MATH 457 Review

by

Marcel K. Goh

21 April 2020

Note. These notes are quite rough and skip over a lot of details. Most proofs are either omitted or distilled to their main ideas.

1. Rings

A ring R is a set with operations + and \cdot such that

- i) (R, +) is an abelian group;
- ii) (R, \cdot) is a semigroup;
- iii) \cdot distributes over + on both sides:

$$a \cdot (b+c) = a \cdot b + a \cdot c$$
 and $(a+b) \cdot c = a \cdot c + b \cdot c$

A semiring is the same as a ring except that condition (i) above becomes

i') (R, +) is a monoid with absorbing unit 0.

A ring is unital if (R, \cdot) has a unit 1. We always assume that $1 \neq 0$, since if 1 = 0 then $R = \{0\}$. Observe that in a unital ring, (R, +) is necessarily abelian. A ring is said to be *commutative* if (R, \cdot) is.

Even for commutative rings, there are many possible ring structures for $(R, +) = \mathbf{Z}^2$. For example we can take the Gaussian integers $\mathbf{Z}[i] = \{a + bi : a, b \in \mathbf{Z}\}$ or the Eisenstein integers $\mathbf{Z}[\omega] = \{a + b\omega : a, b \in \mathbf{Z}\}$ where

$$\omega = -\frac{1 + i\sqrt{3}}{2}.$$

In both cases the second binary operation is complex multiplication. Since i and ω are both solutions to equations of the form $x^2 + Bx + C = 0$, they are called *quadratic integers* and $\mathbf{Z}[i]$ and $\mathbf{Z}[\omega]$ are called *quadratic rings*.

The definition of a ring is meant to describe a class of **Z**-like objects, but many rings have properties different from the integers. For example, the ring $\mathbf{Z}[\sqrt{-5}]$ does not have Euclidean division. There are also many non-commutative rings such as the *Lipschitz quaternions*

$${a + bi + cj + dk : a, b, c, d \in \mathbf{Z}}$$

or the *Hurwitz quaternions*

$$\bigg\{a+bi+cj+dk: a,b,c,d\in \mathbf{Z} \text{ or } a,b,c,d\in \mathbf{Z}+\frac{1}{2}\bigg\}.$$

If R is a ring, then a subgroup of (R, +) that is closed under multiplication is called a *subring*. If a ring is unital, then any unital subring will have the same unit. A *homomorphism* between two rings R and S is a map $f: R \to S$ that preserves both operations:

$$f(a+b) = f(a) + f(b)$$
 and $f(a \cdot b) = f(a) \cdot f(b)$

A homomorphism that preserves the units is called *unital*.

An *ideal* in a ring R is a subgroup (I, +) such that

- i) $ab \in I$ for all $a \in R$, $b \in I$;
- ii) $ab \in I$ for all $b \in I$, $a \in R$.

If (i) holds, I is called a *left ideal* and if (ii) holds, I is called a right ideal. Let $I \subseteq R$ be an ideal. One defines the *quotient ring* R/I as follows. Since (I, +) is a normal subgroup of (R, +), R/I is an abelian group. We associate $r \sim r'$ if $r - r' \in I$. Then we can define multiplication in R/I as (a + I)(b + I) = ab + I. This is well-defined because I is an ideal and distributivity holds.

The isomorphism theorems for groups extend to rings as well.

Theorem A (First isomorphism theorem). Let $f: R \to S$ be a surjective ring homomorphism. Then f descends to a a ring homomorphism $f': R/I \to S$ that takes a+I to f(a), where I is the kernel of f.

Theorem B (Second isomorphism theorem). Let S be a subring and I and ideal in a ring R. Then S+I is a subring of R, I is an ideal in S+I, and the map $S \twoheadrightarrow (S+I)/I$ is a surjective ring homomorphism with kernel $S \cap I$.

Theorem C (Third isomorphism theorem). Let R be a ring and $I \subseteq J \subseteq R$ be ideals. Then $R/I \twoheadrightarrow R/J$ is a surjective ring homomorphism with kernel J/I.

Theorem D (Fourth isomorphism theorem). Let $f: R \twoheadrightarrow S$ be a surjective ring homomorphism. There is a bijection between the ideals in R containing ker f and the set of all ideals in S.

Note that the correspondence in Theorem D works with subrings as well, not just ideals.

An element r in a unital ring R is said to be *invertible* if there exists $s \in R$ such that rs = sr = 1. The set of invertible elements is denoted R^{\times} and this is a group under \times , called the *group of units*. A *field* is a ring in which every nonzero element is a unit. Non-commutative fields are called *division rings* or *skew fields* (the quaternions are an example of a skew field).

Let K be a field. The set K[x] of polynomials with coefficients in K is a ring. Then the set

$$K(x) = \{f/g : f, g \in K[x], g \neq 0\}$$

is a field, called the *field of rational functions*. The set K[[x]] is called the *ring of formal series*: possibly infinite sums $\sum_{n\geq 0} a_n x^n$. Addition is done pointwise and multiplication is convolution of power series. The map $K[x] \to K[[x]]$ is a homomorphism and some elements become invertible. For example, 1-x becomes invertible, since $1/(1-x) = \sum_{n\geq 0} x^n$. Not every element in K[[x]] is invertible, but one can invert the elements to get a new field K((x)): the set of sequences $K^{\mathbf{Z}}$ that are eventually zero when going to the left.

A zero-divisor is an element $r \in R$, $r \neq 0$ for which there exists $s \in R$ such that rs = 0. A ring is cancellative if rs = rs' implies that s = s'. Then we define an integral domain to be a unital, commutative, cancellative ring. Every integral domain embeds into a field, called the *field of fractions*. The construction is analogous to building the rational numbers from the integers.

Proposition Z. If R is a ring with unity, there exists a unique unital homomorphism $f: \mathbb{Z} \to R$. \blacksquare Proof. Since f(1) = 1, we have $f(n) = 1 + 1 + \dots + 1 \in R$. \blacksquare

The nonnegative integer n which generates ker f is called the *characteristic* of R. The image of f is called the *characteristic subring*. For example $\mathbb{Z}/n\mathbb{Z}$ has characteristic n.

Proposition P. The characteristic of an integral domain R is either 0 or a prime number.

An algebra over a commutative ring R is a ring A with a homomorphism $\eta: \mathbf{R} \to A$ whose image lies in the centre of A. Examples of algebras include rings of functions and matrices $M_n(R)$.

For a group G and a ring R, we can define the group ring G[R] as the set of all finitely supported functions from G to R. This forms a ring with addition (f+g)(s) = f(s) = g(s) and multiplication $(fg)(s) = \sum_{uv=s} f(u)g(u)$.

2. Ideals

Every element r in a unital ring R generates a principal ideal (r). More generally any subset $S \subseteq R$ does. The ideal (S) is the intersection of all ideals that contain S. If R is commutative, then (r) = rR = Rr. In \mathbb{Z} , the ideals are the of the form $(n) = n\mathbb{Z}$. Then $(n) \subseteq (m)$ if and only if $m \setminus n$ (this is true in any commutative ring). A ring R in which every ideal is principal is called a principal ring and if R is also an integral domain, we call it a principal ideal domain or PID.

Principal ideals determine their generators up to unit. If (r) = (s), then s = ar and r = bs together imply that both a and b are units. Elements r and s of a ring R are called associate if there exists a unit a such that r = as.

We can define three operations on ideals. Let $I, J \subseteq R$ be ideals.

- i) $I \cap J$ is an ideal.
- ii) $I + J = \{a + b : a \in I, b \in J\} = (I \cup J)$ is an ideal.
- iii) $IJ = \{ab : a \in I, b \in J\}$ is an ideal.

Lemma P. Let R be a commutative ring. Let I = (S) and J = (T) be two ideals. Then IJ = (ST).

In the ring of integers **Z**, we have (m)(n) = (mn), $(m) \cap (n) = (\operatorname{lcm}(m, n))$, and $(m) + (n) = (\operatorname{gcd}(m, n))$. When $I \subseteq J$ is an inclusion of ideals, one may think of it as a kind of divisibility $J \setminus I$. For example, $\operatorname{gcd}(m, n) \setminus \operatorname{lcm}(m, n) \setminus mn$.

Lemma D. If $I, J \subseteq R$ are ideals, then

$$IJ \subseteq I \cap J \subseteq I + J$$
.

The set of ideals forms a semiring where the two operations are I + J and IJ. The semiring in **Z** is **N** with the addition $m + n = \gcd(m, n)$ and ordinary multiplication.

For an ideal $I \subseteq R$, we define the radical of I to be the set

$$\sqrt{I} = \{ a \in R : a^n \in I \text{ for some } n \in \mathbf{N} \}.$$

This is an ideal and it has the property that $\sqrt{\sqrt{I}} = \sqrt{I}$. Furthermore, if $I \subseteq J$, then $\sqrt{I} \subseteq \sqrt{J}$.

An ideal $I \subseteq R$ is called maximal if it is proper and whenever $I \subseteq J \subseteq R$, then either J = I or J = R.

Lemma M. Let R be a unital ring. Then every proper ideal is included in a maximal ideal.

Proof. This is an application of Zorn's Lemma. Let I be a proper ideal and let X be the set of all proper ideals containing I, ordered by inclusion. Then this set is inductive (increasing union of ideals is an ideal) so there is a maximal element M.

Lemma F. Let R be unital and commutative. Then an ideal $I \subseteq R$ is maximal if and only if R/I is a field. *Proof.* This follows from the fourth isomorphism theorem.

Let R be a unital ring. An ideal I of R is *prime* if it is proper and for any ideals A, B of R, $AB \subseteq I$ implies that $A \subseteq I$ or $B \subseteq I$. The *spectrum* of R is the set of all prime ideals and it is denoted $\operatorname{Spec}(R)$. The *maximal spectrum* of R, denoted $\operatorname{Spec}_{\max}(R)$, is the set of all maximal ideals of R.

Maximal ideals are always prime (so $\operatorname{Spec}_{\max}(R) \subseteq \operatorname{Spec}(R)$), but not all prime ideals are maximal. For example, (0) is prime in **Z** but certainly not maximal. A ring is called *local* if it has a unique maximal ideal. A ring R is local if and only if $R \setminus R^{\times}$ is an ideal.

Lemma C. Let R be a unital commutative ring. Let $I \subseteq R$ be a proper ideal. Then I is prime if and only if $ab \in I$ implies that $a \in I$ or $b \in I$.

Lemma I. Let R be a unital commutative ring. Then $I \subseteq R$ is a prime ideal if and only if R/I is an integral domain.

Since all fields are integral domains, this proves that all maximal ideals are prime. We also have that a commutative ring R is an integral domain if and only if (0) is a prime ideal in R (if R is not commutative, then we say it is a *prime ring*). If R is a PID, then every nonzero prime ideal is maximal.

We can view elements in a commutative unital ring R as "functions" on the set $\operatorname{Spec}(R)$ of prime ideals. To $r \in R$ we identify a function f_r such that $f_r(P) = r \mod P \in R/P$. We have a bundle at every $P \in \operatorname{Spec}(R)$ and a fibre R/P which is an integral domain. The total space B(R) is the union of R/P over all prime ideals P. A section is a map $s : \operatorname{Spec}(R) \to B(R)$ such that $s(P) \in R/P$. $\Gamma(R)$ is the set of all sections and $\Gamma_{\max}(R)$ is its restriction to $\operatorname{Spec}_{\max}(R)$. Let $\pi : R \to \Gamma(R)$ map $r \mapsto f_r$ and $\pi_{\max} : R \to \Gamma_{\max}(R)$ take r to f_r , restricted to $\operatorname{Spec}_{\max}(R)$. We want to know when π and π_{\max} are faithful.

Proposition K. The kernel of π is the intersection of all prime ideals and the kernel of π_{max} is the intersection of all maximal ideals.

For a unital commutative ring R, we define the nilradical of R to be the intersection $Nil(R) = \bigcap P$ of all prime ideals P. The $Jacobean\ radical$ is the intersection $Jac(R) = \bigcap M$ of all maximal ideals M. Since $Spec_{max}(R) \subseteq Spec(R)$, $Jac(R) \supseteq Nil(R)$. An element $r \neq 0$ in a ring R is called nilpotent if $r^n = 0$ for some n. It turns out that there is a connection between nilpotency and prime ideals.

Proposition N. Let R be unital and commutative. Then Nil(R) is the set of all nilpotent elements, i.e.

$$\sqrt{(0)} = \{r \in R : r^n = 0 \text{ for some } n \in \mathbf{N}\} = \bigcap_{P \in \operatorname{Spec}(R)} P.$$

Proof. To show that a nilpotent element r belongs to every prime ideal P, note that $r^n \in P$, so $r \cdot r^{n-1} \in P$ and we can iterate this until we get that $r \in P$. Conversely, if r is not nilpotent, we can let X be the set of ideals I such that r^n is not in I for any n. X is nonempty and inductive, so by Zorn's Lemma there is a maximal element and it can be shown that this ideal is prime.

Let R be a commutative ring and let $p \in R$ be a nonzero non-unit. Then p is said to be

- i) prime if $p \setminus ab$ implies that $p \setminus a$ or $p \setminus b$;
- ii) irreducible if p = ab implies a is a unit or b is a unit.

To find irreducible elements in a ring, may attempt the "bisection process". Let $r \in R$. If r is irreducible, we stop. If r is not irreducible, then $r = r_1 r_2$. If neither is irreducible, we continue by splitting r_1 and r_2 in the same way. This process may not terminate.

Proposition I. Let R be an integral domain. If an element $p \in R$ is prime, then it is irreducible.

Proof. Let $p \in R$ be a prime element. Assume that p = ab. This implies that $p \setminus a$ or $p \setminus b$. Say a = pc for some $c \in R$. Then p = ab = pcb and cb = 1. So b is a unit.

Note that the converse does not hold. For example, in the ring $\mathbb{Z}[\sqrt{-3}]$, we have $4 = (1+\sqrt{-3})(1-\sqrt{-3})$. The element 2 is irreducible, but it is not prime because 2 divides 4 but does not divide either of $(1+\sqrt{-3})$ and $(1-\sqrt{-3})$.

Proposition A. Let R be an integral domain. Let p be a nonzero element in R. Then p is prime if and only if (p) is prime and p is irreducible if and only if (p) is maximal among principal ideals.

This proposition implies that in a PID, irreducible elements are prime.

A ring R is a unique factorisation domain if every $r \in R$ can be expressed as a product $r = p_1 \cdots p_n$ of irreducible elements, which is unique up to the order of the p_i . The rings \mathbf{Z} , K[x], and K[x,y] are all examples of UFDs. Every PID is a UFD and in a UFD, all irreducible elements are prime.

Lemma S. In a PID, every chain of ideals stabilises.

Proof. $I = \bigcup_{n \ge 1} I_n$ is an ideal. Since R is a PID, I = (x) for some x and $x \in I_n$ for some n. This implies that $I = I_n$.

Lemma N. Let R be a unital ring. Then every increasing chain of ideals stabilises if and only if every ideal is finitely generated.

Proof. If $I=(x_1,x_2,\ldots)$ is not finitely generated, then $I_n=(x_1,\ldots,x_n)$ is an increasing chain of ideals that does not stabilise. Conversely, if every ideal is finitely generated, then let $I_1\subseteq I_2\subseteq \cdots$ be a chain of ideals and let $I=\bigcup_{n\geq 1}I_n$. There exist (x_1,\ldots,x_n) that generate I, so there exists a k such $x_i\in I_k$ for all i and we find that $I=I_k$.

A ring is called *Noetherian* if it the equivalent conditions from Lemma N hold.

For elements r and s of a ring, a greatest common divisor or gcd is an element d dividing both r and s such that if any d' divides both r and s, then d' divides d. An integral domain R is called a $B\acute{e}zout$ domain if (r) + (s) is principal for every $r, s \in R$ (of course, every PID is a Bézout domain) and it is called a GCD domain if any two $r, s \in R$ have a gcd. Every UFD is a GCD domain.

Lemma B. The following statements regarding Bézout domains are true.

- i) A ring R is Bézout if and only if every finitely generated ideal is principal.
- ii) A Bézout domain is a GCD.
- iii) If a ring is both Noetherian and a Bézout domain, then it is a PID.

3. Gaussian Integers

Recall from Section 1 that the Gaussian integers are the ring

$$\mathbf{Z}[i] = \{a + bi : a, b \in \mathbf{Z}\}.$$

We write N for the complex modulus, squared. So $N(z) = z\overline{z} = a^2 + b^2$. This is called the *norm* and it is a group homomorphism $\mathbf{C}^{\times} \to \mathbf{R}^{\times}$, since N(zz') = N(z)N(z'). N(z) = 0 implies that z = 0. The norm n takes $\mathbf{Z}[i]$ to \mathbf{N} . The kernel of N on \mathbf{C}^{\times} is the unit circle $\{z \in \mathbf{C} : |z| = 1\}$. Let ker N denote the kernel of N restricted to $\mathbf{Z}[i]$, i.e. $\{\pm 1, \pm i\}$. These are the units of $\mathbf{Z}[i]$.

The image of N is

$$Im(N) = \{n \in \mathbf{N} : n = a^2 + b^2 \text{ for some } a, b \in \mathbf{Z}\}.$$

This set is stable under product, since if n = N(z) and n' = N(z'), then nn' = N(zz'). Gauss was interested in studying the number of integer numbers less than a given n that can be expressed as a sum of two squares. We will return to this point later.

We say that a prime number *splits* if it is no longer prime in $\mathbb{Z}[i]$ and we say that it is *inert* otherwise.

Lemma S. Let p be a prime. Then p is a sum of two squares if and only if it splits in $\mathbf{Z}[i]$.

Proof. If $p = a^2 + b^2$ then p = (a + ib)(a - ib) and $N(a + ib)N(a - ib) = p^2$ implies that neither of these factors are units. So p is not prime in $\mathbf{Z}[i]$. Conversely, if $p = \alpha\beta$ in $\mathbf{Z}[i]$, then $N(\alpha) = N(\beta) = p$ means that p is the sum of two squares.

Lemma I. A prime p splits if and only if $p \equiv 1 \pmod{4}$.

Proof. If p splits, then by the previous lemma, $p=a^2+b^2$ and the sum of two squares is never 3 modulo 4. So if p is an odd prime it is congruent to 1 modulo 4. Conversely, assume that $p\equiv 1\pmod 4$. Then p=1+4n for some n and there exists $x\in \mathbf{Z}$ such that $x^2\equiv 1\pmod p$. (In fact, x=(2n)! works.) Then p=1+4n divides $x^2+1=(x+i)(x-i)$. So p divides (x+1) or (x-i), so p divides i and is not inert.

All this talk of divisibility leads nicely into a discussion of Euclidean division. In **Z**, the goal of Euclidean division for integers a and b is to find a $q \in \mathbf{Z}$ such that a - bq is small, in some sense. The following proves a similar result in $\mathbf{Z}[i]$.

Proposition E. There is a Euclidean division in $\mathbf{Z}[i]$.

Proof. Let $a,b \in \mathbf{Z}[i], b \neq 0$. We can divide them in \mathbf{C} to get z=a/b. Then there is a (not necessarily unique) $q \in \mathbf{Z}[i]$ that is of minimal distance to z. We have |z-q| < 1; in fact $|z-q| \leq \sqrt{2}/2 < 1$. So |a-bq| < |b|.

Let us now define this generally. An integral domain R is a Euclidean domain if there exists a function $N: R \to \mathbf{N}$ called the norm such that N(0) = 0 and for all $a, b \in R$, $b \neq 0$, either b divides a or there exists $q \in R$ such that N(a - bq) < N(b). Proposition E showed that Z[i] is a Euclidean domain with the complex norm, and other familiar examples include \mathbf{Z} with the absolute value function and K[x] with the degree of a polynomial as its norm. In general, the Euclidean division algorithm does not give a unique answer. Even in \mathbf{Z} , we can end up with q or -q as a quotient.

Proposition T. $\mathbf{Z}[\sqrt{-2}]$ is a Euclidean domain.

Proof. We repeat the same proof as for $\mathbf{Z}[i]$ except for the computation of |z-q|, which is now $\leq \sqrt{3}/2$.

Recall that $\mathbf{Z}[\sqrt{-3}]$ is not a Euclidean domain. It is not even a UFD, since $4 = 2 \cdot 2 = (1 + \sqrt{-3})(1 - \sqrt{-3})$. But $\mathbf{Z}[\sqrt{-3}] \subseteq \mathbf{Z}[\omega]$ and this is a Euclidean domain, with norm $N(a + b\omega) = a^2 - ab + b^2$. The units in $\mathbf{Z}[\omega]$ are the elements of norm 1: $\{\pm 1, \pm \omega, \pm \omega^2\}$ and we have unique factorisation up to units.

Proposition P. Every Euclidean domain is a PID (and consequently a UFD).

Proof. Let R be a Euclidean domain and $I \subseteq R$ an ideal. Let $b \neq 0$ be an element of I of minimal norm. If $a \in I$ then b divides a. Otherwise, there exists $q \in R$ such that N(a - bq) < N(b), contradicting the minimality of b's norm. So I is principal.

A corollary of this fact is that every ideal in $\mathbf{Z}[i]$ is principal.

4. Modules

For any set X, the set of symmetries $\operatorname{Sym}(X)$ is a group and an action of a group G on X is a group homomorphism $G \to \operatorname{Sym}(X)$. If X is a group, we can define the *ring of endomorphisms* $\operatorname{End}(X)$ as the set of group homomorphisms from X to X.

Lemma M. Let M be an abelian group. Then End(M) is a ring.

Proof. Addition is pointwise addition from M and multiplication is composition of maps.

Let R be a a unital commutative ring. A module M over R is a ring homomorphism $R \to \operatorname{End}(M)$. Explicitly, the list of axioms of a module are very similar to those of a vector space (in fact, if R is a field, then a module is a vector space). For $r, s \in R$ and $m, n \in M$, we have

- i) r(m+n) = rm + rn;
- ii) (r+s)m) = rm + sm;
- iii) (rs)m = r(sm);
- iv) 1m = m.

These axioms also work if R is not commutative; in this case, we call M a left R-module. The kernel of $R \to \operatorname{End}(M)$ is called the annihilator of M:

$$Ann(M) = \{ r \in R : rm = 0 \text{ for all } m \in M \}$$

A module is said to be faithful if Ann(M) is trivial. If M is an R-module, then M is a faithful S-module where S = R/Ann(M).

Proposition I. Any ideal I in a ring R is a module over R.

Proof. For $a \in I$ and $r \in R$, we have $ra \in I$. The rest of the axioms follow.

Quotients R/I are also modules. When $R = \mathbf{Z}$, the action is determined by the group structure in M. For example,

$$2m = (1+1)m = 1m + 1m = m + m.$$

When R = K[x] for some field K, we have the following interesting lemma.

Lemma V. K[x]-modules are operators on vector spaces and vice versa.

Proof. Let M be a K[x]-module. The restriction of the K[x] action to K gives a K-module structure on M. This is a vector space. Furthermore, the indeterminate x also acts on M by taking $m \mapsto xm$. This gives a map $x: M \to M$ such that x(m+n) = x(m) and $x(rm) = (xr)m = (rx)m = r \cdot x(m)$. So x is a linear map.

Conversely, if V is a K-vector space, and $T: V \to V$ is a linear map, then V is a K[x]-module, because for any $p \in K[x]$, p(T) is a linear map on V.

Note that the module is not faithful, because K[x] has infinite dimension but $\operatorname{End}(V)$ has finite dimension when V has finite dimension. If G is a group, K[G] is the group ring and a K[G]-module is a linear representation of G.

A submodule M' of M is a subgroup that is stable under the action of the ring, i.e. for all $m, n \in M'$ and $r \in R$, $m + rn \in M'$. For example, ideals are submodules of R and if M' is a submodule, we can define the quotient module M/M' with the action of R:

$$r(m+M') = rm + M'$$

If M and M' are modules, then $M \times M'$ is a module. If a module has no proper nontrivial submodules, then it is called simple.

An R-module map is a group homomorphism $f: M \to M'$ such that f(rm) = rf(m) for all $r \in R$ and $m \in M$. The kernel ker f is a submodule of M and the image of f is a submodule of M'. The isomorphism theorems for modules are exactly analogous to the ones given for rings in Section 1.

Lemma S (Schur's lemma). Let M be a simple module. Then $\operatorname{End}_R(M)$ is a skew field.

Proof. Let $f: M \to M'$ be a module map that is not identically zero. The kernel of f is a submodule of M, so since $f \neq 0$, ker $f = \{0\}$. Then the image of f is a submodule of M' since $f \neq 0$, Im f = M'. Hence f is an isomorphism.

If M is an R-module and $I \subseteq R$ is an ideal, then

$$IM = \left\{ \sum r_i m_i : r_i \in I, m_i \in M \right\} \subseteq M$$

is a submodule.

Theorem C (Chinese remainder theorem). Let I, J be ideals in a ring R. Let M be an R-module. Then the map

$$M \to M/IM \times M/JM$$

has kernel $IM \cap JM$.

If I+J=R then the map is surjective and $(I\cap J)M=IJM$. With n ideals such that $I_k+I_l=R$ for $k\neq l$, we have

$$M/(I_1\cdots I_n)M\cong M/I_1M\times\cdots\times M/I_nM.$$

Let M be an R-module. If $A \subseteq M$, then

$$(A) = \left\{ \sum r_i a_i : r_i \in R, a_i \in A \right\}$$

is the submodule of M generated by A. A module is finitely generated if it admits a finite generating set and cyclic (or singly generated) if it is generated by one element. If M=(a) is cyclic, then the map $R \to M$ that sends $r \mapsto ra$ is surjective with kernel $\mathrm{Ann}(M)$.

Lemma P. Let R be an integral domain. Then the nonzero principal ideals are isomorphic to R.

Proof. Let I=(a) be an ideal (so it is an R-module). If $r \in \text{Ann}(I)$ then r is a zero divisor. So $R \to I$ is an isomorphism.

A finitely generated R-module M is called *free* if it is isomorphic to R^n for some n. For example, if R is a field, every module (finite-dimensional vector space) is free. Equivalently, an R-module is free if there exists a basis, that is, a generating set A such that any $m \in M$ can be written in a unique way as a finite sum

$$m = \sum_{a \in A} r_a a.$$

The set A is called a free generating set and the cardinality of A is called the rank of M.

In a PID, every ideal is a free module (isomorphic to the ring itself). For any set A and ring R, we can let F_A be the set of all functions from A to R with finite support. This is a group under pointwise addition and r acts on F_A : $(rf)(a) = r \cdot f(a)$. A basis for F_A is the set $(\delta_a)_{a \in A}$ of delta functions, where $\delta_a(b) = 1$ if b = a and 0 otherwise.

Proposition U (Universal property of free modules). Let ϕ be a map from a set A to an R-module M. Then there is a unique extension of ϕ to a module map $\overline{\phi}: F_A \to M$.

Proof. Take any element $f \in F_A$ and express it as

$$f = \sum_{a \in A} r_a \delta_a$$

for some $r_a \in R$. Then let $\overline{\phi}$ be given by

$$\overline{\phi}(f) = \sum_{a \in A} r_a \phi(a). \quad \blacksquare$$

Proposition S. Let $N \hookrightarrow M \twoheadrightarrow F$ be a short exact sequence of modules (so $F \cong N/M$), where F is a free module. Then the sequence splits, i.e. $M \cong N \oplus F$.

Proof. We need to construct the section s of $\pi: M \to F$.