암호수학1

암호 수학 기초: 나눗셈, 가분성

- $4 22 = 4 \times 5 + 2$
 - 22를 5로 나누면 몫은 4이고 나머지는 2이다
 - ◆ 22(dividend)를 5(divisor)로 나누면 몫(quotient)은 4이고 나머지(remainder)는 2이다
- ዹ 나눗셈정리
 - 임의의 정수 a, 양의 정수 b에 대해 $a = q \times b + r$ $(0 \le r < b)$ 을 만족하는 정수 q와 r이 유일하게 존재한다
 - ◆ q와 r은 a를 b로 나는 몫과 나머지
- ♣ 가분성(divisibility)
 - 10 = 2 × 5 → 10은 5로 나누어짐 → 표기법 → 5 | 10
 - 11 = 2 × 5 + 1 → 11은 5로 나누어지지 않음 → 표기법 → 5 ∤ 11

Reference: 수리암호학개론, 김명환, 2019

암호 수학 기초: 약수, 배수

- ♣ 약수(divisor, factor), 배수(multiple)
 - 두 정수 $a(\neq 0)$, b에 대해 $a \mid b$ 일 때
 - ◆ 즉, b = aq인 정수 q가 존재할 때
 - ◆ a는 b의 약수(divisor)
 - ◆ b는 a의 배수(multiple)
 - 예
 - $10 = 5 \times 2$
 - 5는 10을 (나머지 없이) 나누는 수이다. 5는 10의 약수이며 10은 5의 배수이다. 즉 **5 | 10**
 - \bullet **0** = $a \times 0$
 - 0이 아닌 임의의 정수 a는 0을 나눈다(0으로 나누는 것은 정의되지 않음). 0이 아닌 모든 정수는 0의 약수이다. 즉 $a \mid 0$
 - \bullet $a = 1 \times a$
 - 1은 모든 정수의 약수이다. 즉 **1** | **a**
 - ◆ **2**의 모든 약수는 1, −1, 2, −2
 - 음의 약수도 가능함

Reference: 수리암호학개론, 김명환, 2019

암호 수학 기초: 최대공약수, 서로소

- ♣ 최대공약수(Greatest Common Divisor, gcd)
 - 두 정수 *a*, *b*의 공약수 중 가장 큰 것
 - ◆ 두 정수 a, b 중 어느 하나는 0이 아니어야 최대공약수 존재 가능
 a, b 모두 0인 경우 0 아닌 모든 정수가 공약수가 되므로 gcd 선택 불가
 - ◆ 두 정수 *a*, *b*의 최대공약수를 gcd(*a*, *b*)로 표기
 - $\gcd(a,b) = \gcd(-a,b) = \gcd(a,-b) = \gcd(-a,-b) = \gcd(|a|,|b|)$
 - ◆ 양수 a에 대해, gcd(a, 0) = a
 - $-\gcd(5,0)=5$
 - ◆ 36과 27의 최대공약수 gcd(36, 27) = 9
 - 36의 (양의) 약수: 1, 2, 3, 4, 6, **9**, 12, 18, 36
 - 27의 (양의) 약수: 1, 3, **9**, 27
- ♣ 서로소 (coprime, relatively prime)
 - 최대공약수가 1인 두 정수는 서로소(coprime)이다
 - 1 외의 다른 공약수를 갖지 않는 두 정수는 서로소
 - ◆ 6과 8은 서로소가 아니다
 - 6 = 2 ⋅ 3, 8 = 2 ⋅ 2 ⋅ 2 → 1 외의 공약수 2를 가짐
 - ◆ 16과 27은 서로소이다
 - 16 = 2·2·2·2, 27 = 3·3·3 → 1외의 공약수 없음
 - 16과 27은 둘 다 소수가 아니지만 서로소인 관계에 있음

Reference: 수리암호학개론, 김명환, 2019

암호 수학 기초: 모듈로 연산

- ♣ 모듈로(modulo) 연산자
 - 임의의 정수 a, 양의 정수 n에 대해 아래 모듈로 연산자 mod는 a를 n으로 나눈 나머지를 계산한다

$$a \mod n = r$$

- 예
 - $17 \mod 3 = 2$
 - $15 \mod 3 = 0$
 - \bullet 3 mod 5 = 3
 - ♦ $-3 \mod 5 = 2$
 - $-3 = (-1) \cdot 5 + 2$
 - $-(-3+5) \mod 5 = 2$

암호 수학 기초: 법 n에 대해 합동

Reference: (정민석, 2017; 최은미, 2019)

- ♣ 법 n에 대해 합동(congruence)
 - 정수 a, b, n에 대해 $n \mid (a b)$ 인 경우 a, b는 **법 n에 대해 합동**이라고 하며 다음과 같이 표기 ______

$$a \equiv b \pmod{n}$$

- ◆ n으로 나눈 나머지가 같다는 의미
 - $(a \bmod n) = (b \bmod n)$
- $n \nmid (a b)$ 이면 $a \not\equiv b \pmod{n}$ 로 표기

(Reference: 최은미, 정수와 암호론, 2019) $a = q_1 n + r_1$, $b = q_2 n + r_2$ 라고 하면,

- $a \equiv b \pmod{n}$ 이면 $n \mid (a b)$ 이므로 $n \mid (r_1 r_2)$ 로부터 $(r_1 r_2)$ 가 n의 배수이나 n보다 클 수 없으므로 $(r_1 r_2) = 0$ 이 되어 a, b의 n으로 나눈 나머지는 같다
- a, b의 n으로 나눈 나머지가 같다면 $(a b) = (q_1 q_2)n$ 이므로 $a \equiv b \pmod{n}$ 가 성립

- 예
 - " 여기서의 mod는 congruence relation $20 \equiv 14 \pmod{3}$
 - $-20 = 6 \cdot 3 + 2$, $14 = 4 \cdot 3 + 2 \rightarrow (20 14) = (6 4) \cdot 3 + 0 \rightarrow 3 \mid (20 14)$
 - $-(20 \bmod 3) = (14 \bmod 3)$
 - $15 \equiv 0 \pmod{3}$ 여기서의 두 mod는 이항 연산자
 - $-3 \equiv 2 \pmod{5}$
 - \bullet $-7 \equiv -4 \equiv -1 \equiv 2 \equiv 5 \equiv 8 \equiv 11 \pmod{3}$

소수, 합성수, 소인수분해, 서로소

Reference: (Forouzan, 2008; 최은미, 2019)

	1	양의 약수 1개1은 소수가 아니다
양의 정수	소수	 1보다 큰 정수 중, 1과 자신 외의 다른 약수를 갖지 않는 수 양의 약수 2개 예) 2, 3, 5, 7, 11, 13, 17,
	합성수	 1보다 큰 정수 중 소수가 아닌 수 양의 약수 3개 이상 예) 4, 6, 8, 9, 10, 12, 14, 15, 16, 18,

소인수분해 (prime factorization)

- 1보다 큰 정수를 소수들의 곱으로 표현하는 것
- $9 = 2 \times 3$, $8 = 2 \times 2 \times 2$, $60 = 2 \times 2 \times 3 \times 5$

산술의 기본 정리 (fundamental theorem of arithmetic)

- 1보다 큰 임의의 정수는 (소수들의 곱의 순서를 무시할 때) 소수들의 곱으로 유일하게 표현된다
- $9 = 2 \times 3$, $8 = 2 \times 2 \times 2$, $60 = 2 \times 2 \times 3 \times 5$

서로소

- 최대공약수가 1인 두 정수는 서로소(coprime)이다. 즉 gcd(a,b) = 1인 두 정수 a,b는 서로소
- 1은 모든 정수와 서로소이다
- $\Delta + p = 10$ 대해, 1, 2, ..., p 1의 각 수는 p와 서로소이다

암호 수학 기초: Z_n , Z_n^* , Z_p , Z_p^*

Reference: (이민섭, 2008; 최은미, 2019; Forouzan, 2008)

$+ Z_n$

- Set of all least residues modulo *n*
- - ◆ n으로 나누었을 때 얻어지는 나머지들의 집합
- \mathbf{Z}_n 에서 n이 소수 p인 경우 \mathbf{Z}_p 로 표기

$$Z_p = \{0, 1, 2, ..., p-1\}$$

$+ Z_n^*$

- - ◆ n 이하 양의 정수 중 n과 서로소인 수들의 집합
 - 최대공약수(Greatest common divisor, gcd)가 1인 두 정수는 서로소(coprime)이다
 - 1 외의 다른 공약수를 갖지 않는 두 정수는 서로소
 - $|Z_n^*| = \phi(n)$
- Z_n^* 에서 n이 소수 p인 경우 Z_p^* 로 표기

•
$$Z_p^* = \{1, 2, ..., p-1\}$$

$Z_6 = \{0, 1, 2, 3, 4, 5\}$	$Z_6^* = \{1, 5\}$
26 - (0, 1, 2, 3, 1, 3)	26 - (1,0)
$Z_7 = \{0, 1, 2, 3, 4, 5, 6\}$	$Z_7^* = \{1, 2, 3, 4, 5, 6\}$
$Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$	$Z_{10}^* = \{1, 3, 7, 9\}$

	$Z_6^* = \{1$	1,5}
	양의 약수만 나열	6과의 최대공약수
0	모든 양수	gcd(0, 6)=6
1	1	gcd(1, 6)=1
2	1, 2	gcd(2, 6)=2
3	1, 3	gcd(3, 6)=3
4	1, 2, 4	gcd(4, 6)=2
5	1, 5	gcd(5, 6)=1
6	1, 2, 3, 6	

암호 수학 기초: 역원

- ♣ mod n 연산에서의 역원(inverse)
 - 덧셈의 역원(additive inverse)
 - ◆ Z_n 에서 $a + b \equiv 0 \pmod{n}$ 이면 a, b는 서로에 대해 덧셈의 역원
 - ◆ Z_n 내 각 정수는 덧셈의 유일한 역원 존재
 - $Z_4 = \{0, 1, 2, 3\}$
 - $0+0 \equiv 0 \pmod{4}, 1+3 \equiv 0 \pmod{4}, 2+2 \equiv 0 \pmod{4}$
 - 덧셈에 대해 0의 역원은 0, 1의 역원은 3, 3의 역원은 1, 2의 역원은 2

$Z_4 = \{0, 1, 2, 3\}$						
+	0	1	2	3		
0	0	1	2	3		
1	1	2	თ	0		
2	2	3	0	1		
3	3	0	1	2		

- 곱셈의 역원(multiplicative inverse)
 - ◆ Z_n 에서 $a \times b \equiv 1 \pmod{n}$ 이면 a, b는 서로에 대해 곱셈의 역원
 - ◆ Z_n 내 각 정수는 곱셈의 역원을 가질 수도 있고 가지지 않을 수도 있음
 - $Z_4 = \{0, 1, 2, 3\}$
 - $1 \times 1 \equiv 1 \pmod{4}, 3 \times 3 \equiv 1 \pmod{4}$
 - 곱셈에 대해 1,3의 역원만 존재 (1의 역원은 1,3의 역원은 3)
 - $Z_{10} = \{0, 1, 2, 3, 4, 5, 6, 7, 8, 9\}$
 - $1 \times 1 \equiv 1 \pmod{10}, 3 \times 7 \equiv 1 \pmod{10}, 9 \times 9 \equiv 1 \pmod{10}$
 - 곱셈에 대해 1,3,7,9의 역원만 존재
 - ◆ Z_n 내 각 정수는 곱셈의 역원 존재
 - $Z_4^* = \{1, 3\}$
 - $-Z_{10}^* = \{1, 3, 7, 9\}$
 - $-Z_7^* = \{1, 2, 3, 4, 5, 6\}$

$Z_4 = \{0, 1, 2, 3\}$							
×	0	1	2	3			
0	0	0	0	0			
1	0	1	2	3			
2	0	2	0	2			
3	0	3	2	1			

유클리드 알고리즘

- ♣ 유클리드 알고리즘 (Euclidean algorithm)
 - 두 양의 정수 *a*, *b*의 최대공약수(gcd)를 구하는 알고리즘
 - gcd(a, b) = gcd(b, r)
 - r은 a를 b로 나눈 나머지
 - ◆ 양수 a에 대해, gcd(a, 0) = a
 - 예

- a=qb+r일 때, gcd(a,b)=d1, gcd(b,r)=d2라고 하면,
- d1 | a, d1 | b이므로 d1 | (a-qb)임. 즉 d1 | r
- d1은 b, r의 공약수이므로 $d1 \le d2$
- d2는 d2 | b, d2 | r이므로 d2 | (qb+r)임. 즉 d2 | a
- d2는 a, b의 공약수이므로 $d2 \le d1$
- $d1 \le d20$] $2d2 \le d10$] 2d2 = d1
- \bullet gcd(36, 28) = gcd(28,8) = gcd(8,4) = gcd(4,0) = 4
- \bullet gcd(24, 30) = gcd(30,24) = gcd(24,6) = gcd(6,0) = 6
 - gcd(a,b)에서 a,b의 대소 순서 무관

q	а	b	r		
1	36	28	8	36 =1 x 28 + 8	gcd(36,28)
3	28	8	4	28 = 3 x 8 + 4	gcd(28,8)
2	8	4	0	8 = 2 x 4 + 0	gcd(8,4)
	4	0			gcd(4,0) = 4

q	а	b	r
0	24	30	24
1	30	24	6
4	24	6	0
	6	0	

Reference: https://en.wikipedia.org/wiki/Euclidean_algorithm

유클리드 알고리즘

```
def gcd(a,b):
    r1,r2=a,b
    while r2>0:
        q = r1 // r2
        r = r1 - q*r2
        r1 = r2
        r2 = r
    return r1

print(gcd(36,28))
```

print(gcd(24,30))

q	r1	r2	r
1	36	28	8
3	28	8	4
2	8	4	0
	4	0	

q	r1	r2	r
0	24	30	24
1	30	24	6
4	24	6	0
	6	0	

Reference: https://en.wikipedia.org/wiki/Euclidean_algorithm

베주 항등식

- ♣ 베주 항등식(Bézout's identity)
 - 두 정수 a,b에 대해 다음 항등식을 만족하는 정수 s,t가 존재한다
 - \bullet gcd(a,b) = sa + tb
 - 그러한 s,t가 유일하게 결정되는 것은 아님
 - gcd(15,6) = 3= $15 \cdot (1) + 6 \cdot (-2)$ = $15 \cdot (1) + 6 \cdot (-2) + 15 \cdot 6 - 15 \cdot 6$ = $15 \times (7) + 6 \times (-17)$
 - -a.b의 최대공약수를 a,b의 배수들의 합으로 표현 가능

Reference: https://en.wikipedia.org/wiki/Bézout's identity 참고: 수리암호학개론, 김명환, 2019

유클리드 알고리즘과 베주 항등식

q	а	b	r		
1	36	28	8	36 =1 x 28 + 8	8 = 36 - 1 x 28
3	28	8	4	28 = 3 x 8 + 4	4 = 28 - 3 x 8
2	8	4	0	8 = 2 x 4 + 0	
	4	0			

a,b의 최대공약수를 a,b의 일차결합으로 표현 가능

$$gcd(36,28) = 4$$

= $28 - 3 \cdot 8$
= $28 - 3 \cdot (36 - 1 \cdot 28)$
= $-3 \cdot 36 + 4 \cdot 28$
= $s \cdot a + t \cdot b$

Reference: https://en.wikipedia.org/wiki/Bézout's identity 참고: 수리암호학개론, 김명환, 2019

유클리드 알고리즘과 베주 항등식

Reference: (William Stallings, 2014)

r_i 는 a,b의 일차결합으로 표현가능

q	а	b	r				+		
						$r_{-1}=a$	$r_{-1} = a \cdot 1 + b \cdot 0$	$s_{-1} = 1$	$t_{-1} = 0$
						$r_0 = b$	$r_0 = a \cdot 0 + b \cdot 1$	$s_0 = 0$	$t_0 = 1$
1	56	34	22	$22 = 56 - 1 \cdot 34$	$r_1 = a - q_1 \cdot b$	$r_1 = r_{-1} - q_1 \cdot r_0$	$r_1 = a \cdot s_1 + b \cdot t_1$	$s_1 = s_{-1} - q_1 \cdot s_0$	$t_1 = t_{-1} - q_1 \cdot t_0$
1	34	22	12	$12 = 34 - 1 \cdot 22$	$r_2 = b - q_2 \cdot r_1$	$r_2 = r_0 - q_2 \cdot r_1$	$r_2 = a \cdot s_2 + b \cdot t_2$	$s_2 = s_0 - q_2 \cdot s_1$	$t_2 = t_0 - q_2 \cdot t_1$
1	22	12	10	$10 = 22 - 1 \cdot 12$	$r_3 = r_1 - q_3 \cdot r_2$	$r_3 = r_1 - q_3 \cdot r_2$	$r_3 = a \cdot s_3 + b \cdot t_3$	$s_3 = s_1 - q_3 \cdot s_2$	$t_3 = t_1 - q_3 \cdot t_2$
1	12	10	2	$2 = 12 - 1 \cdot 10$	$r_4 = r_2 - q_4 \cdot r_3$	$r_4 = r_2 - q_4 \cdot r_3$	$r_4 = a \cdot s_4 + b \cdot t_4$	$s_4 = s_2 - q_4 \cdot s_3$	$t_4 = t_2 - q_4 \cdot t_3$
5	10	2	0	$0=10-5\cdot 2$	$r_5 = r_3 - q_5 \cdot r_4$	$r_5 = r_3 - q_5 \cdot r_4$	$r_5 = a \cdot s_5 + b \cdot t_5$	$s_5 = s_3 - q_5 \cdot s_4$	$t_5 = t_3 - q_5 \cdot t_4$
	2	0							

- q_i → r_{i-2}를 r_{i-1}로 나는 몫
 이전 계산된 2개 나머지들로부터 새로운 나머지를 계산 → r_i = r_{i-2} q_i · r_{i-1}
- 이전 계산된 2개 s 값들로부터 새로운 s 값을 계산 $\rightarrow s_i = s_{i-2} q_i \cdot s_{i-1}$
- 이전 계산된 2개 t 값들로부터 새로운 t 값을 계산 $\rightarrow t_i = t_{i-2} q_i \cdot t_{i-1}$
- 초기값 $\rightarrow r_{-1} = a, r_0 = b, s_{-1} = 1, s_0 = 0, t_{-1} = 0, t_0 = 1$

$$r_{5} = r_{3} - q_{5} \cdot r_{4}$$

$$= (a \cdot s_{3} + b \cdot t_{3}) - q_{5}(a \cdot s_{4} + b \cdot t_{4})$$

$$= a(s_{3} - q_{5} \cdot s_{4}) + b(t_{3} - q_{5} \cdot t_{4})$$

$$= a \cdot s_{5} + b \cdot t_{5}$$

$$r_{5} = r_{3} - q_{5} \cdot r_{4}$$

$$s_{5} = s_{3} - q_{5} \cdot s_{4}$$

$$t_{5} = t_{3} - q_{5} \cdot t_{4}$$

확장 유클리드 알고리즘

• 초기값
$$\rightarrow r_{-1} = a = 56, r_0 = b = 34, s_{-1} = 1, s_0 = 0, t_{-1} = 0, t_0 = 1$$

q	r1	r2	r	s1	s2	S	t1	t2	t
1	56	34	22	1	0	1	0	1	-1
1	34	22	12	0	1	-1	1	-1	2
1	22	12	10	1	-1	2	-1	2	-3
1	12	10	2	-1	2	-3 ♠	2	-3	5
5	10	2	0	2	-3	17	-3	5	-28
	2	0		-3	17		5	-28	

•
$$s = s1 - q \cdot s2 \rightarrow -3 = (-1) - 1 \cdot 2$$

•
$$t = t1 - q \cdot t2 \rightarrow 5 = 2 - 1 \cdot (-3)$$

확장유클리드알고리즘

- gcd(56,34) = 2 = 56 · (-3) + 34 · (5)
 최대공약수 및 베주항등식의 계수까지 계산 가능

Reference: (William Stallings, 2014)

확장 유클리드 알고리즘

```
def egcd(a,b):
    r1,r2=a,b
    s1,s2=1,0
    t1,t2=0,1
    while r2>0:
        q = r1 // r2
        r = r1 - q*r2;    r1 = r2;    r2 = r;
        s = s1 - q*s2;    s1 = s2;    s2 = s;
        t = t1 - q*t2;    t1 = t2;    t2 = t;
    return (r1,s1,t1)
```

Reference: https://en.wikipedia.org/wiki/Euclidean_algorithm

곱셈의 역원 존재 판단

Reference: (정민석, 암호수학, 2017)

- ♣ 곱셈의 역원 존재 판단
 - 양의 정수 n과 정수 a에 대해 다음 두 명제는 동치이다
 - \bullet 법 n에 대해 a의 곱셈의 역원이 존재한다
 - \bullet gcd(n, a) = 1
 - n,a는 서로소(coprime)

Reference: (정민석, 암호수학, 2017)

- a의 곱셈의 역원 t가 존재한다면 $at \equiv 1 \pmod{n}$ 이므로 $n \mid (at 1)$ 로부터 ns = at 1이고 n(-s) + at = 1이므로 $\gcd(n, a) = 1$ 이 성립
- gcd(n, a) = 1인 경우 적당한 정수 s, t 에 대해 ns + at = 1이고 n(-s) = at 1이므로 $n \mid (at 1)$ 이 되어 $at \equiv 1 \pmod{n}$ 이 성립하므로 a는 곱셈의 역원 t를 가짐

곱셈의 역원과 확장 유클리드 알고리즘

Reference: (정민석, 암호수학, 2017)

- ♣ 확장 유클리드 알고리즘으로 곱셈의 역원 찾기
 - 법 n과 정수 a 에 대해 gcd(n,a) = 1인 경우 곱셈의 역원 찾기
 - n, a에 대해 확장 유클리드 알고리즘 적용하여 다음 수식의 s, t 결정하면 a의 곱셈의 역원은 t임
 - $-\gcd(n,a)=1=ns+at$
 - 1 = ns + at로부터 at 10 n의 배수임. 즉 $n \mid at 1$ 임
 - 따라서 $at \equiv 1 \pmod{n}$ 이므로 법 n에 대한 a의 곱셈의 역원은 t임
 - 또한, 법 a에 대한 n의 곱셈의 역원은 s임

- 예
 - ◆ 법 10에 대해 7의 곱셈의 역원 3 구하기
 - $gcd(10,7) = 1 = (-2) \cdot 10 + 3 \cdot 7$

q	r1	r2	r	s1	s2	s	t1	t2	t
1	10	7	3	1	0	1	0	1	-1
2	7	3	1	0	1	-2	1	-1	3
3	3	1	0	1	-2	7	-1	3	-10
	1	0		-2	7		3	-10	

역원만 필요하다면 s의 값 구하는 과정 불필요

q	r1	r2	r	t1	t2	t
1	10	7	3	0	1	-1
2	7	3	1	1	-1	3
3	3	1	0	-1	3	-10
	1	0		3	-10	

- 법 10에 대한 7의 곱셈의 역원은 아래 식을 만족하는 t를 구하는 것
 - $t \cdot 7 \equiv 1 \pmod{10}$

$$10 \mid (1 - t \cdot 7)$$

$$s \cdot 10 = 1 - t \cdot 7$$

$$s \cdot 10 + t \cdot 7 = 1$$

곱셈의 역원과 확장 유클리드 알고리즘

Reference: (정민석, 암호수학, 2017)

법 10에 대해 9의 곱셈의 역원 구하기

- gcd(10,9) = 1 = 10·1+9·(-1)
 법 10에 대한 9의 역원을 10으로 나눈 나머지로 표현하면 9임 $(9 \equiv -1 \pmod{10})$

q	r1	r2	r	s1	s2	s	t1	t2	t
1	10	9	1	1	0	1	0	1	-1
9	9	1	0	0	1	-9	1	-1	10
	1	0		1	-9		-1	10	

역원만 필요하다면 s의 값 구하는 과정 불필요

q	r1	r2	r	t1	t2	t
1	10	9	1	0	1	-1
9	9	1	0	1	-1	10
	1	0		-1	10	

References

- ♣ Behrouz A. Forouzan, Cryptography and Network Security, McGraw-Hill, 2008
- William Stallings, Cryptography and Network Security: Principles and Practice, Sixth Edition, Prentice Hall, 2014
- Christof Paar, Jan Pelzl, Understanding Cryptography: A Textbook for Students and Practitioners, Springer, 2010
- 김명환, 수리암호학개론, 2019
- 정민석, 암호수학, 경문사, 2017
- 최은미, 정수와 암호론, 북스힐, 2019
- ♣ 이민섭, 정수론과 암호론, 교우사, 2008
- Kevin S. McCurley, The Discrete Logarithm Problem, Proceedings of Symposia in Applied Mathematics, Vol 42, 1990