

Céline Hadziioannou

Geophysical Data Analysis

L06 - Convolution

Linear systems

Linear systems

Figure 6.3-1: Definition of a linear system.

$$Ax_1(t) \longrightarrow$$
 Linear system
$$Ay_1(t) \longrightarrow By_2(t)$$
 = $Ay_1(t) + By_2(t)$

Arbitrary
$$x(t)$$
Linear system:
$$response f(t)$$

$$y(t) = x(t) * f(t);$$

$$Y(\omega) = X(\omega)F(\omega)$$

Harmonic
$$e^{i\omega_0 t}$$
Linear system:
response $f(t)$

$$F(\omega_0) e^{i\omega_0 t}$$

Linear systems

Properties:

Homogeneity: change in input signal amplitude → change in output amplitude

Linear systems

Properties:

Homogeneity: change in input signal amplitude → change in output amplitude

Additivity: signals added at the input produce signals that are added at the output.

Linear systems

Properties:

Homogeneity: change in input signal amplitude → change in output amplitude

Additivity: signals added at the input produce signals that are added at the output.

Shift invariance: shift in the input signal will result in nothing more than an identical shift in the output signal

Linear systems

Superpostion

input

Decomposition

Example: impulse decompostion

output

Convolution theorem

The output of a linear system is the **convolution** of the input and the impulse response

Impulse response: the signal produced by a system when the input is a delta function

Convolution theorem

The output of a linear system is the **convolution** of the input and the impulse response

Impulse response: the signal produced by a system when the input is a delta function

A convolution in the time domain corresponds to a multiplication in the frequency domain.

...And vice versa ...

Convolution (Faltung)

The convolution operation is at the **heart of linear systems**.

$$y(t) = h(t) * x(t) \equiv \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$
$$= \int_{-\infty}^{\infty} x(t - \tau) h(\tau) d\tau = x(t) * h(t)$$

It is the weighted mean of x(t) with h(t) as the weighting.

superposition of x(t) with a mirrored and shifted version of h(t)

flip, shift, multiply, and add

Discrete convolution

$$(x*h)[k] \equiv \sum_{i=0}^{m} x[i] h[k-i]$$

$$\begin{array}{ll} x_i & i=0,1,2,...,m \\ \textit{Length M} \end{array}$$

$$\begin{array}{ll} h_j & j=1,2,...,n \\ \textit{Length N} \end{array}$$

$$k = 0, 1, 2, ..., m + n$$
 -1
Length: M+N-1

		X	"Faltung"			h	
A		0	1	0	0 1	2	0 1
		0	1	0 1	0 2	1	0
increasing		0	1 1	0 2	0		1
incre		0	1 2	0 1	0		2
	1	0 2	1 1	0	0		1
1	2	0	1	0	0		0

Discrete convolution

$$(x*h)[k] \equiv \sum_{i=0}^{m} x[i] h[k-i]$$

$$x_i$$
 $i = 0, 1, 2, ..., m$

$$h_j \qquad j = 1, 2, ..., n$$

$$k = 0, 1, 2, ..., m + n$$
 -1

Exercise

Calculate the convolution of the vectors

$$x = (0 \ 1 \ 2 \ 3 \ 0)$$

and

$$h = (0\ 0\ 1\ 1)$$

Remember: flip, shift, multiply, and add

$$(x*h)[k] \equiv \sum_{i=0}^{m} x[i] h[k-i]$$

Convolution - Properties

Commutative

$$x(t) * h(t) = h(t) * x(t)$$

Distributive

$$x(t) * [h(t) + g(t)] = [x(t) * h(t)] + [x(t) * g(t)]$$

Associative (with scalar)

$$x(t) * [h(t) * g(t)] = [x(t) * h(t)] * g(t)$$

$$a\left[x(t) * h(t)\right] = \left[a x(t)\right] * h(t)$$

Multiplicative identity

$$x(t) * \partial(t) = x(t)$$

Convolution theorem

$$\mathbf{F}\{\mathbf{x}(\mathbf{t}) * \mathbf{h}(\mathbf{t})\} = \mathbf{F}\{\mathbf{x}(\mathbf{t})\} \cdot \mathbf{F}\{\mathbf{h}(\mathbf{t})\}$$

A convolution in the time domain corresponds to a multiplication in the frequency domain.

Decompose into series of delta pulses, convolve with impulse response ... and **add** to obtain output

Example impulse responses

Identity

Echo

Amplification

First difference

Delay/time shift

Running sum

Example: seismogram

Example: seismogram

- mechanism (strike, dip, rake)
- centroid depth
- seismic moment (magnitude)

modeled by Green's functions: response of the medium to an impulsive excitation

$$\mathbf{G} = G(\mathbf{x},t;\boldsymbol{\xi},\boldsymbol{\tau})$$

The Earth as a filter

Deconvolution

... is the reverse operation to convolution.

It is the **most important application** in seismic data processing, e.g. for removing the instrument response of a seismometer.

How would you do it?

...remember the convolution theorem

Deconvolution

... is the reverse operation to convolution.

It is the **most important application** in seismic data processing, e.g. for removing the instrument response of a seismometer.

$$B(\omega) = \frac{C(\omega)}{A(\omega)}$$

Deconvolution

... is the reverse operation to convolution.

It is the **most important application** in seismic data processing, e.g. for removing the instrument response of a seismometer.

$$B(\omega) = \frac{C(\omega)}{A(\omega)}$$

Major problem:

 $A(\omega)$ is zero or close to zero in the presence of noise.

Possible fix:

"waterlevel" method – basically adding white noise

Linear systems

Arbitrary ____ Linear system: response
$$f(t)$$
 ____ $Y(t) = X(t) * f(t);$ $Y(\omega) = X(\omega)F(\omega)$

Harmonic e^{$$i\omega_0 t$$} Linear system: response $f(t)$ \longrightarrow $F(\omega_0)$ $e^{i\omega_0 t}$

response f(t)

Geophysical Data Analysis

 $\delta(t)$

24/05/16

Linear systems

Properties:

Homogeneity: change in input signal amplitude → change in output amplitude

Geophysical Data Analysis

24/05/16

Linear systems

Properties:

Homogeneity: change in input signal amplitude → change in output amplitude

Additivity: signals added at the input produce signals that are added at the output.

Geophysical Data Analysis

24/05/16

Convolution theorem

The output of a linear system is the **convolution** of the input and the impulse response

Impulse response: the signal produced by a system when the input is a delta function

Geophysical Data Analysis

24/05/16

Convolution theorem

The output of a linear system is the **convolution** of the input and the impulse response

Impulse response: the signal produced by a system when the input is a delta function

Figure 6.3-4: Two linear systems in succession.

A convolution in the time domain corresponds to a multiplication in the frequency domain.

...And vice versa ...

Geophysical Data Analysis

24/05/16

Convolution (Faltung)

The convolution operation is at the heart of linear systems.

$$y(t) = h(t) * x(t) \equiv \int_{-\infty}^{\infty} x(\tau) h(t - \tau) d\tau$$
$$= \int_{-\infty}^{\infty} x(t - \tau) h(\tau) d\tau = x(t) * h(t)$$

It is the weighted mean of x(t) with h(t) as the weighting.

 \longrightarrow superposition of x(t) with a mirrored and shifted version of h(t)

flip, shift, multiply, and add

Geophysical Data Analysis

24/05/16

Discrete convolution

$$(x*h)[k] \equiv \sum_{i=0}^{m} x[i] h[k-i]$$

 $\begin{array}{ll} h_j & j=1,2,...,n \\ \text{Length N} & \end{array}$

k=0,1,2,...,m+n -1 Length: M+N-1

x "Faltung"		ŀ	h		
0	1	0	0	2	0 1
0	1	0 1	0 2	1	0
0	1 1	0 2	0		1
0 1	1 2	0	0		2
0 2	1	0	0		1
0	1	0	0		0
	0 0 1 0 2	0 1 0 1 0 1 1 1 0 1 1 2 0 1 2 1	0 1 0 0 1 0 1 0 1 0 1 0 1 2 0 1 0 1 2 1 0 1 1 0 1 1 0 1 1 0 1 1 0	0 1 0 0 1 1 0 0 0 1 2 1 1 0 0 0 1 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 1 0 0 0 0 1 0	0 1 0 0 1 2 1 0 0 0 1 1 2 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 1 1 0 0 0 0 1 1 0

Geophysical Data Analysis

24/05/16

Discrete convolution

$$(x*h)[k] \equiv \sum_{i=0}^m x[i] h[k-i]$$

$$x_i \qquad i = 0, 1, 2, ..., m$$

$$h_j \qquad j = 1, 2, ..., n$$

$$k = 0, 1, 2, ..., m + n$$
 -1

Geophysical Data Analysis

24/05/16

Exercise

Calculate the convolution of the vectors

$$x = (0\ 1\ 2\ 3\ 0)$$

and

$$h = (0\ 0\ 1\ 1)$$

Remember: flip, shift, multiply, and add

$$(x*h)[k] \equiv \sum_{i=0}^{m} x[i] h[k-i]$$

Geophysical Data Analysis

24/05/16

Convolution - Properties

Commutative

$$x(t) * h(t) = h(t) * x(t)$$

Distributive

$$x(t)*[h(t)+g(t)] = [x(t)*h(t)] + [x(t)*g(t)]$$

Associative (with scalar)

$$x(t) * [h(t) * g(t)] = [x(t) * h(t)] * g(t)$$

$$a\left[x(t)*h(t)\right] = \left[a\:x(t)\right]*h(t)$$

Multiplicative identity

$$x(t) * \partial(t) = x(t)$$

Convolution theorem

$$\mathbf{F}\{\mathbf{x}(\mathbf{t})*\mathbf{h}(\mathbf{t})\} = \mathbf{F}\{\mathbf{x}(\mathbf{t})\} \cdot \mathbf{F}\{\mathbf{h}(\mathbf{t})\}$$

A convolution in the time domain corresponds to a multiplication in the frequency domain.

Geophysical Data Analysis

02/06/16

Example: seismogram

Geophysical Data Analysis

24/05/16

Deconvolution

... is the reverse operation to convolution.

It is the **most important application** in seismic data processing, e.g. for removing the instrument response of a seismometer.

How would you do it?

...remember the convolution theorem

Geophysical Data Analysis

24/05/16

Deconvolution

... is the reverse operation to convolution.

It is the **most important application** in seismic data processing, e.g. for removing the instrument response of a seismometer.

$$B(\omega) = \frac{C(\omega)}{A(\omega)}$$

Geophysical Data Analysis

24/05/16

Deconvolution

... is the reverse operation to convolution.

It is the **most important application** in seismic data processing, e.g. for removing the instrument response of a seismometer.

$$B(\omega) = \frac{C(\omega)}{A(\omega)}$$

Major problem:

 $A(\omega)$ is zero or close to zero in the presence of noise.

Possible fix:

"waterlevel" method – basically adding white noise

Geophysical Data Analysis

24/05/16