$$= \sqrt{C(v_6)} = \frac{21}{8}$$

b) V6 tepesi için arasındalık değeri:

ţ	<i>`</i>	Gik;	Gii	Giki /Gii
V.	V2	0		0/1=0
√,	V3	O		0/1=0
V.	Vu	0	1	0/1=0
V,	V5	0		0/\=0
	V7	2	2	2/2=1
	78	2	2	2/2=1
Vz	V3	0		0/1=0
V2	Vu	0		0/1=0
Vz	Vs	0	2	0/2=0
- √2	V7		1	1/1=1
V2	V8	1	1	1/1=1

`\	i	Giki	Gij	Giki /Gio		
V3	Vu	0	2	0/2=0		
V3	V5	0		0/1=0		
V3	V7	1	\	1/1=1		
V ₃	V8	1	\	1/1=1		
Ju	V5	0	١	0/1=0		
Vu	V7	1	1	1/1=1		
Vu	18	1	\	1/1=1		
Vs	V7	1	\	1/1=1		
Vs	V8	l,	1	1/1=1		
77	18	0	A	0/1=0		

=> V6 tepesi için arasındalık değeri:

$$(CV_8) = |+|+|+|+|+|+|+|+|= 10$$

Malek Alismail/20253833 /2

2] a) . connectivity değerleri:

· Ortalama alt bağlantılılık:

$$kav(p_9) = 9+2 = 11$$
, $kav(k_{1,8}) = \frac{2.8+1}{9} = \frac{17}{9}$

· Integrity değerleri:

I(K1,8): V, tepes: kaldırırsak en büyük bileşende eleman sayısı 1 olur

- b). Ortalama alt bağlantılılığa göre pg daha dayanıklı çünkü kav(pg) < kav(kı.8)
 - · Integrity'ye göve pg daha dayanıklı fünkü

 I(Pg) > I(k1.8) [Pg'un zedelenebilirlik değeri
 daha yüksek, yani daha dayanıklı]

b)
$$e(V_1) = 2$$
 , $e(V_2) = 2$, $e(V_3) = 3$
 $e(V_4) = 2$, $e(V_5) = 3$, $e(V_6) = 3$

grafin yarı çapı = 2

merkez tepeleri: V, , V2, V4

Kiyi tepeleri: V3, V5, V6

Malek Alismail / 2025 3833 /4

4	Tepeler	V2	V3	٧ų	V۶	V 6	V7
	V,	11	8	8	000	000	8
	·/N3	9		2	١٥	8	8
	744	4			١٥	6	\varnothing
	10 N2 11				10	6	∞
	V6				3		5
	V5				7		5
,	V7						5

· Viden Vjye enkisa yolu:

V1 -> V3 -> V4 -> V6 -> V7