Secreto Compartido Esquema umbral (t,n)

n partes t<n necesarias <t no tengo info

Esquema de Shamír: P(x) donde a_o es el secreto. t = grado P(x) + 1 \rightarrow Esquema umbral (grado P(x) + 1, n)

Ejemplo: $P(x) = a_0 + a_1 x + a_2 x^2 = \mathcal{F} + 2x + 5x^2$ en \mathbb{Z}_{11} Reparto esquema (3,n)

Sombras:

- (1,3) (7+2+5=14≡3)
- $(2,9)(7+4+20=31\equiv 9)$
- $(3,3)(7+6+45=58\equiv 3)$
- (4,7) (7+8+80=95≡ 7)
- (5,10) (7+10+125=142≡10)
- etc

Rearmar P(X) con Lagrange:

$$P_k(X) = \sum_{i=1}^k L_i(X) y_i$$
 Donde: $L_i(X) = \prod_{\substack{j=1 \ j \neq i}}^k \frac{x - x_j}{x_i - x_j}$

O sea, sí
$$k = 3$$
: $P(x) = L_1(x).y_1 + L_2(x).y_2 + L_3(x)y_3$

Donde:
$$L_1(x) = (x-x_2)(x-x_3)/[(x_1-x_2)(x_1-x_3)]$$

$$P(x) = L_1(x) * 3 + L_2(x) * 10 + L_3(x) * 9$$

Se calcula L1, L2, L3

$$L_1(x) = \frac{x-5}{1-5} * \frac{x-2}{1-2} = \frac{x^2-7x+10}{7*10} = \frac{x^2+4x+10}{4} = (x^2+4x+10)*3 = (3x^2+1x+8) = L_1(x)$$

$$L_2(x) = \frac{x-1}{5-1} * \frac{x-2}{5-2} = \frac{x^2 - 3x + 2}{4 * 3} = \frac{x^2 + 8x + 2}{1} = (x^2 + 8x + 2) * 1 = (x^2 + 8x + 2) = L_2(x)$$

$$L_3(x) = \frac{x-1}{2-1} * \frac{x-5}{2-5} = \frac{x^2-6x+5}{1*-3} = \frac{x^2+5x+5}{8} = (x^2+5x+5) * 7 = (7x^2+2x+2) = L_3(x)$$

Z <u>11</u> *	1	2	3	4	5	6	チ	8	9	10
1	1	2	3	4	5	6	チ	8	9	10
2	2	4	6	8	10	1	3	5	チ	9
3	3	6	9	1	4	チ	10	2	5	8
4	4	8	1	5	9	2	6	10	3	チ
5	5	10	4	9	3	8	2	チ	1	6
6	6	1	チ	2	8	3	9	4	10	5
チ	チ	3	10	6	2	9	5	1	8	4
8	8	5	2	10	チ	4	1	9	6	3
9	9	チ	5	3	1	10	8	6	4	2
10	10	9	8	チ	6	5	4	3	2	1

$$L_1(x) = (3x^2 + 1x + 8)$$
 $L_2(x) = (x^2 + 8x + 2)$ $L_3(x) = (7x^2 + 2x + 2)$

Se termina de calcular P(x):

$$P(x) = L_1(x) * 3 + L_2(x) * 10 + L_3(x) * 9$$

$$P(x) = (3x^2 + 1x + 8) * 3 + (x^2 + 8x + 2) * 10 + (7x^2 + 2x + 2)$$

$$P(x) = (9x^2 + 3x + 2) + (10x^2 + 3x + 9) + (8x^2 + 7x + 7)$$

Z <u>11.*</u>	1	2	3	4	5	6	チ	8	9	10
1	1	2	3	4	5	6	チ	8	9	10
2	2	4	6	8	10	1	3	5	チ	9
3	3	6	9	1	4	チ	10	2	5	8
4	4	8	1	5	9	2	6	10	33	チ
5	5	10	4	9	3	8	2	チ	1	6
6	6	1	チ	2	8	3	9	4	10	5
チ	チ	3	10	6	2	9	5	1	8	4
8	8	5	2	10	チ	4	1	9	6	3
9	9	チ	5	3	1	10	8	6	4	2
10	10	9	8	チ	6	5	4	3	2	1

$$P(x) = (5x^2 + 2x + 7)$$

Sombras Recibidas:
$$x_1 = (1,3)$$
 $x_2 = (5,10)$ $x_3 = (2,9)$

Rearmar P(X) con Lagrange (versión 2)

$$P_k(X) = \sum_{i=1}^k L_i(X) y_i$$
 Donde: $L_i(X) = \prod_{\substack{j=1 \ j \neq i}}^k \frac{x - x_j}{x_i - x_j}$

O sea, sí k = 3: $P(x) = s_3x^2 + s_2x + s_1$ cuya versión "encajada" es: $P(x) = (s_3x + s_2)x + s_1$

Se calcula s1

Independientemente de qué sombras se hayan recibido, $P_3(0) = s_1$.

$$P_3(0) = L_1(0) * 3 + L_2(0) * 10 + L_3(0) * 9$$

$$P_3(0) = \frac{-5}{1-5} * \frac{-2}{1-2} * 3 + \frac{-1}{5-1} * \frac{-2}{5-2} * 10 + \frac{-1}{2-1} * \frac{-5}{2-5} * 9$$

$$P_3(0) = \frac{10}{4} * 3 + \frac{2}{1} * 10 + \frac{5}{8} * 9$$

$$P_3(0) = 10 * 3 * 3 + 9 + 5 * 7 * 9$$

$$P_3(0) = 2 + 9 + 7$$

$$\rightarrow$$
 $S_1 = \mathcal{F}$

$$P_k(0) = \sum_{i=1}^k L_i(0) y_i$$

con:
$$L_i(0) = \prod_{\substack{j=1 \ j \neq i}}^k \frac{-x_j}{x_i - x_j}$$

 $P_3(x) = s_3 x^2 + s_2 x + s_1$ cuya versión "encajada" es: $P_3(x) = (s_3 x + s_2)x + s_1$

Ya se tiene $s_1=7$

Por lo tanto:
$$P_3(x) = (s_3x + s_2)x + 7$$

Para el par (5,10)
$$P_3(x) = (s_3x + s_2)x + 7 = 10 \Rightarrow (s_3x + s_2)x = 3 \Rightarrow (s_3x + s_2)x = 3 \Rightarrow (s_3x + s_2) = \frac{3}{x} = \frac{3}{5} \Rightarrow (s_3x + s_2) = 5 = y' = P_2$$
 (5)

Se calcula
$$S_2$$
 $P_2(x) = S_3x + S_2$

Nuevamente, haciendo $P_2(0) = s_2$

$$P_2(0) = L_1(0) * 7 + L_2(0) * 5$$

$$P_2(0) = \frac{-5}{1-5} * 7 + \frac{-1}{5-1} * 5$$

$$P_2(0) = 6 + \frac{10}{4} * 5$$

$$P_2(0) = 6 + 7$$

$$\rightarrow$$
 $S_2 = 2$

$$P_k(0) = \sum_{i=1}^k L_i(0) y_i$$
 con: $L_i(0) = \prod_{\substack{j=1 \ j \neq i}}^k \frac{-x_j}{x_i - x_j}$

 $y' = \frac{y - s_1}{r}$

$$P_3(x) = s_3 x^2 + s_2 x + s_1$$
 cuya versión "encajada" es: $P_3(x) = (s_3 x + s_2)x + s_1$

Se calculó s₂ a partir de:

$$P_2(x) = s_3 x + s_2$$

Con los pares (1,7) y (5,5)

Ya se tiene $s_2=2$

Por lo tanto:
$$P_2(x) = (s_3x+s_2)$$

Para el par (1,7)
$$P_2(x) = s_3x + 2 = 7 \rightarrow s_3x = 7 - 2 \rightarrow s_3 = \frac{5}{x} = 5$$

Se calcula
$$s_3 \rightarrow s_3 = 5$$

$$+ s_3 = 5$$

De esta forma, cada vez se hacen menos cálculos en cada íteración.

$$y' = \frac{y - s_2}{x}$$

Rearmar P(X) con Gauss:

Rearmo sístema para obtener a_0, a_1, a_2 Sí x = 1: $a_0 + a_1 x + a_2 x^2 = a_0 + a_1 + a_2 = 3$ Sí x = 5: $a_0 + a_1 x + a_2 x^2 = a_0 + a_1 5 + a_2 25 = 10$ Sí x = 2: $a_0 + a_1 x + a_2 x^2 = a_0 + a_1 2 + a_2 4 = 9$ Se resuelve el sistema:

$$a_0 + a_1 + a_2 = 3$$
 $a_0 + a_1 5 + a_2 3 = 10$
 $a_0 + a_1 2 + a_2 4 = 9$

Fíla 2 por ínverso de 4 módulo 11 (que es 3):

$$\begin{bmatrix} 1 & 1 & 1 & 3 \\ 0 & 1 & 6 & 10 \\ 0 & 1 & 3 & 6 \end{bmatrix} \begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & 6 & 10 \\ 0 & 0 & 8 & 7 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 6 & 4 \\ 0 & 1 & 6 & 10 \\ 0 & 0 & 1 & 5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & 6 & | & 4 \\ 0 & 1 & 6 & | & 10 \\ 0 & 0 & 1 & | & 5 \end{bmatrix} \stackrel{\bullet}{\circ} \begin{array}{c} a_2 = 5 \\ \bullet & a_1 + 6a_2 = 10 \rightarrow a_1 + 30 = 10 \rightarrow \\ a_1 + 8 = 10 \rightarrow a_1 = 2 \\ \bullet & a_0 + a_1 + 2 \rightarrow a_2 + 2 \rightarrow a_0 + 2 + 2 \rightarrow 2 \rightarrow a_0 + 4 + 20 = 2 \rightarrow a_0 + 2 \rightarrow$$

$$P(x) = a_0 + a_1 x + a_2 x^2 = \mathcal{F} + 2x + 5x^2$$