Formelsammlung

Sammlung gegliedert nach Fach

Fabian Suter, 10. November 2023

https://github.com/FabianSuter/Formelsammlung.git

1 Mathematik

1.1 Reelle Zahlen

\mathbb{N}	$\{1, 2, 3, 4,\}$	ganze Zahlen
\mathbb{N}_0	$\{0, 1, 2, 3,\} = \mathbb{N} \cup \{0\}$	ganze Zahlen inkl. 0
$\mathbb Z$	$\{\pm 1, \pm 2, \pm 3\} \cup \{0\}$	natürliche Zahlen
\mathbb{Q}	$\{\frac{p}{q} p\in\mathbb{Z}\wedge q\in\mathbb{Z}\setminus\{0\}\}$	rationale Zahlen
\mathbb{R}	7	ergänzt Q durch irr. Zahlen wi
$\mathbb{R}\setminus\mathbb{Q}$		Irrationale Zahlen

1.1.1 Supremum und Infimum

- sup(X)kleinste obere Schranke Maximum ist immer auch Supremum
- inf(X)grösste untere Schranke Minimum ist immer auch Infimum

1.1.2 Binomischer Satz / Binomialkoeffizient

Pascal-Dreieck berechnen:
$$(a+b)^n = \sum_{k=0}^n \binom{n}{k} a^{n-k} \cdot b^k$$

$$\binom{n}{k} = \binom{n}{n-k}$$

$$\binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

$$\binom{n}{k} = \binom{n}{n-k} \qquad \qquad \binom{n}{k-1} + \binom{n}{k} = \binom{n+1}{k}$$

$$\binom{n}{k} = \frac{n!}{k!(n-k)!}$$
 $\binom{n}{k} = 0$ wenn k
 < 0 oder k > n

$$\binom{n}{0} = 1 \qquad \qquad \binom{n}{n} = 1$$

1.1.3 Umgebung

- Jedes offene Intervall, dass die Zahl a enthält, U(a) heisst eine Umgebung von a
- Es sei $\epsilon > 0$. Unter der ϵ -Umgebung von a versteht man das offene Intervall $(a - \epsilon, a + \epsilon)$ $U_{\epsilon}(a)$
- Eine ϵ -Umgebung von a ohne die Zahl a selbst wird punktierte ϵ -Umgebung von a genannt

1.1.4 Spezielle endliche Reihen

- arithmetisch: $\sum_{i=1}^{n} i = \frac{n(n+1)}{2}$
- geometrisch: $\sum_{i=0}^{n} q^i = \frac{q^{n+1}-1}{q-1}$

1.1.5 Mittelwerte

- Harmonisches Mittel (HM): $\frac{1}{\frac{1}{n}(\frac{1}{a_1} + \frac{1}{a_2} + \dots + \frac{1}{a_n})}$
- Geometrisches Mittel (GM): $\sqrt[n]{a_1 a_2 \dots a_n}$
- Arithmetisches Mittel (AM): $\frac{1}{n} \cdot \sum_{i=1}^{n} a_i = \frac{a_1 + a_2 + \dots + a_n}{n}$

1.1.6 Spezielle Ungleichungen

- Bernoulli-Ungleichung: $(1+a)^n > 1 + n \cdot a$
 - für $n \in N, n \ge 2, a \in R, a > -1, a \ne 0$
- $|a \cdot b| \leq \frac{1}{2}(a^2 + b^2)$ Binomische Ungleichung:
- $\sqrt{2}$, reelle Zahlen Mittelungleichung: $HM \le GM \le AM$
- HM = GM = AMGleichheit:
 - für $a_1 = a_2 = ... = a_n$
- Dreiecksungleichungen:
 - $|a+b| \le |a| + |b|$ $|a-b| \le |a| + |b|$ |a-b| > ||a| - |b||

1.1.7 Vollständige Induktion

- Verankerung VA: Beweise Formel für a_0
- Vererbung VE: (1) Annahme: Formel gilt für a_n
 - (2) Schritt: Formel gilt auch für $a_{n+y} = \langle$

Mittels Berechnung soll bewiesen werden, dass (2) ebenso gilt wie (1)

Beispiel:

- $\sum_{n=1}^{n+1} i = \frac{(n+1)(n+1+1)}{2} = \frac{(n+1)(n+2)}{2}$

1.2 Funktionen

- Schreibweisen:
- $f: D_f \to W_f \text{ mit } x \mapsto f(x)$ $f: x \mapsto f(x)$ mit $x \in D_f$
- $\dot{U}_{\epsilon}(a) = U_{\epsilon}(a) \setminus a \mid y = f(x) \text{ mit } x \in D_f$

- $x_1 < x_2 \Rightarrow f(x_1) \leq f(x_2)$ Monoton wachsend: $x_1 > x_2 \Rightarrow f(x_1) \geq f(x_2)$ Monoton sinkend:
- Monoton streng ...: Siehe oben, jedoch immer $f(x_1) < f(x_2)$ bzw. $f(x_1)$ Beschränktheit: Funktion besitzt obere oder untere Grenze, meist in Umkehrbarkeit: Streng monotone Funktionen sind umkehrbar, pro a
 - Nur einen Teil von D_f betrachten
 - \Rightarrow Umkehrbarkeit

1.2.1 Transformationen

Restriktion:

- Streckung um 1/a in x-Richtung $y = f(a \cdot x)$ Spiegelung an v-Achse bei -a
- Verschiebung nach links (+b) oder rechts (-b) $y = f(x \pm b)$
- Streckung um c in y-Richtung $y = c \cdot f(x)$ Spiegelung an x-Achse bei -c
- Verschiebung nach oben $(+\mathbf{d})$ oder unten $(-\mathbf{d})$ $y = f(x) \pm d$

1.2.2 Spezielle Funktionen

Identität

f(x) = xy-Wert ist gleich dem x-Wert

Signum-Funktion

- Vorzeichenfunktion f(x) = sqn(x)
- 1, falls x > 00, falls x = 0-1, falls x < 0

Floor-Funktion

Abrunden auf nächste ganze Zahl

Schreibweise: x - [x]

1.2.3 Schwingungen

Sinus-Schwingung: $y = A \cdot \sin(\omega t + \phi)$

 ω Frequenz $\frac{2\pi}{\cos}$ A Amplitude φ Phase

Superposition von Schwingungen

$$y = A \cdot \sin(\omega t + \varphi) = A_1 + A_2 \cdot \sin(\omega t + \varphi_1 + \varphi_2)$$

$$A = \sqrt{A_1^2 + A_2^2 + 2A_1 \cdot A_2 \cdot \cos(\varphi_1 - \varphi_2)}$$

1.2.4 Verkettung oder mittelbare Funktion

g nach f:

$$h(x) = g \circ f \Rightarrow h(x) = g(f(x))$$
 $W_h = W_q \to D_h = D_f$

$$h(x) = f \circ g \Rightarrow h(x) = f(g(x))$$
 $W_h = W_f \rightarrow D_h = D_g$

1.2.5 Gerade / ungerade Funktionen

gerade: f(-x) = f(x) symmetrisch zu y-Achse

ungerade: f(-x) = -f(x)punktsymmetrisch periodisch: $f(x) = f(x \pm p)$ wiederholend mit Periode p

1.2.6 Ganzrationale Funtkionen (Polynome)

Aussehen: $f(x) = a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0$

Nullstellen bestimmen:

Quadratische Funktion: $x_1, x_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2c}$

Faktorisierung mit Binomen / Hornerschema

Eine Funktion vom Grad n hat höchstens n verschiedene Nullstellen!

1.2.7 Gebrochenrationale Funktionen

Aussehen:
$$f(x) = \frac{p_m(x)}{q_n(x)} = \frac{a_m x^m + a_{m-1} x^{m-1} + \dots + a_1 x + a_0}{a_n x^n + a_{n-1} x^{n-1} + \dots + a_1 x + a_0}$$

Zählergrad $_{\mathrm{m}}$ Nennergrad n

m < n echt gebrochen

m = n gleichgradig

m > n unecht gebrochen

Jede unecht gebrochene Funktion lässt sich als Summe einer ganzrationalen Funktion und einer echt gebrochenen Funktion schreiben.

 \Rightarrow Polynomdivision

1.2.8 Hornerschema

Zerlegt eine ganzrationale Funktion vom Grad n in einen Linearfaktor (Nullstelle) und ein Polynom vom Grad n-1

- 1. Nullstelle x_0 raten
- Von oben nach unten summieren
- Diagonal nach rechts mit x_0 multiplizieren

Beispiel:

$$f(x) = x^3 - 67x - 126$$

$$\Rightarrow f(x) = (x - x_1)(b_2x^2 + b_1x + b_0) = (x + 2)(x^2 - 2x - 63)$$

1.2.9 Polynomdivision

Liefert Summe aus ganzrationaler Funktion und echt gebrochener Funktion

Beispiel:

$$(-2x^{2} - x - 1) \div (x - 1) = -2x - 3 + \frac{-4}{x - 1}$$

$$-3x - 1$$

$$-3x - 3$$

$$-4$$

1.2.10 Partialbruchzerlegung

- echt gebrochen (m < n)(1)
 - $Ja: \rightarrow (2)$ Nein: \rightarrow Polynomdivision
- (2)Nenner faktorisieren pro Faktor ein Teilbruch
- Berechnung Zählerkonstanten
- (3.1)Gleichnahmig machen (kgV)
- (3.2)Zählergleichung
- (3.3)Einsetzen von "guten" x-Werten

Beispiel PBZ

- $f(x) = \frac{1}{a^2 x^2}$
- (2) $a^2 x^2 = (a+x)(a-x)$
- (3) $\frac{A}{a+x} + \frac{B}{a-x} = \frac{1}{a^2-x^2}$
- (3.1) $\frac{A(a-x)+B(a+x)}{a^2-x^2} = \frac{1}{a^2-x^2}$
- (3.2) A(a-x) + B(a+x) = 1
- (3.3) $x = a \Rightarrow B(2a) = 1 \Rightarrow B = \frac{1}{2a}$ $x = -a \Rightarrow A(2a) = 1 \Rightarrow A = \frac{1}{2a}$

Spezielle Ansätze PBZ

$$f(x) = \frac{5x^2 - 37x + 54}{x^3 - 6x^2 + 9x} = \frac{A}{x} + \frac{B}{x - 3} + \frac{C}{(x - 3)^2}$$
$$= \frac{A(x - 3)^2 + Bx(x - 3) + Cx}{x(x - 3)^2}$$

$$f(x) = \frac{1.5x}{x^3 - 6x^2 + 12x - 8} = \frac{A}{x - 2} + \frac{B}{(x - 2)^2} + \frac{C}{(x - 2)^3}$$
$$= \frac{A(x - 2)^2 + B(x - 2) + C}{(x - 2)^3}$$

$$f(x) = \frac{x^2 - 1}{x^3 + 2x^2 - 2x - 12} = \frac{A}{x - 2} + \frac{Bx + C}{x^2 + 4x + 6}$$
$$= \frac{A(x^2 + 4x + 6) + (Bx + C)(x - 2)}{(x - 2)(x^2 + 4x + 6)}$$

1.2.11 Trigonometrie. Arcus

$$\sin(x)$$
: $D_f = [-\frac{\pi}{2}, \frac{\pi}{2}] \rightarrow W_f = [-1, 1]$

$$\begin{array}{llll} \sin(x) \colon & D_f = \left[-\frac{\pi}{2}, \frac{\pi}{2} \right] & \to & W_f = \left[-1, 1 \right] \\ \cos(x) \colon & D_f = \left[0, \pi \right] & \to & W_f = \left[-1, 1 \right] \\ \tan(x) \colon & D_f = \left(-\frac{\pi}{2}, \frac{\pi}{2} \right) & \to & W_f = \mathbb{R} \\ \cot(x) \colon & D_f = \left(0, \pi \right) & \to & W_f = \mathbb{R} \end{array}$$

$$\cot(x)$$
: $D_f = (0,\pi)^2 \longrightarrow W_f = \mathbb{R}$

$$\arcsin(x)$$
: $D_f = [-1, 1] \rightarrow W_f = [-\frac{\pi}{2}, \frac{\pi}{2}]$

$$\begin{array}{lll} \arcsin(x) \colon & D_f = [-1,1] & \to & W_f = [-\frac{\pi}{2}, \frac{\pi}{2}] \\ \arccos(x) \colon & D_f = [-1,1] & \to & W_f = [0,\pi] \\ \arctan(x) \colon & D_f = \mathbb{R} & \to & W_f = (-\frac{\pi}{2}, \frac{\pi}{2}) \\ \arccos(x) \colon & D_f = [-1,1] & \to & W_f = (0,\pi) \end{array}$$

$$\arctan(x)$$
: $D_f = \mathbb{R}$ $\rightarrow W_f = (-\frac{\pi}{2}, \frac{\pi}{2})$

$$D_f = [1,1] \qquad \forall \quad W_f = (0,N)$$

Umwandlung

$$\sin(x + \frac{\pi}{2}) = \cos(x) \qquad \cos(x - \frac{\pi}{2}) = \sin(x)$$

Symmetrien

Sinus

Punkt
$$(0|0) \rightarrow \sin(-x) = -\sin(x)$$

Scheitelsymm. $\rightarrow \sin(\frac{\pi}{2} + x) = \sin(\frac{\pi}{2} - x)$
Punkt $\rightarrow \sin(\pi - x) = \sin(x)$

Cosinus

y-Achse
$$\rightarrow \cos(-x) = \cos(x)$$

Scheitel $\rightarrow \cos(\pi - x) = \cos(\pi + x)$

1.2.12 Winkel zwischen beliebigen Geraden

Zwischenwinkel: $\tan(\alpha) = \frac{m_1 - m_2}{1 + m_1 \cdot m_2} \rightarrow \text{Winkel geg. Uhrzeiger}$

Senkr. Geraden: $m_1 \cdot m_2 = -1$

1.3 Folgen und Reihen

1.3.1 Spezielle Folgen und Reihen

Arithmetische Folge: $a_{n+1} = a_n + d$ $d = a_{n+1} - a_n$

Geometrische Folge: $a_{n+1} = q \cdot a_n$ $q = \frac{a_{n+1}}{a_n}$

Konstante Folge: $a_{n+1} = a_n$

1.3.2 Beschränktheit / Monotonie

Beschränktheit

 $W_f \subset [a;b]$ und a, b $\in \mathbb{R}$

Monotonie

$f(x_1) \le f(x_2)$	$x_1 < x_2$	monoton wachsend	↑
$f(x_1) < f(x_2)$	$x_1 < x_2$	streng monoton wachsend	\uparrow
$f(x_1) \ge f(x_2)$	$x_1 > x_2$	monoton fallend	\rightarrow
$f(x_1) > f(x_2)$	$x_1 > x_2$	streng monoton fallend	₩

1.3.3 Konvergenz, Divergenz

Konvergenz

Es existiert ein Grenzwert $g \in \mathbb{R}$

Toleranzungleichung: $|a_n - g| < \epsilon \text{ mit } \epsilon > 0$

Gesucht ist ein n_0 , ab welchem alle Werte von $n \geq n_0$ in $U_{\epsilon}(g)$ liegen

Bestimmt divergent gegen $+\infty$

Ungleichung: $f_n > K$ wenn $n > n_0$ für K > 0

Bestimmt divergent gegen $-\infty$

Ungleichung: $f_n < k$ wenn $n \ge n_0$ für k < 0

Unbestimmt divergent

Alles, was nicht konvergent oder bestimmt divergent ist

1.3.4 Grenzwerte gegen Unendlich

Vorgehen beim lösen von Grenzwerten

- 1. Naiven Ansatz ausprobieren \rightarrow limit direkt bilden
- 2. Falls unbestimmte Form entsteht: Umformen gemäss folgenden Ansätzen

Arithmetik: $+, -, *, :, \sqrt{...}, |...|$

Erweiterung: erweitern mit $\frac{1}{x^n}$ n = höchste (Nenner-)Potenz Erweiterung: erweitern mit Gegentherm (3. Binom bilden) Tabelle: Bei Brüchen Tabelle aus Abschnitt 4.8 anschauen!

Beispiel Grenzwert n gegen Unendlich

$$f(n) = \frac{-2n^2 + 4n - 5}{8n^2 - 3n + 7} \ (n \to \infty)$$

"Naiv":
$$\frac{-\infty + \infty + 5}{\infty - \infty + 7} \rightarrow \frac{-\infty + \infty}{\infty - \infty} \rightarrow \frac{?}{?}$$

Algebra, Erweitern mit $\frac{1}{n^2}$: $f(n) = \frac{-2 + \frac{4}{n} - \frac{5}{n^2}}{8 - \frac{3}{n} + \frac{7}{n^2}} (n \to \infty) = \frac{-2}{8} = -\frac{1}{4}$

1.3.5 Rechnen mit Unendlich

Bestimmte Formen

$$\infty + \infty = \infty \qquad -\infty - \infty = -\infty \qquad 0 \cdot [a,b] = 0 \cdot \text{beschränkt} = 0$$

$$g + \infty = \infty$$
 $g - \infty = -\infty$ $(g \in \mathbb{R})$

$$\infty \cdot \infty = \infty$$
 $-\infty \cdot (\infty) = -\infty$ $g \cdot \infty = \begin{cases} \infty & g > 0 \\ -\infty & g < 0 \end{cases}$

$$\frac{1}{\infty} = 0$$
 $\frac{g}{\infty} = 0$ $g \in \mathbb{R}$

$$\frac{\infty}{0+} = \infty \qquad \qquad \frac{\infty}{0-} = -\infty \qquad \qquad \frac{\infty}{g} = \begin{cases} \infty & g > 0 \\ -\infty & g < 0 \end{cases}$$

$$\frac{1}{0+} = \infty \qquad \frac{1}{0-} = -\infty \qquad g \in \mathbb{R} - 0$$

$$\frac{g}{0+} = \begin{cases} \infty & g > 0 \\ -\infty & g < 0 \end{cases} \qquad \frac{g}{0-} = \begin{cases} -\infty & g > 0 \\ \infty & g < 0 \end{cases}$$

Unbestimmte Formen

$$\frac{0}{0} = ?$$
 $\frac{\infty}{\infty} = ?$ $\infty \cdot 0 = ?$

$$0 \cdot \infty = ?$$
 $\infty - \infty = ?$ $0^0 = ?$

$$\infty^0 = ?$$
 $1^\infty = ?$

Ausser 1 ist eine Konstante, dann gilt $1^{\infty} = 1$

1.3.6 Einschliessung

Es existieren drei Folgen : O_n, f_n und U_n

Es gilt: $O_n \geq f_n \geq U_n$

WENN O_n gegen Grenzwert
g konverviert UND U_n ebenfalls gegen g
 konvergiert, DANN konvergiert auch f_n gegen g

1.3.7 Wachstumsvergleich

$$(1) \quad \frac{n^k}{q^n}(n\to\infty) = 0 \ (\mathbf{k}\in\mathbb{N}; q>1) \quad \frac{\text{Potenz}}{\text{Exponentiell}} \to 0$$

(2)
$$\frac{q^n}{n!}(n \to \infty) = 0 \ (k \in \mathbb{N}; q > 1)$$
 Exponential $\frac{1}{\text{Fakultät}} \to 0$

(2)
$$\frac{\ln(n)}{n^k}(n \to \infty) = 0 \ (k \in \mathbb{N})$$
 $\frac{\text{Logarithmisch}}{\text{Potenz}} \to 0$

1.3.8 Bolzano-Prinzip

Jede beschränkte, monotone Zahlenfolge ist konvergent!

- I. Monotonie beweisen
- 2. Beschränktheit vermuten und möglichen Grenzwert g mittels Grenzwertgleichung finden
- 3. Beschränktheit beweisen
- 3.1 a_1 ist obere/untere Schranke
- 3.2 Vermutete untere/obere Schranke mit voll. Induktion beweisen z.B. $a_{n+1} \leq a_n$ wobei a_{n+1} und a_n mit vermutetem Grenzwert ersetzt werden

1.3.9 Exponentialfunktion

$$e = \lim_{n \to \infty} (1 + \frac{1}{n})^n$$

Definitions- / Wertebereich:

$$D_f = \mathbb{R} \to W_f = \mathbb{R}^+$$

Einschliessung:

$$\mathbf{e}^x \ge 1 + x \quad \text{ für } \mathbf{x} \in \mathbb{R}$$

$$e^x \le \frac{1}{1-x}$$
 für $x < 1$

1.3.10 Hyperbolische Funktionen

$$e^x = \frac{1}{2}(e^x - e^{-x}) + \frac{1}{2}(e^x + e^{-x}) = \sinh(x) + \cosh(x)$$

$$sinh(x) = \frac{1}{2}(e^x - e^{-x}) \qquad \mathbb{R} \to \mathbb{R}
cosh(x) = \frac{1}{2}(e^x + e^{-x}) \qquad \mathbb{R} \to [1; \infty)
tanh(x) = \frac{\sinh(x)}{\cosh(x)} = \frac{\frac{1}{2}(e^x - e^{-x})}{\frac{1}{2}(e^x + e^{-x})} \qquad \mathbb{R} \to (-1; 1)
| sinh(x)| < cosh(x)$$

Area-Funktionen (Umkehrung Hyperbolische. F.)

 $\operatorname{arsinh}(x): \mathbb{R} \to \mathbb{R}$

 $\operatorname{arcosh}(x): [1; \infty) \to \mathbb{R}_0^+$ $\operatorname{artanh}(x): |x| < 1 \to \mathbb{R}$

1.3.11 Logarithmusfunktion

Definitions- / Wertebereich: $D_f = \mathbb{R}^+ \to W_f = \mathbb{R}$

Einschliessung:

$$1 - \frac{1}{x} \le \ln(x) \le x - 1$$

1.4 Grenzwerte von Funktionen

Grenzwertsätze S. 56-57

1.4.1 Techniken zur Berechnung von Grenzwerten

Arithmetik: $+, -, *, :, \sqrt{...}, |...|$

erweitern mit $\frac{1}{x^n}$ n = höchste (Nenner-)Potenz Erweiterung:

erweitern mit Gegentherm (3. Binom bilden) Erweiterung: Faktorisierung: Zähler und Nenner faktoriesieren und kürzen

Trigo: Bronstein S. 57 1. C beachten

1.4.2 Links- / Rechtsseitiger Grenzwert

Eine kritische Stelle x_0 kann von links und rechts angenähert werden.

linksseitiger Grenzwert: $\lim f(x) = g^-$

rechtsseitiger Grenzwert: $\lim_{x \to x_0^+} f(x) = g^+$

 \Rightarrow Wenn $g^-=g^+=g\to {\rm Konvergenz}$ \Rightarrow Wenn $g^-\neq g^+\to {\rm unbestimmte\ Divergenz}$

1.4.3 Konvergenz, Divergenz

Konvergenz von f(x)

Toleranzungleichung: $|f(x) - g| < \epsilon$ wenn $x > M(\epsilon)$ Toleranzungleichung: $|f(x) - g| < \epsilon$ wenn $x < m(\epsilon)$

Toleranzungleichung: $|f(x) - g| < \epsilon$ $x \in \dot{U}_{\delta}(x_0)$

Bestimmte Divergenz von y = f(x)

Quadrant	Kriterium	Folgerung
I	$y \to \infty \ (x \to \infty)$	y > K wenn $x > M(K)$
II	$y \to \infty \ (x \to -\infty)$	y > K wenn $x < m(K)$
III	$y \to -\infty \ (x \to -\infty)$	y < k wenn $x < m(k)$
IV	$y \to -\infty \ (x \to \infty)$	y < k wenn $x > M(k)$
	$f(x) \to \infty$	$y > K > 0$ wenn $x \in \dot{U}_{\delta}(x_0)$
	$f(x) \to -\infty$	$y < k < 0$ wenn $x \in \dot{U}_{\delta}(x_0)$

1.4.4 Stetigkeit

Definition Stetigkeit: $\lim_{x \to x_0} f(x) = f(x_0)$

Eine Funktion ist stetig, wenn der Funktionsgraph kann gezeichnet werden, ohne dass der Stift abgesetzt werden muss.

Art der Unstetigkeitsstelle	Bedingungen	Beispiel $f: x \mapsto f(x) =$	Graph von f
hebbare Unstetigkeits-	$\lim_{x \to x_0} f(x) = g$ $\text{und } g \neq f(x_0)$	$\begin{cases} \frac{1}{4}(x-1)^2 + 1\\ \text{für } x \neq 1\\ 2 \text{ für } x = 1 \end{cases}$	2
stelle	$\lim_{\substack{x \to x_0 \\ \text{und } x_0 \notin D_f}} f(x) = g$	$\frac{x^2-1}{x-1}$	
Unstetigkeits- stelle 1. Art (Sprungstelle)	g^+ und g^- existieren in x_0 , aber $g^+ \neq g^-$	$\begin{cases} x - 1 & \text{für } x \ge 1 \\ -1 & \text{für } x < 1 \end{cases}$	y 1
Unstetigkeits- stelle 2. Art	mindestens g^+ oder g^- exi- stieren in x_0 nicht	$\begin{cases} \frac{1}{x-1} & \text{für } x > 1\\ 1 & \text{für } x \le 1 \end{cases}$	
	f ist für $x \uparrow x_0$ und $x \downarrow x_0$ unbestimmt divergent (Oszillationsstelle)	$\sin \frac{1}{x}$	

1.4.5 Übertragungsprinzip (Folgenprinzip)

f bestitz an der Stelle x_0 Grenzwert g, wenn für jede gegen x_0 konvergente Folge $\langle x_n \rangle$ gilt: $\lim_{x \to \infty} f(x_n) = g$

Beispiel

 $f(x) = \frac{|x+2|}{2x+4}$ und $x_0 = -2$

 $x_n = x_0 - \frac{1}{n}$ für jedes x in f(x) einsetzen; linksseitig:

Grenzwert g^- gegen ∞ bestimmen

rechtsseitig: $x_n = x_0 + \frac{1}{n}$ für jedes x in f(x) einsetzen; Grenzwert g^+ gegen ∞ bestimmen

1.4.6 Nullstellen bestimmen gemäss Bolzano

f(x) auf Intervall [a;b] stetig und f(a) und f(b) versch. Vorzeichen \rightarrow Es existiert (mindestens) eine Nullstelle \mathcal{E} NS mittels Bisektion (Intervallschachtelung) näherungsweise berech-

nen:

- $I_0 = [a; b] = [a_0; b_0]$ gesamtes Intervall
- I_0 halbieren $\rightarrow m = \frac{a_0 + b_0}{2}$
- Teil-Intervall mit Vorzeichenwechsel bestimmen: links: $f(a) \cdot f(m) < 0$; rechts: $f(a) \cdot f(m) > 0$
- Teil-Intervall mit Vorzeichenwechsel: $I_1 = [a_1; b_1]$
- Schritt (2) (4) n mal wiederholen: $I_{n+1} \in I_n$
- ... $\xi \in (a; b)$ mit $f(\xi) = 0$ (Nullstelle)

1.4.7 Spezielle Grenzwerte

$$\lim_{x\to\infty}\frac{\sin(x)}{x}=1 \qquad \lim_{x\to\infty}(1+\frac{a}{x})^x=\mathrm{e}^a \qquad \lim_{x\to0}\frac{\log_a(x+1)}{x}=\frac{1}{\ln(a)}$$

$$\lim_{x \to 1} \frac{x}{1 - e^{-x}} = 1 \qquad \lim_{x \to \infty} \sqrt[x]{x} = 1 \qquad \qquad \lim_{x \to 0} (1 + x)^{\frac{1}{x}} = 1$$

$$\lim_{x\to\infty}\frac{(\ln(x))^\alpha}{x^\beta}=0\qquad \lim_{x\to 0^+}x\cdot \ln(x)=0\qquad \quad \lim_{x\to 0}\frac{a^x-1}{x}=\ln(a)$$

$$\lim_{x \to 0} \frac{e^x - 1}{x} = 1 \qquad \lim_{x \to 0} \frac{(a + x)^{\alpha} - 1}{x} = \alpha \qquad \lim_{x \to 0 +} z^z = 1$$

$$\lim_{x \to 0+} x^{\sin(x)} = 1 \qquad \lim_{x \to 0+} y^{\beta} (\ln(y))^{\alpha} = 0$$

$$\lim_{x \to \infty} \frac{x^{\alpha}}{a^{\beta x}} = 0 \ (a > 1; \alpha, \beta > 0) \qquad \lim_{x \to \infty} \sum_{k=0}^{n} q^{k} = \begin{cases} \infty & q \ge 1\\ \frac{1}{1-q} & |q| < 1 \end{cases}$$

1.4.8 Asymptotenbestimmung

Asymptote einer gebrochen rationalen Funktion f(x) = $a_n x^n + ... + a_1 x + a_0$ $b_m x^m + \ldots + b_1 x + b_0$

hestimmen gemäss

bestimmen gemass.			
	m > n	m = n	m < n
$\lim_{x \to \pm \infty} r(x)$	0	$\frac{a_n}{b_m}$	∞ ode
Asymptote	x-Achse	Parallel zur x-Achse $y = g(x) = \frac{a_m}{b_n}$	ganzra
Konv./Div.	Konvergenz	Konvergenz	Diverg

1.4.9 Grenzwerte von rekursiven Folgen

Anwendung des Bolzano-Prinzips! Beispiel: $a_1 = \frac{1}{4}$; $a_{n+1} = a_n^2 + \frac{1}{4}$

- 1. Monotonie beweisen mit Ansatz $a_{n+1} \geq a_n$ bzw. $a_{n+1} \leq a_n$
- Beschränktheit erste Schranke = erster Wert der Reihe Zweite Schranke: Annahme, es gibt Grenzwert g und er ist sup / inf

Grenzwertgleichung: $a_{n+1} = a_n^2 + \frac{1}{4} (n \to \infty) \Rightarrow g = g^2 + \frac{1}{4}$ Gleichung nach g auflösen

- \Rightarrow Wenn es ein sup / inf gibt, dann ist es das berechnete $g \in \mathbb{R}$
- Beweisen (oder widerlegen), dass g sup / inf ist Ansatz: $a_n \leq g$ bzw. $a_n \geq g$ mit vollst. Induktion beweisen