N. di nodi	Albero		AVL minimo
0	Ø		✓
1	0		✓
2	0		✓
3			×
4			1
5			×
6			×
7		22	(sinistra)

Si nota come i sottoalberi di un AVL minimo, siano i due AVL minimi precedenti.

Ad esempio l'AVL minimo con 7 nodi, ha il sottoalbero sinistro che è l'AVL minimo precedente, ovvero quello con 4 nodi; e il sottoalbero destro è quello ancora precedente, ovvero quello con 2 nodi.

Sembra ricordare la sequenza di Fibonacci, di conseguenza possiamo dire che la struttura sia di questo tipo:

$$\begin{cases} N_h &= 1+N_{h-1}+N_{h-2}\\ N_{-1} &= 0 \\ N_0 &= 1 \end{cases}$$
 Numero di nodi di un albero alto h

Si può osservare che $N_h = Fib(h+3) - 1$ Fib(i) 0 1 2 3 4 5 8 13 21

Dimostrazione (induzione)

Si vuole dimostrare che $N_h = Fib(h+3) - 1$

Caso base

$$h = -1$$
 $N_h = N_{-1} = 0 = Fib(h+3) - 1 = Fib(2) - 1 = 1 - 1 = 0$
 $h = 0$ $N_h = N_0 = 1 = Fib(h+3) - 1 = Fib(3) - 1 = 2 - 1 = 1$

Caso Induttivo $h \ge 1$:

$$\begin{split} N_h &= 1 + N_{h-1} + N_{h-2} \\ \text{Ipotesi induttiva:} \ \begin{cases} N_{h-1} &= Fib((h-1)+3) - 1 = Fib(h+2) - 1 \\ N_{h-2} &= Fib((h-2)+3) - 1 = Fib(h+1) - 1 \end{cases} \end{split}$$

$$N_h = 1 + [Fib(h+2) - 1] + [Fib(h+1) - 1]$$

$$N_h = \underbrace{[Fib(h+2) + Fib(h+1)]}_{Fib(h+3)} - 1$$

$$N_h = Fib(h+3) - 1$$

 $Fib(h+2)+Fib(h+1)=Fib(h+3)\,$ perché, per definizione, la sequenza di fibonacci è la somma dei due valori precedenti