1. • Show that x(t) satisfies $||A^{-1}x(t)||^2 = 1$.

$$||A^{-1}x(t)||^{2} = ||A^{-1}Au(t)||^{2}$$

$$= ||u(t)||^{2}$$

$$= ||\cos(t)| \sin(t)| ||^{2}$$

$$= \cos^{2}(t) + \sin^{2}(t)$$

$$= 1$$

• Show that the equation above may be written as $x \cdot Mx = 1$.

$$x \cdot Mx = x^{T} Mx$$

$$= x^{T} (A^{-1})^{T} A^{-1} x$$

$$= (A^{-1}x)^{T} A^{-1} x$$

$$= A^{-1}x \cdot A^{-1} x$$

$$= ||A^{-1}x||^{2}$$

$$= 1.$$

• Show that M is symmetric.

$$M^{T} = ((A^{-1})^{T} A^{-1})^{T}$$

$$= (A^{-1})^{T} ((A^{-1})^{T})^{T}$$

$$= (A^{-1})^{T} A^{-1}$$

$$= M$$

• Suppose $M = \begin{bmatrix} a & c \\ c & b \end{bmatrix}$. We must show that $x \cdot Mx$ can be written as $ax^2 + by^2 + 2cxy$.

$$1 = x \cdot Mx$$

$$= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} a & c \\ c & b \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix}$$

$$= \begin{bmatrix} x & y \end{bmatrix} \begin{bmatrix} ax + cy \\ cx + by \end{bmatrix}$$

$$= ax^2 + by^2 + 2cxy.$$

- Show that both λ_1 and λ_2 are positive. Since $x \cdot Mx = ||A^{-1}x||^2$, then all outputs of $x \cdot Mx$ are strictly positive. Suppose $x = u_1$, then $u_1 \cdot Mu_1 = u_1 \cdot \lambda_1 u_1 = \lambda_1 ||u_1||^2 = \lambda_1 > 0$. A similar proof exists for u_2 . Therefore the eigenvalues are strictly positive.
 - Suppose $\lambda_1 = \lambda_2$. We must show that $||x(t)|| = \frac{1}{\sqrt{\lambda_1}}$. Let U be the matrix where u_1 and u_2 are columns. Since u_1, u_2 are orthonormal, then U is an orthogonal

matrix. Therefore $U^{-1} = U^T$. Let $D = \begin{bmatrix} \lambda_1 & 0 \\ 0 & \lambda_2 \end{bmatrix}$, and let $q = \begin{bmatrix} q_1(t) \\ q_2(t) \end{bmatrix} = U^T x$. Since M is diagonalizable we may rewrite $x \cdot Mx$ as follows:

$$1 = x \cdot Mx = x \cdot UMU^{T}x = q^{T}U^{T}UMU^{T}Uq = q \cdot Dq = \lambda_{1}q_{1}^{2}(t) + \lambda_{2}q_{2}^{2}(t).$$

This equation defines an ellipse paramaterized by $q_1(t) = \pm \frac{1}{\sqrt{\lambda_1}} \cos(t), q_2(t) = \pm \frac{1}{\sqrt{\lambda_2}} \sin(t)$. Since $q = U^T x$, then x = Uq, therefore we may explicitly solve for x via $x = Uq = \pm (\frac{1}{\lambda_1} \cos(t) u_1 + \frac{1}{\lambda_2} \sin(t) u_2)$. Therefore if $\lambda_1 = \lambda_2$, then $||x|| = \sqrt{\frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_2}} = \sqrt{\frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_1}} = \frac{1}{\sqrt{\lambda_1}}$.

- Consider the case where $\lambda_1 > \lambda_2$. Note that $\|x\|^2 = \frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_2} = u \cdot \begin{bmatrix} \frac{1}{\lambda_1} & 0 \\ 0 & \frac{1}{\lambda_2} \end{bmatrix} u$, let the matrix in the quadratic function above be denoted S^2 . By lemma 19 in the previous carlen multivarible textbook, $\|x\|^2$ on the unit circle is maximized and minimized by the eigenvalues of S^2 . For the matrix S^2 the eigenvalues are obviously $\frac{1}{\lambda_1}, \frac{1}{\lambda_2}$. Since $\lambda_1 > \lambda_2$, then $\frac{1}{\lambda_1} < \frac{1}{\lambda_2}$, therefore making $\frac{1}{\lambda_2}$ the maximum of $\|x\|^2$, and therefore forcing $\frac{1}{\lambda_1}$ to be the minimum. Since $\sqrt{}$ is a monotonically increasing function on \mathbb{R}_+ , then $\|x\|$ has a maximum of $\frac{1}{\sqrt{\lambda_1}}$ and a minimum of $\frac{1}{\sqrt{\lambda_1}}$. We must show that $\|x\|$ is maximal if and only if $x(t) = \pm \frac{1}{\lambda_2} u_2$.
 - Suppose $x(t) = \pm \frac{1}{\lambda_2} u_2$. We must show that ||x(t)|| is maximal.

$$||x(t)|| = \sqrt{\frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_2}} \le \sqrt{\frac{\cos^2(t)}{\lambda_2} + \frac{\sin^2(t)}{\lambda_2}} = \frac{1}{\sqrt{\lambda_2}} = ||\pm \frac{1}{\sqrt{\lambda_2}}u_2||$$

- Suppose ||x(t)|| is maximal. We must show that $x(t) = \pm \frac{1}{\sqrt{\lambda_2}} u_2$. Since ||x(t)|| is maximal and ||x(t)|| has a single maximum then $||x(t)|| = \frac{1}{\sqrt{\lambda_2}}$. Therefore:

$$||x(t)||^2 = \frac{1}{\lambda_2}$$

$$\frac{\cos^2(t)}{\lambda_1} + \frac{\sin^2(t)}{\lambda_2} = \frac{1}{\lambda_2}$$

$$\frac{\cos^2(t)}{\lambda_1} = \frac{1}{\lambda_2} (1 - \sin^2(t))$$

$$\frac{\cos^2(t)}{\lambda_1} = \frac{\cos^2(t)}{\lambda_2}$$

$$\cos^2(t) (\frac{1}{\lambda_1} - \frac{1}{\lambda_2}) = 0.$$

Since $\lambda_1 > \lambda_2$, then the only solution to that equation is when $\cos^2(t) = 0$, thus when $\cos(t) = 0$. Therefore evaluating x(t) when $\cos(t) = 0$ yields $x(t) = \pm (\frac{1}{\lambda_1}\cos(t)u_1 + \frac{1}{\lambda_2}\sin(t)u_2) = \pm \frac{1}{\lambda_2}\sin(t)u_2 = \pm \frac{1}{\lambda_2}\sqrt{1 - \cos^2(t)}u_2 = \pm \frac{1}{\lambda_2}u_2$. The proof for $x(t) = \pm \frac{1}{\lambda_1}u_1$ if and only if ||x(t)|| is minimal is nearly identical to the one above, simply replace maximal with minimal, finding $\sin(t) = 0$, changing the direction of an inequality with substituting λ_2 for λ_1 .

3. Let

$$v_1 = \frac{1}{\sqrt{\lambda_1}} A^{-1} u_1, v_2 = \frac{1}{\sqrt{\lambda_2}} A^{-1} u_2.$$

• Show that $\{v_1, v_2\}$ is an orthonormal basis for \mathbb{R}^2 . By definition of orthonormal basis we must show that $v_1 \cdot v_2 = 0$, $v_1 \cdot v_1 = v_2 \cdot v_2 = 1$.

_

$$v_1 \cdot v_2 = v_1^T v_2$$

$$= \frac{1}{\sqrt{\lambda_1}} (A^{-1} u_1)^T \frac{1}{\sqrt{\lambda_2}} A^{-1} u_2$$

$$= \frac{1}{\sqrt{\lambda_1 \lambda_2}} u_1^T (A^{-1})^T A^{-1} u_2$$

$$= \frac{1}{\sqrt{\lambda_1 \lambda_2}} \lambda_2 u_1^T u_2$$

$$= 0$$

- Let $i \in \{1, 2\}$

$$v_i \cdot v_i = v_i^T v_i$$

$$= \frac{1}{\sqrt{\lambda_i}} (A^{-1} u_i)^T \frac{1}{\sqrt{\lambda_i}} A^{-1} u_i$$

$$= \frac{1}{\lambda_i} u_i^T (A^{-1})^T A^{-1} u_i$$

$$= \frac{1}{\lambda_i} u_i^T M u_i$$

$$= \frac{\lambda_i}{\lambda_i} u_i^T u_i$$

$$= 1$$

- We must show that ||x(t)|| is maximal if and only if $(\cos(t), \sin(t)) = \pm v_2$.
 - Suppose ||x(t)|| is maximal. We must show that $(\cos(t), \sin(t)) = \pm v_2$. We know from exercise 3 that $x(t) = \pm \frac{1}{\sqrt{\lambda_2}} u_2$. Therefore

$$x(t) = \pm \frac{1}{\lambda_2} u_2$$

$$A(\cos(t), \sin(t)) = \pm \frac{1}{\sqrt{\lambda_2}} u_2$$

$$(\cos(t), \sin(t)) = \pm \frac{1}{\sqrt{\lambda_2}} A^{-1} u_2$$

$$(\cos(t), \sin(t)) = \pm v_2.$$

- Suppose $(\cos(t), \sin(t)) = \pm v_2$. We must show that ||x(t)|| is maximal. Therefore

$$x(t) = A(\cos(t), \sin(t)) = \pm Av_2 = \pm \frac{1}{\sqrt{\lambda_2}} AA^{-1}u_2 = \pm \frac{1}{\sqrt{\lambda_2}} u_2.$$

Thus by exercise 3 since $x(t) = \pm \frac{1}{\sqrt{\lambda_2}} u_2$ then ||x(t)|| is maximal.

The proof is identical for showing ||x(t)|| is minimal if and only if $(\cos(t), \sin(t)) = \pm v_1$ by swapping 2 for 1 and using the minimal portion of what was proved in exercise 3.

4. Let $A = \begin{bmatrix} 1 & 0 \\ 1 & \sqrt{3} \end{bmatrix}$. Let $M = (A^{-1})^T A^{-1}$ This has the corresponding characteristic polynomial of $(\lambda - \frac{1}{6}(5 - \sqrt{13}))(\lambda - \frac{1}{6}(5 + \sqrt{13})) = 0$, thus the eigenvalues $\mu_1 = \frac{1}{6}(5 + \sqrt{13}), \mu_2 = \frac{1}{6}(5 - \sqrt{13})$ Therefore $\sigma_1 = \sqrt{\frac{6}{5 + \sqrt{13}}}, \sigma_2 = \sqrt{\frac{6}{5 - \sqrt{13}}}$. This gives us the major axis of length of $\sigma_2 = 2.07431$ and the minor axis length of $\sigma_1 = 0.835$. These correspond to $u_1 = (0.957092, 0.289784)$ and $u_2 = (0.289784, -0.957092)$. The angle between u_1 and the x-axis is 0.294001 radians. The ellipse looks like:

5. Let $V = \begin{bmatrix} v_1 & v_2 \end{bmatrix}$, $S = \begin{bmatrix} \sigma_1 & 0 \\ 0 & \sigma_2 \end{bmatrix}$, $U = \begin{bmatrix} u_1 & u_2 \end{bmatrix}$ We must show that $\sigma_1(x \cdot v_1)u_1 + \sigma_2(x \cdot v_2)u_1 + \sigma_2(x \cdot v_2)u_2 + \sigma_2(x \cdot v_2)u_1 + \sigma_2(x \cdot v_2)u_2 + \sigma_2(x$

 $v_2)u_2 = USV^Tx$. Therefore

$$\sigma_1(x \cdot v_1)u_1 + \sigma_2(x \cdot v_2)u_2 = U(\sigma_1(x \cdot v_1), \sigma_2(x \cdot v_2))$$
$$= US(v_1 \cdot x, v_2 \cdot x)$$
$$= USV^T x$$

Therefore $A = USV^T$.

6. Let $A = \begin{bmatrix} 11 & -5 \\ 2 & -10 \end{bmatrix}$ We must find orthogonal matrices U, V and diagonal matrix S such that $A = USV^T$. Note that A^TA has eigenvalues of 200 and 50 and these correspond with the eigenvectors $(\frac{-1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$ and $(\frac{1}{\sqrt{2}}, \frac{1}{\sqrt{2}})$. Since $A^TA = VS^2V^T$ then $S = \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix}, V = \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$. Note that AA^T has eigenvectors of $(\frac{3}{5}, -\frac{4}{5})$ and $(-\frac{4}{5}, -\frac{3}{5})$ and corresponding to the same eigenvalues of 50 and 200. Note that $AA^T = US^2U^T$, thus we have found $U = \begin{bmatrix} -\frac{4}{5} & \frac{3}{5} \\ -\frac{3}{5} & -\frac{4}{5} \end{bmatrix}$. Verification:

$$USV^{T} = \begin{bmatrix} -\frac{4}{5} & \frac{3}{5} \\ -\frac{3}{5} & -\frac{4}{5} \end{bmatrix} \begin{bmatrix} 10\sqrt{2} & 0 \\ 0 & 5\sqrt{2} \end{bmatrix} \begin{bmatrix} \frac{-1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \\ \frac{1}{\sqrt{2}} & \frac{1}{\sqrt{2}} \end{bmatrix}$$
$$= \begin{bmatrix} -\frac{4}{5} & \frac{3}{5} \\ -\frac{3}{5} & -\frac{4}{5} \end{bmatrix} \begin{bmatrix} -10 & 10 \\ 5 & 5 \end{bmatrix}$$
$$= \begin{bmatrix} 11 & -5 \\ 2 & -10 \end{bmatrix}$$
$$= A.$$