MATH 470: Communications and Cryptography

Homework 8

Due date: 25 October 2023 Name: Huy Lai

Problem 1. This exercise asks you to use the index calculus to solve a discrete logarithm problem. Let p=19079 and g=17

Subproblem 1. Verify that $g^i \mod p$ is 5-smooth for each of the values i = 3030, i = 6892 and i = 18312.

Solution:

Calculate $g^i \mod p$

1. For
$$i = 3030$$

$$g^{3030} \mod p \equiv 17^{3030} \mod p$$
$$\equiv 14580 \mod p$$

$$14580 = 2^2 \cdot 3^6 \cdot 5^1$$

2. For
$$i = 6892$$

$$g^{6892} \mod p \equiv 17^{6892} \mod p$$
$$\equiv 18432 \mod p$$

$$18432 = 2^{11} \cdot 3^2$$

3. For i = 18312

$$g^{18312} \mod p \equiv 17^{18312} \mod p$$
$$\equiv 6000 \mod p$$

$$6000 = 2^4 \cdot 3^1 \cdot 5^3$$

Subproblem 2. Use your computations in (a) and linear algebra to compute the discrete logarithms $\log_g(2)$, $\log_g(3)$ and $\log_g(5)$.

Solution:

The discrete logs are as follows

$$\begin{split} \log_g\left(g^{3030}\right) &\equiv \log_p\left(2^2 \cdot 3^6 \cdot 5^1\right) \mod p \\ 3030 \log_g(g) &\equiv 2\log_g(2) + 6\log_g(3) + \log_g(5) \mod p \\ 3030 &\equiv 2\log_g(2) + 6\log_g(3) + \log_g(5) \mod p \\ \log_g\left(g^{6892}\right) &\equiv \log_p\left(2^{11} \cdot 3^2\right) \mod p \\ 6892 \log_g(g) &\equiv 11\log_g(2) + 2\log_g(3) \mod p \\ 6892 &\equiv 11\log_g(2) + 2\log_g(3) \mod p \\ \log_g\left(g^{18312}\right) &\equiv \log_p\left(2^4 \cdot 3^1 \cdot 5^3\right) \mod p \\ 18312 \log_g(g) &\equiv 4\log_g(2) + 1\log_g(3) + 3\log_g(5) \mod p \\ 18312 &\equiv 4\log_g(2) + 1\log_g(3) + 3\log_g(5) \mod p \end{split}$$

Converting these congruences to matrixes is as follows:

$$\begin{bmatrix} 2 & 6 & 1 \\ 11 & 2 & 0 \\ 4 & 1 & 3 \end{bmatrix} \begin{bmatrix} \log_g(2) \\ \log_g(3) \\ \log_g(5) \end{bmatrix} \equiv \begin{bmatrix} 3030 \\ 6892 \\ 18312 \end{bmatrix} \mod p$$

We use the note that $p-1=2\cdot 9539$ and solve this linear system by splitting it $\mod 2$ and $\mod 9539$

Calculating mod 2

$$\begin{bmatrix} 2 & 6 & 1 & 3030 \\ 11 & 2 & 0 & 6892 \\ 4 & 1 & 3 & 18312 \end{bmatrix} \equiv \begin{bmatrix} 0 & 0 & 1 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 1 & 0 \end{bmatrix} \mod 2$$

From this we get that

$$(x_2, x_3, x_5) \equiv (0, 0, 0) \mod 2$$

Calculating mod 9539 1 3 1 8672 3030 11 2 0 6892 2986 1 2385 7155 4578 1 3 | 18312 | $1 \ 3 | 8773$ $4770 \mid 1515 \mid$ $\begin{bmatrix} 1 & 3 & 4770 & 51515 \end{bmatrix}$ 4770 | 1515 3 0 1523 7153 6399 $\equiv | 0 \ 1 \ 8980 |$ 2986 7564 2382 2385 3063 $\begin{bmatrix} 0 & 2382 & 2385 & 3063 \end{bmatrix}$ $[0 \ 1 \ 5203 \ | \ 7558 \]$ 1515 1299 1 3 4770

From this we get

$$(x_2, x_3, x_5) \equiv (8195, 1299, 7463) \mod 9539$$

Using the Chinese Remainder Theorem to combine these results:

$$(x_2, x_3, x_5) \equiv (17734, 10838, 17002) \mod p$$

Subproblem 3. Verify that $19 \cdot 17^{-12400} \mod p$ is 5-smooth.

Solution:

We compute

$$19 \cdot 17^{-12400} \equiv 19 \cdot \left(17^{-1}\right)^{12400} \mod p$$

$$\equiv 19 \cdot (11223)^{12400} \mod p$$

$$\equiv 19 \cdot 5041 \mod p$$

$$\equiv 384 \mod p$$

$$\equiv 2^7 \cdot 3 \mod p$$

7463

This number is 5-smooth

Subproblem 4. Use the values from (b) and the computation in (c) to solve the discrete logarithm problem

$$17^x \equiv 19 \mod p$$

Solution:

From part (c) we know that $19 \equiv 17^{12400} \cdot (2^7 \cdot 3) \mod p$ Using the discrete logs we calculated in part (b) we can substitute 2 and 3 as follows

$$19 \equiv 17^{12400} \cdot (g^{17734})^7 \cdot (g^{10838})^1 \mod p$$

$$19 \equiv 17^{147376} \mod p$$

Note that
$$147376 \equiv 13830 \mod p - 1$$

 $x = 13800$

Problem 2. Use the Tonelli-Shanks algorithm to compute a square root of 6 modulo 97 (note 97 is prime).

Solution:

 $6^{\frac{p-1}{2}} \equiv 6^{48} \equiv 1 \mod 97$, therefore 6 is a quadratic residue $\mod 97$

$$p-1 = 96 = 2^5 \cdot 3 \to k = 5, Q = 3$$

Let z = 5 which is a non-quadratic residue $\mod 97$

Square root 6:

 $6^{3} \not\equiv 1 \mod 97$

i = 1: $6^{2^{i \cdot 3}} \equiv -1 \mod 97$ $a' \equiv 6 \cdot 5^{2^{5-1-1}} \equiv 6 \cdot 5^{2^3} \equiv 36 \mod 97$

R = 91

Return: $91 \cdot 5^{-2^{5-1-2}} \equiv 91 \cdot 5^{-2^2} \equiv 54 \mod 97$

Square root 36 (Recursion 1):

 $36^3 \not\equiv 1 \mod 97$

 $i = 0: 36^{2^{i} \cdot 3} \equiv -1 \mod 97$ $a' \equiv 36 \cdot 5^{2^{5-0-1}} \equiv 36 \cdot 5^{2^{4}} \equiv 36 \mod 97$

R = 61

Return: $61 \cdot 5^{-2^{5-0-2}} \equiv 61 \cdot 5^{-2^3} \equiv 91 \mod 97$

Square root 35 (Recursion 2):

 $35^3 \equiv 1 \mod 97$

Return: $35^2 \equiv 61 \mod 97$

54 is a square root of 6 modulo 97.

Problem 3. Using the fact that 2021 = 43.47 and that 43 and 47 are both primes, use the Tonelli-Shanks algorithm and the Chinese remainder theorem to compute a square root of $6 \mod 2021$.

Solution:

Using the Tonelli-Shanks algorithm, we get that

$$36^2 \equiv 6 \mod 43$$
$$37^2 \equiv 6 \mod 47$$

Calculate the modular inverses of 43 and 47 modulo each other

$$43^{-1} \equiv 35 \mod 47$$
$$47^{-1} \equiv 11 \mod 43$$

Next we use the Chinese Remainder Theorem to calculate

$$x \equiv 36 \mod 43$$

 $x \equiv 37 \mod 47$

From the first equivalence: $x = 43y + 36, y \in \mathbb{Z}$

$$43y + 36 \equiv 37 \mod 47$$
$$43y \equiv 1 \mod 47$$
$$y \equiv 35 \mod 47$$

$$x = 43(35) + 36 = 1541$$

Therefore, 1541 is a square root of $6 \mod 2021$ This can be verified by calculating that $1541^2 \equiv 6 \mod 2021$

Problem 4. Prove or disprove the following statement:

Let N=pq where p,q are distinct odd primes. If a,b are integers such that $a^2\equiv b^2 \mod N$ and $a\not\equiv \pm b \mod N$, then $\gcd(a-b,N)$ or $\gcd(a+b,N)$ gives a nontrivial factor N.

Solution:

The proof is as follows

Proof. First we rewrite the given congruence $a^2 \equiv b^2 \mod N$ as

$$(a-b)(a+b) \equiv 0 \mod N$$

By proposition, this implies that $N = pq \mid (a - b)(a + b)$

Additionally $a \not\equiv \pm b \mod N \to N = pq \nmid (a-b)$ and $N = pq \nmid (a+b)$

Combining these two concurrences gives us the fact that either $p \mid (a-b), q \mid (a+b)$ or $p \mid (a+b), q \mid (a-b)$

Now, we consider two cases:

Case 1:

If $gcd(a - b, N) \neq 1$, then gcd(a - b, N) is a nontrivial factor of N.

Case 2:

If gcd(a - b, N) = 1, then $N \nmid (a - b)$.

However for $N \mid (a-b)(a+b)$ and $N \nmid (a-b)$ requires that $N \mid (a+b)$.

This fact, however, contradicts with the condition that $a \not\equiv \pm b \mod N$.

This forces that $gcd(a - b, N) \neq 1$ giving a nontrivial factor of N.

A similar logic can be applied with gcd(a + b, N) which also contridicts with the conditions.

Note:

$$gcd(a-b, N) = N \to (a-b) = N \cdot \alpha, \alpha \in \mathbb{Z}.$$

This would contradict the condition that $a \not\equiv \pm b \mod N$

Similarly, $gcd(a+b, N) = N \rightarrow (a+b) = N \cdot \beta, \beta \in \mathbb{Z}$, which would also contradict the given condition.

In either case, we have shown that either gcd(a - b, N) or gcd(a + b, N) gives a nontrivial factor of N.

Problem 5. Read Example 3.69 in the textbook. Explain why $(-1)^{\text{dlog}_g(h)} = \left(\frac{h}{p}\right)$

Solution:

If
$$\log_g(h) \equiv 0 \mod 2$$
, then $(-1)^{\log_g(h)} = 1$
If $\log_g(h) \equiv 1 \mod 2$, then $(-1)^{\log_g(h)} = 1$

By proposition 3.61 we know that $h=g^{\log_g(h)}$ is a quadratic residue if and only if $\log_g(h)\equiv 0 \mod 2$ and that $h=g^{\log_g(h)}$ is a non-quadratic residue if $\log_g(h)\equiv 1 \mod 2$

By definition of the Legendre Symbol, $\left(\frac{h}{p}\right) = -1$ if h is a non-quadratic residue modulo p and $\left(\frac{h}{p}\right) = 1$ if h is.

From this the Legendre Symbol determines if $\log_a(h)$ is odd or even and we get the relationship described.

The example 3.69 goes on to elaborate how because of this result, the 0-th bit of the discrete logarithm in insecure.

What this means that $\left(\frac{h}{q}\right)$ can predict if the 0-th bit is 0 or 1.

Problem 6. Let p be an odd prime, let $g \in \mathbb{F}_p^*$ be a primitive root, and let $h \in \mathbb{F}_p^*$. Write $p-1=2^s m$ with m odd and $s \geq 1$, and write the binary expansion of $\log_q(h)$ as

$$\log_q(h) = \epsilon_0 + 2\epsilon_1 + 4\epsilon_2 + 8\epsilon_3 + \cdots$$
 with $\epsilon_0, \epsilon_1, \dots \in \{0, 1\}$

Give an algorithm that generalizes Example 3.69 and allows you to rapidly compute $\epsilon_0, \epsilon_1, \dots \epsilon_{s-1}$, thereby proving that the first s bits of the discrete logarithm are insecure. You may assume that you have a fast algorithm to compute square roots in \mathbb{F}_p^* , as provided for example by Exercise 3.39(a) if $p \equiv 3 \mod 4$. (Hint. Use Example 3.69 to compute the 0th bit, take the square root of either h or $g^{-1}h$, and repeat.)