Projektioner af vektorer

Projektioner

Har vi to vektorer \overrightarrow{a} og \overrightarrow{b} , så kan vi være interesserede i at bestemme den vektor $\overrightarrow{a_b}$, der peger i samme retning som \overrightarrow{b} og som i en forstand er så tæt på \overrightarrow{a} som muligt. Vi kalder i et sådant tilfælde vektoren $\overrightarrow{a_b}$ for projektionen af \overrightarrow{a} på \overrightarrow{b} . Vi skriver også

$$\operatorname{proj}_{\vec{b}}(\vec{a}) = \vec{a}_{\vec{b}}.$$

Vi starter med at vise, hvordan vi finder projektionen af en vektor på en anden vektor.

Sætning 1.1 (Projektionssætningen). For to vektorer \vec{a} og \vec{b} er projektionen af \vec{a} på \vec{b} , som vi betegner

$$\operatorname{proj}_{\vec{b}}(\vec{a}) = \vec{a}_{\vec{b}},$$

givet ved

$$\operatorname{proj}_{\overrightarrow{b}}(\overrightarrow{a}) = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \overrightarrow{b}.$$

Længden af $\overrightarrow{a}_{\overrightarrow{b}}$ er givet ved

$$|\overrightarrow{a}_{\overrightarrow{b}}| = \frac{|\overrightarrow{a} \cdot \overrightarrow{b}|}{|\overrightarrow{b}|}$$

Bevis. Af konstruktionen af projektionen $\overrightarrow{a_b}$ så findes der et tal k, så

$$k \overrightarrow{b} = \overrightarrow{a} \overrightarrow{b}$$
.

Lad n være en normalvektor til \vec{u} , der opfylder, at

$$\overrightarrow{a} + \overrightarrow{n} = \overrightarrow{a}$$
.

Vi har så, at

$$\vec{n} = \vec{a} - \vec{a} \cdot \vec{b}$$
.

Da \overrightarrow{n} er en normalvektor til \overrightarrow{b} , så får vi følgende prikprodukt.

$$\overrightarrow{n} \cdot \overrightarrow{b} = 0 \Leftrightarrow (\overrightarrow{a} - \overrightarrow{a}_{\overrightarrow{b}}) \cdot \overrightarrow{b} = 0$$

$$\Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} - \overrightarrow{a}_{\overrightarrow{b}} \cdot \overrightarrow{b} = 0$$

$$\Leftrightarrow \overrightarrow{a} \cdot \overrightarrow{b} = \overrightarrow{a}_{\overrightarrow{b}} \cdot \overrightarrow{b} = k \overrightarrow{b} \cdot \overrightarrow{b}$$

$$\Leftrightarrow k = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{\overrightarrow{b} \cdot \overrightarrow{b}} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2}$$

Derfor får vi, at

$$\overrightarrow{a}_{\overrightarrow{b}} = k \overrightarrow{b}$$

$$= \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \overrightarrow{b}.$$

Vi kan nu bestemme længden af vektoren:

$$|\overrightarrow{a}\overrightarrow{b}| = \left| \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \overrightarrow{b} \right|$$

$$= \left| \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \right| |b|$$

$$= \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|b|}$$

Eksempel 1.2. Vi skal bestemme projektionen af vektoren

$$\vec{a} = \begin{pmatrix} 1 \\ 2 \end{pmatrix}$$

på vektoren

$$\vec{b} = \begin{pmatrix} 5 \\ 7 \end{pmatrix}$$
.

Vi bestemmer først

$$\vec{a} \cdot \vec{b} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} \cdot \begin{pmatrix} 5 \\ 7 \end{pmatrix} = 1 \cdot 5 + 2 \cdot 7 = 19$$

Vi bestemmer så

$$|b|^2 = (\sqrt{5^2 + 7^2})^2 = 25 + 49 = 74$$

Vi kan nu bestemme projektionen $\overrightarrow{a_b}$ som

$$\overrightarrow{a}\overrightarrow{b} = \frac{\overrightarrow{a} \cdot \overrightarrow{b}}{|\overrightarrow{b}|^2} \overrightarrow{b}$$

$$= \frac{19}{74} \binom{5}{7}$$

$$= \binom{\frac{95}{74}}{\frac{134}{74}}$$

Opgave 1

Projicér vektoren \overrightarrow{v} givet ved

$$\vec{v} = \begin{pmatrix} 1 \\ 1 \end{pmatrix}$$

ned på følgende vektorer:

1)
$$\begin{pmatrix} 1 \\ 2 \end{pmatrix}$$
 2) $\begin{pmatrix} 4 \\ 5 \end{pmatrix}$ 3) $\begin{pmatrix} -2 \\ 1 \end{pmatrix}$ 4) $\begin{pmatrix} 4 \\ -2 \end{pmatrix}$

$$5) \begin{pmatrix} -3 \\ -3 \end{pmatrix} \qquad \qquad 6) \begin{pmatrix} 6 \\ 5 \end{pmatrix}$$

Opgave 2

En linje l er givet ved parametriseringen

$$\begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} 1 \\ 2 \end{pmatrix} + t \begin{pmatrix} 2 \\ 3 \end{pmatrix}$$

Matematik A		Nørre Gymnasium
Modul 26	28/4/2021	2.e

Bestem projektionen af følgende punkter ned på l.

1) (1,1)	2) (-2,3)
3) (5,2)	4) (-3, -4)
5) (4,7)	6) $(3, -5)$

Opgave 3

I har fået en aflevering