Section 1.4: Matrix Groups

Juan Patricio Carrizales Torres

May 8, 2023

Before describing the matrix group, we must define what a *field* is. A field is a set F with two binary operations + and \cdot such that both (F, +) and $(F/\{0\}, \cdot)$ are abelian groups. Also, the distributive law holds, namely, for any $a, b, c \in F$

$$a \cdot (b+c) = a \cdot b + a \cdot c.$$

Then, the general linear group $GL_n(F)$ is the set of all $n \times n$ matrices with entries from the field F and nonzero determinant, where the associative matrix multiplication is the binary operation. Two useful results regarding general linear groups are the following:

(a) if F is a finite field, then $|F| = p^m$ for some prime p and integer m.

(b) if
$$|F| = q < \infty$$
, then $|GL_n(F)| = (q^n - 1)(q^n - q)(q^n - q^2) \dots (q^n - q^{n-1})$.

1 PROBLEMS

Let F be a field and let $n \in \mathbb{Z}^+$.

Problem 1. Prove that $|GL_2(F_2)| = 6$

Proof. This general linear group $GL_2(F_2)$ contains 2×2 matrices

$$\begin{pmatrix} b_1 & b_2 \\ b_3 & b_4 \end{pmatrix},$$

where $b_1, b_2, b_3, b_4 \in F_2$ and $b_3 \cdot b_2 - b_4 \cdot b_1 \neq 0$ (nonzero determinant). Then, $b_3 \cdot b_2 \neq b_4 \cdot b_1$ (Recall that \cdot is the binary operation in F_2 such that $(F_2/\{0\}, \cdot)$ is a group). Then, the statement $|GL_2(F_2)| = 6$ is equivalent to saying that there are 6 possible unique equations $b_3 \cdot b_2 \neq b_4 \cdot b_1$ for elements $b_1, b_2, b_3, b_4 \in F_2$. Let's call the instance $b \cdot a$ a binary multiplication. Because multiplication is closed, it follows that it is equal to some element inside F_2 and so we must find all ways to accommodate binary multiplications in the equation such that one side is 0 and the other is 1. Before doing that, we have to look at the 4 possible binary

multiplications. We know that 0 is the additive identity and that the other element 1 is the multiplicative identity and its own additive and multiplicative inverse. Then, it follows that

$$0 \cdot 1 = (1+1) \cdot 1 = 1 \cdot 1 + 1 \cdot 1$$
$$= 0 + 0 = 0$$
$$= 0 \cdot 0 = 0 \cdot (1+1)$$
$$= 0 \cdot 1 + 0 \cdot 1 = 0 + 0.$$

and $1 \cdot 1 = 1$. Then, all binary multiplications, except for $1 \cdot 1$, are equal to 0.

Now, let one side of the equation be 1, which there is only one binary multiplication able to represent that, namely, $1 \cdot 1$. Then, we only have 3 binary multiplications out of the possible 4 that we can place at the other side such that two sides are not equal $(1 \cdot 0, 0 \cdot 1, 0 \cdot 0)$. Hence, per side there are 3 possible non equal equations and so there are 6 possible equations such that the binary multiplications at each side are not equal.

Problem 2. Write out all the elements of $GL_2(F_2)$ and compute the order of each element.

Solution We have the following elements with their respective orders (n):

$$\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix}, n = 2$$

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}, n = 2$$

$$\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, n = 1 \text{(identity matrix)}$$

$$\begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix}, n = 3$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 1 \end{pmatrix}, n = 3$$

$$\begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, n = 2$$

Problem 3. Show that $GL_2(F_2)$ is non-abelian.

Proof. Note that

$$\begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$$

$$\neq \begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 1 \\ 1 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix}$$

Problem 4. Show that if n is not prime then $\mathbb{Z}/n\mathbb{Z}$ is not a field.

Proof. Suppose that n is not prime. Then, there is at least one integer 1 < k < n that is a factor. Hence, $n = kq_1q_2 \dots q_m$ and so $l = q_1q_2 \dots q_m$ is an integer (factor) such that 1 < l < n and $k \cdot l = n$. Therefore, $\overline{k}, \overline{l}$ are two elements in $\mathbb{Z}/n\mathbb{Z}$ such that $\overline{k} \cdot \overline{l} = \overline{k} \cdot \overline{l} = \overline{n} = \overline{0}$, the additive identity. Hence, $\mathbb{Z}/n\mathbb{Z}^{\times}$ is not closed under multiplication, which implies that it is not a group.

Problem 5. Show that $GL_n(F)$ is a finite group if and only if F has a finite number of elements.

Proof. First assume that |F| = n for some $n \in \mathbb{N}$. Then, there are n possible ways to accommodate the n elements in an entry. Therefore, there are $n^{n \times n}$ different ways to accommodate the elements of F in the entries of a $n \times n$ matrix. Then, $|GL_n(F)| \leq n^{n \times n}$ which is finite. Now, for the converse, assume that F has an infinity of elements. Note that the set of diagonal matrices

$$D = \{ A = \begin{pmatrix} d_1 & & \\ & d_2 & \\ & & \ddots & \\ & & & d_n \end{pmatrix} | \det(A) \neq 0 \iff d_1, d_2, \dots, d_n \neq 0 \}$$

is a subgroup of $GL_n(F)$, namely the inverse of a diagonal matrix with nonzero determinant is a diagonal matrix with nonzero determinant, and the multiplication of two diagonal matrices with nonzero determinant results in a diagonal matrix with nonzero determinant. We show that one can construct an infinity of diagonal matrices with nonzero determinant. Note that, for some fixed $a \in F/\{0\}$ and every $b \in F/\{0\}$,

$$\begin{pmatrix} a & & & \\ & a & & \\ & & \ddots & \\ & & & b \end{pmatrix}$$

is a diagonal matrix with nonzero determinant. Hence, D has an infinity of elements and so $GL_n(F)$ has an infinity of elements.

Problem 10. Let $G = \left\{ \begin{pmatrix} a & b \\ 0 & c \end{pmatrix} | a, b, c \in \mathbb{R}, a \neq 0, c \neq 0 \right\}$.

(a) Compute the product of $\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix}$ and $\begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$ to show that G is closed under matrix multiplication.

Solution Note that

$$\begin{pmatrix} a_1 & b_1 \\ 0 & c_1 \end{pmatrix} \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix} = \begin{pmatrix} a_1 a_2 & a_1 b_2 + b_1 c_2 \\ 0 & c_1 c_2 \end{pmatrix}.$$

Because $a_1, a_2, c_1, c_2 \neq 0$, it follows that $a_1a_2, c_1c_2 \neq 0$ and so G is closed under matrix multiplication.

(b) Find the matrix inverse of $A = \begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ and deduce that G is closed under inverses.

Solution Consider some element $B = \begin{pmatrix} a_2 & b_2 \\ 0 & c_2 \end{pmatrix}$ of G. Since $A \in G$ it follows that $a_1, c_1 \neq 0$. According to the result of the matrix multiplication showed in (a), for B to be an inverse of A it must be true that $a_1a_2 = c_1c_2 = 1$ and $a_1b_2 + b_1c_2 = 0 \iff a_1b_2 = -b_1c_2$.

Then, $a_2 = a_1^{-1} \neq 0$, $c_2 = c_1^{-1} \neq 0$ and $b_2 = (-b_1)c_1^{-1}a_1^{-1}$ which are elements of the field F. Hence, the inverse of A exists in G. Thus, G is closed under inverses.

(c) Deduce that G is a subgroup of $GL_2(\mathbb{R})$.

Solution The set G over \mathbb{R} is closed under matrix multiplication, closed under inverses and there is the identity $\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$. Hence, G is a group. Furthermore, note that for any $\begin{pmatrix} a & b \\ 0 & c \end{pmatrix}$ in G, $ac - 0 \neq 0$ (nonzero determinant). Thus, G is a subgroup of $GL_2(\mathbb{R})$.

(d) Prove that the set of elements of G whose two diagonal entries are equal (i.e., a = c) is also subgroup of $GL_2(\mathbb{R})$.

Proof. Let the set in question be represented by B. From (a) we know that the matrix multiplication of two elements in B results in the matrix $\begin{pmatrix} a_1a_2 & a_1b_2 + b_1c_2 \\ 0 & c_1c_2 \end{pmatrix}$, where $a_1a_2 = c_1c_2$ since $a_1 = c_1$ and $a_2 = c_2$. Hence, B is closed under matrix multiplication.

From (b), the inverse of any matrix in $B \subseteq G$ is represented by $\begin{pmatrix} a^{-1} & (-b)c^{-1}a^{-1} \\ 0 & c^{-1} \end{pmatrix}$, where $a^{-1} = c^{-1}$ since a = c (in the group F^{\times} the inverses are unique). Therefore, B is closed under matrix multiplication.

Finally, the identity matrix is an element of B. Hence, B is a subgroup of $GL_2(\mathbb{R})$. \square

The next exercise introduces the $Heisenberg\ group$ over the field F and develops some of its basic properties.

Problem 11. Let $H(F) = \left\{ \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix} | a, b, c \in F \right\}$ —called the *Heisenberg group* over F. Let $X = \begin{pmatrix} 1 & a & b \\ 0 & 1 & c \\ 0 & 0 & 1 \end{pmatrix}$ and $Y = \begin{pmatrix} 1 & d & e \\ 0 & 1 & f \\ 0 & 0 & 1 \end{pmatrix}$ be elements of H(F).

(a) Compute the matrix product XY and deduce that H(F) is closed under matrix multiplication. Exhibit explicit matrices such that $XY \neq YX$ (so that H(F) non-abelian).

- (b) Find an explicit formula for the matrix inverse X^{-1} and deduce that H(F) is closed under inverses.
- (c) Prove the associative law for H(f) and deduce that H(F) is a group of order $|F|^3$. (Do not assume that matrix multiplication is associative.)
- (d) Find the order of each element of the finite group $H(\mathbb{Z}/2\mathbb{Z})$.
- (e) Prove that every nonidentity element of the group $H(\mathbb{R})$ has infinite order.