Topology

Karan Elangovan

April 7, 2021

Contents

L	Top	ological Spaces	1
	1.1	Topological Space Axioms	1
	1.2	Metric Spaces	3
	1.3	Bases	5
2	2 Topological Properties		5
1	\mathbf{I}	opological Spaces	
1.	1 ′	Topological Space Axioms	

Definition 1 (Topological Space). A topological space is an ordered pair (X, \mathcal{T}) , where $\mathcal{T} \subset \mathcal{P}(X)$, satisfying:

- 1. \emptyset and X are open sets.
- 2. The union of any family of open sets is open.
- 3. The intersection of any finite family of open sets is open.

Where we say a subset of X is open if it belongs to \mathcal{T} .

In the extreme case of \mathcal{T} containing every subset of X we call \mathcal{T} the discrete topology. On the other extreme of $\mathcal{T} = \{\emptyset, X\}$, we call \mathcal{T} the indiscrete topology.

Definition 2 (Continuity). Let S and T be topological spaces and $f: S \to T$. We say f is continuous if the preimage of every open set under f is open.

Particularly, a continuous bijection with continuous inverse is an isomorphism between topological spaces.

It should be noted that merely being a continuous bijection does not guarantee that the inverse is continuous. For example

Theorem 1. Let $f: A \to B$ and $g: B \to C$ be continuous maps between topological spaces. Then the map $g \circ f$ is continuous.

Proof. Consider an arbitrary open set $U \in \mathcal{T}_C$. Then we have

$$(g \circ f)^{-1}(U)$$

$$=f^{-1}\circ g^{-1}(U)$$

By the continuity of g, we have $g^{-1}(U)$ is open, and so by the continuity of f we have $f^{-1} \circ g^{-1}(U)$ is open. Hence $g \circ f$ is continuous.

Definition 3 (Subspace Topology). Let (X, \mathcal{T}) be a topological space. Then for a subset $S \subset X$, we say the subspace topology, or the induced topology, is the set of intersections of open sets in X with S.

This collection of sets may be trivially verified to obey the axioms of a topology.

1.2 Metric Spaces

Definition 4 (Metric Space). A metric space is an ordered pair (M, d) where $d: M^2 \to \mathbb{R}$ satisfying

1. Definiteness:

$$d(x,y) = 0 \iff x = y$$

2. Symmetry:

$$d(x,y) = d(y,x)$$

3. Triangle Inequality:

$$d(x,y) + d(y,z) \ge d(x,z)$$

A trivial but noteworthy consequence of these axioms is that the distance between any distinct points is positive.

Definition 5 (Open Ball). Given a metric space (M,d). We define the open ball

$$B_{\delta}(x) = \{ y \in M : d(x, y) < \delta \}$$

We may generalise the definition of continuous functions from real analysis to metric spaces, noting that \mathbb{R} is a metric space under the metric d(x,y) = |x-y|.

Definition 6 (Continuity). Let M and N be metric spaces with metrics d_M and d_N , respectively.

Then the function $f: M \to N$ is continuous at $a \in M$ if for all $\epsilon > 0$ there exists a $\delta > 0$ such that for all $d(x, a) < \delta$ we have $d(f(a), f(x)) < \epsilon$.

Definition 7 (Metric Topology). Let (M, d) be a metric space. Then we may equip it with the metric topology defined such that a set, U, is open if for every point $x \in U$ there is an open ball centered at x contained in U.

This definition coincides in the case of \mathbb{R}^n with our intuitive notions of openness, however we still must verify that the sets specified do indeed satisfy the axioms for a topology. However this is trivial, so we omit the proof.

Having now also turned every metric space into a topological space, we note that there are now two separate possible definitions of continuity of a function between metric spaces. One in terms of pre-images of open sets and the standard epsilon-delta definition. However this is not an issue, as we will now show the two seemingly distinct definitions coincide.

Theorem 2. Let $f: M \to N$ be a function between metric spaces. Then f is topologically continuous precisely when it satisfies epsilon-delta continuity.

Proof. First assume that f is epsilon-delta continuous. And so consider an arbitrary open set U, and an arbitrary $x \in f^{-1}(U)$.

Hence we have $f(x) \in U$, and so by the openness of U, we have an $\epsilon > 0$ such that $B_{\epsilon}f(x) \subset U$. By the epsilon-delta continuity of f we have a $\delta > 0$ such that

$$p \in B_{\delta}(x) \implies f(p) \in B_{\epsilon}f(x)$$

$$\implies f(p) \in U$$

$$\implies p \in f^{-1}(U)$$

So we have that $B_{\delta}(x)$ is contained in $f^{-1}(U)$, hence $f^{-1}(U)$ is open and so f is topologically continuous.

Now assume that f is topologically continuous. Consider an arbitrary $x \in M$ and $\epsilon > 0$. Then by topological continuity we have that $f^{-1}(B_{\epsilon}f(x))$ is open and so we have a $\delta > 0$ such that $B_{\delta}(x) \subset f^{-1}(B_{\epsilon}f(x))$, yielding $f(B_{\delta}(x)) \subset B_{\epsilon}f(x)$, hence f is epsilon-delta continuous.

A variety of structures from different areas of mathematics lend themselves naturally to metrisation. From linear algebra, any inner product space is a metric space under the metric d(x,y) = ||x - y||. From graph theory, any connected graph may be metrised using the distance function.

1.3 Bases

Definition 8 (Basis). Let (X, \mathcal{T}) be a topological space. Then a collection of open subsets \mathcal{B} is a basis if every open subset of X is the union of members of \mathcal{B} .

The main usefulness of bases is that often times a statement can be shown to hold for all open sets by just showing it holds for all elements of a basis. For example to show continuity, we need only show the pre-image of any basis element is open.

2 Topological Properties