Printed Pages: 02
 Sub Code: NCS402

 Paper Id:
 110248

 Roll No.
 | | | | | |

B TECH

(SEM-IV) THEORY EXAMINATION 2018-19 THEORY OF AUTOMATA & FORMAL LANGUAGE

Time: 3 Hours Total Marks: 100

Note: 1. Attempt all Sections. If require any missing data; then choose suitably.

SECTION A

1. Attempt all questions in brief.

 $2 \times 10 = 20$

- a. Design a DFA for languages L containing strings of 0 and 1's where number of 0's is not divisible by 3.
- b. Write regular expression for a language containing strings of 0's and 1's which does not end in '01'.
- c. State and prove Arden's Theorem.
- d. What are various applications of Finite Automata?
- e. What do you mean by inherently ambiguous grammars? Explain.
- f. Prove or disprove the following regarding regular expressions:

i.
$$(R+S)^* = R^* + S^*$$

ii.
$$(RS+R)^*RS = (RR^*S)^*$$

- g. Write CFG for language $L = a^nb^n$ where $n \ge 0$. Also convert it into CNF.
- h. Differentiate DPDA with NPDA.
- i. Define Recursive and recursively enumerable language
- j. Explain Post Correspondence Problem.

SECTION B

2. Attempt any *three* of the following:

 $10 \times 3 = 30$

- a. Define NFA. What are various points of difference between NFA and DFA?
- b. What are various points of difference between Moore & Mealy Machine? Explain the procedure to convert a moore machine into Mealy machine.
- c. Define ambiguity. Show that the grammar G with following production is ambiguous.

$$S \rightarrow a \mid aAb \mid abSb, A \rightarrow aAAb \mid bS$$

d. Construct a PDA M equivalent to grammar with following productions:

$$S \rightarrow aAA$$
, $A \rightarrow aS/bS/a$

Also, check whether the string 'abaaaa' is in M or not.

e. Define PCP. Let $A = \{1, 110, 0111\}$ and $B = \{111, 001, 11\}$ and $\Sigma = \{0, 1\}$. Find the solution of PCP.

SECTION C

3. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Minimize the following Automata:

(b) Convert the following NFA $\{p,q,r,s\},\{0,1\},\delta,p,\{q,s\}$ into DFA where δ is given by

	0	1
$\rightarrow p$	q, s	q
→p *q	r	q, r
R	S	p
*s	ϕ	р

4. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a) Find the regular expression of Given FA using Arden's theorem.

(b) Using pumping lemma for Regular languages prove that language $L = 0^{n^2}$, n >= 1 is not regular.

5. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Convert the following grammar in GNF: $S \rightarrow AB$, $A \rightarrow BS / a$, $B \rightarrow SA / b$
- (b) Define derivation Tree. Show the derivation tree for string 'aabbbb' with the following grammar $S \rightarrow AB/E$, $A \rightarrow aB$, $B \rightarrow Sb$.

6. Attempt any *one* part of the following:

 $10 \times 1 = 10$

- (a) Design PDA for Language WcW^R , $W \in (a,b)^*$
- (b) Design a two stack PDA for the language $L = a^n b^m c^n d^m$ where $n, m \ge 1$

7. Attempt any *one* part of the following:

 $10 \times 1 = 10$

(a)	Design a Turing machine for language containing palindromes of a's and b's.	
(b)	Write short note on any two:	
	i. Properties of recursive & recursive enumerable languages.	
	ii. Variants of Turing Machine.	
	iii. Universal Turing Machine.	