

Disclaimer

- Materi presentasi ini termasuk contoh, gambar, dan referensi diberikan hanya sebagai informasi dan penunjang pembelajaran
- Penggunaan merek dan nama perusahaan pada materi ini mungkin mengandung hak kekayaan intelektual yang dilindungi oleh undang-undang dan sepenuhnya dimiliki pemegang hak kekayaan intelektual
- Kredit diberikan kepada pemilik lisensi terhadap aset-aset opensource yang digunakan pada materi ini sesuai dengan lisensi opensource yang digunakan

Outlines

- Apa itu "Decision Tree"
- Intuisi Perhitungan "Decision Tree"
- Proses Perhitungan "Decision Tree"
 - Gini Impurity
 - Entropy
- Implementasi "Decision Tree" dengan Scikit-learn

Apa itu Decision Tree?

- Model serupa graf berbentuk pohon yang memodelkan sebuah keputusan
- Tujuannya untuk memetakan target dengan pembelajaran sederhana berdasarkan nilai fitur
- Bersifat non-parametrik / Tidak bergantung pada distribusi probabilitas

Istilah dalam Decision Tree

Intuisi Model Decision Tree

Suka Action	Suka Mobil	Umur	Suka FF
Ya	Ya	7	Tidak
Ya	Tidak	12	Tidak
Tidak	Ya	18	Ya
Tidak	Ya	35	Ya
Ya	Ya	38	Ya
Ya	Tidak	50	No
Tidak	Tldak	83	No

Langkah pertama – Think! Variabel apa yang harus diletakkan pada root?

Cek seberapa baik variabel memisahkan target bedasarkan nilai variabel

Suka Action	Suka Mobil	Umur	Suka FF
Ya	Ya	7	Tidak
Ya	Tidak	12	Tidak
Tidak	Ya	18	Ya
Tidak	Ya	35	Ya
Ya	Ya	38	Ya
Ya	Tidak	50	Tidak
Tidak	Tldak	83	Tidak

Kalkulasi impurity dengan "Gini Impurity"

Gini Impurity leaf = $1 - (Probabilas "ya")^2 - (Probabilitas "tidak")^2$ = $1 - \left(\frac{1}{1+3}\right)^2 - \left(\frac{1}{2+1}\right)^2$

= 0.375

Membobotkan "GI" setiap leaf untuk mendapatkan "GI" Suka Action

Lakukan teknik yang sama untuk "Suka Mobil"

Bagaimana dengan "Umur"?

Suka Action	Suka Mobil	Umur	Suka FF	
Ya	Ya	7 9	Tidak	
Ya	Tidak	12	Tidak	GI =
Tidak	Ya	18 26	Ya	Adiacont
Tidak	Ya	35	Ya	Adjacent Average
Ya	Ya	38 4	Ya	
Ya	Tidak	50	No	
Tidak	Tldak	83	No	

Hitung semua GI untuk setiap Adjacent Average

GI Setiap Adjacent "Umur"?

Suka Action	Suka Mobil	Umur	Suka FF	Ya Umur < 15 Tidak
Ya	Ya	7 9.	Tidak	Gl Adj → 0.429 Suka FF Suka FF
Ya	Tidak	12	Tidak	→ 0.429 → 0.343 Y:0 T:2
Tidak	Ya	18 26.	Ya	→ 0.476 GI Terendah
Tidak	Ya	35	Ya	Pilih Salah Satu
Ya	Ya	36. 38	Ya	→ 0.476 → 0.343
Ya	Tidak	50	No	→ 0.429
Tidak	TIdak	83 83	No No	0.423

Bandingkan GI setiap variabel untuk menentukan root

Ulangi proses pengecekan GI untuk "Suka Action" dan "Umur" dengan konteks suka dengan mobil

Sudah tidak ditemukan "impurity", tidak perlu di split lagi

Kesimpulan

Permasalahan Pada Decision Tree

Hanya ada 1 sampel → Lack of confidence / lead to overfit → Solusi: Pruning atau menentukan min sampel per leaf

Gini Impurity: Math

$$Gini(t) = 1 - \sum_{i=1}^{j} P(i|t)^2$$

- j adalah jumlah kelas.
- t subset dari node.
- -P(i|t) probabilitas dari kelas i

Thank You for Today Always Keep Your Spirit!