

Ideals for irreducible components² of X_{par}

$$I_1^u = \langle u^{30} - u^{29} + \dots - u - 1 \rangle$$

* 1 irreducible components of $\dim_{\mathbb{C}} = 0$, with total 30 representations.

¹The image of knot diagram is generated by the software "**Draw programme**" developed by Andrew Bartholomew(http://www.layer8.co.uk/maths/draw/index.htm#Running-draw), where we modified some parts for our purpose(https://github.com/CATsTAILs/LinksPainter).

² All coefficients of polynomials are rational numbers. But the coefficients are sometimes approximated in decimal forms when there is not enough margin.

I.
$$I_1^u = \langle u^{30} - u^{29} + \dots - u - 1 \rangle$$

(i) Arc colorings

$$a_{5} = \begin{pmatrix} 0 \\ u \end{pmatrix}$$

$$a_{10} = \begin{pmatrix} 1 \\ 0 \end{pmatrix}$$

$$a_{1} = \begin{pmatrix} 1 \\ u^{2} \end{pmatrix}$$

$$a_{6} = \begin{pmatrix} -u \\ -u^{3} + u \end{pmatrix}$$

$$a_{4} = \begin{pmatrix} u^{3} \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{7} = \begin{pmatrix} -u^{5} - u \\ -u^{7} + u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{3} = \begin{pmatrix} u^{5} + u \\ u^{5} - u^{3} + u \end{pmatrix}$$

$$a_{9} = \begin{pmatrix} -u^{10} + u^{8} - 2u^{6} + u^{4} - u^{2} + 1 \\ -u^{10} + 2u^{8} - 3u^{6} + 2u^{4} - u^{2} \end{pmatrix}$$

$$a_{2} = \begin{pmatrix} -u^{15} + 2u^{13} - 4u^{11} + 4u^{9} - 4u^{7} + 4u^{5} - 2u^{3} + 2u \\ -u^{15} + 3u^{13} - 6u^{11} + 7u^{9} - 6u^{7} + 4u^{5} - 2u^{3} + u \end{pmatrix}$$

$$a_{8} = \begin{pmatrix} u^{22} - 3u^{20} + \dots - 3u^{4} + 1 \\ u^{24} - 4u^{22} + \dots + 8u^{4} - 2u^{2} \end{pmatrix}$$

- (ii) Obstruction class =-1
- (iii) Cusp Shapes = $-4u^{28} + 20u^{26} 4u^{25} 64u^{24} + 16u^{23} + 140u^{22} 48u^{21} 236u^{20} + 96u^{19} + 320u^{18} 156u^{17} 356u^{16} + 208u^{15} + 340u^{14} 228u^{13} 272u^{12} + 220u^{11} + 188u^{10} 168u^9 108u^8 + 116u^7 + 48u^6 64u^5 20u^4 + 28u^3 + 4u^2 8u 10$

(iv) u-Polynomials at the component

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{30} - u^{29} + \dots - u - 1$
c_2, c_3, c_9	$u^{30} + u^{29} + \dots + 7u - 1$
c_4, c_6	$u^{30} + 11u^{29} + \dots + u + 1$
c_5, c_{10}	$u^{30} - u^{29} + \dots - u - 1$
C ₈	$u^{30} + 17u^{29} + \dots - u + 1$

(v) Riley Polynomials at the component

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{30} + 17y^{29} + \dots - y + 1$
c_2, c_3, c_9	$y^{30} - 31y^{29} + \dots - 49y + 1$
c_4, c_6	$y^{30} + 17y^{29} + \dots + 7y + 1$
c_5,c_{10}	$y^{30} - 11y^{29} + \dots - y + 1$
c ₈	$y^{30} - 7y^{29} + \dots - 25y + 1$

(vi) Complex Volumes and Cusp Shapes

Solutions to I_1^u	$\sqrt{-1}(\text{vol} + \sqrt{-1}CS)$	Cusp shape
u = -0.730327 + 0.712584I	1.67645 - 2.06909I	-4.15841 + 3.38718I
u = -0.730327 - 0.712584I	1.67645 + 2.06909I	-4.15841 - 3.38718I
u = 0.551518 + 0.799916I	-5.35554 + 6.07028I	-8.34155 - 3.40396I
u = 0.551518 - 0.799916I	-5.35554 - 6.07028I	-8.34155 + 3.40396I
u = -0.906793 + 0.533130I	-1.75153 + 2.04857I	-11.94351 - 2.92796I
u = -0.906793 - 0.533130I	-1.75153 - 2.04857I	-11.94351 + 2.92796I
u = 0.804216 + 0.685158I	2.71504 - 2.05267I	-1.58203 + 3.48780I
u = 0.804216 - 0.685158I	2.71504 + 2.05267I	-1.58203 - 3.48780I
u = 0.924638 + 0.148092I	-3.63670 - 2.97945I	-13.9208 + 5.3409I
u = 0.924638 - 0.148092I	-3.63670 + 2.97945I	-13.9208 - 5.3409I
u = -0.543400 + 0.758728I	-1.94581 - 1.35458I	-5.23413 + 0.23076I
u = -0.543400 - 0.758728I	-1.94581 + 1.35458I	-5.23413 - 0.23076I
u = 0.488569 + 0.765822I	-5.74978 - 2.99724I	-8.94829 + 3.11480I
u = 0.488569 - 0.765822I	-5.74978 + 2.99724I	-8.94829 - 3.11480I
u = 0.897290 + 0.672452I	2.42981 - 3.18388I	-2.48294 + 3.33039I
u = 0.897290 - 0.672452I	2.42981 + 3.18388I	-2.48294 - 3.33039I
u = 1.12154	-7.57426	-11.4920
u = -1.139570 + 0.022635I	-11.30750 + 4.69703I	-14.6642 - 3.2976I
u = -1.139570 - 0.022635I	-11.30750 - 4.69703I	-14.6642 + 3.2976I
u = -0.950905 + 0.682953I	1.01456 + 7.42449I	-6.02063 - 8.82247I
u = -0.950905 - 0.682953I	1.01456 - 7.42449I	-6.02063 + 8.82247I
u = -1.047270 + 0.654174I	-3.41555 + 6.72016I	-7.40084 - 4.93754I
u = -1.047270 - 0.654174I	-3.41555 - 6.72016I	-7.40084 + 4.93754I
u = 1.060070 + 0.635598I	-7.40758 - 2.28828I	-11.38974 + 1.78470I
u = 1.060070 - 0.635598I	-7.40758 + 2.28828I	-11.38974 - 1.78470I
u = 1.059080 + 0.667496I	-6.86248 - 11.58950I	-10.39391 + 7.89908I
u = 1.059080 - 0.667496I	-6.86248 + 11.58950I	-10.39391 - 7.89908I
u = -0.704437	-1.05262	-9.30020
u = -0.175683 + 0.414203I	-0.50312 + 1.32269I	-5.12281 - 4.79072I
u = -0.175683 - 0.414203I	-0.50312 - 1.32269I	-5.12281 + 4.79072I

II. u-Polynomials

Crossings	u-Polynomials at each crossing
c_1, c_7	$u^{30} - u^{29} + \dots - u - 1$
c_2, c_3, c_9	$u^{30} + u^{29} + \dots + 7u - 1$
c_4, c_6	$u^{30} + 11u^{29} + \dots + u + 1$
c_5,c_{10}	$u^{30} - u^{29} + \dots - u - 1$
c ₈	$u^{30} + 17u^{29} + \dots - u + 1$

III. Riley Polynomials

Crossings	Riley Polynomials at each crossing
c_1, c_7	$y^{30} + 17y^{29} + \dots - y + 1$
c_2, c_3, c_9	$y^{30} - 31y^{29} + \dots - 49y + 1$
c_4, c_6	$y^{30} + 17y^{29} + \dots + 7y + 1$
c_5,c_{10}	$y^{30} - 11y^{29} + \dots - y + 1$
c ₈	$y^{30} - 7y^{29} + \dots - 25y + 1$