Pesquisa Operacional / Programação Matemática

Método Simplex: resolução gráfica

Resolução gráfica

- Viável apenas para problemas (muito) pequenos.
- Visualização.
- **E**x.:

Maximizar
$$f(x_1, x_2) = x_1 + 2x_2$$

 $x_1 + x_2 \le 4$
 $x_1 \le 2$
 $x_2 \le 3$
 $x_1 \ge 0, x_2 \ge 0$.

Região factível

$$\mathbf{S} = \{(x_1, x_2) \text{ tal que } x_1 + x_2 \le 4, | x_1 \le 2, | x_2 \le 3, x_1 \ge 0, x_2 \ge 0 \}$$

Ŋė.

Região factível

$$\mathbf{S} = \{(x_1, x_2) \text{ tal que } x_1 + x_2 \le 4, x_1 \le 2, x_2 \le 3, x_1 \ge 0, x_2 \ge 0\}$$

Ŋ.

Curvas de nível

Pontos extremos

Se um problema de otimização linear tem uma solução ótima, então existe um v'ertice $\acute{o}timo$.

e para outras funções objetivo ?

minimização

Região factível ilimitada

Múltiplos ótimos

DA.

Região infactível

100

Solução degenerada

Exemplo: sol. degenerada

Maximizar
$$f(x_1, x_2) = x_1 + 3x_2$$

 $x_2 \le 4$
 $x_1 + x_2 \le 6$
 $x_1 \le 3$
 $5x_1 + x_2 \le 18$
 $x_1 \ge 0, x_2 \le 0$.

Método simplex (e met. de pontos int)

