

BLG 231E DIGITAL CIRCUITS FINAL EXAM SOLUTIONS

QUESTION 1 (35 Points):

Note that Parts (a) and (b) below are not related.

a) [25 Points]i. [15]

Notes:

- Ten 2-input XOR gates are sufficient.
- Negation requires only one XOR gate.
- It is also possible to use 3-input XOR gates for the input B. In this case, the extra XOR gate for negation is not necessary.

ii. [10]

During subtraction, overflow can occur only if A and B have opposite signs. Therefore, for overflow, the operation must be Z = B-A.

There are only two cases that can generate overflow:

B: negative, A: positive, Z: positive

B: positive, A: negative, Z: negative

$$Overflow = B_3\overline{A_3}\,\overline{Z_3} + \overline{B_3}A_3Z_3$$

b) [10 points]

{NOT, AND} and {NOT, OR} are two functionally complete sets. If a 2:1 multiplexer (MUX) is a universal gate, we must be able to realize one of these sets using only 2:1 multiplexers. It is possible to realize all operators of the Boolean algebra.

Equation of 2:1 MUX:

$$Z = \overline{s}I0 + sI1$$

NOT:
$$s = X$$
, $I0 = 1$, $I1 = 0$: $Z = \overline{X} \cdot 1 + x \cdot 0 = \overline{X}$

AND:
$$s = X$$
, $10 = X$, $11 = Y$: $Z = \overline{X} \cdot X + X \cdot Y = X \cdot Y$

OR:
$$s = X$$
, $10 = Y$, $11 = X$: $Z = \overline{X} \cdot Y + X \cdot X = \overline{X} \cdot Y + X = X + Y$

The answer is YES. We can use a 2:1 multiplexer (MUX) as a universal gate because we can realize functionally complete sets using only 2:1 multiplexers.

Note:

- The statement "Since a mux contains AND, OR, NOT gates, it is a universal gate" is not correct.
- Implementing only one of the sets {NOT, AND} or {NOT, OR} is sufficient.

QUESTION 2 (35 Points):

Note that Parts (a) and (b) below are <u>not</u> related.

a) [20 Points]

i.

1.		
Q+ Q	0	1
$XY \searrow$		
00	0	1
01	0	1
11	0	0
10	1	1

$$Q + = X'Q + XY'$$

ii.

Required transitions $(Q \rightarrow Q^+)$ for the flip-flop to be implemented

Transition Table for T flip-flop:

Karnaugh map to determine the equation of the circuit to drive the input of the T flip-flop:

QQ+ Q XY	0	1
00	00 (0)	11 (1)
01	00 (0)	11 (1)
11	00 (0)	10 (β)
10	01 (α)	11 (1)

QQ+	T
00 (0)	0
01 (α)	1
10 (β)	1
11 (1)	0

T_Q	0	1
XY		
00	0	0
01	0	0
11	0	1
10	1	0

T = XYQ + XY'Q'

Note:

You cannot implement this circuit connecting some gates to the output of the flip-flop only. In this way, you cannot change (control) the value (state) of the flip-flop.

b) [15 Points]

Remember: NMOS: if VGS>0, ON; if VGS=0, OFF

The pull-down network will make Z Low when T1 is ON AND (T2 OR T3 is ON).

Hence,

A	В	C	T1	T2	Т3	Z
L	L	L	OFF	OFF	OFF	Н
L	L	Н	OFF	ON	OFF	Н
L	Н	L	OFF	OFF	ON	Н
L	Н	Н	OFF	ON	ON	Н
Н	L	L	ON	OFF	OFF	Н
Н	L	Н	ON	OFF	ON	L
Н	Н	L	ON	ON	OFF	L
Н	Н	L	ON	ON	ON	L

Using positive logic

Z C AB	0	1
AB		
00	1	1
01	1	1
11	0	0
10	1	0

$$Z = A' + B'C'$$

QUESTION 3 (30 Points):

a) [10 points]

i. [5 points]

Moore because Z = Q1. The output depends only on the current state, and not the current input. O = q(S)

ii. [5 points]

Since the circuit contains two flip-flops, there are two state variables, i.e., Q1 and Q0. This FSM has 4 states because Q1Q0 = 00, 01, 10, 11

b) [10 points]

ני							
Q1	Q0	X	U1	U0	Q1+	Q0+	Z
0	0	0	0	0	1	1	0
0	0	1	0	1	1	0	0
0	1	0	0	0	1	0	0
0	1	1	1	1	0	1	0
1	0	0	0	0	0	1	1
1	0	1	1	1	1	0	1
1	1	0	1	0	1	0	1
1	1	1	1	1	1	1	1
			_		=	_	_

2 1 3 (

c) [10 points]

The truth table has been filled in above.

Step 1:Since the input of Q0 is just U0=X, filling in the column for U0 is straightforward.

Step 2: We have the equation for U1:

U1= XQ1+XQ0+Q0Q1

This means that at least two out of Q1, Q0, and X have to be 1 for U1 to be 1. We will in the U1 value for each (Q1, Q0, X) combination.

Step 3: In the problem statement, all the combinations of \mathbf{Q} , \mathbf{U} , and \mathbf{Q} + have been provided.

Q	U	Q+
Q 0	0	1
0	1	0
1	1	1
1	0	0

This table indicates that Q+=Q'U'+QU

Step 4: We fill in Q1+ and Q0+ columns based on the Q-U-Q+ table we found in Part(b).

Step 5: Z = Q1, so we copy the column for Q1 into the Z column.