EP \$566525 (1) 1007K15/00F12B24-C12N15/82-1[M07K205:00]-[M07K207:00]-[M07K213:00]-

C12N15/82

11) Publication number: 0 566 525 A2

(12)

2- *-

EUROPEAN PATENT APPLICATION

(21) Application number: 93810190.4

(22) Date of filing: 16.03.93

(51) Int. CI.⁵: **C12N 15/40**, C12N 15/82, C12Q 1/70, A01H 5/00

The applicant has subsequently filed a sequence listing and declared, that it includes no new matter.

③ Priority: 19.03.92 GB 9206016

DOC

- Date of publication of application : 20.10.93 Bulletin 93/42
- Designated Contracting States:
 AT BE CH DE DK ES FR GB GR IE IT LI LU NL
 PT SE
- (1) Applicant: SANDOZ LTD. Lichtstrasse 35 CH-4002 Basel (CH)
- BE CH DK ES FR GB GR IE IT LI LU NL PT SE
- 71 Applicant : SANDOZ-PATENT-GMBH Humboldtstrasse 3 D-79539 Lörrach (DE)
- (84) DE
- 71 Applicant: SANDOZ-ERFINDUNGEN Verwaltungsgesellschaft m.b.H. Brunner Strasse 59 A-1230 Wien (AT)
- 84 AT

(72) Inventor: Van Grinsven, Martinus Quirinus Joseph Marie Wezenland 5 NL-1602 MA Enkhuizen (NL) Inventor: De Haan, Petrus Theodorus Kruideel 34 NL-1602 GL Enkhuizen (NL) Inventor: Gielen, Johannes Jacobus Ludgerus Jan Gooskaai 73 NL-1602 GC Enkhuizen (NL) Inventor: Peters, Dirk Edelmanlaan 4 NL-6703 EX Wageningen (NL) Inventor: Goldbach, Robert Willen Hollandseweg 159 NL-4705 BC Wageningen (NL)

- (64) Recombinant tospovirus DNA constructs and plants comprising such constructs.
- Recombinant Impatiens Necrotic Spot Virus (INSV) DNA constructs comprising an INSV DNA coding for transcription into INSV RNA sequences or into RNA sequences related thereto, the use of such DNA constructs to transform plants having reduced susceptibility to INSV infection and probes for the isolation of INSV or diagnosis of plant INSV related diseases.

EP 0 566 525 A2

The present invention relates to plants having reduced susceptibility to infection from tospoviruses, genetic material capable of generating tolerance to tospoviruses , probes suitable for isolating and diagnosing , and processes for obtaining such plants and genetic material and probes .

Viral infections in plants are frequently responsible for detrimental effects in growth, undesirable morphological changes, decreased yield and the like. Such infections often result in a higher susceptibility to infection in infected plants to other plant pathogens and plant pests. Transmission of plant viruses generally occurs via insect or fungal carriers or may occur through mechanical means.

5

10

15

20

25

35

40

50

55

Plant breeders continuously look to develop varieties of crop plant species tolerant to or resistant to specific virus strains. In the past, virus resistance conferring genes have been transferred from wild types related to commercial plants into commercial varieties through breeding. The transfer of an existing resistance in the wild from the wild type gene pool to a cultivar is a tedious process in which the resistance conferring gene(s) must first be identified in a source (donor) plant species and then combined into the gene pool of a commercial variety. Resistance or tolerance generated in this way is typically active only against one or at best a few strains of the virus in question. One disadvantage of breeding cultivars for resistance to a particular virus species is that there is often a lack of a gene source suitable for conferring disease resistance within the crop species.

Other approaches to limit the effect of virus induced disease on plants include the use of chemicals such as insecticides, fungicides and the like which act against virus carriers, and/or rely on the employment of preventative methods such as efficient phytosanitary working conditions. However, the use of chemicals to combat virus disease by killing the carrier is subject to increasingly tougher governmental regulations which present growers with a decreasing scala of permitted chemical plant-protectants.

In an alternative, a system referred to as "cross-protection" may be employed. Cross-protection is a phenomenon in which infection of a plant with one strain of a virus protects that plant against superinfection with a second related virus strain. The cross-protection method preferentially involves the use of avirulent virus strains to infect plants, which act to inhibit a secondary infection with a virulent strain of the same virus. However, the use of a natural cross-protection system can have several disadvantages. The method is very labour intensive because it requires inoculation of every plant crop, and carries the risk that an avirulent strain may mutate to a virulent strain, thus becoming a causal agent for crop disease in itself. A further possible hazard is that an avirulent virus strain in one plant species can act as a virulent strain in another plant species.

Several studies have indicated that the viral coat protein of the protecting virus plays an important role in cross-protection and that protection occurs when the resident virus and the challenging virus have the same or closely related coat protein structures.

Recent developments in gene manipulation and plant transformation techniques have given rise to new methods for generating virus resistance in plants. Genetically engineered cross-protection is a form of virus resistance which phenotypically resembles natural cross-protection, but is achieved through the expression of genetic information of a viral coat protein from the genome of a genetically manipulated plant. Generation of virus resistance via genetic engineering has been described in for instance, EP 223 452 and reported by Abel et al [(1986) Science 232:738-743]. It was shown that expression of the tobacco mosaic virus strain U1 (TMV-U1) coat protein gene from the genome of a transgenic plant resulted in a delay of symptom development after infection with any TMV strain. Similar results with respect to coat protein-mediated protection have also been obtained for alfalfa mosaic virus (AMV), potato virus X (PVX) and cucumber mosaic virus (CMV).

Although TMV, CMV, AMV and PVX belong to different virus groups, they share a common architecture: in all such viruses the viral RNA is a positive strand RNA encapsidated by a viral coat consisting of many individual but identical viral coat proteins.

The tospovirus particle contains at least 4 distinct structural proteins: an internal nucleocapsid protein N of 29 kd and two membrane glycoproteins: G1, approximately 78 kd, and G2 approximately 58 kd. In addition, minor amounts of a large protein, L, approximately 260 kd have b en detected in virus particles. Tospoviral genomes consist of three linear single stranded RNA molecules of about 2900 nucleotides (nt) (S RNA), about 5000 nt, (M RNA) and about 8900 nt (L RNA), each tightly associated with nucleocapsid proteins and a few

copies of the L protein to form circular nucleocapsids. A schematic structure outlining most properties of an INSV is given in Figure 1. Based on the above and other properties , INSV (like TSWV) has been classified as a member of the tospovirus genus.

Circumstantial evidence has been presented which suggests that an M RNA encoded gene is directly or indirectly involved in the synthesis of the G1 membrane glycoprotein [Verkleij and Peters ,(1983) J. Gen. Virol. 64:677-686].

As mentioned above, tospoviruses such as TSWV, INSV and the like are transmitted by certain species of thrips. These tospovirus carriers belong to the family Tripidae and include tobacco thrips (Frankliniella fusca (Hinds.)). western flower thrips (F. occidentalis (Pergande)), common blossom thrips (F. Schultzei (Trybom)), chilli thrips (Scirtothrips dorsalis (Hood)), Thrips setosus (Moulton), onion thrips (T. tabaci (Lindeman)), F. intonsa and melon thrips (T. palmi (Karny)). The tospovirus is acquired by thrips only during their larval stages . Larvae can transmit the virus before they pupate but adults more commonly transmit the virus. Adult thrips can remain infective throughout their lives .

Tospoviruses are widespread in temperate, subtropical and tropical climate zones throughout the world. The current distribution of tospoviruses covers all continents and makes them one of the most widely distributed of groups of plant viruses. At least 370 plant species representing 50 plant families, both monocotyledons and dicotyledons, are naturally infected by tospoviruses of the Bunyaviridae. Tospoviruses seriously affect the production of food and ornamental crops . Symptoms of tospovirus infection in plants include stunting, ringspots, dark purple-brown sunken spots, stem browning, flower breaking, necrotic and pigmental lesions and patterns, yellows and non-necrotic mottle, mosaic in greens or even total plant death. Most plant hosts display only a few of these symptoms, however, the wide range of symptoms produced by tospovirus infection has complicated diagnosis of the disease and has led to individual diseases being given several different names . A further complication is that tospovirus symptoms within the same plant species may vary depending on the age of the plant, time of infection during the life-cycle of the plant, nutritional levels, environmental conditions, such as temperature, and the like.

Although TSWV has been known for many years, is widely distributed, and is the causal agent of a disease which leads to significant loss in yield in crops and ornamentals, limited progress has been made in identifying sources of genes capable of conferring resistance to TSWV or other tospoviruses . A monogenic TSWV tolerance has been identified in Lycopersicon peruvianum, but this trait has not been transferred to cultivated tomatoes so far , nor has a resistance source been identified for other crop species . The use of natural crossprotection systems to decrease the invasive effects by tospovirus strains capable of causing damage is not well documented. Limited positive results have been reported for tomato and lettuce.

The introduction of genetic information capable of conferring resistance or tolerance to tospoviruses into plant gene pools by means of genetic manipulation provides the breeder and grower alike with a new method for combatting to spovirus induced disease. In particular, it has been found that genetic manipulation techniques may be employed to confer resistance to INSV related disease in plants .

Detailed Description

15

30

40

45

50

According to the present invention there is provided a recombinant INSV DNA construct comprising a DNA sequence coding for transcription into

a) an RNA sequence of an INSV or an RNA sequence homologous thereto;

b) an RNA sequence of an INSV or an RNA sequence homologous thereto capable of encoding for an INSV protein or a part thereof, in which one or more codons have been replaced by synonyms, or an RNA sequence homologous thereto; or

c) an RNA sequence complementary to an RNA sequence according to a) or b),

which INSV DNA is under expression control of a promoter capable of functioning in plants and includes a terminator capable of functioning in plants.

The DNA sequences defined under a), b) and c) above, for the purposes of the present invention will be referred to as "INSV Related DNA Sequences" hereinafter. An INSV Related DNA Sequence according to the invention may be modified as appropriate to create mutants or modified sequences homologous to such INSV Related DNA Sequences from which they are derived, using methods known to those skilled in the art such as site-directed mutagenesis and the like. Such mutants or modified coding sequences are embraced within the spirit and scope of the invention.

The t rm " RNA sequ nce of an INSV " may refer to a sequence of the S, M or L RNA strand, preferably an S or M RNA strand, more preferably to an S RNA strand of an INSV.

The term " RNA sequence homologous to an RNA sequence of an INSV " refers to an RNA sequence of an INSV wherein a number of nucleotides have been deleted and/or added but which is still capable of hybridization to a nucleotide sequence complementary to an RNA sequence of an INSV under appropriate hybridization conditions. For the purposes of the present invention appropriate hybridization conditions may include but are not limited to , for example , an incubation for about 16 hours at 42°C , in a buffer system comprising 5 x standard saline citrate (SSC) , 0.5% sodium dodecylsulphate (SDS) , 5 x Denhardt's solution , 50% formamide and 100 μ g/ml carrier DNA (hereinafter the buffer system) , follow d by washing 3x in buffer comprising 1 x SSC and 0.1% SDS at 65°C for approximately an hour each time.

Preferably , hybridization conditions employed in the present invention may involve incubation in a buffer system for about 16 hours at 49°C and washing 3x in a buffer comprising 0.1 x SSC and 0.1% SDS at 55°C for about an hour each time . More preferably , hybridization conditions may involve incubation in a buffer system for about 16 hours at 55°C and washing 3x in a buffer comprising 0.1 x SSC and 0.1% SDS at 65°C for approximately an hour each time .

10

15

20

25

30

35

40

45

50

55

The length of the INSV Related DNA Sequence will i.a. depend on the particular strategy to be followed, as will become apparent from the description hereinafter. In general, the INSV Related DNA Sequence may comprise at least 20, and suitably 50 or more nucleotides.

The term "promoter" refers to the nucleotide sequence upstream from the transcriptional start site and which contains all the regulatory regions required for transcription, including the region coding for the leader sequence of mRNA (which leader sequence comprises the ribosomal binding site and initiates translation at the AUG start codon).

Examples of promoters suitable for use in DNA constructs of the present invention include viral, fungal, bacterial, animal and plant derived promoters capable of functioning in plant cells. The promoter may express the DNA constitutively or differentially. Suitable examples of promoters differentially regulating DNA expression are promoters inducible by disease carriers, such as thrips, e.g. so-called wound-inducible promoters. It will be appreciated that the promoter employed should give rise to the expression of an INSV Related DNA Sequence at a rate sufficient to produce the amount of RNA necessary to decrease INSV susceptibility in a transformed plant. The required amount of RNA to be transcribed may vary with the type of plant. Particularly preferred promoters include the cauliflower mosaic virus 35S (CaMV 35S) promoter, derivatives thereof, and a promoter inducible after wounding by a disease carrier such as thrips, e.g. a wound inducible promoter. Examples of further suitable promoters include nopaline synthase, octopine synthase and the like.

The term "terminator" refers to a DNA sequence at the end of a transcriptional unit which signals termination of transcription. Terminators are DNA 3'-non-translated sequences that contain a polyadenylation signal, that causes the addition of polyadenylate sequences to the 3'-end of a primary transcript. Terminators active in plant cells are known and described in the literature. They may be isolated from bacteria, fungi, viruses, animals and/or plants. Examples of terminators particularly suitable for use in the DNA constructs of the invention include the nopaline synthase terminator of *A. tumefaciens*, the 35S terminator of CaMV and the zein terminator from *Zea mays*.

In accordance with the present invention, an RNA sequence is complementary to another RNA sequence if it is able to form a hydrogen-bonded complex therewith, according to rules of base pairing under appropriate hybridization conditions (as described hereinabove).

The present invention also provides a vector capable of introducing the DNA construct of the invention into plants and methods of producing such vectors.

The term "vector" as employed herein refers to a vehicle with which DNA constructs of INSV or fragments thereof may be incorporated into the cells of a host organism.

The term "plants" refers to differentiated plants as well as undifferentiated plant material such as protoplasts, plant cells, including cybrids and hybrids, seeds, plantlets and the like which under appropriate conditions can develop into mature plants, progeny thereof and parts thereof such as cuttings, fruits of such plants and the like.

The invention further provides plants comprising in their genome a DNA construct of the invention, and methods of producing such plants. Such methods include plant breeding, plantlets derived from protoplast fusion and the like.

The plants according to the invention have reduced susceptibility to diseases induced by INSV or diseases related to INSV infection and suffer from substantially fewer or none of the disadvantages and limitations of plants obtained by classical methods as mentioned hereinabove.

Many types of plants are susceptible to INSV infection however only in some types is INSV infection known to give rise to a disease stat directly attributable to the virus.

Such types of plants include the ornamental or flowering plants. Examples of such plants include but are not limited to Ageratum, Amaranthus, Anthirrhinum, Aquilegia, Begonia, Chrysanthemum, Cineraria, dover, Cosmos, cowpea, Cyclamen, Dahlia, Datura, Delphinium, Gerbera, Gladiolus, Gloxinia, Hippeastrum, Impatiens, Mesembryanthemum, petunia, Primula, Saint Paulia, Salpiglossis, Tagetes, Verbena,

Viola, Vinca, Zinnia, Pelargonium and the like.

15

25

30

45

50

Other types of plants may be susceptible to INSV infection but these plants may not present disease symptoms directly associated with INSV infection, however such plants may present symptoms of a disease as a result of a secondary infection by a different organism made possible as a result of an initial infection by INSV. Such plants may therefore be viewed as being the subject of an INSV infection related disease and may include plants selected from a wider group of plant types. Further examples of this group of plant types may include vegetable and other crops . Such crop types include alfalfa , aubergine , beet , broad bean , broccoli , brussels sprouts, cabbage, cauliflower, celery, chicory, cow pea, cucumber, endive, gourd, groundnut, lettuce, melon, onion, papaya, pea, peanut, pepper, pineapple, potato, safflower, snap bean, soybean, spinach, squash, sugarbeet, sunflower, tobacco, tomato, water melon and the like.

The invention relates in particular to ornamental plants and preferably to those listed ornamental plants comprising in their plant genome a DNA construct of the invention.

The particular features of tospoviruses including those of INSV are illustrated hereinafter.

The S, M and L RNA are single stranded RNA molecules. The S RNA of INSV is about 3000 nucleotides long(SEQ. ID No.1; SEQ ID No. 2) and comprises two genes, one (SEQ ID No.3) encoding a non-structural protein (NSs) in viral sense, the other one (SEQ ID No.11) encoding the nucleocapsid protein (N) in viral complementary sense. The intergenic region between the NSs- and N-gene can be folded into a secondary structure (Seq ID No. 7 and SEQ ID No.8) . The 5'- and 3'-terminal sequences of the S RNA are capable of hybridizing to each other such that the first nucleotide is opposite (and complementary) to the last nucleotide of said S RNA strand . For the purposes of the description the double-stranded structure obtained by hybridizing both RNA termini will be referred to as a "pan-handle" (SEQ ID No.5 and SEQ ID NO. 6) hereinafter.

The M RNA strand of INSV comprises about 5000 nucleotides (SEQ ID No. 14) . It contains at least two open reading frames, one encoding a non-structural protein (NSm) in viral sense (SEQ ID No.15), and another open reading frame (SEQ ID No.21) in viral complementary sense. This open reading frame is translated on polysomes located on the endoplasmic reticulum where the nascent polypeptide chain is cleaved co-translationally to form the spike proteins G1 and G2 respectively. As with S RNA, the termini of the M RNA strand are complementary to each other and may likewise hybridize to form a "pan-handle" (SEQ ID No.18 and SEQ

The L RNA strand of INSV comprises about 8900 nucleotides. It contains complementary 3' and 5' ends for a length of from about 50 to about 80 nucleotides. The RNA has a negative polarity, with one open reading frame (ORF) located as the viral complementary strand. This ORF corresponds to a primary translation product of about 2875 amino acids in length with an anticipated Mw of between about 300,000 to about 350,000. Comparison with the polymerase proteins of other negative strand viruses indicates that this protein probably represents a viral polymerase. In some mutant strains, shortened L RNA molecules have been found in addition to the wild type, full length L RNA. These shortened L RNAs however are observed to possess the characteristic terminal nucleotide sequences and thus are capable of forming "pan handle" structures. They are also encapsidated with nucleocapsid protein and are included in virus particles. Their presence suppresses symptom development resulting in less severe detrimental effect . Thus , these shortened L RNA molecules can be regarded as defective interfering (DI) RNAs . A defective interfering RNA is one which is capable of interfering in replication by competing with other genomic RNAs for polymerases and therefore is capable of being r plicated, and by so doing inhibits the replication and/or expression of other genomic RNAS with which it is competing .Thus , a DI RNA may comprise any RNA sequence which is capable of being replicated and may be an L, S, or M RNA within the context of the present invention . Such DI RNA sequences may comprise RNA sequences which have had nucleotides either deleted from or added thereto provided that they are capable of competing for polymerases and of replicating .

A preferred embodiment of the invention relates to DNA constructs of the invention coding for transcription into INSV RNA sequences of a "pan-handle" (SEQ ID No.5 , SEQ ID No.6 ; SEQ ID No.18 , SEQ ID No.19), or into INSV RNA sequences homologous thereto.

Another preferred embodiment of the invention relates to DNA constructs of the invention coding for transcription into INSV-RNA sequences of an open reading frame in viral complementary sense i.e. having negative polarity, or into corresponding RNA sequences in which one or more codons have been replaced by their synonyms, or into RNA sequences homologous thireto.

A further preferred embodiment of the invention relates to DNA constructs of the invention coding for transcription into INSV-RNA sequences of a hairpin (SEQ ID No.7 , SEQ ID No.8 ; SEQ ID No.13 , SEQ ID No.16) , or into RNA sequences homologous th reto.

Preferably, the INSV-RNA sequence referred to hereinabove has at least 20 nucleotides. Pr ferably, the INSV-RNA sequence has at least 50 nucleotides.

Examples of DNA constructs suitable for use according to the invention include INSV-Related DNA Se-

quences coding for transcription into (reference is made to the sequence listing):

- i) the viral S RNA nucleotide sequence from 1 to 3017 (SEQ. ID No.1)
- ii) the viral S RNA nucleotide sequence from position 25 to 3017 (SEQ. ID No.2);
- iii) the viral S RNA nucleotide sequence from 87 to 1436 (SEQ. ID No.3);
- iv) the viral S RNA nucleotide sequence from 2080 to 2868 (SEQ. ID No.4);
- v) the viral S RNA " pan-handle " structure comprising:
 - a) a first nucleotide sequence of from about 30 to about 36 nucleotides in length from the 5' end of the viral S RNA and

10

5

25

40

45

50

55

- b) a second nucleotide sequence of from about 30 to about 36 nucleotides in length from the 3' end of the viral S RNA
- vi) the viral S RNA nucleotide sequence from 1437 to 2079; (SEQ ID No. 7)
- vii) the viral S RNA nucleotide sequence from 1440 to 2041; (SEQ ID No.8)
- viii) the viral complementary S RNA nucleotide sequence from 1 to about 3017; (SEQ ID No.9) 15
 - ix) the viral complementary S RNA nucleotide sequence from 1 to 2993; (SEQ ID No.10)
 - x) the viral complementary S RNA nucleotide sequence from 150 to 938; (SEQ ID No.11)
 - xi) the S RNA nucleotide sequence from 1581 to 2930 of the viral complementary S RNA strand; (SEQ ID
- xii) the viral complementary S RNA secondary structure having a nucleotide sequence of 642 nucleotides 20 from 939 to 1580; (SEQ ID No.13)
 - xiii) S RNA nucleotide sequence from 87 to 1436 in which one or more codons have been replaced by their
 - xiv) S RNA nucleotide sequence from 2080 to 2868 in which one or more codons have been replaced by
 - xv) the M RNA nucleotide sequence from 1 to 4970 (SEQ ID No.14);
 - xvi) the M RNA sequence from 86 to 997 (SEQ ID No.15);
 - xvii) the M RNA sequence of the intergenic region from 998 to 1470 (SEQ ID No.16);
 - xviii) the M RNA sequence from 1471 to 4884; (SEQ ID No. 17)
- xix) the M RNA "pan-handle" structure comprising: a) a first nucleotide sequence of from about 30 to about 30 36 nucleotides in length from the 5' end of the viral M RNA
 - b) a second nucleotide sequence of from about 30 to about 36 nucleotides in length from the 3' end of the viral M RNA
- 35 xx) the complementary viral M RNA sequence from 1 to 4970; (SEQ ID No.20)
 - xxi) the complementary viral M RNA sequence from position 87 to position 3500 of the complementary viral M RNA sequence; (SEQ ID No.21)
 - xxii) the complementary viral M RNA sequence from position 3974 to 4885 (SEQ ID No.22)
 - xxiii) RNA sequences homologous to the nucleotide sequences defined under i) to xii) and xv) to xxii) here-
 - xxiv) fragments of sequences defined under i) to xxii) hereinabove.

Preferred INSV-Related DNA Sequences code for transcription into the RNA sequences according to sequences iv) to xii) and xv) to xxii) as defined above, or into RNA sequences homologous thereto, or into fragments thereof comprising at least 15 nucleotides, more preferably at least 20 nucleotides, and most preferably at least 50 nucleotides.

According to another preferred embodiment of the invention the DNA constructs of the invention comprise INSV Related DNA Sequences coding for transcription into a combination of the 5' and 3' terminal sequences (ie "pan-handles) of viral S, M or L RNA respectively, more preferably of S or M RNA, and most preferably of S RNA . Examples of S RNA and M RNA terminal sequences include

- i) a first nucleotide sequence 36 nucleotides in length from the 5' end of the viral S RNA:
 - AGAGCAATNN NNNNNNNNN NNNNGAACAAC CCAAGC 3' 5 4

(SEQ ID No.5 ie nucleotides from position 1 to 36 of SEQ ID No.1, where N stands for A,T,G,or C)

a second nucleotide sequence 36 nucleotides in length from the 3' end of the viral S RNA:

GATTATATG ATGTTATATT CGTGACACAA TTGCTCT 3'

(SEQ ID No.6 ie nucleotides from position 2981 to 3017 of SEQ ID No.1) ii) a first nucleotide sequence of 36 nucleotides in length from the 5' end of the viral M RNA :

5' AGAGCAATCA GTGCATCAAA ATTATATCTA GCCGAA 3'

(SEQ ID No.18 ie nucleotides from position 1 to 36 of SEQ ID No.13)

5

10

15

20

25

30

35

40

45

55

b) a second nucleotide sequence 36 nucleotides in length from the 3' end of the viral M RNA

5 TGTTGTATGT AGAGATTTTG TTTGCACTGA TTGCTC T 3

(SEQ ID No.19 ie nucleotides from position 4941 to 4970 of SEQ ID No. 13)

In the case of the terminus at the 5' end of the S RNA it is not known whether or not there are sixteen or seventeen nucleotides in the unknown region demarked by a series of " N " s , however the exact number of nucleotides in this region is not considered to be critical to the formation of " pan-handle "structures so long as the 5' end of the S RNA is capable of complementing the 3' end of the S RNA thus enabling the formation of a "pan-handle" structure .

The invention further provides probes suitable for use as diagnostic tools for the diagnosis of disease in plants suspected of being infected with INSV tospoviruses. Such probes comprise a labeled oligonucleotide (RNA or DNA) sequence complementary to an RNA sequence of an INSV tospovirus. The desired length of the sequence and appropriate method for diagnostic use of probes are known by those skilled in the art. A suitable probe may comprise a nucleotide sequence of at least 12 to about 800 nucleotides, preferably at least 15, more preferably more than 30 nucleotides, and most preferably from about 400 to 600 nucleotides complementary to an RNA sequence of an INSV tospovirus.

Probes according to the invention are helpful in identifying INSV tospovirus RNA or parts thereof in infected plant material i.a. for diagnostic purposes prior to full presentation of disease symptoms in plants.

The invention accordingly also provides a diagnostic method of determining INSV tospovirus infection in plants which comprises detecting INSV tospovirus replicative forms employing the probes of the invention in dot-blot type assays.

Probes according to the invention are useful in the construction of and use of chimeric genes comprising a DNA sequence corresponding to an RNA sequence of an INSV tospovirus.

The DNA constructs of the invention may be obtained by insertion of an INSV Related DNA Sequence in an appropriate expression vector, such that the sequence is brought under expression control of a promoter capable of functioning in plants and its transcription is terminated by a terminator capable of functioning in plants.

The term "appropriate expression vector" as used herein refers to a vector containing a promoter region and a terminator region which are capable of functioning in plant cells.

The insertion of an INSV Related DNA Sequence into an appropriate expression vector may be carried out in a manner known per se. Suitable procedures are illustrated in the examples hereinafter.

Likewise the construction of an appropriate expression vector may be carried out in a manner known per

Plants according to the invention may be obtained by

- a) inserting into the genome of a plant cell a DNA construct as hereinbefore defined;
- b) obtaining transformed cells; and
- c) regenerating from the transformed cells genetically transformed plants.

DNA vectors of the present invention may be inserted into the plant genome of plants susceptible to INSV infection. Such plant transformation may be carried out employing techniques known per se for the transformation of plants, such as plant transformation techniques involving Ti plasmids derived from Agrobacterium tumefaciens, A. rhizogenes or modifications thereof, naked DNA transformation or electroporation of isolated plant cells or organized plant structures, the use of micro-projectiles to deliver DNA, the use of laser systems, liposomes, or viruses or pollen as transformation vectors and the like.

Plants of the inv ntion may be monitored for expression of an INSV-Related DNA Sequence by methods known in the art, including Northern analysis, Southern analysis, PCR techniques and/or immunological techniques and the like. The plants of the invention show decreased susceptibility to INSV infection as demonstrated by tests whereby the plants are exposed to INSV preferentially at a concentration in the range at which the rate of disease symptoms correlates linearly with INSV concentration in the inoculum.

Methods suitable for INSV inoculation are known in the art and include mechanical inoculation, and in particular, the use of appropriate vectors.

Plants of the invention may also be obtained by the crossing of a plant obtained according to the methods of the invention with another plant to produce plants having in their plant genome a DNA construct of the in-

The invention is illustrated by the following non-limiting examples and accompanying figures.

Figure 1: Schematic representation of an INSV particle .

Figure 2: Sequence strategy for INSV viral S RNA.

Figure 3: Open reading frame analysis of the INSV S RNA, full bars represent translational stop codons (TAA, TAG, TGA), half size bars indicate start codons (ATG).

Figure 4: Schematic review of the construction of a suitable expression vector (pZU-B).

Figure 5: Schematic review of the construction of a suitable plasmid comprising the INSV N protein-coding sequence.

Figure 6: Schematic review of the construction of a suitable plasmid comprising the INSV NSs proteincoding sequence.

Figure 7: Schematic review of the construction of a suitable plasmid comprising the INSV NSm proteincoding sequence.

Figure 8: Schematic review of the construction of a suitable plasmid comprising the INSV G1/G2 glycoprotein precursor-coding sequence.

Figure 9: Schematic review of the construction of a INSV N gene-containing plant transformation vector. Figure 10: Schematic review of the construction of a INSV NSs gene-containing plant transformation vector.

Figure 11: Schematic review of the construction of a INSV G1/G2 glycoprotein precursor gene-containing plant transformation vector.

Figure 12: Schematic review of the construction of a INSV NSm gene-containing plant transformation vec-

Figure 13: The secondary structure located at the intergenic region of INSV S RNA.

Suitable examples of preferred INSV Related DNA Sequences coding for transcription into a sequence of the secondary structure of the intergenic region of S RNA or of RNA sequences homologous thereto are sequences coding for the 1437 to 2079 nucleotide sequence of S RNA or for a sequence homologous to such

Other advantageous features of the present invention will be apparent from the following examples.

MATERIAL AND METHODS

5

10

15

20

25

30

35

40

45

55

All INSV RNA-derived sequences presented here are depicted as DNA sequences for the sole purpose of uniformity. It will be appreciated that this is done for convenience.

Cultivars of Nicotiana tabacum and Petunia hybrida, used in plant transformation studies, are grown under standard greenhouse conditions. Axenic explant material is grown on standard MS media [Murashige and Skoog, (1962) Physiol Plant 15: 473-497] containing appropriate phytohormones and sucrose concentrations.

E. coli bacteria are grown on rotary shakers at 37°C in standard LB-medium. Agrobacterium tumefaciens strains are grown at 28°C in MinA medium supplemented with 0.1 % glucose [Ausubel et al., (1987) Current Protocols in Molecular Biology , Green Publishing Associates and Wiley Intersciences , New York , Chichester , Brisbane, Toronto, and Singapore].

In all cloning procedures the E. coli strain JM83, (F $^-$, Δ (lac-pro), ara, rpsL, \varnothing 80, dlacZM15) is used as a recipient for recombinant plasmids.

Binary vectors are conjugated to Agrobacterium tumefaciens strain LBA 4404, a strain containing the Tiplasmid vir region, [Hoekema et al., (1983) Nature 303:179-180] in standard triparental matings using the E. coli HB101, containing the plasmid pRK2013 as a helper strain. [Figurski and Helinski, (1979) Proc. Natl. Acad. Sci.USA 76:1648-1652] Appropriate Agrobacterium tumefaciens recipients are selected on media containing rifampicin (50 μ g/ml) and kanamycine (50 μ g/ml).

Cloning of fragments in the vectors pUC19 [Yanish-Perron et al.(1985) Gene 33:103-119], pBluescript (Stratagene), pBIN19 [Bevan et al.,(1984) Nucl Acids Res. 12:8711-8721] or derivatives, restriction enzyme analysis of DNA, transformation to E. coli recipient strains, isolation of plasmid DNA on small as well as large scale, nick-translation, in vitro transcription, DNA sequencing, Southern blotting and DNA gel electrophoresis are performed according to standard procedures [Maniatis et al., (1982) Molecular Cloning, a Laboratory Manual . Cold Spring Harbor Laboratory , New York ; Ausubel et al. supra, (1987)].

DNA amplification using the polymerase chain reaction (PCR) were p rformed as r commended by the supplier of the Taq polymeras (Perkin Elmer Cetus).

Amplifications of RNA by reverse transcription of the target RNA followed by standard DNA amplification

were performed using the Gene Amp RNA PCR Kit as recommended by the supplier (Perkin Elmer Cetus).

Examples

5

10

15

20

25

30

45

55

Example 1: Isolation of INSV particles and genetic material therein

INSV isolate NL-07, an isolate from Impatiens, is maintained on Impatiens by grafting. Virus is purified from systemically infected Nicotiana rustica leaves, after mechanical inoculation essentially as described by Tas et al. [(1977) J. Gen. Virol. 36:81-91]. All material used in the isolation procedure should be maintained at a temperatue of 4 °C . Twelve days after inoculation 100 grams of infected leaves are harvested and ground for 5 - 10 seconds at a low speed setting in 5 volumes extraction buffer (0.1 M NaH₂PO₄, 0.01 M Na₂SO₃, pH 7) in a Waring blender. The suspension is filtered through cheesecloth and the filtrate is centrifuged for 10 minutes at 16,000 x g. The resulting pellet is resuspended in three volumes resuspension buffer (0.01 M NaH₂PO₄, 0.01 M Na₂SO₃, pH 7). The pellet is dissolved by stirring carefully at 4°C. After centrifuging for 10 minutes at 12,500 x g the pellet is discarded and the supernatant centrifuged again for 20 minutes at 50,000 x g. The pellet is resuspended in 0.2 volume of resuspension buffer (0.01 M NaH₂PO₄, 0.01 M Na₂SO₃, pH 7) and kept on ice for 30 minutes. Anti-serum raised in rabbits against material from non-infected Nicotiana rustica is added to the solution and carefully stirred for 1 hour . Non-viral complexes are pelleted after 10 minutes centrifuging at 16,000 x g. The cleared supernatant is loaded on a linear 5% - 40 % sucrose gradient in resuspension buffer(0.01 M NaH $_2$ PO $_4$, 0.01 M Na $_2$ SO $_3$, pH 7), and spun for 45 minutes at 95,000 x g. The opalescent band containing INSV particles is carefully collected with a syringe and diluted 4 times with resuspension buffer. Washed viruses are pelleted by centrifugation for 1.5 hours at 21,000 x g and resuspended in one volume of resuspension buffer. Generally, 100 grams of leaf material yields approximately 0,5 mg of INSV viruses. INSV RNA is recovered preferentially from purified virus preparations by SDS-phenol extractions followed by ethanol precipitation . From 1 mg INSV , 1-5 µg of RNA is extracted. The isolated RNA molecules are analysed for intactness by electrophoresis on an agarose gel. Three distinct RNA molecules are identified with apparent sizes of about 3000 nucleotides (S RNA), about 4900 nucleotides (M RNA) and about 8900 nucleotides (L RNA) respectively.

Example 2: Sequence determination of the 3'-termini of the INSV viral RNAs

In order to perform direct RNA sequencing, INSV RNA is extracted from purified nucleocapsids ess ntially according to Verkleij et al. (1983) supra . Twelve days after inoculation 100 grams of infected leaves are harvested and ground for 5 - 10 seconds at a low speed setting in four volumes of TAS-E buffer (0.01 M EDTA, 0.01 M Na₂SO₃ 0.1 % cysteine, 0.1 M TRIS pH 8.0) in a Waring blender. The suspension is filtered through cheesecloth and centrifuged for 10 minutes at 1,100 x g. Nucleocapsids are recovered from the supernatant after 30 minutes of centrifuging at $66,000 \times g$. The pellet is carefully resuspended in one volume of TAS-R buffer (1 % Nonidet NP-40, 0.01 M EDTA, 0.01 M Na₂SO₃, 0.1 % cysteine, 0.01 M glycine, 0.01 M TRIS , pH 7.9). The pellet is dissolved by stirring carefully for 30 minutes at 4 °C. The supernatant is cleared by centrifuging for 10 minutes at $16,000 \times g$. Crude nucleocapsids are collected from the cleared supernatant by sedimentation through a 30 % sucrose cushion for 1 hour at 105,000 x g. The nucleocapsid pellet is resuspended in 400 μ l 0.01 M Na-citrate pH 6.5, layered on a 20 - 40 % sucrose (in 0.01 M Na-citrate pH 6.5) and spun for 2 hours at 280,000 x g. The three different opalescent bands, respectively L, M and S nucleocapsid, are collected separately. INSV RNA is recovered preferentially from purified nucleocapsid preparations by SDS-phenol extractions followed by ethanol precipitation. Generally , 100 µg of RNA are obtained from 100 grams of infected leaves. The 3'-ends of the separate INSV RNAs are labeled using RNA ligase and 5'-[32P]pCp. The end-labeled RNA molecules are separated on a low gelling temperature agarose gel [Wieslander, (1979) Anal Biochem 98: 305-309]. The enzymatic approach described by Clerx-Van Haaster and Bishop [(1980) Virology 105:564-574] and Clerx-Van Haaster et al. [(1982) J Gen Virol 61:289-292] is used to determine the 30 terminal nucleotides of the 3'-and 5'-ends of both S and M RNA.

Synthetic oligonucleotides complementary to the 3'-termini are synthesized using a commercially available system (Applied Biosystems) and used for dideoxy-sequencing with reverse transcriptase.

Example 3: cDNA cl ning f INSV genetic material

Oligonucleotides complementary to the 3'-end of the S RNA are used for priming first strand cDNA synthesis. With the seprimers, double stranded DNA to INSV RNA is synthesized according to Gubler and Hoffman [(1983) Gene 25:263-269].

Two different approaches are used to generate cDNA clones to the INSV viral RNAs. A first series of clones is obtained by random priming of the INSV RNA using fragmented single stranded calf thymus DNA, followed by first and second strand cDNA synthesis. cDNA is made blunt-ended using T4-DNA polymerase and ligated with T4 ligase into the Smal site of pUC19.

A second series of INSV cDNA clones is obtained by priming first strand DNA synthesis with the oligonucleotides complementary to the 20 terminal nucleotides at the 3'-ends of the INSV RNAs. Blunt ended cDNA fragments are cloned into the Sma I site of pUC19.

cDNA clones from both series containing viral inserts are selected via colony hybridization, essentially according to the method of Grunstein and Hogness [(1975) Proc. Natl. Acad. Sci. USA 72:3961-3965] using [32]P-labeled, randomly primed first strand cDNA as a probe. Sets of overlapping cDNA clones are selected by Southern analysis followed by plasmid walking, in order to construct a restriction map, based on cDNA derived s quences of the S RNA (Figure 2)

Example 4: Sequence determination of the INSV S RNA

15

20

25

30

35

40

50

55

In order to determine the sequence of the S RNA 5 selected cDNA clones are subcloned into pBluescript, resulting in the plasmids pINSV-S2, pINSV-S15, pINSV-S61, pINSV-S60 and pINSV-S39, (Figure 2). The clones are sequenced in both directions using the protocol of Zhang et al. [(1988) Nucl. Acids. Res. 16:1220]. The nucleotide sequence of the 3'-end of the S RNA is determined by primer extension of the synthetic oligonucleotide INSV-S60 (5' d(AGAGCAATTGTGTCA) which is complementary to the 15 nucleotides of the 3'-terminus. Sequence data from the INSV S RNA (3017 nt) is summarized in the sequence listing (SEQ ID No.12).

Computer simulated translation of the 6 different reading frames on the viral strand and viral complementary strand reveals the presence of two putative open reading frames (Figure 3). On the viral strand an open reading frame is found starting at position 87 and terminating at a UAA stopcodon at position 1436 encoding a protein of 449 amino acids with a predicted molecular mass of about 51.2 kd. This protein is a non-structural protein, tentatively designated NSs (Figure 3/ SEQ ID No.26). The other open reading frame is located on the viral complementary strand from position 2080 to 2868 (SEQ ID No. 11), encoding a 262 amino acid long polypeptide with a predicted molecular mass of about 28.7 kd. This open reading frame encodes the viral nucleocapsid protein N (Figure 3/ SEQ ID No.25). Thus Figure 3 shows the coding capacities of the viral and the viral complementary strand of INSV S RNA, indicating the NSs and N protein genes are expressed from subgenomic mRNAs (SEQ ID No.3, SEQ ID No.11 respectively). Thus, the situation occurs that a plant virus RNA has an ambisense gene arrangement. Other important features of this S RNA sequence is the existence of complementary terminal repeats capable of forming so-called "pan-handle" structures. These structures play an important role in replication and transcription of viral RNA. Another putative regulatory element is the secondary structure in the intergenic region of the S RNA, which most likely contains the transcription termination signals for both subgenomic mRNAs, encoding respectively the N and NSs-protein.

The nucleotide sequence of the INSV M and L RNA is elucidated employing similar strategies and methods as used to determine the nucleotide sequence of the S RNA.

Example 5: Construction of an expression vector pZU-B

The recombinant plasmid pZO347 is a derivative of pBluescript carrying a 496 bp BamHl-Smal fragment containing a 426 bp 35S promoter fragment (HincII fragment) of CaMV strain Cabb-S, linked to a 67 bp fragment of the non-translated leader region, the so-called Ω -region, of the tobacco mosaic virus. This results in a chimeric promoter with a complete transcriptional fusion between the promoter of CaMV to the untranslated leader of TMV. By using *in vitro* mutagenesis the original position of the TMV ATG startcodon is mutated to a Smal site.

The plasmid pZ0008 carries the nopaline synthase (NOS) terminator as a 260 bp Pstl-HindIII fragment. This Pstl-HindIII fragment is excised from pZ0008 and ligated using T4 ligase into Pstl-HindIII-linearized pZ0347. The resulting recombinant plasmid pZU-B is another plant expression vector. The sequence of this 35S- Ω promoter as used in the plant expression vector pZU-B is shown as SEQ ID No.23 .The resulting recombinant plasmid pZU-B contains the 35S HincII-TMV Ω fusion (35S- Ω), unique Smal and Pstl sites and the NOS terminator (Figure 4). This expression vector is preferentially used in constructing translational fusions of the gene for expression downstream of the chimaeric promoter 35S- Ω .

Example 6: Subcl ning of the INSV N prot in gene

5

10

20

25

30

40

45

55

The INSV N protein coding sequence is obtained by fusion of the cDNA clones pINSV-S60 and pINSV-S39 (Figur 5). The cDNA clone pINSV-S60 is subjected to Spel digestion and the fragment containing the 3'-end of the INSV N protein g ne is separated electrophoretically and purified from the gel using a DEAE membrane (NA-45, Schleicher and Schüll) and cloned in the largest Spel fragment of pINSV-S39 linearized resulting in the recombinant plasmid pINSV-N. Primers are designed homologous to the translational start and stop codon. Primer INSV-066 d(GCAGATATCATGAACAAAGC) creates an EcoRV site just proximal to the start codon.

Primer INSV-070 d(GCAACCTGCAGCTCAAATCTCTT) creates a PstI site just distal to the stop codon. These primers are used in standard PCR experiments in which pINSV-N is used as the template. The resulting PCR fragment is isolated from the gel using a DEAE membrane (NA-45, Schleicher and Schüll) and cloned in the Smal linearized pBluescript to generate plasmid pINSV-N2. The added restriction sites, EcoRV and PstI, facilitate the construction of further plasmids. (Alternatively, one may choose to add the sites in different ways such as but not limited to site-directed mutagenesis or by ligation of other synthetic oligonucleotide link rs. Such methods are all known to a person skilled in the art.)

Example 7: Subcloning of the INSV non-structural protein genes (NSs gene) of INSV S RNA

The sequence of the gene corresponding to the non-structural protein NSs is isolated using RNA based PCR on isolated INSV S RNA. Two primers are designed which are homologous to regions spanning either the translational start codon or stop codon. The start codon primer contains an EcoRV site proximal to the ATG codon, the stop codon primer has a Pstl site just distal thereto. Purified INSV S RNA is subjected to the Gene AMP RNA PCR. The resulting PCR fragment is isolated from the gel and cloned into Smal linearized pBluescript yielding the recombinant plasmid pINSV-NSs (Figure 6).

Example 8: Subcloning of the INSV non-structural protein gene (NSm gene) of the INSV M RNA

The sequence of the gene corresponding to the non-structural protein NSm is isolated using RNA based PCR on isolated INSV M RNA. Two primers are designed which are homologous to regions spanning either the translational start codon or stop codon. The start codon primer contains an EcoRV site proximal to the ATG codon, the stop codon primer has a Pstl site just distal thereto. Purified INSV S RNA is subjected to the Gene AMP RNA PCR. The resulting PCR fragment is isolated from the gel and cloned into Smal linearized pBluescript yielding the recombinant plasmid pINSV-NSm (Figure 7).

Example 9: Subcloning of the INSV G1/G2 glycoprotein gene (G1/G2 gene) of the INSV M RNA

The sequence of the gene corresponding to the G1/G2 glycoprotein precursor is isolated using RNA based PCR on isolated INSV M RNA. Two primers are designed homologous to regions spanning either the translational start codon or stop codon. The start codon primer contains an EcoRV site proximal to the ATG codon, the stop codon primer has a Pstl site just distal thereto. Purified INSV M RNA is subjected to the Gene AMP RNA PCR. The resulting PCR fragment is isolated from the gel and cloned into Smal linearized pBluescript yielding the recombinant plasmid pINSV-G1/G2 (Figure 8).

Example 10: Construction of plant transformation vectors containing INSV sequences

Example 10A: N protein constructions in pZU-B

In order to make a fusion in which the ATG start codon from the N protein gene is fused directly to the 3'-end of the TMV untranslated leader of the 35S- Ω promoter the start codon of the N gene has to be mutated using the PCR approach as hereinbefore described. The N protein gene is excised from the plasmid plNSV-N2 via an EcoRV-Pstl digestion. The fragment is isolated and inserted into the Smal-Pstl linearised pZU-B, resulting in recombinant plasmid plNSV-NB. The chimeric cassette containing the 35S- Ω promoter, the N gene and the NOS terminator is excised from the plasmid plNSV-NB via a BamHI/Xbal digestion. The isolated chimaeric gene cassette is then inserted into the BamHI/Xbal linearized pBIN19 to create the binary transformation v ctor plNSV-NBB. The resulting plasmid plNSV-NBB (Figure 9) is used in plant transformation experiments using methods well known to a person skilled in the art.

Exampl 10B: NSs protein gene constructions in pZU-B

In order to create a fusion in which the ATG start codon from the NSs protein is fused directly to the 3'-end of the TMV leader of the 35S- Ω promoter the start codon of the NSs gene is mutated, using the PCR approach. The plasmid plNSV-Ns is digested with EcoRV and Pstl and the NSs containing fragment is isolated from the gel and inserted into Smal/ Pstl linearized pZU-B resulting in the recombinant plasmid plNSV-NSsB. The chimaeric cassette containing the 35S- Ω promoter, the mutated NSs protein gene and the NOS terminator is excised from the plasmid plNSV-NSsB via a BamHi/Xbal digestion. The isolated chimeric gene cassette is then inserted into the BamHi/Xbal linearized pBIN19 to create the binary transformation vector plNSV-NSsBB. The resulting plasmid plNSV-NSsBB (Figure 10) is used in plant transformation experiments using methods well known to a person skilled in the art.

Example 10C: G1/G2 glycoprotein gene constructions in pZU-B

15

25

30

40

45

55

In order to create a fusion in which the ATG start codon from the G1/G2 glycoprotein precursor is fused directly to the 3'-end of the TMV leader of the 35S- Ω promoter the start codon of the G1/G2 gene is mutated, using the PCR approach. The plasmid pINSV-G1/G2 is digested with EcoRV and Pstl and the G1/G2 containing fragment is isolated from the gel and inserted into Smal/Pstl linearized pZU-B resulting in the recombinant plasmid pINSV-G1/G2B. The chimeric cassette containing the 35S- Ω promoter, the mutated G1/G2 glycoprotein gene and the NOS terminator is excised from the plasmid pINSV-G1/G2B via a BamHI/Xbal digestion. The isolated chimeric gene cassette is then inserted into the BamHI/Xbal linearized pBIN19 to create the binary transformation vector pINSV-G1/G2BB. The resulting plasmid pINSV-G1/G2BB (Figure 11) is used in plant transformation experiments using methods well known to a person skilled in the art.

Example 10D: NSm protein gene constructions in pZU-B

In order to create a fusion in which the ATG start codon from the NSm protein is fused directly to the 3'-end of the TMV leader of the 35S- Ω promoter the startcodon of the NSm gene is mutated, using the PCR approach. The plasmid pINSV-NSm is digested with EcoRV and Pstl and the NSm-containing fragment is isolated from the gel and inserted into Small/Pstl linearized pZU-B resulting in the recombinant plasmid pINSV-NSmB. The chimeric cassette containing the 35S- Ω promoter, the mutated NSm protein gene and the NOS terminator is excised from the plasmid pINSV-NSmB via a BamHI/Xbal digestion. The isolated chimeric gene cassette is then inserted into the BamHI/Xbal linearized pBIN19 to create the binary transformation vector pINSV-NSmBB. The resulting plasmid pINSV-NSmBB (Figure 12) is used in plant transformation experiments using methods well known to a person skilled in the art.

Example 10E: 5'- and 3'-termini "pan-handle" constructions in pZU-B

A DNA analysis programme is used to locate the "pan-handle" element of the loop in the viral INSV S RNA. The strongest "pan-handle" structure that is detected includes about the first 24-25 nucleotides at the 5'-end (1 to 24 or 25) of the viral S RNA and about the last 36 nucleotides at the 3'-end of the viral S RNA (SEQ ID Nos 5 and 6 respectively). The length of the pan-handle element of the loop is about 36 nucleotides long.

These regions are synthesized on a commercial DNA synthesizer and appropriate linker sequences are added. Construction of the "pan-handle" vectors of S and M RNA results in respectively: plNSV-termS and plNSV-termM. Using appropriate restriction enzyme combination these fragments are inserted between the 35S-Ω promoter and the NOS terminator of pZU-B yielding the chimeric cassettes: plNSV-termSA , plNSV-termMA , plNSV-termSB and plNSV-termMB. These cassettes are then transferred into the binary transformation vector pBIN19 using appropriate enzyme combinations yielding the following plasmids: plNSV-termSAB, plNSV-termMAB, plNSV-termSBB and plNSV-termMBB. Alternatively, it is possible to design "panhandle" constructs including the 3'- and 5'-end termini that are larger than indicated above, or separated by genes in plants.

All "pan-handle" constructs resemble shortened tospovirus RNA mol cules , sp cifically INSV RNA molecules and therefor can be regarded as defective interfering RNAs.

Exampl 10F: C nstruction containing INSV S RAN secondary structur r gi n in pZU-B.

A DNA analysis programme is used to locate a secondary structure in the viral INSV S RNA. The strongest

secondary structure detectable starts at nucleotide 1440 and ends at nucleotide 2041 of SEQ ID No.1, (SEQ ID No.8).

The DNA fragment carrying the secondary structure region is isolated from pINSV-S61 using a PCR approach similar to that described earlier. The two primers used contain the sequences 1440-1460 and 2021-2041 of SEQ ID No.1. The PCR fragment is excised from an agarose gel and subsequently treated with T4 polymerase to create blunt ends and is subsequently cloned into the Smal site of the expression vector pZU-B, resulting in the recombinant plasmid pINSV-HpSB . The plasmid pINSV-HpSB is digested with HindIII and the fragment containing the chimeric gene is excised from an agarose gel and ligated into Xbal linearized pBIN19, resulting in the transformation vector pINSV-HpSBB.

(It is clear to a person skilled in the art that other fragments can be isolated from the cDNA clones of the INSV S RNA containing the hairpin region as described above without interference to function. Also, a fragment containing the hairpin region may be synthesized using a DNA-synthesizer.)

Example 11: Transformation of binary vectors to tobacco plant material

15

20

25

35

45

Methods to transfer binary vectors to plant material are well established and known to a person skilled in the art. Variations in procedures exist due to for instance differences in used *Agrobacterium* strains, different sources of explant material, differences in regeneration systems depending on as well the cultivar as the plant species used.

The binary plant transformation vectors as described above are used in plant transformation experiments according to the following procedures. The constructed binary vector is transferred by tri-parental mating to an acceptor *Agrobacterium tumefaciens* strain, followed by southern analysis of the ex-conjugants for verification of proper transfer of the construct to the acceptor strain, inoculation and cocultivation of axenic explant material with the *Agrobacterium tumefaciens* strain of choice, selective killing of the *Agrobacterium tumefaciens* strain used with appropriate antibiotics, selection of transformed cells by growing on selective media containing kanamycine, transfer of tissue to shoot-inducing media, transfer of selected shoots to root inducing media, transfer of plantlets to soil, assaying for intactness of the construct by southern analyses of isolated total DNA from the transgenic plant, assaying for proper function of the inserted chimeric gene by northern analysis and/or enzyme assays and western blot analysis of proteins.

Example 12: Expression of INSV S RNA sequences in tobacco plant cells

RNA is extracted from leaves of regenerated plants using the following protocol. Grind 200 mg leaf material to a fine powder in liquid nitrogen. Add 800 μ l RNA extraction buffer (100 mM Tris-HCl (pH 8,0), 500 mM NaCl, 2 mM EDTA, 200 mM β -Mercapto-ethanol, 0,4% SDS) and extract the homogenate with phenol, collect the nucleic acids by alcohol precipitation. Resuspend the nucleic acids in 0,5 ml 10 mM Tris-HCl (pH 8,0), 1 mM EDTA, add LiCl to a final concentration of 2 M, leave on ice for maximal 4 hours and collect the RNA by centrifugation. Resuspend in 400 μ l 10 mM Tris-HCl (pH 8,0), 1 mM EDTA and precipitate with alcohol, finally resuspend in 50 μ l 10 mM Tris-HCl (pH 8,0), 1 mM EDTA. RNAs are separated on glyoxal/agarose gels and blotted to Genescreen as described by van Grinsven et al. [(1986) Theor Appl Gen 73:94-101]. INSV S RNA sequences are detected using DNA or RNA probes labeled with [32P], [35S] or by using non-radioactive labeling techniques. Based on northern analysis, it is determined to what extent the regenerated plants express chimaeric INSV S RNA sequences.

Plants transformed with chimaeric constructs containing an INSV N protein-encoding sequence are also subjected to western blot analysis. Proteins are extracted from leaves of transformed plants by grinding in sample buffer according to the method of Laemmli [(1970) Nature 244: 29-30]. A 50 µg portion of protein is subjected to electrophoresis in a 12,5 % SDS-polyacrylamide gel essentially as described by Laemmli (1970) supra. Separated proteins are transferred to nitrocellulose electrophoretically as described by Towbin et al. [(1979) Proc. Natl. Acad. Sci. USA 76:4350-4354]. Transferred proteins are reacted with antiserum raised against purified INSV structural or non-structural proteins (Towbin et al.(1979) supra. Based on the results of the western analysis, it is determined that transformed plants do contain INSV N proteins encoded by the inserted chimaeric sequences.

Exampl 13: Resistance f plants against INSV infection

Transformed plants are grown in the greenhouse under standard quarantine conditions in order to prevent any infections by pathogens. The transformants are self-pollinated and the seeds harvested. Progeny plants are analyzed for segregation of the inserted gene and subsequently infected with INSV by mechanical inocu-

lation. Tissue from plants systemically infected with INSV is ground in 5 volumes of ice-cold inoculation buffer (10 mM phosphate buffer supplemented with $1\% \text{ Na}_2\text{SO}_3$) and rubbed in the presence of carborundum powder on the first two fully extended leafs of approximately 5 weeks old seedlings. Inoculated plants are monitored for symptom development during 3 weeks after inoculation.

Plants containing INSV Related DNA Sequences show reduced susceptibility to INSV infection as exemplified by a delay in symptom development, whereas untransformed control plants show severe systemic INSV symptoms within 7 days after inoculation.

Example 14: Use of synthetic oligonucleotides for diagnostic purposes

RNA is extracted from leaves of suspected plants using the following protocol: grind 1 gram of leaf material, preferentially showing disease symptoms, in 3 ml 100 mM Tris-HCl, 50 mM EDTA, 1.5 M NaCl and 2% CTAB (pH 8.0). After grinding, 1 ml of the homogenate is subjected to chloroform extraction and incubated at 65 °C for 10 minutes. The inorganic phase is then collected and extracted with. phenol/chloroform (1:1), followed by a last extraction with chloroform. The ribonucleic acids are isolated from the inorganic phase, containing the total nucleic acids, by adding LiCl to a final concentration of 2 M. The preparation is incubated at 4°C for 1 hour, after which the ribonucleic acids are collected by centrifugation. The ribonucleic acid pellet is resuspended in 25 μ l 10 mM Tris-HCl, 1 mM EDTA (pH 8.0). The ribonucleic acids are recovered by standard alcohol precipitation. The ribonucleic acid pellet is resuspended in 25 μ l 10 mM Tris-HCl, 1 mM EDTA (pH 8.0).

1 μl of the purified ribonucleic acids is spotted on a nylon blotting membrane (e.g. Hybond-N, Amersham UK). The presence of INSV in the plant is detected by standard hybridization, using any part or parts of th sequence isolated from virions or preferentially by designing synthetic oligomers on the basis of disclosed sequence information as a probe. (Alternatively, in vitro transcripts of regions of the INSV genome are used to detect INSV Related RNA Sequences in diseased plants.) A diseased plant is diagnosed by the occurrence of hybridization at the dot containing RNA material from the diseased plant.

55

50

5

20

30

35

40

```
5
                                       SEQUENCE LISTING
     (1) GENERAL INFORMATION:
           (1) APPLICANT:
                (A) NAME: SANDOZ LTD
10
                (B) STREET: LICHTSTRASSE 35 (C) CITY: BASLE
                 (D) STATE: BS
                 (E) COUNTRY: SWITZERLAND
(F) POSTAL CODE (ZIP): CH-4002
                 (G) TELEPHONE: 061-3241111
15
                 (H) TELEFAX: 061-3227532
                 (I) TELEX: 965 050 55
                 (A) NAME: SANDOZ-PATENT-GMBH
                 (B) STREET: HUMBOLDSTRASSE 3
                 (C) CITY: LORRACH
                 (E) CCUNTRY: GERMANY
20
                 (F) POSTAL CODE (ZIP): D-7850
                 (G) TELEPHONE: 076 21/4 80 14
                 (A) NAME: SANDOZ-ERFINDUNGEN VERWALTUNGSGESELLSCHAFT
                            M.B.H.
                 (B) STREET: BRUNNER STRASSE 59
25
                 (C) CITY: VIENNA
                 (E) COUNTRY: AUSTRIA
                 (F) POSTAL CODE (ZIP): A-1230
                 (G) TELEPHONE: 86 93 61
          (ii) TITLE OF INVENTION: IMPROVEMENTS IN OR RELATING TO ORGANIC
                   COMPOUNDS
30
          (iii) NUMBER OF SEQUENCES: 27
           (iv) COMPUTER READABLE FORM:
                  (A) MEDIUM TYPE: Floppy disk
                  (B) COMPUTER: IBM PC compatible (C) OPERATING SYSTEM: PC-DOS/MS-DOS
35
                  (D) SOFTWARE: PatentIn Release #1.0, Version #1.25 (EPO)
            (v) CURRENT APPLICATION DATA:
APPLICATION NUMBER: EP 93810190.4
       (2) INFORMATION FOR SEQ ID NO:1:
 40
             (i) SEQUENCE CHARACTERISTICS:
                  (A) LENGTH: 3017 base pairs
                  (B) TYPE: nucleic acid
                  (C) STRANDEDNESS: single
                  (D) TOPOLOGY: unknown
 45
           (ii) MOLECULE TYPE: cDNA
           (iii) HYPOTHETICAL: NO
           (iii) ANTI-SENSE: NO
 50
            (vi) CRIGINAL SOURCE:
                   (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS
            (xi) SEQUENCE DESCRIPTION: SEQ ID NO:1:
```

5 AGAGCAATNN NNNNNNNNN NNNNGAACAA CCAAGCTACA ACAAATCTTA CAATATTGTC 60 AATTACATTA CTACTTCCAT TTTAACATGT CTAGTGCAAT GTATGAAACA ATTATCAAAT 120 CGAAGTCCTC AATCTGGGGA ACAACATCTT CGGGTAAAGC AGTAGTAGAT AGTTATTGGA 10 180 TTCATGATCA ATCITCCGGA AAGAAGTTGG TCGAAGCTCA ACTCTATTCT GACTCCAGGA 240 GCAAGACCAG TTTCTGTTAC ACTGGTAAAG TTGGCTTTCT CCCAACAGAA GAAAAAGAAA 300 TTATAGTGAG ATGTTTTGTG CCTATTTTTG ATGACATTGA TCTGAATTTC TCCTTTTCAG 360 15 GGAATGTTGT CGAAATTCTG GTCAGATCTA ACACAACAAA CACAAACGGT GTTAAACATC 420 AAGGTCATCT CAAAGTGTTA TCCTCTCAGT TGCTCAGAAT GCTTGAAGAG CAAATAGCAG 480 TGCCTGAAAT TACTTCAAGA TTCGGTCTGA AAGAATCTGA CATCTTCCCT CCAAATAATT 540 TCATTGAAGC TGCAAATAAA GGATCATTGT CTTGTGTCAA AGAAGTCCTT TTTGATGTCA 20 600 AGTATICAAA CAACCAATCC ATGGGCAAAG TCAGTGTTCT TICTCCTACC AGAAGTGTTC 660 ATGAATGGCT GTACACACTT AAGCCTGTTT TTAACCAATC CCAGACCAAC AACAGGACAG 720 TAAACACTTT GGCTGTAAAA TCACTGGCAA TGTCTGCAAC TTCTGATTTA ATGTCAGATA 25 780 CTCATTCGTT TGTCAGGCTC AATAATAACA AGCCTTTTAA AATCAGCCTT TGGATGCGCA 840 TCCCTAAAAT AATGAAATCA AACACATACA GCCGGTTCTT CACCCTGTCT GATGAATCTT 900 CTCCTAAAGA GTATTATATA AGCATTCAAT GTCTTCCGAA TCACAACAAT GTTGAAACAG 960 TCATTGAATA TAACTTTGAT CAGTCAAACC TCTTCTTGAA TCAACTCCTT CTAGCAGTGA 30 1020 TTCATAAAAT TGAGATGAAT TTTTCTGATC TAAAAGAACC TTACAATGTT ATCCATGATA 1080 TGTCGTATCC TCAAAGAATT GTTCATTCAC TTCTTGAAAT CCACACAGAA CTTGCTCAAA 1140 CTGTCTGTGA CAGTGTTCAG CAAGACATGA TTGTCTTCAC TATAAATGAG CCAGATCTAA 35 1200 AGCCAAAAAA GTTTGAGCTA GGGAAAAAGA CTTTAAATTA TTCAGAAGAT GGTTATGGGA 1260 GAAAATATTT CCTTTCTCAG ACCTTGAAAA GTCTTCCGAG AAACTCACAA ACAATGTCTT 1320 ATTTGGATAG CATCCAGATG CCCGATTGGA AATTTGACTA TGCTGCAGGT GAAATAAAAA 1380 40 TTTCTCCTAG ATCAGAGGAT GTTTTGAAAG CTATTTCTAA ATTAGATTTA AATTAACCTT 1440 GGTTAAACTT GTCCCTAAGT AAAGTTTGTT TACATGCATT TAGATCAGAT TAAACAAATC 1500 TAATAACAGA TAAACCAAAA ACAATCATAT GAAATAAATA AATAAACATA AAATATATAA 1560 AAAATACAAA AAAAATCATA AAATAAATAA AAACCAAAAA AGGATGGCCT TCGGGCACAA 45 1620 TTTGGTTGCT TTAATAATGC TTTAAAATGA ATGTATTAGT AAATTATAAA CTTTAAATCC 1680 AATCTACTCA CAAATTGGCC AAAAATTTGT ATTTGTTTTT GTTTTTGTTT TTTGTTTTT 1740 50 1800 TTATATAT ATATATAT ATTTTGTAGT GGTTTTATT GTTTTATTA TTTTTTGTAG 1860 CTTTTTTACT TGTTTATTTC ACACGCAAAC ACACTTTCAA GTTTATATAT TAAAACACAC

55

5	*	
	ATTANACTIA TITCAPATAA TITATAAAAG CACACTTAAT ACACTCAAAC AATAATTAAT	1980
	TATTTATTT TTTATTTAT TTTTTATTTT TATTATTTT ATTTATTT ATTTAAATGC	2040
40	ATTTAACACA ACACAAAGCA AACCAAGCTC AAATCTCTTT TAAATAGAAT CATTTTTCCC	2100
10	AAAATCAATA GTAGCATTAA ACATGCTGTA AATGGATGTA AGCCCTTCTT TGTAGTGGTC	2160
	CATTGCAGCA AGTCCTTTAG CTTTCGGACT ACAAGCCTTT AGTATATCTG CATATTGTTT	2220
	AGCCTTGCCA ATTTCAACAG AGTTCATGCT ATATCCTTTG CTTTTTAGAA CTGTGCACAC	2280
15	TTTCCCAACI GCCTCTTTAG TGCTAAACTT AGACATGTCA ATTCCAAGCT CAACATGTTT	2340
-	AGCATCTTGA TAAATAGCCG GAACTAGTGC AGCTATTCA AAATTCAGTA CAGATGCTAT	240C
	CAGAGGAAGA CTTCCTCCTA AGAGAACACC CAAGACACAG GATTTCAAAT CTGTGGTTGC	2460
20	AAGACCATAT GAGGCAATCA GAGGGTGACT TGGAAGGCTA TTTATAGCTT CAGTCAGAGC	2520
	AGATCCATTG TCCTTTATCA TTCCAACAAG ATGAACTCTC ACCATTGCAT CAAGTCTTCG	2580
	GAAAGTCATA TCATTGACCC CAACTCTTTC TGAATTGTTT CTAGTTTTCT TAATTGTGAC	2640
	TGATCCAAAA GTGAAGTCAG CACTCTTAAT GACTCTCATT ATAGATTGCC TATTCTTGAG	2700
25	GAAGGATAGG CAGGATGCAG TAGTCATGTT CTGAATCTTT TCACGGTTGT TGGTAAAGAA	2760
	GTCAGTGAAA TTGAAAGACC CTTCATTTTG AGTTTCCTCA AATTCTAAGG AATCAGATTG	2820
	AGICAAAAGC TIGACTATGT TCTCCTTGGT AATCTTTGCT TTGTTCATCT TGATCTGCTG	2880
30	ACTITACIAA CITTAAAGCI TAAAGIGIIC AAATTACIAA ATAGIACIIG CGGITAAAGI	2940
	AGTATTIGGT AAAATTIGTA ATTITTCAGT TTCTAGCTTT GGATTATATG ATGTTATATT	3000
	CGTGACACAA TTGCTCT	3017
35	(2) INFORMATION FOR SEQ ID NO:2:	
•	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2993 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	-
40	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
4 5	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:2:	
50	GAACAACCAA GCTACAACAA ATCTTACAAT ATTGTCAATT ACATTACTAC TTCCATTTTA	60
50	ACATGTCTAG TGCAATGTAT GAAACAATTA TCAAATCGAA GTCCTCAATC-TGGGGAACAA-	120
	CATCTTCGGG TAAAGCAGTA GTAGATAGTT ATTGGATTCA TGATCAATCT TCCGGAAAGA	180

5		
	AGTTGGTCGA AGCTCAACTC TATTCTGACT CCAGGAGCAA GACCAGTTTC TGTTACACTG	240
	GTAAAGTTGG CTTTCTCCCA ACAGAAGAAA AAGAAATTAT AGTGAGATGT TTTGTGCCTA	240
10	TTTTTGATGA CATTGATCTG AATTTCTCCT TTTCAGGGAA TGTTGTCGAA ATTCTGGTCA	300
70	GATCTAACAC AACAAACACA AACGGTGTTA AACATCAAGG TCATCTCAAA GTGTTATCCT	
	CTCAGTTGCT CAGAATGCTT GAAGAGCAAA TAGCAGTGCC TGAAATTACT TCAAGATTCG	420
	GTCTGAAAGA ATCTGACATC TTCCCTCCAA ATAATTTCAT TGAAGCTGCA AATAAAGGAT	480
15	CATTGTCTTG TGTCAAAGAA GTCCTTTTTG ATGTCAAGTA TTCAAACAAC CAATCCATGG	540
	GCAAAGTCAG TGTTCTTTCT CCTACCAGAA GTGTTCATGA ATGGCTGTAC ACACTTAAGC	600
	CTGTTTTTAA CCAATCCCAG ACCAACAACA GGACAGTAAA CACTTTGGCT GTAAAATCAC	660
20	TGGCAATGTC TGCAACTTCT GATTTAATGT CAGATACTCA TTCGTTTGTC AGGCTCAATA	720
	ATAACAAGCC TTTTAAAATC AGCCTTTGGA TGCGCATCCC TAAAATAATG AAATCAAACA	780
	CATACAGCCG GTTCTTCACC CTGTCTGATG AATCTTCTCC TAAAGAGTAT TATATAAGCA	840
	TTCAATGTCT TCCGAATCAC AACAATGTTG AAACAGTCAT TGAATATAAC TTTGATCAGT	900
25	CAAACCTCTT CTTGAATCAA CTCCTTCTAG CAGTGATTCA TAAAATTGAG ATGAATTTTT	960
	CTGATCTAAA AGAACCTTAC AATGTTATCC ATGATATGTC GTATCCTCAA AGAATTGTTC	1020
	ATTCACTTCT TGAAATCCAC ACAGAACTTG CTCAAACTGT CTGTGACAGT GTTCAGCAAG	1080
30	ACATGATTGT CTTCACTATA AATGAGCCAG ATCTAAAGCC AAAAAAGTTT GAGCTAGGGA	1140
	AAAAGACTTT AAATTATTCA GAAGATGGTT ATGGGAGAAA ATATTTCCTT TCTCAGACCT	1200
	TGAAAAGTCT TCCGAGAAAC TCACAAACAA TGTCTTATTT GGATAGCATC CAGATGCCCG	1260
	ATTGGAAATT TGACTATGCT GCAGGTGAAA TAAAAATTTC TCCTAGATCA GAGGATGTTT	1320
35	TGAAAGCTAT TTCTAAATTA GATTTAAATT AACCTTGGTT AAACTTGTCC CTAAGTAAAG	1380
	TITGTTTACA TGCATTTAGA TCAGATTAAA CAAATCTAAT AACAGATAAA CCAAAAACAA	1440
	TCATATGAAA TAAATAAATA AACATAAAT ATTATAAAT AACAGATAAA CCAAAAACAA	1500
40	TCATATGAAA TAAATAAATA AACATAAAAT ATATAAAAAA TACAAAAAAA ATCATAAAAT	1560
	AAATAAAAC CAAAAAAGGA TGGCCTTCGG GCACAATTTG GTTGCTTTAA TAATGCTTTA	1620
	AAATGAATGT ATTAGTAAAT TATAAACTTT AAATCCAATC TACTCACAAA TTGGCCAAAA	1680
45	ATTTGTATTT GTTTTTGTTT TTGTTTTTTTTTTTTTT	1740
	TTTATTTGT TTTTTTTTTTTTTTTTTTTTTTTTTTTTT	1800
	TGTAGTGGTT TTTATTGTTT TTATTATTTT TTGTAGCTTT TTTACTTGTT TATTTCACAC	1860
	GCAAACACAC TITCAAGITT ATATATTAAA ACACACATTA AACTTATITC AAATAAITTA	1920
50	TAAAAGCACA CTTAATACAC TCAAACAATA ATTAATTATT TTATTTTTTA TTTTTTTT	1980
-	TATTTTATT ATTTTATTT TTATTTATTT AAATGCATTT AACACAACAC	2040
	AAGCTCAAAT CTCTTTTAAA TAGAATCATT TTTCCCAAAA TCAATAGTAG CATTAAACAT	21.00

5		
	GCTGTAAATG GATGTAAGCC CTTCTTTGTA GTGGTCCATT GCAGCAAGTC CTTTAGCTTT	2160
	CGGACTACAA GCCTTTAGTA TATCTGCATA TTGTTTAGCC TTGCCAATTT CAACAGAGTT	2220
10	CATGCTATAT CCTTTGCTTT TTAGAACTGT GCACACTTTC CCAACTGCCT CTTTAGTGCT	2280
10	AAACTTAGAC ATGTCAATTC CAAGCTCAAC ATGTTTAGCA TCTTGATAAA TAGCCGGAAC	2340
	TAGTGCAGCT ATTTCAAAAT TCAGTACAGA TGCTATCAGA GGAAGACTTC CTCCTAAGAG	2400
	AACACCCAAG ACACAGGATT TCAAATCTGT GGTTGCAAGA CCATATGAGG CAATCAGAGG	2460
15	GTGACTTGGA AGGCTATTTA TAGCTTCAGT CAGAGCAGAT CCATTGTCCT TTATCATTCC	2520
	AACAAGATGA ACTCTCACCA TTGCATCAAG TCTTCGGAAA GTCATATCAT TGACCCCAAC	2580
	TCTTTCTGAA TTGTTTCTAG TTTTCTTAAT TGTGACTGAT CCAAAAGTGA AGTCAGCACT	2640
20	CTTAATGACT CTCATTATAG ATTGCCTATT CTTGAGGAAG GATAGGCAGG ATGCAGTAGT	2700
	CATGTTCTGA ATCTTTTCAC GGTTGTTGGT AAAGAAGTCA GTGAAATTGA AAGACCCTTC	2760
	ATTTTGAGTT TCCTCAAATT CTAAGGAATC AGATTGAGTC AAAAGCTTGA CTATGTTCTC	2820
	CTTGGTAATC TTTGCTTTGT TCATCTTGAT CTGCTGACTT TACTAACTTT AAAGCTTAAA	2880
25	GTGTTCAAAT TACTAAATAG TACTTGCGGT TAAAGTAGTA TTTGGTAAAA TTTGTAATTT	2940
	TTCAGTTTCT AGCTTTGGAT TATATGATGT TATATTCGTG ACACAATTGC TCT	2993
	(2) INFORMATION FOR SEQ ID NO:3:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1350 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
35	(ii) MOLECULE TYPE: cDNA	
,	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
40	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:3:	
	ATGTCTAGTG CAATGTATGA AACAATTATC AAATCGAAGT CCTCAATCTG GGGAACAACA	60
45	TCTTCGGGTA AAGCAGTAGT AGATAGTTAT TGGATTCATG ATCAATCTTC CGGAAAGAAG	120
	TIGGTCGAAG CICAACTCTA TICTGACTCC AGGAGCAAGA CCAGTTTCTG TIACACTGGT	180
	AAAGTTGGCT TTCTCCCAAC AGAAGAAAAA GAAATTATAG TGAGATGTTT TGTGCCTATT	240
50	TTTGATGACA TTGATCTGAA TTTCTCCTTT TCAGGGAATG TTGTCGAAAT TCTGGTCAGA	300
50	TCTAACACAA CAAACACAAA CGGTGTTAAA CATCAAGGTC ATCTCAAAGT GTTATCCTCT	360
	CASTROCTOR CANTECTED AGAGCABATA GCAGTGCCTG AAATTACTTC AAGATTCGGT	420

5		
	CTGAAAGAAT CTGACATCTT CCCTCCAAAT AATTTCATTG AAGCTGCAAA TAAAGGATCA	480
	TTGTCTTGTG TCAAAGAAGT CCTTTTTGAT GICAAGTATT CAAACAACCA ATCCATGGGC	540
10	AAAGTCAGTG TTCTTCTCC TACCAGAAGT GTTCATGAAT GGCTGTACAC ACTTAAGCCT	600
	GTTTTTAACC AATCCCAGAC CAACAACAGG ACAGTAAACA CTTTGGCTGT AAAATCACTG	660
	GCAATGTCTG CAACTTCTGA TTTAATGTCA GATACTCATT CGTTTGTCAG GCTCAATAAT	720
	AACAAGCCTT TTAAAATCAG CCTTTGGATG CGCATCCCTA AAATAATGAA ATCAAACACA	780
15	TACAGCCGGT TCTTCACCCT GTCTGATGAA TCTTCTCCTA AAGAGTATTA TATAAGCATT	840
	CARTGTCTTC CGAATCACAA CAATGTTGAA ACAGTCATTG AATATAACTT TGATCAGTCA	900
	AACCTCTTCT TGAATCAACT CCTTCTAGCA GTGATTCATA AAATTGAGAT GAATTTTCT	960
20	GATCTAAAAG AACCTTACAA TGTTATCCAT GATATGTCGT ATCCTCAAAG AATTGTTCAT	1020
	TCACTTCTTG AAATCCACAC AGAACTTGCT CAAACTGTCT GTGACAGTGT TCAGCAAGAC	1080
	ATGATTGTCT TCACTATAAA TGAGCCAGAT CTAAAGCCAA AAAAGTTTGA GCTAGGGAAA	1140
25	AAGACTTTAA ATTATTCAGA AGATGGTTAT GGGAGAAAAT ATTTCCTTTC TCAGACCTTG	1200
	AAAAGTCTTC CGAGAAACTC ACAAACAATG TCTTATTTGG ATAGCATCCA GATGCCCGAT	1260
	TGGAAATTTG ACTATGCTGC AGGTGAAATA AAAATTTCTC CTAGATCAGA GGATGTTTTG	1320
•	AAAGCTATTT CTAAATTAGA TTTAAATTAA	1350
30	(2) INFORMATION FOR SEQ ID NO:4:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 789 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
40	(iii) ANTI-SENSE: NO	
•	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:4:	
45	TTAAATAGAA TCATTTTTCC CAAAATCAAT AGTAGCATTA AACATGCTGT AAATGGATGT	60
	AAGCCCTTCT TTGTAGTGGT CCATTGCAGC AAGTCCTTTA GCTTTCGGAC TACAAGCCTT	120
	TAGTATATCT GCATATTGTT TAGCCTTGCC AATTTCAACA GAGTTCATGC TATATCCTTT	180
50	GCTTTTTAGA ACTGTGCACA CTTTCCCAAC TGCCTCTTTA GTGCTAAACT TAGACATGTC	240
	AATTCCAAGC TCAACATGTT TAGCATCTTG ATAAATAGCC GGAACTAGTG CAGCTATTTC	300
	AAAATTCAGT ACAGATGCTA TCAGAGGAAG ACTTCCTCCT AAGAGAACAC CCAAGACACA	360

5		
	GGATTTCAAA TCTGTGGTTG CAAGACCATA TGAGGCAATC AGAGGGTGAC TTGGAAGGCT	420
	ATTTATAGCT TCAGTCAGAG CAGATCCATT GTCCTTTATC ATTCCAACAA GATGAACTCT	480
10	CACCATTGCA TCAAGTCTTC GGAAAGTCAT ATCATTGACC CCAACTCTTT CTGAATTGTT.	540
	TCTAGTTTC TTAATTGTGA CTGATCCAAA AGTGAAGTCA GCACTCTTAA TGACTCTCAT	600
	TATAGATTGC CTATTCTTGA GGAAGGATAG GCAGGATGCA GTAGTCATGT TCTGAATCTT	660
	TTCACGGTTG TTGGTAAAGA AGTCAGTGAA ATTGAAAGAC CCTTCATTTT GAGTTTCCTC	720
15	AAATTCTAAG GAATCAGATT GAGTCAAAAG CTTGACTATG TTCTCCTTGG TAATCTTTGC	783
	TTTGTTCAT	789
	(2) INFORMATION FOR SEQ ID NO:5:	
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 37 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
25	(ii) MOLECULE TYPE: cDNA	
20	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
30	(vi) ORIGINAL SOURCE:(A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:5:	
	AGAGCAATNN NNNNNNNNN NNNNGAACAA CCCAAGC	37
35	(2) INFORMATION FOR SEQ ID NO:6:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOFOLOGY: unknown	
40	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
45	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS</pre>	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:6:	
50	GATTATATGA TGTTATATTC GTGACACAAT TGCTCT	36
	(2) INFORMATION FOR SEQ ID NO:7:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 643 base pairs	

5		
	(B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
10	(ii) MOLECULE TYPE: cDNA	
10	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
15	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:7:	
	CCTTGGTTAA ACTTGTCCCT AAGTAAAGTT TGTTTACATG CATTTAGATC AGATTAAACA	
20	AATCTAATAA CAGATAAACC AAAAACAATC ATATGAAATA AATAAATAAA CATAAAATAT	60
	ATAAAAAATA CAAAAAAAT CATAAAATAA ATAAAAACCA AAAAAGGATG GCCTTCGGGC	120
	ACAATTTGGT TGCTTTAATA ATGCTTTAAA ATGAATGTAT TAGTAAATTA TAAACTTTAA	180
	ATCCAATCTA CTCACAAATT GGCCAAAAAT TTGTATTTGT TTTTGTTTTT GTTTTTGTT	240
25	TTTTGTTTT GTTTTGTTT ATTTGTTTT TATTTTGTT TTTGTTTTTTTT	300
	TTATTTATAT ATATATAT ATATATTTG TAGTGGTTTT TATTGTTTTT ATTATTTTT	360
	GTAGCTTTTT TACTTGTTTA TTTCACACGC AAACACACTT TCAAGTTTAT ATATTAAAAC	420
30	ACACATTAAA CTTATTTCAA ATAATTTATA AAAGCACACT TAATACACTC AAACAATAAT	480
	TAATTATTTT ATTTTTATT TTATTTTTTA TTTTTATTA	540
	ATGCATTTAA CACAACACAA AGCAAACCAA GCTCAAATCT CTT	600
35	(2) INFORMATION FOR SEQ ID NO:8:	643
40	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 602 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
40	(ii) MCLECULE TYPE: CDNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
45	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	·
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:8:	
50	TGGTTAAACT TGTCCCTAAG TAAAGTTTGT TTACATGCAT TTAGATCAGA TTAAACAAAT	60
	CTAATAACAG ATAAACCAAA AACAATCATA TGAAATAAAT AAATAAACAT AAAATATATA	120
	AAAAATACAA AAAAAATCAT AAAATAAATA AAAACCAAAA AAGGATGGCC TTCGGGCACA	180

5		
	ATTTGGTTGC TTTAATAATG CTTTAAAATG AATGTATTAG TAAATTATAA ACTTTAAATC	240
	CAATCTACTC ACAAATTGGC CAAAAATTTG TATTTGTTTT TGTTTTTGTT TTTTGTTTTT	300
10	TGTTTTGTT TTGTTTTATT TGTTTTTAT TTTGTTTTTT GTTTTTTGTT TTTTATTTTA	360
10	TTTATATATA TATATATATA TATTTTGTAG TGGTTTTTAT TGTTTTTATT ATTTTTTGTA	420
	GCTTTTTTAC TTGTTTATTT CACACGCAAA CACACTTTCA AGTTTATATA TTAAAACACA	480
	CATTAAACTT ATTTCAAATA ATTTATAAAA GCACACTTAA TACACTCAAA CAATAATTAA	540
15	TTATTTATT TTTTATTTA TTTTTTATTT TTATTATTT TATTTTATT TATTTAAATG	600
	CA	602
	(2) INFORMATION FOR SEQ ID NO:9:	
20	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3017 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 	
0.5	(ii) MOLECULE TYPE: cDNA	
25	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
30	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:9:	
	AGAGCAATTG TGTCACGAAT ATAACATCAT ATAATCCAAA GCTAGAAACT GAAAAATTAC	60
35	AAATTTTACC AAATACTACT TTAACCGCAA GTACTATTTA GTAATTTGAA CACTTTAAGC	120
	TTTAAAGTTA GTAAAGTCAG CAGATCAAGA TGAACAAAGC AAAGATTACC AAGGAGAACA	180
	TAGTCAAGCT TTTGACTCAA TCTGATTCCT TAGAATTTGA GGAAACTCAA AATGAAGGGT	240
	CTTTCAATTT CACTGACTTC TTTACCAACA ACCGTGAAAA GATTCAGAAC ATGACTACTG	300
40	CATCCTGCCT ATCCTTCCTC AAGAATAGGC AATCTATAAT GAGAGTCATT AAGAGTGCTG	360
	ACTICACITI IGGATCAGIC ACAATTAAGA AAACTAGAAA CAATICAGAA AGAGIIGGGG	420
	TCAATGATAT GACTTTCCGA AGACTTGATG CAATGGTGAG AGTTCATCTT GTTGGAATGA	480
45	TAAAGGACAA TGGATCTGCT CTGACTGAAG CTATAAATAG CCTTCCAAGT CACCCTCTGA	540
	TTGCCTCATA TGGTCTTGCA ACCACAGATT TGAAATCCTG TGTCTTGGGT GTTCTCTTAG	600
	GAGGAAGTCT TCCTCTGATA GCATCTGTAC TGAATTTTGA AATAGCTGCA CTAGTTCCGG	660
50	CTATTTATCA AGATGCTAAA CATGTTGAGC TTGGAATTGA CATGTCTAAG TTTAGCACTA	720 -
	AAGAGGCAGI TGGGAAAGTG TGCACAGTTC TAAAAAGCAA AGGATATAGC ATGAACTCTG	780
	MUCANITICS CARGOCTARA CARTATGORG ATATACTARA GGCTTGTAGT CCGARAGCTA	840

5							
						AGCATGTTTA	900
						CTTGGTTTGC	960
10	TTTGTGTTGT	GTTAAATGCA	TTTAAATAAA	TAAAAATAAA	AATAATAAA	ATAAAAAATA	1020
	AAAAAAAAA	TAAAATAATT	AATTATTGTT	TGAGTGTATT	AAGTGTGCTT	TTATAAATTA	1080
	TTTGAAATAA	GTTTAATGTG	TGTTTTAATA	TATAAACTTG	AAAGTGTGTT	TGCGTGTGAA	114C
	ATAAACAAGT	AAAAAAGCTA	СААААААТАА	TAAAAACAAT	AAAAACCACT	ACAAAATATA	1200
15	TATATATATA	CATATAAATA	AAATAAAAA	СААААААСАА	AAAACAAAAT	AAAAAACAAA	1260
	TAAAACAAAA	CAAAAACAAA	AAACAAAAA	САААААСААА	AACAAATACA	AATTTTTGGC	1320
	CAATTTGTGA	GTAGATTGGA	TTTAAAGTTT	ATAATTTACT	AATACATTCT	TTTAAAGCAT	1380
20	TATTAAAGCA	ACCAAATTGT	GCCCGAAGGC	CATCCTTTTT	TGGTTTTAT	TTATTTTATG	1440
	ATTTTTTTTG	TATTTTTTAT	ATATTTTATG	TTTATTTATT	TATTTCATAT	GATTGTTTTT	1500
	GGTTTATCTG	TTATTAGATT	TGTTTAATCT	GATCTAAATG	CATGTAAACA	AACTTTACTT	1560
25	AGGGACAAGT	TTAACCAAGG	TTAATTTAAA	TCTAATTTAG	AAATAGCTTT	CAAAACATCC	1620
	TCTGATCTAG	GAGAAATTTT	TATTTCACCT	GCAGCATAGT	CAAATTTCCA	ATCGGGCATC	1680
	TGGATGCTAT	CCAAATAAGA	CATTGTTTGT	GAGTTTCTCG	GAAGACTTTT	CAAGGTCTGA	1740
	GAAAGGAAAT	ATTTTCTCCC	ATAACCATCT	TCTGAATAAT	TTAAAGTCTT	TTTCCCTAGC	1800
30	TCAAACTTTT	TTGGCTTTAG	ATCTGGCTCA	TTTATAGTGA	AGACAATCAT	GTCTTGCTGA	1860
	ACACTGTCAC	AGACAGTTTG	AGCAAGTTCT	GTGTGGATTT	CAAGAAGTGA	ATGAACAATT	1920
	CTTTGAGGAT	ACGACATATC	ATGGATAACA	TTGTAAGGTT	CTTTTAGATC	AGAAAAATTC	1980
35	ATCTCAATTT	TATGAATCAC	TGCTAGAAGG	AGTTGATTCA	AGAAGAGGTT	TGACTGATCA	2040
	AAGTTATATT	CAATGACTGT	TTCAACATTG	TTGTGATTCG	GAAGACATTG	AATGCTTATA	2100
	TAATACTCTT	TAGGAGAAGA	TTCATCAGAC	AGGGTGAAGA	ACCGGCTGTA	TGTGTTTGAT	2160
40	TTCATTATTT	TAGGGATGCG	CATCCAAAGG	CTGATTTTAA	AAGGCTTGTT	ATTATTGAGC	2220
40	CTGACAAACG	AATGAGTATC	TGACATTAAA	TCAGAAGTTG	CAGACATTGC	CAGTGATTTT	2280
	ACAGCCAAAG	TGTTTACTGT	CCTGTTGTTG	GTCTGGGATT	GGTTAAAAAC	AGGCTTAAGT	2340
	GTGTACAGCC	ATTCATGAAC	ACTTCTGGTA	GGAGAAAGAA	CACTGACTTT	GCCCATGGAT	2400
45	TGGTTGTTTG	AATACTTGAC	ATCAAAAAGG	ACTTCTTTGA	CACAAGACAA	TGATCCTTTA	2460
	TTTGCAGCTT	CAATGAAATT	ATTTGGAGGG	AAGATGTCAG	ATTCTTTCAG	ACCGAATCTT	2520
	GAAGTAATTT	CAGGCACTGC	TATTTGCTCT	TCAAGCATTC	TGAGCAACTG	AGAGGATAAC	2580
50	ACTTTGAGAT	GACCTTGATG	TTTAACACCG	TTTGTGTTTG	TTGTGTTAGA	TCTGACCAGA	2640
	ATTTCGACAA	CATTCCCTGA	AAAGGAGAAA	TTCAGATCAA	TGTCATCAAA	AATAGGCACA	2700

AAACATCTCA CTATAATTTC TTTTTCTTCT GTTGGGAGAA AGCCAACTTT ACCAGTGTAA

5	·	
	CAGAAACTGG TCTTGCTCCT GGAGTCAGAA TAGAGTTGAG CTTCGACCAA CTTCTTTCCG	2820
	GAAGATTGAT CATGAATCCA ATAACTATCT ACTACTGCTT TACCCGAAGA TGTTGTTCCC	2880
10	CAGATTGAGG ACTTCGATTT GATAATTGTT TCATACATTG CACTAGACAT GTTAAAATGG	2940
10	AAGTAGTAAT GTAATTGACA ATATTGTAAG ATTTGTTGTA GCTTGGTTGT TCNNNNNNN	3000
	NNNNNNNA TTGCTCT	3017
	(2) INFORMATION FOR SEQ ID NO:10:	
15	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 2993 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
20	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
25	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECRCTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:10:	
	AGAGCAATTG TGTCACGAAT ATAACATCAT ATAATCCAAA GCTAGAAACT GAAAAATTAC	60
30	AAATTTTACC AAATACTACT TTAACCGCAA GTACTATTTA GTAATTTGAA CACTTTAAGC	120
	TTTAAAGTTA GTAAAGTCAG CAGATCAAGA TGAACAAAGC AAAGATTACC AAGGAGAACA	180
	TAGTCAAGCT TTTGACTCAA TCTGATTCCT TAGAATTTGA GGAAACTCAA AATGAAGGGT	240
35	CTTTCAATTT CACTGACTTC TTTACCAACA ACCGTGAAAA GATTCAGAAC ATGACTACTG	300
	CATCCTGCCT ATCCTTCCTC AAGAATAGGC AATCTATAAT GAGAGTCATT AAGAGTGCTG	360
	ACTTCACTTT TGGATCAGTC ACAATTAAGA AAACTAGAAA CAATTCAGAA AGAGTTGGGG	420
	TCAATGATAT GACTTTCCGA AGACTTGATG CAATGGTGAG AGTTCATCTT GTTGGAATGA	480
40	TAAAGGACAA TGGATCTGCT CTGACTGAAG CTATAAATAG CCTTCCAAGT CACCCTCTGA	540
	TTGCCTCATA TGGTCTTGCA ACCACAGATT TGAAATCCTG TGTCTTGGGT GTTCTCTTAG	600
	GAGGAAGTCT TCCTCTGATA GCATCTGTAC TGAATTTTGA AATAGCTGCA CTAGTTCCGG	660
45	CTATTTATCA AGATGCTAAA CATGTTGAGC TTGGAATTGA CATGTCTAAG TTTAGCACTA	720
	AAGAGGCAGT TGGGAAAGTG TGCACAGTTC TAAAAAGCAA AGGATATAGC ATGAACTCTG	780
	TTGAAATTGG CAAGGCTAAA CAATATGCAG ATATACTAAA GGCTTGTAGT CCGAAAGCTA	840
50	AAGGACTTGC TGCAATGGAC CACTACAAAG AAGGGCTTAC ATCCATTTAC AGCATGTTTA	900
· ~	ATGCTACTAT TGATTTTGGG AAAAATGATT CTATTTAAAA GAGATTTGAG CTTGGTTTGC-	960
	TTTGTGTTGT GTTARATGCA TTTARATARA TARARATARA AATARTARAR ATARARATA	1020

5		
	AAATAAAAAA TAAAATAATT AATTATTGTT TGAGTGTATT AAGTGTGCTT TTATAAATTA	1000
	TTTGAAATAA GTTTAATGTG TGTTTTAATA TATAAACTTG AAAGTGTGTT TGCGTGTGAA	1080
10	ATAAACAAGT AAAAAAGCTA CAAAAAATAA TAAAAACAAT AAAAACCACT ACAAAATATA	1140
	TATATATATA TATATAAATA AAATAAAAAA CAAAAACAA AAAACAAAAT AAAAAACAAA	1200
	TAAAACAAAA CAAAAACAAA AAACAAAAAA CAAAAACAAA AACAAATACA AATTTTTGGC	1320
.=	CAATTTGTGA GTAGATTGGA TTTAAAGTTT ATAATTTACT AATACATTCA TTTTAAAGCA	1380
15	TTATTAAAGC AACCAAATTG TGCCCGAAGG CCATCCTTT TTGGTTTTTA TTTATTTTAT	1440
	GATTTTTTTT GTATTTTTA TATATTTTAT GTTTATTTA	1500
	TGGTTTATCT GTTATTAGAT TTGTTTAATC TGATCTAAAT GCATGTAAAC AAACTTTACT	1560
20	TAGGGACAAG TTTAACCAAG GTTAATTTAA ATCTAATTTA GAAATAGCTT TCAAAACATC	1620
	CTCTGATCTA GGAGAAATTT TTATTTCACC TGCAGCATAG TCAAATTTCC AATCGGGCAT	1680
	CTGGATGCTA TCCAAATAAG ACATTGTTTG TGAGTTTCTC GGAAGACTTT TCAAGGTCTG	1740
25	AGAAAGGAAA TATTTTCTCC CATAACCATC TTCTGAATAA TTTAAAGTCT TTTTCCCTAG	1800
	CTCAAACTTT TTTGGCTTTA GATCTGGCTC ATTTATAGTG AAGACAATCA TGTCTTGCTG	1860
	AACACTGTCA CAGACAGTTT GAGCAAGTTC TGTGTGGATT TCAAGAAGTG AATGAACAAT	1920
30	TCTTTGAGGA TACGACATAT CATGGATAAC ATTGTAAGGT TCTTTTAGAT CAGAAAAATT	1980
30	CATCTCAATT TTATGAATCA CTGCTAGAAG GAGTTGATTC AAGAAGAGGT TTGACTGATC	2040
	AAAGTTATAT TCAATGACTG TTTCAACATT GTTGTGATTC GGAAGACATT GAATGCTTAT	2100
	ATAATACTCT TTAGGAGAAG ATTCATCAGA CAGGGTGAAG AACCGGCTGT ATGTGTTTGA	2160
35	TTTCATTATT TTAGGGATGC GCATCCAAAG GCTGATTTTA AAAGGCTTGT TATTATTGAG	2220
	CCTGACAAAC GAATGAGTAT CTGACATTAA ATCAGAAGTT GCAGACATTG CCAGTGATTT	2280
	TACAGCCAAA GTGTTTACTG TCCTGTTGTT GGTCTGGGAT TGGTTAAAAA CAGGCTTAAG	2340
40	TGTGTACAGC CATTCATGAA CACTTCTGGT AGGAGAAAGA ACACTGACTT TGCCCATGGA	2400
	TTGGTTGTTT GAATACTTGA CATCAAAAAG GACTTCTTTG ACACAAGACA ATGATCCTTT	2460
	ATTTGCAGCT TCAATGAAAT TATTTGGAGG GAAGATGTCA GATTCTTTCA GACCGAATCT	2520
45	TGAAGTAATT TCAGGCACTG CTATTTGCTC TTCAAGCATT CTGAGCAACT GAGAGGATAA	2580
	CACTTTGAGA TGACCTTGAT GTTTAACACC GTTTGTGTTT GTTGTGTTAG ATCTGACCAG	2640
	AATTTCGACA ACATTCCCTG AAAAGGAGAA ATTCAGATCA ATGTCATCAA AAATAGGCAC	2700
	AAAACATCTC ACTATAATTT CTTTTTCTTC TGTTGGGAGA AAGCCAACTT TACCAGTGTA	2760
50	ACAGAAACTG GTCTTGCTCC TGGAGTCAGA ATAGAGTTGA GCTTCGACCA ACTTCTTTCC GGAAGATTGA TCATGAATCC AATAACTATC TACTACTCTC	2820
	GGAAGATTGA TCATGAATCC AATAACTATC TACTACTGCT TTACCCGAAG ATGTTGTTCC	2880
	CCAGATTGAG GACTTCGATT TGATAATTGT TTCATACATT GCACTAGACA TGTTAAAATG	2940

5		
·	GAAGTAGTAA TGTAATTGAC AATATTGTAA GATTTGTTGT AGCTTGGTTG TTC	2993
	(2) INFORMATION FOR SEQ ID NO:11:	
10	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 789 base pairs (E) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
15	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
20	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:11:	
	ATGAACAAAG CAAAGATTAC CAAGGAGAAC ATAGTCAAGC TTTTGACTCA ATCTGATTCC	60
	TTAGAATTTG AGGAAACTCA AAATGAAGGG TCTTTCAATT TCACTGACTT CTTTACCAAC	120
25	AACCGTGAAA AGATTCAGAA CATGACTACT GCATCCTGCC TATCCTTCCT CAAGAATAGG	180
	CAATCTATAA TGAGAGTCAT TAAGAGTGCT GACTTCACTT TTGGATCAGT CACAATTAAG	240
	AAAACTAGAA ACAATTCAGA AAGAGTTGGG GTCAATGATA TGACTTTCCG AAGACTTGAT	300
30	GCAATGGTGA GAGTTCATCT TGTTGGAATG ATAAAGGACA ATGGATCTGC TCTGACTGAA	360
	GCTATAAATA GCCTTCCAAG TCACCCTCTG ATTGCCTCAT ATGGTCTTGC AACCACAGAT	420
	TTGAAATCCT GTGTCTTGGG TGTTCTCTTA GGAGGAAGTC TTCCTCTGAT AGCATCTGTA	480
35	CTGAATTTTG AAATAGCTGC ACTAGTTCCG GCTATTTATC AAGATGCTAA ACATGTTGAG	540
	CTTGGAATTG ACATGTCTAA GTTTAGCACT AAAGAGGCAG TTGGGAAAGT GTGCACAGTT	600
	CTAAAAAGCA AAGGATATAG CATGAACTCT GTTGAAATTG GCAAGGCTAA ACAATATGCA	660
	GATATACTAA AGGCTTGTAG TCCGAAAGCT AAAGGACTTG CTGCAATGGA CCACTACAAA	720
40	GAAGGGCTTA CATCCATTTA CAGCATGTTT AATGCTACTA TTGATTTTGG GAAAAATGAT	780
	TCTATTTAA	789
	(2) INFORMATION FOR SEQ ID NO:12:	
45	 (i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 1350 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown 	
50	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	

(iii) ANTI-SENSE: YES

(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS

10	(xi) S	EQUENCE DES	CRIPTION: S	EQ ID NO:12	:		
	TTAATTTAAA	. TCTAATTTAG	AAATAGCTTT	CAAAACATCC	TCTGATCTAG	GAGAAATTTT	. 6
	TATTTCACCT	' GCAGCATAGT	CAAATTTCCA	ATCGGGCATC	TGGATGCTAT	CCAAATAAGA	12
	CATTGTTTGT	GAGTTTCTCG	GAAGACTTTT	CAAGGTCTGA	GAAAGGAAAT	ATTTTCTCCC	18
15	ATAACCATCT	TCTGAATAAT	TTAAAGTCTT	TTTCCCTAGC	TCAAACTTTT	TTGGCTTTAG	24
	ATCTGGCTCA	TTTATAGTGA	AGACAATCAT	GTCTTGCTGA	ACACTGTCAC	AGACAGTTTG	30
	AGCAAGTTCT	GTGTGGATTT	CAAGAAGTGA	ATGAACAATT	CTTTGAGGAT	ACGACATATC	36
20	ATGGATAACA	TTGTAAGGTT	CTTTTAGATC	AGAAAAATTC	ATCTCAATTT	TATGAATCAC	42
		AGTTGATTCA					48
		TTGTGATTCG					54
25		AGGGTGAAGA					60
		CIGATITIAA					66
		TCAGAAGTTG					72
•		GTCTGGGATT					781
30		GGAGAAAGAA					840
		ACTTCTTTGA					900
		AAGATGTCAG					960
35		TCAAGCATTC					1020
		TTTGTGTTTG					1080
40		TTCAGATCAA					1140
		GTTGGGAGAA					1200
		TAGAGTTGAG					1260
		ACTACTGCTT		TGTTGTTCCC	CAGATTGAGG	ACTTCGATTT	1320
		TCATACATTG					1350
45	(2) INFORMA	TTON FOR CE	O TD NO.13.				

(i) SEQUENCE CHARACTERISTICS:
(A) LENGTH: 642 base pairs
(B) TYPE: nucleic acid
(C) STRANDEDNESS: single
(D) TOPOLOGY: unknown

(ii) MCLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

55

Constant State of Co.

to with the suited that the control of the first first

5		
	(iii) ANTI-SENSE: YES	
	(vi) ORIGINAL SOURCE:	
	(A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
10	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:13:	Ç
	AAGAGATTTG AGCTTGGTTT GCTTTGTGTT GTGTTAAATG CATTTAAATA AATAAAAATA	6 C
	AAAATAATAA AAATAAAAAA TAAAATAAAA AATAAAATAA TTAATTATT	120
15	TTAAGTGTGC TTTTATAAAT TATTTGAAAT AAGTTTAATG TGTGTTTTAA TATATAAACT	180
	TGAAAGTGTG TTTGCGTGTG AAATAAACAA GTAAAAAAGC TACAAAAAAT AATAAAAACA	240
	ATAAAAACCA CTACAAAATA TATATATATA TATATAAAA TAAAATAAAA AACAAAAAAC	300
20	AAAAAACAAA ATAAAAAACA AATAAAACAA AACAAAAACA AAAAACAAAA AACAAAAAACA	360
20	AAAACAAATA CAAATTTTTG GCCAATTTGT GAGTAGATTG GATTTAAAGT TTATAATTTA	420
	CTAATACATT CTTTTAAAGC ATTATTAAAG CAACCAAATT GTGCCCGAAG GCCATCCTTT	480
	TTTGGTTTTT ATTTATTTTA TGATTTTTTT TGTATTTTTT ATATATTTTA TGTTTATTTA	540
25	TTTATTTCAT ATGATTGTTT TTGGTTTATC TGTTATTAGA TTTGTTTAAT CTGATCTAAA	600
	TGCATGTAAA CAAACTTTAC TTAGGGACAA GTTTAACCAA GG	642
	(2) INFORMATION FOR SEQ ID NO:14:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4970 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
35	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
40	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:14:	
	AGAGCAATCA GTGCATCAAA ATTATATCTA GCCGAATTCA ATCATTATCT TCTCAATATT	60
45	TTAATTCTTA ATCTACCGTC CAGAGATGAA TAGTTTTTTC AAATCACTCA GATCATCTAG	120
	CAGCAGGGAG CTAGATCACC CTAGGGTTAC AACTACCCTC TCTAAACAAG GAGCAGACAT	180
	TGTTGTACAC AATCCTTCTG CTAATCACAA CAACAAGGAA GTTCTCCAAA GAGCCATGGA	240
50	TAGCTCTAAA GGGAAGATTT TGATGAACAA TACAGGCACC TCATCACTAG GCACATATGA	300
	GTCTGACCAG ATATCTGAAT CAGAGTCTTA TGATCTTTCT GCTAGAATGA TTGTTGATAC	360
	AAATCATCAT ATCTCCAGCT GGAAAAATGA TCTTTTTGTA GGTAATGGTG ATAAAGCTGC	420

	AACCAAGATA	ATTAAGATA	C ATCCAACCT	G GGATAGCAG	A AAACAATAC	TGATGATCTC	480
						TGGCTGTAGC	
10	TTTAATTGAT	CCTAACAAG	A GIGTTAATGO	CAGAACTGT:	T TTGAAAGGGC	AAGGAAGCAT	600
	TAAAGATCCT	ATATGTTTT	TTTTTTATC	r AAAITGGTC	ATTCCAAAAG	TTAACAACAC	660
	TTCAGAGAAT	TGTGTTCAG	TTCATTTAT	r atgigatca:	GTTTACAAGA	AAGATGITTC	720
45	TTTTGCTAGT	GTCATGTATT	CTTGGACAA	AGAATTCTGT	GATTCACCAA	GAGCAGATCT	780
15	GGATAAAAGC	TGCATGATAA	TACCCATCA	Y TAGGGCTATI	AGAGCCAAAT	CGCAAGCCTT	840
						TTAGAAGACA	900
						ATGTTACTGA	
20						TAATAATAAA	
						AGATAAAAA	
						TAAAAACAAA	
25						AACAAAAACA	
	AACAAAAAGC						1260
	AATAAGGCTC						1320
	GTTTTTGTTG						1380
30	ACTTATTTAG						1440
	CACATTIGGT						1500
	TCTTCTAGTG .						1560
35	TTCAATATAT						1620
	AATAGAGCAG						1680
	ATCAAAGAAG	GATCCAAAGT	GGCTTGCTAT	AAAGTTAAAA	GGGCTTTTAA	CATAGTCCCA	1740
40	AAAGCTCCAA	ACTGATGTGT	CAGAATTATA	TTGCTGTTCC	TCGTGTGCAT	GTTGGTCATT	1800
	TTGATCAATT A	ATGTTTTCTG	GTTCCAGCAC	AGCAACAGAA	TCTACAAGTG	CCTCAACTGA	1860
	GTATGATTTG	TCTCCTTCTG	GTTCTATAAT	CATTTTTTGT	TTTTCTGGGT	TAGAAGTGCA	1920
	GAACATTGTC 1	AAGTTATACT	TATTAGCACC	TTTCTTTACT	GCTATCTGGT	ATGTTGACAA	1980
45	TGAACATTGT 1	TTCATGGTTA	ACCTTGCAGA	AAAAGTTATG	TCTGATATAA	ATGAGGCAGC	2040
	ACACCTCAGC (2100
	TATAGGCTTT 1						2160
50	CTTACCTAGA C						2220
	AATGTCCGAT A						2290
	TATCGTAATT G						2340

5	•	
	TGTTTTCTTA GAGAAAATGG GATCACCTTG GTGTGAAAGT TGAGGATGAC CAAACATTTT	2400
	TGATGGATTA TTTAATCTAG CTATGTTTCC CGCATATACG TGACTATCAG GTCCATGAGC	2460
	TATCAGCTGG CCTATTGTTA AGCCATCATT ATGGAAATCC GCTAATATAT CAGCCTGGAA	2520
10	ATATCCTGAT TCAGATGGGA CTTCCTCAGA TACAGTGAAA CACTTTGCTC CCACAAATCC	2580
	AGATATACAT ACTTCAGACT TGATTGTTGA TTTAATAACA GAATAAATCC TGAAAGATTG	2640
	ATCCATATCA TACACATTTC TACAAAACCC ACAAGTGGCT CCTTCATTGA TAGCCAAACA	2700
15	CCAAACCTCT TCACAACCCC AGTAAGATGT TGGTGTTATG CAGAAATCTT GATACCCAGT	2760
	TATCGGTTGT TCTTTTCTGC AATCTGAGCA TTTACCTGTG CATGTTGAAA AGAAATCAGT	2820
	GTGGGTGCTT TGTATAGGAG CTGTAGTGTA TTGTTCAGAA ACATCATACT GTATTCTAAC	2880
20	TTTTTTAATA TAAACAACAA ACTTCTGAGC AGTGCTAGAA CTTTTGTCAT TAAGAGAGAA	2940
	AACTGTGCCC CCACCTGATA ATAAAGATTC TTCTATCATG TATCTATATT TTCCATCTAT	3000
	CACCGAGTCA AATATGAGAG ATTTTCTTGG AAAAATGCTT TCAGGTATGT CTGATTCATT	3060
	AGATITAAGI GCATCTCCAG AAATGTATCC ATATTTTTCA GTTTTATTGT AGAAATCAAT	3120
25	TATACCATTC CTAAGCCTTT TCATGAAGTG TAGATTCACA GCATTCAATC CCAATGTGTC	3180
	ACCAGAATAT TCTAAGAACC CATTATCTAA AGGCTTGCTT TGGAAAATAG AGGCATACTC	3240
	ACAACCAAAT CTGCATTTGA CAAAAGTTAC TAAAGCATTT TCAGTTATCC TGCCTTTGCA	3300
30	TTCTTGATAA GGTATACAAT CCATAGGACC TTCTGTCACA ACATTGGTTA GAAAGTTAGA	3360
	TTCTACAATA GAATTTTCTT TAATAGCACA GAAGCATTGG TCTTTTTCAG GACATTTGTC	3420
	ATATCTGTTT GTAACAAAGC GGTCACAACC AGGGACATAA TAACAGCTAT CCAAACACTG	3480
35	AGCAGTTTGA GCCATAGACA TAGGCATCTG TGACAAAATC AGAAATCCTA TCAAAGTTTC	3540
	TGTGACTGCT TTTAGGAAAG AGAGGCCTAT TTTTGTATTA ACTATCAAAT GGAACCATTC	3600
	AATGCTAGCC CAGTTGTATT TTTTATTCTT CTCTGCTGTT CTAGTTATTA TAGGACATTC	3660
	TTCTGAGTGT TCTTCAGAGG CTTTGTTTTT GTTACAAATG CATAATTTTG AGCATTCATG	3720
40	GGTTACCAAA CATAAATTTC CACAGACCTT ACATTTCAAG GGAAAATAAG ACCATAAATA	3780
	ATTTATCAGT AGTAGTATAG GATACGTTAT CAATCCCAGA AGATCATACC CATAGAACAG	3840
	TGTTTTAGAT GTTTTGTTTA CCAAGTACCT TATAGGGAAA TAGACAATCA GAGCAATCAT	3900
45	GATCAATCTA AACCATGAGA AGTTGATGCA AGCAGTTTGT TTGTAAATAT TTTTGGAGTA	3960
	CTTTATAATA CAATCTCTAA CTCTTTTGTC CACTAAAGGA ACTTTAGAAG ACTTGTCACC	4020
	GCACAATAGG TTATGCTTAC CATCCATATT TTCTTCTGTG AAAGTCAAAC TAACTGAGCC	4080
50	AGAGAAGCTT ATTATGGAAT GGCTCATGTC ACTTCCTTCT CTTTTGACGA CGTAACCCAT	4140
50	GATTITCTCA GGTGTAGTTA ATGAAACTGT ATAAGAATTA ACTATGTTTG TTTTTGATAT	4200
	TOTAL TOTAL CONTROL CASCACACT CTCCCATTAG TTCGTTTAGA	4260

5		
	ATTGTACATG ATTGGATAAT TGTAATTCTC CAAACTTTCA ATTATATAGA ATTTAGTTCC	
	TATAGATAAT TECCTTEGE TATCCATTER TOTAL	4320
	TATAGATAAT TTCCTTTTGT TATCGATTTT TGTTATTGGT ACAACTGGAA CAGTTTCAAA	4380
10	GCTTCTTGGC AATTCAGAAG ATCCTTCACA GTTTCCCAAT TTAGTTATAG TGTCACTGAT	4440
	ACATGAATAT ATAACACCAT TGCTTTCTAC TTGGTAATAA ACATTGAATG TTGAAACTCC	4500
	TITAATGCTA CAAGTCAAAC TTGAAGCATT TAGGCATGGA TTTGGTAAAT CCATAACTGA	4560
15	TATAGTTGTT GGTGTAGAAG ACAATCCACT TGGAGATTGA GGTACCTCAT TATTGGCAAG	4620
	AACAGTTTGA GTATCTCGTG TTGGTCTAAG GGTTTTACCT GTTGCATTCT GGAGCATTTC	4630
,	AGCCAAAGTA TCTAGAATTT CATTTTTATG ATCTACAGAA CGGTCATAAT AAGCTTCATC	4740
	ATAAATTTCT GGATGATCGC CCCTTTCAAC ATGAATCTTT GCATCTGTCT CCTTTAATGC	480C
20	CATAAAGGAT AAGATAACAG AAGTAACAAC TAGTGTACAT ACACTAATTT TAACAAGTAA	4860
	CTCGCACATC TTTAGAATTT TCATTCTAAA AAGTCGAATA ACACTAGETC TAAAATTGCT	4920
	TTATGAGTTT GATCTGTTGT ATGTAGAGTT TTGTTTGCAC TGATTGCTCT	4970
25	(2) INFORMATION FOR SEQ ID NO:15:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 912 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
30	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPCTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
35	(VI) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:15:	
40	ATGAATAGTT TTTTCAAATC ACTCAGATCA TCTAGCAGCA GGGAGCTAGA TCACCCTAGG	60
~~	GTTACAACTA CCCTCTCTAA ACAAGGAGCA GACATTGTTG TACACAATCC TTCTGCTAAT	120
	CACAACAACA AGGAAGTTCT CCAAAGAGCC ATGGATAGCT CTAAAGGGAA GATTTTGATG	180
	AACAATACAG GCACCTCATC ACTAGGCACA TATGAGTCTG ACCAGATATC TGAATCAGAG	240
45	TCTTATGATC TTTCTGCTAG AATGATTGTT GATACAAATC ATCATATCTC CAGCTGGAAA	300
	AATGATCTTT TTGTAGGTAA TGGTGATAAA GCTGCAACCA AGATAATTAA GATACATCCA	360
	ACCTGGGATA GCAGAAAACA ATACATGATG ATCTCAAGGA TAGTTATCTG GATATGCCCT	420
50	ACTATAGCTG ATCCTGATGG GAAATTGGCT GTAGCTTTAA TTGATCCTAA CAAGAGTGTT	480
	AATGCCAGAA CTGTTTTGAA-AGGGCAAGGA-AGCATTAAAG-ATCCTATATG-TTTTGTTTTT	540
	TATCTAAATT GGTCCATTCC AAAAGTTAAC AACACTTCAG AGAATTGTGT TCAGCTTCAT	600

5		•				
	TTATTATGTG ATCAAGTTTA CAAGAAAGAT GTTTCTTTTG CTAGTGTCAT GTATTCTTGG	660				
	ACAALAGAAT TOTGTGATTO ACCAAGAGOA GATOTGGATA AAAGOTGCAT GATAATACCO	720				
40	ATCAATAGGG CTATTAGAGC CAAATCGCAA GCCTTCATTG AAGCCTGCAA GTTAATCATA	780				
10	CCTARAGGCA ATTCTGARAA GCARATTAGA AGACARCTTG CAGAGCTARG TGCTARTTTA	840				
	GAGAAATCTG TTGAAGAAGA GGAGAATGTT ACTGATAACA AGATAGAGAT ATCATTTGAT	900				
	AATGAAATCT AA	912				
15	(2) INFORMATION FOR SEQ ID NO:16:					
20	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 473 base pairs (E) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown					
	(ii) MOLECULE TYPE: cDNA					
	(iii) HYPOTHETICAL: NO					
0.5	(iii) ANTI-SENSE: NO					
25	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS</pre>					
20	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:16:	60				
30	ATATGTTTTC ATTTAATAAT AAATAATATA TATTGTTCAT AATATTTTGA ATGTTTAAGT	60 120				
	AAAAAATAAA GCAAGATAAA AAACTATATA TATATATAT TATAGAAGTA TAAAATATAT	180				
	ATGTATTTGT GTTTAAAAAC AAATCAAAAA CCAAAAAAGA AAAAAGAAAA AATAAACAAA	240				
35	AAACAAAAC AAAAACAAAA ACAAACAAAA AGCAAAAAAT AGAAAAAAGT TGAAAAAAAC	300				
	CAAAAAATT TTTTTTGTAA ATAAATAAGG CTCCGGCCAG ATTTGGTCTA AGACCTTTTT ATTTGTTTTT ATACATTTTA TTTGTTTTTG TTGATTTTA TTTTTATTAT TTTTATATTT	360				
	TTTATATAGT TTGCTTATTT AACACTTATT TAGACAAATT AAATTTATTT GATTACAATC	420				
40	ATTCTGCCTT ATTTAATTTA AAACACATTT GGTGTATATT CCAATGAATT TAA	473				
	(2) INFORMATION FOR SEQ ID NO:17:					
	(i) SEQUENCE CHARACTERISTICS:					
45	(A) LENGTH: 3414 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown					
	(ii) MOLECULE TYPE: cDNA					
50	(iii) HYPOTHETICAL: NO					
	(iii) ANTI-SENSE: NO					
	<pre>(vi) ORIGINAL SOURCE:</pre>					

	(xi) 5	SEQUENCE DES	CRIPTION: S	EQ ID NO:17	':		
	TCATATACCO	G CTGAAGTCTA	GAGGAGGTCT	TCTTCTAGTG	ATGGTGTCTT	TACCAGAAGA	60
10	CGTGGAAAC	C AAAGAATAAT	CATTAGTGTC	TTCAATATAT	TTTGTCTTGT	AAGACTTGTT	. 120
	TCTAACATAC	G CCTCTACACA	TTGTGGCAAC	AATAGAGCAG	AGGTAAGCAA	GAGCAAATAC	180
	AAAGAGTATO	G AGCAATACTA	CTCTGACTGT	ATCAAAGAAG	GATCCAAAGT	GGCTTGCTAT	. 240
15	AAAGTTAAAA	GGGCTTTTAA	CATAGTCCCA	AAAGCTCCAA	ACTGATGTGT	CAGAATTATA	300
	TTGCTGTTCC	TCGTGTGCAT	GTTGGTCATT	TTGATCAATT	ATGTTTTCTG	GTTCCAGCAC	360
	AGCAACAGAA	TCTACAAGTG	CCTCAACTGA	GTATGATTTG	TCTCCTTCTG	GTTCTATAAT	420
20	CATTTTTGI	TTTTCTGGGT	TAGAAGTGCA	GAACATTGTC	AAGTTATACT	TATTAGCACC	480
20	TTTCTTTACT	GCTATCTGGT	ATGTTGACAA	TGAACATTGT	TTCATGGTTA	ACCTTGCAGA	540
	AAAAGTTATG	TCTGATATAA	ATGAGGCAGC	ACACCTCAGC	CCTTGGCTAC	ATAAGAAACA	600
	TCCCTTACAG	CTTAAAGAGA	CAGAACTCAA	TATAGGCTTT	TTTGGTACAG	TTTTAAACAA	660
25	TTCAGAAGGT	AGATCCAAAA	CAATTTTAAG	CTTACCTAGA	CTAAAGATCT	TTTCCATATA	720
	AAAACTATTC	TGGTCAGTAA	ACTGAACTGG	AATGTCCGAT	ATTTGGTTCA	AACCTGTTTT	78C
		GTGTCATAAC			•		840
30		GACAGATCGT					900
		TGAGGATGAC					960
		TGACTATCAG					1020
35		GCTAATATAT					1080
		CACTTTGCTC					1140
		GAATAAATCC					1200
		CCTTCATTGA					1260
40		CAGAAATCTT					1320
		CATGTTGAAA					1380
		ACATCATACT					1440
45		CTTTTGTCAT					1500
		TATCTATATT					1560
		TCAGGTATGT					
50		GTTTTATTGT					
50		GCATTCAATC					
	AGGCTTGCTT	TGGAAAATAG	AGGCATACTC	ACAACCĀĀĀŤ	CTGCATTTGA	CAAAAGTTAC	1800
	mr > > ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~ ~						

TAAAGCATTT TCAGTTATCC TGCCTTTGCA TTCTTGATAA GGTATACAAT CCATAGGACC

5		
	TTCTGTCACA ACATTGGTTA GAAAGTTAGA TTCTACAATA GAATTTTCTT TAATAGCACA	1920
	GAAGCATTGG TCTTTTCAG GACATTTGTC ATATCTGTTT GTAACAAAGC GGTCACAACC	1980
	AGGGACATAA TAACAGCTAT CCAAACACTG AGCAGTTTGA GCCATAGACA TAGGCATCTG	2040
10	TGACAAAATC AGAAATCCTA TCAAAGTTTC TGTGACTGCT TTTAGGAAAG AGAGGCCTAT	2100
	TTTTGTATTA ACTATCAAAT GGAACCATTC AATGCTAGCC CAGTTGTATT TTTTATTCTT	2160
	CTCTGCTGTT CTAGTTATTA TAGGACATTC TTCTGAGTGT TCTTCAGAGG CTTTGTTTTT	2220
15	GTTACAAATG CATAATTTTG AGCATTCATG GGTTACCAAA CATAAATTTC CACAGACCTT	2280
	ACATTTCAAG GGAAAATAAG ACCATAAATA ATTTATCAGT AGTAGTATAG GATACGTTAT	2340
	CANTCCCAGA AGATCATACC CATAGAACAG TGTTTTAGAT GTTTTGTTTA CCAAGTACCT	2400
20	TATAGGGAAA TAGACAATCA GAGCAATCAT GATCAATCTA AACCATGAGA AGTTGATGCA	2460
	AGCAGTTIGT TIGTAAATAT TITTGGAGTA CTTTATAATA CAATCTCTAA CTCTTTTGTC	2520
	CACTAAAGGA ACTTTAGAAG ACTTGTCACC GCACAATAGG TTATGCTTAC CATCCATATT	2580
	TTCTTCTGTG AAAGTCAAAC TAACTGAGCC AGAGAAGCTT ATTATGGAAT GGCTCATGTC	2640
25	ACTTCCTTCT CTTTTGACGA CGTAACCCAT GATTTTCTCA GGTGTAGTTA ATGAAACTGT	2700
	ATAAGAATTA ACTATGTTTG TTTTTGATAT TTTACAATCA CCTGAGAATT TCACACTCTG	2760
	GAGAGAGACT GTGCCATTAG TTGGTCTAGA ATTGTACATG ATTGGATAAT TGTAATTCTC	2820
30	CAAACTTTCA ATTATAGA ATTTAGTTCC TATAGATAAT TTCCTTTTGT TATCGATTTT	2880
	TGTTATTGGT ACAACTGGAA CAGTTTCAAA GCTTCTTGGC AATTCAGAAG ATCCTTCACA	2940
	GTTTCCCAAT TTAGTTATAG TGTCACTGAT ACATGAATAT ATAACACCAT TGCTTTCTAC	3000
35	TIGGTAATAA ACATTGAATG TIGAAACTCC TITAATGCTA CAAGTCAAAC TIGAAGCATT	3060
	TAGGCATGGA TTTGGTAAAT CCATAACTGA TATAGTTGTT GGTGTAGAAG ACAATCCACT	3120
	TGGAGATTGA GGTACCTCAT TATTGGCAAG AACAGTTTGA GTATCTCGTG TTGGTCTAAG	3180
	GGTTTTACCT GTTGCATTCT GGAGCATTTC AGCCAAAGTA TCTAGAATTT CATTTTTATG	3240
40	ATCTACAGAA CGGTCATAAT AAGCTTCATC ATAAATTTCT GGATGATCGC CCCTTTCAAC	3300
	ATGAATCTTT GCATCTGTCT CCTTTAATGC CATAAAGGAT AAGATAACAG AAGTAACAAC	3360
	TAGTGTACAT ACACTAATTT TAACAAGTAA CTCGCACATC TTTAGAATTT TCAT	3414
45	(2) INFORMATION FOR SEQ ID NO:18:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	

(ii) MOLECULE TYPE: cDNA

(iii) HYPOTHETICAL: NO

5		
	(iii) ANTI-SENSE: NO	
	<pre>(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS</pre>	
10	(vi) SEQUENCE PROGRAM	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:18:	
	AGAGCAATCA GTGCATCAAA ATTATATCTA GCCGAA	36
15	(2) INFORMATION FOR SEQ ID NO:19:	
	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 36 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
20	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: NO	
25	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:19:	
	CTGTTGTATG TAGAGTTTTG TTTGCACTGA TTGCTC	36
30	(2) INFORMATION FOR SEQ ID NO:20:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 4970 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: CDNA	
	(iii) HYPOTHETICAL: NO	
40	(iii) ANTI-SENSE: YES	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:20:	
45	AGAGCAATCA GTGCAAACAA AACTCTACAT ACAACAGATC AAACTCATAA AGCAATTTTA	60
	GAACTAGTGT TATTCGACTT TTTAGAATGA AAATTCTAAA GATGTGCGAG TTACTTGTTA	120
	AAATTAGTGT ATGTACACTA GTTGTTACTT CTGTTATCTT ATCCTTTATG GCATTAAAGG	180
50	AGACAGATGC AAAGATTCAT GTTGAAAGGG GCGATCATCC AGAAATTTAT GATGAAGCTT	240
	ATTATGACCG_TTCTGTAGAT_CATAAAAATG_AAATTCTAGA TACTTTGGCT GAAATGCTCC	300
	AGAATGCAAC AGGTAAAACC CTTAGACCAA CACGAGATAC TCAAACTGTT CTTGCCAATA	360

5	·	
	ATGAGGTACC TCAATCTCCA AGTGGATTGT CTTCTACACC AACAACTATA TCAGTTATGG	420
	ATTTACCAAA TCCATGCCTA AATGCTTCAA GTTTGACTTG TAGCATTAAA GGAGTTTCAA	480
10	CATTCAATGT TTATTACCAA GTAGAAAGCA ATGGTGTTAT ATATTCATGT ATCAGTGACA	540
	CTATARCTAR ATTGGGRARC TGTGRAGGAT CTTCTGRATT GCCRAGRAGC TTTGRARCTG	600
	TTCCAGTTGT ACCAATAACA AAAATCGATA ACAAAAGGAA ATTATCTATA GGAACTAAAT	660
	TCTATATAAT TGAAAGTTTG GAGAATTACA ATTATCCAAT CATGTACAAT TCTAGACCAA	720
15	CTAATGGCAC AGTCTCTCTC CAGAGTGTGA AATTCTCAGG TGATTGTAAA ATATCAAAAA	780
	CAAACATAGT TAATTCTTAT ACAGTTTCAT TAACTACACC TGAGAAAATC ATGGGTTACG	840
	TCGTCAAAAG AGAAGGAAGT GACATGAGCC ATTCCATAAT AAGCTTCTCT GGCTCAGTTA	930
20	GTTTGACTTT CACAGAAGAA AATATGGATG GTAAGCATAA CCTATTGTGC GGTGACAAGT	960
	CTTCTAAAGT TCCTTTAGTG GACAAAAGAG TTAGAGATTG TATTATAAAG TACTCCAAAA	1020
	ATATTTACAA ACAAACTGCT TGCATCAACT TCTCATGGTT TAGATTGATC ATGATTGCTC	1080
25	TGATTGTCTA TTTCCCTATA AGGTACTTGG TAAACAAAAC ATCTAAAACA CTGTTCTATG	1140
20	GGTATGATCT TCTGGGATTG ATAACGTATC CTATACTACT ACTGATAAAT TATTTATGGT	1200
	CTTATTTTCC CTTGAAATGT AAGGTCTGTG GAAATTTATG TTTGGTAACC CATGAATGCT	1260
	CAAAATTATG CATTTGTAAC AAAAACAAAG CCTCTGAAGA ACACTCAGAA GAATGTCCTA	1320
30	TAATAACTAG AACAGCAGAG AAGAATAAAA AATACAACTG GGCTAGCATT GAATGGTTCC	1380
	ATTTGATAGT TAATACAAAA ATAGGCCTCT CTTTCCTAAA AGCAGTCACA GAAACTTTGA	1440
	TAGGATITCT GATTITGTCA CAGATGCCTA TGTCTATGGC TCAAACTGCT CAGTGTTTGG	1500
35	ATAGCTGTTA TTATGTCCCT GGTTGTGACC GCTTTGTTAC AAACAGATAT GACAAATGTC	1560
	CTGAAAAAGA CCAATGCTTC TGTGCTATTA AAGAAAATTC TATTGTAGAA TCTAACTTTC	1620
	TAACCAATGT TGTGACAGAA GGTCCTATGG ATTGTATACC TTATCAAGAA TGCAAAGGCA	1680
40	GGATAACTGA AAATGCTTTA GTAACTTTTG TCAAATGCAG ATTTGGTTGT GAGTATGCCT	1740
40	CTATTTTCCA AAGCAAGCCT TTAGATAATG GGTTCTTAGA ATATTCTGGT GACACATTGG	1800
	GATTGAATGC TGTGAATCTA CACTTCATGA AAAGGCTTAG GAATGGTATA ATTGATTTCT	1860
	ACAATAAAAC TGAAAAATAT GGATACATTT CTGGAGATGC ACTTAAATCT AATGAATCAG	1920
45	ACATACCTGA AAGCATTTTT CCAAGAAAAT CTCTCATATT TGACTCGGTG ATAGATGGAA	1980
	AATATAGATA CATGATAGAA GAATCTTTAT TATCAGGTGG GGGCACAGTT TTCTCTCTTA	2040
	ATGACAAAAG TTCTAGCACT GCTCAGAAGT TTGTTGTTTA TATTAAAAAA GTTAGAATAC	
50	AGTATGATGT TTCTGAACAA TACACTACAG CTCCTATACA AAGCACCCAC ACTGATTTCT	2160
	TTTCAACATG CACAGGTAAA TGCTCAGATT GCAGAAAAGA ACAACCGATA ACTGGGTATC	222C
	AAGATTTCTG CATAACACCA ACATCTTACT GGGGTTGTGA AGAGGTTTGG TGTTTGGCTA	2280

	TCAATGAAGG	AGCCACTIGT	GGGTTTTGTA	GAAATGTGTA	TGATATGGAT	CAATCTTTCA	2340
	GGATTTATTC	TGTTATTAAA	TCAACAATCA	AGTCTGAAGT	ATGTATATCT	GGATTTGTGG	2400
10	GAGCAAAGTG	TTTCACTGTA	TCTGAGGAAG	TCCCATCTGA	ATCAGGATAT	TTCCAGGCTG .	2460
	ATATATTAGC	GGATTTCCAT	AATGATGGCT	TAACAATAGG	CCAGCTGATA	GCTCATGGAC	2520
	CTGATAGTCA	CGTATATGCG	GGAAACATAG	CTAGATTAAA	TAATCCATCA	AAAATGTTTG	2580
15	GTĊATCCTCA	ACTTTCACAC	CAAGGTGATC	CCATTTTCTC	TAAGAAAACA	TTAGATACAA	2640
10	ACGATCTGTC	CTGGGATTGT	TCAGCAATTG	GTAAAAAAAC	AATTACGATA	AAATCATGTG	2700
	GTTATGACAC	ATACAGATTT	AAAACAGGTT	TGAACCAAAT	ATCGGACATT	CCAGTTCAGT	2760
	TTACTGACCA	GAATAGTTTT	TATATGGAAA	AGATCTTTAG	TCTAGGTAAG	CTTAAAATTG	2820
20	TTTTGGATCT	ACCTTCTGAA	TTGTTTAAAA	CTGTACCAAA	AAAGCCTATA	TTGAGTTCTG	2880
	TCTCTTTAAG	CTGTAAGGGA	TGTTTCTTAT	GTAGCCAAGG	GCTGAGGTGT	GCTGCCTCAT	2940
	TTATATCAGA	CATAACTTTT	TCTGCAAGGT	TAACCATGAA	ACAATGTTCA	TTGTCAACAT	3000
25	ACCAGATAGC	AGTAAAGAAA	GGTGCTAATA	AGTATAACTT	GACAATGTTC	TGCACTTCTA	3060
	ACCCAGAAAA	ACAAAAAATG	ATTATAGAAC	CAGAAGGAGA	CAAATCATAC	TCAGTTGAGG	3120
	CACTTGTAGA	TTCTGTTGCT	GTGCTGGAAC	CAGAAAACAT	AATTGATCAA	AATGACCAAC	3180
30	ATGCACACGA	GGAACAGCAA	TATAATTCTG	ACACATCAGT	TTGGAGCTTT	TGGGACTATG	3240
30	TTAAAAGCCC	TTTTAACTTT	ATAGCAAGCC	ACTTTGGATC	CTTCTTTGAT	ACAGTCAGAG	3300
	TAGTATTGCT	CATACTCTTT	GTATTTGCTC	TIGCTIACCI	CTGCTCTATT	GTTGCCACAA	3360
	TGTGTAGAGG	CTATGTTAGA	AACAAGTCTT	ACAAGACAAA	ATATATTGAA	GACACTAATG	3420
35	ATTATTCTTT	GGTTTCCACG	TCTTCTGGTA	AAGACACCAT	CACTAGAAGA	AGACCTCCTC	3480
	TAGACTTCAG	CGGTATATGA	TTAAATTCAT	TGGAATATAC	ACCAAATGTG	TTTTAAATTA	3540
	AATAAGGCAG	AATGATTGTA	ATCAAATAAA	TTTAATTTGT	CTAAATAAGT	GTTAAATAAG	3600
40	CAAACTATAT	AAAAAATATA	AAAATAATAA	AAATAAAAT	CAACAAAAAC	AAATAAAATG	3660
	TATAAAAACA	AATAAAAAGG	TCTTAGACCA	AATCTGGCCG	GAGCCTTATT	TATTTACAAA	3720
	AAAAATTTTT	TTGGTTTTTT	TCAACTTTTT	TCTATTTTTT	GCTTTTTGTT	TGTTTTTGTT	3780
	TTTGTTTTTG	TTTTTTTTTT	ATTTTTTCTT	TTTTCTTTTT	TGGTTTTTGA	TTTGTTTTTA	3840
45	AACACAAATA	CATATATATT	TTATACTTCT	ATATATATAT	ATATATATAG	TTTTTTATCT	3900
	TGCTTTATTT	TTTACTTAAA	CATTCAAAAT	ATTATGAACA	ATATATATTA	TTTATTATTA	3960
	AATGAAAACA	TATTTAGATT	TCATTATCAA	ATGATATCTC	TATCTTGTTA	TCAGTAACAT	4020
50	TCTCCTCTTC	TTCAACAGAT	TTCTCTAAAT	TAGCACTTAG	CTCTGCAAGT	TGTCTTCTAA	4C80
- mr	TTTGCTTTTC	AGAATTGCCT	TTAGGTATGA	TŢĄĄCTTGCĄ	GGCTTCAATG	AAGGCTTGCG	4140
	ATTTGGCTCT	AATAGCCCTA	TTGATGGGTA	TTATCATGCA	GCTTTTATCC	AGATCTGCTC	4200

5		
Ū		
	TIGGIGAATC ACAGAATICI TIIGICCAAG AATACAIGAC ACTAGCAAAA GAAACAICII	4260
	TCTTGTAAAC TTGATCACAT AATAAATGAA GCTGAACACA ATTCTCTGAA GTGTTGTTAA	4320
10	CTTTTGGAAT GGACCAATTT AGATAAAAAA CAAAACATAT AGGATCTTTA ATGCTTCCTT	4380
	GCCCTTTCAA AACAGTTCTG GCATTAACAC TCTTGTTAGG ATCAATTAAA GCTACAGCCA	4440
	ATTTCCCATC AGGATCAGCT ATAGTAGGGC ATATCCAGAT AACTATCCTT GAGATCATCA	4500
15	TGTATTGTTT TCTGCTATCC CAGGTTGGAT GTATCTTAAT TATCTTGGTT GCAGCTTTAT	4560
	CACCATTACC TACAAAAGA TCATTTTCC AGCTGGAGAT ATGATGATTT GTATCAACAA	4620
	TCATTCTAGC AGAAAGATCA TAAGACTCTG ATTCAGATAT CTGGTCAGAC TCATATGTGC	4680
	CTAGTGATGA GGTGCCTGTA TTGTTCATCA AAATCTTCCC TTTAGAGCTA TCCATGGCTC	4740
20	TTTGGAGAAC TTCCTTGTTG TTGTGATTAG CAGAAGGATT GTGTACAACA ATGTCTGCTC	4800
	CTTGTTTAGA GAGGGTAGTT GTAACCCTAG GGTGATCTAG CTCCCTGCTG CTAGATGATC	4860
	TGAGTGATTT GAAAAAACTA TTCATCTCTG GACGGTAGAT TAAGAATTAA AATATTGAGA	4920
25	AGATAATGAT TGAATTCGGC TAGATATAAT TTTGATGCAC TGATTGCTCT	497C
	(2) INFORMATION FOR SEQ ID NO:21:	
30	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 3414 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
35	(iii) ANTI-SENSE: YES	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
40	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:21:	
	ATGAAAATTC TAAAGATGTG CGAGTTACTT GTTAAAATTA GTGTATGTAC ACTAGTTGTT	60
	ACTICIGITA TCTTATCCTT TATGGCATTA AAGGAGACAG ATGCAAAGAT TCATGTTGAA	120
	AGGGGCGATC ATCCAGAAAT TTATGATGAA GCTTATTATG ACCGTTCTGT AGATCATAAA	-180
45	AATGAAATTC TAGATACTTT GGCTGAAATG CTCCAGAATG CAACAGGTAA AACCCTTAGA	240
	CCAACACGAG ATACTCAAAC TGTTCTTGCC AATAATGAGG TACCTCAATC TCCAAGTGGA	300
	TTGTCTTCTA CACCAACAAC TATATCAGTT ATGGATTTAC CAAATCCATG CCTAAATGCT	360
50	TCAAGTTTGA CTTGTAGCAT TAAAGGAGTT TCAACATTCA ATGTTTATTA CCAAGTAGAA	420
	AGCAATGGTG TTATATATTC ATGTATCAGT GACACTATAA CTAAATTGGG AAACTGTGAA	480
	TO THE REPORT OF THE PROPERTY	540

5							
	GATAACAAA	GGAAATTATC	TATAGGAACT	AAATTCTATA	. TAATTGAAAG	TTTGGAGAAT	€00
						TCTCCAGAGT	660
10						TTATACAGTT	
						AAGTGACATG	780
						AGAAAATATG	840
						AGTGGACAAA	900
15						TGCTTGCATC	960
						TATAAGGTAC	1020
						ATTGATAACG	1080
20						ATGTAAGGTC	1140
			*			TAACAAAAAC	1200
	AAAGCCTCTG	AAGAACACTC	AGAAGAATGT	CCTATAATAA	CTAGAACAGC	AGAGAAGAAT	1260
25	AAAAAATACA	ACTGGGCTAG	CATTGAATGG	TTCCATTTGA	TAGTTAATAC	AAAAATAGGC	1320
	CTCTCTTTCC	TAAAAGCAGT	CACAGAAACT	TTGATAGGAT	TTCTGATTTT	GTCACAGATG	1380
	CCTATGTCTA	TGGCTCAAAC	TGCTCAGTGT	TTGGATAGCT	GTTATTATGT	CCCTGGTTGT	1440
	GACCGCTTTG	TTACAAACAG	ATATGACAAA	TGTCCTGAAA	AAGACCAATG	CTTCTGTGCT	1500
30	ATTAAAGAAA	ATTCTATTGT	AGAATCTAAC	TTTCTAACCA	ATGTTGTGAC	AGAAGGTCCT	1560
	ATGGATTGTA	TACCTTATCA	AGAATGCAAA	GGCAGGATAA	CTGAAAATGC	TTTAGTAACT	1620
	TTTGTCAAAT	GCAGATTTGG	TTGTGAGTAT	GCCTCTATTT	TCCAAAGCAA	GCCTTTAGAT	1680
35	AATGGGTTCT	TAGAATATTC	TGGTGACACA	TTGGGATTGA	ATGCTGTGAA	TCTACACTTC	1740
	ATGAAAAGGC	TTAGGAATGG	TATAATTGAT	TTCTACAATA	AAACTGAAAA	ATATGGATAC	1800
		ATGCACTTAA					1860
40		TATTTGACTC					1920
						CACTGCTCAG	1980
						ACAATACACT	2040
		TACAAAGCAC					2100
45						ACCAACATCT	2160
						TTGTGGGTTT	
						TAAATCAACA	
50						TGTATCTGAG	2340
						CCATAATGAT	2400
	GGCTTAACAA	TAGGCCAGCT	GATAGCTCAT	GGACCTGATA	GTCACGTATA	TGCGGGAAAC	2460

5		
	ATAGCTAGAT TAAATAATCC ATCAAAAATG TTTGGTCATC CTCAACTTTC ACACCAAGGT	2520
	GATCCCATTT TCTCTAAGAA AACATTAGAT ACAAACGATC TGTCCTGGGA TTGTTCAGCA	
	ATTGGTAAAA AAACAATTAC GATAAAATCA TGTGGTTATG ACACATACAG ATTTAAAACA	2580
10	GGTTTGAACC AAATATCGGA CATTCCAGTT CAGTTTACTG ACCAGAATAG TTTTTATATG	2640
	GAAAAGATCT TTAGTCTAGG TAAGCTTAAA ATTGTTTTGG ATCTACCTTC TGAATTGTTT	2700
		2760
15	AAAACTGTAC CAAAAAAGCC TATATTGAGT TCTGTCTCTT TAAGCTGTAA GGGATGTTTC	2820
	TTATGTAGCC AAGGGCTGAG GTGTGCTGCC TCATTTATAT CAGACATAAC TTTTTCTGCA	2880
	AGGTTAACCA TGAAACAATG TTCATTGTCA ACATACCAGA TAGCAGTAAA GAAAGGTGCT	2940
	AATAAGTATA ACTTGACAAT GTTCTGCACT TCTAACCCAG AAAAACAAAA AATGATTATA	3000
20	GAACCAGAAG GAGACAAATC ATACTCAGTT GAGGCACTTG TAGATTCTGT TGCTGTGCTG	3060
	GAACCAGAAA ACATAATTGA TCAAAATGAC CAACATGCAC ACGAGGAACA GCAATATAAT	3120
	TCTGACACAT CAGTTTGGAG CTTTTGGGAC TATGTTAAAA GCCCTTTTAA CTTTATAGCA	3180
25	AGCCACTTTG GATCCTTCTT TGATACAGTC AGAGTAGTAT TGCTCATACT CTTTGTATTT	3240`
	GCTCTTGCTT ACCTCTGCTC TATTGTTGCC ACAATGTGTA GAGGCTATGT TAGAAACAAG	3300
	TCTTACAAGA CAAAATATAT TGAAGACACT AATGATTATT CTTTGGTTTC CACGTCTTCT	3360
	GGTAAAGACA CCATCACTAG AAGAAGACCT CCTCTAGACT TCAGCGGTAT ATGA	3414
30	(2) INFORMATION FOR SEQ ID NO:22:	
35	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 912 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
	(iii) ANTI-SENSE: YES	
40	(vi) ORIGINAL SOURCE: (A) ORGANISM: IMPATIENS NECROTIC SPOT VIRUS	
	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:22:	
45	TTAGATTTCA TTATCAAATG ATATCTCTAT CTTGTTATCA GTAACATTCT CCTCTTCTTC	60
	AACAGATTTC TCTAAATTAG CACTTAGCTC TGCAAGTTGT CTTCTAATTT GCTTTTCAGA	120
	ATTGCCTTTA GGTATGATTA ACTTGCAGGC TTCAATGAAG GCTTGCGATT TGGCTCTAAT	180
50	AGCCCTATTG ATGGGTATTA TCATGCAGCT TTTATCCAGA TCTGCTCTTG GTGAATCACA	240
	GAATTCTTTT GTCCAAGAAT ACATGACACT AGCAAAAGAA ACATCTTTCT TGTAAACTTG	300
	ATCACATAAT AAATGAAGCT GAACACAATT CTCTGAAGTG TTGTTAACTT TTGGAATGGA	360

٠.		
	CCAATTTAGA TAAAAAACAA AACATATAGG ATCTTTAATG CTTCCTTGCC CTTTCAAAAC	420
	AGTTCTGGCA TTAACACTCT TGTTAGGATC AATTAAAGCT ACAGCCAATT TCCCATCAGG	480
10	ATCAGCTATA GTAGGGCATA TCCAGATAAC TATCCTTGAG ATCATCATGT ATTGTTTTCT	540
	GCTATCCCAG GTTGGATGTA TCTTAATTAT CTTGGTTGCA GCTTTATCAC CATTACCTAC	600
	AAAAAGATCA TTTTTCCAGC TGGAGATATG ATGATTTGTA TCAACAATCA TTCTAGCAGA	660
15	AAGATCATAA GACTCTGATT CAGATATCTG GTCAGACTCA TATGTGCCTA GTGATGAGGT	720
15	GCCTGTATTG TTCATCAAAA TCTTCCCTTT AGAGCTATCC ATGGCTCTTT GGAGAACTTC	780
	CTTGTTGTTG TGATTAGCAG AAGGATTGTG TACAACAATG TCTGCTCCTT GTTTAGAGAG	840
	GGTAGTTGTA ACCCTAGGGT GATCTAGCTC CCTGCTGCTA GATGATCTGA GTGATTTGAA	900
20	AAAACTATTC AT	912
	(2) INFORMATION FOR SEQ ID NO:23:	
25	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 446 base pairs (B) TYPE: nucleic acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	
•	(ii) MOLECULE TYPE: cDNA	
	(iii) HYPOTHETICAL: NO	
30	(iii) ANTI-SENSE: NO	
	(vi) ORIGINAL SOURCE: (A) ORGANISM: Tobacco mosaic virus	
35	(xi) SEQUENCE DESCRIPTION: SEQ ID NO:23:	
	GGATCCGGAA CATGGTGGAG CACGACACGC TTGTCTACTC CAAAAATATC AAAGATACAG	60
	TCTCAGAAGA CCAAAGGGCA ATTGAGACTT TTCAACAAAG TTATTGTGAA GATAGTGGAA	120
40	AAGGAAGGTG GCTCCTACAA ATGCCATCAT TGCGATAAAG GAAAGGCCAT CGTTGAAGAT	180
	GCCTCTGCCG ACAGTGGTCC CAAAGATGGA CCCCCACCCA CGAGGAGCAT CGTGGAAAAA	240
	GAAGACGTTC CAACCACGTC TTCAAAGCAA GTGGATTGAT GTGATATCTC CACTGACGTA	300
	AGGGATGACG CACAATCCCA CTATCCTTCG CAAGACCCTT CCTCTATATA AGGAAGTTCA	360
4 5	TTTCATTTGG AGAGGACTTT TTACAACAAT TACCAACAAC AACAACAAC AAACAACATT	420
	ACAATTACTA TTTACAATTA CCCGGG	446
	(2) INFORMATION FOR SEQ ID NO:24:	
50	(i) SEQUENCE CHARACTERISTICS: (A) LENGTH: 303 amino acids (B) TYPE: amino acid (C) STRANDEDNESS: single (D) TOPOLOGY: unknown	

5																			
	(ii)	MOLE	CULE	TYP	E: p	rote	in												
	(iii)	HYPO	THET	ICAL	: NO								٠						
	(iii)	ANTI	-SEN	SE:	NO														
10	(vi)	ORIG	INAL	SOU	RCE:														
		(A)	ORG	ANIS	M: I	MPAT	IENS	NEC	ROTI	C SP	OTV	IRUS							
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q IE	NO:	24:							,		
15	Met 1	Asn	Ser	Phe	Phe 5	Lуs	Ser	Leu	Arg	Ser 10	Ser	Ser	Ser	Arg	Glu 15	Leu			
	Asp	His	Pro	Arg 20	Val	Thr	Thr	Thr	Leu 25	Ser	Lys	Gln	Gly	Ala 30	Asp	Ile			
20	Val	Val	His		Pro	Ser	Ala	Asn		Asn	Asn	Lys	Glu	٠,	Leu	Gln			
			35					40					45						
	Arg	Ala 50	Met	Asp	Ser	Ser	Lys 55	Gly	Lys	Ile	Leu	Met 60	Asn	Asn	Thr	GīĀ		*	
25	Thr 65	Ser	Ser	Leu	Gly	Thr 70	Tyr	Glu	Ser	Asp	Gln 75	Ile	Ser	Glu	Ser	Glu 80			
	Ser	Tyr	Asp	Leu	Ser 85	Ala	Arg	Met	Ile	Val 90	Asp	Thr	Asn	His	His 95				
	Ser	Ser	Trp	Lvs		qzA	Leu	Phe	Val	Glv	Asn	Gly	Asp	Lys		_			
30				100					105	-		•	•	110					
	Thr	Lys	11e 115	Ile	Lys	Ile	His	Pro 120	Thr	Trp	Asp	Ser	Arg 125	Lys	Gln	Tyr			
	Met	Met 130	Ile	Ser	Arg	Ile	Val 135	Ile	Trp	Ile	Суз	Pro 140	Thr	Ile	Ala	Asp			
35		Asp	Gly	Lys	Leu		Val	Ala	Leu	Ile		Pro	Asn	Lys	Ser	Val 160			
	145	Ala	A =~	The se	va 1	150	T 178	G1 v	G) n	Gly	155	Tle	Lus	Asn	Pro				
	ASII	nia	Arg	****	165	Deu	Lys.	O1,		170	002		-10		175				
40	Cys	Phe	Val	Phe 180	Tyr	Leu	Asn	Trp	Ser 185		Pro	Lys	Val	Asn 190	Asn	Thr			÷
	Ser	Glu	Asn 195	Cys	Val	Gln	Leu	His 200		Leu	Суз	Asp	Gln 205	Val	Tyr	Lys			
45	Lys	Asp	Val	Ser	Phe	Ala			Met	Tyr	Ser		Thr	Lys	Glu	Phe	•		
40	C	210	c	D=0	A ===	71.	215		A en	7.170	Sar	220	Mot	Tle	Tle	PTO			
	225					230			,		235					240			
				_	_	•		T	Sar	Gla	212	Dho	TIA	Glu	Ala	Cvs			
50	Ile	Asn	Arg	Ala	11e 245		ATA	Lys	361	250		2116	116		255	-1-			
50					245 Pro					250 Glu					255 Arg	Gln			

5																
			275					280					285	i		
	Asr	val 290	Thr	Asp	Asn	Lys	11e 295	Glu	ı Ile	e Ser	Phe	2 Ast	Asn	Glu	ı Ile	:
10	(2) INFO	ITAMAC	ON :	FOR	SEQ	ID N	0:25	:								•
15	(i)	(B) (C)	LEI TYI STI	NGTH PE: RAND	: 26 amin EDNE	TERI 2 am 10 ac 188: unkn	ino id sino	acio	is							
	(ii)	MOLE	CULE	YT E	PE:	prot	ein									
	(iii)	HYPO	THET	CICA	L: N	0										
	(iii)	ANTI	-SEN	ISE:	NO											
20	(vi)	ORIG (A)	INAI ORG	SONI:	URCE SM:	: IMPA	TIEN	S NE	CROT	IC S	POT	VIRU	s		-	
	(xi)	SEQU	ENCE	DE	SCRI	PTIO	N: S	EQ I	D NO	:25:						
25	Met 1	Asn :	Lys	Ala	Lys 5	Ile	Thr	Lys	Glu	Asn 10	Ile	Val	Lys	Leu	Leu 15	Thr
	Gln	Ser :	qaA	Ser 20	Leu	Glu	Phe	Glu	Glu 25	Thr	Gln	Asn	Glu	Gly 30	Ser	Phe
30	Asn	Phe :	Thr 35	Asp	Phe	Phe	Thr	Asr 40	Asn	Arg	Glu	Lys	Ile 45	Gln	Asn	Met
	Thr	Thr 2	Ala	Ser	Cys	Leu	Ser 55	Phe	Leu	Lys	Asn	Arg 60	Gln	Ser	Ile	Met
35	Arg 65	Val 1	lle	Lys	Ser	Ala 70	Asp	Phe	Thr	Phe	Gly 75	Ser	Val	Thr	Ile	Lys 80
	Lys	Thr A	Arg .	Asn	Asn 85	Ser	Glu	Arg	Val	Gly 90	Val	Asn	Asp	Met	Thr 95	Phe
40	Arg	Arg I	Leu .	Asp 100	Ala	Met	Val	Arg	Val 105	His	Leu	Val	Gly	Met 110	Ile	Lys
								120					125			
	Pro	Leu I 130	le A	Ala	Ser	Tyr	Gly 135	Leu	Ala	Thr	Thr	Asp 140	Leu	Lys	Ser	Суз
45	Val 145	Leu G	ly v	Val	Leu	Leu 150	Gly	Gly	Ser	Leu	Pro 155	Leu	Ile	Ala	Ser	Val 160
	Leu	Asn P	he (Glu	Ile 165	Ala	Ala	Leu	Val	Pro 170	Ala	Ile	Tyr	Gln	Asp 175	Ala
50	Lys	His V	al C	31u 180	Leu	Gly	Ile	Asp	Met 185	Ser	Lys	Phe	Ser	Thr 190	Lys	Glu
	Ala	Val G	ly I 95	Lys	Val	Cys	Thr	Val 200	Leu	Lys	Ser	Lys	Gly 205	Tyr	Ser	Met

•																		
5	,		: o = 1	/a1 (3lu :	Tla (21 w	Ture	1 121	us (aln 1	Page :	1 12	Den.	- ۱۵	Ten	Tus	•
	•		210	val (J1C .			215	nia .	-y (J.11 .		220	ns þ	116	T6.	2,5	
40		Ala (225	Cys :	Ser :	Pro 1		Ala 230	Lys	Gly :	Leu I		Ala : 235	Met	Asp	His	īyr	Lys 240	
10	C	Glu (Gly :	Leu '	Thr	Ser 245	Ile	Tyr	Ser 1		Phe 2 250	Asn .	Ala	Thr	Ile	Asp 255	Phe	
	(Gly 1	Lys :		Asp : 260	Ser	Ile											
15	(2) II	NFCRI	MATI	ON F	OR S	EQ I	D NO	:26:										
20		(i) :	(A) (B) (C)	LEN TYP STR	CHA GTH: E: a: ANDE OLOG	449 mino DNES	ami aci S: s	no a d ingl	cids									
	(.	ii)	MOLE	CULE	TYP	E: p	rote	in										
	(i.	ii)	нүро	THET	ICAL	: NC)											
	(i	ii)	ANTI	-SEN	SE:	NO												
25	(vi)			SOU			PIENS	NEC	ROTI	C SP	OT V	/IRUS	5				
	(xi)	SEQU	ENCE	DES	CRIE	OIT	1: SE	EQ II	NO:	26:							
30		Met 1	Ser	Ser	Ala	Met 5	Tyr	Glu	Thr	Ile	Ile 10	Lys	Ser	Lys	Ser	Ser 15	īle	
		Trp	Gly	Thr	Thr 20	Ser	Ser	Gly	Lys	Ala 25	Val	Val	qeA	Ser	Tyr 30	Trp	Ile	
35		His	Asp	Gln 35	Ser	Ser	Gly	Lys	Lys 40	Leu	Val	Glu	Ala	Gln 45	Leu	Tyr	Ser	
		Asp	Ser 50	Arg	Ser	Lys	Thr	Ser 55	Phe	Cys	Tyr	Thr	Gly 60	Lys	Val	Gly	Phe	
40		Leu 65	Pro	Thr	Glu	Glu	Lys 70	Glu	Ile	Ile	Val	Arg 75	Cys	Phe	Val	. Pro	lle 80	
		Phe	Asp	Asp	Ile	Asp 85	Leu	Asn	Phe	Ser	Phe 90	Ser	Gly	Asn	Val	. Val	Glu	
45		Ile	Leu	Val	Arg 100	Ser	Asn	Thr	Thr	Asn 105	Thr	Asn	Gly	Val	Lys 110	His	Gln	
45		Gly	His	Leu 115		Val	Leu	Ser	Ser 120		Leu	Leu	Arg	Met 125	Lev	ı Glı	ı Glu	
		Gln	Ile 130		Val	Pro	Glu	11e 135		Ser	Arg	Phe	Gly 140	Lev	Ly:	s Gl	ı Ser	
50		Asp 145		Phe	Pro	Pro	Asn 150		Phe	Ile	Glu	Aļa 155	Ala	L AST	Ly:	s Gl	y Ser 160-	 ·
				Cys	Val	Lys 165	Glu		Leu	Phe	Asp 170	Val	. Lys	з ту	r Se	r As	n Asn 5	

5																	
		Glr	Ser	Met	Gly 180	Lys	val	. Ser	Val	Leu 185	Ser	Pro	Thr	Arg	Ser 190		His
10		Glu	Trp	Leu 195	Tyr	Thr	Leu	Lys	Pro 200	Val	Phe	Asn	Gln	Ser 205	Gln	Thr	Asn
		Asn	Arg 210	The	Val	Asn	The	Leu 215	Ala	Val	Lys	Ser	Leu 220	Ala	Met	Ser	Ala
15		Thr 225	Ser	dsv.	Leu	Met	Ser 230	Asp	Thr	His	Ser	Phe 235	Val	Arg	Leu	Asn	Asn 240
		Asn	Lys	Pro	Phe	Lys 245	Ile	Ser	Leu	Trp	Met 250	Arg	Ile	Pro	Lys	Ile 255	Met
		Lys	Ser	Asn	Thr 260	туг	Ser	Arg	Phe	Phe 265	Thr	Leu	Ser	Asp	Glu 270	Ser	Ser
20		Pro	Lys	Glu 275	Tyr	Tyr	Ile	Ser	Tle 280	Gln	Cys	Leu	Pro	Asn 285	His	Asn	Asn
		Val	Glu 290	Thr	Val	Ile	Glu	Tyr 295	Asn	Phe	Asp	Gln	Ser 300	Asn	Leu	Phe	Leu
25							210					315					320
			Leu			323					330					335	
30		Arg	Ile	Val	His 340	Ser	Leu	Leu	Glu	Ile 345	His	Thr	Glu	Leu	Ala 350	Gln	Thr
		Val	Суз	Asp 355	Ser	Val	Gln	Gln	Asp 360	Met	Ile	Val	Phe	Thr 365	Ile	Asn	Glu
35		Pro	Asp 370	Leu	Lys	Pro	Lys	Lys 375	Phe	Glu	Leu	Gly	Lys 380	Lys	Thr	Leu	Asn
		Tyr 385	Ser	Glu	Asp	Gly	Tyr 390	Gly	Arg	Lys	Tyr	Phe 395	Leu	Ser	Gln	Thr	Leu 400
			Ser			403					410					415	•
40		Gln	Met	Pro	Asp 420	Trp	Lys	Phe	Asp	Tyr 425	Ala	Ala	Gly	Glu	Ile 430	Lys	Ile
		Ser	Pro	Arg 435	Ser	Glu	Asp	Val	Leu 440	Lys	Ala	Ile	Ser	Lys 445	Leu	Asp	Leu
45		Asn															
	(2)	INFOR	ITAMS	ON E	OR S	EQ 1	D NO	27:									
50		(i)	(B) (C)	LEN TYP STR	CHA GTH: E: a ANDE	113 mino DNES	37 am aci SS: s	iino .d singl	acid	ls							

55

(ii) MOLECULE TYPE: protein

5																
	(iii)	HYPO	THET	ICAL	: NO											
	(iii)	ANTI	-SEN	SE:	NO											
10	(vi)		INAL ORG				IENS	NEC	ROTI	C SP	or v	'IRUS	3			•
	(xi)	SEQU	ENCE	DES	CRIP	TION	: SE	Q ID	NO:	27:						
15	Met 1	Lys	Ile	Leu	Lys 5	Met	Cys	Glu	Leu	Leu 10	Val	Lys	Ile	Ser	Val 15	Cys
	Thr	Leu	Val	Val 20	Thr	Ser	Val	Ile	Leu 25	Ser	Phe	Met	Ala	Leu 30	Lys	Glu
	Thr	Asp	Ala 35	Lys	Ile	His	Val	Glu 40	Arg	Gly	Asp	His	Pro 45	Glu	Ile	Tyr
20	Asp	Glu 50	Ala	Tyr	Tyr	Asp	Arg 55	Ser	Val	Asp	His	Lys 60	Asn	Glu	Ile	Leu
	Asp 65	Thr	Leu	Ala	Glu	Met 70	Leu	Gln	Asn	Ala	Thr 75	Gly	Lys	Thr	Leu	Arg 80
25	Pro	Thr	Arg	Asp	Thr 85	Gln	Thr	Val	Leu	Ala 90	Asn	Asn	Glu	Val	Pro 95	Gln
	Ser	Pro	Ser	Gly 100	Leu	Ser	Ser	Thr	Pro 105	Thr	Thr	Ile	Ser	Val 110	Met	qzA
30	Leu	Pro	Asn 115	Pro	Cys	Leu	Asn	Ala 120	Ser	Ser	Leu	Thr	Cys 125	Ser	Ile	Lys
	Gly	Val 130	Ser	Thr	Phe	Asn	Val 135	Tyr	Tyr	Gln	Val	Glu 140	Ser	Asn	Gly	Val
35	Ile 145	Tyr	Ser	Cys	Ile	Ser 150	Asp	Thr	Ile	Thr	Lys 155	Leu	Gly	Asn	Cys	Glu 160
	Gly	Ser	Ser	Glu	Leu 165	Pro	Arg	Ser	Phe	Glu 170	Thr	Val	Pro	Val	Val 175	Pro
40	Ile	Thr	Lys	Ile 180	qsA	Asn	Lys	Arg	Lys 185	Leu	Ser	Ile	Gly	Thr 190	Lys	Phe
40	Tyr	Ile	Ile 195	Glu	Ser	Leu	Glu	Asn 200	Tyr	Asn	Tyr	Pro	Ile 205	Met	Tyr	Asn
	Ser	Arg 210	Pro	Thr	Asn	Gly	Thr 215		Ser	Leu	Gln	Ser 220	Val	Lys	Phe	Ser
45	Gly 225		Суз	Lys	Ile	Ser 230		Thr	Asn	Ile	Val 235	Asn	Ser	Tyr	Thr	Val 240
	Ser	Leu	Thr	Thr	Pro 245		Lys	Ile	Met	Gly 250		Val	. Val	Lys	Arg 255	Glu
50	Gly	Ser	Asp	Met 260		His	Ser	Ile	11e 265	Ser	Phe	Ser	: Gly	Ser 270	Val	Ser
	Leu	Thr	Phe 275	Thr	Glu	Glu	Asn	Met 280		Gly	Lys	His	285		Lev	Cys

5 Gly Asp Lys Ser Ser Lys Val Pro Leu Val Asp Lys Arg Val Arg Asp 290 295 300 Cys Ile Ile Lys Tyr Ser Lys Asn Ile Tyr Lys Gln Thr Ala Cys Ile 305 310 315 320 10 Asn Phe Ser Trp Phe Arg Leu Ile Met Ile Ala Leu Ile Val Tyr Phe 325 330 Leu Ile Val Tyr Phe 335Pro Ile Arg Tyr Leu Val Asn Lys Thr Ser Lys Thr Leu Phe Tyr Gly 340 345 15 Tyr Asp Leu Leu Gly Leu Ile Thr Tyr Pro Ile Leu Leu Ile Asn 355 360 365 Tyr Leu Trp Ser Tyr Phe Pro Leu Lys Cys Lys Val Cys Gly Asn Leu 370 380 20 Cys Leu Val Thr His Glu Cys Ser Lys Leu Cys Ile Cys Asn Lys Asn 385 390 395 400 Lys Ala Ser Glu Glu His Ser Glu Glu Cys Pro Ile Ile Thr Arg Thr 405 410 415Ala Glu Lys Asn Lys Lys Tyr Asn Trp Ala Ser Ile Glu Trp Phe His 420 425 43025 Leu Ile Val Asn Thr Lys Ile Gly Leu Ser Phe Leu Lys Ala Val Thr 435 440 445 Glu Thr Leu Ile Gly Phe Leu Ile Leu Ser Gln Met Pro Met Ser Met 450 460 30 Ala Gln Thr Ala Gln Cys Leu Asp Ser Cys Tyr Tyr Val Pro Gly Cys 470 475 480 Asp Arg Phe Val Thr Asn Arg Tyr Asp Lys Cys Pro Glu Lys Asp Gln 485 490 495 Cys Phe Cys Ala Ile Lys Glu Asn Ser Ile Val Glu Ser Asn Phe Leu 500 505 505 Thr Asn Val Val Thr Glu Gly Pro Met Asp Cys Ile Pro Tyr Gln Glu 515 525 40 Cys Lys Gly Arg Ile Thr Glu Asn Ala Leu Val Thr Phe Val Lys Cys 530 540 Arg Phe Gly Cys Glu Tyr Ala Ser Ile Phe Gln Ser Lys Pro Leu Asp 545 550 560 Asn Gly Phe Leu Glu Tyr Ser Gly Asp Thr Leu Gly Leu Asn Ala Val 565 570 575 45 Asn Leu His Phe Met Lys Arg Leu Arg Asn Gly Ile Ile Asp Phe Tyr 580 585 590 Asn Lys Thr Glu Lys Tyr Gly Tyr Ile Ser Gly Asp Ala Leu Lys Ser 595 600 605

Phe Asp Ser Val Ile Asp Gly Lys Tyr Arg Tyr Met Ile Glu Glu Ser

55

Asn Glu Ser Asp Ile Pro Glu Ser Ile Phe Pro Arg Lys Ser Leu Ile 610 620

5.																
	625					630					635					640
	Leu	Leu	Ser	Gly	Gly 645	Gly	Thr	Val	Phe	Ser 650	Leu	Asn	Asp	Lys	Ser 655	Ser
10	Ser	Thr	Ala	Glr 660	Lys	Phe	Val	Val	Tyr 665	Ile	Lys	Lys	Val	Arg 670	Ile	Gln
	Tyr	Asp	Val 675	Ser	Glu	Gln	Tyr	Thr 680	Thr	Ala	Pro	Ile	Gln 685	Ser	Thr	His
15	Thr	Asp 690	Phe	Phe	Ser	Thr	Cys 695	Thr	Gly	Lys	Cys	Ser 700	Asp	Cys	Arg	Lys
•	Glu 705	Gln	Pro	Ile	Thr	Gly 710	Tyr	Gln	Asp	Phe	Cys 715	Ile	Thr	Pro	Thr	Ser 720
20	Tyr	Trp	Gly	Cys	Glu 725	Glu	Val	Trp	Суз	Leu 730	Ala	Ile	Asn	Glu	Gly 735	Ala
	Thr	Cys	Gly	Phe 740	Cys	Arg	Asn	Val	Tyr 745	Asp	Met	Asp	Gln	Ser 750	Phe	Arg
25	Ile	Tyr	Ser 755	Val	Ile	Lys	Ser	Thr 760	Ile	Lys	Ser	Glu	Val 765	Суз	Ile	Ser
25	GŢĀ	Phe 770	Val	Gly	Ala	Lys	Cys 775	Phe	Thr	Val	Ser	Glu 780	Glu	Val	Pro	Ser
	G_u 785	Ser	Gly	Tyr	Phe	Gln 790	Ala	Asp	Ile	Leu	Ala 795	Asp	Phe	His	Asn	Asp 008
30	Gly	Leu	Thr	Ile	Gly 805	Gln	Leu	Ile	Ala	His 810	Gly	Pro	Asp	Ser	Eis 815	Val
	Tyr	Ala	Gly	Asn 820	Ile	Ala	Arg	Leu	Asn 825	Asn	Pro	Ser	Lys	Met 830		Gly
35	His	Pro	Gln 835		Ser	His	Gln	Gly 840	Asp	Pro	Ile	Phe	Ser 845		Lys	Thr
	Leu	Asp 850		Asn	Asp	Leu	Ser 855	Trp	Asp	Cys	Ser	Ala 860		Gly	Lys	Lys
40	Thr 865	Ile	Thr	Ile	Lys	Ser 870		Gly	Туг	Asp	Thr 875	Tyr	Arg	Phe	Lys	Thr 880
	Gly	Leu	Asn	Gln	Ile 885		Asp	Ile	Pro	Val 890		Phe	Thr	Asp	Gln 895	Asn
45	Ser	Phe	Tyr	Met 900		Lys	Ile	Phe	Ser 905		Gly	Lys	Lev	Lys 910	; Ile	· Val
70	Leu	qeA ı	Leu 915		Ser	: Glu	Leu	920		Thr	· Val	Pro	925		Pro	Ile
	Leu	Ser 930		. Val	. Ser	Leu	Ser 935		Lys	Gly	Cys	940	e Lei	ı Cys	s Ser	Glr
50	Gly 945	Leu S	Arç	Cys	ala	950		Phe	e Ile	e Sei	955	o Ile	e Thi	Phe	e Ser	960
	Arc	j Leu	The	. Met	Lys 965		ı Cys	Sei	. Le	97(ту	r Gl:	n Ile	e Ala 975	va:

5	•								303					990		Asn
	Pro	Glu	Lys 995	Gln	Lys	Met	Ile	Ile 100	Glu 0	Pro	Glu	Gly	Asp 100	Lys 5	Ser	Tyr
10							101.	<i>.</i>				102	0			
	Ile 102	Il∈ 5	Asp	Gln	Asn	Asp 1030	Gln)	His	Ala	His	Glu 103	Glu 5	Gln	Gln	Tyr	Asn 1040
15	Ser	Asp	Thr	Ser	Val 1049	ÇıT S	Ser	Phe	Trp	Asp 105	Tyr	Val	Lys	Ser	Pro 105	Phe 5
	Asn	Phe	Ile	Ala 1060	Ser	Eis	Phe	Gly	Ser 1069	Phe	Phe	Asp	Thr	Val	Arg	Val
20	Val	Leu	Leu 1075	Ile	Leu	Phe	Val	Phe 1080	Ala)	Leu	Ala	Tyr	Leu 1085	Cys	Ser	Ile
	Val	Ala 1090	Thr	Met	Cys	Arg	Gly 1095	Tyr	Val	Arg	Asn	Lys 1100	Ser	Tyr	Lys	Thr
	Lys 1105	Tyr	Ile	Glu	Asp	Thr 1110	Asa	Asp	Tyr	Ser	Leu 1115	Val	Ser	Thr	Ser	Ser 1120
25	Gly	Lys	Asp	Thr	Ile 1125	Thr	Arg	Arg	Arg	Pro 1130	Pro	Leu	Asp	Phe	Ser 1135	Gly
	Ile															

30

Claims

35

40

45

50

55

- 1. Recombinant INSV DNA constructs comprising a DNA sequence coding for transcription into a) an RNA sequence of an INSV or an RNA sequence homologous thereto;
- b) an RNA sequence of an INSV or an RNA sequence homologous thereto capable of encoding for an INSV protein or a part thereof, in which one or more codons have been replaced by synonyms, or an RNA sequence homologous thereto; or
- c) an RNA sequence complementary to an RNA sequence according to a) or b),

which INSV DNA is under expression control of a promoter and a terminator capable of functioning in plants.

- 2. A DNA construct according to Claim 1, wherein the INSV DNA sequences code for transcription into:
- i) the viral S RNA nucleotide sequence from 1 to 3017 (SEQ. ID No.1)
- ii) the viral S RNA nucleotide sequence from position 25 to 3017 (SEQ. ID No.2);
- iii) the viral S RNA nucleotide sequence from 87 to 1436 (SEQ. ID No.3);
- iv) the viral S RNA nucleotide sequence from 2080 to 2868 (SEQ. ID No.4);
- v) the viral S RNA " pan-handle " structure comprising :
 - a) a first nucleotide sequence of from about 30 to about 36 nucleotides in length from the 5' end of the viral S RNA

and

- b) a second nucleotide sequence of from about 30 to about 36 nucleotides in length from the 3' end of the viral S RNA
- vi) the viral S RNA nucleotide sequence from 1437 to 2079; (SEQ ID No. 7)
- vii) the viral S RNA nucleotide sequence from 1440 to 2041; (SEQ ID No.8)
- viii) the viral complementary S RNA nucleotide sequence from 1 to about 3017; (SEQ ID No.9)
- ix) the viral compl mentary S RNA nucleotide sequence from 1 to 2993; (SEQ ID No.10)
- x) the viral complementary S RNA nucleotide sequence from 150 to 938; (SEQ ID No.11)
- xi) the S RNA nucleotide sequence from 1581 to 2930 of the viral complementary S RNA strand; (SEQ ID

- No.12);
- xii) the viral complementary S RNA secondary structure having a nucleotide sequence of 642 nucleotides from 939 to 1580; (SEQ ID No.13)
- xiii) S RNA nucleotide sequence from 87 to 1436 in which one or more codons have been replaced by their synonyms;
- xiv) S RNA nucleotide sequence from 2080 to 2868 in which one or more codons have been replaced by their synonyms;
- xv) the M RNA nucleotide sequence from 1 to 4970 (SEQ ID No.14);
- xvi) the M RNA sequence from 86 to 997 (SEQ ID No.15);
- xvii) the M RNA sequence of the intergenic region from 998 to 1470 (SEQ ID No.16);
- xviii) the M RNA sequence from 1471 to 4884; (SEQ ID No. 17)
- xix) the M RNA "pan-handle" structure comprising : a) a first nucleotide sequence of from about 30 to about 36 nucleotides in length from the 5' end of the viral M RNA
- 15 and

5

10

20

25

30

35

45

50

- b) a second nucleotide sequence of from about 30 to about 36 nucleotides in length from the 3' end of the viral M RNA;
- xx) the complementary viral M RNA sequence from 1 to 4970; (SEQ ID No.20)
- xxi) the complementary viral M RNA sequence from position 87 to position 3500 of the complementary viral M RNA sequence; (SEQ ID No.21)
- xxii) the complementary viral M RNA sequence from position 3974 to 4885 (SEQ ID No.22)
- xxiii) RNA sequences homologous to the nucleotide sequences defined under i) to xii) and xv) to xxii) hereinabove.
- xxiv) fragments of sequences defined under i) to xxii) hereinabove.
- A DNA construct according to Claim 1, wherein the DNA sequence codes for transcription into INSV-RNA sequences of a pan-handle, or into RNA sequences homologous thereto.
 - 4. A DNA construct according to Claim 1 wherein the DNA sequence codes for transcription into INSV-RNA sequences of a pan-handle wherein the pan-handle structure comprises two complementary strands comprising 36 nucleotides in length.
 - 5. A DNA construct according to Claim 1, wherein the DNA sequence codes for transcription into INSV RNA sequences of an open reading frame in viral complementary sense, or into corresponding RNA sequences in which one or more codons have been replaced by synonyms thereof, or into RNA sequences homologous thereto.
 - 6. A DNA construct according to Claim 1, wherein the the DNA sequence codes for transcription into INSV-RNA sequences of a secondary structure, or into RNA sequences homologous thereto.
 - 7. A DNA construct according to Claim 1 wherein the DNA sequence codes for transcription into INSV-RNA sequences, or into INSV-RNA sequences in which one or more codons have been replaced by synonyms thereof, or into RNA sequences homologous thereto of at least 15 nucleotides.
 - **8.** A DNA construct according to Claim 6, wherein the DNA sequence codes for transcription into INSV-RNA sequences in which one or more codons have been replaced by synonyms thereof, or into RNA sequences homologous thereto of at least 400 nucleotides.
 - 9. A DNA construct according to Claim 1, wherein the DNA sequence codes for transcription into a combination of the 5' and 3' terminal sequences of the viral S, M or L RNA respectively.
 - 10. A DNA construct according to Claim 1, wherein the promoter is a viral, fungal, bacterial, animal or plant-derived promoter capable of functioning in plant cells.
 - 11 A DNA construct according to Claim 9, wherein the terminator is a viral fungal, bacterial, animal or plantderived terminator capable of functioning in plant cells.
 - 12 A plant comprising in its genome a DNA construct in accordance with Claim 1.
- 13 A probe comprising a single or double stranded oligonucleotide sequence complementary to an RNA sequence of an INSV.
 - 14 A probe according to Claim 13, wherein the oligonucleotides are complementary to an INSV S RNA sequence, an INSV M RNA nucleotide sequence or to fragments of such sequences comprising at least 12 nucleotides.
 - 15 A probe according to Claim 12 or Claim 13, wherein the oligonucleotide sequence has from 12 to 800 nucleotides.
 - 16 A process of preparing plants according to Claim 11, which comprises
 - a) inserting into the genome of a plant cell a DNA construct of Claim 1,
 - b) obtaining transformed cells;
 - c) regeneration from the transformed cells genetically transform d plants.

•		
		*

Military "	 	 	 	
				•
				- 2
.3				
- 7				
+				

Figure 2

Ng.			
	•		
		4.5	

Figure 3

Figure 4

		·	
÷			
		•	

Figure 5

		,	
		io.	
	,		
<i>;</i>			

Figure 6

	•		
	44		
		Ŷs.	
			•

Figure 7

÷.		

Figure 8

-				
-4-			*	
	•			
			÷	
- 100 - 100 - 110				

Figure 9

,		

Figure 10

÷				
	•			
		4.1		
			-4	
·				

Figure 11

				•
•				
ă.				
		•		
				4.0

FIGURE 12

	•		
		÷	
			í

Figure 13

		The state of the s	\$ \$45 m	1-4
	•			
			3)	
		•		
		•		650
				**/
		· ·		

C12N15/82

1) Publication number: 0 566 525 A3

(12)

]- ×-

EUROPEAN PATENT APPLICATION

(21) Application number: 93810190.4

(22) Date of filing: 16.03.93

(5) Int. Cl.⁵: **C12N 15/40**, C12N 15/82, C12Q 1/70, A01H 5/00

(30) Priority: 19.03.92 GB 9206016

Date of publication of application: 20.10.93 Bulletin 93/42

Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL

PT SE

Output

Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL

PT SE

Output

Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL

PT SE

Output

Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL

PT SE

Output

Designated Contracting States:

Output

Designated Contracting States:

Output

Designated Contracting States:

AT BE CH DE DK ES FR GB GR IE IT LI LU NL

PT SE

Output

Designated Contracting States:

(88) Date of deferred publication of search report: 08.12.93 Bulletin 93/49

(7) Applicant: SANDOZ LTD. Lichtstrasse 35 CH-4002 Basel (CH)

84) BE CH DK ES FR GB GR IE IT LI LU NL PT SE

71 Applicant: SANDOZ-PATENT-GMBH Humboldtstrasse 3 D-79539 Lörrach (DE)

84) DE

71 Applicant: SANDOZ-ERFINDUNGEN Verwaltungsgesellschaft m.b.H. Brunner Strasse 59 A-1230 Wien (AT)

84) AT

(72) Inventor : Van Grinsven, Martinus Quirinus Joseph Marie Wezenland 5 NL-1602 MA Enkhuizen (NL) Inventor: De Haan, Petrus Theodorus Kruideel 34 NL-1602 GL Enkhuizen (NL) inventor: Gielen, Johannes Jacobus Ludgerus Jan Gooskaai 73 NL-1602 GC Enkhuizen (NL) Inventor: Peters, Dirk Edelmanlaan 4 NL-6703 EX Wageningen (NL) Inventor: Goldbach, Robert Willen Hollandseweg 159 NL-4705 BC Wageningen (NL)

- (54) Recombinant tospovirus DNA constructs and plants comprising such constructs.
- (INSV) DNA constructs comprising an INSV DNA coding for transcription into INSV RNA sequences or into RNA sequences related thereto, the use of such DNA constructs to transform plants having reduced susceptibility to INSV infection and probes for the isolation of INSV or diagnosis of plant INSV related diseases.

FP 0 566 525 A3

EUROPEAN SEARCH REPORT

Application Number

EP 93 81 0190 Page 2

ategory	Citation of document with indi of relevant pass:		Relevant to claim	CLASSIFICATION OF THE APPLICATION (Int. Cl.5)
A	ANNUAL REVIEW OF PHY vol. 30, 1992, pages 315 - 348 GERMAN, T.L., ET AL. molecular biology ph relationships' * page 317 - page 31	'Tospovirus diagnosis ylogeny and vector	13-15	
A	CHEMICAL ABSTRACTS, 1992, Columbus, Ohio abstract no. 185748, LAW, M.D., ET AL. 'N the 3' non-coding re S RNA of a serologic tospovirus' * abstract * & J. GEN. VIROL. vol. 72, no. 10, 199 pages 2597 - 2601	, US; ucleotide sequence of gion and N gene of the ally distinct	13-15	
A	J. GEN. VIROL. vol. 71, 1990, pages 933 - 938 LAW, M.D., ET AL. 'A virus with a serolog protein' * the whole document		1-16	TECHNICAL FIELDS SEARCHED (Int. CL.5)
	The present search report has b	een drawn up for all claims		
	Place of search	Date of completion of the search		MADDON A D
1	THE HAGUE	24 SEPTEMBER 1993	1	MADDOX A.D.
Y:	CATEGORY OF CITED DOCUMENT particularly relevant if taken alone particularly relevant if combined with and incurrent of the same category echnological background non-written disclosure	E: earlier patent d siter the filing other D: document cited L: document cited	date in the applicat for other reaso	ion

.