Project 4 - Main Script

Boxuan Zhao, Zixuan Guan, Zheren Tang, Yingxin Zhang, Jihan Wei 3/22/2017

ABSTRACT

In this project, our team was assigned two papers that proposed two algorithms concerning name disambiguations and we implemented these two algorithms in R code and we have also proposed evaluation methods to compare these algorithms. Throughout the process of this project, we have observed several interesting trends. In this file, we will present our data reading, preporcessing, algorithm implements as well as evaluation results.

Step 0: Load the packages, specify directories

Step 1: Load and process the data

For each record in the dataset, there are some information we want to extract and store: canonical author id, coauthors, paper title, publication venue title. In our main.rmd file, you will find our programs for input of each data file which have been proprocessed by our functions stored in "dataclean.R" under the lib folder.

```
#Preprocess our data files
source("../lib/dataclean.R")
#Read in our data files
source("../lib/dataInput.R")
```

Step 2: Feature design

Following the section 3.1 in the paper, we want to use paper titles to design features for citations. As the notation used in the paper, we want to find a m-dimensional citation vector i for each citation i, i = 1 n. In this dataset, n = 244. We study "TF-IDF" (term frequency-inverse document frequency) as suggested in the paper.

TF-IDF is a numerical statistics that is intended to reflect how important a word is to a document in a collection or corpus. It is often used as a weighting factor in information retrieval, text mining, and user modeling. The TF-IDF value increases proportionally to the number of times a word appears in the document, but is offset by the frequency of the word in the corpus, which helps to adjust for the fact that some words appear more frequently in general.

```
\begin{aligned} \text{TF}(t) &= \frac{\text{Number of times term } t \text{ appears in a document}}{\text{Total number of terms in the document}} \\ \text{IDF}(t) &= \log \frac{\text{Total number of documents}}{\text{Number of documents with term } t \text{ in it}} \\ \text{TF-IDF}(t) &= \text{TF}(t) \quad \text{IDF}(t) \end{aligned}
```

For Paper 3 Construct our feature design for paper 3 with resepct to Coauthor, Title and Journal For Paper 6

Step 3: Clustering

First of all, we perforom the spectral cluster with QR decomposition on the data sets Second of all, we implement the algorithm from paper 6 to analysis our data set.

Step 4: Evaluation

The evaluation will be two fold, the first part of our evaluation will be base on the performance of our model in paper 3 using different features (i.e. coauthor, paper, and journal). We applied the evaluation based on the following methods:

Let M be the set of machine-generated clusters, and G the set of gold standard clusters. Then, in the table, for example, a is the number of pairs of entities that are assigned to the same cluster in each of M and G. Hence, a and d are interpreted as agreements, and b and c disagreements. When the table is considered as a confusion matrix for a two-class prediction problem, the standard "Precision", "Recall", "F1", and "Accuracy" are defined as follows.

$$\begin{aligned} & \text{Precision} = \frac{a}{a+b} \\ & \text{Recall} = \frac{a}{a+c} \\ & \text{F1} = \frac{2 \quad \text{Precision} \quad \text{Recall}}{2 \quad \text{Precision} + 2 \quad \text{Recall}} \\ & \text{Accuracy} = \frac{a+d}{a+b+c+d} \end{aligned}$$

Then we implement the code we written from paper 6 for the evaluation

Then we start to compare the two papers using same evaluation methods. Since we do not want to produce a length report, we only use some of the data set to demonstrate what we foul during the development of this project

First of all, we compare two algorithms using each of the three features (Coauthor, Paper, Journal) using AKumar data set:

AKumar data set results:

From the above graph, we can observe that:

Then, we also compare the two algorithm using a different data set KTanaka:

KTanaka data set results:

From the above graph, we can see that:

We also have compared the two algorithms using all features:

JMartin data set results:

MBrown data set results:

From the above two graphs, we can see that:

<u>Akumar</u>					
		Paper 3		Paper 6	
Coauthor		Results	Time	Results	Time
	Precision	0.23		0.75	1.996min
	Recall	0.2	~0.1 sec	0.27	
	F1	0.21		0.4	
	Accuracy	0.69		0.52	
Title		Results	Time	Results	Time
	Precision	0.35		0.18	13.91min
	Recall	0.21	~0.1 sec	0.47	
	F1	0.27		0.26	
	Accuracy	0.75		0.78	
Journal		Results	Time	Results	Time
	Precision	0.25	~0.1 sec	0.17	
	Recall	0.64		0.36	6.14min
	F1	0.36		0.23	0.14[[][[]
	Accuracy	0.5		0.76	

Figure 1: Figure 1: Evaluation results

<u>KTanaka</u>					
		Paper 3		Paper 6	
Coauthor		Results	Time	Results	Time
	Precision	0.6		0.45	3.35min
	Recall	0.37	0.1.000	0.36	
	F1	0.46	~0.1 sec	0.4	
	Accuracy	0.79		0.69	
Title		Results	Time	Results	Time
	Precision	0.47	~0.1 sec	0.4	31.71 min
	Recall	0.38		0.76	
	F1	0.42		0.52	
	Accuracy	0.76		0.83	
Journal		Results	Time	Results	Time
	Precision	0.3		0.33	
	Recall	0.65	~0.1 sec	0.6	13.90min
	F1	0.41		0.43	13.90000
	Accuracy	0.56		0.79	

Figure 2: Figure 2: Evaluation results

JMartin (All)				
	Paper 3		Paper 6	
	Final Result	Time	Final Result Time	
Precision	0.23		0.41	
Recall	0.53	0.07	0.55	E 07min
F1	0.32	0.07sec	0.47	5.97min
Accuracy	0.79		0.91	

Figure 3: Figure 3: Evaluation results

MBrown (All)				
	Paper 3		Paper 6	
	Final Result	Time Final Result Time		Time
Precision	0.33		0.423	
Recall	0.47	11	0.633	1.C. 47main
F1	0.39	.11 sec	0.507	16.47min
Accuracy	0.79		0.885	

Figure 4: Figure 4: Evaluation results

Step 5 Further Observations of methods in paper 6

In addition to the above evaluation, we have also observed several interesting trends for algorithm introduced in paper 6 using c2 constraint.

Interesting results	cont'd:
Interesting results	cont'd:
Interesting results	cont'd:

Performacne of different weight

Figure 5: Figure 6: Interesting results

		Scaled X	Sparse X
		After Initilization	After Initilization
JRobinson	Precision	0.39	0.62
	Recall	0.58	0.26
	F1	0.47	0.37
	Accuracy	0.87	0.79
		Scaled X	Sparse X
		After Initilization	After Initilization
Jmartin	Precision	0.47	0.45
	Recall	0.59	0.27
	F1	0.52	0.34
	Accuracy	0.92	0.83

Figure 6: Figure 6: Interesting results

		weight=1	weight=0
JMartin	Precision	0.1036184	0.4506579
	Recall	0.1536585	0.5744235
	F1	0.1237721	0.5050691
	Accuracy	0.8564994	0.91361

Figure 7: Figure 7: Interesting results