Instituto Superior de Engenharia de Lisboa

LICENCIATURA EM ENGENHARIA INFORMÁTICA E MULTIMÉDIA

PROCESSAMENTO DIGITAL DE SINAIS

1^a Chamada – 7 de Julho de 2015

- Repetição do 1º Teste: Duração 1h30, grupos 1 a 3
- Repetição do 2º Teste: Duração 1h30, grupos 4 a 6
- Exame: Duração 2h30, todos os grupos excepto as alíneas 1.(d), 2.(a), 3.(b) e 5.(b)
- 1. Considere os seguintes sinais contínuos,

$$x(t) = 2 + 2\cos(2\pi 21t + \frac{\pi}{3})$$
 e $y(t) = x(t - \frac{2\pi}{3}) + \cos(2\pi 9t)$.

- (a) Represente graficamente dois períodos de x(t) no domínio do tempo.
- (b) Represente graficamente os espectros de amplitude, e de fase dos sinais x(t) e y(t).
- (c) Pretende-se digitalizar o sinal y(t). Qual a frequência adequada? Justifique.
- (d) Considerando que y(t) é digitalizado com $F_s=100\,{
 m Hz}$, e codificado com 16 bits por amostra, qual o tamanho do ficheiro produzido quando y(t) tem uma duração de 7 minutos?
- 2. Considere que X_k representa os coeficientes da série de Fourier do sinal x(t), cujo a frequência fundamental, f_0 , é 25Hz.

$$X_k = \begin{cases} -4/j & , & k = 3 \\ +4/j & , & k = -3 \\ 10 & , & k = \pm 5 \\ 2 & , & k = 0 \end{cases}$$

- (a) Represente graficamente em função de k, $|X_k|$ e $\angle X_k$.
- (b) Determine a expressão analítica de x(t) (com base em sinusoides). O sinal x(t) é periódico? Caso seja determine o seu período.
- (c) Calcule a potência de x(t) através da relação de Parseval.
- 3. Considere o sinal contínuo e periódico, x(t) de período $T_0=5$ segundos, do qual se representa um troço na figura.
 - (a) Determine a série de Fourier de x(t).
 - (b) Seja y(t) = x(t-2) 2. Represente graficamente y(t). Calcule Y_k .

4. Considere que a entrada de um SLIT é o sinal:

$$x[n] = \left(\frac{4}{5}\right)^n u[n]$$

onde u[n] é o escalão unitário. Considere ainda que a transformada-
 z da sua saída é:

$$Y(z) = \frac{1}{1 + 0.81z^{-2}}$$

- (a) Determine a transformada-z, H(z) do SLIT.
- (b) Determine resposta impulsional, h[n] do SLIT.
- (c) Esboce a resposta em frequência, $H(\Omega)$. Que tipo de filtragem realiza o sistema?
- 5. Considere os sistemas S_1 , cuja resposta em frequência está representada na Figura (assuma fase nula) e S_2 com resposta em frequência dada por $H_2(\Omega)=1-H_1(\Omega)$. Considere ainda o sinal $x[n]=2+\cos\left[\frac{\pi}{4}n\right]+\frac{1}{2}\cos\left[\frac{\pi}{2}n\right]$
 - (a) Qual o sinal à saída de S_1 quando à sua entrada está x[n]?

- (b) Qual o sinal à saída de S_2 quando à sua entrada está x[n]?
- 6. Considere os sistemas S_1 e S_2 , caracterizados pela sua resposta em frequência e resposta impulsiva, respectivamete:

$$S_1: H_1(\Omega) = \frac{1}{1 + 0.9e^{-j\Omega}}$$

 $S_2: h_2[n] = \delta[n] - 0.9\delta[n-1]$

- (a) Determine a equação às diferenças dos sistemas. Caracterize os sistemas quanto à sua resposta impulsiva.
- (b) Determine a função de transferência do sistema S_3 obtido da associação em série de S_1 com S_2 . Esboce a resposta em frequência do sistema equivalente, assim como o diagrama de pólos e zeros.
- (c) Calcule o sinal à saída do sistema da alínea anterior quando à entrada está o sinal $x[n] = 2\delta[n] \delta[n-2]$. (Se não fez a alínea anterior assuma o sistema S_1 .)

Cotações:

Q	Teste 1	Global
1.(a)	2.0	1.0
1.(b)	2.0	1.5
1.(c)	2.0	1.0
1.(d)	2.0	×
2.(a)	2.0	×
2.(b)	2.5	2.0
2.(c)	2.0	1.5
3.(a)	2.5	2.0
3.(b)	3.0	×

Q	Teste 2	Global
4.(a)	2.5	1.5
4.(b)	2.5	1.5
4.(c)	2.5	1.0
5.(a)	2.5	2.0
5.(b)	2.5	×
6.(a)	2.5	1.5
6.(b)	2.5	2.0
6.(c)	2.5	1.5