

On Lazy Training in Differentiable Programming

Lénaïc Chizat³, Édouard Oyallon⁴ and Francis Bach^{1,2}

¹INRIA, ²ENS-PSL Paris, ³CNRS, ⁴Centrale-Supélec

Abstract

Context. Recent theory shows that training wide neural networks amounts to doing regression with a positive-definite kernel.

Contributions. This lazy training phenomenon:

- is not intrinsically due to width but to a degenerate relative scale
 → depends on early stopping, initialization and normalization
- removes some benefits of depth and may hinder generalization

Lazy Training

Setting. Adjust parameters of a differentiable model $h: \mathbb{R}^p \to \mathcal{F}$ by minimizing a loss $R: \mathcal{F} \to \mathbb{R}_+$ using gradient flow on the objective

$$F(w) = R(\alpha h(w))/\alpha^2.$$

- $ullet \mathcal{F}$ is a Hilbert space of predictors, R typically the empirical or population risk, h typically a neural network
- $ullet \alpha > 0$ is a scale, often implicitly present
- gradient flows approximate (stochastic, accelerated) gradient descent

Training paths. For initialization w_0 and stopping time T, let

- \bullet $(\mathbf{w}_{\alpha}(t))_{t \in [0,T]}$ be the *original* optimization path
- \bullet $(\overline{\boldsymbol{w}}_{\alpha}(t))_{t\in[0,T]}$ be the *tangent* optimization path, for the tangent model

$$\bar{h}(w) = h(w_0) + Dh(w_0)(w - w_0)$$

Lazy Training (definition)

When the original and tangent optimization paths are close

Consequences. Lazy training is a type of implicit bias for gradient descent that leads to strong guarantees:

- on optimization speed (theory of convex optimization)
- on generalization (theory of kernel regression)

Lazy Training Theorems —

Finite horizon

If $h(w_0) = 0$ and R potentially non-convex then for any T > 0,

$$\lim_{\alpha \to 0} \sup_{t \in [0,T]} \|\alpha h(\mathbf{w}_{\alpha}(t)) - \alpha \bar{h}(\mathbf{\bar{w}}_{\alpha}(t))\| = 0.$$

Infinite horizon

If $h(w_0) = 0$, and R is strongly convex, then

$$\lim_{\alpha \to 0} \sup_{t > 0} \|\alpha h(\mathbf{w}_{\alpha}(t)) - \alpha \bar{h}(\mathbf{\bar{w}}_{\alpha}(t))\| = 0.$$

- over-parameterization is not needed
- see paper for precise statements

When does it occur?

A sufficient criterion. For the square loss $R(y) = \frac{1}{2}||y - y^*||^2$ and $\alpha = 1$, the relative difference $\Delta \coloneqq ||h(\mathbf{w}(t)) - \bar{h}(\bar{\mathbf{w}}(t))||/||y^* - h(w_0)||$ is controlled by

$$\Delta \lesssim \widetilde{t}^2 \cdot \kappa_h(w_0)$$
 where $\kappa_h(w_0) \coloneqq \frac{\|h(w_0) - y^\star\| \|D^2h(w_0)\|}{\|Dh(w_0)\|^2}$

where $\tilde{t} = t ||Dh(w_0)||^2$ is the normalized time (\approx iteration number).

Case 1: Rescaled models

For $\alpha > 0$, one has $\kappa_{\alpha h}(w_0) \lesssim \|h(w_0) - y^*/\alpha\|$

ightarrow lazy if $h(w_0)$ small and lpha large

Case 2: Homogeneous models

If $h(\lambda w) = \lambda^q h(w)$, one has $\kappa_h(\lambda w_0) \lesssim \|h(w_0) - y^*/\lambda^q\|$

ightarrow lazy if $h(w_0)$ small and λ large

Case 3: Wide neural networks

If $h_m(w) = \alpha \sum_{i=1}^m \phi(\theta_i)$ where $w = (\theta_1, \dots, \theta_m)$ are i.i.d. and satisfy $\mathbb{E}\phi(\theta_i) = 0$ (two-layer neural network), then

$$\kappa_{h_m}(w_0) \lesssim m^{-1/2} + (\alpha m)^{-1}$$

- \rightarrow lazy if $\lim_{m\to\infty} \alpha m = \infty$ (e.g. $\alpha = 1/\sqrt{m}$)
- \rightarrow can be extended to deep networks (Jacot et al.)

Is it desirable in practice? ——

Synthetic experiments. Two-layer ReLU neural network, square loss, initialized with variance τ , best predictor has 3 neurons.

Lazy Training ($\tau = 0.1$)

Non-Lazy Training $(\tau = 2)$

Trajectory of each "hidden" neuron during training (2-D input)

Over-parameterized (GD on train loss until 0 loss)

Under-parameterized (SGD on population loss)

Impact of laziness on performance (100-D input)

Image recognition. Does lazy training explain deep learning?

Model	Train acc.	Test acc
ResNet wide, linearized	55.0	56.7
VGG-11 wide, linearized	61.0	61.7
Prior features (Oyallon et al.)	-	82.3
Random features (Recht et al.)	-	84.2
VGG-11 wide, standard	99.9	89.7
ResNet wide, standard	99.4	91.0

Effect on laziness (VGG11 model) Linear vs. lazy vs. deep models

Theoretical arguments. Neural networks can be superior to kernel/fixed features methods, thanks to their adaptivity (Bach 2017).

Main references

- Jacot et al., Neural Tangent Kernel: Convergence and Generalization in Neural Networks. 2018.
- Du et al., Gradient Descent Provably Optimizes Over-parameterized Neural Networks. 2018.
- Bach. Breaking the Curse of Dimensionality with Convex Neural Networks). 2017.