Pontificia Universidad Católica de Chile Facultad de Matemáticas Departamento de Matemáticas TAV 2019

MAT 1610 * Cálculo 1

Pauta Interrogación 2

- 1. a) La parte superior de una escalera se desliza por una pared a una rapidez vertical de 0.15 m/s. En el momento en que la parte inferior de la escalera está a 3 m de la pared, se desliza alejándose de ésta con una rapidez de 0.2 m/s. ¿Cuál es la longitud de la escalera?
 - b) Calcule $\lim_{x\to\infty} \sqrt{x}(\pi/2 \arctan \sqrt{x})$.

Solución:

a) (3 puntos) Sea l la longitud de la escalera. Según el enunciado se tiene que $\frac{dy}{dt}=-0.15$ m/s y $\frac{dx}{dt}=0.2$ m/s. Usando la regla de la cadena se tiene que

$$\frac{dy}{dt} = \frac{dy}{dx}\frac{dx}{dt},$$

Por lo que reemplazando se obtiene $\frac{dy}{dx}=-3/4$. Por otra parte, dada la configuración de la escalera apoyada en la pared sabemos que se cumple la siguiente relación pitagórica $x^2+y^2=l^2$, por lo que derivando implícitamente tenemos que $2x+2y\frac{dy}{dx}=0$, de donde reemplazando en x=3 y $\frac{dy}{dx}=-3/4$ se tiene que y=4. Por lo tanto

$$l = \sqrt{3^2 + 4^2} = 5 \text{ m}.$$

b) (3 puntos) Dado que

$$\lim_{x \to \infty} \sqrt{x} (\pi/2 - \arctan \sqrt{x}) = \lim_{x \to \infty} \frac{\pi/2 - \arctan \sqrt{x}}{\frac{1}{\sqrt{x}}},$$

es de la forma 0/0 y las funciones $f(x) = \pi/2 - \arctan \sqrt{x}$ y $g(x) = 1/\sqrt{x}$ son derivables con $g'(x) = -1/2x^{3/2} \neq 0$ en cualquier vecindad abierta que no contiene a x = 0, podemos aplicar L'Hospital y tenemos que si existe el límite es igual a:

$$\lim_{x \to \infty} \frac{(\pi/2 - \arctan\sqrt{x})'}{\left(\frac{1}{\sqrt{x}}\right)'} = \lim_{x \to \infty} \frac{\frac{1}{2(1+x)x^{1/2}}}{\frac{1}{2x^{3/2}}}$$
$$= \lim_{x \to \infty} \frac{x}{1+x} = 1.$$

2. a) Considere la curva y = f(x) definida implícitamente por

$$y + x\sin(y) = x^2 - 1.$$

Determine la ecuación de la recta tangente a la curva en el punto P(1,0).

- b) Dada la función invertible $f(x) = x^3 + 2x 5$, calcule $(f^{-1})'(-5)$ y $(f^{-1})''(-5)$. Solución:
 - a) (3 puntos) Derivando implícitamente se obtiene

$$y' + \sin(y) + x\cos(y)y' = 2x,$$

por lo que evaluando en x = 0 e y = 0 encontramos que y'(1) = 1. Por lo tanto, la ecuación de la recta tangente a la curva en el punto P(1,0) es

$$y = x - 1.$$

b) (3 puntos) Sabemos que si $f'(f^{-1}(x)) \neq 0$ entonces

$$(f^{-1})'(x) = \frac{1}{f'(f^{-1}(x))}.$$

Luego, calculamos $f'(f^{-1}(-5))$. Por definición, $f^{-1}(-5) = x$ si y sólo si f(x) = -5, es decir, $x^3 + 2x - 5 = -5 \Leftrightarrow$ si $x^3 + 2x = 0 \Leftrightarrow x(x^2 + 2) = 0 \Leftrightarrow x = 0$, es decir $f^{-1}(-5) = 0$. Por otra parte se tiene que $f'(x) = 3x^2 + 2$. Así, obtenemos que $f'(f^{-1}(-5)) = f'(0) = 2 \neq 0$. Por lo tanto

$$(f^{-1})'(-5) = \frac{1}{f'(f^{-1}(-5))} = \frac{1}{2}.$$

Por otro lado, derivando una vez más encontramos la segunda derivada de f^{-1}

$$(f^{-1})''(x) = -[f'(f^{-1}(x))]^{-2}f''(f^{-1}(x))(f^{-1})'(x)$$
$$= -\frac{f''(f^{-1}(x))}{[f'(f^{-1}(x))]^3}.$$

De aquí, para cualquier $x \in \mathbb{R}$ calculamos f''(x) = 6x. Por lo tanto, tenemos que

$$(f^{-1})(-5) = -\frac{f''(f^{-1}(-5))}{[f'(f^{-1}(-5))]^3} = -\frac{f''(0)}{[f'(0)]^3} = 0.$$

- 3. a) Demuestre usando el teorema del valor medio que $\frac{x}{1+x} < \log(x+1) < x, \quad x > 0.$
 - b) Usando a) calcule $\lim_{x\to 0} \frac{\log(x+1)}{x}$.

Solución:

a) (3 puntos) Sea $f(x) = \log(x+1)$. Como f es una función derivable en $(-1, +\infty)$. Aplicando el Teorema del valor medio en (0, x), con x > 0 sabemos que existe un $c \in (0, x)$ tal que f'(c) = (f(x) - f(0))/x, es decir existe $c \in (0, x)$ tal que

$$\frac{1}{c+1} = \frac{\log(x+1)}{x}.$$

Luego como 0 < c < x se tiene que

$$\frac{1}{x+1} < \frac{1}{c+1} < 1,$$

por lo tanto

$$\frac{x}{1+x} < \log(x+1) < x, \quad x > 0.$$

b) (3 puntos) Inmediato usando el teorema del sandwich, ya que dada la relación en a), se tiene que

$$\frac{1}{1+x} < \frac{\log(x+1)}{x} < 1, \quad x > 0.$$

y como

$$\lim_{x \to 0} = \frac{1}{1+x} = \lim_{x \to 0} 1 = 1$$

se concluye que

$$\lim_{x \to 0} \frac{\log(x+1)}{x} = 1$$

4. Traze la gráfica de la función:

$$f(x) = \frac{x^3}{x^2 - 1},$$

indicando dominio, intervalos de crecimiento y decrecimiento, extremos locales, concavidad, puntos de inflexión y asíntotas.

Solución:

• (0.1 puntos) $Dom(f) = \mathbb{R} - \{-1, 1\}$

• (0.5 puntos)
$$f'(x) = \frac{3x^2(x^2-1) - x^3 \cdot 2x}{(x^2-1)^2} = \frac{x^4 - 3x^2}{(x^2-1)^2} = \frac{x^2(x^2-3)}{(x^2-1)^2}.$$

- (0.1 puntos) $f'(x) = 0 \Leftrightarrow x \in \{-\sqrt{3}, 0, \sqrt{3}\}.$
- (1 puntos) Estudiando los cambios se signo de f', se tiene que
 - f'(x) > 0 si $x \in (-\infty, -\sqrt{3}) \cup (\sqrt{3}, +\infty)$
 - f'(x) < 0 si $x \in (-\sqrt{3}, 0) \cup (0, \sqrt{3})$.

Por lo tanto, f es creciente en: $(-\infty, -\sqrt{3})$ y en $(\sqrt{3}, +\infty)$ y decreciente en $(-\sqrt{3}, -1)$, en (-1, 1) y en $(1, \sqrt{3})$.

- (1 puntos)
 - El signo de f' cambia de + a en $x = -\sqrt{3}$, por lo tanto usando el criterio de la primera derivada se tiene que en $x = -\sqrt{3}$ se alcanza un máximo local $f(-\sqrt{3}) = -3\sqrt{3}/2$.
 - El signo de f' cambia de a + en $x = \sqrt{3}$, por lo tanto usando el criterio de la primera derivada se tiene que en $x = \sqrt{3}$ se alcanza un mínimo local $f(\sqrt{3}) = 3\sqrt{3}/2$.
 - Como f' no cambia de signo en x = 0, entonces f(0) no es un valor extremo de f(x).

• (1 puntos)
$$f''(x) = \frac{(4x^3 - 6x)(x^2 - 1)^2 - (x^4 - 3x^2) \cdot 2(x^2 - 1) \cdot 2x}{(x^2 - 1)^4} = \frac{2x(x^2 + 3)}{(x^2 - 1)^3}$$

- (0.1 puntos) $f''(x) = 0 \Leftrightarrow x = 0$.
- (0.8 puntos) Estudiando los cambios se signo de f'', se tiene que
 - f''(x) > 0 si $x \in (-1,0) \cup (1,+\infty)$
 - f''(x) < 0 si $x \in (-\infty, -1) \cup (0, 1)$

Por lo tanto, f es cóncava hacia arriba en $(-1,0) \cup (1,+\infty)$ y cóncava hacia abajo en $(-\infty,-1) \cup (0,1)$.

• (0.4 puntos) f'' cambia de signo en x = 0, y f es continua en x = 0, por lo tanto (0,0) es un punto de inflexión de f.

4

■ **(0.2 puntos)** Como

$$\lim_{x\to 1^+}\!f(x) = +\infty \text{ y } \lim_{x\to 1^-}\!f(x) = -\infty$$

У

$$\lim_{x \to -1^+} f(x) = +\infty \text{ y } \lim_{x \to -1^-} f(x) = -\infty$$

entonces x = 1 y x = -1 son asíntotas verticales del f(x).

- (0.1 puntos) Además como $\lim_{x\to\infty} f(x) = \infty$ y $\lim_{x\to\infty} f(x) = -\infty$, entonces no hay asíntotas horiontales de f(x)
- **(0.2 puntos)** Como

$$\lim_{x \to \infty} \frac{f(x)}{x} = \lim_{x \to \infty} \frac{x^2}{x^2 - 1} = \lim_{x \to \infty} \frac{1}{1 - \frac{1}{x}} = 1$$

У

$$\lim_{x \to \infty} (f(x) - x) = \lim_{x \to \infty} \left(\frac{x^3}{x^2 - 1} - x \right) = \lim_{x \to \infty} \frac{x}{x^2 - 1} = 0$$

Se tiene que la recta y = x es asíntota oblícua del gráfico de f(x).

• (0.5 puntos) Trazamos el gráfico de f(x)

