0.1. Inverzne in implicitne preslikave

0.1.1. Integral vektorske funkcije. Integral funkcije z vrednostmi v \mathbb{R}^n , definirane na kakem intervalu, lahko definiramo kar po komponentah.

DEFINICIJA 0.1.1. Naj bo $f:[a,b]\to\mathbb{R}^n$ zvezna funkcija, definirana na kakem intervalu $[a,b]\subseteq\mathbb{R}$, in naj bodo f_j njene komponente. Tedaj definiramo

$$\int_{a}^{b} f(t) dt := \left(\int_{a}^{b} f_{1}(t) dt, \dots, \int_{a}^{b} f_{n}(t) dt \right).$$

Integral $u:=\int_a^b f(t)\,dt$ je torej vektor iz \mathbb{R}^n . Za vsak vektor $v\in\mathbb{R}^n$ lahko izračunamo skalarni produkt $\langle u,v\rangle=\sum_{j=1}^n u_jv_j$.

LEMA 0.1.2. Za vsako (zvezno) funkcijo $f:[a,b]\to\mathbb{R}^n$ in vsak vektor $v\in\mathbb{R}^n$ je

$$\langle \int_a^b f(t) dt, v \rangle = \int_a^b \langle f(t), v \rangle dt.$$

DOKAZ. Po definiciji integrala vektorske funkcije in običajnih lastnostih integrala skalarnih funkcij imamo

$$\langle \int_{a}^{b} f(t) dt, v \rangle = \sum_{j=1}^{n} v_{j} \int_{a}^{b} f_{j}(t) dt = \int_{a}^{b} \sum_{j=1}^{n} v_{j} f_{j}(t) dt = \int_{a}^{b} \langle f(t), v \rangle dt.$$

Posledica 0.1.3. $\|\int_a^b f(t) dt\| \le \int_a^b \|f(t)\| dt$, če je $a \le b$.

DOKAZ. Uporabili bomo dejstvo, da je $|\int_a^b g(t)\,dt| \leq \int_a^b |g(t)|\,dt$ za vsako skalarno funkcijo g, in Cauchy-Schwarzevo neenakost za skalarni produkt. Za vsak $v\in\mathbb{R}^n$ velja po prejšnji lemi

$$\begin{aligned} |\langle \int_{a}^{b} f(t) \, dt, v \rangle| &= |\int_{a}^{b} \langle f(t), v \rangle \, dt| \le \int_{a}^{b} |\langle f(t), v \rangle| \, dt \\ &\le \int_{a}^{b} ||f(t)|| ||v|| \, dt = ||v|| \int_{a}^{b} ||f(t)|| \, dt. \end{aligned}$$

Ko vstavimo v to nenenakost $v = \int_a^b f(t) dt$ in nato krajšamo ||v||, dobimo želeno enakost.

Naslednjo trditev bomo potrebovali kasneje, še v tem razdelku.

Trditev 0.1.4. Naj bo G odprta podmnožica $v \mathbb{R}^n$, $x, y \in G$ taki točki, da je daljica $[x, y] := \{(1-t)x + ty : 0 \le t \le 1\}$ vsebovana $v G, f : G \to \mathbb{R}^m$ pa zvezno odvedljiva funkcija. Potem je

$$||f(y) - f(x)|| \le M||y - x||,$$

 $kjer\ je\ M := max\{\|f'(z)\|:\ z\in [x,y]\}.$

DOKAZ. Ker je po predpostavki f zvezno odvedljiva, je funkcija $\phi: z \mapsto \|f'(z)\|$ zvezna na G. Ker je daljica [x,y] kompaktna množica, je njena slika s preslikavo ϕ tudi kompaktna (torej zaprta in omejena), zato maksimum M obstaja. Po pravilu za posredno odvajanje je odvod skalarne funkcije g(t):=f(x+t(y-x)) $(t\in[0,1])$ enak $\frac{d}{dt}g(t)=f'(x+t(y-x))(y-x)$. Ker je $f(y)-f(x)=g(1)-g(0)=\int_0^1\frac{d}{dt}g(t)\,dt$, sledi z uporabo posledice 0.1.3, da je

$$||f(y) - f(x)|| = ||\int_0^1 f'(x + t(y - x))(y - x) dt||$$

$$\leq \int_0^1 ||f'(x + t(y - x))(y - x)|| dt \leq \int_0^1 M||y - x|| dt = M||y - x||.$$

0.1.2. Inverz odvedljive preslikave. Naj bo $f: G \to H$ bijektivna zvezna preslikava med odprtima podmnožicama evklidskega prostora $\mathcal{U} = \mathbb{R}^n$. (Namesto evklidskega bi bil \mathcal{U} lahko v tem podrazdelku poljuben Banachov prostor; to dokazov ne bi bistveno spremenilo.) Inverzna preslikava f^{-1} je zvezna natanko tedaj, ko je $f(G_0)$ odprta množica za vsako odprto podmnožico $G_0 \subseteq G$; to sledi iz dejstva, da je $(f^{-1})^{-1}(G_0) = f(G_0)$ po eni od karakterizacij zveznih preslikav. Če je f zvezno odvedljiva in odvod f'(a) obrnljiv operator na \mathcal{U} za kak $a \in G$, je preslikava $x \mapsto f(a) + f'(a)(x - a)$ na \mathcal{U} obrnljiva. Ta preslikava je v okolici točke a dober približek preslikave f; pokazali bomo, da tako dober, da je tudi preslikava f obrnljiva, če jo opazujemo na dovolj majhni okolici točke a.

IZREK 0.1.5. (Izrek o inverzni preslikavi) Naj bo G odprta podmnožica v $\mathcal{U} := \mathbb{R}^n$, $a \in G$ poljubna točka, $f: G \to \mathcal{U}$ pa taka r-krat zvezno odvedljiva preslikava ($r \geq 1$), da je f'(a) obrnljiv operator na prostoru \mathcal{U} . Potem obstajata taki odprti podmnožici $M \subseteq G$ in $N \subseteq \mathcal{U}$, da je $a \in M$, $f(a) \in N$, f preslika M bijektivno na N in inverzna preslikava (f|M)⁻¹: $N \to M$ je r-krat zvezno odvedljiva. Za odvod inverzne preslikave velja

$$(0.1.1) ((f|M)^{-1})'(y) = (f'(f^{-1}(y))^{-1}$$

za vsak $y \in N$. (Na desni strani formule nastopa inverz linearnega operatorja $f'(f^{-1}(y))$.)

DOKAZ. Označimo b = f(a) in L = f'(a). Preslikava $\phi(x) := L^{-1}(x-b)$ na \mathcal{U} je obrnljiva (njen inverz se izraža kot $\phi^{-1}(x) = Lx + b$) in prav tako je obrnljiva tudi translacija $T_a(x) := x + a$. Kompozitum $F := \phi f T_a$ je

definiran na odprti množici $G-a:=\{x-a:x\in G\}$, ki vsebuje točko 0, in zadošča pogojema

$$F(0) = 0, F'(0) = I.$$

Dovolj je, da dokažemo izrek za preslikavo F (namesto f), ker sta ϕ in T_a neskončnokrat odvedljivi povsod definirani preslikavi in isto velja za njuna inverza. Privzeti smemo torej, da je a = 0 = b in f'(0) = I.

Pri določanju inverzne funkcije je treba za dani y poiskati tak x, da je f(x)=y. To je ekvivalentno z zahtevo, da je x-f(x)+y=x, kar nas privede do iskanja negibnih točk preslikave $x\mapsto x-f(x)+y$, pri čemer si bomo pomagali z Banachovim izrekom o skrčitvah. Definirajmo preslikavo $g:G\to \mathcal{U}$ s predpisom

$$g(x) = x - f(x).$$

Potem je g(0) = 0 in g'(0) = 0. Ker je po hipotezi odvod g' zvezna funkcija, obstaja tak $\delta > 0$, da je

(0.1.2)
$$||g'(x)|| \le \frac{1}{2} \text{ za vse } x \in \overline{B(0,\delta)},$$

kjer označuje $\overline{B(0,\delta)}$ zaprto kroglo s središčem 0 in polmerom δ . Za vsak $y \in \overline{B(0,\frac{\delta}{2})}$ naj bo $g_y : \overline{B(0,\delta)} \to \mathcal{U}$ preslikava, definirana s predpisom

$$g_y(x) = y + g(x).$$

Po (0.1.2) in trditvi 0.1.4 je $||g(x)|| = ||g(x) - g(0)|| \le \frac{1}{2}\delta$, torej je

$$||g_y(x)|| = ||y+g(x)|| \le ||y|| + ||g(x)|| \le \frac{\delta}{2} + \frac{\delta}{2} = \delta \text{ za vse } x \in \overline{B(0,\delta)} \text{ in } y \in \overline{B(0,\frac{\delta}{2})}.$$

To pomeni, da g_y preslikuje kroglo $B(0,\delta)$ samo vase. Ta preslikava je skrčitev polnega metričnega prostora $\overline{B(0,\delta)}$, saj za poljubna $x,z\in \overline{B(0,\delta)}$ velja

$$(0.1.3) ||g_y(z) - g_y(x)|| = ||g(z) - g(x)|| \le \frac{1}{2} ||z - x||$$

po (0.1.2) in trditvi 0.1.4. Po Banachovem skrčitvenem izreku ?? obstaja natanko ena negibna točka $x_y \in \overline{B(0,\delta)}$ preslikave g_y . Za to točko x_y torej velja $g_y(x_y) = x_y$ oziroma $y + x_y - f(x_y) = x_y$, torej $f(x_y) = y$. Če je pri tem $\|y\| < \frac{\delta}{2}$, je $\|x_y\| < \delta$, saj je $\|x_y\| = \|g_y(x_y)\| = \|y + g(x_y)\| \le \|y\| + \|g(x_y)\| < \frac{\delta}{2} + \frac{\delta}{2} = \delta$. Od tod sledi, da za vsak $y \in B(0, \frac{\delta}{2})$ obstaja natanko en tak $x \in B(0, \delta)$, da je f(x) = y, saj je enakost f(x) = y ekvivalentna z enakostjo $g_y(x) = x$, ki ima natanko eno rešitev v $\overline{B(0, \delta)}$, če je $\|y\| \le \frac{\delta}{2}$. Ker je $f^{-1}(B(0, \frac{\delta}{2}))$ odprta množica (po trditvi ??), je odprta tudi množica

$$M:=B(0,\delta)\cap f^{-1}(B(0,\frac{\delta}{2}))$$

in po pravkar povedanem f preslika M bijektivno na kroglo $N:=B(0,\frac{\delta}{2}).$

Pokažimo sedaj, da je inverzna preslikava $(f|M)^{-1}: N \to M$ zvezna. V ta namen najprej opazimo, da za vsaka $x, z \in B(0, \delta)$ velja po (0.1.3)

$$||f(z)-f(x)|| = ||z-x-(g(z)-g(x))|| \ge ||z-x|| - ||g(z)-g(x)|| \ge ||z-x|| - \frac{1}{2}||z-x||,$$
torej

$$(0.1.4) ||f(z) - f(x)|| \ge \frac{1}{2} ||z - x|| (x, z \in B(0, \delta)).$$

Bodita sedaj $y, v \in N$ poljubna in naj bosta x in y (enolično določena) taka elementa iz M, da je f(x) = y in f(z) = v. Neenakost (0.1.4) lahko potem napišemo kot

$$(0.1.5) ||f^{-1}(v) - f^{-1}(y)|| \le 2||v - y|| (y, v \in N),$$

kar pove, da je preslikava $(f|M)^{-1}: N \to M$ (enakomerno) zvezna.

Dokažimo še, da je preslikava $(f|M)^{-1}$ odvedljiva v vsaki točki $y \in N$. Naj bo vektor k tako majhen, da je krogla $\overline{B(y,\|k\|)}$ vsebovana v N, označimo v := y + k in bodita $x, z \in M$ taka, da je f(x) = y in f(z) = v. Z upoštevanjem ocene (0.1.5) imamo (0.1.6)

$$\frac{\|f^{-1}(v) - f^{-1}(y) - f'(f^{-1}(y))^{-1}(v - y)\|}{\|v - y\|} \le 2\frac{\|z - x - f'(x)^{-1}(f(z) - f(x))\|}{\|z - x\|}.$$

Ker je f odvedljiva v točki x, je f(z) - f(x) = f'(x)(z-x) + o(z-x)||z-x||, kjer gre o(z-x) proti 0, ko gre z proti x. Ko vstavimo ta izraz v desno stran ocene (0.1.6), se le-ta poenostavi v $2||f'(x)^{-1}o(z-x)||$, kar je manjše ali enako $2||f'(x)^{-1}||||o(z-x)||$ in gre zato proti 0, ko gre z proti x. Ocena (0.1.6) torej pove, da je funkcija $(f|M)^{-1}$ odvedljiva v točki y in da je njen odvod enak $f'(f^{-1}(y))^{-1}$. Ta formula za odvod pove tudi, da je $(f^{-1})'$ zvezna preslikava na N.

Dokazati moramo le še, da je za r > 1 funkcija $(f|M)^{-1}$ r-krat zvezno odvedljiva, če je f r-krat zvezno odvedljiva. Po formuli (0.1.1) se to reducira na dokaz dejstva, da so elementi matrike $(f'(f^{-1}(y))^{-1} (r-1)$ -krat zvezno odvedljive funkcije koordinat y_j vektorja y. Iz formule za inverz matrike (s pomočjo poddeterminant) sledi, da so elementi matrike $(f'(f^{-1}(y))^{-1}$ tolikokrat zvezno odvedljive funkcije spremenljivk y_j kot elementi matrike $f'(f^{-1}(y))$. Če je na primer f dvakrat zvezno odvedljiva, je f' zvezno odvedljiva in zato lahko funkcijo $y \mapsto f'(f^{-1}(y))$ posredno odvajamo (ker že vemo, da je preslikava $y \mapsto f^{-1}(y)$ zvezno odvedljiva). Zato mora biti tedaj preslikava $y \mapsto f'(f^{-1}(y))$ zvezno odvedljiva, $(f|M)^{-1}$ pa dvakrat zvezno odvedljiva, lahko (pri predpostavki, da je f trikrat zvezno odvedljiva, torej f' dvakrat zvezno odvedljiva) sklepamo, da je tudi kompozitum $y \mapsto f'(f^{-1}(y))$

dvakrat zvezno odvedljiv. Nato spet sledi po (0.1.1), da je $(f|M)^{-1}$ trikrat zvezno odvedljiva preslikava (ker je njen odvod dvakrat zvezno odvedljiv). Tako lahko induktivno dokažemo za vsak r = 1, 2, ..., da je $(f|M)^{-1}$ r-krat zvezno odvedljiva, če je preslikava f r-krat zvezno odvedljiva.

ZGLED 0.1.6. Izračunajmo odvod preslikave $f: M_n(\mathbb{R}) \to M_n(\mathbb{R}), f(X) := X^2$. Ker je

$$f(X + H) - f(X) = XH + HX + H^2$$

in $||H^2|| \leq ||H||^2$, je $f'(X): M_n(\mathbb{R}) \to M_n(\mathbb{R})$ linearna preslikava, ki vsaki matriki H priredi matriko XH + HX. Torej je f'(I)H = 2H za vsak $H \in M_n(\mathbb{R})$. To pomeni, da je f'(I) dvakratnik identičnega operatorja na prostoru $M_n(\mathbb{R})$, se pravi obrnljiv operator. Po izreku o inverzni preslikavi zato f preslika kako dovolj majhno odprto množico M, ki vsebuje I, na neko odprto množico N, ki vsebuje f(I) = I. Pri tem pa je inverzna preslikava $(f|M)^{-1}$ neskončnokrat odvedljiva. Za vsako matriko $X \in M_n(\mathbb{R})$, ki je dovolj blizu identitete I, obstaja torej \sqrt{X} , in sicer tako, da je funkcija $X \mapsto \sqrt{X}$ zvezno odvedljiva in $\sqrt{I} = I$. Seveda pa bi obstoj takega kvadratnega korena lahko dokazali tudi s pomočjo razvoja funkcije $f(t) = \sqrt{1+t}$ v potenčno vrsto in z uporabo razdelka 4.7.

0.1.3. Implicitne funkcije. Naj bo G podmnožica v $\mathbb{R}^n \times \mathbb{R}^m$, $f: G \to \mathbb{R}^m$ pa preslikava. Vsako točko iz G lahko podamo s parom vektorjev (x,y), kjer je $x \in \mathbb{R}^n$ in $y \in \mathbb{R}^m$. Zanimajo nas rešitve enačbe f(x,y) = 0. Zapisana po komponentah je ta enačba pravzaprav sistem m enačb

$$\begin{array}{rcl}
f_1(x_1,\ldots,x_n,y_1,\ldots,y_m) & = & 0 \\
\ldots & \ldots & \ldots \\
f_m(x_1,\ldots,x_n,y_1,\ldots,y_m) & = & 0.
\end{array}$$

Ker je enačb m, domnevamo, da se dajo morda neznanke y_1, \ldots, y_m izraziti iz sistema kot funkcije spremenljivk x_1, \ldots, x_n . Z drugimi besedami, iz enačbe f(x,y) = 0 bi radi izrazili y kot vektorsko funkcijo vektorske spremenljivke x. Seveda to v splošnem ni vedno mogoče niti pri linearnih sistemih oblike Ax + By = 0; je pa mogoče, če je matrika B obrnljiva. Izrek o implicitni funkciji posplošuje to na nelinearne enačbe.

Naj bo $f: G \to \mathbb{R}^m$ odvedljiva preslikava, kjer je G odprta podmnožica v $\mathbb{R}^n \times \mathbb{R}^m$, in $(x,y) \in G$. Označimo z $(D_2f)(x,y)$ odvod preslikave $v \mapsto f(x,v)$, izračunan v točki y. Njegova matrika v standardni bazi je

$$\begin{bmatrix} \frac{\partial f_1}{\partial y_1}(x,y) & \dots & \frac{\partial f_1}{\partial y_m}(x,y) \\ \dots & \dots & \dots \\ \frac{\partial f_m}{\partial y_1}(x,y) & \dots & \frac{\partial f_m}{\partial y_m}(x,y) \end{bmatrix}.$$

Klasična oznaka za determinanto te matrike pa je

$$\frac{\partial(f_1,\ldots,f_m)}{\partial(y_1,\ldots,y_m)}.$$

Podobno definiramo tudi $(D_1 f)(x,y)$ kot odvod preslikave $u \mapsto f(u,y)$, izračunan v točki x.

IZREK 0.1.7. (Izrek o implicitni funkciji) Naj bo $G \subseteq \mathbb{R}^n \times \mathbb{R}^m$ odprta podmnožica, $(a,b) \in G$ (kjer je $a \in \mathbb{R}^n$ in $b \in \mathbb{R}^m$), $f: G \to \mathbb{R}^m$ pa taka zvezno odvedljiva preslikava, da je f(a,b) = 0 in operator $(D_2f)(a,b)$ obrnljiv. Potem obstajata taki odprti množici $D \subseteq \mathbb{R}^n$ in $H \subseteq \mathbb{R}^n \times \mathbb{R}^m$, da je $a \in D$, $(a,b) \in H$ in da za vsak $x \in D$ obstaja natanko en $y_x \in \mathbb{R}^m$, ki zadošča pogojema $(x,y_x) \in H$ in $f(x,y_x) = 0$. Še več, s predpisom $g(x) := y_x$ je definirana taka zvezno odvedljiva preslikava $g: D \to \mathbb{R}^m$, da je g(a) = b in f(x,g(x)) = 0 za vsak $\in D$. Odvod te preslikave je enak

$$g'(x) = -[(D_2 f)(x, g(x))]^{-1}(D_1 f)(x).$$

DOKAZ. Definirajmo preslikavo $F: G \to \mathbb{R}^n \times \mathbb{R}^m$ s predpisom

$$F(x,y) := (x, f(x,y)) \ ((x,y) \in G).$$

Matrika odvoda preslikave F v točki (a, b) ima obliko

$$(DF)(a,b) = \left[\begin{array}{cc} I & 0 \\ (D_1f)(a,b) & (D_2f)(a,b) \end{array} \right].$$

Ker je po predpostavki $(D_2f)(a,b)$ obrnljiva matrika (torej je njena determinanta različna od 0), je obrnljiva tudi matrika (DF)(a,b). Po izreku o inverzni funkciji obstaja taka odprta okolica H točke (a,b) v $\mathbb{R}^n \times \mathbb{R}^m$, da je odvod (DF)(x,y) obrnljiv za $(x,y) \in H$ in da F preslika H bijektivno na odprto množico N := F(H) v $\mathbb{R}^n \times \mathbb{R}^m$, ki vsebuje točko F(a,b) = (a,0), in je $(F|H)^{-1}$ zvezno odvedljiva preslikava. Ker je F(x,y) oblike (x,f(x,y)) (prva komponenta x se ohranja), je inverzna preslikava $E := (F|H)^{-1}$ oblike

$$E(x,y) = (x, \phi(x,y)), ((x,y) \in N)$$

za neko zvezno odvedljivo preslikavo $\phi: N \to \mathbb{R}^m$. Naj bo $D := \{x \in \mathbb{R}^n : (x,0) \in N\}$; to je odprta množica v \mathbb{R}^n in $a \in D$ (ker je $(a,0) = F(a,b) \in N$). Definirajmo preslikavo $g: D \to \mathbb{R}^m$ s predpisom

$$q(x) := \phi(x, 0).$$

Za vsak $x \in D$ velja

$$(x, f(x, g(x))) = F(x, g(x)) = F(x, \phi(x, 0)) = F(E(x, 0)) = (x, 0),$$

torej mora biti f(x, g(x)) = 0. Nadalje je $(a, g(a)) = (a, \phi(a, 0)) = E((a, 0)) = (a, b)$, zato g(a) = b. S tem smo dokazali obstoj rešitve g. Formula za

njen odvod takoj sledi z odvajanjem enakosti f(x, g(x)) = 0. Tako namreč dobimo $(D_1 f)(x, g(x)) + (D_2 f)(x, g(x))g'(x) = 0$, od koder lahko izrazimo g'(x), ker je operator $(D_2 f)(x, g(x))$ obrnljiv za $x \in D$ (saj je tedaj $(x, g(x)) \in H$ in operator (DF)(x, y) obrnljiv za $(x, y) \in H$).

Dokazati moramo še enoličnost točke y_x za vsak $x \in D$. Predpostavimo, da sta (x, y_1) in (x, y_2) taki točki iz H, da je $f(x, y_1) = 0 = f(x, y_2)$. Potem je $F(x, y_1) = (x, f(x, y_1)) = (x, f(x, y_2)) = F(x, y_2)$, torej (ker je F|H injektivna preslikava) $y_1 = y_2$.

ZGLED 0.1.8. Oglejmo si preslikavo $f: \mathbb{R}^2 \to \mathbb{R}$, $f(x,y) = x^2 + y^2 - 1$. Naj bo $(a,b) \in \mathbb{R}^2$ poljubna taka točka, da je f(a,b) = 0. Funkcija g, ki v tem primeru zadošča pogojema f(x,g(x)) = 0 in g(a) = b, je: $g(x) = \sqrt{1-x^2}$, če je $b \geq 0$, in $g(x) = -\sqrt{1-x^2}$, če je $b \leq 0$. V primeru $b \neq 0$ (torej ko je $a \neq \pm 1$), je $(D_2 f)(a,b) \neq 0$ in je taka funkcija g (lokalno) ena sama in je odvedljiva v okolici točke a. Če pa je $a = \pm 1$, sta funkciji dve: $\sqrt{1-x^2}$ in $-\sqrt{1-x^2}$. Ti dve funkciji pa nista odvedljivi v točkah $a = \pm 1$.

Naloge

- 1. V katerih točkah $(x,y) \in \mathbb{R}^2$ odvod funkcije $f : \mathbb{R}^2 \to \mathbb{R}^2$, $f(x,y) = (\cos x \cos y, \sin x \sin y)$, ni obrnljiv? Katere točke pa so vsebovane v kaki taki odprti množici G, da ima f|G zvezno odvedljiv inverz?
- 2. V katerih točkah $(x, y, z) \in \mathbb{R}^3$ je odvod funkcije $f : \mathbb{R}^3 \to \mathbb{R}^3$, f(x, y, z) = (xyz, xy + xz + yz, x + y + z) obrnljiv? V taki točki izračunaj odvod inverzne funkcije, ki obstaja v okolici take točke po izreku o inverzni funkciji.
- 3. Poišči kako realno rešitev sistema enačb $x_1 = -e^{x_3}\cos x_4$, $x_4 = e^{x_2}\sin x_1$. Dokaži, da v okolici vsake rešitve (a,b,c,d) tega sistema obstaja taka odvedljiva funkcija g, da je $(x_3,x_4)=g(x_1,x_2)$ in g(a,b)=(c,d). Izrazi tudi odvod funkcije g.
 - 4.* Naj bo

$$A = \begin{bmatrix} 0 & 1 & 0 & \dots & 0 \\ 0 & 0 & 1 & \dots & 0 \\ \dots & \dots & \dots & \dots & \dots \\ 0 & \dots & \dots & 0 & 1 \\ 1 & 0 & \dots & 0 & 0 \end{bmatrix}$$

realna $n \times n$ matrika, ki ima enke tik nad glavno diagonalo in na mestu (n,1), povsod drugod pa ničle. Pokaži, da obstaja taka odprta množica $G \subseteq M_n(\mathbb{R})$, ki vsebuje identično matriko I, in taka zvezno odvedljiva funkcija $f: G \to M_n(\mathbb{R})$, da je f(I) = A in $f(X)^n = X$ za vsak $X \in G$.

- 5. Izračunaj odvod preslikave $X \mapsto e^X$ na prostoru $M_n(\mathbb{C})$ v točki 0. Pokaži, da ta preslikava preslika kako odprto okolico točke 0 na odprto okolico točke I. Kaj je zaloga vrednosti te preslikave?
- 6. Določi odvod produkta $\pi: \mathrm{M}_n(\mathbb{R}) \times \mathrm{M}_n(\mathbb{R}) \to \mathrm{M}_n(\mathbb{R}), \, \pi(X,Y) = XY$ v splošni točki $(X,Y) \in \mathrm{M}_n(\mathbb{R})$. V katerih točkah je operator $(D_2\pi)(X,Y)$ obrnljiv?
- 7.* Funkcije $f_j: G \to \mathbb{R}$ (j = 1, ..., m), kjer je G odprta podmnožica v \mathbb{R}^n , imenujemo funkcijsko odvisne, če obstaja kaka taka funkcija $\phi: \mathbb{R}^m \to \mathbb{R}$, da je $\phi(f_1(x), ..., f_m(x)) = 0$ za vsak $x \in G$ in da ϕ ni identično enaka 0 na nobeni odprti podmnožici v \mathbb{R}^m . Pokaži, da sta funkciji $f_1(x, y) = \cos(x y)$ in $f_2(x, y) = \sin(x y)$ funkcijsko odvisni na \mathbb{R}^2 .
- 8.* Dokaži: če je preslikava $f := (f_1, \ldots, f_n) : G \to \mathbb{R}^m$ zvezno odvedljiva in det f' ni identično enaka 0 na $G \subseteq \mathbb{R}^n$, potem so funkcije f_1, \ldots, f_m funkcijsko neodvisne. (Glej prejšnjo nalogo za definicijo funkcijske odvisnosti.)
- 9.* Dokaži, da so funkcije $f_j: G \to \mathbb{R}$ (j = 1, ..., m) funkcijsko odvisne natanko tedaj, ko ima množica f(G) prazno notranjost, kjer je $f = (f_1, ..., f_m)$.
- 10.* Pokaži, da so funkcije $f_1(x,y,z) = x \cos y$, $f_2(x,y,z) = x \sin y$, $f_3(x,y,z) = z$ funkcijsko neodvisne na \mathbb{R}^3 . Isto pokaži tudi za funkcije $g_1(x,y,z) = x \cos y \cos z$, $g_2(x,y,z) = x \cos y \sin z$, $g_3(x,y,z) = x \sin y$.