

MVP: Multimodality-guided Visual Pre-training

Longhui Wei^{1,2}, Lingxi Xie², Wengang Zhou¹, Houqiang Li¹, Qi Tian² ¹University of Science and Technology of China, ²Huawei Cloud.

Abstract

- Recently, masked image modeling (MIM) has become a promising direction for visual pre-training. In the context of vision transformers. MIM learns effective visual representation by aligning the token-level features with a pre-defined space.
- ◆ In this paper, we go one step further by introducing guidance from other modalities and validating that such additional knowledge leads to impressive gains for visual pre-training
- We demonstrate the effectiveness of the proposed method, e.g., our approach reports a 52.4% mIoU on ADE20K, surpassing BEIT with an impressive margin of 6.8%.

Contribution

- ✓ We analyze the recent masked image modeling based pretraining methods lack of semantics knowledge, and then firstly point out they can be enhanced with the guidance of other modalities.
- ✓ We design a simple yet effective algorithm to improve the transfer performance of MIM-based visual pre-training. By resorting to a tokenizer pre-trained with multimodal data, MVP learns richer semantic knowledge for each image.
- ✓ We evaluate the effectiveness of MVP with extensive experiments, and the results clearly demonstrate the advantages of MVP over the recently proposed visual pre-training methods.

Motivation

- MIM pre-training methods learn relatively weak semantic feature for visual representation.
- Multimodal data can provide more semantic knowledge. Therefore, how to investigate the use of multimodal pre-training on MIM framework is good direction to improve the semantics of pre-trained models.

transfer

Laughing family of four in a park canvas during this beautiful sunse

donated bottles of water

achieves

Proposed Approach (MVP)

> Instead of using a tokenizer that was pre-trained with pure image data, MVP replaces it with a tokenizer that is pretrained with image-text pairs.

Optimization Goal:

Gvis denotes the extracted feature by CLIP:

 $\{\mathbf{G}_{\mathrm{CLS}}^{\mathrm{vis}}, \mathbf{G}_{1}^{\mathrm{vis}}, \dots, \mathbf{G}_{M}^{\mathrm{vis}}\} = g^{\mathrm{vis}}(\{\mathbf{t}_{\mathrm{CLS}}, \mathbf{t}_{1}, \dots, \mathbf{t}_{M}\}),$

 F^{vis} denotes the predicted multimodal feature: $\{\mathbf{F}_{CLS}^{vis}, \mathbf{F}_{1}^{vis}, \dots, \mathbf{F}_{m}^{vis}\} = f^{\text{head}}(f^{\text{vis}}(\{\mathbf{t}_{CLS}, \mathbf{t}_{1}, \dots, \hat{\mathbf{t}}_{m}, \dots, \mathbf{t}_{M}\})),$

Experimental Results

✓ MVP enjoys advantages on image classification while fine-tuning different backbones

Method	Model	Pre-training Epochs	Top-1 (%)
DINO [3]	ViT-B/16	300	82.8
BEIT [2]	ViT-B/16	800	83.2
MAE [16]	ViT-B/16	1600	83.6
PeCo [12]	ViT-B/16	300	84.1
MaskFeat [34]	ViT-B/16	1600	84.0
MVP (ours)	ViT-B/16	300	84.4
BEIT [2]	ViT-L/16	800	85.2
MAE [16]	ViT-L/16	1600	85.9
MaskFeat [34]	ViT-L/16	1600	85.7
MVP (ours)	ViT-L/16	300	86.3

semantic segmentation task on ADE20K

✓ MVP

Method	Model	Pre-training Epochs	mIoU (%
DINO [3]	ViT-B/16	300	44.1
BEIT [2]	ViT-B/16	800	45.6
MAE [16]	ViT-B/16	B/16 1600	
CAE [5]	ViT-B/16	800	48.8
PeCo [12]	ViT-B/16	300	46.7
MVP (ours)	ViT-B/16	300	52.4

performance on dense visual task, e.g.,

✓ Beyond knowledge distillation

Guidance	Model	Epochs	ImageNet-1K(Top-1)	ADE20K(mIoU)
DINO	ViT-B/16	300	83.6	47.0
CLIP	ViT-B/16	300	84.4	52.4