Representing, Processing, and Preparing Data

UNDERSTANDING DATA CLEANING AND PREPARATION TECHNIQUES

Janani Ravi CO-FOUNDER, LOONYCORN www.loonycorn.com

Overview

Identifying problems that hinder analytics

Common technology tools to work with data

Dealing with missing data

Dealing with outliers and erroneous data

Prerequisites and Course Outline

Prerequisites

Basic Python programming

Basic Excel spreadsheets

Basic SQL for relational databases

High school math

Course Outline

Data cleaning and preparation techniques

Processing data using spreadsheets and Python

Collecting data to extract insights

Processing data using relational databases

Representing insights from data

"My mind is made up. Don't confuse me with the facts."

Some powerful person

Thoughtful, Fact-based Point of View

Fact-based

Built with painstakingly collected data

Thoughtful

Balanced, weighing pros and cons

Point of View

Prediction, recommendation, call to action

Two Sets of Statistical Tools

Descriptive Statistics

Identify important elements in a dataset

Inferential Statistics

Explain those elements via relationships with other elements

Two Hats of a Data Professional

Find the Dots

Identify important elements in a dataset

Connect the Dots

Explain those elements via relationships with other elements

Finding the Dots

Data is more and more plentiful However careful handling is needed

- Missing values
- Outliers
 - Genuine outliers
 - Erroneously measured points

Connecting the Dots

Spreadsheets

Programming languages

- In-memory processing
- Distributed processing

SQL

- Relational databases
- Data warehouses

Choices of Technology

Microsoft Excel

Fast prototyping

Bad for production use

Azure SQL Database

Business users who can't code

Not yet Big Data; problem of silos

Azure Data Warehouse

SQL for Big Data analytics

Streaming data, ML integrations

Python with Pandas

Fast prototyping in REPL environment

Still constrained to in-memory data

Python with Spark

Fast prototyping with Big Data

Truly powerful - still needs code to be written

Missing Data

Missing Data Deletion Imputation

Deletion a.k.a. Listwise Deletion

Delete an entire record (row) if a single value (column) is missing. Simple but can lead to bias.

Listwise Deletion

Most common method in practice

Can reduce sample size significantly

If values are not missing at random, can introduce significant bias

Imputation

Fill in missing column values, rather than deleting records with missing values.

Imputation

Methods range from very simple to very complex

Simplest method: Use column average

Can interpolate from nearby values

Can even build model to predict missing values

Hot-deck Imputation

Sort records based on any criteria

For each missing value, use immediately prior available value

"Last Observation Carried Forward"

For time series, equivalent to assuming no change since last measurement

Mean Substitution

For each missing value, substitute mean of all available values

Has effect of weakening correlations between columns

Can be problematic when bivariate analysis required

Regression

Fit model to predict missing column based on other column values

Tends to strengthen correlations

Regression and mean substitution have complementary strengths

A data point that differs significantly from other data points in the same data set.

Identifying Outliers

Distance from mean

Distance from fitted line

Identifying Outliers

Distance from mean

Distance from fitted line

Mean as Headline

The mean, or average, is the one number that best represents all of these data points

$$\bar{x} = \frac{x_1 + x_2 + \dots + x_n}{n}$$

Variation Is Important Too

"Do the numbers jump around?"

Range = $X_{max} - X_{min}$

The range ignores the mean, and is swayed by outliers - that's where variance comes in

Variance is the second-most important number to summarize this set of data points

Variance is the second-most important number to summarize this set of data points

Variance is the second-most important number to summarize this set of data points

We can improve our estimate of the variance by tweaking the denominator - this is called Bessel's Correction

Mean and Variance

Mean and variance succinctly summarize a set of numbers

$$\frac{1}{x} = \frac{x_1 + x_2 + ... + x_n}{n}$$
 Variance = $\frac{\sum (x_i - \overline{x})^2}{n-1}$

Variance and Standard Deviation

Standard deviation is the square root of variance

Variance =
$$\sum (x_i - \overline{x})^2$$

$$\frac{\sum (x_i - \overline{x})^2}{n-1}$$
Std Dev = $\sqrt{\frac{\sum (x_i - \overline{x})^2}{n-1}}$

Points that lie more than 3 standard deviations from the mean are often considered outliers

Points that lie more than 3 standard deviations from the mean are often considered outliers

Identifying Outliers

Distance from mean

Distance from fitted line

Outliers might also be data points that do not fit into the same relationship as the rest of the data

Outliers might also be data points that do not fit into the same relationship as the rest of the data

Coping with Outliers

Always start by scrutinizing outliers If erroneous observation

- Drop if all attributes of that point are erroneous
- Set to mean if only one attribute is erroneous

Coping with Outliers

If genuine, legitimate outlier

- Leave as-is if model not distorted
- Cap/Floor if model is distorted
 - Need to first standardize data
 - Cap positive outliers to +3
 - Floor negative outliers to -3

Summary

Identifying problems that hinder analytics

Common technology tools to work with data

Dealing with missing data

Dealing with outliers and erroneous data