

Outline

- Convolutional neural networks (CNNs)
 - why not use unstructured feed-forward models?
 - key parts: convolution, pooling
 - examples

Machine Learning: CNNs

Our problem: image classification

Feed-forward networks

→ E.g., image classification (1K categories)

<u>Image</u>	<u>Category</u>	No. of Street, or other Persons	
	mushroom		
	cherry		
6, 0 5	•••	input	layer 1

Patch classifier/filter

Convolution

11x11 input

11x11 weights

input

feature map

11x11 input

11x11 weights

Convolution, feature map

filter patch

original image

resulting feature map

Pooling

 We wish to know whether a feature was there but not exactly where it was

pooled map

Pooling (max)

- → Pooling region and "stride" may vary
 - pooling induces translation invariance at the cost of spatial resolution
 - stride reduces the size of the resulting feature map

feature map

feature map after max pooling

Convolutional Neural Network

- Non-Linearity: half-wave rectification, shrinkage function, sigmoid
- Pooling: average, L1, L2, max
- Training: Supervised (1988-2006), Unsupervised+Supervised (2006-now)

(LeCun 13')

Convolutional Neural Network

(Krizhevsky et al., 12')

Convolutional Neural Network

(Krizhevsky et al., 12')

ConvNet features Learned layer 1 CNN filters

96 convolutional filters on the first layer (filters are of size 11x11x3, applied across input images of size 224x224x3)

(Krizhevsky et al., 12')