

The hippocampus and language: Word to word prediction in terms of the successor representation

Philipp Rost

Friedrich-Alexander-Universität Erlangen-Nürnberg Department Informatik

July 14, 2022

Agenda

- 1. Introduction
- 2. Theoretical Background
- 3. Framework
- 4. Results
- 5. Conclusion

Introduction

Introduction

- Understanding the human brain is a challenge as old as science itself
- Currently available technology as a metaphor (from abacus to computer)
- Projects exist researching the brain as a whole but also for distinct parts, e.g. the hippocampus
- Goal: Expanding the application of the Successor Representation (SR) to language
 - supposedly used by the hippocampus to predict following states/positions
- To reach it, a neural network is trained with samples extracted from two books

Theoretical Background

Hippocampus

- Has the shape of a seahorse
- Key factor in forming memories (not preserving them!) [1]
- Related to emotions [2]
- Responsible for any kind of navigation (e.g. ranking stuff like danger of animals)
 - Crafts a cognitive room of the "surroundings" by using place cells and grid cells
 - Place cell: irregular arranged, fires at specific positions in space ("states")
 - Grid cell: lattice-like arranged, fires continuously

Hippocampus and seahorse [3]

Color coded place cell activity (= states) [4]

Grid cells form a triangulation [5]

Projective map theory & cognitive room

Place cell fires if rat is about to enter the state, e.g. turquoise cell before in front of the first arch [4]

Cognitive rooms help to locate unknown objects and put them into relation ship, e.g. unknown cars [6]

Claim: the hippocampus applies the projective map theory and encodes each state within a cognitive room [7]

Successor Representation (SR)

- Claim: the hippocampus applies the projective map theory and encodes each state within a cognitive room
 - Where does the claim originate? The proposed technique works fine for spatial navigation [7]
 - Mathematification of the concepts: Successor Representation
- Roots lay in reinforcement learning (and transition probability matrices) and can be computed like

$$M_a = \sum_{t=0}^a \gamma^t T^t$$

with discount factor $\gamma \in (0, 1)$, $a = 1, ..., \infty$ and transition probability matrix T

- The policy/structure of the language is encoded in matrix $T \Longrightarrow$ the SR is policy-dependent (it is based on RL)
- By inspecting row k it is possible to follow all paths starting at state k
 - \implies M_a reveals all successor states

Successor Representation

Example 1/2 of interpreting a SR matrix *M*

• Row *i*: resembles (all) successor states of state *i* (the higher the value the higher the chance to be in this state after the next step)

Superscript means index not power; image taken from [7]

Framework

Overview

- Shallow dense neural network & supervised learning
- Goal: Learning the SR i.e., a transition probability matrix
- Two configurations were tested
 - Artificial rules with manufactured data set ("First model")
 - 2. Self derived rules and data set ("Word to word model")
- Rule: word pair consisting of a predecessor and successor word serving as input and output
- In case of word to word models: Data was collected from two books (german & english)
- The quality of the learned rules determines the SR

First model

- Cognitive room consists of all words used for training
- Data was generated by made up rules like Verb → Adjective using 1-hot-encoded vectors
- The single predictions after training describe the transition probability matrix
- This type of model is tailored and clear

Word to word model

- In principle similar to the first model approach
- But rules and data derived from real language examples
- Books were parsed using techniques from Natural Language Processing (via spacy)
 - In german and english, because the former's word order is more variable \rightarrow may cause troubles

Alice sends Bob a message.

Word to word model

- In principle similar to the first model approach
- But rules and data derived from real language examples
- Books were parsed using techniques from Natural Language Processing (via spacy)
 - In german and english, because the former's word order is more variable \rightarrow may cause troubles

Alice sends Bob a message. [...] **Alice goes** to the grocery store. [...]. Peter sent him a letter. [...] **Bob went** to his friend.

14 / 27

Word to word flavors

1-hot-encoded vectors & Word vectors

- Word to word models come in two flavors
 - 1-hot-encoded vectors and
 - Word vectors

- Are 300d real valued vectors
- Potentially incorporate more information about a word
 - ⇒ Better learning possible?
- Probably the hippocampus receives multiple signals which are in total more related to word vector than to 1-hot-encoded vector
 - \Rightarrow Closer to reality

Word to word Models

Average approach

- Predicting all instances of a word class at once and average the result (into one vector)
- Word classes are inferred by spacy, 10 in total are used
- Idea: Meta word pairs like Pronoun → Verb appear more frequently than he → plays
- Averaging is done with both vector types: 1-hot-encoded vectors and word vectors

Results

Results - First model

- Prediction works quite well i.e., the rules are recognizable e.g., Adjective → Noun
- MDS plot shows clustered word classes

Learned SR MDS plot

SR for t = 2, less word classes

18 / 27

Results – Word to word models

Comparison with a ground truth/statistical assessment possible by a metric

Learned MDS

Ground truth, Transition probability matrix

Learned transition probability matrix

Results – Word to word models

- It is possible to compare the results to a ground truth/statistical assessment \Longrightarrow Metric d_A
- Surprisingly 1-hot-encoded vectors outperform word vectors i.e., word vectors are just bad
- German or english doesn't make that much of a difference

Version	Metric
german, 1-hot-encoded vector	0.08
german, word vector	0.74
english, 1-hot-encoded vector	0.10
english, word vector	0.78

Configurations & metric w.r.t. ground truth

MDS of german, 1-hot-encoded vector

MDS of german, word vectors

If you want to know more about the metric, you can ask after the talk

20 / 27

Results – Averaging models

- Outcome of the plain vector models wasn't satisfying (as seen in the MDS plots), so averaging was established
- Results were indeed exploitable i.e., word class transition probabilities are partially reflected very accurately

21 / 27

Results – Averaging models

• Matrices are 10×10 , so we display them

ground truth (german)

german, 1-hot-encoded vector

german, word vector

Results – Averaging models

Accuracy of these models is measured by mean and standard deviation:

Version	Mean μ	Standard deviation σ
german, 1-hot-encoded vector	7.3	2.0
german, word vector	14.0	2.1
english, 1-hot-encoded vector	8.1	3.3
english, word vector	10.2	3.6

Mean and standard deviation in 10⁻²

- Sadly, the outcome of word vector models is quite bad again
- But the 1-hot-encoded vectors seem to grasp the grammatical structure (bar and matrix plot)

Conclusion

Conclusion

- By far most of the time was consumed by finding proper values, sadly with bad luck
- Plenty of configurations didn't improve the results or were worse. Two of them were
 - Multiple hidden layers
 - Predicting only most frequent words
- Due to the lack of valid data from real experiments interpretation regarding our daily life is difficult
- Performance of word vectors disappointing, which is a drawback because they might be closer to actual signals
- Some learning does happen (Average approach)

References

References I

- [1] M. Trepel, Neuroanatomie. München: Elsevier, 2017, ISBN: 9783437412882.
- [2] N. Garzorz-Stark, Basics Neuroanatomie, 2nd ed. Urban and Fischer/Elsevier, 2018, ISBN: 9783437424588.
- [3] L. Seress, "Hippocampus and seahorse," Online, accessed on May 27th 2022, License: https://creativecommons.org/licenses/by-sa/3.0/. (2010), [Online]. Available: https://commons.wikimedia.org/wiki/File:Hippocampus_and_seahorse_cropped.JPG.
- [4] Stuartlayton, Online, accessed on May 14th 2022, License: https://creativecommons.org/licenses/by-sa/3.0/, User on https://en.wikipedia.org/wiki/ (english Wikipedia). (Jan. 2013), [Online]. Available: https://commons.wikimedia.org/wiki/File:Place_Cell_Spiking_Activity_Example.png.
- [5] M.-B. Moser, D. Rowland, and E. Moser, "Place cells, grid cells, and memory," *Cold Spring Harbor perspectives in medicine*, vol. 5, a021808, Feb. 2015. DOI: 10.1101/cshperspect.a021808.
- [6] J. L. S. Bellmund, P. Gärdenfors, E. I. Moser, and C. F. Doeller, "Navigating cognition: Spatial codes for human thinking," *Science*, vol. 362, 6415 Nov. 2018. DOI: 10.1126/science.aat6766. [Online]. Available: https://science.sciencemag.org/content/362/6415/eaat6766.
- [7] K. L. Stachenfeld, M. M. Botvinick, and S. J. Gershman, "The hippocampus as a predictive map," *Nature Neuroscience*, Nov. 2017. DOI: 10.1038/nn.4650. [Online]. Available: https://www.nature.com/articles/nn.4650.

