CS 301

Solutions of Assignment #1 Part 4

Problem 1:

We will prove our result by showing $(\mathbf{r}^*\mathbf{s}^*)^* \subseteq (\mathbf{r} \cup \mathbf{s})^*$ and $(\mathbf{r} \cup \mathbf{s})^* \subseteq (\mathbf{r}^*\mathbf{s}^*)^*$.

Proof of
$$(r^*s^*)^* \subseteq (r \cup s)^*$$

This follows since $(\mathbf{r} \cup \mathbf{s})^*$ contains *every* possible regular expression involving \mathbf{r} and \mathbf{s} .

Proof of
$$(r \cup s)^* \subseteq (r^*s^*)^*$$

Consider a string $\alpha \in (\mathbf{r} \cup \mathbf{s})^*$. Note that α can be written as $\mathbf{r}^{a_1}\mathbf{s}^{b_1}\mathbf{r}^{a_2}\mathbf{s}^{b_2}\dots\mathbf{r}^{a_k}\mathbf{s}^{b_k}$ for some integers $a_1,a_2,\dots,a_k,b_1,b_2,\dots,b_k\geq 0$. Now, for any $1\leq j\leq k$, it hold that $\mathbf{r}^{a_j}\mathbf{s}^{b_j}\in\mathbf{r}^*\mathbf{s}^*$. Thus, it follows that $\alpha\in (\mathbf{r}^*\mathbf{s}^*)^k\subset (\mathbf{r}^*\mathbf{s}^*)^*$.