ЛР №1 по информатике

Bap. 29

No1

Задание: перевести число 50822 из системы счисления с основанием 10 в систему с основанием 9.

$$50822/9=5646,\$$
остаток 8 $5646/9=627,\$ остаток 3 $627/9=69,\$ остаток 6 $69/9=7,\$ остаток 6 $7/9=0,\$ остаток 7

Расставив остатки от деления в обратном порядке получим ответ: 76638.

№2

Задание: перевести число 85667 из системы счисления с основанием 9 в десятичную СС.

$$85667_9 = 8 * 9^4 + 5 * 9^3 + 6 * 9^2 + 6 * 9^1 + 7 * 9^0 = 56680_{10}$$

N₂3

Задание: перевести число 10101 из СС с основанием 5 в СС с основанием 15.

1. Переведём 10101_5 в десятичную систему счисления:

$$10101_5 = 1*5^4 + 0*5^3 + 1*5^2 + 0*5^1 + 1*5^0 = 651_{10}$$

2. Переведём 651_{10} в СС с основанием 15:

$$651/15 = 43, \; {
m octatok} \; 6$$
 $43/15 = 2, \; {
m octatok} \; 13 \; => D$ $2 \; {
m запишем}, \; {
m t.k.} \; 2 < 15$

N₂4

Задание: перевести число 68,82 из десятичной СС в СС с основанием 2.

1. Переведем целую часть числа в двоичную СС:

$$68/2=34,\;$$
 остаток 0 $34/2=17,\;$ остаток 0 $17/2=8,\;$ остаток 1 $8/2=4,\;$ остаток 0 $4/2=2,\;$ остаток 0 $2/2=1\;$ остаток 0 $1\;$ запишем т.к. $1<2\;$

получим целую часть 1000100.

2. Переведём дробную часть числа в двоичную СС:

$$0,82*2=1,64$$
 возьмём 1 $0,64*2=1,28$ возьмём 1 $0,28*2=0,56$ возьмём 0 $0,56*2=1,12$ возьмём 1 $0,12*2=0,24$ возьмём 0

получаем дробную часть: 11010. По условию нам достаточно 5 знаков после запятой.

Ответ: $1000100, 11010_2$.

N₂5

Задание: перевести число 25,23 из СС с основанием 16 в СС с основанием 2.

Переведем по сокращённому правилу, т.к. $16=2^4$. Рассмотрим каждую цифру из числа отдельно и переведём её в двоичную систему вида $x_{16}=xxxx_2$, где каждый x - цифра:

$$egin{array}{l} 2_{16} = 0010_2 \ 5_{16} = 0101_2 \ 3_{16} = 0011_2 \end{array}$$

Получим число $00100101,00100011_2$, убрав незначащие нули получим $100101,00100011_2$.

N₂6

Задание: перевести число 63,56 из СС с основанием 8 в двоичную СС.

Воспользуемся переводом по сокращённому правилу, т.к. $8=2^3$. Также рассмотрим отдельно каждую цифру числа:

$$egin{aligned} 6_8 &= 110_2 \ 3_8 &= 011_2 \ 5_8 &= 101_2 \end{aligned}$$

Получим число $110011, 101110_2$, убрав незначащие нули, получим: $110011, 10111_2$.

N₂7

Задание: перевести число 0,110101 из СС с основанием 2 в СС с основанием 16.

Воспользуемся переводом по сокращённому правилу, т.к. $2^4=16$. Добавим в число незначащие нули, чтобы получить четвёрки цифр: $0000,11010100_2$. Переведём:

$$egin{array}{l} 0000_2 = 0_{16} \ 1101_2 = D_{16} \ 0100_2 = 4_{16} \end{array}$$

Получим $0, D4_{16}$.

Nº8

Задание: перевести число 0,101111 из двоичной СС в десятичную.

Переведем по правилу:

$$\begin{array}{c} 0*2^{0}+1*2^{-1}+0*2^{-2}+1*2^{-3}+1*2^{-4}+1*2^{-5}+1*2^{-6}=\\ =0+\frac{1}{2}+0+\frac{1}{8}+\frac{1}{16}+\frac{1}{32}+\frac{1}{64}=\frac{32+8+4+2+1}{64}=\\ =\frac{47}{64}=0,734375 \end{array}$$

Т.к. в условии сказано до пятого знака после запятой, округлив, получим 0,73438

Задание: перевести число В7,93 из СС с основанием 16 в десятичную СС.

Учтём, что $B_{16}=11_{10}$. Переведём по правилу:

$$11*16^{1} + 7*16^{0} + 9*16^{-1} + 3*16^{-2} =$$
 $= 176 + 7 + \frac{9}{16} + \frac{3}{256} = \frac{46848 + 147}{256} =$
 $= \frac{46995}{265} = 183,574219$

По условию, нам нужны 5 знаков после запятой, округлив, получим 183,57422.

Nº10

Задание: перевести число 94 из десятичной СС в фибоначчиевую:

- 1. Найдем все числа Фибоначчи \leq 94 и запишем в обратном порядке: 89,55,34,21,13,8,5,3,2,1.
- 2. Найдём из суммы каких чисел Фибоначчи можно получить 94:

$$94 = 55 + 34 + 5$$

3. Заменим Используемые числа в ряду единицами, а остальные - нулями: 0110001000.

№11

Задание: перевести число {^1}{^2}{^3}21 из 7 симметричной СС в десятичную.

$$(-1)*7^4 + (-2)*7^3 + (-3)*7^2 + 2*7^1 + 1*7^0 =$$

= $(-2401) + (-686) + (-147) + 14 + 1 = -3219$

Получаем ответ -3219.

Nº12

Задание: перевести число 10010010 из ФСС в десятичную СС.

Данное число имеет 8 разрядов, найдем первые 8 чисел Фибоначчи и запишем в обратном порядке: 34, 21, 13, 8, 5, 3, 2, 1.

В данном числе каждая единица соответствует числу Фибоначчи из ряда по номеру разряда в числе. Из этих чисел состоит сумма искомого:

$$34 + 8 + 2 = 44$$

Искомое число — 44.

Nº13

Задание: перевести число 100101,001001 из СС Бергмана в десятичную.

Воспользуемся формулой:

$$x = \sum_{k=-6}^{5} d_k * rac{(1+\sqrt{5})^k}{2^k}$$

Получим:

$$x = 1*rac{(1+\sqrt{5})^{-6}}{2^{-6}} + 0 + 0 + 1*rac{(1+\sqrt{5})^{-3}}{2^{-3}} + 0 + 0 + 1*rac{(1+\sqrt{5})^{1}}{2^{1}} + 0 + 1*rac{(1+\sqrt{5})^{2}}{2^{2}} + 0 + 0 + 1*rac{(1+\sqrt{5})^{5}}{2^{5}} pprox 15,33939$$

Получаем примерный ответ 15,33939.