H1N1 Vaccination Rates

 $\bullet \bullet \bullet$

Elizabeth Webster May 2022

Introduction

This project explores the use of classification models in order to predict whether or not an individual will be willing to receive the H1N1 Vaccine.

We will be looking for the model that has the highest accuracy score for our test data set.

Outline

- Business Problem
- Data
- Methods
- Results
- Feature Importance
- Recommendations
- Next Steps

Business Problem

- Company that distributes vaccines
- Predict the number of vaccines for certain populations
- Primarily concerned with model accuracy scores

Data

National 2009 H1N1 Flu Survey

Includes features such as:

- H1N1 Concern
- H1N1 Knowledge
- Personal Behaviors
- Doctor Recommendations
- Age
- Education Level
- Race

Methods - Data Cleaning

- Removing unnecessary columns
- Finding and filling missing data
- Encoding categorical columns
- Addressing the class imbalance

Methods - Creating Models

- Baseline Model Decision Stump
- Advanced Models Random Forests & XG Boost
- Parameter Tuning through Grid Searches

Results

- Decision Tree 81% accuracy score
- Random Forests 83% accuracy score
 - Overfitting tendencies
- XG Boost 84% accuracy score

Feature Importance - Doctor Recommendation

Feature Importance - Education Level

Feature Importance - H1N1 Knowledge

Recommendations

- Use the XG Boost model for predicting vaccinations for a population
- Distribute more vaccines to populations with higher levels of college educated individuals
- Use information from clinics to understand the amount of patients they are recommending the vaccine to

Next Steps

• Tackle the class imbalance

Understand vaccination rates by group

Promoting vaccines through clinics

Thank You!

Email: <u>eaw524@gmail.com</u>

GitHub: https://github.com/elizabeth524