Parametric models

Maximum Likelihood and Bayesian Density Estimate

Muhammad Sarim

Contents

- Introduction
- - Examples
 - Bias
 - GoF
- - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

 Bayesian Decision Theory shows us how to design an optimal classifier if we know the prior probabilities $P(w_i)$ and the class-conditional densities $p(x|w_i)$.

- Bayesian Decision Theory shows us how to design an optimal classifier if we know the prior probabilities $P(w_i)$ and the class-conditional densities $p(x|w_i)$.
- Unfortunately, we rarely have complete knowledge of the probabilistic structure.

- Bayesian Decision Theory shows us how to design an optimal classifier if we know the prior probabilities $P(w_i)$ and the class-conditional densities $p(x|w_i)$.
- Unfortunately, we rarely have complete knowledge of the probabilistic structure.
- However, we can often find design samples or training data that include particular representatives of the patterns we want to classify.

• To simplify the problem, we can parameterize the conditional densities and estimate these parameters using training data.

- To simplify the problem, we can parameterize the conditional densities and estimate these parameters using training data.
- Then, we can use the resulting estimates as if they were the true values and perform classification using the Bayesian decision rule.

- To simplify the problem, we can parameterize the conditional densities and estimate these parameters using training data.
- Then, we can use the resulting estimates as if they were the true values and perform classification using the Bayesian decision rule.
- We will consider only the supervised learning case where the true class label for each sample is known.

• We will study two estimation procedures:

- We will study two estimation procedures:
 - Maximum likelihood estimation
 - Views the parameters as quantities whose values are fixed but unknown
 - Estimate these values by maximizing the probability of obtaining the samples observed

- We will study two estimation procedures:
 - Maximum likelihood estimation
 - Views the parameters as quantities whose values are fixed but unknown
 - Estimate these values by maximizing the probability of obtaining the samples observed
 - Bayesian estimation
 - Views the parameters as random variables having some known prior distribution
 - Observing new samples converts the prior to a posterior density

- 2 MLE
 - Examples
 - Bias
 - GoF
- Bayesian Estimation
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

• Suppose we have a set $D = \{x_1, \dots, x_n\}$ of independent and identically distributed (*i.i.d.*) samples drawn from the density $p(x|\theta)$.

- Suppose we have a set $D = \{x_1, \dots, x_n\}$ of independent and identically distributed (*i.i.d.*) samples drawn from the density $p(x|\theta)$.
- We would like to use training samples in D to estimate the unknown parameter vector θ .

- Suppose we have a set $D = \{x_1, \dots, x_n\}$ of independent and identically distributed (*i.i.d.*) samples drawn from the density $p(x|\theta)$.
- We would like to use training samples in D to estimate the unknown parameter vector θ .
- Define $L(\theta|D)$ as the *likelihood function* of θ with respect to D as

$$L(\theta|D) = p(D|\theta) = p(x_1, \dots, x_n|\theta) = \prod_{i=1}^n p(x_i|\theta)$$

• The maximum likelihood estimate (MLE) of θ is, by definition, the value $\hat{\theta}$ that maximizes $L(\theta|D)$ and can be computed as

$$\hat{\theta} = \arg\max_{\theta} L(\theta|D)$$

• The maximum likelihood estimate (MLE) of θ is, by definition, the value $\hat{\theta}$ that maximizes $L(\theta|D)$ and can be computed as

$$\hat{\theta} = \arg\max_{\theta} L(\theta|D)$$

• It is often easier to work with the logarithm of the likelihood function (*log-likelihood function*) that gives

$$\hat{\theta} = \arg \max_{\theta} \log L(\theta|D) = \arg \max_{\theta} \sum_{i=1}^{n} \log p(x_i|\theta)$$

• If the number of parameters is p, i.e., $\theta = (\theta_1, \dots, \theta_p)^T$, define the gradient operator

$$\nabla_{\theta} \equiv \begin{bmatrix} \frac{\partial}{\partial \theta_1} \\ \vdots \\ \frac{\partial}{\partial \theta_p} \end{bmatrix}$$

• If the number of parameters is p, i.e., $\theta = (\theta_1, \dots, \theta_p)^T$, define the gradient operator

$$\nabla_{\theta} \equiv \begin{bmatrix} \frac{\partial}{\partial \theta_1} \\ \vdots \\ \frac{\partial}{\partial \theta_p} \end{bmatrix}$$

ullet Then, the MLE of heta should satisfy the necessary conditions

$$\nabla_{\theta} \log L(\theta|D) = \sum_{i=1}^{n} \nabla_{\theta} \log p(x_i|\theta) = 0$$

- Properties of MLEs:
 - The MLE is the parameter point for which the observed sample is the most likely.
 - The procedure with partial derivatives may result in several local extrema. We should check each solution individually to identify the global optimum.
 - Boundary conditions must also be checked separately for extrema
 - Invariance property: if $\hat{\theta}$ is the MLE of θ , then for any function $f(\theta)$, the MLE of $f(\theta)$ is $f(\hat{\theta})$.

Contents

- Introduction
- 2 MLE
 - Examples
 - Bias
 - GoF
- Bayesian Estimation
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

The Gaussian Case

• Suppose that $p(x|\theta) = N(\mu, \Sigma)$.

The Gaussian Case

- Suppose that $p(x|\theta) = N(\mu, \Sigma)$.
 - When Σ is known but μ is unknown:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

The Gaussian Case

- Suppose that $p(x|\theta) = N(\mu, \Sigma)$.
 - When Σ is known but μ is unknown:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

• When both μ and Σ are unknown:

$$\hat{\mu} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 and $\hat{\Sigma} = \frac{1}{n} \sum_{i=1}^{n} (x_i - \hat{\mu})(x_i - \hat{\mu})^T$

Examples

The Bernoulli Case

• Suppose that $P(x|\theta) = \text{Bernoulli}(\theta) = \theta^x (1-\theta)^{1-x}$ where x = 0, 1 and $0 \le \theta \le 1$.

The Bernoulli Case

- Suppose that $P(x|\theta) = \text{Bernoulli}(\theta) = \theta^x (1-\theta)^{1-x}$ where x = 0, 1 and $0 \le \theta \le 1$.
- ullet The MLE of heta can be computed as

$$\hat{\theta} = \frac{1}{n} \sum_{i=1}^{n} x_i$$

Contents

- Introduction
- 2 MLE
 - Examples
 - Bias
 - GoF
- Bayesian Estimation
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

• Bias of an estimator $\hat{\theta}$ is the difference between the expected value of $\hat{\theta}$ and θ .

- Bias of an estimator $\hat{\theta}$ is the difference between the expected value of $\hat{\theta}$ and θ .
- The MLE of μ is an unbiased estimator for μ because $E[\hat{\mu}] = \mu$.

- Bias of an estimator $\hat{\theta}$ is the difference between the expected value of $\hat{\theta}$ and θ .
- The MLE of μ is an unbiased estimator for μ because $E[\hat{\mu}] = \mu$.
- The MLE of Σ is not an unbiased estimator for Σ because $E[\hat{\Sigma}] = \frac{n-1}{n}\Sigma \neq \Sigma$.

- Bias of an estimator $\hat{\theta}$ is the difference between the expected value of $\hat{\theta}$ and θ .
- The MLE of μ is an unbiased estimator for μ because $E[\hat{\mu}] = \mu$.
- The MLE of Σ is not an unbiased estimator for Σ because $E[\hat{\Sigma}] = \frac{n-1}{n}\Sigma \neq \Sigma$.
- The sample covariance

$$S^{2} = \frac{1}{n-1} \sum_{i=1}^{n} (x_{i} - \hat{\mu})(x_{i} - \hat{\mu})^{T}$$

is an unbiased estimator for Σ .

Contents

- Introduction
- 2 MLE
 - Examples
 - Bias
 - GoF
- Bayesian Estimation
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

Goodness-of-fit

 To measure how well a fitted distribution resembles the sample data (goodness-of-fit), we can use the Kolmogorov-Smirnov test statistic.

Goodness-of-fit

- To measure how well a fitted distribution resembles the sample data (goodness-of-fit), we can use the Kolmogorov-Smirnov test statistic.
- It is defined as the maximum value of the absolute difference between the cumulative distribution function estimated from the sample and the one calculated from the fitted distribution.

Goodness-of-fit

- To measure how well a fitted distribution resembles the sample data (goodness-of-fit), we can use the Kolmogorov-Smirnov test statistic.
- It is defined as the maximum value of the absolute difference between the cumulative distribution function estimated from the sample and the one calculated from the fitted distribution.
- After estimating the parameters for different distributions, we can compute the Kolmogorov-Smirnov statistic for each distribution and choose the one with the smallest value as the best fit to our sample.

Maximum Likelihood Estimation Examples

True pdf is N(10, 4). Estimated pdf is N(10.1, 3.9).

True pdf is 0.5N(10, 0.16) + 0.5N(11, 0.25). Estimated pdf is N(10.5, 0.5).

GoF

Maximum Likelihood Estimation Examples

True pdf is Gamma(4, 4). Estimated pdfs are N(15.8, 62.1) and Gamma(4.0, 3.9).

Cumulative distribution functions.

Contents

- - Examples
 - Bias
 - GoF
- **Bayesian Estimation**
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

• Assume that θ is a quantity whose variation can be described by the prior probability distribution $p(\theta)$.

- Assume that θ is a quantity whose variation can be described by the prior probability distribution $p(\theta)$.
- Suppose the set $D = \{x_1, \dots, x_n\}$ contains the samples drawn independently from the density $p(x|\theta)$ whose form is assumed to be known but θ is not known exactly.

• Given *D*, the prior distribution can be updated to form the posterior distribution using the Bayes rule

$$p(\theta|D) = \frac{p(D|\theta)p(\theta)}{p(D)}$$

where

$$p(D) = \int p(D|\theta) p(\theta) d\theta$$

and

$$p(D|\theta) = \prod_{i=1}^{n} p(x_i|\theta)$$

• The posterior distribution $p(\theta|D)$ can be used to find estimates for θ (e.g., the expected value of $p(\theta|D)$ can be used as an estimate for θ).

- The posterior distribution $p(\theta|D)$ can be used to find estimates for θ (e.g., the expected value of $p(\theta|D)$ can be used as an estimate for θ).
- Then, the conditional density p(x|D) can be computed as

$$p(x|D) = \int p(x|\theta) p(\theta|D) d\theta$$

and can be used in the Bayesian classifier.

Contents

- Introduction
- 2 MLE
 - Examples
 - Bias
 - GoF
- Bayesian Estimation
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

The Gaussian Case

• Consider the univariate case $p(x|\mu) = N(\mu, \sigma^2)$ where μ is the only unknown parameter with a prior distribution $p(\mu) = N(\mu_0, \sigma_0^2)$ (σ^2 , μ_0 and σ_0^2 are all known).

The Gaussian Case

- Consider the univariate case $p(x|\mu) = N(\mu, \sigma^2)$ where μ is the only unknown parameter with a prior distribution $p(\mu) = N(\mu_0, \sigma_0^2) \quad (\sigma^2, \mu_0 \text{ and } \sigma_0^2 \text{ are all known}).$
- This corresponds to drawing a value for μ from the population with density $p(\mu)$, treating it as the true value in the density $p(x|\mu)$, and drawing samples for x from this density.

• Given $D = \{x_1, \dots, x_n\}$, we obtain

$$p(\mu|D) \propto \prod_{i=1}^{n} p(x_i|\mu)p(\mu)$$

$$\propto \exp\left[-\frac{1}{2}\left(\left(\frac{n}{\sigma^2} + \frac{1}{\sigma_0^2}\right)\mu^2 - 2\left(\frac{1}{\sigma^2}\sum_{i=1}^{n} x_i + \frac{\mu_0}{\sigma_0^2}\right)\mu\right)\right]$$

$$= N(\mu_n, \sigma_n^2)$$

where

$$\mu_n = \left(\frac{n\sigma_0^2}{n\sigma_0^2 + \sigma^2}\right)\hat{\mu}_n + \left(\frac{\sigma^2}{n\sigma_0^2 + \sigma^2}\right)\mu_0 \qquad \left(\hat{\mu}_n = \frac{1}{n}\sum_{i=1}^n x_i\right)$$

$$\sigma_n^2 = \frac{\sigma_0^2\sigma^2}{n\sigma_0^2 + \sigma^2}$$

• μ_0 is our best prior guess and σ_0^2 is the uncertainty about this guess.

- μ_0 is our best prior guess and σ_0^2 is the uncertainty about this guess.
- μ_n is our best guess after observing D and σ_n^2 is the uncertainty about this guess.

Bayesian Estimation

- μ_0 is our best prior guess and σ_0^2 is the uncertainty about this guess.
- μ_n is our best guess after observing D and σ_n^2 is the uncertainty about this guess.
- μ_n always lies between $\hat{\mu}_n$ and μ_0 .
 - If $\sigma_0 = 0$, then $\mu_n = \mu_0$ (no observation can change our prior opinion).
 - If $\sigma_0 \gg \sigma$, then $\mu_n = \hat{\mu}_n$ (we are very uncertain about our prior guess).
 - Otherwise, μ_n approaches $\hat{\mu}_n$ as n approaches infinity.

• Given the posterior density $p(\mu|D)$, the conditional density p(x|D) can be computed as

$$p(x|D) = N(\mu_n, \sigma^2 + \sigma_n^2)$$

where the conditional mean μ_n is treated as if it were the true mean, and the known variance is increased to account for our lack of exact knowledge of the mean μ .

The Gaussian Case

• Consider the multivariate case $p(x|\mu) = N(\mu, \Sigma)$ where μ is the only unknown parameter with a prior distribution $p(\mu) = N(\mu_0, \Sigma_0)$ (Σ , μ_0 and Σ_0 are all known).

- Consider the multivariate case $p(x|\mu) = N(\mu, \Sigma)$ where μ is the only unknown parameter with a prior distribution $p(\mu) = N(\mu_0, \Sigma_0)$ (Σ , μ_0 and Σ_0 are all known).
- Given $D = \{x_1, \dots, x_n\}$, we obtain

$$p(\mu|D) \propto \exp\left[-\frac{1}{2}\left(\mu^{T}\left(n\Sigma^{-1} + \Sigma_{0}^{-1}\right)\mu\right.\right.$$
$$\left.\left.\left.-2\mu^{T}\left(\Sigma^{-1}\sum_{i=1}^{n}x_{i} + \Sigma_{0}^{-1}\mu_{0}\right)\right)\right]$$

It follows that

$$p(\mu|D) = N(\mu_n, \Sigma_n)$$

where

$$\mu_n = \Sigma_0 \left(\Sigma_0 + \frac{1}{n} \Sigma \right)^{-1} \hat{\mu}_n + \frac{1}{n} \Sigma \left(\Sigma_0 + \frac{1}{n} \Sigma \right)^{-1} \mu_0$$

$$\Sigma_n = \frac{1}{n} \Sigma_0 \left(\Sigma_0 + \frac{1}{n} \Sigma \right)^{-1} \Sigma$$

• Given the posterior density $p(\mu|D)$, the conditional density p(x|D) can be computed as

$$p(x|D) = N(\mu_n, \Sigma + \Sigma_n)$$

which can be viewed as the sum of a random vector μ with $p(\mu|D) = N(\mu_n, \Sigma_n)$ and an independent random vector y with $p(y) = N(0, \Sigma)$.

Contents

- Introduction
- 2 MLE
 - Examples
 - Bias
 - GoF
- Bayesian Estimation
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

The Bernoulli Case

The Bernoulli Case

• Consider $P(x|\theta) = \text{Bernoulli}(\theta)$ where θ is the unknown parameter with a prior distribution $p(\theta) = \text{Beta}(\alpha, \beta)$ (α and β are both known).

The Bernoulli Case

- Consider $P(x|\theta) = \text{Bernoulli}(\theta)$ where θ is the unknown parameter with a prior distribution $p(\theta) = \text{Beta}(\alpha, \beta)$ (α and β are both known).
- Given $D = \{x_1, \ldots, x_n\}$, we obtain

$$p(\theta|D) = \text{Beta}\left(\alpha + \sum_{i=1}^{n} x_i, \beta + n - \sum_{i=1}^{n} x_i\right)$$

The Bernoulli Case

The Bernoulli Case

• The Bayes estimate of θ can be computed as the expected value of $p(\theta|D)$

$$\hat{\theta} = \frac{\alpha + \sum_{i=1}^{n} x_i}{\alpha + \beta + n}$$

$$= \left(\frac{n}{\alpha + \beta + n}\right) \frac{1}{n} \sum_{i=1}^{n} x_i + \left(\frac{\alpha + \beta}{\alpha + \beta + n}\right) \frac{\alpha}{\alpha + \beta}$$

Contents

- Introduction
- 2 MLE
 - Examples
 - Bias
 - GoF
- Bayesian Estimation
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

Conjugate Priors

Conjugate Priors

• A conjugate prior is one which, when multiplied with the probability of the observation, gives a posterior probability having the same functional form as the prior.

Conjugate Priors

- A conjugate prior is one which, when multiplied with the probability of the observation, gives a posterior probability having the same functional form as the prior.
- This relationship allows the posterior to be used as a prior in further computations.

Conjugate Priors

Conjugate Priors

- A conjugate prior is one which, when multiplied with the probability of the observation, gives a posterior probability having the same functional form as the prior.
- This relationship allows the posterior to be used as a prior in further computations.

Table: Conjugate prior distributions.

pdf generating the sample	corresponding conjugate prior
Normal	Normal
Exponential	Gamma
Poisson	Gamma
Binomial	Beta
Multinomial	Dirichlet

Contents

- Introduction
- 2 MLE
 - Examples
 - Bias
 - GoF
- Bayesian Estimation
 - The Gaussian Case
 - The Bernoulli Case
 - Conjugate Priors
 - Recursive Bayes Learning

Recursive Bayes Learning

Recursive Bayes Learning

• What about the convergence of p(x|D) to p(x)?

Recursive Bayes Learning

- What about the convergence of p(x|D) to p(x)?
- Given $D^n = \{x_1, ..., x_n\}$, for n > 1

$$p(D^n|\theta) = p(x_n|\theta)p(D^{n-1}|\theta)$$

and

$$p(\theta|D^n) = \frac{p(x_n|\theta) p(\theta|D^{n-1})}{\int p(x_n|\theta) p(\theta|D^{n-1}) d\theta}$$

where

$$p(\theta|D^0) = p(\theta)$$

Recursive Bayes Learning

- What about the convergence of p(x|D) to p(x)?
- Given $D^n = \{x_1, ..., x_n\}$, for n > 1

$$p(D^n|\theta) = p(x_n|\theta)p(D^{n-1}|\theta)$$

and

$$p(\theta|D^n) = \frac{p(x_n|\theta) p(\theta|D^{n-1})}{\int p(x_n|\theta) p(\theta|D^{n-1}) d\theta}$$

where

$$p(\theta|D^0) = p(\theta)$$

⇒ quite useful if the distributions can be represented using only a few parameters (*sufficient statistics*)