Rank-74531 over GF(4)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^2 X_2 + X_1^2 X_2 + X_1^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(0, 0, 0, 0, 0, 1, 0, 0, 1, 1, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0) The point rank of the equation over GF(4) is 1499093337

General information

Number of lines	10
Number of points	33
Number of singular points	1
Number of Eckardt points	0
Number of double points	15
Number of single points	15
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	5^{10}
Type of lines on points	$5, 2^{15}, 1^{15}, 0^2$

Singular Points

The surface has 1 singular points:

$$0: P_2 = \mathbf{P}(0,0,1,0) = \mathbf{P}(0,0,1,0)$$

The 10 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix}_0 = \mathbf{Pl}(1, 0, 0, 0, 0, 0)_0$$

$$\ell_{1} = \begin{bmatrix} 1 & \omega & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{58} = \begin{bmatrix} 1 & 2 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{58} = \mathbf{PI}(0,0,3,0,0,1)_{122}$$

$$\ell_{2} = \begin{bmatrix} 1 & \omega^{2} & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{79} = \begin{bmatrix} 1 & 3 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{79} = \mathbf{PI}(0,0,2,0,0,1)_{115}$$

$$\ell_{3} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 \end{bmatrix}_{337} = \mathbf{PI}(0,0,0,1,0,1)_{129}$$

$$\ell_{4} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \begin{bmatrix} 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{356} = \mathbf{PI}(0,1,0,0,0,0)_{1}$$

$$\ell_{5} = \begin{bmatrix} 1 & \omega^{2} & 0 & \omega \\ 0 & 0 & 1 & 0 \end{bmatrix}_{247} = \begin{bmatrix} 1 & 3 & 0 & 2 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{247} = \mathbf{PI}(0,3,2,0,0,1)_{121}$$

$$\ell_{6} = \begin{bmatrix} 1 & \omega & 0 & \omega^{2} \\ 0 & 0 & 1 & 0 \end{bmatrix}_{310} = \begin{bmatrix} 1 & 2 & 0 & 3 \\ 0 & 0 & 1 & 0 \end{bmatrix}_{310} = \mathbf{PI}(0,2,3,0,0,1)_{127}$$

$$\ell_{7} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 1 \end{bmatrix}_{110} = \mathbf{PI}(1,0,1,1,1,1)_{199}$$

$$\ell_{8} = \begin{bmatrix} 1 & 0 & \omega & \omega^{2} \\ 0 & 1 & \omega & \omega \end{bmatrix}_{304} = \begin{bmatrix} 1 & 0 & 2 & 3 \\ 0 & 1 & 2 & 2 \end{bmatrix}_{304} = \mathbf{PI}(1,1,3,2,1,1)_{231}$$

$$\ell_{9} = \begin{bmatrix} 1 & 0 & \omega^{2} & \omega \\ 0 & 1 & \omega^{2} & \omega^{2} \end{bmatrix}_{246} = \begin{bmatrix} 1 & 0 & 3 & 2 \\ 0 & 1 & 3 & 3 \end{bmatrix}_{246} = \mathbf{PI}(1,1,2,3,1,1)_{228}$$

Rank of lines: (0, 58, 79, 337, 356, 247, 310, 110, 304, 246)

Rank of points on Klein quadric: (0, 122, 115, 129, 1, 121, 127, 199, 231, 228)

Eckardt Points

The surface has 0 Eckardt points:

Double Points

The surface has 15 Double points: The double points on the surface are:

$$P_7 = (3,1,0,0) = \ell_0 \cap \ell_1$$

$$P_6 = (2,1,0,0) = \ell_0 \cap \ell_2$$

$$P_1 = (0,1,0,0) = \ell_0 \cap \ell_3$$

$$P_5 = (1,1,0,0) = \ell_0 \cap \ell_7$$

$$P_{16} = (1,2,1,0) = \ell_1 \cap \ell_8$$

$$P_{20} = (1,3,1,0) = \ell_2 \cap \ell_9$$

$$P_{38} = (0,0,1,1) = \ell_3 \cap \ell_4$$

$$P_{42} = (0,1,1,1) = \ell_3 \cap \ell_7$$

$$P_{49} = (0,3,1,1) = \ell_3 \cap \ell_8$$

$$P_{45} = (0,2,1,1) = \ell_3 \cap \ell_9$$

$$P_{48} = (3,2,1,1) = \ell_5 \cap \ell_7$$

$$P_{64} = (3,2,2,1) = \ell_5 \cap \ell_8$$

$$P_{51} = (2,3,1,1) = \ell_6 \cap \ell_7$$

$$P_{83} = (2,3,3,1) = \ell_6 \cap \ell_9$$

$$P_{27} = (1,1,0,1) = \ell_8 \cap \ell_9$$

Single Points

The surface has 15 single points: The single points on the surface are: $\begin{array}{lll} 0: \ P_0 = (1,0,0,0) \ \mbox{lies on line} \ \ell_0 \\ 1: \ P_3 = (0,0,0,1) \ \mbox{lies on line} \ \ell_4 \\ 2: \ P_{13} = (2,1,1,0) \ \mbox{lies on line} \ \ell_2 \\ 3: \ P_{14} = (3,1,1,0) \ \mbox{lies on line} \ \ell_1 \\ 4: \ P_{18} = (3,2,1,0) \ \mbox{lies on line} \ \ell_2 \\ 5: \ P_{21} = (2,3,1,0) \ \mbox{lies on line} \ \ell_1 \\ 6: \ P_{33} = (3,2,0,1) \ \mbox{lies on line} \ \ell_5 \\ 7: \ P_{36} = (2,3,0,1) \ \mbox{lies on line} \ \ell_5 \\ 7: \ P_{36} = (2,3,0,1) \ \mbox{lies on line} \ \ell_6 \\ \end{array}$

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line: The points on the surface but not on lines are:

 $0: P_{63} = (2, 2, 2, 1)$ $1: P_{84} = (3, 3, 3, 1)$

Line Intersection Graph

	0123456789
0	0111000100
1	1010111010
2	1100111001
3	1000100111
4	0111011000
5	0110101110
6	0110110101
7	1001011000
8	0101010001
9	0011001010

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_7
in point	P_7	P_6	P_1	P_5

Line 1 intersects

Line	ℓ_0	ℓ_2	ℓ_4	ℓ_5	ℓ_6	ℓ_8
in point	P_7	P_2	P_2	P_2	P_2	P_{16}

 ${\bf Line~2~intersects}$

Line	ℓ_0	ℓ_1	ℓ_4	ℓ_5	ℓ_6	ℓ_9
in point	P_6	P_2	P_2	P_2	P_2	P_{20}

Line 3 intersects

Line	ℓ_0	ℓ_4	ℓ_7	ℓ_8	ℓ_9
in point	P_1	P_{38}	P_{42}	P_{49}	P_{45}

Line 4 intersects

Line	ℓ_1	ℓ_2	ℓ_3	ℓ_5	ℓ_6
in point	P_2	P_2	P_{38}	P_2	P_2

Line 5 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_6	ℓ_7	ℓ_8
in point	P_2	P_2	P_2	P_2	P_{48}	P_{64}

Line 6 intersects

Line	ℓ_1	ℓ_2	ℓ_4	ℓ_5	ℓ_7	ℓ_9
in point	P_2	P_2	P_2	P_2	P_{51}	P_{83}

Line 7 intersects

Line	ℓ_0	ℓ_3	ℓ_5	ℓ_6
in point	P_5	P_{42}	P_{48}	P_{51}

Line 8 intersects

Line	ℓ_1	ℓ_3	ℓ_5	ℓ_9
in point	P_{16}	P_{49}	P_{64}	P_{27}

Line 9 intersects

Line	ℓ_2	ℓ_3	ℓ_6	ℓ_8
in point	P_{20}	P_{45}	P_{83}	P_{27}

 $24: P_{56} = (3, 0, 2, 1)$

 $24: P_{56} = (3,0,2,1)$ $25: P_{63} = (2,2,2,1)$ $26: P_{64} = (3,2,2,1)$ $27: P_{67} = (2,3,2,1)$ $28: P_{69} = (0,0,3,1)$ $29: P_{71} = (2,0,3,1)$ $30: P_{80} = (3,2,3,1)$ $31: P_{83} = (2,3,3,1)$ $32: P_{84} = (3,3,3,1)$

The surface has 33 points: The points on the surface are:

$0: P_0 = (1, 0, 0, 0)$	$12: P_{21} = (2, 3, 1, 0)$
$1: P_1 = (0, 1, 0, 0)$	13: $P_{27} = (1, 1, 0, 1)$
$2: P_2 = (0,0,1,0)$	$14: P_{33} = (3, 2, 0, 1)$
$3: P_3 = (0,0,0,1)$	15: $P_{36} = (2, 3, 0, 1)$
$4: P_5 = (1, 1, 0, 0)$	16: $P_{38} = (0,0,1,1)$
$5: P_6 = (2, 1, 0, 0)$	17: $P_{39} = (1,0,1,1)$
$6: P_7 = (3, 1, 0, 0)$	18: $P_{42} = (0, 1, 1, 1)$
$7: P_{13} = (2, 1, 1, 0)$	19: $P_{45} = (0, 2, 1, 1)$
$8: P_{14} = (3, 1, 1, 0)$	$20: P_{48} = (3, 2, 1, 1)$
9: $P_{16} = (1, 2, 1, 0)$	$21: P_{49} = (0,3,1,1)$
$10: P_{18} = (3, 2, 1, 0)$	$22: P_{51} = (2,3,1,1)$
$11: P_{20} = (1, 3, 1, 0)$	$23: P_{53} = (0,0,2,1)$