Álgebra Linear Avançada Quocientes e Propriedades Universais

Adriano Moura

Unicamp

2020

Espaços Quocientes

Dados V um \mathbb{F} -espaço vetorial e um subespaço U, considere a seguinte relação binária em $V: v_1 \sim v_2 \Leftrightarrow v_1 - v_2 \in U$. Vejamos que \sim define uma relação de equivalência em V. A reflexividade segue de $0 \in U$ e a simetria de U ser fechado pela multiplicação por escalar.

Para a transitividade, se $v_1 - v_2, v_2 - v_3 \in U$, isto é, $v_1 \sim v_2$ e $v_2 \sim v_3$, então

$$v_1 - v_3 = (v_1 - v_2) + (v_2 - v_3) \in U.$$

Para cada $v \in V$, considere a correspondente classe de equivalência:

$$\overline{v} = \{v' \in V : v' \sim v\} = \{v + u : u \in U\}$$

e defina

$$V/U \leftrightarrow \overline{V} = \{\overline{v} : v \in V\} \quad \text{e} \quad \overline{v} \leftrightarrow v + U.$$

Vejamos que a estrutura de espaço vetorial em V induz uma em \overline{V} via $\overline{v}_1 + \overline{v}_2 = \overline{v_1 + v_2}$ e $\lambda \overline{v} = \overline{\lambda v}$.

$$c_1 + c_2 = c_1 + c_2 = c = \lambda c = \lambda c$$

Verifiquemos que estas operações estão bem definidas, i.e.,

$$v_1 \sim v_1', v_2 \sim v_2' \quad \Rightarrow \quad \overline{v_1 + v_2} = \overline{v_1' + v_2'} \quad \text{e} \quad v \sim v' \quad \Rightarrow \quad \overline{\lambda v} = \overline{\lambda v'}.$$

De fato,
$$(v_1 + v_2) - (v'_1 + v'_2) = (v_1 - v'_1) + (v_2 - v'_2) \in U$$
 e $(\lambda v) - (\lambda v') = \lambda (v - v') \in U$.

Projeção Canônica e Transformações Quocientes

A função $\pi: V \to V/U, v \mapsto \overline{v}$, que é obviamente sobrejetora, é chamada de a projeção canônica de V em V/U. Observe que $\pi(v_1 + \lambda v_2) = \overline{v_1 + \lambda v_2} = \overline{v_1} + \lambda \overline{v_2} = \pi(v_1) + \lambda \pi(v_2).$

Ou seja, π é linear. Além disso, $\pi(v)=\overline{0} \Leftrightarrow v \in U$. Logo, $\dim(V)=\dim(U)+\dim(V/U).$

De fato, a demonstração deste fato (Teorema 6.3.6) mostra:

Proposição 6.6.1

Se β é base de U, α é base de V contendo β e $\gamma = \alpha \setminus \beta$, então, $\pi(\gamma)$ é uma base de V/U.

Proposição 6.6.2

Suponha que $T \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ e $U \subseteq \mathcal{N}(T)$. Existe única $S \in \operatorname{Hom}_{\mathbb{F}}(V/U, W)$ satisfazendo $S(\overline{v}) = T(v)$ para todo $v \in V$.

A transformação S dada por esta proposição é chamada de a transformação induzida por T em V/U.

Primeiro Teorema do Isomorfismo

Dem. da Proposição 6.6.2:

Como
$$U \subseteq \mathcal{N}(T)$$
, se $v - v' \in U$, temos $T(v - v') = 0$. Assim,

$$T(v') = T(v) \quad \forall \ v \in V, v' \in \overline{v}.$$

Logo, existe única função $S: V/U \to W$ t.q. $S(\overline{v}) = T(v) \ \forall \ v \in V$. Como $S(\overline{v_1} + \lambda \overline{v_2}) = S(\overline{v_1} + \lambda v_2) = T(v_1 + \lambda v_2) = T(v_1) + \lambda T(v_2) = S(\overline{v_1}) + \lambda S(\overline{v_2})$, segue que S é linear.

Corolário 6.6.3 (Primeiro Teorema do Isomorfismo)

Se $U = \mathcal{N}(T)$, a transformação linear S dada pela Proposição 6.6.2 induz um isomorfismo entre V/U e Im(T).

Dem.: Considere a transformação linear $R:V/U\to Im(T)$ dada por $R(\overline{v})=S(\overline{v})=T(v)$ para todo $v\in V$. Por definição, R é sobrejetora. Por outro lado,

$$R(\overline{v}) = 0 \quad \Leftrightarrow \quad T(v) = 0 \quad \Leftrightarrow \quad v \in U \quad \Leftrightarrow \quad \overline{v} = 0.$$

Logo, R é injetora.

Propriedades Universais

Considere duas propriedades "funcionais" P_1 e P_2 , isto é, propriedades que uma função pode satisfazer. Dados conjuntos X,U e $\phi \in \mathcal{F}(X,U)$, diz-se que o par (ϕ,U) é universal sobre X com respeito a P_1 e P_2 se, para toda função com domínio X satisfazendo P_1 , digamos $\psi:X\to A$, existir única função $\tilde{\psi}:U\to A$ satisfazendo P_2 tal que

$$\tilde{\psi} \circ \phi = \psi.$$

É comum representar a existência de $\tilde{\psi}$ satisfazendo (1) pelo seguinte diagrama

usualmente chamado de um diagrama comutativo. As propriedades P_1 e P_2 não estão representadas na figura. A função $\tilde{\psi}$ é frequentemente chamada de a função induzida por ψ em U (com respeito a P_2).

Base e Universalidade

Suponha que V seja um \mathbb{F} -espaço vetorial, P_1 seja "o contradomínio é um \mathbb{F} -espaço vetorial" e P_2 seja "ser linear".

Dada $\alpha: I \to V$, verifiquemos que (α, V) é universal sobre I com respeito a P_1 e P_2 se, e só se, α for base de V. Seja $v_i = \alpha(i)$ para interpretarmos α como uma família $(v_i)_{i \in I}$ em V.

Se α é base de V, dada $\psi: I \to W$ com W um \mathbb{F} -espaço vetorial (ψ satisfaz P_1), $\exists ! \tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(V, W)$ (satisfaz P_2) t.q. $\tilde{\psi}(v_i) = \psi(i) \; \forall \; i \in I$, i.e., $\tilde{\psi} \circ \alpha = \psi$, mostrando que (α, V) é universal.

Reciprocamente, seja $U = [\alpha]$ e escolha W tal que $V = U \oplus W$. Mostremos que $W = \{0\}$, i.e., α gera V. Sejam γ e δ bases de U e W e $\beta = \gamma \cup \delta$ que é base de V. Se $W \neq \{0\}$, fixe $w_0 \in \delta$, escolha um espaço vetorial V' com $\dim(V') \geq 1$ e $\psi: I \to V'$. Tome $v_0 = \tilde{\psi}(w_0)$ e $v_1 \in V' \setminus \{v_0\}$. Finalmente, considere $\xi \in \operatorname{Hom}_{\mathbb{F}}(V, V')$ dada por

$$\xi(v) = \tilde{\psi}(v) \ \forall \ v \in \beta \setminus \{w_0\} \quad \text{e} \quad \xi(w_0) = v_1.$$

Como $\xi|_{\gamma} = \tilde{\psi}|_{\gamma}$, temos $\xi \circ \alpha = \psi$. Mas $\xi \neq \tilde{\psi}$ pois $v_1 \neq v_0$, contradizendo a unicidade na definição de (α, V) ser universal.

Lei de Cancelamento

Se α não fosse l.i., existiria $i_0 \in I$ tal que $v_{i_0} = \sum a_i v_i$.

Escolha
$$\psi: I \to \mathbb{F}$$
 tal que $\psi(i_0) \neq \sum_{i \neq i_0} a_i \psi(i)$.

Qualquer
$$\tilde{\psi} \in \operatorname{Hom}_{\mathbb{F}}(V, \mathbb{F}) = V^*$$
 deve satisfazer $\tilde{\psi}(v_{i_0}) = \sum_{i \neq i_0} a_i \tilde{\psi}(v_i)$. Logo,

$$\nexists \tilde{\psi} \in V^* \text{ t.q. } \tilde{\psi} \circ \alpha = \psi, \text{ contrariando a universalidade de } (\alpha, V).$$

Lema 10.1.2 (Lei de Cancelamento)

Suponha que (ϕ, U) seja universal sobre X com respeito a P_1 e P_2 e que $\psi_1, \psi_2 \in \mathcal{F}(U, A)$ satisfaçam P_2 . Se $\psi_1 \circ \phi$ satisfaz P_1 e coincide com $\psi_2 \circ \phi$, então $\psi_1 = \psi_2$.

Dem.: Seja $\psi = \psi_1 \circ \phi$ que satisfaz P_1 e considere o diagrama

 $U \xleftarrow{\phi} X \xrightarrow{\phi} U \quad \text{A hipótese } \psi_2 \circ \phi = \psi_1 \circ \phi = \psi \text{ e a}$ universalidade de (ϕ, U) $(\tilde{\psi} \text{ é única})$ implicam que $\psi_1 = \psi_2$.

Unicidade de Pares Universais a Menos de Isomorfismo

Diremos que uma propriedade P é compatível com composições se $f\circ g$ satisfizer P sempre que f e g forem funções componíveis satisfazendo P.

Lema 10.1.3

Suponha que os pares (ϕ, U) e (ψ, V) sejam universais sobre X com respeito a P_1 e P_2 , que ϕ e ψ satisfaçam P_1 , que Id_U e Id_V satisfaçam P_2 e que P_2 seja compatível com composições. Então, existe única $f: U \to V$ t.q. $\psi = f \circ \phi$. Além disso, f é bijetora e satisfaz P_2 .

Dem.: Usando as propriedades universais e a hipótese que ϕ e ψ satisfazem P_1 , sabemos que existem únicas $\tilde{\psi}: U \to V$ e $\tilde{\phi}: V \to U$ satisfazendo P_2 tais que $\tilde{\psi} \circ \phi = \psi$ e $\tilde{\phi} \circ \psi = \phi$: $X \xrightarrow{\phi} U$

Assim, $(\tilde{\phi} \circ \tilde{\psi}) \circ \phi = \tilde{\phi} \circ (\tilde{\psi} \circ \phi) = \tilde{\phi} \circ \psi = \phi = \operatorname{Id}_{U} \circ \phi$, e concluímos que $\tilde{\phi} \circ \tilde{\psi} = \operatorname{Id}_{U}$ usando a Lei do Cancelamento.

