Neuronové sítě

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky

Matematicko-fyzikální fakulta

Univerzity Karlovy v Praze

Neuronové sítě

Vrstevnaté neuronové sítě – analýza vlastností –

Doc. RNDr. Iveta Mrázová, CSc.

Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

Kolmogorovova věta - 1957

- 13. Hilbertův problém ~ spojité funkce *n* proměnných lze vyjádřit pomocí konečného počtu funkcí jediné proměnné a sčítání
 - Příklad: $x \cdot y = exp(\ln x + \ln y)$
- V: Necht' $f: [0, 1]^n \to [0, 1]$ je spojitá funkce. Potom existují funkce jediné proměnné g a Φ_q , pro q = 1, ..., 2n+1 a konstanty λ_p , pro p = 1, ..., n takové, že

$$f(x_1, ..., x_n) = \sum_{q=1}^{2n+1} g\left(\sum_{p=1}^n \lambda_p \Phi_q(x_p)\right)$$

Kolmogorovovy sítě

Aproximace funkcí (1)

- Libovolnou spojitou funkci lze vyjádřit pomocí sítě s odpovídajícím počtem výpočetních jednotek (× volba vhodné přenosové funkce)
- Nejlepší možná aproximace dané funkce (× volba vhodného počtu výpočetních jednotek s uvažovanou přenosovou funkcí)

Aproximace funkcí (2)

V: Spojitou reálnou funkci $f: [0, 1] \rightarrow [0, 1]$ lze aproximovat pomocí sítě prahových jednotek tak, že celková aproximační chyba E je menší než libovolné reálné číslo $\varepsilon > 0$:

$$E = \int_{0}^{1} |f(x) - \widetilde{f}(x)| dx < \varepsilon$$

kde \widetilde{f} označuje funkci realizovanou sítí prahových jednotek.

Aproximace funkcí (3)

Důkaz: Idea ~ aproximace f pomocí φ_N

I. Mrázová: Neuronové sítě (NAIL002)

Aproximace funkcí (4)

Důkaz (pokračování):

- * Rozdělme interval [0, 1] do N stejně velkých podintervalů pomocí bodů $x_0, x_1, ..., x_N \in [0, 1]; x_0 = 0, x_N = 1$
- Funkci φ_N definujme jako:

$$\varphi_N(x) = \min \{ f(x'); x' \in [x_i, x_{i+1}] \text{ pro } x_i \le x \le x_{i+1} \}$$

• Dále nechť funkce φ_N aproximuje funkci f tak, že aproximační chyba E_N odpovídá:

$$E_N = \int_0^1 |f(x) - \varphi_N(x)| dx$$

Aproximace funkcí (5)

Důkaz (pokračování):

• Protože $f(x) \ge \varphi_N(x)$ $\forall x \in [0, 1]$, odpovídá

$$E_{N} = \int_{0}^{1} f(x) dx - \int_{0}^{1} \varphi_{N}(x) dx$$

$$\sim \text{dolní součet při výpočtu}$$
Riemannova integrálu f

- Spojité funkce lze integrovat \rightarrow dolní součet konverguje pro $N \rightarrow \infty$ k integrálu f na intervalu [0,1]
- Platí tedy, že $E_N \to 0$ pro $N \to \infty$, a proto pro libovolné reálné $\varepsilon > 0$ existuje M takové, že $E_N < \varepsilon \ \forall \ N \ge M$
- Funkce φ_N je tedy požadovanou aproximací f.

Aproximace funkcí (6)

- Realizace funkce $\varphi_N(x)$ pomocí sítě prahových jednotek (~ neuronová síť)
 - Funkce $\varphi_N(x)$ je skoková a v každém z N podintervalů $[0,1]:[x_0,x_1),[x_1,x_2),...,[x_{N-1},x_N]$ nabývá odpovídající hodnoty $\alpha_0,...,\alpha_N$

Aproximace funkcí (7)

Aproximace funkcí (8)

- Tato síť je schopna realizovat skokovou funkci $\varphi_N(x)$:
 - Jediným vstupem sítě je x
 - Každá dvojice jednotek s prahem x_i a x_{i+1} zaručuje, že jednotka s prahem x_i bude aktivní pouze pokud $x_i \le x < x_{i+1}$.
 - Výstupní jednotka sčítá všechny výstupy předchozí vrstvy jednotek a jako výsledek vydá jejich (vážený) součet
 - Jednotka s prahem $x_N+\delta$, kde δ je malé kladné číslo, slouží k rozpoznání případů $x_{N-1} \le x \le x_N$.
- Tato síť realizuje funkci φ_N , která aproximuje funkci f nanejvýš s požadovanou chybou. *QED*

Aproximace funkcí (9)

Poznámka:

Věta platí i pro jednotky (\sim neurony) se sigmoidální přenosovou funkcí, kde $f:[0,1] \rightarrow (0,1)$

<u>Důkaz:</u>

- Obor hodnot funkce f je búno omezen na interval
 (0,1)
- Funkci f lze aproximovat pomocí sítě

Aproximace funkcí (10)

Aproximace funkcí (11)

Důkaz (pokračování):

• Přenosová funkce jednotek s prahem x_i je dána pomocí $s_c(x-x_i)$, kde parametr c určuje strmost přenosové funkce

$$s_c(x-x_i) = \frac{1}{1+e^{-c(x-x_i)}}$$

• Síť realizuje odhad funkce φ_N s takovou aproximační chybou, která je menší než libovolná požadovaná mez ($> \theta$) (~ prahové funkce lze pomocí parametrizované sigmoidy aproximovat s libovolnou přesností)

Aproximace funkcí (12)

Důkaz (pokračování):

- Váhy (synapsí) mezi první vrstvou jednotek a výstupní jednotkou byly nastaveny tak, že sigmoida bude předávat jako výsledek požadované hodnoty α_i
- Dále je třeba zaručit, že pro každý vstup *x* bude první vrstva předávat výstupní vrstvě jen jedinou jedničku
 - \rightarrow první vrstva sítě určí, ke kterému z N segmentů x patří

QED

Aproximace funkcí (13)

Vícerozměrný případ:

Síť pro aproximaci funkce $f: [0,1]^n \rightarrow (0,1)$ lze zkonstruovat na základě předchozích myšlenek:

- nutná rozšíření pro dvourozměrný případ
 - Rozpoznání x -ových i y -ových "intervalů"
 - 2 jednotky vlevo pro $x_0 \le x < x_1$
 - 2 jednotky vlevo pro $y_0 \le y < y_1$
 - Jednotka s prahem 1.5 rozpoznává konjunkci obou podmínek (pro x a y)

Aproximace funkcí (14)

- "Výstup" má váhu $s_0^{-1}(\alpha_{12})$, takže výstupní jednotka se sigmoidou dává α_{12}
 - \rightarrow toto číslo odpovídá požadované aproximaci funkce f v intervalu: $[x_0, x_1) \times [y_1, y_2)$

NP-úplnost problému učení

Problém splnitelnosti

- D: Nechť V je množina n logických proměnných a nechť F je logická formule v konjunktivní normální formě, která obsahuje jen proměnné z V. Problém splnitelnosti spočívá v přiřazení pravdivostních hodnot proměnným z V tak, aby měla formule F pravdivostní hodnotu TRUE.
- V: Obecný problém učení je pro sítě prahových jednotek NP-úplný.

NP-úplnost problému učení (2)

NP-úplnost problému učení (3)

Důkaz (pokračování):

1. 3-splnitelnost logických formulí (3-SAT) lze redukovat (převést) na problém učení neuronových sítí

Logickou formuli *F* v konjunktivní normální formě, která obsahuje *n* proměnných, lze v polynomiálním čase převést na síť výše uvedeného typu:

- Každé proměnné x_i je přiřazena váha w_i
- Spoje k výpočetním jednotkám ze třetí vrstvy jsou určeny příslušnou konjunktivní normální formou

NP-úplnost problému učení (4)

- Tyto operace lze provést (při vhodném kódování) v polynomiálním čase, protože pro m různých disjunkcí v 3-SAT-výrazu platí, že $m \le (2n)^3$
- Jestliže existuje instance A s pravdivostními hodnotami proměnných x_i taková, že F je splněna, potom existují váhy $w_1, w_2, ..., w_n$, které řeší problém učení

NP-úplnost problému učení (5)

- Postačí zvolit váhy $w_i = 1$, jestliže $x_i = 1$; a $w_i = 0$, jestliže $x_i = 0$. (V obou případech tedy zvolíme $w_i = x_i$.)
- Podobně i opačným způsobem: jestliže existují váhy $w_1, w_2, ..., w_n$, které řeší problém učení, potom vede instance $x_i = 1$ pro $w_i \ge 0.5$ a $x_i = 0$ jinak ke splnění F

NP-úplnost problému učení (6)

- 2. Dále je třeba ukázat, že problém učení patří do třídy NP (řešení lze ověřit v polynomiálním čase)
 - Jsou-li dány váhy $w_1, w_2, ..., w_n$, potom lze po jediném "průchodu sítí" ověřit, zda je její výstup F roven I
 - Počet výpočetních kroků přímo závisí na počtu proměnných n a na počtu disjunkcí m (který je omezen polynomem $(2n)^3$)

NP-úplnost problému učení (7)

Důkaz (pokračování):

- Čas potřebný k ověření dané ("uhodnuté") instance je tedy omezen polynomem nad n
- Daný problém učení tedy patří do třídy NP

QED

Poznámka:

Pro některé speciální typy jednoduchých neuronových sítí je problém učení řešitelný v polynomiálním čase (pomocí metod lineárního programování)

Počet oblastí v příznakovém prostoru (1)

 Kapacita neuronu závisí na dimenzi váhového prostoru a počtu "řezů dělicích nadrovin"

→ Otázka:

Kolik oblastí je určeno m dělicími nadrovinami dimenze n-1 v n - rozměrném prostoru?

- přitom budeme uvažovat pouze takové nadroviny, které procházejí počátkem
- \rightarrow Průnik *l* nadrovin ; $l \le n$ bude dimenze n-l

Počet oblastí v příznakovém prostoru (2)

2 – rozměrný případ:

m přímek pocházejících počátkem vytváří
nanejvýš 2 · m navzájem různých oblastí

Počet oblastí v příznakovém prostoru (3)

- ◆ 3 rozměrný případ:
 - každý nový řez zvýší počet oblastí až 2 ×

<u>obecně:</u> n řezů (n-1) – rozměrnými nadrovinami v n – rozměrném prostoru vytváří nanejvýš 2ⁿ různých oblastí

Počet oblastí v příznakovém prostoru (4)

Věta: Nechť R(m, n) označuje počet oblastí určených m různými dělicími nadrovinami dimenze n-1 v n- rozměrném prostoru. Dále nechť R(1, n) = 2 pro $n \ge 1$ a R(m, 0) = 0 $\forall m \ge 1$.

Potom pro $n \ge 1$ a m > 1:

$$R(m, n) = R(m-1, n) + R(m-1, n-1)$$

Počet oblastí v příznakovém prostoru (5)

Důkaz (indukcí přes m):

- 1. m = 2 a n = 1: Platí, protože R(2, 1) = R(1, 1) + R(1, 0) = 2 + 0 = 2
- 2. m = 2 a $n \ge 2$: $R(2, n) = 4 \implies$ platí, protože R(2, n) = R(1, n) + R(1, n 1) = 2 + 2 = 4
- 3. m+1 nadrovin dimenze n-1 v n-rozměrném prostoru ($n \ge 2$):
 - Prvních m nadrovin určuje *R (m, n)* oblastí v
 n rozměrném prostoru

Počet oblastí v příznakovém prostoru (6)

- (m+1) ní nadrovina protíná prvních m nadrovin v m nadrovinách dimenze n-2
- Těchto m nadrovin (dimenze n-2) rozděluje (n-1) rozměrný prostor do R(m, n-1) oblastí
- Po řezu (m+1)-ní nadrovinou vzniklo R(m, n-1) nových oblastí
- → Nový počet oblastí je tedy:

$$R(m+1,n) = R(m,n) + R(m,n-1)$$

Počet oblastí v příznakovém prostoru (7)

Možná alternativa výpočtu podle:

$$R(m,n) = 2 \sum_{i=0}^{n-1} {m-1 \choose i}$$

- × S rostoucím *n* roste počet Boolovských funkcí výrazně rychleji než počet různých oblastí vytvořených nadrovinami v obecné poloze
 - tento počet může být obecně větší než počet prahových funkcí nad binárními vstupy

Počet oblastí v příznakovém prostoru (8)

Příklad:

m	POCET BOOLOVSKYCH FUNKCI (24")	POČET PRAHOVÝCH FUNKCÍ (T(2°, ~))	POEET OBLASTI
1	4	2	2
2	16	14	14
3	456	104	128
4	65536	1882	3882
5	4.3 x 109	94 572	412736

Počet oblastí v příznakovém prostoru (9)

Důsledek:

Problémy s učením ~ je-li počet vstupních vektorů příliš vysoký, nemusí být síť schopna vytvořit s předem daným pevným počtem skrytých neuronů potřebný počet oblastí

- Zobecňování (generalizace)
 - ~ očekávaný počet správně klasifikovaných vzorů
- Přeučení
 - ~ chybná interpolace vzorů mimo trénovací množinu
- Vapnik Chervonenkisova dimenze (VC-dimenze)
 - ~ konečná VC-dimenze → "třídu konceptů" lze naučit

Vapnik – Chervonenkisova dimenze (VC–dimenze) (1)

- D: Nechť $C = \{f_i\}$ je množina funkcí (concept class) Množinu m trénovacích vzorů $\{t_k\}_{k=1,...,m}$ lze rozčlenit pomocí C, jestliže pro každé ze 2^m možných označení těchto vzorů 1/0, existuje alespoň jedna funkce f_i , která tomuto označení vyhovuje.
- **D:** VC-dimenze *V* množiny funkcí *C* je definována jako největší *m*, pro které existuje množina *m* rozčlenitelných trénovacích vzorů.

Vapnik – Chervonenkisova dimenze (VC–dimenze) (2)

- Pokud existuje pro libovolné *m* množina *m* trénovacích vzorů, které lze rozčlenit pomocí *C*, je VC-dimenze *C* rovna nekonečnu
 - → Takový problém je " NENAUČITELNÝ"
- VC-dimenze množiny funkcí obecně nezávisí na počtu parametrů
- VC-dimenze je důležitá pro správné zobecňování sítí
 - Síť může mít mnoho parametrů, ale měla by mít malou VC-dimenzi → lepší generalizace
 - Velká VC-dimenze bývá spojena s horší generalizací

Vapnik – Chervonenkisova dimenze (VC–dimenze) (3)

Příklad:

1. VC-dimenze množiny lineárních indikačních funkcí

$$Q(\vec{z}, \alpha) = \Theta\left\{\sum_{p=1}^{n} \alpha_p z_p + \alpha_0\right\} \quad \mathbf{v} \quad \mathbf{n} - \text{rozměrném prostoru}$$

je rovna n+1 (tzn. lze rozčlenit nanejvýš n+1 vzorů)

Vapnik – Chervonenkisova dimenze (VC–dimenze) (4)

- 2. VC-dimenze množiny následujících funkcí $f(z, \alpha) = \theta (\sin \alpha z)$, $\alpha \in \mathbb{R}$ je nekonečná
 - Body $z_1 = 10^{-1}$, ..., $z_m = 10^{-m}$ lze rozčlenit pomocí funkcí z této množiny
 - K rozčlenění těchto vzorů do dvou tříd (+1/-1) daných posloupností $\delta_1, \ldots, \delta_m$; $\delta_i \in \{0, 1\}$ stačí zvolit hodnotu parametru

$$\alpha = \pi \left(\sum_{i=1}^{m} (1 - \delta_i) 10^i + 1 \right)$$

Vapnik – Chervonenkisova dimenze (VC–dimenze) (5)

• při volbě vhodného koeficientu α lze pro libovolný počet m zvolených bodů aproximovat libovolnou funkci omezenou v <+1/-1> pomocí $\sin \alpha z$

Vapnik – Chervonenkisova dimenze (VC–dimenze) (6)

Vapnik – Chervonenkisova dimenze (VC–dimenze) (7)

- Pro síť s počtem vah W a počtem neuronů N a s omezením pro generalizační chybu ε , je počet trénovacích vzorů P potřebných pro správné zobecňování: $P \geq (W/\varepsilon) \log_2(N/\varepsilon)$
- Vrstevnatá síť s 1 skrytou vrstvou nemůže dobře zobecňovat, jestliže bylo méně než W/ε náhodně vybraných trénovacích vzorů, tj. $P \ge W/\varepsilon$
 - Pro požadovanou přesnost alespoň 90% je třeba vybrat alespoň $10 \cdot W$ vzorů