

10. TEXTUREN | DREHBUCH

COMPUTERGRAFIK.ONLINE

Hochschule Furtwangen University | Fakultät Digitale Medien Betreuer: Prof. Jirka Dell'Oro-Friedl | Projektstudium SoSe 18

Version: 1.1 | Letzte Änderung: 27.07.2018

Autor: Lisa Würstle MKB 4

Inhaltsverzeichnis

10.1	Einleitung	2, 3
10.2	Einleitung - Interaktion	4, 5
10.3	Texturkoordinaten und UV-Mapping	6
	10.3.1 Texturkoordinaten	6, 7
	10.3.2 UV-Mapping	8, 9
	10.3.3 UV-Mapping - Interaktion	10
10.4	Mip-Mapping	11, 12
10.5	Bump-Mapping	13
10.6	Bump-Mapping - Interaktion	14, 15
10.7	Displacement-Mapping	16
10.8	Displacement-Mapping - Interaktion	17, 18
10.9	Environment-Mapping	19
	10.9.1 Sphärisches Environment-Mapping	20
	10.9.2 Kubisches Environment-Mapping	21, 22

10.1 Einleitung

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Einleitung	#100101 Eine Textur dient im Bereich der Computergrafik dazu, dreidimensionale Objekte realistischer und detailreicher darzustellen.	- Ziel: 3D-Objekt realistischer wirken zu lassen	#100101 Einblenden eines Kubus ohne Texturierung Der Kubus fängt an sich um die eigene Achse zu drehen
Text einblenden	#100102 Die Textur besteht aus einem zweidimensionalen Bild, welches dem Objekt eine Struktur verleiht. Wie die Textur auf das jeweilige Objekt projiziert wird, kann auf verschiedene Art und Weise geschehen. Diese Verfahren nennt man Mapping-Verfahren.	 Lösung: 2D-Bild = 2D-Textur verschiedene Mapping-Verfahren 	#100102 Eine Würfeltextur erscheint auf dem Kubus für etwa 3 Sekunden, danach sieht man wieder den Kubus ohne Textur Dieser Vorgang wiederholt sich bis der Sprecher fertig ist

10.2 Einleitung - Interaktion

10.3 Texturkoordinaten und UV-Mapping

10.3.1 Texturkoordinaten

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Texturkoordinaten	#10030101 Nun stellt sich die Frage, wie die Textur auf dem 3D-Objekt positioniert wird. Für jeden Eckpunkt eines Polygons werden zuerst die lokalen Objektraum-Koordinaten im 3D-Raum definiert. Diese Koordinaten werden anschließend in Texturkoordinaten umgewandelt.	- Umwandlung von Objektraum-Koordinaten (x, y, z) in Texturkoordinaten (u, v)	#10030101 Einblenden eines Dreiecks im 3D-Raum Eckpunkte werden markiert
u u	#10030102 Es erhält somit jeder Eckpunkt des Polygons eine genaue Position auf der Texture-Map. Diese Position ist dann ein Textur-Pixel, auch Texel genannt.	 Textur-Pixel = Texel Texel: Position des Polygons auf der Texture-Map 	#10030102 Einblenden eines kartesischen Koordinatensystems in dem eine 2D-Textur liegt Dreieck wird in 2D-Raum projiziert (Zoom zum Koordinatensystem) und jeder Eckpunkt erhält eine genaue
Text einblenden	#10030103 Die Texturkoordinaten werden in einem kartesischen Koordinatensystem dargestellt, die Achsen werden in der Regel mit u und v beschriftet.		Position auf der Textur #10030103 Die Achsen werden mit u und v beschriftet Ein sichtbarer Pixel erhält eine genaue Texturposition

10.3.2 UV-Mapping

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
UV-Mapping	#10030201 Beim UV-Mapping bildet man die Texture-Map mit einer einfachen Abwicklung. Der Prozess wird auch als "Unwrapping" bezeichnet.	 Texture-Map entsteht durch einfache Abwicklung Abwicklung = Unwrapping 	#10030201 Einblenden einer Münze
	#10030202 Bildlich kann man sich die Abwicklung so vorstellen, dass das 3D-Objekt an bestimmten Stellen "aufgeschnitten" und anschließend "abgewickelt" wird, wie bei dieser 1€ Münze. #10030203 Versuche den Prozess der Abwicklung nachzuvollziehen.	- Objekt wird "aufgeschnitten" und anschließend "abgewickelt"	#10030202 Münze wird an ihren Kanten aufgeschnitten und anschließend abgewickelt Texture Map (siehe Screen) entsteht
Text einblenden			

10.3.3 UV-Mapping - Interaktion

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
UV-Mapping - Interaktion	#10030301 Wähle den Pinsel und suche dir eine beliebige Farbe aus. Nun kannst du die abgewickelte Texture-Map des Roboters, oder den Roboter direkt bemalen.	Wähle den Pinsel und suche dir eine beliebige Farbe aus. Nun kannst du die abgewickelte Texture-Map des Roboters, oder den Roboter direkt bemalen.	#10030301 Aufgabe wird gesprochen (über das i kann sich der Nutzer die Aufgabe anzeigen lassen) Klickt der Nutzer auf die Texture-Map vergrößert sich diese Klickt der Nutzer auf den Roboter, vergrößert sich dieser

10.4 Mip-Mapping

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Mip-Mapping ==	#100401 Das Mip-Mapping ist eine Anti-Aliasing-Methode. In der Computergrafik tritt der Alias-Effekt beim Abtasten von Bildern auf, wodurch Muster entstehen, die im Originalbild nicht enthalten sind.	- Anti-Aliasing-Methode	#100401 Einblenden einer großen Texture-Map
	#100402 Beim Mip-Mapping werden von einer Textur mehrere vorberechnete Texture- Maps mit sinkender Auflösung berechnet. Dabei wird in jedem Schritt die Kantenlänge des Originals halbiert.	- Kantenlänge wird bei jedem Schritt halbiert	#100402 Einblenden einer zweiten Map mit halbierten Kantenlängen #100403
Text einblenden	#100403 Ist das texturierte Polygon nahe beim Betrachter, kommt eine große Texture-Map zum Einsatz. Ist es jedoch weiter entfernt, wird eine kleinere Texture-Map benutzt.	 Objekt nahe beim Betrachter: große Texture-Map Objekt weiter entfernt vom Betrachter: kleine Texture-Map 	Einblenden einer dritten Map mit nochmals halbierten Kantenlängen Einblenden des Fluchtpunktes als gestrichelte Linien
	#100404 Der große Vorteil des Mip-Mappings besteht darin, das die verschiedenen Maps zum Zeitpunkt des Renderns bereits vorberechnet sind.		

10.5 Bump-Mapping

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Bump-Mapping ===	#100501 Eine 2D-Textur verleiht einem Objekt keine Oberflächeneigenschaften. Das Bump-Mapping dient dazu, einem 3D-Objekt diese Eigenschaften zu verleihen, ohne dabei die Geometrie des Objektes zu beeinflussen.	 Oberflächeneigenschaften ohne Beeinflussung der Geometrie 	#100501 Einblenden einer Sphäre mit Bump Mapping Sphäre dreht sich um sich selbst
	#100502 Beim Bump-Mapping wird lediglich die Normale der Oberfläche verändert. Es wird mit Hilfe von Schattierung und Reflektion eine Illusion von Tiefe auf dem Objekt erzeugt.	 Veränderung der Normalen der Oberfläche Illusion von Tiefe 	
Text einblenden	#100503 Der Vorteil des Bump-Mapping besteht darin, dass bei diesem Mapping-Verfahren weder der Speicherplatz, noch die Rendering-Zeit erhöht wird.	 keine Erhöhung des Speicherplatzes oder der Rendering-Zeit 	

10.6 Bump-Mapping - Interaktion

Finaler Screen Sprechertext Screen	entext (i)	Regieanweisung
Lasse dir den Unterschied zwischen einem	e dir den Unterschied zwischen n Objekt mit Bump-Mapping einem ohne anzeigen.	#100601 Aufgabe wird gesprochen (über das i kann sich der Nutzer die Aufgabe anzeigen lassen) Auswahlmöglichkeiten "Kubus mit Bump Mapping" und "Kubus ohne Bump Mapping" Kubus kann über das Steuerkreuz gedreht werden

10.7 Displacement-Mapping

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Displacement-Mapping	#100701 Das Displacement-Mapping löst das selbe Problem wie das Bump-Mapping, es verleiht dem 3D-Objekt ebenfalls Oberflächeneigenschaften.	- Oberflächeneigenschaften durch Veränderung der Geometrie des 3D-Objektes	#100701 Einblenden einer Sphäre mit Displacement-Mapping Sphäre dreht sich um sich selbst
Text einblenden	#100702 Der Unterschied zwischen den beiden Mapping-Verfahren ist, dass beim Displacement Mapping die Geometrie des 3D-Objektes verändert wird. #100703 Durch "verschieben" beziehungsweise "verdrängen" des Materials werden dem 3D-Objekt die gewünschten Oberflächeneigenschaften verliehen.	 displacement = "verschieben" bzw. "verdrängen" des Materials 	

10.8 Displacement-Mapping - Interaktion

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Displacement-Mapping Displacement-Mapping Bump-Mapping	#100801 Lasse dir den Unterschied zwischen dem Bump- und dem Displacement-Mapping anzeigen.	Lasse dir den Unterschied zwischen dem Bump- und dem Displacement-Mapping anzeigen.	#100801 Aufgabe wird gesprochen (über das i kann sich der Nutzer die Aufgabe anzeigen lassen) Auswahlmöglichkeiten "Displacement-Mapping" und "Bump-Mapping" Der Nutzer kann sich Objekt über das Steuerkreuz von allen Seiten ansehen

10.9 Environment-Mapping

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Environment-Mapping	#100901 Mit dem Environment-Mapping-Verfahren werden in der Computergrafik spiegelnde 3D-Objekte simuliert.	- Simulation von spiegelnden Objekten	#100901 Einblenden eines spiegelnden 3D-Objektes (hier: Seifenblase)
	#100902 Dabei wird die Umgebung, bestehend aus Objekten und Lichtquellen, in der sich das Objekt befinden soll, als eine 2D-Textur gespeichert und auf das 3D-Objekt projiziert. Das 3D-Objekt muss im Verhältnis zu seiner Umgebung eher klein sein, damit die Spiegelung realistisch wirkt.		
Text einblenden	#100903 Beim Environment-Mapping wird in zwei Arten unterschieden: das sphärische und das kubische Environment-Mapping.	 Sphärisches Environment-Mapping Kubisches Environment- Mapping 	

10.9.1 Sphärisches Environment-Mapping

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Environment-Mapping - Interaktion	#10090101 Beim sphärischen Environment-Mapping, wird die Umgebung auf das Innere einer hohlen Sphäre abgebildet. Dabei kann es zu Verzerrungen kommen.	- Sphärisches Environment Mapping: Abbildung der Umgebung auf das Innere einer hohlen Sphäre	#10090101 Eine 2D-Textur wird zylindrisch auf eine Sphäre gemappt Quelle und Code-Beispiel: Friedrich A. Lohmüller, http://www.f-lohmueller.de/pov_tut/b ackgrnd/p_sky8d.htm

10.9.2 Kubisches Environment-Mapping

Finaler Screen	Sprechertext	Screentext (i)	Regieanweisung
Kubisches Environment-Mapping **Priedrich A. Lohmüller, 2009 Text einblenden	#10090201 Bei dem kubischen Environment-Mapping, wird die Umgebung auf einem Kubus abgebildet. Dieses Verfahren hat den Vorteil, dass keine Verzerrungen entstehen, da die Fläche eben ist.	- Kubisches Environment- Mapping: Abbildung der Umgebung auf einen Kubus	#10090201 Eine 2D-Textur legt sich um den Kubus 2D-Textur klappt wieder auf Vorgang wiederholt sich, solanger der Sprecher spricht Quelle und Code-Beispiel: Friedrich A. Lohmüller, http://www.f-lohmueller.de/pov_tut/b ackgrnd/p_sky9d.htm

