California High-Speed Train Project

Request for Proposal for Design-Build Services

RFP No.: HSR 11-16

Book 4, Part B, Section 3
Geotechnical Exploration Data Report
Volume 1 Appendix A-1 & B

THIS PAGE INTENTIONALLY LEFT BLANK

Procurement Package 1

Supplemental Data Geotechnical Exploration Data Appendix A-1 & B of Volume 1

June 29, 2012

08/22/2012 ADDENDUM 4 - RFP HSR 11-16

San Francisco Transbay Terminal

Millbrae-SFO

Redwood City

or Palo Alto

Sacramento

San Jose

Diridon

Gilroy

Downtown Modesto

Downtown Merced

Fresno

Kings/Tulare Regional Station (Potential Station)

Bakersfield

Sylmar

Norwalk Anaheim Palmdale

Ontario Airport
Riverside

Murrieta

Escondido
University City
San Diego

CALIFORNIA HIGH-SPEED TRAIN PROJECT

PROCUREMENT PACKAGE 1

SUPPLEMENTAL DATA - GEOTECHNICAL EXPLORATION DATA

Appendix A-1 & B of Volume 1

For

AECOM

2020 L Street, Suite 300 Sacramento CA, 95811

2360 Qume Drive, Suite A, San Jose, CA 95131 (408) 452-9000

Supplemental Data - Report of Geotechnical Exploration Data California High-Speed Train Merced to Fresno Corridor CP-1 Madera and Fresno Counties, California

This Supplemental Data Report should be included in the Volume 1 of the report. It is based on the remaining laboratory data between June 1, 2012 and June 29, 2012. This volume includes new laboratory test data, summary of laboratory test results and only the updated boring logs (based on new laboratory test data). Updated boring logs, included in this report, should supersede those included in the June 1, 2012 report.

APPENDIX A-1

(LOG OF TEST BORINGS)

SAMPLER TYPE(S) AND SIZE(S) (ID) MC (2.5" I.D.) - SPT (1.4" I.D.) SOREHOLE BACKFILL AND COMPLETION SPT HAMMER TYPE Auto / 140 lbs / 30" GROUNDWATER DURING DRILLING AFTER DRILLING (DATE) TOTAL DEPTH OF BORING	V. Santos PRILLING CONTRACTOR Technicon Engineering Services, Inc	36° BOR See	50' 2' HOLE Bori	" / -11 LOCA	ATION (I 19° 54' ATION (O ocation	58" Offset, S			and Dat	um)	S	URFA	16R CE ELEVATION		
READINGS NA	Rotary Wash SAMPLER TYPE(S) AND SIZE(S) (ID) MC (2.5" I.D.) - SPT (1.4" I.D.)	CM SPT Aut	E 55 (HAMMI o / 14	R TY	PE / 30"						H	6 1/2" HAMMER EFFICIENCY, ERI			
ASPHALT (6" AC over 12" A8). SILTY SAND (SM); loose; orange brown; moist; fine SAND (SM); loose;	BOREHOLE BACKFILL AND COMPLETION Neat Cement			ATER		IG DRIL	LING	AFTER	RDRILLI	NG (DA	1				
ASPHALT (6" AC over 12" AB). SILTY SAND (SM); loose; orange brown; moist; fine SILTY SAND (SM); loose; orange brown; moist; fine SILTY SAND (SM); loose; orange brown; moist; fine Poorly graded SAND (SP); medium dense; brownish gray; course to fine SAND. Poorly graded SAND (SP); medium dense; brownish gray; course to fine SAND. (H#4IIII) Very dense. CALIFORNIA High-Speed Rail Authority CALIFORNIA FRESNO AND MADERA COUNTIES, CALIFORNIA Date: 6/29/2012 Job No: 2009-139-450	O (£)	N	Sample Denth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method Casing Depth	Remarks		
Poorly graded SAND (SP); medium dense; brownish gray; coarse to fine SAND. (+#4=4%, -#200=4%). Solution Figure F	ASPHALT (6" AC over 12" AB). 1 SILTY SAND (SM); loose; orange b SAND. 3 H	orown; moist; fine		S01	4	9				100			No sample was ecovered at this depth due to setting of asing Switched to mud Rotary wash drilling at		
Very dense. Very dense. Sold 7 45 100 Sold 7 45	Poorly graded SAND (SP); medium gray; coarse to fine SAND. (+#4=4%, #200=4%).	n dense; brownish		S03	9	21	8	107		100		000000000000000000000000000000000000000	PA		
CALIFORNIA High-Speed Rail Authority CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA Date: 6/29/2012 Job No.: 2009-138-450	20 Very dense.		<u> </u>	S04	15	45				100		000000000000000000000000000000000000000			
CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA Date: 6/29/2012 Job No.: 2009-138-450	SILTY SAND (SM); very dense; ligh	ht yellowish gray;													
Date: 6/29/2012 Job No.: 2009-138-450		CALI	FORM										RIDOR CP-1		

<u>A-7A</u>

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-7B

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate: A-7C

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-7E

ELEVATION (ft)	DEPTH (ft)	Material Graphics	DESCRIPTIO	S ample	Sample Depth			Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method Casing Depth	Remarks
	146 — 147 — 148 — 149 — 150 —		SILTY SAND (SM); very dense; lig description continued from previou	ht gray; moist. layer us page										000000000000000000000000000000000000000	
	151		Medium to fine SAND.		S2	1 4 50		50/5	48	68		164		000000000000000000000000000000000000000	
	159				S2	22 22 23 3	9	62				100		000000000000000000000000000000000000000	
	168				S2	23 22 22 2	4	53	16			100		000000000000000000000000000000000000000	
			(continued)	CALIFORN	ΝΙΔΙ	HGH	SPF	FD T	RAIN	MERC	ED TO) FRF	SNO	CORE	RIDOR CP-1
	C.A High	ALIF h-Spe	ORNIA PAR PAR PAR PAR PAR PAR PAR PAR PAR PA							A CO	UNTIE	S, CA	LIFO	RNIA	
				Date: 6/29/2012						1 1	ob No.:	2000	138_	450	

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

High-Speed Rail Authority

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate: A-7G

	akane		4-27-12 4-27-12		36° 50)' 11'	' / -1	19° 55	5' 12"			and Dat)			S0018A SURFACE ELEVATION			
Tecl	nnicon	Eng	ACTOR jineering Services, Inc		See B					station,	Line)			5	SURF	-ACE ELEVATION			
ORILL	ING ME	THOI			DRILL R	IG									80RE	EHOLE DIAMETER			
SAMP	LER TY	PE(S) AND SIZE(S) (ID)		SPT HAI	MMEF	R TYF	Έ						ŀ	HAMN	MER EFFICIENCY, ERI			
	-	-	FILL AND COMPLETION		Auto / 140 lbs / 30" GROUNDWATER DURING DRILLING AFTER DRILLING (DATE) TOT														
	t Cem	ent			READIN			89.5 f					`			.5 ft			
ELEVATION (ft)	Роертн (ft)	Material Graphics	DESCRIPTIC	DN		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks			
	1		SILT (ML); hard; dark brown; mois	st; trace fine S	SAND.														
	3 4		SILTY SAND (SM); very dense; lic	wht roddich ha	-OM/O:	X	S01	9 31 24	55				78		{ { { { }	%LEL/PPM=0, %O2=20.9, %H2S=0 %CO=0			
	5		moist; fine SAND.	grit reddisir bi	OWII,		000	44	50/2	0	404		100			PA			
	6		(+#4=0%, -#200=36%).			M	S02	11 50/3"	50/3	8	121		100		$ \langle $	PA			
	8 9 10 11 12 13 14 15 16 17 17 17 18 18 18 18 18 18 18 18 18 18 18 18 18		Medium dense; (+#4=0%, -#200=	27%).		X	S03	6 9 15 4 10 17	24	3	97		78			PA			
	18 = 19 = 20 = 21 = 22 = 23 = 24 = 24		Dense; light gray; coarse to mediu			X	S05	13 21 24	45				89						
	25			IIIC OAND.															
<u></u>) C I	AT IF	FORNIA (continued)		CALIFO											RRIDOR CP-1			
	High	h-Spe	ed Rail Authority				FRE	SNO	AND IV	IADEF		UNTIE				4			
			ne report prepared by Parikh Consulta	Date: 6/					L.I.I.	- 4.4		ob No.:				Plate:			

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Plate:

A-9B

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-9C

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

Plate:

Job No.: 2009-138-450

A-9D

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-9E

High-Speed Rail Authority

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

Plate:

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

A-9F

ELEVATION (ft) DEPTH (ft)	DESCRIPT		Sample Depth Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method Casing Depth	Remarks
176 177 178 179 180 181 182 183 184 185 186 187 190 191 192 193 194 195 196 197 198 199	Bottom of borehole at 181.5 ft b Groundwater was encountered	brown; wet; medium to ntinued from previous	S26	38 50/6"	50/6	Co	od)	Sh (ts)	100	N N N N N N N N N N N N N N N N N N N		
202 = 203 = 204 = 205 = 205		CALIFOR	RNIA HIO	GH SP	EED T	'RAIN	MERC	CED TO	O FRE	SNO	CORRI	DOR CP-1

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-11B

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

A-11C

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-11D

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-11E

Date: 6/29/2012

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-11F

Date: 6/29/2012

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-11G

DRILL	nnicor ING ME ary Wa	THO	yineering Services, Inc.	See B DRILL R CME !	IG	g Lo	cation		Station,					BOREHOLE DIAMETER 6 1/2"			
MC BORE	LER TY (2.5" I	'PE(S . D.) BACKI) AND SIZE(S) (ID) FILL AND COMPLETION	SPT HAI Auto / GROUN	SPT HAMMER TYPE Auto / 140 lbs / 30" GROUNDWATER DURING DRILLING AFTER DRILLING (DATE) READINGS 64.0 ft										MER EFFICIENCY, ERI		
ELEVATION (ft)	рертн (#)	Material Graphics	DESCRIPTION	·	Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks		
	1 2 3 4 5 6 7 8 9 10 11 12 13		SILTY SAND (SM); (from the cuttings). SILTY SAND (SM); loose to medium densimoist; medium to fine SAND.	e; brown;	X	S01	2 5 6	11				78		<u> </u>	Due to very loose SAND casing was pushed to 10 ft to take the first sample. (Loosing circulation) %LEL/PPM=0, %O2=21.2, %H2S=0, %CO=0 CR, DS		
	14 = 15 = 16 = 17 = 18 = 19		Medium dense; (-#200=22%).		X	S02	4 6 8	14	7	111		72		000000000000000000000000000000000000000	PA		
	20 = 21 = 22 = 23 = 24		Reddish brown.		X	S03	3 8 11	19				72		000000000000000000000000000000000000000			
	24 25		SILT (ML); hard; yellowish brown; moist. (continued)											2000			
	C/ Hig	ALIF h-Spe	FORNIA Ped Rail Authority	CALIFO							CED TO				RRIDOR CP-1		

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-13B

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-13C

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-13D

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate: A-13E

Plate:

A-13F

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

DRILL	hnicon	Eng THO	ACTOR gineering Services, Inc. D Auger - Rotary Wash	Se DR	REHOLI ee Bor ILL RIG ME 55	ing Lo	cation		Station,	Line)				BOREHOLE DIAMETER 8"			
MC BORE	(2.5" l.	D.) BACK) AND SIZE(S) (ID) FILL AND COMPLETION	A GR	SPT HAMMER TYPE Auto / 140 lbs / 30" GROUNDWATER DURING DRILLING AFTER DRILLING (DATE) READINGS Not Encountered										MER EFFICIENCY, ERI 6 NL DEPTH OF BORING 5 ft		
ELEVATION (ft)	DEPTH (ft)	Material Graphics	DESCRIPTIO	N	dead olemon	Sample Deput	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks		
	1		SANDY SILT (ML); hard; dark brocoarse grained particles, (#200=5) SILTY SAND (SM); very dense; decoarse, rounded GRAVEL, max. u medium to fine SAND.	wn; moist; trace	s).	S01	12 18 20	67	16	111		78			%LEL/PPM=0, %O2=20.8, %H2S=0 %CO=0 PA		
	<u> </u>	.1.1.1.	(continued)											<u> ТИ</u>			
	CA	ALIF	FORNIA ped Rail Authority	CAI	LIFORI						CED TO				RRIDOR CP-1		

FRESNO AND MADERA COUNTIES, CALIFORNIA

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

Plate:

Job No.: 2009-138-450

A-14B

Date: 6/29/2012

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-14C

High-Speed Rail Authority

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

FRESNO AND MADERA COUNTIES. CALIFORNIA

Job No.: 2009-138-450

Plate: A-17A

High-Speed Rail Authority

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-17B

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-17C

CALIFORNIA
High-Speed Rail Authority

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-17D

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-17E

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

S. Bhangoo 4-4-12 4-4-12 RILLING CONTRACTOR	36° 51' 4" / -	CATION (32" Offset, S			and Dat	.um/			028A FACE ELEVATION
Fechnicon Engineering Services, Inc. RILLING METHOD Hollow-Stem Auger AMPLER TYPE(S) AND SIZE(S) (ID) MC (2.5" I.D.) - SPT (1.4" I.D.) DREHOLE BACKFILL AND COMPLETION	See Boring I DRILL RIG CME 55 (Rig SPT HAMMER T Auto / 140 Ib GROUNDWATE READINGS	#35) YPE s / 30"	IG DRIL					TE) T	6 1/ IAMN 93%	MER EFFICIENCY, ERI 6 AL DEPTH OF BORING
Neat Cement DESCRIPTION Waterial Graphics Graphics	Sample Depth	Blows per 6 in.	Blows per foot	Moisture Content (%)	ight	Shear Strength (tsf)	Recovery (%)		Drilling Method	.5 ft Remarks
SILTY SAND (SM); medium dense; brown; moi SAND. (+#4=3%, -#200=38%).			13	6	118	S (t	100	<u> </u>		Bulk sample taken at 0' to 5' (R=64)
Very dense; moderate cementation; (weathered sandstone).	≥ sc	50/3	REF	8	/		100			CR
9 SILT (ML); hard; brown; moist. 11 12 13 13 14 15 15 15 15 15 15 15	Sc	3 21 33 50/3"	83/9"	18	∧ 93 <i>j</i>		73			
14	SC	14 16 20 22	42	30	92		72			C, PA
19 = 1 1 20 = 1 21 = 1 22 = 1 1 22 = 1 1 22 = 1	Sc	05 5 12 21	33	14	113		89			
23 24 25 (continued)									{	

High-Speed Rail Authority

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

Job No.: 2009-138-450

Plate:

A-19A

CALIFORNIA
High-Speed Rail Authority

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

Plate:

A-19C

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

CALIFORNIA

High-Speed Rail Authority

Job No.: 2009-138-450 This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

FRESNO AND MADERA COUNTIES, CALIFORNIA

Plate:

A-19D

Tecl DRILL	hnico Ing Me	n Eng		See Bo	orir G				station,	Line)			1	BORI	FACE ELEVATION EHOLE DIAMETER
MC BORE	LER T'	YPE(S I. D.) BACK	Auger 5) AND SIZE(S) (ID) - SPT (1.4" I.D.) FILL AND COMPLETION	SPT HAM Auto / GROUND READING	140 0W/	O Ibs /	30" DURIN	IG DRIL		AFTER	R DRILLI	NG (D <i>F</i>	1	92%	MER EFFICIENCY, ERI % AL DEPTH OF BORING 5 ft
ELEVATION (ft)	ОЕРТН (#)	Material Graphics	DESCRIPTION .		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	tide Remarks
	1 2 3	-	SANDY SILT (ML); very stiff; brown; moist; find (+#4=0%, -#200=66%).	e SAND.	V A	S01	6 9 8	17	9	115		100		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	PA
	4 5 6 7 8		Hard; reddish brown.		V A	S02	13 23 33	56				100			5' to 11.5' "HARD PAN" or CALICHE LAYER
	9 10 11 12 13	4	SILTY SAND (SM); dense; brown.		V	S03	18 38 42	80				100			CL, DS
	14 - 15 - 16 - 17 -		Poorly graded SAND (SP); dense; light gray; r SAND. (+#4=0%, -#200=3%).	noist; fine	X	S04	6 10 11	21	2			100			PA
	18 19 20 21 22		Medium dense; medium to fine SAND.		X	S05	4 7 12	19				100			
	23 24 25		(continued)												
	C	ALI h-Spe	FORNIA Paged Rail Authority	CALIFO 6/29/2012	RN					RA CO	UNTIE	S, CA	LIFO	RNI	

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

CALIFORNIA

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-20B

RILL Holl	nnicon ING ME ow-Ste	Eng THOI em A	ineering Services, Inc D Juger	See E	Bori RIG 55 (ng Lo	cation 35)	Offset, S n Plan	, autori,				E		FACE ELEVATION EHOLE DIAMETER 12"
MC BORE	(2.5" l.	D.) - BACKE	AND SIZE(S) (ID) SPT (1.4" I.D.) FILL AND COMPLETION	SPT HA Auto	/ 14	0 lbs /	30" DURIN	IG DRIL		AFTER	R DRILLI	NG (DA	ATE) 1	93% FOT A	MER EFFICIENCY, ERI MAL DEPTH OF BORING .5 ft
ELEVATION (ft)	оертн (ft)	Material Graphics	DESCRIPTION		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks
	1 2 3 4		SILTY SAND (SM); very dense; brown; mois SAND.	t; medium	X	S01	7 50/6"	50/6	5	128		56			Bulk sample taken at 0' to 5' (R=62) %LEL/PPM=0, %O2=21.0, %H2S=0, %CO=0
	5 6 7 8		Medium dense; yellowish brown; (+#=4=0%-#200=41%).	,	X	S02	21 16 12	28	5	112		67			CR, PA
	9 10 11 12 13 13		Poorly graded SAND (SP); medium dense; lyellowish brown; moist; medium to fine SAN	ight D.	X	S03	7 10 14	24	2			78			
	14 = 15 = 16 = 17 =		Dense; (+#=4=0%, #200=2%).		X	S04	6 16 16	32	1			67			%LEL/PPM=0, %O2=21.1, %H2S=0 %CO=0 PA
	18 = 19 = 20 = 21 = 21 = 21		SILT (ML); hard; light brownish gray; moist; SAND.	trace fine		S05	12 15 16	31	12			72			DS
	22 = 23 = 24 = 25		(continued)												
	C.A High	ALIF n-Spe	ORNIA PARIS Authority	CALIFO 6/29/2012						RA CO	UNTIE	S, CA		RNIA	RRIDOR CP-1

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

A-24A

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-24B

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-24C

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

High-Speed Rail Authority

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate: A-24D

	ED BY antos		4-27-12 4-27-	LETION DATE -12	36° 53	3' 4"	' / -11	9° 57'				and Dat	um)			041A
			ACTOR Jineering Services, Inc.		See B					Station,	Line)			3	SURF	FACE ELEVATION
RILL	ING ME	THO)		DRILL R	RIG	-								30RE	EHOLE DIAMETER
SAMP	LER TY	PE(S) AND SIZE(S) (ID)		SPT HA	MME								F		MER EFFICIENCY, ER
ORE	HOLE E	BACKI	SPT (1.4" I.D.) FILL AND COMPLETION		Auto /	DW/	ATER	DURIN			AFTER	DRILLI	NG (DA	TE) 1	ГОТА	AL DEPTH OF BORING
	t Cem	ent			READIN	GS		Not E	ncoun	tered					31.5	5 ft
ELEVATION (ft)	оертн (ft)	Material Graphics				Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks
	1		SILTY SAND (SM); loose; brow	vn; moist; fine S	AND.											Bulk sample taken at 0' to 5' (R=54)
	3					V A	S01	3 2 4	6				100			
	5		SILT (ML); hard; gray; moist.				S02	21	40				100			
	6		JILT (IVIL), HAIU, YRAY; MOIST.			X	302	24 16	40	18			100			
	7 8															
	9															
	11 =		SILTY SAND (SM); very dense	e; orange brown;	moist.	X	S03	48 50/4"	50/4				100			CL
	13 - 14 - 15 -														\{\} \{\}	
	16		Dense; (+#4=0%, -#200=23%)).		X	S04	13 10 12	22	10			100			PA
	18															
	20 =		Light brownish gray.				S05	5 10 11	21	9			100			
	22 23 24 24															
	25		/ P	24)												
<u></u>) C	\11	(continue		CALIFO	DRN	IA HI	GH SF	PEED	rain (MERC	CED TO) FRE	SNO	COI	RRIDOR CP-1
	High	h-Spe	ORNIA POR Rail Authority				FRE	SNO	AND N	IADEF	RA CO	UNTIE	S, CA	LIFOF	RNIA	A
				Date: 6	3/29/2012)					l J	ob No.:	2009	-138-	450	

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-25B

High-Speed Rail Authority

	akane		4-16-12 4-16-12		36° 53'	41" /	-119	9° 58	56"			and Dat	um)			046A	
	ING CO		ACTOR Jineering Services, Inc		See Bo					Station,	Line)			:	SURI	FACE ELE	VATION
DRILL	ING ME	THO)		DRILL RIG	}										EHOLE DI	AMETER
	ow-St		Auger) AND SIZE(S) (ID)		SPT HAM									_	8" HAM	MER FFFI	CIENCY, ERI
MC	(2.5" l.	D.) -	SPT (1.4" I.D.)		Auto / 1	140 II	bs/:	30"							87%	%	,
	HOLE E t Ceme		FILL AND COMPLETION		GROUND!			URIN 8.0 ft		LING	AFTEF	R DRILLI	NG (D	ATE)		AL DEPTH 3.5 ft	OF BORING
(#)							Je	-i	Ţ		tr.	£					
ELEVATION (ft)	ОЕРТН (ft)	Material Graphics				Sample Depth	sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Casing Depth	emarks
	1		SILT (ML); medium stiff; brown; m	noist.													
	3 4					S	01	2 2 5	7				89				
	5 6		Hard; light gray.			S	02	24 19 20	39				78			С	
	7 8		. wa, ngin gray.														
	9 10 11		Very stiff; grayish brown.			S	03	8 10 10	20				89			CR	
	12 1 3 1 4 1 5 1 5					\/ S	04	10	28				89		\{\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	16		Hard; (LL=29, PI=5).			<u>X</u> _		12 16		26					}	PI	
	18 =		Poorly graded SAND (SP); very demedium to fine SAND.	ense; light gra	ay; moist;	-									 		
	20 =					S	05	8 16 20	36				78			%LEL/P %O2=2 %CO=0 DS	1.0, %H2S=0
	22 = 23 = 24 =																
	25		(continued)														
	CA	ALIF	FORNIA Ped Rail Authority		CALIFOR							CED TO					CP-1
-	riigi	i-spe	od Kull Authority	Date: 6/	29/2012						J	lob No.:	2009	9-138-	450		

FRESNO AND MADERA COUNTIES, CALIFORNIA

<u>A-27</u>A

CALIFORNIA

High-Speed Rail Authority

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

FRESNO AND MADERA COUNTIES, CALIFORNIA

Plate:

A-27B

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-27C

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-27D

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate: A-27E

	ED BY akane		4-20-12 4-2	PLETION DATE 20-12	BOREH	5' 24	!" / -1	19° 58	3' 51"			and Dat	um)			056A
	ING CO		ACTOR jineering Services, Inc		BOREH					Station,	Line)			\$	SURF	ACE ELEVATION
RILL	ING ME	THO)		DRILL R	RIG									BORE	HOLE DIAMETER
SAMP		PE(S) AND SIZE(S) (ID)		SPT HA	MME	R TYF	PΕ						ı	HAMN	MER EFFICIENCY, ERI
	-		SPT (1.4" I.D.) FILL AND COMPLETION		Auto A				IG DRII	LING	ΔETER	DRILLI	NG (DA		87%	L DEPTH OF BORING
	t Ceme		TEET WE COME ELFION		READIN	GS		100.0				CONTRACT	110 (B)	/	101.	
ELEVATION (ft)	² DЕРТН (ft)	Material Graphics	DESCR	IPTION		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks
	1 2 3 4		SILT (ML); medium stiff; dark trace coarse to fine GRAVEL	k reddish brown; n .; up to 3/4" diame	noist; ter.										2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Hand Augered 0' to 5'
	5 6 7 8		Hard; light brown; oxide stair	se; dark reddish b	prown;	X	S01	11 36 50/3"	86/9"				107			Switched to mud Rotary wash drilling a 5'
	9 10 11 12 13		moist; medium to fine SAND			X	S02	25 37 50/5"	87/11"				82		000000000000000000000000000000000000000	%LEL/PPM=0, %O2=20.9, %H2S=0, %CO=0
	14 — 15 — 16 — 17 — 18 —		Light reddish brown.			X	S03	9 23 48	71	12	113		89		000000000000000000000000000000000000000	CR
	19 - 20 - 21 - 22 -		Dense; medium SAND. SILT with SAND (ML); hard;	light gray; moist; f	ine	X	S04	11 10 11	21				78		000000000000000000000000000000000000000	
	23 = 24 = 25		SAND.	nuad.											00000000	
			(contin	nueu)	CALIEC	JBVI	ІД ШІ	2H 6L	EEU 1	EVIN	MED	CED TO) FDE	SNIO	COE	RRIDOR CP-1
	CA	ALIF	FORNIA PARTIES OF THE		CALIF	JIŽIN						UNTIE				
-	riigi	. ope	ou null Fluitority	Date: 6	5/29/2012	,						ob No.:	2000	120	45O	

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-30B

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-30C

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

High-Speed Rail Authority

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-30D

	akane		5-7-12 5-7-12	36° 5	6' 4	3" / -1	20° 0'	35"			and Dat	um)			066A
			ACTOR jineering Services, Inc.					Offset, S n Plan	Station,	Line)				SURF	FACE ELEVATION
DRILL	ING ME	THO)	DRILL CME									I	30RE 8''	EHOLE DIAMETER
SAMP MC	LER TY (2.5" l	PE(S)) AND SIZE(S) (ID)	SPT HA	4MMI / 14	0 lbs	/ 30"							HAMN 92 %	
	HOLE E		FILL AND COMPLETION	GROU! READ!!	NDW NGS			IG DRIL			R DRILLI	NG (DA	ATE)	TOT/ 31.	AL DEPTH OF BORING 5 ft
ELEVATION (ft)	рертн (ft)	Material Graphics	DESCRIPTIO	N	Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Edded Remarks
	1		SILTY SAND (SM); dense; light bro to fine SAND.	own; moist; medium										{	
	2 3)	S01	10 24 20	44	3	115		78			%LEL/PPM=0, %O2=20.7, %H2S=0,
	4 5						10	07				00			%CO=0 CR
	6		Medium dense.		×	S02	10 14 13	27	5	118		89	-		
	8													 	
	9 10 11		SANDY SILT (ML); hard; light brow	vn; moist.		S03	10 23 20	43				89		\{\}	
	12 1 3 1 4 1													}	
	15		Fine GRAVEL; (+#4=0%, -#200=7(0%))	S04	15 23 19	42	11	105		78			PA
	17		THE GIVVEZ, (*#4 070, #200 1)	G 70).						100				}	
	19 20 21		SILT (ML); hard; gray; moist; fine G	GRAVEL.	<u> </u>	S05	8 16 18	34				89			
	22												-	 	
	24	à.	Well-graded SAND with SILT (SW- light whitish brown; moist.	-SM); medium dense	э;										
	25	ı~. 4	(continued)			ı	-	I	1	ı			ı	ш	1
	CA	ALIF	FORNIA PARTIES OF THE	CALIF	ORN						CED TO				RRIDOR CP-1
-	riig	spe	od Roll Floritority	Date: 6/29/201	2					J	ob No.:	2009	9-138-	450	

FRESNO AND MADERA COUNTIES, CALIFORNIA

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-33B

Tech DRILLI Holle	ING MI ow-S	n Eng ETHOI tem <i>F</i>	lineering Services, Inc O Auger	BOREHOL See BOI DRILL RIG CME 45	ring Lo	catio		tation,	Line)			E	80RE	EHOLE DIAMETER
MC ((2.5"	I .D.) BACK) AND SIZE(S) (ID) FILL AND COMPLETION	SPT HAMM Auto / 1 GROUND\ READINGS	40 lbs WATER	/ 30" DURIN	IG DRILI		AFTER	DRILLII	NG (DA	TE) T	92%	AL DEPTH OF BORING
ELEVATION (ft)	рертн (ft)	Material Graphics	DESCRIPTION		Sample Depth Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks
	1 2 3 4		SILT (ML); hard; light redish brown; moist.		S01	18 32 50/6"	82/12"				78		2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2 2	Bulk sample taken at 0' to 5' (R=12) %LEL/PPM=0, %O2=20.9, %H2S=0, %CO=0
	5 6 7 8		CLAYEY SAND (SC); dense; brown; moist. (+#4=0%, -#200=32%).		S02	14 30 7	37	9	128		89			PA
	9 10 11 12 13		Very dense; (-#200=22%).		S03	40 10 50/6"	60/12"	12	92		89			PA
	14 - 15 - 16 - 17 -		SILTY SAND (SM); very dense; light brown; n Medium to fine SAND.	noist.	S04	22 30 50/6"	80/12"				78			CL
	18 19 20 21 22 23 24 24		Dense.		S05	14 32 12	44	20	88		78			
	L ₂₅ E		(continued)										}	
7	C	ALIF h-Spe	FORNIA Pate:	6/29/2012			PEED T		RA CO		S, CA	LIFOF	RNIA	RRIDOR CP-1

FRESNO AND MADERA COUNTIES, CALIFORNIA

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-34B

High-Speed Rail Authority

DGGED BY BEGIN DATE COMPLETION DATE A. Bakane 5-7-12 5-7-12 RILLING CONTRACTOR	BOREHOLE 36° 57' 42 BOREHOLE	." / -1 :	20° 1'	10"			and Dat	um)	;		D 074A ACE ELEVATION
Technicon Engineering Services, Inc. RILLING METHOD Hollow-Stem Auger AMPLER TYPE(S) AND SIZE(S) (ID)	See Borin DRILL RIG CME 45 SPT HAMME			Plan						B"	HOLE DIAMETER MER EFFICIENCY, ERI
MC (2.5" I.D.) DREHOLE BACKFILL AND COMPLETION Neat Cement	Auto / 140	O Ibs ATER	30"			AFTEF	RDRILLI	NG (DA	TE) T	92%	L DEPTH OF BORING
Material Material Material Graphics DESCRIPTION (#) Oraphics DESCRIPTION (#)	Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)		Drilling Method	
SILTY SAND (SM); medium dense; reddish bromoist.		S	В	<u> </u>	≥0	08	S (1)	<u> </u>	Δ.		Bulk sample taken at 0' to 5' (R=12)
2	X	S01	5 6 12	18	11	117		78			CR, PA
5 Dense.	X	S02	6 17 23	40				89			
8 9 10 10 11 11 11 11 11 11 11 11 11 11 11	X	S03	5 11 12	23	11	88		100			PA
Lean CLAY (CL); hard; dark gray; moist. 15 16 17	X	S04	10 17 27	44	21	107	UC = 4.94	100			
18 19 20 SILTY SAND (SM); dense; dark gray; moist; fin	ne SAND.	S05	9 20 21	41				78			
22 Lean CLAY (CL); hard; dark gray; moist; low pl. fines.	lasticity										
	CALIFORN						CED TO				RRIDOR CP-1

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-36A

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

Plate:

A-36B

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-41A

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

High-Speed Rail Authority

CALIFORNIA

High-Speed Rail Authority

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-41C

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

High-Speed Rail Authority

Plate:

A-41D

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-41E

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

CALIFORNIA

High-Speed Rail Authority

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

Tech RILLI Holle	NG ME	Eng THOE em A	ineering Services, Inc.	BOREHO See B DRILL R CME !	orir IG 55 (ng Lo Rig#	cation			,			E	80RE	FACE ELEVATION EHOLE DIAMETER	
MC (ORE	(2.5" I.	D.) ACKF) AND SIZE(S) (ID) FILL AND COMPLETION	Auto /	SPT HAMMER TYPE Auto / 140 lbs / 30" GROUNDWATER DURING DRILLING AFTER DRILLING (DATE) READINGS Not Encountered									HAMMER EFFICIENCY, ERI 87% TOTAL DEPTH OF BORING 46.5 ft		
ELEVATION (ft)	, ОЕРТН (ft)	Material Graphics	DESCRIPTION		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks	
	1 2 3		SILTY SAND (SM); very dense; light brown; SAND; weak cementation.	moist; fine	X	S01	26 60/6"	60/6	10	120		100		}		
	5 6 7 8		Dense.		X	S02	12 20 29	49				78				
	9 11 11 12 11 13 11		Poorly graded SAND with SILT (SP-SM); m to dense; light reddish brown; moist; fine SA staining.	edium dense ND; oxide	Y	S03	10 13 19	32				89				
	14 = 15 = 16 = 17 = 18 = 18		Medium dense; grayish brown; coarse to fin (+#4=0%, -#200=5%).	e SAND;	X	S04	5 9 12	21	3	102		78			РА	
	20 = 21 = 22 = 23 = 24 = 24 = 20		SILTY SAND (SM); dense; light grayish brownedium to fine SAND; oxide staining.	wn; moist;	X	S05	8 18 26	44				78		\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		
	25		(continued)													
	C.A High	ALIF n-Spe	ORNIA Ped Rail Authority	CALIFO 6/29/2012						RA CO	UNTIES	S, CA	LIFOF	RNIA	RRIDOR CP-1	

FRESNO AND MADERA COUNTIES, CALIFORNIA

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-42B

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

High-Speed Rail Authority

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-44A

PCI-CT 5 BR

High-Speed Rail Authority

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

CALIFORNIA

High-Speed Rail Authority

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-44B

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-44C

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-44D

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-44E

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate: A-44F

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-45A

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

High-Speed Rail Authority

Plate:

A-45B

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-45C

ELEVATION (ft) DEPTH (ft) Material Graphics	DESCRIPTIO		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method Casing Depth	Remarks
86 \\ \\ 87 \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\	SILTY SAND (SM); dense; light gra layer description continued from pi SILTY SAND (SM); very dense; light medium to fine SAND.	ay; moist; fine SAND. revious page ht brown; wet;		S16	11 16 28	44				89			
92 93 94 95 96 97 98 99 99 90 90 90 90 90													
101 — 102 — 103 — 104 — 105 — 106 — 107 — 108 — 109 —	Yellowish brown; trace fine GRAVE SAND.	EL; coarse to medium	<u>X</u>	S17	22 30 33	63				78			
110 — 111 — 112 — 113 — 114 — 115 —	Dense; light reddish brown; mediur	m to fine SAND.	X	S18	8 13 17	30	23			89			
	(continued)	1		'				'					
CALI High-Sp	FORNIA eed Rail Authority	CALIFOR Date: 6/29/2012						A CO	UNTIES ob No.:	S, CA	LIFOF	RNIA	RIDOR CP-1
interpretation. This	he report prepared by Parikh Consulta s summary applies only at the location t this location with the passage of time	of this boring and at the	e tim	ne of d	rilling.	Subsur	face co	nditions	may di	ffer at o			Plate: A-45D

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate: A-45E

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-45F

	akane		4-26-12	COMPLETIC 4-26-12		36° 59'	44	" / -1:	20° 2'	25"			and Dat	tuiii)			090Aa
	ING CO		CTOR ineering Services,	Inc.		See Bo					Station,	Line)			{	SURF	FACE ELEVATION
DRILL	ING ME	THOE)			DRILL RI	G									30RE	EHOLE DIAMETER
SAMP	LER TY	PE(S)	AND SIZE(S) (ID)			CME 55 (Rig #10) SPT HAMMER TYPE								ı	HAMMER EFFICIENCY, ERI		
	IC (2.5" I.D.) REHOLE BACKFILL AND COMPLETION						Auto / 140 lbs / 30" GROUNDWATER DURING DRILLING AFTER DRILLING (DATE)								87%		
	t Cem					READING				ncoun			ı		1	31.5	
ELEVATION (ft)	Роертн (ft)	Material Graphics	С	DESCRIPTION	I		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks
	1		SILTY SAND (SM); vi fine GRAVEL.	ery dense; light	brown; mo	ist; trace											
	2 3 4						X	S01	33 50/4"	50/4				100			
	5 - 6 - 7 -		Fine SAND; (+#4=0%	%, -#200=37%).			X	S02	20 47 50	97	10	124	UC = 4.9	78			%LEL/PPM=0, %O2=20.3, %H2S=0 %CO=0 PA
	8 9 10		Poorly graded SAND moist; coarse to medi	(SP); medium oum SAND.	dense; ligh	t gray;	_	S03	9	26				89			
	11 = 12 = 13 = 14 = 14		(+#4=1%, -#200=4%).			X		12 14		2	101					PA
	15						X	S04	6 9 11	20				78			
	17 = 18 = 19 = 20 = 1																
	21 = 22 = 23 = 24 = 24		Light brown; medium	to fine SAND.			X	S05	5 9 9	18				78			DS
	- 25 -			(continued)								1				шИ	1
	C.A High	ALIF h-Spe	ORNIA ed Rail Authority	1 °		CALIFO	RNI						CED TO				RRIDOR CP-1
			e report prepared by Pa		Date: 6/								lob No.:				Plate:

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-48B

V. S	ED BY		4-26-12	4-26-12	36° 5			20° 2'	37"	g or Nor						091A		
	ING CO		ACTOR ineering Services, I	nc.					Offset, S n Plan	Station,	Line)			5	SURF	ACE ELEVATION		
DRILL HOII SAMP	ING ME ow-St e LER TY	THOD em A	uger AND SIZE(S) (ID)		DRILL CME SPT HA	DRILL RIG CME 45 SPT HAMMER TYPE								ŀ	8 in	MER EFFICIENCY, ERI		
			SPT (1.4" I.D.) FILL AND COMPLETION		GROU	Auto / 140 lbs / 30" GROUNDWATER DURING DRILLING AFTER DRILLING (DATE									92%) TOTAL DEPTH OF BORING			
	t Ceme	ent		READII	NGS		Not E	ncoun	tered					31.5 ft				
ELEVATION (ft)	РОЕРТН (ft)	Material Graphics	DE	SCRIPTION		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	Remarks		
	1 2 3		SILTY SAND (SM); ver fine GRAVEL.	y dense; reddish	n brown; moist;	X	S01	8 50/5"	50/5				100		\ \ \ \ \ \	Bulk sample taken at 0' to 5' (R=26)		
	4		Dense; orange brown;	race coarse grai	ned fragments.	X	S02	9 23 19	42	7	103		100			CL		
	9 10 11 12 13 1		Poorly graded SAND (\$brown; moist; medium (+#4=2%, -#200=4%).	SP); medium der o fine SAND.	nse; orange	X	S03	6 7 9	16	3			100			PA		
	14 1 5 1 6 1 7 1 8 1		Trace Lean CLAY.			X	S04	7 13 13	26				100					
	19 - 20 - 21 - 22 -		Dense; dark brown.			X	S05	9 11 11	22	11			100					
	23 24 25			(continued)														
0) C	\ I IF	ORNIA T	7	CALIF	ORN	IIA HI	GH SF	PEED 1	RAIN	MERO	CED TO	FRE	SNO	COF	RRIDOR CP-1		
	High	h-Spe	ORNIA ed Rail Authority		vate: 6/29/201	2	FRE	SNO	AND N	IADEF		UNTIE				\		
his In	og is par	t of th	e report prepared by Pari				niect ar	nd shou	ld be rea	ad toge		ob No.:				Plate:		

FRESNO AND MADERA COUNTIES, CALIFORNIA

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-51A

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-51B

High-Speed Rail Authority

Plate:

A-51C

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-51D

and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete

interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations

Job No.: 2009-138-450

Plate:

A-51E

A. Ba			RA	4-19-12 CTOR	4-19-12	36° 51'					Station,	Line)					106A ACE ELEVATION
Tech	nnic	on E	ngi	neering Services,	Inc.	See Bo	orin										
RILLI Holl o						DRILL RI		Rig#1	10)							8"	HOLE DIAMETER
				AND SIZE(S) (ID) SPT (1.4" I.D.)		SPT HAM	SPT HAMMER TYPE Auto / 140 lbs / 30"								HAMN 87%	MER EFFICIENCY, ERI	
ORE	HOLI		CKF	ILL AND COMPLETIO	N)WA			G DRIL	LING		DRILLI				L DEPTH OF BORING
ELEVATION (ft)	DEPTH (ft)			С	DESCRIPTION		Sample Depth	Sample Number	Blows per 6 in.	Blows per foot	Moisture Content (%)	Dry Unit Weight (pcf)	Shear Strength (tsf)	Recovery (%)	RQD (%)	Drilling Method	
<u> </u>	-0-		4 1	Well-graded SAND w brown; moist.	rith SILT (SW-SM); mediu	ım dense;	S	S	В	<u> </u>	≥0	0.5	o e	Ľ.	Ľ.		Bulk sample taken at 0' to 5' (R=26)
	3		4 . 4 . 4 . 4 . 4 . 4				Y	S01	12 11 10	21				78		\{\{\}	%LEL/PPM=0, %O2=20.9, %H2S=0, %CO=0
	5		ш	Medium dense. (+#4=2%, -#200=119	%).		X	S02	3 4 5	9	4			89		\{\ \{\ \{\	PA
	9			Dense. Poorly graded SAND dense; light gray; mo	with SILT (SP-SM); medi ist; coarse to medium SAt	um ND.	X	S03	4 7 14	21				89			
	10 11 12			3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3 3			X A	S04	5 9 11	20				89			
	13 14 15 16			(+#4=2%, #200=6%).		X	S05	3 6 7	13	3			78		\{\} \{\}	PA
	17 18 19															 	
	202122			Very dense; light yelle	owish brown; fine SAND.		V A	S06	8 25 43	68	11	105		89			CR
	23			SANDY SILT (ML); vononplastic fines.	ery stiff; light brownish gra	ay; moist;										 	
	- 25-				(continued)												

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

Plate:

A-53A

PCI-CT 5 BR 2009-13 This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

High-Speed Rail Authority

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

CALIFORNIA

High-Speed Rail Authority

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Date: 6/29/2012

Plate:

FRESNO AND MADERA COUNTIES, CALIFORNIA

Job No.: 2009-138-450

A-53B

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate: A-53C

PCI-CT 5 BR 2009-138-450.GPJ DATA TEMPLATE.GDT 6/29/12

High-Speed Rail Authority

FRESNO AND MADERA COUNTIES, CALIFORNIA

Date: 6/29/2012 Job No.: 2009-138-450

This log is part of the report prepared by Parikh Consultants, Inc. for the named project and should be read together with that report for complete interpretation. This summary applies only at the location of this boring and at the time of drilling. Subsurface conditions may differ at other locations and may change at this location with the passage of time. The data presented is a simplification of actual conditions encountered.

Plate:

A-53D

APPENDIX B

(LABORATORY TEST DATA)

APPENDIX B

LABORATORY TESTS

Classification Tests

The field classifications of the samples were verified through visual examination in the laboratory and laboratory testing according to the Unified Soil Classification System. The results are presented on "Log of Test Borings", Appendix A.

Moisture-Density

The natural moisture contents and dry unit weights were determined for selected undisturbed samples of the soils in general accordance with ASTM Test Method D 2216-92. This information was used to classify and correlate the soils. The results are presented at the appropriate depths on the "Log of Test Borings", Appendix A.

Atterberg Limits

The Atterberg Limits were determined for selected samples that had been sieved through No. 40 sieve. These results were used to classify the soils, as well as to obtain an indication of the effective strength characteristics and expansion potential with variations in moisture content. The Atterberg Limits were determined in general accordance with ASTM Test Method D 4318-93. The results of these tests are presented on Plate No: B-2A through B-2D, "Plasticity Chart".

Grain Size Classification

Grain size classification tests (ASTM Test Method D422-63) were performed on selected samples of granular soil to aid in the classification. The results are presented on Plate No: B-3A through Plate No: B-3J, "Grain Size Distribution Curves".

Consolidation Tests

Consolidation tests (California Test Method T219) were performed on selected undisturbed samples. The test results are presented on Plate No: B-4A thru Plate No: B-4O, "Consolidation Test Results".

Corrosion Test

Corrosion tests were performed on selected samples to determine the corrosion potential of the soils. The pH and minimum resistively tests were performed according to California Test Method 643. The tests were performed by Sunland Analytical. The test results are presented on Plate No: B-5-1 through Plate No: B-5-37.

Direct Shear Tests

Direct Shear tests were performed on selected relatively undisturbed samples to determine the shear strength of a soil material in direct shear. The tests were performed according to ASTM Test Method D 3080. The test results are presented on Plate No: B-6A through Plate No: B-6Z1.

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO.: 2009-138-450 PLATE NO.: B-1A

APPENDIX B

LABORATORY TESTS (Continued)

Unconfined Compression Tests

Strength tests were performed on selected undisturbed samples using unconfined compression machine. Unconfined compression tests were performed in general accordance with ASTM Test Method D 2166-91. The results are presented on Plate No: B-7A through Plate No: B-7R.

R-value Tests

R-value tests were performed on selected bulk samples. The tests were performed according to California Test Method 301. The test results are presented on Plate No: B-8A through Plate No: B-8c.

Collapse Potential of Soil Tests

Collapse Potential of Soil Tests were performed on selected samples. Collapse Potential Soil Tests were performed in general accordance with ASTM Test Method D 5333. The test results are presented on Plate No: B-10A through Plate No: B-10D.

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO.: 2009-138-450 PLATE NO.: B-1B

	Moisture Content (%)	Bulk Density (psf)	Dry Density (psf)
Initial	23.0	121.94	99.13
Final	26.0	129.18	102.52

Boring No. S0046A Sample No. 2

Depth (ft) 6

Soil Description: SILT (ML), gray

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1

JOB NO.: 2009-138-450

PLATE NO.: B-4L

VERTICAL STRESS (psf)

	Moisture Content (%)	Bulk Density (psf)	Dry Density (psf)
Initial	10.7	107.99	97.59
Final	21.5	122.71	100.98

1000

0.1 +

Boring No. S0056A Sample No. 7

Sample No. 7 Depth (ft) 36

10000

Soil Description: SILTY SAND (SM), light

brown

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1

JOB NO.: 2009-138-450

PLATE NO.: B-4M

100000

	Moisture Content (%)	Bulk Density (psf)	Dry Density (psf)
Initial	26.6	124.46	98.34
Final	26.8	129.01	101.72

Boring No. S0028A Sample No. 4 Depth (ft) 16'

Soil Description: SILT (ML), yellowish gray

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1

JOB NO.: 2009-138-450

PLATE NO.: B-4N

	Moisture Content (%)	Bulk Density (psf)	Dry Density (psf)
Initial	27.2	112.29	88.28
Final	29.8	118.52	91.34

Boring No. S0040A Sample No. 10 Depth (ft) 46'

Soil Description: SANDY SILT (ML), yellowish brown

CALIFORNIA HIGH SPEED TRAIN MERCED TO FRESNO CORRIDOR CP-1

JOB NO.: 2009-138-450

VERTICAL STRESS (psf)

PLATE NO.: B-40

Sunland Analytical

11353 Pyrites Way, Suite 4 Rancho Cordova, CA 95670 (916) 852-8557

> Date Reported 06/01/2012 Date Submitted 05/25/2012

To: Prav Dayah

Parikh Consultants, Inc.

2360 Qume Dr, Ste.A

San Jose, CA

95131

From: Gene Oliphant, Ph.D. \ Randy Horney
General Manager \ Lab Manager

The reported analysis was requested for the following location: Location: 2009-138-450/CA HST Site ID: S0020R#4 @ 16'.

Thank you for your business.

* For future reference to this analysis please use SUN # 62354-128364.

EVALUATION FOR SOIL CORROSION

Soil pH

7.74

Minimum Resistivity

5.36 ohm-cm (x1000)

Chloride

21.8 ppm

00.00218 %

Sulfate

29.5 ppm

00.00295 %

METHODS

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

Sunland Analytical

11353 Pyrites Way, Suite 4 Rancho Cordova, CA 95670 (916) 852-8557

> Date Reported 06/06/2012 Date Submitted 05/30/2012

To: Prav Dayah

Parikh Consultants, Inc.

2360 Qume Dr, Ste.A

San Jose, CA

95131

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location: 2009-138-450/CA HST Site ID: S0022R9#1@11'. Thank you for your business.

* For future reference to this analysis please use SUN # 62380-128436. ______

EVALUATION FOR SOIL CORROSION

Soil pH

7.38

Minimum Resistivity 4.82 ohm-cm (x1000)

Chloride

4.0 ppm

00.00040 %

Sulfate

12.8 ppm

00.00128 %

METHODS

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

PLATE NO.: B-5-34

Sunland Analytical

11353 Pyrites Way, Suite 4 Rancho Cordova, CA 95670 (916) 852-8557

> Date Reported 06/01/2012 Date Submitted 05/25/2012

To: Prav Dayah
Parikh Consultants, Inc.
2360 Qume Dr, Ste.A
San Jose, CA 95131

From: Gene Oliphant, Ph.D. \ Randy Horney

General Manager \ Lab Manager

The reported analysis was requested for the following location: Location: 2009-138-450/CA HST Site ID: S0026RA#2 @ 6'.

Thank you for your business.

* For future reference to this analysis please use SUN # 62354-128367.

EVALUATION FOR SOIL CORROSION

Soil pH

8.46

Minimum Resistivity

3.22 ohm-cm (x1000)

Chloride

20.1 ppm

00.00201

Sulfate

53.8 ppm

00.00538 %

METHODS

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

Sunland Analytical

11353 Pyrites Way, Suite 4 Rancho Cordova, CA 95670 (916) 852-8557

> Date Reported 06/01/2012 Date Submitted 05/25/2012

To: Prav Dayah

Parikh Consultants, Inc.

2360 Qume Dr, Ste.A

San Jose, CA

95131

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location: 2009-138-450/CA HST Site ID: S0066R#1 @ 3'. Thank you for your business.

* For future reference to this analysis please use SUN # 62354-128365.

EVALUATION FOR SOIL CORROSION

Soil pH

6.89

Minimum Resistivity 2.09 ohm-cm (x1000)

Chloride

26.9 ppm

00.00269 %

Sulfate

9.1 ppm

00.00091 %

METHODS

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

PLATE NO.: B-5-36

Sunland Analytical

11353 Pyrites Way, Suite 4 Rancho Cordova, CA 95670 (916) 852-8557

> Date Reported 06/01/2012 Date Submitted 05/25/2012

To: Prav Dayah

Parikh Consultants, Inc.

2360 Qume Dr, Ste.A

San Jose, CA

95131

From: Gene Oliphant, Ph.D. \ Randy Horney General Manager \ Lab Manager

The reported analysis was requested for the following location: Location: 2009-138-450/CA HST Site ID: S0074R#1@3'.

Thank you for your business.

* For future reference to this analysis please use SUN # 62354-128366.

EVALUATION FOR SOIL CORROSION

Soil pH

6.74

Minimum Resistivity

4.82 ohm-cm (x1000)

Chloride

11.4 ppm

00.00114 %

Sulfate

14.8 ppm

00.00148 %

METHODS

pH and Min.Resistivity CA DOT Test #643 Sulfate CA DOT Test #417, Chloride CA DOT Test #422

Job No.:	157-304			Date:	05/31/12	Initial Moisture,	7.1%	
				Tested	MD	R-value by		_
Client:	Parikh Consultants, Inc					4	58	
Project:	High Speed Rail Project	ct - 2009-138	-450	Reduced	RU	Stabilometer		
Sample	S0101A			Checked	DC	Expansion	10	psf
Soil Type	: Dark Olive Brown Silty				Pressure			
Spe	ecimen Number	Α	В	С	D	Rem	arks:	
Exudation	n Pressure, psi	210	327	655				
Prepared	Weight, grams	1200	1200	1200		_		
Final Wat	er Added, grams/cc	70	55	43		<u>]</u>		
Weight of	f Soil & Mold, grams	3197	3169			_		
Weight of	f Mold, grams	2098	2106	2078		_		
Height Af	fter Compaction, in.	2.59	2.56	2.43				
Moisture	Content, %	13.4	12.0	11.0				
Dry Dens	ity, pcf	113.3	112.2	112.8				
Expansio	n Pressure, psf	0.0	17.2	34.4				
Stabilom	eter @ 1000							
Stabilom	eter @ 2000	63	44			_		
Turns Dis	splacement	5.7	4,57					
R-value	· .	43	60	66	5			

Job No.:	157-304			Date:	05/29/12	Initial Moisture,	7.8%	0
Client:	Parikh Consultants, Inc	D		Tested	ΜD	R-value by	65	
Project:	High Speed Rail Project	ct - 2009-138	3-450	Reduced	RU	Stabilometer		
Sample	S0102A			Checked	DC	Expansion	40	psf
Soil Type:	: Olive Brown Silty SANI				Pressure	40	pai	
Spe	ecimen Number	Α	В	С	D	Rema	arks:	
Exudation	Pressure, psi	124	217	362				,
Prepared	Weight, grams	1200	1200	1200				
Final Wat	er Added, grams/cc	63	37	28				
Weight of	Soil & Mold, grams	3179	3202	3121				
Weight of	Mold, grams	2078	2099	2094				
Height Af	ter Compaction, in.	2.51	2.54	2.38]		
Moisture	Content, %	13.4	11.1	10.3				
Dry Densi	ity, pcf	117.1	118.4	118.5				
Expansio	n Pressure, psf	0.0	25.8	51.6				
Stabilome	eter @ 1000							
Stabilome	eter @ 2000	59	40	36				
Turns Dis	placement	4.17	4.35	4.15				
R-value		51	64	65				

					The product of the second section of the se			
Job No.:	157-304			Date:	05/29/12	Initial Moisture,	7.79	<u>6</u>
Client:	Parikh Consultants		·	Tested	MD	R-value by	40	
Project:	High Speed Rail Project	ct - 2009-138	-450	Reduced	RU	Stabilometer	- 10	
Sample	S0103A	<u> </u>		Checked	DC	Expansion	65	psf
-	Dark Olive Brown Clay				Pressure			
	Specimen Number A B			С	D	Rem	arks:	
Exudation	n Pressure, psi	194	580					
Prepared	Weight, grams	1200	1200	1200				
Final Wate	er Added, grams/cc	48	28	37				
Weight of	Soil & Mold, grams	3217	3112	3195		_		
Weight of	Mold, grams	2107	2065	2098				
Height Af	ter Compaction, in.	2.51	2.37	2.53				
Moisture	Content, %	12.0	10.2	11.0				
Dry Densi	ity, pcf	119.5	121.4	118.3				
Expansio	n Pressure, psf	43.0	107.5	55.9				
Stabilome	eter @ 1000							
Stabilome	eter @ 2000	119	49					
Turns Dis	splacement	4.67	4.5					
R-value		16	52	36	8			

	PROPERTY AND ADDRESS OF THE PARTY OF THE PAR		TO STATE OF THE PARTY OF	CHARLES AND LANGE	A Service Control			CONTRACTOR STORY
Job No.:	157-304			Date:	05/30/12	Initial Moisture,	5.8%	<u>></u>
Client:	Parikh Consultants, Inc).		Tested	MD	R-value by	68	
Project:	High Speed Rail Project	ct - 2009-138	-450	Reduced	RU	Stabilometer		
Sample	S0104A		Checked	DC	Expansion	75	psf	
Soil Type:	Dark Olive Brown Silty				Pressure			
Spe	ecimen Number	Α	В	Ċ	D	Rem	arks:	
Exudation	n Pressure, psi	368	193	473				
Prepared	Weight, grams	1200	1200	1200				
Final Wate	er Added, grams/cc	54	66			<u> </u>		
Weight of	Soil & Mold, grams	3181	3175	3210				
Weight of	Mold, grams	2102	2085	2102		_		
Height Af	ter Compaction, in.	2.52	2.4	2.53]		
Moisture	Content, %	10.5	11.6]		
Dry Densi	ity, pcf	117.3	123.2	120.6		_		
Expansio	n Pressure, psf	73.1	51.6	98.9				
Stabilome	eter @ 1000					_		
Stabilome	eter @ 2000	30	46			_		
Turns Dis	splacement	4.72	4.39					
R-value		70	56	70)			·······

CHARLEST AND TO			March Medical Cons	All the Control of the	a) 1/46 以1921年底		200 A 20	January Branch
Job No.:	157-304			Date:	05/29/12	Initial Moisture,	5.3%	<u>)</u>
Client:	Parikh Consultants			Tested	MD	R-value by	76	
Project:	High Speed Rail Project	ct - 2009-138	3-450	Reduced	RU	Stabilometer		
Sample	S0105A		Checked	DC	Expansion	40	psf	
Soil Type	: Dark Olive Brown Silty	ntly plastic)			Pressure			
	ecimen Number	В	С	D	Rem	arks:		
Exudation	n Pressure, psi	160	464	234				
	Weight, grams	1200	1200	1200]		
Final Wat	ter Added, grams/cc	58	50	54]		
Weight of	f Soil & Mold, grams	3163	3160	3118]		
Weight of	f Mold, grams	2106	2086	2087		_		
Height Af	fter Compaction, in.	2.49	2.47	2.44				
Moisture	Content, %	10.4	9.7	10.0				
Dry Dens	sity, pcf	116.4	120.0					
Expansion	on Pressure, psf	0.0	34.4	25.8				
Stabilom	eter @ 1000							
Stabilom	eter @ 2000	28	24			1		
Turns Dis	splacement	4.44	4.21	4.29		_		
R-value		72	77	75	5			

			CENTRAL PROPERTY OF	Autoria Liebbis d'Alle I	or and the state of			A SECURE AND A SECURIOR SECURI
Job No.:	157-304			Date:	05/31/12	Initial Moisture,	3.3%	<u>,</u>
Client:	Parikh Consultants, Inc).		Tested	MD	R-value by	56	
Project:	High Speed Rail Project	t - 2009-138	-450	Reduced	RU	Stabilometer		
Sample	S0107A		Checked	DC	Expansion	5	psf	
Soil Type:	Olive Brown Silty SANI				Pressure			
	ecimen Number	А	В	С	D	Rem	arks:	
Exudation	n Pressure, psi	596	127	254				
Prepared	Weight, grams	1200	1200	1200		_		
Final Wate	er Added, grams/cc	70	107	85		<u> </u>		
Weight of	Soil & Mold, grams	3158	3190	3198				
Weight of	Mold, grams	2084	2102	2106]		
Height Aft	ter Compaction, in.	2.55	2.55	2.5		_		
Moisture	Content, %	9.3	12.5			_		
Dry Densi	ity, pcf	116.7	114.9	119.6				
Expansio	n Pressure, psf	34.4	0.0	0.0				
Stabilome	eter @ 1000					_[
Stabilome	eter @ 2000	30	74					
Turns Dis	splacement	4.07	4.8		8			
R-value		74	39	51				

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0011A	S01	3.0	SM	5.6	115.9						, ,
S0011A	S02	6.0	SM	6.5	114.5				0.2	19.9	
S0011A	S03	11.0	SM	-	-						
S0011A	S04	16.0	SM	9.9	98.6						
S0011A	S05	21.0	ML	12.2	117.2						
S0011A	S06	26.0	ML	32.3	88.9	39	33	6			2.4
S0011A	S07	31.0	SP-SM	4.2	113.4				0.0	9.2	
S0011A	S08	36.0	ML	14.6	113.1						
S0011A	S09	41.0	ML	6.4	91.0						
S0011A	S10	46.0	SM	12.0	105.4						
S0011A	S11	51.0	SM	6.5	116.8						
S0011A	S12	55.5	SM	15.5	107.1						
S0011A	S13	60.5	ML	25.6	97.0						
S0011A	S14	71.0	SM	7.8	113.6						
S0011A	S15	80.5	SM	20.4	-						
S0011A	S16	91.0	SM	2.8	98.5						
S0011A	S17	101.0	ML	35.8	83.0						
S0012A	S02	6.0	SC	23.1	102.2						
S0012A	S03	11.0	SM	9.1	104.8	NP	NP	NP			
S0012A	S05	21.0	SM	5.3	-				0.0	15.0	
S0012A	S06	26.0	SP	12.7	_	NP	NP	NP			
S0013A	S01	6.0	CL	7.7	118.4	23	14	9			2.4
S0013A	S03	11.0	CL	18.2	95.2						
S0013A	S05	20.5	SM	10.2	112.1				0.0	47.8	
S0013A	S06	26.0	SM	15.0	100.1						
S0013A	S07	31.0	ML	33.0	87.3	37	28	9			
S0014A	S01	3.0	ML	9.6	120.5						
S0014A	S02	6.0	SM	7.5	108.3				0.1	29.5	
S0014A	S03	11.0	SP	2.2	102.5						
S0014A	S04	16.0	SP	2.6	-						
S0014A	S05	21.0	SM	11.7	-				0.0	38.9	
S0014A	S06	26.0	ML	16.0	-	NP	NP	NP	-	-	
S0014A	S07	31.0	ML	28.7	93.6						
S0014A	S08	36.0	ML	10.5	99.0					55.6	
S0014A	S09	41.0	ML	25.9	96.8						
S0014A	S10	46.0	SM	14.9	110.6						
S0014A	S11	51.0	SC	11.6	119.0				0.0	36.4	
S0014A	S12	56.0	SM	9.6	115.7						
S0014A	S13	61.0	SP	4.1	-						
S0014A	S14	71.0	SM	13.7	-				0.4	37.6	
S0014A	S15	81.0	SM	15.0	_						
S0014A	S16	91.0	ML	29.4	90.3	NP	NP	NP			

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9A

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0014A	S18	110.5	SP-SM	19.2	107.4				0.4	7.4	
S0014A	S19	121.0	SP-SM	20.1	104.3						
S0014A	S20	131.0	SP-SM	20.5	106.1				0.0	7.2	
S0014A	S21	141.0	SP-SM	25.3	97.1						
S0014A	S22	151.0	ML	57.8	69.8				0.1	89.2	
S0015R	S03	11.0	SM	8.9	121.5				3.6	39.2	
S0015R	S06	26.0	ML	9.5	121.3	NP	NP	NP			
S0015R	S08	36.0	SM	20.9	-					30.7	
S0015R	S09	41.0	ML	-	-						
S0015R	S10	46.0	ML	10.2	126.0						
S0015R	S14	70.5	SC	26.3	94.5						
S0015R	S16	91.0	SM	31.0	-	NP	NP	NP			
S0015R	S18	111.0	SP	24.1	-						
S0015R	S22	151.0	SP	33.1	_						
S0016R	S03	16.0	SP	7.6	106.6				3.5	3.9	
S0016R	S05	26.0	SM	12.8	-						
S0016R	S09	41.0	SP	12.1	_				0.0	4.3	
S0016R	S13	71.0	ML	32.9	_						
S0016R	S15	91.0	ML	33.2	_	NP	NP	NP			
S0016R	S16	101.0	ML	-	_			1			
S0016R	S17	111.0	ML	35.9	81.6	37	31	6			
S0016R	S19	131.0	SP-SM	-	-						
S0016R	S20	151.0	SM	48.2	68.3						
S0016R	S21	171.0	SM	16.1	-						
S0017R	S03	11.0	ML	19.8	-				0.0	76.7	
S0017R	S06	26.0	CL	16.7	115.3	25	16	9			
S0017R	S10	46.0	SP-SM	6.0	109.6				1.1	7.0	
S0017R	S12	56.0	ML	22.0	102.3				0.1	53.1	
S0017R	S13	61.0	ML	22.0	-	25	21	4			
S0017R	S15	81.0	SP-SM	15.6	_				0.0	8.9	
S0017R	S19	121.0	ML	35.4	-	41	30	11			
S0017R	S22	151.0	CL	45.4	73.5						
S0018A	S02	5.0	SM	8.0	120.9				0.1	35.8	
S0018A	S03	11.0	SM	3.3	97.3				0.0	26.8	
S0018A	S06	26.0	ML	10.1	112.8						
S0018A	S07	27.5	ML	4.8	-						
S0018A	S08	31.0	ML	32.2	-					96.6	
S0018A	S09	36.0	ML	-	-						
S0018A	S11	46.0	ML	24.5	98.2						
S0018A	S12	51.0	SM	-	-						
	S14	60.0	ML	14.5	113.4						
OUU I ØA			1	_			1	1		1	
S0018A S0018A	S17	91.0	ML	37.4	84.6	NP	NP	NP			

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9B

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0018A	S23	151.0	SP-SM	20.6	99.2				0.0	8.9	,
S0018A	S25	170.0	CL	31.3	90.3	38	24	14			
S0019A	S02	6.0	SW-SM	11.4	-						
S0019A	S03	7.5	SW-SM	4.0	_				1.5	10.8	
S0019A	S05	12.5	SP	1.9	_				0.0	2.1	
S0019A	S06	16.0	SP	1.6	_				0.2	1.6	
S0019A	S08	21.0	SP	6.5	_						
S0019A	11	36.0	SW	-	_						
S0019A	S12	41.0	SP	3.0	101.3						
S0019A	S14	51.0	SP	7.0	106.3						
S0019A	S16	61.0	ML	29.3	91.2						
S0019A	S19	91.0	SM	29.0	92.2						
S0019A	S21	111.0	ML	35.2	82.8	48	37	11			
S0019A	S23	131.0	SM	37.1	79.0				0.0	49.3	
S0019A	S25	151.0	ML	41.9	75.0				0.0	50.8	
S0020Ra	S03	11.0	ML	16.6	106.2				1.4	54.4	
S0020Ra	S04	16.0	SP	14.1	114.1					0	
S0020Ra	S05	21.0	SP	28.4	99.0				0.0	4.4	
S0020Ra	S07	31.0	SW-SM	6.2	110.5				0.9	7.9	
S0020Ra	S09	40.5	SP-SM	7.2	109.0				0.0	7.0	
S0020Ra	S11	51.0	SP-SM	2.4	108.0				0.3	6.6	
S0020Ra	S12	55.0	CL-ML	11.6	118.1	24	18	6	0.0	0.0	
S0020Ra	S13	60.0	SP-SM	30.0	-		10				
S0020Ra	S15	80.5	MH	43.0	74.6	52	40	12			1.8
S0020Ra	S17	100.5	SP-SM	29.3	88.4	- 52	70	12			1.0
S0020Ra	S19	121.0	SP-SM		-						
S0020Ra	S22	150.0	SM	52.5	62.2					24.0	
S0020Ra	S24	170.0	CL	23.3	100.9	31	15	16		24.0	
S0020Ra	S01	2.0	ML	-	-		10	10			
S0021Ra	S02	6.0	SM	5.5	106.3					45.9	
S0021Ra	S04	16.0	SM		-					40.0	
S0021Ra	S05	21.0	ML	13.1	113.5					30.6	
S0021Ra	S11	50.0	SM	20.2	102.8					55.5	
S0021Ra	S13	60.0	ML	26.4	90.5	NP	NP	NP			2.6
S0021Ra	S15	80.0	ML	31.8	86.6	NP	NP	NP			2.0
S0021Ra	S16	91.0	SP-SM	17.4	105.8	. 11	141	141	0.7	5.9	
S0021Ra	S17	100.0	ML	31.4	94.9				0.1	0.0	1.7
S0021Ra	S18	111.0	SW-SM	18.9	103.6				0.0	11.1	1.7
S0021Ra	S20	131.0	SW-SM	22.3	99.2				0.0		
S0021Ra	S22	150.0	ML	32.1	89.6						
S0021Ra	S24	170.5	SM	17.0	114.4				0.0	34.1	
S0021Ra	S01	11.0	SM	-	-				0.0	31.1	
S0022Ra	S02	16.0	SM	6.5	110.6					22.2	
		. 5.0	Ç., v.	0.0		lifareste t."	arla Caraca	Tueire No	ad 4 - 🗖 :	no Corridor	CD 4

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9C

							I				l la confine d
Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0022Ra	S04	26.0	ML	19.8	96.4						
S0022Ra	S05	31.0	SP-SM	4.7	105.8						
S0022Ra	S06	36.0	SP-SM	4.0	111.0				0.1	7.3	
S0022Ra	S07	41.0	SM	9.6	130.1				4.7	14.0	
S0022Ra	S10	56.0	SP-SM	9.0	107.2				0.0	5.4	
S0022Ra	S13	81.0	SM	23.1	99.4						
S0022Ra	S16	111.0	SM	20.1	104.6						
S0022Ra	S18	131.0	ML	40.1	75.2	NP	NP	NP			
S0022Ra	S20	151.0	SM	23.0	98.1						
S0023Aa	S01	11.0	ML	16.3	110.9					57.4	
S0023Aa	S03	31.0	SM	8.0	-				15.6	24.2	
S0023Aa	S05	51.0	SM	16.1	102.0				0.2	22.7	
S0023Aa	S06	61.0	SM	30.4	88.5						
S0023Aa	S07	71.0	SM	-	-						
S0024Ra	S02	6.0	SM	10.3	125.4						
S0024Ra	S03	11.0	ML	29.6	91.7	35	30	5			
S0024Ra	S06	26.0	SM	2.9	108.0					12.6	
S0024Ra	S07	31.0	SP-SM	2.6	106.8				0.0	5.6	
S0024Ra	S10	46.0	ML	9.8	120.5				0.0	0.0	
S0024Ra	S11	51.0	ML	27.8	93.3	39	29	10			
S0024Ra	S13	61.0	SM	-	-				0.0	16.7	
S0024Ra	S14	71.0	SM	19.7	108.3						
S0024Ra	S16	91.0	ML	33.8	86.0						
S0024Ra	S18	111.0	SM	20.0	106.9						
S0024Ra	S19	121.0	SM	16.5	111.6						
S0024Ra	S21	140.0	SM	38.6	76.8						
S0024Ra	S24	170.0	ML	30.0	95.0	43	28	15			
S0025Ra	S01	4.0	SM	4.6	107.1					28.0	
S0025Ra	S03	11.0	ML	35.7	-						
S0025Ra	S04	16.0	ML	13.3	104.1					74.0	
S0025Ra	S06	26.0	SP	-	-				0.2	4.5	
S0025Ra	S07	31.0	ML	21.1	101.8				<u></u>	79.0	
S0025Ra	S08	36.0	SP-SM	5.7	112.6					3.2	
S0025Ra	S10	46.0	SM	11.6	113.2				1.0	14.8	
S0025Ra	S12	61.0	SM	15.4	93.1						
S0025Ra	S15	91.0	ML	39.6	78.1	NP	NP	NP			
S0025Ra	S18	110.5	ML	30.8	88.1					54.0	
S0026Ra	S01	3.0	ML	6.0	110.2					51.3	
S0026Ra	S02	5.5	ML	14.6	105.5					2	
S0026Ra	S03	11.0	ML	21.9	101.2						
S0026Ra	S05	21.0	SP	5.1	110.3						
S0026Ra	S08	36.0	ML	14.2	97.1					53.2	
S0026Ra	S09	41.0	ML	6.8	109.0						

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9D

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0026Ra	S10	46.0	ML	22.7	102.3						
S0026Ra	S12	56.0	SM	9.0	127.8					27.5	
S0026Ra	S13	60.0	ML	16.6	106.6				0.0	53.3	
S0026Ra	S14	71.0	ML	26.9	91.9						
S0026Ra	S15	81.0	ML	16.1	88.5					55.1	
S0026Ra	S18	110.0	ML	29.4	88.7	NP	NP	NP			
S0026Ra	S20	130.0	ML	33.1	84.1						
S0026Ra	S22	151.0	SP-SM	18.1	112.0				0.0	6.7	
S0027Aa	S02	6.0	ML	12.1	111.9						
S0027Aa	S05	21.0	SP-SM	3.6	104.8				3.0	5.2	
S0027Aa	S07	31.0	SM	12.6	95.4					37.9	
S0027Aa	S09	41.0	SP	3.1	98.9						
S0027Aa	S11	51.0	CL	21.8	103.9	30	21	9			
S0027Aa	S13	60.0	CL	33.0	75.6						
S0027Aa	S16	91.0	SP-SM	35.5	80.9				0.0	7.6	
S0028A	S01	3.0	SM	6.0	118.0				3.4	37.5	
S0028A	S02	5.0	SM	7.7	-						
S0028A	S03	11.0	ML	18.4	92.7						
S0028A	S04	16.0	ML	30.2	92.1					99.9	
S0028A	S05	21.0	ML	13.6	113.5						
S0028A	S06	26.0	ML	21.5	103.0	NP	NP	NP			
S0028A	S07	31.0	SW	1.5	_						
S0028A	S08	36.0	SW	3.0	_				0.0	3.8	
S0028A	S09	41.0	SW-SM	3.5	_				0.0	11.0	
S0028A	S11	51.0	SW-SM	3.3	-						
S0028A	S12	56.0	SW-SM	12.2	114.1						
S0028A	S14	71.0	ML	25.6	-				0.1	68.1	
S0028A	S15	81.0	ML	27.0	-	34	26	8			
S0028A	S16	91.0	SM	16.3	103.3						
S0028A	S17	101.0	SP-SM	19.2	104.5				0.0	9.5	
S0029A	S01	2.0	ML	9.4	115.4					66.1	
S0029A	S03	11.0	SM	-	_						
S0029A	S04	16.0	SP	1.7	_				0.1	3.3	
S0029A	S06	26.0	SP	5.6	-						
S0029A	S08	36.0	SM	14.5	-						
S0030A	S01	2.0	ML	10.9	117.3				0.0	69.5	
S0030A	S03	11.0	SM	14.6	-						
S0030A	S05	21.0	SP	1.7	-				0.4	2.1	
S0030A	S06	26.0	CL	21.3	-				0.2	57.4	
S0030A	S07	31.0	ML	24.2	-	25	22	3			
S0031A	S01	2.0	CL-ML	11.0	123.9						
S0031A	S02	5.5	CL-ML	17.5	95.2						
S0031A	S04	16.0	SM	7.2	-				0.0	29.0	
	1	1	ı							no Corridor	

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9E

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0031A	S05	21.0	SP	2.2	-				1.0	4.8	,
S0031A	S06	26.0	ML	28.4	-						
S0031A	S07	31.0	ML	2.2	_						
S0034R	S02	6.0	SP-SM	7.3	112.2					5.6	
S0034R	S03	11.0	SP-SM	-	_						
S0034R	S06	26.0	SM	17.9	-	NP	NP	NP			
S0034R	S08	36.0	SM	23.5	_				10.4	17.6	
S0034R	S10	46.0	SM	19.7	_	NP	NP	NP	3.2	48.3	
S0034R	S12	56.0	SM	14.6	_					1010	
S0034R	S14	71.0	SM	15.4	_				0.0	48.7	
S0040A	S01	3.0	SM	5.1	128.1						
S0040A	S02	6.0	SM	5.2	112.2				0.1	40.8	
S0040A	S03	11.0	SP	1.7	-					1.5.5	
S0040A	S04	16.0	SP	1.3	_				0.4	2.1	
S0040A	S05	21.0	ML	12.3	_				<u> </u>	,	
S0040A	S06	26.0	ML	-	_						
S0040A	S07	31.0	ML	7.6	_	NP	NP	NP			
S0040A	S08	36.0	ML	13.7	108.9	141	141	141			
S0040A	S09	41.0	SW-SM	5.2	100.5				0.0	11.9	
S0040A	S10	46.0	ML	34.3	84.5				0.0	11.5	
S0040A	S10	51.0	SM	27.7	-						
S0040A	S12	56.0	SW-SM	16.9	104.4				0.0	54.6	
S0040A	S12	61.0	ML	25.5	-				0.0	34.0	
S0040A	S14	71.0	SM	13.6	96.9						
S0040A	S15	81.0	ML	8.4	-						
S0040A	S16	91.0	ML	11.0	98.9						
S0040A	S17	101.0	ML	15.5	-	NP	NP	NP			
S0040A S0041A	S02	6.0	ML	18.1	_	141	INI	141			
S0041A	S02	10.5	SM	-	_						
S0041A	S04	16.0	SM	10.4	_				0.4	23.4	
S0041A	S05	21.0	SM	9.4	-				U. T	20.4	
S0041A	S06	31.0	ML	16.2	109.9					60.0	
S0041A S0042A	S02	6.0	SP	2.7	-				0.5	2.5	
S0042A S0042A	S03	11.0	SP	3.4	_				0.5	2.5	
S0042A	S06	26.0	SP	2.2	-				0.3	1.5	
S0042A S0046A	S02	6.0	ML	-	-				0.5	1.5	
S0046A	S03	11.0	ML	_	_						
S0046A	S04	16.0	ML	26.4	_	29	24	5			
S0046A	S05	21.0	SP	-	_	20	<u> </u>				
S0046A	S07	31.0	SM	7.6	-					44.7	
S0046A	S08	33.0	ML	29.5	_	34	27	7		77.1	
S0046A	S10	41.0	ML	14.1	96.9	J		'		54.4	
S0046A	S10	51.0	SM	19.3	-					J 4.4	
000 1 0A	012	31.0	GIVI	13.5	_				_	_	

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9F

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0046A	S13	56.0	SM	-	-						. ,
S0046A	S15	71.0	SM	7.6	-				30.0	15.4	
S0046A	S18	91.0	SP-SM	5.6	-						
S0046A	S20	111.0	SP-SM	7.6	-				0.4	8.0	
S0050R	S02	6.0	SM	-	-				-		
S0050R	S03	11.0	SP	21.6	105.3	NP	NP	NP			
S0050R	S04	16.0	SM	-	-						
S0050R	S05	21.0	SP	37.1	-				2.4	2.2	
S0050R	S08	36.0	ML	42.1	74.7	NP	NP	NP			
S0050R	S11	51.0	SP	20.9	-				0.0	2.1	
S0050R	S14	71.0	SM	13.5	120.6				0.3	22.7	
S0055A	S01	3.0	SM	13.6	106.7				0.0	40.8	
S0055A	S03	11.0	CH	20.3	90.1	51	21	30		,,,,	
S0055A	S04	16.0	CH	22.7	92.0	<u> </u>					6.8
S0055A	S05	21.0	SM	13.0	121.9					48.0	
S0055A	S07	30.5	CL-ML	21.4	98.8	19	14	5		13.0	
S0056A	S03	16.0	SM	12.4	113.0						
S0056A	S05	28.5	ML	11.3	86.5					79.3	
S0056A	S07	36.0	SM	17.8	96.9					7 0.0	
S0056A	S09	46.0	ML	22.3	78.3						
S0056A	S10	51.0	SM	15.6	-				0.0	22.0	
S0056A	S11	56.0	ML	5.1	77.5				0.0	22.0	
S0056A	S14	81.0	SP-SM	9.4	-				0.1	6.5	
S0056A	S16	101.0	CL	23.7	_	36	21	15		0.0	
S0058A	S01	3.0	SM	-	_			10			
S0058A	S02	6.0	SM	8.1	111.7				0.0	22.5	
S0058A	S03	11.0	CL	16.1	113.2	24	14	10	0.0	22.0	1.9
S0058A	S04	21.0	SM	11.9	122.5			10			1.0
S0058A	S05	31.0	ML	14.9	97.4	NP	NP	NP			
S0062A	S02	5.0	CL	9.3	110.2		141	141			
S0062A	S03	11.0	CL	17.6	110.8	37	18	19			6.4
S0062A	S06	26.0	SM	25.6	85.4	<u> </u>					0.1
S0062A	S07	31.0	SP-SM	-	-						
S0062A	S08	36.0	SP-SM	5.5	90.7				0.0	6.0	
S0062A	S10	46.0	SP-SM	-	-					0.0	
S0062A	S12	56.0	SP-SM	8.1	92.8						
S0062A	S14	71.0	SP-SM	6.6	95.0				1.6	5.4	
S0062A	S16	91.0	CL	14.9	118.2	33	16	17			5.6
S0066A	S01	3.0	SM	2.7	114.8						
S0066A	S02	6.0	SM	5.0	118.2						
S0066A	S03	16.0	ML	11.1	104.7				0.2	69.7	
	S04	26.0	SW-SM	2.8	99.5				0.0	9.4	
- Annuuc					5 5.0					<u> </u>	
S0066A S0068A	S02	6.0	SC	8.9	128.1				0.0	32.1	

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9G

S0068A	Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0068A S04 16.0 SM -	S0068A	S03	11.0	SC	12.0	92.2					22.0	(10.7)
S0068A S05 21.0 SM 19.5 88.2					-	-					22.0	
S0068A		-			19.5	88.2						
S0072A S02										0.0	3.9	
S0072A S03 16.0 GP-GM 2.3 -												
S0072A												
S0074A S01 3.0 SM 11.0 116.8		-				93.2	34	25	9		0.0	
S0074A S03							01				49.0	
S0074A S04 16.0 CL 20.5 106.7												
S0074A S06 26.0 CL 21.8 105.2 46 26 20											47.0	49
S0076A S02 6.0 SW-SM 3.8 106.0 1.4 9.0		-					46	26	20			7.0
S0076A S03							.5			1 4	9.0	
S0076A S04										17	0.0	
S0076A S07 27.5 SM 7.1 -		-									97.3	
S0076A S10						_				0.2		
S0076A S11										0.2	10.0	
S0076A S14 56.0 SM 6.3 - 0.3 12.3 S0076A S17 71.0 SM 10.6 105.3 0.0 0.0 12.3 S0076A S19 91.0 SP-SM 14.8 117.7 0.0											45.6	
S0076A		-				_				U 3		
S0076A S19 91.0 SP-SM 14.8 117.7 <t< td=""><td></td><td></td><td></td><td></td><td></td><td>105.3</td><td></td><td></td><td></td><td>0.5</td><td>12.5</td><td></td></t<>						105.3				0.5	12.5	
S0077A S01 3.0 SM 8.7 113.0 115 1.7 S0077A S03 11.0 CL 24.0 101.0 35 20 15 1.7 S0077A S05 21.0 ML 20.9 106.4 1.7 S0077A S06 26.0 ML 29.2 93.7 34 25 9 0.8 S0077A S07 31.0 SM 23.2 102.4 102.4 100.0 47.7 100.0 45.5 100.0 45.5 100.0 45.5 100.0 45.5 100.0 45.5 100.0 45.5 100.0 100.0 45.5 100.0 100.0 45.5 100.0 100.0 45.5 100.0												
S0077A S03 11.0 CL 24.0 101.0 35 20 15 1.7 S0077A S05 21.0 ML 20.9 106.4												
S0077A S05 21.0 ML 20.9 106.4 0.8 S0077A S06 26.0 ML 29.2 93.7 34 25 9 0.8 S0077A S07 31.0 SM 23.2 102.4 0.0 47.7 S0078A S02 6.0 SM 15.3 113.0 0.0 45.5 S0078A S04 16.0 CL 25.6 98.2 38 24 14 2.0 S0078A S05 21.0 SM 11.0 101.6 <							25	20	15			1 7
S0077A S06 26.0 ML 29.2 93.7 34 25 9 0.8 S0077A S07 31.0 SM 23.2 102.4 47.7 S0078A S02 6.0 SM 15.3 113.0 0.0 45.5 S0078A S04 16.0 CL 25.6 98.2 38 24 14 2.0 S0078A S05 21.0 SM 11.0 101.6 31 21 10 30078A 53.8 31.0 ML 19.7 104.5 31 21 10 30078A 53.8 31.0 ML 19.7 104.5 31 21 10 30078A 53.8 31.0 ML 19.7 104.5 31 21 10 30081A 304 16.0 SM 8.2 99.8 30081A 30.0 30.0 SM 15.6 - 0.0 0.0 40.8 30081A 30.0 SP-SM 3.7 89.7							33	20	15			1.7
S0077A S07 31.0 SM 23.2 102.4 47.7 S0078A S02 6.0 SM 15.3 113.0 0.0 45.5 S0078A S04 16.0 CL 25.6 98.2 38 24 14 2.0 S0078A S05 21.0 SM 11.0 101.6 10.0							24	25	0			0.0
S0078A S02 6.0 SM 15.3 113.0 0.0 45.5 S0078A S04 16.0 CL 25.6 98.2 38 24 14 2.0 S0078A S05 21.0 SM 11.0 101.6 10.0							34	25	9		47.7	0.0
S0078A S04 16.0 CL 25.6 98.2 38 24 14 2.0 S0078A S05 21.0 SM 11.0 101.6 101.										0.0		
S0078A S05 21.0 SM 11.0 101.6 21.0 21.4 104.6 31 21 10 S0078A S07 31.0 ML 19.7 104.5 53.8 S0081A S04 16.0 SM 8.2 99.8 53.8 S0081A S06 26.0 SM 15.6 - 0.0 40.8 S0081A S07 31.0 SM 8.6 - 0.0 40.8 S0081A S08 36.0 SP-SM 3.7 89.7 89.7 28.8 S0081A S09 41.0 ML 31.5 - 74.5 S0081A S11 51.0 MH 47.8 - 51 39 12 S0081A S14 71.0 SM 28.8 - 0.4 21.8 S0082R S03 11.0 ML 9.4 - 0.0 6.3 S0082R S07 31.0 SP-SM							20	24	1.1	0.0	40.0	2.04
S0078A S06 26.0 CL 21.4 104.6 31 21 10 S0078A S07 31.0 ML 19.7 104.5 53.8 S0081A S04 16.0 SM 8.2 99.8 0.0 40.8 S0081A S06 26.0 SM 15.6 - 0.0 40.8 S0081A S07 31.0 SM 8.6 - 0.0 40.8 S0081A S08 36.0 SP-SM 3.7 89.7 0.0 40.8 S0081A S09 41.0 ML 31.5 - 0.0 74.5 S0081A S11 51.0 MH 47.8 - 51 39 12 S0082R S03 11.0 ML 9.4 - 0.4 21.8 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S08 36.0 SM -							36	24	14			2.04
S0078A S07 31.0 ML 19.7 104.5 53.8 S0081A S04 16.0 SM 8.2 99.8 0.0 40.8 S0081A S06 26.0 SM 15.6 - 0.0 40.8 S0081A S07 31.0 SM 8.6 - 28.8 S0081A S08 36.0 SP-SM 3.7 89.7 - S0081A S09 41.0 ML 31.5 - 74.5 S0081A S11 51.0 MH 47.8 - 51 39 12 S0081A S14 71.0 SM 28.8 - 0.4 21.8 S0082R S03 11.0 ML 9.4 - 0.0 6.3 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S08 36.0 SM - - - 2.5 11.6							21	21	10			
S0081A S04 16.0 SM 8.2 99.8 S0081A S06 26.0 SM 15.6 - 0.0 40.8 S0081A S07 31.0 SM 8.6 - 28.8 S0081A S08 36.0 SP-SM 3.7 89.7 - S0081A S09 41.0 ML 31.5 - 74.5 S0081A S11 51.0 MH 47.8 - 51 39 12 S0081A S14 71.0 SM 28.8 - 0.4 21.8 S0082R S03 11.0 ML 9.4 - 0.0 6.3 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM - - - -							31	Z I	10		E2 0	
S0081A S06 26.0 SM 15.6 - 0.0 40.8 S0081A S07 31.0 SM 8.6 - 28.8 S0081A S08 36.0 SP-SM 3.7 89.7 - S0081A S09 41.0 ML 31.5 - 74.5 S0081A S11 51.0 MH 47.8 - 51 39 12 S0081A S14 71.0 SM 28.8 - 0.4 21.8 S0082R S03 11.0 ML 9.4 - - 0.0 6.3 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM - - - - -											55.6	
S0081A S07 31.0 SM 8.6 - 28.8 S0081A S08 36.0 SP-SM 3.7 89.7 - S0081A S09 41.0 ML 31.5 - - 74.5 S0081A S11 51.0 MH 47.8 - 51 39 12 S0081A S14 71.0 SM 28.8 - 0.4 21.8 S0082R S03 11.0 ML 9.4 - - 0.0 6.3 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM - - - -										0.0	40.0	
S0081A S08 36.0 SP-SM 3.7 89.7						-				0.0		
S0081A S09 41.0 ML 31.5 - 51 39 12 S0081A S11 51.0 MH 47.8 - 51 39 12 S0081A S14 71.0 SM 28.8 - 0.4 21.8 S0082R S03 11.0 ML 9.4 - - 0.0 6.3 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM - - - -						90.7					∠0.ŏ	
S0081A S11 51.0 MH 47.8 - 51 39 12 S0081A S14 71.0 SM 28.8 - 0.4 21.8 S0082R S03 11.0 ML 9.4 - - 0.0 6.3 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM - - - -						09.7					74 5	
S0081A S14 71.0 SM 28.8 - 0.4 21.8 S0082R S03 11.0 ML 9.4 - - 0.0 6.3 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM - - - - -						-	E 1	20	10		74.5	
S0082R S03 11.0 ML 9.4 - - 0.0 6.3 S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM - - - -							51	39	12	0.4	24.0	
S0082R S05 21.0 SW-SM 2.8 - 0.0 6.3 S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM - - - -										0.4	21.8	
S0082R S07 31.0 SP-SM 4.9 - 2.5 11.6 S0082R S08 36.0 SM -										0.0	6.2	
S0082R S08 36.0 SM						-						
					4.9	-				2.5	11.0	
1 SUIOZB SUM 410 SW-SW- 47 -					- 4 7					0.0	40.5	
			41.0	SW-SM	4.7	-				0.0	10.5	
S0082R S11 51.0 SP-SM 18.4 -	SUUBZK	511	0.10	3P-3M	18.4							

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9H

SO082R	Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0082R	S0082R	S14	71.0	SW-SM	10.9	128.9				28.9	11.6	, ,
S0082R S20					_	-						
S0082R S20					21.1	106.5						
S0082R S22												
SOUBSIA SO1 2.5 SM 10.2 119.6												
S0083A												
S0083A										0.1	5.4	
S0083A												
S0083A \$10 46.0 SW-SM 6.0 109.6 0.7 8.3 \$0085R \$30 6.0 SM 12.5 110.1 \$					5.1	112.6						
S0085R S03 6.0 SM 12.5 110.1										0.7	8.3	
S0085R S05 21.0 ML - - 38 27 11 - S0085R S06 26.0 SM - <td></td>												
S0085R S06 26.0 SM - <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td>38</td><td>27</td><td>11</td><td></td><td></td><td></td></t<>							38	27	11			
S0085R S07 31.0 SM 10.0 104.9 8 84.1 S0085R S08 36.0 ML 21.2 83.8 84.1 S0085R S09 41.0 CL 34.2 86.2 38.7 S0085R S10 46.0 CL 38.7 79.1 45 32 13 2.5 S0085R S11 51.0 SM 30.0 83.8 19.8 S0085R S15 81.0 ML 30.2 90.9 55.0 S0085R S18 111.0 CL 23.0 102.2 55.0 S0085R S21 141.0 SM 26.7 99.3 55.0 S0086R S21 141.0 SM 17.6 111.1 111.1 50086Ra S02 6.0 SM 15.2 115.2 5.8 5.8 50086Ra S03 21.0 SP 11.8 115.1 6.6 1.8 5.8 5.8 5.8 <												
S0085R S08 36.0 ML 21.2 83.8 84.1 S0085R S09 41.0 CL 34.2 86.2 2 S0085R S10 46.0 CL 38.7 79.1 45 32 13 2.5 S0085R S11 51.0 SM 30.0 83.8 19.8 55.0 S0085R S15 81.0 ML 30.2 90.9 555.0 S0085R S18 111.0 CL 23.0 102.2 55.0 S0085R S21 141.0 SM 26.7 99.3 55.0 S0086R S21 141.0 SM 26.7 99.3 55.0 S0086Ra S02 6.0 SM 17.6 111.1 55.8 S0086Ra S03 21.0 SP 11.8 115.1 6.6 1.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S008												
S0085R S09 41.0 CL 34.2 86.2 3 1 2.5 S0085R S10 46.0 CL 38.7 79.1 45 32 13 2.5 S0085R S11 51.0 SM 30.0 83.8 19.8 S0085R S15 81.0 ML 30.2 90.9 55.0 S0085R S18 111.0 CL 23.0 102.2 55.0 S0085R S21 141.0 SM 26.7 99.3 55.0 S0086R S23 161.0 SM 17.6 111.1 55.8 S0086Ra S02 6.0 SM 15.2 115.2 5.8 S0086Ra S03 11.0 ML 10.0 125.3 5.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S09 33.0 ML 34.5 - - -											84.1	
S0085R S10 46.0 CL 38.7 79.1 45 32 13 2.5 S0085R S11 51.0 SM 30.0 83.8 19.8 19.8 S0085R S15 81.0 ML 30.2 90.9 55.0 55.0 S0085R S18 111.0 CL 23.0 102.2 55.0 55.0 S0085R S21 141.0 SM 26.7 99.3 55.0 55.0 S0086Ra S02 16.0 SM 17.6 111.1 50.0 55.0 55.0 S0086Ra S02 6.0 SM 17.2 115.2 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.0 55.8 50.												
SO085R S11 51.0 SM 30.0 83.8 19.8 S0085R S15 81.0 ML 30.2 90.9 55.0 S0085R S18 111.0 CL 23.0 102.2 55.0 S0085R S21 141.0 SM 26.7 99.3 55.0 S0085R S23 161.0 SM 17.6 111.1 55.0 S0086Ra S02 6.0 SM 15.2 115.2 50.0 S0086Ra S03 11.0 ML 10.0 125.3 5.8 S0086Ra S05 21.0 SP 11.8 115.1 6.6 1.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S09 33.0 ML 34.5 - - S0086Ra S10 36.0 ML 29.4 89.7 - S0086Ra S11 41.0 SM							45	32	13			2.5
S0085R S15 81.0 ML 30.2 90.9 55.0 S0085R S18 111.0 CL 23.0 102.2 S0085R S21 141.0 SM 26.7 99.3 S0086R S23 161.0 SM 17.6 111.1 S0086Ra S02 6.0 SM 15.2 115.2 S0086Ra S03 11.0 ML 10.0 125.3 5.8 S0086Ra S05 21.0 SP 11.8 115.1 6.6 1.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S08 31.0 ML - - S0086Ra S09 33.0 ML 29.4 89.7 S0086Ra S11 41.0 SM 20.3 93.4 </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>02</td> <td> .0</td> <td></td> <td>19.8</td> <td></td>								02	.0		19.8	
S0085R S18 111.0 CL 23.0 102.2 S0085R S21 141.0 SM 26.7 99.3 S0085R S23 161.0 SM 17.6 111.1 S0086R S23 161.0 SM 17.6 111.1 S0086R S02 6.0 SM 15.2 115.2 SS 5.8 S0086Ra S03 11.0 ML 10.0 125.3 5.8 5.8 S0086Ra S05 21.0 SP 11.8 115.1 6.6 1.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S08 31.0 ML - - - - S0086Ra S10 36.0 ML 29.4 89.7 - - - S0086Ra S11 41.0 SM 20.3 93.4 - - - - - - - - - - -												
SO085R S21 141.0 SM 26.7 99.3											00.0	
S0085R S23 161.0 SM 17.6 111.1 S0086Ra S02 6.0 SM 15.2 115.2 S0086Ra S03 11.0 ML 10.0 125.3 S0086Ra S03 11.0 ML 10.0 125.3 S08 5.8 S0086Ra S05 21.0 SP 11.8 115.1 6.6 1.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S08 31.0 ML - - - - S0086Ra S09 33.0 ML 34.5 -												
S0086Ra S02 6.0 SM 15.2 115.2 115.2 5.8 S0086Ra S03 11.0 ML 10.0 125.3 5.8 S0086Ra S05 21.0 SP 11.8 115.1 6.6 1.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S08 31.0 ML - - - S0086Ra S09 33.0 ML 34.5 - - S0086Ra S10 36.0 ML 29.4 89.7 - S0086Ra S11 41.0 SM 20.3 93.4 - S0086Ra S11 41.0 SM 20.3 93.4 - S0086Ra S12 46.0 SM 21.5 100.3 - S0086Ra S13 51.0 SM - - - S0086Ra S16 61.0 SP-SM 1												
S0086Ra S03 11.0 ML 10.0 125.3 5.8 S0086Ra S05 21.0 SP 11.8 115.1 6.6 1.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S08 31.0 ML - - - S0086Ra S09 33.0 ML 34.5 - - S0086Ra S10 36.0 ML 29.4 89.7 - S0086Ra S11 41.0 SM 20.3 93.4 - S0086Ra S11 41.0 SM 20.3 93.4 - S0086Ra S12 46.0 SM 21.5 100.3 - S0086Ra S13 51.0 SM - - - S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S20 111.0 SM 2												
S0086Ra S05 21.0 SP 11.8 115.1 6.6 1.8 S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S08 31.0 ML - - - S0086Ra S09 33.0 ML 34.5 - - S0086Ra S10 36.0 ML 29.4 89.7 - S0086Ra S11 41.0 SM 20.3 93.4 - S0086Ra S12 46.0 SM 21.5 100.3 - S0086Ra S12 46.0 SM 21.5 100.3 - - S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S17 81.0 SM 19.7 110.4 - S0086Ra S22 131.0 SC 16.8 114.7 0.0 30.3 S0087Aa S04												5.8
S0086Ra S06 23.0 SW-SM 13.2 - 3.6 7.7 S0086Ra S08 31.0 ML - - - S0086Ra S09 33.0 ML 34.5 - - S0086Ra S10 36.0 ML 29.4 89.7 - S0086Ra S11 41.0 SM 20.3 93.4 - S0086Ra S11 41.0 SM 20.3 93.4 - S0086Ra S12 46.0 SM 21.5 100.3 - S0086Ra S13 51.0 SM - - - S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S17 81.0 SM 19.7 110.4 - - S0086Ra S20 111.0 SM 22.7 103.0 - - - S0086Ra S22 131.0										6.6	1.8	0.0
S0086Ra S08 31.0 ML - - - S0086Ra S09 33.0 ML 34.5 - - S0086Ra S10 36.0 ML 29.4 89.7 S0086Ra S11 41.0 SM 20.3 93.4 S0086Ra S12 46.0 SM 21.5 100.3 S0086Ra S12 46.0 SM 21.5 100.3 S0086Ra S13 51.0 SM - - S0086Ra S13 51.0 SM - - S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S17 81.0 SM 19.7 110.4 S0086Ra S20 111.0 SM 22.7 103.0 S0086Ra S22 131.0 SC 16.8 114.7 0.0 30.3 30.3 S0086Ra S24 151.0 SC 15.6 114.9 S0087Aa S04 21.0 SP-SM 14.5 99.4 0.3												
S0086Ra S09 33.0 ML 34.5 - S0086Ra S10 36.0 ML 29.4 89.7 S0086Ra S11 41.0 SM 20.3 93.4 S0086Ra S12 46.0 SM 21.5 100.3 S0086Ra S13 51.0 SM - - S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S17 81.0 SM 19.7 110.4 0.2 6.9 S0086Ra S20 111.0 SM 22.7 103.0 0.0 30.3 S0086Ra S22 131.0 SC 16.8 114.7 0.0 30.3 S0087Aa S02 10.0 SM 8.4 126.9 0.3 7.4 S0087Aa S04 21.0 SP-SM 14.5 99.4 0.3 7.4 S0087Aa S08 41.0 SM - <					-					0.0	7.7	
S0086Ra S10 36.0 ML 29.4 89.7 S0086Ra S11 41.0 SM 20.3 93.4 S0086Ra S12 46.0 SM 21.5 100.3 S0086Ra S13 51.0 SM - - S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S17 81.0 SM 19.7 110.4					34.5							
S0086Ra S11 41.0 SM 20.3 93.4 93.6 93.6 93.4 93.4 93.4 93.2 93.4 93.2 93.2 93.2 93.2 93.2 93.0 93.3 <td< td=""><td></td><td></td><td></td><td></td><td></td><td>89.7</td><td></td><td></td><td></td><td></td><td></td><td></td></td<>						89.7						
S0086Ra S12 46.0 SM 21.5 100.3 0.2 6.9 S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S17 81.0 SM 19.7 110.4 0.2 6.9 S0086Ra S20 111.0 SM 22.7 103.0 0.0 30.3 S0086Ra S22 131.0 SC 16.8 114.7 0.0 30.3 S0086Ra S24 151.0 SC 15.6 114.9 0.0 30.3 S0087Aa S02 10.0 SM 8.4 126.9 0.3 7.4 S0087Aa S05 26.0 SM - - 0.3 7.4 S0087Aa S07 36.0 SC 16.9 - 0.3 19.7 S0087Aa S08 41.0 SM - - 0.3 19.7 S0087Aa S09 46.0 SP-SM												
S0086Ra S13 51.0 SM - - 0.2 6.9 S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S17 81.0 SM 19.7 110.4 110.0												
S0086Ra S16 61.0 SP-SM 18.3 107.4 0.2 6.9 S0086Ra S17 81.0 SM 19.7 110.4 110.0						-						
S0086Ra S17 81.0 SM 19.7 110.4 S0086Ra S20 111.0 SM 22.7 103.0 S0086Ra S22 131.0 SC 16.8 114.7 0.0 30.3 S0086Ra S24 151.0 SC 15.6 114.9 0.0 30.3 S0087Aa S02 10.0 SM 8.4 126.9 0.3 7.4 S0087Aa S04 21.0 SP-SM 14.5 99.4 0.3 7.4 S0087Aa S05 26.0 SM - - 0.3 19.7 S0087Aa S08 41.0 SM - - 0.3 19.7 S0087Aa S09 46.0 SP-SM 7.7 - - -					18.3	107.4				0.2	6.9	
S0086Ra S20 111.0 SM 22.7 103.0 S0086Ra S22 131.0 SC 16.8 114.7 0.0 30.3 S0086Ra S24 151.0 SC 15.6 114.9 0.0 30.3 S0087Aa S02 10.0 SM 8.4 126.9 0.3 7.4 S0087Aa S04 21.0 SP-SM 14.5 99.4 0.3 7.4 S0087Aa S05 26.0 SM - - 0.3 19.7 S0087Aa S08 41.0 SM - - 0.3 19.7 S0087Aa S09 46.0 SP-SM 7.7 - - -											1.5	
S0086Ra S22 131.0 SC 16.8 114.7 0.0 30.3 S0086Ra S24 151.0 SC 15.6 114.9												
S0086Ra S24 151.0 SC 15.6 114.9 S0087Aa S02 10.0 SM 8.4 126.9 S0087Aa S04 21.0 SP-SM 14.5 99.4 0.3 7.4 S0087Aa S05 26.0 SM - - - - S0087Aa S07 36.0 SC 16.9 - 0.3 19.7 S0087Aa S08 41.0 SM - - - S0087Aa S09 46.0 SP-SM 7.7 - -										0.0	30.3	
S0087Aa S02 10.0 SM 8.4 126.9 S0087Aa S04 21.0 SP-SM 14.5 99.4 0.3 7.4 S0087Aa S05 26.0 SM - - - - S0087Aa S07 36.0 SC 16.9 - 0.3 19.7 S0087Aa S08 41.0 SM - - - - S0087Aa S09 46.0 SP-SM 7.7 - - - -											25.0	
S0087Aa S04 21.0 SP-SM 14.5 99.4 0.3 7.4 S0087Aa S05 26.0 SM -												
S0087Aa S05 26.0 SM - - S0087Aa S07 36.0 SC 16.9 - 0.3 19.7 S0087Aa S08 41.0 SM - - - - - S0087Aa S09 46.0 SP-SM 7.7 - - - - -										0.3	7.4	
S0087Aa S07 36.0 SC 16.9 - 0.3 19.7 S0087Aa S08 41.0 SM -					-	-						
S0087Aa S08 41.0 SM - - S0087Aa S09 46.0 SP-SM 7.7 -					16.9	_				0.3	19.7	
S0087Aa S09 46.0 SP-SM 7.7 -					-							
					7.7	_						
1 Califannia I link Connul Turk, Mannul & Furance On Aller OR A	3000,710		. 5.5	J. J		2 -	li£ ' - ' ! !'	rula Ora a di	Tuelle Marie			OD 4

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9I

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0087Aa	S11	56.0	CL	44.6	-	43	25	18			
S0087Aa	S13	61.0	SP-SM	7.7	-				0.0	8.9	
S0087Aa	S14	71.0	ML	-	-						
S0087Aa	S15	81.0	SM	13.5	-				0.8	42.5	
S0087Aa	S18	111.0	SM	23.1	-						
S0087Aa	S21	141.0	SP-SM	19.7	-						
S0088Aa	S02	6.0	ML	17.2	110.4						
S0088Aa	S03	11.0	SM	8.1	-						
S0088Aa	S05	21.0	SP-SM	4.5	_				2.6	7.2	
S0088Aa	S07	31.0	SP-SM	6.3	_				0.0	9.5	
S0088Aa	S11	51.0	ML	26.1	_						
S0088Aa	S13	61.0	SM	12.9	_				0.0	13.9	
S0088Aa	S16	91.0	ML	17.0	_				0.0	56.1	
S0089Aa	S01	3.0	CL	16.7	111.2				0.0	30.1	4
S0089Aa	S02	6.0	CL	7.2	-	28	17	11			-
S0089Aa	S03	11.0	SM	-	_	20	1,				
S0089Aa	S04	16.0	SM	3.3	_						
S0089Aa	S05	21.0	SM	8.5	114.5						
S0089Aa	S06	26.0	SM	6.0	114.5				0.2	36.3	
S0089Aa	S07	31.0	SP-SM	4.3	95.9				0.2	30.3	
S0009Aa S0090Aa	S02	6.0	SM SM	9.5	123.7				0.1	37.4	4.9
S0090Aa S0090Aa	S02	11.0	SP	2.3	100.6				1.1	37.4	4.9
S0090Aa S0090Aa	S05	21.0	SP	-					1.1	3.1	
S0090Aa S0091A	S01	2.0	SM	_	-						
S0091A S0091A	S02	6.0	SM	6.9	102.7						
S0091A S0091A	S02	11.0	SP	2.5					2.1	4.4	
S0091A S0091A	S05	21.0	SP	10.7	-				2.1	4.4	
		-			-				0.1	0.0	
S0091A	S06	26.0	SP-SM	5.2	-				0.1	8.2	
S0091A	S07	31.0	SP-SM	4.0	400.0						
S0097A	S03	11.0	ML	17.2	103.9	47	20	4.5			
S0097A	S05	21.0	ML	42.5	76.8	47	32	15			
S0097A	S06	26.0	ML	- 24.5	- 04.4					00.5	
S0097A	S07	31.0	ML	34.5	84.1				0.0	90.5	
S0097A	S08	36.0	SM	11.1	103.7				0.0	13.4	
S0097A	S09	41.0	ML	38.4	-	39	30	9		4= -	
S0097A	S15	71.0	SM	12.3	-	0-		1 -	0.1	17.9	
S0097A	S17	81.0	CL	24.2	-	35	20	15			
S0098A	S02	6.0	CL	7.1	124.7	23	14	9			
S0098A	S03	11.0	SM	-	-						
S0098A	S04	16.0	SM	7.7	110.7				0.2	14.6	
S0098A	S05	21.0	CL	14.3	112.4						2.7
S0098A	S06	26.0	CL	15.3	116.3	33	17	16			
S0098A	S08	36.0	ML	6.7	99.0						

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9J

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0098A	S09	41.0	ML	45.5	74.3	49	35	14			
S0098A	S11	51.0	ML	16.7	82.6						
S0098A	S13	61.0	SM	19.3	105.7						
S0098A	S15	81.0	CL	14.4	119.6						
S0098A	S18	111.0	ML	18.9	110.9						
S0099A	S02	6.0	ML	10.2	109.9					57.4	
S0099A	S03	11.0	ML	9.6	115.1						
S0099A	S05	21.0	ML	7.7	101.2						
S0099A	S07	31.0	SP	5.1	-				0.0	1.9	
S0099A	S10	46.0	SP	4.2	-				0.0	3.7	
S0099A	S12	56.0	CL	19.8	-	36	20	16			
S0099A	S13	57.5	CL-ML	29.5	-						
S0099A	S16	66.0	SW-SM	4.4	-				6.2	7.5	
S0099A	S19	81.0	SM	16.9	_						
S0099A	S20	91.0	CL-ML	27.9	_						
S0106A	S02	6.0	SW-SM	4.2	_				2.4	10.9	
S0106A	S05	16.0	SP-SM	3.3	_				2.4	5.8	
S0106A	S06	21.0	SP-SM	10.7	105.4					0.0	
S0106A	S07	26.0	ML	11.8	-	NP	NP	NP			
S0106A	S09	36.0	SP-SM	3.0	_	.,,		1 11	0.4	6.6	
S0106A	S10	41.0	SP-SM	-	_				0	0.0	
S0106A	S12	51.0	SM		_						
S0106A	S18	101.0	SM	_	_						
S0106A	S19	102.5	SM	31.6	_				0.3	14.2	
S0108A	S03	11.0	ML	18.1	105.8				0.0		
S0108A	S05	21.0	SM	9.0	-				1.6	15.3	
S0108A	S06	26.0	SW-SM	14.4	_				24.9	11.8	
S0108A	S08	36.0	SW-SM	11.9	_				0.5	9.2	
S0108A	S10	41.0	SW-SM	8.0	_				0.5	7.3	
S0108A	S12	46.0	SW-SM	10.8	-				5.7	10.9	
S0108A	S14	51.0	SM	16.4	-						
S0108A	S16	61.0	SM		_						
S0108A	S19	91.0	SM	16.2	116.3						
S0110R	S02	6.0	ML	-	-						
S0110R	S03	11.0	SM	14.0	_				0.0	15.6	
S0110R	S04	16.0	SP	27.2	90.1				0.0	10.0	
S0110R	S05	21.0	SP	14.0	-				0.0	3.5	
S0110R	S08	36.0	SC	23.1	_	NP	NP	NP	0.0	0.0	
S0110R	S09	41.0	SC	16.9	_	. 11		- "	7.2	34.0	
S0110R	S13	61.0	SM	40.1	_				0.8	20.2	
S0110R	S16	92.5	SM	41.4	_				0.0	20.2	
S0110R	S02	5.5	SM	12.0	113.9						
S0112A	S02	16.0	SP	2.4	-						
001127	504	10.0	_ GI	∠.→	_						

California High Speed Train Merced to Fresno Corridor CP-1 FRESNO AND MADERA COUNTIES, CALIFORNIA

JOB NO: 2009-138-450

PLATE NO: B-9K

Borehole	Sample Number	Depth	Classi- fication	Water Content	Dry Density	Liquid Limit	Plastic Limit	Plasticity Index	% > Sieve 4	% < Sieve 200	Unconfined Compressive Strength (tsf)
S0112A	S05	21.0	SP	2.4	-				0.4	1.5	
S0112A	S06	26.0	SP	-	-						
S0112A	S07	31.0	SP	3.6	-				0.3	4.3	
S0112A	S09	41.0	CL	23.8	-	45	23	22			
S0112A	S13	61.0	ML	22.1	_				1.1	50.9	

Collapse Test Report ASTM D5333

Remarks:

Job No.: 1	157-310		Boring:	S0041A	Date:	6/28/2012
Client: P	Parikh Consultants, Inc.		Sample:	S03	Tested By:	MD
Project: C	California High Speed Train Proj. No.:	2009-138-450	Depth, ft.:	11	Checked:	PJ/DC

Soil Description: Reddish Yellow Silty SAND (Cemented)

	Initial	Final					Remark	٥.	
Deformation, in.:	0.0035	0.0063	0.0093	0.0132	0.0197	0.0262	0.0372		
Load, psf	150	300	550	1100	2200	4000	4000		
-									_

Moisture Content % Dry Density, pcf Void Ratio Saturation % Specific Gravity -

mittai	i iiiai	
7.3%	14.5%	Load at Collapse, psf
109.5	113.8	4000
0.541	0.482	% Collapse
36.5%	81.0%	1.13%
Accumod:	2.7	Mongurod:

Collapse Test Report ASTM D5333

S0068A 6/28/2012 157-310 Boring: Date: Job No.: S04 Client: Parikh Consultants, Inc. Sample: Tested By: MD Project: California High Speed Train Proj. No.: 2009-138-450 Depth, ft.: 16 Checked: PJ/DC Reddish Yellow Silty SAND (slightly plastic) near Sandy SILT

	Initial	Final					Remark	s:	
Deformation, in.:	0.0023	0.0039	0.0054	0.0079	0.0126	0.0168	0.0174		
Load, psf	150	300	550	1100	2200	4000	4000		
			(=	, p					

Moisture Content % Dry Density, pcf Void Ratio Saturation %

mittai	i iiiai		
16.8%	19.1%	Load at Co	llapse, psf
99.9	101.7	40	00
0.689	0.659	% Co	llapse
65.7%	78.1%	0.0	6%
Assumed:	2.7	Measured:	

