

## Computing Theory

COMP 147 (4 units)

Chapter 1: Regular Languages

Section 1.1: Finite Automata

# Course Segments

- Automata and Languages
  - How can we define abstract models of computers?
- Computability Theory
  - What can (or cannot) be computed?
- Complexity Theory
  - What makes some problems computationally difficult?

## Computational Models

We'll look at three computational models:

- 1. Finite Automaton (in short FA) recognize Regular Languages
- 2. Push Down Automaton (in short PDA) recognize Context Free Languages.
- 3. Turing Machines (in short TM) recognize Computable Languages.

increasing computational power

### FA: Washing Machine Example

- The control of a washing machine is a very simple example of a finite automaton.
- The most simple washing machine accepts quarters and operation does not start until at least 3 quarters are inserted.

### FA: Washing Machine Example



- Accepts quarters.
- Operation starts after at least 3 quarters were inserted.
- Accepted strings: 25,25,25; 25,25,25,25; ...

### FA: Washing Machine Example



- A second washing machine also accepts half-dollar coins.
- Accepted strings: 25,25,25; 25,50; ...

#### FA: Second Example



- States: q1, q2, q3
- Start State: q1
- •Final State: q2
- $\bullet \mathsf{Alphabet}\, \Sigma = \{0,1\}$
- Transition function:

$$\delta(q_1, 0) = q_1$$

$$\delta(q_1, 1) = q_2$$

. . .

#### FA: Second Example



Does it accept the following strings:

0101 **\**01110 **\**0100 **\** 

# Designing FA

- We would like to design a DFA for the following languages (examples on board)
  - L1 = { w | w has even number of 0's}
  - L2 = {w | w has even number of 0's and 1's}
  - L3 ={ w | w start with 00}
  - L4 = { w | w divisible by 4}

### Formal Definition

- A *finite automaton* is a 5-tuple  $(Q,\Sigma,\delta,q_0,F)$  where:
- 1. Q is a finite set called the **states**.
- 2.  $\sum$  is a finite set called the *alphabet*.
- 3.  $\delta: Q \times \Sigma \to Q$  is the *transition function*.
- 4.  $q_0 \in Q$  is the **start state**, and
- 5.  $F \subseteq \mathcal{Q}$  is the set of **accept states**.

# Example

L1 = { w | w has even number of 0's}



Formal description

$$\left(\{q_1,q_2\},\{0,1\},\delta,q_1,\{q_2\}\right)$$
 function  $\delta$  is

$$egin{array}{c|cccc} & 0 & 1 \\ \hline q_1 & q_1 & q_2 \\ q_2 & q_1 & q_2. \end{array}$$

# Regular Language

- Definition: A *language* is a set of strings over some alphabet.
- The language of an FA, M, designated L(M), is the set of strings that M accepts
- If L is recognized by some finite automaton, then L is a regular language.

### Questions

Q1: How do you prove that a language L is regular?

A1: By presenting an FA, M, such that  $L(M) = L_a$ 

Q2: Why is this important?

A2: It defines a class of problems that can be solved by a computational device with bounded memory.

Q3: How do you prove that a language L is not regular?

A3: This is more difficult! We'll answer this later.