Expt. No.

Page No.

1,	Find the Charg	cteristic & minimal	no ly numia la	+ 1) [= 1 - 1
5.1	1A - >11 =	13-> 1	-1	## J = V, N + " A # "
		2 4-7		= 0 (1-/1) (1-7)
	- 1 1 1	-1	2-1	, , ,

$$\lambda^{3} - 10\lambda^{2} + 28\lambda - 24 = 0$$

$$(\lambda - L)^{2}(\lambda - 6) \rightarrow Characteristic polynomial$$

$$f(\lambda) = (\lambda^{-2})(\lambda^{-6}) \in g(\lambda) = (\lambda^{-1})^{2}(\lambda^{-6})$$

$$f(A) = (A-21)(A-61) =$$

$$\begin{bmatrix}
1 & 1 & -1 & 7 & -3 & 1 & -1 \\
2 & 2 & -2 & 2 & -2 & -2 & -2 \\
-1 & -1 & 1 & 2 & -1 & -3
\end{bmatrix}$$

$$f(\lambda) = (\lambda - 2)(\lambda - 6)$$
 is the minimum polynomial

Teacher's Signature: ____

(ii)
$$\begin{bmatrix} 1 & 2 & 3 \\ 0 & 2 & 3 \\ 0 & 0 & 3 \end{bmatrix} + trace(A) = 6$$

$$1A1 = 6$$
50)
$$\lambda^{3} - 6\lambda^{2} + 11\lambda - 6 = 0$$

$$(\lambda - 1)(\lambda - 1)(\lambda - 2) \Rightarrow Characteristic polynomial$$

$$g(\lambda) = (\lambda - 1)(\lambda - 1)(\lambda - 2)$$

$$by \quad C. H. T \quad y(\lambda) = y(A) = 0$$

$$(\lambda - 1)(\lambda - 1)(\lambda - 2) \quad \text{is the onia polynomial}$$

$$(\lambda - 1)(\lambda - 1)(\lambda - 2) \quad \text{is the onia polynomial}$$

$$\begin{cases} 3 & 1 & -1 \\ 2 & 4 & -2 \\ -1 & -1 & 3 \end{cases} + trace(A) = 10$$

$$|A1 = 24|$$

$$|A1$$

Expt. No. Page No.

(vi	32-17	+ raic (A) = 10
	3 8 -3	1A1 = 24
	3 6 -1	17

$$f(\lambda) = (\lambda - 2)(\lambda - 6) \quad \xi \quad g(\lambda) = (\lambda - 1)^{2}(\lambda - 6)$$

(\lambda - 2) (\lambda - 2) (\lambda - 6) is the

-	*	1 4	College Services		FIRST THE	- 1 (in 1)	49
		1 4 6 5	ا دک	0 0	\	90	1
		0040		00	· / / /	. 4	T
		00, 4	I dan ti	. 1			4

1 . 1 500	C		1
0 =	-4	Ø	1
ε	1	-4	

Teacher's Signature: _

```
For B: 2 - 82 + 16 = 0 trace (B) = 8; |1 = 16
        (1-4)2 -> Characteristic polynomial
 f(1) = (1-4) & g(1) = (1-4) 2
f(B) = (B-45) = [ 40] - [40] = [00] / 0
    y (x) = g (B) = 0 - Hence (x=4)2; s. the minimal polynomial of B
For D: x2 + 8x +16 = 0 + race (D) = 8; (D) = 16
         ( X+4) => Characteristic poly nomial
f(1) = (1 +4) & g(1)-1=) (11+4)2 (1)+ (1)
  f(A) = (A + 4I) = \begin{bmatrix} -4 & 0 \\ 1 & -4 \end{bmatrix} + \begin{bmatrix} 4 & 0 \\ 1 & 4 \end{bmatrix}
            = 0 0 7 7 0
     is the air polynomial
& Characteristic polynomial of A = product of characteristic polynomial of BBD
          = (1-4)2(x+4)2
  Also, the mining of A = L(m[m,(t), m, (t)]
    = (\lambda - 4)^{1} (\lambda + 4)^{2}
```

Expt.	No
-------	----

Page No.

ii)	[3000]	sol	[8 0]	B:	3	0	
	1 300		o p	_	1	·)	
	0 0 3 0			and the second			7
	0 0 0 3			0: /	3	0	
-						2	

For
$$B: \lambda^2 - 6\lambda + 9 = 0$$
 trace (B) = 6; $|B| = 9$
 $(\lambda^{-3})^2 = 7$ Characteristic polynomial

$$f(N) = (N-3I) = \begin{bmatrix} 3 & 0 \\ 1 & 3 \end{bmatrix} - \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 0 & 0 \\ 1 & 0 \end{bmatrix} \neq 0$$

For D:
$$\chi^2 - 6\lambda + 9 = 0$$
 trace(P) = 6; $|D| = 9$
 $(\lambda - 1))^2 \rightarrow (haracteristic polynomial)$

$$f(\lambda) = (\lambda - 3)$$
 $f(\lambda) = (\lambda - 1)^{2}$
 $f(\beta) = (\beta - 31) = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix} = \begin{bmatrix} 3 & 0 \\ 0 & 3 \end{bmatrix}$

:
$$f(\lambda) = f(0) = 0$$
, Hence (λ^{-1}) is the minimal polynomial of D

+ characteristic polynomial of $A: (\lambda^{-1})^{2}(\lambda^{-1})^{2} = (\lambda^{-1})^{3}$

Teacher's Signature : _

(ii)
$$\begin{cases} 1 & 1 & 2 & 2 \\ 0 & 3 & 3 \\ 0 & 0 & 5 & 5 \\ 0 & 0 & 0 & 6 \end{cases}$$

For $B: \lambda^2 - 4\lambda + 5 = 0$ trace $(B) = 4$; $(B) = 5$

$$(\lambda^{-3})(\lambda^{-1}) \rightarrow Chameteristic polynomial$$

Primaria polynomial at $B: (\lambda^{-3})(\lambda^{-1})$

For $D: \lambda^2 - \lambda + 30 = 0$ trace $(B) = 11$; $(B) = 50$

$$(\lambda^{-1})(\lambda^{-5}) = Characteristic polynomial$$

Primarial polynomial at $A: (\lambda^{-3})(\lambda^{-1})$

If $(A + 5)(\lambda^{-1})(\lambda^{-5})(\lambda^{-5})$

If $(A + 5)(\lambda^{-1})(\lambda^{-5})(\lambda^{-5})$

If $(A + 5)(\lambda^{-1})(\lambda^{-5})(\lambda^{-5})$

For $A = (A + 5)(\lambda^{-1})(\lambda^{-5})(\lambda^{-5})(\lambda^{-5})$

For $A = (A + 5)(\lambda^{-1})(\lambda^{-5})(\lambda^{-5})(\lambda^{-5})(\lambda^{-5})(\lambda^{-5})$

For $A = (A + 5)(\lambda^{-1})(\lambda^{-5})(\lambda$

Expt. No.

Page No.

For	p:	λ^2 -11 λ + 30	=0	trace (p) = 11	10/= 30
		() () () ()			

(1-6) (1-5) -> Characteristic polynomial.

Minimal poly munial of D: (1-6)(1-5)

= (x-7)(x-6)(x-5)

(x-1)(x-5)(x-6)

V.	r (- 1.4	: \	7-1-0	' '	<i>i</i>	0	0		5	01	D	>	4		-/ /	
		Į Į		2 (0	Y**	0	0						(2		
		0	171	0	- 3	1	i.	0			1	4	1.1	*1 5	()x	1 4-17	, 2 5
		0	0) (0	1	3.	1			10			3	ı	0	7
_	_	0	0) .	0	0) ×	3	18.4	ا زی	7 / -!		1	0	3	171	e, Fr
-						- 4								ō	O	3	

(x3)2 - Characteristic polynoial

$$f(8) = (1-31) = (4-1) = [3 0] = [1-1] \neq 0$$

$$\frac{1}{B} = \frac{y(\lambda) = y(0) = 0}{B}. \text{ Hence } (\lambda^{-1})^{2} \text{ is minimal polynomial of }$$

Teacher's Signature:

For
$$D : \lambda^{3} - 1/2 + 27\lambda - 27 = 0$$

$$(\lambda^{-1})^{\frac{3}{2}} \Rightarrow Characteristic polynomial$$

$$F(\lambda) = (\lambda^{-3}) = C(\lambda)^{\frac{3}{2}} = C(\lambda^{-3})^{\frac{3}{2}} = C(\lambda^$$

Expt. No.

Page No.

	For 0: 1	2-5% 11=0	trace(p)	=5;	101 = 6
-					

(2-5)(2-2) -) Characteristic polynomial

mining | polynomial of A = $(\lambda-2)^2(\lambda-3)(\lambda-2)$ = $(\lambda-3)(\lambda-2)^3$

Minimal polynomial of $A = (\lambda - 1)(\lambda - 2)^2$

3. Write Jurdan Constial form of blocks if $f(f) = (f-1)^2(f-1)$ is characteristic polynnial g m(t) = (f-1)(f-1) is the minimal

polynamial

10 | laiken f(t) = (t-2) (t-3) m(t) = (E-2)(t-3)

dieg { [2][2][3] }

4. Write Jardon cononical form of if \$(f) = (f-7) is

Characteristic polymonial & m(t) = (t-4) is a minual polymonial

501 ding { [4 1] [4 1] }

Write Jordon (ornavial form di it is it (haracteristic polymin) & m(t) = (t-7). Cach core for a minor polymin)

diny= { [7] [7] [7]

Teacher's Signature:

6. Write Jordan canonical form of block if f(+) = (+-2) is Chamterithe relymorth & m(+) = (+-7) 11 minimal polynomial 5.1 diag { [7 10] [7 10] [7]] 7. Find the Jordan (anonial form of $\begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 0 \\ 1 & -2 & 3 \end{bmatrix}$ trans(1) = 6 $501 \quad \lambda^3 - 6\lambda^2 + 12\lambda - 8 = 0$ (x-2)3 -> Char polynomial f(1) = (1-2) { e(1) = (1-2) 2 { y(1) = (1-2)3 $f(A) = (A-2I) = \begin{bmatrix} 1 & 2 & -1 \\ 0 & 2 & 0 \\ 1 & -1 & 1 \end{bmatrix} - \begin{bmatrix} 2 & 0 & 0 \\ 0 & 2 & 0 \\ 1 & 0 & 1 \end{bmatrix}$ $= \begin{bmatrix} - & 1 & 2 & -1 & 1 \\ 0 & 0 & 0 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 2 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$ $e(A) = (A-25)^{2} - \begin{bmatrix} -1 & 2 & -1 \\ 0 & 0 & 0 \\ 1 & -2 & 1 \end{bmatrix} = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$: e(A)=0, thour (A-2)2= (1-2)2 13 a minimal poly f(+) = (1-2) } & m(t) = (1-1)2 day } [207[2] }