

CLAIMS

What is claimed is:

- 1 1. An event monitoring component for dynamic optimization comprising:
 - 2 an event monitor to selectively capture profiles of one or more microarchitecture
 - 3 events occurring in the execution of an application by a microprocessor
 - 4 based upon configuration information supplied by a software component;
 - 5 and
 - 6 an interface through which the software component provides the configuration
 - 7 information to direct the operation of the event monitor.
- 1 2. The event monitoring component of claim 1, further comprising:
 - 2 one or more monitor control vectors, the monitor control vectors storing the
 - 3 configuration information provided by the software component.
- 1 3. The event monitoring component of claim 2, wherein each monitor control vector
- 2 includes:
 - 3 a control field to specify a microarchitecture event to monitor;
 - 4 a handler field, the handler field containing a pointer to a handler routine to
 - 5 process the profiles of the microarchitecture event; and
 - 6 a trigger field to specify when the microarchitecture event is monitored.
- 1 4. The event monitoring component of claim 1, further comprising:
 - 2 a profile buffer to store the captured profiles of the one or more microarchitecture
 - 3 events.

1 5. The event monitoring component of claim 4, wherein the profile buffer comprises
2 a first level buffer for initial storage of the captured profiles of the one or more
3 microarchitecture events and a second level buffer for subsequent storage of the
4 captured profiles of the one or more microarchitecture events.

1 6. The event monitoring component of claim 5, wherein the first level buffer is a
2 register file.

1 7. The event monitoring apparatus of claim 5, wherein the second level buffer is a
2 memory buffer that is architecturally visible to the software component.

1 8. The event monitoring apparatus of claim 1, wherein the captured event profiles of
2 each monitored microarchitecture events are made available to a handler routine
3 selected by the software component for processing.

1 9. The event monitoring apparatus of claim 1, wherein the event monitoring
2 apparatus initiates an interrupt or special event handler to notify the software
3 component when captured event profiles are available for processing.

1 10. A microprocessor, comprising:
2 an execution pipeline;
3 one or more event monitors coupled to the execution pipeline to selectively
4 monitor one or more microarchitecture events in the execution of a
5 program and to capture event profiles;

6 one or more monitor control vectors to store configuration information provided
7 by a software component in connection with the operation of the one or
8 more event monitors; and

9 a profile buffer to store captured microarchitecture event profiles.

1 11. The microprocessor of claim 10, wherein the captured profiles of the one or more
2 microarchitecture events stored in the buffer are made available to a handler
3 routine selected by the software component for optimization processing.

1 12. The microprocessor of claim 11, wherein the profile buffer comprises a first level
2 buffer for initial storage of the captured microarchitecture event profiles and a
3 second level buffer for subsequent storage of the captured microarchitecture event
4 profiles.

1 13. The microprocessor of claim 12, wherein the first level buffer is a register file.

1 14. The microprocessor of claim 13, wherein the second level buffer is a memory
2 buffer that is architecturally visible to the software component.

1 15. The microprocessor of claim 14, wherein the first level buffer is comprised of a
2 plurality of register frames and the second level buffer is comprised of a plurality
3 of memory buffers, with one of the frames of the first level buffer and one of the
4 memory buffers in the second level buffer being assigned to each monitored
5 microarchitecture event.

1 16. The microprocessor of claim 15, wherein the profiles of a microarchitecture event
2 stored in a frame assigned to the microarchitecture event in the first level buffer

3 memory are spilled into a buffer assigned to the microarchitecture event in the
4 second level memory buffer when the frame assigned to the microarchitecture
5 event in the first level memory buffer is fully allocated or when a condition
6 established by the software component is met.

1 17. The microprocessor of claim 16, wherein the captured profiles of a
2 microarchitecture event are made available to the handler routine when the buffer
3 assigned to the event in the second level memory buffer is fully allocated or when
4 a condition established by the software component is met.

1 18. The microprocessor of claim 10, wherein each of the monitor control vectors
2 includes:
3 a control field to specify a microarchitecture event to monitor;
4 a handler field, the handler field containing a pointer to a handler routine for the
5 microarchitecture event; and
6 a trigger field to specify when the microarchitecture event is monitored.

1 19. The microprocessor of claim 10, wherein the one or more microarchitecture
2 events are monitored during an exception detection stage of the execution
3 pipeline.

1 20. The microprocessor of claim 10, wherein the captured microarchitecture event
2 profiles are stored in the memory buffer during a write back stage of the execution
3 pipeline.

1 21. A method comprising:

2 receiving configuration information from a software component directing the
3 monitoring of one or more microarchitecture events connected with the
4 operation of a microprocessor in executing an application;
5 monitoring the one or more microarchitecture events and capturing profiles of the
6 one or more microarchitecture events;
7 storing the captured event profiles in a profile buffer; and
8 making the profiles of the event available to the software component for
9 optimization processing.

1 22. The method of claim 21, wherein receiving the configuration information from
2 the software component comprises receiving information regarding the setting of
3 one or more monitor control vectors.

1 23. The method of claim 22, wherein each monitor control vector includes at least the
2 following fields:
3 a control field to specify the microarchitecture event to monitor;
4 a handler field, the handler field containing a pointer to a handler routine for
5 processing of captured profiles of the microarchitecture event; and
6 a trigger field to specify when the microarchitecture event is monitored.

1 24. The method of claim 21, wherein the profile buffer is comprised of a first stage
2 for initial storage of the captured profiles of the one or more microarchitecture
3 events and a second stage for subsequent storage of the captured profiles of the
4 one or more microarchitecture events.

1 25. The event monitoring component of claim 24, wherein the first stage is a register
2 file.

1 26. The processor of claim 25, wherein the second stage of the profile buffer is a
2 memory architecturally visible to the software component.

1 27. The method of claim 26, further comprising assigning a register in the first stage
2 and a memory buffer in the second stage to each monitored microarchitecture
3 event.

1 28. The method of claim 27, further comprising storing the profiles of each monitored
2 microarchitecture event in the register assigned to the microarchitecture event in
3 the first stage as the profiles of the microarchitecture event are captured.

1 29. The method of claim 27, further comprising spilling the profiles of a
2 microarchitecture event from the register assigned to the microarchitecture event
3 in the first stage to the memory buffer assigned to the microarchitecture event in
4 the second stage when the register is fully allocated or when a condition
5 established by the software component is met.

1 30. The method of claim 29, further comprising notifying the software component
2 when the register assigned to the event in the second stage of the memory buffer
3 is fully allocated or when a condition established by the software component is
4 met.