Segmentación, esqueletización y extracción automática de la estructura de raíces de Arabidopsis Thaliana

Fenoglio, Angelo Sikh, Lautaro

Facultad de Ingeniería y Ciencias Hídricas Universidad Nacional del Litoral

angelofenoglio@hotmail.com lau sikh@hotmail.com

30 de junio de 2018

Contenidos

- Introducción
- Objetivos
- O Desarrollo
 - Preprocesamiento
 - Segmentación
 - Esqueletización
 - Creación del grafo
- 4 Conclusiones

Introducción

Contexto

La Arabidopsis Thaliana es una planta crucifera que crece en Europa y Asia y es muy utilizada como modelo para estimaciones moleculares y fenológicas. Es por esto que el estudio de la arquitectura de esta planta se torna importante.

Motivación

- Para analizar las características de la planta se estudia la estructura de sus raíces.
- Se toman medidas de las mismas de forma manual.
- Un investigador debe definir manualmente cuáles y donde están las raíces para obtener la medidas.
- Es un trabajo tedioso y costoso.

Objetivos

Objetivos

Desarrollar un método para segmentar y esqueletizar de forma automática la raíz de una planta de Arabidopsis Thaliana a partir de técnicas morfológicas de procesamiento de imágenes conjuntas de métodos de realce y detección de componentes que permitan luego obtener un grafo representativo de la misma.

Desarrollo

Dataset

Se trabajo con un dataset de 14 imágenes de Arabidopsis Thaliana de la siguiente forma:

Preprocesamiento

- Ampliación del rango dinámico de la imagen $I_c = 255 \frac{I min(I)}{max(I) min(I)}$.
- Remoción de hojas: $Erosión \Rightarrow Dilatación \Rightarrow Substracción$

Segmentación

• Se utilizó un detector de líneas con ventana adaptativa para realzar las estructuras tubulares de la raíz.

Segmentación

• Se umbralizó la imagen y se extrajeron pequeños objetos.

Resultados de la segmentación

• Comparación de la segmentación obtenida con una segmentación manual.

Coeficiente	Col0	APOLO	slr	Total
Dice	0.763	0.793	0.582	0.712
Jaccard	0.632	0.659	0.426	0.572

Cuadro: Coeficientes de la segmentación

Esqueletización

- Se rellenaron píxeles vacíos dentro de los tallos de la raiz.
- Se aplica el algoritmo de esqueletización propuesto por Zhang y Suen (1985).

Creación del grafo

- Obtención de los puntos extremos.
- Obtención de los puntos de ramificación.
- Generación del grafo a partir de la expansión del nodo más alto.

Conclusiones

Conclusiones

- Se requiere gran trabajo de preprocesamiento para obtener una segmentación satisfactoria.
- La calidad de los resultados de las etapas finales están fuertemente ligados a la calidad del preproceso y de las imágenes utilizadas.
- El contar con una descripción detallada de la estructura de la raíz en forma de un grafo permite extraer medidas cuantitativas importantes.
- Se observan en el dataset algunos defectos en los elementos de soporte o espaciamiento entre los ejemplares que dificultan el procesamiento.

Casos excepcionales

Casos excepcionales

References

Orlando, J., Manterola, H., Ferrante, E., Ariel F.

Arabidopsis roots segmentation based on morphological operations and CRFs. *Pladema Institute, UNCPBA, Argentina, 2017.*

Ricci, E., Perfetti, R.

Retinal blood vessel segmentation using line operators and support vector classification

Medical Imaging IEEE Transactions on 26(10) (2007) 1357–1365.

Zhang, T. J., Suen, C. Y.

A Fast Parallel Algorithm for Thinning Digital Patterns Communications of the ACM Volume 27 (1984) 236-239.

¿Preguntas?