1. (3 ptos.) Dada la siguiente gramática:

- a) ¿Porqué no es LL(1)? Utilizando las transformaciones vistas en clase, reescribir la gramática eliminando los posibles problemas detectados.
- b) Para la gramática resultante, calculad los primeros de todas las partes derechas de las reglas y los siguientes de todos sus no-terminales.
- c) Construid la tabla de análisis LL(1). ¿Es una gramática LL(1) y porqué?
- d) A partir de la tabla LL(1), obtened la traza LL(1) para la cadena: a b z z b z
- a) No es LL(1) porque tiene recursividad a izquierdas (D) y factorización a izquierdas (A). Aplicando las transformaciones de clase, queda:

b) Los primeros y siguientes son,

```
PRI(A b z) = \{ (, a );
                                                                   SIG(S) = \{ \$, \}, b, a, z \};
                                   PRI(b) = \{ b \};
PRI(B z) = \{ b \};
                                   PRI((S)) = \{ ( \}; 
                                                                   sig(A) = \{ b \};
                               PRI(a S D') = \{ a \};
PRI(b D') = \{ b \};
PRI(\epsilon) = \{ \epsilon \};
PRI(C D A') = \{ (, a \}; 
                                                                   SIG(A') = \{b\};
PRI(a z) = \{ a \};
                                                                   SIG(B) = \{ z \};
PRI(z) = \{ z \};
                                   PRI(\epsilon) = \{ \epsilon \};
                                                                   \operatorname{sig}(C) = \{a\};
                                                                    SIG(D) = \{ z, a \};
                                                                   SIG(D') = \{ z, a \};
```

c) La tabla de análisis LL(1), solo para los no-terminales, es:

	a	b	${f z}$	()	\$
S	(Abz, 1)	(Bz, 2)		(Abz, 1)		
A	(CDA', 3)			(CDA', 3)		
A'	(az, 4)		(z, 5)			
В		(b, 6)				
\mathbf{C}	$(\epsilon, 8)$			((S),7)		
D	(aSD', 9)					
D'	$(\epsilon,11)$	(bD', 10)	$(\epsilon,11)$			

d) Y la traza para a b z z b z

S \$	abzzbz\$	_
A b z \$	abzzbz\$	1
C D A' b z \$	abzzbz\$	1 3
D A' b z \$	abzzbz\$	1 3 8
a S D' A' b z \$	abzzbz\$	1 3 8 9
S D' A' b z \$	bzzbz	1 3 8 9
B z D' A' b z \$	bzzbz	$1\; 3\; 8\; 9\; 2$
b z D' A' b z \$	bzzbz	$1\; 3\; 8\; 9\; 2\; 6$
D' A' b z \$	z b z \$	$1\; 3\; 8\; 9\; 2\; 6$
A' b z \$	z b z \$	$1\ 3\ 8\ 9\ 2\ 6\ 11$
z b z \$	z b z \$	$1\; 3\; 8\; 9\; 2\; 6\; 11\; 5$
\$	\$	$1\; 3\; 8\; 9\; 2\; 6\; 11\; 5$

- 4. (2 ptos.) Cuestiones teóricas (contestad brevemente):
 - a) Considerando la siguiente especificación (seudo-)FLEX,

y dada la siguiente cadena de entrada, babcaababccbcabb, ¿Cuál será la previsible salida del Analizador Léxico?

- b) Para una gramática bien formada; es decir, que no tiene símbolos inútiles y todos sus símbolos no-terminales son accesibles, demostrad que en una tabla LL(1) todas las filas, asociadas a los no-terminales, tienen al menos una acción derivar.
- c) Dado el autómata de prefijos viables (colección canónica de conjuntos de ítems LR(0)) del apartado 2.a, ¿cuál de las siguientes cadenas son prefijos viables de alguna de sus formas sentenciales a derechas? Justificad brevemente la respuesta. Si hay alguna que sea prefijo viable, proporcionad además el conjunto de ítems válidos para dicho prefijo viable.
 - if E + E
 - if E I else break
- d) Suponiendo realizada la fase de declaración de los objetos (inferencia), diseñad un ETDS para la comprobación de tipos asociado a la regla:

$$I \to *id = E;$$

- b) Lo demostraremos por reducción al absurdo. Por construcción de la TA LL(1), para que una fila asociada a un no terminal, $A \in N$, tenga todas sus columnas con la acción error se debe cumplir que: $\forall k: A \to \alpha$; primeros(α siguiente(A)) = \emptyset . La única forma de que esto suceda es que $\alpha = \epsilon$ y siguiente(A)= \emptyset . Pero si siguiente(A)= \emptyset implica que A no será accesible y por tanto la gramática no estará bien formada; invalidando el argumento inicial.
- c) Ambas cadenas son prefijos viables ya que existe un camino en el autómata de prefijos viables desde el estado inicial hasta un estado que reconoce cada una de ellas.

```
Para if E + E, el conjunto de ítems válidos es: { [E ->E + E .], [E ->E . + E ] } Para if E I else break, el conjunto de ítems válidos es: { [I ->break .] }
```

d)

```
\mathbf{I} \Rightarrow * \mathrm{id} = \mathbf{E} ; \mathbf{\underline{si}} \neg [\mathtt{obtTdS}(\mathrm{id.n}, \mathrm{id.t}) \land (\mathrm{id.t} = \mathtt{tpuntero}(\mathrm{id.tap})) \land (\mathrm{id.tap} = \mathrm{E.t})] \mathtt{MenError}(.);
```

2.- Dada la gramatica

 $I \rightarrow if E I F$

I -> break

E -> E + E

E -> id

F -> else I

 $F \rightarrow \epsilon$

a) (1,5 pto) Construid la colección canónica de conjuntos de ítems LR(0).

b) (1,25 pto) A partir de dicha colección, construid la tabla de análisis SLR(1). ¿Es una gramática SLR(1)? Justificad brevemente la respuesta.

	if	break	+	id	else	\$	I	Е	F
0	d2	d3					1		
1						Acept.			
2				d5				4	
3					r2	r2			
4	d2	d3	d7				6		
5	r4	r4	r4						
6					d9/r6	r6			8
7				d5				10	
8					r1	r1			
9	d2	d3					11		
10	r3	r3	d7/r3						
11					r5	r5			

c) (0,75 pto) Sabiendo que el operador + es asociativo a izquierdas y que un "else" debe asociarse al "if" más próximo, resolved adecuadamente los posibles conflictos.

 I_{6} , con un else: Desplazar para que el else vaya asociado al if que le precede. I_{10} con un +: Reducir porque el + es asociativo a izquierdas.

3.- Dadas las siguientes producciones correspondientes a una instrucción condicional,

```
I -> if id I else I
I -> break
I -> id=cte
...
```

- a) (0.75 pto) Escribid un ETDS que deje en el atributo I.numb la cantidad de instrucciones "break" contenidas en la instrucción I
- b) (0.75 pto) Proporciona un ETDS que deje en el atributo I.maxniv el nivel máximo de anidamiento en el que se encuentra una instrucción "break"

```
Ejemplo:
if id id=cte
else if id if id break
else id=cte
else break
```

El ejemplo dejaría en el símbolo inicial I.numb= 2 y I.maxniv= 3

I -> if id I ₁ else I ₂	$\{ I.numb = I_1.numb + I_2.num ;$	
	if I_1 .maxniv <> 0 I_1 .maxniv= I_1 .maxniv + 1;	
	if I ₂ .maxniv <> 0 I2.maxniv=I ₂ .maxniv + 1;	
	I.maxniv = max(I ₁ .maxniv, I ₂ .maxniv); }	
I -> break	{ I.numb = 1 ;	
	I.maxniv = 1; }	
I -> id=cte	{ I.numb = 1 ;	
	I.maxniv = 0; }	