Also published as:

GB1467164 (A) FR2235521 (A1)

METHOD OF MANUFACTURING AN ELECTRIC ROTATING MACHINE HAVING A SEALED STATOR WINDING

Patent number:

DE2333241

Publication date:

1975-01-30

Inventor:

ROHLOFF ROLF; BENSCH EMIL DIPL-ING

Applicant:

SIEMENS AG

Classification:

- international:

H02K15/12; H02K15/16

- european:

H02K3/50C; H02K5/128; H02K5/15; H02K9/06;

H02K11/00E; H02K15/12

Application number: DE19732333241 19730629 Priority number(s): DE19732333241 19730629

Abstract not available for DE2333241 Abstract of corresponding document: GB1467164

1467164 Making dynamo-electric machines SIEMENS AG 19 June 1974 [29 June 1973] 27290/74 Heading B3A A method of making a dynamo-electric machine comprises assembling a rotor 3, a wound stator core 1, and a housing together with a sealing sleeve 8 so as to define a casting mould, introducing a settable sealing composi- tion, e.g. a casting resin 2, into the mould to seal the winding in position and removing the sleeve 8 through at least one opening 51 pro-vided in the housing after the composition has set thereby defining a predetermined air gap between the stator core 1 and rotor 3. The sleeve 8 is inserted into the wound stator core 1 and end shields 5, 6 are secured to the core by rivets 20. The sleeve also serves to centre the rotor in the stator. A sievelike foil 7 is placed in the shields 5, 6, prior to assembly on the stator core, the foil serving to shape the winding end turns and keep them a minimum distance away from the shields, which are conductive, for insulating purposes and to provide the heat dissipation required. Instead of foil, a fleece-like insert or plastics clips may be used or alter- natively an insulating layer may be sintered on to the inner surface of the end shields. The sleeve may be helically wound and be removed by being pulled through an aperture in an end shield. The sleeve 8 may be formed of trape-zoidal segments 81-88 which are disposed to provide lug-like projections 811-871. The projections are aligned with slots in the end shields 5, 6 and projects through them to allow for removal when the casting resin 2 has set. The sleeve may be removed by melting out. The end shields may have provision for ac-commodating radially disposed cooling tubes (13), Fig. 3 (not

shown), or electric components (14), Fig. 4 (not shown). The end shields 5, 6 may also be provided with apertures (16), (17), Fig. 5 (not shown), into which the casting flows and on curing anchors the end shields against axial and rotary movement.

Data supplied from the esp@cenet database - Worldwide

⑤ Int. Cl. 2:

⑥ BUNDESREPUBLIK DEUTSCHLAND

DEUTSCHES PATENTAMT

H 02 K 15/12 H 02 K 15/16

7/

Patentschrift 23 33 241

2

Aktenzeichen: P 23 33 241.4-32

2

1

Anmeldetag: 29.

29. 6. 73

43) 44) Offenlegungstag: 30. 1.75 Bekanntmachungstag: 2.10.75

Ausgabetag:

20. 1.77

Patentschrift weicht von der Auslegeschrift ab

③ Unionsprioritāt:

@ 3 3

Bezeichnung:

Verfahren zur Herstellung eines betriebsmäßig spaltrohrlosen

Elektromotors mit innerhalb eines Motorgehäuses vergossener

Ständerwicklung

73 Patentiert für:

Siemens AG, 1000 Berlin und 8000 München

② Erfinder:

Rohloff, Rolf; Bensch, Emil, Dipl.-Ing.; 8702 Lengfeld

G Für die Beurteilung der Patentfähigkeit in Betracht gezogene Druckschriften:

DT-AS 10 52 541

DT-AS 12 82 157

DT-OS 14 88 023

CH 3 41 908

US 32 22 234

US 32 56 590

Nummer: 23 33 241 ZEICHNUNGEN BLATT I Int. Cl.2: H 02 X 15-12 Bekanntmachungstag: 2. Oktober 1975 10 Fig. 1 82 87 831 **871** -841 85 ġ4 Fig.2 Fig. 3

1

Patentansprüche:

1. Verfahren zur Herstellung eines betriebsmäßig spaltrohrlosen Elektromotors mit innerhalb eines Motorgehäuses vergossener Ständerwicklung, bei dem vor dem Vergießen montierte, die beiden Wickelköpfe der Ständerwicklung umgreifende Gehäuseteile als Gießformteile mitbenutzt werden und die Ständerbohrung durch ein vor dem 10 Vergießen eingebrachtes Dichtungsrohr abgedichtet wird, das nach dem Aushärten einer, in die unter Verwendung von Ständerblechpaket, Gehäuseteilen und Dichtungssohr gebildeten, geschlossenen Gießform eingefüllten Vergußmasse durch Öffnungen in 15 den Gehäuseteilen aus der Ständerbohrung wieder entsernt wird, dadurch gekennzeichnet. daß der Motor vor dem Vergießen einschließlich Läufer (3), Lager (10) und mittels isolierender Abstandshalter (Folie 7) in definiertem Abstand zur 20 Ständerwicklung (4) gehaltener Gehäuseteile mit Lagerschilden bzw. Lagerschilde (5, 6) fertig montiert wird und daß das die Dicke des Luftspaltes im Bereich zwischen Ständerblechpaket (1) und Läufer (3) aufweisende Dichtungsrohr (8) in seiner 25 Form zerlegbar ist und nach Aushärten der Vergußmasse durch zumindest eine schlitzartige Öffnung (51) in den Lagerschilden (5, 6) nach außen entfernt wird.

2. Versahren nach Anspruch 1. dadurch gekenn- 30 zeichnet, daß die Wickelköpse (41, 42) ohne besondere Versestigungsmittel, insbesondere ohne

Bandagen, hergestellt werden.

3. Verfahren nach einem der Ansprüche 1 oder 2. dadurch gekennzeichnet, daß als isolierender Abstandshalter eine perforierte, siebartige Folie (7) zumindest zwischen den topfförmigen Lagerschild und den Wickelkopf (41, 42) eingelegt wird.

4. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als isolierender Abstandshalter eine vliesartige Einlage in dem topfförmigen Lagerschild oder eine vliesartige Überdekkung der Wickelköpfe (41, 42) vorgesehen wird.

5. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß auf die Innenseite des 45 topfförmigen Lagerschilds eine Isolierschicht als isolierender Abstandshalter aufgesintert wird.

6. Verfahren nach einem der Ansprüche 1 oder 2, dadurch gekennzeichnet, daß als isolierende Abstandshalter Kunststoffspangen über die Wicklungsstränge des Wickelkopfes gestülpt werden.

7. Verfahren nach einem der Ansprüche 1 bis 6, dadurch gekennzeichnet, daß das Dichtungsrohr (8) zumindest an den als Gießform benutzten Teilen mit einem Formtrennmittel (z. B. Silikonöl) verschen 55 wird.

8. Verfahren nach einem der Ansprüche 1 bis 7, dadurch gekennzeichnet, daß jeweils eines der beiden Lagerschilde (5, 6) mit Vertiefungen bzw. nach außen abdichtbaren Durchbrüchen (16, 17) 60 versehen ist, in die beim Vergießen der Ständerwicklung Gießharz (2) eindringt und nach dem Aushärten das Lagerschild (6) im Sinne einer axialen und tangentialen Festlegung verankert (Fig. 3).

9. Dichtungsrohr zur Durchführung des Verfahrens nach einem der Ansprüche 1 bis 8. dadurch, gekennzeichnet, daß das Dichtungsrohr (8) aus einer in einen Schraubenwendel zerlegharen Hülse be-

2

steht, die durch eine Öffnung in einem der Lagerschilde als abgewickelter Streifen herausziehbar ist.

10. Dichtungsrohr zur Durchführung des Versahrens nach einem der Ansprüche 1 bis 8, dadurch gekennzeichnet, daß das Dichtungsrohr (8) in im wesentlichen axial gerichtete Einzelsegmente (81, 82...) zerlegbar ist und die beiden Lagerschilde (5, 6) mit zueinander in Umfangsrichtung gesehen versetzt angeordneten Öffnungen (51, 61...) versehen sind, derart, daß jeder Öffnung (51 bzw. 61) des einen oder anderen Lagerschildes (5 bzw. 6) ein Einzelsegment zugeordnet und durch die Öffnungen (51 bzw. 61) nach außen herausziehbar ist (Fig. 2).

11. Dichtungsrohr nach Anspruch 10. dadurch gekennzeichnet, daß die Einzelsegmente (81, 82...) trapezförmig sind und in Umfangsrichtung wechselweise mit der kürzeren Grundseite dichtend an der Innenseite des einen Lagerschildes (5 bzw. 6) anliegen und mit ihrer längeren Grundseite einer korrespondierenden Öffnung (61 bzw. 51) des anderen Lagerschildes (6 bzw. 5) zugeordnet sind.

12. Dichtungsrohr nach Anspruch 10 oder 11, dadurch gekennzeichnet, daß das Dichtungsrohr (8) endseitig axial mit lappenartigen Vorsprüngen (8⁴1, 821...) versehen ist, die durch die Öffnungen (51, 61...) der Lagerschilde (5, 6) nach außen herausragen (Fig. 2).

13. Dichtungsrohr nach einem der Ansprüche 10 bis 12, dadurch gekennzeichnet, daß das Dichtungsrohr (8) aus Einzelsegmenten zusammengesetzt ist.

14. Dichtungsrohr nach einem der Ansprüche 9 bis 12, dadurch gekennzeichnet, daß das Dichtungsrohr (8) aus einer einstückigen Hülse besteht, die mit Schwachstellen entsprechend der vorgesehenen Zerlegung in Einzelsegmente (81, 82...) versehen ist (!i g . 1).

Die Erfindung bezieht sich auf ein Versahren zur Herstellung eines betriebsmäßig spaltrohrlosen Elektromotors mit innerhalb eines Motorgehäuses vergossener Ständerwicklung, bei dem vor dem Vergießen montierte, die beiden Wickelköpse der Ständerwicklung umgreisende Gehäuseteile als Gießformteile mitbenutzt werden und die Ständerbohrung durch ein vor dem Vergießen eingebrachtes Dichtungsrohr abgedichtet wird, das nach dem Aushärten einer, in die unter Verwendung von Ständerblechpaket, Gehäuseteilen und Dichtungsrohr gebildeten, geschlossenen Gießform eingefüllten Vergußmasse durch Öffnungen in den Gehäuseteilen aus der Ständerbohrung wieder entsernt wird.

Bei einem bekannten derartigen Verfahren (US-PS 32 56 590) wird vor dem Vergießen das Ständerblechpaket mit der in ihrer endgültigen Lage gehaltenen Ständerwicklung in ein Motorgehäuse gepreßt und axial gegen die über die Wickelköpfe hinausragenden Gehäuseenden kragenartige Abschlußteile festgeklemmt, die eine der Läuferbohrung entsprechende Mittelöffnung aufweisen, durch die ein Dorn gesteckt wird, der den Motorinnenraum im Bereich der Wickelköpfe nach innen abdichtet; der Dorn ist innen hohl und weist eine Wandstärke auf, die größer als das vorgesehene Luftspaltmaß ist. Nach dem Erhärten der durch Öffnungen des Gehäuses einzufüllenden Vergußmasse wird der Dorn herausgezogen und der Läufer mit

ではない アニアアで かんてみれる

23 33 241

4

den beiden stirnseitigen Lagern montiert. Die Lager werden von Lagerschilden gehalten, die mit den kragenformigen Abschlußteilen verschraubt werden.

Aufgabe der vorliegenden Erfindung ist es, einen Motor der eingangs genannten Art demgegenüber fertigungstechnisch einfacher herstellen zu können. Das ist erfindungsgemäß dadurch möglich, daß der Motor vor dem Vergießen einschließisch Läufer, Lager und mittels isolierender Abstandshalter in definiertem Abstand zur Ständerwicklung gehaltener Gehäuseteile 10 mit Lagerschilden bzw. Lagerschilde fertig montiert wird und daß das die Dicke des Luftspaltes im Bereich zwischen Ständerblechpaket und Läufer aufweisende Dichtungsrohr in seiner Form zerlegbar ist und nach Aushärten der Vergußmasse durch zumindest eine 15 schlitzartige Öffnung in den Lagerschilden nach außen entfernt wird. Das erlaubt bei kompaktem Aufbau die Formgebungsmöglichkeit der Wickelköpfe durch die topsförmigen und geeignet isolierten Lagerschilde, wobei als Gießform der vollständig fertig montierte 20 Motor mit Dichtungsrohr dient und sich das Dichtungsrohr im Bereich des Läufers auf diesem abstützen kann.

In vorteilhafter Weise werden die Wickelköpfe ohne besondere Verlestigungsmittel, insbesondere ohne Bandagen, hergestellt. Um einerseits den notwendigen 25 Isolationsabstand der Wickelköpfe zu dem umgebenden, gegebenenfalls aus elektrisch leitendem Material hergestellten Lagerschild zu gewährleisten und andererseits eine gute Wärmeabluhr der in der Wicklung und dem Ständerblechpaket entstehenden Wärme 30 durch die Vergußmasse nach außen hin zu erreichen. wird vor dem Vergießen als isolierender Abstandshalter eine persorierte, siebartige Folie zumindest zwischen den topfförmigen Lagerschild, der zur Formung des nicht weiterhin besestigten Wickelkopss beiträgt, und 35 den Wickelkopf eingelegt; durch eine siebartige Perforierung wird insbesondere dabei auch vermieden, daß sich unerwünschte Lufteinschlüsse zwischen der Innenwandung des Lagerschildes und der aufliegenden Folie bilden können.

Eine noch größere Sicherheit gegenüber unerwünschten Lusteinschlüssen und eine noch innigere Ausfüllung des Zwischenraums zwischen Wickelkopf und Innenwandung des zugehörigen Lagerschildes kann dadurch erreicht werden, daß als isolierender Abstandshalter eine vliesartige Einlage in dem topsförmigen Lagerschild oder eine vliesartige Überdeckung der Wickelköpfe vorgesehen wird. Die vliesartige Einlage ist dabei durch eine gewisse Saugeigenschaft gegenüber der Vergußmasse charakterisiert.

Nach einer weiteren Ausgestaltung der Erfindung wird zur isolierenden Abstandshalterung vor dem Vergießen auf die Innenseite des topfförmigen Lagerschildteils eine Kunststoffschicht aufgesintert. Werden dagegen in vorteilhafter Weise als isolierende Abstandshalter Kunststoffspangen über die Wicklungstränge des Wickelkopfes gestülpt, so kann einerseits auf eine besondere Isolierung gegenüber dem umgebenden Lagerschildteil verzichtet und andererseits schon vor dem Vergießen eine gewisse verfestigte Halterung 60 der ohne Bandagen hergestellten Wickelköpfe erreicht werden.

Um einem Zusammenbacken des Dichtungsrohres mit der anliegenden Vergußmasse vorzubeugen, wird das Dichtungsrohr vor dem Einfüllen der Vergußmasse 65 zweckmäßigerweise zumindest an den als Gießform benutzten Teil mit einem Formtrennmittel, z. B. einem Silkonöl, versehen.

Zur leichteren Entfernung des Dichtungsrohrs durch die im Lagerschild dazu vorgesehenen Öffnungen nach dem Erhärten der Vergußmasse besteht das Dichtungsrohr nach einer besonderen Ausgestaltung der Frfindung aus einer in einen Schraubenwendel zerlegbaren Hülse, die nach dem Aushärten des Gießharzes durch die genannten Öffnungen als abgewickelter Streifen herausziehbar ist. Eine weitere, in Hinsicht auf eine einfache Entfernbarkeit des Dichtungsrohrs besonders einfache konstruktive Ausführung besteht darin, daß das Dichtungsrohr in im wesentlichen axial gerichtete Einzelsegmente zerlegbar ist und die beiden Lagerschilde mit zueinander in Umfangsrichtung gesehen versetzt angeordneten Öffnungen versehen sind, derart, daß jeder Öffnung des einen oder anderen Lagerschildes ein Einzelsegment zugeordnet und durch die Öffnungen nach außen herausziehbar ist. Dazu sind die Einzelsegmente zweckmäßigerweise trapezförmig ausgebildet und liegen - in Umfangsrichtung gesehen wechselweise jeweils mit der kürzeren Grundseite dichtend an der Innenseite des einen Lagerschildes an und sind mit ihrer längeren Grundseite einer korrespondierenden Öffnung des anderen Lagerschildes zugeord-

Zweckmäßigerweise ist das Dichtungsrohr endseitig axial mit lappenartigen Vorsprüngen versehen, die durch die Öffnungen der Lagerschilde nach außen herausragen: dadurch wird einerseits eine einfache Handhabe zur Entfernung des Dichtungsrohres erzielt und andererseits in vorteilhafter Weise eine Abdichtung der Öffnungen beim Vergießvorgang möglich, indem die nach außen axial herausragenden Enden der lappenförmigen Vorsprünge derart in die schlitzförmige Öffnung zur Anlage gebracht werden, daß der Vergußraum nach außen abgedichtet ist. Ein Herausziehen des Dichtungsrohres durch die Össnungen im Lagerschild wird dadurch erleichtert, daß das Dichtungs. ohr aus Einzelsegmenten zusammengesetzt ist, die in ihrer geschlossenen Form bei der Montage des Motors in die Ständerbohrung eingesetzt wird. Um einerseits diesen Montagevorgang weiterhin zu vereinfachen und andererseits trotzdem eine leichte Zerlegbarkeit der Hülse im Sinne einer einfachen Entfernung durch die Öffnungen des Lagerschildes zu erreichen, ist nach einer weiteren Ausgestaltung der Erfindung vorgesehen, daß das Dichtungsrohr aus einer einstückigen Hülse besteht, die mit Schwachstellen entsprechend der vorgesehenen Zerlegung in Einzelsegmente versehen ist.

Die Erfindung wird im folgenden an Hand von Ausführungsbeispielen in der Zeichnung näher erläutert. Darin zeigt in schematischer Darstellung

Fig. 1 im Schnittbild einen Motor mit vergossener Ständerwicklung und noch nicht entfernten Dichtungsrohr.

Fig. 2 ein mit Schwachstellen zur Zerlegung in im wesentlichen axial gerichtete Einzelsegmente versehenes Dichtungsrohr.

Fig. 3 einen Wickelkopfausschnitt gemäß Fig. 1 mit einem mit der Vergußmasse verankerten Lagerschild

Fig. 1 zeigt einen Elektromotor mit einem bewickelten Ständerblechpaket 1. Lagerschilden 5. 6. einer in einer Vergußmasse (Gießharz 2) eingebetteten Ständerwicklung 4 sowie einen über Kugellager 10 zentrisch zum Ständer in den beiden Lagerschilden 5. 6 gelagerten Läufer 3 in seinem fertigen Montagezustand. Zur Herstellung des derart vergossenen Motors sind im

我就是我的一种人 我们 在上一才 人工人

23 33 241

5

einzelnen folgende Verfahrensschritte vorgesehen:

Zunächst wird das Ständerblechpaket 1 mit einer Ständerwicklung 4 versehen, die im Bereich der Ständernuten in einer Nutenisolation 9 lagert und im Bereich der Wickelköpfe 41, 42 ohne besondere Verfestigungsmittel, insbesondere ohne Bandagen, hergestellt ist.

Anschließend werden das Dichtungsrohr 8, dessen Wandstärke zumindest im Bereich des Läuferblechpaketes 1 und Läufers 3 entsprechend dem radialen Maß des Luftspaltes gewählt ist, sowie der Läufer 3 in die Ständerbohrung eingesetzt und die A-seitig sowie B-seitig aufgesetzten Lagerschilde 5, 6, die sich dabei auf den Läufer 3 abstützen, in eine zentrische Lage zur Ständerbohrung ohne gesonderte Zentrierränder zwischen Ständerblechpaket und den Lagerschilden gebracht und an dem Ständerblechpaket 1 mittels Niete 20 befestigt: der Zentriervorgang ist dabei mit einer Luftspaltnadeln-Zentrierung vergleichbar, wobei das Dichtungsrohr 8 neben der Abdichtung die Aufgabe der zentrierten Halterung des Läufers zur Ständerbohrung übernimmt, die ansonsten den Luftspaltnadeln zufällt.

Beim Aufsetzen der Lagerschilde 5. 6, in die zuvor eine siebartige Folie 7 als Abstandshalter eingelegt worden ist, wird der jeweilige Wickelkopf 41, 42 geformt, in seine endgültige Lage gebracht und durch die persorierte siebartige Folie 7 in isolationstechnisch notwendigem Abstand zum umgebenden elektrisch leitenden Lagerschild 5, 6 gehalten. Andererseits wird durch die gezielte topfförmige Formgebung der 30 Lagerschilde 5. 6 für einen guten Wärmeübergang zwischen den Wickelköpfen 41 bzw. 42 und dem jeweiligen umgebenden Lagerschild 5 bzw. 6 gesorgt. derart, daß die Starke der Vergußmasse (Gießharz 2) zwischen diesen beiden Teilen möglichst an keiner 35 Stelle das isolationstechnisch notwendige Maß überschreitet und sich eine möglichst große und innige. Wärmeableitungsfläche zwischen lufteinschlußfreie Ständerblechpaket 1. Ständerwicklung 4 und Lagerschild 5 bzw. 6 ergibt.

Das zur Abdichtung der Ständerbohrung in den Luftspalt eingesetzte Dichtungsrohr 8 ist gemäß Fig. 2 in Umfangsrichtung in im wesentlichen axial gerichtete Finzelsegmente 81. 82... zerlegbar, die bei der einstuckigen Hülse gemäß Fig. 2 durch Schwachstel- 45 len an den gewünschten Trennstellen vorgemerkt sind. Die Einzelsegmente 81, 82 ... des zunächst einstückigen Dichtungsrohres 8 haben die Form von Trapezen, die in Umfangsrichtung gesehen - wechselweise mit der kürzeren Grundseite dichtend an der Innenseite des 50 einen Lagerschildes 5 oder 6 und mit ihrer längeren Grundseite mit lappenartigen Vorsprüngen 811, 821. durch korrespondierende schlitzförmige Öffnungen 51 bzw. 52 in den Lagerschilden 5, 6 im radialen Abstand des Luftspaltes nach außen ragen; dabei sind die schlitzförmigen Öffnungen 51 in dem einen Lagerschild 5 in Umfangsrichtung versetzt gegenüber den schlitzförmigen Öffnungen 61 in dem anderen Lagerschild 6 angeordnet. Wie aus Fig.1 ersichtlich, werden die schlitzformigen Öffnungen 51, 61 durch die nach außen 60 ragenden lappenartigen Vorsprünge abgedichtet, indem diese außen etwas hochgebogen bzw. hochgedrückt werden, und an der zum Vergußraum hin gerichteten Oberkante der Öffnung 51 anliegen. Da die Öffnungen 51, 61 in Umfangsrichtung gegeneinander versetzt angeordnet sind, ist im Schnittbild gemäß Fig. I nur die Öffnung 51 im linken A-seitigen Lagerschild 5 sichtbar

In die derart aus Ständerblechpaket 1, Lagerschilden 5, 6 und Dorn 8 gebildete Gießform wird durch hier nicht näher dargestellte Öffnungen in den Lagerschilden 5, 6 als Vergußmasse ein Gießharz 2 unter Vakuum eingefüllt, das eine porenfreie Einbettung aller innerhalb der geometrischen Umgrenzungen der Gießform gegebenen Räume einschließlich aller Zwischenräume zwischen den Wicklungsdrähten und den sie tragenden Ständer- und Isolationsteilen ergibt; dabei werden auch nicht winklig zur Ständerbohrung liegende Oberslächen der Paketstirnfläche ausgeglichen, indem die Vergußmasse derartige ungleiche Spalten zwischen der jeweiligen Paketstirnfläche und dem zentrisch zum Dorn gehaltenen gegenüberliegenden Lagerschild ausgleicht. Während des Eingießens der Vergußmasse und deren Aushärtung kann sich das in seiner Wandstärke entsprechend dem gewünschten Luftspaltmaß gewählte Dichtungsrohr 8 im Bereich des Läufers 3 auf dessen äußerer Umsangsumsläche in vorteilhafter Weise abstützen: in jedem Fall ist nach der Entfernung des Dichtungsrohrs 8 das gewünschte Luftspaltmaß gewährleistet.

Nach dem Aushärten der Vergußmasse 2 kann in einem Arbeitsvorgang das Dichtungsrohr 8 durch die schlitzförmigen Öffnungen 51, 61 der Lagerschilde 5, 6 entfernt werden, indem manuell oder maschinell auf die lappenartigen Vorsprünge 811, 821 ... ein axialer Zug ausgeübt wird; diese axialen Zugkräfte ergeben entsprechende tangentiale und axiale Zugkräfte auf die Schwachstellen des Dichtungsrohres 8, das dadurch in die vormarkierten Einzelsegmente zerlegt wird, die sich wiederum mit ihrer Grundseite beginnend, durch die schlitzförmigen Öffnungen 51, 61 nach außen entfernen lassen.

Obwohl durch die gezielte topfförmige, der Wickelkopfform angepaßte Ausbildung der Lagerschilde und deren Abstandssicherung mittels der isolierenden Abstandshalter für eine gute Wärmeabfuhr der Wicklungswärme nach außen gesorgt wird, kann eine weitere Kühlung, insbesondere des inneren Wickelkopfraumes zwischen der Stirnseite des Ständerblechpaketes und den Wicklungssträngen dadurch erreicht werden, daß vor dem Vergießen im Bereich des Wickelkopfes, insbesondere zwischen den einzelnen Wicklungssträngen röhrenförmige Luftführungsteile eingelegt werden, deren Öffnungen korrespondierende Lufteintritts- bzw. Luftaustrittsöffnungen in dem einen Lagerschild enthaltenden Gehäuseteil zugeordnet sind.

Beim Vergießen der Wickelkopswicklung können gleichzeitig weitere mit der Wicklung zu verbindende elektrische Bauelemente wie Thermowächter oder Sicherungen miteingegossen werden; solche Bauteile sind in der Vergußmasse insbesondere dort vorzusehen. wo diese eine für eine Mindestisolationsstrecke notwendige Wandstärke überschreitet. Weiterhin können vor dem Vergießen durch Öffnungen des einen Lagerschild enthaltenden Gehäuseteils Besestigungselemente durchgesteckt werden, die mit ihrem einen Ende in die Vergußmasse eingegossen werden und mit ihrem anderen Ende zur Aufnahme weiterer äußerer Motoranhau- und/oder -befestigungsteile, wie beispielsweise Klemmbrettern, Sicherungskästen oder Befestigungsmitteln für den Motor selbst dienen; die Befestigungselemente sind dadurch auf einfache Weise anbringbar und durch das Miteingießen in die Vergußmasse auch bei relativ schwachem Lagerschild bzw. Gehäuse in der Lage, größere Belastungen durch weitere Motoranbau-

6

23 33 241

6

8

teile aufzunehmen.

Während gemäß Fig.1 die Lagerschilde bzw. Lagerschildteile mittels Niete 20 am Ständerblechpaket 1 befestigt sind, zeigt Fig.3 eine insbesondere für kompakte und kleinere Elektromotoren geeignete und fertigungstechnisch besonders einfache genaue Halterung zumindest eines der Lagerschilde, die dadurch gekennzeichnet ist, daß jeweils eines der beiden Lagerschilde 5, 6 mit Vertiefungen bzw. nach außen abdichtbaren Durchbrüchen 16, 17 versehen ist, in die

beim Vergießen der Ständerwicklung Gießhareindringt und nach dem Aushärten das Lagerschild (Sinne einer axialen und tangentialen Festleg verankert; die Durchbrüche 16, 17 sind nach au durch Klebestreifen 18, 19 abgedichtet. Im vorlieger Fall braucht der Lagerschild 6 lediglich dichtend dem Ständerblechpaket 1 verbunden zu sein, wähl die sixierte Halterung zwischen diesen Teilen durch ausgehärtete Vergußmasse vermittelt wird.

Hierzu 1 Blatt Zeichnungen