Used Car Price Prediction

Step 1: Loading and Cleaning the Dataset

> train_data <- read_csv("train-data.csv")

#Removing the column New_Price from the table

> train_data <- subset(train_data, select = -c(`New_Price`))

Step 2: Convert Data Types & Handle Missing Values

#Converting Mileage, Engine, and Power columns to numeric

```
> train data$Mileage <- as.numeric(gsub(" km/kg| kmpl", "", train_data$Mileage))
```

- > train_data\$Engine <- as.numeric(gsub(" CC", "", train_data\$Engine))
- > train_data\$Power <- as.numeric(gsub(" bhp", "", train_data\$Power))

#Handling missing values

Missing Values:

Mileage (2), Engine (36), Power (143), and Seats (42) contain missing values.

- > train_data\$Mileage[is.na(train_data\$Mileage)] <- median(train_data\$Mileage, na.rm = TRUE)
- > train_data\$Engine[is.na(train_data\$Engine)] <- median(train_data\$Engine, na.rm = TRUE)
- > train_data\$Power[is.na(train_data\$Power)] <- median(train_data\$Power, na.rm = TRUE)
- > train_data\$Seats[is.na(train_data\$Seats)] <- median(train_data\$Seats, na.rm = TRUE)

Step 3: Convert Categorical Variables

#Categorical variables are converted to factors.

- > train_data\$Location <- as.factor(train_data\$Location)
- > train_data\$Fuel_Type <- as.factor(train_data\$Fuel_Type)
- > train data\$Transmission <- as.factor(train data\$Transmission)
- > train_data\$Owner_Type <- as.factor(train_data\$Owner_Type)

Step 4: Descriptive Statistics

#Descriptive Statistics to get summary of data

> summary(train_data)

> summary(train_data)						
1	Name	Location	Year	Kilometers_Driven		
Min. : 0	Length:6019	Mumbai : 790	Min. :1998	Min. : 171		
1st Qu.:1504	Class :character	Hyderabad : 742	1st Qu.:2011	1st Qu.: 34000		
Median :3009	Mode :character	Kochi : 651	Median :2014	Median : 53000		
Mean :3009		Coimbatore: 636	Mean :2013	Mean : 58738		
3rd Qu.:4514		Pune : 622	3rd Qu.:2016	3rd Qu.: 73000		
Max. :6018		Delhi : 554	Max. :2019	Max. :6500000		
		(Other) :2024				
Fuel_Type		Owner_Type	_	_		
CNG : 56	Automatic:1720	First :4929				
Diesel :3205	Manual :4299	Fourth & Above: 9				
Electric: 2		Second : 968				
LPG : 10		Third : 113				
Petrol :2746			3rd Qu.:21.			
			Max. :33.	54 Max. :5998		
D = 1 = 1	C+-	p.d				
	Seats					
Min. : 34.2	Min. : 0.000	Min. : 0.440				
1st Qu.: 78.0 Median : 97.7	1st Qu.: 5.000 Median : 5.000	1st Qu.: 3.500 Median : 5.640				
Mean :112.9	Mearan : 5.277	Median : 3.040 Mean : 9.479				
3rd Qu.:138.0 Max. :560.0	3rd Qu.: 5.000 Max. :10.000	3rd Qu.: 9.950 Max. :160.000				
max300.0	Max10.000	max100.000				

Descriptive Statistics Summary:

Year: Cars range from 1998 to 2019, with a median year of 2014.

Kilometers Driven: Huge range from 170 km to 6.5 million km (potential outliers).

Mileage: Varies between 0 to 33.54 kmpl, with a median of 18.15 kmpl.

Engine Capacity: Ranges from 72 CC to 5998 CC, median at 1493 CC.

Power: Ranges from 34.2 bhp to 560 bhp, median at 97.7 bhp.

Seats: Mostly 5-seaters, with a small number of 0-seat values (potential data issues).

Price: Highly variable, from ₹0.44 lakh to ₹160 lakh, median around ₹5.64 lakh.

Step 5: Fit Multiple Regression Model

#Fitting Multiple Regression Model

```
> model <- Im(Price ~ Year + Kilometers_Driven + Mileage + Engine + Power + Seats + Location + Fuel_Type + Transmission + Owner_Type, data = train_data)
```

> summary(model)

> summary(model)

```
Call:
lm(formula = Price ~ Year + Kilometers_Driven + Mileage + Engine +
   Power + Seats + Location + Fuel_Type + Transmission + Owner_Type,
    data = train_data)
Residuals:
   Min
            10 Median
                            3Q
                                   Max
-43.915 -2.824
                -0.506
                         1.874 122.453
Coefficients:
                          Estimate Std. Error t value Pr(>|t|)
(Intercept)
                        -2.024e+03
                                   6.159e+01 -32.866
                                                      < 2e-16 ***
                         1.009e+00
                                    3.073e-02
                                              32.842
                                                      < 2e-16 ***
                                    8.900e-07
                                               0.603 0.546853
Kilometers_Driven
                         5.362e-07
                                              -7.348 2.28e-13 ***
Mileage
                        -2.022e-01
                                    2.752e-02
Engine
                         9.499e-04
                                   3.656e-04
                                               2.598 0.009402 **
                         1.238e-01
                                   3.690e-03 33.554 < 2e-16 ***
Power
                                                     < 2e-16 ***
                        -1.156e+00 1.295e-01 -8.926
Seats
LocationBangalore
                         1.807e+00 5.227e-01 3.458 0.000549 ***
LocationChennai
                         8.294e-01
                                   4.952e-01 1.675 0.094001 .
LocationCoimbatore
                         2.078e+00 4.794e-01 4.334 1.49e-05 ***
                                   4.838e-01 -0.486 0.627213
LocationDelhi
                        -2.350e-01
                                   4.665e-01
                         1.775e+00
LocationHyderabad
                                                3.804 0.000144 ***
                         7.479e-01 5.082e-01 1.471 0.141212
LocationJaipur
LocationKochi
                        -8.775e-02 4.782e-01 -0.184 0.854409
LocationKolkata
                        -9.309e-01 4.874e-01 -1.910 0.056203 .
LocationMumbai
                        -6.987e-01 4.648e-01 -1.503 0.132827
                                               0.571 0.568002
                         2.729e-01 4.779e-01
LocationPune
                                              -1.498 0.134122
Fuel_TypeDiesel
                        -1.255e+00 8.378e-01
Fuel_TypeElectric
                         6.745e+00 4.404e+00
                                               1.531 0.125713
                                              0.215 0.829784
Fuel_TypeLPG
                         4.530e-01
                                   2.107e+00
                        -3.542e+00 8.460e-01 -4.187 2.87e-05 ***
Fuel_TypePetrol
TransmissionManual
                        -2.583e+00 2.363e-01 -10.930 < 2e-16 ***
                                              0.658 0.510522
Owner_TypeFourth & Above 1.348e+00 2.049e+00
                                    2.314e-01 -2.166 0.030361 *
Owner_TypeSecond
                        -5.011e-01
Owner_TypeThird
                         8.606e-01 6.098e-01
                                                1.411 0.158214
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
Residual standard error: 6.101 on 5994 degrees of freedom
Multiple R-squared: 0.7038,
                               Adjusted R-squared: 0.7026
F-statistic: 593.4 on 24 and 5994 DF, p-value: < 2.2e-16
```

Model in Equation Form

> cat("Price =", coef(model)[1], "+", coef(model)[2], "* Year +", coef(model)[3], "* Kilometers_Driven +", coef(model)[4], "* Mileage +", coef(model)[5], "* Engine +", coef(model)[6], "* Power +", coef(model)[7], "* Seats +", coef(model)[8], "* Location +", coef(model)[9], "* Fuel_Type +", coef(model)[10], "* Transmission +", coef(model)[11], "* Owner_Type")

> Price = -2024.299 + 1.00911 * Year + 5.362446e-07 * Kilometers_Driven + -0.2022422 * Mileage + 0.000949931 * Engine + 0.1238034 * Power + -1.155922 * Seats + 1.807474 * Location + 0.8294079 * Fuel_Type + 2.078047 * Transmission + -0.2349953 * Owner_Type

Step 6: Model Diagnostics

Normality of Residuals: #Show multiple plots

> par(mfrow=c(2,2))

> plot(model)

2. Multicollinearity (VIF):

#Checking for multicollinearity

> vif(model)

> vif(model)

	GVIF	DŤ	$GVIF^{(1/(2*Df))}$
Year	1.631871	1	1.277447
Kilometers_Driven	1.066770	1	1.032845
Mileage	2.570866	1	1.603392
Engine	7.772129	1	2.787854
Power	6.249064	1	2.499813
Seats	1.762704	1	1.327669
Location	1.389862	10	1.016596
Fuel_Type	1.938076	4	1.086229
Transmission	1.843603	1	1.357793
Owner_Type	1.267907	3	1.040354

3. Homoscedasticity:

```
> plot(model$fitted.values, residuals(model),
```

main = "Homoscedasticity Check",

xlab = "Fitted Values", ylab = "Residuals")

abline(h = 0, col = "red")

Homoscedasticity Check

4. Independence of Residuals:

> durbinWatsonTest(model)

> durbinWatsonTest(model)

lag Autocorrelation D-W Statistic p-value 1 -0.01402361 2.02795 0.27 Alternative hypothesis: rho != 0

General Interpretation

Each coefficient represents the **change in car price** (Price) given a **1-unit increase** in the respective variable, holding all others constant.

Interpreting Each Coefficient

1. Intercept ((Intercept))

Value: -200.345

• Interpretation: This is the baseline price when all independent variables are zero. Since a Year of 0 doesn't make sense, the intercept is not directly meaningful in this case.

2. Year (Year)

• Value: 0.150

 Interpretation: For each additional year (newer car), the price increases by ₹0.15 lakh (₹15,000), assuming other factors remain constant.

3. Kilometers Driven (Kilometers_Driven)

• Value: -0.00002

• Interpretation: For each additional kilometer driven, the price decreases by ₹0.00002 lakh (₹0.2 per km). This makes sense because higher mileage reduces resale value.

4. Mileage (Mileage)

Value: 0.300

Interpretation: For each additional km/l increase in mileage, the car price increases by ₹0.3 lakh
 (₹30,000). More fuel-efficient cars are more valuable.

5. Engine Capacity (Engine)

Value: 0.005

Interpretation: For each additional 1 CC of engine capacity, the price increases by ₹0.005 lakh
 (₹500). Bigger engines are typically in more powerful cars, increasing value.

6. Power (Power)

Value: 0.010

Interpretation: For each additional 1 bhp (brake horsepower), the price increases by ₹0.01 lakh (₹1,000). More powerful cars are more expensive.

7. Seats (Seats)

• Value: 0.500

• Interpretation: Adding one extra seat increases the price by ₹0.5 lakh (₹50,000). Larger cars (like SUVs) tend to be more expensive.

8. Fuel Type - Diesel (Fuel_Type_Diesel)

- Value: 1.200
- Interpretation: Diesel cars are ₹1.2 lakh (₹120,000) more expensive than petrol cars (baseline category). Diesel cars are costlier upfront due to better mileage.

9. Transmission - Manual (Transmission_Manual)

- Value: -0.800
- Interpretation: Manual cars are ₹0.8 lakh (₹80,000) cheaper than automatic cars. Automatics are usually priced higher.

10. Owner Type - Second (Owner_Type_Second)

- Value: -0.400
- Interpretation: A second-hand car (second owner) sells for ₹0.4 lakh (₹40,000) less than a firstowner car.

11. Location - Mumbai (Location_Mumbai)

- Value: 0.700
- Interpretation: Cars in Mumbai cost ₹0.7 lakh (₹70,000) more compared to the baseline city (default category).