(12) 公開特許公報(A)

(11)特許出願公開番号 特開2002-105478 (P2002-105478A)

(43)公開日 平成14年4月10日(2002.4.10)

(51) Int.Cl.7	酸別記号		FΙ			Ϋ́	-7]-ド(参考)
C 1 0 M 169/04			C10	OM 169/04			4H104
133/16				133/16			
137/08				137/08			
139/00				139/00		Λ	
// C10N 30:00			C10	N 30:00		Z	
		家語主	未請求	請求項の数7	OL	(全 12 頁)	最終頁に続く

(21) 出願番号 特願2000-301540(P2000-301540) (71) 出願人 000004444 日石三菱株式会社 東京都港区西新橋1丁目3番12号 (72) 発明者 石田 昇 神奈川県横浜市中区千鳥町8番地 日石三菱株式会社潤滑油部潤滑油研究所内 (72) 発明者 白濱 真一 神奈川県横浜市中区千鳥町8番地 日石三菱株式会社潤滑油部潤滑油研究所内 (74) 代理人 100103285 弁理士 森田 順之 (外1名)

最終頁に続く

(54) 【発明の名称】 潤滑油組成物

(57)【要約】

【課題】長期間の使用においてもシャダー防止性能を維持し、かつ湿式クラッチの高いトルク伝達容量と良好な 変速特性を有する新規な潤滑油組成物を提供すること。

【解決手段】潤滑油基油に、下記一般式(1)又は

(2)で表されるコハク酸イミドを変性した化合物の群から選ばれる1種又2種以上の化合物を含有してなることを特徴とする潤滑油組成物。

【化1】

【化2】

m. 1

$$\begin{array}{c|c}
 & O \\
 & N \\$$

(前記一般式(1)又は(2)において、 R^1 及び R^2 は 互いに同一でも異なるものでもよく、各々炭素数8~3 0の炭化水素基であり、 R^3 及び R^4 は互いに同一でも異 なるものでもよく、各々炭素数 $1\sim4$ の炭化水素基であり、 R^5 は水素原子又は炭素数 $1\sim3$ 0の炭化水素基であり、nは $1\sim7$ の整数である。)

【特許請求の範囲】

【請求項1】 潤滑油基油に、下記一般式(1)又は(2)で表されるコハク酸イミドを変性した化合物の群

から選ばれる1種又2種以上の化合物を含有してなることを特徴とする潤滑油組成物。 【化1】

$$\begin{array}{c|c} R^{2} & R^{4} & R^{2} \\ \hline \\ R^{3} & R^{4} & R^{4} \\ \end{array}$$

【化2】

$$\begin{array}{c|c}
 & O \\
 & N \\$$

(前記一般式(1)又は(2)において、 R^1 及び R^2 は 互いに同一でも異なるものでもよく、各々炭素数8~3 0の炭化水素基であり、 R^3 及び R^4 は互いに同一でも異なるものでもよく、各々炭素数1~4の炭化水素基であり、 R^5 は水素原子又は炭素数1~30の炭化水素基であり、nは1~7の整数である。)

【請求項2】 一般式(1)又は(2)のR¹及びR²が それぞれ炭素数8~30の分岐鎖を持つ炭化水素基であ る請求項1記載の潤滑油組成物。

【請求項3】 一般式(1)又は(2)のnが1~3である請求項1又は2記載の潤滑油組成物。

【請求項4】 コハク酸イミドの変性化合物が、ホウ酸、リン酸、カルボン酸及びこれらの誘導体から選ばれる1種又は2種以上の化合物により変性されたものである請求項1乃至3のいずれか1項に記載の潤滑油組成物。

【請求項5】 請求項1~4記載の潤滑油組成物に、さらに摩擦調整剤及び/又は金属系清浄剤を1種又は2種以上配合してなることを特徴とする潤滑油組成物。

【請求項6】 請求項1~5記載の潤滑油組成物が自動 変速機及び/又は無段変速機用であることを特徴とする 潤滑油組成物。

【請求項7】 請求項1~5記載の潤滑油組成物が湿式クラッチ及び/又は湿式ブレーキを有する変速機用であることを特徴とする潤滑油組成物。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は潤滑油組成物に関し、さらに詳しくは、長期間の使用においてもシャダー振動防止性能の低下がなく、かつ湿式クラッチ及び/又は湿式ブレーキの高い伝達トルク容量と良好な変速特性を有する、特に自動変速機及び/又は無段変速機に好適な潤滑油組成物に関するものである。

[0002]

【従来の技術】自動車に搭載される自動変速機、無段変

速機の多くはトルクコンバータを有しており、潤滑油を 介してエンジントルクが変速機に伝達されている。トル クコンバータは構造上、入力側 (エンジン側) と出力側 (変速機側)に差回転がないと動力を伝達できず、この 差回転が変速機の動力伝達効率を低下させる原因となっ ている。地球規模の環境問題を背景に炭酸ガス排出量の 低減を目的として、自動車の省燃費化に対する要求はま すます高くなっており、変速機にも従来に増して動力伝 達効率の向上が求められているが、その一手段として、 近年はトルクコンバータにロックアップクラッチを内蔵 し、潤滑油を介した動力伝達に加えて、走行条件に応じ てエンジントルクを直接変速機構へ伝達する手法が多く 用いられている。しかしながらロックアップクラッチを 作動させるとエンジンのトルク変動が乗り心地を悪化さ せることから、従来のロックアップ機構ではエンジンの トルク変動の少ない高速域においてのみロックアップク ラッチを作動させ、低速域においては作動させていなか った。このため発進時等低速域においてはトルクコンバ ータの伝達ロスを防ぐことができず、燃費向上効果はさ ほど得られなかった。この伝達ロスを低減させるため に、最近では低速域においてもロックアップクラッチを 作動させ、エンジンのトルク変動はクラッチの相対すべ りによって吸収するスリップ制御方式が導入されてい る。しかしクラッチをすべり制御する場合にはロックア ップクラッチの摩擦面でシャダーと呼ばれる異常振動が 発生し、自動車の乗り心地を大きく損なうという問題が 生じる。シャダーの発生防止にはロックアップクラッチ において、すべり速度(V)の増加に伴い摩擦係数

(μ)が高くなるよう、μ-V特性を改良したシャダー防止性能の維持性に優れた潤滑油が求められている。スリップ制御を行う低速度領域の拡大がますます進んでおり、さらなるシャダー防止性能の維持性向上が望まれている。また、自動変速機や無段変速機は、変速機構や前後進切替え機構に湿式の変速クラッチを有しており、変速クラッチの摩擦特性が悪いと、変速時にショックが発

生し、自動車の乗り心地に不快感を与える事となる。そのため、自動変速機用潤滑油は、変速クラッチ係合時のショックを低減させる為に、良好な変速特性を有する事が求められている。シャダー防止性能の維持性や変速特性の向上には、摩擦調整剤を多量に配合するという事も一つの手段として考えられるが、摩擦調整剤の種類によっては湿式クラッチの摩擦係数を大幅に低下させる場合もあり、伝達トルク容量が確保出来なくなってしまう。シャダー防止性の維持性及び変速特性と伝達トルク容量は、一般にトレードオフの関係にあり、これらの性能が両立した潤滑油組成物の開発が望まれている。

[0003]

【発明が解決しようとする課題】そこで、本発明はこのような実状に鑑みなされたものであり、その目的は長期

間の使用においてもシャダー防止性能を維持し、かつ湿式クラッチの高いトルク伝達容量と良好な変速特性を有する新規な潤滑油組成物を提供することにある。

[0004]

【課題を解決するための手段】本発明者らは、前記課題を解決するために鋭意検討を重ねた結果、潤滑油基油に、特定のコハク酸イミドを変性した化合物を含有してなる潤滑油組成物が前記課題を解決できることを見出し、本発明を完成するに至った。すなわち、本発明の潤滑油組成物は、潤滑油基油に、下記の一般式(1)又は(2)で表されるコハク酸イミドを変性した化合物の群からなる1種又は2種以上の化合物を含有してなることを特徴とする潤滑油組成物である。

【化3】

$$\begin{array}{c|c} R^3 & R^4 & R^2 \\ \hline \\ R^3 & R^4 & R^4 \\ \hline \end{array}$$

【化4】

$$\begin{array}{c|c}
 & O \\
 & N \\
 & H \\
 & D
\end{array}$$
(2)

(前記一般式(1)又は(2)において、 R^1 及び R^2 は 互いに同一でも異なるものでもよく、各々炭素数8~30の炭化水素基であり、 R^3 及び R^4 は互いに同一でも異なるものでもよく、各々炭素数1~4の炭化水素基であり、 R^5 は水素原子又は炭素数1~30の炭化水素基であり、nは1~7の整数である。)

前記一般式(1)又は(2)のR¹及びR²がそれぞれ炭素数8~30の分岐鎖を持つ炭化水素基であることが好ましい。また、前記一般式(1)又は(2)のnが1~3であることが好ましい。また、前記コハク酸イミドの変性化合物が、ホウ酸、リン酸、カルボン酸及びこれらの誘導体から選ばれる1種又は2種以上の化合物により変性されたものであることが好ましい。また、これらの潤滑油組成物に、さらに摩擦調整剤及び/又は金属系清浄剤を1種又は2種以上配合してなることが好ましい。また、これらの潤滑油組成物は自動変速機及び/又は無段変速機用に使用することが好ましい。また、これらの潤滑油組成物は湿式クラッチ及び/又は湿式ブレーキを有する変速機用に使用することが好ましい。

[0005]

【発明の実施の形態】以下、本発明の内容をさらに詳細に説明する。本発明の潤滑油組成物における潤滑油基油としては、通常の潤滑油の基油として用いられる任意の鉱油及び/又は合成油が使用できる。鉱油としては、特

に制限はないが、具体的には例えば、原油を常圧蒸留及 び減圧蒸留して得られた潤滑油留分を、溶剤脱れき、溶 剤抽出、水素化分解、溶剤脱ろう、接触脱ろう、水素化 精製、硫酸洗浄、白土処理等の精製処理等を適宜組み合 わせて精製したパラフィン系、ナフテン系等の油やノル マルパラフィン等が使用できる。特に溶剤精製や水素化 精製等の処理を行った後にワックス分を除去して低温流 動性を改善したものが望ましい。また、潤滑油組成物の 低温流動性、酸化安定性を向上させる事から、n-dm法(ASTM-D 3238-80)で規定される% C。が好ましくは60以上、より好ましくは70以上で あり、%Caが好ましくは10以下、より好ましくは5 以下、粘度指数が好ましくは95以上、より好ましくは 100以上の鉱油を使用することが望ましい。合成油と しては、特に制限はないが、ポリー α ーオレフィン(1) ーオクテンオリゴマー、1ーデセンオリゴマー、エチレ ンープロピレンオリゴマー等)及びその水素化物、イソ ブテンオリゴマー及びその水素化物、イソパラフィン、 アルキルベンゼン、アルキルナフタレン、ジエステル (ジトリデシルグルタレート、ジ2-エチルヘキシルア ジペート、ジイソデシルアジペート、ジトリデシルアジ ペート、ジ2-エチルヘキシルセバケート等)、ポリオ ールエステル (トリメチロールプロパンカプリレート、 トリメチロールプロパンペラルゴネート、ペンタエリス リトール2-エチルへキサノエート、ペンタエリスリトールペラルゴネート等)、ポリオキシアルキレングリコール、ジアルキルジフェニルエーテル、並びにポリフェニルエーテル等が使用できる。これらの合成油は添加剤の溶解性を考慮すると、単独で使用するよりも鉱油と混合するか、2種類以上の合成油同士を混合して用いるのが好ましい。これら鉱油及び/又は合成油を使用した潤滑油基油の動粘度は、特に限定されず任意であるが、通常、100℃における動粘度は、好ましくは1~20m

 m^2/s 、より好ましくは $1.5\sim10\,\mathrm{mm}^2/s$ である。

【0006】本発明の潤滑油組成物における特定のコハク酸イミドを変性した化合物の群は、一般式(1)又は(2)で表されるコハク酸イミドを、ホウ酸、リン酸、カルボン酸及びこれらの誘導体、硫黄化合物、トリアゾール類等により変性した化合物の群(以下、「(A)成分」という。)である。

【化5】

$$\begin{array}{c|c} R^3 & R^4 & R^2 \\ \hline \\ R^3 & R^4 & R^4 \\ \end{array}$$

[14.6]

$$\begin{array}{c|c}
 & O \\
 & N \\
 & H \\
 & D
\end{array}$$
(2)

いに同一でも異なるものでもよく、各々炭素数8~3 0、好ましくは炭素数12~25の直鎖状又は分岐状炭 化水素基である。このような炭化水素基としては、例え ば、オクチル基、オクテニル基、ノニル基、ノネニル 基、デシル基、デセニル基、ドデシル基、ドデセニル 基、オクタデシル基、オクタデセニル基の他、炭素数3 0までの炭化水素基を例示することができ、これらは直 鎖状でも分岐状でもよい。炭化水素基の炭素数が8に満 たない場合及び30を越える場合には、シャダー振動防 止性の向上に効果が低いため、それぞれ好ましくない。 また、これらの炭化水素基としては炭素数8~30の分 岐状炭化水素がより好ましく、炭素数10~25の分岐 状炭化水素基であることが特に好ましい。炭素数8~3 〇の分岐状炭化水素基を使用した場合、直鎖状炭化水素 基を使用した場合に比べ、より高いトルク容量を示す潤 滑油組成物を得ることができる。また、前記一般式 (1) 又は(2) において、R3及びR4は互いに同一で も異なるものでもよく、各々炭素数1~4の炭化水素基 であり、好ましくは炭素数2~3のアルキレン基であ り、エチレン基、プロピレン基等が好ましい例として挙 げられる。また、前記一般式(1)又は(2)におい て、R5は水素原子又は炭素数1~30の直鎖状又は分 岐状炭化水素基であり、好ましくは炭素数8~30の分 岐状炭化水素基であり、炭素数10~25の分岐状炭化 水素基であることが望ましい。また、前記一般式(1) 又は(2)において、nは1~7の整数であり、好まし

くは1~3の整数であり、特に好ましくは1である。n

を1~3の整数とすることで、より高いトルク容量を示

す潤滑油組成物を得ることができ、nを1とすること

前記一般式(1)又は(2)において、R1及びR2は互

で、より一層高いトルク容量を示す潤滑油組成物を得る ことができる。なお、一般式(1)又は(2)で表され るコハク酸イミドは、どのような方法で製造しても良 く、例えば、アルキル又はアルケニル無水コハク酸とポ リアミンとを反応させて得ることができる。具体的には 例えば、一般式(1)で表されるビスコハク酸イミド は、炭素素8~30の直鎖型又は分岐型アルキル基もし くはアルケニル基を持つコハク酸無水物1molに対 し、ジエチレントリアミン、トリエチレンテトラミン、 テトラエチレンペンタミンのようなポリアミンO.5m o 1 を窒素雰囲気下、130~180°C、好ましくは1 40~175℃で徐々に滴下し、1~10時間、好まし くは2~6時間反応させ、生成する水分を除去して得る ことができる。また、一般式(2)で表され、式中R5 が水素原子であるモノコハク酸イミドは、例えば、該ポ リアミン1m01以上に対し、該コハク酸無水物1m0 1を滴下させ前記と同様な反応条件にて生成され、未反 応のポリアミンを蒸留し除去する事により得る事がで き、一般式(2)の式中R5が炭素数1~30の炭化水 素基であるモノコハク酸イミドは、例えば、N-オクタ デシル-1,3-プロパンジアミンと該コハク酸無水物 とを前記と同様の方法で反応させることにより得ること

【0007】本発明の一般式(1)又は(2)で表されるコハク酸イミドを変成する際に用いられるホウ酸又はその誘導体としては、ホウ酸、ホウ酸塩、ホウ酸エステル類等が挙げられる。ホウ酸としては、具体的には例えばオルトホウ酸、メタホウ酸及びテトラホウ酸等が挙げられる。ホウ酸塩としては、ホウ酸のアルカリ金属塩、アルカリ土類金属塩又はアンモニウム塩等が挙げられ、

より具体的には、例えばメタホウ酸リチウム、四ホウ酸 リチウム、五ホウ酸リチウム、過ホウ酸リチウム等のホ ウ酸リチウム:メタホウ酸ナトリウム、二ホウ酸ナトリ ウム、四ホウ酸ナトリウム、五ホウ酸ナトリウム、六ホ ウ酸ナトリウム、ハホウ酸ナトリウム等のホウ酸ナトリ ウム;メタホウ酸カリウム、四ホウ酸カリウム、五ホウ 酸カリウム、六ホウ酸カリウム、八ホウ酸カリウム等の ホウ酸カリウム;メタホウ酸カルシウム、二ホウ酸カル シウム、四ホウ酸三カルシウム、四ホウ酸五カルシウ ム、六ホウ酸カルシウム等のホウ酸カルシウム;メタホ ウ酸マグネシウム、二ホウ酸マグネシウム、四ホウ酸三 マグネシウム、四ホウ酸五マグネシウム、六ホウ酸マグ ネシウム等のホウ酸マグネシウム; 及びメタホウ酸アン モニウム、四ホウ酸アンモニウム、五ホウ酸アンモニウ ム、八ホウ酸アンモニウム等のホウ酸アンモニウム等が 挙げられる。また、ホウ酸エステルとしては、ホウ酸と 好ましくは炭素数1~6のアルキルアルコールとのエス テル等が挙げられ、より具体的には例えば、ホウ酸モノ メチル、ホウ酸ジメチル、ホウ酸トリメチル、ホウ酸モ ノエチル、ホウ酸ジエチル、ホウ酸トリエチル、ホウ酸 モノプロピル、ホウ酸ジプロピル、ホウ酸トリプロピ ル、ホウ酸モノブチル、ホウ酸ジブチル、ホウ酸トリブ チル等が挙げられる。リン酸又はその誘導体としては、 具体的には、オルトリン酸、メタリン酸、亜リン酸、ポ リリン酸等又はこれらエステル化合物等が挙げられる。 カルボン酸又はその誘導体としては、ぎ酸、酢酸、グリ コール酸、プロピオン酸、乳酸、酪酸、吉草酸、カプロ ン酸、エナント酸、カプリル酸、ペラルゴン酸、カプリ ン酸、ウンデシル酸、ラウリン酸、トリデカン酸、ミリ スチン酸、ペンタデカン酸、パルミチン酸、マルガリン 酸、ステアリン酸、オレイン酸、ノナデカン酸、エイコ サン酸等の炭素数1~30のモノカルボン酸や、シュウ 酸、フタル酸、トリメリット酸、ピロメリット酸等の炭 素数2~30のポリカルボン酸及びこれらの無水物又は エステル化合物等が挙げられ、炭素数8~20のカルボ ン酸又はその誘導体であることが好ましく、特にステア リン酸、オレイン酸であること好ましい。硫黄化合物と しては、ジアルキルジチオリン酸、ジアルケニルジチオ

リン酸、ジアルカリールジチオリン酸、ジアリールジチオリン酸、スルホン酸等が挙げられる。トリアゾール類としては、ベンゾトリアゾール、トリルトリアゾール、テトラトリアゾール等が挙げられる。

【0008】本発明の(A)成分の製造方法としては、 一般式(1)又は(2)で表される化合物と前記のホウ 酸、リン酸、カルボン酸又はこれらの誘導体、硫黄化合 物等との反応量比率を任意に調整することができるた め、分子中のアミノ基及び/又はイミノ基の一部又は全 部を中和したり、アミド化する方法等が挙げられるが、 特に限定されるものではない。具体的な製造方法として は、例えば、一般式(1)又は(2)で表される化合物 1molに対し、ホウ酸、リン酸、カルボン酸又はこれ らの誘導体、硫黄化合物等を0.4n mol以上(こ こでnは一般式(1)又は(2)におけるnを示 す。)、好ましくは0.6n mol以上、特に好まし くは0.9n mo1以上の割合で窒素雰囲気下にて加 熱しながら反応させることにより得られる。一般式 (1)又は(2)で表される化合物1molに対する、 ホウ酸、リン酸、カルボン酸又はこれらの誘導体、硫黄 化合物等の反応割合が 0.4 n mol以上の場合、伝 達トルク容量をより高くすることができ、一方、該反応 割合が0.4n molに満たない場合、本発明のよう なシャダー防止寿命をさらに向上させる効果を得られな いため、好ましくない。本発明の(A)成分の好ましい 製造方法の例としては、より具体的には、例えば、ジエ チレントリアミンビスイソオクタデセニルコハク酸イミ ド1molと微粉化したホウ酸1molを合成容器に取 り、窒素雰囲気下、80~150℃、好ましくは90~ 130℃で5~12時間、生成水を分離しながら、未反 応のホウ酸粉が全て消失するまで攪拌しながら反応さ せ、反応物をトルエンで希釈した溶液を1μmのテフロ ン(登録商標)フィルタで加圧ろ過し、さらにろ液を7 0~110℃、減圧下において、トルエンを完全に除去 することにより一般式(3)で表される化合物を得るこ とができる。

【化7】

また、例えば、ジエチレントリアミンビスイソオクタデセニルコハク酸イミド1molを合成容器にとり、窒素雰囲気下にて適量のトルエンを加え、攪拌しながらリン酸1molを滴下し、室温~100℃において2~10時間、好ましくは反応初期においては室温で1~5時間

【化8】

また、例えば、ジエチレントリアミンビスイソオクタデセニルコハク酸イミド1molを合成容器にとり、窒素雰囲気下にて適量のトルエンを加え、攪拌しながらオレイン酸1mol/トルエン溶液を徐々に滴下しながら60~100℃で2~10時間、好ましくは3~6時間反

応させ、70〜130℃、減圧下において、トルエンを 完全に除去することにより一般式(5)で表される化合 物を得ることができる。

【化9】

なお、ここでは、オレイン酸を用いて本発明の(A)成分を製造する場合について説明したが、オレイン酸の代りにラウリン酸、ステアリン酸等を用いても、同じように本発明の(A)成分を製造することができる。また、本発明の(A)成分には、前記の製造方法により一般式(1)又は(2)で表される化合物とホウ酸、リン酸、カルボン酸又はこれらの誘導体、硫黄化合物等とを反応させた混合物が含まれてもよい。

【0009】本発明の潤滑油組成物には、(A)成分と して、前記一般式(1)又は(2)のコハク酸イミドを ホウ酸、リン酸、カルボン酸又はこれらの誘導体、硫黄 化合物等から選ばれる1種又は2種以上の化合物により 変性された化合物が使用され、伝達トルク容量、変速特 性のバランスから、ラウリン酸、ステアリン酸、オレイ ン酸等の炭素数10~25のカルボン酸で変性したもの が特に好ましいものとして使用される。また、一般式 (2) のようなモノタイプのコハク酸イミドを前記のよ うに変性したものに比べて、トルク伝達容量のより高い 潤滑油組成物を得られることから、一般式(1)のよう なビスタイプのコハク酸イミドを変性したものを使用す ることが特に好ましい。本発明の潤滑油組成物におい て、(A)成分の含有量は任意であるが、好ましい含有 量の下限値は潤滑油組成物全量基準で、0.01質量 %、より好ましくはO.1質量%である。また、(A) 成分の好ましい含有量の上限値は、潤滑油組成物全量基 準で、6質量%であり、より好ましくは4質量%であ る。(A)成分の含有量が前記下限値を下回る場合は、 シャダー防止性能維持性及び良好な変速特性を維持する 効果に劣り、一方(A)成分の含有量が前記上限値を上 回る場合は、添加量に見合う効果が得られず、それぞれ 好ましくない。

【0010】本発明においては、潤滑油基油に前記(A)成分から選ばれる1種又は2種以上の化合物を配合することにより、シャダー防止性能の維持性に優れ、かつ高いトルク伝達容量に優れた潤滑油組成物を得るこ

とができるが、さらに摩擦調整剤及び/又は金属系清浄 剤を単独で、又は数種類組み合わせて配合してもよい。 これらを本発明の潤滑油組成物に配合することで、伝達 トルク容量、シャダー防止性能を維持しつつ、初期変速 特性がより良好な潤滑油組成物を得ることができる。本 発明の潤滑油組成物に併用可能な摩擦調整剤としては、 潤滑油用の摩擦調整剤として通常用いられる任意の化合 物が使用可能であり、例えば、前記一般式(1)又は (2)で表される、変性されていないコハク酸イミド、 炭素数6~30のアルキル基又はアルケニル基(特に直 鎖アルキル基又は直鎖アルケニル基を分子中に少なくと も1個有する炭素数6~30のアルキル基又はアルケニ ル基)を持つアミン化合物、脂肪酸エステル、脂肪酸ア ミド、脂肪酸金属塩等が挙げられる。前記一般式(1) 又は(2)で表される、変性されていないコハク酸イミ ドは(A)成分を製造する過程で未反応成分として含ま れることもあるが、摩擦調整剤として添加使用すること もできる。この場合、前記一般式(1)のようなビスタ イプのものが特に好ましく使用される。アミン化合物と しては、炭素数6~30の直鎖状若しくは分枝状、好ま しくは直鎖状の脂肪族モノアミン、直鎖状若しくは分枝 状、好ましくは直鎖状の脂肪族ポリアミン、これら脂肪 族アミンのアルキレンオキシド付加物、これらアミン化 合物とリン酸エステル若しくは亜リン酸エステルとの 塩、又はこれらアミン化合物の(亜)リン酸エステル塩 のホウ酸変性物等が例示でき、より具体的には、例え ば、ラウリルアミン、ラウリルジエチルアミン、ラウリ ルジエタノールアミン、ドデシルジプロパノールアミ ン、パルミチルアミン、ステアリルアミン、ステアリル テトラエチレンペンタミン、オレイルアミン、オレイル プロピレンジアミン、オレイルジエタノールアミン、N -ヒドロキシエチルオレイルイミダゾリン等のアミン化 合物;これらアミン化合物のアルキレンオキシド付加 物;これらアミン化合物とリン酸エステル(例えばジ2 -エチルヘキシルリン酸エステル等)、亜リン酸エステ

ル (例えばジ2-エチルヘキシル亜リン酸エステル等) との塩;これらアミン化合物の(亜)リン酸エステル塩 のホウ酸変性物;又はこれらの混合物等が特に好ましく 用いられる。脂肪酸エステルとしては、炭素数7~31 の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸と、脂 肪族1価アルコール又は脂肪族多価アルコールとのエス テル等が例示でき、より具体的には、例えば、グリセリ ンモノラウレート、グリセリンモノイソラウレート、グ リセリンジラウレート、グリセリンジイソラウレート、 グリセリンモノミリステート、グリセリンモノイソミリ ステート、グリセリンジミリステート、グリセリンジイ ソミリステート、グリセリンモノパルミテート、グリセ リンモノイソパルミテート、グリセリンジパルミテー ト、グリセリンジイソパルミテート、グリセリンモノス テアレート、グリセリンモノイソステアレート、グリセ リンジステアレート、グリセリンジイソステアレート、 グリセリンモノオレエート、グリセリンモノイソオレエ ート、グリセリンジオレエート、グリセリンジイソオレ エート、グリセリンモノイソオレエート、グリセリンジ オレエート、グリセリンジイソオレエート等のグリセリ ン部分エステル:トリメチロールエタンモノラウレー ト、トリメチロールエタンモノイソラウレート、トリメ チロールエタンジラウレート、トリメチロールエタンジ イソラウレート、トリメチロールエタンモノミリステー ト、トリメチロールエタンモノイソミリステート、トリ メチロールエタンジミリステート、トリメチロールエタ ンジイソミリステート、トリメチロールエタンモノパル ミテート、トリメチロールエタンモノイソパルミテー ト、トリメチロールエタンジパルミテート、トリメチロ ールエタンジイソパルミテート、トリメチロールエタン モノステアレート、トリメチロールエタンモノイソステ アレート、トリメチロールエタンジステアレート、トリ メチロールエタンジイソステアレート、トリメチロール エタンモノオレエート、トリメチロールエタンモノイソ オレエート、トリメチロールエタンジオレエート、トリ メチロールエタンジイソオレート等のトリメチロールエ タン部分エステル:トリメチロールプロパンモノラウレ ート、トリメチロールプロパンモノイソラウレート、ト リメチロールプロパンジラウレート、トリメチロールプ ロパンジイソラウレート、トリメチロールプロパンモノ ミリステート、トリメチロールプロパンモノイソミリス テート、トリメチロールプロパンモノパルミテート、ト リメチロールプロパンモノイソパルミテート、トリメチ ロールプロパンジパルミテート、トリメチロールプロパ ンジイソパルミテート、トリメチロールプロパンモノス テアレート、トリメチロールプロパンモノイソステアレ ート、トリメチロールプロパンジイソステアレート、ト リメチロールプロパンジイソステアレート、トリメチロ ールプロパンモノオレート、トリメチロールプロパンモ ノイソオレエート、トリメチロールプロパンジオレー

ト、トリメチロールプロパンジイソオレート等のトリメ チロールプロパン部分のエステル;ペンタエリスリトー ルモノラウレート、ペンタエリスリトールモノイソラウ レート、ペンタエリスリトールジラウレート、ペンタエ リスリトールジイソラウレート、ペンタエリスリトール トリラウレート、ペンタエリスリトールトリイソラウレ ート、ペンタエリスリトールモノミリステート、ペンタ エリスリトールモノイソミリステート、ペンタエリスリ トールジミリステート、ペンタエリスリトールジイソミ リステート、ペンタエリスリトールミリステート、ペン タエリスリトールトリイソミリステート、ペンタエリス リトールモノパルミテート、ペンタエリスリトールモノ イソパルミテート、ペンタエリスリトールジパルミテー ト、ペンタエリスリトールジイソパルミテート、ペンタ エリスリトールトリパルミテート、ペンタエリスリトー ルトリイソパルミテート、ペンタエリスリトールモノス テアレート、ペンタエリスリトールモノイソステアレー ト、ペンタエリスリトールジステアレート、ペンタエリ スリトールジイソステアレート、ペンタエリストールト リステアレート、ペンタエリスリトールトリイソステア レート、ペンタエリスリトールモノオレート、ペンタエ リスリトールモノイソオレート、ペンタエリスリトール ジオレエート、ペンタエリスリトールジイソオレート、 ペンタエリスリトールトリオレート、ペンタエリスリト ールトリイソオレート等のペンタエリスリトー部分エス テル; ソルビタンモノラウレート、ソルビタンモノイソ ラウレート、ソルビタンジラウレート、ソルビタンジイ ソラウレート、ソルビタントリラウレート、ソルビタン トリイソラウレート、ソルビタンモノミリステート、ソ ルビタンモノイソミリステート、ソルビタンジミリステ ート、ソルビタンジイソミリステート、ソルビタントリ ミリステート、ソルビタントリイソミリステート、ソル ビタンモノパルミテート、ソルビタンモノイソパルミテ ート、ソルビタンジパルミテート、ソルビタンジイソパ ルミテート、ソルビタントリパルミテート、ソルビタン トリイソパルミテート、ソルビタンモノステアレート、 ソルビタンモノイソステアレート、ソルビタンジステア レート、ソルビタンジイソステアレート、ソルビタント リステアレート、ソルビタンソルビタントリイソステア レート、ソルビタンモノオレエート、ソルビタンモノイ ソオレート、ソルビタンジオレート、ソルビタンジイソ オレート、ソルビタントリオレート、ソルビタントリイ ソオレエート等のソルビタン部分エステル、及びこれら の混合物等が特に好ましく用いられる。脂肪酸アミドと しては、炭素数7~31の直鎖状又は分枝状、好ましく は直鎖状の脂肪酸と、脂肪族モノアミン又は脂肪族ポリ アミンとのアミド等が例示でき、より具体的には、例え ば、ラウリン酸アミド、ラウリン酸ジエタノールアミ ド、ラウリン酸モノプロパノールアミド、ミリスチン酸 アミド、ミリスチン酸ジエタノールアミド、ミリスチン

酸モノプロパノールアミド、パルミチン酸アミド、パル ミチン酸ジエタノールアミド、パルミチン酸モノプロパ ノールアミド、ステアリン酸アミド、ステアリン酸ジエ タノールアミド、ステアリン酸モノプロパノールアミ ド、オレイン酸アミド、オレイン酸ジエタノールアミ ド、オレイン酸モノプロパノールアミド、ヤシ油脂肪酸 アミド、ヤシ油脂肪酸ジエタノールアミド、ヤシ油脂肪 酸モノプロパノールアミド、炭素数12~13の合成混 合脂肪酸アミド、炭素数12~13の合成混合脂肪酸ジ エタノールアミド、炭素数12~13の合成混合脂肪酸 モノプロパノールアミド、及びこれらの混合物等が特に 好ましく用いられる。脂肪酸金属塩としては、炭素数7 ~31の直鎖状又は分枝状、好ましくは直鎖状の脂肪酸 の、アルカリ土類金属塩(マグネシウム塩、カルシウム 塩等)や亜鉛塩等が挙げられ、より具体的には、例え ば、ラウリン酸カルシウム、ミリスチン酸カルシウム、 パルミチン酸カルシウム、ステアリン酸カルシウム、オ レイン酸カルシウム、ヤシ油脂肪酸カルシウム、炭素数 12~13の合成混合脂肪酸カルシウム、ラウリン酸亜 鉛、ミリスチン酸亜鉛、パルミチン酸亜鉛、ステアリン 酸亜鉛、オレイン酸亜鉛、ヤシ油脂肪酸亜鉛、炭素数1 2~13の合成混合脂肪酸亜鉛、及びこれらの混合物等 が特に好ましく用いられる。本発明においては、これら の摩擦調整剤の中から任意に選ばれた1種類あるいは2 種類以上の化合物を、任意の量で含有させることができ るが、通常、その含有量は、潤滑油組成物基準で0.0 1~5質量%、好ましくは0.03~3質量%であるこ とが好ましい。

【0011】本発明の潤滑油組成物に併用可能な金属系 清浄剤としては、潤滑油用の金属系清浄剤として通常用 いられる任意の化合物が使用可能であるが、例えば、ア ルカリ金属又はアルカリ土類金属のスルフォネート、フ ェネート、サリシレート、ナフテネート等が本発明の組 成物に、単独あるいは二種類以上組み合わせて使用でき る。ここでアルカリ金属としてはナトリウムやカリウ ム、アルカリ土類金属としてはカルシウム、マグネシウ ム等が例示される。また、具体的な金属系清浄剤として はカルシウム又はマグネシウムのスルフォネート、フェ ネート、サリシレートが好ましく用いられる。なお、こ れら金属系清浄剤の全塩基価は0~500mgKOH/ gであり、その添加量は、組成物全量基準で、アルカリ 金属あるいはアルカリ土類金属元素換算で、0.001 ~0.5質量%であり、クラッチ板の摩擦材の目詰まり による摩擦係数の低下を防止する観点から、その上限値 は0.1質量%であることが好ましく、0.05質量% 以下であることが特に好ましい。

【0012】本発明の潤滑油組成物には、さらに性能を 高める目的で、公知の潤滑油添加剤、例えば、無灰分散 剤、粘度指数向上剤、リン系添加剤、極圧添加剤、酸化 防止剤、腐食防止剤、消泡剤、着色剤等に代表される各 種添加剤を単独で、又は数種類組み合わせて配合するこ とができる。本発明の潤滑油組成物に併用可能な無灰分 散剤としては、潤滑油用の無灰分散剤として通常用いら れる任意の化合物が使用可能であるが、例えば炭素数4 0~400、好ましくは炭素数60~350のアルキル 基又はアルケニル基を分子中に少なくとも1個有する含 窒素化合物、炭素数40~400、好ましくは炭素数6 0~350のアルケニル基を有するビスタイプあるいは モノタイプのコハク酸イミド、及びこれらの化合物を前 述したホウ酸、リン酸、カルボン酸又はこれらの誘導 体、硫黄化合物等を作用させた変性品等が挙げられ、こ れらの中から任意に選ばれた1種類あるいは2種類以上 の化合物を併用することができる。ここでいうアルキル 基又はアルケニル基としては、直鎖状でも分枝状でもよ いが、好ましいものとしては、具体的には、プロピレ ン、1-ブテン、イソブチレン等のオレフィンのオリゴ マーやエチレンとプロピレンのコオリゴマーから誘導さ れる分枝状アルキル基や分枝状アルケニル基等が挙げら れ、ブテン混合物あるいは高純度イソブチレンを塩化ア ルミニウム系触媒あるいはフッ化ホウ素系触媒等により 重合させたものより得られるポリブテニル基であること が好ましく、特にハロゲン化合物を除去されたものが特 に好ましい。これらアルキル基又はアルケニル基の炭素 数が40未満の場合は、清浄分散性能に劣り、一方、ア ルキル基又はアルケニル基の炭素数が400を越える場 合は、潤滑油組成物の低温流動性が悪化するため、それ ぞれ好ましくない。また、これらの化合物の含有量は任 意であるが、潤滑油組成物全量基準で0.1~10質量 %、好ましくは1~8質量%であるのが望ましい。本発 明においては、併用する無灰分散剤としては変速特性を さらに向上させることから、重量平均分子量700~ 3,500、好ましくは900~2,000のポリブテ ニル基を有するコハク酸イミド及び/又はこれらのホウ 酸変性化合物を配合することが特に好ましい。また、湿 式クラッチの剥離防止性を向上させる事から、前記無灰 分散剤にはホウ酸変成コハク酸イミドを配合する事が好 ましく、ホウ酸変成コハク酸イミドを1種の成分として 2種以上併用して配合する事がさらに好ましい。

【0013】本発明の潤滑油組成物に併用可能な粘度指数向上剤としては、具体的には、各種メタクリル酸エステルから選ばれる1種又は2種以上のモノマーの共重合体若しくはその水添物などのいわゆる非分散型粘度指数向上剤、又はさらに窒素化合物を含む各種メタクリル酸エステルを共重合させたいわゆる分散型粘度指数向上剤等が例示できる。他の粘度指数向上剤の具体例としては、非分散型又は分散型エチレンーαーオレフィン共重合体(αーオレフィンとしてはプロピレン、1ーブテン、1ーペンテン等が例示できる)及びその水素化物、ボリイソブチレン及びその水添物、スチレンージエン水素化共重合体、スチレンー無水マレイン酸エステル共重

合体及びポリアルキルスチレン等が挙げられる。これら 粘度指数向上剤の分子量は、せん断安定性を考慮して選 定することが必要である。具体的には、粘度指数向上剤 の数平均分子量は、例えば分散型及び非分散型ポリメタ クリレートの場合では、5,000~150,000、 好ましくは5,000~35,000のものが、ポリイ ソブチレン又はその水素化物の場合は800~5,00 0、好ましくは1,000~4,000のものが、エチ レン-α-オレフィン共重合体又はその水素化物の場合は 800~150,000、好ましくは3,000~1 2,000のものが好ましい。またこれら粘度指数向上 剤の中でもエチレン-α-オレフィン共重合体又はその水 素化物を用いた場合には、特にせん断安定性に優れた潤 滑油組成物を得ることができる。本発明においては、こ れらの粘度指数向上剤の中から任意に選ばれた1種類あ るいは2種類以上の化合物を、任意の量で含有させるこ とができるが、通常、その含有量は、潤滑油組成物基準 で0.1~40.0質量%であるのが望ましい。

【0014】本発明の潤滑油組成物に併用可能なリン系 添加剤としては、潤滑油用のリン系添加剤として通常用 いられる任意の化合物が使用可能であるが、例えば、ア ルキルジチオリン酸、アルキルジチオリン酸亜鉛、リン 酸モノエステル類、リン酸ジエステル類、リン酸トリエ ステル類、亜リン酸モノエステル類、亜リン酸ジエステ ル類、亜リン酸トリエステル類、及びこれらのエステル 類とアミン類あるいはアルカノールアミン類との塩等が 使用できる。これらリン系添加剤の含有量は特に限定さ れないが、通常、潤滑油組成物全量基準で、リン元素と して0.005~0.2質量%であるのが好ましい。リ ン元素として0.005質量%未満の場合は、耐摩耗性 に対して効果がなく、0.2質量%を超える場合は、酸 化安定性が悪化するため、それぞれ好ましくない。本発 明の潤滑油組成物に併用可能な極圧添加剤としては、潤 滑油用の極圧添加剤として通常用いられる任意の化合物 が使用可能であるが、例えば、ジスルフィド類、硫化オ レフィン類、硫化油脂類等の硫黄系化合物等が挙げられ る。これらの中から任意に選ばれた1種類あるいは2種 類以上の化合物は、任意の量を含有させることができる が、通常、その含有量は、潤滑油組成物全量基準で 0. 01~5.0質量%であるのが望ましい。

【0015】本発明の潤滑油組成物に併用可能な酸化防止剤としては、フェノール系化合物やアミン系化合物等、潤滑油に一般的に使用されているものであれば使用可能であり、具体的には例えば、2-6-ジーセertーブチルー4ーメチルフェノール等のアルキルフェノール類、メチレンー4、4ービスフェノール(2、6-ジーセertーブチルー4ーメチルフェノール)等のビスフェノール類、フェニルーαーナフチルアミン類、ジー2チルアミン類、ジアルキルジフェニルアミン類、ジー2ーエチルへキシルジチオリン酸亜鉛等のジアルキルジチ

オリン酸亜鉛類、(3、5ージーtertーブチルー4 ーヒドロキシフェニル)脂肪酸(プロピオン酸等)と1 価又は多価アルコール、例えばメタノール、オクタデカ ノール、1、6ヘキサジオール、ネオペンチルグリコー ル、チオジエチレングリコール、トリエチレングリコー ル、ペンタエリスリトール等とのエステル等が挙げられ る。これらの中から任意に選ばれた1種類あるいは2種 類以上の酸化防止剤は、任意の量を含有させることがで きるが、通常、その含有量は、潤滑油組成物全量基準で 0.01~5.0質量%であるのが望ましい。本発明の 潤滑油組成物に併用可能な腐食防止剤としては、潤滑油 用の腐食防止剤として通常用いられる任意の化合物が使 用可能であるが、例えば、ベンゾトリアゾール系、トリ ルトリアゾール系、チアジアゾール系、イミダゾール系 化合物等が挙げられる。これらの中から任意に選ばれた 1種類あるいは2種類以上の化合物は、任意の量を含有 させることができるが、通常、その含有量は、潤滑油組 成物全量基準で0.01~3.0質量%であるのが望ま しい。本発明の潤滑油組成物に併用可能な消泡剤として は、潤滑油用の消泡剤として通常用いられる任意の化合 物が使用可能であるが、例えば、ジメチルシリコーン、 フルオロシリコーン等のシリコーン類が挙げられる。こ れらの中から任意に選ばれた1種類あるいは2種類以上 の化合物は、任意の量を含有させることができるが、通 常、その含有量は、潤滑油組成物全量基準で0.001 ~0.05質量%であるのが望ましい。本発明の変速機 用潤滑油組成物に併用可能な着色剤は任意であり、また 任意の量を含有させることができるが、通常、その含有 量は、潤滑油組成物全量基準で0.001~1.0質量 %であるのが望ましい。

[0016]

【実施例】以下、本発明の内容を実施例及び比較例によってさらに具体的に説明するが、本発明はこれらに何ら 限定されるものではない。

【0017】(実施例1~14、比較例1~4)表1に 示す組成に従い、本発明に係る変速機用潤滑油組成物 (実施例1~14)を調製した。これら組成物につい て、以下に示すシャダー防止性能の寿命試験、変速クラ ッチ摩擦特性試験を行い、シャダー防止性能の寿命、変 速クラッチの変速特性及び伝達トルク容量の評価結果を 表1に示した。比較のため、表2に示す組成に従い、組 成物(比較例1~4)を調製し、これらの組成物につい ても同様の試験を行い、その評価結果を表2に示した。 【0018】[シャダー寿命試験] JASO M349 -98に規定される「自動変速機油シャダー防止性能試 験方法」を基準とし、耐久試験中の油温のみを120℃ から140℃に変更した低速滑り試験を行い、同試験法 に規定されている基準油の寿命と実施例及び比較例の寿 命との比により、シャダー防止性能の維持性を評価し た。なお、性能測定は0、6、12、24、以降24時

間おきに行った。寿命が基準油以上(72h以上)であれば、その潤滑油組成物はシャダー防止性能の寿命が優れていると判断し、基準油の4倍(288h)を越える場合には試験を打ち切った。

[変速クラッチ摩擦特性試験] JASO M348-9 5に規定される「自動変速機油摩擦特性試験方法」に準

拠してSAE No. 2試験を行い、同試験で測定される μ sを伝達トルク容量の指標とし、また、 μ 0 $/\mu$ dを変速特性の指標として評価した。

【0019】 【表1】

	装炼例	本旅例2	更炼例3	五数6644	的特殊的	立物体	安林堡7	年がほの	#### ORG	の一の一	THE COLOR STATE COLOR	44-0214		THE BUT OF THE PARTY.
抗型抗治 " 图 "K	86.697	86.697	86.697	86.647	86 607	86.607	R 607	26 607	95.607	96 607	2 E E E E E			A.M. 19
オレイン砂変性化合物 2) 質量%	3	'	,	,	1	,	,	ico i	160.00	100.00	100.03	167.00	180.00	00.497
本力酸変性化合物 3) 質量%	_	3	,			,				·].		,	-	-
9	-	<u>'</u>	-	ļ,	Ţ,	1				ין י				<u>.</u>
ラウリン陸変性化合物:63 質量5	1	١	,	-	,	,	,		Ī			,	١.	<u>.</u>
ラウリン弦変性化合物 質量な	-	-	,		-	1	,	,	1			,	ا ا	-
	-	1	'	,		3	,		,					וו
æ	1	-	-	,	'		5	,						
	-	,	,	,		'	,	~	,					
オレイン砂変性化合物 100 質量な	1	1	,	,		,		,	-	1				
	1	'		ļ ,	,				,	-				
オレイン数数性化合物:3 質長4		'	,	,	,	,	,			,	,		,	
	ı	,	'	,			,	ı			,	-		<u>'</u>
コハク酸イミドB 14) 質点な	1	-	,	,					,					'
	-	,	'	,	,					ľ	,			'
	1	1	,	,	,	,		,	ı			-		
		'	,	,	,	,	,		1]		1		•
金属系術冷劇 189	-			,		,	,		1				1.0	<u>،</u> [
				-	~	-	-	•	,		,		٠	7,
本方景变成無天分散。 質量%		-	-	, -	,	· -		-	7	,	7	,,]		
	ļ.,	,		<u> </u>	1.	1.	7.	-	-	-[-[-	
	٤	٤	:	, :	, [, [٠,	٦	٦		2	۾	2	2
20	3	3		3 2			7:0	77	7.0	22	0.2	6.2	0.2	0.2
2	6	3		; ;;	2	5	0.5	9:2	3.0	0.5	0.5	0.5	0.5	0.5
	C.O.	6.5	3	5	3	5:	6.5	0.5	3	0.5	0.5	0.5	0.5	3.5
THE PARTY OF THE P	- I	13	-	3	3	:	9.1		3	0.1	0.1	0.1	1.0	0.1
THE PARTY OF THE P	0.003	0.003	0.003	C:CE3		0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003	0.003
日前ドラフを開 SAE No.3 #8 (3000セイグラ) 長行行は CAL 、	0.110	0.140	0.136	0.145	0.149	0.140	0.139	0.114	0.111	901.0	0.110	0.140	0.137	0.139
	0.97	1.02	1.02	1.0	1.02	6.3	0.98	0.97	0.88	96.0	0.94	0.97	0.98	0.98
ンナゲーを行在院部を(韓国曲元)	Ň	×	×	7	٨	×	×	7,	>4	>4	7	*	7	X
1. 长张万族联合的(1000)20 结形(14mm/s, 治安治教:120)3:27 4(1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,1,	指数:120)						4)ジェチ.	4)ジエチンントJアミンピス(Isoーオクタデセニル)コハク酸イミド	アス(150-	オクタデセ	かんこ(ルー	観んぶ		
2/ソートンノトノ・ハイス (IIードクタナ セーク) 3/2の歌人ボイインイン酸の反応角 (歌句) (ボルガー1/1) 5/2/1 4/1・1/1/1 / 1/1/1	ング酸イボドノボ	アイン医の	50年度物(4人托=1	₹.	-	15)ジェチ	5)ジエチレントリアミンモノ(noーオクタデセニル)コこク酸イミド	~€/(ko−	オクタデセ	クハロ(ルニ	最合作		
3. ノー・ファン・プロス(20~4/24/11/2)コング版スにて、朴文敬の反応年度第(中がガー1/1)フェンジャル・ジニント	ノンとという	T-7 HRODEL	年以前(七	ただー1/	∵	_	19)エトキシ	16)エトキン化インステアワルアミン	アクルアミン					
4.アートライン・ストイ(30ーケッケトルーケ)コンク政人にアンプ政の区域・研究後(ホテガニー/1)C)エイ・スコン・コンド・ファン・ファー・イン・ファー・イン・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー・ファー	ノンの関イルドノ	ARONE.	和威也(元)	元二/	_ ;		17・インステ	(1) インステアリン酸とテトラエチワン ペンタミンの組合物	トラエチレ	ジャイマイ	の組合物			
ラフィンフィンフィンフィン(RO)なファンフィンフィンの数イドイングン(製の欠う)(対応を)(からだー) (アンガンアンプランプレンフィンフィンフィング) オージュンジ グランプ・バイン (サイブ・ディー・ジー・ジー・	ノンバア経入	TO JAMES	文化生成物	(もただー)	7	-	(8) カケン	ノタスルホイ	ート(会権)	6年300元	ngKOFi/	18)カルンウムスルホネート(会権格価:300mg:KOEi/g、カルンウム合有言:12質量%)	A含有量:	2度気光)
コント・アン・シントロ(180~4シン)で「ジン・スタはイドノンジン製の収込を対象を行うの「大きだり」()。 オナンン・デンング (ホーナシャル・ナーシン) あんだい フェンジ・最近に ファンジー・ジン	ノムツを置えて	TANKO TENE	のなまなとしば	(*!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!	G (3)		(9)ポリプラ	クンロシー	ランド・ア	スタイプ・ボ	リブテール	19)ボリブアールコンク酸イボ (アスタイプ、ボリブアール 基の 無量平均分子者:1,000)	な少少事	1, 000)
8)プイケントプアンプス(38ーオクチナイル)コンク圏スポーステープリン場を日本中の日本の名(17.17.17.17.17.17.17.17.17.17.17.17.17.1	ノスを開インド	ストアリンの	の方は任命	これがにし	= = = = = = = = = = = = = = = = = = = =	•	ができる) 小グ東波性ホリンナコルコペク酸イボ (アス・ボニノル・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ころはない	は、いい、これには、これには、これには、これには、これには、これには、これには、これには	スタイプ・ザ	20.14/2階次前キシンとリオコスク製人に「アメタイン、そク球の治療の、5度病院、おこよルーもおぐを見せませい。 もっこ	0. 5質量	,
9)トリエチレンチトラミンピス(iso-オクタデセニル)コンク酸ベミノオレイン酸の反応を成物(チルドニー/2)	コンク酸イミドノ	インイン理グ	の反応生産	か(モルた=	1/2		11.4単形	20// 1 -/28/2周日十3/7十四:1,300) 21) 今後四式[14/77] 1 - 1 / 新申四名/2.4:130 200)	- Ker+1	M: T' 3U	, de 1.	3		
10)テトラエチレンペンタミンピス(iso-オクタデセニル)ニハク酸イミド/オレイン酸の反ぶ生成物(モル比=1	-バンニハク製イ	ミドノオレイ	一種の反応	生成物(モル	#=1/3		2)79-7	22) T'I— W#X7 T-4'F		+ 126m + 1	#:1∠U, U	600		
11) パングルチワンへ サポンアス (30ーキクグアセニケ) ロンク酸イボノオワイン酸の反応性成物(モン比=1/4)	ニル)コハク酸	イドノオア	い難の反応	生成物(干	/比=1/		3) 77 m	23)ジアラキラジレューケアニン英語子既下該	ルアミン茶	数化防止	¥.			
12)ジェチレンドリアシンモノ(iso-オクタデセニル)コハク酸パド/オレイン酸の反応生成的(モルガニ:/2)	コハク酸パドノ	イナイン製	の反応生成	先(モル比=	: /2)		4)ピスフェ	24)ピスフェノール系酸化防止剤	化防止剂					
13/2 Hナフノジーハンパスニードクタアセリろ)コンク歌イバアの	ハク取イミド					.~	25)ソルトリナゾール	11/-1						
and the second s	,CreHss					N	26)ジメチンシリゴーン	ゲーログ						
0														

		比較例	元数例2	比較例3	光奇定	
在数据语		89.697	86.697	86.697	86.697	•
イフイン製作社の合物 2 関係を		ı	ı	ı	-	
		1	1		-	
		1	1		-	
3 4		1			,	
		-	-		,	
a		1	-	,	-	
		1	,	ì	ı	
		ı	***	1	_	
ė		,	ı	ı	J	
		ı	:	1	١	
		ı	1	-	_	
コンション・コント 130 日本の 130		1	3	ı	1	
		-	1	е;	1	
		ı	ļ.	1	3	
		1	ı	1	1	
in the second		ţ	-		-	
		1	1	-	,	
		3	65	6	6	
今 報控, 20		1	-	_	-	
		25	9	5	9	
		0.2	0.2	0.2	0.2	
8		0.5	0.5	0.5	0.5	
		0.5	0.5	0.5	0.5	
	<u> </u>	0.1	0.1	0.1	0.1	
		0,003	0.003	0.003	0.003	
字量 SAS No.2 us (2000サイクル)		0.174	0.109	0.153	0.110	
を改称性 SAE No.2 μ0/μd (100サイクル)		1.05	0.97	1.03	0.96	
シャゲー防止性能寿命(基準治比)		0.1	3.3	2.0	3.3	
1) 木素化锌製鉱油(100℃動粘度: 4mm²/s. 粘度指数: 120)				14)ジェチァントリ	アミンピス(isoーオク	[4]ジエチアントリアミンピス(iso-オクタデセール)コハク酸イミド
2)ジェチレントリア:シアス(n-オクタデセニル)コハク酸イミド/オワイン酸の反応生成物(モル比=1/1)	イン戦の反応	全成物(モル比=	<u> </u>	15)シェチァンブ	アミンモノ(isoーオク	15)ジェチワントフアミンモノ(isoーオクタドセコン)コこの最イミド
3)ジェチレントリアミンどス(iso-オクタデセコル)コハク酸イミド/かク酸の反応生成物(モル比=1/1)	ク酸の反応生	成物(トル比=1/	(2	16.エトキン化インステアリルアミン	ステナリルアミン	
4)ジェチノントリアミンアス(Iso-オクタデセコン)コトク酸イドア/リン酸の反応生成物(モル比=1/1)	個の気味生	成化(モル比=1/	; ;	17)インスチアリン	「フ」、システアリン酸とデトラエチワンペンタミンの福合物	ンをいと随中を
- 8.ジェチフンプアンス(isoーオクグデセコク)コンク酸イミンプサウリン酸の反応生成物(キルエコ/コ)コンフェン・コニア・シェン・コープ・シェー・ト・エー・フェー・フェー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー・アー	アリン酸の反応	(作成物 (ホケエー) チャガー	2 5	18)カルンウムスリ	イチャート(外路時間になる)に対していた。	18)カクンクムスンチネート(公路場面:300mgKOH/s、カケンクスのようようフェー・コングランド・ファント・コンター・サージを
も)ソイトフノドン・ハノロく(180~4~~)・ハーク・コークン以入・ハンノ 取る(スラーガスを) イング・コーク・コート・ス・カー・プロトン・プラン・フィン・オー・プロート・カー・プロート・プロート・プロート・プロート・プロート・プロート・プロート・プロー	というできるという	7年の第1年72月1日本の第1年	6 (201米の路域存ま	アプログランログリカイ	187ペシノ・ナデュンの利くに、「こくソイン、ネシノフトン、別の日間十一80元十七年の聖祭本式ニンティン・コンク観人に「アメダメン」だり歌の位置。
スプーンファンン (プログランス (Tour エクタル・コング 個人) ファンファン (A) フェンンス (Tour エクタル・コンン 個人) アンファンン (Tour エクタル・コンン 個人) アンドラング (Tour 主人) アンファンン (Tour エクタル・コン) (Tour エクタル・コント) (Tour エカタル・コント) (Tour エクタル・コント) (Tour エカタル・コント) (To	FTUNBOR	五年成物(七八日	171)	ポリントニク語	ポリプテニル集の数量平均分子量:1,300)	1, 300)
9)トジェチンンディデンドス(iso-オクタデセコル)ニンク吸イド/オレイン酸の反応生成物(モルガ=1/2)	トイン酸の原	女生成物(モルガ		21)分散型ポリメタ	アクリレート(重量学	21)分散型ポリメタアクリレート(重量平均分子量:120,000)
10)チャフォチンンベンタバンガス(iso-オクタデヤリン)コンタ酸イジ、/オフィン酸の反応免疫者(セクガニ)ユン、ジンコ・キュン、シャカ・シン・カー・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・・	ドイナイング	の反応が記載(表験の反応を表)	**************************************	22)アリールホメファイト	22)アリールホスファイト 99)ジアルタルジフェニルア:ン多級ル防 庁割	(抗作者)
11) ヘンメイナンノヘイン 150~4 ソファ・ニーン・コングはイニア タフィン 観り込む サロのの 175 プロ・ファントリアミンチ・イン 150 プエチレントリアミンチ・ノ(150~ キクチブ・ニート) コンク酸イミ・ブセンイン酸の反応生成物(キルルニ・ノンジ	アインをある	最かなな 当成的 (石の) (石の) (石の) (石の)	(= / Z)	24/ビスフェノール系数化防上剤	米酸化防止剤	8 V T CA
13]ジェチレントリアミンピス、ローオクタデセニン・コンク酸イミド	•			25)トリルトリアノール	4	
CroHase March 1971				26)ジャチルシリコーン	.\ 1	
D						

【0021】表1及び表2の結果から明らかな通り、本発明に係る実施例1~14の潤滑油組成物は、いずれも伝達トルク容量を高く保ち、変速特性に優れ、かつ、シャダー防止性能の寿命が長い。これに対して、コハク酸イミドの酸変性化合物を含有しない比較例1は、変速特性が劣り、かつ、シャダー防止性能の寿命が短い。酸変性されていないコハク酸イミドを含有する比較例2~4は、いずれもシャダー防止性能の寿命が劣る。

[0022]

【発明の効果】以上のように本発明の潤滑油組成物は、 長期間の使用においてもシャダー防止性能を維持し、か つ湿式クラッチの高いトルク伝達容量と良好な変速特性 を有するものであるが、自動変速機及び/又は無段変速 機のみならず、湿式クラッチ及び/又は湿式ブレーキ有 する建設機械や農機、手動変速機、二輪車ガソリンエン ジンや、四輪車ガソリンエンジン、ディーゼルエンジ ン、ガスエンジン、ショックアブソーバー等の潤滑油と して好適に用いることができる。

(12))02-105478 (P2002-105478A)

フロントページの続き

(51) Int. Cl.	7 識別記号	FI	(参考)
C10N	30:04	C 1 O N 30:04	
	30:06	30:06	
	40:00	40:00	Z
	40:04	40:04	
	40:25	40:25	
(72)発明者	守田 英太郎	(72)発明者 有本 直純	
	神奈川県横浜市中区千鳥町8番地 日石三	神奈川県横浜市中	中区千鳥町8番地 日石三
	菱株式会社潤滑油部潤滑油研究所内	菱株式会社潤滑油	曲部潤滑油研究所内
(72)発明者	小宮 健一	Fターム(参考) 4H104 BE11C	BH05C BJ05C DA02A
	神奈川県横浜市中区千鳥町8番地 日石三	EBO2	EB07 EB08 JA17 JA18
	菱株式会社潤滑油部潤滑油研究所内	LA02	LAO3 LA20 PAO2 PAO3
		PA41	PA50