# ЯНДЕКС



Библиотека градиентного бустинга

#### CatBoost



# Дерево решений



## Градиентный бустинг



#### Режимы

- Регрессия
- Классификация
- Мультиклассификация
- Ранжирование

- Оптимизируемая функция
- Метрики

## CatBoost Viewer



## CatBoost Viewer



### TensorBoard



## Схема обучения

1. Дерево приближает шаг по (анти-)градиенту

approx1, ..., approxN – значения формулы на документах.

Err(approx1,...,approxN) => -(Der1,...,DerN).

- 2. Жадное построение дерева
- 3. Подсчет значений в листьях

# Symmetric trees



## Скор сплита

$$score(split) = \frac{\sum_{doc} leafValue(doc) * gradient(doc) * w(doc)}{\sqrt{\sum_{doc} w(doc) * leafValue(doc)^2}}$$

$$leafValue(doc) = \frac{sumWeightedDer}{sumWeights}$$

## Бутстрап

#### Бернулли:

$$w(doc) = 0 \text{ or } 1 (P(1) = sample\_rate)$$

Байесовский:

$$w(doc) *= (-\log(rand(0,1)))^{bagging\_temperature}$$

Только на этапе выбора структуры дерева

## Рандомизация скора

$$score(f) += random\_strength * N(0, RndMult * Sko)$$

Sko – длина вектора градиента

RndMult – множитель, уменьшающийся при увеличении итерации

## Бинаризация

Бинаризация флотных факторов

Uniform
Median
UniformAndQuantiles
MaxSumLog
GreedyLogSum

## Сравнение бинаризаций

#### Равномерная сетка:

Только равномерная использует значения фичей

Остальные – только порядок документов

 $\sum W^2$ 

Веса: 10,10,1000,1 – как лучше расставить 2 границы?

## Бинаризация

Бинаризация счетчиков

Ha CPU – Uniform

Ha GPU – Любая

#### Вычисление значений в листьях

- 1. Метод Ньютона или шаг по градиенту
- 2. Несколько шагов внутри одного дерева

## Числовые факторы



## Категориальные факторы



## Работа с категориальными факторами

- 1. Перенумеровать факторы
- 2. One-hot encoding
- 3. Хеширование в несколько корзин

## Статистики по катфичам

- 1. Средний таргет по пулу (пример один объект с такой фичой)
- 2. Leave one out (пример «кот»: 4 успеха, 7 неуспехов. one-hot + ctr = 0.3 и 0.4)
- 3. Leave bucket out

Такие способы ведут к переобучению

## Статистики по катфичам

1. Средний таргет на отложенной выборке

При таком способе меньше данных для обучения и вычисления статистик

## Статистики по катфичам

- 1. Статистики по прошлому в перестановке
- 2. Несколько перестановок
- 3. Комбинации факторов

#### Типы статистик

- 1. С учетом таргета (CTR)
- 2. Без учета таргета (Counter)

- 1. Классификация
- 2. Регрессия
- 3. Мультиклассификация

## Статистики для бинарной классификации

$$Ctr = \frac{\#Positive + Prior}{\#All + 1}$$

## Статистики для регрессии и мультикласса

$$Ctr = \frac{\#CountInClass + Prior}{\#All + 1}$$

#### 1. Borders

- CountInClass Число объектов с таргетом больше границы
- 2. Buckets
  - > CountInClass Число объектов в бакете
- 3. MeanValue
  - > CountInClass Суммарный таргет

## Вычисление статистик при применении

1. CTR

Объект теста дописывается к обучающей выборке.

- 2. Counter
- 1. Каунтеры по всему тесту
- 2. Объект теста дописывается к лерну

## One-hot encoding

1. Имеет смысл пробовать, если у катфичи мало значений.

По дефолту используется для катфичей с 2 значениями.

1. Не нужно делать самим. Нужно использовать one\_hot\_max\_size

## Переобучение в классическом бустинге

1. Оценка градиента для каждого документа делается при помощи модели, обученной с использованием данного документа.

## Ordered boosting

- 1. Квадратичная схема
- 2. Линейная схема
- 3. Линейное упрощение квадратичной схемы

## Обучение из бейзлайна

1. Не то же самое, что продолжение обучения

1. Выбор категориальных факторов

- 1. Число итераций + learning\_rate
- 2. Детектор переобучения

- 1. L2-регуляризация
- 2. random\_strength
- 3. bagging\_temperature

- 1. Глубина дерева
- 2. Размер бинаризации

1. rsm

- 1. Вычисление значений в листьях
- 1. Newton vs Gradient
- 2. Число шагов по градиенту

## Полезная функциональность

- 1. staged\_predict() и eval\_metrics()
- 2. cv()
- 3. snapshots

## CPU vs GPU

| Epsilon dataset | 128 bins        | 32 bins        |
|-----------------|-----------------|----------------|
| CPU             | 713 sec (1.0x)  | 653 sec (1.0x) |
| K40             | 547 sec (1.3x)  | 248 sec (2.6x) |
| GTX 1080        | 194 sec (3.67x) | 120 sec (5.4x) |
| P40             | 162 sec (4.4x)  | 91 sec (7.1x)  |
| GTX 1080Ti      | 145 sec (4.9x)  | 88 sec (7.4x)  |
| P100-PCI        | 127 sec (5.6x)  | 70 sec (9.3x)  |
| V100-PCI        | 77 sec (9.25x)  | 49 sec (13.3x) |

| Criteo dataset | 128 bins        |  |
|----------------|-----------------|--|
| CPU            | 1060 sec (1.0x) |  |
| K40            | 373 sec (2.84x) |  |
| GTX 1080Ti     | 301 sec (3.5x)  |  |
| GTX 1080       | 285 sec (3.7x)  |  |
| P40            | 123 sec (8.6x)  |  |
| P100-PCI       | 82 sec (12.9x)  |  |
| V100-PCI       | 69.8 sec (15x)  |  |

## GPU: Comparison with other libraries



Method

15000

CatBoost

LightGBM

20000

**XGBoost** 

# Сравнение с другими библиотеками

|          | CatBoost | LightGBM                 | XGBoost                 | H2O               |
|----------|----------|--------------------------|-------------------------|-------------------|
| Adult    | 0.269741 | 0.276018 + <b>2.33</b> % | 0.275423 <b>+ 2.11%</b> | 0.275104 + 1.99%  |
| Amazon   | 0.137720 | 0.163600 + 18.79 %       | 0.163271 + 18.55%       | 0.162641 + 18.09% |
| Appet    | 0.071511 | 0.071795 <b>+ 0.40</b> % | 0.071760 + 0.35%        | 0.072457 + 1.32%  |
| Click    | 0.390902 | 0.396328 + <b>1.39</b> % | 0.396242 + 1.37%        | 0.397595 + 1.71%  |
| Internet | 0.208748 | 0.223154 + 6.90 %        | 0.225323 +7.94%         | 0.222091 +6.39%   |
| Kdd98    | 0.194668 | 0.195759 <b>+ 0.56</b> % | 0.195677 + 0.52%        | 0.195395 + 0.37%  |
| Kddchurn | 0.231289 | 0.232049 + 0.33 %        | 0.233123 + 0.79%        | 0.232752 + 0.63%  |
| Kick     | 0.284793 | 0.295660 <b>+ 3.82</b> % | 0.294647 + 3.46%        | 0.294814 + 3.52%  |

Logloss

## Информация

- https://github.com/catboost/catboost
- https://catboost.yandex/
- https://tech.yandex.com/catboost/doc/dg/concepts/about-docpage/
- https://twitter.com/CatBoostML

## Если хочется поучаствовать

- > https://github.com/catboost/catboost/issues Issues с тегами «help wanted», «good first issue»
- > Стажировки: annaveronika@yandex-team.ru