Практикум 6.

- **1.** Используя метод вычетов, сгенерируйте последовательность из 1 000 псевдослучайных чисел.
- 1.1. Оцените математическое ожидание полученной последовательности, выведите математическое ожидание и выборочную среднюю.
- 1.2. Оцените дисперсию полученной последовательности, выведите дисперсию и выборочную дисперсию.
- 1.3. Постройте таблицу 1 (количество L подынтервалов не менее 10), выведите частотную таблицу.

Таблица 1 – Частотная таблица

Интервал	Кол-во СВ (частота попаданий),	Относительная частота			
интервал	выпавших в данный интервал	попадания			
Δ_1	ν_1	v_1/n			
Δ_2	v_2	v_2/n			
		•••			
$\Delta_{ m L}$	$\nu_{ m L}$	$v_{\rm L}/n$			
	∑ кол-во СВ				

- 2 1011 20 02
- 1.4. Проверьте гипотезу о законе распределения методом гистограмм, постройте гистограмму.
- **2.** Смоделируйте дискретную случайную величину, заданную таблицей 2, выведите результат.
- 2.1. Оцените математическое ожидание полученной дискретной случайной величины, выведите результат.
- 2.2. Оцените дисперсию полученной дискретной случайной величины, выведите результат.
- 2.3. Постройте частотную таблицу, выведите ее.
- 2.4. Оцените закон распределения случайной величины по графику частоты появления ее значений в результате экспериментов.
- 3. Смоделируйте методом исключений непрерывную случайную величину с заданной плотностью распределения вероятности (таблица 3). Функции для графика рассчитываются по формулам $\frac{x-x_1}{x_2-x_1} = \frac{y-y_1}{y_2-y_1} \quad \text{или} \quad y= -kx+b \quad (в$

зависимости от вида графика).

- 3.1. Оцените математическое ожидание полученной непрерывной случайной величины, выведите результат.
- 3.2. Оцените дисперсию полученной непрерывной случайной величины, выведите результат.
- 3.3. Постройте частотную таблицу, выведите ее.
- 3.4. Проверьте гипотезу о законе распределения методом гистограмм, постройте и выведите гистограмму.

- 4. Напишите программу, которая:
 - 1) считывает из файла входные данные, необходимые для работы программы в автоматическом режиме;
 - содержит функцию, генерирующую равномерно распределённые псевдослучайные числа с помощью генератора, встроенного в использованный при написании программы язык программирования;
 - 3) с помощью заданного в варианте алгоритма генерирует 2 последовательности дискретно распределённых псевдослучайных чисел, подчиняющихся заданному в варианте закону распределения: одна длиной 40, другая 100 чисел;
 - 4) определяет эффективность алгоритма, вычисляя количество операций, которое потребовалось для генерации последовательности;
 - 5) проверяет по критерию χ^2 гипотезу о согласии распределения каждой сгенерированной последовательности с заданным в распределением; ДЛЯ группирования варианте выбираются интервалы равной длины; число интервалов равно количеству возможных реализаций моделируемой случайной величины, теоретическая вероятность которых $P(\xi_i) \ge 0.001$; уровень значимости $\alpha = 0.05$;
 - 6) выполняет шаги 3)–5) для нестандартного алгоритма, моделирующего распределение Пуассона;
 - 7) в результате выполнения создаёт следующее:
 - а) файлы, содержащие каждую сгенерированную последовательность;
 - б) файл, содержащий описание результатов проверки всех критериев (значения статистик, достигнутых уровней значимости, выводы об успешности теста и другая важная информация), результаты измерения эффективности алгоритмов;
 - в) графики, построенные по группированным для критерия χ^2 данным (гистограммы, столбцы которых отражают количество попаданий в каждый интервал);
 - г) графики с «теоретическими» вероятностями P_i моделируемого закона распределения (гистограммы, столбцы которых отражают теоретические вероятности появления элемента последовательности в соответствующие интервалы).
- 5. Для всех заданных в варианте параметров распределений, а также для нестандартного алгоритма, моделирующего распределение Пуассона, получите последовательности псевдослучайных чисел, определите эффективность алгоритмов, оцените качество полученных последовательностей.

Таблица 2 — Таблица распределений

Вариант	ант Таблица распределения							
1	x_i	5	7	17	19	21	25	55
	p_i	0.01	0.05	0.3	0.3	0.3	0.02	0.02
2	x_i	1	3	7	10	15	18	23
	p_i	0.1	0.05	0.02	0.05	0.25	0.33	0.2
3	x_i	2	3	5	12	21	33	44
	p_i	0.1	0.15	0.2	0.05	0.02	0.33	0.15
4	x_i	5	8	13	16	21	24	29
	p_i	0.1	0.02	0.25	0.15	0.35	0.03	0.1
5	x_i	2	3	5	8	11	15	20
	p_i	0.1	0.15	0.25	0.05	0.05	0.3	0.1
6	x_i	1	8	17	23	37	42	50
	p_i	0.01	0.15	0.05	0.25	0.5	0.02	0.02
7	x_i	1	4	12	16	25	33	37
	p_i	0.05	0.25	0.25	0.15	0.13	0.1	0.07
8	x_i	1	10	15	23	29	38	42
	p_i	0.02	0.05	0.1	0.28	0.23	0.22	0.1
9	x_i	2	3	7	12	19	23	30
	p_i	0.04	0.15	0.2	0.25	0.2	0.15	0.01
10	x_i	1	5	7	14	21	26	31
	p_i	0.34	0.28	0.16	0.15	0.05	0.01	0.01
11	x_i	3	5	8	14	27	29	35
	p_i	0.02	0.07	0.1	0.19	0.19	0.2	0.23
12	x_i	7	16	28	33	39	46	56
	p_i	0.01	0.05	0.07	0.1	0.17	0.25	0.35
13	x_i	5	6	8	13	19	26	36
	p_i	0.05	0.07	0.2	0.23	0.17	0.23	0.05
14	x_i	3	9	18	23	29	27	45
	p_i	0.05	0.14	0.2	0.22	0.17	0.14	0.08
15	x_i	13	16	28	33	39	47	52
	p_i	0.08	0.14	0.25	0.16	0.25	0.09	0.03
16	x_i	1	6	8	13	19	24	27
	p_i	0.09	0.1	0.21	0.17	0.23	0.15	0.05
17	x_i	4	6	10	14	16	20	24
	p_i	0.04	0.1	0.1	0.27	0.33	0.13	0.03
18	x_i	2	6	12	16	22	26	32
	p_i	0.02	0.14	0.24	0.27	0.2	0.1	0.03
19	x_i	3	6	9	13	19	27	31
	p_i	0.04	0.12	0.22	0.28	0.2	0.1	0.04
20	x_i	1	3	8	11	19	29	33
	p_i	0.02	0.26	0.18	0.32	0.16	0.02	0.04

Таблица 3 — Плотность распределения вероятности

Вариант	Плотность распределения	Вариант	Плотность распределения
1	0.5	11 x	0.5 f(x) 0.25 2 4 6 x
2	0.6 f(x) 0.2 2 4	12 x	0.5 f(x) 0.25 2 4 6 x
3	0.25	13	0.5 f(x) 0.25 2 4 6 x
4	0.6 f(x) 0.2 2 4	14	0.5 f(x) 0.25 2 4 6 x
5	0.5 f(x)	15	0.5 f(x) 0.25 2 4 6 x

Продолжение таблицы 3

№	Алгоритм	Закон распределения	Параметры распределений	Параметры распределения Пуассона (для нестандартног о алгоритма)
1	Стандартный с рекуррентным и формулами	s = 4, p = 0.5;		$\lambda = 20$
2	Стандартный	Пуассона	$\lambda = 2; \lambda = 6; \lambda = 12$	$\lambda = 4$
3	Стандартный с рекуррентным и формулами	Геометрический	p = 0.1; p = 0.5; p = 0.9	λ = 12
4	Стандартный	Гипергеометрически й	N = 20, m = 10, n = 4; N = 20, m = 10, n = 1 0; N = 30, m = 15, n = 1	$\lambda = 5$
5	Стандартный с рекуррентным и формулами	Биномиальный	n = 5, p = 0.2; n = 5, p = 0.5; n = 5, p = 0.8	$\lambda = 14$
6	Стандартный	Степенной	_	$\lambda = 4.5$
7	Стандартный с рекуррентным и формулами	Степенной		λ = 7
8	Стандартный	Отрицательный биномиальный	s = 1, p = 0.2; s = 1, p = 0.5; s = 1, p = 0.8	λ = 18
9	Стандартный с рекуррентным и формулами	Пуассона	$\lambda = 3; \lambda = 8; \lambda = 15$	$\lambda = 8$
0	Стандартный	Геометрический	p = 0.2; p = 0.5; p = 0.8	$\lambda = 9$
1	Стандартный с рекуррентным и формулами		N = 22, m = 11, n = 5; N = 22, m = 12, n = 9; N = 32, m = 16, n = 1	I I
1 2	Стандартный	Биномиальный	n = 9, p = 0.1; n = 9, p = 0.5; n = 9, p = 0.9	λ = 6
1 3	Стандартный с рекуррентным и формулами	Отрицательный биномиальный	s = 2, p = 0.1; s = 2, p = 0.5; s = 2, p = 0.9	λ = 15

№	Алгоритм	Закон распределения	Параметры распределений	Параметры распределения Пуассона (для нестандартног о алгоритма)
1 4	Стандартный	Гипергеометрически й	N = 25, $m = 12$, $n = 7$; N = 25, $m = 13$, $n = 11;N = 35$, $m = 17$, $n = 15$	$\lambda = 3$
1 5	Стандартный	Биномиальный	n = 4, p = 0.1; n = 4, p = 0.5; n = 4, p = 0.9	$\lambda = 2$