Estatística Básica

Lista 4 - Variáveis Aleatórias

Luan Fiorentin

2019-03-17

- 1. Escreva com suas palavras o que é função de probabilidade, função de densidade de probabilidade e função de distribuição.
- 2. Considere a variável X como o lançamento de um dado e responda os itens a seguir:
 - (a) Faça um gráfico da função de probabilidade.
 - (b) Faça um gráfico da função de distribuição.
 - (c) Qual a probabildiade de X = 2?
 - (d) P(X < 5).
 - (e) P(X < 4) ou P(X > 5).
 - (f) Qual a esperança de X?
- 3. Uma variável aleatória X tem a seguinte função de distribuição:

$$F(X) \begin{cases} 0 & se \quad x < 10 \\ 0, 2 & se \quad 10 \le x < 12 \\ 0, 5 & se \quad 12 \le x < 13 \\ 0, 9 & se \quad 13 \le x < 25 \\ 1, 0 & se \quad \ge 25 \end{cases}$$

- (a) Encontre a função de probabilidade de X.
- (b) $P(X \le 12)$.
- (c) P(X < 12).
- (d) $P(12 \le X \le 20)$.
- (e) P(X > 18).
- 4. Considere que uma Universidade Federal possui 10.000 alunos estudantes, e considere uma V. A. X: número de aprovações que um aluno selecionado ao acaso teve no período passado. A frequência absoluta está apresentada na tabela abaixo. Responda os itens a seguir.

X	2	3	4	5	6
Frequência	800	2000	4000	2800	400

- (a) Encontre a função de probabilidade de X.
- (b) Faça um gráfico da função de probabilidade.
- (c) Faça um gráfico da função de distribuição.
- (d) Qual a probabilidade de um aluno selecionado ao acaso ser aprovado em até 4 disciplinas.
- (e) Qual o valor médio esperado de aprovações por aluno?
- (f) Qual a variância do número de aprovações por aluno?
- (g) Qual o desvio padrão do número de aprovações por aluno?

- (h) Qual o coeficiente de varição do número de aprovações por aluno?
- 5. Em um estudo sobre incidência de câncer, foi registrado para cada paciente com esse diagnóstico o número de casos de câncer em parentes próximos (X) dados na tabela a seguir.

Paciente	Incidência	Paciente	Incidência	Paciente	Incidência	Paciente	Incidência
1	2	8	3	15	5	22	4
2	5	9	3	16	2	23	0
3	0	10	2	17	2	24	0
4	2	11	0	18	3	25	3
5	1	12	1	19	2	29	3
6	5	13	1	20	1		
7	3	14	4	21	5		

- (a) Encontre a função de probabilidade de X.
- (b) Encontre a função de distribuição.
- (c) Qual o número esperado de casos de câncer em parentes próximos?
- 6. Verifique se as expressões a seguir são funções de densidade de probabilidade:
 - (a) f(x) = 3x, se $0 \le x \le 1$.
 - (b) $f(x) = x^2/2$, se $x \ge 0$.
 - (c) f(x) = (x-3)/2, se $3 \le x \le 5$.
 - (d) f(x) = 2, se 0 < x < 2.
- 7. Considere uma variável aleatória X com função de densidade de probabilidade dada a seguir. Determine o valor de c.

$$f(x) = c(x^2 + x)$$
, se $(0 \le x \le 1)$.

8. Dada a função

$$f(x) = 2exp\{-2x\}, se x > 0.$$

- (a) Mostre que é uma função de densidade de probabilidade.
- (b) Calcule a probabilidade de x > 1.
- (c) Calcule a probabilidade de que $0, 2 \le x \le 0.8$.
- 9. A quantia gasta anualmente, em milhões de reais, na manutenção do asfalto em uma cidade do interior é representada pela variável Y com densidade dada por:

$$f(y) = \frac{8y}{9} - \frac{4}{9}$$
 se $(0, 5 \le x \le 2, 0)$.

- (a) P(Y < 0, 8).
- (b) O valor esperado de Y.
- (c) $P(Y > 1, 5|Y \ge 1)$.
- 10. Seja X uma variável aleatória com distribuição Bernoulli de parâmetro p. Mostre que E[X] = p e V[X] = p(1-p). Considere a seguinte parametrização:

$$p(x) = p^{x}(1-p)^{1-x}, \quad x = \{0, 1\}, p \in (0, 1)$$

11. Seja X uma variável aleatória com distribuição Uniforme e parâmetros $(0,\theta)$. Mostre que $E[X]=\frac{\theta}{2}$ e $Var[X]=\frac{\theta^2}{12}$. Considere a seguinte parametrização:

$$f(x) = \frac{1}{(\theta - 0)}$$

12. Seja X uma variável aleatória com distribuição Exponencial e parâmetro (θ) . Mostre que $E[X]=\frac{1}{\theta}$ e $Var[X]=\frac{1}{\theta^2}$. Considere a seguinte parametrização:

$$f(x) = \theta e^{-\theta x}, \theta > 0, x \in \mathbb{R}^+$$

- 13. Mostre que E[cX] = cE[X], tanto para variável discreta quanto contínua.
- 14. Mostre que E[X+Y]=E[X]+E[Y], tanto para variável discreta quanto contínua.
- 15. Mostre que V[X + Y] = V[X] + V[Y].
- 16. Mostre que $V[cX] = c^2V[X]$.