Indian Institute of Technology Kanpur Department of Mathematics and Statistics

Complex Analysis (MTH 403) Exercise Sheet 10

1. Conformal maps

- 1.1. Let U be a bounded region and $f: \overline{U} \longrightarrow \mathbb{C}$ be a continuous function such that $f \in H(U)$. Assume that $|f| \equiv 1$ on ∂U . Show that $f(U) = \mathbb{D}$. Conclude that, if in addition f is assumed to be in injective, then it is establishes a conformal equivalence between U and \mathbb{D} .
- 1.2. Let $U \subseteq_{open} \mathbb{R}^2$ and $f: U \longrightarrow \mathbb{R}^2$ be orientation preserving, i.e., the linear map $Df(\mathbf{x})$ preserves orientation for every $\mathbf{x} \in U$. Assume that f always maps pairs of orthogonal curves to orthogonal ones. Show that f is holomorphic.
- 1.3. Find the kernel of the action of $GL_2(\mathbb{C})$ on $\hat{\mathbb{C}}$ by Möbius transformations.
- 1.4. Let $z \neq w \in \hat{\mathbb{C}}$. Show that the set of all Möbius transformations that fix z and w form an abelian group. Does this group look familiar to you?

Hint. First look at the special case z = 0 and $w = \infty$.

- 1.5. Find all Möbius transformations T in each of the following cases:
 - (a) $T(\mathbb{D}) = \mathbb{D}$.
 - (b) $T(\mathbb{H}) = \mathbb{H}$.
 - (c) $T(\mathbb{R} \cup \{\infty\}) = \mathbb{R} \cup \{\infty\}.$
 - (d) $T(\mathbb{H}) = \mathbb{D}$.
 - (e)* $T(\partial \mathbb{D}) = \partial \mathbb{D}$.
- 1.6.* We say that $\mathcal{L} \subseteq \hat{\mathbb{C}}$ is a *circle* if it is either a circle in \mathbb{C} or $\mathcal{L} = L \cup \{\infty\}$, where L is a line in the complex plane.
 - (a) Show that the image of a circle in $\hat{\mathbb{C}}$ under a Möbius transformation on $\hat{\mathbb{C}}$, is again a circle in $\hat{\mathbb{C}}$.
 - (b) Show that the inverse image of the real line under a Möbius transformation is a circle in $\hat{\mathbb{C}}$.
 - (c) Show that the group of all Möbius transformation on $\hat{\mathbb{C}}$ acts freely on the set of all circles in $\hat{\mathbb{C}}$.

Recall. The action of a group G on a set X is said to be free if for all $g \in G \setminus \{1\}$ and $x \in X$, one always has $gx \neq x$. An example of free action is the action of a group on itself by left multiplication.

- 1.7. Let z_1, z_2, z_3, z_4 be four distinct points in $\hat{\mathbb{C}}$. The *cross ratio* of z_1, z_2, z_3 and z_4 , denoted by $[z_1, z_2, z_3, z_4]$, is defined by the image of z_1 under the unique Möbius transformation that sends z_2, z_3 and z_4 to 1,0 and ∞ respectively.
 - (a) Show that, for any four distinct points w_1, w_2, w_3 and w_4 in $\hat{\mathbb{C}}$ and Möbius transformation T, $[w_1, w_2, w_3, w_4] = [Tw_1, Tw_2, Tw_3, Tw_4]$.
 - (b) Show that, $[w_1, w_2, w_3, w_4] \in \mathbb{R}$ if and only if w_1, w_2, w_3 and w_4 line on a circle in $\hat{\mathbb{C}}$.
- 1.8. Let $A \in GL_2(\mathbb{C})$ be such that the Möbius transformation f_A has two distinct fixed points in \mathbb{C} .
 - (a) Show that the eigenvalues of A are distinct.
 - (b) Express the fixed points of f_A using the eigenvectors of A.
 - (c)* Suppose that the eigenvalues of A have different absolute values. Show that there exists two distinct points w, w' in $\mathbb C$ such that, for all $z \in \mathbb C \setminus \{w\}$, $f_M^n(z) \xrightarrow[n \to \infty]{} w'$.

- (a) Consider $f(z) \stackrel{\text{def}}{=} \exp\left(\frac{z-1}{z+1}\right)$, for all $z \in \mathbb{D}$. Show that f maps \mathbb{D} conformally onto $\mathbb{D} \setminus \{0\}$.
 - (b) Show that the following maps \mathbb{D} conformally onto an annulus:

$$f(z) \stackrel{\text{def}}{=} \exp\left(-i\log\left(i\frac{1-z}{1+z}\right)^{\frac{1}{2}}\right), \ \forall z \in \mathbb{D},$$

where the branch of logarithm that has been considered is log₀.

- Exhibit a conformal map from U onto V in the following:
 - (a) $U \stackrel{\text{def}}{=} \{z \in \mathbb{C} : \text{Re } z > 0\} \text{ and } V \stackrel{\text{def}}{=} \{z \in \mathbb{C} : |z| > 1\}.$
 - (b) $\{z \in \mathbb{C} : |z-1| < 1 \text{ and } |z-\frac{1}{2}| > \frac{1}{2}\}$ and $V \stackrel{\text{def}}{=} \mathbb{H}$.

2. Conformal metric

Throughout this section, unless otherwise mentioned, we assume that $U \subseteq \mathbb{C}$ is a region and $\rho: U \longrightarrow [0, \infty)$ satisfies the following two properties:

- (M.1) ρ is continuous on U, and (M.2) ρ is C^2 on $\{z \in U : \rho(z) > 0\}$.
- 2.1. In each of the following, show that ρ satisfies (M.1) and (M.2):
 - (a) $U \stackrel{\text{def}}{=} \mathbb{C}$ and $\rho \equiv 1$.
 - (b) $U \stackrel{\text{def}}{=} \mathbb{H}$ and $\rho(z) \stackrel{\text{def}}{=} \frac{1}{\text{Im } z}$
 - (c) $U \stackrel{\text{def}}{=} \mathbb{D}$ and $\rho(z) \stackrel{\text{def}}{=} \frac{2}{1-|z|^2}$.
 - (d) $U \stackrel{\text{def}}{=} \mathbb{D} \setminus \{0\}$ and $\rho(z) \stackrel{\text{def}}{=} -\frac{1}{|z| \log |z|}$
- Suppose Ω is a region and $f:\Omega\longrightarrow U$ is conformal. Show that the function $f^*(\rho)\stackrel{\text{def}}{=}(\rho\circ f)|f'|$ satisfies the properties similar to (M.1) and (M.2) on Ω .
- Determine $f^*(\rho)$ in each of the following cases:
 - (a) $f: \mathbb{D} \longrightarrow \mathbb{H}$, $f(z) \stackrel{\text{def}}{=} i \frac{1-z}{1+z}$ and ρ is same as that of 2.1.b.
 - (b) $f : \mathbb{H} \longrightarrow \mathbb{D}$, $f(z) \stackrel{\text{def}}{=} \frac{i-z}{i+z}$ and ρ is same as that of 2.1.c.
 - (c) $f: D(z_0; r) \longrightarrow \mathbb{D}$, $f(z) \stackrel{\text{def}}{=} \frac{z-z_0}{r}$, where $z_0 \in \mathbb{C}$ and r > 0, and ρ is same as that of 2.1.c. (d) f and ρ are same as those of 1.9.a and 2.1.d respectively.

 - (e) $f: \{z \in \mathbb{C}: -\frac{\pi}{2} < \operatorname{Im} z < \frac{\pi}{2}\} \longrightarrow \mathbb{D}, \ f(z) \stackrel{\text{def}}{=} \frac{1-e^z}{1+e^z}, \ \text{and} \ \rho \ \text{is same as that of } 2.1.c.$
- For any real valued C^2 function φ , defined on some open subset of \mathbb{R}^2 , its *Laplacian* is defined by

$$\frac{\partial^2 \varphi}{\partial x^2} + \frac{\partial^2 \varphi}{\partial y^2}. (2.1)$$

The symbol $\Delta \varphi$ is commonly used to denote (2.1). If $\Delta \varphi \equiv 0$, then we say that φ is a harmonic function. Show that the real part of an analytic function is harmonic.

Let U and ρ be as mentioned above in the beginning of this section. For any $z \in U$ with $\rho(z) > 0$,

$$\kappa_{\rho}(z) \stackrel{\text{def}}{=} -\frac{\Delta \log \rho(z)}{\rho(z)^2}.$$

- 2.5. Calculate $\kappa(z; \rho)$, for an arbitrary $z \in U$, in 2.1.a and 2.1.b.
- 2.6.* Let Ω and f be as in 2.2. Show that, for any $z \in f^{-1}(\{w \in U : \rho(w) > 0\})$, one has the following: $\kappa_{f^*(\rho)}(z) = \kappa_{\rho}(f(z))$.

Using 2.6. conclude in each of 2.1.c, 2.1.d, 2.3.c and 2.3.e, $\kappa_{\rho} \equiv -1$.

2.7. Let ρ be as in 2.1.c. Show that, for any holomorphic function $f: \mathbb{D} \longrightarrow \mathbb{D}$, one has $f^*(\rho) \leq \rho$.