Termodinámica - Clase 13

Graeme Candlish

Institúto de Física y Astronomía, UV graeme.candlish@ifa.uv.cl

Contenido

Conceptos en esta clase

Las fases de las sustancias

Diagramas de fase

Fases del fluido van der Waals

Resumen

Conceptos en esta clase

- Fases de las sustancias
- Diagramas de fase (PT)
- Diagrama PVT del agua
- Fases del fluido de van der Waals

Contenido

Conceptos en esta clase

Las fases de las sustancias

Diagramas de fase

Fases del fluido van der Waals

Resumer

Concepto de una fase

Una región del espacio (un sistema termodinámico), a lo largo de la cual todas las propiedades físicas de un material son esencialmente uniformes.

Una región de material que es químicamente uniforme, físicamente distinta y (a menudo) mecánicamente separable.

Concepto de una fase

Por ejemplo, agua en sus tres fases: sólida, líquida, gaseosa

Coexistencia de fases

Es posible tener más que una fase presente en el mismo momento...

Coexistencia de fases

Además, es posible tener las dos fases presente en equilibrio.

- Con T y P fijos en el contorno, la energía libre de Gibbs G está en su mínimo en equilibrio.
- Dos fases: masa M_1 de la sustancia en fase 1, masa M_2 de la sustancia en fase 2.
- Las energías libres específicas de Gibbs son g_1 y g_2 .

$$G=g_1M_1+g_2M_2$$

• En una **transición de fase**, M_1 y M_2 cambian (conservando la masa total).

Conservación de masa:

$$dM_1+dM_2=0.$$

Entonces:

$$dG = g_1 dM_1 + g_2 dM_2 = VdP - SdT = 0$$

donde usamos dG=0 para cualquier proceso espontáneo que ocurre en equilibrio.

Combinando conservación de masa con dG = 0 tenemos

$$g_1 = g_2$$

Las dos fases (en equilibrio a T y P constante) tienen sus energías libres de Gibbs iguales.

 \Rightarrow si g es **menor** para una de las fases, ésta es la **única** fase que estará presente.

Entonces, la condición de equilibrio entre las 2 fases es

$$g_1(T,P)=g_2(T,P)$$

Para cierta temperatura T, ésta ecuación está satisfecha por solamente un valor de la presión.

La región de coexistencia de las dos fases en un diagrama *PT* es una **línea**.

Contenido

Conceptos en esta clase

Las fases de las sustancias

Diagramas de fase

Fases del fluido van der Waals

Resumer

Diagramas PT

Diagramas PV y TV

El volúmen total del sistema es:

$$V = v_1 M_1 + v_2 M_2$$

donde v_1 y v_2 son los volúmenes específicos. Podemos cambiar v_i y M_i manteniendo V constante.

La región de coexistencia de las dos fases en un diagrama PV o TV es un área.

Diagramas PV y TV

Diagrama PVT del agua (a presiones bajas)

Diagrama PT

Diagrama PV

Contenido

Conceptos en esta clase

Las fases de las sustancias

Diagramas de fase

Fases del fluido van der Waals

Resumer

Isotérmas del fluido van der Waals

Punto crítico del fluido van der Waals

En el punto crítico, la transición líquido-vapor desaparece. Para el fluido de van der Waals la ecuación de estado es:

$$Pv^3 - (Pb + RT)v^2 + av - ab = 0$$

donde v = V/n. Ésta es una ecuación polinomial de grado 3 en v: para ciertos valores de a, b, P y T hay 3 raíces. Las 3 raíces coinciden en el **punto crítico** con coordenadas:

$$P_c = \frac{a}{27b^2} \qquad v_c = 3b \qquad RT_c = \frac{8a}{27b}$$

Transición líquido-vapor del fluido van der Waals

Con los valores T_c , P_c y v_c podemos escribir la ecuación de estado como:

$$\left(\frac{P}{P_c} + \frac{3}{(v/v_c)^2}\right) \left(3\frac{v}{v_c} - 1\right) = 8\frac{T}{T_c}$$

- Para $T < T_c$ existe un rango de v donde $K = -v(\partial P/\partial v)_T < 0$: el módulo de compresibilidad (específico) es **negativo**.
- El rango de v donde éste ocurre aumenta mientras T disminuye.
- K < 0 signifíca una inestabilidad mecánica: la presión aumenta cuando el volúmen aumenta.
- ⇒ el fluido se separa en dos fases con densidades diferentes que tienen la misma energía libre de Gibbs en equilibrio.

Isotérma verdadera

 La isotérma verdadera del fluido es una línea horizontal que conecta la fase líquida (más denso, v menor) con la fase gaseosa (menos denso, v mayor).

Isotérma verdadera

 La línea encierra áreas iguales por arriba y por debajo.

$$\left(\frac{\partial g}{\partial P}\right)_T = v$$

de la definición de G. Por lo tanto, el cambio en g está dado por

$$g_I - g_V = \Delta g = \int_{T \text{cte.}} v dP = 0$$

 Para la ecuación de estado de van der Waals, no hay una fase sólida.

Contenido

Conceptos en esta clase

Las fases de las sustancias

Diagramas de fase

Fases del fluido van der Waals

Resumen

Resumen

- Una fase de una sustancia corresponde a un componente químicamente uniforme, físicamente distinta y (a menudo) mecánicamente separable de las otras fases.
- Durante una transición de fase, hay (por lo menos) dos fases que coexisten.
- También hay estados de equilibrio donde varias fases coexisten.
- En un diagrama PT las regiones de coexistencia de fases son líneas.
- En un diagrama PV (o TV) éstas regions son áreas.
- El fluido de van der Waals tiene solamente las fases gaseosa y líquida.