O problema de valor inicial:

$$\begin{cases} y' = -20y \\ y(0) = 1, \text{ tem por única solução exata } y(x) = e^{-20x}. \end{cases}$$

- a) Verifique a afirmação acima.
- Verifique que qualquer método de Runge-Kutta de 2ª ordem, quando aplicado a este problema, nos fornece

$$y_{n+1} = (1 - 20h + 200h^2)^{n+1}, n = 0, 1, 2, ...$$

Dado o PVI abaixo, considere h = 0.5, 0.25, 0.125 e 0.1.

$$\begin{cases} y' = 4 - 2x \\ y(0) = 2. \end{cases}$$

- a) Encontre uma aproximação para y(5) usando o método de Euler Aperfeiçoado, para cada h.
- b) Compare seus resultados com a solução exata dada por $y(x) = -x^2 + 4x + 2$. Justifique.
- c) Você espera o mesmo resultado do item (b) usando o método de Euler? Justifique.
- 4. a) Verifique que fazendo m = 1 e p = 1, nos métodos (3) do texto, obtemos o método $y_{n+1} = y_{n-1} + 2hf_n \text{ com erro } \frac{h^3}{3} \text{ y'''}(\xi).$
 - b) Em termos de esforço computacional, como você o compara com o método de Euler?
 - c) E quanto à precisão?
- Considere os métodos (3) do texto. Faça m = 3 e p = 3 e deduza o método bem como a expressão do erro.

6. a) Deduza o método implícito para resolver o PVI:

$$\begin{cases} y' = f(x, y) \\ y(x_0) = y_0, & \text{do tipo } y_{n+1} = y_n + \int_{x_n}^{x_{n+1}} f(x, y(x)) dx & \text{onde} \end{cases}$$

usamos a regra dos Trapézios para calcular a integral acima.

- b) Encontre a expressão do erro cometido.
- c) Compare com o método de Euler, em termos de erros.
- 7. a) Considerando o seguinte PVI:

$$\begin{cases} y' = 0.04y \\ y(0) = 1000 \end{cases}$$

e supondo conhecidos y_1 e y_2 , verifique que o método (2) do texto nos fornece y_{n+1} explicitamente para $n \ge 2$.

- b) Como você explica o resultado acima sendo (2) um método implícito?
- 8. Use vários métodos e vários valores de h para encontrar y(2) sendo dado o PVI:

$$\begin{cases} y' = \cos x + 1 \\ y(0) = -1 \end{cases}$$

- 9. Dado o PVI y' = $-\frac{x}{y}$, y(0) = 20, deseja-se encontrar aproximação para y(16). Resolva por
 - a) Runge-Kutta de 2^a ordem, h = 2.
 - b) Runge-Kutta de 4^a ordem, h = 4.
 - c) O par previsor-corretor do texto.
 - d) Comente seus resultados.

15.
$$I_s = 0.69315$$
.

$$ln(2) = 0.693147.$$

16.
$$I_s = 0.785392$$
.

$$\pi / 4 \simeq 0.785398$$
.

17. a) Is =
$$0.746855$$

b)
$$I_{QG} = 0.746594$$

c2) m = 27 (se usarmos
$$M_2 \le 2$$
)

CAPÍTULO 8

1.
$$y_{n+1} = y_n + hf(x_n + \frac{h}{2}, y_n + \frac{h}{2}y'_n)$$

3.	<i>a</i>) e <i>c</i>)	h	Euler Aperfeiçoado	Euler
	8	0.5	-3	-5
		0.25	-3	-1.75
		0.125	-3	-2.375
		0.1	-2.999995	-2.499994

6.
$$y_{n+1} = y_n + \frac{h}{2}(f_n + f_{n+1}).$$

8.	h	Euler	Euler Aperfeiçoado	R. Kutta 4ª ordem
	0.2	2.047879	1.906264	1.909298
	0.1	1.979347	1.90854	1.909297
	0.05	1.944512	1.909108	1.909298
	0.025	1.926953	1.909251	1.909298

9. a) (Euler Aperfeiçoado) $h = 2 \Rightarrow y(16) \approx 12.00999$.

b)
$$h = 4 \Rightarrow y(16) \approx 11.998$$
.

c)
$$\begin{cases} h = 2 \implies y(16) \approx 11.99199. \\ h = 4 \implies y(16) \approx 11.94514. \end{cases}$$

10.
$$h = 0.2$$
 $y(1.6) \approx 2.7$.

$$h = 0.1$$
 $y(1.6) \approx 2.8242597$.

11.
$$h = 0.1$$
, $y(5) = -2.5$

$$h = 0.125, y(5) = -2.3750$$

$$h = 0.25, y(5) = -1.75$$

$$h = 0.5, y(5) = -0.5$$

14.	h	Euler	Euler Aperfeiçoado	R. Kutta 4ª ordem
	0.2	2.7	2.971514	3.019671
	0.1	2.85455	3.006242	3.019977
	0.05	2.928572	3.016337	3.019999
	0.025	2.973171	3.019055	3.020001

15. Euler: $y(1) \approx 4.488320$.

Runge-Kutta de 4^a ordem: $y(1) \approx 4.718251$.

$$y(1) = 4.718282.$$

16. a) e b)
$$y(0.2) = y(0.25) = ... = 1.00$$