Lenguaje matemático, conjuntos y números

Pregunta 1 (2 puntos)(0,75+0,75+0,5)

Se definen las aplicaciones f y g mediante:

- a) Determine razonadamente si f es inyectiva o sobreyectiva.
- b) Determine razonadamente si g es inyectiva o sobreyectiva.
- c) Determine $f \circ g$ y $g \circ f$.

Solución: a) f es inyectiva pues si f(n) = f(n') entonces 2n = 2n' y por tanto n = n'. f no es sobreyectiva pues $f(\mathbb{N}) = 2\mathbb{N} \neq \mathbb{N}$.

- b) g no es inyectiva pues g(2n+1)=g(2n)=n y sin embargo $2n\neq 2n+1$. g es sobreyectiva: en efecto, para todo $n\in\mathbb{N}$ existe $m\in\mathbb{N}$ tal que g(m)=n. Basta tomar m=2n y se cumple que $g(2n)=E\left(\frac{2n}{2}\right)=n$.
- c) Para determinar $f \circ g$ distinguiremos los casos n par, donde n es de la forma n = 2m, y n impar, donde n es de la forma n = 2m + 1.

$$f \circ g: \mathbb{N} \longrightarrow \mathbb{N}$$

$$n \longmapsto f(g(n)) = f\left(E\left(\frac{n}{2}\right)\right) = \begin{cases} 2E\left(\frac{2m}{2}\right) = 2m = n & \text{si } n = 2m \pmod{n} \\ 2E\left(\frac{2m+1}{2}\right) = 2m = n-1 & \text{si } n = 2m+1 \pmod{n} \end{cases}$$

$$g \circ f: \mathbb{N} \longrightarrow \mathbb{N}$$

$$n \longmapsto g(f(n)) = g(2n) = E\left(\frac{2n}{2}\right) = n$$

Pregunta 2 (3 puntos)

En el conjunto de las partes finitas de \mathbb{N} , $\mathcal{P}_F(\mathbb{N}) = \{A \subset \mathbb{N} \mid A \text{ es un conjunto finito}\}$, se define la relación \mathbb{R} tal que dos subconjuntos finitos de \mathbb{N} están relacionados si coinciden las sumas de sus respectivos elementos, es decir: $\forall A, B \in \mathcal{P}_F(\mathbb{N})$

$$A \mathcal{R} B$$
 si y sólo si $\sum_{a \in A} a = \sum_{b \in B} b$

- a) Demuestre que \mathcal{R} es una relación de equivalencia en $\mathcal{P}_F(\mathbb{N})$.
- b) Determine la clase de $A_0 = \{0\}, A_1 = \{1\} \text{ y } B = \{1, 2, 3\}.$
- c) Justifique razonadamente que la clase de cualquier elemento A de $\mathcal{P}_F(\mathbb{N})$ es un conjunto finito.

Solución: a) \mathcal{R} es una relación de equivalencia.

 \mathcal{R} es una relación reflexiva en $\mathcal{P}_F(\mathbb{N})$ ya que $A\,\mathcal{R}\,A$ pues $\sum_{a\in A}a=\sum_{a\in A}a.$

 \mathcal{R} es una relación simétrica en $\mathcal{P}_F(\mathbb{N})$. En efecto sean $A, B \in \mathcal{P}_F(\mathbb{N})$ tales que $A \mathcal{R} B$. Por tanto, $\sum_{a \in A} a = \sum_{b \in B} b$ y en consecuencia, $\sum_{b \in B} b = \sum_{a \in A} a$. Es decir, $B \mathcal{R} A$.

 \mathcal{R} es una relación transitiva en $\mathcal{P}_F(\mathbb{N})$. En efecto, sean $A, B \ y \ C \in \mathcal{P}_F(\mathbb{N})$ tales que $A \mathcal{R} B \ y \ B \mathcal{R} C$. Se cumple que $\sum_{a \in A} a = \sum_{b \in B} b \ y \ \sum_{b \in B} b = \sum_{c \in C} c$. Por tanto $\sum_{a \in A} a = \sum_{c \in C} c$. Es decir, $A \mathcal{R} C$.

b) Nótese que la clase de cualquier subconjunto finito $C \subset \mathbb{N}$ es el conjunto de todos los subconjuntos finitos de \mathbb{N} cuya suma de elementos es precisamente la suma de los elementos de C.

La suma de los elementos de A_0 es 0 por tanto la clase de $A_0 = \{0\}$ es:

$$[A_0] = \{ A \in \mathcal{P}_F(\mathbb{N}) \mid \sum_{a \in A} a = 0 \} = \{ \varnothing, A_0 \}$$

La suma de los elementos de A_1 es 1 por tanto la clase de $A_1 = \{1\}$ es:

$$[A_1] = \{ A \in \mathcal{P}_F(\mathbb{N}) \mid \sum_{a \in A} a = 1 \} = \{ \{0, 1\}, \{1\} \}$$

La suma de los elementos de B es 6 por tanto la clase de $B = \{1, 2, 3\}$ es:

$$[B] = \{A \in \mathcal{P}_F(\mathbb{N}) \mid \sum_{a \in A} a = 6\} = \{\{6\}, \{0, 6\}, \{1, 5\}, \{0, 1, 5\}, \{2, 4\}, \{0, 2, 4\}, \{1, 2, 3\}, \{0, 1, 2, 3\}\}$$

c) Sea $A \in \mathcal{P}_F(\mathbb{N})$ y sea $N = \sum_{a \in A} a$. Claramente, N es finito pues A es un conjunto finito y por tanto la suma de sus elementos es una suma de un número finito de elementos de \mathbb{N} .

Para cualquier $B \in [A]$, la suma de los elementos de B es N y en consecuencia, cualquier elemento $b \in B$ cumple que $b \leq N$. Por tanto, $B \subset \{0,1,2,\ldots,N\}$ y se deduce que $[A] \subset \mathcal{P}(\{0,1,2,\ldots,N\})$. En consecuencia, [A] es subconjunto de un conjunto finito y se tiene que $\operatorname{Card}([A]) \leq 2^{N+1}$, es decir, [A] es un conjunto finito que tiene a lo sumo 2^{N+1} siendo N la suma de los elementos de A.

Pregunta 3 (2 puntos) (1+0,5+0,5)

Consideremos en \mathbb{N}^* las propiedades P y Q definidas para todo $n \in \mathbb{N}^*$ mediante:

 $P_n: 4^n - 1$ es divisible por 3

 $Q_n: 4^n + 1$ es divisible por 3

- a) Demuestre que $\forall n \in \mathbb{N}^*$ se tiene $P_n \Rightarrow P_{n+1}$ y $Q_n \Rightarrow Q_{n+1}$.
- b) Demuestre que P_n es verdadera para todo $n \in \mathbb{N}^*$.
- c) ¿Qué se puede deducir de Q_n ?

Solución: a) Veamos que P_{n+1} es verdadera si P_n lo es. En efecto,

$$4^{n+1} - 1 = 4 \cdot 4^n - 1 = 4(4^n - 1 + 1) - 1 = 4(4^n - 1) + 4 - 1 = 4(4^n - 1) + 3$$
$$= 4 \cdot 3k + 3 = 3(4k + 1)$$

donde en la penúltima línea se ha aplicado que P_n es verdadera pues si $4^n - 1$ es divisible por 3 entonces existe $k \in \mathbb{N}^*$ tal que $4^n - 1 = 3k$.

Análogamente, si Q_n es verdadera entonces $4^n + 1$ es divisible por 3 y por tanto existe $k' \in \mathbb{N}^*$ tal que $4^n + 1 = 3k'$. Se tiene,

$$4^{n+1} + 1 = 4 \cdot 4^n + 1 = 4(4^n + 1 - 1) - 1 = 4(4^n + 1) - 4 + 1 = 4(4^n + 1) - 3$$

= $4 \cdot 3k' - 3 = 3(4k' - 1)$

y en consecuencia Q_{n+1} es verdadera.

- b) La propiedad P es verdadera para n=1: se cumple P_1 pues 4-1=3 es divisible por 3. Por el apartado anterior sabemos que $P_n \Rightarrow P_{n+1}$. Aplicando el principio de inducción resulta que P_n es verdadera para todo $n \in \mathbb{N}^*$.
- c) En este caso Q_1 no es verdadera pues para n=1 se obtiene, $4^n+1=4+1=5$, que no es divisible por 3. Por tanto, no es cierto que Q_n sea verdadera para todo $n \in \mathbb{N}^*$. En realidad, se puede asegurar que 4^n+1 no es divisible por 3 para ningún $n \in \mathbb{N}^*$, pues si fuera cierto que $4^m+1=3k$ para ciertos $m,k \in \mathbb{N}^*$, entonces

 $4^m - 1 = 3k - 2$. Pero por el apartado b) sabemos que $4^m - 1 = 3k'$ para algún $k' \in \mathbb{N}^*$. En consecuencia, se obtiene que 3k - 2 = 3k', es decir, 2 = 3(k - k'), que es manifiestamente falso.

Pregunta 4 (3 puntos)

a) Demuestre que para todo $z \in \mathbb{C} \setminus \{-i\}$ se cumple que $\frac{z-i}{z+i} \neq 1$. Sea $f : \mathbb{C} \setminus \{-i\} \longrightarrow \mathbb{C} \setminus \{1\}$ la aplicación definida mediante:

$$f(z) = \frac{z - i}{z + i}$$

- b) Demuestre que para todo $\omega \in \mathbb{C} \setminus \{1\}$ existe un único $z \in \mathbb{C} \setminus \{-i\}$ tal que $f(z) = \omega$.
- c) Resuelva en $\mathbb C$ la ecuación $(z-i)^3+8(z+i)^3=0$.

Solución: a) Si fuera $\frac{z-i}{z+i} = 1$, entonces z-i = z+i, es decir, -2i = 0.

- b) Sea $\omega \in \mathbb{C} \setminus \{1\}$ busquemos $z \in \mathbb{C} \setminus \{-i\}$ tal que $f(z) = \omega$. De $\frac{z-i}{z+i} = \omega$ se obtiene $z-i = \omega(z+i)$, es decir, $(1-\omega)z = i(1+\omega)$. Esta ecuación en z tiene solución única siempre que $1-\omega \neq 0$ y la expresión de z en función de ω es $z = \frac{i(1+\omega)}{1-\omega}$ para todo $\omega \in \mathbb{C} \setminus \{1\}$. Además $z \neq -i$ pues $\frac{(1+\omega)}{1-\omega} \neq -1$. (Obsérvese que de $1+\omega = -1+\omega$ se deduce que 2=0).
- c) La ecuación $(z-i)^3 + 8(z+i)^3 = 0$ se puede escribir como $\omega^3 = (f(z))^3 = -8$. De $\omega^3 = -8 = 2^3$ se obtiene que el módulo de ω es 2 mientras que el argumento α cumple $3\alpha = -6$

De $\omega^3 = -8 = 2^3_{\pi}$ se obtiene que el módulo de ω es 2 mientras que el argumento α cumple $3\alpha = \pi$ (mód 2π). Por tanto, se obtienen 3 soluciones para ω ,

$$\begin{array}{rcl} \omega_1 & = & 2_{\pi/3} = 2(1/2 + \sqrt{3}/2i) = 1 + \sqrt{3}i \\ \omega_2 & = & 2_{\pi} = -2 \\ \omega_3 & = & 2_{5\pi/3} = 2(1/2 - \sqrt{3}/2i) = 1 - \sqrt{3}i \end{array}$$

Para recuperar los correspondientes valores de zutilizamos el apartado b),

$$z = \frac{i(1+\omega)}{1-\omega} = \frac{i(1+\omega)(1-\overline{\omega})}{(1-\omega)(1-\overline{\omega})} = \frac{-2\operatorname{Im}\ (\omega) + (1-|\omega|^2)i}{|1-\omega|^2}$$

Para ω_1 , se obtiene $1 - \omega_1 = -\sqrt{3}i$ y sustituyendo, $z_1 = \frac{-2\sqrt{3} - 3i}{3} = \frac{-2\sqrt{3}}{3} - i$.

Para ω_2 se obtiene $1 - \omega_2 = 3$ y sustituyendo, $z_2 = \frac{-3i}{9} = \frac{-i}{3}$.

Para ω_3 se obtiene $1 - \omega_3 = \sqrt{3}i$ y sustituyendo, $z_3 = \frac{2\sqrt{3} - 3i}{3} = \frac{-2\sqrt{3}}{3} - i$.