DDP-516-21
DIRECT MEMORY ACCESS
Option Manual

August 1967

Honeywell

COMPUTER CONTROL

COPYRIGHT 1967 by Honeywell Inc., Computer Control Division, Framingham, Massachusetts. Contents of this publication may not be reproduced in any form in whole or in part, without permission of the copyright owner. All rights reserved.

Printed in U.S.A.

Published by the Publications Department, Honeywell Inc., Computer Control Division

CONTENTS

Introduction

Installation

Reference Data

Instruction Complement

Functional Description

Load Address Counter Channel 1, SMK '0124

Load Address Counter Channel 2, SMK '0224

Page

1

1

1

1

l

2

2

	dress Counter Channel 3, SMK '0324	2
Load Ad	dress Counter Channel 4, SMK '0424	2
Load Ra	nge Counter Channel 1, SMK '1124	2
Load Ra	nge Counter Channel 2, SMK 'l 224	2
Load Ra	nge Counter Channel 3, SMK '1324	2
Load Ra	nge Counter Channel 4, SMK '1424	2
Read Ra	nge Counter Channel 1, INA '1124	3
Read Ra	nge Counter Channel 2, INA '1224	3
Read Ra	nge Counter Channel 3, INA '1324	3
Read Ra	nge Counter Channel 4, INA '1424	3
Theory of Operat	ion	3
Function	al Areas	3
SMK and	INA Instruction Logic	7
DMA Cy	cle	7
Parts List		13
Logic Block Diag	rams	13
Appendix PAC	Descriptions	A-1
	ILLUSTRATIONS	
Figure/LBD No.		Page
Figure/LBD No.		Page
1	CPU/DMA/External Device Interface Block Diagram	4
	CPU/DMA/External Device Interface Block Diagram Timing Levels and Primary Control Signals for One DMA Cycle	
1	Timing Levels and Primary Control Signals for	4
1 2	Timing Levels and Primary Control Signals for One DMA Cycle	4
1 2 3	Timing Levels and Primary Control Signals for One DMA Cycle DMA Cycle Flow Chart	4 5 8
1 2 3 4	Timing Levels and Primary Control Signals for One DMA Cycle DMA Cycle Flow Chart DMA/External Device Interface Timing	4 5 8 9
1 2 3 4 0.240	Timing Levels and Primary Control Signals for One DMA Cycle DMA Cycle Flow Chart DMA/External Device Interface Timing Timing Level Generator	4 5 8 9 19
1 2 3 4 0.240 0.241	Timing Levels and Primary Control Signals for One DMA Cycle DMA Cycle Flow Chart DMA/External Device Interface Timing Timing Level Generator DMA Control	4 5 8 9 19 21
1 2 3 4 0.240 0.241 0.242	Timing Levels and Primary Control Signals for One DMA Cycle DMA Cycle Flow Chart DMA/External Device Interface Timing Timing Level Generator DMA Control L-Register, Bits 1-8	4 5 8 9 19 21 23
1 2 3 4 0.240 0.241 0.242 0.243	Timing Levels and Primary Control Signals for One DMA Cycle DMA Cycle Flow Chart DMA/External Device Interface Timing Timing Level Generator DMA Control L-Register, Bits 1-8 L-Register, Bits 9-16	4 5 8 9 19 21 23 25
1 2 3 4 0. 240 0. 241 0. 242 0. 243 0. 244	Timing Levels and Primary Control Signals for One DMA Cycle DMA Cycle Flow Chart DMA/External Device Interface Timing Timing Level Generator DMA Control L-Register, Bits 1-8 L-Register, Bits 9-16 Z-Register	4 5 8 9 19 21 23 25 27
1 2 3 4 0.240 0.241 0.242 0.243 0.244 0.245	Timing Levels and Primary Control Signals for One DMA Cycle DMA Cycle Flow Chart DMA/External Device Interface Timing Timing Level Generator DMA Control L-Register, Bits 1-8 L-Register, Bits 9-16 Z-Register Cable Connectors	4 5 8 9 19 21 23 25 27 29

ILLUSTRATIONS (Cont)

Figure/L	BD No.		Page
C	250	I/O Bus Interface	35
(0.251	Channel No. 1 Address Counter	37
(0.252	Channel No. 1 Range Counter	39
(0.253	Channel No. 2 Address Counter	41
(0.254	Channel No. 2 Range Counter	43
(0.255	Channel No. 3 Address Counter	45
(0.256	Channel No. 3 Range Counter	47
(0.257	End-of-Range Control	49
(0.259	Cables	51
		TABLES	
		•	Page
1	DDP-516	6-21 DMA Option Parts List	14
2	Function	- n Indox	16

DDP-516-21 DIRECT MEMORY ACCESS OPTION

INTRODUCTION

This document contains a detailed description of the Direct Memory Access (DMA) option.

Reference Data

Instruction Manual for DDP-516 General Purpose Computer: Volume I, 3C Doc. No. 130071620; Volume II, 3C Doc. No. 130071621; Volume III, 3C Doc. No. 130071622.

Functional Description

The DMA provides a direct, high-speed path for an external device to computer memory for up to four channels. The DMA word-transfer-rate approaches 0.9 μs and is capable of addressing up to 32K of memory.

To effect a transfer, the DMA causes computer breaks between cycles without regard to end of instruction. The initiation and termination of the DMA cycle is controlled by the external device request lines.

INSTALLATION

The DMA is contained in two bays, one of which is the main frame (unit A). The DMA logic in the main-frame bay is located in fixed positions as shown on LBD No. 248. The DMA logic external to the main frame is a relocatable 2x3 BLOC, whose PAC allocations are shown on LBD No. 249. DMA cable No. 1 transfers the address counter lines (ACTXX) to the CPU Y-register.

INSTRUCTION COMPLEMENT

DMA instructions are for loading the address and range counters and for reading the contents of the range counters.

Load Address Counter Channel 1, SMK '0124

This instruction has the following function:

$$(0) \rightarrow (AC1)_{1-16} | (A)_{1-16} \rightarrow (AC1)_{1-16} | (0) \rightarrow (RC1)_{1-16}$$

The contents of A are the address of the memory location to be accessed by the first DMA cycle for channel 1. Note that the load-address instruction clears the range counter and should therefore precede the load-range instruction.

Load Address Counter Channel 2, SMK '0224

This instruction is the same as SMK '0124 except that it is for Channel 2.

Load Address Counter Channel 3, SMK '0324

This instruction is the same as SMK '0124 except that it is for Channel 3.

Load Address Counter Channel 4, SMK '0424

This instruction is the same as SMK '0124 except that it is for Channel 4.

Load Range Counter Channel 1, SMK '1124

This instruction has the following function:

$$(A)_{2-16} \rightarrow (RC1)_{2-16}$$

The contents of A are the two's complement of the number of transfers to be accomplished. Note that RC must be cleared previously by an SMK '0X24 (load address counter) instruction so that the transfer count is not altered when loaded into the range counter. (Essentially, the contents of A are inclusively-ORed with the contents of RC.)

Load Range Counter Channel 2, SMK '1224

This instruction is the same as SMK '1124 except that it is for Channel 2.

Load Range Counter Channel 3, SMK '1324

This instruction is the same as SMK '1124 except that it is for Channel 3.

Load Range Counter Channel 4, SMK '1424

This instruction is the same as SMK '1124 except that it is for Channel 4.

Read Range Counter Channel 1, INA '1124

This instruction functions as follows.

If (RC) = 0: NOP and execute next sequential instruction

If $(RC) \neq 0$: $(0) \rightarrow (A) \mid (RC) \rightarrow (A) \mid$ skip next sequential instruction

Read Range Counter Channel 2, INA '1224

Instruction INA '1224 is the same as INA '1124 except that INA '1224 is for Channel 2.

Read Range Counter Channel 3, INA '1324

Instruction INA '1324 is the same as INA '1124 except that INA '1324 is for Channel 3.

Read Range Counter Channel 4, INA '1424

Instruction INA '1424 is the same as INA '1124 except that INA '1424 is for Channel 4.

THEORY OF OPERATION

Functional Areas (See Figure 1)

Control Logic. -- The DMA control logic (LBD No. 241) contains the priority network (PN) for determining the priority of the active DMA requests (DILAX) and the logic for initiating and controlling the DMA cycle.

Timing Level Generator. -- The DMA Timing Level Generator (LBD No. 240) generates the various timing levels required for a DMA cycle. A DMA request (DMARQ) enables the CPU master clock oscillator outputs MCSET, MCRST, and MTLG, to trigger the DMA timing level flip-flops. There are five of these flip-flops: TLAFF, TLBFF, TLCFF, TLDFF, and TLEFF. See Figure 2 which shows the level sequence if only one DMA cycle is required. The transition from one level to the next is controlled by the TACFF, TBCFF, and SAMIN flip-flops. Note that the TL4FF flip-flop (LBD No. 118) is inhibited while the DMA timing level generator is enabled.

If two or more DMA cycles occur in succession, timing levels TLA and TLE occur simultaneously except at the beginning of the first cycle when only TLA is generated and the end of the last cycle when only TLE is generated. The levels for two or more successive DMA cycles are generated as shown below.

Start End DMA DMA

TL3 TLA TLB TLC TLD TLE TLA TLB TLC TLD TLE TLA TLB TLC TLD TLE TL4

Repeat N Times

* ACKA, CHSL, CHEN, ERLAX, OCPLS, OTPMA, DRLIN, SMKXX, SMK01

Figure 1. CPU/DMA/External Device Interface Block Diagram

<u>L-Register.</u> -- The L-register (LBDs No. 242 and 243) is the memory buffer register. All transfers to and from memory occur through the L-register.

Z-Register. -- The Z-register (LBD No. 244) provides storage for the contents of the Y-register during the DMA cycle while the DMA is using the Y-register.

Address Counter (AC). -- Each channel has a 16-bit address counter (LBDs No. 251, 253, 255) which stores DMA cycle starting address and the read/write control bit. The highest order bit (bit 1) position of AC stores the read/write control. A ONE specifies a write cycle (input mode) and a ZERO specifies a read cycle (output mode). The address contents of AC (bits 2 through 16) are incremented once each cycle to provide the address for the next cycle.

Range Counter (RC). -- Each channel has a 16-bit range counter (LBDs No. 252, 254, 256) which stores the two's complement of the number of transfers to take place. The contents of RC are incremented once each cycle. When RC equals all ONEs an end of range signal (ERCHX) is delivered to the external device signifying that the required number of transfers has been accomplished.

Figure 2. Timing Levels and Primary Control Signals for One DMA Cycle

SMK and INA Instruction Logic

For SMK load AC or RC instruction, the address bus lines (ADBXX) are sent to a decoder (LBD No. 250-B9). The decoder outputs (OTPAX or OTPRX) specify a particular address counter (AC) or range counter (RC). Note that a load AC SMK instruction should be executed before a load RC for the same channel because the load AC SMK clears both the AC and RC. The load RC SMK clears neither of these counters. For example, when a load AC SMK '0X24 is executed, the decoder output OTPAX is gated with CMKXX (LBD No. 134-K7) to generate CLARX (LBDs No. 251, 253, 255-D10). CLARX clears the AC and RC for that channel. On the trailing edge of CMKXX, the OTPAX flip-flop (LBDs No. 251, 253, 255-G11) is set to gate the output bus (OTBXX) onto the SAXXX lines. The SAXXX lines then set the AC stages. At the end of the instruction, when signal SMKXX goes false, the OTPAX flip-flop is DC reset, thereby preventing the OTBXX lines from affecting the counter. For a load RC instruction (for example SMK '1X24), an OTPRX decoder output enables the OTBXX lines to the proper range counter.

An INA instruction is decoded by a gate (LBDs No. 252, 254, 256-Dll) whose output enables the contents of RC (RCXXX) to the input bus (INBXX). The INA also enables ERLAX (indicates RC contains all ZEROs) to generate DRLIN. The state of DRLIN determines whether the INA is to be treated as a NOP or the contents of RC are transferred to the A-register and the next sequential instruction is to be skipped.

DMA Cycle

For a detailed DMA cycle description, see DMA cycle flow chart (Figure 3) and flow chart analysis. The DMA logic is shown on LBDs No. 240 through 245 and 248 through 259. DMA-external-device timing is shown in Figure 4. The DMA mnemonics are defined in the function index list.

A DMA cycle is activated by an external device request. The priority network (PN) logic determines the request priority and enables the proper channel logic. The DMA cycle begins at the trailing edge of TL3. It inhibits TL4 and begins generation of its own timing signals. Every TL1 the contents of Y are transferred to Z for preservation in case of a DMA cycle. The DMA cycle starts a memory cycle which is a read or write cycle depending on the state of the DMAWR flip-flop. The Y-register is cleared and the contents of address counter (AC) representing the address to be accessed in the first DMA cycle are placed in Y. AC is then incremented to form the address for the next DMA cycle. For a read cycle, the contents of the addressed memory location are inhibited from the M-register and placed in the L-register. The L-register is then transferred to the LOBXX lines and from thence to the external device. For a write cycle, the external device data is transferred from the external device to the L-register via the LIBXX lines and from the L-register to the addressed memory location.

If end of range (RC equals all ONEs) is reached, the external device disables its request line and transfers for this channel are terminated. The contents of RC are then incremented. The DMA again searches its request lines. If any are active, it causes another DMA cycle. If no requests exist, the DMA returns control to the CPU and enables TL4.

Figure 3. DMA Cycle Flow Chart

Figure 4. DMA/External Device Interface Timing

DMA Cycle Analysis

Signal	Origin	Сус	Time	Clk	Signal Component	Origin	Destination	Operation Description
CLZTL-		CPU	TL4	L	(TL4FF+)	241-L5	244-A3/D2/ F3/J2	Clears Z-register
STCHN+	241-Ll	CPU	TL1	L	(TL1FF+)	241-L1	241-A7/A9/ C7/C9	Resets CHENX flip-flops
EYZTL+	241-L6	CPU	TLl	L	(TL1FF+)	241-L6	244-A3/C2/ F2/J1	Gate contents of Y-register to Z-register
CLLTR-	241-L10	CPU	TLl	R	(H0LDM-)(TL1FF+) (MCRST+)	241 - G10	242-C11/K11 and 243- C11/K11	Clears L-register
DILAX	External device						241-A1/A2/ A3/A4	DMA cycle request lines from external device to DMA PN
STCHS+	241-J6	CPU	TL2	S	(TL2FF+)(MCSET+)	241 - G6	241-A3	Set PN channel select flip-flops associated with active D1 LAX lines
CHSLX-	241-C2/ C3/C4				PN channel select flip-flop set	241 - G6	241-B2/B3/ B4	Enables setting of associated channel enable flip-flop (CHENX)
							251-H1/K1 253-H1/K1 255-H1/K1	Gate ACXXX lines to ACTXX lines
							257-B3/ D3/F3	Enables associated end of range signal ERCH-
							External device	Enables external device to gate data onto L1BXX lines
DMARQ+	241-C4				PN channel select flip-flop set	241-B2/ B3/B4	240-D11	Enables setting of TLAFF flip-flop thus enabling the starting of DMA timing level generator
							241-J7	Disables EZYTL+
DMARQ-	241-C4				PN channel select flip-flop set	241-B2/ B3/B4	241-F2	Generates DMCYQ-
DMACY+	241-L7				(TLAFF+)	241-L7	118-E5 240-H3 241-F2	Holds TL4FF reset Enables SAMIN-A Generates DMCYQ-
SETTA-	240-G11	CPU	TL3	S	(DMARQ+)(TL23F-)(TL24F+) (TACFF-)(TBCFF-) (MCSET-)	240-D10	118-G6	Resets TL3FF flip-flop
MEMC1+	126-J11	DMA	TLA	L	(TLAFF-)	126-J11	150-C1	Start memory cycle
MEMC1+B	ł	1	TLA	L	(TLAFF-)	149-J10	142-G10	Start memory cycle
DMAWR+	241-G8	DMA	TLA	L	(DMA1N+)(TLAFF+)	241-E7	126-G10	Causes write cycle (disables RRCXX)
CLYTR-	129-J3	DMA	TLA	R	(TLAFF+)(MCRST+)	129-F3/ H3	101116- L11	Clears Y-register
EDMAY+	241- L3/L4	DMA	TLA	S	(TLAFF+)(MCSET+)	241 - G3 / J3	101116- F10	Gates ACTXX lines to Y-register
ERCHX-	257-B3/ D3/F3	DMA	TLAB	L	(CHSLX+)(RCX01+ through RCX16+)(TLABF+)	257-A/ D/F	External device	End of range signal. Disables external device D1LAX+ signal
DMC YQ-	241 - G2				(DMARQ+) (DMACY+)	241-F2	118-F5	Inhibits TL4FF

DMA Cycle Analysis (Cont)

Signal	Origin	Сус	Time	Clk	Signal Component	Origin	Destination	Operation Description
SAMIN+	240-H3	DMA	TAC	S	(TACFF+)(TBDFF-) (MCSET-)	240-D9	240-D2 242/243-B3/ G3	Enables setting of TLEFF flip-flop. Inhibits MMXXE lines (contents of accessed memory location) from M-register
TRIGX-	250-D1 / D2/D3	DMA	TLB	L	(CHSLX+)(TLBFF+)	250-D1 / D2/D3	251-F1, 253-F1, 255-F1	Increments contents of associated Address Counter by one
CLLTR-	241-L10	DMA	TLB	R	(TLBFF+)(MCRST+)	241-J10/ L10	242-C11/K11 and 243-C11/ K11	Clears L-register
1 NSTR+	241-L2	DMA	TLB	S	(TLBFF+)(MCSET+)	241-J2	242-A1/G1 and 243-A1/ G1	Strobes contents of LIBXX lines into L-register
STCHN+	241-L1	DMA	TLB	S	(TLBFF+)(MCSET+)	241-J2	241-A7/A9/ C7/C9	Sets selected CHENX flip-flop and resets non-selected CHENX flip-flop
CHENX+	241-A7/ A9/C7/ C9				(CHSLX+)(STCHN+)	241-A7/ A9/C7/ C9	252,254,256- F10 External device	Enables TRRCX Enables external device to receive data from L0BXX lines
STCHS+	241 - J6	DMA	TLC	S	(TLCFF+)(MCSET+)	241 - G5	241-A3	Sets PN channel select flip-flops whose Dl LAX lines are active. A set PN flip-flop generates CHSLX-, DMARQ+, and holds DMACY set to cause another DMA cycle immediately following the present DMA cycle
CLCHS-	241-J5	DMA	TLC	R	(TLCFF+)(MCRST+)	241 - J5	241 - A4	Resets PN channel select flip-flops whose DI LAX lines are not active. If all PN flip-flops are reset, CHSLX- and DMARQ are disabled and the resetting of DMACY is enabled
DMARQ-	241-C5				(D1 LA1 -)(D1 LA2-)(D1 LA3-) (D1 LA4-)(CLCHS)	241-A2/ A3/A4	240-D1/ 241-J7	Disables TLAFF flip- flop. Generates EZYTL+
EZYTL+	241-J7				(DMARQ-)	241-J7	244-B2/ D1/H2/ J1	Gates contents of Z- register to ACTXX lines
TRRCX-	252, 254, 256- Fl0	DMA	TLD	L	(CHENX+)(TLDFF+)	252, 254, 256- F10	252, 254, 256-F1	Increment range counter by one
DMAWR-	241-G9	DMA	TLD	S	(TLDFF+)(MCSET+)	241-E9	126-G10	Enables RRCXX

DMA Cycle Analysis (Cont)

Signal	Origin	Сус	Time	Clk	Signal Component	Origin	Destination	Operation Description
0ТРМА-	240-H7	DMA	TLE	I	(TLEFF+)	240-H7	External device	Enables device to transfer contents of LOBXX lines into its buffer register
CLYTR-	129-J3	DMA	TLE	R	(TLEFF+)(MCRST+)	129-F3/ H3	101116- L11	Clears Y-register
DMACY-	241-L8	DMA	TLE	R	(TLAFF-)(TLEFF+) (MCRST+)	241 - J8	118-E5 240-H3	Enables TL4FF flip-flop. Resets SAM1N flip-flop
EDMA Y+	241 - L3/	DMA	TLE	S	(TLEFF+)(MCSET+)	241-G3/ J3	101116- F10	Gates ACTXX lines to Y-register
SAMIN-	L4 240-H4				(DMACY-)	240-H3	242/243- B3/G3	Enables MMXXE lines to M-register

PARTS LIST

Table 1 contains the parts list for the items located in both the main frame and option drawer.

The Al prefix reference designation is permanently assigned to the main frame and will not be reassigned. The XX prefix reference designation is for reference only and will be reassigned accordingly to each option drawer of a system's configuration.

Component parts for the μ -PAC Digital Modules, unless otherwise indicated, will be found on the data sheets included in 3C Doc. No. 130071620, Instruction Manual, DDP-516 General Purpose Computer, Vol. I, Theory of Operation and Maintenance.

LOGIC BLOCK DIAGRAMS

The logic block diagrams for the DDP-516-21 Direct Memory Access Option follow the parts list.

Refer to Table 2 for a list of signal mnemonics.

Table 1.
DDP-516-21 DMA Option Parts List

Reference Designation	Description	3C Part No.	Quantity Required
	The following items are located in the Main Frame logic drawer, Al-Unit, and are required for all DMA configurations.		
AlDii	μ-PAC DIGITAL MODULEpriority	Model CC-044	1
A1D12,13	μ-PAC DIGITAL MODULENAND power amplifier type II	Model CC-073	2
A1D14 A1F41,42,44, 45,46,47 A1F56	μ-PAC DIGITAL MODULENAND power amplifier type I	Model CC-045	13
A1F63,64,65, 67,68			
AlE18, AlD18	$\mu ext{-PAC}$ DIGITAL MODULEtermination PAC	Model CC-154	2
AlD15 AlE11,12 AlF12,13,14, 15,16	μ-PAC DIGITAL MODULEtransfer gate	Model TG-335	8
A1D16,17 A1D33	μ-PAC DIGITAL MODULENAND gate type I	Model DI-335	3
A1D56	μ-PAC DIGITAL MODULEparallel transfer gate	Model CM-022	1
A1E13,14,15, 17 A1F17	μ-PAC DIGITAL MODULEpower inverter	Model PA-336	5
AlE16	μ-PAC DIGITAL MODULEgated flip-flop	Model CC-089	1

Table 1. (Cont)
DDP-516-21 DMA Option Parts List

Reference Designation	Description	3C Part No.	R	otal (eq. fo	or
			1	2	3
	The following items are located in an option drawer reference designations applicable to each channel are indicated as follows:				
	<pre>1st Channel No marking 2nd Channel Marked* 3rd Channel Marked #</pre>				
XXA11#,12#, 13#,14# XXB12*,13* XXB26,27 XXC12*,13* XXC26,27	μ-PAC DIGITAL MODULEfast carry counter	Model CC-091	4	8	12
XXA15# XXB15* XXB23 XXC14*,23	μ-PAC DIGITAL MODULEtransfer gate PAC	Model CC-152	3	4	5
XXA17	$\mu ext{-PAC}$ DIGITAL MODULEparallel transfer gate	Model CM-022	_	_	1
XXA16# XXB14*,17#,18 XXB22,24,25 XXC16*,17*,18 XXC22,25	μ-PAC DIGITAL MODULEtransfer gate	Model TG-335	7	10	12
XXA18# XXA22,23*	μ-PAC DIGITAL MODULEmulti-input NAND gate	Model DC-335	1	2	3
XXB16# XXC15* XXC24	μ-PAC DIGITAL MODULEpower inverter	Model PA-336	1	2	3
XXB21	$\mu ext{-PAC}$ DIGITAL MODULEoctal/decimal decoder	Model OD-335	1	1	1
XXA25	μ-PAC DIGITAL MODULENAND gate Type II	Model DL-335	1	1	1
XXA24	μ-PAC DIGITAL MODULEgated flip-flop	Model CC-089	1	1	1
XXA/B/C1 XXA/B/C2	CONNECTOR PLANE ASSYc/o 2 x 3 module (6 blocks of 8 connectors each), framework and associated parts; factory repairable only		1	1	1
	CABLE ASSYinterconnecting cable assemblies will be specified by each system configuration		AR	AR	AR

Table 2. Function Index

Mnemonic	LBD/Grid	Description
OTPAX	250-B8	Output address pulse. Gates starting address on OTBXX to address counter.
ОТРМА	240-H7	Output pulse used to strobe LOB into external device buffer register.
OTPRX	250 - B9	Output range pulse. Gates two's complement of number of transfers on OTBXX lines to range counter.
INSTR	241-L2	Input strobe. Gates LIBXX lines to L-register.
ACXXX	251-J/L 253-J/L 255-J/L	Address counter output lines.
ACKAX	241-C3	Acknowledge DILAX lines.
ACTXX	244, 251, 253, 255	Address count transfer lines 1 through 16 from Z register or address counter to Y-register.
ADQ24	250-Gl1	Address; equals 24 control signals.
CHENX	241-A8/C8	Channel enable flip-flops. Enables output bus lines (LOBXX) to external device.
CHSLX	241 - C3	Channel select signal used to set associated channel enable (CHENX) flip-flop. Also enables external device to gate data onto the input bus lines LIBXX.
CLCHS		Clear channel select flip-flops (in priority network).
CLLTR	241-L10	Clear L-register signal.
CLZTL	241-L5	Clear Z-register signal.
DILAX	241-A3	Data interrupt lines from external device to request DMA cycle.
DMACY	241 - L7	DMA cycle control signal.
DMARQ	241 - C5	DMA cycle request signal. Occurs when an active request (DILAX) has been sampled.
DMAWR	241-G8	DMA write/read control flip-flop.
DMC YQ	241 - G2	DMA cycle request signal for main frame.
EDMAY	241-L3	Enable DMA address counter lines to Y-register.
ERCHX		End of range signal to external device.
ERLAX		End of range signal for "INA" instruction.
EYZTL	241-L6	Enable Y-register to Z-register transfer signal.

Table 2. (Cont) Function Index

Mnemonic	LBD/Grid	Description
EZYTL	241 - J7	Enable Z-register to Y-register transfer signal.
LIBXX	242-243	L-register input bus lines. Data from external device.
LXXFF	242-243	L-register flip-flops.
MMXXE	242-243	Memory output lines to M-register.
RCXXX	252-G 254-G 256-G	Range counter output lines.
SAXXX	251-C/D 253-C/D 255-C/D	Set address counter lines.
SAMIN	240-H3	Sense amplifier to M-register inhibit signal.
SETTA	240-G11	Set TLAFF flip-flop signal.
SRXXX	252-B/D 254-B/D 256-B/D	Set range counter lines.
STCHN	241-L1	Set channel enable flip-flop.
STCHS	241-J6	Set channel select flip-flop (priority network flip-flop).
TACFF	240-C6	Timing level A through timing level C flip-flop.
TADFF	240-A2	Timing level A through timing level D flip-flop.
TBDFF	240-C9	Timing level B through timing level D flip-flop.
TLAFF	240 - Gl 0	Timing level A flip-flop (first DMA timing level).
TLBFF	240 - G9	Timing level B flip-flop (second DMA timing level).
TLCFF	240 - G7	Timing level C flip-flop (third DMA timing level).
TLDFF	240-G4	Timing level D flip-flop (fourth DMA timing level).
TLEFF	240-G2	Timing level E flip-flop (fifth DMA timing level). When set, remains set until CPU timing level TL4 is generated.
TRIGX	250-D2	Increments address counter contents by one.
TRRCX	252, 254 256-F10	Increments range counter by one.
ZXXFF	244	Z-register flip-flops.

APPENDIX PAC DESCRIPTIONS

Descriptions of PACs CC-152 and CC-154 follow.

TRANSFER GATE PAC, MODEL CC-152

GENERAL

The Transfer Gate PAC, Model CC-152 (Figure 1), contains 14 2-input NAND gates without collector resistors arranged in four independent groups. Two of the groups contain four NAND gates each with one input being common to the four gates. The other two groups contain three NAND gates each with one input being common to the three gates. All fourteen circuits provide a facility for connecting the NAND gates in parallel without decreasing the output drive capability.

The Model CC-152 PAC can be used for the common transfer control of up to 14 data signals with the common input used as a control or strobe input. Turn-on rise time is controlled so as to have a guaranteed minimum of 50 nsec with no load.

SPECIFICATIONS

Frequency of Operation	Circuit Delay		
DC to 5 mc (max)	120 nsec (max) turn on		
Input Loading	40 nsec (max) turn off Current Requirements		
Individual inputs: 1 unit load each Common inputs: 1 unit load per	+6v: 95 ma		
gate	Power Dissipation		
Output Drive Capability	560 mw (max)		
8 unit loads			

Electrical Parts List

Ref. Desig.	Description	3C Part No.
C1	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 µf ±20%, 50 vdc	930 313 016
C2-C15	CAPACITOR, FIXED, CERAMIC DIELECTRIC: 10 pf ±10%, 100 vdc	930 173 204
M1 - M7	MICROCIRCUIT: F-01 dual NAND gate integrated circuit	950 100 001

^{© 1967,} HONEYWELL INC., Computer Control Division, Framingham, Mass.

(1)- PIN NUMBER OF PAC

-2 PIN NUMBER OF MICROCIRCUIT

A3 REFERENCE DESIGNATION OF MICROCIRCUIT

F-04 TYPE OF MICROCIRCUIT

Figure 1. Transfer Gate PAC, Model CC-152, Schematic Diagram

3997

TERMINATION PAC, MODEL CC-154

The Termination PAC, Model CC-154 (Figure 1), contains 27 diode clamp circuits to prevent input signals from overshooting below ground. In addition, the PAC has eight inputs which have 1K resistors connected from input pins to +6 volts.

SPECIFICATIONS:

Frequency of Operation Current Requirements

5 mc +6v: 50 ma

<u>Input Loading</u> <u>Power Dissipation</u>

Inputs with resistors: 3 unit loads 300 mw (max.) Inputs without resistors: 0 unit loads

Electrical Parts List

Ref. Desig.	Description	3C Part No.
C1	CAPACITOR, FIXED, PLASTIC DIELECTRIC: 0.033 µf ±20%, 50 vdc	930 313 016
CR1-CR27	DIODE	943 024 002
R1-R8	RESISTOR, FIXED, COMPOSITION: $1 \text{K} \pm 5\%$, $1/4 \text{w}$	932 007 049

Figure 1. Termination PAC, Model CC-154, Schematic Diagram