Санкт-Петербургский Политехнический Университет им. Петра Великого

Институт прикладной математики и механики Кафедра "Прикладная математика"

> ОТЧЁТ ЛАБОРАТОРНАЯ РАБОТА № 5 ПО ДИСЦИПЛИНЕ "МАТЕМАТИЧЕСКАЯ СТАТИСТИКА"

Выполнил студент: Шарапов Сергей Андреевич группа: 3630102/70401

Проверил: к.ф-м.н., доцент Баженов Александр Николаевич

Содержание

1.	Список иллюстраций	3
2.	Список таблиц	3
3.	Постановка задачи	4
4.	Теория	4
5.	Реализация	4
6.	Результаты	5
7.	Выводы	11
8.	Литература	11
9.	Приложения	12

1 Список иллюстраций

	1	Графики двумерного нормального распределения и смеси для размера выборки $n=20$	7
	2	Графики двумерного нормального распределения и смеси для размера выборки n = 60	8
	3	Графики двумерного нормального распределения и смеси для размера выборки n = 100	9
	4	Графики эллипса рассеивания для двумерного нормального распределения для 2 точек	10
	5	Графики эллипса рассеивания для двумерного нормального распределения для 3 точек	11
2	C	писок таблиц	
	1	Двумерное нормальное распределение, $n = 20 \dots $	5
	2	Двумерное нормальное распределение, n = $60 \dots$	5
	3	Двумерное нормальное распределение, n = 100	6
	4	Смесь нормальных распределений	6

3 Постановка задачи

Сгенерировать двумерные выборки размерами 20,60,100 для двумерного нормального распределения $N(x,y,0,0,1,1,\rho)$.

Коэффициент корреляции ρ взять равным 0, 0.5, 0.9.

Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции. Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9)$$
(1)

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

4 Теория

1. Двумерное нормально распределение:

$$N(x, y, \bar{x}, \bar{y}, \sigma_x, \sigma_y, \rho) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1-\rho^2}} \times \exp\left(-\frac{1}{2(1-\rho^2)} \left[\frac{(x-\bar{x})^2}{\sigma_x^2} - 2\rho \frac{(x-\bar{x})(y-\bar{y})}{\sigma_x\sigma_y} + \frac{(y-\bar{y})^2}{\sigma_y^2}\right]\right)$$
(2)

2. Коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum (x_i - \bar{x})(y_i - \bar{y})}{\sqrt{\frac{1}{n} \sum (x_i - \bar{x})^2 \frac{1}{n} \sum (y_i - \bar{y})^2}}$$
(3)

3. Квадрантный коэффициент корреляции:

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n} \tag{4}$$

где n_1, n_2, n_3, n_4 — количества точек с координатами (x_i, y_i) , попавшими соответственно в I,II,III и IV квадранты декартовой системы с осями $x^{'} = x - medx, y^{'} = y - medy$ и с центром в точке с координатами(medx, medy)

4. Коэффициент корреляции Спирмана:

$$r_S = \frac{\frac{1}{n} \sum (u_i - \bar{u})(v_i - \bar{v})}{\sqrt{\frac{1}{n} \sum (u_i - \bar{u})^2 \frac{1}{n} \sum (v_i - \bar{v})^2}}$$
(5)

где u и v – ранги, соотвествующие значениям переменной X и Y соответственно.

5 Реализация

Работы была выполнена на языке Python 3.8.2 Для генерации выборок использовался модуль модуль stats библиотеки scipy. Для построения графиков использовалась библиотека matplotlib.

6 Результаты

Таблица 1: Двумерное нормальное распределение, n = 20

$\rho = 0$	Pearson	Spearman	Quad
E(z)	0.009	0.001	0.004
$E(z^2)$	0.05	0.05	0.05
D(z)	0.05	0.05	0.05
ρ = 0.5	Pearson	Spearman	Quad
E(z)	0.49	0.46	0.32
$E(z^2)$	0.27	0.25	0.15
D(z)	0.03	0.03	0.05
$\rho = 0.9$	Pearson	Spearman	Quad
E(z)	0.893	0.865	0.69
$E(z^2)$	0.801	0.754	0.5
D(z)	0.003	0.05	0.03

Таблица 2: Двумерное нормальное распределение, n = 60

$\rho = 0$	Pearson	Spearman	Quad
E(z)	-0.003	-0.004	-0.0004
$E(z^2)$	0.02	0.2	0.02
D(z)	0.02	0.02	0.02
ρ = 0.5	Pearson	Spearman	Quad
E(z)	0.497	0.47	0.33
$E(z^2)$	0.257	0.24	0.13
D(z)	0.009	0.01	0.02
$\rho = 0.9$	Pearson	Spearman	Quad
E(z)	0.8984	0.883	0.706
$E(z^2)$	0.8078	0.782	0.508
D(z)	0.0007	0.001	0.009

Таблица 3: Двумерное нормальное распределение, n = 100

$\rho = 0$	Pearson	Spearman	Quad
E(z)	-0.004	-0.004	-0.001
$E(z^2)$	0.01	0.01	0.01
D(z)	0.01	0.01	0.01
$\rho = 0.5$	Pearson	Spearman	Quad
E(z)	0.499	0.481	0.329
$E(z^2)$	0.254	0.237	0.118
D(z)	0.005	0.006	0.009
$\rho = 0.9$	Pearson	Spearman	Quad
E(z)	0.8981	0.8841	0.708
$E(z^2)$	0.8071	0.7823	0.506
D(z)	0.0004	0.0007	0.004

Таблица 4: Смесь нормальных распределений

n = 20	Pearson	Spearman	Quad
E(z)	-0.09	-0.09	-0.06
$E(z^2)$	0.05	0.06	0.06
D(z)	0.05	0.05	0.05
n = 60	Pearson	Spearman	Quad
E(z)	-0.09	-0.004	-0.06
$E(z^2)$	0.03	0.02	0.02
D(z)	0.02	0.02	0.02
n = 100	Pearson	Spearman	Quad
E(z)	-0.094	-0.079	-0.06
$E(z^2)$	0.018	0.016	0.01
D(z)	0.009	0.009	0.01

Рис. 1: Графики двумерного нормального распределения и смеси для размера выборки n=20

Рис. 2: Графики двумерного нормального распределения и смеси для размера выборки n = 60

Рис. 3: Графики двумерного нормального распределения и смеси для размера выборки n = 100

Рис. 5: Графики эллипса рассеивания для двумерного нормального распределения для 3 точек

7 Выводы

По графикам, видно, что, при увеличении объёма выборки, подсчитанные коэффициенты корреляции стремятся к теоретическим.

Ближе всего к теоретическому коэффициенту корреляции находится коэффициент Пирсона.

По графикам также видно, что при уменьшении корреляции эллипс равновероятности стремится к окружности, а при увеличении растягивается, стремясь к прямой.

Из графиков наглядно видно, что для построения эллипса рассеивания необходимое минимальное число событий в выборке -3 события, так как 2 точки (2 события) вырождаются в прямую линию (для 2 точек мы всегда можем перейти в систему координат, где у одной из компонент вектора (x,y) будет 0 мат. ожидание и 0 дисперсия, то есть переходим в одномерный случай).

8 Литература

Модуль питру

Модуль matplotlib

Модуль scipy

9 Приложения

Код лабораторной