§ 1.3 函数的运算

一、函数的四则运算

定义: 设函数 f(x) 和 g(x) 的定义域分别为 D_1 和 D_2 , 且 $D = D_1 \cap D_2$ 非空. 定义

- (1) 加法 (f+g)(x) = f(x) + g(x), $x \in D$;
- (2) 数乘 (kf)(x) = kf(x), $k \in \mathbb{R}$, $x \in D_1$;
- (3) 乘法 (fg)(x) = f(x)g(x), x ∈ D;
- (4) 除法 $\frac{f}{g}(x) = \frac{f(x)}{g(x)}(g(x) \neq 0), \quad x \in D.$

Note: 定义域, 例如 $f(x) = x + \sqrt{x}$, $g(x) = x - \sqrt{x}$, 则 f(x) + g(x) = 2x $(x \ge 0)$.

二、函数的复合运算(复合函数)

定义: 设 f 和 g 是分别定义在 D_f 和 D_g 上的两个函数. 若 $Z_g \subset D_f$,则对任意的 $x \in D_g$, 存在唯一的 $g(x) \in Z_g \subset D_f$, 进而存在唯一的 $f(g(x)) \in Z_f$. 这个从 D_g 到 Z_f 的对应关系, 称为函数 f 与 g 的复合,记作 $f \circ g$,即 $f \circ g(x) = f(g(x))$.

Note: 两个函数能复合的条件是 $Z_g\cap D_f\neq\varnothing$. 例如: $y=\sqrt{u}$ 与 $u=1-x^2$ 可以得到复合函数 $y=\sqrt{1-x^2}$ ($|x|\leqslant 1$); $y=\arcsin u$ 与 $u=2^x+1$ 则不能做复合运算.

例: 已知
$$f(x) = \begin{cases} 4 - x^2, & |x| \leq 2, \\ 0, & |x| > 2, \end{cases}$$
 $g(x) = \begin{cases} 0, & |x| < 1, \\ 1, & |x| \geq 1, \end{cases}$ 求 $f \circ g(x)$ 的表达式.

#:
$$f \circ g(x) = \begin{cases} 4 - g^2(x), & |g(x)| \leq 2, \\ 0, & |g(x)| > 2 \end{cases} = \begin{cases} 4, & |x| < 1, \\ 3, & |x| \geq 1. \end{cases}$$

Problem: 函数复合的运算律

交換律: $f \circ g = g \circ f \times$

分配律:
$$f \circ (g+h) = f \circ g + f \circ h \times$$
; $(g+h) \circ f = g \circ f + h \circ f \checkmark$ $f \circ (g h) = (f \circ g)(f \circ h) \times$; $(g h) \circ f = (g \circ f)(h \circ f) \checkmark$