Lecture 20: Large-Scale Optimization

Subgradient Method

Niao He

1st May 2019

Niao He

Overviev

Subgradien Method

The Algorithm

Choices of Steps

Convergence for Conv Lipschitz Problem

Convergence for Str

Outline

Overview

Subgradient Method

The Algorithm

Choices of Stepsize

Convergence for Convex Lipschitz Problem

Convergence for Strongly Convex Lipschitz Problem

Niao He

Overview

Algorithms Discussed So Far

- Ellipsoid Method
 - Poly-time algorithm
 - Black-box method
 - Requires first-order and separation oracles
- Interior Point Method
 - Poly-time algorithm
 - Barrier method
 - Requires structural assumptions on the domain
 - Requires solving Newton systems
- Newton Method
 - Local quadratic convergent algorithm
 - Black-box method
 - Requires smoothness assumptions on the objective
 - Requires first-order and second-order oracles

What's in common?

Niao He

Overview

Subgradi Method

The Algorithm

Choices of Stepsia

Convergence for Co

Convergence for Strong

Algorithms Discussed So Far

- Ellipsoid Method
 - Poly-time algorithm
 - ▶ Black-box method
 - Requires first-order and separation oracles
- Interior Point Method
 - ▶ Poly-time algorithm
 - Barrier method
 - Requires structural assumptions on the domain
 - Requires solving Newton systems
- Newton Method
 - ► Local quadratic convergent algorithm
 - Black-box method
 - ▶ Requires smoothness assumptions on the objective
 - Requires first-order and second-order oracles

High accuracy, but expensive iteration cost. Not scalable!

Niao He

Overview Subgradie

Method The Algorithm

Choices of Stepsi:

Convergence for Conv Lipschitz Problem

Convergence for Strongl

First-Order Methods

For large-scale convex optimization, simpler algorithms such as first-order methods become the only methods of choice.

- Gradient descent
- Nesterov's accelerated gradient descent and variants
- Coordinate descent and many variants
- Conditional gradient methods
- Subgradient methods
- Primal-dual methods
- Proximal and operator splitting methods
- Stochastic and incremental gradient methods

Niao He

Overview

Method

The Algorithm

Choices of Steps

Convergence for Co

Convergence for Strongl

First-Order Methods

For large-scale convex optimization, simpler algorithms such as first-order methods become the only methods of choice.

- Gradient descent
- Nesterov's accelerated gradient descent and variants
- Coordinate descent and many variants
- Conditional gradient methods
- Subgradient methods
- Primal-dual methods
- Proximal and operator splitting methods
- ► Stochastic and incremental gradient methods

Moderate accuracy, but cheap iteration cost.

Niao He

Overview

Subgradie

The Algorithm

Choices of Stepsize

Convergence for Con Lipschitz Problem

Convex Lipschitz Proble

General Constrained Convex Problems

We will focus on the general convex problem:

$$\min_{x \in X} f_0(x)$$

s.t.
$$f_i(x) \le 0, i = 1, ... m$$

Assumptions

- X is simple and admits easy-to-compute projections
- ▶ First-order oracles for $f_0(x)$, $f_i(x)$ are available

Note $f_0(x)$, $f_i(x)$ are not necessarily differentiable or smooth

Niao He

Overview

General Constrained Convex Problems

We will focus on the general convex problem:

$$\min_{x \in X} f_0(x)$$

s.t.
$$f_i(x) \le 0, i = 1, ... m$$

Assumptions

- X is simple and admits easy-to-compute projections
- First-order oracles for $f_0(x)$, $f_i(x)$ are available

Note $f_0(x)$, $f_i(x)$ are not necessarily differentiable or smooth

What can we do?

Niao He

Menvie

Subgradient Method

The Algorithm

Choices of Stepsize

Lipschitz Problem

Convergence for Strong

Simple Constrained Convex Problem

Let us start with the simple constrained case:

min
$$f(x)$$

s.t. $x \in X$

- f is convex and possibly non-differentiable
- X is non-empty, closed and convex
- The problem is solvable with optimal solution and value denoted as x^* , f^* .

Niao He

verview

Subgradient Method

The Algorithm

Choices of Stepsiz

Lipschitz Problem

Convergence for Strongly

Subgradient

$$g^{T}(y-x) \leq 0, \forall y \in L_{f(x)}(f) = \{y : f(y) \leq f(x)\}$$

Subgradient yields a supporting hyperplane for the level set

Niao He

verview

Subgradie Method

The Algorithm

Choices of Stepsize

Convergence for Con

Convergence for Strongl

Subgradient Method (N. Shor, 1967)

- 0. Initialize $x_1 \in X$
- 1. For $t \geq 1$, do

$$x_{t+1} = \Pi_X(x_t - \gamma_t g_t)$$

- ▶ $g_t \in \partial f(x_t)$ is a subgradient of f at x_t .
- $ightharpoonup \gamma_t > 0$ is a proper stepsize

Remark. When f is differentiable, this reduces to Gradient Descent Method.

Niao He

)verviev

Subgradier Method

The Algorithm

Choices of Stepsize

Convergence for C

Convergence for Strong

Projection

$$\Pi_X(x) = \operatorname*{argmin}_{y \in X} \|y - x\|_2$$

Lemma. $\forall x \in \mathbb{R}^n$, $z \in X$,

$$||x - z||_2^2 \ge ||x - \Pi_X(x)||_2^2 + ||z - \Pi_X(x)||_2^2$$

Figure: Projection onto a convex set

Niao He

)verviev

Subgradier Method

The Algorithm

Choices of Stensize

Lipschitz Problem

Convergence for Strong

Questions

- Is subgradient method a descent method?
- Does it converge?
- How fast does it converge?
- How to choose stepsizes?
- What can we do to improve subgradient method?

The Algorithm

Choices of Stepsize

Lipschitz Problem

Convergence for Strong Convex Lipschitz Proble

Choices of Stepsize

Constant stepsize:

$$\gamma_t = \gamma$$

Scaled stepsize:

$$\gamma_t = \frac{\gamma}{\|g_t\|_2}$$

► Non-summable but diminishing stepsize:

$$\gamma_t o 0$$
 and $\sum_{t=1}^\infty \gamma_t = +\infty$

Square summable stepsize:

$$\sum_{t=1}^{\infty} \gamma_t^2 < +\infty$$
 and $\sum_{t=1}^{\infty} \gamma_t = +\infty$

Dynamic stepsize:

$$\gamma_t = \frac{f(x_t) - f^*}{\|g_t\|_2^2}$$

Niao He

Choices of Stepsize

Illustration

10⁰

Figure: Fixed Stepsize $\gamma = 0.1, 0.01, 0.001$

Niao He

verview

Subgradie Method

The Algorithm

Choices of Stepsize

Convergence for Conve Lipschitz Problem

Convergence for Strongly Convex Linschitz Probler

Basic "Descent" Lemma

Lemma. We have

$$||x_{t+1} - x^*||_2^2 \le ||x_t - x^*||_2^2 - 2\gamma_t(f(x_t) - f^*) + \gamma_t^2 ||g_t||_2^2 \quad (\star)$$

Niao He

verview

Subgradie Method

The Algorithm

Choices of Stepsize

Convergence for Conv

Lipschitz Problem

Convex Lipschitz Proble

Basic "Descent" Lemma

Lemma. We have

$$||x_{t+1} - x^*||_2^2 \le ||x_t - x^*||_2^2 - 2\gamma_t(f(x_t) - f^*) + \gamma_t^2 ||g_t||_2^2 \quad (\star)$$

Proof.

$$||x_{t+1} - x^*||_2^2 = ||\Pi_X(x_t - \gamma_t g_t) - x^*||_2^2$$

$$\leq ||x_t - \gamma_t g_t - x^*||_2^2$$

$$= ||x_t - x^*||_2^2 - 2\gamma_t g_t^T (x_t - x^*) + \gamma_t^2 ||g_t||^2$$

Niao He

Dvervie

Subgradi Method

The Algorithm

Choices of Stepsize

Convergence for Con

Convergence for St

Basic "Descent" Lemma

Lemma. We have

$$\|x_{t+1} - x^*\|_2^2 \le \|x_t - x^*\|_2^2 - 2\gamma_t(f(x_t) - f^*) + \gamma_t^2 \|g_t\|_2^2 \quad (\star)$$

Proof.

$$||x_{t+1} - x^*||_2^2 = ||\Pi_X(x_t - \gamma_t g_t) - x^*||_2^2$$

$$\leq ||x_t - \gamma_t g_t - x^*||_2^2$$

$$= ||x_t - x^*||_2^2 - 2\gamma_t g_t^T(x_t - x^*) + \gamma_t^2 ||g_t||^2$$

Due to convexity of f, we have $f^* \ge f(x_t) + g_t^T(x^* - x_t)$, i.e.

$$g_t^T(x_t - x^*) \ge f(x_t) - f^*.$$

This leads to (*).

Niao He

)verview

Subgradier Method

The Algorithm

Choices of Stepsize

Lipschitz Problem

Convex Lipschitz Problem

Polyak's Stepsize

Minimizing the surrogate function yields the optimal stepsize (Polyak, 1987):

$$\gamma_t = \frac{f(x_t) - f^*}{\|g_t\|_2^2}$$

The Algorithm

Choices of Stepsize

Lipschitz Problem

Convergence for Strong

Polyak's Stepsize

Minimizing the surrogate function yields the optimal stepsize (Polyak, 1987):

$$\gamma_t = \frac{f(x_t) - f^*}{\|g_t\|_2^2}$$

► This also guarantees strict error reduction:

$$||x_{t+1} - x_*||_2^2 \le ||x_t - x_*||_2^2 - \frac{(f(x_t) - f_*)^2}{||g(x_t)||_2^2}$$

Choices of Stepsize

Convergence for Conve Lipschitz Problem

Convergence for Strong Convex Lipschitz Proble

Polyak's Stepsize

Minimizing the surrogate function yields the optimal stepsize (Polyak, 1987):

$$\gamma_t = \frac{f(x_t) - f^*}{\|g_t\|_2^2}$$

► This also guarantees strict error reduction:

$$||x_{t+1} - x_*||_2^2 \le ||x_t - x_*||_2^2 - \frac{(f(x_t) - f_*)^2}{||g(x_t)||_2^2}$$

▶ It follows that $f(x_t) \rightarrow f^*$ and $\{x_t\} \rightarrow x^*$. (why?)

Niao He

)verviev

Subgradier Method

The Algorithm

Choices of Stepsize

Convergence for Conve Lipschitz Problem

Convergence for Stron

Polyak's Stepsize

Only useful when f* is known, e.g., when solving convex feasibility problem:

Find
$$x^* \in X$$
, s.t. $f_i(x) \le 0$, $i = 1, ..., m$.

$$\iff \min_{x \in X} \sum_{i=1}^{m} \max(f_i(x), 0)$$

The Algorithm

Choices of Stepsize

Lipschitz Problem

Convergence for Stron

Polyak's Stepsize

Only useful when f* is known, e.g., when solving convex feasibility problem:

Find
$$x^* \in X$$
, s.t. $f_i(x) \le 0$, $i = 1, ..., m$.

$$\iff \min_{x \in X} \sum_{i=1}^{m} \max(f_i(x), 0)$$

▶ In practice, f^* is often not available. One can replace f^* by an online estimate, e.g.,

$$\hat{f}_t := \min_{0 \le \tau \le t} f(x_\tau) - \delta.$$

Niao He

)verviev

Subgradien Method

The Algorithm

Choices of Stepsize

Convergence for Convex

Lipschitz Problem

Convergence for Strong

Main Convergence Result

Theorem. The subgradient method satisfies:

$$\min_{1 \le t \le T} f(x_t) - f^* \le \frac{\|x_1 - x^*\|_2^2 + \sum_{t=1}^T \gamma_t^2 \|g_t\|_2^2}{2 \sum_{t=1}^T \gamma_t}.$$

Niao He

verviev

Subgradier Method

The Algorithm

Convergence for Convex

Lipschitz Problem

Convex Lipschitz Problem

Convex Lipschitz Problem

We consider a nice but general problem class:

ightharpoonup f(x) is convex and Lipschitz continuous on X:

$$|f(x)-f(y)| \leq M_f ||x-y||_2, \quad \forall x, y \in X$$

where $M_f < +\infty$. (This implies that $\|g_t\|_2 \leq M_f$.)

► *X* is convex and compact:

$$D_X := \max_{x,y \in X} \|x - y\|_2 < +\infty.$$

Niao He

)verviev

Subgradier

The Algorithm

Choices of Stepsize

Convergence for Convex

Lipschitz Problem

Convergence for Strongly

Convergence Under Different Stepsizes

► Constant stepsize: $\gamma_t \equiv \gamma$

$$\liminf_{t\to\infty} f(x_t) \le f^* + \frac{M_f^2 \gamma}{2}.$$

Niao He

)verview

Subgradien Method

The Algorithm
Choices of Stensize

Convergence for Convex

Lipschitz Problem

Convex Lipschitz Problem

Convergence Under Different Stepsizes

• Constant stepsize: $\gamma_t \equiv \gamma$

$$\liminf_{t\to\infty} f(x_t) \le f^* + \frac{M_f^2 \gamma}{2}.$$

▶ Scaled stepsize: $\gamma_t = \frac{\gamma}{\|g(x_t)\|_2}$

$$\liminf_{t\to\infty} f(x_t) \le f^* + \frac{M_f \gamma}{2}.$$

Niao He

)verview

Subgradier Method

The Algorithm

Convergence for Convex Lipschitz Problem

Convergence for Strong

Convergence Under Different Stepsizes

► Constant stepsize: $\gamma_t \equiv \gamma$

$$\liminf_{t\to\infty} f(x_t) \le f^* + \frac{M_f^2 \gamma}{2}.$$

▶ Scaled stepsize: $\gamma_t = \frac{\gamma}{\|g(x_t)\|_2}$

$$\liminf_{t\to\infty} f(x_t) \le f^* + \frac{M_f \gamma}{2}.$$

► Non-summable but square-summable stepsize:

$$\liminf_{t\to\infty} f(x_t) = f^*.$$

Niao He

Verviev

Subgradier Method

The Algorithm

Convergence for Convex

Lipschitz Problem

Convex Lipschitz Probler

Convergence Under Different Stepsizes

► Constant stepsize: $\gamma_t \equiv \gamma$

$$\liminf_{t\to\infty} f(x_t) \le f^* + \frac{M_f^2 \gamma}{2}.$$

▶ Scaled stepsize: $\gamma_t = \frac{\gamma}{\|g(x_t)\|_2}$

$$\liminf_{t\to\infty} f(x_t) \le f^* + \frac{M_f \gamma}{2}.$$

► Non-summable but square-summable stepsize:

$$\liminf_{t\to\infty} f(x_t) = f^*.$$

► Non-summable but diminishing stepsize:

$$\liminf_{t\to\infty} f(x_t) = f^*. \quad (why?)$$

Niao He

)verviev

Subgradien

The Algorithm

Choices of Stepsize

Convergence for Convex

Lipschitz Problem

Convergence for Strongly

Convergence Rate for Convex Lipschitz Problem

Remark.

▶ In particular, if we set $\gamma_t = \frac{D_X}{M_t \sqrt{t}}$, it holds that

$$\min_{1\leq t\leq T} f(x_t) - f_* \leq O\left(\frac{D_X M_f \ln(T)}{\sqrt{T}}\right).$$

$$\min_{\frac{T}{2} \le t \le T} f(x_t) - f_* \le O\left(\frac{D_X M_f}{\sqrt{T}}\right).$$

Niao He

Verviev

Subgradien Method

The Algorithm

Choices of Stepsia

Convergence for Convex Lipschitz Problem

Convergence for Strongl

Convergence Rate for Convex Lipschitz Problem

Remark.

▶ In particular, if we set $\gamma_t = \frac{D_X}{M_t \sqrt{t}}$, it holds that

$$\min_{1 \le t \le T} f(x_t) - f_* \le O\left(\frac{D_X M_f \ln(T)}{\sqrt{T}}\right).$$

$$\min_{\frac{T}{2} \le t \le T} f(x_t) - f_* \le O\left(\frac{D_X M_f}{\sqrt{T}}\right).$$

▶ When T is known, setting $\gamma_t \equiv \frac{D_X}{M_t \sqrt{T}}$, we have

$$f(\hat{x}_T) - f^* \leq \frac{D_X M_f}{\sqrt{T}}$$

Niao He

Overviev

Subgradier

The Algorithm

Choices of Stepsi

Convergence for Convex Lipschitz Problem

Convex Lipschitz Probler

Convergence Rate for Convex Lipschitz Problem

Remark.

▶ In particular, if we set $\gamma_t = \frac{D\chi}{M_t\sqrt{t}}$, it holds that

$$\min_{1 \le t \le T} f(x_t) - f_* \le O\left(\frac{D_X M_f \ln(T)}{\sqrt{T}}\right).$$

$$\min_{\frac{T}{2} \le t \le T} f(x_t) - f_* \le O\left(\frac{D_X M_f}{\sqrt{T}}\right).$$

▶ When T is known, setting $\gamma_t \equiv \frac{D_X}{M_t \sqrt{T}}$, we have

$$f(\hat{x}_T) - f^* \le \frac{D_X M_f}{\sqrt{T}}$$

Subgradient method converges sublinearly. For an accuracy $\epsilon > 0$, need $O(\frac{D_X^2 M_f^2}{\epsilon^2})$ number of iterations.

IE 521 Convex Optimization Niao He

Convergence for Strongly Convex Lipschitz Problem

Strongly Convex and Lipschitz Problem

We now consider an even nicer problem class:

▶ f(x) is μ -strongly convex on X with $\mu > 0$:

$$f(x) \ge f(y) + \nabla f(y)^T (x-y) + (\mu/2) ||x-y||_2^2. \quad \forall x, y \in X$$

▶ f(x) is M_f -Lipschitz continuous on X with $M_f < +\infty$:

$$|f(x)-f(y)| \leq M_f ||x-y||_2, \quad \forall x,y \in X.$$

Niao He

), con cion

Subgradie

The Algorithm

Choices of Stepsize

Convergence for Co

Convergence for Strongly Convex Lipschitz Problem

Convergence for Strongly Convex Lipschitz Case

Lemma.

$$\|x_{t+1} - x^*\|_2^2 \le (1 - \mu \gamma_t) \|x_t - x^*\|_2^2 - 2\gamma_t (f(x_t) - f^*) + \gamma_t^2 \|g_t\|_2^2 (*)$$

Niao He

) von iou

Subgradi

The Algorithm

Choices of Stepsia

Convergence for Conv

Convergence for Strongly Convex Lipschitz Problem

Convergence for Strongly Convex Lipschitz Case

Lemma.

$$\|x_{t+1} - x^*\|_2^2 \le (1 - \mu \gamma_t) \|x_t - x^*\|_2^2 - 2\gamma_t (f(x_t) - f^*) + \gamma_t^2 \|g_t\|_2^2 \ (*)$$

Theorem. Let f be μ -strongly convex and M_f -Lipschitz continuous on X, then with $\gamma_t = \frac{2}{\mu(t+1)}$, we have

$$\min_{1\leq t\leq T} f(x_t) - f_* \leq \frac{2M_f^2}{\mu\cdot(T+1)}.$$

Niao He

verviev

Subgradio

The Algorithm

Convergence for Con

Lipschitz Problem

Convergence for Strongly Convex Lipschitz Problem

Proof of Convergence

By (*), we have

$$(f(x_t) - f^*) \le \frac{1 - \mu \gamma_t}{2\gamma_t} \|x_t - x^*\|_2^2 - \frac{1}{2\gamma_t} \|x_{t+1} - x^*\|_2^2 + \frac{\gamma_t}{2} \|g_t\|_2^2$$

$$= \frac{\mu(t-1)}{4} \|x_t - x^*\|_2^2 - \frac{\mu(t+1)}{4} \|x_{t+1} - x^*\|_2^2$$

$$+ \frac{1}{\mu(t+1)} \|g_t\|_2^2$$

Niao He

Convergence for Strongly

Convex Lipschitz Problem

Proof of Convergence

By (*), we have

$$(f(x_t) - f^*) \le \frac{1 - \mu \gamma_t}{2\gamma_t} \|x_t - x^*\|_2^2 - \frac{1}{2\gamma_t} \|x_{t+1} - x^*\|_2^2 + \frac{\gamma_t}{2} \|g_t\|_2^2$$

$$= \frac{\mu(t-1)}{4} \|x_t - x^*\|_2^2 - \frac{\mu(t+1)}{4} \|x_{t+1} - x^*\|_2^2$$

$$+ \frac{1}{\mu(t+1)} \|g_t\|_2^2$$

Hence.

$$\sum_{t=1}^{T} t(f(x_t) - f^*) \le -\frac{\mu(T+1)}{4} \|x_{T+1} - x^*\|_2^2 + \frac{T}{\mu} \|g_t\|_2^2$$

Convergence for Strongly Convex Lipschitz Problem

Proof of Convergence

By (*), we have

$$\begin{split} (f(x_t) - f^*) &\leq \frac{1 - \mu \gamma_t}{2\gamma_t} \|x_t - x^*\|_2^2 - \frac{1}{2\gamma_t} \|x_{t+1} - x^*\|_2^2 + \frac{\gamma_t}{2} \|g_t\|_2^2 \\ &= \frac{\mu(t-1)}{4} \|x_t - x^*\|_2^2 - \frac{\mu(t+1)}{4} \|x_{t+1} - x^*\|_2^2 \\ &+ \frac{1}{\mu(t+1)} \|g_t\|_2^2 \end{split}$$

Hence.

$$\sum_{t=1}^{T} t(f(x_t) - f^*) \le -\frac{\mu(T+1)}{4} \|x_{T+1} - x^*\|_2^2 + \frac{T}{\mu} \|g_t\|_2^2$$
$$\min_{1 \le t \le T} f(x_t) - f^* \le \frac{TM_f^2/\mu}{\sum_{t=1}^{T} t} = \frac{2M_f^2}{\mu \cdot (T+1)}$$

Niao He

verview

Subgradier Method

The Algorithm

Convergence for Con-

Convergence for Strongly Convex Lipschitz Problem

Summary of Subgradient Method

Convex and Lipschitz Continuous Problem

- ► Stepsize rule: $O(\frac{1}{\sqrt{t}})$
- ► Convergence rate: $O(\frac{D_X M_f}{\sqrt{t}})$
- ▶ Iteration complexity: $O(\frac{D_X^2 M_f^2}{\epsilon^2})$

Strongly Convex and Lipschitz Continuous Problem

- ► Stepsize rule: $O(\frac{1}{\mu t})$
- ► Convergence rate: $O(\frac{M_f^2}{\mu t})$
- ▶ Iteration complexity: $O(\frac{M_f^2}{\mu\epsilon})$

Niao He

)verviev

Subgradien Method

The Algorithm

Choices of Stepsize

Convergence for Conv Lipschitz Problem

Convergence for Strongly Convex Lipschitz Problem

References

► Nesterov(2004), Chapter 3.2.3, 3.3