LUCRARE SCRISĂ LA ALGEBRĂ

05.06.2020

Înainte de a începe rezolvarea, veți înlocui peste tot în enunțuri parametrii k și m cu valorile indicate în mesaj.

1. Considerăm corespondențele $f, g, h : \mathbb{Q} \to \mathbb{Q}$ date astfel:

$$f\left(\frac{a}{b}\right) = \frac{a+k}{b^m}$$
 pentru orice $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$,

$$g\left(\frac{a}{b}\right) = \frac{a+k}{b^m}$$
 pentru orice $(a,b) \in \mathbb{Z} \times \mathbb{Z}^*$ pentru care $(a,b) = 1$,

$$h\left(\frac{a}{b}\right) = \frac{a+k}{b^m}$$
 pentru orice $(a,b) \in \mathbb{Z} \times \mathbb{N}^*$ pentru care $(a,b) = 1$.

- a) Care dintre aceste corespondențe este funcție? Justificați!
- b) Pentru acelea dintre ele care sunt funcții, precizați (cu justificare!) dacă sunt sau nu injective, respectiv surjective.
- 2. Pe \mathbb{R} considerăm relația de echivalență $x\rho y \stackrel{\text{def}}{\Leftrightarrow} kx^3 mx = ky^3 my$. Determinați mulțimea factor \mathbb{R}/ρ .
 - 3. Determinați morfismele de grupuri de la \mathbb{Z}_k la \mathbb{Z}_m .
- 4. Considerăm grupul aditiv $G = \left\{ \frac{a}{s} : a, s \in \mathbb{Z} \land (s, k) = 1 \right\}$ și submulțimea $H = \left\{ \frac{ka}{s} : a, s \in \mathbb{Z} \land (s, k) = 1 \right\}$ al lui G. Arătați că H este subgrup normal al lui G și determinați, eventual până la izomorfism, grupul factor G/H.
- 5. Considerăm permutarea σ a literelor alfabetului românesc scrisă ca produs de cicluri astfel: luați (toate) numele și (toate) prenumele dvs. (așa cum apar în actul de identitate, fără inițiala tatălui, dar cu diacritice) și scrieți-le pe un rând, fără spații. Scrieți pe urmă șirul de caractere obținut în ordine inversă și apoi descompuneți-l, cu ajutorul parantezelor, în blocuri, închizând fiecare paranteză exact înaintea literei care ar genera o primă repetiție în blocul respectiv. De

¹Atentie! Întoarceti pagina! Mai sunt subjecte pe verso!

2 05.06.2020

exemplu, numele Michelangelo Buonarroti generează permutarea $\sigma=(itor)(ranoub)(olegna)(lehcim)$ Descompuneți σ în produs de transpoziții și în produs de cicluri disjuncte. Calculați $\sigma^3,\,\sigma^{-1},\,\varepsilon(\sigma),\,\mathrm{ord}(\sigma)$ și $\sigma^{2020}.$

6. Determinați elementele idempotente ale inelului \mathbb{Z}_{10n} , unde n este valoarea minimă din mulțimea $\{k, m\}$.