CS 221 Logic Design

Fall 2021

By Wessam El-Behaidy & Salwa Osama

REMEMBER OUR RULES

BINARY CODES & BOOLEAN ALGEBRA

Lecture 2

BINARY CODES

- o Digital systems:
 - Use signals that have 2 distinct values and circuit elements that have 2 stable states
 - Represent and manipulate not only binary numbers but also many other discrete elements of information
- Any discrete element of information that is distinct among group of quantities can be represented with a binary code.
- However, it must be realized that binary codes merely change the symbols not the meaning of the elements of information that they represent.

BINARY-CODED DECIMAL (BCD)

Decimal Symbol	0	1	2	3	4	5	6	7	8	9
BCD Digit	0000	0001	0010	0011	0100	0101	0110	0111	1000	1001

Note: 1010, 1011, 1100, 1101, 1110, and 1111 are **INVALID CODE!**

- It is important to realize that BCD numbers are decimal numbers and not binary numbers. The only difference that decimals use symbols 0-9 and BCD use 0000-1001
- A number with k decimal digits will require 4k bits in BCD
- Ex: $(185)_{10}$ = $(0001\ 1000\ 0101)_{BCD}$ = $(1011\ 1001)_2$

OTHER DECIMAL CODES

• Binary codes for decimal digits require a minimum of 4 bits per digit

Many
 different
 codes can be
 formulated by
 arranging 4
 bits into 10
 distinct
 combinations

Table 1.5Four Different Binary Codes for the Decimal Digits

Decimal Digit	BCD 8421	2421	Excess-3	8, 4, -2, -1
0	0000	0000	0011	0000
1	0001	0001	0100	0111
2	0010	0010	0101	0110
3	0011	0011	0110	0101
4	0100	0100	0111	0100
5	0101	1011	1000	1011
6	0110	1100	1001	1010
7	0111	1101	1010	1001
8	1000	1110	1011	1000
9	1001	1111	1100	1111
	1010	0101	0000	0001
Unused	1011	0110	0001	0010
bit	1100	0111	0010	0011
combi-	1101	1000	1101	1100
nations	1110	1001	1110	1101
	1111	1010	1111	1110

WEIGHTED CODES

 $0110_{8,4,-2,-1}=2_{10}$

- BCD, 2421 code and 8,4,-2,-1 code are examples of weighted codes.
- In weighted code, each bit position is assigned a weighted factor
- Ex:

$$0110_{BCD} = 6_{10}$$
because $8*0 + 4*1 + 2*1 + 1*0 = 6$
 $1101_{2421} = 7_{10}$
because $2*1 + 4*1 + 2*0 + 1*1 = 7$

because 8*0 + 4*1 + (-2)*1 + (-1)*0 = 2

7

THE GRAY CODE

- The Gray code is <u>unweighted</u> and is not an arithmetic code.
 - There are no specific weights assigned to the bit positions.
- Important: the Gray code exhibits only a single bit change from one code word to the next in sequence.
 - This property is important in many applications

So, we can represent the logic circuit with an algebraic equation and use Boolean algebra to simplify this circuit

REMEMBER THIS EXAMPLE

 Draw a logic gate circuit of A' +B and get their truth table

Α	В	A'	Z= A' +B
0	0	1	1
0	1	1	1
1	0	0	0
1	1	0	1

ALGEBRAIC MANIPULATION

(a)
$$F1 = x'y'z + x'yz + xy'$$
 (b) $F2 = xy' + x'z$

Term

Each term requires a gate

3 terms in (a): x'y'z, x'yz, xy'

2 terms in (b): xy', x'z

Variable

Each variable designates an input to the gate

3 variables in both (a) and (b):

x, y, and z

Literal

Is a single variable within a term, in complemented or uncomplemented form

8 literals in (a): x', y', z, x', y,

z, x, and y'

4 literals in (b): x, y', x', and z

Reducing the number of terms, the number of literals or both in a Boolean function → simpler circuit

BOOLEAN ALGEBRA

- It is equivalent to the binary logic presented heuristically in sec. 1.9
- It is a mathematical methods that simplify circuits.
 - Less components (less gates)
 - Reduce cost
- The cost of the circuits is an important factor addressed by designers.

BOOLEAN ALGEBRA

- o In 1854,
 - George Boole developed an algebraic system called Boolean algebra
- o In 1904,
 - E.V. Huntington formulated the formal definition of Boolean algebra → "Huntington postulates"
- o In 1934,
 - C.E. Shanon introduced two-valued Boolean algebra called switching algebra

ANY DEDUCTIVE MATHEMATICAL SYSTEM

It may be defined with:

- 1) A set of elements S
 - Ex: A={1,2,3,4}
- 2) A set of operators and
 - Ex: Binary operator defined on set S, if

$$a * b = c a, b, c \in S$$

- → * is not a binary operator, if a, b ∈ S and c not belong to S
- 3) A number of unproved axioms or postulates
 - The most common postulates:
 - Closure
 - Associative law
 - Inverse

- Identity element
- Commutative law
- Distributive law

TWO-VALUED BOOLEAN ALGEBRA

- Also called "Switching algebra"
- Is defined by:
 - A set of two elements, B= {0, 1}
 - Two binary operators:
 - + (OR) and . (AND) and

complement operator (NOT) with rules in table:

X	y	<i>x</i> • <i>y</i>
0	0	0
0	1	0
1	0	0
1	1	1

\mathcal{X}	у	x + y
0	0	0
0	1	1
1	0	1
1	1	1

X	x'
0	1
1	0

HUNTINGTON POSTULATES FOR TWO-VALUED BOOLEAN ALGEBRA

We will show that Huntington postulates are valid for set B and two binary operators (+ and .)

1. Closure with respect to the two operators
It is obvious from the tables, since the result of each operation is either 1 or 0 and 1,0 € B

N={1,2,3,..} * is closed to N, a*b=c, a,b,c EN

is not closed to N,

2. Identity:

(a)
$$x + 0 = 0 + x = x$$

(b)
$$x. 1 = 1 . x = x$$

$$x=0$$
 $0 + 0 = 0$ $0 \cdot 1 = 1 \cdot 0 = 0$
 $x=1$ $1 + 0 = 0 + 1 = 1$ $1 \cdot 1 = 1$

- 3. Commutative
- (a) x + y = y + x

(b) x. y = y. x

It is obvious from the symmetry of the binary operator tables

HUNTINGTON POSTULATES FOR TWO-VALUED BOOLEAN ALGEBRA

4. Distributive (a) x . (y + z) = (b) x + (yz) = (a) (x . y) + (x . z) (x + y) . (x + z)

X	y	z	y + z	$x \cdot (y + z)$	$x \cdot y$	x · z	$(x \cdot y) + (x \cdot z)$
0	0	0	0	0	0	0	0
0	0	1	1	0	0	0	0
0	1	0	1	0	0	0	0
0	1	1	1	0	0	0	0
1	0	0	0	0	0	0	0
1	0	1	1	1	0	1	1
1	1	0	1	1	1	0	1
1	1	1	1	1	1	1	1

(b) The *distributive* law of + over . can be shown to hold by means of a *truth* table similar to the one in part (a).

HUNTINGTON POSTULATES FOR TWO-VALUED BOOLEAN ALGEBRA

Complement (a) x + x' = 1

(a)
$$x + x' = 1$$

(b)
$$x x' = 0$$

$$0 + 1 = 1$$

$$0.1 = 0$$

$$x=1$$

$$1 + 0 = 1$$

$$1.0 = 0$$

6. At least two elements $x, y \in B$ such that $x \neq y$. It is satisfied because the two-valued Boolean algebra has two elements, 1 and 0, with $1 \neq 0$

NOTE:

Huntington postulates do not include the *associative law*. However, this law holds for two-valued Boolean algebra

POSTULATES AND THEOREMS OF BOOLEAN ALGEBRA

Table 2.1Postulates and Theorems of Boolean Algebra

- 1) Postulates need no proof
- 2) Theorems must be proven

Postulate 2	(a) x + 0 = x	(b) $x \cdot 1 = x$
Postulate 5	(a) $x + x' = 1$	$(b) x \cdot x' = 0$
Theorem 1	(a) $x + x = x$	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) $xy = yx$
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy)z$
Postulate 4, distributive	(a) $x(y+z) = xy + xz$	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	$(a) \qquad (x+y)' = x'y'$	(b) $(xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) x(x+y) = x

DUALITY PRINCIPLE

- It states that:
 - Every algebraic expression deducible from the postulates of Boolean algebra remains valid if,
 - the operators and identity elements are interchanged.
- o If the dual is desired,
 - Interchange OR and AND operators
 - Replace 1's by 0's and 0's by 1's.
 - Ex:
 - Postulate 2(a): x + 0 = 0 + x = x

2 (b):
$$x \cdot 1 = 1 \cdot x = x$$

A+B'C

Its dual is: A. (B'+C)

PROOF USING POSTULATES:

PROOF THEOREM 1 (A) AND (B)

Postulate 2

(a)
$$x + 0 = x$$

(b)
$$x \cdot 1 = x$$

Postulate 5

(a)
$$x + x' = 1$$

(b)
$$x \cdot x' = 0$$

Postulate 3, commutative

$$(a) x + y = y + x$$

(b)
$$xy = yx$$

Postulate 4, distributive

(a)
$$x(y+z) = xy + xz$$

• Theorem 1(b): $x \cdot x = x$

(b)
$$x + yz = (x + y)(x + z)$$

• Theorem 1(a): x + x = x

x + x = (x + x) . 1 Post. 2(b) x . x = x x + 0

Post. 2(a)

$$= (x + x)(x + x')$$

= X X + X X'

5(b)

$$= X + X X'$$

$$= x (x + x')$$

$$= x + 0$$

$$= x.1$$

$$= X$$

$$= X$$

By duality

21

PROOF USING POSTULATES:

PROOF THEOREM 2 (A) AND 6(A)

(a)
$$x + 0 = x$$

(b)
$$x \cdot 1 = x$$

(a)
$$x + x' = 1$$

$$(b) x \cdot x' = 0$$

$$(a) x + y = y + x$$

(b)
$$xy = yx$$

$$x(y+z) = xy + 1$$

(a)
$$x(y+z) = xy + xz$$
 (b) $x + yz = (x + y)(x + z)$

Theorem 2(a): x + 1 = 1

$$x + 1 = 1. (x + 1)$$
 Post.2(b)

$$= (x + x') (x + 1)$$
 5(a)

$$= x + x' \cdot 1$$

$$= x + x'$$

5(a)

Absorption theorem:

Theorem 6(a): x + xy = x

$$x + xy = x \cdot 1 + xy$$
 Post. 2(b)

$$= x (1 + y)$$

$$= x (y + 1)$$

$$= x . 1$$

$$= X$$

PROOF USING POSTULATES: PROOF THEOREM 3

- Theorem 3: (x')' = x
 - From postulate 5: x + x' = 1 and $x \cdot x' = 0$
 - So, complement of x' = x = (x')'

PROOF USING TRUTH TABLE: PROOF THEOREM 5 (A)

- The theorems of Boolean algebra can be shown to be hold true by means of *truth tables*.
- DeMorgan's theorem (5a): (x + y)' = x' y'

x	y	x + y	(x + y)'
0	0	0	1
0	1	1	0
1	0	1	0
1	1	1	O

x'	y'	x'y'	
1	1	1	
1	0	O	
0	1	0	
0	0	0	

OPERATOR PRECEDENCE

- Operator precedence of Boolean expressions:
 - Parentheses ()
 - NOT
 - AND
 - OR
- Ex: DeMorgan's law: (x + y)' = x' y'
 - Left side (x + y)':
 - Inside the parentheses is evaluated first then
 - The result is complemented
 - Right side x' y':
 - The complement of x and y are evaluated first then
 - The result is ANDed

POSTULATES AND THEOREMS OF BOOLEAN ALGEBRA

Table 2.1Postulates and Theorems of Boolean Algebra

Postulate 2	(a) x + 0 = x	(b) $x \cdot 1 = x$
Postulate 5	(a) x + x' = 1	$(b) x \cdot x' = 0$
Theorem 1	(a) x + x = x	(b) $x \cdot x = x$
Theorem 2	(a) $x + 1 = 1$	$(b) x \cdot 0 = 0$
Theorem 3, involution	(x')' = x	
Postulate 3, commutative	(a) x + y = y + x	(b) $xy = yx$
Theorem 4, associative	(a) $x + (y + z) = (x + y) + z$	(b) $x(yz) = (xy)z$
Postulate 4, distributive	(a) $x(y+z) = xy + xz$	(b) $x + yz = (x + y)(x + z)$
Theorem 5, DeMorgan	$(a) \qquad (x+y)' = x'y'$	$(b) \qquad (xy)' = x' + y'$
Theorem 6, absorption	(a) $x + xy = x$	(b) x(x+y) = x

COMPLEMENT OF A FUNCTION

- Complement of function F is F '
- Obtained by one of two methods:
 - 1) Applying DeMorgan's law as many times as necessary
 - Take the dual of the function and complement each literal

EXAMPLES 2.2 & 2.3 (P.64)

Find the complement of the functions:

Using DeMorgan's:

$$F'_1 = (x'yz' + x'y'z)'$$

= $(x'yz')'(x'y'z)'$
= $(x + y' + z)(x + y + z')$

Using dual + literal complement

$$F'_1 = x'yz' + x'y'z$$

= $(x+y'+z)(x+y+z')$

- → F'2 =?
- \Rightarrow = x' + (y + z)(y' + z') = x' + yz' + y'z

30

Theorem 5, DeMorgan (a) (x + y)' = x'y' (b) (xy)' = x' + y

 $F_{1} = x'yz' + x'y'z$ and $F_{2} = x(y'z' + yz)$

THANKS

31

Next week: Boolean Function forms