Appunti di Algebra lineare e Matematica discreta - parte 3

Marco Zanchin

Anno accademico 2022-2023

Contents

1		trutture algebriche	2
	1.1	Introduzione	2
	1.2	Le proprietà delle strutture algebriche	
		1.2.1 La proprietà commutativa	
	1.3	La proprietà associativa	
	1.4	L'elemento neutro	4
		1.4.1 L'elemento neutro negli insiemi numerici	4
	1.5	Struttura algebrica	4
		1.5.1 Simmetria	4
	1.6	Semplici definizioni	ŀ
		1.6.1 Semigruppo	Į
		1.6.2 Monoide	ŀ
	1.7	Gruppo	6
	1.8	Classi di resto	6
		1.8.1 Operazioni con le classi di resto (aritmetica modulare)	6
	1.9	Funzione di Eulero	7
	1.10	Concetto di stabilità e omorfismo	7
		1.10.1 Stabilità	7
		1.10.2 Concetto di omorfismo	8
		1.10.3 Concetto di isomorfismo	8
	1.11	Piccola introduzione ai vettori sotto il punto di vista algebrico	Ć
	1.12	La struttura algebrica $(\mathbb{R}^2, +)$	ę
2	Mat		10
	2.1	Matrici quadrate	
	2.2	Matrice identica	
	2.3	Matrice triangolare	
	2.4	Vettori riga e colonna	
		2.4.1 Vettore riga	
		2.4.2 Vettore colonna	
	2.5	Operazioni tra matrici	
		2.5.1 Somma tra matrici	
		2.5.2 Struttura algebrica delle matrici con l'operazione somma	
	2.6	Prodotto righe per colonne	
		2.6.1 Prodotto tra una matrice e una matrice identica	
	2.7	Determinante di una matrice	
	2.8	Calcolo del determinante di una matrice in matrici quadrate M_2	
	2.9	Sottomatrice e minore complementare	13
		Metodo di Laplace per il calcolo del determinante	
		Metodo di Sarrus per il calcolo del determinante	
		La funzione Determinante	
	2.13	Rango di una matrice	
		2.13.1 Proprietà del rango di una matrice	15
			1.5

		Metodo di Kronecker
	2.16	Metodo di Gauss e riduzione a scala
		2.16.1 Metodo di Gauss
		2.16.2 Operazioni elementari tra righe
	2.17	Studio di una matrice al variare di un parametro
		Calcolo del determinante con riduzione a scala
		Matrici inverse
	2.10	2.19.1 Metodo basato sui determinanti
		2.19.2 Metodo con operazioni elementari
3	Vet	tori 19
		Prime definizioni
	9.1	
		3.1.1 Vettore somma
		3.1.2 Prodotto esterno
	3.2	Combinazione lineare
	3.3	Indipendenza lineare
	3.4	Relazione tra rango di una matrice e vettori
	3.5	Relazione tra dimensioni e indipendenza lineare
1	Q:at	emi di equazioni lineari
4		
	4.1	
	4.2	Teorema di Rouchè-Capelli
	4.3	Metodo di Cramer

1 Le strutture algebriche

1.1 Introduzione

Definition 1. Definiamo un'**operazione binaria** o **operazione** su A come una funzione dal prodotto cartesiano $A \times A$ in A:

$$\cdot: A \times A \to A$$

 \grave{e} una funzione con dominio $A \times A$ e codominio A

L'immagine della coppia (a,b) tramite \cdot si indica con $a \cdot b$ (notazione infissa).

$$\cdot : (a,b) \in A \times B \to a \cdot b \in A$$

Esempi:

• Somma tra numeri

$$+:(n,m)\in\mathbb{Z}\times\mathbb{Z}\to n+m\in\mathbb{Z}$$

• Prodotto

$$\cdot:(n,m)\in\mathbb{R}\times\mathbb{R}\to n\cdot m\in\mathbb{R}$$

• Differenza

$$-:(n,m)\in\mathbb{Z}\times\mathbb{Z}\to n-m\in\mathbb{Z}$$

$$A = \{a, b, c\}$$
$$\cdot : A \times A \to A$$

٠	a	b	С
a	$a \cdot a$	$a \cdot b$	$a \cdot b$
b	$b \cdot a$	$b \cdot b$	$b \cdot c$
c	$c \cdot a$	$c \cdot v$	$c \cdot c$

Dove
$$\mid A \mid = n^2$$

1.2 Le proprietà delle strutture algebriche

1.2.1 La proprietà commutativa

Un'operazione è commutativa se

$$\forall a, b \in A$$
$$a \cdot b = b \cdot a$$

Se un'operazione è commutativa allora la sua tabella è simmetrica rispetto alla diagonale.

$$A = \{a, b, c\} \quad \cdot : A \times A \to A$$

	a	b	c
a	a	b	b
b	b	c	a
c	b	a	c

$$a \cdot b = b$$
 $b \cdot a = b$
 $c \cdot a = a$ $a \cdot c = b$
 $c \cdot b = b$ $b \cdot c = a$

Esempi su insiemi numerici:

• Somma e prodotto sono operazioni commutative

$$+:(n,m)\in\mathbb{R}\times\mathbb{R}\to n+m\in\mathbb{R}$$

$$n+m=m+n$$

 $\bullet\,$ La sottrazione su $\mathbb Z$ non è commutativa.

$$-: (n,m) \in \mathbb{Z} \times \mathbb{Z} \to n - m \in \mathbb{Z}$$

 $n - m \neq m - n$

1.3 La proprietà associativa

Un'operazione \cdot su A è **associativa** se

$$\forall a_1, a_2, a_3 \in A$$
$$(a_1 \cdot a_2) \cdot a_3 = a_1 \cdot (a_2 \cdot a_3)$$

Esempi su insiemi numerici:

• La somma è un'operazione associativa

$$(n+m)+h=h+(n+m) \quad \forall n,m,h \in \mathbb{N}$$

 $\bullet\,$ La divisione su $\mathbb Q$ non è associativa.

1.4 L'elemento neutro

· possiede un elemento neutro se esiste $e \in A$ talche che

$$e \cdot a = a \cdot e = a$$

1.4.1 L'elemento neutro negli insiemi numerici

• La somma

$$+: \mathbb{Z} \times \mathbb{Z} \to Z$$

 $n+0=0+n=n$

0 è l'elemento neutro di \mathbb{Z} rispetto al +

• Il prodotto

$$\cdot: \mathbb{Z} \times \mathbb{Z} \to Z$$

$$n \cdot 1 = 1 \cdot n = n$$

1 è l'**elemento neutro** di $\mathbb Z$ rispetto al \cdot

Esempio

$$A = \{a, b\}$$
 $U: P(A) \times P(A) \rightarrow P(A)$

L'unione tra sottoinsiemi di A è un'operazione binaria su P(A)

$$P(A) = \{\emptyset, \{a\}, \{b\}, \{a, b\}\}\$$

U	Ø	{a}	{b}	{a,b}
Ø	Ø	<i>{a}</i>	<i>{b}</i>	$\{a,b\}$
{a}	$\{a\}$	$\{a\}$	$\{a,b\}$	$\{a,b\}$
{b}	$\{b\}$	$\{a,b\}$	$\{b\}$	$\{a,b\}$
{a,b}	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$	$\{a,b\}$

Come si può notare dalla simmetria rispetto alla diagonale, l'operazione è **commutativa**. È anche **associativa**, infatti

$$(X \cup Y) \cup Z = X \cup (X \cup Z)$$

anche se ciò non puo essere visto nella tabella.

Infine l'**elemento neutro** è l'insieme vuoto Ø

$$\{a\} \cup \emptyset = \{a\}$$

1.5 Struttura algebrica

Una struttura algebrica è una coppia (A, \cdot) , dove A è un insieme e · è un'operazione su A Esempi: $(\mathbb{N}, +), (\mathbb{Z}, \cdot), (P(A), \cup)$

1.5.1 Simmetria

Se (A,\cdot) ha un elemento neutro allora un elemento $a \in A$ è **simmetrizzabile** o invertibile se esiste $a' \in A$ tale che

$$a \cdot a' = a' \cdot a = e$$

dove $e \$ è l'elemento neutro.

a' si dice **simmetrico** di a.

Esempio: $(\mathbb{Z}, +)$ ha elemento neutro 0 $n \in \mathbb{Z}$ è simmetrizzabile se esiste n' tale che

$$n' + n = n + n' = 0$$

n=2

$$2 + (-2) = 0$$
 $-2 + 2 = 0$

-2 è il **simmetrico** di 2 in (2,+)

Seguendo questo ragionamento $\forall n \in \mathbb{Z}$ sono **simmetrizzabili** in (2, +). Ogni n è il **simmetrico del suo opposto**.

Esempio: (\mathbb{Z}, \cdot) ha elemento neutro 1 $n \in \mathbb{Z}$ è simmetrizzabile se esiste n' tale che

$$n' \cdot n = n \cdot n' = 1$$

In questo caso solo -1 e 1 sono **simmetrizzabili**.

1.6 Semplici definizioni

1.6.1 Semigruppo

Definition 2. Una struttura algebrica (A, \cdot) è un **semigruppo** se l'operazione \cdot è **associativa**.

$$\forall a, b, c \in A : (a \cdot b) \cdot c = a \cdot (b \cdot c)$$

Equivalentemente si può definire come semigruppo ogni magma associativo. Alcuni **esempi**:

- L'insieme vuoto
- L'insieme dei numeri interi positivi munito dell'addizione

1.6.2 Monoide

"A monad is just a monoid in the category of endofunctors, what's the problem?"

— Saunders Mac Lane, Categories for the Working Mathematician

Definition 3. Una monoide è un semigruppo con un elemento neutro

Facciamo un esempio:

$$(\mathbb{N},+)$$

- Struttura associativa
- \bullet **0** elemento neutro

$$n + 0 = n$$

• 2 non è simmetrizzabile, controesempio per l'appartenenza al campo dei gruppi.

Quindi la struttura rappresentata è una monoide commutativa.

1.7 Gruppo

Definition 4. Un gruppo è un monoide con ogni elemento invertibile.

Sono date dunque le seguenti proprietà:

- Associatività: dati $a, b, c \in \mathbb{G}$ vale $(a \cdot b) \cdot c = a \cdot (b \cdot c)$
- Esistenza dell'elemento neutro
- Esistenza dell'inverso: per ogni elemento $a \in \mathbb{G}$ esiste un elemento a', detto inverso ad a tale che $a \cdot a' = a' \cdot a = elemento neutro$

Esempio:

$$(\mathbb{Z},+)$$

- Associativa
- Abbiamo un elemento neutro: 0
- Ogni elemento è simmetrizzabile:

$$n + (-n) = 0$$

Dunque $(\mathbb{Z}, +)$ è un gruppo (commutativo) degli interi.

1.8 Classi di resto

$$R_4 = \{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid n - m \text{ Multiplo di 4}\}$$
$$= \{(n, m) \in \mathbb{Z} \times \mathbb{Z} \mid resto(n, 4) = resto(m, 4)\}$$

- $[0]_4 = \{n \in \mathbb{Z} \mid resto(n,4) = 0\}$ numeri che divisi per 4 danno come risultato 0.
- $[1]_4 = \{n \in \mathbb{Z} \mid resto(n,4) = 1\}$ numeri che divisi per 4 danno come risultato 1.
- $[2]_4 = \{n \in \mathbb{Z} \mid resto(n,4) = 2\}$ numeri che divisi per 4 danno come risultato 2.

Definition 5. $[n]_m$ è la classe di n modulo m composta dai numeri che hanno resto n quando divisi per m.

$$= \{mk + n \mid k \in \mathbb{Z}\}\$$

Indichiamo con \mathbb{Z}_m l'insieme delle classi di resto

$$\mathbb{Z}_m = \{[0]_m, [1]_m, \dots, [m-1]_m\}$$

se MCD(m,n)=1 si dice che m e n sono **coprimi**

$$\mathbb{Z}_9 = \{[0]_9, [1]_9, \dots, [8]_9\}$$

Esempio:

$$[4]_9 =$$

Posso contare tutti gli elementi simmetrizzabili di \mathbb{Z}_m

1.8.1 Operazioni con le classi di resto (aritmetica modulare)

$$[3]_7 + [9]_7 = [12]_7 = [5]_7$$

1.9 Funzione di Eulero

$$\Phi: \mathbb{N}^+ \to \mathbb{N}^+$$

$$\Phi(n) = | \{ m \in \mathbb{N}^+ \mid m <= n \text{ tali che } MCD(m, n) = 1 \} |$$

$$\Phi(3) = | \{ m \in \mathbb{N}^+ \mid m <= 3 \text{ tali che } MCD(m, 3) = 1 \} | = | \{ 1, 2 \} |$$

Proprietà:

• Se p è un **numero primo** allora $\Phi(p) = p - 1$

$$\Phi(7) = 6$$

•

Definition 6. Teorema fondamentale dell'aritmetica: Ogni numero è prodotto di numeri primi Da cui ricaviamo:

$$\Phi(p^n) = p^n - p^{n-1}$$

$$\Phi(9) = 3^2 - 3^1 = 9 - 3 = 6$$

• Se MCD(a,b)=1 $\Phi(a \cdot b) = \Phi(a) \cdot \Phi(b)$

Queste proprietà mi permettono di calcolare $\Phi(n)$ per ogni n.

1.10 Concetto di stabilità e omorfismo

1.10.1 Stabilità

Definition 7.

 (A, \cdot)

Se $B \subseteq A$, $B \stackrel{.}{e}$ stabile se $\forall b_1, b_2 \in B$ si ha $b_1 \cdot b_2 \in B$

Esempio:

$$(\mathbb{Z},+)$$

$$B = 2\mathbb{Z} \subseteq \mathbb{Z}$$

(B è l'insieme dei numeri pari)

Bè **stabile** rispetto ad A +.

Se $2n, 2m \in B$ allora $2n + 2m \in B$

Si ha quindi che

(B,+) è un **gruppo** (sottostruttura) di $(\mathbb{Z},+)$

$$C = \{2n + 1 \mid n \in \mathbb{Z}\}\$$

C è l'insieme dei numeri dispari.

C non è stabile:

$$(2n+1) + (2m+1) = 2n + 2m + 2 \not\in C$$

1.10.2 Concetto di omorfismo

Abbiamo

$$(A, \cdot_A) \quad (B, \cdot_B)$$

 $f: A \to B$

Ossia una funzione di A in B.

Definition 8. $f
in un omorfismo se <math>\forall a_1, a_2 \in A$

$$f(a_1 \cdot_a a_2) = f(a_1) \cdot_b f(a_2)$$

Esempio 1:

$$f: A^{\cdot} \to \mathbf{N}$$
 $f(u) = u$

 $(A\cdot,\cdot)$ Operatore di concatenazione

$$(\mathbb{N},+)$$

f è un **omorfismo** tra (A^{\cdot}, \cdot) e $(\mathbb{N}, +)$?

$$f(u) + f(v) = f(u \cdot v)$$
$$f(uv) = \#uv$$
$$f(u) + f(v) = \#u + \#v$$
$$\#u + \#v = \#uv$$

Quindi f è un **omorfismo** di (A^{\cdot}, \cdot) in $(\mathbb{N}, +)$

Esempio 2:

$$f: n \in \mathbb{N} \to 2^n \in \mathbb{N}$$

Verifichiamo se f è un omorfismo tra $(\mathbb{N}, +)$ e (\mathbb{N}, \cdot)

$$f(n+m) = f(n) \cdot f(m)$$
$$2^{n+m} = 2^n \cdot 2^m$$

Siamo giunti dunque alla conclusione che f è un **omorfismo** tra $(\mathbb{N}, +)$ e (\mathbb{N}, \cdot) . Tuttavia non vale anche il contrario, ossia tra (\mathbb{N}, \cdot) e $(\mathbb{N}, +)$, infatti:

$$f(n \cdot m) \neq f(n) + f(m)$$
$$2^{nm} \neq 2^n + 2^m$$

1.10.3 Concetto di isomorfismo

Definition 9.

$$f:A\to B$$

è isomorfismo di (A, \cdot_A) in (A, \cdot_B) se è un omorfismo biettivo.

Esempio:

$$f: n \in \mathbb{N} \to 2^n \in \mathbb{N}$$

è un omorfismo di $(\mathbb{N},+)$ in (\mathbb{N},\cdot)

Ma non è isomorfismo.

Non è suriettivo perchè per esempio $3 \in \mathbb{N}$ non è immagine di nessun elemento del dominio.

1.11 Piccola introduzione ai vettori sotto il punto di vista algebrico

$$\mathbb{R}^2 = \{(x, y) \mid x, y \in \mathbb{R}\} = \mathbb{R} \times \mathbb{R}$$

Consideriamo

$$+: \mathbb{R}^2 \times \mathbb{R}^2 \to \mathbb{R}^2$$

Gli elementi di \mathbb{R}^2 si possono chiamare anche **vettori**.

$$(x_1, x_2) + (y_1, y_2) = (x_1 + y_1, x_2 + y_2)$$

Esempio:

$$(2,3) + (1,-1) = (3,2)$$

1.12 La struttura algebrica $(\mathbb{R}^2, +)$

$$(\mathbb{R}^2,+)$$

è una struttura associativa e commutativa.

L'elemento neutro è il vettore contenente zeri:

$$(x_1, x_2) + (0, 0) = (x_1, x_2)$$

(0,0) è chiamato anche **vettore nullo**.

$$A = \{(x,0) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^2$$

A è stabile rispetto a +?

Cioè se

$$(x_1,0),(x_2,0)\in A$$

$$(x_1,0) + (x_2,0) = (x_1 + x_2,0) \in A$$

A è dunque **stabile** rispetto a +, dato che abbiamo ottenuto un vettore dove al primo posto abbiamo un numero $\in \mathbb{N}$ e al secondo posto 0.

$$B = \{(x, 1) \mid x \in \mathbb{R}\} \subseteq \mathbb{R}^2$$

B è stabile rispetto a +?

$$(x_1, 1) + (x_2, 1) = (x_1 + x_2, 2) \notin B$$

B non è stabile rispetto a +, dato che abbiamo ottenuto un vettore dove al secondo posto abbiamo 2 invece che 1.

$$f:(x,y)\in\mathbb{R}^2\to$$

2 Matrici

Definition 10. Una matrice è una tabella di numeri $\in \mathbb{R}$ con n, m >= 0 righe e colonne.

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \\ a_{21} & a_{22} & \dots & a_{2m} \\ a_{31} & a_{32} & \dots & a_{3m} \\ \dots & \dots & \dots & \dots \\ a_{n1} & a_{n2} & \dots & a_{nm} \end{pmatrix}$$

Nella matrice A l'elemento a_{ij} si trova nella riga i e e nella colonna j.

Esempio:

m = 3 n = 2Matrice 3×2

$$A = \begin{pmatrix} \pi & 0 \\ 4 & -1 \\ \frac{1}{2} & 2 \end{pmatrix}$$
$$a_{11} = \pi \quad a_{32} = 2$$

2.1 Matrici quadrate

Definition 11. Se n = m una matrice $n \times m$ si chiama matrice quadrata di ordine n.

n = 3

$$Q = \begin{pmatrix} 3.14 & 0 & \frac{3}{11} \\ 4 & -1 & 25 \\ \frac{1}{2} & 2 & 1000 \end{pmatrix}$$

Q è una matrice quadrate di ordine 3.

2.2 Matrice identica

Definition 12. La matrice identica di ordine n è la matrice quadrata $I_n = \delta_{ij}$ dove

$$\delta_{ij} = \begin{cases}
1 & \text{se } i = j \\
0 & \text{altrimenti}
\end{cases}$$

$$I_n = \begin{pmatrix}
1 & 0 & 0 \\
0 & 1 & 0 \\
0 & 0 & 1
\end{pmatrix}$$

$$\delta_{11} = \delta_{22} = \delta_{33}$$
(1)

2.3 Matrice triangolare

Definition 13. $A \in M_n$ è triangolare inferiore se $a_{ij} = 0 \ \forall \ i < j$

$$A = \begin{pmatrix} a_{11} & 0 & 0 \\ a_{21} & a_{22} & 0 \\ a_{31} & a_{32} & a_{33} \end{pmatrix}$$

Il determinante di una matrice triangolare (superiore o inferiore) è il prodotto degli elementi sulla diagonale.

$$det(A) = a_{11} \cdot a_{22} \cdot a_{33}$$

2.4 Vettori riga e colonna

2.4.1 Vettore riga

Dati

$$n, m \ge 1$$

se

$$n = 1$$

Definition 14. A è un vettore riga se è una matrice $1 \times m$

$$A = \begin{pmatrix} a_{11} & a_{12} & \dots & a_{1m} \end{pmatrix}$$

2.4.2 Vettore colonna

Dati

$$n, m \ge 1$$

se

$$m = 1$$

Definition 15. A è un vettore colonna se è una matrice $1 \times n$

$$A = \begin{pmatrix} a_{11} \\ a_{12} \\ a_{1m} \end{pmatrix}$$

2.5 Operazioni tra matrici

2.5.1 Somma tra matrici

Convention 1. $M_{n,m}$ Insieme delle matrici $n \times m$

Se
$$a, b \in M_{n,m}$$

 $A = (aij)$ dove $i = 1, ..., n$
 $B = (bij)$ dove $j = 1, ..., m$

$$a + b = (aij + bij)$$

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 0 & -1 & -2 \end{pmatrix} B = \begin{pmatrix} 0 & 1 & 1 \\ 1 & 0 & 0 \end{pmatrix}$$
$$A + B = \begin{pmatrix} 1 & 1 & 2 \\ 1 & -1 & -2 \end{pmatrix}$$

Definition 16. La somma tra matrici A+B genera una matrice della medesima dimensione con ogni elemento e_{nm} dato dalla somma tra a_{nm} e b_{nm}

2.5.2 Struttura algebrica delle matrici con l'operazione somma

$$(M_{nm},+)$$

È un gruppo commutativo

L'elemento neutro è la **matrice nulla** $0_{nm} = (0_{ij})$, ovvero la amtrice formata solo da 0 Mentre il simmetrico di A = (aij) è (-aij)

Esempio:

$$A = \begin{pmatrix} 2 & 1 \\ 0 & 1 \end{pmatrix} - A = \begin{pmatrix} -2 & -1 \\ 0 & -1 \end{pmatrix}$$
$$A + (-A) = \begin{pmatrix} 0 & 0 \\ 0 & 0 \end{pmatrix} = 0_2$$

2.6 Prodotto righe per colonne

Se abbiamo 2 matrici A e B tali che

$$A \in M_{n,m}$$
 $B \in M_{m,k}$

Ossia dove il numero di colonne di A è uguale al numero di righe di B Il prodotto righe per colonne è una matrice $C \in M_{n,k}$ dove ogni elemento ha la seguente forma:

$$c_{ij} = \sum_{h=1}^{m} a_{ij} \cdot b_{hj}$$
$$A = \begin{pmatrix} 1 & 2 \\ 0 & 1 \end{pmatrix} B = \begin{pmatrix} 0 & 1 \\ 2 & 2 \end{pmatrix}$$

Il numero di colonne di A è uguale al numero di righe di B. Posso effettuare il prodotto.

$$C = \begin{pmatrix} c_4 & c_5 \\ c_2 & c_2 \end{pmatrix}$$

$$c_{11} = \sum_{h=1}^{2} a_{11} \cdot b_{11} + a_{12} \cdot b_{21} = 1 \cdot 0 + 2 \cdot 2 = 4$$

2.6.1 Prodotto tra una matrice e una matrice identica

 I_n è l'elemento neutro del prodotto righe per colonne nell'insieme M_n . Esempio:

$$A = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix} I_3 = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix}$$
$$A \cdot I_3 = \begin{pmatrix} 1 & 0 & 1 \\ 2 & 1 & 1 \\ 0 & 1 & 0 \end{pmatrix}$$

2.7 Determinante di una matrice

Definition 17. Il determinante det(A) di una matrice quadrata è un numero naturale $\in \mathbb{R}$ con le seguenti proprietà:

- $det(I_n) = 1$
- Se B si ottiene da A scambiando due righe o due colonne det(B) = det(A)
- Se moltiplico una riga di A per k ottengo una matrice con determinante $k \cdot det(A)$
- Se B si ottiene sommando una riga di A con un'altra riga di A det(B) = det(A)

Se $A \in M_1 \ det(A) = a_{11}$

2.8 Calcolo del determinante di una matrice in matrici quadrate M_2

$$A = \begin{pmatrix} a_{11} & a_{12} \\ a_{21} & a_{22} \end{pmatrix}$$
$$det(A) = a_{11} \cdot a_{22} - a_{12} \cdot a_{21}$$

12

Bisogna sottrare alla moltiplicazione tra il primo e l'ultimo termine quella tra il secondo e il terzo.

2.9 Sottomatrice e minore complementare

Definition 18. Se $A \in M_{n,m}$ una sottomatrice di A si ottiene cancellando n righe e colonne da A

$$A = \left(\begin{array}{ccc} 1 & 0 & 1\\ 0 & 2 & 1\\ 1 & 1 & 0 \end{array}\right) A_{2,3} = \left(\begin{array}{ccc} 1 & 0\\ 1 & 1 \end{array}\right)$$

Definition 19. Il minore complementare rispetto all'elemento a_{ij} è il determinante della sottomatrice ottenuta cancellando la i-esima riga e la j-esima colonna.

Minore complementare a $a_2, 3$:

$$\det\begin{pmatrix} 1 & 0 \\ 1 & 1 \end{pmatrix} = 1$$

2.10 Metodo di Laplace per il calcolo del determinante

Se $A \in M_n$ si fissa una riga (o colonna) i della matrice in modo arbitrario. (conviene sempre scegliere la riga o colonna con piú 0)

In seguito, tramite la seguente formula ricaviamo il determinante di A:

$$det(A) = \sum_{n=1}^{3} (-1)^{2+n} \cdot a_{in} \cdot det(B_{in})$$

è una somma di 3 addendi:

- Il segno nella n-esima posizione
- L' n-esimo elemento
- il minore complementare dell'n-esimo elemento

Possiamo velocizzare il processo ricordandoci che i segni nelle matrici sono distribuiti nel seguente modo:

$$Per \ n = 3 \begin{pmatrix} + & - & + \\ - & + & - \\ + & - & + \end{pmatrix} Per \ n = 4 \begin{pmatrix} + & - & + & - \\ - & + & - & + \\ + & - & + & - \\ - & + & - & + \end{pmatrix}$$

Corollary 1. Il determinante non cambia indipendentemente dalla riga/colonna che scelgo

Property 1. Se $A \in M_n$ ha una riga formata solo da 0 (oppure una colonna), possiamo concludere che il determinante di A è uguale a 0.

$$\det \begin{pmatrix} 0 & 6 & 0 \\ 0 & 1 & \frac{1}{2} \\ 0 & 11 & 3 \end{pmatrix} = 0$$

Property 2. Se in $A \in M_n$ ci sono due righe i,j tali che $a_{ik} = h \cdot a_{jk} \ \forall k$ allora det(A) = 0.

$$\det \begin{pmatrix} 0 & 6 & 3 \\ 0 & 12 & 6 \\ 0 & 2 & 72 \end{pmatrix} = 0$$

La seconda riga è uguale alla prima moltiplicata per 2.

2.11 Metodo di Sarrus per il calcolo del determinante

Il metodo di Sarrus consiste nel copiare le prime due colonne sulla destra della matrice, in seguito partendo da a_{11} si calcola il prodotto delle diagonali formate da 3 elementi e si sottrae lo stesso calcolo delle diagonali ma con punto di partenza a_{13} .

Il procedimento può essere applicato solo su matrici 3×3 .

Esempio:

 $determinante \ = 1 \cdot 1 \cdot 3 + 2 \cdot 2 \cdot 1 + 3 \cdot 0 \cdot 0 - (3 \cdot 1 \cdot 1 + 1 \cdot 2 \cdot 0 + 2 \cdot 0 \cdot 3) = \mathbf{4}$

2.12 La funzione Determinante

Property 3. Se $A, B \in M_n$ allora

$$det(A \cdot B) = det(A) \cdot det(B)$$

Dunque la f determinante è un omomorfismo.

$$f: M_n \to \mathbb{R}$$

con dominio M_n e codominio R è omomorfismo di (M_n,\cdot) in (\mathbb{R},\cdot)

2.13 Rango di una matrice

Definition 20. Se $A \in M_{n,m}$ il rango di A è un numero intero ≥ 0 che coincide con il massimo ordine di una sottomatrice quadrata di A con determinante $\neq 0$

$$A = \begin{pmatrix} 2 & 1 & 0 \\ 0 & 2 & 1 \end{pmatrix}$$

Le sottomatrici quadrate 2×2 di A sono:

$$\left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right) \left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right) \left(\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array}\right)$$

$$\det\left(\begin{array}{cc} 1 & 0 \\ 2 & 1 \end{array}\right) = 1 \ \det\left(\begin{array}{cc} 2 & 1 \\ 0 & 2 \end{array}\right) = 2 \ \det\left(\begin{array}{cc} 2 & 0 \\ 0 & 1 \end{array}\right) = 4$$

Basta solo una sottomatrice valida per stabilire il rango, dunque A ha una sottomatrice 2×2 con determinante $\neq 0$ e non ha sottomatrici con ordine maggiore, quindi rqA=2

2.13.1 Proprietà del rango di una matrice

• Se $A \in M_{m,n}$ allora il rango della matrice rgA è compreso tra zero e il numero intero minore tra righe e colonne.

$$0 \le rgA \le min(n,m) \quad rgA \in \mathbb{N}$$

- rqA = 0 solo se A è la matrice nulla
- Se $A \in M_1$, ossia A appartiene a una matrice con un solo elemento
 - Se $a_{11} \neq 01 \to rgA = 1$
 - $\text{ Se } a_{11} = 01 \rightarrow rqA = 0$

Orlo di matrice 2.14

Se B è una sottomatrice $k \times k$ di A allora una matrice C $(k+1) \times (k+1)$ sottomatrice di A orla B se si ottiene C aggiungendo una riga e colonna di A.

Esempio:

$$A = \begin{pmatrix} 1 & 0 & 1 & 3 \\ 0 & 2 & 1 & 1 \\ 0 & 1 & 2 & 3 \end{pmatrix}$$

$$B = \begin{pmatrix} 2 & 1 \\ 1 & 2 \end{pmatrix} C = \begin{pmatrix} 0 & 1 & 3 \\ 2 & 1 & 1 \\ 1 & 2 & 3 \end{pmatrix}$$

2.15Metodo di Kronecker

se $A \in M_{n,m}$

- Se tutti gli elmenti di A sono = 0 allora RgA = 0
- Se esiste un elmento $a_{ij} \neq 0$ allora cerco una matrice A_2 2 × 2 che **orla** $A_1 = (a_i j)$ con determinante $\neq 0$, se A_2 non esiste, rgA = 1
- Se esiste A_2 cerco una matrice A_3 3 × 3 che orla A_2 , se non esiste rgA = 2
- Continuo questo algoritmo fino ad arrivare al numero intero minore tra righe e colonne.

Esempio:

$$A = \begin{pmatrix} 1 & 0 & 2 \\ 2 & 0 & 1 \end{pmatrix}$$

$$A_1 = (1)$$

 A_1 sottomatrice 1×1 di A con $det \neq 0$

$$A_2 = \begin{pmatrix} 1 & 0 \\ 2 & 0 \end{pmatrix}$$

 A_2 orla A_1 , tuttavia $det(A_2) = 0$, quindi cerco altre matrici che orlano A_1

$$B_2 = \begin{pmatrix} 1 & 2 \\ 2 & 1 \end{pmatrix}$$

 B_2 orla A_1 e ha $det(B_2) = -3$.

Non continuò con l'algoritmo dato che B_2 ha ordine = n = 2.

Dunque rgA = 2

2.16 Metodo di Gauss e riduzione a scala

Definition 21. $A \in M_{n,m}$ è **ridotta a scala** se ogni riga ha il primo elemento non nullo in posizione piu a destra rispetto alla precedente.

Definition 22. Il primo elemento non nullo di una riga è il **pivot** appartenente ad essa. a_{ij} è il pivot della riga se $p_{ik} = 0 \ \forall \ k < j \ e \ p_{ij} \neq 0$

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 0 & 1 & 2 \\ 0 & 0 & 2 \\ 0 & 0 & 0 \end{pmatrix}$$

La matrice A è ridotta a scala: 1,1, 2 sono i pivot delle righe 1,2 e 3

Property 4. In una matrice A ridotta a scala, il rango di A è il numero di righe non nulle. Nell'esempio precedente rqA = 3

2.16.1 Metodo di Gauss

Il metodo di Gauss consiste nel partire da una matrice $A \in M_{n,m}$ qualsiasi e trasformarla in una matrice A' a scala utilizzando operazioni elementari tra righe tale che rgA = rgA'

2.16.2 Operazioni elementari tra righe

$$A = \begin{pmatrix} R_1 \\ \dots \\ R_n \end{pmatrix}$$

• Scambio di righe: $Ri \longleftrightarrow Rj$

• Moltiplicazione per un numero: $Ri \to c \cdot R_i$

• Sommare una riga ad un'altra: $R_i \to R_i + R_j$

Le operazioni elementari non modificano il rango della matrice.

Esempio:

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 1 & 1 & 2 \\ 3 & 1 & 2 \end{pmatrix}$$

$$a_{11} = 1 \neq 0$$

$$k = 2 \quad R_2 \to R_2 - \frac{a_{21}}{a_{11}} R_1 = R_2 - \frac{1}{1} R_1 = R_2 - R_1$$

$$k = 3 \quad R_3 \to R_3 - \frac{a_{21}}{a_{31}} R_1 = R_2 - \frac{3}{1} R_1 = R_3 - 3R_1$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & -5 & -7 \end{pmatrix}$$

$$a_{22} = -1 \neq 0$$

$$R_3 = R_3 - \frac{-5}{-1} R_2$$

$$R_3 = R_3 - 5R_2$$

$$A = \begin{pmatrix} 1 & 2 & 3 \\ 0 & -1 & -1 \\ 0 & 0 & -2 \end{pmatrix}$$

2.17 Studio di una matrice al variare di un parametro

$$A = \begin{pmatrix} 1 & k \\ 0 & k \end{pmatrix}$$

Calcolare il determinante e il rango di A al variare di K.

$$\begin{cases} det(A) = 0, rgA = 1 & \text{if } k=0\\ det(A) = k, rg(A) = 2 & \text{k} \neq 0 \end{cases}$$
 (2)

$$A = \begin{pmatrix} 1 & k & 0 \\ k & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix}$$

Studiare rgA al variare di k

$$a_{11} \neq 0$$

$$det \begin{pmatrix} 1 & k \\ k & 0 \end{pmatrix} = -k^2$$

$$\begin{cases} \det(A) = 0, & k = 0 \\ \det(A) \neq 0 & k \neq 0 \end{cases}$$
(3)

Continiamo a orlare con caso k=0

$$\det \begin{pmatrix} 1 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = 0$$

Continiamo a orlare con caso $k \neq 0$

$$\det \begin{pmatrix} 1 & k & 0 \\ k & 0 & 1 \\ 0 & 0 & 1 \end{pmatrix} = 1 \cdot -k^2 = -k^2$$

$$\begin{cases} rgA = 2 & k = 0 \\ rgA = 3 & k \neq 0 \end{cases}$$
(4)

2.18 Calcolo del determinante con riduzione a scala

Definition 23. Se $A \in M_n$ una matrice quadrata ridotta a scala è **triangolare superiore**, dunque $det(A) = a_{11} \cdot a_{22} \cdot \cdots \cdot a_{nn}$

2.19 Matrici inverse

Se $A \in M_n$ è **invertibile** esiste $A^{-1} \in M_n$ tale che $A \cdot A = I_n$ Non tutte le matrici sono invertibili, occorre infatti che abbiano il determinante $\neq 0$. Arriviamo a questa conclusione grazie al **teorema di Binet**

Definition 24. Per il teorema di Binet

$$det(A \cdot B) = det(A) \cdot det(B)$$

quindi

$$det(A \cdot A^{-1}) = det(A) \cdot det(A^{-1})$$
$$det(A^{-1}) = \frac{1}{det(A)}$$

Quindi se A è **invertibile** det(A) deve essere $\neq 0$ e quindi tutte le matrici quadrate con $det \neq 0$ sono invertibili. (condizione necessaria e sufficente)

Riportiamo di seguito due metodi per il calcolo delle matrici inverse:

2.19.1 Metodo basato sui determinanti

Avendo $A \in M_n$, $det(A) \neq 0$

Definition 25. La matrice trasposta $A^t diA$ è una matrice dove $a_{ij} = a_{ji}$ per ogni elemento di A.

Definition 26. Il complemento algebrico è il minore complementare della sottomatrice B_{ij} moltiplicato per uno scalare $(-1)^{i+j}$

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$

1. Per prima cosa trasformiamo la matrice in matrice trasposta, scambiando le righe e le colonne.

$$A^t = \begin{pmatrix} 1 & 1 \\ 2 & 0 \end{pmatrix}$$

2. Calcoliamo il **complemento algebrico** di ogni elemento della matrice trasposta.

•
$$A_{11}^t = +det(B_11) = +det(0) = 0$$

- $A_{12}^t 2$
- $A_{21}^t 1$
- $A_{22}^t = 1$

3. La matrice inversa sarà il risultato della moltiplicazione per ogni elemento della matrice composta dai complementi algebrici della trasposta con $\frac{1}{det(A)}$.

$$a_{ij}^{-1} = \frac{1}{\det(A)} \cdot a_{ij}^{t}$$

$$A^{-1} = \frac{1}{-2} \cdot \begin{pmatrix} 0 & -2 \\ -1 & 1 \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

4. Eseguo un controllo seguendo la formula generale $A \cdot A^{-1} = I_n$

$$\begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix} \cdot \begin{pmatrix} 0 & -2 \\ -1 & 1 \end{pmatrix} = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix} = I_2$$

2.19.2 Metodo con operazioni elementari

Se $A \in M_n$, $det(A) \neq 0$ scriviamo $A \mid I_n$, cioè affianchiamo alla matrice di partenza, la matrice identica. Successivamente, attraverso le operazioni elementari trasformo A, ottenendo $(I_n \mid A^{-1})$.

$$A = \begin{pmatrix} 1 & 2 \\ 1 & 0 \end{pmatrix}$$

$$(A \mid I_2) = \begin{pmatrix} 1 & 2 & | & 1 & 0 \\ 1 & 0 & | & 0 & 1 \end{pmatrix}$$

$$(I_2 \mid A^{-1}) = \begin{pmatrix} 1 & 0 & | & 0 & 1 \\ 0 & 1 & | & \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

$$A^{-1} = \begin{pmatrix} 0 & 1 \\ \frac{1}{2} & -\frac{1}{2} \end{pmatrix}$$

Dunque

3 Vettori

Un $\mathbf{vettore}$ è un elemento di

$$\mathbb{R}^n = \mathbb{R} \times \dots \mathbb{R} = \{(a_1, \dots, a_n \mid a_i \in \mathbb{R}\}\$$

Si può immaginare come una lista unidimensionale di numeri.

$$y = \begin{bmatrix} x_1 \\ x_2 \\ \vdots \\ x_m \end{bmatrix}$$

3.1 Prime definizioni

3.1.1 Vettore somma

Se
$$u, v \in \mathbb{R}^n$$

 $u = (a_1, \dots, a_n)$
 $v = (b_1, \dots, b_n)$

u + v è chiamato vettore somma di u e v.

$$u+v=(a_1+b_1,\ldots,a_n+b_n)$$

3.1.2 Prodotto esterno

$$.: \mathbb{R} \times \mathbb{R}^n \to \mathbb{R}^n$$

Definition 27. Il prodotto esterno moltiplica uno scalare per un vettore e restituisce un vettore

Uno **scalare** è un numero come $3, -5, \frac{3}{12}, 3, 765...$ ossia una quantità che obbedisce alle semplici regole algebriche (addizione, sottrazione...) **Esempio**:

$$2 \cdot (1,3) = (2,6)$$

3.2 Combinazione lineare

Definition 28. Una combinazione lineare di due vettori u e v è un vettore dalla forma

$$a_1 \cdot u + a_2 \cdot v \quad dove \quad a_1, a_2 \in \mathbb{R}$$

 $a_1, a_2 sono \ scalari$

Ogni volta che scaliamo e sommiamo vettori stiamo creando una combinazione lineare

Due combinazioni lineari dei vettori v e w

3.3 Indipendenza lineare

Dei vettori sono linearmente indipendenti se nessuno di essi è una combinazione lineare degli altri

$$(1,0),(0,1),(2,1) \in \mathbb{R}^2$$

$$(2,1) = 2(1,0) + (0,1)$$
 Combinazione lineare

I vettori rappresentati sono dipendenti linearmente.

Sono indipendenti linearmente.

Non posso scrivere (1,0) come combinazione lineare di (0,1).

Ossia non esiste $c \in \mathbb{R}$ tale che

$$(1,0) = c \cdot (0,1)$$

Esempio:

$$u_1 = (1, 2, 0)$$
 $u_2 = (3, 4, 1)$ $u_3 = (4, 6, 1) \in \mathbb{R}^3$

 u_1, u_2 sono indipendenti?

Esiste c tale che $u_1 = c \cdot u_2$?

$$(1,2,0) = c \cdot (3,4,1)$$

$$(1,2,0) = (3c,4c,c)$$

$$\begin{cases} 3c = 10 \\ 4c = 6 \end{cases}$$

Non esiste un numero c che mi permette di scrivere u_1 come combinazione lineare di u_2 Esempio con i 3 vettori:

 u_3 è una combinazione lineare di u_1 e u_2 ?

$$(4,6,1) = c \cdot (3,4,1) + d \cdot (1,2,0)$$

$$(4,6,1) = (3c,4c,c) + (d,2d,0)$$

$$\begin{cases} 3c+d=4\\ 4c+2d=6\\ c=1 \end{cases}$$

$$\begin{cases} d=1\\ 2d=2\\ c=1 \end{cases}$$

$$\begin{cases} d=1\\ c=1 \end{cases}$$

 u_3 dipende dunque da (3,4,1) e (1,2,0)

Per chiarire le idee riportiamo una illustrazione: nel primo esempio i vettori sono linearmente indipendenti, nel secondo sono linearmente indipendenti

Nel nostro caso $u_3 = u_1 + u_2$, quindi ci ritroviamo con "due vettori uno sopra l'altro" come nel secondo esempio dell'illustrazione.

3.4 Relazione tra rango di una matrice e vettori

Le righe di una matrice possono essere considerate come righe di una matrice. Il rango della matrice è il numero di righe linearmente indipendenti.

Calcoliamo il rango di una matrice formata da vettori presi dall'esempio precedente:

$$A = \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 1 \\ 4 & 6 & 1 \end{pmatrix}$$
$$a_{11} \neq 0$$
$$det \begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix} \neq 0$$
$$det \begin{pmatrix} 1 & 2 & 0 \\ 3 & 4 & 1 \\ 4 & 6 & 1 \end{pmatrix} = 0$$

Non ci sono matrici che orlano la $M_{2,2}$ dunque rgA = 2

Il rango è 2, infatti solo due vettori sono indipendenti, il terzo dipende da questi due.

3.5 Relazione tra dimensioni e indipendenza lineare

Property 5. Ci possono essere al massimo 2 vettori linearmente indipendenti di \mathbb{R}^2

Perchè? Cercheremo di rispondere a questa domanda nel paragrafo corrente.

Cominciamo da un semplice lemma: l'insieme di tutte le combinazioni lineari di quasi tutti i vettori bidimensionali comprende tutti i vettori bidimensionali.

Ma quando sono sovrapposti l'insieme di tutte le combinazioni lineari forma una linea.

Possiamo usare un altra definizione per "indipendenza lineare": Quando un vettore è *ridondante*, ossia non aggiunge nulla all'insieme di combinazioni lineari, possiamo affermare che i vettori sono dipendenti linearmente.

4 Sistemi di equazioni lineari

Un'equazione lineare è un'espressione

$$a_1x_1 + \dots + a_nx_n = b$$

dove

- x_1, \ldots, x_n sono le variabili o incognite
- $a_1, \ldots, a_n \in \mathbb{R}$ sono i coefficienti
- $b \in \mathbb{R}$ è il termine noto

Queste equazioni si dicono lineari perchè le incognite non sono elevate a potenza, ne sono argomento di altre funzioni.

4.1 Soluzioni di sistemi di equazioni lineari

Un sistema di equazioni lineari può:

- Avere una sola soluzione
- Non avere soluzioni (sistema incompatibile)

$$\begin{cases} x + y = 1 \\ x + y = 3 \end{cases}$$

• Avere infinite soluzioni:

$$\begin{cases} 2x - y = 1\\ 4x - 2y = 2 \end{cases}$$

Consideriamo un sistema di m equazioni in n incognite.

$$\begin{cases} a_{11}x_1 + \dots + a_{1n}x_n = b_1 \\ & \dots \\ a_{m1}x_1 + \dots + a_{mn}x_n = b_m \end{cases}$$

$$A = \begin{pmatrix} a_{11} & \dots & a_{1n} \\ \dots & & & \\ a_{m1} & \dots & a_{mn} \end{pmatrix}$$

A è la matrice dei coefficienti

$$A \mid b = \begin{pmatrix} a_{11} & \dots & a_{1n} & b_1 \\ \dots & & & \\ a_{m1} & \dots & a_{mn} & b_m \end{pmatrix}$$

 $A \mid b$ è la **matrice completa**, ossia A con l'aggiunta della colonna dei termini noti. Il sistema è rappresentabile in matrice con questo modo:

$$A \cdot x = b$$

dove \cdot è il prodotto righe per colonne x è la matrice $n \times 1$ delle incognite b è la matrice $m \times 1$ dei termini noti e A è la matrice dei coefficienti **Esempio**:

$$\begin{cases} x + 2y = 4 \\ 3x - y = 5 \end{cases}$$

$$A = \begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \quad b = \begin{pmatrix} 4 \\ 5 \end{pmatrix} \quad x = \begin{pmatrix} x \\ y \end{pmatrix}$$

$$\begin{pmatrix} 1 & 2 \\ 3 & -1 \end{pmatrix} \cdot \begin{pmatrix} x \\ y \end{pmatrix} = \begin{pmatrix} x + 2y \\ 3x - y \end{pmatrix}$$

Il sistema è dunque $A \cdot x = b$

$$\left(\begin{array}{c} x+2y\\3x-y \end{array}\right) = \left(\begin{array}{c} 4\\5 \end{array}\right)$$

4.2 Teorema di Rouchè-Capelli

Theorem 1. Secondo il teorema di Rouchè-Capelli, dato $A \cdot x = b$ il sistema ha soluzioni se e solo se

$$RgA = RgA \mid b$$

Se $RqA = RqA \mid b = r$ allora il sistema ha ∞^{n-r} soluzioni

Dove n è il numero di incognite

Se n=r $\infty^{n-r}=\infty^0=1$, ovvero c'è una sola soluzione. **Esempio:**

$$\begin{cases} 2x - y = 1 \\ 4x - 2y = 2 \end{cases}$$

$$A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} A \mid b = \begin{pmatrix} 2 & -1 & 1 \\ 4 & -2 & 2 \end{pmatrix}$$

$$RgA = RgA \mid b = 1$$

Esistono ∞^{2-1} soluzioni, ossia infinite soluzioni. **Esempio:**

$$\begin{cases} 2x - y = 1 \\ 4x - 2y = 3 \end{cases}$$

$$A = \begin{pmatrix} 2 & -1 \\ 4 & -2 \end{pmatrix} A \mid b = \begin{pmatrix} 2 & -1 & 1 \\ 4 & -2 & 3 \end{pmatrix}$$

$$RgA \neq RgA \mid b$$

Quindi non esistono soluzioni.

4.3 Metodo di Cramer

Il **metodo di Cramer** si applica quando la matrice dei coefficienti A è quadrata e con $det \neq 0$ **Procedimento**:

Considero la matrice A_i ottenuta sostituendo la i-esima colonna di A con i **termini noti**

La soluzioned del sistema è :

 $(\frac{det A_1}{det A}, \frac{det A_2}{det A}, \dots, \frac{det A_n}{det A})$

Esempio:

$$\begin{cases} 2x + y = 2 \\ 3x = 1 \end{cases}$$

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix}$$

$$A \mid b = \begin{pmatrix} 2 & 1 & 2 \\ 3 & 0 & 1 \end{pmatrix}$$

$$RgA \mid b = 2 = rgA$$

Esiste una sola soluzione

Applichiamo cramer

$$A = \begin{pmatrix} 2 & 1 \\ 3 & 0 \end{pmatrix} \quad b = \begin{pmatrix} 2 \\ 1 \end{pmatrix}$$
$$A_1 = \begin{pmatrix} 2 & 1 \\ 1 & 0 \end{pmatrix} \quad A_2 = \begin{pmatrix} 2 & 2 \\ 3 & 1 \end{pmatrix}$$

$$det A_1 = -1 \ det A_2 = -4 \ det A = -3$$

Dunque la soluzione del sistema è:

$$(\frac{det A_1}{det A}, \frac{det A_2}{det A}) = (\frac{1}{3}, \frac{4}{3})$$