

Exercice 1 - Pompe à palettes *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 1.

Exercice 2 – Pompe à piston radial * C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AO} = e \overrightarrow{i_0}$ et $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$. De plus e = 10 mm et R = 20 mm. Le contact entre $\mathbf{0}$ et $\mathbf{2}$ en B est maintenu en permanence (notamment par effet centrifuge lors de la rotation de la pompe).

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 En utilisant Python, tracer $\lambda(t)$ en fonction de $\theta(t)$.

Question 4 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

On prendra une section de piston **2** de 1 cm² et une fréquence de rotation de $\dot{\theta}(t) = \pi \times 2 \text{ rad s}^{-1}$.

Question 5 Exprimer le débit instantané de la pompe.

Question 6 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour

 $e = 10 \,\text{mm} \, et \, e = 15 \,\text{mm}.$

Question 7 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour $e = 10 \, \text{mm}$ pour une pompe à 5 pistons (5 branches 1+2).

Corrigé voir 2.

Exercice 3 – Pompe à piston axial *

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 3.

Exercice 4 – Pompe à piston axial * C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AB} = e \overrightarrow{i_1}$ et $\overrightarrow{BI} = R \overrightarrow{j_0}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$. De plus, $e = 10 \, \text{mm}$ et $R = 20 \, \text{mm}$. Le contact entre $\mathbf{1}$ et $\mathbf{2}$ en B est maintenu en permanence par un ressort suffisamment raide (non représenté) positionné entre $\mathbf{0}$ et $\mathbf{2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\lambda(t)$ *en fonction de* $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 On note S la section du piston **2**. Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, tracer le débit instantané de la pompe pour un tour de pompe pour

 $e=10\,\mathrm{mm}$ et $R=10\,\mathrm{mm}$ ainsi que pour $e=20\,\mathrm{mm}$ et $R=5\,\mathrm{mm}$. La fréquence de rotation est $\dot{\theta}(t)=100\,\mathrm{rad}\,\mathrm{s}^{-1}$, la section du piston est donnée par $S=1\,\mathrm{cm}^2$.

Corrigé voir 4.

Exercice 5 - Système bielle manivelle * B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 5.

Exercice 6 – Système bielle manivelle ** C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$, $\overrightarrow{CB} = L \overrightarrow{i_2}$ et $\overrightarrow{AC} = \lambda(t) \overrightarrow{j_0}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer la vitesse du piston en fonction du temps. La fréquence de rotation est $\dot{\theta}(t) = 100 \, \text{rad s}^{-1}$, on prendra $R = 10 \, \text{mm}$ et $L = 20 \, \text{mm}$ puis $L = 30 \, \text{mm}$.

Question 5 En utilisant Python, tracer l'accélération du piston en fonction du temps en utilisant les mêmes

valeurs que dans la question précédente. On utilisera une dérivation numérique.

Corrigé voir 6.

Exercice 7 – Système de transformation de mouvement \star

B2-13 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 7.

Exercice 8 - Pompe oscillante *

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AB} = R \overrightarrow{i_1}$ et $\overrightarrow{CA} = H \overrightarrow{j_0}$. De plus, R = 40 mm et H = 60 mm. Par ailleurs, on note $\overrightarrow{CB} = \lambda(t) \overrightarrow{i_2}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\lambda(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\lambda}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 Exprimer le débit instantané de la pompe.

Question 5 En utilisant Python, donner le débit instantané de la pompe pour un tour de pompe pour un piston de diamètre $D = 10 \, \text{mm}$.

Corrigé voir 8.

Exercice 9 - Barrière Sympact **

Pas de corrigé pour cet exercice.

Soit le mécanisme suivant.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 9.

Exercice 10 - Barrière Sympact *

C2-06

Soit le mécanisme suivant. On a $\overrightarrow{AC} = H \overrightarrow{j_0}$ et $\overrightarrow{CB} = R \overrightarrow{i_1}$. De plus, $H = 120 \, \text{mm}$ et $R = 40 \, \text{mm}$.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\varphi(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\varphi}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 10.

Exercice 11 - Poussoir **

Pas de corrigé pour cet exercice.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 11.

Exercice 12 - Poussoir *

C2-06 Pas de corrigé pour cet exercice.

Soit le mécanisme suivant. On a $\overrightarrow{AC} = L\overrightarrow{i_0} + H\overrightarrow{j_0}$, $\overrightarrow{AB} = \lambda(t)\overrightarrow{i_1}$ et $\overrightarrow{BC} = \mu(t)\overrightarrow{j_0}$. De plus, H = 120 mm, L = 40 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\mu(t)$ en fonction de $\theta(t)$.

Question 3 Exprimer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$.

Question 4 En utilisant Python, tracer $\dot{\mu}(t)$ en fonction de $\dot{\theta}(t)$. On considérera que la fréquence de rotation de la pièce **1** est de 10 tours par minute.

Corrigé voir 12.

Exercice 13 - Système 4 barres ***

B2-13 Pas de corrigé pour cet exercice.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 13.

Exercice 14 - Système 4 barres **

C2-06 Pas de corrigé pour cet exercice.

On a:

- $\overrightarrow{OA} = a\overrightarrow{x_1} f\overrightarrow{y_1}$ avec a = 355 mm et f = 13 mm; $\overrightarrow{AB} = b\overrightarrow{x_2}$ avec b = 280 mm;
- $\overrightarrow{BC} = -c \overrightarrow{x_3}$ avec $c = 280 \,\mathrm{mm}$;
- $\overrightarrow{OC} = -d\overrightarrow{x_0} e\overrightarrow{y_0}$ avec d = 89.5 mm et e = 160 mm;

Question 1 Tracer le graphe des liaisons.

Question 2 Exprimer $\theta_1(t)$ en fonction de $\theta_4(t)$.

Question 3 Exprimer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$.

Question 4 En utilisant Python, tracer $\dot{\theta}_1(t)$ en fonction de $\dot{\theta}_4(t)$. On considérera que la fréquence de rotation de la pièce 1 est de 10 tours par minute.

Corrigé voir 14.

Exercice 15 - Maxpid ***

Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Question 1 Réaliser le paramétrage du mécanisme.

Corrigé voir 15.

Exercice 16 - Maxpid ***

C2-06 Pas de corrigé pour cet exercice.

Soit le schéma suivant.

Par ailleurs $a=107.1\,\mathrm{mm},\ b=80\,\mathrm{mm},\ c=70\,\mathrm{mm},$ $d=80\,\mathrm{mm}.$ Le pas de la vis est de 4 mm.

Question 1 Tracer le graphe des liaisons.

Question 2 *Exprimer* $\theta(t)$ *en fonction de* $\lambda(t)$.

Question 3 Exprimer $\dot{\theta}(t)$ en fonction de $\dot{\lambda}(t)$.

Question 4 Exprimer $\dot{\theta}(t)$ en fonction de $\omega(t)$, vitesse de rotation du rotor moteur **2** par rapport au stator

Question 5 En utilisant Python, tracer $\dot{\theta}(t)$ en fonction de $\omega(t)$. On considérera que la fréquence de rotation de la pièce **2** par rapport à **1** est de 500 tours par minute.

Corrigé voir 16.