Dynamic Programming

Solve sub-problems just once and save answers in a table

Use a table instead of recursion

1. Fibonacci Numbers: F(N) = F(N-1) + F(N-2)

```
int Fib(int N)
{
    if ( N <= 1 )
        return 1;
    else
        return Fib( N - 1 ) + Fib( N - 2 );
}</pre>
```

$$T(N) \ge T(N-1) + T(N-2)$$

Trouble-maker: The growth of redundant calculations is explosive. Solution: Record the two most recently computed values to avoid recursive calls.

```
int Fibonacci (int N ) 
 { int i, Last, NextToLast, Answer; if (N <= 1) return 1; 
 Last = NextToLast = 1; /* F(0) = F(1) = 1 */ for (i = 2; i <= N; i++) { 
 Answer = Last + NextToLast; /* F(i) = F(i-1) + F(i-2) */ NextToLast = Last; Last = Answer; /* update F(i-1) and F(i-2) */ } /* end-for */ return Answer; }
```

2. Ordering Matrix Multiplications

Example Suppose we are to multiply 4 matrices

$$M_{1[10\times20]}* M_{2[20\times50]}* M_{3[50\times1]}* M_{4[1\times100]}.$$

If we multiply in the order

$$M_{1\,[\,10\times20\,]}*\ (M_{2\,[\,20\times50\,]}*\ (M_{3\,[\,50\times1\,]}*\ M_{4\,[\,1\times100\,]})\,)$$
 Then the computing time is

$$50 \times 1 \times 100 + 20 \times 50 \times 100 + 10 \times 20 \times 100 = 125,000$$

If we multiply in the order

$$(M_{1\,[\,10\times20\,]}*\ (M_{2\,[\,20\times50\,]}*\ M_{3\,[\,50\times1\,]})\,)*\ M_{4\,[\,1\times100\,]}$$
 Then the computing time is

$$20 \times 50 \times 1 + 10 \times 20 \times 1 + 10 \times 1 \times 100 = 2,200$$

Problem: In which order can we compute the product of n matrices with minimal computing time?

Let b_n = number of different ways to compute $M_1 \cdot M_2 \cdot \cdots \cdot M_n$. Then we have $b_2 = 1, b_3 = 2, b_4 = 5, \cdots$

Let
$$M_{ij} = M_i \cdots M_j$$
. Then $M_{1n} = M_1 \cdots M_n = M_{1i} \cdot M_{i+1 n}$

$$\Rightarrow b_n = \sum_{i=1}^{n-1} b_i b_{n-i}$$
If $j - i = k$, then the only values M_{xy} required to compute M_{ij} satisfy $y - x < k$.

Suppose we are to multiply n matrix. Let $M_1 * \cdots * M_n$ where M_i is an $r_{i-1} \times r_i$ matrix. Let $m_i = m_i$ we have the recurrence equations: $m_{ij} = \begin{cases} 0 & \text{if } i = j \\ m_{i+1} + m_{i+1} + r_{i-1} r_i r_j \end{cases} \text{ if } j > i$

```
/* r contains number of columns for each of the N matrices */
/* r[ 0 ] is the number of rows in matrix 1 */
/* Minimum number of multiplications is left in M[ 1 ][ N ] */
void OptMatrix( const long r[ ], int N, TwoDimArray M )
{ int i, j, k, L;
   long ThisM;
   for(i = 1; i \le N; i++) M[i][i] = 0;
   for(k = 1; k < N; k++) /* k = j - i */
      for( i = 1; i <= N - k; i++ ) { /* For each position */
           i = i + k; M[i][j] = Infinity;
           for(L = i; L < j; L++) {
              ThisM = M[i][L] + M[L+1][j]
                                                                   m_{1.N}
                         + r[i-1]*r[L]*r[j];
                                                                  \begin{array}{ccc} \boldsymbol{m}_{1,N-1} & \boldsymbol{m}_{2,N} \\ \vdots & \vdots & \ddots \end{array}
              if ( ThisM < M[ i ][ j ] ) /* Update min */</pre>
                      M[i][i] = ThisM;
                                                                   m_{1,2} m_{2,3} \cdots m_{N-1,N}
           } /* end for-L */
                                                                   m_{1,1} m_{2,2} \cdots m_{N-1,N-1} m_{N,N}
                                          T(N) = O(N^3)
      } /* end for-Left */
        To record the ordering please refer to Higurd 10.46 on p.388
                        \min_{i \le l < j} \{ m_{il} + m_{l+1j} + r_{i-1}r_{l}r_{j} \} \quad \text{if} \quad j > i
```

3. Optimal Binary Search Tree

- The best for static searching (without insertion and deletion)

Given N words $w_1 < w_2 < \dots < w_N$, and the probability of searching for each w_i is p_i . Arrange these words in a binary search tree in a way that minimize the expected

total access time.
$$T(N) = \sum_{i=1}^{N} p_i \cdot (1+d_i)$$

Example Given the following table of probabilities:

word	break	case	char	do	return	switch	void
probability	0.22	0.18	0.20	0.05	0.25	0.02	0.08

Discussion 10:

Please draw the trees obtained by greedy methods and by AVL rotations. What are their expected total access times?

$$T_{ij} ::= \text{OBST for } w_i, \dots, w_j \ (i < j)$$

$$c_{ij} ::= \text{cost of } T_{ij} \ (c_{ii} = 0)$$

$$r_{ij} ::= \text{root of } T_{ij}$$

$$w_{ij} ::= \text{weight of } T_{ij} = \sum_{k=i}^{j} p_k \ (w_{ii} = p_i)$$

 T_{ij} w_k w_k w_{i} w_k w_{i} w_k w_{i} w_{k-1} w_k w_{i} w_k w_{i} w_k w_{i} w_k w_k w_{i} w_k w_k w

$$c_{ij} \neq p_k + \text{cost}(L) + \text{cost}(R) + \text{weight}(L) + \text{weight}(R)$$

$$= p_k + c_{i,k-1} + c_{k+1,j} + w_{i,k-1} + w_{k+1,j} = w_{ij} + c_{i,k-1} + c_{k+1,j}$$

 T_{ij} is optimal $\Rightarrow r_{ij} = k$ is such that $c_{ij} = \min_{i < l \le j} \{ w_{ij} + c_{i,l-1} + c_{l+1,j} \}$

Dynamic Programming

$$c_{ij} = \min_{i < l \le j} \{ w_{ij} + c_{i,l-1} + c_{l+1,j} \}$$

word	break	case	char	do	return	switch	void
probability	0.22	0.18	0.20	0.05	0.25	0.02	0.08

break.	. break	cas	ecase	char char		dodo		returnreturn		switchswitch		void.	void
0.22	break	0.18	case	0.20	char	0.05	do		return		switch		void
break.	case	e case char		chardo		do return		returnswitch		switch void			
0.58	break	0.56	char	0.30	char	0.35	return	0.29	return	0.12	void		
break	char	casedo c		char return do switch		witch	return void						
1.02	case	0.66	char	0.80	return	0.39	return	0.47	return				
brea	kdo	case	return	char switch do void									
1.17	case	1.21	char	0.84	return	0.57	return			char	2		
break	return	case	switch	char void				break)	return	\mathbf{n}		
1.83	char	1.27	char	1.02	1.02 return								
break	switch	cas	e void	case do void									
1.89	char	1.53	char	$T(N) = O(N^3)$						switch	h		
break	void	Q											0
Please read 10.33 on p.419 for an $O(N^2)$ algorithm.													

4. All-Pairs Shortest Path

For all pairs of v_i and v_j ($i \neq j$), find the shortest path between.

Method 1 Use single-source algorithm for |V| times.

$$T = O(|V|^3)$$
 – works fast on sparse graph.

Method 2 Define

$$D^k[i][j] = \min\{ \text{ length of path } i \to \{ l \le k \} \to j \}$$
 and $D^{-1}[i][j] = \text{Cost } [i][j]$. Then the length of the shortest path from i to j is $D^{N-1}[i][j]$.

Algorithm

Start from D^{-1} and successively generate D^0 , D^1 , ..., D^{N-1} . If D^{k-1} is done, then either

- ① $k \notin \text{the shortest path } i \to \{l \le k\} \to j \implies D^k = D^{k-1}; \text{ or }$
- ② $k \in \text{the shortest path } i \to \{l \le k\} \to j$ = $\{\text{the S.P. from } i \text{ to } k\} \cup \{\text{the S.P. from } k \text{ to } j\}$ $\Rightarrow D^k[i][j] = D^{k-1}[i][k] + D^{k-1}[k][j]$
- $\therefore D^{k}[i][j] = \min\{D^{k-1}[i][j], D^{k-1}[i][k] + D^{k-1}[k][j]\}, k \ge 0$

```
/* A[] contains the adjacency matrix with A[i][i] = 0 */
/* D[] contains the values of the shortest path */
/* N is the number of vertices */
/* A negative cycle exists iff D[ i ][ i ] < 0 */
void AllPairs (Tw QimArray A, TwoDimArray D, int N)
{ int i, j, k;
                             ∵iąlize D */
  for ( i = 0; i < N; i+
     for (j = 0; j \leq N \cdot i)
                    Works if there are negative edge
  for( k
                   costs, but no negative-cost cycles.
     for
         for (j=0; j=1)
           if( D[i][k] + D[k][j] < D[i][j])
                 /* Update shortest path */
                  D[i][j] = D[i][k] + D[k][j];
    T(N) = O(N^3), but faster in a dense graph.
```

To record the paths please refer to Figure 10.53 on p.393

How to design a DP method?

- **Characterize an optimal solution**
 - **Recursively define the optimal values**
 - **Compute the values in some order**
 - **Reconstruct the solving strategy**

5. Product Assembly

- Two assembly lines for the same car
- Different technology (time) for each stage
- One can change lines between stages
- Minimize the total assembly time

Exhaustive search gives $O(2^N)$ time + O(N) space

Characterize an optimal solution

An optimal solution contains an optimal solution of a sub-problem!

O(N) time + O(N) space

Recursively define the optimal values

Solution = min(f[0][n], f[1][n]);

An optimal path to *stage* is based on an optimal path to *stage*-1


```
f[0][0]=0; f[1][0]=0;
for (stage=1; stage<=n; stage++){
   for (line=0; line<=1; line++){
      f[line][stage]
      f[ line][stage-1] + t_process[ line][stage-1]
}</pre>
```

Reconstruct the solving strategy

```
f[0][0]=0;
f[1][0]=0;
for(stage=1; stage<=n; stage++){</pre>
  for(line=0; line<=1; line++){</pre>
    f_stay = f[ line][stage-1] + t_process[ line][stage-1];
    f move = f[1-line][stage-1] + t transit[1-line][stage-1];
    if (f_stay<f_move){</pre>
      f[line][stage] = f_stay;
                                  line = f[0][n]< f[1][n]?0:1;
                                  for(stage=n; stage>0; stage--){
    else {
                                    plan[stage] = line;
                                    line = L[line][stage];
      f[line][stage] = f_move;
```

Elements of DP:

- **Optimal substructure**
 - **Overlapping sub-problems**

Discussion 11:When *can't* we apply dynamic programming?

Research Project 4 The Best Peak Shape (26)

In many research areas, one important target of analyzing data is to find the best "peak shape" out of a huge amount of raw data full of noises. Now given *N* input numbers ordered by their indices, you may remove some of them to keep the rest of the numbers in a peak shape. You are supposed to find the best peak shape.

Detailed requirements can be downloaded from https://pintia.cn/

Reference:

Introduction to Algorithms, 3rd Edition: Ch.15, p. 359-413; Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest and Clifford Stein. The MIT Press. 2009