Prüfung vom 23.11.2016 **EV - 2016**

Lösungen zur schriftlichen Prüfung aus VO Energieversorgung am 23.11.2016

<u>Hinweis:</u> Bei den Berechnungen wurden alle Zwischenergebnisse in der technischen Notation¹ (Format ENG) dargestellt und auf drei Nachkommastellen gerundet. Für die weitere Rechnung wurde das gerundete Ergebnis verwendet.

Abhängig vom Rechenweg kann es aber dennoch zu leicht abweichenden Ergebnissen kommen!

1. Thermische Auslegung eines Erdkabels

a. Wie groß ist der spezifische thermische Gesamtwiderstand? Zeichnen Sie den Ersatzschaltplan für den Wärmestrom.

$$R_{w}^{'} = 1,295 \frac{K \cdot m}{W}$$
 (0.1)

b. Welche **Dauerstrombelastung** des Innenleiters darf nicht überschritten werden bei einem maximal zulässigen Temperaturunterschied zur Umgebung des Innenleiters von 75°C?

$$I_{them} = 1530,634 \text{ A}$$
 (0.2)

c. Wie groß ist die bezogene **Betriebskapazität** des Kabels ($\varepsilon_{r, VPE} = 2,4$)?

$$C'_{B} = 0.201 \frac{\mu F}{km}$$
 (0.3)

d. Berechnen Sie die thermisch übertragbare Scheinleistung dieses Dreiphasen-systems.

$$S_{therm} = 571,577 \text{ MVA}$$
 (0.4)

e. Wie groß sind der **bezogene Ladestrom** und die **bezogene Ladeleistung** dieses Dreiphasensystems?

$$I_{\rm C}' = 7,981 \, \frac{A}{\rm km}$$
 (0.5)

$$Q_{\rm C}' = 3041,169 \frac{\text{kvar}}{\text{km}}$$
 (0.6)

f. Das Dreiphasensystem habe eine Länge von 50km. Wie groß ist die kapazitive **Blindleistung** des leerlaufenden Systems? Dieser Wert soll auf 45% reduziert werden. Wie groß ist die dafür notwendige **Induktivität?**

$$Q_c = 163,852 \text{ Myar}$$
 (0.7)

$$L = 2,047 \text{ H}$$
 (0.8)

¹ http://de.wikipedia.org/wiki/Wissenschaftliche Notation

Prüfung vom 23.11.2016 **EV - 2016**

2. Dreipoliger Kurschluss (24 Punkte)

a. Berechnen Sie die **Netzimpedanz** (Resistanz und Reaktanz) bezogen auf die Kurzschlussseite (Leitung).

$$\underline{X}_{Q} = 0.216 \Omega$$

$$R_{Q} 0.043 \Omega$$
(0.9)

b. Berechnen Sie die **Leitungslängsimpedanz** (Resistanz und Reaktanz) und die **Transformatorimpedanz** bezogen auf die Kurzschlussseite (Leitung).

Trafo:

$$R_T = 0.084 \Omega$$

 $X_T = 3.599 \Omega$ (0.10)

Leitung:

$$R_{L} = 8 \Omega$$

 $X_{L} = 9,425 \Omega$ (0.11)

c. Zeichnen Sie die korrekte **Verschaltung** der **Komponentensysteme** am Kurzschlussort für den angegebenen Kurzschlussfall **in** das **untenstehende Diagramm** ein.

d. Berechnen Sie den Betrag des **Stroms** im **Mitsystem** für den angegebenen Kurzschlussfall.

$$\underline{I}_{(1)} = (0,654 - j \cdot 1,063) \text{ kA} = 1,248 \text{ kA} | -58,393^{\circ}$$
 (0.12)

e. Berechnen Sie den Betrag des Stroms im Gegensystem für den angegebenen Kurzschlussfall.

$$\underline{I}_{(2)} = 0 \tag{0.13}$$

f. Berechnen Sie den Betrag des **Stroms** im **Nullsystem** für den angegebenen Kurzschlussfall.

$$I_{(2)} = 0 ag{0.14}$$

g. Berechnen Sie die Beträge der drei Phasenströme am Kurzschlussort.

$$\begin{pmatrix} \underline{I}_{a} \\ \underline{I}_{b} \\ \underline{I}_{c} \end{pmatrix} = \begin{pmatrix} 0,654+j\cdot1,063 \\ -1,248+j\cdot0,035 \\ 0,594-j\cdot1,098 \end{pmatrix} \text{ kA } = \begin{pmatrix} 1,248 \text{ kA } |\underline{58,399}^{\circ} \\ 1,248 \text{ kA } |\underline{-178,399}^{\circ} \\ 1,248 \text{ kA } |\underline{61,602}^{\circ} \end{pmatrix} \text{ kA } = \begin{pmatrix} 1,248 \text{ kA } |\underline{-58,399}^{\circ} \\ 1,248 \text{ kA } |\underline{-178,399}^{\circ} \\ 1,248 \text{ kA } |\underline{-298,399}^{\circ} \end{pmatrix} \text{ kA }$$

Prüfung vom 23.11.2016 **EV - 2016**

3. Bartwertvergleich (24 Punkte)

a. Wie groß ist der **Barwert des Pumpspeicherkraftwerks** zum Zeitpunkt der Inbetriebnahme in Hinblick auf die Versorgungsaufgabe.

$$B_{0,\text{Pump}} = 1421 \cdot 10^6 \in \tag{0.16}$$

b. Wie groß ist der **Barwert des Gasturbinenkraftwerks** zum Zeitpunkt der Inbetriebnahme in Hinblick auf die Versorgungsaufgabe?

$$B_{0.\text{Gas}} = 1229, 1 \cdot 10^6 \in \tag{0.17}$$

c. Nach 35 Jahren wird das Gasturbinenkraftwerk um 25 Mio. € generalsaniert, sodass sich die Nutzungsdauer um weitere 15 Jahre erhöht. Wie groß ist unter diesen Umständen der Barwert des Gasturbinen-KW zum Zeitpunkt der ursprünglichen Inbetriebnahme?

$$B_{0,\text{Gas-saniert}} = 1313 \cdot 10^6 \in$$
 (0.18)

d. Welches Kraftwerk ist **wirtschaftlich günstiger** bezogen auf die errechneten Barwerte für eine Nutzungsdauer von 50 Jahren?

Das Gaskraftwerk ist günstiger, da der Barwert kleiner ist.

4. Fünf Sicherheitsregeln

Siehe Skriptum

5. Theoriefragen

1a, 2a, 3a, 4b, 5b, 6c, 7a, 8c, 9a, 10a, 11c, 12a, 13a, 14c, 15a, 16b, 17a, 18b, 19a, 20c, 21c, 22c, 23c, 24b