Tarea 5: Direccionamiento Entrada-Estado Modificado

Asignatura: Organización y Arquitectura de Computadoras

Alumno: Alfonso Murrieta Villegas

Tarea 5, descripción:

1. Diseñe una carta ASM con hasta 16 estados, 4, entradas (X,Y,Z,W) Y 4 salidas (S0,S1,S2,S3) que utilice salidas condicionales y determine la tabla de verdad por el método de Direccionamiento Entrada-Estado modificado para soportar salidas condicionales.

NOTA: Para este ejercicio se empleó la primera versión de la Carta ASM de la tarea 4

Carta ASM

W 00

X 01

Y 10

Z 11

Tabla de verdad

Tabla de verdad (Completa)

Entradas

P3	P2	P1	P0
0	0	0	0
0	0	0	1
0	0	1	0
0	0	1	1
0	1	0	0
0	1	0	1
0	1	1	0
0	1	1	1
1	0	0	0
1	0	0	1
1	0	1	0
1	0	1	1
1	1	0	0
1	1	0	1
1	1	1	0
1	1	1	1

Salidas

КО	K1	V3	V2	V1	V0
*	*	0	0	0	1
1	0	1	1	0	0
0	1	0	1	1	1
1	1	0	1	1	0
1	0	0	1	0	1
*	*	0	0	0	0
1	1	0	1	1	0
*	*	1	0	0	0
0	0	1	0	1	0
1	1	1	0	1	1
*	*	0	0	0	0
1	0	0	0	0	0
0	0	0	0	0	0
0	1	1	1	1	0
*	*	0	0	0	0
*	*	0	0	0	0

- 2. Para el ejercicio anterior determine el número de bits de memoria que se ahorran mediante el método de "direccionamiento entrada-estado modificado" respecto al método "direccionamiento por trayectoria".
 - a. Método de Direccionamiento Entrada-Estado Modificado
 - i. 4 bits de entrada
 - ii. 18 bits de salida

iii. CÁLCULO |
$$(2^4)(18) = 288$$
 bits

- b. Método de Direccionamiento por Trayectoria
 - i. 8 bits de entrada
 - ii. 8 bits de memoria
 - iii. CÁLCULO | $(2^8)(8) = 2048$
- c. AHORRO

d.
$$(2^8)(8) - (2^4)(18) = 1760$$
 bits