

Implementing adhesion for NeuroMechFly – Neuromechanical model of Drosophila Melanogaster

Bachelor Project Final Presentation by:

Laetitia Schwitter

Supervised by:

Alfred Stimpfling

Prof. Pavan Ramdya

Introduction

aetitia schwitte

- Aim: Set the groundworks for adhesion in simulating D. Melanogaster to bring the model closer to reality using MuJoCo
 - Add adhesion to the model
 - Study relationship contact forces with adhesion
 - Test different adhesion rules to allow walking with adhesion

State of the art – Adhesion in D. Melanogaster

- Adhesive Structures:
 - Claw: for rough ground
 - Pulvillus (Setae): for climbing
- Experiments with adhesion [2]:
 - Increasing speed (continuous gait changes):
 - Slow wave -> Tetrapod -> Tripod gait [2,3]
 - · Stance duration affects walking speed
- Experiments without adhesion:
 - Covering only pretarsus [3]:
 - A-typical Bipod gait
 - Shorter setae [9]:
 - Cannot climb but can still walk

State of the art – Simulation of D. Melanogaster

- NMF does not include Pretarsus [6]
- MuJoCo:
 - Adhesion actuators applied on « bodies »
 - Adhesion forces are added linearly to the normal component of the contact [4]
- FlyGym [7]:
 - For reinforcement learning:
 - At each timestep : action fed into nmf.step() function
- Existing Joint angle data:
 - Tethered Fly walking on ball
- Scaling units:
 - Gravity scaled by 1E5: $(0,0,-9.81E5)[\frac{m}{s^2}]$
 - Mass and time unchanged (1kg = 1kg, 1s = 1s)
 - Length scaled by 1^E6 (1m = 1um in reality)
 - Therefore the scaling is not consistent

Laetitia Schwitter / Bachelor Project Presentation

- Part 1: Adhesion on a simple block
- Part 2.1: Static Fly: adhesion on FlyGym
 - Add adhesion actuators on Tarsi 5
 - Gain grid search : Single Leg adhesion
 - Aim: Find gain at which a single leg adheres to ground at inverted gravity
 - Study Contact forces vs Adhesion:
 - Aim: Study reactability of the simulation to the addition of the contact forces
- Part 2.2: Walking Fly: adhesion on FlyGym
 - Definition adhesion rules
 - Adhesion vector calculations versions:
 - Prerun adhesion: simple method
 - · Prerun adhesion: iterative method
 - · Dynamic adhesion

Part 1: Adhesion on simple block

- Learn how to add adhesion actuators in XML file and during initialization
- Access / change gravity
- Change adhesion control value

- Part 1: Adhesion on a simple block
- Part 2.1: Static Fly: adhesion on FlyGym
 - Add adhesion actuators on Tarsi 5
 - Gain grid search : Single Leg adhesion
 - Aim: Find gain at which a single leg adheres to ground at inverted gravity
 - · Study Contact forces vs Adhesion:
 - Aim: Study reactability of the simulation to the addition of the contact forces
- Part 2.2: Walking Fly: adhesion on FlyGym
 - Definition adhesion rules
 - · Adhesion vector calculations versions:
 - Prerun adhesion: simple method
 - Prerun adhesion: iterative method
 - Dynamic adhesion

Part 2.1: Static Fly: adhesion on FlyGym

- Gain grid search:
 Single Leg adhesion
 - Inverted gravity
 - Asymmetric initial pose

Leg	Critical Gain
LF Tarsus 5	1930
LM Tarsus 5	3373
LH Tarsus 5	3364
RF Tarsus 5	2264
RM Tarsus 5	2078
RH Tarsus 5	4016

- Part 1: Adhesion on a simple block
- Part 2.1: Static Fly: adhesion on FlyGym
 - · Gain grid search : Single Leg adhesion
 - Aim: Find gain at which a single leg adheres to ground at inverted gravity
 - Study Contact forces vs Adhesion:
 - Aim: Study reactability of the simulation to the addition of the contact forces
- Part 2.2: Walking Fly: adhesion on FlyGym
 - Definition adhesion rules
 - · Adhesion vector calculations versions:
 - Prerun adhesion: simple method
 - Prerun adhesion: iterative method
 - Dynamic adhesion

Part 2.1: Static Fly: adhesion on FlyGym

- Dichotomous gain grid search : Single Leg adhesion
 - Validate by adding adhesion to LF, LH, and RM Tarsus 5 (Tripod)
 - · Legs dont pierce the floor
 - · Legs dont fly away

- Part 1: Adhesion on a simple block
- Part 2.1: Static Fly: adhesion on FlyGym
 - · Gain grid search : Single Leg adhesion
 - Aim: Find gain at which a single leg adheres to ground at inverted gravity
 - Study Contact forces vs Adhesion:
 - Aim: Study reactability of the simulation to the addition of the contact forces
- Part 2.2: Walking Fly: adhesion on FlyGym
 - · Definition adhesion rules
 - · Adhesion vector calculations versions:
 - Prerun adhesion: simple method
 - Prerun adhesion: iterative method
 - Dynamic adhesion

Part 2.1: Static Fly: adhesion on FlyGym

- Study Contact forces vs Adhesion:
 - Aim: Study reactability of the simulation to the addition of the contact forces
 - Linear relationship

- Part 1: Adhesion on a simple block
- Part 2.1: Static Fly: adhesion on FlyGym
 - · Gain grid search : Single Leg adhesion
 - Aim: Find gain at which a single leg adheres to ground at inverted gravity
 - Study Contact forces vs Adhesion:
 - Aim: Study reactability of the simulation to the addition of the contact forces
- Part 2.2: Walking Fly: adhesion on FlyGym
 - Definition adhesion rules
 - Adhesion vector calculations versions:
 - Prerun adhesion: simple method
 - Prerun adhesion: iterative method
 - Dynamic adhesion

Part 2.2: Walking Fly: adhesion on FlyGym

Adhesion rules to calculate adhesion vectors

$$1. \quad \frac{dF_{contact}}{dt} \ge 0$$

$$2. \quad \frac{dF_{contact}}{dt} > 0$$

NB: Are applied on smoothed contact forces Window size for the filter: 501 timesteps

- Part 1: Adhesion on a simple block
- Part 2.1: Static Fly: adhesion on FlyGym
 - Gain grid search : Single Leg adhesion
 - Aim: Find gain at which a single leg adheres to ground at inverted gravity
 - Study Contact forces vs Adhesion:
 - Aim: Study reactability of the simulation to the addition of the contact forces
- Part 2.2: Walking Fly: adhesion on FlyGym
 - Definition adhesion rules
 - · Adhesion vector calculations versions:
 - Prerun adhesion: simple method
 - Prerun adhesion: iterative method
 - Dynamic adhesion

EPFL

Part 2.2: Walking Fly: adhesion on FlyGym

Adhesion vector calculations versions: N adhesion strengths are tested

The adhesion strength increases with each simulation Median filter window size: 501

- Prerun adhesion: simple method
 - Step 1: Run without adhesion: calculate adhesion vector
 - **Step 2:** Run all N simulations using that adhesion vector from step 1)
- Prerun adhesion: iterative method
 - Step 1: Run without adhesion: calculate adhesion vector
 - **Step 2*:** Run N-simulations that each use the adhesion vector from the N-1 simulation
- Dynamic adhesion:
 - **Step 1*:** Calculate the adhesion vector by filtering the contact forces during the simulation

- Part 1: Adhesion on a simple block
- Part 2.1: Static Fly: adhesion on FlyGym
 - · Gain grid search : Single Leg adhesion
 - Aim: Find gain at which a single leg adheres to ground at inverted gravity
 - Study Contact forces vs Adhesion:
 - Aim: Study reactability of the simulation to the addition of the contact forces
- Part 2.2: Walking Fly: adhesion on FlyGym
 - Definition adhesion rules
 - Adhesion vector calculations versions:
 - Prerun adhesion: simple method
 - Prerun adhesion: iterative method
 - Dynamic adhesion

Part 2.2: Walking Fly: adhesion on FlyGym

Reference distance:

distance without adhesion: 4436

Vector Calculation Method	AdhesionRule	Gravity	How many fell?	Did it fly away?	Max. Distance [length]	Gain (of max distance)
Simple	>	Normal	1/8	-	4396	2290
Simple	>=	Normal	5/8	-	4438.1	400
Iterative	>	Normal	2/8	-	(5370) 4356	(400) 3236
Iterative	>=	Normal	5/8	-	768	400
Simple AND Iterative	>= AND >	Inverted	-	ALL	÷	-
InLine	>	Normal	7/10	-	2277.6	400
InLine	>=	Normal	9/10	-	2277.6	400
InLine	>= AND >	Inverted	-	ALL	-	-

General Conclusion

- Relationship of contact forces and adhesion is linear, but requires stabilization period
- The « > » adhesion rule works best
- No flies were able to walk with inverted gravity but finetuning the iterative method might be a good idea

Laetitia Schwitter / Bachelor Project Presentation

Further Interesting Approaches

- Improve data set for walking on ground
- Use the sum of all contact forces of the tarsi instead of only forces on tarsus 5
- Finetune filtering: windowsize, different filters (median, mean, etc.)
- Study contact forces for the different adhesion vector methods
- Adapt gains of single legs with respect to the distance of the center of gravity
- Possible Adhesion Rules:
 - ON: when a threshold in contact forces is attained

Gantt Chart - Until week 6

MuJoCo

Project Start Date:		F	eb		M	lar	
Bachelor Project: Implement adhesion forces in a neuromechanical model							
of adult Drosophila melanogaster		20-Feb	27-Feb	06-Mar	13-Mar	20-Mar	27-Mar
Activity	Status	WEEK 1	WEEK 2	WEEK 3	WEEK 4	WEEK 5	WEEK 6
Project	In progress						3
SetUp/ Administration	Completed						midterm
Literature introduction	Completed						3
Install Softwares	Completed						presentation 27 March
Part 1: Tune parameters for Ball locomotion	In progress						sen
Verify correct 3D collision implementation in MuJoCo	In progress						Tat
Contacts tuning in MuJoCo for both floor and ball surface	In progress						9
Identify how to trace specific positions on the ball and leg in MuJoCo for calculations	In progress						27
Identify necessary ball and fly parameters in PyBullet and how they can be accessed	In progress						Var
Part 2: SetUp Adhesion Forces	Not started						3
Research on adhesion/ friction forces	In progress			•			
Create a theoretical model for Adhesion forces specific to D. Melanogaster	Not started						
Implement model in code (Adhesion On/ Off switch)	Not started						
Part 3: Validate Adhesion Forces	Not started						
Compare ball displacement in the simulation and in the real fly	Not started						
Adjust Adhesion Forces / Parameters, possibly go back to task #12	Not started						
Part 4: Presentation / Report	Not started						
Write-up Report	Not started						
Prepare Presentation	Not started						
		·					

Gantt Chart

Start FlyGym

		_											
Project Start Date:		Apr May					Jun						
Bachelor Project: Implement adhesion forces in a neuromechanical model													
of adult Drosophila melanogaster		03-Apr	17-Apr	24-Apr	01-May	08-May	15-May	22-May	29-May	05-Jun	12-Jun	19-Jun	26-Jun
Activity	Status	WEEK 7			,							6 WEEK 17	
,	In progress												
SetUp/ Administration											Final		
Literature introduction		-									Report		
Install Softwares											Ä		
Part 1: Tune parameters for Ball locomotion	In progress	-									16		
Verify correct 3D collision implementation in MuJoCo											June	<u> </u>	
Contacts tuning in MuJoCo for both floor and ball surface	In progress										l C		
Identify how to trace specific positions on the ball and leg in MuJoCo for calculations	In progress												
Identify necessary ball and fly parameters in PyBullet and how they can be accessed	In progress												
Part 2: SetUp Adhesion Forces	Not started												
Research on adhesion/ friction forces	In progress												
Create a theoretical model for Adhesion forces specific to D. Melanogaster	Not started												
Implement model in code (Adhesion On/ Off switch)	Not started												
Part 3: Validate Adhesion Forces	Not started												
Compare ball displacement in the simulation and in the real fly	Not started												
Adjust Adhesion Forces / Parameters, possibly go back to task #12	Not started												
Part 4: Presentation / Report	Not started												
Write-up Report	Not started												
Prepare Presentation	Not started												

Jupyter Notebooks

- BrickOnCeiling.ipynb: Case 1: Adding an adhesion actuator to an XML file. Modify it during the simulation. Case 2: Add adhesion actuator during initialization. Modify it during the simulation. Furthermore find out how to access and modify gravity during the simulation.
- mujoco_singleleg_grid.ipynb: Perform grid search to find maximal gain value necessary for a single leg to adhere to the ceiling.
- mujoco_contact_forces.ipynb: Analyze the relationship between contact forces and adhesion on a static nonsymmetric fly. The contact forces are filtered with a median filter.
- loop_single_step.ipynb: Use the single step data to create a walking fly that
 uses a tripod gait for a specified number of steps. Methods to amplify specific
 angle motion as well as a method to custom generate the number of steps in
 the simulation wanted.
- loop_single_step_bipod.ipynb: Use the single step data to create a walking fly that uses a bipod gait for a specified number of steps
- mujoco_prerun_adhesion.ipynb: Offline calculation of adhesion. Computes
 the derivative of the contact forces of each Tarsus5 / the sum of all Tarsi before
 any adhesion. Then reruns the simulation once adhesion is applied. Adhesion
 is on when the derivative is positive or positive and equal.
- mujoco_prerun_adhesion_copy.ipynb: Allows to do the grid search for prerun adhesion.

References

- [1] V. Lobato-Rios, S. T. Ramalingasetty, P. G. Özdil, J. Arreguit, A. J. Ijspeert, and P. Ramdya, "NeuroMechFly, a neuromechanical model of adult Drosophila melanogaster," Nat. Methods, vol. 19, no. 5, Art. no. 5, May 2022, doi: 10.1038/s41592-022-01466-7.
- [2] B. D. DeAngelis, J. A. Zavatone-Veth, and D. A. Clark, "The manifold structure of limb coordination in walking Drosophila," eLife, vol. 8, p. e46409, Jun. 2019, doi: 10.7554/eLife.46409.
- [3] P. Ramdya et al., "Climbing favours the tripod gait over alternative faster insect gaits," Nat. Commun., vol. 8, no. 1, Art. no. 1, Feb. 2017, doi: 10.1038/ncomms14494.
- [4] "XML Reference MuJoCo Documentation." https://mujoco.readthedocs.io/en/stable/XMLreference.html (accessed Jun. 11, 2023).
- [5] "Dm_control: Software and Tasks for Continuous Control." Accessed June 11, 2023. https://www.deepmind.com/publications/dm-control-software-and-tasks-for-continuous-control.
- [6] "NeuroMechFly." Python. 2020. Reprint, Neuroengineering Laboratory @EPFL Ramdya Lab, March 10, 2023. https://github.com/NeLy-EPFL/NeuroMechFly.
- [7] "NeLy-EPFL/flygym." Neuroengineering Laboratory @EPFL Ramdya Lab, Apr. 25, 2023. Accessed: Jun. 11, 2023. [Online]. Available: https://github.com/NeLy-EPFL/flygym
- [8] Introduction Drosophila a model system ...: Tolwinski, Nicholas. "Introduction: Drosophila—A Model System for Developmental Biology." Journal of Developmental Biology 5, no. 3 (September 20, 2017): 9. https://doi.org/10.3390/jdb5030009.
- [9] Hüsken, Mirko, Kim Hufnagel, Katharina Mende, Esther Appel, Heiko Meyer, Henrik Peisker, Markus Tögel, et al. "Adhesive Pad Differentiation in Drosophila Melanog