Лабораторная работа №2

студента группы ИТ – 42 Курбатовой Софьи Андреевны

Выполнение:	Защита	
Выполнение:	Защита	

ФУНКЦИИ В MAPLE. ОПЕРАЦИИ ОЦЕНИВАНИЯ. РЕШЕНИЕ УРАВНЕНИЙ И НЕРАВЕНСТВ.

Содержание работы

1. Выполнила действия, указанные в первом задании в разделе «Способы задания функций. Замена переменных». В результате был получен результат, представленный на Рис. 2.1.

Рис. 2.1. Выполнение Задания 1

2. Задание 2 было сформулировано следующим образом: Дано число a=57/13. Найти его целую часть х и дробную часть у и убедиться, что a=x+y. Выполнив операции frac(expr) – вычисление дробной части выражения expr и trunc(expr) – вычисление целой части выражения expr получила значения у и х соответственно. Далее проверила, что сумма полученных значений переменных равна а. Результат на Рис. 2.2

Рис. 2.2. Выполнение п.1 Задания 2

В следующем пункте было необходимо для данного комплексного числа z найти его вещественную и мнимую части, а затем комплексно сопряженное ему число w и убедиться, что w+z=2Re(z). Результат выполнения представлен на Рис. 2.3. Выполнение u представлено на Рис. 2.4 .

Рис. 2.3. Выполнение п.2 Задания 2

Поиск модуля и аргумента комплексного числа

$$> z := -1 - I^* \operatorname{sqrt}(3) :$$
 $> readlib(\operatorname{polar}) : \operatorname{polar}(z);$
 $> \operatorname{polar}\left(2, -\frac{2}{3}\pi\right)$
 $> \operatorname{evalc}(z^4);$
 $-8 - 8\operatorname{I}\sqrt{3}$

(14)

Рис. 2.4. Выполнение п3. Задания 2

3. Результат выполнения задания 3, связанного с поиском решения уравнений через команды solve, fsolve представлен на Рис. 2.5 и Рис. 2.6.

Задание №3

Поиск суммы двух наборов решений:

Рис. 2.5. Решение задания 3 ч.1

-Численное решение:

Поиск функции удовл. уравнению

Поиск всех решений

Рис. 2.6. Решение задания 3 ч.2

4. Решение задания 4 представлено на рисунке Рис. 2.7 Задание №4

Рис. 2.7. Решение задания 4

5. Далее выполнила контрольные задания. Результаты выполнения представлены на

> restart;
>
$$z := \left(2 \cdot \exp\left(\frac{I \cdot \text{Pi}}{6}\right)\right)^{5}$$
;
 $z := 32 \left(\frac{1}{2}\sqrt{3} + \frac{1}{2}I\right)^{5}$ (26)
> $z := \text{evalc}(\%)$;
 $z := -16\sqrt{3} + 16I$ (27)
> $\text{Re}(z)$;
- $16\sqrt{3}$ (28)
> $\text{Im}(z)$;
16 (29)
> $\text{polar}(z)$;
polar $\left(32, \frac{5}{6}\pi\right)$ (30)

Рис. 2.8. Контрольное задание 1

Контрольное задание 2

$$f := \frac{(x^{3}y^{2} - x^{2}y^{3})}{(x \cdot y)^{5}};$$

$$f := \frac{x^{3}y^{2} - x^{2}y^{3}}{x^{5}y^{5}}$$

$$\Rightarrow subs\left(\left\{x = a, y = \frac{1}{a}\right\}, f\right);$$

$$a - \frac{1}{a}$$
(35)

Рис. 2.10. Контрольное задание 3

Рис. 2.11. Контрольное задание 4

$$\begin{array}{l} \begin{tabular}{l} \begi$$

Рис. 2.12. Контрольное задание 5

Рис. 2.13. Контрольное задание 6

> restart;
> eq :=
$$2 \cdot \ln(x)^2 - \ln(x) < 1$$
:
> solve(eq, x);
RealRange $\left(Open\left(\frac{1}{\frac{1}{e^2}} \right), Open(e) \right)$
> solve(eq, {x});

$$\left[x < e, \frac{1}{\frac{1}{e^2}} < x \right]$$
(42)

Рис. 2.14. Контрольное задание 7

Ответы на контрольные вопросы

1. Опишите способы задания функций в Maple?

Первый способ заключается в определении функции с помощью оператора присваивания (:=): Например: $f:=\sin(x)$. Если задать конкретное значение переменной x, то получится значение функции f для этого x. Чтобы насовсем не присваивать переменной конкретного значения, удобнее использовать команду подстановки $\sup\{x1=a1, x2=a2,..., \}, f\}$, где в фигурных скобках указываются переменные xi и xi0 их новые значения xi0 их новые значения xi0 которые следует подставить в функцию xi0 функцию xi1 их новые значения xi2 и xi3 которые следует подставить в

Определение функции с помощью функционального оператора, который ставит в соответствие набору переменных (x1,x2,...) одно или несколько выражений (f1,f2,...). Например, определение функции двух переменных с помощью функционального оператора выглядит следующим образом: $> f:=(x,y)->\sin(x+y)$.

C помощью команды unapply(expr,x1,x2,...), где expr — выражение, x1,x2,... — набор переменных, от которых оно зависит, можно преобразовать выражение expr в функциональный оператор.

2. Какие операции оценивания производятся в Maple с действительными выражениями?

В Maple имеются следующие команды оценивания вещественных выражений: frac(expr) – вычисление дробной части выражения expr;

trunc(expr) – вычисление целой части выражения expr;

round(expr) – округление выражения expr

3. Для чего предназначена команда evalf?

Все вычисления в Maple по умолчанию производятся символьно, то есть результат будет содержать в явном виде иррациональные константы. ,е и другие. Чтобы получить приближенное значение в виде числа с плавающей запятой, следует использовать команду evalf(expr,t), где expr – выражение, t – точность, выраженная в числах после запятой.

4. С помощью каких команд можно найти вещественную и мнимую части комплексного выражения, а также его модуль и аргумент, и комплексно сопряженное ему число? Какую роль выполняет команда evalc?

Вещественную и мнимую части комплексного выражения z=x+iy можно найти с помощью команд Re(z) и Im(z).

Если z=x+iy, то комплексно сопряженное ему выражение $w=z^*=x-iy$ можно найти с помощью команды conjugate(z).

Модуль и аргумент комплексного выражения z можно найти с помощью команды polar(z), которую необходимо предварительно вызвать из стандартной библиотеки командой readlib.

Получить вещественную и мнимую части комплексного выражения z можно, если использовать команду преобразования комплексных выражений evalc(z).

5. Для чего предназначена команда solve?

Для решения уравнений в Maple существует универсальная команда solve(eq,x), где eq – уравнение, x – переменная, относительно которой уравнение надо разрешить. В результате выполнения этой команды в строке вывода появится выражение, которое является решением данного уравнения.

6. Какие команды используются для численного решения уравнений и для решения рекуррентных уравнений?

Для численного решения уравнений, в тех случаях, когда трансцендентные уравнения не имеют аналитических решений, используется специальная команда fsolve(eq,x), параметры которой такие же, как и команды solve. Команда rsolve(eq,f) позволяет решить рекуррентное уравнение еq для целой функции f. Можно задать некоторое начальное условие для функции f(n), тогда получиться частное решение данного рекуррентного уравнение.

7. Какие дополнительные команды следует ввести для того, чтобы получить точное решение уравнения, все решения уравнения?

Для получения решения в явном виде перед командой solve следует ввести дополнительную команду EnvExplicit:=true. Для получения всех решений ввести _EnvAllSolutions:=true:

8. В каком виде выдается решение неравенства? Как отличить в строке вывода закрытый интервал от открытого?

Решение неравенства выдается в виде интервала изменения искомой переменной. В том случае, если решение неравенства полуось, то в поле вывода появляется конструкция вида RealRange($-\infty$, Open(a)), которая означает, что $x \in (-\infty, a)$, а – некоторое число. Слово Open означает, что интервал с открытой границей. Если этого слова нет, то соответствующая граница интервала включена во множество решений.

Вывод: Таким образом в ходе выполнения лабораторной работы было осуществлено знакомство со способами задания функций в Maple. Были изучены операции оценивания.

В ходе выполнения поставленных заданий были рассмотрен процесс решения уравнений и неравенств.

Таким образом можно говорить о том, что Maple можно использовать для решения сложных задач связанными с решением систем уравнений, комплексными числами, а также неравенствами.