32628P. A28-E14. ESPEFA...R01. ESPE FABRIK PHARMAZEUTISCHER.

C08g-33/08 G03g-49/00 (02-01-70).. $\frac{=DT-1745810-Q}{(clg 29-05-63)}$ DT as E24917).

Transparent rubbery elastomers.. G1-.

Are obtained by cross-linking, est. with electroregatively substd. aryl sulphonic acid methyl esters, an essentially linear ethylene imine cpd. having an ave. mol wt. of at least 1000, an ethylene imine equivalent of at least 500 and a max. viscosity of 30000 poise/70 C. Pref. the ethylene imine contains functional gps. substd. by ethylene imine gps. at the ends of the chains, and has an ave. mol. wt. of 1000-20000, esp. 3000-10000, a suitable ethylene imine cpd. being a linear polyester, polyether or polythioether of mol. wt. 1000-20000, obtained e.g. by acrylating polyesters or polyethers with olefinic carboxylic acids and then adding ethylene imine to the product. (29.5.63 as E.24917.)

10

Deutsche Kl.:

39 b5, 33/08 39 b5, 49/00

(1)	OttenreamBasemme		1/4/010	
2		Aktenzeichen:	P 17 45 810.5 (E 24917)	
②		Anmeldetag:	29. Mai 1963	
49		Offenlegungstag	: 2. Januar 1970	
	Ausstellungspriorität:	_		
3	Unionspriorität			
2	Datum:	_		
⊗	Land:			
9	Aktenzeichen:		· · · · · · · · · · · · · · · · · · ·	•
€	Bezeichnung:	Verfahren zur Herstellung kautschukartiger Elastomerer auf der Basis von Athyleniminverbindungen		
6	Zusatz zu:	- .		
②	Ausscheidung aus:	_		
100	Anmelder:	ESPE Fabrik pharmazeutischer Präparate GmbH, 8031 Seefeld		
	Vertreter:	_	As a second	
@	Als Erfinder benannt:	Schmitt, Dr. Werner; Purma Jochum, Dr. Peter, 8031 Hee Zahler, Dr. Wolf Dieter, 801	_	erg;
	Benachrichtigung gemäß Art. 7 § 1 Abs. 2 Nr. 1 d. Ges. v. 4. 9. 1967 (BGBl. I S. 960): 10. 9. 1968			

BAD ORGANAL

Prüfungsantrag gemäß § 28 b PatG ist gestellt

DR. ING. F. WUESTHOFF DIPL. ING. G. PULS DR. B. v. PECHMANN PATENTANWÄLTE 8 MÜNCHEN 9 8CHWEIGERSTRASSE 2 TELSFON 22 06 51 TELSFAMMADERSE 1 PROTECTPATENT MÜNCHEN

14-25 598

1745810

Beschreibung su der Patentanneldung

ESPE Fabrik pharmaseutischer Präparate, GmbH. Seefeld/Obb.

betreffend

Verfahren sur Herstellung kautschukartiger Blastomerer auf der Basis von Äthyleniminverbindungen.

Die Herstellung kautschukähnlicher Produkte erfolgt im allgemeinen durch Polymegisation ungesättigter Kohlenkasserstoffe mit einer oder mehreren olefinischen Doppelklidungen. Eine andere Art von Polykondensationsprodukten kautschukähnlichen Eigenschaften sind die als Thioplaste naten Reaktionsprodukte wässriger Lösungen von Alkalikulfiden mit aliphatischen Dihalogeniden. Bekannt sind die nach zahlreichen Kondensationsverfahren erhältkohlen Sälikonkautschuke. Durch Polyaddition können hoohmolekulare kautschukartige Verbindungen mit einer breiten Variationsfähigkeit hinsichtlich der Ausgangsstoffe hergestellt werden. Typische Vertreter hierfür eind die Polyurethane, z.B. das Umsetsungsprodukt eines Polyesters aus Adipineäure und Äthylenglykol mit einem Diisecyannt, das anschliessend vernetzt worden ist.

Die bekannten synthetischen Kautschuke weisen jedech den Hachteil auf, dass sie entweder nach verhältnismissig kemplisierten Verfahren hergestellt werden müssen oder dass sie, wie die Silikenkautschuktypen, teuer sind und sumindest ohne Füllmittel schlechte mechanische Rigenschaften besitsen. Die Thieplaste weisen ver der Vernetsung einen unangenehmen Geruch auf, der sum Teil auch nach der Vulkamisation noch erhalten blieb. Die Polyurethane sind nur begrenst lagerfähig, da sie noch Isosyanat enthalten. Ausserdem sind sie physiologisch nicht unbedenklich. Bei der Verarbeitung muss mit grösster Sorgfalt unter Wasserausschluss gearbeitet werden. Sofern durch Verwendung sogenannter verkappter Diisosyanate diese Nachteile vermindert werden, sind bei der Verarbeitung recht hohe Temperaturen erforderlich.

Besüglich besonderer Eigenschaften und typischer Verwendungsmöglichkeiten dieser bekannten Kautschuknassen kann auf Ullmanns "Encyclepädie der technischen Chemie", 3. Auflage, Band 9, Seiten 346 bis 350, verwiesen werden. Auch die Herstellung von Übersügen und Formkörpern auf der Grundlage von Polymerisationsprodukten von Äthylenimin bzw. dessen Derivaten ist bekannt (vergl. s.B. die DBP 836 353 und 919 265). Schliesslich wurde auch in der DAS 1 020 790 ein Verfahren sur Herstellung vermetster Polyesterharse beschrieben, bei dem Äthylenimin an bestimmte ungesättigte Polyester angelagert wird. Han erhält hierbei aber Substansen mit

einem verhältnismässig niedrigen Äthyleniminäquivalent, welche in siemlich harte Produkte übergeführt werden können. Unter Äthyleniminäquivalent wird die Menge der betreffenden Substans in g verstanden, die 1 Mol Äthylenimingruppen enthält.

Bs hat sich nun überraschenderweise gezeigt, dass polymere Substanzen, welche verhältnismässig wenig Äthyleniminogruppen enthalten, bei denen also die reaktionsfähigen Gruppen in einer verhältnismässig starken Verdünnung vorliegen, sich zu durchsichtigen kautschukartigen Produkten mit bleibender Elastisität polymerisieren lassen, deren Eigenschaften sich sahlreichen technischen Anwendungsmöglichkeiten in einfacher Weise anpassen lassen. Erstaunlich ist, dass die Polymerisation won im folgenden näher definierten Äthyleniminderivaten, die nach einem Kationenmechanismus verläuft und daher bekanntlich gegen störende Einflüsse recht anfällig sein sollte, überhaupt möglich ist. Überraschend ist ferner, dass die Polymerisation, die zu einer Vernetzung der Moleküle führt und in weiten Grenzen gesteuert werden kann, falls erwünscht, in sehr kurser Zeit und bei verhältnismässig tiefen Temperaturen ablaufen kann. Bei den in der Literatur beschriebenen vernetzten Äthyleniminderivaten handelt es sich stets um harte bis spröde Substansen, von denen im allgemeinen ihre hohe mechanische Festigkeit, also z.B. ihre grosse HErte, als besonders winschenswert hervorgehoben wurde.

Demgegenüber besteht das Verfahren zur Herstellung kaut-Demgegenüber besteht das Verfahren zur Herstellung kautbindungen durch Vernetsung erfindungsgemäss darin, dass man als Äthyleniminverbindung eine im wesentlichen lineare Verbindung vom durchschnittlichen Mindest-Molgewicht feet, einem Mindest-Äthyleniminäquivalent vom 500 sowie einer Höchstviskosität vom 50 000 P/70° C verwendet. Die Vernetsung kann je nach Wahl des Ausgangsmaterials in praktisch jeder gewünschten Zeit und innerhalb eines weiten Temperaturbereiches, s.B. swischen 0 und 100° C, mit Hilfe der für niedermolekulare Äthyleniminverbindungen üblichen Vernetser erfolgen.

Massgebend für die Viskosität des Ausgangsmaterials ist bzw. Substanzlösung die Poisshl der tatsächlich verwendeten Substans in der, wie weiter unten erläutert, sehon vor dem eigentlichen erfindungsgenässen Vernetsungsschritt einige wenige Versweigungsstellen vorliegen können. Ein bevorsugter Bereich der Viskesität liegt bei etwa 1 bis 30 oec P/25°C, imsbesondere bei etwa 10 bis 10 oec P/25°C.

Als Ausgangsmaterial eignen sich nicht nur Äthyleniminverbindungen mit endständigen Äthyleniminogruppen an einen
linearen sweiwertigen Makremelekül, sondern gans allgemein
Polymere, die Äthyleniminegruppen im Rahmen der eben gegebehen
Definitiom in irgendwelchen Stellungen des im wesentlichen
linear aufgebeuten Meleküls tragen. Die Polymeren kommen ingbesondere an den Kettenenden irgendwelche Gruppen tragen, die
ihrerseite durch Äthyleniminoreste substituiert sind.

Ein bevorsugter Bereich für das Athyleniminäquivalent liegt zwischen logg und 8000.

Die Herstellung der als Ausgangsmaterial verwendeten Polymerisate erfolgt in allgemeinen auf an sich bekannte Weise. Verwendbar sind hierfür hauptsächlich lineare makromolekulare Substansen mit einem Molgewicht von mindestens im Durchschnitt 1000 und den weiteren Voraussetzungen hinsichtlich Äthyleniminäquivalent und Viskosität. Obwohl das Molekulargewicht nach oben praktisch unbegrenst ist, muß man bei bestimmten Anwendungsmöglichkeiten berücksichtigen, iaß bei sehr hochmolekularen Produkten Verarbeitungsschwiengkeiten auftreten können. Produkte mit einem durchschnittlehen Molgewicht von ca. 10 000 sind jedoch bei Raustemperatur an gut zu verarbeiten. Massen mit höherem Molekulargewicht, ்.ப். oberhalb von 20 000, oder selche, die bei Raumtemperatur eine Neigung zur Kristallisation zeigen, müssen bei höheren Temperaturen oder im Gemisch mit niedermolekularen flüssigen rodukten verarbeitst werden.

Sin optimaler Bereich für die Molekulargewichte liegt etwa 3000 bis etwa 10 000.

Als allgemeine michtlinie läßt sich angeben, daß die erfindungsgemäß hergestellten Substansen hartgummiähnliche Eigenschaften besitzen, wenn man als Ausgangsmaterial Massen an der unteren Grenze der oben erwähnten Molekular- und Äquivalentgewichte verwendet hat. Sie besitzen, wenigstens in ungefülltem Zustand, häufig eine etwas geringere Reiß-fætigkeit.

BAD ORIGINAL

Vorsüglich eignen sich als Ausgangsmaterialien die im wesentlichen linearen, also bifunktionellen Polymeren mit endständigen OH-Gruppen, an die dann Reste mit niederen Alkyleniminogruppen angebracht werden. Für besondere Zwecke bieten sich in manchen Fällen auch endständige Carboxylgruppen an, doch werden die entsprechenden Polyester und Polyester mit OH-Endgruppen bevorsugt.

Von den an sich bekannten Polyestern der verschiedenartigsten Konstitutionen eignen sich für die Zwecke der
vorliegenden Erfindung besondert solche, die aus Dicarbonsäuren und Diolen oder Oxycarbonsäuren aufgebaut sind. Die
Mitverwendung geringer Mengen tri- oder tetrafunktioneller
Alkohole oder Carbonsäuren ist möglich und in manchen Fällen
für die mechanischen Eigenschaften sogar vorteilhaft. Es muß
jedoch hier wie bei den im folgenden beschriebenen anderen
Wegen zur Herstellung des Ausgangsmaterials darauf geachtet
werden, daß durch den Einbau von polyfunktionellen Substanzen
in das Molekül die oben erwähnte Viskositätsgrense nicht
überschritten wird. Auch der Einbau von Maleinsäure und
anderen & -, B-ungesättigten Dicarbonsäuren, an die dann
Äthylenimin angelagert werden kann, ist möglich.

Die Einführung der Äthyleniminegruppe in Polyester mit vorsugsweise endständigen OH-Gruppen erfolgt in an sich bekannter Weise. So kann man durch Acylierung der Polyester mit Olefincarbonsäuren, an deren Doppelbindungen dann Äthylenimin angelagert wird, su dem erfindungsgemäss benötigten Ausgangsmaterial gelangen. Infrage kommen hier in erster Linie Crotonsäure oder Acrylsäure.

Ein weiteres Verfahren besteht in der Acylierung der oben genannten Polyester mit Halogencarbonsäuren und anschließenden Umsatz mit Äthylenimin. Besonders geeignet sind hier &-Halogencarbonsäuren, s.B. Chloressigsäure, oder &-Brombuttersäure. Die Acylierung im Rahmen der beiden genannten Verfahren kann selbstverständlich auf verschiedene Weise erfolgen, s.B. durch säurekatalysierte Veresterung, durch Verwendung der Säureanhydride oder Säurechloride.

Ein weiterer Weg zu den erfindungsgemäss verwendbaren Ausgangssubstansen ist der Umsatz von Polyestern mit wenigstens bifunktionellen Isocyanaten, vorzugsweise Diisocyanaten, z.B, 2,4-Toluylen-diisocyanat, 4,4'-Diphenylmethan-diisocyanat, Maphthalin-1,5-diisocyanat. Bei dieser an sich bekannten Umsetzung ist es zur Vermeidung von Nebenreaktionen häufig sweckmässig, bei niederer Temperatur zu arbeiten, was durch hochaktive Katalysatoren, wie tert. Amine, oder Metallverbindungen, wie Einkacetylacetonat oder Organosinn-verbindungen erreicht werden kann. Diese Katalysatoren stören im allgemeinen die anschliessende Weiterverarbeitung der Substansen nicht. Auch segenannte isocyanatverlörgente

Polyester, bei denen sich in der Kette Urethangruppen befinden, sind brauchbar. Zweckmässig verwendet man mindestens 1 Mol Diisecyanat/Val OH.

Bei der Folgereaktion lässt man die mit endständigen Isocyanatgruppen versehenen Polyester mit geeigneten Alkyleniminderivaten reagieren. Hierfür bieten sich s.B. Äthyleniminderivate mit OH-Gruppen oder primären oder sekundëren Aminogruppen an. Genannt seien Kthylenimineamine, z.B. / -Athylenimino-propylamin and 6-Athylenimineathylamin, ferner Athyleniminoalkohole, wie s.B. 3-Athylenimino-propanel-1, sowie die Äthylenimino-acylderivate von mindestens sweiwertigen Aminen; die zuletst genannte Substansklasse besitst, u.a. die Besonderheit, dass die daraus hergestellten Ver- und Endprodukte nur verhältnismässig schwach basische Aminegruppen aufweisen, was von Vorteil sein kann. Besonders schwach basiseb und daher für Spesialzwecke wertvoll sind (X-Athyleminineacylderivate. Auch Polyester mit Carboxylendgruppen können im an sich bekannter Weise mit Diisocyanaten und danm, wie ausgeführt, mit Athyleniminderivaten umgesetst werden.

Ein anderes vorsüglich geeignetes Ausgangsmaterial sind Polyester, welche Gruppen oder Substituenten in baw. an der Kette enthalten, die mit Äthylenimin zur Reaktion gebracht worden sind, insbesondere konjugierte Doppelbindungen oder Halogene. Rewährt haben sich insbesondere Polyester, welche teilweise &, \$\mathbb{F}\$-ungesättigte Dicarbonsäuren oder Halogen-dicarbonsäuren enthalten. Resonders geeignet sind Misch-kondensate, welche neben gesättigten Dicarbonsäuren einen gewissen Anteil Maleinsäure, Itakensäure etc. enthalten, an die in bekannter Weise Äthylenimin angelagert werden kann. Das Mindest-Äthyleniminäquivalentgewicht soll auch hier durchschnittlich 500 betragen. Geeignet sind beispielsweise Folyster mit einem durchschnittlichen Molgewicht von 5 bis 7000, welche 3 bis 6 Äthyleniminogruppen enthalten. Selbstvenständech können, wie oben erwähnt, die Polyester an den Enden entzlich Substituenten mit Äthyleniminogruppen enthalten.

Als Ausgangsmaterial haben sich fernerhin Polykther sanchmal auch als Polyglycoläther beseichnet - beschädere
wahrt. In Frage kommen s.E. Polymerisate und Mischgelige
wate cyclischer Äther, insbesondere mit 3 bis 5 Ringern, wie Äthylenoxyä, Propylenoxyd, Tetrahydrofuran,
(Trimethylenoxyd), sowie Substitutionsprodukte. Anch
sense eigte Produkte kommen im Frage, wie Oxykthylieruzgse-

Häufig ist es möglich, cyclische Äther, vorsagsweise Epoxyde, einzupolymerisieren, welche Substituenten enthalten, die mit Äthylenimin reagieren können. In Frage konmen beispielsweise Polyäther, in die ein gewisser Anteil

halogensubstituierte Epoxyde, s.B. Epibromhydrin, einpelymerisiert ist. Diese Substansen enthalten kurse halogensubstituierte Seitenketten s.B. bei der Verwendung von Epibromhydrin -CH₂Br-Gruppen. Zu denken ist insbesondere an Polymerisate oder Mischpolymerisate von Äthylenexyd, Propylenoxyd oder Tetrahydrofuran vom durchschmittlichen Molgewicht 2000 bis 20 000, welche mindestens 2, vorsugsweise 3 bis 10 halogensubstituierte Seitenketten enthalten.

Anstelle von halogensubstituierten Epoxyden können auch Epoxyde einpolymerisiert werden, welche C,8-Olefin-carbonsäure-Reste enthalten. Besonders geeigret ist beispielsweise Glycid-acrylat oder Glycid-crotonat. Durch Mischpolymerisation mit cyclischen Äthern gewinnt man Polyäther mit aktivierten Doppelbindungen in den Seitenketten. Ferner können Mischpolymerisate cyclischer Äther mit anderen Estern von Epoxyalkoholen, z.B. Glycidacetat, als Ausgangsmaterial dienen. Aus ihnen können durch Verseifung Polyglycoläther mit OH-Gruppen in den Seitenketten erhalten werden.

Sämtliche genannten Typen von Polyglycoläthern mit aubstituierten Seitenketten können in an sich bekannter Weise in Folgereaktionen mit Äthyleniminogruppen ausgestattet werden, indem sie entweder direkt mit Äthylenimin sum Umsats gebracht oder indem erst Substituenten eingeführt werden, die ihrerseits sur Reaktion mit geeigneten Äthyleniminderivaten

halogenhaltigen Polyathern die Halogenatome direkt gegen

Kthyllenimin susgetauscht oder vorteilhafter z.B. mit überschüssigem Ammoniak oder Phthalimidkalium in Aminogruppen

übergeführt werden, die dann mit Äthylenimino-carbonskursestern zur Reaktion gebracht werden. Da die halogenhaltigen

Polyather als Alkylierungsmittel wirken, und deshalb unbeabsichtigte Vernetsungsreaktionen auslösen können, ist darauf
zu achten, dass die Halogenatome möglichst weitgehend, z.B.

durch Aminogruppen ersetst oder noch vorhandenes Resthalogen

durch Behandeln zit Alkalialkoholat oder dergl. entfernt
wird.

Entsprechendes gilt für Polyäther, deren OH-Endgruppen in an sich bekannter Weise durch Halogen ersetzt aind. Auch diese Halogenatome können gegen Aminogruppen ausgetauscht werden, die dann beispielsweise mit Äthylenimino-carbonsäurestern resgieren können.

An Polyather mit aktivierten Doppelbindungen in den sie Seitenketten, wie/s.B. aus Glycidcrotonat darstellbar sind, kann direkt Athylenimin angelagert werden. Schliesslich können Folyather mit OH-Endgruppen und/oder OH-Gruppen in den eiten nach im ohen beschriebenen Methoden für Polyation mit

្រុក្សាស្រ្ត ព្រះ ខេត្ត ស្រុកសង្គមិនសង្គិតសង្គិតសង្គិត សេសសភិទ្ធិក្សា (១០២) ។ ១

୍ଷ୍ୟ ପ୍ରତ୍ୟୁ ଅନ୍ତର୍ଶ କରମ୍ପର୍ଶ ବର୍ଷ ଅନ୍ତର୍ଶ ହେଉଛି ।

Carlos Medical Services

Maria Carlos Company of the Company

der Electomeren erwünscht ist.

Die chen gemachten Angaben über beverungte Kelgesiehtsbereiche und die durchschnittliche Ansahl der Äthyleniminegruppen pro Nolekül gelten sinngemäse auch für die zuletst gemannten Substanstypen.

Verwendbar sind ferner auch ThioEther eder Pelyäther, die susätzlich ThioEthergruppen enthalten, wie sie beispfele-weise durch Polykondensation von Thiodiglycol erhältlich sind.

Auch lineare Polyacetale mit OH-Endgruppen sind geeignet.

Als Vernetzer sind geeignet an sich bekannte Alkylierungsmittel und Säuren einschliesslich Lewis-Säuren, d.h. grundsätzlich alle Verbindungen, die Äthylenimingruppen in Äthylenimmeniumgruppen überführen können (vergl. s.B. DEP 888 170 und
914 325).

Besonders geeignet sind Ester starker Säuren s.B. Sulfensäureester; bei diesen lässt sieh durch Wahl der Alkaholkeupenente und, sofern es sieh um Abkömmlinge arematischer Sulfensäuren handelt, durch Variation der Substituenten am Benselkern die Aktivität in sehr weiten Grensen variieren. Se setat beispielsweise bei Verwendung von Sulfonsäure-methylestern der Vernetsungsvorgang bei Raumtemperatur nach einigen Minuten ein und ist im wesentlichen nach 20 bis 50 Minuten beendet. Isopropylester hingegen sind extrem langsam wirkende Vernetser; hier dauert die Vernetsung, auch bei höheren Temperaturen, in der Regel Stunden oder Tage.

Ist eine extrem schnelle Vernetzung bei Raum- oder tieferen Temperatur erwünscht, so kann man aromatische Sulfonsäurs-methylester mit negativen Substituenten am Bensolkern verwend n. z.B. Halogen- oder Bitroderivate. Besonders bewährt hat sich dabei Dichlorbenzol-sulfonsäuremethylester.

Gut geeignet sind ferner Dialkylaulfate, wobei die Aktivität von der Alkoholkomponente stark abhängig ist. Hochwinkska ist Dimethylaulfat; auch gemischte Dialkylaulfate, z.B. Hethyl-laurylsulfat, kommen in Pregs.

Unter den als Vernstrer wirksauen Säuren sind belegisteneten nammulfonsäure und Phosphorsäure au nennen; sund a mehr durch der der der den Säuren kommen, insbesondere im Gemisch mit slaubtermelen. Ihn, in Frage. Sewährt haben sich ferner bewise durch wie fluorid, insbesondere im Form seiner Komplexsonbing gen, wie fluorenden, wie E. Belinethylessylamid.

electverstandlich ist die Vernstaungsgeschwässelere in der ein vernstaer abhängig, sonders eine von - atration der Athyleniminogruppen im dam Vorpreissen, dam en Verhältnissen en den Athyleniminogruppen im dam vorpreissen, dam en Verhältnissen en den Athyleniminogruppen en totten Substituenten.

Perminderung der Vernetzungsgeschwindigkeit des Brandung des Versögerung zweckmässig sein. Geeignet sind alkalische Mittal, insbesondere solche, die in den Äthyleniminderivaten löslich sind. In Frage kommen z.B. Alkoholate höherer Alkohola und insbesondere tertiäre Amine. Schwerflüchtige Amine verdienen im allgemeinen den Vorzug.

Da, wie oben grwähmt, die Vernetzung durch Säuren oder Alkylierungsmittel in Gang gesetzt wird, sind basische Mittel, insbesondere Amine, auch als Stabilisierungsmittel gegen unbeabsichtigte Vernetzung geeignet. Auch bei der Herstellung der Vorprodukte ist, seweit Äthylenimin oder seine Derivate Reaktionspartner sind, stetz darauf zu achten, dass etwa vorhandene saure Gruppen, s.B. Rest-Carboxylgruppen in Polyestern, durch basische Mittel neutralisiert sind.

Die Vernetsungs- bzw. Härtungsmittel stellen vielfach leicht bewegliche Flüssigkeiten dar, deren gleichmässige Einarbeitung in die mehr oder weniger viskosen Massen Schwierigkeiten mit sich bringen kann. Zur Vermeidung dieses Nachteils können die Härtungsmittel in eine den jeweils beabsichtigten Anwendungsgebieten entsprechende viskose Form gebracht werden, z.B. durch Zugabe von Kunststoffen, wie Polyvinylacetat, oder durch Einarbeitung von Füllmitteln mit grosser Oberfläche, wie hochdisperse Kieselsäule.

Auch die Verwendung von Lösungen der Vernetzungsmittel in geeigneten Weichmachern ist oft sweekmässig; auf diese Weise werden nicht nur extreme Mischungsverhältnisse vermieden, sondern es können auch bei Raumtemperatur feste Vernetzungsmittel, s.B. p-Chlorbensolsulfonsäure-methylester, bequem in die Äthyleniminverbindungen eingearbeitet werden.

Das Vernetzungsmittel wird in der Regel in einer Menge von 0,5 bis 10 Gew.-%, vorsugsweise von 2 bis 8 Gew.-%, suge-909881/1579 fügt. Mess hergestellten Substansen, mimlich die Herstellung durchsichtiger, glasklarer Fermteile oder Übersüge, ausgenütst
werden sell, können die sur Verbesserung mechanischer Bigenschaften üblichen Füllstoffe, wie Kieselsäure, Zinkoxyd,
Calciumcarbonat, Bariumsulfat, Quaramehl, Schwerspat, Flussspat, Calciumphosphat oder Kaclin, sowie anorganische Pigmente oder lösliche Farbstoffe und Desinfektionsmittel sugegeben werden.

Da die Härtung, wie oben erwähnt, auch durch Säuren erfolgen kann, sind saure Füllstoffe im allgemeinen nicht geeignet, da sie su einer unkenstrollierbaren Härtung führen würden. Weichmacher sind häufig mit den Äthyleniminderivaten gut verträglich. Ihre Verwendung ist nicht nur aus wirtschaftlichen Gründen, sondern auch sur Verbesserung anderer Rigenschaften, imsbesondere sur Vermeidung oder Verringerung der Kristallisation, oft ratsam. Geeignet sind beispielsweise Phthalate, Glycolderivate sowie polymere Weichmacher.

Schliesslich ist auch die Mitverwendung anderer Äthyleniminderivate, auch miedermolekularer in geringer Menge,
möglich. Im allgemeinen werden bei Mitverwendung von niedermolekularen Äthyleniminderivaten eher Produkte mit hartgummiähnlichen Charakter und geringerer Reissfestigkeit erhalten.
Auch die Zumischung von Äthyleniminderivaten auf der Basig

Ein Susats von menefunktionellen Äthyleniminderivaten führt im allgemeinen su weniger günstigen mechanischen Bigenschaften, jedech ist ein gewisser Anteil an Monofunktionellen erträglich, wenn die Elastomeren keinen höheren mechanischen Beanspruchungen ausgesetst werden. Im allgemeinen sollte jedech der Anteil an bioder höherfunktionellen Äthyleniminderivaten mindestens 50 %, vorsugsweise mindestens 80 % betragen. Sofern aus der Herstellung, s.B. infolge Verwendung von nicht völlig bifunktionellen Ausgangsmaterial, geringe Anteile an monofunktionellen Enterial in den Vorprodukten vorhanden sind, ist deren Entfernung oft nicht motwendig.

Die erfindungsgemäss hergestellten kautschukartigen Massen finden einem sehr breiten technischen Anwendungsbereich, s.B. für elastische Formteile aller Art, als Verschlussmittel WMZ Übersüge, etwa in der Elektrotechnik, Bautechnik, im Kraftfahrseughau, ferner sum Ausfüllen von Fugen und Ritsen. Sie bieten sieh auch an für die Herstellung von Abdrücken, imsbesondere im der Dentalmedisin. Gegenüber den hierfür bisher verwendeten kautschukelastischen Massen auf Silikon- baw. Thickelbasis besitsen sie den wesentlichen Vorteil höherer Lagerfähigkeit und Geruchlesigkeit. Gegenüber den Silikonabdruckmassen unterscheiden sie sieh vorteilhaft dadurch, dass die Vernetzung sich nicht unmittelbar nach den Einmischen des Vernetzers durch Viskositätserhöhung bemerkbar macht.

Hervorsuheben ist noch die gute Haftung bzw. Klebefähigkeit der erfindungsgemässen Produkte, insbesondere auf Glas, sowie die Möglichkeit, sie zusammen mit natürlichen oder

LAMERING TAX

synthetischen organischen oder anorganischen Geweben oder Pasern s.B. auch Glasfasern, zu verarbeiten. Die Kältefestigkeit ist im allgemeinen gut.

Wit den erfindungsgemäss zu verwendenden Äthyleniminverbindungen lassen sich in an sich bekannter Weise auch
Schaumstoffe herstellen. Da bei der Vernetzungsreaktion im
Gegensatz zu den bekannten Polyurethanen kein CO₂ entsteht,
müssen als Treibmittel die verschiedenartigen während der
Schäumungsreaktion verdampfbaren organischen Lösungsmittel,
z.B. organische Fluorverbindungen ("Freone") verwendet werden.

Eine weiter Anwendungsmöglichkeit ist infolge der herverragenden Durchsichtigkeit der erfindungsgemäss hergestellten
elastomeren Produkte auf optischem Gebiet gegeben, s.B. für
optische Systeme gans allgemein für die Herstellung von Linsen
oder dünnen Schichten mit optisch guten Worten, sowie für
Zwischenschichten in Sieherheitsglas.

dessen Verfahrens liegt die vorteilhafte technische Brauchbarkeit der erfindungsgemäss hergestellten Produkte von Fall su
Fail auf unterschiedlichem Gebiet. Gans allgemein lassen sich
jedoch folgende Vorteile angeben: Die Vernetsungsseit und Temperatur sind nahesu beliebig einstellbar. Im Gegensats su
der Herstellung von Polyurethanen sind die als Ausgangsmaterial
benötigten Substansen physiologisch unbedenklich. Sie sind
ferner lagerfähig und im allgemeinen nicht feuchtigskeitsempfindlich. Ferner ist der Ausschluss von Wasser während der
Vernetzung nicht erforderlich.

BAD ORIGINAL

Die Rigenschaften der Endprodukte sind durch Wahl
eines geeigneten Ausgangsmaterials weitgehend variabel,
so dass die mechanischen Werte der Endprodukte nahesu "nach
Mass" eingestellt werden können. Man kann den Endprodukten
ferner einen mehr oder weniger stark ausgeprägten hydrephilen oder hydrophoben Charakter verleihen. Sie können im
Gegensats su den meisten bekannten Produkten, die aktive
verstürkende Fühlmittel, wie Russ, erfordern, als durchsichtige Massen hergestellt werden.

Das Ausgangsmaterial und die Endprodukte sind geruchlog.

Die Mischungen aus den Äthyleniminverbindungen und Vernetsern sind giessbar; falls erwünscht, können daher Dichtungen, Überzüge und dergl. in situ hergestellt werden, was sich besonders einfach bewerkstelligen lässt, weil keine besonderen Vorkehrungen, wie Wasserausschluss oder Anwendung höherer Temperaturen, erforderlich sind.

Bei der Herstellung der erfindungsgemäss verwendbaren Athyleniminverbindungen ist stets darauf zu achten, dass in den Ausgangsmaterialien enthaltene Säuren, saure Gruppen oder säureabspaltende Substansen durch mindestens äquivalente Mengen basischer Mittel neutralisiert werden. Besonders geeignet sind hierfür, wie bereits erwähnt, Amine, insbesondere tertiäre Amine. Ferner ist darauf su achten, dass etwa verhandene Lewis-Säuren, beispielsweise Berverbindungen, insbesondere EF3, welches s.B. für die Polymerisation cyclischer

Ather verwendet wird, vor dem Umsats mit Äthylenimin bzw.

Athyleniminderivaten entfernt werden. Diese zum Stand der Technik gehörenden Massnahmen zu der Stabilisierung von Äthyleniminderivaten werden im folgenden bei den Beispielen im allgemeinen nicht erwähnt.

Falls die in den Beispielen beschriebenen Äthyleniminderivate gereinigt werden sellen, um besonders helle und
hochwertige Produkte su gewinnen, so kommen hierfür die
üblichen Verfahren in Betracht, s.B. Filtration, gegebenenfalls in Lösung, über Kieselgur, Aluminiumoxyd, Behandlung
mit Ionensustauschern, Wasehen der Lösungen in organischen
Lösungsmittelm mit Wasser, wässrigem Alkohol, Salslösungen
und dergleichen, sewie gegebenenfalls wiederholte Umfällung,
beispielsweise aus Bensel oder Alkoholen mit Cyclohexan oder
Bensin. Ferner kann durch Fraktionierung in der üblichen
Weise ein Reinigungseffekt ersielt werden; ausserdem sind
so Produkte mit einheitlicheren Molekulargewicht erhältlich.

Beispfel 1

250 g eines Polyesters mit OH-Endgruppen und einem durchschnittlichen Mol-Gewicht von 7200, hergestellt aus Adipinsäure unter Zusats von 10 Mol-% Sebasinsäure und Triäthylen-glycol unter Zusats von 10 Mol-% Hexandiol-1,6, werden unter Stickstoff mit 21 g Crotonsäure-anhydrid eine Stunde auf 150° C und zwei Stunden auf 180° C erhitst. Anschliessend werden die gebildete Crotonsäure und überschüssiges Croton-adure-anhydrid durch einen kräftigen N2-Strom bei 200° C

50 g des so erhaltenen Produkts werden bei 55° C mit 8 g Äthylenimin versetst und 7 Tage bei Raumtemperatur stehengelassen. Man nimmt in Benzol auf, wäscht wiederhelt mit Wasser und entfernt nach Trocknen der organischen Phase Lösungsmittel und überschüssiges Äthylenimin bei 50° C im Hochvakuum. Man erhält so 38,5 g eines sehwach gelben öls, welches ein Aminäquivalent von 39eo und eine Viskosität von 2900 Peise/25° C aufweist.

1 g dieser Äthyleniminverbindung wird mit 0,06 g
Benzolsulfonsäuremethylester gemischt. Es setzt nach einigen
Minuten eine Viskositätssteigerung ein; nach ca. 20 Minuten
ist ein durchsichtiger, gummielastischer Körper entstanden,
dessen elastische Eigenschaften auch über längere Seiträume
erhalten blieben.

Beispiel 2

o,5 g der nach Beispiel 1 hergestellten Äthyleniminverbindung werden mit e,05 g eines Gemisches aus 4 Teilen p-Teluelsulfensäure-methylester und 1 Teil p-Chlorbensol-sulfensäure-methylester vermischt. Die Gelierung setzt nach etwa 1 1/2 Minuten ein, und nach ca. 6 Minuten ist der kautschuk-elastische Zustand erreicht.

Beispiel 3

1 g der nach Beispiel 1 hergestellten Äthyleniminverbindung wird mit o,e6 g einer 2e %-igen Lösung von 2,5-Dichlorbensolsulfonsäure-methylester in Dinmylphthalat gemischt. Bei Raumtemperatur ist nach ca. 4 Minuten eine durchsichtige dauernd gummielastische Masse entstanden.

Beispiel 4

100 g des in Beispiel 1 genannten Polyesters werden mit
7.0 g Aorylsäure-anhydrid und 1 g Kupferpulver unter CO₂
1 Stunde auf 140° C erhitst. Anschliessend wird 3 Stunden
bei 160° C ein kräftiger CO₂-Strom durch das Reaktionsgemisch geblasen. Nach Abkühlen nimmt man in Bensol auf, sentrifugiert vom Ungelösten ab und engt die bensolische Lösung
im Vakuum ein.

50 g der so erhaltenen Substans werden mit 3 ml Triäthylamin und 2,5 g Äthylenimin versetst. Nach sechstägigem
Stehen bei Raumtemperatur wird in Benzol aufgenommen und
Lösungsmittel, Triäthylamin und überschüssiges Äthylenimin
im Hochvakuum abgesogen. Ausbeute 49,5 g eines sehwach
grün-braum-gefärbten Öls von Basenäquivalent 3200.

Gelöstes Kupfer kann durch Ausschütteln der bensolischen Lösung mit einer wässrigen Lösung von Äthylendiamin-tetraessigsäure-dinatriumsals entfernt werden.

1,0 g der so erhaltenen äthyleniminverbindung wird mit 50 mg Benzolsulfonsäure-methylester gemischt. Die Masse ist nach etwa 3 Minuten deutlich säher und nach etwa 12 Minuten gummielastisch.

Beispiel 5

2,0 g der in Beispiel 4 beschriebenen Äthyleniminverbindung werden mit 0,05 g eines Gemisches aus gleichen Teilen 2,5-Diehlorbensolsulfonsäure-methylester und Diäthylenglykoldimethyläther gemischt. Die Vernetsung beginnt nach etwa einer Minute und ist im wesentlichen nach ca. 5 Minuten beendet.

Beispiel 6

720 g eines Polyesters, hergestellt aus Adipinsäure unter
Zusatz von 15 Mol-% Pimelinsäure und Triäthylenglycol, der
im wesentlichen OH-Endgruppen aufweist und ein durchschnittliches Molekulargewicht von 1600 besitzt, wird mit 230 g
Crotonsäure-anhydrid 1 Stunde auf 150° C und 1 Stunde auf
erhitzt
200° C ausgeblasen. Anschliessend wird überschüssiges Crotonsäure-anhydrid bei 200° C ausgeblasen. Der so erhaltene Polyester mit Crotonsäure-Endgruppen besitzt eine Viskosität
von ca. 80 P bei 25° C.

Zu 100 g der so erhaltenen Substans tropft man bei 50° C 54 g Äthylenimin, nimmt nach fünftägigem Stehen bei Raumtemperatur in Bensol auf, wäscht wiederholt mit Wasser und bringt die organische Phase im Vakuum sur Trockene. Das erhaltene Öl (76 g) besitst ein Äthylenimin-Äquivalent von 950.

1,0 g der Äthyleniminverbindung wird mit 0,08 g p-Toluolaulfonsäure-methylester gemischt. Hach ca. 30 Minuten ist eine durchsichtige, gummielastische Masse entstanden.

909881/1579

Beispiel 7

100 g eines Polyäthylenglycols von durchschnittlichen Mol-Gewicht 4000 werden mit 12 g Crotonsäure-anhydrid 1 Stunde auf 150 $^{\circ}$ C und 1 Stunde auf 180 $^{\circ}$ C erhitst. Plüchtige Anteile werden anschliessend bei 200 $^{\circ}$ C mittels CO_2 erschöpfend ausgeblasen.

Man erhält eine bei Raumtemperatur wachsartige Substanz.

50 g dieses Produkts werden bei 50° C aufgeschmolsen und nach Zusats von 10 ml Bensel mit 10 g Äthylenimin versetst und 4 Tage auf 35° C erwärmt. Lösungsmittel und überschüssiges Äthylenimin werden im Vakuum abgesogen. Ausbeutet 47,5 g einer wachsartigen Substans.

2,e g dieser Substans werden bei 70° C mit 0,12 pMethoxy-bensolsulfonsäure-methylester gemischt. Die Vernetsung setzt sofort ein und führt in wenigen Minuten zu einem
hartgummiähnlichen Produkt,

Beispiel 8

113 g eines Polyesters mit OH-Endgruppen und einem durchschnittlichen Mol-Gewicht von 2900, hergestellt aus Adipinsäure und Sebasinsäure im Mol-Verhältnis 1: 1 und Triäthylenglycol unter Zusats von 10 Mol-% Tetra-äthylenglycol werden mit 19 g Crotonsäure-anhydrid, wie in Beispiel 1 beschrieben, orotonyliert.

105 g der so gewonnenen Substans werden mit 31 g
Äthylenimin und 25 g Triäthylamin 10 Tage stehengelassen.
Man nimmt in 100 ml Benzel auf und bringt nach Filtration
im Vakuum bei 60° C sur Trockene. Das Produkt besitst eine
Viskosität von ca. 100 Poise/25° C. und ein Aminäquivalent
von 1670.

Nach Zusatz von 6 Gew.-% Benzolsulfonsäure-methylester wird die Substanz in ca. 15 Minuten gummielastisch.

Beispiel 9

50 g eines versweigten Polyesters, hergestellt aus Adipinsäure, Sebasinsäure, Trimethylol-äthan und Triäthylenglycol im Mol-Verhältnis 9: 1: 0,67: 11, der eine Viskosität von 140 P bei 25° C besitst, werden mit 15,6 g Crotensäureanhydrid eine Stunde auf 150° C und eine Stunde auf 209° C erhitst. Anschliessend werden die flüchtigen Anteile bei 210° C mit CO₂ ausgeblasen.

50 g der so erhaltenen Substans werden mit 25 g Triäthylamin und 27 g Äthylenimin 5 Tage gerührt. Anschliessend nimmt man in Bensol auf und bringt, suletzt im Hochvakuum bei 60° C, sur Trockne. Ausbeute: 51,5 g einer Äthyleniminverbindung vom Äquivalentgewicht 1080.

1,e g der Äthyleniminverbindung werden mit 0,06 g Bensolsulfonsäure-methylester versetst. Nach oa. 15 Minuten ist ein fester Gummi entstanden.

Versetst man 1,0 g der Äthyleniminverbindung mit

0,12 g einer 20 %-igen Lösung von 2,5-Dichlorbensol-sulfonsäuremethylester in Diamylphthalat, ist der gummielastische
Zustand bereits nach etwa 3 Minuten erreicht. Er bleibt auch
nach längerer Lagerungsseit unverändert.

Beispiel 10

- a) 0,5 g der in Beispiel 1 beschriebenen Äthyleniminverbindung werden mit 30 mg Bensolsulfonsäure-äthylester vermischt und bei 50° C aufbewahrt. Nach etwa 1/2 Stünde hat die Vernetsung deutlich begonnen; sie ist nach mehreren Stunden beendet.
- b) Versetst man die gleiche Äthyleniminverbindung mit 6 % Methansulfonsäure-methylester, so ist der gummielastische Zustand nach ca. 40 Minuten erreicht.
- c) Man vermischt 1,0 g der in Beispiel 1 genannten Äthyleniminverbindung mit 0,1 g einer 20 %-igen Lösung von Dimethylsulfat in Diamylphthalat. Die Gelierung beginnt nach sehr kurser Zeit und ist nach ca. 3 Minuten praktisch beendet. Man erhält eine Masse mit guter Dauerelastizität.
- d) Vermischt man die gleiche Äthyleniminverbindung mit 6 % Diäthylsulfat, beginnt die Gelierung nach etwa 15 Minuten und ist nach 1 bis 2 Stunden beendet.

e) Bin Gemisch von 2,0 g der in Beispiel 1 beschriebenen Äthyleniminverbindung und 0,12 g Phosphorsäure beginnt bald su gelieren und ist nach ca. 4 Stunden in einen gummiartigen Zustand übergegangen.

Beispiel 11

Der in Beispiel 1 genannte Polyester wird, wie dort beschrieben, erotonyliert. Zu 460 g dieses Produkts fügt man unter Rühren bei 55° C ein Gemisch von 80 ml Triäthylamin und 90 ml Bensol. Anschliessend werden 69 g Äthylenimin sugetropft. Hach sechstägigem Stehen bei Raumteperatur werden die flüchtigen Anteile bei 50° C, suletst im Hochvakuum, abgesogen. Ausbeute: 465 g Äthyleniminverbindung von Aminäquivalent 3650 und einer Viskosität von ca. 1200 P. bei ea. 25° C.

Zur Herstellung einer Abdruckpaste werden 50 g dieser Verbindung mit 12,5 g Kieselgur und 1,2 g Deckweiss verknetet.

Bine Vernetserpaste wird hergestellt durch Verkneten von 80 g Dioetylphthalat, 20 g 2,5-Diohlorbenselsulfonsäuremethylester, 16 g Aerosil und 1 g Cadmopur-Rot.

Eur Herstellung von Abdrücken, insbesondere in der Dental-Medisin, werden die beiden Pasten im Verhältnis von ca. 5 : 1 vermischt, bis eine gleichnässig rote Färbung erreicht ist. Die Abbindung setst nach ca. 2 1/2 Minuten ein und ist bei 36° C nach ca. weiteren 4 Minuten beendet.

Beispiel 12

82 g eines Polyesters, hergestellt aus Adipinsäure, Sebasinsäure, Trimethylol-propan und Triäthylenglycol im Mol-Verhältnis 9:1:0,33:10,5 werden mit 13 g Crotonsäure-anhydrid eine Stunde auf 150°C und 4 Stunden auf 180°C erwärmt. Man nimmt in Benzol auf, schüttelt mehrmals mit Natronlauge, wäscht mit Wasser und bringt im Vakuum zur Trockne. Ausbeute: 67 g.

35 g der so erhaltenen Substans werden mit 10 g Triäthylamin versetzt und bei 50° C mit 10,5 g Äthylenimin vermischt. Hach 6 Tagen nimmt man in Bensol auf und bringt im Vakuum bei 50° C sur Trockne.

1 g der so erhaltenen Äthyleniminverbindung, die ein Aminäquivalent von 1535 aufweist, wird mit 0,06 g Benzol-sulfonsäure-methylester vermischt. Nach ca. 15 Minuten ist eine gummielastische Masse entstanden, deren Elastizität sich auch nach längeren Zeiträumen nicht nennenswert änderte.

Beispiel 13

570 g sines Mischpolymerisats von Tetrahydrefuran und Äthylenoxyd im Mol-Verhältnis 1: 1, welches ein durchschnittliches Mel-Gewicht von 3600 aufweist, werden unter CO₂ mit 46 g Crotonsäure-anhydrid eine Stunde auf 150° C und eine Stunde auf 180° C erhitst. Die flüchtigen Anteile werden anschliessend bei 200° C ausgeblasen.

355 g der so erhaltenen Substanz werden bei 50° C mit 92 ml Triäthylamin und 76 g Äthylenimin versetzt. Nach Siebentägigem Stehen bei Raumtemperatur nimmt man in Chloroform auf, wäscht gründlich und bringt nach Trocknen über Kaliumcarbonat und Filtration im Vakuum aur Trockne. Ausbeute: 281 g Äthyleniminverbindung von Basenäquivalent 1920.

Zur Herstellung einer Abdruckpaste werden 100 g der Äthyleniminverbindung, 5 g Dibutylphthalat und 50 g Kieselgur verknetet. Vermischt man diese Paste mit der in Beispiel 11 beschriebenen Vernetserpaste im Verhältnis 4 : 1, wird der gummielastische Zustand nach wenigen Minuten erreicht.

Für mucostatische Abdrücke in der Dental-Medisin, bei denen eine langsame Abbindung erwünscht ist, werden die beiden Pasten im Verhältnis 7: 1 gemischt.

Beispiel 14

250 g eines Polyesters mit einem OH-Aquivalent 1580, hergestellt aus Adipinsäure unter Zusats von 10 Mol-\$ Sebasinsäure und Butandiel-1,5 unter Zusats von 8 Mol-\$ Hexandiel-1,6 werden unter CO₂ mit 85 g Cretonsäure-anhydrid 2 Stunden auf 180° C und 4 Stunden auf 200° C erhitst. Hach Ausblasen der flüchtigen Anteile versetst man bei 45° C mit 60 g Triäthylamin und 65 g Ithylenimin und lässt 7 Tage bei Raumtemperatur stehen. Man nimmt in Ohlereform auf, wäscht gründlich mit Wasser und bringt nach Trocknen und Est Filtration zur Trockne. Ausbeute: 205 g Ithyleniminverbindung vom Basenäquivalent 1520.

1,0 g der Äthyleniminverbindung wird mit e,08 g Bensolsulfonsture-methylester gemischt. Nach etwa 30 Minuten ist eine gummielastische Masse entstanden.

Beispiel 15

N-(N'-Isopropyl-aminopropyl)-äthylenimino-acetamid wird dargestellt, indem man ein Gemisch von 0,45 Mol Äthylenimine-essigester und 1,36 Mol / -Isopropylamino-propylamin 3 Tage bei RT stehen läßt. Durch Rektifikation im Vakuum erhält man 58 g N-(N'-Isopropyl-aminopropyl)-äthylen-imino-acetamid vom Kp_{0.1}: 110 bis 113°.

In 34,2 g eines Mischpolymerisats aus Äthylenoxyd und Tetrahydrofuran (im Mel-Verhältnis 1:1) vom durchschnittlichen Mel.-Gewicht 5.700 löst man 0,034 g Bink-propisnyl-acetophenenat. Dann gibt man bei 18° 2,61 g Teluylem-2,4-diisocyanat su. Nach 15 Minuten werden bei 20° 3,58 g E-(E'-Impropyl-aminopropyl)- äthylenimine-acetamid sugetropft und 15 Minuten weitergerührt.

Vermischt man 2,0 g der so gewonnenen Äthyleniminverbindung mit 0,12 g Benzolsulfonsäure-methylester, so setst nach wenigen Minuten Gelierung ein, und nach ca. 20 Minuten ist ein glasklares Produkt von hoher Dauerelastisität entstanden.

Beispiel 16

In 14 g des in Beispiel 1 genannten Polyesters werden 0,014 mg Zink-propionyl-acetophenonat bei 40° gelöst. Anschließend

fügt man bei 20° 0,87 g Toluylen-2,4-diisooyanat su, rührt eine Stunde bei RT und gibt dann 1,19 g M-(M'-Isopropyl-amino-propyl)-äthylenimino-acetamid su. Die Reaktion ist nach wemigen Minuten beendet.

Ein Gemisch aus 1,0 g der so gewonnenen Äthyleniminverbindung und 0,07 g Benschaulfonsäure-methylester geliert sehnell und ist nach ca. 20 Minuten in einen gunmielastischen Zustand übergegungen.

Beispiel 17

Zu einer Lösung von 0,020 g Zink-propionyl-scetophenonat in 20,0 g eines Mischpolymerisats aus Äthylenexyd und Zetrehydrofuran (im Mol-Veyhältnis 1 ; 1) von durchschuittlichen Mol-Gewicht 5,700 gibt man bei Rauntemperatur 1,52 g Teluylen-2,4-diisoeyanat und nach 15 Minuten 1,04 g 7 - Athylenininepropylamin. Apschließend wird noch 15 Minuten bei Rauntemperatur weitergerührt.

Die so gewennene Athylenininverbindung wird nach Zusats von 6% Bensolsulfonsäure-methylester nach en. 15 Minuten gummielastisch.

Beispiel 18

Die OH-Endgruppen eines Polyesters, hergestellt aus Adipinsaure, Sebadinesure, Hexandiol-1,6 und Triathylenglykol im Hol-Verhältnie 18: 2: 15: 6 werden, wie in Beispiel 1 besehrieben, erotonyliers.

ORIGINAL INSPECTED

200 g dieses Produktes werden bei 50° mit 42 ml Triäthylamin und 35 g Äthylenimin 6 Tage bei Raumtemperatur stehen gelassen. Han nimmt in Chloroform auf, wäscht gründlich, trocknet über Kaliumcarbonat und erhält nach Filtration und Entfernung des Lösungsmittels im Vakuum 185 g einer wachsartigen Substanz vom Basenäquivalent 2600.

Versetzt man 5 g der bei 40° aufgeschmolzenen Substanz mit 0,6 g einer 20%igen Lösung von 2,5-Dichlor-benzolsulfonsäure-methylester in Dioctylphthalat, so ist nach wenigen Minuten ein fester Gummi von guter Reißfestigkeit und bleibender Elastisität entstanden.

Beispiel 19

Durch Vermischen von 2 Teilen der in Beispiel 18 beschriebenen Äthyleniminverbindung mit 1 Teil Dioctylphthalat wird eine
bei Raumtemperatur schwach trübe Masse erhalten. Vermischt man
7,5 g dieser Nasse mit 0,6 g einer 20 igen Lösung von 2,5Dichlor-benzolsulfonsäure-methylester in Diamylphthalat, so
macht sich die beginnende Vernetzung nach wenigen Minuten
durch Viskositätssteigerung bemerkbar. Nach ca. 15 Minuten
ist ein hochelastischer Gummi entstanden.

Beispiel 20

PROLETON CONTRA

Ein Mischpolymerisat von Tetrahydrofuran und Äthylenoxyd im Mol-Verhältnis 2: 1, welches ein durchschnittliches Mol-Gewicht von 6600 besitst, wird in üblicher Weise crotonyliert.

BAD ORIGINAL

In 52 g dieser Substans wird bei 50° ein Gemisch von 3 g
Triäthylamin und 3,35 g Äthylenimin eingerührt. Nach 11-tägigen
Stehen bei Raumtemperatur zieht man die Amine weitgehend im
Vakuum bei 50° ab, nimmt in Chloroform auf und erhält nach
Waschen, Trocknen und Verjagen des Lösungsmittels, suletst
im Hochvakuum, 45,5 g einer Äthyleniminverbindung vom Basenäquivalent 3270.

1,0 g dieser Substans wird mit 0,1 g eines Gemisches aus gleichen Teilen 2,5-Dichlor-benzolsulfonsäure-methylester und Disthylenglykol-dimethyläther gemischt. Nach ca. 20 Minuten ist eine kautschukelastische Substans entstanden.

Beispiel 21

Zu ei em Gemisch, bestehend aus 28, 5 g eines Mischpolymerisates aus Tetrahydrofuran und Thylenoxyd im Mol.-Verhältnis 3: 1, welches ein durchschnittliches Mol.-Gewicht von
5700 besitst, 2 ml Athylenglykoldimethyläther und 1,96 g
Toluylen-2,4-diisocyanat, gibt man bei 0° 0,03 g Dibutyl-sinsdiaurat. Nach einstündigem Stehen bei 0° werden 2,69 g M(N'-Isopropyl-aminopropyl)-äthylenimino-acetamid langsam sugetropft. Anschließend läßt man das Gemisch auf Raumtemperatur
kommen, nimmt in 100 ml Chloroform auf, wäscht wiederhelt mit
Wasser und bringt nach Trocknen über Kaliumoarbenat im Vakuum
sur Trockne. Ausbeute: 20,05 g Athyleniminverbindung von
Basenäquivalent 2970.

давит (f) 909881/1579

INCOMES COME

Zur Herstellung einer Linse werden 1,5 g dieser Substans mit 0,095 g Bensolsulfonsäure-methylester gemischt und in eine geeignete Form gebracht. Nach etwa 30 Minuten wird entformt; man erhält so eine Linse hoher Kratsfestigkeit, deren Brennweite durch Deformation reversibel verändert werden kann.

Beispiel 22

Ein Polyester, hergestellt aus Adipinsäure, Maleinsäureanhydrid, Hexandiol-1,6, Butandiol-1,3 und Dekandiol-1,10 im Mol.-Verhältnis 17:3:16:5:2, wird in der mehrfach beschriebenen Weise mit Crotonsäure-Endgruppen versehen.

Zu 154 g dieser Substans gibt man bei 45° unter Rühren ein Gemisch von 30 g Triäthylamin und 43 g Äthyl nimin und läßt
5 Tage bei Raumtemperatur stehen. Anschließend wird in Chloroform aufgenommen und in der üblichen Weise aufgearbeitet. Man erhält 134 g einer Äthyleniminverbindung vom Basenäquivalent 1660.

Man schmilzt die bei Raumtemperatur wachsartige Substans bei 35° auf und vermischt 1,0 g mit 0,14 g eines Gemisches aus gleichen teilen p-Toluol-benzolsulfonsäure-methylester und Dioctylphthalat. Nach wenigen Minuten ist eine steife, gummielastische Substans entstanden.

Beispiel 23

60,0 g eines Mischpolymerisats von Tetrahydrofuran und Xthylenoxyd (im Mol.-Verhältnis 1:1) mit einem durchschnittLösung von 4,2 g Naphthalin-1,5-diisocyanat in 60 ml
Äthylenglykoldimethyläther gemischt; anschließend setst
man 0,25 ml Dibutyl-sinn-dilaurat su und 188t 20 Stunden
bei 25 bei 25° stehen. Anschließend tropft man bei 0°
3,94 g Toluylen-2,4-diisocyanat unter Rühren su und rührt 4 Stunden bei 0° weiter. Nach Zugabe von 5,2 g N-(H'-Isopropyl-aminopropyl)-äthylenimino-scetamid lüßt man auf Raumtemperatur
kommen, ninmt in Chloroform auf und erhält nach der üblichen
Reinigung 60,5 g ithyleniminverbindung vom Kquivalentgewicht
3830.

Ein Gemisch von 1,0 g dieser Substans und 0,05 g einer Lösung von 1 Teil 2,5-Dichlor-bensolsulfor Mure-methylester in 2 Teilen Diamylphthalat beginnt sehr schnell su gelieren und ist nach einigen Minuten in einen festen Gummi von bleibender Elastisität übergegangen.

Beispiel 24

Ein Mischpolymerisat aus Tetrahydrofuran und Äthylenoxyd im Mol.-Verhältnis 2: 1, welches ein OH-Äquivalent von
1760 besitzt, wird in der in Beispiel 4 beschriebenen Weise
mit Aoryl-Endgruppen ausgestattet.

In 50 g dieser Substans wird bei 50° ein Gemisch aus 3.0 g Triäthylamin und 3.45 g Athylenimin eingerührt. Nach

10-tägigem Stehen bei Raumtemperatur wird in der üblichen Weise aufgearbeitet. Gelöstes Kupfer wird durch Ausschütteln mit einer wässrigen Lösung des Dinatriumsalzes der Äthylendiamin-tetraeseigsäure entfernt. Ausbeute: 36,7 g Äthyleniminverbindung von Basenäquivalent 1945.

2,0 g dieser Substans gehen nach Vermischen mit 0,24 g eines Gemisches aus 40 Teilen p-Chlor-bensolsulfonsäuremethylester und 60 Teilen Diamylphthalat nach ca. 10 Minuten in einen steifen Gummi über.

Beispiel 25

1,0 g der im Beispiel 1 beschriebenen Äthyleniminverbindung wird mit 0,10 g der Bortrifluorid-K,n-Dimethyl-Acetamid-Komplexverbindung vermischt. Die Vernetsung setst sehr bald ein. Man erwärmt etwa 5 Min. auf 50°, wobei die Mischung in den gummielastischen Zustand übergeht.

Beispiel 26

Man 18st 0,5 g Dibutyl-simm-dilaurat in 121,5 g Polypropylenglycol vom durchschnittlichen Mol.-Gewicht 2.000 und tropft unter Rühren bei 0° 10,8 g Diphenylmethan-4,4'diisocyanat su. Anschliessend lässt man auf Raumtemperatur kommen und 20 Stunden bei Raumtemperatur stehen.

Zu 60 g dieses Gemisches tropft man bei 0° eine Lösung

1/70010

von 3,68 g Toluylen-2,4-diisocyanat und 0,08 g Dibutyl-sinn-dilaurat in 17 ml Äthylenglycol-dimethyläther su und rührt 4 Stunden bei 0° weiter. Nach Zugabe von 4,8 g M-(N'-Iso-propyl-aminopropyl)-äthylenimino-acetamid bei 0° läst man auf Raumtemperatur kommen, nimmt in Methylenchlorid auf, wäscht erschöpfend mlt Wasser, trocknet mit Kaliumcarbonat und verjagt das Lösungsmittel, suletst im Hochvakuum. Ausbeute: 41,5 g Äthyleniminverbindung vom Basenäquivalent 3850.

0,8 g dieser äthyleniminverbindungwerden mit 0,015 g einer Mischung von 10 Teilen 2,5-Dichlor-bensolsulfonsäuremethylester und 3 Teilen Diäthylenglycol-dimethyläther verrührt. Die Mischung nimmt nach wenigen Minuten eine gummiartige Konsistens an.

Beispiel 27

N-(N'-Isopropyl-aminopropyl)-&-äthylenimino-butyramid wird dargestellt, indem man ein Gemisch von 0,2 Mol & -Äthylenimine-buttersäure-methylester, 0,6 Mol &-Isopropylamino-propylamin und 15 ml Methanol unter Rückfluß 2 Tage auf 70° erwärmt. Durch Rektifikation im Vakuum erhält man 17 g N-(N'-Isopropyl-amine-propyl)-&-äthylenimino-butyramid vom Kp 0,1 : 115 his 118°.

45,0 g eines ischpolymerisats aus Tetrahydrofuran und Äthylenoxyd (im Molverhältnis 3: 1) vom durchschnittlichen Hol-Gewicht 4.500 werden mit 13 ml wasserfreiem Äther gemischt. Anschließend gibt man bei 0° 3,93 g Toluylen-2,4-diisocyanat und 0,11 g Dibutyl-zinn-dilaurat su und läßt 4 Stunden bei

909881/1579

0° stehen. Hach Einrühren von 12 ml Äther wird das Reaktionsgemisch geteilt.

In 34,0 g werden bei -2° 3,12 g N-(N'-Isopropyl-amino-propyl)-%-äthylenimino-butyramid eingerührt. Man läst auf Raumtemperatur kommen, nimmt in 250 ml Äther auf und erhält nach wiederholtem Waschen, Trocknen über Kaliumcarbonat und Entfernen des Lösungsmittels 15,6 g Äthyleniminverbindung vom Basenäquivalent 2620.

2,0 g dieser Substans werden mit 0,04 g eines Gemisches von p-Chlorbensolsulfonsäure-methylester und Benzolsulfonsäure-methylester (1:1) gemischt. Die Vernetsung setst nach etwa 3 Minuten ein; nach ca. 10 Minuten ist ein gummielastischer Körper entstanden.

Beispiel 28

26,4 g des in Beispiel 27 genannten Reaktionsgemisches werden bei 0° mit 0,85 g 8-Äthylenimino-äthanol versetzt und 24 Stunden bei Raumtemperatur stehen gelassen. Man nimmt in 200 ml Äther auf, wäscht wiederholt mit Wasser und entfernt das Lösungsmittel, suletzt im Hochvakuum. Ausbeute: 15,8 g Äthyleniminverbindung vom Aminäquivalent 3130.

3 g dieser Substanz werden mit 0,06 g eines Gemisches aus gleichen Teilen p-Chlorbensolaulfonsäure-methylester und Benzolaulfonsäure-methylester vermischt. Nach etwa

15 Minuten ist eine sähe, gummiartige Masse von hoher Dauer-

Beispiel 29

Bin Polymerisat aus Tetrahydrofuran, Athylenoxyd und 4Brom-butenoxyd-1,2 im Mol-Verhältnis 100:30:4 wird hergestellt
nach dem Verfahren von W.J. Murbach und A. Adicoff, Ind. Eng.
Chem. 52, 772 (1960). Das Produkt weist ein Bromäquivalent
von 1910 auf. Zum Austausch der Brom-Atome gegen Aminogruppen
werden 64,4 g des Mischpolymerisats, gelöst in 98 g Dimethylformamid, mit 8,4 g Phthalimidkalium 34 Stunden auf 80° erwärmt.
Das Gemisch wird in 500 ml Wasser eingerührt und die ausgefallene Substans sweimal aus Methylglykol mit Wasser umgefällt.
Man nimmt abermals in viel Methylglykol auf und entfernt das
anhaftende Wasser durch Abdestillieren von Methylglykol im
Vakuum.

Die so erhaltene Lösung in Methylglykol (650 ml) wird mit 2,73 ml einer 80%igen wässrigen Lösung von Hydrasinhydrat 2 1/2 Stunden auf 80° erwärmt. Hach Abdestillieren von 200 ml Methylglykol im Vakhum gibt man 270 ml 2 n Besigsäure su umd erhitst eine Stunde unter Rückfluß. Hach Absaugen vom gebildeten Phthalhydrasid gibt man sum Filtrat 630 ml Methanol und 400 ml Wasser, läßt durch eine mit einem stark basischen Ionensustauscher (OH-Form) beschickte Säule laufen, engt im Vakuum ein undschüttelt nach Zusats von 30 ml 30%iger Matromlauge mit Methylenchlorid aus. Hach Verjagen des Lösungs-

8,88 g dieser Substans werden mit 4,6 g Äthylenimino-essigsäure-methylester, 5,0 g Glykol und 10 ml Methanol 34 Stunden auf 50° erwärmt. Man nimmt das Reaktionsgemisch in 130 ml Methanol auf und fällt mit 500 ml Wasser. Die Fällung wird mit 100 ml Wasser gründlich durchgerührt und nach Zentrifugieren in Äther aufgenommen. Nach Trockenn und Verjagen des Lösungsmittels erhält man 6,8 g Polyäthyleniminverbindung.

2,0 g dieser Substans werden mit 0,13 g eines Gemisches aus 10 Teilen 2,5-Dichlor-bensolsulfonsäure-methylester und 3 Teilen Diäthylenglykol-dimethyläther vermischt. Die Vernetsung beginnt nach kurser Zeit und führt nach ca. 20 Minuten su einem gummielastischen Produkt.

Patentanaprüche

医二氯甲基甲基酚 医线电影电影 医鼻腔

POST AND ARTHUR OF THE STREET, ASSUME

Patentaneprüche

- Verfahren zur Herstellung kautschukartiger Elastomerer auf der Basis von Äthyleniminverbindungen durch Vernetzung, dadurch gekennzeich hie t, dass man als Äthyleniminverbindung eine im wesentlichen lineare Verbindung vom durchschnittlichen Mindestmolgewicht 1000, einem Mindest-Äthyleniminäquivalent von 500 und einer Höchstviskosität von 500 000 Pois/ 70°C verwendet.
- 2. Verfahren nach Anspruch 1, dadurch geken neset eine Athyleniminverbindung verwendet, die insbesondere an den Kettenenden, durch Athyleniminverste substituierte funktionelle Gruppen enthält.
- Verfahren nach Anspruch 1 oder 2, dadurch gekennseichnet, dass man eine Athyleniminverbindung mit einem durchschnittlichen Molekulargewicht von
 1000 bis 20 000, vorsugsweise von 3000 bis 10 000, verwendet.
- 4. Verfahren nach Anspruch 1 bis 3, dadurch gek e n n s e i c h n e t , dass man als Athyleniminverbindung einen wesentlichen linearen Polyester, Polyäther
 eder Polythioäther vom durchschnittlichen Holgewicht 1000
 bis 20 000 verwendet.
- 5. Verfahren nach Anspruch 1 bis 3, dadurch gekennseichnet, dass man eine Athyleniminverbindung

CONTROL WARRY

- & -M

verwendet, die durch Acylierung von Polyestern oder Polyäthern mit Olefincarbonsäuren mit anschliessender Anlagerung von Äthylenimin erhalten worden ist.

- Kennzeich Anspruch l bis 4, dadurch gekennzeich net, dass man eine Äthyleniminverbindung
 verwendet, die durch Umsatz von Polyestern oder Polyäthern
 mit mehrwertigen Isocyanaten und anschliessende Anlagerung
 einer Äthyleniminverbindung mit reaktionsfähigem Wasserstoff
 erhalten werden ist.
- 7. Verfahren nach Anspruch 1 bis 6, dadurch gekennseichen und oder neutralen Füllstoffen versetzte Äthyleniminverbindung verwendet.
- 8. Verfahren nach Anspruch 1 bis 7, dadurch gekennseichnet, dass man eine mit Pigmenten, Weichmachern, löslichen Farbstoffen und/oder Desinfektionsmitteln
 versetzte Äthyleniminverbindung verwendet.
- 9. Verfahren nach Anspruch 1 bis 8, dadurch gek e n n s e i c h n e t , dass man als Vermetser Sulfonsäuremethylester, insbesondere elektronegativ substituierte
 Arylsulfonsäuremethylester, verwendet.

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

BLACK BORDERS

IMAGE CUT OFF AT TOP, BOTTOM OR SIDES

FADED TEXT OR DRAWING

BLURRED OR ILLEGIBLE TEXT OR DRAWING

SKEWED/SLANTED IMAGES

COLOR OR BLACK AND WHITE PHOTOGRAPHS

GRAY SCALE DOCUMENTS

LINES OR MARKS ON ORIGINAL DOCUMENT

REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

☐ OTHER:

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.