

5

Relative Motion

Relative Velocity of Rain w.r.t. the Moving Man

A man walking west with velocity \vec{v}_m , represented by \overrightarrow{OA} . Let the rain be falling vertically downwards with velocity \vec{v}_r , represented by \overrightarrow{OB} as shown in figure.

The relative velocity of rain w.r.t. man $\vec{v}_{rm} = \vec{v}_r - \vec{v}_m$ will be represented by diagonal \overrightarrow{OD} of rectangle OBDC.

$$v_{rm} = \sqrt{v_r^2 + v_m^2 + 2v_r v_m \cos 90^\circ} = \sqrt{v_r^2 + v_m^2}$$

If θ is the angle which \vec{v}_{rm} makes with the vertical direction then

$$\tan \theta = \frac{BD}{OB} = \frac{v_m}{v_r} \Rightarrow \theta = \tan^{-1} \left(\frac{v_m}{v_r}\right)$$

Swimming into the River

A man can swim with velocity \vec{v} , i.e., it is the velocity of man w.r.t. still water. If water is also flowing with velocity \vec{v}_R then velocity of man relative to ground $\vec{v}_m = \vec{v} + \vec{v}_R$.

If the swimming is in the direction of flow of water or along the downstream then

$$\overrightarrow{\overrightarrow{v}}_{N} \overrightarrow{\overrightarrow{v}}_{N} = \overrightarrow{v} + \overrightarrow{v}_{N}$$

If the swimming is in the direction opposite to the flow of water or along the upstream then

$$\vec{v} \longrightarrow \vec{v}_R$$
 $\vec{v}_m = \vec{v} - \vec{v}_R$

If man is crossing the river as shown in the figure i.e. \vec{v} and \vec{v}_R not collinear then use the vector algebra $\vec{v}_m = \vec{v} + \vec{v}_R$ (assuming $v > v_R$)

For shortest path

For minimum displacement

To reach at B, $v \sin \theta = v_R \Rightarrow \sin \theta = \frac{v_R}{v}$

Time of crossing

Note: If $v_R > v$ then for minimum drifting $\sin \theta = \frac{v}{v_R}$.

For minimum time

3

Motion in a Straight Line

Distance versus Displacement

Total length of path (ACB) covered by the particle is called distance. Displacement vector or displacement is the minimum distance (AB) and directed from initial position to final position.

Displacement is Change of Position Vector

From
$$\triangle OAB \ \Delta \vec{r} = \vec{r}_B - \vec{r}_A$$

$$\vec{r}_R = x_2 \hat{i} + y_2 \hat{j} + z_2 \hat{k}$$

and
$$\vec{r}_A = x_1 \hat{i} + y_1 \hat{j} + z_1 \hat{k}$$

$$\Delta \vec{r} = (x_2 - x_1)\hat{i} + (y_2 - y_1)\hat{j} + (z_2 - z_1)\hat{k}$$

Average velocity =
$$\frac{\text{Displacement}}{\text{Time interval}} \Rightarrow \vec{v}_{av} = \frac{\Delta \vec{r}}{\Delta t}$$

Average speed =
$$\frac{\text{Distance travelled}}{\text{Time interval}}$$

For uniform motion

Average speed = | average velocity | = | instantaneous velocity|

Velocity
$$\vec{v} = \frac{d\vec{r}}{dt} = \frac{d}{dt}(x\hat{i} + y\hat{j} + z\hat{k})$$

$$= \frac{dx}{dt}\hat{i} + \frac{dy}{dt}\hat{j} + \frac{dz}{dt}\hat{k} = v_x\hat{i} + v_y\hat{j} + v_z\hat{k}$$

AverageAcceleration =
$$\frac{\text{Total change in velocity}}{\text{Total time taken}} = \vec{a}_{av} = \frac{\Delta \vec{v}}{\Delta t}$$
Acceleration

$$\vec{a} = \frac{d\vec{v}}{dt} = \frac{d}{dt}(v_x \hat{i} + v_y \hat{j} + v_z \hat{k})$$

$$= \frac{dv_x}{dt}\hat{i} + \frac{dv_y}{dt}\hat{j} + \frac{dv_z}{dt}\hat{k} = a_x\hat{i} + a_y\hat{j} + a_z\hat{k}$$

Important Points About 1D Motion

- Distance ≥ | displacement | and Average speed ≥ | average velocity |
- If distance > | displacement | this implies
- (a) atleast at one point in path, velocity is zero.

Motion with Constant Acceleration: Equations of Motion

* In vector form

 $\vec{v} = \vec{u} + \vec{a}t$ and

$$\Delta \vec{r} = \vec{r}_2 - \vec{r}_1, \ \vec{s} = \left(\frac{\vec{u} + \vec{v}}{2}\right)t = \vec{u}t + \frac{1}{2}\vec{a}t^2 = \vec{v}t - \frac{1}{2}\vec{a}t^2$$

$$v^2 = u^2 + 2\vec{a}.\vec{s}$$
 and $\vec{s}_{n^{th}} = \vec{u} + \frac{\vec{a}}{2}(2n-1)$

 $(S_{nth} \to \text{displacement in } n^{\text{th}} \text{ second})$

* In scalar form (for one dimensional motion):

$$v = u + at$$
 $s = \left(\frac{u+v}{2}\right)t = ut + \frac{1}{2}at^2 = vt - \frac{1}{2}at^2$
 $v^2 = u^2 + 2as$ $s_n = u + \frac{a}{2}(2n-1)$

Uniform Motion

If an object is moving along the straight line covers equal distance in equal interval of time, it is said to be in uniform motion along a straight line.

Different Graphs of Motion

Note: Slope of velocity-time graph gives acceleration.

Motion under Gravity (No Air Resistance)

If an object is falling freely under gravity and downward direction is taken as positive, then equations of motion becomes

(i)
$$v = u + gt$$
 (ii) $h = ut + \frac{1}{2}gt^2$ (iii) $v^2 = u^2 + 2gh$

Note: If upward direction is taken as positive then g is replaced by -g in above three equations.

If a body is thrown vertically up with a velocity u in the uniform gravitational field then

- (i) Maximum height attained $H = \frac{u^2}{2g}$
- (ii) Time of ascent = time of descent = $\frac{u}{g}$
- (iii) Total time of flight = $\frac{2u}{g}$
- (iv) Final velocity at the point of projection = u (downwards)
- (v) Gallileo's law of odd numbers: For a freely falling body ratio of successive distance covered in equal time interval 't'

$$S_1: S_2: S_3: ..., S_n = 1: 3: 5: ..., 2n-1$$

(vi) At any point on its path the body will have same speed for upward journey and downward journey.

- (vii) If a body thrown upwards crosses a point in time t_1 and t_2 respectively then height of point $h = \frac{1}{2} gt_1t_2$. Maximum height $H = \frac{1}{2} g(t_1 + t_2)^2$.
- (viii) A body is thrown upward, downward and horizontally with same speed takes time t_1 , t_2 and t_3 respectively to reach the ground then $t_3 = \sqrt{t_1 t_2}$ and height from where the particle was thrown is $H = \frac{1}{2} g t_1 t_2$.

