An Inductive Proof of the Wellfoundedness of the Multiset Order

October 12, 1998

The following note presents an inductive proof of the wellfoundedness of the multiset order due to Wilfried Buchholz¹ communicated to me² by Ralph Matthes³. All typos are entirely mine.

1 Wellfounded part

Given a binary relation < on a set S, the subset W of S called the **well-founded part** of S w.r.t. < is defined inductively as follows [1]:

$$\frac{\forall y < x. \ y \in W}{x \in W}$$

The corresponding induction principle easily yields the principle of well-founded part induction:

$$\frac{\forall x \in W. \ (\forall y < x. \ P(y)) \Rightarrow P(x)}{\forall x \in W. \ P(x)}$$

It also follows that < is wellfounded iff W = S.

2 The proof

Let < be a wellfounded relation on a set A, and let $\mathcal{M}(A)$ be the set of all finite multisets over A. We use set-notation for multisets. The letters a and b range over A; K, M and N range over $\mathcal{M}(A)$. We define the following

 $^{^{1}} Mathematisches \qquad Institut, \qquad Ludwig-Maximilians-Universit \"{a}t \qquad M \ddot{u}nchen, \\ www.mathematik.uni-muenchen.de/~gadmin6/professoren/buchholz$

²Tobias Nipkow, Institut für Informatik, Technische Universität München, www.in.tum.de/~nipkow

³Institut für Informatik, Ludwig-Maximilians-Universität München, www.tcs.informatik.uni-muenchen.de/~matthes

abbreviations:

$$\begin{array}{rcl} M < a & \Leftrightarrow & \forall b \in M. \ b < a \\ N <_{mult} M & \Leftrightarrow & \exists M_0, a, K. \ M = M_0 \cup \{a\} \land N = M_0 \cup K \land K < a \\ W & = & \text{the wellfounded part of } \mathcal{M}(A) \text{ w.r.t. } <_{mult} \end{array}$$

Lemma 2.1 If $\forall b < a$. $\forall M \in W$. $M \cup \{b\} \in W$ and $M_0 \in W$ and $\forall M <_{mult} M_0$. $M \cup \{a\} \in W$ then $M_0 \cup \{a\} \in W$.

Proof by definition of W. Let $N <_{mult} M_0 \cup \{a\}$. We need to prove $N \in W$. There are two possibilities why $N <_{mult} M_0 \cup \{a\}$ holds:

- If $N = M \cup \{a\}$ for some $M <_{mult} M_0$ then $N \in W$ follows from the third assumption.
- If $N = M_0 \cup K$ for some K < a then $N \in W$ follows from the first two assumptions by induction on the size of K.

Lemma 2.2 If $\forall b < a$. $\forall M \in W$. $M \cup \{b\} \in W$ then $\forall M \in W$. $M \cup \{a\} \in W$.

Proof From Lemma 2.1 by wellfounded part induction.

Lemma 2.3 $\forall M \in W. M \cup \{a\} \in W.$

Proof From Lemma 2.2 by wellfounded induction on a.

Theorem 2.4 $M \in W$.

Proof by induction on the size of M. The base case $\emptyset \in W$ holds because there is no $N <_{mult} \emptyset$. Lemma 2.3 covers the induction step.

Thus we know that $<_{mult}$ is wellfounded on all of $\mathcal{M}(A)$.

3 Termination

As is well known, wellfoundedness is classically equivalent with termination, i.e. the absence of infinite descending chains. Taking the classical perspective, we can turn things around and define W as the set of all terminating elements of S. Now wellfounded part induction is simply good old wellfounded induction, and the inductive characterization of W is now a consequence of this direct definition of W.

References

[1] P. Aczel. An introduction to inductive definitions. In J. Barwise, editor, Handbook of Mathematical Logic. North-Holland, 1977.