Intervalos de Confianza

- Interval that contains an unknown quantity with a given frequency-All of Statistics, Wasserman
- 1. Implemente una función **intervalo.mu.asin** que tenga por input un conjunto de datos x_1, \ldots, x_n , provenientes de una muestra de X, el nivel 1α y devuelva el intervalo de confianza asintótico 1α para $\mu = \mathbb{E}(X)$.

Nivel de Cubrimiento empírico: El nivel de cubrimiento empírico (de un procedimiento) se define como la proporción de veces que los intervalos (construídos con el procedimiento) utilizando datos simulados contiene a μ (o θ), en cierta cantidad de Nrep replicaciones.

2. Simulación 1: bajo normalidad Genere variables con distribución normal de media $\mu = 0$ y $\sigma = 0.1, 1, 10$. Calcule el cubrimiento empírico del intervalo de confianza asintótico de nivel 1- α , definido en intervalo.mu.asin, para $\alpha = 0.05$, n = 5, n = 10, n = 30, n = 50, n = 100, n = 1000, utilizando Nrep = 1000 replicaciones, y complete la siguiente tabla. En cada caso, calcule el promedio de las longitudes en las Nrep = 1000 replicaciones e inleuya el valor en la tabla (long). Comente los resultados observados.

Modelo	Normales con media $\mu = 0$. Nivelo nominal=0.9					
	n=5	n=10	n=30	n=50	n=100	n=1000
$\sigma = 0.1$						
$\sigma = 1$			cub (long)			
$\sigma = 10$						

Cuadro 1: Nivel de Cubrimiento Empírico

Indique a que valor debe aproximarse el nivel de cubrimiento empírico. Comente los resultados obtenidos.

3. Simulación 3: Uniformes Genere variables con distribución uniforme en el intervalo $[0,\theta]$, para $\theta=3,10,100$. Calcule el cubrimiento empírico del intervalo de confianza asintótico de nivel 1- α , definido en **intervalo.mu.asin**, para $\alpha=0,05, n=5, n=10, n=30, n=50, n=100, n=1000$, utilizando Nrep=1000 replicaciones. En cada caso, calcule el promedio de las longitudes en las Nrep=1000 replicaciones e informe los valores obtenidos. (long). Comente los resultados observados.

- 4. Implemente una función **intervalo.mu.exacto.normal** que tenga por input un conjunto de datos x_1, \ldots, x_n , provenientes de una muestra $\mathcal{N}(\mu, \sigma^2)$, el nivel 1α y devuelva el intervalo de confianza exacto de nivel 1α para μ .
- 5. Repita el item 2. utilizando ahora la función **intervalo.mu.exacto.normal** y compare los resultados obtenidos (los de ahora con los del item 2.) Comente los resultados observados.
- 6. **Diferencias de medias:** Supongamos que tenemos dos conjuntos de observaciones provenientes de dos distribuciones $N(\mu_X, \sigma_X^2)$ y $N(\mu_Y, \sigma_Y^2)$, asumamos que $\sigma_X = \sigma_y$. El objetivo es decidir a partir de las observaciones si las medias son o no iguales.
 - a) Implemente una función **dif.mu.interseccion** que tenga por input el nivel 1α , un conjunto de datos x_1, \ldots, x_n y un conjunto de datos y_1, \ldots, y_m y devuelva un 1 si los intervalos exactos de nivel 1α para μ_X y para μ_Y se intersecan y un 0 si no se intersecan. Es decir, si los intervalos obtenidos en el item 4 para cada conjunto de datos se intersecan o no.
 - b) Implemente una función **dif.mu.intervalo** que tenga por input el nivel 1α , un conjunto de datos x_1, \ldots, x_n y un conjunto de datos y_1, \ldots, y_m y devuelva un intervalo exacto de nivel 1α para $\mu_X \mu_Y$ y un 1 si el 0 esta en el intervalo y un 0 si no.
 - c) Genere variables X con distribución normal de media $\mu_X = 1$ y $\sigma_X = 2$ y variables Y $\mu_Y = 2$ y $\sigma_Y = 2$. Calcule la proporción de veces que el método de intersección decide que ambas medias son iguales y calcule el cubrimiento empírico del intervalo de confianza exacto de nivel 1- α para la diferencia de medias (es decir la proporción de veces que el intervalo incluye al 0). Considere $\alpha = 0.05$, n = 5, n = 10, n = 30, n = 50, n = 100, n = 1000, utilizando Nrep = 1000 replicaciones. Comente los resultados observados.
- 7. El objetivo de este ejercicio es comparar empíricamente la performance de diferentes intervalos. Por un lado, utilizaremos intervalos construídos estimando la varianza asintótica mediante (i) boostrap y (ii) propagación de errores; luego consideraremos (iii) intervalos bootstrap por percentil. Finalmente, contruiremos (iv) intervalos para una proporción, siendo que el parámetro de interés es una probabilidad. Estudiaremos el nivel de cubrimiento empírico y la longitud media de cada uno procedimientos mencionados.

Generaremos datos asumiendo que provienen de una familia exponencia $\mathcal{E}(\lambda):X \sim \mathcal{E}(\lambda)$. Procuramos estimar

$$\theta = \mathbb{P}(X > 1)$$

- a) Obtenga una fórmla para el parámetro de interés en función de λ .
- b) Genere datos utilizando $\lambda = 3$. Considere n = 100, 200, 500 y estudie el nivel de cubrmiento empírico en Nrep = 1000 replicaciones de los intervalos propuestos, tomando Nboot = 1000 muestras bootstrap.