HOME WORK:

Chapter 1: mathematical theory of Inverse problem

IQDH/

- probability theory: random variables,
 - probability grace
- 2) State Space + donsity + push-forward probability density/ measure
 - 3) conditional probability + Bayes' theorem/
 - 4) mean, variances, etc.
- Chapter 1 looks at deterministic inverse problems

 The "main" disadvantage of a deterministic
 approach is that it is NOT trivial to take
 into account the uncertainties in the measurement
 mathematical models. In other works, if is not
 dear how to incorporate our lack of of knowledge

 Poayesian inverse problem is a method that
 can take all uncertainties (lack of knowledge)
 into account.

- We are going to use random variables to
exprest our uncertainties (ignorance).
Def: An event is called deterministic if its
out come is completely dotarmined/known.
Ex: Tomorrow is Wed.
pef : A random event is the complement of
the deterministic event, that is, the outcome
of a random event is not completely determined
or known (not July predictable).
Ex: roll dice, surp coin.
Remark. [randomess = ignorance]
- There are many to express ignorance
1) Juzzy set method
* Probability theory: bows of this dass
subjective probabitaj: (different person may
Snibjective probabitaj: (different person may have different probability)
Pef: We say an event A C D happens
with probabily IE (A) ij:
$O \leq \mathbb{P}(A) \leq 1$

0 < (P(A) < 1 for sure for sure E A happens A does not happen Pef: (S) F, P) is defined as a probability Space where. + St. sample space: all the possabilities of the outcomes of elementary event w Ex: Slipping - coin: elementary event Sc = } head, tail > 1 F: 5- algebra: contrains all the measurable events ACD an event that we can assign a probability. Ex Hipping-coin (fair, unbicosed) $F = 3 \phi$, 3 head3, 3tail3, Ω P (36) 5 = 0 P () head } = 4/2 P() tail)] = 4/2 P(} & 3) = 1 Def: Independant events: A, B € & are called

independent if

Def: Conditional Probability.

The conditional probability of A given the fact that B has already happened is

Kolmogorov

Ex Roll a dice

D: event y gothing face bigger than 4

A: event of gotting face 6

PLAIDJ = . assuming 1927A=i3]=1/6

Rolmogorou:

* Rolmogorov:

AC D

$$B = 35,63$$
 $A = 363$

$$B = 35,63$$
 $A = 363$
 $A = 363$

Rondom variables

- In practice we are working in spaces that are not the sample space:

 $M(\omega)$

sample space

State space

Oct: State Space S is the Sct containing all tre possible outcomes of a random variable.

Pcf: Random variable is a "measurable" map from S _> S (assume M'is onto)

M: 2: -> S

w H M(w) E S M(w) is random because its value/outcome v unknown/uncertain: Mcf. M: S2 -> S & called a measurable map if the inverse image of any measurable set in S, through M, is also a measurable set in 52 M(w) B = M-2 (A) megswable Measurable + Compared with do continuous map! Def: The probability distribution (distribution/au) of a random variable M (w) is defined as $M_{M}(A) := \mathbb{P}[M^{2}(A)] = \mathbb{P}[M(\omega) \in A]$ $M(\omega)$

PlD = P(3 w: Mw)
$$\in$$
 A3]

= P(3 m(w) \in A3]

= P(M) $=$ P(M) $=$ P(M)

= P(M) $=$ P(M)

= P(M) $=$ O

=) O $=$ M $=$ M $=$ O

Man in a probability measure