Solutions to Time Series Analysis: with Applications in ${\bf R}$

Johan Larsson 2017-04-05

Contents

Preface					
	Depe	endencies	5		
1	Intr	Introduction			
	1.1	Larain	7		
	1.2	Colors	8		
	1.3	Random, normal time series	8		
	1.4	Random, χ^2 -distributed time series	9		
	1.5	t(5)-distributed, random values	10		
	1.6	Dubuque temperature series	12		
2	Fun	damental concepts	13		
	2.1	Basic properties of expected value and covariance	13		
	2.2	Dependence and covariance	13		
	2.3	Strict and weak stationarity	14		
	2.4	Zero-mean white noise	14		
	2.5	Zero-mean stationary series	16		
	2.6	Stationary time series	16		
	2.7	First and second-order difference series	16		
	2.8	Generalized difference series	17		
	2.9	Zero-mean stationary difference series	17		
	2.10	Zero-mean, unit-variance process	18		
	2.11	Drift	18		
	2.12	Periods	19		
	2.13	Drift, part 2	19		
	2.14	Stationarity, again	20		
	2.15	Random variable, zero mean	20		
	2.16	Mean and variance	21		
	2.17	Variance of sample mean	21		

4 CONTENTS

	2.18	Sample variance	22
	2.19	Random walk with drift	22
	2.20	Random walk	23
	2.21	Random walk with random starting value	23
	2.22	Asymptotic stationarity	24
	2.23	Stationarity in sums of stochastic processes	26
	2.24	Measurement noise	26
	2.25	Random cosine wave	27
	2.26	Semivariogram	27
	2.27	Polynomials	28
	2.28	Random cosine wave extended	28
	2.29	Random cosine wave further	29
	2.30	Rayleigh distribution	29
3	Trer	nds	31
U		Least squares estimation for linear regression trend	31
	3.2	Variance of mean estimator	32
	3.3	Variance of mean estimator #2	32
	3.4		32
		Hours	
	3.5	Wages	33
	3.6	Beer sales	37
	3.7	Winnebago	40
	3.8	Retail	45
	3.9	Prescriptions	46

Preface

This book contains solutions to the problems in the book *Time Series Analysis: with Applications in R*, third edition, by Cryer and Chan. It is provided as a github repository so that anybody may contribute to its development.

Dependencies

You will need these packages to reproduce the examples in this book:

```
install.packages(c(
   "latticeExtra",
   "lattice",
   "TSA",
   "pander"
))
```

```
# Load the packages
library(latticeExtra)
library(TSA)
library(pander)
library(dplyr)
```

In order for some of the content in this book to be reproducible, the random seed is set as follows.

```
set.seed(1234)
```

6 CONTENTS

Chapter 1

Introduction

1.1 Larain

Use software to produce the time series plot shown in Exhibit 1.2, on page 2. The data are in the file named larain.

```
library(TSA)
library(latticeExtra)

data(larain, package = "TSA")
```

```
xyplot(larain, ylab = "Inches", xlab = "Year", type = "o")
```


1.2 Colors

Produce the time series plot displayed in Exhibit 1.3, on page 3. The data file is named color.

```
data(color)
xyplot(color, ylab = "Color property", xlab = "Batch", type = "o")
```


1.3 Random, normal time series

Simulate a completely random process of length 48 with independent, normal values. Plot the time series plot. Does it look "random"? Repeat this exercise several times with a new simulation each time.

```
xyplot(as.ts(rnorm(48)))
xyplot(as.ts(rnorm(48)))
```


As far as we can tell there is no discernable pattern here.

1.4 Random, χ^2 -distributed time series

Simulate a completely random process of length 48 with independent, chi-square distributed values, each with 2 degrees of freedom. Display the time series plot. Does it look "random" and nonnormal? Repeat this exercise several times with a new simulation each time.

```
xyplot(as.ts(rchisq(48, 2)))
xyplot(as.ts(rchisq(48, 2)))
```


The process appears random, though non-normal.

1.5 t(5)-distributed, random values

Simulate a completely random process of length 48 with independent, t-distributed values each with 5 degrees of freedom. Construct the time series plot. Does it look "random" and nonnormal? Repeat this exercise several times with a new simulation each time.

xyplot(as.ts(rt(48, 5)))

It looks random but not normal, though it should be approximately so, considering the distribution that we have sampled from.

1.6 Dubuque temperature series

Construct a time series plot with monthly plotting symbols for the Dubuque temperature series as in Exhibit 1.7, on page 6. The data are in the file named tempdub.

```
data(tempdub)
xyplot(tempdub, ylab = "Temperature", xlab = "Year")
```


Chapter 2

Fundamental concepts

2.1 Basic properties of expected value and covariance

 \mathbf{a}

$$Cov[X, Y] = Corr[X, Y] \sqrt{Var[X]Var[Y]}$$
(2.1)

$$=0.25\sqrt{9\times4} = 1.5\tag{2.2}$$

$$Var[X, Y] = Var[X] + Var[Y] + 2Cov[X, Y]$$
(2.3)

$$= 9 + 4 + 2 \times 3 = 16 \tag{2.4}$$

(2.5)

b

$$Cov[X, X + Y] = Cov[X, X] + Cov[X, Y] = Var[X] + Cov[X, Y] = 9 + 1.5 = 10.5$$

 \mathbf{c}

$$\operatorname{Corr}[X+Y,X-Y] = \operatorname{Corr}[X,X] + \operatorname{Corr}[X,-Y] + \operatorname{Corr}[Y,X] + \operatorname{Corr}[Y,-Y]$$

$$= \operatorname{Corr}[Y,X] + \operatorname{Corr}[Y,-Y]$$
(2.6)

$$-\operatorname{Corr}[T, T] + \operatorname{Corr}[T, T] \tag{2.1}$$

$$=1 - 0.25 + 0.25 - 1$$

$$=0$$
(2.8)
$$(2.9)$$

$$(2.10)$$

2.2 Dependence and covariance

$$\begin{aligned} \operatorname{Cov}[X+Y,X-Y] &= \operatorname{Cov}[X,X] + \operatorname{Cov}[X,-Y] + \operatorname{Cov}[Y,X] + \operatorname{Cov}[Y,-Y] = \\ Var[X] - Cov[X,Y] + Cov[X,Y] - Var[Y] &= 0 \end{aligned}$$

since Var[X] = Var[Y].

2.3 Strict and weak stationarity

 \mathbf{a}

We have that

$$P(Y_{t_1}, Y_{t_2}, \dots, Y_{t_n}) = P(X_1, X_2, \dots, X_n) = P(Y_{t_1-k}, Y_{t_2-k}, \dots, Y_{t_n-k}),$$

which satisfies our requirement for strict stationarity.

b

The autocovariance is given by

$$\gamma_{t,s} = \operatorname{Cov}[Y_t, Y_s] = \operatorname{Cov}[X, X] = \operatorname{Var}[X] = \sigma^2.$$

 \mathbf{c}

2.4 Zero-mean white noise

a

$$E[Y_t] = E[e_t + \theta e_{t-1}] = E[e_t] + \theta E[e_{t-1}] = 0 + 0 = 0$$
$$V[Y_t] = V[e_t + \theta e_{t-1}] = V[e_t] + \theta^2 V[e_{t-1}] = \sigma_e^2 + \theta^2 \sigma_e^2 = \sigma_2^2 (1 + \theta^2)$$

For k = 1 we have

$$\begin{split} C[e_t + \theta e_{t-1}, e_{t-1} + \theta e_{t-2}] &= \\ C[e_t, e_{t-1}] + C[e_t, \theta e_{t-2}] + C[\theta e_{t-1}, e_{t-1}] + C[\theta e_{t-1}, \theta e_{t-2}] &= \\ 0 + 0 + \theta V[e_{t-1}] + 0 &= \theta \sigma_e^2, \\ \mathrm{Corr}[Y_t, Y_{t-k}] &= \frac{\theta \sigma_e^2}{\sqrt{(\sigma_e^2(1 + \theta^2))^2}} &= \frac{\theta}{1 + \theta^2} \end{split}$$

Figure 2.1: A white noise time series: no drift, independence between observations.

and for k = 0 we get

$$Corr[Y_t, Y_{t-k}] = Corr[Y_t, Y_t] = 1$$

and, finally, for k > 0:

$$C[e_t + \theta e_{t-1}, e_{t-k} + \theta e_{t-k-1}] =$$

$$C[e_t, e_{t-k}] + C[e_t, e_{t-1-k}] + C[\theta e_{t-1}, e_{t-k}] + C[\theta e_{t-1}, \theta e_{t-1-k}] = 0$$

given that all terms are independent. Taken together, we have that

$$Corr[Y_t, Y_{t-k}] = \begin{cases} 1 & \text{for } k = 0 \\ \frac{\theta}{1+\theta^2} & \text{for } k = 1 \\ 0 & \text{for } k > 1 \end{cases}$$

And, as required,

$$\operatorname{Corr}[Y_t, Y_{t-k}] = \begin{cases} \frac{3}{1+3^2} = \frac{3}{10} & \text{if } \theta = 3\\ \frac{1/3}{1+(1/3)^2} = \frac{1}{10/3} = \frac{3}{10} & \text{if } \theta = 1/3 \end{cases}.$$

b

No, probably not. Given that ρ is standardized, we will not be able to detect any difference in the variance regardless of the values of k.

2.5 Zero-mean stationary series

 \mathbf{a}

$$\mu_t = E[Y_t] = E[5 + 2t + X_t] = 5 + 2E[t] + E[X_t] = 5 + 2t + 0 = 2t + 5$$

b

$$\gamma_k = \text{Corr}[5 + 2t + X_t, 5 + 2(t - k) + X_{t-k}] = \text{Corr}[X_t, X_{t-k}]$$

 \mathbf{c}

No, the mean function (μ_t) is constant and the aurocovariance $(\gamma_{t,t-k})$ free from t.

2.6 Stationary time series

 \mathbf{a}

$$Cov[a + X_t, b + X_{t-k}] = Cov[X_t, X_{t-k}],$$

which is free from t for all k because X_t is stationary.

b

$$\mu_t = E[Y_t] = \begin{cases} E[X_t] & \text{for odd } t \\ 3 + E[X_t] & \text{for even } t \end{cases}.$$

Since μ_t varies depending on t, Y_t is not stationary.

2.7 First and second-order difference series

 \mathbf{a}

$$\mu_t = E[W_t] = E[Y_t - Y_{t-1}] = E[Y_t] - E[Y_{t-1}] = 0$$

because Y_t is stationary.

$$\begin{aligned} \operatorname{Cov}[W_t] &= \operatorname{Cov}[Y_t - Y_{t-1}, Y_{t-k} - Y_{t-1-k}] = \\ \operatorname{Cov}[Y_t, Y_{t-k}] &+ \operatorname{Cov}[Y_t, Y_{t-1-k}] + \operatorname{Cov}[-Y_{t-k}, Y_{t-k}] + \operatorname{Cov}[-Y_{t-k}, -Y_{t-1-k}] = \\ \gamma_k - \gamma_{k+1} - \gamma_{k-1} + \gamma_k = 2\gamma_k - \gamma_{k+1} - \gamma_{k-1}. \quad \Box \end{aligned}$$

b

In (a), we discovered that the difference between two stationary processes, ∇Y_t itself was stationary. It follows that the difference between two of these differences, $\nabla^2 Y_t$ is also stationary.

2.8 Generalized difference series

$$E[W_t] = c_1 E[Y_t] + c_2 E[Y_t] + \dots + c_n E[Y_t]$$
(2.11)

$$= E[Y_t](c_1 + c_2 + \dots + c_n), \tag{2.12}$$

and thus the expected value is constant. Moreover,

$$Cov[W_t] = Cov[c_1Y_t + c_2Y_{t-1} + \dots + c_nY_{t-k}, c_1Y_{t-k} + c_2Y_{t-k-1} + \dots + c_nY_{t-k-n}]$$
(2.13)

$$= \sum_{i=0}^{n} \sum_{j=0}^{n} c_i c_j \operatorname{Cov}[Y_{t-j} Y_{t-i-k}]$$
(2.14)

$$= \sum_{i=0}^{n} \sum_{j=0}^{n} c_i c_j \gamma_{j-k-i}, \tag{2.15}$$

which is free of t; consequently, W_t is stationary.

2.9 Zero-mean stationary difference series

 \mathbf{a}

$$E[Y_t] = \beta_0 + \beta_1 t + E[X_t] = \beta_0 + \beta_1 t + \mu_{t_x},$$

which is not free of t and hence not stationary.

$$Cov[Y_t] = Cov[X_t, X_t - 1] = \gamma_{t-1}$$

$$E[W_t] = E[Y_t - Y_{t-1}] = E[\beta_0 + \beta_1 t + X_t - (\beta_0 + \beta_1 (t-1) + X_{t-1})] = \beta_0 + \beta_1 t - \beta_0 - \beta_1 t + \beta_1 = \beta_1,$$

is free of t and, furthermore, we have

$$Cov[W_t] = Cov[\beta_0 + \beta_1 t + X_t, \beta_0 + \beta_1 (t - 1) + X_{t-1}] = Cov[X_t, X_{t-1}] = \gamma_k,$$

which is also free of t, thereby proving that W_t is stationary.

18

b

$$E[Y_t] = E[\mu_t + X_t] = \mu_t + \mu_t = 0 + 0 = 0, \text{ and}$$

$$Cov[Y_t] = Cov[\mu_t + X_t, \mu_{t-k} + X_{t-k}] = Cov[X_t, X_{t-k}] = \gamma_k$$

$$\nabla^m Y_t = \nabla(\nabla^{m1} Y_t)$$

Currently unsolved.

2.10 Zero-mean, unit-variance process

 \mathbf{a}

$$\mu_{t} = E[Y_{t}] = E[\mu_{t} + \sigma_{t}X_{t}] = \mu_{t} + \sigma_{t}E[X_{t}] = \mu_{t} + \sigma_{t} \times 0 = \mu_{t}$$
$$\gamma_{t,t-k} = \text{Cov}[Y_{t}] = \text{Cov}[\mu_{t} + \sigma_{t}X_{t}, \mu_{t-k} + \sigma_{t-k}X_{t-k}] = \sigma_{t}\sigma_{t-k}\text{Cov}[X_{t}, X_{t-k}] = \sigma_{t}\sigma_{t-k}\rho_{k}$$

b

First, we have

$$Var[Y_t] = Var[\mu_t + \sigma_t X_t] = 0 + \sigma_t^2 Var[X_t] = \sigma_t^2 \times 1 = \sigma_t^2$$

since $\{X_t\}$ has unit-variance. Futhermore,

$$\operatorname{Corr}[Y_t, Y_{t-k}] = \frac{\sigma_t \sigma_{t-k} \rho_k}{\sqrt{\operatorname{Var}[Y_t] \operatorname{Var}[Y_{t-k}]}} = \frac{\sigma_t \sigma_{t-k} \rho_k}{\sigma_t \sigma_{t-k}} = \rho_k,$$

which depends only on the time lag, k. However, $\{Y_t\}$ is not necessarily stationary since μ_t may depend on t.

 \mathbf{c}

Yes, ρ_k might be free from t but if σ_t is not, we will have a non-stationary time series with autocorrelation free from t and constant mean.

2.11 Drift

a

$$Cov[X_t, X_{t-k}] = \gamma_k$$
$$E[X_t] = 3t$$

 $\{X_t\}$ is not stationary because μ_t varies with t.

2.12. PERIODS 19

b

$$E[Y_t] = 3 - 3t + E[X_t] = 7 - 3t - 3t = 7$$
$$Cov[Y_t, Y_{t-k}] = Cov[7 - 3t + X_t, 7 - 3(t-k) + X_{t-k}] = Cov[X_t, X_{t-k}] = \gamma_k$$

Since the mean function of $\{Y_t\}$ is constant (7) and its autocovariance free of t, $\{Y_t\}$ is stionary.

2.12 Periods

$$\begin{split} E[Y_t] &= E[e_t - e_{t-12}] = E[e_t] - E[e_{t-12}] = 0 \\ &\text{Cov}[Y_t, Y_{t-k}] = \text{Cov}[e_t - e_{t-12}, e_{t-k} - e_{t-12-k}] = \\ &\text{Cov}[e_t, e_{t-k}] - \text{Cov}[e_t, e_{t-12-k}] - \text{Cov}[e_{t-12}, e_{t-k}] + \text{Cov}[e_{t-12}, e_{t-12-k}] \end{split}$$

Then, as required, we have

$$\operatorname{Cov}[Y_t, Y_{t-k}] = \begin{cases} \operatorname{Cov}[e_t, e_{t-12}] - \operatorname{Cov}[e_t, e_t] - \\ \operatorname{Cov}[e_{t-12}, e_{t-12}] + \operatorname{Cov}[e_{t-12}, e_t] = \\ \operatorname{Var}[e_t] - \operatorname{Var}[e_{t-12}] \neq 0 & \text{for } k = 12 \end{cases}$$

$$\operatorname{Cov}[e_t, e_{t-k}] - \operatorname{Cov}[e_t, e_{t-12-k}] - \\ \operatorname{Cov}[e_t, e_{t-k}] + \operatorname{Cov}[e_{t-12}, e_{t-12-k}] = \\ 0 + 0 + 0 + 0 = 0 & \text{for } k \neq 12 \end{cases}$$

2.13 Drift, part 2

 \mathbf{a}

$$E[Y_t] = E[e_t - \theta e_{t-1}^2] = E[e_t] - \theta E[e_{t-1}^2] = 0 - \theta \text{Var}[e_{t-1}] = -\theta \sigma_e^2$$

And thus the requirement of constant variance is fulfilled. Moreover,

$$Var[Y_t] = Var[e_t - \theta e_{t-1}^2] = Var[e_t] + \theta^2 Var[e_{t-1}^2] = \sigma_e^2 + \theta^2 (E[e_{t-1}^4] - E[e_{t-1}^2]^2),$$

where

$$E[e_{t-1}^4] = 3\sigma_e^4 \quad \text{and} \quad E[e_{t-1}^2]^2 = \sigma_e^4,$$

gives us

$$\operatorname{Var}[Y_t] = \sigma_e^2 + \theta(3\sigma_e^4 - \sigma_e^2) = \sigma_e^2 + 2\theta^2\sigma_e^4$$

and

$$\begin{split} \operatorname{Cov}[Y_t,Y_{t-1}] &= \operatorname{Cov}[e_t - \theta e_{t-1}^2, e_{t-1} - \theta e_{t-2}^2] = \\ \operatorname{Cov}[e_t,e_{t-1}] + \operatorname{Cov}[e_t, -\theta e_{t-2}^2] + \operatorname{Cov}[-\theta e_{t-1}^2, e_{t-1}] \operatorname{Cov}[-\theta e_{t-1}^2, -\theta e_{t-2}^2] = \\ \operatorname{Cov}[e_t,e_{t-1}] - \theta \operatorname{Cov}[e_t,e_{t-2}^2] - \theta \operatorname{Cov}[e_{t-1}^2,e_{t-1}] + \theta^2 \operatorname{Cov}[e_{t-1}^2,e_{t-2}^2] = \\ -\theta \operatorname{Cov}[e_{t-1}^2,e_{t-1}] = -\theta (E[e_{t-1}^3] + \mu_{t-1} + \mu_t) = 0 \end{split}$$

which means that the autocorrelation function $\gamma_{t,s}$ also has to be zero.

b

The autocorrelation of $\{Y_t\}$ is zero and its mean function is constant, thus $\{Y_t\}$ must be stationary.

2.14 Stationarity, again

 \mathbf{a}

$$E[Y_t] = E[\theta_0 + te_t] = \theta_0 + E[e_t] = \theta_0 + t \times 0 = \theta_0$$
$$Var[Y_t] = Var[\theta_0] + Var[te_t] = 0 + t^2 \sigma_e^2 = t^2 \sigma_e^2$$

So $\{Y_t\}$ is not stationary.

b

$$E[W_t] = E[\nabla Y_t] = E[\theta_0 + te_t - \theta_0 - (t-1)e_{t-1}] = tE[e_t] - tE[e_{t-1} + E[e_{t-1}]] = 0$$
$$\operatorname{Var}[\nabla Y_t] = \operatorname{Var}[te_t] = -\operatorname{Var}[(t-1)e_{t-1}] = t^2\sigma_e^2 - (t-1)^2\sigma_e^2 = \sigma_e^2(t^2 - t^2 + 2t - 1) = (2t-1)\sigma_e^2,$$

which varies with t and means that $\{W_t\}$ is not stationary.

 \mathbf{c}

$$E[Y_t] = E[e_t e_{t-1}] = E[e_t] E[e_{t-1}] = 0$$

$$Cov[Y_t, Y_{t-1}] = Cov[e_t e_{t-1}, e_{t-1} e_{t-2}] = E[(e_t e_{t-1} - \mu_t^2)(e_{t-1} e_{t-2} - \mu_t^2)] = E[e_t] E[e_{t-1}] E[e_{t-1}] E[e_{t-2}] = 0$$

Both the covariance and the mean function are zero, hence the process is stationary.

2.15 Random variable, zero mean

 \mathbf{a}

$$E[Y_t] = (-1)^t E[X] = 0$$

b

$$\mathrm{Cov}[Y_t,Y_{t-k}] = \mathrm{Cov}[(-1)^t X, (-1)^{t-k} X] = (-1)^{2t-k} \mathrm{Cov}[X,X] = (-1)^k \mathrm{Var}[X] = (-1)^k \sigma_t^2$$

 \mathbf{c}

Yes, the covariance is free of t and the mean is constant.

2.16 Mean and variance

$$\begin{split} E[Y_t] &= E[A + X_t] = E[A] + E[X_t] = \mu_A + \mu_X \\ & \operatorname{Cov}[Y_t, Y_{t-k}] = \operatorname{Cov}[A + X_t, A + X_{t-k}] = \\ & \operatorname{Cov}[A, A] + \operatorname{Cov}[A, X_{t-k}] + \operatorname{Cov}[X_t, A] + \operatorname{Cov}[X_t, X_{t-k}] = \sigma_A^2 + \gamma_{k_k} \end{split}$$

2.17 Variance of sample mean

$$\operatorname{Var}[\bar{Y}] = \operatorname{Var}\left[\frac{1}{n}\sum_{t=1}^{n}Y_{t}\right] = \frac{1}{n^{2}}\operatorname{Var}\left[\sum_{t=1}^{n}Y_{t}\right] = \frac{1}{n^{2}}\operatorname{Cov}\left[\sum_{t=1}^{n}Y_{t},\sum_{s=1}^{n}Y_{s}\right] = \frac{1}{n^{2}}\sum_{t=1}^{n}\sum_{s=1}^{n}\gamma_{t-s}$$

Setting k = t - s, j = t gives us

$$\operatorname{Var}[\bar{Y}] = \frac{1}{n^2} \sum_{j=1}^{n} \sum_{j=k+1}^{n} \gamma_k = \frac{1}{n^2} \sum_{j=1}^{n} \sum_{j=k+1}^{n+k} \gamma_k = \frac{1}{n^2} \left(\sum_{k=1}^{n-1} \sum_{j=k+1}^{n} \gamma_k + \sum_{k=-n+1}^{0} \sum_{j=1}^{n+k} \gamma_k \right) = \frac{1}{n^2} \left(\sum_{k=1}^{n-1} (n-k)\gamma_k + \sum_{k=-n+1}^{0} (n+k)\gamma_k \right) = \frac{1}{n^2} \sum_{k=-n+1}^{n-1} ((n-k)\gamma_k + (n+k)\gamma_k) = \frac{1}{n^2} \sum_{k=-n+1}^{n-1} (n-|k|)\gamma_k = \frac{1}{n} \sum_{k=-n+1}^{n-1} \left(1 - \frac{|k|}{n} \right) \gamma_k \quad \Box$$

2.18 Sample variance

 \mathbf{a}

$$\sum_{t=1}^{n} (Y_t - \mu)^2 = \sum_{t=1}^{n} ((Y_t - \bar{Y}) + (\bar{Y} - \mu))^2 =$$

$$\sum_{t=1}^{n} ((Y_t - \bar{Y})^2 - 2(Y_t - \bar{Y})(\bar{Y} - \mu) + (\bar{Y} - \mu)^2) =$$

$$n(\bar{Y} - \mu)^2 + 2(\bar{Y} - \mu) \sum_{t=1}^{n} (Y_t - \bar{Y}) + \sum_{t=1}^{n} (Y_t - \bar{Y})^2 =$$

$$n(\bar{Y} - \mu)^2 + \sum_{t=1}^{n} (Y_t - \bar{Y})^2 \quad \Box$$

b

$$E[s^{2}] = E\left[\frac{n}{n-1}\sum_{t=1}^{n}(Y_{t}-\bar{Y})^{2}\right] = \frac{n}{n-1}E\left[\sum_{t=1}^{n}\left((Y_{t}-\mu)^{2}+n(\bar{Y}-\mu)^{2}\right)\right] = \frac{n}{n-1}\sum_{t=1}^{n}\left(E[(Y_{t}-\mu)^{2}]+nE[(\bar{Y}-\mu)^{2}]\right) = \frac{1}{n-1}\left(n\operatorname{Var}[Y_{t}]-n\operatorname{Var}[\bar{Y}]\right) = \frac{n}{n-1}\gamma_{0} - \frac{n}{n-1}\operatorname{Var}[\bar{Y}] = \frac{1}{n-1}\left(n\gamma_{0}-n\left(\frac{\gamma_{0}}{n}+\frac{2}{n}\sum_{k=1}^{n-1}\left(1-\frac{k}{n}\right)\gamma_{k}\right)\right) = \frac{1}{n-1}\left(n\gamma_{0}-\gamma_{0}+2\sum_{k=1}^{n-1}\left(1-\frac{k}{n}\right)\gamma_{k}\right) = \frac{1}{n-1}\left(n\gamma_{0}-\gamma_{0}+2\sum_{k=1}^{n-1}\left(1-\frac{k}{n}\right)\gamma_{k}\right) = \frac{1}{n-1}\left(1-\frac{k}{n}\right)\gamma_{k} \quad \Box$$

 \mathbf{c}

Since $\gamma_k = 0$ for $k \neq 0$, in our case for all k, we have

$$E[s^2] = \gamma_0 - \frac{2}{n-1} \sum_{t=1}^{n} \left(1 - \frac{k}{n}\right) \times 0 = \gamma_0$$

2.19 Random walk with drift

 \mathbf{a}

$$Y_1 = \theta_0 + e_1$$

$$Y_2 = \theta_0 + \theta_0 + e_2 + e_1$$

$$Y_t = \theta_0 + \theta_0 + \dots + \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + e_t + e_{t-1} + \dots + e_1 = \theta_0 + e_t +$$

2.20. RANDOM WALK 23

b

$$\mu_t = E[Y_t] = E[t\theta_0 + e_t + e_{t-1} + \dots + e_1] = t\theta_0 + E[e_t] + E[e_{t-1}] + \dots + E[e_1] = t\theta_0 + 0 + 0 + \dots + 0 = t\theta_0$$

 \mathbf{c}

$$\gamma_{t,t-k} = \text{Cov}[Y_t, Y_{t-k}] = \text{Cov}[t\theta_0 + e_t, +e_{t-1} + \dots + e_1, (t-k)\theta_0 + e_{t-k}, +e_{t-1-k} + \dots + e_1] = \text{Cov}[e_{t-k}, +e_{t-1-k} + \dots + e_1, e_{t-k}, +e_{t-1-k} + \dots + e_1] \quad \text{(since all other terms are 0)} = \text{Var}[e_{t-k}, +e_{t-1-k} + \dots + e_1, e_{t-k}, +e_{t-1-k} + \dots + e_1] = (t-k)\sigma_e^2$$

2.20 Random walk

 \mathbf{a}

$$\mu_1 = E[Y_1] = E[e_1] = 0$$

$$\mu_2 = E[Y_2] = E[Y_1 - e_2] = E[Y_1] - E[e_2] = 0 - 0 = 0$$

$$\dots$$

$$\mu_{t-1} = E[Y_{t-1}] = E[Y_{t-2} - e_{t-1}] = E[Y_{t-2}] - E[e_{t-1}] = 0$$

$$\mu_t = E[Y_t] = E[Y_{t-1} - e_t] = E[Y_t] - E[e_t] = 0,$$

which implies $\mu_t = \mu_{t-1}$ Q.E.D.

b

$$\begin{aligned} \operatorname{Var}[Y_{1}] &= \sigma_{e}^{2} \\ \operatorname{Var}[Y_{2}] &= \operatorname{Var}[Y_{1} - e_{2}] = \operatorname{Var}[Y_{1}] + \operatorname{Var}[e_{1}] = \sigma_{e}^{2} + \sigma_{e}^{2} = 2\sigma_{e}^{2} \\ & \cdots \\ \operatorname{Var}[Y_{t-1}] &= \operatorname{Var}[Y_{t-2} - e_{t-1}] = \operatorname{Var}[Y_{t-2}] + \operatorname{Var}[e_{t-1}] = (t-1)\sigma_{e}^{2} \\ \operatorname{Var}[Y_{t}] &= \operatorname{Var}[Y_{t-1} - e_{t}] = \operatorname{Var}[Y_{t-1}] + \operatorname{Var}[e_{t}] = (t-1)\sigma_{e}^{2} + \sigma_{e}^{2} = t\sigma_{e}^{2} \end{aligned} \quad \Box$$

 \mathbf{c}

$$Cov[Y_t, Y_s] = Cov[Y_t, Y_t + e_{t+1} + e_{t+2} + \dots + e_s] = Cov[Y_t, Y_t] = Var[Y_t] = t\sigma_e^2$$

2.21 Random walk with random starting value

 \mathbf{a}

$$E[Y_t] = E[Y_0 + e_t + e_{t-1} + \dots + e_1] =$$

$$E[Y_0] + E[e_t] + E[e_{t-1}] + E[e_{t-2}] + \dots + E[e_1] =$$

$$\mu_0 + 0 + \dots + 0 = \mu_0 \quad \Box$$

24

b

$$\operatorname{Var}[Y_t] = \operatorname{Var}[Y_0 + e_t + e_{t-1} + \dots + e_1] =$$

$$\operatorname{Var}[Y_0] + \operatorname{Var}[e_t] + \operatorname{Var}[e_{t-1}] + \dots + \operatorname{Var}[e_1] =$$

$$\sigma_0^2 + t\sigma_e^2 \quad \Box$$

 \mathbf{c}

$$Cov[Y_t, Y_s] = Cov[Y_t, Y_t + e_{t+1} + e_{t+2} + \dots + e_s] =$$

$$Cov[Y_t, Y_t] = Var[Y_t] = \sigma_0^2 + t\sigma_e^2 \quad \Box$$

 \mathbf{d}

$$\operatorname{Corr}[Y_t, Y_s] = \frac{\sigma_0^2 + t\sigma_e^2}{\sqrt{(\sigma_0^2 + t\sigma_e^2)(\sigma_0^2 + s\sigma_e^2)}} = \sqrt{\frac{\sigma_0^2 + t\sigma_e^2}{\sigma_0^2 + s\sigma_e^2}} \quad \Box$$

2.22 Asymptotic stationarity

 \mathbf{a}

$$E[Y_1] = E[e_1] = 0$$

$$E[Y_2] = E[cY_1 + e_2] = cE[Y_1] + E[e_2] = 0$$

$$...$$

$$E[Y_t] = E[cY_{t-1} + e_t] = cE[Y_{t-1}] + E[e_t] = 0 \quad \Box$$

b

$$Var[Y_1] = Var[e_1] = \sigma_e^2$$

$$Var[Y_2] = Var[cY_1 + e_2] = c^2 Var[Y_{t-1}] + Var[e_2] = c^2 \sigma_e^2 + \sigma_e^2 = \sigma_e^2 (1 + c^2)$$

$$\cdots$$

$$Var[Y_t] = \sigma_e^2 (1 + c^2 + c^4 + \cdots + c^{2t-2}) \quad \Box$$

 $\{Y_t\}$ is not stationary, given that its variance varies with t.

 \mathbf{c}

$$\begin{aligned} \operatorname{Cov}[Y_t,Y_{t-1}] &= \operatorname{Cov}[cY_{t-1} + e_t,Y_{t-1}] = c\operatorname{Cov}[Y_{t-1},Y_{t-1}] = c\operatorname{Var}[Y_{t-1}] & \text{giving} \\ \operatorname{Corr}[Y_t,Y_{t-1}] &= \frac{c\operatorname{Var}[Y_{t-1}]}{\sqrt{\operatorname{Var}[Y_t]\operatorname{Var}[Y_{t-1}]}} = c\sqrt{\frac{\operatorname{Var}[Y_{t-1}]}{\operatorname{Var}[Y_t]}} & \Box \end{aligned}$$

And, in the general case,

$$Cov[Y_t, Y_{t-k}] = Cov[cY_{t-1} + e_t, Y_{t-k}] = cCov[cY_{t-2} + e_{t-1}, Y_{t-k}] = c^3Cov[Y_{t-2} + e_{t-1}, Y_{t-k}] = \dots = c^kVar[Y_{t-k}]$$

giving

$$\operatorname{Corr}[Y_t, Y_{t-k}] = \frac{c^k \operatorname{Var}[Y_{t-k}]}{\sqrt{\operatorname{Var}[Y_t] \operatorname{Var}[Y_{t-k}]}} = c^k \sqrt{\frac{\operatorname{Var}[Y_{t-k}]}{\operatorname{Var}[Y_t]}} \quad \Box$$

 \mathbf{d}

$$\operatorname{Var}[Y_t] = \sigma_e^2 (1 + c^2 + c^4 + \dots + c^{2t-2}) = \sigma_e^2 \sum_{t=1}^n c^{2(t-1)} = \sigma_e^2 \sum_{t=0}^{n-1} c^{2t} = \sigma_e^2 \frac{1 - c^{2t}}{1 - c^2}$$

And because

$$\lim_{t \to \infty} \sigma_e^2 \frac{1 - c^{2t}}{1 - c^2} = \sigma_e^2 \frac{1}{1 - c^2} \quad \text{since } |c| < 1,$$

which is free of t, $\{Y_t\}$ can be considered asymptotically stationary.

 \mathbf{e}

$$\begin{split} Y_t &= c(cY_{t-2} + e_{t-1}) + e_t = \dots = e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1 \\ & \text{Var}[Y_t] = \text{Var}[e_t + ce_{t-1} + c^2 e_{t-2} + \dots + c^{t-2} e_2 + \frac{c^{t-1}}{\sqrt{1-c^2}} e_1] = \\ & \text{Var}[e_t] + c^2 \text{Var}[e_{t-1}] + c^4 \text{Var}[e_{t-2}] + \dots + c^{2(t-2)} \text{Var}[e_2] + \frac{c^{2(t-1)}}{1-c^2} \text{Var}[e_1] = \\ & \sigma_e^2 (1 + c^2 + c^4 + \dots + c^{2(t-2)}) + \frac{c^{2(t-1)}}{1-c^2}) = \sigma_e^2 \left(\sum_{t=1}^n c^{2(t-1)} - c^{2(t-1)} + \frac{c^{2(t-1)}}{1-c^2} \right) = \\ & \sigma_e^2 \frac{1 - c^{2t} + c^{2t-2+2}}{1-c^2} = \sigma_e^2 \frac{1}{1-c^2} \quad \Box \end{split}$$

Futhermore,

$$\begin{split} E[Y_1] &= E\left[\frac{e_1}{\sqrt{1-c^2}}\right] = \frac{E[e_1]}{\sqrt{1-c^2}} = 0\\ E[Y_2] &= E[cY_1 + e_2] = cE[Y_1] = 0\\ & \dots\\ E[Y_t] &= E[cY_{t-1} + e_2] = cE[Y_{t-1}] = 0, \end{split}$$

which satisfies our first requirement for weak stationarity. Also,

$$Cov[Y_t, Y_{t-k}] = Cov[cY_{t-1} + e_t, Y_{t-1}] = c^k Var[Y_{t-1}] = c^k \frac{\sigma_e^2}{1 - c^2},$$

which is free of t and hence $\{Y_t\}$ is now stationary.

2.23 Stationarity in sums of stochastic processes

$$E[W_t] = E[Z_t + Y_t] = E[Z_t] + Y[Z_t] = \mu_{Z_t} + \mu_{Y_s}$$

Since both processes are stationary – and hence their sums are constant – the sum of both processes must also be constant.

$$\begin{split} \text{Cov}[W_t, W_{t-k}] &= \text{Cov}[Z_t + Y_t, Z_{t-k} + Y_{t-k}] = \\ \text{Cov}[Z_t, Z_{t-k}] &+ \text{Cov}[Z_t, Y_{t-k}] + \text{Cov}[Y_t, Z_{t-k}] + \text{Cov}[Y_t, Y_{t-k}] = \\ \text{Cov}[Z_t, Z_{t-k}] &+ \text{Cov}[Y_t, Z_{t-k}] + \text{Cov}[Y_t, Y_{t-k}] = \text{Cov}[Z_t, Z_{t-k}] + \text{Cov}[Y_t, Y_{t-k}] = \gamma_{Z_k} + \gamma_{Y_k}, \end{split}$$

both free of t.

2.24 Measurement noise

$$\begin{split} E[Y_t] &= E[Y_t + e_t] = E[X_t] + E[e_t] - \mu_t \\ \operatorname{Var}[Y_t] &= \operatorname{Var}[X_t + e_t] = \operatorname{Var}[X_t] + \operatorname{Var}[e_t] = \sigma_X^2 + \sigma_e^2 \\ \operatorname{Cov}[Y_t, Y_{t-k}] &= \operatorname{Cov}[X_t + e_t, X_{t-k} + e_{t-k}] = \operatorname{Cov}[X_t, X_{t-k}] = \rho_k \\ \operatorname{Corr}[Y_t, Y_{t-k}] &= \frac{\rho_k}{\sqrt{(\sigma_X^2 + \sigma_e^2)(\sigma_X^2 + \sigma_e^2)}} = \frac{\rho_k}{\sigma_X^2 + \sigma_e^2} = \frac{\rho_k}{1 + \frac{\sigma_e^2}{\sigma_X^2}} \ \Box \end{split}$$

2.25 Random cosine wave

$$E[Y_{t}] = E\left[\beta_{0} + \sum_{i=1}^{k} (A_{i} \cos(2\pi f_{i}t) + B_{i} \sin(2\pi f_{i}t))\right] =$$

$$\beta_{0} + \sum_{i=1}^{k} (E[A_{i}] \cos(2\pi f_{i}t) + E[B_{i}] \sin(2\pi f_{i}t) = \beta_{0}$$

$$Cov[Y_{t}, Y_{s}] = Cov\left[\sum_{i=1}^{k} A_{i} \cos(2\pi f_{i}t) + B_{i} \sin(2\pi f_{i}t), \sum_{j=1}^{k} A_{j} \cos(2\pi f_{j}s) + B_{j} \sin(2\pi f_{j}s)\right] =$$

$$\sum_{i=1}^{k} Cov[A_{i} \cos(2\pi f_{i}t) + A_{i} \sin(2\pi f_{i}s)] + \sum_{i=1}^{k} Cov[B_{i} \cos(2\pi f_{j}t) + B_{i} \sin(2\pi f_{j}s)] =$$

$$\sum_{i=1}^{k} Var[A_{i}](\cos(2\pi f_{i}t) + \sin(2\pi f_{i}s)) + \sum_{i=1}^{k} Var[B_{i}](\cos(2\pi f_{j}t) + \sin(2\pi f_{j}s)) =$$

$$\frac{\sigma_{i}^{2}}{2} \sum_{i=1}^{k} (\cos(2\pi f_{i}(t-s)) + \sin(2\pi f_{i}(t+s))) + \frac{\sigma_{i}^{2}}{2} \sum_{i=1}^{k} (\cos(2\pi f_{j}(t-s)) + \sin(2\pi f_{j}(t+s))) =$$

$$\sigma_{i}^{2} \sum_{i=1}^{k} \cos(2\pi f_{i}(t-s)) = \sigma_{i}^{2} \sum_{i=1}^{k} \cos(2\pi f_{i}k),$$

and is thus free of t and s.

2.26 Semivariogram

a

$$\begin{split} \Gamma_{t,s} &= \frac{1}{2} E[(Y_t - Y_s)^2] = \frac{1}{2} E[Y_t^2 - 2Y_t Y_s + Y_s^2] = \\ &\frac{1}{2} \left(E[Y_t^2] - 2E[Y_t Y_s] + E[Y_s^2] \right) = \frac{1}{2} \gamma_0 + \frac{1}{2} \gamma_0 - 2 \times \frac{1}{2} \gamma_{|t-s|} = \gamma_0 - \gamma_{|t-s|} \\ &\operatorname{Cov}[Y_t, Y_s] = E[Y_t Y_s] - \mu_t \mu_s = E[Y_t Y_s] = \gamma_{|t-s|} \quad \Box \end{split}$$

b

$$Y_t - Y_s = e_t + e_{t-1} + \dots + e_1 - e_s - e_{s-1} - \dots - e_1 = e_t + e_{t-1} + \dots + e_{s+1}, \quad \text{for } t > s$$

$$\Gamma_{t,s} = \frac{1}{2} E[(Y_t - Y_s)^2] = \frac{1}{2} \text{Var}[e_t + e_{t-1} + \dots + e_{s-1}] = \frac{1}{2} \sigma_e^2(t - s) \quad \Box$$

2.27 Polynomials

 \mathbf{a}

$$E[Y_t] = E[e_t + \phi e_{t-1} + \phi^2 e_{t-2} + \dots + \phi^r e_{t-r}] = 0$$

$$Cov[Y_t, Y_{t-k}] = Cov[e_t + \phi e_{t-1} + \dots + \phi^r e_{t-r}, e_{t-k} + \phi e_{t-1-k} + \dots + \phi^r e_{t-r-k}] =$$

$$Cov[e_1 + \dots + \phi^k e_{t-k} + \phi^{k+1} e_{t-k-1} + \dots + \phi^r e_{t-r}, e_{t-r}, e_{t-k} + \dots + \phi^k e_{t-k-1} + \dots + \phi^r e_{t-k-r}] =$$

$$\sigma_e^2(\phi^k + \phi^{k+2} + \phi^{k+4} + \dots + \phi^{k+2(r-k)}) = \sigma_e^2\phi^k(1 + \phi^2 + \phi^4 + \dots + \phi^{2(r-k)})$$

Hence, because of the zero mean and covariance free of t, it is a stationary process.

b

$$\operatorname{Var}[Y_{t}] = \operatorname{Var}[e_{t} + \phi e_{t-1} + \phi^{2} e_{t-2} + \dots + \phi^{r} e_{t-r}] = \sigma_{e}^{2} (1 + \phi + \phi^{2} + \dots + \phi^{2r})$$

$$\operatorname{Corr}[Y_{t}, Y_{t-k}] = \frac{\sigma_{e}^{2} \phi^{k} (1 + \phi^{2} + \phi^{4} + \dots + \phi^{2(r-k)})}{\sqrt{(\sigma_{e}^{2} (1 + \phi + \phi^{2} + \dots + \phi^{2r}))^{2}}} = \frac{\phi^{k} (1 + \phi^{2} + \phi^{4} + \dots + \phi^{2(r-k)})}{(1 + \phi + \phi^{2} + \dots + \phi^{2r})} \quad \Box$$

2.28 Random cosine wave extended

a

$$\begin{split} E[Y_t] &= E[R\cos{(2\pi(ft+\phi))}] = E[R]\cos{(2\pi(ft+\phi))} = \\ E[R] \int_0^1 \cos(E[R\cos{(2\pi(ft+\phi))}]) d\phi = E[R] \left[\frac{1}{2\pi}\sin{(2\pi(ft+\phi))}\right]_0^1 = \\ E[R] \left(\frac{1}{2\pi}(\sin{(2\pi(ft+1))} - \sin{(2\pi(ft))})\right) = \\ E[R] \left(\frac{1}{2\pi}(\sin{(2\pi ft+2\pi)} - \sin{(2\pi ft+1)})\right) = \\ E[R] \left(0) = 0 \end{split}$$

b

$$\begin{split} \gamma_{t,s} &= E[R\cos{(2\pi(ft+\phi))}R\cos{(2\pi(fs+\phi))}] = \\ \frac{1}{2}E[R^2] \int_0^1 \left(\cos{(2\pi(f(t-s))} + \frac{1}{4\pi}\sin{(2\pi(f(t+s)+2\phi))}\right) = \\ \frac{1}{2}E[R^2] \left[\cos{(2\pi f(t-s))} + \frac{1}{4\pi}\sin{(2\pi(f(t+s)+2\phi))}\right]_0^1 = \\ \frac{1}{2}E[R^2] \left(\cos{(2\pi(f(t-s)))}\right), \end{split}$$

which is free of t.

2.29 Random cosine wave further

 \mathbf{a}

$$E[Y_t] = \sum_{j=1}^m E[R_j] E[\cos(2\pi(f_j t + \phi))] = \text{via } 2.28 = \sum_{j=1}^m E[R_j] \times 0 = 0$$

b

$$\gamma_k = \sum_{j=1}^m E[R_j] \cos(2\pi f_j k), \text{ also from 2.28.}$$

2.30 Rayleigh distribution

$$\begin{split} Y &= R \cos \left(2\pi (ft+\phi)\right), \quad X = R \sin \left(2\pi (ft+\phi)\right) \\ \left[\frac{\partial X}{\partial \theta} \quad \frac{\partial X}{\partial \Phi}\right] &= \begin{bmatrix} \cos \left(2\pi (ft+\Phi)\right) & 2\pi R \sin \left(2\pi (ft+\Phi)\right) \\ \sin \left(2\pi (ft+\Phi)\right) & 2\pi R \cos \left(2\pi (ft+\Phi)\right) \end{bmatrix}, \end{split}$$

with jacobian

$$-2\pi R = -2\pi\sqrt{X^2 + Y^2}$$

and inverse Jacobian

$$\frac{1}{-2\pi\sqrt{X^2+Y^2}}.$$

Furthermore,

$$f(r,\Phi) = re^{-r^2/2}$$

and

$$f(x,y) = \frac{e^{-(x^2+y^2)/2}\sqrt{x^2+y^2}}{2\pi\sqrt{x^2+y^2}} = \frac{e^{-x^2/2}}{\sqrt{2\pi}} \frac{e^{-y^2/2}}{\sqrt{2\pi}} \quad \Box$$

Chapter 3

Trends

3.1 Least squares estimation for linear regression trend

We begin by taking the partial derivatives with respect to β_0 .

$$\frac{\partial}{\partial \beta_0} \mathcal{Q}(\beta_0, \beta_1) = -2 \sum_{t=1}^n (Y_t - \beta_0 - \beta_1 t)$$

We set it to 0 and from this retrieve

$$-2\sum_{t=1}^{n} (Y_t - \beta_0 - \beta_1 t) = 0 \implies$$

$$\sum_{t=1}^{n} Y_t - n\beta_0 - \beta_1 \sum_{t=1}^{n} t = 0 \implies$$

$$\beta_0 = \frac{\sum_{t=1}^{n} Y_t - \beta_1 \sum_{t=1}^{n} t}{n} = \bar{Y} - \beta_1 \bar{t}$$

Next, we take the partial derivative with respect to β_1 ;

$$\frac{\partial}{\partial \beta_1} \mathcal{Q}(\beta_0, \beta_1) = -2 \sum_{t=1}^n t(Y_t - \beta_0 - \beta_1 t)$$

Setting this to 0 as well, multiplying both sides with -1/2 and rearranging results in

$$-2\sum_{t=1}^{n} t(Y_t - \beta_0 - \beta_1 t) = 0 \implies$$
$$\beta_1 \sum_{t=1}^{n} t^2 = \sum_{t=1}^{n} Y_t t - \beta_0 \sum_{t=1}^{n} t$$

Then, substituting with the result gained previously for β_0 , we get

32 CHAPTER 3. TRENDS

$$\beta_{1} \sum_{t=1}^{n} t^{2} = \sum_{t=1}^{n} Y_{t}t - \left(\frac{\sum_{t=1}^{n} Y_{t}}{n} - \beta_{1} \frac{\sum_{t=1}^{n}}{n}\right) \sum_{t=1}^{n} t \iff$$

$$\beta_{1} \left(\sum_{t=1}^{n} t^{2} - \frac{(\sum_{t=1}^{n} t)^{2}}{n}\right) = \sum_{t=1}^{n} Y_{t}t - \frac{\sum_{t=1}^{n} Y_{t} \sum_{t=1}^{n} t}{n} \iff$$

$$\beta_{1} = \frac{n \sum_{t=1}^{n} Y_{t}t - \sum_{t=1}^{n} Y_{t} \sum_{t=1}^{n} t}{n \sum_{t=1}^{n} t^{2} - (\sum_{t=1}^{n} t)^{2}} = \frac{\sum_{t=1}^{n} (Y_{t} - \bar{Y})(t - \bar{t})}{\sum_{t=1}^{n} (t - \bar{t})^{2}} \quad \Box$$

3.2 Variance of mean estimator

$$\bar{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t = \frac{1}{n} \sum_{t=1}^{n} (\mu + e_t - e_{t-1}) = \mu + \frac{1}{n} \sum_{t=1}^{n} (e_t - e_{t-1}) = \mu + \frac{1}{n} (e_n - e_0)$$
$$\operatorname{Var}[\bar{Y}] = \operatorname{Var}[\mu + \frac{1}{n} (e_n - e_0)] = \frac{1}{n^2} (\sigma_e^2 + \sigma_e^2) = \frac{2\sigma_e^2}{n^2}$$

It is uncommon for the sample size to have such a large impact on the variance estimator for the sample mean.

Setting $Y_t = \mu + e_t$ instead gives

$$\bar{Y} = \frac{1}{n} \sum_{t=1}^{n} Y_t = \frac{1}{n} \sum_{t=1}^{n} (\mu + e_t) = \mu + \frac{1}{n} \sum_{t=1}^{n} e_t$$
$$\text{Var}[\bar{Y}] = \text{Var} \left[\mu + \frac{1}{n} \sum_{t=1}^{n} e_t \right] = 0 + \frac{1}{n^2} \times n\sigma_e^2 = \frac{\sigma_e^2}{n}.$$

3.3 Variance of mean estimator #2

$$\bar{Y} = \frac{1}{n} \sum_{t=1}^{n} (\mu + e_t + e_{t-1}) = \mu + \frac{1}{n} \sum_{t=1}^{n} (e_t + e_{t-1}) = \mu + \frac{1}{n} \left(e_n + e_0 + 2 \sum_{t=1}^{n-1} t \right)$$

$$\operatorname{Var}[\bar{Y}] = \frac{1}{n^2} (\sigma_e^2 + \sigma_e^2 + 4(n-1)\sigma_e^2) = \frac{1}{n^2} 2(2n-1)\sigma_e^2$$

Setting $Y_t = \mu + e_t$ instead gives the result from 3.2. We note that for large n the variance if approximately four times larger with $Y_t = \mu + e_t + e_{t-1}$.

3.4 Hours

a

library(TSA)
data("hours")
xyplot(hours)

3.5. WAGES 33

Figure 3.1: Monthly values of the average hours worked per week in the U.S. manufacturing sector.

In Figure 1 we see a steep incline between 83 and 84. There also appears to be a seasonal trend with generally longer work hours later in the year apart from the summer; 1984, however, does not exhibit as clear a pattern.

b

```
months <- c("J", "A", "S", "O", "N", "D", "J", "F", "M", "A", "M", "J")

xyplot(hours, panel = function(x, y, ...) {
  panel.xyplot(x, y, ...)
  panel.text(x = x, y = y, labels = months)
})</pre>
```

Here, in Figure 2, our interpretation is largely the same. It is clear that December stands out as the month with the longest weekly work hours whilst February and January are low-points, demonstrating a clear trend.

3.5 Wages

 \mathbf{a}

```
data("wages")
xyplot(wages, panel = function(x, y, ...) {
  panel.xyplot(x, y, ...)
```

34 CHAPTER 3. TRENDS

Figure 3.2: Monthly values of average hours worked per week with superposed initials of months.

```
panel.text(x, y, labels = months)
})
```

There is a positive trend with seasonality: August is a low-point for wages. Generally, there seems to be larger increases in the fall.

b

```
wages_fit1 <- lm(wages ~ time(wages))</pre>
summary(wages_fit1)
##
## Call:
## lm(formula = wages ~ time(wages))
##
## Residuals:
##
                1Q
                    Median
                                        Max
                    0.0194
##
   -0.2383 -0.0498
                            0.0585
                                    0.1314
##
## Coefficients:
##
                Estimate Std. Error t value Pr(>|t|)
## (Intercept) -5.49e+02
                            1.11e+01
                                       -49.2
                                                <2e-16 ***
## time(wages) 2.81e-01
                            5.62e-03
                                        50.0
                                                <2e-16 ***
##
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
##
```

3.5. WAGES 35

Figure 3.3: Monthly average hourly wages for workers in the U.S. apparel and textile industry.

```
## Residual standard error: 0.083 on 70 degrees of freedom
## Multiple R-squared: 0.973, Adjusted R-squared: 0.972
## F-statistic: 2.5e+03 on 1 and 70 DF, p-value: <2e-16
wages_rst <- rstudent(wages_fit1)</pre>
```

 \mathbf{c}

```
xyplot(wages_rst ~ time(wages_rst), type = "1",
      xlab = "Time", ylab = "Studentized residuals")
```

We still seem to have autocorrelation related to the time and not white noise.

 \mathbf{d}

```
wages_fit2 <- lm(wages ~ time(wages) + I(time(wages)^2))</pre>
summary(wages_fit2)
##
## Call:
## lm(formula = wages ~ time(wages) + I(time(wages)^2))
## Residuals:
```

36 CHAPTER 3. TRENDS

Figure 3.4: (#fig:wages_resid)Residual plot

```
##
        Min
                  1Q
                       Median
                                     3Q
                                             Max
## -0.14832 -0.04144 0.00156 0.05009
                                        0.13984
##
## Coefficients:
##
                     Estimate Std. Error t value Pr(>|t|)
## (Intercept)
                    -8.49e+04
                                            -8.34
                                1.02e+04
                                                 4.9e-12 ***
## time(wages)
                     8.53e+01
                                1.03e+01
                                             8.31
                                                  5.4e-12 ***
## I(time(wages)^2) -2.14e-02
                                2.59e-03
                                            -8.28 6.1e-12 ***
## Signif. codes:
                   0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' ' 1
## Residual standard error: 0.059 on 69 degrees of freedom
## Multiple R-squared: 0.986, Adjusted R-squared: 0.986
## F-statistic: 2.49e+03 on 2 and 69 DF, p-value: <2e-16
wages_rst2 <- rstudent(wages_fit2)</pre>
```

 \mathbf{e}

This looks more like random noise but there is still clear autocorrelation between the fitted residuals that we have yet to capture in our model.

3.6. BEER SALES 37

Figure 3.5: (#fig:wages_quad_resid)Residual plot for our quadratic model.

3.6 Beer sales

 \mathbf{a}

```
data(beersales)
xyplot(beersales)
```

Clear seasonal trends. There is an initial positive trend from 1975 to around 1981 that then levels out.

b

```
months <- c("J", "F", "M", "A", "M", "J", "J", "A", "S", "O", "N", "D")

xyplot(beersales,
    panel = function(x, y, ...) {
        panel.xyplot(x, y, ...)
        panel.text(x, y, labels = months)
    })</pre>
```

It is now evident that the peaks are in the warm months and the slump in the winter and fall months. December is a particular low point, while May, June, and July seem to be the high points.

Figure 3.6: Monthly U.S. beer sales.

Figure 3.7: Monthly U.S. beer sales annotated with the months' initials.

3.6. BEER SALES 39

 \mathbf{c}

```
beer_fit1 <- lm(beersales ~ season(beersales))
pander(summary(beer_fit1))</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
season(beersales)February	-0.1426	0.3732	-0.382	0.7029
season(beersales)March	2.082	0.3732	5.579	8.771e-08
${ m season}({ m beersales}){ m {f April}}$	2.398	0.3732	6.424	1.151e-09
${ m season}({ m beersales}){ m May}$	3.599	0.3732	9.643	5.322e-18
${ m season}({ m beersales}){ m June}$	3.85	0.3732	10.31	6.813e-20
${ m season}({ m beersales}){ m July}$	3.769	0.3732	10.1	2.812e-19
${f season(beersales) August}$	3.609	0.3732	9.669	4.494e-18
${\bf season (beer sales) September}$	1.573	0.3732	4.214	3.964 e - 05
${\rm season}({\rm beersales}) {\bf October}$	1.254	0.3732	3.361	0.0009484
${\rm season}({\rm beersales}) \\ {\rm November}$	-0.04797	0.3732	-0.1285	0.8979
${\bf season (beer sales) December}$	-0.4231	0.3732	-1.134	0.2585
(Intercept)	12.49	0.2639	47.31	1.786e-103

Table 3.2: Fitting linear model: beersales ~ season(beersales)

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
192	1.056	0.7103	0.6926

All comparisons are made against january. The model helpfully explains approximately 0.71 of the variance and is statistically significant. Most of the factors are significant (mostly the winter months as expected).

 \mathbf{d}

Looking at the residuals in 3.8 We don't have a good fit to our data; in particular, wee're not capturing the long-term trend.

 \mathbf{e}

Figure 3.8: Beer sales residual plot.

	Estimate	Std. Error	t value	$\Pr(> t)$
season(beersales)February	-0.1579	0.209	-0.7554	0.451
${ m season}({ m beersales}){ m March}$	2.052	0.209	9.818	1.864e-18
${ m season}({ m beersales}){ m April}$	2.353	0.209	11.26	1.533e-22
season(beersales)May	3.539	0.209	16.93	6.063e-39
${f season (beer sales) June}$	3.776	0.209	18.06	4.117e-42
${ m season}({ m beersales}){ m July}$	3.681	0.209	17.61	7.706e-41
${ m season}({ m beersales}) { m August}$	3.507	0.2091	16.78	1.698e-38
${\bf season (beer sales) September}$	1.458	0.2091	6.972	5.89e-11
${\rm season}({\rm beersales}) {\bf October}$	1.126	0.2091	5.385	2.268e-07
${\rm season (beer sales)} \\ {\rm November}$	-0.1894	0.2091	-0.9059	0.3662
${\bf season (beer sales) December}$	-0.5773	0.2092	-2.76	0.00638
${f time}({f beersales})$	71.96	8.867	8.115	7.703e-14
$I(time(beersales)^2)$	-0.0181	0.002236	-8.096	8.633e-14
$({f Intercept})$	-71498	8791	-8.133	6.932e-14

Table 3.4: Fitting linear model: beersales \sim season(beersales) + time(beersales) + I(time(beersales)^2)

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
192	0.5911	0.9102	0.9036

This model fits the data better, explaining roughly 0.91 of the variance.

 \mathbf{f}

3.7. WINNEBAGO 41

Figure 3.9: Beer sales residual plot from the quadratic fit.

Figure 3.10: Monthly unit sales of recreational vehicles from Winnebago.

b

```
winn_fit1 <- lm(winnebago ~ time(winnebago))
summary(winn_fit1) %>%
  pander()
```

	Estimate	Std. Error	t value	$\Pr(> t)$
time(winnebago)	200.7	17.03	11.79	1.777e-17
(Intercept)	-394886	33540	-11.77	1.87e-17

Table 3.6: Fitting linear model: winnebago ~ time(winnebago)

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
64	209.7	0.6915	0.6865

The model is significant and explains 0.69 of the variance.

Figure 3.11: Residuals for the linear fit for the winnebago data.

The fit is poor (Figure ??. It is not random and it is clear that we're making worse predictions for later yers.

3.7. WINNEBAGO 43

 \mathbf{c}

To produce a better fit, we transform the outcome with the natural logarithm.

```
winn_fit_log <- lm(log(winnebago) ~ time(winnebago))
pander(summary(winn_fit_log))</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
time(winnebago)	0.5031	0.03199	15.73	2.575e-23
$({f Intercept})$	-984.9	62.99	-15.64	3.45e-23

Table 3.8: Fitting linear model: log(winnebago) ~ time(winnebago)

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
64	0.3939	0.7996	0.7964

The model is better, explaining almost 0.8 of the variance.

 \mathbf{d}

This looks more like random noise (Figure ??. Values still cling together somewhat but it is certainly better than the linear model. We're still systematically overpredicting the values for some months, however.

 \mathbf{e}

```
winn_fit_seasonal <- lm(log(winnebago) ~ season(winnebago) + time(winnebago))
pander(summary(winn_fit_seasonal))</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
season(winnebago)February	0.6244	0.1818	3.434	0.001188
${ m season}({ m winnebago}){ m March}$	0.6822	0.1909	3.574	0.0007793
${f season (winnebago) April}$	0.8096	0.1908	4.243	9.301e-05
${ m season}({ m winnebago}){ m May}$	0.8695	0.1907	4.559	3.246 e - 05
${ m season}({ m winnebago}){ m June}$	0.8631	0.1907	4.526	3.627 e - 05
${f season}({f winnebago}){f July}$	0.5539	0.1907	2.905	0.00542
${f season}({f winnebago}){f August}$	0.5699	0.1907	2.988	0.004305
${f season (winnebago) September}$	0.5757	0.1907	3.018	0.00396

	Estimate	Std. Error	t value	$\Pr(> t)$
season(winnebago)October	0.2635	0.1908	1.381	0.1733
${ m season}({ m winnebago}){ m November}$	0.2868	0.1819	1.577	0.1209
${ m season}({ m winnebago}) { m December}$	0.248	0.1818	1.364	0.1785
${\bf time (winnebago)}$	0.5091	0.02571	19.8	1.351e-25
(Intercept)	-997.3	50.64	-19.69	1.718e-25

Table 3.10: Fitting linear model: $\log(\text{winnebago}) \sim \text{season}(\text{winnebago}) + \text{time}(\text{winnebago})$

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
64	0.3149	0.8946	0.8699

The fit is improved further. We have a \mathbb{R}^2 of 0.89 and significance for most of our seasonal means as well as the time trend.

 \mathbf{f}

This is acceptable even if our residuals are quite large for some of the values, notably at the start of the series.

3.8. RETAIL 45

Figure 3.12: Residual plot after natural log transformation.

3.8 Retail

 \mathbf{a}

```
data(retail)
xyplot(retail, panel = function(x, y, ...) {
  panel.xyplot(x, y, ...)
  panel.xyplot(x, y, pch = as.vector(season(retail)), col = 1)
})
```

Plotting the retail sales trend there seems to be a long-term linear trend as well as heavy seasonality in tht December – and to slighter extent also November and October – exhibit regular surges in retail sales.

b

```
retail_lm <- lm(retail ~ season(retail) + time(retail))
pander(summary(retail_lm))</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
season(retail)February	-3.015	1.29	-2.337	0.02024
${ m season(retail)March}$	0.07469	1.29	0.05791	0.9539
${f season(retail)April}$	3.447	1.305	2.641	0.008801
season(retail)May	3.108	1.305	2.381	0.01803
season(retail)June	3.074	1.305	2.355	0.01932

D 1: 1	Cu 1 E	4 1	D (s [4])
Estimate	Std. Error	t value	$\Pr(> t)$
6.053	1.305	4.638	5.757e-06
3.138	1.305	2.404	0.01695
3.428	1.305	2.626	0.009187
8.555	1.305	6.555	3.336e-10
20.82	1.305	15.95	1.274e-39
52.54	1.305	40.25	3.169e-109
3.67	0.04369	84	5.206e-18
-7249	87.24	-83.1	6.41e-180
	3.138 3.428 8.555 20.82 52.54 3.67	6.053 1.305 3.138 1.305 3.428 1.305 8.555 1.305 20.82 1.305 52.54 1.305 3.67 0.04369	6.053 1.305 4.638 3.138 1.305 2.404 3.428 1.305 2.626 8.555 1.305 6.555 20.82 1.305 15.95 52.54 1.305 40.25 3.67 0.04369 84

Table 3.12: Fitting linear model: retail \sim season(retail) + time(retail)

Observations	Residual Std. Error	R^2	Adjusted R^2
255	4.278	0.9767	0.9755

This seems like an effective model, explaining 0.98 of the variance in retail sales.

 \mathbf{c}

The residual plot (Figure 3.14) tells a different story: we're underpredicting values for early period and overpredicting values for the later years – however, this should be an easy fix.

3.9 Prescriptions

 \mathbf{a}

Figure 3.15 shows a clear, smooth, and cyclical seasonal trend. Values are genereally higher for the summer months and there seems to be an exponential increase long-term.

3.9. PRESCRIPTIONS 47

Figure 3.13: Total retail sales in the U.K. in billions pounds.

Figure 3.14: Studentized residuals for our seasonality + linear model of retail sales.

Figure 3.15: Monthly U.S. prescription costs.

b

The monthly percentage difference series looks rather stationary.

 \mathbf{c}

```
pres_cos <- lm(pchange ~ harmonic(pchange))
pander(summary(pres_cos))</pre>
```

	Estimate	Std. Error	t value	$\Pr(> t)$
$\operatorname{harmonic}(\operatorname{pchange})\cos(2pi\operatorname{t})$	-0.006605	0.003237	-2.041	0.04542
$\operatorname{harmonic}(\operatorname{pchange})\sin(2pit)$	0.01612	0.003208	5.026	4.291e-06
(Intercept)	0.01159	0.002282	5.08	3.508e-06

Table 3.14: Fitting linear model: pchange ~ harmonic(pchange)

Observations	Residual Std. Error	R^2	Adjusted \mathbb{R}^2
67	0.01862	0.3126	0.2912

We explain 0.31 of the variance. The model is significant though.

3.9. PRESCRIPTIONS 49

Figure 3.16: Percentage changes from month-to-month in prescription costs.

Figure 3.17: Residuals for our cosine model.