Survival Analysis Using R

Antonio, Fabio Di Narzo

1/125

1. Model Based, Classic Statistical Inference and Regression Analysis

4. Semi-parametric regression: model building and diagnostics

2. Nonparametric methods for Survival Analysis

3. Semi-parametric regression

5. Advanced topics

References

Program

- ▶ Modeling Survival Data; Therneau, T., Grambsch, P.
- ▶ Modeling Survival Data: Extending the Cox Model. Springer-Verlag, 2000
- ► Survival Analysis: A Self-Learning Text, Third edition (Hardcover) by David G. Kleinbaum, Mitchel Klein
- $\,\blacktriangleright\,$ Applied Survival Analysis Using R (Use R!) (Paperback) by Dirk F. Moore

Intro

3/125 4/125

Prerequisites

Classic Statistical Inference, Statistical Modeling

RStudio up and running

Being able to write and run an R script

Some extra R packages installed:

asaur, tidyverse, maxLik, survivalROC, glmnet

5 / 125

7 / 125

Definition: Survival Analysis

- ► Survival Analysis is the study of survival times and the factors that influence them
- ► Survival times, aka 'times to failure', have some distinguishing features:
 - non negative
 - ▶ the information is often only partially recorded (censoring)
- Aims:
 - Summarize and interpret survival/time to failure data
 - ► Make statistical *predictions*

Objectives

At the end of this course you should be able to perform statistical inference on survival data:

- ▶ estimate survival, parametrically or non-parametrically
- ► compare 2 or more groups
- ► make predictions

using the R statistical software

6 / 125

Some Example Applications

The following examples are all taken from past students projects:

- ► Clinical trials : life expectancy of cancer patients by clinical outlook and treatment options
- ► Criminal Recidivism: risk of returning to prison by different follow-up policies
- ▶ Phone contract termination : risk by demographics and contract type
- ► Corruption in [country] : risk of corruption indictment by political party and region
- ► Unemployment Insurance claims : duration of unemployment by demographic and geographic factors
- Breast feeding behaviors : duration of breast feeding by ethnic, social and clinical background
- ▶ Roman Emperors reigns : risk of violent death by historical period, dinasty
- ► Heroin addiction : risk of relapse of heroin addicts by different treatment options
- Reliability of grid power lines : risk of failure by technology and geographic location

Model-Based, Parametric Statistical Inference

Case Studies

- ► Duration of hospitalization
- ► Mortality by COVID-19
- ► Smoking behavior of DSTI students

Case Study

We'll go through typical Data Analysis steps:

- 1. Problem definition and scoping
- 2. Probabilistic modeling: the Data Generating Process
- 3. Model estimation and statistical inference
- 4. Results interpretation and conclusions

9 / 125

Probabilistic description of survival data

Probabilistic description of Duration Data

▶ Support: $0 \le t < \infty$

The distribution can be specified thorugh one the following:

► Survival function:

$$S(t) = Pr(T > t)$$

► Cumulative Distribution Function (CDF):

$$F(t) = \Pr(T \le t) = 1 - \Pr(T > t) = 1 - S(t)$$

► Probability Density Function (PDF):

$$f(t) = F'(t) = -S'(t)$$

Mean and median survival time

► Mean survival:

$$\mu = E(T) = \int_0^\infty t f(t) dt = \int_0^\infty S(t) dt$$

Note: μ is only defined if $S(\inf) = 0$.

► Median survival

$$t: S(t) = 0.5$$

Hazard Function

A meaningful quantity linked to a survival distribution is the Hazard function:

$$h(t) = \lim_{\delta \to 0} \frac{\Pr(t < T < t + \delta | T > t)}{\delta}$$

and the derived Cumulative Hazard function:

$$H(t) = \int_0^t h(u) du$$

► Note:

$$h(t) = \frac{f(t)}{S(t)}$$
$$S(t) = exp(-H(t))$$

13 / 125

Recap (1/2)

For $t \in [0, \infty)$:

- ▶ Survival function: S(t) = Pr(T > t), right continuous
- ▶ Cumulative Distribution Function (CDF): $F(t) = Pr(T \le t)$
- ▶ Probability Density Function (PDF): f(t) = F'(t)
- ▶ Hazard function: $h(t) = \lim_{\delta \to 0} \frac{\Pr(t < T < t + \delta \mid T > t)}{\delta}$
- ► Cumulative Hazard function: $H(t) = \int_0^t h(u) du$

15/125 16/125

Recap (2/2)

Some relationships allow us to switch from one quantity to another:

$$f(t) = F'(t)$$

$$h(t) = \frac{f(t)}{S(t)}$$

$$H(t) = \int_0^t h(u)du$$

$$S(t) = \exp(-H(t))$$

$$F(t) = 1 - S(t)$$

$$E(T) = \mu = \int_0^\infty tf(t)dt = \int_0^\infty S(t)dt$$

$$\text{median}(t) = \{t : S(t) = 0.5\} = S^{-1}(0.5)$$

Survival distribution: Exponential (cont.)

- ► Survival function: $e^{-\lambda t}$
- ▶ PDF: $f(t) = -S'(t) = \lambda e^{-\lambda t}$
- lacksquare Median: $0.5=e^{-\lambda t} \implies t_{
 m med}=\ln(2)/\lambda$

Survival distribution: Exponential

ightharpoonup constant hazard: $h(t) = \lambda$

lacktriangle cumulative hazard: $H(t)=\int_0^t \lambda du=\lambda \int_0^t du=\lambda t$

• mean: $\int_0^\infty e^{-\lambda t} dt = 1/\lambda$

► Exercise: can you determine:

► Survival function

► PDF

Median

17/125

Nonparametric methods for censored data

Case study: animal testing mimicking human stress

- ▶ one area of pharmacological research focuses on alleviating stress
- ▶ drug development requires (animal) testing
- ▶ in principle, all that's needed is an animal with a readout that can proxy what would be stress levels in human
- ▶ there are several well known blood markers for stress
- ► here we'll see one behavioral marker

21 / 125

Case study: Novel Object Interaction (NOI) in rats: the data

After running the experiment, our (precious) data table looks like this:

rat ID	time	status
rat1	55	0
rat2	50	1
rat3	70	1
rat4	120	0
rat5	110	1

where we adopted the convention:

 $\mathsf{status} = egin{cases} 0 & \mathsf{the} \ \mathsf{experiment} \ \mathsf{was} \ \mathsf{somehow} \ \mathsf{interrupted} \colon \mathsf{no} \ \mathsf{interaction} \ 1 & \mathsf{an} \ \mathsf{interaction} \ \mathsf{actually} \ \mathsf{happened} \ \mathsf{at} \ \mathsf{that} \ \mathsf{time} \ \mathsf{point} \end{cases}$

Can we estimate the survival function from these data?

Case study: Novel Object Interaction (NOI) in rats: the experiment

For each of 5 rats:

We can start by ordering the

time

50

55

70

110

120

status

0

1

0

table by time:

1

4

rat ID

rat2

rat1

rat3

rat5

rat4

- 1. put it in the box with a new object and start the timer
- 2. visually follow the rat for 120s
- 3. take note of when the first interaction happens (physically touching the new object)

22 / 125

$$\hat{S}_{?}(t) = \widehat{P(T > t)} = ?$$

Say t = 10. What would be a reasonable estimate of S(t)?

$$0 \le t < 50$$
: $\widehat{S}_{?}(t) = 1.0$

What happened at t=50? One of the experimental subjects experienced the event. To be precise, 1 out of 5 partecipating subjects experienced the event:

$$t = 50$$
: $\widehat{S}_{?}(t) = 1 - 1/5 = 4/5$

Thinking about it, as no events happen between t = 50 and t = 70, we can actually write:

$$50 \le t < 70$$
: $\widehat{S}_{?}(t) = 4/5 = 0.8$

23 / 125

$$\widehat{S}_{?}(70) = ?$$

We can write:

Let's add one more utility column to our sorted table:

i	rat ID	time	status	n
1	rat2	50	1	5
2	rat1	55	0	4
3	rat3	70	1	3
4	rat5	110	1	2
5	rat4	120	0	1

with n = number of subjects still under observation at that time point

$P(T > 70) = P((T > 70) \cap (T > 50))$
$= P(T > 70 T > 50) \times P(T > 50)$

$$\hat{S}_{?}(70) = \left(1 - \frac{1}{3}\right) \times \frac{4}{5} \simeq 0.533$$

Again, as nothing happens between t = 70 and t = 110, we can write:

$$70 \le t < 110: \quad \widehat{S}_{?}(t) = \frac{2}{3} \times \frac{4}{5} \simeq 0.533$$

similarly for the next event:

$$110 \le t < 120: \quad \widehat{S}_{?}(t) = \frac{1}{2} \times \frac{2}{3} \times \frac{4}{5} \simeq 0.267$$

We can summarize our calculations in this table:

i	j	rat ID	time	status	n	q	1-q	S
1	1	rat2	50	1	5	1/5	4/5	4/5 = 0.8
3	2	rat3	70	1	3	1/3	2/3	$2/3 \times 4/5 = 8/15 \simeq 0.533$
4	3	rat5	110	1	2	1/2	1/2	$1/2 \times 8/15 = 4/15 \simeq 0.267$

Congrats! We just re-discovered the Kaplan-Meier estimator

25 / 125

26 / 125

Notation

- ► T: time to failure
- ▶ *U*: time to censoring
- \bullet δ : I[T < U]
- ightharpoonup observed data: (min(T, U), δ)

Kaplan-Meier Estimator (KM)

$$\hat{S}_{ extsf{KM}}(t) = \prod_{t_i \leq t} (1 - \hat{q}_i) = \prod_{t_i \leq t} \left(1 - rac{d_i}{n_i}
ight)$$

- ▶ n_i: # subjects at risk at time t_i
- $ightharpoonup d_i$: # subjects failing at time t_i

27 / 125

Kaplan-Meier estimation in R

The KM estimator can be obtained with the survival::survfit function:

```
Call: survfit(formula = Surv(time, status) ~ 1, data = dat)
```

```
time n.risk n.event survival std.err lower 95% CI upper 95% CI
          5
  50
                        0.800
                                0.179
                                             0.5161
  70
          3
                   1
                        0.533
                                0.248
                                             0.2142
          2
 110
                   1
                        0.267
                                0.226
                                             0.0507
```

29 / 125

Question: what is the median survival time?

```
fit .KM
```

```
Call: survfit(formula = Surv(time, status) ~ 1, data = dat)

n events median 0.95LCL 0.95UCL
5     3     110     70     NA
```

Refined definition of median survival time:

▶ maximum time t such that $S(t) \ge 0.5$

Note: there's no upper bound as the upper bound SC never goes below 0.5

Kaplan-Meier estimation in R (cont.)

```
plot(fit.KM, mark.time = TRUE,
main = "Kaplan-Meier estimator",
ylab = "Survival probability",
xlab = "time (seconds)")
```


30 / 125

Censoring

- censoring is a main feature of survival data
- ▶ it happens when starting or ending events are not precisely observed
- ▶ in this course, we will focus on right censoring: the time to failure for some samples is only known to exceed a particular value
- censoring might happen because:
 - ▶ the event of interest did not happen by the end of the study
 - e.g., we turn on 100 lightbulbs for 30 days, and we record burnout times; for lightbulbs still on after 30 days, we can only say that the survival time was > 30 days
 - ▶ the sample drops out from the study from unrelated causes
 - e.g., in a clinical trial, 200 subjects might be administered a new drug and their prognosis followed for 10 years; in these 10 years, some of the 200 subjects might move to a different city, die of unrelated causes, or just plain decide to stop partecipating in the study

31/125 32/125

An alternative approach (cont.)

The q_i s can be seen as empirical estimates of instantaneous risks at the times t_i They can be cumulated, to get a corresponding

empirical cumulated risk:

Back to our data table:

 $\hat{H}_j = \sum_{i=1}^j q_i$ rat ID time status q 5 1/5 50 1 rat2 $\frac{3}{2}$ From those, an estimator of survival could be: 70 rat3 3 rat5 110

$$\hat{S}_{?}(t_{j})=e^{-\hat{H}_{j}}$$

Here is how the calculation looks like:

i	j	rat ID	time	status	n	q	Н	S
1	1	rat2	50	1	5	1/5	1/5	$e^{-1/5} \simeq 0.819$
3	2	rat3	70					$e^{-8/15} \simeq 0.587$
4	3	rat5	110	1	2	1/2	31/30	$e^{-31/30} \simeq 0.356$

We just computed the Nelson-AAlen estimator of survival

33/125

Nelson-AAlen estimation in R

34 / 125

Nelson-AAlen estimator: definition

- ► AKA Fleming-Harrington estimator
- ▶ based on the relationship between cumulative hazard and survival function

$$\hat{H}_{NA}(t) = \sum_{t_i \le t} \frac{d_i}{n_i}$$

$$\hat{S}_{NA}(t) = e^{-\hat{H}_{NA}(t)}$$

ı | fit .NA <- survfit (Surv (time, status) ~ 1, data = dat, type = "fh") summary (fit NA)

Call: survfit(formula = Surv(time, status) ~ 1, data = dat, type = "fh")

time n.risk n.event survival std.err lower 95% CI upper 95% CI 50 0.819 0.183 0.5282 1 70 3 1 0.587 0.273 0.2356 1 110 1 0.356 0.301 0.0677 1

35 / 125 36 / 125

Case study: the XELOX trial

Cancer Chemother Pharmacol (2014) 73:1155-1161

ORIGINAL ARTICLE

A phase II trial of Xeloda and oxaliplatin (XELOX) neo-adjuvant chemotherapy followed by surgery for advanced gastric cancer patients with para-aortic lymph node metastasis

Yan Wang · Yi-yi Yu · Wei Li · Yi Feng · Jun Hou · Yuan Ji · Yi-hong Sun · Kun-tang Shen · Zhen-bin Shen · Xin-yu Qin · Tian-shu Liu

Received: 8 January 2014 / Accepted: 11 March 2014 / Published online: 21 April 2014

Purpose Gastric cancer with para-aortic lymph node (PAN) involvement is regarded as advanced disease, and only chemotherapy is recommended from the guidelines. In unresectable cases, neoadjuvant chemotherapy could prolong survival if conversion to resectability could be achieved.

Methods The study was a single-arm phase II trial. Patients who were diagnosed with gastric cancer and PAN involvement (Stations No. 16a2/16b1) were treated with capecitabine and oxaliplatin combination chemotherapy every 3 weeks for a maximum of six cycles. After every two cycles, abdominal computed tomographic scans were repeated to evaluate the response, and surgery was performed at the physicians discretion in patients with sufficient tumor response, followed by chemotherapy with the same regimen to complete a total of six cycles. The primary end point was the response rate of the preoperative chemotherapy. The secondary end points were R0 resection rate, progression-free survival (PFS), overall survival (OS), and adverse events.

To load the PFS data in R:

```
library (asaur)
dat <- gastric X elox
```

```
Case study: questions
```

- ► Express the Progress-Free Survival (PFS) times in months
- ▶ Estimate and plot the survival function using the KM and NA methods
- ▶ What's the median survival (and CI) according to the two methods?

38/125

Case study: R code

Case study: median follow up time

37 / 125

A quality metric for a trial is the median follow up time:

```
dat$delta.followup <- 1 - dat$delta
survfit (Surv(months, delta.followup) ~ 1, type = "k",
conf.type = "log-log")
```

```
n events median 0.95LCL 0.95UCL 48.0 16.0 27.5 13.5 42.9
```

39/125 40/125

Comparing two groups

Comparing Survival between 2 samples

Back to our 5 rats:

rat ID	time	status	group
rat1	55	0	0
rat2	50	1	1
rat3	70	1	0
rat4	120	0	1
rat5	110	1	1

As it turns out, they were belonging to 2 different experimental groups: group 1, which was sleep deprived, and group 0, which followed a natural sleep pattern.

Is there evidence of a different stress level between the two (precious, though tiny) groups?

Null hypothesis:

$$H_0: S_1(t) = S_0(t)$$

- ▶ $S_1(t)$: Survival Distribution in group 1 (e.g. treated)
- ▶ $S_0(t)$: Survival Distribution in group 0 (e.g. *control*)

41/125

The logrank test

For each failure time t_i , we build the following table:

	Control	Treatment	Total
Failures	d_{0i}	d_{1i}	di
Non-failures	$n_{0i}-d_{0i}$	$n_{1i}-d_{1i}$	n _i — d _i
Total	n _{0i}	n_{1i}	n;

Under the assumption of independence of the two groups, conditional on the margins, d_{0i} follows the hypergeometric distribution:

$$E(d_{0i}|n_i, d_i, n_{0i}, n_{1i}) = n_{0i}d_i/n_i$$

$$Var(d_{0i}|n_i, d_i, n_{0i}, n_{1i}) = \frac{n_{0i}n_{1i}d_i(n_i - d_i)}{n_i^2(n_i - 1)}$$

The logrank test (cont.)

Summing over all time points t_i :

$$U_0 = \sum_{i} (d_{0i} - e_{0i})$$

with variance:

43/125

$$\mathsf{Var}(\mathit{U}_0) = \sum_i \mathsf{Var}(\mathit{d}_{0i}) = \mathit{V}_0$$

Finally, the logrank test:

$$\frac{U_0^2}{V_0} \sim \chi_1^2$$

The logrank test in R

Using the survival::survdiff function:

Call:

Chisq= 0.2 on 1 degrees of freedom, p= 0.7

45/125

Case study: the pancreatic dataset

```
library (asaur)
dat <- pancreatic
head (dat)
```

```
onstudy progression
                                   death
  stage
     M 12/16/2005
                     2/2/2006 10/19/2006
1
2
         1/6/2006
                    2/26/2006 4/19/2006
3
         2/3/2006
                     8/2/2006 1/19/2007
4
     M 3/30/2006
                             . 5/11/2006
5
    LA 4/27/2006
                    3/11/2007 5/29/2007
         5/7/2006
6
                   6/25/2006 10/11/2006
```

The Fleming-Harrington test

A weighted variation on the logrank test:

$$U_0(w) = \sum w_i(d_{0i} - e_{0i})$$

$$Var(U_0) = \sum w_i^2 v_{0i} = V_0(w)$$

with:

$$w_i = N(\hat{S}_{KM}(t_i))^{\rho}$$

- $\rho = 0$: logrank test
- ho=1: aka Prentice modification of the Gehan-Wilcoxon test: higher weights on *earlier* survival times

46 / 125

Case study: preparing the data for analysis

```
fmt <- "%m/%d/%Y"
dat <- within (dat, {
    onstudy <- as. Date(as.character(onstudy), format = fmt)
    progression <- as. Date(as.character(progression), format = fmt)
    death <- as. Date(as.character(death), format = fmt)
    OS <- death - onstudy
    PFS <- pmin(progression - onstudy, OS)
    PFS[is.na(PFS)] <- OS[is.na(PFS)]
    PFS <- Surv(as.numeric(PFS / 30.5))
    OS <- Surv(as.numeric(OS / 30.5))
}</pre>
```

47/125 48/125

Case study: estimating survival by stage

```
surv KM <- survfit (PFS ~ stage, data = dat)</pre>
plot (surv.KM)
```


49/125 50 / 125

Exercises

- ▶ What's the median *Overall Survival* of a patient with Locally Advanced (LA) pancreatic cancer? And that of a patient with Metastatic (M) cancer?
- ► Can you provide confidence intervals for your estimates?
- ▶ Do the two stages experience significantly different survival?
- ▶ What's the probability (and 95% CI) of surviving more than a year within each group?

Case study: comparing survival by stage

```
survdiff(PFS ~ stage, data = dat)
```

```
N Observed Expected (0-E)^2/E (0-E)^2/V
stage=LA 8
                         12.3
                                    1.49
                                              2.25
                  33
                         28.7
stage=M 33
                                   0.64
                                              2.25
```

Chisq= 2.2 on 1 degrees of freedom, p= 0.134

```
survdiff(PFS \sim stage, data = dat, rho = 1)
```

```
N Observed Expected (0-E)^2/E (0-E)^2/V
stage=LA 8
                2.34
                         5.88
                                  2.128
                                             4.71
stage=M 33
               18.76
                        15.22
                                  0.822
                                             4.71
```

Chisq= 4.7 on 1 degrees of freedom, p= 0.0299

Solutions

- ightharpoonup median OS + Cls: fit formula OS \sim stage, then summary(fit)
- ▶ plot the curves for qualitative assessment, survdiff(OS ~ stage) for logrank test
- summary(fit, time = 12) will give survival and Cls at 12 months

51 / 125 52/125

Stratified tests

- Sometimes we want to compare survival between 2 groups controlling for potentially confounding factors, e.g.:
 - gender
 - ► age group
 - hospital
 - **>**
- ▶ When this factor is categorical, we can use a stratified logrank test

$$X^{2} = \frac{\left(\sum_{g=1}^{G} U_{0g}\right)^{2}}{\sum_{g=1}^{G} V_{0g}^{2}}$$

distributed as a χ_1^2

53 / 125

Exercises

- Assess the significance of the treatment stratifying by employment status
- ► Can you estimate survival in the 4 groups:
 - grp=combination/pathOnly x employment=ft/pt
- ► Assess the efficacy of the treatment combination therapy separately within patients working full time (ft) and part-time (pt)

Case study: the pharmacoSmoking dataset

```
dat <- pharmacoSmoking
   survdiff(Surv(ttr, relapse) ~ grp, data = dat)
                     N Observed Expected (O-E)^2/E (O-E)^2/V
 5 | \#grp = combination 61
                              37
                                      49.9
                                                 3.36
                                                           8.03
 6 #grp=patchOnly
                     64
                              52
                                      39.1
                                                 4.29
                                                           8.03
  # Chisq= 8 on 1 degrees of freedom, p = 0.00461
  table (dat $ AgeGroup 2)
  #21 - 49
            50±
12 #
      66
13
   survdiff(Surv(ttr, relapse) \sim grp + strata(ageGroup2), data = dat)
                     N Observed Expected (O-E)^2/E (O-E)^2/V
                              37
                                      49.1
                                                2.99
                                                           7.03
16 #grp=combination 61
                                      39.9
                                                3.68
                                                           7.03
17 #grp=patchOnly
18 #
_{19} # Chisq= 7 on 1 degrees of freedom, p= 0.008
```

54 / 125

Exercises: solution

▶ 1 sample inference: KM, HF (survival::survfit)

➤ 2 samples comparison: logrank test + weighted variations (survival::survdiff)

Cox Proportional Hazards Model

57 / 125

59 / 125

58 / 125

Proportional hazards model

- ▶ We saw methods for comparing 2 groups
- ► A more general approach is needed for comparing multiple groups, assessing the effect of continuous factor, and, in general, performing regression analysis
- ► Meet the Cox Proportional Hazards model:

$$h_i(t) = h_0(t) \exp(x_i'\beta)$$

- $ightharpoonup h_i(t)$: hazard for subject i at time t
- ► h₀: baseline hazard function
- $\triangleright x_i$: vector of covariates for subject i
- \blacktriangleright β : vector of effects of each covariate on risk

Proportional hazards model (cont.)

- ▶ Given an observed dataset $\{t_i, \delta_i, x_i : i = 1, ..., n\}$, one can estimate β without having to specify the baseline hazard h_0
- ▶ The CPH model is thus called *semi-parametric*
- As failure times are generally *censored*, we cannot compute the classic likelihood, but rather the so called *Partial Likelihood*, which properly takes into account censoring times similarly to how it's done in the KM estimator
- ightharpoonup We'll call \hat{eta} the estimator which maximizes the Partial Likelihood for a given dataset

CPH: Partial Likelihood

- ▶ Failure times $t_j: t_1 \le t_2 \le \ldots \le t_j \le \ldots \le t_D$
- ▶ At time t_j , subject i(j) fails, with hazard $h_i(t_j) = h_0(t_j) \exp(\mathbf{x}_{i(j)}\boldsymbol{\beta})$
- ightharpoonup At failure time t_j , R_j subjects at risk
- ► Partial Likelihood:

$$I(\beta) = \prod_{j=1}^{D} \frac{h_0(t_j) \exp(\mathbf{x}_{i(j)}\beta)}{\sum_{k \in R_j} h_0(t_j) \exp(\mathbf{x}_k\beta)}$$
$$= \prod_{j=1}^{D} \frac{\exp(\mathbf{x}_{i(j)}\beta)}{\sum_{k \in R_j} \exp(\mathbf{x}_k\beta)}$$

61/125

Comparing 2 groups (cont.)

```
library (survival)
dat <- data.frame(
    ratID = paste0("rat", 1:5),
    time = c(55, 50, 70, 120, 110),
    failure = c(0, 1, 1, 0, 1),
    group = c(0, 1, 0, 1, 1))
fit <- coxph(Surv(time, failure) ~ group, data = d)
summary(fit)</pre>
```

Comparing 2 groups

Our beloved rats:

rat ID	time	status	group
rat1	55	0	0
rat2	50	1	1
rat3	70	1	0
rat4	120	0	1
rat5	110	1	1

$$h_i(t) = h_0(t) \cdot \exp(\beta \times x_i)$$

$$x_i = \begin{cases} 0 & \text{rat was not under stress} \\ 1 & \text{rat was under stress} \end{cases}$$

 $\exp(\beta)$ = ratio of risk of NOI in a stressed vs not stressed rat

Comparing 2 groups (cont.)

```
coxph(formula = Surv(time, failure) ~ x, data = dat)

n= 5, number of events= 3

coef exp(coef) se(coef) z Pr(>|z|)
x -0.5493 0.5774 1.4179 -0.387 0.698

exp(coef) exp(-coef) lower .95 upper .95
x 0.5774 1.732 0.03585 9.297

Concordance= 0.5 (se = 0.202)
Rsquare= 0.029 (max possible= 0.743)
Likelihood ratio test= 0.15 on 1 df, p=0.7
Wald test = 0.15 on 1 df, p=0.7
Score (logrank) test = 0.15 on 1 df, p=0.7
```

63 / 125 64 / 125

Comparing 2 groups: model interpretation

$h_i(t) = h_0(t) \exp(x_i eta)$ $x_i = egin{cases} 0 & \mathsf{sample}\ i \ \mathsf{is}\ \mathsf{a}\ \mathsf{control} \ 1 & \mathsf{sample}\ i \ \mathsf{is}\ \mathsf{treated} \ \hat{eta} = -0.549 \pm 1.418 imes 1.96 \end{cases}$

What's the risk of a sleep deprived (treated) rat compared to a control?

$$\frac{h_{x=1}(t)}{h_{x=0}(t)} = \frac{h_0(t)\exp(1 \times \hat{\beta})}{h_0(t)\exp(0 \times \hat{\beta})} = \exp((1-0)\hat{\beta})$$
$$= \exp(\hat{\beta}) = 0.577$$

Model interpretation

- in general, $\exp(\beta)$ is the hazard ratio associated with one unit increase of the regressor
- for 0/1 binary variables, it is e.g. a comparison between the group x = 1 and the group x = 0 (treated vs control, male vs female, etc.)
- ▶ more generally, x can be continuous (e.g., age of the subject)

66/125

Continuous covariates

Questions:

- ▶ is the effect of age on risk significant?
- ▶ what's the HR for a 1 year increase of age?
- ▶ what's the HR for a 10 years increase of age?

Continuous covariates (cont.)

65 / 125

```
n= 6, number of events= 4

coef exp(coef) se(coef) z Pr(>|z|)
age 0.07606 1.07903 0.07316 1.04 0.298

exp(coef) exp(-coef) lower .95 upper .95
age 1.079 0.9268 0.9349 1.245

Concordance= 0.7 (se = 0.22)
Rsquare= 0.209 (max possible= 0.76)
Likelihood ratio test= 1.41 on 1 df, p=0.2356
Wald test = 1.08 on 1 df, p=0.2985
Score (logrank) test = 1.33 on 1 df, p=0.2482
```

```
exp(0.076 * 10)
# [1] 2.138276
```

67/125 68/125

Multiple covariates

```
library (asaur)
dat <- pharmacoSmoking
names (pharmacoSmoking)
```

```
[1] "id" "ttr" "relapse" "grp"
[5] "age" "gender" "race" "
employment"
[9] "yearsSmoking" "levelSmoking" "ageGroup2" "ageGroup4
[13] "priorAttempts" "longestNoSmoke"
```

Multiple covariates (cont.)

```
library(survival)
fit <- coxph(Surv(ttr, relapse) ~ grp + age + gender +
    priorAttempts,
    data = dat)
summary(fit)</pre>
```

69/125

Multiple covariates (cont.)

```
n= 125, number of events= 89
                           exp(coef)
                                       se(coef)
                                                      z Pr(>|z|)
grppatchOnly
                                      0.2181634
               0.5656340
                           1.7605636
                                                  2.593
                                                         0.00952 **
                           0.9781475
                                      0.0097572
                                                 -2.264
genderMale
               -0.1215514
                           0.8855455
                                      0.2334349
                                                 -0.521
                                                         0.60257
priorAttempts 0.0002078
                         1.0002079
                                      0.0010898
                                                  0.191 0.84876
              exp(coef) exp(-coef) lower .95 upper .95
grppatchOnly
                 1.7606
                             0.5680
                                       1.1480
                                                   2.700
                  0.9781
                             1.0223
                                       0.9596
                                                   0.997
age
genderMale
                  0.8855
                             1.1292
                                       0.5604
                                                   1.399
priorAttempts
                 1.0002
                             0.9998
                                       0.9981
                                                   1.002
Concordance 0.623 (se = 0.034)
Rsquare= 0.107
                 (max possible= 0.998 )
```

Multiple covariates: interpretation

What's the risk of relapse in subjects treated with patch only, compared to subjects with combination therapy, all other covariates being the same?

$$\frac{h(t|grpPO=1, age=X, genderMale=Y, priorAttempts=Z)}{h(t|grpPO=0, age=X, genderMale=Y, priorAttempts=Z)}$$

$$=\frac{\exp(1\beta_1 + X\beta_2 + Y\beta_3 + Z\beta_4)}{\exp(0\beta_1 + X\beta_2 + Y\beta_3 + Z\beta_4)}$$

$$=\exp[(1-0)\beta_1 + (X-X)\beta_2 + (Y-Y)\beta_3 + (Z-Z)\beta_4]$$

$$=\exp(\beta_1)$$

$$=\exp(0.5656) = 1.7606$$
(1)

70 / 125

71/125 72/125

Note: reordering categorical variables in R

```
dat$grp <- relevel(dat$grp, ref = "patchOnly")
update(fit)</pre>
```

```
        coef
        exp(coef)
        se(coef)
        z
        p

        grpcombination
        -0.565634
        0.568000
        0.218163
        -2.59
        0.0095

        age
        -0.022095
        0.978147
        0.009757
        -2.26
        0.0235

        genderMale
        -0.121551
        0.885546
        0.233435
        -0.52
        0.6026

        priorAttempts
        0.000208
        1.000208
        0.001090
        0.19
        0.8488
```

Predicting Survival

```
\hat{h}_0(t_i) = d_i / \sum_{j \in R_i} \exp(x_j \hat{\beta})
\hat{H}_0(t) = \sum_j h_0(t_j), \quad t_j \le t
\hat{S}_0(t) = \exp(-\hat{H}_0(t))
\hat{S}(t|x) = [S_0(t)]^{\exp(x\hat{\beta})}
```

Cfr. R function survival::survfit.coxph

73 / 125

Predicting Survival: Exercise

Predict and plot survival curves at age 20, 50 and 70

Predicting Survival: Exercise (cont.)

75 / 125

```
fit <- coxph(Surv(time, censored) ~ age, data = d) pred <- survfit(fit, newdata = data.frame(age = c(20, 40, 60))) plot(pred, col = 1:3)
```

- when no censoring, classical statistical methods (MLE and friends)
- ▶ with right-censored data:
 - ▶ 1 sample inference: KM, HF (survival::survfit)
 - ▶ 2 samples comparison: logrank test + weighted variations

(survival::survdiff)

continuous factors and/or multiple covariates: Cox regression (survival::coxph, survival::survfit)

- ► comparing nested models
- ► comparing non-nested models
- ► assessing goodness of fit
- ► checking model assumptions

Comparing models

We will consider the following models for the ${\tt pharmacoSmoking}$ dataset:

▶ M0: no covariates (hint: \sim 1)

► MA: ageGroup4

► MB: employment

► MC: ageGroup4 + employment

Both models MA and MB are nested into model MC, however MA and MB are not nested into eachother.

Exercise: fit the 3 models in R and store them in the variables MO, MA, MB and MC. We will be comparing these models

An aside: the Likelihood Ratio Test

77 / 125

$$Y_i \sim f(\theta), \quad i = 1, \dots, n \quad \theta \in \Theta$$

$$H_0 : \theta \in \Theta_0$$

$$H_1 : \theta \notin \Theta_0$$

78 / 125

A very important test statistic for H_0 is the LRT:

$$\mathsf{LRT}_n = -2\mathsf{In}\frac{\mathsf{sup}\{L(\theta; \mathbf{y}) : \theta \in \Theta_0\}}{\mathsf{sup}\{L(\theta; \mathbf{y}) : \theta \in \Theta\}}$$

79/125 80/125

An aside: Wilks theorem (1938)

Under H_0 , $n \to \infty$:

$$\mathsf{LRT}_n \to_{n \to \infty}^p \chi_p^2$$

where p is the difference in dimensionality between Θ_0 and Θ .

Note: a necessary condition for the Theorem to hold is that Θ_0 is in the *interior* of Θ (i.e., Θ_0 should not be on the boundaries of Θ).

81 / 125

Non-nested models: AIC

$AIC = -2logLik(\hat{\beta}) + 2 \cdot k \tag{2}$

The smaller the better

```
fits <- list (M0 = M0, MA = MA, MB = MB, MC = MC)
sapply (fits, AIC)
## MA MB MC
## 766.0860 774.2464 765.5194
```

Nested models: (partial) Likelihood Ratio Test (LRT)

```
anova (MA, MC)
```

```
Analysis of Deviance Table

Cox model: response is Surv(ttr, relapse)

Model 1: ~ageGroup4

Model 2: ~ageGroup4 + employment

loglik Chisq Df P(>|Chi|)

1 -380.04

7 2 -377.76 4.5666 2 0.1019
```

82

Step-wise model selection based on AIC

```
Mfull <- coxph(Surv(ttr, relapse) ~ grp + gender + race +
employment + yearsSmoking + levelSmoking +
ageGroup4 + priorAttempts + longestNoSmoke,
data = dat)
MAIC <- step(Mfull)
```

83/125 84/125

Step-wise model selection based on AIC (cont.)

First step:

```
Start: AIC=770.2
  Surv(ttr, relapse) ~
                        grp + gender + race + employment +
       yearsSmoking +
       levelSmoking + ageGroup4 + priorAttempts + longestNoSmoke
                          AIC
                     3 766.98
    race
  yearsSmoking
                     1 768.20
                     1 768.20
    gender
    priorAttempts
                    1 768.24

    levelSmoking

                     1 768.47
  longestNoSmoke 1 769.04
12 < none>
                       770.20
   — employment
                     2 772.45
  ageGroup4
                     3 774.11
                     1 776.80
  — grp
```

Check ?step for further options

Predictive power: AUC

- ▶ A common measure of predictive power are the *ROC curve* (False Positive rate vs True Positive rate) and the associated *AUC*
- ► Their computation for survival data is complicated by the presence of censoring
- ➤ One can however estimate time-dependent ROC curves via Kaplan-Meier or Nearest Neighbor methods of Heagerty, Lumley & Pepe (Biometrics, Vol 56 No 2, 2000, PP 337-344)
- ► Conveniently implemented in the survivalROC R package

Predictive power: Concordance Index

- ► Harrell's Concordance Index: fraction of pairs of patients whose survival times are correctly ordered by the model-fitted hazard
- ▶ the higher, the better
- ▶ in R, output of summary(fit.coxph)

86 / 125

AUC (cont.)

85 / 125

```
library (survival)
library (survivalROC)

?mayo
plot (survfit (Surv(time / 365.25, censor) ~ 1, data = mayo))
```

87/125 88/125

AUC (cont.)

```
ROC.4 <- survivalROC (Stime = mayo$time,
     status = mayo$censor,
     marker = mayo$mayoscore4,
     predict.time = 365.25 * 5,
     method="KM")
     ROC.5 <- survivalROC(Stime = mayo$time,
     status = mayo$censor,
     marker = mayo$mayoscore5,
     predict.time = 365.25,
     method = "KM")
    ROC \leftarrow list(mayo4 = ROC.4, mayo5 = ROC.5)
     sapply (ROC, "[[", "AUC")
15
            mayo4
                      may o 5
16
    ## 0.8257006 0.9180251
```

AUC (cont.)

We can plot the ROC curves using e.g. ggplot:

89/125

AUC: exercise

Lets select a cutoff for mayoscore 5 with FP = 10%:

```
cutoff <- with (ROC$ mayo5, min(cut.values [FP <= 0.1]))
## 7.511961
```

Question: can you compare the survival of patients with low vs high risk according to our chosen cutoff of mayoscore5?

90 / 125

AUC: solution

```
mayo$ prediction <- ifelse (mayo$ mayoscore5 <=
cutoff, "low_risk", "high_risk")

plot(survfit(Surv(time/365, censor) ~ prediction, data = mayo),
col = c("red", "blue"))</pre>
```

91/125 92/125

Martingale Residuals

- ▶ A model was built and estimated, but how well are we fitting the data?
- ▶ In linear regression, we can look at patterns in the model residuals (observed value — model predicion)
- ► For Cox regression, we have martingale residuals
 - ▶ they sum to 1
 - ightharpoonup each is distributed between $-\infty$ and +1
 - each has an expected value of 0
 - ▶ their sum of squares is not an indicator of goodness of fit
 - > patterns might suggest alternative functional forms for continuous covariates
- ▶ In R, we use residuals(fit, type = 'martingale'), from the survival package

94 / 125

Martingale Residuals in R (cont.)

```
60
                       combination
                                   patchOnly
                                                                   other
                                 grp
                                                                employment
```

Martingale Residuals in R

```
library(survival)
   library (asaur) ## dataset
   data (pharmaco Smoking)
   dat <- pharmacoSmoking
   fit < coxph(Surv(ttr, relapse) \sim grp + age + employment, data =
  dat$residual <- residuals(fit , type = 'martingale')</pre>
   with (dat, {
     plot(age, residual)
11
     lines (lowess (age, residual), lwd = 2)
12
13
     plot(residual ~ grp)
14
15
     plot(residual ~ employment)
16
17
18 })
```

Case deletion residuals

93/125

- ▶ some samples might have a large impact on the final estimates
- we don't like it, as possibly all of our results (in extremne cases) might be driven by a single sample!
- \triangleright such influential samples can be identified by estimating β twice: once with all the samples, and once without a specific sample i, and measuring the difference in β
- ▶ in R, residuals(fit, type = 'dfbetas')

95 / 125 96 / 125

Case deletion residuals in R

```
dfbetas <- residuals (fit , type = 'dfbetas')
dat$dfbetas <- sqrt(rowSums(dfbetas^2))

plot(dat$dfbetas , type = 'h')
abline(h = 0)</pre>
```


97 / 125

Proportionality of hazards: complementary log-log plot

Recall the 'pancreatic' dataset from the logrank test chapter:

Proportionality of hazards

- one key assumption of the Cox model is the proportionality of hazards
- ▶ if we are comparing 2 groups:

$$S_1(t) = \left[S_0(t)\right]^{\exp(\beta)}$$

by taking the log of both sides:

$$\log(S_1(t)) = \exp(\beta) \cdot \log[S_0(t)]$$

• finally, we can negate both sides and take a logarithm again:

$$\log(-\log(S_1(t))) = \beta + \log(-\log(S_0)(t))$$

• in this scale $(g(u) = \log(-\log(u)))$, S_0 and S_1 should be parallel

Schoenfeld Residuals

```
dat <- pancreatic
residual.sch <- cox.zph(fit)

fit <- coxph(PFS ~ stage, data = dat)
residual.sch <- cox.zph(fit)

## rho chisq p
## stageM -0.328 3.86 0.0496

plot(residual.sch)
```

99/125 100/125

Dealing with non-proportionality of the risks

- ► does it really matter?
- stratification
- ► truncation

Truncation

- ▶ Proportionality of hazards might hold for a shorter, initial time span
- ▶ If so, we can restrict the analysis to a properly defined, initial time period
- ► How, in practice?
- ► Introduce a new, truncated time variable:

$$t' = egin{cases} t & t \leq \mathsf{threshold} \\ \mathsf{threshold} & t > \mathsf{threshold} \end{cases}$$

$$\delta' = \begin{cases} \delta & t \leq \mathsf{threshold} \\ 0 & t > \mathsf{threshold} \end{cases}$$

► R session: analyze the asaur::pancreatic2 dataset, truncating the analysis to the first 6 months

Stratified Cox Regression

► Remember the Cox model:

$$h_i(t) = h_0(t) \exp(\mathbf{x}_i \beta) \quad \forall i$$

where all samples share the same baseline hazard $h_0(t)$

- ► We can somewhat relax this assumption, and allow for 2 (or more) separate baseline hazards in different strata of the samples
- ► Stratified Cox model, strata A and B:

$$h_i(t) = egin{cases} h_A(t) ext{exp}(\mathbf{x}_ieta) & i \in A \ h_B(t) ext{exp}(\mathbf{x}_ieta) & i \in B \end{cases}$$

- ▶ Question: how is this different from just modeling A and B separately?
- ► Analyze the asaur::pharmacoSmoking dataset, stratifying by employment type

101/125

Where to go from here

- regression analysis
- ► Cox regression
 - time-dependent covariates
 - ► time-dependent coefficients
 - competing risksleft censoring
 - multiple events
- parametric models for censored duration data

103/125 104/125

Penalized regression

105/125

Elastic Net Cox model

▶ Remember the partial likelihood from the Cox model:

$$I(\beta) = \prod_{i=1}^{D} \frac{\exp(x'_{i(i)}\beta)}{\sum_{k \in R_i} \exp(x'_k\beta)}$$

When p>n, the β which maximizes it goes to $+\infty$

• we thus introduce the following elastic net costraint on β :

$$\alpha \sum |\beta_i| + (1-\alpha) \sum \beta_i^2 \le c$$

for some pre-specified value of c, and some pre-set weight lpha

Penalized regression

- **•** generally speaking, if we have n observations, we can only estimate a model with at most p = n parameters
- ▶ if we have many features p, with $p \gg n$, we can apply more general machine learning techniques (features selection, random forest, . . .)
- ▶ we are still able though to fit Cox models using penalized regression

106/125

Elastic Net Cox model (cont.)

- lacktriangle a suitable value of c can be selected by e.g. cross-validation
- $\,\blacktriangleright\,$ for $\alpha=$ 1, we have the special case of the $\it lasso$ penalty
- ▶ there is a *very fast* implementation available in the R package glmnet, by the same authors of the method: Jerome Friedman, Trevor Hastie and Rob Tibshirani

References: Simon, N., Friedman, J., Hastie, T., Tibshirani, R. (2011) Regularization Paths for Cox's Proportional Hazards Model via Coordinate Descent, Journal of Statistical Software, Vol. 39(5) 1-13

107/125 108/125

Penalized Cox regression in R

```
library (survival)
   library (glmnet)
   set . seed (1234)
  N <- 1000 # sample size
  p <- 30 # num. features
  nzc <- p/3 # num. 'true' predictors
10 \times (-matrix(rnorm(N * p), nrow = N, ncol = p))
11 beta <- rnorm(nzc)
| 12 | linear predictor \langle -x[, seq len(nzc)] \%*\% beta / 3 |
13
14
   hazard <- exp(linear predictor)
16 y time \leftarrow rexp(N, rate = hazard)
y cens \leftarrow rbinom (n = N, prob = 0.3, size = 1)
|y| \le Surv(y_{time}, 1 - y cens)
19
fit <- glmnet(x, y, family="cox")
21 plot (fit)
```

Penalized Cox regression in R (cont.)

109/125

Selecting the optimal penalization parameter via cross validation

```
set.seed (1234)

fit.cv10 <- cv.glmnet(x, y, family = "cox")
plot(fit.cv10)
```

Cross validation results

```
str(fit.cv10)
```

110 / 125

```
List of 10

$ lambda : num [1:50] 0.295 0.269 0.245 0.223 0.203 ...

$ cvm : num [1:50] 13.8 13.7 13.7 13.6 ...

$ cvsd : num [1:50] 0.0541 0.0533 0.0533 0.0534 0.0534 ...

$ cvup : num [1:50] 13.8 13.8 13.7 13.7 13.7 ...

$ cvlo : num [1:50] 13.7 13.7 13.6 13.6 13.6 ...

$ nzero : Named int [1:50] 0 1 1 1 1 1 1 4 4 5 5 ...

... attr(*, "names")= chr [1:50] "s0" "s1" "s2" "s3" ...

$ lambda.min: num 0.0181

$ lambda.1se: num 0.0553
```

Predictions

```
coef(fit cv10, s = "lambda.1se")
2 ##
3 ## V1
           0.58428498
4 ## V2
5 ## V3
  ## V4
           0.31709716
  ## V5
           0.12829144
8 ## V6
           0.25333876
9 ## V7
10 ## V8
          -0.27412086
  ##
12
   predict (fit.cv10,
13
            new \times = \times [1:5,],
            s = "lambda.1se")
15
17 ##[1,] -1.3542387
           0.1777181
18 ## [2,]
           0.7534189
19 ## [3,]
20 ## [4,]
          -0.6364879
21 ## [5,]
           0.6758198
```

```
|b| \leftarrow coef(fit.cv10, s = "lambda.1")
        se")
  b i \leftarrow which(b!=0)
  bnz <- b[b.i]
  y0 \leftarrow x[1:5, b.i, drop = FALSE] \%
        *% bnz
```

113 / 125

x: gene expression matrix: 7399 genes × 240 samples

 \triangleright status: censoring status: 1 = observed, 0 = censored

testing set, where the model performance is assessed

▶ Use glmnet to fit a Cox model to find a predictor of survival based on gene

▶ Split the data into a training set, where you develop the model, and a

Case Study: a survival microarray dataset

LymphomaData.rda

▶ time: survival times

Case study

DOI:10.1093/jnci/dju247 First published online September 22, 2014 ©The Author 2014. Published by Oxford University Press. All rights reserved. For Permissions, please e-mail: journals.permissions@oup.com.

114 / 125

ARTICLE

Test of Four Colon Cancer Risk-Scores in Formalin Fixed Paraffin **Embedded Microarray Gene Expression Data**

Antonio F. Di Narzo, Sabine Tejpar, Simona Rossi, Pu Yan, Vlad Popovici, Pratyaksha Wirapati, Eva Budinska, Tao Xie, Heather Estrella, Adam Paylicek, Mao Mao, Eric Martin, Weinrich Scott, Fred T. Bosman, Arnaud Roth, Mauro Delorenzi

Manuscript received December 9, 2013; revised April 22, 2014; accepted July 2, 2014.

Correspondence to: Mauro Delorenzi, PhD, SIB Swiss Institute of Bioinformatics, and University Lausanne, Office 2021, Génopode-UNIL, Quartier Sorge, CH-1015 Lausanne, Switzerland (e-mail: mauro.delorenzi@unil.ch).

Case Study: Validation of Colon Cancer Biomarkers

115 / 125 116 / 125 Risk biomarkers for CRC

Molecular markers of risk

Table 1. Description of the four risk scores analyzed*

	Risk scores					
Abbreviation	GHS	VDS	MDA	ALM		
Developer	Genomic Health	Veridex	MD Anderson	ALMAC diagnostics		
Type of assay	Q-RT-PCR	microarray and Q-RT-PCR	microarray	microarray		
Type of tissue	FFPE	fresh frozen and FFPE	fresh frozen	FFPE		
Main publication	O'Connell et al. 2010.	Jiang et al. 2008.	Oh et al. 2011.	Kennedy et al. 2011.		
Total number of features	7	7	114 (86 genes)	634 (482 genes)		
Features used (genes)	7	6	85 (85 genes)	634 (identical platform		

ALM = the scoring system proposed by Almac researchers; GHS = scoring system proposed by Genomic Health researchers; FFPE = formalin fixed paraffin
embedded; MDA = scoring system proposed by researchers from MD Anderson Cancer Center; Q-RT-PCR = quantitative real-time PCR (Q-RT-PCR); VDS = scoring
system proposed by Veridex researchers.

117 / 125

Study Design

Prognostic Value

Table 2. Cox models estimates

		Univariate		Multivariable	*†
Outcome	Marker	HR (95% CI)	P‡	HR (95% CI)	P‡
RFS					
	aGHS	1.33 (1.13 to 1.56)	<.001	1.30 (1.11 to 1.53)	.001
	aVDS	1.29 (1.10 to 1.52)	.002	1.27 (1.07 to 1.51)	.007
	aMDA	1.10 (0.93 to 1.30)	.26	1.13 (0.93 to 1.37)	.22
	ALM	1.31 (1.13 to 1.53)	<.001	1.20 (1.02 to 1.40)	.03
	CS4§	1.56 (1.33 to 1.84)	<.001	1.45 (1.23 to 1.71)	<.001
SAR					
	aGHS	1.16 (0.95 to 1.43)	.14	1.16 (0.92 to 1.46)	.20
	aVDS	0.90 (0.72 to 1.13)	.38	0.84 (0.66 to 1.08)	.17
	aMDA	1.81 (1.45 to 2.27)	<.001	1.89 (1.46 to 2.46)	<.001
	ALM	1.19 (0.97 to 1.47)	.10	1.10 (0.88 to 1.36)	.40
	CS4§	1.46 (1.18 to 1.82)	<.001	1.33 (1.05 to 1.67)	.017
OS					
	aGHS	1.36 (1.13 to 1.64)	.001	1.34 (1.10 to 1.62)	.003
	aVDS	1.24 (1.03 to 1.50)	.02	1.21 (0.99 to 1.48)	.07
	aMDA	1.31 (1.08 to 1.58)	.006	1.37 (1.09 to 1.71)	.007
	ALM	1.38 (1.16 to 1.65)	<.001	1.22 (1.02 to 1.47)	.03
	CS4§	1.74 (1.44 to 2.10)	<.001	1.57 (1.29 to 1.91)	<.001

[•] Cop proportional hazards regression models were used to estimate hazard ratios for one interquantile range variation of the continuous risk scores; no statification was applied, adjustment by treatment was applied only in the multivariable models. aGHS – microarray-based approximation of the scoring system proposed by researchers; AMDA – approximation of the scoring system proposed by researchers from MD Anderson Canner Center; AMDS – approximation of the scoring system proposed by researchers; Cil = confidence intervel; CSS – also scoring system obtained by combining the four existing systems; MB – hazard ratio; OS – overall survival; RFS – relapse-free survival; SAR – survival after relapse.

119/125 120/125

[†] Each multivariable model included one gene expression risk score and the following variables: age, gender, TNM staging (Fstage, N-stage) (27), grade, location (right = proximal, left = distal), treatment arm, presence of lymphovascular invasion, and microsatellite instability (MSI) status.

Shown are single-test P values. The statistical significance cutoff by the Bonferroni principle (considering three tests) is at 0.05/3 = 0.0167.

Progonstic Value: OS

		RFS	SAR	os	
Marker	Risk group	% (95% CI) *	% (95% CI) *	% (95% CI) *	
	Whole cohort (N = 688)	66.9 (63.5 to 70.5)	34.4 (28.7 to 41.2)	83.4 (80.6 to 86.2	
aGHS					
	low	69.6 (64.9 to 74.7)	40.7 (32.4 to 51.2)	86.5 (83.0 to 90.2	
	high	64.2 (59.4 to 69.5)	28.5 (21.3 to 38.0)	80.2 (76.1 to 84.5	
aVDS					
	low	70.9 (66.2 to 75.8)	30.0 (21.8 to 41.1)	83.4 (79.5 to 87.4)	
	high	63.0 (58.1 to 68.3)	37.6 (30.2 to 46.7)	83.4 (79.5 to 87.4)	
aMDA	-				
	low	69.1 (64.3 to 74.1)	49.8 (41.2 to 60.1)	88.3 (84.9 to 91.8)	
	high	64.8 (60.0 to 70.1)	19.9 (13.6 to 28.9)	78.5 (74.2 to 82.9)	
ALM	ŭ.				
	low	70.8 (66.1 to 75.8)	36.8 (28.3 to 47.8)	86.6 (83.0 to 90.2	
	high	63.1 (58.2 to 68.4)	32.4 (25.1 to 41.6)	80.2 (76.1 to 84.5	
CS4	-				
	low	70.5 (65.8 to 75.5)	41.8 (33.1 to 52.9)	87.4 (84.0 to 91.0)	
	high	63.4 (58.5 to 68.7)	28.7 (21.8 to 37.8)	79.3 (75.2 to 83.7	

Estimated proportions of three-year survival percentage) by the Kaplan-Neier method with DS% confidence intervals for the whole cohort and for risk groups defined by splitting the cohort at the median of each risk score into equally sized subgroups, aGRS = microarray-based approximation of the scoring system proposed by Geriomic Health researchers, ALM = the scoring system proposed by Armac researchers, aCMDA = approximation of the scoring system proposed by researchers from MD Anderson Canner Centre, aVDS = approximation of the scoring system proposed by Verdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = confidence interval; CSI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick researchers; CI = the scoring system proposed by Nerdick resear

121 / 125

Prognostic Value: concordance

Table 4. Concordance by risk score and endpoint groups*

			Actual survival group	
Scoring method	Risk score subgroup	Poor	Good	Rest
aGHS				
	Q1	46 (26.7%)	116 (67.4%)	10 (5.8%)
	Q2	58 (33.7%)	103 (59.9%)	11 (6.4%)
	Q3	54 (31.4%)	105 (61.0%)	13 (7.5%)
	Q4	69 (40.1%)	84 (48.8%)	19 (11.1%
aVDS				
	Q1	40 (23.3%)	117 (68.0%)	15 (8.7%)
	Q2	60 (34.9%)	101 (58.7%)	11 (6.4%)
	Q3	63 (36.6%)	96 (55.8%)	13 (7.5%)
	Q4	64 (37.2%)	94 (54.7%)	14 (8.2%)
aMDA				
	Q1	51 (29.7%)	109 (63.4%)	12 (7.0%)
	Q2	55 (32.0%)	100 (58.1%)	17 (9.9%)
	Q3	62 (36.0%)	100 (58.1%)	10 (5.9%)
	Q4	59 (34.3%)	99 (57.6%)	14 (8.1%)
ALM				
	Q1	50 (29.1%)	110 (64.0%)	12 (7.0%)
	Q2	50 (29.1%)	109 (63.4%)	13 (7.6%)
	Q3	54 (31.4%)	103 (59.9%)	15 (8.7%)
	Q4	73 (42.4%)	86 (50.0%)	13 (7.5%)
CS4				
	Q1	36 (20.9%)	123 (71.5%)	13 (7.6%)
	Q2	65 (37.8%)	100 (58.1%)	7 (4.1%)
	Q3	57 (33.1%)	100 (58.1%)	15 (8.7%)
	Q4	69 (40.1%)	85 (49.4%)	18 (10.4%

Improvement over standard clinical indicators: AUC

Prognostic Value: 3 years survival

Table 3. Three-year survival

Table 5. Time-dependent receiver operating characteristic curves, area under curve (time = 3 years) by endpoint and risk score

Endpoint	Marker	AUC (ref. model) *	AUC gain*	Pt
RFS		0.6723		
	aGHS		0.0136	.04
	aVDS		0.0185	.009
	aMDA		0.0085	.17
	ALM		0.0089	.16
	CS4		0.0222	.0008
SAR		0.6406		
	aGHS		0.0192	.11
	aVDS		-0.0001	.79
	aMDA		0.0838	.0001
	ALM		0.0053	.54
	CS4		0.0443	.005
os		0.6918		
	aGHS		0.0187	.005
	aVDS		0.0135	.03
	aMDA		0.0243	.001
	ALM		0.0140	.02
	CS4		0.0403	.0001

Area under curve (AUC) for predicting survival status at three years was
computed by risk scoring methods and endpoint. A reference model was
fitted using the predictor variables Natage, Fatage, and MSI status. The AUC
gain was computed by adding the gene expression risk score to the predictor
variables in the model. aGMS = microarray-based approximation of the scoring

Improvement over standard clinical indicators: CI

Supplementary Table 3. Concordance Index gains for risk scores by endpoint.

Endpoint	marker	concordance index*		
		clinical only†	difference	p-value;
RFS		0.6432		
	aGHS		0.0115	0.015
	aVDS		0.0154	0.001
	aMDA		0.0070	0.10
	ALM		0.0092	0.04
	CS4		0.0229	0.0001
SAR		0.5930		
	aGHS		0.0069	0.35
	aVDS		0.0089	0.23
	aMDA		0.0615	0.0001
	ALM		0.0022	0.69
	CS4		0.0201	0.016
os		0.6620		
	aGHS		0.0144	0.003
	aVDS		0.0108	0.017
	aMDA		0.0147	0.004
	ALM		0.0095	0.03
	CS4		0.0270	0.0001