# **Boolean Algebra & Bit Manipulation**

**Computer Systems Organization** 

## **Motivating Example**

Design a coffee vending machine

- The machine can dispense coffee, tea, and milk
- It has a button for each choice
- A customer can have at most one of the three choices

Design a program (or circuit) that ensures that at most one of the three choices is selected



### **Motivating Example**

#### **Solution**

Use a boolean variable for each button

- C for coffee
- T for tea
- M for milk

Write a function that returns true if either

```
    (C == true and T == false and M == false)
    or
    (C == false and T == true and M == false)
    or
    (C == false and T == false and M == true)
```



## **Boolean Algebra**

#### Integer math

- Operands: integer numbers (0, 1, 2, 3, 4 ...)
- Operators: + \* /
- Properties of operators (associativity, commutativity ...)
- Examples
  - 1 + 2 = 2 + 1 = 3
  - (3 \* 2) \* 1 = 3 \* (2 \* 1) = 6

#### Boolean algebra: algebraic representation of logic

- Similar to integer math but for logic
- Encode "True" as 1 and "False" as 0

#### Operands

- ° 0, 1
- Operations
  - "and": &
  - ∘ "or": I
  - "not": ~

#### **Examples**

- · 1 & 1 = 1
- · 1 | 0 = 1



Claude Shannon introduced boolean algebra to circuits

## Boolean Algebra

And

A & B = 1 when both A=1 and B=1

Or

 $A \mid B = 1$  when either A=1 or B=1

Not

 $^{\sim}$ A = 1 when A=0

Exclusive-Or (Xor)

 $A^B = 1$  when either A=1 or B=1, but not both

## Boolean Algebra is Like Integer Math

#### **Commutativity**

$$A \mid B = B \mid A$$
  
 $A \& B = B \& A$ 

$$A + B = B + A$$
  
 $A * B = B * A$ 

#### **Associativity**

$$(A \mid B) \mid C = A \mid (B \mid C)$$
  
 $(A \& B) \& C = A \& (B \& C)$ 

$$(A + B) + C = A + (B + C)$$
  
 $(A * B) * C = A * (B * C)$ 

#### Product distributes over sum

$$A \& (B | C) = (A \& B) | (A \& C)$$
  $A * (B + C) = A * B + B * C$ 

$$A * (B + C) = A * B + B * C$$

#### *Sum and product identities*

$$A \mid 0 = A$$
  
 $A \& 1 = A$ 

$$A + 0 = A$$
$$A * 1 = A$$

#### Zero is product annihilator

$$A \& 0 = 0$$

$$A * 0 = 0$$

#### Cancellation of negation

$$\sim$$
 ( $\sim$  A) = A

$$A-(-A) = A$$

## Boolean Algebra is Un-like Integer Math

Boolean: Sum distributes over product

$$A \mid (B \& C) = (A \mid B) \& (A \mid C)$$

$$A + (B * C) \neq (A + B) * (B + C)$$

Boolean: *Idempotency* 

$$A \mid A = A$$

$$A + A \neq A$$

$$A \& A = A$$

$$A * A \neq A$$

Boolean: Absorption

$$A \mid (A \& B) = A$$

$$A + (A * B) \neq A$$

"A is true" or "A is true and B is true" = "A is true"

$$A(1 | (1 \& B)) = A$$

$$A & (A \mid B) = A$$

$$A * (A + B) \neq A$$

Boolean: Laws of Complements

$$A \mid ^{\sim}A = 1$$

$$A + -A \neq 1$$

"A is true" or "A is false"

# **Negation Rules**

#### Negation rules

- ° ~(A & B) = ~A | ~B
- ∘ ~(A | B) = ~A & ~B

### **Practice**

#### Simplify

#### **Solution**

#### **Summary of simplification rules**

$$A \& (B | C) = (A \& B) | (A \& C)$$
  
 $A | (B \& C) = (A | B) \& (A | C)$ 

$$A \mid {}^{\sim}A = 1$$
  
 ${}^{\sim}({}^{\sim}A) = A$   
 ${}^{\sim}(A \& B) = {}^{\sim}A \mid {}^{\sim}B$   
 ${}^{\sim}(A \mid B) = {}^{\sim}A \& {}^{\sim}B$ 

### **Practice**

#### Simplify

~(A & B) & (~A | B) & (~B | B)

#### **Solution**

#### **Summary of simplification rules**

$$A \& (B | C) = (A \& B) | (A \& C)$$
  
 $A | (B \& C) = (A | B) \& (A | C)$ 

$$A \mid {}^{\sim}A = 1$$
  
 ${}^{\sim}({}^{\sim}A) = A$   
 ${}^{\sim}(A \& B) = {}^{\sim}A \mid {}^{\sim}B$   
 ${}^{\sim}(A \mid B) = {}^{\sim}A \& {}^{\sim}B$ 

### **Other Notations**

# **Bitwise Operations**

### **Bitwise Operations**

Boolean operators on bit vectors Operations applied bitwise

All of the Properties of Boolean Algebra Apply

| 01101001   | 01101001 | 01101001   | ~ 01010101 |  |
|------------|----------|------------|------------|--|
| & 01010101 | 01010101 | ^ 01010101 |            |  |
| 01000001   | 01111101 | 00111100   | 10101010   |  |

### Bitwise Operations in C

#### Operations &, |, ~, ^ Available in C

- Apply to any "integral" data type
  - long, int, short, char
- View arguments as bit vectors
- Arguments applied bit-wise

#### Examples (Char data type)

### Contrast: Logic Operations in C

#### Contrast to Logical Operators

```
& &, | |, !
View 0 as "False"
Anything nonzero as "True"
Always return 0 or 1
Early termination
```

#### Examples (char data type)

```
   !0x41   --> 0x00
   !0x00   --> 0x01
   !!0x41   --> 0x01
```

```
    0x69 && 0x55 --> 0x01
    0x69 || 0x55 --> 0x01
    p && *p (avoids null pointer access)
```

### **Shift Operations**

Left Shift: x << y

- Shift bit-vector x left y positions
  - Throw away extra bits on left
  - Fill with 0's on right

| Argument x         | 01100010 |  |
|--------------------|----------|--|
| << 3               | 00010000 |  |
| Log. >> 2          | 00011000 |  |
| <b>Arith.</b> >> 2 | 00011000 |  |

Right Shift:  $x \gg y$ 

- Shift bit-vector x right y positions
  - Throw away extra bits on right
  - Left side depends on kind of shift
- Logical shift
  - Fill with 0's on left
- Arithmetic shift
  - Replicate most significant bit on left
  - Useful with two's complement integer representation

| Argument x         | 10100010         |  |
|--------------------|------------------|--|
| << 3               | 00010000         |  |
| Log. >> 2          | 00101000         |  |
| <b>Arith.</b> >> 2 | <b>11</b> 101000 |  |

## Representing & Manipulating Sets

#### Representation

- A vector of w bits represents the set A =  $\{0, ..., w-1\}$
- if  $j \in A$  then set the bit j to 1 in the vector

```
    01101001 {0,3,5,6}
    76543210
    01010101 {0,2,4,6}
    76543210
```

#### **Operations**

| 0 | & | Intersection         | 01000001 | { 0, 6 }             |
|---|---|----------------------|----------|----------------------|
| 0 |   | Union                | 01111101 | { 0, 2, 3, 4, 5, 6 } |
| 0 | ٨ | Symmetric difference | 00111100 | { 2, 3, 4, 5 }       |
| 0 | ~ | Complement           | 10101010 | { 1, 3, 5, 7 }       |

Symmetric difference of A and B is the set of elements that are either in A or in B but not in both

### **Practice**

Show that A + A.B = A

### **Cool Stuff with Xor**

- Bitwise xor is form of addition
- With extra property that every value is its own additive inverse

```
A ^ A = 0
```

|       | *x            | *y            |
|-------|---------------|---------------|
| Begin | A             | В             |
| 1     | A^B           | В             |
| 2     | A^B           | $(A^B)^B = A$ |
| 3     | $(A^B)^A = B$ | A             |
| End   | В             | A             |

### **Main Points**

#### It's All About Bits & Bytes

- Numbers
- Programs
- Text

#### Different Machines Follow Different Conventions

- Word size
- Byte ordering
- Representations

#### Boolean Algebra

- Basic form encodes "false" as 0, "true" as 1
- General form like bit-level operations in C
  - Good for representing & manipulating sets