bicincittaProblems

May 6, 2015

Contents

0.1	Proble	ns in the Bicincitta data set from 2013	1
	0.1.1	Data	1
	0.1.2	Who are the users?	2
	0.1.3	Subnetworks for stations and users	2
	0.1.4	Transaction users, stations, and subnetworks	4
	0.1.5	User addresses	Ç

0.1 Problems in the Bicincitta data set from 2013

There are problems with the Bicincitta data that we need to address before loading the data into a reliable and proper data-base. We will point out these problems using examples, and measure their magnitude using systematic analysis, and then speculate about the source of these problems.

0.1.1 Data

We will load the data from JSONs provided to us by Bicincitta at the end of April 2015.

The resulting data is in the form of lists of dictionaries. We can take a peek at the keys in each of the four data types, by creating a data frame and displaying the first few rows.

```
a subnetwork is described by,
        id
        name
 a station is described by,
        name
        longitude
        {\tt subnetwork\_name}
        latitude
        subnetwork_id
 a user is described by
        subnetwork_id
        gender
        expires
        postal_code
        subnetwork_name
        address
        id
 a transaction is described by,
        direction
        user_id
```

```
station_id
event_time
id
```

The resulting dictionaries have ids that are UTF-8 strings. We can change these to integers to make our work easier,

There are keys in a transaction that do not seem to correspond to the data, but refer to the time at which the data was loaded into the JSON provided to us. We will drop these variables, and change the *event_time* to a time object. Following that we will sort the transactions by the event time

We also sort the subnetworks and stations by their id.

Stations and users have been assigned a *subnetwork_id* in the data. We can add the subnetwork name to these data,

0.1.2 Who are the users?

The simplest question may be the fraction of females vs males,

Of all the users 60 percent are female and 39 percent males.

It would be interesting if 60% of the users were in fact female. However, as we will see later there seems to be a problem of user duplicacy biased towards females.

0.1.3 Subnetworks for stations and users

Are the subnetwork_ids for stations and users sensible? The subnetworks that the stations fall in are

Subnetworks that have stations assigned to them

name	id	
La Cote	1	0
Agglo Fribourg	2	1
Bulle	3	2
Les Lacs-Romont	4	3
Chablais	6	4
Valais Central	7	5
Yverdon-les-Bains	8	6
Lausanne-Morges	9	7
Campus	10	8
Riviera	11	9
Lugano-Paradisc	12	10

We see that stations cover only 11 of the 18 subnetworks. Looking at the subnetworks with no stations,

Subnetworks without any assigned stations

name	id	
Bâle	5	0
PubliBike	13	1
Vevey	14	2
Morges	15	3
Ouchy	16	4
Paradiso	17	5
Cern	18	6

we can see why there are no stations corresponding to these subnetworks. Basel, and Cern because Bicincitta have not given us data for these regions. Vevey, Morges, Ouchy, and Paradiso include stations subsumed by other subnetworks. These networks may be a remnant from previous versions of the data. This leaves $\mathbf{PubliBike}$ unexplained. As it turns out, there are users that have been assigned the subnetwork $\mathbf{PubliBike}$ ($id\ 13$). In fact we see later that the users who have registered transactions in the data have been assigned only $\mathbf{PubliBike}$, and no other subnetwork.

Number of users from subnetwork PubliBike 58927

Users that have been assigned subnetwork PubliBike compose 70% of the total users in the data. However we are not going to see PubliBike in any of their transactions as there are no stations for the subnetwork PubliBike! What about other subnetworks without stations?

subnetworks assigned to users

name	id	ut[607]:	Out [607]:
Agglo Fribourg	2	0	
Chablais	6	1	
Valais Central	7	2	
Yverdon-les-Bains	8	3	
Lausanne-Morges	9	4	
Campus	10	5	
Lugano-Paradiso	12	6	
PubliBike	13	7	
Vevey	14	8	
Ouchy	16	9	
Paradiso	17	10	
Cern	18	11	

subnets without any users

Out[608]:		id	name
	0	1	La Cote
	1	3	Bulle
	2	4	Les Lacs-Romont
	3	5	Bâle
	4	11	Riviera
	5	15	Morges

Comparing the subnets for users to subnets with stations we see that there are **only 7 subnets** for which we have stations as well as users,

subnets with stations as well as users

Out[609]:		id	name
	0	2	Agglo Fribourg
	1	6	Chablais
	2	7	Valais Central
	3	8	Yverdon-les-Bains
	4	9	Lausanne-Morges
	5	10	Campus
	6	12	Lugano-Paradiso

As a summary, let us tabulate the fraction of users in each of the subnets,

So, most of the users are in PubliBike, which could create a problem as there are no stations associated to PubliBike. Lets first look at the transactions before we try to find a solution to this problem.

0.1.4 Transaction users, stations, and subnetworks

We begin by looking at how many users actually use the bike system (have valid transactions)

fraction of users who have registered a transaction 0.10673152586

Only 10% users have registered a transaction! Are all the transactions of a user in the same subnetwork?

Out[800]:		${\tt user_id}$	$assigned_subnet$	numStations	numSubnets	numTrxns
	3462	108132	13	56	8	2180
	4469	111523	13	46	7	2110
	5399	84545	13	43	7	5134
	3463	108133	13	43	6	3280
	4673	112287	13	23	3	540

A simple question might guide us. How many transactions belong to Publibike users (who have subnetwork_id PubliBike)?

The subnetworks of the users who make transactions make a set([13])

So, from the view point of the users, all the transactions are in the subnetwork PubliBike How many transactions in a subnetwork of the stations?

Now we can make a table for subnetworks, counting the number of trxns through user and station $subnetwork_id$, in addition to the number of users.

Out[764]:		id	name	numStations	numTrxns_stns	\
	name					
	Vevey	14	Vevey	0	0	
	Cern	18	Cern	0	0	
	unknown	2005	unknown	0	0	
	unknown	2011	unknown	0	0	

Paradiso	17	Paradiso	0	0
Ouchy	16	Ouchy	0	0
PubliBike	13	PubliBike	0	0
Morges	15	Morges	0	0
Bâle	5	Bâle	0	0
Bulle	3	Bulle	2	566
Riviera	11	Riviera	5	11576
Valais Central	7	Valais Central	7	5077
Les Lacs-Romont	4	Les Lacs-Romont	9	4964
Yverdon-les-Bains	8	Yverdon-les-Bains	9	33227
Agglo Fribourg	2	Agglo Fribourg	10	17630
Chablais	6	Chablais	10	2377
Lausanne-Morges	9	Lausanne-Morges	11	12157
Lugano-Paradiso	12	Lugano-Paradiso	13	66415
La Cote	1	La Cote	13	71292
Campus	10	Campus	15	65853

	${\tt numTrxns_users}$	${\tt numUsers}$
name		
Vevey	0	4
Cern	0	721
unknown	0	469
unknown	0	152
Paradiso	0	3
Ouchy	0	3
PubliBike	291134	58927
Morges	0	0
Bâle	0	0
Bulle	0	0
Riviera	0	0
Valais Central	0	530
Les Lacs-Romont	0	0
Yverdon-les-Bains	0	773
Agglo Fribourg	0	810
Chablais	0	3
Lausanne-Morges	0	2183
Lugano-Paradiso	0	3425
La Cote	0	0
Campus	0	15871

0.1.5 User addresses

There are several problems associated with user addresses. We have already noticed, and fixed, that the provided addresses in the JSON have not been *unquoted* from their web encoding. Here we continue to explore other problems that may arise in the addresses.

We want to count the number of users at one address. Because the addresses have been provided as strings, we have to be able to aggregate all address strings that describe the same address. We have written a python function to do this task, which takes the address and postal-code strings to provide a combined string taking into account some empirical disambiguation criteria such as Av, Ave, for Avenue.

```
number of users with available address 21659 number of these addresses that are unique 15446
```

What fraction of unique addresses have multiple users?

0.230545124951

How many users at addresses with multiple users?

9774

which corresponds to a fraction of all users with available address,

0.451267371531

Multiple users at the same address could be actual multiple people, or multiple registrations by the same person, or a glitch in the data. We can consider as an example the address with the most multiplicity of 53,

```
address: via lambertenghi 1; 6900, number of users: 53
```

We could say more about the multiple users at the same address if we look at their transactions. However as it turns out, we do not have addresses for users who have registered transactions in the data,

False

We can look at the subnetwork with addresses assigned to the *multi* users,

```
subnetworks with addresses assigned to multiple users set([2, 7, 8, 9, 10, 12, 18, 2005, 2011])
```

Some of the multi-user addresses have more than one subnetworks (through the users at that address)

Subnetworks for users living at addresses with multiple registered users

There are as many as 37 users assigned to the same address that also have more than subnetwork assigned. Addresses with several users might represent problems of multiple subscription. For example, if we look at addresses with more than 10 users,

```
Out[806]:
                                  address
                                           numFemales
                                                        numMales
                                                                  numUsers
                                                               0
                avenue des bains 9: 1007
                                                    37
                                                                         37
          40
                route cantonale 33; 1025
                                                    25
                                                               0
                                                                         25
          105
               avenue des bains 11; 1007
                                                    23
                                                               0
                                                                         23
                                                    23
                                                                0
          48
                place du tunnel 17; 1005
                                                                         23
                                   subnetworks
          143
               set([Lausanne-Morges, Campus])
               set([Lausanne-Morges, Campus])
               set([Lausanne-Morges, Campus])
          105
               set([Lausanne-Morges, Campus])
```

we see that the user is over-whelmingly females. However, a look at the lower end of such addresses seems alright,

Out[807]:		addr	cess	numFemales	numMales	numUsers	\
3	3	poudrière 24; 1	1950	3	0	3	
6:	31	avenue beaulieu 20; 1	1004	2	1	3	
23	23	avenue louis-ruchonnet 31; 1	1003	2	1	3	
10	.04	eichenweg 12; 1	1718	2	1	3	
6	57	rue saint-rochemin 5; 1	1004	2	1	3	
	31 23 .04	subnetwor set([Campus, Valais Central set([Lausanne-Morges, Campus set([Lausanne-Morges, Campus set([Agglo Fribourg, Campus set([Lausanne-Morges, Campus	[]) []) [])				

These particular addresses appear sensible. There could be more than one person living at these addresses who have signed up with the bike system, albeit in different subnetworks. Or may be it is the same person with 2 different sign-ups in two different sub-networks. This raises the question: **How are users registered by the system? One individual = one signup? Or does a user need a sign-up for each subnetwork that she wants to use?** If it is the latter, then the provided $user_ids$ become less useful, because the same individual will appear as different users according to the $user_ids$.

Out[808]:		addres	s numFemales	numMales	numUsers
	18	via lambertenghi 1; 690	0 52	1	53
	2288	chemin des falaises 3; 100	5 52	0	52
	1349	chemin des berges 12; 102	2 41	0	41
	2150	avenue des bains 9; 100	7 37	0	37
	332	via monte carmen 4; 690	0 33	0	33
	287	route cantonale 33; 102	5 25	0	25
	1444	via madonnetta 23; 690	0 24	0	24
	1649	place du tunnel 17; 100	5 23	0	23
	1826	avenue des bains 11; 100	7 23	0	23
	1997	rue de genève 76; 100	4 22	0	22
	1801	route cantonale 35; 102	5 22	0	22
	2534	via zurigo 1; 690	0 20	1	21
Out[809]:		address	numFemales r	numMales n	umUsers
	0	bonne-espérance 28; 1006	1	0	1
	1	37 route cantonnale; 1025	1	0	1
	2	avenue de la dôle 4; 1005	1	0	1
	3	abbesses 21; 2012	1	0	1
	4 ch	emin de ponfilet 100; 1093	0	1	1