

Biologie Leistungsstufe 3. Klausur

Montag, 7. November 2016 (Vormittag)

Pr	utun	gsnu	mme	r aes	Kan	alaat	en	

1 Stunde 15 Minuten

Hinweise für die Kandidaten

- Tragen Sie Ihre Prüfungsnummer in die Kästen oben ein.
- Öffnen Sie diese Klausur erst, wenn Sie dazu aufgefordert werden.
- Sie müssen Ihre Antworten in die für diesen Zweck vorgesehenen Felder schreiben.
- Für diese Klausur ist ein Taschenrechner erforderlich.
- Die maximal erreichbare Punktzahl für diese Klausur ist [45 Punkte].

Teil A	Fragen
Beantworten Sie alle Fragen.	1 – 3

Teil B	Fragen
Beantworten Sie alle Fragen aus einem der Wahlpflichtbereiche.	
Wahlpflichtbereich A — Neurobiologie und Verhaltenslehre	4 – 8
Wahlpflichtbereich B — Biotechnologie und Bioinformatik	9 – 13
Wahlpflichtbereich C — Ökologie und Naturschutz	14 – 18
Wahlpflichtbereich D — Humanphysiologie	19 – 23

Teil A

Beantworten Sie alle Fragen in den für diesen Zweck vorgesehenen Feldern.

Mit der dargestellten Apparatur wurde die Hydrolyserate von Fischproteinen mit den Enzymen Papain und Pankreatin beobachtet. Mit fortschreitender Hydrolyse sank der pH-Wert, daher wurde nach Bedarf eine Lauge aus der Bürette zugegeben, um den pH-Wert während der Hydrolyse konstant zu halten. Die Menge an zugegebener Lauge wurde als Maß für die Rate der Proteinhydrolyse verwendet. Die Messungen wurden bei konstanter Temperatur und konstantem pH-Wert mit zwei verschiedenen Enzymkonzentrationen, 1 % und 0,1 %, vorgenommen.

[Quelle: frei nach "A Study of the Enzymatic Hydrolysis of Fish Frames Using Model Systems", geschrieben von Aristotelis T. Himonides, Anthony K. D. Taylor, Anne J. Morris, Nachdruck aus *Food and Nutrition Sciences*, Vol. 2 Nummer. 6, 2011. Copyright © 2011 SciRes.]

(Auf die vorliegende Frage wird auf der nächsten Seite weiter eingegangen)

(Fortsetzung Frage 1)

(a)	Geben Sie die Auswirkung der Enzymkonzentration auf die Hydrolyse von Proteinen an.	[1]
(b)	Skizzieren Sie in der Grafik die Kurve, die zu erwarten wäre, wenn die Hydrolyse mit 0,5 % Papain durchgeführt würde.	[1]
(c)	Erklären Sie, was mit der Hydrolyse der Fischproteine geschehen würde, wenn keine Lauge ins Reaktionsgefäß hinzugegeben würde.	[3]

Bitte umblättern

2. Die mikroskopische Aufnahme zeigt einen Schnitt durch ein Organ des menschlichen Körpers.

[Quelle: frei nach Stacey E. Mills (ed.), *Histology for Pathologists*, 3. Auflage, Copyright ©2007, Lippincott Williams & Wilkins.]

(a)	Geben Sie an, aus welchem Organ dieser Schnitt stammt.	[1]
(b)	Identifizieren Sie die mit X markierte Gewebeschicht.	[1]

(Auf die vorliegende Frage wird auf der nächsten Seite weiter eingegangen)

[1]

(Fortsetzung Frage 2)

(c)	Die Länge der mit Y markierten Struktur beträgt in Wirklichkeit 0,8 mm zwischen den beiden schwarzen Linien. Berechnen Sie die Vergrößerung der mikroskopischen Aufnahme. Der Rechenweg sollte gezeigt werden.	[2]

(d) Eine der Funktionen dieses Organs ist die Absorption. Zeichnen Sie einen Pfeil in die mikroskopische Aufnahme ein, der die Richtung der Absorption anzeigt.

Bitte umblättern

3. Die Abbildung zeigt die Entwicklung einer Kartoffelpflanze (*Solanum tuberosum*) über 14 Wochen. Das Wachstum neuer Knollen beginnt ab Woche 9. Dabei handelt es sich um umgebildete unterirdische Stiele, die als Stärkespeicher dienen und Knospen tragen, aus denen neue Pflanzen wachsen können.

[Quelle: frei nach http://humanitiespotato.weebly.com/potato-production.html]

Wissenschaftler pflanzten in einem Gewächshaus mehrere Kartoffelpflanzen. Während mehrerer Wochen wurde der Gehalt an Saccharose und Aminosäuren im Phloemsaftexsudat der Kartoffelpflanzen gemessen.

[Quelle: frei nach A. J. Karley, A. E. Douglas, W. E. Parker, Amino acid composition and nutritional quality of potato leaf phloem sap for aphids. *Journal of Experimental Biology* 2002 205: 3009-3018.© The Company of Biologists Limited 2002.]

Beschreiben Sie kurz, wie die Wissenschaftler Phloemsaft aus den Blättern der

Kartoffelpflanzen gewinnen konnten.	[2]

(Auf die vorliegende Frage wird auf der nächsten Seite weiter eingegangen)

(Fortsetzung Frage 3)

(b)									nd elp					ie	dl	ic	he	e I	M€	en	ge	en	V	or	1 S	Sa	CC	h	arc)S	e i	m	Р	hlo	эе	m	sa	ft	de	r	[3]
•		•	•	 •	 •	•	•	•	•	 •	 •	 •	•	 •	 •	•		•	•		•				•	•		•			•			•		•		• •	•			
•		•	•	 				•		 	 •	 -	•	 •		•		•			-							•			٠			•					•		٠.	
	٠.	-		 	 			•		 -		 -	٠			•		٠			-							٠			٠			•		-		٠.	•		٠.	
		-		 	 				-	 -		 -			 	•					-									٠.	٠					-		٠.			٠.	
				 						 		 									-																					
				 	 					 																													-			

Bitte umblättern

Teil B

Beantworten Sie **alle** Fragen aus **einem** der Wahlpflichtbereiche. Schreiben Sie Ihre Antworten in die für diesen Zweck vorgesehenen Felder.

Wahlpflichtbereich A — Neurobiologie und Verhaltenslehre

4. Störungen bei der Bildung von Synapsen könnten die Ursache von neurologischen Krankheiten wie der Alzheimer-Krankheit sein. Bei dieser Krankheit sind die Fähigkeit zum klaren Denken und das Gedächtnis beeinträchtigt. Sie tritt vor allem bei Menschen im Alter von über 65 Jahren auf. Die obere Abbildung zeigt die Änderung der Zahl der Synapsen mit der Zeit. In der unteren Abbildung ist die aktivitätsabhängige neurale Entwicklung dargestellt.

[Quelle: frei nach Doll, C. A. und Broadie, K. (2014), Impaired activity-dependent neural circuit assembly and refinement in autism spectrum disorder genetic models. *Frontiers in Cellular Neuroscience* 8: 30. doi: 10.3389/fncel.2014.00030. Copyright © 2014 Doll and Broadie.]

(Fortsetzung von Wahlpflichtbereich A, Frage 4)

(a)	Geben Sie an, was mit nicht benutzten Neuronen geschieht.	[1]
(b)	Prognostizieren Sie, wie geistige Aktivität den Beginn einer Alzheimer-Krankheit verzögern könnte.	[2]
(c)	Autismus tritt bereits in jungen Lebensjahren auf. Die betroffenen Personen sind in ihrer Kommunikation und ihrer Beziehung zu anderen Menschen beeinträchtigt. Es gibt Hinweise darauf, dass Autismus durch ein Zuviel an Synapsen hervorgerufen werden könnte. Schlagen Sie unter Verwendung aller gelieferten Informationen zwei mögliche Gründe für ein Zuviel an Synapsen bei Menschen mit Autismus vor.	[2]

Bitte umblättern

(Fortsetzung Wahlpflichtbereich A)

5. Delta-9-Tetrahydrocannabinol (THC) und Cannabidiol (CBD), die zwei hauptsächlichen psychoaktiven Bestandteile der Pflanze Cannabis sativa, lösen unterschiedliche Symptome und Verhaltensweisen aus. Mittels funktionellem Magnetresonanz-Imaging (fMRI) wurden die Wirkungen der beiden Stoffe auf den Parahippocampus, einen Gehirnbereich, der mit Gefühlen in Verbindung gebracht wird, sowie auf den visuellen Cortex von gesunden Versuchspersonen untersucht. Die Abbildungen zeigen die Ergebnisse.

[Quelle: frei nach S. Bhattacharyya et al. (2010), "Opposite effects of delta-9-tetrahydrocannabinol and cannabidiol on human brain function and psychopathology." Neuropsychopharmacology, 35:3, Seiten 764-774. Copyright © 2010 American College of Neuropsychopharmacology]

(a)	Uı	mı	ei	ß	en	S	ie	d	lie	٧	'or	te	ile	е (de	es	E	in	S	atz	ze	S	V	on	ı fl	MI	RI	l ir	า (die	es	en	n I	Ξx	ре	rir	me	en	t.					[2]
																																													٦
																																								-			 		

(Fortsetzung von Wahlpflichtbereich A, Frage 5)

(D)	untersuchten Hirnbereiche.	[3]
(c)	Geben Sie die Funktion des visuellen Cortex an.	[1]

Bitte umblättern

(Fortsetzung Wahlpflichtbereich A)

(a) Um	nreißen Sie die neurale Steuerung des Schluckvorgangs.
(b) Bes	schreiben Sie ein Beispiel für erlerntes Verhalten.
(b) Bes	schreiben Sie ein Beispiel für erlerntes Verhalten.
(b) Bes	schreiben Sie ein Beispiel für erlerntes Verhalten.
(b) Bes	schreiben Sie ein Beispiel für erlerntes Verhalten.
(b) Bes	schreiben Sie ein Beispiel für erlerntes Verhalten.
(b) Bes	schreiben Sie ein Beispiel für erlerntes Verhalten.
(b) Bes	schreiben Sie ein Beispiel für erlerntes Verhalten.
(b) Bes	schreiben Sie ein Beispiel für erlerntes Verhalten.

(Fortsetzung Wahlpflichtbereich A)

7.	(a)	In der Abbildung i III markierten Ele	st ein menschliches Ohr dargestellt. Beschriften Sie die mit I, II und mente.	[3]
			Aus urheberrechtlichen Gründen entfernt	
	(b)	Geben Sie die Fu	inktion der Mittelohrknochen an.	[1]
	(c)	Erklären Sie die F	Rolle der Haarsinneszellen in der Cochlea.	[3]

Narkosemittel beeinflussen die Neurotransmitter an den Synapsen der Neuronen. Erklären

(Fortsetzung Wahlpflichtbereich A)

8.

beeinflussen.	igung

Ende von Wahlpflichtbereich A

Wahlpflichtbereich B — Biotechnologie und Bioinformatik

9. Lipid A ist ein Phospholipid, das Bestandteil der äußeren Schicht der äußeren Membranen der meisten Gram-negativen Bakterien ist. LpxC ist ein Enzym, das an der Biosynthese von Lipid A beteiligt ist. In diesem Experiment wurde ein Rasen des Gram-negativen Bakteriums *Escherichia coli* auf einer Agarplatte mit Nährstoffen kultiviert. Kurz nach dem Animpfen, vor Bildung des Rasens, wurden kleine Plättchen mit verschiedenen Testsubstanzen auf die Agarplatte gelegt. Die Abbildung zeigt die Petrischale 24 Stunden später.

Legende:

Plättchen 1: LpxC-Hemmer

Plättchen 2: mutierter LpxC-Hemmer

Plättchen 3: Ampicillin Plättchen 4: Kontrolle

[Quelle: © International Baccalaureate Organization 2016]

(a)	Umreißen Sie die Wirkung von Plättchen 3 auf den Bakterienrasen.	[2]
(b)	Umreißen Sie die Auswirkung einer Mutation des LpxC-Hemmers.	[1]
(c)	Prognostizieren Sie die Wirkung von Plättchen 1 auf einen Gram-positiven Bakterienrasen.	[1]

(Fortsetzung von Wahlpflichtbereich B auf der nächsten Seite)

Bitte umblättern

(Fortsetzung Wahlpflichtbereich B)

10. Zur Verbesserung der Trockentoleranz von Tomatenpflanzen (Solanum lycopersicum) wurde mittels Gentechnik ein Gen eines essbaren Pilzes (Flammulina velutipes) in die Pflanzen eingeführt. Die Keimblätter der Tomatenpflanzen wurden abgeschnitten und zusammen mit Agrobacterium tumefaciens, das das transgene Ti-Plasmid enthielt, kultiviert. Durch Platten, die Kanamycin enthielten, wurden transgene Keimblätter selektiert. In der Abbildung sind die Konzentrationen von drei Bestandteilen des Wachses dargestellt, mit dem die Wildtyppflanzen (Kontrolle) und die transgenen Tomatenpflanzen bedeckt sind.

Konzentration von Wachsbestandteilen / Mikrogramm ml⁻¹

(a)

Bestandteile der wachsigen Oberflächenschicht

[Quelle: Nachdruck mit freundlicher Genehmigung von Nature Publishing Group. (https://www.ncbi.nlm.nih.gov/pmc/articles/PMC3517979/)

Nachdruck mit freundlicher Genehmigung von Macmillan Publishers Ltd: *Nature*, 'Expression of a fungal sterol desaturase improves tomato drought tolerance, pathogen resistance and nutritional quality' by Ayushi Kamthan *et al.* 2, Seite 951. (2012).]

Umreißen Sie die Verwendung von Kanamycin zur Selektion der transgenen

									 			 	 	 	٠.										 	٠.		 ٠.
		-						-	 	 -		 	 ٠.	 	٠.										 	٠.		 ٠.
	٠.								 			 	 	 	٠.										 			
(b)															es		es	n	nit	Hi	lfe	ei	ne	:S				
						_			 			 	 	 											 			

(Fortsetzung von Wahlpflichtbereich B, Frage 10)

(C)			_							_							ne · T			_			aı	es	se					
									 					 	 	 -		-	 -		 		 							
							-		 			 -		 	 	 -		-	 -		 		 							
				•			-	 •	 					 	 												•		٠	

(d) Eine Methode zum Einführen neuer Gene in Pflanzen ist die Partikelbombardierung ("Genkanone").

[Quelle: frei nach www.genomicon.com]

Umreißen Sie, wie mittels einer Genkanone Gene in Pflanzen eingeführt werden.	[2]

(Fortsetzung von Wahlpflichtbereich B auf Seite 19)

Bitte umblättern

Bitte schreiben Sie nicht auf dieser Seite.

Antworten, die auf dieser Seite geschrieben werden, werden nicht bewertet.

Im Urin lassen sich Stoffwechselprodukte nachweisen, die auf eine Krankheit hindeuten. Geben Sie ein Stoffwechselprodukt an, das man im Urin finden kann,

(Fortsetzung Wahlpflichtbereich B von Seite 17)

11. (a)

und die Krankheit, auf die es hindeuten kann.	[2]
Stoffwechselprodukt:	
Angezeigte Krankheit:	

(b)	Erörtern Sie die Implikationen des Biopharmings unter Verwendung eines spezifischen Beispiels.	[4

Bitte umblättern

(Fortsetzung Wahlpflichtbereich B)

12. Die Information in der mRNA-Sequenz, die in lebenden Zellen in Proteine übersetzt wird, ist durch den genetischen Code codiert. Die Codontabelle wird gezeigt.

					Zweite l	Position					
			U		С		Α		G		
	U	UUU	Phe (F)	UCU	Ser (S)	UAU	Tyr (Y)	UGU	Cys (C)	U	
		UUC		UCC		UAC		UGC		С	
		UUA	Leu (L)	UCA		UAA	STOPP	UGA	STOPP	Α	
		UUG		UCG		UAG		UGG	Trp (W)	G	
	С	CUU	Leu (L)	CCU	Pro (P)	CAU	His (H)	CGU	Arg (R)	U	
_		CUC		CCC		CAC		CGC		С	
tion		CUA		CCA		CAA	Gln (Q)	CGA		Α	Dritte
Position		CUG		CCG		CAG		CGG		G	
	Α	AUU	lle (I)	ACU	Thr (T)	AAU	Asn (N)	AGU	Ser (S)	U	Position
Erste		AUC		ACC		AAC		AGC		С	tio
"		AUA		ACA		AAA	Lys (K)	AGA	Arg (R)	Α]]
		AUG	Met (M)	ACG		AAG		AGG		G	
	G	GUU	Val (V)	GCU	Ala (A)	GAU	Asp (D)	GGU	Gly (G)	U	
		GUC		GCC		GAC		GGC		С	
		GUA		GCA		GAA	Glu (E)	GGA		Α	
		GUG		GCG		GAG		GGG		G	

Im Folgenden wird der erste Teil eines Vergleichs der Aminosäuresequenzen von Cytochrom c von einem Schimmelpilz (*Neurospora*), dem Pferd (*Equus*), dem Menschen (*Homo*), Mais (*Zea*) und Reis (*Oryza*) gezeigt, wobei die Aminosäuren im Einbuchstabencode dargestellt sind.

veurospora	MGFSAGDSKKGANLFKTRCAQCHTLEEGGGNKIGPALHGLFGRKTGSVDGYAYT	DΑ
Equus	MGDVEKGKKIFVQKCAQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGFSYT	DΑ
- Homo	MGDVEKGKKIFIMKCSQCHTVEKGGKHKTGPNLHGLFGRKTGQAPGYSYT	ΑА
Zea	MASESEAPPGNPKAGEKIEKTKCAOCHTVDKGAGHKOGPNLNGLEGROSGTTAGYSYS	ΑG
Oryza	MASFSEAPPGNPKAGEKIFKTKCAQCHTVDKGAGHKQGPNLNGLFGRQSGTTPGYSYS	ТА
,	* *	
	[Quelle: © International Baccalaureate Organization 2016]	•
(a)	Geben Sie an, welches Bioinformatik-Tool für diesen Vergleich verwendet wurde.	[1]
(b)	Geben Sie an, was die Querstriche (–) im Sequenzvergleich bedeuten.	[1]
()		
		- 1

setzung vo	on Wahlpflichtbereich B, Frage 12)
(c) (i)	Identifizieren Sie die längste Aminosäuresequenz, die bei allen fünf Gattungen gleich ist.
(ii)	Schlagen Sie, mit Begründung, vor, ob die DNA, die für die in (c)(i) identifizierte Aminosäuresequenz codiert, bei den fünf Gattungen identisch sein muss.
Mit Hilfe de	es Sequenzvergleichs wurde ein Kladogramm dieser Organismen erstellt.
Mit Hilfe d	Sequenzvergleichs wurde ein Kladogramm dieser Organismen erstellt. Neurospora Zea Oryza Equus Homo
	Neurospora Zea Oryza Equus
	Neurospora Zea Oryza Equus Homo

(Fortsetzung von Wahlpflichtbereich B auf der nächsten Seite)

Bitte umblättern

(Fortsetzung Wahlpflichtbereich B)

13.	Erklären Sie die Bildung von Biofilmen und die Probleme, die mit ihrer Bildung einhergehen.	[6]

Ende von Wahlpflichtbereich B

Wahlpflichtbereich C — Ökologie und Naturschutz

14. Cryptococcus neoformans und die nahe verwandte Spezies Cryptococcus gattii sind pilzliche Pathogene, die den Menschen befallen können. Um herauszufinden, ob diese beiden Hefespezies dieselbe oder unterschiedliche ökologische Nischen einnehmen, wurde ihre Reproduktion in steigenden Konzentrationen von Taubenkot (TK) untersucht. Die Ergebnisse der Reproduktion sind als Prozentzahlen relativ zur Kontrolle angegeben.

The American Society for Microbiology takes no responsibility for the accuracy of the translation from the published English original and is not liable for any errors. No responsibility is assumed, and responsibility is hereby disclaimed by the American Society for Microbiology for any injury and/or damage to persons or property as a matter of product liability, neglicence or otherwise, or from any use or operation of methods, products, instructions or ideas presented in the Journal. Independent verification of diagnosis and drug dosages should be made. Dicussions, views, and recommendations as to medical procedures, choice of drugs and drug dosages are the responsibility of the authors.

Die American Society for Microbiology übernimmt keine Verantwortung für die Richtigkeit der Übersetzung des englischen Originals und ist nicht haftbar für etwaige Fehler. Es wird von der American Society for Microbiology keine Verantwortung übernommen und jegliche Verantwortung abgelehnt für Rechtsverletzungen und/oder Personen- und Sachschäden, die sich aufgrund von Produkthaftung, Fahrlässigkeit oder anderweitig oder aufgrund einer Benutzung oder Anwendung von Methoden, Produkten, Anweisungen oder Ideen ergeben, die in der Fachzeitschrift enthalten sind. Es sollte stets eine unabhängige Prüfung der Diagnose und Arzneimitteldosierung erfolgen. Gespräche, Ansichten und Empfehlungen in Bezug auf medizinische Verfahren, die Wahl von Arzneimitteln und Arzneimitteldosierungen liegen in der Verantwortung der Autoren.

Legende: □ Cryptococcus neoformans □ Cryptococcus gattii

[Quelle: frei nach K Nielsen, et al., (2007), "Cryptococcus neoformans Mates on Pigeon Guano: Implications for the Realized Ecological Niche and Globalization". Eukaryotic Cell, vol. 6, Seiten 949–959, DOI: 10.1128/EC.00097-07.

Geändert mit freundlicher Genehmigung von American Society for Microbiology]

Schlagen Sie vor, wie dieses Experiment zeigt, dass Taubenkot eine Real-Nische für *C. neoformans* und eine Fundamental-Nische (aber nicht Real-Nische) für *C. gattii* ist.

•	•	•	•	 	•	•	•					•	٠	٠	•	•	•	•	 	 •	-	•	•	•	•	•	 	-	•	•	•	•	•	 	 	•	٠	-	•	•	•	•	•	•	•	 		 -	•	•	•	•	•	•	•	
٠				 							 								 	 														 	 											 		 		-			-			
											 																							 	 											 		 . .								
				 							 								 	 							 							 	 											 	-	 								

(Fortsetzung von Wahlpflichtbereich C auf der nächsten Seite)

Bitte umblättern

[3]

(Fortsetzung Wahlpflichtbereich C)

15. Die Kartenskizze zeigt die Dichte von Mikroplastik und Makroplastik in einem See in einem Nationalpark.

/(/ <u>)</u> -	N W+O			
	Ø\▲ W⊤O S			
		Legende:		
		▲ Campingpla	atz	
	9	■ Stadt		
		Mikroplastik	Makroplastik	Dichte / gkm ⁻²
Ø		WIIKIOPIASUK ⊕	Wakiopiastik ∅	<200
				200-3000
				>3000
	* Ø			
	\			
	Vorherrschei	nde Windrichtung		

[Quelle: © International Baccalaureate Organization 2016]

(a)	Prognostizieren Sie ein Beispiel für Makroplastikverschmutzung, das man in diesem See wahrscheinlich finden kann.	[1]
(b)	Geben Sie zwei mögliche Auswirkungen von Mikroplastikverschmutzung auf Organismen an.	[2]
1.		
2.		

(Fortsetzung von Wahlpflichtbereich C, Frage 15)

(C)	See.	[2]
(d)	Schlagen Sie Maßnahmen vor, mit denen die Parkleitung versuchen könnte, die	
	Makroplastikverschmutzung zu verringern.	[3]
		[3]
	wakiopiastikverscrimutzung zu verningern.	[3]
	wakiopiasukveisciiiiutzung zu verningern.	[3]
	iviakiopiastikveisciiiiutzung zu veriingerii.	[3]
	iwakiopiasiikveisciiiiutzung zu veriingerii.	[3]
	inakiopiastikveisciiinutzung zu veriingerii.	[3]

Bitte umblättern

(Fortsetzung Wahlpflichtbereich C)

16.		dbrände sind im Amazonaswald sehr häufig. In einer Studie wurden die Beziehungen chen Waldfragmentierung, Bränden und Bewirtschaftung untersucht.	
	(a)	Beschreiben Sie eine Methode, die zur Schätzung der Populationsgröße einer bestimmten Baumart in einem Wald eingesetzt worden sein könnte, nachdem ein Brandschaden aufgetreten ist	[3]
	(b)	Umreißen Sie, wie der Randeffekt die Vielfalt in Wäldern beeinflussen kann.	[3]

(Fortsetzung von Wahlpflichtbereich C, Frage 16)

(c) In zwei etwa gleich großen Feldern wurde die Menge der Pflanzen gezählt.

Pflanzenart	Feld 1	Feld 2
Gänseblümchen (Bellis perennis)	307	18
Löwenzahn (Taraxacum officinale)	332	48
Hahnenfuß (Ranunculus repens)	361	934
Gesamt	1000	1000

		e e			h	er	ן ן	uı	าด	l l:	(C	on [.]	tra	as	sti	eı	re	n	S	Si€	e ,	Aı	te	en	re	eic	h	tu	m	l	ın	d	-a	au	sg	je [·]	W	οç	ge	nł	ne	it	d	er	· b	е	id	er	1		
											_																																								-
٠.			-	-							-													-																								-			
																		-																																	

Bitte umblättern

(Fortsetzung Wahlpflichtbereich C

17.	(a)	Geben Sie zwei Bottom-up-Faktoren an, die Einfluss auf Algenbluten naben.	[2]
	1.		
	2.		
	(b)	Erklären Sie, wie Top-down-Faktoren Algenblüten regulieren.	[3]

(Fortsetzung Wahlpflichtbereich C)

Erörtern Sie, wie Feldfrüchte an den zum Wachstum benötigten Phosphor gelangen und ob die Düngung von Feldfrüchten mit Phosphor nachhaltig ist.	

Ende von Wahlpflichtbereich C

Bitte umblättern

Wahlpflichtbereich D — Humanphysiologie

(a)

19. In einer Studie sollte die wirksamste Methode zur Verzögerung des Beginns eines Diabetes Typ II bei Hochrisikopatienten bestimmt werden. Drei Gruppen erhielten entweder ein Placebo (Kontrolle), ein Medikament, das die Glukoseproduktion der Leber hemmt (Antidiabetikum), oder ein Programm zur Änderung ihres Lebensstils (Lebensstil). Die Ergebnisse der ersten vier Jahre sind im Diagramm dargestellt.

[Quelle: Berry, Colin, Jean-Claude Tardif, und Martial G. Bourassa. "Coronary Heart Disease in Patients With Diabetes." Journal of the American College of Cardiology 49.6 (2007): 631-642. Web. 19. Januar 2017.]

Analysieren Sie die Anwendung des Antidiabetikums zur Verzögerung des Beginns

	eines Diabetes Typ II.	
(b)	Listen Sie Faktoren auf, die das Risiko einer Person erhöhen, einen Diabetes zu entwickeln.	

(Fortsetzung Wahlpflichtbereich D)

20. In der Abbildung wird die Aktivität von Steroid- und Peptidhormonen in einem Teil einer Zelle und einer benachbarten Kapillare dargestellt.

[Quelle: © International Baccalaureate Organization 2016]

(a)	Beso	chriften Sie in der Abbildung	
	(i)	einen zweiten Botenstoff.	[1]
	(ii)	ein genregulatorisches Protein.	[1]
(b)		eißen Sie eine Eigenschaft von Steroidhormonen, die es ihnen erlaubt, leicht h Zellmembranen zu diffundieren.	[1]
(c)		leichen und kontrastieren Sie die Wirkmechanismen von Peptid- und bidhormonen.	[2]

(Fortsetzung von Wahlpflichtbereich D auf der nächsten Seite)

Bitte umblättern

(Fortsetzung Wahlpflichtbereich D)

21. Die mikroskopische Aufnahme zeigt einen Schnitt durch die menschliche Leber.

[Quelle: Dr Thomas Caceci, Virginia Tech/Carilion School of Medicine.]

(a) Die mit X markierte Zelle kommt nur in der Leber vor und ist der Wand eines Sinusoids zugeordnet.

(i)	Identifizieren Sie Zelle X.	[1]
(ii)	Umreißen Sie die Funktion von Zelle X.	[2]

(Fortsetzung von Wahlpflichtbereich D, Frage 21)

(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	
(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	
(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	
(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	
(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	
(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	
(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	
(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	
(c) Erklären Sie die Bedeutung von Bilirubin bei Gelbsucht.	

Bitte umblättern

(Fortsetzung Wahlpflichtbereich D)

22. Die Abbildung zeigt das Elektrokardiogramm (EKG) eines gesunden Patienten nach körperlicher Betätigung.

[Quelle: © International Baccalaureate Organization 2016]

(a)	dieses Patienten in Schlägen pro Minute. Zeigen Sie Ihren Rechenweg.	[2]
	Schläge/min	
(b)	Beschreiben Sie die elektrische Aktivität im Herzen während der P-Welle.	[1]
(c)	Erklären Sie, warum der QRS-Komplex eine höhere Amplitude aufweist als eine P-Welle.	[2]

.....

(Fortsetzung Wahlpflichtbereich D)

23.	Erklären Sie anhand einer Sauerstoffdissoziationskurve, wie Hämoglobin die atmenden Gewebe mit Sauerstoff versorgt und wie der Bohr-Effekt dabei verstärkend wirkt.	[6]

Ende von Wahlpflichtbereich D

Bitte schreiben Sie nicht auf dieser Seite.

Antworten, die auf dieser Seite geschrieben werden, werden nicht bewertet.

