06 - Midterm Review

CEG 4330/6330 - Microprocessor-Based Embedded Systems Max Gilson

Midterm Format

- 10 Problems:
 - 2 Design Problems
 - 50% total
 - 25% each
 - 6.25 points each
 - 10 Concept Problems
 - 50% total
 - 5% each
 - 1.25 points each

Key Sections

- Introduction
 - Definitions + Examples
 - Memory Review
 - Square Wave

- Lab Introduction
 - Arduino basic functions and pin + I/O functions
 - Blink example
 - Analog read and analog write
 - Active high and active low
 - Bounce and debounce
 - LED circuit design

- Register Operation
 - Bitwise operations
 - o DDRn, PORTn, PINn
 - Register manipulation for pins
 - Pull-up and pull-down resistors
 - Keypad scanning

- Timer manipulation
 - 8 bit vs 16 bit counter
 - Compare match, overflow, input capture
 - Register manipulation and control bits (WGM, CS, COM, OCnA/B, etc.)
 - Prescaler, frequency, counter, overflow calculations
 - PWM frequency and duty cycle
 - Input capture and conveyor belt example
 - Phase correct PWM, Fast PWM
 - OCnA and OCnB
 - Sample code

- Interrupt Programming
 - Polling
 - o millis()
 - Interrupts
 - Interrupt service routine
 - How interrupts work
 - Use examples
 - Interrupt vector table and interrupt types
 - Maskable, non-maskable, globally enabled, locally enabled
 - Interrupt registers
 - Writing ISR
 - External interrupts
 - Realities of interrupts
- Analog to Digital Converter (ADC)

- Analog to Digital Converter (ADC)
 - Analog signals vs digital signals
 - Sampling
 - Quantization, error, mapping, 2-bit to n-bit quantization
 - Sampling frequency
 - FFT, Nyquist Rate, choosing sampling frequency
 - ADC design comparators vs successive approx.
 - Arduino ADC, sample code, interrupts, registers
 - Operational Amplifiers
 - Non-Inverting Amplifier, Inverting Amplifier, Inverting Amplifier With DC Offset
 - Design challenges