Семинар 11. НВП. НОП. Рюкзак. Матричное ДП.

- 1. В дощечке в один ряд вбиты гвоздики (они отсортированы по координате). Любые два гвоздика можно соединить ниточкой. Требуется соединить некоторые пары гвоздиков ниточками так, чтобы к каждому гвоздику была привязана хотя бы одна ниточка, а суммарная длина всех ниточек была минимальна.
- 2. Дана матрица $n \times m$ целых чисел. Нужно пройти из левого верхнего в правый нижний угол, ходить можно только вправо или вниз. Стоимость пути это произведение всех чисел на пути. Найти минимальное количество нулей, на которое может заканчиваться стоимость пути. Асимптотика $\mathcal{O}(nm)$.
- 3. На плоскости есть множество из N кругов. Любые два либо вложены, либо не пересекаются. Найдите наибольшую цепочку вложенных кругов за $\mathcal{O}(N^2)$.
- 4. Найдите наибольшую подпоследовательность-палиндром.
- 5. Найдите расстояние Левенштейна двух строк.
- 6. Найдите расстояние Левенштейна от строки до какого-либо палиндрома.
- 7. Решите задачу о рюкзаке в следующих постановках:
 - (a) i-й предмет можно брать от 0 до cnt[i] раз
 - (b) каждый предмет можно брать неограниченное число раз
- 8. Дан тетраэдр и муравей, находящийся в вершине А. За $\mathcal{O}(\log n)$ посчитайте число путей длины n в вершину A (вершины могут повторяться).
- 9. Найти за $\mathcal{O}(k^3 \log n)$ число путей из вершины u в вершину v, если граф задан матрицей смежности G размера $k \times k$.
- 10. Задана двумерная целочисленная сетка с неотрицательными координатами. Из (0,0) нужно попасть в (k,0). Ходить из точки (x,y) можно только в точки (x+1,y1), (x+1,y), (x+1,y+1). Есть n горизонтальных отрезков с ординатой $\leq Y$, выше которых нельзя подниматься. Их концы (a_i,b_i) по оси OX таковы, что $a_1=0$, $b_n=k$, $a_{i+1}=b_i$. Найти количество валидных путей за $\mathcal{O}(n\cdot Y^3\log k)$.