

BSM 310 YAPAY ZEKA

CEMİL ÖZ, İSMAİL ÖZTEL

~ SEZGİSEL PROBLEM ÇÖZME YAKLAŞIMI – III ~

KONULAR

- Sezgisellik
- Graflar
- Durum Uzayı
- Arama Yaklaşımları
- A* algoritması
- Örnek Problemler

4	1	3
2	8	5
7		6

- Amaç hedef durum için boşluğun en kısa hareket dizisini bulmak
- Boşluğun hareketi için her durumda en fazla 3 operatör vardır.
- Minimum n hareketle hedef duruma ulaşılıyor ise algoritma karmaşıklığı: $O(3^n)$.
 - Örneğin, 10 adımda çözüme gidiliyor ise 3^{10} = 59049 düğümü açmak gerekir. Sezgisel bir yaklaşım olmadan çözüm çok uzun zaman alır.

A* algoritması – 8 taş oyunu

- Çözüm için g(x) başlangıçtan bulunulan düğüme kadar olan derinlik
- h'(x) için ise kendi yerlerinde olmayan taşların sayısı olarak belirlenebilir.
- Bu belirlemelerin ardından çözüm yolu için minimum f(x) değerine sahip düğüm seçilir, operatörler yardımı ile çocuk düğümler oluşturulur ve yeni f(x) değerleri hesaplanır.

A* algoritması – 8 taş oyunu

- h'(x) fonksiyonu farklı şekillerde de tasarlanabilirdi:
 - $h'(x)_1$ bulunulan durum ile hedef durum karşılaştırıldığında yerinde olmayan taşların sayısı
 - $h'(x)_2$ taşların olması gereken yere olan uzaklıkları
- Başlangıç durum: 2 3 6 1 7 5 4 8
 Hedef durum: 1 2 3 4 5 6 7 8
 - $h'(x)_1 = 7$
 - $h'(x)_2 = 8$

Alıştırma:

- g(x) başlangıçtan bulunulan düğüme kadar olan derinlik
- h'(x) taşların olması gereken yere olan uzaklıkları
- 3. seviyede hangi düğüm seçilmelidir?

başlangıç

1	5	8
3	2	
4	6	7

hedef

1	2	3
4	5	6
7	8	

Yol bulma örneği:

Screen shot 5.9

Manhattan mesafe:

- Izgara tipi oyunlarda kullanılabilen popüler yöntemlerden biri de, Manhattan mesafesidir.
- Manhattan mesafesi, iki düğüm arasındaki dikey ve yatay mesafelerin toplamıdır.
- Örneğin şekildeki v ve w düğümleri arasındaki Manhattan mesafesi

6+4=10'dur.

h(n) = | mdX - hdX | + | mdY - hdY |

Start

Finish

Engel

- G, başlangıç noktasından bitiş noktasına kadar olan hareketin maliyetidir.
 - yatay ve dikey hareket maliyeti = 10
 - çapraz hareket maliyeti= 14 [($c^2=a^2+b^2$) $\rightarrow c^2=200 \rightarrow c=14.1421...]$
- H Manhattan yöntemidir.
 - yatay ve dikey hareket maliyetlerinin toplamı.
- Notasyon:

Alıştırma:

Sezgisel problem örnekleri: Dört at problemi

- 3*3 boyutlu mini satranç tahtası
- Tahtanın köşelerinde iki beyaz iki siyah at
- Minimum sayıda gidişle siyah ve beyaz atların yer değiştirmesi?

4 at problemi

SAKARYA ÜNİVERSİTESİ

BSM 310 - YAPAY ZEKA

64 at problemi

- Bir at, tahtanın herhangi bir hanesinden başlamak ve her haneyi yalnızca bir kez ziyaret etmek şartı ile tüm haneleri gezmelidir.
- Bir at, tahta üzerindeki herhangi bir konumda iken en fazla 8 gidiş seçeneği vardır.
- Bu sayı ortalama olarak 4 kabul edilse çözümün aranması 4⁶³ düğüm

64 at problemi

 Çözüm olarak, atın mevcut durumdan gidebileceği olası durumlardan en az çıkışı olanın seçimi yaklaşımı önerilmiştir.

8 vezir problemi

- n*n'lik bir satranç tahtası üzerinde birbirini görmeyecek şekilde en çok sayıda vezir yerleştirme
- 8*8'lik bir satranç tahtası ise problem *8 vezir problemi* ismini alır.
- 4*4'lük tahta üzerinde problemin çözümünü inceleyelim.

8 vezir problemi

- Sezgisel bir değerlendirme yapılmaz ise durum uzayını bünyesinde barındıran ağacın tüm dallarında çözüm aranır.
- Durum uzayı büyüdükçe ağacın derinliği de artacaktır.
- Tüm dalların gezilmesi için açılacak düğüm sayısı n^n
- 2016 yılı dahil tüm çözümleri bilinen vezir sayısı 26'dır.

n*n	Çözüm sayısı	Tek çözümler
1*1	1	1
2*2	0	0
3*3	0	0
4*4	2	1
26*26	22.317.699.616.364.044	2.789.712.466.510.289

8 vezir problemi: 1. yaklaşım

- Başlangıç durumu: 4c, 3f
- Hamle altında olabilecek hücreler ilgili vezirin numarasını alır.
- Sezgisel parametre: yatay yöndeki en küçük serbestlik derecesi
- Serbestlik derecesi: satırlar ya da sütunlar boyunca mümkün olan yerleştirme sayısı

8 vezir problemi: 1. yaklaşım 8 Başlangıç durumu: 4c, 3f 5 Hamle altında olabilecek hücreler ilgili vezirin numarasını alır. 4 3 Sezgisel parametre: yatay yöndeki 5 en küçük serbestlik derecesi 4 Serbestlik derecesi: satırlar ya da 3 sütunlar boyunca mümkün olan 3 2 yerleştirme sayısı 4 1 b d h a C e g

8 vezir problemi: 1. yaklaşım

- En düşük serbestlik derecesi: 2.
 ve 5. satır (5. satırı seçelim)
- 5. satır için sütun dereceleri incelendiğinde a sütunu seçilir.
- ...
- a5, b2, c4, d6, e8, f3, g1, h7

-	3	-	2	
2		1	3	
3	2	1		
1	3	1		
1 3	1	1	1	(1)
1	1	<u>¥</u> 1	1	1
2	1	1	1	2
1		1	3	,
3		1	2	3

b

C

a

d

e

8

6

5

4

3

2

1

h

24

g

- Sezgisel yöntem ile problem hızlı bir şekilde çözülebiliyor.
- Fakat sezgisel fonksiyon iyi karakterize edilmeli.
- "Sezgisel onarım" yönteminde var olan bir durumda çatışan durumlar belirlenir ve bu durumlar minimuma çekilir.
- Vezirler şekildeki gibi rastgele yerleştirilmiş olsun.

- a5 tehdit altında değil
- b7 h1'in tehdidi altında
- Çatışma durumundaki h1 sütununun satır değerleri her hücre için kaç vezirin tehdidi altında olduğu sayıdır.
- h1 hücresindeki vezir h5'e çekilir.

