Complete Asymptotic Analysis for Projected Stochastic Approximation and Debiased Variants

Jiadong Liang

Xiang Li Joint work with

Yuze Han

Zhihua Zhang

Peking University

Allerton Conf. Sep. 27, 2023

- Introduction
- Main Results
- Oebiased Variant
- Conclusion

- Introduction
- Main Results
- Oebiased Variant
- 4 Conclusion

Federated Learning (FL)

- FL collaboratively trains a global model from data held by remote devices without data sharing [McMahan et al., 2017].
- Assume K devices with weight p_k and objective function

$$\tilde{f}_k(x) := \mathbb{E}_{\xi_k \sim \mathcal{D}_k} \tilde{f}(x, \xi_k).$$

- The central server tries to $\min_{x} \sum_{k=1}^{K} p_k \tilde{f}_k(x)$.
- Equivalent to the global consensus problem:

$$\min_{x_1, \dots, x_K} \sum_{k=1}^K p_k \tilde{f}_k(x_k) \quad \text{such that} \quad x_1 = \dots = x_K.$$

What if we concatenate all local x_k 's and \tilde{f}_k 's?

Linearly Constrained Problem

We consider

$$\min_{\mathbf{x}} f(\mathbf{x}) := \mathbb{E}_{\zeta \sim \mathcal{D}} f(\mathbf{x}, \zeta) \text{ subject to } \mathbf{A}^{\top} \mathbf{x} = \mathbf{0}. \tag{1}$$

• Reduced to FL if $\mathbf{x} = (x_1^\top, \cdots, x_K^\top)^\top, \zeta = (\xi_1^\top, \cdots, \xi_K^\top)^\top \in \mathbb{R}^{Kd}$ and

$$f(\mathbf{x},\zeta) = \sum_{k=1}^K p_k \tilde{f}(\mathbf{x}_k,\xi_k), \mathbf{A} = (\mathbf{I},-\mathbf{I},\mathbf{0};\mathbf{0},\mathbf{I},-\mathbf{I},\mathbf{0};\cdots) \in \mathbb{R}^{(K-1)d \times Kd}.$$

- A simple and general formulation, if f and \boldsymbol{A} are general.
- Data heterogeneity: $\operatorname{argmin} f(\mathbf{x}) \neq \operatorname{argmin}_{\mathbf{A}^{\top} \mathbf{x} = \mathbf{0}} f(\mathbf{x}) =: \mathbf{x}^{\star}$.

Local SGD

Figure: Illustration of Local SGD.

What's the counterpart algorithm of Local SGD in solving the general (1)?

Loopless Projected Stochastic Approximation (LPSA)

- Key idea: lower projection frequency to improve projection efficiency.
- The algorithm: for each iteration $n \ge 1$,
 - **1** Sample data $\zeta_n \sim \mathcal{D}$ and $\omega_n \sim \text{Bernoulli}(p_n)$.

 - **3** $\mathbf{x}_{n+1} = \mathcal{P}_{\mathbf{A}^{\perp}} \mathbf{x}_{n+\frac{1}{2}}$ if $\omega_n = 1$ else $= \mathbf{x}_{n+\frac{1}{2}}$.
- A loopless version of Local SGD [Stich, 2019].

Main Question

How different p_n 's changes the asymptotic behavior of LPSA?

Why this Question Matter?

Main Question

How $p_n \propto \eta_n^{\beta}$ changes the asymptotic behavior of LPSA?

- Popularity of lazy communication/local updates.
- Limited theoretical understanding (typically MSE).
- Provide insights for future algorithm design.

- Introduction
- Main Results
- Oebiased Variant
- 4 Conclusion

Convergence Result

Decompose $\mathbf{x}_n = \mathbf{u}_n + \mathbf{v}_n$ where $\mathbf{u}_n = \mathcal{P}_{\mathbf{A}^{\perp}}(\mathbf{x}_n)$ and $\mathbf{v}_n = \mathcal{P}_{\mathbf{A}}(\mathbf{x}_n)$.

Theorem (Convergence)

Under some standard assumptions [Liang et al., 2022] and $\eta_n \propto n^{-\alpha}$ and $p_n = \min\{\eta_n^{\beta}, 1\}$ with $\alpha \in (0, 1]$ and $\beta \in [0, 1)$,

$$\mathbb{E} \| \boldsymbol{u}_n - \boldsymbol{x}^\star \|^2 = \mathcal{O}(n^{-\alpha \min\{1, 2(1-\beta)\}}) \text{ and } \mathbb{E} \| \boldsymbol{v}_n \|^2 = \mathcal{O}(n^{-2\alpha(1-\beta)}).$$

- With frequent projection $\beta \leq 0.5$, $\mathbb{E} \| \boldsymbol{u}_n \boldsymbol{x}^* \|^2 = \mathcal{O}(\eta_n)$.
- With occasional projection $\beta \geq 0.5$, $\mathbb{E} \| \boldsymbol{u}_n \boldsymbol{x}^* \|^2 = \mathcal{O}(\eta_n^{2(1-\beta)})$.

Asymptotic Behaviors

Theorem (Asymptotic behaviors)

Under some standard assumptions, we can find a PSD matrix $\tilde{\Sigma}$ and a vector μ such that

- Frequent projection $\beta \in [0, 1/2): \frac{1}{\eta_n^{1/2}}(\boldsymbol{u}_n \boldsymbol{x}^\star) \stackrel{d}{\to} \mathcal{N}(0, \tilde{\Sigma}).$
- Occasional projection $\beta \in (1/2,1)$: $\frac{1}{\eta_n^{1-\beta}}(\boldsymbol{u}_n \boldsymbol{x}^*) \stackrel{L_2}{\to} \boldsymbol{\mu}$.
- (New) Moderate projection $\beta=1/2$: $\frac{1}{\eta_n^{1/2}}(\pmb{u}_n-\pmb{x}^\star)\overset{d}{\to}\mathcal{N}(\pmb{\mu},\tilde{\pmb{\Sigma}})$.

Summary

β	$\mathbb{E} \ \boldsymbol{u}_n - \boldsymbol{x}^{\star} \ ^2$	Asym. dist. of $u_n - x^*$	Behavior
[0, 1/2)	$\mathcal{O}(\eta_n)$	$\sqrt{\eta_n}\cdot\mathcal{N}(0, ilde{\Sigma})$	Var dominate
1/2	$\mathcal{O}(\eta_{n})$	$\sqrt{\eta_{n}}\cdot\mathcal{N}(oldsymbol{\mu}, ilde{\Sigma})$	$Bias \approx Var$
(1/2,1)	$\mathcal{O}(\eta_n^{2(1-eta)})$	$\eta_{n}^{1-eta}\ oldsymbol{\mu}\ $	Bias dominate

- Introduction
- Main Results
- Oebiased Variant
- 4 Conclusion

Where the Bias Comes from

$$\mathbf{u}_{n+1} = \mathbf{u}_n - \eta_n \mathcal{P}_{\mathbf{A}^{\perp}} \nabla f(\mathbf{x}_n) + \eta_n \xi_n^{(1)},$$

$$\approx \mathbf{u}_n - \eta_n \mathcal{P}_{\mathbf{A}^{\perp}} \nabla^2 f(\mathbf{x}^{\star}) (\mathbf{x}_n - \mathbf{x}^{\star}) + \eta_n \xi_n^{(1)}.$$

Let $\Delta_n = \mathbb{E} \| \boldsymbol{u}_n - \boldsymbol{x}^{\star} \|^2$. Then,

$$\Delta_{n+1} \lesssim (1 - c\eta_n)\Delta_n - 2\eta_n \mathbb{E}\langle \boldsymbol{u}_n - \boldsymbol{x}^{\star}, \nabla^2 f(\boldsymbol{x}^{\star})\boldsymbol{v}_n \rangle + \eta_n^2.$$

Lemma

$$\left| \mathbb{E} \left\langle \boldsymbol{u}_n - \boldsymbol{x}^{\star}, \nabla^2 f(\boldsymbol{x}^{\star}) (\boldsymbol{v}_n - \mathbb{E} \boldsymbol{v}_n) \right\rangle \right| = o(\eta_n^{2(1-\beta)}).$$

$$\Delta_{n+1} \preceq (1 - c\eta_n)\Delta_n - 2\eta_n \mathbb{E}\langle \boldsymbol{u}_n - \boldsymbol{x}^{\star}, \nabla^2 f(\boldsymbol{x}^{\star}) \mathbb{E} \boldsymbol{v}_n \rangle + o(\eta_n^{3-2\beta}).$$

Remove the Bias

If the gradient is evaluated at $\mathbf{x}_n - \mathbb{E}\mathbf{v}_n$ rather than \mathbf{x}_n , i.e.,

$$\mathbf{u}_{n+1} = \mathbf{u}_n - \eta_n \mathcal{P}_{\mathbf{A}^{\perp}} \nabla f(\mathbf{x}_n - \mathbb{E} \mathbf{v}_n) + \eta_n \xi_n^{(1)},$$

we then have

$$\Delta_{n+1} \lesssim (1-c\eta_n)\Delta_n + o(\eta_n^{3-2\beta}).$$

How to Approximate $\mathbb{E} v_n$

Lemma

$$\frac{\mathbf{v}_n}{\eta_n^{1-\beta}} \stackrel{d}{\to} -\frac{\nabla f(\mathbf{x}^*)}{\|\nabla f(\mathbf{x}^*)\|} \cdot \mathcal{E}\left(\|\nabla f(\mathbf{x}^*)\|\right),$$

where $\mathcal{E}(\theta)$ represents the exponential distribution with expectation θ .

$$\mathbb{E}\mathbf{v}_n \approx -\eta_n^{1-\beta} \nabla f(\mathbf{x}^*).$$

However, \mathbf{x}^{\star} is unknown in practice.....

Solution

Replace
$$\nabla f(\mathbf{x}^*)$$
 by $\nabla f(\mathbf{x}_n, \zeta_n')$.

Debiased LPSA (DLPSA)

• Key idea: evaluate gradient at $\mathbf{x}_n + \eta_n^{1-\beta} \nabla f(\mathbf{x}_n, \zeta_n')$ instead of \mathbf{x}_n .

For each iteration $n \ge 1$

- **①** Sample $\zeta_n, \zeta_n' \sim \mathcal{D}$ and $\omega_n \sim \mathrm{Bernoulli}(p_n)$ independently.

Theorem (Convergence for DLPSA)

Under some assumptions,

$$\mathbb{E} \| \boldsymbol{u}_{n} - \boldsymbol{x}^{\star} \|^{2} = \mathcal{O} \left(n^{-\alpha \min\{1,3(1-\beta)\}} \right).$$

Corollary

The projection complexity is $\mathcal{O}(\varepsilon^{-1/2})$ for LPSA and $\mathcal{O}(\varepsilon^{-1/3})$ for DLPSA.

Illustration

Figure: Comparison between LPSA and DLPSA in averaged MSEs over 10 repetitions.

- Introduction
- Main Results
- Oebiased Variant
- Conclusion

Conclusion

- Introduce LPSA to solve linearly constrained problems.
- Characterize the full phase transition of asymptotic behaviors when varying projection frequency by tuning β .
- Develope debiased LPSA to improve projection efficiency.

References

- Jiadong Liang, Yuze Han, Xiang Li, and Zhihua Zhang. Asymptotic behaviors of projected stochastic approximation: A jump diffusion perspective. In *Advances in Neural Information Processing Systems*, 2022.
- Brendan McMahan, Eider Moore, Daniel Ramage, Seth Hampson, and Blaise Aguera y Arcas. Communication-efficient learning of deep networks from decentralized data. In *International Conference on Artificial Intelligence and Statistics*, 2017.
- Sebastian Urban Stich. Local SGD converges fast and communicates little. In *International Conference on Learning Representations*, 2019.