Potential Method

and amortized cost example: binary counter

Amortized Cost

- (op_i) sequence of operations
- c_i cost of operation op_i

$$\sum_{i=1}^{n} c_i = ?$$

- Φ_i potential after operation op_i.
 An account. Reduce it to pay for expensive operations, fill during cheap operations.
- $\hat{c}_i = c_i + \Phi_i \Phi_{i-1}$ amortized cost

Amortized Cost

- (op_i) sequence of operations
- c_i cost of operation op_i

$$\sum_{i=1}^{n} c_i = ?$$

- Φ_i potential after operation op_i.
 An account. Reduce it to pay for expensive operations, fill during cheap operations.
- $\hat{c}_i = c_i + \Phi_i \Phi_{i-1}$ amortized cost

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi_{i} - \Phi_{i-1})$$

$$= \sum_{i=1}^{n} c_{i} + \Phi_{n} - \Phi_{0}$$

$$\sum_{i=1}^{n} c_{i} = \sum_{i=1}^{n} \hat{c}_{i} + \Phi_{0} - \Phi_{n}$$

Amortized Cost

- (op_i) sequence of operations
- c_i cost of operation op_i

$$\sum_{i=1}^{n} c_i = ?$$

- Φ_i potential after operation op_i.
 An account. Reduce it to pay for expensive operations, fill during cheap operations.
- $\hat{c}_i = c_i + \Phi_i \Phi_{i-1}$ amortized cost

$$\sum_{i=1}^{n} \hat{c}_{i} = \sum_{i=1}^{n} (c_{i} + \Phi_{i} - \Phi_{i-1})$$

$$= \sum_{i=1}^{n} c_{i} + \Phi_{n} - \Phi_{0}$$

$$\sum_{i=1}^{n} c_{i} = \sum_{i=1}^{n} \hat{c}_{i} + \Phi_{0} - \Phi_{n}$$

$$\Phi_0 = 0 , \Phi_n \ge 0 \to \sum_{i=1}^n c_i \le \sum_{i=1}^n \hat{c_i}$$

- binary counter with *k* bits
- op_i : increments counter by 1
- c_i : number of bits changed
- t_i : number of trailing ones after operation op_i

Figure 1: t_{i-1} trailing bits before operation op_i

 $c_i \le t_{i-1} + 1$

- binary counter with *k* bits
- op_i : increments counter by 1
- c_i : number of bits changed
- t_i : number of trailing ones after operation op_i

Figure 1: t_{i-1} trailing bits before operation op_i

$$c_i \le t_{i-1} + 1$$

- Φ_i : number of ones in counter
- $\Phi_i = 0$: all k bits in counter were changed

$$t_{i-1} = \Phi_{i-1} = k$$
, $\Phi_i < \Phi_{i-1} - t_{i-1} + 1$

• $\Phi_i > 0$: trailing t_{i-1} ones disapper, 1 new one.

$$\Phi_i = \Phi_{i-1} - t_{i-1} + 1$$

- binary counter with *k* bits
- op_i : increments counter by 1
- c_i : number of bits changed
- t_i : number of trailing ones after operation op_i

Figure 1: t_{i-1} trailing bits before operation op_i

$$c_i \le t_{i-1} + 1$$

- Φ_i : number of ones in counter
- $\Phi_i = 0$: all k bits in counter were changed

$$t_{i-1} = \Phi_{i-1} = k$$
, $\Phi_i < \Phi_{i-1} - t_{i-1} + 1$

• $\Phi_i > 0$: trailing t_{i-1} ones disapper, 1 new one.

$$\Phi_{i} = \Phi_{i-1} - t_{i-1} + 1$$

$$\Phi_{i} - \Phi_{i-1} \leq -t_{i-1} + 1$$

$$= 1 - t_{i-1}$$

$$\hat{c}_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$\leq 1 + t_{i-1} + 1 - t_{i-1}$$

- binary counter with *k* bits
- op_i : increments counter by 1
- c_i : number of bits changed
- t_i : number of trailing ones after operation op_i

Figure 1: t_{i-1} trailing bits before operation op_i

$$c_i \le t_{i-1} + 1$$

- Φ_i : number of ones in counter
- $\Phi_i = 0$: all k bits in counter were changed

$$t_{i-1} = \Phi_{i-1} = k$$
, $\Phi_i < \Phi_{i-1} - t_{i-1} + 1$

• $\Phi_i > 0$: trailing t_{i-1} ones disapper, 1 new one.

$$\Phi_{i} = \Phi_{i-1} - t_{i-1} + 1$$

$$\Phi_{i} - \Phi_{i-1} \leq -t_{i-1} + 1$$

$$= 1 - t_{i-1}$$

$$\hat{c}_{i} = c_{i} + \Phi_{i} - \Phi_{i-1}$$

$$\leq 1 + t_{i-1} + 1 - t_{i-1}$$

$$= 2$$

$$\sum_{i=1}^{n} c_{i} \leq \sum_{i=1}^{n} 2 + \Phi_{0} - \Phi_{n}$$
 as $(\mathcal{P}_{0} - \mathcal{P}_{n})$ is at most \mathcal{L}