# This Page Is Inserted by IFW Operations and is not a part of the Official Record

# **BEST AVAILABLE IMAGES**

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images may include (but are not limited to):

- BLACK BORDERS
- TEXT CUT OFF AT TOP, BOTTOM OR SIDES
- FADED TEXT
- ILLEGIBLE TEXT
- SKEWED/SLANTED IMAGES
- COLORED PHOTOS
- BLACK OR VERY BLACK AND WHITE DARK PHOTOS
- GRAY SCALE DOCUMENTS

# IMAGES ARE BEST AVAILABLE COPY.

As rescanning documents will not correct images, please do not report the images to the Image Problem Mailbox.

• .

#### **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



#### INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

(51) International Patent Classification 6: C12N 15/86, C07K 14/535

A2

(11) International Publication Number:

WO 96/09399

(43) International Publication Date:

28 March 1996 (28.03.96)

(21) International Application Number:

PCT/US95/11537

(22) International Filing Date:

12 September 1995 (12.09.95)

(30) Priority Data:

311,485

23 September 1994 (23.09.94) US

(71) Applicant: SOMATIX THERAPY CORPORATION [US/US]; Suite 100, 950 Marina Village Parkway, Alameda, CA 94501 (US).

(72) Inventors: SHANKARA, Srinivas; Apartment E, 2255 San Jose Avenue, Alameda, CA 94501 (US). DWARKI, Varavani; Apartment N, 1175 Broadway Street, Alameda, CA 94501 (US). NUJAR, Tarlochan; 946 Foxfire Drive, Manteca, CA 95336 (US).

(74) Agents: HALLUIN, Albert, P. et al.; Pennie & Edmonds, 1155 Avenue of the Americas, New York, NY 10036 (US).

(81) Designated States: AU, CA, JP, European patent (AT, BE, CH, DE, DK, ES, FR, GB, GR, IE, IT, LU, MC, NL, PT, SE).

#### **Published**

Without international search report and to be republished upon receipt of that report.

(54) Title: CHIMERIC ADENOVIRUS FOR GENE DELIVERY





#### (57) Abstract

Chimeric adenovirus capable of transducing mammalian cells with DNA of interest are disclosed. The chimeric adenovirus are useful for the delivery of cloned genes into an individual and are therefore also useful for treating mammalian genetic diseases and disorders.

# FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

|    | A                        | GB  | United Kingdom               | MR | Mauritania               |
|----|--------------------------|-----|------------------------------|----|--------------------------|
| AT | Austria                  | GE  | Georgia                      | MW | Malawi                   |
| ΑU | Australia                |     | Guinea                       | NE | Niger                    |
| BB | Barbados                 | GN  | -                            | NL | Netherlands              |
| BE | Belgium                  | GR  | Greece                       | NO | Norway                   |
| BF | Burkina Faso             | HU  | Hungary                      | NZ | New Zealand              |
| BG | Bulgaria                 | IE  | Ireland                      |    |                          |
| BJ | Benin                    | IT  | ltaly .                      | PL | Poland                   |
| BR | Brazil                   | JP  | Japan                        | PT | Portugal                 |
|    | Belarus                  | KE  | Kenya                        | RO | Romania                  |
| BY | Canada                   | KG  | Kyrgystan                    | RU | Russian Federation       |
| CA |                          | KP  | Democratic People's Republic | SD | Sudan                    |
| CF | Central African Republic | ,   | of Korea                     | SE | Sweden                   |
| CG | Congo                    | KR  | Republic of Korea            | SI | Slovenia                 |
| CH | Switzerland              |     |                              | SK | Slovakia                 |
| CI | Côte d'Ivoire            | KZ  | Kazakhstan                   | SN | Senegal                  |
| CM | Cameroon                 | u   | Liechtenstein                | TD | Chad                     |
| CN | China                    | LK  | Sri Lanka                    |    |                          |
| CS | Czechoslovakia           | LU  | Luxembourg                   | TG | Togo                     |
| cz | Czech Republic           | LV  | Latvia                       | TJ | Tajikistan               |
|    | Germany                  | MC  | Monaco                       | TT | Trinidad and Tobago      |
| DE | Denmark                  | MD  | Republic of Moldova          | UA | Ukraine                  |
| DK | -                        | MG  | Madagascar                   | US | United States of America |
| ES | Spain                    | ML  | Mali                         | UZ | Uzbekistan               |
| FI | Finland                  | MN  | Mongolia                     | VN | Viet Nam                 |
| FR | France                   | MIN | 1410mBorns                   |    |                          |
| ~  | Gahon                    |     |                              |    |                          |

# CHIMERIC ADENOVIRUS FOR GENE DELIVERY

# 1. FIELD OF THE INVENTION

The present invention is directed to novel adenovirus vectors useful for the delivery of cloned genetic material to target cells. The chimeric adenovirus vectors comprise genetic material of interest which is flanked by adenoviral sequences, and may optionally comprise a suitable eucaryotic 10 promoter to facilitate the expression of the genetic material of interest. The chimeric adenovirus are produced by a process involving a recombinant adenovirus vector which is used in conjunction with replication deficient helper adenovirus genomes to generate recombinantly produced chimeric 15 adenovirus particles comprising the genetic material of interest. The resulting chimeric adenovirus may be used to infect target cells which subsequently express the cloned genetic material. One class of novel chimeric adenovirus does not contain a selectable marker which obviates the need for a 20 selection step after the genetic material of interest has been introduced into the target cells.

## 2. BACKGROUND OF THE INVENTION

Mammalian cells may be transduced by any of a variety of 25 well known processes. Techniques such as calcium phosphate precipitation and DEAE-dextran mediated transfection are widely used in the art. More recently, other techniques for delivery of exogenous DNA into cells such as electroporation or the use of liposomes have gained increased acceptance.

30 Perhaps the most elegant methods of introducing recombinant nucleic acid into cells is viral mediated cell transduction.

Recombinant retroviruses have been widely used in gene transfer experiments (see generally, Mulligan, R.C., Chapter 8, In: Experimental Manipulation of Gene Expression, Academic

35 Press, pp. 155-173 (1983); Coffin, J., <u>In: RNA Tumor Viruses</u>, Weiss, R. <u>et al</u>. (eds.), Cold Spring Harbor Laboratory, Vol. 2, pp. 36-38 (1985). Other eucaryotic viruses which have been

used as vectors to transduce mammalian cells include adenovirus, papilloma virus, herpes virus, adeno-associated virus, rabies virus, and the like (See generally, Sambrook et al., Molecular Cloning, Cold Spring Harbor Laboratory Press, 5 Cold Spring Harbor, New York, Vol. 3:16.1-16.89 (1989).

Adenovirus have proved to be of particular interest because of several features of adenoviral biology (See generally, Berkner, K.L. (1992) Curr. Top. Microbiol. Immunol. 158:39-66). For instance, viral concentration, or titer, may

- 10 be an important factor in achieving high efficiency transduction of mammalian cells. Adenovirus, by virtue of their life-style, generally allow growth conditions which result in production of higher titer stocks then other mammalian virus.
- Also unlike other viruses, adenovirus capsids are not enveloped. Because of this fact, adenovirus particles are quite stable, and may retain infectivity after any of a variety of laboratory procedures. Procedures of particular interest include methods of concentrating infective virus,
- 20 e.g., CsCl centrifugation, or methods that allow virus to be stored for relatively long periods while retaining substantial infectivity.

Furthermore, the expression of genes encoded by recombinant adenovirus does not require target cell

- 25 proliferation or viral integration, although a small subset of the adenovirus presumably integrate into the host genome during infection. Hence, adenoviral vectors are generally better suited than other viral vectors for the transduction of postmitotic, slowly proliferating, or nonreplicating cells.
- Additionally, particularly where species-specific infection is preferred, replication deficient human, or murine, adenovirus are available for the construction of recombinant virus particles that express a gene of interest. Thus, unlike transduction systems using other eucaryotic virus
- 35 vectors, recombinant adenovirus can be engineered to utilize viral coat proteins which normally facilitate the normal infection of human cells or cells of other species, rather

then rely on the viral coats of a less specific, or amphotropic, nature. This species specificity appears to result in more efficient infection kinetics than can generally be obtained by virus with less specific infectivity.

An additional advantage of using adenovirus for gene delivery is that the genetic material transduced (to be expressed) into the host cell is DNA. Thus, expression of the transduced gene does not need to be preceded by reverse transcription. This is particularly advantageous where the intended recipient is undergoing treatment for the suppression of retroviral disease (i.e., AZT treatment to inhibit reverse transcriptase activity), such as treatment for acquired immunodeficiency syndrome (AIDS).

Recombinant adenoviral vectors have been generated which
15 express a variety of genes. Perhaps most notable is the
replication deficient adenovirus vector Ad.RSV that expresses
incorporated genetic material of interest using an
incorporated promoter from the Rous Sarcoma Virus. In
particular, Ad.RSV beta gal (which expresses the bacterial β20 galactosidase gene) has been used as a marker for in vivo gene
transfer experiments involving salivary glands (Mastrangeli et
al. (1994) Am. J. Physiol. 266:1146-1155); mesothelial cells
(Setoguchi et al. (1994) Am. J. Respir. Cell. Mol. Biol.
10(4):369-377); and tumor cells (Brody et al. (1994) Hum. Gene
25 Ther. 5(4):437-447, Chen et al. (1994) Proc. Natl. Acad. Sci.,
U.S.A. 91(8):3054-3057).

An ideal replication deficient adenovirus for the delivery of genetic material of interest would comprise a variety of structural and functional elements. It would readily infect target cells of interest; it would place the gene of interest under the control of a well-characterized eucaryotic promoter element; it would create a gene structure flanking the gene of interest which would provide properly spaced and oriented genetic elements to allow optimum translational efficiency and mRNA stability; and it would produce high titer and substantially helper-free stocks of the recombinant adenovirus.

#### 3. SUMMARY OF THE INVENTION

The present invention relates to replication deficient chimeric adenovirus that allow for the rapid insertion and expression of deoxyribonucleic acid (DNA) of interest into 5 mammalian cells, either in vitro or in vivo. The DNA of interest can optionally comprise a gene, or fraction thereof, oriented to express either a polypeptide or protein of interest, or a "sense" or "antisense" nucleic acid of structural or regulatory importance. Preferably, the DNA of 10 interest will be placed in an expression cassette that contains a eucaryotic promoter and/or enhancer region; nucleotide sequence corresponding to a retroviral Psipackaging site; and a substantially noncoding 3' DNA which facilitates the stability, polyadenlyation, or splicing of the 15 transcript.

The chimeric adenovirus are thus useful for both the transduction of mammalian cells, and the expression of DNA of interest to produce regulatory factors or proteins. The regulatory factors or proteins may optionally be produced in culture or otherwise such that they can be subsequently purified and used for therapeutic, medicinal or diagnostic purposes.

The chimeric adenovirus are particularly useful for gene therapy, replacement, or insertion because of the high 25 infectivity inherent in adenovirus biology; the high viral concentrations which may be produced during the culture and subsequent concentration of the chimeric adenovirus; and the relatively long storage life of the chimeric particles.

Either murine, or human adenovirus of serotypes A, B, or 30 C may be used in the present invention. Of particular interest are type C adenovirus (used in the present invention) which retain infectivity while generally being considered nononcogenic.

## 4. BRIEF DESCRIPTION OF THE FIGURES

35

Figure 1 is a schematic representation of the method of producing chimeric adenovirus via the recombination of

cotransfected plasmids. One plasmid, pXCJL-GMCSF, contains a "cassette" comprising the gene encoding the cytokine granulocyte/macrophage colony stimulating factor (GMCSF) situated such that it is transcribed, processed, and 5 translated under the regulatory control of flanking viral sequences. The second plasmid, pJM17, comprises a replication and packaging deficient adenovirus "helper" genome. The two plasmids must recombine to produce a packagable genome, and thus substantially all of the resulting virus comprise the 10 chimeric adenovirus desired (Recombinant E1-deleted GM-CSF adenovirus).

Figure 2 presents a schematic diagram and partial restriction map of pJM17.

15

Figures 3A-E disclose the DNA sequence of pXJCL-hGM-CSF (SEQ. I.D. NO. 1), the plasmid used to construct the human GM-CSF expression cassette, and in the recombinatory insertion of the GM-CSF expression cassette into the replication deficient 20 genome contained in pJM17. The sequence of the murine GM-CSF is disclosed in foreign patent EP177568B1, herein incorporated by reference.

Figures 4A and 4B show the transient expression of human 25 GM-CSF after one month old Balb/c mice were intramuscularly injected with either 10° or 10° pfu of Ad.hGM-CSF respectively. Serum samples were taken up to twenty one days after infection and GM-CSF levels were assayed by ELISA. Individual mice are represented by number and correspond to 30 the indicated bars on the graphs.

Figure 5 shows the expression of human GM-CSF (as quantified by ELISA) after Ad.hGM-CSF injection and reinjection into adult Balb/C mice. Four month old Balb/C 35 mice were injected with 108 pfu of Ad.hGM-CSF either I.V. (mice 103 and 105) or I.M. (mice 201, 203, and 205). All mice were reinjected (I.M.) with 109 pfu of Ad.hGM-CSF at day 31.

Figure 6 shows the expression of human GM-CSF (as quantified by ELISA) after Ad.hGM-CSF injection and reinjection into adult SCID mice. SCID mice were injected (I.V.) with 10° pfu of Ad.hGM-CSF, and GM-CSF blood serum 5 levels were subsequently monitored. All mice were reinjected (I.M.) with 10° pfu of Ad.hGM-CSF at day 31, and monitored for GM-CSF expression through day 71.

# 5. DETAILED DESCRIPTION OF THE INVENTION

- The present invention provides for chimeric adenovirus which are useful for transducing mammalian cells with DNA of interest, as well as methods of producing and using the chimeric adenovirus. Previous recombinant adenovirus expression vectors have specifically taught the expression of the genetic material of interest under the control of endogenous adenoviral promoters, or have suggested that the DNA of interest be inserted into recombinant adenovirus under the control of an RSV promoter already present in the vector Ad.RSV.
- In the present system, the particular DNA of interest is first constructed as an expression cassette which comprises a gene, or portion thereof, of interest that is flanked by sequences of viral origin which are spatially organized to optimize the expression of the DNA of interest. As used 25 herein, the term "expression" refers to the transcription of the DNA of interest, and the splicing, processing, stability, and, optionally, translation of the corresponding mRNA transcript. The recombinant DNA cassette is subsequently recombined into a replication deficient helper adenovirus to 30 produce the infective chimeric adenovirus of interest. This method best ensures the maximal expression of the DNA of interest and additionally provides a method that is generally
- 35 The particular advantage of using an expression cassette stems from the fact that the recombinant Ad.RSV vector is rather large (over 36kb). This large size makes plasmids

applicable to the relatively facile production of chimeric

adenovirus which express a wide variety of DNAs.

which contain the Ad.RSV genome somewhat difficult to engineer as the number of unique (and hence useful) restriction sites tends to diminish as the amount of DNA sequence increases. Thus, the utilization of a smaller plasmid to construct the 5 expression cassette better enables a wide variety of genetic engineering techniques which may allow the fine tuning of the expression of the DNA of interest (see generally, Sambrook et al. (1989) Molecular Cloning Vols. I-III, Cold Spring Harbor Laboratory Press, Cold Spring Harbor, New York, and <u>Current</u> 10 Protocols in Molecular Biology (1989) John Wiley & Sons, all Vols. and periodic updates thereof, herein incorporated by reference). For instance, after the DNA of interest is placed between the desired regulatory elements (i.e., promoter and poly-adenylation signal), unwanted regions of extraneous DNA 15 may be looped-out and deleted by site-directed mutagenesis (Krogstad and Champoux (1990) J. Virol. 64(6):2796-2801, herein incorporated by reference) such that the DNA of interest is precisely placed relative to the promoter and splicing elements, and, if a protein or polypeptide is 20 desired, a strong Kozak translation start site (Kozak (1989) This arrangement best ensures that J. Cell Biol. <u>108</u>:229). the resulting chimeric adenovirus will maximally express the DNA of interest.

As used herein, the term replication defective

25 adenovirus, refers to a adenovirus that are incapable of self replication within host cells that, absent infection or transfection, do not express at least one adenovirus gene or gene product.

Any number of transcriptional promoters and enhancers may 30 be used in the expression cassette, including, but not limited to, the herpes simplex thymidine kinase promoter, cytomegalovirus promoter/enhancer, SV40 promoters, and retroviral long terminal repeat (LTR) promoter/enhancers. Of special interest are any of a number of well characterized retroviral promoters, particularly the Moloney murine leukemia virus (MLV) LTR promoter and the human immunodeficiency virus (HIV) LTR.

According to one embodiment of the present invention, recombinant DNA techniques have been used to construct expression cassettes in plasmid pXCJ1.1 which comprise genes coding for the murine or human forms of granulocyte macrophage 5 colony stimulating factor (GM-CSF), which have been placed under the transcriptional control of the Moloney murine leukemia virus (MLV) long terminal repeat (LTR). embodiment, an SV40 poly-adenylation sequence flanks the 3' end of the GM-CSF gene. Thus, the transcript produced by 10 either GM-CSF expression cassette is transcribed using the MLV LTR promoter and enhancer sequences, poly-adenylated using an SV40 poly-adenylation sequence, spliced using the MLV splice donor and splice acceptor sequences, and the mRNA is presumably translated using the endogenous MLV translation 15 initiation sequence of the MLV gag gene. By engineering the DNA expression cassette such that the resulting transcript surrounds the coding region with naturally occurring viral control sequences, near optimum mRNA stability is obtained. Thus, as used herein, the terms "DNA expression cassette" or 20 simply "expression cassette" both refer to a DNA molecule comprising a eucaryotic promoter and/or enhancer region, a DNA of interest to be transcribed by the promoter, and a substantially noncoding 3' region of DNA that facilitates the stability, polyadenlyation, or splicing of the transcript. The GM-CSF expression cassette is inserted into a 25 replication defective helper adenovirus via homologous recombination after two circular plasmids (one containing the GM-CSF expression cassette and the other containing the replication defective adenovirus genome) are co-transfected 30 into the appropriate cell line (see Fig. 1). Using this system, only the specifically desired chimeric adenovirus are packaged. The resulting chimeric adenovirus expresses a mammalian gene (human or murine GM-CSF) that is expressed under the transcriptional and translational control of MLV and 35 SV40 control sequences. The chimeric adenovirus can subsequently be purified by any of a number of well

established techniques including, but not limited to, plaque

purification, purification by limiting dilution, or the like. Purified chimeric adenovirus can then be propagated to relatively high titers by infection of appropriate host cells, for example 293 cells (human kidney epithelial cells which constitutively produce adenovirus E1A). Although the chimeric adenovirus infections will generally produce highly concentrated viral preparations, one may elect to further concentrate and purify the chimeric adenovirus to achieve titers of about 1-5x10<sup>11</sup> plaque forming units (pfu)/ml) by 10 CsCl density equilibrium centrifugation (followed by dialysis), ultrafiltration, or the like.

The resulting chimeric adenovirus, designated Ad.mGM-CSF (murine GM-CSF) or Ad.hGM-CSF (human GM-CSF), have been shown to be useful for the production of microgram quantities (as quantified by enzyme linked immunosorbent assay, or ELISA) of GM-CSF in infected NIH 3T3 cells (see Table 1). The properties of Ad.hGM-CSF and Ad.mGM-CSF make both ideally suited for applications where GM-CSF expression by any of a broad range of target cells may be desired.

- Of particular interest is the use of Ad.hGM-CSF or Ad.mGM-CSF to transduce primary tumor cells. It has previously been established that vaccinations with tumor cells engineered to secrete GM-CSF can stimulate anti-tumor immunity in mice (Dranoff et al. (1993) Proc. Natl. Acad. Sci. U.S.A.
- 25 <u>90</u>:3539-3543. Ad.hGM-CSF has been used to transduce primary human melanoma, renal cell carcinoma, and colon carcinoma cells which subsequently produced microgram quantities (about  $1-5\mu g/10^6$  cells) of human GM-CSF (see Tables 2a-d).
- Additionally, Ad.mGM-CSF has been used to infect and transduce 30 murine B16 melanoma cells which may subsequently be irradiated (using about 5,000 rads) and assessed for efficacy as an antimelanoma vaccine.

Ad.hGM-CSF was also injected into Balb/c or SCID mice at various anatomical locations, and <u>in vivo</u> expression of GM-CSF was detected and quantified by ELISA (see Figs. 5 & 6).

Ad.hGM-CSF has been deposited (received at the ATCC on September 23, 1994) at the American Type Culture Collection,

Rockville, MD, under the accession number \_\_\_\_\_ under the terms of the Budapest Treaty. Applicants further agree to make this deposit available, without restriction to responsible third parties upon the granting of a patent from 5 this application in the United States, and comply with existing laws and regulations pertaining thereto, without limitation, except as to third parties adherence to applicants rights as prescribed by the claims of a patent issuing from this application.

10

As described briefly above and in detail in the Examples, the present invention provides a method of producing chimeric adenovirus comprising the recombinatory insertion of a DNA expression cassette contained in a circular plasmid into a replication deficient helper adenovirus genome contained in a circular plasmid to produce a chimeric adenovirus capable of transducing mammalian cells. The use of two circular plasmids is an important feature of the method of the present invention, since there is no need to linearize the adenoviral helper genome prior to cotransfection.

The chimeric adenovirus of the present invention exhibit very high infectivity and thus high levels of cellular transduction and expression of a DNA of interest. In addition to the specifically disclosed GM-CSF genes, modified forms of the GM-CSF genes may be utilized which have been altered by deletion or insertion, or to optimize codon usage for the specific target cells intended. DNA expression cassettes may also be constructed which allow the subsequent production of chimeric adenovirus which are capable of transducing any of a number of heterologous mammalian genes (i.e., DNAs of interest, subject to the restriction that the net size of the insert is less the about 9 kb in length).

Besides GM-CSF, other heterologous genes of particular interest include, but are not limited to, nerve growth factor 35 (NGF), tyrosine hydroxylase (TH), ciliary neurotropic factor (CNTF), brain-derived neurotropic factor (BDNF), factors VIII and IX, tissue plasminogen activator (tPA), interleukins 1-2

and 4-6, tumor necrosis factor-α (TNF-α), α or γ interferons, and erythropoietin. Chimeric adenovirus that express any of the above genes, or portions thereof, may be particularly useful for the treatment of mammalian diseases or disorders related to aberrant or deficient levels of the corresponding polypeptides or proteins in a given individual. Alternatively, chimeric adenovirus containing the genes for these factors may also be used to generate transient expression of the factors in vivo as required to therapeutically treat medical crisis. For instance, an infusion of chimeric adenovirus containing a tPA expression cassette would provide transient expression of tPA during the critical period following a heart-attack or stroke.

The high efficiency transduction inherent in the chimeric 15 adenovirus system makes them particularly well suited for the treatment of genetic or inherited disease, as well as the treatment of acquired disease. For instance, chimeric adenovirus may be used to deliver genes into a variety of cell types to correct genetic defects associated with diseases including but not limited to β-thalassemia, phenylketonuria, sickle-cell anemia, cystic fibrosis, or adenosine deaminase deficiency.

The chimeric adenovirus of the present invention may be used to transduce mammalian cells either in vitro or in vivo.

25 Where transduction in vitro is contemplated, cells may be infected at multiplicities of infection (moi's) of between about 1:1 to about 5000:1, and generally in the range of about 100:1 to about 2,500:1. Moi's of up to about 1000:1 have produced good expression of the DNA of interest without

30 evidence of serious cellular toxicity effects, and moi's of about 200:1 have resulted in no toxicity. Using similar methodologies, chimeric adenovirus may be used to infect resected primary tissue or cells which may subsequently be reintroduced into the body of an individual by established surgical or medical procedures.

Where diagnostic, therapeutic or medicinal use of chimeric adenovirus is contemplated, chimeric adenovirus

capable of transducing and expressing the DNA of interest may be introduced in vivo by any of a number of established methods. For instance, chimeric adenovirus may be administered by inhalation. Alternatively, chimeric adenovirus suspensions may also administered by intravenous (I.V.), intraperitoneal (I.P.), or intramuscular (I.M.) injection.

The chimeric adenovirus may also be injected directly into tumors. To prove the feasibility of this concept, a 10 chimeric adenovirus which encodes a bacterial lacZ gene was injected into B16 melanoma tumors in C57 mice. Following injection, adenovirus mediated transduction and  $\underline{in\ vivo}$  expression of  $\beta$ -galactosidase was observed in the tumors.

Other <u>in vivo</u> studies have established that a single 15 bolus of as much as about 10° pfu (in  $100\mu$ l total volume) of Ad.hGM-CSF can be injected (I.V. or I.M.) into mice without apparent toxicity effects (see Fig. 4A).

Possible cell types or tissues that may serve as targets for chimeric adenovirus gene delivery include, but are not limited to, hepatocytes, fibroblasts, endothelial cells, bone marrow stem cells, lymphocytes, neural tissue, astrocytes, alveolar tissue, and granulocytes.

An additional embodiment of the present invention is chimeric adenovirus containing expression cassettes which

25 further comprise a specific retroviral Psi-packaging sequence.

More particularly, a Psi-packaging sequence which corresponds to that recognized and used by any of a number of ecotropic and amphotropic Moloney murine leukemia virus packaging cell lines including, but not limited to, PA317 or PsiCRIP.

30 Where the above expression cassette of the chimeric adenovirus further encodes at least a portion of an MLV 3' LTR sequence (minimally comprising the U3 and R regions of the LTR) located distal to the gene of interest, the chimeric adenovirus may be used to transiently infect MLV packaging 35 cell lines and produce amphotropic or ecotropic retrovirus which package RNA genomes transcribed by the expression cassette of the chimeric adenovirus. Infection of the

appropriate cells by the resulting retrovirally packaged chimeric adenovirus transcripts will result in the integration and stable expression of the DNA of interest contained in the expression cassette of the chimeric adenovirus. The chimeric 5 adenovirus described above provide the user with increased versatility relative to previously disclosed retroviral or adenoviral transduction vectors. This is because a single chimeric adenovirus allows the user to choose between the increased storage life, infectivity, and transient expression 10 inherent in the high titer chimeric adenovirus system, or the stable integration and expression inherent in the MLV packaging system. Alternatively, an optimal mixture of the two delivery systems may be preferred. Thus, the present invention also provides for replication defective chimeric 15 adenovirus which contain an expression cassette which further comprises nucleotide sequence corresponding to a MLV Psipackaging site.

An additional embodiment of the present invention is chimeric adenovirus which place the expression of genes whose 20 products are toxic to the cell under the strict control of a trans-activated promoter, such as an HIV LTR promoter. Toxic genes which may be employed in these vectors include, but are not limited to, sequence coding for diphtheria toxin A chain, polio virus protein 2A, and the like (or modified forms 25 thereof). Since the HIV promoter generally requires virally encoded trans- activators, chimeric adenovirus will generally only express the toxic products (hence killing the cells) in Thus, since the expression of genes HIV infected cells. contained in chimeric adenovirus is not dependent on cell 30 division or proliferation (unlike retrovirally expressed genes), the above chimeric adenovirus may find utility in targeting and killing non-replicating or quiescent HIVinfected cells.

The present invention will now be illustrated by the 35 following examples, which are not intended to be limiting in any way.

#### 6. EXAMPLES

## 6.1. CONSTRUCTION OF THE PXCJL-GMCSF PLASMID

The starting plasmid, designated PXCJL1, was constructed from a modified Ad5 adenovirus genome cloned into pBR322. A deletion was made from the map units 1.3 to 9.3, and a multiple cloning site was inserted at the unique XbaI site. This construct was obtained from Dr. Frank Graham of McMaster University (McGrory, W.J. et al., Virology 163: 614-617, 1988).

The cDNA for human GM-CSF, along with upstream packaging and splicing sequences and the complete MLV 5' LTR, were isolated from plasmid MFGs-GM-CSF. MFGs is an unpublished three nucleotide modification of the MFG vector, as represented by MFG-GM-CSF (Dranoff, et al., Proc. Natl. Acad. Sci. 90:3539-3543, 1993; the modification has no effect on expression levels or transduction efficiencies). MFGs-GM-CSF DNA was first digested to completion with HindIII and BamHI and the ends were blunt-ended with the Klenow fragment. The plasmid fragments were separated by electrophoresis on a 1% agarose gel, and the 2.7 kb fragment extending from the 5' LTR to the 3' end of the GM-CSF cDNA was purified from the gel (Fragment 1).

The GM-CSF cDNA and associated sequences were then

subcloned into the multiple cloning site of PXCJL1 using
standard techniques (Sambrook, et al. Molecular Cloning: A
Laboratory Manual (1989)). The PXCJL1 plasmid was digested to
completion with XbaI, the ends were blunt-ended (end-filled)
with Klenow and treated with bacterial alkaline phosphatase.

This linearized vector fragment was purified from a 1% agarose
cell following electrophoresis (Fragment 2). The purified GMCSF cDNA (Fragment 1) was blunt-end ligated to the linearized
PXCJL1 with T4 ligase to generate the intermediate plasmid
PXCJL GM-CSF(I). XbaI and BamHI sites were regenerated in the
intermediate plasmid only if the insert was in the correct
orientation, as determined by restriction endonuclease (EcoRI
and BamHI) analysis.

To insert the SV40 polyadenylation sequence at the 3' end of the GM-CSF cDNA, PXCJL GM-CSF(I) was digested with BamHI and SalI, and the linearized fragment was isolated from a 1% agarose gel following electrophoresis (Fragment 3). The SV40 polyadenylation sequence was generated by polymerase chain reaction (PCR) using the pRC/CMV vector as the DNA template. The PCR primers were designed as follows:

the sense primer containing the BamHI siteGAG GAT CCT ATC GCC TTC TTG ACG
and the antisense primer containing the SalI siteGAG TCG ACT AAA CAA GTT GGG GTG.

PCR conditions were 95°C for 1 min., 55°C for 2 min., and 72°for 3 minutes, for 35 cycles. The PCR product was cloned into a TA plasmid and sequenced. The product with the correct 15 SV40 poly(A) sequence was digested with BamHI and SalI and the 216 bp SV40 poly(A) sequence was ligated to PXCJL GM-CSF(I) (Fragment 3) with T4 ligase.

10

The resulting cDNA expression plasmid, PXCJL, GM-CSF, contains the entire GM-CSF cassette, including the 5' MLV LTR, 20 Psi-packaging and splicing sequences, the GM-CSF cDNA, and the SV40 poly (A) sequences, flanked by adenovirus sequences. Both murine and human GM-CSF cDNA were subcloned into PXCJL1 following the same strategy.

To generate recombinant virus, a replication deficient form of the adenoviral genome in circular form (pJM17) was obtained from Dr. Frank Graham. Techniques for transfection of 293 cells (a human kidney epithelial cell line), overlaying plates with agar-containing medium, picking and analysis of recombinant virus clones were carried out following the methods described by Graham and Prevec ("Manipulation of Adenovirus Vectors", in Gene Transfer and Expression Protocols, E.J. Murray, ed.). Briefly, 293 cells in 100 mm dishes were co-transfected with 10µg of pJM17 and 15µg of PXCJL-GMCSF plasmid by the calcium phosphate method following the standard transfection protocol. 36 hours after

transfection, cells were overlaid with 0.8% Noble agar containing DMEM with 10% heat inactivated fetal calf serum.

Plaques visible by 8 days after transfection were picked and resuspended in 1 ml of medium and freeze-thawed three 5 times to release the virus. These supernatants were used as viral lysates in subsequent experiments. 0.2 ml of the viral supernatant from each individual plaque was added to the 1 ml of medium and used to infect confluent monolayers of 293 cells in a 6-well plate for four hours. After 24 hours, the cells 10 began to show complete cytopathic effects.

At this time the colonies were harvested, and the medium was analyzed for GM-CSF secretion. The cells were lysed by three rounds of freeze-thaw, and the medium was used to infect NIH 3T3 cells in a 6-well plate. 80% confluent monolayers of 15 NIH 3T3 cells in a 6-well plate were infected with 0.1 ml of crude virus stock in 1 ml of medium for four hours. 24 hours after infection fresh growth medium was added, and the GM-CSF secreted for the next 24 hours was analyzed by ELISA. The values for GM-CSF produced by Ad/human GM-CSF and Ad/mouse GM-CSF-transduced NIH 3T3 cells ranged from 300-400ng in 24 hours.

A schematic diagram of the recombination protocol used to generate Ad.hGM-CSF and Ad.mGM-CSF is presented in Figure 1.

25 6.3. PLAQUE PURIFICATION OF RECOMBINANT VIRUS

Confluent monolayers of 293 cells in 100mm dishes plated on day 1 were infected in 5 ml of medium on day 2 with 0.1 ml of viral supernatant obtained by resuspending virus containing agar block, as described above. After 1 hour of infecting at 30 37°C, the virus-containing medium was removed and overlaid with the agar-containing medium that had been prepared earlier. The cells were incubated at 37°C for 4-5 days and well isolated plaques were picked and analyzed for the ability to transduce NIH 3T3 cells with GM-CSF, as described earlier.

## 6.4. PURIFICATION AND AMPLIFICATION OF CHIMERIC ADENOVIRUS

Concentrated virus stocks were prepared from infected 293 cells. Confluent monolayers of 293 cells in 150mm dishes were infected with 5-10pfu/cell and after 36 hours when all the 5 cells began to exhibit complete CPE, the cells were collected and resuspended in 5 ml of 0.1M Tris, pH 8.0. The virus was released from the cell pellets by three freeze-thaw cycles. After sonicating the cell lysate, 1.8 ml of saturated cesium chloride (in 10mm Tris, pH 8.0, 1 mm EDTA) was added to 3.1 ml 10 of the cell lysate. This was centrifuged at 30,000 rpm in a SW 41 rotor for 20 hours. The virus band was collected and repurified by CsCl banding. The purified virus was then dialyzed against 10mm Tris/1 mM MgCl<sub>2</sub>, pH 7.4, and stored in 10% glycerol at -70°C.

15

# 6.5. TRANSDUCTION OF NIH 3T3 CELLS WITH Ad.hgm-CSF AND Ad.mgm-CSF

NIH 3T3 cells were infected with purified virus at different multiplicities of infection (moi) for four hours, supernatants from 24-48 hours post-infection were collected and GM-CSF secretion was measured by ELISA. Results are shown in Table 1.

Table 1. Expression of human GM-CSF ( $\mu$ g/1x10 $^{\circ}$  cells/24 hr) in 3T3 cells.

25

TABLE 1.

|   | moi        | 500 | 250 | 100   | 50    |
|---|------------|-----|-----|-------|-------|
|   | Ad.hGM-CSF | 2.1 | 1.4 | 0.41  | 0.125 |
| 0 | Ad.mGM-CSF | 1.6 | 0.9 | 0.375 | 0.08  |

30

# 6.6. TRANSDUCTION OF PRIMARY HUMAN TUMOR CELLS WITH Ad.hgm-CSF Virus

Primary cultures of human melanoma, renal cell carcinoma, 35 colon carcinoma and colorectal tumor cells were established and were transduced with Ad.hGM-CSF virus. The cultures were infected with Ad.hGM-CSF at different moi's for 4-8 hours,

supernatants were collected at 24-48 hours post-infection, and GM-CSF secretion was measured by ELISA. Results for the various cell types are presented in Tables 2a-d.

Tables 2a-d. Expression of GM-CSF ( $\mu$ g/lx10 $^{\circ}$  cells/24 hour) in Ad.hGM-CSF transduced primary tumor cells.

TABLE 2a.

|    | moi             | 5000 | 1000 | 500 | 250  | 125  | 62.5  | 50  |
|----|-----------------|------|------|-----|------|------|-------|-----|
| 10 | Melanoma-1 (P2) | 2.3  | 12.6 | 5.4 | ·    |      |       | 1.1 |
|    | Melanoma-2 (P2) |      | 9.4  | 3.2 | 1.8  | 0.93 | 0.47  |     |
|    | Melanoma-3 (P2) |      | 2.4  | 2.4 | 0.09 | 0.09 | 0.045 |     |

TABLE 2b.

| moi                          | 5000 | 2500 | 1000 | 500 | 100 |
|------------------------------|------|------|------|-----|-----|
| Renal Cell<br>carcinoma (P3) | 4.1  | 6.7  | 7.5  | 4.7 | 2.1 |

TABLE 2c.

| moi                   | 1000 | 200 | 100 | 20   | 10   |
|-----------------------|------|-----|-----|------|------|
| Colorectal cells (P1) | 0.15 | 1.8 | 1.5 | 0.42 | 0.22 |

TABLE 2d.

| moi                  | 5000 | 1000 | 500 | 50  |
|----------------------|------|------|-----|-----|
| Colon carcinoma (P1) | 13.8 | 23.6 | 6.7 | 0.9 |

By comparison, transduction of the same types of human tumor cells by recombinant retrovirus expressing human GM-CSF results in expression in the range of 40-500 ng/1x106 cells/24 hours.

35

30

15

25

#### 6.7. DELIVERY OF HUMAN GM-CSF INTO BALB/C MICE

To test for the ability of Ad.hGM-CSF to transduce mammalian cells in vivo, one month old Balb/C mice were injected intramuscularly (thigh muscle) with  $100\mu$ l of purified 5 virus at a concentration of either 1010 or 109 pfu/ml. Transient expression of human GM-CSF was quantified by ELISA of serum samples taken from the mice at 2, 5, 7, 9, 14, and 21 days post infection. The data are presented in Figures 4A and Mice injected with 109 pfu (Fig. 4A) exhibited peak 10 expression of human GM-CSF five days after injection with transient expression tapering down to undetectable levels between seven to nine days after injection. Mice injected with 108 pfu (Fig. 4B) also showed peak expression at about five days post injection but continued to express human GM-CSF 15 until between nine to fourteen days after injection. data clearly indicate that Ad.hGM-CSF transduces cells in vivo, and further mediates transient expression of human GM-CSF.

#### 20 6.8. REPEATED INJECTION OF Ad. hgm-CSF INTO ADULT BALB/C MICE

To test whether Ad.hGM-CSF could also mediate transient expression of human GM-CSF in adult mice, and whether or not the route of injection substantially affected expression, four month old Balb/C mice were injected with 10<sup>8</sup> pfu of Ad.hGM-CSF either intravenously (I.V.) or intramuscularly (I.M.). Serum samples were drawn at 3, 7, 14, and 31 days after injection and assayed for GM-CSF levels by ELISA. Serum levels of GM-CSF were generally lower than those observed in one month old mice, peaked between three to seven days after injection, and were undetectable fourteen days after infection.

Thirty one days after the initial injection the mice were reinjected (I.M.) with 10° pfu of Ad.hGM-CSF and serum samples were drawn and analyzed for GM-CSF at 2, 4, and 9 days after reinjection. After reinjection, serum levels of GM-CSF peaked after two days and were undetectable after four days. The mode of primary injection apparently made little difference (see Fig. 5).

#### 6.9. REPEATED INJECTION OF Ad. hgm-CSF INTO SCID MICE

To test whether an immune response might be the cause of the reduced expression of GM-CSF after reinjection, experiment 6.8 was essentially repeated using SCID (severe combined 5 immunodeficiency) mice with the exception that Ad.hGM-CSF were only administered I.V.. As can be seen in Figure 6, SCID mice continued to express GM-CSF up to twenty eight days after initial infection and forty three days after I.M. reinjection of 109 pfu of Ad.hGM-CSF. These data (presented in Fig. 6) 10 indicate that the diminution of GM-CSF levels in adult Balb/C mice seen in experiment 6.8 may be due to immune reaction to the adenovirus antigens expressed by the replication deficient genome of Ad.hGM-CSF.

specification are herein incorporated by reference. The foregoing written specification is considered to be sufficient to enable one skilled in the art to practice the invention. The present invention is not to be limited in scope by the virus deposited since the deposited embodiment is intended as a simple illustration of one aspect of the invention and any virus that are functionally equivalent are within the scope of this invention. Various modifications of the invention in addition to those specifically shown and described herein will become apparent to those skilled in the art from the foregoing description and accompanying drawings. Such modifications are intended to fall within the scope of the appended claims.

30

#### SEQUENCE LISTING

| (1) GENER  | AL INFORMATION:                                                                                                                                                                 |   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|---|
| (i)        | APPLICANT: Srinivas, Shankara<br>Dwarki, Varavani<br>Nijjar, Tarlochan                                                                                                          |   |
| (ii)       | TITLE OF INVENTION: Chimeric Adenovirus for Gene Delivery                                                                                                                       |   |
| (iii)      | NUMBER OF SEQUENCES: 1                                                                                                                                                          |   |
| (iv)       | CORRESPONDENCE ADDRESS:  (A) ADDRESSEE: Pennie & Edmonds  (B) STREET: 2730 Sand Hill Road  (C) CITY: Menlo Park  (D) STATE: California  (E) COUNTRY: U.S.A.  (F) ZIP: 94025     |   |
| (v) (      | COMPUTER READABLE FORM:  (A) MEDIUM TYPE: Floppy disk  (B) COMPUTER: IBM PC compatible  (C) OPERATING SYSTEM: PC-DOS/MS-DOS  (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 |   |
| (vi) (     | CURRENT APPLICATION DATA:  (A) APPLICATION NUMBER: US To be assigned.  (B) FILING DATE: 22-SEP-1994  (C) CLASSIFICATION:                                                        |   |
| (viii) /   | ATTORNEY/AGENT INFORMATION: (A) NAME: Halluin, Albert P. (B) REGISTRATION NUMBER: 25,227 (C) REFERENCE/DOCKET NUMBER: 8141-119-999                                              |   |
| (ix) 7     | TELECOMMUNICATION INFORMATION:  (A) TELEPHONE: 415-854-3660  (B) TELEFAX: 415-854-3694  (C) TELEX: 66141 PENNIE                                                                 |   |
| (2) INFORM | MATION FOR SEQ ID NO:1:                                                                                                                                                         |   |
| (i) s      | SEQUENCE CHARACTERISTICS:  (A) LENGTH: 9629 base pairs  (B) TYPE: nucleic acid  (C) STRANDEDNESS: unknown  (D) TOPOLOGY: unknown                                                |   |
|            | MOLECULE TYPE: DNA (genomic)                                                                                                                                                    |   |
|            | SEQUENCE DESCRIPTION: SEQ ID NO:1:                                                                                                                                              | _ |
|            | •                                                                                                                                                                               | 6 |
| TGGAGTTTGT | GACGTGGCGC GGGGCGTGGG AACGGGGCGG GTGACGTAGT AGTGTGGCGG 1                                                                                                                        | 2 |

180

AAGTGTGATG TTGCAAGTGT GGCGGAACAC ATGTAAGCGA CGGATGTGGC AAAAGTGACG

| TTTTTGGTGT | GCGCCGGTGT | ACACAGGAA  | G TGACAATTT  | CGCGCGGTT  | T TAGGCGGATG | 24   |
|------------|------------|------------|--------------|------------|--------------|------|
| TTGTAGTAAA | TTTGGGCGTA | ACCGAGTAA  | ATTTGGCCA1   | TTTCGCGGG  | A AAACTGAATA | 300  |
| AGAGGAAGTG | AAATCTGAAT | AATTTTGTGT | TACTCATAGO   | GCGTAATAT  | T TGTCTAGGGC | 360  |
| CGCGGGGACT | TTGACCGTTT | ACGTGGAGAC | TCGCCCAGGT   | GTTTTTCTC  | A GGTGTTTTCC | 420  |
| GCGTTCCGGG | TCAAAGTTGG | CGTTTTATT  | TTATAGTCTC   | TAGAGCTTT  | CTCTTAGGAG   | 480  |
| TTTCCTAATA | CATCCCAAAC | TCAAATATAT | · AAAGCATTTG | ACTTGTTCT  | TGCCCTAGGG   | 540  |
| GGCGGGGGGA | AGCTAAGCCA | GCTTTTTTTA | ACATTTAAAA   | TGTTAATTC  | ATTTTAAATG   | 600  |
| CACAGATGTT | TTTATTTCAT | AAGGGTTTCA | ATGTGCATGA   | ATGCTGCAAT | ATTCCTGTTA   | 660  |
| CCAAAGCTAG | AAATAAATAT | AATAGATAAA | CGTGGAAATT   | ACTTAGAGTT | TCTGTCATTA   | 720  |
| ACGTTTCCTT | CCTCAGTTGA | CAACATAAAT | GCGCTGCTGA   | GCAAGCCAGT | TTGCATCTGT   | 780  |
| CAGGATCAAT | TTCCCATTAT | GCCAGTCATA | TTAATTACTA   | GTCAATTAGT | TGATTTTTAT   | 840  |
| TTTTGACATA | TACATGTGAA | TGAAAGACCC | CACCTGTAGG   | TTTGGCAAGC | TAGCTTAAGT   | 900  |
| AACGCCATTT | TGCAAGGCAT | GGAAAAATAC | ATAACTGAGA   | ATAGAAAAGT | TCAGATCAAG   | 960  |
| GTCAGGAACA | GATGGAACAG | CTGAATATGG | GCCAAACAGG   | ATATCTGTGG | TAAGCAGTTC   | 1020 |
| CTGCCCCGGC | TCAGGGCCAA | GAACAGATGG | AACAGCTGAA   | TATGGGCCAA | ACAGGATATC   | 1080 |
| TGTGGTAAGC | AGTTCCTGCC | CCGGCTCAGG | GCCAAGAACA   | GATGGTCCCC | AGATGCGGTC   | 1140 |
| CAGCCCTCAG | CAGTTTCTAG | AGAACCATCA | GATGTTTCCA   | GGGTGCCCCA | AGGACCTGAA   | 1200 |
| ATGACCCTGT | GCCTTATTTG | AACTAACCAA | TCAGTTCGCT   | TCTCGCTTCT | GTTCGCGCGC   | 1260 |
| TTCTGCTCCC | CGAGCTCAAT | AAAAGAGCCC | ACAACCCCTC   | ACTCGGGGCG | CCAGTCCTCC   | 1320 |
| GATTGACTGA | GTCGCCCGGG | TACCCGTGTA | TCCAATAAAC   | CCTCTTGCAG | TTGCATCCGA   | 1380 |
| CTTGTGGTCT | CGCTGTTCCT | TGGGAGGGTC | TCCTCTGAGT   | GATTGACTAC | CCGTCAGCGG   | 1440 |
| GGGTCTTTCA | TTTGGGGGCT | CGTCCGGGAT | CGGGAGACCC   | CTGCCCAGGG | ACCACCGACC   | 1500 |
| CACCACCGGG | AGGTAAGCTG | GCCAGCAACT | TATCTGTGTC   | TGTCCGATTG | TCTAGTGTCT   | 1560 |
| ATGACTGATT | TTATGCGCCT | GCGTCGGTAC | TAGTTAGCTA   | ACTAGCTCTG | TATCTGGCGG   | 1620 |
| ACCCGTGGTG | GAACTGACGA | GTTCGGAACA | CCCGGCCGCA   | ACCCTGGGAG | ACGTCCCAGG   | 1680 |
| GACTTCGGGG | GCCGTTTTTG | TGGCCCGACC | TGAGTCCTAA   | AATCCCGATC | GTTTAGGACT   | 1740 |
| CTTTGGTGCA | CCCCCCTTAG | AGGAGGGATA | TGTGGTTCTG   | GTAGGAGACG | AGAACCTAAA   | 1800 |
| ACAGTTCCCG | CCTCCGTCTG | AATTTTTGCT | TTCGGTTTGG   | GACCGAAGCC | GCGCCGCGCG   | 1860 |
| TCTTGTCTGC | TGCAGCATCG | TTCTGTGTTG | TCTCTGTCTG   | ACTGTGTTTC | TGTATTTGTC   | 1920 |
| TGAAAATATG | GGCCCGGGCT | AGACTGTTAC | CACTCCCTTA   | AGTTTGACCT | TAGGTCACTG   | 1980 |
| GAAAGATGTC | GAGCGGATCG | CTCACAACCA | GTCGGTAGAT   | GTCAAGAAGA | GACGTTGGGT   | 2040 |
| TACCTTCTGC | TCTGCAGAAT | GGCCAACCTT | TAACGTCGGA   | TGGCCGCGAG | ACGGCACCTT   | 2100 |

| TAACCGAGAC | CTCATCACCC | AGGTTAAGAT | CAAGGTCTTT | TCACCTGGCC | CGCATGGACA | 2160 |
|------------|------------|------------|------------|------------|------------|------|
| CCCAGACCAG | GTCCCCTACA | TCGTGACCTG | GGAAGCCTTG | GCTTTTGACC | CCCCTCCCTG | 2220 |
| GGTCAAGCCC | TTTGTACACC | CTAAGCCTCC | GCCTCCTCTT | CCTCCATCCG | CCCCGTCTCT | 2280 |
| CCCCCTTGAA | CCTCCTCGTT | CGACCCCGCC | TCGATCCTCC | CTTTATCCAG | CCCTCACTCC | 2340 |
| TTCTCTAGGC | GCCCCCATAT | GGCCATATGA | GATCTTATAT | GGGGCACCCC | CGCCCCTTGT | 2400 |
| AAACTTCCCT | GACCCTGACA | TGACAAGAGT | TACTAACAGC | CCCTCTCTCC | AAGCTCACTT | 2460 |
| ACAGGCTCTC | TACTTAGTCC | AGCACGAAGT | CTGGAGACCT | CTGGCGGCAG | CCTACCAAGA | 2520 |
| ACAACTGGAC | CGACCGGTGG | TACCTCACCC | TTACCGAGTC | GGCGACACAG | TGTGGGTCCG | 2580 |
| CCGACACCAG | ACTAAGAACC | TAGAACCTCG | CTGGAAAGGA | CCTTACACAG | TCCTGCTGAC | 2640 |
| CACCCCCACC | GCCCTCAAAG | TAGACGGCAT | CGCAGCTTGG | ATACACGCCG | CCCACGTGAA | 2700 |
| GGCTGCCGAC | CCCGGGGGTG | GACCATCCTC | TAGACTGCCA | TGTGGCTGCA | GAGCCTGCTG | 2760 |
| CTCTTGGGCA | CTGTGGCCTG | CAGCATCTCT | GCACCCGCCC | GCTCGCCCAG | CCCCAGCACG | 2820 |
| CAGCCCTGGG | AGCATGTGAA | TGCCATCCAG | GAGGCCCGGC | GTCTCCTGAA | CCTGAGTAGA | 2880 |
| GACACTGCTG | CTGAGATGAA | TGAAACAGTA | GAAGTCATCT | CAGAAATGTT | TGACCTCCAG | 2940 |
| GAGCCGACCT | GCCTACAGAC | CCGCCTGGAG | CTGTACAAGC | AGGGCCTGCG | GGGCAGCCTC | 3000 |
| ACCAAGCTCA | AGGCCCCTT  | GACCATGATG | GCCAGCCACT | ACAAGCAGCA | CTGCCCTCCA | 3060 |
| ACCCCGGAAA | CTTCCTGTGC | AACCCAGATT | ATCACCTTTG | AAAGTTTCAA | AGAGAACCTG | 3120 |
| AAGGACTTTC | TGCTTGTCAT | CCCCTTTGAC | TGCTGGGAGC | CAGTCCAGGA | GTGAGACCGG | 3180 |
| CCAGATGAGG | CTGGCCAAGC | CGGGGAGCTG | CTCTCTCATG | AAACAAGAGC | GGATCCTATC | 3240 |
| GCCTTCTTGA | CGAGTTCTTC | TGAGCGGGAC | TCTGGGGTTC | GAAATGACCG | ACCAAGCGAC | 3300 |
| GCCCAACCTG | CCATCACGAG | ATTTCGATTC | CACCGCCGCC | TTCTATGAAA | GGTTGGGCTT | 3360 |
| CGGAATCGTT | TTCCGGGACG | CCGGCTGGAT | GATCCTCCAG | CGCGGGGATC | TCATGCTGGA | 3420 |
| GTTCTTCGCC | CACCCCAACT | TGTTTAGTCG | ACATCGATAG | ATCTGGAAGG | TGCTGAGGTA | 3480 |
| CGATGAGACC | CGCACCAGGT | GCAGACCCTG | CGAGTGTGGC | GGTAAACATA | TTAGGAACCA | 3540 |
| GCCTGTGATG | CTGGATGTGA | CCGAGGAGCT | GAGGCCCGAT | CACTTGGTGC | TGGCCTGCAC | 3600 |
| CCGCGCTGAG | TTTGGCTCTA | GCGATGAAGA | TACAGATTGA | GGTACTGAAA | TGTGTGGCG  | 3660 |
| TGGCTTAAGG | GTGGGAAAGA | ATATATAAGG | TGGGGGTCTT | ATGTAGTTTT | GTATCTGTTT | 3720 |
| TGCAGCAGCC | GCCGCCGCCA | TGAGCACCAA | CTCGTTTGAT | GGAAGCATTG | TGAGCTCATA | 3780 |
| TTTGACAACG | CGCATGCCCC | CATGGGCCGG | GGTGCGTCAG | AATGTGATGG | GCTCCAGCAT | 3840 |
| TGATGGTCGC | CCCGTCCTGC | CCGCAAACTC | TACTACCTTG | ACCTACGAGA | CCGTGTCTGG | 3900 |
| AACGCCGTTG | GAGACTGCAG | CCTCCGCCGC | CGCTTCAGCC | GCTGCAGCCA | CCGCCCGCGG | 3960 |
| GATTGTGACT | GACTTTGCTT | TCCTGAGCCC | GCTTGCAAGC | AGTGCAGCTT | CCCGTTCATC | 4020 |

| CGCCCGCGAT GACAAGTTGA CGGCTCTTTT GGCACAATTG GATTCTTTGA CCCGGGAACT | 4086 |
|-------------------------------------------------------------------|------|
| TAATGTCGTT TCTCAGCAGC TGTTGGATCT GCGCCAGCAG GTTTCTGCCC TGAAGGCTTC | 4140 |
| CTCCCCTCCC AATGCGGTTT AAAACATAAA TAAAAAACCA GACTCTGTTT GGATTTGGAT | 4200 |
| CAAGCAAGTG TCTTGCTGTC TTTATTTAGG GGTTTTGCGC GCGCGGTAGG CCCGGGACCA | 4260 |
| GCGGTCTCGG TCGTTGAGGG TCCTGTGTAT TTTTTCCAGG ACGTGGTAAA GGTGACTCTG | 4320 |
| GATGTTCAGA TACATGGGCA TAAGCCCGTC TCTGGGGTGG AGGTAGCACC ACTGCAGAGC | 4380 |
| TTCATGCTGC GGGGTGGTGT TGTAGATGAT CCAGTCGTAG CAGGAGCGCT GGGCGTGGTG | 4440 |
| CCTAAAAATG TCTTTCAGTA GCAAGCTGAT TGCCAGGGGC AGGCCCTTGG TGTAAGTGTT | 4500 |
| TACAAAGCGG TTAAGCTGGG ATGGGTGCAT ACGTGGGGAT ATGAGATGCA TCTTGGACTG | 4560 |
| TATTTTTAGG TTGGCTATGT TCCCAGCCAT ATCCCTCCGG GGATTCATGT TGTGCAGAAC | 4620 |
| CACCAGCACA GTGTATCCGG TGCACTTGGG AAATTTGTCA TGTAGCTTAG AAGGAAATGC | 4680 |
| GTGGAAGAAC TTGGAGACGC CCTTGTGACC TCCAAGATTT TCCATGCATT CGTCCATAAT | 4740 |
| GATGGCAATG GGCCCACGGG CGGCGGCCTG GGCGAAGATA TTTCTGGGAT CACTAACGTC | 4800 |
| ATAGTTGTGT TCCAGGATGA GATCGTCATA GGCCATTTTT ACAAAGCGCG GGCGGAGGGT | 4860 |
| GCCAGACTGC GGTATAATGG TTCCATCCGG CCCAGGGGCG TAGTTACCCT CACAGATTTG | 4920 |
| CATTTCCCAC GCTTTGAGTT CAGATGGGGG GATCATGTCT ACCTGCGGGG CGATGAAGAA | 4980 |
| AACGGTTTCC GGGGTAGGGG AGATCAGCTG GGAAGAAAGC AGGTTCCTGA GCAGCTGCGA | 5040 |
| CTTACCGCAG CCGGTGGGCC CGTAAATCAC ACCTATTACC GGGTGCAACT GGTAGTTAAG | 5100 |
| AGAGCTGCAG CTGCCGTCAT CCCTGAGCAG GGGGGCCACT TCGTTAAGCA TGTCCCTGAC | 5160 |
| TCGCATGTTT TCCCTGACCA AATCCGCCAG AAGGCGCTCG CCGCCCAGCG ATAGCAGTTC | 5220 |
| TTGCAAGGAA GCAAAGTTTT TCAACGGTTT GAGACCGTCC GCCGTAGGCA TGCTTTTGAG | 5280 |
| CGTTTGACCA AGCAGTTCCA GGCGGTCCCA CAGCTCGGTC ACCTGCTCTA CGGCATCTCG | 5340 |
| ATCCAGCATA TCTCCTCGTT TCGCGGGTTG GGGCGGCTTT CGCTGTACGG CAGTAGTCGG | 5400 |
| TGCTCGTCCA GACGGGCCAG GGTCATGTCT TTCCACGGGC GCAGGGTCCT CGTCAGCGTA | 5460 |
| GTCTGGGTCA CGGTGAAGGG GTGCGCTCCG GGCTGCGCGC TGGCCAGGGT GCGCTTGAGG | 5520 |
| CTGGTCCTGC TGGTGCTGAA GCGCTGCCGG TCTTCGCCCT GCGCGTCGGC CAGGTAGCAT | 5580 |
| TTGACCATGG TGTCATAGTC CAGCCCCTCC GCGGCGTGGC CCTTGGCGCG CAGCTTGCCC | 5640 |
| TTGGAGGAGG CGCCGCACGA GGGGCAGTGC AGACTTTTGA GGGCGTAGAG CTTGGGCGCG | 5700 |
| AGAAATACCG ATTCCGGGGA GTAGGCATCC GCGCCGCAGG CCCCGCAGAC GGTCTCGCAT | 5760 |
| TCCACGAGCC AGGTGAGCTC TGGCCGTTCG GGGTCAAAAA CCAGGTTTCC CCCATGCTTT | 5820 |
| TTGATGCGTT TCTTACCTCT GGTTTCCATG AGCCGGTGTC CACGCTCGGT GACGAAAAGG | 5880 |
| CTGTCCGTGT CCCCGTATAC AGACTTGAGA GGCCTGTCCC TCGACCGATG CCCTTGAGAG |      |
| CC11GAGAG                                                         | 5940 |

| CCTTCAACCC | AGTCAGCTCC | TTCCGGTGGG | CGCGGGGCAT | GACTATCGTC | GCCGCACTTA | 6000 |
|------------|------------|------------|------------|------------|------------|------|
| TGACTGTCTT | CTTTATCATG | CAACTCGTAG | GACAGGTGCC | GGCAGCGCTC | TGGGTCATTT | 6060 |
| TCGGCGAGGA | CCGCTTTCGC | TGGAGCGCGA | CGATGATCGG | CCTGTCGCTT | GCGGTATTCG | 6120 |
| GAATCTTGCA | CGCCCTCGCT | CAAGCCTTCG | TCACTGGTCC | CGCCACCAAA | CGTTTCGGCG | 6180 |
| AGAAGCAGGC | CATTATCGCC | GGCATGGCGG | CCGACGCGCT | GGGCTACGTC | TTGCTGGCGT | 6240 |
| TCGCGACGCG | AGGCTGGATG | GCCTTCCCCA | TTATGATTCT | TCTCGCTTCC | GGCGGCATCG | 6300 |
| GGATGCCCGC | GTTGCAGGCC | ATGCTGTCCA | GGCAGGTAGA | TGACGACCAT | CAGGGACAGC | 6360 |
| TTCAAGGATC | GCTCGCGGCT | CTTACCAGCC | TAACTTCGAT | CACTGGACCG | CTGATCGTCA | 6420 |
| CGGCGATTTA | TGCCGCCTCG | GCGAGCACAT | GGAACGGGTT | GGCATGGATT | GTAGGCGCCG | 6480 |
| CCCTATACCT | TGTCTGCCTC | CCCGCGTTGC | GTCGCGGTGC | ATGGAGCCGG | GCCACCTCGA | 6540 |
| CCTGAATGGA | AGCCGGCGGC | ACCTCGCTAA | CGGATTCACC | ACTCCAAGAA | TTGGAGCCAA | 6600 |
| TCAATTCTTG | CGGAGAACTG | TGAATGCGCA | AACCAACCCT | TGGCAGAACA | TATCCATCGC | 6660 |
| GTCCGCCATC | TCCAGCAGCC | GCACGCGGCG | CATCTCGGGC | AGCGTTGGGT | CCTGGCCACG | 6720 |
| GGTGCGCATG | ATCGTGCTCC | TGTCGTTGAG | GACCCGGCTA | GGCTGGCGGG | GTTGCCTTAC | 6780 |
| TGGTTAGCAG | AATGAATCAC | CGATACGCGA | GCGAACGTGA | AGCGACTGCT | GCTGCAAAAC | 6840 |
| GTCTGCGACC | TGAGCAACAA | CATGAATGGT | CTTCGGTTTC | CGTGTTTCGT | AAAGTCTGGA | 6900 |
| AACGCGGAAG | TCAGCGCCCT | GCACCATTAT | GTTCCGGATC | TGCATCGCAG | GATGCTGCTG | 6960 |
| GCTACCCTGT | GGAACACCTA | CATCTGTATT | AACGAAGCGC | TGGCATTGAC | CCTGAGTGAT | 7020 |
| TTTTCTCTGG | TCCCGCCGCA | TCCATACCGC | CAGTTGTTTA | CCCTCACAAC | GTTCCAGTAA | 7080 |
| CCGGGCATGT | TCATCATCAG | TAACCCGTAT | CGTGAGCATC | CTCTCTCGTT | TCATCGGTAT | 7140 |
| CATTACCCCC | ATGAACAGAA | ATTCCCCCTT | ACACGGAGGC | ATCAAGTGAC | CAAACAGGAA | 7200 |
| AAAACCGCCC | TTAACATGGC | CCGCTTTATC | AGAAGCCAGA | CATTAACGCT | TCTGGAGAAA | 7260 |
| CTCAACGAGC | TGGACGCGGA | TGAACAGGCA | GACATCTGTG | AATCGCTTCA | CGACCACGCT | 7320 |
| GATGAGCTTT | ACCGCAGCTG | CCTCGCGCGT | TTCGGTGATG | ACGGTGAAAA | CCTCTGACAC | 7380 |
| ATGCAGCTCC | CGGAGACGGT | CACAGCTTGT | CTGTAAGCGG | ATGCCGGGAG | CAGACAAGCC | 7440 |
| CGTCAGGGCG | CGTCAGCGGG | TGTTGGCGGG | TGTCGGGGCG | CAGCCATGAC | CCAGTCACGT | 7500 |
| AGCGATAGCG | GAGTGTATAC | TGGCTTAACT | ATGCGGCATC | AGAGCAGATT | GTACTGAGAG | 7560 |
| TGCACCATAT | GCGGTGTGAA | ATACCGCACA | GATGCGTAAG | GAGAAAATAC | CGCATCAGGC | 7620 |
| GCTCTTCCGC | TTCCTCGCTC | ACTGACTCGC | TGCGCTCGGT | CGTTCGGCTG | CGGCGAGCGG | 7680 |
| TATCAGCTCA | CTCAAAGGCG | GTAATACGGT | TATCCACAGA | ATCAGGGGAT | AACGCAGGAA | 7740 |
| AGAACATGTG | AGCAAAAGGC | CAGCAAAAGG | CCAGGAACCG | TAAAAAGGCC | GCGTTGCTGG | 7800 |
| CGTTTTTCCA | TAGGCTCCGC | CCCCTGACG  | AGCATCACAA | AAATCGACGC | TCAAGTCAGA | 7860 |

| GGTGGCGAAA CCCGACAG  | KA CTATAAAGA  | T ACCAGGCGTT | r TCCCCCTGGA | AGCTCCCTCG | 792  |
|----------------------|---------------|--------------|--------------|------------|------|
| TGCGCTCTCC TGTTCCG   | CC CTGCCGCTT  | A CCGGATACCI | GTCCGCCTTT   | CTCCCTTCGG | 798  |
| GAAGCGTGGC GCTTTCTC  | AT AGCTCACGC  | T GTAGGTATCT | CAGTTCGGTG   | TAGGTCGTTC | 804  |
| GCTCCAAGCT GGGCTGTG  | TG CACGAACCC  | C CCGTTCAGCC | CGACCGCTGC   | GCCTTATCCG | 810  |
| GTAACTATCG TCTTGAGT  | CC AACCCGGTA  | A GACACGACTI | ATCGCCACTG   | GCAGCAGCCA | 816  |
| CTGGTAACAG GATTAGCA  | GA GCGAGGTAT  | G TAGGCGGTGC | TACAGAGTTC   | TTGAAGTGGT | 822  |
| GGCCTAACTA CGGCTACA  | CT AGAAGGACA  | G TATTTGGTAT | CTGCGCTCTG   | CTGAAGCCAG | 828  |
| TTACCTTCGG AAAAAGAG  | TT GGTAGCTCT  | T GATCCGGCAA | ACAAACCACC   | GCTGGTAGCG | 834  |
| GTGGTTTTTT TGTTTGCA  | AG CAGCAGATT  | A CGCGCAGAAA | AAAAGGATCT   | CAAGAAGATC | 8400 |
| CTTTGATCTT TTCTACGG  | GG TCTGACGCT  | AGTGGAACGA   | AAACTCACGT   | TAAGGGATTT | 8460 |
| TGGTCATGAG ATTATCAA  | AA AGGATCTTC  | CCTAGATCCT   | TTTAAATTAA   | AAATGAAGTT | 8520 |
| TTAAATCAAT CTAAAGTA  | TA TATGAGTAAJ | CTTGGTCTGA   | CAGTTACCAA   | TGCTTAATCA | 8580 |
| GTGAGGCACC TATCTCAG  | CG ATCTGTCTAT | TTCGTTCATC   | CATAGTTGCC   | TGACTCCCCG | 8640 |
| TCGTGTAGAT AACTACGA  | TA CGGGAGGGCT | TACCATCTGG   | CCCCAGTGCT   | GCAATGATAC | 8700 |
| CGCGAGACCC ACGCTCAC  | CG GCTCCAGATT | TATCAGCAAT   | AAACCAGCCA   | GCCGGAAGGG | 8760 |
| CCGAGCGCAG AAGTGGTC  | CT GCAACTTTAT | CCGCCTCCAT   | CCAGTCTATT   | AATTGTTGCC | 8820 |
| GGGAAGCTAG AGTAAGTA  | ST TCGCCAGTTA | ATAGTTTGCG   | CAACGTTGTT   | GCCATTGCTG | 8880 |
| CAGGCATCGT GGTGTCAC  | C TCGTCGTTTG  | GTATGGCTTC   | ATTCAGCTCC   | GGTTCCCAAC | 8940 |
| GATCAAGGCG AGTTACATO | A TCCCCCATGT  | TGTGCAAAAA   | AGCGGTTAGC   | TCCTTCGGTC | 9000 |
| CTCCGATCGT TGTCAGAAC | T AAGTTGGCCG  | CAGTGTTATC   | ACTCATGGTT   | ATGGCAGCAC | 9060 |
| TGCATAATTC TCTTACTGT | C ATGCCATCCG  | TAAGATGCTT   | TTCTGTGACT   | GGTGAGTACT | 9120 |
| CAACCAAGTC ATTCTGAGA | A TAGTGTATGC  | GGCGACCGAG   | TTGCTCTTGC   | CCGGCGTCAA | 9180 |
| CACGGGATAA TACCGCGCC | A CATAGCAGAA  | CTTTAAAAGT   | GCTCATCATT   | GGAAAACGTT | 9240 |
| CTTCGGGGCG AAAACTCTC | A AGGATCTTAC  | CGCTGTTGAG   | ATCCAGTTCG   | ATGTAACCCA | 9300 |
| CTCGTGCACC CAACTGATC | T TCAGCATCTT  | TTACTTTCAC   | CAGCGTTTCT   | GGGTGAGCAA | 9360 |
| AAACAGGAAG GCAAAATGC | C GCAAAAAAGG  | GAATAAGGGC   | GACACGGAAA   | TGTTGAATAC | 9420 |
| CATACTCTT CCTTTTCA   | A TATTATTGAA  | GCATTTATCA   | GGGTTATTGT   | CTCATGAGCG | 9480 |
| GATACATATT TGAATGTAT | т табалалата  | AACAAATAGG   | GGTTCCGCGC   | ACATTTCCCC | 9540 |
| GAAAAGTGCC ACCTGACGT | C TAAGAAACCA  | TTATTATCAT   | GACATTAACC   | ТАТААААТА  | 9600 |
| GCGTATCAC GAGGCCCTT  | T CGTCTTCAA   |              |              |            | 9629 |

What is claimed is:

1. A chimeric adenovirus which comprises:

- a replication deficient adenovirus genome; and
- a DNA expression cassette comprising:
- a eucaryotic promoter and/or enhancer region; nucleotide sequence corresponding to a MLV Psi-packaging site; a DNA of interest to be transcribed by said promoter; and a substantially noncoding 3' DNA which facilitates the stability, polyadenlyation, or splicing of the transcript.
  - 2. The chimeric adenovirus of Claim 1 wherein said DNA of interest is drawn from the group comprising:
- granulocyte macrophage colony stimulating factor

  (GM-CSF); nerve growth factor (NGF); tyrosine hydroxylase

  (TH); ciliary neurotropic factor (CNTF); brain-derived
  neurotropic factor (BDNF); factors VIII and IX; tissue
  plasminogen activator (tPA); interleukins 1-2 and 4-6;
  tumor necrosis factor-α (TNF-α); α or γ interferons; or
  erythropoietin.
  - 3. The chimeric adenovirus of Claim 1 wherein said DNA of interest is the gene encoding human granulocyte macrophage colony stimulating factor.

25

35

- 4. The chimeric adenovirus of Claim 1 wherein said DNA of interest is the gene encoding murine granulocyte macrophage colony stimulating factor.
- 30 5. A chimeric adenovirus which comprises:
  - a replication deficient adenovirus genome; and
  - a DNA expression cassette consisting essentially of an MLV LTR promoter and enhancer region; nucleotide sequence corresponding to a MLV Psi-packaging site; a gene encoding human granulocyte macrophage colony stimulating factor; and an SV40 polyadenylation sequence.

- 6. A chimeric adenovirus which comprises:
  - a replication deficient adenovirus genome; and
- a DNA expression cassette consisting essentially of an MLV LTR promoter and enhancer region; nucleotide sequence corresponding to a MLV Psi-packaging site; a gene encoding murine granulocyte macrophage colony stimulating factor; and an SV40 polyadenylation sequence.
- 7. The use of the chimeric adenovirus of Claim 1 in the 10 treatment of mammalian disease and disorders.
  - 8. The use of the chimeric adenovirus of Claim 2 to transduce mammalian cells.
- 9. The use of the chimeric adenovirus of Claim 3 to transduce tumor cells.
  - 10. The use of the chimeric adenovirus of Claim 4 to transduce tumor cells for use as anti-tumor vaccines.

20

25

11. A method of producing chimeric adenovirus comprising:

the recombinatory insertion of a DNA expression cassette into a replication deficient helper adenovirus genome contained in a circular plasmid to produce a chimeric adenovirus capable of transducing mammalian cells.

- 12. The method of Claim 11 wherein said DNA expression 30 cassette comprises:
  - a eucaryotic promoter and/or enhancer region;
  - a DNA of interest to be transcribed by said promoter; and
- a 3' substantially noncoding DNA that facilitates the stability, polyadenlyation, or splicing of the transcript.

13. The method of Claim 12 wherein said DNA of interest is drawn from the group comprising:

granulocyte macrophage colony stimulating factor (GM-CSF); nerve growth factor (NGF); tyrosine hydroxylase (TH); ciliary neurotropic factor (CNTF); brain-derived neurotropic factor (BDNF); factors VIII and IX; tissue plasminogen activator (tPA); interleukins 1-2 and 4-6; tumor necrosis factor- $\alpha$  (TNF- $\alpha$ );  $\alpha$  or  $\gamma$  interferons; or erythropoietin.

10

5

14. The method of Claim 12 wherein said DNA of interest is the gene encoding granulocyte macrophage colony stimulating factor.

15

20

25

30

35

1/9



FIG.1



SUBSTITUTE SHEET (RULE 26)

GAATTCCATC ATCAATAATA TACCTTATTT TGGATTGAAG CCAATATGAT AATGAGGGGG 60 TGGAGTTTGT GACGTGGCGC GGGGCGTGGG AACGGGGCGG GTGACGTAGT AGTGTGGCGG 120 AAGTGTGATG TTGCAAGTGT GGCGGAACAC ATGTAAGCGA CGGATGTGGC AAAAGTGACG 180 TTTTTGGTGT GCGCCGGTGT ACACAGGAAG TGACAATTTT CGCGCGGTTT TAGGCCGATG 240 TTGTAGTAAA TTTGGGCGTA ACCGAGTAAG ATTTGGCCAT TTTCGCGGGA AAACTGAATA 300 AGAGGAAGTG AAATCTGAAT AATTTTGTGT TACTCATAGC GCGTAATATT TGTCTAGGGC 360 CGCGGGGACT TTGACCGTTT ACGTGGAGAC TCGCCCAGGT GTTTTTCTCA GGTGTTTTCC 420 GCGTTCCGGG TCAAAGTTGG CGTTTTATTA TTATAGTCTC TAGAGCTTTG CTCTTAGGAG 480 TITICCTAATA CATCCCAAAC TCAAATATAT AAAGCATTIG ACTIGITCTA TGCCCTAGGG 540 GGCGGGGGGA AGCTAAGCCA GCTTTTTTTA ACATTTAAAA TGTTAATTCC ATTTTAAATG 600 CACAGATGIT TITATITCAT AAGGGTTICA ATGTGCATGA ATGCTGCAAT ATTCCTGTTA 660 CCAAAGCTAG TATAAATAAA AATAGATAAA CGTGGAAATT ACTTAGAGTT TCTGTCATTA 720 ACGITICCTT CCTCAGTTGA CAACATAAAT GCGCTGCTGA GCAAGCCAGT TTGCATCTGT 780 CAGGATCAAT TICCCATTAT GCCAGTCATA ITAATTACTA GTCAATTAGT TGATTTTAT 840 TTTTGACATA TACATGTGAA TGAAAGACCC CACCTGTAGG TTTGGCAAGC TAGCTTAAGT 900 AACGCCATTT TGCAAGGCAT GGAAAAATAC ATAACTGAGA ATAGAAAAGT TCAGATCAAG 960 GTCAGGAACA GATGGAACAG CTGAATATGG GCCAAACAGG ATATCTGTGG TAAGCAGTTC 1020 CTGCCCCGGC TCAGGGCCAA GAACAGATGG AACAGCTGAA TATGGGCCAA ACAGGATATC 1080 TGTGGTAAGC AGTTCCTGCC CCGGCTCAGG GCCAAGAACA GATGGTCCCC AGATGCGGTC 1140 CAGCCCTCAG CAGTTTCTAG AGAACCATCA GATGTTTCCA GGGTGCCCCA AGGACCTGAA 1200 ATGACCCTGT GCCTTATTTG AACTAACCAA TCAGTTCGCT TCTCGCTTCT GTTCGCGCGC 1260 TICTGCTCCC CGAGCTCAAT AAAAGAGCCC ACAACCCCTC ACTCGGGGGG CCAGTCCTCC 1320 GATTGACTGA GTCGCCCGGG TACCCGTGTA TCCAATAAAC CCTCTTGCAG TTGCATCCGA 1380 CTTGTGGTCT CGCTGTTCCT TGGGAGGGTC TCCTCTGAGT GATTGACTAC CCGTCAGCGG 1440 GGGTCTTTCA TTTGGGGGCT CGTCCGGGAT CGGGAGACCC CTGCCCAGGG ACCACCGACC 1500 CACCACCGGG AGGTAAGCTG GCCAGCAACT TATCTGTGTC TGTCCGATTG TCTAGTGTCT 1560 ATGACTGATT TTATGCGCCT GCGTCGGTAC TAGTTAGCTA ACTAGCTCTG TATCTGGCGG 1620 ACCCGTGGTG GAACTGACGA GTTCGGAACA CCCGGCCGCA ACCCTGGGAG ACGTCCCAGG 1680 GACTICGGGG GCCGTTTTTG TGGCCCGACC TGAGTCCTAA AATCCCGATC GTTTAGGACT 1740

CTTTGGTGCA CCCCCCTTAG AGGAGGGATA TGTGGTTCTG GTAGGAGACG AGAACCTAAA 1800 ACAGTTCCCG CCTCCGTCTG AATTTTTGCT TTCGGTTTGG GACCGAAGCC GCGCCGCGCG 1860 TCTTGTCTGC TGCAGCATCG TTCTGTGTTG TCTCTGTCTG ACTGTGTTTC TGTATTTGTC 1920 TGAAAATATG GGCCCGGGCT AGACTGTTAC CACTCCCTTA AGTTTGACCT TAGGTCACTG 1980 GAAAGATGTC GAGCGGATCG CTCACAACCA GTCGGTAGAT GTCAAGAAGA GACGTTGGGT 2040 TACCTTCTGC TCTGCAGAAT GGCCAACCTT TAACGTCGGA TGGCCGCGAG ACGGCACCTT 2100 TAACCGAGAC CTCATCACCC AGGTTAAGAT CAAGGTCTTT TCACCTGGCC CGCATGGACA 2160 CCCAGACCAG GTCCCCTACA TCGTGACCTG GGAAGCCTTG GCTTTTGACC CCCCTCCTG 2220 GGTCAAGCCC TITGTACACC CTAAGCCTCC GCCTCCTCTT CCTCCATCCG CCCCGTCTCT 2280 CCCCCTTGAA CCTCCTCGTT CGACCCCGCC TCGATCCTCC CTTTATCCAG CCCTCACTCC 2340 TICTCTAGGC GCCCCCATAT GGCCATATGA GATCTTATAT GGGGCACCCC CGCCCCTTGT 2400 AAACTTCCCT GACCCTGACA TGACAAGAGT TACTAACAGC CCCTCTCTCC AAGCTCACTT 2460 ACAGGCTCTC TACTTAGTCC AGCACGAAGT CTGGAGACCT CTGGCGGCAG CCTACCAAGA 2520 ACAACTGGAC CGACCGGTGG TACCTCACCC TTACCGAGTC GGCGACACAG TGTGGGTCCG 2580 CCGACACCAG ACTAAGAACC TAGAACCTCG CTGGAAAGGA CCTTACACAG TCCTGCTGAC 2640 CACCCCACC GCCCTCAAAG TAGACGGCAT CGCAGCTTGG ATACACGCCG CCCACGTGAA 2700 GGCTGCCGAC CCCGGGGGTG GACCATCCTC TAGACTGCCA TGTGGCTGCA GAGCCTGCTG 2760 CTCTTGGGCA CTGTGGCCTG CAGCATCTCT GCACCCGCCC GCTCGCCCAG CCCCAGCACG 2820 CAGCCCTGGG AGCATGTGAA TGCCATCCAG GAGGCCCGGC GTCTCCTGAA CCTGAGTAGA 2880 GACACTGCTG CTGAGATGAA TGAAACAGTA GAAGTCATCT CAGAAATGTT TGACCTCCAG 2940 GAGCCGACCT GCCTACAGAC CCGCCTGGAG CTGTACAAGC AGGGCCTGCG GGGCAGCCTC 3000 ACCAAGCTCA AGGGCCCCTT GACCATGATG GCCAGCCACT ACAAGCAGCA CTGCCCTCCA 3060 ACCCCGGAAA CTTCCTGTGC AACCCAGATT ATCACCTTTG AAAGTTTCAA AGAGAACCTG 3120 AAGGACTITC IGCTIGTCAT CCCCTITGAC IGCTGGGAGC CAGTCCAGGA GTGAGACCGG 3180 CCAGATGAGG CTGGCCAAGC CGGGGAGCTG CTCTCTCATG AAACAAGAGC GGATCCTATC 3240 GCCTTCTTGA CGAGTTCTTC TGAGCGGGAC TCTGGGGTTC GAAATGACCG ACCAAGCGAC 3300 GCCCAACCTG CCATCACGAG ATTTCGATTC CACCGCCGCC TTCTATGAAA GGTTGGGCTT 3360 CGGAATCGTT TTCCGGGACG CCGGCTGGAT GATCCTCCAG CGCGGGGATC TCATGCTGGA 3420 GTTCTTCGCC CACCCCAACT TGTTTAGTCG ACATCGATAG ATCTGGAAGG TGCTGAGGTA 3480

FIG. 3B
SUBSTITUTE SHEET (RULE 28)

CGATGAGACC CGCACCAGGT GCAGACCCTG CGAGTGTGGC GGTAAACATA TTAGGAACCA 3540 GCCTGTGATG CTGGATGTGA CCGAGGAGCT GAGGCCCGAT CACTTGGTGC TGGCCTGCAC 3600 CCGCGCTGAG TTTGGCTCTA GCGATGAAGA TACAGATTGA GGTACTGAAA TGTGTGGGCG 3660 TGGCTTAAGG GTGGGAAAGA ATATATAAGG TGGGGGTCTT ATGTAGTTTT GTATCTGTTT 3720 TGCAGCAGCC GCCGCCGCCA TGAGCACCAA CTCGTTTGAT GGAAGCATTG TGAGCTCATA 3780 TTTGACAACG CGCATGCCCC CATGGGCCGG GGTGCGTCAG AATGTGATGG GCTCCAGCAT 3840 TGATGGTCGC CCCGTCCTGC CCGCAAACTC TACTACCTTG ACCTACGAGA CCGTGTCTGG 3900 AACGCCGTTG GAGACTGCAG CCTCCGCCGC CGCTTCAGCC GCTGCAGCCA CCGCCCGCGG 3960 GATTGTGACT GACTTTGCTT TCCTGAGCCC GCTTGCAAGC AGTGCAGCTT CCCGTTCATC 4020 CGCCCGCGAT GACAAGTTGA CGGCTCTTTT GGCACAATTG GATTCTTTGA CCCGGGAACT 4080 TAATGTCGTT TCTCAGCAGC TGTTGGATCT GCGCCAGCAG GTTTCTGCCC TGAAGGCTTC 4140 CTCCCCTCCC AATGCGGTTT AAAACATAAA TAAAAAACCA GACTCTGTTT GGATTTGGAT 4200 CAAGCAAGTG TCTTGCTGTC TITATTTAGG GGTTTTGCGC GCGCGGTAGG CCCGGGACCA 4260 GCGGTCTCGG TCGTTGAGGG TCCTGTGTAT TTTTTCCAGG ACGTGGTAAA GGTGACTCTG 4320 GATGTTCAGA TACATGGGCA TAAGCCCGTC TCTGGGGTGG AGGTAGCACC ACTGCAGAGC 4380 TICATGCTGC GGGGTGGTGT TGTAGATGAT CCAGTCGTAG CAGGAGCGCT GGGCGTGGTG 4440 CCTAAAAATG TCTTTCAGTA GCAAGCTGAT TGCCAGGGGC AGGCCCTTGG TGTAAGTGTT 4500 TACAAAGCGG TTAAGCTGGG ATGGGTGCAT ACGTGGGGAT ATGAGATGCA TCTTGGACTG 4560 TATTITTAGG TTGGCTATGT TCCCAGCCAT ATCCCTCCGG GGATTCATGT TGTGCAGAAC 4620 CACCAGCACA GTGTATCCGG TGCACTTGGG AAATTTGTCA TGTAGCTTAG AAGGAAATGC 4680 GTGGAAGAAC TTGGAGACGC CCTTGTGACC TCCAAGATTT TCCATGCATT CGTCCATAAT 4740 GATGGCAATG GGCCCACGGG CGGCGGCCTG GGCGAAGATA TTTCTGGGAT CACTAACGTC 4800 ATAGTTGTGT TCCAGGATGA GATCGTCATA GGCCATTTTT ACAAAGCGCG GGCGGAGGGT 4860 GCCAGACTGC GGTATAATGG TICCATCCGG CCCAGGGGCG TAGTTACCCT CACAGATTTG 3180 CATTTCCCAC GCTTTGAGTT CAGATGGGGG GATCATGTCT ACCTGCGGGG CGATGAAGAA 4980 AACGGTTTCC GGGGTAGGGG AGATCAGCTG GGAAGAAAGC AGGTTCCTGA GCAGCTGCGA 5040 CTTACCGCAG CCGGTGGGCC CGTAAATCAC ACCTATTACC GGGTGCAACT GGTAGTTAAG 5100 AGAGCTGCAG CTGCCGTCAT CCCTGAGCAG GGGGGCCACT TCGTTAAGCA TGTCCCTGAC 5160 TCGCATGTTT TCCCTGACCA AATCCGCCAG AAGGCGCTCG CCGCCCAGCG ATAGCAGTTC 5220

FIG.3C

TTGCAAGGAA GCAAAGTTTT TCAACGGTTT GAGACCGTCC GCCGTAGGCA TGCTTTTGAG 5280 CGTTTGACCA AGCAGTTCCA GGCGGTCCCA CAGCTCGGTC ACCTGCTCTA CGGCATCTCG 5340 ATCCAGCATA TCTCCTCGTT TCGCGGGTTG GGGCGGCTTT CGCTGTACGG CAGTAGTCGG 5400 TGCTCGTCCA GACGGCCCAG GGTCATGTCT TTCCACGGGC GCAGGGTCCT CGTCAGCGTA 5460 GTCTGGGTCA CGGTGAAGGG GTGCGCTCCG GGCTGCGCGC TGGCCAGGGT GCGCTTGAGG 5520 CTGGTCCTGC TGGTGCTGAA GCGCTGCCGG TCTTCGCCCT GCGCGTCGGC CAGGTAGCAT 5580 TTGACCATGG TGTCATAGTC CAGCCCCTCC GCGGCGTGGC CCTTGGCGCG CAGCTTGCCC 5640 TTGGAGGAGG CGCCGCACGA GGGGCAGTGC AGACTTTTGA GGGCGTAGAG CTTGGGCGCG 5700 AGAAATACCG ATTCCGGGGA GTAGGCATCC GCGCCGCAGG CCCCGCAGAC GGTCTCGCAT 5760 TCCACGAGCC AGGTGAGCTC TGGCCGTTCG GGGTCAAAAA CCAGGTTTCC CCCATGCTTT 5820 TIGATGCGTT TCTTACCTCT GGTTTCCATG AGCCGGTGTC CACGCTCGGT GACGAAAAGG 5880 CTGTCCGTGT CCCCGTATAC AGACTIGAGA GGCCTGTCCC TCGACCGATG CCCTTGAGAG 5940 CCTTCAACCC AGTCAGCTCC TTCCGGTGGG CGCGGGGCAT GACTATCGTC GCCGCACTTA 6000 TGACTGTCTT CTTTATCATG CAACTCGTAG GACAGGTGCC GGCAGCGCTC TGGGTCATTT 6060 TCGGCGAGGA CCGCTTTCGC TGGAGCGCGA CGATGATCGG CCTGTCGCTT GCGGTATTCG 6120 GAATCTTGCA CGCCCTCGCT CAAGCCTTCG TCACTGGTCC CGCCACCAAA CGTTTCGGCG 6180 AGAAGCAGGC CATTATCGCC GGCATGGCGG CCGACGCGCT GGGCTACGTC TTGCTGGCGT 6240 TCGCGACGCG AGGCTGGATG GCCTTCCCCA TTATGATTCT TCTCGCTTCC GGCGGCATCG 6300 GGATGCCCGC GTTGCAGGCC ATGCTGTCCA GGCAGGTAGA TGACGACCAT CAGGGACAGC 6360 TICAAGGATC GCTCGCGGCT CTTACCAGCC TAACTTCGAT CACTGGACCG CTGATCGTCA 6420 CGGCGATTTA TGCCGCCTCG GCGAGCACAT GGAACGGGTT GGCATGGATT GTAGGCGCCG 6480 CCCTATACCT TGTCTGCCTC CCCGCGTTGC GTCGCGGTGC ATGGAGCCGG GCCACCTCGA 6540 CCTGAATGGA AGCCGGCGC ACCTCGCTAA CGGATTCACC ACTCCAAGAA TTGGAGCCAA 6600 TCAATTCTTG CGGAGAACTG TGAATGCGCA AACCAACCCT TGGCAGAACA TATCCATCGC 6660 GTCCGCCATC TCCAGCAGCC GCACGCGGCG CATCTCGGGC AGCGTTGGGT CCTGGCCACG 6720 GGTGCGCATG ATCGTGCTCC TGTCGTTGAG GACCCGGCTA GGCTGGCGGG GTTGCCTTAC 6780 TGGTTAGCAG AATGAATCAC CGATACGCGA GCGAACGTGA AGCGACTGCT GCTGCAAAAC 6840 GTCTGCGACC TGAGCAACAA CATGAATGGT CTTCGGTTTC CGTGTTTCGT AAAGTCTGGA 6900 AACGCGGAAG TCAGCGCCCT GCACCATTAT GTTCCGGATC TGCATCGCAG GATGCTGCTG 6960

GCTACCCTGT GGAACACCTA CATCTGTATT AACGAAGCGC TGGCATTGAC CCTGAGTGAT 7020 TTTTCTCTGG TCCCGCCGCA TCCATACCGC CAGTTGTTTA CCCTCACAAC GTTCCAGTAA 7080 CCGGGCATGT TCATCATCAG TAACCCGTAT CGTGAGCATC CTCTCTCGTT TCATCGGTAT 7140 CATTACCCCC ATGAACAGAA ATTCCCCCTT ACACGGAGGC ATCAAGTGAC CAAACAGGAA 7200 AAAACCGCCC TTAACATGGC CCGCTTTATC AGAAGCCAGA CATTAACGCT TCTGGAGAAA 7260 CTCAACGAGC TGGACGCGGA TGAACAGGCA GACATCTGTG AATCGCTTCA CGACCACGCT 7320 GATGAGCTTT ACCGCAGCTG CCTCGCGCGT TTCGGTGATG ACGGTGAAAA CCTCTGACAC 7380 ATGCAGCTCC CGGAGACGGT CACAGCTTGT CTGTAAGCGG ATGCCGGGAG CAGACAAGCC 7440 CGTCAGGGCG CGTCAGCGGG TGTTGGCGGG TGTCGGGGCG CAGCCATGAC CCAGTCACGT 7500 AGCGATAGCG GAGTGTATAC TGGCTTAACT ATGCGGCATC AGAGCAGATT GTACTGAGAG 7560 TGCACCATAT GCGGTGTGAA ATACCGCACA GATGCGTAAG GAGAAAATAC CGCATCAGGC 7620 GCTCTTCCGC TTCCTCGCTC ACTGACTCGC TGCGCTCGGT CGTTCGGCTG CGGCGAGCGG 7680 TATCAGCTCA CTCAAAGGCG GTAATACGGT TATCCACAGA ATCAGGGGAT AACGCAGGAA 7740 AGAACATGTG AGCAAAAGGC CAGCAAAAGG CCAGGAACCG TAAAAAGGCC GCGTTGCTGG 7800 CGTTTTTCCA TAGGCTCCGC CCCCCTGACG AGCATCACAA AAATCGACGC TCAAGTCAGA 7860 GGTGGCGAAA CCCGACAGGA CTATAAAGAT ACCAGGCGTT TCCCCCTGGA AGCTCCCTCG 7920 TGCGCTCTCC TGTTCCGACC CTGCCGCTTA CCGGATACCT GTCCGCCTTT CTCCCTTCGG 7980 GAAGCGTGGC GCTTTCTCAT AGCTCACGCT GTAGGTATCT CAGTTCGGTG TAGGTCGTTC 8040 GCTCCAAGCT GGGCTGTGTG CACGAACCCC CCGTTCAGCC CGACCGCTGC GCCTTATCCG 8100 GTAACTATCG TCTTGAGTCC AACCCGGTAA GACACGACTT ATCGCCACTG GCAGCAGCCA 8160 CTGGTAACAG GATTAGCAGA GCGAGGTATG TAGGCGGTGC TACAGAGTTC TTGAAGTGGT 8220 GGCCTAACTA CGGCTACACT AGAAGGACAG TATTTGGTAT CTGCGCTCTG CTGAAGCCAG 8280 TTACCTTCGG AAAAAGAGTT GGTAGCTCTT GATCCGGCAA ACAAACCACC GCTGGTAGCG 8340 GTGGTTTTTT TGTTTGCAAG CAGCAGATTA CGCGCAGAAA AAAAGGATCT CAAGAAGATC 8400 CTTTGATCTT TTCTACGGGG TCTGACGCTC AGTGGAACGA AAACTCACGT TAAGGGATTT 8460 TGGTCATGAG ATTATCAAAA AGGATCTICA CCTAGATCCT TTTAAATTAA AAATGAAGTT 8520 TTAAATCAAT CTAAAGTATA TATGAGTAAA CTTGGTCTGA CAGTTACCAA TGCTTAATCA 8580 GTGAGGCACC TATCTCAGCG ATCTGTCTAT TTCGTTCATC CATAGTTGCC TGACTCCCCG 8640 TCGTGTAGAT AACTACGATA CGGGAGGGCT TACCATCTGG CCCCAGTGCT GCAATGATAC 8700

WO 96/09399 PCT/US95/11537

#### 8/9

CGCGAGACCC ACGCTCACCG GCTCCAGATT TATCAGCAAT AAACCAGCCA GCCGGAAGGG 8760 CCGAGCGCAG AAGTGGTCCT GCAACTTTAT CCGCCTCCAT CCAGTCTATT AATTGTTGCC 8820 GGGAAGCTAG AGTAAGTAGT TCGCCAGTTA ATAGTTTGCG CAACGTTGTT GCCATTGCTG 8880 CAGGCATCGT GGTGTCACGC TCGTCGTTTG GTATGGCTTC ATTCAGCTCC GGTTCCCAAC 8940 GATCAAGGCG AGTTACATGA TCCCCCATGT TGTGCAAAAA AGCGGTTAGC TCCTTCGGTC 9000 CTCCGATCGT TGTCAGAAGT AAGTTGGCCG CAGTGTTATC ACTCATGGTT ATGGCAGCAC 9060 TGCATAATTC TCTTACTGTC ATGCCATCCG TAAGATGCTT TTCTGTGACT GGTGAGTACT 9120 CAACCAAGTC ATTCTGAGAA TAGTGTATGC GGCGACCGAG TTGCTCTTGC CCGGCGTCAA 9180 CACGGGATAA TACCGCGCCA CATAGCAGAA CTTTAAAAGT GCTCATCATT GGAAAACGTT 9240 CTTCGGGGCG AAAACTCTCA AGGATCTTAC CGCTGTTGAG ATCCAGTTCG ATGTAACCCA 9300 CTCGTGCACC CAACTGATCT TCAGCATCTT TTACTTTCAC CAGCGTTTCT GGGTGAGCAA 9360 AAACAGGAAG GCAAAATGCC GCAAAAAAGG GAATAAGGGC GACACGGAAA TGTTGAATAC 9420 TCATACTCTT CCTTTTTCAA TATTATTGAA GCATTTATCA GGGTTATTGT CTCATGAGCG 9480 GATACATATT TGAATGTATT TAGAAAAATA AACAAATAGG GGTTCCGCGC ACATTTCCCC 9540 GAAAAGTGCC ACCTGACGTC TAAGAAACCA TTATTATCAT GACATTAACC TATAAAAATA 9600 GGCGTATCAC GAGGCCCTTT CGTCTTCAA 9629



#### **PCT**

# WORLD INTELLECTUAL PROPERTY ORGANIZATION International Bureau



## INTERNATIONAL APPLICATION PUBLISHED UNDER THE PATENT COOPERATION TREATY (PCT)

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   | neu (                                                      | UNDER THE PATENT COOPERATION TREATY (PCT)                                                                                                                                                                               |
|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| (51) International Patent Classification 6;                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |                                                            | (11) International Publication Number: WO 96/09399                                                                                                                                                                      |
| C12N 15/86, C07K 14/535                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           | A3                                                         | (43) International Publication Date: 28 March 1996 (28.03.96)                                                                                                                                                           |
| (21) International Application Number: PCT/US (22) International Filing Date: 12 September 1995 (                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                                            | CH, DE, DK, ES, FR, GB, GR, IE, IT, LU MC, NI, PT                                                                                                                                                                       |
| <ul> <li>(30) Priority Data: 311,485 23 September 1994 (23.09.94)</li> <li>(71) Applicant: SOMATIX THERAPY CORPORATION [ Suite 100, 950 Marina Village Parkway, Alame 94501 (US).</li> <li>(72) Inventors: SHANKARA, Srinivas; Apartment E, 2: Jose Avenue, Alameda, CA 94501 (US). Diventors: Varavani; Apartment N, 1175 Broadway Street, A CA 94501 (US). NIJJAR, Tarlochan; 946 Foxfin Manteca, CA 95336 (US).</li> <li>(74) Agents: HALLUIN, Albert, P. et al.; Pennie &amp; Edmont Avenue of the Americas, New York, NY 10036 (U</li> </ul> | [US/US]<br>eda, C/<br>255 Sa<br>WARKI<br>Nameda<br>e Drive | Before the expiration of the time limit for amending the claims and to be republished in the event of the receipt of amendments.  (88) Date of publication of the international search report:  18 July 1996 (18.07.96) |
| 54) Title: CHIMERIC ADENOVIRUS FOR GENE DELI                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | VERY                                                       | <del>1</del>                                                                                                                                                                                                            |
| (DELETE 1.3-9.3 m.u.)  0 1.3 9.3 16  PXCJL-GMCSF (cDNA                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | ,                                                          | ADENOVIRAL GENOME  TTE FLANKED BY ADENOVIRAL SEQUENCES)                                                                                                                                                                 |
| MoMLV LTR GM-CS                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                                            | 1-DELETED GM-CSF ADENOVIRUS 100  CDNA CASSETTE SV40 poly A                                                                                                                                                              |

#### (57) Abstract

Chimeric adenovirus capable of transducing mammalian cells with DNA of interest are disclosed. The chimeric adenovirus are useful for the delivery of cloned genes into an individual and are therefore also useful for treating mammalian genetic diseases and disorders.

### FOR THE PURPOSES OF INFORMATION ONLY

Codes used to identify States party to the PCT on the front pages of pamphlets publishing international applications under the PCT.

| AT<br>AU | Austria<br>Australia     | GB   | United Kingdom               | MR  | Mauritania               |
|----------|--------------------------|------|------------------------------|-----|--------------------------|
| BB       | Barbados                 | GE   | Georgia                      | MW  | Malawi                   |
| BE       | Belgium                  | GN   | Guinea                       | NE  | Niger                    |
| BF       | Burkina Faso             | GR   | Greece                       | NL  | Netherlands              |
| BG       | Bulgaria                 | HU   | Hungary                      | NO  | Norway                   |
| BJ       | Benin                    | IE   | Ireland                      | NZ. | New Zealand              |
| BR       |                          | IT   | Italy                        | PL  | Poland                   |
| BY       | Brazil                   | JP   | Japan                        | PT  | Portugal                 |
| CA       | Belarus                  | KE   | Kenya                        | RO  | Romania                  |
|          | Canada                   | KG   | Kyrgystan                    | RU  | Russian Federation       |
| CF       | Central African Republic | KP   | Democratic People's Republic | SD  | Sudan                    |
| CG       | Congo                    |      | of Korea                     | SE  |                          |
| CH       | Switzerland              | KR   | Republic of Korea            | SI  | Sweden                   |
| CI       | Côte d'Ivoire            | KZ   | Kazakhstan                   | SK  | Slovenia                 |
| CM       | Cameroon                 | LI   | Liechtenstein                |     | Slovakia                 |
| CN       | China                    | LK   | Sri Lanka                    | SN  | Senegal                  |
| CS       | Czechoslovakia           | LU   | Luxembourg                   | TD  | Chad                     |
| CZ       | Czech Republic           | LV   | Latvia                       | TG  | Togo                     |
| DE       | Germany                  | MC   | Monaco                       | TJ  | Tajikistan               |
| DK       | Denmark                  | MD . |                              | TT  | Trinidad and Tobago      |
| ES       | Spain                    | MG   | Republic of Moldova          | UA  | Ukraine                  |
| 71       | Finland                  |      | Madagascar                   | US  | United States of America |
| FR       | France                   | ML   | Mali                         | UZ  | Uzbekistan               |
| GA       | Gabon                    | MN   | Mongolia                     | VN  | Viet Nam                 |

nal Application No

PCT/US 95/11537 A. CLASSIFICATION OF SUBJECT MATTER
1PC 6 C12N15/86 C07K14/535 According to International Patent Classification (IPC) or to both national classification and IPC Minimum documentation searched (classification system followed by classification symbols) IPC 6 C12N C07K Documentation searched other than minimum documentation to the extent that such documents are included in the fields searched Electronic data base consulted during the international search (name of data base and, where practical, search terms used) C. DOCUMENTS CONSIDERED TO BE RELEVANT Category Citation of document, with indication, where appropriate, of the relevant passages Relevant to claim No. A WO.A.93 03163 (FONDATION NATIONALE DE 1-14 TRANSFUSION SANGUINE) 18 February 1993 see page 4, line 19 - page 8, line 18; example 5 EUROPEAN JOURNAL OF NEUROSCIENCE, Α 1-14 vol. 5 , no. 10 , 1 October 1993, pages 1287-1291, XP002002600 C.CAILLAUD ET AL.: "Adenoviral vector as a gene delivery system into cultured rat neuronal and glial cells" -/--Further documents are listed in the continuation of box C. Х Patent family members are listed in annex. Special categories of cited documents: 'T' later document published after the international filing date or priority date and not in conflict with the application but cited to understand the principle or theory underlying the "A" document defining the general state of the art which is not considered to be of particular relevance invention E earlier document but published on or after the international "X" document of particular relevance; the claimed invention cannot be considered novel or cannot be considered to filing date document which may throw doubts on priority claim(s) or which is cited to establish the publication date of another citation or other special reason (as specified) involve an inventive step when the document is taken alone "Y" document of particular relevance; the claimed invention cannot be considered to involve an inventive step when the "O" document referring to an oral disclosure, use, exhibition or document is combined with one or more other such docu-ments, such combination being obvious to a person skilled other means \*P\* document published prior to the international filing date but later than the priority date claimed "&" document member of the same patent family Date of the actual completion of the international search Date of mailing of the international search report 9 May 1996 23.05.96 Name and mailing address of the ISA Authorized officer European Patent Office, P.B. 5818 Patentiaan 2 NL - 2280 HV Rijswijk Tel. (+ 31-70) 340-2040, Tx. 31 651 epo nl, Fax (+ 31-70) 340-3016

1

Cupido, M

Inter vial Application No PCT/US 95/11537

| C.(Continu | ation) DOCUMENTS CONSIDERED TO BE RELEVANT                                                                                                                                                                                                                                                                                | PCT/US 9 | .,,                   |
|------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-----------------------|
| Category * | Citation of document, with indication, where appropriate, of the relevant passages                                                                                                                                                                                                                                        |          | Relevant to claim No. |
| A .        | PROCEEDINGS OF THE NATIONAL ACADEMY OF SCIENCES OF USA, vol. 91, 12 April 1994, WASHINGTON US, pages 3054-3057, XP002002601 S-H CHEN ET AL.: "Gene therapy for brain tumors:Regression of experimental gliomas by adenovirus-mediated gene transfer in vivo."  see paragraph bridging left and right columns on page 3054 |          | 1-14                  |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |
|            |                                                                                                                                                                                                                                                                                                                           |          |                       |

1

'-ternational application No.

PCT/US 95/11537

| Box I Obser                | vations where certain claims were found unsearchable (Continuation of item 1 of first sheet)                                                                                                                                                                        |
|----------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| This internation           | al search report has not been established in respect of certain claims under Article 17(2)(2) for the following reasons:                                                                                                                                            |
| Remai                      | Nos.: 7,10  they relate to subject matter not required to be searched by this Authority, namely:  rk: Although claims 7 and 10 are directed to a method of treatment of numan body the search has been carried out and based on the alleged its of the composition. |
| 2. Claims because an exten | Nos.:<br>they relate to parts of the international application that do not comply with the prescribed requirements to such<br>It that no meaningful international search can be carried out, specifically:                                                          |
|                            | they are dependent claims and are not drafted in accordance with the second and third sentences of Rule 6.4(a).                                                                                                                                                     |
| Box II Observa             | tions where unity of invention is lacking (Continuation of item 2 of first sheet)                                                                                                                                                                                   |
|                            | Searching Authority found multiple inventions in this international application, as follows:                                                                                                                                                                        |
| 1. As all requesearchable  | uired additional search fees were timely paid by the applicant, this international search report covers all claims.                                                                                                                                                 |
| 2. As all sear of any add  | chable claims could be searches without effort justifying an additional fee, this Authority did not invite payment<br>itional fee.                                                                                                                                  |
| 3. As only son covers only | me of the required additional search fees were timely paid by the applicant, this international search report<br>those claims for which fees were paid, specifically claims Nos.:                                                                                   |
|                            |                                                                                                                                                                                                                                                                     |
| No required restricted to  | additional search fees were timely paid by the applicant. Consequently, this international search report is the invention first mentioned in the claims; it is covered by claims Nos.;                                                                              |
| emark on Protest           | The additional search fees were accompanied by the applicant's protest.  No protest accompanied the payment of additional search fees.                                                                                                                              |

information on patent family members

Inter wal Application No
PCT/US 95/11537

| Patent document cited in search report | Publication date | Patent family<br>member(s) |                    | Publication date     |
|----------------------------------------|------------------|----------------------------|--------------------|----------------------|
| WO-A-9303163                           | 18-02-93         | EP-A-<br>JP-T-             | 0596881<br>6508982 | 18-05-94<br>13-10-94 |

Form PCT/ISA/210 (patent family annex) (July 1992)