

Developing a Modular, Data-Driven Mesoscopic Simulator for Stochastic Railway Networks

Peter Lai Willem Klumpenhouwer Amer Shalaby

Spur: Simulation for Planning and Understanding Railways

Background

- Rail networks are crucial for the movement of people and goods within and between cities
- Rail networks are growing in complexity and scale, and they often experience significant service disruptions which are costly
- High-fidelity modelling tools for simulating train and passenger flows are needed for effective planning, scheduling and management of rail networks

Macroscopic

Fast computation

level performance

Only high-level, aggregate

statistics about network-

Railway Simulation Approaches

Microscopic

- Highly detailed and realistic
- Long computation time and complex to set up, not suited for network-level analysis

Mesoscopic

- Useful results with minimal investment and fast computation
- Detailed where relevant, flexible in scale

Existing Literature

Work	Scope	Application	Stochasticity	Availability
[1] Saidi et al. (2019)	Line	Control strategy evaluation		Proprietary
[2] Marinov and Viegas (2011)	Line + yards	Freight traffic		Proprietary
[3] Zhong et al. (2018)	Passenger stations	Capacity analysis		Proprietary
[4] Quaglietta et al. (2011)	Line + yards	Design and decision support		Proprietary
[5] Diviš and Kavička (2015)	Nodes	Capacity analysis		Proprietary
[6] Fabris et al. (2014)	Network	Timetable generation		Proprietary
[7] Kavička and Krýže (2021)	Network	Route planning		Proprietary

Key Design Outcomes Modular | Agent- & event-based | Stochastic | Data-driven | Open source Multi-Block Parallel Track Component Parallel tracks with multiple signal blocks Cellular automata model Train acceptance evaluation logic **Multi-Track Station Component** Stopping and bypass tracks Stochastic dwell time using Burr distribution Stopping Track 2 **Block Exclusive Zone** 400 Single-occupancy block with multiple components Logic for managing queuing

Network Construction Guiding Simplification Abstraction **Principles:** Tracks, Conceptual Diagram Signals, Platforms Spur Input **ATLS** Train Schedule & Location Data (Planned + Station Dwell Time Fitting Routes, Tours,

Successful Replication of GO Train Network Close resemblance with schedule and actual train data, including stochastic dwell and travel times, on all corridors (diff. < 1 minute) Propagation of delays across the network follows infrastructure and operational constraints

Modular Design

Train movement is controlled directly and only by each component

Key Results

Fast Running Time

14 seconds to simulate full network for the entire day (70 trains, 622 trips, 196 components)

Use Cases & Applications

Analyze large networks (regional / national)

Quickly test ideas for

network and service configurations

Support simulationbased optimization

Large-scale network improvements

- Capacity analysis
- Integration with other simulations (pedestrian, surface transit)

Service planning

- Design of new service strategies
- Planning of timetable and route changes

Disruption management

- Scenario-based contingency planning
- Real-time response

Links

Project GitHub:

References & Docs:

bit.ly/spur-trb-ref