			Reg. No.															
		В.	Tech. DEGR								ME	BER	2019	9				
				Fi	rst to	Eig	th S	en	nester									
		15	5CS252J – DA	ATA	STE	RUC	TUR	ES	ANI) AL	GO	RITI	HMS	5				
NT (candidates adm												18)	x		
Note: (i)	Par	rt - A shoul	d be answered	in O	MR	sheet	withi	n fi	irst 45	min	utec	and (AMD	chas	at cho	uld i	ha hi	ndod
	ove	er to hall inv	igilator at the e	nd of	f 45 th	minu	ite.				uios	ани		SHOO	, SIIC	Julu	oc na	шиси
(ii)	Pai	rt - B and Pa	art - C should	be an	swer	ed in	answe	er b	ookle	t.								R
Time: T	hree	Hours							- 3					M	ſax.	Mar	ks: 1	.00
			p	ADT	- A	(20	· · · · · · · · · · · · · · · · · · ·	- 21	0 Ma	rka)								
	9	=				•			stions				المرسور					
1.	If T	OP = NUL	L then the sta	ick i	S													
		Empty					(B	3)	Full									
	(C)	Contain s	some data				(D))	?									21
2.	Whi	ich among	the following	is a	LIF	O da	ta str	uct	ture?									
		Queue							Link	ed li	st		281				2	
	(C)	Stack					(D))	Grap	h								
3.	In a	queue, ins	ertions can ta	ke n	lace	only	at										*	41
		Rear	or or other transfer of the	no p	1400	OIII		3)	Top									
	(C)	Front					(D))	Botto	om								
4.		refers to	a situation w	here	one	wan	ts to o	del	ete da	ata fr	om	a dat	ta str	uctu	re th	at is	emi	otv.
	(A)		ion						Free								<u>r</u>	
	(C)	Underflo	W				(D))	Over	flow								
5.	If th	e array is a	lready sorted	, wh	ich c	of the	ese al	g01	rithm	will	exh	ibit t	he b	est p	erfo	rmaı	nce	
	(A)	Quicksor	t						Merg					F				
	(C)	Insertion	sort				(D)	Heap	sort								
6.	A tre	ee used to	represent arith	ımet	ic ex	pres	sion i	is c	called									
	, ,	Threaded				•	(B)	Expre	essio	n							
	(C)	Red black					(D)	Game	е				(2)				
7.	In	the p	roblem of so	ting	a se	t is r	educe	ed 1	to the	prol	olem	ofs	ortir	ng tw	o sn	nalle	er set	ts.
	(A)	Bubble so	ort						Неар					-6				
	(C)	Insertion	sort				. (D)	Quicl	sor sor	t							
8.		algori	thm does not	divi	de th	e lis	t.			1.5								
	(A)	Binary se	arch)	Merg	e soi	t							
	(C)	Linear sea	arch				-	-	Quick									

Page 1 of 3

9.		Graph is called, if there is a path	betwe	een any two of its nodes.
	(A)	Complete	(B)	Connected
		Balanced	(D)	Binary
10.		notation, the operator symbol is		
	(A)	Polish	(B)	Prefix
	(C)	Postfix	(D)	Exponential
11.		most suitable data structure in tree con	struct	ion is
	(A)	Linked list	(B)	Array
	(C)	Stack	(D)	Queue
12.		ees are called as		
	(A)	Very deep and narrow	(B)	Very deep and very wide
	(C)	Very wide and shallow	(D)	Cannot say
13.	A	is a data structure used for the stor	_	
	(A)	Hash table	(B)	Tree
	(C)	Graph	(D)	Stack
14		graphs are directed graphs wit	h no c	rycles
		Directed acyclic	(R)	Bi-connected
-		Directed acyclic	(D)	Complete
	(C)	Binary	(D)	Complete
15.		nould be ain the hash function.		D
	, ,	Composite number	. ,	Prime number
	(C)	Odd number	(D)	Even number
16.		onnected graph without any cycles is ca		
		Tree	` /	Threaded
	(C)	Weighted	(D)	Balanced
17.		is the technique used in the quick		_
		Dynamic programming	` '	Back tracking
×	(C)	Greedy method	(D)	Divide and conquer
18.		data structure is represented asi		
	(A)	Abstract data type	` '	Recursive
	(C)	Storage structure	(D)	File structure
19.		represents that a data structure is empty		
	(A)	Under flow	(B)	Over flow
	(C)	Free storage	(D)	Compaction
20.	An	algorithm is		
		A loosely written code to make final	(B)	A step by step procedure to solve proble
	(C)	A piece of code to be executed	(D)	A language to perform a task
		11 piece of code to be executed		11 1000 Par Lattering a second

Page 2 of 3

PART - B (5 × 4 = 20 Marks) Answer ANY FIVE Questions

- 21. Illustrate on arrays and its types.
- 22. Write the algorithm to perform an insertion at the end of singly linked list.
- 23. Analyse the time complexity of insertion sort.
- 24. State the notations used to analyze the time complexity of an algorithm.
- 25. Compare linear search and binary search.
- 26. Write the advantage and disadvantages of AVL tree.
- 27. What is the need of greedy algorithms?

 $PART - C (5 \times 12 = 60 Marks)$ Answer ALL Questions

28. a. Write about the various operations of stacks with algorithms.

(OR)

- b. Elaborate on insertion and deletion of a node at the front and middle into a singly linked list.
- 29. a. Describe the three types of tree traversals in detail.

(OR)

- b. Explain about insertion sort algorithm in detail. Analyse its time complexity.
- 30. a. Discuss about separate chaining in detail with an example.

(OR

- b. Explain with examples, how insertion and deletion is performed in AVL tree.
- 31. a. Explain about the topological sort with suitable example.

(OR)

- b. Write breadth first traversal algorithm and explain with an example.
- 32. a. Write the divide and conquer algorithm for matrix addition and subtraction with example.

OR)

b. What is recursion? Write and explain the recursive algorithm for Fibonacci series.

* * * * *

21NA1-8/15CS252J Page 3 of 3