

LU3EE200 spositifs pour l'électroniqu

Techniques et dispositifs pour l'électronique analogique et numérique

Chapitre n° 2 : L'Amplificateur Opérationnel Réel et ses applications

Un peu d'histoire

- Concept présenté en 1947, par John R. Ragazzini
 - « As an amplifier so connected can perform the mathematical operations of arithmetic and calculus on the voltages applied to it's input, it is hereafter termed an « Operational Amplifier » », Analysis of problems in dynamics by electronic circuits, Proceedings of the IRE, vol. 35, mai 1947, p. 444
- Premiers AOP (Bob Widlar / Fairchild)
 - μA702 (1963) 300\$
 - $\mu A709 (1965) 70\$ \rightarrow 6\$$
 - − μ A741 (1968, David Fullagar) → 2\$
 - Compensé en fréquence
 - TL081, TL082, TL084 (Années 70)
 - CA3140 (Années 70)

BJT

BiFET BiMOS

Un peu d'histoire

Référence	Туре	Impédance d'entrée	Courants d'entrée	Slew Rate	Produit Gain Bande	Courant de court circuit
μ A 741	Bipolaire	2 ΜΩ	80nA	0,5 V/µs	1 Mhz	25mA
TL081	Bifet	$10^{12}\Omega$	20nA	16 V/µs	4 Mhz	40mA
CA3140	Bimos	10 ¹² Ω	10pA	9 V/µs	4,5Mhz	40mA

AOP et AOP idéal

AOP et AOP idéal

AOP idéal:

- A_{VD} ∞ → en régime <u>linéaire</u> V⁺ = V⁻
- $Z_{in} \otimes \rightarrow I^+ = I^- = 0$
- $Z_{out} = 0$
- Pas de délais, transition nulle
- $V_{SS} \le V_{out} \le V_{DD}$

Structure interne

TL081 Only

 $\mu \text{A741M} \dots \text{JG PACKAGE} \\ \mu \text{A741C}, \mu \text{A741I} \dots \text{D, P, OR PW PACKAGE} \\ \text{(TOP VIEW)}$

TL081, TL081A, TL081B D, P, OR PS PACKAGE (TOP VIEW)

NC - No internal connection

TL082, TL082A, TL082B D, JG, P, PS, OR PW PACKAGE (TOP VIEW)

1 AOP sur un CI

2 AOP sur un CI

 $V_{CC\pm} = \pm 15V, T_A = 25^{\circ}C$

	AOP idéal	μ Α 741C
A _{VD} Large-signal differential voltage amplification	∞	200V/mV (RL ≥ 2kΩ)
R _i Input resistance	∞	2MΩ (typ)
R _o Output resistance	0Ω	75Ω (typ)

$$V_{CC^{+}} = \pm 15V, T_{A} = 25^{\circ}C$$

	AOP idéal	μ Α 741C
A _{VD} Large-signal differential voltage amplification	∞	200V/mV (RL ≥ 2kΩ)
R _i Input resistance	∞	2MΩ (typ)
R _o Output resistance	Ω0	75Ω (typ)

OPEN-LOOP LARGE-SIGNAL DIFFERENTIAL VOLTAGE AMPLIFICATION

$$A_{VD} = \frac{A_0}{\left(1 + \frac{jf}{f_0}\right)} \cdot \frac{1}{\left(1 + \frac{jf}{f_1}\right)} \cdot \frac{1}{\left(1 + \frac{jf}{f_2}\right)}$$

$$A_{VD} \approx \frac{A_0}{\left(1 + \frac{jf}{f_0}\right)}$$

Valeurs typiques : $A_0 = 10^5$ à 10^6 , $f_0 = 2$ à 20Hz, f_1 autour de 1MHz

$$V_{CC\pm} = \pm 15V, T_A = 25^{\circ}C$$

	AOP idéal	μ Α 741C
C _i Input capacitance	-	1,4pF (typ)

C_i est la somme des effets capacitifs « vus » ou modélisés en entrée de l'AOP.

$$V_{CC\pm} = \pm 15V, T_A = 25^{\circ}C$$

	AOP idéal	μ Α 741C
CMRR	∞	90dB (typ)

$$V_{out} = A_{VD}(V^+ - V^-) + A_C(\frac{V^{+} + V^-}{2})$$

$$CMRR = \frac{A_{VD}}{A_C}$$

$$V_{CC\pm} = \pm 15V, T_A = 25^{\circ}C$$

	AOP idéal	μ Α 741C
V _{IO} Input offset voltage	-	1mV (typ) 5mV (max)
I _{IO} Input offset current	0nA	20nA (typ)
I _B Input bias current	0nA	80nA (typ)

 Offset Voltage: The differential voltage which must be applied to the input of an op amp to produce zero output.

Les valeurs de ces courants étant très petites, on pourra continuer de les négliger

 $V_{CC^{+}} = \pm 15V, T_{A} = 25^{\circ}C$

	AOP idéal	μ Α 741C
V _{ICM} Common-mode input voltage range	±15V	±13V
V _{OM} Maximum peak output voltage swing	±15V	$\pm 14V$ (R _L = 10kΩ) $\pm 13V$ (R _L = 2kΩ)

LOAD RESISTANCE

En regime non-linéaire la valeur de la charge joue sur les tensions de seuils

$$V_{CC\pm} = \pm 15V, T_A = 25^{\circ}C$$

	AOP idéal	μ Α 741C
I _{OS} Short-circuit output current	-	±25mA (typ) ±40mA (max)
I_{CC} Supply current (no load, $V_o = 0$)	-	1,7mA (typ) 2,8mA (max)
P_D Total power dissipation (no load, $V_o = 0$)	-	50mW (typ) 85mW (max)

Conditions de mesure du Slew-Rate

$$V_{CC\pm} = \pm 15V, T_A = 25^{\circ}C$$

	AOP idéal	μ Α 741C
SR Slew rate at unity gain $V_I = 10V$, $C_L = 100pF$ $R_L = 2k\Omega$	0	0,5V/µs

Suiveur

• Tension de référence en mono-alimentation

Amplificateur non-inverseur

En courant continu

En courant alternatif

$$V_{out}(t) = V_{ref} + \frac{A_0 \cdot (R_1 + R_2)}{A_0 \cdot R_1 + R_1 + R_2} \cdot \frac{1}{1 + \frac{jf}{f_0} \cdot \frac{R_1 + R_2}{A_0 \cdot R_1 + R_1 + R_2}} \cdot v_{in}(t)$$

$$K = +\frac{A_0 \cdot (R_1 + R_2)}{A_0 \cdot R_1 + R_1 + R_2} \cong +\frac{(R_1 + R_2)}{R_1}$$

$$f_c = f_0 \cdot \frac{A_0 \cdot R_1 + R_1 + R_2}{R_1 + R_2}$$

Amplificateur non-inverseur

$$V_{\text{out}}(t) \qquad V_{out}(t) = V_{ref} + \frac{A_0 \cdot (R_1 + R_2)}{A_0 \cdot R_1 + R_1 + R_2} \cdot \frac{1}{1 + \frac{jf}{f_0} \cdot \frac{R_1 + R_2}{A_0 \cdot R_1 + R_1 + R_2}} \cdot v_{in}(t)$$

A.N. : $A_0 = 10^5$, $f_0 = 10$ Hz, $R_1 = 1$ k Ω , $R_2 = 20$ k Ω

En courant alternatif:

$$v_{out} = A_{VD} \cdot \left(v_{in} - \frac{R_1}{R_1 + R_2} \cdot v_{out}\right)$$

$$v_{in} \longrightarrow A_{VD} \qquad v_{out}$$

$$v_{in} \longrightarrow A_{VD} \longrightarrow A_{VD} \xrightarrow{R_1} \qquad v_{out}$$

Amplificateur inverseur

En courant alternatif

$$V_{out}(t) = V_{ref} - \frac{A_0.R_2}{A_0.R_1 + R_1 + R_2} \cdot \frac{1}{1 + \frac{jf}{f_0} \cdot \frac{R_1 + R_2}{A_0.R_1 + R_1 + R_2}} \cdot v_{in}(t)$$

$$K = -\frac{A_0.R_2}{A_0.R_1 + R_1 + R_2} \cong -\frac{R_2}{R_1}$$

$$f_c = f_0 \cdot \frac{A_0 \cdot R_1 + R_1 + R_2}{R_1 + R_2}$$

Amplificateur inverseur

En courant alternatif:

$$v_{out} = A_{VD} \cdot \left(-\frac{R_2}{R_1 + R_2} \cdot v_{in} - \frac{R_1}{R_1 + R_2} \cdot v_{out} \right)$$

Additionneur / Soustracteur

Tensions de référence différentes

Différentiateur de tension

$$V_{out} = V_{ref} + \left(-\frac{R_2}{R_1}\right) \cdot \mathcal{E} + \left(\frac{R_1 + R_2}{R_1}\right) \cdot v_{in}(t)$$

Changement de tension de référence

Amplification d'un signal moyenné sur 0V

Pour récupérer la composante alternative de V_{out} on utilisera un autre filtre passe-haut

Trigger inverseur

•
$$V_{out} = V_{DD} \rightarrow V^{+} > V^{-}$$

$$V^{+} = \frac{R_{2}}{R_{1} + R_{2}} \cdot V_{ref} + \frac{R_{1}}{R_{1} + R_{2}} \cdot V_{DD}$$

$$= \frac{R_{2}}{R_{1} + R_{2}} \cdot \frac{V_{DD}}{2} + \frac{R_{1}}{R_{1} + R_{2}} \cdot \frac{V_{DD}}{2} + \frac{R_{1}}{R_{1} + R_{2}} \cdot \frac{V_{DD}}{2}$$

$$= \frac{V_{DD}}{2} + \frac{R_{1}}{R_{1} + R_{2}} \cdot \frac{V_{DD}}{2} \quad V_{T}^{+}$$
• $V_{out} = 0 \rightarrow V^{+} < V^{-}$

•
$$V_{out} = 0 \rightarrow V^+ < V^-$$

$$V^{+} = \frac{R_{2}}{R_{1} + R_{2}} \cdot V_{ref} = \frac{R_{2} + R_{1} - R_{1}}{R_{1} + R_{2}} \cdot V_{ref}$$
$$= \frac{V_{DD}}{2} - \frac{R_{1}}{R_{1} + R_{2}} \cdot \frac{V_{DD}}{2} \quad V_{T}^{-}$$

