Exploratory Data Analysis

Factors considered for dropping the features

Features date, rv1, rv2 are just random and do no have any relation to the target variable – energy usage.

Features with high correlation >0.88

Feature1	Feature2	Correlation
T3	T1	0.892
RH_4	RH_1	0.88
RH_4	RH_3	0.899
T5	T1	0.885
T5	T3	0.888
RH_7	RH_4	0.894
T8	T7	0.882
RH_8	RH_7	0.884
Т9	T3	0.901
Т9	T4	0.889
T9	T5	0.911
T9	T7	0.945
T_out	T6	0.975
rv2	rv1	1.0

Count of Values for Feature = lights

	0	10	20	30	40	50	60	70
lights	15252	2212	1624	559	77	9	1	1

Lights has almost 80% (15252) of its value to be 0. Lights feature can be removed.

From the above interpetation, columns

'date','lights','T3','T_out','RH_4','T4','T7','RH_7','T5', 'rv1','rv2' can be dropped from the dataset.

Outliers Detection and Removal

count	19735.000000
mean	97.694958
std	102.524891
min	10.000000
25%	50.000000
50%	60.000000
75%	100.000000
max	1080.000000

Name: Appliances, dtype: float64

Thresold for Outlier Point

Upper Bound = (1.5*IQR) + 75th percentile, Lower Bound = (1.5*IQR) - 25th percentile

Upper Bound = 1.5*(100-50) + 100 = 175, Lower Bound = 1.5*(100-50) - 50 = -25

Number of outliers = (count of values above the upper bound) + (count of values below the lower bound)

Number of outliers = 2138 which is 10.8% of the total observations

We may not consider deleting all the outlier observations, since 10.8% of the total observations is considerably high. But the model accuracy and metrics drastically increased after the removal of these outliers. So, we are deleting the outlier observations in this situation.

Experimentation 1: Linear Regression

Accuracy/Error variation with different Learning Rates

Learning Rates used: 0.005, 0.007, 0.01, Initial betas: 0.5, Number of iterations: 1000

Metrics considered: Cost Fuction, Mean Squared Error, Mean Absolute Error, R-Squared

Below are the Gradient Descent Results

Cost Function Convergence (When difference in Cost Fuction for each iteration was <=0.1)

With learning rate of 0.005, cost fuction converged at iteration 585 With learning rate of 0.007, cost fuction converged at iteration 453 With learning rate of 0.010, cost fuction converged at iteration 347

Cost Function with different Learning rates

Cost Function converges quickly with increasing learning rates or increasing step sizes

Model with Alpha 0.01 performs the best as it converges quickly.

Mean Absolute Error with different Learning rates

	CF_Test	CF_Train	MAE_Test	MAE_Train	MSE_Test	MSE_Train	R2_Test	R2_Train
0.005	304.5010	293.2792	18.1977	18.0251	609.0019	586.5584	0.2564	0.2738
0.007	299.5531	288.1972	18.0840	17.9445	599.1063	576.3945	0.2685	0.2864
0.010	295.7512	284.1783	17.9523	17.8141	591.5025	568.3566	0.2778	0.2963

From the results, Cost Fuction and the other errors are the lowest when learning rate = 0.01 and hence the best model.

Energy Usage = $67.1349 + \beta1*T1 + \beta2*RH_1 + \beta3*T2 + \beta4*RH_2 + \beta5*RH_3 + \beta6*RH_5 + \beta7*T6 + \beta8*RH_6 + \beta9*T8 + \beta10*RH_8 + \beta11*T9 + \beta12*RH_9 + \beta13*Press_mm_hg + \beta14*RH_out + \beta15*Windspeed + \beta16*Windspeed + \beta17*Tdewpoint$

 $\beta 0 = 67.1349 \ \beta 1 = 2.9932 \ \beta 2 = 11.2539 \ \beta 3 = 3.4322 \ \beta 4 = -0.553 \ \beta 5 = 1.1047, \ \beta 6 = 2.7928, \\ \beta 7 = 2.7835, \beta 8 = 1.9768, \beta 9 = 8.9667, \beta 10 = -9.7271, \beta 11 = -10.2668, \beta 12 = -8.9756, \beta 13 = -0.7374, \beta 14 = -0.5899, \\ \beta 15 = 2.2409, \beta 16 = 0.1185, \beta 17 = 0.9451$

Logistic Regression

Transforming the energy usage into classes based on its median. Median is 60, so if energy usage <= 60 then class 0, else class =1

	Appliances_class
0	10744
1	6853

Plot shows the Cost Fuction for different learning rates after 1000 iterations. Cost Function converges quickly with increasing learning rates.

Model with Alpha = 0.01 performs the best.

Confusion Matrix

Training Data

Test Data

	Predicted 0	Predicted 1		Predicted 0	Predicted 1
Actual 0	6414	1108	Actual 0	2762	460
Actual 1	2223	2572	Actual 1	981	1077

Accuracy: 0.729

Accuracy: 0.727

 $\beta 0 = -0.437 \ \beta 1 = 0.0798 \ \beta 2 = 0.3029 \ \beta 3 = 0.2156 \ \beta 4 = -0.0554 \ \beta 5 = 0.0445, \\ \beta 6 = 0.2512, \\ \beta 7 = 0.1891, \\ \beta 8 = 0.0643, \\ \beta 9 = 0.2423, \\ \beta 10 = -0.3875, \\ \beta 11 = -0.2166, \\ \beta 12 = -0.3899, \\ \beta 13 = -0.106, \\ \beta 14 = -0.1542, \\ \beta 15 = 0.1746, \\ \beta 16 = 0.0261, \\ \beta 17 = -0.0095$

Experimentation 2: Varying thresholds for Cost Function

Thresholds used: 0.005, 0.01, 0.1, Initial betas: 0.5, Alpha: 0.01 Number of iterations: 2000

Convergence with threshold 0.005000 reached at iteration 1413 Convergence with threshold 0.010000 reached at iteration 980 Convergence with threshold 0.100000 reached at iteration 347

	CF_Test	CF_Train	MAE_Test	MAE_Train	MSE_Test	MSE_Train	R2_Test	R2_Train
0.005	293.0501	281.2739	17.8528	17.7112	586.1001	562.5477	0.2844	0.3035
0.010	295.9267	284.3652	17.9587	17.8206	591.8534	568.7304	0.2773	0.2959
0.100	313.1375	301.9032	18.1993	18.0263	626.2751	603.8064	0.2353	0.2524

As the threshold decreases, the number of iterations required to achieve it increases.

Model with the lowest threshold 0.005 performs the best as it takes the highest number of iterations.

Experimentation 3: Choosing 10 Random Variables

Linear Regression:

Initial betas: 0.5, Alpha: 0.01 Number of iterations: 1000

The ten random features selected are 'RH_2', 'RH_9', 'Tdewpoint', 'RH_1', 'RH_4', 'T2', 'T8', 'RH_7', 'Press_mm_hg', 'RH_6'. These features are selected using the Random Fuction.

Comparison of Train and Test results for Exp: 1 Model and Exp: 3 Model

	CF_Test	CF_Train	MSE_Test	MSE_Train	R2_Test	R2_Train
Random 10	338.3284	328.2843	676.6569	656.5687	0.1738	0.1871
Full Model	295.7512	284.1783	591.5025	568.3566	0.2778	0.2963

Logistic Regression

Model	Training Accuracy	Test Accuracy
Experiment 1 Model	0.729	0.727
Experiment 3 Model	0.706	0.708

For both Linear and Logistic Regressions, Experiment 1 Model (>15 features) performs better than the Experiment 3 Model (10 Features randomly selected)

Experimentation 4

Best 10 features were selected based on each feature correlation with the target variable, based on increasing order of collinearity.

The best selected features are 'T1', 'T2', 'RH_2', 'T6', 'RH_6', 'T8', 'RH_8', 'T9', 'RH_9', 'RH_out' Full Model here represents the experiment 1 model, with greater than 15 features.

Linear Regression Metrics

	CF_Test	CF_Train	MSE_Test	MSE_Train	R2_Test	R2_Train
Random 10	338.3284	328.2843	676.6569	656.5687	0.1738	0.1871
Best 10	315.4028	304.4411	630.8057	608.8821	0.2298	0.2462
Full Model	295.7512	284.1783	591.5025	568.3566	0.2778	0.2963

Logistic Regression Metrics

Model	Training Accuracy	Test Accuracy
Experiment 1 Model	0.729	0.727
Experiment 3 Model	0.706	0.708
Experiment 4 Model	0.6985	0.695

For both Linear and Logistic Regression, Experiment 1 model (>15 features) performs better than the Random 10 model and the Best 10 model.

This is because the Experiment 1 model has more features that can contribute towards the variation in Energy Usage. Or in other words we can say that the dataset has more than 10 features that are correlated with energy usage.

And with the best 10 model, the number of highly correlated features with target variable has been restricted to 10. So, it is always a good practice to include as many correlated features in the model to better the model metrics.

Discussion

Linear Regression:

When the learning rate = 0.01, the model gave us the best results on the testing data with Cost Function: 295.75 and R-Squared: 0.28.

With R-squared to be only 0.28, only 28% of the variation in Energy Usage is casued by the features in the dataset. This also means, there could be other factors that are contributing towards the energy usage but not present in the model. These unobserved features are captured in the error term leading the cost funtion contribution.

To improvise the model metrics and accuracy, transformation on some of the feature variables can be performed like including the logarithm, squaring, cubing of the features. In conclusion, this dataset does not perform the best on Linear Regressions. Other regression algorithms like Lasso, Ridge RandomForestRegressor can be implemented to improvise the accuracy and the metrics.

Some of the major contributors of energy usage were Temperature in teenager room (T8), Temperature in Living Room area (T2), Humidity Outside (RH_out), Temperature in Kitchen area (T1), Humidity outside the building (RH_6)

Logistic Regression

With respect to Logistic Regression, model with learning rate of 0.01 gave us the best results with accuracy close to 73%. The model has two classes: 0, when Energy Usage was less than or equal 60 and class 1, when Energy Usage was greater than 60. Although Logistic Regression gave us a good accuracy, other classification models like RandomForestClassifier, Support Vector Machines, Nearest Neighbours models could have given even more better results.