

DESARROLLO DE UN SISTEMA QUE MEJORE LA EFICIENCIA DE LA PRODUCCIÓN

Profesor: Luis Pisani Codoceo

Alumno: Matías Carrasco Ampuero

Fecha: 6 de diciembre 2023

Resumen ejecutivo

Vibro Sur Ltda, es una empresa de prefabricados de hormigón, fundada en 1994 en la ciudad de Chillán, el año 2011 se expande a la ciudad de Talca, contando el día de hoy con más de 60 trabajadores en ambas sucursales. Su misión es entregar soluciones confiables y los productos de la más alta calidad y respondiendo a la demanda en el menor tiempo posible, gracias al espíritu vanguardista en el uso de equipos y tecnología desde su creación.

A pesar de ser una empresa con experiencia en el rubro, ésta cuenta con un amplio margen para seguir mejorando, debido a que la producción no es la más eficiente, por la ausencia de una buena planificación y bajo control.

Al analizar la situación actual de la empresa, se definió como objetivo crear un sistema de planificación y control, disminuyendo los tiempos muertos en mano de obra, con la finalidad de reducir los costos y generar una producción más eficiente, obteniendo como resultado una mayor rentabilidad del capital invertido.

Para subsanar estas deficiencias, se busca crear un inventario digital, que permita tener información en tiempo real para poder tomar mejores decisiones, lo que ayudará a tener una planificación más eficiente. Para el cumplimiento de estos objetivos se utilizaron herramientas del modelo de gestión Lean Manufacturing.

Para fines de este informe, se implementará la solución en la línea de producción de baldosas, donde se realizaron distintas mediciones y se evaluó para determinar el impacto que se está generando, su utilidad y analizar alguna deficiencia que exista y mejorarla.

Con los resultados obtenidos, se observa que el objetivo general trazado se cumplió, al crear un sistema de planificación y control, el que permitió disminuir los tiempos muertos en mano de obra, reduciendo los costos y generando una producción más eficiente, teniendo como resultado una mayor rentabilidad del capital invertido. Sin embargo, se debe mencionar que no todos los objetivos específicos fueron logrados, independiente de eso, estos reflejaron un impacto positivo en los resultados de Vibro Sur.

Abstract

Vibro Sur Ltda is a precast concrete company founded in Chillan in 1994. In 2011, it expanded to the city of Talca, and as today, it employs over 60 workers across both branches. Its mission is to provide reliable solutions and products of the highest quality, responding to demand as quickly as possible. Thanks to its forward-thinking spirit in using equipment and technology since its inception, the company has positioned itself as the leading Enterprise in the Nuble region.

Despite being a leading company in the region, there is plenty of room for further growth due to inefficient production, mainly because of the need for proper planning and control measures.

Analyzing the company's current situation. The main goal was to create a planning and control system to reduce downtime labor, thereby cutting costs and achieving more efficient production, resulting in increased profitability of invested capital.

To improve these deficiencies, the company aims to implement a digital inventory that provides real-time information to make better decisions, ultimately leading to the abovementioned objectives, where Lean Manufacturing tools were used.

For the purposes of this report, the solution will be implemented in the production line, where various measurements were taken and evaluated to assess the impact and utility, identify any defect, and improve it.

With the result obtained, it is observed that the overall objective set was achieved by creating a planning and control system. This system allowed a reduction in downtime in labor, lowering costs and generating more efficient production. As a result, there was increased profitability of the invested capital. However, it should be mentioned that not all specific objetives were achieved. Despite that, these objectives still reflected a positive impact on the result of Vibro Sur.

Tabla de contenido

1. Empresa y Diagnóstico	6
1.1 Contexto	6
1.2 Problemática	7
2. Objetivos	11
3. Estado del arte / Solución / Metodología	12
3.1. Estado del arte	12
3.2. Metodologías	13
3.2.1. Lean Manufacturing	13
3.2.2. La metodología Six Sigma	14
4. Solución escogida	16
4.1.1. 5S:	17
4.1.2. Mantenimiento Productivo Total (TPM):	17
4.1.3. Intercambio de troqueles en un minuto (SMED):	17
4.1.4. Kanban:	17
4.1.5. Flujo continuo:	17
4.6. Last Planner System:	17
4.2 Análisis de riesgo:	19
5. Evaluación económica	21
6. Metodología de implementación	23
6.1. Inventario Digital:	23
6.2. Kanban:	23
6.3. TPM:	23
7. Medidas de desempeño	25
7.1. Aumentar el tiempo productivo	25
7.2. Disminución de tiempos muertos en la producción	25
7.3. Disminución del capital inmovilizado	25
7.4. Aumento en la producción de baldosas	26
8. Desarrollo	27
8.1. Inventario digital:	27
8.2. Kanban:	28
8.3. TPM:	29
8 4 IPS·	31

9. Resu	ultados	33
10. Co	nclusión, discusión y recomendación	38
10.1.	Discusiones	38
10.2.	Conclusión	39
10.3.	Recomendación	40
11.	Referencias	40
12.	Anexos	41

1. Empresa y Diagnóstico

1.1 Contexto

Vibro Sur LTDA, es una empresa Chillaneja que lleva más de 25 años en el mercado, siendo capaz de adaptarse a las distintas crisis y escenarios, tanto económicas como sociales que se han presentado desde su creación. Esta empresa se dedica a la elaboración de prefabricados de hormigón, destinados a proyectos de infraestructura en el sector público y privado. Hoy en día cuenta con dos sucursales, una ubicada en la ciudad de Talca y su casa matriz en Chillán.

Actualmente, la empresa cuenta con una cartera de más de 180 productos. Dentro de los artículos que se fabrican, los de mayor venta son: adoquines, soleras de todos los tipos, tubos de alcantarillado de diversas medidas, módulos, basas y baldosas. Como productos secundarios, podemos mencionar los nichos de medidor, pastelones, postes, panderetas, entre una gran variedad de otros productos. Estos son comercializados principalmente en ventas al por mayor a empresas de diversos rubros principalmente constructoras y al por menor a personas naturales. Cabe destacar que la competencia directa de Vibro-Sur, tiene su fábrica en Talca, la que la hace menos competitiva por los altos costos del flete, así como también, de varios productores a pequeña escala los que poseen una bajísima participación de mercado.

La impronta de su creador, ha sido siempre entregar el mejor servicio y un producto de excelente calidad, para lo cual la empresa, permanentemente ha ido incorporando maquinarias modernas en sus líneas de producción, para ir mejorando día a día sus estándares, lo que le ha permitido tener una amplia gama de productos que son demandados por la industria y comunidad, teniendo los mejores precios del mercado y una amplia disponibilidad de stock, permitiéndole cumplir en los plazos de entrega. Es relevante destacar, que Vibro Sur LTDA cuenta con la certificación ISO CASCO 5 entregado por CESMEC, la que acredita que sus productos cuentan con un estándar de alta calidad.

El área de producción de Vibro Sur LTDA siempre ha ido a la vanguardia en cuanto a la maquinaria, lo que ha significado obtener productos de muy buena calidad, pero esto ha requerido grandes inversiones de dinero en tecnología de alta especialización, para la automatización de sus líneas de producción. Lamentablemente no ha ocurrido lo mismo en el departamento de planificación y administración, los que no han sido modernizados, de acuerdo al explosivo crecimiento que ha experimentado la empresa en esta última década, siendo poco eficiente, lo que se ha generado grandes problemas de coordinación, control y planificación.

1.2 Problemática

A pesar de ser la empresa líder en la región de Ñuble, está aún cuenta con un amplio espacio para seguir mejorando las distintas áreas de producción, con esto permitirá ser más competitiva y por ende los clientes se verán beneficiados. Se requiere llevar a cabo cambios en el área de administración y planificación, capacitando al personal con nuevas herramientas informáticas para obtener una mejor coordinación entre todos los departamentos de la empresa.

Un problema que podemos encontrar, es su forma de funcionamiento, recayendo todas las decisiones de corto, mediano y largo plazo en el conocimiento y la experiencia que maneja el dueño. Esto se debe principalmente a la inexistencia de sistemas de información y falta de una línea de mando estructurada, lo que genera ineficiencias y grandes pérdidas de tiempo para la puesta en marcha de muchos turnos, debido a que las distintas cuadrillas tienen que esperar que se les entregue la planificación del día.

Gráfico N°1: Tiempo productivo mensual

El gráfico anterior, nos muestra el tiempo que pierde cada trabajador al comenzar su jornada laboral, lo que equivale a un 4,44% significando 8 horas de pérdida al mes, lo que se traduce prácticamente en un día de producción perdido, conocido el promedio de producción actual de 800 baldosas día, es decir, 88 baldosas hora aproximadamente, se concluye que la pérdida mensual de producción de baldosas por falta de planificación en el corto plazo es de 711 baldosas.

En el anexo N°1, se adjunta la tabla con la información utilizada para el gráfico.

Otro problema que se puede observar es la falta de mantenimiento preventivo en la maquinaria, en el siguiente gráfico se mostrará la cantidad de tiempo que se pierde por las fallas en la máquina baldosera.

Gráfico N°2. Tiempo perdido por fallas mecánicas en la baldosera

Se pudo observar el tiempo mensual que está detenida la baldosera por fallas. El que corresponde aproximadamente a un 30% mensual, lo que significa 6,75 días. Esto también se presenta en otras máquinas de la empresa, pero para fines de este estudio se realizaron mediciones sólo en la baldosera.

En el anexo $N^{\circ}2$, se adjunta la tabla donde se recopiló la información y se desarrolló el gráfico.

Otro problema que se presenta en la producción, es el desabastecimiento de materias primas, este ocurre exclusivamente por falta de una planificación y control. Actualmente, la empresa está teniendo este problema al menos 2 veces por semana y los tiempos de espera son aproximadamente de 2 horas por evento, lo cual se traduce en 16 horas al mes, lo que representa a un 9% de tiempo muerto al mes.

Gráfico N°3. Horas trabajadas versus horas sin trabajar por falta de materias primas

Por otro lado, el no tener una producción eficiente, obliga a la empresa a trabajar con un gran stock permanente en toda su línea de productos, ya que los clientes principales emiten grandes órdenes de compra, las que no se podrían satisfacer rápidamente si no se tuviera el stock disponible. Esto genera un costo de capital muy alto.

Los datos utilizados para esta información se encuentran en el anexo N°3.

Por último, el sistema de control que maneja la empresa es poco eficiente y se mostrará en la siguiente imagen.

Imagen N°1: Libro control de producción

Imagen N°2. Control de inventario

Por lo tanto, se aprecia una cadena de problemas que tienen un resultado común, que es la ineficacia en la toma de decisiones por parte de la administración, la que genera grandes pérdidas de tiempo y aumento en los costos tanto de producción como financiero.

2. Objetivos

Objetivo general: Crear un sistema de planificación y control, disminuyendo los tiempos muertos en mano de obra, con la finalidad de reducir los costos y generar una producción más eficiente, obteniendo como resultado una mayor rentabilidad del capital invertido.

Objetivos específicos:

- Aumentar 5% el tiempo productivo al evitar la falta de materias primas
- Disminuir 10% los tiempos muertos por averías en la maquinaria.
- Disminuir 4% las horas hombre no productiva al comienzo de cada turno.
- Aumentar 20% la producción de baldosas
- Disminuir en un 10% el capital inmovilizado en stock.

Objetivo Smart:

- Específico: Tiene por finalidad obtener una mayor producción, abordando las principales deficiencias que se presentan en la fabricación de los diversos productos, logrando así una mayor eficiencia.
- Medible: Comparar la producción promedio de meses anteriores versus la producción posterior a la solución implementada, entregando que tan eficiente es la solución planteada.
- Alcanzable: Con cambios parciales en la estructura actual del área de producción, se pueden alcanzar las metas que se buscan en los objetivos específicos y con eso lograr el objetivo general planteado.
- Relevante: Se refleja directamente en los resultados de la empresa, generando una externalidad positiva en los trabajadores.
- Tiempo: Se determinó un plazo de dos meses para implementar y medir la solución propuesta, obteniendo resultados que reflejan el impacto que este género.

3. Estado del arte / Solución / Metodología

3.1. Estado del arte.

La industrialización de procesos toma cada vez más fuerza en muchos rubros, la construcción no ha sido la excepción. Los prefabricados de hormigón están siendo cada vez más utilizados, ya que permite disminuir los tiempos de ejecución en obra, mejorando sustancialmente la productividad.

Si bien existen muchas empresas, las cuales se dedican a los prefabricados de hormigón, destacándose aquellas que han logrado implementar metodologías que les ha permitido mejorar su sistema productivo, obteniendo mejores rendimientos.

Un buen ejemplo es la empresa Prefabricar Lavaderos S.A.S, ubicada en la capital colombiana, la cual se encarga de la fabricación y comercialización de elementos prefabricados de hormigón.

Donde se buscó implementar la metodología **Lean Manufacturing**, buscando eliminar todos los procesos que no agregan valor al producto final, según el diagnóstico realizado por dicha empresa. Una vez realizada la implementación de esta metodología, se observaron cambios beneficiosos para la empresa, siendo capaces de eliminar procesos, los que sólo retrasaban la producción y provocaban un aumento en los costos. El resultado más destacable, se observó en el proceso de vaciado donde se logró una reducción de tiempo de un 20,18% y un 6,85% en el tiempo final en la fabricación de sus productos.

Esta disminución en el tiempo permitió un aumento de los ingresos que percibió la empresa, dado que aumento en 16 unidades la producción diaria de lavaderos. Si esto se extrapola a un año normal, se obtendría una mayor producción de 1.500 unidades fabricadas a un mismo costo.

3.2. Metodologías

3.2.1. Lean Manufacturing tiene sus inicios alrededor del año 1950, en el área de producción de la reconocida marca de automóviles Toyota. Ésta se centró en ocho actividades que no agregan valor al producto final, dentro de las cuales, podemos encontrar la sobre producción, los tiempos de espera entre cada uno de los procesos, el transporte excesivo, el sobre procesamiento de una actividad específica, un inventario con acumulación de productos o materiales por parte de los subprocesos, movimientos que no son necesarios para concretar la actividad respectiva, la producción defectuosa y por último personal no capacitado.

Esta metodología, se enfoca en diversas técnicas para cumplir sus objetivos. Estos serán descritos en la siguiente imagen.

Imagen N° 3: Estructura Lean Manufacturing: Fuente SCRIBD (Cesario Sánchez Salazar)

La estructura de **Lean Manufacturing**, es la representación de una casa, donde el techo son las metas que se buscan alcanzar, pero para lograrlo es importante alcanzar la excelencia operacional. Luego se pueden observar los pilares de la casa, estos corresponden al JIT (hacer las piezas correctas en los tiempos correctos) y JIDOKA (realizar productos de calidad) y

posteriormente en las fundaciones, es importante tener procesos estandarizados, buscando una mejora continua y aprovechar al máximo el talento humano. Finalmente, se pueden observar las herramientas para solucionar los problemas, entre las que destacan las de diagnóstico, operativas y de control.

Debido a los buenos resultados que obtuvo Toyota con esta metodología, varias empresas de gran tamaño han incorporado Lean Manufacturing para mejorar sus líneas de producción, entre las que podemos mencionar Intel, Textrone, Caterpillar, entre otras.

A nivel local, se puede ver que muchas empresas están en búsqueda de hacer más eficiente sus procesos productivos y es así que han implementado Lean Manufacturing obteniendo muy buenos resultados. Entre las que sobresalen podemos encontrar grandes empresas como Soquimich, Codelco, entre otras.

3.2.2. La metodología Six Sigma, está enfocada en la gestión y el mejoramiento de los procesos, centrándose en la disminución de variabilidad y la mejora en la calidad de los productos fabricados. Esta metodología tiene sus inicios en el año 1980 y fue desarrollada por Motorola, con la finalidad de hacer más eficiente su negocio, obteniendo resultados positivos. Conocida la experiencia de Motorola, otras empresas prestigiosas a nivel global comenzaron a implementar esta metodología, por ejemplo, Sony, Toshiba, Lockheed entre muchas otras. Por otro lado, podemos observar que también se ha utilizado este método en empresas más pequeñas, como es el caso de Ewos, ubicada en Coronel, Chile

Esta metodología busca reducir costos y desperdicios, aceleración en los tiempos de los procesos, aumento de la satisfacción del cliente y por ende, aumento de las utilidades.

Hay dos formas de implementar esta metodología, esto depende si el proceso a mejorar es uno ya creado o hay que crear uno nuevo. Con fines de este estudio, se enfocará solo en el primer caso, conociendo que ya existe un proceso, pero hay que mejorarlo. Este se denomina DMAIC, el cual tiene los siguientes pasos de acuerdo a su acrónimo.

- 1- Definir: Corresponde a definir el cliente ideal e identifica el objetivo del proyecto
- 2- Medir: Se enfoca en medir los procesos actuales de la empresa y obtener los datos los que serán utilizados más adelante.
- 3- Analizar: Se determina con los datos obtenidos en la medición, las causas de los problemas que está teniendo la empresa.

- 4- Innovar: Se busca seleccionar e implementar una solución para el problema visto anteriormente y ver cómo funciona.
- 5- Control: Por último, tener un control sobre los resultados y ver posibles mejoras.

Imagen N°4: Estructura Six Sigma: Fuente APD (Marta García)

Si bien, ambas metodologías tienen como objetivo tener una producción más eficiente, estas lo abordan de distintas maneras. Es por esto que se realizó una matriz donde se le asignan diversas ponderaciones siendo 7,0 la nota máxima y 1,0 la mínima, de acuerdo a las necesidades que busca mejorar la empresa.

	Metodología		
Criterio	Six Sigma	Lean Manufacturing	
Estandarización de procesos	5,0	5,0	
Control más certero	5,5	5,5	
Enfoque cliente	5,0	4,0	
Eliminar desperdicios	4,5	6,0	
Reducir costos	4,5	6,0	
Promedio	4,9	5,3	

Tabla N°1: Comparación en el enfoque de ambas metodologías.

Como se puede observar en la tabla anterior, la metodología Lean Manufacturing arroja mejores resultados.

4. Solución escogida

Una vez estudiadas ambas metodologías, se procedió a seleccionar Lean Manufacturing, debido a que esta se enfoca mayormente en eliminar cualquier actividad que no entregue valor al producto final, mientras que Six Sigma se enfoca en mejorar la calidad del producto y disminuir la variabilidad en el proceso productivo.

Como se mencionó anteriormente, la metodología Lean Manufacturing entrega varias herramientas para tener una producción más eficiente, pero para esto es importante seguir la estructura mencionada en la imagen 3.

A continuación, se analizarán las principales herramientas de esta metodología y posteriormente se realizará una matriz en la cual se determinará las que son necesarias de implementar en Vibro-Sur.

- 4.1.1. 5S: Esta herramienta sigue 5 principios, los cuales traducidos al español son: clasificar, ordenar, limpieza, estandarizar y disciplina. Con esto se espera que en el puesto de trabajo se clasifique lo que sirve y eliminar lo que no, luego organizar el lugar para optimizar tiempos y espacio, posteriormente mantener libre de suciedad el puesto de trabajo, estandarizar normas de trabajo y por último crear un hábito de disciplina.
- 4.1.2. Mantenimiento Productivo Total (TPM): Este consiste en minimizar las averías que pudieran ocurrir en las maquinarias, dado que éstas traen consigo varios factores negativos para una empresa tales como, tiempos muertos, disminución en la calidad del producto, elevación de costos, entre otros. Esta herramienta tiene 3 pilares esenciales: mantenimientos predictivos, preventivos y correctivos.
- 4.1.3. Intercambio de troqueles en un minuto (SMED): Esta técnica busca disminuir el tiempo que se pierde cuando se cambia un equipo. Para lograr esta meta se requiere tener todos los implementos que se usarán en el nuevo equipo mientras se sigue produciendo.
- 4.1.4. Kanban: Esta herramienta consiste en un método visual, el cual sirve para poder dirigir los equipos de trabajo y asignar las tareas que se deben ejecutar.
- 4.1.5. Flujo continuo: Esta técnica se centra en mantener una línea de producción ininterrumpida.
- 4.6. Last Planner System: También conocido como sistema de control de la producción del último planificador, tiene por finalidad reducir la incertidumbre y la variabilidad en los procesos a través de una buena planificación, seguimiento y control de estos.

En la siguiente matriz, se podrá observar cuál de las herramientas tiene mayor relevancia para solucionar los problemas vistos anteriormente, siendo la 7,0 la ponderación más alta y 1,0 la más baja.

	Criterio					
Herramientas	Reducción de desperdicio	Viabilidad	Sostenibilidad	Costo inicial Bajo	Flexibilidad	Promedio
58	5,0	5,0	3,0	7,0	3,0	4,6
ТРМ	6,0	5,0	5,0	4,0	5,0	5,0
SMED	6,0	4,5	3,0	6,0	3,0	4,5
Kanban	5,5	6,0	6,0	7,0	4,5	5,8
LPS	6,0	6,0	5,5	7,0	3,0	5,5
Flujo continuo	6,0	4,0	4,0	5,0	3,0	4,4

Tabla N°2: Matriz para selección de herramientas

Se puede observar que hay 3 herramientas las cuales tienen una ponderación sobre 5, lo que las hace muy importantes para solucionar los problemas de la empresa. Éstas son TPM, Kanban y Last Planner System.

Finalmente, se utilizarán 3 herramientas de la metodología Lean Manufacturing (LPS, Kanban y TPM), además de un inventario digital, el cual entregue información en tiempo real. Con estas herramientas se espera abordar las problemáticas en la planificación, como lo son los tiempos muertos, las fallas en la maquinaria y el desabastecimiento de materia prima, obteniendo como resultado una producción más eficiente.

4.2 Análisis de riesgo:

		Impacto				
		Mínimo	Moderado	Serio	Elevado	Grave
Probabilidad		1	2	3	4	5
Frecuente	5					
Recurrente	4					5) Falta de control sobre la solución implementada.
Posible	3		3) Aumentar el capital inmovilizado		1) Mala planificación con las mantenciones preventivas	
Inusual	2					
Remota	1			4) Algún proveedor no pueda entregar materias primas		

Tabla N°3: Matriz de riesgo

Al implementar la solución planteada, existen muchos riesgos los cuales pueden opacar la nueva metodología, los más visibles son los siguientes:

- 1) Deficiente planificación en las mantenciones preventivas: Dado que se desconoce el estado actual de las maquinarias, los plazos de mantención recomendado por los técnicos pueden no ser los correctos y genere que la planificación sea deficiente. Para evitar esta falla, se tiene planificado detener las maquinarias por un día, hacer una evaluación técnica y diseñar una planificación correcta.
- 2) Mala disposición de los trabajadores de aceptar los cambios: Los trabajadores de Vibro-Sur, a lo largo del tiempo se muestran reacios a realizar cambios en su metodología de trabajo y esto se debe principalmente a que éstos se encuentran adaptados al formato actual, será necesario transmitirles la importancia y ejecutar un control riguroso para asegurarse de que se realicen.
- 3) Aumentar el capital inmovilizado: Debido a que se busca aumentar la producción, se corre un riesgo que el capital inmovilizado aumente, siendo lo opuesto al objetivo de disminuir este, para evitar este problema es importante contar con una comunicación clara entre ventas y producción para que se fabrique únicamente lo solicitado.

- 4) **Déficit de materias primas:** Se cuenta con proveedores responsables y de larga data, pero han existido casos donde los proveedores por diversos factores no han podido cumplir con la entrega solicitada afectando seriamente la producción. Para evitar esto, se tiene contemplado dejar un stock mínimo de materias primas, para no incurrir en este problema.
- 5) Falta de control sobre la solución implementada: Resulta difícil implementar el control y supervisión de forma sistemática, debido a la metodología de trabajo de la empresa. Para mitigar este problema, se buscará implementar un cambio de mentalidad en el personal.

5. Evaluación económica

A continuación, se presentan imágenes que muestran el costo unitario actual de baldosas versus el costo unitario esperado de baldosas con la solución planteada.

En la imagen N°5 se observan los costos de la situación actual.

Costo producción diaria promedio	
Considera una producción promedio de 800 baldosas	
Baldosa con grano	

Requerimiento	precio por kilo	Cantidad día	Precio
Cemento	\$ 150	2600	\$ 390.000
Polvo color	\$ 30	2600	\$ 78.000
Grano	\$ 126	5160	\$ 650.160
Maestro			\$ 40.833
Ayudante			\$ 31.250
Energía			\$ 21.365
RR.HH			\$ 7.770
Jefe mantenimiento			\$ 16.958
Operador Grúa			\$ 6.666
Repuestos			\$ 49.000
visita técnico			\$ 18.666
	Total o	osto día	\$ 1.310.668

Baldosas diarias	Costo baldosa		
800	\$ 1.638		

Extrapolando a un mes normal con 20 días trabajados

Cantid	ad producida	Costo	de producción
	16000	\$	26.213.360

Imagen N°5: Costos diario producción promedio actual

En la imagen N°6, se observa los costos esperados con la solución planteada.

Costo producción diaria promedio con solución
Considera una producción promedio de 1000 baldosas
Baldosa con grano

Requerimiento	precio por	kilo	Cantidad día	Precio	
Cemento	\$	150	3250	\$	487.500
Polvo color	\$	30	3250	\$	97.500
Grano	\$	126	6500	\$	819.000
Maestro				\$	40.833
Ayudante				\$	31.250
Energía				\$	24.221
Contador				\$	7.770
Jefe mantenimier	nto			\$	16.958
Operador Grúa				\$	6.666
Repuestos				\$	25.000
visita técnico				\$	3.425
		Total o	osto día	\$	1.560.123

Baldosas diarias	Costo baldosa
1000	\$ 1.560

Extrapolando a un mes normal con 20 días trabajados

Cantidad producida	Costo d	le producción
20000	\$	31.202.460

Imagen N°6: Costo diario promedio estimado con la solución implementada

En las siguientes imágenes, se desprende que se podrá aumentar la productividad en un 20%, producto de una disminución de los tiempos muertos y quiebres de materias primas, así como también, se observa una disminución del 5% de los costos unitarios de las baldosas.

	Sin implementar Lean Manufacturan	Con Lean Manufacturan implementado	Diferencia
Producción	800	1000	20%
Costo por unidad	\$ 1.638	\$ 1.560	-5,0%

Tabla N°4: Muestra la diferencia en producción y costo

Si se extrapola a un mes estos resultados, se puede apreciar que el impacto pudiese ser muy significativo al llevarlo a las demás líneas de producción de la fábrica, debido a que sólo en una baldosera se lograría un ahorro significativo como lo muestra la siguiente imagen.

Cantidad	Costo sin implementar Lean Manufacturan	Costo con Lean Manufacturan implementado	Ahorro
20000	\$ 32.766.700	\$ 31.202.460	\$ 1.564.240

Tabla N°5: Muestra el ahorro al implementar la solución

Al no existir una inversión inicial, la evaluación económica se centra en el ahorro de los costos por la eficiencia en la producción, no pudiéndose utilizar los indicadores VAN y TIR, ya que estos requieren de una inversión inicial.

6. Metodología de implementación

Como fue mencionado anteriormente, se realizará un inventario y posteriormente se utilizarán 3 herramientas de Lean Manufacturing (Kanban, TPM y LPS)

6.1. Inventario Digital: Esta solución consta de 3 partes.

- Primero, se creó la plantilla de productos que se comercializan en la empresa.
- En segundo lugar, se contabilizó todos los productos almacenados y se le asignó el costo a cada uno, de acuerdo a la información proporcionada por la empresa.
- Por último, se validó la información recopilada en terreno con el supervisor.

6.2. Kanban: Corresponde a la herramienta visual propuesta por Lean Manufacturing.

- Primero, se buscó un lugar donde sea visible y al alcance de todos los que deben relacionarse con este.
- Luego se diseñó el tablero que consta de 3 columnas, las cuales son: cantidad de stock, solicitud de material y material solicitado.
- Finalmente, se definió como se iba a utilizar este sistema y quienes serán los responsables del funcionamiento de esta herramienta.
- 6.3. TPM: Como se mencionó anteriormente, la empresa sólo cuenta con mantenciones correctivas, por lo que se diseñó una lista de chequeo, para realizar los mantenimientos predictivos y preventivos de la maquinaria.
 - Se creó una lista de chequeo, que tiene por finalidad predecir y prevenir fallas, evitando una paralización no deseada.
 - Se designó al encargado de realizar esta labor, así como también, se definió el calendario de mantenimiento y la forma de abordar los diferentes escenarios que se presenten.
- 6.4. Last Planner System: La siguiente estructura de esta herramienta consta de 3 etapas.

Imagen N°7: Corresponde a las etapas del LPS: Fuente Gestión de la producción asesorías spA

- Plan inicial: En esta etapa, se creó la planificación de cómo se abordará la producción. Para lograr esto, es relevante que exista una buena comunicación entre los diversos actores, es decir, que la encargada de venta comunique de manera clara y oportuna las órdenes de compra recibidas para que el jefe de planta planifique la producción.
- Lista de restricciones: Una vez definido el plan inicial, se determinaron las posibles limitaciones que nos encontremos en el proceso y para esto es crucial que exista una buena coordinación entre el jefe de planta, jefe de bodega y los trabajadores.
- Programa semanal: Por último, se realizará una programación semanal, que tiene por finalidad abordar la planificación en el corto plazo, ya que existen modificaciones en el transcurso de la producción y hay que adaptarse.

A continuación, se presentará una carta Gantt con los tiempos que se destinaron para la implementación de las diversas soluciones.

Actividad	Subactividad	Encargado	Estado	Agosto					Septi	embre		Octubre				Noviembre			
Actividad	Subactividad	ejecución	ESTORO	Semana 1	Semana 2	Semana 3	Semana 4	Semana 1	Semana 2	Semana 3	Semana 4	Semana 1	Semana 2	Semana 3	Semana 4	Semana 1	Semana 2	Semana 3	Semana 4
	Creación de la plantilla	Matias	Listo																
Crear inventario	Conteo en terreno	Matias	Listo																
	Validación de información	José	Listo																
Kanban	Creación	Matias	Listo																
Mantenimiento productivo total	Creación lista de chequeo	Matias	Listo																
mantenninento productivo total	Capacitación encargado de mantenimie	Marcelo	Listo																
	Plan inicial	Matias	Listo																
	Lista de restricciones	Matias	Listo																
	Programa semana	Matias	Listo																

Imagen N°8: Corresponde a la carta Gantt definida para el desarrollo e implementación de las soluciones

7. Medidas de desempeño

A la hora de implementar nuevos proyectos, es importante utilizar medidas de desempeño, las que nos permitirán analizar si fue una buena decisión o no la puesta en marcha del proyecto. Los resultados de las medidas de desempeño entregaran información valiosa, la que no es fácil de visualizar sin las medidas, pudiendo éstas entregar los datos concretos de impactos en producción, rentabilidad, costos, entre otros.

7.1. Aumentar el tiempo productivo

El objetivo es aumentar los tiempos productivos, evitando el desabastecimiento de materias primas durante el proceso de fabricación. Este problema se presenta recurrentemente por una falta de planificación y coordinación entre los diversos funcionarios.

KPI 1:

% aumento tiempo productivo = % tiempo productivo sin solución – % tiempo productivo con solución

7.2. Disminución de tiempos muertos en la producción

Se busca disminuir los tiempos muertos que se presentan en la producción, por averías en las maquinarias y falta de planificación al comienzo de cada turno. Estos problemas ocurren netamente por falta de un sistema de control y planificación.

KPI 2:

% disminución de tiempos muertos = % tiempo perdido sin solución – % tiempo perdido con solución

7.3. Disminución del capital inmovilizado

El objetivo es evitar grandes montos de capital inmovilizado esperando ser comercializado, además la sobreproducción trae consigo aspectos negativos, tales como, el deterioro estético de los productos, haciendo que estos bajen de calidad y sean vendidos como productos de segunda mano, otro factor negativo es el riesgo de que se dañen, ya sea,

por el descuido de los funcionarios al operar las maquinarias y también, como por fenómenos naturales, ejemplo, movimientos sísmicos.

KPI 3:

```
% disminución del capital inmovilizado = ( (<u>capital inmovilizado con solución</u>) -1) * 100% ( (capital inmovilizado sin solución) )
```

7.4. Aumento en la producción de baldosas

Con una buena planificación y control se puede lograr una mayor producción de baldosas con los mismos recursos ya destinados.

KPI 4:

 $\% \ aumento \ en \ la \ producción = (\underline{Producción \ nueva - Promedio \ producción \ antigua)} *100\%$

Promedio producción nueva

8. Desarrollo

Una vez definida la metodología de implementación, se da inicio al desarrollo de las diversas actividades.

8.1. Inventario digital: En primer lugar, se creó un inventario digital de todos los productos que fábrica Vibro Sur, como se muestra en la imagen 9. Este estudio, se enfocará sólo en las baldosas.

Α	В		С	D	E	F	G	Н		1
			[Control	de stock					
			[28-08-2023	29-10-2023	29-10-2023	29-10-2023			
	Producto	COSTC	UNIDAD	Stock inicial	Producción	Ventas	Merma	Stock final	VALOR	ZACIÓN STO
	BALDOSA PIEDRA PLAYA AMARILLA 40X40	\$	1.638	180	3790	3816	76	78	\$	128.0
	BALDOSA PIEDRA PLAYA GRIS 40X40	\$	1.638	52	258	173	5	132	\$	215.9
	BALDOSA PIEDRA RIO NEGRA 40X40	\$	1.638	0	3689	3446	74	169	\$	277.1
	BALDOSA CAPRICHO ROJA 40X40	\$	1.638	234	4127	3702	83	576	\$	944.2
	BALDOSA LOS ANGELES OCRE 40X40	\$	1.940	350	1152	133	23	1.346	\$	2.611.1
	BALDOSA MALLORCA CREMA GRANO BLANCO PULIDA	\$	1.940	0	2480	1657	50	773	\$	1.500.3
	BALDOSA MALLORCA GRIS GRANO BLANCO PULIDA	\$	1.940	3.499	9956	13239	199	17	\$	32.7
	BALDOSA MALLORCA GRIS 40X40 COLOR	\$	1.216	200	1784	308	36	1.640	\$	1.994.6
	BALDOSA MALLORCA NEGRA 40X40 PULIDA	\$	1.940	0	1857	210	37	1.610	\$	3.123.1
	BALDOSA MALLORCA OCRE GRANO BLANCO PULIDA	\$	1.940	60	3695	2073	74	1.608	\$	3.119.7
	BALDOSA MALLORCA ROJO GRANO ROJO PULIDA	\$	1.940	1.840	4222	4544	84	1.434	\$	2.781.
	BALDOSA MALLORCA BLANCA PULIDA	\$	1.940	0	2547	1870	51	626	\$	1.214.5
	BALDOSA MINVU 1-GRIS 40X40	\$	1.216	360	2993	2699	60	594	\$	722.4
	BALDOSA MINVU 1-OCRE 40X40	\$	1.216	600	2350	192	47	2.711	\$	3.296.5
	BALDOSAS 64 PANES CREMA PULIDA	\$	1.940	498	1052	506	21	1.023	\$	1.984.9
	BALDOSAS 64 PANES GRIS PULIDA	\$	1.940	320	964	0	19	1.265	\$	2.453.5
	BALDOSA SERENA FDO AMARILLO 40X40	\$	1.638	212	3389	1081	68	2.452	\$	4.016.7
	BALDOSA SERENA FDO NEGRO 40X40	\$	1.638	300	790	0	16	1.074	\$	1.759.5
	BALDOSA SERENA FDO GRIS 40X40	\$	1.638	421	2518	1260	50	1.629	\$	2.667.7
	BALDOSA SEVILLA ROJO PULIDO 40X40	\$	1.940	2.960	849	1319	17	2.473	\$	4.797.6
	BALDOSA SEVILLA GRIS PULIDA 40X40	\$	1.940	578	836	240	17	1.157	\$	2.245.1
	BALDOSA SEVILLA OCRE PULIDO 40X40	\$	1.940	560	1305	78	26	1.761	\$	3.416.1
	BALDOSA SEVILLA NEGRA 40X40	\$	1.940	741	1674	2169	33	213	\$	412.2
	BALDOSA SOLES GRIS GRANO BLANCO PULIDA	\$	1.940	2.750	1032	2080	21	1.681	\$	3.261.8
	BALDOSA LISA 40X40	\$	986	105	1305	673	26	711	\$	700.9
	BALDOSAS MINVU 1 - ROJA 40 X 40	\$	1.216	932	2684	2511	54	1.051	\$	1.278.4
	BALDOSAS MINVU 1 - NEGRA 40X40	\$	1.216	1.542	0	203	0	1.339	\$	1.628.2
	BALDOSAS MINVU 0-OCRE 40X40	\$	1.216	350	3907	1806	78	2.373	\$	2.885.3
	BALDOSAS MINVU O-GRIS 40X40	\$	1.216	1.119	892	1117	18	876	\$	1.065.4
	BALDOSAS MINVU O-NEGRAS 40X40 (BOTONES)	\$	1.216	1.324	3964	5006	79	203	\$	246.5
	BALDOSAS MINVU O-ROJA 40 X40 (BOTONES)	\$	1.216	2.347	0	1223	0	1.124	\$	1.366.7
	BALDOSAS SOLES GRIS 40X40 COLR	\$	1.216	2.761	0	2591	0	170	\$	206.7
	BALDOSAS SOLES OCRE 40X40 COLR	\$	1.216	760	0	650	0	110	\$	133.7
	BALDOSAS SOLES ROJOS 40X40 COLR	\$	1.216	1.450	700	1935	21	194	\$	235.9
								\$ TOTAL	\$	58.725.1

Imagen N°9: Muestra el inventario digital creado para el control.

En la imagen N°9, que corresponde al inventario de baldosas, se puede extraer información valiosa, por ejemplo, aquellos modelos que tienen poco flujo, dado que son muy específicas y no son de venta común al cliente minorista, como lo son las baldosas juego táctil (Minvu 1 y 0) que son utilizadas principalmente en espacios públicos para las personas con discapacidad visual. Para este tipo de productos, se puede utilizar perfectamente el sistema Pull, el cual se enfoca en no producir mientras no se reciba una orden de compra, pero exige una producción eficiente. Por otro lado, existen otros modelos de baldosas que tienen alta rotación, debido a que la compran tanto

empresas como clientes minoristas, por lo que no se ven grandes volúmenes en stock acumulado, llegando a correr el riesgo de perder ventas por producir algún modelo con poca rotación. También se desprende de la imagen 9, que existen varios modelos, que no se venden frecuentemente y se acumulan en bodega dejando el capital inmovilizado, pudiendo disminuirse la oferta de modelos con el objeto de restringir la variabilidad de los procesos.

8.2. Kanban: En el desarrollo de esta herramienta, fue de suma importancia definir para que se va a utilizar, quienes eran los involucrados y como se iba a utilizar.

El primer paso, fue definir que función iba a tener esta herramienta y se llegó a la conclusión de que funcionaría muy bien para evitar los quiebres de materias primas que ocurren en la empresa.

Teniendo la función definida, se procedió a determinar quiénes serán los actores, resultando ser el jefe de planta, la encargada de adquisiciones y el operador de la máquina.

La forma en que será utilizada esta herramienta visual se compone de 3 columnas como se aprecia en la imagen N°10:

La primera columna, es anotar la cantidad de stock disponible al final del día, de todos los insumos involucrados en la producción, el que es ingresado por el operador de la maquinaria una vez finalizada la jornada.

En la segunda columna, el jefe de planta es el responsable, debiendo analizar la información de la columna 1 y posteriormente solicitar la materia prima requerida para la producción planificada.

Finalmente, la encargada de adquisiciones será la responsable de anotar los materiales que fueron solicitados, indicando la fecha de llegada de estos.

En primera instancia, se pensó implementar de manera digital esta herramienta, pero con un personal poco calificado no se obtendrían los mejores resultados, por lo que se determinó realizarlo en formato físico, como se aprecia en la siguiente imagen.

Imagen N°10: Corresponde al Kanban creado e implementado

En el anexo N°4, se adjunta imagen de las sacas (sacos grandes) para tener una referencia visual a lo mencionado en el Kanban.

8.3. TPM: El desarrollo de TPM, tiene por objeto evitar las fallas en la maquinaria.

Para esto se definió que, al comienzo de cada turno, se deberá realizar una mantención preventiva de la maquinaria por los mismos operadores. Ésta consiste en revisar la máquina de acuerdo con una lista de chequeo y en función de esta se determinarán las acciones a ejecutar. La lista de chequeo se muestra en la imagen inferior.

Ibro-Sur HORRIGONES - PREFABRICADOS	L	ISTA DE (CHEQUEO	REVISIÓN	Ni:
RESPONSABLE:					
FECHA:					
MAQUINARIA:					
MANTENCION PR	REVENTIVA	REALIZADO	MANTENCIÓN PREDICT	IVA	REALIZADO
ORDEN Y LIMPIEZA PARA EL D ACTIVIDAD	ESARROLLO DE LA		REVISAR ESTADO DE LOS CABLES		
APRETAR TODOS LOS PERNOS			VERIFICAR ESTADO DE LOS PERNOS		
ENGRASAR PIEZAS MOVILES			REVISAR ESTADO DE LOS MOLDES		
REVISAR TENSION DE LAS COR	REAS		REVISAR ESTADO DE LAS CORREAS		
REVISAR NIVEL LIQUIDO HIDR	AULICO		REVISAR ESTADO DE LAS CADENAS		
REVISAR ALERTAS EN EL PANE	L DE CONTROL		REVISAR ESTADO ENGRANAJES		
VERIFICAR FUNCIONAMIENTO	NORMAL DE PIEZAS				
VERIFICAR APAGADO DE EME FUNCIONANDO	RGENCIA				
OBSERVACIONES Y COMENTA	RIOS:				
FIRMA OPERADOI	R MAQUINARIA	-	FIRMA RESPO	ONSABLE MA	NTENCIÓN

Imagen N°11: Lista de chequeo creada

La finalidad de esta lista de chequeo, es prevenir que existan fallas en los distintos componentes de la maquinaria, a través de un esquema de revisión permanente. Pudiendo diferenciarse mantenciones preventivas, como son el engrase de las piezas móviles, el apretado de los pernos, nivel del líquido hidráulico, entre otros y por otro lado, están las mantenciones predictivas donde se verifica el estado de las correas, las cadenas, pernos, entre otras cosas, con la finalidad de evitar detenciones prolongadas de la maquinaria que afectan a la eficiencia de la producción.

8.4. LPS: Por último, se desarrolló el LPS, donde el plan inicial considera todos los pedidos agendados en un mes, para planificar la producción de los distintos productos y asignar los tiempos de entrega a cada uno de ellos, buscando la mejor eficiencia, como se muestra en la siguiente imagen.

	PLAN INICIAL PRODUCCIÓN BALDOSAS MES ()											
Ultimo molde en p												
Fecha de termino:												
Modelo	Fecha del pedido	Cantidad	Cliente									
-												
-												

Imagen N°12: Corresponde a la plantilla de organización de pedidos de fabricación

					Mes																													
N°	Modelo	Cantidad	Estado	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
1																														\Box		П	\Box	
2																																		
3																																		
4																																		
5																																		
6																																		
7																																		
8																														\square				\Box
9																														\square				
10																																		
11																														\square				
12																														\square				
13																														\square	\square	\Box		
14																														\square	\sqcup	ш	\perp	
15																														\Box		ш	\perp	
16																														ш	\sqcup	\sqcup	\perp	\sqcup
17																														\square			\vdash	\Box
18																														\square	\square	\square	\vdash	
19																																ш	oxdot	ш
20																																		

Imagen N°13: Corresponde a la planilla para organizar la planificación inicial

Una vez creado el plan inicial, se debe considerar todos los problemas que pudieran afectar la producción, como lo son: quiebres de materias primas, fallas en la maquinaria, inasistencia del personal, feriados legales, entre otros.

TABLA DE RESTRICCIONES												
MODELO	MATERIALES	STOCK MATERIALES	FALLAS MECANICAS	INACISTENCIAS	ESTADO							
	CEMENTO											
	GRANO											
	COLOR											
	POLVO											
	CEMENTO											
	GRANO											
	COLOR											
	POLVO											
	CEMENTO											
	GRANO											
	COLOR											
	POLVO											
	CEMENTO											
	GRANO											
	COLOR											
	POLVO											
	CEMENTO											
	GRANO											
	COLOR											
	POLVO											
	CEMENTO											
	GRANO											
	COLOR											
	POLVO											

Imagen N°14: Corresponde a la planilla de restricciones en la producción

Finalmente, se desarrollará un plan semanal, que permitirá adaptar la producción a la variabilidad de la demanda en el corto plazo, debido a que pueden agregarse órdenes de compra, permitiendo planificar la producción de forma eficiente. En la siguiente imagen, se observa como se define la nueva programación semanal, luego de incorporar los cambios producidos por las nuevas órdenes de compra.

							P	lan Semana						
N°	Modelo	Nueva orden	Nueva Cantidad	Restricción no solucionada	Lunes	Martes	Miercoles	Jueves	Viernes	Sabado	Domingo	Días de atraso	Días de adelanto	De acuerdo a programa
1														
2														
3														
4														
5														
6														
7														
8														
9														
10														

bservaciones y comentarios:	

Imagen N°15: Corresponde a la plantilla de planificación semanal

9. Resultados

Para evitar los tiempos muertos por falta de materias primas, se utilizó la herramienta Kanban y se obtuvieron los siguientes resultados.

Gráfico N°4: Horas trabajadas versus horas sin trabajar por falta de materias primas

En el gráfico anterior, se observan los resultados obtenidos en 2 meses sin implementar la solución y un tercer mes con la solución propuesta. En los meses previos a la solución planteada, se determinó el tiempo sin trabajar por falta de materias primas, correspondiendo a un 8,3 y 10,56% en septiembre y octubre respectivamente, mientras que al aplicar la solución las horas no trabajadas por falta de materias primas fue de sólo un 2,22%. Si bien, la información recopilada es de sólo 3 meses, la administración reconoce que es un problema recurrente. En el anexo N°3, se adjunta tabla de cantidades de horas trabajadas por día.

Cabe destacar que se consideraron 20 días de trabajo por mes, para tener una misma base de comparación entre los distintos meses.

A continuación, se mostrarán los resultados obtenidos sin y con la aplicación de la herramienta TPM en la baldosera. En los meses de marzo a agosto se recopiló información del libro control de producción, en septiembre la información fue obtenida en forma presencial, comenzando la implementación de la herramienta TPM a mediados de octubre, teniendo los siguientes resultados.

Gráfico N°5: Corresponde a las horas detenidas de la máquina al mes

El gráfico anterior, muestra los tiempos en que la baldosera estuvo detenida, a partir de mediados de octubre, esos tiempos incluyen las mantenciones preventivas como lo indica la siguiente tabla.

En el anexo $N^{\circ}2$, se encuentran los días que la máquina estuvo detenida por falla mecánica.

		Tiempo e pr			
Octubre			Novie	mbre	
Tiempo lista de			Tiempo lista de		
chequeo	30	Minutos	chequeo	30	Minutos
			Cantidad de veces al		
Cantidad de veces al día	1		día	1	
Días hábiles	11		Días hábiles	21	
Tiempo empleado		Horas mensuales	Tiempo empleado	10,5	Horas mensuales

Tabla N°6: Corresponde a los tiempos de detención de la maquinaria por las mantenciones preventivas.

En los gráficos siguientes, se mostrará un comparativo entre los tiempos muertos de los operarios sin y con la implementación de la herramienta Last Planner System.

Gráfico N°6: Tiempo productivo mensual sin solución

Gráfico N°7: Tiempo productivo mensual con solución

El aumento de la producción de baldosas se ve reflejado al implementar todas las herramientas mencionadas anteriormente, en el gráfico siguiente se observan los resultados obtenidos de la tabla adjunta en el anexo N°5.

Gráfico N°8: Producción diaria promedio

Por último, se mostrará en las siguientes imágenes, la disminución del capital inmovilizado una vez aplicada la solución planteada.

Imagen N°16: Capital inmovilizado previo a la solución

Imagen N°17: Capital inmovilizado posterior a la implementación.

Cualitativamente se observa una buena predisposición de la jefatura, con la solución planteada a través de las herramientas de planificación y control, debido a que se ha logrado simplificar, ordenar y controlar de mejor manera el área de producción, permitiendo fortalecer la coordinación entre los departamentos de ventas y producción.

10. Conclusión, discusión y recomendación

Con los resultados vistos anteriormente y las medidas de desempeño definidas, se puede determinar si se cumplieron los objetivos fijados y determinar si la solución planteada era lo necesario para la empresa.

10.1. Discusiones

- El gráfico N°4, nos muestra que al utilizar la herramienta Kanban, se logró aumentar los tiempos productivos, al evitar el desabastecimiento de materias primas, superando el objetivo específico planteado de un 5%, el KPI 1 entrega un aumento del 7,25%, lo que significa que el tiempo productivo aumento de un 90,55% a un 97.8%.
- De acuerdo con el KPI 2, se observó una disminución de un 11,16% de las horas de detención de máquina en el mes de noviembre, con respecto al periodo marzo septiembre, dejando fuera octubre, ya que se implementó la solución en la segunda quincena del mes, haciéndolo no comparable.

El gráfico N°5, muestra una tendencia a la baja en las horas que la maquina está detenida por fallas a partir de la implementación de la solución propuesta, en los meses de octubre y noviembre.

El resultado del gráfico $N^\circ 5$, considera el tiempo que se utiliza para las mantenciones preventivas y las detenciones por avería, mientras que la tabla $N^\circ 6$ muestra el tiempo utilizado en las mantenciones.

- Con la etapa plan semanal de la herramienta Last Planner System, se buscó disminuir las horas hombre no productivas debido a una planificación deficiente en el corto plazo, resultando una disminución de un 3,33%, como lo muestra el KPI 2.
 - De los gráficos número 6 y 7, se desprende que aún existen tiempos no productivos al comienzo de cada turno, disminuyendo de 480 a 120 minutos al mes.
- Mientras que con la etapa del plan inicial de Last Planner System, se tuvo como objetivo disminuir el capital inmovilizado, cambiando la planificación a largo plazo de acuerdo a los requerimientos de los clientes (sistema Pull), lo que permitió disminuir el stock de productos como lo refleja el inventario en la imagen N°17.

El KPI 3, asociado a este objetivo entrega una disminución de 5,66%.

• En el gráfico de producción diaria promedio, se aprecia que anterior a la implementación de la metodología Lean Manufactuing, esta se comportaba de manera similar mes a mes, exceptuando el mes de junio que presentó una mantención correctiva prolongada y octubre no representa valores reales debido a que la implementación comenzó a mediados de este mes. Una vez puesta en marcha la implementación, se observa una tendencia al alza.

De acuerdo al KPI 4, la producción presentó un alza del 17,81% en comparación al promedio diario de todos los meses evaluados.

10.2. Conclusión

Se desarrolló un sistema para mejorar la eficiencia de la producción, pudiendo concluir que el uso de las herramientas de Lean Manufacturing en Vibro Sur, generó un impacto positivo en la producción.

Los resultados obtenidos en los distintos objetivos específicos demuestran que se logró lo propuesto en alguno de estos y en otros no se obtuvo lo esperado.

En relación al aumento del tiempo productivo al evitar la falta de materias primas y disminuir los tiempos muertos por averías en la maquinaria, estos superaron en un 2,25% y 1,16% respectivamente, a los objetivos específicos planteados.

En cuanto a las horas hombre no productivas al comienzo de cada turno, no se logró alcanzar el objetivo propuesto que era un 4%, obteniendo sólo un 2.88%, esta mejora se debe principalmente a la implementación de una planificación semanal, pero contrarrestado con una mediana aceptación de los operarios al cambio de hábitos.

La suma de todas las mejoras mencionadas anteriormente logró un aumento del 17,81%, en la producción diaria promedio, no siendo suficiente para alcanzar el 20% fijado en el objetivo específico.

Por último, la disminución del capital inmovilizado fue inferior en un 4,34% con respecto al objetivo planteado, principalmente se debe a que el stock disponible no es lo que en este periodo están solicitando los clientes.

Finalmente, se logra concluir que el objetivo general trazado se cumplió, al crear un sistema de planificación y control, el que permitió disminuir los tiempos muertos en mano de obra, reduciendo los costos y generando una producción más eficiente,

teniendo como resultado una mayor rentabilidad del capital invertido. Sin embargo, se debe mencionar que no todos los objetivos específicos fueron logrados, independiente de eso, estos reflejaron un impacto positivo en los resultados de Vibro Sur.

10.3. Recomendación

En primer lugar, se recomienda a la empresa continuar utilizando y perfeccionando las herramientas implementadas a lo largo del proyecto, debido a que estas muestran un impacto positivo, considerando que no involucra gastos adicionales para la operación.

Sabiendo que la línea de producción de baldosas representa el 17% de la fabricación total de Vibro Sur, es que se sugiere replicar esta metodología en las distintas áreas de productos, debido a que existe un 83% de fabricación de otros productos que debieran ser evaluados en busca de mejorar los resultados globales en la empresa.

Finalmente, se recomienda una modernización en el departamento de control, utilizando herramientas tecnológicas para pasar de un control físico a uno digital, lo que requerirá que el personal reciba capacitaciones para implementar este cambio.

11. Referencias

• Informe Lean Manufacturan Scribd: (https://es.scribd.com/document/356963818/CASA-LEAN)

- Articulo descripción herramienta Six Sigma: (https://www.apd.es/herramientas-del-lean-six-sigma/)
- Describe los principios de Last Planner System: (https://gepro.cl/2022/08/16/principios-last-planner-system/)
- Articulo descripción herramientas Lean Manufacturig:
 https://sixphere.com/blog/herramientas-lean-manufacturing/
- Propuesta de aplicación de Lean Manufacturing en empresa similar:
 https://ciencia.lasalle.edu.co/cgi/viewcontent.cgi?article=1030&context=ing_industrial
- Articulo Six Sigma en hospitales chilenos:
 https://repositorio.uc.cl/server/api/core/bitstreams/bc86befd-6a20-4bc1-b617-19f9a1e82b1e/content
- Articulo de empresas que han utilizado el Six Sigma:
 https://es.scribd.com/document/263062160/Empresas-Que-Han-Utilizado-6-Sigma
- Articulo empresa chilena implementando Six Sigma:
 https://repositorio.unab.cl/xmlui/handle/ria/22849
- Articulo descriptivo de la metodología Lean Manufacturan:

https://www.sistemasoee.com/lean-manufacturing/#:~:text=El%20Lean%20Manufacturing%2C%20o%20tambi%C3% A9n,tipo%20de%20valor%20al%20proceso.

- Articulo de empresas que adoptan Lean Manufacturan:
 https://www.latercera.com/pulso/noticia/empresas-adoptaron-lean-mejoraron-metodos-productivos/192943/
- Articulo 10 empresas exitosas con Lean Manufacturan:
 https://www.intedya.com/internacional/831/noticia-top-10-empresas-de-fabricacion-lean-en-elmundo.html
- Articulo datos empresa similar que implemento Lean Manufacturan:
 https://www.datacreditoempresas.com.co/directorio/prefabricar-lavaderos-sas.html

12. Anexos

12.1. Anexo 1: Tabla tiempo perdido al comienzo de cada turno.

Tiempo que se pierde al comienzo de cada turno

Minutos perdidos al día	24	540	Minutos al día
Minutos perdidos a la semana	120	2700	Minutos a la semana
Minutos perdidos al mes	480	10800	Minutos al mes

12.2. Anexo 2: Corresponde a los tiempos detenidos de la máquina por fallas.

													Horas	de la r	náquin	a con d	lesperd	lectos a	l mes												
	Dias																														
Meses	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Marzo	0	0	0	Sábado	Domingo	0	0	1	1	1	Sábado	Domingo	0	1	0	0	0	Sábado	Domingo	0	0	1	0	0	Sábado	Domingo	0	0	1	1	0
Abril	Sábado	Domingo	0	0	0	0	Feriado	Sábado	Domingo	0	1	1	1		Sábado	Domingo	0	0	0	0	0	Sábado	Domingo	0,5	0,3	0	1	1	Sábado	Domingo	
Mayo	Feriado	1	0	0	0	Sábado	Domingo	0	0	1	1	0	Sábado	Domingo	0	0	0	0	0	Sábado	Domingo	0	0	0	1	1	Sábado	Domingo	1	0	0
Junio	0	1	Sábado	Domingo	1	1	0	0	0	Sábado	Domingo	0	1	0	0	0	Sábado	Domingo	0	0	0	0	0	Sábado	Domingo	1	1	0	0	0	
Julio	Sábado	Domingo	0	0	0	1	1	Sábado	Domingo	1	1	1	1	1	Sábado	Domingo	0	0	0	0	0	Sábado	Domingo	0	0	0	0,5	0	Sábado	Domingo	0
Agosto	0	0	0	0	Sábado	Domingo	1	0	0	0	0	Sábado	Domingo	1	1	1	0	0	Sábado	Domingo	0	1	0	0	0	Sábado	Domingo	0	1	0	
Septiembre	0	Sábado	Domingo	1	0	0	0	0	Sábado	Domingo	1	1	1	0	0	Sábado	Domingo	Feriado	Feriado	0	1	1	Sábado	Domingo	0	0	0,5	0	Sábado	Domingo	
Octubre	Domingo	0	0	0	1	1	Sábado	Domingo	Feriado	0	0	0	0	Sábado	Domingo	0	0	1	1	1	Sébado	Domingo	0	0	0	0		Sábado	Domingo	0	0
Noviembre	Feriado	0	0	Sábado	Domingo	0	0	1	0	0	Sábado	Domingo	0	0	0	1	0	Sábado	Domingo	0	0	0	1	0	Sábado	Domingo	0	0	0	0	
*** Los 1 corr																															
*** Los 0 corr	esponden	n a un día s	in fallas er	la maqui	naria	l																									

12.2. Anexo 3:

12.4. Anexo 4: Imagen de las sacas en las cuales se transporta el polvo y grano.

12.5 Anexo N°5: Tabla productividad diaria

	Producción diaria																														
	Dias																														
Meses	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18	19	20	21	22	23	24	25	26	27	28	29	30	31
Marzo	650	886	614	Sabado	Domingo	790	909	Averia	Averia	Averia	Sabado	Domingo	890	Averia	962	678	858	Sabado	Domingo	800	843	Averia	798	736	Sabado	Domingo	734	855	Averia	Averia	844
Abril	Sabado	Domingo	907	680	768	865	Feriado	Sabado	Domingo	880	Averia	Averia	Averia	1045	Sabado	Domingo	890	889	890	845	728	Sabado	Domingo	400	550	720	Averia	Averia	Sabado	Domingo	
Mayo	Feriado	Averia	1089	674	831	Sabado	Domingo	810	756	Averia	Averia	803	Sabado	Domingo	825	968	414	847	945	Sabado	Domingo	843	657	797	Averia	Averia	Sabado	Domingo	Averia	734	833
Junio	647	Averia	Sabado	Domingo	567	Averia	Feriado	Averia	Averia	Sabado	Domingo	Averia	Averia	900	892	689	Sabado	Domingo	761	768	Averia	359	960	Sabado	Domingo	Feriado	900	873	668	402	
Julio	Sabado	Domingo	879	724	890	940	Averia	Sabado	Domingo	Averia	808	800	744	675	Sabado	Domingo	Averia	Averia	827	860	762	Sabado	Domingo	756	Averia	631	867	828	Sabado	Domingo	884
Agosto	792	709	868	940	Sabado	Domingo	Averia	852	845	706	948	Sabado	Domingo	Averia	Feriado	Averia	800	807	Sabado	Domingo	888	Averia	944	855	312	Sabado	Domingo	845	Averia	780	686
Septiembre	828	Sabado	Domingo	386	864	744	995	538	Sabado	Domingo	Averia	Averia	Averia	586	825	Sabado	Domingo	Feriado	Feriado	903	Averia	Averia	Sabado	Domingo	955	963	873	844	1012	Sabado	
Octubre	Domingo	700	900	459	Averia	Averia	Sabado	Domingo	Feriado	924	1152	628	Averia	Sabado	Domingo	780	903	Averia	Averia	942	Sabado	Domingo	Averia	Averia	942	906	Feriado	Sabado	Domingo	1032	964
Noviembre	Feriado	1014	980	Sabado	Domingo	916	873	Averia	863	1113	Sabado	Domingo	Averia	873	921	Averia	1028	Sabado	Domingo	832	995	950	Averia	Averia	Sabado	Domingo	1023	944	950	990	

12.6 Anexo $N^{\circ}6$: Tiempo que se pierde al comienzo de cada turno con solución

	Tiempo que se				
Minutos pero	didos al día	6	540	N	/linutos al día
Minutos pero	didos a la semana	30	2700	Minuto	s a la semana
Minutos pero	didos al mes	120	10800	M	inutos al mes