APPLAUSE project meeting

Model Methanogens

Model Sabatier

Cost assumptions

S1. Cost assumptions

Table S1: Efficiency, lifetime and FOM cost per technology (values shown corresponds to 2020).

Technology	Unit [%/a]	2025 Cost [a]	FOM ^a	Lifetime	Efficiency	Source
Solar PV (utility-scale)	€/kW	452	1.6	35		[1]
Battery storage	€/kWh	187		20		[1]
Battery inverter	€/kW	215	0.2	10	0.95	[1]
Electrolysis	\in /kW $_{el}$	550	2.0	25	0.66	[1]
Methanation	\in /kW $_{CH4}$	278	4.0	30	8.0	[2]
methanogens	\in /kW $_{CH4}$	834	4.0	30	8.0	
biogas generator	\in /kW $_{CH4}$	0			0.9	
CO2 storage	€/kWh	0				
gas storage	€/kWh	0				

no grid

grid

methanogen

battery inverters

no grid

grid

methanogen

battery inverter dcurve

sabatier

methanation

Results

no grid

grid

2019-01 2019-03 2019-05 2019-07 2019-09 2019-11 2020-01

Sabatier link

Hydrogen in

Gas out CO2 out

CO2 in

electricity

methanogen

methanation dcurve

Results

no grid

grid

methanogen

no grid

grid

methanogen

biogas

biogas dcurve

Results

no grid

grid

methanogen

no grid

grid

methanogen

electrolysis

sabatier

no grid

methanogen

electrolysis dcurve

stores

Results

no grid

grid

stores

Results

no grid

methanogen

sabatier

Research Question

Next steps

• YEEES?