单北斗定位导航模块

ATGM336H-6N

用户手册

1 功能描述

1.1 概述

ATGM336H-6N 单北斗系列模块是 10.1mm×9.7mm 尺寸的高性能定位导航模块。该系列模块产品基于中科微第六代 SOC 单北斗芯片 AT6668B, 支持北斗二号和北斗三号(B1I 和 B1C) 信号。

ATGM336H-6N 单北斗系列模块基于专有的快速搜星技术,可以快速的接收大量的可见卫星信号,实现快速且准确的定位,可以显著改善如城市峡谷等复杂环境下的定位性能;集成高性能嵌入式 CPU,最大位置更新率可以达到 10Hz,适合对定位延迟敏感的高动态应用;集成了专有的抗干扰硬件加速电路,可以快速的检测并抑制射频干扰。

ATGM336H-6N单北斗系列模块应用了全新的导航一体化 SOC 单芯片技术,可以满足高精度定位、高精度授时的应用,同时具有高集成度、高性能、低功耗、小尺寸等特点。该系列模块可以用于车载导航、可穿戴设备、手机、物联网设备、无人机等应用领域。

1.2 产品选购

型号	卫星系统	卫星频点	波特率
ATGM336H-6N-22	BD2+BD3	B1I+B1C	115200bps

注:单北斗系列模块不支持 GPS, GLONASS 和 GALILEO 等其他导航定位系统。

1.3 主要特征

- 多频点单北斗接收机
 - 支持北斗二号、北斗三号
 - 支持 B1I/B1C 频点
 - 支持 B1I 独立定位
 - 支持 B1C 独立定位
 - 通道数目:50通道
- 软件特性
 - 最大定位更新率可以达到 10Hz
 - 支持 A-BD
- 电源管理
 - 连续运行典型功耗: <42mA(@3.3V)
 - 待机典型功耗: <10uA(@3.3V)
 - 内置天线检测及天线短路保护功能

1.4 模块功能框图

1.5 应用领域

- 车载定位与导航
- 电力授时, 4G/5G 通信授时
- 可穿戴设备
- 物联网定位设备
- 无人机
- 便携式设备,如手机、平板电脑

1.6 辅助 BD

ATGM336H-6N 系列模块全部支持辅助 BD(A-BD)功能。AGNSS 可以为接收机提供定位必需的辅助信息,比如电文,粗略位置和时间。无论是在强信号还是弱信号环境,这些信息可以显著的缩短首次定位时间。具体使用方式见《中科微 AGNSS 解决方案》的说明。

1.7 1PPS

ATGM336H-6N 系列模块支持精确秒脉冲输出,脉冲上升沿与 UTC 时间对齐。

1.8 输出协议

ATGM336H-6N 系列模块通过 UART 作为主要输出通道,按照 NMEA0183 的协议格式输出,具体信息请参照《中科微多模卫星导航接收机协议规范》。

1.9 FLASH

ATGM336H-6N 系列模块配备 Flash,可以通过在线升级功能,更新定位功能与算法。这种配置功能,可以让客户自主配置定位更新率,获得适用的低功耗;可以让客户及时更新全球多模定位的最新优化进展。

1.10 在线升级功能

ATGM336H-6N 系列模块支持中科微的在线升级协议。用户可在上位机中按照升级协议,与模块通信,将中科微提供的新的软件程序,升级到模块中,以获得新的软件特色。用户还可以采用远程命令方式,遥控设备启动以上升级过程,实现远程在线升级。在线升级协议,请参考《ATGM 模块在线升级协议》。

1.11 天线

ATGM336H-6N系列模块支持有源天线与无源天线。

1.12 上位机工具

中科微提供《GNSSToolKit》软件包,用于定位输出解析与工作模式配置。 中科微提供《UBF 串口升级工具》软件包,用于基于 PC 的在线升级工具。基 于设备的在线升级程序需客户自己开发。

2 技术描述

2.1 外观尺寸 (单位: mm)

2.2 PCB layout (单位: mm)

2.3 PIN 排列图

2.4 管脚定义

引脚编号	名称	I/O	描述	电气特性
1	GND	I	地	
2	TXD0	0	主串口数据输出	
3	RXD0	ı	主串口数据输入	
4	1PPS	0	秒脉冲输出	
5	ON/OFF	I	模块关断控制,低电平有效	
6	VBAT	ı	RTC 及 SRAM 后备电源	供电范围: 1.5~3.6V 电源以
				保证模块热启动
7	Reserved		保留	悬空
8	VCC	I	模块电源输入	供电范围: 2.7~3.6V
9	nRESET	I	模块复位输入,低电平有效	不用时悬空
10	GND	ı	地	
11	RF_IN	ı	天线信号输入	
12	GND	ı	地	
13	Reserved		保留	悬空
14	VCC_RF	0	输出电源	+3.3V,可给天线供电
15	Reserved		保留	悬空
16	RXD1	I	辅助串行数据输入	
17	TXD1	0	辅助串口数据输出	
18	Reserved		保留	悬空

2.5 电气参数

极限参数

参数	符号	最小值	最大值	单位
模块供电电压(VCC)	Vcc	-0.3	3.6	V
备份电池电压(VBAT)	Vbat	-0.3	3.6	V
数字输入引脚电压	Vin	-0.3	Vcc+0.2	V
最大可承受ESD水平	VESD(HBM)		2000	V
存储温度	Tstg	-40	125	$^{\circ}$
工作温度	Topr	-40	85	$^{\circ}$

运行条件

参数	符号	最小值	典型值	最大值	单位
供电电压	Vcc	2.7	3.3	3.6	V
工作电流@3.3V	Icc		42		mA
备份电源	Vbat	1.5	3.0	3.6	V
备份电源(Vbat)电流	lbat		10		uA
於 入刊即	Vil			0.2*Vcc	V
输入引脚 	Vih	0.7*Vcc			V
	Vol			0.4	V
 輸出引脚	lo=-12mA			0.4	V
刑 屲 J M	Voh	Vcc-0.4		V	
	lo=12mA	VCC-0.4			V
有源天线输出电压	VCC_RF		3.3		V
天线短路保护电流	lant short		50		mA
电源来自VCC_RF (=3.3V)	iant short		50		mA
有源天线检测电流	lant anan	2.5			mA
电源来自VCC_RF (=3.3V)	lant open	2.0			IIIA

2.6 技术规范

指标	技术参数
信号接收	BDS: B1I+B1C
冷启动TTFF*	≤23s
热启动TTFF	≤1s
重捕获TTFF	≤1s
冷启动捕获灵敏度	-148dBm
热启动捕获灵敏度	-156dBm
重捕获灵敏度	-160dBm
跟踪灵敏度	-162dBm
定位精度	<2.0m (CEP50)
测速精度	<0.1m/s (1 o)
定位更新率	1Hz(默认),最大10Hz
串口特性	波特率默认115200bps,8个数据位,无校验,1个停止位
协议	NMEA0183 4.1
尺寸	10.1mm×9.7mm×2.2mm
重量	1.6g

2.7 模块应用电路

2.7.1 有源天线应用方案

方案应用信息:

- ➤ 有源天线直接连接 RF_IN。
- ▶ 模块内部 RF IN 已通过电感和 VCC RF 相连进行供电。
- ▶ 模块内部提供天线检测及短路保护功能。
- ▶ 为了保证模块处于最佳工作状态,建议有源天线增益范围 15~30dB。

2.7.2 无源天线应用方案

方案应用信息:

▶ 如果使用无源天线,建议在模块前端增加一级 LNA 保证性能。

2.8 模块使用注意事项

为了保证 ATGM336H-6N 的最佳性能,用户在使用本模块时需要注意以下几点:

- 采用低纹波的 LDO,电源纹波控制在 50mVpp 以内。
- 模块附近尽量避免频率高、幅度大的数字信号,在 layout 时要特别注意接地 良好。
- 天线接口尽量靠近模块的 RF 输入引脚,并注意 50 欧姆的阻抗匹配。
- 模块本身具有有源天线接入、断开、短路检测电路。在天线意外短路时,对 天线的供电进行限流(50mA),起到保护的作用。在上述3种天线端口状态发 生变化时,可以从串口输出相应的信息。信息如下:

天线短路状态: \$GPTXT,01,01,01,ANTENNA SHORT*63

天线断开状态: \$GPTXT,01,01,01,ANTENNA OPEN*25

天线正常状态: \$GPTXT,01,01,01,ANTENNA OK*35

● 模块使用无源天线时,串口输出语句均为开路。信息如下: \$GPTXT,01,01,01,ANTENNA OPEN*25

3 可靠性测试与认证

3.1 RoHS 要求

ATGM336H-6N 系列模块均满足 RoHS 要求。

4 模块传送与焊接

4.1 模块包装

ATGM336H-6N 系列模块采用真空卷带包装,具备防潮,防静电等特性,使用过程与业内主要贴片机兼容。按照每盘 1000 片进行包装。

4.2 模块传送与存储

4.2.1 防潮等级:

Moisture Sensitivity Level (MSL): 3级

MSL 请参考 IPC/JEDEC J-STD-020 标准。

4.2.2 回流焊曲线:

!注意

调整平衡时间以保证锡膏溶化时气体的合理化处理。如果PCB板上有过多空隙,

可以增加平衡时间。

考虑到产品长时间放置在焊接区(温度在**180**℃以上),为了防止元器件和底板的损伤,应尽可能缩短放置时间。

! 曲线的重要特征:

上升速度=1~4°C /sec, 25°C to150°C平均

预热温度=140°C to 150°C, 60sec~90sec

温度波动=225°C to 250°C, 大约 30sec

下降速度=2~6°C/sec, to 183°C, 大约 15sec

总时间 = 大约 300sec

4.2.3 静电防护:

ATGM336H-6N 模块属静电敏感器件。经常性的静电接触会导致模块产生意外的损坏。除了按照标准的静电防护要求操作外,如下几点需尽量遵循:

- 1)除非 PCB GND 已经很好的接地,否则接触模块的第一位置应该是 PCB GND。
- 2) 连接天线的时候,请首先连接 GND,再连信号线。
- 3)接触 RF 部分电路时,请不要接触充电电容,请远离可产生静电的器件 与设备,如介质天线,同轴电线,电烙铁等。
- 4)为避免通过射频输入端进行电荷放电,请不要接触天线介质裸露部分。 对于可能出现接触天线介质裸露的情况,需要在设计中增加防静电保护 电路。
- 5) 在焊接与射频输入端相连接的连接器,天线,请确保使用无静电焊枪。

5 模块标签与下单型号

5.1 模块标签

ATGM336H-6N的标签包含重要的产品信息,标签内容格式如下:

5.2 型号命名规则:

以 ATGM336H-6N-22 为例,解释如下:

字段	示例	解释
Product code	ATGM336H	10.1mm×9.7mm 模块系列
产品名		
Type code	6N	采用 AT6668B 硬件平台的导航模块
类型名		
Hardware code	22	支持 BD2+BD3 卫星系统(B1I+B1C 频点)
硬件功能名		

参考文档

- 1. 《中科微 AGNSS 解决方案》
- 2. 《中科微多模卫星导航接收机协议规范》
- 3. 《ATGM 模块在线升级协议》
- 4. 《《AT6668B 单北斗芯片数据手册》
- 5. 《GNSSToolKit 工具使用说明》
- 6. 《UBF 串口升级工具使用说明》

ATGM336H-6N 单北斗定位导航模块用户手册

版本更新历史

版本	日期	更新内容
1.0	2023/07/28	初稿
1.01	2023/08/04	1. 修改产品名
		2. 修正错误
1.02	2023/11/24	1.单北斗芯片 AT6668B
1.03	2023/12/20	1.修改文本内容
1.04	2024/01/08	1. 修正技术参数
		2. 修改文本内容