Atari-HEAD Atari Human Eye-Tracking and Demonstration Dataset

Ruohan Zhang*, Calen Walshe, Zhuode Liu, Lin Guan, Karl Muller, Jake Whritner, Luxin Zhang, Mary Hayhoe, Dana Ballard

The University of Texas at Austin Carnegie Mellon University

*zharu@utexas.edu

Previous work

- Arcade Learning Environment (Bellemare, et al. 2013; Machado, et al. 2018)
- Deep Q-Network (Mnih, et al. 2015)
- Rainbow (Hessel, et al. 2018), etc
- Deep Q-learning from demonstration (Hester, et al. 2018)

Motivations

- [AI] How can we collect demonstration data that better suited for training artificial learning agents?
- [Cognitive ergonomics] What is the level of human performance when the Atari gaming environment is made more friendly to human players?
- [Visuomotor control] How do humans play these games? How do they perceive game images and make decisions?

What this is

- **Atari H**uman **E**ye-Tracking **A**nd **D**emonstration Dataset

Eyelink-1000 infrared eye tracker

Basic statistics

20 games, 117 hours of game data

7.97 million actions

328 million gaze locations

Design: Semi-frame-by-frame game playing

- Game pauses until action
 - Players can hold down a key and the game will run continuously at 20Hz
- Eliminates errors due to sensori-motor delays
 - Which is typically ~250ms (~15 frames at 60Hz game speed)
 - Action a(t) could be intended for a state $s(t-\Delta) \sim 250 \text{ms}$ ago
 - Ensuring the action (label) matches the state (input) is important for supervised learning algorithms such as behavior cloning

Design: Semi-frame-by-frame game playing

- Game pauses until action
 - Players can hold down a key and the game will run continuously at 20Hz
- Allows multiple eye movements per frame
 - Reduces inattentional blindness
 - Allows sophisticated planning

Design

- Rest for 15 minutes after every trial (15 minutes)
- Display size & brightness
- Comfortable keyboard

Human performance

- A new human performance baseline
 - Previous human baseline*: Expert's performance in a challenging environment
 - Atari-HEAD baseline: Amateur's performance in a friendly environment

Game scores

	Mnih	Wang	Hester	Kurin	de la Cruz	AtariHEAD	AtariHEAD	AtariHEAD	Community	RL
						15-min avg.	15-min best	2-hour	Record	
alien	6,875	7,127.7	29,160	-	-	27,923	34,980	$107{,}140^{\dagger}$	103,583	9,491.7
asterix	8,503	8,503.3	18,100	100	14,300	110,133.3	135,000	1,000,000‡	1,000,000	428,200.3
bank_heist	734.4	753.1	7,465	-	-	5,631.3	6,503	$66,\!531^\dagger$	47,047	1,611.9
berzerk	-	2,630.4	-	-	-	6,799	7,950	55,220*	171,770	2,545.6
breakout	31.8	30.5	79	-	59	439.7	554	864‡	864	612.5
centipede	11,963	12,017	-	-	-	45,064	55,932	$415,160^{\star}$	668,438	9,015.5
$demon_attack$	3,401	3,442.8	6,190	12	-	7,097.3	10,460	$107,045^{\star}$	108,075	111,185.2
enduro	309.6	860.5	803		-	336.4	392	$4,886^{\star}$	-	2,259.3
freeway	29.6	29.6	32	_	-	31.1	33	33^{\dagger}	34	34.0
frostbite	4,335	4,334.7	-	_	-	31,731.5	50,630	$453,880^{\star}$	418,340	9,590.5
hero	25,763	30,826.4	99,320	-	-	59,999.8	77,185	$541,640^{\star}$	1,000,000	55,887.4
montezuma	4,367	4,753.3	34,900	27,900	-	38,715	46,000	$270,\!400^{\star}$	400,000	384.0
ms_pacman	15,693	15,375.0	55,021	29,311	18,241	28,031	36,061	$93{,}721^{\dagger}$	123,200	6,283.5
name_this_game	4,076	8,049.0	19,380	-	4,840	7,661.5	8,870	$21{,}850^{\dagger}$	21,210	13,439.4
phoenix	-	7,242.6	-	0.70	-	30,800.5	40,780	$485,\!660^\star$	373,690	108,528.6
riverraid	13,513	17,118	39,710	-	-	20,048	22,590	$59,420^{\dagger}$	86,520	-
road_runner	7,845	7,845	20,200	-	-	78,655	99,400	$99,400^{\dagger}$	210,200	69,524.0
seaquest	20,182	42,054.7	101,120	1000	-	52,774	64,710	585,570*	294,940	50,254.2
space_invaders	1,652	1,668.7	-	3,355	1,840	3,527	5,130	$49,340^{\star}$	110,000	18,789.0
venture	1,188	1,187.5	-	-	-	8,335	11,800	$28,\!600^\dagger$	-	1,107.0

Eye-tracking accuracy

Eye tracker calibration every 15 minutes

Average tracking error: 12 pixels (< 1% stimulus size) 26 pixels 1000Hz tracking frequency

Human perception

- Foveated rendering*: Humans have foveal vision with high acuity for only 1-2 visual degrees

*Perry & Geisler, Electronic Imaging 2002

Dataset: Additional measurements

- Decision time
- Immediate and cumulated rewards
- Eyelink software further supports extracting the following from the raw eye-tracking data:
 - Subtypes of eye-movements: Fixations, saccades, smooth pursuits
 - Blinks: Fatigue level/boredness
 - Pupil size (fixed luminance): Arousal level/surprise/excitement

Modeling question I

 [Vision] How well can we model human visual attention in Atari games by leveraging recent progress in saliency research?

Saliency prediction: Previous work

- Visual saliency research*
 - Task-free data: MIT saliency benchmark (Bylinskii et al. 2014), CAT2000 (Borji & Itti 2015), SALICON (Jiang et al. 2015), etc

What about visual attention in interactive, reward-seeking tasks?

Gaze prediction: Gaze network

- A standard saliency prediction problem

Quantitative results

- Highly accurate
- avg. AUC across 20 games = 0.97
- Significantly better than baseline models

Results & visualization

- Highly accurate, avg. AUC across 20 games = 0.97 (random = 0.5; max = 1)
- Model captures predictive eye movements
- Model identifies the target object from a set of visually identical objects
- Model captures divided attention

Gaze model across subjects

Modeling question II

- [Al] Is human visual attention information a useful signal in training decision learning agents?

Action prediction: Policy network

- Imitation learning: behavior cloning

Attention-guided imitation learning (AGIL)

Hypothesis: Attention information could help with action prediction

23

Results

- Incorporating human attention improves human action prediction accuracy
- Average: +0.07

Results

- Incorporating human attention improves task performance (game score)
- Average: +115.3%
- Most profound for
 - Games in which the task-relevant objects are very small (e.g., "ball")
 - Gaze helps extract feature for a neural network during training
 - Games that rely heavily on multitasking

Why visual attention helps

- Resolves ambiguity by indicating the target of the current decision

More imitation learning

 For gaze-assisted inverse reinforcement learning and behavior cloning from observation, please see another paper/poster#22

Related work: Similar datasets

- Human eye tracking + decisions
 - Meal preparation (Li, Liu, & Rehg 2018))
 - Urban driving (Alletto et al. 2016)

Related work: AGIL in cooking, driving & walking

Future work: Human vs. machine attention

- We have methods* to visualize where a deep neural network pays attention to given an input image
- Questions:
 - Is the RL agent's attention similar to human's?
 - Especially in the states where it made mistakes
 - Is there anything the agent fails to capture?

Future work: Attention-guided learning

- Can we improve the performance of learning agents using human attention?
- Example state compression*: Use human attention as a prior to help identify features that need to be preserved during compression

Future work: Attention-guided reinforcement learning

Future work: Attention-guided reinforcement learning

Future work: Attention-guided reinforcement learning

- An exciting possibility: Human attention + AI control

Summary

- [Cognitive ergonomics] A new human performance baseline
- [Vision science] A dataset for studying task-driven saliency
- [Al] A high-quality dataset that is more suited for training learning agents
- [AI] Human attention-guided decision learning algorithms

Acknowledgment

Calen Walshe

Zhuode Liu

Luxin Zhang

Jake Whritner

Karl Muller

Dana Ballard

Mary Hayhoe

The University of Texas at Austin Graduate School

