Lecture 9 - Homework

Question 1. Determine the six trigonometric ratios for the following angles,

(a)
$$\theta_1 = 30^{\circ}$$

(b)
$$\theta_2 = 225^{\circ}$$

(c)
$$\theta_3 = -240^{\circ}$$

(d)
$$\theta_4 = 330^{\circ}$$

Question 2. Convert the following polar coordinates to standard coordinates,

a)
$$P(1, 45^{\circ})$$

b)
$$\mathbf{Q}(2, -240^{\circ})$$
 c) $\mathbf{T}(4, 210^{\circ})$ d) $\mathbf{M}(3, -90^{\circ})$

c)
$$T(4,210^{\circ})$$

d)
$$\mathbf{M}(3, -90^{\circ})$$

e)
$$G(3, 330^{\circ})$$

Question 3. For each of the following, you are given a trigonometric ratio, solve for θ . Assume that each angle θ lies in the **fourth** quadrant.

a)
$$\cos \theta_1 = \frac{\sqrt{3}}{2}$$

b)
$$\sin \theta_2 = -\frac{1}{2}$$

b)
$$\sin \theta_2 = -\frac{1}{2}$$
 c) $\tan \theta_3 = \sqrt{3}$ d) $\tan \theta_4 = -\frac{1}{4}$

d)
$$\tan \theta_4 = -\frac{1}{2}$$

Question 4. For each of the following, you are given a trigonometric ratio, solve for λ . Assume that each angle λ lies in the **second** quadrant.

a)
$$\cos \lambda_1 = -\frac{1}{\sqrt{2}}$$

b)
$$\sin \lambda_2 = \frac{\sqrt{3}}{2}$$

a)
$$\cos \lambda_1 = -\frac{1}{\sqrt{2}}$$
 b) $\sin \lambda_2 = \frac{\sqrt{3}}{2}$ c) $\tan \lambda_3 = -\frac{1}{\sqrt{3}}$ d) $\tan \lambda_4 = -\frac{3}{2}$

d)
$$\tan \lambda_4 = -\frac{3}{2}$$

Question 5. Convert the following standard coordinates to polar coordinates,

a)
$$P(4\sqrt{3}, -4)$$
 b) $Q(-1, 1)$

b)
$$\mathbf{Q}(-1,1)$$

c)
$$\mathbf{T}(-6, -3)$$

c)
$$\mathbf{T}(-6, -3)$$
 d) $\mathbf{M}(3, -\sqrt{27})$