Trabalho 1 - MC920

GUSTAVO HENRIQUE STORTI SALIBI

RA: 174135 Ciência da Computação - Graduação E-mail: g174135@dac.unicamp.br

I. Introdução

Este trabalho tem como objetivo a implementação e estudo de filtros aplicados nos domínios espacial e de frequência. O processo de filtragem de uma imagem altera o valor de um pixel levando em conta tanto o valor de seus vizinhos quanto o seu próprio através da operação de convolução de uma máscara pela imagem, ou seja, toda imagem é percorrida para que se aplique o filtro. A seção seguinte, II, explica superficialmente o problema a ser tratado neste trabalho. A seção III fala sobre como o programa lida com as entradas de dados e como ele é construído. A seção IV mostra os resultados obtidos e os explica. A seção V, por fim, explica como as imagens são salvas pelo programa.

II. ESPECIFICAÇÃO DO PROBLEMA

Aplicar e explicar os efeitos de quatro filtros preestabelecidos h1, h2, h3 e h4 e da combinação dos filtros h3 e h4, a partir daqui chamado de h5. Depois disso, o trabalho segue na filtragem no domínio de frequências, aplicando um filtro Gaussiano em uma imagem monocromática representada por seu espectro de Fourier, com sua componente de frequênciazero transladada para o centro do espectro.

III. ENTRADA DE DADOS

O programa foi desenvolvido na linguagem Python e testado com o interpretador Python 3.7. Foram também utilizadas as seguintes bibliotecas extras: OpenCV 3.2, Matplotlib 3.0.3 e Numpy 1.12.1. Para este trabalho, foram selecionadas duas imagens, dentre as sugeridas no enunciado. O programa começa por importar as bibliotecas necessárias. Após isso, três variáveis são inicializadas, as duas primeiras contêm as imagens que serão utilizadas nos testes e a terceira serve como variável selecionadora para determinarmos com qual das duas iremos trabalhar. Após isso, os filtros do domínio espacial são criados e aplicados às imagens. Em seguida, as imagens são exibidas e salvas. O processo é repetido para os filtros de frequência.

Figura 1. Referenciada no programa como "image1"@

Figura 2. Referenciada no programa como "image2"@

IV. SOLUÇÃO

As operações de filtragem podem ser realizadas tanto no domínio espacial quanto no de frequências . Eles são normalmente classificados em três categorias:

- · passa-baixas
- passa-altas
- passa-faixa

No primeiro problema, trabalhamos no domínio espacial, que se refere ao plano da imagem, ou seja, ao conjunto de pixeis que a compões. Para isso, fazemos o uso de máscaras. Por questão de simetria, utilizamos janelas quadradas com n x n pixeis, onde n é um número ímpar. Por questão de eficiência, as máscaras possuem valores pequenos para n.

A. Filtro h1

Para o primeiro problema, nós obtemos um resultado passaaltas, onde certas características da imagem, tais como bordas, linhas ou regiões de interesse são ressaltadas.

Figura 3. Referenciada no programa como "h1".

B. Filtro h2

Já em h2, obtemos um resultado passa-baixas, onde certas frequências, relacionadas com a informação de detalhes da imagem, são atenuadas. Com isso, temos um efeito de suavização que tende também, pelas mesmas razões, a atenuar o ruído das imagens. Por outro lado, devido ao borramento, detalhes finos começam a ser removidos da imagem.

Figura 4. Referenciada no programa como "h2".

C. Filtros h3 e h4

Em h3 e h4, como em h1, também obtemos filtros passaalta, porém, com detalhes mais escuros do que em h1. Um filtro é a rotação do outro em 90 graus, capturando faixas diferentes de detalhes.

Figura 5. Referenciada no programa como "h3".

Figura 6. Referenciada no programa como "h4".

D. Filtro h5

Já h5, é uma combinação dos resultados de h3 e h4 aplicados a imagem original sob a seguinte fórmula: $\sqrt[2]{h32 + h42}$, sendo h3 e h4 as imagens com os filtros previamente aplicados. Isso nos gera como resultado um realce nítido dos contornos da imagem.

Figura 7. Referenciada no programa como "h5".

E. Filtragem no Domínio de Frequências

A base matemática das técnicas de filtragem nesse domínio é a convolução, onde as transformadas de imagens são operações que alteram o espaço de representação de uma imagem para outro domínio de forma que se preserve a informação da imagem original de alguma maneira e a transformada seja reversível.

A filtragem no domínio de frequência consiste em modificar a transformada de Fourier de uma imagem e depois calcular a transformada inversa para obter o resultado processado.

O processamento com filtros não lineares procura evitar a suavização homogênea ao longo das regiões próximas às bordas.

Neste caso, depois de transformarmos a imagem através da transformada discreta de Fourier, aplicamos um filtro Gaussiano, transladamos a componente frequência-zero para o centro do espectro, e, por fim, revertemos a transformada de Fourier para voltarmos ao domínio original. A suavização e consequente borramento são obtidos no domínio da frequência, onde as altas frequências são atenuadas. Diferentes valores para sigma, que representa o desvio padrão na fórmula da Gaussiana, produzem diferentes níveis de borramento, como podemos constatar.

V. SAÍDA DE DADOS

O programa gera uma imagem PNG para cada filtro anteriormente descrito, a exibe na tela e a salva na mesma pasta com nome referente ao do enunciado.

Figura 8. Sigma = 40.

Figura 9. Sigma = 10.

Figura 10. Sigma = 5.