

Kourosh Davoudi kourosh@uoit.ca

**Association Rule Mining** 



**CSCI 4150U: Data Mining** 

## **Learning Outcomes**

- Basic Idea and Concepts of Association Rule Mining
- Apriori algorithm
- Maximal Frequent Itemsets
- Closed Itemsets
- FP-growth algorithm



## **Association Rule Mining**

Given a set of transactions, find rules that will predict the occurrence
of an item based on the occurrences of other items in the transaction

#### Market-Basket transactions

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### **Example of Association Rules**

```
{Diaper} \rightarrow {Beer},
{Milk, Bread} \rightarrow {Coke},
{Bread} \rightarrow {Milk},
```

For example:  $\{Bread\} \rightarrow \{Milk\}$ 

#### "People who buy bread may also buy milk."

- Stores might want to offer specials on bread to get people to buy more milk.
- Stores might want to put bread and milk close each other.



# Definition: Frequent Itemset

- Itemset
  - A collection of one or more items
    - Example: {Milk, Bread, Diaper}
  - k-itemset
    - An itemset that contains k items
- Support count  $(\sigma)$ 
  - Frequency of occurrence of an itemset
  - E.g.  $\sigma(\{Milk, Bread, Diaper\}) = 2$
- Support (s)
  - Fraction of transactions that contain an itemset
  - E.g. s({Milk, Bread, Diaper}) = 2/5
- Frequent Itemset
  - An itemset whose support is greater than or equal to a minsup threshold

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |



#### **Definition: Association Rule**

#### **Association Rule**

- An implication expression of the form X → Y,
   where X and Y are itemsets
- Example: {Milk, Diaper} → {Beer}

#### Rule Evaluation Metrics

- Support (s)
  - Fraction of transactions that contain both X and Y
- Confidence (c)
  - Measures how often items in Y appear in transactions that contain X

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example:

$$\{\text{Milk}, \text{Diaper}\} \Rightarrow \{\text{Beer}\}$$

$$s = \frac{\sigma(\text{Milk, Diaper, Beer})}{|T|} = \frac{2}{5} = 0.4$$

$$c = \frac{\sigma(\text{Milk, Diaper, Beer})}{\sigma(\text{Milk, Diaper})} = \frac{2}{3} = 0.67$$



# What is the confidence of the following rule?

A. 0.25

B. 0.5

C. 0.67

D. 0.73

# **Association Rule Mining Task**

- Given a set of transactions T, the goal of association rule mining is to find all rules having
  - support ≥ minsup threshold
  - confidence ≥ minconf threshold
- Brute-force approach:
  - List all possible association rules
  - Compute the support and confidence for each rule
  - Prune rules that fail the minsup and minconf thresholds
  - ⇒ Computationally prohibitive!



## Mining Association Rules

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Bread, Diaper, Beer, Eggs |
| 3   | Milk, Diaper, Beer, Coke  |
| 4   | Bread, Milk, Diaper, Beer |
| 5   | Bread, Milk, Diaper, Coke |

#### Example of Rules:

```
{Milk, Diaper} \rightarrow {Beer} (s=0.4, c=0.67)
{Milk, Beer} \rightarrow {Diaper} (s=0.4, c=1.0)
{Diaper, Beer} \rightarrow {Milk} (s=0.4, c=0.67)
{Beer} \rightarrow {Milk, Diaper} (s=0.4, c=0.67)
{Diaper} \rightarrow {Milk, Beer} (s=0.4, c=0.5)
{Milk} \rightarrow {Diaper, Beer} (s=0.4, c=0.5)
```

#### **Observations:**

- All the above rules are binary partitions of the same itemset: {Milk, Diaper, Beer}
- Rules originating from the same itemset have identical support but can have different confidence
- Thus, we may decouple the support and confidence requirements



## Mining Association Rules

- Two-step approach:
  - Frequent Itemset Generation
    - Generate all itemsets whose support ≥ minsup
  - Rule Generation
    - Generate high-confidence rules from each frequent itemset, where each rule is a binary partitioning of a frequent itemset
- Frequent itemset generation is still computationally expensive!



# Frequent Itemset Generation



# Frequent Itemset Generation: the Itemset Lattice





#### Frequent Itemset Generation

- Brute-force approach:
  - Each itemset in the **lattice** is a candidate frequent itemset
  - Count the support of each candidate by scanning the database
  - Output the itemsets with a counter ≥ (min\_sup\*N)



- Match each transaction against every candidate
- Complexity  $\sim$  O(NMw) => Expensive since M =  $2^{d}-1!!!$



# **Computational Complexity**

- Given d unique items:
  - Total number of itemsets = 2<sup>d</sup> -1
  - Total number of possible association rules:



$$R = \sum_{k=1}^{d-1} \left[ \begin{pmatrix} d \\ k \end{pmatrix} \times \sum_{j=1}^{d-k} \begin{pmatrix} d-k \\ j \end{pmatrix} \right]$$
$$= 3^{d} - 2^{d+1} + 1$$

If d=6, R = 602 rules



#### Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
  - Complete search: M=2<sup>d</sup>
  - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
  - Reduce size of N as the size of itemset increases.
- Reduce the number of comparisons (NM)
  - Use efficient data structures to store the candidates or transactions
  - No need to match every candidate against every transaction



# **Reducing Number of Candidates**

- Apriori Principle:
  - If an itemset is frequent, then all of its subsets must also be frequent
- Apriori principle holds due to the following property of the support measure:

$$\forall X, Y : (X \subseteq Y) \Rightarrow s(X) \ge s(Y)$$

- Support of an itemset never exceeds the support of its subsets
- This is known as the **anti-monotone** property of support



Using anti-monotone property, can we say that "if X is infrequent all supersets of X are infrequent"?

A. True

B. False

# Illustrating Apriori Principle





# Illustrating Apriori Principle

Items (1-itemsets)

| Item   | Count |
|--------|-------|
| Bread  | 4     |
| Coke   | 2     |
| Milk   | 4     |
| Beer   | 3     |
| Diaper | 4     |
| Eggs   | 1     |



| Itemset        | Count |
|----------------|-------|
| {Bread,Milk}   | 3     |
| {Bread,Beer}   | 2     |
| {Bread,Diaper} | 3     |
| {Milk,Beer}    | 2     |
| {Milk,Diaper}  | 3     |
| {Beer,Diaper}  | 3     |



Pairs (2-itemsets)

Minimum Support = 3

(No need to generate candidates involving Coke or Eggs)



Triplets (3-itemsets)

| Itemset             | Count |
|---------------------|-------|
| {Bread,Milk,Diaper} | 3     |





# Apriori Algorithm

- F<sub>k</sub>: frequent k-itemsets
- L<sub>k</sub>: candidate k-itemsets

#### Algorithm

- 1. Let k=1
- 2. Generate  $F_1$  = {frequent 1-itemsets}
- 3. Repeat until  $F_k$  is empty
  - 1. Candidate Generation: Generate  $L_{k+1}$  from  $F_k$  (see next slides)
  - 2. Candidate Pruning: Prune candidate itemsets in  $L_{k+1}$  (see next slides)
  - 3. Support Counting: Count the support of each candidate in  $L_{k+1}$  by scanning the DB
  - **4.** Candidate Elimination: Eliminate candidates in  $L_{k+1}$  that are infrequent, leaving only those that are frequent =>  $F_{k+1}$



## **Example: Apriori-based Mining**





#### How to generate candidate set $L_k$ from $F_{k-1}$

#### Step 1: Generation

 Rule: Merge two frequent (k-1)-itemsets if their first (k-2) items are identical

#### Example:

 $F_3 = \{ABC, ABD, ABE, ACD, BCD, BDE, CDE\}$ , what is  $L_4$ ?

- Merge( $\underline{AB}C$ ,  $\underline{AB}D$ ) =  $\underline{AB}CD$
- Merge( $\underline{AB}C$ ,  $\underline{AB}E$ ) =  $\underline{AB}CE$
- Merge(ABD, ABE) = ABDE

 $L_4 = \{ABCD, ABCE, ABDE\}$ 



# Can we merge(ABD,ACD) in $F_3$ ?

A. Yes

B. No

# How to generate candidate set $L_k$ from $F_{k-1}$

#### Step 2: Pruning

• Rule: Prune an item from  $L_k$  if any of its subsets is not frequent (it is not in  $F_{k-1}$ )

#### Example:

- Let  $F_3 = \{ABC, ABD, ABE, ACD, BCD, BDE, CDE\}$  be the set of frequent 3-itemsets
- $L_4 = \{ABCD, ABCE, ABDE\}$  is the set of candidate 4-itemsets generated (from previous slide)

#### Candidate pruning examples:

- Prune ABCE because ACE and BCE are infrequent
- Prune ABDE because ADE is infrequent

After candidate pruning:  $L_4 = \{ABCD\}$ 



# **Example: Apriori-based Mining**





#### Frequent Itemset Generation Strategies

- Reduce the number of candidates (M)
  - Complete search: M=2<sup>d</sup>
  - Use pruning techniques to reduce M
- Reduce the number of transactions (N)
  - Reduce size of N as the size of itemset increases
- Reduce the number of comparisons (NM)
  - Use efficient data structures to store the candidates or transactions
  - No need to match every candidate against every transaction





#### **Support Counting of Candidate Itemsets**

Scan the database of transactions to determine the support of each candidate itemset

 Must match every candidate itemset against every transaction, which is an expensive operation

| TID | Items                     |
|-----|---------------------------|
| 1   | Bread, Milk               |
| 2   | Beer, Bread, Diaper, Eggs |
| 3   | Beer, Coke, Diaper, Milk  |
| 4   | Beer, Bread, Diaper, Milk |
| 5   | Bread, Coke, Diaper, Milk |

#### Candidates

```
Itemset
{ Beer, Diaper, Milk}
{ Beer, Bread, Diaper}
{Bread, Diaper, Milk}
{ Beer, Bread, Milk}
```



#### **Support Counting of Candidate Itemsets**

To reduce number of comparisons, store the candidate itemsets in a hash structure

• Instead of matching each transaction against every candidate, match it against candidates contained in the hashed buckets





Suppose you have 15 candidate itemsets of length 3:

{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8}, {1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5}, {3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}

If the transaction is (1,2,3,5,6), how many of these itemsets should be checked for possible count increment?



Can we do the better job?



Suppose you have 15 candidate itemsets of length 3:

```
{1 4 5}, {1 2 4}, {4 5 7}, {1 2 5}, {4 5 8},
{1 5 9}, {1 3 6}, {2 3 4}, {5 6 7}, {3 4 5},
{3 5 6}, {3 5 7}, {6 8 9}, {3 6 7}, {3 6 8}
```



#### You need:

- Hash function (e.g., h(p) = p mod 3, and max leaf size = 3)
- Max leaf size: max number of itemsets stored in a leaf node



If number of candidate itemsets exceeds max leaf size, split the node)



Suppose you have 15 candidate itemsets of length 3:













Suppose you have 15 candidate itemsets of length 3:











# Subset Operation Using Hash Tree

If the transaction is (1,2,3,5,6), how many of these itemsets should be checked for possible count increment?





# Subset Operation Using Hash Tree

If the transaction is (1,2,3,5,6), how many of these itemsets should be checked for possible count increment?





# **Rule Generation**



#### Rule Generation

- Given a frequent itemset *L*:
  - Find all non-empty subsets  $f \subset L$  such that  $f \to L f$  satisfies the minimum confidence requirement
  - If {A,B,C,D} is a frequent itemset, candidate rules:

ABC 
$$\rightarrow$$
D, ABD  $\rightarrow$ C, ACD  $\rightarrow$ B, BCD  $\rightarrow$ A, A  $\rightarrow$ BCD, B  $\rightarrow$ ACD, C  $\rightarrow$ ABD, D  $\rightarrow$ ABC AB  $\rightarrow$ CD, AC  $\rightarrow$  BD, AD  $\rightarrow$  BC, BC  $\rightarrow$ AD, BD  $\rightarrow$ AC, CD  $\rightarrow$ AB,

• If |L|=k, then there are  $2^k-2$  candidate association rules (ignoring  $L\to \mathcal{O}$  and  $\mathcal{O}\to L$ )



#### Rule Generation

- How to efficiently generate rules from frequent itemsets?
  - In general, confidence does not have an anti-monotone property
     -c(ABC →D) can be larger or smaller than c(AB →D)
  - But confidence of rules generated from the same itemset has an anti-monotone property
  - e.g., L = {A,B,C,D}:  $c(ABC \rightarrow D) \ge c(AB \rightarrow CD) \ge c(A \rightarrow BCD)$ 
    - Confidence is anti-monotone w.r.t. the number of items on the RHS of the rule



## Rule Generation for Apriori Algorithm





## **Advanced Topics**



#### Compact Representation of Frequent Itemsets

Some itemsets are redundant because they have identical support as their supersets

| TID | <b>A1</b> | A2 | <b>A3</b> | <b>A4</b> | <b>A5</b> | <b>A6</b> | <b>A7</b> | <b>A8</b> | <b>A9</b> | A10 | B1 | B2 | В3 | B4 | <b>B5</b> | B6 | B7 | B8 | B9 | B10 | C1 | C2 | C3 | C4 | <b>C5</b> | C6 | <b>C7</b> | C8 | C9 | C10 |
|-----|-----------|----|-----------|-----------|-----------|-----------|-----------|-----------|-----------|-----|----|----|----|----|-----------|----|----|----|----|-----|----|----|----|----|-----------|----|-----------|----|----|-----|
| 1   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 2   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 3   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 4   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 5   | 1         | 1  | 1         | 1         | 1         | 1         | 1         | 1         | 1         | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 6   | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 7   | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 8   | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 9   | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 10  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1  | 1  | 1  | 1   | 0  | 0  | 0  | 0  | 0         | 0  | 0         | 0  | 0  | 0   |
| 11  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
| 12  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
| 13  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
| 14  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |
| 15  | 0         | 0  | 0         | 0         | 0         | 0         | 0         | 0         | 0         | 0   | 0  | 0  | 0  | 0  | 0         | 0  | 0  | 0  | 0  | 0   | 1  | 1  | 1  | 1  | 1         | 1  | 1         | 1  | 1  | 1   |

• Number of frequent itemsets 
$$= 3 \times \sum_{k=1}^{10} {10 \choose k}$$
  
• Need a compact representation

Need a compact representation



## Maximal Frequent Itemset

An itemset is maximal frequent if none of its immediate supersets is

frequent null Maximal С Ε В D **Itemsets** AC ΑE ВС BD ΒE CD CE DE CDE ABC ABD ACD ACE ADE BCD BCE ABE BDE ABCD ABCE ABDE ACDE BCDE Infrequent Itemsets' Border ABCD



#### Closed Itemset

 An itemset is closed if none of its immediate supersets has the same support as the itemset

• Example:

| TID | Items         |
|-----|---------------|
| 1   | {A,B}         |
| 2   | $\{B,C,D\}$   |
| 3   | $\{A,B,C,D\}$ |
| 4   | $\{A,B,D\}$   |
| 5   | $\{A,B,C,D\}$ |

closed

| Itemset | Support |
|---------|---------|
| {A}     | 4       |
| {B}     | 5       |
| {C}     | 3       |
| {D}     | 4       |
| {A,B}   | 4       |
| {A,C}   | 2       |
| {A,D}   | 3       |
| {B,C}   | 3       |
| {B,D}   | 4       |

{C,D}

| Itemset       | Support |
|---------------|---------|
| $\{A,B,C\}$   | 2       |
| $\{A,B,D\}$   | 3       |
| $\{A,C,D\}$   | 2       |
| $\{B,C,D\}$   | 3       |
| $\{A,B,C,D\}$ | 2       |



#### Maximal vs Closed Itemsets





#### Maximal vs Closed Frequent Itemsets





#### Maximal vs Closed Itemsets





## FP-growth Algorithm

 To discover frequent itemsets by a compressed representation of the database using an FP-tree (Frequent Pattern Tree)

 Once an FP-tree has been constructed, it uses a recursive divide-andconquer approach to mine the frequent itemsets

• It does not employ the **generate-and-test paradigm** of the Apriori algorithm.



## FP-growth Ideas

- Grow long patterns from short ones using local frequent items
  - "abc" is a frequent pattern
  - Get all transactions having "abc":

DB | abc (projected database on abc)

- "d" is a local frequent item in DB|abc → abcd is a frequent pattern
- Get all transactions having "abcd" (projected database on "abcd") and find longer itemsets



#### FP-growth Ideas

- Compress a large database into a compact, Frequent-Pattern tree (FP-tree) structure
  - Highly condensed, but complete for frequent pattern mining
  - Avoid costly database scans
- Develop an efficient, FP-tree-based frequent pattern mining method
  - A divide-and-conquer methodology: decompose mining tasks into smaller ones
  - Avoid candidate generation: examine sub-database (conditional pattern base) only!



| TID Ite | ems bought (            | ordered) frequent items            |
|---------|-------------------------|------------------------------------|
| 100     | {f, a, c, d, g, i, m, p | } {f, c, a, m, p}                  |
| 200     | {a, b, c, f, l, m, o}   | {f, c, a, b, m}                    |
| 300     | {b, f, h, j, o}         | { <i>f</i> , <i>b</i> }            |
| 400     | {b, c, k, s, p}         | { <i>c</i> , <i>b</i> , <i>p</i> } |
| 500     | {a, f, c, e, l, p, m, n | $\{f, c, a, m, p\}$                |

#### Freq=> f: 4,c:4,a:3,b:3,m:3, p:3

#### Steps:

- 1. Scan DB once, find frequent 1-itemset (single item pattern)
- 2. Order frequent items in frequency descending order: f, c, a, b, m, p (L-order)
- 3. Process DB based on L-order



| a | 3 | -            | 1 |
|---|---|--------------|---|
| b | 3 | <del>j</del> | 1 |
| С | 4 | k            | 1 |
| d | 1 | 1            | 2 |
| е | 1 | m            | 3 |
| f | 4 | n            | 1 |
| g | 1 | 0            | 2 |
| h | 1 | р            | 3 |



| TID Ite | ems bought (d           | ordered) frequent items            |
|---------|-------------------------|------------------------------------|
| 100     | {f, a, c, d, g, i, m, p | } {f, c, a, m, p}                  |
| 200     | {a, b, c, f, l, m, o}   | {f, c, a, b, m}                    |
| 300     | {b, f, h, j, o}         | {f, b}                             |
| 400     | {b, c, k, s, p}         | { <i>c</i> , <i>b</i> , <i>p</i> } |
| 500     | {a, f, c, e, I, p, m, n | } {f, c, a, m, p}                  |

{}

| Header Table |        |          |  |  |  |
|--------------|--------|----------|--|--|--|
| <u>Item</u>  | freque | ncy head |  |  |  |
| f            | 0      | nil      |  |  |  |
| C            | 0      | nil      |  |  |  |
| a            | 0      | nil      |  |  |  |
| b            | 0      | nil      |  |  |  |
| m            | 0      | nil      |  |  |  |
| p            | 0      | nil      |  |  |  |

Initial FP-tree



| TID Ite | ems bought (ord          | ered) frequent items               |
|---------|--------------------------|------------------------------------|
| 100     | {f, a, c, d, g, i, m, p} | {f, c, a, m, p}                    |
| 200     | {a, b, c, f, I, m, o}    | {f, c, a, b, m}                    |
| 300     | {b, f, h, j, o}          | {f, b}                             |
| 400     | {b, c, k, s, p}          | { <i>c</i> , <i>b</i> , <i>p</i> } |
| 500     | {a, f, c, e, l, p, m, n} | {f, c, a, m, p}                    |





| TID Ite | ems bought (o            | rdered) frequent items             |
|---------|--------------------------|------------------------------------|
| 100     | {f, a, c, d, g, i, m, p} | {f, c, a, m, p}                    |
| 200     | {a, b, c, f, l, m, o}    | {f, c, a, b, m}                    |
| 300     | {b, f, h, j, o}          | {f, b}                             |
| 400     | {b, c, k, s, p}          | { <i>c</i> , <i>b</i> , <i>p</i> } |
| 500     | {a, f, c, e, l, p, m, n} | {f, c, a, m, p}                    |





| TID Ite | ems bought (ord          | ered) frequent items               |
|---------|--------------------------|------------------------------------|
| 100     | {f, a, c, d, g, i, m, p} | {f, c, a, m, p}                    |
| 200     | {a, b, c, f, l, m, o}    | {f, c, a, b, m}                    |
| 300     | {b, f, h, j, o}          | {f, b}                             |
| 400     | {b, c, k, s, p}          | { <i>c</i> , <i>b</i> , <i>p</i> } |
| 500     | {a, f, c, e, l, p, m, n} | {f, c, a, m, p}                    |





| TID Ite | ems bought (ord          | ered) frequent items               |
|---------|--------------------------|------------------------------------|
| 100     | {f, a, c, d, g, i, m, p} | {f, c, a, m, p}                    |
| 200     | {a, b, c, f, l, m, o}    | {f, c, a, b, m}                    |
| 300     | {b, f, h, j, o}          | {f, b}                             |
| 400     | {b, c, k, s, p}          | { <i>c</i> , <i>b</i> , <i>p</i> } |
| 500     | {a, f, c, e, l, p, m, n} | {f, c, a, m, p}                    |





| TID Ite | ems bought (ord          | ered) frequent items               |
|---------|--------------------------|------------------------------------|
| 100     | {f, a, c, d, g, i, m, p} | {f, c, a, m, p}                    |
| 200     | {a, b, c, f, I, m, o}    | {f, c, a, b, m}                    |
| 300     | {b, f, h, j, o}          | { <i>f</i> , <i>b</i> }            |
| 400     | {b, c, k, s, p}          | { <i>c</i> , <i>b</i> , <i>p</i> } |
| 500     | {a, f, c, e, l, p, m, n} | {f, c, a, m, p}                    |





#### Mining Frequent Patterns Using FP-tree

- General idea (divide-and-conquer)
  - partition the set of frequent patterns
  - build conditional pattern base and conditional FP-tree for each partition
- Frequent patterns can be partitioned into subsets according to L-order
  - L-order=f-c-a-b-m-p
  - Patterns containing p
  - Patterns having m but no p
  - Patterns having b but no m or p
  - •
  - Patterns having c but no a nor b, m, p
  - Pattern f





#### Mining Frequent Patterns Using FP-tree

- Step 1: Construct conditional pattern base for each item in header table
- Step 2: Construct conditional FP-tree from each conditional pattern-base
- Step 3: Recursively mine conditional FP-trees and grow frequent patterns obtained so far
  - If conditional FP-tree contains a single path, simply enumerate all patterns



## Step 1: Construct Conditional Pattern Base

- Starting at header table of FP-tree
- Traverse FP-tree by following link of each frequent item
- Accumulate all transformed prefix paths of item to form a conditional pattern base



#### Conditional pattern bases

| item | cond. pattern base |
|------|--------------------|
| C    | f:3                |
| a    | fc:3               |
| b    | fca:1, f:1, c:1    |
| m    | fca:2, fcab:1      |
| p    | fcam:2, cb:1       |



## Step 2: Construct Conditional FP-tree

- For each pattern-base
  - Accumulate count for each item in base
  - Construct FP-tree for frequent items of pattern base

min\_sup= 50% # transaction =5

#### Conditional pattern bases

|                     | <u>item</u> | cond.  | <u>pattern b</u> | ase |   |   |
|---------------------|-------------|--------|------------------|-----|---|---|
|                     | C           | f:3    |                  |     |   |   |
|                     | a           | fc:3   |                  |     |   |   |
|                     | b           | fca:1, | f:1, c:1         |     | f | 2 |
|                     | m           | fca:2, | fcab:1           |     | С | 3 |
| TDB  <sub>p</sub> → | p           | fcam.  | 2, cb:1          |     | а | 2 |
|                     |             |        | fcam             |     | m | 2 |
| _                   |             |        | fcam             |     | b | 1 |
| j                   |             |        | cb               |     |   |   |

#### p-conditional FP-tree



Local frequent item: c:3
Frequent patterns containing p
Freq=> cp: 3



## Step 2: Construct Conditional FP-tree

- For each pattern-base
  - Accumulate count for each item in base
  - Construct FP-tree for frequent items of pattern base

min\_sup= 50% # transaction =5

#### Conditional pattern bases

|                     | item | cond.  | pattern ba | ase |   |     |
|---------------------|------|--------|------------|-----|---|-----|
|                     | C    | f:3    |            |     |   |     |
|                     | a    | fc:3   |            |     |   |     |
|                     | b    | fca:1, | f:1, c:1   |     |   | _   |
| TDB  <sub>m</sub> → | m    | fca:2, | fcab:1     |     | f | 3   |
|                     |      |        |            |     | С | 3   |
|                     |      |        | fca        |     | a | 3   |
|                     |      |        | fca        |     | b | _1_ |
|                     |      |        | fcab       |     |   |     |

#### p-conditional FP-tree



Frequent patterns containing m

Freq=> fm, cm, am, fcm, fam, cam,



#### Mining Frequent Patterns by Creating Conditional Pattern-Bases

| Item | Conditional pattern-base | Conditional FP-tree |
|------|--------------------------|---------------------|
| р    | {(fcam:2), (cb:1)}       | {(c:3)} p           |
| m    | {(fca:2), (fcab:1)}      | {(f:3, c:3, a:3)} m |
| b    | {(fca:1), (f:1), (c:1)}  | Empty               |
| а    | {(fc:3)}                 | {(f:3, c:3)} a      |
| С    | {(f:3)}                  | {(f:3)} c           |
| f    | Empty                    | Empty               |



# Find Frequent Patterns Having Item m But No p (more complex situation)

- Suppose m-conditional pattern base is: fca:3, fb:3
- Local frequent items: *f:6, c:3, a:3, b: 3*
- Build m-conditional FP-tree
- First generate:
  - fm: 6, cm: 3, am:3, bm:3



Compute *ym*-conditional pattern bases:

#### conditional pattern base ym TDB|<sub>bm</sub> *f*:3 bm root Freq: fbm TDB<sub>am</sub> fc:3 am root *f:3* root *f*:3 TDB|cm cm *f:3* Freg: fam, cam, fcam



## FP-growth vs. Apriori: Scalability With the Support Threshold





## Why Is Frequent Pattern Growth Fast?

- Performance study shows
  - FP-growth is an order of magnitude faster than Apriori
- Reasoning
  - No candidate generation, no candidate test
  - Use compact data structure
  - Eliminate repeated database scan
  - Basic operations are counting and FP-tree building



#### Weaknesses of FP-growth

- Support dependent; cannot accommodate dynamic support threshold
- Cannot accommodate incremental DB update
- Mining requires recursive operations



# Participant Leaders

| Points | Participant                           | Points | Participant |
|--------|---------------------------------------|--------|-------------|
| 3      | Al-Azzawe, Mustafa                    |        |             |
| 3      | Alibhai, Aleem                        |        |             |
| 3      | Baek, Yong Joon                       |        |             |
| 3      | Henderson, Connor                     |        |             |
| 3      | Nagy, Peter                           |        |             |
| 3      | Ramanathan,<br>Sinthujan              |        |             |
| 3      | Tran, Luke                            |        |             |
| 2      | Abdul, Moiz                           |        |             |
| 2      | Alvarez-Grekoff,<br>Mathieu Alexander |        |             |
|        |                                       |        |             |