Physics 3410 Homework #4

5 problems Due by February 15

> 1.

Find the entropy of

- (a) an N-state paramagnet with energy $U = N_{\uparrow}$, if N and U are both large.
- (b) an N-oscillator Einstein solid with energy q, when both variables are large numbers.

> **2**

Two three-oscillator Einstein solids $(N_A = N_B = 3)$ can exchange energy with each other; together they have energy q = 5.

- (a) What is the probability that $q_A = 2$?
- (b) What is the probability that $q_A = 5$?

> 3.

Two Einstein solids are in contact with each other, the first having N_A oscillators and the second N_B oscillators. The total energy of both is q, with solid A having energy q_A and solid B having energy q_B . (In other words, same as in class.) In the high-temperature limit $q_A \gg N_A \gg 1$ and $q_B \gg N_B \gg 1$, prove that the most likely energy macrostate q_A is the one where

$$\frac{q_A}{q_B} = \frac{N_A}{N_B}$$

Hints: Find the value of q_A which maximizes the multiplicity $\Omega(q_A)$. Use the chain rule, the product rule, and the fact that $\frac{\partial q_A}{\partial q_B} = -1$. And if you end up seeing $N_A - 1$, resist the urge to drop the 1.

▶ 4.

What is the surface area of a 12–dimensional sphere with radius $R=2\,\mathrm{m}$?

> 5.

Consider an ideal gas with $N=10^{23}$ particles and an internal energy of $U=100\,\mathrm{J}$. If the gas triples in volume, but its entropy remains constant, what is the internal energy after it expands?