

Symbolic Methods in Bifurcation Analysis

Thomas Sturm

University of Lorraine, CNRS, Inria, and LORIA, Nancy, France MPI Informatics and Saarland University, Saarbrücken, Germany

3rd BIOSS Days, Montpellier, France, March 13, 2017

Overview

2008–2012 Hopf Bifurcations in a Gene Regulatory Network Real Quantifier Elimination by Virtual Substitution

2012–2016 Hopf Bifurcations with Larger Models, Including MBO and MAPK Convex Coordinates Subtropical Real Root Finding

2016— Parametric Saddle-node Bifurcations with Another Model of MAPK Cylindrical Algebraic Decomposition Graph-theoretical Preprocessing

2008-2012

Hopf Bifurcations in a Gene Regulatory Network

Boulier et al., Algebraic Biology 2007

The Reaction System

$$G + P_{n} \xrightarrow{\alpha} G : P_{n}$$

$$G \xrightarrow{\varrho_{f}} G + M$$

$$G : P_{n} \xrightarrow{\varrho_{b}} G : P_{n} + M$$

$$M \xrightarrow{\beta} M + P$$

$$M \xrightarrow{\delta_{M}}$$

$$P \xrightarrow{\delta_{P}}$$

$$P_{i} + P \xrightarrow{\kappa_{i}^{+}} P_{i+1} (1 \le i \le n-1)$$

Dynamics of the Reaction System

$$\dot{G} = \vartheta \cdot (\gamma_0 - G) - \alpha G P_n$$

$$\dot{M} = \varrho_f G + \varrho_b \cdot (\gamma_0 - G) - \delta_M M$$

$$\dot{P} = \beta M - \delta_P P + 2A_1 + A_2 + \dots + A_{n-1}$$

$$\dot{P}_i = -A_{i-1} + A_i \qquad (2 \le i \le n - 1)$$

$$\dot{P}_n = -A_{n-1} + \vartheta \cdot (\gamma_0 - G) - \alpha G P_n$$

where

$$A_i = \frac{1}{\varepsilon} \left(\kappa_{i+1}^- P_{i+1} - \kappa_{i+1}^+ P_i P \right)$$

Simplified Dynamics

Approximating

$$\dot{P} = \beta M - \delta_P P + n (\vartheta(\gamma_0 - G) - \alpha G P_n), \quad P_n = \bar{\alpha} P^n \quad \text{with} \quad \bar{\alpha} = \frac{\kappa_1^+ \cdots \kappa_{n-1}^+}{\kappa_1^- \cdots \kappa_{n-1}^-}$$

yields

$$\begin{split} \dot{G} &= \vartheta \cdot \left(\gamma_0 - G \right) - \alpha \bar{\alpha} G P^n \\ \dot{M} &= \varrho_f G + \varrho_b \cdot \left(\gamma_0 - G \right) - \delta_M M \\ \dot{P} &= n\vartheta \left(\gamma_0 - G \right) - n\alpha \bar{\alpha} G P^n + \beta M - \delta_P P. \end{split}$$

Many more simplifications yield

Translation into First-Order Logic over the Reals

yields φ_n for fixed $n \in \mathbb{N}$.

$$\begin{split} \varphi_9 \; \doteq \; \exists v_1 \exists v_2 \exists v_3 (v_1 > 0 \land v_2 > 0 \land v_3 > 0 \land \vartheta > 0 \land \gamma_0 > 0 \land \mu > 0 \land \delta > 0 \land \alpha > 0 \land \\ \vartheta(\gamma_0 - v_1 - v_1 v_3^9) &= 0 \land \lambda v_1 + \gamma_0 \mu - v_2 = 0 \land \\ \vartheta\alpha(\gamma_0 - v_1 - v_1 v_3^9) + \delta(v_2 - v_3) &= 0 \land \\ \Delta_2 &= 0 \land \Delta_1 > 0), \end{split}$$

where

$$\begin{split} \Delta_2 \; \doteq \; & \; 162 \vartheta v_3^{17} \alpha v_1 + 162 \vartheta \alpha v_1 v_3^8 + 162 \alpha v_1 v_3^8 \delta + \vartheta + 2 \vartheta v_3^9 \delta + \vartheta^2 v_3^{18} \delta + \vartheta v_3^9 \vartheta \delta \\ & \; + 81 \alpha v_1 v_3^8 \vartheta \delta + 81 \alpha v_1 v_3^{17} \vartheta \delta + \delta^2 + \vartheta \delta^2 + \vartheta^2 \delta + \vartheta^2 + 2 \vartheta^2 v_3^9 + \vartheta^2 v_3^{18} \\ & \; + 6561 \alpha^2 v_1^2 v_3^{16} + 2 \vartheta^2 v_3^9 \delta + \delta + 81 \alpha v_1 v_3^8 + \vartheta v_3^9 \delta^2 - 9 \lambda \vartheta v_1 v_3^8 \delta, \\ \Delta_1 \; \doteq \; \vartheta \delta + \vartheta v_3^9 \delta + 9 \lambda \vartheta v_1 v_3^8 \delta. \end{split}$$

Hopf bifurcation for some $n \in \mathbb{N} \iff \varphi_n$ holds

Principal Strategy

prenex formula, $\forall x_1 \varphi \longleftrightarrow \neg \exists x_1 \neg \varphi$,

$$\exists x_n \ldots \exists x_2 \; \exists \underline{x_1} \varphi \; \longleftrightarrow \; \exists x_n \ldots \exists x_2 \; \text{simplify} \Big(\bigvee_{(\gamma,t) \in E} \gamma \wedge \varphi[\underline{x_1} /\!\!/ t] \Big).$$

 $E = \{\ldots, (\gamma, t), \ldots\}$ is a finite elimination set

Principal Strategy

prenex formula, $\forall x_1 \varphi \longleftrightarrow \neg \exists x_1 \neg \varphi$,

$$\exists x_n \ldots \exists x_2 \; \exists \underset{1}{x_1} \varphi \;\; \longleftrightarrow \;\; \exists x_n \ldots \exists x_2 \; \text{simplify} \Big(\bigvee_{(\gamma,t) \in E} \gamma \wedge \varphi[\underset{1}{x_1} /\!\!/ t] \Big).$$

 $E = \{..., (\gamma, t), ...\}$ is a finite elimination set, e.g.,

$$ax^2 - 3x + 7 \le 0 \implies \left(a \ne 0 \land (-3)^2 - 4 \cdot a \cdot 7 \ge 0, \frac{3 + \sqrt{(-3)^2 - 4 \cdot a \cdot 7}}{2 \cdot a}\right) \in E.$$

Principal Strategy

prenex formula, $\forall x_1 \varphi \longleftrightarrow \neg \exists x_1 \neg \varphi$,

$$\exists x_n \dots \exists x_2 \; \exists \underset{1}{x_1} \varphi \; \longleftrightarrow \; \exists x_n \dots \exists x_2 \; \text{simplify} \Big(\bigvee_{(\gamma,t) \in E} \gamma \wedge \varphi[\underset{1}{x_1} /\!\!/ t] \Big).$$

 $E = \{..., (\gamma, t), ...\}$ is a finite elimination set, e.g.,

$$ax^2 - 3x + 7 \le 0 \implies \left(a \ne 0 \land (-3)^2 - 4 \cdot a \cdot 7 \ge 0, \frac{3 + \sqrt{(-3)^2 - 4 \cdot a \cdot 7}}{2 \cdot a}\right) \in E.$$

More Generally

substitute $\pm \infty$, nonstandard $t \pm \varepsilon$ with <, abstract roots for higher degrees

Principal Strategy

prenex formula, $\forall x_1 \varphi \longleftrightarrow \neg \exists x_1 \neg \varphi$,

$$\exists x_n \ldots \exists x_2 \; \exists \underset{1}{x_1} \varphi \; \longleftrightarrow \; \exists x_n \ldots \exists x_2 \; \text{simplify} \Big(\bigvee_{(\gamma,t) \in E} \gamma \wedge \varphi[\underset{1}{x_1} /\!\!/ t] \Big).$$

 $E = \{\ldots, (\gamma, t), \ldots\}$ is a finite elimination set, e.g.,

$$ax^2 - 3x + 7 \le 0 \implies \left(a \ne 0 \land (-3)^2 - 4 \cdot a \cdot 7 \ge 0, \frac{3 + \sqrt{(-3)^2 - 4 \cdot a \cdot 7}}{2 \cdot a}\right) \in E.$$

More Generally

substitute $\pm \infty$, nonstandard $t \pm \varepsilon$ with <, abstract roots for higher degrees

[x//t]: atomic formulas \rightarrow quantifier-free formulas

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], f_i, g_i, g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

$$\left(f_1x+f_0\leq 0\right)\left[x/\!/\frac{g_1}{g_2}\right] \ \equiv \ f_1\frac{g_1}{g_2}+f_0\leq 0 \ \equiv \ f_1g_1g_2+f_0g_2^2\leq 0$$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], f_i, g_i, g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

$$\left(f_1x+f_0\leq 0\right)\left[x/\!/\frac{g_1}{g_2}\right] \ \equiv \ f_1\frac{g_1}{g_2}+f_0\leq 0 \ \equiv \ f_1g_1g_2+f_0g_2^2\leq 0$$

Infinity

$$(f_2x^2 + f_1x + f_0 < 0)[x/\!/\infty] \equiv f_2 < 0 \lor (f_2 = 0 \land f_1 < 0) \lor (f_2 = 0 \land f_1 = 0 \land f_0 < 0)$$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], f_i, g_i, g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

$$\big(f_1x+f_0\leq 0\big)\big[x/\!/\tfrac{g_1}{g_2}\big] \ \equiv \ f_1\frac{g_1}{g_2}+f_0\leq 0 \ \equiv \ f_1g_1g_2+f_0g_2^2\leq 0$$

Infinity

$$(f_2x^2+f_1x+f_0<0)[x/\!/\infty]\equiv f_2<0 \lor (f_2=0 \land f_1<0) \lor (f_2=0 \land f_1=0 \land f_0<0)$$

Positive infinitesimals

$$(3x^2+6x-3>0)[x/\!/t-\varepsilon]\equiv 3t^2+6t-3>0 \vee (3t^2+6t-3=0 \wedge 6t+6\leq 0)$$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], f_i, g_i, g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

$$\big(f_1x+f_0\leq 0\big)\big[x/\!/\tfrac{g_1}{g_2}\big] \ \equiv \ f_1\frac{g_1}{g_2}+f_0\leq 0 \ \equiv \ f_1g_1g_2+f_0g_2^2\leq 0$$

Infinity

$$(f_2x^2+f_1x+f_0<0)[x/\!/\infty]\equiv f_2<0 \lor (f_2=0 \land f_1<0) \lor (f_2=0 \land f_1=0 \land f_0<0)$$

Positive infinitesimals

$$(3x^2 + 6x - 3 > 0)[x//t - \varepsilon] \equiv 3t^2 + 6t - 3 > 0 \lor (3t^2 + 6t - 3 = 0 \land 6t + 6 \le 0)$$

Formal solutions of quadratic equations

$$\left(f=0\right)\left[x/\!/\frac{g_1+g_2\sqrt{g_3}}{g_4}\right] \ \equiv \ \frac{g_1^*+g_2^*\sqrt{g_3}}{g_4^*} = 0 \ \equiv \ g_1^{*2} - g_2^{*2}g_3 = 0 \land g_1^*g_2^* \le 0$$

Conventions: $f \in \mathbb{Z}[\mathbf{y}][x], f_i, g_i, g_i^* \in \mathbb{Z}[\mathbf{y}]$

Quotients

$$\left(f_1x+f_0\leq 0\right)\left[x/\!/\tfrac{g_1}{g_2}\right] \ \equiv \ f_1\frac{g_1}{g_2}+f_0\leq 0 \ \equiv \ f_1g_1g_2+f_0g_2^2\leq 0$$

Infinity

$$(f_2x^2+f_1x+f_0<0)[x/\!/\infty]\equiv f_2<0 \lor (f_2=0 \land f_1<0) \lor (f_2=0 \land f_1=0 \land f_0<0)$$

Positive infinitesimals

$$(3x^2 + 6x - 3 > 0)[x//t - \varepsilon] \equiv 3t^2 + 6t - 3 > 0 \lor (3t^2 + 6t - 3 = 0 \land 6t + 6 \le 0)$$

Formal solutions of quadratic equations

$$\left(f=0\right)\left[x/\!/\frac{g_1+g_2\sqrt{g_3}}{g_4}\right] \ \equiv \ \frac{g_1^*+g_2^*\sqrt{g_3}}{g_4^*} = 0 \ \equiv \ {g_1^*}^2 - {g_2^*}^2g_3 = 0 \land g_1^*g_2^* \le 0$$

Košta 2016 (PhD thesis)

- method generalizes to higher degree bounds
- generic implementation with a degree bound of 3 is newly available

Some Complexity Results

Upper bound on asymptotic worst-case complexity

doubly exponential in the input word length (and this is optimal for the problem)

In the linear case

doubly exponential in #quantifier alternations

singly exponential in #quantifiers

polynomial in # parameters (= unquantified variables)

polynomial in #atomic formulas

particularly good for

low degrees and many parameters

For comparision: Cylindrical Algberaic Decomposition (CAD)

[Collins 1973, Arnon, Hong, Brown, ...] doubly exponential in #all variables

Extended Quantifier Elimination

Generalize
$$\exists x \varphi \longleftrightarrow \bigvee_{(\gamma,t) \in E} \gamma \land \varphi[t/\!\!/ x]$$
 to $\exists x \varphi \leadsto \begin{bmatrix} \vdots & \vdots \\ \gamma \land \varphi[t/\!\!/ x] & x = t \\ \vdots & \vdots \end{bmatrix}$

A simple example

$$\varphi \equiv \exists x (ax^2 + bx + c = 0) \leadsto$$

$$\varphi = \exists x (ax^2 + bx + c = 0) \Leftrightarrow \begin{bmatrix} a \neq 0 \land b^2 - 4ac \ge 0 & x = \frac{-b - \sqrt{b^2 - 4ac}}{2a} \\ a = 0 \land b \ne 0 & x = -\frac{c}{b} \\ a = 0 \land b = 0 \land c = 0 & x = \infty_1 \end{bmatrix}$$

Semantics (for fixed parameters)

Whenever some left hand side condition holds, then $\exists x \varphi$ holds and the corresponding right hand side term is **one** sample solution.

[M. Kosta, T.S., A. Dolzmann, J. Symb. Comput. 2016]

For fixed choices of parameters, standard values can be efficiently computed for all ∞_i and ε_i in a post-processing step.

Quantifier Elimination Results for Our Problem

- Positive quantifier elimination exploits positivity of all variables.
- ▶ Successful not on φ_n but on $\underline{\exists}\varphi_n$ ($n=2,\ldots,10$):

n	$\underline{\exists} \varphi_n$	$\underline{\exists}\varphi_n[\lambda \leftarrow -\lambda]$	$\underline{\exists} \varphi_n[\lambda \leftarrow 0]$	time (s)
2	false	false	false	< 0.01
3	false	false	false	19.28
4	false	false	false	21.58
5	false	false	false	19.09
6	false	false	false	23.72
7	false	false	false	23.89
8	false	false	false	22.35
9	true	false	false	0.17
10	true	false	false	0.17

Extended positive QE delivers also sample solutions, e.g., for n = 9:

```
lpha = 1 \delta = 1 \gamma_0 = 0.0100554964908 \lambda = 17617230.5528 \mu = 0 \vartheta = 0.0000211443608455 v_1 = 0.000000170287832189 v_2 = 3 v_3 = 1.24573093962
```

2012-2016

Hopf Bifurcations with Larger Models Including MBO and MAPK

Switching to Convex Coordinates

In the previous example

variables: concentrations of species

parameters: reaction rates

Switching to Convex Coordinates

In the previous example

- variables: concentrations of species
- parameters: reaction rates

Stoichiometric network analysis (Clarke, 1980)

- We analyze system dynamics in flux space instead of concentration space.
- ▶ We represent the space of steady states with a combination of subnetworks.
- ▶ The subnetworks form a convex cone in flux space.
- Decomposing of the cone allows to search for lower dimensional facets (first).

Switching to Convex Coordinates

In the previous example

- variables: concentrations of species
- parameters: reaction rates

Stoichiometric network analysis (Clarke, 1980)

- We analyze system dynamics in flux space instead of concentration space.
- We represent the space of steady states with a combination of subnetworks.
- ▶ The subnetworks form a convex cone in flux space.
- ▶ Decomposing of the cone allows to search for lower dimensional facets (first).

This gives us

- ▶ certain Hurwitz conditions $\Delta_{n-1} = 0$, $\Delta_{n-2} > 0$, $\Delta_{n-3} > 0$ for Hopf bifurcation,
- furthermore $\Delta_{n-4} > 0, \ldots, \Delta_1 > 0$ for empty unstable manifold,
- and positivity conditions on the variables and parameters.
- ► The steady state approximation (vector field = 0) is not explicit anymore.
- ► One reaction yields many such problems of various dimensions (in flux space).
- Δ_{n-1} is generally much larger than the $\Delta_{n-2}, \ldots, \Delta_1$.

►
$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$

► $f(1, 1) = -3 < 0$

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$

►
$$f(1,1) = -3 < 0$$

► find $p \in]0, \infty[^2 \text{ with } g(p) > 0$ and use intermediate value theorem

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$

•
$$f(1,1) = -3 < 0$$

► find $p \in]0, \infty[^2 \text{ with } g(p) > 0$ and use intermediate value theorem

Computation of a Positive Point

►
$$supp^+(f) = \{(2, 1), (0, 2)\},\$$

 $supp^-(f) = \{(2, 0), (5, 0), (0, 3)\}$

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$

- f(1,1) = -3 < 0
- ► find $p \in]0, \infty[^2 \text{ with } g(p) > 0$ and use intermediate value theorem

Computation of a Positive Point

- ► $supp^+(f) = \{(2, 1), (0, 2)\},\$ $supp^-(f) = \{(2, 0), (5, 0), (0, 3)\}$
- linear programming:
 (0, 2) ∈ newton(f) ∩ supp⁺(f)
 (-3, -2) is normal of a separating hyperplane oriented towards (0, 2)

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$

- f(1,1) = -3 < 0
- ► find $p \in]0, \infty[^2 \text{ with } g(p) > 0$ and use intermediate value theorem

Computation of a Positive Point

- ► $supp^+(f) = \{(2, 1), (0, 2)\},\$ $supp^-(f) = \{(2, 0), (5, 0), (0, 3)\}$
- linear programming:
 (0, 2) ∈ newton(f) ∩ supp⁺(f)
 (-3, -2) is normal of a separating hyperplane oriented towards (0, 2)
- positive point at (t⁻³, t⁻²) for sufficiently large t

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2, \quad f(1,1) < 0 < f(2^{-3},2^{-2}) = f\left(\frac{1}{8},\frac{1}{4}\right)$$

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$
, $f(1,1) < 0 < f(2^{-3}, 2^{-2}) = f(\frac{1}{8}, \frac{1}{4})$

Computation of a zero

$$-2x_1^5 + x_1^2 x_2 - 3x_1^2 - x_2^3 + 2x_2^2 = 0$$

$$x_1 = \frac{1}{8} + y \cdot \left(1 - \frac{1}{8}\right)$$

$$x_2 = \frac{1}{4} + y \cdot \left(1 - \frac{1}{4}\right), \quad y \in]0, 1[$$

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$
, $f(1, 1) < 0 < f(2^{-3}, 2^{-2}) = f(\frac{1}{8}, \frac{1}{4})$

Computation of a zero

$$-2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2 = 0$$

$$x_1 = \frac{1}{8} + y \cdot \left(1 - \frac{1}{8}\right)$$

$$x_2 = \frac{1}{4} + y \cdot \left(1 - \frac{1}{4}\right), \quad y \in]0, 1[$$

(1)
$$\overline{f} = f\left(\frac{1}{8} + y \cdot \left(1 - \frac{1}{8}\right), \frac{1}{4} + y \cdot \left(1 - \frac{1}{4}\right)\right)$$

= $\left(-16807y^5 - 12005y^4 - 934y^3 - 20778y^2 + 285y + 1087\right)/D, \quad D \in \mathbb{N}$

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$
, $f(1, 1) < 0 < f(2^{-3}, 2^{-2}) = f(\frac{1}{8}, \frac{1}{4})$

Computation of a zero

$$-2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2 = 0$$

$$x_1 = \frac{1}{8} + y \cdot \left(1 - \frac{1}{8}\right)$$

$$x_2 = \frac{1}{4} + y \cdot \left(1 - \frac{1}{4}\right), \quad y \in]0, 1[$$

(1)
$$\bar{f} = f\left(\frac{1}{8} + y \cdot \left(1 - \frac{1}{8}\right), \frac{1}{4} + y \cdot \left(1 - \frac{1}{4}\right)\right)$$

= $\left(-16807y^5 - 12005y^4 - 934y^3 - 20778y^2 + 285y + 1087\right)/D, \quad D \in \mathbb{N}$

(2) real root isolation yields $y \in [0.2, 0.3]$

$$f = -2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2$$
, $f(1, 1) < 0 < f(2^{-3}, 2^{-2}) = f(\frac{1}{8}, \frac{1}{4})$

Computation of a zero

$$-2x_1^5 + x_1^2x_2 - 3x_1^2 - x_2^3 + 2x_2^2 = 0$$

$$x_1 = \frac{1}{8} + y \cdot \left(1 - \frac{1}{8}\right)$$

$$x_2 = \frac{1}{4} + y \cdot \left(1 - \frac{1}{4}\right), \quad y \in]0, 1[$$

(1)
$$\bar{t} = t \left(\frac{1}{8} + y \cdot \left(1 - \frac{1}{8} \right), \frac{1}{4} + y \cdot \left(1 - \frac{1}{4} \right) \right)$$

= $\left(-16807y^5 - 12005y^4 - 934y^3 - 20778y^2 + 285y + 1087 \right) / D, \quad D \in \mathbb{N}$

- (2) real root isolation yields $y \in [0.2, 0.3]$
- (3) back-substitute real algebraic number $\langle \bar{t},]0.2, 0.3[\rangle$:

$$x_1 = \langle 686x^5 - 78x^3 + 584x^2 - 150x - 13,]0.32, 0.33[\rangle$$

 $x_2 = \langle 16807x^5 - 12005x^4 + 2026x^3 + 9122x^2 - 4609x + 323,]0.42, 0.43[\rangle$

Some Details on the LP Part

$$supp^+(f) = \{(2,1), (0,2)\} \implies B^+ = \begin{bmatrix} 2 & 1 & -1 \\ 0 & 2 & -1 \end{bmatrix}$$

$$supp^{-}(f) = \{(2,0), (5,0), (0,3)\} \quad \leadsto \quad B^{-} = \begin{bmatrix} 2 & 0 & -1 \\ 5 & 0 & -1 \\ 0 & 3 & -1 \end{bmatrix}.$$

1.
$$\begin{bmatrix} -2 & -1 & 1 \\ 0 & 2 & -1 \\ 2 & 0 & -1 \\ 5 & 0 & -1 \\ 0 & 3 & -1 \end{bmatrix} \cdot (\mathbf{n}, c)^{T} \le \begin{bmatrix} -1 \\ -1 \\ -1 \\ -1 \\ -1 \end{bmatrix} \text{ infeasible}$$

2.
$$\begin{vmatrix} 0 & -2 & 1 \\ 2 & 0 & -1 \\ 5 & 0 & -1 \\ 0 & 3 & -1 \end{vmatrix} \cdot (\mathbf{n}, c)^T \le \begin{vmatrix} -1 \\ -1 \\ -1 \\ -1 \end{vmatrix}$$
 feasible with $\mathbf{n} = (-3, -2)$ and $c = 5$

Methylene Blue Oscillator (MBO)

Reduction to 6 dimensions with essential species O_2 , O_2^- , HS, MB $^+$, MB, MBH

Application to the Methylene Blue Oscillator (MBO)

Characteristics of a typical input polynomial (among 496) for MBO:

- 7 variables
- degree in each variable between 4 and 9
- around 6000 summands (monomials)
- essentially irreducible

Application to the Methylene Blue Oscillator (MBO)

Characteristics of a typical input polynomial (among 496) for MBO:

- 7 variables
- degree in each variable between 4 and 9
- around 6000 summands (monomials)
- essentially irreducible

Result Summary

- polynomial has zero: 30%
- polynomial has no zero: 67%
- ► incomplete method failed 3%
- incomplete method lalled 3 /
- computation time: 90 s on 60 cores (2.4 GHz Intel Xeon E5-4640)

Application to the Methylene Blue Oscillator (MBO)

Characteristics of a typical input polynomial (among 496) for MBO:

- 7 variables
- degree in each variable between 4 and 9
- around 6000 summands (monomials)
- essentially irreducible

Result Summary

- polynomial has zero: 30%
- polynomial has no zero: 67%
- ▶ incomplete method failed 3%
- computation time: 90 s on 60 cores (2.4 GHz Intel Xeon E5-4640)

We did not observe any unsatisfied Hurwitz inequalities.

Model with 12 reactions and 9 species taken from Conradi et al. (2008)

Typical MBO Polynomial

- 7 variables
- degrees between 4 and 9
- ► ~ 6000 monomials

Large MAPK Polynomial

- ▶ 10 variables
- degrees between 5 and 12
- ► ~ 863000 monomials (30 MB)

Model with 12 reactions and 9 species taken from Conradi et al. (2008)

Typical MBO Polynomial

- ▶ 7 variables
- degrees between 4 and 9
- ► ~ 6000 monomials

Large MAPK Polynomial

- ▶ 10 variables
- degrees between 5 and 12
- ► ~ 863000 monomials (30 MB)

MAPK Timings

- 10 s for finding positive and negative point
- 5 s for exact solving (with real algebraic numbers)

Model with 12 reactions and 9 species taken from Conradi et al. (2008)

Typical MBO Polynomial

- ▶ 7 variables
- degrees between 4 and 9
- ► ~ 6000 monomials

Large MAPK Polynomial

- ▶ 10 variables
- degrees between 5 and 12
- ► ~ 863000 monomials (30 MB)

MAPK Timings

- 10 s for finding positive and negative point
- 5 s for exact solving (with real algebraic numbers)

Some Trivia

- 25 s for reading and parsing the polynomial into Reduce/Redlog
- 2 s for determining the degrees of the 10 variables
- ▶ 3000+ pages when printing in a LATEX article

Model with 12 reactions and 9 species taken from Conradi et al. (2008)

Typical MBO Polynomial

- 7 variables
- degrees between 4 and 9
- ► ~ 6000 monomials

Large MAPK Polynomial

- ▶ 10 variables
- degrees between 5 and 12
- ► ~ 863000 monomials (30 MB)

MAPK Timings

- 10 s for finding positive and negative point
- 5 s for exact solving (with real algebraic numbers)

Some Trivia

- 25 s for reading and parsing the polynomial into Reduce/Redlog
- 2 s for determining the degrees of the 10 variables
- ▶ 3000+ pages when printing in a LaTEX article

But the Hurwitz determinant inequalities were never satisfied!

2016-

Parametric Saddle-node Bifurcations with Another Model of MAPK

$$\dot{x}_1 = k_2 x_6 + k_{15} x_{11} - k_1 x_1 x_4 - k_{16} x_1 x_5$$

$$\dot{x}_2 = k_3 x_6 + k_5 x_7 + k_{10} x_9 + k_{13} x_{10} - x_2 x_5 (k_{11} + k_{12}) - k_4 x_2 x_4$$

$$\dot{x}_3 = k_6 x_7 + k_8 x_8 - k_7 x_3 x_5$$

$$\dot{x}_4 = x_6 (k_2 + k_3) + x_7 (k_5 + k_6) - k_1 x_1 x_4 - k_4 x_2 x_4$$

$$\dot{x}_5 = k_8 x_8 + k_{10} x_9 + k_{13} x_{10} + k_{15} x_{11} - x_2 x_5 (k_{11} + k_{12}) - k_7 x_3 x_5 - k_{16} x_1 x_5$$

$$\dot{x}_6 = k_1 x_1 x_4 - x_6 (k_2 + k_3)$$

$$\dot{x}_7 = k_4 x_2 x_4 - x_7 (k_5 + k_6)$$

$$\dot{x}_8 = k_7 x_3 x_5 - x_8 (k_8 + k_9)$$

$$\dot{x}_9 = k_9 x_8 - k_{10} x_9 + k_{11} x_2 x_5$$

$$\dot{x}_{10} = k_{12} x_2 x_5 - x_{10} (k_{13} + k_{14})$$

$$\dot{x}_{11} = k_{14} x_{10} - k_{15} x_{11} + k_{16} x_1 x_5$$

Values for the rate constants

$$k_1 = 0.02$$
 $k_2 = 1$ $k_3 = 0.01$ $k_4 = 0.032$ $k_5 = 1$ $k_6 = 15$
 $k_7 = 0.045$ $k_8 = 1$ $k_9 = 0.092$ $k_{10} = 1$ $k_{11} = 0.01$ $k_{12} = 0.01$
 $k_{13} = 1$ $k_{14} = 0.5$ $k_{15} = 0.086$ $k_{16} = 0.0011$

Steady-state-approximation and plugging in

$$-200x_{1}x_{4} - 11x_{1}x_{5} + 860x_{11} + 10000x_{6} = 0$$

$$500x_{10} - 16x_{2}x_{4} - 10x_{2}x_{5} + 5x_{6} + 500x_{7} + 500x_{9} = 0$$

$$-9x_{3}x_{5} + 3000x_{7} + 200x_{8} = 0$$

$$-10x_{1}x_{4} - 16x_{2}x_{4} + 505x_{6} + 8000x_{7} = 0$$

$$-11x_{1}x_{5} + 10000x_{10} + 860x_{11} - 200x_{2}x_{5} - 450x_{3}x_{5} + 10000x_{8} + 10000x_{9} = 0$$

$$2x_{1}x_{4} - 101x_{6} = 0$$

$$4x_{2}x_{4} - 2000x_{7} = 0$$

$$45x_{3}x_{5} - 1092x_{8} = 0$$

$$5x_{2}x_{5} + 46x_{8} - 500x_{9} = 0$$

$$-150x_{10} + x_{2}x_{5} = 0$$

$$11x_{1}x_{5} + 5000x_{10} - 860x_{11} = 0$$

Conservation laws

$$x_5 + x_8 + x_9 + x_{10} + x_{11} = k_{17}$$
$$x_4 + x_6 + x_7 = k_{18}$$
$$x_1 + x_2 + x_3 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} = k_{19}$$

Some realistic values for those new constants

$$k_{17} = 100$$
 $k_{18} = 50$

 $k_{10} \in \{200, 500\}$

Conservation laws

$$x_5 + x_8 + x_9 + x_{10} + x_{11} = k_{17}$$

$$x_4 + x_6 + x_7 = k_{18}$$

$$x_1 + x_2 + x_3 + x_6 + x_7 + x_8 + x_9 + x_{10} + x_{11} = k_{19}$$

Some realistic values for those new constants

$$k_{17} = 100$$

$$k_{18} = 50$$

$$k_{19} \in \{200, 500\}$$

Saddle-node Bifurcation

The number of solutions for x_1, \ldots, x_{11} changes from unique to non-unique.

 $\varphi(f_1, f_2)$ is a Boolean combination of constraints with left hand sides f_1 , f_2 and right hand sides 0.

$$f_1(x,y) = 2y^2 - 2x^3 - 3x^2$$

$$f_1(A) = -1 < 0$$

 $f_1(B) = 2 > 0$
 $f_1(C) = -5 < 0$
 $f_1(D) = 0$

 $\varphi(f_1, f_2)$ is a Boolean combination of constraints with left hand sides f_1 , f_2 and right hand sides 0.

$$f_1(x,y) = 2y^2 - 2x^3 - 3x^2$$

$$f_1(A) = -1 < 0$$

$$f_1(B) = 2 > 0$$

$$f_1(C) = -5 < 0$$

$$f_1(D) = 0$$

$$f_2(x,y) = y^2 + x^2 - 1$$

 $\varphi(f_1, f_2)$ is a Boolean combination of constraints with left hand sides f_1 , f_2 and right hand sides 0.

$$f_1(x,y) = 2y^2 - 2x^3 - 3x^2$$

$$f_1(A) = -1 < 0$$

$$f_1(B) = 2 > 0$$

$$f_1(C) = -5 < 0$$

$$f_1(D)=0$$

$$f_2(x,y) = y^2 + x^2 - 1$$

 $\varphi(f_1, f_2)$ is a Boolean combination of constraints with left hand sides f_1 , f_2 and right hand sides 0.

$$f_1(x,y) = 2y^2 - 2x^3 - 3x^2$$

$$f_1(A) = -1 < 0$$

$$f_1(B) = 2 > 0$$

$$f_1(C) = -5 < 0$$

$$f_1(D)=0$$

$$f_2(x,y) = y^2 + x^2 - 1$$

$$g(x) = -2x^3 - 3x^2$$

. . .

projection polynomials

Application of CAD to Our MAPK Model

First Without Parameters

```
Recall k_{17} = 100, k_{18} = 50, k_{19} \in \{200, 500\}; plug in k_{17}, k_{18}.

For k_{19} = 200:
x^{(200)} = (90.6, 2.6, 10.4, 17.8, 35.9, 32.0, 0.0, 15.5, 2.3, 0.6, 45.4)

For k_{19} = 500:
x_1^{(500)} = (17.6, 6.9, 367.5, 36.6, 5.5, 12.8, 0.5, 83.4, 8.0, 0.2, 2.7)
x_2^{(500)} = (122.0, 14.6, 234.9, 14.5, 7.1, 35.0, 0.4, 69.4, 7.4, 0.7, 15.2)
x_3^{(500)} = (323.7, 9.4, 37.1, 6.7, 13.6, 43.1, 0.1, 20.8, 3.2, 0.8, 61.4)
```

▶ Float approximations for convenience — we have exact real algebraic numbers

Application of CAD to Our MAPK Model

Now with Parametric k_{19}

- ▶ Eliminate $x_1, x_3, ..., x_{11}$ by virtual substitution.
- ► Then CAD with variables k₁₉ and x₂
- ▶ For all $k_{19} > 0$ there is at least one positive solution for x_2
- ▶ The system changesfrom one to three solutions around $k_{19} = 409.3$.

Application of CAD to Our MAPK Model

Now with Parametric k_{19}

- ▶ Eliminate $x_1, x_3, ..., x_{11}$ by virtual substitution.
- ► Then CAD with variables k₁₉ and x₂
- ▶ For all $k_{19} > 0$ there is at least one positive solution for x_2
- ▶ The system changesfrom one to three solutions around $k_{19} = 409.3$.

The exact break point

is the only real zero in the interval (409, 410) of $\sum_{i=0}^{10} c_i k_{19}^i$ with

```
c_{10} = 351590934502740290936895033267017158736060313940693076650155371250411
```

 $c_6 = -8468945963692802414226427249726123493448372439778349029355636316929687020660000$

 $c_5 = 2231098270337406450670301663172664333421440833875848621423683265663846533079600000$

 $c_6 = -376265008904112258290319173193792052014899485528994925965885895511831873444245100000$

The Combined System Once More

$$-200x_{1}x_{4} - 11x_{1}x_{5} + 860x_{11} + 10000x_{6} = 0$$

$$500x_{10} - 16x_{2}x_{4} - 10x_{2}x_{5} + 5x_{6} + 500x_{7} + 500x_{9} = 0$$

$$-9x_{3}x_{5} + 3000x_{7} + 200x_{8} = 0$$

$$-10x_{1}x_{4} - 16x_{2}x_{4} + 505x_{6} + 8000x_{7} = 0$$

$$-11x_{1}x_{5} + 10000x_{10} + 860x_{11} - 200x_{2}x_{5} - 450x_{3}x_{5} + 10000x_{8} + 10000x_{9} = 0$$

$$2x_{1}x_{4} - 101x_{6} = 0$$

$$4x_{2}x_{4} - 2000x_{7} = 0$$

$$45x_{3}x_{5} - 1092x_{8} = 0$$

$$5x_{2}x_{5} + 46x_{8} - 500x_{9} = 0$$

$$-150x_{10} + x_{2}x_{5} = 0$$

$$11x_{1}x_{5} + 5000x_{10} - 860x_{11} = 0$$

$$-k_{17} + x_{10} + x_{11} + x_{5} + x_{8} + x_{9} = 0$$

$$-k_{18} + x_{4} + x_{6} + x_{7} = 0$$

$$-k_{19} + x_{1} + x_{10} + x_{11} + x_{2} + x_{3} + x_{6} + x_{7} + x_{8} + x_{9} = 0$$

A Minimum Vertex Cover

This Yields

$$\begin{aligned} &1062444k_{18}x_{4}^{2}x_{5}+23478000k_{18}x_{4}^{2}+1153450k_{18}x_{4}x_{5}^{2}+2967000k_{18}x_{4}x_{5}\\ &+638825k_{18}x_{5}^{3}+49944500k_{18}x_{5}^{2}-5934k_{19}x_{4}^{2}x_{5}-989000k_{19}x_{4}x_{5}^{2}\\ &-1062444x_{4}^{3}x_{5}-23478000x_{4}^{3}-1153450x_{4}^{2}x_{5}^{2}-2967000x_{4}^{2}x_{5}\\ &-638825x_{4}x_{5}^{3}-49944500x_{4}x_{5}^{2}=0\\ &1062444k_{17}x_{4}^{2}x_{5}+23478000k_{17}x_{4}^{2}+1153450k_{17}x_{4}x_{5}^{2}+2967000k_{17}x_{4}x_{5}\\ &+638825k_{17}x_{5}^{3}+49944500k_{17}x_{5}^{2}-1056510k_{19}x_{4}^{2}x_{5}-164450k_{19}x_{4}x_{5}^{2}\\ &-638825k_{19}x_{5}^{3}-1062444x_{4}^{2}x_{5}^{2}-23478000x_{4}^{2}x_{5}-1153450x_{4}x_{5}^{3}\\ &-2967000x_{4}x_{5}^{2}-638825x_{5}^{4}-49944500x_{5}^{3}=0 \end{aligned}$$

- We managed to compute a CAD with 2 parameters.
- Also a real triangularization
- ▶ This is where we are standing right now.

The story continues ...