Chapter 1

Conclusions And Future works

1.1 Conclusions

In this thesis, we a patient-adaptable ECG classification framework. The system has a two-staged hierarchical classifier structure including Global Classifier and Personal Classifier. While Global Classifier is designed to filter the signal with severe distortion and abnormal waveforms by triggering red alarms and pass other samples to the deviation detection stage. In this stage, the personal dynamic normal cluster is constructed and used to specify the normal range for each patient. By comparing the current sample and personalized normal range, this module decides if a yellow alarm will be triggered to provide predictive information about upcoming abnormalities. If a sample is detected with deviation towards abnormal clusters, it will be passed to the Personal Classifier and labeled as one of the three abnormal types. Whereas samples without deviation are further feed back to personal dynamic normal cluster to update the classification system about the newest personal normal range.

In Chapter 3, a kernel based nonlinear transformation is proposed to address the problem

of cluster topology in original feature space. Inspired by Support Vector Machine, kernel functions are deployed in this method as a spatial transformation function. The target topology is formulated as two objective functions so that by tuning the parameters in kernel function, the system is able to select the best transformation for the following predicting stage. This non-convex multi-objective optimization is solved with Multi-Objective Particle Swarm Optimization. In order to validate improvement by using high order kernel function, we compared the Pareto front generated with linear combination of original features and mapped high order features with polynomial kernel. The result verifies that applying high order kernel function allows more degree of freedom so that the topology can be further optimized according to objective functions. Having this concept proved, we applied this method on MITDB test data and obtained similar sensitivity and specificity as proposed in the literatures. More importantly, the predicting capacity of yellow alarms are analyzed. The performance is quantified by comparing prior probability and posterior probability giving the types of yellows alarm. The comparison result shows that a promising improvement has been made by applying the nonlinear transformation.

While the method in Chapter 3 demonstrated capacity of predicting upcoming abnormalities, it's challenging to interpret the mechanisms of the systems and thus hindering the generalization of predictive warning to other applications of biomedical signals. Therefore, the main object of Chapter 4 is developing a classification system with abnormality predicting capacity based on spatial topology studied in Chapter 3. In Chapter 4, we proposed a novel spatial transformation specifically designed to reshape the feature space according to angles between cluster center. In this method, between cluster cosine distance are optimized through orthogonalization in spherical coordinate space and within cluster variance is reduced by a mapping function which is fitted piecewise with a basis function. The basis function proposed in the chapter has the feature of saturating at the boundaries, similar

to sigmoid function but more flexible. An advantage of deploying such basis function is that the cluster geometry may be preserved after spatial transformation. With this novel module integrated in the patient-adaptable classification framework, the performance of this system is evaluated through classification and prediction results on the test set data. The classification results show that by triggering yellow alarm through this method, specificity of abnormal types is improved. Especially for Supraventricular types, the proposed system performs better than all 5 methods in the literature. The same conclusion holds for prediction performance. Compared to the method proposed in Chapter 3, this method improves predicting capacity for all abnormal classes and the most significant improvement is for type S. Moreover, we also studied the time delay of real abnormalities following a yellow alarm. It's proved that most of the real abnormalities occurs within 10 beat after a yellow alarm. Generally speaking, the system is proved to be efficient both in classification and prediction.

1.2 Future works

In this research, we focused on two challenges of ECG classification, namely, inter-patient variation and anomaly prediction. The framework of patient-adaptable classier includes both features. The methods of improving prediction accuracy are proposed and studied. While the result shows the efficiency of designed system, further improvements can be made through research. The following tasks can be resolved as a continuation of this research:

- Research on other kernel functions which is potentially a better transformation for spatial topology optimization.
- Investigate on the deterministic solution for the objective functions proposed in Chapter 3.

- Assess the performance of proposed spatial transformation on other biomedical signals with similar characters as ECG signal
- Improve the deterministic mapping function in Chapter 4 by including the variance of individual clusters into function parameters

Bibliography

- [1] C. J. Murray and A. D. Lopez, "Measuring the global burden of disease," New England Journal of Medicine, vol. 369, no. 5, pp. 448–457, 2013.
- [2] D. Lloyd-Jones, R. J. Adams, T. M. Brown, M. Carnethon, S. Dai, G. De Simone, T. B. Ferguson, E. Ford, K. Furie, C. Gillespie, et al., "Heart disease and stroke statistics2010 update," Circulation, vol. 121, no. 7, pp. e46–e215, 2010.
- [3] W. H. Organization, "Cardiovascular diseases (cvds)," 2017.
- [4] S. C. Smith, R. Jackson, T. A. Pearson, V. Fuster, S. Yusuf, O. Faergeman, D. A. Wood, M. Alderman, J. Horgan, P. Home, et al., "Principles for national and regional guidelines on cardiovascular disease prevention: a scientific statement from the world heart and stroke forum," Circulation, vol. 109, no. 25, pp. 3112–3121, 2004.
- [5] E. Besterman and R. Creese, "Waller-pioneer of electrocardiography.," *British Heart Journal*, vol. 42, no. 1, p. 61, 1979.
- [6] B. E. Kreger, L. A. Cupples, and W. B. Kannel, "The electrocardiogram in prediction of sudden death: Framingham study experience," *American heart journal*, vol. 113, no. 2, pp. 377–382, 1987.

- [7] M. Lagerholm, C. Peterson, G. Braccini, L. Edenbrandt, and L. Sornmo, "Clustering ecg complexes using hermite functions and self-organizing maps," *IEEE Transactions on Biomedical Engineering*, vol. 47, no. 7, pp. 838–848, 2000.
- [8] G. K. Prasad and J. Sahambi, "Classification of ecg arrhythmias using multi-resolution analysis and neural networks," in *TENCON 2003. Conference on Convergent Technologies for the Asia-Pacific Region*, vol. 1, pp. 227–231, IEEE, 2003.
- [9] P. de Chazal, M. O'Dwyer, and R. B. Reilly, "Automatic classification of heartbeats using ECG morphology and heartbeat interval features," *IEEE Transactions on Biomedical Engineering*, vol. 51, pp. 1196–1206, July 2004.
- [10] R. Ceylan, Y. Ozbay, and B. Karlik, "A novel approach for classification of ecg arrhythmias: Type-2 fuzzy clustering neural network," Expert Systems with Applications, vol. 36, no. 3, pp. 6721–6726, 2009.
- [11] S. Osowski, L. T. Hoai, and T. Markiewicz, "Support vector machine-based expert system for reliable heartbeat recognition," *IEEE transactions on biomedical engineering*, vol. 51, no. 4, pp. 582–589, 2004.
- [12] H. H. Yu, P. S., and J. T. W., "A patient-adaptable ECG beat classifier using a mixture of experts approach," *IEEE Transactions on Biomedical Engineering*, vol. 44, no. 9, pp. 891–900, 1997.
- [13] P. de Chazal and R. B. Reilly, "A patient-adapting heartbeat classifier using ecg morphology and heartbeat interval features," *IEEE Transactions on Biomedical Engineering*, vol. 53, pp. 2535–2543, Dec 2006.

- [14] M. Llamedo and J. P. Martínez, "An automatic patient-adapted ecg heartbeat classifier allowing expert assistance," *IEEE Transactions on Biomedical Engineering*, vol. 59, no. 8, pp. 2312–2320, 2012.
- [15] W. Jiang and S. G. Kong, "Block-based neural networks for personalized ECG signal classification," *IEEE Transactions on Neural Networks*, vol. 18, no. 6, pp. 1750–1761, 2007.
- [16] T. Ince, S. Kiranyaz, and M. Gabbouj, "A generic and robust system for automated patient-specific classification of ecg signals," *IEEE Transactions on Biomedical Engi*neering, vol. 56, no. 5, pp. 1415–1426, 2009.
- [17] S. Kiranyaz, T. Ince, and M. Gabbouj, "Real-time patient-specific ecg classification by 1-d convolutional neural networks," *IEEE Transactions on Biomedical Engineering*, vol. 63, no. 3, pp. 664–675, 2016.
- [18] P. W. Wilson, R. B. DAgostino, D. Levy, A. M. Belanger, H. Silbershatz, and W. B. Kannel, "Prediction of coronary heart disease using risk factor categories," *Circulation*, vol. 97, no. 18, pp. 1837–1847, 1998.
- [19] M. A. Whooley, P. de Jonge, E. Vittinghoff, C. Otte, R. Moos, R. M. Carney, S. Ali, S. Dowray, B. Na, M. D. Feldman, et al., "Depressive symptoms, health behaviors, and risk of cardiovascular events in patients with coronary heart disease," Jama, vol. 300, no. 20, pp. 2379–2388, 2008.
- [20] S. H. Jambukia, V. K. Dabhi, and H. B. Prajapati, "Classification of ecg signals using machine learning techniques: A survey," in Computer Engineering and Applications (ICACEA), 2015 International Conference on Advances in, pp. 714–721, IEEE, 2015.

- [21] S. Kiranyaz, T. Ince, and M. Gabbouj, "Personalized monitoring and advance warning system for cardiac arrhythmias," *Scientific Reports*, vol. 7, no. 1, p. 9270, 2017.
- [22] L. S. Green, R. L. Lux, C. W. Haws, R. R. Williams, S. C. Hunt, and M. J. Burgess, "Effects of age, sex, and body habitus on QRS and ST-T potential maps of 1100 normal subjects.," *Circulation*, vol. 71, no. 2, pp. 244–253, 1985.
- [23] R. Hoekema, G. J. H. Uijen, and A. van Oosterom, "Geometrical aspects of the interindividual variability of multilead ecg recordings," *IEEE Transactions on Biomedical Engineering*, vol. 48, pp. 551–559, May 2001.
- [24] A. Houghton and D. Gray, Making sense of the ECG: a hands-on guide. CRC Press, 2014.
- [25] G. A. Ng, "Treating patients with ventricular ectopic beats," Heart, vol. 92, no. 11, pp. 1707–1712, 2006.
- [26] A.-A. EC57, "Testing and reporting performance results of cardiac rhythm and st segment measurement algorithms," Association for the Advancement of Medical Instrumentation, Arlington, VA, 1998.
- [27] A. L. Goldberger, L. A. Amaral, L. Glass, J. M. Hausdorff, P. C. Ivanov, R. G. Mark, J. E. Mietus, G. B. Moody, C.-K. Peng, and H. E. Stanley, "Physiobank, physiotoolkit, and physionet," *Circulation*, vol. 101, no. 23, pp. e215–e220, 2000.
- [28] G. B. Moody and R. G. Mark, "The impact of the mit-bih arrhythmia database," *IEEE Engineering in Medicine and Biology Magazine*, vol. 20, no. 3, pp. 45–50, 2001.
- [29] J. Chen and A. Razi, "A predictive framework for ecg signal processing using controlled nonlinear transformation," in *Biomedical & Health Informatics (BHI)*, 2018

 IEEE EMBS International Conference on, pp. 161–165, IEEE, 2018.

- [30] J. Chen, H. Peng, and A. Razi, "Remote ECG monitoring kit to predict patient-specific heart abnormalities," *Journal of Systemics, Cybernetics and Informatics*, vol. 15, no. 4, pp. 82–89, 2017.
- [31] B. N. Singh and A. K. Tiwari, "Optimal selection of wavelet basis function applied to ecg signal denoising," *Digital signal processing*, vol. 16, no. 3, pp. 275–287, 2006.
- [32] N. V. Thakor, J. G. Webster, and W. J. Tompkins, "Estimation of qrs complex power spectra for design of a qrs filter," *IEEE Transactions on biomedical engineering*, no. 11, pp. 702–706, 1984.
- [33] Y. Lian and P. C. Ho, "Ecg noise reduction using multiplier-free fir digital filters," in Signal Processing, 2004. Proceedings. ICSP'04. 2004 7th International Conference on, vol. 3, pp. 2198–2201, IEEE, 2004.
- [34] Y.-W. Bai, W.-Y. Chu, C.-Y. Chen, Y.-T. Lee, Y.-C. Tsai, and C.-H. Tsai, "Adjustable 60hz noise reduction by a notch filter for ecg signals," in *Instrumentation and Measurement Technology Conference*, 2004. IMTC 04. Proceedings of the 21st IEEE, vol. 3, pp. 1706–1711, IEEE, 2004.
- [35] O. Sayadi* and M. B. Shamsollahi, "Ecg denoising and compression using a modified extended kalman filter structure," *IEEE Transactions on Biomedical Engineering*, vol. 55, pp. 2240–2248, Sept 2008.
- [36] K. Park, K. Lee, and H. Yoon, "Application of a wavelet adaptive filter to minimise distortion of the st-segment," Medical and Biological Engineering and Computing, vol. 36, no. 5, pp. 581–586, 1998.
- [37] N. Nikolaev, Z. Nikolov, A. Gotchev, and K. Egiazarian, "Wavelet domain wiener filtering for ecg denoising using improved signal estimate," in *Acoustics, Speech, and Signal*

- Processing, 2000. ICASSP'00. Proceedings. 2000 IEEE International Conference on, vol. 6, pp. 3578–3581, IEEE, 2000.
- [38] S. Poungponsri and X.-H. Yu, "An adaptive filtering approach for electrocardiogram (ecg) signal noise reduction using neural networks," *Neurocomputing*, vol. 117, pp. 206–213, 2013.
- [39] V. X. Afonso, W. J. Tompkins, T. Q. Nguyen, and S. Luo, "Ecg beat detection using filter banks," *IEEE transactions on biomedical engineering*, vol. 46, no. 2, pp. 192–202, 1999.
- [40] D. Sadhukhan and M. Mitra, "R-peak detection algorithm for ecg using double difference and rr interval processing," *Procedia Technology*, vol. 4, pp. 873–877, 2012.
- [41] S. Mehta and N. Lingayat, "Svm-based algorithm for recognition of qrs complexes in electrocardiogram," *IRBM*, vol. 29, no. 5, pp. 310–317, 2008.
- [42] R. V. Andreão, B. Dorizzi, and J. Boudy, "Ecg signal analysis through hidden markov models," *IEEE Transactions on Biomedical engineering*, vol. 53, no. 8, pp. 1541–1549, 2006.
- [43] J. P. Martínez, R. Almeida, S. Olmos, A. P. Rocha, and P. Laguna, "A wavelet-based ecg delineator: evaluation on standard databases," *IEEE transactions on biomedical engineering*, vol. 51, no. 4, pp. 570–581, 2004.
- [44] S. Banerjee, R. Gupta, and M. Mitra, "Delineation of ecg characteristic features using multiresolution wavelet analysis method," *Measurement*, vol. 45, no. 3, pp. 474–487, 2012.

- [45] Z. Zidelmal, A. Amirou, M. Adnane, and A. Belouchrani, "QRS detection based on wavelet coefficients," Computer methods and programs in biomedicine, vol. 107, no. 3, pp. 490–496, 2012.
- [46] J. Shawe-Taylor and N. Cristianini, *Kernel methods for pattern analysis*. Cambridge university press, 2004.
- [47] B. Schölkopf, C. J. Burges, and A. J. Smola, Advances in kernel methods: support vector learning. MIT press, 1999.
- [48] T. Evgeniou, M. Pontil, and T. Poggio, "Regularization networks and support vector machines," *Advances in computational mathematics*, vol. 13, no. 1, p. 1, 2000.
- [49] N. Cristianini and J. Shawe-Taylor, An introduction to support vector machines and other kernel-based learning methods. Cambridge university press, 2000.
- [50] C. A. Coello Coello, "Mopso: A proposal for multiple objective particle swarm optimization," Proc. Congr. Evolutionary Computation (CEC'2002), Honolulu, HI, 5, vol. 1, pp. 1051–1056, 2002.
- [51] J. E. Alvarez-Benitez, R. M. Everson, and J. E. Fieldsend, "A mopso algorithm based exclusively on pareto dominance concepts," in *International Conference on Evolutionary Multi-Criterion Optimization*, pp. 459–473, Springer, 2005.
- [52] L. Blumenson, "A derivation of n-dimensional spherical coordinates," *The American Mathematical Monthly*, vol. 67, no. 1, pp. 63–66, 1960.
- [53] G. W. Stewart, Matrix algorithms volume 1: Basic decompositions, vol. 2. Society for Industrial and Applied Mathematics, 1998.
- [54] G. Arfken, "Gram-schmidt orthogonalization," Mathematical methods for physicists, vol. 3, pp. 516–520, 1985.