Chemistry 30 Resource Package

Table of Contents

Table 1: Periodic Table (All)	1
Table 2: Common Ion Chart (All)	2
Table 3: Formulas (All)	3
Table 4: Metric Conversion Prefixes and Staircase (All)	4
Table 5: Mole Conversion Diagram(All)	5
Table 6: Electronegativity (Unit 2)	6
Table 7: Elemental Standard States (All)	6
Table 8: VSEPR Shapes (Unit 2)	7
Table 9: Organic Chemistry Functional Groups (Unit 3)	7
Table 10: Solubility of Common Ions (Unit 4)	8
Table 11: Solubility Chart (Unit 4)	9
Table 12: Solubility Chart (Unit 4)	10
Table 13: Solubility Constants (Unit 5)	11
Table 14: Relative Strengths of Acids and Bases (Unit 6)	12
Table 15: pH of Common Indicators (Unit 6)	13
Table 16: Oxidation Number Rules (Unit 7)	14/15
Table 17: Common Oxidation States (Unit 7)	16
Table 18: Standard reduction Potentials (Unit 7)	17
Table 19: Standard reduction Potentials (Unit 7)	18
Table 20: Metal Activity Series (Unit 7)	19

8A	2	Ð	Helium 4.003	10	Š	Neon 20.180	18	Ā	Argon 39.948	36	ż	Krypton 84.80	54	×e	Xenon 131.29	98	몺	Radon 222.018	118	on O	Ununoctium unknown
		17	VIIA 74			Fluorine 18.998	17	ರ	Chlorine 35.453	35	Ŗ	Bromine 79.904	53	_	lodine 126.904	85	Ą	Astatine 209.987	117	SnO	Ununseptium unknown
		16	VIA 64	S		0xygen 15.999	16	ഗ	Sulfur 32.066	34	Se	Selenium 78.09	52	L	Tellurium 127.6	84	Ъ	Polonium [208.982]	116	_	Livermorium [298]
		15	۷ ۹	7	Z	Nitrogen 14.007	15	<u> </u>	Phosphorus 30.974	33		Arsenic 74.922	4,	Sp	Antimony 121.760	83	窗	Bismuth 208.980	115	dnn	Ununpentium unknown
		14	V A A	4	ပ	Carbon 12.011	14	S	Silicon 28.086	32	Ge	Germanium 72.61	20	Sn	Tin 118.71	82	Pb	Lead 207.2	114	Ī	Flerovium [289]
		13	IIIA 34	Y.	_	Boron 10.811	13	¥	Aluminum 26.982	31	Ga	Gallium 69.732	49		Indium 114.818	81	F	Thallium 204.383	113	Ħ O	Ununtrium
•	Periodic Lable of the Elements							12	IIB 2B	30	Zn	Zinc 65.39	48	S	Cadmium 112.411	80	Ĕ	Mercury 200.59	112	<u>ნ</u>	Copernicium [277]
Ĺ	Eler							Ŧ	8 6	29	Cn	Copper 63.546	47	Ag	Silver 107.868	79	Au	Gold 196.967	Ξĺ	Rg	Darmstadtium Roentgenium [269]
117	or the							10		28	Z	Nickel 58.693	46	Pd	Palladium 106.42	78	古	Platinum 195.08	19	Ds	_
	aple							6	 	27	ပိ	Cobalt 58.933	45		Rhodium 102.906	77	<u>-</u>	Iridium 192.22	109	Ĭ	Meitnerium [268]
								∞		26	Fe	- 4,	44		Ruthenium 101.07	9/	O	0smium 190.23	108	H	Hassium [269]
	T E							7	VIIB 7B	22	M	Manganese 54.938	43	ည	Technetium 98.907	75	Re	Rhenium 186.207	107	Bh	Bohrium [264]
								9	VIB 68	24	ပ်	Chromium 51.996	-		Molybdenum 95.94		>	Tungsten 183.85	106	Sg	Seaborgium [266]
								ß	VB 5B	23		Vanadium 50.942			Niobium 92.906		Д В	Tantalum 180.948	105	Dp	n Dubnium [262]
								4	NB 48	2		Titanium 47.88	=	Z	Zirconium 91.224	72	Ŧ	Hafnium 178.49	104	¥	Rutherfordium [261]
				_				က	3B B			Scandium 44.956				$\overline{}$			89-103		
_			N V		Be	Beryllium 9.012	12	W	Magnesium 24.305	20		Calcium 40.078					Ba	Barium 137.327	₈	Ra	Radium 226.025
11A	=		Hydrogen 1.008	~	, 二	Lithium 6.941	1	Na	Sodium 22.990	19	¥	Potassium 39.098	37	8 8	Rubidium 84.468	55	S	Cesium 132.905	87	Ţ	Francium 223.020

2	7.	58	59	09	61	62	63 	64	65		67	- 89			71
Lanthanide Series	g	O C	P	Ž	Pm	Sm	Ш	5	Q H		운	ш			3
1	Lanthanum	Cerium	Praseodymium	Neodymium	Promethium	Samarium	Europium	Gadolinium	Terbium		Holmium	Erbium			Lutetium
_	138.900	140.115	140.908	144.24	144.913	150.30	006.101	C7:/CI	128.922	┑	104.930	07.701	п	_	1/4.90/
<u>86</u>	6	90	91	92			95	96	97		66	100			103
Actinide	Ac	T	Pa	>	N N	Pu	Am	S	器	ర	Es	Fm	PΜ	ž	۲
200	Actinium	Thorium	Protactinium	Uranium			Americium	Curium	Berkelium		Einsteinium	Fermium	_		Lawrencium
	227.028	232.038	231.036	238.029			243.061	247.070	247.070		[254]	257.095			[262]

© 2013 Todd Helmensl chemistry.about.com

Table 2: Common Ion Chart

	V	Ac3+ Inickel II. nickelous		4.12	(crown) crown crown control of the crown c			
oluminam	3 t	nickel III nickelio		1 to 1	acetate	CH3COO.	iodide	1.
		_		Z Z	benzoate	C,H,COO	periodate	10,
ammommu	Ϋ́N,	$\overline{}$		ő	horste	PO 3-	etekoi	- 5
barium	Ba ²⁺	palladium II		Pd⁴	2000	5	Torrance 1	Ş
beryllium	Be^{2+}	palladium IV		Pd^{4+}	tetraborate	B4O,**	iodite	ĬŌ,
bismuth III	Bi^{3+}	platinum II		Pt ²⁺	bromide	Br-	hypoiodite	IO.
bismuth V	Bi ^{5*}	platinum IV		Pt⁴⁺	perbromate	BrO ₄	nitride	[₹] Z
cadmium	Cd^{2+}	polonioum II		Po2+	bromate	BrO ₃	nitrate	NO ₃ -
calcium	Ca2+	polonium IV		Po	bromite	BrO ₂	nitrite	NO ₂
cesium	Cs÷	potassium		K.	hypobromite	BrO	oxide	0-2-
chromium II, chromous	්ර්	radium		Ra ²⁺	carbonate	CO32-	oxalate	C2042-
chromium III, chromic	්ර්	rubidium		Rb^{\dagger}	hydrogen carbonate, bicarbonate	HCO ₃	hydrogen oxalate, binoxalate	HC204.
cobalt II, cobaltous	Co2+	scandium		Sc3+	chloride	. [3	permanganate	MnO ₄
cobalt III, colbaltic	స్త్రి	silver		Ag+	perchlorate	CIO,	phosphide	P³
copper I, cuprous	ਹੌ	sodium		Na+	chlorate	ClO ₃ .	phosphate	PO ₂ 3-
copper II, cupric	Š	strontium		Sr^{2+}	chlorite	C10,-	phosphite	HPO,2-
erbium	ř,	titanium III		Ti3+	hypochlorite	CIO	monohydrogen phosphate	HPO.2-
francium	Fr.	titanium IV		Tri ⁴⁺	chromate	30.5	dihydrogen phosphate	H.PO.
gallium	Ga	tin II, stannous		Sn^{2+}		20.24	assert from the free	7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7 7
gold I, aurous	Αn	tin IV. stannic		4	dichromate	C400	tripolyphosphate	P ₃ O ₁₀ ,
gold III, auric	Ψ			±	cyanate	CNO.	silicate	SiO ₂ 4.
hydrogen	÷ <u>1</u>			110	cyanide	CN.		Se ²⁻
hydronium	H,O.			Ž	thiocyanate	SCN.	a)	SeO ₄ ²⁻
iron II, ferrous	Fe2	$\overline{}$		ΥŞΛ	ferricyanide	Fe(CN),	sulfide	S ² -
iron III, ferric	Fe ³⁺	zinc		Zn ²⁺	ferrocyanide	Fe(CN),	sulfate	SO ₄ 2-
ead II, plumbous	${ m Pb}^{2+}$				fluoride	- H	sulfite	SO32-
ead IV, plumbic	Pb^{4+}				perfluorate	FO ₄	hydrogen sulfide, bisulfide	HS.
lithium	- 		NUMERIC PREFIXES		fluorate	FO ₃ -	hydrogen sulfire, bisuifite	HSO ₃ .
magnesium	Mg ²	1 - mono	6 - hexa		fluorite	FO ₂ -	hydrogen sulfate, bisulfate	HSO.
manganese II, manganous	Mn^{2+}	2 - di	7 - hepta		hypofluorite	FO.	stearate	C ₁₇ H ₃₅ COO
manganese IV, manganic	Mn4+	3 - tri	8 - octa		glutamate	C ₅ H ₈ NO ₄	thiosulfate	S2O32-
mercury I, mercurous	+gH	4 - tetra	ou - 6		hydroxide, (hydroxyl)	.но	telluride	Te²-
mercury II, mercuric	Hg ²⁺	5 - penta	10 - deca		hydride	. н	uranate	"TOD

Table 3: Formulas

Equilibrium:
$$K_{eq} = \frac{[\mathbf{C}]^c[\mathbf{D}]^d}{[\mathbf{A}]^a[\mathbf{B}]^b}$$

Acid-Base:
$$\begin{aligned} M_a V_a &= M_b V_b \text{ or } C_a V_a = C_b V_b \\ pH &= -\log \Big[H_3 O^+ \Big] \text{ or } pH = -\log \Big[H^+ \Big] \\ \Big[H^+ \Big] \Big[OH^- \Big] &= 1 \times 10^{-14} \text{ or } \Big[H_8 O^+ \Big] \Big[OH^- \Big] = 1 \times 10^{-14} \\ pH + pOH &= 14 \end{aligned}$$

Table 6: Electronegativity Chart

H 2.1																	He
Li 1.0	Be 1.5											B 2.0	C 2.5	N 3.0	O 3.5	F 4.0	Ne
Na 0.9	Mg 1.2											Al 1.5	Si 1.8	P 2.1	S 2.5	CI 3.0	Ar
K 0.8	Ca 1.0	Sc 1.3	Ti 1.5	V 1.6	Cr 1.6	Mn 1.5	Fe 1.8	Co 1.8	Ni 1.8	Cu 1.9	Zn 1.6	Ga 1.6	Ge 1.8	As 2.0	Se 2.4	Br 2.8	Kr
Rb 0.8	Sr 1.0	Y 1.2	Zr 1.4	Nb 1.6	Mo 1.8	Tc 1.9	Ru 2.2	Rh 2.2	Pd 2.2	Ag 1.9	Cd 1.7	In 1.7	Sn 1.8	Sb 1.9	Te 2.1	l 2.5	Xe
Cs 0.7	Ba 0.9	La-Lu 1.1-1. 2	Hf 1.3	Ta 1.5	W 1.7	Re 1.9	Os 2.2	Ir 2.2	Pt 2.2	Au 2.4	Hg 1.9	TI 1.8	Pb 1.8	Bi 1.9	Po 2.0	At 2.2	Rn
Fr 0.7	Ra 0.9	Ac-Lr 1.1-															

Table 7: Elemental Standard States

Table 4: Metric Staircase/Prefixes

Table 5: Mole Conversion Chart

Mole Calculation Reference Guide

Table 8: VSEPR Shapes

		VS	EPR Geometries		v. 1100 W.
Steric No.	Basic Geometry 0 Ione pair	1 lone pair	2 Ione pairs	3 Ione pairs	4 lone pairs
2	X—E—X				
3	X 120° X	X E X < 120°			
4	Trigonal Planar X X//////// X X///// X Tetrahedral	XIIII E X < 109° Trigonal Pyramid	X E X << 109° Bent or Angular		
5	X 120° E X X Trigonal Bipyramid	< 90° X X	X X Y X T-shape	X 180° X Linear	
6	X 90° X X X X X X X X X X	X < 90° X	90° Eurill X X Square Planar	X E X X X X < 90° T-shape	X 180° X X Linear

Table 9: Organic Chem Functional Groups

carboxylic acid

ester

aldehyde ketone

7

Table 10: Solubility of Common Ions

Solubility of Common Compounds in Water

Rule	Negative Ions	Positive Ions	Solubility
1	essentially all	Li', Na', K', Rb', Cs', Fr	soluble
-2	essentially all	H-	soluble
3	essentially all	NH _i ⁺	soluble
4	nitrate, NO ₃	essentially all	soluble
5	acetate, CH ₃ COO	Ag⁺	low solubility
	J.	all others	soluble
6	bromide, Br-chloride, Cl-	Ag ⁺ , Pb ⁺² , Hg ₂ ⁺² , Cu ⁺ , Tl ⁻	low solubility
	iodide, I	all others	soluble
7	sulfate, SO ₄ -2	Ca ⁺² , Sr ⁺² , Ba ⁺² , Ra ⁺² , Pb ⁺² , Ag ⁺ , Hg ₂ ⁺²	low solubility
		all others	soluble
8	sulfide, S ⁻²	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺ , H ⁺ , NH ₄ ⁺ , Be ⁺² , Mg ⁺² , Ca ⁺² , Sr ⁺² , Ba ⁺² , Ra ⁺²	soluble
		all others	low solubility
9	hydroxide, OH	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺ , H ⁺ , NH ₄ ⁺ , Sr ⁺² , Ba ⁺² , Ra ⁺² , Tl ⁺	soluble
		all others	low solubility
10	carbonate, CO ₃ ⁻²	Li ⁺ , Na ⁺ , K ⁺ , Rb ⁺ , Cs ⁺ , Fr ⁺ , H ⁺ , NH ₄ ⁺	soluble
	phosphate, PO ₄ ⁻³ sulfite, SO ₃ ⁻²	all others	low solubility

Substances are considered soluble if they dissolve enough to give ion concentrations above 0.1 moles per litre at room temperature.

Table 11: Solubility Chart

Table 12: Solubility Chart

Table 13: Solubility Product Constants (Ksp)

SOLUBILITY PRODUC	T CONSTANTS	OF VARIOUS IONIC C	OMPOUNDS AT 25°C
COMPOUND			K _{sp}
barium carbonate	BaCO ₃	***************************************	8.1 x 10 ⁻⁹
barium chromate	BaCrO ₄	*************	8.5 x 10 ⁻¹¹
barium sulfate	BaSO ₄	***************************************	1.1 x 10 ⁻¹⁰
calcium carbonate	CaCO ₃	***************************************	8.7 x 10-9
calcium fluoride	CaF ₂	*************	3.9 x 10 ⁻¹¹
calcium sulfate	CaSO ₄	*************	2.0 x 10 ⁻⁴
lead carbonate	PbCO ₃	**************	3.3 x 10 ⁻¹⁴
lead chromate	PbCrO ₄	*****************	2.0 x 10 ⁻¹⁶
lead fluoride	PbF ₂	***************************************	3.7 x 10 ⁻⁸
lead iodide	PbI ₂	*******	1.4 x 10 ⁻⁸
lead sulfate	PbSO4	**************	1.3 x 10 ⁻¹
magnesium carbonate	MgCO ₃	**************	2.6 x 10 ⁻⁵
magnesium fluoride	MgF ₂	******	6.4 x 10°
magnesium hydroxide	Mg(OH) ₂	. ****************	1.2 x 10 ⁻¹¹
silver bromide	AgBr	******	6.5 x 10 ⁻¹³
silver carbonate	as a □ : Ag ₂ CO ₃ :	*****************	∘6.2 x 10 ⁻¹²
silver chloride	AgCl	of the Mark .	1.6 x 10 ⁻¹⁰
silver chromate	Ag ₂ CrO ₄		1.9 x 10 ¹²
silver iodide	AgI	••••••••	1.5 x 10 ⁻¹⁶
strontium carbonate	SrCO ₃	4*********	1.6 x 10°
strontium fluoride	SrF ₂	*************	7.9 x 10 ⁻¹⁰
strontium sulfate	SrSQ.	***	7.6 x 10 ⁻⁷

Aluminum Hydroxide	Al(OH)2		3.7 x 10 ⁻¹⁵
Barium Fluoride	BaF2		1.7 X 10 ⁻⁶
Calcium Oxalate	CaC2O4		2.3 X 10 ⁻⁹
Copper (I) Iodide	CuI		1.3 X 10 ⁻¹²
Copper (I) Iodate	Cu(IO ₃) ₂		6.9 x 10 ⁻³
Copper (II) Oxalate	CuC2O4		2.9 X 10 ⁻⁹
Copper (I) Sulfide	CuS		1.0 X 10 ⁻⁴⁴
Iron (II) Hydroxide	Fe(OH)2		4.9 X 10 ⁻¹⁷
Iron (III) Hydroxide	Fe(OH)3		2.6 x 10 ⁻³⁹
Iron (II) Sulfide	FeS	at 18°C	3.7 x 10 ⁻³⁶
Lead (II) Bromide	PbBr2		6.6 x 10 ⁻⁵
Lead (II) Chloride	PbCl2		1.2 X 10 ⁻⁵
Lithium Carbonate	LiCO3		1.7 X 10 ⁻³
Mercury (II) Sulfide	HgS		3.0 x 10 ⁻⁵⁴
Silver Sulfate	Ag2SO4		1.2 X 10 ⁻⁵
Silver Sulfide	Ag2S		1.8 x 10 ⁻⁵⁰
Zinc Sulfide	ZnS	•••••	2.0 X 10 ⁻²⁵

Table 14: Relative Strengths of Acids and Bases

		OF ACIDS IN AQUEOUS SOLUTION AT ROOM		ength Base
of A	cid TEMPERATURE, 25°C Acid	Reaction	K _a	Weak
Strong	perchloric acid	$HClO_4(aq) \rightarrow H^+(aq) + ClO_4^-(aq)$	very large	
	hydriodic acid	$HI(aq) \rightarrow H^{+}(aq) + I^{-}(aq)$	3.2 × 109	
	hydrobromic acid	$HBr(aq) \rightarrow H^{\dagger}(aq) + Br^{-}(aq)$	1.0 × 109	
	hydrochloric acid	$HCl(aq) \rightarrow H^{+}(aq) + Cl^{-}(aq)$	1.3 × 106	
	sulfuric acid	$H_2SO_4(aq) \rightarrow H^*(aq) + HSO_4^-(aq)$	1.0 × 10 ³	
	nitric acid	$HNO_3(aq) \rightarrow H^*(aq) + NO_3^-(aq)$	2.4 × 10 ¹	l⊣
	oxalic acid	$HOOCCOOH(aq) \Leftrightarrow H^+(aq) + HOOCCOO^-(aq)$	5.4 × 10 ⁻²	lenc
	sulfurous acid ($SO_2 + H_2O$)	$H_2SO_3(aq) \Leftrightarrow H^+(aq) + HSO_8^-(aq)$	1.7 × 10⁻²	Tendency to gain protons increases
	hydrogen sulfate ion	$HSO_4^-(aq) \Leftrightarrow H^+(aq) + SO_4^{2-}(aq)$	1,3 × 10-2	્ટ
တ္သ	phosphoric acid	$H_3PO_4(aq) \Leftrightarrow H^+(aq) + H_2PO_4^-(aq)$	7.1 × 10 ⁻⁸	lg
protons increases	hydrogen telluride	$H_2Te(aq) \Leftrightarrow H^+(aq) + HTe^-(aq)$	2.3 × 10-3	ga:
cre	hydrofluoric acid	$HF(aq) \Leftrightarrow H^+(aq) + F^-(aq)$	6.7 × 10 ⁻⁴	۱ او
<u>i</u>	nitrous acid	$HNO_3(aq) \Leftrightarrow H^*(aq) + NO_2^-(aq)$	5.1 × 10 ⁻⁴	[양
suo:	hydrogen selenide	$H_2Se(aq) \Leftrightarrow H^+(aq) + HSe^-(aq)$	1.7 × 10-4	ns
orot	benzoic acid	$C_6H_5COOH(aq) \Leftrightarrow H^*(aq) + C_6H_5COO^-(aq)$	6.6 × 10⁻⁵	Inc.
	acetic acid	$CH_3COOH(aq) \Leftrightarrow H^{\circ}(aq) + CH_3COO^{-}(aq)$	1.8 × 10 ⁻⁵	rea:
<u>8</u>	carbonic acid ($CO_2 + H_2O$)	$H_2CO_8(aq) \Leftrightarrow H^+(aq) + HCO_3^-(aq)$	4.4 × 10-7	ses
v to	hydrogen sulfide	$H_2S(aq) \Leftrightarrow H^*(aq) + HS^-(aq)$	1.0 × 10 ⁻⁷	
Suc	dihydrogen phosphate ion	$H_2PO_4^{-}(aq) \Leftrightarrow H^*(aq) + HPO_4^{-2}(aq)$	6.3 × 10-8	
Tendency to lose	hydrogen sulfite ion	$HSO_3^-(aq) \Leftrightarrow H^+(aq) + SO_8^{2-}(aq)$	6.2 × 10 ⁻⁸	
Tel	hypochlorous acid	$HClO(aq) \Leftrightarrow H^*(aq) + ClO^-(aq)$	2.9 × 10⁻8	
	ammonium ion	$NH_4^+(aq) \Leftrightarrow H^+(aq) + NH_3(aq)$	5.7 × 10 ⁻¹⁰	
	hydrogen carbonate ion	$HCO_3^-(aq) \Leftrightarrow H^*(aq) + CO_3^{2-}(aq)$	4.7 × 10 ⁻¹¹	
	hydrogen telluride ion	$HTe^{-}(aq) \Leftrightarrow H^{+}(aq) + Te^{2-}(aq)$	1.0 × 10-11	
	hydrogen peroxide	$H_2O_2(aq) \Leftrightarrow H^*(aq) + HO_2^-(aq)$	2.4×10^{-12}	
	monohydrogen phosphate ion	$HPO_4^{2-}(aq) \Leftrightarrow H^+(aq) + PO_4^{3-}(aq)$	4.4 × 10 ⁻¹⁸	
	hydrogen sulfide ion	$HS^-(aq) \Leftrightarrow H^+(aq) + S^{2-}(aq)$	1.2 × 10-15	
	ammonia	$NH_3(aq) \Leftrightarrow H^*(aq) + NH_2^-(aq)$	very small	Strong
Weak		-		1

Table 15: pH Ranges of Common Indicators

Indicator	pH range	Colour at low end of range	Colour at middle of range	Colour at high end of range
methyl violet	0.0-1.6	yellow	green	blue
orange IV	1.4-2.8	red	orange	yellow
methyl yellow	2.9-4.0	red	orange	yellow
bromophenol blue	3.0-4.6	yellow	green	blue
methyl orange	3.2-4.4	red	orange	yellow
bromocresol green	3.8-5.4	yellow	green	blue
methyl red	4.8-6.0	red	orange	yellow
chlorophenol red	5.2-6.8	yellow	orange	red
litmus	5.5-8.0	red	purple	blue
bromothymol blue	6.0-7.6	yellow	green	blue
phenol red	6.6-8.0	yellow	orange	red
phenolphthalein	8.210.0	colourless	pink	red
thymolphthalein	9.4-10.6	colourless	light blue	blue
alizarin yellow	10.1-12.0	yellow	orange	red
indigo carmine	11.4-13.0	blue	green	yellow

Table 16: Oxidation Number Rules

Oxidation

Oxidation Number Rules

			Element	Number	
	The oxidation number of a pure		Na	0	
1.	element (by itself, and not an		H ₂	0	
	ion) is zero.		O_2	0	
			P ₄	0	
	The oxidation number of a monatomic ion (by itself or as part	Ionic Compound	Ions	Charge	Oxidation Number
	of an ionic compound) is equal to its charge.		Na⁺	+1	+1
2.	Alkali metals - elements in the first	NaCl	CI-	-1	-1
	column of the periodic table - will always have an oxidation number of +1; Alkali	***************************************	Mg ⁺²	+2	+2
	metals (column 2) are almost always +2	Mg_3N_2	N-3	-3	-3
			IV.	-3	-5
		Compound	ele	ment	Oxidation Number
	The oxidation number of hydrogen		el/rescuiement entre		
	is almost always +1 when it is in a compound.	HCI		Н	+1
3.	compound.	rici		Cl	-1
	It is -1 in metallic hydrides like	************	-		
	NaH and BaH ₂ .	H ₂ S		Н	+1
		1120		S	-2
	NAMES AND ADDRESS OF THE PROPERTY OF THE PROPE	allements in action in States and account to the foreign of			M. Marchalle Company of the Company
		Compound		element	Oxidation Number
	The oxidation number of oxygen is	FRANCISCO			
	almost always -2 when it is in a compound	MgO		Mg	+2
	The exceptions:	magnesium oxi	de	0	-2
4.	 peroxides, such as hydrogen peroxide. In peroxides oxygen 	Na ₂ O	***************************************	Na	+1
	has an ovidation number of "1			-	

sodłum oxide

sodium peroxide

 Na_2O_2

has an oxidation number of -1.

when oxygen is combined with fluorine it's oxidation number is

-2

+1

-1

Na

Oxidation Number Rules Cont.

- in a compound is zero. To determine the oxidation number of M In Mn₂O₇ we must work backwards:
 - We know each oxygen is -2 (Rule
 - 4) 7 oxygen gives a total of:

The sum of the oxidation numbers in a compound is zero.	Compound	element	Oxidation Number	Number atoms	Total
To determine the oxidation number of Mn in Mn_2O_7 we must work backwards:	Mg ₃ N ₂	Mg N	+2 -3	3 2	+6 -6
 We know each oxygen is -2 (Rule 4) 7 oxygen gives a total of: 				SUM	0
-2 × 7 atoms = -14 total	Mn ₂ O ₇	Mn	+7	2	+14
Since the sum of oxidation numbers	MI1207	. 0	-2	7	-14
must be zero, the total oxidation number of Mn must be +14 to cancel out oxygen's -14, but since there are 2 Mn				SUM	0
atoms, each individual atom will have an oxidation number of +7:	Cl ₂ O ₃	Cl	+3	2	+6
+14 total		0	-2	3	-6
= +7				SUM	0

The sum of the oxidation numbers in a polyatomic ion is equal to the charge on that ion.

> Again, work backwards to determine the oxidation number of any non-oxygen or non-hydrogen atom.

> To determine the oxidation number of Cr in Cr₂O₇2-:

- Oxygen will be -2 (Rule 4), for a total of:
 - $-2 \times 7 = -14$
- Since the sum of the oxidation numbers will be -2 (the charge or the entire ion), the total for all Cr must be +12 because: +12 + (-14) = -2

Since there is are two Cr, each Cr will have an oxidation number of +6

s	Compound	element	Oxidation Number	Number atoms	Total
•	NO :	N	+5	1	+5
	NO3.	0	-2	3	-6
				SUM	-1
r	man and the second		renamikeliki elkamo smobi ki		-
	C= 0 2-	Cr	+6	2	+12
	Cr₂O ₇ ²-	0	-2	7	-14
				SUM	-2
n					
r	SO ₄ ²	S	+6	1	+6
	304	0	-2	4	-8
r				SUM	-2

Table 17: Common Oxidation States

I	II											III	IV	٧	VI	VII
H +1																
Li +1	Be +2										:	8 +3	C +4 +2	N +5 +4 +3 +2 +1	O -2	-1
Na +1	Mg +2											AI +3	Si +4	P +5 +3	\$ +6 +4	CI +7 +5 +3 +1
K +1	Ca +2	Sc +3	Ti +4 +3	V +5 +4 +3 +2	Cr +6 +3 +2	Mn +7 +4 +3 +2	Fe +3 +2	Co +3 +2	Ni +2	Cu +2 +1	Zn +2	Ga +3 +1	Ge +4 +2	As +5 +3	Se +6 +4	Br +7 +5 +3 +1
Rb +1	Sr +2									Ag +1	Cd +2	In +3 +1	Sn +4 +2	Sb +5 +3	Te +5 +4	1 +7 +5 +3 +1
Rb +1	Sr +2								• ,,	Au +3 +1	Hg +2 +1	TI +3 +1	Pb +4 +2	8i +5 +3	Po +6 +4	At

Table 18: Standard Reduction Potentials of Half Cells

Very Strong
Oxidizing Agent

Very Weak Reducing Agent

	Half-reaction	E° (volts)	
	F₂(g)+2e ⁻ ⇔ 2F ⁻	+ 2.87	
	$MnO_4^- + 8H^+ + 5e^- \Leftrightarrow Mn^{2+} + 4H_2O$	+ 1.52	
	Au ³⁺ +3e ⁻ ⇔ Au(s)	+ 1.60	
	Cl ₂ (g) + 2e ⁻ ⇔ 2Cl ⁻	+ 1.36	
	$Cr_2O_7^{2-} + 14H^+ + 6e^- \Leftrightarrow 2Cr^{8+} + 7H_2O$	+ 1.33	
	$MnO_2(s) + 4H^+ + 2e^- \Leftrightarrow Mn^{2+} + 2H_2O$	+ 1.28	
	$\frac{1}{2}O_2(g) + 2H^+ + 2e^- \Leftrightarrow H_2O$	+ 1.23	
	$\mathrm{Br}_2(\ell)$ + 2e" \Leftrightarrow 2Br"	+ 1.06	
	$NO_8^- + 4H^+ + 3e^- \Leftrightarrow NO(g) + 2H_2O$	+ 0.96	
	$Ag^{+} + e^{-} \Leftrightarrow Ag(s)$	+ 0.80	
	$NO_3^- + 2H^+ + e^- \Leftrightarrow NO_2(g) + H_2O$	+ 0.78	
	$Fe^{3+} + e^- \Leftrightarrow Fe^{2+}$	+ 0.77	
	$I_2(s) + 2e^- \Leftrightarrow 2I^-$	+ 0.53	
	$Cu^{2+} + 2e^{-} \Leftrightarrow Cu(s)$	+ 0.34	
	$SO_4^{2-} + 4H^+ + 2e^- \Leftrightarrow SO_2(g) + 2H_2O$	+ 0.17	
	$\operatorname{Sn}^{4+} + 2e^{-} \Leftrightarrow \operatorname{Sn}^{2+}$	+ 0.15	
	$S(s) + 2H^+ + 2e^- \Leftrightarrow H_2S(g)$	+ 0.14	
	$2H^+ + 2e^- \Leftrightarrow H_2(g)$	0.00	
	$Fe^{8+} + 3e^- \Leftrightarrow Fe(8)$	0.04	
	$Pb^{2+} + 2e^{-} \Leftrightarrow Pb(s)$	- 0.13	
	$\operatorname{Sn}^{2+} + 2e^{-} \Leftrightarrow \operatorname{Sn}(s)$	- 0.14	
	$Ni^{2+} + 2e^- \Leftrightarrow Ni(s)$	- 0.25	
	$Cd^{2+} + 2e^- \Leftrightarrow Cd(s)$	~ 0.40	
	$Fe^{2+} + 2e^{-} \Leftrightarrow Fe(s)$	- 0.44	
	$\operatorname{Cr}^{3+} + 3e^{-} \Leftrightarrow \operatorname{Cr}(s)$	- 0.74	
	$\operatorname{Zn}^{2+} + 2e^- \Leftrightarrow \operatorname{Zn}(s)$	- 0.76	
	$Mn^{2+} + 2e^- \Leftrightarrow Mn(s)$	1.18	
	$Al^{8+} + 3e^- \Leftrightarrow Al(8)$	- 1.66	
	$Mg^{2+} + 2e^- \Leftrightarrow Mg(s)$	- 2.37	
	$Na^+ + e^- \Leftrightarrow Na(s)$	- 2.71	
	$Ca^{2+} + 2e^{-} \Leftrightarrow Ca(s)$	- 2.87	
	$Ba^{2+} + 2e^- \Leftrightarrow Ba(s)$	- 2.90	
	$Cs^+ + e^- \Leftrightarrow Cs(s)$	- 2.92	
	$K^+ + e^- \Leftrightarrow K(s)$	- 2.92	
k	$Li^+ + e^- \Leftrightarrow Li(s)$	- 3.00	

Table 19: Standard Reduction Potentials of Half Cells

STRENGTH	OXIDIZING AGENTS		REDUCING AGENTS	E"(VOLTS)	STRENCTH
ery strong	F _: [g] + 2e ⁻	=	2f"	+2.87	Very weak
oxidizing	5.05 + 2e		2\$O;	+2.05	reducing
agents	H.O. + 2H" + 2e"	=	2H ₂ O	+1.78	agents
ł	8rO; + 6H* + 5e	~	Br ₂ (l) + 3H ₂ O	+1.52	
1	MnO; + 8H* + 5e .	==	Mn2* + 4H ₂ O	+1.49	
	Au ⁹⁺ + 3e ⁻	=	Au(s)	+1.42	
- 1	ClO; + 8H* + 8e	=	Cl' + 4ff ₁ 0	+1.37	ļ
	Cl ₂ (g) + Ze ⁻	-	2CI*	+1.36	·
	$Cr_{2}O_{7}^{2} + 14H^{2} + 6e^{2}$	-	2Cr3+ + 7H ₂ O	+1.33	Į į
	O (g) + 2H + 2e	=	н,оо,н	+1.23	Overpotential Effect
	MnO <u>.(s)</u> + 4H* + 2e*		Mn ²⁺ + 2H ₂ O	+1.21	i =
· }	- 10; + 6H* + 5e*		(f ₂ (s) + 3H ₂ O	+1.20	i
	$-ABr_{s}(\ell) + 2e^{s}$		2Br*	+1.06	1 8
. 1	AuCl; + 3e	\rightleftharpoons	Au[s] + 4Cl	+0.99	15-
1	NO; +4H'+3e	\rightleftharpoons	$NO(g) + 2H_2O \dots$	+0.96	138
	Hg ²⁺ + 2e	\rightleftharpoons	Hg(ℓ)		10
	10_(g) + 2H'(10" M) + 2e"		н _г о		_'
	Ag' + e	$\stackrel{\leftarrow}{-}$	Ag(s)		
	'Hgi* + e*		Hg(ℓ)		
	NO ₃ + 2H* + e*	$\stackrel{\leftarrow}{\rightarrow}$	NO _z [g] + H ₂ O		
g)	- Fe³* + e⁻	\Rightarrow	Fe ²⁺		=
<u> </u>	O:(g) + 2H2 + 2e	=	H _z O _z	+0.68	Ę
8	MnO; + 2H ₂ O + 3e		MnO ₂ (s) + 40H ⁻	+0.59	
20			2['	+0.53	25
diz	Cu' + e	-	Cu(s)	+0.52	5
jx l	. H ₂ SO ₃ + 4H* + 4e*	<u></u>	5(s) + 3H ₂ O	+0.45	g
9	Cu ² " + 2e ⁻	\rightleftharpoons	Cu(s)	+0.34	<u>=</u>
5	≵ SO ³ + 4H′ + 2e	·	H ₂ SO ₃ + H ₂ O	+0.20	ğ
e e	Cu** + e*	=	Cu'	+0.16	[<u>a</u>
strength of oxidizing agents	Sn** + Ze*	\equiv	Sn2*	+0.15	1 2
20	S[s] + 2H* + Ze*	ADDRESS OF	H ₂ 5(g)	+0.14	Increasing strength of reducion
D.	Pb ² ' + Ze'	-	Pb(s)		gents
- Incre	Sn2' + 2e-	$\stackrel{-}{=}$	Sn(s)	- 1	2
٦	Ni* + 2e-		Ni(s)		1
	H,PO, + 2H' + 2e"	\rightleftharpoons	H ₂ PO ₃ + H ₂ O		
1	Co2+ 2e-		Co(s)	- 1	
1	Se(s) + 2H + 2e	=	H₂Se	-0.36	
1	• Fe2+ + 2e-		Fc(s)	-0.41	
	당 Cr³·+e⁻	7	Crt*	-0.41	.
	Gr ² + e ⁻ Fig. 1		H ₂ + 2OH ⁻ (10 ⁻⁷ M)	-0.41	
	Te(s) + 2H' + 2e	=	H,Te	-0.69	
	G Ag ₁ S(s) + Ze ⁻		2Ag(s) + S2:	-0.71	1
	g 1 Cr3+ 3e	4	Cr(s)	-0.74	
}		₹	Zn(s)		
1	2H ₂ O + 2e ⁻	=	H ₄ (g) + 2OH":	~0.83	
	Mn- + Ze		Mn(s)	-1.03	}
	Al3" + 3e-	=	Al(s)		1
	Mg ²⁺ + 2e	Ξ	Mg(s)		
	Na'+e'	=	Na(s)		
	- i	•	Ca(s)	- 1	
	Ca²+ + Ze²	_		-2.89	
	Ca*+ ze* Sr*+ ze*	\equiv	Sr(s)	- 1	l
	Ca** + ze* Sr** + ze* Ba** + ze*	1111	Ba(s)	-2.90	
	Ca ² · + 2e ³ Sr ² · + 2e ³ Ba ² · + 2e ³ Cs ³ · + e ³	111111	Ba(s)	-2.90 -2.92	1
Very weak	Ca** + ze* Sr** + ze* Ba** + ze*	11111111111	Ba(s)	-2.90 -2.92 -2.92	Very strong reducing

Table 20: Metal Activity Series

Metal	Metal Ion	Reactivity
Lithium	${ m Li+}$	Most Reactive
Potassium	K +	-
Calcium	Ca2+	-
Sodium	Na+	•
Magnesium	Mg2+	
Aluminum	A13+	-
Manganese	Mn2+	~
Zinc	Zn2+	-
Chromium	Cr2+, Cr3+	-
Iron	Fe2+, Fe3+	
Lead	Pb2+	-
Copper	Cu2+	-
Mercury	Hg2+	-
Silver	Ag+	-
Platinum	Pt2+	-
Gold	Au+, Au3+	Least Reactive