Contents

```
% Created 2020-01-03 14:56 % Intended LATEX compiler: pdflatex [11pt]article [utf8]inputenc [T1]fontenc graphicx grffile longtable wrapfig rotating [normalem]ulem amsmath textcomp amssymb capt-of hyperref minted [dvipsnames]xcolor
```

forest qtree/.style= baseline, for tree= parent anchor=south, child anchor=north, align=center, inner sep=1pt,

 $mathtools\ pgfplots\ amsthm\ amsmath\ commath\ amsfonts\ amssymb\ stmaryrd\ empheq\ tikz\ tikz-cd\ arrows.meta\ [most]tcolorbox\ actuarial symbol\ three part-table\ scalerel, stackengine\ stackrel\ dsfont\ newpxtext\ enumitem$

```
nosep
definition plain definition remark Remark
largesymbols" 62
graphicx
largesymbolsAUtxexamn largesymbolsA16
mathxUmathxmn 1mathx" 91 mathaUmathamn 2matha" 63
```

```
{ pdfauthor={Thomas Jech}, pdftitle={Notes on Set Theory}, pdfkey-
```

```
words={}, pdfsubject={}, pdfcreator={Emacs 26.3 (Org mode 9.3)}, pdflang={English}}
```

Notes on Set Theory

Thomas Jech

January 3, 2020

Contents

1 Ordinal

1.1 Linear and partial ordering

Definition 1.1 A binary relation < on a set P is a partial ordering of

P if:

1. $p \not< p$ for any $p \in P$

2. if p < q and q < r then p < r

(P, <) is called a **partial ordered set**. A partial ordering < of P is

a linear ordering if moreover

3. p < q or q < p or p = q for all $p, q \in P$

If (P,<) and (Q,<) are poset and $f:P\to Q$, then f is **order-**

preserving if x < y implies f(x) < f(y). If P and Q are linearly ordered,

then f is also called **increasing**

1.2 Well-Ordering

Definition 1.2 () A linear ordering < of a set P is a well-ordering if

every nonempty subset of P has a least element

Lemma 1.3 () If (W,<) is a well-ordering set and $f:W\to W$ is an

increasing function, then $f(x) \ge x$ for each $x \in W$

Assume that the set $X = \{x \in W \mid f(x) < x\}$ is nonempty and let z be the

least element of X. Hence f(f(x)) < f(x) and $f(x) \in X$, a contradiction.

Corollary 1.4 () The only automorphism of a well-ordered set is the iden-

tity

Corollary 1.5 () If two well-ordered sets W_1, W_2 are isomorphic, then the

 $isomorphism\ of\ W_1\ onto\ W_2\ is\ unique$

If W is a well-ordered set and $u \in W$, then $\{x \in W : x < u\}$ is an **initial**

 $\mathbf{segment} \,\, \mathrm{of} \,\, W$

Lemma 1.6 () No well-ordered set is isomorphic to an initial segment of

itself

If $ran(f) = \{x : x < u\}$, then f(u) < u, contrary to lemma ??

Theorem 1.7 () If W_1 and W_2 are well-ordered sets, then exactly one of

the following three cases holds:

1.
$$W_1 \cong W_2$$

- 2. W_1 is isomorphic to an initial segment of W_2
- 3. W_2 is isomorphic to an initial segment of W_1

For $u \in W_i$, (i = 1, 2), let $W_i(u)$ denote the initial segment of W_i given by

u. Let

$$f = \{(x, y) \in W_1 \times W_2 \mid W_1(x) \cong W_2(y)\}\$$

If $W_1(x)\cong W_w(y)$ and $W_1(x)\cong W_2(y')$, then $W_2(y)\cong W_1(y')$. Ac-

cording to lemma ??, y = y'. Hence it's easy to see that f is a one-to-one

function.

If h is an isomorphism between $W_1(x)$ and $W_2(y)$ and x' < x, then

 $W_1(x') \cong W_2(h(x'))$. It follows that f is order-preserving.

If $dom(f) = W_1$ and $ran(f) = W_2$, then case 1 holds.

If $y_1 < y_2$ and $y_2 \in ran(f)$, then $y_1 \in ran(f)$. If there is some $y < y_2$

and $y \not\in \operatorname{ran}(f)$. Consider the least element y' of $\{y \in W_2 \mid y < y_2 \land y \not\in A_1\}$

ran(f)}. Let $x' = \sup\{x \in W_1 \mid \exists y \in W_2(W_1(x) \cong W_2(y) \land y < y')\}$, then

 $W_1(x') \cong W_2(y')$, a contradiction.

If $ran(f) \neg W_2$ and y_0 is the least element of $W_2 - ran(f)$. We have

 $ran(f) = W_2(x_0)$. Necessarily, $dom(f) = W_1$, for otherwise we could have

 $(x_0, y_0) \in f$ where x_0 =least element of $W_1 - \text{dom}(f)$. Thus case 2 holds.

Similarly, case 3 holds.

If $W_1 \cong W_2$, we say that they have the same **order-type**

1.3 Ordinal Numbers

The idea is to define ordinal numbers so that

$$\alpha < \beta \Leftrightarrow \alpha \in \beta \land \alpha = \{\beta : \beta < \alpha\}$$

Definition 1.8 () A set T is transitive if every element of T is a subset

of T

Definition 1.9 () A set is an ordinal number (an ordinal) if it's tran-

sitive and well-ordered by \in

The class of all ordinals is denoted by Ord

We define

$$\alpha < \beta \Leftrightarrow \alpha \in \beta$$

Lemma 1.10 () 1. $0 = \emptyset$ is an ordinal

- 2. If α is an ordinal and $\beta \in \alpha$, then β is an ordinal
- 3. If $\alpha \neq \beta$ are ordinals and $\alpha \subset \beta$, then $\alpha \in \beta$
- 4. If α,β are ordinals, then either $\alpha \subset \beta$ or $\beta \subset \alpha$

- 1. definition
- 2. definition
- 3. If $\alpha \subset \beta$, let γ be the least element of the set $\beta \alpha$. Since α is

transitive, it follows that α is the initial segment of β given by γ .

Thus
$$\alpha = \{ \xi \in \beta \mid \xi < \gamma \} = \gamma \in \beta$$

4. Clearly $\alpha \cap \beta$ is an ordinal γ . We have $\gamma = \alpha$ or $\gamma = \beta$, for otherwise

 $\gamma \in \alpha$ and $\gamma \in \beta$ by 3. Then $\gamma \in \gamma$ which contradicts the definition of

an ordinal

Using lemma ?? one gets the following facts about ordinal numbers

- 1. < is a linear ordering of the class Ord
- 2. For each α , $\alpha = \{\beta : \beta < \alpha\}$
- 3. If C is a nonempty class of ordinals, then $\bigcap C$ is an ordinal, $\bigcap C \in C$

and
$$\bigcap C = \inf C$$

4. If X is a nonempty set of ordinals, then $\bigcup X$ is an ordinal and $\bigcup X =$

$$\sup X$$

5. For every α , $\alpha \cup \{\alpha\}$ is an ordinal and $\alpha \cup \{\alpha\} = \inf\{\beta : \beta > \alpha\}$

We thus define $\alpha + 1 = \alpha \cup \{\alpha\}$ (the **succesor** of α)

Theorem 1.11 () Every well-ordered set is isomorphic to a unique ordinal

number

The uniqueness follows from lemma $\ref{eq:condition}.$ Given a well-ordered set W, we find an isomorphic ordinal as follows: Define $F(x) = \alpha$ if α is isomorphic to the initial segment of W given by x. If such an α exists, then it's unique. By the replacement axiom, F(W) is a set. For each $x \in W$, such an α exists. Otherwise consider the least x such that α doesn't exist. Let $\alpha = \sup\{F(x') \mid x' \in W \land x' < x\}$ and $F(x) = \alpha$. If γ is the least $\gamma \not\in F(W)$,

If $\alpha = \beta + 1$, then α is a **succesor ordinal**. If α is not a succesor ordinal then $\alpha = \sup\{\beta : \beta < \alpha\} = \bigcup \alpha$ is called a **limit ordinal**. We also consider

then $F(W) = \gamma$ and we have an isomorphism of W onto γ

0 a limit ordinal and define $\sup \emptyset = 0$.

1.4 Induction and Recursion

Theorem 1.12 (Transfinite Induction) Let C be a class of ordinals and

assume

1.
$$0 \in C$$

2. if
$$\alpha \in C$$
, then $\alpha + 1 \in C$

3. if α is a nonzero limit ordinal and $\beta \in C$ for all $\beta < \alpha$, then $\alpha \in C$

Then C is the class of all ordinals

Otherwise let α be the least ordinal $\alpha \not\in C$ and apply 1, 2 or 3

A function whose domain is the set \mathbb{N} is called an $\{(infinite) \text{ sequence}\}$

(A **sequence** in X is a function $f: \mathbb{N} \to X$). The standard notation for a

sequence is

$$\langle a_n : n < \omega \rangle$$

A finite sequence is a function s s.t. $dom(s) = \{i : i < n\}$ for some $n \in \mathbb{N}$;

then s is a sequence of length n

A transfinite sequence is a function whose domain is an ordinal

$$\langle a_{\xi} : \xi < \alpha \rangle$$

It is also called an α -sequence of length α . We also say that

a sequence $\langle a_{\xi} : \xi < alpha \rangle$ is an **enumeration** of its range $\{a_{\xi} : \xi < \alpha\}$. If

s is a sequence of length α , then $s^{\hat{}}x$ or simply sx denotes the sequence of

length $\alpha + 1$ that extends s and whose α th term is x:

$$s^{\hat{}}x = sx = s \cap \{(\alpha, x)\}$$

Theorem 1.13 (Transfinite Recursion) Let G be a function, then ??

below defines a unique function F on Ord s.t.

$$F(\alpha) = G(F \upharpoonright \alpha)$$

for each α

In other words, if we let $a_{\alpha} = F(\alpha)$, then for each α

$$a_{\alpha} = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

Corollary 1.14 () Let X be a set and θ be an ordinal number. For every

function G on the set of all transfinite sequences in X of length $< \theta$ s.t.

 $\operatorname{ran}(G) \subset X$ there exists a unique θ -sequence in X s.t. $a_{\alpha} = G(\langle a_{\xi} : \xi < \theta)$

for every $\alpha < \theta$

Let

$$F(\alpha) = x \leftrightarrow \text{there is a sequence } \langle a_{\xi} : \xi < \alpha \rangle \text{ such that}$$
 (1)

1.
$$(\forall \xi < \alpha) a_{\xi} = G(\langle a_n \eta : \eta < \xi \rangle)$$

2.
$$x = G(\langle a_{\xi} : \xi < \alpha \rangle)$$

For every α , if there is an α -sequence that satisfying 1, then such a

sequence is unique. Thus $F(\alpha)$ is determined uniquely by 2 and therefore

F is a function.

Definition 1.15 () Let $\alpha > 0$ be a limit ordinal and let $\langle \gamma_{\xi} : \xi < \alpha \rangle$ be a

nondecreasing sequence of ordinals (i.e., $\xi < \eta$ implies $\gamma_{\xi} \le \gamma_{e} ta$). We

define the limit of the sequence by

$$\lim_{\xi \to \alpha} \gamma_{\xi} = \sup \{ \gamma_{\xi} : \xi < \alpha \}$$

A sequence of ordinals $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ is **normal** if it's increasing and

continuous, i.e., for every limit α , $\gamma_{\alpha} = \lim_{\xi \to \alpha} \gamma_{\xi}$

1.5 Ordinal Arithmetic

Definition 1.16 (Addition) For all ordinal numbers α

1.
$$\alpha + 0 = \alpha$$

2.
$$\alpha + (\beta + 1) = (\alpha + \beta) + 1$$
, for all β

3.
$$\alpha + \beta = \lim_{\xi \to \beta} (\alpha + \xi)$$
 for all limit $\beta > 0$

Definition 1.17 For all ordinal numbers α

1.
$$\alpha \cdot 0 = 0$$

2.
$$\alpha \cdot (\beta + 1) = (\alpha \cdot \beta) + \alpha$$
, for all β

3.
$$\alpha \cdot \beta = \lim_{\xi \to \beta} (\alpha \cdot \xi)$$
 for all limit $\beta > 0$

Definition 1.18 (Exponentiation) For all ordinal numbers α

1.
$$\alpha^0 = 1$$

2.
$$\alpha^{\beta+1} = \alpha^{\beta} \cdot \alpha$$
, for all β

3.
$$\alpha^{\beta} = \lim_{\xi \to \beta} \alpha^{\xi}$$
 for all limit $\beta > 0$

Lemma 1.19 () For all ordinals α , β and γ

1.
$$\alpha + (\beta + \gamma) = (\alpha + \beta) + \gamma$$

2.
$$\alpha \cdot (\beta \cdot \gamma) = (\alpha \cdot \beta) \cdot \gamma$$

Neither + nor \cdot are commutative

$$1 + \omega = \omega \neq \omega + 1, \ 2 \cdot \omega = \omega \neq \omega \cdot 2$$

Definition 1.20 () Let $(A, <_A)$ and $(B, <_B)$ be disjoint linearly ordered

sets. The sum of these linear orders is the set $A \cup B$ with the ordering

defined as follows: x < y if and only if

1.
$$x, y \in A$$
 and $x <_A y$

2.
$$x, y \in B$$
 and $x <_B y$

3.
$$x \in A \text{ and } y \in B$$

Definition 1.21 () Let (A,<) and (B,<) be linearly ordered sets. The

product of these linear orders is the set $A \times B$ with the ordering defined by

$$(a_1, b_1) < (a_2, b_2) \Leftrightarrow b_1 < b_2 \text{ or } (b_1 = b_2 \land a_1 < a_2)$$

Lemma 1.22 () For all ordinals α and β , $\alpha + \beta$ and $\alpha \cdot \beta$ are respectively

isomorphic to the sum and to the product of α and β

Suppose $(A, <_A) \cong \alpha$ and $(B, <_B) \cong \beta$.

1. if
$$\beta = 0$$
, then $B = \emptyset$, $A \cup B = A$

2. if
$$(A \cup B, <_{A \cup B}) \cong \alpha + \beta$$
, let $B' = B \cup \{c\}$ s.t. $\{c\} \cap A = \{c\} \cap B = \emptyset$

all for all $b \in B$, b < c. Hence

$$\alpha + (\beta + 1) = (\alpha + \beta) + 1 \cong (A \cup B) \cup \{c\} = A \cup B'$$

3. if β is a limit ordinal and for all $\xi < \beta$ and $B_{\xi} \cong \xi$,

$$(A \cup B_{\xi}, <_{A \cup B_{\xi}}) \cong \alpha + \xi,$$

$$A \cup B = A \cup \sup B_{\xi} = \sup(A \cup B_{\xi}) \cong \sup(\alpha + \xi) = \alpha + \beta$$

Lemma 1.23 () 1. If
$$\beta < \gamma$$
 then $\alpha + \beta < \alpha + \gamma$

- 2. If $\alpha < \beta$ then there exists a unique δ s.t. $\alpha + \delta = \beta$
- 3. If $\beta < \gamma$ and $\alpha > 0$, then $\alpha \cdot \beta < \alpha \cdot \gamma$
- 4. If $\alpha>0$ and γ is arbitrary, then there exist a unique β and a unique

$$\rho < \alpha \text{ s.t. } \gamma = \alpha \cdot \beta + \rho$$

- 5. If $\beta < \gamma$ and $\alpha > 1$, then $\alpha^{\beta} < \alpha^{\gamma}$
- 2. Let δ be the order-type of the set $\{\xi:\alpha\leq \xi<\beta\}$
- 4. Let β be the greatest ordinal s.t. $\alpha \cdot \beta \leq \gamma$

Theorem 1.24 (Cantor's Normal Form Theorem) Every ordinal $\alpha >$

0 can be represented uniquely in the form

$$\alpha = \omega^{\beta_1} \cdot k_1 + \dots + \omega^{\beta_n} \cdot k_n$$

where $n \geq 1$, $\alpha \geq \beta_1 > \cdots > \beta_n$ and k_1, \ldots, k_n are nonzero natural numbers.

By induction on α . For $\alpha = 1$ we have $1 = \omega^0 + 1$; for arbitrary $\alpha > 0$, let

 β be the greatest ordinal s.t. $\omega^{\beta} \leq \alpha$. The uniqueness of the normal form

is proved by induction

1.6 Well-Founded Relations

A binary relation E on a set P is **well-founded** if every nonempty $X \subset P$

has an E-minimal element.

Given a well-founded relation E on a set P, we can define the **height** of

E and assign to each $x \in P$ and ordinal number, the rank of x in E

Theorem 1.25 () If E is a well-founded relation on P, then there exists a

unique function ρ from P into the ordinals s.t. for all $x \in P$

$$\rho(x) = \sup\{\rho(y) + 1 : yEx\}$$

The range of ρ is an initial segment of the ordinals, thus an ordinal number.

This ordinal is called the \mathbf{height} of E

By induction, let

$$P_0 = \emptyset$$

$$P_{\alpha+1} = \{x \in P : \forall y (yEx \to y \in P_{\alpha})\} \cup P_{\alpha}$$

$$P_{\alpha} = \bigcup_{\xi < \alpha} P_{\xi}$$
 if α is a limit ordinal

Let θ be the least ordinal s.t. $P_{\theta+1} = P_{\theta}$. We claim that $P_{\theta} = P$

1.7 Exercise

Exercise 1.7.1 Every normal sequence $\langle \gamma_{\alpha} : \alpha \in Ord \rangle$ has arbitrarily large

fixed points, *i.e.*, α *s.t.* $\gamma_{\alpha} = \alpha$

From StackExchange.

A limit ordinal $\gamma > 0$ is called **indecomposable** if there exist no $\alpha < \gamma$

and $\beta < \gamma$ s.t. $\alpha + \beta = \gamma$

Exercise 1.7.2 A limit ordinal $\gamma > 0$ is indecomposable if and only if $\alpha +$

 $\gamma = \gamma$ for all $\alpha < \gamma$ if and only if $\gamma = \omega^{\alpha}$ for some α

1. (3) \rightarrow (1). Assume $\gamma_1, \gamma_2 < \gamma = \omega^{\alpha}$. By Cantor's normal form theorem,

there exist α' and k s.t. $\gamma_1, \gamma_2 < \omega^{\alpha'} \cdot k$

2. (2) \rightarrow (3). Assume that γ can't be written as ω^{α} . Then by Cantor's

theorem, $\gamma = \omega^{\beta_1} \cdot k_1 + \cdots + \omega^{\beta_n} \cdot k_n$. But then $\omega^{\beta_1} < \gamma$ and $\omega^{\beta_1} + \gamma > \gamma$

Exercise 1.7.3 (Without the Axiom of Infinity). Let $\omega = least \ limit \ \alpha \neq 0$

if it exists, $\omega = Ord$ otherwise. Prove that the following statements are

equivalent

- 1. There exists an inductive set
- 2. There exists an infinite set
- 3. ω is a set

2 Cardinal Numbers

2.1 Cardinality

Two sets X, Y have the same *cardinality*

$$X = Y \tag{2}$$

if there exists a one-to-one mapping of X onto Y.

The relation ?? is an equivalence relation. We assume that we can assign

to each set X its cardinal number X so that two sets are assigned the same cardinal just in case they satisfy condition $\ref{eq:cardinal}$. Cardinal numbers can be defined either using the Axiom of Regularity (via equivalence classes) or using the Axiom of Choice

$$X \leq Y$$

if there exists a one-to-one mapping of X into Y.

Theorem 2.1 (Cantor) For every set X, X < P(X)

Let f be a function from X into P(X). The set

$$Y = \{x \in X : x \notin f(x)\}$$

is not in the range of f. Thus f is not a function of X onto P(X)

Theorem 2.2 (Cantor-Bernstein) If $A \leq B$ and $B \leq A$, then A = B

If $f_1:A\to B$ and $f_2:B\to A$ are one-to-one, then if we let $B'=f_2(B)$ and

 $A_1 = f_2(f_1(A))$, we have $A_1 \subset B' \subset A$ and $A_1 = A$. Thus we may assume

that $A_1 \subset B \subset A$ and that f is a one-to-one function of A onto A_1 ; we will

show that A = B

We define for all $n \in \mathbb{N}$

$$A_0 = A, \quad A_{n+1} = f(A_n)$$

$$B_0 = B, \quad B_{n+1} = f(B_n)$$

Let g be the function on A defined as follows

$$g(x) = \begin{cases} f(x) & \text{if } x \in A_n - B_n \text{ for some } n \\ x & \text{otherwise} \end{cases}$$

Then g is a one-to-one mapping of A onto B

StackExchange

The arithmetic operations on cardinals are defined as follows:

$$\kappa + \lambda = A \cup B$$
 where $A = \kappa, B = \lambda, A, B$ are disjoint

$$\kappa \cdot \lambda = A \times B$$
 where $A = \kappa, B = \lambda$

$$\kappa^{\lambda} = A^{B}$$
 where $A = \kappa, B = \lambda$

Lemma 2.3 () If
$$A = \kappa$$
, then $P(A) = 2^{\kappa}$

For every $X \subset A$, let χ_X be the function

$$\chi_X(x) = \begin{cases} 1 & \text{if } x \in X \\ 0 & \text{if } x \in A - X \end{cases}$$

The mapping $f:X\to\chi_X$ is a one-to-one correspondence between P(A)

and $\{0,1\}^A$

Facts about cardinal arithmetic

1. + and \cdot are associative, commutative and distributive

$$2. \ (\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu}$$

3.
$$(\kappa^{\lambda})^{\mu} == \kappa^{\lambda \cdot \mu}$$

4.
$$\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu}$$

5. If
$$\kappa \leq \lambda$$
, then $\kappa^{\mu} \leq \lambda^{\mu}$

6. If
$$0 < \lambda \le \mu$$
, then $\kappa^{\lambda} \le \kappa^{\mu}$

7.
$$\kappa^0 = 1; 1^{\kappa} = 1; 0^{\kappa} = 0 \text{ if } \kappa > 0$$

2.2 Alephs

An ordinal α is called *cardinal number* (a cardinal) if $\alpha \neq \beta$ for all $\beta < \alpha$

If W is a well-ordered set, then there exists an ordinal α s.t. $W = \alpha$.

Thus we let

W =the least ordinal s.t. $W = \alpha$

All infinite cardinals are limit ordinals. The infinite ordinal numbers

that are cardinals are called alephs

Lemma 2.4 () 1. For every α there is a cardinal number greater than

 α

2. If X is a set of cardinals, then $\sup X$ is a cardinal

For every α , let α^+ be the least cardinal number greater than α , the

cardinal successor of α

1. For any set X, let

h(X)= the least α s.t. there is no one-to-one function of $\alpha \to X$

There is only a set of possible well-orderings of subsets of X. Hence

there is only a set of ordinals for which a one-to-one function of α into

X exists. Thus h(X) exists.

If α is an ordinal, then $\alpha < h(\alpha)$

2. Let $\alpha = \sup X$. If f is a one-to-one mapping of α onto some $\beta < \alpha$, let

$$\kappa \in X$$
 s.t. $\beta < \kappa \leq \alpha$. Then $\kappa = \{f(\xi) : \xi < \kappa\} \leq \beta$, a contradiction

Using Lemma ?? we define the increasing enumeration of all alephs.

$$\aleph_0 = \omega_0 = \omega, \quad \aleph_{\alpha+1} = \omega_{\alpha+1} = \aleph_{\alpha}^+$$

$$\aleph_{\alpha} = \omega_{\alpha} = \sup\{\omega_{\beta} : \beta < \alpha\}$$
 if α is a limit ordinal

Theorem 2.5 () $\aleph_{\alpha \cdot \aleph \alpha} = \aleph_{\alpha}$

2.3 The Canonical Well-Ordering of $\alpha \times \alpha$

We define

$$(\alpha, \beta) < (\gamma, \delta) \leftrightarrow \text{ either } \max\{\alpha, \beta\} < \max\{\gamma, \delta\},$$

or
$$\max\{\alpha, \beta\} = \max\{\gamma, \delta\}$$
 and $\alpha < \gamma$,

or
$$\max\{\alpha, \beta\} = \max\{\gamma, \delta\}, \alpha = \gamma \text{ and } \beta < \delta$$

This relation is a linear ordering of the class Ord \times Ord. Moreover if $X \subset$

Ord \times Ord is nonempty, then X has a least element. Also, for each $\alpha, \alpha \times \alpha$

is the initial segment given by $(0, \alpha)$. If we let

$$\Gamma(\alpha,\beta)=$$
 the order-type of the set $\{(\xi,\eta):(\xi,\eta)<(\alpha,\beta)\}$

then Γ is a one-to-one mapping of Ord^2 onto Ord and

$$(\alpha,\beta)<(\gamma,\delta) \ \ \text{if and only if} \ \ \Gamma(\alpha,\beta)<\Gamma(\gamma,\delta)$$

Note that $\Gamma(\omega, \omega) = \omega$ and since $\gamma(\alpha) = \Gamma(\alpha, \alpha)$ is an increasing function of α , we have $\gamma(\alpha) \geq \alpha$. However, $\gamma(\alpha)$ is also continuous and so $\Gamma(\alpha, \alpha) = \alpha$ for arbitrarily large α

Proof of Theorem ??. We shall show that $\gamma(\omega_{\alpha}) = \omega_{\alpha}$. This is true for $\alpha = 0$. Thus let α be the least ordinal s.t. $\gamma(\omega_{\alpha}) \neq \omega_{\alpha}$. Let $\beta, \gamma < \omega_{\alpha}$ be s.t. $\Gamma(\beta, \gamma) = \omega_{\alpha}$. Pick $\delta < \omega_{\alpha}$ s.t. $\delta > \beta$ and $\delta > \gamma$. Since $\delta \times \delta$ is an initial segment of Ord × Ord in the canonical well-ordering and contains (β, γ) , we have $\Gamma(\delta, \delta) \supset \omega_{\alpha}$ and so $\delta \times \delta \geq \aleph_{\alpha}$. However $\delta \times \delta = \delta \cdot \delta$, and by the

minimality of α , $\delta \cdot \delta = \delta < \aleph_{\alpha}$. A contradiction

As a corollary we have

$$\aleph_{\alpha} + \aleph_{\beta} = \aleph_{\alpha} \cdot \aleph_{\beta} = \max{\{\aleph_{\alpha}, \aleph_{\beta}\}}$$

2.4 Cofinality

Let $\alpha > 0$ be a limit ordinal. We say that an increasing β -sequence $\langle \alpha_{\xi} :$

 $\xi < \beta \rangle$, β a limit ordinal, is cofinal in α if $\lim_{\xi \to \beta} \alpha_{\xi} = \alpha$. $A \subset \alpha$ is cofinal

in α if sup $A = \alpha$. If α is an infinite limit ordinal, the *cofinality* of α is

cf α =the least limit ordinal β s.t. there is an increasing

$$\beta\text{-sequence }\langle\alpha_\xi:\xi<\beta\rangle\text{ with }\lim_{\xi\to\beta}\alpha_\xi=\alpha$$

Obviously cf α is a limit ordinal and cf $\alpha \leq \alpha$. Examples: cf $(\omega + \omega)$

$$\operatorname{cf} \aleph_{\omega} = \omega$$

Lemma 2.6 ()
$$cf(cf \alpha) = cf \alpha$$

cf

If $\langle \alpha_{\xi} : \xi < \beta \rangle$ is cofinal in α and $\langle \xi(\nu) : \nu < \gamma \rangle$ is cofinal in β , then

 $\langle \alpha_{\xi(\nu)} : \nu < \gamma \rangle$ is cofinal in α

Lemma 2.7 () Let $\alpha > 0$ be a limit ordinal

- 1. If $A \subset \alpha$ and $\sup A = \alpha$, then the order-type of A is at least cf α
- 2. If $\beta_0 \leq \beta_1 \leq \cdots \leq \beta_{\xi} \leq \ldots, \xi < \gamma$, is a nondecreasing γ -sequence of

ordinals in α and $\lim_{\xi \to \gamma} \beta_{\xi} = \alpha$, then $cf \gamma = cf \alpha$

 cf