2 WAY DETERMINISTIC FINITE AUTOMATA

Made by: Yamini Bamal.

[0905cs201201]

overview

- ☐ Introduction.
- ☐ Formal construction.
- ☐ Example.
- □2DFA vs DFA.

introduction

- Generalized version of DFA.
- Process the input in either direction.
 - Have read only head which can move in both direction over the input string.
 - Revisit the characters again and again.
- Like a Turing Machine but.
 - ➤ Have read only head.
 - ➤ Have finite memory like DFA

- 2DFA has finite set of states Q like DFA.
- Input string
 - Input string is stored on finite tape.
 - One character per cell.
 - Input string is stored in between two extra symbol called left end marker(`) and right end marker(a).
- At any time instance the machine is in state p and scan some symbol ai $\in \Sigma$ or an end markers $\{|-,-|\}$, based on p and current symbol it will move its head one cell in direction $d \in \{L, R\}$ and enter in new state q.
- Machine head never go outside the end markers.

- Accept and reject states.
 - > 2DFA needs only single accept and single reject state.
 - > It will accept the input string by entering in a special accept state t.
 - > It will reject the input string by entering in a special reject state r.
 - Accept and reject states are like sink state.
- The machine action on a present state and head symbol is depend on transition function δ .
- Transition function take present state and head symbol as input argument and return next state and direction of movement of head.

Formal definition of 2DFA

2DFA is represented by octuple.

$$M = \{Q, \Sigma, \delta, s, t, r, |-, -|\}$$

- where:
- > Q is a finite set of states.
- $\triangleright \Sigma$ is a finite set of input symbol.
- $\triangleright \delta : Q \times (\Sigma \cup \{`, a\}) = Q \times \{L, R\}$ is a transition function.
- \triangleright s \in Q is a start state.
- \succ t \in Q is a accept state.
- $r \in Q$ is a reject state.
- > |- is left end marker.
- > | is right end marker

Some properties of transition function

• Input is end marker.

$$\triangleright \delta(p, |-) = (q, R)$$

$$\triangleright \delta(p, -|) = (q, L)$$

■ Accept and reject states are t , r respectively and current input symbol is $a \in \Sigma \cup \{|-\}$.

$$\triangleright \delta(t, a) = (t, R)$$
 and $\delta(t, -|) = (t, L)$

$$\triangleright \delta(r, a) = (r, R)$$
 and $\delta(r, -|) = (r, L)$

In general

$$\triangleright \delta(p, a) = (q, d)$$
 where p, $q \in Q$ and $d \in \{L, R\}$

Example (Constructing a normal DFA)

Construct the DFA to accept the language

 $L = \{x \in \Sigma * | \#a(x) \text{ are multiple of } 3, \#b(x) \text{ are multiple of } 2\}$

Construct a normal DFA

- DFA M1 accepting L1 = $\{x \in \Sigma * | \#a(x) \text{ are multiple of 3}\}$ M1 = $\{Q1, \Sigma, \delta1, s1, F1\}$ 2 DFA
- DFA M2 accepting L2 = $\{x \in \Sigma * | \#b(x) \text{ are multiple of 2}\}$ M2 = $\{Q2, \Sigma, \delta2, s2, F2\}$
- DFA M accepting L such that $M = M1 \times M2$ $M = \{Q, \Sigma, \delta, s, F\}$

Example(Constructing a 2DFA)

Construct a 2DFA accepting the set

 $L = \{x \in \Sigma * | \#a(x) \text{ are multiple of } 3, \#b(x) \text{ are multiple of } 2\}$

- Machine start scanning from the left end marker.
- Scan input string from left to right consider only a and ignore b. if #a(x) are not multiple of 3 then rejects x and enters in state r.
- if #a(x) are multiple of 3 then start scanning from right consider only b and ignore a. if #b(x) are not multiple of 2 then enters in t otherwise enters in state r.

Example (Formal construction of 2DFA)

 $M = \{Q, \Sigma, \delta, s, t, r, |-, -|\}$

where $\Sigma = \{a, b\}$, $Q = \{q0, q1, q2, p0, p1, t, r\}$ and the transition function δ is given by following table.

states	<u> </u>	а	Ь	\vdash
q_0	(q_0,R)	(q_1,R)	(q_0,R)	(p_0, L)
q_1	-	(q_2,R)	(q_1,R)	(r, L)
q_2	-	(q_0,R)	(q_2,R)	(r, L)
p_0	(t,R)	(p_0, L)	(p_1,L)	-
p_1	(r,R)	(p_1,L)	(p_0, L)	-
t	(t,R)	(t,R)	(t,R)	(t, L)
r	(r,R)	(r,R)	(r,R)	(r, L)

2DFA vs DFA

DFA

Input is processed once from left to right. After an input has been read, the DFA decides whether the input is accepted or rejected.

2DFA

- Can read the input back and forth with no limit on how many times an input symbol can be read.
- As in the case of DFA, the 2DFA decides whether a given input is accepted or rejected.

INSTITUTE OF TECHNOLOGY & MANAGEMENT

www.itmgoi.in

