତକୁ ଏକ ବିନ୍ଦୁରେ ଛେଦ କରିବ । (ସମତଳ ଉପରେ \overrightarrow{AB} ର C ପାର୍ଶ୍ୱରେ Dର ବିଭିନ୍ନ ଅବସ୍ଥିତି ନେଇ ଏହା ପ୍ରମାଣ କରିହେବ ।) ମନେକର \overrightarrow{BD} ବୃତ୍ତଟିକୁ E ବିନ୍ଦୁରେ ଛେଦ କରେ । \overrightarrow{AE} ଅଙ୍କିତ ହେଉ ।

ଯେହେତୁ C ଓ E ବିନ୍ଦୁ ଦ୍ୱୟ \widehat{ACB} ଉପରେ ଅଛନ୍ତି ।

ପ୍ରମେୟ - 2.6 ଅନୁସିଦ୍ଧାନ୍ତ - 2 ଦ୍ୱାରା

 $m\angle ACB = m\angle AEB$ (1)

∆ADE ରେ ∠AEB ବହିଃସୁ ।

ସୁତରା° m∠AEB ≠ m∠ADB

କିନ୍ତୁ ଦଉ ଅଛି ଯେ m∠ADB = m∠ACB

 \Rightarrow m∠AEB ≠ m∠ACB ଯାହା (1)କୁ ବିରୋଧ କରୁଛି |

ସେହିପରି \overrightarrow{AD} ବୃତ୍ତକୁ ଏକ ବିନ୍ଦୁରେ E' ଠାରେ ଛେଦ କଲେ $\overline{BE'}$ ଅଙ୍କନ କରି ପୂର୍ବ ପରି ଆମେ ଦୁଇଟି ପରସ୍କର ବିରୋଧୀ ଉକ୍ତି ପାଇବା ।

ତେଣୁ ${\bf D}$ ବିନ୍ଦୁଟି ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶରେ ରହିବ ନାହିଁ । ଯଦି ${\bf D}$ ବିନ୍ଦୁଟି ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ${\bf D}'$ ଠାରେ ରହେ ତେବେ ଉପରୋକ୍ତ ଧାରାରେ ଆମେ ଦୁଇଟି ପରସ୍କର ବିରୋଧୀ ଉକ୍ତି ପାଇବା । ତେଣୁ ${\bf D}$ ବିନ୍ଦୁ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ରହିବ ନାହିଁ ।

ସୁତରାଂ D ବିନ୍ଦୁଟି ABC ବୃତ୍ତ ଉପରେ ଅବସ୍ଥିତ ।

(ପ୍ରମାଣିତ)

ପ୍ରମେୟ - 2.8ର ପ୍ରମାଣ :

ଦଭ : ABCD ଚତୁର୍ଭୁକରେ $m\angle A + m\angle C = 180^{\circ}$ ଏବଂ $m\angle B + m\angle D = 180^{\circ}$ (ଚିତ୍ର 2.49)

ପ୍ରାମାଣ୍ୟ : ABCD ଚତୁର୍ଭୁକଟି ବୃଭାନ୍ତର୍ଲିଖିତ ।

ପ୍ରମାଣ : (ଅସୟବାୟନ ପ୍ରଣାଳୀ) ମନେକର ABCD ଚତୁର୍ଭୁଳ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ନୁହେଁ । ତେବେ A,B ଓ C ମଧ୍ୟ ଦେଇ ଅଙ୍କିତ ବୃତ୍ତ ଉପରେ D ବିନ୍ଦୁ ଅବସ୍ଥିତ ହେବ ନାହିଁ । ସୁତରାଂ D, ABC ବୃତ୍ତର ବହିଃସ୍ଥ (ଚିତ୍ର 2.49)(a)) କିୟା ଅନ୍ତଃସ୍ଥ (ଚିତ୍ର 2.49) (b)) ହେବ । ଉଭୟ କ୍ଷେତ୍ରରେ $m\angle A + m\angle B + m\angle C + m\angle D$

$$= (m\angle A + m\angle C) + (m\angle B + m\angle D) = 180^{0} + 180^{0} = 360^{0}$$

 \therefore ABCD ଏକ ଉତ୍ତଳ ଚତୁର୍ଭୁଚ୍ଚ । ଏହାର କର୍ଷଦ୍ୱୟ \overline{AC} ଓ \overline{BD} ପରସ୍କରକୁ E ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତୁ । E ବିନ୍ଦୁ ABC ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ହେବ । (\because E ବିନ୍ଦୁ \overline{AC} ଜ୍ୟା ଉପରିସ୍ଥ) ସୂତରାଂ \overline{BE} ABC ବୃତ୍ତକୁ ଏକ ବିନ୍ଦୁ F ରେ ଛେଦ କରିବ ।

ବର୍ତ୍ତମାନ ଦୁଇଟି ସମ୍ଭାବନା ଯଥା : (i) E-F-D (ଚିତ୍ର 2.49(a) ଏବଂ (ii) E-D-F (ଚିତ୍ର 2.49) (b)) ମଧ୍ୟରୁ ସମ୍ଭାବନା (i) ର ପ୍ରମାଣ :

ଚିତ୍ର 2.49 (a) ରୁ m∠ADC = m∠ADB + m∠BDC ଏବଂ

$$m\angle AFC = m\angle AFB + m\angle BFC$$
 ...(1)

ବର୍ତ୍ତମାନ ABCF ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଜରେ m \angle ABC + m \angle AFC = 180^{o}

କିନ୍ତୁ m \angle ABC + m \angle ADC = 180 $^{\circ}$ (ଦର)

 \therefore m \angle ABC + m \angle AFC = m \angle ABC + m \angle ADC

$$\Rightarrow$$
 m \angle AFC = m \angle ADC ... (2)

 Δ ADF ରେ \angle AFB ବହିସ୍ଥ \Rightarrow m \angle AFB > m \angle ADF

ସେହିପରି ∆CDF ରେ m∠CFB > m∠CDF

ସୁତରା $^{\circ}$ m \angle AFB + m \angle CFB > m \angle ADF + m \angle CDF

$$\Rightarrow$$
 m \angle AFC \geq m \angle ADC ((1) ଦ୍ୱାରା) (3)

(2) ଓ (3) ପରସ୍କର ବିରୋଧୀ ଉକ୍ତି ।

ସୂତରାଂ ଆମେ ଗ୍ରହଣ କରିଥିବା ପ୍ରାରୟିକ ଉକ୍ତିଟି ସତ୍ୟ ନୁହେଁ । ଅର୍ଥାତ୍ ABCD ଚତୁର୍ଭୁଚ୍ଚ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେବ । ସୟାବନା (ii) କ୍ଷେତ୍ରରେ ଅନୁରୂପ ପ୍ରମାଣ ଚିତ୍ର 2.49(b) ସାହାଯ୍ୟରେ ଦିଆଯାଇ ପାରିବ (ପ୍ରମାଣିତ)

ଅନୁଶୀଳନୀ - 2(b)

(କ - ବିଭାଗ)

1. ନିମ୍ନ ଉକ୍ତି ଗୁଡ଼ିକରେ ଠିକ୍ ଉକ୍ତି ପାଇଁ ${f T}$ ଓ ଭୁଲ ଉକ୍ତି ପାଇଁ ${f F}$ ଲେଖ ।

- (i) ବୃତ୍ତର ଏକ ଉପସେଟ୍କୁ ଚାପ କହନ୍ତି ।
- (ii) ଚାପର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ସମ୍ପୃକ୍ତ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ନୁହେଁ ।
- (iii) ଗୋଟିଏ ବୃତ୍ତରେ P ଓ Q ଦୁଇଟି ଚାପର ସାଧାରଣ ପ୍ରାନ୍ତବିନ୍ଦୁ ହେଲେ ଚାପଦ୍ୱୟ ପରସ୍କରର ପରିପୂରକ ଚାପ ଅଟନ୍ତି ।
- (iv) ପ୍ରତ୍ୟେକ ଚାପର ପ୍ରାନ୍ତବିନ୍ଦୁଦ୍ୱୟକୁ କେନ୍ଦ୍ର ସହିତ ଯୋଗ କଲେ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ ହୁଏ ତାହା ଉକ୍ତ ଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣ ଅଟେ ।
- (v) ଦୁଇଟି ଚାପର ଡିଗ୍ରୀ ପରିମାପର ସମଷ୍ଟି 360° ରୁ ଅଧିକ ହୋଇ ପାରିବ ନାହିଁ ।
- (vi) ବୃତ୍ତ ଏକ ଉତ୍ତଳ ସେଟ୍ ନୁହେଁ ।
- (vii) ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ଗୋଟିଏ ସାଧାରଣ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ଥିଲେ ଚାପ ଦୁଇଟି ସନ୍ନିହିତ ଚାପ ହେବେ ।
- (viii) ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ ଚାପଦ୍ୱୟ ସନ୍ନିହିତ ଚାପ ହେଲେ ଚାପଦ୍ୱୟର ସଂଯୋଗରେ ସର୍ବଦା ବୃହତ୍ ଚାପ ଗଠିତ ହେବ ।
- (ix) ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା ପରୟରକୁ ଲୟ ଭାବରେ ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ P ରେ ଛେଦ କରନ୍ତି । ବୃତ୍ତର କେନ୍ଦ୍ର O ଠାରୁ ସେମାନଙ୍କ ପ୍ରତି \overline{OQ} , \overline{OR} ଲୟ ଗଠନ କରାଯାଛି । ତେବେ O, Q, P ଓ R ଏକ ବର୍ଗଚିତ୍ରର ଶୀର୍ଷବିନ୍ଦୁ ହେବେ ।
- (x) $\widehat{\mathrm{BPC}}$ ର ଡିଗ୍ରୀ ପରିମାପ 30° । A ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ହେଲେ $\Delta\mathrm{ABC}$ ରେ $\angle\mathrm{A}$ ର ପରିମାଣ ସର୍ବଦା 15° ହେବ ।
- (xi) ଗୋଟିଏ ଚାପ ଅସଂଖ୍ୟ ବିନ୍ଦୁର ସମାହାର ଅଟେ ।
- (xii) ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ରୟସ୍ ଏକ ବର୍ଗିଚିତ୍ର ।

2. ଶୃନ୍ୟସ୍ଥାନ ପୂରଣ କର ।

- (i) ଏକ ବୃହତ୍ ଚାପର ଡିଗ୍ରୀ ପରିମାପ ... ରୁ ବେଶୀ I
- (ii) ଗୋଟିଏ ସୁଷମ ଷଡ଼ଭୁଜର ପ୍ରତ୍ୟେକ ବାହୁ ଏହାର ପରିବୃତ୍ତର କେନ୍ଦ୍ରଠାରେ ଉତ୍ପନ୍ନ କରୁଥିବା କେନ୍ଦ୍ରସ୍ଥ କୋଶର ପରିମାଣ ।
- (iii) ଗୋଟିଏ ବୃତ୍ତାନ୍ତଲିଖିତ ଚତୁର୍ଭୁଜର ABCDର m $\angle A = 50^{\circ}$ ଓ m $\angle B = 120^{\circ}$ ହେଲେ m $\angle C$ ଓ m $\angle D$ ମଧ୍ୟରେ ଅନ୍ତର

- (iv) ଗୋଟିଏ ବୃତ୍ତରେ ଦୁଇଟି ସର୍ବସମ ଜ୍ୟା $\overline{\mathrm{AB}}$ ଓ $\overline{\mathrm{CD}}$ ପରୟରକୁ ବୃତ୍ତର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ P ରେ ଛେଦ କରନ୍ତି । O ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ B ଓ $\mathrm{C}\,\overline{\mathrm{OP}}$ ର ଏକ ପାର୍ଶ୍ୱରେ ଥିଲେ $\widehat{\mathrm{AD}}$ ଓ ଦୁହେଁ ସର୍ବସମ ।
- (v) ଗୋଟିଏ ବୃତ୍ତରେ ଏକ ଜ୍ୟାର ଦୈର୍ଘ୍ୟ ବ୍ୟାସାର୍ଦ୍ଧ ସହ ସମାନ ହେଲେ ଉକ୍ତ ଜ୍ୟା ଦ୍ୱାରା ଛେଦିତ କ୍ଷୁଦ୍ର ଚାପର ଡିଗୀ ପରିମାପ ।
- (vi) \overline{AB} ର ଏକ ପାର୍ଶ୍ୱରେ C ଓ D ଦୁଇଟି ବିନ୍ଦୁ | m∠ACB = m∠ADB = 20° | Δ ACDର ପରିବୃତ୍ତର କେନ୍ଦ୍ର O ହେଲେ m∠AOB = |
- (vii) m∠ABC = 90° ହେଲେ \triangle ABC ର ପରିବୃତ୍ତରେ \overline{AC} ଏକ ।
- (viii) ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଳ । m∠BAD ଚାପର ଡିଗ୍ରୀ ପରିମାପର ଅର୍ଦ୍ଧେକ ।
- (ix) ଏକ ଅର୍ଦ୍ଧବୃତ୍ତର ଡିଗ୍ରୀ ପରିମାପ ।
- (x) ଗୋଟିଏ ବୃତ୍ତରେ ଏକ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 90° ହେଲେ, ସଂପୃକ୍ତ ଜ୍ୟା ଓ ବ୍ୟାସାର୍ଦ୍ଧର ଅନୁପାତ।

(ଖ - ବିଭାଗ)

- 3. ଚିତ୍ର 2.50ରେ ΔABC ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଏବଂ ସୂକ୍ଷ୍ମକୋଣୀ । D, E, F, ବୃତ୍ତ ଉପରିସ୍ଥ ତିନୋଟି ବିନ୍ଦୁ ହେଲେ ନିମ୍ନ ପ୍ରଶ୍ମଗୁଡ଼ିକର ଉତ୍ତର ଦିଅ ।
 - (i) ∠B କେଉଁ ଚାପର ଅନ୍ତର୍ଲିଖିତ ?
 - (ii) ∠B ଦ୍ୱାରା କେଉଁ ଚାପ ଛେଦିତ ?
 - (iii) \overline{BC} ଜ୍ୟା ଦ୍ୱାରା ଛେଦିତ କ୍ଷୁଦ୍ରଚାପ ଓ ବୃହତ୍ ଚାପ କିଏ ?
 - (iv) ∠A ର ପରିମାଣ କେଉଁ କେନ୍ଦ୍ରସ୍ଥ କୋଣ ପରିମାଣର ଅର୍ଦ୍ଧେକ ?
 - (v) ΔABC ରେ ଯଦି AB = BC ହୁଏ ତେବେ କେଉଁ ଚାପ ଦ୍ୱୟ ସର୍ବସମ ହେବେ ? $\widehat{(\hat{\varsigma}_{\underline{\mathcal{G}}} \ 2.50)}$
 - (vi) ଦୁଇଟି ସନ୍ନିହିତ ଚାପର ନାମ ଲେଖ ଯେପରିକି ସେମାନଙ୍କ ସଂଯୋଗରେ $\widehat{\mathrm{BAD}}$ ଗଠିତ ହେବ ।
 - (vii) \overrightarrow{BFC} ଉପରେ ଏପରି ଏକ ବିନ୍ଦୁ P ନିଅ ଯେପରିକି $m\angle BPA=m\angle C$ । ଏପରି କେତୋଟି ବିନ୍ଦୁ ଅଛି ? \overrightarrow{ADC} ଉପରେ ଏପରି କୌଣସି ବିନ୍ଦୁ ଅଛି କି ? \overrightarrow{BEA} ଉପରେ ଏପରି କୌଣସି ବିନ୍ଦୁ ଅଛି କି ?
- 4. ଚିତ୍ର 2.51 ରେ ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଜ ଯାହାର କର୍ଣ୍ଣଦ୍ୱୟ ବୃତ୍ତର କେନ୍ଦ୍ରଠାରେ ଛେଦ କରନ୍ତି । $\widehat{mAEB}=100^{\circ}$ ହେଲେ
 - (i) ଚତୁର୍ଭୁଳର ସମୟ କୋଣ ପରିମାଣ ନିର୍ଦ୍ଧୟ କର ।
 - (ii) AHD ଓ BFC ମଧ୍ୟରେ କି ସମ୍ପର୍କ ଦେଖୁଛ ?
 - (iii) ABCD କି ପ୍ରକାର ଚତୁର୍ଭୁଜ ?

O

5. ଚିତ୍ର 2.52 ରେ \overline{AB} ଓ \overline{CD} କ୍ୟା ଦ୍ୱୟ ପରୟରକୁ ବୃତ୍ତର ଏକ ଅନ୍ତଃୟ ବିନ୍ଦୁ P ଠାରେ ଛେଦ କରନ୍ତି । m $\angle PBD = 80^{\circ}$, m $\angle CAP = 45^{\circ}$ ହେଲେ

(ଚିତ୍ର 2.52)

- (i) ΔBPD ର କୋଣ ପରିମାଣଗୁଡ଼ିକ ନିର୍ଣ୍ଣୟ କର ।
- (ii) ΔAPC ର କୋଣ ପରିମାଣ ଗୁଡ଼ିକ ନିର୍ଣ୍ଣୟ କର ।
- (iii) ΔAPC ଓ ΔDPB ମଧ୍ୟରେ କି ସମ୍ପର୍କ ଦେଖୁଛ ?
- ΔABC ରେ $\angle A$ ର ସମଦ୍ୱିଖଣ୍ଡକ ତ୍ରିଭୁଜର ପରିବୃତ୍ତକୁ D ବିନ୍ଦୁରେ ଛେଦ କଲେ ପ୍ରମାଣ କର ଯେ ΔBDC ସମଦ୍ୱିବାହୁ ।
- 7. ଚିତ୍ର 2.53 ରେ ଗୋଟିଏ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ A ଠାରୁ \overrightarrow{AP} ଓ \overrightarrow{AR} ରଶ୍ମି ଦ୍ୱୟ ବୃତ୍ତକୁ ଯଥାକ୍ରମେ P,Q ଏବଂ R,S ଠାରେ ହେଦ କରନ୍ତି ଯେପରି A-P-Q ଏବଂ A-R-S I
- (a) ପୁମାଣ କର ଯେ $\Delta APR \sim \Delta AQS$
- (b) ପ୍ରମାଣ କର ଯେ $\Delta APS \sim \Delta ARQ$
- (c) ଯଦି \overline{PS} ଓ \overline{QR} ର ଛେଦ ବିନ୍ଦୁ T ହୁଏ, ତେବେ
 - (i) ପ୍ରମାଣ କର ଯେ TP . TS = TR . TQ

(ଚିତ୍ର 2.53)

- (d) $m\angle PAR = 15^{\circ}$ ଏବଂ m $\overrightarrow{QXS} = 50^{\circ}$ ହେଲେ $m\angle PTR$ ନିର୍ଣ୍ଣୟ କର ।
- 8. ଚିତ୍ର 2.54ରେ ABC ବୃତ୍ତର \widehat{AXB} ଓ \widehat{BYC} ଦୁଇଟି ଚାପର ଡିଗ୍ରୀ ପରିମାପ ଯଥାକ୍ରମେ 80° ଓ 140°

(iii) m
$$\widehat{ACB}$$
 ନିର୍ଣ୍ୟ କର ।

$$(iv)$$
 \widehat{AZC} ଓ \widehat{BYC} ମଧ୍ୟରେ କି ସମ୍ପର୍କ ଅଛି ?

(ଚିତ୍ର 2.54)

9. ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ \overline{AB} ଏକ ବ୍ୟାସ । ବୃତ୍ତ ଉପରିସ୍ଥ P ଓ Q ବିନ୍ଦୁ ଦ୍ୱୟ \overline{AB} ର ଏକ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । ଯଦି A ଓ P ପ୍ରାନ୍ତ ବିନ୍ଦୁ ବିଶିଷ୍ଟ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 60° ଏବଂ B ଓ Q ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ ଚାପର

- ଡିଗ୍ରୀ ପରିମାପ 50º ହୁଏ ତେବେ -
- (i) A ଓ Q ପାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ କ୍ଷୁଦ୍ରଚାପର ଡିଗୀ ପରିମାପ,
- (ii) P ଓ B ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ ବୃହତ୍ ଚାପର ଡିଗ୍ରୀ ପରିମାପ ଏବଂ
- (iii) P ଓ Q ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ ବୃହତ୍ ଚାପର ଡିଗ୍ରୀ ପରିମାପ ନିର୍ଣ୍ଣୟ କର ।
- \overline{AB} ଓ \overline{CD} ଦୁଇଟି ସମାନ୍ତର ଜ୍ୟା (ଚିତ୍ର 2.55) ପମାଣ କର ଯେ i) m $\widehat{AXC}=\widehat{BYD}$, (ii) AC=BD
- ପ୍ରମାଶ କର ଯେ 1) m AXC = m BYD , (11) 11. ABCD ଏକ ବୃଢାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଳ ।
 - (i) \overline{AB} II \overline{CD} ହେଲେ ପ୍ରମାଣ କର ଯେ, AD=BC ଏବଂ AC=BD
 - $(ii)~{
 m AD}={
 m BC}$ ହେଲେ ପ୍ରମାଶ କର ଯେ, ${
 m AC}={
 m BD}~$ ଏବଂ ${
 m \overline{AB}}~{
 m II}~{
 m \overline{CD}}$
- $12.\ (i)$ ଗୋଟିଏ ବୃଉରେ \widehat{AXB} ଏକ ଚାପ । ପ୍ରମାଣ କର ଯେ \widehat{AXB} ର ଅନ୍ତଃସ୍ଥ ଗୋଟିଏ ଏବଂ କେବଳ ଗୋଟିଏ ବିନ୍ଦୁ C ଅଛି ଯେପରି \widehat{AC} ଓ \widehat{BC} ଚାପଦ୍ୱୟ ସର୍ବସମ ହେବେ । (C ବିନ୍ଦୁକୁ \widehat{AXB} ର ମଧ୍ୟବିନ୍ଦୁ କୁହାଯାଏ) (ସୂଚନା : $\angle AOB$ ର ସମଦ୍ୱିଖଣ୍ଡକ ରେଖା \widehat{AXB} କୁ C ବିନ୍ଦୁରେ ଛେଦ କଲେ C ଆବଶ୍ୟକ ବିନ୍ଦୁ ହେବ)
 - (ii) ଚାପର ମଧ୍ୟବିନ୍ଦୁ ଧାରଣାକୁ ବ୍ୟବହାର କରି ପ୍ରମାଣ କର ଯେ \widehat{AXB} ରେ ଅସଂଖ୍ୟ ବିନ୍ଦୁ ଅଛି ।
- \overline{OD} ଯେକୌଣସି ଏକ ବ୍ୟାସାର୍ଦ୍ଧ । \overline{AC} ।

ପ୍ରମାଣ କର ଯେ \widehat{BXD} ଓ \widehat{DYC} ସର୍ବସମ ଅର୍ଥାତ୍ $D,\;\widehat{BDC}$ ମଧ୍ୟବିନ୍ଦୁ । A (ସୂଚନା : \overline{OC} ଅଙ୍କନ କରି ଦର୍ଶାଅ ଯେ, $m\angle BOD = m\angle DOC$)

- 14. ଚିତ୍ର 2.57ରେ $\overline{\text{CD}}$ କ୍ୟା $\overline{\text{AB}}$ ବ୍ୟାସ ସହ ସମାନ୍ତର ଏବଂ $\overline{\text{CD}} = \overline{\text{OB}}$ | ପ୍ରମାଣ କର ଯେ m $\angle{\text{BDC}} = 2\text{m}\angle{\text{OBD}}$ |
- 15. ABCD ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁଜର \overline{AC} ଓ \overline{BD} କର୍ଷଦ୍ୱୟ ପରୟରକୁ P ଠାରେ ଛେଦ କରନ୍ତି । O ବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ B ଓ C, \overrightarrow{OP} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । ଯଦି AC = BD ହୁଏ, ତେବେ ପ୍ରମାଣ କର ଯେ
 - (i) AB = CD,
- (ii) PA = PD ଏବଂ (iii) BC II AD |

В

- 17. (i) \triangle ABC ର ପରିବୃତ୍ତର କେନ୍ଦ୍ର O ତ୍ରିଭୁକଟିର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ହେଲେ ପ୍ରମାଣ କର ଯେ $m\angle BAC + m\angle OBC = 90^{\circ}$ ।
 - (ii) ΔABC ର ପରିବୃତ୍ତର କେନ୍ଦ୍ର O ତ୍ରିଭୁଜଟିର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ । O ଏବଂ A, \overline{BC} ର ବିପରୀତ ପାର୍ଶ୍ୱସ୍ଥ ହେଲେ ପ୍ରମାଣ କର ଯେ $m\angle BAC m\angle OBC = 90^{\circ}$ ।
- 18. ପ୍ରମାଣ କର ଯେ ଏକ ଟ୍ରାପିଜିୟମ୍ର ଅସମାନ୍ତର ବାହୁଦ୍ୱୟ ସର୍ବସମ ହେଲେ ଟ୍ରାପିଜିୟମ୍ଟି ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେବ ।
- 19. ଦୁଇଟି ବୃତ୍ତ ପରୟରକୁ P ଓ Q ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । P ବିନ୍ଦୁ ମଧ୍ୟ ଦେଇ ଏକ ସରଳରେଖା ବୃତ୍ତଦ୍ୱୟକୁ K ଓ L ବିନ୍ଦୁରେ ଛେଦ କରେ । ସେହିପରି Q ମଧ୍ୟ ଦେଇ ଏକ ସରଳରେଖା ବୃତ୍ତଦ୍ୱୟକୁ M ଓ N ବିନ୍ଦୁରେ ଛେଦ କରେ । K ଓ M \overline{PQ} ର ଏକ ପାର୍ଶ୍ୱରେ ଥିଲେ ପ୍ରମାଣ କର ଯେ \overline{KM} Π \overline{LN} ।
- $20.~{
 m ABCD}~{
 m Va}$ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକରେ $\angle B$ ଓ $\angle D$ ର ସମଦ୍ୱିଖଣ୍ଡକ ଦ୍ୱୟ ପରସ୍କରକୁ E ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । $\overleftrightarrow{
 m DE}~$ ବୃତ୍ତକୁ F ବିନ୍ଦୁରେ ଛେଦ କଲେ ପ୍ରମାଣ କର ଯେ $\overline{
 m BE}~\perp \overline{
 m BF}~$ ।
- 21. ΔABC ର କୋଣମାନଙ୍କର ସମଦ୍ୱିଖଣ୍ଡକମାନେ ତ୍ରିଭୁଜର ପରିବୃତ୍ତକୁ $X,\,Y,\,$ ଓ Z ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ ΔXYZ ର କୋଣମାନଙ୍କର ପରିମାଣ ଯଥାକ୍ରମେ $90^{0}-\frac{1}{2}\,\mathrm{m}\angle A,\,\,90^{0}-\frac{1}{2}\,\mathrm{m}\angle B$ ଓ $90^{0}-\frac{1}{2}\,\mathrm{m}\angle C$ ।
- 22. ΔABC ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ସମବାହୁ ତ୍ରିଭୁଜ । \overline{BC} ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ କ୍ଷୁଦ୍ର ଚାପ ଉପରେ P ଏକ ବିନ୍ଦୁ । ପ୍ରମାଣ କର ଯେ PA=PB+PC ।
 - (ସୂଚନା : \overrightarrow{BP} ଉପରେ D ନିଅ ଯେପରି PC = PD ହେବ । ΔBCD ଓ ΔACP ର ତୁଳନା କର ।)
- 23. $\triangle ABC$ ରେ $\angle A$ ର ସମଦ୍ୱିଖଣ୍ଡକ $\triangle ABC$ ର ପରିବୃତ୍ତକୁ P ବିନ୍ଦୁରେ ଛେଦ କରେ । P ବିନ୍ଦୁରୁ \overrightarrow{AB} ଓ \overrightarrow{AC} ପ୍ରତି ଅଙ୍କିତ ଲୟ ଦ୍ୱୟର ପାଦବିନ୍ଦୁ ଯଥାକୁମେ Q ଏବଂ R । ପ୍ରମାଣ କର ଯେ $AQ = AR = \frac{AB + AC}{2}$ । (ସୂଚନା : ଦର୍ଶାଅ ଯେ $\triangle PBQ \cong \triangle PCR \Rightarrow BQ = CR$)

24. ΔABC ରେ $\angle A$ ର ସମଦ୍ୱିଖଣ୍ଡକ ΔABC ର ପରିବୃତ୍ତକୁ P ବିନ୍ଦୁରେ ଛେଦ କରେ । \overline{AP} ଓ \overline{BC} ର ଛେଦ ବିନ୍ଦୁ D ହେଲେ ପ୍ରମାଣ କର ଯେ ΔABD ଓ ΔAPC ସଦୃଶ ଅଟନ୍ତି । ସୁତରାଂ ଦର୍ଶାଅ ଯେ

$$AB \cdot AC = BD \cdot DC + AD^2$$

(ସୂଚନା :
$$\triangle ABD$$
 ଓ $\triangle APC$ ସଦୂଶ $\Rightarrow AB$. $AC = AD$. AP , $AD^2 = AD$ $(AP - PD)$)

25. (ଟଲେମୀଙ୍କ ଉପପାଦ୍ୟ) ABCD ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭଜ ହେଲେ ପ୍ରମାଣ କର ଯେ

$$AC.BD = AB \cdot CD + BC \cdot AD$$

(ଅର୍ଥାତ୍ ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକରେ କର୍ଷଦ୍ୱୟର ଦିର୍ଘ୍ୟର ଗୁଣଫଳ, ଚତୁର୍ଭୁକର ସମ୍ମୁଖୀନ ବାହୁମାନଙ୍କର ଦିର୍ଘ୍ୟର ଗୁଣଫଳର ସମଷ୍ଟି ସଙ୍ଗେ ସମାନ ।)

(ସୂଚନା: ମନେକର m∠ADB > m∠BDC | E, \overline{AC} ଉପରେ ଏପରି ଏକ ବିନ୍ଦୁ ହେଉ ଯେପରି

$$m \angle BDC = m \angle ADE$$
 ା ବର୍ତ୍ତମାନ ΔADE ଏବଂ ΔBDC ସଦୃଶ $\Rightarrow \frac{AE}{BC} = \frac{AD}{BD}$ ।

ପୁନଣ୍ଟ
$$\Delta ADB$$
 ଏବଂ ΔEDC ସଦୃଶ $\Rightarrow \frac{CD}{BD} = \frac{EC}{AB}$)

ବୃତ୍ତର ସ୍ପର୍ଶକ

3.1 ଉପକ୍ମଣିକା (Introduction) :

ଆମେ ପୂର୍ବ ଆଲୋଚନାରୁ ଜାଣୁ ଯେ, ଗୋଟିଏ ସରଳରେଖା ଏକ ବୃତ୍ତକୁ ଦୁଇରୁ ଅଧିକ ବିନ୍ଦୁରେ ଛେଦ କରିବ ନାହିଁ । ବର୍ତ୍ତମାନ ଆସ ଖାତାର ଗୋଟିଏ ପୃଷ୍ପାରେ ଗୋଟିଏ ବୃତ୍ତ ଏବଂ ସେହି ପୃଷ୍ପାରେ ଗୋଟିଏ ସରଳରେଖା ଅଙ୍କନ କରିବା । ଚିତ୍ରରେ ଦର୍ଶାଯାଇଥିବା ସମ୍ଭାବନା ମଧ୍ୟରୁ କରିଥିବା ଅଙ୍କନରେ ଅନ୍ୟ କୌଣସି ସମ୍ଭାବନା ଉପୁକୁଛି କି ? ପରୀକ୍ଷା କରି ଦେଖ ।

ଏକ ସମତଳରେ ବୃତ୍ତଟି ଅଙ୍କନ କଲା ପରେ, ସରଳରେଖାଟିଏ ଅଙ୍କନ କଲେ ଅଙ୍କନ ପରେ ତିନିଗୋଟି ସୟାବନା ଉପୁଜେ । ତାହା ହେଲା – (i) ସରଳରେଖାଟି ବୃତ୍ତକୁ ଛେଦ କରେ ନାହିଁ (ଚିତ୍ର 3.1(a)) (ii) ସରଳରେଖାଟି ବୃତ୍ତକୁ ଦୁଇଟି ବିନ୍ଦୁରେ ଛେଦ କରେ (ଚିତ୍ର 3.1(b)) ଏବଂ (iii) ସରଳରେଖାଟି ବୃତ୍ତକୁ ଗୋଟିଏ ମାତ୍ର ବିନ୍ଦୁରେ ଛେଦ କରେ (ଚିତ୍ର 3.1(c)) ।

- ଚିତ୍ର 3.1(a) ରେ ସରଳରେଖା \mathbf{L} ଓ ବୃତ୍ତ ମଧ୍ୟରେ କୌଣସି ସାଧାରଣ ବିନ୍ଦୁ ନାହିଁ । ଅର୍ଥାତ୍ ସରଳରେଖା \mathbf{L} , ବୃତ୍ତ \mathbf{ABC} ର ବହିଃସ୍ଥ ବା ସରଳରେଖା \mathbf{L} ଓ ବୃତ୍ତ \mathbf{ABC} ପରସ୍କର ଅଣହ୍ରେଦୀ ।
- ଚିତ୍ର 3.1(b) ରେ ସରଳରେଖା L ଓ ବୃତ୍ତ ABC ଉଭୟର ଦୁଇଟି ସାଧାରଣ ବିନ୍ଦୁ (ବା ଛେଦବିନ୍ଦୁ) ଅଛତି । ଏପରି କ୍ଷେତ୍ରରେ ସରଳରେଖା L ଓ ବୃତ୍ତ ABC କୁ ପର୍ୟର୍ଚ୍ଚେଦୀ ବୋଲି କୁହାଯାଏ ଏବଂ L କୁ ବୃତ୍ତ ABC ର ଏକ **ଛେଦକ ରେଖା (Secant)** କୁହାଯାଏ । P ଓ Q ହେଉଛଡି ଛେଦବିନ୍ଦୁ ।

ଚିତ୍ର - 3.1(c) ରେ ସରଳରେଖା $\mathbf L$ ଓ ବୃତ୍ତ $\mathbf ABC$ ପର୍ୟରଚ୍ଛେଦୀ, ମାତ୍ର ଏ କ୍ଷେତ୍ରରେ ଛେଦବିନ୍ଦୁ (ବା ସାଧାରଣ ବିନ୍ଦୁ) ସଂଖ୍ୟା ଏକ । ଏପରି ଅବସ୍ଥାରେ ସରଳରେଖା L କୁ ବୃଭ ABC ର ଏକ ସର୍ଶକ (tangent) କୁହାଯାଏ ଏବଂ T ବିନ୍ଦୁ ହେଉଛି L ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁ (Point of contact) ।

ସଂଜ୍ଞା : ଗୋଟିଏ ସମତଳରେ ଅବସ୍ଥିତ ଏକବୃଦ୍ଧ ଓ ଏକ ସରଳରେଖାର ଗୋଟିଏ ମାତ୍ର ସାଧାରଣ ବିନ୍ଦୁ (ବା ଛେଦବିନ୍ଦୁ) ଥିଲେ, ଉକ୍ତ ସରଳରେଖାକୁ ବୃତ୍ତର ଏକ ସ୍ପର୍ଶକ କୁହାଯାଏ ଏବଂ ସେମାନଙ୍କର ସାଧାରଣ ବିନ୍ଦୁକୁ ସମ୍ପକ୍ତ ସର୍ଶକର ସର୍ଶବିନ୍ଦୁ କୁହାଯାଏ I

ଚିତ୍ର 3.1(c) ରେ ବୃତ୍ତ ABC ର ଗୋଟିଏ ସର୍ଶକ ହେଉଛି L ଏବଂ T ହେଉଛି ଉକ୍ତ ସର୍ଶକର ସର୍ଶବିନ୍ଦ୍ର ।

ମନ୍ତବ୍ୟ : L ସରଳରେଖା ବୃତ୍ତକୁ T ବିନ୍ଦୁରେ ଛେଦ କରେ କହିବା ପରିବର୍ତ୍ତେ L ସରଳରେଖା ବୃତ୍ତକୁ T ବିନ୍ଦୁରେ ସର୍ଶ କରେ ବୋଲି କହିବା ।

ବୃତ୍ତର କେନ୍ଦ୍ର ଓ ୟର୍ଶବିନ୍ଦୁକୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡକୁ ସର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ କୁହାଯାଏ ।

L ସରଳରେଖା ଉପରିସ୍ଥ ସର୍ଶବିନ୍ଦୁ T ଭିନ୍ନ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ Q ନେଲେ ଏହା ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ ହେବ (ଚିତ୍ର 3.2) । ନଚେତ୍ର \overrightarrow{PQ} ଅର୍ଥାତ୍ର L ରେଖା ବୃତ୍ତକୁ ଦୁଇଟି ବିନ୍ଦୁରେ ଛେଦ କରିବ । (ବୃତ୍ତ ସମ୍ବନ୍ଧୀୟ ଅଧ୍ୟାୟର ପ୍ରମେୟ - 2.1 ଅନୁସିଦ୍ଧାନ୍ତ -2 ପରବର୍ତ୍ତୀ ଆଲୋଚନା ଦେଖ) । ସୂତରାଂ ଆମେ ମନେ ରଖିବା ଉଚିତ ଯେ, **କୌଣସି** ବୃତ୍ତର ଏକ ସର୍ଶକର ସର୍ଶବିନ୍ଦୁ ବ୍ୟତୀତ ଅନ୍ୟ ସମୟ ବିନ୍ଦୁ ବୃତ୍ତର ବହିଃସ୍ଥ ଅଟନ୍ତି ।

ଉପପାଦ୍ୟ - 12

ଗୋଟିଏ ବୃତ୍ତର ଏକ ସର୍ଶକ ଏହାର ସର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ପ୍ରତି ଲୟ I

(A tangent to a circle is perpendicular to the radius drawn through the point of contact.)

ଦଉ : ABC ବୃତ୍ତର କେନ୍ଦ୍ର O , L ରେଖା ଏକ ସ୍ପର୍ଶକ ଓ P ବିନ୍ଦୁ

ହେଉଛି ସ୍ପର୍ଶବିନ୍ଦ୍ର । $\overline{\mathrm{OP}}$ ହେଉଛି P ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ।

ପାମାଣ୍ୟ : OP \perp L

ପ୍ରମାଣ : P ଭିନ୍ନ, ରେଖା L ଉପରିସ୍ଥ ଅନ୍ୟ ଯେକୌଣସି $\stackrel{\longleftarrow}{}_L$

ବିନ୍ଦୁ Q, ABC ବୃତ୍ତର ବହିଃସ୍ଥ ।

m ... O ବିନ୍ଦୁରୁ m L ରେଖା ପ୍ରତି ଅଙ୍କିତ ରେଖାଖଣ୍ଡମାନଙ୍କ ମଧ୍ୟରେ $m \overline{OP}$ ର ଦୈର୍ଘ୍ୟ କ୍ଷଦ୍ରତମ ।

(ପ୍ରମାଣିତ) $\Rightarrow \overline{OP} \perp L$

ପ୍ରମେୟ -3.1 : (ଉପପାଦ୍ୟ - 12 ର ବିପରୀତ କଥନ ଓ ପ୍ରମାଣ) :

ବୃତ୍ତର କୌଣସି ବିନ୍ଦୁରେ, ଉକ୍ତ ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ପ୍ରତି ଅଙ୍କିତ ଲୟ, ଉକ୍ତ ବୃତ୍ତର ଏକ ସ୍ପର୍ଶକ ଅଟେ । (The line drawn perpendicular to the radius at a point of a circle through that point, is a tangent to the circle.)

ଦତ୍ତ: ABC ବୃତ୍ତର କେନ୍ଦ୍ର O । ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ P,P ବିନ୍ଦୁଠାରେ ଅଙ୍କିତ ବ୍ୟାସାର୍ଦ୍ଧ \overline{OP} ଏବଂ $L \perp \overline{OP}$ । ପ୍ରାମାଣ୍ୟ : L ରେଖା ABC ବୃତ୍ତର ଏକ ସ୍ୱର୍ଶକ ।

ଅଙ୍କନ : L ରେଖା ଉପରେ , P ବିନ୍ଦୁଠାରୁ ଭିନ୍ନ ଏକ ବିନ୍ଦୁ Q ନିଆଯାଉ । \overline{QQ} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : $L \perp \overline{OP}$ (ଦଉ)

 \therefore OPQ ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ ଏବଂ $\overline{\mathrm{OQ}}$ ଏହାର କର୍ତ୍ତ ।

ଅର୍ଥାତ୍ OQ, ବୃତ୍ତର ବ୍ୟସାର୍ଦ୍ଧ OP ଠାରୁ ବୃହତ୍ତର । $\left(\cdot \cdot \cdot \overrightarrow{OP} \right.$ ଏକ ବ୍ୟାସାର୍ଦ୍ଧ) L ଏଣୁ, Q ବିନ୍ଦୁ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ ।

 \Rightarrow P ବିନ୍ଦୁ ହେଉଛି ବୃତ୍ତ ABC ଓ ରେଖା L ର ଏକମାତ୍ର ସାଧାରଣ ବିନ୍ଦୁ ।

∴ L ରେଖା, ବୃତ୍ତ ABC ର ଏକ ସର୍ଶକ ।

(ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ (1) : ଏକ ବୃତ୍ତର କୌଣସି ଏକ ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁଠାରେ ଉକ୍ତ ସ୍ପର୍ଶକ ପ୍ରତି ଲୟ, କେନ୍ଦ୍ର ବିନ୍ଦୁଗାମୀ ହେବ ।

ଅନୁସିଦ୍ଧାନ୍ତ (2) : ବୃତ୍ତର ଯେକୌଣସି ବିନ୍ଦୁଠାରେ ଗୋଟିଏ ଏବଂ କେବଳ ଗୋଟିଏ ସର୍ଶକ ଅଙ୍କିତ ହୋଇପାରିବ । କାରଣ P ବୃତ୍ତ ଉପରିସ୍ଥ ଯେକୌଣସି ବିନ୍ଦୁ ହେଲେ ବ୍ୟାସାର୍ଦ୍ଧ \overline{OP} ର P ଠାରେ \overline{OP} ପ୍ରତି କେବଳ ଗୋଟିଏ ମାତ୍ର ଲୟ ଅଙ୍କିତ ହୋଇପାରିବ । ତେଣୁ ଗୋଟିଏ ବୃତ୍ତର ଅସଂଖ୍ୟ ସ୍ତର୍ଶକ ରହିଅଛି ।

(ଚିତ୍ର 3.3)

ଦ୍ରଷ୍ଟବ୍ୟ : ଚିତ୍ର 3.4 ରେ S ବୃତ୍ତର କେନ୍ଦ୍ର O । ବୃତ୍ତ ଉପରେ ତିନୋଟି ବିନ୍ଦୁ P, $Q \otimes R$ ନିଆଯାଇ ଉକ୍ତ ବିନ୍ଦୁମାନଙ୍କଠାରେ ସ୍ୱର୍ଶକମାନ ଅଙ୍କନ କରାଯାଇଛି । ଯେପରିକି ସେମାନଙ୍କର ଛେଦବିନ୍ଦୁ ମାନଙ୍କ ଦ୍ୱାରା ABC ତ୍ରିଭୁଜ ଗଠିତ ହେଉଛି ଏବଂ ବୃତ୍ତ S,

(ଚିତ୍ର 3.4)

 ΔABC ର ଅନ୍ତର୍ଦେଶରେ ରହିଛି । P,Q,R ବିନ୍ଦୁତ୍ରୟର ବିଭିନ୍ନ ଅବସ୍ଥାନକୁ ନେଇ ଆମେ ଭିନ୍ନ ଭିନ୍ନ ତିଭୁଜ ପାଇବା । ଅନ୍ୟ ପକ୍ଷରେ ଯେ କୌଣସି ଏକ ତିଭୁଜ ABC ଦଉ ଥିଲେ ଏହାର ପ୍ରତ୍ୟେକ ବାହୁକୁ ସ୍ପର୍ଶ କରୁଥିବା କେବଳ ଗୋଟିଏ ମାତ୍ର ବୃଉ PQR ନିର୍ଣ୍ଣୟ କରାଯାଇପାରିବ । ଉକ୍ତ ବୃଉକୁ ତିଭୁଜର ଅନ୍ତର୍ଲିଖିତ ବୃଉ ବା ଅନ୍ତଃବୃଉ (Incircle) କୁହାଯାଏ ଏବଂ ଉକ୍ତ ବୃଉର କେନ୍ଦ୍ର O କୁ ତିଭୁଜର ଅନ୍ତଃକେନ୍ଦ୍ର (Incentre) କୁହାଯାଏ । P,Q,R ସ୍ପର୍ଶ ବିନ୍ଦୁ ହୋଇଥବାରୁ $\overline{OP}, \overline{OQ}, \overline{OR}$ ଯଥାକୁମେ ତିଭୁଜର ବାହୁ $\overline{AB}, \overline{BC}, \emptyset \overline{CA}$ ପ୍ରତି ଲୟ ଅଟନ୍ତି । ଏହା ସହଜରେ ପ୍ରମାଣ କରାଯାଇ ପାରିବ ଯେ \overline{OA} \overline{OB} ଓ \overline{OC} ଯଥାକୁମେ $\angle A, \angle B$ ଓ $\angle C$ ର ସମଦ୍ୱିଷକ ଅଟନ୍ତି । A ବୃଉର ବହିଃସ୍ଥ ବିନ୍ଦୁରୁ ବୃଉ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ :

ତୁମ ଖାତାର ଗୋଟିଏ ପୃଷ୍ଠାରେ ବୃତ୍ତଟିଏ ଅଙ୍କନ କର ଏବଂ ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶରେ ଗୋଟିଏ ବିନ୍ଦୁ ଚିହ୍ନଟ କରି ତାର ନାମ ଦିଅ P । P ବିନ୍ଦୁ ଦେଇ ଯେତେ ସୟବ ରେଖା ଅଙ୍କନ କର । ଚିତ୍ର 3.5 ଭଳି ଚିତ୍ରଟିଏ ପାଇବ । ସେହି

ଚିତ୍ରରେ P ବିନ୍ଦୁ ଦେଇ ଅଙ୍କିତ ଛଅଗୋଟି ରେଖା $L_{_1}, L_{_2}, L_{_3},...L_{_6}$ ମଧ୍ୟରୁ କେବଳ ଦୁଇଟି $L_{_1}$ ଓ $L_{_5}$ ଚିତ୍ରରେ ଥବା ବୃତ୍ତ ପ୍ରତି ୱର୍ଶକ ହୋଇଥିବାର ଦେଖିବ ।

ଏଣୁ ଆମେ ଏହି କାର୍ଯ୍ୟରୁ ଜାଣିଲେ ଯେ ଗୋଟିଏ ବୃତ୍ତର ବହିଃସ୍ଥ କୌଣସି ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଦୁଇଟି ଏବଂ କେବଳ ଦୁଇଟି ସ୍ପର୍ଶକ ଅଙ୍କନ ସମ୍ଭବ (ଅବଶ୍ୟ ଏହା ପ୍ରମାଣ ଯୋଗ୍ୟ ତଥ୍ୟ) । ମାତ୍ର ଏହାର ପ୍ରମାଣ ଆମ ଆଲୋଚନାର ପରିସରଭୁକ୍ତ ନୃହେଁ ।

ବୃଦ୍ଧ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ରଣ୍ଣି : ଚିତ୍ର 3.5 ରେ P ବିନ୍ଦୁଗାମୀ ରେଖା L_1 ଓ L_5 ପ୍ରତ୍ୟେକ ବୃଦ୍ଧ ପ୍ରତି ସ୍ପର୍ଶକ । ଚିତ୍ରରୁ ସ୍ପଷ୍ଟ ଯେ, $\overrightarrow{PM} \subset L_1$ ଏବଂ $\overrightarrow{PN} \subset L_5$ । ସ୍ପର୍ଶକ L_1 ର ସ୍ୱର୍ଶବିନ୍ଦୁ M, \overrightarrow{PM} ଉପରେ ଅବସ୍ଥିତ ଏବଂ ସ୍ପର୍ଶକ L_5 ର ସ୍ପର୍ଶବିନ୍ଦୁ N, \overrightarrow{PN} ଉପରେ ଅବସ୍ଥିତ ହେତୁ \overrightarrow{PM} ଓ \overrightarrow{PN} ମଧ୍ୟ ବୃଦ୍ଧକୁ ଗୋଟିଏ ଗୋଟିଏ ବିନ୍ଦୁରେ ସ୍ପର୍ଶ କରନ୍ତି । ଏଣୁ ଆମେ \overrightarrow{PM} ଓ \overrightarrow{PN} କୁ ବୃଦ୍ଧ ବହଃସ୍ଥ P ବିନ୍ଦୁରୁ ବୃଦ୍ଧ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ରଶ୍ମି ବୋଲି କହିବା । ଚିତ୍ର 3.5 ରେ \overrightarrow{PM} ଓ \overrightarrow{PN} ପ୍ରତ୍ୟେକ, ସମ୍ପୃକ୍ତ ବୃଦ୍ଧର ଗୋଟିଏ ଗୋଟିଏ ସ୍ପର୍ଶକ ରଶ୍ମି ଏବଂ M ଓ N ଯଥାକ୍ରମେ \overrightarrow{PM} ଓ \overrightarrow{PN} ର ସ୍ପର୍ଶବିନ୍ଦୁ । ପ୍ରକାଶ ଥାଉକି ପ୍ରତ୍ୟେକ ସ୍ପର୍ଶକ ରଶ୍ମି ବୃଦ୍ଧର ଗୋଟିଏ ଗୋଟିଏ ସ୍ପର୍ଶକ ଅଟନ୍ତି ।

ସର୍ଶକ -ଖଣ୍ଡ (Tangent segment) : ଚିତ୍ର 3.5 ରେ ବୃତ୍ତର ବହିଃସ୍ଥ P ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସର୍ଶକ L_1 ର ସର୍ଶ ବିନ୍ଦୁ M ଏବଂ ସର୍ଶକ L_2 ର ସର୍ଶବିନ୍ଦୁ N ।

 \overline{PM} ଓ \overline{PN} ପ୍ରତ୍ୟେକକୁ ବୃତ୍ତ ବହିଃସ୍ଥ P ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ **ସର୍ଶକ-ଖଣ୍ଡ** କୁହାଯାଏ । ଏକ ସର୍ଶକ ଗୋଟିଏ ରେଖା ହୋଇଥିବାରୁ ଏହାର କୌଣସି ନିର୍ଦ୍ଦିଷ୍ଟ ଦୈର୍ଘ୍ୟ ନ ଥାଏ । ମାତ୍ର ଏକ ସ୍ପର୍ଶକ-ଖଣ୍ଡ ଗୋଟିଏ ରେଖାଖଣ୍ଡ ହୋଇଥିବାରୁ **ଉକ୍ତ ସ୍ପର୍ଶକ ଖଣ୍ଡର ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୈର୍ଘ୍ୟ ଥାଏ ।**

ଟୀକା : 'ବୃତ୍ତ ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ' କହିଲେ ଆମେ ବୃତ୍ତର ସମତଳରେ ତଥା ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶରେ ଥିବା ଏକ ବିନ୍ଦୁକୁ ବୁଝିବା ।

ଉପପାଦ୍ୟ - 13

କୌଣସି ବୃତ୍ତର ବହିଃସୁ ଏକ ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃଦ୍ଧ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ଖଣ୍ଡ ଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ସମାନ । (The lengths of two tangent segments drawn to a circle from an external point are equal.)

ଦତ୍ତ : ବୃତ୍ତ C ର କେନ୍ଦ୍ର O ଏବଂ ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P P ବିନ୍ଦୁରୁ C ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଦୁଇଟି ସ୍ପର୍ଶକ ଖଣ୍ଡ ହେଉଛନ୍ତି \overline{PQ} ଓ \overline{PR} ଏବଂ Q ଓ R ଯଥାକ୍ରମେ ସେମାନଙ୍କର ସ୍ୱର୍ଶବିନ୍ଦୁ I

ପ୍ରାମାଶ୍ୟ : PQ = PR

ଅଙ୍କନ : $\overline{\mathrm{OP}}$, $\overline{\mathrm{OQ}}$ ଏବଂ $\overline{\mathrm{OR}}$ ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଣ: ΔOQP ଏବଂ Δ ORP ରେ

 $\because \begin{cases} \angle OQP \cong \angle ORP \ (ext{ପ୍ରତ୍ୟେକ ସମକୋଣ } I \ \because \ \overline{OQ} \ ext{ଏବଂ } \ \overline{OR} \ ext{ } \ ext{g} \ ext{ଶିବିନ୍ଦୁ ଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ}) \end{cases}$ $\hookrightarrow \begin{cases} \triangle OQP \cong \angle ORP \ (ext{ପ୍ରତ୍ୟେକ ସମକୋଣ } I \ \because \ \overline{OQ} \ ext{ } \ \overline{OQ} \ ext{ } \ \overline{OR} \end{cases} \ (ext{ଏକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ})$

 $\therefore \Delta \ \mathrm{OQP} \cong \Delta \ \mathrm{ORP} \ \ ($ ସ.କ.ବା ସର୍ବସମତା)

 $\Rightarrow \overline{PQ} \cong \overline{PR}$ (ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ ବାହୁ) ଅର୍ଥାତ୍ PQ = PR (ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ - (1) : କୌଣସି ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P ଠାରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ଖଣ୍ଡ \overline{PQ} ଓ \overline{PR} ହେଲେ ଏବଂ O ବୃତ୍ତର କେନ୍ଦ୍ର ହେଲେ, \overline{PO} , $\angle QPR$ ଏବଂ $\angle QOR$ କୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।

ଊପରୋକ୍ତ ଉପପାଦ୍ୟ-13 ରେ ପ୍ରମାଣ କରାଯାଇଛି : $\Delta OQP \cong \Delta ORP$

 \Rightarrow $\angle \mathrm{OPQ}\cong \angle \mathrm{OPR}$ (ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ କୋଣ) ।

ଅର୍ଥାତ୍ $\overline{\mathrm{PO}}$ ଦ୍ୱାରା $\angle\mathrm{QPR}$ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ ।

ପୁନଷ ∠POQ ≅ ∠POR

(ସର୍ବସମ ତ୍ରିଭୁଜର ଅନୁରୂପ କୋଣ) ।

ଅର୍ଥାତ୍ \overline{PO} ଦ୍ୱାରା $\angle QOR$ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ) ।

ଅନୁସିଦ୍ଧାନ୍ତ - (2) : କୌଣସି ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P ଠାରୁ ଅଙ୍କିତ ସ୍ୱର୍ଶକ ଖଣ୍ଡ \overline{PQ} ଓ \overline{PR} ହେଲେ ଏବଂ ବୃତ୍ତର କେନ୍ଦ୍ର O ହେଲେ \overline{PO} , O ଚାପକୁ ସମଦ୍ୱିଖଣ୍ଡ କରେ ।

ଚିତ୍ର 3.7 ରେ \overline{PO} ବୃତ୍ତକୁ M ବିନ୍ଦୁରେ ଛେଦ କରୁଛି । m $\angle QOM = m\angle ROM$ ହେତୁ \overline{QM} ଓ \overline{MR} (ଅଙ୍କନ କରାଯାଇପାରେ) ଜ୍ୟା ଦ୍ୱୟ ସର୍ବସମ । ସୁତରାଂ M, \widehat{QMR} ର ମଧ୍ୟବିନ୍ଦୁ ।

3.3 ଏକାନ୍ତର ଚାପ (Alternate arc) :

ଚିତ୍ର 3.8 ରେ ଥିବା \overrightarrow{ABC} ବୃତ୍ତର \overrightarrow{TA} କ୍ୟା ମଧ୍ୟ ଅଙ୍କିତ । \overrightarrow{TA} କ୍ୟାକୁ \overrightarrow{PQ} ୱର୍ଣ୍ଣକର **ସର୍ଶବିନ୍ଦୁଗାମୀ କ୍ୟା** ବୋଲି କୁହାଯାଏ ।

ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ଜ୍ୟା $\overline{\mathrm{TA}}$, ସ୍ୱର୍ଶକ $\overrightarrow{\mathrm{PQ}}$ ସହ $\angle\mathrm{ATP}$ ଓ $\angle\mathrm{ATQ}$ ଅଙ୍କନ କରେ । ଜ୍ୟା $\overline{\mathrm{TA}}$ ଦ୍ୱାରା ବୃତ୍ତ

 \overrightarrow{ABC} ଉପରେ ଦୁଇଟି ଚାପ \overrightarrow{ABT} ଓ \overrightarrow{ADT} ଉପ୍ନ ହୁଏ । ଏହା ଲକ୍ଷ୍ୟ କରାଯାଇ ପାରେ ଯେ \overrightarrow{TA} କ୍ୟାର ଯେଉଁ ପାର୍ଶ୍ୱରେ ୱର୍ଶକ ଉପରିସ୍ଥ P ବିନ୍ଦୁ ଅବସ୍ଥିତ, ତା'ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ବୃତ୍ତ ଉପରେ B ବିନ୍ଦୁ ଅବସ୍ଥିତ । ଏଠାରେ \overrightarrow{ABT} କୁ $\angle ATP$ ର **ଏକାନ୍ତର ଚାପ** କୁହାଯାଏ ଏବଂ ଏହି ଚାପର ଅନ୍ତର୍ଲିଖିତ $\angle ABT$ କୁ $\angle ATP$ ର **ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ**

କୁହାଯାଏ । $\angle ACT$ ମଧ୍ୟ $\angle ATP$ ର ଅନ୍ୟ ଏକ ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ ଅଟେ । ଅନୁରୂପ କାରଣରୁ $\angle ATQ$ ର ଏକାନ୍ତର ଚାପ ହେଉଛି \widehat{ADT} ଏବଂ ଏକ ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ ହେଉଛି $\angle ADT$ ।

3.3.1 ଏକ ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁଗାମୀ କ୍ୟା ଓ ଉକ୍ତ ସ୍ପର୍ଶକ ଅନ୍ତର୍ଗତ କୋଣ ସମ୍ପର୍କିତ ତଥ୍ୟ :

ଏକ ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁଗାମୀ ଜ୍ୟା ଏବଂ ଉକ୍ତ ସ୍ପର୍ଶକ ଅନ୍ତର୍ଗତ କୋଣ ସହ ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣର ସମ୍ପର୍କକୁ ଆମେ ପରବର୍ତ୍ତୀ ପ୍ରମେୟରେ ପଢ଼ିବା ।

ପ୍ରମେୟ - 3.2 : ବୃତ୍ତର ଏକ ସ୍ପର୍ଶକ, ଏହାର ସ୍ପର୍ଶବିନ୍ଦୁଗାମୀ କୌଣସି ଏକ କ୍ୟା ସହିତ ଯେଉଁ କୋଣ ଉପୁନ୍ନ କରେ, ତା'ର ପରିମାଣ ସହ ଉକ୍ତ କୋଣର ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣର ପରିମାଣ ସମାନ ।

(The measure of an angle formed by a tangent to a circle and a chord through the point of contact is equal to the measure of an angle inscribed in the alternate arc.)

ଦତ : O କେନ୍ଦ୍ର ବିଶିଷ୍ଟ ବୃତ୍ତ PQR ର P ବିନ୍ଦୁରେ ଅଙ୍କିତ ସ୍ୱର୍ଶକ \overrightarrow{AB} ଏବଂ \overrightarrow{PQ} , ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ଏକ ଜ୍ୟା (ଚିତ୍ର 3.9) । \overrightarrow{AB} ସହ \overrightarrow{PQ} ଉପ୍ନ କରୁଥିବା କୋଣ ଦୁଇଟି ହେଲେ $\angle APQ$ ଏବଂ $\angle BPQ$ । $\angle APQ$ ର ଏକାନ୍ତର ଚାପ \overrightarrow{PRQ} ଏବଂ $\angle APQ$ ର ଗୋଟିଏ ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ $\angle PRQ$ । ସେହିପରି $\angle BPQ$ ର ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ $\angle PSQ$ । $\nearrow R$

ସିଦ୍ଧାନ୍ତ : (i) m∠APQ = m ∠PRQ

(ii) m \angle BPQ = m \angle PSQ

ପ୍ରମେୟ - 3.3 : (ପ୍ରମେୟ 3.2 ର ବିପରୀତ କଥନ) :

ଏକ ବୃତ୍ତର କୌଣସି ଏକ ଜ୍ୟା, ଏହାର ଏକ ପ୍ରାନ୍ତବିନ୍ଦୁ ଦେଇ ଅଙ୍କିତ ଏକ ସରଳରେଖା ସହ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ କରେ, ତାହା ଉକ୍ତ କୋଣର ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ ସହ ସମପରିମାଣ ବିଶିଷ୍ଟ ହେଲେ, ସରଳରେଖାଟି ବୃତ୍ତ ପ୍ରତି ଏକ ସ୍ପର୍ଶକ ହେବ ।

(If the angle which a chord makes with the straight line drawn through one end of it is equal in measure to the angle inscribed in the alternate arc of the angle, then the line is a tangent to the circle.)

ଦଉ : PQR ବୃତ୍ତର \overline{PQ} ଏକ ଜ୍ୟା ଏବଂ P ବିନ୍ଦୁଗାମୀ ଏକ ସରଳରେଖା \overleftarrow{AB} । ∠APQ ର ଏକାନ୍ତର

ଚାପାନ୍ତର୍ଲିଖିତ ଏକ କୋଣ ∠PRQ ା m∠APQ = m ∠PRQ

ସିଦ୍ଧାନ୍ତ : \overrightarrow{AB} ହେଉଛି PQR ବୃତ୍ତର P ବିନ୍ଦୁରେ ସର୍ଶକ ।

ମନ୍ତବ୍ୟ : ପ୍ରମେୟ 3.2 ଏବଂ ପ୍ରମେୟ 3.3ର ପ୍ରମାଣ ଆମର ଆଲୋଚନାର ପରିସରଭୁକ୍ତ ନୁହେଁ; କେବଳ ପ୍ରୟୋଗ ଦୃଷ୍ଟିରୁ ସିଦ୍ଧାନ୍ତକୁ ମନେ ରଖିବା ଉଚିତ ।

O

(ଚିତ୍ର 3.9)

3.4 ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ ଦେଇ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଛେଦକ :

ଚିତ୍ର 3.11(a) ରେ L ରେଖା ABC ବୃତ୍ତର ଏକ ଛେଦକ ରେଖା ଏବଂ ଏହା ବୃତ୍ତ ABC କୁ A ଓ B ବିନ୍ଦୁରେ ଛେଦ କରୁଛି $\mid A,B \mid$ ଏବଂ A ଓ B ର ମଧ୍ୟବର୍ତ୍ତୀ ସମୟ ବିନ୍ଦୁ ଭିନ୍ନ L ରେଖା ଉପରିସ୍ଥ ଅନ୍ୟ ସମୟ ବିନ୍ଦୁ ବୃତ୍ତ ABC ର ବହିଃସ୍ଥ \mid

ଚିତ୍ର 3.11(b) ରେ ବୃତ୍ତ ବହିଃସ୍ଥ P ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବିନ୍ଦୁ । ଏଠାରେ ଛେଦକ ରେଖା L,P ବିନ୍ଦୁ ଦେଇ ଅଙ୍କିତ । P ବିନ୍ଦୁ ଦେଇ ବୃତ୍ତ ABC ର ଅନ୍ୟ ଛେଦକ ରେଖା ହେଉଛି $L_{_1}$ । ଏହିଭଳି P ବିନ୍ଦୁ ଦେଇ ଅସଂଖ୍ୟ ଛେଦକ ଅଙ୍କନ ସୟବ ।

ଉପପାଦ୍ୟ - 14

ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ କୌଣସି ଗୋଟିଏ ବିନ୍ଦୁ P ଦେଇ ବୃତ୍ତ ପ୍ରତି ଏକ ସ୍ପର୍ଶକ-ଖଣ୍ଡ \overline{PT} ଏବଂ ଏକ ହେଦକ $\overset{\longleftarrow}{PAB}$ ଅଙ୍କିତ ହେଲେ, $PA \times PB = PT^2$ |

(If from an external point P of a circle a tangent segment \overline{PT} and a secant \overline{PAB} are drawn, then PA x PB = PT².)

ଦଉ : TBA ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ P ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ । P ବିନ୍ଦୁ ଦେଇ ଅଙ୍କିତ ଛେଦକ, ବୃତ୍ତକୁ A ଓ B ବିନ୍ଦୁରେ ଛେଦ କରେ ଏବଂ $\stackrel{\longleftarrow}{PT}$ ସ୍ୱର୍ଶକ, ବୃତ୍ତକୁ T ବିନ୍ଦୁରେ ସ୍ୱର୍ଶ କରେ ।

ପାମାଶ୍ୟ : PA x PB = PT²

ଅଙ୍କନ : $\overline{\mathrm{TA}}$ ଓ $\overline{\mathrm{TB}}$ ଅଙ୍କନ କରାଯାଉ ।

ପ୍ରମାଣ : TAB ବୃତ୍ତର T ବିନ୍ଦୁରେ \overleftarrow{PT} ସ୍ୱର୍ଶକ ଏବଂ \overrightarrow{TA} ହେଉଛି ଏକ ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ଜ୍ୟା । \therefore m \angle PTA = m \angle TBA (ପ୍ରମେୟ - 3.2)

 ΔPTA ଏବଂ ΔPBT ମଧ୍ୟରେ $= m \angle TPA = m \angle TPB \text{ (ସାଧାରଣ କୋଣ) ଏବଂ}$ $= m \angle TBP$

 $\therefore \Delta PTA \sim \Delta PBT \;\; (କୋ-କୋ ସାଦୃଶ୍ୟ)$

ମନ୍ତବ୍ୟ (i) : ଉପରୋକ୍ତ ପ୍ରମାଣରେ, ଛେଦକ ଉପରିସ୍ଥ ବିନ୍ଦୁ P,A ଓ B କୁ P-A-B ରୂପେ ନିଆଯାଇଛି । ସେ ବିନ୍ଦୁ ଡିନୋଟିକୁ P-B-A ରୂପେ ନିଆଗଲେ ମଧ୍ୟ ପ୍ରମାଣରେ କିଛି ପରିବର୍ତ୍ତନ ହେବ ନାହିଁ I

ମନ୍ତବ୍ୟ (ii): ପୂର୍ବ ପ୍ରମାଶିତ ଉପପାଦ୍ୟର ପ୍ରମାଶ କଲାବେଳେ ଚିତ୍ର 3.13 ଭଳି ମଧ୍ୟ ଚିତ୍ର କରାଯା।ଇପାରେ ।

ଅନୁସିଦ୍ଧାନ୍ତ -1: ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ କୌଣସି ଏକ ବିନ୍ଦୁ P ଦେଇ ଦୁଇଟି ଛେଦକ ଯଦି ବୃତ୍ତକୁ ଯଥାକ୍ରମେ A,B ଓ C,D ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି, ତେବେ ସ୍ୱର୍ଶକ \overrightarrow{PT} (ସ୍ୱର୍ଶବିନ୍ଦୁ T) ଅଙ୍କନ କରି ପ୍ରମାଣ କରାଯାଇପାରିବ ଯେ,

 $PA \times PB = PC \times PD$

3.5 ଏକାଧିକ ବୃତ୍ତ ସୟନ୍ଧୀୟ କେତେକ ତଥ୍ୟ:

ଏକ ସମତଳରେ ଅଙ୍କିତ ଦୁଇଟି $\mathbf{S}_{_{1}}$ ଓ $\mathbf{S}_{_{2}}$ ର ବିଭିନ୍ନ ଅବସ୍ଥିତି ନିମ୍ନ ଚିତ୍ରମାନଙ୍କରେ ଦର୍ଶାଯାଇଛି ।

(a) ପରୟର ଅଣଛେଦୀ ବୃତ୍ତ:

ଚିତ୍ର 3.15~(a)ରେ ଥିବା ବୃତ୍ତ $\mathbf{S}_1~$ ଓ $\mathbf{S}_2~$ ପରୟର ଅଣଛେଦୀ ଏବଂ ପରୟରର ବହିଃସ୍ଥ ।

ଚିତ୍ର $3.15\,(c)$ ରେ ଥିବା ବୃତ୍ତ $S_{_1}\,$ ଓ $S_{_2}\,$ ପରଷର ଅଣଛେଦୀ ଏବଂ ବୃତ୍ତ $S_{_1}\,$ ଅନ୍ୟ ବୃତ୍ତ $S_{_2}\,$ ର ଅନ୍ତଃସ୍ଥ ଏବଂ ଉଭୟ ବୃତ୍ତର କେନ୍ଦ୍ର ଅଭିନ୍ନ । ଏପରି ବୃତ୍ତଦ୍ୱୟକୁ ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତ (Concentric circle) କୁହାଯାଏ ।

ଦୁଇଟିରୁ ଅଧିକ ସଂଖ୍ୟକ ବୃତ୍ତ ମଧ୍ୟ ଏକକେନ୍ଦ୍ରିକ ହୋଇପାରନ୍ତି ।

ଦୁଇଟି ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତର ସଂଯୋଗରେ ଏକ ବୃତ୍ତାକୃତି ବଳୟ (Circular annulus) ଗଠିତ ହୁଏ । ଏକ ବୃତ୍ତାକୃତି ବଳୟ ଓ ଏହା ସହ ସଂପୃକ୍ତ ବହିଃସ୍ଥ ବୃତ୍ତର ଅନ୍ତର୍ଦେଶ ଓ ଅନ୍ତଃସ୍ଥ ବୃତ୍ତର ବହିର୍ଦ୍ଦେଶର ଛେଦ ଦ୍ୱାରା ଗଠିତ କ୍ଷେତ୍ରକୁ ବଳୟାକୃତି କ୍ଷେତ୍ର (Annular Region) କୁହାଯାଏ ।

(b) ଗୋଟିଏ ସାଧାରଣ ବିନ୍ଦୁ ଥିବା ବୃତ୍ତ I

ଚିତ୍ର 3.16~(a)ରେ $\mathbf{S}_{_1}~$ ଓ $\mathbf{S}_{_2}~$ ବୃତ୍ତ ଦ୍ୱୟର ଗୋଟିଏ ସାଧାରଣ ବିନ୍ଦୁ ଅଛି ଓ ତାହା ହେଉଛି $\mathbf{P}~$ ।

ଚିତ୍ର 3.16 (b)ରେ S_1 ଓ S_2 ବୃତ୍ତ ଦ୍ୱୟର ଗୋଟିଏ ସାଧାରଣ ବିନ୍ଦୁ ଅଛି ଓ ତାହା ହେଉଛି P । ଏଠାରେ S_2 ବୃତ୍ତର କେନ୍ଦ୍ର, S_1 ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ । (a) ଓ (b) ପ୍ରତ୍ୟେକ ଚିତ୍ରରେ ଥିବା ବୃତ୍ତ ଯୋଡ଼ିକୁ **ସ୍ଧର୍ଶକବୃତ୍ତ** (tangent circles) କୁହାଯାଏ । ଚିତ୍ର(a)ରେ ଥିବା ସ୍ୱର୍ଶକବୃତ୍ତ ଦ୍ୱୟଙ୍କୁ **ବହିଃସର୍ଶୀ ବୃତ୍ତ** (Externally tangent circles) ଓ ଚିତ୍ର (b)ରେ ଥିବା ସ୍ୱର୍ଶକ ବୃତ୍ତ ଦ୍ୱୟଙ୍କୁ ଅ**ତଃସର୍ଶୀ ବୃତ୍ତ** (Internally tangent circles) କୁହାଯାଏ ।

(c) ଦୁଇଟି ବିନ୍ଦୁରେ ପରୟରକୁ ଛେଦ କରୁଥିବା ବୃତ୍ତ :

ଚିତ୍ର 3.17 (a) ଓ (b) ପ୍ରତ୍ୟେକରେ ଥିବା ବୃତ୍ତ S_1 ଓ S_2 ପରୟରକୁ ଦୁଇଟି ବିନ୍ଦୁ P ଓ Q ରେ ଛେଦ କରନ୍ତି । ଚିତ୍ର (a) ଓ (b)ରେ ବୃତ୍ତଯୋଡ଼ିଦ୍ୱୟ ମଧ୍ୟରେ ବିଶେଷ କିଛି ପାର୍ଥକ୍ୟ ନାହିଁ । (a) ଚିତ୍ରରେ ଥିବା ବୃତ୍ତଦ୍ୱୟର କେନ୍ଦ୍ର ଦୁଇଟି ଉଭୟ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ ଥିବା ବେଳେ (b) ଚିତ୍ରରେ ଥବା ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର ଦୁଇଟି ମଧ୍ୟରୁ ପ୍ରତ୍ୟେକ କେବଳ ଗୋଟିଏ ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ ।

ଚିତ୍ର 3.18 ରେ ମଧ୍ୟ ଦୁଇଟି ବିନ୍ଦୁରେ ପରସ୍ପରକୁ ଛେଦ କରୁଥିବା ଦୁଇଟି ବୃତ୍ତ S_1 ଓ S_2 ଦର୍ଶାଯାଇଛି । P ଓ Q ହେଉଛନ୍ତି ବୃତ୍ତ ଦ୍ୱୟର ଛେଦବିନ୍ଦୁ । $\stackrel{\longleftarrow}{PQ}$ ରେଖାକୁ ବୃତ୍ତ ଦ୍ୱୟର **ରାଡ଼ିକାଲ୍ ଅକ୍ଷ (Radical axis)** କୁହାଯାଏ । $\stackrel{\longleftarrow}{N}$ ରେଖାକୁ ବୃତ୍ତ ଦ୍ୱୟର **ରାଡ଼ିକାଲ୍ ଅକ୍ଷ (Qaba ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକଖ**ଣ୍ଡ ଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ସମାନ ।

ରାଡ଼ିକାଲ୍ ଅକ୍ଷ ସମ୍ଭନ୍ଧରେ ଉଚ୍ଚତର ଗଣିତରେ ଅଧିକ ଜାଣିବ । \overline{PQ} ରେଖାଖଣ୍ଡକୁ ବୃତ୍ତ ଦ୍ୱୟର **ସାଧାରଣ ଜ୍ୟା** (Common chord) କୁହାଯାଏ ।

(ଚିତ୍ର 3.18)

3.6 ସାଧାରଣ ସର୍ଶକ (Common Tangents)

ଏକ ସମତଳରେ ଥିବା ଦୁଇଟି ବୃତ୍ତକୁ ସେହି ସମତଳରେ ଯେଉଁ ସରଳରେଖା ସ୍କର୍ଶ କରେ ତାକୁ ଉକ୍ତ ବୃତ୍ତ ଦ୍ୱୟର ସାଧାରଣ ସର୍ଶକ (Common tangent) କୁହାଯାଏ । ବିଭିନ୍ନ ପ୍ରକାର ଅବସ୍ଥିତିରେ ଦୁଇଟି ବୃତ୍ତର ସାଧାରଣ ସର୍ଶକର ଚିତ୍ର ନିମ୍ବରେ ଦର୍ଶାଯାଇଛି ।

(a) ପରୟର ଅଣଛେଦୀ ବୃତ୍ତର ସାଧାରଣ ୟର୍ଶକ:

ଚିତ୍ର 3.19 (a) ଓ (b) ପ୍ରତ୍ୟେକରେ ଦୁଇଟି ଅଣଛେଦୀ ତଥା ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତର ଚିତ୍ର ଦର୍ଶାଯାଇଛି । ଚିତ୍ର 3.19 (a)ରେ ଥିବା S_1 ଓ S_2 ଉଭୟ ବୃତ୍ତକୁ L_1 ସରଳରେଖା ସ୍ୱର୍ଶ କରୁଛି । ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର O_1 ଓ O_2 ଉଭୟ C_1 ରେଖାର ଗୋଟିଏ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । ଏପରି ସ୍ଥଳେ C_1 ରେଖାକୁ ବୃତ୍ତଦ୍ୱୟର **ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ (direct common tangent)** କୁହାଯାଏ । C_2 ରେଖା ମଧ୍ୟ ଚିତ୍ର C_2 ଉତ୍ତର ଥିବା ବୃତ୍ତ ଦ୍ୱୟର ଅନ୍ୟ ଏକ ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ । ଏଣୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଦୁଇଟି ଅଣଛେଦୀ ତଥା ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତର ଦୁଇଗୋଟି ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ ଥାଏ (ଚିତ୍ର C_2 C_2 ଓଡ଼େ ଅଣ୍ଟେଦୀ ତଥା ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତର ଦୁଇଗୋଟି ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ ଥାଏ (ଚିତ୍ର C_2 C_2 ଓଡ଼େ ଓଡ଼ିଆ ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତର ଦୁଇଗୋଟି ସରଳ

ଚିତ୍ର 3.19~(b)ରେ ଥିବା $S_3~$ ଓ $S_4~$ ବୃତ୍ତ ଦ୍ୱୟକୁ L_3 ସରଳରେଖା ସ୍ପର୍ଶ କରୁଛି ଏବଂ ଲକ୍ଷ୍ୟ କରାଯାଇପାରେ ଯେ କେନ୍ଦ୍ର $O_3~$ ଏବଂ O_4 , $L_3~$ ରେଖାର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅଛନ୍ତି । ଏପରି କ୍ଷେତ୍ରରେ, ବୃତ୍ତ ଦ୍ୱୟର ସାଧାରଣ ସ୍ପର୍ଶକକୁ **ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସର୍ଶକ (transverse common tangent)** କୁହାଯାଏ ।

ଚିତ୍ରରୁ ସମ୍ବ ଯେ ଦୁଇଟି ଅଣଛେଦୀ ତଥା ପରସ୍କର ବହିଃସ୍ଥ ବୃତ୍ତ ଲାଗି ଦୁଇଟି ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ଥାଏ ।(ଚିତ୍ର 3.19 (b))

ଚିତ୍ର 3.20 ରେ ଦୁଇଟି ଅଣଛେଦୀ ବୃତ୍ତ \mathbb{S}_1 ଓ \mathbb{S}_2 ମଧ୍ୟରୁ \mathbb{S}_2 ବୃତ୍ତ \mathbb{S}_1 ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ । ଏଣୁ ଏପରି କ୍ଷେତ୍ରରେ କୌଣସି ସାଧାରଣ ସ୍ପର୍ଶକ ରହିବା ସମ୍ପବ ନୁହେଁ ।

- (i) ବହିଃୟର୍ଶୀ ସର୍ଶକ ବୃତ୍ତର ସରଳ ସାଧାରଣ ସର୍ଶକ : ଚିତ୍ର 3.21~(a)ରେ $S_1~$ ଓ $S_2~$ ବୃତ୍ତ ଦ୍ୱୟ ସର୍ଶକ ବୃତ୍ତ (ବହିଃସର୍ଶୀ) $L_1~$ ଓ $L_2~$ ଉଭୟ $S_1~$ ଓ $S_2~$ ବୃତ୍ତ ଦ୍ୱୟର ସରଳ ସାଧାରଣ ସର୍ଶକ ।
 - (ii) ବହିଃୟର୍ଶୀ ୟର୍ଶକ ବୃତ୍ତର ତୀର୍ଯ୍ୟକ ସାଧାରଣ ୟର୍ଶକ :
- 3.21~(b) ରେ ${
 m S_3}~$ ଓ ${
 m S_4}~$ ବହିଃସର୍ଶୀ ସର୍ଶକ ବୃତ୍ତ । ${
 m L_3}~$ ହେଉଛି ବୃତ୍ତ ଦ୍ୱୟର ତୀର୍ଯ୍ୟକ ସାଧାରଣ ସର୍ଶକ । ଏହା ବୃତ୍ତ ଦ୍ୱୟର ସର୍ଶ ବିନ୍ଦୁରେ ହିଁ ବୃତ୍ତ ଦ୍ୱୟକୁ ସର୍ଶ କରୁଛି ।
 - (iii) ଅତଃୟର୍ଶୀ ୟର୍ଶକ ବୃତ୍ତର ସରଳ ସାଧାରଣ ୟର୍ଶକ:
- ଚିତ୍ର 3.21~(c) ରେ $S_{_5}~$ ଓ $S_{_6}~$ ବୃତ୍ତ ଦ୍ୱୟ ଅନ୍ତଃସ୍ପର୍ଶୀ ସ୍ପର୍ଶକ ବୃତ୍ତ । $L_{_4}~$ ରେଖା ଉଭୟ ବୃତ୍ତର ସ୍ପର୍ଶ ବିନ୍ଦୁରେ ବୃତ୍ତ ଦ୍ୱୟର୍ ସରଳ ସାଧାରଣ ସ୍ପର୍ଶକ ।
- ଚିତ୍ର 3.21 (a) ଓ (c) କ୍ଷେତ୍ରରେ ସ୍କର୍ଶକ ବୃତ୍ତ ଦ୍ୱୟ ପ୍ରତି ଅଙ୍କିତ ସରଳ ସାଧାରଣ ସ୍କର୍ଶକ ଏବଂ ଚିତ୍ର 3.21 (b) କ୍ଷେତ୍ରରେ ସ୍ୱର୍ଶକବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ତୀର୍ଯ୍ୟକ ସାଧାରଣ ସ୍ୱର୍ଶକ । କାହିଁକି ?

(c) ପରୟରଚ୍ଛେଦୀ ଦୁଇଟି ଚ୍ଛେଦ ବିନ୍ଦୁ ଥିବା ବୃତ୍ତର

ସାଧାରଣ ସର୍ଶକ :

ଚିତ୍ର 3.22 ରେ \mathbf{S}_1 ଓ \mathbf{S}_2 ବୃତ୍ତ ଦ୍ୱୟ ପରସ୍ପରକୁ \mathbf{A} ଓ \mathbf{B} ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ଏଠାରେ \mathbf{L}_1 ଓ \mathbf{L}_2 ରେଖାଦ୍ୱୟ ପ୍ରତ୍ୟେକ \mathbf{S}_1 ଓ \mathbf{S}_2 ବୃତ୍ତ ଦ୍ୱୟକୁ ସ୍ୱର୍ଶ କରନ୍ତି । ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର \mathbf{O}_1 ଏବଂ \mathbf{O}_2 ଉଭୟ \mathbf{L}_1 ର ଗୋଟିଏ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । \mathbf{O}_1 ଏବଂ \mathbf{O}_2 ଉଭୟ \mathbf{L}_2 ର ମଧ୍ୟ ଗୋଟିଏ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ । ଏଣୁ \mathbf{L}_1 ଓ \mathbf{L}_2 ପ୍ରତ୍ୟେକ, \mathbf{S}_1 ଓ \mathbf{S}_2 ବୃତ୍ତ ଦ୍ୱୟର ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ ।

3.7 ଦୁଇଟି ୟର୍ଶକ-ବୃତ୍ତର ସର୍ଶବିନ୍ଦୁ ଓ ସେମାନଙ୍କର କେନ୍ଦ୍ରଦ୍ୱୟର ଆପେକ୍ଷିକ ଅବସ୍ଥିତି :

ପରୟ୍ବରକୁ ଧ୍ୱର୍ଶ କରୁଥିବା ଦୁଇଟି ବୃତ୍ତର ଧ୍ୱର୍ଶବିନ୍ଦୁ ଏବଂ ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର ,ଏହିପରି ତିନୋଟି ବିନ୍ଦୁର ଆପେକ୍ଷିକ ଅବସ୍ଥିତି ସମ୍ବନ୍ଧରେ ପରବର୍ତ୍ତୀ ଉପପାଦ୍ୟରେ ପଢ଼ିବା ।

ଉପପାଦ୍ୟ - 15

ଦୁଇଟି ସର୍ଶକ ବୃତ୍ତର କେନ୍ଦ୍ର ଦୃୟ ଓ ସର୍ଶବିନ୍ଦୁ ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ।

(The centres of two tangent circles and their point of contact are collinear)

ଦତ : S_1 ଓ S_2 ସ୍ୱର୍ଶକ ବୃତ୍ତ ଦ୍ୱୟର ସ୍ୱର୍ଶବିନ୍ଦୁ P ଏବଂ ସେମାନଙ୍କର କେନ୍ଦ୍ର ଯଥାକୁମେ O_1 ଏବଂ O_2 । ଚିତ୍ର 3.23ରେ ବୃତ୍ତ ଦ୍ୱୟ ବହିଃସ୍ୱର୍ଶୀ ଏବଂ ଚିତ୍ର 3.24ରେ ବୃତ୍ତ ଦ୍ୱୟ ଅନ୍ତଃସ୍ୱର୍ଶୀ ।

ପ୍ରାମାଣ୍ୟ : O1, O, ଏବଂ P ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ।

ଅଙ୍କନ : ବୃତ୍ତ ଦ୍ୱୟର ସ୍ୱର୍ଶ ବିନ୍ଦୁରେ ସାଧାରଣ ସ୍ୱର୍ଶକ \overrightarrow{PT} ଅଙ୍କନ କରାଯାଉ ଏବଂ ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ $\overline{PO_1}$ ଓ $\overline{PO_2}$ ଅଙ୍କନ କରାଯାଉ । (ଚିତ୍ର 3.23 ଓ ଚିତ୍ର 3.24 ରେ ଯଥାକ୍ରମେ ତୀର୍ଯ୍ୟକ ସାଧାରଣ ସ୍ୱର୍ଶକ ଏବଂ ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ ଅଙ୍କିତ ହୋଇଛି ।)

$$\therefore \overrightarrow{O_2P} \perp \overrightarrow{PT} \Rightarrow \overrightarrow{O_2P} \perp \overrightarrow{PT}$$

ମାତ୍ର $\stackrel{\longleftarrow}{PT}$ ର P ବିନ୍ଦୁରେ ଗୋଟିଏ ଓ କେବଳ ଗୋଟିଏ ଲୟ ସୟବ । $\stackrel{\longleftarrow}{\dots}$ $\stackrel{\longleftarrow}{O_1P}$ ଏବଂ $\stackrel{\longleftarrow}{O_2P}$ ରେଖାଦ୍ୱୟ ଅଭିନ୍ନ । ଏଣୁ O_1 , O_2 ଓ P ବିନ୍ଦୁତ୍ରୟ ଏକ ରେଖାରେ ଅବସ୍ଥିତ । (ପ୍ରମାଣିତ)

ଅନୁସିଦ୍ଧାନ୍ତ -1 : ଦୁଇଟି ବହିଃୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ର ଦ୍ୱୟର ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା, ଉକ୍ତ ବୃତ୍ତ ଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧର ସମଷ୍ଟି ସହ ସମାନ [ଚିତ୍ର 3.25~(a)]

ଅନୁସିଦ୍ଧାନ୍ତ - 2 : ଦୁଇଟି ଅନ୍ତଃୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ରଦ୍ୱୟ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା, ଉକ୍ତ ବୃତ୍ତଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧର ଅନ୍ତର ସହ ସମାନ $[(\hat{9} + \hat{9} + \hat{9}$

ଚିତ୍ର 3.25 (a)ରେ
$$O_1O_2 = O_1P + O_2P [\because O_1-P-O_2]$$

ଚିତ୍ର 3.25 (b)ରେ $O_1O_2 = O_1P - O_2P [\because O_1-O_2-P]$

ସ୍ପର୍ଶକ ସୟନ୍ଧୀୟ କେତେକ ଉଦାହରଣ :

ଜଦାହରଣ -1 : ଏକ ବୃତ୍ତର ବହିଃସ୍ଥ କୌଣସି ଏକ ବିନ୍ଦୁ P ଠାରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ରଶ୍ମି \overrightarrow{PA} ଓ \overrightarrow{PB} ର ସ୍ପର୍ଶବିନ୍ଦୁ ଯଥାକ୍ରମେ A ଓ B । $m\angle APB = 42^\circ$ ହେଲେ A ଓ B ପ୍ରାନ୍ତ ବିନ୍ଦୁ ବିଶିଷ୍ଟ କ୍ଷୁଦ୍ରଚାପର ଅନ୍ତଲିଖିତ ଏକ କୋଣର ପରିମାଣ କେତେ ?

ଦତ୍ତ : ଚିତ୍ର 3.26 ରେ ଥିବା ବୃତ୍ତ ABCର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ \overrightarrow{PA} ଓ \overrightarrow{PB} ସ୍ୱର୍ଶକ ରଶ୍ମିଦ୍ୱୟର ସ୍ୱର୍ଶବିନ୍ଦୁ ଯଥାକ୍ରମେ A ଓ B ।

 $\widehat{A \times B}$ ହେଉଛି A ଓ B ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ କ୍ଷୁଦ୍ରଚାପ ।

 $\angle {
m AXB}$ ହେଉଛି $\widehat{{
m AXB}}$ ଚାପର ଅନ୍ତର୍ଲିଖିତ ଗୋଟିଏ କୋଣ ।

$$m\angle APB = 42^{\circ}$$

ନିର୍ଷେୟ : m∠AXB

ଅଙ୍କନ : \overline{AB} କ୍ୟା ଅଙ୍କନ କରାଯାଉ ।

 \Rightarrow $(a+b)^0 + (a+b)^0 + 42^0 = 180^0$

ସମାଧାନ : ସ୍ୱର୍ଶକ $\stackrel{\longleftarrow}{PB}$ ଓ $\stackrel{\longleftarrow}{BX}$ ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ କ୍ୟା ହେତୁ, m $\angle XBP = m\angle BAX$ (ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ) । ମନେକର m $\angle XBP = m\angle BAX = a^0$ ହେଉ । ସେହି କାରଣରୁ $m\angle XAP = m\angle ABX = b^0$ ହେଉ । $m\angle PAB = (a+b)^0$ ଏବଂ m $\angle PBA = (a+b)^0$ ΔPAB ରେ, $m\angle PAB + m\angle PBA + m\angle APB = 180^0$

$$\Rightarrow 2(a+b) = 180 - 42 \Rightarrow 2(a+b) = 138 \Rightarrow a+b = \frac{138}{2} = 69 \dots (1)$$

 $\triangle AXB$ 60 $m\angle AXB + m\angle XAB + m\angle XBA = 180^{\circ}$

$$\Rightarrow$$
 m \angle AXB + a⁰ + b⁰ = 180⁰ \Rightarrow m \angle AXB + 69⁰ = 180⁰ [(1) ଅନୁଯାୟୀ]

$$\Rightarrow$$
 m \angle AXB = 180 $^{\circ}$ - 69 $^{\circ}$ = 111 $^{\circ}$ (ଉଉର)

ଉଦାହରଣ -2 : ଦୁଇଟି ବହିଃୟର୍ଶୀ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ \mathbf{r}_1 ଓ \mathbf{r}_2 ଏକକ । ବୃତ୍ତଦ୍ୱୟର ଏକ ସରଳ ସାଧାରଣ ସର୍ଶକ ଉପରିସ୍ଥ ସର୍ଶବିନ୍ଦୁ \mathbf{P} ଓ \mathbf{Q} ହେଲେ $\overline{\mathbf{PQ}}$ ର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।

ଦତ୍ତ : ଚିତ୍ର 3.27 ରେ . \overrightarrow{PQ} ହେଉଛି ବହିଃୟର୍ଶୀ ବୃତ୍ତ ଦ୍ୱୟର ଏକ ସରଳ ସାଧାରଣ ୟର୍ଶକ । \overrightarrow{AP} ଓ \overrightarrow{BQ} ହେଉଛନ୍ତି ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ । ମନେକର $AP=r_1$, $BQ=r_2$ ଏବଂ $r_1 \geq r_2$ ।

ନିର୍ଣେୟ : PO ର ଦୈର୍ଘ୍ୟ ।

ଅଙ୍କନ : $\overline{\mathrm{BC}} \perp \overline{\mathrm{AP}}$ ଅଙ୍କନ କରାଯାଉ ।

ସମାଧାନ: ∠APQ ଓ ∠BQP ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ ସମକୋଣ

 $[\overline{\mathrm{AP}} \ {}^{\mathrm{g}} \ \overline{\mathrm{BQ}} \ {}^{\mathrm{g}}$ ସୂର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ହେତୁ]

∠BCP ସମକୋଶ (ଅଙ୍କନ ଅନୁଯାୟୀ) ।

ଏଣୁ BCPQ ଚତୁର୍ଭୁକର ଚତୁର୍ଥ କୋଣ $\angle {
m CBQ}$ ମଧ୍ୟ ଏକ ସମକୋଣ $| :: {
m BCPQ}$ ଏକ ଆୟତଚିତ୍ର ।

$$AP = r_1$$
 $BQ = r_2$ ଏବଂ $AC = AP - PC = r_1 - r_2$

 ΔABC ରେ, $\angle ACB = 90^{\circ} \ [\because \overline{BC} \perp \overline{AP} \ \mathbb{U}$ ଙ୍କନ]

$$BC^2 = AB^2 - AC^2 = (r_1 + r_2)^2 - (r_1 - r_2)^2 = 4r_1r_2$$

[ବହିଃୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ରଦ୍ୱୟ ମଧ୍ୟରେ ଦୂରତା = $\mathbf{r}_{_{\! 1}} + \mathbf{r}_{_{\! 2}}$]

$$\Rightarrow$$
 BC = $\sqrt{4r_1r_2} = 2\sqrt{r_1r_2}$

$$\therefore PQ = BC = 2\sqrt{r_1 r_2}$$
 (ଉତ୍ତର)

ଅନୁଶୀଳନୀ - 3

(କ - ବିଭାଗ)

1. ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର :

- (i) ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O , ବୃତ୍ତ ବହିଃସ୍ଥ P କୌଣସି ଏକ ବିନ୍ଦୁ ଏବଂ \overline{PT} ଉକ୍ତ ବୃତ୍ତର ଏକ ସ୍ପର୍ଶକଖଣ ହେଲେ, m $\angle OTP =$
- (ii) ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O । ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ \overline{PX} ଓ \overline{PY} ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଦୁଇଟି ସ୍ୱର୍ଶକଖଣ୍ଡ । $\angle XPY$ ଏକ ସୂକ୍ଷ୍ମକୋଣ ହେଲେ, $\angle XOY$ ଏକ କୋଣ ।

(iii)	ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O, ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ \overline{PT} ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଏକ ୱର୍ଶକଖଣ୍ଡ ହେଲେ, m $\angle TOP + m \angle TPO =$
(iv)	ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O , ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ \overline{PX} ଓ \overline{PY} ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଦୁଇଟି ସ୍ପର୍ଶକ ଖଣ୍ଡ ହେଲେ, (a) XOP କୋଣ ଓ କୋଣ ସମପରିମାଣ ବିଶିଷ୍ଟ;
	(b) YPO କୋଣ ଓ କୋଣ ସମପରିମାଣ ବିଶିଷ୍ଟ ।
(v)	ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ । ବୃତ୍ତର ସମତଳରେ P ଏକ ବିନ୍ଦୁ ଏବଂ OP ଓ r ମଧ୍ୟରେ ବୃହତ୍ତର ହେଲେ, P ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ଏକ ସ୍ପର୍ଶକ ଖଣ୍ଡ ଅଙ୍କନ ସମ୍ଭବ ।
(vi)	5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ 13 ସେ.ମି. ଦୂରରେ ଓ ବୃତ୍ତର ସମତଳରେ ଅବସ୍ଥିତ ଏକ ବିନ୍ଦୁ P ହେଲେ, \overline{PT} ସ୍ପର୍ଶକଖଣ୍ଡର ଦୈର୍ଘ୍ୟ ସେ.ମି.
(vii)	କେନ୍ଦ୍ର O ଏବଂ r ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତର ସମତଳରେ ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଠାରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଏକ ସ୍ପର୍ଶକ ଖଣ୍ଡର ଦୈର୍ଘ୍ୟ t ସେ.ମି. ହେଲେ $OP = \dots$ ସେ.ମି. ।
(viii)	ଦୁଇଟି ବହିଃୟର୍ଶୀ ବୃତ୍ତର (a) ସରଳ ସାଧାରଣ ୟର୍ଶକ ସଂଖ୍ୟା = ଏବଂ
	(b) ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
(ix)	ଦୁଇଟି ଅନ୍ତଃୟର୍ଶୀ ବୃତ୍ତର
	(a) ସରଳ ସାଧାରଣ
	(b) ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ
(x)	ପରୟର ବହିଃସ୍ଥ ହୋଇଥିବା ଦୂଇଟି ଅଣଛେଦୀ ବୃତ୍ତର
	(a) ସରଳ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
	(b) ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
(xi)	ପରୟର ବହିଃସ୍ଥ ହୋଇ ନ ଥିବା ଦୁଇଟି ଅଣଛେଦୀ ବୃତ୍ତର
	(a) ସରଳ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
	(b) ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ସଂଖ୍ୟା =
(xii)	Δ ABC ର AB = AC । Δ ABC ର ପରିବୃତ୍ତ ଉପରିସ୍ଥ A ବିନ୍ଦୁରେ ଅଙ୍କିତ ସ୍ପର୍ଶକ ଉପରେ P ଏକ ବିନ୍ଦୁ,
	ଯେପରି P ଓ B ବିନ୍ଦୁଦ୍ୱୟ \overline{AC} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥିତ ।
	$m\angle PAC = 70^{0}$ ହେଲେ, $m\angle ABC =$
(xiii)	ଗୋଟିଏ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 8 ସେ.ମି ହେଲେ ଏହାର ଦୁଇଟି ସମାନ୍ତର ସ୍ପର୍ଶକ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା ସେ.ମି. ।
(xiv)	ଦୁଇଟି ବହିଁୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ର ଦ୍ୱୟ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା ହେଉଛି ବୃତ୍ତ ଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧମାନଙ୍କର ସହ ସମାନ ।

- (xv) ଦୁଇଟି ଅନ୍ତଃୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ର ଦ୍ୱୟ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା ହେଉଛି ବୃତ୍ତଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧମାନଙ୍କର ସଙ୍ଗେ ସମାନ ।
- (xvi) ଏକ ସରଳରେଖା ଉପରିସ୍ଥ ଗୋଟିଏ ବିନ୍ଦୁ P ଠାରେ ସରଳରେଖାଟି ସର୍ବାଧିକ ବୃତ୍ତର ସାଧାରଣ ସ୍ପର୍ଶକ ହୋଇପାରିବ ।
- 2. ଦଉ ଥିବା ଉକ୍ତି ଭୁଲଥିଲେ (ଏହାକୁ ଦଉ ଉକ୍ତିର ନାୟିବାଚକ ଉକ୍ତି (Negative Statement) ବ୍ୟବହାର ନ କରି) ସଂଶୋଧନ କର ।
- (i) r ଏକକ ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତର L ରେଖା ଏକ ଛେଦକ ହେଲେ, ବୃତ୍ତର କେନ୍ଦ୍ରଠାରୁ L ର ଦୂରତା = r ଏକକ ।
- (ii) ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ ବୃତ୍ତର ସମତଳରେ ବୃତ୍ତ ବହିସ୍ଥ କୌଣସି ଏକ ବିନ୍ଦୁ $P \mid P$ ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ଏକ ସ୍ପର୍ଶକ ଖଣ୍ଡ \overline{PT} ହେଲେ ΔOPT ରେ $\angle POT$ ଏକ ସମକୋଣ ।
- (iii) ଗୋଟିଏ ବୃତ୍ତର ବ୍ୟସାର୍ଦ୍ଧ r ଏକକ । ବୃତ୍ତର ସମତଳରେ ବୃତ୍ତ ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଠାରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ୱର୍ଷକ ଖଣ୍ଡ \overline{PT} ର ଦୈର୍ଘ୍ୟ t ଏକକ ଏବଂ ବୃତ୍ତର କେନ୍ଦ୍ର O ଠାରୁ P ର ଦୂରତା d ଏକକ ହେଲେ, $d^2+r^2=t^2$.
- (iv) ଏକ ବୃତ୍ତର ସମତଳରେ ବୃତ୍ତ ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକଖଣ୍ଡ \overline{PT} ; P ବିନ୍ଦୁଗାମୀ ଏକ ହେଦକ, ବୃତ୍ତଟିକୁ A ଓ B ବିନ୍ଦୁରେ ଛେଦ କରେ, ଯେପରି P-A-B | ତେବେ $PT^2 = PA \times AB$
- (v) ଏକ ବୃତ୍ତର ଅନ୍ତଃସ୍ଥ କୌଣସି ଏକ ବିନ୍ଦୁ Q ଠାରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଦୁଇଟି ସ୍ପର୍ଶକଖଣ ଅଙ୍କନ କରାଯାଇପାରିବ ।
- (vi) ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଗୋଟିଏ ବୃତ୍ତର ବହିଃସ୍ଥ କେବଳ ଗୋଟିଏ ବିନ୍ଦୁ P ଅଛି, ଯେଉଁଠାରୁ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ୱର୍ଶକଖଣ୍ଡ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ହେବ ।
- (vii) ଦୁଇଟି ସ୍ପର୍ଶକ ବୃତ୍ତର କେନ୍ଦ୍ର ବିନ୍ଦୁ ଦ୍ୱୟ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା ସହ ଉକ୍ତ ବୃତ୍ତ ଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧର ସମଷ୍ଟି ସମାନ ହେଲେ, ବୃତ୍ତ ଦ୍ୱୟ ଅନ୍ତଃସ୍ପର୍ଶୀ ହେବେ ।
- (viii) ଦୁଇଟି ଅନ୍ତଃୟର୍ଶୀ ବୃତ୍ତର କେନ୍ଦ୍ର ଦ୍ୱୟର ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା, ବୃତ୍ତ ଦ୍ୱୟର ବ୍ୟସାର୍ଦ୍ଧ ଦ୍ୱୟର ପାର୍ଥକ୍ୟ ସହ ସମାନ ।
- (ix) ଦୁଇଟି ବୃତ୍ତ ମଧ୍ୟରୁ ଗୋଟିଏ ଅନ୍ୟଟିର ଅନ୍ତର୍ଦ୍ଦେଶରେ ଅବସ୍ଥିତ ହେଲେ, ସେ ଦୁଇଟି ବୃତ୍ତର ଗୋଟିଏ ମାତ୍ର ସାଧାରଣ ସ୍ପର୍ଶକ ରହିବ ।
- $({f x})$ ଦୁଇଟି ବିନ୍ଦୁରେ ପରସ୍କରକୁ ଛେଦ କରୁଥିବା ଦୁଇଟି ବୃତ୍ତର କେବଳ ଗୋଟିଏ ତିର୍ଯ୍ୟକ ସାଧାରଣ ସ୍କର୍ଶକ ଥାଏ ।
- (xi) ଦୁଇଟି ଅନ୍ତଃୟର୍ଶୀ ସ୍ଦର୍ଶକବୃତ୍ତର ସ୍ଦର୍ଶବିନ୍ଦୁ, ଅନ୍ତଃସ୍ଥ ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ ନୂହେଁ ।
- (xii) ଦୁଇଟି ବହିଃୟର୍ଶୀ ସର୍ଶକ ବୃତ୍ତର ସର୍ଶ ବିନ୍ଦୁ, ଉଭୟ ବୃତ୍ତ ମଧ୍ୟରୁ କୌଣସିଟିର ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ ନୁହେଁ ।
- 3. ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର ବିନ୍ଦୁ O ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ 8 ସେ.ମି. । ଉକ୍ତ ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ PO=17 ସେମି. ହେଲେ, P ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ୱର୍ଶକଖଣ୍ଡର ଦୈର୍ଘ୍ୟ କେତେ ?

ଖ - ବିଭାଗ

- 4. ଦୁଇଟି ବହିଃସର୍ଶୀ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 4.5 ସେ.ମି. ଓ 12.5 ସେ.ମି. । ବୃତ୍ତ ଦ୍ୱୟର ଏକ ସାଧାରଣ ସର୍ଶକ ବୃତ୍ତ ଦ୍ୱୟକୁ P ଓ Q ବିନ୍ଦୁ ରେ ସର୍ଶ କଲେ, \overline{PQ} ର ଦୈର୍ଘ୍ୟ କେତେ ?
- 5. ଦୁଇଟି ଅଣଛେଦୀ ବୃତ୍ତର ଏକ ତିର୍ଯ୍ୟକ ସାଧାରଣ ସ୍ପର୍ଶକ ବୃତ୍ତ ଦ୍ୱୟକୁ P ଓ Q ବିନ୍ଦୁରେ ସ୍ପର୍ଶ କରନ୍ତି । କେନ୍ଦ୍ର ଦ୍ୱୟ ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା 20 ସେମି. ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟ 7 ସେମି ଓ 5 ସେମି. ହେଲେ, PQ କେତେ ସେ.ମି. ?

 $PA \times PB = PC \times PD$

- (ii) PA = 10 ସେ.ମି. PB = 16 ସେ.ମି. ଓ PD = 20 ସେ.ମି. ହେଲେ, CD ନିର୍ଣୟ କର ।
- (iii) PA = 8 ସେ.ମି. ଓ AB = 10 ସେ.ମି. ହେଲେ, P ବିନ୍ଦୁଗାମୀ ସ୍ପର୍ଶକଖଣ୍ଡର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
- 7. ଚିତ୍ର 3.29 ରେ ଥିବା ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ $P \mid P$ ବିନ୍ଦୁଗାମୀ ଏକ ଛେଦକ ପୂର୍ବୋକ୍ତ ବୃତ୍ତକୁ A ଓ B ବିନ୍ଦୁରେ ଛେଦ କରେ । ଯେପରି $P A B \mid P$ ବିନ୍ଦୁଗାମୀ ସ୍ୱର୍ଶକରଶ୍ମିର ସ୍ୱର୍ଶ ବିନ୍ଦୁ $T \mid P$
- (i) m \widehat{AXT} = 60° ଏବଂ m \widehat{BYT} = 130° ହେଲେ m $\angle ATP$, m $\angle APT$, m $\angle ATB$ ଓ m $\angle BTQ$ ନିର୍ଣ୍ଣୟ କର ।
- (ii) $m \angle BTQ = 2m \angle ATP$ ହେଲେ, Q T P ହେଲେ, Q T P (ଚିତ୍ର 3.29)
- (iii) PA = 8 ସେ.ମି. ଓ PT = 12 ସେ.ମି ହେଲେ, AB ନିର୍ଣ୍ଣୟ କର ।
- (iv) PT = 2AP ଏବଂ AB = 18 ସେ.ମି. ହେଲେ, PT ନିର୍ଣ୍ଣୟ କର ।
- (v) PT = 2AP ଏବଂ PB = 24 ସେ.ମି. ହେଲେ, PT ନିର୍ଣ୍ଣୟ କର ।
- 8.(a) ଦୁଇଟି ବୃତ୍ତ ବହିଃୟର୍ଶୀ ହେଲେ, ପ୍ରମାଣ କର ଯେ ଏହାର ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକ ଉପରିସ୍ଥ ଯେକୌଣସି ବିନ୍ଦୁରୁ ବୃତ୍ତଦ୍ୱୟ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକଖଣ୍ଡ ଦ୍ୱୟ ସର୍ବସମ ।
 - (b) ଦୁଇଟି ବୃତ୍ତ ଅନ୍ତସ୍ପର୍ଶୀ ହେଲେ, ପ୍ରମାଣ କର ଯେ ସେମାନଙ୍କର ସାଧାରଣ ସ୍ପର୍ଶକ ଉପରିସ୍ଥ ଯେ କୌଣସି ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃତ୍ତ ଦ୍ୱୟ ପ୍ରତି ଅଙ୍କିତ ସ୍ୱର୍ଶକଖଣ୍ଡ ଦ୍ୱୟ ସର୍ବସମ ।
- 9. ପରସ୍କରଛେଦୀ ଦୁଇଟି ବୃତ୍ତର ଛେଦବିନ୍ଦୁ $A \otimes B \mid \overleftarrow{AB}$ ଉପରିସ୍ଥ P ଏକ ବିନ୍ଦୁ ଯେପରି A-B-P \mid ପ୍ରମାଣ କର ଯେ ବୃତ୍ତ ଦ୍ୱୟ ପ୍ରତି P ବିନ୍ଦୁରୁ ଅଙ୍କିତ ସ୍ୱର୍ଶକଖଣ୍ଡ ଦ୍ୱୟ ସର୍ବସମ \mid

10. ଚିତ୍ର 3.30 ରେ $r_{_1}$ ଓ $r_{_2}$ ଏକକ ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃତ୍ତ $S_{_1}$ ଓ $S_{_2}$ ର କେନ୍ଦ୍ର ଯଥାକ୍ରମେ A ଓ B । ଚିତ୍ର 3.30 (a)ରେ ବୃତ୍ତଦ୍ୱୟର ଗୋଟିଏ ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ୱର୍ଶକ \overline{AB} କୁ M ବିନ୍ଦୁରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ $AM:MB=r_{_1}:r_{_2}$

ଚିତ୍ର 3.30 (b) ରେ ବୃତ୍ତ ଦ୍ୱୟର ଗୋଟିଏ ସରଳ ସାଧାରଣ ସ୍ୱର୍ଶକ \overrightarrow{AB} କୁ M ବିନ୍ଦୁରେ ଛେଦ କରେ, ଯେପରିକି A-B-M . । ପ୍ରମାଣ କର ଯେ AM : BM = \mathbf{r}_1 : \mathbf{r}_2 ।

- 11. ଗୋଟିଏ ବୃତ୍ତରେ \overline{PQ} ଓ \overline{PR} ଜ୍ୟା ଦ୍ୱୟ ସର୍ବସମ । ପ୍ରମାଣ କର ଯେ ବୃତ୍ତ ପ୍ରତି P ବିନ୍ଦୁରେ ଅଙ୍କିତ ସ୍କର୍ଶକ, \overline{QR} ସହ ସମାନ୍ତର ।
- 12. ଦୁଇଟି ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତ ମଧ୍ୟରୁ ଗୋଟିକର ଏକ ଜ୍ୟା \overline{AB} ଅନ୍ୟ ବୃତ୍ତକୁ P ବିନ୍ଦୁରେ ସ୍ପର୍ଶ କଲେ, ପ୍ରମାଣ କର ଯେ P ବିନ୍ଦୁରେ \overline{AB} ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ ।
- 13. ପ୍ରମାଣ କର ଯେ, ବୃତ୍ତର ଦୁଇ ସମାନ୍ତର ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁ ଦ୍ୱୟର ସଂଯୋଜକ ରେଖାଖଣ୍ଡ ଉକ୍ତ ବୃତ୍ତର ଏକ ବ୍ୟାସ ।
- 14. $\triangle ABC$ ସମ୍ପୃକ୍ତ \overline{BC} ବାହୁ, \overrightarrow{AB} ରଶ୍ମି ଓ \overrightarrow{AC} ରଶ୍ମିକୁ PQR ବୃତ୍ତ ଯଥାକୁମେ P,Q ଓ R ବିନ୍ଦୁରେ ୱର୍ଶ କରେ (ଚିତ୍ର 3.31) । ପ୍ରମାଣ କର ଯେ, $AQ = \frac{1}{2} \left(AB + BC + AC \right)_A$ ଏକ ସାମାନ୍ତରିକ ଚିତ୍ରର ସମୟ ବାହୁକୁ ଗୋଟିଏ ବୃତ୍ତ ୱର୍ଶ କଲେ, ପ୍ରମାଣ କର ଯେ ସାମାନ୍ତରିକ ଚିତ୍ରଟି ଏକ ରମ୍ଭସ୍ ।

ଗ - ବିଭାଗ (ଚିତ୍ର 3.31)

- 16. ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ ଏହି ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P । P ଠାରୁ ପୂର୍ବୋକ୍ତ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ୱର୍ଶକ ଖଣ୍ଡ ଦ୍ୱୟ ହେଉଛନ୍ତି \overline{PA} ଓ \overline{PB} । \overline{OP} ର ଦୈର୍ଘ୍ୟ ବୃତ୍ତଟିର ବ୍ୟାସ ସହ ସମାନ ହେଲେ, ପ୍ରମାଣ କର ଯେ ΔABP ଏକ ସମବାହୁ ତ୍ରିଭୁଜ ।
- 17. ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ P ବୃତ୍ତର ବହିଃସ୍ଥ ଏକବିନ୍ଦୁ । \overrightarrow{PT} ସ୍ୱର୍ଶକରଶ୍ମିର ସ୍ୱର୍ଶ ବିନ୍ଦୁ T, \overrightarrow{OP} ର ମଧ୍ୟବିନ୍ଦୁ Q (ବୃତ୍ତ ଉପରିସ୍ଥ ବିନ୍ଦୁ) ହେଲେ ପ୍ରମାଣ କର ଯେ QT = QP ।

18. ଗୋଟିଏ ବୃତ୍ତର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁ P ଏବଂ ୱର୍ଶକ ରଶ୍ମି \overrightarrow{PT} ର ୱର୍ଶବିନ୍ଦୁ T $\mid P$ ବିନ୍ଦୁଗାମୀ ଏକ ରେଖା ଉକ୍ତ ବୃତ୍ତକୁ A ଓ B ବିନ୍ଦୁରେ ହେଦ କରେ, ଯେପରିକି P-A-B $\mid \overrightarrow{AB}$ ଉପରେ A ଓ B ର ମଧ୍ୟବର୍ତ୍ତୀ C ଏକ ବିନ୍ଦୁ \mid ପ୍ରମାଣ କର: (a) \overrightarrow{TC} , $\angle ATB$ ର ସମଦ୍ୱିଖଣ୍ଡକ ହେଲେ, PC=PT

(b) PC = PT ହେଲେ \overrightarrow{TC} ଦ୍ୱାରା ∠ATB ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ । \overrightarrow{A}

19. ΔABC ର ବାହୁ \overline{AB} ଓ \overline{AC} ଉପରେ ଯଥାକୁମେ X ଓ Y ବିନ୍ଦୁ ଅବସ୍ଥିତ, ଯେପରିକି ΔABC ର ଅନ୍ତଃବୃତ୍ତକୁ \overline{XY} ସ୍ୱର୍ଶ କରିବ (ଚିତ୍ର 3.32) । ପ୍ରମାଣ କର ଯେ AX + XY + YA = AB + AC - BC

В

20. ବହିଃୟର୍ଶୀ ଦୁଇଟି ବୃତ୍ତ S_1 ଓ S_2 ପରୟରକୁ P ବିନ୍ଦୁରେ ସ୍ୱର୍ଶ କରନ୍ତି । ବୃତ୍ତ ଦ୍ୱୟର ଏକ ସରଳ ସାଧାରଣ୍ୟର୍ଶକ S_1 ଓ S_2 ବୃତ୍ତ ଦ୍ୱୟକୁ ଯଥାକୁମେ A ଓ B ବିନ୍ଦୁରେ ସ୍ୱର୍ଶ କରନ୍ତି (ଚିତ୍ର - 3.33) । P ବିନ୍ଦୁ ଦେଇ \xleftarrow{A} ଅଙ୍କିତ ସାଧାରଣ ସ୍ୱର୍ଶକ $\overset{\longleftarrow}{AB}$ କୁ C ବିନ୍ଦୁରେ ଛେଦ କଲେ, S_1 ପ୍ରମାଣ କର : (a) AC = BC ଏବଂ

(b)
$$m\angle APB = 90^{\circ}$$

21. \mathbf{S}_1 ଓ \mathbf{S}_2 ବୃତ୍ତ ଦ୍ୱୟ ପରସ୍କରକୁ \mathbf{A} ଓ \mathbf{B} ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି (ଚିତ୍ର 3.34) । \mathbf{S}_1 ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ \mathbf{P} ଦେଇ ଅଙ୍କିତ \overrightarrow{PA} ଓ \overrightarrow{PB} \mathbf{S}_2 ବୃତ୍ତକୁ ଯଥାକ୍ରମେ \mathbf{C} ଓ \mathbf{D} ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । ପ୍ରମାଣ କର ଯେ \mathbf{P} ବିନ୍ଦୁରେ \mathbf{S}_1 ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ୱର୍ଶକ, $\overline{\mathbf{CD}}$ ସହ ସମାନ୍ତର ।

- 22. ଦୁଇଟି ପରସ୍କର ଅଣଛେଦୀ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ $\mathbf{r}_{_1}$ ଓ $\mathbf{r}_{_2}$ ଏକକ ଏବଂ $\mathbf{r}_{_1} \! > \! \mathbf{r}_{_2}$ । ବୃତ୍ତ ଦ୍ୱୟର କେନ୍ଦ୍ର ଦ୍ୱୟ ମଧ୍ୟରେ ଦୂରତା d ଏକକ ।
 - (a) ଉଭୟ ବୃତ୍ତର ସରଳ ସାଧାରଣ ସ୍କର୍ଶକର ସ୍କର୍ଶବିନ୍ଦୁ A ଓ B ହେଲେ, ପ୍ରମାଣ କର ଯେ $AB^2 = d^2 (r_1 r_2)^2$ ଏବଂ
 - (b) ଉଭୟ ବୃତ୍ତର ତିର୍ଯ୍ୟକ୍ ସାଧାରଣ ସ୍ପର୍ଶକର ସ୍ପର୍ଶବିନ୍ଦୁ C ଓ D ହେଲେ, ପ୍ରମାଣ କର ଯେ $CD^2\!=d^2\!-\!(r_1^{}\!+r_2^{})^2$
- 23. ଗୋଟିଏ ବୃତ୍ତର ବହିଃସ୍ଥୁ ଏକ ବିନ୍ଦୁ P ଏବଂ P ବିନ୍ଦୁଗାମୀ ସ୍ୱର୍ଶକ ରଶ୍ମି ଦ୍ୱୟର ସ୍ୱର୍ଶ ବିନ୍ଦୁ ଯଥାକ୍ରମେ Q ଏବଂ R । \overline{QR} କ୍ୟା ଦ୍ୱାରା ହେଦିତ କ୍ଷୁଦ୍ର ଚାପର ମଧ୍ୟବିନ୍ଦୁ S ହେଲେ, ପ୍ରମାଣ କର ଯେ \overrightarrow{QS} ଦ୍ୱାରା $\angle PQR$ ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ ।

24. ଚିତ୍ର -3.35 ରେ ଥିବା ବୃତ୍ତର \overline{AT} ଏକ ବ୍ୟାସ । ବୃତ୍ତ ଉପରିସ୍ଥ ଅନ୍ୟ ଏକ ବିନ୍ଦୁ B । \overrightarrow{AB} ଏବଂ T ବିନ୍ଦୁରେ ଅଙ୍କିତ ସ୍ପର୍ଶକ ପରସ୍ତରକୁ P ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି । B ବିନ୍ଦୁରେ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ \overrightarrow{TP} କୁ Q ବିନ୍ଦୁରେ ଛେଦ କଲେ, ପ୍ରମାଣ କର ଯେ Q ବିନ୍ଦୁ ହେଉଛି \overline{PT} ର ମଧ୍ୟବିନ୍ଦୁ ।

- 25. ଗୋଟିଏ ବୃତ୍ତରେ \overline{AB} ଏକ ବ୍ୟାସ । B ବିନ୍ଦୁରେ ବୃତ୍ତପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ଉପରେ C ଏପରି ଏକ ବିନ୍ଦୁ ଯେପରି \overline{CA} , ବୃତ୍ତକୁ D ବିନ୍ଦୁରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ $AB^2 = AC \times AD$
- 26. ଗୋଟିଏ ବୃତ୍ତରେ \overline{AB} ଏକ ବ୍ୟାସ । B ବିନ୍ଦୁରେ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ପର୍ଶକ ଉପରେ C ଓ D ଦୁଇଟି ବିନ୍ଦୁ ଯେପରି C-B-D । ଯଦି \overline{CA} ଓ \overline{DA} ଯଥାକ୍ରମେ ବୃତ୍ତକୁ P ଓ Q ବିନ୍ଦୁରେ ଛେଦ କରନ୍ତି, ପ୍ରମାଣ କର ଯେ $AC \times AP = AD \times AQ$
- 27. ଚିତ୍ର 3.36 ରେ S_1 ଓ S_2 ବୃତ୍ତ ଦୁଇଟି ବହିଃୟର୍ଶୀ ଏବଂ G ସେମାନଙ୍କର ସର୍ଶବିନ୍ଦୁ । ବୃତ୍ତ ଦ୍ୱୟର ସରଳ ସାଧାରଣ ସର୍ଶକରର୍ଶ୍ମି \overrightarrow{PX} ଓ \overrightarrow{PY} ଦ୍ୱୟର ସାଧାରଣ ମୂଳ ବିନ୍ଦୁ P I S_1 ଓ S_2 ବୃତ୍ତକୁ \overrightarrow{PX} ଯଥାକ୍ରମେ C ଓ E ବିନ୍ଦୁରେ ଏବଂ \overrightarrow{PY} ଯଥାକ୍ରମେ D ଓ F ବିନ୍ଦୁରେ ସର୍ଶ କରନ୍ତ । (a) ପ୍ରମାଣ କର :
 - $(i) \, P, \, A, \, G, \, B \,$ ଏକ ସରଳରେଖାରେ ଅବସ୍ଥିତ ଓ
 - (ii) CE = DF

- (b) ଉଭୟ ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସାଧାରଣ ସ୍ୱର୍ଶକ \overrightarrow{PX} ଓ \overrightarrow{PY} କୁ ଯଥାକ୍ରମେ M ଓ N ବିନ୍ଦୁରେ ଛେଦ କଲେ, ପ୍ରମାଣ କର : (i) PM = PN, (ii) MG = NG ।
- 28. ପରସ୍କର ଅନ୍ତଃସ୍କର୍ଶୀ ଦୁଇଟି ବୃତ୍ତର ସ୍ୱର୍ଶବିନ୍ଦୁ P । ଏକ ସରଳରେଖା ଗୋଟିଏ ବୃତ୍ତକୁ A ଓ B ବିନ୍ଦୁରେ ଓ ଅନ୍ୟ ବୃତ୍ତକୁ C ଓ D ବିନ୍ଦୁରେ ଛେଦ କରେ । ପ୍ରମାଣ କର ଯେ $\angle APC$ ଓ $\angle BPD$ ସର୍ବସମ । A-C-D ଓ A-D-C ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ପ୍ରମାଣ ଯୋଗ୍ୟ ।]
- 29. $\triangle ABC$ ର ଅନ୍ତଃବୃତ୍ତ, \overline{AB} , \overline{BC} ଓ \overline{CA} କୁ ଯଥାକୁମେ P, Q ଓ R ବିନ୍ଦୁରେ ୱର୍ଶ କରେ । (ଚିତ୍ର -3.37) BQ = 8 ସେ.ମି. $\overline{CQ} = 6$ ସେ.ମି. ଏବଂ $\triangle ABC$ ର ପରିସୀମା 36 ସେ.ମି. ହେଲେ, \overline{AB} ଓ \overline{AC} ନିର୍ଣ୍ଣୟ କର ।

- 30. ଗୋଟିଏ ବୃତ୍ତର କେନ୍ଦ୍ର O ଏବଂ ପରିଲିଖିତ ଚତୁର୍ଭୁଜ ABCD ହେଲେ, ପ୍ରମାଣ କର ଯେ $\angle AOB$ ଓ $\angle COD$ ପରସ୍କର ପରିପୂରକ । $\angle BOC$ ଏବଂ $\angle AOD$ ମଧ୍ୟରେ ଥିବା ସମ୍ପର୍କ ନିର୍ଣ୍ଣୟ କର ।
- 31. ଗୋଟିଏ ବୃତ୍ତର ଏକ ଜ୍ୟା \overline{AB} , ଏହି ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ P ଠାରେ ଅଙ୍କିତ ୱର୍ଶକ ସହ ସମାନ୍ତର ହେଲେ, ପ୍ରମାଣ କର ଯେ P ବିନ୍ଦୁ ଠାରେ \widehat{APB} ସମଦ୍ୱିଖଣ୍ଡିତ ହୁଏ । \ratherapsilon \ratherapsilon \ratherapsilon
- 32. ଚିତ୍ର 3.38 ରେ ଥିବା ବୃତ୍ତର କେନ୍ଦ୍ର O, L_1 ଓ L_2 ଦୁଇଟି ୱର୍ଶକ ଏବଂ L_1 II L_2 । ବୃତ୍ତର K ବିନ୍ଦୁରେ ଅଙ୍କିତ ୱର୍ଶକ \overrightarrow{PQ}, L_1 ଓ L_2 କୁ ଯଥାକୁମେ M ଓ N ବିନ୍ଦୁରେ ହେଦ କରେ । ପ୍ରମାଣ କର ଯେ $\angle MON$ ଏକ ସମକୋଣ ।

ତ୍ରିକୋଶମିତି

(TRIGONOMETRY)

4.1 ଉପକ୍ମଣିକା (Introduction) :

ନବମ ଶ୍ରେଶୀରେ ତ୍ରିକୋଣମିତିକ ଅନୁପାତ $\sin\theta,\cos\theta,\tan\theta,\cot\theta,\sec\theta$ ଓ $\csc\theta$ ଓ $\csc\theta$ ର ସଂଜ୍ଞା, ଏହି ଅନୁପାତମାନଙ୍କୁ ନେଇ କେତେଗୁଡ଼ିଏ ସୂତ୍ର ଏବଂ $\theta=30^{\circ},45^{\circ}$ ଓ 60° ପରିମାଣ ବିଶିଷ୍ଟ କେତକ ନିର୍ଦ୍ଦିଷ୍ଟ କୋଣର ତ୍ରିକୋଣମିତିକ ଅନୁପାତର ମୂଲ୍ୟ ସମ୍ପର୍କରେ ଆଲୋଚନା କରାଯାଇଥିଲା ।

ଏହି ଅଧ୍ୟାୟରେ ଆମେ ଅନ୍ୟ କେତେକ ତ୍ରିକୋଣମିତିକ ମୂଲ୍ୟ ସୟନ୍ଧରେ ଜାଣିବା । ସାଧାରଣ ଜୀବନରେ ତ୍ରିକୋଣମିତିକ ଅନୁପାତର ପ୍ରୟୋଗାତ୍ମକ ବ୍ୟବହାର ବିଷୟରେ ମଧ୍ୟ ଜାଣିବା ।

ଏକ ସମକୋଶୀ ତ୍ରିଭୁକରେ ଏକ ସୂକ୍ଷ୍ମକୋଶର ପରିମାଣ θ ହେଉ । ଯେହେତୁ $\theta=0^\circ$ କିୟା 90° ହେଲେ ସମକୋଶୀ ତ୍ରିଭୁକରେ p (ଉଚ୍ଚତା), b (ଭୂମିର ଦୈର୍ଘ୍ୟ) ଓ h (କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ) ର ଭିନ୍ନ ଭିନ୍ନ ଅନୁପାତ ମାଧ୍ୟମରେ $\sin\theta$, $\cos\theta$ ଆଦିର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ନିର୍ଣ୍ଣୟ ସୟବ ନୁହେଁ, ତେଣୁ ନିମ୍ନରେ ପ୍ରଦତ୍ତ $\sin0^\circ$, $\cos0^\circ$, $\sin90^\circ$ ଓ $\cos90^\circ$ ଇତ୍ୟାଦିର ମୂଲ୍ୟଗୁଡ଼ିକୁ ସଂଜ୍ଞାରୂପେ ଗ୍ରହଣ କରାଯିବ ।

ସଂକ୍ଷା : (1)
$$\sin 0^{0} = 0$$
, $\cos 0^{0} = 1$, $\tan 0^{0} = \frac{\sin 0^{0}}{\cos 0^{0}} = 0$, $\sec 0^{0} = \frac{1}{\cos 0^{0}} = 1$

$$\frac{1}{0} \quad \text{ଅର୍ଥହୀନ ହୋଇଥିବାରୁ } \frac{\cos 0^{0}}{\sin 0^{0}} \quad \text{ଓ } \frac{1}{\sin 0^{0}} \quad \text{ଭଭୟ ଅର୍ଥହୀନ } \text{।}$$
 $\cot 0^{0} \quad \text{ଓ } \csc 0^{0} \quad \text{ସଂକ୍ଷାଭୁକ୍ତ } \mathbf{p} \mathbf{e} \mathbf{p}^{0} \quad \text{(undefined)} \text{ } \text{।}$

$$(2) \sin 90^{0} = 1, \cos 90^{0} = 0, \cot 90^{0} = \frac{\cos 90^{0}}{\sin 90^{0}} = 0, \csc 90^{0} = \frac{1}{\sin 90^{0}} = 1$$
 $\tan 90^{0} \quad \text{ଓ } \sec 90^{0} \quad \text{ସଂକ୍ଷାଭୁକ୍ତ } \mathbf{p} \mathbf{e} \mathbf{p}^{0} \quad \text{i}$

ମନ୍ତବ୍ୟ : ଡୁମେ ପୂର୍ବରୁ ଜାଣ ଯେ କୌଣସି କୋଣର ଡିଗ୍ରୀ ପରିମାଣ θ ହେଲେ ସଂଜ୍ଞାନୁସାରେ $0 < \theta < 180$ । ସୁତରାଂ $\theta = 0$ କିୟା $\theta = 180^{\circ}$ ଲେଖିବାର ଯଥାର୍ଥତା ନାହିଁ । କିନ୍ତୁ ଦୁଇଟି କୋଣର ପରିମାଣର ଅନ୍ତର 0° ଏବଂ ଯୋଗ 180° ହୋଇପାରେ । ପୁନଷ୍ଟ $\sin\theta$, $\cos\theta$ ଆଦି ଛଅଗୋଟି ଡିକୋଣମିତିକ ଅନୁପାତକୁ ବ୍ୟାପକ ଅର୍ଥରେ ତଥା

ଉଚ୍ଚତର ଗଣିତରେ ତ୍ରିକୋଣମିତିକ ଫଳନ (Trigonometric function) ରୂପେ ନିଆଯାଇଛି, ଯେଉଁ ଠାରେ θ ଏକ ଚଳରାଶି (variable ବା argument); ଅର୍ଥାତ୍ θ ଭିନ୍ନ ଭିନ୍ନ ବାୟବ (real)ମୂଲ୍ୟ ଗ୍ରହଣ କରିପାରେ । ସୁତରାଂ $\sin 0^{\circ}$, $\cos 0^{\circ}$, $\sin 180^{\circ}$, $\cos 180^{\circ}$ ଇତ୍ୟାଦିର ନିର୍ଦ୍ଧିଷ୍ଟ ମୂଲ୍ୟ ସଂଜ୍ଞାବଦ୍ଧ କରିବା ଆବଶ୍ୟକ ।

2. କୋଶର ପରିମାଣ ପାଇଁ θ ପରିବର୍ତ୍ତେ ଅନ୍ୟ ପ୍ରକାରର ସଂକେତ ଯଥା α (ଆଲଫା), β (ବିଟା) ଓ γ (ଗାମା) ଇତ୍ୟାଦି ମଧ୍ୟ ବ୍ୟବହାର କରାଯାଏ ।

4.2 ଅନୁପୂରକ (Complementary) କୋଶର ତ୍ରିକୋଶମିତିକ ଅନୁପାତ :

ଦଉ ଚିତ୍ର
$$4.1$$
 ରେ ABC ଏକ ସମକୋଶୀ ତ୍ରିଭୁଳ $\mid m \angle B = 90^\circ$

ମନେକର m
$$\angle BAC = \theta \implies m\angle BCA = 90^{\circ} - \theta$$

ବର୍ତ୍ତିମାନ
$$\sin\theta = \frac{BC}{AC}$$
 , $\csc\theta = \frac{AC}{BC}$, $\cos\theta = \frac{AB}{AC}$, $\sec\theta = \frac{AC}{AB}$,

$$\tan\theta = \frac{BC}{AB} \ \, \text{ \ensuremath{\mbox{\triangleleft}}\mbox{\circ}} \ \, \cot\theta = \frac{AB}{BC}$$

ଦତ୍ତ ଚିତ୍ରରେ
$$\sin(90^{\circ}-\theta) = \frac{AB}{AC}$$
 ମାତ୍ର $\cos\theta = \frac{AB}{AC}$

$$\therefore \sin(90^{\circ} - \theta) = \cos \theta$$

ସେହିପରି
$$\cos(90^{0} - \theta) = \frac{BC}{AC} = \sin \theta$$
, $\tan(90^{0} - \theta) = \frac{AB}{BC} = \cot \theta$

$$\cot(90^{0} - \theta) = \frac{BC}{AB} = \tan \theta, \sec(90^{0} - \theta) = \frac{AC}{BC} = \csc \theta$$
 $\forall \Theta^{\circ}$

$$\csc(90^{\circ} - \theta) = \frac{AC}{AB} = \sec \theta$$

$$\therefore \ 0^{\scriptscriptstyle 0} < \theta < 90^{\scriptscriptstyle 0}$$
 ପାଇଁ ଆମେ ପାଇଲେ

$$99 \text{ A:} \begin{cases} \sin(90^{0} - \theta) = \cos \theta, & \cos(90^{0} - \theta) = \sin \theta \\ \tan(90^{0} - \theta) = \cot \theta, & \cot(90^{0} - \theta) = \tan \theta \\ \sec(90^{0} - \theta) = \csc \theta, & \csc(90^{0} - \theta) = \sec \theta \end{cases}$$

4.3. ସ୍ଥୂଳକୋଣମାନଙ୍କର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ :

ପୂର୍ବରୁ 0º ଠାରୁ 90º ପର୍ଯ୍ୟନ୍ତ ପରିମାଣ ବିଶିଷ୍ଟ କୋଣମାନଙ୍କର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ବିଷୟରେ ଆଲୋଚନା କରାଯାଇଛି । ଆଲୋଚିତ ତ୍ରିକୋଣମିତିକ ସଂଜ୍ଞାକୁ ସ୍ଥାନାଙ୍କ ଜ୍ୟାମିତିର ବ୍ୟବହାର ଦ୍ୱାରା ବିକନ୍ତ ଉପାୟରେ ପ୍ରକାଶ କରାଯାଇପାରେ ଏବଂ ପ୍ରକୃତରେ ଏହି ବିକନ୍ତ ସଂଜ୍ଞା ହିଁ ଉକ୍ତ ତ୍ରିକୋଣମିତିକ ଅନୁପାତଙ୍କ ପରିସର ବିୟାର ପାଇଁ ସହାୟକ ।

କାର୍ଚେଜୀୟ ସମତଳରେ P(x,y) ଏପରି ଏକ ବିନ୍ଦୁ ଯେପରି $\angle XOP$ ଏକ ସୃକ୍ଷୁକୋଣ (ଚିତ୍ର 4.2) ।

 \overline{PN} , P ବିନ୍ଦୁରୁ x- ଅକ୍ଷପ୍ରତି ଲୟ । ମନେକର $m\angle XOP = \theta$ । $\angle XOP$ ର ଶୀର୍ଷବିନ୍ଦୁ O (ମୂଳବିନ୍ଦୁ) ଠାରୁ P ର ଦୂରତା = r ଏବଂ P ବିନ୍ଦୁର ସ୍ଥାନାଙ୍କ (x,y) ବ୍ୟବହାର କରି PON ସମକୋଶୀ ତ୍ରିଭୁଜରେ $m\angle PON = \theta$ ନିମନ୍ତେ ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ଗୁଡ଼ିକ ନିମୁମତେ ନିର୍ଣ୍ଣୟ କରାଯାଇ ପାରିବ । \P^Y

ଏଠାରେ P ବିନ୍ଦୁଟି ପ୍ରଥମ ପାଦରେ ଥିବାରୁ x ଓ y ଉଭୟ ଧନାତ୍ମକ ଏବଂ $OP,\ r$ ଦୂରତା ସୂଚାଉ ଥିବାରୁ ଏହା ସର୍ବଦା ଧନାତ୍ମକ । ଯେଉଁଠାରେ $OP=r=\sqrt{x^2+y^2}$

ସେହିପରି $\angle XOP$ ଏକ ସ୍ଥୁଳକୋଣ ହେଲେ (ଚିତ୍ର 4.3) ଅନୁରୂପ ଭାବେ ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ଗୁଡ଼ିକ ନିର୍ଣ୍ଣୟ କରି ପାରିବା । ମାତ୍ର P ବିନ୍ଦୁଟି ଦ୍ୱିତୀୟ ପାଦରେ ଅବସ୍ଥିତ ହେତୁ ଏହାର ଭୁଜ (=x) ରଣାତ୍ମକ ଓ କୋଟି (=y) ଧନାତ୍ମକ । ମନେକର $m\angle XOP=\theta$ $(0^0<\theta<180^0)$

4.5 : $\theta = 180^{\circ}$ ନିମନ୍ତେ ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ଗୁଡ଼ିକର ମୂଲ୍ୟ :

କୌଣସି କୋଣର ଡିଗ୍ରୀ ପରିମାପ θ ଏବଂ $0 < \theta < 180$ ହେଲେ ତ୍ରିକୋଣମିତିକ ଅନୁପାତଗୁଡ଼ିକର ସଂଜ୍ଞା ଅନୁଚ୍ଛେଦ 4.2 ଏବଂ ଅନୁଚ୍ଛେଦ 4.3 ରୁ ତୁମେମାନେ ପାଇସାରିଛ । $\theta = 0^\circ$ କିୟା 90° କିୟା 180° ହେଲେ ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜରୁ P (ଉଚ୍ଚତା), b (ଭୂମିର ଦୈର୍ଘ୍ୟ) ଏବଂ b (କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ) ମାଧ୍ୟମରେ ତ୍ରିକୋଣମିତିକ ଅନୁପାତଗୁଡ଼ିକର ମାନ ନିର୍ଣ୍ଣୟ ସୟବ ନୁହେଁ । ତେଣୁ $\sin 0^\circ$, $\cos 0^\circ$; $\sin 90^\circ$, $\cos 90^\circ$ ଇତ୍ୟାଦିର ସଂଜ୍ଞା

ନିରୂପଣ ଭଳି $\sin~180^\circ, \cos~180^\circ$ ଇତ୍ୟାଦିକୁ ସଂଜ୍ଞା ବଦ୍ଧ କରିବା । ଉଚ୍ଚତର ଗଣିତରେ ଉକ୍ତ ତ୍ରିକୋଶମିତିକ ଅନୁପାତଗୁଡ଼ିକୁ ବ୍ୟାପକୀକୃତ କରିପାରିବା ।

30 : 30	
$\sin 180^0 = 0$	cosec 180º (ସଂଜ୍ଞାବିହୀନ)
$\cos 180^{\circ} = -1$	$\sec 180^0 = -1$
$\tan 180^0 = 0$	$\cot 180^{\scriptscriptstyle 0} ($ ସଂଜ୍ଞାବିହୀନ $)$

4.6 ଏକ ସ୍ୱକ୍ଷ୍ମକୋଣ θ ଓ ଏହାର ପରିପୂରକ କୋଣ

$(180^{\circ}-\theta)$ ର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ମଧ୍ୟରେ ସୟନ୍ଧ :

ଚିତ୍ର 4.5 ରେ ଗ୍ରାଫ୍ କାଗଜ ଉପରେ XOX' ଓ YOY' ଦୁଇଟି ଅକ୍ଷରେଖ। ଏବଂ O ମୂଳବିନ୍ଦୁ । O ଠାରୁ r ଏକକ ଦୂରରେ P(x,y) ଏପରି ଏକ ବିନ୍ଦୁ ଯେପରି $m\angle POX = (180^{0}-\theta)$ ହେଉ $(\theta$ ଏକ ସୂକ୍ଷ୍ମକୋଣ) । ତେବେ $m\angle POM = \theta$

$$\sin (180^0 - \theta) = \frac{y}{r} = \frac{PM}{OP}$$
(1)

ପୁନଷ OMP ସମକୋଣୀ ତ୍ରିଭୁଜରେ,

$$\sin \theta = \frac{PM}{OP} \dots (2)$$

$$(1) \ \Im \ (2) \ \Im \sin (180^{\circ} - \theta) = \sin \theta$$

ସେହିପରି $\cos{(180^{0}-\theta)}=\frac{x}{r}$ ଏବଂ ΔOMP ରେ $\cos{\theta}=\frac{OM}{OP}$ । ମାତ୍ର ଏ କ୍ଷେତ୍ରରେ x ରଣାମ୍କ

ହେତୁ
$$\cos$$
 ($180^{o}-\theta$) $=\frac{x}{r}=\frac{-OM}{OP}$ | ସୁଡରା॰ \cos ($180^{o}-\theta$) $=-\cos\theta$

ବର୍ତ୍ତିମାନ
$$\tan (180^{\circ} - \theta) = \frac{\sin(180^{\circ} - \theta)}{\cos(180^{\circ} - \theta)} = \frac{\sin \theta}{-\cos \theta} = -\tan \theta,$$

$$\cot (180^{0} - \theta) = \frac{\cos(180^{0} - \theta)}{\sin(180^{0} - \theta)} = \frac{-\cos \theta}{\sin \theta} = -\cot \theta,$$

$$\sec(180^{0} - \theta) = \frac{1}{\cos(180^{0} - \theta)} = \frac{1}{-\cos\theta} = -\sec\theta$$
 ଏବଂ

$$\csc(180^{0} - \theta) = \frac{1}{\sin(180^{0} - \theta)} = \frac{1}{\sin\theta} = \csc\theta$$

ଏହା ପ୍ରମାଣ କରାଯାଇ ପାରିବ ଯେ ଉପରୋକ୍ତ ସୂତ୍ରଗୁଡ଼ିକ θ ର ମୂଲ୍ୟ $0^{\rm o}$ ରୁ $180^{\rm o}$ ର ମଧ୍ୟବର୍ତ୍ତୀ ମୂଲ୍ୟ ନିମନ୍ତେ (tan ଓ sec କ୍ଷେତ୍ରରେ $\theta \neq 90^{\rm o}$ ପାଇଁ) ପ୍ରଯୁଜ୍ୟ ।

$$\sin (180^{0} - \theta) = \sin \theta, \ 0^{0} \le \theta \le 180^{0}$$

$$\cos (180^{0} - \theta) = -\cos \theta, \ 0^{0} \le \theta \le 180^{0}$$

$$\tan (180^{0} - \theta) = -\tan \theta, \ 0^{0} \le \theta \le 180^{0} \quad \theta \ne 90^{0}$$

$$\cot (180^{0} - \theta) = -\cot \theta, \ 0^{0} < \theta < 180^{0}$$

$$\sec (180^{0} - \theta) = -\sec \theta, \ \theta \ne 90^{0}, \ 0^{0} \le \theta \le 180^{0}$$

$$\csc (180^{0} - \theta) = -\sec \theta, \ \theta \ne 90^{0}, \ 0^{0} \le \theta \le 180^{0}$$

$$\csc (180^{0} - \theta) = -\sec \theta, \ \theta \ne 90^{0}, \ 0^{0} \le \theta \le 180^{0}$$

4.7 ସୂକ୍ଷ୍ମକୋଶ θ ଓ ସ୍ଥୁଳକୋଶ ($\mathbf{90}^0+\mathbf{\theta}$) ର ତ୍ରିକୋଶମିତିକ ଅନୁପାତ ମଧ୍ୟରେ ସମ୍ପର୍କ :

ଯଦି θ ଗୋଟିଏ ସୂକ୍ଷ୍କକୋଣ ହୁଏ $90^{\circ}+\theta$ ଏକ ସ୍ଥୁଳକୋଣ ହେବ । ଯେହେତୁ ଏହି ସ୍ଥୁଳକୋଶର ତ୍ରିକୋଣମିତିକ ଅନୁପାତରେ ମାନ $(180^{\circ}-\theta)$ ଓ $(90^{\circ}-\theta)$ କୋଶର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ସମ୍ବନ୍ଧୀୟ ସୂତ୍ର ସାହାଯ୍ୟରେ ନିର୍ଦ୍ଧୟ କରାଯାଇ ପାରିବ, ତେଣୁ ଏହାର ସ୍ୱତନ୍ତ ଜ୍ୟାମିତିକ ପ୍ରମାଣର ଆବଶ୍ୟକତା ନାହିଁ । $(90^{\circ}+\theta)$ କୋଣର ତ୍ରିକୋଣମିତିକ ଅନୁପାତର ମାନ ନିମୁଲିଖିତ ଭାବେ ନିର୍ଦ୍ଧୟ କରାଯାଇ ପାରିବ ।

$$\sin (90^{0} + \theta) = \sin\{180^{0} - (90^{0} - \theta)\} = \sin (90^{0} - \theta) = \cos \theta$$

$$\cos (90^{0} + \theta) = \cos\{180^{0} - (90^{0} - \theta)\} = -\cos (90^{0} - \theta) = -\sin \theta$$

$$\tan (90^{0} + \theta) = \tan\{180^{0} - (90^{0} - \theta)\} = -\tan (90^{0} - \theta) = -\cot \theta$$

$$\cot (90^{0} + \theta) = \cot\{180^{0} - (90^{0} - \theta)\} = -\cot (90^{0} - \theta) = -\tan \theta$$

$$\sec (90^{0} + \theta) = \sec\{180^{0} - (90^{0} - \theta)\} = -\sec (90^{0} - \theta) = -\csc \theta$$

$$\csc (90^{0} + \theta) = \csc\{180^{0} - (90^{0} - \theta)\} = -\sec (90^{0} - \theta) = -\csc \theta$$

$$\csc (90^{0} + \theta) = \csc\{180^{0} - (90^{0} - \theta)\} = -\csc (90^{0} - \theta) = -\csc \theta$$

$$\sin (90^{0} + \theta) = \cos \theta \quad , 0^{0} \le \theta \le 90^{0}$$

$$\cos (90^{0} + \theta) = -\sin \theta \quad , 0^{0} \le \theta \le 90^{0}$$

$$\tan (90^{0} + \theta) = -\cot \theta \quad , 0^{0} \le \theta \le 90^{0}$$

$$\cot (90^{0} + \theta) = -\tan \theta \quad , 0^{0} \le \theta \le 90^{0}$$

$$\sec (90^{0} + \theta) = -\csc \theta \quad , 0 \le \theta \le 90^{0}$$

$$\csc (90^{0} + \theta) = \sec \theta \quad , 0^{0} \le \theta \le 90^{0}$$

4.8 କେତକ ନିର୍ଦ୍ଦିଷ୍ଟ ତ୍ରିକୋଶମିତିକ ଅନୁପାତ :

 $\theta=30^\circ,\,45^\circ,\,60^\circ\,\,$ ପାଇଁ ବିଭିନ୍ନ ତ୍ରିକୋଣମିତିକ ମାନ ନିରୂପଣ କରାଯାଇଥିଲା । ଏମାନଙ୍କ ସାହାଯ୍ୟରେ ଏବଂ ପୂର୍ବ ଅନୁଚ୍ଛେଦରେ ବର୍ତ୍ତିତ ତଥ୍ୟମାନଙ୍କ ଦ୍ୱାରା $\theta=120^\circ,\,135^\circ\,$ ଓ $150^\circ\,\,$ ପାଇଁ ତ୍ରିକୋଣମିତିକ ମାନ ସବୁ ମଧ୍ୟ ନିରୂପିତ ହୋଇପାରିବ ।

ଏହାର ଆଲୋଚନା ନିମ୍ବରେ କରାଯାଇଛି ।

(i)
$$\theta = 120^{\circ}$$

ପୂର୍ବରୁ ଜଣା ଅଛି ଯେ
$$\sin 60^\circ = \frac{\sqrt{3}}{2}$$
, $\cos 60^\circ = \frac{1}{2}$ ଏବଂ $\tan 60^\circ = \sqrt{3}$
 $\therefore \sin 120^\circ = \sin (180^\circ - 60^\circ) = \sin 60^\circ = \frac{\sqrt{3}}{2}$
 $\cos 120^\circ = \cos (180^\circ - 60^\circ) = -\cos 60^\circ = -\frac{1}{2}$
 $\tan 120^\circ = \tan (180^\circ - 60^\circ) = -\tan 60^\circ = -\sqrt{3}$
 $\cot 120^\circ = \frac{1}{\tan 120^\circ} = -\frac{1}{\sqrt{3}}$; $\sec 120^\circ = \frac{1}{\cos 120^\circ} = -2$ ଏବଂ $\csc 120^\circ = \frac{1}{\sin 120^\circ} = \frac{2}{\sqrt{3}}$

(ii) $\theta = 135^{\circ}$

ଏଠାରେ
$$\;\theta=180^{0}-45^{0}\;$$
ଏବଂ ପୂର୍ବରୁ ଜଣା ଅଛି ଯେ – $\sin 45^{0}=\cos 45^{0}=\frac{1}{\sqrt{2}}\;,\; \tan 45^{0}=1\;$

$$\therefore \sin 135^0 = \sin 45^0 = \frac{1}{\sqrt{2}} ; \cos 135^0 = -\cos 45^0 = -\frac{1}{\sqrt{2}}; \\ \tan 135^0 = -\tan 45^0 = -1$$

$$[\sin{(180^{0} - \theta)},\cos{(180^{0} - \theta)},\tan{(180^{0} - \theta)}$$
ର ସୂତ୍ର ପ୍ରୟୋଗ କରି]

$$\cot 135^0 = \frac{1}{\tan 135^0} = -1; \sec 135^0 = \frac{1}{\cos 135^0} = -\sqrt{2}$$

ଏବଂ cosec
$$135^0 = \frac{1}{\sin 135^0} = \sqrt{2}$$

(iii) $\theta = 150^{\circ}$

ପୂର୍ବରୁ ଜଣା ଅଛି
$$\sin 30^{\circ} = \frac{1}{2}$$
, $\cos 30^{\circ} = \frac{\sqrt{3}}{2}$, $\tan 30^{\circ} = \frac{1}{\sqrt{3}}$
 $\therefore \sin 150^{\circ} = \sin 30^{\circ} = \frac{1}{2}$, $\cos 150^{\circ} = -\cos 30^{\circ} = -\frac{\sqrt{3}}{2}$
 $\tan 150^{\circ} = -\tan 30^{\circ} = -\frac{1}{\sqrt{3}}$, $\cot 150^{\circ} = \frac{1}{\tan 150^{\circ}} = -\sqrt{3}$
 $\sec 150^{\circ} = \frac{1}{\cos 150^{\circ}} = \frac{-2}{\sqrt{3}}$ ଏବଂ $\csc 150^{\circ} = \frac{1}{\sin 150^{\circ}} = 2$

ଏ ପର୍ଯ୍ୟନ୍ତ ଜଣା ଥିବା ତ୍ୱିକୋଣମିତିକ ମାନଗୁଡ଼ିକ ନିମୁସ୍ଥ ସାରଣୀରେ ଉପସ୍ଥାପିତ କରାଯାଇଛି ।

ସ	ାର	ദ1
~	100	OI I

			,	,		
θ=	sin	cos	tan	cot	sec	cosec
0_0	0	1	0	ସଂଜ୍ଞା ନାହିଁ	1	ସଂଜ୍ଞା ନାହିଁ
300	$\frac{1}{2}$	$\frac{\sqrt{3}}{2}$	$\frac{1}{\sqrt{3}}$	$\sqrt{3}$	$\frac{2}{\sqrt{3}}$	2
450	$\frac{1}{\sqrt{2}}$	$\frac{1}{\sqrt{2}}$	1	1	$\sqrt{2}$	$\sqrt{2}$
600	$\frac{\sqrt{3}}{2}$	$\frac{1}{2}$	$\sqrt{3}$	$\frac{1}{\sqrt{3}}$	2	$\frac{2}{\sqrt{3}}$
900	1	0	ସଂଜ୍ଞା ନାହିଁ	0	ସଂଜ୍ଞା ନାହିଁ	1
1200	$\frac{\sqrt{3}}{2}$	$-\frac{1}{2}$	$-\sqrt{3}$	$-\frac{1}{\sqrt{3}}$	-2	$\frac{2}{\sqrt{3}}$
1350	$\frac{1}{\sqrt{2}}$	$\frac{-1}{\sqrt{2}}$	-1	-1	$-\sqrt{2}$	$\sqrt{2}$
150°	$\frac{1}{2}$	$-\frac{\sqrt{3}}{2}$	$-\frac{1}{\sqrt{3}}$	$-\sqrt{3}$	$-\frac{2}{\sqrt{3}}$	2
180^{0}	0	-1	0	ସଂଜ୍ଞା ନାହିଁ	-1	ସଂଜ୍ଞା ନାହିଁ

ଉଦାହରଣ -
$$1: \frac{\cos 30^0 + \sin 60^0}{1 + \cos 60^0 + \sin 30^0}$$
 ର ମାନ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ :
$$\frac{\cos 30^{0}+\sin 60^{0}}{1+\cos 60^{0}+\sin 30^{0}}=\frac{\frac{\sqrt{3}}{2}+\frac{\sqrt{3}}{2}}{1+\frac{1}{2}+\frac{1}{2}}=\frac{2\,\mathsf{x}\frac{\sqrt{3}}{2}}{2}=\frac{\sqrt{3}}{2}\,\left(\ \mathrm{G}(\mathsf{Q})\right)\,\mathsf{I}$$

ଉଦାହରଣ –
$$2:\frac{\cos 70^{\circ}}{\sin 20^{\circ}}+\frac{\cos 55^{\circ}.\csc 35^{\circ}}{\tan 5^{\circ}.\tan 65^{\circ}.\tan 85^{\circ}}$$
 ର ମାନ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ :
$$\frac{\cos 70^{\circ}}{\sin 20^{\circ}} + \frac{\cos 55^{\circ} . \csc 35^{\circ}}{\tan 5^{\circ} . \tan 25^{\circ} . \tan 65^{\circ} . \tan 85^{\circ}}$$

$$= \frac{\cos (90^{\circ} - 20^{\circ})}{\sin 20^{\circ}} + \frac{\cos (90^{\circ} - 35^{\circ}) . \csc 35^{\circ}}{\tan 5^{\circ} . \tan 25^{\circ} . \tan (90^{\circ} - 25^{\circ}) . \tan (90^{\circ} - 5^{\circ})}$$

$$= \frac{\sin 20^{\circ}}{\sin 20^{\circ}} + \frac{\sin 35^{\circ} . \csc 35^{\circ}}{\tan 5^{\circ} . \cot 25^{\circ} . \cot 5^{\circ}}$$

$$= 1 + \frac{\sin 35^{0} \times \frac{1}{\sin 35^{0}}}{(\tan 5^{0} \times \cot 5^{0}) \times (\tan 25^{0} \times \cot 25^{0})} = 1 + \frac{1}{1 \times 1} = 1 + 1 = 2 \quad (@@@) \mid$$

ଉଦାହରଣ -
$$3$$
: ଦର୍ଶାଅ ଯେ, $3\frac{\sin 62^0}{\cos 28^0} - \frac{\sec 42^0}{\csc 48^0} = 2$

ସମାଧାନ : ବାମପାର୍ଶ୍ୱ =
$$3\frac{\sin 62^{\circ}}{\cos 28^{\circ}} - \frac{\sec 42^{\circ}}{\csc 48^{\circ}} = 3\frac{\sin (90^{\circ} - 28^{\circ})}{\cos 28^{\circ}} - \frac{\sec (90^{\circ} - 48^{\circ})}{\csc 48^{\circ}}$$
$$= 3\frac{\cos 28^{\circ}}{\cos 28^{\circ}} - \frac{\csc 48^{\circ}}{\csc 48^{\circ}} = 3 - 1 = 2 = \varphi \hat{\mathbb{A}}$$
ଣ ପାର୍ଶ୍ୱ (ପ୍ରମାଣିତ)

ଉଦାହରଣ - 4 : ଯଦି A ଓ B ପ୍ରତ୍ୟେକ ସୂକ୍ଷ୍ମକୋଶ ଏବଂ $\sin A = \cos B$ ହୁଏ ତେବେ ପ୍ରମାଣକର ଯେ, $A+B=90^\circ$

ସମାଧାନ : B ସୃକ୍ଷୁକୋଣ ହେତୁ $(90^0 - B)$ ମଧ୍ୟ ସୃକ୍ଷୁକୋଣ I

ବରିମାନ
$$\sin A = \cos B \Rightarrow \sin A = \sin (90^{\circ}-B)$$

$$\Rightarrow$$
 A = 90 0 -B \Rightarrow A + B = 90 0 (ପ୍ରମାଶିତ)

[ଦୁଷ୍ଟବ୍ୟ : A ଓ B ସୂକ୍ଷ୍ମକୋଶ ହେଲେ $\sin A = \sin B \Rightarrow A = B$ ଏବଂ ସେହିପରି

 $\cos A = \cos B \Rightarrow A = B$ ଇତ୍ୟାଦି । କିନ୍ତୁ A ଓ B ମଧ୍ୟରୁ କୌଣସି ଗୋଟିଏ ସ୍ଥୁଳକୋଣ ହେଲେ ଏହା ସମ୍ଭବ ନୁହେଁ ।

ଯେପରି :
$$\sin 60^{0} = \frac{\sqrt{3}}{2} = \sin 120^{0}$$
 କିନ୍ତୁ $60^{0} \neq 120^{0}$ (ଉଚ୍ଚତର ଶ୍ରେଶୀରେ ଏ ବିଷୟରେ ଅଧିକ ଜାଣିବ)] ।

ଉଦାହରଣ –
$$5$$
 : ସରଳ କର : $\frac{1+\sec(180^{0}-A)}{1+\sec(90^{0}+A)}$ $\mathbf{x}\frac{1-\csc A}{1-\sec A}$

ସମାଧାନ :
$$\frac{1+\sec(180^{0}-A)}{1+\sec(90^{0}+A)} \times \frac{1-\csc A}{1-\sec A} = \frac{1-\sec A}{1-\csc A} \times \frac{1-\csc A}{1-\sec A} = 1 \ (ଭଉର)$$

ଉଦାହରଣ -
$$6$$
 : $\csc^2(97^0+\alpha)-\cot^2(83^0-\alpha)$ କୁ ସରଳ କର ।

ସମାଧାନ :
$$\csc^2(97^0 + \alpha) - \cot^2(83^0 - \alpha)$$

$$= \csc^2[90^0 + (7^0 + \alpha)] - \cot^2[90^0 - (7^0 + \alpha)]$$

$$= \sec^2(7^0 + \alpha) - \tan^2(7^0 + \alpha)$$

$$= 1 \tag{QQQ}$$

ବି.ଦୁ.:
$$\cot^2(83^0 - \alpha) = [\cot\{180^0 - (97^0 + \alpha)\}]^2 = [-\cot(97^0 + \alpha)]^2 = \cot^2(97^0 + \alpha)$$
 ନିଆଯାଇ ସରଳ କରାଯାଇପାରେ ।

ଭଦାହରଣ -7 :
$$\frac{\sin(180^{\circ}-A).\sin(90^{\circ}-A).\cot(90^{\circ}+A)}{\tan(180^{\circ}-A).\cos(90^{\circ}+A).\csc(90^{\circ}-A)}$$
 କୁ ସରଳ କର ।

ସମାଧାନ :
$$\frac{\sin(180^{0}-A).\sin(90^{0}-A).\cot(90^{0}+A)}{\tan(180^{0}-A).\cos(90^{0}+A).\csc(90^{0}-A)} = \frac{\sin A.\cos A.(-\tan A)}{-\tan A.(-\sin A).\sec A}$$

$$= \frac{-\sin A \cdot \cos A \cdot \tan A}{\tan A \cdot \sin A \cdot \sec A} = \frac{-\cos A}{\sec A} = -\cos^2 A$$
 (ଉଉର)

ଉଦାହରଣ -8 : ପ୍ରମାଣ କର ଯେ $tan 1^0$. $tan 2^0$. $tan 3^0$ $tan 89^0 = 1$

ସମାଧାନ : ବାମପକ୍ଷ =
$$\tan 1^{\circ}$$
 . $\tan 2^{\circ}$. $\tan 3^{\circ}$ $\tan 89^{\circ}$ = $\tan(90^{\circ}-89^{\circ})$. $\tan(90^{\circ}-88^{\circ})$. $\tan(90^{\circ}-87^{\circ})$

.....
$$\tan (90^{\circ}-46^{\circ})$$
. $\tan 45^{\circ}$ $\tan 87^{\circ}$. $\tan 88^{\circ}$. $\tan 89^{\circ}$

$$= \cot 89^{\circ}$$
. $\cot 88^{\circ}$. $\cot 87^{\circ}$ $\cot 46^{\circ}$. $\tan 45^{\circ}$. $\tan 46^{\circ}$... $\tan 87^{\circ}$. $\tan 88^{\circ}$. $\tan 89^{\circ}$

=
$$(\cot 89^{\circ} x \tan 89^{\circ}) x (\cot 88^{\circ} x \tan 88^{\circ}) x (\cot 87^{\circ} x \tan 87^{\circ})$$

......
$$x (\cot 46^{\circ} x \tan 46^{\circ}) x \tan 45^{\circ}$$

=
$$1 \times 1 \times 1 \times \dots \times 1 \times 1 = 1 = 0$$
କିଶ ପାର୍ଶ୍ୱ (ପ୍ରମାଣିତ)

ଉଦାହରଣ-9:
$$\Delta$$
 ABC ରେ ପ୍ରମାଣ କର ଯେ, $sin \left(\dfrac{B+C}{2} \right) = cos \left(\dfrac{A}{2} \right)$

ସମାଧାନ : A,B ଏବଂ C ତ୍ରିଭୁଜର ଡିନୋଟି କୋଣ ହେତୁ $A+B+C=180^{\circ}$

ବାମପାର୍ଶ୍ୱ =
$$\sin\left(\frac{B+C}{2}\right) = \sin\left(\frac{A+B+C-A}{2}\right)$$

$$= \sin\left(\frac{180^{0}-A}{2}\right) = \sin\left(90^{0}-\frac{A}{2}\right) = \cos\left(\frac{A}{2}\right) = \text{Q}$$
 ସମାର୍ଶିତ)

1. ବନ୍ଧନୀ ମଧ୍ୟରୁ ଠିକ୍ ଉତ୍ତରଟି ବାଛି ଶୂନ୍ୟସ୍ଥାନ ପୂରଣ କର ।

(a)
$$\sin 80^{\circ} = \dots$$
 [$\sin 10^{\circ}$, $\sin 20^{\circ}$, $\cos 10^{\circ}$, $\cos 20^{\circ}$]

(b)
$$\cos 65^{\circ} = \dots$$
 [$\sin 25^{\circ}$, $\sin 35^{\circ}$, $\cos 25^{\circ}$, $\cos 35^{\circ}$]

(c)
$$\sin 180^0 = \dots$$
 [1, -1, 0, ± 1]

(d)
$$\cos 90^{0} = \dots$$
 [1, -1, 0, ± 1]

(e)
$$\cos 110^{\circ} + \sin 20^{\circ} = \dots$$
 [2 $\cos 110^{\circ}, 2 \sin 20^{\circ}, 0, 1$]

(f)
$$\sin 75^{\circ} - \cos 15^{\circ} = \dots$$
 $\left[\frac{\sqrt{3}}{2}, \frac{1}{2}, 0, 1\right]$

(g)
$$\sin 0^0 = \dots$$
 [$\cos 0^0$, $\sin 90^0$, $\sin 180^0$, $\cos 180^0$]

(h)
$$\sin 15^0 + \cos 105^0 = \dots$$
 [0, 1, -1, \pm 1]

(i)
$$\cos 121^0 + \sin 149^0 = \dots$$
 [1, -1, 0, ±1]

(j)
$$\tan 102^{\circ} - \cot 168^{\circ} = \dots$$
 [0, -1, 1, ± 1]

$$90^{\circ} + \theta$$
 କିୟା $90^{\circ} - \theta$ କିୟା $180^{\circ} - \theta$, ର ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ରୂପରେ ପ୍ରକାଶ କର $(0^{\circ} < \theta < 90^{\circ})$ ।

$$3.$$
 ନିମ୍ନସ୍ଥ ପଦଗୁଡ଼ିକୁ 0° ଏବଂ 45° କୋଣ ପରିମାଣ ମଧ୍ୟସ୍ଥ ତ୍ରିକୋଣମିତିକ ଅନୁପାତରେ ପ୍ରକାଶ କର ।

(i)
$$\cos 85^{\circ} + \cot 85^{\circ}$$
 (ii) $\sin 75^{\circ} + \tan 75^{\circ}$ (iii) $\cot 65^{\circ} + \tan 49^{\circ}$

4. ମାନ ନିର୍ମ୍ଭୟ କର
$$| i \rangle = \frac{\sin 18^{0}}{\cos 72^{0}} = ii \rangle = \frac{\tan 26^{0}}{\cot 64^{0}} = iii \rangle = \frac{\sin 116^{0}}{\cos 26^{0}} = iv \rangle = \frac{\cos c74^{0}}{\cos c106^{0}} = v \rangle = \frac{\sin 28^{0}}{\cos 118^{0}}$$
('ଖ' ବିଭାଗ)

(i)
$$\csc 31^0 - \sec 59^0$$
 (ii) $\sin (50^0 + \theta) - \cos (40^0 - \theta)$

(iii)
$$\frac{\cos^2 20^0 + \cos^2 70^0}{\sin^2 59^0 + \sin^2 31^0}$$
 (iv) $\tan (55^0 - \theta) - \cot (35^0 + \theta)$

(v)
$$\cos 1^{\circ} \cdot \cos 2^{\circ} \cdot ... \cos 180^{\circ}$$
 (vi) $\left(\frac{\sin 27^{\circ}}{\cos 63^{\circ}}\right)^{2} + \left(\frac{\cos 63^{\circ}}{\sin 27^{\circ}}\right)^{2}$

(vii) cot
$$112^{0}$$
 . cot 158^{0} (viii) $\cos^{2}(90^{0} + \alpha) + \cos^{2}(180^{0} - \alpha)$

(ix)
$$\sec^2 (105^0 + \alpha) - \tan^2 (75^0 - \alpha)$$
 (x) $\sin^2 (110^0 + \alpha) + \cos^2 (70^0 - \alpha)$

6. ମାନ ନିର୍ଣ୍ଣୟ କର ।

(i)
$$\csc^2 67^0 - \tan^2 23^0$$
 (ii) $\frac{\sin 51^0 + \sin 156^0}{\cos 39^0 + \cos 66^0}$

(iii)
$$\frac{\cos 68^{0} + \sin 131^{0}}{\sin 22^{0} + \cos 41^{0}}$$
 (iv)
$$\frac{\sin 162^{0} + \cos 153^{0}}{\cos 72^{0} - \cos 27^{0}}$$

(v)
$$\frac{\cos 38^{\circ} + \sin 120^{\circ}}{2\sin 52^{\circ} + \sqrt{3}}$$
 (vi) $\frac{2\cos 67^{\circ}}{\sin 23^{\circ}} - \frac{\tan 40^{\circ}}{\cot 50^{\circ}} - \sin 90^{\circ}$

(vii)
$$\frac{\sec 61^{0} + \csc 120^{0}}{\sqrt{3}\csc 29^{0} + 2}$$

7. ପ୍ରମାଶ କର :

(i)
$$\cos (90^{\circ} - \theta)$$
 . $\csc (180^{\circ} - \theta) = 1$

(ii)
$$\frac{\cos 29^{0} + \sin 159^{0}}{\sin 61^{0} + \cos 69^{0}} = 1$$
 (iii) $\sin^{2} 70^{0} + \cos^{2} 110^{0} = 1$

(iv)
$$\sin^2 110^0 + \sin^2 20^0 = 1$$
 (v) $\sec^2 \theta + \csc^2 (180^0 - \theta) = \sec^2 \theta$. $\csc^2 \theta$

(vi) $2 \sin \theta \cdot \sec (90^0 + \theta) \cdot \sin 30^0 \cdot \tan 135^0 = 1$

8. ପ୍ରମାଶ କର:

(i)
$$\cos^2 135^0 - 2\sin^2 180^0 + 3\cot^2 150^0 - 4\tan^2 120^0 = \frac{-5}{2}$$

(ii)
$$\tan 30^{\circ}$$
 . $\tan 135^{\circ}$. $\tan 150^{\circ}$. $\tan 45^{\circ} = \frac{1}{3}$

(iii)
$$\frac{\sec^2 180^0 + \tan 150^0}{\csc^2 90^0 + \cot 120^0} = 1$$

(iv)
$$\sin^2 135^0 + \cos^2 120^0 - \sin^2 120^0 + \tan^2 150^0 = \frac{1}{3}$$

('ଗ' ବିଭାଗ)

9. ମୂଲ୍ୟ ନିରୂପଣ କର :

- (i) $\tan 10^{0}$ x $\tan 20^{0}$ x $\tan 30^{0}$ x x $\tan 70^{0}$ x $\tan 80^{0}$
- (ii) $\cot 12^0 \cdot \cot 38^0 \cdot \cot 52^0 \cdot \cot 60^0 \cdot \cot 78^0$
- (iii) $\tan 5^{\circ}$. $\tan 15^{\circ}$. $\tan 45^{\circ}$. $\tan 75^{\circ}$. $\tan 85^{\circ}$

10. ପ୍ରମାଣ କର :

(i)
$$\sin 120^{\circ} + \tan 150^{\circ} \cdot \cos 135^{\circ} = \frac{3 + \sqrt{2}}{2\sqrt{3}}$$

(ii)
$$\frac{\sec^2 180^0 + \tan 150^0}{\csc^2 90^0 - \cot 120^0} = 2 - \sqrt{3}$$

(iii)
$$\frac{\sec^2 180^0 + \tan 45^0}{\csc^2 90^0 - \cot 120^0} = 3 - \sqrt{3}$$

11. ସରଳ କର :

(i)
$$sin \left(180^{o} - \theta \right)$$
 . $cos \left(90^{o} + \theta \right) + sin \left(90^{o} + \theta \right)$. $cos \left(180^{o} - \theta \right)$

(ii)
$$\frac{\cos(90^{0} - A) \cdot \sec(180^{0} - A) \cdot \sin(180^{0} - A)}{\sin(90^{0} + A) \cdot \tan(90^{0} + A) \cdot \csc(90^{0} + A)}$$

12.
$$\triangle$$
 ABC ରେ m \angle B = 90° ହେଲେ ପୁମାଣ କର ଯେ, $\sin^2 A + \sin^2 C = 1$

13.
$$\triangle$$
 ABC ରେ ପ୍ରମାଣ କର ଯେ, $\cos(A+B) + \sin C = \sin(A+B) - \cos C$ |

$$14. \quad A \ ^{\circ} \ B$$
 ଦୁଇଟି ପରସ୍କର ଅନୁପୁରକ କୋଣ ହେଲେ $\sin A \cdot \cos B + \cos A \cdot \sin B$ ର ମାନ ନିର୍ଣ୍ଣୟ କର ।

$$15. \quad ABCD$$
 ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ଚତୁର୍ଭୁକ ହେଲେ $an A + an C$ ର ମାନ ନିର୍ଣ୍ଣୟ କର ।

$$16.$$
 ପ୍ରମାଶ କର :
$$\frac{\sin^2 135^0 + \cos^2 120^0 - \sin^2 150^0 + \tan^2 150^0}{\sin^2 120^0 - \cos^2 150^0 + \tan^2 120^0 + \tan^2 135^0 + \cos 180^0} = \frac{5}{18}$$

17. ପ୍ରମାଶ କର :
$$\frac{5\sin^2 150^\circ + \cos^2 45^\circ + 4\tan^2 120^\circ}{2\sin 30^\circ \cdot \cos 60^\circ - \tan 135^\circ} = \frac{55}{6}$$

4.9. ମିଶ୍ରକୋଶର ତ୍ରିକୋଶମିତିକ ଅନୁପାତ (Trigonometrical ratios of compound angles) :

ଯଦି A ଓ B ଉଭୟ ଚଳରାଶି ଓ $\theta=A+B$ ବା A-B ହୁଏ, ତେବେ θ ର ମୂଲ୍ୟ ଉଭୟ A ଓ B ଉପରେ ନିର୍ଭର କରିବ । A ଓ B ମଧ୍ୟରୁ କୌଣସି ଗୋଟିଏ ବା ଉଭୟ ପରିବର୍ତ୍ତିତ ହେଲେ θ ମଧ୍ୟ ଭିନ୍ନ ଭିନ୍ନ ମୂଲ୍ୟ ଗ୍ରହଣ କରିପାରେ । ଏ ପରିସ୍ଥିତିରେ θ ଅର୍ଥାତ୍ A+B ବା A-B କୁ ଯୌଗିକ ଚଳ (Compound argument) କୁହାଯାଏ ।

ଯୌଗିକ ଚଳ ପାଇଁ ତ୍ରିକୋଣମିତିକ ଫଳନର କେତେଗୁଡ଼ିଏ ବିଶେଷ ଧର୍ମ ରହିଛି । ସେଥି ମଧ୍ୟରୁ କେତେକ ପ୍ରମୁଖ ଧର୍ମକୁ ସୂତ୍ର ରୂପରେ ପ୍ରକାଶ କରିବା ।

$$99 : \sin (A + B) = \sin A. \cos B + \cos A. \sin B \qquad \dots (1)$$

ପ୍ରମାଣ : ଚିତ୍ର 4.6 ରେ $\angle {
m QOP}$ ଓ $\angle {
m POR}$ ର ପରିମାଣ ଯଥାକ୍ରମେ ${
m A}$ ଓ ${
m B}$, ତେଣୁ $\angle {
m QOR}$ ର ପରିମାଣ ${
m A+B}$ ଅଟେ ।

$$\overline{RS} \perp \overline{OQ}$$
, $\overline{RP} \perp \overline{OP}$ $\P \circ \overline{PT} \perp \overline{RS}$, $\overline{PQ} \perp \overline{OQ}$

ଅଙ୍କନ ଅନୁଯାୟୀ PQST ଏକ ଆୟତଚିତ୍ର ଅଟେ ।

ତେଣୁ PT II OQ ଏବଂ

$$m\angle TPO = m\angle POQ = A$$
 (ଏକାନ୍ତର କୋଣ)

RTP ସମକୋଶୀ ତ୍ରିଭୁକରେ
$$m\angle PRT + m\angle TPR = 90^{\circ}$$

$$T$$
 A
 P
 $(\widehat{\Theta} \widehat{\Theta} = 4.6)$

$$\overline{RP} \perp \overline{OP}$$
 ହେତୁ m $\angle TPO + m\angle TPR = 90^{\circ}$

$$\therefore$$
 m \angle PRT + m \angle TPR = m \angle TPO + m \angle TPR

$$\therefore \sin (A + B) = \frac{RS}{OR} = \frac{RT + TS}{OR} = \frac{RT + PQ}{OR} = \frac{PQ}{OR} + \frac{RT}{OR} \quad (\because TS = PQ)$$
$$= \frac{PQ}{OP} \cdot \frac{OP}{OR} + \frac{RT}{RP} \cdot \frac{RP}{OR}$$

=
$$\sin \angle QOP$$
 . $\cos \angle POR$ + $\cos \angle PRT$. $\sin \angle POR$
= $\sin A$. $\cos B$ + $\cos A$. $\sin B$

$$[\because m \angle QOP = A = m \angle PRT (ii)] (ପ୍ରମାଶିତ)$$

T

(ଚିତ୍ର 4.7)

O

ମନ୍ତବ୍ୟ : (i) sin A କୁ sin m∠QOP ଅଥବା sin m∠PRT ନ ଲେଖି sin ∠QOP ଅଥବା sin∠PRT ଲେଖାଯାଏ । ସେହିପରି cos A କୁ cos m∠QOP ଅଥବା cos m∠PRT ନ ଲେଖି cos∠QOP ଅଥବା cos∠PRT ଲେଖାଯାଏ । ଅନ୍ୟାନ୍ୟ ତ୍ରିକୋଣମିତିକ ଅନୁପାତ ପାଇଁ ମଧ୍ୟ ଏହି ପ୍ରଥା ଅନୁସୃତ ହୁଏ ।

(2) \angle PRT ଓ \angle QOP ସମପରିମାଣ ବିଶିଷ୍ଟ ହୋଇଥିବାର ଆମେ PRT ବା QOP ଯେକୌଣସି ସମକୋଶୀ ତ୍ରିଭୁଜରୁ ତ୍ରିକୋଶମିତିକ ଅନୁପାତଗୁଡ଼ିକ ନିର୍ଣ୍ଣୟ କରିପାରିବା । ତ୍ରିଭୁଜଦ୍ୱୟ ସଦୃଶ ହୋଇଥିବାରୁ ସମ୍ପୃକ୍ତ ଅନୁପାତଗୁଡ଼ିକ ସମାନ ଅଟନ୍ତି – ଏକଥା ସଦୃଶ ତ୍ରିଭୁଜ ପ୍ରସଙ୍ଗରେ ଆଲୋଚିତ ହୋଇଛି ।

$$QQ : \cos(A + B) = \cos A \cdot \cos B - \sin A \cdot \sin B \qquad \dots (2)$$

ପ୍ରମାଶ : ଚିତ୍ର 4.6 ରୁ
$$\cos (A+B) = \frac{OS}{OR} = \frac{OQ-SQ}{OR} = \frac{OQ-TP}{OR}$$

$$= \frac{OQ}{OR} - \frac{TP}{OR} = \frac{OQ}{OP} \cdot \frac{OP}{OR} - \frac{TP}{RP} \cdot \frac{RP}{OR}$$

$$= \cos A \cdot \cos B - \sin A \cdot \sin B \quad (ପ୍ରମାଶିତ)$$

$$99 : \sin (A - B) = \sin A \cdot \cos B - \cos A \cdot \sin B \qquad \dots (3)$$

ପ୍ରମାଶ : ଚିତ୍ର
$$4.7$$
 ରେ m $\angle QOR = A$, m $\angle POR = B$, ତେଣୁ $\angle QOP = A - B$

$$\overline{RS} \perp \overline{OQ} \,, \quad \overline{PR} \perp \overline{OR} \,, \ \overline{PT} \perp \overline{RS} \ \ {}^{\mbox{\notQ$}} \ \ \overline{PQ} \perp \overline{OQ} \label{eq:resolvent}$$

ଅଙ୍କନ ଅନ୍ନଯାୟୀ PQST ଏକ ଆୟତଚିତ୍ର ।

ତେଣୁ
$$PQ = TS$$
 ଓ $SQ = TP$

 $\angle {
m ROS}$ ସମକୋଶୀ ତ୍ୱିଭ୍କରେ m $\angle {
m ROS}$ + m $\angle {
m ORS}$ = 90°

ପୁନଣ୍ଟ
$$\overline{
m PR} \perp \overline{
m OR}$$
 ହେତୁ m $\angle {
m PRT} + {
m m} \angle {
m ORS} = 90^{
m 0}$

$$\therefore$$
 m \angle ROS = m \angle PRT = A ($\cdot \cdot \cdot$ m \angle ROS = m \angle QOR = A)

$$\sin(A - B) = \sin \angle QOP = \frac{PQ}{OP} = \frac{TS}{OP}$$
 (: PQ = TS)

$$=\frac{RS-RT}{OP}=\frac{RS}{OP}-\frac{RT}{OP}=\frac{RS}{OR}\cdot\frac{OR}{OP}-\frac{RT}{RP}\cdot\frac{RP}{OP}$$
 $=\sin\angle ROS\cdot\cos\angle POR-\cos\angle PRT\cdot\sin\angle POR$
 $=\sinA\cdot\cos B-\cos A\cdot\sin B$
 $(\because m\angle ROS=m\angle PRT=A \ @ m\angle POR=B)$
(ପ୍ରମାଶିତ)

ହୁକ୍ତ: $\cos(A-B)=\cos A\cdot\cos B+\sin A\cdot\sin B$ (4)

ପୁମାଣ : ଚିତ୍ର 4.7 ରେ $\cos(A-B)=\cos\angle QOP$
 $=\frac{OQ}{OP}=\frac{OS+SQ}{OP}=\frac{OS+TP}{OP}(\because SQ=TP)$
 $=\frac{OS}{OP}+\frac{TP}{OP}=\frac{OS}{OR}\cdot\frac{OR}{OP}+\frac{TP}{RP}\cdot\frac{RP}{OP}$
 $=\cos\angle ROS\cdot\cos\angle POR+\sin\angle PRT\cdot\sin\angle POR$
 $=\cos\angle ROS\cdot\cos B+\sin A\cdot\sin B$
 $(\because m\angle ROS=m\angle PRT=A \ @ m\angle POR=B)$

ସୂଚନା : ସୂତ୍ର -1ରୁ ସୂତ୍ର -4 ଅତ୍ୟନ୍ତ ଗୁରୁତ୍ୱପୂର୍ଣ୍ଣ ଓ ଏହାକୁ ସ୍ମରଣ ରଖିବା ବାଞ୍ଚନୀୟ; କାରଣ ଏହାପରେ ଆଲୋଚିତ ହେବାକୁ ଥିବା ବିଷୟବସ୍ତୁ ପାଇଁ ଏହି ଚାରିଗୋଟି ସୂତ୍ର ହିଁ ଆଧାର । ଏହି ସୂତ୍ରଗୁଡ଼ିକର ପ୍ରମାଣ ସୂକ୍ଷ୍ମକୋଣ ଆଧାରିତ ହୋଇଥିଲେ ହେଁ A ଓ B ର ଯେକୌଣସି ମାନ ପାଁଇ ସୂତ୍ରଗୁଡ଼ିକ ପ୍ରଯୁଜ୍ୟ – ଏହାର ପ୍ରମାଣ ଉଚ୍ଚତର ଶେଣୀରେ ଦିଆଯିବ ।

ଉପରୋକ୍ତ ସୂତ୍ରଗୁଡ଼ିକ ସାହାଯ୍ୟରେ $\tan{(A\pm B)}$ ଏବଂ $\cot{(A\pm B)}$ ର ତ୍ରିକୋଶମିଡିକ ଫଳନର ସଡ଼ ନିର୍ଶ୍ଚୟ କରିପାରିବା ।

ଉଦାହରଣ :-10

$$(i) \ \tan \ (A + B) = \frac{\sin(A + B)}{\cos(A + B)} = \frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B - \sin A \cdot \sin B}$$

$$= \frac{\frac{\sin A \cdot \cos B + \cos A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B - \sin A \cdot \sin B}{\cos A \cdot \cos B}} \left(\text{mQ ଓ ହରକୁ } \cos A \cdot \cos B \text{ ହ୍ୱାରା ଭାଗ କରାଗଲା}\right)$$

$$= \frac{\frac{\sin A \cdot \cos B}{\cos A \cdot \cos B} + \frac{\cos A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B} - \frac{\sin A \cdot \sin B}{\cos A \cdot \cos B}}{\frac{\cos A \cdot \cos B}{\cos A \cdot \cos B}}$$

(a)
$$\sin (A + B) + \sin (A - B) = 2 \sin A \cdot \cos B$$

(b)
$$\sin (A + B) - \sin (A - B) = 2 \cos A \cdot \sin B$$

(c)
$$\cos (A + B) + \cos (A - B) = 2 \cos A \cdot \cos B$$

(d)
$$\cos (A - B) - \cos (A + B) = 2 \sin A \cdot \sin B$$

ଭଦାହରଣ - 11: \sin 15^\circ ଓ $\tan 105^\circ$ ର ମାନ ନିରୂପଣ କର ।

ସମାଧାନ :
$$\sin 15^{\circ} = \sin (45^{\circ} - 30^{\circ})$$

$$= \sin 45^{\circ} \cdot \cos 30^{\circ} - \cos 45^{\circ} \cdot \sin 30^{\circ}$$

$$=rac{1}{\sqrt{2}} ext{ x } rac{\sqrt{3}}{2} - rac{1}{\sqrt{2}} ext{ x } rac{1}{2} = rac{\sqrt{3}}{2\sqrt{2}} - rac{1}{2\sqrt{2}} = rac{\sqrt{3}-1}{2\sqrt{2}}$$
 (ଉଚ୍ଚର)

$$\tan 105^{\circ} = \tan (60^{\circ} + 45^{\circ}) = \frac{\tan 60^{\circ} + \tan 45^{\circ}}{1 - \tan 60^{\circ} \cdot \tan 45^{\circ}} = \frac{\sqrt{3} + 1}{1 - \sqrt{3} \times 1} = \frac{\sqrt{3} + 1}{1 - \sqrt{3}}$$

$$=\frac{\left(\sqrt{3}+1\right)\left(1+\sqrt{3}\right)}{\left(1-\sqrt{3}\right)\left(1+\sqrt{3}\right)}=\frac{3+1+2\sqrt{3}}{1-3}=\frac{4+2\sqrt{3}}{-2}=_{-2-\sqrt{3}}\left(\text{ଉଚ୍ଚର}\right)$$

ଭଦାହରଣ – 12 : ପ୍ରମାଣ କର :
$$\frac{\sin(A+B)}{\cos A.\cos B}=\tan A+\tan B$$

ସମାଧାନ : ବାମପକ୍ଷ =
$$\frac{\sin(A+B)}{\cos A.\cos B}$$
 = $\frac{\sin A.\cos B + \cos A.\sin B}{\cos A.\cos B}$ = $\frac{\sin A.\cos B}{\cos A.\cos B}$ + $\frac{\cos A.\sin B}{\cos A.\cos B}$

$$=rac{\sin A}{\cos A}+rac{\sin B}{\cos B}= an A+ an B=$$
ଦର୍କ୍ଷିଣପକ୍ଷ (ପ୍ରମାଣିତ) ।

ଉଦାହରଣ – 13 : ପ୍ରମାଶ କର :
$$\frac{\cos 16^0 + \sin 16^0}{\cos 16^0 - \sin 16^0} = \tan 61^0$$

ସମାଧାନ : ଦକ୍ଷିଣପକ୍ଷ =
$$tan61^0 = tan(45^0 + 16^0)$$

$$=\frac{\tan 45^{\circ} + \tan 16^{\circ}}{1 - \tan 45^{\circ} \cdot \tan 16^{\circ}} = \frac{1 + \tan 16^{\circ}}{1 - \tan 16^{\circ}} = \frac{1 + \frac{\sin 16^{\circ}}{\cos 16^{\circ}}}{1 - \frac{\sin 16^{\circ}}{\cos 16^{\circ}}} = \frac{\frac{\cos 16^{\circ} + \sin 16^{\circ}}{\cos 16^{\circ}}}{\frac{\cos 16^{\circ} - \sin 16^{\circ}}{\cos 16^{\circ}}}$$

$$=rac{\cos 16^{0}+\sin 16^{0}}{\cos 16^{0}-\sin 16^{0}}=$$
 ବାମପକ୍ଷ (ପ୍ରମାଣିଡ) ।

ଉଦାହରଣ - 14 : ପ୍ରମାଣ କର ଯେ, tan70º. tan65º - tan70º - tan65º = 1
ସମାଧାନ : 70º + 65º = 135º ⇒ tan(70º + 65º) = tan135º

⇒
$$\frac{\tan 70^{\circ} + \tan 65^{\circ}}{1 - \tan 70^{\circ} \cdot \tan 65^{\circ}} = -1$$

⇒ $-1 + \tan 70^{\circ} \cdot \tan 65^{\circ} = \tan 70^{\circ} + \tan 65^{\circ}$
⇒ $\tan 70^{\circ} \cdot \tan 65^{\circ} - \tan 70^{\circ} - \tan 65^{\circ} = 1$
⇒ ବାମପକ୍ଷ = ଦନ୍ଧିଶପକ୍ଷ (ପ୍ରମାଣିତ)
ଉଦାହରଣ - 15 : A+B+C = 180° ବହଲେ,
ପ୍ରମାଣ କର ଯେ, $\tan A + \tan B + \tan C = \tan A$. $\tan B$. $\tan C$
ସମାଧାନ : A+B+C = 180° ⇒ A+B = 180° – C

⇒ $\tan (A+B) = \tan (180^{\circ} - C)$ ⇒ $\frac{\tan A + \tan B}{1 - \tan A \cdot \tan B} = -\tan C$
⇒ $\tan A + \tan B = -\tan C + \tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \tan C = \tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\tan A + \tan B = \cot C$ + $\tan A$. $\tan B$. $\tan C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$
⇒ $\cot A + \cot B = \cot C$

ଅନୁଶୀଳନୀ - 4 (b) ('କ' ବିଭାଗ)

1. ଶୃନ୍ୟସ୍ଥାନ ପୂରଣ କର I

i)
$$\sin(A - B) = \frac{\sin A}{\cos A} - \frac{\cos A}{\cos A}$$

ii)
$$cos(\theta + \alpha) + cos(\alpha - \theta) = \dots$$

iii)
$$\cos(60^{\circ} - A) + \dots = \cos A$$

iv)
$$\sin (30^{\circ} + A) + \sin (30^{\circ} - A) = \dots$$

v)
$$2 \sin A \cdot \sin B = \dots - \cos (A + B)$$

vi)
$$\tan (45^0 + \theta) \cdot \tan (45^0 - \theta) = \dots$$

2. ପ୍ରମାଶ କର :

$$i)\frac{\sin(A-B)}{\cos A.\cos B} = \tan A - \tan B$$

ii)
$$\frac{\cos(A+B)}{\cos A \cos B} = 1 - \tan A \cdot \tan B$$

iii)
$$\frac{\cos(A - B)}{\cos A \cdot \sin B} = \cot B + \tan A$$

iv)
$$\frac{\sin\alpha}{\sin\beta} - \frac{\cos\alpha}{\cos\beta} = \frac{\sin(\alpha - \beta)}{\sin\beta \cdot \cos\beta}$$

v)
$$\frac{\cos\alpha}{\sin\beta} - \frac{\sin\alpha}{\cos\beta} = \frac{\cos(\alpha+\beta)}{\sin\beta \cdot \cos\beta}$$

3. ପ୍ରମାଣ କର :

i)
$$\cos(A + 45^{\circ}) = \frac{1}{\sqrt{2}} (\cos A - \sin A)$$

i)
$$\cos(A + 45^{\circ}) = \frac{1}{\sqrt{2}} (\cos A - \sin A)$$
 ii) $\sin (45^{\circ} - \theta) = -\frac{1}{\sqrt{2}} (\sin \theta - \cos \theta)$

iii)
$$tan(45^0 + \theta) = \frac{1 + tan\theta}{1 - tan\theta}$$

iv) cot
$$(45^{\circ}-\theta) = \frac{\cot\theta+1}{\cot\theta-1}$$

4. ପମାଣ କର:

i)
$$\cos(45^{\circ} - A)$$
. $\cos(45^{\circ} - B) - \sin(45^{\circ} - A)$. $\sin(45^{\circ} - B) = \sin(A + B)$

ii)
$$\sin (40^{0} + A) \cdot \cos (20^{0} - A) + \cos (40^{0} + A) \cdot \sin (20^{0} - A) = \frac{\sqrt{3}}{2}$$

iii)
$$\cos (65^0 + \theta) \cdot \cos (35^0 + \theta) + \sin (65^0 + \theta) \cdot \sin (35^0 + \theta) = \frac{\sqrt{3}}{2}$$

iv)
$$\cos n\theta \cdot \cos \theta + \sin n\theta \cdot \sin \theta = \cos (n-1) \theta$$

v)
$$\tan(60^{\circ} - A) = \frac{\sqrt{3}\cos A - \sin A}{\cos A + \sqrt{3}\sin A}$$

'ଗ' ବିଭାଗ

5. ପ୍ରମାଶ କର:

(i)
$$\tan 62^0 = \frac{\cos 17^0 + \sin 17^0}{\cos 17^0 - \sin 17^0}$$

(ii)
$$\tan 70^{\circ} = \frac{\cos 25^{\circ} + \sin 25^{\circ}}{\cos 25^{\circ} - \sin 25^{\circ}}$$

(iii)
$$\tan 7A \cdot \tan 4A \cdot \tan 3A = \tan 7A - \tan 4A - \tan 3A$$

(iv)
$$\tan (x + y) - \tan x - \tan y = \tan (x + y)$$
. $\tan x$. $\tan y$

(v)
$$(1 + \tan 15^{\circ}) (1 + \tan 30^{\circ}) = 2$$

(vi) (cot
$$10^0 - 1$$
) (cot $35^0 - 1$) = 2

(vii)
$$\frac{1}{\cot A + \tan B} - \frac{1}{\tan A + \cot B} = \tan(A - B)$$

(viii)
$$\sqrt{3} + \cot 50^{0} + \tan 80^{0} = \sqrt{3} \cot 50^{0}$$
. $\tan 80^{0}$

7. (i)
$$\cos \alpha = \frac{8}{17}$$
 ଓ $\sin \beta = \frac{5}{13}$ ହେଲେ $\sin (\alpha - \beta)$ ର ମାନ ନିର୍ଣ୍ଣୟ କର ।

$$(iii) an eta = rac{1 - an lpha}{1 + an lpha}$$
 ହେଲେ, $an (lpha + eta)$ ର ମାନ ନିର୍ଣ୍ଣୟ କର ।

$$A + B + C = 90^{\circ}$$
 ହେଲେ ପ୍ରମାଣ କର ଯେ

(i)
$$\cot A + \cot B + \cot C = \cot A \cdot \cot B \cdot \cot C$$

(ii)
$$\tan A \cdot \tan B + \tan B \cdot \tan C + \tan C \cdot \tan A = 1$$

9. (i)
$$A + B + C = 180^{\circ}$$
 ଏବଂ $\sin C = 1$ ହେଲେ ପ୍ରମାଶ କର ସେ $\tan A$. $\tan B = 1$

(ii) A +B+ C =
$$180^{\circ}$$
 ହେଲେ ପ୍ରମାଶ କର ଯେ $\cot A.\cot B+\cot B.\cot C+\cot C.\cot A=1$

$$(iii)~A+B+C=180^{\circ}~$$
ଏବଂ $\cos A=\cos B$. $\cos C$ ହେଲେ ପ୍ରମାଣ କର ଯେ

(a)
$$\tan A = \tan B + \tan C$$

(b)
$$\tan B \cdot \tan C = 2$$

10. ଦର୍ଶାଅ ସେ, (i)
$$\sin (A+B) . \sin (A-B) = \sin^2 A - \sin^2 B$$

(ii)
$$\cos (A + B) \cdot \cos (A - B) = \cos^2 A - \sin^2 B$$

11. ପ୍ରମାଶ କର : (i)
$$\sin 50^{\circ} + \sin 40^{\circ} = \sqrt{2} \sin 85^{\circ}$$

(ii)
$$\cos 50^{\circ} + \cos 40^{\circ} = \sqrt{2} \cos 5^{\circ}$$

(iii)
$$\sin 50^{\circ} - \sin 70^{\circ} + \sin 10^{\circ} = 0$$

12. ସମାଧାନ କର : (i)
$$\sin (A + B) = \frac{1}{\sqrt{2}}$$
 , $\cos (A - B) = \frac{1}{\sqrt{2}}$

(ii)
$$\cos (A + B) = -\frac{1}{2}$$
, $\sin (A - B) = \frac{1}{2}$

(iii)
$$\tan (A - B) = \frac{1}{\sqrt{3}} = \cot (A + B),$$

(iv)
$$\tan (A + B) = -1$$
, $\csc (A - B) = \sqrt{2}$

4.10 ଉଚ୍ଚତା ଓ ଦୂରତା (Heights and distances) :

ଗଣିତ ପାଠକୁ ସୁଖପ୍ରଦ କରିବା ପାଇଁ ଏହାର ପ୍ରୟୋଗାତ୍ପକ ଦିଗ ବିଷୟରେ ଆଲୋଚନା କରାଯିବା ଉଚିତ୍ । ପ୍ରତ୍ୟେଷ ମାପ ନ କରି **ପଠାଣି ସାମନ୍ତ** ଏକ ନଳୀ ସାହାଯ୍ୟରେ ଶୀର୍ଷ ଦେଶକୁ ନିରୀକ୍ଷଣ କରି ପାହାଡ଼ର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କରି ପାରୁଥିଲେ । ଏହା ପ୍ରୟୋଗାତ୍ପକ ଗଣିତର ଏକ ନମୁନା । ଆସ ଆମେ ତ୍ରିକୋଣମିତିର ବାୟବ କ୍ଷେତ୍ରରେ ପ୍ରୟୋଗ ସୟନ୍ଧରେ ଆଲୋଚନା କରିବା ।

କେତେକ ସ୍ଥଳରେ ଯନ୍ତ୍ରୀମାନେ ପାହାଡ଼, ମନ୍ଦିର ପ୍ରଭୃତିର ଉଚ୍ଚତା ଏବଂ ନଦୀର ଦୁଇ ବିପରୀତ ଧାରରେ ଥିବା ବସ୍ତୁମାନଙ୍କର ଦୂରତା ମାପଫିତା ଦ୍ୱାରା ନିର୍ଣ୍ଣୟ କରିପାରନ୍ତି ନାହିଁ । ତ୍ରିକୋଣମିତିର ପ୍ରୟୋଗରେ ଏପରି ସମସ୍ୟାର ସମାଧାନ କରାଯାଇପାରେ । ଉଚ୍ଚତା ଓ ଦୂରତା ସୟନ୍ଧୀୟ ପ୍ରଶ୍ମର ସମାଧାନ ପୂର୍ବରୁ ନିମ୍ନସ୍ଥ କେତୋଟି ତତ୍ତ୍ୱ ସହିତ ଅବଗତ ହେବା ଦରକାର ।

1. ପୃଥିବୀ ଏକ ଗୋଲାକାର ବସ୍ତୁ ହେଲେ ମଧ୍ୟ ଏହାର ବିଶାଳତା ହେତୁ ଏହାର ପୃଷ୍ଠର ଏକ କ୍ଷୁଦ୍ର ଅଂଶକୁ ଆମେ ଗୋଟିଏ ସମତଳ ବୋଲି ଧରିପାରିବା । ଏହି **ସମତଳ ସହିତ ସମାନ୍ତରାଳ ଯେ କୌଣସି ସରଳରେଖାକୁ** ଆ**ନୁଭୂମିକ ସରଳରେଖା** କୁହାଯାଏ ।

ଯଥା : ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରରେ $\overset{\longleftrightarrow}{\mathrm{OA}}$ ଏକ ଆନୁଭୂମିକ ରେଖା ।

2. ଚିତ୍ରରେ O ବିନ୍ଦୁଠାରେ ଅବସ୍ଥିତ ଏକ ଦର୍ଶକର ଚକ୍ଷୁ, ଅଧିକ ଉଚ୍ଚରେ ଥିବା ଏକ ବସ୍ତୁ P ଦିଗରେ ଦୃଷ୍ଟି ନିକ୍ଷେପ କରୁଥିବାର ଦେଖାଯାଉଛି । \overrightarrow{OA} , \overrightarrow{OP} ମଧ୍ୟସ୍ଥ ଭୂଲୟ ସମତଳରେ ଅବସ୍ଥିତ ଏକ ଆନୁଭୂମିକ ରଶ୍ମି । \overrightarrow{OA} ଓ \overrightarrow{OP} ରଶ୍ମିଦ୍ୱୟର ଅନ୍ତର୍ଗତ କୋଣକୁ O ବିନ୍ଦୁରେ P ବିନ୍ଦୁର **କୌଣିକ ଉନ୍ନତି (Angle of elevation)** ବୋଲି କୁହାଯାଏ । ଚିତ୍ରରେ ଏହାର ପରିମାଣ θ ଅଟେ ।

ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରରେ ଚକ୍ଷୁର ଅବସ୍ଥିତି ଲକ୍ଷ୍ୟ କର । ଏଠାରେ ଦୃଷ୍ଟି ନିକ୍ଷେପର ଦିଗ $\stackrel{\rightarrow}{\mathrm{OP}}$ ମଧ୍ୟସ୍ଥ ଲୟ ସମତଳରେ $\stackrel{\rightarrow}{\mathrm{OA}}$ ଏକ ଆନୁଭୂମିକ ରଶ୍ମି । $\stackrel{\rightarrow}{\mathrm{OP}}$ ଏବଂ $\stackrel{\rightarrow}{\mathrm{OA}}$ ଅନ୍ତର୍ଗତ କୋଣକୁ O ବିନ୍ଦୁରେ P ବିନ୍ଦୁର **କୌଣିକ ଅବନତି (Angle of depression)** ବୋଲି କୁହାଯାଏ । ଚିତ୍ରରେ ଏହାର ପରିମାଣ $\mathrm{\theta}$ ଅଟେ ।

ଦୃଷ୍ଟି ନିକ୍ଷେପର ଦିଗ ଓ ଏହାର ଲୟ ସମତଳରେ ଥିବା ଚକ୍ଷୁ ମଧ୍ୟସ୍ଥ ଆନୁଭୂମିକ ରଶ୍ମି ଅନ୍ତର୍ଗତ କୋଣକୁ ଦୃଷ୍ଟିବଦ୍ଧ ବସ୍ତୁର କୌଣିକ ଉନ୍ନତି ବା କୌଣିକ ଅବନତି କୁହାଯାଏ । ସେକ୍ସ୍ଟାଣ୍ଟ (sextant) ବା ଥିଓଡୋଲାଇଟ୍ (Theodolite) ଯନ୍ତ୍ର ସାହାଯ୍ୟରେ କୌଣିକ ଉନ୍ନତି ବା ଅବନତି ନିର୍ଣ୍ଣୟ କରାଯାଇପାରେ । ଏହି କୋଣର ମାପ ବ୍ୟବହାର କରି ତ୍ରିକୋଣମିତିକ ପ୍ରଣାଳୀଦ୍ୱାରା ଦୂରରେ ଅବସ୍ଥିତ ଦୁର୍ଗ, ପାହାଡ଼ ଓ ଅଟାଳିକା ପ୍ରଭୃତିର ଦୂରତା ବା ଉଚ୍ଚତା ନିର୍ପଣ କରିହେବ ।

କୌଣସି ବସ୍ତ୍ର ଏକ ବିନ୍ଦୁଠାରେ ଉତ୍ପନ୍ନ କରୁଥିବା କୋଣ :

ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରରେ \overline{PM} ଏକ ଷ୍ଟମ୍ଭ । \overline{BA} ଏକ ମନ୍ଦିର । ମନ୍ଦିରର ପ୍ରାନ୍ତ ଓ ଶୀର୍ଷ ବିନ୍ଦୁ ଯଥାକ୍ରମେ \overline{PM} ଷ୍ଟମ୍ପର ଶୀର୍ଷ ବିନ୍ଦୁ P କୁ A ଓ B ବିନ୍ଦୁ ସହ ଯୋଗ କରାଯାଇଛି । \overline{AB} ମନ୍ଦିରଟି P ବିନ୍ଦୁଠାରେ $\angle APB$ ଉତ୍ପନ୍ନ କରୁଥିବାର କୁହାଯାଏ ।

ତ୍ରିକୋଣମିତିକ ଅନୁପାତଗୁଡ଼ିକର ପ୍ରୟୋଗ କରି ଉଚ୍ଚତା ଓ ଦୂରତା ସମ୍ପର୍କିତ ପ୍ରଶ୍ମମାନଙ୍କ ସମାଧାନ ସହକରେ କରାଯାଇପାରେ । ଉଦାହରଣଗୁଡ଼ିକୁ ଦେଖ ।

ଉଦାହରଣ - 17:

ଏକ ଅଟ୍ଟାଳିକାର ପାଦଦେଶଠାରୁ 75 ମିଟର ଦୂରରେ ଏକ ସମତଳରେ ଥିବା ଗୋଟିଏ ବିନ୍ଦୁରୁ ଅଟ୍ଟାଳିକାର ଶୀର୍ଷର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 30° । ଅଟ୍ଟାଳିକାର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର । ($\sqrt{3}=1.732$)

ସମାଧାନ : $\overline{\mathrm{BC}}$ ସମତଳ ଉପରିସ୍ଥ ରେଖାଖଣ୍ଡ, BA ଅଟ୍ଟାଳିକାର ଉଚ୍ଚତା ଓ A ଅଟ୍ଟାଳିକାର ଶୀର୍ଷ ହେଉ ।

ଏଠାରେ BC = 75 ମିଟର ଓ m∠BCA=30
$$^{\circ}$$
 ା ABC ସମକୋଶୀ ତ୍ରିଭୁକରେ $\tan 30^{\circ} = \frac{BA}{BC} = \frac{BA}{75}$ କିୟା BA = 75 $\tan 30$ $\frac{30^{\circ}}{75}$ ନିଟର $\frac{30^{\circ}}{75}$ ନିଟର $\frac{1}{\sqrt{3}} = 75$ x $\frac{1}{\sqrt{3}} = 75$ x $\frac{\sqrt{3}}{3} = 25$ $\sqrt{3} = 25$ x $1.732 = 43.3$ ମିଟର $\frac{30^{\circ}}{75}$ ଅଟାଳିକାର ଉଚ୍ଚତା $\frac{43.3}{3}$ ମିଟର

ଉଦାହରଣ - 18:

30 ମିଟର ଉଚ୍ଚ ଗୋଟିଏ ବୃକ୍ଷର ଅଗ୍ରଭାଗରୁ ଏକ ସମତଳରେ ଓ ବୃକ୍ଷର ପାଦଦେଶରୁ କିଛି ଦୂରରେ ଥିବା ଗୋଟିଏ ବିନ୍ଦୁର କୌଣିକ ଅବନତିର ପରିମାଣ 30° । ବୃକ୍ଷ ପାଦଦେଶରୁ ବିନ୍ଦୁର ଉକ୍ତ ଦୂରତା ସ୍ଥିର କର । (ଦଉ ଅଛି, $\sqrt{3}$ =1.732)

ସମାଧାନ : BA =ବୃକ୍ଷର ଉଚ୍ଚତା = 30 ମିଟର, $m\angle DAP = 30^{\circ}$ ବୃକ୍ଷର ପାଦ ଦେଶ B ରୁ ଏକ ସମତଳରେ ଥିବା ବିନ୍ଦୁଟି P,BP ଦୈର୍ଘ୍ୟଟି ଆବଶ୍ୟକ । ଏଠାରେ ABP ସମକୋଶୀ ତ୍ରିଭୁଜରେ $m\angle APB = 30^{\circ}$

ଉଦାହରଣ - **19** : ଏକ ୟୟ \overline{AB} ର ପାଦଦେଶ B ରୁ ଆନୁଭୂମିକ ସରଳରେଖା ଉପରିସ୍ଥ ଦୁଇଟି ବିନ୍ଦୁ P ଓ Q ର B ଠାରୁ ଦୂରତା ଯଥାକ୍ରମେ a ମି ଓ b ମି । P ଓ Q, ୟୟର ଶୀର୍ଷ A ର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ ଯଥାକ୍ରମେ α^0 ଓ β^0 । ଯଦି $\alpha+\beta=90^0$ ତେବେ ୟୟର ଉଚ୍ଚତା AB ନିର୍ମ୍ପଣ କର ।

ସମାଧାନ : ମନେକର
$$AB=h$$
 ମିଟର । ଦଢ ଅଛି $BP=a$ ମି ଓ $BQ=b$ ମି., $\angle APB=lpha, \angle AQB=eta$ ଏବଂ $lpha+eta=90^{\circ}$

AQB ସମକୋଶୀ ତ୍ରିଭୁକରେ
$$\tan \beta = \frac{AB}{BQ} = \frac{h}{b}$$

APB ସମକୋଶୀ ତ୍ରିଭୁକରେ $\tan \alpha = \frac{AB}{BP} = \frac{h}{a}$
ଆମେ ଜାଣୁ, $\tan (\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \cdot \tan \beta}$

$$= \frac{\frac{h}{a} + \frac{h}{b}}{1 - \frac{h^2}{ab}} = \frac{h(a+b)}{ab-h^2} \Rightarrow \cot (\alpha + \beta) = \frac{ab-h^2}{h(a+b)}$$

ମାତ୍ର
$$\cot (\alpha + \beta) = \cot 90^0 = 0$$

$$\therefore ab - h^2 = 0 \implies h = \sqrt{ab} \ \widehat{\mathsf{Pl}}. \ \mathsf{I} \qquad \mathsf{AB} = h \ \widehat{\mathsf{Pl}}. = \sqrt{ab} \ \widehat{\mathsf{Pl}}. \ (\Theta)$$

ଉଦାହରଣ -20:

ସୂର୍ଯ୍ୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 30° ଥିବା ବେଳେ ଗୋଟିଏ ୟୟର ଛାଇର ଦୈର୍ଘ୍ୟ ଯେତେ, ସୂର୍ଯ୍ୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 45° ବେଳେ ଛାଇର ଦୈର୍ଘ୍ୟ ତା'ଠାରୁ 30 ମିଟର କମ୍ । ୟୟଟିର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର । ($\sqrt{3}$ =1.732)

ସୂର୍ଯ୍ୟର କୌଶିକ ଉନ୍ନତିର ପରିମାଣ
$$45^{\circ}$$
 ଓ 30° ଏବଂ $\mathrm{CD} = \mathrm{BC} - \mathrm{BD} = 30$ ମିଟର ।

$${
m BAD}$$
 ସମକୋଶୀ ତ୍ରିଭୁକରେ ${
m tan}\ 45^0=\ rac{{
m x}}{{
m BD}}$

$$\Rightarrow$$
 BD = $\frac{x}{\tan 45^0} = \frac{x}{1} = x$

$$\Rightarrow$$
 BD = $_{ an 45^0}$ = $\frac{1}{1}$ = $\frac{x}{1}$ (ଚିତ୍ର 4.14) ଓ BAC ସମକୋଶୀ ତ୍ରିଭୁକରେ $\tan 30^0$ = $\frac{x}{BC}$ \Rightarrow BC = $\frac{x}{\tan 30^0}$ = $\frac{x}{\frac{1}{\sqrt{3}}}$ = $\frac{x}{\sqrt{3}}$

ପ୍ରଶ୍ନାନୁଯାୟୀ
$$BC - BD = DC = 30$$
 ମି. $\Rightarrow x\sqrt{3} - x = 30$

$$\Rightarrow x = \frac{30}{\sqrt{3} - 1} = \frac{30(\sqrt{3} + 1)}{(\sqrt{3} - 1)(\sqrt{3} + 1)} = \frac{30(\sqrt{3} + 1)}{3 - 1}$$
$$= \frac{30(1.732 + 1)}{(3 - 1)} = \frac{30 \times 2.732}{2} = 15 \times 2.732 = 40.98$$
 ମିଟର

$$\therefore$$
 ୟୟଟିର ଉଚ୍ଚତା = 40.98 ମିଟର (ଉତ୍ତର)

ଉଦାହରଣ – $\mathbf{21}$: ଗୋଟିଏ ପାହାଡ଼ ଉପରୁ 100 ମିଟର ଉଚ୍ଚ ଏକ ସମତଳରେ ଥିବା ଗୋଟିଏ ୟନ୍ତର ଶୀର୍ଷ ଓ ପାଦଦେଶର କୌଣିକ ଅବନତିର ପରିମାଣ ଯଥାକ୍ରମେ 30° ଓ 60° । ପାହାଡ଼ର ଉଚ୍ଚତା ନିର୍ପଣ କର ।

ସମାଧାନ : ମନେକର AB= ପାହାଡ଼ର ଉଚ୍ଚତା ଓ \overline{CD} ଏକ ସମତଳସ୍ଥ ସୃନ୍ଧ ।

 $\stackrel{\longleftrightarrow}{\mathsf{BP}}$ ଭୂପୃଷ ସହ ସମାନ୍ତର ରେଖା ହେଲେ m $\angle\mathsf{PBD} = 30^\circ$ ଓ m $\angle\mathsf{PBC} = 60^\circ$ ଓ $\mathsf{CD} = 100$ ମି.

ମନେକର ପାହାଡ଼ର ଉଚ୍ଚତା AB = x ମିଟର ଓ \overline{DQ} || \overline{BP} || \overline{AC} ∴ $m\angle BCA = 60^{\circ}$ ଓ $m\angle BDQ = 30^{\circ}$

$$BQ = AB - AQ = AB - DC = (x - 100)$$
 ମି.

BQD ସମକୋଣୀ ତ୍ରିଭୁଜରେ tan $30^{o}=rac{BQ}{QD}$

$$\Rightarrow$$
 QD = $\frac{BQ}{\tan 30^{\circ}}$ \Rightarrow QD = $\frac{x - 100}{\tan 30^{\circ}}$

$${
m BAC}$$
 ସମକୋଶୀ ତ୍ରିଭୁକରେ $an 60^0 = {{
m AB} \over {
m AC}} \Rightarrow {
m AC} = {{
m AB} \over { an 60^0}} \Rightarrow {
m AC} = {{
m x} \over { an 60^0}} \dots (ii)$

ମାତ୍ର
$$\mathrm{QD} = \mathrm{AC}$$
 : (i) ଓ (ii) ରୁ $\frac{\mathrm{x} - 100}{\tan 30^{\circ}} = \frac{\mathrm{x}}{\tan 60^{\circ}}$

$$\Rightarrow \frac{x - 100}{\frac{1}{\sqrt{3}}} = \frac{x}{\sqrt{3}} \Rightarrow \sqrt{3}(x - 100) = \frac{x}{\sqrt{3}} \Rightarrow 3(x - 100) = x \Rightarrow 3x - 300 = x$$

$$\Rightarrow$$
 3x - x = 300 \Rightarrow 2x = 300 \Rightarrow x = 150

∴ ପାହାଡ଼ର ଉଚ୍ଚତା 150 ମିଟର ।

ଅନୁଶୀଳନୀ - 4 (c)

$$(\sqrt{3} = 1.732)$$

- 1. ଗୋଟିଏ ବୃକ୍ଷର ପାଦଦେଶ ସହ ଏକ ସମତଳରେ ଏବଂ ଏହାଠାରୁ 120~ ମି. ଦୂରରେ ଅବସ୍ଥିତ କୌଣସି ବିନ୍ଦୁରେ ବୃକ୍ଷର ଅଗ୍ରଭାଗର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 30° ହେଲେ ବୃକ୍ଷର ଉଚ୍ଚତା ସ୍ଥିର କର ।
- 2. 27 ମିଟର ଉଚ୍ଚ ଏକ ବତୀଘରର ଶୀର୍ଷରୁ ଏକ ଜାହାଜର କୌଣିକ ଅବନତିର ପରିମାଣ 30° । ବତୀଘରଠାରୁ ଜାହାଜର ଦୂରତା ନିର୍ଣ୍ଣୟ କର ।
- 3. 2 ମିଟର ଉଚ୍ଚ ଏକ ଦର୍ଶକ ଦେଖିଲା ଯେ, 24 ମିଟର ଦୂରରେ ଥବା ଏକ ୟୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 30° । ୟୟର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 4. ଏକ ସିଡ଼ି ଏକ କାଛର ଶୀର୍ଷକୁ ୱର୍ଶ କରୁଛି । ସିଡ଼ିର ପାଦ ଦେଶରୁ କାଛର ଦୂରତା 3 ମିଟର । ସିଡ଼ିଟି ଭୂମି ସହ 60° ରେ ଆନତ । ସିଡିର ଦୈର୍ଘ୍ୟ ସ୍ଥିର କର ।

- 5. 1.5 ମିଟର ଉଚ୍ଚ ଜଣେ ଦର୍ଶକ ଏକ କୋଠାଘରଠାରୁ 12 ମିଟର ଦୂରସ୍ଥ ଏକ ବିନ୍ଦୁରୁ ଦେଖିଲା ଯେ, କୋଠାଘରର ଶୀର୍ଷର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 60° । କୋଠାଘରର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 6. ସୂର୍ଯ୍ୟର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 60° ବେଳେ ଗୋଟିଏ ଗଛର ଛାଇର ଦୈର୍ଘ୍ୟ 15 ମିଟର ଥିଲା । ଗଛର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।

(ଖ - ବିଭାଗ)

- 7. 300 ମିଟର ଉଚ୍ଚ ଏକ ପାହାଡ଼ ଉପରୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଗୋଟିଏ ୟୟର ଶୀର୍ଷ ଓ ପାଦଦେଶର କୌଣିକ ଅବନତିର ପରିମାଣ ଯଥାକ୍ମେ 30° ଓ 60° ହେଲେ ୟୟର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 8. ସୂର୍ଯ୍ୟର କୌଶିକ ଉନ୍ନତିର ପରିମାଣ 60° ରୁ 45° କୁ ହ୍ରାସ ପାଇଥିବାରୁ ଏକ ଷୟର ଛାଇର ଦୈର୍ଘ୍ୟ 24 ମିଟର ବୃଦ୍ଧି ପାଇଲା । ଷୟର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 9. ଏକ ସମତଳ ଭୂମି ଉପରେ 40 ମିଟର ବ୍ୟବଧାନରେ ଦୁଇଟି ଖୁଣ୍ଟ ଲୟ ଭାବରେ ପୋଡା ଯାଇଛି । ଗୋଟିଏ ଖୁଣ୍ଟର ଉଚ୍ଚତା ଅନ୍ୟ ଖୁଣ୍ଟର ଉଚ୍ଚତାର ଦୁଇଗୁଣ । ଖୁଣ୍ଟଦ୍ୱୟ ସେମାନଙ୍କ ପାଦବିନ୍ଦୁ ଦ୍ୱୟକୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡର ମଧ୍ୟ ବିନ୍ଦୁରେ ଯେଉଁ କୋଣ ଉତ୍ପନ୍ନ କରନ୍ତି, ସେମାନେ ପରସ୍କର ଅନୁପୂରକ । ଖୁଣ୍ଡ ଦ୍ୱୟର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 10. ଗୋଟିଏ ଗଛର ଶୀର୍ଷରୁ ଭୂମି ଉପରେ ଥିବା ଗୋଟିଏ ବୟୁର କୌଣିକ ଅବନତିର ପରିମାଣ 60° ଥିଲା । ସେହି ଗଛର ଶୀର୍ଷରୁ 1.5 ମିଟର ତଳକୁ ଓହ୍ଲାଇ ଆସିଲେ ଉକ୍ତ ବୟୁରେ କୌଣିକ ଅବନତିର ପରିମାଣ 30° ହୁଏ । ଗଛର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 11. 10 ମିଟର ଉଚ୍ଚ ଏକ ୟୟର ଅଗ୍ରଭାଗରୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଗୋଟିଏ ମନ୍ଦିରର ଶୀର୍ଷର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ ଓ ପାଦଦେଶର କୌଣିକ ଅବନତିର ପରିମାଣ ଯଥାକ୍ରମେ 45° ଓ 30° ହୋଇଯାଏ । ମନ୍ଦିରର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 12. 12 ମିଟର ପ୍ରଞ ଏକ ରାଞାର ଏକ ପାର୍ଶ୍ୱରେ ଥିବା ଏକ କୋଠାଘର, ଏହାର ଅପର ପାର୍ଶ୍ୱରେ ଥିବା ଅନ୍ୟ ଏକ ଘରର ଝରକାରେ ଏକ ସମକୋଣ ସୃଷ୍ଟି କରେ । କୋଠାଘରର ପାଦଦେଶରେ ଝରକାର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 30° ହେଲେ କୋଠାଘରର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 13. କଣେ ଲୋକ ଗୋଟିଏ ନଦୀ କୂଳରେ ଠିଆ ହୋଇ ଦେଖିଲା ଯେ ନଦୀର ଅପର ପାର୍ଶ୍ୱସ୍ଥ ଭୂମିରେ ଥିବା ଗୋଟିଏ ଦୁର୍ଗର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 60° । ଦୁର୍ଗ ସହିତ ଏକ ସରଳରେଖାରେ 60 ମିଟର ପଛକୁ ଘୁଞ୍ଚି ଆସି ଦେଖିଲା ଯେ, ଉକ୍ତ କୌଣିକ ଉନ୍ନତିର ପରିମାଣ 45° ହେଲା । ନଦୀର ପ୍ରସ୍ଥ ନିର୍ଣ୍ଣୟ କର ।
- 15. ଗୋଟିଏ ଦୁର୍ଗର ପାଦ ଦେଶ ସହ ଏକ ସରଳରେଖାରେ ଥିବା ଦୁଇଟି ବିନ୍ଦୁରୁ ଦୂର୍ଗର ଶୀର୍ଷ ଭାଗର କୌଣିକ ଉନ୍ନତିର ପରିମାଣ ଯଥାକ୍ରମେ 30° ଓ 45° । ଦୁର୍ଗର ଉଚ୍ଚତା 30 ମିଟର ହେଲେ, ବିନ୍ଦୁଦ୍ୱୟ ମଧ୍ୟରେ ବ୍ୟବଧାନ କେତେ ନିର୍ଣ୍ଣୟ କର ।
- 16. ଗୋଟିଏ କୋଠାର ଉଚ୍ଚତା 12 ମିଟର । କୋଠାର ଶୀର୍ଷରୁ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଏକ ସ୍ତୟର ଶୀର୍ଷ ଓ ପାଦଦେଶର କୌଣିକ ଉନ୍ନତି ଓ ଅବନତିର ପରିମାଣ ଯଥାକ୍ରମେ 60° ଓ 30° । ସ୍ତୟର ଉଚ୍ଚତା ଓ କୋଠାଠାରୁ ସ୍ତୟର ଦୂରତା ନିର୍ଣ୍ଣୟ କର । __ _ _

ପରିମିତି (MENSURATION)

5.1. ଉପକ୍ରମଣିକା (Introduction) :

ପୂର୍ବରୁ ତୁମେ ରେଖାଖଣ୍ଡ, ତ୍ରିଭୁଜ, ବର୍ଗଚିତ୍ର, ଆୟତଚିତ୍ର, ରୟସ୍, ଟ୍ରାପିଜିୟମ୍ ଇତ୍ୟାଦି ସରଳରେଖିକ ଚିତ୍ରର ପରିସୀମା ଏବଂ କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କରିଅଛ । ଏତଦ୍ବ୍ୟତୀତ ଆୟତଘନ, ସମଘନ ପରି ବହୁଫଳକଗୁଡ଼ିକର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ ଏବଂ ଆୟତନ ନିର୍ଣ୍ଣୟ ସୟନ୍ଧରେ ମଧ୍ୟ ଅବଗତ ଅଛ । ଏହି ଅଧ୍ୟାୟରେ ବକୁରେଖିକ ଚିତ୍ର ଯଥା:- ବୃତ୍ତ, ଚାପର ଦେର୍ଘ୍ୟ ମାପ ସୟନ୍ଧରେ ଜାଣିବା ସହିତ ପ୍ରିଜିମ୍, ସିଲିଣ୍ଡର, କୋନ୍, ଗୋଲକ ପ୍ରଭୃତି ଘନ ପଦାର୍ଥମାନଙ୍କର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ ଏବଂ ଆୟତନ ସୟନ୍ଧରେ ଅବଗତ ହେବ । ଏଥି ନିମନ୍ତେ ଆବଶ୍ୟକୀୟ ସୂତ୍ର ଗୁଡ଼ିକ ଯାହା ଉଚ୍ଚତର ଗଣିତ ଦ୍ୱାରା ପ୍ରତିପାଦିତ ହୋଇଛି ଉକ୍ତ ଅଧ୍ୟାୟରେ ସେଗୁଡ଼ିକୁ ଆମେ ମୁଖ୍ୟତଃ ପ୍ରୟୋଗାତ୍ମକ ଦୃଷ୍ଟିକୋଣରୁ ଗ୍ରହଣ କରିବା; କାରଣ ଉକ୍ତ ସୂତ୍ରଗୁଡ଼ିକର ପ୍ରତିପାଦନ କରିବା ଏହି ଶ୍ରେଣୀରେ ସୟବ ନୁହେଁ ।

5.2. ବୃତ୍ତର ପରିଧି ଓ ଚାପର ଦୈର୍ଘ୍ୟ (Circumference of a circle and length of an arc) :

ତୁମେ ଏକ ରେଖାଖଣ୍ଡର ଦୈର୍ଘ୍ୟ ମାପିବା ପୂର୍ବରୁ ଶିଖିଛ ।

ଚିତ୍ର 5.1 (କ) ରେ A ଓ B, \overleftrightarrow{AB} ସରଳରେଖା ଉପରିସ୍ଥ ଦୁଇଟି ବିନ୍ଦୁ । ତୁମେ A ଓ B ମଧ୍ୟରେ ଦୂରତା ଅର୍ଥାତ୍ \overline{AB} ର ଦୈର୍ଘ୍ୟ ନିରୂପଣ କରିବା ଜାଣିଛ । ଚିତ୍ର 5.1 (ଖ) ରେ A ଓ B ଏକ ବକ୍ରରେଖା ଉପରେ ଦୁଇଟି ବିନ୍ଦୁ । ବକ୍ରରେଖାଟି ଉପରେ ଅନେକ ଗୁଡ଼ିଏ ବିନ୍ଦୁ P_1, P_2, P_3, \ldots ନିଆଯାଇଛି, ଯେପରିକି A ଓ P_1, P_1 ଓ P_2, P_2 ଓ P_3, \ldots ମଧ୍ୟରେ ଥିବା ବକ୍ରରେଖାର ଅଂଶ ଗୁଡ଼ିକ ଏକ ସରଳ ରେଖାର ଅଂଶ ପରି ପ୍ରତୀୟମାନ ହେବ ।

ବକ୍ରରେଖା ଉପରେ A ଓ B ବିନ୍ଦୁ ମଧ୍ୟରେ ଦୂରତା, ଏହି କ୍ଷୁଦ୍ର ସରଳରେଖୀୟ ଅଂଶ ଗୁଡ଼ିକର ଦୈର୍ଘ୍ୟର ସମଷ୍ଟିର ନିକଟବର୍ତ୍ତୀ ହେବ $I_{P_1}, P_2, P_3,...$ ବିନ୍ଦୁଗୁଡ଼ିକର ସଂଖ୍ୟା ଯେତେ ଅଧିକ ହେବ ବକ୍ରଦୂରତାର ମାପରେ ତ୍ରୁଟି ସେତେ କମ୍ ହେବ I_{P_1} ଉଚ୍ଚତର ଶ୍ରେଣୀରେ ବିକଳ୍ପ ଗାଣିତିକ ପ୍ରଣାଳୀ ପ୍ରୟୋଗ କରି ବକ୍ରଦୂରତା ନିର୍ତ୍ତୟ କରିବା ଶିଖିବ I_{P_1} ପୂର୍ବରୁ ବୃତ୍ତ

ସୟନ୍ଧରେ ବିଶେଷ ଆଲୋଚନା ଦ୍ୱିତୀୟ ଅଧ୍ୟାୟରେ ହୋଇସାରିଛି । ନିମ୍ନରେ ଗୋଟିଏ ବୃତ୍ତ ଉପରେ ଥିବା ବିନ୍ଦୁମାନଙ୍କ ମଧ୍ୟରେ ବକ୍ର ଦୂରତା ସୟନ୍ଧରେ ଆଲୋଚନା କରିବା ।

ବୃତ୍ତ ଏକ ସମତଳରେ ଅବସ୍ଥିତ ଗୋଟିଏ ଜ୍ୟାମିତିକ ଚିତ୍ର ଯାହାକି ଏକ ନିର୍ଦ୍ଦିଷ ବିନ୍ଦୁଠାରୁ ସମଦୂରବର୍ତ୍ତୀ ସମୟ ବିନ୍ଦୁମାନଙ୍କର ସେଟ୍ ଅଟେ । କମ୍ପାସ୍ ସାହାଯ୍ୟରେ ଏହି ଚିତ୍ରଟି କିପରି ଅଙ୍କନ କରାଯାଇପାରେ ତାହା ତୁମେ ପୂର୍ବରୁ ଜାଣିଛ । ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରଟି ଏକ ବୃତ୍ତର ଚିତ୍ର । 'O' ବିନ୍ଦୁ ବୃତ୍ତର **କେନ୍ଦ୍ର (centre)** ଅଟେ । \overline{OX} ରେଖାଖଣ୍ଡ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ (Radius) । କେନ୍ଦ୍ର ମଧ୍ୟଦେଇ ବୃତ୍ତର ଯେ କୌଣସି ଦୁଇ ବିନ୍ଦୁକୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡକୁ ବ୍ୟାସ (diameter) କୁହାଯାଏ ।

ଚିତ୍ର 5.2ରେ \overline{XY} ବୃତ୍ତର ବ୍ୟାସ ଅଟେ । ଲକ୍ଷ୍ୟକର ବ୍ୟାସ = $XO + OY = 2 \times OX = 2$ ବ୍ୟାସାର୍ଦ୍ଧ, ବୃତ୍ତର ଦୈର୍ଘ୍ୟକୁ ପରିଧି (circumference) କୁହାଯାଏ ।

ବୃତ୍ତର ଅର୍ଦ୍ଧକୁ **ଅର୍ଦ୍ଧବୃତ୍ତ (semicircle)** କୁହାଯାଏ । ଚିତ୍ରର \widehat{X} ହ୍ନ ଏବଂ \widehat{X} ଦୁଇଟି ଅର୍ଦ୍ଧବୃତ୍ତ । ଏମାନଙ୍କର ମାପକୁ **(semi-circumference)** ଅର୍ଦ୍ଧପରିଧି କୁହାଯାଏ ।

ବୃତ୍ତକୁ ଏକ ସମ୍ପୂର୍ତ୍ତ ଚାପ ରୂପେ ବିଚାର କରାଯାଇପାରେ । ଅନ୍ୟ ପ୍ରକାରରେ କହିବାକୁ ଗଲେ ଉକ୍ତ ସମ୍ପୂର୍ତ୍ତ ଚାପର ଦୈର୍ଘ୍ୟକୁ ବୃତ୍ତର ପରିଧି କୁହାଯାଏ । ସେହିପରି ଅର୍ଦ୍ଧବୃତ୍ତର ଦୈର୍ଘ୍ୟକୁ ଅର୍ଦ୍ଧପରିଧି କୁହାଯାଏ ।

5.2.1 ବୃତ୍ତର ପରିଧି ପାଇଁ ସୂତ୍ର (Formula for the circumference of a circle) :

କମ୍ପାସ୍ ସାହାଯ୍ୟରେ ବିଭିନ୍ନ ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃତ୍ତ ଅଙ୍କନ କରି ଚିତ୍ର ଉପରେ ସୂତା ରଖି ସୂତାର ଦିର୍ଘ୍ୟ ମାପି ବୃତ୍ତର ଦୈର୍ଘ୍ୟ ବା ପରିଧି ନିର୍ଣ୍ଣୟ କର । ଉକ୍ତ ବୃତ୍ତମାନଙ୍କର ବ୍ୟାସର ଦୈର୍ଘ୍ୟ ମାପି ସଂପୃକ୍ତ ପରିଧିକୁ ବ୍ୟାସ ଦ୍ୱାରା ଭାଗ କରି ଭାଗଫଳ ନିର୍ଣ୍ଣୟ କର । ଅର୍ଥାତ୍ ପରିଧି ଓ ବ୍ୟାସର ଆନୁପାତ ସ୍ଥିର କର ।

ଏହାକୁ ଲକ୍ଷ୍ୟକଲେ କଣାଯିବ ଏହା 3 ଅପେକ୍ଷା ଅନ୍ଧ ଅଧିକ । ପ୍ରାୟ ଏହାର ମାନ 3.1 ଠାରୁ 3.2 ମଧ୍ୟରେ ରହିବ । ଏଥିରୁ ଜଣାଗଲା ଯେ ବୃତ୍ତର ଆକାର ଯାହାହେଲେ ମଧ୍ୟ **ପରିଧି ଓ ବ୍ୟାସର ଅନୁପାତ ସର୍ବଦା ଏକ ସ୍ଥିରାଙ୍କ ।** ଏହି ସ୍ଥିର ମାନଟି ଗ୍ରୀକ୍ ଅକ୍ଷର π (ପାଇ) ଦ୍ୱାରା ସୂଚିତ ହୁଏ । 1761 ଖ୍ରୀ.ଅରେ ଏହା ଏକ ଅପରିମେୟ ସଂଖ୍ୟା ବୋଲି **ସୁଇସ୍ ଗଣିତଜ୍ଞ ଜୋହାନ୍ ଲାୟର୍ଟ (Johann Lambert (1728-1777)** ପ୍ରମାଣ କରିଥିଲେ ।

ପରିଧି, ବ୍ୟାସ ଓ ବ୍ୟାସାର୍ଦ୍ଧିକୁ ଯଥାକ୍ରମେ c, d ଏବଂ r ରୂପେ ସୂଚିତ କରାଗଲେ $\frac{c}{d} = \pi$ ହେବ । \therefore $c = \pi d = 2\pi r$ ଅର୍ଥାତ୍ ବୃତ୍ତର ପରିଧି $= 2\pi$ × ବ୍ୟାସାର୍ଦ୍ଧି

 π ର ଯୁକ୍ତିସଂଗତ ଆସନ୍ନମାନ ନିର୍ଣ୍ଣୟ କରିବା ପାଇଁ ପ୍ରାୟ ଦୀର୍ଘ 2500 ବର୍ଷ ବ୍ୟାପି ଚେଷ୍ଟା ହୋଇ ଆସୁଅଛି । କେତେକ ଭାରତୀୟ ଗଣିତଜ୍ଞଙ୍କଦ୍ୱାରା ନିର୍ଣ୍ଣିତ π ର ଆସନ୍ନମାନ ନବମ ଶ୍ରେଣୀ ପାଇଁ ଉଦ୍ଦିଷ୍ଟ ଗଣିତ ପୁୟକରେ ଦିଆଯାଇଛି । ସେଗୁଡ଼ିକୁ ମନେପକାଅ । π ଏକ ଅପରିମେୟ ସଂଖ୍ୟା ।

ବିଭିନ୍ନ ଗାଣିତିକ ପ୍ରଶ୍ନର ସମାଧାନ ବେଳେ π ର ନିର୍ଦ୍ଦିଷ୍ଟ ଆସନ୍ନମାନ ଦିଆଯାଇ ନଥିଲେ ଏହା $\frac{22}{7}$ ବୋଲି ସାଧାରଣତଃ ଗ୍ରହଣ କରାଯାଇଥାଏ । π ର ଅନ୍ୟାନ୍ୟ କେତେକ ମାନ ହେଲା $3.141, \sqrt{10}$ ଇତ୍ୟାଦି । 5.2.2 ବୃତ୍ତର ଚାପର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ (Determining the length of an arc) :

ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରରେ $\widehat{A}X\widehat{B}$ ର ପ୍ରାନ୍ତ ବିନ୍ଦୁ A ଓ Bକୁ ବୃତ୍ତର କେନ୍ଦ୍ର O ସହିତ ଯୋଗ କଲେ ଉତ୍ପନ୍ନ $\angle AOB$ କୁ ସଂପୃକ୍ତ ଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣ କୁହାଯାଏ । ମନେକର ଏହାର ମାପ θ ° । ବୃତ୍ତର ଚାପର ଦୈର୍ଘ୍ୟର ସାନବଡ଼ ଅନୁସାରେ କେନ୍ଦ୍ରସ୍ଥ କୋଣର ପରିମାଣ ଅଥବା ସଂପୃକ୍ତ ଚାପର ଡିଗ୍ରୀ ପରିମାପ ସମାନୁପାତିକ ଭାବରେ ହ୍ରାସ ବୃଦ୍ଧି ଘଟିଥାଏ । (ଚାପ ସଂପୃକ୍ତ କେନ୍ଦ୍ରସ୍ଥ କୋଣର ପରିମାଣକୁ ଚାପର ଡିଗ୍ରୀ ପରିମାପ (degree measure of an arc) କୁହାଯାଏ । କେନ୍ଦ୍ରସ୍ଥ କୋଣର ପରିମାପକୁ ଡିଗ୍ରୀ, ଗ୍ରେଡ୍ ବା ରେଡ଼ିଆନ୍ ପରିମାପରେ ପ୍ରକାଶ କରାଯାଇଥାଏ । ଚିତ୍ରରେ $\widehat{A}X\widehat{B} = \widehat{\theta}^0$ । ପ୍ରକାଶ ଥାଉକି ସଂପୂର୍ଣ୍ଣ ଚାପର ଡିଗ୍ରୀ ପରିମାପକୁ 360° ବା 360 ନିଆର୍ଯିବ ।

·· କୌଣସି ବୃତ୍ତରେ ଦୁଇଟି ଚାପର ଦୈର୍ଘ୍ୟର ଅନୁପାତ, ସେମାନଙ୍କର ଡିଗ୍ରୀ ପରିମାପର ଅନୁପାତ ସହିତ ସମାନ ।

$$\therefore \frac{ ext{ଚାପର ଦୈର୍ଘ୍ୟ}}{ ext{ପରିଧି}} = \frac{ ext{ଚାପର ଡିଗ୍ରୀ ପରିମାପ}}{ ext{ଚୂଉର ଡିଗ୍ରୀ ପରିମାପ}} \ \Rightarrow \ \frac{L}{2\pi r} = \frac{\theta}{360^0}$$

(ଯେଉଁ ଠାରେ ଚାପର ଦୈର୍ଘ୍ୟ L ଏକକ, ପରିଧି = $2\,\pi\,r$ ଏକକ ଏବଂ ଚାପର ଡିଗ୍ରୀ ପରିମାପ = θ^0 ଏବଂ ବୃତ୍ତ ବା ସମ୍ପୂର୍ଣ୍ଣ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 360^0)

$$\therefore$$
 $L = \frac{\theta}{360} \times 2\pi r$ ଅଥବା $L = \frac{\theta}{180} \times \pi r$

ଚିତ୍ର 5.3 ରେ \widehat{AXB} କ୍ଷୁଦ୍ର ଚାପର ପ୍ରାନ୍ତ ବିନ୍ଦୁଦ୍ୱୟ A ଓ B କୁ କେନ୍ଦ୍ର O ସହିତ ଯୋଗ କରାଯାଇଛି । \widehat{OA} , \widehat{OB} ଏବଂ \widehat{AXB} ର ସଂଯୋଗରେ **ବୃତ୍ତକଳା (Sector)** ଗଠିତ ହୋଇଛି । ଏହାକୁ OAXB **ବୃତ୍ତକଳା** କୁହାଯାଏ । ସେହିପରି OAYB ଅନ୍ୟ ଏକ ବୃତ୍ତକଳା । କ୍ଷୁଦ୍ରଚାପ ସହ ସଂପୃକ୍ତ ଥିବାରୁ OAXB କୁ **କ୍ଷୁଦ୍ର ବୃତ୍ତକଳା (Minor Sector)** ଓ ଅନ୍ୟପକ୍ଷରେ OAYB କୁ **ବୃହତ୍ ବୃତ୍ତକଳା (Major Sector)** କୁହାଯାଏ ।

OAXB ବୃତ୍ତକଳାର ପରିସୀମା $=OA+OB+\widehat{AXB}$ ର ଦୈର୍ଘ୍ୟ $=2\times OA+\widehat{AXB}$ ର ଦୈର୍ଘ୍ୟ \cdot . ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ଏବଂ \widehat{AXB} ର ଦୈର୍ଘ୍ୟ L ଏକକ ହୁଏ, ତେବେ ବୃତ୍ତକଳାର ପରିସୀମା =(2r+L) ଏକକ

ଚିତ୍ର 5.3 ରେ OAXB ଓ OAYB ଦୁଇଟି ବୃତ୍ତକଳା । ସେମାନଙ୍କର ଚାପଦ୍ୱୟ ଯଥାକୁମେ \widehat{AXB} ଓ \widehat{AYB} ଏବଂ ସେମାନଙ୍କର ଡିଗ୍ରୀ ପରିମାପ ଯଥାକୁମେ $\pmb{\theta}^0$ ଏବଂ $(360^o-\pmb{\theta})$ ।

ଦ୍ରଷ୍ଟବ୍ୟ : ସଂଜ୍ଞାନୁସାରେ ଗୋଟିଏ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ ଉକ୍ତ ବୃତ୍ତର r ଏକକ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଚାପର କେନ୍ଦ୍ରସ୍ଥ କୋଣର ରେଡ଼ିଆନ୍ ପରିମାଣ 1° । ସୁତରାଂ ଏକ ଚାପର ରେଡିଆନ୍ ପରିମାପ θ^{C} ହେଲେ

$$\theta^{\text{C}} = \frac{L}{R}$$
 । ସୁତରା° $L = r \, \theta \, (\theta \, \, \, \text{ରେଡ଼ିଆନ})$

ସମାହିତ ପ୍ରଶ୍ରାବଳୀ

ଉଦାହରଣ - 1 : ଗୋଟିଏ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 21 ସେ.ମି. ହେଲେ ଏହାର ପରିଧି ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$ ସମାଧାନ - ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧି (r) = 21 ସେ.ମି.

∴ ବୃତ୍ତର ପରିଧି =
$$2\pi r = 2 \times \frac{22}{7} \times 21 = 132$$
 ସେ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ – 2 : ଗୋଟିଏ ଶଗଡ଼ ଚକର ଅରର ଦୈର୍ଘ୍ୟ 91 ସେ.ମି. । ରାଞ୍ଚା ଅତିକ୍ରମ କରିବା ପାଇଁ ଚକଟି 45 ଥର ଘୁରିଲେ ଏହା କେତେ ରାଞ୍ଚା ଅତିକ୍ରମ କରିବ ? $(\pi \simeq \frac{22}{7})$

ସମାଧାନ - ଚକ ଅରର ଦୈର୍ଘ୍ୟ (r) = 91 ସେ.ମି.

ଚକର ପରିଧି =
$$2\pi r = 2 \times \frac{22}{7} \times 91 = 572$$
େସ.ମି.

ଅର୍ଥାତ୍ ଚକଟି ଥରେ ଘୁରିଲେ 572 ସେ.ମି. ରାୟା ଅତିକ୍ରମ କରିବ ।

ଚକଟି 45 ଥର ଘୁରିଲେ ଅତିକ୍ରମ କରୁଥିବା ରାଞ୍ଚାର ଦୈର୍ଘ୍ୟ = $572 \times 45 = 25740$ ସେ.ମି.

ଉଦାହରଣ – 3 : 28 ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ଅର୍ଦ୍ଧବୃତ୍ତାକାର ଜମିକୁ ବାଡ଼ ଦ୍ୱାରା ଆବଦ୍ଧ କରିବା ପାଇଁ ମିଟର ପ୍ରତି 5.50 ଟଙ୍କା ହିସାବରେ କେତେ ଖର୍ଚ୍ଚ ହେବ ନିର୍ଣ୍ଣୟ କର । ($\pi \simeq \frac{22}{7}$)

ସମାଧାନ - ମନେକର ଅର୍ଦ୍ଧ ବୃତ୍ତାକାର ଜମିର ବ୍ୟାସାର୍ଦ୍ଧ (r)=28 ମି.

$$\therefore$$
 ଅର୍ଦ୍ଧିବୃତ୍ତାକାର ଜମିର ପରିସୀମା = $(\pi r + 2r) = \frac{22}{7} \times 28 + 2 \times 28 = 88 + 56 = 144$ ମି.

ମିଟର ପ୍ରତି ବାଡ଼ ଦେବା ଖର୍ଚ୍ଚ = 5.50 ଟଙ୍କା

ଉଦାହରଣ-4 : ଦୁଇଟି ବୃତ୍ତର ପରିଧିର ସମଷ୍ଟି 440 ସେ.ମି. ସେମାନଙ୍କର ବ୍ୟାସାର୍ଦ୍ଧିଦ୍ୱୟର ଅନ୍ତର 7 ସେ.ମି. ହେଲେ ବୃତ୍ତଦ୍ୱୟର ବ୍ୟାସ ନିର୍ଣ୍ଣୟ କର । $\left(\pi^{\sim\frac{22}{7}}\right)$

ସମାଧାନ:

ମନେକର ବୃତ୍ତ ଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧ R ଏବଂ r ସେ.ମି.

 \therefore ସେମାନଙ୍କର ପରିଧି ଯଥାକ୍ରମେ $2\pi\,R$ ସେ.ମି. ଓ $2\pi\,r$ ସେ.ମି. ହେବ ।

ପ୍ରଶ୍ୱାନୁସାରେ
$$2\pi R + 2\pi r = 440 \implies 2\pi (R + r) = 440$$

$$\Rightarrow \frac{44}{7} (R + r) = 440 \Rightarrow R + r = 440 \times \frac{7}{44} = 70$$
(i)

ପୁନଷ୍ଟ,
$$R-r=7$$
(ii)

(i) ଓ (ii)ରୁ
$$R = \frac{70+7}{2} = \frac{77}{2} \Rightarrow 2R = 2 \times \frac{77}{2} = 77$$
 ସେ.ମି. ସେହିପରି $r = \frac{70-7}{2} = \frac{63}{2} \Rightarrow 2r = 2 \times \frac{63}{2} = 63$ ସେ.ମି.

ଉଦାହରଣ-5 : ଖଣ୍ଡେ ତାରକୁ ବଙ୍କାଇ ବର୍ଗଚିତ୍ର ଆକୃତି କଲେ ତା'ର କ୍ଷେତ୍ରଫଳ 484 ବର୍ଗ ସେ.ମି. ହୁଏ । ଉକ୍ତ ତାରକୁ ବଙ୍କାଇ ଗୋଟିଏ ବୃତ୍ତ ତିଆରି କଲେ ଏହାର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ହେବ ? $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ବର୍ଗକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = 484 ବର୍ଗସେ.ମି.

$$\Rightarrow$$
 ବାହୁର ଦୈର୍ଘ୍ୟ = $\sqrt{484}$ = 22 ସେ.ମି.

∴ ବର୍ଗକ୍ଷେତ୍ରର ପରିସୀମା = $4 \times 22 = 88$ ସେ.ମି. ମନେକର ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ = r ସେ.ମି. \Rightarrow ପରିଧି = $2\pi r$ ସେ.ମି.

ପ୍ରଶ୍ନାନୁସାରେ,
$$2\pi \ r=\frac{44}{7}r=88 \Rightarrow r=88 imes \frac{7}{44}=14$$

ଉଦାହରଣ-6 : କୌଣସି ଏକ ସମବାହୁ ତ୍ରିଭୁଜର ବାହୁର ଦୈର୍ଘ୍ୟ $20\sqrt{3}$ ସେ.ମି.। ତନ୍କୁଧ୍ୟରେ ଏକ ବୃତ୍ତ ଅନ୍ତର୍ଲିଖିତ ହେଲେ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ହେବ ?

ସମାଧାନ : ସମବାହୁ ତ୍ରିଭୁଜର ଅତଃବୃତ୍ତର କେନ୍ଦ୍ର, ତ୍ରିଭୁଜର ଭରକେନ୍ଦ୍ର ଓ ଲୟବିନ୍ଦୁ O ଅଭିନ୍ନ ଅଟେ।

ମନେକର ଅନ୍ତଃବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ = r ସେ.ମି.

ଉଚ୍ଚତା
$$\mathrm{AD} = \frac{\sqrt{3}}{2} \times \mathsf{Pl}$$
 ବାହୁର ଦୈର୍ଘ୍ୟ B $= \frac{\sqrt{3}}{2} \times 20\sqrt{3}$ ସେ.ମି. $= 30$ ସେ.ମି.

$$\therefore$$
 AD = 3r = 30 69. \hat{P} . \Rightarrow r = 10 69. \hat{P} .

ଉଦାହରଣ-7 : ଗୋଟିଏ ଚକର ବ୍ୟାସାର୍ଦ୍ଧ ଅନ୍ୟ ଏକ ଚକର ବ୍ୟାସାର୍ଦ୍ଧଠାରୁ 7 ସେ.ମି. ଅଧିକ । 88 ମିଟର ବାଟ ଗଲେ ସାନଚକ ବଡ଼ଚକ ଠାରୁ 100 ଥର ଅଧିକ ଘୂରେ । ଚକଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ମନେକର ସାନ ଚକର ବ୍ୟାସାର୍ଦ୍ଧ = r ସେ.ମି.। \therefore ବଡ଼ଚକର ବ୍ୟାସାର୍ଦ୍ଧ = (r+7) ସେ.ମି.। \therefore ସାନ ଚକ ଓ ବଡ଼ଚକର ପରିଧି ଯଥାକୁମେ $2\pi r$ ସେ.ମି. ଓ $2\pi (r+7)$ ସେ.ମି.।

88 ମିଟର ବାଟ ଯିବାପରେ ସାନଚକ ଓ ବଡ଼ଚକର ଘୂର୍ଣ୍ଣନ ସଂଖ୍ୟା ଯଥାକ୍ରମେ $\frac{8800}{2\pi r}$ ଏବଂ $\frac{8800}{2\pi (r+7)}$ ।

ପ୍ରଶ୍ୱାନୁସାରେ,
$$\frac{8800}{2\pi r} - \frac{8800}{2\pi (r+7)} = 100$$

$$\Rightarrow \frac{8800}{2\pi} \left(\frac{1}{r} - \frac{1}{r+7} \right) = 100 \Rightarrow \frac{8800}{2\pi} \left(\frac{7}{r(r+7)} \right) = 100$$

$$\Rightarrow \frac{7}{r^2 + 7r} = \frac{2\pi}{88} \Rightarrow \frac{7}{r^2 + 7r} = \frac{1}{14}$$

$$\Rightarrow r^2 + 7r - 98 = 0 \Rightarrow (r+14) (r-7) = 0$$

$$\Rightarrow r = -14 \text{ Ql } r = 7$$

∴ ସାନଚକର ବ୍ୟାସାର୍ଦ୍ଧ = 7 ସେ.ମି. ଏବଂ ବଡ଼ ଚକର ବ୍ୟାସାର୍ଦ୍ଧ
 = (7+7) = 14 ସେ.ମି. । (ଉଉର)

ଭବାହରଣ-8 : OAXB ବୃତ୍ତକଳାର ଚାପର ଡିଗ୍ରୀ ପରିମାପ $60^0 \ \ \, \text{ଏବଂ} \ \ \, \text{ବୃତ୍ତର କେନ୍ଦ୍ର OI AOB ଡିଭୁକର}$ ପରିସୀମା ଓ ବୃତ୍ତକଳା OAXB ର ପରିସୀମାର ଅନୁପାତ ନିର୍ଣ୍ଣୟ କର । $\left(\pi \simeq \sqrt{10}\right)$

ସମାଧାନ : ମନେକର ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ = r ଏକକ l

$$\therefore$$
 \widehat{AXB} ର ଦୈର୍ଘ୍ୟ = $\frac{60}{180} \times \pi r = \frac{\pi r}{3}$ ଏକକ

$$\Rightarrow$$
 OAXB ବୃତ୍ତକଳାର ପରିସୀମା = OA + OB + \widehat{AXB} ର ଦୈର୍ଘ୍ୟ = $2r + \frac{\pi r}{3} = \left(\frac{\pi + 6}{3}\right)r$ AOB ତ୍ରିଭୁକରେ OA = OB ଏବଂ m \angle AOB = 60°

∴
$$m \angle OAB = m \angle OBA = 60^{0} \Rightarrow AOB$$
 ସମବାହୁ ତ୍ରିଭୁଟ୍ଟ |

$$\therefore \frac{\Delta \text{AOBର ପରିସୀମା}}{\text{OAXBର ବୃତ୍ତକଳାର ପରିସୀମା}} = \frac{3r}{\left(\frac{\pi+6}{3}\right)r} = \frac{9}{\pi+6} = \frac{9}{\sqrt{10+6}} \quad (ଉତ୍ତର)$$

ଅନୁଶୀଳନୀ - 5(a)

(ବୃତ୍ତର ପରିଧି ସୟନ୍ଧୀୟ)

- 1. (a) ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ୍ୱ (i) 10 ସେ.ମି., (ii) 2.8 ସେ.ମି., (iii) 14 ସେ.ମି., (iv) 4.2 ସେ.ମି. ହେଲେ ପରିଧି କେତେ ? $(\pi \simeq \frac{22}{7})$
 - (b) ବୃତ୍ତର ପରିଧି (i) 34.9 ସେ.ମି., (ii) 1047 ସେ.ମି., (iii) 25.128 ସେ.ମି., (iv) 15.705 ସେ.ମି. ହେଲେ ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ? $(\pi \simeq 3.141)$
- 2. ଏକ ବୃତ୍ତର ଚାପର ଦୈର୍ଘ୍ୟ L, ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ r, ଚାପର ଡିଗ୍ରୀ ପରିମାପ $oldsymbol{ heta}$ ଦ୍ୱାରା ସୂଚିତ ହେଲେ ନିମ୍ନଲିଖିତ ପ୍ରଶ୍ନମାନଙ୍କର ସମାଧାନ କର । $(\pi \simeq \frac{22}{7})$
 - (a) r = 56 ସେ.ମି., $\theta = 45^{\circ}$ ହେଲେ L କେତେ ?
 - (b) L = 110 ମି., $\theta = 75^{\circ}$ ହେଲେ r କେତେ ?
 - (c) 2r = 9 ଡେ.ମି., L = 22 ଡେ.ମି. ହେଲେ θ କେତେ ?
- 3. ନିମୁଲିଖିତ ପ୍ରଶ୍ମଗୁଡ଼ିକର ଉତ୍ତର ଦିଅ I

 $(\pi \simeq \frac{22}{7})$

- (a) କୌଣସି ଏକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 10.5 ସେ.ମି. ହେଲେ ସେହି ବୃତ୍ତର 11 ସେ.ମି. ପରିମିତ ଚାପର ଡିଗ୍ରୀ ପରିମାପ କେତେ ହେବ ?
- (b) 21 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 7 $2^{
 m 0}$ ହେଲେ ଚାପଟିର ଦୈର୍ଘ୍ୟ କେତେ ହେବ ?
- (c) ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ହେଲେ ସେହି ବୃତ୍ତର 11 ସେ.ମି. ପରିମିତ ଚାପର ଡିଗ୍ରୀ ପରିମାପ $10^{
 m o}$ ହେବ ।
- (d) ଏକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧର ଦୈର୍ଘ୍ୟ x ଏକକ, ଚାପର ଦୈର୍ଘ୍ୟ y ଏକକ, ଚାପର ଡିଗ୍ରୀ ପରିମାପ z ଡିଗ୍ରୀ ହେଲେ ବ୍ୟାସାର୍ଦ୍ଧର ଦୈର୍ଘ୍ୟ π ମାଧ୍ୟମରେ ନିର୍ଣ୍ଣୟ କର ।
- (e) r ଏକକ ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ a ଏକକ ଦୀର୍ଘ ବାହୁ ବିଶିଷ୍ଟ ଏକ ବର୍ଗଚିତ୍ର ଅନ୍ତର୍ଲିଖିତ ହେଲେ a ଏବଂ r ମଧ୍ୟରେ ସଂପର୍କ ନିର୍ଣ୍ଣୟ କର ।
- 4. ବିଷୁବରେଖାଠାରେ ପୃଥିବୀର ବ୍ୟାସ 12530 କି.ମି. ହେଲେ ବିଷୁବ ବୃତ୍ତର ପରିଧି କେତେ ? $(\pi \simeq \frac{22}{7})$
- 5. 44 ମି. ଦୀର୍ଘ ତାରରୁ 5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ କେତୋଟି ବୃତ୍ତ ତିଆରି କରାଯାଇପାରିବ ? $(\pi \simeq \frac{22}{7})$
- 6. ଗୋଟିଏ ବୃତ୍ତାକାର ରାୟାର ବାହାର ଓ ଭିତର ପରିଧି ଯଥାକ୍ରମେ 396 ଓ 352 ମିଟର ହେଲେ ରାୟାର ପ୍ରସ୍ଥ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 7. ଦୁଇଟି ବୃତ୍ତର ପରିଧିର ଅନ୍ତର 44 ମିଟର ଏବଂ ସେମାନଙ୍କର ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ସମଷ୍ଟି 77 ମିଟର ହେଲେ ପରିଧିଦ୍ୱୟ ନିର୍ଣ୍ଣୟ କର । $\left(\pi \simeq \frac{22}{7}\right)$

- 8. ଦୁଇଟି ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ଅନୁପାତ 3:4। ସେମାନଙ୍କର ପରିଧିଦ୍ୱୟର ସମଷ୍ଟି 308 ସେ.ମି. ହେଲେ ବଳୟର ପ୍ରସ୍ଥ କେତେ ହେବ ? $(\pi \sim \frac{22}{7})$
- 9. ଗୋଟିଏ ବଳୟ ଆକାରର ରାଞ୍ଚାର ବାହାର ଓ ଭିତର ବୃତ୍ତର ପରିଧି ଯଥାକ୍ରମେ 300 ମିଟର ଓ 200 ମିଟର ହେଲେ, ରାଞ୍ଚାର ପ୍ରସ୍ଥ କେତେ ? $\left(\pi \simeq \sqrt{10}\right)$
- 10. 7ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃତ୍ତ ଉପରେ କେତେଥର ଘୃରିଲେ 11 କି.ମି. ଦୂରତା ଅତିକ୍ରମ କରିହେବ ? $(\pi \simeq \frac{22}{7})$
- 11. ଗୋଟିଏ ସାଇକେଲ୍ର ପ୍ରତ୍ୟେକ ଚକ ମିନିଟ୍ରେ 80ଥର ଘୂରନ୍ତି । ଚକର ବହିବ୍ୟାସ 42 ସେ.ମି. ହେଲେ ସାଇକେଲ୍ର ଘଣ୍ଟାପ୍ରତି ବେଗ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 12. ଗୋଟିଏ ଗାଡ଼ିର ବଡ଼ ଚକ ଓ ସାନ ଚକର ପରିଧିର ଅନୁପାତ 4:1;440ମିଟର ରାୟା ଅତିକ୍ରମ କରିବାରେ ସାନ ଚକ ବଡ଼ ଚକ ଅପେକ୍ଷା 15ଥର ଅଧିକ ଘୂରେ । ପ୍ରତ୍ୟେକ ଚକର ପରିଧି ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 13. ଗୋଟିଏ ଅର୍ଦ୍ଧିବୃତ୍ତାକାର ଜମିର ସୀମାରେ ବାଡ଼ ଦେବା ଖର୍ଚ୍ଚ ମିଟରକୁ 75 ପଇସା ହିସାବରେ 216 ଟଙ୍କା ଖର୍ଚ୍ଚ ହେଲେ ଅର୍ଦ୍ଧିବୃତ୍ତାକାର ଜମିର ବ୍ୟାସ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 14. ଗୋଟିଏ ଘୋଡ଼ା ବୃତ୍ତ ଉପରେ ଥରେ ଘୂରିଆସି ସିଧା ଯାଇ କେନ୍ଦ୍ରରେ ପହଞ୍ଚବା ପାଇଁ ତାକୁ 10 ମିନିଟ୍ 12 ସେକେଣ୍ଡ ସମୟ ଲାଗିଲା । ସେ କେବଳ ବୃତ୍ତ ଉପରେ ଘୂରିଥିଲେ ତାକୁ କେତେ ସମୟ ଲାଗିଥାନ୍ତା $?(\pi \simeq \frac{22}{7})$
- 15. ଗୋଟିଏ ବୃତ୍ତ ଉପରେ ଥରେ ଭ୍ରମଣ କରିବାକୁ ଯେତେ ସମୟଲାଗେ ବୃତ୍ତଟିର ବ୍ୟାସ ପରିମିତ ପଥ ଅତିକ୍ରମ କରିବାକୁ 45 ସେକେଣ୍ଡ କମ୍ ଲାଗେ । ଯଦି ଲୋକଟିର ବେଗ ଏକ ମିନିଟ୍ରେ 80 ମିଟର ହୁଏ ତେବେ ବୃତ୍ତର ବ୍ୟାସ କେତେ ହେବ ? $(\pi \simeq \frac{22}{7})$
- 16. ଖଣ୍ଡେ ତାରକୁ ସମବାହୁ ତ୍ରିଭୁଜାକୃତି କଲେ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ 1936 $\sqrt{3}$ ବ.ମି.ହୁଏ । ଉକ୍ତ ତ୍ରିଭୁଜର ପରିସୀମା ସହ ସମାନ ପରିଧି ଥିବା ବୃତ୍ତଟିର ବ୍ୟାସ କେତେ ହେବ ? $(\pi \simeq \frac{22}{7})$
- 17. 20 ସେ.ମି. ଦୀର୍ଘ ବାହୁ ବିଶିଷ୍ଟ ଏକ ବର୍ଗଚିତ୍ର ମଧ୍ୟରେ ଏକ ବୃତ୍ତ ଅନ୍ତର୍ଲିଖିତ ହେଲେ ବୃତ୍ତର ପରିଧି କେତେ ହେବ ? $(\pi \simeq 3.14)$
- 18. 42 ସେ.ମି. ଦୀର୍ଘ ବାହୁ ବିଶିଷ୍ଟ ଏକ ସମବାହୁ ତ୍ରିଭୁଜର ପରିଲିଖିତ ଓ ଅନ୍ତର୍ଲିଖିତ ବୃତ୍ତର ପରିଧି ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 19. (a) 21 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତକଳାର ପରିସୀମା 64 ସେ.ମି. ହେଲେ, ବୃତ୍ତକଳାର ଚାପର ଡିଗ୍ରୀ ପରିମାପ ସ୍ଥିର କର । $\left(\pi \simeq \frac{22}{7}\right)$
 - (b) ଏକ ବୃତ୍ତରେ ଯେଉଁ ବୃତ୍ତକଳାର ଚାପର ଡିଗ୍ରୀ ପରିମାପ 40° , ସେହି ବୃତ୍ତକଳାର ପରିସୀମା 26.98 ସେ.ମି. ହେଲେ, ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ? $(\pi \simeq 3.14)$
- 20. କୌଣସି ଏକ ବୃତ୍ତକଳାର କେନ୍ଦ୍ରସ୍ଥ 90 $^{\circ}$ । ଏହାର ବ୍ୟାସାର୍ଦ୍ଧର ଦୈର୍ଘ୍ୟ 5 ସେ.ମି. ହେଲେ ବୃତ୍ତକଳାର ପରିସୀମା ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq 3.1416)$

- 21. କୌଣସି ଏକ ବୃତ୍ତର ଏକ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 40º ଏବଂ ଅନ୍ୟ ଏକ ବୃତ୍ତର ସମ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 60º ହେଲେ ଉଭୟ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧର ଅନୁପାତ ନିର୍ଣ୍ଣୟ କର ।
- 22. ଗୋଟିଏ ଘଣ୍ଟାର ମିନିଟ୍ କଣ୍ଟାର ଅଗ୍ରଭାଗ 5 ମିନିଟ୍ରେ $7\frac{1}{3}$ ସେ.ମି. ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଏକ ଚାପ ଅଙ୍କନ କରେ । ମିନିଟ୍ କଣ୍ଟାର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 23. ଗୋଟିଏ ବୃତ୍ତର ପରିଧି ଅନ୍ୟ ଏକ ବୃତ୍ତର ପରିଧିର ତିନିଗୁଣ । ପ୍ରଥମ ବୃତ୍ତର 10 ସେ.ମି. ପରିମିତ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 30° ହେଲେ ଦ୍ୱିତୀୟ ବୃତ୍ତର ପରିଧି କେତେ ହେବ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{27}{3})$
- 24. ଗୋଟିଏ ବୃତ୍ତର ପରିଧି 6.282 ହେଲେ ଓ ଏହା ଏକ ସମବାହୁ ତ୍ରିଭୁଜ ମଧ୍ୟରେ ଅନ୍ତର୍ଲିଖିତ ହେଲେ, ତ୍ରିଭୁଜର ବାହୁର ଦୈର୍ଘ୍ୟ କେତେ ? $(\pi \simeq 3.141)$
- 25. ଗୋଟିଏ ବୃତ୍ତକଳାର ଚାପର ଡିଗ୍ରୀ ପରିମାପ 60° । ଏହାର ଦୁଇ ବ୍ୟାସାର୍ଦ୍ଧ ଓ ଚାପକୁ ସ୍ପୁର୍ଶ କରି ଏକ ବୃତ୍ତ ଅନ୍ତର୍ଲିଖିତ । ପ୍ରମାଣ କରଯେ, ଏହି ବୃତ୍ତର ପରିଧି ଓ ବୃତ୍ତକଳାର ପରିସୀମାର ଅନୁପାତ 11:16। $(\pi \approx \frac{22}{7})$

5.3 ବୃତ୍ତ, ବୃତ୍ତକଳା ଓ ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ (Area of a circle, sector and a segment):

ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରର ମାପକୁ କ୍ଷେତ୍ରଫଳ କୁହାଯାଏ ଯାହା ଏକ ଧନାତ୍ମକ ବାଞ୍ଚବ ସଂଖ୍ୟା । ପୂର୍ବରୁ, ସରଳରେଖିକ କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ଯଥା- ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ ପାଇଁ ଭୂମି ଓ ଉଚ୍ଚତା ଦୁଇଟିର ମାପ, ଆୟତକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ ପାଇଁ ଦେିର୍ଘ୍ୟ ଓ ପ୍ରସ୍ଥ ଦୁଇଟିର ମାପ ଆବଶ୍ୟକ ବୋଲି ଜାଣିଛ । ବର୍ତ୍ତମାନ ବୃତ୍ତ, ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ ଏବଂ ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ ସୟକ୍ଷରେ ଆଲୋଚନା କରିବା ।

5.3.1. ବୃତ୍ତାକାର କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ନିର୍ଷ୍ଟିୟ (Determining the area of a circular region) :

ଗୋଟିଏ ବୃତ୍ତ ଏବଂ ଏହାର ଅନ୍ତର୍ଦେଶର ସଂଯୋଗକୁ ଏକ **ବୃତ୍ତାକାର କ୍ଷେତ୍ର (circular region)** କୁହାଯାଏ । ଏହାର ମାପକୁ ବୃତ୍ତାକାର କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ କୁହାଯାଏ । ପ୍ରୟୋଗର ସୁବିଧା ଦୃଷ୍ଟିରୁ ବୃତ୍ତାକାର କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳକୁ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ମଧ୍ୟ କୁହାଯାଏ ।

ନିମ୍ନସ୍ଥ ଚିତ୍ରପରି ମନେକର ଗୋଟିଏ ବୃତ୍ତକୁ ସମାନ କେନ୍ଦ୍ରସ୍ଥ କୋଣ ବିଶିଷ୍ଟ ଯୁଗ୍ମସଂଖ୍ୟକ ଖଣ୍ଡରେ କାଟି ନିମ୍ନ ଚିତ୍ରପରି ସଜାଇ ABCD କ୍ଷେତ୍ର ସୃଷ୍ଟି କରାଯାଉ।

ବର୍ତ୍ତମାନ ABCD କ୍ଷେତ୍ରଟିର କ୍ଷେତ୍ରଫଳ ସହିତ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ସମାନ ହେବ । ଖଣ୍ଡ ସଂଖ୍ୟା ଯେତେ ଅଧିକ ହେବ ଚାପଗୁଡ଼ିକ ସେତେ ସରଳ (straight) ହେବ ଏବଂ ABCD ପ୍ରାୟତଃ ଏକ ଆୟତକ୍ଷେତ୍ରରେ ପରିଶତ ହେବ । ଖଣ୍ଡସଂଖ୍ୟା ଅସୀମ ହେଲେ ABCD କ୍ଷେତ୍ରର ଚରମ ପରିଶତି ଗୋଟିଏ ଆୟତକ୍ଷେତ୍ର ହେବ । ଏହି ଆୟତକ୍ଷେତ୍ରର ଦୈର୍ଘ୍ୟ AB ବୃତ୍ତର ଅର୍ଦ୍ଧ ପରିଧି ସହ ଏବଂ ପ୍ରସ୍ଥ AD ବ୍ୟାସାର୍ଦ୍ଧ ସହିତ ସମାନ ହେବ ।

- $oldsymbol{\cdot \cdot}$. ଉକ୍ତ ଆୟତ କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = AB imes AD = ଅର୍ଦ୍ଧ ପରିଧି imes ବ୍ୟାସାର୍ଦ୍ଧ ।
- ∴ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ = ଅର୍ଦ୍ଧପରିଧି × ବ୍ୟାସାର୍ଦ୍ଧ।

ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ A ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ଦ୍ୱାରା ସୂଚିତ ହେଲେ $A=\pi\,r\cdot r=\pi\,r^2$

 \cdot . $A = \pi \, r^2$ ବର୍ଗ ଏକକ ଅର୍ଥାତ୍ ବୂତ୍ତର କ୍ଷେତ୍ରଫଳ = $\pi \times ($ ବ୍ୟାସାର୍ଦ୍ଧ $)^2$ ବର୍ଗ ଏକକ

5.3.2. ବୃତ୍ତୀୟ ବଳୟର କ୍ଷେତ୍ରଫଳ (Area of a circular annulus) :

ଚିତ୍ର 5.7 ରେ S_1 ଓ S_2 ଦୁଇଟି ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତ ଏବଂ O ସେମାନଙ୍କର କେନ୍ଦ୍ର I S_1 ଓ S_2 ବୃତ୍ତଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧ ଯଥାକ୍ରମେ r ଏବଂ R ଏକକ, (R>r) I ଉକ୍ତ ବୃତ୍ତ ଦ୍ୱୟ ଦ୍ୱାରା ଏକ ବଳୟ ସୃଷ୍ଟି ହୋଇଛି I ଏହାକୁ **ବୃତ୍ତୀୟ ବଳୟ (Circular annulus)** କୁହାଯାଏ I

ଏଠାରେ ଉକ୍ତ ବଳୟର ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ OB = r ଏକକ, ବହିଃବ୍ୟାସାର୍ଦ୍ଧ OA = R ଏକକ ହିସାବରେ ଗ୍ରହଣ କରାଯାଏ | ବୃତ୍ତଦ୍ୱୟ ଦ୍ୱାରା ଆବଦ୍ଧ (ଅନ୍ତଃବୃତ୍ତର ବହିଦେଶ ଏବଂ ବହିଃବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶର ଛେଦ) କ୍ଷେତ୍ରକୁ ବଳୟାକୃତି କ୍ଷେତ୍ର (Annular Region) କୁହାଯାଏ |

∴ ବଳୟର କ୍ଷେତ୍ରଫଳ = ବହିଃ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ - ଅନ୍ତଃ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ

$$=\pi R^2 - \pi r^2 = \pi \ (R^2 - r^2)$$
 ବର୍ଗ ଏକକ

ସୁତରାଂ ବୃତ୍ତୀୟ ବଳୟର କ୍ଷେତ୍ରଫଳ = $\pi \ (\mathbf{R}^2 - \mathbf{r}^2)$ ବର୍ଗ ଏକକ

5.3.3. ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ (Area of a sectorial region) :

ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ର–5.8କୁ ଲକ୍ଷ୍ୟକର । ବୃତ୍ତର କେନ୍ଦ୍ର 'O' । \overline{OA} , \overline{OB} ବ୍ୟାସାର୍ଦ୍ଧ ଏବଂ \widehat{AXB} ଚାପର ସଂଯୋଗରେ ବୃତ୍ତକଳାର ସୃଷ୍ଟି । ଏହାକୁ OAXB ରୂପେ ନାମିତ କରାଯାଏ । OAYB ମଧ୍ୟ ବୃତ୍ତର ଅନ୍ୟ ଏକ ବୃତ୍ତକଳା । ତୁମେ ଜାଣିଛ ଯେ, OAXB ବୃତ୍ତକଳାର ପରିସୀମା

= OA ବ୍ୟାସାର୍ଦ୍ଧ + \widehat{AXB} ର ଦୈର୍ଘ୍ୟ + OB ବ୍ୟାସାର୍ଦ୍ଧ ।

[ଚିତ୍ର 5.8]

 \overrightarrow{OAXB} ବୃତ୍ତକଳା ଏକ କ୍ଷୁଦ୍ର ଚାପ \overrightarrow{AXB} ସହ ସଂଯୁକ୍ତ ହେଲେ, \overrightarrow{OA} ର B-ପାର୍ଶ୍ୱ, \overrightarrow{OB} ର A-ପାର୍ଶ୍ୱ ଏବଂ AXB ବୃତ୍ତର ଅନ୍ତର୍ଦ୍ଦେଶର ସାଧାରଣ ଅଂଶକୁ **ବୃତ୍ତକଳାର ଅନ୍ତର୍ଦ୍ଦେଶ** କୁହାଯାଏ । OAXB ବୃତ୍ତକଳା ଓ ଏହାର ଅନ୍ତର୍ଦ୍ଦେଶର ସଂଯୋଗରେ ଗଠିତ ସେଟ୍କୁ OAXB ବୃତ୍ତକଳାଦ୍ୱାରା ଆବଦ୍ଧ କ୍ଷେତ୍ର (Sectorial Region) କୁହାଯାଏ । ଏଠାରେ ମନେରଖ ଯେ, ବୃତ୍ତ ଓ ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ ଏକ ଧନାତ୍ମକ ବାୟର ସଂଖ୍ୟା ।

ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରରେ OAXB ଏକ ବୃତ୍ତକଳା । \widehat{AXB} ଚାପରେ A_1, A_2, A_3, \ldots ଏହିପରି ଯଥେଷ୍ଟ ଅଧିକ ସଂଖ୍ୟକ ବିନ୍ଦୁ ନେଇ ବିନ୍ଦୁଗୁଡ଼ିକୁ O ବିନ୍ଦୁ ସହିତ ଯୋଗ କରାଯାଉ । ଫଳରେ $\widehat{AOA}_1, \widehat{A}_1\widehat{OA}_2, \ldots$ ଇତ୍ୟାଦି ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ କ୍ଷୁଦ୍ର ବୃତ୍ତକଳାରେ ପରିଣତ ହେବ । ବର୍ତ୍ତମାନ ଚିତ୍ର 5.9ରେ ଅଙ୍କିତ ଗୋଟିଏ କ୍ଷୁଦ୍ର ବୃତ୍ତକଳା \widehat{AOA}_1 କଥା ବିଚାର କରାଯାଉ । \widehat{AA}_1 କ୍ୟା ଅଙ୍କନ କଲେ \widehat{AOA}_1 ଗୋଟିଏ ତ୍ରିଭୁଚ୍ଚ ହେବ । (ଚିତ୍ର 5.10 ଦେଖ) ଚାପଟି ଅତି କ୍ଷୁଦ୍ର ହେଲେ \widehat{AA}_1 କ୍ୟାର ଦୈର୍ଘ୍ୟ \widehat{AXA}_1 ଚାପର ଦୈର୍ଘ୍ୟ ସହ ପ୍ରାୟ ସମାନ ହେବ ଏବଂ ତ୍ରିଭୁଚ୍ଚର ଉଚ୍ଚତା \widehat{OD} ପ୍ରାୟତଃ ବ୍ୟାସାର୍ଦ୍ଧ \widehat{OA}_1 ର କ୍ଷେତ୍ରଫଳ, \widehat{OA}_1 ର କ୍ଷେତ୍ରଫଳ, ସହ ପ୍ରାୟ ସମାନ ହେବ ।

$$egin{array}{lll} oldsymbol{ \cdot \cdot \cdot } & \Delta \, {
m OAA}_1 \, {
m o} \, & {
m cag} \, {
m ca$$

ସେହପର OA_1A_2 , OA_2A_3 ଇତ୍ୟାଦ କ୍ଷୁଦ୍ର ବୃତ୍ତକଳାମାନଙ୍କର କ୍ଷେତ୍ରଫଳର ଆସନ୍ନମାନ ଯଥାକ୍ରମେ $\frac{1}{2} \boldsymbol{\ell}_2 \mathbf{r}, \; \frac{1}{2} \boldsymbol{\ell}_3 \mathbf{r}$ ଇତ୍ୟାଦି ହେବ ।

ବର୍ତ୍ତମାନ ସମୟ କ୍ଷୁଦ୍ର ବୃତ୍ତକଳାମାନଙ୍କର କ୍ଷେତ୍ରଫଳର ସମଷ୍ଟି

$$= \frac{1}{2} \boldsymbol{\ell}_{1} \mathbf{r} + \frac{1}{2} \boldsymbol{\ell}_{2} \mathbf{r} + \frac{1}{2} \boldsymbol{\ell}_{3} \mathbf{r} + \dots = \frac{1}{2} (\boldsymbol{\ell}_{1} + \boldsymbol{\ell}_{2} + \boldsymbol{\ell}_{3} + \dots) \mathbf{r} = \frac{1}{2} \boldsymbol{\ell} \mathbf{r}$$
(ଯେଉଁଠାରେ \widehat{AXB} ର ଦୈର୍ଘ୍ୟ = $\boldsymbol{\ell}$ ଏକକ)

 \cdot ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2} l \, r$ ବର୍ଗ ଏକକ

ଅର୍ଥାତ୍ ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2}$ imes ବୃତ୍ତକଳାର ଚାପର ଦୈର୍ଘ୍ୟ imes ବ୍ୟାସାର୍ଦ୍ଧ

ପୁନଶ୍ଚ, ଚାପଟିର ଡିଗ୍ରୀ ପରିମାପ $heta^{0}$ ଏବଂ ବୃତ୍ତର ଡିଗ୍ରୀ ପରିମାପ 360^{o} ହେଲେ ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ

$$= \frac{1}{2} l r = \frac{1}{2} \cdot \frac{\theta}{360^{0}} \times 2 \pi r \times r = \frac{\theta}{360} \times \pi r^{2} \quad \left(\because l = \frac{\theta}{360} \times 2 \pi r\right)$$

$$\cdot\cdot$$
 ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ = $\frac{\theta}{360^0} imes \pi \, \mathrm{r}^2$ ଅର୍ଥାତ୍ ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ = $\frac{\theta}{360^0} imes$ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ।

ବି.ଦ୍ର. : ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟର ଅନୁରୂପ ପଦ୍ଧତି ଅବଲୟନରେ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ ସୟବ ।

ମନ୍ତବ୍ୟ : (i) OAXB ବୃତ୍ତକଳାର \widehat{AXB} ଚାପର ରେଡ଼ିୟାନ୍ ପରିମାପ θ^c , ବ୍ୟସାର୍ଦ୍ଧ r ଏବଂ \widehat{AXB} ଚାପର ଦୈର୍ଘ୍ୟ ℓ ହେଲେ , $\theta^c = \frac{\ell}{r}$ ହେବ । $(\because \pi^c = 180^o)$

$$(ii)$$
 OAXB ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2} \ell_{\rm r} = \frac{1}{2} \theta^{\rm c} {\rm r}^2 \ (\because \theta^{\rm c} = \frac{\ell}{\rm r})$ ହେବ ।

ବୃତ୍ତକଳାଦ୍ୱୟର କ୍ଷେତ୍ରଫଳର ଅନ୍ତର :

ଦୁଇଟି ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତର କେନ୍ଦ୍ର 'O'।

OAXB ଏବଂ OCYD ଦୁଇଟି ବୃତ୍ତକଳା। ସେମାନଙ୍କର
ଚାପମାନଙ୍କର ସମାନ ଡିଗ୍ରୀ ପରିମାପ (θ) ବିଶିଷ୍ଟ।
ବୃତ୍ତଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧ = R ଏକକ ଏବଂ r ଏକକ।

O

$$\begin{split} &= \frac{\theta}{360^0} \cdot \pi R^2 - \frac{\theta}{360} \cdot \pi r^2 \, = \frac{\theta}{360^0} \, \pi \, \left(R^2 - r^2 \right) \\ &= \frac{\theta}{360^0} \cdot \pi \left(R + r \right) \, \left(R - r \right) = \frac{1}{2} \, \cdot \left(R - r \right) \, \cdot \, \left[\frac{\theta}{360} \, \cdot \, 2 \, \pi \, \left(R + r \right) \right] \\ &= \frac{1}{2} \, \times \, \text{ବ୍ୟାସାର୍ଦ୍ଧିଦ୍ୱୟର ଅନ୍ତର} \, \times \, \text{ଚାପଦ୍ୱୟର ସମଷ୍ଟି କିୟା,} \end{split}$$

$$=rac{1}{2}\cdot\left[rac{ heta}{360}\cdot 2\,\pi\,\,\left(R-r
ight)
ight]\left(R+r
ight)=rac{1}{2}\, imes$$
ଚାପଦ୍ୱୟର ଅନ୍ତର $imes$ ବ୍ୟାସାର୍ଦ୍ଧିଦ୍ୱୟର ସମଷ୍ଟି ।

5.3.4 ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ (Area of a segment) :

ବୃତ୍ତର ଏକ ଜ୍ୟା ଏବଂ ଜ୍ୟା ସହ ସମ୍ପୃକ୍ତ ଏକ ଚାପର ସଂଯୋଗରେ ବୃତ୍ତଖଣ୍ଡ ଗଠିତ ହୁଏ । ଚିତ୍ର 5.12(a) ରେ AXBA ଏକ ବୃତ୍ତ ଖଣ୍ଡ । ଏହା \widehat{AXB} କ୍ଷୁଦ୍ର ଚାପ ସହ ସମ୍ପୃକ୍ତ ଥିବାରୁ ଏହାକୁ **କ୍ଷୁଦ୍ର ବୃତ୍ତଖଣ୍ଡ (minor segment)** କୁହାଯାଏ, ଏବଂ AYBA କୁ **ବୃହତ୍ ବୃତ୍ତଖଣ୍ଡ (major segment)** କୁହାଯାଏ । ଯଦି \overline{AB} ବୃତ୍ତର ଏକ ବ୍ୟାସ ହୁଏ, $[\widehat{\mbox{9}}_{\underline{\mbox{0}}} 5.12(b)]$ ତେବେ \widehat{AXB} ଏବଂ \widehat{AYB} ଦ୍ୱାରା ଗଠିତ ପ୍ରତ୍ୟେକ ବୃତ୍ତଖଣ୍ଡକୁ ଅର୍ଦ୍ଧବୃତ୍ତ ଖଣ୍ଡ କୁହାଯାଏ । ବୃତ୍ତଖଣ୍ଡ ଦ୍ୱାରା ଆବଦ୍ଧ କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳକୁ ସଂକ୍ଷେପରେ ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ (Area of a segment) କୁହାଯାଏ ।

ଚିତ୍ର 5.12(a) ରେ AXBA ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ $-\Delta OAB$ ର କ୍ଷେତ୍ରଫଳ $-\Delta OAB$

ସମାହିତ ପ୍ରଶ୍ରାବଳୀ

ଉଦାହରଣ - 9: ଗୋଟିଏ ବୃତ୍ତର ପରିଧି 352 ମି. ହେଲେ ଏହାର କ୍ଷେତ୍ରଫଳ କେତେ ହେବ ? $(\pi \simeq \frac{22}{7})$ ସମାଧାନ : ମନେକର ବୃତ୍ତଟିର ବ୍ୟାସାର୍ଦ୍ଧି r ମିଟର \Rightarrow ବୃତ୍ତର ପରିଧି = $2\pi r$ ମି.

ପ୍ରଶ୍ନାନୁସାରେ
$$2\pi r = 352 \implies r = \frac{352}{2\pi} = \frac{352 \times 7}{2 \times 22} = 56 \text{ ମି.}$$
 ବୃତ୍ତଟିର କ୍ଷେତ୍ରଫଳ = $\pi r^2 = \frac{22}{7} \times 56^2 = 9856 \text{ Ph.}$ (ଉତ୍ତର)

ଉଦାହରଣ-10: ଗୋଟିଏ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ 2464 ବ.ଡେକା.ମି. ହେଲେ ଏହାର ବ୍ୟାସ ଓ ପରିଧି ନିର୍ତ୍ତୟ କର । $(\pi \simeq \frac{22}{7})$ ସମାଧାନ : ମନେକର ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ r ଡେକା.ମି. \Rightarrow ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ = πr^2 ବର୍ଗ ଡେକା.ମି.

ପ୍ରଶ୍ନାନୁସାରେ
$$\pi r^2 = 2464 \implies r^2 = \frac{2464}{\pi} = \frac{2464 \times 7}{22} = 784 \, \text{ଚ.ମି.}$$
 $\implies r = \sqrt{784} = 28$ \therefore ବୃତ୍ତର ବ୍ୟାସ = $2r = 2 \times 28 = 56$ ଡେକା.ମି. ଏବଂ ବୃତ୍ତର ପରିଧି = $2\pi r = 2 \times \frac{22}{7} \times 28 = 176$ ଡେକା.ମି.

ଉଦାହରଣ-11 : 224 ମିଟର ବ୍ୟାସ ବିଶିଷ୍ଟ ଗୋଟିଏ ବୃତ୍ତାକାର ଘାସ ପଡ଼ିଆ ମଧ୍ୟରେ ତାହାର ବାହାର ସୀମାକୁ ଲାଗି ଗୋଟିଏ ବଳୟାକାର ପଥ ଅଛି । ପଥଟିର କ୍ଷେତ୍ରଫଳ $2425\frac{1}{2}$ ବର୍ଗମିଟର ହେଲେ ଏହାର ପ୍ରସ୍ଥ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ସମୁଦାୟ ଘାସ ପଡ଼ିଆର ବ୍ୟାସାର୍ଦ୍ଧ = ବାହାର ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧି (R) = $\frac{1}{2} \times 224$ ମି = 112 ମି. ମନେକର ଭିତର ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧି = r ମିଟର

$$\cdot$$
 ପଥଟିର କ୍ଷେତ୍ରଫଳ = $\pi (R^2 - r^2) = \frac{22}{7} (112^2 - r^2)$ ବର୍ଗମିଟର

କିନ୍ତୁ ପଥଚିର କ୍ଷେତ୍ରଫଳ =
$$2425\frac{1}{2}$$
 = $\frac{4851}{2}$ ବ.ମି. (ଦତ୍ତ)

$$\therefore \frac{22}{7} (112^2 - r^2) = \frac{4851}{2} \Rightarrow 112^2 - r^2 = \frac{4851}{2} \times \frac{7}{22} = \frac{3087}{4}$$

$$\Rightarrow r^2 = 112^2 - \frac{3087}{4} = 12544 - \frac{3087}{4} \Rightarrow r^2 = \frac{47089}{4}$$

$$\Rightarrow r = \frac{217}{2} = 108\frac{1}{2} = 108.5 \text{ ମିଟର } \text{I}$$

$$\cdot$$
 ପଥଟିର ପୁସ୍ଥ = R - r = 112 - 108.5 = 3.5 ମିଟର (ଉଉର)

ଉଦାହରଣ-12 : ଗୋଟିଏ ଲୁହାତାର ଦ୍ୱାରା ଗଠିତ ବର୍ଗକ୍ଷେତ୍ରଟିର କ୍ଷେତ୍ରଫଳ 24649 ବର୍ଗ ସେ.ମି.। ଏହାକୁ ବଙ୍କାଇ ବୃତ୍ତରେ ପରିଣତ କଲେ ବୃତ୍ତଟିର କ୍ଷେତ୍ରଫଳ କେତେ ହେବ ? $(\pi \simeq 3.14)$

ସମାଧାନ : ବର୍ଗ କ୍ଷେତ୍ରଟିର କ୍ଷେତ୍ରଫଳ = 24649 ବର୍ଗ ସେ.ମି. ବାହୁର ଦୈର୍ଘ୍ୟ = $\sqrt{24649}$ = 157 ସେ.ମି. ଏହାର ପରିସୀମା = 157 \times 4 = 628 ସେ.ମି.

ପ୍ରଶ୍ନାନୁସାରେ ବୃତ୍ତର ପରିସୀମା
$$2\pi r = 628 \Rightarrow r = \frac{628}{2 \times 3.14} = 100$$
 ସେ.ମି.

 \cdot ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ = $\pi (100)^2 = 3.14 \times (100)^2 = 31400$ ବର୍ଗ ସେ.ମି.। (ଉତ୍ତର)

ଉଦାହରଣ-13 :ଗୋଟିଏ ବୃତ୍ତରେ କୌଣସି ବୃତ୍ତକଳାର ଚାପର ଡିଗ୍ରୀ ପରିମାପ 60° । ଯଦି ବୃତ୍ତଟିର ବ୍ୟାସାର୍ଦ୍ଧ 21 ସେ.ମି. ହୁଏ, ତେବେ ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ବୃତ୍ତଟିର ବ୍ୟାସାର୍ଦ୍ଧ r=21 ସେ.ମି., ବୃତ୍ତକଳାର ଚାପର ଡିଗ୍ରୀ ପରିମାପ $\pmb{\theta}=60^{\circ}$

ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ =
$$\frac{\theta}{360^0}$$
 \times π r^2 = $\frac{60}{360}$ \times $\frac{22}{7}$ \times 21^2 = 231 ବର୍ଗ ସେ.ମି. । (ଉଡର)

ବିକଳ୍ପ ସମାଧାନ : $60^{0}=\frac{\pi^{\mathrm{C}}}{3}$, $l=\theta^{\mathrm{C}}$ \times $\mathrm{r}=7\pi$

$$\therefore$$
 କ୍ଷେତ୍ରଫଳ = $\frac{1}{2}l\mathbf{r} = \frac{1}{2} \times 7\pi \times 21 = 231$ ବର୍ଗ ସେ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ-14 :କୌଣସି ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 30 ସେ.ମି. ଏବଂ ଏହାର ଗୋଟିଏ ବୃତ୍ତକଳାର ଚାପର ଦୈର୍ଘ୍ୟ 18 ସେ.ମି.; ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ : ବୃତ୍ତଟିର ବ୍ୟାସାର୍ଦ୍ଧ୍ $(\mathbf{r})=30$ ସେ.ମି., ବୃତ୍ତକଳାର ଚାପର ଦୈର୍ଘ୍ୟ (l)=18 ସେ.ମି.

ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ =
$$\frac{1}{2}l\mathbf{r}$$
 = $\frac{1}{2}\times18\times30$ = 270 ବର୍ଗ ସେ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ-15 : ଗୋଟିଏ ବୃତ୍ତ ଓ ଏହାର ଏକ ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ ଯଥାକ୍ରମେ 9856 ବ.ସେ.ମି. ଓ 1400 ବ.ସେ.ମି. ହେଲେ, ବୃତ୍ତକଳାର ଚାପର ଦୈର୍ଘ୍ୟ ନିରୂପଣ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ମନେକର ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ${f r}$ ଓ ବୃତ୍ତକଳାର ଚାପର ଦୈର୍ଘ୍ୟ l ।

∴
$$\pi r^2 = 9856 \implies r^2 = 9856 \times \frac{7}{22} \implies r = \sqrt{448 \times 7} = 56 \text{ GQ.} \widehat{\text{Pl}}.$$

ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ = 1400 ବ.ସେ.ମି.
$$\Rightarrow \frac{1}{2}l\mathbf{r} = 1400$$
 $\Rightarrow l = \frac{2 \times 1400}{56} = 50$ ସେ.ମି. (ଉତ୍ତର)

ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜାକାର କ୍ଷେତ୍ତର କ୍ଷେତ୍ୱଫଳ 726 ବର୍ଗମିଟର । ଏହାର ଗୋଟିଏ କୌଣିକ ଉଦାହରଣ-16: ବିନ୍ଦ୍ରରେ ଚେନ୍ଦ୍ରାରା ବନ୍ଧା ହୋଇଥିବା ଏକ ଘୋଡ଼ା ତିଭୁକର ଅର୍ଦ୍ଧପରିମାଣ ସ୍ଥାନରେ ଚରିପାରେ । ଚେନ୍ର ଦୈର୍ଘ୍ୟ ଆସନୁ ସେ.ମି. ପର୍ଯ୍ୟନ୍ତ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ପାର୍ଶ୍ୱସ୍ଥ ଚିତ୍ରରେ ଘୋଡ଼ାଟି ଚରିପାରୁଥିବା ଅଂଶକୁ ରେଖାଖଣ୍ଡମାନଙ୍କ ଦ୍ୱାରା ଚିହ୍ନିତ କରାଯାଇଛି ଏବଂ

ମନେକର ଏହାର ବ୍ୟାସାର୍ଦ୍ଧ AX = r

$$\cdot$$
 ବୃତ୍ତକଳାର ଚାପର ଦୈର୍ଘ୍ୟ = $\frac{\pi}{180} \times 60 \times r = \frac{\pi r}{3}$ ମି.

ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ =
$$\frac{1}{2}l\mathbf{r} = \frac{1}{2} \times \frac{\pi \mathbf{r}}{3} \times \mathbf{r} = \frac{\pi \mathbf{r}^2}{6}$$
 ବର୍ଗ ମିଟର

ମାତ୍ର ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ =
$$\frac{1}{2} \times 726 = 363$$
 ବ.ମି.

:
$$\frac{\pi r^2}{6} = 363 \Rightarrow r^2 = \frac{363 \times 6 \times 7}{22} \Rightarrow r = \sqrt{693} = 26$$
 ମିଟର 23 ସେ.ମି. (ଆସନ୍ନମାନ)

ଉଦାହରଣ - 17 : ଏକ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 28 ସେ.ମି. ହେଲେ ଏହାର କେନ୍ଦ୍ରରେ 90° କୋଣ ଉତ୍ପନ୍ନ କରୁଥିବା ବୃଭଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ ନିରୂପଣ କର । $(\pi \simeq \frac{22}{7})$

ମନେକର
$$\widehat{APB}$$
 ଚାପର ଦୈର୍ଘ୍ୟ = l ଏକକ

ବର୍ତ୍ତମାନ
$$\widehat{APB}$$
 ଚାପର ଡିଗ୍ରୀ ପରିମାପ $\theta=90^{\circ}$

ଏବଂ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ
$$r=28$$
 ସେ.ମି.

OAPB ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ =
$$\frac{\theta}{360} \times \pi r^2 = \frac{90}{360} \times \frac{22}{7} \times (28)^2 = 616$$
 ବ.ସେ.ମି.

$$OAB$$
 ସମକୋଶୀ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2}$. $OA.OB = \frac{1}{2} \times 28 \times 28 = 392$ ବ.ସେ.ମି.

$$\therefore$$
 APBA ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ = OAPB ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ - OAB ସମକୋଶୀ ତ୍ରିଭୁଜର କ୍ଷେତ୍ରଫଳ = $(616-392)$ ବ.ସେ.ମି. = 224 ବ.ସେ.ମି. (ଉତ୍ତର)

ଅନୁଶୀଳନୀ - 5(b)

[ଆବଶ୍ୟକସ୍ଥଳେ $(\pi \simeq \frac{22}{7})$ ନେଇ ପ୍ରଶ୍ନଗୁଡ଼ିକ ସମାଧାନ କର]

- 1. ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ନିର୍କ୍ତୟ କର ଯେଉଁ ବୃତ୍ତର
 - (i) ବ୍ୟାସାର୍ଦ୍ଧ 31.5 ମିଟର (ii) ବ୍ୟାସ 112 ସେ.ମି.
 - (iii) ପରିଧି 286 ସେ.ମି. (iv) ଅର୍ଦ୍ଧ ପରିଧି 44 ମି.
- 2. (i) ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ 154 ବର୍ଗମିଟର ହେଲେ, ଏହାର ବ୍ୟାସର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
 - (ii) ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ 7546 ବର୍ଗ ମିଟର ହେଲେ, ଏହାର ପରିଧି କେତେ?
- 3. ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ ନିର୍ଷୟ କର ଯେଉଁ ବୃତ୍ତକଳାର
 - (i) ଚାପର ଡିଗୀ ପରିମାପ 120º, ବ୍ୟାସାର୍ଦ୍ଧ 28 ସେ.ମି.
 - (ii) ସଂପୃକ୍ତ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ 7546 ବର୍ଗ ମି. ଓ ସଂପୃକ୍ତ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 105° ।
 - (iii) ସଂପୂକ୍ତ ବୃତ୍ତର ପରିଧି 396 ମିଟର ଏବଂ ଚାପର ଦୈର୍ଘ୍ୟ 36 ମିଟର।
 - (iv) ଚାପର ଦୈର୍ଘ୍ୟ 66 ମିଟର ଏବଂ ଚାପର ଡିଗ୍ରୀ ପରିମାପ 70°।
- 4. ବୃତ୍ତକଳାର ବ୍ୟାସାର୍ଦ୍ଧର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ଯାହାର
 - (i) କ୍ଷେତ୍ରଫଳ 1848 ବର୍ଗ ମିଟର ଓ ସଂପୂକ୍ତ ଚାପର ଡିଗ୍ରୀ ପରିମାପ $120^{\rm o}$ ।
 - (ii) କ୍ଷେତ୍ରଫଳ 48.4 ବର୍ଗ ଡେକାମିଟର ଓ ଚାପର ଦୈର୍ଘ୍ୟ 121 ମିଟର ।
- 5. ବୃତ୍ତକଳାର ସଂପୃକ୍ତ ଚାପର ଡିଗ୍ରୀ ପରିମାପ ନିର୍ଣ୍ଣୟ କର :
 - (i) ଯାହାର ବ୍ୟାସାର୍ଦ୍ଧ 36 ମିଟର, କ୍ଷେତ୍ରଫଳ 792 ବର୍ଗ ମିଟର।
 - (ii) ଯାହାର କ୍ଷେତ୍ରଫଳ 924 ବର୍ଗ ସେ.ମି. ଓ ସଂପୃକ୍ତ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ 2464 ବର୍ଗ ସେ.ମି.
 - (iii) ଯାହାର କ୍ଷେତ୍ରଫଳ 231 ବର୍ଗ ମିଟର ଏବଂ ଚାପର ଦୈର୍ଘ୍ୟ 22 ମିଟର।
- 6. ଦୁଇଟି ଏକକେନ୍ଦ୍ରିକ ବୃତ୍ତର ଚାପର ଡିଗ୍ରୀ ପରିମାପ ସମାନ ହେଲେ ସଂପୃକ୍ତ ବୃତ୍ତକଳାଦ୍ୱୟର କ୍ଷେତ୍ରଫଳର ଅନ୍ତର କେତେ ହେବ ଯେତେବେଳେ
 - (i) ଚାପ ଦୁଇଟିର ଦୈର୍ଘ୍ୟର ଅନ୍ତର 25 ମି. ଓ ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ସମଷ୍ଟି 80 ମି.
 - (ii) ଚାପ ଦୁଇଟିର ଦୈର୍ଘ୍ୟର ସମଷ୍ଟି 50 ସେ.ମି. ଓ ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ଅନ୍ତର 24 ସେ.ମି.
- 7. ଗୋଟିଏ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ x ବର୍ଗ ଏକକ l ଏହାର
 - (i) ଅନ୍ତର୍ଲିଖିତ ସମକୋଣୀ ତ୍ରିଭୁଜର କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ କେତେ ?
 - (ii) ଅନ୍ତର୍ଲିଖିତ ବର୍ଗଚିତ୍ରର ବାହୁର ଦୈର୍ଘ୍ୟ କେତେ?
 - (iii) ଅନ୍ତର୍ଲିଖିତ ସମବାହୁ ତ୍ରିଭୁଜର ବାହୁର ଦୈର୍ଘ୍ୟ କେତେ ?

- 8. ଦୁଇଟି ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ଯଥାକ୍ରମେ 42 ସେ.ମି. ଓ 56 ସେ.ମି.। ଅନ୍ୟ ଏକ ତୃତୀୟ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ପ୍ରଥମୋକ୍ତ ବୃତ୍ତଦ୍ୱୟର କ୍ଷେତ୍ରଫଳର ସମଷ୍ଟି ସହିତ ସମାନ ହେଲେ ତୃତୀୟ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ନିର୍କ୍ତୟ କର।
- 9. ଗୋଟିଏ ବର୍ଗକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ଗୋଟିଏ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ସହିତ ସମାନ । ସେମାନଙ୍କର ପରିସୀମାର ଅନୁପାତ ନିର୍ଣ୍ଣୟ କର ।
- 10. ଗୋଟିଏ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ 5 ସେ.ମି.। ଏହାର 9 ଗୁଣ କ୍ଷେତ୍ରଫଳ ବିଶିଷ୍ଟ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ?
- 11. ଗୋଟିଏ ବୃତ୍ତର ପରିଧି ଯେତେ ଏକକ ଏହାଦ୍ୱାରା ଆବଦ୍ଧ କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ ସେତିକି ବର୍ଗ ଏକକ ହେଲେ ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ?
- 12. ଗୋଟିଏ ବର୍ଗକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ C ବର୍ଗ ଏକକ। ଏହାର ଅନ୍ତର୍ଲିଖିତ ଓ ପରିଲିଖିତ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ?
- 13. ପ୍ରମାଣ କର ଗୋଟିଏ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ଗୋଟିଏ ସମବାହୁ Δ ର କ୍ଷେତ୍ରଫଳ ସହିତ ସମାନ ହେଲେ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ଓ ତ୍ରିଭୁଜର ବାହୁର ଦୈର୍ଘ୍ୟର ଅନୁପାତ $\sqrt{\frac{\sqrt{3}}{4\pi}}$: 1 ହେବ ।
- 14. ଗୋଟିଏ ଅର୍ଦ୍ଧବୃତ୍ତାକାର କ୍ଷେତ୍ରର ପରିସୀମା 252 ସେ.ମି. ହେଲେ ଏହାର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- 15. ଗୋଟିଏ ଅର୍ଦ୍ଧବୃତ୍ତର ପରିସୀମା ବ୍ୟାସ ଅପେକ୍ଷା 44 ମିଟର ଅଧିକ ହେଲେ ଅର୍ଦ୍ଧବୃତ୍ତାକାର କ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ କେତେ ?
- 16. ଗୋଟିଏ ଅର୍ଦ୍ଧବୃତ୍ତାକାର ପଡ଼ିଆର କ୍ଷେତ୍ରଫଳ 2772 ବର୍ଗ ମିଟର। ଏହି ପଡ଼ିଆକୁ ବାଡ଼ ଦ୍ୱାରା ଆବଦ୍ଧ କରିବାକୁ ହେଲେ ମିଟର ପ୍ରତି 37 ପଇସା ଦରରେ କେତେ ଖର୍ଚ୍ଚ ହେବ ?
- 17. ଗୋଟିଏ ବୃତ୍ତାକାର ରାୟାର ବାହାର ଓ ଭିତର ବୃତ୍ତର ବ୍ୟାସ ଯଥାକ୍ରମେ 56 ସେ.ମି. ଓ 42 ସେ.ମି.। ରାୟାଟିର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର।
- 18. 32 ମିଟର ବ୍ୟାସ ବିଶିଷ୍ଟ ଗୋଟିଏ ବୃତ୍ତାକାର ବଗିଚା ମଧ୍ୟରେ ତାହାର ସୀମାକୁ ଲାଗି ଗୋଟିଏ ରାୟା ନିର୍ମିତ ହୋଇଛି । ରାୟାର କ୍ଷେତ୍ରଫଳ 352 ବର୍ଗ ମିଟର ହେଲେ ଏହାର ପ୍ରସ୍ଥ କେତେ ?
- 19. ଦୁଇଟି ବୃତ୍ତର ପରିଧିର ସମଷ୍ଟି 220 ସେ.ମି.। କ୍ଷେତ୍ରଫଳର ଅନ୍ତର 770 ବର୍ଗ ସେ.ମି। ବୃତ୍ତଦ୍ୱୟର ବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ତ୍ତୟ କର ।
- 20. ଗୋଟିଏ ଲୁହା ତାରକୁ ବର୍ଗାକୃତି କଲେ ବର୍ଗକ୍ଷେତ୍ରଟିର କ୍ଷେତ୍ରଫଳ 484 ବର୍ଗ ସେ.ମି. ହୁଏ । ଯଦି ଏହାକୁ ବୃତ୍ତାକୃତି କରାଯାଏ ତେବେ ବୃତ୍ତଟିର କ୍ଷେତ୍ରଫଳ କେତେ ହେବ ?
- 21. ଦୁଇଟି ବୃତ୍ତର ବ୍ୟାସର ଅନୁପାତ 4 : 5 । ଯଦି ପ୍ରଥମ ବୃତ୍ତଟିର କ୍ଷେତ୍ରଫଳ 352 ବର୍ଗ ସେ.ମି ହୁଏ; ଦ୍ୱିତୀୟଟିର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- 22. ଏକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ସମବାହୁ ତ୍ରିଭୁଜର ବାହୁର ଦୈର୍ଘ୍ୟ $14\sqrt{3}$ ସେ.ମି. ହେଲେ, ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ କେତେ ?

- 23. ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜର ଅନ୍ତଃବୃତ୍ତର କ୍ଷେତ୍ରଫଳ 154 ବ.ମି. ହେଲେ, ତ୍ରିଭୁଜର ପରିସୀମା ନିର୍ଦ୍ଧୟ କର ।
- 24. ଗୋଟିଏ ବୃତ୍ତରେ ଗୋଟିଏ ବୃତ୍ତକଳାର ଚାପର ଦିର୍ଘ୍ୟି ଅନ୍ୟ ଏକ ବୃତ୍ତକଳାର ଚାପର ଦିର୍ଘ୍ୟର ତିନିଗୁଣ । ପ୍ରଥମଟିର କ୍ଷେତ୍ରଫଳ ୨ ବର୍ଗ ସେ.ମି. ହେଲେ ଦ୍ୱିତୀୟ ବୃତ୍ତକଳାର କ୍ଷେତ୍ରଫଳ କେତେ ?
- 25. ଗୋଟିଏ ବୃତ୍ତକଳା ଆକାର ବିଶିଷ୍ଟ କୌଣସି କ୍ଷେତ୍ରର ଚାରିପାଖରେ ବାଡ଼ ଦେବା ପାଇଁ ମିଟରକୁ ଟ.1.50 ହିସାବରେ ଟ.75 ଖର୍ଚ୍ଚ ହେଲା । ବୃତ୍ତକଳାର ଚାପର ଡିଗ୍ରୀ ପରିମାପ ୨0º ହେଲେ ତାହାର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ?
- 26. 7 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ତିନୋଟି ବୃତ୍ତ ପରସ୍ପରକୁ ସ୍ପର୍ଶ କରନ୍ତି । ବୃତ୍ତମାନଙ୍କର ବହିଃସ୍ଥ ମାତ୍ର ସେମାନଙ୍କଦ୍ୱାରା ଆବଦ୍ଧ କ୍ଷେତ୍ର କ୍ଷେତ୍ଫଳର ଦଶମିକ ଦୁଇସ୍ଥାନ ପର୍ଯ୍ୟନ୍ତ ଆସନୁମାନ ନିର୍ଣ୍ଣୟ କର ।

$$(\sqrt{3} \simeq 1.73), (\pi \simeq 3.14)$$

- 27. ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ 12 ସେ.ମି. ଓ ବହିଃବ୍ୟାସାର୍ଦ୍ଧ 13 ସେ.ମି. ହୋଇଥିବା ଏକ ବଳୟର କ୍ଷେତ୍ରଫଳ ଗୋଟିଏ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ ସହ ସମାନ ହେଲେ ବୃତ୍ତଟିର ବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ଣ୍ଣୟ କର ।
- 28. ଗୋଟିଏ ବୃତ୍ତରେ ଅଙ୍କିତ ଏକ ବୃତ୍ତକଳାର ଚାପ \widehat{AXB} ର ଡିଗ୍ରୀ ପରିମାପ 60° । ବ୍ୟାସାର୍ଦ୍ଧ \overline{OA} , \overline{OB} ଏବଂ \widehat{AXB} କୁ ସ୍ମୁର୍ଶ କରୁଥିବା ବୃତ୍ତର କ୍ଷେତ୍ରଫଳ 9π ବର୍ଗ ଏକକ ହେଲେ,
 - (i) ପ୍ରଥମ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ତ୍ତୟ କର ।
 - (ii) OAXB ବୃତ୍ତକଳା ଓ ଏହା ମଧ୍ୟରେ ଅଙ୍କିତ ବୃତ୍ତର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ ନିର୍ଣ୍ଣୟ କର ।
- 29. 8 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃତ୍ତରେ
 - (i) 8 ସେ.ମି. ପରିମିତ ଜ୍ୟା ଦ୍ୱାରା ଚ୍ଛେଦିତ କ୍ଷୁଦ୍ରତର ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
 - (ii) $8\sqrt{2}$ ସେ.ମି. ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଜ୍ୟା ଦ୍ୱାରା ଛେଦିତ କ୍ଷୁଦ୍ରତର ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।

$$(\sqrt{3} \simeq 1.732)(\pi \simeq 3.141)$$

- 30. 20 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ କେନ୍ଦ୍ରରେ 60° କୋଣ ଉତ୍ପନ୍ନ କରୁଥିବା ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ ନିର୍ଦ୍ଧିୟ କର । $(\sqrt{3}\simeq 1.732)(\pi\simeq 3.141)$
- 31. 10 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ କେନ୍ଦ୍ରରେ 120 $^{\circ}$ କୋଣ ଉତ୍ପନ୍ନ କରୁଥିବା ବୃତ୍ତଖଣ୍ଡର କ୍ଷେତ୍ରଫଳ ନିର୍ଦ୍ଧିୟ କର । $(\pi \simeq 3.141)$ $(\sqrt{3} \simeq 1.732)$

5.4. ସୁଷମ ଘନ ପଦାର୍ଥର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ (Surface area of regular solids) : ଘନ ପଦାର୍ଥ (Solid) :

ପ୍ରତିଦିନ ତୂମେ ବହି, ଇଟା, ପଥରଖଣ୍ଡ, ପେଣ୍ଡୁ, ଲୁହାନଳୀ, ରୋଲ୍ବାଡ଼ି ଓ ବାକ୍ସ ଇତ୍ୟାଦି ପଦାର୍ଥମାନଙ୍କ ସଂସ୍ପୂର୍ଶରେ ଆସୁଅଛ । ଯେଉଁ ପଦାର୍ଥ ସମତଳ ଭୂମି ପୃଷରେ ଥୋଇଲେ ପଦାର୍ଥଟିର କିଛି ଅଂଶ ଭୂମିକୁ ଲାଗିରହେ ଏବଂ ଅନ୍ୟ ଭାଗଟି ଶୂନ୍ୟ, ବାୟୁ ବା କଳ ମଧ୍ୟରେ ସ୍ଥାନ ଅଧିକାର କରି ରହେ ସେ ପ୍ରକାର ପଦାର୍ଥକୁ ଘନ ପଦାର୍ଥ (solid) କୁହାଯାଏ । ଏଗୁଡ଼ିକ ତିନି ଦିଗରେ ବିଷ୍ଟୃତ ହୋଇଥାଏ । ଯଥା : ଦୈର୍ଘ୍ୟ ବା ଲୟା ଦିଗରେ (lengthwise), ପ୍ରସ୍ଥ ବା ଓସାର ଦିଗରେ (Breadthwise), ବେଧ ବା ଉଚ୍ଚତା ଦିଗରେ (Thicknesswise) ବା (Heightwise) । ଦୈର୍ଘ୍ୟ, ପ୍ରସ୍ଥ, ଉଚ୍ଚତାକୁ ମାତ୍ରା (Dimension) କୁହାଯାଏ । ତେଣୁ ପ୍ରତ୍ୟେକ ଘନ ପଦାର୍ଥ ତ୍ରି-ମାତ୍ରିକ (Three dimensional) ଅଟେ ।

ସମଞ୍ଚ ଘନ ପଦାର୍ଥକୁ ଦୁଇ ଶ୍ରେଣୀରେ ବିଭକ୍ତ କରାଯାଏ। ନିର୍ଦ୍ଦିଷ୍ଟ ଆକୃତି ବିଶିଷ୍ଟ ଘନ ପଦାର୍ଥକୁ ସୁଷମ ଘନ ପଦାର୍ଥ (Regular solid) ଏବଂ ନିର୍ଦ୍ଦିଷ୍ଟ ଆକାର ନଥିବା ଘନ ପଦାର୍ଥକୁ ବିଷମଘନ ପଦାର୍ଥ (Irregular solid) କୁହାଯାଏ। ଏହି ଅଧ୍ୟାୟରେ ତୁମେ ପ୍ରିଜିମ୍, ସିଲିଣ୍ଡର, କୋନ୍ ଓ ଗୋଲକ ପରି କେତେକ ନିର୍ଦ୍ଦିଷ୍ଟ ଆକୃତିବିଶିଷ୍ଟ ଘନ ପଦାର୍ଥ ସଂପର୍କରେ ଅବଗତ ହେବ ।

ତଳ ବା ପୃଷ (Surface):

ଗଣିତ ଶାସ୍ତରେ ତଳ (Surface) ଏକ ସଂଜ୍ଞା ବିହୀନ ପଦ। ଘନ ପଦାର୍ଥର ଉପରିଭାଗକୁ ସ୍ୱର୍ଶକରି ତଳ ସୟକ୍ଷରେ ଧାରଣା କରିହୁଏ। ତଳ ବା ପୃଷ୍ଠଦ୍ୱାରା ଘନ ପଦାର୍ଥଟିର ଆକୃତି ଜଣାଯାଇଥାଏ। ତଳ ଦୁଇ ପ୍ରକାରର ଯଥା : ସମତଳ (plane surface) ଓ ବକ୍ରତଳ (curved surface)। ଇଟା, ବାକ୍ସ ଇତ୍ୟାଦି ଘନ ପଦାର୍ଥଗୁଡ଼ିକରେ କେବଳ ସମତଳପୃଷ୍ଟ, ରାୟା ତିଆରି ରୋଲର୍, ଫୁଙ୍କନଳ ଇତ୍ୟାଦିରେ ଉଭୟ ସମତଳ ଓ ବକ୍ରତଳପୃଷ୍ଟ ଏବଂ ଫୁଟ୍ରକ୍ଲରେ କେବଳ ବକ୍ରତଳପୃଷ୍ଟ ଥାଏ।

ଯେଉଁ ତଳରେ ଚିହ୍ନିତ ଦୁଇଗୋଟି ବିନ୍ଦୁର ସଂଯୋଜକ ରେଖାଖଞ୍ଚର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ ସେହି ତଳ ଉପରେ ଅବସ୍ଥାନ କରନ୍ତି ସେହି ତଳକୁ ସମତଳ କୁହାଯାଏ। ପୁନଶ୍ଚ ବହି, କାଗଜ ଓ ବାକ୍ସର ପୃଷ ଟେବୁଲ୍ ଉପରେ ରଖି ପରୀକ୍ଷା କରି ଦେଖ କିପରି ସମତଳ ପୃଷ୍ଠକୁ ସମତଳ ଉପରେ ରଖିଲେ ଉଭୟ ସମତଳ ପୃଷ୍ଠର ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ ମିଶି ଯାଉଛନ୍ତି। ମାତ୍ର ବଲ୍ଟିଏ ନେଇ ଟେବୁଲ୍ ଉପରେ ରଖିଲେ ବଲ୍ର ଏକମାତ୍ର ବିନ୍ଦୁ ଟେବୁଲ୍କୁ ସ୍ମୁର୍ଶ କରୁଛି ଏବଂ

ଚକ୍ଖଡ଼ି ଖଣ୍ଡଟିଏ ଟେବୂଲ୍ ଉପରେ ରଖିଲେ ଏହା ଗୋଟିଏ ସରଳରେଖାରେ ଟେବୁଲ୍ ପୃଷକୁ ସ୍ମର୍ଶ କରୁଛି । ତେଣୁ ବଲ୍ର ପୃଷତଳ ଏବଂ ଚକ୍ର ପୃଷତଳ ବକ୍ର ପୃଷତଳ ଅଟେ । କିନ୍ତୁ ଚକ୍ଖଣ୍ଡର ଦୁଇମୁଣ୍ଡ ଟେବୂଲ୍ ଉପରେ ରଖିଲେ ଏହାର ସମୟ ବିନ୍ଦୁ ଟେବୂଲ୍ର ତଳକୁ ସ୍ମର୍ଶ କରୁଛି । ତେଣୁ ଚକ୍ଖଣ୍ଡର ଦୁଇମୁଣ୍ଡ ସମତଳ ଅଟେ ।

ସମତଳ ସୟନ୍ଧୀୟ କେତେକ ତଥ୍ୟ:

- (a) ଦୁଇଟି ସମତଳର କୌଣସି ଚ୍ଛେଦ ବିନ୍ଦୁ ନ ଥିଲେ, ସେମାନଙ୍କୁ ସମାନ୍ତର ସମତଳ କୁହାଯାଏ । ଚିତ୍ର 5.16 ରେ ABCD ଓ EFGH ଦୁଇଟି ସମାନ୍ତର ସମତଳ ।
- (b) ଦୁଇଟି ସମତଳ ପରୟରକୁ ଏକ ସରଳ ରେଖାରେ ଛେଦ କରନ୍ତି । (ଚିତ୍ର 5.16 ରେ ABCD ଓ BCGF ତଳ ଦ୍ୱୟ $\stackrel{\longleftrightarrow}{BC}$ ରେଖାରେ ଛେଦ କରନ୍ତି)
- (c) କୌଣସି ସମତଳ E ର ଏକ ବିନ୍ଦୁ P ମଧ୍ୟ ଦେଇ ଅଙ୍କିତ ରେଖା (I) (ରଶ୍ମି ବା ରେଖାଖଣ୍ଡ) P ମଧ୍ୟ ଦେଇ ଅଙ୍କିତ ସମତଳ E ଉପରିସ୍ଥ ଅନ୍ୟାନ୍ୟ ସମସ୍ତ ରେଖା ପ୍ରତି ଲୟ ହେଲେ, ସେହି ରେଖା (I)କୁ ସମତଳ ପ୍ରତି ଲୟ କୁହାଯାଏ ।
- (d) ଚିତ୍ର 5.16 ରେ FB ରେଖା ABCD ସମତଳ ପ୍ରତି ଲୟ T

5.4.1 କେତେକ ଘନ ପଦାର୍ଥର ସୃଷ୍ଟିର ସଂଜ୍ଞା :

ପ୍ରିଜିମ୍ ଓ ସିଲିଣ୍ଡର ଏକ ବିଶେଷ ପ୍ରକାର ଘନ ପଦାର୍ଥ । ଏଗୁଡ଼ିକର ଗଠନର ସଂଜ୍ଞା ସମ୍ପନ୍ଧରେ ସମ୍ୟକ ଧାରଣା ନିମ୍ନରେ ଦିଆଯାଇଛି ।

ଚିତ୍ର 5.17 ରେ E_1 ଏବଂ E_2 ଦୁଇଟି ସମାନ୍ତର ସମତଳ । L ସରଳରେଖା E_1 କୁ କେବଳ ଗୋଟିଏ ବିନ୍ଦୁରେ ଛେଦ କରୁଛି । C_1 , E_1 ଉପରିସ୍ଥ ଏକ ସରଳ ଆବଦ୍ଧବକ୍ର (Simple Closed Curve) (ବକ୍ରରେଖା ନିଜକୁ ଛେଦ କରୁ ନଥିଲେ ତାହାକୁ ସରଳବକ୍ର କୁହାଯାଏ । ବକ୍ରଟିର ଆଦ୍ୟ ଓ ପ୍ରାନ୍ତ ବିନ୍ଦୁ ଦ୍ୱୟ ଏକ ଓ ଅଭିନ୍ନ ହେଲେ ଚକ୍ରଟିକୁ ଆବଦ୍ଧବକ୍ର କୁହାଯାଏ । ବୃତ୍ତ ଏକ ସରଳ ଆବଦ୍ଧବକ୍ରର ଉଦାହରଣ ।) P, C_1 ଦ୍ୱାରା ଆବଦ୍ଧ କ୍ଷେତ୍ର B_1 (C_1 ଏବଂ ଏହାର ଅନ୍ତର୍ଦ୍ଦେଶର ସଂଯୋଗ) ଉପରିସ୍ଥ ଯେ କୌଣସି ଏକ ବିନ୍ଦୁ ହେଉ । P ମଧ୍ୟଦେଇ L ସହିତ ସମାନ୍ତର ରେଖା E_2 କୁ Q ବିନ୍ଦୁରେ ଛେଦ କଲେ ଆମେ \overline{PQ} ରେଖାଖଣ୍ଡ ପାଇବା । ଏହିପରି B_1 ଉପରିସ୍ଥ ସମୟ ବିନ୍ଦୁ ପାଇଁ ମିଳୁଥିବା ରେଖାଖଣ୍ଡ ଗୁଡ଼ିକର ସେଟ୍ \overline{PQ} ଏକ **ସିଲିଣ୍ଡର** କୁହାଯାଏ ।

ସିଲିଣ୍ଡର S ଓ ସମତଳ E_2 ର ଛେଦାଂଶ C_2 ବକ୍ର ଦ୍ୱାରା ଆବଦ୍ଧ କ୍ଷେତ୍ର B_2 ହେବ । ଉଚ୍ଚତର ଗଣିତ ସାହାଯ୍ୟରେ ଏହା ପ୍ରମାଣ କରାଯାଇ ପାରେ ଯେ C_1 ଓ C_2 ବକ୍ରଦ୍ୱୟ ସର୍ବସମ (Congruant) ହେବେ ଏବଂ B_1 ଓ B_2 ଉଭୟର କ୍ଷେତ୍ରଫଳ ସମାନ ହେବ । ଅର୍ଥାତ୍ C_1 , ଏକ ବୃତ୍ତ କିୟା ତ୍ରିଭୁଜ ହେଲେ B_1 ଏକ ବୃତ୍ତାକାର କ୍ଷେତ୍ର କିୟା ତ୍ରିଭୁଜାକାର କ୍ଷେତ୍ର ହେବ ଏବଂ C_2 ମଧ୍ୟ ଅନୁରୂପ ବୃତ୍ତ ବା ତ୍ରିଭୁଜ ହେବ ଏବଂ C_2 ସଧ୍ୟ ଅନୁରୂପ ବୃତ୍ତ ବା ତ୍ରିଭୁଜ ହେବ ଏବଂ C_2 ସଧ୍ୟ ଅନୁରୂପ ବୃତ୍ତ ବା ତ୍ରିଭୁଜ ହେବ ଏବଂ C_2 ସଧ୍ୟ ଅନୁରୂପ ବୃତ୍ତ ବା ତ୍ରିଭୁଜାକାର କ୍ଷେତ୍ର ହେବ ।

 B_1 (କିୟା B_2) ସେଟ୍କୁ ସିଲିଣ୍ଡର S ର **ଭୂମି ବା ଆଧାର** (Base) କୁହାଯାଏ | M ବିନ୍ଦୁ C_1 ଉପରିସ୍ଥ ଏବଂ N ବିନ୍ଦୁ C_2 ଉପରିସ୍ଥ | $\overline{\text{MN}}$, L ସହିତ ସମାନ୍ତର ହେଲେ $\overline{\text{MN}}$ ରେଖାଖଣ୍ଡକୁ ସିଲିଣ୍ଡରର ଏକ **ଜେନେରେଟର (Generator) ବା ଜନକରେଖା** କୁହାଯାଏ | C_1 କୁ ସିଲିଣ୍ଡରର **ଡାଇରେକ୍ଟ୍ରିକ୍ସ (Directrix)** ବା **ନିୟାମକ ରେଖା କୁହାଯାଏ** | C_1 ମଧ୍ୟଦେଇ ଅଙ୍କିତ ସମୟ ଜେନେରେଟର ଗୁଡ଼ିକର ସଂଯୋଗରେ ସିଲିଣ୍ଡରର **ବକ୍ରପୃଷତଳ** ବା **ପାର୍ଶ୍ୱପୃଷତଳ (Curved surface or Lateral surface)** ଗଠିତ ହୁଏ | ବକ୍ରପୃଷ୍ଠତଳ (Total curved surface) ଗଠିତ ହୁଏ | ଚିତ୍ର

5.16 ରେ ABCD ଓ EFGH ଆୟତାଘନାକାର ସିଲିଣ୍ଟରର ଦୁଇ ଆଧାର । ABFE, BCGF, CDHG ଏବଂ DAEH ଆୟତକ୍ଷେତ୍ରଗୁଡ଼ିକର ସଂଯୋଗ ହେଉଛି ଉକ୍ତ ସିଲିଣ୍ଟରର ପାର୍ଶ୍ୱପୃଷ୍ଣତଳ । (ପ୍ରଶ୍ନ : ଏଠାରେ $\mathrm{C_1}$ କାହାକୁ କହିବା ?)

ଚିତ୍ର 5.176ର (i) $\mathbf{B_1}$ ଯେକୌଣସି ବହୁଭୁଜାକାର କ୍ଷେତ୍ର ହେଲେ \mathbf{S} କୁ ପ୍ରିକିମ୍ (Prism) କୁହାଯାଏ ଏବଂ \mathbf{L} ରେଖା $\mathbf{E_1}$ ପ୍ରତି ଲୟ ହେଲେ \mathbf{S} କୁ ଏକ ସରଳ ପ୍ରିକିମ୍ (Right Prism) କୁହାଯାଏ |

- (ii) B_1 ଏକ ସାମାନ୍ତରିକ କ୍ଷେତ୍ର ହେଲେ S ଏକ ସମାନ୍ତର ଘନ (Parallelopiped) ହେବ । ଆୟତଘନ (Cuboid) ଏବଂ ସମଘନ (Cube) ଉଭୟେ ଏକ ବିଶେଷ ପ୍ରକାରର ସମାନ୍ତର ଘନ । ଏହି ପରିସ୍ଥିତିରେ L ରେଖା E_1 ପ୍ରତି ଲୟ, ଅଧିକନ୍ତୁ ସମଘନ ପରିସ୍ଥିତିରେ PQ ସହ B_1 ର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ ।
- (iii) \mathbf{B}_1 ଏକ ବୃତ୍ତାକାର କ୍ଷେତ୍ର ହେଲେ \mathbf{S} ଏକ ବୃତ୍ତଭୂମିକ ସିଲିଣ୍ଡର (circular cylinder) ଏବଂ \mathbf{L} ରେଖା \mathbf{E}_1 ପ୍ରତି ଲୟ ହେଲେ \mathbf{S} ଏକ ସରଳ ବୃତ୍ତ ଭୂମିକ ସିଲିଣ୍ଡର (Right circular cylinder) ହେବ \mathbf{I} ପ୍ରିଜିମ୍, ଆୟତ ଘନ, ସମଘନ, ସିଲିଣ୍ଡର ଏହି ଘନପଦାର୍ଥ ଗୁଡ଼ିକର ଗଠନ ଓ ପରିସ୍ଥିତିର ସାଦୃଶ୍ୟ ଯୋଗୁଁ ଏମାନେ ଏକ ପରିବାର ଭୁକ୍ତ ଅଟନ୍ତି \mathbf{I} ତେଣୁ ଏମାନଙ୍କର ପାର୍ଶ୍ୱପୃଷ୍ଣତଳ (ବକ୍ରପୃଷ୍ଣତଳ), ସମଗ୍ର ପୃଷ୍ଣତଳ ଓ ଆୟତନ ନିର୍ଣ୍ଣୟର ସୂତ୍ରାବଳୀ ଏକାପରି \mathbf{I} ସରଳ ସିଲିଣ୍ଡର ନିମନ୍ତେ ନିମ୍ନ ସୂତ୍ରାବଳୀ ପ୍ରୟୋଗ କରାଯାଏ
 - (a) ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳ (ବକ୍ର ତଳ)ର କ୍ଷେତ୍ରଫଳ = ଆଧାରର ପରିସୀମା imes ଉଚ୍ଚତା
 - (b) ସମଗ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ = ପାର୍ଶ୍ୱପୃଷତଳର କ୍ଷେତ୍ରଫଳ + 2 × ଆଧାରର କ୍ଷେତ୍ରଫଳ
 - (c) ଆୟତନ = ଆଧାରର କ୍ଷେତ୍ରଫଳ × ଉଚ୍ଚତା

5.5 ପ୍ରିଜିମ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ (Surface Area of a Prism) :

ପ୍ରିଜିମ୍ ଗୋଟିଏ ସମତଳ ପରିବେଷ୍ଟିତ ଏକ ଘନପଦାର୍ଥ। ଏହାର ପ୍ରାନ୍ତସମତଳ ଦ୍ୱୟ ସମାନ୍ତର ଓ ସର୍ବସମ ସରଳରୈଖିକ କ୍ଷେତ୍ର।

ଏହାର ପ୍ରାନ୍ତ ସମତଳଦ୍ୱୟ ମଧ୍ୟରୁ ଯେଉଁ ଗୋଟିକ ଉପରେ ପ୍ରିକିମ୍ବଟି ଦଣ୍ଡାୟମାନ ହୁଏ ତାହାକୁ ଭୂମି

ବା ଆଧାର (Base) କୁହାଯାଏ। ପ୍ରିକିମ୍ର ଭୂମି ଗୋଟିଏ ତ୍ରିଭୁକ, ଚତୁର୍ଭୁକ, ଷଡ଼ଭୁକ, ଦଶଭୁକାକାର ଇତ୍ୟାଦି ଯେକୌଣସି ସରଳରେଁଖିକ କ୍ଷେତ୍ର ହୋଇଥାଏ। ଭୂମିର ବିପରୀତ ସମତଳଟିକୁ ଶୀର୍ଷ ସମତଳ କୁହାଯାଏ। ଭୂମିର ଆକାର ଅନୁସାରେ ପ୍ରିକିମ୍ର ନାମକରଣ କରାଯାଏ। ଯଥା- ତ୍ରିଭୁଜାକାର ପ୍ରିକିମ୍, ଚତୁର୍ଭୁଜାକାର ପ୍ରିକିମ୍, ଷଡ଼ଭୁଜାକାର ପ୍ରିକିମ୍ ଇତ୍ୟାଦି। ପ୍ରାନ୍ତୀୟ ତଳଦ୍ୱୟ ମଧ୍ୟରେ ଲୟୀୟ ଦୂରତା (Perpendicular distance) କୁ ପ୍ରିକିମ୍ର ଉଚ୍ଚତା (height or altitude) କୁହାଯାଏ।

ଭୂମି ଓ ଶୀର୍ଷତଳ ବ୍ୟତୀତ ପ୍ରିଜିମ୍ର ଅନ୍ୟ ସମତଳମାନଙ୍କୁ ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳ କିୟା ପାର୍ଶ୍ୱତଳ (lateral surface) କୁହାଯାଏ । ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱତଳମାନଙ୍କର ସଂଖ୍ୟା ଭୂମିର ବାହୁମାନଙ୍କ ସଂଖ୍ୟା ସହ ସମାନ । ଅର୍ଥାତ୍ ତ୍ରିଭୁଜାକାର ପ୍ରିଜିମ୍ର ତିନିଗୋଟି, ଚତୁର୍ଭୁଜାକାର ପ୍ରିଜିମ୍ର ଚାରିଗୋଟି, ଷଡ଼ଭୁଜାକାର ପ୍ରିଜିମ୍ର ଛଅଗୋଟି ପାର୍ଶ୍ୱତଳ ଥାଏ, ପାର୍ଶ୍ୱତଳଗୁଡ଼ିକ ଆୟତକ୍ଷେତ୍ର ବା ସାମାନ୍ତରିକ କ୍ଷେତ୍ର ହୋଇଥାନ୍ତି । ଯେଉଁ ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱତଳଗୁଡ଼ିକ ଆୟତକ୍ଷେତ୍ର ଅର୍ଥାତ୍ ପାର୍ଶ୍ୱତଳଗୁଡ଼ିକର ବାହୁ, ଭୂମି ଏବଂ ଶୀର୍ଷ୍ଣତଳ ପ୍ରତି ଲୟ ତାହାକୁ ସରଳ ପ୍ରିଜିମ୍ (Right Prism)

କୁହାଯାଏ । ଯେଉଁ ପ୍ରିକିମ୍ର ପାର୍ଶ୍ୱତଳ ଗୁଡ଼ିକ ସାମାନ୍ତରିକ କ୍ଷେତ୍ର ଅର୍ଥାତ୍ ପାର୍ଶ୍ୱତଳର ବାହୁଗୁଡ଼ିକ ପ୍ରାନ୍ତ ସମତଳ ଉପରେ ତୀର୍ଯ୍ୟକ୍ ଭାବେ ଦଣ୍ଡାୟମାନ ସେ ପ୍ରକାର ପ୍ରିକିମ୍କୁ **ତୀର୍ଯ୍ୟକ୍** ପ୍ରିକିମ୍ କୁହାଯାଏ । ସରଳ ପ୍ରିକିମ୍ ତୁମର ପାଠ୍ୟ ଅନ୍ତର୍ଗତ ହୋଇଥିବାରୁ ଏତଦ୍ ସୟନ୍ଧୀୟ ପ୍ରଶ୍ୱର ସମାଧାନ ନିମ୍ନରେ ଆଲୋଚନା କରାଯାଇଛି ।

D F E A B C [ଚିତ୍ର 5.19]

ପ୍ରିକିମ୍ର ଚିତ୍ର-5.19କୁ ଲକ୍ଷ୍ୟକର । ଏହା ଏକ ତ୍ରିଭୁଜାକାର ଆଧାର ବିଶିଷ୍ଟ ସରଳ ପ୍ରିକିମ୍ । ଯାହାର ଭୂମି ଓ ଶୀର୍ଷତଳଦ୍ୱୟ ତ୍ରିଭୁଜାକାର କ୍ଷେତ୍ର ଓ ପାର୍ଶ୍ୱତଳ ତ୍ରୟ ଆୟତକ୍ଷେତ୍ର । ବର୍ତ୍ତମାନ ପ୍ରିକିମ୍ର ଭୂମି ଓ ପାର୍ଶ୍ୱତଳଗୁଡ଼ିକର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କରାଯିବ ।

ମନେକର ପ୍ରିଜିମ୍ର ଉଚ୍ଚତା AD = BE = CF = h ଏକକ l

ଭୂମି $\Delta \, ABC$ ର ବାହୁତ୍ରୟର ଦୈର୍ଘ୍ୟ BC=a ଏକକ, AC=b ଏକକ ଏବଂ AB=c ଏକକ

BCFE ପାର୍ଶ୍ୱତଳର କ୍ଷେତ୍ରଫଳ = BC \cdot CF = ah ବର୍ଗ ଏକକ

ACFD ପାର୍ଶ୍ୱତଳର କ୍ଷେତ୍ରଫଳ = $AC \cdot AD = bh$ ବର୍ଗ ଏକକ

ABED ପାର୍ଶ୍ୱତଳର କ୍ଷେତ୍ରଫଳ = $AB \cdot BE = ch$ ବର୍ଗ ଏକକ

- \cdot ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱ ପୂଷତଳର କ୍ଷେତ୍ରଫଳ ସମଷ୍ଟି = (ah + bh + ch) = (a+b+c)h ବର୍ଗ ଏକକ ।
- : ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = ଆଧାରର ପରିସୀମା × ଉଚ୍ଚତା

ପ୍ରିଜିମ୍ବର ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = (BCFE ପାର୍ଶ୍ୱତଳ + ACFD ପାର୍ଶ୍ୱତଳ + ABED ପାର୍ଶ୍ୱତଳ)ର କ୍ଷେତ୍ରଫଳ + $2 \times \Delta \, ABC$ ର କ୍ଷେତ୍ରଫଳ

:. ପ୍ରିଳିମ୍ର ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ = ପାର୍ଶ୍ୱ ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ + 2 ଆଧାରର କ୍ଷେତ୍ରଫଳ ।

5.6. ବୃତ୍ତଭୂମିକ ନିଦା ସରଳ ସିଲିଷର (ସମବର୍ତ୍ତୁଳ)ର ବକ୍ରପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ (Curved surface area of a right circular solid cylinder) : ଶୀର୍ଷ୍ଠତଳ

ରୁଲ୍ବାଡ଼ି, କଟା ହୋଇ ନଥିବା ପେନ୍ସିଲ୍ ଇତ୍ୟାଦି ଘନ ପଦାର୍ଥଗୁଡ଼ିକ ବୃତ୍ତଭୂମିକ ସରଳ ସିଲିଞ୍ଚର ଆକୃତିର ଅଟନ୍ତି। ଏଗୁଡ଼ିକ ପରୀକ୍ଷା କଲେ ଦେଖିବ ଯେ, ଏ ପ୍ରକାର ଘନ ପଦାର୍ଥର ତିନିଗୋଟି ତଳ ଅଛି। ତିନିଗୋଟି ତଳ ମଧ୍ୟରୁ ଦୁଇଗୋଟି ସମତଳ (plane surface) ଏବଂ

ଅନ୍ୟଟି ବକ୍ତଳ (curved surface), ବୃଭାକାର ଭୂମି $\frac{1}{60}$ [$\frac{1}{60}$ 5.20] ଏହି ସମତଳ ପୃଷଦ୍ୱୟ ବୃଭାକାର କ୍ଷେତ୍ର ଓ ଏମାନେ ସମାନ କ୍ଷେତ୍ରଫଳ ବିଶିଷ୍ଟ ଏବଂ ପରସ୍ପର ସମାନ୍ତର । ଏହି ତଳଦ୍ୱୟ ମଧ୍ୟରୁ ଯାହା ଉପରେ ସିଲିଣ୍ଡରଟି ଦଣ୍ଡାୟମାନ ତାକୁ ଭୂମି (Base) ଏବଂ ଅନ୍ୟଟିକୁ ଶୀର୍ଷତଳ କୁହାଯାଏ । ଦୁଇ ବୃଭାକାର ତଳର କେନ୍ଦ୍ରଦ୍ୱୟର ସଂଯୋଜକ ସରଳରେଖାକୁ ସିଲିଣ୍ଡରର ଅକ୍ଷ (Axis) କୁହାଯାଏ । କେନ୍ଦ୍ରଦ୍ୱୟ ମଧ୍ୟରେ ଦୂରତା $\frac{1}{100}$ ସିଲିଣ୍ଡରର ଉଚ୍ଚତା (Height) କୁହାଯାଏ । ଅଷ, ଉଭୟ ବୃତ୍ତଭୂମିକ ତଳ ପ୍ରତି ଲୟ ଅଟନ୍ତି । ତେଣୁ ଏ ପ୍ରକାର ସିଲିଣ୍ଡରଗୁଡ଼ିକୁ ସରଳ ବୃତ୍ତଭୂମିକ ସିଲିଣ୍ଡର (Right circular cylinder) କୁହାଯାଏ ।

ପା**ର୍ଶ୍ୱ ସ୍ଥ ଚିତ୍ରରେ** PQRS ଏକ ମୋଟା ଆୟତକ୍ଷେତ୍ରାକୃତି କାଗଜ । ଏହାକୁ ଗୁଡ଼େଇ PQ ଓ SR ପାର୍ଶ୍ୱକୁ ଯୋଗ କଲେ ଏହା ଦ୍ୱିତୀୟ ଚିତ୍ରପରି ଏକ ସିଲିଣ୍ଡର ସୃଷ୍ଟି କରିବ ।

:. ସିଲିଞ୍ଚରର ବକ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ

= PQRS ଆୟତକ୍ଷେତ୍ରର କ୍ଷେତ୍ରଫଳ = PS imes PQ= ସିଲିଣ୍ଡରର ଆଧାରର ପରିଧି imes ସିଲିଣ୍ଡର ଉଚ୍ଚତା ସିଲିଣ୍ଡର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ, ଉଚ୍ଚତା h ଏକକ ହେଲେ

ସିଲିଷରର ବକ୍ରପୃଷତଳର କ୍ଷେତ୍ରଫଳ = 2πrh ବର୍ଗ ଏକକ ନିଦା ସିଲିଷରର ସମଗ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ

= ବକୁ ପୃଷ୍ଠଳର କ୍ଷେତ୍ରଫଳ + 2 ଆଧାରର କ୍ଷେତ୍ରଫଳ = $2\pi\,\mathrm{rh}+2\pi\,\mathrm{r}^2=2\pi\,\mathrm{r}\,\,(\mathrm{h}+\mathrm{r})$

:. ସିଲିଣ୍ଡରର ସମଗ୍ର ପୃଷ୍ଠଳର କ୍ଷେତ୍ରଫଳ = $2\pi r (h + r)$ ବର୍ଗ ଏକକ ।

5.7. ବୃତ୍ତୀୟ ବଳୟଭୂମିକ ଫମ୍ପା ସରଳ ସିଲିଷରର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ (Surface area of a right annular circular cylinder.)

ରବରନଳୀ, ଲୁହା ପାଇପ୍ ଇତ୍ୟାଦି ମଝି ଫମ୍ପାଥିବା ଘନ ପଦାର୍ଥ ଏହି ଶ୍ରେଶୀର ଅଟନ୍ତି। ଏଗୁଡ଼ିକର ପ୍ରସ୍ଥଚ୍ଛେଦ ବୃତ୍ତୀୟ ବଳୟ (Circular Annulus) ଅଟେ। ଏଥିରେ ଦୁଇଟି ବକ୍ର ପୃଷ୍ପତଳ ଥାଏ । ଅନ୍ତଃ ବକ୍ର-ପୃଷ୍ପତଳର ବ୍ୟାସାର୍ଦ୍ଧକୁ ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ r ଏବଂ ବହିଃ ବକ୍ରତଳର ବ୍ୟାସାର୍ଦ୍ଧକୁ ବହିଃ ବ୍ୟାସାର୍ଦ୍ଧ R ଦ୍ୱାରା ସୂଚିତ କରାଯାଏ । ଫମ୍ପା ସିଲିଣ୍ଡରର କାନ୍ତର ମୋଟେଇ t ଦ୍ୱାରା ସୂଚିତ କରାଯାଏ । ଯେଉଁଠାରେ t=(R-r) ଏକକ ।

[ଚିତ୍ର 5.22]

ସିଲିଶ୍ତରର ବ୍ୟାସ ତୁଳନାରେ ଉଚ୍ଚତା ଅତ୍ୟଧିକ ହୋଇଥିଲେ ଉଚ୍ଚତା ଶବ୍ଦ ପରିବର୍ତ୍ତେ ଦୈର୍ଘ୍ୟ ଶବ୍ଦ ବ୍ୟବହୃତ ହୋଇଥାଏ । ବିଶେଷତଃ ନଳଗୁଡ଼ିକ କ୍ଷେତ୍ରରେ ଏହା ପ୍ରଯୁକ୍ୟ ।

ଘନ ପଦାର୍ଥର ପୃଷ୍ଠତଳ (ବକ୍ରତଳର) ସାଧାରଣ ସୂତ୍ରଟି ହେଲା,

ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ = ବକ୍ରତଳର ପରିସୀମା × ଉଚ୍ଚତା।

ଏହାର ଦୁଇଟି ବକ୍ରପୃଷତଳ ମଧ୍ୟରୁ

ବହିଃପୂଷତଳର କ୍ଷେତ୍ରଫଳ = $2\pi\,\mathrm{Rh}$ ଏବଂ ଅନ୍ତଃପୂଷତଳର କ୍ଷେତ୍ରଫଳ = $2\pi\,\mathrm{rh}$

ଂ ଫ୍ରମ୍ମା ସିଲିଣ୍ଡରର ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = $2\,\pi\,({
m R+r}){
m h}$ ବର୍ଗ ଏକକ ।

ସମଗ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ = ପାର୍ଶ୍ୱ ପୃଷତଳର କ୍ଷେତ୍ରଫଳ + 2 imes ଆଧାରର କ୍ଷେତ୍ରଫଳ

 \therefore ଆଧାରର କ୍ଷେତ୍ରଫଳ = $\pi \left(R^2 - r^2 \right)$

 \cdot ଫ୍ରା ସିଲିଣ୍ଟର ସମଗ୍ର ପୃଷ୍ଠକର କ୍ଷେତ୍ରଫଳ = $2\pi \left(R+r\right) h+2\pi \left(R^2-r^2\right)$

 $= 2\pi (R+r)h + 2\pi (R+r) (R-r) = 2\pi (R+r) (h+R-r) = 2\pi (R+r) (h+t)$

ଯେଉଁଠାରେ (ବେଧ) (t) = R - r

ଫମ୍ପା ସିଲିଣ୍ଡରର ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = $2\pi \left(R + r \right) \left(h + t \right)$ ବର୍ଗ ଏକକ ।

ସମାହିତ ପ୍ରଶ୍ନାବଳୀ (ପ୍ରିକିମ୍ର ପୃଷ୍ଠତଳ ସୟନ୍ଧୀୟ) :

ଉଦାହରଣ-1: 15 ସେ.ମି. ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଏକ ସରଳ ପ୍ରିଜିମ୍ର ଭୂମି ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ। ଏହି ତ୍ରିଭୁଜର କର୍ଷ ଓ ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 13 ସେ.ମି. ଓ 5 ସେ.ମି. ହେଲେ ପ୍ରିଜିମ୍ର ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର।

ସମାଧାନ:

ସରଳ ପ୍ରିଜିମ୍ଟିର ଭୂମି ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଚ୍ଚ । ଏହି ତ୍ରିଭୁଚ୍ଚର କର୍ଷି ଓ ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ମେ 13 ସେ.ମି ଓ 5 ସେ.ମି.

 \cdot • ଭୂମିର ଅନ୍ୟ ବାହୁଟିର ଦୈର୍ଘ୍ୟ = $\sqrt{13^2-5^2}$ = $\sqrt{144}$ = 12 ସେ.ମି. ପ୍ରିଜିମ୍ର ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2}$ × 12 × 5 = 30 ବର୍ଗ ସେ.ମି. ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱ ପୃଷ୍ଣତଳର କ୍ଷେତ୍ରଫଳ = ଭୂମିର ପରିସୀମା × ଉଚ୍ଚତା

$$= (5 + 12 + 13) \times 15 = 30 \times 15 = 450 \text{ q.6q.}$$

୍: ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ = ପାର୍ଶ୍ୱ ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ +
$$2 \times$$
 ଭୂମିର କ୍ଷେତ୍ରଫଳ = $(450 + 2 \times 30)$ ବ.ସେ.ମି. = 510 ବ.ସେ.ମି । (ଉଉର)

ଉବାହରଣ-2 : ଗୋଟିଏ ତ୍ରିଭୁଜାକାର ସରଳ ପ୍ରିଜିମ୍ବର ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 1368 ବ.ସେ.ମି. ଏବଂ ଭୂମିର ବାହୁ ତ୍ରୟର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 10 ସେ.ମି., 17 ସେ.ମି. ଓ 21 ସେ.ମି. ହେଲେ ପିଜିମ୍ପଟିର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ:

ପ୍ରିକିମ୍ବଟିର ଭୂମିର ବାହୁତ୍ରୟର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 10 ସେ.ମି., 17 ସେ.ମି. ଓ 21 ସେ.ମି.।

∴ ପ୍ରିଜିମ୍ର ଭୂମିର ପରିସୀମା = 2s = (10+17+21) = 48 ସେ.ମି.

$$\cdot$$
: ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\sqrt{s(s-a)(s-b)(s-c)}$ = $\sqrt{24(24-10)(24-17)(24-21)}$ = $\sqrt{24\times14\times7\times3}$ = 84 ବ.ସେ.ମି.

ମନେକର ପ୍ରିଜିମ୍ବର ଉଚ୍ଚତା = h ସେ.ମି.

୍: ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ + $2 \times$ ଭୂମିର କ୍ଷେତ୍ରଫଳ = ଭୂମିର ପରିସୀମା \times ଉଚ୍ଚତା + $2 \times$ ଭୂମିର କ୍ଷେତ୍ରଫଳ = $(48 \times h + 2 \times 84) = (48h + 168)$

କିନ୍ତୁ ପ୍ରଶ୍ନାନୁସାରେ, ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ = 1368 ବ.ସେ.ମି.

$$\Rightarrow$$
 48h + 168 = 1368 \Rightarrow 48h = 1368 - 168 = 1200

∴
$$h = \frac{1200}{48} = 25$$
 ସେ.ମି. \Rightarrow ନିର୍ବେୟ ଉଚ୍ଚତା = 25 ସେ.ମି. (ଉଡ୍ରର)

ଉଦାହରଣ-3: 24 ମିଟର ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଗୋଟିଏ ସରଳ ପ୍ରିଜିମ୍ର ଭୂମି ଏକ ସୁଷମ ବହୁଭୁଜାକାର କ୍ଷେତ୍ର । ଏହି ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱପୃଷ୍ଟତଳର କ୍ଷେତ୍ରଫଳ 864 ବ.ମି. । ଉକ୍ତ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ 6 ମି. ହେଲେ ଏହି କ୍ଷେତ୍ରଟିର ବାହୁସଂଖ୍ୟା ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ : ମନେକର ସୁଷମ ବହୁଭୁଜ କ୍ଷେତ୍ରର ବାହୁସଂଖ୍ୟା n ଯାହାର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ $6\,$ ମି.

⇒ ପରିସୀମା = ବାହୁର ଦୈର୍ଘ୍ୟ × ବାହୁ ସଂଖ୍ୟା = 6n ମି. I

କିନ୍ତୁ ଆଧାରର ପରିସୀମା =
$$\frac{$$
 ପାର୍ଶ୍ୱପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ $}{$ ଉଚ୍ଚତା $}=\frac{864}{24}=36$ ମି.

 \Rightarrow $6n = 36 \Rightarrow n = 6 \Rightarrow$ ସୁଷମ ବହୁଭୁଜର ବାହୁସଂଖ୍ୟା 6

ସିଲିଞ୍ଜରର ପୃଷ୍ଠତଳ ସୟନ୍ଧୀୟ:

ଉଦାହରଣ-4 : ଏକ ନିଦା ସରଳ ବୃତ୍ତଭୂମିକ ସିଲିଣ୍ଟରର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ 7 ଡେ.ମି. ଏବଂ ଉଚ୍ଚତା 25 ଡେ.ମି. ହେଲେ ଏହାର ବକ୍ର ପୃଷ୍ଠତଳ, ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ସିଲିଣ୍ଡରର ବ୍ୟାସାର୍ଦ୍ଧ (r) = 7 ଡେ.ମି., ଉଚ୍ଚତା (h) = 25 ଡେ.ମି.

୍ର ଏହାର ବକ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = ଆଧାରର ପରିସୀମା imes ଉଚ୍ଚତା = $2\pi\,\mathrm{rh}$ ବ.ଡ଼େ.ମି. = $2 imes \frac{22}{7} imes 7 imes 25$ = $1100\,\mathrm{q}$.ଡ଼େ.ମି.

ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\pi r^2 = \frac{22}{7} \times 7^2 = 154$ ବ.ଡ଼େ.ମି.

- ୍ର. ସିଲିଣ୍ଡରର ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = ବକ୍ରପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ + $2 \times$ ଆଧାରର କ୍ଷେତ୍ରଫଳ = $(1100 + 154 \times 2) = (1100 + 308) = 1408$ ବ.ଡ଼େ.ମି. |
- : ସିଲିଣ୍ଟରର ବକ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ, ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ ଯଥାକ୍ରମେ 1100 ବ.ଡ଼େ.ମି., 1408 ବ.ଡେ.ମି. ଅଟେ । (ଉତ୍ତର)

ଉଦାହରଣ-5 : ଗୋଟିଏ ଲୁହାନଳର ଦୈର୍ଘ୍ୟ 84 ସେ.ମି.। ଏହାର ବେଧ 2 ସେ.ମି.। ଭୂମିର ବହିଃବ୍ୟାସାର୍ଦ୍ଧ 8 ସେ.ମି ହେଲେ, ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଦ୍ଧୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ଲୁହାନଳର ଦୈର୍ଘ୍ୟ (h) = 84 ସେ.ମି., ଭୂମିର ବହିଃ ବ୍ୟାସାର୍ଦ୍ଧ (R) = 8 ସେ.ମି. ଏବଂ ବେଧ (t) = 2 ସେ.ମି. \Rightarrow ଅନ୍ତଃ ବ୍ୟାସାର୍ଦ୍ଧ (r) = 8 - 2 = 6 ସେ.ମି. ଲୁହାନଳର ସମଗ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ = $2\pi (R+r)$ (h+t) ବ.ସେ.ମି.

 $=2 imes rac{22}{7} (8+6) (84+2) = 2 imes rac{22}{7} imes 14 imes 86 = 7568$ ବ.ସେ.ମି. (ଉଉର)

ଉଦାହରଣ–6 : ଗୋଟିଏ ଲୁହାନଳର ଦୈର୍ଘ୍ୟ 100 ସେ.ମି. ଏବଂ ଲୁହାର ବେଧ 4 ସେ.ମି. । ଏହାର ସମଗ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ 9152 ବ.ସେ.ମି. ହେଲେ ଭୂମିର ବହିଃ ବ୍ୟାସାର୍ଦ୍ଧ ଓ ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ତ୍ତଣ୍ଡ କର । $(\pi \simeq \frac{22}{3})$

ସମାଧାନ : ମନେକର ଲୁହାନଳର ଭୂମିର ବହିଃ ବ୍ୟାସାର୍ଦ୍ଧ = R ସେ.ମି. ଏବଂ ଅନ୍ତଃ ବ୍ୟାସାର୍ଦ୍ଧ = r ସେ.ମି. ।

୍ତି ବେଧ (t) = (R−r) = 4 ସେ.ମି.(ଜଳତା (h) = 100 ସେ.ମି. ଓ ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ = 9152 ବ.ସେ.ମି. ।

$$\Rightarrow 2\pi (R+r) (h+t) = 9152 \Rightarrow 2 \times \frac{22}{7} (R+r) (100 + 4) = 9152$$

⇒
$$R + r = \frac{9152 \times 7}{2 \times 22 \times 104} = 14$$
(ii)
(i) 3 (ii) 3 $2R = 18$ ⇒ $R = 9$ 69. \widehat{P} .

 $r = 14 - 9 = 5 \text{ } 69.\hat{9}.$

ଅନୁଶୀଳନୀ **-** 5(c)

(ପ୍ରିଜିମ୍ବ ପୃଷ୍ଠତଳ ସୟନ୍ଧୀୟ)

- 1. ଏକ ସରଳ ତ୍ରିଭୁଜାକାର ଭୂମିବିଶିଷ୍ଟ ପ୍ରିଜିମ୍ବର ଭୂମିର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ a,b,c, ଉଚ୍ଚତା h, ପାର୍ଶ୍ୱ ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ L, ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ W ଦ୍ୱାରା ସୂଚିତ ହେଲେ ନିମ୍ନଲିଖିତ ପ୍ରଶ୍ମମାନଙ୍କର ସମାଧାନ କର I
 - (a) a=10 ସେ.ମି., b=6 ସେ.ମି., c=8 ସେ.ମି., h=20 ସେ.ମି. ହେଲେ, L ଓ W ସ୍ଥିର କର ।
 - (b) a=5 ମି., b=5 ମି., c=6 ମି., h=8 ମି.ହେଲେ, L ଓ W ସ୍ଥିର କରା
 - (c) a=b=15 ମି., c=24 ମି., h=18 ମି. ହେଲେ, L ଓ W ସ୍ଥିର କରା
- 2. ଗୋଟିଏ ପ୍ରିଜିମ୍ର ଉଚ୍ଚତା h, ପାର୍ଶ୍ୱ ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ L ଏବଂ ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ W ଦ୍ୱାରା ସ୍ତଚିତ ହେଲେ ନିମୁଲିଖିତ ପ୍ରଶ୍ମଗୁଡ଼ିକର ସମାଧାନ କର ।
 - (a) ପ୍ରିଜିମ୍ର ଭୂମି ଏକ ସମକୋଣୀ ସମଦ୍ୱିବାହୁ ଯାହାର କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ = 40 ମି., h = 50 ମି., L ଓ W କେତେ ? $(\sqrt{2} \simeq 1.414)$
 - (b) ସୁଷମ ଷଡ଼ଭୁଜାକାର ଆଧାର ବିଶିଷ୍ଟ ଭୂମିର ବାହୁର ଦୈର୍ଘ୍ୟ 6 ଡେ.ମି., h=20 ଡେ.ମି. ହେଲେ, L ଓ W କେତେ ? $(\sqrt{3} \simeq 1.732)$
 - (c) ପ୍ରିଜିମ୍ର ଭୂମି ଏକ ସମବାହୁ ତ୍ରିଭୁଜ ଯାହାର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ 16 ସେ.ମି., h=25 ସେ.ମି. ହେଲେ, L ଓ W କେତେ ? $(\sqrt{3} \simeq 1.732)$
- 3. ଗୋଟିଏ ତ୍ରିଭୁଜାକାର ଭୂମି ବିଶିଷ୍ଟ ସରଳ ପ୍ରିଜିମ୍ର ଭୂମିର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 13 ସେ.ମି., 14 ସେ.ମି. ଓ 15 ସେ.ମି.। ଏହାର ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 840 ବର୍ଗ ସେ.ମି. ହେଲେ ପ୍ରିଜିମ୍(ଟିର ଉଚ୍ଚତା ଓ ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର।
- 4. ଗୋଟିଏ ଖୁଣ୍ଟ ଏକ ସମବାହୁ ତ୍ରିଭୁଜାକାର ଭୂମି ବିଶିଷ୍ଟ ସରଳ ପ୍ରିଜିମ୍ । ଏହାର ପାର୍ଶ୍ୱତଳଗୁଡ଼ିକୁ କାଗଜ ମଡ଼ାଇବା ପାଇଁ ପ୍ରତି ବର୍ଗ ସେ.ମି.କୁ 15 ପଇସା ହିସାବରେ ଟ.18.90 ଖର୍ଚ୍ଚ ହେଲା । ଖୁଣ୍ଟଟିର ଉଚ୍ଚତା $8\sqrt{3}$ ସେ.ମି. ହେଲେ ଭୂମିର ବାହୁର ଦୈର୍ଘ୍ୟ କେତେ ? $\left(\sqrt{3}\simeq1\,\frac{3}{4}\right)$
- 5. 18 ମିଟର ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଗୋଟିଏ ତ୍ରିଭୁଜାକାର ଭୂମିବିଶିଷ୍ଟ ସରଳ ପ୍ରିଜିମ୍(ର ଭୂମିର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ 12 ମି., 16 ମି. ଓ 20 ମି. ହେଲେ, ପ୍ରିଜିମ୍(ଟିର ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- 6. ଗୋଟିଏ ସରଳ ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 2100 ବ.ସେ.ମି ଓ ଉଚ୍ଚତା 30 ସେ.ମି.। ଏହାର ଆଧାର ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଳ ଯାହାର ବୃହତ୍ତମ ବାହୁର ଦୈର୍ଘ୍ୟ 29 ସେ.ମି.। ଆଧାରର ଅନ୍ୟ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର।
- 7. ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ଭୂମି ଏକ ସମଦ୍ୱିବାହୁ ତ୍ରିଭୁକ ଯାହାର ଭୂମିର ଦୈର୍ଘ୍ୟ 24 ସେ.ମି. ଏବଂ ପ୍ରତ୍ୟେକ ସମାନ ବାହୁର ଦୈର୍ଘ୍ୟ 13 ସେ.ମି. । ପ୍ରିକିମ୍ର ଉଚ୍ଚତା 20 ସେ.ମି. ହେଲେ, ପ୍ରିକିମ୍ର ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- 8. ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ଭୂମି ଏକ ସମବାହୁ ତ୍ରିଭୁକ । ଯାହାର ବାହୁର ଦୈର୍ଘ୍ୟ 50 ସେ.ମି., ପ୍ରିକିମ୍ର ଉଚ୍ଚତା 1.2 ମି. ହେଲେ, ପ୍ରିକିମ୍ର ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\sqrt{3} \simeq 1.732)$

- 9. ଗୋଟିଏ ତ୍ରିଭୁଜାକାର ଭୂମି ବିଶିଷ୍ଟ ସରଳ ପ୍ରିଜିମ୍ର ଭୂମିର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 13 ସେ.ମି., 14 ସେ.ମି. ଓ 15 ସେ.ମି. । ଏହାର ପାର୍ଶ୍ୱପୃଷ୍ଣତଳର କ୍ଷେତ୍ରଫଳ 1050 ବ.ସେ.ମି. ହେଲେ, ପ୍ରିଜିମ୍ର ଉଚ୍ଚତା ଓ ସମଗ୍ର ପୃଷ୍ଣତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- 10. ଗୋଟିଏ କାଠବାଡ଼ି ଏକ ସମବାହୁ ତ୍ରିଭୁଜାକାର ଭୂମି ବିଶିଷ୍ଟ ସରଳ ପ୍ରିଜିମ୍ । ଏହାର ପାର୍ଶ୍ୱତଳଗୁଡ଼ିକୁ କାଗଜ ମଡ଼ାଇବା ପାଇଁ ପ୍ରତି ବର୍ଗ ସେ.ମି.କୁ 15 ପଇସା ହିସାବରେ ଟ. 18.90 ଖର୍ଚ୍ଚ ହେଲା । କାଠବାଡ଼ିଟିର ଉଚ୍ଚତା $8\sqrt{3}$ ସେ.ମି. ହେଲେ, ଭୂମିର ବାହୁର ଦୈର୍ଘ୍ୟ କେତେ ? ($\sqrt{3} \cong 1\frac{3}{4}$)

(ସିଲିଣ୍ଡରର ପୃଷତଳ ସୟନ୍ଧୀୟ)

- 11. ଗୋଟିଏ ସିଲିଣ୍ଡରର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ r, ବ୍ୟାସ d ଏବଂ ଉଚ୍ଚତା h ଦ୍ୱାରା ସୂଚିତ ହେଲେ ନିମ୍ନଲିଖିତ ପ୍ରଶ୍ନଗୁଡ଼ିକ ସମାଧାନ କର । $(\pi \simeq \frac{22}{7})$
 - (a) d=16 ସେ.ମି., h=21 ସେ.ମି. ହେଲେ ବକୁ ପୃଷ୍ଠଳର କ୍ଷେତ୍ରଫଳ କେତେ?
 - (b) ବକୁ ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ 1188 ବ.ମି., d=18 ମି. ହେଲେ, h କେତେ ?
 - (c) ଭୂମିର କ୍ଷେତ୍ରଫଳ 1386 ବ.ସେ.ମି. ଓ h=36 ସେ.ମି. ହେଲେ, ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ କେତେ ?
- 12. ଗୋଟିଏ ରୋଲର୍ର ଦୈର୍ଘ୍ୟ 1.6 ମି. ଏବଂ ଉଚ୍ଚତା 70 ସେ.ମି.। ଏହା କେତେଥର ଘୂରିଲେ 26.4 ଏୟର୍ ସ୍ଥାନ ସମତଳ କରିପାରିବ ? $(\pi \sim \frac{22}{7})$
- 13. 1540 ବର୍ଗମିଟର ଭୂମିରେ ଗୋଟିଏ ରୋଲର୍ 90ଥର ଗଡ଼ାଇବାକୁ ପଡ଼େ । ରୋଲର୍ଟିର ଦୈର୍ଘ୍ୟ ଏହାର ବ୍ୟାସ ସହିତ ସମାନ ହେଲେ ଏହାର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର । $(\pi \sim \frac{22}{7})$
- 14. ଗୋଟିଏ ସିଲିଣ୍ଡର ଆକାର ୟୟର ବକ୍ରପୃଷ୍ପତଳକୁ ରଙ୍ଗ କରିବାର ପ୍ରତି ବର୍ଗମିଟରକୁ 60 ପଇସା ହିସାବରେ 792 ଟଙ୍କା ଖର୍ଚ୍ଚ ହେଲା । ଏହାର ଭୂମିର କ୍ଷେତ୍ରଫଳ 154 ବର୍ଗ ମିଟର ହେଲେ ଏହାର ଉଚ୍ଚତା କେତେ ? $\left(\pi \simeq \frac{22}{7}\right)$
- 15. ଗୋଟିଏ ଦୁଇପାଖ ଖୋଲା ଫମ୍ପା ସିଲିଣ୍ଡରର ବହିଃ ବ୍ୟାସାର୍ଦ୍ଧ 5ମି.। ଏହାର ଉଚ୍ଚତା 14ମି. ଏବଂ ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ 748 ବ.ମି. ହେଲେ, ଏହାର ଅନ୍ତଃ ବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ଣ୍ଣୟ କର । $(\pi \sim \frac{22}{7})$
- 16. ଗୋଟିଏ ଲୁହା ନଳ ର ଦୈର୍ଘ୍ୟ 84 ସେ.ମି. । ଏହାର ବେଧ 2 ସେ.ମି. । ଭୂମିର ବହିଃ ବ୍ୟାସାର୍ଦ୍ଧ 8 ସେ.ମି. ହେଲେ, ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ।
- 17. ଗୋଟିଏ ଲୁହା ନଳର ଦୈର୍ଘ୍ୟ 100 ସେ.ମି. ଏବଂ ଲୁହାର ପ୍ରସ୍ଥ 4 ସେ.ମି. । ଏହାର ସମଗ୍ରପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 9152 ବ.ସେ.ମି. ହେଲେ ଭୂମିର ବହିଃବ୍ୟାସାର୍ଦ୍ଧ ଓ ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

5.8. ସୁଷମ ଘନ ପଦାର୍ଥର ଆୟତନ (Volume of regular solids):

ପ୍ରତ୍ୟେକ ଘନ ପଦାର୍ଥ ବାୟୁରେ, ଜଳରେ ବା ଶୂନ୍ୟରେ କିଛି ସ୍ଥାନ ଅଧିକାର କରିଥାଏ । ଅଧିକୃତ ସ୍ଥାନର ପରିମାପକୁ ଘନ ପଦାର୍ଥର ଆୟତନ ବା ଘନଫଳ (volume) କୁହାଯାଏ ।

ଘନ ପଦାର୍ଥର ଆୟତନ ନିର୍ଣ୍ଣୟ କରିବା ପାଇଁ ପଦାର୍ଥର ଦୈର୍ଘ୍ୟ, ପ୍ରସ୍ଥ ଓ ଉଚ୍ଚତା ତିନିଗୋଟି ମାପ ଆବଶ୍ୟକ । ତେଣୁ ଆୟତନ ଏକ ତ୍ରିମାତ୍ରିକ (Three dimensional) ରାଶି ଅଟେ ।

ପୂର୍ବରୁ ବର୍ତ୍ତିତ ହୋଇଛି ଯେ ପ୍ରିଜିମ୍, ଆୟତଘନ, ସମଘନ ଓ ସିଲିଷରର ଗଠନରେ ସାଦୃଶ୍ୟ ଅଛି। ତେଣୁ ଏଗୁଡ଼ିକର ଆୟତନ ନିର୍ତ୍ତିୟ ପାଇଁ <u>ଏକ ସାଧାରଣ ସୂତ୍ର</u> ବ୍ୟବହୃତ ହୁଏ।

ସାଧାରଣ ସୂତ୍ରଟି ହେଲା ଆୟତନ = ଭୂମିର କ୍ଷେତ୍ରଫଳ × ଉଚ୍ଚତା

(କ) ପିଳିମ୍ର ଆୟତନ:

ପ୍ରିକିମ୍ର ଆୟତନ ନିର୍ଦ୍ଦିଷ୍ଟ ସୂତ୍ର ନାହିଁ । କାରଣ ଏହାର ଭୂମି ନିର୍ଦ୍ଦିଷ୍ଟ ଆକାରର ନୁହେଁ । ତେଣୁ ପ୍ରିକିମ୍ର ଆୟତନ ନିର୍ଦ୍ଧୟ କଲାବେଳେ ସାଙ୍କେତିକ ସୂତ୍ର ପରିବର୍ତ୍ତେ ସାଧାରଣ ସୂତ୍ରଟି ପ୍ରୟୋଗ କରାଯାଏ ।

ଅର୍ଥାତ୍ ପ୍ରିଜିମ୍ର ଆୟତନ = ଭୂମିର କ୍ଷେତ୍ରଫଳ × ଉଚ୍ଚତା

(ଖ) ନିଦା ସରଳ ସିଲିଷରର ଆୟତନ :

ସିଲି<mark>ଣ୍ଡରର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ</mark> r ଏବଂ ଉଚ୍ଚତା h ଦ୍ୱାରା ସୂଚିତ ହେଲେ ଏହାର ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\pi\,\mathrm{r}^2$ ହେବ ଏବଂ ଆୟତନ = ଭୂମିର କ୍ଷେତ୍ରଫଳ × ଉଚ୍ଚତା = $\pi\,\mathrm{r}^2 imes \mathrm{h}$

 \therefore ନିଦା ସରଳ ସିଲିଣ୍ଡରର ଆୟତନ = $\pi \, r^2 h$ ଘନ ଏକକ

(ଗ) ଫ୍ରା ସରଳ ସିଲିଷ୍ଟରର ଆୟତନ :

ଫମ୍ଠା ସରଳସିଲିଣ୍ଡରର ବହିଃ ବ୍ୟାସାର୍ଦ୍ଧ R ଏବଂ ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ r ଏବଂ ଉଚ୍ଚତା h ଦ୍ୱାରା ସୂଚିତ ହେଲେ ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\pi (R^2 - r^2)$ ହେବ ଏବଂ ଆୟତନ = ଭୂମିର କ୍ଷେତ୍ରଫଳ imes ଉଚ୍ଚତା = $\pi (R^2 - r^2) imes h$ ହେବ l

ୁ:. ଫ୍ରାମ ସରଳସିଲିଣ୍ଡରର ଆୟତନ =
$$\pi (R^2 - r^2) h$$
 ଘନ ଏକକ ।

ସମାହିତ ପ୍ରଶ୍ନାବଳୀ (ପ୍ରିକିମ୍ର ଆୟତନ ସୟନ୍ଧୀୟ) :

ଉଦାହରଣ-7 : ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ବାହୁତ୍ରୟର ଦୈର୍ଘ୍ୟ 12 ସେ.ମି., 5 ସେ.ମି., 13 ସେ.ମି.। ପ୍ରିକିମ୍ର ଉଚ୍ଚତା 10 ସେ.ମି. ହେଲେ ଏହାର ଆୟତନ ନିର୍ଣ୍ଣୟ କର।

ସମାଧାନ : ତ୍ରିଭୁଜାକାର ଭୂମିବିଶିଷ୍ଟ ପ୍ରିଜିମ୍ର ଭୂମିର ବାହୁତ୍ରୟର ଦୈର୍ଘ୍ୟ 12 ସେ.ମି., 5 ସେ.ମି. ଓ 13 ସେ.ମି. ଏବଂ ପ୍ରିଜିମ୍ର ଉଚ୍ଚତା 10 ସେ.ମି.

 $13^2 = 12^2 + 5^2 \Rightarrow \widehat{\mathbb{G}}$ ଜିମ୍ବର ଭୂମି ଏକ ସମକୋଣୀ ତ୍ରିଭୁଜ । $\widehat{\mathbb{G}}$ ଜିମ୍ବର ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2} \times 12 \times 5 = 30$ ବ.ସେ.ମି.

ପ୍ରିକିମ୍ବ ଘନଫଳ = ଭୂମିର କ୍ଷେତ୍ରଫଳ imes ଉଚ୍ଚତା = 30 imes 10 = 300 ଘନ ସେ.ମି.

ଉଦାହରଣ-8 : ଗୋଟିଏ ତ୍ରିଭୁଜାକାର ସରଳ ପ୍ରିଜିମ୍ର ଆୟତନ 37800 ଘ.ମି. ଏବଂ ଭୂମିର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ 39ମି., 42ମି. ଓ 45ମି.। ପ୍ରିଜିମ୍ର ଉଚ୍ଚତା ଓ ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର।

ସମାଧାନ : ମନେକର ପ୍ରିଜିମ୍ର ତ୍ରିଭୁଜାକାର ଭୂମିର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ, a ମି., b ମି. ଓ c ମି.।

$$\cdot$$
 a = 39 ମି., b = 42 ମି., c = 45 ମି.
ମନେକର ଭୂମିର ଅର୍ଦ୍ଧ ପରିସୀମା (s) = $\frac{39+42+45}{2}$ ମି. = 63 ମି.
ଏହି ତ୍ରିଭୁଜାକାର ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\sqrt{s(s-a)(s-b)(s-c)}$

$$= \sqrt{63(63-39)(63-42)(63-45)} = \sqrt{63\times24\times21\times18} = 756 \text{ Q.}\widehat{\text{Pl}}.$$

$$\therefore$$
 ପ୍ରିଜିମ୍ର ଉଚ୍ଚତା = $\frac{\text{ଆୟତନ}}{\text{ଭୂମିର କ୍ଷେତ୍ରଫଳ}} = \frac{37800}{756}$ ମି = 50 ମି.

- . ପ୍ରିକିମ୍ର ପାର୍ଶ୍ୱପୃଷ୍ଣତଳର କ୍ଷେତ୍ରଫଳ = ଭୂମିର ପରିସୀମା imes ଉଚ୍ଚତା = $(39+\ 42+\ 45) imes 50$ = 126 imes 50 = 6300 ବ.ମି.
- ୍ର. ପ୍ରିଜିମ୍ର ସମଗ୍ରପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ + $2 \times$ ଭୂମିର କ୍ଷେତ୍ରଫଳ = $6300 + 2 \times 756 = 7812$ ବ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ-9 : 10 ସେ.ମି. ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଗୋଟିଏ ସରଳ ପ୍ରିଜିମ୍ର ଭୂମି ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜ । ଏହି ପ୍ରିଜିମ୍ର ଆୟତନ 120 ଘ.ସେ.ମି. ହେଲେ ଏହାର ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\sqrt{3} \simeq 1.732)$

ସମାଧାନ : ପ୍ରିଜିମ୍ର ଉଚ୍ଚତା = 10 ସେ.ମି. ଏବଂ ଏହାର ଆୟତନ = 120 ଘ.ସେ.ମି.

ପ୍ରିକିମ୍ର ଭୂମିର କ୍ଷେତ୍ରଫଳ =
$$\frac{\hat{\mathbb{Q}}$$
କିମ୍ର ଆୟତନ $=\frac{120}{10}$ = 12 ବ.ସେ.ମି.

- $\dot{}$ ପ୍ରିଜିମ୍ର ଭୂମି ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁଜ ତେଣୁ ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\frac{\sqrt{3}}{4}$ × (ବାହୁର ଦୈର୍ଘ୍ୟ) 2
- $\frac{\sqrt{3}}{4}$ (ବାହୁର ଦୈର୍ଘ୍ୟ) $^2 = 12 \Rightarrow$ ବାହୁର ଦୈର୍ଘ୍ୟ = $\sqrt{\frac{12 \times 4}{\sqrt{3}}}$ ସେ.ମି. ବାହୁର ଦୈର୍ଘ୍ୟ = $\sqrt{16\sqrt{3}}$ = $\sqrt{16 \times 1.732}$ = 5.264 ସେ.ମି.
- ୍ର. ଭୂମିର ପରିସୀମା = $5.264 \times 3 = 15.792$ ସେ.ମି. ପାର୍ଶ୍ୱପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = ଭୂମିର ପରିସୀମା \times ଉଚ୍ଚତା = $15.792 \times 10 = 157.92$ ବ.ସେ.ମି.
- ୍ର: ସମଗ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ = ପାର୍ଶ୍ୱ ପୃଷତଳର କ୍ଷେତ୍ରଫଳ + 2 ଭୂମିର କ୍ଷେତ୍ରଫଳ = $157.92 + 2 \times 12 = 181.92$ ବ.ସେ.ମି. (ଉଉର)

ଉଦାହରଣ-10 : ଗୋଟିଏ ସରଳ ପ୍ରିଜିମ୍ର ଭୂମି ଏକ ସମକୋଣୀ ତ୍ରିଭୁକ ଏବଂ ସମକୋଣ ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଅନୁପାତ 5 : 12 । ଯଦି ପ୍ରିଜିମ୍ର ଆୟତନ 1800 ଘ.ସେ.ମି. ଓ ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 900 ବ.ସେ.ମି. ହୁଏ, ତେବେ ଭୂମିର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ : ମନେକର ପ୍ରିଜିମ୍ର ସମକୋଣୀ ତ୍ରିଭୁଜାକାର ଭୂମିର ସମକୋଣ ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ଯଥାକ୍ରମେ $5\mathrm{x}$ ସେ.ମି. ଓ $12\mathrm{x}$ ସେ.ମି.।

$$\cdot$$
 କର୍ତ୍ତର ଦୈର୍ଘ୍ୟ = $\sqrt{(5x)^2 + (12x)^2}$ = $\sqrt{25x^2 + 144x^2}$ = $\sqrt{169x^2}$ = $13x$ ସେ.ମି.

- \cdot ଭୂମିର କ୍ଷେତ୍ରଫଳ = $\frac{1}{2} \cdot 5x \cdot 12x$ ବ.ସେ.ମି. = $30x^2$ ବ.ସେ.ମି. । ମନେକର ପ୍ରିଜିମ୍ର ଉଚ୍ଚତା h ସେ.ମି.
- ୍: ଆୟତନ = ଭୂମିର କ୍ଷେତ୍ରଫଳ \times ଉଚ୍ଚତା = $30x^2h$ ଘ.ସେ.ମି. $\Rightarrow 30x^2h = 1800$ (i) ଭୂମିର ପରିସୀମା = 5x + 12x + 13x = 30x ସେ.ମି. ପୁନଶ୍ଚ, ଏହାର ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = ଭୂମିର ପରିସୀମା \times ଉଚ୍ଚତା = 30xh ବ.ସେ.ମି. ପ୍ରଶ୍ନାନୁସାରେ 30xh = 900(ii)

ବର୍ତ୍ତମାନ (i) କୁ (ii) ଦ୍ୱାରା ଭାଗ କଲେ $\frac{30x^2h}{30xh} = \frac{1800}{900} \implies x = 2$

- ୍ର ଗୋଟିଏ ବାହୁର ଦୈର୍ଘ୍ୟ = $5x = 5 \times 2 = 10$ ସେ.ମି. ଅନ୍ୟବାହୁଟିର ଦୈର୍ଘ୍ୟ = $12x = 12 \times 2 = 24$ ସେ.ମି. (ଉତ୍ତର)
- **ଉଦାହରଣ-11 :** ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ଘନଫଳ 4500 ଘ.ମି.। ଏହାର ଭୂମି ଏକ ସମକୋଣୀ ତ୍ରିଭୁକ ଯାହାର କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ 41 ମିଟର । ପ୍ରିକିମ୍ର ଉଚ୍ଚତା 25ମି. ହେଲେ ଏହାର ଭୂମିର ଅନ୍ୟ ଦୁଇବାହୁର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ : ମନେକର ସମକୋଣୀ ତ୍ରିଭୁଜାକାର ଭୂମିର ବାହୁଦୁଇଟିର ଦୈର୍ଘ୍ୟ = a ମିଟର ଏବଂ b ମିଟର । $a^2+b^2=41^2=1681$ ଏବଂ ଭୂମିର କ୍ଷେତ୍ରଫଳ = ab ବ.ମି.

କିନ୍ତୁ ଭୂମିର କ୍ଷେତ୍ରଫଳ =
$$\frac{\text{darm}}{\text{GRO}} = \frac{4500 \text{ dar.fl.}}{25\text{fl.}} = 180 \text{ s.fl.}$$

$$\Rightarrow \frac{1}{2} ab = 180 \Rightarrow ab = 360 \Rightarrow 2ab = 720$$

$$(a + b)^2 = a^2 + b^2 + 2ab \Rightarrow (a + b)^2 = 41^2 + 720 = 2401$$

$$\Rightarrow a + b = \sqrt{2401} = 49$$

$$\Theta$$

$$\Theta$$

(i)
$$\Im$$
 (ii) \Im 2a = 80 \Rightarrow a = 40 $\widehat{\Im}$.

ସିଲିଷ୍ତରର ଆୟତନ ସୟନ୍ଧୀୟ :

ଉଦାହରଣ-12 : ଗୋଟିଏ ନିଦା ସରଳ ସିଲିଣ୍ଡରର ଘନଫଳ 101376 ଘ.ଡେ.ମି.; ଏହାର ଭୂମିର ପ୍ରସ୍ଥ 48 ଡେ.ମି. ହେଲେ ଏହାର ଉଚ୍ଚତା କେତେ ? $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ମନେକର ସିଲିଣ୍ଡରର ଉଚ୍ଚତା = h ଡେ.ମି., ଭୂମିର ପ୍ରସ୍ଥ = ଭୂମିର ବ୍ୟାସ (2r)=48 ଡେ.ମି.

ଘନଫଳ =
$$\pi r^2 h = \frac{22}{7} \times 24^2 \times h$$

ପ୍ରଶ୍ନାନୁସାରେ, ଏହାର ଘନଫଳ = 101376 ଘ.ଡେ.ମି. $\Rightarrow \frac{22 \times 24 \times 24h}{7} = 101376$

$$\Rightarrow$$
 ସିଲିଣ୍ଡରର ଉଚ୍ଚତା (h) = $\frac{101376 \times 7}{22 \times 24 \times 24}$ ଡେ.ମି. = 56 ଡେ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ-13 : ଗୋଟିଏ ସରଳ ସିଲିଣ୍ଡରର ଘନଫଳ 12672 ଘ.ମି.। ଏହାର ବକ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ 2112 ବ.ମି. ହେଲେ ଭୂମିର ପରିଧି ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ମନେକର ସିଲିଞ୍ଜରର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ = r ମିଟର ଏବଂ ଉଚ୍ଚତା = h ମିଟର

ଏହାର ଘନଫଳ =
$$\pi \, r^2 h$$
 = 12672 ଘ.ମି.(i)

ଏବଂ ଏହାର ବକୁପୃଷ୍ଠଳର କ୍ଷେତ୍ରଫଳ = $2\pi \, \mathrm{rh}$ ବ.ମି. = 2112 ବ.ମି.(ii)

$$\cdot$$
 (i) ଏବଂ (ii)ରୁ ପାଇବା $\frac{\pi r^2 h}{2\pi r h} = \frac{12672}{2112} \implies \frac{r}{2} = 6 \implies r = 12$

$$\cdot$$
 . ଭୂମିର ପରିଧି = $2 \pi r = 2 \times \frac{22}{7} \times 12 = \frac{528}{7} = 75\frac{3}{7}$ ମିଟର (ଉତ୍ତର)

ଉଦାହରଣ-14 : ଗୋଟିଏ ସରଳ ନିଦା ସିଲିଣ୍ଡର ଆକାର ବିଶିଷ୍ଟ କାଠର ଦୈର୍ଘ୍ୟ 24 ଡେ.ମି. । ପ୍ରତି ଘନ ଡେ.ମି.କୁ 75 ପଇସା ହିସାବରେ 77 ଟଙ୍କା ଦେଇ କାଠଟି କିଣାଗଲା । କାଠଟିର ପ୍ରତ୍ୟେକ ପ୍ରାନ୍ତର ପରିଧି କେତେ ?

ସମାଧାନ : ଏକ ଘନ ଡେ.ମି. କାଠର ମୂଲ୍ୟ 75 ପଇସା।

$$\cdot$$
: 77 ଟଙ୍କାରେ କିଶାଯାଇଥିବା କାଠର ଘନ ପରିମାଣ = $\frac{7700}{75}$ = $\frac{308}{3}$ ଘନ ଡେ.ମି.

ମନେକର ଏହାର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ = r ଡେ.ମି., ଏହାର ଉଚ୍ଚତା (h) = 24 ଡେ.ମି. କାଠର ଘନଫଳ = $\pi \, r^2 h$ ଘନ ଡେ.ମି.

$$\Rightarrow \quad \pi \, r^2 h = \frac{308}{3} \ \Rightarrow \ \frac{22}{7} \, r^2 \times 24 = \frac{308}{3} \ \Rightarrow \ r^2 = \ \frac{308 \times 7}{22 \times 24 \times 3} = \frac{49}{36} \ \Rightarrow \ r = \frac{7}{6} \ \text{GW.} \widehat{\text{Pl}}.$$

$$\therefore$$
 ପରିଧି = $2\pi r = 2 \times \frac{22}{7} \times \frac{7}{6} = \frac{22}{3} = 7 \cdot \frac{1}{3}$ ଡେ.ମି. ।

୍ କାଠଟିର ପ୍ରତ୍ୟେକ ପ୍ରାନ୍ତର ପରିଧି
$$7 \; \frac{1}{3} \; \text{ଡେ.ମି.} \; \text{I}$$
 (ଉତ୍ତର)

ଅନୁଶୀଳନୀ - 5(d)

(ପ୍ରିକିମ୍ର ଆୟତନ ସୟନ୍ଧୀୟ)

- 1. ଗୋଟିଏ ସରଳ ପ୍ରିଜିମ୍ର ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 2520 ବର୍ଗମିଟର। ଏହାର ତ୍ରିଭୁଜାକାର ଆଧାରର ବାହୁମାନଙ୍କର ଦେର୍ଘ୍ୟ 20 ମି., 21 ମି. ଓ 29 ମିଟର ହେଲେ, ଆୟତନ ସ୍ଥିର କର।
- 2. ଗୋଟିଏ ସରଳ ପ୍ରିଜିମ୍ର ଭୂମି, $8\sqrt{2}$ ସେ.ମି. ଦୀର୍ଘ କର୍ଷ ବିଶିଷ୍ଟ ସମକୋଣୀ ସମଦ୍ୱିବାହୁ ତ୍ରିଭୁଜ । ଉଚ୍ଚତା 14 ସେ.ମି. ହେଲେ ଆୟତନ ନିର୍ଷ୍ଣୟ କର ।
- 3. ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ଆୟତନ 2520 ଘନ ମିଟର । ଏହାର ଆଧାର ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁକ ଯାହାର ସମକୋଣ ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ 7 ମି. ଓ 24 ମିଟର । ପ୍ରିକିମ୍ର ଉଚ୍ଚତା ଓ ପାର୍ଶ୍ୱ ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ସ୍ଥିର କର ।
- 4.15 ସେ.ମି. ଉଚ୍ଚ ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ଆଧାର ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁକ ଯାହାର କର୍ଣ୍ଣର ଦୈର୍ଘ୍ୟ10 ସେ.ମି., ଆୟତନ 360 ଘନ ସେ.ମି. ହେଲେ ଆଧାରର ଅନ୍ୟ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
- 5. ଗୋଟିଏ ସରଳ ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱତଳର କ୍ଷେତ୍ରଫଳ, ସମଗ୍ର ପୃଷ୍ପତଳ କ୍ଷେତ୍ରଫଳର $\frac{8}{9}$ । ପ୍ରିଜିମ୍ର ପାର୍ଶ୍ୱ ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 96 ବର୍ଗ ମିଟର ଏବଂ ଆୟତନ 48 ଘନମିଟର ହେଲେ ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର ।
- 6. ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ଆଧାର ପରିସୀମା 56 ମିଟର । ପାର୍ଶ୍ୱପୃଷ୍ଣତଳର କ୍ଷେତ୍ରଫଳ 1680 ବର୍ଗ ମିଟର ଏବଂ ଆୟତନ 2520 ଘନମିଟର ହେଲେ ଆଧାରର କ୍ଷେତ୍ରଫଳ ନିର୍ଦ୍ଧୟ କର ।
- 7. ଗୋଟିଏ ସରଳ ପ୍ରିଜିମ୍ର ଆୟତନ $84\sqrt{3}$ ଘ.ସେ.ମି.। ଉଚ୍ଚତା 7 ସେ.ମି. ଏବଂ ଆଧାର ଏକ ସମବାହୁ ତ୍ରିଭୁଜ ହେଲେ ଆଧାରର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
- 8. ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ଉଚ୍ଚତା 336 ସେମି.। ଏହାର ଭୂମିର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ 21 ସେ.ମି., 72 ସେ.ମି. ଓ 75 ସେ.ମି। 288 ସେ.ମି. ଉଚ୍ଚତା ଏବଂ $42\sqrt{2}$ ସେ.ମି. ଦୀର୍ଘ କର୍ଷ ଥିବା ସମକୋଣୀ

- ତ୍ରିଭୁଜାକାର ଭୂମି ବିଶିଷ୍ଟ ଅନ୍ୟ ଏକ ସରଳ ପ୍ରିଜିମ୍ବର ଘନଫଳ ଯଦି ଏହି ପ୍ରିଜିମ୍ବର ଘନଫଳ ସହିତ ସମାନ ହୁଏ, ତେବେ ଭୂମିର ବାହୁମାନଙ୍କର ଦୈର୍ଘ୍ୟ ନିର୍ଣ୍ଣୟ କର ।
- 9. $8\sqrt{3}$ ମିଟର ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଗୋଟିଏ ସରଳ ପ୍ରିକିମ୍ର ଭୂମି ଗୋଟିଏ ସମବାହୁ ତ୍ରିଭୁକ । ଏହି ପ୍ରିକିମ୍ର ଆୟତନ 864 ଘନମିଟର ହେଲେ ଏହାର ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଦ୍ଧୟ କର ।

ସିଲିଷ୍ଟରର ଆୟତନ ସୟନ୍ଧୀୟ :

- 10. 4 ମିଟର ବ୍ୟାସ ଓ 9 ମିଟର ଗଭୀର କୁଅଟିଏ ଖୋଳାଯାଇ ସେଥିରୁ ବାହାରିଥିବା ମାଟିକୁ 12 ମିଟର ବ୍ୟାସର ଏକ ସିଲିଣ୍ଡର ଆକୃତି ବିଶିଷ୍ଟ ସ୍ତୂପରେ ଗଦାକଲେ, ସ୍ତୂପଟିର ଉଚ୍ଚତା କେତେ ହେବ?
- 11. ଗୋଟିଏ ସିଲିଣ୍ଡର ଆକାରର ୟୟ ତିଆରି କରିବାକୁ ପ୍ରତି 100 ଘନ ଡେ.ମି.କୁ 8 ଟଙ୍କା ହିସାବରେ 352 ଟଙ୍କା ଖର୍ଚ୍ଚ ହୁଏ । ୟୁମ୍ବର ଭୂମିର ବ୍ୟାସ 20 ଡେ.ମି. ହେଲେ ଏହାର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 12. 28 ମିଟର ଉଚ୍ଚ ଗୋଟିଏ ସିଲିଣ୍ଡରର ଆୟତନ $5\frac{1}{2}$ ମିଟର ଦୀର୍ଘ ବାହୁ ବିଶିଷ୍ଟ ଗୋଟିଏ ସମଘନର ଘନଫଳ ସଙ୍ଗେ ସମାନ । ସିଲିଣ୍ଡରର ଭୂମିର ବ୍ୟାସ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 13. ଗୋଟିଏ ସିଲିଣ୍ଡରର ଘନଫଳ 9504 ଘନ ସେ.ମି.। ବକ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 1584 ବ.ସେ.ମି.। ଏହାର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର । $\left(\pi {\simeq} \frac{22}{7}\right)$
- 14. ଗୋଟିଏ ସିଲିଣ୍ଡରର ଉଚ୍ଚତା ଭୂମିର ବ୍ୟାସର ଦୁଇଗୁଣ । ଏହାର ଘନଫଳ 539 ଘ.ଡେ.ମି. ହେଲେ ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ କେତେ ? $(\pi^{\sim \frac{22}{7}})$
- 15. ଗୋଟିଏ ନିଦା ସମବର୍ତ୍ତୁଳର ସମଗ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ $701\frac{1}{4}$ ବ.ସେ.ମି. ଓ ବକ୍ର ପୃଷତଳ 528 ବ.ସେ.ମି. ହେଲେ ଆୟତନ ନିର୍ଣ୍ଣୟ କର।
- 16. ଗୋଟିଏ ସରଳ ବୃତ୍ତଭୂମିକ ସିଲିଣ୍ଟରର ଉଚ୍ଚତା ଓ ବ୍ୟାସର ଅନୁପାତ $3:2\,$ । ଏହାର ସମଗ୍ରପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 1232 ବ.ସେ.ମି. ହେଲେ, ଏହାର ଘନଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 17. ଉଭୟ ପ୍ରାନ୍ତ ବନ୍ଦ ହୋଇଥିବା ଗୋଟିଏ ଫମ୍ପା ସିଲିଣ୍ଡରରେ ବ୍ୟବହୃତ ଧାତୁର ଘନଫଳ 4928 ଘ. ସେ.ମି. ଏବଂ ଏହାର ପୃଷ୍ପତଳଦ୍ୱୟର କ୍ଷେତ୍ରଫଳର ଅନ୍ତର 352 ବ.ସେ.ମି. । ସିଲିଣ୍ଡରର ଉଚ୍ଚତା 28 ସେ.ମି. ହେଲେ, ଏହାର ଭିତର ଓ ବାହାର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ? $(\pi \simeq \frac{22}{7})$

5.9. କୋନ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ ଓ ଆୟତନ (Surface Area and Volume of cone) :

ସ୍ଥିର ରହିଥିବା ଏକ ସରୁଛିଦ୍ର ଦେଇ ବାଲି, ଚିନି, ଚାଉଳ, ଅଟା, ସୁଜି ପରି ଶୁଖିଲା କ୍ଷୁଦ୍ରକଣିକା ସମତଳ ଭୂମି ଉପରେ ପକାଇଲେ, ତାହା ଯେଉଁ ଆକୃତିରେ ଗଦାହେବ, ତାହା ଏକ ସରଳ ବୃତ୍ତଭୂମିକ କୋନ (Right circular cone)ର ଆକୃତି I

ବର୍ତ୍ତମାନ ନିମ୍ନ ପରୀକ୍ଷାଟି କର । ଗୋଟିଏ ମୋଟା କାଗଜକୁ ଏକ ସମକୋଶୀ ΔAOB ଆକୃତିର କାଟ

(ଚିତ୍ର 5.23(b))

ସମକୋଣ ସଂଲଗ୍ନ ଗୋଟିଏ ବାହୁକୁ (ମନେକର $\overline{\mathrm{OB}}$) ଅଠା ଦ୍ୱାରା ଏକ ସରୁ କାଠି $\overline{\mathrm{MN}}$ ରେ ଲଗାଇ ତ୍ରିଭୁଜାକୃତି କାଗଜଟିକୁ $\overline{
m MN}$ କାଠି ଚାରିପଟେ ଘୂରାଇଲେ ସରଳ ବୃତ୍ତଭୂମିକ କୋନ୍ର ଆକୃତି ମିଳିବ । $\overline{
m OA}$ ଏହି ବୃତ୍ତାକାର ଭୂମିର ଏକ ବ୍ୟାସାର୍ଦ୍ଧ ହେବ । ସେହିପରି ମୋଟା କାଗଜଟିଏ ${
m AOBD}$ ଆୟତକ୍ଷେତ୍ରାକୃତିରେ କାଟି ${
m \overline{OB}}$ ଅକ୍ଷ ଚାରି ପଟେ ଘୁରାଇଲେ ବୃତ୍ତାକାର ସରଳ ସିଲିଣ୍ଡର ଆକୃତି ମିଳିବ । (ଚିତ୍ର 5.23(b)) । ବର୍ତ୍ତମାନ ଏକ ବୃତ୍ତଭୂମିକ କୋନ୍ର ସଂଜ୍ଞା ନିମ୍ନମତେ କରିବା ।

C ସମତଳ E ଉପରିସ୍ଥ ଏକ ବୃତ୍ତ ଓ O ଏହାର କେନ୍ଦ୍ର (ଚିତ୍ର 5.24) \mid V, ସମତଳ E ର ବହିର୍ଦ୍ଦେଶରେ ଏକ ବିନ୍ଦୁ ଏବଂ P,C ଦ୍ୱାରା ଆବଦ୍ଧ ବୃଭାକାର କ୍ଷେତ୍ର ${
m B}$ ଉପରିସ୍ଥ ଯେକୌଣସି ଏକ ବିନ୍ଦୁ ହେଲେ ଆମେ $\overline{
m VP}$ ରେଖାଖଣ୍ଡ ପାଇବା ${
m I}$ ${
m B}$ ଉପରିସ୍ଥ ସମୟ ବିନ୍ଦୁମାନଙ୍କ ପାଇଁ ମିଳୁଥିବା ଏହି ପରି ସମୟ ରେଖାଖଣ୍ଡ ଗୁଡ଼ିକର ସଂଯୋଗରେ କୋନ୍ (cone) ଗଠିତ ହୁଏ । $\overline{\mathrm{VO}}$, ସମତଳ E ପ୍ରତି ଲୟ ହେଲେ କୋନ୍କୁ ସରଳକୋନ୍ କୁହାଯାଏ; ନତୁବା ତୀର୍ଯ୍ୟକ କୋନ୍ କୁହାଯାଏ । ଆମେ କେବଳ ସରଳ କୋନ୍ ବିଷୟରେ ଆଲୋଚନା କରିବା ।

A, ବୃତ୍ତ C ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁ ହେଲେ \overline{VA} କୁ କୋନ୍ର ଏକ ଜେନେରେଟର (Generator) ବା ଜନକ ରେଖା କୁହାଯାଏ $\mid V \mid$ କୁ ବୃତ୍ତ $\mid C \mid$ ଉପରିସ୍ଥ ପ୍ରତ୍ୟେକ ବିନ୍ଦୁ ସହ ରେଖାଖଣ୍ଡ ଦ୍ୱାରା ଯୋଗ କରାଯାଉ $\mid \triangleleft$ ହି ରେଖାଖଣ୍ଡମାନଙ୍କ ଦ୍ୱାରା ଏକ ବକ୍ରତଳ ସୃଷ୍ଟି ହେବ । ଏହି ବକ୍ରତଳ ଏକ ସରଳବୃତ୍ତ ଭୂମିକ କୋନ୍**ର ପୃଷ୍ଠତଳ ଅଟେ । \mathbf C ଦ୍ୱାରା ଆବଦ୍ଧ ବୃତ୍ତାକାର** କ୍ଷେତ୍ର \mathbf{B} କୁ କୋନ୍ର ଭୂମି ବା ଆଧାର (\mathbf{Base}) କୁହାଯାଏ । (ବି.ଦ୍ର. \mathbf{C} ବକ୍ରଟି ବୃତ୍ତ ପରିବର୍ତ୍ତେ ଏକ ବହୁଭୁଜ ହେଲେ ଉତ୍ପନ୍ନ ଘନକୁ ପିରାମିଡ଼ (Pyramid) କୁହାଯାଏ |) 'V' ବିନ୍ଦୁକୁ କୋନ୍**ର ଶୀର୍ଷ ବିନ୍ଦୁ (Vertex)** $\overline{\mathrm{VO}}$ ରେଖାଖଣ୍ଡକୁ ଏହାର ଅକ୍ଷ (axis) ଏବଂ \overline{VO} ର ଦୈର୍ଘ୍ୟ (=h) କୁ **କୋନ୍ର ଉଚ୍ଚତା** କୁହାଯାଏ | ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ OA(=r) କୁ କୋନ୍ର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ କୁହାଯାଏ । $\overline{\mathrm{VA}}$ ର ଦୈର୍ଘ୍ୟ $(=\!\!l)$ କୁ **କୋନ୍ର ବକ୍ର ଉଚ୍ଚତା (Slant height)** କୁହାଯାଏ । ତେଣୁ

$$l^2 = VA^2 = VO^2 + OA^2 = h^2 + r^2 \Rightarrow l = \sqrt{h^2 + r^2}$$

∠OVA କୁ କୋନ୍ର **ଶୀର୍ଷାର୍ଦ୍ଧ କୋଣ** (Semivertical angle) କୁହାଯାଏ ।

ମନ୍ତବ୍ୟ : ଯଦି ଏକ କୋନ୍ର ଭୂମି ବୃତ୍ତାକାର କ୍ଷେତ୍ର ନ ହୋଇ, କେବଳ ବୃତ୍ତଟିଏ ହୁଏ, ତେବେ ଉତ୍ପନ୍ନ କୋନ୍କୁ ଏକ ଫମ୍ମା (hollow) କୋନ୍ କୁହାଯାଏ । ତରଳ ପଦାର୍ଥ ଢାଳିବା ପାଇଁ ବ୍ୟବହାର ହେଉଥିବା କାହାଳୀ (Funnel) ର ମୁନିଆଁ ପାର୍ଶ୍ୱରେ ଥିବା ଲୟା ବେଷଟିକୁ ବାଦଦେଲେ ବାକି ଅଂଶ ଫମ୍ମା କୋନ ଆକୃତିର ହେବ । ଅନୁରୂପ ଭାବରେ ଫମ୍ମା ପ୍ରିଜିମ୍ ଓ ଫମ୍ମା ସିଲିଷ୍ଟରର ଧାରଣା କରିହେବ । ତେବେ କେବଳ କୋନ୍ କହିଲେ ଆମେ ବୃତ୍ତାକାର କ୍ଷେତ୍ର ବିଶିଷ୍ଟ ଭୂମି ଥିବା କୋନ୍କୁ (ବା ନିଦା କୋନ୍) ବୃଝିବା ।

କୋନ୍ର ଦୁଇଟି ପୃଷତଳ ଓ ନିର୍ଦ୍ଦିଷ୍ଟ ଆୟତନ ଅଛି । ବୃତ୍ତାକାର ଭୂମିଟି ଏକ ସମତଳପୃଷ୍ଠ; ଏହାର କ୍ଷେତ୍ରଫଳ πг² ବର୍ଗ ଏକକ । କୋନ୍ ର ବକ୍ରତଳଟିକୁ ତା'ର ପାର୍ଶ୍ୱପୃଷ୍ଣ ତଳ କୁହାଯାଏ । ଫମ୍ପା କୋନର କେବଳ ବକ୍ରତଳଟି ଥାଏ । ବକ୍ତଳର କ୍ଷେତ୍ରଫଳ ବିଷୟରେ ଧାରଣା କରିବା ପାଇଁ ପତଳା ଟିଣ ଚାଦରରେ ତିଆରି ଏକ ଫମ୍ପା କୋନ୍ VAB

ନିଆଯାଉ T

ମନେକର ଏହାର ବ୍ୟାସାର୍ଦ୍ଧ \mathbf{r} ଏବଂ ବକ୍ର ଉଚ୍ଚତା \mathbf{l} । କୌଣସି ଏକ ଜନକ ରେଖା $\overline{\mathbf{V}\mathbf{A}}$ ର \mathbf{A} ଠାରେ କୋନ୍ଟିକୁ କାଟି (ଚିତ୍ର 5.25 - \mathbf{b}) ଖୋଲି ଦେଲେ, ତାହା ଏକ ବୃତ୍ତକଳାରେ ପରିଶତ ହେବ । (ଚିତ୍ର 5.25- \mathbf{c}) ।

ବୃତ୍ତକଳାର ବ୍ୟାସାର୍ଦ୍ଧ = $VA = VA^{\scriptscriptstyle 1}$ । କାରଣ କାଟିବା ପୂର୍ବରୁ, A ଓ $A^{\scriptscriptstyle 1}$ ବିନ୍ଦୁଦ୍ୱୟ ଏକ ଥିଲେ । ତେଣୁ ବୃତ୍ତକଳାର ବ୍ୟାସାର୍ଦ୍ଧ $VA = VA^{\scriptscriptstyle 1} = \boldsymbol{l}$ । କୋନ୍**ର ବୃତ୍ତାକାର ଧାର ବୃତ୍ତକଳାର ଚାପ** \widehat{ABA}' ରେ ପରିଶତ ହୋଇଛି ।

ତେଣୁ \widehat{ABA}' ଚାପର ଦୈର୍ଘ୍ୟ, କୋନ୍ତ ଧାରର ଦୈର୍ଘ୍ୟ $2\pi r$ ସହ ସମାନ ।

 \therefore VAB କୋନ୍ର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ = ବୃତ୍ତକଳା VABA $^{\scriptscriptstyle 1}$ ର କ୍ଷେତ୍ରଫଳ

$$= \frac{1}{2} \; ({
m ABA'} \; {
m SIDO} \; {
m S\widetilde{Q}}$$
ର୍ଘ୍ୟ) $imes \; {
m S}$ ଡୁଜକଳାର ବ୍ୟସାର୍ଦ୍ଧି $= \frac{1}{2} \; (2\pi {
m r}) \; l \; {
m S}$.ଏକକ $= \pi {
m r} \; l \; {
m S}$.ଏକକ

ନିଦା କୋନ୍ର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ ପାଇଁ ମଧ୍ୟ ଏହି ସୂତ୍ର ପ୍ରଯୁଚ୍ୟ ।

 \therefore କୋନ୍ର ବକୁତଳର କ୍ଷେତ୍ରଫଳ = πr ା ବ.ଏକକ

କୋନ୍ର ସମଗ୍ରପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ = ଭୂମିର କ୍ଷେତ୍ରଫଳ + ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ
$$= \pi \ \mathbf{r}^2 + \pi \ \mathbf{r} \ l \ = \pi \ \mathbf{r} \ (\mathbf{r} + l) \ \mathsf{Prop} \ \mathsf{Tr} \ \mathsf{Tr}$$

କୋନର ଆୟତନ =
$$\frac{1}{3}$$
 (ଭୂମିର କ୍ଷେତ୍ରଫଳ) × ଉଚ୍ଚତା = $\frac{1}{3} \pi \, r^2 h$ ଘନ ଏକକ

ଏହାର ପ୍ରମାଣ ପାଇଁ ଉଚ୍ଚତର ଗଣିତଶାସ୍ତର ସାହାଯ୍ୟ ଆବଶ୍ୟକ । ତେବେ ତୂମେ ନିମ୍ନ ପରୀକ୍ଷାଟିରୁ ସୂତ୍ରଟିର ସତ୍ୟତା ଜାଣିପାରିବ । ଗୋଟିଏ ସିଲିଣ୍ଡର ଆକୃତିର ଗ୍ଲାସ ନିଅ (ଚିତ୍ର 5.26) । ଗୋଟିଏ ମୋଟା କାଗଜକୁ ଗୁଡ଼ାଇ ଏକ ଫମ୍ଠା କୋନ୍ ଆକୃତିର କର ଯେପରିକି ଉଭୟର ଉଚ୍ଚତା ଏବଂ ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ ସମାନ ହେବ । କୋନ୍ ଆକୃତିର କାଗଜ ପାତ୍ରରେ ଜଳପୂର୍ଣ୍ଣ କରି ଗ୍ଲାସରେ ରଖିଲେ 3 ଥରରେ ଗ୍ଲାସଟି ପୂର୍ଣ୍ଣହେବ ।

ଏଥିରୁ ସମ୍ପର୍ଷ ଜଣାପଡ଼େ ଯେ, ସିଲିଣ୍ଡରାକୃତି ଗ୍ଲାସ୍ର ଆୟତନ, କୋନ୍ ଆକୃତି ପାତ୍ରର ଆୟତନର ତିନିଗୁଣ । ଅର୍ଥାତ୍ କୋନାକୃତି ପାତ୍ରର ଆୟତନ = $\frac{1}{3}$ \mathbf{X} ସିଲିଣ୍ଡରାକୃତି ଗ୍ଲାସ୍ର ଆୟତନ ।

ଜଦାହରଣ – 15 : ଗୋଟିଏ ସମକୋଣୀ ତ୍ରିଭୁଜ ABC ର ସମକୋଣ ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦୈର୍ଘ୍ୟ 12 ସେ.ମି. ଓ 5 ସେ.ମି. । ତ୍ରିଭୁଜଟିକୁ ତା'ର କ୍ଷୁଦ୍ରତମ ବାହୁ \overline{AB} ର ଚତୁର୍ଦ୍ଦିଗରେ ଘୂରାଇଲେ ଯେଉଁ କୋନ୍ଟି ଉତ୍ପନ୍ନ ହେବ ତାହାର ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ଓ ଘନଫଳ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ : ମନେକର ABC ସମକୋଣୀ ତ୍ରିଭୁଜର

$$AB = 5 \text{ GQ.} \hat{\Omega}$$
, $BC = 12 \text{ GQ.} \hat{\Omega}$.

$$\therefore AC = \sqrt{AB^2 + BC^2} = \sqrt{5^2 + 12^2}$$
$$= \sqrt{25 + 144} = \sqrt{169} = 13 6 \text{Q.} \widehat{\Omega}.$$

କ୍ଷୁଦ୍ରତମ ବାହୁ $\overline{
m AB}$ ର ଚତୁର୍ଦ୍ଦିଗରେ ଘୂରାଇଲେ ଯେଉଁ କୋନ୍**ଟି** ଉତ୍ପନ୍ନ ହେବ ତାହାର ଆଧାରର ବ୍ୟାସାର୍ଦ୍ଧ m BC ହେବ m I

∴ ଏହାର ସମଗ୍ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ = ଆଧାରର କ୍ଷେତ୍ରଫଳ + ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ

=
$$\pi . 12(12+13)$$
 ବର୍ଗ ସେ.ମି.= 300π ବର୍ଗ ସେ.ମି. (ଉତ୍ତର)

ଏହାର ଘନଫଳ = $\frac{1}{3}$. π . 12^2 . 5 ଘନ ସେ.ମି. = $240\,\pi$ ଘନ ସେ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ - 16 : ଗୋଟିଏ ସରଳ ବୃତ୍ତଭୂମିକ କୋନ୍ ଆକୃତି ବିଶିଷ୍ଟ ତମ୍ଭୁର ଉଚ୍ଚତା 28 ମି.ଓ ଭୂମିର ବ୍ୟାସ 42 ମି. । ଏହି ତମ୍ଭୁ ନିର୍ମାଣ ପାଇଁ କେତେ କାନ୍ତାସ୍ କନା ଲାଗିବ ସ୍ଥିର କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ପ୍ରଶ୍ନାନୁସାରେ କୋନ୍ର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ r=21 ମି. ଓ ଉଚ୍ଚତା h=28 ମି.

ଏହାର ବକୁ ଉଚ୍ଚତା
$$l = \sqrt{r^2 + h^2} = \sqrt{21^2 + 28^2} = \sqrt{441 + 784} = \sqrt{1225} = 35$$
 ମି.

ତମ୍ଭୁଟିର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ =
$$\pi r l = \frac{22}{7} \times 21 \times 35$$
 ବର୍ଗ ମି. = 2310 ବ.ମି.

ଉଦାହରଣ - 17 : ସିଲିଣ୍ଡର ଆକାର ବିଶିଷ୍ଟ ଏକ ପାତ୍ରର ଭୂମିର ବ୍ୟାସ ଃ ସେ.ମି. । ଏହା ଆଂଶିକ ଜଳପୂର୍ଣ୍ଣ ଅଛି । ଭୂମିର ବ୍ୟାସ େ ସେ.ମି. ଓ ଉଚ୍ଚତା ଃ ସେ.ମି. ଥିବା ଏକ ନିଦା କୋନ୍**କୁ ଉକ୍ତ ଜଳରେ ସମ୍ପୂର୍ଣ୍ଣ ରୂପେ ବୁଡ଼ାଇ ରଖି**ଲେ ଜଳୟର କେତେ ଉପରକୁ ଉଠିବ ସ୍ଥିର କର ।

ସମାଧାନ : କୋନ୍ଟିର ଭୂମିର ବ୍ୟାସ = 6 ସେ.ମି.

 \therefore ଏହାର ବ୍ୟାସାର୍ଦ୍ଧ r=3 ସେ.ମି.ଏବଂ ଉଚ୍ଚତା h=8 ସେ.ମି.

$$\therefore$$
 କୋନ୍ଟିର ଆୟଡନ = $\frac{1}{3} \pi r^2 h = \frac{1}{3} \times \pi \times (3)^2 \times 8 = 24 \pi$ ଘ.ସେ.ମି

ସିଲିଣ୍ଡର ଆକାର ବିଶିଷ୍ଟ ପାତ୍ରର ଭୂମିର ବ୍ୟାସ ଃ ସେ.ମି. ।

 \therefore ପାତ୍ରର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ $\mathbf{r}_{_{1}}=4$ ସେ.ମି.

ମନେକର ସିଲିଣ୍ଡରରେ ଥିବା ଜଳ ମଧ୍ୟରେ କୋନ୍ଟି ବୁଡ଼ିବା ପରେ ସେଥିରେ ଜଳୟର x ସେ.ମି. ଉପରକୂ ଉଠିଯିବ ।

 \therefore ବୃଦ୍ଧି ପାଉଥିବା ଜଳର ଆୟତନ = $\pi(4)^2.x$ = $16\pi x$ ଘ.ସେ.ମି.

କିନ୍ତୁ ବୃଦ୍ଧି ପାଇଥିବା ଜଳର ଆୟତନ = କୋନ୍ଟିର ଆୟତନ

$$\therefore \pi(4^2)x = 24 \pi \implies x = \frac{24}{16} = \frac{3}{2} = 1.5 \cdot 69.\widehat{9}.$$

.. ପାତ୍ରଟିରେ ଜଳୟର 1.5 ସେ.ମି. ଉପରକୁ ଉଠିବ । (ଉତ୍ତର)

ଉଦାହରଣ - 18: ଗୋଟିଏ କୋନ୍ର ଆଧାରର ବ୍ୟାସାର୍ଦ୍ଧ ଏବଂ ଉଚ୍ଚତାର ଅନୁପାତ 3:4 । ଯଦି ଏହାର ଆୟତନ 301.44 ଘ.ସେ.ମି. ହୁଏ । ତେବେ ଏହାର ବକ୍ର ଉଚ୍ଚତା ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq 3.14)$

ସମାଧାନ : ମନେକର କୋନ୍ଟିର ଆଧାରର ବ୍ୟାସାର୍ଦ୍ଧ r=3x ସେ.ମି. ଏବଂ ଉଚ୍ଚତା h=4x ସେ.ମି.

$$\therefore$$
 ଏହାର ଆୟତନ = $\frac{1}{3} \pi r^2 h \Rightarrow \frac{1}{3} \times 3.14 \times (3x)^2 \times 4x$ ଘ.ସେ.ମି. = $3.14 \times 12x^3$ ଘ.ସେ.ମି.

ପ୍ରଶ୍ନାନୁସାରେ
$$3.14 \times 12x^3 = 301.44 \Rightarrow x^3 = \frac{301.44}{3.14 \times 12} = 8 \Rightarrow x^3 = 2^3 \Rightarrow x = 2$$

କୋନ୍ର ବ୍ୟାସାର୍ଦ୍ଧ = 3x ସେ.ମି. = $3 \times 2 = 6$ ସେ.ମି.

ଏବଂ ଉଚ୍ଚତା = 4x ସେ.ମି. = $4 \times 2 = 8$ ସେ.ମି.

$$\therefore$$
 କୋନ୍ର ବକୁ ଉଚ୍ଚତା, $l=\sqrt{\mathbf{r}^2+\mathbf{h}^2}=\sqrt{(6)^2+(8)^2}=\sqrt{36+64}=\sqrt{100}=10$ ସେ.ମି. (ଉତ୍ତର)

ସମାଧାନ : ଫମ୍ମା କୋନ୍ର ଆଧାରର ବ୍ୟାସାର୍ଦ୍ଧ, r=7 ସେ.ମି. ଏବଂ ଉଚ୍ଚତା, h=24 ସେ.ମି.

$$\therefore$$
 ଏହାର ବକ୍ର ଉଚ୍ଚତା $\mathbf{l}=\sqrt{\mathbf{h}^2+\mathbf{r}^2}=\sqrt{24^2+7^2}=\sqrt{576+49}=\sqrt{625}$ = 25 ସେ.ମି.

ଆଧାର ସହତ ଦଣ୍ଡାପାତର କ୍ଷେତ୍ରଫଳ= ଆଧାରର କ୍ଷେତ୍ରଫଳ + ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ= $\pi r^2 + \pi r l = \pi r (r + l)$

=
$$\frac{22}{7}$$
 x 7 (7+25) 69. $\widehat{\text{Pl}}$. = 22 x 32 = 704 \, \text{Pl. GI.}

ଆୟତନ =
$$\frac{1}{3}\pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times 7 \times 7 \times 24 = 1232$$
 ଘ.ସେ.ମି. (ଉଡର)

ଉଦାହରଣ - 20. ଗୋଟିଏ କୋନ୍ର ଆୟତନ 314 $\frac{2}{7}$ ଘ.ସେ.ମି. ଏବଂ ଉଚ୍ଚତା ଓ ବକ୍ର ଉଚ୍ଚତାର ଅନୁପାତ 12:13 । ଏହାର ବକ୍ରପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ମନେକର କୋନ୍ର ଆଧାରର ବ୍ୟାସାର୍ଦ୍ଧ = $_{
m I}$ ସେ.ମି., ଉଚ୍ଚତା = $_{
m h}$ ସେ.ମି. ଓ ବକ୍ରଉଚ୍ଚତା = $_{
m l}$ ସେ.ମି.

ପ୍ରଶ୍ନାନୁସାରେ
$$\frac{h}{l} = \frac{12}{13}$$
 $\therefore h = 12x$ ସେ.ମି. ହେଲେ, $l = 13x$ ସେ.ମି.

$$r = \sqrt{1^2 - h^2} = \sqrt{(13x)^2 - (12x)^2} = \sqrt{169x^2 - 144x^2} = \sqrt{25x^2} = 5x \text{ GQ.} \widehat{\text{Pl}}.$$

ଏହାର ଆୟତନ =
$$\frac{1}{3}\pi r^2 h = \frac{1}{3} \times \frac{22}{7} \times (5x)^2 \times 12x = \frac{22}{7} \cdot 100x^3$$
 ଘନ ସେ.ମି.

ପ୍ରଶ୍ନାନୁସାରେ
$$\frac{22}{7} \cdot 100x^3 = 314\frac{2}{7} = \frac{2200}{7} \Rightarrow x^3 = 1 \Rightarrow x = 1$$

$$\therefore r = 5x \text{ } 69.\hat{9}. = 5 \text{ } x \text{ } 1 = 5 \text{ } 69.\hat{9}. \text{ } 0 \text{ } l = 13x \text{ } 69.\hat{9}. = 13 \text{ } 69.\hat{9}.$$

$$\therefore$$
 ବକୁପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ = $\pi r l = \frac{22}{7} \times 5 \times 13 = \frac{1430}{7} = 204 \frac{2}{7}$ ବ.ସେ.ମି. (ଉଡର)

ଅନୁଶୀଳନୀ 5(e)

- 1. ନିମ୍ନରେ କୋନ୍ ଆକୃତିର କେତେକ ଟୋପିର ଉଚ୍ଚତା ${\bf h}$ ଓ ବକ୍ର ଉଚ୍ଚତା ${\bf l}$ ଦଉ ଅଛି । ପ୍ରତି ଟୋପିରେ ଲାଗିଥିବା କପଡ଼ାର ପରିମାଣ ଏବଂ ତା'ର ଭୂମିର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
 - (i) $h = 3.5 \text{ GU.} \hat{\Omega}$., $l = 9.1 \text{ GU.} \hat{\Omega}$., (ii) $h = 5.6 \text{ GU.} \hat{\Omega}$., $l = 11.9 \text{ GU.} \hat{\Omega}$.
 - (iii) $h = 3.5 \text{ } 6Q.\widehat{Q}.$, $l = 12.5 \text{ } 6Q.\widehat{Q}.$
- 2. ନିମ୍ନରେ କୋନ୍ ଆକୃତିର ତିନୋଟି ତମ୍ଭୁର ବକ୍ର ଉଚ୍ଚତା l ଓ ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ r ଦଉ ଅଛି । ପ୍ରତି ତମ୍ଭୁର ଭିତରର ଆୟତନ ଓ ତମ୍ଭୁରେ ଲାଗିଥିବା କପଡ଼ାର ପରିମାଣ ନିର୍ଦ୍ଧୟ କର । $(\pi \simeq \frac{22}{7})$
 - (i) $r = 10.5 \ \hat{P}$. $l = 14.5 \ \hat{P}$. (ii) $h = 24 \ \hat{P}$. $l = 25 \ \hat{P}$.
- 3.(i) ଗୋଟିଏ କୋନ୍ର ଆୟତନ 12936 ଘନ ମିଟର । ଏହାର ଉଚ୍ଚତା 28 ମିଟର ହେଲେ ଭୂମିର କ୍ଷେତ୍ରଫଳ ଓ ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଦ୍ଧୟ କର । $(\pi \simeq \frac{22}{7})$
 - (ii) ଗୋଟିଏ କୋନ୍ର ଆୟତନ 9240 ଘନ ଏକକ । ଏହାର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ 21 ଏକକ ହେଲେ କୋନ୍ର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

- 4.(i) ଗୋଟିଏ କୋନ୍ର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ 550 ବର୍ଗ ସେ.ମି. ଏବଂ ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ 7 ସେ.ମି. ହେଲେ କୋନ୍ଟିର ଆୟତନ ଏବଂ ସମଗ୍ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- (ii) ଗୋଟିଏ କୋନ୍ର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ 4070 ବର୍ଗ ସେ.ମି. ଏବଂ ବକ୍ର ଉଚ୍ଚତା 37 ସେ.ମି. ହେଲେ ତାହାର ଭୂମିର କ୍ଷେତ୍ରଫଳ ଓ ଆୟତନ ନିରୂପଣ କର । $(\pi \simeq \frac{22}{7})$
- 5. ଯେଉଁ କୋନ୍ର ସମଗ୍ରପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ 2816 ବର୍ଗ ସେ.ମି. ଓ ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ 14 ସେ.ମି. ତାହାର ଆୟତନ ଓ ବକ୍ରପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ସ୍ଥିର କର । $(\pi \simeq \frac{22}{7})$
- 6. ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ 1386 ବର୍ଗ ସେ.ମି. ଏବଂ ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ 770 ବର୍ଗ ସେ.ମି. ହୋଇଥିବା କୋନ୍,ଟିର ଆୟତନ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 7. (i) ଆୟତନ 12936 ଘନସେ.ମି. ଏବଂ r:h=3:4 ହୋଇଥିବା ଏକ କୋନ୍ର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ ସ୍ଥିର କର l $(\pi\simeq \frac{22}{7})$
 - (ii) ଆୟତନ 17248 ଘନ ମିଟର ଏବଂ $\mathbf{r}: \boldsymbol{l} = 4:5$ ଥିବା ଗୋଟିଏ କୋନ୍ର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- 8.(i) ଦୂଇଟି କୋନ୍ର ବ୍ୟାସାର୍ଦ୍ଧ ଅନୁପାତ 3:5 ଓ ଉଚ୍ଚତାର ଅନୁପାତ 1:3 ହେଲେ ସେ ଦୂଇଟିର ଆୟତନର ଅନୁପାତ ସ୍ଥିର କର ।
- (ii) ଦୁଇଟି କୋନ୍ର ବ୍ୟାସାର୍ଦ୍ଧ ଅନୁପାତ 2:7 ଓ ବକ୍ରଉଚ୍ଚତାର ଅନୁପାତ 3:8 ହେଲେ ଉକ୍ତ କୋନ୍ଦ୍ୱୟର ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ ନିର୍ଦ୍ଧିୟ କର ।
- (iii) ଦୁଇଟି କୋନ୍ର ଭୂମିର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ 1:9 ଏବଂ ବକ୍ରତଳର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ 5:21 ହେଲେ ସେ ଦୁଇଟିର ବକ୍ରଉଚ୍ଚତାର ଅନୁପାତ ସ୍ଥିର କର ।
- $9.\,(\mathrm{i})$ ଏକ କୋନ୍ର ଉଚ୍ଚତା ଏହାର ବକ୍ରଉଚ୍ଚତାର ଅଧା । କୋନ୍ଟିର ବ୍ୟାସାର୍ଦ୍ଧ $5\sqrt{3}$ ସେ.ମି. ହେଲେ ଏହାର ଘନଫଳ ନିର୍ଣ୍ଣୟ କର । $((\pi=3.14)$
- (ii) ଏକ କୋନ୍ର ଉଚ୍ଚତା ଏହାର ବ୍ୟାସାର୍ଦ୍ଧର ଅଧା । କୋନ୍ଟିର ବକ୍ରଉଚ୍ଚତା 50 ସେ.ମି. ହେଲେ, ଏହାର ଘନଫଳ ନିର୍ଣ୍ଣୟ କର । ($\pi=3.14$)
- (iii) ଏକ କୋନ୍ର ଉଚ୍ଚତା ଓ ଏହାର ଭୂମିର ବ୍ୟାସର ଅନୁପାତ 2:3 ଏବଂ ଏହାର ବକ୍ରଉଚ୍ଚତା 20 ସେ.ମି. ହେଲେ, ଏହାର ଘନଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi=\sqrt{10}\,)$
- 10. ଏକ ସମଘନାକାର କାଠଖଣ୍ଡର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ 21 ସେ.ମି. । ଏଥିରୁ କଟା ଯାଇ ମିଳିଥିବା ବୃହତ୍ତମ ଆୟତନ ବିଶିଷ୍ଟ କୋନ୍**ର ଘନଫଳ ଓ ସମଗ୍ର ପୃଷ୍ୟତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍**ୟ କର । $(\pi \simeq \frac{22}{7})$
- 11. ବୃତ୍ତକଳା ଆକୃତିର ଗୋଟିଏ ଟିଣପତ୍ରକୁ ମୋଡ଼ି ତା'ର ଦୁଇ ପାଖର ବ୍ୟାସାର୍ଦ୍ଧକୁ ଯୋଡ଼ି ଝଳାଇ କରି କୋନ୍ ଆକାର ବିଶିଷ୍ଟ ଏକ ପାତ୍ର ପ୍ରସ୍ତୁତ କରାଗଲା । ଟିଣପତ୍ରଟିର ବ୍ୟାସାର୍ଦ୍ଧ 12 ସେ.ମି. ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ ଦ୍ୱୟର ମଧ୍ୟବର୍ତ୍ତୀ କୋଣ ପରିମାଣ 120° ହେଲେ ପ୍ରସ୍ତୁତ ପାତ୍ରଟିରେ କେତେ ପାଣି ରହି ପାରିବ $? (\pi \simeq \frac{22}{7})$
- 12. ଗୋଟିଏ ନିଦା କୋନ୍ର ଭୂମିର ବ୍ୟାସ 6 ସେ.ମି. ଓ ଉଚ୍ଚତା 8 ସେ.ମି. । ଏହାକୁ ଆଂଶିକ ଜଳପୂର୍ତ୍ତ ଏକ ସିଲିଣ୍ଡର ଆକାରର ପାତ୍ର ମଧ୍ୟରେ ସମ୍ପୂର୍ତ୍ତ ରୂପେ ବୁଡ଼ାଇ ଦିଆଗଲା । ସିଲିଣ୍ଡରର ଭିତରର ବ୍ୟାସ 8 ସେ.ମି. ହେଲେ ସେଥିରେ ଥିବାଜଳୟର କେତେ ବୃଦ୍ଧି ପାଇବ ?

- 13. ଗୋଟିଏ ତମ୍ଭୁର ନିମ୍ନ ଅଂଶ ସିଲିଷ୍ଟର ଆକୃତି ବିଶିଷ୍ଟ ଯାହାର ବ୍ୟାସାର୍ଦ୍ଧ 35 ମି. ଓ ଉଚ୍ଚତା 8 ମି. ଏବଂ ଉର୍ଦ୍ଧ୍ୱାଂଶ 35 ମି. ବ୍ୟାସାର୍ଦ୍ଧ ଏବଂ 12 ମି. ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଏକ କୋନ୍ ଆକାରର । ତମ୍ଭୁଟିକୁ ପ୍ରସ୍ତୁତ କରିବା ପାଇଁ କେତେ ବର୍ଗମିଟର କପଡ଼ା ଲାଗିଥିବ ସ୍ଥିର କର । $(\pi \simeq \frac{22}{7})$
- 14. ଏକ ତମ୍ଭୁର ନିମ୍ନ ଅଂଶ 30 ମି. ଉଚ୍ଚତା ବିଶିଷ୍ଟ ସରଳ ବୃତ୍ତ ଭୂମିକ ସିଲିଣ୍ଡର ଓ ଉପର ଅଂଶ କୋନ୍ ଆକାର ବିଶିଷ୍ଟ । ଏହାର ଭୂମିର ବ୍ୟାସାର୍ଦ୍ଧ 21 ମି. ଏବଂ ଭୂପୃଷ୍ଠରୁ ତମ୍ଭୁଶୀର୍ଷର ଉଚ୍ଚତା 58 ମି. ହେଲେ ତମ୍ଭୁରେ ବ୍ୟବହୃତ କ୍ୟାନ୍ତାସ୍ର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । ($\pi \simeq \frac{22}{7}$)
- 15. ଗୋଟିଏ କଳ ପୂର୍ତ୍ତ କୋନ୍ ଆକାର ବିଶିଷ୍ଟ ଏକ ପାତ୍ରର ଉପର ବୃତ୍ତାକାର ଧାରର ବ୍ୟାସାର୍ଦ୍ଧ 2.5 ସେ.ମି. ଏବଂ ଗଭୀରତା 11 ସେ.ମି. । 0.25 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ କେତେଗୋଟି ସୀସା ଗୋଲି ଏହା ମଧ୍ୟକୁ ପକାଇଲେ ଏଥିରେ ଥିବା ଜଳର $\frac{2}{5}$ ଅଂଶ ବାହାରକୁ ଅପସାରିତ ହୋଇଯିବ, ସ୍ଥିର କର ।
- 16. ଗୋଟିଏ ସମକୋଶୀ ତ୍ରିଭୁଜର ସମକୋଶ ସଂଲଗ୍ନ ବାହୁଦ୍ୱୟର ଦିର୍ଘ୍ୟ 12 ସେ.ମି. ଓ 5 ସେ.ମି. । ଏହାର ବୃହତ୍ତମ ବାହୁକୁ ସ୍ଥିର ରଖି, ତା'ର ଚାରିପାଖରେ ତ୍ରିଭୁଜଟିକୁ ଘୂରାଇଲେ ଯେଉଁ ଘନବୟୁ ହେବ, ତା'ର ଘନଫଳ ଏବଂ ସମଗ୍ର ପୃଷ୍ଣତଳର କ୍ଷେତ୍ରଫଳ 'π' ମାଧ୍ୟମରେ ସ୍ଥିର କର ।

5.10. ଗୋଲକ (Sphere) :

ଏକ ସମତଳରେ ଅବସ୍ଥିତ ନଥିବା, କେତେକ ଜ୍ୟାମିତିକ ଆକାର ଓ ବସ୍ତୁ ମଧ୍ୟରୁ ପ୍ରିଜିମ୍ ଓ ସିଲିଣ୍ଡର ସୟକ୍ଷରେ ପୂର୍ବରୁ ଆଲୋଚନା କରାଯାଇଛି । ଗୋଲକ ମଧ୍ୟ ଏକ ଜ୍ୟାମିତିକ ବସ୍ତୁ ଅଟେ । ପେଣ୍ଡୁ ବା ଗୋଲି ପ୍ରଭୃତି ଗୋଲକାକୃତି ବିଶିଷ୍ଟ ବସ୍ତୁର ଉଦାହରଣ ।

ସଂଜ୍ଞା - ଗୋଟିଏ ନିର୍ଦ୍ଧିଷ୍ଟ ବିନ୍ଦୁ 'O' ଠାରୁ ଏକ ନିର୍ଦ୍ଧିଷ୍ଟ ଦୂରତା 'r' ରେ ଅବସ୍ଥିତ ବିନ୍ଦୁମାନଙ୍କ ସେଟ୍କୁ ଏକ ଗୋଲକ କୁହାଯାଏ । 'O' ଏବଂ 'r' କୁ ଯଥାକ୍ରମେ ଗୋଲକର କେନ୍ଦ୍ର ଓ ବ୍ୟାସାର୍ଦ୍ଧ କୁହାଯାଏ । 'O' ଏବଂ ଗୋଲକର ଏକ ବିନ୍ଦୁ P କୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡ \overline{OP} କୁ ଗୋଲକର ଏକ ବ୍ୟାସାର୍ଦ୍ଧ କୁହାଯାଏ ।

(ଚିତ୍ର 5.28)

0

ଗୋଲକର ଦୁଇ ବିନ୍ଦୁକୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡକୁ ଏକ ଜ୍ୟା ଓ କେନ୍ଦ୍ରବିନ୍ଦୁଗାମୀ ଏକ ଜ୍ୟାକୁ ଗୋଲକର ଏକ **ବ୍ୟାସ** କୁହାଯାଏ । ଏକ ବ୍ୟାସର ଦୈର୍ଘ୍ୟ (2r) କୁ ଗୋଲକର ବ୍ୟାସ କୁହାଯାଏ ।

(A) ନିଦା ଗୋଲକ (Solid Sphere)

ଗୋଟିଏ ବିନ୍ଦୁ P' ଏବଂ O ମଧ୍ୟବର୍ତ୍ତୀ ଦୂରତା 'r' ଠାରୁ କମ୍ ହେଲେ P' କୁ ଗୋଲକର ଏକ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁ କହନ୍ତି ଓ ଅନ୍ତଃସ୍ଥ ବିନ୍ଦୁମାନଙ୍କ ଦ୍ୱାରା ଗଠିତ ସେଟ୍ କୁ **ଗୋଲକର ଅନ୍ତର୍ଦ୍ଦେଶ** କୁହାଯାଏ I ଗୋଲକ ଓ ଏହାର ଅନ୍ତର୍ଦ୍ଦେଶର ସଂଯୋଗ ଦ୍ୱାରା ଗଠିତ ସେଟ୍କୁ ଏକ **ନିଦା ଗୋଲକ (Solid Sphere)** କହନ୍ତି I ନିଦା ଗୋଲକ ପରିବର୍ତ୍ତେ କେବଳ 'ଗୋଲକ' ଶବ୍ଦର ବ୍ୟାବହାର ଅନେକ ସମୟରେ କରାଯାଇଥାଏ I

ଲକ୍ଷ୍ୟକର ଯେ, ଗୋଲକର ଗୋଟିଏ ମାତ୍ର ବକ୍ରପୃଷ୍ଠତଳ ଅଛି ।

(i) ଏହାର ବ୍ୟାସାର୍ଦ୍ଧ 'r' ଏକକ ହେଲେ :

ଗୋଲକର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ =
$$4\pi r^2$$
 ବର୍ଗ ଏକକ ।
(ii) ଘନଫଳ = $\frac{4}{3}\pi r^3$ ଘନ ଏକକ ।

(B) ପମ୍ପା ଗୋଲକ (Hollow Sphere) :

ଦୁଇଟି ଗୋଲକ ଏକକେନ୍ଦ୍ରିକ ହେଲେ ଏମାନଙ୍କ ମଧ୍ୟବର୍ତ୍ତୀ ଅଂଶ ଓ ଗୋଲକଦ୍ୱୟକୁ ନେଇ ଏକ ଫମ୍ଠା ଗୋଲକ (Hollow Sphere) ର ସୃଷ୍ଟି ।

ଫମ୍ପା ଗୋଲକର ଦୁଇଟି ପୃଷତଳ ଥାଏ । ବାହାରକୁ ଦୃଶ୍ୟମାନ ପୃଷତଳଟିକୁ **ବାହ୍ୟପୃଷତଳ (Outer Surface)** ଏବଂ ଭିତରକୁ ଥିବା ପୃଷତଳକୁ **ଅନ୍ତଃପୃଷତଳ (Inner Surface)** କହନ୍ତି । ବାହ୍ୟପୃଷତଳର ବ୍ୟାସାର୍ଦ୍ଧକୁ **ବହିଃବ୍ୟାସାର୍ଦ୍ଧ** ଏବଂ ଅନ୍ତଃ ପୃଷ୍ଠତଳର ବ୍ୟାସାର୍ଦ୍ଧକୁ **ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ** କୁହାଯାଏ ।

ବହିଃବ୍ୟାସାର୍ଦ୍ଧ R ଏକକ ଓ ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ

- (i) ବହିଃପୃଷତଳର କ୍ଷେତ୍ରଫଳ = $4\pi R^2$ ବର୍ଗ ଏକକ ଏବଂ
- (ii) ଅନ୍ତଃପୃଷତଳର କ୍ଷେତ୍ରଫଳ = $4\pi r^2$ ବର୍ଗ ଏକକ ହେବ ।

(ଚିତ୍ର 5.30)

(iv) ଘନଫଳ ବା ଆୟତନ
$$= \frac{4}{3} \pi R^3 - \frac{4}{3} \pi r^3$$
 $= \frac{4}{3} \pi (R^3 - r^3)$ ଘନ ଏକକ

(C) ଅର୍ଦ୍ଧ ଗୋଲକ (Hemisphere) :

ନିଦା ଗୋଲକର କେନ୍ଦ୍ର ମଧ୍ୟଦେଇ ଅଙ୍କିତ ସମତଳ ଉକ୍ତ ନିଦା ଗୋଲକକୁ ଏକ ବୃତ୍ତାକାର କ୍ଷେତ୍ରରେ ଚ୍ଛେଦକରେ । ଏହି ବୃତ୍ତାକାର କ୍ଷେତ୍ର ଓ ସମତଳର ଏକ ପାର୍ଶ୍ୱରେ ଥିବା ନିଦା ଗୋଲକର ବିନ୍ଦୁମାନଙ୍କର ସଂଯୋଗରେ ଗଠିତ ସେଟ୍କୁ ଏକ ଅର୍ଦ୍ଧଗୋଲକ (Hemi Sphere) କୁହାଯାଏ । ଏକ ଗୋଲକ କେନ୍ଦ୍ର ବିନ୍ଦୁଗାମୀ ଗୋଟିଏ ସମତଳ ଦ୍ୱାରା ଦୁଇଟି ଅର୍ଦ୍ଧ ଗୋଲକରେ ପରିଣତ ହୁଏ ।

ଅର୍ଦ୍ଧ ଗୋଲକର ଦୁଇଟି ପୃଷତଳ ଥାଏ; ଯଥା : (i) ବକ୍ରତଳ (ii) ବୃତ୍ତାକାର ତଳ ବା ଆଧାର

ଅର୍ଦ୍ଧ ଗୋଲକର ବ୍ୟାସାର୍ଦ୍ଧ r ଏକକ ହେଲେ

- (i) ବକ୍ରତଳ ର କ୍ଷେତ୍ରଫଳ = $2\pi r^2$ ବର୍ଗ ଏକକ
- (ii) ଆଧାର ର କ୍ଷେତ୍ରଫଳ = $\pi {
 m r}^2$ ବର୍ଗ ଏକକ
- (iii) ସମଗ୍ରପୃଷତଳ ର କ୍ଷେତ୍ରଫଳ = $3\pi r^2$ ବର୍ଗ ଏକକ

ସମାହିତ ପ୍ରଶ୍ନାବଳୀ

ଭଦାହରଣ - 21 : ଗୋଟିଏ ଗୋଲକର ବ୍ୟାସାର୍ଦ୍ଧ 3.5 ମି. ହେଲେ ତା'ର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ ଓ ଘନଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ଗୋଲାକଟିର ବ୍ୟାସାର୍ଦ୍ଧ r=3.5 ମି.

$$\therefore$$
 ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ = $4\pi r^2 = 4 \times \frac{22}{7} \times (3.5)^2 = 154$ ବ $.$ ମି.

ଏବଂ ଘନଫଳ =
$$\frac{4}{3} \pi r^3 = \frac{4}{3} \times \frac{22}{7} \times (3.5)^2 = 179 \frac{2}{3}$$
 ଘ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ - 22 : 14 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ଅର୍ଦ୍ଧଗୋଲକର ଆୟତନ ଓ ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$

ସମାଧାନ : ଅର୍ଦ୍ଧଗୋଲକର ବ୍ୟାସାର୍ଦ୍ଧ r=14 ସେ.ମି.

$$\therefore$$
 ଆୟତନ = $\frac{2}{3}\pi r^3 = \frac{2}{3} \times \frac{22}{7} \times (14)^3 = \frac{17248}{3} = 5749\frac{1}{3}$ ଘ.ସେ.ମି.

ସମଗ୍ର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ =
$$3\pi r^2 = 3 \times \frac{22}{7} \times 14^2$$
 ବ.ସେ.ମି. = 1848 ବ.ସେ.ମି. (ଉଉର)

ଉଦାହରଣ - 23 : ଗୋଟିଏ ଗୋଲକର ପୃଷ୍ପତଳର କ୍ଷେତ୍ରଫଳ 5544 ବ.ସେ.ମି. ହେଲେ, ତା'ର ଆୟତନ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \tfrac{22}{7})$

ସମାଧାନ : ମନେକର ଗୋଲକର ବ୍ୟାସାର୍ଦ୍ଧ = r ସେ.ମି.

 \therefore ଏହାର ପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ $4\pi {
m r}^2$ ବ.ସେ.ମି.

ପ୍ରଶ୍ୱାନୁସାରେ
$$4\pi r^2 = 5544 \Rightarrow 4 \times \frac{22}{7} \times r^2 = 5544 \Rightarrow r^2 = \frac{5544 \times 7}{4 \times 22} = 441 \Rightarrow r = \sqrt{441} = 21$$
 ସେ.ମି.

$$\therefore$$
 ଗୋଲକର ଆୟଡନ = $\frac{4}{3}\pi r^3$ ଘ.ମି. = $\frac{4}{3} \times \frac{22}{7} \times (21)^3$

.= 88 x 441 ଘ.ସେ.ମି. = 38,808 ଘ.ସେ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ 24 : 7 ସେ.ମି. ଦୀର୍ଘ ବାହୁ ବିଶିଷ୍ଟ ଗୋଟିଏ ସମଘନାକାର କାଠଖଣ୍ଡକୁ କାଟି ବୃହତ୍ତମ ଏକ ଗୋଲକରେ ପରିଣତ କରାଗଲା । ଗୋଲକର ଘନଫଳ ସ୍ଥିର କର । ($\pi \simeq 3.14$)

ସମାଧାନ : ଦଉ ସମଘନର ବାହୁର ଦୈର୍ଘ୍ୟ, a=7 ସେ.ମି. ସେଥିରୁ କଟାଯାଇ ପାରୁଥିବା ବୃହଉମ ଗୋଲକର ବ୍ୟାସ = ସମଘନର ବାହୁର ଦୈର୍ଘ୍ୟ = 7 ସେ.ମି.

$$\therefore$$
 ଗୋଲକର ବ୍ୟସାର୍ଦ୍ଧ, $\mathbf{r}=\frac{7}{2}$ ସେ.ମି.

$$\therefore$$
 ଗୋଲକର ଘନଫଳ = $\frac{4}{3} \pi r^3 = \frac{4}{3} \times 3.14 \times \left(\frac{7}{2}\right)^3 = \frac{538.51}{3} = 179.5$ ଘ.ସେ.ମି. (ଉତ୍ତର)

ଉଦାହରଣ – 25 : ସିଲିଣ୍ଡର ଆକୃତିର ଏକ ଜଳପାତ୍ରର ଭୂମିର ବ୍ୟାସ 10 ସେ.ମି. । ଏଥିରେ ଥିବା ଜଳରେ ସମାନ ଆକାରର 300 ଟି ଛୋଟ ଲୁହା ଗୋଲି ବୂଡ଼ାଇ ଦେବାରୁ ଜଳୟର 2 ସେ.ମି. ଉପରକୁ ଉଠିଗଲା । ପ୍ରତିଟି ଗୋଲିର ବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ଣ୍ଣୟ କର ।

ସମାଧାନ : ମନେକର ପଡି ଗୋଲିର ବ୍ୟାସାର୍ଦ୍ଧ = r ସେ.ମି.

$$\therefore$$
 ଆୟତନ = $\frac{4}{3}\pi r^3$ ଘ.ସେ.ମି.

ସେହିଭଳି 300 ଟି ଛୋଟି ଲୁହା ଗୋଲିର ଆୟତନ = $\frac{4}{3} \pi r^3 \times 300$ ଘ.ସେ.ମି.

300 ଟି ଗୋଲି ବୁଡ଼ିଯିବାରୁ ସିଲିଣ୍ଡର ଆକୃତି ବିଶିଷ୍ଟ ଜଳ ପାତ୍ରରେ ଜଳୟର 2 ସେ.ମି. ଉପରକୁ ଉଠିଲା ।

ବୃଦ୍ଧି ପାଇ ଥିବା ଜଳର ଆୟତନ = π . 5^2 .2 ଘ.ସେ.ମି. (ସିଲିଣ୍ଟରର ବ୍ୟାସାର୍ଦ୍ଧ୍ୱ $\frac{10}{2}$ = 5 ସେ.ମି.)

∴
$$\frac{4}{3} \pi r^3 \times 300 = \pi \times 5^2 \times 2 \implies 400 \pi r^3 = \pi \times 50$$

$$r^3 = \frac{50}{400} = \frac{1}{8} \implies r = \frac{1}{2} = 0.5 \text{ GQ.} \widehat{\text{Pl.}}$$

(ଉଉର)

ଡଦାହରଣ - 26 : 20 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଅର୍ଦ୍ଧ ଗୋଲକ ଆକୃତିର ଏକ କାଠଖଣ୍ଡରୁ ବୃହତ୍ତମ ଗୋଲକଟିଏ କାଟି ନିଆଗଲେ ଅବଶିଷ୍ଟ କାଠର ଘନଫଳ ସ୍ଥିର କର । $(\pi \simeq 3.14)$

ସମାଧାନ : ଦତ୍ତ ଅର୍ଦ୍ଧ ଗୋଲକ ଆକୃତି ବିଶିଷ୍ଟ କାଠ ଖଣ୍ଡର ବ୍ୟାସାର୍ଦ୍ଧ $\mathrm{MB}=\ 20$ ସେ.ମି.

 \therefore ସେଥିରୁ କଟାଯାଇଥିବା ବୃହତ୍ତମ ଗୋଲକଟିର ବ୍ୟାସ $\mathrm{MC}=20$ ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ, $\mathrm{OC}=10$ ସେ.ମି.

$$\therefore$$
 ଘନଫଳ $=\frac{4}{3}\pi(OC)^3 = \frac{4}{3}\pi(10)^3$ ଘ.ସେ.ମି.

ଅର୍ଦ୍ଧ ଗୋଲକ ଆକୃତି ବିଶିଷ୍ଟ କାଠ ଖଣ୍ଡର ଘନଫଳ = $\frac{2}{3}\pi(MB)^3 = \frac{2}{3}\pi(20)^3$ ଘ.ସେ.ମି. $(\widehat{\Theta}_{\underline{Q}} 5.31)$

ଅର୍ଦ୍ଧ ଗୋଲକ ଆକୃତିର ଏକ କାଠଖଣ୍ଡରୁ ବୃହତ୍ତମ ଗୋଲକଟିଏ କାଟି ନିଆଗଲେ ଅବଶିଷ୍ଟ କାଠର ଘନଫଳ

$$= \frac{2}{3}\pi(20)^3 - \frac{4}{3}\pi(10)^3 = \frac{2}{3}\pi\{(20)^3 - 2\times(10)^3\}$$

$$=\frac{2}{3}\pi(8000-2000)=\frac{2}{3}\times3.14\times6000$$
 ଘ.ସେ.ମି.

$$=4000 \times 3.14 = 12560 \ a.ସେ.ମି.$$
 (ଉଉର)

ଅନୁଶୀଳନୀ - 5(f)

- ନିମୁରେ କେତେକ ଗୋଲକର ବ୍ୟାସାର୍ଦ୍ଧ ${
 m r}$ କିୟା ବ୍ୟାସ ${
 m d}$ ଦଉ ଅଛି । ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ଗୋଲକର ପୃଷ୍ଠତଳର 1. କ୍ଷେତ୍ରଫଳ ଓ ଆୟତନ ନିର୍ଦ୍ଧୟ କର । $(\pi \simeq \frac{22}{7})$
 - (i) r = 21 69. \hat{P} . (ii) d = 14 69. \hat{P} . (iii) r = 10.5 69. \hat{P} .
- ନିମ୍ବରେ ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ତିନୋଟି ଲେଖାଏଁ ଧାତବ ଗୋଲକର ବ୍ୟାସାର୍ଦ୍ଧ ଦଉ ଅଛି । ସେଗୁଡ଼ିକୁ ତରଳାଇ 2. ଗୋଟିଏ ଗୋଲକରେ ପରିଶତ କଲେ, ପ୍ରତ୍ୟେକ ସ୍ଥଳେ ନୂତନ ଗୋଲକର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ହେବ ? $(\pi \simeq \frac{22}{7})$
 - (i) 3 ସେ.ମି., 4 ସେ.ମି., 5 ସେ.ମି.
- (ii) 8 ସେ.ମି., 6 ସେ.ମି., 1 ସେ.ମି.
- (iii) 17 6 . กิ., 14 6 . กิ., 7 6 . กิ.
- ନିମ୍ନ ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ରରେ ଦୁଇଟି ଲେଖାଏଁ ଗୋଲକର ବ୍ୟାସର ଅନୁପାତ ବା ବ୍ୟାସାର୍ଦ୍ଧର ଅନୁପାତ ଦଉ ଅଛି । 3. ପ୍ରତ୍ୟେକ କ୍ଷେତ୍ର ଗୋଲକ ଦ୍ୱୟର ଆୟତନର ଅନୁପାତ ଏବଂ ପୃଷତଳର କ୍ଷେତ୍ରଫଳର ଅନୁପାତ ନିର୍ଣ୍ଣୟ କର ।
- (ii) $\frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{1}{3}$ (iii) $\frac{\mathbf{r}_1}{\mathbf{r}_2} = \frac{2}{5}$
- ଗୋଟିଏ ଗୋଲକର ଆୟତନ $\frac{792}{7}$ ଘ.ସେ.ମି.ହେଲେ ତା'ର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$ 4.
- (i) ଗୋଟିଏ ଗୋଲକର ପୃଷତଳର କ୍ଷେତ୍ରଫଳ 616 ବ.ସେ.ମି. ହେଲେ ତା'ର ଆୟତନ ନିର୍ଦ୍ଧୟ କର । $(\pi \simeq \frac{22}{7})$ 5.
 - (ii) ଗୋଟିଏ ଗୋଲକର ପୂଷତଳର କ୍ଷେତ୍ରଫଳ 5544 ବ.ସେ.ମି. ହେଲେ ତା'ର ବ୍ୟାସାର୍ଦ୍ଧ କେତେ ? $(\pi \simeq \frac{22}{7})$
- ଗୋଟିଏ ଗୋଲକର ଘନଫଳ 19404 ଘ.ମି. । ଏହାର ସମଘନଫଳ ବିଶିଷ୍ଟ ଏକ ଅର୍ଦ୍ଧଗୋଲକର ବ୍ୟାସାର୍ଦ୍ଧ 6. କେତେ $?(\pi \simeq \frac{22}{7})$
- 9 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ଧାତବ ଗୋଲକକୁ ତରଳାଇ ସେଥିରୁ 7.
 - (i) 1 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ କେତୋଟି କ୍ଷୁଦ୍ର ଗୋଲକ ପ୍ରସ୍ତୁତ କରାଯାଇ ପାରିବ ? $(\pi \simeq \frac{22}{7})$
 - (ii) 1 ସେ.ମି. ବ୍ୟାସ ବିଶିଷ୍ଟ ବୃତ୍ତାକାର ପ୍ରସ୍ଥ ଚ୍ଛେଦଥାଇ କେତେ ଲୟର ତାର ପ୍ରସ୍ତୁତ କରାଯାଇ ପାରିବ ? $(\pi \simeq \frac{22}{7})$
- ଗୋଟିଏ ଅର୍ଦ୍ଧଗୋଲକାକୃତି ପାଣିଟାଙ୍କିର ଭିତର ପାଖର ବ୍ୟାସ 4.2 ମିଟର ହେଲେ, ସେଥିରେ କେତେ ଲିଟର ପାଣି 8. ଧରିବ ନିର୍ଣ୍ଣୟ କର | $(\pi \simeq \frac{22}{7})$
- ସମାନ ଭୂମି ବିଶିଷ୍ଟ ଗୋଟିଏ ଅର୍ଦ୍ଧଗୋଲକ, ଗୋଟିଏ ସିଲିଣ୍ଡର ଓ ଗୋଟିଏ କୋନ୍ର ଆୟତନ ସମାନ ହେଲେ, 9. ସେମାନଙ୍କର ଉଚ୍ଚତାର ଅନୁପାତ ସ୍ଥିର କର T
- ଗୋଟିଏ ଫମ୍ପା ଧାତବ ଗୋଲକର ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ 3 ସେ.ମି. ଓ ବହିଃବ୍ୟାସାର୍ଦ୍ଧ 6 ସେ.ମି. । ପତି ଘନସେ.ମି. ଧାତୃର 10. ବସ୍ତୁତ୍ୱ 8 ଗ୍ରାମ ହେଲେ ତା'ର ବସ୍ତୁତ୍ୱ ନିର୍ଣ୍ଣୟ କର । $(\pi \simeq \frac{22}{7})$
- ଗୋଟିଏ ଅର୍ଦ୍ଧ ଗୋଲକ ଆକୃତିର ପାତ୍ରର ବାହାର ବ୍ୟାସାର୍ଦ୍ଧ 8 ସେ.ମି. ଓ ମୋଟେଇ 1 ସେ.ମି. । ଏହାର ସମଗ୍ର 11. ପୃଷତଳର କ୍ଷେତ୍ରଫଳ କେତେ ? $(\pi \simeq \sqrt{10})$
- ଗୋଟିଏ ନିଦା ସୀସା ସମଘନରୁ ଏକ ବୃହତ୍ତମ ଆକାର ବିଶିଷ୍ଟ ଗୋଲକ କାଟି ନିଆଗଲା । ଅବଶିଷ୍ଟ ଅଂଶର 12. ଆୟତନ 12870 ଘ.ସେ.ମି. ହେଲେ, ସମଘନର ବାହୁର ଦୈର୍ଘ୍ୟ କେତେ ? $(\pi \simeq 3.14)$
- ଏକ ଅର୍ଦ୍ଧ ଗୋଲକାକୃତି ବିଶିଷ୍ଟ ପାତ୍ରର ମୋଟେଇ ଓ ବାହାରର ବ୍ୟାସାର୍ଦ୍ଧ ଯଥାକ୍ରମେ 1 ସେ.ମି. ଓ 10 ସେ.ମି. ହେଲେ, 13. (i)ଏହାର ସମଗ୍ରପୃଷ୍ଠତଳର କ୍ଷେତ୍ରଫଳ ନିର୍ଣ୍ଣୟ କର ଏବଂ (ii) ଏଥିରେ ବ୍ୟବହୃତ ଧାତୁର ଆୟତନ ନିର୍ଣ୍ଣୟ କର । $(\pi \, ମାଧ୍ୟମରେ ଉତ୍ତର ସ୍ଥିର କର)$

ଅଙ୍କନ (CONSTRUCTION)

6.1 ଉପକ୍ରମଣିକା (Introduction) :

ନବମ ଶ୍ରେଣୀରେ ତ୍ରିଭୁଜ ଓ ଚତୂର୍ଭୁଜ ସମ୍ବନ୍ଧୀୟ ଅଙ୍କନ ପ୍ରାୟତଃ ବିଷ୍ଟୃତ ଭାବରେ ଆଲୋଚନା କରାଯାଇଛି । କ୍ଷେତ୍ରଫଳ ସମ୍ବନ୍ଧୀୟ ଉପପାଦ୍ୟକୁ ପ୍ରୟୋଗ କରି ତ୍ରିଭୁଜର ସମକ୍ଷେତ୍ରଫଳ ବିଶିଷ୍ଟ ସମଦ୍ୱିବାହୁ ତ୍ରିଭୁଜ, ସମକୋଣୀ ତ୍ରିଭୁଜ ଓ ଆୟତ ଚିତ୍ର ଇତ୍ୟାଦି ଅଙ୍କନ କରାଯାଇଛି । ତତ୍ସହିତ ଚତୂର୍ଭୁଜର ସମକ୍ଷେତ୍ରଫଳ ବିଶିଷ୍ଟ ତ୍ରିଭୁଜ ଅଙ୍କନ ଓ ଶେଷ ଭାଗରେ ତ୍ରିଭୁଜର ଅନ୍ୟାନ୍ୟ କେତେକ ଜଟିଳ ଅଙ୍କନ ସମ୍ବନ୍ଧରେ ମଧ୍ୟ ଆଲୋଚନା ହୋଇଛି ।

ଏହି ଅଧ୍ୟାୟରେ ତ୍ରିଭୂଜର ପରିବୃତ୍ତ ଅଙ୍କନ; ବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁରୁ ଓ ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ସ୍ୱର୍ଶକ ଅଙ୍କନ; ବୃତ୍ତରେ ସମବାହୁ ତ୍ରିଭୂଜ, ବର୍ଗଚିତ୍ର, ସୁଷମ ଷଡ଼ଭୂଜ ଅନ୍ଧର୍ଲିଖନ ଓ ପରିଲିଖନ; ବର୍ଗଚିତ୍ରର ଅନ୍ତଃବୃତ୍ତ ଓ ପରିବୃତ୍ତ ଅଙ୍କନ ଇତ୍ୟାଦି ସମ୍ବନ୍ଧରେ ଆଲୋଚନା କରିବା । ଏତତ୍ବ୍ୟତୀତ ଏକ ରେଖାଖଣ୍ଡକୁ ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ଅନୁପାତରେ ଅନ୍ତର୍ବିଭାଜନ ଓ ବହିର୍ବିଭାଜନ ଓ ଶେଷ ଭାଗରେ ବୃତ୍ତରେ ଦଉ ତ୍ରିଭୁଜର ଏକ ସଦୃଶ ତ୍ରିଭୁଜ ଅନ୍ଧର୍ଲିଖନ ଓ ପରିଲିଖନ ବିଷୟରେ ଆଲୋଚନା କରିବା ।

6.2. ଅଙ୍କନ - 1 :

ଗୋଟିଏ ତ୍ରିଭୁଜର ଏକ ବାହୁର ଦୈର୍ଘ୍ୟ ଏବଂ ଏହି ବାହୁର ବିପରୀତ କୋଣର ପରିମାଣ ଦଉଥିଲେ ତ୍ରିଭୁଜର ପରିବୃତ୍ତ ଅଙ୍କନ ।

Drawing the circum-circle of a triangle of which the length of one side and the measure of the angle opposite to it are given.

ଏହି ପରିସ୍ଥିତିରେ ତ୍ରିଭୁଜ ଅଙ୍କନ ପାଇଁ ଦୁଇଗୋଟି ତଥ୍ୟ ଯଥା ବାହୁର ଦୈର୍ଘ୍ୟ ଓ ବାହୁର ବିପରୀତ କୋଣ ପରିମାଣ ଦଉଥିବାରୁ ନିର୍ଦ୍ଦିଷ୍ଟ ତ୍ରିଭୁଜ ଅଙ୍କନ ସୟବପର ନୁହେଁ। କିନ୍ତୁ ତ୍ରିଭୁଜର ଏକ ନିର୍ଦ୍ଦିଷ ପରିବୃତ୍ତ ଅଙ୍କନ ସନ୍ତବପର । ଏ ଦୁଇଟି ତଥ୍ୟ ବ୍ୟତୀତ ଅନ୍ୟ ଏକ ତଥ୍ୟ ଦଉ ଥିଲେ ଏହି ପରିବୃତ୍ତକୁ ବ୍ୟବହାର କରି ଏକ ନିର୍ଦ୍ଦିଷ୍ଟ ତ୍ରିଭୁଜ ଅଙ୍କନ କରିହେବ ।

ବିଶେଷଣ : ΔABC ର \overline{BC} ବାହର ଦୈର୍ଘ୍ୟ ଏବଂ ଏହାର ସନ୍ତ୍ରଖୀନ କୋଣ ପରିମାଣ m $\angle A= heta^{_0}$ ($heta^{_0}{<}90^{_0}$) ଦଉ ଅଛି ।

A

 $\theta - 90^{\circ}$

В

ଏହି ତଥ୍ୟଦ୍ୱୟକୁ ଭିତ୍ତିକରି ଏକ ପରିବୃତ୍ତ ଅଙ୍କନ କରିବାକୁ ହେବ । ଅର୍ଥାତ୍ ପରିବୃତ୍ତର କେନ୍ଦ୍ରର ଅବସ୍ଥିତି ଓ ବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ଣ୍ଣୟ କରିବାକୁ ହେବ ।

ମନେକର $\Delta\,\mathrm{ABC}$ ର ପରିବୃତ୍ତର କେନ୍ଦ୍ର $\mathrm{O}\,$ ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ $\mathrm{OB}\,$ (ବା $\mathrm{OC})$ $\mathrm{I}\,$

 $m \angle A = \theta^0$ ହେଲେ, $m \angle BOC = 2\theta$ ହେବ ଅର୍ଥାତ୍ \overrightarrow{BXC} ର ଡିଗ୍ରୀ ପରିମାପ 2θ ହେବ । 🖰 ଚାପାନ୍ତର୍ଲିଖିତ କୋଣର ପରିମାଣ ଏହି କୋଣ ଦ୍ୱାରା ଛେଦିତ ଚାପର ଡିଗ୍ରୀପରିମାପର ଅର୍ଦ୍ଧେକ ଅଟେ ।

$$m \angle OBC = m \angle OCB = \frac{180 - 2\theta}{2} = (90^{\circ} - \theta^{\circ})$$

ବର୍ତ୍ତମାନ ତୂମେ $A{-}S{-}A$ ତ୍ରିଭୁଜ ଅଙ୍କନ ପ୍ରଶାଳୀରେ $\Delta\,\mathrm{BOC}$ ଅଙ୍କନ କରିପାରିବ $\,\mathrm{I}\,$ ଫଳରେ କେନ୍ଦ୍ର ଠ ଏବଂ ପରିବ୍ୟାସାର୍ଦ୍ଧ OB କିମ୍ବା OC ନିର୍ଣ୍ଣିତ ହୋଇପାରିବ ।

ଅଙ୍କନ ପ୍ରଶାଳୀ:

- (i) BC = a ଏକକ ଏବଂ $m \angle OBC = m \angle OCB = 90^{\circ} \theta$ ନେଇ $\triangle OBC$ ଅଙ୍କନ କରା
- (ii) ଠକୁ କେନ୍ଦ୍ର ଏବଂ OB (କିୟା OC) କୁ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ବୃତ୍ତ ଅଙ୍କନ କର ।
- ବି.ଦ: (a) $\theta = 90^\circ$ ହେଲେ BC ବ୍ୟାସ ହେବ । \overline{BC} ର ମଧ୍ୟବିନ୍ଦ୍ର କେନ୍ଦ୍ର O ଏବଂ OB କିନ୍ଦା OC ବ୍ୟାସାର୍ଦ୍ଧ ହେବ ।
 - $\theta > 90^{\circ}$ ହେଲେ (ଚିତ୍ର 6.2) \overline{BC} ର ଯେଉଁ ପାର୍ଶ୍ୱରେ A ବିନ୍ଦୁ ରହିଛି ତା'ର ବିପରୀତ ପାର୍ଶ୍ୱରେ କେନ୍ଦ୍ର ଅବସ୍ଥାନ କରିବ ।

[ଚିତ୍ର 6.2] ଏହି ପରିସ୍ଥତିରେ m∠CBO = m∠BCO $=(\theta-90^{\circ})$ ଅଙ୍କନ କରି କେନ୍ଦ୍ର O ଏବଂ ବ୍ୟାସାର୍ଦ୍ଧ OB କିୟା OC ନିର୍ଣ୍ଣୟ କରIଏଠାରେ ଲକ୍ଷ୍ୟକର $\widehat{B}X\widehat{C}$ ଚାପର ଡିଗୀ ପରିମାପ 2θ ହେଲେ, m∠BOC = 360º – 20 ହେବ l

ଉଦାହରଣ - 1:

 Δ ABC ଅଙ୍କନ କର ଯାହାର BC = 7.5 ସେ.ମି., m \angle A = 60° , AX ମଧ୍ୟମା = 4.5 ସେ.ମି.

ଅଙ୍କନ ପ୍ରଶାଳୀ:

- (i) BC ଏବଂ $\angle A$ ର ପରିମାଣକୁ ନେଇ ପରିବୃତ୍ତ ଅଙ୍କନ କର ।
- (ii) \overline{BC} ର ମଧ୍ୟବିନ୍ଦୁ X ଚିହୁଟ କର I
- (iii) X କୁ କେନ୍ଦ୍ର କରି AX ବ୍ୟାସାର୍ଦ୍ଧ ପରିମିତ ଚାପ ଅଙ୍କନ କର ଯାହା ଅଙ୍କିତ ପରିବୃତ୍ତକୁ A ବିନ୍ଦୁରେ ଛେଦ କରିବ ।
- (iv) \overline{AB} ଓ \overline{AC} ଅଙ୍କନ କର I
- (v) ABC ଆବଶ୍ୟକୀୟ ତ୍ରିଭୁଜ ।

[ଚିତ୍ର 6.3]

ଅନୁଶୀଳନୀ -6(a)

- Δ ABCରେ BC = 6 ସେ.ମି., m \angle A = 45° , ତ୍ରିଭୁଜର ପରିବୃତ୍ତ ଅଙ୍କନ କର ।
- Δ ABCରେ AC = 7 ସେ.ମି., m \angle B = 60° , ତ୍ରିଭୁଜର ପରିବୃତ୍ତ ଅଙ୍କନ କର ।
- Δ ABCରେ AB = 6.5 ସେ.ମି., m \angle C = 90° , ତ୍ରିଭୁଜର ପରିବୃତ୍ତ ଅଙ୍କନ କର ।
- 4. $\Delta \, ABC$ ରେ m $\, \angle \, A = 120^{\circ}, \, BC = 4.5 \,$ ସେ.ମି. । ତ୍ରିଭୁଜର ପରିବୃତ୍ତ ଅଙ୍କନ କର ।
- 5. $\Delta \, \mathrm{ABC}$ ରେ $\mathrm{BC} = 7$ ସେ.ମି., $\mathrm{m} \, \angle \, \mathrm{A} = 60, \, \mathrm{AX} \,$ ମଧ୍ୟମା $= 4.5 \,$ ସେ.ମି., ତ୍ରିଭୁଜଟି ଅଙ୍କନ କର ।
- 6. \triangle ABCରେ \angle B ସମକୋଶ । AC = 7 ସେ.ମି., B ବିନ୍ଦୁରୁ \overline{AC} ପ୍ରତିଲୟ । \overline{BD} ର ଦୈର୍ଘ୍ୟ 3 ସେ.ମି. । ତ୍ରିଭୁଜଟି ଅଙ୍କନ କର । ଏ କ୍ଷେତ୍ରରେ \overline{AC} ର ଏକ ପାର୍ଶ୍ୱରେ B ବିନ୍ଦୁର କେତେ ଗୋଟି ଅବସ୍ଥିତି ପାଇଲ ?
- 7. \triangle ABCରେ BC = 8 ସେ.ମି., m \angle A = 45° , AD ଉଚ୍ଚତା 3 ସେ.ମି. ହେଲେ, ତ୍ରିଭୁଜଟି ଅଙ୍କନ କର ।
- 8. \triangle ABC ଅଙ୍କନ କର ଯାହାର m \angle B = 60° , AC = 6.5 ସେ.ମି. ଏବଂ $\overline{\mathrm{AX}}$ ମଧ୍ୟମାର ଦୈର୍ଘ୍ୟ = 5 ସେ.ମି.
- 9. \triangle ABCର m \angle A = 60°, BC = 7 ସେ.ମି., $\overline{\mathrm{BE}} \perp \overline{\mathrm{AC}}$ BE = 6.3 ସେ.ମି. \triangle ଟି ଅଙ୍କନ କର ।
- $10. \quad \Delta \, \mathrm{ABC}$ ର m $\, \angle \, \mathrm{A} = 150^{\circ}, \, \mathrm{BC} = 5 \, \mathrm{G}$ େ. ମି., $\, \mathrm{AD} \, \, \mathrm{Ge}$ ତା $= \, 3 \, \, \mathrm{G}$ େ. ହେଲେ, ତ୍ରିଭୁକଟି ଅଙ୍କନ କର ।
- $11. \quad \Delta \, \mathrm{ABC}$ ରେ m $\, \angle \, \mathrm{A} = 60^{\circ}, \, \mathrm{b:c} = 2.3, \, \mathrm{BC} = 7 \, \mathrm{GI.}$ ମି. । ତ୍ରିଭୁଜଟି ଅଙ୍କନ କର ।
- 12. ABCD ସାମାନ୍ତରିକ ଚିତ୍ର ଅଙ୍କନ କର ଯାହାର AB = 5.5 ସେ.ମି., କର୍ଣ୍ଣ \overline{BD} ର ଦୈର୍ଘ୍ୟ = 8 ସେ.ମି. ଓ m $\angle DAC = 60^{\circ}$ |

6.3. ଅଙ୍କନ - 2:

ଦଉବୃତ୍ତ ଉପରିସ୍ଥ ଏକ ବିନ୍ଦୁରେ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ସ୍ମର୍ଶକ ଅଙ୍କନ।

(Drawing a tangent to a given circle at a given point on it.)

ବିଶ୍ଲେଷଣ : O ଦଉ ବୃତ୍ତର କେନ୍ଦ୍ର । P ବୃତ୍ତ ଉପରିସ୍ଥ କୌଣସି ଏକ ବିନ୍ଦୁ । \overline{OP} ଏକ ବ୍ୟାସାର୍ଦ୍ଧ । ମନେକର ବୃତ୍ତର P ବିନ୍ଦୁରେ \overrightarrow{AB} ସ୍ମର୍ଶକ ଅଟେ । (ଚିତ୍ର 6.4)

- ः ବୃତ୍ତର ସ୍ମର୍ଶକ ସ୍ମର୍ଶ ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ପ୍ରତି ଲୟ ଅଟେ।

ଅଙ୍କନ ପ୍ରଣାଳୀ : (i) ବୃତ୍ତ ସମ୍ବନ୍ଧୀୟ ଦତ୍ତ ତଥ୍ୟନେଇ ବୃତ୍ତଟି ଅଙ୍କନ କର ।

- (ii) ବୃତ୍ତ ଉପରେ P ନାମକ ବିନ୍ଦୁ ଚିହ୍ନଟ କର।
- (iii) $\overline{\mathrm{OP}}$ ବ୍ୟାସାର୍ଦ୍ଧ ଅଙ୍କନ କର ।
- (iv) \overrightarrow{OP} ପ୍ରତି P ବିନ୍ଦୁରେ ଲୟ \overrightarrow{AB} ଅଙ୍କନ କର ।

ପ୍ରମାଣ : P ବିନ୍ଦୁରେ \overline{OP} ପ୍ରତି \overrightarrow{AB} ଲୟ ହେତୁ ବୃତ୍ତପ୍ରତ

P ବିନ୍ଦୁରେ $\stackrel{\longleftrightarrow}{AB}$ ସ୍ମର୍ଶକ । $\stackrel{\longleftrightarrow}{\ldots}$ $\stackrel{\longleftrightarrow}{AB}$ ଆବଶ୍ୟକ ସ୍ମର୍ଶକ।

ବିକଳ୍ପ ପ୍ରଣାଳୀ :

ବିଶ୍ଳେଷଣ : Q ବୃତ୍ତ ଉପରିସ୍ଥ ଯେକୌଣସି ଏକ ବିନ୍ଦୁ। Q ବିନ୍ଦୁରେ ସ୍ମୁର୍ଶକ ଅଙ୍କନ କରିବାକୁ ହେବ । ମନେକର Q ବିନ୍ଦୁରେ \overrightarrow{PQR} ବୃତ୍ତ ପ୍ରତି ଅଙ୍କିତ ସ୍ମୁର୍ଶକ ଏବଂ \overline{QN} ଏବଂ \overline{QM} ଦୁଇଟି ଜ୍ୟା । M, Nକୁ ଯୋଗ କରାଯାଇଛି । (ଚିତ୍ର 6.6)

- ∴ m∠NQR = m∠QMN ହେବ l
- ି ବୃତ୍ତର ଏକ ସ୍ମୁର୍ଶକ ସ୍ମୁର୍ଶବିନ୍ଦୁଗାମୀ କ୍ୟା ସହିତ ଯେଉଁ ପରିମାଣ କୋଣ ଉତ୍ପନ୍ନ କରେ ତା'ର ପରିମାଣ ଉକ୍ତ କୋଣର ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣର (ଅଥବା ବୃତ୍ତଖଣ୍ଡସ୍ଥ କୋଣର) ପରିମାଣ ସହ ସମାନ।

ଅଙ୍କନ ପ୍ରଶାଳୀ:

- (i) ଦଭ ତଥ୍ୟ ଅବଲୟନ କରି ବୃଭଟିଏ ଅଙ୍କନ କର।
- (ii) ବୃତ୍ତ ଉପରେ Q ନାମକ ବିନ୍ଦୁ ଚିହୁଟ କର ।
- (iii) \overline{QM} , \overline{QN} ଏବଂ \overline{MN} ଜ୍ୟା ଅଙ୍କନ କରା
- (iv) Q ବିନ୍ଦୁରେ \angle QMN ର ସମାନ ପରିମାଣ ବିଶିଷ୍ଟ \angle NQR ଅଙ୍କନ କର igatharpoons
- (v) PR ସ୍ପର୍ଶକ ଅଙ୍କନ କର।

ପ୍ରମାଣ : $m \angle NQR = m \angle QMN$ ହେତୁ \overrightarrow{PR} , Q ବିନ୍ଦୁରେ ବୃଉପ୍ରତି ସ୍ପୂର୍ଶକ ହେବ |[ଚିତ୍ର 6.7]

ଅଙ୍କନ - 3 :

କୌଣସି ଦଉ ବୃଉର ବହିଃସ୍ଥ ଏକ ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃଉ ପ୍ରତି ସ୍ମର୍ଶକ ଅଙ୍କନ।

(Drawing tangent to a given circle from a given point outside it.)

ମନେକର ABC ଏକ ଦଉ ବୃତ୍ତ ଏବଂ P ବିନ୍ଦୁରୁ ABC ବୃତ୍ତପ୍ରତି ସ୍ପୂର୍ଶକ ଅଙ୍କନ କରିବାକୁ ହେବ । ସୂଚନା : ପ୍ରଶ୍ନରେ ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ (r) ଓ ବୃତ୍ତ କେନ୍ଦ୍ରଠାରୁ P ବିନ୍ଦୁର ଦୂରତା (x) ଦିଆଯାଏ । ଫଳରେ ସ୍ପୂର୍ଶକ ଅଙ୍କନ ପ୍ରକ୍ରିୟା ଆରୟ ପୂର୍ବରୁ ଆମେ

- (a) ଦଉ ବ୍ୟାସାର୍ଦ୍ଧବିଶିଷ୍ଟ ବୃଉଟିଏ ଅଙ୍କନ କରୁ ଏବଂ ଏହାର କେନ୍ଦ୍ର O ଚିହ୍ନଟ କରୁ ।
- (b) O ବିନ୍ଦୁଗାମୀ ଏକ ରଶ୍ମି \overrightarrow{OX} ଅଙ୍କନ କରୁ ।
- (c) ଠକୁ କେନ୍ଦ୍ରକରି ଏବଂ r ଏକକ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ଏକ ଚାପ ଅଙ୍କନ କରୁ, ଯେପରି ଏହା \overrightarrow{OX} କୁ ଛେଦକରିବ ।
- (d) ସୋପାନ (c)ରେ ଅଙ୍କିତ ଚାପ ଓ ସୋପାନ (b) ରେ ଅଙ୍କିତ ରଶ୍ମିର ଛେଦବିନ୍ଦୁ ହିଁ ଦଉ ବିନ୍ଦୁ P। ଏହିପରି ଆମେ ଦଉ ବୃତ୍ତ ଓ ଦଉ ବିନ୍ଦୁ ପାଇଥାଉ।

ଅଙ୍କନ ପ୍ରଶାଳୀ :

- (i) \overline{OP} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ଅଙ୍କନ କରି ଏହାର $(\overline{OP}$ ର) ମଧ୍ୟବିନ୍ଦୁ S ନିରୂପଣ କର ।
- (ii) Sକୁ କେନ୍ଦ୍ରକରି ଓ SP (ବା SO)କୁ ବ୍ୟାସାର୍ଦ୍ଧରୂପେ ନେଇ ବୃତ୍ତ ଅଙ୍କନ କର ।
- (iii) ସୋପାନ (ii)ରେ ଅଙ୍କିତ ବୃତ୍ତ ଓ ଦଉ ବୃତ୍ତର ହେଦବିନ୍ଦୁ M ଓ N ଚିହ୍ନଟ କର।
- (iv) PM ଓ PN ଅଙ୍କନ କର । PM ଓ PN ନିର୍ବେୟ ସ୍ୱର୍ଗକ । [ଚିତ୍ର 6.8]
- ପ୍ରମାଣ : \overline{OM} , \overline{ON} ଅଙ୍କନ କରାଯାଉ।
 - ି: PMN ବୃତ୍ତର ବ୍ୟାସ \overline{PO} : $m \angle PMO = m \angle PNO = 90^{\circ}$ ପୁନଣ୍ଟ ଦଉ ବୃତ୍ତରେ \overline{OM} ଓ \overline{ON} ଦୁଇଟି ବ୍ୟାସାର୍ଦ୍ଧ ଏବଂ \overline{OM} ପ୍ରତି M ଠାରେ \overline{PM} ଲୟ ଓ \overline{ON} ପ୍ରତି N ଠାରେ \overline{PN} ଲୟ ।

O

X

 $oldsymbol{\cdot \cdot}$ ଦଭ ବୃଭ ପ୍ରତି $\overrightarrow{ ext{PM}}$ ଓ $\overrightarrow{ ext{PN}}$ ଦୂଇଟି ସ୍ପର୍ଶକ ।

ଅନୁଶୀଳନୀ - 6(b)

- 1. 3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କର । ବୃତ୍ତର ଯେ କୌଣସି ଏକ ବିନ୍ଦୁରେ ସ୍ମର୍ଶକ ଅଙ୍କନ କର ।
- 2. 3.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ କେନ୍ଦ୍ରବିନ୍ଦୁର ସାହାଯ୍ୟ ନନେଇ ବୃତ୍ତର କୌଣସି ଏକ ବିନ୍ଦୁରେ ସୁର୍ଶକ ଅଙ୍କନ କର ।
- 3. 3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କର । ଏହାର କେନ୍ଦ୍ର O ହେଉ । P ବୃତ୍ତର ଏକ ବହିଃସ୍ଥ

ବିନ୍ଦୁ। $\mathrm{OP}=7$ ସେ.ମି.। P ବିନ୍ଦୁରୁ ବୃଭ ପ୍ରତି $\overline{\mathrm{PA}}$, $\overline{\mathrm{PB}}$ ଦୁଇଟି ସୁର୍ଶକ ଖଣ୍ଡ ଅଙ୍କନ କରା ସୁର୍ଶକ ଖଣ୍ଡଦ୍ୱୟ ମାପି ଉଭୟଙ୍କ ମଧ୍ୟରେ ସମ୍ପର୍କ ନିର୍ଣ୍ଣୟ କର ।

- \overline{AB} ଅଙ୍କନ କର । ଯେପରିକି AB=4 ସେ.ମି. । \overline{AB} କୁ ବ୍ୟାସ ରୂପେ ନେଇ ବୃତ୍ତ ଅଙ୍କନ କର । A4. ଓ B ବିନ୍ଦୂରେ ବୃତ୍ତ ପ୍ରତି ସ୍ମୂର୍ଶକ ଅଙ୍କନ କର। ଏହି ସ୍ମୂର୍ଶକଦ୍ୱୟ କିପରି ସମ୍ପର୍କିତ ନିର୍ଣ୍ଣୟ କର।
- 5.(i) 4 ସେ.ମି. ବ୍ୟାସ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତର କେନ୍ଦ୍ର O । \overline{OA} ଏବଂ \overline{OB} ଦୁଇଟି ବ୍ୟାସାର୍ଦ୍ଧ $m \angle AOB$ $=90^{\circ}$ । \overrightarrow{AX} ଓ \overrightarrow{BY} ପରସ୍କୁରକୁ M ବିନ୍ଦୁରେ ଚ୍ଛେଦ କରୁଥିବା ଦୁଇଟି ସୁର୍ଶକ ଅଙ୍କନ କର । \overrightarrow{OAMB} କି'ପ୍ରକାର ଚତ୍ରଭୂଜ ପରୀକ୍ଷା କରି ନିର୍ଣ୍ଣୟ କର ।
- (ii) 2.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧବିଶିଷ୍ଟ ବୃତ୍ତ ଅଙ୍କନ କରି କେନ୍ଦ୍ରକୁ 'O' ନାମରେ ନାମିତ କର । \overline{OA} ଏବଂ \overline{OB} ବ୍ୟାସାର୍ଦ୍ଧ ଦୁଇଟି ଅଙ୍କନ କର ଯେପରି m $\angle AOB = 120^{\circ}$ | A ଓ B ଠାରେ ବୃତ୍ତ ପ୍ରତି ସ୍ମର୍ଶକ ଅଙ୍କନ କର ଓ ଛେଦବିନ୍ଦୁକୁ P ନାମ ଦିଆ |OAPB| ଚତୁର୍ଭୁକର କର୍ତ୍ତ $\overline{OP}|$ ଓ $\overline{AB}|$ ଅଙ୍କନ କର |AB|ମଧ୍ୟରେ ସମ୍ପର୍କ ଅନୁଧାନ କର ।
- AB=8 ସେ.ମି. ବିଶିଷ୍ଟ ରେଖାଖଣ୍ଡ ଅଙ୍କନ କର । A ବିନ୍ଦୁକ କେନ୍ଦୁ ନେଇ 3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ 6. ଏକ ବୃତ୍ତ ଅଙ୍କନ କର ଓ ${f B}$ ବିନ୍ଦୁରୁ ଉକ୍ତ ବୃତ୍ତ ପ୍ରତି ଦୁଇଟି ସୁର୍ଶକ ଅଙ୍କନ କର ।
- 6 ସେ.ମି. ବ୍ୟାସ ବିଶିଷ୍ଟ ବୃତ୍ତଟିଏ ଅଙ୍କନ କର । ବୃତ୍ତର ବହିଃସ୍ଥ 'P' ଏକ ବିନ୍ଦୁ ଚିହୁଟ କର ଯେପରିକି 7. ବୃତ୍ତର ଯେଉଁ ବିନ୍ଦୁ 'P' ଠାରୁ ନିକଟତମ ତାହାର P ଠାରୁ ଦୂରତା 4.5 ସେ.ମି. l P ବିନ୍ଦୁରୁ ବୃତ୍ତ ପ୍ରତି ସୂର୍ଶକଖଣ୍ଡ ଅଙ୍କନ କରି ତାହାର ଦୈର୍ଘ୍ୟ ମାପି ଲେଖ ।
- 3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କର । ଏହାର ଏକ ବହିଃସ୍ଥ ବିନ୍ଦୁ P ରୁ \overline{PA} ଓ \overline{PB} ଦୁଇଟି ସ୍ୱର୍ଶକଖଣ୍ଡ ଅଙ୍କନ କର ଯେପରିକି m $\angle APB = 60^{\circ}$ ହେବ l
- ଅଙ୍କନ-4 : ଦଉ ବୃତ୍ତରେ (a) ସମବାହୁ ତ୍ରିଭୁଜ (b) ବର୍ଗଚିତ୍ର (c) ସୁଷମ ଷଡ଼ଭୁଜ ଅନ୍ତର୍ଲିଖନ । **6.4.** (Inscribing (a) an equilateral triangle (b) a square (c) a regular hexagon in a given circle.)

ବିଶ୍ୱେଷଣ : ପୂର୍ବରୁ ପ୍ରମାଣିତ ହୋଇଛି ଯେ ଏକ ବୃତ୍ତର କେନ୍ଦ୍ରରେ ସମାନ ପରିମାଣ କୋଣ ଅଙ୍କନ କରୁଥିବା ଜ୍ୟାମାନଙ୍କର ଦୈର୍ଘ୍ୟ ସମାନ । ଏଣୁ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ସୁଷମ ବହୁଭୁଜର ବାହୁମାନେ ବୃତ୍ତର କେନ୍ଦ୍ରରେ ସମାନ

ପରିମାଣର କୋଣ ଉତ୍ପନ୍ନ କରିବେ । ଯଦି ବହୁଭୁଜଟିର ବାହୁସଂଖ୍ୟା n ହୁଏ ତେବେ କେନ୍ଦ୍ରସ୍ଥ କୋଶ ପରିମାଣ = $\frac{360^{\circ}}{n}$ ହେବ । ସୂତରାଂ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ହେଲେ,

- ସମବାହୁ ତ୍ରିଭୁଜର ପ୍ରତ୍ୟେକ ବାହୁଦ୍ୱାରା ପରିବୃତ୍ତର କେନ୍ଦ୍ରରେ ଉତ୍ପନ୍ନ କୋଣ ପରିମାଣ = $\frac{360^{\circ}}{3}$ = 120°
- (b) ବର୍ଗ ଚିତ୍ରର ପ୍ରତ୍ୟେକ ବାହୁଦ୍ୱାରା ପରିବୃତ୍ତର କେନ୍ଦ୍ରରେ ଉପ୍ନୃ କୋଣର ପରିମାଣ $=\frac{360^0}{4} = 90^0$

[ଚିତ୍ର 6.10]

 120^{0} [ଚିତ୍ର 6.9]

[169]

(c) ସୁଷମ ଷଡ଼ଭୁଜର ପ୍ରତ୍ୟେକ ବାହୁଦ୍ୱାରା ପରିବୃତ୍ତର କେନ୍ଦ୍ରରେ ଉତ୍ପନ୍ନ କୋଣ ପରିମାଣ = $\frac{360^{0}}{6}$ = 60^{0}

[ଚିତ୍ର 6.12]

ଅଙ୍କନ ପ୍ରଣାଳୀ:

ମନେକରାଯାଉ 3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଗୋଟିଏ ବୃତ୍ତରେ ସମବାହୁ ତ୍ରିଭୁଜ ଅନ୍ତର୍ଲିଖିତ ହେବ ।

- (a) ଦତ୍ତ ବୃତ୍ତରେ ସମବାହୁ ତ୍ରିଭୁଜର ଅନ୍ତର୍ଲିଖନ:
- (i) ଦଉ ବୃଉଟି ଅଙ୍କନ କରାଯାଉ ।
- (ii) $\overline{\mathrm{OA}}$ ବ୍ୟାସାର୍ଦ୍ଧ ଅଙ୍କନ କରି ଏହା ଉପରେ 120^{o} ପରିମିତି $\angle\mathrm{AOB}$ ଅଙ୍କନ କରାଯାଉ ।
- (iii) $\overline{\mathrm{OB}}$ ଉପରେ ପୂର୍ବପରି O ବିନ୍ଦୁରେ ଆଉ ଏକ 120° ପରିମିତ କୋଣ $\angle\mathrm{BOC}$ ଅଙ୍କନ କରାଯାଉ ।

- (i) ଦଉ ବ୍ୟାସାର୍ଦ୍ଧବିଶିଷ୍ଟ ବୃଉଟି ଅଙ୍କନ କର ।
- (ii) ଯେକୌଣସି ଏକ ବ୍ୟାସ \overline{AC} ଅଙ୍କନ କର ।
- (iii) \overline{AC} ର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ \overline{BD} ଅଙ୍କନ କର ।
- (iv) ବୃତ୍ତ ଉପରେ ଚାରିଗୋଟି ବିନ୍ଦୁ A, B, C, D ଚିହ୍ନଟ କରି $\begin{tabular}{c} \begin{tabular}{c} \begin{tabula$
- (c) ବୃତ୍ତରେ ସୁଷମ ଷଡ଼ଭୁକର ଅନ୍ତର୍ଲିଖନ ପ୍ରଣାଳୀ :
- (i) ଦଉ ବ୍ୟାସାର୍ଦ୍ଧବିଶିଷ୍ଟ ବୃଉଟି ଅଙ୍କନ କରାଯାଉ।
- (ii) ବୃତ୍ତରେ $\overline{\mathrm{OA}}$ ବ୍ୟାସାର୍ଦ୍ଧ ଅଙ୍କନ କରି 60^{o} ପରିମାଣବିଶିଷ୍ଟ $\angle \mathrm{AOB}$ କେନ୍ଦ୍ରସ୍ଥ କୋଣ ଅଙ୍କନ କରାଯାଉ ।
- (iii) କମ୍ପାସ୍ ସାହାଯ୍ୟରେ O ବିନ୍ଦୁରେ ∠AOB ସହ ସମାନ ପରିମାଣ ବିଶିଷ୍ଟ ∠BOC, ∠COD, ∠DOE, ∠EOF, ∠FOA ଅଙ୍କନ କରି ବୃତ୍ତ ଉପରେ

C, D, E, F ବିନ୍ଦୁମାନ ଚିହ୍ନଟ କର ।

(iv) A, B, C, D, E, F ବିନ୍ଦୁମାନଙ୍କୁ ପର୍ଯ୍ୟାୟକ୍ରମେ ଯୋଗକରି ଆବଶ୍ୟକ ବୃତ୍ତାନ୍ତର୍ଲିଖିତ ସୁଷମ ଷଡ଼ଭୁଜ ଅଙ୍କନ କର । (ଚିତ୍ର 6.14)

F

[ଚିତ୍ର 6.14]

ବିକଳ୍ପ ଅଙ୍କନ ପ୍ରଣାଳୀ

(ବୃତ୍ତରେ ସମବାହୁତ୍ରିଭୁଜ ଏବଂ ସମଷଡ଼ଭୁଜ ଅନ୍ତର୍ଲିଖନ) :

- (i) ଦଉ ବ୍ୟାସାର୍ଦ୍ଧବିଶିଷ ବୃଉଟି ଅଙ୍କନ କର ।
- (ii) ବୃତ୍ତ ଉପରେ ଯେକୌଣସି ଏକ ବିନ୍ଦୁ ଚିହ୍ନଟ କରି ତାକୁ A ନାମରେ ନାମିତ କର ।
- (iii) ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ସହ ସମାନ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ A ବିନ୍ଦୁକୁ କେନ୍ଦ୍ରକରି ଏକ ଚାପ ଅଙ୍କନ କର ଓ ତାହା ବୃତ୍ତକୁ ଯେଉଁ ବିନ୍ଦୁରେ ଛେଦକରିବ ତା'ର ନାମ ଦିଅ B I

- (vi) ବୃତ୍ତ ଉପରିସ୍ଥ ଛଅଗୋଟି ବିନ୍ଦୁକୁ ଶୀର୍ଷବିନ୍ଦୁ ରୂପେ ନେଇ ଏକ ସମଷଡ଼ଭୁକ ABCDEF ଦତ୍ତ ବିନ୍ଦୁରେ ଅନ୍ତର୍ଲିଖିତ ହୋଇପାରିବ । (ଚିତ୍ର 6.16)
- 6.5. ଦତ୍ତ ବୃତ୍ତରେ (a) ସମବାହୁ ତ୍ରିଭୁଜ (b) ବର୍ଗଚିତ୍ର (c) ସୁଷମ ଷଡ଼ଭୁଜ ପରିଲିଖନ। (Construction of (a) an equilateral triangle (b) a square (c) a regular hexagon circumscribing a given circle.)

ସଂକ୍ଷା: ଏକ ବହୁଭୁଜର ପ୍ରତ୍ୟେକ ବାହୁ କୌଣସି ବୃତ୍ତକୁ ସ୍ମୁର୍ଶକଲେ ଉକ୍ତ ବହୁଭୁଜକୁ ସଂପୃକ୍ତ ବୃତ୍ତର ପରିଲିଖିତ ବହୁଭୁଜ କୁହାଯାଏ।

ଅଙ୍କନ - 5:

(a) ଦଉ ବୃତ୍ତରେ ସମବାହୁ ତ୍ରିଭୁଳ ପରିଲିଖନ: ବିଶ୍ଳେଷଣ: ଦଉ ବୃତ୍ତର O, କେନ୍ଦ୍ର \mid OX, OY, OZ ବ୍ୟାସାର୍ଦ୍ଧ । ମନେକର ABC ଦଉ ବୃତ୍ତ ପରିଲିଖିତ ସମବାହୁ ତ୍ରିଭୁଳ \mid \overline{BC} , \overline{CA} ଏବଂ \overline{AB} ଯଥାକ୍ରମେ X, Y, Z ବିନ୍ଦୁରେ ବୃତ୍ତକୁ ସ୍ମର୍ଶ କରୁଛନ୍ତି \mid AZOY ଚତୁର୍ଭୁକରେ

$$m \angle AZO = 90^{0}$$
 . ସ୍ୱର୍ଶକ ସ୍ମର୍ଶ ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ପ୍ରତିଲୟ । $m \angle AYO = 90^{0}$

..
$$m \angle ZOY = 360^{0} - \{m \angle AZY + m \angle AYZ + m \angle A\}$$

= $360^{0} - \{90^{0} + 90^{0} + m \angle A\} = 180^{0} - m \angle A$

ସେହିପରି ପ୍ରମାଣ କରାଯାଇପାରେ ଯେ m $\angle {
m XOZ} = 180^{
m o} - {
m m} \angle {
m B}, \, {
m m} \angle {
m XOY} = 180^{
m o} - {
m m} \angle {
m C}$

Z

- ABC ତ୍ୱିଭୁଜଟି ସମବାହୁ \Rightarrow $m \angle A = m \angle B = m \angle C = 60^{\circ}$
- $m \angle XOY = m \angle YOZ = m \angle ZOX = 120^{\circ}$.

ଅଙ୍କନ ପ୍ରଶାଳୀ:

- ଦଉ ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃଉ ଅଙ୍କନ କର । (i)
- (ii) ବୃତ୍ତର ଯେକୌଣସି ଏକ ବିନ୍ଦୁରୁ ଆରୟ କରି ବୃତ୍ତର ବ୍ୟାସାର୍ଦ୍ଧ ସଙ୍ଗେ ସମାନ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ କ୍ରମାନ୍ୱୟରେ ଚାପ ଅଙ୍କନ କଲେ ବୃତ୍ତ ଉପରେ ଛଅଗୋଟି ବିନ୍ଦୁ ମିଳିବ ଯାହାକି ବୃତ୍ତକୁ ଛଅଗୋଟି ସର୍ବସମ ଚାପରେ ପରିଣତ କରିବ।
- (iii) ଗୋଟିଏ ଛାଡି ଗୋଟିଏ ଚିହିତ ବିନ୍ଦକ O ବିନ୍ଦ ସହିତ B ଯୋଗକରି \overline{OX} , \overline{OY} , \overline{OZ} [ଚିତ୍ର 6.18] ବ୍ୟାସାର୍ଦ୍ଧ ଅଙ୍କନ କର । ଫଳରେ $m \angle XOY = m \angle YOZ = m \angle ZOX = 120^{\circ}$ ହେବ ।
- (iv) X,Y,Z ବିନ୍ଦୁରେ \overline{OX} , \overline{OY} , \overline{OZ} ପ୍ରତି ଲୟ ଅଙ୍କନ କରି ତିନିଟି ସୁର୍ଶକ ଅଙ୍କନ କର । ସୁର୍ଶକତ୍ରୟର ଛେଦବିନ୍ଦୁ A, B, C ହେଉ ।
- (v) $\Delta \, \mathrm{ABC}$ ଦଉ ବୃତ୍ତର ପରିଲିଖିତ ସମବାହୁ ତ୍ରିଭୁଜ ହେବ l
- (b) ଦଉ ବୃତ୍ତରେ ବର୍ଗଚିତ୍ରର ପରିଲିଖନ:

ବିଶେଷଣ : ଦଉ ବୃତ୍ତର O, କେନ୍ଦ୍ର । ମନେକର ABCD ବୃତ୍ତର ପରିଲିଖିତ ବର୍ଗଚିତ୍ର । ଯାହାର $\overline{\mathrm{AB}}$, $\overline{\mathrm{BC}}$, $\overline{\mathrm{CD}}$ ଏବଂ $\overline{\mathrm{AD}}$ ବାହୁ ବୃତ୍ତକୁ ଯଥାକୁମେ P, Q, R ଓ S ବିନ୍ଦୁରେ ସୁର୍ଶ କରୁଛି । POQB ଚତୁର୍ଭୁଜରେ m∠B = 90°

- $m \angle POQ = 90$ ସେହିପରି ଦର୍ଶାଯାଇପାରେ ଯେ, m \angle QOR = m \angle ROS = m \angle SOP = 90°
- \overline{PR} ଏବଂ \overline{SQ} ବୃତ୍ତର ଦୁଇଟି ବ୍ୟାସ ପରସ୍ମରର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ ହେବେ ।

ଅଙ୍କନ ପ୍ରଶାଳୀ:

- (i) ଦଉ ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃଉ ଅଙ୍କନ କର।
- (ii) \overline{PR} ବ୍ୟାସର ସମଦ୍ୱିଖଣ୍ଡକ ଲୟ \overline{SQ} ଅଙ୍କନ କର ।
- (iii) P, Q, R, S ବିନ୍ଦୁରେ ଯଥାକ୍ରମେ \overline{AB} , \overline{BC} , \overline{CD} , \overline{AD} ଲୟମାନ ଅଙ୍କନ କର। ଫଳରେ ଅଙ୍କିତ ଲୟଗୁଡ଼ିକ P, Q, R, S ବିନ୍ଦୁରେ ବୃତ୍ତର ସ୍ମୁର୍ଶକ ହେବେ।

- (iv) ABCD ଆବଶ୍ୟକ ପରିଲିଖିତ ବର୍ଗଚିତ୍ର ହେବ।
- (c)
 ଦଉ ବୃଉରେ ସମଷଡ଼ଭୁକ ପରିଲିଖନ :

 ଦଉ ବୃଉର O କେନ୍ଦ୍ର ।

 ମନେକର ABCDEF ସୁଷମ ଷଡ଼ଭୁକ ବୃଉର ପରିଲିଖିତ ।

 ଏହାର AB, BC, CD, DE, EF, FA

 ବାହୁଗୁଡ଼ିକ ବୃଉକୁ P, Q, R, S, T, U ବିନ୍ଦୁରେ ସ୍ମୁର୍ଶ କରନ୍ତି ।

 ବର୍ତ୍ତମାନ QCRO ଚତୁର୍ଭୁକରେ

 $m \angle OQC = 90^{0}$ $M \angle CRO = 90^{0}$ ः ସ୍ମର୍ଶକ ସ୍ମର୍ଶ ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ପ୍ରତିଲୟ ।

 $m \angle QCR = 120^{\circ}$ (ଂ. ସୁଷମ ଷଡ଼ଭୁକର ପ୍ରତ୍ୟେକ ଅନ୍ତସ୍ଥ କୋଶର ପରିମାଣ 120°)

 \cdot : $m\angle QOR = 60^{0}$ ସେହିପରି $m\angle ROS = m\angle SOT = m\angle TOU = m\angle UOP = m\angle POQ = 60^{0}$

ଅଙ୍କନ ପ୍ରଶାଳୀ:

- (i) ଦଉ ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃତ୍ତ ଅଙ୍କନ କର । \overline{QT} ବ୍ୟାସ ଅଙ୍କନ କର ।
- (ii) କେନ୍ଦ୍ରରେ $m \angle QOR = m \angle ROS = 60^{\circ}$ ଅଙ୍କନ କର ଏବଂ \overline{RU} , \overline{SP} ବ୍ୟାସ ଅଙ୍କନ କର।
- (iii) P, Q, R, S, T, U ମଧ୍ୟ ଦେଇ ବ୍ୟାସମାନଙ୍କ ପ୍ରତି ଲୟମାନ ଅଙ୍କନ କର। ଫଳରେ \overline{AB} , \overline{BC} , \overline{CD} , \overline{DE} , \overline{EF} , \overline{AB} ବୃତ୍ତର ସ୍ମୂର୍ଶକ ହେବ।
- (iv) : ABCDEF ବୃତ୍ତର ପରିଲିଖ୍ତ ସୁଷମ ଷଡ଼ଭୁଜ ହେବ।

[ଚିତ୍ର 6.22]

6.6. ଅଙ୍କନ - 6 : ଦଉ ବର୍ଗଚିତ୍ରର (a) ପରିବୃତ୍ତ ଓ (b) ଅନ୍ତଃବୃତ୍ତ ଅଙ୍କନ

(Drawing (a) Circum-circle and (b) In-circle of a given square.)

$({f a})$ ଦଉ ବର୍ଗଚିତ୍ରର ପରିବୃତ୍ତ ଅଙ୍କନ :

ସଂଜ୍ଞା : ଏକ ବର୍ଗଚିତ୍ରର ଶୀର୍ଷବିନ୍ଦୁମାନଙ୍କ ଦେଇ ଅଙ୍କିତ ବୃତ୍ତକୁ ଉକ୍ତ ବର୍ଗଚିତ୍ରର ପରିବୃତ୍ତ ଓ ସେହି ବୃତ୍ତର କେନ୍ଦ୍ରକୁ ପରିକେନ୍ଦ୍ର କୁହାଯାଏ।

ବିଶ୍ଳେଷଣ : ବର୍ଗଚିତ୍ରଟିଏ ଦଉ ଅଛି । ଏହାର ପରିବୃତ୍ତ ଅଙ୍କନ କରିବାକୁ ହେବ । ଅର୍ଥାତ୍ ପରିବୃତ୍ତର କେନ୍ଦ୍ରର ଅବସ୍ଥିତି ଏବଂ ପରିବ୍ୟାସାର୍ଦ୍ଧ ନିର୍ଣ୍ଣୟ କରିବାକୁ ହେବ ।

ABCD ବର୍ଗଚିତ୍ରର $A,\,B,\,C,\,D$ କୌଣିକ ବିନ୍ଦୁ ବୃତ୍ତ ଉପରିସ୍ଥ ବିନ୍ଦୁ ହେଲେ ବର୍ଗଚିତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟ \overline{AC} ଏବଂ \overline{BD} ବୃତ୍ତର ବ୍ୟାସ ହେବେ।

- ः ବର୍ଗଚିତ୍ରର କର୍ଧ୍ୱଦ୍ୱୟ ସର୍ବସମ ଓ ସେମାନେ ପରସ୍ମରକୁ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି ।

ଅଙ୍କନ ପ୍ରଣାଳୀ :

- (i) ବର୍ଗଚିତ୍ର ସୟନ୍ଧୀୟ ଦତ୍ତ ମାପକୁ ନେଇ ବର୍ଗଚିତ୍ରଟିଏ ଅଙ୍କନ କର ।
- (ii) ଅଙ୍କିତ ବର୍ଗଚିତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟ ଅଙ୍କନ କର ଓ ସେମାନଙ୍କର ଛେଦବିନ୍ଦ୍ରର ନାମ 'O' ଦିଅ ।
- (iii) O କୁ କେନ୍ଦ୍ରକରି OA ବା OB ବା OC ବା OD ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ବୃତ୍ତ ଅଙ୍କନ କଲେ ଆବଶ୍ୟକ ପରିବୃତ୍ତ ଅଙ୍କିତ ହେବ।
- **ମନ୍ତବ୍ୟ :** ଆୟତଚିତ୍ରର କର୍ଣ୍ଣଦ୍ୱୟର ଦୈର୍ଘ୍ୟ ସମାନ ଓ ସେମାନେ ପରସ୍ମରକୁ ସମଦ୍ୱିଖଣ୍ଡ କରନ୍ତି । ତେଣୁ ପୂର୍ବୋକ୍ତ ଅଙ୍କନ ପ୍ରଣାଳୀ ଅନୁସାରେ ଏହାର ପରିବୃତ୍ତ ମଧ୍ୟ ଅଙ୍କନ କରାଯାଇପାରେ ।
 - (b) ଦଉ ବର୍ଗଚିତ୍ରର ଅନ୍ତଃବୃତ୍ତ ଅଙ୍କନ :
- ସଂଜ୍ଞା: ଏକ ବର୍ଗଚିତ୍ରର ବାହୁମାନଙ୍କୁ ସ୍ମର୍ଶ କରୁଥିବା ବୃତ୍ତକୁ ଉକ୍ତ ବର୍ଗଚିତ୍ରର ଅନ୍ତଃବୃତ୍ତ ଓ ବୃତ୍ତର କେନ୍ଦ୍ରକୁ ଅନ୍ତଃକେନ୍ଦ୍ର କୁହାଯାଏ।

ବିଶ୍ଳେଷଣ : ମନେକର ଦଉ ବର୍ଗଚିତ୍ର ABCD ର ଅନ୍ତଃବୃତ୍ତ APCRS I P, Q, R, S ବିନ୍ଦୁମାନ ଉଭୟ ବର୍ଗଚିତ୍ର ଓ ବୃତ୍ତର ସାଧାରଣ ବିନ୍ଦୁ ଅଟନ୍ତି । ପୂର୍ବରୁ ତୁମେ ପ୍ରମାଣ କରିଛ, ବର୍ଗଚିତ୍ରର ବାହୁମାନଙ୍କର ମଧ୍ୟବିନ୍ଦୁଗୁଡ଼ିକୁ ପର୍ଯ୍ୟାୟକ୍ରମେ ଯୋଗ କଲେ ଉତ୍ପନ୍ନ ଚତୁର୍ଭୁଚ୍ଚ ଏକ ବର୍ଗଚିତ୍ର ଓ ଏହାର P କର୍ଣ୍ଣଦ୍ୱୟ ମୂଳ ବର୍ଗଚିତ୍ରର ବାହୁମାନଙ୍କ ପ୍ରତି ଲୟ ।

PQRS ଏକ ବର୍ଗଚିତ୍ର । ଏହାର ପରିବୃତ୍ତ ହିଁ ABCD ବର୍ଗଚିତ୍ରର ଅନ୍ତଃବୃତ୍ତ ଅଟେ ।

ପୁନଷ୍ଟ ତୁମେ ପୂର୍ବରୁ ଜାଣିଛ କୌଣସି ବର୍ଗଚିତ୍ରର ବିପରୀତ ବାହୁଗୁଡ଼ିକର ମଧ୍ୟବିନ୍ଦୁମାନଙ୍କୁ ଯୋଗ କରୁଥିବା ରେଖାଖଣ୍ଡ ଦ୍ୱୟର ଛେଦବିନ୍ଦୁ ଏବଂ ଉକ୍ତ ବର୍ଗଚିତ୍ରର କର୍ଷିଦ୍ୱୟର ଛେଦବିନ୍ଦୁ ଅଭିନ୍ନ।

 \overline{PR} ଓ \overline{SQ} ର ଛେଦବିନ୍ଦୁ ଏବଂ \overline{AC} ଏବଂ \overline{BD} ର ଛେଦବିନ୍ଦୁ 'O' ଅଟେ । ବିଶ୍ଳେଷଣରୁ ନିର୍ଣ୍ଣୟ କରାଗଲା ଯେ ABCD ବର୍ଗଚିତ୍ରର \overline{AC} ଏବଂ \overline{BD} ର ଛେଦବିନ୍ଦୁ 'O' ଆବଶ୍ୟକ ଅନ୍ତଃବୃତ୍ତର କେନ୍ଦ୍ର ଏବଂ \overline{O} ବିନ୍ଦୁରୁ ମୂଳ ବର୍ଗଚିତ୍ରର ବାହୁପ୍ରତି ଅଙ୍କିତ ଲୟହିଁ ଅନ୍ତଃବ୍ୟାସାର୍ଦ୍ଧ ।

ଅଙ୍କନ ପ୍ରଶାଳୀ:

- (i) ବର୍ଗଚିତ୍ର ସମ୍ଦନ୍ଧୀୟ ଦଉ ମାପକୁ ବ୍ୟବହାର କରି ବର୍ଗଚିତ୍ର ABCD ଅଙ୍କନ କର ।
- (ii) \overline{AC} ଏବଂ \overline{BD} କର୍ଣ ଅଙ୍କନ କରି ଛେଦବିନ୍ଦୁ 'O' ନିର୍ତ୍ତୟ କର ।
- (iii) O ବିନ୍ଦୁରୁ ଯେକୌଣସି ବାହୁପ୍ରତି ଲୟ ଅଙ୍କନ କର । ଚିତ୍ରରେ \overline{BC} ପ୍ରତି \overline{OQ} ଲୟ ଅଙ୍କନ କରାଯାଇଛି ।
- (iv) O ବିନ୍ଦୁକୁ କେନ୍ଦ୍ର ଏବଂ OQକୁ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ବୃତ୍ତ ଅଙ୍କନ କଲେ ମୂଳ ବର୍ଗଚିତ୍ରର ଆବଶ୍ୟକୀୟ ଅନ୍ତଃବୃତ୍ତ ମିଳିବ ।

ଅନୁଶୀଳନୀ - 6 (c)

- 1. 4 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ଏଥିରେ ସମବାହୁ ତ୍ରିଭୁଜ ଅନ୍ତର୍ଲିଖନ କର ।
- 2. 3.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ଏଥିରେ ଏକ ସମବାହୁ Δ ପରିଲିଖନ ।
- 3. 2.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ଏଥିରେ ଏକ ବର୍ଗଚିତ୍ର ଅନ୍ତର୍ଲିଖନ କର ।
- 4. 1.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ଏଥିରେ ଏକ ବର୍ଗଚିତ୍ର ପରିଲିଖନ କର ।
- 5. 3.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ଏଥିରେ ଏକ ସୁଷମ ଷଡ଼ଭୁଚ୍ଚ ଅନ୍ତର୍ଲିଖନ କର ।

- 6. 3.8 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ଏକ ସୁଷମ ଷଡ଼ଭୁଜ ପରିଲିଖନ କର ।
- 7. 4 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ଏଥିରେ ଏକ ସୁଷମ ଷଡ଼ଭୁଜ ପରିଲିଖନ କର ।
- 8. 7.5 ସେ.ମି. ବ୍ୟାସ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ ଏକ ସମକୋଣୀ ସମଦ୍ୱିବାହୁ ତ୍ୱିଭୁଜ ଅନ୍ତର୍ଲିଖନ କର ।
- 9. 8 ସେ.ମି. ବ୍ୟାସ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ ଏକ ସମକୋଶୀ ସମଦ୍ୱିବାହୁ ତ୍ରିଭୁଜ ପରିର୍ଲିଖନ କର । (ସୂଚନା : ସ୍ମର୍ଶ ବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ତ୍ରୟର ଅନ୍ତର୍ଗତ କୋଣମାନଙ୍କର ଡିଗ୍ରୀ ପରିମାଣ ୨0º, 135º ଏବଂ 135º)
- 10. 9 ସେ.ମି. ବ୍ୟାସ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ ABC ସମଦ୍ୱିବାହୁ ତ୍ରିଭୁଜ ଅନ୍ତର୍ଲିଖନ କର ଯାହାର ଭୂମି BC=7 ସେ.ମି.
- 11. 3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ତହିଁରେ 7 ସେ.ମି. ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଏକ ସମଦ୍ୱିବାହୂ ତ୍ରିଭୁଜ ପରିଲିଖନ କର।
- 12. 4 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କର ତହିଁରେ 6 ସେ.ମି. ଉଚ୍ଚତା ବିଶିଷ୍ଟ ଏକ ସମଦ୍ୱିବାହୁ ତ୍ରିଭୁଜ ଅନ୍ତର୍ଲିଖନ କର।
- 13. 2.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତ ଅଙ୍କନ କରି ତହିଁରେ ଏକ ସମଦ୍ୱିବାହୁ ତ୍ରିଭୁଚ୍ଚ ପରିର୍ଲିଖନ କର ଯାହାର ଶୀର୍ଷକୋଣ 45° ହେବ ।
- 14. ଏକ ଆୟତଚିତ୍ରର ଦୈର୍ଘ୍ୟ 7.5 ସେ.ମି., ପ୍ରସ୍ଥ 4 ସେ.ମି.। ଆୟତ ଚିତ୍ରଟି ଅଙ୍କନ କରି ଏହାର ପରିବୃତ୍ତ ଅଙ୍କନ କର।
- 6.7. ଅଙ୍କନ 7 : ଦତ୍ତ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ରେଖାଖଣ୍ଡର ନିର୍ଦ୍ଦିଷ୍ଟ ସଂଖ୍ୟକ ସର୍ବସମ ଅଂଶରେ ବିଭାଜନ (Dividing a line segment of given length into a given number of equal parts.)

 $\overline{
m AB}$ ଏକ ଦଉ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ରେଖାଖଣ୍ଡ । ମନେକରାଯାଉ, ଏହାକୁ 5 ଟି ସର୍ବସମ ଅଂଶରେ ଭାଗ କରିବାକୁ ହେବ ।

ଅଙ୍କନ ପ୍ରଣାଳୀ :

- (i) ଦଉ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ \overline{AB} ଅଙ୍କନ କର I
- (ii) \overrightarrow{AB} ର A ଓ B ଠାରେ ଯଥାକ୍ରମେ \overrightarrow{AX} ଓ \overrightarrow{BY} ରଶ୍ମି ଅଙ୍କନ କର, ଯେପରି X ଓ Y , \overrightarrow{AB} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ରହିବେ ଏବଂ m \angle BAX = m \angle ABY ହେବ । ଫଳରେ \overrightarrow{AX} ॥ \overrightarrow{BY} ହେବ ।

- (iii) A କୁ କେନ୍ଦ୍ର ଓ ଏକ ସୁବିଧାଜନକ ବ୍ୟାସାର୍ଦ୍ଧ r ନେଇ ଏକ ଚାପ ଅଙ୍କନ କର ଓ ଏହି ଚାପ ଯେଉଁ ବିନ୍ଦୁରେ \overrightarrow{AX} କୁ ଛେଦ କରିବ ତାର ନାମ $P_{_1}$ ଦିଅ । ଏହିପରି ଚାପ ଅଙ୍କନ ପ୍ରଣାଳୀରେ \overrightarrow{AX} ଉପରେ $P_{_2}$, $P_{_3}$, $P_{_4}$ ବିନ୍ଦୁମାନ (5-1=4 ଗୋଟି) ଚିହ୍ନଟ କର ଯେପରି $AP_{_1}=P_{_1}P_{_2}=P_{_2}P_{_3}=P_{_3}P_{_4}=r$ ହେବ ।
- (iv) ପୂର୍ବୋକ୍ତ ପ୍ରଣାଳୀ (ସୋପାନ (iii) ରେ ବର୍ତ୍ତିତ) ଅବଲୟନ କରି \overrightarrow{BY} ଉପରେ Q_1, Q_2, Q_3 ଓ Q_4 ବିନ୍ଦୁ ଚାରୋଟି ଚିହ୍ନଟ କର ଯେପରି $BQ_1 = Q_1Q_2 = Q_2Q_3 = Q_3Q_4 = r$ ହେବ ।
- (v) $\overline{P_1Q_4}$, $\overline{P_2Q_3}$, $\overline{P_3Q_2}$, $\overline{P_4Q_1}$ ଅଙ୍କନ କର ଓ ଯେଉଁ ବିନ୍ଦୁରେ ଉକ୍ତ ରେଖାମାନ \overline{AB} କୁ ଛେଦ କରିବେ ସେଗୁଡ଼ିକୁ ଯଥାକ୍ରମେ R_1 , R_2 , R_3 ଓ R_4 ଭାବେ ନାମିତ କର ।

 $AR_1=R_1R_2=R_2R_3=R_4B$ । ଅର୍ଥାତ୍ \overline{AB} ପାଞ୍ଚଗୋଟି ସର୍ବସମ ଅଂଶରେ ପରିଶତ ହେଲା । ପ୍ରମାଶ : $\Delta AP_4R_4\sim \Delta BQ_1R_4$ (A-A-A ସାଦୃଶ୍ୟ) (ଚିତ୍ର 6.26 ଦେଖ)

$$\begin{split} \frac{AR_4}{R_4B} &= \frac{AP_4}{BQ_1} = \frac{4r}{r} = \frac{4}{1} \Rightarrow \frac{AR_4}{R_4B} + 1 = \frac{4}{1} + 1 \\ \Rightarrow \frac{AR_4 + R_4B}{R_4B} &= \frac{5}{1} \Rightarrow \frac{AB}{R_4B} = \frac{5}{1} \Rightarrow R_4B = \frac{AB}{5} \dots (i) \end{split}$$

ସେହିପରି ଦର୍ଶାଯାଇପାରେ ଯେ $R_3B=\frac{2}{5}\,AB,\ R_2B=\frac{3}{5}\,AB,\ R_1B=\frac{4}{5}\,AB$ | $AR_1=R_1R_2=R_2R_3=R_3R_4=R_4B\ (=\frac{AB}{5}\,)$

6.8 ଅଙ୍କନ - 8 : ଏକ ନିର୍ଦ୍ଧିଷ୍ଟ ଅନୁପାତରେ ଏକ ଦଉ ରେଖାଖଣ୍ଡର ଅନ୍ତର୍ବିଭାଜନ ଓ ବହିର୍ବିଭାଜନ । (Dividing a given line segment in a given ratio internally and externally.)

 \overline{AB} ଏକ ଦଉ ରେଖାଖଣ୍ଡ । \overline{AB} କୁ ଏକ ଦଉ ଅନୁପାତ a:b ରେ (a) ଅନ୍ତର୍ବିଭାଜନ (b) ବହିର୍ବିଭାଜନ କରିବାକୁ ହେବ, ଅର୍ଥାତ୍ –

- (a) \overline{AB} ଉପରେ P ବିନ୍ଦୁ ଚିହ୍ନଟ କରିବାକୁ ହେବ, ଯେପରି, $\frac{AP}{BP}=\frac{a}{b}$
- (b) $\stackrel{\longleftrightarrow}{AB}$ ଉପରେ Q ବିନ୍ଦୁ ଚିହ୍ନଟ କରିବାକୁ ହେବ, ଯେପରି, $\frac{AQ}{BQ} = \frac{a}{b}$ ଏବଂ Q-A-B ବା A-B-Q । ଅଙ୍କନ ପ୍ରଣାଳୀ : (a) ଅନ୍ତର୍ବିଭାଜନ :
 - (i) ଦଉ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ରେଖାଖଣ୍ଡ \overline{AB} ଅଙ୍କନ କର ।
 - (ii) \overrightarrow{AB} ର A ଓ B ବିନ୍ଦୁ ଠାରେ ଯଥାକ୍ରମେ \overrightarrow{AX} ଓ \overrightarrow{BY} ରଶ୍ଚି ଅଙ୍କନ କର,

ଯେପରି X,Y, \overleftarrow{AB} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ଅବସ୍ଥାନ କରିବେ ଓ m $\angle XAB = m\angle ABY$ ହେବ । ଫଳରେ \overrightarrow{AX} \overrightarrow{I} \overrightarrow{BY} ହେବ ।

(ଦଭ ଅନୁପାତ a:b ରେ a ଓ b ପ୍ରତ୍ୟେକ ଗୋଟିଏ ଗୋଟିଏ ଧନାତ୍ମକ ସଂଖ୍ୟା ଓ ଏଠାରେ a < b) ।

- (iii) କମ୍ପାସରେ ଆବଶ୍ୟକମତେ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ \overrightarrow{AX} ଉପରେ R ଓ \overrightarrow{BY} ଉପରେ S ଚିହ୍ନଟ କର, ଯେପରିକି AR=a ଏକକ ଓ BS=b ହେବ ।
 - $(\mathrm{iv}) \stackrel{\longleftarrow}{\mathsf{RS}}$ ଅଙ୍କନ କର |
- (v) $\stackrel{\longleftarrow}{RS}$ ଓ \overline{AB} ର ଛେଦବିନ୍ଦୁ କୁ P ନାମ ଦିଅ । ବର୍ତ୍ତମାନ \overline{AB} ରେଖାଖଣ୍ଡ P ବିନ୍ଦୁରେ a:b ଅନୁପାତରେ ଅନ୍ତର୍ବିଭାଜିତ ହେଲା ।
 - (b) ବହିର୍ବିଭାଜନ :
 - (i) ଦଉ ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ରେଖାଖଣ୍ଡ \overline{AB} ଅଙ୍କନ କର । \overline{AB} \overline{AB} ଅଙ୍କନ କର । \overline{AB} $\overline{AB$
- (ii) \overrightarrow{AB} ର A ବିନ୍ଦୁରେ \overrightarrow{AX} ଓ B ବିନ୍ଦୁରେ \overrightarrow{BY} ଅଙ୍କନ କର ଯେପରି X ଓ Y \overrightarrow{AB} ର ବିପରୀତ ପାର୍ଶ୍ୱରେ ରହିବେ ଓ m $\angle XAB = m\angle ABY$ ହେବ । ତତ୍ପରେ \overrightarrow{BY} ର ବିପରୀତ ରଶ୍ମି \overrightarrow{BZ} ଅଙ୍କନ କର ।
 - (iii) କୟାସ ସାହାଯ୍ୟରେ \overrightarrow{AX} ଉପରେ R ଓ \overrightarrow{BZ} ଉପରେ $S_{_1}$ ବିନ୍ଦୁ ଚିହ୍ନଟ କର ଯେପରିକି AR=a ଏକକ ଏବଂ $BS_{_1}=b$ ଏକକ ।
 - ←→ (iv) RS ଅଙ୍କନ କର |
- (v) $\stackrel{\longleftarrow}{RS}$ ଓ $\stackrel{\longleftarrow}{BA}$ ର ଛେଦ ବିନ୍ଦୁକୁ Q ନାମ ଦିଅ । ବର୍ତ୍ତମାନ \overline{AB} ରେଖାଖଣ୍ଡ Q ବିନ୍ଦୁରେ a:b ଅନୁପାତରେ ବହିର୍ବିଭାଜିତ ହେଲା ।

ଦ୍ରଷ୍ଟବ୍ୟ : ଯଦି ଅନୁପାତ a:b ରେ a < b ହୋଇଥାଏ, ତେବେ Q-A-B ହେବ, ଅର୍ଥାତ୍ AQ < BQ ହେବ । ଯଦି a > b ହୋଇଥାଏ, ତେବେ A-B-Q ହେବ; ଅର୍ଥାତ୍ AQ > BQ ହେବ ।

ଦତ୍ତ ଅନୁପାତ a:b ରେ \overline{BA} ର ଅନ୍ତର୍ବିଭାଜନ (ବା ବହିର୍ବିଭାଜନ) ସମୟରେ AR=a ଏବଂ BS=b

(ବା $BS_1 = b$, ଯେଉଁଠି \overrightarrow{BY} ର ବିପରୀତ ରଶ୍ମି ଉପରେ S_1 ଅବସ୍ଥିତ) ନିଆଯିବ ।

ଲକ୍ଷ୍ୟ କର : $\overline{\mathrm{AB}}$ ର ବହିର୍ବିଭାଜନ ସମୟରେ -

- (i) Q ବିନ୍ଦୁର ଅବସ୍ଥିତି $\stackrel{\longrightarrow}{\mathrm{BA}}$ ଉପରେ ଏପରି ହେବ ଯେ Q-A-B ଯଦି a < b
- (ii) Q ବିନ୍ଦୁର ଅବସ୍ଥିତି \overrightarrow{AB} ଉପରେ ଏପରି ହେବ ଯେ A-B-Q ଯଦି a>b

ଅନୁଶୀଳନୀ - 6 (d)

- 1. (i) 6.5 ସେ.ମି. ଦୀର୍ଘ \overline{AB} ଅଙ୍କନ କରି ଏହାର ମଧ୍ୟବିନ୍ଦୁର ଅବସ୍ଥାନ ନିରୂପଣ କର I (ii) 7.6 ସେ.ମି. ଦୀର୍ଘ \overline{PQ} ଅଙ୍କନ କରି ଏହାକୁ 4 ସମାନ ଭାଗ କର I
- 2. 7.2 ସେ.ମି. ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ ଏକ ରେଖାଖଣ୍ଡକୁ ସମାନ 6 ଭାଗ କର I
- 3. 6.4 ସେ.ମି. ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ $\overline{
 m AB}$ ଅଙ୍କନ କରି ଏହାକୁ 3:2 ଅନୁପାତରେ ଅନ୍ତର୍ବିଭାଜନ କରୁଥିବା ବିନ୍ଦୁର ଅବସ୍ଥାନ ନିରୁପଣ କର ।
- 4. 6.5 ସେ.ମି. ଦୈର୍ଘ୍ୟ ବିଶିଷ୍ଟ $\overline{
 m BC}$ ଅଙ୍କନ କରି 5:3 ଅନୁପାତରେ ଅନ୍ତର୍ବିଭାଜନ ଓ ବହିର୍ବିଭାଜନ କରୁଥିବା ବିନ୍ଦୁଦ୍ୱୟ ନିରୁପଣ କର ।
- 5. 7.5 ସେ.ମି. ଦୀର୍ଘ \overline{PQ} ଅଙ୍କନ କରି ଏହାକୁ ଦୁଇଟି ଅଂଶରେ ଭାଗ କର, ଯେପରିକି ସେମାନଙ୍କର ଦୈର୍ଘ୍ୟର ଅନୁପାତ 4:3 ହେବ । ଏକ ଆୟତ ଚିତ୍ର ଅଙ୍କନ କର ଯାହାର ଦୈର୍ଘ୍ୟ ଓ ପ୍ରସ୍ତୁ ଯଥାକ୍ରମେ \overline{PQ} ର ଦୁଇ ଅଂଶର ଦୈର୍ଘ୍ୟ ସହ ସମାନ ।
- 6. ΔABC ରେ BC = 6.5 ସେ.ମି., \overline{BY} ମଧ୍ୟମାର ଦୈର୍ଘ୍ୟ 6 ସେ.ମି. ଓ \overline{CZ} ମଧ୍ୟମାର ଦୈର୍ଘ୍ୟ 5.5 ସେ.ମି. । ତ୍ରିଭୁଜଟି ଅଙ୍କନ କର ।

ସ୍ତନା :

ମନେକର ମଧ୍ୟମା ଦ୍ୱୟର ଛେଦବିନ୍ଦୁ G, ଅଙ୍କନ ପ୍ରଣାଳୀରେ $\frac{2}{3}$ BY = BG ଓ $\frac{2}{3}$ CZ = CG ନିର୍ଣ୍ଣୟ କର । ପ୍ରଥମେ Δ BCG ଅଙ୍କନ କର । \overrightarrow{BG} ଉପରେ Y ବିନ୍ଦୁ ଓ \overrightarrow{CG} ଉପରେ Z ବିନ୍ଦୁ ନିରୁପଣ କର ।

6.9. ଅଙ୍କନ - 9: ଦଉ ବୃଉରେ ଦଉ ତ୍ରିଭୁକର ଏକ ସଦଶ ତ୍ରିଭୁକ ଅନ୍ତର୍ଲିଖନ :

(Inscribing a triangle similar to a given triangle in a given circle.)

ମନେକରାଯାଉ 3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ ଗୋଟିଏ ଦଉ ତ୍ରିଭୁଜ ସହ ସଦୃଶ ତ୍ରିଭୁଜ ଅନ୍ତର୍ଲିଖନ କରିବାକୁ ହେବ ।

ABC ଏକ ଦଉ ତ୍ରିଭୁଜ ।

ଅଙ୍କନ ପ୍ରଣାଳୀ : (i) ଦଉ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ବୃଉଟି ଅଙ୍କନ କର । ବୃଉର କେନ୍ଦ୍ର O ହେଉ ।

[ଚିତ୍ର 6.29]

- $\overline{\mathrm{OA}'}$ ଅଙ୍କନ କରି $\mathrm{A'}$ ଠାରେ 90^{o} ପରିମାଣ ବିଶିଷ୍ଟ $\angle\mathrm{OA'Y}$ ଅଙ୍କନ କର I
- (iii) $\overrightarrow{A'Y}$ ର ବିପରୀତ ରଶ୍ମି $\overrightarrow{A'X}$ ଅଙ୍କନ କରି ବୃତ୍ତପ୍ରତି A' ବିନ୍ଦୁରେ \overrightarrow{XY} ସ୍ୱର୍ଶକ ଅଙ୍କନ କର ।
- (iv) A' ପ୍ରାନ୍ତବିନ୍ଦୁ ବିଶିଷ୍ଟ ଏକ ଜ୍ୟା $\overline{A'C'}$ ଅଙ୍କନ କର ଯେପରିକି $m\angle C'A'Y=m\angle ABC$ ହେବ I ସେହିପରି $\overline{A'B'}$ ଅଙ୍କନ କର ଯେପରିକି $m\angle XA'B'=m\angle ACB$ ହେବ I
 - $({
 m v})$ $\overline{{
 m B}'{
 m C}'}$ ଅଙ୍କନ କର । ବର୍ତ୍ତମାନ $\Delta{
 m A}'{
 m B}'{
 m C}'$ ଆବଶ୍ୟକୀୟ ତ୍ରିଭୁଜ ।

ପ୍ରମାଶ : m∠C'A'Y = m∠ABC (ଚିତ୍ର 6.29 ଦେଖ)

କିନ୍ତୁ $m\angle C'A'Y = m\angle A'B'C'$ (ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ)

 \therefore m \angle ABC = m \angle A'B'C'(i)

ସେହିପରି m∠XA′B′ = m∠ACB

କିନ୍ତୁ $m\angle XA'B' = m\angle A'C'B'$ (ଏକାନ୍ତର ଚାପାନ୍ତର୍ଲିଖିତ କୋଣ)

 \therefore m \angle ACB = m \angle A'C'B'(ii)

 \therefore (i) ଓ (ii) ରୁ ପାଇବା Δ ABC $\sim \Delta$ A'B'C'

ଅଙ୍କଂନ - 10 : ଦତ୍ତ ବୃତ୍ତରେ ଦତ୍ତ ତ୍ରିଭୁକର ଏକ ସଦୃଶ ତ୍ରିଭୁକ ପରିଲିଖନ :

(Circumscribing a triangle similar to a given triangle in a given circle.)

ମନେକରାଯାଉ 3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ ଗୋଟିଏ ଦଉ ତ୍ରିଭୁଜ ସହ ସଦୃଶ ତ୍ରିଭୁଜ ପରିଲିଖନ କରିବାକୁ ହେବ । ଅଙ୍କନ ପ୍ରଣାଳୀ : (i) ଦଉ ବ୍ୟାସାର୍ଦ୍ଧ ନେଇ ବୃତ୍ତଟିଏ ଅଙ୍କନ କର । ବୃତ୍ତର କେନ୍ଦ୍ର O ହେଉ ।

- (ii) \overline{OM} ବ୍ୟାସାର୍ଦ୍ଧ ଅଙ୍କନ କର ।
- (iii) ଅନ୍ୟ ଏକ ବ୍ୟାସାର୍ଦ୍ଧ $\overline{\rm ON}$ ଅଙ୍କନ କର ଯେପରିକି $\angle {\rm MON}$ ର ପରିମାଣ ($180^{\rm o}-{\rm B}$) ଅର୍ଥାତ୍ $\angle {\rm Bo}$ ପରିପୂରକ କୋଶର ପରିମାଣ ସହ ସମାନ ହେବ ।
- (iv) ପୁନଶ୍ଚ $\overline{\mathrm{OP}}$ ବ୍ୟାସାର୍ଦ୍ଧ ଅଙ୍କନ କର ଯେପରିକି ∠NOPର ପରିମାଣ ($180^{\circ}-\mathrm{C}$)ର ଅର୍ଥାତ୍ ∠Cର ପରିପୂରକ କୋଣର ପରିମାଣ ସହ ସମାନ ହେବ ।
 - (v) ବର୍ତ୍ତମାନ M, N ଓ P ବିନ୍ଦୁରେ ବୃତ୍ତ ପ୍ରତି ସ୍ପର୍ଶକ ମାନ ଅଙ୍କନ କର I
- $(vi)\,M$ ଓ N ବିନ୍ଦୁରେ ଅଙ୍କିତ ସର୍ଶକଦ୍ୱୟର ଛେଦବିନ୍ଦୁ, N ଓ P ବିନ୍ଦୁରେ ଅଙ୍କିତ ସର୍ଶକଦ୍ୱୟର ଛେଦବିନ୍ଦୁ ଏବଂ P ଓ M ବିନ୍ଦୁରେ ଅଙ୍କିତ ସର୍ଶକଦ୍ୱୟର ଛେଦବିନ୍ଦୁ ଯଥାକ୍ରମେ $B',\,C',\,A'$ ହେଉ I

ବର୍ତ୍ତମାନ ଦଉବୃତ୍ତରେ ΔABC ର ସଦୃଶ $\Delta A/B/C$ ପରିଲିଖିତ ହେଲା ।

ପ୍ରମାଣ : OMB/N ଚତୁର୍ଭୁକରେ

 $m\angle OMB' + m\angle ONB' = 180^{\circ}$ (ସ୍ୱର୍ଶକ ଓ ସ୍ୱର୍ଶବିନ୍ଦୁଗାମୀ ବ୍ୟାସାର୍ଦ୍ଧ ପରସ୍କର ପ୍ରତି ଲୟ ହେତ୍ର)

$$\therefore$$
 m \angle MON + m \angle A'B'C' = 180°

$$\Rightarrow$$
 180° - m\(\angle B + m\angle A\/B'C' = 180° \Rightarrow m\(\angle A\/B'C' = m\angle B\)

ସେହିପରି ପ୍ରମାଣ କରାଯାଇପାରେ ଯେ, $m\angle A'C'B'=m\angle C$ ଏବଂ $m\angle B'A'C'=m\angle A$

$$\therefore \Delta \ ABC \sim \ \Delta \ A'B'C'$$
 (ପ୍ରମାଶିତ)

ଅନୁଶୀଳନୀ - 6 (e)

- $\Delta \ ABC$ ଅଙ୍କନ କର ଯାହାର BC = 6 ସେ.ମି., $m \angle BAC = 60^{\circ} \ Vac$ ନଧ୍ୟମାର ଦୈର୍ଘ୍ୟ 4.5 ସେ.ମି. । $\Delta \ ABC$ ର ଏକ ସଦୃଶ ତ୍ରିଭୁକ 3.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃତ୍ତରେ ଅନ୍ତର୍ଲିଖନ କର ।
- 2. Δ ABC ଅଙ୍କନ କର ଯାହାର BC = 6 ସେ.ମି., m \angle B = 60° ଏବଂ $\overline{\mathrm{AD}}$ ଲୟର ଦୈର୍ଘ୍ୟ 4.5 ସେ.ମି. । Δ ABCର ଏକ ସଦୃଶ ତ୍ରିଭୁଜ 2.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ବୃତ୍ତରେ ପରିଲିଖନ କର ।

- 3. କୌଣସି Δ XYZ ଅଙ୍କନ କର । Δ XYZ ର ସଦୃଶ ତ୍ରିଭୁଜ ଅଙ୍କନ କର ଯାହାର ପ୍ରତ୍ୟେକ ବାହୁର ଦୈର୍ଘ୍ୟ, ଦଉ ତ୍ରିଭୁଜର ଅନୁରୂପ ବାହୁର ଦୁଇ ତୃତୀୟାଂଶ ହେବ ।
- 4. Δ ABC ଅଙ୍କନ କର ଯାହାର BC = 5.7 ସେ.ମି., m \angle B = 60° ଏବଂ $\overline{
 m BE}$ ମଧ୍ୟମାର ଦୈର୍ଘ୍ୟ 4.8 ସେ.ମି. । ତ୍ରିଭୁଜଟି ଅଙ୍କନ କରି 2.3 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ ପରିଲିଖନ କର ।
- 5. Δ ABC ଅଙ୍କନ କର ଯାହାର BC = 5.3 ସେ.ମି., m \angle B = 60° ଏବଂ m \angle C = 45° | 2.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ Δ ABCର ଏକ ସଦୃଶ ତ୍ରିଭୁଜ ଅନ୍ତର୍ଲିଖନ କର ।
- 6. \triangle ABC ଅଙ୍କନ କର ଯାହାର BC = 7 ସେ.ମି., m∠B = 60 $^{\circ}$ ଏବଂ b+c = 11.2 ସେ.ମି. | ତ୍ରିଭୁକଟି ଅଙ୍କନ କରି ଏହାର ସଦୃଶକୋଣୀ ଏକ ତ୍ରିଭୁକ 1.5 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ ପରିଲିଖନ କର |
- 7. \triangle ABC ଅଙ୍କନ କର ଯାହାର m∠A = 75° , AC = 9 ସେ.ମି., AB = 6 ସେ.ମି. | ତ୍ରିଭୁଜଟି ଅଙ୍କନ କରି ଏହାର ଏକ ସଦୃଶକୋଣୀ ତ୍ରିଭୁଜ 2 ସେ.ମି. ବ୍ୟାସାର୍ଦ୍ଧ ବିଶିଷ୍ଟ ଏକ ବୃତ୍ତରେ ଅନ୍ତର୍ଲିଖନ କର |

ଉଉରମାଳା

ଅନୁଶୀଳନୀ - 1(a)

1.(a)(i) 4.5 ସେ.ମି., (ii) 10.5; (b) (i) $\frac{2}{3}$, (ii) ଦୁଇ; 5.(i) BD = 1.5 ସେ.ମି., AB = 4.5 ସେ.ମି., (ii) 6 ସେ.ମି., 4 ସେ.ମି., (iii) 3.6 ସେ.ମି.

ଅନୁଶୀଳନୀ - 1(b)

1. AB : AC; 2. AD = 2 ସେ.ମି., CD = 8 ସେ.ମି.

ଅନୁଶୀଳନୀ - 1 (c)

ଅନୁଶୀଳନୀ - 1 (d)

1.(i) m∠DCB, (ii)(a) AC, (b) DC, (c) AD; 2. (i) 30 ६घ.ती., (ii) 12 ६घ.ती., (iii) 7 ६घ.ती., (iv) 9 ६घ.ती, (v) $\frac{64}{17}$, $\frac{225}{17}$; 3.(i) 9 ६घ.ती, (ii) 13.5 ६घ.ती, (iii) $3\sqrt{13}$ ६घ.ती, (iv) $4.5\sqrt{13}$ ६घ.ती, (v) $2\sqrt{13}$ ६घ.ती.

ଅନୁଶୀଳନୀ - 2(a)

- 1. ଠିକ୍ ଉକ୍ତି; (ii), (iii), (v), (vi), (viii), (x) ଅବଶିଷ୍ଟ ଭୂଲ୍ ଉକ୍ତି ।
- 2.(i) d, (ii) d, (iii) b (iv) d, (v) a; $3. 4 GQ. \hat{\Omega}$.; $10. 6 GQ. \hat{\Omega}$.; $11. 16 GQ. \hat{\Omega}$., $4\sqrt{21} GQ. \hat{\Omega}$.

ଅନୁଶୀଳନୀ - 2(b)

1. ଭୁଲ୍ ଉକ୍ତି; (ii)(iv), (v), (vii), (viii) ଓ (x), ଅବଶିଷ୍ଟ ଠିକ୍ ଉକ୍ତି । 2.(i) 180° , (ii) 120° , (iii) 70° (iv) $\stackrel{\frown}{BC}$, (v) 60° , (vi) 40° , (vii) ବୃତ୍ତର ବ୍ୟାସ(viii) $\stackrel{\frown}{BCD}$ (ix) 180° (x) $\sqrt{2}$:1; $2.(ii)60^{\circ}$ (viii) ବ୍ୟାସ 3.(i) $\stackrel{\frown}{ABC}$, (ii) $\stackrel{\frown}{ADC}$, (iii) $\stackrel{\frown}{BFC}$ କୁଦ୍ରଚାପ, $\stackrel{\frown}{BAC}$ ବୃହତ୍ତ ଚାପ, (iv) $\angle BOC$, (v) $\stackrel{\frown}{AEB}$ ଏବଂ $\stackrel{\frown}{BFC}$, (vi) $\stackrel{\frown}{BE}$ ଓ $\stackrel{\frown}{ED}$, (vii) ଏପରି ଅସଂଖ୍ୟ ବିନ୍ଦୁଅଛି, ହଁ, ନାହଁ; 4.(i) ପ୍ରତ୍ୟେକ ସମକୋଣ, (ii) ସର୍ବସମ ଚାପ,

- (iii) ଆୟତଚିତ୍ର, 5. (i) 80°, 45° ଓ 55° (ii) 80°, 45° ଓ 55°, (iii) ସଦୃଶ; 7.(d) 35°;
- 8. (i) 70° (ii) 220° (iii) 280° (iv) ସର୍ବସମ ଚାପ; 9.(i) 130° , (ii) 240° , (iii) 290°

ଅନୁଶୀଳନୀ - 3

- $1. (i) 90^{\circ}, (ii)$ ସ୍ଥଳକୋଣ, $(iii) 90^{\circ}, (iv)(a) \angle YOP, (b) \angle XPO, (v) OP, (vi) 12, (vii) <math>\sqrt{t^2 + r^2}$,
- (viii) 2,1, (ix) 1,0, (x) 2,2, (xi) 0, 0, (xii) 70°, (xiii) 16, (xiv) ସମଷ୍ଟି, (xv) ଅନ୍ତର, (xvi) ଅସଂଖ୍ୟ
- 3. 15 ବସ.ମି., 4. 15 ବେ.ମି.; 5. 8 ବେ.ମି.; 6. (ii) 12 ବେ.ମି., (iii) 12 ବେ.ମି.;
- 7.(i) 30°, 35°, 85°, 65°; (iii) 10 6 . (iv) 12 6 . ค., (v) 12 6 . ค.; 29. 12 6 . ค., 10 6 . ค.

ଅନୁଶୀଳନୀ - 4(a)

- 1. (a) $\cos 10^{\circ}$, (b) $\sin 25^{\circ}$, (c) 0, (d) 0, (e) 0, (f) 0, (g) $\sin 180^{\circ}$, (h) 0, (i) 0, (j) 0;
- $2.(i) \cos 21^{\circ}$, $(ii) \cos 58^{\circ}$, $(iii) \cot 9^{\circ}$, $(iv) \tan 11^{\circ}$, $(v) \cos 1^{\circ}$, $(vi) \sec 3^{\circ}$, $(vii) \sin 38^{\circ}$, $(viiii) \csc 48^{\circ}$, $(ix) \tan 41^{\circ}$
- 3. (i) $\sin 5^{0} \tan 5^{0}$ (ii) $\cos 15^{0} + \cot 15^{0}$ (iii) $\tan 25^{0} + \cot 41^{0}$
- 4. (i) 1, (ii) 1, (iii) 1, (iv) 1, (v) -1
- 5. (i) 0, (ii) 0, (iii) 1, (iv) 0, (v) 0, (vi) 2, (vii) 1, (viii) 1, (ix) 1, (x) 1
- 6. (i) 1, (ii) 1, (iii) 1, (iv) 1, (v) $\frac{1}{2}$ (vi) 0 (vii) $\frac{1}{\sqrt{3}}$
- 9. (i) 1, (ii) $\frac{1}{\sqrt{3}}$, (iii) 1; 11. (i) -1, (ii) $\frac{\sin^3 A}{\cos^2 A}$; 14. 1; 15. 0

ଅନୁଶୀଳନୀ - 4(b)

- 1. (i) sec B, cosec B, (ii) $2 \cos\theta \cdot \cos \alpha$, (iii) $\cos(60^{\circ} + A)$, (iv) $\cos A$, (v) $\cos(A B)$, (vi) 1
- 6. $\frac{\sqrt{3}-1}{2\sqrt{2}}$, $\frac{\sqrt{3}-1}{2\sqrt{2}}$; 7.(i) $\frac{140}{221}$, (ii) 45°, (iii) 1; 12. (i) 90°, 45°, (ii) 75°, 45°, (iii) 45°, 15°, (iv) 90°, 45°

ଅନୁଶୀଳନୀ - 4(c)

1. 69.28 $\hat{\mathsf{n}}$.; 2. 46.76 $\hat{\mathsf{n}}$.; 3. 15.86 $\hat{\mathsf{n}}$.; 4. 6 $\hat{\mathsf{n}}$.; 5. 22.3 $\hat{\mathsf{n}}$.; 6. 25.98 $\hat{\mathsf{n}}$.; 7. 200 $\hat{\mathsf{n}}$.; 8. 56.78 $\hat{\mathsf{n}}$.; 9. $10\sqrt{2}$ $\hat{\mathsf{n}}$.; 10. 22.5 $\hat{\mathsf{n}}$.; 11. 27.32 $\hat{\mathsf{n}}$.; 12. 27.71 $\hat{\mathsf{n}}$.; 13. 81.96 $\hat{\mathsf{n}}$.; 14. $3\sqrt{2}$ $\hat{\mathsf{n}}$.; 15. 21.96 $\hat{\mathsf{n}}$.; 16. 20.78 $\hat{\mathsf{n}}$.

ଅନୁଶୀଳନୀ - 5(a)

- 1.(a) (i) $67\frac{6}{7}$ ସେ.ମି.; (ii) 17.6 ମି.; (iii) 88 ସେ.ମି.; (iv) 26.4 ସେ.ମି.;
 - (b) $5\frac{5}{9}$ 69. \hat{R} .; (ii) $166\frac{2}{3}$ 69. \hat{R} .; (iii) 4 69. \hat{R} .; (iv) 2.5 69. \hat{R} .;
- 2. (a) 44 ସେ.ମି., (b) 84 ମି., (c) 280 ଡେ.ମି.; 3. (a) 60°, (b) 4.4 ସେ.ମି., (c) 63 ସେ.ମି.;

(d)
$$\frac{360y}{2\pi z}$$
, (e) $a = \pi \sqrt{2}$

- 4.39380 କି.ମି., 5.140 ଟି; 6.7 ମି.; 7.264 ମି., 220 ମି.; 8.7 ସେ.ମି.; $9.5\sqrt{10}$ ମି.
- 10. 250ଥର; 11. 6336 ମି; 12. 88 ମି., 28 ମି.; 13. 112 ମି.; 14. 8 ମି. 48 ସେ.; 15. 28 ମି.;
- 16. 63 ଡେ.ମି; 17. 62.8 ସେ.ମି., 18. 88 $\sqrt{3}$ ସେ.ମି., 44 $\sqrt{3}$ ସେ.ମି.; 19.(a) 60° , (b) 20 ସେ.ମି.,
- 20. 17.854 ସେ.ମି.; 21. 3 : 2; 22. 14 ସେ.ମି.; 23. 40 ସେ.ମି.; 24. 2 $\sqrt{3}$ ସେ.ମି.;

ଅନୁଶୀଳନୀ - 5(b)

- 1.(i) 3118.5 จ.กิ.; (ii) 9856 จ.бจ.กิ.; (iii) 6506.5 จ.бจ.กิ.; (iv) 616 จ.กิ.;
- 2. (i) 14 \hat{n} ., (ii) 308 \hat{n} .; 3.(i) $821\frac{1}{3}$ \hat{n} . \hat{n} .; (ii) $2200\frac{11}{12}$ \hat{n} ., (iii) 1134 \hat{n} .,
 - (iv) 1782 କି.ମି.; 4.(i) 42 ମି., (ii) 80 ମି.; 5.(i) 70° , (ii) 135° , (iii) 60° ;
- 6.~(i)~1000 ବ.ମି., (ii)~600 ବ.ସେ.ମି., $7.(i)~2\sqrt{\frac{x}{\pi}}~$ ଏକକ; $(ii)~\sqrt{\frac{2x}{\pi}}~$ ଏକକ; $(iii)~\sqrt{\frac{3x}{\pi}}~$ ଏକକ
- 8. 70 ସେ.ମି.; 9. 2 : $\sqrt{\pi}$; 10. 15 ସେ.ମି.; 11. 2 ଏକକ; 12. $\frac{\sqrt{c}}{2}$ ଏକକ; 13. $\frac{\sqrt{c}}{2}$ ଏକକ; 14. 7546 ବ.ସେ.ମି., 15. 308 ବ.ମି.; 16. 79.92 ଟଙ୍କା; 17. 1078 ବ.ସେ.ମି.; 18. 4 ମି; 19. 21 ସେ.ମି., 14 ସେ.ମି.; 20. 616 ବ.ସେ.ମି.; 21. 550 ବ.ସେ.ମି.; 22. 616 ବ.ସେ.ମି.; 23. $42\sqrt{3}$ ସେ.ମି.; 24. 3 ବ.ସେ.ମି.; 25. 14 ମି.; 26. 7.84 ବ.ସେ.ମି.; 27. 5 ସେ.ମି.; 28. (i) 9 ଏକକ, (ii) 3:2; 29.(i) 5.7 ବ.ସେ.ମି., (ii) 18.24; 30. 182.36 ବ.ସେ.ମି.; 31. 61.4 ବ.ସେ.ମି.

ଅନୁଶୀଳନୀ - 5(c)

- 6. 20 ବେ.ମି., 21 ବେ.ମି., 7.(a) 180 ବ.ମି.; (b) 1150 ବ.ବେ.ମି.; (c) 10 ମି.
- 8. 2592 จ. เจ. กิ.; 9. 25 เจ. กิ., 1218 จ. เจ. กิ.; 10. 3 เจ. กิ.;
- 11(a) 1056 ବ.ସେ.ମି., (b) 21 ମି., (c) 7524 ବ.ସେ.ମି.; 12. 750 ଥର; 13. $2\frac{1}{3}$ ମି.; 14. 30 ମି; 15. 2 ସେ.ମି.

ଅନୁଶୀଳନୀ - 5(d)

- 1. 6300 ଘ.ମି.; 2. 448 ଘ.ସେ.ମି.; 3. 30 ମି., 1680 ବ.ମି.; 4. 6 ସେ.ମି., 8 ସେ.ମି.; 5. 8 ସେ.ମି.;
- 6.84 ବ.ମି.; $7.4\sqrt{3}$ ସେ.ମି., 8.42 ସେ.ମି., 42 ସେ.ମି.; $9.360\sqrt{3}$ ବ.ମି., 10.14 ମି.;
- 11. 14 ଡ଼େ.ମି.; 12. $2\frac{3}{4}$ ମି.; 13. 21 ସେ.ମି.; 14. 385 ବ.ଡ଼େ.ମି.; 15. 1386 ଘ.ସେ.ମି.;
- 16. 3234 ผ. 6ุ . คิ.; 17. 15 6 ย. คิ., 13 6 ย. คิ.,

ଅନୁଶୀଳନୀ - 5(e)

- 1. (i) 240.24 ବର୍ଗ ସେ.ମି.; 221.76 ବ.ସେ.ମି.; (ii) 392.7 ବ.ସେ.ମି., 346.5 ବ.ସେ.ମି., (iii) 471 $\frac{3}{7}$ ବ.ସେ.ମି., 452 $\frac{4}{7}$ ବ.ସେ.ମି.; 2. (i) 1155 ଘ.ମି., 478.5 ବ.ମି.; (ii) 4224 ଘ.ମି., 1885 $\frac{5}{7}$ ବ.ମି.;
- 3. (i) 1386 จ.ศิ., 2310 จ.ศิ., (ii) 1914 จุ.ศิ.; 4. (i)1232 ฉ.द्य.ศิ., 704. จ.द्य.ศิ., (ii) 3850 จ.รุ.ศิ., 15, 400 ฉ.รุ.ศิ.; 5. 9856 ฉ.รุ.ศิ., 2200 จ.รุ.ศิ.; 6. 2156 ฉ.รุ.ศิ.;
- 7. (i) 2310 จ.6จ.กิ., (ii) 3080 จุ.6จ.กิ.; 8. (i) 3:25 (ii) 3:28, (iii) 5:7;
- 9. (i) 392.5 ฌ.กิ., (ii) 20940√5. ฌ.ସେ.กิ., (iii) 768√10 ฌ.ସେ.กิ.;
- 10. 2425.5 ଘ.ସେ.ମି., 346.5 (1+ $\sqrt{5}$) ବ.ସେ.ମି.; 11. $\frac{2816\sqrt{2}}{21}$ ଘ.ସେ.ମି.;
- 12. 1.5 ସେ.ମି.; 13. 5830 ବ.ମି.; 14. 163548 ଘ.ମି.; 15. 440;
- $16.\ 100\pi$ ଘ.ସେ.ମି. ଏବଂ 90π ବ.ସେ.ମି.

ଅନୁଶୀଳନୀ - 5(f)

- 1. (i) 5544 ବର୍ଗ ସେ.ମି. ଓ 38808 ଘ.ସେ.ମି.; (ii) 616 ବ.ସେ.ମି. ଓ $1437\frac{1}{3}$ ଘ.ସେ.ମି., (iii) 1386 ବ.ସେ.ମି. ଓ 4851 ଘ.ସେ.ମି.; 2. (i) 6 ସେ.ମି., (ii) 9 ସେ.ମି.; (iii) 20 ସେ.ମି.;
- 3. (i) 27:64, 9:16 (ii) 1:27, 1:9 (iii) 8: 125, 4:25;
- 4. $113\frac{1}{7}$ ବ.ସେ.ମି.; 5. $1437\frac{1}{3}$ ଘ.ସେ.ମି.; 6. 21 ମି.; 7. (i) 729 , (ii) 38.88 ମି.; 8. 19404 ଲି.
- 9. 3:2:6; 10. 6336 ଗ୍ରାମ୍, 11. 241√10 ବ.ସେ.ମି.; 12. 30 ସେ.ମି.;
- 13. (a) 381π ବ.ସେ.ମି., (b) $\frac{542\pi}{3}$ ଘ.ସେ.ମି. ।