10강. Ensemble Learning 1.

◈ 담당교수 : 김 동 하

■ 학습개요

여러 개의 모형을 결합하여 하나의 최종 예측 모형을 만드는 기법인 앙상블에 대해서 학습한다. 특히, 붓스트랩 자료를 이용하는 방법인 배깅과 랜덤 포레스트에 대해서 다 루도록 한다. 더 나아가, 앙상블 기법으로 학습한 모형을 시각적으로 해석하는 방법에 대해서도 배운다.

■ 학습목표

1	앙상블 기법을 사용하는 이유와 효과에 대해서 학습한다.
2	배깅 방법론에 대해 학습한다.
3	랜덤 포레스트 방법론에 대해 학습한다.
4	부분 의존성 그림과 변수 중요도 그림에 대해 학습한다.

■ 주요용어

용어	해설
앙상블 기법	주어진 자료로부터 여러 개의 예측 모형을 만든 후 결합하여 하나
경경본 기립	의 최종 예측 모형을 만드는 기법.
보시트래 지근	주어진 자로료부터 동일한 크기의 표본을 랜덤 복원 추출로 뽑은
붓스트랩 자료 	새로운 자료.
배깅	붓스트랩 자료마다 예측 모형을 만들고, 이들을 결합하여 최종 예 측 모형을 만드는 기법.
	배깅보다 더 많은 무작위성을 주어 예측 모델들을 생성한 후 이를
랜덤 포레스트	선형결합하여 최종 모형을 만드는 방법. 붓스트랩과 더불어 입력변
	수들에 대한 무작위 추출을 결합한다.

■ 학습하기

01. 앙상블 기법

학습의 불안정성

- 모든 모형은 학습의 불안정성을 가짐
 - -> 학습자료의 작은 변화에 의해 예측모형이 변하는 것.
- 아무리 좋은 학습 방법을 사용하더라도 복잡한 모형일수록 높은 불안정성을 가짐.
 - -> 선형 모형은 낮은 불안정성을 가짐.
 - -> 의사결정나무는 높은 불안정성을 가짐.

- 동일한 자료에서 서로 다른 표본을 생성했을 때 의사결정나무가 크게 달라진다.
- 학습 방법의 불안정성
 - -> 예측력의 저하.
 - -> 예측모형의 해석을 어렵게 만듦.

앙상블 기법

- 불안정한 학습방법을 안정적으로 만들어 좋은 예측력을 갖기 위한 방법.
- 주어진 자료로부터 여러 개의 예측 모형을 만든 후 결헙하여 하나의 최종 예측 모형을 만드는 기법.
- 예측력을 획기적으로 향상시킬 수도 있음이 경험적으로 입증되었음.
- 앙상블 기법의 예
 - -> 배깅 (Bagging)
 - -> 랜덤 포레스트 (Random Forest)
 - -> 부스팅 (Boosting)

02. 배깅

배깅

- Bagging (Bootstrap Aggregating)
 - -> Davison and Hinkley (1997)
- 주어진 자료에 대해 여러 개의 붓스트랩 (bootstrap) 자료를 생성하고, 각 붓스트랩 자료에 대해 예측 모형을 만든 후 결합하여 최종 예측 모형을 만드는 기법.
- 붓스트랩 (Bootstrap) 자료란?
 - -> 주어진 자료로부터 동일한 크기의 표본을 랜덤 복원 추출로 뽑은 자료.

배깅 알고리즘

- 학습 자료: $L = \{(x_i, y_i)\}_{i=1}^n$

- 1. B개의 붓스트랩 자료 $L^{(b)}, b=1,...,B$ 를 만든다.
- 2. 각 붓스트랩 자료 $L^{(b)}$ 에 대해 예측 모형 $\hat{f}^{(b)}(\; m{\cdot}\;)$ 를 구축한다.
- 3. B개의 예측 모형을 결합하여 최종 모형 $\hat{f}(\,ullet\,)$ 를 만든다. 최종 모형을 만드는 방법은 다음과 같다:

(회귀 모형) 평균 값을 이용

$$\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{(b)}(x)$$

(분류 모형) 최빈값 (다수결)을 이용

$$\hat{f}(x) = \operatorname{argmax}_{k} \left(\sum_{b=1}^{B} I(\hat{f}^{(b)}(x) = k) \right)$$

배깅 알고리즘의 효과

- Breiman (1996) 논문의 예시 중 일부
 - -> 회귀 문제에서 의사결정나무를 활용했을 때 성능의 향상을 실험적으로 증명하였음.

Data Set	\bar{e}_S	\bar{e}_B	Decrease	
Boston Housing	19.1	11.7	39%	
Ozone	23.1	18.0	22%	
Friedman # 1	11.4	6.2	46%	
Friedman # 2	30,800	21,700	30%	
Friedman # 3	.0403	.0249	38%	

-> 분류 문제에서도 마찬가지로 성능이 향상.

Data Set	Samples	Variables	Classes	\bar{e}_S	\bar{e}_B	Decrease
waveform	300	21	3	29.0	19.4	33%
heart	1395	16	2	10.0	5.3	47%
breast cancer	699	9	2	6.0	4.2	30%
ionosphere	351	34	2	11.2	8.6	23%
diabetes	1036	8	2	23.4	18.8	20%
glass	214	9	6	32.0	24.9	22%
soybean	307	35	19	14.5	10.6	27%

사용할 모형의 선택

- 배깅 알고리즘은 매우 단순하지만 불안정한 학습방법의 예측력을 획기적으로 향상시켜줌.
- 즉, 학습방법이 불안정할수록 배깅의 효과는 증가.
- 따라서, 의사결정나무를 활용하는 것이 가장 큰 효과를 불러올 수 있음.
- 가지치기를 하지 않은 나무의 사용 (더 큰 불안정성)
- 가지치기는 의사결정나무 구축시 가장 많은 계산량을 요구
- 최대로 성장시킨 의사결정나무를 사용함으로써 계산량을 대폭 줄일 수 있음.
- 왜 배깅에서는 가지치기가 필요 없는가?
- 가지치기를 하지 않은 채 최대로 성장시킨 나무를 사용하는 것이 배깅 알고리즘의 효과를 극대화할 수 있기 때문.

03. 랜덤 포레스트

랜덤 포레스트

- Breiman (2001)
- 배깅보다 더 많은 무작위성을 주어 예측 모형들을 생성한 후 이를 선형결합하여 최종 예측 모형을 만드는 방법.
- 이론적 설명은 부족하지만 일반적으로 예측력은 매우 높음.
- 특히, 입력변수의 개수가 많을 때에 배깅이나 부스팅과 비교했을 때 비슷하거나 더 좋은 예측력을 보이는 경우가 많음.
- 랜덤 포레스트는 무작위성을 주기 위해 붓스트랩과 더불어 입력변수들에 대한 무작위 추출을 결합.
- 따라서, 서로 연관성이 약한 학습기를 여러 개 만들어 내는 기법이라 할 수 있음.

랜덤 포레스트 알고리즘

- 다음의 1.2번 과정을 B번 반복한다.
- 1. 훈련 자료 $L = \{(x_i, y_i)\}_{i=1}^n$ 에 대해서 붓스트랩 자료 $L^{(b)}$ 를 생성.
- 2. 입력 변수들 중 $k(k\ll p)$ 개만 무작위로 선택한 후에 선택된 변수들만을 이용하여 의 사결정나무 $f^{(b)}(x)$ 를 생성. 이 때, 의사결정나무의 깊이는 정해놓은 s까지만 진행.
- 최종 모형은 배깅과 같은 방식으로 만든다.(회귀 모형) 평균 값을 이용

$$\hat{f}(x) = \frac{1}{B} \sum_{b=1}^{B} \hat{f}^{(b)}(x)$$

(분류 모형) 최빈값 (다수결)을 이용

$$\hat{f}(x) = \operatorname{argmax}_{k} \left(\sum_{b=1}^{B} I(\hat{f}^{(b)}(x) = k) \right)$$

랜덤 포레스트 조율모수 선택

- 각 의사결정나무마다 선택할 설명 변수의 개수인 k를 어떻게 선택할 것인지 등 몇 가지의 조율모수를 선택해야 함.
- 평가용 자료 또는 교차 검증법 (CV)를 활용하여 최적의 조율모수를 선택한다.

모형의 시각화

- 배깅, 랜덤 포레스트, 부스팅과 같이 예측 방법이 단순하지 않을 경우에는 각 변수들의 영향력을 시각화하기가 쉽지 않음.
- 즉, 모형의 해석이 쉽지 않음.
- 부분 의존성 그림 (Partial dependence plot)
 - -> 특정 변수가 예측 모델에 어떤 영향을 미쳤는지 알기 위한 그래프.
- 변수 중요도 그림 (Variable importance plot)
 - -> 설명 변수가 종속 변수를 설명하는 정도를 수치화하여 변수별 중요도를 확인할 수 있는 막대 그래프.

04. Python을 이용한 실습

데이터 설명 (보스턴 주택 가격 데이터)

- 1978년에 발표된 데이터로 미국 보스턴 지역의 주택 가격에 영향을 미치는 요소들을 정리
- 총 13가지의 요소들과 주택 가격으로 이루어져 있음.
- 앙상블 기법들을 이용하여 주택 가격을 예측하는 회귀 모형을 만들자.

환경 설정

- 필요한 패키지를 불러오자.

```
import pandas as pd
import numpy as np
import os
from sklearn.datasets import load_boston
from sklearn.model_selection import train_test_split

from sklearn.metrics import confusion_matrix
#from sklearn.tree import DecisionTreeClassifier
from sklearn.tree import DecisionTreeRegressor
#from sklearn.ensemble import RandomForestClassifier
from sklearn.ensemble import RandomForestRegressor
#from sklearn.ensemble import BaggingClassifier
from sklearn.ensemble import BaggingRegressor
```

데이터 불러오기

- 필요한 패키지극 불러오자.

배깅 적합하기

- 1000개의 모형을 사용하자.

랜덤 포레스트 적합하기

- 1000개의 모형을 사용하자.

모형 시각화

- 부분 의존성 그림 그리기

```
from sklearn.inspection import plot_partial_dependence
fig, ax = plt.subplots(figsize=(8, 4))
ax.set_title("Decision Tree", fontsize=12)
tree_disp = plot_partial_dependence(rf_model, X_train, ["RM","LSTAT"], ax=ax)
Decision Tree
```


- 변수 중요도 그림 그리기

```
importances = rf_Model.feature_importances_
indices = np.argsort(importances)

plt.title('Feature Importances')
plt.barh(range(len(indices)), importances[indices], color='b', align='center')
plt.yticks(range(len(indices)), [boston.feature_names[i] for i in indices])
plt.xlabel('Relative Importance')
plt.show()
```


■ 연습문제

(O/X)1. 앙상블 기법의 효과는 각 모형이 안정적일수록 더 높은 성능의 향상을 기대할 수 있다.

머신러닝 응용

정답: X

해설 : 각 모형이 불안정할수록 앙상블 기법을 통해 성능이 더 뚜렷하게 향상된다.

(객관식)2. 다음 중 앙상블 기법이 아닌 것을 고르시오.

- ① 배깅
- ② Apriori 알고리즘
- ③ 랜덤 포레스트
- ④ 부스팅

정답) ②

해설) Apriori algorithm은 연관 규칙 방법론의 일종으로 앙상블 기법이 아니다.

(단답형)3. 앙상블 모형의 시각화를 위한 방법으로, 설명 변수가 종속 변수를 설명하는 정도를 수치화하여 변수별 중요도를 확인할 수 있는 그림을 무엇이라 하는가?

정답: 변수 중요도 그림 (Variable importance plot)

해설 : 앙상블 기법은 변수 중요도 그림을 통해 설명 변수들의 중요도를 확인할 수 있다.

■ 정리하기

- 1. 여러 개의 모형을 결합하여 하나의 모형을 만드는 앙상블 기법은 각 모형이 불안정할수 록 더 큰 예측력의 향상을 기대할 수 있다.
- 2. 배깅과 랜덤 포레스트 모두 붓스트랩 자료에 기반한다. 다만, 랜덤 포레스트는 더 많은 랜덤성을 위해 각 모형을 만들 때 사용할 설명 변수들도 랜덤하게 뽑아서 사용한다.
- 3. 앙상블 모형은 복잡하기 때문에 해석하기가 쉽지 않다. 따라서, 모형의 시각화를 위해서 부분 의존성 그림과 변수 중요도 그림을 많이 사용한다.
- 참고자료 (참고도서, 참고논문, 참고사이트 등)

박창이, 김용대, 김진석, 송종우, 최호식. 『R을 이용한 데이터마이닝』. 서울:교우사, 2018.