Machine Epsilon

Consider the discrete subset \mathbf{F} of real numbers \mathbf{R} to be our floating point number system depending on the precision we choose then for all $x \in \mathbf{R}$, there exists $x' \in \mathbf{F}$ such that

$$\frac{|x - x'|}{|x|} \le \epsilon_{machine} \tag{1}$$

 $f: \mathbb{R} \to \mathbb{F}$ is a round off function then

$$f'(x) = x(1+\epsilon) \tag{2}$$

i.e., there exists an ϵ with $|\epsilon| \leq \epsilon_{machine}$ such that equation 2 is true.

In single precision:
$$\epsilon_{machine} \approx \frac{2^{-23}}{2} \approx 5.96 \times 10^{-8}$$

In double precision: $\epsilon_{machine} \approx \frac{2^{-52}}{2} \approx 1.11 \times 10^{-16}$

Fundamental operations in floating point arithmetic

Let us consider $x, y \in \mathbb{F}$ and * denotes the arithmetic operations, there exists ϵ with $|\epsilon| \le \epsilon_{machine}$ such that

$$x * y = f'(x * y) = (x * y)(1 + \epsilon)$$
 (4)

i.e., every operation of floating point arithmetic is exact upto a relative error ϵ of size atleast ϵ

Conditioning and Stability

Conditioning: sensitivity of a mathematical problem to perturbations in input

y = f(x),

- $x \rightarrow \text{input to the problem (data)}$
- f \rightarrow represents the problem
- \bullet y \rightarrow represents a solution
- What happens to y when the given input x is perturbed slightly?

1 Absolute contiion number

If the small perturbation in \mathbf{x} is denoted by $\delta \mathbf{x}$ then let the resulting perturbation in the solution be represented as $\delta \mathbf{f}$ i.e., $\delta \mathbf{f} = \mathbf{f}(\mathbf{x} + \delta \mathbf{x}) - \mathbf{f}(\mathbf{x})$. Then the absolute condition number k' = k(x) of the problem \mathbf{f} at \mathbf{x} is given by

$$\mathbf{K}(x) = \max_{\delta x} \left(\frac{||\delta \mathbf{f}||}{||\delta \mathbf{x}||} \right) \tag{5}$$

for infinitesimally small δf and δx

If **f** has a derivative, we can evaluate Jacobian matrix J(x) as $J_{ij} = \frac{\delta \mathbf{f}_i}{\delta x_j}$ We have $\delta \mathbf{f} \approx J(x)\delta \mathbf{x}$, equality $||\delta \mathbf{x}|| \to 0$

$$K(x) = \max_{\delta x} \frac{||J(x)\delta \mathbf{x}||}{||\delta \mathbf{x}||}$$

$$K(x) = ||J(x)||$$
(6)

2 Relative Condition Number

Assume δx is infinitesimal

$$K^{2} = \max_{\delta x} \left(\frac{\frac{||\delta \mathbf{f}||}{||\mathbf{f}||}}{\frac{||\delta \mathbf{x}||}{||\mathbf{x}||}} \right) = \max_{\delta x} \left(\frac{\frac{||\delta \mathbf{f}||}{||\delta \mathbf{x}||}}{\frac{||\mathbf{f}(x)||}{||\mathbf{x}||}} \right) = \frac{||J(x)||}{||\frac{f(x)}{x}||}$$
(7)

Examples:

1. f(x) = x/2, $x \in \mathbb{R}$ Input: x, Output: x/2, $J = \frac{df}{dx} = 1/2$

$$K' = \frac{||J||}{\frac{||f(x)||}{||x||}} = \frac{1/2}{\left|\frac{x/2}{x}\right|}$$

2.
$$f(x) = x_1 - x_2$$
, where $\mathbf{x} = \begin{pmatrix} x_1 \\ x_2 \end{pmatrix}$

$$J = \begin{pmatrix} \frac{\delta \mathbf{f}}{\delta \mathbf{x}_1} & \frac{\delta \mathbf{f}}{\delta \mathbf{x}_2} \end{pmatrix} = \begin{pmatrix} 1 & -1 \end{pmatrix}$$

$$K^{R} = \frac{||J||_{\infty}}{||\mathbf{f}(x)||_{\infty}/||x||_{\infty}} = \frac{2}{\frac{||f(x)||}{\max\{|x_{1}|,|x_{2}|\}}} = \frac{2\max\{|x_{1}|,|x_{2}|\}}{|x_{1}-x_{2}|}$$

if $|x_1 - x_2|$ is small ≈ 0 , K^R is large and is not well conditioned ————Missing—

$$K^{R} = \frac{||J||_{1}}{||\mathbf{f}(x)||_{1}/||x||_{1}} = \frac{2}{\frac{||f(x)||}{\max\{|x_{1}|,|x_{2}|\}}} = \frac{2\max\{|x_{1}|,|x_{2}|\}}{|x_{1} - x_{2}|}$$

Eigen values of a matrix

Input: A

Output: Eigenvalues λ of A

Consider a symmetric matrix $\mathbf{A} = \mathbf{A}^T \lambda$ and $\lambda + \delta \lambda$ are corresponding eigen values of \mathbf{A} and $\mathbf{A} + \delta \mathbf{A}$ then

$$|\delta\lambda| \le ||\delta\mathbf{A}||_2 \tag{8}$$

Relative condition number:

$$= \max_{\delta \mathbf{A}} \frac{\left(\frac{|\delta \lambda|}{|\lambda|}\right)}{\frac{||\delta \mathbf{A}||_2}{||\mathbf{A}||}} = \max_{\delta \mathbf{A}} \frac{|\delta \lambda|}{|\lambda|} \cdot \frac{||\mathbf{A}||}{||\delta \mathbf{A}||}$$
Relative condition number(k) = $\frac{||A||_2}{|\lambda|}$ (9)

3 Conditioning of a matrix-vector multiplication

Fixed A: Input: x, Output: Ax y = Ax

$$\hat{K} = \frac{||A||.||x||}{||Ax||}$$

A is non singular

$$=> x = AA^{-1}x \implies ||x|| = ||AA^{-1}x||$$

= $||A^{-1}Ax||$
 $\leq ||A^{-1}||.||Ax||$

Compute $A^{-1}b$ for a given input b Input: b Output: $A^{-1}b = x$

$$\hat{k} = \frac{||A^{-1}||.||b||}{||A^{-1}b||} = \frac{||A^{-1}||.||b||}{||x||}$$

$$\implies \hat{k} \le ||A^{-1}|| ||A||$$

Result: $A \in \mathbb{R}^{m \times n}$ and non-singular and consider Ax = b, the problem of computing for an input x

$$\hat{k} = \frac{||A||.||x||}{||Ax||} \le ||A|| ||A^{-1}||$$

The problem of computing of given input b has condition number

3.1 Condition number of a matrix

$$k(A) = ||A|| ||A^{-1}||$$

if k(A) is small, A is said to be well conditioned

$$k(A) = ||A||_2 ||A^{-1}||_2$$

 $||A||_2 \to \sigma_1$ (max singular matrix value of A) $||A^{-1}||_2 \to \frac{1}{\sigma_m}$ (min singular matrix value of A)

$$\implies k(A) = \frac{\sigma_1}{\sigma_m}$$

Non zero singular values of A are square roots of non-zero eigen values of A^TA or AA^T

$$k(A) = \frac{\sqrt{\lambda_{max}(A^T A)}}{\sqrt{\lambda_{min}(A^T A)}}$$

If A is a symmetrix matrix

$$k(A) = \frac{|\lambda_{max}(A)|}{|\lambda_{min}(A)|}$$

If $A \in \mathbb{R}^{m \times n}$ (m > n), and $A^+ = (A^T A)^{-1} A^T$ (pseudo inverse of A) $k(A) = ||A|| ||A^+||$

3.2 Conditioning of a system of equations

Fix b: Consider $f:A\to x=A^{-1}b$ Input: A Output: x

$$(A + \delta A)(x + \delta x) = b$$

$$\Rightarrow Ax + A\delta x + \delta Ax + \delta A\delta x = b$$

$$\Rightarrow A\delta x + \delta Ax = 0$$

$$\Rightarrow \delta x = -A^{-1}(\delta A)x$$

$$\Rightarrow \|\delta x\| = \|-A^{-1}(\delta A)x\| \le \|A^{-1}\| \|\delta Ax\|$$

$$\Rightarrow \|\delta x\| \le \|A^{-1}\| \|\delta A\| \|x\|$$

$$\hat{k} = \max_{\delta A} \frac{\frac{\|\delta x\|}{\|x\|}}{\frac{\|\delta A\|}{\|A\|}} \implies \frac{\frac{\|\delta x\|}{\|x\|}}{\frac{\|\delta A\|}{\|A\|}} \le \|A\| \|A^{-1}\|$$

Perturbation of δA exists, which makes above inequality an equality

$$\hat{k} = ||A|| ||A^{-1}|| = k(A)$$

4 Stability of Algorithms

Getting the best answer for a given problem though it is not an exact answer for the problem

<u>Algorithm</u>: $f: X \to Y$, where X is the vector space of data, and Y is the vector space of solution

y = f(x), where $x \in X, y \in Y$ An algorithm can be viewed as a function \tilde{f} which takes the same input $x \in X$ and maps it to a result which is a collection of floating point numbers that belongs to Y

<u>Accuracy</u>: A good algorithms \tilde{f} should be designed in a way such that it closely approximates the underlying problem f.

Absolute error of computation: $\|\tilde{f}(x) - f(x)\|$ Relative error of computation: $\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|}$ We say that \tilde{f} is an accurate algorithm for f for all relevant input x

$$2\frac{\|\tilde{f}(x) - f(x)\|}{\|f(x)\|} = O(\epsilon_M)$$

Forward relative error: If f is ill-conditioned

$$\max_{\delta x} \frac{\frac{\|\delta f\|}{\|f\|}}{\frac{\|\delta x\|}{\|x\|}} = \hat{k} \text{ is very large}$$

Since $\frac{\|\delta x\|}{\|x\|} = O(\epsilon_M), \frac{\|\delta f\|}{\|f\|} \le \hat{k}O(\epsilon_M)$

We can say an algorithm \tilde{f} for solving a problem f is stable for all input data x if

$$\frac{||\tilde{f}(x) - f(\tilde{x})||}{||f(\tilde{x})||} = O(\epsilon_M)$$

for some \tilde{x} satisfying

$$\frac{||\tilde{x} - x||}{||x||} = O(\epsilon_M)$$

A stable algorithm gives nearly right answer to nearly right question. $||\tilde{f}(x) - f(\tilde{x})||$ is called backward error

4.1 Backward Stability

 \tilde{f} for a problem f such that $\tilde{f}(x) = f(\tilde{x})$. That is exactly right answer for n nearly right question

4.1.1 Stability of floating point arithmetic operation

$$f'(x) = x(1 + \epsilon),$$
 where $|\epsilon| < \epsilon_M$
 $x * y = x * y(1 + \epsilon),$ where $|\epsilon| < \epsilon_M$

Example: Foating point arithmetic for —

$$f(x) = x_1 - x_2$$

$$x_1 \to f'(x_1), x_2 \to f'(x_2)$$

$$f'(x_1) = x_1(1 + \epsilon_1), f'(x_2) = x_2(1 + \epsilon_2)$$

Algorithm:

$$f'(x_1) - f'(x_2) = \tilde{f}$$

$$= x_1(1 + \epsilon_1) - x_2(1 + \epsilon_2)$$

$$= (x_1(1 + \epsilon_1) - x_2(1 + \epsilon_2))(1 + \epsilon_3)$$

$$= x_1(1 + \epsilon_1)(1 + \epsilon_3) - x_2(1 + \epsilon_2)(1 + \epsilon_3)$$

$$= x_1(1 + \epsilon_1)(1 + \epsilon_3) - x_2(1 + \epsilon_2)(1 + \epsilon_3)$$

$$= x_1(1 + \epsilon_1) - x_2(1 + \epsilon_2)$$

$$= x_1(1 + \epsilon_4) - x_2(1 + \epsilon_5)$$

$$= x_1(1 + \epsilon_4) - x_2(1 + \epsilon_5)$$

$$= \tilde{x}_1 - \tilde{x}_2$$

$$= f(\tilde{x}_1, \tilde{x}_2) = f(\tilde{x})$$

Example 2: Outer product between 2 vectors $\underset{\sim}{x} \in \mathbb{R}^m$, $\underset{\sim}{y} \in \mathbb{R}^m$ and $\underset{\sim}{A} = \underset{\sim}{x} y^T$ i.e., $A_{ij} = x_i y_j$

$$\tilde{f}(x,y) = \tilde{A}_{ij} = f'(x_i) \times f'(y_j)
= f'(x_i) \times f'(y_j) \times (1 + \epsilon_3^{ij})
= x_i(1 + \epsilon_1^i) \times y_j(1 + \epsilon_2^j) \times (1 + \epsilon_3^{ij})
= x_i y_j(1 + \epsilon_1^i)(1 + \epsilon_2^j)(1 + \epsilon_3^{ij})
= x_i y_j(1 + \epsilon_1^i + \epsilon_2^j)(1 + \epsilon_3^{ij})
= x_i y_j(1 + \epsilon_4^{ij})(1 + \epsilon_3^{ij})$$

Verify:
$$\tilde{f}(x,y) = f(\tilde{x},\tilde{y}) = \tilde{x}\tilde{y}^T = (x + \delta x)(y + \delta y)^T$$

Exercise: Adding 1 to a real number i.e., $f(x) = x + 1, x \in \mathbb{R}$

$$\tilde{f}(x) = f'(x) + 1
= (f'(x) + 1)(1 + \epsilon_1)
= (x(1 + \epsilon_2) + 1)(1 + \epsilon_1)
= (x + x\epsilon_2 + 1)(1 + \epsilon_1)
= x + x\epsilon_2 + 1 + x\epsilon_1 + x\epsilon_1\epsilon_2 + \epsilon_1
= (1 + \epsilon_1) + x(1 + \epsilon_1 + \epsilon_2 + \epsilon_1\epsilon_2)$$

Is it stable?

4.1.2 Unstable Algorithms

Computing eigen values of symmetric matrix Algorithm:

- Find the coefficients of $p(\lambda) = det(A \lambda I)$
- Roots of $p(\lambda)$

Example
$$A = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$$
,
$$\implies \lambda^2 - p\lambda + 1; \text{ Roots} \rightarrow \frac{p \pm \sqrt{p^2 - 4}}{2}; \text{ where } \tilde{p} = p(1 + \epsilon), |\epsilon| < \epsilon_M$$

$$\implies \text{Roots: } \frac{p(1 + \epsilon) \pm \sqrt{(p(1 + \epsilon)^2 - 4}}{2}$$

If p=2, then the roots are $(1+\epsilon)\pm\sqrt{2\epsilon}$. This implies that $error\approx()(\sqrt{\epsilon})>O(\epsilon_M)$

4.1.3 Accuracy of a backward stable algorithm

If a backward stable algorithm is applied to solve a problem f with condition number κ , the relative forward errors satisfy

$$\frac{||f(x) - f(x)||}{||f(x)||} = O(\kappa \epsilon_M)$$

Proof: Since f is backward stable, $\tilde{f}(x) = f(\tilde{x})$ where $\frac{||x-\tilde{x}||}{||x||} = O(\epsilon_M)$

$$\kappa(x) = \max_{\delta x} \frac{\frac{||\delta f||}{||f||}}{\frac{||\delta x||}{||x||}}$$

$$\implies \frac{\frac{||f(\tilde{x}) - f(x)||}{||f(x)||}}{\frac{||\tilde{x} - x||}{||x||}} \le \kappa(x)$$

$$\implies \frac{||f(\tilde{x}) - f(x)||}{||f(x)||} \le \kappa(x) \cdot \frac{||\tilde{x} - x||}{||x||}$$

$$\implies \frac{||f(\tilde{x}) - f(x)||}{||f(x)||} \le O(\kappa \epsilon_M)$$

5 Singular Value Decomposition (SVD)

5.1 Geometric Intuition

 u_1, u_2 are the principal semi-axes of an ellipse with lengths σ_1, σ_2 . \tilde{v}_1, \tilde{v}_2 are the pre-image vectors generating \tilde{u}_1, \tilde{u}_2 as the axes of ellipse

$$\implies \tilde{A}\tilde{v}_1 = \sigma_1 \tilde{u}_1, \tilde{A}\tilde{v}_1 = \sigma_1 \tilde{u}_1$$

$$\implies \tilde{A}[\tilde{v}_1 \, \tilde{v}_2]$$