$\sigma \neq 0$ とし、 $c \neq 0$ を定数、 $\varepsilon = \{\varepsilon_t; t \in \mathbb{Z}\}$ をホワイトノイズ $WN(0, \sigma^2)$ とする。また、

$$\phi_1 = \frac{1}{3}, \quad \phi_2 = -\frac{1}{2}, \quad \phi_3 = \frac{1}{6}$$
 (1)

として、

$$\Phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \phi_3 z^3 \quad (z \in \mathbb{C})$$
 (2)

とおく。

$$X_{t} = c + \phi_{1} X_{t-1} + \phi_{2} X_{t-2} + \phi_{3} X_{t-3} + \varepsilon_{t} \quad (t \in \mathbb{Z})$$
(3)

によって表される時系列 $X = \{X_t; t \in \mathbb{Z}\}$ について、以下の問に答えよ。

1. $\Phi(z) = 0$ の解 $z \in \mathbb{C}$ を求めよ。

......

$$\Phi(z) = 1 - \frac{1}{3}z + \frac{1}{2}z^2 - \frac{1}{6}z^3 = 0 \tag{4}$$

分母を払って計算すると次のように因数分解できる。

$$6 - 2z + 3z^2 - z^3 = 0 (5)$$

$$(3-z)(2+z^2) = 0 (6)$$

よって、z=3, $\pm \sqrt{2}i$ が解となる。

2. $\{X_t - c; t \in \mathbb{Z}\}$ が AR(3) モデルとなることを示せ。

......

自己回帰モデル

確率過程 $\{X_t; t \in \mathbb{Z}\}$ が次の式で表される時、p 次の自己回帰モデル (Autoregressive Model, AR(p)) という。

$$X_t + \sum_{i=1}^p a_i X_{t-i} = \varepsilon_t \tag{7}$$

式(3)より

$$X_t - c = \sum_{i=1}^{3} \phi_i X_{t-i} + \varepsilon_t \tag{8}$$

である。

この式を $\sum_{i=1}^{3} \phi_i = 0$ を利用して変形すると次のようになる。

$$X_t - c = \sum_{i=1}^{3} \phi_i X_{t-i} + \varepsilon_t \tag{9}$$

$$=\sum_{i=1}^{3} \phi_i (X_{t-i} - c + c) + \varepsilon_t \tag{10}$$

$$= \sum_{i=1}^{3} \phi_i (X_{t-i} - c) + c \sum_{i=1}^{3} \phi_i + \varepsilon_t$$
 (11)

$$= \sum_{i=1}^{3} \phi_i (X_{t-i} - c) + \varepsilon_t \tag{12}$$

$$(X_t - c) + \sum_{i=1}^{3} (-\phi_i)(X_{t-i} - c) = \varepsilon_t$$
 (13)

これにより時系列 $\{X_t - c\}$ は 3 次の自己回帰モデルである。

3. 時系列 X は因果的であることを示せ。

.....

因果性 (定常性)

自己回帰モデルの時系列において、次の特性方程式 $\Phi(z)$ が単位円内 $(|z| \le 1)$ で零点を持たない時、因果性をもつという。

$$\Phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \dots - \phi_p z^p \quad (z \in \mathbb{C})$$
(14)

.....

時系列 $\{X_t - c; t \in \mathbb{Z}\}$ は次の式で表される。

$$X_t - c = \sum_{i=1}^{3} \phi_i (X_{t-i} - c) + \varepsilon_t$$

$$\tag{15}$$

この特性方程式 $\Phi(z)$ は次の式となる。

$$\Phi(z) = 1 - \phi_1 z - \phi_2 z^2 - \phi_3 z^3 \quad (z \in \mathbb{C})$$
 (16)

 $\Phi(z)$ の零点 $(\Phi(z)=0$ を満たす $z\in\mathbb{C})$ は $z=3,\,\pm\sqrt{2}i$ であり、これらは $|3|>1,\,\,\left|\pm\sqrt{2}i\right|>1$ となるので、時系列 $\{X_t-c;t\in\mathbb{Z}\}$ は因果的である。 $\{X_t-c;t\in\mathbb{Z}\}$ に定数 c を加えた時系列 $\{X_t;t\in\mathbb{Z}\}$ も因果的である。