SEMINAR 6

Problema 1. Să se arate că $((-1,1),*) \simeq ((0,\infty),\cdot)$, unde $x*y = \frac{x+y}{1+xy}$.

Soluţie: Considerăm $f:(-1,1) \longrightarrow (0,+\infty), f(x) = \frac{1-x}{1+x}$. Este clar că $\lim_{x\to -1} f(x) = +\infty$ şi $\lim_{x\to 1} f(x) = 0$. Trebuie să demonstrăm că f este morfism şi este funcție bijectivă.

• morfism

$$f(x*y) = \frac{1-x*y}{1+x*y} = \frac{1-\frac{x+y}{1+xy}}{1+\frac{x+y}{1+xy}} = \frac{1-x-y+xy}{1+x+y+xy} = \frac{(1-x)(1-y)}{(1+x)(1+y)} = \frac{1-x}{1+x} \cdot \frac{1-y}{1+y} = f(x) \cdot f(y).$$

- f injectivă: $f(x_1) = f(x_2) \Leftrightarrow \frac{1-x_1}{1+x_1} = \frac{1-x_2}{1+x_2} \Leftrightarrow (1-x_1)(1+x_2) = (1-x_2)(1+x_1) \Leftrightarrow -x_1+x_2 = x_1 x_2 \Leftrightarrow 2x_2 = 2x_1 \Leftrightarrow 2x_2 = 2x_1 \Leftrightarrow x_1 = x_2$
- f surjectivă: fie $y \in (0, +\infty)$, trebuie să rezolvăm ecuația f(x) = y. Avem $\frac{1-x}{1+x} = y \Leftrightarrow 1-x = y + xy \Leftrightarrow 1-y = x(1+y) \Rightarrow x = \frac{1-y}{1+y} \in (-1,1)$.

Decif este izomorfism.

Definiție: Fie G un grup și $x \in G$ un element al lui G.

Dacă $x^n \neq 1$ pentru $\forall n > 0$, atunci spunem că ordinul lui x și notăm ord(x), este ∞ .

Dacă $\exists k > 0$ cu $x^k = 1$, atunci $\operatorname{ord}(x) = \min\{k \in \mathbb{N}^* \mid x^k = 1\}$.

Problema 2. Fie G un grup şi $a,b\in G$ elemente de ordin finit, m şi n. Presupunem că ab=ba şi că (m,n)=1. Arătaţi că ab are ordinul mn.

Problema 3. Demonstrați că grupurile $(\mathbb{Z}_4, +)$ și $(U(\mathbb{Z}_{10}), \cdot)$ sunt izomorfe.

Tabla adunării pe \mathbb{Z}_4 este:

+	Ô	î	$\hat{2}$	$\hat{3}$
$\hat{0}$ $\hat{1}$ $\hat{2}$ $\hat{3}$	0 1 2 3	$\hat{1}$ $\hat{2}$ $\hat{3}$ $\hat{0}$	2 3 0 1	3 0 1 2

Să precizăm ordinele elementelor grupului \mathbb{Z}_4 . Avem:

$$\hat{1} + \hat{1} + \hat{1} + \hat{1} = \hat{0} \Leftrightarrow 4 \cdot \hat{1} = \hat{0} \Rightarrow \operatorname{ord}(\hat{1}) = 4,$$

$$\hat{2} + \hat{2} = \hat{0} \Leftrightarrow 2 \cdot \hat{2} = \hat{0} \Rightarrow \operatorname{ord}(\hat{2}) = 2,$$

$$\hat{3} + \hat{3} + \hat{3} + \hat{3} = \hat{0} \Leftrightarrow 4 \quad \hat{3} = \hat{0} \Rightarrow \operatorname{ord}(\hat{3}) = 4.$$

 $U(\mathbb{Z}_{10}) = \{\overline{1}, \overline{3}, \overline{7}, \overline{9}\}$ și tabla înmulțirii este:

•	1	$\overline{3}$	$\overline{7}$	$\overline{9}$
$\frac{\overline{1}}{\overline{3}}$ $\overline{7}$ $\overline{9}$	$\frac{\overline{1}}{\overline{3}}$ $\frac{\overline{7}}{\overline{9}}$	$\frac{\overline{3}}{\overline{9}}$ $\frac{\overline{1}}{7}$	$\frac{\overline{7}}{\frac{1}{9}}$	$\frac{\overline{9}}{\overline{7}}$ $\frac{\overline{3}}{\overline{1}}$

2 SEMINAR 6

Ordinele elementelor grupului $U(\mathbb{Z}_{10})$ sunt:

- $\overline{3} \cdot \overline{3} \cdot \overline{3} \cdot \overline{3} = \overline{1} \Rightarrow \operatorname{ord}(\overline{3}) = 4,$
- $\overline{7} \cdot \overline{7} \cdot \overline{7} \cdot \overline{7} = \overline{1} \Rightarrow \operatorname{ord}(\overline{7}) = 4,$
- $\overline{9} \cdot \overline{9} = \overline{1} \Rightarrow \operatorname{ord}(\overline{9}) = 2.$

Astfel un izomorfism trebuie să transforme un element de un anumit ordin într-un element de același ordin. Avem $\hat{0} \mapsto \overline{1}, \hat{2} \mapsto \overline{9}, \hat{1} \mapsto \overline{3}, \hat{3} \mapsto \overline{7}$ sau $\hat{0} \mapsto \overline{1}, \hat{2} \mapsto \overline{9}, \hat{1} \mapsto \overline{7}, \hat{3} \mapsto \overline{3}$. se verifică ușor că acestea sunt izomorfisme.

Produsul direct a două grupuri G_1, G_2 este $G_1 \times G_2$, operația este produsul pe componente. Elementele din G_1 comută cu cele din G_2 .

Problema 4. Să se scrie tabla grupului $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$. Să se demonstreze că $(U(\mathbb{Z}_8), \cdot)$ este izomorf cu grupul $(\mathbb{Z}_2 \times \mathbb{Z}_2, +)$.

Soluție: Notăm elementele din $\mathbb{Z}_2 \times \mathbb{Z}_2$: $0 = (\hat{0}, \hat{0}), a = (\hat{1}, \hat{0}), b = (\hat{0}, \hat{1}), a+b = (\hat{1}, \hat{1})$. Adunarea se face pe componente. Avem a+b=b+a pentru că adunăm pe fiecare componentă cu $\hat{0}$. Tabla adunării este

Vedem că $\operatorname{ord}(a) = \operatorname{ord}(b) = \operatorname{ord}(a+b) = 2$.

Pentru $U(\mathbb{Z}_8) = \{\hat{1}, \hat{3}, \hat{5}, \hat{7}\}$ avem $\operatorname{ord}(\hat{3}) = \operatorname{ord}(\hat{5}) = \operatorname{ord}(\hat{7}) = 2$. Cele două grupuri sunt izomorfe. Sunt grupuri cu doi generatori și orice izomorfism este determinat de valorile pe generatori. De exemplu $0 \mapsto \hat{1}, a \mapsto \hat{3}, b \mapsto \hat{5}, a + b \mapsto \hat{3} \cdot \hat{5} = \hat{7}$.

Grupul $\mathbb{Z}_2 \times \mathbb{Z}_2$ se numețe grupul lui Klein.

Problema 5. Orice grup cu 4 elemente este izomorf sau cu $(\mathbb{Z}_4,+)$ sau cu $(\mathbb{Z}_2 \times \mathbb{Z}_2,+)$.

Soluție: Ordinul grupului este numărul de elemente al acestuia. Se știe că pentru orice $x \in G$, ord(x) | |G|. Deci pentru un grup G cu 4 elemente, orice element $1 \neq x \in G \Rightarrow \operatorname{ord}(x) \in \{2, 4\}$.

- pentru orice $1 \neq x$, ord $(x) = 2 \Leftrightarrow x^2 = 1 \Leftrightarrow x = x^{-1}$. Considerăm $1 \neq y \neq x$, şi $y^2 = 1$ de unde $y^{-1} = y$. xy este un alt element. Am demonstrat în seminarul 5 că orice grup pentru care orice $x \in G, x^2 = 1$ este abelian. Deci yx = xy. Astfel elementele grupului sunt 1, x, y, xy, cele diferite de 1 de ordin 2. Acesta este grupul Klein.
- $\exists x \in G$, $\operatorname{ord}(x) = 4$. Deci avem $x^4 = 1$ şi elementele grupului $G = \{1, x, x^2, x^3\}$. Să vedem că acestea sunt distincte. $1 \neq x$ pentru că $\operatorname{ord}(x) = 4$ iar $\operatorname{ord}(1) = 1$. Dacă $x^2 = 1$ atunci $\operatorname{ord}(x) = 2 < 4$, ceea ce contrazice ipoteza. Deci $x^2 \neq 1$. Dacă $x^2 = x \Rightarrow x = 1$, ceea ce este fals. Deci $1 \neq x^2 \neq x$. Similar se arată că $1 \neq x^3 \neq x$ şi $x^3 \neq x^2$. Deci $(G, \cdot) \simeq (Z_4, +)$. Acesta este de fapt grupul ciclic cu 4 elemente scris multiplicativ sau aditiv.

SEMINAR 6 3

Problema 6. Să se arate că $D_3 \simeq S_3$.

Soluţie: D_3 este generat de ρ rotaţia cu 120° în sens antiorar în jurul centrului şi s oricare dintre cele trei simetrii. Vom considera $s=s_3$, simetria faţă de mediatoarea l_3 ce trece prin vârful 3. Acţiunea rotaţiei ρ pe vârfurile 1, 2, 3 ale triunghiului este : $(1,2,3) \longmapsto (2,3,1)$. Ac ciunea simetriei $s=s_3$ pe vârfurile triungiului este $(1,2,3) \longmapsto (2,1,3)$. ρ şi s sunt generatorii grupului D_3 , adică fiecare element se poate scrie ca un cuvânt în puterile lui ρ şi ale lui s. Ca mulţime $D_3=\{1,\rho,\rho^2,s,\rho s,\rho^2 s\}$. Corespondenţa $\rho\mapsto a=\begin{pmatrix}1&2&3\\2&3&1\end{pmatrix}$ şi $s\mapsto b=\begin{pmatrix}1&2&3\\2&1&3\end{pmatrix}$

definește un izomorfism între D_3 și S_3 . În ambele grupuri operația este compunerea aplicațiilor care se face de la dreapta la stânga.

Problema 7. Orice grup cu 6 elemente este izomorf sau cu \mathbb{Z}_6 sau cu grupul permutărilor S_3 .

Soluție: Folosim din nou faptul că pentru orice $x \in G$, ord(x) |G|.

- $\sharp x \in G$, ord(x) = 6. Atunci $(\forall)x \neq 1$ poate avea ordinul 2 sau 3. Aplicând teorema Cauchy rezultă că există în G un element x, ord(x) = 3 și un element y, ord(y) = 2. Bineînțeles $x \neq y$, pentru că au ordine diferite. Avem $1 \neq x \neq x^2 \neq 1$. Putem avea $y = x^2$? Dacă ar fi adevărat atunci $1 = y^2 = (x^2)^2 = x^4$. Deci $x^4 = 1 = x^3(\operatorname{ord}(x) = 3) \Rightarrow x = 1$, ceea ce este fals. Deci $y \notin \{1, x, x^2\}$. În G avem elementele $\{1, x, x^2, y, xy, x^2y\}$.
 - dacă $yx = 1 \Rightarrow x = y^{-1} = y$ fals
 - dacă $yx = x \Rightarrow y = 1$ fals
 - dacă $yx = x^2 \Rightarrow y = x$ fals
 - dacă $yx = y \Rightarrow x = 1$ fals
 - dacă yx = xy nu avem o contradicție, grupul care se obține este abelian
 - o altă variantă este ca $yx = x^2y \Leftrightarrow yxy^{-1} = x^2 \Leftrightarrow yxy = x^2$.
- 1: yx = xy. Notăm xy = a. $a^2 = (xy)^2 = xyxy = xyyx = x^2$, $a^3 = aa^2 = (xy)x^2 = yxx^2 = y$, $a^4 = x^4 = xx^3 = x$, $a^5 = a^2a^3 = x^2y$, $a^6 = (a^3)^2 = y^2 = 1$. Am obținut un element de ordin 6, deci o contradicție.
- **2.** $yx = x^2y$. În acest caz avem $yx^2 = yxx = x^2yx = x^2x^2y = x^4y = xy$. Deci în acest caz $G = \{1, x, x^2, y, xy, x^2y\}$, iar $yx = x^2y$ şi $yx^2 = xy$. Acesta este grupul $S_3 \simeq D_3$.
 - $\exists x \in G, \operatorname{ord}(x) = 6$, atunci

 $G = \{1, x, x^2, x^3, x^4, x^5\}$, adică grupul ciclic cu 6 elemente. Similar cu demonstrația din problema 5, aceste elemente sunt distincte. Deci $(G, \cdot) \simeq (\mathbb{Z}_6, +)$.