② 공모 제안서 양식-데이터 융합 서비스 부문

- ※ 글씨 크기 10pt, 서체 맑은 고딕으로 통일하여 작성해 주세요.
- ※ 실제 데이터가 개방되어 있지 않은 경우는 반드시 데이터별 첨부된 '테크니컬 리포트'를 참고하여 아이디어를 제안해 주세요.
- ※ 이미지, 동영상 등 자료 첨부 시, 본인이 저작권을 가지고 있는 자료를 사용하거나, 본인의 저작권이 없는 경우 반드시 저작권자 출처를 명시해 주세요.(URL포함)
- ※ 제안서 양식의 내용은 어디까지나 참고 자료입니다. 제안 시 자유롭게 아이디어를 제안해 주세요.

1. 인공지능 학습용 데이터 활용 아이디어 제목

SAFE ROAD

- Computer Vision 기반 **다중객체인식***을 통한 공유형 전동킥보드 자동 속도제어 솔루션 *AI 기술의 한 종류로 이미지, 영상 속 사물을 분류하는 기술
- ※ 인공지능 학습용 데이터를 활용 서비스 제목을 적어주세요. (50자이내)
- ※ 모든 참가분야 공통 필수항목입니다.

2. 인공지능 학습용 데이터 활용 아이디어 내용

- □ 아이디어 배경 & 필요성
 - 최근 인공지능의 Computer Vision 기술의 연구개발이 활발히 진행 중이며 여러 산업에 접목시킨 사례가 다수 존재함
 - 한국 교통연구원의 설문*(`19)에 따르면 설문 응답자 **가구 평균 0.98대의 전동 킥보드를 보유**한 것으로 나타남
 - *한국 교통연구원 개인형 이동수단 활성화 및 안전에 관한 연구 최종보고서 中
 - O Personal Mobility 산업의 발전에 따라서 Personal Mobility 관련 교통사고 또한 기하급수적으로 증가하는 추세임
 - 행정안전부가 발표한 한국소비자원 통계에 따르면 2**015년 14건에 불과했던 전동 킥보드** 사고가 2018년 233건으로 급증함
 - 경찰청의 집계 자료에 따르면 Personal Mobility 대 사람 사고는 2017년 33건에서 2018년 61건으로 1.8배 증가하였으며 Personal Mobility 대 차 사고는 2017년 58건에서 141건으로 2.3배 증가함
 - 경찰청의 집계 자료에 따르면 Personal Mobility 사고로 인한 사상자 수는 2017년 총 128(사망 4, 부상 124)에서 2018년 242명(사망 4, 부상 238)로 2.4배 증가함

□ 주요내용

- AI 허브 제공 데이터*를 모델에 적합하게 Preprocessing 및 Labeling 하여 공유형 전동킥보드 사용 시 탐색 가능한 다중 객체 추적(Multi Object Tracking) 모델 생성
 - *차량 이미지 데이터, 인도 보행 영상 데이터, 사람 동작 데이터, 도로 주행 영상 데이터

- **전동 킥보드에 Lidar 센서***를 결합하여, 데이터를 수집 및 센서데이터 분석을 통한 사물 인지 모델 생성
 - *국내 전동 킥보드 제조업체 ㈜유테크가 Lidar 센서를 탑재한 전동 킥보드를 개발하였으며 한국자동차연구원에서 검증절차 후 상용화 예정
- 다중 객체 추적(MOT) 모델과 Lidar 센서 데이터 분석 모델을 Ensemble* 학습시켜 최종 사물 포착 모델을 생성
 - * 여러개의 분류기를 생성하고, 그 예측을 결합함으로써 보다 더 정확한 예측을 도출하는 기법
- 최종 생성된 모델을 기반으로 ROS(Robot Operating System)***와 연계하여 속도 제어 시스템** 구축
 - 보행자 전용도로 인식 시 x초 후 **최대 속도를 5km/h로 제한** (도로교통법상 전동킥보드는 인도주행이 불가함), 주행 중 노면의 균일 발견 시 **속도 감소** 등 도로환경에 맞게 최대 제한속도를 조절
- 서비스 이용이 가장 활발한 Personal Mobility 공유 업체를 테스트 베드로 선정하여 시범 적용

□ 서비스 절차

- 1. Personal Mobility 주행 시 탑재된 카메라*에 의해 실시간 도로 영상 데이터 수집 및 Lidar 센서 데이터를 AI기술에 입력
 - *실시간 영상처리 알고리즘 특성상 해상도는 저해상도를 사용해도 용이함 따라서 서비스의 시장성이 보존될 수 있음
- 2. 레이다 데이터와 실시간 도로 영상 데이터를 입력값으로 사물 인식 및 도로 형태(보행자 도로, 어린이 보호구역, 노약자 보호구역 등), 노면 상황, 보행자 유무, 앞차 간격 등을 인식하여 교통법규와 상황에 맞는 최대 속도를 제한
- 3. 계기판에 인터페이스에 시각화 자료를 제공하여 이용자에게 최대 속도 값 제한을 전달

- ※ 인공지능 학습용 데이터를 활용 서비스 개요를 요약하여 적어주세요 (자유양식, 2,000자 이내)
- ※ 아이디어의 이해를 돕기 위한 다양한 이미지를 활용하여 설명하셔도 됩니다.
- ※ 모든 참가분야 공통 필수항목입니다.

3. 아이디어를 실현하기 위해 필요한 인공지능 학습용 데이터

□ 활용된 인공지능 학습용 데이터

- 1. 차량 이미지 데이터 (객체 분류 학습용 데이터)
- 2. 인도 보행 영상 데이터 (객체 분류 학습용 데이터)
- 3. 사람 동작 데이터 (객체 분류 학습용 데이터)
- 4. 도로 주행 영상 데이터 (객체 분류 학습용 데이터)

□ AI허브 제공 외 학습용 데이터

1. LiDar 센서데이터

- *필수 데이터는 아니지만 AI의 성능을 최대한으로 끌어올리기 위해 필요한 데이터이며 LiDar 센서 데이터와 결합 시 자율 주행 기술로 고도화 가능
- LiDar 센서 데이터의 비용 대비 실용성 측면에서 저조하다면 LiDar 기술의 보급이 이루어지기 전까지 Computer Vision만으로도 충분히 실증 가능함
- 단 LiDar 기반 모델과 Computer Vision 기반 모델을 Ensemble 하면 AI의 오차를 최소화할 수 있음

□ AI 기술 결합을 통한 서비스 고도화

- 상기 아이디어는 핵심 SW로써 다양한 ML, DL 모델과 결합하여 성능을 지속적으로 향상시킬 수 있는 범용성과 활용성이 높은 SW임
 - (결합방안) 신용카드기반 유동인구 데이터로 유동인구 밀집지역 클러스터링 후 해당 지역에서 속도 제한을 추가함
 - (결합방법) TAAS에서 제공하는 도로위험 지수에 따라서 속도 제한을 추가함
 - ※ 결합방법에 명시된 데이터의 세부내용은 "5. **공공, 민간, 기타 데이터와 인공지능 학습용** 데이터를 융합 활용하는 경우 참조"
- 위 결합방법은 예시이며, **다양한 방법으로 커스터마이징하여 대한민국 도로교통 안전에 기여할** 수 있음

<데이터 활용 목록>

활용 데이터	구분	중요도	생성주기	데이터	소스
					고화질
				영상 해상도	중화질
					저화질
				II	D
	비정형		AI Hub 내규		오전
치량 이미지 데이터		5	및 정부	조명	오후
	데이터		사업에 따름	고 일	저녁
					실내
					24개
				포즈 속성	수평방향
					5개의

				D 1' D	수직방형
인도 보행 영상 데이터	비정형 데이터	5	AI Hub 내규 및 정부 사업에 따름		
사람 동작 데이터	정형 데이터	5	AI Hub 내규 및 정부 사업에 따름	16개의 신체	
			AI Hub 내규 및 정부 사업에 따름	자동차	일반자동차 버스 이륜차 기타자동차
				보행자	보행자 자전거
		5		차선	흰색 & 점선 흰색 & 실선 노란색 & 점 노란색 & 실 청색 & 점선 청색 & 실선
도로 주행 영상 데이터	비정형 데이터			신호등	적색 황색 녹색 화살표 적색&화살표 황색&화살표 녹색&화살표
				표지판	속도제한 기타 표지판
				노면표시	정지선 횡단보도 숫자노면표시 글자노면표시
				노면 화살표	직진 좌회전 우회전 직진&좌회전 직진&우회전 유턴 기타노면화실

- ※ 아이디어를 실현하기 위해 필요한 인공지능 학습용 데이터를 입력해 주세요.
- ※ AI 허브에 제공되고 있지 않은 학습용 데이터도 필요한 경우 적어주셔도 됩니다.

4. 인공지능 학습용 데이터 학습방법

- □ 이미지 학습 방법
 - ☞ 이미지 학습에 있어 본 문제를 'Multiclass classification'으로 정의
 - Data Preprocessing
 - (데이터 가공)서로다른 이미지 데이터를 결합* 하여 이미지 처리를 위한 가공 데이터 생성

*데이터 셋: COCO 데이터셋, KITTI데이터셋, 도로주행 영상데이터셋, 인도 보행 영상 데이터, 차량 이미지 데이터

○ 딥러닝 기법을 활용한 Real Time 객체 추적 알고리즘 후보

알고리즘	특징
HarDNet	Densely Connected Network를 Harmonic version으로 구현하여 Low
HarDnet	Memory Traffic Network를 구현, Real Time에 최적화
YoLov4-512	1개의 GPU를 사용하는 일반적인 학습환경에서 BOF, BOS를 적용하여
IOLOV4-51Z	Object detection을 실시하여 RealTime의 성능을 향상시킴

- 두 알고리즘 모두 실시간 이미지 처리에서 높은 성능을 보이는 알고리즘이나, 어떤 데이터셋을 학습시키는지에 따라서 성능이 상이함
- 그러므로 두 모델로 학습시킨 후 실증 과정을 거쳐 최종모델을 선정
- AI모델 실증
 - 영상장비 기반 AI 객체인식(머신러닝, 딥러닝 적용)을 결과 표출 *차량, 사람, 자전거, 오토바이, 표지판, 도로노면 파임 등 mAP 85%이상
 - map: IOU 0.5, APM•L (Midium :32 x 32 ~96x96 픽셀, Large 96x96 픽셀 이상)
 - 야간은 형체인식이 일부 제한될 수 있으므로 70% 수준을 목표로 함
 - 3초 이내 APM 기준 검출대상 요구수준별 검출(Recall) 85% 이상을 목표로 함
 - 카메라 회전시에도 이동하는 물체를 탐지
- □ 빅데이터 분석 방법
 - GIS 분석
 - 교통사고 관련 데이터로 EDA를 실시하여 변수를 추출, 데이터 셋 생성
 - QGIS툴을 활용하여 도로교통 관련 안전 데이터의 위·경도 값을 기반으로 공간분석을 실시
 - 도로별 위험도를 측정하고 EDA를 통해 추출한 데이터 셋에 추가
 - GIS 분석 모델 활용방안
 - 공유형 전동킥보드 SW의 GPS데이터와 결합하여 위험도로임을 AI에게 전달하고, 값을 전달받은 AI는 임계값에 맞는 속도 제어 실시
- □ Lidar 센서데이터
 - ☞ Lidar 센서데이터의 형태는 아래와 같음

	<lidar 기본="" 센서데이터="" 형태=""></lidar>
데이터	특징
X	센서 프레임의 방향성
у	측정되는 센서 데이터와 객체사이의 거리

Z	측정 가능한 가장 높은 물체보다 조금 높은 임계값

○ LiDar 센서데이터 학습방법

순서	내용
	레이더 데이터를 분석 가능한 형태로 보정 및 병합*한다.
1	
	*수집된 데이터의 z값을 노면이 평평하다고 가정하에 Calbration을 실시
	z값을 활용하여 지면을 분류한다.
2	* Marcov Random Field 방법을 활용 시 모델이 지면을 인지하기까지의 시간이 오
	래 걸림 따라서 학습 비용이 들지만 7ms 시간 안에 처리 가능한 CNN 모델 기반
	분류 모델 활용
3	분류된 지면을 제외하고 Hierarchical Clustering 모델을 통해 객체를 분류한다.
1	군집화를 통해 분류된 객체에 Boundary Box를 fitting하고 Boundary box의 x,y,z데
4	이터에 연관관계를 Random Forest모델로 학습한다.
_	주행 시 실시간으로 분류되는 객체의 x,y,z 데이터의 연관관계로 객체 분류를 실시한
5	다.

- ※ 아이디어를 실현하기 위해 인공지능 학습용 데이터의 라벨링 및 학습방법을 기술해주세요. 본 아이디어의 실현가능성을 확인하기 위해 활용됩니다. (2,000자 이내)
- ※ 필요한 경우 분석 알고리즘에 대해 기술해주세요.

5. 공공, 민간, 기타 데이터와 인공지능 학습용 데이터를 융합 활용하는 경우

□ AI 기술 결합을 통한 서비스 고도화

☞ 상기 ICT 융합 소프트웨어는 Computer Vision 기반 핵심 기술을 제공하며, 타 AI기술 및 기계학습 기술과 결합하여 고도화가 가능함

※즉, 아래의 데이터 목록은 필수는 아니지만, AI의 성능향상에 도움이 되는 데이터임

<공공 · 민간 · 기타 데이터 활용 목록>

활용 데이터	구분	출처	생성주기	주요 특성(Feature)	비고
전국 교통사고 데이터	정형 데이터	경찰청, 한국도로교통공단	년, 월	사고건수, 사고형태, 부상상태, 사고유형, 교통수칙위반정도 등	http://taas .koroad.or .kr/sta/ac s/exs/typi cal.do?me nuId=WWE B_KMP_OV T_UAS_AS
전국 스쿨존	GIS데이	공공데이터 포털	매년	시설종류, 대상시	https://ww

데이터	터			설명, 소재지 도로명주소, 소재지 지번주소, 위도, 경도, 관리기관명	w.data.go. kr/data/15 012891/sta ndard.do
전국 통계지리정보	GIS데이 터	통계지리정보서비 스	매년	인구, 가구, 주거, 교통,복지,문화,노동,경 제 등의 GIS 데이터	https://sg s.kostat.go .kr/view/i ndex
유동인구 내역	GIS데이 터	Olleh KT	내규에 따라 다른 것으로 추정	유동인구내역 데이터로 날짜, GPS, 위도. 경도. 인구수, 시간대 구분코드, 성별구분코드, 연령대 구분코드, 행정동코드, 내국인수, 장기외국인수, 단기외국인수	https://www.bigdata-transportation.kr/productGroupPopup/8647a4a1-4b15-11ea-acb2-246e9637d7d8
LiDAR 센서데이터	센서데이 터	수집예정	-	LiDar 센서데이터 (x,y,z value 데이터)	센서로부터 추가수집 필요함
COCO데이터	비정형 이미지 데이터	Common Objects in Context	수집된 데이터셋	도로주행하며 수집된 이미지 데이터 type truncated occluded alpha bbox dimensions location rotaion_y score	https://cc codataset. org/#hom e
KITTI 데이터	비정형 이미지데 이터	Karlsruhe Institute of Technology	수집된 데이터 셋	원시 이미지 데이터, 처리된 이미지 데이터, 3D velodyne point 데이터(Lidar 데이터), 3D GPS / IMU데이터, 3D 개체 추적 레이블 데이터	http://www.cvlibs.net/datasets/kitti/raw_data.php

○ AI 기술 고도화 추진 방안

- 상기 표에 명시된 전국 교통사고데이터, 전국 스쿨존 데이터, 전국 통계지리정보 데이터, 유동인구 내역 데이터에 기반 탐색적 분석(EDA), 공간분석을 진행하여 **전동킥보드 주행** 위험직역을 선정 모델* 제작
 - * 비지도학습에 기반한 클러스터링 모델
- 공유형 Personal Mobility에 GPS를 활용하여 위험지역 일정 범위에서 운행 시 추가 속도 제한
- Computer Vision의 오차율을 LiDar센서 데이터기반 모델과 결합하여 상호보완적 앙상블 모델 제작*
 - *구글, 애플등이 자율주행 자동차를 개발중인 방법론으로 국내에서는 한국융합과학기술원에서 위의 기술을 활용하여 자율주행 전철을 연구중에 있음
- ※ 서로 다른 분야의 두 개 이상의 인공지능 학습용 데이터를 융합하여 더 고도화된 서비스를 제공하는 경우 데이터 융합방안 및 융합을 통한 이점에 대해 기술해주세요 (2,000자 이내)
- ※ 인공지능 학습용 데이터 이외의 타 데이터를 사용한 경우 정확한 데이터 명칭과 출처를 명시해주세요.(URL포함)
- ※ 붉은 색으로 표시된 예시는 인공지능 학습용 데이터 우수 활용 서비스 사례인 ㈜에시아이더, ㈜어메이징푸드솔루션, 뉴트리진(주)에서 서비스하고 있는 'AI솔트를 바로잡다' 서비스에서 발췌하였습니다.