# Pelvic Bone Segmentation on DRR generated pelvic Xrays from CT image.

**Project Report** 

Sadi Mohammad Siddiquee Research Assistant, CCDS Lab Independent University, Bangladesh. Saadia Binte Alam Associate Professor Independent University, Bangladesh.

Annotation Assisted by -

Mahfuzur Rahman Nabilah Tabassum Oshin Sadia Khan Syed Mohaimin UI Hoque Mir Sayad Bin Almas

# **Brief Description:**

This project's primary work is generating Bone Segments of pelvic X-rays. As there is no such available open-source dataset we are aware of providing annotation for Pelvic Xrays, we needed to annotate our own dataset. CT images from the open-source CTPelvic1k¹ dataset were used for the Digitally reconstructed radiograph (DRR) generation of the X-ray image. A group of 5 students then teamed up for Pelvic Xray bone annotation. Finally, a benchmarking on a subset of dataset was done using the widely used Convolutional Neural Network-based model (UNet).

# **Project Stages:**

## Stage 1: Data Annotation.

Our first work was to ready a dataset of DRR-generated pelvic Xrays and label them for bone segmentation. We used *dataset6 split* of the CTPelvic1k dataset as these CT images do not have metal artifacts in them. A general overview of *dataset6*<sup>2</sup> *split*:

| Dataset name[split] | #   | Mean<br>spacing(mm) | Mean size       | # of Tr/Val/Ts | Source and<br>Year |
|---------------------|-----|---------------------|-----------------|----------------|--------------------|
| CLINIC [dataset6]   | 103 | (0.85, 0.85, 0.80)  | (512, 512, 345) | 61/21/21       | Collected<br>2020  |

We proposed a standalone Data Annotation Pipeline. This pipeline has two phases - CT image ROI selection, Bone labeling from drr generated pelvic X-rays.

### a. CT image ROI selection

For drr generation, we need to measure the ROI of the pelvic bones in CT images. For this, we used *MITK workbench*<sup>3</sup> software and navigate through the axial, sagittal and coronal planes for the ROI measurement. This ROI measurement was distributed between 5 students, resulting in this sheet.

Drr generation code was run in MATLAB. This code needs a text file named *ListFile.txt* which holds all the CT file paths, file tikas and ROIs. This was made using above mentioned *ROI sheet* and *pandas module* from python. Hyperparameters of the drr generation code: Degree of Angle = 0, Intensity range = 60:10:120. So for every CT image, there were 7 drr generated Xrays with 7 intensity levels. One file was chosen from them based on visibility.

<sup>&</sup>lt;sup>1</sup> "MIRACLE-Center/CTPelvic1K: Resources of the paper ... - GitHub." https://github.com/ICT-MIRACLE-lab/CTPelvic1K. Accessed 8 Aug. 2022.

<sup>&</sup>lt;sup>2</sup> "Deep learning to segment pelvic bones: large-scale CT datasets ...." 16 Apr. 2021, https://link.springer.com/article/10.1007/s11548-021-02363-8. Accessed 8 Aug. 2022.

<sup>&</sup>lt;sup>3</sup> "The Medical Imaging Interaction Toolkit (MITK) - mitk.org." 29 Apr. 2022, <a href="https://www.mitk.org/wiki/The\_Medical Imaging Interaction Toolkit (MITK)">https://www.mitk.org/wiki/The\_Medical Imaging Interaction Toolkit (MITK)</a>. Accessed 8 Aug. 2022.



Fig 1: Overview of phase 1.

### b. Bone Annotation

We proposed a novel annotation pipeline maintaining SOTA for bone annotation. The proposed Annotation Pipeline:



Fig 2: Proposed Data Annotation Pipeline.

Till now, we finished our work on *Annotation by student* step (Randomize step was deserted). As we have a team of 5 members, data was distributed between them in three parts - dist1, dist2, and dist3. Following chart showing data distribution between students (person name anonymized):

| distribution | Student 1  | Student 2 | Student 3   | Student 4  | Student 5  |
|--------------|------------|-----------|-------------|------------|------------|
| dist1        | patch1_8   | patch9_16 | patch17_24  | patch33_40 | patch25_32 |
| dist2        | patch41_53 |           | patch67_79  | patch54_66 | patch80_92 |
| dist3        |            |           | patch98_103 | patch93_97 |            |

Here, patch{start}\_{end} denotes the filename range from drr generated file. As we told earlier, for every CT image, there were 7 drr generated Xrays, Student first finds the best visible file and uses that for annotation. *MITK workbench* was used for annotation purposes too.



Fig 3: Labeling Protocol of Bones.

As we see in Fig 3, we used a unique labeling protocol for pelvic bones. We gave every bone a unique value and maintain it throughout our annotation process. Also, drr generation errors and annotation confusion were collected from students at the time of annotation (<u>spreadsheet</u>).



Fig 4: Bone Annotation in MITK workbench.

After the *preliminary stage of data annotation* by the students, the total number of annotated files is 79.

| # of CT files | # of DRR generation error | # of preliminary stage annotated files |
|---------------|---------------------------|----------------------------------------|
| 103           | 24                        | 79                                     |

# Stage 2: Benchmarking Dataset.

We used Convolutional Neural Network-based model (UNet<sup>4</sup>) for benchmarking. UNet is widely used in medical image segmentation and is acknowledged by many medical experts. We use a subset of the dataset containing 48 data for benchmarking. This subset was randomly split into train and validation sets.

| # of Total File | # of Train files | # of Valid files |
|-----------------|------------------|------------------|
| 48              | 38               | 10               |

Training protocol: input size - (256, 256), batch size - 12, optimizer - Adam, no of epochs - 50, learning rate - 0.0001, gpu - GTX 1070Ti.

Result: In this initial benchmarking, we got a mean *dice coefficient of 0.8724* on the valid set.



a. Model Prediction.



b. Annotation.

Fig 5: Model's prediction on validation sample.

<sup>&</sup>lt;sup>4</sup> "U-Net: Convolutional Networks for Biomedical Image Segmentation." 18 May. 2015, <a href="https://arxiv.org/abs/1505.04597">https://arxiv.org/abs/1505.04597</a>. Accessed 8 Aug. 2022.



Fig 6: Model Convergence during training.