

ep-411733

-1- (WPAT)

ACCESSION NUMBER 91-038639/06
SECONDARY ACCESSION CS91-016539

TITLE New 11-beta-aryl-gona-4,9-di:ene-3-one(s) - useful in treatment of endometritis dysmenorrhoea and endocrine-induced tumours e.g. gamma carcinoma

DERWENT CLASSES B01

PATENT ASSIGNEE (DEAK) AKAD WISSENSCHAFTEN; (MIKR-) ZENT INST MIKROBIOLOGIE & EXPERIMENT; (SCHD) SCHERING AG

INVENTORS KASCH H, KURISCHKHO A, MENZENBACH B, PONSOULD K, ROEHRTG H, SCHUBERT G, BERTRAM G, ROHRIG H

PRIORITY 89.10.09 89DD-333409 89.08.04 89DD-331479
89.08.16 89DD-331818 90.08.06 90JP-511174
93.11.17 93US-153558 95.02.21 95US-391570

NUMBERS 10 patent(s) 16 country(s)

PUBLICATION DETAILS EP-411733 A 91.02.06 * (9106) 22p
R: AT BE CH DE ES FR GB GR IT LI LU NL
SE
WO9101958 A 91.02.21 (9110) 22p
NW: *JP
DD-289537 A 91.05.02 (9139)
DD-290893 A 91.06.13 (9145)
DD-299068 A5 92.03.26 (9234)
C07J-001/00
EP-411733 A3 92.01.22 (9322) 22p
JP05504759 W 93.07.22 + (9334) 20p
C07J-001/00
Based on WO9101958
WO9101958 A3 91.12.12 (9509)
US5407928 A 95.04.18 + (9521) 12p
C07J-001/00
US5739125 A 98.04.14 + (9822) 14p
A61K-031/56
Cont of US5407928
CITATIONS EP-104387; EP-110434; EP-129499; EP-135400;
EP-147361; EP-184471; EP-190759; EP-254670;
EP-277676; EP-289073; EP-299913; EP-305242;
EP-308345; EP-321010; EP--97572; FR2586021;
GB2160873; WO8303099; WO8912448
NoSR.Pub

APPLICATION DETAILS 90EP-250199 90.08.06
89DD-333409 89.10.09
90EP-250199 90.08.06
90JP-511174 90.08.06 90WO-DE00614 90.08.06
90WO-DE00614 90.08.06
90US-567368 90.08.15 91US-769271 91.10.01
93US-153558 93.11.17
90US-567368 90.08.15 91US-769271 91.10.01
93US-153558 93.11.17 95US-391570 95.02.21

MAIN INT'L CLASS. A61K-031/56 C07J-001/00
SECONDARY INT'L. CLASS. A61K-031/565 C07C-000/00 C07J-007/00

ABSTRACT

C07J-041/00 C07J-075/00

EP-411733 A

Tetrapeptides of formula (I) and their salts are new. X-NH-CHR₁-C(W₁)-NR₂-CH(CH₂-CO-Y)-C(W₂)-N-H-CH(CR₃R₄-COOH)-C(W₃)-NH-CHR₅-Z (I) X = 1-10C alkanoyl opt. mono subst. by halo, OH or alkoxy, alkoxy-carbonyl, benzoyl ; 2,2-diphenylacetyl, phenyl-2-10C-alkanoyl (opt. mono or di-ring subst. by halo, OH, alkyl; alkoxy or Ph); phenyl-3-10C alkanoyl, cycloalkylcarbonyl alkyl; cyclohexylcarbonyl (opt. 2-substd. by alkanoyl, 3,6-dimethyl-2-(phenylethoxy carbonyl)cyclohexylcarbonyl; or 5-11C 1,4-dioxoalkyl; R₁ = lower alkyl, cycloalkyl, cycloalkylmethyl, Ph, CH₂Ph, 2-thienyl, 2-thienylmethyl; R₂ = H, alkyl or phenalkyl; R₃, R₄ = H or alkyl or together for cycloalkyl; R₅ = alkyl, cycloalkyl or cycloalkylmethyl; W₁, W₂, W₃ = y oxo or thioxo; Y = (a) 1-14C alkoxy, 3-14C alkenyloxy, O-(CH₂CH₂O)_n-CH₃ (n = 1-3), cycloalkoxy, cycloalkylalkoxy; phenoxy or phenylalkoxy (both opt. subst. by 1 or 2 OH, halo, alkyl or alkoxy); (b) NR₆R₇; R₆ = lower alkyl and R₇ = alkoxy; or (c) R₆' = H or alkyl and R₇ = alkyl, cycloalkyl, phenyl or phenalkyl both opt. subst. or Het-lower alkyl; (d) NR₆R₇; forming pyrrolidino, piperidino, morpholino, thiomorpholino or (4-alkyl)piperazino; Z = H, COOH, CH₂COOH, CH₂CH₂COOH, CH₂OH. USE/ADVANTAGE - As ribonucleotide reductase inhibitors in inhibition of herpes virus (claimed). Virus treated are e.g. herpes, simplex viruses, types 1 and 2 (HSV-1 and HSV-2), varicella zoster (VZV), Epstein-Barr virus virus (EBV), equine herpes virus (EHV) and cytomegalovirus. Administraton may be topical or systemic. (22pp Dwg.No.0/0) om

Europäisches Patentamt
European Patent Office
Office européen des brevets

② Veröffentlichungsnummer: 0 411 733 A2

②

EUROPÄISCHE PATENTANMELDUNG

② Anmeldenummer: 90250199.8

② Int. Cl⁵: C07J 1/00, C07J 41/00,
A61K 31/56

② Anmelddat: 06.08.90

② Priorität: 04.08.89 DD 331479
16.08.89 DD 331818
09.10.89 DD 333409

② Veröffentlichungstag der Anmeldung:
06.02.91 Patentblatt 91/06

② Benannte Vertragsstaaten:
AT BE CH DE DK ES FR GB GR IT LU NL SE

① Anmelder: SCHERING AKTIENGESELLSCHAFT
Berlin und Bergkamen
Müllerstrasse 170/178 Postfach 65 03 11
D-1000 Berlin 65(DE)

② Erfinder: Kasch, Helmut, Dr.
Hermann-Duncker-Strasse 14
DDR-6902 Jena(DD)
Erfinder: Bertram, Gudrun

Gartenstrasse 11
DDR-6900 Jena(DD)
Erfinder: Ponsold, Kurt, Prof.Dr.
Thomas-Mann-Strasse 13a
DDR-6900 Jena(DD)
Erfinder: Schubert, Gerd, Dr.
Mauerstrasse 20
DDR-6900 Jena(DD)
Erfinder: Röhrig, Heldemarie
Adolf-Reichwein-Strasse 31
DDR-6900 Jena(DD)
Erfinder: Kurischko, Anatoli
Westendstrasse 2a
DDR-6900 Jena(DD)
Erfinder: Menzenbach, Bernd, Dr.
Tautenburger Strasse 4
DDR-6900 Jena(DD)

② 11 Beta-Aryl-gona-4,9-dien-3-one.

② Es werden neue 11B-Aryl-gona 4,9-diene der allgemeinen Formel I

(I)

beschrieben

worin

R¹, R², R³, R⁴ und R⁵ die in der Beschreibung angegebene Bedeutung haben.

Die Verbindungen der Formel I besitzen starke antigestagene Wirksamkeit und sind zur Herstellung von Arzneimitteln geeignet.

EP 0 411 733 A2

11 β -ARYL-GONA-4,9-DIEN-3-ONE

Die vorliegende Erfindung betrifft 11 β -Aryl-gona-4,9-diene der allgemeinen Formel I

worin

- A) R¹ eine Methyl- oder Ethylgruppe,
 - R² eine Alkoxy-, Alkylthio-, wobei unter Alkyl eine Alkyl-, Alkenyl- oder eine entsprechende cyclische Verbindung mit 1 bzw. 2 bzw. 3 bis 7 Kohlenstoffatomen zu verstehen ist, eine Dimethylamino-, Monomethylamino-, Cyano-, Formyl-, Acetyl-, oder 1-Hydroxyethylgruppe,
 - R³ eine Hydroxy-, Alkoxymethoxy-, Alkanoyloxy oder Alkoxygruppe mit jeweils 1 bis 6 Kohlenstoffatomen, und
 - R⁴ eine Ethinyl-, Prop-1-inyl-, 3-Hydroxyprop-1-inyl-, 3-Alkanoyloxyprop-1-inyl-, 3-Alkanoyloxyprop-1-enyl-, 3-Alkanoyloxypropgruppe mit jeweils 1 bis 6 Kohlenstoffatomen, 3-Hydroxyprop-1-enyl- und 3-Hydroxypropgruppe sowie
 - R⁵ ein Wasserstoffatom
 - oder
 - B) R¹ eine Methyl- oder Ethylgruppe,
 - R² eine Methoxy-, Thiomethyl-, Dimethylamino-, Monomethylamino-, Cyano-, Formyl-, Acetyl- oder 1-Alkoxyethylgruppe mit 1 bis 6 Kohlenstoffatomen in Alkoxyrest,
 - R³ eine Methyl-, Ethyl-, Formyl-, Acetyl-, Cyano-, Dimethyl-tert.-butylsilyloxy-, Alkoxyethyl-, Alkoxy-, 1-Alkoxyethyl-, Alkoxymethoxy-, Alkanoyloxyethoxy-, mit jeweils 1 bis 6 Kohlenstoffatomen im Alkoxyrest, und
 - R⁴ eine Ethinyl-, Prop-1-inyl-, Alkyl-, 3-Alkoxyprop-1-inyl-, 3-Alkoxy prop-1-inyl-, 3-Alkoxypropgruppe mit jeweils 1 bis 4 Kohlenstoffatomen im Alkyl- bzw. Alkoxyrest oder die Gruppierung -CH₂Y, worin Y ein Cyano-, Azido- oder Alkoxyrest mit 1 bis 6 Kohlenstoffatomen sowie
 - R⁵ ein Wasserstoffatom oder eine Alkylgruppe mit 1 bis 4 Kohlenstoffatomen oder aber
 - R¹ und R⁴ gemeinsam eine Methylen- oder Tetramethylenebrücke oder
 - C) R¹ eine Methylgruppe,
 - R² ein Dimethylamino-, eine freie oder katalisierte Acetylgruppe,
 - R³ eine Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen, eine Alkoxy- oder Alkylthiomethoxygruppe mit 1 bis 4 Kohlenstoffatomen im Alkylrest,
 - R⁴ eine Alkoxymethylgruppe mit 1 bis 6 Kohlenstoffatomen im Alkoxyrest sowie
 - R⁵ ein Wasserstoffatom
 - bedeutet.
- Vorzugsweise bedient sich
- R¹ in Methylgrupp .
 - R² einer Dimethylamino- oder Acetylgruppe und außerdem
 - in A)
 - R³ eine Methoxygruppe,
 - R⁴ eine Prop-1-inyl-, Ethinyl-, 3-Hydroxy-prop-1-inyl-, 3-Hydroxy-prop-1(Z)-enyl-, 3-Hydroxypropgruppe und
 - R⁵ ein Wasserstoffatom,
 - in B)

R³ eine Methoxy-, Acetyl- oder Methoxymethylgruppe,

R⁴ eine Prop-1-inyl-, Ethinyl- oder 3-Hydroxypropylgruppe,

R⁵ ein Wasserstoffatomm oder

R⁴ und R⁵ gemeinsam eine Methylen- oder Tetramethylenbrücke,

in C)

R³ eine Methoxygruppe,

R⁴ eine Methoxymethyl-, Ethoxymethyl- oder Propoxymethylgruppe und

R⁵ ein Wasserstoff.

In besondere bevorzugt sind folgende Verbindungen der allgemeinen Formel I

- 10 11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -propinyl-13-ethyl-gona-4,9-dien-3-on,
- 11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -ethinyl-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -ethinyl-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Acetylphenyl)-17 α -(3-hydroxy-1-propinyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 15 11 β -(4-Acetylphenyl)-17 α -(3-hydroxy-1'-Z-propenyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on sowie
11 β -(4-Acetylphenyl)-17 α -(3-hydroxypropyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Acetylphenyl)-17 β -methoxy-16 α ,17 α -cyclohexano-estra-4,9-dien-3-on,
- 17 β -Acetyl-11 β -(4-acetylphenyl)-16 α ,17 α -cyclohexano-estra-4,9-dien-3-on,
- 11 β -(4-Acetylphenyl)-16 α ,17 α -cyclohexano-17 β -methoxymethyl-estra-4,9-dien-3-on,
- 20 11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -methoxymethyl-estra-4,9-dien-3-on,
- 11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -methoxymethyl-estra-4,9-dien-3-on,
- 11 β -(4-Acetylphenyl)-17 α -ethoxymethyl-17 β -methoxy-estra-4,9-dien-3-on,
- 11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -propoxymethyl-estra-4,9-dien-3-on,
- 11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on,
- 25 11 β -(4-Methoxypheynyl)-17 β -methoxy-17 α -propinyl-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Dimethylaminophenyl)-17 α -(3-hydroxy-1-Z-propenyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Dimethylaminophenyl)-17 α -(3-hydroxypropyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Methoxypheynyl)-17 α -(3-hydroxy-1'-Z-propenyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 30 11 β -(4-Dimethylaminophenyl)-17 α -(3-hydroxy-1'-Z-propenyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Methoxypheynyl)-17 α -(3-hydroxy-1'-Z-propenyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Dimethylaminophenyl)-17 α -ethinyl-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Methoxypheynyl)-17 α -ethinyl-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,
- 11 β -(4-Methoxypheynyl)-17 β -methoxy-17 α -methoxymethyl-13-methyl-gona-4,9-dien-3-on.

35 Die Verbindungen der allgemeinen Formel I besitzen eine starke Affinität zum Gestagenrezeptor, ohne selbst gestagene Wirkung zu entfalten. Sie sind kompetitive Antagonisten des Progesterons (Antigestagene); da sie das zur Aufrechterhaltung der Schwangerschaft erforderliche Progesteron vom Rezeptor verdrängen, sind sie zur Auslösung von Aborten und zur Einleitung der Geburt geeignet.

Neber den genannten Indikationen können die erfindungsgemäßen Verbindungen auch zur Behandlung 40 der Endometriose, Dysmenorrhoe und endokriner hormonabhängigen Tumore, wie z.B. Mamma-Carcinom und Meningiom verwendet werden.

Zur Kennzeichnung der antigestagene Wirkung dient die tierexperimentell ermittelte abortive Wirkung der Substanzen. Zu diesem Zweck wurden weibliche gravide Ratten (positiver Spermienachweis = 1 Graviditätstag) im Gewicht zwischen 180 und 200 g am 5. bis 8. Graviditätstag mit der Testverbindung in

45 Erdnußöl suspendiert subkutan behandelt. Nach Autopsie am 20. Graviditätstag wurden die Uteri untersucht. Dabei wurde die Anzahl der graviden Weibchen und die durchschnittliche Zahl der Feten pro gravides Tier festgestellt. Der Hemmefekt wurde wie folgt berechnet:

$$He = \left(1 - \frac{x_v \cdot n_k}{m_v \cdot x_k} \right) \cdot 100 (\%)$$

x = Anzahl der graviden Weibchen

n = Anzahl der besamten Weibchen

v = Versuchsgruppe

k = Kontrollgruppe

10

15	Gruppe Substanz	Gesamtdosis (mg/Tier/4d)	N	Fertilitätshemmung	
				absol.	rel. %
20	17 β -Methoxy-17 α -Methoxymethyl-11 β -acetylphenyl	2	6	6	100
	17 β -Methoxy-17 α -propinyl-11 β -acetylphenyl	2	6	6	100
25	17 β -Methoxy-16 α ,17 α -methylen-11 β -acetylphenyl	2	6	6	100
	17 β -Methoxy-17 α -propinyl-11 β -dimethylaminophenyl	2	6	6	100
	17 β -Methoxy-17 α -ethinyl-11 β -acetylphenyl	2	6	6	100
	Kontrolle	0	6	0	0

25

Als Vergleich wurde die abortive Wirkung von RU 486 (11 β -(4-Dimethylaminophenyl)-17 β -hydroxy-17 α -(prop-1-inyl)-4,9-estradien-3-on; EP-A-0057115) bestimmt: Sie weist im beschriebenen Test, ebenfalls bei einer Gesamtdosis von 2 mg, lediglich eine relative Fertilitätshemmung von 80 % auf.

30 Die Testung auf estrogen- und gonadotrop Wirkung erfolgte im kolpotropen Test. Dabei wurde bei den beanspruchten Verbindungen keine Wirkung festgestellt.

Die erfindungsgemäßen Verbindungen der allgemeinen Formel I können in Form pharmazeutischer Präparate Verwendung finden. Die Herstellung der Präparate erfolgt nach an sich bekannten Methoden der Galenik durch Mischen mit organismischem inertem Trägermaterial, welches für die enterale, perkutane oder parenterale Applikation geeignet ist.

35 Die Dosierung der erfindungsgemäßen Verbindungen für die angegebenen Indikationen liegt zwischen 1 und 1000 mg täglich.

Die Verbindungen der allgemeinen Formel I werden erfindungsgemäß hergestellt, indem eine Verbindung der allgemeinen Formel II

40

(III),

45

woraus
R¹ und R² die in Formel I angegebene Bedeutung haben,

R^2' , R^3' und R^4' dieselbe Bedeutung wie R^2 , R^3 und R^4 in Formel I haben, wobei gegebenenfalls vorhandene Keto- und/oder Hydroxygruppen geschützt sein können,

R^6 und R^7 je eine Methyl- oder Ethylgruppe oder gemeinsam eine Ethylen- oder 2,2-Dialkylpropylengruppe, insbesondere eine 2,2-Dimethylpropylengruppe sowie

- 5 R^8 ein Wasserstoffatom oder einen Alkyrest mit 1 bis 6 Kohlenstoffatomen bedeuten, durch Säurebehandlung in einem mit Wasser mischbaren Lösungsmittel, gegebenenfalls unter Erwärmen auf 60°-80°C, in eine Verbindung der allgemeinen Formel I überführt.

Als Säuren für die Säurebehandlung werden z.B. wäßriges Essigsäure, p-Toluolsulfinsäure oder Mineralsäuren wie Salzsäure, Schwefelsäure, Phosphorsäure oder Perchlorsäure und als Lösungsmittel wäßriges Methanol, Ethanol oder Aceton verwendet. Gegebenenfalls wird während der Säurebehandlung auf 60° bis 80°C erwärmt.

Die saure Behandlung kann auch an einem sauren Träger, wie z.B. saurem Aluminiumoxid, durchgeführt werden.

Die Herstellung der erfindungsgemäß zu verwendenden Ausgangsprodukte der allgemeinen Formel II erfolgt je nach den letztendlich gewünschten Substituenten nach unterschiedlichen Verfahren.

Zur Synthese der Ausgangsprodukte der allgemeinen Formel II, die letztlich zu den Endprodukten der allgemeinen Formel I mit den unter A) genannten Substituenten führen, bedient man sich der im Schema I wiedergegebenen Syntheseroute:

20

25

30

35

40

45

50

55

Dabei werden

- 3,3-Dimethoxy-17 α -ethinyl-gon-5(10)-en-17 β -ole der allgemeinen Formel III durch Ketalspaltung in einem wasserhaltigen organischen Lösungsmittel in Gegenwart katalytischer Mengen Säure in 17 α -Ethinyl-gon-5(10)-en-3-one der allgemeinen Formel IV umgewandelt,
- die 17 α -Ethinyl-gon-5(10)-en-3-on - IV durch Bromierung/Dehydrobromierung in 17 α -Ethinyl, 17 β -hydroxy-gona-4,9-dien-3-on umgewandelt,
- aus den 17 α -Ethinyl, 17 β -hydroxy-gona-4,9-dien-3-onen V durch Ketalisierung die Ketale der allgemeinen Formel VIrst llt, worin R^7 und R^8 = CH_3 , C_2H_5 oder ein cyclisches Ketal mit 2 oder 3 C-Ringatomen, die an den Kohlenstoffatomen durch Alkylgruppen substituiert sein können, darg stellt,
- die Ketale VI durch eine Base in einem Ether oder einem aprotisch dipolaren Lösungsmittel, gegebenenfalls unter Zusatz eines Lösungsmittlers, in die Acetylde und/oder Alkoholate überführt, wobei man mit einem Alkylierungsmittel wahlweise C- und/oder O-alkyliert oder durch Hydroxymethylier-

- rung der Ethinylgruppe mit Formaldehyd in Gona-5(10),9(11)-diene der allgemeinen Formel VII umwandelt,
- e) aus den Gona-5(10),9(11)-dienen VII durch Epoxidierung die 5 α ,10 α -Epoxide der allgemeinen Formel VIII synthetisiert und
- 5 f) die 5 α ,10 α -Epoxide VIII mit Arylmagnesiumhalogenid in Gegenwart eines Cu^I-Salzes bei einer Reaktionstemperatur von -30 °C bis +30 °C reagieren lässt und Verbindungen mit einer 17 α -Propargylgruppe reduziert, wobei 11 β -Aryl-5 α -hydroxy-gon-9-ene der allgemeinen Formel II A entstehen.
- Bevorzugt wird im Verfahrensschritt a) als organische Lösungsmittel Aceton, Methanol oder eine Lösungsmittelkombination, bestehend aus Methylchlorid und tert.-Butanol, und als Säuren Oxalsäure, p-Tolulsulfinsäure oder Mineralsäuren, wie Schwefelsäure, Salzsäure, Perchlorsäure oder Phosphorsäure.
- 10 im Verfahrensschritt b),
- für die Bromierung/Bromidbromierung Pyridinhydrobromidperbromid oder Brom in Pyridin,
- im Verfahrensschritt c)
- für die Ketalisierung als Alkohole Methanol, Ethanol, Ethylenglykol oder 2,3-Dimethylpropan diol, als Säuren p-Tolulsulfinsäure, Oxalsäure, Pyridiniumtosylat oder Mineralsäuren, wie Schwefelsäure oder Perchlorsäure, als wasserentziehende Mittel Ameisensäuretriethyl- und -trimethylester oder ein Wasserschleppmittel, wie Chloroform, Benzol oder Toluol,
- 15 im Verfahrensschritt d)
- als Basen Lithiumalkyle wie Lithiummethyl-, -n-butyl und -tert.-butyl, Natriumhydrid, Kaliumhydroxid, Lithium-, Natrium- oder Kaliumaphthalid, oder durch elektrochemische Reduktion erzeugtes Naphthalidion, als Ether Diethylether, Tetrahydrofuran oder Dioxan, Dimethylsulfoxid, Dimethylformamid, als gegebenenfalls einzusetzender Lösungsmittel Benzol oder Toluol und als Alkylierungsmittel Dialkylsulfate, wie Dimethyl- und Diethylsulfat, und Alkyhalogenide, wie Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl-, Hexyl-, Isopropylhalogenide in Form der Chloride, Bromide und Yodide, sowie Methylchloralkylether mit einem Alkyl in der Bedeutung n = 1 bis 6,
- 20 im Verfahrensschritt e)
- als Puffer Na₂CO₃, NaHCO₃, K₂CO₃, KHCO₃, NaH₂PO₄, NaOAc und KOAc sowie als Inerte Lösungsmittel Benzol, Toluol, Chloroform, Dichloorethenyl oder Methylchlorid und
- im Verfahrensschritt f)
- 25 als Arylmagnesiumhalogenide Phenylmagnesiumhalogenide in Form der Chloride und Bromide, die in p-Stellung zum Magnesium eine OCH₃, SCH₃, N(CH₃)₂, NHCH₃, CN, CH₃COH, R₁O-CH-OR₂, CH₃-COR₄-OR₅-Gruppe enthalten, wobei R₅ = R₂ = CH₃, C₂H₅ oder ein cyclisches Ketal mit 2 oder 3-C-Ringatomen, die an den Kohlenstoffatomen durch Alkylgruppen substituiert sein können, darstellt, als Ether Diethylether, Tetrahydrofuran und Dioxan, als Lösungsmittel Benzol und Toluol, als Cu^I-Salze CuCN, CuI und CuCl sowie als Reduktionsmittel für die 17 α -Propargylgruppe Lithiumalanat oder Wasserstoff in Gegenwart von Pd oder Pt als Hydriertkatalysator in einem Ether bzw. einem Alkohol verwendet.
- In der besonders bevorzugten Ausführungsform des Verfahrens wird die Alkylierung der 17 α -Ethinyl- und der 17 β -Sauerstofffunktion bzw. die Hydroxymethylierung der 17 α -Ethinylgruppe auch ausgehend von den Edukten gemäß Formel I durchgeführt.
- Mit dem vorgeschlagenen Verfahren können ausgehend von einem technisch gut zugänglichen Ausgangsprodukt Bindungen mit unterschiedlicher Substitution am C-Atom 17 mit relativ einfachen Roh- und Hilfsstoffen hergestellt werden. Auf diese Weise werden neben den 17 α -Ethinyl-, die 17 α -Propinyl-, 17 α -Hydroxypropinyl- und auch gleichzeitig die diversen 17 β -Alkylether zugänglich.
- 40 Zur Gewinnung der für die Endprodukte der allgemeinen Formel I mit den unter B) genannten Substituenten erforderlichen Ausgangsprodukte der allgemeinen Formel II wird eine zur Verbindung II A) aus Schema 1 analoge Verbindung der allgemeinen Formel II B)

worin R^2 dieselbe Bedeutung wie R^2 in Formel I unter B hat, wobei eine gegebenenfalls vorhandene 15 Carbonylgruppe als Ketal geschützt ist, und R^1 , R^3 , R^4 und R^5 dieselbe Bedeutung wie in Formel I unter B sowie R^6 und R^7 wie in Formel II) haben und R^3 außerdem $OSi(CH_3)_3$, $-OH$, CH_2CHOH , CH_2O Alkanoyl und 20 CH_3CHO Alkanoyl mit 1 bis 6 Kohlenstoffatomen sein kann, mittels einer Base in die entsprechenden Alkoholate überführt und diese anschließend durch Zugabe eines Alkylierungsmittels in die entsprechenden Etherumgewandelt (d.h. in eine Verbindung der allgemeinen Formel II, worin R^8 ein Alkylrest ist).
 (Ausgangsprodukte: DD-PS 277685, DD-PS 251142)

Es werden dabei alle in der Verbindung der allgemeinen Formel II B) vorhandenen Hydroxygruppen 25 mitalkyliert.

Ethinylgruppen mit acidem Wasserstoff werden gegebenenfalls mitalkyliert.

Als Basen werden KOH, NaH, LiH, Lithiumalkyle wie Lithiummethyl, -n-butyl und tert.butyl, Calcium-, 25 Lithium-, Natrium- oder Kaliumamide und Lithium-, Natrium- oder Kaliumnaphthalid oder durch elektrochemische Reduktion erzeugtes Naphthalidion eingesetzt, in einem Ether wie Diethylether, Tetrahydrofuran oder Dioxan, gegebenenfalls unter Zusatz eines Lösungsmittlers wie Benzzen oder Toluol, gearbeitet und als Alkylierungsmittel Dialkylsulfate wie Dimethyl- und Diethylsulfat, und Alkyhalogenide wie Methyl-, Ethyl-, Propyl-, Butyl-, Pentyl-, Hexyl-, Isopropylhalogenide in Form der Chloride-, Bromide und Iodide, sowie 30 Methylichloralkylether mit einem Alkylrest in der Bedeutung $n = 1-6$ eingesetzt.

Die Mitalkylierung gegebenenfalls vorhandener Ethinylgruppen ist bevorzugt.

Um O- und C-Alkylierung simultan vorzunehmen, ist sowohl die Basenmenge als auch die Menge an 35 Alkylierungsmittel der Zahl der zu deprotonierenden Gruppen anzupassen.

Mit dem vorgeschlagenen Verfahren ist es möglich, ausgehend von 11β -arylestr-9-en-5 α -olen selektive 40 Alkylierungen am Steroidmolekül vorzunehmen und damit einen Zugang zu biologisch aktiven Verbindungen zu schaffen. Dabei wird der Umstand genutzt, daß sich 5 α -Oalkylether, die selbst aufgrund ihrer strukturellen Merkmale von pharmakologischem Interesse sind, überraschenderweise leicht unter Abspaltung von Alkohol in die 4,9-Dien-3-one überführen lassen.

Hervorzuheben ist, daß die durch Alkylierung der 17-OH-Gruppe und gegebenenfalls der 17-Ethinylgruppe erhaltenen Produkte eine hohe antigestagene Wirkksamkeit besitzen, wie Versuche an der Ratte zeigen. Die Ausgangsprodukte II, die für die Herstellung der Endverbindungen der allgemeinen Formel I mit den unter C) genannten Substituenten werden, wie in nachstehendem Schema angegeben ist, hergestellt.

Dabei werden

- a) 17α -Alkoxyethyl- 17β -hydroxy-estra-5(10), 9(11)-dien-3-ketals XII durch Deprotonierung mit Basen in 45 17β -Alkoholate XIII von 17α -Alkoxyethyl-estra-5(10), 9(11)-dien-3-ketalen überführt,
- b) diese durch Alkylierung mit Alkyhalogeniden zu 17β -Alkoxy- 17α -alkoxyethyl-estra-5(10), 9(11)-dien-3-ketaten XIV umgesetzt,
- c) diese selektiv mit H_2O_2 zu den $5\alpha, 10\alpha$ -Epoxy- 17β -alkoxy- 17α -alkoxyethyl-estra-9(11)-en-3-ketalen XV epoxidiert und
- d) diese mit Arylmagnesiumhalogeniden, die in der p-Stellung zum Magnesium ein Dim thylamino- oder eine geschützte Acetylgruppe besitzen, zu den 11β -arylsubstituierten 17β -Alkoxy- 17α -alkoxyethyl-50 str-9-en-5 α -olien XI) geöffnet.

Bevorzugt werden als 17α -Alkoxyethyl- 17β -hydroxy-estra-5(10), 9(11)-dien-3-ketals XII) di-3-nim thylketale, als Base für die D protonierung Alkalainaphthalid und als organisches Lösungsmittel Tetrahydrofuran zur Bildung der Alkoholate der allgemein in Formel XIV eingesetzt. Die Alkylierung wird mit Alkyhalogeniden, Alkoxyalkylhalogenid n oder Alkythioalkylhalogeniden direkt oder in Lösungsmitteln durchgeführt, wobei die 17β -Alkoxy- 17α -alkoxym thyl-estra-5(10,9(11)-dien-3-ketale der allgemeinen Formel XIV entstehen. Diese werden durch die Epoxidation mit H_2O_2 und Halogenaceton n in Gegenwart von katalytisch n

Mengen tertiär r Basen oder mit Halogenaldehyden in Gegenwart von wasserbindenden Mitteln in inerten Lösungsmitteln in die $5\alpha,10\alpha$ -Epoxy- 17β -alkoxy- 17α -alkoxymethyl-est-9(11)-en-3-ketale der allgemeinen Formel XV überführt und diese durch Grignardierung in einem Ether in Gegenwart von Kupfer-I-salzen mit einem p-Brom-(2'-methyl-1,3'-dioxolan-2-yl)-benzol zu den 11β -aryl-substituierten 17β -Alkoxy- 17α -alkoxymethyl-estr-9-en-5 α -olen der allgemeinen Formel IIC umgesetzt.

10

15

20

25

30

35

40

45

50

55

55 Insb sonder werden

17 α -Alkoxymethyl-17 β -hydroxy-estra-5(10),9(11)-dien-3-dimethylketale der allgemeinen Formel XII mit Natrium- oder Lithiumnaphthalid in Tetrahydrofuran d protoniert und mit Alkyhalogeniden, Alkyloxalkylhalogeniden n, Alkythioalkylhalogeniden direkt oder in Ether bei Temperaturen 20° C zu den 17 β -Alkoxy-17 α -

- alkoxymethyl-estra-5(10),9(11)-dien-3-ketalen der allgemeinen Formel XIV umgesetzt. Die Epoxidation mit H₂O₂ und Hexachloraceton oder Hexafluoraceton erfolgt in Gegenwart von katalytischen Mengen Triethylamin oder Pyridin, oder aber mit Chloralhydrat in Gegenwart von wasserfreiem primärem Alkaliphosphat und Alkalibicarbonat oder Alkalicarbonat bei Temperaturen um 20 °C in Methylenchlorid oder Chloroform, wobei die 5 α ,10 α -Epoxy-17 β -alkoxy-17 α -alkoxymethyl-estr-9(11)-en-3-ketale der allgemeinen Formel XV entstehen. Durch Grignardierung in Tetrahydrofuran mit CuCl und p-Brom(2'-methyl-1',3'-dioxolan-2'-y')benzol bei Temperaturen zwischen 0 °C und 30 °C werden die 11 β -arylsubstituierten 17 β -Alkoxy-17 α -alkoxymethyl-estr-9-en-5 α -olen der allgemeinen Formel II gebildet.
- Die nachstehenden Beispiele dienen der näheren Erläuterung der Erfindung:

10

Beispiel 125 a) 17 α -Ethynyl-17 β -hydroxy-13-methyl-gon-5(10)-en-3-on

- 10 g 3,3-Dimethoxy-17 α -ethynyl-13-methyl-gon-5(10)-en-17 β -ol werden in 165 ml 80prozentigem wäßrigen Aceton suspendiert und unter kräftigem Rühren mit 0,2 ml 25prozentiger Schwefelsäure versetzt. Anschließend wird so lange bei Raumtemperatur gerührt, bis alles Ausgangsmaterial umgesetzt ist. Dann wird das Steroid durch Zugabe von Wasser ausgefällt, abgetrennt und getrocknet. Man erhält 9 g der 3-Keto-5(10)-en-verbindung, die aus Aceton/Wasser umkristallisiert werden kann.
F.: Rohprodukt: 173 °C bis 174 °C

25 b) 17 α -Ethynyl-17 β -hydroxy-13-methyl-gona-4,9-dien-3-on

- 15 g 17 α -Ethynyl-17 β -hydroxy-13-methyl-gon-5(10)-en-3-on werden in 219 ml Pyridin gelöst und unter Kühlung (-5 °C) mit 18,6 g Pyridinhydrobromidperbromid auf einmal versetzt. Nach 15 Minuten wird die Kühlung weggenommen und die sich langsam auf Raumtemperatur erwärmende Lösung noch ca. 15 Minuten gerührt und anschließend 2 ml Methylbuten zugegeben, um Überschüssiges Bromierungsmitittel zu zersetzen. Dann wird 5 Stunden bei Raumtemperatur gerührt und anschließend in Eiswasser, dem vorher etwas Salzsäure zugefügt wird, eingerührt. Nach dem Auskristallisieren wird das Steroid abgesaugt und gegebenenfalls aus Ether kristallisiert. Man erhält 14 g des Dienons (92,7% d. Th.).
F.: Rohprodukt: 168 °C bis 173 °C

35

c) 17 α -Ethynyl-3,3-ethylenldoxy-13-methyl-gona-5(10),9(11)-dien-17 β -ol

- 2 g 17 α -Ethynyl-17 β -hydroxy-13-methyl-gona-4,9-dien-3-on werden in 3 ml Etylenglykol, 5 ml Orthoameisensäuretriethylester und 30 ml Methylenchlorid gelöst und mit 0,1 g p-Toluulsulfinsäure versetzt. Man destilliert etwas Lösungsmittel ab und erhält eine dunkelbraune Lösung, die man 30 Minuten bei Raumtemperatur röhrt. Danach wird mit einer kleinen Na-trumbicarbonatlösung versetzt und das Steroid mit Methylenchlorid extrahiert. Nach dem Einengen der Extrakte wird der ölige Rückstand aus Ether/Hexan kristallisiert, wobei 2 g des Ketals erhalten werden.
F.: 152 °C bis 155 °C
IR[cm⁻¹]: kein C=O, 3300 (Ethynyl); 3600 (OH)

50

c') 17 α -Ethynyl-3,3-ethylenldoxy-13-methyl-gona-5(10),9(11)-dien-17 β -ol

- 42,5 g 17 α -Ethynyl-17 β -hydroxy-13-methyl-gona-4,9-dien-3-on (Rohprodukt) werden in 600 ml Benzol gelöst und mit 45 ml Etylenglykol und 1,8 g p-Toluulsulfinsäure versetzt und so lange (ca. 2 Stunden) am Wasserausbrecher unter intensiver Rührung gekocht, bis alles Ausgangsmaterial umgesetzt ist. Anschließend wird eine Natriumbicarb natlösung zugefügt und das Steroid mit Benzol extrahiert. Der nach dem Einengen erhältliche ölige Rückstand wird aus Ether kristallisiert, wobei 43 g Ketal erhalten werden.
F.: 152 °C bis 155 °C
IR[cm⁻¹]: kein C=O, 3300 (Ethynyl), 3600 (OH)

d) 3,3-Ethylenldoxy-17 α -ethinyl-17 β -methoxy-13-methyl-gona-5(10),9(11)-dien

7,5 g 3,3-Ethylenldoxy-17 α -ethinyl-13-methyl-gona-5(10),9(11)-dien-17 β -ol (22,07 mmol) Rohprodukt werden in 25 ml Tetrahydrofuran gelöst und unter Inertgas mit 55 ml (22mmol, 0,4 m) einer etherschen Lithiummethyllösung in der Kälte (-10 °C) versetzt. Bei der Zugabe setzt starke Gasentwicklung ein. Nach erfolgter Zugabe gibt man nach 15 Minuten 5,7 ml Methyliodid zu und erwärmt die Reaktionslösung auf Raumtemperatur. Man läßt über Nacht bei Raumtemperatur stehen, versetzt anschließend mit Wasser und extrahiert das Steroid mit Ether. Nach dem Einengen der Extrakte wird an neutralem Aluminiumoxid chromatographiert. Als Elutionsmittel dient ein Benzol/Benzol/Essigester-Gemisch (5:1). Es werden 4,3 g des 17 β -Methylethers in Form eines Öles isoliert, welcher direkt in die nächste Stufe eingesetzt werden kann.
IR[cm $^{-1}$]: kein C=O, 3300 (Ethinyl)

15 15 d') 3,3-Ethylenldoxy-17 α -ethinyl-17 β -methoxy-13-methyl-gona-5(10),9(11)-dien

7 g 3,3-Ethylenldoxy-17 α -ethinyl-13-methyl-gona-5(10),9(11)-dien-17 β -ol (20,6 mmol) werden in 50 ml Tetrahydrofuran gelöst und unter Stickstoff mit 1 g Naphthalin (7,8 mmol) und 0,2 g Lithium (28,57 mmol) versetzt und 5 Stunden bei ca. 70 °C (Heizplattentemperatur) gerhrt. Danach wurde unverbrauchtes Lithium entfernt und zu der Lösung bei Raumtemperatur 2,6 ml (41,72 mmol) Methyliodid hinzugefügt. Anschließend wird ca. 4 Stunden auf dem Wasserbad gelinde erwärmt und das Steroid nach Zugabe von Wasser mit Ether extrahiert. Nach dem Einengen der Extrakte erhältliche Rohprodukt wird ohne weit re Reinigung in die nächste Stufe eingesetzt.
IR[cm $^{-1}$]: kein C=O, 3300 (Ethinyl)

26

e) 17 α -Ethinyl-3,3-ethylenldoxy-17 β -methoxy-5 α , 10 α -epoxy-13-methyl-gon-9-en

5 g 17 α -Ethinyl-3,3-ethylenldoxy-17 β -methoxy-13-methyl-gona-5(10),9(11)-dien werden in 45 ml Methyldchlorid gelöst und nach Zugabe von 2 g Na₂HPO₄, 1 g Na₂CO₃ und 7,25 ml 30prozentigem H₂O₂ intensiv gerhrt und anschließend mit 1,25 g (7,55 mmol) Chloralhydrat versetzt. Es wird ca. 20 Stunden bei Raumtemperatur gerhrt und anschließend eine wäßrige Natriumcarbonatlösung zugegeben und das Steroid mit Methyldchlorid extrahiert. Die organische Phase wird wiederholt mit Natriumcarbonatlösung gewaschen, dann abgetrennt, getrocknet und eingeeignet. Der verbleibende Rückstand wird an basischem Aluminiumoxid mit Benzol/Essigester (20:1) bis 10:1) flash chromatographiert. Das Epoxid wurde in Form eines Öles (2 g) isoliert und so in die nächste Stufe eingesetzt.
IR[cm $^{-1}$]: kein C=O

40 f) 17 α -Ethinyl-3,3-ethylenldoxy-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl)-phenyl]-17 β -methoxy-13-methyl-gon-9-en-5 α -ol

Ca. 1,5 g 17 α -Ethinyl-3,3-ethylenldoxy-17 β -methoxy-5 α ,10 α -epoxy-13-methyl-gon-9(11)-en (4,05 mmol) in 10 ml Tetrahydrofuran werden zu einer frisch bereiteten, auf -15 °C abgekühlten Grignardlösung von 4-(2'-Methyl-1',3'-dioxolan-2'-yl)-phenylmagnesiumbromid (15 mmol) und 0,15 g CuCl in 30 ml Tetrahydrofuran zugetropft. Nach erfolgter Zugabe wird ca. 30 Minuten gerhrt und dabei das Reaktionsgemisch allmählich auf Raumtemperatur erwärmt. Anschließend wird mit einer wäßrigen Ammoniumchloridlösung versetzt und das Steroid mit Ether extrahiert. Nach dem Einengen der Extrakte wird der verbleibende Rückstand an basischem Aluminiumoxid mit Benzol/Essigester (10:1) flash chromatographiert. Es werden 1,2 g der 11 β -arylsubstituierten Verbindung isoliert, die aus Methanol oder Ethanol kristallisiert werden kann.

F: 181 °C bis 189 °C [α]_D: 31,1°55 g) 11 β -(4-Acetylphenyl)-17 α -ethinyl-17 β -methoxy-13-methyl-gona-4,9-dien-3-on

0,5 g 17 α -Ethinyl-3,3-ethylenldoxy-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl-phenyl)-17 β -methoxy-13-methyl-gon-9-en-5 α -ol (0,94 mmol) werden mit 10 ml 70prozentiger wäßriger Essigsäure versetzt und 1 Stunde bei

70 °C auf dem Wasserbad erwärmt. Dann wird das Steroid durch Zugabe von Wasser und etwas Ammoniak ausgefällt. Das isolierte Rohprodukt wird an neutralem Aluminiumoxid flash chromatographiert. Die Elution erfolgt mit Benzol/Essigester-Gemisch (10:1). Man erhält 0,35 g der aus Methanol/Wasser in amorph kristalliner Form anfallenden 11 β -Acetophenylverbindung.

5 F.: 87 °C bis 91 °C [α]_D: 139,3°

Beispiel 2

10 Die Herstellung der Stufen a bis e erfolgt analog dem Beispiel 1.

f) 11 β -(4-Dimethylaminophenyl)-3,3-ethylendioxy-17 α -propinyl-13-methyl-gon-9-en-5 α ,17 β -diol

15 Eine Grignardlösung in Tetrahydrofuran, bereitet aus 1,92 g Magnesium, 0,05 ml Dibromethan, 16,8 g p-Brom-dimethylaminobenzol (80 mmol) und 120 ml Tetrahydrofuran, wird mittels Trockeneis auf ca. -15 °C abgekühlt und mit 0,4 g CuCl versetzt. Nach 15minütigem Rühren werden in der Kälte ca. 9 g 3,3-Ethylenedioxy-5 α ,10 α -epoxy-17 α -propinyl-13-methyl-gon-9(11)-en-17 β -ol (Rohprodukt), welches in 15 ml Tetrahydrofuran gelöst ist, zugetroffen. Anschließend röhrt man 30 Minuten nach und lässt die Lösung langsam 20 auf Raumtemperatur erwärmen. Zur Aufarbeitung wird mit wässriger Ammoniumchloridlösung versetzt und das Steroid mit Ether extrahiert. Die organische Phase wird mit einer wässrigen Natriumdisulfatlösung und zuletzt mit Wasser gewaschen, getrocknet und eingeengt. Der verbleibende Rückstand wird an basischem Aluminiumoxid chromatographiert. Die Elution erfolgt mit Benzol/Benzol/Essigester-Gemisch (10:1). Nach Umkristallisation aus Ether/n-Hexan werden 5,1 g der Dimethylaminophenylverbindung erhalten.

25 F.: 203 °C bis 208 °C

IR[cm⁻¹]: 3600 (OH), 3500 (OH - assoziiert)

f') 11 β -(4-Dimethylaminophenyl)-3,3-ethylendioxy-17 β -methoxy-17 α -propinyl-13-methyl-gon-9-en-5 α ,

30 ol

40 ml einer Grignardlösung (30 mmol) in Tetrahydrofuran, bereitet aus 0,96 g Magnesium, 0,05 ml Debromethan, 8,4 g p-Brom-dimethylaminobenzol in 60 ml Tetrahydrofuran, werden mittels Trockeneis auf -15 °C abgekühlt und mit 0,2 g CuCl versetzt. Nach 15minütigem Röhren unter Stickstoff werden in der Kälte 2,1 g 3,3-Ethylenedioxy-17 β -methoxy-5 α ,10 α -epoxy-17 α -propinyl-13-methyl-gon-9(11)-en, welches in 10 ml Tetrahydrofuran gelöst ist, zugetroffen. Anschließend wird die extreme Kühlung entfernt und 30 Minuten nachgerührt. Zur Aufarbeitung wird mit wässriger Ammoniumchloridlösung versetzt und das Steroid mit Ether extrahiert. Dann wird mit wässriger Natriumdisulfatlösung und zuletzt mit Wasser gewaschen, die organische Phase abgetrennt, getrocknet und eingeengt. Der verbleibende Rückstand wird an basischem 40 Aluminiumoxid chromatographiert. Als mobile Phase dient Benzol und ein Benzol/Essigester-Gemisch (10:1). Nach Umkristallisation aus Ether/n-Hexan werden 1,5 g der 11 β -Dimethylaminophenylverbindung erhalten.

F.: 124 °C bis 127 °C [α]_D: -69,9°

45

g) 11 β -(4-Dimethylaminophenyl)-17 β -hydroxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on

2,9 g 11 β -(4-Dimethylaminophenyl)-3,3-ethylendioxy-17 α -propinyl-13-methyl-gon-9-en-5 α , 17 β -diol werden in 10 ml 70prozentiger wässriger Essigsäure gelöst und eine Stunde auf dem Wasserbad (60 °C bis 50 70 °C) erwärmt. Anschließend wird das Steroid durch Zugabe von Wasser und 25prozentigem Ammoniak ausgefällt. Das anfallende Rohprodukt (ca. 2,5 g) wird an basischem Aluminiumoxid mit Benzol und Benzol/Essigester (10:1) chromatographiert. Nach Umkristallisation aus Acetonitril werden 1,3 g des Dienons erhalten.

F.: 178 °C bis 181 °C

55

g') 11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on

0,7 g 11 β -(4-Dimethylaminophenyl)-3,3-ethylenedioxy-17 β -methoxy-17 α -propinyl-13-methyl-gon-9-en-5 α -ol werden in 10 ml 70prozentiger wäßriger Essigsäure gelöst und 1 Stunde auf dem Wasserbad (60 °C bis 70 °C) erwärmt. In Anschluß daran fällt man das Steroid durch Zugabe von Wasser und 25prozentigem Ammoniak aus. Das gut abfiltrbare Rohprodukt wird an basischem Aluminiumoxid mit Benzol und Benzol/Essigester (10:1) flash chromatographiert. Der nach dem Einengen der Dienonfraktionen erhältliche Rückstand wird in Essigsäure gelöst und das Steroid durch Zugabe von Wasser und 25prozentigem Ammoniak ausgefällt. Man erhält 0,35 g des 11 β -Dimethylaminophenyldienons.
F: 101 °C bis 105 °C [α]_D: 129,5°

10

Beispiel 3

Die Herstellung der Stufen a bis c erfolgt analog dem Beispiel 1.

15

d) 3,3-Ethylenedioxy-17 α -propinyl-13-methyl-gona-5(10),9(11)-dien-17 β -ol

9 g 17 α -Ethinyl-3,3-ethylenedioxy-13-methyl-gona-5(10),9(11)-dien-17 β -ol (26,4 mmol) werden in 70 ml Tetrahydrofuran gelöst und unter Kühlung (ca. -10 °C) mit 86,5 ml Lithiumbutyl (0,61 M) versetzt. Zu der homogenen Lösung gibt man 4 ml Methyliodid (109,6 mmol), die man mit 4 ml Tetrahydrofuran verdünnt, in der Kälte allmählich zu und läßt dann unter Röhren langsam auf Raumtemperatur erwärmen. Nach 4 Stunden wird mit Wasser versetzt und das Steroid mit Ether extrahiert. Der nach dem Einengen erhältliche ölige Rückstand (9 g Rohprodukt) kann aus Hexan kristallisiert werden.

IR[cm⁻¹]: kein C=O, 3595 (OH)

25

e) 3,3-Ethylenedioxy-5 α ,10 α -epoxy-17 α -propinyl-13-methyl-gon-9(11)-en-17 β -ol

9 g 3,3-Ethylenedioxy-17 α -propinyl-13-methyl-gona-5(10),9(11)-dien-17 β -ol (Rohprodukt), 3 g wasserfreies Na₂HPO₄ und 2 g Na₂CO₃ werden in 45 ml Methylenchlorid suspendiert und unter Röhren bei Raumtemperatur mit 13,25 ml H₂O₂ (30prozentig) und zuletzt mit 2,25 g Chloralhydrat versetzt. Man röhrt 16 Stunden bei Raumtemperatur, gibt anschließend eine wäßrige Natriumcarbonatlösung zu und extrahiert das Steroid mit Methylenchlorid. Die organische Phase wird noch zweimal mit einer Natriumcarbonatlösung und zuletzt mit Wasser gewaschen, anschließend getrocknet und eingeengt. Das anfallende Epoxid-Rohprodukt wurde ohne weitere Reinigung in die nächste Stufe entgesetzt.

IR[cm⁻¹]: kein C=O, 3600 (OH)

40

Beispiel 4
Die Herstellung der Stufen a bis c erfolgt analog dem Beispiel 3.d) 3,3-Ethylenedioxy-17 β -methoxy-17 α -propinyl-13-methyl-gona-5(10),9(11)-dien

45

5 g 3,3-Ethylenedioxy-17 α -ethinyl-13-methyl-gona-5(10),9(11)-dien-17 β -ol werden in 40 ml Tetrahydrofuran gelöst und unter Kühlung (-15 °C) mit 48 ml Lithiumbutyl (0,61 M) langsam versetzt. Zu der homogenen Lösung gibt man 4,4 ml Methyliodid, die mit 4,4 ml Tetrahydrofuran verdünnt sind, langsam in der Kälte zu und erwärmt dann die Lösung unter Röhren auf Raumtemperatur. Nach 16 Stunden Reaktionszeit wird mit Wasser versetzt und das Steroid mit Ether extrahiert. Der nach dem Einengen der Etherexakte erhältliche Rückstand kann Reinigung in die nächste Stufe eingesetzt werden. Es werden 5 g der 17 β -Methoxy-17 α -propinylverbindung erhalten.

IR[cm⁻¹]: kein C=O, kein OHMS: M⁺ 368, ber. f. C₂₄H₃₂O₃

55

e) 3,3-Ethylenedioxy-17 β -methoxy-5 α ,10 α -epoxy-17 α -propinyl-13-methyl-gon-9(11)-en

5 g 3,3-Ethylenedioxy-17 β -methoxy-17 α -propinyl-13-methyl-gona-5(10),9(11)-di n, 3 g wasserfreies Na₂HPO₄ und 2 g Na₂CO₃ werden in 25 ml Methylenechlorid suspendiert und unter Röhren bei Raumtemperatur mit 8 ml H₂O₂ (30prozentig) und zuletzt mit 1,5 g Chloralhydrat versetzt. Nach erfolgter Umsetzung wird eine wässrige Natriumcarbonatlösung zugegeben und das Steroid mit Methylenechlorid extrahiert. Die Phase wird noch zweimal mit einer Natriumcarbonatlösung und zuletzt mit Wasser gewaschen, anschließend getrocknet und eingeeignet. Das anfallende Rohprodukt wurde an basischem Aluminiumoxid mit Toluol Toluol-Essigester-Gemisch (10:1) flash chromatographiert. Es wurden 2,1 g Epoxid in Form eines Öles isoliert, das direkt in die nächste Stufe eingesetzt wurde.

IR[cm⁻¹]: kein C=O

10

f) 3,3-Ethylenedioxy-17 β -methoxy-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl)-phenyl]-17 α -propinyl-13-methyl-gon-9-en-5 α -ol

15

Zu einer Suspension von 0,72 g Magnesiumspänen (30 mmol) in 5 ml Tetrahydrofuran fügt man 0,05 ml Dibromethan hinzu und setzt unter Argon sukzessive 55 ml einer 7,35 g p-Brom-(2'-methyl-1',3'-dioxolan-2'-yl)-benzol (30 mmol) enthaltenden Tetrahydrofuranlösung so zu, daß die Innentemperatur für 45°C nicht übersteigt. In der Startphase wird leicht erwärmt (45°C) und danach die Temperatur durch Zugabe des Arylhalogenids geregelt. Nach erfolgter Zugabe des Arylhalogenids wird noch 2 Stunden bei 45°C nachgeführt. Von der so bereiteten Grignardlösung werden 30 ml entnommen und unter Kühlung (-5°C bis -15°C) mit 0,15 g CuCl versetzt. Man führt 15 Minuten unter Beibehaltung dieser Temperatur und fügt dann in der Kälte eine Lösung von ca. 1 g 3,3-Ethylenedioxy-17 β -methoxy-5 α ,10 α -epoxy-13 α -propinyl-13-methyl-gon-11(17)-en in 10 ml Tetrahydrofuran hinzu. Anschließend wird 1 Stunde unter Feuchtigkeitsausschluß und Stickstoff gerührt und die Lösung allmählich auf Raumtemperatur erwärmt. Nach erfolgter Umsetzung wird mit wässriger Ammoniumchloridlösung versetzt und das Steroid mit Ether extrahiert. Nach dem Einengen der Extrakt wird der verbleibende Rückstand an basischem Aluminiumoxid mit Benzol/Essigester (10:1) flash chromatographiert. Man erhält 1,05 g des Zielproduktes in Form eines amorphen Pulvers durch Fällung mittels Wasser aus der methanolischen Lösung.

IR[cm⁻¹]: 1600 (Aromat), 3500 (OH - assoziiert)

30

g) 11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on

35

0,15 g 3,3-Ethylenedioxy-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl)-phenyl]-17 β -methoxy-17 α -propinyl-13-methyl-gon-9-en-5 α -ol werden in 10 ml 20prozentiger wässriger Essigsäure gelöst und auf dem Wasserbad (60°C bis 70°C) ca. 1 Stunde erwärmt. Danach wird die Lösung in der Kälte mit Wasser und etwas Ammoniak versetzt, wobei das Steroid in amorph kristalliner Form ausgefällt wird. Nach Chromatographie des Steroids an neutralem Aluminiumoxid mit Benzol/Essigester (10:1) werden 0,09 g des 4,9-Dien-3-ons isoliert, welches aus Acetonitril oder Ether kristallisiert werden kann.

40 F.: 110°C bis 113°C [α]_D: 102,3°:

Beispiel 5

45 Die Herstellung der Stufen a bis c erfolgt analog dem Beispiel 1.

d) 3,3-Ethylenedioxy-17 α -(3'-hydroxy-1'-propinyl)-17 β -methoxy-13-methyl-gona-5(10),9(11)-dien

50

4,3 g 3,3-Ethylenedioxy-17 α -ethinyl-17 β -methoxy-13-methyl-gona-5(10),9(11)-dien werden in 10 ml Tetrahydrofuran gelöst und mit 37,5 ml frisch bereiteter Lithiummethylösung (15 mmol), 0,4 m versetzt. Anschließend gibt man bei Raumtemperatur 1 g Paraformald hyd hinzu. Die Reaktion setzt sofort in. Nach erfolgter Umsetzung wird Wasser hinzugegeben und das Steroid mit Ether extrahiert. Nach dem Einengen erhält man ca. 4,4 g Rohprodukt der hydroxymethylierten Verbindung, die ohne Reinigung in die nächste Stufe ingesetzt wird.

IR[cm⁻¹]: kein C=O, 3600 (OH)

e) 3,3-Ethylendioxy-17 α -(3'-hydroxy-1'-propinyl)-17 β -methoxy-5 α ,10 α -oxido-13-methyl-gon-9(11)-en

Ca. 4,4 g 3,3-Ethylendioxy-17 α -(3'-hydroxy-1'-propinyl)-17 β -methoxy-13-methyl-gona-5(10),9(11)-dien werden in 45 ml Methylenchlorid gelöst und nach Zugabe von 2 g Na₂HPO₄, 1 g Na₂CO₃ und 7,25 ml 5 H₂O₂ (30prozentig) intensiv gerührt und anschließend mit 1,25 g Chlorsalicylat (7,55 mmol) versetzt. Es wird 5 Stunden bei Raumtemperatur gerührt und 2,5 Tage im Kühlschrank aufbewahrt. Danach wird eine wäßrige Natriumcarbonatlösung zugegeben und das Steroid mit Methylenchlorid extrahiert. Die organische Phase wird wiederholt mit einer Natriumcarbonatlösung gewaschen, dann abgetrennt, getrocknet und eingetrocknet. Der verbleibende Rückstand wird an basischem Aluminium mit Benzol/Essigester (4:1 bis 2:1) 10 flash chromatographiert. Es werden 3,5 g Epoxid in Form eines Öles isoliert, welches direkt in die nächste Stufe eingesetzt wird.

IR[cm⁻¹]: kein C=O, 3600 (OH)f) 3,3-Ethylendioxy-17 α -(3'-hydroxy-1'-propinyl)-17 β -methoxy-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl)-phenyl]-13-methyl-gon-9-en-5 α -ol

1 g 3,3-Ethylendioxy-17 α -(3'-hydroxy-1'-propinyl)-17 β -methoxy-5 α ,10 α -epoxy-13-methyl-gon-9(11)-en (2,5 mmol) in 10 ml Tetrahydrofuran wird zu einer frisch bereiteten, auf -15 °C abgekühlten Grignardlösung 20 von 4-(2'-Methyl-1,3-dioxolan-2'-yl)-phenylmagnesiumbromid (15 mmol) und 0,15 g CuCl in 30 ml Tetrahydrofuran zugetropft. Nach erfolgter Zugabe wird ca. 30 Minuten gerührt und das Reaktionsgemisch langsam auf Raumtemperatur erwärmt. Nach erfolgter Umsetzung wird mit einer wäßrigen Ammoniumchloridlösung versetzt und das Steroid mit Ether extrahiert. Nach dem Einengen der Extrakte wird der verbleibende Rückstand an basischem Aluminiumoxid flash chromatographiert. Als mobile Phase dient ein Benzol/Essigester-Gemisch (4:1 bis 1:1). Es wurden 0,5 g der 11 β -arylsubstituierten Verbindung in Form eines Öles isoliert, welches direkt in die nächste Stufe eingesetzt wird.

IR[cm⁻¹]: 3600 (OH), 3500 (OH-assoziiert)g) 11 β -(4-Acetylphenyl)-17 α -(3'-hydroxy-1'(Z)-propenyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on

Ca. 0,5 g 3,3-Ethylendioxy-17 α -(3'-hydroxy-1'(Z)-propenyl)-17 β -methoxy-11 β -[4-(2-methyl-1',3'-dioxolan-2'-yl)phenyl]-13-methyl-gon-9-en-5 α -ol (1,09 mmol) werden mit 10 ml 70prozentiger wäßriger Essigsäure versetzt und ca 1 Stunde bei 70 °C auf dem Wasserbad erwärmt. Dann wird mit Wasser und etwas Ammoniak versetzt und das sich ölig abscheidende Produkt mit Methylenchlorid extrahiert. Der nach dem Einengen der Extrakte verbleibende Rückstand wird an neutralem Aluminiumoxid mit Benzol/Essigester (2:1) flash chromatographiert. Man erhält 0,25 g der aus Methanol kristallisierenden 11 β -Acetophenylverbindung.

F: 118 °C bis 124 °C [α]_D: 188,2°

40

f) 3,3-Ethylendioxy-17 α -(3-hydroxy-1'(Z)-propenyl)-17 β -methoxy-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl)-phenyl]-13-methyl-gon-9-en-5 α -ol

45 Ca. 0,5 g 3,3-Ethylendioxy-17 α -(3'-hydroxy-1'-propinyl)-17 β -methoxy-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl)phenyl]-13-methyl-gon-9-en-5 α -ol werden in 8 ml Tetrahydrofuran und 0,75 ml Pyridin gelöst und nach Zugabe von 0,1 g Pd/BaSO₄ (10 %) bei Raumtemperatur in einer Wasserstoffatmosphäre unter Normaldruck bis zum Stillstand der Wasserstoffaufnahme hydriert. Nach wenigen Minuten ist der zunächst braun gefärbte Oxidatkatalysator reduziert (schwarze Färbung). Nach einer Stunde ist die Wasserstoffaufnahme beendet. Es wird vom Katalysator abfiltriert und das zur Trockn. ingeengte Filtrat direkt in die nächste Stufe eingesetzt.

IR[cm⁻¹]: 3600 (OH), 3500 (OH - assoziiert)

55 Bispiel 6

a) 16 α ,17 α -Cyclohexano-3,3-ethylendi-xylo-17 β -meth yxymethyl-5 α -methoxy-11 β -[4-(2'-methyl-1',3'-

dioxolan-2'-yl)phenyl]-estr-9-en

0,1 g 16 α ,17 α -Cyclohexano-3,3-ethylendioxy-17 β -hydroxymethyl-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl)phenyl]-estr-9-en-5 α -ol werden in 5 ml absolutem Benzol und 0,5 ml Methyljodid gelöst und nach Zugabe von 0,4 g gepulvertem KOH bei 35 °C ca. 48 Stunden unter Feuchtigkeitsausschluß gerührt. Nach erfolgtem quantitativen Umsatz wird mit Wasser versetzt und das Steroid mit Benzol extrahiert. Man erhält 0,1 g der dimethylierten Verbindung in Form eines Öles.
 IR(cm^{-1}): 1600 (Aromat)
 $^1\text{H-NMR}$ [ppm]: 7,33; 7,23; 7,18; 7,09 (4H, Aromat), 4,18 u. 4,12 (1H, 11 α -H), 3,89 (9H, Ketal), 3,22 (6H, 2' OMe), 1,81 (3H, Acetophenonyketal), 0,39 (3H, 13-Me)

b) 11 β -(4-Acetylphenyl)-16 α ,17 α -cyclohexano-17 β -methoxymethyl-estra-4,9-dien-3-on

16 0,1 g 16 α , 17 α -Cyclohexano-3,3-ethylendioxy-17 β -methoxymethyl-5 α -methoxy-11 β -[4-(2'-methyl-1',3'-dioxolan-2'-yl)phenyl]-estr-9-en werden in 5 ml 70prozentiger wässriger Essigsäure gelöst und auf dem Wasserbad bei 60 °C ca. 1 Stunde gerührt. Nach erfolgter Umsetzung wird mit Wasser versetzt und das amorph kristalline Rohprodukt an basischem Aluminiumoxid mit Benzol/Essigester (20:1) chromatographiert. Nach dem Einengen des Eluates wird die verbleibende Rückstand aus Essigsäure durch Wasserzugabe 20 ausgefällt.
 IR(cm^{-1}): 1600 (Aromat); 1680 (3-Keto); 1685 (C=O-Acetyl)
 MS: M^+ 472 ber. f. $C_{22}\text{H}_{26}\text{O}_3$; $M^+ - 40$ ber. f. $C_{21}\text{H}_{26}\text{O}_2$

25 Beispiel 7**11 β -(4-Acetylphenyl)-17 β -methoxy- 17 α -methoxymethyl-estra-4,9-dien-3-on**

30 a) 2,6 g 3,3-Dimethoxy-17 α -methoxymethyl-estra-5(10),9(11)dien-17 β -ol werden in 20 ml THF gelöst und bei 20 °C zu einer Lösung von Natriumnaphthalid (hergestellt aus 1,28 g Naphthalin und 250 mg Natrium in 50 ml THF) zugeropft, wobei das Alkoholat gebildet wird.
 b) Zur dunkelgrünen Lösung fügt man nach 30 Minuten bei 20 °C 5 ml Methyljodid und führt 2 Stunden bei dieser Temperatur, zersetzt mit Methanol und anschließend mit Wasser, extrahiert mit Essigester, wäscht die organische Phase neutral, trocknet über K_2CO_3 und Na_2SO_4 und verdampft das Lösungsmittel unter Vakuum. Das Rohprodukt (6,7g) wird durch Säulenchromatographie an 120 g Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 2,36 g 17 β -Methoxy-17 α -methoxymethyl-estra-5(10),9(11)-dien-3,3-dimethylketal als farbloses Öl.
 $[\eta]_D = +110^\circ$ (CHCl_3 , c = 0,45)
 c) In einer Mischung aus 15 ml Methylenchlorid und 0,5 ml Pyridin werden 1,88 g 17 β -Methoxy-17 α -methoxymethyl-estra-5(10),9(11)dien-3,3-dimethylketal gelöst und bei 20 °C mit 2 ml H_2O_2 und 0,2 ml Hexachlororessenz setzt. Nach 20 Stunden wird wäss. Bisulfit-Lösung zugegeben und mit Methylenchlorid extrahiert. Man wäscht neutral, trocknet über K_2CO_3 und Na_2SO_4 und destilliert das Lösungsmittel unter Vakuum ab. Das Rohprodukt wird durch Säulenchromatographie an 70g Aluminiumoxid (alkalisch) mit einem Benzol-Essigester-Gradienten gereinigt. Man erhält 1,24 g 5 α ,10 α -Epoxy-17 β -methoxy-17 α -methoxymethyl-estr-9(11)-en-3,3-dimethylketal.
 Schmp. 116 °C bis 119 °C (Hexan)
 $[\eta]_D = +7^\circ$ C (CHCl_3)
 d) Zu 486 mg Magnesium in 5 ml abs. Ether tropft man unter Argon 0,15 ml Dibromethan und anschließend 4,95 g 1-(4-Bromphenyl)-ethanon-1,1-ethylenketal in 30 ml abs. THF. Man röhrt 3 Stunden bei 50 °C Innentemperatur, kühlt auf 0 °C ab und fügt 170 mg CuCl hinzu. Nach w iteren 20 Minuten wird n 1,18 g 5 α ,10 α -Epoxy-17 β -methoxy-17 α -methoxymethyl-estr-9(11)-en-3,3-dimethylketal in 20 ml THF zugeropft. Es wird 2 Stunden bei Raumtemperatur gerührt, der Ansatz mit wäss. Ammoniumchlorid-Lösung zersetzt und mit Essigester extrahiert. Die organische Phase wird neutral gewaschen über Na_2SO_4 getrocknet und unter Vakuum verdampft. Das Rohprodukt wird durch Säulenchromatographie an 70 g Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 970 mg 3,3-Dimethoxy-11 β -(4-(1,1-ethylendioxyethyl)-ph-nyl)-17 β -methoxy-17 α -methoxymethyl-estr-9-en-5 α -ol als farbloses Öl, das direkt weiterverarbeitet wird.

- 5 e) 970 mg 3,3-Dimethoxy-11 β -[4-(1,1-ethylendioxyethyl)-phenyl]-17 β -methoxy-17 α -methoxymethyl-estr-9-en-5 α -ol werden in 20 ml verdünnter Essigsäure 20 Stunden bei Raumtemp ratur gerührt. Nach Zugabe von Wasser wird mit Essigester extrahiert, die organische Phase mit verdünnter wäss. NaOH und Wasser gewaschen, über Na₂SO₄ getrocknet und unter Vakuum verdampft. Nach Umkristallisation aus Ether werden 430 mg 11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -methoxymethyl-estra-4,9-dien-3-on erhalten.
 Schmp. 133° C bis 137° C (Ether)
 $[\alpha]_D = + 170^\circ$ C (CHCl₃)

10 Beispiel 8

11 β -(4-Acetylphenyl)-17 α -ethoxymethyl-17 β -methoxy-estra-4,9-dien-3-on

- 15 a) Zu 1,88 g 3,3-Dimethoxy-17 α -ethoxymethyl-estra-5(10),9(11)-dien-17 β -ol in 30 ml THF tropft man solange eine Natriumnaphthalid-Lösung (hergestellt aus 250 mg Natrium und 1,28 g Naphthalin in 50 ml THF) bis eine dunkelgrüne Färbung bestehen bleibt, wobei das Alkoholat gebildet wird.
 b) Nach 30 Minuten bei Raumtemperatur fügt man 4 ml Methyliodid zu und röhrt weitere 2 Stunden nach. Der Ansatz wird mit wäss. NH₄Cl-Lösung zersetzt, mit Essigester extrahiert. Man wäscht die organische Phase neutral, trocknet über K₂CO₃ und Na₂SO₄ und verdampft das Lösungsmittel unter Vakuum. Das Rohprodukt wird durch Säulenchromatographie an Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 1,56 g 17 α -Ethoxymethyl-17 β -methoxy-estra-5(10),9(11)-dien-3,3-dimethylketal als farbloses Öl, das direkt in die nächste Stufe eingesetzt wird.
 c) 1,56 g 17 α -Ethoxymethyl-17 β -methoxy-estra-5(10),9(11)-dien-3,3-dimethylketal werden in 20 ml Methylenchlorid und 0,5 ml Pyridin gelöst und bei 20° C mit 3 ml H₂O₂ und 0,3 ml Hexachloraceteton versetzt. Nach 20 Stunden wird wäss. Blisulfit-Lösung zugegeben und mit Methylenchlorid extrahiert. Man wäscht neutral, trocknet über K₂CO₃ und Na₂SO₄ und destilliert das Lösungsmittel unter Vakuum ab. Das Rohprodukt wird durch Säulenchromatographie an 60 g Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 940 mg 5a,10a-Epoxy-17 α -ethoxymethyl-17 β -methoxy-estr-9(11)-en-3,3-dimethylketal als farbloses Öl, das direkt in die nächste Stufe eingesetzt wird.
 d) Zu 480 mg Magnesium in 5 ml abs. Ether tropft man unter Argon 0,15 ml Dibromethan und anschließend 4,95 g 1-(4-Bromphenoxy)-ethanon-1,1-ethylenketal in 30 ml abs. THF. Man röhrt 3 Stunden bei 50° C Innentemperatur, kühlt auf 0° C ab und flügt 170 mg CuCl hinzu. Nach weiteren 20 Minuten werden 940 mg 5a,10a-Epoxy-17 α -ethoxymethyl-17 β -methoxy-estr-9(11)-en-3,3-dimethylketal in 20 ml THF zugetropft. Es wird 2 Stunden bei Raumtemperatur gerührt, der Ansatz mit wäss. Ammoniumchlorid-Lösung zersetzt und mit Essigester extrahiert. Die organische Phase wird neutral gewaschen, über Na₂SO₄ getrocknet und unter Vakuum verdampft. Das Rohprodukt wird durch Säulenchromatographie an 60 g Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 700 mg 3,3-Dimethoxy-11 β -(4-(1,1-ethylendioxyethyl)-phenyl)-17 α -ethoxymethyl-17 β -methoxy-estr-9-en-5 α -ol als farbloses Öl, das direkt weiterverarbeitet wird.
 e) 700 mg 3,3-Dimethoxy-11 β -(4-(1,1-ethylendioxyethyl)-phenyl)-17 α -ethoxymethyl-17 β -methoxy-estr-9-en-5 α -ol werden in 20 ml verdünnte Essigsäure (70 %/g) 20 Stunden bei Raumtemperatur gerührt. Nach Zugabe von Wasser wird mit Essigester extrahiert, die organische Phase mit verdünnter wäss. NaOH und Wasser gewaschen, über Na₂SO₄ getrocknet und unter Vakuum verdampft. Das Rohprodukt wird durch préparative Schichtchromatographie an Kieselgel 60 mit dem Laufmittelgemisch Benzol/Aceton 8:1 (v/v) gereinigt. Es werden 290 mg 11 β -(4-Acetylphenyl)-17 α -ethoxymethyl-17 β -methoxy-estra-4,9-dien-3-on erhalten.
 Schmp. 134° C bis 137° C (Aceton/Ether)
 $[\alpha]_D = + 180^\circ$ (CHCl₃)

50 Beispiel 9

11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -propoxymethyl-estra-4,9-dien-3-on

- 55 a) Zu 3,9 g 3,3-Dimethoxy-17 α -propoxymethyl-estra-5(10),9(11)-dien-17 β -ol in 30 ml THF tropft man solange eine Natriumnaphthalid-Lösung (hergestellt aus 375 mg Natrium und 1,9 g Naphthalin in 100 ml THF) bis ein dunkelgrüne Färbung bestehen bleibt, wobei das Alkoholat gebildet wird.

- b) Nach 30 Minuten Rührung bei 20 °C tropft man zur Lösung 8 ml Methyliodid langsam hinzu und röhrt weitere 3 Stunden bei Raumtemperatur. Nach Zugabe von wässr. NH₄Cl-Lösung wird mehrmals mit Essigester extrahiert. Man wäscht die organische Phase neutral, trocknet über K₂CO₃ und Na₂SO₄ und verdampft das Lösungsmittel unter Vakuum. Das Rohprodukt wird durch Säulenchromatographie an 140 g Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 3,56 g 17 β -Methoxy-17 α -propoxymethyl-estra-5(10),9(11)-dien-3,3-dimethylketal als farbloses Öl, das direkt in die nächste Stufe eingesetzt wird.
- c) Zu 3,56 g 17 β -Methoxy-17 α -propoxymethyl-estra-5(10),9(11)-dien-3,3-dimethylketal in 20 ml Methylenchlorid werden 1 g NaHCO₃, 2,5 g NaH₂PO₄, 4,5 ml H₂O₂ und 1,5 g Chloralhydrat gegeben. Man röhrt ca. 3,5 Stunden bis zum vollständigen Umsatz bei Raumtemperatur, gibt Wasser zu und extrahiert mit Methylenchlorid. Die organische Phase wird nacheinander mit wässr. Bisulfit-Lösung, K₂CO₃-Lösung und Wasser gewaschen, über Na₂SO₄ getrocknet und unter Vakuum verdampft. Das Rohprodukt wird durch Säulenchromatographie an 120 g Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 2,45 g 5 α ,10 α -Epoxy-17 β -methoxy-17 β -propoxymethyl-estr-9(11)-en-3,3-dimethylketal als farbloses Öl, das direkt in die nächste Stufe eingesetzt wird.
- d) Zu 560 mg Magnesium in 5 ml abs. Ether gibt man nacheinander 0,2 ml Dibromethan und 5,7 g 1-(4-Bromphenyl)-ethanon-1,1-ethylenketal in 30 ml abs. THF. Man röhrt 3 Stunden bei 50 °C Innentemperatur, kühlt auf 0 °C ab und fügt 220 mg CuCl hinzu. Nach weiteren 20 Minuten werden 2,45 g 5 α ,10 α -Epoxy-17 β -methoxy-17 β -propoxymethyl-estr-9(11)-en-3,3-dimethylketal in 40 ml abs. THF zugetropft.
- e) Man röhrt 3 Stunden bei Raumtemperatur, zersetzt mit wässr. NH₄Cl-Lösung und extrahiert mit Essigester. Es wird farblos und neutral gewaschen, über Mg₂SO₄ getrocknet und im Vakuum eingedampft. Das Rohprodukt wird an 100 g Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 1,5 g 3,3-Dimethoxy-11 β -[4-(1,1-ethylenoxyethyl)-phenyl]-17 β -methoxy-17 α -propoxymethyl-estr-9-en-5 α -ol als farbloses Öl, das direkt in die nächste Stufe eingesetzt wird.
- f) Zu 1,5 g 3,3-Dimethoxy-11 β -[4-(1,1-ethylenoxyethyl)-phenyl]-17 β -methoxy-17 α -propoxymethyl-estr-9-en-5 α -ol werden 20 ml verdünnter Essig säure (70 %ig) gegeben und die Mischung 4 Stunden bei Raumtemperatur gerührt. Nach Zugabe von Wasser wird mit Essigester extrahiert, die organische Phase mit verdünnter wässr. NaOH und Wasser gewaschen, über Na₂SO₄ getrocknet und unter Vakuum verdampft. Das Rohprodukt wird aus Ether/Aceton/Hexan umkristallisiert. Man erhält 790 mg 11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -propoxymethyl-estra-4,9-dien-3-on .
- Schmp. 118 °C bis 120 °C
 $[\alpha]_D = + 160^\circ$ (CHCl₃)

Beispiel 10

- Stufen a) bis c) wie unter Beispiel 7.
- d) Zu 850 mg Magnesium in 10 ml abs. THF tropft man unter Argon 0,15 ml Dibromethan und anschließend 5 g p-Bromdimethylamin in 15 ml abs. THF. Man röhrt 3 Stunden bei 50 °C Innentemperatur, kühlt auf -20 °C ab und fügt 200 mg CuCl hinzu. Nach weiteren 20 Minuten werden 1,72 g 5 α ,10 α -Epoxy-17 β -methoxy-17 β -methoxymethyl-estr-9(11)-en-3,3-dimethylketal in 15 ml THF zugetropft. Es wird 1 Stunde bei 10 °C bis 15 °C und dann bei Raumtemperatur gerührt, der Ansatz mit wässr. Ammoniumchlorid-Lösung zersetzt und mit Ether extrahiert. Die organische Phase wird neutral gewaschen, über Na₂SO₄ getrocknet und unter Vakuum verdampft. Das Rohprodukt wird durch Säulenchromatographie an 70g Aluminiumoxid (alkalisch) mit einem Benzol/Essigester-Gradienten gereinigt. Man erhält 1,1 g 3,3-Dimethoxy-11 β -(4-dimethylaminophenyl)-17 β -methoxy-17 α -methoxymethyl-estr-9-en-5 α -ol als farbloses Öl, das direkt weiterverarbeitet wird.
- e) 700 mg 3,3-Dimethoxy-11 β -(4-dimethylaminophenyl)-17 β -methoxy-17 α -methoxymethyl-estr-9-en-5 α -ol werden in 20 ml verdünnter Essigsäure 20 Stunden bei Raumtemperatur gerührt. Nach Zugabe von Wasser wird mit Essigester extrahiert, die organische Phase mit verdünnter wässr. NaOH und Wasser gewaschen, über Na₂SO₄ getrocknet und unter Vakuum verdampft. Nach mehrmaliger präparativer Schichtchromatographie an Aluminiumoxid (neu tral) und Kieselgel PF₂₅₄ werden 420 mg 11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -methoxymethyl-estra-4,9-dien-3-on als Schaum erhalten.
 $[\alpha]_D = + 167^\circ$ (CHCl₃)
- ¹H-NMR (CDCl₃, TMS):
- δ (ppm): 0,59 (s, 3H, H-18); 2,95 (s, 6H, N(CH₃)₂) ; 3,26 (s, 3H, 17 β -OCH₂) ; 3,41 (s, 3H, 17 α -OC₂H₅) ; 3,30 - 3,64 (m, 2H, ABX-System, 17 α -C H₂OCH₃) ; 4,30 (d, J = 7 Hz, 1H, H-11) ; 5,75 (s, 1H, H-4); 6,60 - 7,06 (m, 4H, AA'BB'-System des Aromaten).

Ansprüche**1. 11 β -Aryl-gona-4,9-diene der allgemeinen Formel I**

5

(1)

20 worin

A) R¹ eine Methyl- oder Ethylgruppe,
R² eine Alkoxy-, Alkythio-, wobei unter Alkyl ein Alkyl-, Alkenyl-oder eine entsprechende cyclische Verbindung mit 1 bzw. 2 bzw. 3 bis 7 Kohlenstoffatomen zu verstehen ist, eine Dimethylamino-, Monomethylamino-, Cyan-, Formyl-, Acetyl-, oder 1-Hydroxyethylgruppe,

25 R³ eine Hydroxy-, Alkoxymethoxy-, Alkanoyloxy oder Alkoxygruppe mit jeweils 1 bis 6 Kohlenstoffatomen, und
R⁴ eine Ethinyl-, Prop-1-inyl-, 3-Hydroxyprop-1-inyl-, 3-Alkanoyloxyprop-1-inyl-, 3-Alkanoyloxyprop-1-enyl-, 3-Alkanoyloxypropylgruppe mit jeweils 1 bis 6 Kohlenstoffatomen, 3-Hydroxyprop-1-enyl- und 3-Hydroxypropylgruppe sowie

30 R⁵ ein Wasserstoffatom
oder

B) R¹ eine Methyl- oder Ethylgruppe,
R² eine Methoxy-, Thiomethyl-, Dimethylamino-, Monomethylamino-, Cyan-, Formyl-, Acetyl- oder 1-Alkoxyethylgruppe mit 1 bis 6 Kohlenstoffatomen im Alkoxyrest,

35 R³ ein Methyl-, Ethyl-, Formyl-, Acetyl-, Cyan-, Dimethyl-tert.-butylsilyloxy-, Alkoxymethyl-, Alkoxy-, 1-Alkoxyethyl-, Alkoxymethoxy-, Alkanoyloxyethoxy-, mit jeweils 1 bis 6 Kohlenstoffatomen im Alkoxyrest, und

R⁴ eine Ethinyl-, Prop-1-inyl-, Alkyl-, 3-Alkoxyprop-1-inyl-, 3-Alkoxy prop-1-inyl-, 3-Alkoxypropylgruppe mit jeweils 1 bis 4 Kohlenstoffatomen im Alkyl- bzw. Alkoxyrest oder die Gruppierung -CH₂Y, worin Y ein

40 Cyan-, Azido- oder Alkoxyrest mit 1 bis 6 Kohlenstoffatomen sowie
R⁵ ein Wasserstoffatom oder eine Alkygruppe mit 1 bis 4 Kohlenstoffatomen oder aber

R⁴ und R⁵ gemeinsam eine Methylen- oder Tetramethylenbrücke oder

C) R¹ eine Methylgruppe,

R² eine Dimethylamino-, eine freie oder katalisierte Acetylgruppe,

45 R³ eine Alkoxygruppe mit 1 bis 6 Kohlenstoffatomen, eine Alkoxy- oder Alkythiomethoxygruppe mit 1 bis 4 Kohlenstoffatomen im Alkyrest,

R⁴ eine Alkoxymethygruppe mit 1 bis 6 Kohlenstoffatomen im Alkoxyrest sowie

R⁵ ein Wasserstoffatom

bedeutet.

50 2. Verbindungen d r allgemeinen Form II,

worin

R¹ ein Methylgruppe,

R² eine Dimethylamino- oder Acetylgruppe und außerdem

in A)

55 R³ eine Methoxygruppe,

R⁴ eine Prop-1-inyl-, Ethinyl-, 3-Hydroxy-prop-1-inyl-, 3-Hydroxy-prop-1(Z)-enyl-, 3-Hydroxypropylgruppe und

R⁵ ein Wasserstoffatom.

in B)

R³ ein Methoxy-, Acetyl- oder Methoxymethylgruppe,R⁴ eine Prop-1-inyl-, Ethynyl- oder 3-Hydroxypropylgruppe,R⁵ ein Wasserstoffatom oder5 R⁴ und R⁵ gemeinsam eine Methylen- oder Tetramethylenbrücke,
in C)R³ eine Methoxygruppe,R⁴ eine Methoxymethyl-, Ethoxymethyl- oder Propoxymethylgruppe undR⁵ ein Wasserstoff

10 bedeutet.

3. 11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on,11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on,11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -ethynyl-13-methyl-gona-4,9-dien-3-on,11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -ethynyl-13-methyl-gona-4,9-dien-3-on,15 11 β -(4-Acetylphenyl)-17 α -(3'-hydroxy-1-propinyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on, sowie11 β -(4-Acetylphenyl)-17 α -(3'-hydroxy-1(Z)-propenyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,11 β -(4-Acetylphenyl)-17 β -methoxy-16 α ,17 α -methylene-estra-4,9-dien-3-on,17 β -Acetyl-11 β -(4-acetylphenyl)-16 α ,17 α -cyclohexano-estra-4,9-dien-3-on,20 11 β -(4-Acetylphenyl)-16 α ,17 α -cyclohexano-17 β -methoxymethyl-estra-4,9-dien-3-on,11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -methoxymethyl-estra-4,9-dien-3-on,11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -methoxymethyl-estra-4,9-dien-3-on,11 β -(4-Acetylphenyl)-17 α -ethoxymethyl-17 β -methoxy-estra-4,9-dien-3-on,11 β -(4-Acetylphenyl)-17 β -methoxy-17 α -propoxymethyl-estra-4,9-dien-3-on,25 11 β -(4-Dimethylaminophenyl)-17 β -methoxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on,11 β -(4-Methoxyphe-nyl)-17 β -methoxy-17 α -propinyl-13-methyl-gona-4,9-dien-3-on,11 β -(4-Dimethylaminophenyl)-17 α -(3'-hydroxy-1-Z-propenyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,11 β -(4-Dimethylaminophenyl)-17 α -(3'-hydroxypropyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,30 30 11 β -(4-Methoxyphe-nyl)-17 α -(3'-hydroxypropyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,11 β -(4-Dimethylaminophenyl)-17 α -(3'-hydroxy-1-propinyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,11 β -(4-Dimethylaminophenyl)-17 α -(3'-hydroxy-1-propinyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,11 β -(4-Methoxyphe-nyl)-17 α -(3'-hydroxy-1-propinyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,11 β -(4-Dimethylaminophenyl)-17 α -(3'-hydroxy-1-propinyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on,35 35 11 β -(4-Methoxyphe-nyl)-17 α -(3'-hydroxy-1-propinyl)-17 β -methoxy-13-methyl-gona-4,9-dien-3-on.

4. Verfahren zur Herstellung von

11 β -Aryl-gona-4,9-dienen der

40 allgemeinen Formel I

worin

R¹, R², R³, R⁴ sowie R⁵ die in Anspruch 1 angegebene Bedeutung haben, dadurch gekennzeichnet, daß ein Verbindung der allgemeinen Formel I II

worin

- 20 R¹ und R⁵ die in Formel I angegebene Bedeutung haben,
R², R³ und R⁴ dieselbe Bedeutung wie R², R³ und R⁴ in Formel I haben, wobei gegebenenfalls vorhandene Keto- und/oder Hydroxygruppen geschützt sein können,
R⁶ und R⁷ je eine Methyl- oder Ethylgruppe oder gemeinsam eine Ethylen- oder 2,2-Dialkylpropylengruppe, insbesondere eine 2,2-Dimethylpropylengruppe sowie
- 25 R⁸ ein Wasserstoffatom oder einen Alkylrest mit 1 bis 6 Kohlenstoffatomen bedeuten,
durch Säurebehandlung in einem mit Wasser mischbaren Lösungsmittel, gegebenenfalls unter Erwärmen auf 60° - 80° C, in eine Verbindung der allgemeinen Formel I überführt.
- 30 5. Verfahren nach Anspruch 4, dadurch gekennzeichnet, daß die Säurebehandlung mit Essigsäure, p-Toluolsulfinsäure oder mit Mineralsäuren wie Salzsäure, Schwefelsäure, Phosphorsäure oder Perchlorsäure in Methanol, Ethanol oder Aceton durchgeführt wird.
6. Pharmazeutische Präparate, dadurch gekennzeichnet, daß sie mindestens eine Verbindung der allgemeinen Formel I sowie einen pharmazeutisch verträglichen Träger enthalten.
7. Verwendung von Verbindungen der allgemeinen Formel I zur Herstellung von Arzneimitteln.

35

40

45

50

55