

CSCE 3110 Data Structures and Algorithms

Recurrence Relations

Recurrences and Running Time

• An equation or inequality that describes a function in terms of its value on smaller inputs.

$$T(n) = T(n-1) + n$$

- Recurrences arise when an algorithm contains recursive calls to itself
- What is the actual running time of the algorithm?
- Need to solve the recurrence
 - Find an explicit formula of the expression
 - Bound the recurrence by an expression that involves n

5

9

mid

6

8

• for an ordered array A, finds if x is in the array A[lo...hi]

Alg.: BINARY-SEARCH (A, lo, hi, x)

```
if (lo > hi)
    return FALSE
                                           5
mid \leftarrow \lfloor (lo+hi)/2 \rfloor
if x = A[mid]
                                 lo
    return TRUE
if (x \le A[mid])
    BINARY-SEARCH (A, lo, mid-1, x)
if (x > A[mid])
    BINARY-SEARCH (A, mid+1, hi, x)
```

•
$$A[8] = \{1, 2, 3, 4, 5, 7, 9, 11\}$$

- $lo = 1$ $hi = 8$ $x = 7$

_	1	2	3	4	5	6	7	8
	1	2	3	4	5	7	9	11

mid = 4, lo = 5, hi = 8

mid = 6, A[mid] = xFound!

• $A[8] = \{1, 2, 3, 4, 5, 7, 9, 11\}$ - lo = 1 hi = 8 x = 64 5 6 7 8 mid = 4, lo = 5, hi = 8† high **†** low 3 mid = 6, A[6] = 7, Io = 5, hi = 5† high 1 low 3 mid = 5, A[5] = 5, Io = 6, hi = 5**NOT FOUND!** 3 5 9 4 high

```
Alg.: BINARY-SEARCH (A, lo, hi, x)
     if (lo > hi)
                                                           constant time: c<sub>1</sub>
         return FALSE
     mid \leftarrow \lfloor (lo+hi)/2 \rfloor
                                                           constant time: c<sub>2</sub>
     \mathbf{if} x = A[mid]
                                                           constant time: c<sub>3</sub>
         return TRUE
     if (x \le A[mid])
         BINARY-SEARCH (A, lo, mid-1, x) \leftarrow same problem of size n/2
     if (x > A[mid])
         BINARY-SEARCH (A, mid+1, hi, x)
                                                         \leftarrow same problem of size n/2
• T(n) = d + T(n/2)
```

- T(n) - running time for an array of size n

Methods for Solving Recurrences

• Iteration method

Substitution method

Recursion tree method

Master method

The Iteration Method

- Convert the recurrence into a summation and try to bound it using known series
 - Iterate the recurrence until the initial condition is reached.
 - Use back-substitution to express the recurrence in terms of n
 and the initial (boundary) condition.

The Iteration Method - Example

$$T(n) = c' + T(n/2)$$

$$T(n) = d + T(n/2) \qquad T(n/2) = d + T(n/4)$$

$$= d + d + T(n/4) \qquad T(n/4) = d + T(n/8)$$

$$= d + d + d + T(n/8)$$
Assume $n = 2^k$

$$T(n) = d + d + \dots + d + T(1)$$

$$= dlgn + T(1)$$

$$= \Theta(lgn)$$

The Iteration Method - Example

$$T(n) = n + 2T(n/2)$$
 Assume: $n = 2^k$
 $T(n) = n + 2T(n/2)$ $T(n/2) = n/2 + 2T(n/4)$
 $= n + 2(n/2 + 2T(n/4))$
 $= n + n + 4T(n/4)$
 $= n + n + 4(n/4 + 2T(n/8))$
 $= n + n + n + 8T(n/8)$
... $= in + 2^iT(n/2^i)$
 $= kn + 2^kT(1)$
 $= nlgn + nT(1) = \Theta(nlgn)$

The Substitution Method

1. Guess a solution

2. Use induction to prove that the solution works

Substitution method

Guess a solution

- T(n) = O(g(n))
- Induction goal: apply the definition of the asymptotic notation
 - $T(n) \le c g(n)$, for some c > 0 and $n \ge n_0$
- Induction hypothesis: $T(k) \le c g(k)$ for all k < n
- Prove the induction goal
 - Use the **induction hypothesis** to find some values of the constants c and n_0 for which the **induction goal** holds

$$T(n) = d + T(n/2)$$

- Guess: $T(n) = O(\lg n)$
 - Induction goal: T(n) ≤ c lgn, for some c and $n \ge n_0$
 - Induction hypothesis: $T(n/2) \le c \lg(n/2)$
- Proof of induction goal:

$$T(n) = T(n/2) + d \le c \lg(n/2) + d$$

$$= c \lg n - c + d \le c \lg n$$

$$if: -c + d \le 0, c \ge d$$

Base case?

$$T(n) = 2T(n/2) + n$$

- Guess: T(n) = O(nlgn)
 - Induction goal: T(n) ≤ cn lgn, for some c and n ≥ n_0
 - Induction hypothesis: $T(n/2) \le cn/2 \lg(n/2)$
- Proof of induction goal:

$$T(n) = 2T(n/2) + n \le 2c (n/2)\lg(n/2) + n$$
$$= cn \lg n - cn + n \le cn \lg n$$
$$if: -cn + n \le 0 \Rightarrow c \ge 1$$

Base case?

The Recursion-Tree Method

Convert the recurrence into a tree:

- Each node represents the cost incurred at various levels of recursion
- Sum up the costs of all levels

$$W(n/2)=2W(n/4)+(n/2)^{2}$$

 $W(n/4)=2W(n/8)+(n/4)^{2}$

- Subproblem size at level i is: n/2ⁱ
- Subproblem size hits 1 when $1 = n/2^{i} \Rightarrow i = \lg n$
- Cost of the problem at level $i = (n/2^i)^2$ No. of nodes at level $i = 2^i$

- Subproblem size at level i is: n/4ⁱ
- Subproblem size hits 1 when $1 = n/4^{i} \Rightarrow i = \log_{4} n$
- Cost of a node at level $i = c(n/4^i)^2$
- Number of nodes at level $i = 3^i \Rightarrow$ last level has $3^{\log_4 n} = n^{\log_4 3}$ nodes
- Total cost:

$$T(n) = \sum_{i=0}^{\log_4 n - 1} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) \le \sum_{i=0}^{\infty} \left(\frac{3}{16}\right)^i cn^2 + \Theta\left(n^{\log_4 3}\right) = \frac{1}{1 - \frac{3}{16}} cn^2 + \Theta\left(n^{\log_4 3}\right) = O(n^2)$$

$$\Rightarrow T(n) = O(n^2)$$

Master's Method

• "Cookbook" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

Idea: compare f(n) with $n^{\log_b a}$

- f(n) is asymptotically smaller or larger than $n^{\log}b^a$ by a polynomial factor n^ϵ
- f(n) is asymptotically equal with $n^{\log_b a}$

Master's Method

• "Cookbook" for solving recurrences of the form:

$$T(n) = aT\left(\frac{n}{b}\right) + f(n)$$

where, $a \ge 1$, b > 1, and f(n) > 0

Case 1: if $f(n) = O(n^{\log_b a - \epsilon})$ for some $\epsilon > 0$, then: $T(n) = \Theta(n^{\log_b a})$

Case 2: if $f(n) = \Theta(n^{\log_b a})$, then: $T(n) = \Theta(n^{\log_b a} \lg n)$

Case 3: if $f(n) = \Omega(n^{\log_b a + \epsilon})$ for some $\epsilon > 0$, and if

 $af(n/b) \le cf(n)$ for some c < 1 and all sufficiently large n, then:

$$T(n) = \Theta(f(n))$$

$$T(n) = 2T(n/2) + n$$

$$a = 2$$
, $b = 2$, $\log_2 2 = 1$

Compare $n^{\log_2 2}$ with f(n) = n

$$\Rightarrow$$
 f(n) = Θ (n) \Rightarrow Case 2

$$\Rightarrow$$
 T(n) = Θ (nlgn)

$$T(n) = 2T(n/2) + n^2$$

$$a = 2$$
, $b = 2$, $\log_2 2 = 1$

Compare n with $f(n) = n^2$

$$\Rightarrow$$
 f(n) = $\Omega(n^{1+\epsilon})$ Case 3 \Rightarrow verify regularity cond.

a
$$f(n/b) \le c f(n)$$

$$\Leftrightarrow$$
 2 n²/4 \leq c n² \Rightarrow c = ½ is a solution (c<1)

$$\Rightarrow$$
 T(n) = Θ (n²)

$$T(n) = 2T(n/2) + \sqrt{n}$$

$$a = 2$$
, $b = 2$, $\log_2 2 = 1$

Compare n with $f(n) = n^{1/2}$

$$\Rightarrow$$
 f(n) = O(n^{1-\varepsilon}) Case 1

$$\Rightarrow$$
 T(n) = Θ (n)

$$T(n) = 3T(n/4) + nlgn$$

$$a = 3, b = 4, \log_4 3 = 0.793$$

Compare $n^{0.793}$ with f(n) = nlgn

$$f(n) = \Omega(n^{\log_4 3 + \varepsilon})$$
 Case 3

Check regularity condition:

$$3*(n/4)\lg(n/4) \le (3/4)n\lg n = c *f(n), c=3/4$$

$$\Rightarrow$$
T(n) = Θ (nlgn)

$$T(n) = 2T(n/2) + nlgn$$

$$a = 2, b = 2, \log_2 2 = 1$$

- Compare n with f(n) = nlgn
 - seems like case 3 should apply
- f(n) must be polynomially larger by a factor of n^{ϵ}
- In this case it is only larger by a factor of lgn
 - ⇒Master's method does NOT apply!

Next Class

Abstract Data Types, Elementary Data Structures

Reading: Weiss, chap. 3