

Heuristic Domain Adaptation

Shuhao Cui^{1,2} Xuan Jin³ Shuhui Wang¹ Yuan He³ Qingming Huang^{1,2,4}

1. Key Lab of Intell. Info. Process., Inst. of Comput. Tech., CAS

2. University of Chinese Academy of Sciences 3. Alibaba Group 4. Peng Cheng Laboratory {cuishuhao18s, wangshuhui}@ict.ac.cn https://github.com/cuishuhao/HDA

Domain Adaptation (DA)

 Domain adaptation aims to transfer knowledge from source domain to target domain

Problem

- Direct domain distribution alignment can hardly eliminate domain-specific properties in domain-invariant representation.
- Prior knowledge requires the flexibility in handling real-world domain adaptation problems.

Heuristic Domain Adaptation (HDA)

Mechanism

Assumption

In a certain domain, the difficulty of constructing domaininvariant representations is larger than that of domainspecific representations.

Admissible Constraint

Heuristic search is admissible when:

$$h(n) \le h^*(n)$$

Similar constraint in Heuristic Domain Adaptation:

$$|H(n)| \le |H^*(n)|$$

• Theoretical insight:

• Error bound under *F*:

$$\epsilon_T(F) \leq \epsilon_S(F) + [\epsilon_S(F^*) + \epsilon_T(F^*)] + |\epsilon_S(F, F^*) - \epsilon_T(F, F^*)|$$

• H and $F - F^*$ could be regarded as positively correlated:

$$H = k(F - F^*) \qquad k \in (0, 1]$$

• Error bound of HDA:

$$\epsilon_{T}(G) \leqslant \epsilon_{S}(G) + \left[\epsilon_{S}\left(G^{*}\right) + \epsilon_{T}\left(G^{*}\right)\right] + \left|\epsilon_{S}\left(G, G^{*}\right) - \epsilon_{T}\left(G, G^{*}\right)\right|$$

$$\leqslant \epsilon_{S}(F) + \left[\epsilon_{S}\left(F^{*}\right) + \epsilon_{T}\left(F^{*}\right)\right] + \left|\left(1 - k\right)\left|\epsilon_{S}\left(F, F^{*}\right) - \epsilon_{T}\left(F, F^{*}\right)\right|$$

• Lower error bound is achieved.

Heuristic Domain Adaptation Network (HDAN)

Similarity

- Similar properties exist in G(x) and H(x).
- To reduce domain property, the initial value: $H_{init}(x) = -G_{init}(x)$
- Similarity initialization: $F_{init}(x) = 0$

Independence

- G(x) and H(x) could be regarded as Blind signal separation from F(x).
- F(x) could obtain higher nongaussianity compared with G(x) and H(x).

Barrier

Current

Start

• Nongaussianity Constraint: $kurt(F(x)) - kurt(G(x)) \approx 0$

Termination

- Range of H(x) is near 0 in the final: $|H(x)| \approx 0$
- Considering samples with rich domain properties, H(x) should be sparse: $\min |H(x)|_1$

Heuristic Representations

• H(x) is enhanced by multiple subnetworks with diverse initialization :

$$H(x) = \sum_{k=1}^{M} H^k(x)$$

Experiments

Achieve state-of-the-art on 3 domain adaptation (DA) tasks.

Unsupervised DA results on Office-Home													
Method	$A \rightarrow C$	$A \rightarrow P$	$A \rightarrow R$	$C \rightarrow A$	$C \rightarrow P$	$C \rightarrow R$	$P \rightarrow A$	$P \rightarrow C$	$P \rightarrow R$	$R \rightarrow A$	$R \rightarrow C$	$R \rightarrow P$	Avg
ResNet50 [24]	34.9	50.0	58.0	37.4	41.9	46.2	38.5	31.2	60.4	53.9	41.2	59.9	46.1
DAN [32]	43.6	57.0	67.9	45.8	56.5	60.4	44.0	43.6	67.7	63.1	51.5	74.3	56.3
DANN [18]	45.6	59.3	70.1	47.0	58.5	60.9	46.1	43.7	68.5	63.2	51.8	76.8	57.6
MCD [45]	48.9	68.3	74.6	61.3	67.6	68.8	57	47.1	75.1	69.1	52.2	79.6	64.1
EntMin [52]	43.2	68.4	78.4	61.4	69.9	71.4	58.5	44.2	78.2	71.1	47.6	81.8	64.5
CDAN [33]	50.7	70.6	76.0	57.6	70.0	70.0	57.4	50.9	77.3	70.9	56.7	81.6	65.8
Symnets [56]	47.7	72.9	78.5	64.2	71.3	74.2	63.6	47.6	79.4	73.8	50.8	82.6	67.2
SAFN [54]	52.0	71.7	76.3	64.2	69.9	71.9	63.7	51.4	77.1	70.9	57.1	81.5	67.3
ATM [29]	52.4	72.6	78.0	61.1	72.0	72.6	59.5	52.0	79.1	73.3	58.9	83.4	67.9
BNM [11]	52.3	73.9	80.0	63.3	72.9	74.9	61.7	49.5	79.7	70.5	53.6	82.2	67.9
MDD [57]	54.9	73.7	77.8	60.0	71.4	71.8	61.2	53.6	78.1	72.5	60.2	82.3	68.1
GVBG [12]	56.5	74.0	79.2	64.2	73.0	74.1	65.2	55.9	81.2	74.2	58.2	84.0	70.0
CADA [27]	56.9	76.4	80.7	61.3	75.2	75.2	63.2	54.5	80.7	73.9	61.5	84.1	70.2
HDAN	56.8	75.2	79.8	65.1	73.9	75.2	66.3	56.7	81.8	75.4	59.7	84.7	70.9

Semi-supervised DA results on Domainnet

Models	Clipart	Infograph	_	Quickdraw			Avg
ResNet101 [24]	47.6 ± 0.52	13.0 ± 0.41	38.1±0.45	13.3 ± 0.39	51.9±0.85	33.7 ± 0.54	32.9 ± 0.54
DAN [32]	45.4 ± 0.49	12.8 ± 0.86	36.2 ± 0.58	15.3 ± 0.37	48.6 ± 0.72	34.0 ± 0.54	32.1 ± 0.59
RTN [34]	44.2 ± 0.57	12.6 ± 0.73	35.3 ± 0.59	14.6 ± 0.76	$48.4 {\pm} 0.67$	31.7 ± 0.73	31.1 ± 0.68
JAN [35]	40.9 ± 0.43	11.1 ± 0.61	35.4 ± 0.50	12.1 ± 0.67	45.8 ± 0.59	32.3 ± 0.63	29.6 ± 0.57
DANN [18]	45.5 ± 0.59	13.1 ± 0.72	37.0 ± 0.69	13.2 ± 0.77	48.9 ± 0.65	31.8 ± 0.62	32.6 ± 0.68
ADDA [50]	47.5 ± 0.76	11.4 ± 0.67	36.7 ± 0.53	14.7 ± 0.50	49.1 ± 0.82	33.5 ± 0.49	32.2 ± 0.63
SE [16]	24.7 ± 0.32	3.9 ± 0.47	12.7 ± 0.35	7.1 ± 0.46	22.8 ± 0.51	9.1 ± 0.49	16.1 ± 0.43
MCD [45]	54.3 ± 0.64	22.1 ± 0.70	45.7 ± 0.63	7.6 ± 0.49	58.4 ± 0.65	43.5 ± 0.57	38.5 ± 0.61
DCTN [53]	48.6 ± 0.73	23.5 ± 0.59	48.8 ± 0.63	7.2 ± 0.46	53.5 ± 0.56	47.3 ± 0.47	38.2 ± 0.57
M ³ SDA [39]	57.2 ± 0.98	24.2 ± 1.21	51.6 ± 0.44	5.2 ± 0.45	61.6 ± 0.89	49.6 ± 0.56	41.5 ± 0.74
$M^{3}SDA-\beta$ [39]	58.6 ± 0.53	26.0 ± 0.89	52.3 ± 0.55	6.3 ± 0.58	62.7 ± 0.51	49.5 ± 0.76	42.6 ± 0.64
ML-MSDA [30]	61.4 ± 0.79	26.2 ±0.41	51.9 ± 0.20	19.1 ±0.31	57.0 ± 1.04	50.3 ± 0.67	44.3 ± 0.57
GVBG [12]	61.5 ± 0.44	23.9 ± 0.71	54 2+0 46	16.4 ± 0.57	67.8 ± 0.98	52.5+0.62	46.0 ± 0.63
HDAN	63.6 ±0.35	25.9 ± 0.16	56.1 ±0.38	16.6 ± 0.54	69.1 ±0.42	54.3 ± 0.26	47.6 ±0.40

- Domain separation accuracy of G(x) is higher than H(x).
- Cosine similarity is gradually reduced.
- The ranges of subnetwork outputs are different.