Assignment - Week -3

Bayesian Classification

Given shudy of pleas & prison sentences,

$$P(prison) = 0.42$$

a) probability of a person who was not sent to the prison

b) given subject entered a guilty plea, what is the probability

that subject was not sent to prison.

prison given that the subject pleaded guilty).

$$P(Y|X) = P(X|Y) \cdot P(Y)$$

$$P(X)$$

Similarly,

based on
$$I(a)$$
 $P(prison) = 0.58$

we need to calculate,

using p (Guilty) in our actuar equation

$$P(\frac{prison}{Guilty}) = \frac{0.5 \times 0.58}{0.4496}$$

subject entered a guilty plea, probability of sent to (b) prison

from 1(b) P (Guilty) = 0.4496 from question P (prison)= 0.42, P (Guilty) prison) = 0.38

Substituting the values;

$$P(prison | Guilty) = \frac{0.38 \times 0.42}{0.4496}$$

$$P(prison | Guilty) = \frac{0.38 \times 0.42}{0.4496}$$

This can also be calculated by 1- P (prison | Builty)

Given table, (attached) we have 20 data points with 4 features.

2-categories (M,F) i.e., gendem 3- categories (Family, sports, Luxury) Car type 4-Categories (Small, medium, Lange, Shirt Size 2-categories (co, G)

classes

a) p (Gender = M | class = Co)

This can be obtained using frequency table & likelihood table. (using data table)

class frequencs:

frequencs: Gender	e cCo (non	Ci
M	6	W. Art.
F	4	(29) 9 62 3
probability table	V - 00-0 x 88	O Collans

Gender 4/10. 6/10 M

P (Gender=M | clam co = 6/10

and a store

mo of part

11 11

Stroy ?

MANI

	Candar	Car Type	Shirt Size	Class	
Customer ID		Family	Small	co	
1	M		Medium	CO	
2	М	Sports	Medium	CO	and se
3	М	Sports		CO	7
4	M	Sports	Large	CO	1 07
5	М	Sports	Extra Large		
6	М	Sports	Extra Large	CO	
7	F	Sports	Small	CO	
8	F	Sports	Small	CO	
9	F	Sports	Medium	CO	/
10	⊕ _F	Luxury	Large	CO	
11	М	Family	Large	C1	21100
12	<i>М</i>	Family	Extra Large	C1	post no
13	М	Family	Medium	C1	
14	М	Luxury	Extra Large	C1	100
15	f f	Luxury	Small	C1	
16	y F	Luxury	Small	C1	Soft
17	F	Luxury	Medium	C1	whire
18	F	Luxury	Medium	C1	
19	//: F-	Luxury	Medium	C1	2710
20	F	Luxury	Large	C1	
					MARK
	110	14 m	1 . / 05	Juli)	nr.
				1.	

.

this can be obtained by the frequency & probability table of car type us class

Co frequency: Car type family sports 1 ununy

probability

	Co	
car type	1	3/10
family	1/10	0/10
	8/w	
sports	10	Alio
1 unity		

=> using the previous probability table

$$P(Family | C_i) = 3/10 = 0.3$$

this can be obtained using class us shirt size frequency ? Probability table.

Shirt size	Co	13/11/19
Small	3 3 4	2
Medium	3	in in the server to topic
lange	2	
Extra large	2 (2000)	1=9/200 , 7 - who refrom

Probability	

Child	(water identi-	
bability to be	trustof plant of the	of 1 (June - 1 Johns) of the
shirt size	3/10	2/10
small	3/10	9 4/10
medium	2/10 /2/10	2/10.
longe		2/10
Enha longe	2/10	

=> P (shirt size= medlum / clam = a)

2 (b) class of
P (Gender = F | Capityp = Family | shirt size = Medium)

home we need to clawify if gender F, chartype family & Shirt size medium is class Co & Classing Naive bayes

P (class | gender = F, cartype = family, shirt = medium)

of P(gender=F) class). P(contye=family/class) . P (shirt=medium/class)

we have 10 data point C, & 10 data point Co

from Own probability table we can calculate Probabilitis of Each clan againest Each feature.

P (Gender = F|clan = Co) = 4|10 = 0.4
P (Gender = F|clan = Ci) = 6|10 = 0.6
P (Cartype = family |clan = Co) =
$$\frac{1}{2}$$
 = 0.1

11/4 for class C,

= 0.6 × 0.3 × 0.4

P(C) = 0.072 (de - 1) (mile / 1 mile)

as P (clan Ci) => P (class Co)

0.072 7 0.012 it is more likely belong to dan 'CI'

thus the

Clam Of P (Gender= F | casitype = family | stirtsize = medium)

Or other - Go man brother manh to de

(and or we it many

is . | 'C1' |