To plove.

ii)
$$\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab}$$

consides

$$(ab)\left(\frac{1}{a}\cdot\frac{1}{b}\right) = (ba)\left(\frac{1}{a}\cdot\frac{1}{b}\right) \begin{bmatrix} closure \\ law \end{bmatrix}$$

$$= b\cdot\left(a\cdot\frac{1}{a}\right)\cdot\frac{1}{b}\left(Assx.\ law\right)$$

$$= b\cdot1\cdot\frac{1}{b} = b\cdot\frac{1}{b} = 1$$

cative inverse of each other.

$$\therefore \frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab}$$

$$L_{a} \text{!!.S.} = \frac{\alpha}{b} \cdot \frac{c}{d}$$

$$= (a \cdot \frac{1}{b}) \cdot (c \cdot \frac{1}{d})$$

$$= a \cdot (\frac{1}{b} \cdot c) \cdot \frac{1}{d} (A880c.)$$

$$= (ac)\left(\frac{1}{b}\cdot\frac{1}{d}\right)\left(\frac{Assoc.}{low}\right)$$

$$= \frac{ac}{bd} = \frac{ac}{bd} = R.H.S.$$

iv) To prove
$$\frac{a}{b} = \frac{ka}{kb} (k \neq a)$$

L.H.S. =
$$\frac{a}{b}$$

= $\frac{a}{b} \cdot 1$ (Multiplicative)

= $\frac{a}{b} \cdot (k \cdot \frac{1}{k})$ (Multiplicative)

= $\frac{a}{b} \cdot (k \cdot \frac{1}{k})$ (Multiplicative)

= $\frac{a}{b} \cdot \frac{k}{k}$

Cosume of

$$=\frac{ak}{bk}=R.H.S.$$

V) to peare

$$\frac{a}{b} = \frac{ad}{bc}$$

To place

ii)
$$\frac{1}{a} \cdot \frac{1}{b} = \frac{1}{ab}$$

Consider

$$(ab)(\frac{1}{a} \cdot \frac{1}{b}) = (ba)(\frac{1}{a} \cdot \frac{1}{b})[closure]$$

$$= \frac{a}{b} \times (dx \cdot \frac{1}{d})[closure]$$

$$= b \cdot (a \cdot \frac{1}{a}) \cdot \frac{1}{b}(Assoc. law) = \frac{a}{b} \times (dx \cdot \frac{1}{d})[multiplicative Inverse]$$

$$= b \cdot 1 \cdot \frac{1}{b} = b \cdot \frac{1}{b} = 1$$

$$\Rightarrow ab \ and \ \frac{1}{a} \cdot \frac{1}{b} \ are \ multiplicative inverse \ at \ each \ other.$$

$$= \frac{ad \times \frac{1}{ba}}{bc \times \frac{1}{ba}}$$

= ad [Cancellation Law] = R. H.S.

* EXERCISE 1.1*

= a. (c. -b). -d (commutative have closure property w. 8. t. 11 203 Addition Table

"0+0=0∈{0} => {0} has closure property w.r.t. (+) multiplication Table

· 0×0=0€ {0} => {0} has closure property w.s.t. (x)

10 713 Addition Table

:1+1=2 \$ {1} => {1} does not have closuse property w.s.t. '+'

Multiplication Table

:1x1=1∈{1} => {1} hes Closure property w.s.t. "x"

ii) {0,-1} Addition Table			
+	0	-1	
0	0	-1	
-1	-φ	-2	

"
$$0+0=0 \in \{0,-1\}$$

 $0+(-1)=-1 \in \{0,-1\}$
 $(-1)+0=-1 \in \{0,-1\}$
 $(-1)+(-1)=-2 \notin \{0,-1\}$

> {0,-1} does not have closure (2) Name the properties used in property w. 2. t. (4)

Multiplication Table

×	0	
0	0	0
-1	0	1

$$0 \times 0 = 0 \in \{0, -1\}$$

$$0 \times (-1) = 0 \in \{0, -1\}$$

$$(-1) \times 0 = 0 \in \{0, -1\}$$

$$(-1) \times (-1) = 1 \notin \{0, -1\}$$

⇒ {0,-1} does not have closure property w.r.t. 'x'

: 1+1=2 \$ {1,-1? 1+(-1)=0 \$ {1,-13 (-1)+1=0€ {1,-13 (-1)+(-1)=-2 ≠ {1,-1} => {1,-1} does not have closure property w. r.t. '+' Multiplication Table

×		
	1	-1
-1	-1	1

" $|x| = 1 \in \{1, -1\}$ 1x(-i)=-1 = {1,-1} $(-1)\times 1 = -1 \in \{1,-1\}$ (-1)×(-1)=1= {1,-1} => {1,-1} has closure property

W. 2. t. (x)

the following questions.

1)
$$4+9=9+4$$
 (commutative peopesty w.s.t.+2)
ii) $(a+1)+\frac{3}{4}=a+(1+\frac{3}{4})$ (Assoc. proporty w.s.t.+2)
iii) $(3+15)+17=13+(15+17)$ (-)

V) 1000x 1=1000 (Multiplicative Identity)

ix)a(b-c)=ab-ac(Left distributive)

property

xii) a (b+c-d)=ab +ac-ad (Left distribution brobset. 3) Name the properties used 5 prove that in the following inequalities. $-\frac{7}{12} - \frac{5}{18} = \frac{1}{12} - \frac{5}{12} - \frac{7}{12} - \frac{7}{12} = \frac{7}{12} - \frac{7}{12} = \frac{7}{12} \times \frac{7}{12} = \frac{7}{12} = \frac{7}{12} \times \frac{7}{12} = \frac{$

iv) $a < 0 \Rightarrow -a > 0$ (multiplicative) $b > a > b \Rightarrow \frac{1}{a} < \frac{1}{b}$ ()

vi)a>b⇒-a<-b (~)

4) From the following rules of addition. $\frac{a}{b} = \frac{a+b}{a+b}$

 $4 \cdot H \cdot S \cdot = \frac{a}{c} + \frac{b}{c}$ $= a \times \frac{1}{c} + b \times \frac{1}{c}$ $= (a + b) \times \frac{1}{c} \quad (Right)$ $= \frac{a + b}{c} = R \cdot H \cdot S \cdot$

 $\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd}$

1.4.8. = $\frac{a}{b} + \frac{c}{d}$ = $\frac{a}{b} \times 1 + 1 \times \frac{c}{d}$ = $\frac{a}{b} \times (a' \times \frac{1}{d}) + (b \times \frac{1}{b}) \times \frac{c}{d}$ = $\frac{a}{b} \times \frac{d}{d} + \frac{b}{b} \times \frac{c}{d}$ = $\frac{ad}{bd} + \frac{bc}{bd}$ = $ad \times \frac{1}{bd} + bc \times \frac{1}{bd}$ = $(ad + bc) \times \frac{1}{bd}$ = $\frac{ad + bc}{bd} = R.H.S.$ (5) Prove that $-\frac{7}{12} - \frac{5}{18} = \frac{-21-10}{36}$ $2. H.S. = -\frac{7}{12} - \frac{5}{18}$ $= -\frac{7}{12} \times 1 - \frac{5}{18} \times 1$ $= -\frac{7}{12} \times (3 \times \frac{1}{3}) - \frac{5}{18} \times (2 \times \frac{1}{2})$ $= -\frac{7}{12} \times \frac{3}{3} - \frac{5}{18} \times \frac{2}{2}$ $= -\frac{21}{36} - \frac{10}{36}$ $= -21 \times \frac{1}{36} - 10 \times \frac{1}{36}$ $= (-21 - 10) \times \frac{1}{36}$ $= \frac{-21 - 10}{36} = R.H.S.$

6 Simplify by justifying each Step.

i) $\frac{4+16 \times 1}{4} = \frac{1}{4} \times (4+16 \times) :: \frac{a}{b} = \frac{1}{b} \times a$ $= \frac{1}{4} \times (4\times 1 + 4 \times 4\times) \left(\begin{array}{c} \text{multiplicative} \\ \text{Identity} \end{array} \right)$ $= \frac{1}{4} \times 4\times (1+4\times) \left(\begin{array}{c} \text{Distlibutive} \\ \text{Property} \end{array} \right)$ $= 1 \times (1+4\times) \left(\begin{array}{c} \text{multiplicative} \\ \text{invelse} \end{array} \right)$ $= 1+4\times \left(\begin{array}{c} \text{multiplicative} \end{array} \right)$

ii) $\frac{\frac{1}{4} + \frac{1}{5}}{\frac{1}{4} - \frac{1}{5}} = \frac{\frac{1}{4} \times 1 + \frac{1}{5} \times 1}{\frac{1}{4} \times 1 - \frac{1}{5} \times 1}$ (multi
= $\frac{\frac{1}{4} \times (5 \times \frac{1}{5}) + \frac{1}{5} \times (4 \times \frac{1}{4})}{\frac{1}{4} \times (5 \times \frac{1}{5}) - \frac{1}{5} \times (4 \times \frac{1}{4})}$ (multi-forms)

= $\frac{\frac{1}{4} \times \frac{5}{5} + \frac{1}{5} \times \frac{4}{4}}{\frac{1}{4} \times \frac{5}{5} - \frac{1}{5} \times \frac{4}{4}}$: $\frac{a}{b} = a \times \frac{1}{b}$ = $\frac{\frac{5}{20} + \frac{4}{20}}{\frac{5}{20} - \frac{4}{20}}$: $\frac{a}{b} \times \frac{c}{b} \times \frac{a}{b} \times \frac{c}{b}$

$$= \frac{5 \times \frac{1}{20} + 4 \times \frac{1}{20}}{5 \times \frac{1}{20} + 4 \times \frac{1}{20}} \qquad \frac{d}{d} = a \cdot \frac{1}{b} \qquad \frac{d}{d} \times \frac{d}{b} + (a \times \frac{1}{a}) \times \frac{1}{b}}{(b \times \frac{1}{a}) \times \frac{1}{b}} \qquad \frac{d}{d} \times \frac{d}{d} \times \frac{1}{b} + (a \times \frac{1}{a}) \times \frac{1}{b}}{(b \times \frac{1}{a}) \times \frac{1}{b}} \qquad \frac{d}{d} \times \frac{d}{d} \times \frac{1}{a} \times \frac{1}{b} \times \frac{d}{d} \times \frac{$$