Mutinomial Naive Bayes

Multinomial Naive Bayes

- The multinomial model captures word frequency information in documents
- Capturing frequency information of tokenization can help classification
- Require a small number of training sets but effective classification results
- The more applicable algorithm in text classification
- The most popular among naïve bayes classifiers

x=[w1,w2,w3,w4,...,wn]

Word	Count	
Dear	9	p(Dear normal) = 9/17 = 0.52
Friend	6	p(Friend normal) = 6/17 = 0.35
Promotion	1	p(promotion normal)= 1/17 = 0.29
Free	1	p(free normal) = $1/17 = 0.29$
Total	17	

Word	Count	
Dear	1	p(Dear spam) = 1/7 = 0.14
Friend	1	p(Friend spam) = 1/7 = 0.14
Promotion	1	p(promotion spam)= 1/7 = 0.14
Free	4	p(free spam) = $4/7 = 0.57$
Total	7	

likelihoods

p(spam)=
$$\frac{4}{12}$$
 =0.33


```
p(Dear| normal) = 8/17 = 0.47

p(Friend| normal) = 5/17 = 0.29

p(promotion| normal) = 3/17 = 0.18

p(free| normal) = 1/17 = 0.29
```

Dear Friend

```
p(normal)=0.67 p(normal) * p(Dear|normal) * p(Friend|normal)
```

0.67 * 0.47 * 0.29 = 0.091

```
p(Dear| spam) = 1/7 = 0.14
p(Friend| spam) = 1/7 = 0.14
p(promotion| spam)= 1/7 = 0.14
p(free| spam) = 4/7 = 0.57
```

0.33 * 0.14 * 0.14= 0.006

```
p(spam)=0.33 p(spam) * p(Dear|spam) * p(Friend|spam)
```


0.33 * 0.14 * 0.14= 0.006


```
p(Dear|normal) = 8/17 = 0.47

p(Friend|normal) = 5/17 = 0.29

p(promotion|normal) = 3/17 = 0.18

p(free|normal) = 1/17 = 0.29
```

Promotion Free Free

```
p(Dear| spam) = 1/7 = 0.14
p(Friend| spam) = 1/7 = 0.14
p(promotion| spam)= 1/7 = 0.14
p(free| spam) = 4/7 = 0.57
```

```
p(normal) * p(promotion|normal) * p(free|normal) * p(free|normal)
```

p(spam) * p(promotion|spam) * p(free|spam) * p(free|spam)

0.18* 0.29*0.29= 0.015

0.14*0.57*0.57= 0.045

Promotion Free Free