

ripartizione discreta probabilità di x. Data la ripartizione si può trovare la probabilità di un valore facendo: $\mathbb{P}[x] = F(x) - F(x^-)$ $\mathbb{E}[X] = \sum_i (x_i \cdot p_i) \qquad ext{Var}[X] = \sum_i (x_i^2 \cdot p_i) - [\mathbb{E}[X]]^2$

Distribuzioni discrete

 $\mathbb{P}[X=k]$ dhyper(k, m, N-m, n)

 $\mathbb{P}[X \leq k]$ phyper(k, m, N-m, n)

popolazioni

 $\mathbb{E}[X] = \int_{\mathbb{D}} x f(x) \, dx$

NORMALE $X \sim N(\mu,\sigma^2)$ μ "parametro di posizione", rappresenta la media rappresenta la media σ rappresenta la deviazione standard $f(x) = \frac{1}{\sigma \sqrt{2\pi}} \cdot e^{-\frac{1}{2}\left(\frac{x-\mu}{\sigma}\right)^2}$ $\mathbb{E}[X] = \mu$ $\mathrm{Var}[X] = \sigma^2$ n grande e prob. alta: $np(1-p) \geq 10$

intervallo in cui tutti hanno la

Standard $Z=rac{X-\mu}{\sqrt{\sigma^2}}\sim N(0,1)$ n grande e prob. alta: $np(1-p)\geq 10$ / Appr. Binomiale $\mathrm{Bin}(n,p)pprox N(np,np(1-p))$ correzione di continuità: aggiungere e sottrarre 0.5 per includere gli estremi

 $\mathrm{Var}[X] = \int_{\mathbb{T}} x^2 \cdot f(x) \, dx - [\mathbb{E}[X]]^2$

Distribuzioni continue

 $\mathbb{P}[X \leq x] \quad \mathsf{pnorm}(\mathsf{q}\mathsf{=x},\,\mathsf{mean}\mathsf{=}\mu,\,\mathsf{sd}\mathsf{=}\sigma)$ occhio a non mettere la varianza

 $\mathbb{P}[a \leq X \leq b]$ pnorm(q=b, mean= μ , sd= σ) - pnorm(q=a, mean= μ , sd= σ)

 $X \sim U(a,b)$

 $\mathbb{P}[X \leq x]$ punif(q=x, min=a, max=b)

 $f(x) = rac{1}{b-a}$ $\mathbb{E}[X] = rac{a+b}{2}$ $\mathrm{Var}[X] = rac{(b-a)^2}{12}$

