Entropia, Informação Mútua e Codificação de Huffman

Teoria da Informação – Novembro de 2023

Nuno Batista, Miguel Martins, André Albuquerque

Universidade de Coimbra | Licenciatura em Engenharia Informática

ÍNDICE

- 1. Introdução e Objetivos
- 2. Exercícios
 - 2b. Relação entre MPG e as restantes variáveis
 - 7b. Valor médio teórico de bits por símbolo
 - **8b)** Comparação do número médio de bits por símbolo após a codificação de huffman.
 - 8c) Variância dos comprimentos.
 - **10b)** Relação da informação mútua com os coeficientes de correlação de Pearson.
 - **11b)** Comparação entre os valores reais de MPG e os valores estimados de MPG com base nas outras variáveis.
 - **11e)** Influência das variáveis com mais ou menos informação mútua na estimativa de MPG.
- 3. Conclusões

1. INTRODUÇÃO E OBJETIVOS

O objetivo deste relatório é explicar o processo de pensamento por trás das soluções usadas para implementar os vários exercícios da ficha TP1 - Entropia, Informação Mútua e Codificação de Huffman num programa de Python.

2. EXERCÍCIOS

2d) Relação entre MPG e as restantes variáveis.

Após fazer a representação gráfica da variável MPG em função de cada uma das outras variáveis, é evidente que são traçadas algumas relações.

Nomeadamente, quanto maior é o valor de MPG, menor é o valor de weight, displacement, horsepower e cylinders. Em contrapartida, o aumento de MPG traduz-se para um aumento de acceleration e model year.

7c) Valor médio teórico de bits por símbolo.

Neste exercício foi calculada a entropia de cada uma das variáveis:

$$H(X) = -\sum P(X = xi) \log 2P(X = x_i)$$

	Acceleration	Cylinders	Displacement	Horsepower	Model Year	Weight	MPG
H(X)	3.496423557	1.590435690	4.874068785	4.583748555	3.690642511	6.040364750	4.835799622

Verificou-se que quanto mais dispersas estão as distribuições de probabilidades maior é o número médio teórico de bits por símbolo, como era de esperar pela definição de entropia.

8b) Comparação do número médio de bits por símbolo após a codificação de huffman.

	Acceleration	Cylinders	Displacement	Horsepower	Model Year	Weight	MPG
L (C,X)	3.535626535	1.729729729	4.911547115	4.614250614	3.727272727	6.076167076	4.86977886

Verifica-se o Teorema da Codificação de Fonte de Shannon, $H(X) \leq L(C, X)$.

Os valores do número médio de bits por símbolo após a codificação de Huffman de uma variável é ligeiramente maior que a entropia dessa mesma variável.

8c) Variância dos comprimentos.

Reduzir a variância da codificação dos símbolos é importante para evitar que um buffer de comunicação seja maior do que o necessário. Para reduzir a variância, pode usar-se uma modificação no algoritmo de construção da árvore de Huffman que prioriza os nós que têm menos folhas.

10b) Relação da informação mútua com os coeficientes de correlação de Pearson.

A informação mútua entre MPG e as outras variáveis é dada por

$$I(Var; MPG) = H(Var) - H(Var|MPG)$$

quanto maior for o valor $\,$ absoluto do coeficiente de correlação de Pearson, menor será H(Var|MPG) e mais próxima estará a informação mútua do valor de H(Var) .

11b) Comparação entre os valores reais de MPG e os valores estimados de MPG com base nas outras variáveis.

Tendo em conta todas as variáveis		Tendo em conta todas as variáveis, exceto a com maior informação mútua		Tendo em conta todas as variáveis, exceto a com menor informação mútua		
Valor de MPG previsto	Valor de MPG real	Valor de MPG previsto	Valor de MPG real	Valor de MPG previsto	Valor de MPG real	
15.4060	18	36.0796	18	17.1580	18	
14.2504	15	36.0391	15	16.0024	15	
16.0505	18	36.1695	18	17.6564	18	
15.8628	16	35.9818	16	17.6148	16	
15.8474	17	36.1729	17	17.4533	17	
10.8705	15	36.3880	15	12.3305	15	
10.9825	14	36.5000	14	12.2965	14	
11.1515	14	36.4862	14	12.4655	14	
10.2443	14	36.3341	14	11.7043	14	
13.7536	15	36.4687	15	15.0676	15	
[]						

11e) Influência das variáveis com mais ou menos informação mútua na estimativa de MPG.

Utilizando todas as variáveis na estimativa de MPG, o erro de precisão calculado pela função MAE é 2.5721.

Quando se retira da equação o termo envolvendo a variável que apresentou o menor valor de MI, o erro de precisão aumenta pouco, passa a ser 3.0999. Por outro lado, ao retirar o membro envolvendo a variável com maior MI, o erro de precisão aumenta muito, passando a ser 17.1541.

3. CONCLUSÕESj

Após cumprir os objetivos deste trabalho, verificou-se que o valor médio teórico de bits por símbolo é fundamental para a compressão de dados e que a codificação de Huffman aproxima-se bastante do limite teórico da média de bits por símbolo. Descobrimos também que os coeficientes de Pearson estão diretamente relacionados à informação mútua de variáveis. Por fim observou-se a influência de variáveis com mais ou menos informação mútua durante o processo de estimativa de MPG.