Mathematics for Machine Learning (Al 512)

Amit Chattopadhyay

IIIT-Bangalore

✓ Irreducible and Aperiodic MC

1. Irreducible Markov Chains

Irreducible Markov Chains

Let $(X_0, X_1, ...)$ be a **Markov chain** (MC) with state space $S = \{s_1, s_2, ..., s_k\}$ and transition Matrix $\mathbb P$

Example 1: Is the MC with following transition matrix irreducible?

irreducible $P = \frac{s_1}{s_2} \begin{bmatrix} \frac{1}{2} & \frac{1}{2} & 0 \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \end{bmatrix}$ Me $P = \frac{s_1}{s_2} \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$ $P = \frac{s_1}{s_2} \begin{bmatrix} \frac{1}{2} & \frac{1}{4} & \frac{1}{4} \\ 0 & \frac{1}{3} & \frac{2}{3} \end{bmatrix}$

Irreducible Markov Chains: Mathematical Definition

Let $(X_0, X_1,...)$ be a **Markov chain** (MC) with state space

$$S = \{s_1, s_2, \dots, s_k\}$$
 and transition Matrix $\mathbb P$

• $s_i \rightarrow s_i$: state s_i is **accessible** from a state s_i

$$\Leftrightarrow$$
 if \exists an integer $n \ge 0$ such that

$$\Leftrightarrow \text{ if } \exists \text{ an integer } n \ge 0 \text{ such that}$$

$$P = \sum_{i,j} P(X_{m+n} = s_j \mid X_m = s_i) > 0$$

- $s_i \leftrightarrow s_i$: states s_i and s_i communicate \Leftrightarrow if $s_i \to s_i$ and $s_i \to s_i$
- An MC is **irreducible** $\Leftrightarrow s_i \leftrightarrow s_j \ \forall s_i, s_i \in S$

Rreducible Markov Chains: Classes

Property 1: ' \leftrightarrow ' is an **equivalence relation** on S.

Note: Thus ' \leftrightarrow ' partitions the state space S into **equivalence classes**. Communicating states belong to the same class. Any two classes are either disjoint or identical.

Example 2: Is the MC with following transition matrix irreducible?

Irreducibility: using Transition (or State Graph)

A MC is **irreducible** ⇔ its state graph is a **strongly connected graph**

G = (V, E): Directed Graph

- An **ordered pair of vertices** (u,v) is **strongly connected** if \exists a directed path from u to v in G
- Strongly Connected Graph (SCG): every 'ordered pair of vertices' is strongly connected
- Strongly Connected Component (SCC): a subgraph of *G* which is strongly connected

Examples

Example 3: Is the MC with following transition matrix irreducible?

$$\mathbb{P} = \begin{bmatrix} 0.5 & 0.5 & 0 & 0 \\ 0.3 & 0.7 & 0 & 0 \\ 0 & 0 & 0.2 & 0.8 \\ 0 & 0 & 0.8 & 0.2 \end{bmatrix} \qquad \text{(no, check from TG)}$$

Irreducibility using State Graph: Properties

1. The strongly connected components of an arbitrary directed graph

forms a partition into subgraphs that are themselves strongly connected. (In ight saction). Once a Walk leaves a strongly connected component it can never return. $\Delta(\alpha) = 3 + 3 + 6, \dots \quad 3 = 3$ before . M. Once a Walk leaves a strongly connected component it can never

5 DQQ

2. Aperiodic Markov Chains

Aperiodicity

 $(X_0, X_1, ...)$: a Markov chain (MC) with state space $S = \{s_1, s_2, ..., s_k\}$ and transition Matrix P

Periodicity ⇔ how periodically each state of MC can be re-visited

$$d(S_a) = 2$$

Aperiodicity: Mathematical Definition

Examples

Example 2: What is the period of each state in the MC with the following transition matrix?

$$\mathbb{P} = \begin{bmatrix} 0 & 1/4 & 0 & 3/4 \\ 1/2 & 0 & 1/3 & 1/6 \\ 0 & 0 & 0 & 1 \\ 0 & 1/2 & 1/4 & 1/4 \end{bmatrix}$$
 excless

Aperiodicity: Using Transition Graph (or State Graph)

 $d(s_i) = \gcd \{n \ge 1 : n = \text{length of cycle starting at } s_i\}$

If gcd of all cycle lengths =1 in the Transition Graph, then the MC is aperiodic. Is this true? No. (16 is true only when It MC irreducible)

all states are aperiod (Check!)

Me is aperiodic.

1 5 9 9 Q C

Cycle: A walk of vertices and edges whose start and end vertices coincide.

13/17

Aperiodicity: Properties

1. Bipartite graphs do not contain any odd-length cycles.

Aperiodicity: Properties

2. Periodicity of a state is a class property.

3. For a finite irreducible MC, all the states have the same period.

Finite, Irreducible, Aperiodic Markov Chains

Property 1: For a finite, aperiodic MC with transition matrix \mathbb{P} , there exists a positive integer N such that

$$(\mathbb{P}^m)_{i,i} > 0$$

for all states s_i and all m > N.

Property 2: For a finite, <u>irreducible</u>, <u>aperiodic</u> MC with transition matrix \mathbb{P} , there exists a positive integer M such that

for all states s_i, s_j and all $m \ge M$.

(P^m)_{i,j} > 0

(I) P^m is a +ve matrix

(II) sum of elements in each row is 1

Example

Example: What is the smallest N so that $(\mathbb{P}^m)_{i,i} > 0$ (for all states s_i and

