Exercise 1 (1.1). Distance between earth and star.

Assuming Euclidean geometry, the angles in the below diagram sum to 180 $^{\circ}$. Thus the unmarked angle is 0.1 $^{\circ}$. Then by the law of sines,

$$\frac{a}{\sin(100.8\,^\circ)} = \frac{b}{\sin(79.1\,^\circ)} = \frac{186}{\sin(0.1\,^\circ)}.$$

Solving yields $a \approx 104682$ and $b \approx 104647$. Everything here was done in terms of millions of miles, so the distance between the star and the earth is approximately 100,000,000,000 miles.

Exercise 2 (1.7). Pappus' Variation on the Pythagorean Theorem.

Since a sheared image of a parallelogram has the same base and height, it has the same area, and thus any shear preserves area. Thus we can shear both \mathcal{A} and \mathcal{B} onto the bottom-left copy of \mathbf{v} to get the following image.

Now shear \mathcal{A}' onto \mathcal{C}_1 and shear \mathcal{B}' onto \mathcal{C}_2 . Since we have completely filled \mathcal{C} with parallelograms of the same area as \mathcal{A} and \mathcal{B} , we have

$$Area(A) + Area(B) = Area(C).$$

Exercise 3 (1.15). Isometry with 2 fixed points is either the identity or a reflection.

Suppose f is an isometry with fixed points P, Q.

All points in the line through P and Q are also fixed points: Let R be on the line ℓ through P and Q. Draw two circles: one at P with radius |PR| and the second at Q with radius |QR|. By lemma 1.3.2, since R is on ℓ , these two circles intersect at only one point (R itself). But then since f preserves distances, this singular point is the only possible destination for R, i.e. f(R) = R.

Either identity or reflection: Now we show that f must be either the identity map or a reflection through ℓ . Let R be any point not on ℓ . Again we draw two circles, one at P with radius |PR| and the second at Q with radius |QR|. Since R is not on ℓ , these circles intersect at two points (one of which must be R). Thus f can either map R to itself or to that second point R'.

Now fix a point $S \neq R$ not on ℓ . This point S has a similar situation, in that it can either be mapped to itself or to one other point S'. We claim that R is a fixed point if and only if S is a fixed point.

- Suppose *R* is a fixed point. If *S* is mapped to *S'*, then its distance to *R* is different, contradicting that *f* is an isometry.
- Suppose S is not a fixed point, then by a similar argument, f must map R to R' in order to preserve distance.

Thus in one case, all of $\mathbb{R}^2 - \ell$ is mapped to itself, i.e. $f = \mathrm{id}$. In the other case, no point in $\mathbb{R}^2 - \ell$ is fixed, i.e. f is a reflection.

Exercise 4 (1.17). If $\ell_1 \neq \ell$ is sent to itself under a reflection through ℓ , then ℓ_1 and ℓ intersect at right angles.

Suppose f is the reflection through ℓ , and fix an angle θ at the intersection of ℓ and ℓ_1 . Since isometries preserve angles, $f(\theta)$, one of the adjacent angles of θ , is congruent to θ . Thus ℓ and ℓ_1 intersect at right angles.

Exercise 5 (1.22). Show that the interior angles in a quadrilateral sum to 360° . Generalize this to n-gons.

We claim that for any n-gon, the sum of the interior angles is

$$(n-2)\cdot 180^{\circ}$$
.

We begin with the simple case of a quadrilateral.

Suppose we have a quadrilateral ABCD, then we can decompose this into two triangles ABD and BCD. Since the interior angles of a triangle sum to 180° , the interior angles of ABCD must sum to $2 \cdot 180^{\circ} = 360^{\circ}$. Note that this satisfies the original claim.

We now extend this result through induction. Suppose the hypothesis holds for all n-gons, then we must show it holds for all (n+1)-gons. Let $X_1 \cdots X_{n+1}$ is an (n+1)-gon with points labeled clockwise, then we can decompose it into the n-gon $X_1 \cdots X_n$ and the triangle $X_n X_{n+1} X_1$. By our inductive hypothesis and the fact that the interior angles of a triangles sum to 180° , the sum of our (n+1)-gon's interior angles is

$$(n-2) \cdot 180^{\circ} + 180^{\circ} = ((n+1)-2) \cdot 180^{\circ}$$
.

Thus all n-gons satisfy the original claim.

Exercise 6 (1.23). What is the sum of the exterior angles of an n-gon?

Let E_i denote the *i*-th exterior angle of our *n*-gon. By definition, it is adjacent to the *i*-th interior angle I_i . By the previous exercise, the sum of all the E_i is

$$\sum_{i=1}^{n} E_i = \sum_{i=1}^{n} (180^{\circ} - I_i) = n \cdot 180^{\circ} - (n-2) \cdot 180^{\circ} = 360^{\circ}.$$

Thus the sum of the exterior angles of all n-gons is $360\,^{\circ}$.

Exercise 7 (1.28). If ABC is a right inscribed angle, then AC is a diameter.

Suppose ABC is a right inscribed angle in a circle of origin O and radius r as pictured below. Then by the Star Trek Lemma, the angle AOC is $2\cdot 90^\circ = 180^\circ$. Then AC is a straight line through the center of the circle of length 2r, i.e. a diameter.

