MA0505 - Análisis I

Lección V: Compacidad

Pedro Méndez¹

¹Departmento de Matemática Pura y Ciencias Actuariales Universidad de Costa Rica

Semestre I, 2021

Agenda

- Compacidad Secuencial
- Compacidad
 - Algunas Propiedades
 - El caso de \mathbb{R}^d

La Definición de Compacidad Secuencial

Dado $C \subseteq X$, diremos que C es secuencialmente compacto si cualquier sucesión $\{x_n\}_{n=1}^{\infty} \subseteq C$ poseé una subsucesión convergente.

Ahora si $\{x_{n_k}\}_{k=1}^{\infty}$ converge a x_0 , tenemos que dado $\varepsilon > 0$, existe k_0 tal que

$$k \geqslant k_0 \Rightarrow d(x_{n_k}, x_0) < \varepsilon.$$

Analizando la definición

De lo anterior,

$$x_{n_k} \in B(x_0, \varepsilon),$$

cuando $k \geqslant k_0$. Dado que $n_k \geqslant k$

$$B(x_0,\varepsilon)\cap\{x_m:\ m\geqslant k\}\neq\emptyset,$$

para $k \ge 1$. Por lo tanto, para todo $k \ge 1$

$$x_0 \in \overline{\{x_m : m \geqslant k\}},$$

y en consecuencia

$$x_0 \in \bigcap_{k=1}^{\infty} \overline{\{x_m: m \geqslant k\}}.$$

Analizando la definición

Por otro lado, si $x_0 \in \bigcap_{k=1}^{\infty} \overline{\{x_m : m \geqslant k\}}$ podemos tomar iterativamente:

•
$$x_{k_1} \in B(x_0, 1) \cap \{x_m : m \geqslant 1\}.$$

•
$$x_{k_2} \in B(x_0, \frac{1}{2}) \cap \{x_m : m \geqslant k_1 + 1\}.$$

:

•
$$x_{k_{n+1}} \in B(x_0, \frac{1}{n}) \cap \{x_m : m \geqslant k_n + 1\}.$$

Así

$$x_{k_n} \rightarrow x_0$$

у

$$\{x_{n_k}\}_{k=1}^{\infty}$$
 es una subsucesión de $\{x_n\}_{n=1}^{\infty}$.

Condensamos lo anterior

Lema

Si (X, d) es un espacio métrico y $C \subseteq X$, son equivalentes

- C es secuencialmente compacto.

Propiedades

Sea $x \in \overline{C}$, entonces existe $\{x_n\}_{n=1}^{\infty} \subseteq C$ tal que $x_n \to x$. Si C es *secuencialmente compacto*, existe una subsucesión $\{x_{n_k}\}_{k=1}^{\infty}$ que converge a un punto de C. Como el límite es único, tenemos que

$$z \in C$$
.

Lema

Sea C secuencialmente compacto, entonces C es cerrado y acotado.

Ejercicio

Complete la prueba del lema anterior.

Cubrimientos por abiertos

Definición

Una colección $\mathcal{U} = \{ U_{\alpha} : \alpha \in \Lambda \}$ de abiertos es llamado un recubrimiento de un conjunto A si

$$A\subseteq\bigcup_{\alpha\in\Lambda}U_{\alpha}.$$

Lema

Sea C secuencialmente compacto y $\mathcal U$ un recubrimiento de C. Entonces existe $\varepsilon > 0$ tal que para todo $x \in C$, existe $U \in \mathcal U$ que satisface

$$B(x,\varepsilon)\subseteq U$$
.

Prueba del lema

Supongamos que para todo $\varepsilon > 0$ existe $x_{\varepsilon} \in C$ tal que

$$B(x_{\varepsilon}, \varepsilon) \subsetneq U_{\alpha}$$

para todo $\alpha \in \Lambda$. En particular, para todo $n \in \mathbb{N}$ existe

$$\{x_n\}_{n=1}^{\infty}\subseteq C$$

tal que

$$B\left(x_n,\frac{1}{n}\right)\subsetneq U_{\alpha},$$

para $\alpha \in \Lambda$.

Prueba del lema

Al ser C secuencialmente compacto, existe $\{x_{n_k}\}_{k=1}^{\infty} \subseteq C$ y $x_0 \in C$ tal que $x_{n_k} \to x_0$. Como \mathcal{U} es recubrimiento, existe $U_{\alpha_0} \in \mathcal{U}$ tal que

$$x_0 \in U_{\alpha_0}$$
.

Sea $\varepsilon > 0$ tal que

$$B(x_0,\varepsilon)\subseteq U_{\alpha_0}$$

y tomemos k_0 tal que

$$k\geqslant k_0\Rightarrow d(x_{n_k},x_0)<rac{arepsilon}{2}.$$

Prueba del lema

Con argumentos usuales podemos probar que

$$B\left(x_{n_k},\frac{1}{n_k}\right)\subseteq B(x_0,\varepsilon)$$

cuando $\frac{1}{n_k} < \frac{\varepsilon}{2}$. Es decir

$$B\left(x_{n_k},\frac{1}{n_k}\right)\subseteq B(x_0,\varepsilon)$$

$$\subseteq U_{\alpha_0}.$$

Definición

Un conjunto $C \subseteq X$ es compacto si dado un recubrimeinto $\mathcal{U} = \{ U_{\alpha} : \alpha \in \Lambda \}$ de C, existen $U_{\alpha_1}, \dots, U_{\alpha_m}$ tales que

$$C\subseteq \bigcup_{k=1}^m U_{\alpha_k}.$$

Es decir, dado un recubrimeinto \mathcal{U} por abiertos de C, existe una colección finita de \mathcal{U} que recubre a C.

Equivalencia entre ambas definiciones.

Lema

Dado $C \subseteq X$ son equivalentes:

- C es secuencialmente compacto.
- C es compacto.

Asuma que C es secuencialmente compacto. Sea $x_1 \in C$, sabemos que existe $\epsilon > 0$ y α_1 tal que

$$B(x_1,\varepsilon)\subseteq U_{\alpha_1}$$
.

Ahora, si

$$C \subseteq B(x_1, \varepsilon) \subseteq U_{\alpha_1}$$

entonces tenemos un recubrimiento finito. De lo contrario, existe

$$x_2 \in C \setminus B(x_1, \varepsilon).$$

Entonces existe α_2 tal que

$$B(x_2,\varepsilon)\subseteq U_{\alpha_2}.$$

En general si

$$C \subsetneq \bigcup_{i=1}^m B(x_i, \varepsilon),$$

entonces existe

$$x_{m+1} \in C \setminus \bigcup_{i=1}^m B(x_i, \varepsilon).$$

Note que por construcción, si $i \neq j$

$$d(x_i, x_j) \geqslant \varepsilon$$
.

Entonces existe α_2 tal que

$$B(x_2,\varepsilon)\subseteq U_{\alpha_2}.$$

En general si

$$C \subsetneq \bigcup_{i=1}^m B(x_i, \varepsilon),$$

entonces existe

$$x_{m+1} \in C \setminus \bigcup_{i=1}^m B(x_i, \varepsilon).$$

Note que por construcción, si $i \neq j$

$$d(x_i, x_j) \geqslant \varepsilon$$
.

Concluimos que existe *m* tal que

$$C\subseteq \bigcup_{i=1}^m B(x_i,\varepsilon)\subseteq \bigcup_{i=1}^m U_{\alpha_i},$$

o existe una sucesión $\{x_k\}_{k=1}^{\infty}$ tal que, si $i \neq j$,

$$d(x_i,x_j)\geqslant \varepsilon.$$

Esta sucesión no tiene subsucesiones de Cauchy, i.e. no tiene subseciones convergentes.

Compacidad implica secuencial

Sea $\{x_m\}_{m=1}^{\infty}$ una sucesión en C y considere

$$U_n = \left(\overline{\{x_m: m \geqslant n\}}\right)^c.$$

Entonces

$$U_n \subset U_{n+1},$$

$$X \setminus \bigcup_{n=1}^{\infty} U_n = \bigcap_{n=1}^{\infty} \overline{\{x_m : m \geqslant n\}}.$$

Ahora, si $\{x_m\}_{m=1}^{\infty}$ no tiene una subsucesión convergente en C tenemos que

$$C\cap\bigcap_{k=1}^{\infty}\overline{\{x_m:\ m\geqslant k\}}=\emptyset.$$

Compacidad implica secuencial

Luego

$$C \subset \bigcup_{n=1}^{\infty} \left(\overline{\{x_m : m \geqslant n\}} \right)^c = \bigcup_{n=1}^{\infty} U_n.$$

Por compacidad, existe $\alpha_1, \dots, \alpha_m$ tal que

$$C\subset \bigcup_{m=1}^m U_{\alpha_m}.$$

Compacidad implica secuencial

En particular

$$C\subset \bigcup_{n=1}^{m_0}U_n=U_{m_0},$$

donde $m_0 = \max\{\alpha_1, \dots, \alpha_m\}$. Pero

$$\{x_k: k \geqslant m_0\} \subset C \subset \left(\overline{\{x_k: k \geqslant m_0\}}\right)^c.$$

Sea $f:[a,b]\to\mathbb{R}$ una función continua, entonces existen $x_1,x_2\in[a,b]$ tal que

$$f(x_1)\leqslant f(x)\leqslant f(x_2),$$

para todo $x \in [a, b]$. Por el Teorema del valor intermedio

$$f([a,b]) \leq [f(x_1), f(x_2)].$$

Luego el compacto [a, b] es mapeado en el compacto $[f(x_1), f(x_2)]$.

Sean $f: X \to Y$ una función continua y $K \subset X$ compacto. Tome $K_1 = f(K)$ y considere

$$\mathcal{U} = \{ U_{\alpha} : \alpha \in \Lambda_1 \}$$

un cubrimiento de K_1 . Entonces

$$f(K) \subset \bigcup_{\alpha \in \Lambda_1} U_{\alpha}.$$

Luego

$$K_1 \subset f^{-1} \left\{ \bigcup_{\alpha \in \Lambda_1} U_{\alpha} \right\}.$$

Como K es compacto, existen $\alpha_1, \ldots, \alpha_m$ tal que

$$K \subset f^{-1} \left\{ \bigcup_{i=1}^m U_{\alpha_i} \right\}.$$

Es decir, si $x \in K$, entonces

$$f(x) \in \bigcup_{i=1}^m U_{\alpha_i},$$

i.e.

$$f(K)\subset\bigcup_{i=1}^m U_{\alpha_i}.$$

Lema

Sean $f: X \to Y$ una función continua y $K \subset X$ compacto. Entonces f(K) es compacto.

Sea

$$\mathcal{F} = \{ \mathbf{F}_{\alpha} : \alpha \in \Lambda \}$$

una colección de conjuntos cerrados tales que

$$\bigcap_{\alpha\in A}F_{\alpha}\neq\emptyset.$$

si $A \subset \Lambda$ es finito. Asuma que

$$\bigcap_{\alpha \in \Lambda} F_{\alpha} = \emptyset.$$

Entonces

$$X = \bigcup_{\alpha \in \Lambda} X \setminus F_{\alpha}.$$

Ahora si X es compacto, entonces existen $\alpha_1, \ldots, \alpha_m$ tal que

$$X = \bigcup_{i=1}^m X \setminus F_{\alpha_i},$$

i.e.

$$\emptyset = \bigcap_{i=1}^m F_{\alpha_i}.$$

Ahora si X es compacto, entonces existen $\alpha_1, \ldots, \alpha_m$ tal que

$$X = \bigcup_{i=1}^m X \setminus F_{\alpha_i},$$

i.e.

$$\emptyset = \bigcap_{i=1}^m F_{\alpha_i}.$$

Teorema

Sea (X, d) un espacio métrico, son equivalentes

- X es compacto.
- ② Si $\mathcal{F} = \{ F_{\alpha} : \alpha \in \Lambda \}$ es una colección de conjuntos cerrados tales que

$$\bigcap_{\alpha\in A}F_{\alpha}\neq\emptyset.$$

si $A \subset \Lambda$ es finito. Entonces

$$\bigcap_{\alpha \in \Lambda} F_{\alpha} \neq \emptyset.$$

La Prueba es Ejercicio

- La prueba del teorema se deja como ejercicio.
- A la segunda propiedad del teorema 1 le llamamos la propiedad de intersecciones finitas.

Compacidad en \mathbb{R}^d

Asuma que

$$C = [a_1, b_1] \times \ldots \times [a_d, b_d]$$

es compacto si $a_i \le b_i$ para $1 \le i \le d$. Sabemos que en este caso todo compacto es cerrado y acotado.

¿Cerrado + Acotado = Compacto?

La respuesta general es no, ¡pero en \mathbb{R}^d sí!

- Sea F cerrado y acotado en \mathbb{R}^d . Existe $C_n = [-n, n] \times \ldots \times [-n, n]$ tal que $F \subseteq C_n$.
- Sea $\{x_n\}_{n=1}^{\infty} \subseteq F$. Como C_n es compacto, existe $\{x_{n_k}\}_{k=1}^{\infty}$ subsucesión de $\{x_n\}_{n=1}^{\infty}$ tal que

$$x_{n_k} \xrightarrow[n_k \to \infty]{} x_0 \in C_n$$

Como $\{x_{n_k}\}_{k=1}^{\infty} \subseteq F$ y F es cerrado, entonces $x_0 \in F$. Es decir, F es secuencialmente compacto.

El Teorema de Heine y Borel

Teorema

Heine-Borel Sea $C \subseteq \mathbb{R}^d$. Entonces C es compacto respecto a la norma euclídea si y sólo si es cerrado y acotado.

Cajas

Lema

Dados $a_i \leqslant b_i$, $1 \leqslant i \leqslant d$, el conjunto

$$C = [a_1, b_1] \times \ldots \times [a_d, b_d]$$

es compacto en $(\mathbb{R}^d, \|\cdot\|)$.

Dividimos C en 2^d rectángulos de la forma

$$[c_1^i, e_1^i] \times \cdots \times [c_d^i, e_d^i] = C_i$$

donde
$$c_i^i = a_i$$
 ó $\frac{a_i + b_j}{2}$ y $e_i^i = b_i$ ó $\frac{a_i + b_j}{2}$.

Prueba del Lema

- Tomemos $\mathcal{U} = \{ U_{\alpha} : \alpha \in \Omega \}$ es un recubrimiento de C tal que $C \subsetneq \bigcup_{m=1}^{\infty} U_{\alpha_i}$ para $\alpha_1, \ldots, \alpha_m \subseteq \Lambda$.
- Si dado $1 \leqslant i \leqslant 2^d$ existen $\alpha_1^i, \dots, \alpha_{m_i}^i$ tal que $C_i \subseteq \bigcup_{j=1}^{m_i} U_{\alpha_i^j}$, entonces

$$C\subseteq \bigcup_{i=1}^{2^d}\bigcup_{j=1}^{m_i}U_{\alpha_j^i}.$$

Prueba del Lema

Es decir, existe i₀ tal que

$$C_{i_0} \subsetneq \bigcup_{m=1}^{\infty} U_{\alpha_i}$$

para
$$\{\alpha_1,\ldots,\alpha_m\}\subseteq\Lambda$$

Dividiendo C_{in} en 2^d rectángulos obtenemos

$$C_{i_1} \subseteq C_{i_0}, \text{ y } C_{i_1} \subsetneq \bigcup_{m=1}^{\infty} U_{\alpha_i}$$

Prueba del Lema - Iterando

Además

$$egin{aligned} [c_1^{i_0},e_1^{i_0}]& imes\cdots imes[c_d^{i_0},e_d^{i_0}]&=C_{i_0}\ [c_1^{i_1},e_1^{i_1}]& imes\cdots imes[c_d^{i_1},e_d^{i_1}]&=C_{i_1}, \end{aligned} \ & ext{con}\ [c_j^{i_1},e_j^{i_1}]&\subseteq [c_j^{i_0},e_j^{i_0}]\ ext{y} \ & ext{} |e_j^{i_1}-c_j^{i_1}|&=rac{1}{2}|e_j^{i_0}-c_j^{i_0}|\ & ext{} & ext{} & ext{} =rac{1}{4}|b_j-a_j|. \end{aligned}$$

Prueba del Lema - El caso general

Iterando el proceso obtenemos

$$[c_1^{i_j},e_1^{i_j}] imes\cdots imes[c_d^{i_j},e_d^{i_j}]=C_{i_j}$$

tal que

$$[\boldsymbol{c}_{\ell}^{i_j},\boldsymbol{e}_{\ell}^{i_j}]\subseteq[\boldsymbol{c}_{\ell}^{i_j-1},\boldsymbol{e}_{\ell}^{i_j-1}]$$

у

$$|c_{\ell}^{i_j}-e_{\ell}^{i_j}|=rac{1}{2^j}|b_{\ell}-a_{\ell}|.$$

Prueba del Lema - Intervalos Encajados

Por el teorema de los Intervalos Encajados, existe z_ℓ tal que $\bigcap_{j=1}^{\infty} [c_\ell^{i_j}, e_\ell^{i_j}] = \{ z_\ell \}$. Es decir,

$$\bigcap_{j=1}^{\infty} C_{i_j} = \{ z \}, \ z = (z_1, \dots, z_d).$$

Como $z \in C$, existe α_0 tal que $U_{\alpha_0} \in U$ y $z \in U_{\alpha_0}$. Sea $\varepsilon > 0$ tal que $B(z, \varepsilon) \subseteq U_{\alpha_0}$.

Ejercicio

Pruebe que existe j_0 tal que $C_{i_i} \subseteq B(z, \varepsilon)$ para $j \geqslant j_0$.

Valores Extremos

Si $K \subseteq X$ y $f: X \to \mathbb{R}$ es continua, entonces f(K) es compacto y en particular, acotado.

Sean $a = \inf_{x \in K} f(x)$ y $b = \sup_{x \in K}$, nos preguntamos:

¿Se alcanzan "a" y "b"?

Damos Respuesta

• Dado $n \in \mathbb{N}$, existe $x_n \in K$ tal que

$$a \leqslant f(x_n) \leqslant a + \frac{1}{n} \tag{2.1}$$

- Como $\{x_n\}_{n=1}^{\infty} \subseteq K$, existe $\{x_{n_k}\}_{k=1}^{\infty}$ que satisface

$$x_{n_k} \xrightarrow[n_k \to \infty]{} y_0 \in K.$$

- Entonces $f(x_{n_k}) \to f(y_0)$ cuando $n_k \to \infty$.
- De 2.1 se tiene que $f(x_{n_k}) \to a$ cuando $n_k \to \infty$. Por lo tanto $a = f(y_0)$.

Resumen

- Definición de compacidad secuencial. 3
- Equivalencia entre compacidad secuencial y la propiedad de intersección. 1.
- Compacidad secuencial implica compacidad usual. 2
- Definición de recubrimiento por abiertos. 1.
- Equivalencia entre compacidad y compacidad secuencial.
 4
- Que las funciones continuas mandan compactos en compactos. 5
- El Teorema de las Intersecciones Finitas. 1
- El Teorema Heine-Borel sobre compactos en \mathbb{R}^d . 2
- Las cajas son compactos de \mathbb{R}^d . 6

Ejercicios

- Lista 5
 - Terminar el detalle en la prueba del lema de compacidad secuencial a la usual. 2.
 - El último detalle de la prueba sobre las cajas compactas. 2

Lecturas adicionales I

- S.Cambronero. Notas MA0505. 20XX.
- I.Rojas Notas MA0505. 2018.