

EE4483 DATA-MINING ASSIGNMENT REPORT

Hu Xiaoxiang U1521319A EEE

13 Nov, 2017

Contents

1	Question 1:	1
2	Question 2:	2
3	Question 3:	2
4	Question 4:	5
5	Question 5:	3

1 Question 1:

2 Question 2:

Minimum Support (%)	No. of Frequent Itemsets	No. of Frequent 3-Itemsets	No. of Frequent 2-Itemsets
3	659	424	190

Percentage of frequent 3-itemset = 424 / 659 = 64.34%Percentage of frequent 2-itemset = 190 / 659 = 28.83%

3 Question 3:

Explanation: The smaller the minimum support is, the more the number of strong rules generate.

Question 4:

Info			_				
Number of rules: 78			Covr			Levr	Antecedent
Filtered rules: 78	0.033	1.000	0.033	8.500	3.529	0.024	IceCream, Olive, Tea → Banana
Selected rules: 0	0.033	1.000	0.033	9.667	3.103	0.023	Banana, Ham, Salad → Apple
Selected examples: 0	0.028	1.000	0.028	8.400	4.286	0.021	Ham, Diaper, Coffee → IceCream
Find association rules	0.028	1.000	0.028	10.400	3.462	0.020	Tea, Ketchup, Fish → Diaper
Minimal support:	0.028	1.000	0.028	8.200	4.390	0.021	Diaper, Coffee, Ginger → Egg
Minimal confidence:	0.028	1.000	0.028	10.200	3.529	0.020	Egg, Diaper, Milk → Coffee
Max. number of rules:	0.028	1.000	0.028	11.600	3.103	0.019	Ham, Egg, Nuts → Apple
\square Induce classification (itemset \rightarrow class) rules	0.028	1.000	0.028	9.800	3.673	0.020	Egg, Nuts, Apple → Ham
Find rules	0.028	1.000	0.028	11.600	3.103	0.019	Egg, Coffee, Salad \rightarrow Apple
rind rules	0.022	1.000	0.022	14.500	3.103	0.015	Banana, Ketchup, Rootbeer, Ginger → Apple

Rule1: Ice Cream, Olive, Tea->Banana (minsup=3.3%) Rule2: Banana, Ham, Salad -> Apple (minsup=3.3%) Rule3: Ham, Diaper, Coffee -> Ice Cream (minsup=2.8%)

5 Question 5:

Supp	Conf	Covr	Strg	Lift	Levr	Antecedent
0.022	1.000	0.022	4.250	10.588	0.020	Coffee, Salad, Lemon → Egg, Apple
0.022	1.000	0.022	5.000	9.000	0.020	Nuts, Coffee, Salad → Apple, Ketchup
0.028	1.000	0.028	8.200	4.390	0.021	Diaper, Coffee, Ginger → Egg
0.022	1.000	0.022	10.250	4.390	0.017	Diaper, Apple, Rootbeer → Egg

Interesting Rules:

Coffee, Salad, Lemon -> Egg, Apple (Minsup=2%, Minconf=100%, Lift = 10.588)

Nuts, Coffee, Salad -> Apple, Ketchup (Minsup=2%, Minconf=100%, Lift = 9)

These are the two most interesting rules I found when minimum support is 2% and minimum confidence is 100%. The measure used to identify the interestingness of the rule is lift. Lift shows the correlaton between the two itemsets. If the lift of the rules is high, it means the probability of occurrence of the antecedent is low. The higher the value of lift is, the more positively correlated these two datasets are.