# Introduction to Data Visualization Day 1 - 2023-10

October 14, 2023

By Ruben D. Canlas Jr.

https://www.linkedin.com/in/rubencanlas/

#### COURSE OUTLINE

• Day 1: Data Visualization Basics

• Day 2: Storytelling with Data

#### **Today: Data Visualization Basics**

- 1. Why is data visualization important?
- 2. What is it?
- 3. How do we do data visualization?

1 Part 1: Why is data visualization important?

## 1.1 Warm Up: What do you know about any of these topics?

Pick one and type your answers in chat.

- 1. Exploratory Data Analysis (EDA)
- 2. How visualization helps create informed decisions
- 3. Mean or median
- 4. The interquartile range (IQR)
- 5. Box plots or violin plots

Type your answer in the chat box.

#### 1.2 The London Cholera Outbreak of 1854

- Killed 616 people
- Source of infection found and stopped by **Dr. John Snow**
- Using detective work and visualization
- Started the discipline of epidemiology

#### What did Dr. John Snow do?

- 1. Got the addresses of the victims
- 2. Got a map of London

3. Marked deaths in a location using stacks of rectangles

#### This is the map that he made.

...



#### 1.3 Notice these interesting features:

- At the center of the map, see the tallest black stack of bars (Broad Street).
- Victims frequented a pub in the area.
- Pub drew water from a nearby pump. You can still see the location of the pump near the tall stack of bars.
- Dr. Snow suspected that water was the source of the outbreak. The plot supported this hypothesis.
- Actionable insight: try shutting down the pump. (It worked.)

# 1.4 Chat Storm: Write 1 sentence summarizing how visualization helped solve the cholera outbreak.

Type your answer in the chat box.

## 1.5 Some Insights

- 1. Clustering morbidity data based on the address of the victim and visualizing this made the patterns stand out.
- 2. Placing morbidity numbers on the map added a spatial dimension that further enriched the information.
- 3. The visualization created an insight (potential source of the epidemic) that was actionable (seal off the water pump).

#### 2 Part 2: What is data visualization?

A simple definition of data visualization: The use of charts, diagrams, pictures and any visual element to represent information.

Visual elements include:

- Shapes, lines, dots
- Color and shading
- Size
- Symbols or icons
- Maps
- Images

...

#### 2.1 Consider this sample dataset:

| 9 | 7 | 7 | 8 | 4 | 7 | 5 | 9 | 4 | 3 | 2 | 7 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 7 | 3 | 1 | 5 | 9 | 2 | 5 | 5 | 5 | 6 | 7 |
| 9 | 5 | 1 | 8 | 7 | 2 | 5 | 1 | 1 | 6 | 1 | 2 |
| 2 | 7 | 8 | 7 | 6 | 1 | 6 | 6 | 7 | 1 | 2 | 1 |
| 6 | 9 | 1 | 3 | 4 | 4 | 2 | 5 | 7 | 5 | 2 | 9 |
| 3 | 5 | 4 | 6 | 5 | 2 | 2 | 9 | 9 | 2 | 3 | 8 |
| 4 | 5 | 8 | 3 | 1 | 8 | 1 | 3 | 2 | 1 | 1 | 1 |
| 4 | 5 | 7 | 1 | 4 | 9 | 9 | 9 | 2 | 8 | 4 | 4 |
| 4 | 2 | 3 | 7 | 2 | 5 | 7 | 9 | 3 | 8 | 6 | 5 |
| 6 | 4 | 6 | 1 | 5 | 9 | 4 | 6 | 8 | 4 | 2 | 5 |
| 1 | 9 | 8 | 2 | 6 | 4 | 6 | 9 | 5 | 7 | 6 | 1 |
| 7 | 9 | 9 | 8 | 1 | 7 | 3 | 1 | 5 | 5 | 1 | 8 |
|   |   |   |   |   |   |   |   |   |   |   |   |

## 2.2 How easy will it be to find the answers to these questions?

- 1. How many times does the number 5 occur?
- 2. Which number occurs the most?

#### Let's tweak the formatting a bit...

| 9 | 7 | 7 | 8 | 4 | 7 | 5 | 9 | 4 | 3 | 2 | 7 |
|---|---|---|---|---|---|---|---|---|---|---|---|
| 5 | 7 | 3 | 1 | 5 | 9 | 2 | 5 | 5 | 5 | 6 | 7 |
| 9 | 5 | 1 | 8 | 7 | 2 | 5 | 1 | 1 | 6 | 1 | 2 |
| 2 | 7 | 8 | 7 | 6 | 1 | 6 | 6 | 7 | 1 | 2 | 1 |
| 6 | 9 | 1 | 3 | 4 | 4 | 2 | 5 | 7 | 5 | 2 | 9 |
| 3 | 5 | 4 | 6 | 5 | 2 | 2 | 9 | 9 | 2 | 3 | 8 |
| 4 | 5 | 8 | 3 | 1 | 8 | 1 | 3 | 2 | 1 | 1 | 1 |
| 4 | 5 | 7 | 1 | 4 | 9 | 9 | 9 | 2 | 8 | 4 | 4 |
| 4 | 2 | 3 | 7 | 2 | 5 | 7 | 9 | 3 | 8 | 6 | 5 |
| 6 | 4 | 6 | 1 | 5 | 9 | 4 | 6 | 8 | 4 | 2 | 5 |
| 1 | 9 | 8 | 2 | 6 | 4 | 6 | 9 | 5 | 7 | 6 | 1 |
| 7 | 9 | 9 | 8 | 1 | 7 | 3 | 1 | 5 | 5 | 1 | 8 |
|   |   |   |   |   |   |   |   |   |   |   |   |

Compared with the previous one, which display makes it easier for you to count the occurrence of number 5 or find out which number occurs most frequently?

## 2.3 Insights

- 1. Our eyes and brain are programmed to notice differences quickly (survival instinct).
- 2. Changing the color, for example, will make values stand out.
- 3. Changing the font formatting can also highlight differences: eg, bold, itals, size, capitalization etc.

Let's make it more interesting.

Same dataset, using bars.



## 2.4 Questions

- 1. What information do the x- and y-axes show?
- 2. How easy is it to find patterns like the most or least frequent numbers?

#### 2.4.1 Insights

- Using a shape (bar) adds a new dimension, length
- Length represents frequency count
- Bars make it easier to spot trends.

Below is the same dataset but with a slight change. What changed?



#### Now, it's easier to answer these questions:

- 1. Which number occurs the most?
- 2. What is the count of the most frequently appearing number?
- 3. Which number occurs the least?
- 4. What is the count of the least frequent number?

What made it easier to answer the questions using the second graph?

## 2.4.2 Insight

- Using a shape (bar) adds a new dimension, length
- Length represents frequency count
- Bars make it easier to spot trends.
- Sorting from most to least helps make comparisons easier.

#### 2.4.3 Stretch and Summarize!

 $2 \min$ 

Grab your notebook and summarize the important concepts you've learned in 1-3 sentences.

#### 2.4.4 Introducing the Tips dataset

We will be using the Tips dataset to understand how to do data visualization. Let's get familiar with it first.

|    | Α          | В    | С      | D      | E   | F      | G    |
|----|------------|------|--------|--------|-----|--------|------|
| 1  | total_bill | tip  | sex    | smoker | day | time   | size |
| 2  | 16.99      | 1.01 | Female | No     | Sun | Dinner | 2    |
| 3  | 10.34      | 1.66 | Male   | No     | Sun | Dinner | 3    |
| 4  | 21.01      | 3.5  | Male   | No     | Sun | Dinner | 3    |
| 5  | 23.68      | 3.31 | Male   | No     | Sun | Dinner | 2    |
| 6  | 24.59      | 3.61 | Female | No     | Sun | Dinner | 4    |
| 7  | 25.29      | 4.71 | Male   | No     | Sun | Dinner | 4    |
| 8  | 8.77       | 2    | Male   | No     | Sun | Dinner | 2    |
| 9  | 26.88      | 3.12 | Male   | No     | Sun | Dinner | 4    |
| 10 | 15.04      | 1.96 | Male   | No     | Sun | Dinner | 2    |
| 11 | 14.78      | 3.23 | Male   | No     | Sun | Dinner | 2    |
| 12 | 10.27      | 1.71 | Male   | No     | Sun | Dinner | 2    |
| 13 | 35.26      | 5    | Female | No     | Sun | Dinner | 4    |
| 14 | 15.42      | 1.57 | Male   | No     | Sun | Dinner | 2    |
| 15 | 18.43      | 3    | Male   | No     | Sun | Dinner | 4    |
| 16 | 14.83      | 3.02 | Female | No     | Sun | Dinner | 2    |
| 17 | 21.58      | 3.92 | Male   | No     | Sun | Dinner | 2    |
| 18 | 10.33      | 1.67 | Female | No     | Sun | Dinner | 3    |
| 19 | 16.29      | 3.71 | Male   | No     | Sun | Dinner | 3    |
| 20 | 16.97      | 3.5  | Female | No     | Sun | Dinner | 3    |

#### 2.4.5 Breakout: Exploring the Tips Dataset

5 min

**INSTRUCTIONS:** \* Take a screenshot of the dataset, these instructions, and the questions below. \* Join your breakout room. \* Stand up, do some stretches and quickly introduce yourselves. \* Stay standing while you try to answer the questions, below.

#### **QUESTIONS:**

- 1. Just by looking at the image above, what information can we get from the dataset?
- 2. Take a guess about what each of the column headers mean.

Note the following: 1. The data is in CSV format and you can find it here: tips.csv in Github 4. Above is a snaphsot of how the CSV file will look like, if opened as a spreadsheet. 5. Jupyter Notebook can also load the CSV, using the pandas.read\_csv command (demo in Part 3). Read more

#### 3 Part 3: How do we do data visualization?

This is a demo of how to do data visualization and visual exploratory analysis, step by step.

- Import the dataset in csv format, using pandas.
- Explore the data with pandas.
- Create some visuals using seaborn visualization library.

## 3.1 Importing and displaying a dataset using Pandas

Below is a demo of how to read the tips.csv dataset and show a snapshot of it.

```
[16]: # Code 1.1
# Import the pandas library and name it pd
import pandas as pd

# Using the read_csv() command, read the tips dataset and name it "tips"
tips = pd.read_csv("tips.csv")

# Show the first 5 and last 5 records of the tips dataset
display(tips)
```

|     | total_bill | tip  | sex    | smoker | day  | time   | size |
|-----|------------|------|--------|--------|------|--------|------|
| 0   | 16.99      | 1.01 | Female | No     | Sun  | Dinner | 2    |
| 1   | 10.34      | 1.66 | Male   | No     | Sun  | Dinner | 3    |
| 2   | 21.01      | 3.50 | Male   | No     | Sun  | Dinner | 3    |
| 3   | 23.68      | 3.31 | Male   | No     | Sun  | Dinner | 2    |
| 4   | 24.59      | 3.61 | Female | No     | Sun  | Dinner | 4    |
|     | •••        | •••  |        | •••    |      |        |      |
| 239 | 29.03      | 5.92 | Male   | No     | Sat  | Dinner | 3    |
| 240 | 27.18      | 2.00 | Female | Yes    | Sat  | Dinner | 2    |
| 241 | 22.67      | 2.00 | Male   | Yes    | Sat  | Dinner | 2    |
| 242 | 17.82      | 1.75 | Male   | No     | Sat  | Dinner | 2    |
| 243 | 18.78      | 3.00 | Female | No     | Thur | Dinner | 2    |

[244 rows x 7 columns]

#### 3.1.1 Visualizing the tips dataset

Let's try a common visual from high school: the scatter plot.



## 3.2 Insights from the scatter plot

- Shows multiple dimensions in a 2-D plot (aka the columns)
  - Total bill amount
  - Tip amount
  - Gender
  - Smoker or not
  - Number of diners in the table
- By using these elements
  - Color: orange, blue, black
  - Symbols: x, circle
  - Size: varying sizes of x and circle

We need other ways of visualizing the information.

#### Let's try other ways of exploring the dataset

#### 3.3 Exploratory Data Analysis (EDA)

#### 3.3.1 Key points

- Described in John Tukey's book, Exploratory Data Analysis (1977)
- As a balance to confirmatory data analysis (start from a hypothesis and test it)
- Contrast: EDA means no hypothesis, just inspect the data
- Primary method used in data mining

#### 3.3.2 Goals of EDA

- Discover unexpected features, patterns, and anomalies in the dataset
- Provide clues on what or where to investigate further
- Start the seeds of a hypothesis that could lead to major discoveries

See Wikipedia

#### 3.3.3 How we do the exploration

The way we explore data is by trying to feel around for the "shape" of the data. The method to do this includes investigating these: \* Central tendency versus the dispersion of values across the dataset \* How data tend to form clusters \* Frequently occuring values \* Outliers and how they affect the dataset

#### Let's start exploring some data using statistical summaries.

Below, we create a sample dataset. Let's make a hypothetical subset of the Tips data, for a few minutes of restaurant operations during a Friday.

```
[18]: # You need to install the pandas library to be able to do this.
# The first command imports the pandas library into an object called "pd".
# pd now contains the functions available to pandas. We invoke the functions
using the . command
# hence, in the example below, pd.DataFrame() invokes the DataFrame function.

import pandas as pd
# BTW, pd is lousy name but it's the convention and you'll find it a lot in
upandas documentation

# Generate sample data. This is just made up data.
data = [1,1,1,2,2,2,2,8,9,12]

# Create a pandas DataFrame, store the dataset as "fridaytips", label the
ucolumn as "Amounts".
fridaytips = pd.DataFrame(data, columns=['Amounts'])

# Print the sample data we created
fridaytips
```

| [18]: |   | Amounts |
|-------|---|---------|
|       | 0 | 1       |
|       | 1 | 1       |
|       | 2 | 1       |
|       | 3 | 2       |
|       | 4 | 2       |
|       | 5 | 2       |
|       | 6 | 2       |
|       | 7 | 8       |
|       | 8 | 9       |
|       | 9 | 12      |

#### A few notes:

- Our dataset is called fridaytips.
- Technically, it is no longer just a dataset. It is a pandas DataFrame.
- That is, fridaytips now possesses useful analytical commands like .describe() demonstrated below.

```
[19]: # The `.describe()` function gives out descriptive statistics to show_
centrality and dispersion
# Find out more: https://pandas.pydata.org/pandas-docs/stable/reference/api/
pandas.DataFrame.describe.html
fridaytips.describe()
```

```
[19]:
               Amounts
      count 10.000000
     mean
              4.000000
      std
              4.055175
     min
              1.000000
      25%
              1.250000
      50%
              2.000000
      75%
              6.500000
     max
             12.000000
```

#### 3.3.4 Visual Exploratory Data Analysis

Bar graphs, scatter plots etc: subset of EDA called **Visual Exploratory Data Analysis** (VEDA).

VEDA uses visuals to facilitate summarizing and reporting of datasets. Dashboards are an example of VEDA.

Let's do more VEDA using a visual called box plot.

```
[20]: # Use the Seaborn graphing library
# Store the library in an object called 'sns'
# BTW, sns is lousy name but it's the convention and you'll find it a lot in_
seaborn documentation
```

```
import seaborn as sns
# Create the visualization
sns.boxplot(data=fridaytips);
```



#### 3.4 Breakout

 $10 \min$ 

#### Questions about the Friday tips dataset:

Investigate the box plot by comparing it to the statistical summary generated by fridaytips.describe().

- 1. How much is the median tip value?
- 2. Where is the median located in the box plot?
- 3. What values do the horizontal lines on 1 and 12 indicate?
- 4. What does the blue box represent?
- 5. What value does the *upper* edge of the blue box show?
- 6. What value does the *lower* edge of the blue box show?
- 7. What causes the blue box to "sink" towards the bottom of the vertical axis?

## 3.5 Exploring data through IQR

The 25%, 50%, and 75% values are known as the **Interquartile Range (IQR)**. The IQR shows: \* How data is spread out \* The **median** - if you listed all values in ascending order, find the mid-point of the list. The value at the mid-point is the median. \* Best visualized as a **box plot** 



#### 3.5.1 Learn more about box plots

Read this: Learn more about box plots, outliers, and the max and min values

```
[21]: # Code 1.3 tips.describe()
```

| [21]: |       | total_bill | tip        | size       |
|-------|-------|------------|------------|------------|
|       | count | 244.000000 | 244.000000 | 244.000000 |
|       | mean  | 19.785943  | 2.998279   | 2.569672   |
|       | std   | 8.902412   | 1.383638   | 0.951100   |
|       | min   | 3.070000   | 1.000000   | 1.000000   |
|       | 25%   | 13.347500  | 2.000000   | 2.000000   |
|       | 50%   | 17.795000  | 2.900000   | 2.000000   |
|       | 75%   | 24.127500  | 3.562500   | 3.000000   |
|       | max   | 50.810000  | 10.000000  | 6.000000   |

#### 3.6 Pop quiz

- 1. What is the typical tip amount?
- 2. How many records are in the dataset?
- 3. What was the highest tip given?

- 4. The lowest tip?
- 5. What do the values in 25%, 50%, 75% mean?



## 3.7 Breakout: Analyzing the Boxplots

 $10 \min$ 

- 1. What data are shown in the the x- and y- axes?
- 2. What are the highest and lowest tip amounts in a week?
- 3. Which day/s have the highest median tip value?
- 4. What is interesting about Thur and Fri?
- 5. What is different about Sun tips? How might you explain the difference?

## 3.8 Violin plots

The graph below is the same dataset, but now using violin plots.



## 3.9 Violin plots, explained

.



#### 3.10 Breakout: Visual Investigation

 $5 \min$ 

Take screenshots of the images above and answer the following in your group:

- 1. What dimensions can you get from the violin plot?
- 2. When do waiters get the most tips?
- 3. Which gender tips the most?
- 4. What is the median tip amount for Fri compared to Thur?
- 5. What information can you extract from the shape densities?

#### Conclusion

- 1. Caveat: EDA is exploratory, to get an initial sense of the dataset.
- 2. Needs deeper investigation: validate.
- 3. GIGO: Garbage In, Garbage Out.

#### Breakout: Pair Share

 $5 \min$ 

Pick one question below and take turns sharing about the question you picked. **Time limit: 1** minute per speaker.

QUESTIONS (Pick only one)

- 1. What is 1 important idea that you will use at work?
- 2. What is 1 idea you would like to investigate further?
- 3. What is 1 question I still have about data visualization?