

Figure 3.6: SVD problem

- 1. Run the power method starting from $x = \binom{1}{1}$ for k = 3 steps. What does this give as an estimate of v_1 ?
- 2. What actually are the v_i 's, σ_i 's, and u_i 's? It may be easiest to do this by computing the eigenvectors of $B = A^T A$.
- 3. Suppose matrix A is a database of restaurant ratings: each row is a person, each column is a restaurant, and a_{ij} represents how much person i likes restaurant j. What might v_1 represent? What about u_1 ? How about the gap $\sigma_1 \sigma_2$?

Exercise 3.7 Let A be a square $n \times n$ matrix whose rows are orthonormal. Prove that the columns of A are orthonormal.

Exercise 3.8 Suppose A is a $n \times n$ matrix with block diagonal structure with k equal size blocks where all entries of the i^{th} block are a_i with $a_1 > a_2 > \cdots > a_k > 0$. Show that A has exactly k nonzero singular vectors $\mathbf{v_1}, \mathbf{v_2}, \ldots, \mathbf{v_k}$ where $\mathbf{v_i}$ has the value $(\frac{k}{n})^{1/2}$ in the coordinates corresponding to the i^{th} block and 0 elsewhere. In other words, the singular vectors exactly identify the blocks of the diagonal. What happens if $a_1 = a_2 = \cdots = a_k$? In the case where the a_i are equal, what is the structure of the set of all possible singular vectors?

Hint: By symmetry, the top singular vector's components must be constant in each block.

Exercise 3.9 Interpret the first right and left-singular vectors for the document term matrix.

Exercise 3.10 Verify that the sum of r-rank one matrices $\sum_{i=1}^{r} c_i \mathbf{x_i} \mathbf{y_i}^T$ can be written as XCY^T , where the $\mathbf{x_i}$ are the columns of X, the $\mathbf{y_i}$ are the columns of Y, and C is a diagonal matrix with the constants c_i on the diagonal.

Exercise 3.11 Let $\sum_{i=1}^{r} \sigma_i \mathbf{u_i} \mathbf{v_i}^T$ be the SVD of A. Show that $\left| \mathbf{u_1}^T A \right| = \sigma_1$ and that $\left| \mathbf{u_1}^T A \right| = \max_{\left| \mathbf{u} \right| = 1} \left| \mathbf{u}^T A \right|$.

Exercise 3.12 If $\sigma_1, \sigma_2, \ldots, \sigma_r$ are the singular values of A and $\mathbf{v}_1, \mathbf{v}_2, \ldots, \mathbf{v}_r$ are the corresponding right-singular vectors, show that

- 1. $A^T A = \sum_{i=1}^r \sigma_i^2 \mathbf{v_i} \mathbf{v_i}^T$
- 2. $\mathbf{v}_1, \mathbf{v}_2, \dots \mathbf{v}_r$ are eigenvectors of $A^T A$.
- 3. Assuming that the eigenvectors of A^TA are unique up to multiplicative constants, conclude that the singular vectors of A (which by definition must be unit length) are unique up to sign.

Exercise 3.13 Let $\sum_{i} \sigma_{i} u_{i} v_{i}^{T}$ be the singular value decomposition of a rank r matrix A.

Let $A_k = \sum_{i=1}^k \sigma_i u_i v_i^T$ be a rank k approximation to A for some k < r. Express the following quantities in terms of the singular values $\{\sigma_i, 1 \le i \le r\}$.

- 1. $||A_k||_F^2$
- $2. ||A_k||_2^2$
- 3. $||A A_k||_F^2$
- 4. $||A A_k||_2^2$

Exercise 3.14 If A is a symmetric matrix with distinct singular values, show that the left and right singular vectors are the same and that $A = VDV^{T}$.

Exercise 3.15 Let A be a matrix. How would you compute

$$\mathbf{v_1} = \underset{|\mathbf{v}|=1}{\operatorname{arg\,max}} |A\mathbf{v}|?$$

How would you use or modify your algorithm for finding $\mathbf{v_1}$ to compute the first few singular vectors of A.

Exercise 3.16 Use the power method to compute the singular value decomposition of the matrix

$$A = \left(\begin{array}{cc} 1 & 2 \\ 3 & 4 \end{array}\right)$$

Exercise 3.17 1. Write a program to implement the power method for computing the first singular vector of a matrix. Apply your program to the matrix

$$A = \left(\begin{array}{ccccc} 1 & 2 & 3 & \cdots & 9 & 10 \\ 2 & 3 & 4 & \cdots & 10 & 0 \\ \vdots & \vdots & \vdots & & & \vdots \\ 9 & 10 & 0 & \cdots & 0 & 0 \\ 10 & 0 & 0 & \cdots & 0 & 0 \end{array}\right).$$