DISTRIBUSI KONTINU

- Uniform
- Normal
- Gamma & Eksponensial

MA 2181 Analsis Data Utriweni Mukhaiyar

Oktober 2011

Distribusi Uniform

- Distribusi kontinu yang paling sederhana
- □ Notasi: $X \sim U(a,b)$

b

a

f.k.p:
$$f(x) = \begin{cases} \frac{1}{b-a}, & a < x < b \\ 0, & x \text{ lainnya} \end{cases}$$

Rataan :
$$E[X] = \frac{b+a}{2}$$

Rataan :
$$E[X] = \frac{b+a}{2}$$

Variansi : $Var(X) = \frac{(b-a)^2}{12}$

ribusi Normal (Gauss)

Karl Friedrich Gauss 1777-1855

- Banyak digunakan

Penting dipelajari
 Aproksimasi Binomial

- Teorema limit pusat

□ Notasi: $X \sim N(\mu, \sigma^2)$

• N(0,1) disebut **normal standar** (baku)

Kurva Normal

Pengaruh μ dan σ

Luas di bawah kurva Normal

Menghitung Peluang Normal

1

Sulit !!!
Harus dihitung
secara numerik

1. Cara langsung

•
$$P(a < X < b) = \int_{a}^{b} \frac{1}{\sigma \sqrt{2\pi}} e^{-\frac{1}{2} \left(\frac{x-\mu}{\sigma}\right)^{2}} dx$$

2. Dengan tabel normal standar $P(Z \le z)$

						_	
X	0	0,01	0,02	0,03	0,04		0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160		0,5239
:							
1,1	0,8643	0,8665	0,8686	0,8708	0,8729		0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925		0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099		0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251		0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382		0,9441
:							
3,4	0,9997	0,9997	0,9997	0,9997	0,9997		0,9998

$$Z = \frac{X - \mu}{\sigma}$$

Arti Tabel Normal

□ Misal $Z \sim N(0,1)$ dan $z \in \mathbb{R}$, $-3,4 \le z \le 3,4$

Membaca Tabel Normal

X	0	0,01	0,02	0,03	0,04		0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160		0,5239
:							
1,1	0,8643	0,8665	0,8686	0,8708	0,8729		0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925)	0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099		0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251		0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382		0,9441
:							
3,4	0,9997	0,9997	0,9997	0,9997	0,9997		0,9998

Hitung P ($0 \le Z \le 1,24$)

$$P(0 \le Z \le 1,24) = P(Z \le 1,24) - P(Z \le 0)$$

= 0,8925 - 0,5 = 0,3925

P(*Z* ≤ 0)

P(*Z* ≤ 1,24)

X	\ 0	0,01	0,02	0,03	0,04	/	0,09
0,0	0,5000	0,5040	0,5080	0,5120	0,5160	/	0,5239
:							
1,1	0,8643	0,8665	0,8686	0,8708	0,8729		0,8830
1,2	0,8849	0,8869	0,8888	0,8907	0,8925		0,9015
1,3	0,9032	0,9049	0,9066	0,9082	0,9099		0,9177
1,4	0,9192	0,9207	0,9222	0,9236	0,9251		0,9319
1,5	0,9332	0,9345	0,9357	0,9370	0,9382		0,9441
:							
3,4	0,9997	0,9997	0,9997	0,9997	0,9997		0,9998

Contoh 1

http://www.nataliedee.com/101906/nightshift-at-the-factory-factory.jpg

Suatu perusahaan listrik menghasilkan bola lampu yang umurnya berdistribusi normal dengan rataan 800 jam dan standar deviasi 40 jam.

Hitunglah peluang suatu bola lampu dapat menyala **antara 778 dan 834 jam**

Jawab

Misal X : umur bola lampu

$$X \sim N (800,40^2)$$

 $X \sim N \ (800,40^2)$ Dengan transformasi $Z = \frac{X - \mu}{\sigma}$:

$$P(778 < X < 834) = P\left(\frac{778 - 800}{40} < Z < \frac{834 - 800}{40}\right)$$

$$= P(-0,55 < Z < 0,85)$$

$$= P(Z < 0,85) - P(Z \le -0,55)$$

$$= 0,8023 - 0,2912$$

$$= 0,5111$$

Contoh 2

Suatu pabrik dapat memproduksi voltmeter dengan kemampuan pengukuran tegangan, rataan 40 volt dan standar deviasi 2 volt. Misalkan tegangan tersebut berdistribusi normal.

Dari 1000 voltmeter yang diproduksi, berapa voltmeter yang tegangannya melebihi 43 volt?

Jawab

Misal X: tegangan voltmeter

$$X \sim N(40, 4)$$

Dengan transformasi $Z = \frac{X - \mu}{\sigma}$

$$P(X > 43) = P\left(Z > \frac{X - 43}{2}\right)$$

$$= P(Z > 1,5)$$

$$= 1 - P(Z \le 1,5)$$

$$= 1 - 0,9332$$

$$= 0,0668$$

Banyaknya voltmeter yang tegangannya lebih dari 43 volt adalah

1000 unit x 0,0668

≈ 66 unit

Aproksimasi Binomial dengan Normal

Jika $n \to \infty$ maka $B(n,p) \to N(\mu, \sigma^2)$ dimana $\mu = np$ dan $\sigma^2 = np(1-p)$

Semakin besar n, binomial semakin dekat ke normal

Contoh 3

http://www.bratachem.com/abate/imag es/demam.jpg

Misal **peluang** seorang pasien sembuh dari suatu penyakit demam berdarah adalah **0,4**.

Bila diketahui ada **100 pasien** demam berdarah, berapa peluangnya bahwa yang sembuh

- a. tepat 30 orang
- b. kurang dari 30 orang

Jawab

Misal *X*: banyaknya pasien yang sembuh

$$X \sim B(n,p)$$
, $n = 100$; $p = 0.4$

Rataan: $\mu = np = 100 \times 0.4 = 40$

St.Dev:
$$\sigma = \sqrt{np(1-p)} = \sqrt{40 \times 0, 6} = 4,899$$

a. Peluang bahwabanyaknya pasienyang sembuh tepat30 orang adalah:

$$P(X = 30) \approx P(29, 5 < X < 30, 5)$$

$$= P\left(\frac{29, 5 - 40}{4,899} < Z < \frac{30, 5 - 40}{4,899}\right)$$

$$= P(-2, 14 < Z < -1, 94)$$

$$= P(Z < -1, 94) - P(Z < -2, 14)$$

$$= 0,0262 - 0,0162$$

$$= 0,01$$

-2,14 -1,94 0

Jawaban lanjutan

b. Peluang bahwa banyaknya pasien yang sembuh akan kurang dari 30 adalah:

$$P(X < 30) \approx P\left(Z < \frac{29, 5 - 40}{4,899}\right)$$
$$= P(Z < -2,14)$$
$$= 0,0162$$

Distribusi Gamma

- □ Notasi $X \sim \text{Gamma}(\alpha, \beta)$
- □ f.k.p

$$f(x) = \begin{cases} \frac{1}{\Gamma(\alpha)\beta^{\alpha}} x^{\alpha-1} e^{-x/\beta} & , 0 < x < \infty \\ 0 & , x \text{ lainnya} \end{cases}$$

$$\alpha > 0 \operatorname{dan} \beta > 0$$

 $\ \ \ \Gamma(\alpha)$ disebut fungsi gamma

$$\Gamma(\alpha) = \int_{0}^{\infty} y^{\alpha - 1} e^{-y} dy$$

dimana $\Gamma(1)=1$ dan $\Gamma(\alpha)=(\alpha$ -1)!, jika $\alpha>1$

- $\Box \ \mathsf{E}[\mathsf{X}] = \alpha\beta \quad \mathsf{dan} \ \mathsf{Var}(\mathsf{X}) = \alpha\beta^2$
- Digunakan untuk memodelkan waktu tunggu
- \square Keluarga Gamma(α , β): distribusi eksponensial, khi kuadrat, Weibull, dan Erlang

Distribusi Eksponensial

- \square Keluarga distribusi gamma $(1, 1/\lambda)$
- □ Notasi: $X \sim \text{Exp}(λ)$
- \Box f.k.p

$$f(x) = \begin{cases} \lambda e^{-\lambda x} & , 0 < x < \infty \\ 0 & , x \text{ lainnya} \end{cases}$$

- $E[X] = 1/\lambda$
- $Var(X) = 1/\lambda^2$
- Digunakan untuk memodelkan waktu antar kedatangan

Contoh 4

Misalkan lama pembicaraan telepon dapat dimodelkan oleh distribusi eksponensial, dengan rataan 10 menit/orang.

http://www.beritajakarta.com/images/foto/antri-pasar-murah-a.jpg&imgrefurl=http://pdpjaktim.blogspot.com/2007/09/

Bila seseorang tiba-tiba mendahului anda di suatu telepon umum, carilah peluangnya bahwa anda harus menunggu:

- a. lebih dari 10 menit
- b. antara 10 sampai 20 menit

Jawab

Misalkan X : lama pembicaraan telepon Dik. $X \sim \exp(1/10)$ sehingga

$$f(x) = \frac{1}{10}e^{-x/10}$$

Jadi,

a.

$$P(X > 10) = 1 - P(X \le 10)$$

$$=1-\int_{0}^{10}\frac{1}{10}e^{-x/10}dx=1-0,368=0,632$$

$$=1-\int_{0}^{10} \frac{1}{10}e^{-x/10}dx = 1-0,368 = 0,632$$
b.
$$P(10 < X < 20) = \int_{10}^{20} \frac{1}{10}e^{-x/10}dx = 0,233$$

Referensi

- Walpole, Ronald E. dan Myers, Raymond H., *Ilmu Peluang dan Statistika untuk Insinyur dan Ilmuwan*, Edisi 4, Bandung: Penerbit ITB, 1995.
- Walpole, Ronald E., et.al, 2007, *Statistitic for Scientist and Engineering*, 8th Ed., New Jersey: Prentice Hall.
- Pasaribu, U.S., 2007, Catatan Kuliah Biostatistika.