Ready-to-couple (rdy2cpl)

Automating the Coupling Configuration for EC

-Earth4

github.com/uwefladrich/rdy2cpl

Uwe Fladrich (SMHI) Eric Maisonnave (CERFACS)

OASIS coupling configuration

The OASIS namcouple file

Holds configuration information about the coupled model (identity of components, routing of coupling fields, dimensions, time stepping, ...)

- Information is partly repeated, at different scopes, partly non-hierarchic
- Non-standard, column-based syntax; hard-coded parser
- Information (at least partly) needed outside the coupler

Alternatives:

- Different format and/or modified content
- Auto-generate namcouple file

A namcouple data model: Why?

It is not only about the namcouple file format:

- Parsing the file outside OASIS
- Access configuration details
- Build tools around the coupling configuration

A namcouple data model: How?

- Python data classes
- Concept of links and link end points
- *Grids* are just rudimentary ("real" grid info handled elsewhere)
- Namcouple objects are "printable" (i.e. namcouple file syntax build-in)

Namcouple data model in rdy2cpl (subset of actual attributes/methods)

Use case 1

Automatic configuration and efficient weight computation

The problem: namcouple, grid files, and remapping weights depend on model configuration

- Manual creation of grid files is prone to errors
- so is providing pre-computed weight files
- On-the-fly computation of remapping files is time consuming
- It is also wasting resources (nodes/cores)

Auto -conf and efficient weight computation

Solution

- Read namcouple information from (YAML) file
- Automatically create, set up and run a simplified coupled "model" (one component per distinct link / weight file)
 - o Create reduced namcouple file
 - Create grid files (using build-in definitions of common grids)
 - Run the "model" until oasis_end_def → weight files produced
- Create the *real* nam oupl e file for the model
- Do all this fully automatic and with optimal resource allocation

Auto -conf and efficient weight computation

Implementation

- Create namcouple object from YAML file
- Create grid files from BaseGrid classes (regular, reduced Gaussian, ORCA, etc. available)
- One OASIS component is created for each distinct link in the name ouple info
- Fully dynamic pyOASIS coupled "model" is launched
- One MPI process per coupling link / weight file Needs removed MPI barrier in OASIS code!
- OpenMP is used to utilise one compute node per MPI process
- Model is shot down after oas is _end_def
- The only user input needed is namcouple info from YAML file (which can be reused by other workflow steps)

Efficient weight computation

Low-res High-res

Elapsed times for computation of remapping weights: EŒarth standard, rdy2cp, rdy2cplOpenMP

Use case 2

Interpolation testing

- Help model development by testing remapping methods on the model grids
- OASIS examples help, but limited to certain grids/interpolations

Goals:

- Use any actual model grid and any valid remapping method
- Get immediate feedback

Remapping/interpolation tests

Using the same automatic setup of a fake "model", we

- Use test functions from [1] to set up coupling field
- Send one coupling field
- Report error
- Make plots

Note: This tool is model dependent in the sense that it "knows" the model grids. (Grid definitions are, however, modular and model agnostic)

Remapping/interpolation tests

Example remapping errors for

- sinusoidal (left) and
- harmonic (right)

test functions, using SCRIP GAUSWGT

- 1. Source field
- 2. Target field
- 3. Absolute error

Testing another grid/method is just a small config change ...

Summary

This work was partly funded by the IS-ENES3 (Grant Agreement no. 824084) and ESiWACE2 (823988) projects under the European Union's Horizon 2020 research and innovation programme.

- OASIS namcouple data model
 - Python OO representation of the nameouple file
 - Read from (any) common file format (e.g. YAML)
 - Write in namcouple syntax
 - Provide data model to any Python tool
- Automatic weight computation
 - Flexible (any grid/method)
 - Efficient (MPI, OpenMP)
- Test regridding methods
 - Flexible (any grid/method)
 - Uses exact model configuration
 - Immediate developer feedback, no model run required