LIST OF TABLES

Biharmonic Tests

Contents

1	01_01	2
2	02_02	8
3	01_23	11

List of Tables

1	Numerical results of PRO1 scheme to the example ??	2
2	Numerical results of pro2 scheme to the example ??	3
3	Numerical results of pro3 scheme to the example ??	3
4	Numerical results of PRO1 scheme to the example ??	4
5	Numerical results of pro2 scheme to the example ??	4
6	Numerical results of pro3 scheme to the example ??	5
7	Numerical results of PRO1 scheme to the example ??	6
8	Numerical results of pro2 scheme to the example ??	6
9	Numerical results of pro3 scheme to the example ??	7

In this document we distinguish three schemes:

- PRO1 this is considered the "old" method because we aren't using the least squares with the constrains. To calculate the $\widehat{\mathcal{R}}$ matrix (matrix of the coefficients) we use $\widehat{\mathcal{R}} = \operatorname{pinv}(A) \times B$
- PRO2 in this scheme, to calculate the $\widehat{\mathcal{R}}$ matrix we resort to the least squares with constrains and the degree of the reconstruction $\widehat{\psi}_1$ and $\widehat{\psi}_I$ is equal to the degree setted;
- PRO3 in this scheme, to calculate the $\widehat{\mathcal{R}}$ matrix we resort to the least squares with constrains and the degree of the reconstruction $\widehat{\psi}_1$ and $\widehat{\psi}_I$ is equal to the degree setted plus:
 - in 01_01 problems, degree+1
 - in 02_02 problems, degree+2
 - in 01_23 problems, degree+1 at the left and degree+3 at the right.

$1 \quad 01_01$

Example 1.1. In this tests we consider:

- $\psi(x) = x^4$
- $\psi_l = 0$
- $\psi_{\rm r}=1$
- $\psi_{ll} = 0$
- $\psi_{\rm rr} = 4$
- g(x) = -24

Table 1: Numerical results of PRO1 scheme to the example ??.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$
	20	3.33E-03		2.51E - 03		2.51E - 03		2.51E - 03	
	40	4.31E - 04	2.95	3.21E - 04	2.97	3.21E - 04	2.97	3.21E - 04	2.97
	80	5.46E - 05	2.98	4.04E - 05	2.99	4.04E - 05	2.99	4.04E - 05	2.99
$\mathbb{P}_3(4)$	160	6.86E - 06	2.99	5.07E - 06	2.99	5.07E - 06	2.99	5.07E - 06	2.99
	240	2.04E - 06	3.00	1.50E - 06	3.00	1.50E - 06	3.00	1.50E - 06	3.00
	360	6.04E - 07	3.00	4.46E - 07	3.00	4.46E - 07	3.00	4.46E - 07	3.00
	540	1.79E - 07	3.00	1.32E - 07	3.00	1.32E - 07	3.00	1.32E - 07	3.00
	20	2.59E-14		1.30E - 14	_	3.94E - 14	_	1.04E-14	_
	40	7.90E - 14	\uparrow	6.93E - 14	\uparrow	7.13E - 14	\uparrow	7.84E - 14	\uparrow
	80	$4.14E{-}13$	\uparrow	6.67E - 13	\uparrow	$2.12E{-13}$	\uparrow	$4.74E{-}13$	\uparrow
$\mathbb{P}_5(6)$	160	$2.53E{-}11$	\uparrow	$4.92E{-}12$	\uparrow	$1.36E{-}12$	\uparrow	$3.40E{-}12$	\uparrow
	240	1.99E - 11	0.59	$3.56E{-}11$	\uparrow	9.60E - 12	\uparrow	8.67E - 12	\uparrow
	360	$2.30E{-}10$	\uparrow	$1.17E{-}10$	\uparrow	$7.53E{-}11$	\uparrow	$7.46E{-}11$	\uparrow
	540	1.05E-09	\uparrow	$2.50E{-}10$	\uparrow	$1.14E{-}10$	\uparrow	1.75E - 10	\uparrow

Table 2: Numerical results of pro2 scheme to the example ??.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E - 04		2.06E - 04		2.06E - 04	_	2.06E - 04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	240	1.36E - 07	3.16	1.05E - 07	3.19	1.05E - 07	3.19	1.05E - 07	3.19
	360	3.62E - 08	3.27	2.78E - 08	3.27	2.75E - 08	3.29	2.79E - 08	3.26
	540	8.97E - 09	3.44	5.18E - 09	4.14	4.97E - 09	4.22	4.71E - 09	4.39
	20	1.78E - 07	_	1.48E - 07		1.48E - 07	_	1.48E - 07	_
	40	5.36E - 09	5.05	4.45E - 09	5.06	4.45E - 09	5.06	4.46E - 09	5.06
	80	$1.51E{-}10$	5.15	1.37E - 10	5.03	$1.26E{-}10$	5.15	1.37E - 10	5.03
$\mathbb{P}_5(6)$	160	7.06E - 11	1.10	1.70E - 10	\uparrow	$5.08E{-}11$	1.30	$1.70E{-}10$	\uparrow
	240	$6.83E{-}11$	0.08	$1.12E{-}10$	1.02	$1.12E{-}10$	\uparrow	7.20E - 11	2.11
	360	3.65E - 10	\uparrow	7.68E - 10	\uparrow	1.34E-09	\uparrow	$4.83E{-}10$	\uparrow
	540	2.68E-09	<u></u>	4.76E - 09	<u> </u>	4.78E - 09	<u></u>	6.20E - 10	

Table 3: Numerical results of pro3 scheme to the example ??.

		$\omega = 1 1,1$		$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	6.89E - 05		4.01E - 05	_	4.01E - 05	_	4.01E - 05	_
	40	8.09E - 06	3.09	4.87E - 06	3.04	4.87E - 06	3.04	4.87E - 06	3.04
	80	8.53E - 07	3.25	4.91E - 07	3.31	4.91E - 07	3.31	4.91E - 07	3.31
$\mathbb{P}_3(4)$	160	7.67E - 08	3.48	3.66E - 08	3.74	3.66E - 08	3.74	3.66E - 08	3.74
	240	1.71E - 08	3.70	7.42E - 09	3.94	7.42E - 09	3.94	7.44E - 09	3.93
	360	3.64E - 09	3.81	5.51E - 09	0.74	4.88E - 09	1.03	4.88E - 09	1.04
	540	4.81E - 09	\uparrow	7.41E-09	\uparrow	7.70E - 09	\uparrow	7.41E - 09	\uparrow
	20	1.17E-07	_	1.08E - 07	_	1.08E - 07	_	1.08E - 07	
	40	2.98E - 09	5.30	3.13E - 09	5.11	3.13E - 09	5.11	3.13E - 09	5.11
	80	$8.58E{-}11$	5.12	$8.33E{-}11$	5.23	$8.59E{-}11$	5.19	$8.26E{-}11$	5.24
$\mathbb{P}_5(6)$	160	$2.69E{-}11$	1.67	4.08E - 11	1.03	$2.00E{-}11$	2.10	$4.08E{-}11$	1.02
	240	$6.25E{-}11$	\uparrow	$4.40E{-}10$	\uparrow	$4.40E{-}10$	\uparrow	$3.81E{-}10$	\uparrow
	360	1.58E-09	\uparrow	1.03E-09	\uparrow	1.85E - 10	2.13	3.66E - 10	0.09
	540	7.53E - 09	\uparrow	1.00E - 08	\uparrow	8.10E - 09	\uparrow	5.13E - 09	\uparrow

Example 1.2. In this tests we consider:

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{\rm r} = e$
- $\psi_{\mathrm{ll}} = 1$
- $\psi_{\rm rr} = e$
- $g(x) = -\exp(x)$

Table 4: Numerical results of PRO1 scheme to the example ??.

		$\omega = 1 1$	1,1	$\omega = 1 3$	3, 1	$\omega = 1 3$	3, 3	$\omega = 1 3,$	10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$
	20	2.60E - 04	_	2.07E - 04	_	2.07E - 04	_	2.06E - 04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	240	1.36E - 07	3.16	1.05E - 07	3.19	1.05E - 07	3.19	1.05E - 07	3.19
	360	3.64E - 08	3.26	2.79E - 08	3.27	2.74E - 08	3.31	2.76E - 08	3.30
	540	9.11E - 09	3.41	6.16E - 09	3.72	6.98E - 09	3.38	7.26E - 09	3.29
	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_
	40	5.36E - 09	5.05	4.45E - 09	5.06	4.45E - 09	5.06	4.45E - 09	5.06
	80	$1.56E{-}10$	5.11	$1.40E{-}10$	4.99	$1.38E{-}10$	5.01	$1.35E{-}10$	5.04
$\mathbb{P}_5(6)$	160	$1.45E{-}11$	3.42	9.88E - 11	0.51	$9.13E{-}11$	0.60	$4.14E{-}11$	1.71
	240	$9.29E{-}11$	\uparrow	3.94E - 10	\uparrow	$3.02E{-}10$	\uparrow	$4.94E{-}10$	\uparrow
	360	1.25E-09	\uparrow	$8.54E{-}10$	\uparrow	$8.91E{-}10$	\uparrow	1.15E - 09	\uparrow
	540	1.44E - 09	\uparrow	5.59E - 09	\uparrow	2.64E - 09	\uparrow	2.11E-09	\uparrow

Table 5: Numerical results of pro2 scheme to the example ??.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E-04		2.06E-04	_	2.06E-04	_	2.06E-04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	240	1.36E - 07	3.16	1.05E - 07	3.19	1.05E - 07	3.19	1.05E - 07	3.19
	360	3.62E - 08	3.27	2.78E - 08	3.27	2.75E - 08	3.29	2.79E - 08	3.26
	540	8.97E - 09	3.44	5.18E - 09	4.14	4.97E - 09	4.22	4.71E - 09	4.39
	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	_
	40	5.36E - 09	5.05	4.45E - 09	5.06	4.45E - 09	5.06	4.46E - 09	5.06
	80	$1.51E{-}10$	5.15	1.37E - 10	5.03	1.26E - 10	5.15	1.37E - 10	5.03
$\mathbb{P}_5(6)$	160	7.06E - 11	1.10	$1.70E{-}10$	\uparrow	5.08E - 11	1.30	$1.70E{-}10$	\uparrow
, ,	240	$6.83E{-}11$	0.08	$1.12E{-}10$	1.02	$1.12E{-}10$	\uparrow	$7.20E{-}11$	2.11
	360	$3.65E{-}10$	\uparrow	7.68E - 10	\uparrow	1.34E - 09	\uparrow	4.83E - 10	\uparrow
	540	2.68E-09	<u></u>	4.76E - 09	↑	4.78E - 09	<u></u>	6.20E - 10	

Table 6: Numerical results of pro3 scheme to the example $\ref{eq:condition}.$

		$\omega = 1 1,1$		$\omega = 1 3$	3, 1	$\omega = 1 3$	$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	6.89E - 05	_	4.01E - 05	_	4.01E - 05	_	4.01E - 05	
	40	8.09E - 06	3.09	4.87E - 06	3.04	4.87E - 06	3.04	4.87E - 06	3.04
	80	8.53E - 07	3.25	4.91E - 07	3.31	4.91E - 07	3.31	4.91E - 07	3.31
$\mathbb{P}_3(4)$	160	7.67E - 08	3.48	3.66E - 08	3.74	3.66E - 08	3.74	3.66E - 08	3.74
	240	1.71E - 08	3.70	7.42E - 09	3.94	7.42E - 09	3.94	7.44E - 09	3.93
	360	3.64E - 09	3.81	5.51E - 09	0.74	4.88E - 09	1.03	4.88E - 09	1.04
	540	4.81E - 09	\uparrow	7.41E - 09	\uparrow	7.70E - 09	\uparrow	7.41E-09	\uparrow
	20	1.17E - 07	_	1.08E - 07	_	1.08E - 07	_	1.08E - 07	_
	40	2.98E - 09	5.30	3.13E-09	5.11	3.13E - 09	5.11	3.13E - 09	5.11
	80	$8.58E{-}11$	5.12	$8.33E{-}11$	5.23	$8.59E{-}11$	5.19	$8.26E{-}11$	5.24
$\mathbb{P}_5(6)$	160	$2.69E{-}11$	1.67	$4.08E{-}11$	1.03	$2.00E{-}11$	2.10	$4.08E{-}11$	1.02
	240	$6.25E{-}11$	\uparrow	4.40E - 10	\uparrow	4.40E - 10	\uparrow	$3.81E{-}10$	\uparrow
	360	1.58E - 09	\uparrow	1.03E-09	\uparrow	$1.85E{-}10$	2.13	3.66E - 10	0.09
	540	7.53E - 09	\uparrow	1.00E - 08	\uparrow	8.10E - 09	\uparrow	5.13E - 09	\uparrow

Example 1.3. In this tests we consider:

•
$$\psi(x) = -\exp(x) + x^3(3-e) + x^2(2e-5) + x + 1$$

- $\psi_l = 0$
- $\psi_{\rm r} = 0$
- $\psi_{\mathrm{ll}} = 0$
- $\psi_{\rm rr} = 0$
- $g(x) = \exp(x)$

Table 7: Numerical results of PRO1 scheme to the example ??.

		$\underline{\hspace{1cm}\omega=1 1,1}$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$
	20	2.60E-04	_	2.07E - 04		2.07E - 04	_	2.06E - 04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	240	1.36E - 07	3.16	1.05E - 07	3.19	1.05E - 07	3.19	1.05E - 07	3.19
	360	3.64E - 08	3.25	2.75E - 08	3.30	2.75E - 08	3.30	2.75E - 08	3.30
	540	9.21E - 09	3.39	6.78E - 09	3.45	6.79E - 09	3.45	6.78E - 09	3.45
	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	
	40	5.36E - 09	5.05	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06
	80	$1.55E{-}10$	5.11	$1.41E{-}10$	4.98	$1.41E{-}10$	4.98	$1.41E{-}10$	4.98
$\mathbb{P}_5(6)$	160	5.68E - 12	4.77	4.98E - 12	4.82	4.75E - 12	4.89	$4.60E{-}12$	4.94
	240	$1.02E{-}12$	4.23	$1.59E{-}12$	2.82	1.73E - 12	2.49	1.84E - 12	2.26
	360	$1.46E{-}12$	\uparrow	$5.19E{-}12$	\uparrow	1.73E - 12	0.00	$3.84E{-}12$	\uparrow
	540	1.96E - 11	\uparrow	8.55E - 12	\uparrow	8.17E - 12	\uparrow	$1.03E{-}11$	\uparrow

Table 8: Numerical results of pro2 scheme to the example ??.

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	2.60E-04		2.06E-04	_	2.06E - 04	_	2.06E-04	_
	40	3.35E - 05	2.95	2.65E - 05	2.96	2.65E - 05	2.96	2.65E - 05	2.96
	80	4.14E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02	3.27E - 06	3.02
$\mathbb{P}_3(4)$	160	4.90E - 07	3.08	3.82E - 07	3.10	3.82E - 07	3.10	3.82E - 07	3.10
	240	1.36E - 07	3.16	1.05E - 07	3.19	1.05E - 07	3.19	1.05E - 07	3.19
	360	3.64E - 08	3.25	2.75E - 08	3.30	2.75E - 08	3.30	2.75E - 08	3.30
	540	9.21E - 09	3.39	6.78E - 09	3.45	6.78E - 09	3.45	6.78E - 09	3.45
	20	1.78E - 07	_	1.48E - 07	_	1.48E - 07	_	1.48E - 07	
	40	5.36E - 09	5.05	4.46E - 09	5.06	4.46E - 09	5.06	4.46E - 09	5.06
	80	$1.55E{-}10$	5.11	$1.41E{-}10$	4.98	$1.41E{-}10$	4.98	$1.41E{-}10$	4.98
$\mathbb{P}_5(6)$	160	$5.39E{-}12$	4.85	$4.65E{-}12$	4.92	$4.59E{-}12$	4.94	$4.65E{-}12$	4.92
, ,	240	$1.82E{-}12$	2.68	2.82E - 13	6.91	$2.82E{-}13$	6.88	4.93E - 13	5.54
	360	$2.51E{-}12$	\uparrow	$2.13E{-}12$	\uparrow	$1.74E{-}12$	\uparrow	5.69E - 13	\uparrow
	540	7.75E - 12	<u></u>	6.97E - 12		6.87E - 12		4.86E - 12	

Table 9: Numerical results of pro3 scheme to the example $\ref{eq:condition}.$

		$\omega = 1 1,1$		$\omega = 1 3$	$\omega = 1 3,1$		$\omega = 1 3,3$		10
	I	$E_{\infty,0}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$	$\overline{\mathrm{E}_{\infty,0}}$	$O_{\infty,0}$	$E_{\infty,0}$	$O_{\infty,0}$
	20	6.89E - 05		4.01E - 05	_	4.01E - 05	_	4.01E - 05	_
	40	8.09E - 06	3.09	4.87E - 06	3.04	4.87E - 06	3.04	4.87E - 06	3.04
	80	8.53E - 07	3.25	4.91E - 07	3.31	4.91E - 07	3.31	4.91E - 07	3.31
$\mathbb{P}_3(4)$	160	7.67E - 08	3.48	3.66E - 08	3.74	3.66E - 08	3.74	3.66E - 08	3.74
	240	1.71E - 08	3.70	7.45E - 09	3.93	7.45E - 09	3.93	7.45E - 09	3.93
	360	3.64E - 09	3.82	5.54E - 09	0.73	5.54E - 09	0.73	5.54E - 09	0.73
	540	3.00E-09	0.48	3.72E - 09	0.98	3.72E - 09	0.98	3.72E - 09	0.98
	20	1.17E-07	_	1.08E-07	_	1.08E-07	_	1.08E-07	
	40	2.98E - 09	5.30	3.13E - 09	5.11	3.13E - 09	5.11	3.13E - 09	5.11
	80	8.88E - 11	5.07	$9.82E{-11}$	4.99	$9.82E{-}11$	5.00	$9.82E{-}11$	4.99
$\mathbb{P}_5(6)$	160	$3.13E{-}12$	4.82	$3.15E{-}12$	4.96	$3.29E{-}12$	4.90	$3.15E{-}12$	4.96
	240	$1.65E{-}12$	1.58	$5.61E{-}13$	4.25	$5.61E{-}13$	4.37	2.74E - 13	6.02
	360	$1.81E{-}12$	\uparrow	4.66E - 11	\uparrow	$4.71E{-}11$	\uparrow	$4.50E{-}11$	\uparrow
	540	$1.25E{-}11$	\uparrow	$5.63E{-}12$	5.21	$2.29E{-}11$	1.77	2.76E - 11	1.21

$2\quad 02_02$

Example 2.1. In this tests we consider:

- $\bullet \ \psi(x) = x^4$
- $\psi_l = 0$
- $\psi_{\rm r}=1$
- $M_{\rm l}=0$
- $M_{\rm r} = -12$
- g(x) = -24

Example 2.2. In this tests we consider:

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{\rm r} = e$
- $M_{\rm l} = -1$
- $M_{\rm r} = -e$
- $g(x) = -\exp(x)$

Example 2.3. In this tests we consider:

•
$$\psi(x) = -\exp(x) + \left(\frac{e-1}{6}\right)x^3 + \frac{x^2}{2} + \left(\frac{5e-8}{6}\right)x + 1$$

- $\psi_l = 0$
- $\psi_{\rm r} = 0$
- $M_{\rm l}=0$
- $M_{\rm r}=0$
- $g(x) = \exp(x)$

$3\quad 01_23$

Example 3.1. In this tests we consider:

- $\bullet \ \psi(x) = x^4$
- $\psi_l = 0$
- $\psi_{ll} = 0$
- $M_{\rm r} = -12$
- G = -24
- g(x) = 24

Example 3.2. In this tests we consider:

- $\psi(x) = \exp(x)$
- $\psi_l = 1$
- $\psi_{\mathrm{ll}} = 1$
- $M_{\rm r} = -{\rm e}$
- G = -e
- $g(x) = -\exp(x)$

Example 3.3. In this tests we consider:

•
$$\psi(x) = -\exp(x) + x^3 \left(\frac{e-1}{6}\right) + \frac{x^2}{2} + x + 1$$

- $\psi_l = 0$
- $\psi_{\rm ll} = 0$
- $M_{\rm r}=0$
- G = 1
- $g(x) = \exp(x)$