Rank-73802 over GF(2)

January 15, 2021

The equation

The equation of the surface is:

$$X_0^3 + X_1^3 + X_2^3 + X_0^2 X_3 + X_0 X_3^2 + X_0 X_1 X_2 = 0$$

(1, 1, 1, 0, 0, 0, 1, 0, 0, 0, 0, 0, 0, 1, 0, 0, 1, 0, 0, 0)The point rank of the equation over GF(2) is 73802

General information

Number of lines	3
Number of points	9
Number of singular points	0
Number of Eckardt points	1
Number of double points	0
Number of single points	6
Number of points off lines	2
Number of Hesse planes	0
Number of axes	0
Type of points on lines	3^{3}
Type of lines on points	$3, 1^6, 0^2$

Singular Points

The surface has 0 singular points:

The 3 Lines

The lines and their Pluecker coordinates are:

$$\ell_0 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_8 = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix}_8 = \mathbf{Pl}(1,0,1,0,0,1)_{23}$$

$$\ell_1 = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}_{33} = \mathbf{Pl}(0,1,0,1,0,0)_7$$

$$\ell_2 = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & 1 & 0 \end{bmatrix}_{22} = \mathbf{Pl}(1, 1, 1, 1, 0, 1)_{28}$$

Rank of lines: (8, 33, 22)

Rank of points on Klein quadric: (23, 7, 28)

Eckardt Points

The surface has 1 Eckardt points:

 $0: P_7 = \mathbf{P}(0, 1, 1, 0) = \mathbf{P}(0, 1, 1, 0). T = 12$

Double Points

The surface has 0 Double points:

The double points on the surface are:

Single Points

The surface has 6 single points:

The single points on the surface are:

 $0: P_3 = (0,0,0,1)$ lies on line ℓ_1

1: $P_5 = (1, 1, 0, 0)$ lies on line ℓ_0

2 : $P_6 = (1,0,1,0)$ lies on line ℓ_0

3 : $P_{11} = (1,1,0,1)$ lies on line ℓ_2

The single points on the surface are:

Points on surface but on no line

The surface has 2 points not on any line:

The points on the surface but not on lines are:

 $0: P_4 = (1, 1, 1, 1)$

 $1: P_8 = (1, 1, 1, 0)$

Line Intersection Graph

 $\begin{array}{c|c} 012 \\ \hline 0 & 011 \\ 1 & 101 \\ 2 & 110 \end{array}$

4: $P_{13} = (1, 0, 1, 1)$ lies on line ℓ_2

5: $P_{14} = (0, 1, 1, 1)$ lies on line ℓ_1

Neighbor sets in the line intersection graph:

Line 0 intersects

Line	ℓ_1	ℓ_2
in point	P_7	P_7

Line 1 intersects

Line	ℓ_0	ℓ_2
in point	P_7	P_7

Line 2 intersects

Line	ℓ_0	ℓ_1
in point	P_7	P_7

The surface has 9 points:

The points on the surface are:

$$\begin{array}{lll} 0: \, P_3 = (0,0,0,1) & 4: \, P_7 = (0,1,1,0) \\ 1: \, P_4 = (1,1,1,1) & 5: \, P_8 = (1,1,1,0) \\ 2: \, P_5 = (1,1,0,0) & 6: \, P_{11} = (1,1,0,1) \\ 3: \, P_6 = (1,0,1,0) & 7: \, P_{13} = (1,0,1,1) \end{array}$$

$$2: P_5 = (1, 1, 0, 0)$$
 $6: P_{11} = (1, 1, 0, 1)$

$$B: P_6 = (1,0,1,0)$$
 $7: P_{13} = (1,0,1,1)$