		广东工业大学考试试卷(A)		
ļ	0	课程名称: <u>大 学 物 理 A (2)</u> 试卷满分 <u>100</u>	分	
%		考试时间: 2008 年 1 月 15 日 (第 20 周 星期 二)		
女		题 号 一 二 21 22 23 24 总统	分	
		评卷得分		
	***	评卷签名		
		复核得分		
		复核签名		
ΠŢ		一、选择题 (每题 3 分,共 30 分) 只有一个答案正确,选出正确答案的字母填	在答题纸_	Ŀ,
· · · · · · · · · · · · · · · · · · ·	汝	1. (本题 3分)(4015) 1 mol 刚性双原子分子理想气体,当温度为 T 时,其内能为 (A) $\frac{3}{2}RT$. (B) $\frac{3}{2}kT$. (C) $\frac{5}{2}RT$. (D) $\frac{5}{2}kT$. (式中 R 为普适气体常量, k 为玻尔兹曼常量) 2. (本题 3分)(4289) 设证代表气体分子运动的平均速率, v_p 代表气体分子运动的最($\overline{v^2}$) $^{1/2}$ 代表气体分子运动的方均根速率,处于平衡状态下理想气体,三种(A) $(\overline{v^2})^{1/2}=\overline{v}=v_p$ (B) $\overline{v}=v_p<(\overline{v^2})^{1/2}$ (C) $v_p<\overline{v}<(\overline{v^2})^{1/2}$ (D) $v_p>\overline{v}>(\overline{v^2})^{1/2}$		
承 25:		3. (本题 3分)(4143) "理想气体和单一热源接触作等温膨胀时,吸收的热量全部用来对对此说法,有如下几种评论,哪种是正确的? (A) 不违反热力学第一定律,但违反热力学第二定律. (B) 不违反热力学第二定律,但违反热力学第一定律. (C) 不违反热力学第一定律,也不违反热力学第二定律. (D) 违反热力学第一定律,也违反热力学第二定律.	f外作功.]

4. (本题 3分)(1358)

设有一个带正电的导体球壳. 当球壳内充满电介质、球壳外是真空时, 球壳 外一点的场强大小和电势用 E_1 , U_1 表示; 而球壳内、外均为真空时, 壳外一点 的场强大小和电势用 E_2 , U_2 表示,则两种情况下壳外同一点处的场强大小和电 势大小的关系为

- (A) $E_1 = E_2$, $U_1 = U_2$.
- (B) $E_1 = E_2$, $U_1 > U_2$.
- (C) $E_1 > E_2$, $U_1 > U_2$.
- (D) $E_1 < E_2$, $U_1 < U_2$.

Ε

5. (本题 3分)(1218)

一个平行板电容器,充电后与电源断开,当用绝缘手柄将电容器两极板间距 离拉大,则两极板间的电势差 U_{12} 、电场强度的大小 E、电场能量 W 将发生如下

- (A) U_{12} 减小, E 减小, W减小.
- (B) U_{12} 增大, E 增大, W 增大.
- (C) U₁₂增大, E 不变, W 增大.
- (D) U₁₂减小, E 不变, W 不变.

]

6. (本题 3分)(2005)

图中, 六根无限长导线互相绝缘, 通过电流均为 I, 区域 I、 Ⅱ、Ⅲ、Ⅳ均为相等的正方形,哪一个区域指向纸内的磁通量最 大?

- (A) I区域.
- (B) II区域.
- (C) III区域.
- (D) IV区域.
- (E) 最大不止一个.

]

7. (本题 3分)(5675)

真空中一根无限长直细导线上通电流 I,则距导线垂直距离为 a 的空间某点 处的磁能密度为

(A)
$$\frac{1}{2}\mu_0(\frac{\mu_0 I}{2\pi a})^2$$
 (B) $\frac{1}{2\mu_0}(\frac{\mu_0 I}{2\pi a})^2$ (C) $\frac{1}{2}(\frac{2\pi a}{\mu_0 I})^2$ (D) $\frac{1}{2\mu_0}(\frac{\mu_0 I}{2a})^2$

(B)
$$\frac{1}{2\mu_0} (\frac{\mu_0 I}{2\pi a})^2$$

(C)
$$\frac{1}{2}(\frac{2\pi a}{\mu_0 I})^2$$

$$D) \qquad \frac{1}{2\mu_0} (\frac{\mu_0 I}{2a})^2$$

Ε

]

8. (本题 3分)(2790)

对位移电流,有下述四种说法,请指出哪一种说法正确.

- (A) 位移电流是由变化电场产生的.
- (B) 位移电流是由稳恒磁场产生的.
- (C) 位移电流有热效应.
- (D) 位移电流的磁效应不服从安培环路定理.

]

	题 3分)(4383) [東北	## /		ᇄᄵᆏᆕᇄ	= - <u>L</u> -L 4k V.		-ti/L
	率为ν的单色光照射					E_K ;	右以
	12v的单色光照射此程			出光电子的最大	大动能为:		
			$2h \nu - E_{\kappa}$.				
(C)	$h \nu - E_{\kappa}$.	(D)	$h v + E_K$.			[]
10. (本	题 3分)(4190)						
-	处于基态的氢原子受	激发质	后能 发射束	後曼系(由激发	杰跃迁 到法	ま态发	射的
	成的谱线系)的最长流						
	1.5 eV.) 3.4 eV.		37 1 VC D/ HJ	tio == V	_
` '	10.2 eV.	` .) 13.6 eV		Γ]
(0)		(1)	, 15.0 61	· •			,
二、填空	三题 (共 30 分)						
	题 3 分)(5544)						
	型想气体在温度为 27%	つ和田	温光 1 012	· V 10 ³ D。 桂切	10000000000000000000000000000000000000	11.2	× 10-3
	则这气体的摩尔质量						× 10 ·
J • mol ⁻¹	・K-I) · K-I)	INI mol —		(音迫气	AP吊軍 K=	= 8.31	
J 11101	к)						
12. (本	题 3分)(4336)						
由绝	热材料包围的容器被	隔板隔	扇为两半,	左边是理想气	【体,右边】	真空.	如果
把隔板撤	法,气体将进行自由	膨胀に	过程, 达至	平衡后气体的]熵	(±	曾加、
减小或不	变).						
12 / - k-	晒 2八八4600)						
-	题 3分)(1606) 表面附近的电场强度	· 45 44	100 NI /C	大向垂青州西	点点 下 4四.	AT HH IS	£ L
ነ ነተ	水田附近的电场强度	.£1) /V	100 N /C,	刀问要且地區	山川门,阪	汉地 马	% _L.
66 do 21. 41	ルカハナナルキチー	. जन्म	ᇈᆂᇎᆉᇎ	र रहेता होता. इ.स.च्या			
	均匀分布在地表面上			『密度σ=	· · ·		
(具至介甲	电常量 $\varepsilon_0 = 8.85 \times 10$) 12 C2/($(N \cdot m^2)$				
14. (本	题 3分)(1457)						
两个	·点电荷在真空中相距	为小师	寸的相互作	用力等于它们]在某一"无	限大	"各向
同性均匀	电介质中相距为 12时	的相互	1作用力,	则该电介质的	相对介电:	常量	
E _r =							
-r	*						

15. (本题 3分)(2562) 在真空中,将一根无限长载流导线在一平面内弯成如图 I 所示的形状,并通以电流 I ,则圆心 O 点的磁感强度 B 的值 I
为·
16. (本题 3分)(2064) 磁场中某点处的磁感强度为 \bar{B} =0.40 \bar{i} -0.20 \bar{j} (SI),一电子以速度 \bar{v} =0.50×10 $^6\bar{i}$ +1.0×10 $^6\bar{j}$ (SI)通过该点,则作用于该电子上的磁场力 \bar{F} 大小为
(基本电荷 e=1.6×10 ⁻¹⁹ C)
17. (本题 3分)(2158) 一无铁芯的长直螺线管,在保持其半径和总匝数不变的情况下,把螺线管拉
长一些,则它的自感系数将(增加、减小或不变)
18. (本题 3分)(4612) 如图所示,一频率为 ν 的入射光子与起始静止的自由电子发生碰撞和散射. 如果散射光子的频率为 ν' ,反冲电子的动量为 p ,则在与入射光子平行的方向上的动量守
恒定律的分量形式为
19. (本题 3分)(4429) 在戴维孙——革末电子衍射实验装置中,自热 阴极 K 发射出的电子束经 $U = 500$ V 的电势差加速 后投射到晶体上. 这电子束的德布罗意波长
(电子质量 m_e = 9.11×10 ⁻³¹ kg, 基本电荷 e =1.60×10 ⁻¹⁹ C, 普朗克常量 h =6.63×10 ⁻³⁴ J·s)
20. (本题 3分)(5372) 在电子单缝衍射实验中,若缝宽为 a_y = 0.1 nm (1 nm = 10^9 m),电子束垂直
射在单缝面上,则衍射的电子横向动量的最小不确定量 $\Delta p_y =N \cdot s$. (普朗克常量 $h = 6.63 \times 10^{-34} \text{ J} \cdot s$)

三计算题 (共40分)

21. (本题10分)(4120)

 $1 \mod$ 双原子分子理想气体从状态 $A(p_1,V_1)$ 沿 p-V 图所示直线变化到状态 $B(p_2,V_2)$, 试求:

- (1) 气体的内能增量.
- (2) 气体对外界所作的功.
- (3) 气体吸收的热量.
- (4) 此过程的摩尔热容.

(摩尔热容 $C = \Delta Q / \Delta T$, 其中 ΔQ 表示 1 mol 物 质在过程中升高温度 ΔT 时所吸收的热量.)

22. (本题10分)(1008)

如图所示, 真空中一长为 L 的均匀带电细直 杆,总电荷为 q, 试求在直杆延长线上距杆的一端 口 距离为d的P点的电场强度.

23. (本题10分)(1929)

如图所示,一半径为 R 的均匀带电无限长直圆筒, 面电荷密度为 σ . 该简以角速度 α 绕其轴线匀速旋转. 试 求圆筒内部的磁感强度.

24. (本题10分)(2498)

载流长直导线与矩形回路 ABCD 共面,导线平 行于 AB, 如图所示. 求下列情况下 ABCD 中的感应 电动势:

- (1) 长直导线中电流 $I=I_0$ 不变,ABCD 以垂直 于导线的速度可从图示初始位置远离导线匀速平移 到某一位置时(t 时刻).
 - (2) 长直导线中电流 $I = I_0 \sin \omega t$, ABCD 不动.
- (3) 长直导线中电流 $I=I_0\sin\omega t$,ABCD 以垂直于导线的速度 \bar{v} 远离导线匀速 运动,初始位置也如图.