1 Question 5 (Sample Variant 2)[25 marks]

(a) Binary Channels (5 Marks)

Consider the binary channel in the figure below.

Figure 1:

- (i) (1 Marks) Determine the channel matrix of the channel
- (ii) (2 Marks) Find $P(Y_1)$ and $P(Y_2)$ when $P(X_1) = 0.7$ and $P(X_2) = 0.3$.
- (iii) (2 Marks) Find the joint probabilities $P(X_1, Y_1)$ and $P(X_2, Y_2)$.

(b) Huffman Coding (10 Marks)

A discrete memoryless source X has five symbols $\{x_1,x_2,x_3,x_4,x_5\}$ with probabilities $P(x_1)=0.45$, $P(x_2)=0.20$, $P(x_3)=0.16$, $P(x_4)=0.14$ and $P(x_5)=0.05$.

- (i) (5 Marks) Construct a Huffman code for X.
- (ii) (4 Marks) Calculate the efficiency of the code.
- (iii) (1 marks) Calculate the redundancy of the code.

• (c)

(b) Shannon Coding (6 Marks)

A discrete memoryless source X has five symbols $\{x_1;x_2;x_3;x_4;x_5\}$ with prob- abilities P(x1)=0.40, P(x2)=0.25, P(x3)=0.15, P(x4)=0.12 and P(x5)=0.08.

- (i) (4 marks) Construct a Shanno code for X.
- (ii) (2 marks) Calculate the entropy of the code.

(d) Communication Channels (4 Marks)

The input source to a noisy communication channel is a random variable X over the four symbols $\{a, b, c, d\}$. The output from this channel is a random variable Y over these same four symbols.

The joint distribution of these two random variables is as follows:

y=a	0.125	0.03125	0	0.015625
y=b	0	0.1875	0.125	0
y=c	0	0.015625	0.1875	0
y=d	0.0625	0	0	0.25

- (i) (2 Marks) Write down the marginal distribution for X and compute the marginal entropy H(X).
- (ii) (2 Marks) Write down the marginal distribution for Y and compute the marginal entropy H(Y).