G54ARS Autonomous Robotic Systems

PID Control

© University of Nottingham G54ARS

Last week...

Background

- The behaviour based approach revisited
- Behaviour arbitration

· Subsumption architecture

- Brooks' assumptions about mobile robot design
- levels of competence
- layers of control
- structure of layers
- extensions; finite state machines

Sensors

- Sensor Characteristics
- Sensor Types and categories

Actuators

- Effectors and actuators
- DC motors and Servo Motors
- DC motors how they work
- Degrees of Freedom

© University of Nottingham

G54ARS

This week...

- Control
 - The problem
 - Open-Loop Control
- PID Control
 - PID principles
 - PID parameter effects
 - PID tuning
 - Live example PID DC motor control
 - PID implementation
- · Video The Grand Challenge

© University of Nottingham G54ARS 3 © University of Nottingham G54ARS

Autonomous Mobile Robots - Navigation

The Problem

© University of Nottingham G54ARS

DC Motor

Input: voltage $v_{app}(t)$

© University of Nottingham

Maintain desired Output: angular velocity $\omega(t)$

G54ARS

Open-Loop Control

Proportional Integral Derivative

Control

© University of Nottingham G54ARS

The Sense-Think-Act Cycle

© University of Nottingham G54ARS 11

The Sense-Think-Act Cycle

Repeat

☐ sense the current state

 $\hfill\square$ reduce difference between current state and goal state

Until

☐ current state = goal state

© University of Nottingham

G54ARS

10

Compute the Control Action

- Present
 - the current error
 - · proportional
- Past
 - the sum of errors up to present time
 - integral
- Future
 - the rate of change of the error
 - derivative

© University of Nottingham

G54ARS

PID Control

- A proportional-integral-derivative controller (PID controller) simply combines these three terms in a weighted sum to obtain the control action
- The origins of PID control go back to research on automating and optimizing ship steering by N. Minorsky in the early 1900s. If you are interested, see: "Nicolas Minorsky and the Automatic Steering of Ships" by S. Bennett

(http://ieeexplore.ieee.org/xpl/articleDetails.jsp?arnumber=1104827)

$$C(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

© University of Nottingham

G54ARS

13

PID Block Diagram

© University of Nottingham

G54ARS

15

Appropriate Parameters

- Some applications may not require the use of all three terms
 - appropriate parameters can be set to zero in order to remove unused terms
- PI, PD, P or I controllers
 - PI particularly common since
 - the integral term is required in order to remove steady-state error
 - the derivative term is very sensitive to measurement noise (example?)

© University of Nottingham

G54ARS

14

PID Parameters and their Effects

© University of Nottingham G54ARS 16

Proportional Term

$P_{\text{out}}(t) = K_p e(t)$

- A high proportional gain results in a large change in the output for a given error
 - if the proportional gain is too high, the system can become unstable
 - if the proportional gain is too low, the system will be very slow responding to changes
- · Proportional term is often the dominant one
 - but pure proportional control will not settle at setpoint

© University of Nottingham G54ARS

P Control

P Control

P Control

P Control

PI Control

Integral Term

$$I_{
m out}(t) = K_i \int_0^t e(au) d au$$

- Contribution is proportional to both the magnitude and the duration of the error
 - sum of the instantaneous error over time
- Integral term accelerates the process towards setpoint and eliminates steady-state error
 - but easily causes overshoot (the actual value crosses over the setpoint and creates an error in the opposite direction)

© University of Nottingham G54ARS 22

PI Control

Derivative Term

$$D_{\text{out}}(t) = K_d \frac{de(t)}{dt}$$

- Contribution is proportional to the rate of change of the error over time
 - first derivative of the instantaneous error
- Used to slow the rate of change of the error
 effect is most noticeable near to the setpoint
- · Helps reduce overshoot caused by integral term
- Differentiation amplifies signal noise and so derivative can cause instability with noise

© University of Nottingham G54ARS

25

PID Control

PID Control

PID Summary

$$CA(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

Proportional gain: K_p
 ↑K_p ⇒ faster response → instability

Integral gain: K_i
 ↑K_i ⇒ elimination of steady state error → overshoot

© University of Nottingham G54ARS 28

PID Tuning

© University of Nottingham G54ARS 29

Effects of *Increasing* Parameters

Parameter	Rise-time	Overshoot	Settling time	Steady- state error
Kρ	decrease	increase	small change	decrease
Ki	decrease	increase	increase	eliminate
Kd	small change	decrease	decrease	none

© University of Nottingham G54ARS

Parameter Tuning

- · If PID parameters are chosen incorrectly
 - the process may be unstable
 - its output may diverge, with/without oscillation
- The parameters (i.e. weights) must be adjusted to achieve the desired behaviour for a given application
 - PID parameter tuning
- · The optimum behaviour is application dependent
 - rise-time must be less than a specified time
 - overshoot may not be allowed (e.g., engines)
 - minimise the energy required to reach setpoint
 - oscillations may not be permitted

© University of Nottingham G54ARS 30

Tuning Methods

- · Manual heuristic method
 - set I and D to zero
 - increase P until the output oscillates
 - set P to about half the critical oscillating value
 - increase I until the steady-state error is eliminated in an appropriate amount of time for the application
 - increase D until overshoot is reduced to acceptable level
- · Automated (software) tuning
 - repeat
 - · automatically induce setpoint changes
 - · analyse the process characteristics
 - · automatically adjust parameters
 - until acceptable

© University of Nottingham G54ARS 32

Other methods, e.g.: Ziegler-Nichols Method

- · Set I and D to zero
 - increase P until it reaches the critical gain, K_c, at which output oscillates
 - note the oscillation period, Pc

0.5 K _c	-	-
0.45 K _c	1.2 K _p / P _c	-
0.6 K _c	2 K _p / P _c	K _p P _c / 8

© University of Nottingham G54ARS 33

PID Implementation

Live Example: PID control for a DC Motor

- Example in Matlab / SimuLink
 - The example is available here:
 http://www.mathworks.co.uk/matlabcentral/fileexchang
 e/26275-pid-controller-design-for-a-dc-motor?s iid=ovp custom1 1363833138001-68881 rr
 - The provided model allows you to adjust the PID controller and see the effect of the changes to the parameters in terms of response time and avershoot.
 - Note the drastic increase in rapid voltage variation arising from tuning for rapid response – such variation will decrease the life-time of the DC motor.
 - → PID tuning is often not only about the output

© University of Nottingham G54ARS 34

PID Control – Implementation Notes

· Continuous form of PID:

$$C(t) = K_p e(t) + K_i \int_0^t e(\tau) d\tau + K_d \frac{de(t)}{dt}$$

• In digital implementations, we want a discrete form over the last k iterations, where Δt is the sampling time (i.e. time between iterations):

$$C(t) = K_p e(t) + K_i \sum_{i=1}^{k} e(t_i) \Delta t + K_d \frac{e(t_k) - e(t_{k-1})}{\Delta t}$$

© University of Nottingham G54ARS 35 © University of Nottingham G54ARS

PID Pseudo-Code

```
previous_error = setpoint - measured_feedback;
Integral = 0;
while(true)
{
    wait(dt);
    error = setpoint - measured_feedback;
    integral = integral + error * dt;
    derivative = (error - previous_error) / dt;
    previous_error = error;
    output = Kp * error +
        Ki * integral +
        Kd * derivative;
}
```

© University of Nottingham

G54ARS

37

Applications of PID

Examples?

© University of Nottingham G54ARS

The Grand Challenge

Source: http://en.wikipedia.org/wiki/File:DesertToCity.jpg

- · See here:
 - http://en.wikipedia.org/wiki/DARPA_Grand_Challenge

Summary

- · Summary of this lecture
 - Control
 - The problem
 - Open-Loop Control
 - PID Control
 - · PID principles
 - PID parameter effects
 - PID tuning
 - Live example PID DC motor control
 - PID implementation
- · Video: The Grand Challenge

© University of Nottingham G54ARS 39 © University of Nottingham G54ARS ,