

EN.601.482/682 Deep Learning

Basics Part I:Image Features, Regression, and Classification

Mathias Unberath, PhD

Assistant Professor

Dept of Computer Science

Johns Hopkins University

Reminder

- Sign up on Piazza (access code dIF23)
- Read the syllabus
- Homework assignment 1 will be released today (due next Wednesday)

Reminder

Neural networks are taking / have taken over!

Object Detection

Reminder

- What is the difference between unsupervised and supervised learning?
- What is the difference between classification and regression?

Today's Lecture

Linear Classification

- Problem Statement
- Image Features
- The SVM Loss

Logistic Regression

- The Softmax Function
- A Little Bit on Maximum Likelihood

Image Features, Regression, and Classification

Problem Statement

From Classification to Instance Segmentation

Classification Instance **Object Detection** Classification Segmentation + Localization CAT, DOG, DUCK CAT. DOG. DUCK CAT CAT Single object Multiple objects

7 **W**

Assume set of discrete labels is known, e.g. {dog, cat, car, plane, ...} Classification describes a mapping of image onto label

Why is this challenging? **Semantic gap**

What the human sees

What the computer sees

An image is essentially a grid of numbers (often, but not always) between [0,255].

Very common:

CV: 640 x 480 x 3 (RGB channels, 8 bit) X-ray: 1240 x 960 x 1 (Grayscale, 14 bit)

Why is this challenging? **Viewpoint**

What the human sees

What the computer sees

When camera moves, all pixel values change!

Why is this challenging? **Lighting conditions**

Why is this challenging?

Deformation

Why is this challenging? Occlusion

Why is this challenging?

Background clutter

EN.601.482/682 Deep Learning Mathias Unberath

Why is this challenging? **Intraclass variation**

EN.601.482/682 Deep Learning Mathias Unberath

An Example Classifier

```
def classify_image(image):
    # Some magic here?
    return class_label
```

There is no obvious way to hard-code such classification algorithm.

The Machine Learning Approach

- 1. Curate a (large) dataset of images with corresponding annotation (i.e. labels)
- 2. Train a classifier using machine learning
- 3. Evaluate the classifier on unseen images

Example training set

The Machine Learning Approach

- 1. Curate a (large) dataset of images with corresponding annotation (i.e. labels)
- 2. Train a classifier using machine learning
- 3. Evaluate the classifier on unseen images

Example dataset: **CIFAR10**10 classes
50,000 training images
10,000 testing images

Each image: 32 x 32 x 3

Krizhevsky, A. (2009) Learning Multiple Layers of Features from Tiny Images

If there are multiple classes, e.g. {cat, car, frog}

→ Response for every label

Parametric Approach

Parametric Approach

• Every row of **W** acts like a "template" for the corresponding class

An Obvious Challenge

Where are we now? Linear classifier

- Algebraic formalism: f(x,W) = W x + b
- Visual interpretation:
 Rows of W form templates for classes
- Geometric interpretation:
 Instances x are points in high-dimensional space
 Rows of W define hyperplanes (linear decision boundaries)
- Challenge:
 Images exhibit lots of variation! Template assumption difficult to justify.
 → Higher-level representation of images

Image Features, Regression, and Classification

Image Features

Image Features

What are the image features in this example? Pixel intensities!

Parametric Approach

Higher-level representation via feature extraction

Feature extractor \longrightarrow class scores f(x,W)

Feature Extractor: Color Histogram

Color histogram is a *global* descriptor Feature vector has #(hist bins) elements

Feature Extractor: Histogram of Oriented Gradients

- Divide into small regions
- Quantize gradient direction into bins

Example numbers:

Input image 320x240; Patch size: 8x8; 9 gradient bins.

 \rightarrow 40x30 patches, each patch is 9-bin histogram: Feature vector has 40*30*9 = 10,800 elements!

Images from Stanford cs231n.

Feature Extractor: Bag of Visual Words

Fei-Fei, L., & Perona, P. (2005) A bayesian hierarchical model for learning natural scene categories. CVPR

Mathias Unberath 37

Some Observations

- For all feature extractors, we have some design choice (hyperparameters)
 - E.g. for color histogram: Number of bins
- Feature engineering is not trivial
 - → Requires strong domain knowledge

Guyon, I., & Elisseeff, A. (2003) An introduction to variable and feature selection. Journal of machine learning research, 3(Mar), 1157-1182.

Some Observations

- For all feature extractors, we have some design choice (hyperparameters)
 - E.g. for color histogram: Number of bins
- Feature engineering is not trivial
 - → Requires strong domain knowledge

EN.601.482/682 Deep Learning Mathias Unberath 3

Image Features, Regression, and Classification

The SVM Loss

Unhappy?

- Given some W, how to express our (un)happiness with the current prediction?
 → Loss functions
- How to minimize our unhappiness? Update W → Optimization

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Bird	-1.7	2.0	-3.1

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Bird	-1.7	2.0	-3.1

Loss function:
Quantifies classifier performance

Given a dataset $\{(x_i, y_i)\}_{i=1}^N$ where x_i the image (or its feature representation) y_i the corresponding label (integer)

Loss over dataset = sum over all examples $L = \frac{1}{N} \sum_{i} L_i \left(f(x_i, W), y_i \right)$

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Bird	-1.7	2.0	-3.1

Given a dataset $\{(x_i, y_i)\}_{i=1}^N$ where x_i the image (or its feature representation) y_i the corresponding label (integer)

Using:
$$s = f(x_i, W)$$

The Support Vector Machine (SVM) loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

3 training examples and 3 classes: cat, car, bird

W has been determined, the scores are:

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Bird	-1.7	2.0	-3.1

The Support Vector Machine (SVM) loss:

$$L_i = \sum_{j \neq y_i} \begin{cases} 0 & \text{if } s_{y_i} \geq s_j + 1 \\ s_j - s_{y_i} + 1 & \text{otherwise} \end{cases}$$
$$= \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

2.0

-3.1

The Support	Vector	Machine	(SVM)	loss:
-------------	--------	---------	-------	-------

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Cat

Car

Bird

Loss

3.2

5.1

-1.7

2.9

1.3 2.2 4.9 2.5

Example: Cat

 $L_i = max(0, 5.1 - 3.2 + 1)$

 $+ \max(0, -1.7 - 3.2 + 1)$ = max(0, 2.9) + max(0, -3.9)

= 2.9 + 0

= 2.9

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

Cat	3.2	
Car	5.1	
Bird	-1.7	
Loss	2.9	

	1.3	2.2
	4.9	2.5
7	2.0	-3.1
	0	

The Support Vector Machine (SVM) loss:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Example: Car

$$L_{i} = \max(0, 1.3 - 4.9 + 1)$$
+ \text{ max}(0, 2.0 - 4.9 + 1)
= \text{max}(0, -2.6) + \text{max}(0, -1.9)
= 0 + 0
= 0

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

		·	
Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Bird	-1.7	2.0	-3.1
Loss	2.9	0	12.9

The Support Vector Machine (SVM) loss:

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Example: Bird

$$L_{i} = \max(0, 2.2 - (-3.1) + 1)$$
+ \text{ max}(0, 2.5 - (-3.1) + 1)
= \text{ max}(0, 6.3) + \text{ max}(0, 6.6)
= 6.3 + 6.6
= 12.9

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

3.2

1.3

2.2

The	Support '	Vector	Machine	(SVM)	loss:
-		10		. \	

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Cat

5.1 **4.9**

2.5

Bird

Car

-1.7

-3.1

Loss

2.9

0

12.9

Overall loss:

$$L = \frac{1}{N} \sum_{i} L_i \left(f(x_i, W), y_i \right)$$

$$L = 1/3 * (2.9 + 0 + 12.9) = 5.27$$

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

The Support Vector Machine (SVM) lo	SS:
-------------------------------------	-----

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Cat **3.2**

5.1 **4.**9

2.2

Car

4.9

1.3

2.5

Bird

-1.7

2.0

-3.1

Loss

2.9

0

12.9

Overall loss:

$$L = \frac{1}{N} \sum_{i} L_i \left(f(x_i, W), y_i \right)$$

Q1: What happens to L if car score changes a bit?

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

3.2

The Support Vector Machine (SVM) loss	3:
---------------------------------------	----

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

5.1

1.3

2.2

Car

Cat

4.9

2.5

Bird

-1.7

2.0

-3.1

Loss

2.9

12.9

Overall loss:

$$L = \frac{1}{N} \sum_{i} L_i \left(f(x_i, W), y_i \right)$$

Q2: What is the min/max for L?

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

2.9

Loss

12.9

The Support Vector Machine (SVM) los	SS:
--------------------------------------	-----

$$L_i = \sum_{j \neq y_i} \max(0, s_j - s_{y_i} + 1)$$

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Bird	-1.7	2.0	-3.1

Overall loss:

$$L = \frac{1}{N} \sum_{i} L_i \left(f(x_i, W), y_i \right)$$

Q3: If W is small and all s ≈ 0, what is L?

- 3 training examples and 3 classes: cat, car, bird
- W has been determined, the scores are:

Cat	3.2	1.3	2.2
Car	5.1	4.9	2.5
Bird	-1.7	2.0	-3.1

Loss **2.9 0 12.9**

The Support Vector Machine (SVM) loss:

$$L = \frac{1}{N} \sum_{i} L_i \left(f(x_i, W), y_i \right)$$

True label for cat (one-hot encoding).

Q4: Why not use the L2 norm?

Image Features, Regression, and Classification

Logistic Regression

- Predictions as per linear regression are unbounded
- For classification, we would like to interpret scores as probabilities

Cat	3.2
Car	5.1
Bird	-1.7

Again: $s = f(x_i, W)$ Then: $P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax function

are ≥ 0

• Again: $s = f(x_i, W)$

• Then:
$$P(Y = k | X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$$
 Softmax function

- Again: $s = f(x_i, W)$
- Then: $P(Y = k|X = x_i) = \frac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax function

Loss: $L_i = -\log P(Y = y_i | X = x_i) \rightarrow \text{Log-likelihood of true class}$

- Again: $s=f(x_i,W)$ Then: $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_i e^{s_j}}$ **Softmax** function

Loss: $D_{\mathrm{KL}}(\underline{Q}, \underline{P}) = \sum_{k} Q(k) \log \frac{Q(k)}{P(k)}$ \rightarrow Kullback-Leibler Divergence

• Again:
$$s=f(x_i,W)$$
• Then: $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax function

Maximize probability of correct class:

$$L_i = -\log P(Y = y_i | X = x_i) = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

Cat 3.2 Car 5.1 Bird -1.7

Q1: What is min/max of this loss?

Again: $s=f(x_i,W)$ Then: $P(Y=k|X=x_i)=\frac{e^{s_k}}{\sum_j e^{s_j}}$ Softmax

Maximize probability of correct class:

$$L_i = -\log P(Y = y_i | X = x_i) = -\log \frac{e^{s_{y_i}}}{\sum_j e^{s_j}}$$

Cat 3.2 Car 5.1 Bird -1.7

Q2: At initialization, all scores are similar and close to zero?

Decision Boundaries of Linear Regression

• Scores: $s = f(x_i, W) = Wx_i + b$

SVM loss: "Maximum margin" at decision boundary

Decision Boundaries of Linear Regression

• Scores: $s = f(x_i, W) = Wx_i + b$

SVM loss: "Maximum margin" at decision boundary

Required decision boundary is clearly non-linear!

Q: Can I solve this with Logistic Regression?

Hard Cases for Linear Classification

Class 1:

First and third quadrants

Class 2:

Second and fourth quadrants

Class 1:

1 <= L2 norm <= 2

Class 2:

Everything else

Class 1:

Three modes

Class 2:

Everything else

Clearly, the two classes are not linearly separable!

Teaser

Neural Network

Next lecture:

- Regularization
- Optimization

Image Features, Regression, and Classification

Questions?