Noregs teknisk-naturvitskaplege universitet Institutt for matematiske fag

Side 1 av 4 Inklusive Laplacetabell

Fagleg kontakt under eksamen:

Lisa Lorentzen tlf. 73 59 35 48 Espen R, Jakobsen tlf. 73 59 35 12

EKSAMEN I TMA4120 MATEMATIKK 4K

Nynorsk Dag 9. august 2006 kl. 15–19

Hjelpemiddel (kode C): Enkel kalkulator (HP 30S)

Rottmann: Matematisk formelsamling

Grungje alle svar. Det skal vere med så mykje mellomrekning at framgangsmåten framgår tydeleg av besvarelsen.

Oppgåve 1 Løys likninga $\cos z = 2$.

Oppgåve 2 La y(t) vere løysninga av initialverdiproblemet

$$y'' + 4y' + 4y = f(t)$$
 for $t > 0$
 $y(0) = 0$, $y'(0) = 0$

der

$$f(t) = \begin{cases} 5\sin t & \text{for } 0 < t < 2\pi, \\ 0 & \text{for } t > 2\pi. \end{cases}$$

Vis at då er Laplacetransformasjonen til y gjeve ved

$$Y(s) = G(s)(1 - e^{-2\pi s})$$
 der $G(s) = \frac{3 - 4s}{5(s^2 + 1)} + \frac{4}{5(s + 2)} + \frac{1}{(s + 2)^2}$.

Finn $y(2\pi)$.

Oppgåve 3 Finn den Fouriertransformerte til funksjonen

$$f(x) = \begin{cases} e^{-x} & \text{når } x \ge 0, \\ -e^{x} & \text{når } x < 0. \end{cases}$$

Bruk resultatet til å bestemme integralet

$$\int_0^\infty \frac{w \sin w}{1 + w^2} dw.$$

Oppgåve 4

a) Finn alle funksjonane u(x, t) = F(x)G(t) slik at

(1)
$$t^3 \frac{\partial u}{\partial t} = \frac{\partial^2 u}{\partial x^2} \quad \text{for} \quad 0 < x < \pi, \ t > 0,$$

og

(2)
$$u(0,t) = 0 = u(\pi,t)$$
 for $t > 0$.

b) Finn ein funksjon u(x, t) som tilfredstiller (1), (2) og

$$u(x, 1) = 4\sin x + \sin 4x.$$

Oppgåve 5 Rekn ut integrala

$$\int_{-\pi}^{\pi} \frac{\cos x}{3 - 2\cos x} dx \quad \text{og} \quad \int_{-\pi}^{\pi} \frac{\sin x}{3 - 2\cos x} dx$$

ved bruk av residyrekning.

Oppgåve 6 Funksjonen f(z) er gjeve som

$$f(z) = \frac{10}{z^2(z - 10)}.$$

a) La C_1 og C_2 vere sirklane |z| = 1 og |z - 10| = 11 med orientering mot klokka (positiv orientering). Finn verdiane av integrala

$$\oint_{C_1} f(z)dz \quad \text{og} \quad \oint_{C_2} f(z)dz.$$

Kurva C_3 er gjeve av figuren under:

Figur 1: God natt, Solan Gundersen!

Orienteringa er gitt av pilene på figuren. Kva er verdien av integralet

$$\oint_{C_3} f(z)dz?$$

b) Finn alle Laurentrekkene til f(z) om z=10 og dei åpne konvergensområda for kvar av rekkene. (Hint: $(1-t)^{-2}=\sum_{n=1}^{\infty}nt^{n-1}$ for |t|<1).

Table of Laplace transforms

f(t)	$\mathcal{L}(f)$
1	$\frac{1}{s}$
t	$\frac{1}{s^2}$
$t^n (n=0,1,2,\ldots)$	$\frac{n!}{s^{n+1}}$
e^{at}	$\frac{1}{s-a}$
cos ωt	$\frac{s}{s^2 + \omega^2}$
sin ωt	$\frac{\omega}{s^2 + \omega^2}$
cosh at	$\frac{s}{s^2 - a^2}$
sinh at	$\frac{a}{s^2 - a^2}$
$e^{at}\cos\omega t$	$\frac{s-a}{(s-a)^2 + \omega^2}$
$e^{at}\sin\omega t$	$\frac{\omega}{(s-a)^2 + \omega^2}$