* ()	$ \begin{array}{c ccccccccccccccccccccccccccccccccccc$	1	,
* (2)	[hi cey] -2 Nu' +2: [1] 1 [] [] [] [] [] [] [] [] [Ž
dr (3)	$ \begin{array}{c c} d^{3} & & & & & \\ \hline (Cu(Nn_{3})_{y} & & & & \\ \hline $	But acc to	NCERT
*(4)	[Ni(co.)4) [Ni(co.)4) [12[14]14] [12] [sp3]	1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	

[acco)6] ca : [14141]]] dep3

Stereoisomerism in Octahedratral Complexes

Types of complex	(Cis + Trans)	Optical fromers (O.A. • O.Inactive)	Total S.I	
ma are	2(10as • 17mms)	No Optical teamers	2	
[Ma,te]**	Z(tCo + tTuvia)	No Optical Islamets	2	
[Ma,b,]"	2(10x - 11rms)	No Optical Isomers	2	
(Ma,b,c)**	3(10m + 21mms)	No Optical Isomers	3	
[Ma,ted]**	4(10m • 31rans)	5(2+3)	.5	
Ma,h,c,F	5(1Crs • 4Trans)	6(2+4)	6	100
Ma,b,cis;**	6(CCrs • 4Trans)	8(4+4)	8 -	-> 3 ~
Ma,bode ^{pri}	9(6Cis + 3Trans)	15(12 • 3)	15	
Materiel 7"	15(Cs & trans not defined)	30(30 • 0)	30	

Types of complex	Geometrical Isomers (Cis + Trans)	(O.A. + O.Inactive)	Total S.T	
(M(AA))	No Geometrical Isomers	2(2 • 0)	2	
IM(AA) PL	2(1Crs • 1Trans)	2(2+1)	3	
p.yas, of	2(10s • 11rans)	3(2 • 1)	3	
Missey at	3(10s • 21rans)	4(2 - 2)	4	
in Andrew	7(10± - 15:209)	No Optical transers	2].
PM(MA)D,007°	4(2Crs + 2Trans)	6(4 + 2)	6	= ? w 1 tros
MA Areder		12(12 • 0)	. 12	1

Types of complex	(Cis • Trans)	Optical Isomers (O.A. + O.Inactive)	Total 5.1	
לינועואם!"ב	2(1Cis + 1Trans)	4(4 + 0)	4	
(MAH) c.Pe	5(100 - (100)	8(£ • 2)	8	
(M(AS),cd)*-	6(2Cis · 4Trans)	11(10 • 1)	11 -	is strang.
IMIAEK, O.T.	4(2Cis + 2Trans)	6(-: + 2)	6	
pa(AB): dy	3(1Cis • 2Trans)	4(2+2)	4	
Charle usta	7/4Cis • ETrans)	12(10 + 2)	12 -	su, z trun
Lipe Stone of	This & trans not defined)	24(24 - 9)	7.4	11