SO-SP Coupling and Memory Consolidation — Effect Size Preprocessing

Author

2023-08-08

Table of contents

Setting Functions
Donnelly2022 and Helfrich2018
Schreiner2021
Denis2021a
Hahn2020
Kurz2023
Donnelly2022
Denis2022
Mylonas2020
Load required packages

Load required packages
library(mosaic)
library(tidyverse)
library(knitr)
library(kableExtra)
library(tidyr)
library(Stat2Data)
library(dplyr)
library(meta)
library(metafor)
library(dmetar)
library(metaDigitise)
library(ICC)
library(future)
library(shinyDigitise)

Setting Functions

```
## Setting functions for the effect size calculation and table output
## Function for calculating the circular linear correlation
circular_cor <- function(x, y, rads = TRUE) {</pre>
  circlin.cor <- circlin.cor(x, y, rads = rads)</pre>
  R_squared <- circlin.cor[, 1]</pre>
  Pearsons_r <- sqrt(R_squared)</pre>
  ## Applicable based on the characteristic of the simple linear regression
  return(data.frame(Pearsons_r = Pearsons_r, R_squared = R_squared))
## Function for detecting and removing outliers
  # Detect inputs
remove_outliers <- function(sleepchar, scale_columns, memory = NULL) {</pre>
  # Detect rows to remove in the sleep data matrix
  rows_rem <- which(rowSums(abs(scale(sleepchar[, scale_columns])) > 3) > 0)
  print(paste(length(rows rem), "rows removed:", paste(rows rem, collapse = ", ")))
  sleepchar_rem <- if (length(rows_rem) > 0) sleepchar[-rows_rem, ] else sleepchar
  # Detect rows to remove in the memory data matrix
  if (!is.null(memory)) {
    memory_rem <- memory |> filter(!row_number() %in% rows_rem)
    print("Corrisponding rows removed in the memory matrix.")
    return(list(sleepchar_rem = sleepchar_rem, memory_rem = memory_rem))
  }
```

```
return(sleepchar_rem)
}

## Function for building tables for the data classification
cortable <- function(author, cptype, flip = TRUE, ...) {
    # Combine the grouped correlation matrices into a data frame
    cor_group <- data.frame(...)
    if (flip) cor_group <- t(cor_group)
    # Create the table caption
    cptype <- switch(cptype, "CP Phase", "SP Amplitude", "CP Strength", "CP Percentage")
    caption <- paste(author, cptype, "and Memory Pearson's r Correlation Table")

# Generate the table for data extraction
    knitr::kable(cor_group, format = "markdown", caption = caption)
}

## Store all functions to call during the data analysis
save(circular_cor, remove_outliers, cortable, file = "preprocessing_fun.RData")</pre>
```

Donnelly2022 and Helfrich2018

```
## Begin the scatterplot analysis for estimating effect sizes
## Import graphs to shinyDigitise
## Could be downloaded from the Github repository
## Donnelly2022 <- shinyDigitise("~/Desktop/SO-SP-Coupling/so-sp-coupling/Paper/Donnelly20
## Helfrich2018 <- shinyDigitise("~/Desktop/SO-SP-Coupling/so-sp-coupling/Paper/Helfrich20
## Processed data saved in the same folder
```

Schreiner2021

```
## Begin the calculation of effect sizes by preprocessed data
## Import source data from Schreiner 2021
Schreiner2021 <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/F
## view(Schreiner2021)
Schreiner2021addtl <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/m</pre>
```

```
## Calculate the circular linear correlation
  sch_phase <- circular_cor(Schreiner2021$phase, Schreiner2021$retention)
  ## knitr::kable(sch_phase,format ="markdown",caption ="Schreiner CP Phase and Memory Pears
  ## Calculate the coupling percentage and remove outlier(s)
  Schreiner2021 <- Schreiner2021 |>
    mutate(
      spavg = (spobjects + spscenes)/2,
      cpavg = (cpobjects + cpscenes)/2,
      soavg = (soobjects + soscenes)/2,
      spsopct = cpavg/spavg,
      sosppct = cpavg/soavg)
  Schreiner2021addtl <- Schreiner2021addtl |>
      spamp = (object_amp + scene_amp)/2,
      cpstr = (object_str + scene_str)/2)
  Schreiner2021_rem <- remove_outliers(Schreiner2021, scale_columns = c("spsopct", "sosppct")</pre>
[1] "O rows removed: "
  Schreiner2021addtl_rem <- remove_outliers(Schreiner2021addtl, scale_columns = c("spamp", "</pre>
[1] "O rows removed: "
  cor1 <- cor(Schreiner2021addtl_rem$spamp ~ Schreiner2021_rem$retention, use = "complete")</pre>
  ## cortable("Schreiner", 2, flip = FALSE, "Correlation" = cor1)
  cor2 <- cor(Schreiner2021addtl_rem$cpstr ~ Schreiner2021_rem$retention, use = "complete")</pre>
  ## cortable("Schreiner", 3, flip = FALSE, "Correlation" = cor2)
  ## Calculate summary statistics for the coupling percentage
  favstats(~ spsopct, data = Schreiner2021_rem)
            Q1 median
                          QЗ
                                max
                                      mean
                                                 sd n missing
0.1811 0.2234 0.2652 0.3309 0.4912 0.2775 0.07796 20
  favstats(~ sosppct, data = Schreiner2021_rem)
```

```
## Test the normality condition for further interpretation
shapiro.test(Schreiner2021_rem$spsopct)

Shapiro-Wilk normality test

data: Schreiner2021_rem$spsopct
W = 0.91, p-value = 0.08

shapiro.test(Schreiner2021_rem$sosppct)

Shapiro-Wilk normality test

data: Schreiner2021_rem$sosppct
W = 0.96, p-value = 0.6

## Calculate the linear correlation between SO coupled SP and memory retention
cor3 <- cor(spsopct ~ retention, use = "complete", data = Schreiner2021_rem)
## Calculate the linear correlation between SP coupled SO and memory retention
cor4 <- cor(sosppct ~ retention, use = "complete", data = Schreiner2021_rem)
## cortable("Schreiner", 4, flip = FALSE, "SPcSO" = cor3, "SOcSP" = cor4)
```

knitr::kable(data.frame("Phase" = sch_phase, "Amplitude" = cor1, "Strength" = cor2, "SPcSC

sd n missing

Table 1: Schreiner Coupling and Memory Pearson's r Correlation Table

effect_size <- rbind(sch_phase, cor1, cor2, cor3, cor4)</pre>

Phase.Pearsons_r	$Phase. R_squared$	Amplitude	Strength	SPcSO	SOcSP
0.3868	0.1496	-0.2115	0.1638	-0.1982	-0.3942

```
## Remove all unused variables
rm(list = ls())
load("preprocessing_fun.RData")
```

Q1 median

Q3

0.03134 0.1016 0.1157 0.1418 0.1769 0.1167 0.03836 20

max

mean

min

Denis2021a

```
## Import source data from Denis 2021a
  Denis2021a <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Pape
  #> view(Denis2021a)
  ## Filter out the stress group and weight the memory score
  Denis2021a <- Denis2021a |>
    filter(cond == "control")|>
    mutate(avg_hit_fa = (neu_hit_fa*100 + emo_hit_fa*200)/300)
  ## Detect and remove outlier(s)
  Denis2021a_amp_rem <- remove_outliers(Denis2021a, scale_columns = c("n2_fast_amplitude", "</pre>
[1] "1 rows removed: 15"
  Denis2021a_str_rem<- remove_outliers(Denis2021a, scale_columns = c("n2_fast_consistency","
[1] "O rows removed: "
  Denis2021a_per_rem<- remove_outliers(Denis2021a, scale_columns = c("n2_fast_ss_coupled_per
[1] "O rows removed: "
  ## Calculate summary statistics for the coupling percentage
  ## favstats(~ n3_cp_str_all, data = Denis2021a_str_rem)
  ## Test the normality condition for further interpretation
  ## shapiro.test(Denis2021a_str_rem$n3_cp_str_all)
  ## Note: The distribution of coupling strength data deviates significantly (p < 0.02)
  ## from the normal distribution
  variables <- c("neu_hit_fa", "emo_hit_fa", "avg_hit_fa")</pre>
  es_n2 <- data.frame()
  for (var in variables) {
  ev_n2 <- circular_cor(Denis2021a$n2_fast_phase, Denis2021a[[var]])</pre>
  es_n2 <- rbind(es_n2, ev_n2)
  es_n3 <- data.frame()
```

```
for (var in variables) {
  ev_n3 <- circular_cor(Denis2021a$n3_fast_phase, Denis2021a[[var]])
  es_n3 <- rbind(es_n3, ev_n3)
}
  effect_size <- rbind(es_n2, es_n3)
  rownames(effect_size) <- c("N2 Neutral", "N2 Emotional", "N2 Weighted", "N3 Neutral", "N3 E
  knitr::kable(effect_size, format = "markdown", caption = "Denis 2021a CP Phase and Memory")</pre>
```

Table 2: Denis 2021a CP Phase and Memory Pearson's r Correlation Table

	Pearsons_r	R_squared
N2 Neutral	0.2393	0.0572
N2 Emotional	0.2107	0.0444
N2 Weighted	0.2282	0.0521
N3 Neutral	0.1469	0.0216
N3 Emotional	0.1270	0.0161
N3 Weighted	0.1403	0.0197

```
## Calculate the effect size for each emotional condition and pooled result
cor_n2 <- c(
    Neutral = cor(neu_hit_fa ~ n2_fast_amplitude, use = "complete", data = Denis2021a_amp_re
    Emotional = cor(emo_hit_fa ~ n2_fast_amplitude, use = "complete", data = Denis2021a_amp_
    Weighted = cor(avg_hit_fa ~ n2_fast_amplitude, use = "complete", data = Denis2021a_amp_re)

cor_n3 <- c(
    Neutral = cor(neu_hit_fa ~ n3_fast_amplitude, use = "complete", data = Denis2021a_amp_re
    Emotional = cor(emo_hit_fa ~ n3_fast_amplitude, use = "complete", data = Denis2021a_amp_
    Weighted = cor(avg_hit_fa ~ n3_fast_amplitude, use = "complete", data = Denis2021a_amp_re)

cortable("Denis 2021a", 2, flip = FALSE, "nREM2" = cor_n2, "nREM3" = cor_n3)</pre>
```

Table 3: Denis 2021a SP Amplitude and Memory Pearson's r Correlation Table

	nREM2	nREM3
Neutral	-0.2098	-0.2458
Emotional	-0.1747	-0.2705
Weighted	-0.1984	-0.2802

```
## Calculate the effect size for each emotional condition and pooled result
cor_n2 <- c(
    Neutral = cor(neu_hit_fa ~ n2_fast_consistency, use = "complete", data = Denis2021a_str_
    Emotional = cor(emo_hit_fa ~ n2_fast_consistency, use = "complete", data = Denis2021a_str_
    Weighted = cor(avg_hit_fa ~ n2_fast_consistency, use = "complete", data = Denis2021a_str_)
cor_n3 <- c(
    Neutral = cor(neu_hit_fa ~ n3_fast_consistency, use = "complete", data = Denis2021a_str_
    Emotional = cor(emo_hit_fa ~ n3_fast_consistency, use = "complete", data = Denis2021a_str_
    Weighted = cor(avg_hit_fa ~ n3_fast_consistency, use = "complete", data = Denis2021a_str_
)
cortable("Denis 2021a", 3, flip = FALSE, "nREM2" = cor_n2, "nREM3" = cor_n3)</pre>
```

Table 4: Denis 2021a CP Strength and Memory Pearson's r Correlation Table

	nREM2	nREM3
Neutral	0.1797	0.1981
Emotional	0.1777	0.2963
Weighted	0.1901	0.2832

```
## Calculate the effect size for each emotional condition and pooled result
cor_n2 <- c(
    Neutral = cor(neu_hit_fa ~ n2_fast_ss_coupled_percent, use = "complete", data = Denis202
    Emotional = cor(emo_hit_fa ~ n2_fast_ss_coupled_percent, use = "complete", data = Denis202
    Weighted = cor(avg_hit_fa ~ n2_fast_ss_coupled_percent, use = "complete", data = Denis202
    )
cor_n3 <- c(
    Neutral = cor(neu_hit_fa ~ n3_fast_ss_coupled_percent, use = "complete", data = Denis202
    Emotional = cor(emo_hit_fa ~ n3_fast_ss_coupled_percent, use = "complete", data = Denis202
    Weighted = cor(avg_hit_fa ~ n3_fast_ss_coupled_percent, use = "complete", data = Denis202
    )
cortable("Denis 2021a", 4, flip = FALSE, "nREM2" = cor_n2, "nREM3" = cor_n3)</pre>
```

Table 5: Denis 2021a CP Percentage and Memory Pearson's r Correlation Table

	nREM2	nREM3
Neutral	-0.0573	0.1915
Emotional	-0.3933	-0.0754
Weighted	-0.3074	0.0085

```
## Test robustness by the bootstrap method for nonnormality data
#> num_sim <- 10000</pre>
#> set.seed(1821)
#> bootstrap_result <- do(num_sim) *</pre>
#> cor(avg_hit_fa ~ n3_cp_str_all, data = resample(Denis2021a_str))
#> summary(bootstrap_result)
#> bootstrap_result <- as.numeric(bootstrap_result$cor)</pre>
#> ggplot(data.frame(x = bootstrap_result), aes(x = x)) +
     geom_histogram(binwidth = 0.05, color = "black", fill = "lightblue") +
     labs(title = "Histogram of Bootstrap Results",
#>
          x = "Bootstrap Results (Pearson's r correlation)",
#>
#>
          y = "Frequency") +
     geom_vline(xintercept = mean(bootstrap_result), color = "black", linetype = "dashed")
#>
#>
     geom_vline(xintercept = avg_cor, color = "black", linetype = "dashed")
## Remove all unused variables
rm(list = ls())
load("preprocessing_fun.RData")
```

Hahn2020

```
## Import source data from Hahn 2020
Hahn_beh <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Paper/
Hahn_chphase <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Pa
Hahn_champ <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Pape
Hahn_chstr <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Pape
Hahn_adphase <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Pa
Hahn_adamp <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Pape</pre>
Hahn_adstr <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Pape
Hahn_pct <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Paper/</pre>
#> view(Hahn beh)
#> view(Hahn_chphase)
#> view(Hahn_champ)
#> view(Hahn_chstr)
#> view(Hahn_adphase)
#> view(Hahn_adamp)
#> view(Hahn_adstr)
#> view(Hahn_pct)
```

```
## Coupling Phase Preprocessing
## Calculate the mean preferred phase for each electrode location cluster
Hahn_chphase <- Hahn_chphase |>
 rowwise() |>
  mutate(
    Favg = mean(c(F3, Fz, F4)),
    Cavg = mean(c(C3, Cz, C4)),
    POavg = mean(c(P3, Pz, P4, O1, O2)))
#> view(Hahn_chphase)
Hahn_adphase <- Hahn_adphase |>
  rowwise() |>
  mutate(
    Favg = mean(c(F3, Fz, F4)),
    Cavg = mean(c(C3, Cz, C4)),
    POavg = mean(c(P3, Pz, P4, O1, O2)))
#> view(Hahn_adphase)
## Calculate the circular linear correlation for the child group
variables <- c("Favg", "Cavg", "POavg")</pre>
effect_sizech <- data.frame()</pre>
for (var in variables) {
  effect_varch <- circular_cor(Hahn_chphase[[var]], Hahn_beh$ch_diff)</pre>
  effect_sizech <- rbind(effect_sizech, effect_varch)</pre>
rownames(effect_sizech) <- c("Frontal", "Central", "Parietal and Occipital")
knitr::kable(effect_sizech, format = "markdown", caption = "Hahn Child CP Phase and Memory
```

Table 6: Hahn Child CP Phase and Memory Pearson's r Correlation Table

	Pearsons_r	R_squared
Frontal	0.2156	0.0465
Central	0.3706	0.1374
Parietal and Occipital	0.4017	0.1613

```
## Calculate the circular linear correlation for the adolescent group
variables <- c("Favg", "Cavg", "POavg")
effect_sizead <- data.frame()
for (var in variables) {
  effect_varad <- circular_cor(Hahn_adphase[[var]], Hahn_beh$ad_diff)
  effect_sizead <- rbind(effect_sizead, effect_varad)</pre>
```

```
}
rownames(effect_sizead) <- c("Frontal", "Central", "Parietal and Occipital")
knitr::kable(effect_sizead, format = "markdown", caption = "Hahn Adolescent CP Phase and Markdown")</pre>
```

Table 7: Hahn Adolescent CP Phase and Memory Pearson's r Correlation Table

	Pearsons_r	R_squared
Frontal	0.1287	0.0166
Central	0.2758	0.0761
Parietal and Occipital	0.5787	0.3348

```
## Spindle Amplitude Preprocessing
  # Calculate the mean spindle amplitude for each electrode location cluster
  Hahn_champ <- Hahn_champ |>
    rowwise() |>
    mutate(
      Favg = mean(c(F3, Fz, F4)),
      Cavg = mean(c(C3, Cz, C4)),
      POavg = mean(c(P3, Pz, P4, O1, O2))) >
    dplyr::select(Favg, Cavg, POavg)
  #> view(Hahn_champ)
  Hahn_adamp <- Hahn_adamp |>
    rowwise() |>
    mutate(
      Favg = mean(c(F3, Fz, F4)),
      Cavg = mean(c(C3, Cz, C4)),
      POavg = mean(c(P3, Pz, P4, O1, O2))) >
    dplyr::select(Favg, Cavg, POavg)
  #> view(Hahn_adamp)
  ## Detect and Remove outlier(s)
  chresult <- remove_outliers(Hahn_champ, scale_columns = c("Favg", "Cavg", "POavg"), memory</pre>
[1] "O rows removed: "
[1] "Corrisponding rows removed in the memory matrix."
  Hahn_champ_rem <- chresult$sleepchar_rem</pre>
  Hahn_chbeh_rem <- chresult$memory_rem</pre>
```

```
#> view(Hahn_champ_rem)
  #> view(Hahn_chbeh_rem)
  adresult <- remove_outliers(Hahn_adamp, scale_columns = c("Favg", "Cavg", "POavg"), memory
[1] "O rows removed: "
[1] "Corrisponding rows removed in the memory matrix."
  Hahn_adamp_rem <- adresult$sleepchar_rem</pre>
  Hahn_adbeh_rem <- adresult$memory_rem</pre>
  #> view(Hahn_adamp_rem)
  #> view(Hahn_adbeh_rem)
  # Calculate correlation coefficients for the child group in each channel location
  cor_ch <- c(
    Frontal = cor(Hahn_chbeh_rem$ch_diff ~ Hahn_champ_rem$Favg, use = "complete"),
    Central = cor(Hahn_chbeh_rem$ch_diff ~ Hahn_champ_rem$Cavg, use = "complete"),
    "Parietal and Occipital" = cor(Hahn_chbeh_rem$ch_diff ~ Hahn_champ_rem$POavg, use = "com
  )
  # Calculate correlation coefficients for the adolescent group in each channel location
  cor_ad <- c(
    Frontal = cor(Hahn_adbeh_rem$ad_diff ~ Hahn_adamp_rem$Favg, use = "complete"),
    Central = cor(Hahn_adbeh_rem$ad_diff ~ Hahn_adamp_rem$Cavg, use = "complete"),
    "Parietal and Occipital" = cor(Hahn_adbeh_rem$ad_diff ~ Hahn_adamp_rem$POavg, use = "com
  # Create the table
  cortable("Hahn", 2, flip = FALSE, Child = cor_ch, Adolescent = cor_ad)
```

Table 8: Hahn SP Amplitude and Memory Pearson's r Correlation Table

	Child	Adolescent
Frontal	-0.1120	0.1183
Central	-0.1626	0.1318
Parietal and Occipital	-0.2400	0.1366

```
## Coupling Strength Preprocessing
# Calculate the mean coupling strength for each electrode location cluster
```

```
Hahn_chstr <- Hahn_chstr |>
    rowwise() |>
    mutate(
      Favg = mean(c(F3, Fz, F4)),
      Cavg = mean(c(C3, Cz, C4)),
      POavg = mean(c(P3, Pz, P4, O1, O2))) >
    dplyr::select(Favg, Cavg, POavg)
  #> view(Hahn_chstr)
  Hahn_adstr <- Hahn_adstr |>
    rowwise() |>
    mutate(
      Favg = mean(c(F3, Fz, F4)),
      Cavg = mean(c(C3, Cz, C4)),
      POavg = mean(c(P3, Pz, P4, O1, O2))) |>
    dplyr::select(Favg, Cavg, POavg)
  #> view(Hahn_adstr)
  ## Detect and Remove outlier(s)
  chresult <- remove_outliers(Hahn_chstr, scale_columns = c("Favg", "Cavg", "POavg"), memory</pre>
[1] "1 rows removed: 19"
[1] "Corrisponding rows removed in the memory matrix."
  Hahn_chstr_rem <- chresult$sleepchar_rem</pre>
  Hahn_chbeh_rem <- chresult$memory_rem</pre>
  #> view(Hahn_chstr_rem)
  #> view(Hahn_chbeh_rem)
  adresult <- remove_outliers(Hahn_adstr, scale_columns = c("Favg", "Cavg", "POavg"), memory
[1] "1 rows removed: 2"
[1] "Corrisponding rows removed in the memory matrix."
  Hahn_adstr_rem <- adresult$sleepchar_rem</pre>
  Hahn_adbeh_rem <- adresult$memory_rem</pre>
  #> view(Hahn_adstr_rem)
  #> view(Hahn_adbeh_rem)
```

```
# Calculate correlation coefficients for the child group in each channel location
cor_ch <- c(
   Frontal = cor(Hahn_chbeh_rem$ch_diff ~ Hahn_chstr_rem$Favg, use = "complete"),
   Central = cor(Hahn_chbeh_rem$ch_diff ~ Hahn_chstr_rem$Cavg, use = "complete"),
   "Parietal and Occipital" = cor(Hahn_chbeh_rem$ch_diff ~ Hahn_chstr_rem$POavg, use = "com
)

# Calculate correlation coefficients for the adolescent group in each channel location
cor_ad <- c(
   Frontal = cor(Hahn_adbeh_rem$ad_diff ~ Hahn_adstr_rem$Favg, use = "complete"),
   Central = cor(Hahn_adbeh_rem$ad_diff ~ Hahn_adstr_rem$Cavg, use = "complete"),
   "Parietal and Occipital" = cor(Hahn_adbeh_rem$ad_diff ~ Hahn_adstr_rem$POavg, use = "com
)

# Create the table
cortable("Hahn", 3, flip = FALSE, Child = cor_ch, Adolescent = cor_ad)</pre>
```

Table 9: Hahn CP Strength and Memory Pearson's r Correlation Table

	Child	Adolescent
Frontal	-0.0379	0.3374
Central	0.2270	-0.1520
Parietal and Occipital	-0.1909	-0.0093

```
## Coupling Percentage Preprocessing
## Detect and Remove outlier(s)
chpct <- remove_outliers(Hahn_pct, scale_columns = c("ch_n2", "ch_n3"), memory = Hahn_beh)

[1] "O rows removed: "
[1] "Corrisponding rows removed in the memory matrix."

Hahn_chpct_rem <- chpct$sleepchar_rem
Hahn_chbeh_rem <- chpct$memory_rem

adpct <- remove_outliers(Hahn_pct, scale_columns = c("ad_n2", "ad_n3"), memory = Hahn_beh)</pre>
```

- [1] "O rows removed: "
- [1] "Corrisponding rows removed in the memory matrix."

```
Hahn_adpct_rem <- adpct$sleepchar_rem
Hahn_adbeh_rem <- adpct$memory_rem

# Calculate correlation coefficients for the child group in each sleep stage
cor_ch <- c(
    N2 = cor(Hahn_chbeh_rem$ch_diff ~ Hahn_chpct_rem$ch_n2, use = "complete"),
    N3 = cor(Hahn_chbeh_rem$ch_diff ~ Hahn_chpct_rem$ch_n3, use = "complete")
)

# Calculate correlation coefficients for the adolescent group in each sleep stage
cor_ad <- c(
    N2 = cor(Hahn_adbeh_rem$ad_diff ~ Hahn_adpct_rem$ad_n2, use = "complete"),
    N3 = cor(Hahn_adbeh_rem$ad_diff ~ Hahn_adpct_rem$ad_n3, use = "complete")
)

# Create the table
cortable("Hahn", 4, Child = cor_ch, Adolescent = cor_ad)</pre>
```

Table 10: Hahn CP Percentage and Memory Pearson's r Correlation Table

	N2	N3
Child	-0.0453	0.0852
Adolescent	-0.2881	-0.1404

```
## Remove all unused variables
rm(list = ls())
load("preprocessing_fun.RData")
```

Kurz2023

```
## Import source data from Kurz 2023
Kurz2023_raw <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Pa
#> view(Kurz2023_raw)
# Exclude participants from the wake group & with missing values
Kurz2023 <- Kurz2023_raw |>
  filter(Condition == "Sleep" & rowSums(is.na(cur_data()[, 46:84])) == 0) |>
  dplyr::select(7,46:84)
view(Kurz2023)
```

```
## Coupling Phase Preprocessing
## Calculate the circular linear correlation
variables <- names(Kurz2023)[35:40]
effect_size <- data.frame()
for (var in variables) {
   effect_var <- circular_cor(Kurz2023[[var]], Kurz2023$DRM_correct)
   effect_size <- rbind(effect_size, effect_var)
}
rownames(effect_size) <- c("Slow Frontal", "Slow Central", "Slow Parietal", "Fast Frontal",
knitr::kable(effect_size, format = "markdown", caption = "Kurz CP Phase and Memory Pearson")</pre>
```

Table 11: Kurz CP Phase and Memory Pearson's r Correlation Table

	Pearsons_r	R_squared
Slow Frontal	0.1322	0.0175
Slow Central	0.4461	0.1990
Slow Parietal	0.1708	0.0292
Fast Frontal	0.2731	0.0746
Fast Central	0.2777	0.0771
Fast Parietal	0.1865	0.0348

```
## n = 30

## Spindle Amplitude Preprocessing
## Detect and Remove outlier(s)
Kurz2023amp <- remove_outliers(Kurz2023, scale_columns = c("SP_amplitude_NonREM_fast_front")

[1] "O rows removed: "

#> view(Kurz2023amp)
```

```
# Calculate correlation coefficients between fast spindles and memory in each channel local
cor_fast <- c(
    "Frontal" = cor(DRM_correct ~ SP_amplitude_NonREM_fast_frontal, use = "complete", data =
    "Central" = cor(DRM_correct ~ SP_amplitude_NonREM_fast_central, use = "complete", data =
    "Parietal" = cor(DRM_correct ~ SP_amplitude_NonREM_fast_parietal, use = "complete", data =</pre>
```

Calculate correlation coefficients between slow spindles and memory in each channel local

```
cor_slow <- c(
   "Frontal" = cor(DRM_correct ~ SP_amplitude_NonREM_slow_frontal, use = "complete", data =
   "Central " = cor(DRM_correct ~ SP_amplitude_NonREM_slow_central, use = "complete", data
   "Parietal" = cor(DRM_correct ~ SP_amplitude_NonREM_slow_parietal, use = "complete", data

# Create the table
cortable("Kurz", 2, flip = FALSE, "Fast Spindle" = cor_fast, "Slow Spindle" = cor_slow)</pre>
```

Table 12: Kurz SP Amplitude and Memory Pearson's r Correlation Table

	Fast.Spindle	Slow.Spindle
Frontal	0.4792	0.1308
Central	0.5582	0.1738
Parietal	0.5941	0.0830

```
## Coupling Strength Preprocessing
## Detect and Remove outlier(s)
Kurz2023str <- remove_outliers(Kurz2023, scale_columns = c("CouplStrengthOnlyCoupl_slow_fr</pre>
```

[1] "O rows removed: "

```
#> view(Kurz2023str)

# Calculate correlation coefficients between fast SP coupling and memory in each channel l
cor_fast <- c(
    "Frontal" = cor(DRM_correct ~ CouplStrengthOnlyCoupl_fast_frontal, use = "complete", dat
    "Central" = cor(DRM_correct ~ CouplStrengthOnlyCoupl_fast_central, use = "complete", dat
    "Parietal" = cor(DRM_correct ~ CouplStrengthOnlyCoupl_fast_parietal, use = "complete", dat
    "Calculate correlation coefficients between slow SP coupling and memory in each channel l
cor_slow <- c(
    "Frontal" = cor(DRM_correct ~ CouplStrengthOnlyCoupl_slow_frontal, use = "complete", dat
    "Central " = cor(DRM_correct ~ CouplStrengthOnlyCoupl_slow_central, use = "complete", dat
    "Parietal" = cor(DRM_correct ~ CouplStrengthOnlyCoupl_slow_parietal, use = "complete", dat
    "Parietal" = cor(DRM_correct ~ CouplStrengthOnlyCoupl_slow_parietal, use = "complete", dat
    "Create the table
cortable("Kurz", 3, flip = FALSE, "Fast Spindle" = cor_fast, "Slow Spindle" = cor_slow)</pre>
```

Table 13: Kurz CP Strength and Memory Pearson's r Correlation Table

	Fast.Spindle	Slow.Spindle
Frontal	0.2768	-0.0574
Central	0.3140	0.1543
Parietal	0.2721	0.1262

```
## Remove all unused variables
rm(list = ls())
load("preprocessing_fun.RData")
```

Donnelly2022

```
## Import source data from Donnelly 2022
eeg_download <- "https://github.com/Theaang/so-sp-coupling/raw/main/Paper/Donnelly2022/Sou
Donnelly_eeg <- readRDS(url(eeg_download, method="libcurl"))</pre>
beh_download <- "https://github.com/Theaang/so-sp-coupling/raw/main/Paper/Donnelly2022/Sou
Donnelly_behrow <- readRDS(url(beh_download, method="libcurl"))</pre>
#> view(Donnelly_eeg)
#> view(Donnelly_behrow)
## Extract all datasets from the RDS file
Donnelly2022 <- list()</pre>
for (i in 1:nrow(Donnelly_eeg)) {
  Donnelly2022[[i]] <- Donnelly_eeg[[3]][[i]]</pre>
Donnellyamp_raw <- Donnelly2022[[14]]</pre>
Donnellystr_raw <- Donnelly2022[[20]]</pre>
Donnellyphase_raw <- Donnelly2022[[21]]</pre>
## N2sigpwr <- Donnelly2022[[1]]
## N3sigpwr <- Donnelly2022[[6]]
## Transform the memory data
# Calculate the memory retention rate
# Exclude participants from the patient group and missing values
Donnelly_beh <- Donnelly_behrow |>
  filter(group == "Sib") |>
  mutate(retention = accC_morning - accC_evening) |>
  filter(rowSums(is.na(cur_data()[, 26:27])) == 0)
```

```
#> view(Donnelly_beh)
## Coupling Phase Preprocessing
# Filter unused groups and electrodes
Donnellyphase <- Donnellyphase_raw |>
  filter(group == "Sib" & !grepl("^FC|^T|^FP|^FT|^CP|^AF", electrode))
# Adjust the dataframe format for data extraction
Donnellyphase <- Donnellyphase |>
  pivot_wider(names_from = electrode,
              values_from = value,
              id_cols = subject)
#> view(Donnellyphase)
# Calculate the mean coupling phase for each electrode location cluster
Donnellyphase_avg <- Donnellyphase |>
  rowwise() |>
  mutate(
    Favg = (\text{mean}(c(F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, Fz)) * pi) / 180,
    Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz)) * pi) / 180,
    Polary = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, Pz, P03, P04, 01, 02)) * pi)
Donnellyphase_avg <- Donnellyphase_avg[-7,]</pre>
#> view(Donnellyphase_avg)
## Calculate the circular linear correlation
variables <- c("Favg", "Cavg", "POavg")</pre>
effect_size <- data.frame()</pre>
for (var in variables) {
  effect_var <- circular_cor(Donnellyphase_avg[[var]], Donnelly_beh$retention)</pre>
  effect_size <- rbind(effect_size, effect_var)</pre>
rownames(effect_size) <- c("Frontal", "Central", "Parietal and Occipital")</pre>
knitr::kable(effect_size, format = "markdown", caption = "Donnelly CP Phase and Memory Pea
```

Table 14: Donnelly CP Phase and Memory Pearson's r Correlation Table

	Pearsons_r	R_squared
Frontal	0.3099	0.0960
Central	0.6857	0.4702
Parietal and Occipital	0.6493	0.4215

```
## Spindle Amplitude Preprocessing
  # Filter unused groups and electrodes
  Donnellyamp <- Donnellyamp_raw |>
    filter(group == "Sib" & !grepl("^FC|^T|^FP|^FT|^CP|^AF", electrode))
  # Adjust the dataframe format for data extraction
  Donnellyamp <- Donnellyamp |>
    pivot_wider(names_from = electrode,
                values_from = value,
                id_cols = subject)
  #> view(Donnellyamp)
  # Calculate the mean spindle amplitude for each electrode location cluster
  Donnellyamp_avg <- Donnellyamp |>
    rowwise() |>
    mutate(
      Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, Fz))),
      Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
      POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, Pz, P03, P04, O1, O2))))
  Donnellyamp_avg <- Donnellyamp_avg[-7,]</pre>
  # Detect and remove outlier(s)
  Donnellyamp_avg <- remove_outliers(Donnellyamp_avg, scale_columns = c("Favg", "Cavg", "POa
[1] "O rows removed: "
  #> view(Donnellyamp_avg)
  # Calculate correlation coefficients between spindle amplitude and memory in each channel
    "Frontal" = cor(Donnelly_beh$retention ~ Donnellyamp_avg$Favg, use = "complete"),
    "Central" = cor(Donnelly_beh$retention ~ Donnellyamp_avg$Cavg, use = "complete"),
    "Parietal" = cor(Donnelly_beh$retention ~ Donnellyamp_avg$POavg, use = "complete"))
  cortable("Donnelly", 2, "Correlation" = cor)
```

Table 15: Donnelly SP Amplitude and Memory Pearson's r Correlation Table

	Frontal	Central	Parietal
Correlation	0.3079	0.3871	0.1882

Coupling Strength Preprocessing

```
# Filter unused groups and electrodes
  Donnellystr <- Donnellystr_raw |>
    filter(group == "Sib" & !grepl("^FC|^T|^FP|^FT|^CP|^AF", electrode))
  # Adjust the dataframe format for data extraction
  Donnellystr <- Donnellystr |>
    pivot_wider(names_from = electrode,
                values_from = value,
                id_cols = subject)
  #> view(Donnellystr)
  # Calculate the mean coupling strength for each electrode location cluster
  Donnellystr_avg <- Donnellystr |>
    rowwise() |>
    mutate(
      Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, F9, F10, Fz))),
      Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
      POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, P9, P10, Pz, P03, P04, 01, 02))))
  Donnellystr_avg <- Donnellystr_avg[-7,]</pre>
  # Detect and remove outlier(s)
  Donnellystr_avg <- remove outliers(Donnellystr_avg, scale_columns = c("Favg", "Cavg", "POa
[1] "O rows removed: "
  #> view(Donnellystr_avg)
  # Calculate correlation coefficients between coupling strength and memory in each channel
  cor <- c(
    "Frontal" = cor(Donnelly_beh$retention ~ Donnellystr_avg$Favg, use = "complete"),
    "Central" = cor(Donnelly_beh$retention ~ Donnellystr_avg$Cavg, use = "complete"),
    "Parietal" = cor(Donnelly_beh$retention ~ Donnellystr_avg$POavg, use = "complete"))
```

```
cortable("Donnelly", 3, "Correlation" = cor)
```

Table 16: Donnelly CP Strength and Memory Pearson's r Correlation Table

	Frontal	Central	Parietal
Correlation	-0.1787	0.0203	0.0906

```
## Remove all unused variables
rm(list = ls())
load("preprocessing_fun.RData")
```

Denis2022

```
## Import source data from Denis 2022
Denis_files <- c("behaviour.csv", "fast_amplitude.csv", "slow_amplitude.csv",
                "fast_power.csv", "slow_power.csv", "fast_consistency.csv",
                "slow_consistency.csv", "fast_percent.csv", "slow_percent.csv",
                "fast_phase.csv", "slow_phase.csv")
for (file in Denis_files) {
  file_url <- paste0("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Paper/</pre>
  data <- read.csv(file_url)</pre>
  data <- data[-c(18, 34), ] ## Remove empty rows
  assign(gsub(".csv", "", file), data)
behaviour_fast <- behaviour |>
  rowwise() |>
 mutate(
  change_pres = change_1pres)
## Create a separate behavior dataset for slow spindle data due to missing value
behaviour_slow = behaviour_fast[-c(5, 7, 12, 27, 28, 32),]
## view(behaviour_slow)
## Coupling Phase Preprocessing
## Calculate the mean coupling phase for each electrode location cluster
fast_phase_avg <- fast_phase |>
rowwise() |>
mutate(
Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, Fz))),
```

```
Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
 POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, Pz, P03, P04, P07, P08, P0z, O1, O2))))
## view(fast_phase_avg)
slow_phase_avg <- slow_phase |>
rowwise() |>
mutate(
Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, Fz))),
 Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, Pz, P03, P04, P07, P08, P0z, 01, 02)))) |
  filter(!any(is.na(c_across(F2:POavg))))
## view(slow_phase_avg)
variables <- c("Favg", "Cavg", "POavg")</pre>
es_fast <- data.frame()</pre>
for (var in variables) {
ev_fast <- circular_cor(fast_phase_avg[[var]], behaviour_fast$change_pres)</pre>
es_fast <- rbind(es_fast, ev_fast)</pre>
es_slow <- data.frame()</pre>
for (var in variables) {
ev_slow <- circular_cor(slow_phase_avg[[var]], behaviour_slow$change_pres)</pre>
es_slow <- rbind(es_slow, ev_slow)</pre>
effect_size <- rbind(es_slow, es_fast)</pre>
rownames(effect_size) <- c("Slow Frontal", "Slow Central", "Slow Parietal", "Fast Frontal",
knitr::kable(effect_size, format = "markdown", caption = "Denis CP Phase and Memory Pearson
```

Table 17: Denis CP Phase and Memory Pearson's r Correlation Table

	Pearsons_r	R_squared
Slow Frontal	0.5409	0.2925
Slow Central	0.3860	0.1490
Slow Parietal	0.3305	0.1093
Fast Frontal	0.3854	0.1485
Fast Central	0.2817	0.0794
Fast Parietal	0.3730	0.1392

```
fast_amplitude_avg <- fast_amplitude |>
rowwise() |>
mutate(
```

```
Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
 POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, Pz, P03, P04, P07, P08, P0z, 01, 02))))
## view(fast_amplitude_avg)
slow_amplitude_avg <- slow_amplitude |>
rowwise() |>
mutate(
 Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, Fz))),
 Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, Pz, P03, P04, P07, P08, P0z, 01, 02)))) |
  filter(!any(is.na(c_across(F2:POavg))))
## view(slow_amplitude_avg)
# Calculate correlation coefficients between fast spindles and memory in each channel loca
cor_fast <- c(</pre>
  "Frontal" = cor(behaviour_fast$change_pres ~ fast_amplitude_avg$Favg, use = "complete"),
  "Central" = cor(behaviour_fast$change_pres ~ fast_amplitude_avg$Cavg, use = "complete"),
  "Parietal" = cor(behaviour_fast$change_pres ~ fast_amplitude_avg$POavg, use = "complete"
# Calculate correlation coefficients between slow spindles and memory in each channel local
cor_slow <- c(</pre>
  "Frontal" = cor(behaviour_slow$change_pres ~ slow_amplitude_avg$Favg, use = "complete"),
  "Central" = cor(behaviour_slow$change_pres ~ slow_amplitude_avg$Cavg, use = "complete"),
  "Parietal" = cor(behaviour_slow$change_pres ~ slow_amplitude_avg$POavg, use = "complete"
# Create the table
cortable("Denis", 2, flip = FALSE, "Fast Spindle" = cor_fast, "Slow Spindle" = cor_slow)
```

Table 18: Denis SP Amplitude and Memory Pearson's r Correlation Table

	Fast.Spindle	Slow.Spindle
Frontal	-0.0382	-0.0602
Central	-0.0637	-0.1106
Parietal	-0.1774	-0.2779

```
fast_consistency_avg <- fast_consistency |>
rowwise() |>
mutate(
Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, Fz))),
Cavg = (mean(c(C3, C4, Cz))),
```

Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, Fz))),

```
Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, Fz))),
Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, Pz, P03, P04, P07, P08, P0z, 01, 02)))) |
 filter(!any(is.na(c_across(F2:POavg))))
## view(slow_consistency_avg)
# Calculate correlation coefficients between fast spindles and memory in each channel loca
cor_fast <- c(</pre>
  "Frontal" = cor(behaviour_fast$change_pres ~ fast_consistency_avg$Favg, use = "complete"
  "Central" = cor(behaviour_fast$change_pres ~ fast_consistency_avg$Cavg, use = "complete"
  "Parietal" = cor(behaviour_fast$change_pres ~ fast_consistency_avg$P0avg, use = "complet
# Calculate correlation coefficients between slow spindles and memory in each channel local
  "Frontal" = cor(behaviour_slow$change_pres ~ slow_consistency_avg$Favg, use = "complete"
  "Central" = cor(behaviour_slow$change_pres ~ slow_consistency_avg$Cavg, use = "complete"
  "Parietal" = cor(behaviour_slow$change_pres ~ slow_consistency_avg$POavg, use = "complet
# Create the table
cortable("Denis", 3, flip = FALSE, "Fast Spindle" = cor_fast, "Slow Spindle" = cor_slow)
```

POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, Pz, P03, P04, P07, P08, P0z, 01, 02))))

view(fast_consistency_avg)

rowwise() |>
mutate(

slow_consistency_avg <- slow_consistency |>

Table 19: Denis CP Strength and Memory Pearson's r Correlation Table

	Fast.Spindle	Slow.Spindle
Frontal	0.2070	-0.0892
Central	0.1577	-0.1089
Parietal	0.1802	-0.0682

```
fast_percent_avg <- fast_percent |>
rowwise() |>
mutate(
  Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, Fz))),
  Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
  POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, Pz, P03, P04, P07, P08, P0z, O1, O2))))
## view(fast_percent_avg)
```

```
slow_percent_avg <- slow_percent |>
rowwise() |>
mutate(
Favg = (mean(c(F1, F2, F3, F4, F5, F6, F7, F8, Fz))),
 Cavg = (mean(c(C1, C2, C3, C4, C5, C6, Cz))),
POavg = (mean(c(P1, P2, P3, P4, P5, P6, P7, P8, Pz, P03, P04, P07, P08, P0z, O1, O2)))) |
 filter(!any(is.na(c_across(F2:POavg))))
## view(slow_percent_avg)
# Calculate correlation coefficients between fast spindles and memory in each channel loca
cor_fast <- c(</pre>
  "Frontal" = cor(behaviour_fast$change_pres ~ fast_percent_avg$Favg, use = "complete"),
  "Central" = cor(behaviour_fast$change_pres ~ fast_percent_avg$Cavg, use = "complete"),
  "Parietal" = cor(behaviour_fast$change_pres ~ fast_percent_avg$POavg, use = "complete"))
# Calculate correlation coefficients between slow spindles and memory in each channel loca
cor_slow <- c(</pre>
  "Frontal" = cor(behaviour_slow$change_pres ~ slow_percent_avg$Favg, use = "complete"),
  "Central" = cor(behaviour_slow$change_pres ~ slow_percent_avg$Cavg, use = "complete"),
  "Parietal" = cor(behaviour_slow$change_pres ~ slow_percent_avg$POavg, use = "complete"))
# Create the table
cortable("Denis", 4, flip = FALSE, "Fast Spindle" = cor_fast, "Slow Spindle" = cor_slow)
```

Table 20: Denis CP Percentage and Memory Pearson's r Correlation Table

	Fast.Spindle	Slow.Spindle
Frontal	-0.0351	0.0831
Central	0.0714	0.1176
Parietal	0.0498	-0.0612

```
## Remove all unused variables
rm(list = ls())
load("preprocessing_fun.RData")

## Import source data from Kurz 2023
Denis2021 <- read_csv("https://raw.githubusercontent.com/Theaang/so-sp-coupling/main/Paper
#> view(Kurz2023_raw)
```

Mylonas2020

```
## Calculate the circular linear correlation
  mylonas_phase <- circular_cor(Mylonas2020cp$Preferred.Phase..degrees., Mylonas2020cp$Memor
  ## knitr::kable(sch_phase,format ="markdown",caption ="Mylonas 2020 CP Phase and Memory Pe
  ## Calculate the coupling percentage and remove outlier(s)
  Mylonas2020amp <- remove_outliers(Mylonas2020, scale columns = "Spindle.Amplitude..muV.")
[1] "O rows removed: "
  Mylonas2020str <- remove_outliers(Mylonas2020cp, scale_columns = "Coupling.Strength")
[1] "O rows removed: "
  Mylonas2020pct <- remove_outliers(Mylonas2020, scale_columns = c("X..of.Spindles.Coupled.
[1] "1 rows removed: 13"
  cor1 <- cor(Spindle.Amplitude..muV. ~ Memory.Change...., use = "complete", data = Mylonas2</pre>
  ## cortable("Mylonas 2020", 2, flip = FALSE, "Correlation" = cor1)
  cor2 <- cor(Coupling.Strength ~ Memory.Change...., use = "complete", data = Mylonas2020str</pre>
  ## cortable("Mylonas 2020", 3, flip = FALSE, "Correlation" = cor2)
  ## Calculate the linear correlation between SO coupled SP and memory retention
  cor3 <- cor(X..of.Spindles.Coupled.to.SOs ~ Memory.Change..., use = "complete", data = My
  ## Calculate the linear correlation between SP coupled SO and memory retention
  cor4 <- cor(X..of.SOs.coupled.to.spindles ~ Memory.Change..., use = "complete", data = My</pre>
  ## cortable("Mylonas 2020", 4, flip = FALSE, "SPcSO" = cor3, "SOcSP" = cor4)
  effect_size <- rbind(mylonas_phase, cor1, cor2, cor3, cor4)</pre>
  knitr::kable(data.frame("Phase" = mylonas_phase, "Amplitude" = cor1, "Strength" = cor2, "S
```

Table 21: Mylonas 2020 Coupling and Memory Pearson's r Correlation Table

Phase.Pearsons_r	$Phase.R_squared$	Amplitude	Strength	SPcSO	SOcSP
0.3801	0.1445	-0.1982	0.0508	-0.0289	0.055

Remove all unused variables
rm(list = ls())
load("preprocessing_fun.RData")