Bipartite Graph

Shusen Wang

Definition

Bipartite Graph

• Bipartite graph: G = (U, V, E).

Bipartite Graph

- Bipartite graph: G = (U, V, E).
- All the edges are between $\mathcal U$ and $\mathcal V$.
- No edge between two vertices in \mathcal{U} .
- No edge between two vertices in \mathcal{V} .

Candidates Positions Alice Bob Chris SQL David Emma

Matching candidates and positions.

- Bipartite graph: G = (U, V, E).
- Set \mathcal{U} contains candidates.
- Set \mathcal{V} contains jobs.
- Edges in \mathcal{E} are candidates' skills.

People **Pets** Alice Bob Chris David Emma

Pet adoption

- Bipartite graph: G = (U, V, E).
- Set *U* contains people.
- Set \mathcal{V} contains pets.
- Edges in \mathcal{E} are people's preference.

Men Women Alex Alice Bob Becky Chris Cindy Diana David Eli Emma

Dating

- Bipartite graph: G = (U, V, E).
- Set *U* contains males.
- Set \mathcal{V} contains females.
- Edges in ${\cal E}$ are people's preference.

Testing Bipartiteness

Is the graph bipartite?

- 1. Select an arbitrary vertex and assign red color to it.
- 2. Repeat until all vertices are colored:
 - Color red vertices' neighbors as blue.
 - Color blue vertices' neighbors as red.
 - During the process, if a vertex has the same color as its neighbor, then output FALSE.
- 3. If no violation is found, return TRUE in the end.

1. Select any vertex and assign red color to it.

- 1. Select any vertex and assign red color to it.
- 2. Color red vertices' neighbors as blue.

- 1. Select any vertex and assign red color to it.
- 2. Color red vertices' neighbors as blue.
- 3. Color blue vertices' neighbors as red.

- 1. Select any vertex and assign red color to it.
- 2. Color red vertices' neighbors as blue.
- 3. Color blue vertices' neighbors as red.
- 4. Color red vertices' neighbors as blue.

- No violation has been found!
- It is bipartite graph.

1. Select any vertex and assign red color to it.

- 1. Select any vertex and assign red color to it.
- 2. Color red vertices' neighbors as blue.

- 1. Select any vertex and assign red color to it.
- 2. Color red vertices' neighbors as blue.
- 3. Color blue vertices' neighbors as red.

- Violation found!
- It is not bipartite graph.

1. Select any vertex and assign red color to it.

- 1. Select any vertex and assign red color to it.
- 2. Color red vertices' neighbors as blue.

- 1. Select any vertex and assign red color to it.
- 2. Color red vertices' neighbors as blue.
- 3. Color blue vertices' neighbors as red.

- 1. Select any vertex and assign red color to it.
- 2. Color red vertices' neighbors as blue.
- 3. Color blue vertices' neighbors as red.
- 4. Color red vertices' neighbors as blue.

- Violation found!
- It is not bipartite graph.

Algorithm Details

Is the graph bipartite?

Initial State

Queue:

Initial State

Queue:

• Assign red color to v_1 .

Initial State

Queue:

- Assign red color to v_1 .
- enqueue(v_1).

Queue:

 v_1

• $v_1 \leftarrow \text{dequeue}()$.

Queue:

- $v_1 \leftarrow \text{dequeue}()$.
- Assign blue color to its unvisited neighbors, v_2 , v_4 , and v_5 .

Queue:

- v_2
- v_4
- v_5

- $v_1 \leftarrow \text{dequeue}()$.
- Assign blue color to its unvisited neighbors, v_2 , v_4 , and v_5 .
- Put the unvisited neighbors, v_2 , v_4 , and v_5 , in the queue.

Queue:

 v_4

 v_5

• $v_2 \leftarrow \text{dequeue}()$.

• $v_2 \leftarrow \text{dequeue}()$.

Queue:

- v_4
- v_5

- $v_2 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.

- v_4
- v_5

- $v_2 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Assign red color to its neighbors, v_3 and v_6 .

- v_4
- v_5
- v_3
- v_6

- $v_2 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Assign red color to its neighbors, v_3 and v_6 .
- Put the unvisited neighbors, v_3 and v_6 , in the queue.

Queue:

• $v_4 \leftarrow \text{dequeue}()$.

Queue:

• $v_4 \leftarrow \text{dequeue}()$.

Queue:

- $v_4 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.

No violation

- $v_4 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Assign red color to its neighbor, v_8 .

- $v_4 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Assign red color to its neighbor, v_8 .
- Put the unvisited neighbor, v_8 , in the queue.

Queue:

• $v_5 \leftarrow \text{dequeue}()$.

Queue:

• $v_5 \leftarrow \text{dequeue}()$.

- $v_5 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.

- $v_5 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Do not put visited neighbors in the queue.

Queue:

• $v_3 \leftarrow \text{dequeue}()$.

Queue: • $v_3 \leftarrow \text{dequeue}()$.

- $v_3 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.

- $v_3 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Assign blue color to its neighbor v_7 .

- $v_3 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Assign blue color to its neighbor v_7 .
- Put the unvisited neighbor v_7 in the queue.

Queue:

• $v_6 \leftarrow \text{dequeue}()$.

Queue:

 v_7

• $v_6 \leftarrow \text{dequeue}()$.

- $v_6 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.

Queue:

 v_7

- $v_6 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Do not put visited neighbors in the queue.

Queue:

 v_7

• $v_8 \leftarrow \text{dequeue}()$.

Queue:

 v_7

• $v_8 \leftarrow \text{dequeue}()$.

Queue:

 v_7

- $v_8 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.

Queue:

 v_7

- $v_8 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Do not put visited neighbors in the queue.

Queue:

• $v_7 \leftarrow \text{dequeue}()$.

• $v_7 \leftarrow \text{dequeue}()$.

- $v_7 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.

- $v_7 \leftarrow \text{dequeue}()$.
- Check the visited neighbors to see if there is any violation.
- Do not put visited neighbors in the queue.

End of Procedure

- All the vertices have been visited.
- The queue is empty.
- No violation has been found.
- Thus, the graph is bipartite.

1. Select a vertex, assign red color to it, and add it to the queue.

- 1. Select a vertex, assign red color to it, and add it to the queue.
- 2. While the queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$;
 - b. $c \leftarrow$ the opposite color of v;
 - c. For each $u \in \text{Neighbor}(v)$:
 - i. If u has been visited, check whether there is a violation;
 - ii. Otherwise, assign color c to u, and add u to the queue;

- 1. Select a vertex, assign red color to it, and add it to the queue.
- 2. While the queue is not empty:
 - a. $v \leftarrow \text{dequeue}()$;
 - b. $c \leftarrow$ the opposite color of v;
 - c. For each $u \in \text{Neighbor}(v)$:
 - i. If u has been visited, check whether there is a violation;
 - ii. Otherwise, assign color c to u, and add u to the queue;
- 3. If violation is found in step 2c(i), return FALSE (not bipartite); otherwise, return TRUE.

Summary

Bipartite Graph

- The vertices can be partitioned into two subsets, $\mathcal U$ and $\mathcal V$.
- No edge between two vertices in \mathcal{U} .
- No edge between two vertices in \mathcal{V} .
- Application: matching.
 - Matching candidates and positions.
 - Pet adoption.
 - Dating.

- Basic idea:
 - Coloring the nodes using red and blue.
 - Find whether there is any violation.

- Basic idea:
 - Coloring the nodes using red and blue.
 - Find whether there is any violation.
- Algorithm: breadth-first search (BFS).
- Time complexity: $O(|\mathcal{E}| + |\mathcal{V}|)$.

Questions

Q1: Is it a bipartite graph?

Q2: Is it a bipartite graph?

Thank You!