Supplementary document for "Protein Complexes Identification with FWER Control"

Zengyou He*(Corresponding Author)
School of Software,
Dalian University of Technology, Dalian, China.
Key Laboratory for Ubiquitous Network and Service Software of
Liaoning Province, Dalian, China.
*Email: zyhe@dlut.edu.cn

Can Zhao
School of Software,
Dalian University of Technology, Dalian, China.
Email: can.zhao1114@hotmail.com

Quan Zou*(Corresponding Author)
School of Computer Science and Technology,
Tianjin University, Tianjin, China.
*Email: zouquan@nclab.net

1 The calculation of p-value when the vertex belongs to the subgraph

Let G = (V, E) be an undirected graph with a set of vertices V and a set of edges E. For a given subgraph S, if one vertex $i \in S$ has k_i^{in} neighbors in subgraph $S \setminus \{i\}$ and has k_i^{out} neighbors in $G \setminus \{S\}$, then $k_i = k_i^{in} + k_i^{out}$ is the degree of vertex i. In addition, D_S is used to denote the degree of subgraph S, $D_{\hat{S}}$ is used to represent the total degree of the rest of vertices in $G \setminus \{S\}$, and D is the total degree of all the vertices in G.

When the vertex i is included in subgraph S, we consider the subgraph that excludes $i, S \setminus \{i\}$, as the current subgraph. Hence the vertices in G can be divided into two groups: $S \setminus \{i\}$ and $G \setminus \{S\}$, and we introduce two binary variables C(u, S) and B(i, u) whose definitions are the same as that in the main manuscript. That is, C(u, S) = 1 if vertex u is included in the subgraph $S \setminus \{i\}$ and C(u, S) = 0 if $u \in G \setminus \{S\}$, and B(i, u) = 1 if vertex i has an edge with vertex u and B(i, u) = 0 otherwise. Therefore, when the vertex i belongs to the given subgraph S, we can construct the following contingency table as shown in Table 1.

Table 1: The contingency table for a vertex (protein) i when it is included in the given subgraph S.

	B(i,u)=1	B(i, u) = 0	Row totals
C(u, S) = 1 $C(u, S) = 0$ Col totals	$k_i^{in} \ k_i^{out} \ k_i$	$D_S - k_i - k_i^{in}$ $D_{\hat{S}} + k_i - k_i^{out}$ $D - 2k_i$	$D_S - k_i D_{\hat{S}} + k_i D - k_i$

2 Family-Wise Error Rate (FWER) and False Discovery Rate (FDR)

FWER and FDR are widely used for measuring the rate of type I errors in multiple hypothesis testing. FWER is the probability of making one or more type I error when performing multiple hypotheses tests. FDR is defined as the expected proportion of false "discoveries". Suppose that there are m null hypotheses, denoted by H_1, H_2, \dots, H_m , and p_1, p_2, \dots, p_m represent their corresponding p-values. We sort these p-values in ascending order, which are denoted by $p_{(1)}, p_{(2)}, \dots, p_{(m)}$. In each hypothesis test, we will either accept the alternative hypothesis or retain the null hypothesis. Summing up the outcomes from m hypothesis tests will yield the following information in Table 2. In this table, m_0 is the number of true null hypotheses, R is the number of rejected hypotheses, V is the number of Type I errors (false positives) and T is the number of Type II errors (false negatives).

Table 2: The contingency table for m hypothesis tests.

	# true null hypotheses	# false null hypotheses	Total
# Significant # Non-significant Total	$V \ m_0 - V \ m_0$	$R - V$ T $m - m_0$	R $m-R$ m

The definition of FWER is given in the following formula:

$$FWER = Pr(V \ge 1). \tag{1}$$

Thus, by making FWER $\leq \alpha$, the probability of making at least one type I error in m hypothesis tests is controlled at the significance level α . The Bonferroni procedure is a popular strategy to control the FWER, in which we will reject a null hypothesis H_i if $p_i \leq \alpha/m$.

FDR is defined as follows:

$$FDR = E\left[\frac{V}{R}|R>0\right] \cdot \Pr(R>0). \tag{2}$$

The Benjamini-Hochberg procedure (BH step-up procedure) is widely used for controlling the FDR at the significance level α . It works as follows: (1) find the largest k such that $p_{(k)} \leq \frac{k}{m}\alpha$; (2) reject each $H_{(i)}$, where $i = 1, \dots, k$.

3 Supplementary experimental results

In the main manuscript, we adopt the overlap score to judge whether a set A is matched to a set B. The overlap score between two complexes A and B is defined as follows [2]:

$$w(A,B) = \frac{|A \cap B|^2}{|A||B|}.$$
 (3)

3.1 The performance comparison of SSF, ClusterONE and MDS when MIPS and SGD are used as the reference set

Table 3: The performance comparison of SSF, ClusterONE and MDS when MIPS is used as the reference set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Gavin (KroganC (SSF ClusterONE MDS	82 89 84	127 203 307	0.3168 0.2854 0.1333	0.5362 0.5421 0.5631	0.6891 0.7479 0.7059	0.3440 0.3963 0.3638	1.5693 1.6863 1.6328	0.4803 0.3596 0.4886	0.6891 0.7479 0.7059	0.5661 0.4857 0.5775
Gavin	SSF ClusterONE MDS	69 74 70	167 294 554	0.2510 0.1542 0.0806	$0.5005 \\ 0.4944 \\ 0.4796$	0.6000 0.6435 0.6087	0.3020 0.3115 0.2848	1.4025 1.4494 1.3731	0.3114 0.2041 0.2509	0.6000 0.6435 0.6087	0.4100 0.3099 0.3553
KroganC	SSF ClusterONE MDS	56 67 89	91 242 1663	0.1707 0.1919 0.1016	0.3986 0.3919 0.4524	0.4118 0.4926 0.6544	0.1769 0.2406 0.3552	0.9873 1.1251 1.4620	0.3956 0.2438 0.1930	0.4118 0.4926 0.6544	0.4035 0.3262 0.2981
KroganE	SSF ClusterONE MDS	55 60 88	77 239 2772	0.1517 0.1728 0.0778	0.3763 0.3777 0.4133	0.3503 0.3822 0.5605	0.1373 0.1873 0.2825	0.8639 0.9472 1.2563	0.4675 0.2427 0.1840	0.3503 0.3822 0.5605	0.4005 0.2969 0.2770
BioGRID	SSF ClusterONE MDS	59 88 90	128 473 3759	0.1124 0.0954 0.0167	0.4456 0.4401 0.5003	0.3122 0.4656 0.4762	0.1083 0.1864 0.1951	0.8660 1.0921 1.1716	0.3516 0.1734 0.2519	0.3122 0.4656 0.4762	0.3307 0.2527 0.3295

Table 4: The performance comparison of SSF, ClusterONE and MDS when SGD is used as the reference set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF ClusterONE MDS	99 108 101	127 203 307	0.4017 0.3598 0.1026	0.6849 0.7228 0.6433	0.7388 0.8060 0.7537	0.4303 0.5254 0.4629	1.8540 2.0542 1.8599	0.5827 0.4532 0.3811	0.7388 0.8060 0.7537	0.6515 0.5802 0.5062
Gavin	SSF ClusterONE MDS	83 93 90	167 294 554	0.3028 0.1975 0.1054	0.7006 0.6930 0.6460	0.6484 0.7266 0.7031	0.3837 0.3953 0.3568	1.7327 1.8149 1.7059	0.4012 0.2653 0.3339	0.6484 0.7266 0.7031	0.4957 0.3887 0.4528
KroganC	SSF ClusterONE MDS	75 93 127	91 242 1663	0.3144 0.3210 0.1173	0.5382 0.5776 0.5827	0.4545 0.5636 0.7697	0.2527 0.3486 0.4504	$1.2455 \\ 1.4898 \\ 1.8028$	0.6374 0.3884 0.2177	0.4545 0.5636 0.7697	0.5306 0.4599 0.3394
KroganE	SSF ClusterONE MDS	70 80 118	77 239 2772	0.2882 0.2770 0.0850	0.5152 0.5319 0.5441	0.3743 0.4278 0.6310	0.2133 0.2472 0.3484	1.1029 1.2069 1.5235	0.7273 0.3682 0.2006	0.3743 0.4278 0.6310	0.4943 0.3958 0.3044
BioGRID	SSF ClusterONE MDS	76 131 130	128 473 3759	0.1498 0.1633 0.0128	0.5239 0.6279 0.4853	0.3262 0.5622 0.5579	0.1421 0.2713 0.2303	0.9922 1.4614 1.2735	0.4766 0.2770 0.1051	0.3262 0.5622 0.5579	0.3873 0.3711 0.1769

3.2 The performance comparison of SSF, ESSC and OSLOM

To further verify the performance of SSF, we carry out some additional experiments where ESSC and OSLOM are selected as the baseline algorithms. The details of comparison results are shown in Supplementary Table 5 - Table 7. In general, there are no algorithms that can always achieve the best performance over all assessment measures. Furthermore, we can observe that SSF could achieve better performance in most cases in terms of NMI. As to composite value and F1 score, we could not get an unified conclusion to claim which algorithm is better than others. Overall, SSF is competitive with the-state-of-art methods in the detection of statistically significant subgraphs.

Table 5: The performance comparison of SSF, ESSC and OSLOM when CYC2008 is used as the reference set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF ESSC OSLOM	111 111 111	127 165 402	0.5122 0.3805 0.3805	0.7448 0.6938 0.7729	0.7708 0.7708 0.7708	$\begin{array}{c} 0.4729 \\ 0.5125 \\ 0.4976 \end{array}$	1.9885 1.9771 2.0413	0.6929 0.6667 0.2363	0.7708 0.7708 0.7708	0.7298 0.7150 0.3617
Gavin	SSF ESSC OSLOM	97 100 81	167 234 192	0.3731 0.2476 0.2504	0.7069 0.6754 0.7351	0.7029 0.7246 0.5870	$0.4155 \\ 0.4508 \\ 0.3073$	1.8253 1.8508 1.6294	$0.4731 \\ 0.5171 \\ 0.3385$	0.7029 0.7246 0.5870	0.5655 0.6035 0.4294
KroganC	SSF ESSC OSLOM	84 77 58	91 99 231	0.3822 0.4572 0.1107	0.6364 0.6169 0.6738	0.5122 0.4695 0.3537	0.3057 0.3135 0.1667	1.4543 1.3999 1.1942	0.7582 0.7778 0.2294	0.5122 0.4695 0.3537	0.6114 0.5856 0.2783
KroganE	SSF ESSC OSLOM	75 60 32	77 66 109	0.3519 0.3165 0.0400	0.6150 0.5214 0.5847	0.4144 0.3315 0.1768	0.2434 0.1899 0.0625	1.2727 1.0428 0.8240	0.8182 0.8636 0.2844	0.4144 0.3315 0.1768	0.5501 0.4791 0.2180
BioGRID	SSF ESSC OSLOM	80 50 55	128 80 151	0.1730 0.0928 0.0625	0.5887 0.5031 0.6505	0.3390 0.2119 0.2331	0.1584 0.1060 0.0980	1.0860 0.8210 0.9816	0.4844 0.5000 0.3245	0.3390 0.2119 0.2331	0.3988 0.2976 0.2713

Table 6: The performance comparison of SSF, ESSC and OSLOM when MIPS is used as the reference set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF ESSC OSLOM	82 82 77	127 165 402	0.3168 0.2378 0.2311	0.5362 0.5089 0.5426	0.6891 0.6891 0.6471	0.3440 0.3736 0.3268	1.5693 1.5716 1.5165	0.4803 0.4909 0.1493	0.6891 0.6891 0.6471	0.5661 0.5734 0.2426
Gavin	SSF ESSC OSLOM	69 76 61	167 234 192	0.2510 0.1645 0.1531	$0.5005 \\ 0.4745 \\ 0.5003$	0.6000 0.6609 0.5304	0.3020 0.3365 0.2289	1.4025 1.4719 1.2596	0.3114 0.3462 0.2344	0.6000 0.6609 0.5304	0.4100 0.4543 0.3251
KroganC	SSF ESSC OSLOM	56 57 27	91 99 231	0.1707 0.2116 0.0472	0.3986 0.4051 0.4054	0.4118 0.4191 0.1985	0.1769 0.1949 0.0848	0.9873 1.0191 0.6887	0.3956 0.4444 0.1169	0.4118 0.4191 0.1985	0.4035 0.4314 0.1471
KroganE	SSF ESSC OSLOM	55 46 17	77 66 109	0.1517 0.1391 0.0160	0.3763 0.3578 0.3463	0.3503 0.2930 0.1083	0.1373 0.1154 0.0322	0.8639 0.7662 0.4868	0.4675 0.5455 0.1193	0.3503 0.2930 0.1083	0.4005 0.3812 0.1135
BioGRID	SSF ESSC OSLOM	59 35 39	128 80 151	0.1124 0.0504 0.0352	0.4456 0.4213 0.4429	0.3122 0.1852 0.2063	0.1083 0.0600 0.0657	0.8660 0.6665 0.7149	0.3516 0.3625 0.1987	0.3122 0.1852 0.2063	0.3307 0.2451 0.2024

Table 7: The performance comparison of SSF, ESSC and OSLOM when SGD is used as the reference set.

	Algorithm	Matched	Predicted	NMI	ACC	Frac	MMR	Composite	Precision	Recall	F1 score
Collins	SSF ESSC OSLOM	99 97 100	127 165 402	0.4017 0.3156 0.2879	0.6849 0.6305 0.7164	0.7388 0.7239 0.7463	0.4303 0.4894 0.4518	1.8540 1.8438 1.9145	$\begin{array}{c} 0.5827 \\ 0.5939 \\ 0.2164 \end{array}$	0.7388 0.7239 0.7463	0.6515 0.6525 0.3355
Gavin	SSF ESSC OSLOM	83 89 72	167 234 192	0.3028 0.2127 0.1744	0.7006 0.6392 0.6853	0.6484 0.6953 0.5625	0.3837 0.4351 0.2685	1.7327 1.7696 1.5163	0.4012 0.4444 0.2917	0.6484 0.6953 0.5625	0.4957 0.5423 0.3841
KroganC	SSF ESSC OSLOM	75 73 51	91 99 231	0.3144 0.3802 0.0815	0.5382 0.5386 0.5568	0.4545 0.4424 0.3091	0.2527 0.2780 0.1462	1.2455 1.2590 1.0121	0.6374 0.7071 0.1991	0.4545 0.4424 0.3091	0.5306 0.5443 0.2422
KroganE	SSF ESSC OSLOM	70 59 28	77 66 108	0.2882 0.2582 0.0212	0.5152 0.4384 0.4640	0.3743 0.3155 0.1497	0.2133 0.1658 0.0503	1.1029 0.9197 0.6640	0.7273 0.7727 0.2477	0.3743 0.3155 0.1497	0.4943 0.4481 0.1866
BioGRID	SSF ESSC OSLOM	76 47 42	128 80 151	0.1498 0.0953 0.0429	0.5239 0.4673 0.5647	0.3262 0.2017 0.1803	0.1421 0.0936 0.0724	0.9922 0.7626 0.8174	$\begin{array}{c} 0.4766 \\ 0.4625 \\ 0.2517 \end{array}$	0.3262 0.2017 0.1803	0.3873 0.2809 0.2101

3.3 FWER vs. FDR

Figure 1: The performance comparison of two variants of SSF that are equipped with FWER and FDR. Here MIPS is used as the reference set.

Figure 2: The performance comparison of two variants of SSF that are equipped with FWER and FDR. Here SGD is used as the reference set.

Figure 3: The performance comparison of two variants of SSF that are equipped with FWER and FDR, where a binomial distribution is used to calculate the p-values and SGD is used as the reference set.

Figure 4: The performance comparison of two variants of SSF that are equipped with FWER and FDR, where a binomial distribution is used to calculate the p-values and MIPS is used as the reference set.

Figure 5: The performance comparison of two variants of SSF that are equipped with FWER and FDR, where a binomial distribution is used to calculate the p-values and SGD is used as the reference set.

3.4 Hypergeometric distribution vs. Binomial distribution

Figure 6: The performance comparison between two p-value calculation methods that are based on hypergeometric distribution and binomial distribution when MIPS is used as the reference set.

Figure 7: The performance comparison between two p-value calculation methods that are based on hypergeometric distribution and binomial distribution when SGD is used as the reference set.

3.5 Parameter sensitivity

Figure 8: The effect of significance level α on the identification performance of SSF when MIPS is used as the reference set.

Figure 9: The effect of significance level α on the identification performance of SSF when SGD is used as the reference set.

References

[1] Yoav Benjamini and Yosef Hochberg. Controlling the false discovery rate: a practical and powerful approach to multiple testing. Journal of the royal statistical society. Series B (Methodological), pages 289–300, 1995.

[2]	BMC bioinformatics, $4(1):2$, 2003	. Hogue. An automated n	nethod for finding mo	necular complexes in lar	ge protein interaction netw	orks.