Prüfungsdauer: 150 Minuten

Abschlussprüfung 2012 an den Realschulen in Bayern

1 P

Mathematik I

Name:																										
Klasse):										Punkte:															
Αι	ufgal	be A	. 1																				На	upt	termin	
A 1.0	Die	Pun	kte	A(2	2 0)), B	(5	3)	uno	d C	C b	ild	en (das	s gl	eic	hse	eitig	ge I	Ore	iec]	k A	ВС	·		
			У				ļ									¦ 										
							ļ																			
			-				ļ									ļ 										
																	-									
			1 -																							
			О		1 -		ļ									X										
A 1.1	Zeio	hne	: n Si	ie de	e D	roje	ck	ΑF	: : ?C	in	dae	K	oor	dir	: nate	ne	wet	em	711	1 () eii	n				1 P
A 1.2		Pu ordin																						Si	e die	
							ļ								ļ	ļ		ļ								
			·				ļ	ļ								ļ 		ļ								
											 					<u> </u>									-1	
							ļ									ļ		ļ								
							ļ								 !	 !		ļ								
																										3 P
A 1.3	Berechnen Sie den Flächeninhalt A des Dreiecks ABC. Runden Sie auf eine Stel nach dem Komma.														Stelle											
	1	-				1	-																		!	
																i										
							ļ											ļ								
			- 	}			 									 	· ·	 						+		

Aufgabe A 2 Haupttermin

A 2.0 Nachdem der nordamerikanische Waschbär nach Deutschland eingeschleppt worden war, konnte in einigen Gebieten festgestellt werden, dass die Anzahl der Waschbären jährlich um 27 % zunimmt.

A 2.1 Legt man dieses Wachstum zugrunde und geht von einem Anfangsbestand von 250 Waschbären in einem Beobachtungsgebiet am Jahresende 2012 aus, lässt sich der Zusammenhang zwischen der Anzahl x der von diesem Zeitpunkt an vergangenen Jahre und der Anzahl y der Tiere annähernd durch die Exponentialfunktion f mit der Gleichung $y = 250 \cdot 1, 27^x$ beschreiben ($\mathbb{G} = \mathbb{R}_0^+ \times \mathbb{R}_0^+$).

Zeichnen Sie den Graphen zu f für $x \in [0; 10]$ in das Koordinatensystem.

A 2.2 Ermitteln Sie mit Hilfe des Graphen zu f, um wie viele Tiere der Bestand an Waschbären bis zum Ende des Jahres 2020 voraussichtlich zunehmen wird.

1 P

2 P

A 2.3 Berechnen Sie, in welchem Jahr die Anzahl der Waschbären voraussichtlich erstmals größer als 4900 sein wird.

A 2.4 Ermitteln Sie durch Rechnung, am Ende welchen Jahres voraussichtlich erstmals über 900 Waschbären mehr als im Jahr zuvor registriert werden.

A 2.5 Durch die Zunahme des Waschbärenbestands in einem Gebiet ging die Anzahl an Kormoranen, einer Vogelart, von anfänglich 3600 Vögeln um jährlich 6 % zurück. Der Zusammenhang zwischen der Anzahl x der Jahre und der Anzahl y der Kormorane löset eich nöhemmenweise durch eine Europentielfunktion der Forme v. v. lex

rane lässt sich näherungsweise durch eine Exponentialfunktion der Form $y = y_0 \cdot k^x$ beschreiben ($\mathbb{G} = \mathbb{IR}_0^+ \times \mathbb{IR}_0^+$; $y_0 \in \mathbb{IR}^+$; $k \in \mathbb{IR}^+ \setminus \{1\}$).

1 P

3 P

A 3.0 Die Axialschnitte von Rotationskörpern sind achsensymmetrische Siebenecke $ABCDE_nFG_n$. Der Mittelpunkt M der Seite [BC] und der Punkt F liegen auf der Symmetrieachse. Punkte G_n und E_n auf der Strecke [AD] legen zusammen mit dem Punkt F Winkel E_nFG_n fest. Die Winkel E_nFG_n haben das Maß ϕ mit $\phi \in]0^\circ; 112,62^\circ[$.

Es gilt: $\angle MBA = 90^\circ$; $\angle BAG_n = 90^\circ$; $\overline{AB} = 5 \text{ cm}$; $\overline{BC} = 9 \text{ cm}$; $\overline{MF} = 2 \text{ cm}$.

Die Skizze zeigt das Siebeneck ABCDE₁FG₁ für $\phi = 80^{\circ}$.

A 3.1 Begründen Sie durch Rechnung das Maß der oberen Intervallgrenze für ϕ .

1 P

A 3.2 Zeigen Sie, dass für das Volumen V der Rotationskörper in Abhängigkeit von φ gilt: $V(\varphi) = 9 \cdot \pi \cdot \left(11,25 - \tan^2 \frac{\varphi}{2}\right) \text{ cm}^3$.

3 P

A 3.3 Berechnen Sie das Volumen des Rotationskörpers für $\phi = 100^{\circ}$. Runden Sie auf zwei Stellen nach dem Komma.

1 P

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2012 an den Realschulen in Bayern

Mathematik I

A	ufgabe B 1	Haupttermin										
B 1.0	Die Gerade h mit der Gleichung $y = \frac{4}{5}x$ ($G = \mathbb{R} \times \mathbb{R}$) ist Symmet	trieachse von										
	Rauten $A_nB_nC_nD_n$. Die Diagonalen $[B_nD_n]$ der Rauten $A_nB_nC_nD_n$ liegen auf der Geraden h. Die Punkte $A_n(x \mid 2x+3,5)$ liegen auf der Geraden g mit der Gleichung $y=2x+3,5$ ($\mathbb{G}=\mathbb{IR}\times\mathbb{IR}$). Die Abszisse der Punkte D_n ist stets um vier größer als die Abszisse x der Punkte A_n . Dabei gilt: $x\in]-2,92;3,92[$.											
	Runden Sie im Folgenden auf zwei Stellen nach dem Komma.											
B 1.1	Zeichnen Sie die Geraden g und h sowie die Raute $A_1B_1C_1D_1$ für $x = Raute A_2B_2C_2D_2$ für $x = 2$ in ein Koordinatensystem.	–0,5 und die	2 D									
D 1 0	Für die Zeichnung: Längeneinheit 1 cm; $-4 \le x \le 8$; $-3 \le y \le 9$.	1 5 1	3 P									
B 1.2	Zeigen Sie, dass für die Punkte D_n in Abhängigkeit von der Abszisse A_n gilt: $D_n(x+4 0,8x+3,2)$. Bestätigen Sie sodann durch Rechnut Intervallgrenze $x=-2,92$ der Rauten $A_nB_nC_nD_n$.		2 P									
B 1.3	Begründen Sie, warum sich für $\left[A_nD_n\right]\bot h$ die obere Intervallgren ergibt und bestätigen Sie diese durch Rechnung.	nze $x = 3,92$	2 P									
B 1.4	Bestimmen Sie rechnerisch die Koordinaten der Punkte C_n in Abhäder Abszisse x der Punkte A_n . [Ergebnis: $C_n(2,17x+3,41 0,54x-0,77)$]	ingigkeit von	3 P									
B 1.5	Berechnen Sie den Flächeninhalt A der Rauten $A_nB_nC_nD_n$ in Abhängi Abszisse x der Punkte A_n .	gkeit von der	3 P									
B 1.6	Die Seite $[C_3D_3]$ der Raute $A_3B_3C_3D_3$ verläuft senkrecht zur x-Achse Berechnen Sie die Koordinaten des Punktes D_3 .		2 P									
B 1.7	In der Raute $A_4B_4C_4D_4$ hat die Diagonale $[A_4C_4]$ die gleiche Länge $[A_4D_4]$. Begründen Sie, dass für die Diagonale $[B_4D_4]$ gilt: $\overline{B_4D_4} = \overline{A_4}$		2 P									

Prüfungsdauer: 150 Minuten

Abschlussprüfung 2012

an den Realschulen in Bayern

Mathematik I

Aufgabe B 2

Haupttermin

B 2.0 Die nebenstehende Skizze zeigt ein Schrägbild des geraden Prismas ABCDEF, dessen Grundfläche das rechtwinklige Dreieck ABC mit den Katheten [AB] und [AC] ist.

Es gilt:
$$\overline{AB} = \overline{AD} = 6 \text{ cm}$$
; $\overline{AC} = 8 \text{ cm}$.

Runden Sie im Folgenden auf zwei Stellen nach dem Komma.

B 2.1 Zeichnen Sie das Schrägbild des Prismas ABCDEF, wobei die Kante [AB] auf der Schrägbildachse liegen soll (Lage des Prismas wie in der Skizze zu 2.0 dargestellt). Für die Zeichnung gilt: $q = \frac{1}{2}$; $\omega = 45^{\circ}$.

[Ergebnis: FE = 10 cm; $\angle AFE = 50,21^{\circ}$] 4 P

B 2.2 Punkte Q_n liegen auf der Strecke [FE]. Die Winkel FQ_nA haben das Maß φ mit $\phi\!\in\![64,90^\circ\!;\ 129,79^\circ\![$. Die Punkte $\,Q_{_n}\,$ sind zusammen mit den Punkten A und FEckpunkte von Dreiecken AQ_nF.

Zeichnen Sie das Dreieck AQ_1F für $\overline{FQ_1} = 4$ cm in das Schrägbild zu 2.1 ein. Begründen Sie sodann die Intervallgrenzen für φ. 3 P

B 2.3 Berechnen Sie die Länge der Strecken $[FQ_n]$ in Abhängigkeit von φ .

[Ergebnis:
$$\overline{FQ_n}(\varphi) = \frac{10 \cdot \sin(50, 21^\circ + \varphi)}{\sin \varphi} \text{ cm}$$
]

B 2.4 Die Punkte Q_n sind die Spitzen von Pyramiden ADFQ_n mit der Grundfläche ADF und den Höhen $[P_n Q_n]$. Die Punkte P_n liegen auf der Strecke [DF]. Zeichnen Sie die Pyramide ADFQ₁ und die Höhe [P₁Q₁] in das Schrägbild zu 2.1

ein. Ermitteln Sie sodann durch Rechnung das Volumen V der Pyramiden ADFQ_n in Abhängigkeit von φ.

[Ergebnis:
$$V(\phi) = \frac{48 \cdot \sin(50,21^{\circ} + \phi)}{\sin \phi} \text{ cm}^{3}$$
]

B 2.5 Das Volumen der Pyramide ADFQ, ist um 70 % kleiner als das Volumen des Prismas ABCDEF . Berechnen Sie das zugehörige Winkelmaß $\,\phi$. 3 P

B 2.6 Die Höhe der Pyramide ABEDQ₃ mit der Grundfläche ABED hat das gleiche Maß wie die Höhe der Pyramide ADFQ3. Begründen Sie, dass das Volumen der Pyramide $ABEDQ_3$ 1,5 mal so groß ist wie das Volumen der Pyramide $ADFQ_3$.