AMENDMENTS TO THE CLAIMS:

This listing of claims will replace all prior versions, and listings, of claims in this application:

LISTING OF CLAIMS:

 (Currently Amended) A system for monitoring a temperature prevailing in a stator unit of an electric drive, comprising:

a position measurement device connected to the drive including a signal processor unit;

an electrical transmitter unit; and

a temperature sensor integrated into windings of the stator unit and configured to deliver a temperature-dependent sensor signal, the electrical transmitter unit configured to input the sensor signal into the signal processor unit;

wherein the temperature sensor includes a temperature-dependent resistor integrated into the windings of the stator unit; and

wherein the electrical transmitter unit includes at least two inductively coupled coils, a first one of the coils associated with the signal processor unit, a second one of the coils associated with the temperature sensor.

Claims 2 and 3. (Canceled).

- 4. (Currently Amended) The system according to claim [[3]] 1, wherein the first one of the coils is arranged to be acted on by activation signals via the electrical transmitter unit to detect the temperature-dependent sensor signal.
- 5. (Currently Amended) [[The]] A system according to claim 4, for monitoring a temperature prevailing in a stator unit of an electric drive, comprising:
- a position measurement device connected to the drive including a signal processor unit;

an electrical transmitter unit; and

a temperature sensor integrated into windings of the stator unit and configured to deliver a temperature-dependent sensor signal, the electrical transmitter unit configured to input the sensor signal into the signal processor unit;

NY01 912352 2

wherein the temperature sensor includes a temperature-dependent resistor integrated into the windings of the stator unit;

wherein the electrical transmitter unit includes at least two inductively coupled coils, a first one of the coils associated with the signal processor unit, a second one of the coils associated with the temperature sensor;

wherein the first one of the coils is arranged to be acted on by activation signals via the electrical transmitter unit to detect the temperature-dependent sensor signal; and

wherein the electrical transmitter unit includes at least one measuring shunt having a constant resistance value.

 (Withdrawn) The system according to claim 5, further comprising: an arrangement configured to generate a sinusoidal alternating excitation signal; and

a voltage divider circuit, the voltage divider circuit, the measuring shunt and a temperature-dependent resistance of the temperature sensor transformed by the transmitter unit adapted to detect the temperature-dependent sensor signal.

- 7. (Original) The system according to claim 5, further comprising:
 an arrangement configured to generate a pulsed excitation signal; and
 a voltage divider circuit, the voltage divider circuit, the measuring shunt and a
 temperature dependent resistance of the temperature sensor transformed by the
 transmitter unit adapted to detect the temperature-dependent sensor signal.
- 8. (Withdrawn) The system according to claim 4, wherein the transmitter unit includes an oscillator circuit, the system further comprising an arrangement configured to determine a frequency of a periodic reply signal to detect the temperature-dependent sensor signal.
- 9. (Original) The system according to claim 1, wherein the signal processor unit includes an arrangement configured to determine the temperature in accordance with the sensor signals.

NY01 912352 3

- 10. (Original) The system according to claim 9, wherein the signal processor unit includes a signal transmitter configured to transmit at least temperature data to a subsequent electronic device.
- 11. (Original) The system according to claim 10, wherein the signal transmitter is configured for serial data transmission to the sequential electronic device.
- 12. (Original) The system according to claim 5, further comprising: means for generating one of a sinusoidal alternating excitation signal and a pulsed excitation signal; and

a voltage divider circuit, the voltage divider circuit, the measuring shunt and a temperature-dependent resistance of the temperature sensor transformed by the transmitter unit adapted to detect the temperature-dependent sensor signal.

- 13. (Withdrawn) The system according to claim 4, wherein the transmitter unit includes an oscillator circuit, the system further comprising means for determining a frequency of a periodic reply signal to detect the temperature-dependent sensor signal.
- 14. (Original) The system according to claim 1, wherein the signal processor includes means for determining the temperature in accordance with the sensor signals.

Claim 15. (Canceled).

16. (New) The system according to claim 1, wherein the electrical transmitter unit is configured to supply power to the temperature sensor.