

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

A Greedy Knapsack Heuristic

Strategies for NP-Complete Problems

(1) Identify computationally tractable special cases.

Example: Knapsack instances with small capacity [i.e., knapsack capacity W = polynomial in number of items n

- (2) Heuristics \rightarrow today

 - Pretty good greedy heuristic Excellent dynamic programming heuristic \rightarrow For Knapsack
- (3) Exponential time but better than brute-force search Example: O(nW)-time dynamic programming vs. $O(2^n)$ brute-force search.

Ideally: Should provide a performance guarantee (i.e., "almost correct") for all (or at least many) instances.

Knapsack Revisited

Input: n items. Each has a positive value v_i and a size w_i . Also, knapsack capacity is W.

Output: A subset $S \subseteq \{1, 2, ..., n\}$ that

Maximizes
$$\sum_{i \in S} v_i$$

Subject to $\sum_{i \in S} w_i \leq W$

A Greedy Heuristic

Motivation: Ideal items have big value, small size.

Step 1: Sort and reindex item so that

$$\frac{v_1}{w_1} \ge \frac{v_2}{w_2} \ge \ldots \ge \frac{v_n}{w_n}$$
 [i.e., nondecreasing "bang-per-buck"]

Step 2: Pack items in this order until one doesn't fit, then halt.

Example:

$$\begin{array}{cccc} & v_1=2 & w_1=1\\ W{=}5 & v_2=4 & w_2=3 & \Rightarrow \text{Greedy gives } \{1,2\} \text{ [also optimal]}\\ & v_3=3 & w_3=3 \end{array}$$

Quiz

Consider a Knapsack instance with W=1000 and

$$v_1 = 2$$
 $w_1 = 1$
 $v_2 = 1000$ $w_2 = 1000$

Question: What is the value of the greedy solution and the optimal solution, respectively?

- A) 2 and 1000 C) 1000 and 1002
- B) 2 and 1002 D) 1002 and 1002

A Refined Greedy Heuristic

Upshot: Greedy solution can be arbitrarily bad relative to an optimal solution.

Fix: Add:

Step 3: Return either the Step 2 solution, or the maximum valuable item, whichever is better.

Theorem: Value of the 3-step greedy solution is always $\geq 50\%$ value of an optimal solution. [Also, runs in $O(n \log n)$ time] [i.e., a " $\frac{1}{2}$ -approximation algorithm"]

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

Analysis of a Greedy Knapsack Heuristic

Performance Guarantee

Theorem: Value of the 3-step greedy algorithm's solution is always $\geq 50\%$ value of an optimal solution.

Thought experiment: What if we were allowed to fill fully the knapsack using a suitable "fraction" (like 70%) of item (k+1)? [The value of which is "pro-rated"]

⇒ Will call this the "greedy fractional solution"

Example:
$$W=3$$
, $v_1=3$, $v_2=2$, $w_1=w_2=2$ get 100% get 50%

⇒ Greedy fractional solution has value 4

Quiz

Question: Let F = value of greedy fractional solution and OPT = value of optimal (non-fractional) solution. Which of the following is true?

- A) F = OPT for every knapsack instance
- B) F > OPT for every knapsack instance
- C) $F \leq OPT$ for every instance, and can be strict
- C) $F \ge OPT$ for every instance, and can be strict

Proof Sketch

Claim: Greedy fractional solution at least as good as every non-fractional feasible solution.

- (1) Let S =an arbitrary feasible solution
- (2) Suppose I units of knapsack filled by S with items not packed by the greedy fractional solution
- (3) Must be at least I units of knapsack filled by greedy fractional solution not packed by S
- (4) By greedy criterion, items in (3) have larger bang-per-buck v_i/w_i than those in (2) [i.e., more valuable use of space]
- (5) Total value of greedy fractional solution at least that of S

Analysis of Greedy Heuristic

In Step 2, suppose our greedy algorithm picks the 1st k items (sorted by v_i/w_i).

```
Value of 3-step greedy algorithm \geq \downarrow total value of 1st k items also is \geq value of (k+1)th item \Rightarrow 2 \cdot (\text{value of 3-step greedy}) \geq \text{total value of 1st } (k+1) \text{ items} \geq \text{total value of greedy fractional soln} \geq \text{optimal knapsack solution}
```

by step 3

QED!

Analysis is Tight

```
Example: W = 1000

v_1 = 502 v_2 = v_3 = 500

w_1 = 501 w_2 = w_3 = 500
```

- \Rightarrow 3-step greedy solution has value 502
- \Rightarrow optimal solution has value 1000

A Refined Analysis

Suppose: Every item *i* has size $w_i \le 10\%$ knapsack capacity W.

Consequence: If greedy algorithm fails to pack all items in Step 2, then the knapsack is $\geq 90\%$ full.

⇒ Value of 2-step greedy algorithm

 $\geq 90\%$ · value of greedy fractional solution

 $\geq 90\%$ · value of an optimal solution.

[In general, if $\max_i w_i \leq \delta W$, then 2-step greedy value is $\geq (1 - \delta)$ -optimal]

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

A Dynamic Programming Heuristic for Knapsack

Arbitrarily Good Approximation

Goal: For a user-specified parameter $\epsilon>0$ (e.g., $\epsilon=0.01$) guarantee a $(1-\epsilon)$ -approximation.

Catch: Running time will increase as ϵ decreases. (i.e., algorithm exports a running time vs. accuracy trade-off).

[Best-case scenario for NP-complete problems]

The Approach: Rounding Item Values

High-level idea: Exactly solve a slightly incorrect, but easier, knapsack instance.

Recall: If the w_i 's and W are integers, can solve the knapsack problem via dynamic programming in O(nW) time.

Alternative: If v_i 's are integers, can solve knapsack via dynamic programming in $O(n^2v_{\text{max}})$ time, where $v_{\text{max}} = \max_i \{v_i\}$. (See separate video)

Upshot: If all v_i 's are small integers (polynomial in n) then we already know a poly-time algorithm.

Plan: Throw out lower-order bits of the vi's!

A Dynamic Programming Heuristic

Step 1 of algorithm:

```
Round each v_i down to the nearest multiple of m [larger m \Rightarrow throw out more info \Rightarrow less accuracy] [Where m depends on \epsilon, exact value to be determined later]
```

Divide the results by m to get \hat{v}_i 's (integers). (i.e., $\hat{v}_i = \lfloor \frac{v_i}{m} \rfloor$)

Step 2 of algorithm: Use dynamic programming to solve the knapsack instance with values $\hat{v}_1, \ldots, \hat{v}_n$, sizes w_1, \ldots, w_n , capacity W.

Running time = $O(n^2 \max_i \hat{v}_i)$

Note: Computes a feasible solution to the original Knapsack instance.

Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

Dynamic Programming for Knapsack, Revisited

Two Dynamic Programming Algorithms

Dynamic programming algorithm #1: (See earlier videos)

- (1) Assume sizes w_i and capacity W are integers
- (2) Running time = O(nW)

Dynamic programming algorithm #2: (This video)

- (1) Assume values v_i are integers
- (2) Running time = $O(n^2 v_{\text{max}})$, where $v_{\text{max}} = \max_i v_i$

The Subproblems and Recurrence

Subprolems: For $i=0,1,\ldots,n$ and $x=0,1,\ldots,nv_{\max}$ define $S_{i,x}=$ minimum total size needed to achieve value $\geq x$ while using only the first i items. (Or $+\infty$ if impossible)

```
Recurrence: (i \ge 1)
```

$$S_{i,x} = \min \left\{ \begin{array}{ll} S_{(i-1),x} & \text{Case 1, item } i \text{ not used in optimal solution} \\ w_i + S_{(i-1),(x-v_i)} & \text{Case 2, item } i \text{ used in optimal solution} \end{array} \right.$$

Interpret as 0 if $v_i > x$

The Algorithm

```
Let A = 2-D array
[indexed by i = 0, 1, \dots, n and x = 0, 1, \dots, nv_{max}]
Base case: A[0,x] = \begin{cases} 0 \text{ if } x = 0 \\ +\infty \text{ otherwise} \end{cases}
For i = 1, 2, \dots, n \longrightarrow n^2 v_{\text{max}} iterations
   For x = 0, 1, ..., nv_{max} Interpret as 0 if v_i > x
      A[i,x] = \min\{A[i-1,x], w_i + A[i-1,x-v_i]\}
      O(1) work per iteration
Return the largest x such that A[n,x] \leq W \leftarrow O(nv_{max})
Running time: O(n^2 v_{\text{max}})
```


Algorithms: Design and Analysis, Part II

Approximation Algorithms for NP-Complete Problems

Analysis of a Dynamic Programming Heuristic for Knapsack

The Dynamic Programming Heuristic

Step 1: Set $\hat{v}_i = \lfloor \frac{v_i}{m} \rfloor$ for every item i.

Step 2: Compute optimal solution with respect to the \hat{v}_i 's using dynamic programming.

Plan for analysis:

- (1) Figure out how big we can take m, subject to achieving a $(1-\epsilon)$ -approximation
- (2) Plug in this value of m to determine running time

Quiz

Question: Suppose we round v_i to the value \hat{v}_i . Which of the following is true?

- A) \hat{v}_i is between $v_i m$ and v_i
- B) \hat{v}_i is between v_i and $v_i + m$
- C) $m\hat{v}_i$ is between $v_i m$ and v_i
- D) $m\hat{v}_i$ is between $v_i m$ and v_i

Accuracy Analysis I

From quiz: Since we rounded down to the nearest multiple of m, $m\hat{v}_i \in [v_i - m, v_i]$ for each item i.

Thus: (1)
$$v_i \ge m\hat{v}_i$$
, (2) $m\hat{v}_i \ge v_i - m$

Also: If $S^* = \text{optimal solution to the original problem (with the original } v_i$'s), and S = our heuristic's solution, then

(3)
$$\sum_{i \in S} \hat{v}_i \ge \sum_{i \in S^*} \hat{v}_i$$

[Since S is optimal for the \hat{v}_i 's] (recall Step 2)

Accuracy Analysis II

 $S = \text{our solution}, S^* = \text{optimal solution}$

$$\sum_{i \in S} v_i \overset{(1)}{\geq} m \sum_{i \in S} \hat{v}_i \overset{(3)}{\geq} m \sum_{i \in S^*} \hat{v}_i \overset{(2)}{\geq} \sum_{i \in S^*} (v_i - m)$$

contains at most *n* items

Thus:
$$\sum_{i \in S} v_i \ge (\sum_{i \in S^*} v_i) - mn$$

Constraint:
$$\sum_{i \in S} v_i \ge (1 - \epsilon) \sum_{i \in S^*} v_i$$

To achieve above constraint: Choose *m* small enough that

$$mn \le \epsilon \sum_{i \in S^*} v_i$$

unknown to algorithm, but definitely $\geq v_{\text{max}}$

Sufficient: Set m so that $mn = \epsilon v_{\text{max}}$, i.e., heuristic uses $m = \frac{\epsilon v_{\text{max}}}{n}$

Running Time Analysis

Point: Setting $m = \frac{\epsilon V_{\text{max}}}{n}$ guarantees that value of our solution is $\geq (1 - \epsilon)$ ·value of optimal solution.

Recall: Running time is $O(n^2 \hat{v}_{max})$

Note: For every item i, $\hat{v}_i \leq \frac{v_i}{m} \leq \frac{v_{\text{max}}}{m} = v_{\text{max}} \frac{n}{\epsilon v_{\text{max}}} = \frac{n}{\epsilon}$

Running time = $O(n^3/\epsilon)$