Assignment 1

DESABOINA SRI SATHWIK-AI24BTECH11007

MICOS WITH ONE CORRECT ANSWE	ICQs with One Correct Ans	WEF
------------------------------	---------------------------	-----

the integral $\int_{-\pi/2}^{\pi/2} (x^2 +$ 1) The value of $\ln \frac{\pi+x}{\pi-x}$) cos xdx is

(2012)

b) $\frac{\pi^2}{2} - 4$ c) $\frac{\pi^2}{2} + 4$ d) $\frac{\pi^2}{2}$ a) 0

2) The area enclosed by the curves $y = \sin x + \sin x$ $\cos x$ and $y = |\cos x - \sin x|$ over the interval $[0, \pi/2]$ is

(JEE Adv.2013)

a) $4(\sqrt{2}-1)$ c) $2(\sqrt{2}+1)$ b) $2\sqrt{2}(\sqrt{2}-1)$ d) $2\sqrt{2}(\sqrt{2}+1)$

3) Let $f: [\frac{1}{2}, 1] \to R$ (the set of all real number) be a positive, non-constant and differentiable function such that f'(x) < 2f(x) and $f(\frac{1}{2}) = 1$. Then the value of $\int_{\frac{1}{3}}^{1} f(x)dx$ lies in the interval (JEE Adv.2013)

a) (2e-1,2e) c) $(\frac{e-1}{2},e-1)$ b) (e-1,2e-1) d) $(0,\frac{e-1}{2})$

4) The following integral $\int_{\frac{\pi}{4}}^{\frac{\pi}{2}} (2 \csc x)^{17} dx$ is equal to

(JEE Adv.2014)

a) $\int_0^{\log(1+\sqrt{2})} 2(e^u + e^{-u})^{16} du$ b) $\int_0^{\log(1+\sqrt{2})} (e^u + e^{-u})^{17} du$ c) $\int_0^{\log(1+\sqrt{2})} (e^u - e^{-u})^{17} du$ d) $\int_0^{\log(1+\sqrt{2})} 2(e^u - e^{-u})^{16} du$

5) The value of $\int_{\frac{\pi}{2}}^{\frac{\pi}{2}} \frac{x^2 \cos x}{1 + e^x} dx$ is equal to (JEE Adv.2016)

6) Area of the region $\{(x,y) \in \mathbb{R}^2 : y \ge$ $\sqrt{|x+3|}$, $5y \le x + 9 \le 15$ } is equal to (JEE Adv.2016) a) $\frac{1}{6}$ b) $\frac{4}{3}$ c) $\frac{3}{2}$ d) $\frac{5}{3}$

7) The area of the region $\{(x, y) : xy \le 8, 1 \le y \le 8\}$ x^2 is

(JEE Adv.2018)

a) $8 \log_e 2 - \frac{14}{3}$ c) $8 \log_e 2 - \frac{7}{3}$ b) $16 \log_e 2 - \frac{14}{3}$ d) $16 \log_e 2 - 6$

MCQs with One or More than One Correct

1) If $\int_0^x f(t)dt = x + \int_x^1 t f(t)dt$, then the value of

(1998-2 Marks)

a) $\frac{1}{2}$ b) 0 c) 1 d) $\frac{-1}{2}$

2) Let f(x) = x - [x], for every real number x, where [x] is the integral part of x. Then $\int_{-1}^{1} f(x)dx$ is

(1998-2 Marks)

a) 1 b) 2 c) 0 d) $\frac{1}{2}$

3) For which of the following values of m, is the area of the region bounded by the curve y = $x - x^2$ and the line y = mx equals $\frac{9}{2}$? (1999-3 Marks)

a) -4 b) -2 c) 2 d) 4

4) Let f(x) be a non-constant twice differentiable function definied on $(-\infty, \infty)$ such that f(x) =f(1-x) and $f'(\frac{1}{4}) = 0$. Then,

a) f''(x) vanishes at least twice on [0, 1]

b) $f'(\frac{1}{2}) = 0$

c) $\int_{-\frac{1}{2}}^{\frac{1}{2}} f(x + \frac{1}{2}) \sin x dx = 0$

d) $\int_0^{\frac{1}{2}} f(t)e^{\sin \pi t} dt = \int_{\frac{1}{2}}^1 f(1-t)e^{\sin \pi t} dt$

5) Area of the region bounded by the curve $y = e^x$ and lines x = 0 and y = e is

(2009)

(2008)

6) If
$$I_n = \int_{-\pi}^{\pi} \frac{\sin nx}{(1+\pi^x)\sin x} dx$$
 $n = 0, 1, 2, ..., \text{ then}$ (2009)

a)
$$I_n = I_{n+2}$$
 c) $\sum_{m=1}^{10} I_{2m} = 0$
b) $\sum_{m=1}^{10} I_{2m+1} = 10\pi$ d) $I_n = I_{n+1}$

7) The value(s) of
$$\int_0^1 \frac{x^4(1-x)^4}{1+x^2} dx$$
 is(are) (2010)

a)
$$\frac{22}{7} - \pi$$
 c) 0
b) $\frac{2}{105}$ d) $\frac{71}{15} - \frac{3\pi}{2}$

8) Let f be a real-valued function defined on the interval $(0, \infty)$ by $f(x) = \ln x + \int_0^x \sqrt{1 + \sin t} dt$. Then which of the following statement(s) is(are) true?

(2010)

- a) f''(x) exists for all $x \in (0, \infty)$
- b) f'(x) exists for all $x \in (0, \infty)$ and f' is continuous on $(0, \infty)$, but not differentiable on $(0, \infty)$
- c) there exists $\alpha > 1$ such that |f'(x)| < |f(x)| for all $x \in (\alpha, \infty)$
- d) there exists $\beta > 0$ such that $|f(x)| + |f'(x)| \le \beta$ for all $x \in (0, \infty)$