

UNCLASSIFIED

AD NUMBER

AD845214

NEW LIMITATION CHANGE

TO

**Approved for public release, distribution
unlimited**

FROM

**Distribution authorized to DoD only;
Administrative/Operational Use; Oct 1968.
Other requests shall be referred to Army
Tank-Automotive Command, Attn: AMSTA-BSL,
Warren, MI. 48090.**

AUTHORITY

USATAC ltr, 10 Apr 1974

THIS PAGE IS UNCLASSIFIED

On 2013
Dec 31, 1968

225

AD845214A

TECHNICAL REPORT NO. 10281

ON THE DESIGN OF WEAPON SPADES

October 1968

**TECHNICAL LIBRARY
REFERENCE COPY**

**PERMANENT
FILE COPY**

**PERMANENT
FILE COPY**

Each transmittal of this document outside the Department of Defense must have prior approval of
U.S. Army Tank-Automotive Command
ATTN: AMSTA-BSL

----- by J. L. DAIS

LAND LOCOMOTION DIVISION

TACOM

MOBILITY SYSTEMS LABORATORY

U.S. ARMY TANK AUTOMOTIVE COMMAND Warren, Michigan

20040113036

AN 30653

The findings in this report are not to be construed as an official Department of the Army position, unless so designated by other authorized documents.

CITATION OF EQUIPMENT IN THIS REPORT
DOES NOT CONSTITUTE AN OFFICIAL
INDORSEMENT OR APPROVAL OF THE USE OF
SUCH COMMERCIAL HARDWARE.

The citation of commercial products
in this report does not constitute
an official endorsement or approval
of such products.

Each transmittal of this document outside the agencies of the U.S. Government must have prior approval of U.S. Army Tank-Automotive Command
ATTN: AMSTA-BSL

Destroy this report when it is no longer needed. Do not return it to the originator.

TECHNICAL REPORT NO. 10281

ON THE DESIGN OF WEAPON SPADES

By

J. L. Dais

October 1968

AMCMS CODE: 5535.12.426

ABSTRACT

Various loading conditions on weapons spades are assumed, and the corresponding optimum spade geometries are found.

ACKNOWLEDGEMENT

The results reported herein were in part obtained during the course of summer employment with the Land Locomotion Division, of the U.S. Army Tank-Automotive Command.

TABLE OF CONTENTS

	<u>Page No.</u>
Abstract	ii
Acknowledgement	iii
List of Figures	v
Object	1
Introduction	1
Spade Action Under Given Load Inclination	2
Spade Loads Under Constrained Horizontal Displacement	2
Conclusions	3
References	7
Distribution List	8
DD Form 1473	13

LIST OF FIGURES

<u>Figure</u>		<u>Page No.</u>
1.	Photograph of XM138 Spade After Firing	4
2.	Sketches of Spade	4
3.	Configuration of Plate and Soil After a Small Plate Displacement. Soil Below the Dashed Curve Has Remained Rigid	4
4.	Relative Load Magnitudes and Displacement Angles for $\phi = 30^\circ$. L is the Relative Length of the Arrow	5
5.	Recommended Spade Geometries	5
6.	Relative Spade Loads Under Constrained Horizontal Displacement	6

OBJECT:

The motivation for this paper comes from difficulties encountered on the test range at the military's Aberdeen Proving Ground with the test weapon, known as the "XM-138 test rig", shown in Figure 1. The spade on the rig has the purpose of firmly coupling the weapon to the earth during the firing process. Even in a relatively husky sod, though, the spade suffers permanent displacements upon firing; the entire weapon then translates rigidly. Such permanent displacement would cause target and stake alignment difficulties in the field. Perhaps even more catastrophic is that successive displacements from a number of shots can cause a rather complete failure of a soil mass behind the spade which causes the spade to lose most of its anchoring ability.

As was previously (2) made somewhat precise in a dynamic system analysis, permanent displacements in a firing process can be minimized if a spade is capable of withstanding large loads with no permanent displacement. As was discussed in (1), a relatively small permanent displacement but with a sizeable upward component will cause a complete failure of a soil mass; a much larger permanent displacement but with a downward component will not cause a complete failure. Thus, in the present paper, a design will be sought which 1) will carry relatively large loads without suffering permanent displacement, and 2) when subjected to overloads will become displaced but with a minimum of upward movement.

The point of departure for this problem is to propose a design with "brute size". Thus, in Figure 2(a) the spud depth and spade width should be chosen as large as possible within the limits set by system design. The "spaced link" concept of Karafiath and Bekker (3) can be used to provide the effect of a wide spade during firing and yet maintain the mobility advantage of a narrow spade. The problem which remains is to pick an optimum geometry for Figure 2(b) within the constraint of given spud depth. It is this problem which forms the subject matter for the present paper.

INTRODUCTION:

In (1) the problem of initial indentation of a half-space of frictional material by a rigid translating grouser plate was considered as a two dimensional problem as shown in Figure 3. The plate can be taken to translate at angle θ to the horizontal; the essential analytical result is then the magnitude P and the line of action of the corresponding collapse load. Alternatively, the problem can be considered as having the inclination ϕ of the collapse load specified; P and θ are then the essential results. The essential plate dimensions in Figure 3 are OD and

$\angle EOD$; $\angle EDO$ does not affect the action of the plate. The line of action of the collapse load will ordinarily intersect a line drawn from D to O at its midpoint.

An immediate consequence of the analysis is that the collapse load magnitude is directly proportional to plate width. In practice it is to be expected that this magnitude is somewhat less than directly proportional, since end effects neglected in the analysis would remain relatively constant as plate width is increased. A second immediate consequence is that the collapse load magnitude is directly proportional to any linear dimension, say OD, of Figure 3 under similar geometries. In practice it is to be expected that this magnitude is somewhat more than directly proportional since considerable load increases result from increased end effects and increased soil strength with depth.

SPADE ACTION UNDER GIVEN LOAD INCLINATION:

In this section relative load magnitudes and displacement directions are exhibited for a variety of plates and load inclinations as shown in Figure 4 for a soil whose angle of internal friction ϕ is equal to 30° , a value which is computationally convenient and somewhat representative of real soil. The method of obtaining these results is sufficiently discussed in (2) and only the results are presented here.

In Figure 4 the line passing through the bottom of the spud indicates the direction of plate displacement. The arrows represent the plate collapse load; the loads have the lines of action of the arrow and their magnitudes are proportional to the lengths of the arrows. For the missing combinations of Figure 4 the plate would displace with $\theta > \frac{\pi}{2}$; this analysis was beyond the scope of (1).

For all plates of Figure 4 a relatively large magnitude load is required for collapse at loads inclined near the vertical; furthermore, displacement occurs with a sizeable downward component. Thus, if load inclinations near the horizontal are expected in practice, a plate geometry should be chosen to optimize action at these inclinations. For $\phi = 60^\circ$ the differences amongst the plates in collapse load magnitudes are quite small but the differences in upward displacement components quite significant. It seems reasonable to pick a plate with $\angle EOD$ quite large, say 60° as in Figure 5(a). The addition of a trailing plate as in Figure 5(b) will improve the plate's capacity to carry loads inclined near the vertical and will not affect the plate's action under loads inclined near the horizontal.

To

SPADE LOADS UNDER CONSTRAINED HORIZONTAL DISPLACEMENT:

In this section relative load magnitudes and load inclinations are exhibited for horizontal plate displacements in a soil whose angle of internal friction is 30° . The method of obtaining these results is

discussed in (1) and is not repeated. In Figure 6 the loads have the lines of action of the arrows and their magnitudes have the lengths of the arrows. On the basis of collapse load a design would be chosen with $\angle \text{EOD} >$ quite small, say 30° as in Figure 5(c).

CONCLUSIONS:

Depending upon the design circumstances one of the geometries of Figure 5(a), (b), or (c) is recommended. $\angle \text{EDO}$ of the figures will not affect the spade performance and should be chosen from other considerations.

a. The geometry of Figure 5(a) is recommended if only spade loads inclined near the horizontal are expected. $\angle \text{EOD}$ there should be roughly 60° .

b. The geometry of Figure 5(b) is recommended if spade loads inclined both near the horizontal and vertical are expected. $\angle \text{EOD}$ there should be roughly 60° .

c. The geometry of Figure 5(c) is recommended if only spade loads inclined near the vertical are expected. $\angle \text{EOD}$ there should be roughly 15° to 45° . This geometry is recommended also for situations where the system constrains the plate to displace in a given direction, say horizontally.

Figure 1. Photograph of XM-138 Spade After Firing

Fig. 2(a)

Fig. 2(b)

Figure 2. Sketches of a Spade

Figure 3. Configuration of plate and soil after a small plate displacement. Soil below the dashed curve has remained rigid.

$\angle \text{EOD} = 15^\circ$

$$\theta = -23$$

$$L = .06$$

$$\theta = -11$$

$$L = .14$$

$$\theta = 7$$

$$L = .32$$

$$\theta = 25$$

$$L = .57$$

$$\theta = 46$$

$$L = 1$$

$\angle \text{EOD} = 30^\circ$

$$\theta = -20$$

$$L = .17$$

$$\theta = -7$$

$$L = .13$$

$$\theta = 11$$

$$L = .22$$

$$\theta = 31$$

$$L = .37$$

$$\theta = 53$$

$$L = .56$$

$\angle \text{EOD} = 45^\circ$

$$\theta = -16$$

$$L = .07$$

$$\theta = -2$$

$$L = .12$$

$$\theta = 16$$

$$L = .19$$

$$\theta = 36$$

$$L = .27$$

$\angle \text{EOD} = 60^\circ$

$$\theta = -15$$

$$L = .07$$

$$\theta = 1$$

$$L = .11$$

$$\theta = 21$$

$$L = .15$$

$$\theta = 48$$

$$L = .23$$

$\angle \text{EOD} = 75^\circ$

$$\theta = -15$$

$$L = .07$$

$$\delta = 75^\circ$$

$$\theta = 6$$

$$L = .09$$

$$\delta = 60^\circ$$

$$\theta = 34^\circ$$

$$L = .15$$

$$\delta = 45^\circ$$

$$\theta = 45^\circ$$

$$L = .15$$

$$\theta = 30^\circ$$

$$L = .15^\circ$$

$$\theta = 15^\circ$$

Figure 4. Relative Load Magnitudes and Displacement Angles for $\phi = 30^\circ$. L is the relative length of the arrow.

Fig. 5(a). Spade without Trailing Plate

Fig. 5(b). Spade with Trailing Plate

Fig. 5(c). Spade without Trailing Plate

Figure 5. Recommended Spade Geometries

$\angle \text{EOD} = 75^\circ$

$\angle \text{EOD} = 60^\circ$

$\angle \text{EOD} = 45^\circ$

$\angle \text{EOD} = 15^\circ$

$\angle \text{EOD} = 30^\circ$

Figure 6. Relative Spade Loads Under Constrained Horizontal Displacement

REFERENCES

1. Dais, J. L., "Analysis of Soil Indentation by a Translating Grouser Plate", to appear as a U.S. Army Tank-Automotive Command report.
2. Dais, J. L., "A One-Dimensional Model for the Dynamic Analysis of Soil-Weapon Systems", to appear as a U.S. Army Tank-Automotive Command report.
3. Karafiath, L., and Bekker, M. G., "An Investigation of Gun Anchoring Spades Under the Action of Impact Loads", Ordnance Corps Land Locomotion Research Branch Report No. 19, 1957

DISTRIBUTION LIST

Commanding General
 U.S. Army Tank-Automotive Command
 Warren, Michigan 48090

Attention:

	<u>No. of Copies</u>
Chief Scientist/Technical Director of Laboratories, AMSTA-CL	1
Chief Engineer, AMSTA-CR	1
Director, Development & Engineering Directorate, AMSTA-R	1
Vehicular Components & Materials Laboratory, ATTN: General Support Branch, AMSTA-BSG	2
Vehicle Systems Division, AMSTA-RE	2
International Technical Programs Division, AMSTA-RI	1
Engineering Control Systems Division, AMSTA-RS	2
Systems Concept Division, AMSTA-RR	2
Maintenance Directorate, AMSTA-M	2
Quality Assurance Directorate, AMSTA-Q	2
Commodity Management Office, AMSTA-W	2
Vehicular Components & Materials Laboratory, ATTN: Research Library Branch, AMSTA-BSL	3
Safety & Reliability Division, AMSTA-RB	1
Land Locomotion Division, AMSTA-UL	10
Propulsion Systems Laboratory, AMSTA-G	5
Fire Power & Sub-System Integration Division, AMSTA-HF	1
Frame, Suspension & Track Division, AMSTA-UT	6
Scientific Computer Division, AMSTA-US	1
Technical Data Division, AMSTA-TD	2
Operations Support Division, AMSTA-RP	2
Combat Dev Comd Liaison' Office, CDCLN-A	2
Marine Corp Liaison Office, USMC-LNO	2
Mobility Systems Laboratory, AMSTA-U	1
Canadian Army Liaison Office, CDLS(D)	2
USA EL Liaison Office, AMSEL-RD-MN	2
USA Weapons Comd Liaison Office, AMSWE-LCV	2
Reliability Engineering Branch, AMSTA-RTT	1
Sheridan Project Managers Office, AMCPM-SH-D	1
General Purpose Vehicles Project Managers Office, AMCPM-GP	1
M60, M60A1, M46A3 Project Managers Office, AMCPM-M60	1
Combat Veh Liaison Office, AMCPM-CV-D	1
US Frg MBT Detroit Office, AMCPM-MBT-D	1
XM561 Project Managers Office, AMCPM-GG	1

No. of
Copies

Commanding General
U.S. Army Materiel Command
Washington, D. C.
ATTN: AMCRD-DM-G

2

Commander
Defense Documentation Center
Cameron Station
Alexandria, Virginia 22314

20

Marry Diamond Laboratories
ATTN: Technical Reports Group
Washington, D. C.

1

U.S. Naval Civil Engineer Res & Engr Lab
Construction Battalion Center
Port Hueneme, California

1

Commanding General
U.S. Army Test and Evaluation Command
Aberdeen Proving Ground, Maryland
ATTN: AMSTE-BB
AMSTE-TA

1

Commanding General
U.S. Army Supply & Maintenance Command
Washington, D. C. 20310
ATTN: AMSSM-MR

1

Commanding General
18th Airborne Corps
Fort Bragg, North Carolina 28307

1

Commanding General
U.S. Army Alaska
APO 409
Seattle, Washington

1

Office, Chief of Research & Development
Department of the Army
Washington, D. C.

2

U.S. Army Deputy Chief of Staff for Logistics
Washington, D. C.

2

No. of
Copies

Commander
U.S. Marine Corps
Washington, D. C.
Attention: AO-rH

1

Commanding Officer
U.S. Army Aviation Material Labs
Fort Eustis, Virginia
Attention: TCREC-SDL

1

Commanding General
U.S. Army General Equipment Test Activity
Fort Lee, Virginia 23801
Attn: Transportation Logistics Test Directorate

1

Commanding General
U.S. Army Medical Services Combat Development Agency
Fort Sam Houston, Texas 78234

2

Commanding Officer
Signal Corps
Fort Monmouth, New Jersey 07703
ATTN: CSRDL

2

Commanding Officer
Yuma Proving Ground
Yuma, Arizona 85364
ATTN: STEYP-TE

1

Corps of Engineers
U.S. Army Engineer Research & Development Labs
Fort Belvoir, Virginia 22060

1

President
U.S. Army Maintenance Board
Fort Knox, Kentucky 40121

1

President
U.S. Army Armor Board
Fort Knox, Kentucky 40121

1

President
U.S. Army Artillery Board
Fort Sill, Oklahoma 73503

1

President
U.S. Army Infantry Board
Fort Benning, Georgia 31905

1

	<u>No. of Copies</u>
President U.S. Army Airborne Electronic & Special Warfare Board Fort Bragg, North Carolina 26307	1
President U.S. Army Arctic Test Center APO Seattle, Washington 98733	1
Director, Marine Corps Landing Forces Development Center Quantico, Virginia 22134	1
Commanding General Headquarters USARAL APO 949 Seattle, Washington ATTN: ARAOD	2
Commanding Officer Aberdeen Proving Ground, Maryland 21005 Attention: STEAP-TL	1
Commanding General U.S. Army Aviation School Office of the Librarian Fort Rucker, Alabama ATTN: AASPI-L	1
Plans Officer (Psychologist) PP&A Div, G3, Hqs, USACDCBC Fort ORD, California 93941	1
Commanding General Hq, U.S. Army Materiel Command Research Division Research and Development Directorate Washington, D. C. 20025	1
Canadian Army Staff 2450 Massachusetts Avenue Washington, D. C.	4
Commanding General U.S. Army Materiel Command ATTN: AMCRD-RV-E, Mr. Paul Carlton Washington, D. C. 20315	1

No. of
Copies

Director U.S. Army Engineer Waterways Experiment Station Corps of Engineers P.O. Box 631 Vicksburg, Mississippi 39181	3
Unit X Documents Expediting Project Library of Congress Washington, D. C. Stop 303	4
Exchange and Gift Division Library of Congress Washington, D. C. 20025	1
United States Navy Industrial College of the Armed Forces Washington, D. C. ATTN: Vice Deputy Commandant	10
Continental Army Command Fort Monroe, Virginia	1
Department of National Defense Dr. N. W. Morton Scientific Advisor Chief of General Staff Army Headquarters Ottawa, Ontario, Canada	1
Chief Office of Naval Research Washington, D. C.	1
Superintendent U.S. Military Academy West Point, New York ATTN: Prof. of Ordnance	1
Superintendent U.S. Naval Academy Annapolis, Maryland	1
Chief, Research Office Mechanical Engineering Division Quartermaster Research & Engineering Command Natick, Massachusetts	1

~~UNCLASSIFIED~~

Security Classification

DOCUMENT CONTROL DATA - R&D

(Security classification of title, body of abstract and indexing annotation must be entered when the overall report is classified)

1. ORIGINATING ACTIVITY (Corporate author)		2a. REPORT SECURITY CLASSIFICATION UNCLASSIFIED
Land Locomotion Division, AMSTA-UL		2b. GROUP

3. REPORT TITLE

On the Design of Weapon Spades

4. DESCRIPTIVE NOTES (Type of report and inclusive dates)

5. AUTHOR(S) (Last name, first name, initial)

Dais, J. L.

6. REPORT DATE October 1968	7a. TOTAL NO. OF PAGES 14	7b. NO. OF REFS 3
--------------------------------	------------------------------	----------------------

8a. CONTRACT OR GRANT NO.

8c. ORIGINATOR'S REPORT NUMBER(S)

10281

b. PROJECT NO.

c. AMCMS: 5535.12.426

9d. OTHER REPORT NO(S) (Any other numbers that may be assigned this report)

d.

10. AVAILABILITY/LIMITATION NOTICES
Each transmittal of this document outside the agencies of the U.S. Government must

have prior approval of
U.S. Army Tank-Automotive Command
ATTN: AMSTA-BSL

12. SPONSORING MILITARY ACTIVITY
Land Locomotion Division
Mobility Systems Laboratory
U.S. Army Tank-Automotive Command
Warren, Michigan 48090

13. ABSTRACT

Various loading conditions on weapons spades are assumed and the corresponding optimum spade geometries are found.

~~UNCLASSIFIED~~
Security Classification

14. KEY WORDS	LINK A		LINK B		LINK C	
	ROLE	WT	ROLE	WT	ROLE	WT
Weapon Spade Spade Design						
INSTRUCTIONS						
1. ORIGINATING ACTIVITY: Enter the name and address of the contractor, subcontractor, grantee, Department of Defense activity or other organization (<i>corporate author</i>) issuing the report.	10. AVAILABILITY/LIMITATION NOTICES: Enter any limitations on further dissemination of the report, other than those imposed by security classification, using standard statements such as:					
2a. REPORT SECURITY CLASSIFICATION: Enter the overall security classification of the report. Indicate whether "Restricted Data" is included. Marking is to be in accordance with appropriate security regulations.	(1) "Qualified requesters may obtain copies of this report from DDC."					
2b. GROUP: Automatic downgrading is specified in DoD Directive 5200.10 and Armed Forces Industrial Manual. Enter the group number. Also, when applicable, show that optional markings have been used for Group 3 and Group 4 as authorized.	(2) "Foreign announcement and dissemination of this report by DDC is not authorized."					
3. REPORT TITLE: Enter the complete report title in all capital letters. Titles in all cases should be unclassified. If a meaningful title cannot be selected without classification, show title classification in all capitals in parenthesis immediately following the title.	(3) "U. S. Government agencies may obtain copies of this report directly from DDC. Other qualified DDC users shall request through _____"					
4. DESCRIPTIVE NOTES: If appropriate, enter the type of report, e.g., interim, progress, summary, annual, or final. Give the inclusive dates when a specific reporting period is covered.	(4) "U. S. military agencies may obtain copies of this report directly from DDC. Other qualified users shall request through _____"					
5. AUTHOR(S): Enter the name(s) of author(s) as shown on or in the report. Enter last name, first name, middle initial. If military, show rank and branch of service. The name of the principal author is an absolute minimum requirement.	(5) "All distribution of this report is controlled. Qualified DDC users shall request through _____"					
6. REPORT DATE: Enter the date of the report as day, month, year, or month, year. If more than one date appears on the report, use date of publication.	If the report has been furnished to the Office of Technical Services, Department of Commerce, for sale to the public, indicate this fact and enter the price, if known.					
7a. TOTAL NUMBER OF PAGES: The total page count should follow normal pagination procedures, i.e., enter the number of pages containing information.	11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.					
7b. NUMBER OF REFERENCES: Enter the total number of references cited in the report.	12. SPONSORING MILITARY ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring (paying for) the research and development. Include address.					
8a. CONTRACT OR GRANT NUMBER: If appropriate, enter the applicable number of the contract or grant under which the report was written.	13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document indicative of the report, even though it may also appear elsewhere in the body of the technical report. If additional space is required, a continuation sheet shall be attached.					
8b, 8c, & 8d. PROJECT NUMBER: Enter the appropriate military department identification, such as project number, subproject number, system numbers, task number, etc.	It is highly desirable that the abstract of classified reports be unclassified. Each paragraph of the abstract shall end with an indication of the military security classification of the information in the paragraph, represented as (TS), (S), (C), or (U).					
9a. ORIGINATOR'S REPORT NUMBER(S): Enter the official report number by which the document will be identified and controlled by the originating activity. This number must be unique to this report.	There is no limitation on the length of the abstract. However, the suggested length is from 150 to 225 words.					
9b. OTHER REPORT NUMBER(S): If the report has been assigned any other report numbers (<i>either by the originator or by the sponsor</i>), also enter this number(s).	14. KEY WORDS: Key words are technically meaningful terms or short phrases that characterize a report and may be used as index entries for cataloging the report. Key words must be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context. The assignment of links, rules, and weights is optional.					