Resultados dos Problemas NETLIB - Solver HiGHS

Análise Computacional

17 de setembro de 2025

1 Informações dos Problemas

Esta tabela apresenta informações básicas sobre cada problema da coleção NETLIB, incluindo métricas de viabilidade.

Tabela 1: Informações dos problemas NETLIB

Problema	Nº de Variáveis	$N^{\underline{o}}$ de Restrições	Inviab. Primal	Inviab. Dual	
25fv47	1572	821	0.000e+00	0.000e+00	
80bau3b	9799	2262	0.000e+00	1.377e-14	
Adlittle	97	56	0.000e+00	4.547e-13	
Afiro	32	27	0.000e+00	0.000e+00	
Agg	163	488	0.000e+00	0.000e+00	
Agg2	302	516	0.000e+00	2.132e-14	
Agg3	302	516	0.000e+00	2.132e-14	
BNL2	3489	2324	0.000e+00	1.116e-14	
BRANDY	249	220	0.000e+00	0.000e+00	
Bandm1	472	305	0.000e+00	0.000e+00	
Beaconfd	262	173	0.000e+00	0.000e+00	
Blend	83	74	0.000e+00	4.025e-15	
Boeig2	143	166	0.000e+00	6.939e-18	
Boeing1	384	351	0.000e+00	2.776e-17	
Bore3d	315	233	0.000e+00	0.000e+00	
CAPRI	353	271	0.000e+00	0.000e+00	
CYCLE	2857	1903	0.000e+00	6.990e-08	
Czprob	3523	929	0.000e+00	2.842e-14	
D2Q06C	5167	2171	4.349e-13	5.335e-13	
D6CUBE	6184	415	2.703e-13	1.288e-14	
DEGEN2	534	444	2.703e-13 2.220e-16	0.000e+00	
DEGEN2 DEGEN3	1818	1503	1.776e-15	4.441e-16	
DFL001	12230	6071	N/A	N/A	
E226	282	223	0.000e+00	0.000e+00	
ETAMACRO	688	400	0.000e+00	0.000e+00 0.000e+00	
FFFFF800	854		•		
FINNIS	614	524 497	0.000e+00	2.132e-14	
FIT1D	1026	24	0.000e+00	0.000e+00	
			0.000e+00	0.000e+00	
PILOT	3652	1441	3.227e-08	0.000e+00	
PILOTWE RECIPE	2789	722 91	0.000e+00	0.000e+00	
	180	-	0.000e+00	0.000e+00	
SC105	103	105	0.000e+00	0.000e+00	
SHIP04S	1458	402	0.000e+00	0.000e+00	
Sc205	203	205	0.000e+00	0.000e+00	
Sc50a	48	50	0.000e+00	0.000e+00	
Sc50b	48	50	0.000e+00	0.000e+00	
Sc50teste	48	50	0.000e+00	0.000e+00	
TAHA13MPS	2	4	0.000e+00	0.000e+00	
bnl1	1175	643	0.000e+00	1.052e-12	
forplan	421	161	0.000e+00	0.000e+00	
ganges	1681	1309	3.638e-12	4.263e-13	
gfrd-pnc	1092	616	0.000e+00	0.000e+00	
greenbea	5405	2392	5.022e-14	1.819e-12	
greenbeb	5405	2392	0.000e+00	8.743e-14	
grow22	645	300	0.000e+00	5.995e-12	
grow7	301	140	0.000e+00	3.999e-13	
israel	142	174	0.000e+00	0.000e+00	
kb2	41	43	0.000e+00	0.000e+00	
lotfi	308	153	1.819e-12	0.000e+00	

Continua na próxima página

Problema	Nº de Variáveis	Nº de Restrições	Inviab. Primal	Inviab. Dual	
maros	1443	846	8.882e-14	1.271e-15	
modszk1	1620	687	1.819e-12	0.000e+00	
nesm	2923	662	1.000e-08	1.819e-12	
perold	1376	625	0.000e+00	6.106e-15	
pilotnov	2172	975	1.634e-13	0.000e+00	
scagr25	500	471	0.000e+00	0.000e+00	
scagr7	140	129	0.000e+00	0.000e+00	
scfxm1	457	330	5.500e-15	0.000e+00	
scfxm2	914	660	5.500e-15	0.000e+00	
scfxm3	1371	990	5.500e-15	0.000e+00	
scorpion	358	388	0.000e+00	0.000e+00	
scrs8	1169	490	0.000e+00	0.000e+00	
scsd1	760	77	2.483e-17	2.854e-08	
scsd6	1350	147	8.327e-17	7.603e-08	
scsd8	2750	397	2.120e-15	1.599e-13	
sctap2-1	1880	1090	0.000e+00	0.000e+00	
sctap2	1880	1090	0.000e+00	0.000e+00	
sctap3	2480	1480	0.000e+00	3.553e-15	
seba	1028	515	0.000e+00	0.000e+00	
share2b	79	96	0.000e+00	0.000e+00	
shell	1775	536	0.000e+00	0.000e+00	
ship04	2118	402	0.000e+00	0.000e+00	
ship04l	2118	402	0.000e+00	0.000e+00	
ship08l	4283	778	0.000e+00	0.000e+00	
ship08s	2387	778	0.000e+00	0.000e+00	
ship12l	5427	1151	0.000e+00	3.695e-13	
ship12s	2763	1151	0.000e+00	0.000e+00	
sierra	2036	1227	4.547e-13	6.821e-13	
stair	467	356	0.000e+00	0.000e+00	
standata	1075	359	0.000e+00	0.000e+00	
tuff	587	333	0.000e+00	0.000e+00	
vtp	203	198	0.000e+00	0.000e+00	
wood1p	2594	244	0.000e+00	1.332e-15	

2 Resultados de Convergência

Esta tabela apresenta os resultados de convergência para cada problema, incluindo o número de iterações, valor da função objetivo e o gap relativo.

Tabela 2: Resultados de convergência dos problemas NETLIB

]	Problema	Iterações	Primal	Dual	Gap Absolu	to	Gap Relativo	
25fv47		27	5.191e+03	5	191e+03	3.5	329e-15	6.412e-1
80bau3b		43	9.872e + 05	1.3	130e + 06	2.9	948e-16	2.986e-2
Adlittle		13	2.255e + 05	2.5	255e + 05	6.4	453e-17	2.862e-22
Afiro		7	-4.648e + 02	-4.	648e + 02	6.	109e-17	-1.314e-1
Agg		18	-3.599e+07	-3.	599e + 07	2.0	070e-16	-5.752e-2
Agg2		19	-2.024e+07	-2.	024e + 07	1.5	288e-15	-6.366e-2
Agg3		19	1.031e + 07	1.0	031e + 07	1.8	806e-16	1.752e-23
BNL2		32	1.811e + 03	1.8	811e+03	5.6	648e-16	3.118e-19
BRANDY		17	1.519e + 03	1.5	519e + 03	7.4	484e-17	4.929e-20
Bandm1		17	-1.586e + 02	-1.	586e + 02	9.8	823e-16	-6.193e-18
Beaconfd		11	3.359e + 04	3.5	359e + 04	1.0	083e-16	3.224e-21
Blend		10	-3.081e+01	-3.	081e + 01	1.	135e-16	-3.682e-18
Boeig2		20	-3.150e + 02	-2.	823e + 02	9.0	008e-17	-2.859e-19
Boeing1		24	-3.352e+02	-3.	268e + 02	8.4	466e-17	-2.526e-19
Bore3d		13	1.373e + 03	0.0	000e + 00	0.0	00e+00	0.000e + 0
CAPRI		21	2.690e + 03	-2.	486e + 03	0.0	00e+00	0.000e + 0
CYCLE		33	-5.226e+00	0.0	000e+00	6.5	204e-16	-1.187e-1
Czprob		34	2.185e + 06	2.	185e + 06	3.	196e-16	1.463e-22
D2Q06C		34	1.228e + 05	1.5	228e + 05	0.0	00e+00	0.000e + 0
D6CUBE		30	3.155e + 02	3.	103e + 02	2.6	598e-16	8.553e-19
DEGEN2		15	-1.435e+03	-1.	435e + 03	4.	751e-16	-3.311e-19
DEGEN3		21	-9.873e + 02	-9.	873e + 02	1.	151e-15	-1.166e-18
DFL001		0	N/A		N/A		N/A	N/A
E226		22	-1.164e+01	-1.	875e+01			-7.544e-1'
ETAMACRO)	30	-7.557e + 02	-5.	108e + 01	1.5	503e-16	-1.989e-19
FFFFF800		28	5.557e + 05	5.5	557e + 05	3.	143e-16	5.655e-22
FINNIS		26	1.728e + 05	4.3	330e+05	1.6	684e-16	9.748e-22
FIT1D		19	-9.146e + 03	0.0	000e+00	3.9	977e-16	-4.348e-20
PILOT		40	-5.575e + 02	6.	741e+01	2.8	863e-14	-5.135e-1
PILOTWE		39	-2.720e+06	-2.	703e + 06	0.0	00e+00 -	0.000e + 0

Continua na próxima página

Tabela 2 - continuação da página anterior

	Tabela 2 – continuação da página anterior								
Problema	Iterações Primal	Dual	Gap Absoluto	Gap Relativo					
RECIPE	13	-2.666e+02	0.000e+00	6.384 e-16	-2.395e-18				
SC105	12	-5.220e+01	-5.220e+01	0.000e+00	-0.000e+00				
SHIP04S	18	1.799e + 06	1.799e + 06	1.294e-16	7.196e-23				
Sc205	12	-5.220e+01	-5.220e+01	5.393e-16	-1.033e-17				
Sc50a	8	-6.458e + 01	-6.458e + 01	0.000e+00	-0.000e+00				
Sc50b	8	-7.000e+01	-7.000e+01	1.008e-16	-1.440e-18				
Sc50teste	8	-6.458e + 01	-6.458e + 01	0.000e+00	-0.000e+00				
TAHA13MPS	4	-2.100e+01	-2.100e+01	0.000e+00	-0.000e+00				
bnl1	33	1.978e + 03	1.978e + 03	4.598e-16	2.325e-19				
forplan	23	-6.642e+02	-1.035e+03	3.421e-16	-5.150e-19				
ganges	21	-1.096e + 05	-5.851e + 04	9.295e-16	-8.482e-21				
gfrd-pnc	16	6.902e + 06	-2.983e+05	4.048e-16	5.865e-23				
greenbea	47	-7.256e + 07	0.000e+00	5.134e-16	-7.077e-24				
greenbeb	36	-4.302e+06	0.000e+00	0.000e+00	-0.000e+00				
grow22	20	-1.069e + 08	0.000e+00	$6.274e ext{-}16$	-5.871e-24				
grow7	19	-4.779e + 07	0.000e+00	7.795e-17	-1.631e-24				
israel	24	-8.966e + 05	-8.966e + 05	6.492e-17	-7.240e-23				
kb2	18	-1.750e + 03	0.000e+00	1.299e-16	-7.423e-20				
lotfi	19	-2.526e+01	-2.526e+01	1.379e-16	-5.458e-18				
maros	24	-5.806e + 04	-2.307e+04	1.880e-16	-3.237e-21				
modszk1	20	3.206e + 02	3.206e+02	1.177e-13	3.672e-16				
nesm	38	1.408e + 07	1.113e + 08	3.441e-15	2.444e-22				
perold	30	-9.381e+03	-1.124e+04	4.169e-15	-4.444e-19				
pilotnov	27	-4.497e+03	4.962e+01	1.011e-16	-2.248e-20				
scagr25	17	-1.475e + 07	-1.475e + 07	1.263e-16	-8.557e-24				
scagr7	15	-2.331e+06	-2.331e+06	9.987e-17	-4.284e-23				
scfxm1	22	1.842e+04	1.842e+04	9.877e-17	5.363e-21				
scfxm2	22	3.666e+04	3.666e+04	0.000e+00	0.000e+00				
scfxm3	22	5.490e+04	5.490e+04	5.301e-16	9.656e-21				
scorpion	11	1.878e + 03	1.878e + 03	1.815e-16	9.666e-20				
scrs8	21	9.043e+02	9.043e+02	3.141e-16	3.474e-19				
scsd1	14	8.667e+00	8.667e+00	1.938e-16	2.236e-17				
scsd6	22	5.050e+01	5.050e+01	1.393e-16	2.759e-18				
scsd8	18	9.050e+01	9.050e+01	5.650e-16	6.243e-19				
sctap2-1	20	1.725e+03	1.725e+03	6.589e-17	3.820e-20				
	20			6.589e-17					
sctap2	20 21	1.725e+03	1.725e+03		3.820e-20				
sctap3	7	1.424e+03	1.424e + 03	0.000e+00	0.000e+00				
seba	15	1.571e+04	1.938e + 04	0.000e+00	0.000e+00				
share2b		-4.157e + 02	-4.157e + 02	4.097e-15	-9.855e-18				
shell	20	1.209e+09	0.000e+00	0.000e+00	0.000e+00				
ship04	16	1.793e+06	1.793e + 06	1.298e-16	7.240e-23				
ship04l	16	1.793e + 06	1.793e + 06	1.298e-16	7.240e-23				
ship08l	16	1.909e+06	1.909e + 06	6.098e-17	3.194e-23				
ship08s	14	1.920e+06	1.920e+06	4.850e-16	2.526e-22				
ship12l	18	1.470e + 06	1.470e + 06	3.167e-16	2.154e-22				
ship12s	16	1.489e + 06	1.489e + 06	1.485e-15	9.973e-22				
sierra	22	1.539e + 07	1.539e + 07	4.235e-16	2.751e-23				
stair	16	-2.513e+02	-9.077e + 01	1.863e-15	-7.413e-18				
standata	14	1.258e + 03	0.000e+00	0.000e+00	0.000e+00				
tuff	25	2.921e-01	0.000e+00	7.008e-17	2.399e-16				
vtp	10	1.298e + 05	-4.158e + 05	3.362e-16	2.590e-21				
wood1p	27	1.443e+00	1.443e+00	5.714e-17	3.960e-17				

3 Observações

- O solver HiGHS foi configurado com o método IPM (Interior Point Method).
- $\bullet\,$ Problemas com status "Optimal" convergiram com sucesso.
- $\bullet~$ A primeira tabela mostra informações básicas dos problemas e métricas de viabilidade.
- $\bullet\,$ A segunda tabela apresenta métricas de convergência e qualidade da solução.
- As soluções detalhadas de cada problema (variáveis primais e duais) são salvas em arquivos individuais.
- As variáveis duais representam os multiplicadores de Lagrange das restrições.