

Unidade 5 - Notações Assintóticas

Prof. Aparecido V. de Freitas Doutor em Engenharia da Computação pela EPUSP aparecidovfreitas@qmail.com

Ordem de grandeza de execução

- Por exemplo, o tempo exato de execução de um algoritmo pode ser dado pela função polinomial $f(n) = 3n^2 + 2n + 3$.
- Neste caso, o tempo aproximado de execução será uma função de n^2 , ou seja $f(n^2)$. (mais alta potência de n)
- Dessa forma, pode-se desprezar o coeficiente de n², bem como os outros termos da função polinomial que define a complexidade do algoritmo;
- Assim, para efeito de análise de algoritmos, utiliza-se uma notação que seja capaz de exprimir a ordem de grandeza do tempo de execução.
- Essa notação é **assintótica**, ou seja, representa uma linha que se aproxima da função de complexidade do algoritmo.

A notação Big-Oh

- Seja f(n) e g(n) funções que mapeiam inteiros não negativos para números reais;
- Diz-se que f(n) é O(g(n)) se existir uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $f(n) \le cg(n)$ para todo inteiro $n \ge n_o$;
- Essa definição é frequentemente dita "f(n) é big-Oh de g(n)" ou "f(n) é ordem g(n)".

Ordem de Complexidade O(n)

- A notação big-Oh permite que se diga que uma função de n é "menor ou igual" a outra função, por um fator constante (c na definição);
- A notação big-Oh é largamente empregada para caracterizar limites de tempo e de espaço do algoritmo em termos de um parâmetro, n, o qual representa o tamanho do problema;
- A notação big-Oh fornece <u>limites superiores</u> de funções que, por sua vez, correspondem ao tempo de execução de algoritmos.

A função de complexidade $F(n) = 3n + 8 \in O(n)$?

Ordem de Complexidade
$$F(n) = 3n + 8$$

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $3n + 8 \le c n$ para todo inteiro $n \ge n_0$.
- Majorando-se a função F(n), tem-se:
- $F(n) = 3n + 8 \le 3n + 8n$

Constante c

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $3n + 8 \le c n$ para todo inteiro $n \ge n_o$.
- Majorando-se a função F(n), tem-se:

○
$$F(n) = 3n + 8 \le 3n + 8n$$

Constante c

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $3n + 8 \le c n$ para todo inteiro $n \ge n_o$.
- Majorando-se a função F(n), tem-se:

- A expressão acima é verdadeira para todo n > 0;
- Logo, existe c = 11, tal que $F(n) = 3n + 8 \le 11$.n, para todo n > 0;
- Assim, 3n+8 é O(n)

A função de complexidade $F(n) = 3n + 8 \in O(n^2)$?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $3n + 8 \le c n^2$ para todo inteiro $n \ge n_0$.
- Majorando-se a função F(n), tem-se:

Constante c

○
$$F(n) = (3n) + (8) \le (3n^2) + (8n^2)$$

○ Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $3n + 8 \le c n^2$ para todo inteiro $n \ge n_0$.

Constante c

Majorando-se a função F(n), tem-se:

$$\circ \quad F(n) = 3n + 8 \le 3n^2 + 8n^2$$

○ Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $3n + 8 \le c n^2$ para todo inteiro $n \ge n_o$.

Constante c

Majorando-se a função F(n), tem-se:

$$F(n) = 3n + 8 \le 3n^2 + 8n^2$$

- A expressão acima é verdadeira para todo n > 0;
- Logo, existe c = 11, tal que $F(n) = 3n + 8 \le 11 \cdot n^2$, para todo n > 0;

The function f(n) is O(g(n)), for $f(n) \le c \cdot g(n)$ when $n \ge n_0$.

A função de complexidade $F(n) = 3n + 8 \in O(n^3)$?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tal que 3n + 8 $\le c n^3$ para todo inteiro $n \ge n_0$.
- Majorando-se a função F(n), tem-se:

○
$$F(n) = (3n) + (8) \le (3n^3) + (8n^3)$$

○ Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que 3n + 8 $\le c n^3$ para todo inteiro $n \ge n_0$.

Constante c

Majorando-se a função F(n), tem-se:

$$\circ$$
 F(n) = $3n+8$ $\leq 3n^3+8n^3$

- Logo, existe c = 11, tal que $F(n) = 3n + 8 \le 11 \cdot n^3$, para todo n > 0;
- Assim, 3n+8 é O(n³)

The function f(n) is O(g(n)), for $f(n) \le c \cdot g(n)$ when $n \ge n_0$.

Observação

- \square 3n + 8 é O(n^2).
- Portanto, 3n+8 ε a um conjunto de funções que atendem à definição de O(f(n));

The function f(n) is O(g(n)), for $f(n) \le c \cdot g(n)$ when $n \ge n_0$.

A função de complexidade $F(n) = 2n^2 + 3n + 4 \in O(n^2)$?

Ordem de Complexidade

$$F(n) = 2n^2 + 3n + 4 \in O(n^2)$$
?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tal que $2n^2 + 3n + 4 \le c n^2$ para todo inteiro $n \ge n_0$.
- Majorando-se a função F(n), tem-se:

$$\circ$$
 F(n) = 2n² + 3n+4 \leq 2n² + 3n²+4n²

Ordem de Complexidade

$$F(n) = 2n^2 + 3n + 4 \in O(n^2)$$
?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tal que $2n^2 + 3n + 4 \le c n^2$ para todo inteiro $n \ge n_0$.
- Majorando-se a função F(n), tem-se:

○
$$F(n) = 2n^2 + (3n) + (4) \le 2n^2 + (3n^2) + (4n^2)$$

○ Portanto, $F(n) = 2n^2 + 3n + 4 \le 9$.

A expressão acima é verdadeira para todo n > 0;

Ordem de Complexidade $F(n) = 2n^2 + 3n + 4 \in O(n^2)$?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $2n^2 + 3n + 4 \le c n^2$ para todo inteiro $n \ge n_0$.
- Majorando-se a função F(n), tem-se:

$$F(n) = 2n^2 + 3n + 4 \le 2n^2 + 3n^2 + 4n^2$$
Constante c

- Portanto, $F(n) = 2n^2 + 3n + 4 \le 9.n^2$
- A expressão acima é verdadeira para todo n > 0;
- Logo, existe c = 9, tal que $F(n) = 2n^2 + 3n + 4 \le 9 \cdot n^2$, para todo n > 0;
- Assim, $2n^2 + 3n + 4 \in O(n^2)$

A função de complexidade $F(n) = 2n^2 + 3n + 4 \in O(n^3)$?

Ordem de Complexidade

$$F(n) = 2n^2 + 3n + 4 \in O(n^3)$$
?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tal que $2n^2 + 3n + 4 \le c n^3$ para todo inteiro $n \ge n_0$.
- Majorando-se a função F(n), tem-se:

$$\circ$$
 F(n) = 2n² + 3n+4 \leq 2n³ + 3n³+4n³

Constante c

Ordem de Complexidade

$$F(n) = 2n^2 + 3n + 4 \in O(n^3)$$
?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $2n^2 + 3n + 4 \le c n^3$ para todo inteiro $n \ge n_o$.
- Majorando-se a função F(n), tem-se:

○
$$F(n) = 2n^2 + (3n) + (4) \le 2n^3 + (3n^3) + (4n^3)$$

○ Portanto, $F(n) = 2n^2 + 3n + 4 \le 9$.

A expressão acima é verdadeira para todo n > 0;

Ordem de Complexidade $F(n) = 2n^2 + 3n + 4 \in O(n^3)$?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_0 \ge 1$ tal que $2n^2 + 3n + 4 \le c n^3$ para todo inteiro $n \ge n_0$.
- Majorando-se a função F(n), tem-se:

○
$$F(n) = 2n^2 + (3n) + (4) \le 2n^3 + (3n^3) + (4n^3)$$

○ Portanto, $F(n) = 2n^2 + 3n + 4 \le 9$.

- A expressão acima é verdadeira para todo n > 0;
- Logo, existe c = 9, tal que $F(n) = 2n^2 + 3n + 4 \le 9 \cdot n^3$, para todo n > 0;
- \circ Assim, $2n^2 + 3n + 4 \in O(n^3)$

Conclusão

- \circ 2n² + 3n + 4 é O(n²)
- \circ 2n² + 3n + 4 é O(n³)
- Porém, por razões de ordem prática, prefere-se dizer que 2n² + 3n + 4 é O(n²)

The function f(n) is O(g(n)), for $f(n) \le c \cdot g(n)$ when $n \ge n_0$.

A função de complexidade $F(n) = 2n^2 - 3n + 4 \in O(n)$?

Ordem de Complexidade

$$F(n) = 2n^2 - 3n + 4 \in O(n)$$
?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $2n^2 3n + 4 \le c n$ para todo inteiro $n \ge n_0$.
- \circ 2n² 3n + 4 \leq cn

Ordem de Complexidade

$$F(n) = 2n^2 - 3n + 4 \in O(n)$$
?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $2n^2 3n + 4 \le c n$ para todo inteiro $n \ge n_0$.
- $0 \quad 2n^2 3n + 4 \leq cn$
- $2n^2 + 4 \le cn + 3n$

Ordem de Complexidade

$$F(n) = 2n^2 - 3n + 4 \in O(n)$$
?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $2n^2 3n + 4 \le c n$ para todo inteiro $n \ge n_0$.
- \circ 2n² 3n + 4 \leq cn
- \circ 2n² + 4 \leq cn + 3n
- \circ 2n² + 4 \leq n.(c + 3)
- $0 2n^2 + 4 \le n.k$

(c+3) também é uma constante k>0

Ordem de Complexidade

$$F(n) = 2n^2 - 3n + 4 \in O(n)$$
?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $2n^2 3n + 4 \le c n$ para todo inteiro $n \ge n_o$.
- $\circ \quad 2n^2 3n + 4 \leq cn$
- \circ 2n² + 4 \leq cn + 3n
- \circ 2n² + 4 \leq n.(c + 3)

(c+3) também é uma constante k>0

- $\circ 2n^2 + 4 \le n.k$
- $0 2n^2 + 4 \le n.k$

=> ABSURDO!

- o n é muito grande e, portanto, o primeiro termo da inequação nunca será inferior ao segundo termo, para qualquer k>0 e $n \ge n_0$, sendo $n_0 \ge 1$
- o Logo, $2n^2 3n + 4 \text{ N}\tilde{A}O \in O(n)$!

Ordem de Complexidade $F(n) = 2n^2 - 3n + 4 \in O(n)$?

- Necessita-se de uma constante real c > 0 e uma constante inteira $n_o \ge 1$ tal que $2n^2 3n + 4 \le c n$ para todo inteiro $n \ge n_0$.
- \circ 2n² + 4 \leq cn + 3n
- \circ 2n² + 4 \leq n.(c + 3)

(c+3) também é uma constante k>0

- $0 2n^2 + 4 \le n.k$
- $0 2n^2 + 4 \le n.k$

=> ABSURDO!

- o n é muito grande e, portanto, o primeiro termo da inequação nunca será inferior ao segundo termo, para qualquer k>0 e $n \ge n_0$, sendo $n_0 > 1$
- o **Logo,** $2n^2 3n + 4 N\tilde{A}O \in O(n)$!

Notação Big Oh - Observações

- A ordem de complexidade O(n) é melhor que O(n²) ou O(n³);
- Embora seja verdade dizer que $f(n) = 4n^3 + 3n^{4/3}$ seja $O(n^5)$, é mais informativo e prático dizer que seja $O(n^3)$;
- Algumas funções frequentemente aparecem na análise de Algoritmos, tais como: O(log n), O(n), O(n²), O(n³), O(nk) (K ≥ 1) e O(n³) (a >1)

Notação Big Oh - Mais Observações

- in É desaconselhável dizer que f(n) ≤ g(n), uma vez que o conceito de **Big-Oh** já denota a desigualdade "menor ou igual";
- Assim, embora comumente usado, $n\tilde{a}o$ é completamente correto dizer-se que f(n) = g(n);
- É melhor dizer-se que f(n) ∈ g(n), uma vez que BigOh denota uma coleção de funções.

- A notação O(n) é utilizada para indicar Limites Superiores para Problemas;
- Dado um problema, por exemplo, o de multiplicação de duas matrizes quadradas de ordem $n(n_x n)$;
- Conhece-se um algoritmo para se resolver este problema (pelo método trivial) de complexidade O(n³).

- Assim, sabe-se que a ordem de complexidade deste problema (multiplicação de matrizes quadradas de ordem n) não deve superar O(n³), uma vez que existe um algoritmo que o resolve com esta complexidade;
- Portanto, diz-se que uma <u>COTA SUPERIOR</u> ou <u>LIMITE SUPERIOR</u> para este problema é O(n³);
- A cota superior de um problema pode mudar se alguém descobrir um outro algoritmo melhor.

- **V. Strassen** apresentou em **1969** um algoritmo para Multiplicação de Matrizes Quadradas com Complexidade $O(n^{\log 7}) = O(n^{2.807})$;
- Assim, a cota superior ou limite superior para o problema de multiplicação de matrizes passou a ser 0 (n ^{2.807});

- \blacksquare Em **1990, Coppersmith e Winograd** melhoraram esta marca para = **0 (n** $^{2.376}$);
- Em 2010, A. Stothers apresentou um algoritmo de complexidade 0 (n 2.373);
- Em 2011, V. Willians melhorou ainda mais a cota superior do algoritmo com uma complexidade 0 (n ^{2.372});
- Portanto, a Cota Superior atual para o problema de multiplicação de matrizes é 0 (n 2.372);

Analogia com Record Mundial

- A cota superior para um problema é análoga ao Record Mundial de uma modalidade de esporte, por exemplo, Atletismo;
- Ele é estabelecido pelo melhor atleta (algoritmo) do momento;
- Assim, como o record mundial, a Cota Superior, pode ser melhorada por um algoritmo (atleta) maiz veloz.

Cota Superior – 100m rasos

1998	Carl Lewis	9s92
1993	Linford Christie	9s87
1999	Maurice Greene	9s79
a 2007	Asata Powel	9s74
a 2008	Usain Bolt	9s72
a 2009	Usain Bolt	9s58

Outras Notações

- Da mesma forma que a notação Big-Oh provê uma forma assintótica de dizer que uma função é "menor ou igual" a outra função, há outras notações que provêm formas assintóticas para fazer outras formas de comparação;
- Em Análise de Algoritmos essas outras formas assintóticas são conhecidas por Big-Omega e Big-Theta.

