2

1

## IN THE CLAIMS

What is claimed is:

|            | 1     |
|------------|-------|
| M, K)      | $)_2$ |
| (1)        | 3     |
| •          | 4     |
|            | 5     |
|            |       |
|            |       |
| 1          | 1     |
| *.j        |       |
|            | 2     |
| <u>u</u> j | _     |
|            | 3     |
|            | -     |
| <u>1_1</u> |       |

An integrated circuit device, comprising:

a programmable portion comprising a plurality of circuits that may be configured by a user of the integrated circuit device; and

at least one communication portion comprising at least one circuit block manufactured to perform a predetermined data communication function.

2. The integrated circuit device of claim 1, wherein:

the programmable portion comprises a programmable interconnect portion and a logic gate portion.

1 3. The integrated circuit device of claim 2, further including:

a memory circuit for storing configuration information for configuring circuits of the programmable portion.

4. The integrated circuit device of claim 2, further including:

a timing circuit that receives a clock signal and generates an internal clock signal that is phase shifted with respect to the clock signal.

- 1 5. The integrated circuit device of claim 1, further including:
- a plurality of input/outputs commonly connected to the programmable

1

2

3

4

2



9. The integrated circuit device of claim 6, wherein:

the communication portion further includes an operation control store that provides one of a plurality of operational values to the data operation circuits that controls the type of operation performed on the received data.

1 10. The integrated circuit device of claim 9, wherein:

the data operation circuits include a scrambler circuit that may perform



|   |     | <i>-</i>                                                                       |
|---|-----|--------------------------------------------------------------------------------|
| 3 |     | a scramble operation on the received data; and                                 |
| 4 |     | the operation control store provides operational values that represent at      |
| 5 |     | least one scrambling polynomial.                                               |
|   |     |                                                                                |
| 1 | 11. | The integrated circuit device of claim 9, wherein:                             |
| 2 |     | the operational control store includes circuits that may provide at least      |
| 3 |     | one user operational value configured by a user and preset operational values  |
| 4 |     | that may be established by at least one integrated circuit manufacturing step. |
|   |     |                                                                                |
| 1 | 12. | The integrated circuit device of claim 6, wherein:                             |
| 2 |     | the communication portion includes a data (MUX) multiplexer that               |
| 3 |     | enables a data path between one of a plurality of inputs and a data MUX        |
| 4 |     | output, and each data operation circuit is coupled to an input of the data MUX |
|   |     |                                                                                |
| 1 | 13. | The integrated circuit device of claim 6, wherein:                             |
| 2 |     | the communication portion includes a physical layer circuit tha                |
| 3 |     | provides a data output stream compatible with a particular data transmission   |
| 4 |     | media.                                                                         |
|   |     |                                                                                |
| 1 | 14. | The integrated circuit device of claim 6, wherein:                             |
|   |     |                                                                                |

- the at least one communication portion includes a plurality of
- 3 communication portions.

2

| 1 | 15.        | A semiconductor device, comprising:                                          |
|---|------------|------------------------------------------------------------------------------|
| 2 |            | a programmable logic device having a communication portion                   |
| 3 |            | embedded therein, the communication portion including non-programmable       |
| 4 |            | circuits designed to provide a selectable data communication function.       |
|   |            |                                                                              |
| 1 | 16.        | The semiconductor device of claim 15, wherein:                               |
| 2 |            | the communication portion includes a plurality of circuit blocks that        |
| 3 |            | each provides a different data communication function.                       |
|   |            |                                                                              |
| 1 | 17.        | The semiconductor device of claim 16, wherein:                               |
| 2 |            | the communication portion includes a selectable data path between            |
| 3 |            | each circuit block and a data output.                                        |
|   |            |                                                                              |
| 1 | 18.        | The semiconductor device of claim 15, wherein:                               |
| 2 |            | the communication portion includes a block converter circuit that            |
| 3 |            | encodes input data words into output data words and a scrambler circuit that |
| 4 |            | scrambles data values according to an operational control value.             |
|   |            |                                                                              |
| 1 | <b>19.</b> | The semiconductor device of claim 15, wherein:                               |
| 2 | •          | the communication portion includes a block converter circuit that            |
| 3 |            | decodes input data words into output data words and a de-scrambler circuit   |
| 4 |            | that de-scrambles data values according to an operational control value.     |



3.

20. The semiconductor device of claim 18, wherein:

the communication portion includes an operational control store that

provides selectable operational control values to the scrambler circuit.

|          | 1 |
|----------|---|
|          | \ |
| e<br>ļul |   |
|          |   |
|          |   |
|          |   |
|          |   |

| Sign         |   | 21.) | A method, comprising the steps of:                                                |
|--------------|---|------|-----------------------------------------------------------------------------------|
| 0,           | 2 |      | performing predetermined logic functions on a programmable logic                  |
|              | 3 |      | portion of the integrated circuit; and                                            |
|              | 4 |      | performing serial data communication functions on a communication                 |
|              | 5 |      | portion of the integrated circuit that includes circuit blocks that are not       |
|              | 6 |      | synthesized.                                                                      |
|              |   |      | _                                                                                 |
|              | 1 | 22.  | The method of claim 21, wherein:                                                  |
| <del>.</del> | 2 |      | performing serial data communication functions includes                           |
|              | 3 |      | selecting a polynomial value from a number of polynomial                          |
| 1            | 4 |      | values, and                                                                       |
| /            | 5 |      | scrambling serial data according to the selected polynomial                       |
|              | 6 |      | value.                                                                            |
|              | 1 | 23.  | The method of claim 21, wherein:                                                  |
|              | 2 |      | performing serial data communication functions includes encoding                  |
|              | 3 |      | serial data having words of a first bit length into serial data having words of a |
|              | 4 |      | second bit length that is different than the first bit length.                    |