Zlepki nad triangulacijami, DN 1

Andrej Kolar-Požun

March 6, 2023

Tekom nalog uporabljamo definicijo Bernsteinovih polinomov iz predavanj

$$B_{\mathbf{d}}(\tau_1, \dots, \tau_m) = \frac{d!}{d_0! \dots d_m!} \tau_0^{d_0} \tau_1^{d_1} \dots \tau_m^{d_m}, \tag{1}$$

kjer je $\tau_0=1-\sum_{l=1}^m \tau_l$. Zaradi berljivosti bomo v dokazih izpuščali argumente polinomov. Vedno se ve, da so ti (τ_1,\ldots,τ_m)

1 Prva naloga

1. Naj bo $d\in\mathbb{N}$ in $m\in\mathbb{N}.$ Dokažite, da Bernsteinovi bazni polinomi $B_d,\,\boldsymbol{d}\in\mathbb{D}_d^m,$ zadoščajo rekurzivni zvezi

$$B_d(\tau_1, \tau_2, \dots, \tau_m) = \sum_{l=0}^m \tau_l B_{d-e_l}(\tau_1, \tau_2, \dots, \tau_m)$$

za vsak $(\tau_1,\tau_2,\ldots,\tau_m)\in\mathbb{R}^m$. Pri tem se B_{d-e_l} obravanava kot 0, če $d-e_l\notin\mathbb{D}^m_{d-1}$.

Uporabili bomo lemo iz predavanj, ki pravi da za $d\in\mathbb{N},\ m\in\mathbb{N},\ \mathbf{d}\in\mathbb{D}_{d-1}^m$ in $0\leq l\leq m$ velja

$$\frac{d_l + 1}{d} B_{\mathbf{d} + e_l} = \tau_l B_{\mathbf{d}} \tag{2}$$

Zapišimo to lemo malo drugače. Uvedemo $\mathbf{d}' = \mathbf{d} + e_l$

$$\frac{d_l+1}{d}B_{\mathbf{d}'} = \tau_l B_{\mathbf{d}'-e_l}. (3)$$

To ima smisel le, če $\mathbf{d}' - e_l \in \mathbb{D}_{d-1}^m$. Iz $\mathbf{d}' = \mathbf{d} + e_l$ sledi še $d_l' = d_l + 1$. Formula iz leme tako postane

$$\frac{d_l'}{d}B_{\mathbf{d}'} = \tau_l B_{\mathbf{d}' - e_l} \tag{4}$$

Ta formula velja za vsak $\mathbf{d}' \in \mathbb{D}_d^m$ za katerega je $\mathbf{d}' - e_l \in \mathbb{D}_{d-1}^m$. Zaradi lepše berljivosti se znebimo oznak z apostrofom, ki smo jih vpeljali samo, da smo lažje obrnili lemo:

$$\frac{d_l}{d}B_{\mathbf{d}} = \tau_l B_{\mathbf{d} - e_l} \tag{5}$$

Lemo v tej obliki lahko direktno uporabimo za rešitev naloge. Desna stran enačbe v nalogi se glasi:

$$\sum_{l=0}^{m} \tau_{l} B_{\mathbf{d}-e_{l}} = \sum_{l=0}^{m} \frac{d_{l}}{d} B_{\mathbf{d}} = \frac{\sum_{l=0}^{m} d_{l}}{d} B_{\mathbf{d}} = B_{\mathbf{d}}.$$
 (6)

V prvem enačaju morda zgleda, kot da smo lemo uporabili, ne da bi preverili ali $\mathbf{d} - e_l \in \mathbb{D}^m_{d-1}$, vendar je v tem primeru itak $d_l = 0$ in so ti členi v vsakem primeru nerelevantni. Pri zadnjem enačaju smo upoštevali še, da je $\sum_{l=0}^m d_l = d$.

2 Druga naloga

2. Z uporabo rekurzivne zveze dokažite, da za polinom

$$P(\tau_1, \tau_2, ..., \tau_m) = \sum_{d \in \mathbb{D}_i^m} b_d B_d(\tau_1, \tau_2, ..., \tau_m),$$

določen s koeficienti $b_{\boldsymbol{d}} \in \mathbb{R},\, \boldsymbol{d} \in \mathbb{D}_d^m,$ velja

$$P(\tau_1, \tau_2, \dots, \tau_m) = \sum_{\mathbf{d} \in \mathbb{D}_{s-1}^m} b_{\mathbf{d}}^{(r)} B_{\mathbf{d}}(\tau_1, \tau_2, \dots, \tau_m)$$

za vsak $r \in \{0, 1, \dots, d\}$. Vrednosti $b_d^{(r)}$ so definirane rekurzivno z $b_d^{(0)} = b_d$, $d \in \mathbb{D}_d^m$, in

$$b_{\mathbf{d}}^{(r)} = \sum_{l=0}^{m} \tau_{l} b_{\mathbf{d}+\mathbf{e}_{l}}^{(r-1)}, \quad \mathbf{d} \in \mathbb{D}_{d-r}^{m}, \quad r = 1, 2, \dots, d.$$

Problema se lotimo z indukcijo. Za r=0 to očitno velja, saj je to le definicija polinoma P.

Predpostavimo da zveza velja za nekr < din pokažimo, da velja tudi za $r+1 \leq d$

Po indukcijski predpostavki torej velja

$$P = \sum_{\mathbf{d} \in \mathbb{D}_{r}^{m}} b_{\mathbf{d}}^{(r)} B_{\mathbf{d}} \tag{7}$$

Uporabimo rekurzivno zvezo iz prve naloge in lahko nadaljujemo:

$$P = \sum_{\mathbf{d} \in \mathbb{D}_{d-r}^{m}} b_{\mathbf{d}}^{(r)} B_{\mathbf{d}} = \sum_{\mathbf{d} \in \mathbb{D}_{d-r}^{m}} b_{\mathbf{d}}^{(r)} \sum_{l=0}^{m} \tau_{l} B_{\mathbf{d}-e_{l}} = \sum_{\mathbf{d} \in \mathbb{D}_{d-r}^{m}} \sum_{l=0}^{m} b_{\mathbf{d}}^{(r)} \tau_{l} B_{\mathbf{d}-e_{l}}$$
(8)

Ni nam treba skrbeti za primere ko $\mathbf{d} - e_l \notin \mathbb{D}_{d-r-1}$ saj nam prva naloga pove, da se take člene obravnava kot 0. Prav tako je \mathbb{D}_{d-r-1} dobro definiran objekt, saj $r+1 \leq d$. Torej lahko zadnjo vsoto prevedmo iz vsote po \mathbb{D}_{d-r}^m v vsoto po \mathbb{D}_{d-r-1}^m :

$$P = \sum_{\mathbf{d} \in \mathbb{D}_T^n} \sum_{l=0}^m b_{\mathbf{d}}^{(r)} \tau_l B_{\mathbf{d}-e_l} = \sum_{\mathbf{d} \in \mathbb{D}_T^n} \sum_{l=0}^m b_{\mathbf{d}+e_l}^{(r)} \tau_l B_{\mathbf{d}}.$$
(9)

Definiramo kot v navodilih $b_{\mathbf{d}}^{(r+1)} = \sum_{l=0}^m \tau_l b_{\mathbf{d}+e_l}^{(r)}$ in dobimo

$$P = \sum_{\mathbf{d} \in \mathbb{D}_{d-r-1}^m} \left(\sum_{l=0}^m b_{\mathbf{d}+e_l}^{(r)} \tau_l \right) B_{\mathbf{d}} = \sum_{\mathbf{d} \in \mathbb{D}_{d-r-1}^m} b_{\mathbf{d}}^{(r+1)} B_{\mathbf{d}}.$$
 (10)

S čimer je po indukciji za vsak $r \in \{0,1,\dots,d\}$ zveza dokazana.