Fachhochschule Aachen Campus Jülich

Fachbereich 9
Medizintechnik und Technomathematik

Untersuchung der Signalqualität von ballistokardiographischen Signalen mittels Methoden des maschinellen Lernens

Bachelorarbeit

im Studiengang Scientific Programming

von

Cay Jakob Rahn

Matr.-Nr.: 3145495

22. Oktober 2020

Prüfer: Prof. Dr. rer. nat. Alexander Voß
 Prüfer: Dr.-Ing. Christoph Hoog Antink

Erklärung

Ort, Datum	-	Unterschrift	
die angegebenen Quellen und H	ilfsmittel benutzt worden.		
Diese Arbeit ist von mir selbstä	indig angefertigt und verfa	asst. Es sind kei	ne anderen als

Abstract

Die Beurteilung der Signalqualität bei ballistokardiographischen Signalen ist für eine Anwendung in der Praxis essentiell, wirft aber besonders bei in Betten aufgenommenen Signalen noch große Fragen auf. Ziel dieser Arbeit ist es, Möglichkeiten der Artefakterkennung bei solchen Signalen mittels maschinellen Lernens zu untersuchen. Grundlage sind bereits entwickelte Verfahren und Fachkenntnis über die Ballistokardiographie

Schwerpunkte der Arbeit:

- Recherche zu verschiedenen Verfahren des Maschinellen Lernens
- Beurteilung der Qualität bereits existierender Verfahren für Langzeitaufnahmen von bettlägerigen Patient*innen
- Merkmalskonstruktion auf Basis von Domainenexpertise
- Vergleich verschiedener Verfahren und Eingabeparamater
- Untersuchung des Einflusses der Vorverarbeitung des Signals
- Evaluierung und Validierung der Ergebnisse

Nicht final, nur als Platzhalter

Inhaltsverzeichnis

Al	okúrz	ungsverzeichnis	ÌΧ
Al	obildu	ingsverzeichnis	xi
1	Einl	eitung	1
	1.1	Motivation	1
	1.2	Ziel der Arbeit	2
	1.3	Gliederung	2
2	Gru	ndlagen	3
	2.1	Maschinelles Lernen	3
		2.1.1 Grundprinzipien	3
		2.1.2 Mathematischer Hintergrund	4
		2.1.3 Evaluation und Validierung	6
		2.1.4 Weitere Lernmodelle des Überwachten Lernens	8
	2.2	Medizinische Grundlagen	10
		2.2.1 Kardiorespiratorisches System	10
		2.2.2 Übersicht Messtechniken	11
	2.3	Ballistokardiographie	12
		2.3.1 Medizinischer und technischer Hintergrund	12
		2.3.2 Einsatzgebiet	13
		2.3.3 Signaleigenschaften	14
3	Sign	alverarbeitung bei ballistokardiographischen Signalen	19
	3.1	Grundsätzliches	19
	3.2	Detektion von Herzschlägen	20
	3.3	Artefakterkennung	22
		3.3.1 Schwellwertbasierte Artefakterkennung	25
		3.3.2 Maschinelles Lernen mit statistischen Merkmalen	26
		3.3.3 Ähnlichkeit der Intervallschätzer des CLIE-Algorithmus	27
	3.4	Messdaten	28
		3.4.1 Vorverarbeitung	28
		3.4.2 Annotation der Daten	30

Inhaltsverzeichnis

4 Analyse				
	4.1	Aufbau und Evaluation der Verfahren	35	
	4.2	Anwendung existierender Verfahren	36	
		4.2.1 Ähnlichkeit der Intervallschätzer des CLIE-Algorithmus	37	
		4.2.2 Schwellwertbasierte Artefakterkennung	39	
		4.2.3 Maschinelles Lernen mittels statistischer Merkmale	39	
	4.3	Analyse der Merkmale	41	
5	Syn	these	47	
	5.1	Eingabeform der Daten	47	
	5.2	Evaluationsmetriken	47	
	5.3	Modelle	47	
6	Eva	luierung der Ergebnisse	49	
7	Zus	ammenfassung und Ausblick	51	
	7.1	Zusammenfassung	51	
	7.2	Ausblick	51	
Li	teratı	ır	53	

Abkürzungsverzeichnis

AUC Area under the ROC Curve

CLIE Continuous Local Interval Estimator

BKG Ballistokardiographie

DT Decision Tree

EKG Elektrokardiographie

FPR False Positive Rate

HR Herzrate

HRV Herzratenvariabilität

LDA Linear Discriminant Analysis

MAE Mean Absolute Error

MSE Mean Squared Error

MLP Multilayer-Perzeptron

PCA Principal Component Analysis

PPG Photoplethysmographie

RF Random Forest

ROC Receiver Operating Characteristic

SKG Seismokardiographie

SQI Signal Quality Index

SVM Support Vector Machine

TPR True Positive Rate

Abbildungsverzeichnis

2.1	Darstellung von überwachtem Lernen	4
2.2	Ablauf von Training und Validierung	7
2.3	Übersicht über die Funktionsweise eines allgemeinen im Bett eingebette-	
	ten Ballistokardiographie (BKG)-Systems	13
2.4	Beispiel eines typischen BKG-Signals mit Nomenklatur	14
2.5	BKG-Aufnahmen in Rücken- und Seitenlage	16
2.6	Visualisierung der Variabilität des BKG-Signals	17
3.1	Intervallschätzer nach C. Brüser et al	22
3.2	Flussdiagramm eines Algorithmus zur Beurteilung der Signalqualität	23
3.3	Artefakte mit hoher Energie	24
3.4	Artefakte mit niedriger Energie	24
3.5	Genauigkeit der Herzratenberechnung bei schwellwertbasierter Artefak-	
	terkennung	25
3.6	Klassendiagramm der Datenstruktur für die Messdaten	29
3.7	Aktivitätsdiagramm der Herzratenschätzung auf dem EKG-Referenzsignal	31
3.8	Elektrokardiographie (EKG)-Herzratenschätzungen auf sich überlappen-	
	den 10-Sekunden-Segmenten für Patient 26	32
3.9	Verteilung der Label je nach maximal zulässiger Abweichung	33
3.10	Verteilung der Label pro Patient*in	33
3.11	Verteilung von E_{HR}	34
4.1	Verteilung von E_{HR} auf dem Testset	36
4.2	Fehler und Coverage der Klassifikation nach der Ähnlichkeit der Inter-	
	vallschätzer des CLIE-Algorithmus für verschiedene Schwellwerte im	
	Vergleich zum gesamten Signal und der Annotation	37
4.3	Verteilung von E_{HR} bei den als informativ klassifizierten Segmenten	38
4.4	Coverage unter bestimmten Fehlern E_{HR} vor und nach Klassifikation	38
4.5	Fehler und Coverage der Klassifikation für die verschiedenen Modellen	
	des maschinellen Lernens mit statistischen Merkmalen im Vergleich um	
	gesamten Signal und der Annotation	40
4.6	Verteilung von Eup bei den als informativ klassifizierten Segmenten	40

4.7	Coverage unter bestimmten Fehlern E_{HR} vor und nach Klassifikation	41
4.8	Korrelationsdiagramm der statistischen Merkmale, $E_{\rm HR}$ und der binären	
	Annotation	42
4.9	Wichtigkeit der Merkmale für den Random Forest (RF)-Klassifikator	42
4.10	Dimensionsreduktion der statistischen Merkmale mit einer Principal	
	Component Analysis (PCA) mit linearem Kernel	43
4.11	Wichtigkeit der Merkmale für den RF-Klassifikator mit reduzierter Merk-	
	malszahl	44
4.12	Random Forest mit reduzierter Merkmalszahl im Vergleich zu allen 13	
	Merkmalen	44

1 Einleitung

1.1 Motivation

Der derzeitige demographische Wandel stellt das Gesundheitssystem vor eine große Herausforderung: Es gibt immer mehr Patient*innen, die im Alter überwacht und versorgt werden müssen. Eine kontinuierliche autonome Überwachung von Vitalparametern im Krankenhaus oder auch Zuhause erlaubt es, Erkrankungen frühzeitig zu erkennen und zu beobachten, ohne dass große Personalkapazitäten vonnöten sind.

Für diesen Anwendungszweck eignen sich vor allem Messmethoden, die die Patient*innen im Alltag nicht einschränken und wenig invasiv sind. Im Englischen wird dies mit dem Begriff *unobtrusive* bezeichnet. Da es keine zufriedenstellende deutsche Entsprechung gibt, wird dieser im Folgenden nicht übersetzt verwendet werden. Solche *unobtrusive* Messmethoden beinhalten meist keine Notwendigkeit für direkten Körper- oder Hautkontakt, liefern aber Information über Atmung und Herzschlag. Die Herausforderung bei einem so ermitteltem Signal besteht in der Signalverarbeitung, da Messungenauigkeiten und Alltagsbewegungen zu Störungen im Signal führen. Nicht informatives, also nicht für die Verarbeitung geeignetes Signal muss aber zwingend identifiziert werden, da die Ergebnisse stark verfälscht werden.

Eine solche *unobtrusive* Messmethode ist die Ballistokardiographie (BKG). Sensoren lassen sich beispielsweise in Betten und Stühlen implementieren. Aufgezeichnet werden Aktivitäten des Herzens und der Atmung. Die Signalmorphologie variiert jedoch sowohl zwischen den Patient*innen als auch innerhalb einer Person sehr stark, wodurch die automatische Beurteilung der Signalqualität erschwert wird. Um eine aussagekräftige Signalverarbeitung zu ermöglichen, ist dies jedoch essentiell. Besonders bei in Betten aufgenommenem Signal ist die Variation des Signals in Kombination mit Artefakten durch Körperbewegungen oder ähnliches problematisch.

1.2 Ziel der Arbeit

Das Ziel dieser Arbeit ist es, Möglichkeiten der Beurteilung der Signalqualität von BKG-Signalen mittels maschinellen Lernens zu untersuchen. Im besonderen Fokus liegen dabei Langzeitaufnahmen, sowohl nachts als auch tagsüber, von bettlägerigen Patient*innen, da diese sich in der Vergangenheit als besonders anfällig für geringe Signalqualität gezeigt haben.

Dafür werden zunächst die vorliegenden Daten aufbereitet und existierende Verfahren der Artefakterkennung für diese getestet und bewertet. Anschließend wird das Signal auf mögliche Merkmale untersucht, die Aussagen über die Signalqualität ermöglichen. Anhand dieses Wissens werden Modelle des maschinellen Lernens ausgewählt und getestet. Auch wird untersucht, welchen Einfluss Annotation und Eingabeform auf das Ergebnis haben.

Langfristig soll ermöglicht werden, Ballistokardiographie (BKG) im medizinischen Alltag auch in unkontrollierten Umgebungen anzuwenden. Ziel dieser Arbeit ist es, für diesen Anwendungszweck eine erste Möglichkeit zur Beurteilung der Signalqualität zu bieten.

1.3 Gliederung

Zunächst wird in **Kapitel 2** ein allgemeiner Überblick über den medizinischen und technischen Hintergrund gegeben, der nötig ist, um die vorliegende Arbeit zu verstehen.

In **Kapitel 3** wird das Thema der Verarbeitung ballistokardiographischer Signale näher betrachtet. Dazu gehört die Detektion von Herzschlägen bei BKG-Signalen, existierende Verfahren zur Artefakterkennung und die Vorverarbeitung der vorliegenden Messdaten.

2 Grundlagen

Zum Verständnis dieser Arbeit ist grundlegendes Wissen nötig, welches hier in die drei Bereiche Maschinelles Lernen, Medizinische Grundlagen und Ballistokardiographie unterteilt ist.

2.1 Maschinelles Lernen

Da in dieser Arbeit Methoden des Maschinellen Lernens verwendet werden, wird im Folgenden eine Übersicht über Techniken, Hintergrund und verschiedene Lernmodelle gegeben.

2.1.1 Grundprinzipien

Maschinelles Lernen ist die "künstliche" Generierung von Wissen auf Basis von Erfahrung: Aus Beispielen wird gelernt und dieses Wissen nach einer Trainingsphase verallgemeinert. Dafür wird mit Mustererkennung gearbeitet und ein statistisches Modell aufgebaut, das auf den Trainingsdaten beruht. Die Trainingsdaten X bestehen aus Merkmalsvektoren $x \in X \subseteq \mathbb{R}^n$. Gesucht ist eine Funktion f, die diese Daten beschreibt. Unterschieden wird bei dieser Beschreibung dieser Daten zwischen Klassifikation und Regression. Bei einer Klassifikation werden die Eingabedaten in verschiedene Klassen unterteilt. Bei einer Regression dagegen werden stetige Werte vorhergesagt, es wird die Verteilung der Daten beschrieben. Sie kann z.B. dafür genutzt werden, Verkaufszahlen vorauszusagen. Ein Sonderfall ist die logistische Regression, die die Wahrscheinlichkeit der Angehörigkeit zu einer Klasse benennt.

Es wird zwischen verschiedenen Arten des maschinellen Lernens unterschieden, dem überwachten Lernen, dem unüberwachten Lernen und dem verstärkenden Lernen. Letzteres wird hier nicht betrachtet. Bei überwachtem Lernen bestehen die vorliegenden Daten aus Eingabe-Ausgabe-Paaren $(x_1, y_1), ..., (x_n, y_n)$ mit $x_i \in X$. Demnach ist nur die Funktion $f: X \to Y$ ist unbekannt. Gesucht ist eine Funktion g, die f aproximiert. Ein Lernalgorithmus ermittelt diese Funktion aus einem Hypothesenset. Dieses Vorgehen ist in

Abbildung 2.1 visualisiert. Bei unüberwachtem Lernen dagegen ist Y unbekannt; die Eingabedaten haben die Form $x_1, ..., x_n, x_i \in X$. Hier ist ein f gesucht, das die Daten möglichst gut beschreibt und sie beispielsweise eigenständig in Kategorien einteilt. In dieser Arbeit wird allerdings ausschließlich überwachtes Lernen betrachtet.

Abbildung 2.1: Darstellung von überwachtem Lernen

Ein häufig beobachtetes Problem bei maschinellem Lernen ist das sogenannte Overfitting, auf Deutsch Überanpassung, wenn das Modell zwar die Trainingsdaten gut approximiert, aber keine gute Generalisierung für unbekannte Daten bildet, d.h. zu stark an die Trainingsdaten angepasst ist. Gründe dafür können eine zu hohe Komplexität des Lernmodells wie z.B. zu viel Training oder zu wenig Trainingsdaten sein. In beiden Fällen wird ungewollt ein Teil des *noise* der Trainingsdaten in das Modell übernommen. Das Gegenteil von Overfitting ist Underfitting, das den Fall beschreibt, dass das Modell die Beziehung von Merkmalen und Ziel nicht ausreichend erfasst. Das ist auch der Fall, wenn die zum Training verwendete Stichprobe verzerrt ist.

2.1.2 Mathematischer Hintergrund

- auch hier nur supervised betrachtet
- Verteilung der Daten
- linear separierbar oder nicht: 3 Fälle (linear, linear mit Rauschen, nicht linear)
- Abbildung dazu?

- Ziel ist, eine Funktion zu finden, die die verschiedenen Klassen voneinander möglichst genau separiert, wodurch y ermittelt werden kann bzw. bei einer Regression den Wert möglichst genau vorhersagt, Entscheidungsfunktion genannt
- Lineare Modelle kombinieren Merkmale linear miteinander
- einfachstes Modell für Klassifikation von linear separierbare Daten: Perzeptron
- Komponenten Merkmalsvektor x unterschiedlich gewicheten
- mit Gewichtungsvektor $w \in \mathbb{R}^n$
- Ausgabe binärer Klassifikator $y \in Y = \{-1, 1\}$
- Ermittlung Schwellwert Bias b mit

$$y = +1$$
, falls $\sum_{i=1}^{n} w_i \cdot x_i > b$

$$y = -1$$
, falls $\sum_{i=1}^{n} w_i \cdot x_i < b$

- wenn $w_0 = b$ und $x_0 = 1$ durch Umformen Perzeptron Entscheidungsfunktion $h(x) = sign(w^T x)$
- w so gewählt, dass Daten korrekt klassifiziert
- wenn Perzeptron künstliches Neuron in Neuronalem Netz wird diese Funktion auch Aktivierungsfunktion genannt und kann variiert werden
- Signum Funktion hat Nachteil des "hartenSSchwellwerts, oft Funktionen wie logistische Funktion mit "weichemSSchwellwert besser
- Lineare Regression: Gerade h(x) finden, die Datenpunkte beschreibt
- Methode der kleinsten Quadrate, also quadratische Abweichungen zwischen Gerade und Punkten minimieren
- gesucht sind Koeffizienten w,

$$\underset{w}{\operatorname{argmin}} \sum_{i=1}^{n} (w^{T} x_{i} - y_{i})^{2}$$

- durch Auflösen $w = (X^T X)^{-1} X^T$
- bis jetzt nur lineare einfache Modelle betracht

- bei komplexeren Minimierungsproblemen Methode kleinster Quadrate nicht ausreichend, andere Methoden zur Fehlerminimierung -> Gradientenabstiegsverfahren
- graphische Vorstellung als Hügellandschaft
- In jedem Schritt Ableitung der Kostenfunktion nach jedem Gewicht und Bias berechnet -> Schritt wählen, der Kostenfunktion am stärksten minimiert
- wenn Daten nicht linear separierbar: Kerneltrick möglich
- Transformation (Ersetzten) des Skalarprodukts transformiert implizit den Variablenraum
- Beispiel Gaußscher RBF-Kernel

$$K_{RBF}(x,x\prime) := exp(-\gamma ||x-x\prime||^2) \text{ mit } \gamma > 0$$

- lineare Trennung in höher-dimensionalem Variablenraum
- Berücksichtigung aller Nicht-Linearitäten in der Transformation -> Trennfläche kann wiederum linear sein

2.1.3 Evaluation und Validierung

Ein erzeugtes Modell muss in jedem Fall auf Daten validiert werden, mit denen nicht trainiert wurde, um den Fehler auf unbekannten Daten abschätzen zu können. Eine Möglichkeit, dies zu tun, bietet die Hold-Out-Validierung, bei der die Daten zufällig in Trainingsund Testset aufgeteilt werden. Das Modell wird mit dem Trainingsset aufgebaut und auf dem Testset getestet und evaluiert. Eine andere übliche Technik ist die Kreuzvalidierung, bei der die Daten auf v gleich große Mengen, im Englischen folds, verteilt werden. Anschließend werden v Modelle trainiert, wobei jeweils eine Menge ausgelassen wird, auf der anschließend getestet wird. Bei einer extremen Variante, der Leave-One-Out Kreuzvalidierung entspricht v der Anzahl der Datenpunkte. Üblich ist jedoch v-fache Kreuzvalidierung mit v = 5 oder v = 10, auch abhängig von der Datenmenge und der verfügbaren Rechenleistung.

Neben der Validierung des finalen Modells müssen auch bei der Modellauswahl Entscheidungen getroffen werden, vor allem welches Modell und welche Hyperparameter gewählt werden. Hyperparameter sind Parameter von Modellen maschinellen Lernens, die vor dem Training des Modells festgelegt werden und die Modellarchitektur bestimmen oder den Lernalgorithmus betreffen. Da auch die Wahl dieser validiert werden muss, werden insgesamt drei Datensets benötigt: Trainings-, Validierungs- und Testset, da sonst

die Wahl der Hyperparameter durch das Testset beeinflusst würde und kein unabhängiger Test mehr möglich wäre. Das Testset wird also erst genutzt, nachdem alle Entscheidungen getroffen wurden. Typisch ist eine Validierung durch Kreuzvalidierung auf dem Trainingsset mit einem anschließenden Retraining mit dem gesamten Trainingset. Der Ablauf ist in 2.2 visualisiert.

Abbildung 2.2: Ablauf von Training und Validierung

Um die Auswahl für ein Modell treffen zu können, werden Evaluationsmetriken benötigt. Für diese werden im Folgenden die englischen Bezeichnungen verwendet, da diese auch im Deutschen geläufiger sind.

Vor allem für die Bewertung binärer Klassifikationen gibt es verschiedenste Metriken, die die richtigen und falschen Klassifikationen miteinander gewichten. Dafür wird zwischen Richtig-Positiven TP, Falsch-Positiven FP, Richtig-Negativen TN und Falsch-Negativen FP unterschieden. Eine Darstellung dieser vier nennt man Confusion Matrix und ermöglicht eine erste Einschätzung der Fehlerverteilung. Ein häufig verwendetes und einfaches Gütemaß ist die Accuracy $ACC = \frac{TP+TN}{TP+TN+FN+FP}$, die allerdings bei ungleich großen Klassen problematisch ist, da eine hohe Genauigkeit erreicht wird, wenn immer die größere Klasse vorausgesagt wird. In diesem Fall kann auch die Balanced Accuracy verwendet werden, die dieses Ungleichgewicht einbezieht:

$$balanced-accuracy = \frac{1}{2} \left(\frac{TP}{TP + FN} + \frac{TN}{TN + FP} \right).$$

Bei der Precision PPV = $\frac{TP}{TP+FP}$ werden falsch-positive Klassifikationen "bestraft"; beim Recall TPR = $\frac{TP}{TP+FN}$, auch Sensitivity genannt, falsch-negative Klassifikationen. Letztere werden oft in einem Maß zusammengefasst, dem F1-Score, der das harmonische Mittel

aus beiden bildet:

$$F_1 = 2 \cdot \frac{\text{PPV} * \text{TPR}}{\text{PPV} + \text{TPR}}.$$

Eine weitere Möglichkeit, die Qualität eines binären Klassifikators zu evaluieren, ist die Receiver Operating Characteristic (ROC)-Kurve, die bei der die True Positive Rate (TPR) und die False Positive Rate (FPR) gegeneinander aufgetragen werden und so den Kompromiss zwischen TPR und FPR abhängig vom Schwellwert zeigt. Die Fläche unter dieser Kurve, die Area under the ROC Curve (AUC), beschreibt, wie gut das Modell die beiden Klassen trennt.

Bei einer Regression werden üblicherweise der Mean Absolute Error (MAE) oder der Mean Squared Error (MSE) betrachtet, die die Größe des Fehlers ausdrücken und wie folgt berechnet werden:

$$MAE(y, \hat{y}) = \frac{1}{n_{\text{samples}}} \sum_{i=0}^{n_{\text{samples}}-1} |y_i - \hat{y}_i|$$

$$MSE(y, \hat{y}) = \frac{1}{n_{samples}} \sum_{i=0}^{n_{samples}-1} (y_i - \hat{y}_i)^2$$

Die Auswahl der betrachteten Metriken ist von dem vorliegenden Problem abhängig.

2.1.4 Weitere Lernmodelle des Überwachten Lernens

Entscheidungsbäume

- Bild mit Thresholds und Features
- an jedem Knoten Entscheidung ob bestimmtes Feature über Threshold liegt
- generiert z.B. durch rekursives binäres Teilen
- bei Regression mittlere quadratische Abweichung *MSE* minimieren, bei Klassifikationsbäumen Messung der Ünreinheit"der Blätter (Fehler = 0 wenn Blatt nur Punkte derselben Klasse, Fehler maximal wenn keine Klasse Mehrheit)
- Optimierung rechnerisch nicht effizient lösbar
- greedy den Schritt, also die Kombination aus Feature und Threshold wählen, der den Fehler am Stärksten reduziert

- Abbruchkriterien: maximal erlaubte Tiefe, Mindestanzahl Datenpunkte in einem Blatt
- keine Featureskalierung nötig

Random Forest

- besteht aus mehreren unkorrelierten Entscheidungsbäumen
- Randomisierung bei Erstellung der Bäume
- Mehrheitsentscheidung aller Bäume
- Nach Breiman für jeden Baum im Wald
- n Bootstrap Samples ziehen, also mit Zurücklegen aus dem Trainings-Datensatz gezogen
- von M Merkmalen $m \ll M$ Merkmale zufällig gewählt, die als Kriterium für Split infrage kommen
- voller Ausbau des Baums

Nächste Nachbarn Modelle

- sehr einfache Modelle, öfters zur Schätzung einer Baseline im Einsatz
- Klassifikation anhand der Datenpunkte, die zu klassifierenden Datenpunkt am nächsten liegen
- dafür Ähnlichkeit quantifizieren
- kein Training, Modell direkt durch Trainingsdaten definiert
- Voronoi-Regionen werden erzeugt: Menge aller Punkte die näher an einem Zentrum liegen als an allen anderen Zentren
- daraus Voronoi-Diagramm (gesammelte Grenzen)
- k-Nächste Nachbarn: das Label der Mehrheit der k nächsten Punkte wird zurückgegeben
- Regression: Mittelwert-Bildung über die Label der k nächsten Nachbarn

Support Vector Machines

- Rauschen in Daten
- statt einfache Gerade wie bei Perzeptron wird Hyperebene mit maximalem Rand gesucht, die Daten korrekt klassifiziert
- TODO: Bild von Gerade mit Rand
- Ausgangspunkt Perzeptron, Umformulierung in Optimierung mit Nebenbedingung, dass Hyperebene größten Rand besitzt
- bei Support Vector Machine (SVM)s oft oben schon erwähnter Kernel-Trick, also Transformation des Skalarprodukts, damit nicht-lineare Separierung möglich

Mehrlagiges Perzeptron

- Klasse von künstlichen neuronalen Netzwerken
- 3 Schichten: Eingabe-Schicht, Versteckte Schicht, Ausgabe-Schicht
- außer den Eingabeneuronen wird nicht-lineare Aktivierungsfunktion verwendet

2.2 Medizinische Grundlagen

Die vorliegende Arbeit beschäftigt sich mit der Beurteilung der Signalqualität in ballistokardiographischen Signalen. Zum Verständnis der gemessenen Vorgänge und der Problematik in Bezug auf die Signalqualität und dessen Beurteilung ist grundlegendes medizinisches Wissen über die gemessenen Vorgänge und messtechnisches Verständnis nötig. Aufgrund dessen wird hier eine kurze Übersicht über die medizinischen Grundlagen gegeben.

2.2.1 Kardiorespiratorisches System

Das kardiorespiratorische System (zusammengesetzt aus *kardìa*, deutsch 'Herz'und *respiratio*, deutsch 'Atmung') setzt sich aus zwei Teilsystemen zusammen, dem kardiovaskulären und dem respiratorischen System, die zusammen die Versorgung der Organe mit Sauerstoff sicherstellen.

Das kardiovaskuläre System umfasst das Herz, die Arterien und die Venen. In einem Zyklus wird das sauerstoffreiche Blut von der linken Herzkammer durch die Arterien zu

den Organen gepumpt, wo sich der Sauerstoff zur Versorgung dieser vom Blut löst. Die Venen transportieren das nun kohlstoffdioxidreiche Blut in die rechte Herzkammer. Von dort wird es zur Lunge geführt, mit Sauerstoff angereichert und in die linke Herzkammer geleitet. Von dort beginnt der Vorgang von Neuem. Die Herzfrequenz ist hierbei ein relevanter messbarer Vitalparameter.

Ein Herzschlag selbst besteht aus zwei Phasen: einer füllenden und einer auswerfenden Phase. Während der Diastole, der Erschlaffungs- und Bluteinströmungsphase, füllen sich die Herzkammern mit Blut. Diese Phase endet mit dem Schließen der Herzklappen und die Systole beginnt. Die Systole ist die Anspannungs- und Blutausströmungsphase: Die Herzklappen öffnen sich durch Kontraktion des Herzmuskels und das Blut kann ausströmen.

Das respiratorische System umfasst die Lungen und den Lungenkreislauf. In einem Atemzyklus wird durch gezielte Muskelbewegungen Luft aus der Umgebung eingeatmet. Mit dem eingeatmeten Sauerstoff wird sauerstoffarmes Blut angereichert und anschließend die nun sauerstoffarme Luft ausgeatmet. In diesem Zusammenhang ist der Vitalparameter der Atemfrequenz messbar.

2.2.2 Übersicht Messtechniken

Zur Untersuchung der in dieser Arbeit betrachteten Ballistokardiographie (BKG) wird diese oft mit anderen Messmethoden als Referenz aufgenommen. Im Folgenden werden diese zur Einordnung kurz vorgestellt. BKG selbst wird im nächsten Abschnitt separat betrachtet.

Die Elektrokardiographie (EKG) zeichnet die elektrischen Aktivitäten des Herzmuskels auf, indem mit mehreren Elektroden die Spannungsänderung gemessen wird. Hier ist die Herzfrequenz sehr gut ablesbar.

Die Photoplethysmographie (PPG) ist ein optisches Messverfahren, bei dem die Menge des von der Haut reflektierten bzw. transmittierten Lichtes gemessen wird. Dadurch kann die Änderung des Blutvolumens gemessen werden; die Lichtmenge nimmt bei Durchlaufen einer Pulswelle durch die Arterie deutlich ab. Dieses Signal bietet Rückschluss auf Atmung und Herzschlag.

Oft gemeinsam mit dem BKG betrachtet wird die Seismokardiographie (SKG), bei der die Vibration der Wand des Brustkorbs, die durch den Herzschlag entsteht, aufgezeichnet wird. Aufgrund von fehlenden einheitlichen Definitionen wird in der Literatur teils auch der Begriff BKG für SKG genutzt.¹

¹Vgl. Inan et al. 2015.

2.3 Ballistokardiographie

Im Folgenden wird die Ballistokardiographie eingeführt. Das beinhaltet den medizinischen und technischen und Hintergrund, das Einsatzgebiet und die Signaleigenschaften.

2.3.1 Medizinischer und technischer Hintergrund

Ballistokardiographie (zusammengesetzt aus altgriechisch *ballein*, deutsch 'werfen', *kardía*, deutsch 'Herz'und *graphein*, deutsch 'schreiben') ist die graphische Darstellung der wiederholten, durch den Herzschlag verursachten Bewegungen des menschlichen Körpers. Erstmals schon im 19. Jahrhundert beobachtet², ermöglicht der technische Fortschritt in der Sensortechnik heute aussagekräftige Messungen. Das BKG liefert durch die Aufzeichnung von zirkulierendem Blut und mechanischer Herzaktivität Informationen über die Gesamtleistung des kardiovaskulären Systems.³ Konkret gemessen wird eine Massenbewegung, die durch die schnelle Beschleunigung des Blutes entsteht, wenn es während des Herzschlages durch die großen Arterien bewegt wird: Bei der Verteilung des Blutes in die peripheren Blutgefäße verschiebt sich das Zentrum der Körpermasse in Richtung der Füße und während der atrialen Systole Richtung Körpermitte. Die BKG-Wellenform entsteht durch diese Schwerpunktverschiebung.

Die Messung dieser Bewegung ist mit verschiedenen Sensortypen, die z.B. hydraulisch oder elektromechanisch auf Druck reagieren, möglich. Sensoren können unter anderem in Waagen, Stühlen und Betten eingebaut werden. Besonders bei im Bett gemessenen Signalen kann oft nicht klar zwischen SKG und BKG unterschieden werden, da sich myokardiale Vibrationen und Massverschiebungen durch den Blutfluss überlagern. Diese gemischten Signale werden in der Literatur teils auch als *cardiac vibration signals* bezeichnet.⁴ Da im Bereich der Signalverarbeitung oft nicht zwischen reinem BKG und gemischten Signalen unterschieden wird, wird dies in der vorliegenden Arbeit ebenfalls nicht.

Verschiedene Studien kommen zu unterschiedlichen Ergebnissen bezüglich der Frage, welchen kardiovaskulären Ursprung die einzelnen Signalteile haben. Aufgrund dessen gestaltet sich die detaillierte Interpretation des BKG-Signals als schwierig. Da es neben Informationen zur Herzrate (HR) und Herzratenvariabilität (HRV) ein genauerer Indikator

²Vgl. Gordon 1877.

³Vgl. Pinheiro et al. 2010.

⁴Vgl. C. Brüser et al. 2013.

für das Alter des Herzens als Lebensalter ist, hat es trotzdem klinische Relevanz. Außerdem lassen sich durch abnormale Ballistokardiogramme Herzerkrankungen voraussagen, bevor Symptome auftreten. Besonders bei älteren Personen sind diese also eine wichtige Warnung.⁵

2.3.2 Einsatzgebiet

Durch diese Beschreibung wird schon deutlich, dass BKG anders als das sehr bekannte EKG ist. Der entscheidende Vorteil des BKGs liegt darin, dass kein einschränkender Körperkontakt wie z.B. durch aufgeklebte Elektroden nötig ist: Es lässt sich in Alltagsgegenständen wie Stühlen aber vor allem auch Betten implementieren, ohne dass es während der Messung zu Einschränkungen im alltäglichen Leben kommt oder medizinisches Fachpersonal anwesend sein muss. Damit gehört es zu den unobtrusive Messmethoden und eignet sich gut zur Langzeit- und Trendbeobachtung des Gesundheitszustandes - sowohl im klinischen Kontext als auch Zuhause. Besonders für Patient*innen mit chronischen Krankheiten und zur Früherkennung krankhafter Veränderungen bietet eine gesundheitliche Überwachung von Zuhause großes Potential.⁶ Je nach Aufbau des Messsystems verändert sich auch die Art der Informationen, die aus dem BKG-Signal gewonnen werden können. Sehr genaue, kontrolliert aufgenommene BKG-Signale ermöglichen eine aussagekräftige Analyse der Morphologie wobei beispielsweise in Betten eingebautes BKG zunächst nur Aussagen zu Herzrate und Herzratenvariabilität bietet. Zusätzlich zu Informationen der Herzaktivitäten ermöglichen Bettsysteme aber auch Informationen über das allgemeine Aktivitätslevel und somit auch über die Schlafqualität.⁷ In dieser Arbeit wird es um die Aufzeichnung von BKG-Signalen in Betten gehen. Der Aufbau eines solchen Bettsystems ist in Abbildung 2.3 gezeigt.

Abbildung 2.3: Übersicht über die Funktionsweise eines allgemeinen im Bett eingebetteten BKG-Systems.⁸

⁵Vgl. zu diesem Absatz Pinheiro et al. 2010.

⁶Vgl. Inan et al. 2015.

⁷Vgl. Christoph Brüser et al. 2011.

Allerdings ergeben sich neben diesen umfassenden Möglichkeiten auch Nachteile gegenüber konventionellen Messmethoden. Die größte Herausforderung ist eine stark variierende Signalqualität, die sich durch das unkontrollierte Umfeld und die Art der Messung ergibt.

2.3.3 Signaleigenschaften

Das gemessene BKG-Signal setzt sich aus Herzaktivitäten, Atmungsaktivitäten und Körperbewegungen zusammen. Gegebenenfalls wird es noch durch Störungen der Messung beeinflusst. Bei einer gesunden Person ohne Störeinflüsse wird die in Abbildung 2.4 abgebildete Wellenform erwartet. Diese Idealform lässt sich in 3 Gruppen unterteilen: Die präsystolische, wobei diese häufig nicht beachtet wird, die systolische und die diastolische Gruppe unterteilen. Die mit H bis K markierten Extremwerte gehören bei dieser Unterteilung zur systolischen Gruppe, die Wellen L bis N zur diastolischen Gruppe. Die präsystolische Gruppe, die aus den Wellen F und G besteht, ist in hier nicht abgebildet. I und J werden auch als *ejection waves* bezeichnet. In Bezug auf andere Messmethoden ist zu bemerken, dass die H-Welle nahezu synchron mit dem ersten Herzgeräusch ist. Der Abstand des R-Peaks, des Hochpunkts eines EKGs zur H-Welle variiert im Bereich von 0,2 bis 0,3 Sekunden.⁹ Die Amplitude der Wellen ohne Störeinflüsse ist hauptsächlich abhängig von dem Herzzeitvolumen, der Herzkraft und der Geschwindigkeit des Auswurfs.¹⁰

Abbildung 2.4: Beispiel eines typischen BKG-Signals mit Nomenklatur¹¹

⁸Entnommen aus Christoph Brüser et al. 2011

⁹Vgl. de Lalla et al. 1950.

¹⁰Vgl. Pinheiro et al. 2010.

¹¹Entnommen aus Albukhari et al. 2019 nach Starr et al. 1939.

Im Idealfall wird zwar die oben beschriebene Wellenform erwartet, bei der die Wellen H bis L eine deutliche W-Form bilden, allerdings ist es trotz dieser typischen Form selten, dass alle nicht-systolischen Komponenten sichtbar sind. 12 Es gibt eine starke Variation der Signalmorphologie sowohl zwischen als auch innerhalb von Individuen. Der größte Einfluss ergibt sich durch die verwendeten Sensoren und die Position der Person, also zum Beispiel ob im Stehen, Sitzen oder Liegen gemessen wird. 13 Es gibt Studien die zeigen, dass die intraindividuelle Varianz über serielle Messungen hinweg niedrig ist. 14 Allerdings gilt das nicht, wenn sich die Position der Person verändert. Hierbei reicht es schon, wenn die Person in Rückenlage statt Seitenlage liegt. ¹⁵ Aufgrund dieser Variationen in der Signalmorphologie wurden schon in den 1950er Jahren 3 Achsen für die Aufzeichnung des BKGs definiert: Die longitudinale (Kopf-Fuß), die transversale (Seite-Seite) und die dorsoventrale (Rücken-Brust). 16 Zu Beginn maßen die meisten Systeme entlang der longitudinalen Achse, die z.B. der Messung auf einer Waage entspricht. Unobtrusive Messsysteme, wie die hier betrachtete Messung in Betten, messen entlang einer Kombination der transversalen und der dorsoventralen Achse - abhängig von der Position der Person. Besonders diese Kombination sorgt für eine große intra- und individuelle Variation des Signals. Abbildung 2.5 verdeutlicht dies durch den direkten Vergleich von BKG-Aufzeichnungen zweier Herzschläge von 2 Personen. Bei jeder dieser beiden Personen wurde in zwei verschiedenen Positionen gemessen.¹⁷ Auch der Ursprung des Signals ist abhängig von der Messachse. Bei longitudinal gemessenem BKG ist der Einfluss des Herzzeitvolumens schon seit 1929 beobachtet. ¹⁸ Im Gegensatz dazu ist der Ursprung des in Betten gemessenen BKG-Signals nicht genau bekannt. Das liegt unter anderem daran, dass mechanische Komponenten wie z.B. die Matratze einen schwer zu modellierenden Einfluss haben.

¹²Vgl. Pinheiro et al. 2010.

¹³Vgl. Sadek, Biswas und Abdulrazak 2019.

¹⁴Vgl. Inan et al. 2015.

¹⁵Vgl. Christoph Brüser et al. 2011.

¹⁶Christoph Brüser et al. 2011; Inan et al. 2015, Vgl.

¹⁷Christoph Brüser et al. 2011.

¹⁸Vgl. Starr et al. 1939.

Abbildung 2.5: Hochpass-gefilterte BKG-Aufnahmen von zwei Herzschlägen zwei verschiedener Personen, jeweils in Rücken- und Seitenlage gemessen. Die vertikalen Linien markieren die R-Peaks der EKG-Referenz.¹⁹

Neben Einflüssen der verwendeten Messachse und der Körperposition beeinflusst auch die Atmung die Signalform. Normale Atmung beeinflusst die Amplitude der *ejection waves* I und J. Bei Atemstillstand dagegen werden die H und J Wellen verzerrt. Auch bei einer gesunden, sich nicht bewegenden Person, die ihre Atmung kontrolliert, wird kein exakt Schlag für Schlag reproduzierbares Signal erzeugt werden.²⁰ Von Zink et al. werden die Einflüsse der Atmung in der vertikalen Achse eines dorsoventralen BKGs als große Schwingungen einer Wellenlänge von fünf bis zehn Sekunden beschrieben. Innerhalb dieser sind kleinere Schwingungen mit höherer Frequenz sichtbar, die jedoch keiner bestimmten Sequenz folgen.²¹ Zusätzlich zu dieser schon beschriebenen Variabilität kommt es sehr leicht zum Entstehen von Artefakten. Ursprung ist entweder das Messsystem selbst oder Körperbewegungen. Insgesamt führt Bewegung der Patient*innen, auch die der Atmung, zu einem *baseline drift*. Stärkere Bewegungen führen zu einer Massenverschiebung, die um ein Vielfaches größer als die gemessenen Vorgänge ist. Aufgrund dessen führt sie immer dazu, dass das Signal stark verzerrt oder sogar vollständig überlagert wird.

Besonders im Vergleich zu anderen kardiorespiratorischen Signalen wie dem EKG und PPG wird deutlich, dass BKG-Signale auch in konsekutiven Messungen deutlich variabler sind. Abbildung 2.6 zeigt dies am Beispiel von BKG-Aufnahmen eines im Bett integrierten Messsystems im Vergleich zum parallel aufgenommenen EKG. Es zeigt sich, dass selbst nach Entfernung von Überlagerungen von Atmung und Bewegung das BKG-Signal eine höhere Variabilität in Bezug auf Amplitudenhöhe, Reihenfolge der Extremwerte und der gesamten Form aufweist.²² Es wird allerdings angenommen, dass aufeinander folgen-

¹⁹Entnommen aus Christoph Brüser et al. 2011.

²⁰Vgl. Pinheiro et al. 2010.

²¹Vgl. Zink et al. 2017.

²²Vgl. Zink et al. 2017.

de Herzschläge sich ähneln²³. Diese Eigenschaft wird Selbstähnlichkeit genannt. C. Brüser et al. nennt als eine mögliche Ausnahme den Fall, dass ein unregelmäßiger Herzschlag mit sehr niedrigem Schlagvolumen einem regulären Herzschlag folgt. In dem Fall ist es möglich, dass die Amplitude im Vergleich so klein ist, dass sie verdeckt wird. Dies ist z.B. bei Vorhofflimmern möglich. Eine Untersuchung von Rosales et al. zeigt dieses Verhalten der Selbstähnlichkeit nicht bei den kleineren Extremwerten die J umgeben. Dass die Ähnlichkeit um J am größten ist zeigt auch Abbildung 2.6.

Abbildung 2.6: Diagramm aus 128 konsekutiven Herzschlagen im EKG (A) und BKG (B,C), segmentiert durch das EKG. Die Farben dienen der besseren Visualisierung der Amplituden. (A) EKG-Signal; (B) BKG-Signal mit Überlagerungen durch Atmung und Bewegung; (C) BKG-Signal ohne Bewegungsartefakte und Atmung.²⁴

Zusammengefasst lässt sich sagen, dass es sich bei ballistokardiographischen Signalen um nichtstationäre Signale handelt, dessen Ursprung nicht genau bekannt ist. Die Signalform wird von der Messachse, der Position und Körperhaltung der Proband*innen und dem Messsystem selbst beeinflusst. Besonders bei dem hier im Fokus liegenden Anwendungsfall Bett kommt es sowohl durch die unkontrollierbare Umgebung als auch die Signaleigenschaften selbst zu einer starken Variation der Morphologie und vielen Artefakten im

²³Vgl. C. Brüser et al. 2013.

²⁴Entnommen aus Zink et al. 2017.

Signal. Trotz dieser Einschränkungen ist die Ballistokardiographie eine Messtechnik, die sich einfach *unobtrusive* in den Alltag einbauen lässt und Aussagen über die Herzrate und die Herzratenvariabilität ermöglicht.

3 Signalverarbeitung bei ballistokardiographischen Signalen

Im folgenden Kapitel wird eine Einführung in das Thema der Signalverarbeitung und besonders Artefakterkennung bei ballistokardiographischen Signalen gegeben. Hierzu wird zunächst Grundlegendes zu der Verarbeitung kardiorespiratorischer Signale erläutert. Ein in dieser Arbeit verwendeter Algorithmus zur Detektion von Herzschlägen wird vorgestellt. Anschließend wird die Thematik der Artefakterkennung eingeführt und der aktuelle Stand der Wissenschaft bei BKG-Signalen vorgestellt. Hierfür werden drei Verfahren im Detail betrachtet. Darüber hinaus werden die in dieser Arbeit untersuchten Daten vorgestellt und die durchgeführte Vorverarbeitung beschrieben.

3.1 Grundsätzliches

Kardiorespiratorische Signale sind durch die quasiperiodische Natur des Herzens und der Lunge selbst quasiperiodisch. Zwei zyklische Vorgänge werden gleichzeitig gemessen, lassen sich aber durch eine Bandpass-Filterung nach ihren unterschiedlichen Frequenzen filtern. Der Normbereich für die Atemfrequenz liegt bei 12 bis 25 Atemzügen pro Minute, alles ober- und unterhalb wird als abnormal betrachtet. Bei der Herzfrequenz wird ein Bereich von 30 bis 200 Schlägen pro Minute erwartet. Dabei entsprechen 30 Schläge pro Minute der Pulsabsenkung in der Nacht, der Ruhepuls selbst ist höher. Grundsätzlich gibt es verschiedene Arten der Signalverarbeitung: Algorithmen, die im Zeitbereich arbeiten, solche, die im Frequenzbereich arbeiten und solche, die beides kombinieren. Dabei ist zu beachten, dass bei frequenzbasierten Algorithmen durch die Analyse von spektralen Eigenschaften zunächst nur durchschnittliche Frequenzen ermittelt werden. Dies ist für einige medizinische Anwendungen ausreichend, für andere wie z.B. die Ermittlung der HRV allerdings nicht. Algorithmen, die auf dem Zeitbereich arbeiten basieren oft auf Wissen über die Morphologie des physiologischen Signals. Durch die Eigenschaften der BKG-Signale, vor allem durch die variable Morphologie ist dies schwieriger als bei anderen kardiorespiratorischen Signalen. Paalasmaa et al. sagt dazu:

The properties of the BCG signal vary so much in practice that no simple filtering rule can be devised for an accurate and reliable beat-to-beat interval detection¹

Diese Aussage gilt sowohl für die Detektion von Schlag-zu-Schlag Intervallen als auch für die Beurteilung der Signalqualität, bzw. die Artefakterkennung.

3.2 Detektion von Herzschlägen

In dieser Arbeit wird der von C. Brüser et al. entwickelte Algorithmus, der Continuous Local Interval Estimator (CLIE) verwendet. Aus diesem Grund wird er hier vorgestellt. Der Algorithmus beruht auf der in Kapitel 2.3 erwähnten Annahme, dass sich aufeinander folgenden Herzschläge ähneln und schätzt die Herzrate anhand der Selbstähnlichkeit des Signals.

Der Algorithmus iteriert mit einem *Moving window* über das mit einem Bandpass gefilterte Signal. Es werden zwei Schwellwerte für die Intervalllänge T genutzt, T_{\min} und T_{\max} , basierend auf dem bekanntem Bereich der Herzrate von 30 bis 200 Schlägen pro Minute. Die Länge des Analysefensters w_i entspricht $2 \cdot T_{\max}$, sodass mindestens zwei vollständige Herzschläge enthalten sind. f_s beschreibt dabei die Abtastrate des untersuchten Signals.

$$w_i[v] = x[n_i + v], v \in \{-T_{\text{max}} * f_s, ..., T_{\text{max}} * f_s\}$$

In jedem Fenster wird die lokale Intervalllänge T_i geschätzt und anschließend das Zentrum des Fensters n_i weiterbewegt:

$$n_{i+1} = n_i + \Delta t * f_s$$

Die Schätzung der Intervalllänge beruht auf drei Selbstähnlichkeitsmaßen, die wie folgt definiert sind:

20

¹Paalasmaa et al. 2015.

$$\begin{split} E_{\text{Corr}}[N] &= \frac{1}{N} \sum_{v=0}^{N} w[v] w[v-N], \\ E_{\text{AMDF}}[N] &= (\frac{1}{N} \sum_{v=0}^{N} |w[v] - w[v-N]|)^{-1}, \\ E_{\text{MAP}}[N] &= \max_{v \in \{0, \dots, n\}} (w[v] + w[v-N]). \end{split}$$

Dabei berechnet $E_{\rm Corr}$ eine modifizierte Autokorrelationsfunktion, mit $E_{\rm AMDF}$ wird die Differenz des Signals bei verschiedenen Abständen miteinbezogen und mit $E_{\rm MAP}$ werden die maximale Amplituden von zwei beliebigen Samples über das ganze Fenster berechnet. AMDF steht für modified average magnitude difference function und MAP für maximum amplitude pairs. Diese Schätzer entsprechen jeweils einer Wahrscheinlichkeitsfunktion, die beschreibt wie wahrscheinlich es ist, dass n dem tatsächlichen Schlag-zu-Schlag-Intervall entspricht. Durch Skalierung können sie in Wahrscheinlichkeitsdichtefunktionen verwandelt werden. Durch Kombination dieser drei Funktionen wird nun der wahrscheinlichste Wert für N ermittelt:

$$N_{opt} = \operatorname*{argmax}_{N} p(N|E_{Corr}, E_{AMDF}, E_{MAP})$$

Nach dem Satz von Bayes kann die Wahrscheinlichkeit, dass *N* der tatsächlichen Intervalllänge entspricht, auch wie folgt ausgedrückt werden:

$$p(N|E_{\text{Corr}}, E_{\text{AMDF}}, E_{\text{MAP}}) = \frac{p(E_{\text{Corr}}, E_{\text{AMDF}}, E_{\text{MAP}}|N)p(N)}{p(E_{\text{Corr}}, E_{\text{AMDF}}, E_{\text{MAP}})}$$

Da $p(E_{\text{Corr}}, E_{\text{AMDF}}, E_{\text{MAP}})$ unabhängig von N ist, kann es für die Ermittlung der wahrscheinlichsten Intervalllänge T_{opt} vernachlässigt werden. Unter den Annahmen, dass die Ergebnisse der drei Schätzer nicht voneinander, sondern nur von N abhängen und dass N gleichverteilt ist, kann T_{opt} wie folgt ermittelt werden:

$$E_f[N] = E_{\text{Corr}}[N] \cdot E_{\text{AMDF}}[N] \cdot E_{\text{MAP}}[N],$$

$$N_{\text{opt}} = \operatorname*{argmax}_n E_f[N]$$

Durch lineare Skalierung erhält man auch hier eine Dichtefunktion. Abbildung 3.1 zeigt

die 3 einzelnen Dichtefunktionen und die fusionierte Fusion. In letzterer zeigt ein deutlicher Hochpunkt $N_{\rm opt}$.

Abbildung 3.1: Die drei Intervallschätzer und ihre Fusion²

Nun gibt es für jeden Punkt im Signal eine Schätzung der Intervalllänge. Mit Hilfe der Fenstergröße und dieser Länge können die zu einem Herzschlag gehörenden Hochpunkte ermittelt werden, nämlich die, die die größte kombinierte Amplitude mit dem durch die Intervalllänge gegebenen Abstand besitzen. Für jeden dieser Punkte P_k existiert nun eine Menge an Schätzungen T_k , mit der eine robuste Intervallschätzung $\overline{T_k} = \text{median}(T_k)$ ermittelt werden kann.³

3.3 Artefakterkennung

Artefakte bzw. Signal von geringer Qualität sind irrelevante Signalteile mit variierender Amplitude, Frequenz und Dauer, die das physiologische Signal stören⁴. Das Ziel der Artefakterkennung ist es, nur die Teile des Signals zu verarbeiten, die Vitalparameter enthalten. Bewegungsartefakte, Sensorstörungen und ähnliches, die diese Parameter überlagern, sollen die Verarbeitung nicht beeinflussen. Dabei ist die Quelle der Störung selbst irrelevant, allerdings sollten keine medizinisch induzierten Abnormalitäten als gestörtes Signal klassifiziert werden. Insgesamt ist es für aussagekräftige Messungen wünschenswert, eine hohe Coverage zu erreichen, das heißt einen möglichst hohen Anteil an Signal zu verwenden. Sadek, Biswas, Yongwei et al. unterscheidet zwischen informativem und nicht-informativem Signal. Informatives Signal enthält mit *noise* gemischtes Signal von guter Qualität aus dem Vitalparameter ohne weiteres extrahiert werden können. Im Gegensatz dazu sind die Informationen bei nicht-informativem Signal so mit Artefakten und

²Entnommen aus C. Brüser et al. 2013.

³Vgl. zu diesem Kapitel C. Brüser et al. 2013.

⁴Vgl. Nizami et al. 2013.

noise vermischt, dass vor Extraktion der Vitalparameter weitere individuelle Verarbeitung nötig ist oder die Extraktion von physiologischen Eigenschaften gar unmöglich ist. Teils wird die Signalqualität auch mit so genannten Signal Quality Indices (SQIs) gemessen, die je nach SQI und Anwendungsfall verschiedene Aussagen haben. Im klinischen Kontext genutzte Artefakterkennung verwendet oft relativ einfaches Preprocessing. Außerdem sind in den meisten Algorithmen bestimmte Informationen direkt oder indirekt hard coded. Das kann zum einen etwas wie Typ oder Frequenz der Daten sein, aber auch demographische Informationen über die Patient*innen wie Alter, Gewicht oder medizinischer Zustand.

Abbildung 3.2: Flussdiagramm eines Algorithmus zur Beurteilung der Signalqualität⁷

Um einen Eindruck über übliche Beurteilung der Signalqualität bei anderen kardiorespiratorischen Signalen zu bekommen, wird in Abbildung 3.2 ein Beispiel für EKG und PPG gezeigt. In jeweils 10-Sekunden Fenstern wird zunächst eine Segmentierung der Herzschläge durchgeführt und anschließend vier Kriterien überprüft, die jeweils ausreichend sind, um die Signalqualität als schlecht zu klassifizieren. Im ersten Kriterium wird geprüft ob die Herzrate zwischen 40 und 180 Schlägen pro Minute liegt. Im zweiten Schritt wird sichergestellt, dass kein Schlag fehlt, indem geprüft wird, ob alle Intervalle kürzer als drei Sekunden sind. Eine Intervalllänge von 3 Sekunden entspräche über eine Minute einer Herzrate von 20 Schlägen pro Minute. Anschließend wird geprüft, ob die Herzrate nur in

⁵Vgl. Nizami et al. 2013.

⁶Vgl. Nizami et al. 2013.

einem begrenzten Bereich variiert; das Verhältnis der maximalen zur minimalen Intervalllänge muss kleiner als 2.2 sein. Abschließend wird geprüft, ob die Korrelation mit einem erstellten Template einen gewissen Schwellwert nicht unterschreitet. Dieser Algorithmus enthält übliche Techniken der Signalbeurteilung: Eine Begrenzung der akzeptierten Herzrate und Herzratenvariabilität und dem Vergleich mit einem zuvor erstellten Template.

Bei ballistokardiographischen Signalen gestaltet sich auch die Beurteilung der Signalqualität schwieriger als bei anderen kardiorespiratorischen Signalen. Zusätzlich zu der
gegebenen Variabilität durch die Atmung ist eine Problematik, dass plötzliche Veränderungen der Signalmorphologie bei Positionsänderungen zuvor erstellte Templates obsolet
machen und auch andere Schwellwerte nicht mehr angemessen sind. Bei Artefakten in
BKG-Signalen kann zwischen Artefakten mit hoher und mit niedriger Energie unterschieden werden. Artefakte mit hoher Energie, wie in Abbildung 3.3 gezeigt entstehen, weil
Bewegungen stärkere Krafteinwirkungen verursachen als Atmung und Herzschlag. Diese
Tatsache wird häufig zur Erkennung dieser verwendet. Artefakte mit niedriger Energie,
wie in Abbildung 3.4 gezeigt, sind weniger auffällig.

Abbildung 3.3: Artefakte mit hoher Energie

Abbildung 3.4: Artefakte mit niedriger Energie

Bei der Betrachtung verschiedener Ansätze zur Signalverarbeitung und Artefakterkennung bei BKG-Signalen ist auffällig, dass Proband*innen oft angewiesen werden, sich möglichst wenig zu bewegen. Das ist bei der Messung im Alltag, insbesondere bei Messungen in Betten nicht realistisch. Dazu kommt, dass beim Einsatz im Alltag auch Kontakt mit der Person nicht immer gewährleistet ist, z.B. wenn diese sich aufrichtet. Hoog Antink et al. haben festgestellt, dass bei Messsystemen in Betten besonders Messungen tagsüber große Signalteile von schlechter Qualität aufweisen, deutlich mehr als nachts. Dies ist durch gesteigerte Aktivität tagsüber erklärbar. Ebenfalls im *unobtrusive* Kontext nicht zielführende Methoden zur Artefakterkennung verwenden eine EKG-Referenz.

Im Folgenden werden drei verschiedene Methoden zur Beurteilung der Signalqualität vorgestellt.

3.3.1 Schwellwertbasierte Artefakterkennung

In "Noninvasive ambulatory measurement system of cardiac activity" präsentieren Pino et al. einen Ansatz für die Erkennung von Körperbewegungen für ein in einen Stuhl eingebettetes BKG-Messsystem. Dafür werden über ein *moving window* Maximum, Minimum, Standardabweichung und Mittelwert ermittelt und daraus 2 Schwellwerte berechnet:

$$T_1 = \frac{\max + \min}{2},$$

 $T_2 = \operatorname{mean} + 1, 1 * \operatorname{std}.$

Ein Segment wird als informativ klassifiziert, wenn $T_1 \leq T_2$ ist. Die Länge des *moving* window ist mit 200 Samples bei einer Abtastrate von 200 Hz benannt. Untersucht wurden sowohl Freiwillige im Labor, als auch im Krankenhauswartezimmer für eine sehr kurze Messdauer von ein bis zwei Minuten. Mit diesem Ansatz wurde bei mehr als 50 % der Laborgruppe eine Coverage zwischen 87 % und 95 % erreicht. Die Coverage der im Krankenhaus aufgenommenen Gruppe war bedeutend niedriger; hier lagen 50 % der Messungen zwischen 48 % und 95 % Coverage. Zu der Genauigkeit der Herzschlagdetektion auf den akzeptierten Signalteilen wird keine Aussage in Zahlen getroffen, sondern nur der folgende Bland-Altman Graph gezeigt.

Abbildung 3.5: Bland-Altman Graph zwischen von EKG und BKG berechneter HR.

Hier zeigt sich, dass beim Großteil des hier betrachteten Signals die HR größtenteils mit einer Genauigkeit von ± 3 Schläge pro Minute bestimmt werden konnte. Allerdings handelt es sich hier um im Sitzen aufgenommenes Signal, bei dem die Variabilität geringer ist als bei in Betten aufgenommenem BKG.

3.3.2 Maschinelles Lernen mit statistischen Merkmalen

Ein Algorithmus zur Beurteilung der Signalqualität mittels maschinellen Lernens wird von Sadek, Biswas, Yongwei et al. im Paper "Sensor data quality processing for vital signs with opportunistic ambient sensing" beschrieben. Betrachtet werden BKG-Signale, die in einem Massagesessel aufgenommen werden, also ebenfalls im Sitzen aufgenommenes Signal, bei dem eine geringere Variabilität als in dem hier untersuchten Anwendungsfall erwartet wird.

Die vorliegenden Daten wurden manuell von Expert*innen als informativ oder nicht informativ klassifiziert und in 10-Sekunden-Segmente, die sich nicht überlappen, aufgeteilt. Insgesamt waren 58 % der Daten als informativ und 42 % als nicht-informativ gelabelt. Von diesen Segmenten wurden nach einer Bandpass-Filterung auf 1 bis 12 Hz 13 statistische Merkmale berechnet:

- Minimun
- Maximum
- Mittelwert
- Standardabweichung
- Schiefe
- Kurtosis
- Spannweite
- Interquartilspannweite
- mittlere absolute Abweichung
- Anzahl der Nulldurchgänge
- Varianz der lokalen Minima
- Varianz der lokalen Maxima
- Mittelwerte der Signalhüllkurve⁸

Für fünf verschiedene Modelle des maschinellen Lernens wurden jeweils die besten Hyperparameter über Kreuzvalidierung auf den Trainingsdaten ermittelt und die Modelle anschließend mit diesen Hyperparametern trainiert. Anschließend wurden die Modelle

⁸Die Signalhüllkurve ist eine glatte Kurve, die die Extrema des Signals umreißt.

auf unbekannten Daten getestet. Das Training und Testen wurde mit getauschten Gruppen wiederholt. Das beste Ergebnis wurde mit einem Random Forest erreicht: Die durchschnittliche Accuracy der Kreuzvalidierung betrug 98,13 % bzw. 100 % bei getauschten Gruppen. Auf dem Testset wurde eine Genauigkeit von 92,3 % bzw. 97,99 % erreicht. Weitere Evaluationsmetriken außer eine Confusion Matrix für den besten Klassifikator sind nicht gegeben.

Diese Ergebnisse sind sehr gut, allerdings muss bei der Einordnung beachtet werden, dass bei für die Kreuzvalidierung die Segmente zufällig verteilt wurden und nicht beachtet wurde, dass der Algorithmus für aussagekräftige Validierung einzelne Personen nicht kennen sollte. Dadurch ist die Performance auf gänzlich unbekannten Daten weiterhin nicht bekannt und vermutlich schlechter, als die Zahlen es hier vermuten lassen.

3.3.3 Ähnlichkeit der Intervallschätzer des CLIE-Algorithmus

Ein weiteres Maß für die Signalqualität basiert auf dem in Kapitel 3.2 vorgestellten Algorithmus zur Intervallschätzung. Dieser Signal Quality Index misst, wie einig sich die drei Intervallschätzer sind. Wenn diese sich uneinig sind, ist der SQI bei 0, je ähnlicher sich die Schätzungen sind, desto höher ist er. Für jedes Fenster *i* wird er wie folgt berechnet:

$$q = \frac{E_f[n_{\text{opt}}, i]}{\sum E_f[n, i]}$$

Bei der Ermittlung der konkreten Schlag-zu-Schlag Intervalle wird von dem SQI q äquivalent zu den geschätzten Intervalllängen der Median berechnet. Schätzungen dessen Qualität unter einem Schwellwert $q_{\rm th}$ werden verworfen. Die Wahl von $q_{\rm th}$ hängt von der gewünschten Genauigkeit und Coverage ab, je höher die gewünschte Genauigkeit, desto niedriger die Coverage.

Dieser SQI wird in verschiedenen Papern mit unterschiedlich gewähltem q_{th} genutzt und erreicht damit bei der BKG-Messung in Betten während der Nacht bei gesunden Patient*innen gute Ergebnisse. C. Brüser et al. erreicht zum Beispiel bei 8 gesunden Proband*innen durchschnittlich eine Coverage von 85% bei einem Fehler zur EKG-Referenz von 0,61% Schlägen pro Minute. Bei Patient*innen im Krankenhaus zeigte sich, dass sowohl die Ergebnisse bezüglich der Coverage als auch der Genauigkeit bedeutend schlechter sind. So erreichte Hoog Antink et al. bei 14 Patient*innen durchschnittlich 40% Coverage bei einem Fehler von 2,16% Schlägen pro Minute. Werden nur die nächtlichen

⁹Vgl. C. Brüser et al. 2013.

Aufnahmen betrachtet, wird eine Coverage von 52 % bei einem Fehler von 1,29 % Schlägen pro Minute erreicht. Bei der Berechnung letztere Ergebnisse wurden zusätzlich Intervallschätzungen verworfen, deren relative Abweichung vom Median der anderen Schätzungen einen bestimmten Schwellwert überschreitet. ¹⁰

Dieser Algorithmus ist der einzige der drei betrachteten, der im Bett aufgenommenes BKG-Signal untersucht. Die Ergebnisse sind bei gesunden, schlafenden Patient*innen sehr gut, im tatsächlichen Einsatz im Krankenhaus wird allerdings eine deutlich geringere Coverage bei höherem Fehler erreicht.

3.4 Messdaten

Die vorliegenden Messdaten wurden in der Gefäßstation des Universitätskrankenhauses in Tampere (Finnland) aufgenommen und wurden im Paper "Ballistocardiography can estimate beat-to-beat heart rate accurately at night in patients after vascular intervention" bereits untersucht. Insgesamt wurden 14 Patient*innen, zwei weiblich und zwölf männlich, bis zu 24 h überwacht. Alle hatten sich verschiedenen gefäßchirurgischen Eingriffen unterzogen. Das Durchschnittsalter der Patient*innen betrug 69,57 Jahre und die durchschnittliche Messdauer 17,7 h, wobei sie zwischen 4,46 und 22,96 h variierte.

Gemessen wurde mit einem EMFit QS Bettsensor, der zwischen der Matratze des Krankenhausbettes und dem Bettgestell positioniert wurde. Die Abtastrate des BKG betrug 100 Hz. Das Referenz-EKG wurde mit einem Faros 360 Patientenmonitor mit einer Abtastrate von 1 kHz aufgenommen und hat drei Kanäle. Durch die unterschiedlichen Systemzeiten der beiden Geräte kam es zu einem Drift zwischen den beiden Signalen. Bei den langen Messungen zeigte sich, dass dieser zeitvariant ist.

Es liegen also BKG-Daten und ein 3-kanaliges EKG-Signal vor. Außerdem liegen schon detektierte und nach ihrer Qualität gefilterte Herzschläge mitsamt ihrer Qualität nach dem in Kapitel 3.3.3 beschriebenen SQI, der geschätzten Länge und der Länge des Referenzsignals vor. Zusätzlich gibt es zu jedem Paar von EKG und BKG-Daten einen Vektor, der den zeitvarianten Drift berücksichtigt. Zu jeder Sekunde des BKG-Signals wird die entsprechende Sekunde der EKG-Referenz benannt.

3.4.1 Vorverarbeitung

Die verschiedenen Daten liegen in unterschiedlichen Formaten und Dateien vor, die zunächst zusammengeführt und vorverarbeitet werden müssen. Dieser Vorgang sowie die

¹⁰Vgl. Hoog Antink et al. 2020.

entwickelte Datenstruktur werden im Folgenden beschrieben.

Für jede*n Patient*in existiert eine .mat-Datei, die das rohe BKG-Signal und die bereits detektierten Intervalle mit Position, Qualität und Referenzlänge enthält. Die Vektoren zum Ausgleich des Drifts liegen ebenfalls in .mat-Dateien vor. Das Referenzsignal ist im .edf-Format gespeichert. Da die Nummerierung von BKG-Daten und EKG-Daten variiert, existiert außerdem eine Zuordnung dieser. Das Ziel der entwickelten Datenstruktur ist es, diese Daten zusammenzuführen. Die Klassenstruktur ist in Abbildung 3.6 visualisiert. Die Klasse *DataSeries* enthält alle Daten, die zu einer Person gehören, also das BKG-Signal, das EKG-Signal und Vektor, um den Drift auszugleichen. Alle Patient*innen sind in *Data* gesammelt. Dort werden auch alle Daten eingelesen und zugeordnet.

Abbildung 3.6: Klassendiagramm der Datenstruktur für die Messdaten

Um die Herzraten auf Intervallen bestimmen zu können, müssen sowohl das BKG- als auch das EKG-Signal vorverarbeitet werden. Da diese Vorverarbeitung durch die große Datenmenge sehr aufwändig ist, werden die Ergebnisse als .csv-Dateien serialisiert. Beim Laden der Daten kann so geprüft werden, ob die Berechnung wiederholt werden muss oder geladen werden kann.

Bei der Vorverarbeitung des BKG-Signals wird der in Kapitel 3.2 vorgestellte CLIE-Algorithmus angewendet und die ermittelten Indices der Intervalle, die geschätzte Intervallängen und der in Kapitel 3.3.3 beschriebene Qualitätsindex gespeichert. Für das EKG-Signal wird für alle drei Kanäle eine Detektion der QRS-Komplexe durchgeführt, mit denen die Schlag-zu-Schlag Intervalle ermittelt werden können. Dafür wird die Python-Implementierung von Howell et al. des von Elgendi et al. beschriebenen Algorithmus¹¹ genutzt. Dieser zeigt in einer Untersuchung von Porr et al. gute Ergebnisse.¹²

3.4.2 Annotation der Daten

Die vorliegenden Daten sind nicht annotiert. Es ist im Rahmen dieser Arbeit nicht möglich, die Annotation durch Expert*innen durchführen zu lassen, weshalb auf das parallel aufgenommene EKG zurückgegriffen wird. Aufgrund des nicht-linearen Drifts der Daten ist eine herzschlaggenaue Synchronisierung schwierig. Aus diesem Grund wurde entschieden, die Annotation bereichsweise vorzunehmen. Für jeden Bereich wird zunächst geprüft, ob ein aussagekräftiges Referenzsignal existiert. Falls nicht, wird der entsprechende Bereich ausgeschlossen und nicht weiter verwendet. Ansonsten wird die durchschnittliche Herzrate sowohl für BKG- als auch EKG-Signal berechnet. Für die Berechnung der Herzfrequenz im BKG wird der Median der geschätzten Intervalllängen verwendet. So werden Ausreißer weniger stark gewichtet. Wenn mit den geschätzten Intervalllängen eine Coverage von unter 80 % erreicht wird, wird die Herzrate verworfen, da in diesem Fall nur kleine Teile des Signals aussagekräftig sind.

Auch bei dem Referenzsignal wird die Herzrate über den Median der Intervalllängen ermittelt. Die Intervalllängen entsprechen hier den Abständen der ermittelten R-Peaks. Da drei EKG-Kanäle vorliegen, wird die Herzrate zunächst für jeden Kanal einzeln geschätzt. Falls die geschätzte Herzrate außerhalb des erwarteten Bereichs von 30 bis 200 Schlägen pro Minute liegt, wird der Kanal verworfen. Die Auswahl des Kanals gestaltet sich schwieriger, da auch im Referenzsignal teilweise schlechtes Signal vorliegt. Um dies auszugleichen, wird zur Auswahl des Kanals die Herzrate ebenfalls auf einem doppelt so großem Fenster berechnet. Von diesen drei Herzraten wird die ausgewählt, deren Kanal die geringste Spannweite an Intervalllängen aufweist. Mit Hilfe der geschätzten Herzrate des größeren Fensters wird nun der Kanal für die endgültige Schätzung ausgewählt, der die geringste Abweichung zu der Schätzung des größeren Fensters hat. Der Ablauf ist in Abbildung 3.7 visualisiert.

¹¹Elgendi et al. 2010.

¹²Vgl. Porr et al. 2019.

Abbildung 3.7: Aktivitätsdiagramm der Herzratenschätzung auf dem EKG-Referenzsignal

Die Auswirkungen dieses Verfahrens sind in Abbildung 3.8 sichtbar. Eine Fusion nur auf dem aktuellen Bereich führt zu einigen Fehlern in der Herzratenschätzung, die die Umgebung einbeziehende Fusion führt zu deutlich besseren Ergebnissen. Auch ist hier sichtbar, wie groß die Abweichung einzelner Kanäle ist.

Abbildung 3.8: EKG-Herzratenschätzungen auf sich überlappenden 10-Sekunden-Segmenten für Patient 26. Fusioniert lokal zeigt die Fusion ohne Miteinbeziehung der Umgebung, Fusioniert Umgebung die oben beschriebene Fusion

Auf Basis dieser beiden Herzraten $HR_{\rm EKG}$ und $HR_{\rm BKG}$ wird nun die Annotation vorgenommen. Dabei wurde sich an der Norm für EKG-Patientenmonitoren orientiert. Diese schreibt vor, dass die Abweichung der Herzrate maximal 10 % oder 5 Schläge pro Minute betragen darf, je nachdem welcher der beiden Werte größer ist¹³ und wurde hier so übernommen. Wenn eine höhere oder niedrigere Genauigkeit gefordert ist, kann dies auch auf 15 % und 7,5 Schläge pro Minute oder 5 % und 2,5 Schläge pro Minute angepasst werden. Die entsprechenden Verteilungen der Labels bei einer binären Klassifikation für 10 Sekunden lange Segmente mit 90 % Überlappung für 5, 10 und 15 % maximale Abweichung sind in Abbildung 3.9 zu sehen.

¹³Medizinische elektrische Geräte - Teil 2-27: Besondere Festlegungen für die Sicherheit einschlieβlich der wesentlichen Leistungsmerkmale von Elektrokardiographie-Überwachungsgeräten 2015.

Abbildung 3.9: Verteilung der Label je nach maximal zulässiger Abweichung

Es ist auffällig, dass die Anteile der informativen Segmente stark patient*innenabhängig sind. In Abbildung 3.10 wird dies für 10 % maximale Abweichung visualisiert.

Abbildung 3.10: Verteilung der Label pro Patient*in für maximal 10 % Abweichung

Neben einer binären Klassifikation ist es auch möglich mit Hilfe dieses Fehlermaßes, im Folgenden $E_{\rm HR}$ genannt, einen Wertebereich für eine Regression zu erzeugen. Dafür ist es nötig, ein einheitliches Maß für die Unterscheidung von relativer und absoluter Abweichung zu finden, das heißt den absoluten Fehler so umzurechnen, dass er mit der relativen Abweichung vergleichbar ist. Bei Herzraten über 50 Schlägen pro Minute entspricht $E_{\rm HR}$ dem relativen Fehler Δ HR_{relativ}, bei Herzraten darunter ermöglicht die absolute Abweichung den größeren Spielraum und wird daher für die Annotation verwendet. Eine

Umrechnung dieser erfolgt auf Basis der Überlegung, dass der Schwellwert von 10% relativer Abweichung einer absoluten Abweichung von 5 Schlägen die Minute entspricht. Daraus lässt sich folgern, dass eine Abweichung von 1 Schlag pro Minute einer relativen Abweichung von 2% entspräche. Analog lässt sich E_{HR} bei Herzraten unter 50 Schlägen pro Minute durch die folgende Formel berechnen:

$$E_{\rm HR} = \Delta HR_{\rm abs} \cdot 2$$
.

Wenn keine Herzrate auf dem BKG-Signal ermittelt werden konnte, wird $E_{\rm HR}$ auf den maximalen Wert 667 gesetzt, da das der maximal möglichen relativen Abweichung von Herzraten zwischen 30 und 200 Schlägen pro Minute entspricht. Die Verteilung von $E_{\rm HR}$, abgebildet in 3.11, zeigt, dass Segmente mit Fehlern von mehr als 20 % und solche mit Fehlern unter 5 % jeweils die beiden größten Gruppen bilden. Für $E_{\rm HR}$ wird im Folgenden die Einheit Fehlereinheit FE verwendet.

Abbildung 3.11: Verteilung von $E_{\rm HR}$

4 Analyse

In diesem Kapitel werden die vorgestellten Daten näher untersucht. Das beinhaltet sowohl die Anwendung der in Kapitel 3.3 beschriebenen existierenden Verfahren als auch eine Analyse der verwendeten Merkmale.

4.1 Aufbau und Evaluation der Verfahren

Um Modelle zur Beurteilung der Signalqualität anzuwenden und zu untersuchen, müssen sowohl die verwendeten Merkmale extrahiert als auch die Ergebnisse evaluiert werden. In den hier durchgeführten Untersuchungen wurde die Segmentlänge standardmäßig auf 10 Sekunden festgelegt und der Abstand der Segmente auf 1 Sekunde, wodurch sich die Segmente zu je 90% überlappen. Diese Segmentlänge wird zum einen häufiger verwendet¹, zum anderen bietet sie eine ausreichend große Robustheit für die Annotation der Daten. Die für die Verfahren jeweils benötigten Merkmale werden segmentweise extrahiert und serialisiert. Zusätzlich zu den verwendeten Merkmalen werden allgemeine Informationen über die Segmente gespeichert. Dazu gehören Patient*innen-ID, EKG-Herzrate, BKG-Herzrate, absoluter und relativer Fehler, E_{HR} und die binäre Annotation. Für letztere wird als Standard $E_{HR} = 10$ als Schwellwert verwendet.

Diese Daten werden anschließend in Trainings- und Testset aufgeteilt. Um diese beiden Gruppen inhaltlich vollständig zu trennen und auszuschließen, dass auf teilweise bekannten Daten validiert wird, geschieht die Trennung anhand der Patient*innen-IDs, sodass Segmente einer Person lediglich in einem der beiden Sets verwendet werden. Das Testset in dieser Arbeit entspricht einem Drittel der Patient*innen, die restlichen zwei Drittel werden zur Datenexploration, zur Merkmalskonstruktion und zum Training verwendet. Die Verteilung von $E_{\rm HR}$ im Testset ist in Abbildung 4.1 gezeigt. Von den existierenden Verfahren benötigen zwei keine Trainingsphase; um vergleichbare Ergebnisse zu erhalten, wird auch bei diesen bei der Evaluation nur das Testset betrachtet.

¹Vgl. Orphanidou et al. 2015; Sadek, Biswas, Yongwei et al. 2016; Yu et al. 2020.

Abbildung 4.1: Verteilung von $E_{\rm HR}$ auf dem Testset, wobei 667 FE dem maximalen Fehler entspricht

Wie schon in Kapitel 3.3 beschrieben, sind bei der Verarbeitung von medizinischen Signalen zwei Bereiche wichtig: Die Coverage und die Qualität des Signals, in diesem Fall also die Genauigkeit der geschätzten Herzrate im Vergleich zur Referenz. Diese beiden müssen gegeneinander aufgewogen werden und werden aus diesem Grund beide betrachtet. Die Qualität der Modelle kann zunächst anhand der binären Klassifikation beurteilt werden. Da diese aber keine Auskunft darüber enthält, wie nah klassifiziertes Signal an dem Schwellwert für $E_{\rm HR}$ liegt, wird letzteres in einer tiefergehenden Evaluation ebenfalls betrachtet. Im Zuge dessen wird sowohl der Fehler auf dem als informativ klassifizierten Signal betrachtet als auch die Coverage in Bezug auf das ganze Signal für verschiedene Fehlergrößen. Insbesondere falsch klassifiziertes Signal, also Falsch-Negative und Falsch-Positive, ist interessant, um zu beurteilen, ob Fehlklassifikationen lediglich im Grenzbereich $E_{\rm HR} \approx 10\,{\rm FE}$ oder allgemein vorkommen.

4.2 Anwendung existierender Verfahren

Zunächst werden die in Kapitel 3.3 beschriebenen existierenden Artefakterkennungsverfahren mit den in dieser Arbeit untersuchten Daten wie oben beschrieben getestet und ihre Leistungsfähigkeit untersucht und bewertet.

4.2.1 Ähnlichkeit der Intervallschätzer des CLIE-Algorithmus

Der SQI, der die Ähnlichkeit der Intervallschätzer des CLIE-Algorithmus angibt, wird im Normalfall herzschlagweise angewendet. Da die Datenannotion nur bereichsweise vorgenommen werden kann, wurde entschieden, ein Segment als informativ zu klassifizieren, wenn mit den Herzschlägen, deren SQI über einem Schwellwert q_{th} liegt, eine Coverage über einem gegebenen Schwellwert c_{th} auf dem Segment erreicht wird. Getestete Schwellwerte für die Coverage sind 50 %, 75 % und 100 %. Zum Testen des Algorithmus wurde unter anderem $q_{th}=0,4$ gewählt, da dieser Wert auch von Zink et al. verwendet wird. Zusätzlich wurden $q_{th}=0,3$ und $q_{th}=0,2$ untersucht, um den Einfluss von q_{th} einzuordnen. Bei der Berechnung der Merkmale werden für jedes Segment die detektierten Herzschläge extrahiert, deren SQI über q_{th} liegt. Auf Basis dieser Intervalllängen wird wie in Kapitel 3.4.2 beschrieben die Herzrate, im Folgenden HR_{SQI} genannt, ermittelt. Extrahierte Merkmale sind damit in diesem Fall HR_{SQI} und die Coverage C_{SQI} . Für die Auswertung muss beachtet werden, dass sich die ermittelte Herzrate HR_{SQI} von der zur Annotation verwendeten Herzrate unterscheidet. Aufgrund der Vergleichbarkeit wird HR_{SQI} nicht für die Berechnung des MAE des Algorithmus verwendet.

Bei einer ersten Betrachtung von MAE in FE, Coverage und Accuracy wird sichtbar, dass die Wahl der Schwellwerte großen Einfluss auf das Ergebnis hat und in jedem Fall Aussagekraft des Signals gegen Coverage eingetauscht wird. Die genauen Ergebnisse sind in Abbildung 4.2 zu finden. Auch ist deutlich, dass die Accuracy der Klassifikation mit mit Werten knapp über 0,6 nicht gut ist. Des Weiteren ist die Coverage bei verhältnismäßig kleineren MAE sehr niedrig.

	MAE	Coverage	Accuracy
insgesamt	21,85 FE	-	-
annotiert	3,28 FE	43,22 %	-
$q_{th} = 0.4, c_{th} = 50$	12,30 FE	20,95 %	0,65
$q_{th} = 0.4, c_{th} = 75$	9,57 FE	11,78 %	0,63
$q_{th} = 0.4, c_{th} = 100$	8,77 FE	5,26 %	0,60
$q_{th} = 0.3, c_{th} = 50$	21,36 FE	58,73 %	0,55
$q_{th} = 0.3, c_{th} = 75$	17,97 FE	37,87 %	0,62
$q_{th} = 0.3, c_{th} = 100$	13,45 FE	19,25 %	0,63
$q_{th} = 0.2, c_{th} = 75$	21,39 FE	96,43 %	0,44

Abbildung 4.2: Fehler und Coverage für verschiedene Schwellwerte im Vergleich zum gesamten Signal und der Annotation

Die detailliertere Evaluation wird beispielhaft für die Schwellwerte $q_{th} = 0.4$ und $q_{th} = 0.3$ mit $c_{th} = 75$ vorgestellt. Positiv hervorzuheben ist, dass bei beiden kein Signal als

²Zink et al. 2017.

informativ klassifiziert wird, bei denen $E_{\rm HR}$ maximal ist. Allerdings ist bei über 20 % der mit $q_{th}=0.4$ als informativ klassifizierten Segmenten $E_{\rm HR}$ größer als 20, mit $q_{th}=0.3$ bei sogar mehr als 35 %, wie auch in Abbildung 4.3 abgebildet. Das bedeutet, dass Falsch-klassifikationen nicht nur im Randbereich vorkommen. Dies wird noch deutlicher, wenn man sich den MAE auf jeweils auf den Falsch-Positiven und Falsch-Negativen anschaut. So beträgt der MAE bei $q_{th}=0.4$ für falsch-negative Segmente 3,65 FE, ist also nah an dem MAE aller informativen Segmente von 3,28 FE.

Abbildung 4.3: Verteilung von $E_{\rm HR}$ bei den als informativ klassifizierten Segmenten

Außerdem wurde untersucht, wie hoch die Coverage unter einem bestimmten Fehler $E_{\rm HR}$ auf dem gesamten Signal ist, wenn nur die als informativ klassifizierten Segmente verwendet werden. Hier wird besonders sichtbar, wie niedrig die erreichte Coverage ist. So werden mit $q_{th}=0.4$ und $c_{th}=75$ nur 8,29 % Coverage für $E_{\rm HR}<5$ erreicht werden, obwohl das ganze Signal 32,61 % enthält. Mit $q_{th}=0.3$ und $c_{th}=75$ sind es immerhin 18,32 %, aber auch das liegt deutlich unter dem tatsächlichen Wert. Die Verteilung ist auch in Abbildung 4.4 gezeigt.

	insgesamt	$q_{th} = 0.3, c_{th} = 75$	$q_{th} = 0.4, c_{th} = 75$
$E_{\rm HR} < 5{\rm FE}$	32,61 %	18,32 %	8,29 %
$E_{\rm HR} < 10{\rm FE}$	43,21 %	21,34 %	8,89 %
$E_{\rm HR} < 15{\rm FE}$	51,64 %	23,35 %	9,22 %
$E_{\rm HR} < 20{\rm FE}$	59,38 %	25,12 %	9,47 %

Abbildung 4.4: Coverage unter bestimmten Fehlern E_{HR} vor und nach Klassifikation

Alles in allem zeigt sich, dass trotz einer sehr niedrigen erreichten Coverage der Fehler in der Klassifikation verhältnismäßig hoch ist. Wenn q_{th} und c_{th} nicht zu niedrig gewählt werden, kann ein Teil des nicht informativen Signals markiert und somit der Fehler in weiterer Verarbeitung insgesamt reduziert werden.

4.2.2 Schwellwertbasierte Artefakterkennung

Für das zweite getestete Verfahren werden lediglich zwei Schwellwerte T_1 und T_2 benötigt, die auf Standardabweichung, Minimum, Maximum und Durchschnitt des Signals beruhen. Die Klassifikation ist ein einfacher Vergleich. Pino et al. verwenden sehr kleine Fenster, die hier aufgrund fehlender Robustheit der Annotation nicht verwendet werden können.³ Stattdessen wird der Algorithmus sowohl auf 10 Sekunden- als auch 4 Sekunden-Segmenten getestet, damit sichtbar wird, ob die Segmentlänge einen Einfluss auf das Ergebnis hat.

Die Tests mit beiden Segmentlängen zeigen, dass dieses Verfahren für die in dieser Arbeit untersuchten Daten nicht nutzbar ist, da bei beiden über 95 % der Daten als informativ klassifiziert werden, darunter auch Segmente, bei denen $E_{\rm HR}$ maximal ist. Weiterführende Evaluation bietet hier keine weiteren Erkenntnisse. Dieses Verfahren ist damit nicht weiter nutzbar.

4.2.3 Maschinelles Lernen mittels statistischer Merkmale

Für das maschinellen Lernen mittels statistischer Merkmale werden die in Kapital 3.3.2 aufgezählten Merkmale extrahiert. Als Bibliothek für die Modelle des maschinellen Lernens wird *scikit-learn*⁴ verwendet. Da die Daten sich grundlegend von den von Sadek, Biswas, Yongwei et al. untersuchten unterscheiden, werden die Hyperparameter der Modelle im Zuge dieser Arbeit erneut optimiert. Bei der dafür durchgeführten Kreuzvalidierung wird wie schon bei der Unterteilung in Trainings- und Testset anhand der Patient*innen-ID geteilt, damit auch diese aussagekräftige Ergebnisse liefert.

Insgesamt zeigen bereits Accuracy und MAE, siehe Abbildung 4.5, eindeutig, dass die Klassifikation mit keinem der Modelle sehr erfolgreich ist. Die Accuracy und AUC von je unter 0,6 zeigen, dass die Klassifikation nur minimal besser als reines Raten ist. Teils ist der MAE der als informativ klassifizierten Segmente sogar größer als der auf dem gesamten Signal. In der folgenden tiefergehenden Evaluation werden lediglich RF und Multilayer-Perzeptron (MLP) betrachtet. Zwar sind die Ergebnisse des Decision Tree (DT) auf einem ähnlichen Niveau, aber da ein RF lediglich ein Zusammenschluss mehrerer DT ist, ist eine zusätzliche Analyse nicht lohnenswert.

³Pino et al. 2015.

⁴Pedregosa et al. 2011.

	MAE	Coverage	Accuracy (Testset)	Accuracy (Kreuzvalidierung Trainingsset)	AUC
insgesamt	21,84 FE	-	-	-	-
annotiert	3,28 FE	43,22 %	-	-	-
LDA	21,84 FE	84,81 %	0,49	0,51	0,53
SVM	22,06 FE	88,14 %	0,47	0,55	0,53
DT	19,47 FE	70,39 %	0,55	0,55	0,59
RF	20,14 FE	62,02 %	0,55	0,58	0,59
MLP	18,41 FE	42,04 %	0,56	0,54	0,58

Abbildung 4.5: Fehler und Coverage für die verschiedenen Modelle im Vergleich zum gesamten Signal und der Annotation

Bei einer ähnlich hohen, beziehungsweise höheren Coverage wie die der Annotation ist der deutlich höhere MAE der Klassifikation in falsch-positiven Segmenten begründet. Der Anteil von Segmenten mit einem Fehler $E_{\rm HR}$ größer als 20 FE ist bei beiden Modellen mit 35 bis 40 % ähnlich hoch. Zusätzlich sind 0,002 % der vom RF als informativ klassifizierten Segmente solche, bei den $E_{\rm HR}$ maximal ist. Das bedeutet, dass die falsch-positiv klassifizierten Segmente bei beiden Klassifikatoren keine Randfälle sind. Der MAE der falsch-negativen Klassifikationen beträgt beim RF 4,07 FE und beim MLP 3,39 FE, ist also leicht höher als der MAE aller informativen Segmente, aber nicht relevant. Auch bei diesen handelt es sich demnach nicht um Randfälle.

Abbildung 4.6: Verteilung von $E_{\rm HR}$ bei den als informativ klassifizierten Segmenten

Auch für diese Modelle wird untersucht, wie hoch die Coverage unter einem bestimmten Fehler $E_{\rm HR}$ bei der Betrachtung des als informativ klassifizierten Signals auf dem ganzen Signal ist. Auffallend ist, dass die Werte knapp beim MLP halb so hoch wie die tatsächliche Coverage sind. Das zeigt ergänzend zu der gemessen Accuracy, dass ca. die Hälfte der Segmente, unabhängig von ihren tatsächlichen Qualität, als informativ klassi-

fiziert werden. Der RF ist näher an der tatsächlichen Coverage, aber es wird auch mehr nicht-informatives Signal falsch-positiv klassifiziert.

	insgesamt	RF	MLP
$E_{\rm HR} < 5{\rm FE}$	32,61 %	24,34 %	16,07 %
$E_{\rm HR} < 10{\rm FE}$	43,22 %	30,35 %	20,82 %
$E_{\rm HR} < 15{\rm FE}$	51,66 %	34,66 %	24,34 %
$E_{\rm HR} < 20{\rm FE}$	59,40 %	38,52 %	27,45 %

Abbildung 4.7: Coverage unter bestimmten Fehlern E_{HR} vor und nach Klassifikation

Insgesamt zeigt sich, dass die Klassifikation mittels statistischer Merkmale bei vorliegenden Daten und Annotation nicht sehr zuverlässig. Zwar wurden auf anderen Daten sehr gute Ergebnisse erreicht, aber es bestätigt sich die Vermutung, dass sich dies, vermutlich aufgrund der unterschiedlichen Aufnahmesituation der Daten und der nicht aussagekräftigen Validierung der Ergebnisse für die im Paper untersuchten Daten, nicht übertragen lässt.

4.3 Analyse der Merkmale

Obwohl keines der Verfahren sehr gute Ergebnisse für die vorliegenden Daten liefert, ist besonders bei den Modellen maschinellen Lernens interessant, welchen Einfluss und welchen Informationsgewinn die jeweiligen Merkmale haben. Aus diesem Grund wird im Folgenden eine explorative Datenanalyse durchgeführt.

Zunächst wird betrachtet, ob die Merkmale untereinander und mit $E_{\rm HR}$ und der Annotation korreliert sind. Da die Merkmale das Segment gemeinschaftlich statistisch beschreiben ist eine hohe Korrelation untereinander erwartet und zeigt sich auch. Eine Ausnahme bilden Kurtosis, Mittelwert und Schiefe. Die Anzahl der Nulldurchgänge ist ebenfalls nur schwächer mit den restlichen Mermalen korreliert. Außerdem zeigt sich bei der Betrachtung des in Abbildung 4.8 abgebildeten Korrelationsdiagramm, dass die Korrelation zu $E_{\rm HR}$ und der Annotation nicht signifikant ist. Auch bei paarweiser Visualisierung zeigt sich, dass sich anhand keines untersuchten Merkmalspaares informative von nicht informativen unterscheiden lassen.

Abbildung 4.8: Korrelationsdiagramm der statistischen Merkmale, $E_{\rm HR}$ und der binären Annotation

Weiteren Einblick ermöglicht die Analyse des RF, da bei diesem ermittelt werden kann, wie wichtig die einzelnen Merkmale jeweils für die Entscheidungsfindung sind. Das Ergebnis zeigt, dass der Durchschnitt des Signals deutlich weniger Einfluss als die anderen betrachteten Merkmale hat. Die Schiefe (skewness) und die Anzahl der Nulldurchgänge sind, wie in Abbildung 4.9 sichtbar, die beiden wichtigsten Merkmale.

Abbildung 4.9: Wichtigkeit der Merkmale für den RF-Klassifikator

Da die Visualisierung hochdimensionaler Daten schwierig ist und auch Modelle maschinellen Lernens bei einer hohen Merkmalszahl aufwändiger zu trainieren sind, wurde ebenfalls untersucht, wie sich die Daten bei einer Transformation in einen niedriger dimensionierten Raum verhalten. Untersuchte Transformationen umfassen sowohl unüberwachte Verfahren wie eine PCA mit verschiedenen Kernel als auch überwachte Verfahren wie eine Dimensionsreduktion mit einer Linear Discriminant Analysis (LDA). Auch die transformierten Daten lassen sich nicht voneinander trennen, wie auch in Abbildung 4.10 beispielhaft für eine PCA mit linearem Kernel gezeigt ist.

Abbildung 4.10: Dimensionsreduktion der statistischen Merkmale mit einer PCA mit linearem Kernel

Da eine hohe Korrelation zwischen einzelnen Merkmalen, wie sie auch bei den statistischen Merkmalen vorliegt, dazu führen kann, dass die Interpretation der Wichtigkeit der Merkmale und die Qualität der Modelle generell eingeschränkt ist⁵ wird außerdem die Abhängigkeit der Merkmale voneinander untersucht. Hierzu wird das Python-Paket rfimp verwendet, das ermittelt, welche Merkmale durch andere vorhergesagt werden können. Nach Reduktion der Merkmalsmenge um diese bleiben lediglich fünf Merkmale: die Standardabweichung, der Durchschnitt, die Anzahl der Nulldurchgänge, Schiefe und

⁵Harrison 2019, Kapitel 8.

Kurtosis. Betracht man für diese die Wichtigkeit der einzelnen Merkmale bei einem Random Forest, zeigt sich, dass weiterhin der Durchschnitt am wenigsten Einfluss besitzt, wobei die Standardabweichung jetzt am Wichtigsten ist. Die gesamte Verteilung ist in Abbildung 4.11 sichtbar.

Abbildung 4.11: Wichtigkeit der Merkmale für den RF-Klassifikator mit reduzierter Merkmalszahl

Die Ergebnisse dieses Random Forest mit reduzierter Merkmalsanzahl können mit dem in 4.2.3 untersuchten Random Forest verglichen werden. Der MAE ist bei reduzierter Merkmalszahl etwas höher, aber die Coverage ist bedeutend höher. Insgesamt sind die Klassifikatoren auf einem ähnlichen Niveau, auch dieser Vergleich bei der geringen Qualität schwierig ist. In Abbildung 4.12 sind die beiden Random Forest gegenübergestellt.

	insgesamt	RF mit 13 Merkmalen	RF mit 5 Merkmalen
$E_{\rm HR} < 5$	32,61 %	24,34 %	28,00 %
$E_{\rm HR} < 10$	43,22 %	30,35 %	36,25 %
$E_{\rm HR} < 15$	51,66 %	34,66 %	42,53 %
$E_{\rm HR} < 20$	59,40 %	38,52 %	48,25 %
MAE	21,85 FE	20,14 FE	19,49 FE
Coverage	43,22 %	62,02 %	77,08 %
Accuracy (Testset)	_	0,55	0,52
Accuracy (Kreuzvalidierung)	_	0,52	0,57

Abbildung 4.12: Random Forest mit reduzierter Merkmalszahl im Vergleich zu allen 13 Merkmalen

Anhand der statistischen Merkmale kann also keine zuverlässige Klassifikation vorge-

nommen werden. Vermutlich sorgt die große Variation der in Betten aufgenommenen BKG-Signale dafür, dass sich die Signale nicht statistisch verallgemeinern lassen. Auch die reine Betrachtung der Ähnlichkeit der Intervallschätzer führt zu einem im Verhältnis zur Coverage hohen MAE. Es müssen also weitere Merkmale gefunden werden, die allein oder ergänzend zu den bereits betrachteten eine bessere Aussage zu der Signalqualität ermöglichen.

5 Synthese

Die Untersuchungen in 4 haben gezeigt, dass die existierenden untersuchten Verfahren nicht ausreichend sind, um die Qualität von BKG-Signal aus Langzeitaufnahmen von Patient*innen zu beurteilen. Deshalb werden weitere Möglichkeiten untersucht und der Fokus dabei vor allem auf die Konstruktion der Eingabemerkmale gelegt. Des Weiteren wird der Einfluss der Segmentlänge und des Schwellwerts von $E_{\rm HR}$ analysiert. Dafür wird eine Auswahl gängiger Modelle maschinellen Lernens verwendet.

5.1 Eingabeform der Daten

Grundsätzlich muss zwischen zwei Eingabeformen unterschieden werden: Der bisher betrachteten Eingabe von Merkmalen und die Eingabe des Signals selbst. Letzteres hat den Vorteil, dass keine Informationen verloren gehen können. Allerdings ist das Training so sehr rechen- und damit auch zeitaufwändig und die Merkmale, die zur Beurteilung der Signalqualität genutzt werden sind nur schwer nachvollziehbar. Aus diesen Gründen wird in dieser Arbeit die Eingabe von Merkmalen untersucht.

Neben der Konstruktion von neuen Merkmalen können ebenfalls die Ergebnisse aus 4 verwendet werden, das bedeutet das reduzierte Set statistischer Merkmale und der SQI des CLIE-Algorithmus, bzw. die Coverage durch Intervalle, deren SQI über einem Schwellwert $q_{\rm th}$ liegt. Das Vorgehen bei der Konstruktion neuer Merkmale besteht darin, diese zunächst zu sammeln und anschließend zu untersuchen, Zusammenhänge zu ermitteln

5.2 Evaluationsmetriken

5.3 Modelle

6 Evaluierung der Ergebnisse

7 Zusammenfassung und Ausblick

- 7.1 Zusammenfassung
- 7.2 Ausblick

Literatur

- Albukhari, Almothana, Frederico Lima und Ulrich Mescheder (2019). "Bed-embedded heart and respiration rates detection by longitudinal ballistocardiography and pattern recognition". In: *Sensors (Switzerland)* 19.6.
- Brüser, C., S. Winter und S. Leonhardt (2013). "Robust inter-beat interval estimation in cardiac vibration signals". In: *Physiological Measurement* 34.2, S. 123–138.
- Brüser, Christoph et al. (2011). "Adaptive beat-to-beat heart rate estimation in ballisto-cardiograms". In: *IEEE Transactions on Information Technology in Biomedicine* 15.5, S. 778–786.
- de Lalla, V., M. A. Epstein und H. R. Brown (1950). "Analysis of H wave of ballistocar-diogram." In: *Circulation* 2.5, S. 765–769.
- Elgendi, Mohamed, Mirjam Jonkman und Friso Deboer (2010). "Frequency bands effects on QRS detection". In: *BIOSIGNALS 2010 Proceedings of the 3rd International Conference on Bio-inpsired Systems and Signal Processing, Proceedings*, S. 428–431.
- Gordon, J W (1877). "Certain Molar Movements of the Human Body produced by the Circulation of the Blood." In: *Journal of anatomy and physiology* 11.Pt 3, S. 533–6.
- Harrison, Matt (2019). *Machine Learning Pocket Reference Working with Structured Data in Python*. O'Reilly Media, Inc.
- Hoog Antink, Christoph et al. (Aug. 2020). "Ballistocardiography can estimate beat-to-beat heart rate accurately at night in patients after vascular intervention". In: *IEEE Journal of Biomedical and Health Informatics* 24.8, S. 2230–2237.
- Howell, Luis und Bernd Porr (Dez. 2019). "Popular ECG R peak detectors written in python". In:
- Inan, Omer T. et al. (2015). "Ballistocardiography and Seismocardiography: A Review of Recent Advances". In: *IEEE Journal of Biomedical and Health Informatics* 19.4, S. 1414–1427.
- Medizinische elektrische Geräte Teil 2-27: Besondere Festlegungen für die Sicherheit einschließlich der wesentlichen Leistungsmerkmale von Elektrokardiographie-Überwachungsgeräten (Apr. 2015). Norm.

- Nizami, Shermeen, James R. Green und Carolyn McGregor (2013). *Implementation of artifact detection in critical care: A methodological review*.
- Orphanidou, Christina et al. (Mai 2015). "Signal-quality indices for the electrocardiogram and photoplethysmogram: Derivation and applications to wireless monitoring". In: *IE-EE Journal of Biomedical and Health Informatics* 19.3, S. 832–838.
- Paalasmaa, Joonas, Hannu Toivonen und Markku Partinen (2015). "Adaptive heartbeat modeling for beat-to-beat heart rate measurement in ballistocardiograms". In: *IEEE Journal of Biomedical and Health Informatics* 19.6, S. 1945–1952.
- Pedregosa, F. et al. (2011). Scikit-learn: Machine Learning in Python.
- Pinheiro, Eduardo, Octavian Postolache und Pedro Girão (2010). "Theory and Developments in an Unobtrusive Cardiovascular System Representation: Ballistocardiography". In: *The Open Biomedical Engineering Journal* 4.1, S. 201–216.
- Pino, Esteban J., Javier A.P. Chavez und Pablo Aqueveque (2015). "Noninvasive ambulatory measurement system of cardiac activity". In: *Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS*. Bd. 2015-November. Institute of Electrical und Electronics Engineers Inc., S. 7622–7625.
- Porr, Bernd und Luis Howell (2019). "R-peak detector stress test with a new noisy ECG database reveals significant performance differences amongst popular detectors". In:
- Rosales, Licet et al. (2012). "Heartbeat detection from a hydraulic bed sensor using a clustering approach". In: *Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS*, S. 2383–2387.
- Sadek, Ibrahim, Jit Biswas und Bessam Abdulrazak (2019). "Ballistocardiogram signal processing: a review". In: *Health Information Science and Systems* 7.1.
- Sadek, Ibrahim, Jit Biswas, Zhu Yongwei et al. (2016). "Sensor data quality processing for vital signs with opportunistic ambient sensing". In: *Proceedings of the Annual International Conference of the IEEE Engineering in Medicine and Biology Society, EMBS*. Bd. 2016-October. Institute of Electrical und Electronics Engineers Inc., S. 2484–2487.
- Starr, Isaac et al. (1939). "Studies on the Estimation of Cardiac Ouptut in Man, and of Abnormalities in Cardiac Function, From the Heart'S Recoil and the Blood'S Impacts; the Ballistocardiogram". In: *American Journal of Physiology-Legacy Content* 127.1, S. 1–28.

Yu, Xinchi et al. (Aug. 2020). "Noncontact Monitoring of Heart Rate and Heart Rate Variability in Geriatric Patients Using Photoplethysmography Imaging". In: *IEEE Journal of Biomedical and Health Informatics*, S. 1–1.

Zink, Matthias Daniel et al. (2017). "Unobtrusive Nocturnal Heartbeat Monitoring by a Ballistocardiographic Sensor in Patients with Sleep Disordered Breathing". In: *Scientific Reports* 7.1.