Proyecto 2

IE-0431 SISTEMAS DE CONTROL

Ronny Granados - C03505

Lorena Solís - B97657

Marvin Castro - C01884

Características del sistema

Parámetro

Señal de control u(s)

Valores a escribir en el servomotor o°-180°

Señal retroalimentada y(s)

Posición de la bolita- Lectura del sensor (3-46cm)

Perturbación d(s)

Cambios en la posición de la bolita por agente externo

Variable controlada c(s)

Posición de la bolita en la viga

Variable manipulada m(s)

Ángulo del servomotor

Características del sistema

Distancia mínima	Distancia máxima
2cm	400cm

Lecturas máximas y mínimas del sensor

Distancia mínima	Distancia máxima
3cm	46cm

Ámbito de control del sistema de control

Obtención del modelo de la planta

$\frac{r(s)}{\alpha(s)} = \frac{5g}{7s^2} = \frac{7}{s^2} = P(s)$

En centímetros

$$P(s) = \frac{700}{s^2}$$

$$\alpha = \theta \frac{d}{L}$$

Longitud brazo servo: d = 0.015m Longitud servo - viga L = 0.045

$$\frac{r(s)}{\theta(s)} = \frac{233.333}{s^2} = P(s)$$

Fuente: "Implementation of ball and beam system using classical and advanced control techniques" Latif. et al.

Obtención del controlador PID

Código de Matlab

K_p	0.007
T_i	1.4
T_d	1.4

Parámetros del Controlador

$$C(s) = \frac{0.005(1.4s+1)(1.4s+1)}{s(0.14s+1)}$$

Función de Transferencia

Simulaciones

Figura 1, Sistema de lazo abierto en Sisotool

Figura 2, Respuesta al escalón del sistema

Controlador PID discretizado

$$C(z) = \frac{0.0553z^2 - 0.103z + 0.0479}{z^2 - 1.474z + 0.4737}$$

Función de Transferencia Discretizada

Simulación en Simulink y Ecuación en Diferencias

Figura 3. Respuesta del Sistema a Lazo Cerrado en Simulink

$$u(k) = 1.474u(k-1) - 0.4737u(k-2) + 0.0553e(k) - 0.103e(k-1) + 0.0479e(k-2)$$

Ecuación en Diferencias

Resultados - PID

Figura 3, señal de control, realimentada y deseada. Sistema real

Figura 4, señal realimentada y valor deseado (posición bolita) Sistema real

Resultados - PID

Índice	Sistema físico	Simulación
IAEr	94.90	34.14
TVur	3861	6.01
Mp	0.577	0.463
$t_{02\%}$	6 s	4.35

Tabla 1, Indicadores de desempeño para el sistema físico y la simulación

Conclusiones

- El controlador sigue el comportamiento deseado
- Altas imperfecciones en señales
- Gran porcentaje de error
- Mejor funcionamiento para valores deseado menores (< mitad de la viga)