

Reading Sample

This excerpt from Chapter 4 provides a quick glimpse of database views and the view modeler in SAP HANA Studio. This chapter kicks off your introduction to ABAP programming in SAP HANA. You'll also walk along with a helpful example from the SFLIGHT data model that will help you apply theory to reality.

The Authors

Thorsten Schneider, Eric Westenberger, Hermann Gahm

ABAP Development for SAP HANA

609 Pages, 2014, \$69.95 ISBN 978-1-59229-859-4

www.sap-press.com/H3320

Introduction

Today's business world is extremely dynamic and subject to constant change, with companies continuously under great pressure to innovate. SAP HANA's vision is to provide a platform that can be used to influence all business processes within a company's value chain in real time. However, what does this key term *real time* mean for business applications?

In technological terms, it describes, in particular, the availability of essential functions without *unwanted* delays. The environment in which a technology is used and the time when this occurs strongly influences the functions needed and what is deemed to be an *acceptable* delay. Before we discuss the software currently used for enterprise management, we wish to illustrate this using an example from daily life, namely telecommunications.

Early forms of communication (for example, telegraphs) were very limited in terms of their usage (range, availability, and manual effort). At that time, however, it was an immense improvement in terms of the speed at which messages were previously exchanged. Then, with advent of the telephone, it became possible to establish flexible connections over long distances. Once again, however, users of this technology had to allow for various delays. Initially, it was necessary to establish a manual connection via a switchboard. Later, and for a very long time after, there were considerable *latencies* with overseas connections, which affected and complicated long-distance telephone conversations. Today, however, telephone connections can be established almost anywhere in the world and done so without any notable delay. Essentially, every leap in evolution has been associated with considerable improvement in terms of *real-time quality*.

In addition to a (synchronous) conversation between two people, asynchronous forms of communication have always played a role historically (for example, postal communication). In this context, the term *real time* has a different meaning because neither the sender nor the receiver needs to actively wait. Asynchronous communication has also undergone

Example: real time in telecommunications immense changes in recent years (thanks to many new variants such as email, SMS, and so on), which, unlike postal mail, facilitates a new dimension of real-time communication between several people. Furthermore, there is an increasing number of non-human communication users such as devices with an Internet connection, which are known as *smart devices* (for example, intelligent electricity meters).

Most people will testify to the fact that, nowadays, electronic communication is available in real time. Nevertheless, in our daily lives, some things still cannot occur in real time despite the many advances in technology (for example, booking a connecting flight during a trip). It is safe to say that in the future, many as yet inconceivable scenarios will be so widespread that currently accepted limitations will become completely unacceptable.

Real time in business

The above example of telecommunications technology contains some basic principles that can also be applied to business software. On the one hand, there are corporate and economic developments such as globalization and the increasing mobility of customers, and employees who are the driving forces for new types of technology. Companies operate globally and interact in complex networks. Furthermore, customers and employees expect to be able to access products and services at all times, from anywhere in the world.

On the other hand, there are technological innovations that pioneer new paths. The Internet is currently a catalyst for most developments. Enormous volumes of data are simultaneously accessible to a large part of the world's population (that is, in real time). The Internet also provides a platform for selling all types of products and services, which has led to a phenomenal increase in the number of business transactions conducted each day. Companies can gain a massive competitive advantage each time a business process (for example, procurement, production, billing, and so on) is optimized. In most industries, there is great potential here, which can be realized by establishing a closer link between operational planning and control in real time.

Today's customers also expect greater customization of products and services to their individual wishes (for example, to their personal circumstances). In particular, companies that are active in industries subject to major changes (for example, the energy industry, financial providers or specific forms of retail) are under a great deal of pressure to act.

The term *real time* shapes the evolution of 40 years of SAP software. Even Real time at SAP the letter "R" in SAP's classic product line, R/3, stood for real time. SAP's initial concepts in the 1970s, which paved the way for the development of R/1, facilitated the on-screen entry of business data, which, compared to older punch card systems, provided a new quality of real time. Consequently, processes such as payroll accounting and financial accounting were the first to be mapped electronically and automated. With SAP R/2, which was based on a mainframe architecture, SAP added further ERP modules (Enterprise Resource Planning), for example, Materials Management, to these applications areas. As part of this release, SAP introduced the reporting language ABAP. (Originally, ABAP stood for Allgemeiner Berichtsaufbereitungsprozessor, which means "General Report Creation Processor," but this was later changed to Advanced Business Application Programming). ABAP reports were used to create, for example, a list of purchase orders, which was filtered according to customer and had drilldown options for line items. Initially, this was available in the background only (batch mode). However, it later became available in dialog mode.

Thanks to the *client/server architecture*, in particular, and the related scaling options in SAP R/3, it was possible for a large number of users within a company to access SAP applications. Consequently, SAP software, in combination with consistent use of a database system and an ever-growing number of standard implementations for business processes, penetrated the IT infrastructure of many large companies, thus making it possible to use an integrated system to support transactional processes in real time (for example, a just-in-time production process).

Parallel to these developments is the fact that, over the past 20 years, it has become increasingly more important to analyze current business processes, the purpose of which is to continuously obtain information in order to make better operational and strategic decisions. Within this business intelligence trend, however, it soon became clear that in many situations, it is technically impractical to perform and integrate the required analyses into a system that already supports business processes. Parallel processing of analyses and transactions involving extremely large amounts of data overloaded most systems, with the database, in particular, emerging as a limiting factor. This was one of the reasons why SAP created a specialized system for analytical scenarios, which you currently know as

Importance of business intelligence

Introduction Introduction

SAP NetWeaver Business Warehouse (BW). In addition to new options for consolidating data from multiple systems and integrating external data sources, the use of the data warehouse system for operational scenarios is, unfortunately, fraught with losses when data is processed in real time. First of all, data needs to be extracted and replicated, which, in practice, can cause a time delay, ranging from several hours up to one week, until the current data is available at the correct location. This was SAP's starting point for SAP HANA; in other words, no more delays in receiving key information for a business decision.

SAP HANA as a database SAP likes to describe SAP HANA as a platform for real-time data management. To begin with, SAP HANA is a high-end database for business transactions (Online Transaction Processing, OLTP) and reporting (Online Analytical Processing, OLAP), which can use a combination of in-memory technology and column-oriented storage to optimize both scenarios. In the first step, SAP HANA was used as a side-by-side scenario (that is, in addition to an existing traditional database) to accelerate selective processes and analyses. Soon after, it was supported as a new database for SAP NetWeaver BW 7.3. In this way, SAP demonstrated that SAP HANA not only accelerates analytical scenarios, but that it can also be used as a primary database for an SAP NetWeaver system. With the announcement of SAP Business Suite powered by SAP HANA, it is now also possible for customers to fully benefit from SAP HANA technology within standard SAP applications. The new SAP NetWeaver release 7.4 underlying this constellation (in particular, SAP NetWeaver Application Server (AS) ABAP 7.4) will therefore play a key role in this book. Furthermore, the sample programs in this book require ABAP 7.4. However, we will always indicate which functions you can also use with earlier releases of SAP NetWeaver. A cloud-based trial version of ABAP 7.4 on SAP HANA is available. For more information, see Appendix E.

SAP HANA as a platform

Furthermore, SAP HANA provides many more functions that go beyond the usual range of functions associated with a database. In particular, these include extensive data management functions (replication, extraction – transformation – load (ETL), and so on) and data analysis functions (for example, data mining by means of a text search and predictive analysis). Many of these technologies and functions are not exclusively available to SAP HANA. In fact, many software systems now manage data in the

main memory or use column-oriented displays. SAP itself developed and used in-memory technology long before SAP HANA came into being (for example, in SAP NetWeaver BW Accelerator). Similarly, a number of software manufacturers (including SAP itself) are involved in data analysis, especially in the context of business intelligence and information management solutions. One key benefit of SAP HANA is the fact that it offers this function in the same system in which business transactions are running. If, for example, you want to run SAP Business Suite on SAP HANA, these enhanced functions are available to you immediately, without the need to extract data. Furthermore, since SAP HANA incorporates the key data structures of the SAP Business Suite, installed functions already exist for some standard operations (for example, currency conversion).

Therefore, what does SAP HANA mean for standard SAP applications that ABAP development run on the ABAP application server? What changes are occurring in ABAP programming? What new options does SAP HANA open up in terms of ABAP-based solutions? These three questions will be at the heart of this book. Furthermore, we will always use examples to explain the relevant technical backgrounds and concepts, rather than simply introducing you to the technology behind the new tools and frameworks. In particular, we will focus on the basic functions of ABAP development and database access via ABAP. We will introduce existing or planned supports for SAP HANA in ABAP-based frameworks as an overview or outlook because a detailed description would generally require an introduction to how these components work. (Examples here include Embedded Search and BRFplus.) In the examples contained in this book, we will use simple ABAP reports as the user interfaces, for the most part. In two detailed examples, however, we will also create web-based interfaces with Web Dynpro ABAP and HTML5.

We made the decision to divide this book into three parts. In Part I, "Basic Structure of the Principles," we will introduce you to the basic principles of in-memory technology. Here, you will get to know the development tools as well as refresh your knowledge of ABAP database programming. In Chapter 1, "Overview of SAP HANA," we will start with an overview of the components of SAP HANA and potential usage scenarios in conjunction with ABAP. In Chapter 2, "Introducing the Development Environment," we will introduce you to the development environment, which comprises

on SAP HANA

book: Part I

SAP HANA Studio and the ABAP development tools for SAP NetWeaver (also known as ABAP in Eclipse). Chapter 3, "Database Programming using SAP NetWeaver AS ABAP," will discuss the use of Open SQL and Native SQL to access the HANA database from ABAP programs.

Part II In the second part of the book, "Introduction to ABAP Programming with SAP HANA," you'll learn how to store data from an ABAP application (for example, certain calculations) in SAP HANA, thus achieving considerably better performance. Here, the focus will be on programming and modeling SAP HANA, as well as accessing SAP HANA from ABAP programs. In Chapter 4, "View Modeling in SAP HANA Studio," we will discuss the various ways in which you can create data views, which can then be used to conduct calculations and analyses in relation to ABAP table content. Then, in Chapter 5, "Programming Options in SAP HANA," you will learn about SQLScript, which is the programming language for database procedures in SAP HANA. You'll also learn how to use ABAP to access these procedures. In **Chapter 6**, "Application Transport," we will explain how you can transport ABAP development objects alongside the objects contained in the SAP HANA Repository. Together with the tools in Chapter 7, "Runtime and Error Analysis on SAP HANA," you now have the basic tools that we, as ABAP developers, believe you need to know within the context of SAP HANA. Part II of this book will conclude with **Chapter 8**, "Sample Scenario: Optimizing an Existing Application," where we will use the technologies and tools introduced earlier in this book to optimize an existing ABAP implementation for SAP HANA, step by step.

In Part III of this book, "Advanced Techniques for ABAP Programming for SAP HANA," we will introduce you to some advanced SAP HANA functions, which are not available in classic ABAP development. Even though the chapters contained in Part III of this book are based on the content of the preceding part, Part III can be read in isolation. In Chapter 9, "Text Search and Analysis of Unstructured Data," we will start by describing the fuzzy search in SAP HANA and we will show you how you can use it to improve, for example, input helps within an ABAP application. Then in **Chapter 10**, "Integrating Analytical Functionality," we will introduce you to the capabilities of the embedded SAP NetWeaver BW technology in conjunction with ABAP developments on SAP HANA and existing SAP Business Intelligence products. You can then use decision tables, whose

usage we will discuss in Chapter 11, "Decision Tables in SAP HANA," to use rules that enable you to design parts of an application in a very flexible manner. As a final element, we will show you in Chapter 12, "Function Libraries in SAP HANA," how you can, for example, incorporate statistical functions for predictive analysis into an ABAP application. In Chapter 13, "Sample Scenario: Development of a New Application," we will create a small sample application that connects innovations achieved with SAP HANA to ABAP transactions. The book concludes with Chapter 14, "Practical Tips," which contains our recommendations for optimizing ABAP applications on SAP HANA as well as some new developments in relation to ABAP applications on SAP HANA.

As you will see while reading this book, the HANA platform provides a whole host of options. You do not necessarily have to use all of the elements introduced here in ABAP custom developments on SAP HANA. For some new types of functions, the use of low-level technologies, which you may only have used occasionally in the past, is currently necessary in the ABAP application server (for example, Native SQL). However, we are convinced that the use of new options holds great innovation potential in terms of new developments. For this reason, we strive to adopt a certain pioneering approach, which is evident in some of the examples provided in this book.

As an example, we will use the flight data model in SAP NetWeaver (also Sample data model known as the SFLIGHT model), which was and remains the basis for many training courses, documentation, and specialist books relating to SAP ERP. Thanks to its popularity, the new features and paradigm shifts involved with SAP HANA can be explained very well using this example. The underlying business scenario (airlines and travel agencies) is also very well suited to explaining aspects of real time because, in recent years, the travel industry has been subject to great changes as a result of globalization and the Internet. Furthermore, the volume of data in the context of flight schedules, postings, and passengers has continued to grow.

Throughout this book, you will find several elements that will make it How to use easier for you to work with this book.

Highlighted information boxes contain helpful content that is worth knowing, but lies somewhat outside the actual explanation. In order to Deploying new technologies

this book

help you immediately identify the type of information contained in the boxes, we have assigned symbols to each box:

- [+] Tips marked with this symbol will give you special recommendations that may make your work easier.
- **[»]** Boxes marked with this symbol contain information about additional topics or important content that you should note.
- [!] This symbol refers to specifics that you should consider. It also warns about frequent errors or problems that can occur.
- **[Ex]** Examples marked with this symbol make reference to practical scenarios and illustrate the functions shown.

In addition, you will find the code samples used throughout as a download on this book's web page at *www.sap-press.com*.

We hope that, with this book, we can give you a comprehensive tool that will support you in using the HANA technology in ABAP programs. Finally, we hope that you enjoy reading this book.

Acknowledgments

We wish to thank the following people who supported us by partaking in discussions and providing advice and feedback during the writing of this book:

Arne Arnold, Dr. Alexander Böhm, Ingo Bräuninger, Ralf-Dietmar Dittmann, Franz Färber, Markus Fath, Dr. Hans-Dieter Frey, Boris Gebhardt, Dr. Heiko Gerwens, Dr. Jasmin Gruschke, Martin Hartig, Vishnu Prasad Hegde, Rich Heilman, Thea Hillenbrand, Dr. Harshavardhan Jegadeesan, Thomas Jung, Bernd Krannich, Dr. Willi Petri, Eric Schemer, Joachim Schmid, Sascha Schwedes, Christiaan Edward Swanepoel, Welf Walter, Jens Weiler, Stefan Weitland, Tobias Wenner, and Andreas Wesselmann.

Thank you so much—this book would not have been possible without your help.

Thorsten Schneider, Eric Westenberger, and Hermann Gahm

Using SAP HANA, you can perform business calculations directly on the original data in the main memory without the need to transform data. Many of these calculations can be modeled graphically as special data views in the SAP HANA Studio without having to write program code. When using ABAP 7.4, these views can then be imported to the ABAP Data Dictionary.

4 View Modeling in SAP HANA Studio

In this chapter, we'll kick off Part II of this book by looking in detail into *database views*. You may be asking yourself why exactly this topic plays such a big role in the context of SAP HANA. To answer this question, we would like to go back a little and briefly explain the underlying reasoning.

The business data of a domain are stored (usually in a normalized form) in a set of database tables that are connected via foreign key relationships (a so-called *entity-relationship model*). Using this data model, single records can be efficiently created, selected, and modified. However, if data access becomes more dynamic and complex, or if certain analyses or checks are necessary, the data must be transformed.

So far, the pattern that was most commonly used for these transformations is that the data is read from the database and used by a program for calculations before storing the result back in the database. This is referred to as *materialization* of the transformed data.

A simple example is the materialization of a totals calculation in a special column or *totals table*. In principle, the same pattern is used for data structures of a *business intelligence system*, where the original data is transformed into a form that can be used more efficiently for analyses (*star schema*). This materialization was primarily done for performance reasons in the past, since it was not possible to perform the transformations *on the fly* at runtime when users submitted a query. However, since the different data structures had to be synchronized (which is usually done with

some time offset), this performance gain also led to higher complexity and prevented a real-time experience for users. Using SAP HANA, this redundancy can now be eliminated in many scenarios. From a technical perspective, this means that the transformations are performed in real time, using the original data. As a consequence, database views are an important element, used in this context to express transformations for read accesses.

SQL views

Every relational database system provides an option for defining views. These *standard views* (also referred to as *SQL views*) are defined in the database catalog using the CREATE VIEW statement essentially as an alias for a SQL query:

```
CREATE VIEW <name> AS SELECT <SQL guery>
```

Being a relation database, SAP HANA also supports SQL views; these views differ from the views of other databases only in their SAP HANA-specific SQL dialect.

Column views

In addition to these views, SAP HANA also supports so-called *column views*, which usually provide a better performance and a significantly wider scope of functions. Moreover, these views use the *engines* described in Section 1.3 when queries are executed. The currency conversion of monetary amounts is a good example for functionality that is not available directly via SQL. A prerequisite for using column views is that all involved tables are stored in the column store in SAP HANA, which should be the standard for pretty much all business data (see also Chapter 14). In SAP HANA Studio, both the existing SQL views and the column views are visible in the database catalog (Figure 4.1).

Figure 4.1 SQL Views and Column Views in the Database Catalog

In Section 3.2.2, we explained how simple operations (e.g., for summation or existence checks) can be expressed using Open SQL. However, the key figures in real business applications are usually much more complex. Units of measure and currencies, for example, play an important role and may have to be considered in mathematical operations by using conversions. Time stamps (day, time) for business processes are also very important—including the fiscally correct handling of (business) year, month, or quarter.

When dealing with these operations, standard SQL-based table access reaches its limits. And this is where one of the greatest advantages of SAP HANA comes into play: The integrated engines (see Section 1.3) provide reusable functions tailored for business processes which can be integrated in column views and then accessed using standard SQL. Column views thus enhance the scope of functions for defining database views.

In the scope of this chapter, we will create relatively simple analyses of flight bookings and the seat utilization of flights based on the SFLIGHT data model. In addition to some master data of a flight connection (airline, departure, and destination location), statistical information on seat utilization, revenues, and baggage should also be displayed per quarter. To create these analyses, we will use the different modeling options provided by SAP HANA and explain their properties and areas of use.

The following types of views will be discussed:

- ► *Attribute views* to define master data views (see Section 4.1). We will introduce the different options available to create table joins and explain how calculated attributes can be added to a view.
- ► Analytic views can be used for calculations and analyses based on transaction data using a star schema (see Section 4.2). We will explain how you can define simple and calculated key figures and add dimensions. As a special case of calculated key figures, we will describe currency conversion and unit conversions.
- ▶ Using *calculation views*, you can flexibly combine views and basic data operations (see Section 1.3). We will describe both the modeling and the implementation of calculation views using SQLScript. Since SQLScript will be described in detail in Chapter 5, the sample implementation used in this chapter will be kept rather simple.

Reference example for this chapter

View types

After demonstrating how to define and test these views in SAP HANA Studio, we will describe external access. You will first learn how to access the views from Microsoft Excel, which provides a simple option for first tests and analyses.

In the remaining sections of this chapter, we will describe how these views are accessed from ABAP. We will explain both native access via ABAP Database Connectivity (ADBC)—the only option for ABAP releases before ABAP 7.4—and the new options available as of ABAP 7.4.

Attribute Views

Overview and usage scenarios

Attribute views comprise a number of fields (columns) from database tables, which are linked through foreign key relationships. Moreover, attribute views provide a way to define calculated columns and hierarchical relationships between individual fields (e.g., parent-child relationships). They are especially relevant in the following scenarios:

- ► As components of other view types, especially as *dimensions* of analytic views (see Section 4.2) or for a more general purpose as nodes in calculation views (see Section 4.3).
- ▶ As a data provider for text searches across several tables (see Chapter 9).

Reference examples for this section

In this section, we will create a number of such views to demonstrate different functional aspects. The reason for creating several views is that it is not possible or not useful to use all functions for all tables. To give you an overview of the views used in the examples of this section, they are listed in Table 4.1 together with a description and the corresponding functionality.

Column	Description	Functionality
AT_FLIGHT_BASIC	Simple view for table SFLIGHT	First basic example
AT_FLIGHT	Flight data plus information from the flight plan and information on the airlines	Different join types and calculated fields

Table 4.1 Sample Attribute Views Used in this Section

Column	Description	Functionality
AT_MEAL	List of meals served on flights with (language- dependent) description	Text joins and filter values
AT_PASSENGER	View of passenger data and address information	Hierarchy
AT_FLIGHT_FISCAL	Flight data with assignment to accounting periods	Fiscal calendar
AT_FLIGHT_GREG	Flight data with assignment to year, quarter, calendar week	Gregorian calendar
AT_TIME_GREG	Pure time hierarchy (year, quarter, calendar week)	Attribute view of type TIME

Table 4.1 Sample Attribute Views Used in this Section (Cont.)

The views AT_FLIGHT, AT_PASSENGER, and AT_TIME_GREG will also be used in Section 4.2.

Basic Principles

Before describing how attribute views are modeled, let's take a quick Join views look at the most important concepts. Since attribute views can be used to create data views based on several tables that are linked via different types of joins, they can also be referred to as join views. The different join types will be introduced in this section. Because joins play a major role when dealing with attribute views, accesses to attribute views are handled by the join engine in SAP HANA.

When modeling attribute views, we differentiate between the following Modeling concepts concepts:

- ▶ *Attributes* refer to the columns of the attribute view. You can add columns from one or several physical tables or define additional calculated columns.
- ▶ *Key attributes* are those attributes of the view that uniquely specify an entry. These play an important role when the view is used as a dimensions of an analytic view (see Section 4.2.2).

- Filters define restrictions applied to the values of a column (similar to a WHERE condition in a SELECT statement).
- ▶ *Hierarchies* are relations defined for the attributes such as a parent-child relationship (see Section 4.1.4).

The main advantage of attribute views is the possibility to define a view based on fields from several tables. In contrast to the ABAP Data Dictionary views presented in Section 3.2.3, which can comprise only inner joins, attribute views in SAP HANA allow you to use a greater variety of join types.

Sample data Before describing the details of join modeling, we would like to first introduce the different join types of the SQL standard. To do so, we will use the known tables SFLIGHT (flights) and SCARR (airlines) with a foreign key relationship via the CARRID field (for the sake of simplicity, the client is disregarded in the excerpt in Table 4.2). The tables have an n:1 relationship and the SCARR table may contain airlines for which no flight is entered in the SFLIGHT table (e.g., the airline "UA" in Table 4.2).

Table SFLIG	нт	Table SCARR		
CARRID	CONNID	FLDATE	CARRID	CARRNAME
AA	0017	20130101	AA	American Airlines
LH	400	20130101	LH	Lufthansa
LH	400	20130102		***
	***		UA	United Airways

Table 4.2 Sample Data from the Tables SFLIGHT and SCARR to Explain Join Types

Inner/outer joins

When defining joins, we differentiate between inner and outer joins. In case of an inner join, all combinations are included in the result if there is a matching entry in both tables. With an outer join, results that are present only in the left table (left outer join), only in the right table (right outer join), or in any of the tables (full outer join) are also included. To differentiate between left and right, the join order is used. Full outer joins are not supported for attribute views.

The differences between the join types will be explained based on the SQL examples following SQL examples for selecting flights and the corresponding airline names. The first example comprises an inner join. Since the airline "UA" is not present in the sample data for the SALIGHT table, there is no matching entry in the result set:

```
select s.carrid, s.connid, c.carrname from sflight as s inner
join scarr as c on s.carrid = c.carrid
```

In case of a right outer join, where SCARR is the right-hand table, an entry for the airline "UA" is displayed in the result set, even though there is no corresponding entry in the SFLIGHT table. The columns carrid and connid thus display the value NULL:

```
select s.carrid, s.connid, c.carrname from sflight as s right
outer join scarr as c on s.carrid = c.carrid
```

Similarly, "UA" is also included in the result set in case of a left outer join with SCARR as the left-hand table. If the data model assumes that a corresponding airline exists for every entry of a flight (but not necessarily the other way around), the two outer join variants are functionally equivalent.

```
select s.carrid. s.connid. c.carrname from scarr as c left
outer join sflight as s on s.carrid = c.carrid
```

In addition to the presented standard joins, two other special join types Text joins and are used when modeling attribute views in SAP HANA:

referential joins

- ► Text joins can be used to read language-dependent texts from a different table. For this purpose, the column with the language key must be included in the text table; at runtime, a filter for the correct language is then applied based on the context. The next section shows an example for using text joins.
- Referential joins provide a special way of defining an inner join; with this join type, referential integrity is assumed implicitly (which has advantages with regard to performance). So, when using a referential join and no field from the right-hand table is queried, it is not checked if there is a matching entry. It is assumed that the data is consistent. Referential joins are often a useful standard when defining joins in attribute views.

|

Attribute Views Only Support Equi-Joins

When formulating join conditions, you can use further expressions (e. $g_{.}, <, >$) in SQL that go beyond checking the equality of columns (equi-join), as shown in the following example:

SELECT ... FROM ... [INNER|OUTER] JOIN ... ON col1 < col2 ... However, attribute views support only equi-joins.

Creating Attribute Views

Attribute views can be defined via the MODELER perspective in SAP HANA Studio, which was introduced in Section 2.4.3. To create a view, select New • Attribute View from the context menu of a package in the CONTENT node. You first have to specify a name and a description in the dialog shown in Figure 4.2.

Figure 4.2 Creating an Attribute View

In this dialog, you can also copy an existing view as basis for a new attribute view. When selecting Subtype, you can create special types of attribute views (e.g., for time hierarchies, which will be explained in more detail

in Section 4.1.5). When clicking the FINISH button, the attribute view is created and the corresponding modeling editor opens.

The editor used to define an attribute view comprises two sections: DATA Modeling editor FOUNDATION and SEMANTICS. These are displayed as boxes in the SCENARIO pane on the left-hand side (see Figure 4.3). By selecting each node, you can switch between defining the data basis (DATA FOUNDATION) and the semantic configuration (SEMANTICS).

The DATA FOUNDATION is used to add tables, define joins, and add attributes. Figure 4.3 shows a simple example based on the SFLIGHT table.

Figure 4.3 Definition of the Data Foundation

By selecting the node SEMANTICS, you can maintain further metadata for Defining metadata the attribute view. You can, for example, specify the following:

► You can specify if an attribute is a key field of the view. Note that every attribute view must contain at least one key field. In addition, you can define texts (labels) for attributes or hide attributes, which can be useful in the context of calculated fields (see Section 4.1.3).

- - ▶ You can specify how the client field is handled (static value or dynamically). Client handling will be discussed in detail at the end of this section.
 - ▶ You can define hierarchies (see Section 4.1.4).

The layout of the SEMANTICS section is shown in Figure 4.4.

Figure 4.4 Further Semantic Configuration of the Attribute View

The selected columns from the SFLIGHT table are marked as key fields. As described in Section 2.4.3, you now have to save and activate the ATTRIBUTE view to be able to use it.

Activation errors

If the view was not modeled properly, an error will be displayed during activation. Typical errors are caused by missing key fields, invalid joins, or calculated fields that were not defined correctly. Figure 4.5 shows an example of an activation error. The cause of an error may not always be as obvious. Section 4.5.4 provides some troubleshooting tips.

Figure 4.5 Example of an Activation Error

If the tables used are client-dependent, you can specify if the client should be automatically included in the filter condition based on the current context (DYNAMIC DEFAULT CLIENT). Alternatively, it can be defined as CROSS-CLIENT to access the data for all clients. It is also possible to specify a static value for the client. Usage tips can be found in Section 4.5.4.

Client handling

Background Information: Determining the Client

[%]

There is a so-called *session context* for every database connection, which stores certain properties of the current connection. In particular, this information comprises the current client, which is set by the DBSL in case of a connection via the SAP NetWeaver AS ABAP. When using the Data Preview or a connection via the SQL console in SAP HANA Studio, the client is determined from the user settings. When configuring these settings, you can specify a default client for a user. If no client is specified, there is no client context; this means that all data is displayed (cross-client) when using the Data Preview. The session context is explained in more detail in Chapter 5.

View SFLIGHTS as attribute view

Following this brief summary of the available join types, we will now define attribute views. As our first example, we want to define the SFLIGHTS view from the ABAP Data Dictionary, which you have already seen in Section 3.2.3 as an attribute view. Based on our example from Figure 4.3, we can add further tables to the DATA FOUNDATION. You can either manually select those tables or have the system propose tables based on the metadata maintained in the ABAP Data Dictionary. For the latter option, select the table and then choose Propose Tables from the context menu. The selection dialog opens the screen shown in Figure 4.6.

Figure 4.6 Proposed Values for Defining Joins

Selecting tables and defining joins

To reproduce the SFLIGHTS view, we will add the tables SCARR and SPFLI and define the joins as shown in Figure 4.7. If you want to define a new join, simply drag a connecting line between the corresponding attributes of two tables while holding the mouse button down. To define the properties of a join, you first have to select the join and then configure it in

the Properties section (Join Type, Cardinality). For our example, a referential join and a cardinality of n:1 is used.

In the next step, you add the desired attributes from the tables via the Adding attributes context menu of the output structure of the view. The selected attributes will then be highlighted and displayed in the OUTPUT section in the righthand pane of the editor.

Figure 4.7 Attribute View Analogous to the DDIC View SFLIGHTS

Since we already defined the key fields, and they were not changed by Activate/test adding tables, we can now activate and test the view. The result shows the name of the airline and information on the departure and destination location for every flight (see Figure 4.8).

Figure 4.8 Result of the Attribute View

Using text joins

To illustrate the usage of the aforementioned text join, we will create another attribute view and read the corresponding texts (table SMEALT) for the in-flight meals (table SMEAL). The required modeling is shown in Figure 4.9. Since filtering is done based on the language, the cardinality for this join is always 1:1.

Figure 4.9 Using a Text Join

Defining filter

As in case of normal SQL views, you can also specify filter values for columns when working with attribute views. To define the filter, you open the filter dialog for an attribute via the context menu item APPLY

FILTER. Attributes with an existing filter are marked with a filter symbol (as shown in Figure 4.10).

Figure 4.10 Filter for an Attribute

For the example using the meals served on the flight, we define a filter for the attribute MEAL_TYPE with an equals operator and the value "VE" (vegetarian), as shown in Figure 4.11. Alternatively, you can also try other comparison operators. The Data Preview displays all vegetarian meals with the corresponding texts in the correct language.

Figure 4.11 Example of a Text Join with an Additional Filter

4.1.3 Calculated Fields

Virtual attributes

Having explained how an attribute view can be used to read data from different tables using different join types, we will now go one step further and dynamically calculate some of the view columns. Compared to classic ABAP Data Dictionary views, these *virtual attributes* (i.e., attributes that do not belong directly to a column of one of the physical tables) are a powerful new opportunity for expressing data processing logic.

As a first example, we will now add a calculated attribute to the attribute view AT_FLIGHTS from Figure 4.7, which will contain the full flight connection (departure location and airport plus destination location and airport) as its value, e.g. NEW YORK (JFK)—SAN FRANCISCO (SFO).

Defining calculated attributes

To do so, we define a calculated attribute in the DATA FOUNDATION via the node CALCULATED COLUMNS of the OUTPUT section and specify a name, a description, and a data type (see Figure 4.12).

Figure 4.12 Definition of a Calculated Field

Using the Expression Editor, you can specify an expression that will be used to determine the value. This provides a variety of functions (conversions, mathematical operations, string operations, date calculations, and even simple case distinctions). In our example, we will only use a simple concatenation of strings for now (see Listing 4.1):

Defining expressions for calculations

```
"CITYFROM" + ' (' + "AIRPFROM" + ') - ' + "CITYTO" + ' (' + "AIRPTO" + ')'
```

Listing 4.1 Example of an Expression for a Calculated Field

Attribute References and Constants in Expressions

[!]

When defining *expressions* for calculated attributes, you must make sure to use the correct type of quotation marks. For references to attributes of the view (e.g., "CITYFROM" in Listing 4.1), double quotes must be used. It is recommended to use the drag-and-drop function via the formula editor. For text constants, by contrast, simple quotes must be used (as shown in the parentheses in Listing 4.1).

Using the wrong quotation marks usually leads to an activation error.

After activating the attribute view, the calculated column is displayed in the output (see Figure 4.13). Calculated columns can be queried via SQL just like normal columns, which will be demonstrated in Section 4.1.6.

Output of the calculated field

Figure 4.13 Output of the Calculated Field

Calculated fields are also supported for the other view types (see Section 4.2), where these fields are used especially for the calculations and conversions of currencies and units that we already mentioned.

4.1.4 Hierarchies

A lot of data has hierarchical relationships. The place of residence or principal office of customers is structured geographically by country, region, and city; the hierarchical structure of a creation date comprises the year, quarter, and month; a product catalog can consist of several categories, etc.

Data analysis

Hierarchies play an important role in data analyses. You can start with an aggregated view of the data and then navigate within the hierarchical structures. This is referred to as a *drilldown* (or drillup when data is aggregated). Every OLAP infrastructure (like SAP NetWeaver BW) provides built-in support for hierarchies.

Hierarchies in SAP HANA

For attribute views, hierarchies are defined in the SEMANTICS section. SAP HANA currently supports two types of hierarchies:

► Parent-child relationships

For this type, two attributes with a parent-child relationship must be defined. An example would be storing a directory structure in a table. In this context, it must be noted that this is a *full* and *consistent* self-referential relation. Each parent node must exist and (except for a special root node) must be the child node of another node. This rather limits the use of this hierarchy type, especially for ABAP tables. An example would be the ABAP hierarchy of packages, where the corresponding database table (TDEVC) comprises columns for the package name and the name of the superpackage. These columns form a parent-child relationship.

► Level hierarchy

With this hierarchy type, you define hierarchy levels based on normal or calculated attributes. If a table for example comprises columns for the country and the city, these attributes define a hierarchy of several levels (the countries at the upper level and the corresponding cities at the lower levels). However, these attributes do not have a parent-child

relationship, since this would require the city values to also appear as countries (this is not a self-referential relation as described previously).

Existing hierarchies are displayed in the SEMANTICS section, where you can also create new hierarchies. Figure 4.14 shows a level hierarchy based on the attributes of the departure location (country, city, airport) from table SPFLI. Hierarchies can also be defined for *calculation views* (see Section 4.3).

Creating hierarchies

Figure 4.14 Hierarchy of an Attribute View

There are various options for using the modeled hierarchies. This information is evaluated in particular by the supported *business intelligence* clients. One particular variant (access via Microsoft Excel) will be shown in Section 4.4.

SAP HANA thus provides basic support for simple hierarchies, but compared to the comprehensive hierarchy modeling that's available in SAP NetWeaver BW (as an example), the options are rather limited. In many real-life scenarios, hierarchies are much more complex, and there are special cases like external or incomplete hierarchies. This topic is described in detail in the book *Data Modeling in SAP NetWeaver BW* by Frank K. Wolf and Stefan Yamada (SAP PRESS 2011).

Limitations of hierarchy support

1.1.5 Attribute Views for Time Values

Most business data have a time reference (e.g., a creation date or a validity period). These references are usually implemented as date fields or time stamps in the data model. The flight data model, for example, comprises the flight date in the SFLIGHT table and the booking time in the SBOOK table. For many analyses, this point in time must be mapped to a certain time interval. In the simplest case, this can be the corresponding year, month, quarter, or calendar week. However, there are also more complicated or configurable time intervals like the *fiscal year*, which is the calendar to be used for certain scenarios.

[»]

Customizing of the Fiscal Year

Fiscal years and periods are configured via the ABAP Customizing. Using the ABAP Customizing, you can configure comprehensive settings or variants and also define special cases (e. g., a short fiscal year when a company is founded). These settings are configured via the entry MAINTAIN FISCAL YEAR VARIANT of Transaction SPRO.

The SAP standard provides several function modules to convert a normal date (e.g., of type DATS) into the corresponding fiscal year or period.

From a technical perspective, the corresponding Customizing is stored particularly in the tables T009 and T009B. These tables were previously pool/cluster tables and therefore not available directly in the database. Such tables are converted into normal database tables when performing a migration to SAP HANA (see Section 3.2.1) so that such data can also be accessed natively in the database.

Mapping of the fiscal year

In the past, when determining the corresponding fiscal year for a date in ABAP, the data first needed to be transferred to the application server in order to perform the conversion. There was therefore no way to simply create an aggregated set of records by fiscal year via Open SQL. The determination of the fiscal year had always to be done in ABAP. Using attribute views in SAP HANA, you can define these mappings to intervals of both the normal calendar (Gregorian calendar) and the fiscal calendar.

Generating calendar data

To do so, we first generate time data in special technical tables in SAP HANA. You can select the entry Generate Time Data on the initial screen of the Modeler perspective for this purpose. Subsequently, you specify the details for calendar type and time period. In our example, we specify the configuration shown in Figure 4.15 to create the fiscal calendar from 2000 to 2020.

Figure 4.15 Generating the Data for the Fiscal Calendar

You can now use the underlying table M_FISCAL_CALENDAR (schema _SYS_BI) in attribute views. In the example shown in Figure 4.16, we use the attribute view to determine the fiscal year and period for every flight in the SFLIGHT table. Since we want to use only a fixed variant from the ABAP Customizing, we define a static filter for the field CALENDER_VARIANT.

Figure 4.16 Determining the Fiscal Periods for Flight Data

Determining the quarter or calendar week

Another sample scenario would be to determine the quarter or the calendar week for a given date using an attribute view. For this scenario, the data from the Gregorian calendar is needed; this is stored in SAP HANA in the technical table M_TIME_DIMENSION, which is part of the _SYS_BI schema as well. This means that you will have to generate data first—as in case of the fiscal calendar. The use of table M_TIME_DIMENSION can be seen in Figure 4.17.

Figure 4.17 Determining the Quarter and Calendar Week

Attribute view of type "Time'

You can also define an attribute view containing only time data. To do so, you select the type TIME and specify the desired details for the calendar when creating an attribute view. Figure 4.18 shows how the attribute view AT_TIME_GREG is created for a day-based Gregorian calendar.

Since the view contains the date as a key field, joins can be created for a date column in the business data. This means that you can use these views as time dimensions in an analytic view if the date is part of the fact table. This will be described in detail in Section 4.2.

Figure 4.18 Attribute View for a Gregorian Calendar

Runtime Artifacts and SQL Access for Attribute Views

As described in Section 2.4.3, column views are created in the schema Addressing via SQL _SYS_BIC when activating views from the SAP HANA Repository that can be accessed via normal SQL. These column views also form the basis for ABAP access, as shown in Section 4.5. The exact runtime artifacts depend on the view type and the concrete modeling. Usually, there is a leading object that serves as the primary interface for data access, and further additional technical artifacts for specific aspects.

This section describes the specifics of attribute views. Every attribute view Column views has a corresponding column view. In addition to this view, another column view is created for every hierarchy. For our attribute view AT_FLIGHT, the column views listed in Figure 4.19 exist in the database catalog in the SYS BIC schema.

View Modeling in SAP HANA Studio

Figure 4.19 Column Views Generated for the Attribute View AT_FLIGHT

Please note that the names of the runtime artifacts always contain the package names. This is necessary because you can create objects with the same name in different packages.

Public synonym

In addition, there is a *public synonym* that can also be used to access the views:

```
"test.a4h.book.chapter04::AT_FLIGHT"
```

Attribute views can be accessed using regular SQL. However, please note that attribute views are not optimized for calculations like column aggregations, but rather for efficient join calculations. In other words, not every SQL statement should be used for every view type in SAP HANA. Recommendations can be found in Section 4.5.4.

Preface				
PART I	Basic	Principles		
1 Ove	erview o	of SAP HANA	29	
1.1	Softwa	are Components of SAP HANA	29	
	1.1.1	SAP HANA Database	31	
	1.1.2	SAP HANA Studio	31	
	1.1.3	SAP HANA Client	33	
	1.1.4	SAP HANA Function Libraries	34	
	1.1.5	Software for Data Replication	34	
	1.1.6	Software for Direct Data Access	35	
	1.1.7	Lifecycle Management Components	36	
1.2	Basic F	Principles of In-Memory Technology	37	
	1.2.1	Hardware Innovations	37	
	1.2.2	Software Innovations	41	
1.3	Archite	ecture of the In-Memory Database	51	
1.4	Applic	ation Cases for SAP HANA	53	
1.5	How S	SAP HANA Affects Application Development	56	
	1.5.1	New Technical Options	56	
	1.5.2	Code Pushdown	57	
	1.5.3	Database as Whitebox	59	
	1.5.4	Required Qualifications for Developers	61	
2 Inti	roducin	g the Development Environment	63	
2.1	Overvi	iew of Eclipse	63	
2.2		Eclipse Strategy	66	
	2.2.1	Unbundling of Eclipse and SAP Software	67	
	2.2.2	Central Update Site	67	
2.3		ing the Development Environment	69	
2.3	2.3.1	Installing SAP HANA Studio	69	
	2.5.1		0,	

8

		2.3.2	Installing the ABAP Development Tools for SAP NetWeaver	70
	2.4	Cetting	g Started in the Development System	70
	۷.٦	2.4.1	Basic Principles of Eclipse	72
		2.4.2	ABAP Development Tools for SAP NetWeaver	75
		2.4.3	SAP HANA Studio	85
		2.4.5	3/1 TI/TIVY Studio	03
3			Programming Using SAP NetWeaver	400
	AS A	IBAP		103
	3.1	SAP Ne	etWeaver AS ABAP Architecture	105
		3.1.1	Database Interface	107
		3.1.2	Role of the Database for the ABAP	
			Application Server	109
		3.1.3	Data Types	110
	3.2	ABAP [Database Access	116
		3.2.1	ABAP Data Dictionary	117
		3.2.2	Open SQL	122
		3.2.3	Database Views in the ABAP Data Dictionary	132
		3.2.4	Database Access via Native SQL	133
		3.2.5	Secondary Database Connections	139
	3.3	Analyzi	ing Database Accesses Using the SQL Trace	143
		3.3.1	Statement Transformations	143
		3.3.2	Secondary Connections	150
		3.3.3	Native SQL	151
		3.3.4	Buffer	152
ΡΔΙ	RT II	Introd	luction to ABAP Programming with	
. , ,		SAP F	9	
4	Viev	v Mode	eling in SAP HANA Studio	157
	4.1	A++rib	te Views	160
	4.1	4.1.1	Basic Principles	160
		4.1.1	Creating Attribute Views	164
		4.1.2	Calculated Fields	172
		4.1.3	Hierarchies	174
		4.1.4	Attribute Views for Time Values	174
		4.1.5	VITILIDATE ALEMS IOI TIIIIG AGINGS	1/0

		4.1.6	Runtime Artifacts and SQL Access for	
			Attribute Views	179
	4.2	Analyti	c Views	180
		4.2.1	Basic Principles	181
		4.2.2	Creating Analytic Views	183
		4.2.3	Calculated Key Figures	186
		4.2.4	Currency Conversion and Unit Conversion	187
		4.2.5	Runtime Artifacts and SQL Access for	
			Analytic Views	191
	4.3	Calcula	tion Views	192
		4.3.1	Basic Principles	193
		4.3.2	Graphical Modeling of Calculation Views	195
		4.3.3	Implementing Calculation Views via	
			SQLScript	197
		4.3.4	Runtime Artifacts and SQL Access for	
			Calculation Views	202
	4.4	Accessi	ng Column Views via Microsoft Excel	203
	4.5	Using S	SAP HANA Views in ABAP	205
		4.5.1	Access via Native SQL	205
		4.5.2	External Views in the ABAP Data Dictionary	207
		4.5.3	Options for Accessing External Views	210
		4.5.4	Recommendations	211
5	Prog	rammi	ng Options in SAP HANA	215
	5.1		· · · · · · · · · · · · · · · · · · ·	215
		5.1.1	Qualities of SQLScript	216
		5.1.2	Processing SQLScript	222
	5.2		nenting Database Procedures	223
		5.2.1	Basic Principles of Database Procedures	223
		5.2.2	Creating Database Procedures	225
		5.2.3	8	237
		5.2.4		239
		5.2.5	•	250
		5.2.6	Accessing System Fields	
		5.2.7	Error Handling	
	5.3	_	Procedures in ABAP	
		5.3.1	Access Using Native SQL	256

		5.3.25.3.35.3.4	Defining Database Procedure Proxies	
6	Appl	lication	Transport	269
	6.1	Basic Pi	rinciples of the Transport System	271
		6.1.1	Transport in SAP NetWeaver AS ABAP	271
		6.1.2	Transport in SAP HANA	276
	6.2		ned ABAP/SAP HANA Transport	285
		6.2.1	HANA Transport Container	
		6.2.2	Enhanced Transport System	292
	_	_		
7	Runt	time an	d Error Analysis with SAP HANA	293
	7.1	Overvie	ew of the Tools Available	294
	7.2	Error A	nalysis	296
		7.2.1	Unit Tests	296
		7.2.2	Dump Analysis	299
		7.2.3	Tracing in SQLScript	301
		7.2.4	Debugging SQLScript	302
	7.3	ABAP C	Code Analysis	305
		7.3.1	Checks and Check Variants	305
		7.3.2	Checks in the Development Infrastructure	309
		7.3.3	Global Check Runs in the System	311
	7.4	Runtim	e Statistics and Traces	313
		7.4.1	Runtime Statistics	314
		7.4.2	ABAP Trace and ABAP Profiler	318
		7.4.3	SQL Trace	326
		7.4.4	Single Transaction Analysis	330
		7.4.5	Explain Plan	331
		7.4.6	SAP HANA Plan Visualizer	333
	7.5	•	-Wide SQL Analyses	337
		7.5.1	DBA Cockpit	338
		7.5.2	SQL Monitor	
	7.6	SQL Pe	rformance Optimization	346

8			nario: Optimizing an Existing	
	Appl	lication		351
	8.1	Ontimi	zation Procedure	351
	0.1	8.1.1	Migrating to SAP HANA	352
		8.1.2	System Optimization	
		8.1.3	Application Optimization	355
	8.2	Scenari	o and Requirements	357
		8.2.1	Initial Situation	358
		8.2.2	Technical Implementation	359
		8.2.3	Current Problems	362
	8.3	Meetin	g the Requirements	362
		8.3.1	Narrowing Down the Problem Using the	
			Runtime Statistics	363
		8.3.2	Detailed Analysis of the ABAP Program	
			Using Transaction SAT	364
		8.3.3	Detailed Analysis of Database Accesses	366
		8.3.4	Analysis Result	368
		8.3.5	Optimization Using Open SQL	369
		8.3.6	Analysis of the First Optimization	
		8.3.7	Analysis Result	
		8.3.8	Optimization Using an Analytic View	
		8.3.9	Analysis of the Second Optimization	
		8.3.10	Analysis Result	378
DA	DT 111	۸ ماد، د	and Tankainan fau ADAD Duanannian fa	
PA	RT III		nced Techniques for ABAP Programming for	r
		SAP	HANA	
9	Text	Search	and Analysis of Unstructured Data	383
	9.1		rinciples of the Text Search in SAP HANA	
		9.1.1	Technical Architecture	
		9.1.2	Error-Tolerant Search	
	0.3	9.1.3	SAP Components and Products for Search	389
	9.2		f Text Data and Full Text Indexes in	200
	0.2		NA	
	9.3	9.3.1	he Text Search	
		ク. フ. 1	Fuzzy Search	397

12

		9.3.2 Synonyms and Noise Words9.3.3 Searching Across Date Fields and AddressData	401 404
	9.4	Using the Text Search in ABAP	407
	J.∓	9.4.1 Calling the Text Search from ABAP via SQL	408
		9.4.2 Freely Defined Input Helps	409
	9.5	Text Analysis	416
	9.6	Resource Consumption and Runtime Aspects of the	
		Text Search	418
10	Inte	grating Analytical Functionality	423
	10.1	Introduction	423
		10.1.1 What is Analytical Functionality?	424
		10.1.2 Digression: SAP NetWeaver Business	
		Warehouse	427
	10.2	Overview of Possible Architectures	429
		10.2.1 Direct Access to Analytical Functionality	
		in SAP HANA	430
		10.2.2 Access via the SAP NetWeaver AS ABAP	434
	10.3	Selected Technologies and Tools	439
		10.3.1 InfoProviders when Using SAP HANA	440
		10.3.2 SAP BusinessObjects Portfolio	447
		10.3.3 Easy Query Interface	451
	10.4	User Interface Building Blocks	453
11	Deci	sion Tables in SAP HANA	455
	11.1	Basic Principles of Decision Tables	456
	11.2	Creating Decision Tables in SAP HANA Studio	459
	11.3	Decision Tables Based on SAP HANA Views	465
	11.4	Runtime Artifacts and SQL Access for Decision Tables	468
	11.5	Access to Decision Tables from ABAP	468
	, 1.5	, 100000 10 00000000 10000 10000 10000	100
12	Func	tion Libraries in SAP HANA	473
	12.1	Basics of the Application Function Library	
		12.1.1 Technical Basics	
		12.1.2 Business Function Library	477

		Use of A SQLScri	Predictive Analysis Library	483
13			nario: Development of a New	491
	13.1	Scenario	o and Requirements	491
	13.2	Applica	tion Design	492
		13.2.1	Management of Discounts by the Travel	
			Company Owner	493
		13.2.2	Additional Evaluations via a Side Panel	
			Application	494
			Mobile Application for the Air Passenger	496
	13.3		entation of the Application	497
		13.3.1	SAP HANA Views and Procedures	498
			Core of the ABAP Application	499
	12.1	13.3.3		501
	13.4	Using tr	ne Applications	506
14	Prac			
		tical Tip	os	509
	14.1		Recommendations	
		General	Recommendations	
		General	Recommendations	510 510
		General 14.1.1	Recommendations	510 510
		General 14.1.1 14.1.2	Recommendations	510 510 511
		General 14.1.1 14.1.2	Recommendations Recommendations for Column and Row Store SAP HANA-Specific Implementations Checklist for Database-Specific	510 510 511 513 515
		General 14.1.1 14.1.2 14.1.3	Recommendations	510 510 511 513
	14.1	General 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6	Recommendations	510 510 511 513 515
	14.1	General 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6	Recommendations Recommendations for Column and Row Store SAP HANA-Specific Implementations Checklist for Database-Specific Implementations Recommendations for Migration Development in Landscapes Modifying Data in SQLScript or Native SQL tions	510 510 511 513 515 517
	14.1	General 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 Conven 14.2.1	Recommendations Recommendations for Column and Row Store SAP HANA-Specific Implementations Checklist for Database-Specific Implementations Recommendations for Migration Development in Landscapes Modifying Data in SQLScript or Native SQL tions Naming Conventions	510 510 511 513 515 517 518 520 521
	14.1	General 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 Conven 14.2.1 14.2.2	Recommendations Recommendations for Column and Row Store SAP HANA-Specific Implementations Checklist for Database-Specific Implementations Recommendations for Migration Development in Landscapes Modifying Data in SQLScript or Native SQL tions Naming Conventions Encapsulating Packages	510 510 511 513 515 517 518 520 521 522
	14.1	General 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 Conven 14.2.1 14.2.2 Quality	Recommendations Recommendations for Column and Row Store SAP HANA-Specific Implementations Checklist for Database-Specific Implementations Recommendations for Migration Development in Landscapes Modifying Data in SQLScript or Native SQL tions Naming Conventions Encapsulating Packages Aspects	510 510 511 513 515 517 518 520 521 522 523
	14.1	General 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 Conven 14.2.1 14.2.2 Quality 14.3.1	Recommendations Recommendations for Column and Row Store SAP HANA-Specific Implementations Checklist for Database-Specific Implementations Recommendations for Migration Development in Landscapes Modifying Data in SQLScript or Native SQL tions Naming Conventions Encapsulating Packages Aspects Testing Views and Procedures	510 510 511 513 515 517 518 520 521 522 523 523
	14.1	General 14.1.1 14.1.2 14.1.3 14.1.4 14.1.5 14.1.6 Conven 14.2.1 14.2.2 Quality	Recommendations Recommendations for Column and Row Store SAP HANA-Specific Implementations Checklist for Database-Specific Implementations Recommendations for Migration Development in Landscapes Modifying Data in SQLScript or Native SQL tions Naming Conventions Encapsulating Packages Aspects	510 510 511 513 515 517 518 520 521 522 523 523

	14.4	Performance Recommendations for Open SQL	526
		14.4.1 Rule 1: Keeping Result Sets Small	527
		14.4.2 Rule 2: Keeping Transferred Datasets Small	530
		14.4.3 Rule 3: Reducing Number of Queries	537
		14.4.4 Rule 4: Minimizing Search Effort	543
		14.4.5 Rule 5: Reducing Load on Database	546
		14.4.6 Summary of Rules	551
	14.5	Performance Recommendations for Native	
		Implementations in SAP HANA	551
		14.5.1 Recommendations for Native SQL	552
		14.5.2 Recommendations for SAP HANA Views	553
		14.5.3 Recommendations for SQLScript	556
	14.6	Summary of Recommendations	558
Αp	pend	ices	561
Α	_	Data Model	563
	A.1	Basic Principles of the Flight Data Model	563
	A.2	Database Tables for the Flight Data Model	564
		A.2.1 Customizing	564
		A.2.2 Master Data	565
		A.2.3 Transaction Data	566
		A.2.4 Designing the SFLIGHT Data Model	568
_	A.3	Data Generation	569
В		s's New in ABAP in SAP NetWeaver 7.4	573
	B.1	Inline Declarations	573
	B.2	Constructor Expressions	575
	B.3	Internal Tables	577
C		and Write Access in the Column Store	579
	C.1	Basic Principles	579
	C.2	Read Access without an Index	580
	C.3	Write Access without an Index	582
	C.4	Read Accesses with an Index	585
D		Business Application Accelerator Powered by	
		ANAANA	589
E		ling the Sample Programs	593
F	The A	Authors	595
La	J		E07
inc	lex		597

Index

Α	ABAP List Viewer, 453
	ABAP Memory, 549
ABAP, 21	ABAP program
code analysis, 295, 352	analysis, 364
profiler, 295, 320	runtime, 364
project, 76	ABAP Test Cockpit, 82, 275, 295, 308,
proxy, 522	311
reports, 21	trace, 318
resource URL, 83	ABAP Unit, 296
runtime environment, 105	Access function, 241
schema, 109	Access time, 38
table buffer, 307	CPU cache, 39
trace, 372	Flash memory, 38
type system, 112	hard disks, 38
ABAP 7.4, 573	main memory, 39
ABAP application	ACID principle, 31
transport, 518	ADBC, 133, 255, 408, 516, 553
ABAP-based frameworks, 23	prepared statement, 136, 552
ABAP Connectivity and Integration	Add-on Assembly Kit, 273
Development Tools, 71	Administration Console, 85
ABAP Core Development Tools, 71	After-import method, 276, 290
ABAP Database Connectivity, 255	Aggregate function, 125
ABAP Data Dictionary, 77, 104, 111,	Alternative implementation, 511
117, 206, 392	ALV, 469, 471
input help, 409	integrated data access, 494
type system, 113	Analytical functionality, 424
ABAP Development Tools for SAP	Analytical index, 440
NetWeaver, 32, 207	Analytical search, 377
ABAP resource URL, 78, 79	Analytic Engine, 428, 436
authorizations, 76	formulas, 439
code analysis, 310	hierarchy processing, 438
components, 71	report-report interface, 439
create program, 80	Analytic privilege, 94
debugger, 83	Analytics list component, 453
downward compatibility, 72	Analytic view, 94, 180, 554, 439
execute program, 83	call, 373
favorite packages, 77	create, 183
perspectives, 75	Appliance, 29
project, 76	Application
Project Explorer, 77	optimization, 351, 355
SAP GUI integration, 77	Application Function Library, 34, 473
system library, 77	installation, 476
templates, 81	Application layer, 58
user settings, 78	
S .	

Index

Application logic, 58	Business Server Pages (BSP), 495	Client/server, 21	D
Application scenario	BW query, 428, 446, 451	Cluster encoding, 47	
accelerator scenarios, 54	. ,	Cluster table, 121, 516	DATA(), 574
integrated, 53, 55		Code completion, 80, 93, 210	Data analysis, 424
side-by-side scenarios, 53	C	Code Inspector, 295, 305, 352, 366	Data analyst, 473
Array interface, 553		check variant, 305	Database
Attribute, 161	Calculation engine, 223, 241	Code pattern, 62	catalog, 89, 158, 205
calculated, 172	Calculation logic, 58	Code pushdown, 57, 549	index, 543
vector, 45, 579	Calculation view, 94, 215, 247, 440,	Code-to-data paradigm, 57, 59, 362	interface, 107, 516, 519
virtual, 172	468, 499, 554	Collective search help, 410	layer, 58
Attribute view, 94, 161, 499, 554	implemented, 197	Column-based data storage, 42	object, 90
fuzzy search, 398	SQLScript, 192	Column-oriented data storage, 91	optimizer, 50, 219, 331
Authorization	Calendar	Column store, 42, 91, 120, 215, 579	relational, 31, 41, 158
analytical, 86, 526	fiscal, 176	composite index, 587	type system, 113
check, 525	Gregorian, 178	data types, 390	Database connection
package authorization, 86	Call hierarchy, 325, 367	inverted index, 586	secondary, 139, 150
SAP HANA Studio, 86	Cash flow, 477	merge, 584	standard, 151
SQL authorization, 86	CE Plan Operator, 239, 373, 555	read access, 580	Database procedure, 52, 90, 95, 215
system authorization, 86	CE_AGGREGATION, 240, 244	recommendation, 510	216, 499, 522
system authorization, 00	CE_CALC, 244	write access, 582	compilation, 222
	CE_CALC_VIEW, 242	Column view, 90, 179, 183, 205, 210,	control structure, 250
В	CE_COLUMN_TABLE, 240, 241	269	create, 226
<u> </u>	CE_CONVERSION, 246	Commit	execution, 222
BAdI, 513	CE_JOIN, 242	implicit, 130	input parameter, 229
BEx Query Designer, 446	CE_JOIN, 212 CE_JOIN_VIEW, 241	Composite index, 587	output parameter, 223, 229
BFL, 34, 474	CE_OLAP_VIEW, 242	Composite index, 587 Compression	processing logic, 230
Blocking factor, 148	CE_PROJECTION, 240, 243	techniques, 43, 46	proxy, 500
Breakpoint	CE_UNION_ALL, 244	Constructor expression, 206, 575	test, 523
dynamic, 83	CE_UNION_ALL, 244 CE_VERTICAL_UNION, 245, 483	CONTAINS key word, 395	
external, 83	data source access operator, 241	Content, 32	types, 224
static, 83		Control file, 276	Database procedure proxy, 255, 263
	inner join, 242		487, 518, 522
BRFplus, 456 BSP Framework, 495	other, 245	Control structure, 250	adjusting, 267
	relational, 241, 242	Conversion exit, 514	calling, 265
B* tree index, 583 Buffer	special operator, 241	Counter, 193	creating, 263
	TRACE, 301	CPU cache, 38	synchronization, 267
access, 369	Change recording, 269, 273, 278	CPU core, 37	Database programming
cross-user, 546	Change request, 273, 288, 289	CPU time, 377	tools, 143
trace, 152	Chartes are not 454	CTS, 275	Database schema, 89, 96
Business Function Library, 474	Chart component, 454	Deploy Web Service, 281	table, 90
Business functions, 31	CHIP, 494	plug-in, 280	technical, 89
Business intelligence, 21	Class	CTS+, 270, 292,	trigger, 90
Business logic, 221	CL_PREPARED_STATEMENT, 553	Currency conversion	view, 118, 132
Business process, 455	CL_SQL_STATEMENT, 256, 553	Customizing, 188	Data class, 120
Business rule management system, 455	Client handling, 107, 212, 252, 518	parameterization, 189	Data Control Language (DCL), 116
Business rule mining, 474	attribute view, 167	Cursor, 128, 251, 557	Data declaration, 573
	automatic, 232		Data Definition Language (DDL), 11

Index Index

Data file, 275	Development environment	Eclipse (Cont.)	Export release prep
Data inconsistency, 520, 523	ABAP Development Tools, 70, 75	perspective, 73	Extension index, 39
Data layout, 41	installation, 69	platform, 63, 65	
Data Manipulation Language (DML),	SAP HANA Studio, 69	plug-in, 64	
116	Development landscape	project, 65	F
Data mart, 427	mixed, 518	Release Train, 65	<u>-</u>
Data model	Development object, 80, 89, 94	repository, 67	Factory class, 501
virtual, 431	ABAP, 521	SAP, 66	Factory pattern, 512
Data Modeler, 564	activate, 98	SAP Release Train for Eclipse, 67	Fact table, 178, 181
Data preview, 92, 100	naming convention, 521	SDK, 64	Feeder class, 502
Data reference, 576	SAP HANA, 521	toolbar, 75	Field
Data replication, 34	store, 96	update site, 67	calculated, 186
Direct Extractor Connection (DXC),	test, 100	view, 74	list, 533
35	validate, 96	window, 73	symbol, 574
SAP Landscape Transformation	Development organization, 270, 271,	Workbench, 72	Filter, 162
Replication Server, 35	276	workspace, 75	value, 170
DataSource, 428, 445	delivery unit, 278	Elementary search help, 410	Fiscal year, 176
Data-to-code paradigm, 57	package, 271	Embedded reporting, 437	Flight data model, 1
Data type, 110, 119, 263	package hierarchy, 271, 277	Embedded Search, 389	Customizing, 564
conversion, 464	package interface, 273	Encapsulation, 522	Floorplan Manager
SHORTTEXT, 390	software component, 272	Encoding	feeder class, 502
TEXT, 390	use access, 273	dictionary encoding, 43	FOR ALL ENTRIES,
Data warehouse, 426	Diagnostics Agent, 36	indirect, 47	driver table, 149,
DBA Cockpit, 140, 338	Dictionary encoding, 43	prefix encoding, 46	Foreign key relation
DBI, 107	Dictionary vector, 44, 579	run-length encoding, 47	Forward navigation
DBSL, 33, 108	Dimension, 181	sparse encoding, 47	Full outer join, 243
DDL, 224	Direct Extractor Connection (DXC), 35	Engine, 52, 555	Full text index, 391
statement, 50	Discount scheme, 492	Enqueue server, 105	displaying, 420,
Debug trace, 302	Document Analysis Toolkit, 386	Enqueue Service, 519	Function
Decision rule, 455	Domain, 119	Enqueue work process, 110	user-defined, 90
Decision table, 95, 455, 457, 459, 494	DRAM, 39	Enterprise Data Warehousing, 427	library, 89, 222
actions, 457	Drilldown, 174	Enterprise Bata Watchousing, 427 Enterprise Search, 389	Function module
conditions, 457	Dump, 299, 525	Entity-relationship model, 157	call, 368, 369
create, 459	Dump, 299, 323	Equi-join, 164	Fuzzy score, 401
transport, 471		Error analysis, 293, 294, 296	Fuzzy search, 384, 3
Declarative language element, 557	г	Error handling, 524	index, 419, 420,
0 0	<u>E</u>	ETTO Handling, 524 ETL, 22	parameters, 401
Declarative programming, 220	Easy Query, 437, 451		parameters, 401
Decoupling, 512, 523		Exact search, 396	
Default schema, 228, 231	Eclipse, 31	Exception handler, 254	•
Delivery unit, 94, 278, 522	ABAP development environment, 31	Existence check, 307	G
Delta compression, 46	composite release, 65	Expensive SQL statement trace, 295	GET_AGENCIES_FC
Delta load, 34	editor, 74	Explain plan, 295, 331	
Delta merge, 421	extension point, 64	call, 332	217
Delta store, 48, 421, 582	Foundation, 32, 63, 65	output, 332	Golden rules for da
Design time, 260	framework, 63	Exporting, 275	527
object, 98	menu bar, 75		GUID, 569

ort release preprocessing, 290 ension index, 392

ory class, 501 ory pattern, 512 table, 178, 181 ler class, 502 lculated, 186 st, 533 mbol, 574 r, 162 ılue, 170 al year, 176 ht data model, 105, 25 ustomizing, 564 orplan Manager, 453, 502 eder class, 502 ALL ENTRIES, 124, 148, 540 river table, 149, 307 eign key relationship, 118, 160 ward navigation, 82 outer join, 243 text index, 391, 417, 499 isplaying, 420, ction ser-defined, 90 brary, 89, 222 ction module ıll, 368, 369 zy score, 401 zy search, 384, 385, 494, 499 idex, 419, 420, 422

_AGENCIES_FOR_CONNECTIONS, den rules for database programming, D, 569

Index Index

Н	IN list, 149
	In-memory database, 51
HANA transport container, 270, 286,	In-memory technology, 37
518	Input help, 383, 409
Hardware	Input parameter, 189, 522
certified, 37	Insight to action, 424
innovations, 37	Integer, 43
trends, 37	Integrated scenario, 55
Hash, 51	Internal table, 549
partitioning, 51	Internet Communication Framework,
HAVING Clause, 528, 543	505
Hierarchy, 162, 174, 182 level, 174	Inverted index, 586
parent-child, 174	
Hint, 131, 516	J
Hit list, 323	
HTML5, 53, 433	Java Runtime Environment (JRE), 69
Hybrid application, 57	JDBC, 33
Hypernym, 404	Job log, 97
Hyponym, 404	Join, 92, 245, 372
	complex, 556
	full outer join, 162
1	inner, 122
	inner join, 162, 242
Identical select, 328, 329	join types, 162
Imperative language element, 557	left outer, 122, 243
Imperative programming, 220, 250	left outer join, 162
Importing, 275	outer join, 162
Index, 90	referential join, 163, 169
composite, 545	right outer, 243
exclusion list, 121	right outer join, 162
inclusion list, 121	self join, 200
inverted, 585	text join, 163
primary index, 543	Join Engine, 161, 557
server, 52	0
Indirect encoding, 47	
InfoObject, 428, 441	K
virtual, 443	<u> </u>
InfoProvider, 427, 440	Kernel, 105
transient, 440	Key field, 161
virtual, 441	Key figure, 181
InfoSet	calculated, 186
classic, 445	K-means, 479, 484
Initial load, 34	
Inline declaration, 206, 573	
11111111 deciaration, 200, 3/3	

Native SQL, 373, 408, 552 Large object, 421, ADBC, 133 Left outer join, 243 Near real time, 589 Negative test, 297 Linguistic search, 396 List of suggestions, 385 List of synonyms, 388, 403 Noise words, 401 L node, 222 Load distribution, 49 Lock, 519 indicator, 274 0 object, 110, 119 Logical Unit of Work, 109 Object instance create, 575 Loop, 557 LOOP loop, 542 OData, 53, 494 Low-level technologies, 25 service, 433 ODBC, 33 L (programming language), 222, 225 ODBO, 33 LUW concept, 109 OLAP, 57, 426 OLAP Engine, 557 OLTP, 57, 426 Mainframe architecture, 21 Main memory, 37 22 On the fly, 426 Main store, 48, 582 Manifest, 64 Mass operation, 553 Master data, 181 dynamic, 128 Materialization, 157 MDX, 33, 52, 205 hints, 131 Measure, 181 restricted, 183 Merge, 584 Message server, 105 Mobile application, 496 Modeler, 85 Modification Assistant, 276 Outer join, 115 MODIFY, 148 Modularization, 523 unit, 307 Monitoring view, 420 Package, 94, 522

M

Ν

Name server, 53

Namespace, 521

ABAP tables, 518 NEW operator, 575 NUMA architecture, 39 Online Analytical Processing (OLAP), 22 Online Transaction Processing (OLTP), Open SQL, 59, 116, 219, 369, 103 array operations, 130 existence check, 127 package size, 129 transaction control, 130 Operational Data Provisioning, 445 Orchestration logic, 58 OR combination, 148 Original system, 276, 282 Output parameter, 522 development package, 272, 277 encapsulated, 273 interface, 273 main package, 272

Index

Package (Cont.) SAP HANA, 521 structure package, 272, 277 system-local, 278 test package, 273 PAL, 34, 475 Parallelization, 50 Parameter	Program (Cont.) execute, 83 hdbstudio, 72 regi, 236 Projection, 240 view, 118 Proxy object, 263 Public synonym, 99, 232, 233	Runtime (Cont.) error, 299 object, 98, 232 Runtime statistics, 313, 314, 356, 363 analysis, 314 selection, 314
marker, 553	1 done synonym, 55, 252, 255	S
stopwordListId, 403		<u>-</u>
stopwordTable, 403	R	SAP Business Application Accelerator,
textsearch, 403		589
Parameter types interface, 265	R, 482	SAP Business Explorer (BEx), 428
Partitioning, 48	RAM, 37	SAP BusinessObjects, 429
explicit partition handling, 50	Range, 124	SAP BusinessObjects Business
hash partitioning, 51	partitioning, 51	Intelligence platform, 203, 431
horizontal, 48	Read-only procedures, 224	SAP Business Suite, 55
partition pruning, 50	Read/write procedures, 224	powered by SAP HANA, 22, 513
range partitioning, 51	Real time, 426, 19	SAP Community Network, 495
round-robin partitioning, 49, 51	Redirected Database Access (RDA), 140	SAP CO-PA Accelerator, 54
types, 51	Refactoring, 296	SAP Crystal Reports, 453
vertical, 48	REF operator, 576	SAP Data Services, 35
Partition pruning, 51	Relational operator, 241, 242	SAP HANA, 22
PBO module, 469	Repair flag, 276	advanced functions, 24 application cases, 53
Performance, 526 Phrase index, 419	Reporting, 424 operational, 426	applications, 55
Phrase-index ratio, 419	Repository, 32	client software, 70
Planning engine, 52	RESTful Service, 53	development, 86
PlanViz, 295, 333, 376,	Result view, 468	Extended Application Services, 86,
analysis, 333	wrapping, 468	433, 526
recording, 333	Revision, 70	function libraries, 34
PMML, 479	Right outer join, 243	Live, 431
Pool table, 516	Robust programming, 524	MDX Provider, 203
Predictive analysis, 31, 473	Role	migration, 352, 515
Predictive Analysis Library, 475	management, 494	SAP HANA Client, 33
Predictive Model Markup Language, 479	SAP HANA Studio, 86	HTTP, 34
Prefix encoding, 46	Rollback, 130	Package for Microsoft Excel, 35, 203
Prefix namespace, 287	Round-robin partitioning, 49, 51	SAP HANA database, 31
Prepared statement, 526	Round trip, 148	architecture, 51
Prepare phase, 552	Row-based data storage, 41	SAP HANA Repository, 85, 94, 277,
Preprocessor server, 53	Row store, 41, 120, 215	521, 522
Presentation layer, 58	R (programming language), 225	Client, 70, 236
Pretty Printer, 81	Rule, 458, 465	view, 207
Primary database, 53, 256, 442	Run-length encoding, 47	SAP HANA software component, 29
Program	Runtime, 260	core components, 30
create, 80	analysis, 293, 295, 371	direct data preparation, 30
	artifact, 179	lifecycle management component, 30

SAP HANA software component (Cont.) lifecycle management components, 36 software for data replication, 30 SAP HANA Studio, 31, 32, 85 authorizations, 86 database catalog, 89 hdbinst, 69 hdbsetup, 69 perspective, 85 SQL statement, 376 system connection, 87 templates, 93 user settings, 88 view modeling, 160, 164 workspace, 87 SAP HANA UI for Information Access, 35 SAP HANA view, 60, 205, 373, 518 performance, 553 selection, 212 test, 523 type, 554 SAP Host Agent, 36 SAP Landscape Transformation Replication Server, 35 SAP Lumira, 475 SAP Management Console, 36 SAP Memory, 549 SAP NetWeaver AS ABAP, 33 architecture, 105 SAP NetWeaver Business Client, 493, 494, 506 SAP NetWeaver Business Warehouse (BW), 22, 426 SAP NetWeaver Gateway, 437, 494 Service Builder, 496 SAP NetWeaver Operational Process Intelligence, 458 SAP Predictive Analysis, 475 SAP software real time, 21 SAP Solution Manager, 36 SAPUI5, 433, 494, 495 application, 504 Model View Controller, 505 Scalar parameter, 226 Scalar variable, 227

Index Index

Scale-out, 38, 105	SQL, 116	SQLScript (Cont.)	SQL trace, 295, 326, 356, 366, 372
Scale-up, 38	analysis, system-wide, 337	EXECUTE IMMEDIATE, 252	UP TO n ROWS, 531
Schema, 89	cache, 295, 340, 553	explicit typing, 237	analyze, 326
handling, 518	console, 92, 224	implicit typing, 237	record, 326
mapping, 232, 283, 518	data type, 230, 231	input parameter, 229, 262	recording, 145
Scorecard, 474	dynamic, 252, 557	loop, 220, 250	Stack trace, 328
Script server, 476	error code, 254	modularization, 216	Standard database connection, 109
Search	injection, 252, 526	optimizations, 247, 252	Star schema, 157, 182
facet, 386	Native, 60, 133, 255	orchestration, 220	Statement transformation, 143
freestyle, 385	Open, 59	output parameter, 229, 258	Statistic record, 295
fuzzy, 384, 385	performance optimization tool, 353	parallelization, 219	Statistics server, 53
linguistic, 385, 388	processor, 52	performance, 249	Stop word, 389, 401
sentiment analysis, 386	profile, 366	processing, 222	String, 46
synonym search, 385	view, 158	processing, 222	templates, 573
Search help, 118, 410	SQL92, 215	qualities, 216	Structure, 576
default value, 415	SQL99, 215	reuse, 217	Subquery, 127, 541
exit, 410	SQLDBC library, 33	rules, 556	scalar, 127
•	5	scalar parameter, 226	Synonym, 90, 99
Secondary connection, 150 Secondary database, 53, 139, 434	SQL Monitor, 296, 342, 352, 366 activate, 342	scalar variable, 227, 238	public, 99
Secondary index, 543	analysis, 342	SESSION_CONTEXT, 252	Syntax check, 81
Selectivity, 389	entry point, 344	splitting up, 217	System field, 512
SELECT * statement, 369	SQL Performance Tuning Worklist, 346,	SQL versus CE Plan Operators, 246	System landscape
SELECT statement	356	system fields, 252	mixed, 290
nested, 369, 540	SQLScript, 31, 60, 194, 373, 190	table parameter, 226	System optimization, 353
Sentiment analysis, 384, 386, 417	ABAP tables, 518	table type, 226, 227, 235	System schema, 89, 109
Sequence, 90	accessing the business logic, 221	table variable, 217, 227, 237	
Server component, 52	activating, 222	typing, 237, 238	_
Service Builder, 503	basic principles, 223	UDF, 225	<u>l</u>
Session context, 167	BREAK, 250	user-defined functions, 225	T-L1- 447
Set operation, 538	CALL, 233	variable, 237	Table, 117
Shadow column, 391	calling, 222	WITH RESULT VIEW, 227	internal, 576, 577
Shared buffer, 549	case distinction, 220, 250	SQLScript debugger, 302	replicated, 589
Shared memory, 549	case sensitivity, 232	standard, 215	access statistics, 364
Shared objects, 549	CE Plan Operator, 239	SQL statement	buffer, 107, 120, 519, 542, 548
Side-by-side scenario, , 22	client handling, 232, 252	analysis, 354	contents, 91
Side panel, 492	CONTINUE, 250	BINARY SEARCH, 517	definition, 91
configuration, 505	control structures, 250	CREATE FULLTEXT INDEX, 391	parameter, 226
Single transaction analysis, 295, 330	CREATE PROCEDURE, 226, 236	EXEC, 525	Tablet, 496
Size category, 120	CREATE TYPE, 227	EXEC SQL, 516	type, 226, 227, 235
Slice and dice, 181	cursor processing, 251	FOR ALL ENTRIES, 540, 541	variable, 217, 227, 237
Smart device, 20	custom exceptions, 254	INTO CORRESPONDING FIELDS OF,	Temporary table, 260
Software component, 272	debugger, 235	533	global, 260
Software innovation, 41	default exception, 254	ORDER BY, 517	local, 260
Software Update Manager for SAP	dynamic, 525	SELECT COUNT(*), 534	Term mapping, 403
HANA (SUM), 36	dynamic SQL, 252	UPDATE, 535	Test, 524
Sort Behavior, 517	error handling, 254	UPDATE SET, 536	
Sparse encoding, 47	EXEC, 252		

Index

Text analysis, 384, 386, 416	Transport (Cont.)
Text search, 386, 390	object list, 274
Thread, 340	original system, 282
Time data	possible problems, 269
generate, 176	properties, 273
	recommendations, 291
Time zone, 513	•
Token, 390, 416	relocation, 276
Totals table, 157	schema mapping, 232
Trace, 313	synchronization, 289
Transaction	transport container, 286
ATC, 295	transport directory, 275
DBACOCKPIT, 140, 295, 338	Transport Domain Controller, 275,
EQPREVIEW, 452	280
PFCG, 494, 505	transport layer, 274
RSDD_HM_PUBLISH, 440	transport log, 290
SAT, 295, 318, 364, 372	transport properties, 273, 278
SCI, 295, 305	transports of copies, 276
SE11, 77	transports system, 274, 278
•	
SECW 502	TREX, 389
SEGW, 503	
SQLM, 296, 342	
ST04, 338	U
ST05, 145, 151, 295, 372	II 1 206 255 524
ST12, 295, 330	Unit test, 296, 357, 524
ST22, 299	Update, 105
STAD, 295, 314, 356, 363, 371	UPSERT, 147
SWLT, 346, 293, 366	Use access, 273
Transactional system, 426	User interface
Transaction data, 181	building block, 453
Transport, 269	
change recording, 269, 273, 278	
change request, 288	V
combined, 285	
control file, 276	Validation, 96
CTS+, 292,	VALUE operator, 576
CTS Deploy Web Service, 281	Variable, 237
CTS plug-in, 280	declare, 573
data file, 275	scalar, 238
developer mode, 280	scope, 575
•	table variable, 237
exporting, 280	Version history, 101
HANA transport container, 270	View, 90, 118, 157
importing, 280	
lock indicator, 274	analytic view, 159
log, 276	attribute view, 159
logical transport object, 287	calculation view, 159, 192
mechanisms, 270 mixed system landscape, 290	column view, 158, 269 database view, 132

View (Cont.)

Dictionary View, 207

external, 207, 213, 269, 500, 518, 522

SQL view, 158

Virtual Data Model (VDM), 55

W

Web Dynpro ABAP, 414, 453, 493 context, 414 Eclipse, 414 Floorplan Manager, 498, 502 Web Dynpro ABAP Tools, 71 Weighted average, 483 BFL, 477 WHERE clause, 527, 543 Where-used list, 82 White list, 526 Widget, 493 Wild card, 383, 396 Word dictionary, 419 Work process, 105, 261 Wrapper function AFL, 477

X

XS Engine, 34, 53, 90, 215

Thorsten Schneider, Eric Westenberger, Hermann Gahm

ABAP Development for SAP HANA

609 Pages, 2014, \$69.95 ISBN 978-1-59229-859-4

www.sap-press.com/H3320

Thorsten Schneider is a product manager in the Product & Innovation HANA Platform department at SAP AG. In this position, he deals with application development using the new in-memory database technology. His main focus is the implementation of business applications based on ABAP and SAP HANA.

Eric Westenberger has worked for SAP AG since 2005, where he is currently a product manager for SAP HANA and SAP NetWeaver. Prior to this, he was involved in the development of several components of the SAP NetWeaver basis technology as a developer and software architect for several years.

Hermann Gahm is a principal consultant in the performance CoE of SAP Global IT Application Services. In this position, he is primarily responsible for performance analysis and optimization of the internal SAP ABAP systems powered by SAP HANA. He's helped SAP customers solve performance problems in the context of ABAP developments and system, database, and ABAP program tuning.

We hope you have enjoyed this reading sample. You may recommend or pass it on to others, but only in its entirety, including all pages. This reading sample and all its parts are protected by copyright law. All usage and exploitation rights are reserved by the author and the publisher.