AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions and listings of claims in the application:

LISTING OF CLAIMS:

1. (withdrawn): An aromatic compound of the following formula (1) or formula (2):

$$X^{1}$$
 A_{1} A_{1} A_{2} A_{3} A_{4} A_{5} A_{5} A_{7} A_{7

[wherein, Ar¹ and Ar³ each independently represent a tetra-valent aromatic hydrocarbon group or a tetra-valent heterocyclic group, Ar¹, Ar² expresents a tri-valent aromatic hydrocarbon group or a tri-valent heterocyclic group, Ar¹, Ar² and Ar³ may have a substituent, and when Ar¹ and Ar² have a substituent, these may be connected to form a ring and when Ar¹ and Ar³ have a substituent, these may be connected to form a ring. A¹ represents -Z¹-, -Z²-Z³- or -Z⁴-Z⁵-, Z¹, Z² and Z³ each independently represent O, S, C(=O), S(=O), SO₂, C(R¹)(R²), Si(R³)(R⁴), N(R⁵), B(R⁶), P(R⁻) or P(=O)(R⁵), and Z⁴ and Z⁵ each independently represent N, B, P, C(Rց) or Si(R¹⁰) (wherein, R¹, R², R³, R⁴, R⁵, R⁶, R⁻, R³, Rց and R¹⁰ each independently represent a hydrogen atom, halogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, acid imide group, imine residue, amino group, substituted amino group, substituted silyl group, substituted silylamino group, substituted silyloxy group, heteroaryloxy group, heteroarylthio group, arylakyloxy group, arylalkenyl group, mono-valent heterocyclic group, heteroaryloxy group, heteroarylthio group, aryloxycarbonyl group, aryloxycarbonyl group, aryloxycarbonyl group, aryloxycarbonyl group, aryloxycarbonyl

group, arylalkyloxycarbonyl group, heteroaryloxycarbonyl group or cyano group. Here, \mathbb{R}^1 , \mathbb{R}^2 , \mathbb{R}^3 and \mathbb{R}^4 may be mutually connected to form a ring). In formula (1), Ar^2 and A^1 are connected to mutually adjacent atoms on Ar^1 ring and Ar^1 and A^1 are connected to mutually adjacent atoms on Ar^2 ring, and in formula (2), Ar^3 and A^1 are connected to mutually adjacent atoms on Ar^1 ring and Ar^1 and A^1 are connected to mutually adjacent atoms on Ar^1 ring and Ar^1 and A^1 are connected to mutually adjacent atoms on Ar^3 ring. X^1, X^2, X^3 and X^4 each independently represent a halogen atom, alkylsulfonate group, arylsulfonate group, arylalkylsulfonate group, boric ester group group, -B(OH)₂, methyl monohalide group, sulfonium methyl group, phosphonium methyl group, phosphonium methyl group, amino group or nitro group, and at least one of X^1, X^2 and X^3 in formula (1) and at least one of X^1, X^2, X^3 and X^4 in formula (2) are selected from a halogen atom, alkylsulfonate groups, arylsulfonate group, arylalkylsulfonate group, boric ester group group, -B(OH)₂, methyl monohalide group, sulfonium methyl group, phosphonium methyl group, phosphonate methyl group, phosphonate methyl group, cyanomethyl group, formyl group and vinyl group.]

2. (withdrawn): The aromatic compound according to Claim 1, wherein all of X^1 , X^2 and X^3 in formula (1) and all of X^1 , X^2 , X^3 and X^4 in formula (2) are selected from a halogen atom, alkylsulfonate group, arylsulfonate group, arylsulfylsulfonate group, boric ester group group, $-B(OH)_2$, methyl monohalide group, sulfonium methyl group, phosphonium methyl group, phosphonate methyl group, cyanomethyl group, formyl group and vinyl group.

AMENDMENT UNDER 37 C.F.R. § 1.114(c) Attorney Docket No.: O94204

U.S. Application No.: 10/574,563

 (currently amended): An aromatic compound of the following formula (5-1) or formula (6-1):

$$X^{10}$$
 X^{9}
 A^{7}
 X^{10}
 $X^{$

wherein $X^3_{-7}X^3$, X^{10} , X^{11} and X^{12} each independently represent a halogen atom, an alkylsulfonate group, an arylsulfonate group, an arylalkylsulfonate group, a boric ester group, -B(OH)₂, a methyl monohalide group, a sulfonium methyl group, a phosphonium methyl group, a phosphonate methyl group, a cyanomethyl group, a formyl group, or a vinyl group;

 Ar^6 and Ar^7 each independently represent a tri-valent aromatic hydrocarbon group or a tri-valent heterocyclic group, Ar^6 and Ar^7 may have a sustitutuent; and

 a carboxyl group, an alkyloxycarbonyl group, an aryloxycarbonyl group, an arylalkyloxycarbonyl group, a heteroaryloxycarbonyl group or a cyano group. Here, R^1 , R^2 , R^3 and R^4 may be mutually connected to form a ring), and

the compound represented by formula (6-1) may have substituents may be earried on the benzene ring in the compound, and the substituents may be connected mutually to form a ring.

4. (canceled).

(withdrawn): An aromatic compound of the following formula (9), (10) or (11):

$$X^{18}$$
 A_1^4 A_2^5 A_1^5 X^{19} X^{18} A_1^4 A_1^5 A_1^{19} A_1^{19}

[wherein, Ar^4 and Ar^5 represent the same meaning as described above, Ar^8 , Ar^9 and Ar^{10} each independently represent an arylene group or a di-valent aromatic group, Ar^4 , Ar^5 , Ar^8 , Ar^9 and Ar^{10} may have a substituent, and when Ar^4 and Ar^5 have a substituent, these may be connected to form a ring, when Ar^9 and Ar^{10} have a substituent, these may be connected to form a ring and when Ar^9 and Ar^{10} have a substituent, these may be connected to form a ring.

$$z^{6}$$
 z^{7} z^{9} z^{9}

AMENDMENT UNDER 37 C.F.R. § 1.114(c) U.S. Application No.: 10/574,563

(wherein, Z^6 represents B, P or P(=O), Z^7 represents $C(R^9)$, $Si(R^{10})$, N, B, P or P(=O), Z^8 represents O, S, C(=O), S(=O), SO₂, $C(R^1)(R^2)$, $Si(R^3)(R^4)$, $N(R^5)$, $B(R^6)$, $P(R^7)$ or $P(=O)(R^8)$, Z^9 represents C or Si, Z^{10} represents N, B, P, $C(R^9)$ or $Si(R^{10})$, and R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} represent the same meaning as described above),

A³ represents any of the following formulae:

$$z^{11}-z^{12}$$
 $z^{13}-z^{14}$ $z^{15}=z^{16}$

(wherein, Z^{11} represents C or Si, Z^{12} represents O, S, C(=O), S(=O), SO₂, $C(R^1)(R^2)$, Si(R^3)(R^4), N(R^5), B(R^6), P(R^7) or P(=O)(R^8), Z^{13} and Z^{14} each independently represent C(R^9), Si(R^{10}), B, N, P or P(=O), Z^{15} and Z^{16} each independently represent C or Si, and R^1 , R^2 , R^3 , R^4 , R^5 , R^6 , R^7 , R^8 , R^9 and R^{10} represent the same meaning as described above),

 A^4 represents a hydrogen atom, alkyl group, alkyloxy group, alkylthio group, aryl group, aryloxy group, arylthio group, arylalkyl group, arylalkyloxy group, arylalkylthio group, substituted amino group, substituted silyl group, mono-valent heterocyclic group, hetero aryloxy group, hetero arylthio group, arylalkenyl group or arylethynyl group. In formula (9), Ar^5 and A^2 are connected to mutually adjacent atoms on Ar^4 ring and Ar^4 and A^2 are connected to mutually adjacent atoms on Ar^5 ring.

X¹⁸, X¹⁹, X²⁰, X²¹ and X²² each independently represent a halogen atom, alkylsulfonate group, arylsulfonate group, boric ester group group, -B(OH)₂, methyl monohalide group, sulfonium methyl group, phosphonium methyl group, phosphonate methyl group, cyanomethyl group, formyl group, vinyl group, hydroxyl group, alkyloxy group, acyloxy

group, substituted silyloxy group, amino group or nitro group, and at least one of X^{18} , X^{19} and X^{20} in formula (9), at least one of X^{18} , X^{21} and X^{22} in formula (10) and at least one of X^{18} , X^{19} , X^{21} and X^{22} in formula (11) are selected from a halogen atom, alkylsulfonate group, arylsulfonate group, arylsulfonate group, boric ester group group, -B(OH)₂, methyl monohalide group, sulfonium methyl group, phosphonium methyl group, phosphonate methyl group, cyanomethyl group, formyl group and vinyl group.]

- 6. (withdrawn): The aromatic compound according to Claim 5, wherein all of X^{18} , X^{19} and X^{20} in formula (9), all of X^{18} , X^{21} and X^{22} in formula (10) and all of X^{18} , X^{19} , X^{21} and X^{22} in formula (11) represent a halogen atom, alkylsulfonate group, arylsulfonate group, arylalkylsulfonate group, boric ester group group, -B(OH)₂, methyl monohalide group, sulfonium methyl group, phosphonium methyl group, phosphonium methyl group, group, cyanomethyl group, formyl group or vinyl group.
 - 7. (withdrawn): An aromatic compound of the following formula (15):

$$A^{5} - \left(Ar^{4} - Ar^{5} - X^{3}\right) a \qquad (15)$$

(wherein, Ar⁴, Ar⁵, A¹ and X³ represent the same meaning as described above. A⁵ represents a boron atom, aluminum atom, gallium atom, silicon atom, germanium atom, nitrogen atom, phosphorus atom, arsenic atom, a-valent aromatic hydrocarbon group, a-valent heterocyclic group or a-valent group having a metal complex structure. a represents 3 or 4. A plurality of Ar⁴s, Ar⁵s, A¹s and X¹⁰s may be mutually the same or different.)

Attorney Docket No.: Q94204

AMENDMENT UNDER 37 C.F.R. § 1.114(c)

U.S. Application No.: 10/574,563

- 8. (canceled).
- 9. (previously presented): The aromatic compound according to Claim 3, wherein A^1 represents O-C(R^1)(R^2).