

TLB实验

TLB--页表的缓存

- >缓存当前常用的虚拟地址和其映射的物理地址之间的映射关系
- ▶页表的子集
- ▶思考:
 - TLB应该包含的信息:虚拟地址,物理地址,各种保护位
 - TLB的虚实地址转换流程: TLB命中/不命中, 缺页
 - TLB的替换算法: LRU, FIFO...

页表结构

31	20	0 19	109	8	7 6	5	1 3	2	1	0
	PPN[1]	PPN[0]	RS	WI	A	GU	JX	W	R	V
-	12	10	2		1 1	1	1 1	1	1	1

一个 RV32 Sv32 页表项 (PTE)

63	54 53	28 27	19 18	10 9 8	7	6	5	4	3	2	1	0
Reserved	PPN[2]	PPN[1]	PPN[0]	RSW	D	A	G	U	X	W	R	V
10	26	9	9	2	1	1	1	1	1	1	1	1

一个 RV64 Sv39 页表项 (PTE)

TLB表项结构

虚实地址转换过程

实验要求

- 设计一个支持Sv32或者Sv39页表项(PTE)的Memory Management Unit(MMU)模块,思考设计对应的TLB表项,页 表项结构
- · 实现TLB加速虚实地址的转换, 并且TLB采用全相联映射
- · 在实验给定的操作系统上添加 page fault 和TLB update的设计
- 基本要求:实现单进程的虚实地址转换,不考虑进程切换
- 进阶要求: 能区分多进程虚实地址的高效转换
- 测评标准:设计的C程序能跑通(单进程/多进程)