Funktionen in mehreren Variablen Aufgaben

Jonas Funke

25.08.2008

1 Stetigkeit und partielle Differentiation

1.1 Aufgabe

Gegeben ist die Funktion:

$$f(x,y) = \begin{cases} (x^2 + y^2)\sin(\frac{1}{x^2 + y^2}) & (x,y) \neq (0,0) \\ 0 & (x,y) = (0,0) \end{cases}$$

Ist die Funktion stetig? Ist sie partiell und total Differenzierbar?

1.2 Aufgabe

Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ und eine Konstante $a \in \mathbb{R}$ mit

$$f(x,y) = \begin{cases} \frac{\sin(2\sqrt{x^2 + y^2})}{\sqrt{x^2 + y^2}} & (x,y) \neq (0,0) \\ a & (x,y) = (0,0) \end{cases}.$$

- a) Wie muss die Konstante a gewählt werden, damit f(x, y) in (0, 0) stetig ist? (Hinweis: Übergang zu Polarkoordinaten)
- b) Man bestimme eine Parametrisierung und eine implizite Darstellung der Tangentialebene an den Graphen z = f(x, y) im Punkt $P(\frac{\pi}{2}, 0, 0)$.

1.3 Aufgabe (Potentialkasten)

Zeigen Sie, dass die Wellenfunktion $\Psi: \mathbb{R}^3 \to \mathbb{R}$

$$\Psi(x, y, z) = \sin(\pi n_x x) \cdot \sin(\pi n_y y) \cdot \sin(\pi n_z z) \ \text{mit } n_x, n_y, n_z \in \mathbb{N} \setminus \{0\}$$

die Schrödingergleichung für den 3-dimensionalen Potentialkasten löst:

$$-\frac{\hbar^2}{2m}\Delta\Psi(x,y,z) = E\Psi(x,y,z)$$

und berechnen Sie die möglichen Energieniveaus E_{n_x,n_y,n_z} .

1.4 Aufgabe (Wellengleichung)

Sei $f,g:\mathbb{R}\to\mathbb{R}$ zweimal differenzierbar und c>0. Zeigen Sie, dass die Funktion $\Psi(t,x):\mathbb{R}^2\to\mathbb{R}$,

$$\Psi(t,x) = f(x - ct) + g(x + ct)$$

die Wellengleichung

$$\partial_t^2 \Psi(t,x) = c^2 \partial_x^2 \Psi(t,x)$$

erfüllt.

1.5 Aufgabe (Totales Differential)

Man bestimme das totale Differential der folgenden Funktionen:

a)
$$f(x,y) = 4x^3y - 3x \cdot e^y$$

b)
$$f(x, y, z) = \ln(\sqrt{x^2 + y^2 + z^2})$$

2 Extremwertberechung

2.1 Aufgabe

Bestimmen Sie die kritischen Punkte der Funktion $f: \mathbb{R}^2 \to \mathbb{R}$ und chrakterisieren Sie diese.

$$f(x,y) = x^3 - 12xy + 8y^3$$

2.2 Aufgabe

Gegeben ist die Funktion $f: \mathbb{R}^2 \to \mathbb{R}$:

$$f(\mathbf{x}) = \|\mathbf{x}\|^4 - a\|\mathbf{x}\|^2 + x_1^2 \quad \text{mit } a \in \mathbb{R} \setminus \{0\}$$

Berechnen Sie die kritischen Punkte und charakterisieren Sie diese in Abhängigkeit von a.

2.3 Aufgabe

Gegeben ist die Funktion

$$f(x,y) = \sin(x)\sin(y)$$

Diskutieren Sie f(x,y) (Periodizität, Nullstellen) und bestimmen Sie lokale Minima, lokale Maxima und Sattelpunkte. (Betrachten Sie zuerst die Periodizität und schränken Sie so den zu untersuchenden Bereich ein.)

2.4 Aufgabe

Bestimmen sie lokale Maxima, Minima und Sattelpunkte folgender Funktionen:

a)

$$f(x,y) = 3xy^2 + 4x^3 - 3y^2 - 12x^2 + 1$$

b)

$$f(x,y) = (x^2 + y^2) \cdot e^{-x}$$