엣지 검지 기반 단일교차로 교통신호제어 및 설계 알고리즘 개발

K-Means 클러스터 기법을 활용한 유사 교통 특성 군집 기반 TOD 분할

K-Means 클러스터 기법을 활용한 유사 교통 특성 군집 기반 TOD 분할

/ 개요

- 시간대별 (TOD: time-of-day) 교통 신호 제어는 하루 동안 여러 TOD 계획으로 이뤄진 고정식 신호 제어
- 각 TOD 계획은 교통량에 따라 다르게 설정된 신호 현시 테이블을 가짐
- 본 과업에서는 데이터 마이닝 (Data Mining) 기법 중 하나인 K-Means 클러스터 기법을 활용하여 시간대별 교차로 통행 특성을 반영한 <u>최적 TOD 분할 방법</u>을 제시

TOD 분할 방식	AS-IS	TO-BE
교통 정보 수집	 ◆ 수기 기록 → 교통 정보 수집 비용▲ ● 제한된 조사 시간 → 시계열 특성에 따른 편향 	 영상 (또는 라이다) 기반 교통량 검지 24H/365D
TOD 분할 및 신호 현시 계획	교통량 흐름을 반영한 주기적 업데이트가 어려움	중 ● 데이터 마이닝 기법을 통한 상시 분석

K-Means 클러스터 기법을 활용한 유사 교통 특성 군집 기반 TOD 분할

K-Means 클러스터 기법을 활용한 유사 교통 특성 군집 기반 TOD 분할

/ 입력 데이터

• 스마트교차로 데이터

./data/traffic_input.csv

컬럼명	설명	예시
CRSRD_ID	교차로 ID	1860001200
REG_DT	수집 시간	2020-06-29 07:00:00
DIR	회전방향	5
TRF	교통량	36

• 교차로 그룹

./data/crsrd_sa.csv

컬럼명	설명	예시
CRSRD_ID	교차로 ID	1860013300
SA	교차로 그룹	SA 101

/ 실행 코드

2

python tod generator.py --input-dir ./data --output-dir ./result --max-tod 10

- ① 입력 데이터 저장 폴더
- ② 출력 데이터 저장 폴더
- ③ 고려가능 최대 TOD 수

/ 출력 데이터

• 스마트교차로 데이터

./result/TOD_TABLE_SA.csv

컬럼명	설명	예시
SA	교차로 그룹	SA 101
DOW	요일 (0: 평일, 1: 토요일, 2: 일요일)	0
HOUR	시간	7
TOD_PLAN	K-Means 기반 TOD 번호	3
CYCL	기존 주기 (초)	170

```
H:\SUJIN_2017\3. 과제\(2019) 클라우드 엣지 기반 도시교통 브레인_ETRI\2023>python tod_generator.py --input-dir ./data --
utput-dir ./result --max-tod 10
SA: 1
K-Means Clustering 기반의 6개의 TOD가 생성되었습니다.
SA: 98
Hierarchical Clustering 기반의 3개의 TOD가 생성되었습니다.
SA: 3
K-Means Clustering 기반의 3개의 TOD가 생성되었습니다.
SA: 56
K-Means Clustering 기반의 3개의 TOD가 생성되었습니다.
SA: 28
K-Means Clustering 기반의 7개의 TOD가 생성되었습니다.
SA: 28
K-Means Clustering 기반의 7개의 TOD가 생성되었습니다.
SA: 61
K-Means Clustering 기반의 6개의 TOD가 생성되었습니다.
완료하였습니다.
```