Experiment-6A

Student Name: Deepanshu UID: 22BCS16443

Branch:BE-CSE Section/Group: NTPP- 602(A)

Semester:6TH Date of Performance:20/02/25

Subject Name: AP Lab-2 Subject Code: 22CSH-352

1. TITLE:

Climbing Stairs.

2. AIM:

You are climbing a staircase. It takes n steps to reach the top.

3. Algorithm

- O Define a DP array dp where dp[i] represents the number of distinct ways to reach the i-th stair.
- o Initialize base cases:

```
dp[0] = 1 \rightarrow There is 1 way to stay at the ground without climbing.
dp[1] = 1 \rightarrow There is 1 way to reach the first stair (taking a single step).
```

O Iterate from i = 2 to n and use the recurrence relation:

```
dp[i]=dp[i-1]+dp[i-2]
```

O Return dp[n], which contains the total number of ways to reach the n-th stair.

Implemetation/Code

```
class Solution {
public:
int climbStairs(int n) {
// dp[i] := the number of ways to climb to the i-th stair
vector<int> dp(n + 1);
dp[0] = 1;
dp[1] = 1;
for (int i = 2; i <= n; ++i)
dp[i] = dp[i - 1] + dp[i - 2];
```

return dp[n];
}
};

Output:

Time Complexity : O(n)

Space Complexity: O(n)

Learning Outcomes:-

- O The given solution is a **bottom-up DP** approach, where smaller subproblems are solved first.
- O This makes it an ideal candidate for **DP** rather than a naive recursive approach (which has exponential complexity).

Experiment-6B

Student Name: Deepanshu UID: 22BCS16443

Branch:BE-CSE Section/Group: NTPP- 602(A)

Semester:6TH Date of Performance:20/02/25

Subject Name: AP Lab-2 Subject Code: 22CSH-352

1. TITLE:

Maximum Subarray.

2. AIM:

Given an integer array nums, find the subarray with the largest sum, and return its sum.

- 3. Algorithm
 - Define DP array dp[i], where:

dp[i] represents the maximum sum subarray that ends at index i.

This ensures that every subarray considered includes nums [i]

• Base Case:

 $dp[0] = nums[0] \rightarrow The maximum sum subarray ending at index 0 is the element itself.$

• State Transition (Recurrence Relation):

```
For each i from 1 to n-1, compute: dp[i]=max (nums[i],dp[i-1]+nums[i])dp[i] = \max(nums[i],dp[i-1]+nums[i])
```

• Final Answer:

The overall maximum sum subarray is obtained by computing: $\max(dp[0],dp[1],...,dp[n-1])$ \max(dp[0], dp[1], \\dots, dp[n-1])\max(dp[0],dp[1],...,dp[n-1])

Implemetation/Code:

```
class Solution {
  class Solution {
    public:
    int maxSubArray(vector<int>& nums) {
      // dp[i] := the maximum sum subarray ending in i
      vector<int> dp(nums.size());

dp[0] = nums[0];
```

```
Discover. Learn. Empower.

for (int i = 1; i < nums.size(); ++i)

dp[i] = max(nums[i], dp[i - 1] + nums[i]);

return ranges::max(dp);

}

};
```

Output:

```
✓ Testcase | >_ Test Result
Accepted Runtime: 0 ms
• Case 1 • Case 2 • Case 3
Input
nums =
[-2,1,-3,4,-1,2,1,-5,4]
Output
6
Expected
6
```

Time Complexity : O(N)

Space Complexity: O(1)

Learning Outcomes:-

- o Recognizing **overlapping subproblems** (each subarray solution builds on the previous).
- The optimized approach shows the **power of greedy techniques** in reducing space complexity.

