

Optical Metrology and Sensing

Lecture 1-1: Introduction

2020-11-03

Herbert Gross

Winter term 2020 www.iap.uni-jena.de

Outline

- Introduction
- Optical measurements
- Shape measurement

General Terms of Measurement

Accuracy:

In situations where we believe that the measured value is close to the true value, we say that the measured value is accurate (qualitative)

Precision:

When values obtained by repeated measurements of a particular quantity exhibit little variability, we say that those values are precise (qualitative)

Reproducibility:

Ability for different users to get the same reading when measuring a specific sample.

Repeatability:

How capable a gage is of providing the same reading for a single user when measuring a specific sample.

General Terms of Measurement

Resolution:

Smallest amount of input signal change the instrument can detect reliably. Reasons for limited resolution: diffraction, noise, hysteresis, discretization. Typically it corresponds to half of the sampling rate.

Sensitivity:

Smallest signal the instrument can measure.
Reproducible change of output signal for changes of the measured property

Tolerance/dynamic range:

Limiting maximum and minimum values, the system is able to detect

True value:

Value of the signal, if the system would be perfect. x_o If this is known for a special case, the system can be calibrated (corrected for systematic errors)

Measurement error:

Difference between measure value and true value

$$\Delta x = x - x_0$$

Abbe Comparator Principle

- Basic idea: the measured property and the scale of measurement should aligned
- Avoid the influence of tilt and bending on the result
- Errors due to mechanical means and uncertainties are therefore not affecting the result
- The scale should follow the movements in measurement
- If a tilt α is obtained and y is the Abbe offset, the error is of the range

Ref: W. Osten

Optical Methods for Shape Measurement

- Generation of structures for shape measurement:
 - 1. projection (incoherent imaging of a grid)
 - 2. interference (mostly coherent)
- Optical methods:
 - 1. fringe projection (contour lines)
 - 2. Moire technique (2 sources used)
 - 3. holographic contouring
 - 4. speckle contouring
 - 5. photogrammetry
- Shape measurement for quality control applications
 - 1. digitization of prototypes
 - 2. replacement of mechanical systems

Wavelength Ranges

Ref: W. Osten

Scales and Dynamic Range

10 orders of magnitude for geometrical measurements:

Optical Measuring Instrument

- Characterization of measuring device:
 - 1. Test piece / specimen / object scanning / sensing
 - 2. Measurement signal (material measure, standard, etalon)
 - 3. Amplification of the signal
 - 4. Indication of the measured value
- If one of the first three aspects is performed out optically: optical measuring instrument
- Methods based on the wave nature of light:
 - 1. Diffraction
 - 2. Interference (coherent):

Interferometer

Holography

Speckle techniques

Laser based measurements

Classification of Optical Metrology

Measuring properties	coordinates	heights distances 3D shapes roughness
	changes in shape	shifts expansions strain
	deviations	material data internal external
Measuring principles	physical model	geometrical wave optical
	light field	coherent incoherent
	dimension	1D - point 2D - line 3D / 2,5D - surface

Ref: W. Osten

Optical Methods

- Requirements on measurement:
 - 1. high density of measurement points, spatial resolution
 - 2. high velocity
 - 3. contactless
 - 4. absolute 3D coordinates
- Pros and cons of optical measuring techniques

advantages	disadvantages
contactless	indirect
without back influence	limited resolution
surface related	interaction with surface
fast	material dependent
flexibel and integrabel	
high lateral resolution	

Measurement Quantities

Interferometric fringes

Primary measured	Derived quantity	Applications
fringe position	phase difference	length standard refractometry length compensation
	phase variation	interference microscopy optical testing
fringe visibility	spectrum of source	spectral profiles
	spatial distribution at source	stellar diameter
full intensity distribution	spectrum of source	interference spectroscopy Fourier spectroscopy
	spatial distribution at source	optical transfer function radio astronomy

Ref: R. Kowarschik

Dimension Classification

Shape Measurement

Micro mechanical part

depth map

Surface Deviations

- Typical three different ranges according to power spectral density:
 - 1. figure: long range, overall shape
 - 2. waviness: machine oscillations, errors in production
 - 3. roughness: Short term deviations due to manufacturing interaction (grinding, polish,...)

PSD Ranges

- Typical impact of spatial frequency ranges on PSF
- Low frequencies: loss of resolution classical Zernike range
- High frequencies:
 Loss of contrast
 statistical
- Large angle scattering
- Mif spatial frequencies: complicated, often structured fals light distributions

