CSC373S: Algorithm Design, Analysis & Complexity

LECTURE 12

Wednesday February 1, 2017

based on notes by Denis Pankratov

Graph Algorithms

Definition of a Graph: a graph is a pair (V, E), where V is a set of vertices and E is a set of edges.

Undirected Graph:
$$E \subseteq (V//2) = \{S \subseteq V | |S| = 2\}$$

Directed Graph: $E \subseteq V \times V$

Examples:

Figure 1: Undirected graph

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1, 3\}, \{2, 3\}, \{4, 3\}, \{5, 3\}, \{5, 4\}, \{1, 5\}\}$$

Figure 2: Directed graph

$$V = \{1, 2, 3, 4, 5\}$$

$$E = \{\{1, 3\}, \{3, 2\}, \{3, 4\}, \{4, 5\}, \{5, 3\}\}$$

<u>Def:</u> A weighted graph is a pair $(G = (V, E), w), w : E \to \mathbb{R}$

Standard Representations

- 1. List of edges / adjacencies linked list of edges uses space $\mathcal{O}(|E|)$, linked list of names of vertives uses space $\mathcal{O}(|V|)$
- 2. Adjacency lists Adj array of size $|V|, \forall v \in V, \text{Adj}[v]$ linked list of vertices adjacent to v, size $\mathcal{O}(|V| + |E|)$
- 3. Adjacency matrix A of G = (V, E) is $|V| \times |V|$:

$$A_{u,v} = \begin{cases} 1, & \text{if } \{u,v\} \in E(\text{or } (u,v) \in E) \\ 0, & \text{otherwise} \end{cases}$$

Assumed Background: BFS, DFS, Union-Find datastructure

Example: Adj - adj. lists representation of G = ([n], E)

Construct Adj' - adj. lists representation of G so that $\forall v \in V$, Adj'[v] is sorted in increasing order in time $\mathcal{O}(|V| + |E|)$.

Figure 3: Adj[2] = (4, 1, 3), Adj'[2] = (1, 3, 4)

<u>Definition</u>: undirected G = (V, E) is a tree if it is *connected* (each node is reachable from every other node) & acyclic (does not have closed walks [cycles])

<u>Definition</u>: G = (V, E), G' = (V', E') is a subgraph of G denoted $G \subseteq G'$, if:

- 1. $V' \subseteq V$
- 2. $E' \subseteq E$, only vertices from V' appear in E'
- 3. $G' = (V', E') \subseteq G = (V, E)$ is called spanning if V' = V

Minimum Spanning Tree

Input: Adj - adj. lists of $G = (V, E), w : E \to \mathbb{R}$

Output: $T \subseteq G$ - spanning tree of minimum weight

Kruskal's Algorithm

- Consider edges in increasing order of weights; keep adding the edges, diregarding those that create cycles
- Runtime $\mathcal{O}(|E|\log|E|)$ using Union-Find data structure

Prim's Algorithm

- Start with an arbitrary vvertex $s \in V$
- Keep growing the partial tree by adding a least-weight edge going outside of the tree

Figure 4: Prim is greedy: it ignores future grabs

Correctness: Definition: T_i - the tree constructed by Prim's algorithm after i steps (addition of an edge)

<u>Loop Invariant</u>: T_i can be extended to a *Minimum Spanning Tree* (MST) using edges not between vertices in T_i

Proof by induction on i: $i = 0, T_i = (\{s\}, \emptyset \text{ clearly extends to an MST using edges from } E$

Induction Assumption: Assume T_i extends to an MST T_i* for some $i \geq 0$

Induction Step: Let e be the edge chosen by Prim's algorithm in step i+1

Figure 5: Visualization of problem

Case 1: $e \in T_i$ *, then we are done

<u>Case 2:</u> $e \notin T_i*$, so adding e to T_i* creates a cycle C.

C contains an edge $e' \neq e$ that goes across the cut (partition) $(V(T_i), V(G) - V(T_i))$.

(Aside: V(G) - vertices of G, E(G) - edges of G)

By greedy choice of Prim's algorithm, $w(e) \leq w(e')$.

Removing e' from T_i* creates 2 connected components. Adding e reconnects them & gives a new tree $T_{i+1}*=(T_i*\{e'\})\cup\{e\}$

 $w(T_{i+1}*) = w(T_i*) - w(e') + w(e) \le w(T_i*) \to T_{i+1}*$ is an MST and agrees with T_{i+1} . Algorithm:

```
1  def Prims(Adj,w):
2    Pick arbitrary s in V
3    init arrays cost of size |V|, prev of size |V|
4    
5    for v in V:
6       cost[v] = float('inf')
7       prev[v] = None
8    
9    cost[s] = 0
```

```
10
     Q - MinPriorityQueue(V) /* by cost */
11
12
13
     while Q is not empty:
14
       v = Q.ExtractMin
       for u in Adj[v]:
15
16
          if w(v, w) < cost[u]:
            cost[u] = w(v,u) \# causes decrease key
17
18
            prev[u] = v
19
20
     return prev
```

Runtime: using binary heap: $\mathcal{O}((|V| + |E|) \log |V|)$

Facts:

- G = (V, E) is a tree $\rightarrow |E| = |V| 1$
- G = (V, E) is connected & $|E| = |V| 1 \rightarrow G$ is a tree
- \bullet G = (V, E) is a tree if and only iff there is a unique path between any two nodes