EXERCISE-01

fourth vertex is -

CHECK YOUR GRASP

SELECT THE CORRECT ALTERNATIVE (ONLY ONE CORRECT ANSWER)

•	(A) (-1, 0)	(B) (-1, 1)	(C) (0, -1)	(D) (-5, 0)
2.	The ratio in which the line $(A) 2 : 3$	joining the points $(3, -4)$ and (B) 6 : 4	d (-5, 6) is divided by x-axis - (C) 3 : 2	(D) none of these
3.		angle with vertices $(0, 0)$, $(3, 0)$		(b) Hone of these
	(A) (1, 1)	(B) (2, 3/2)	(C) (3/2, 2)	(D) none of these
4.	The mid points of the side	s of a triangle are $(5, 0)$, $(5, 0)$	5, 12) and $(0, 12)$, then orthogonal	ocentre of this triangle is -
	(A) (0, 0)	(B) (0, 24)	(C) (10, 0)	(D) $\left(\frac{13}{3}, 8\right)$
5.	Area of a triangle whose ver	tices are (a $\cos \theta$, b $\sin \theta$), (-a	a $\sin \theta$, $b \cos \theta$) and (-a $\cos \theta$	θ , – b sin θ) is -
	(A) a b sin θ cos θ	(B) a $\cos \theta \sin \theta$	(C) $\frac{1}{2}$ ab	(D) ab
6.		of the points (-5,1) and (3,5). If the area of $\triangle ABC$ be 2	(0) in the ratio $k:1$ and coording units, then k equals -	nates of points B and C are
	(A) 7,9	(B) 6,7	(C) 7,31/9	(D) 9,31/9
7.			s of a \triangle ABC, then as α varies,	
	(A) $x^2 + y^2 - 2x - 4y + 3$		(B) $x^2 + y^2 - 2x - 4y + 1 =$	= ()
8.	(C) $3(x^2 + y^2) - 2x - 4y + 1$	1 = 0 dinates (2a, 3a), (3b, 2b) &	(D) none of these	
ο.	(A) for no value of a, b,		(B) for all values of a, b,	c
	(C) if a, $\frac{c}{5}$, b are in H.P.	:	(D) if a, $\frac{2}{5}$ c, b are in H.I	P.
9.	A stick of length 10 units floor then the locus of its		d a wall of a room. If the st	cick begins to slide on the
	(A) $x^2 + y^2 = 2.5$	(B) $x^2 + y^2 = 25$	(C) $x^2 + y^2 = 100$	(D) none
10.		tting an intercept of 3 units	on negative y-axis and inclined	I at an angle $\tan^{-1}\frac{3}{5}$ to the
	x-axis is - (A) $5y - 3x + 15 = 0$	(B) $5y - 3x = 15$	(C) $3y - 5x + 15 = 0$	(D) none of these
11.			point (-3, 5) such that the po	
		ne ratio 5 : 3, internally (rec		(T)
	(A) $x + y - 2 = 0$		(C) $x + 2y - 7 = 0$	(D) $x - y + 8 = 0$
12.	The points $\left(0, \frac{8}{3}\right)$, $\left(1, 3\right)$) and (82, 30) are vertices	s of-	[IIT-JEE 1986]
	(A) an obtuse angled trian	ngle	(B) an acute angled triang	ile
	(C) a right angled triangle		(D) an isosceles triangle	
13.	The straight lines $x + y =$	= 0, 3x + y - 4 = 0, x +	3y - 4 = 0 form a triangle	
	(A) isosceles	(B) equilateral	(C) right angled	(D) none of these
14.			nare PQRS inscribed in the to Pertices P, Q are on the side A	
	(A) $\left(\frac{1}{4}, 0\right)$, $\left(\frac{3}{8}, 0\right)$, $\left(\frac{3}{8}, 0\right)$	$\left(\frac{3}{8}, \frac{1}{8}\right) & \left(\frac{1}{4}, \frac{1}{8}\right)$	(B) $\left(\frac{1}{2}, 0\right)$, $\left(\frac{3}{4}, 0\right)$, $\left(\frac{3}{4}\right)$	$\left(\frac{1}{4}\right) \& \left(\frac{1}{2}, \frac{1}{4}\right)$
	(C) $(1, 0), (\frac{3}{2}, 0), (\frac{3}{2}, \frac{3}{2})$	$\left(\frac{1}{2}\right) & \left(1, \frac{1}{2}\right)$	(D) $\left(\frac{3}{2}, 0\right)$, $\left(\frac{9}{4}, 0\right)$, $\left(\frac{9}{4}, 0\right)$	$\left(\frac{3}{4}, \frac{3}{4}\right) & \left(\frac{3}{2}, \frac{3}{4}\right)$

If (3, -4) and (-6, 5) are the extremities of a diagonal of a parallelogram and (2, 1) is its third vertex, then its

JEE-Mathematics

15.	The equation of perpendic	cular bisector of the line seg	ment joining the points $(1, 2)$) and $(-2, 0)$ is -
	(A) $5x + 2y = 1$	(B) $4x + 6y = 1$	(C) $6x + 4y = 1$	(D) none of these
16.	The number of possible whose area is 12 sq. uni		ugh (2, 3) and forming a tr	iangle with coordinate axes,
	(A) one	(B) two	(C) three	(D) four
17.	Points A & B are in the f OA = OB, then the slope		he origin. If the slope of OA	a is 1, slope of OB is 7 and
	(A) $-1/5$	(B) $-1/4$	(C) $-1/3$	(D) $-1/2$
18.	A line is perpendicular to	3x + y = 3 and passes thro	ugh a point (2, 2). Its y inter	rcept is -
	(A) 2/3	(B) 1/3	(C) 1	(D) 4/3
19.	The equation of the line p	eassing through the point (c,	d) and parallel to the line ax	c + by + c = 0 is -
	(A) $a(x + c) + b(y + d) = 0$	(B) $a(x + c) - b(y + d) = 0$	0 (C) $a(x - c) + b(y - d) = 0$	0 (D) none of these
20.	The position of the point	(8,-9) with respect to the lin	es $2x + 3y - 4 = 0$ and $6x - 4$	+ 9y + 8 = 0 is -
	(A) point lies on the same	side of the lines	(B) point lies on one of t	he lines
	(C) point lies on the difference	ent sides of the line	(D) point lies between th	e lines
21.	If origin and (3, 2) are con in the interval -	stained in the same angle of	the lines $2x + y - a = 0$, $x -$	3y + a = 0, then 'a' must lie
	(A) $(-\infty, 0) \cup (8, \infty)$	(B) $(-\infty, 0) \cup (3, \infty)$	(C) (0, 3)	(D) (3, 8)
22.	The line $3x + 2y = 6$ will $4y - x = 0$ in -	divide the quadrilateral for	med by the lines $x + y = 5$,	y - 2x = 8, $3y + 2x = 0 &$
	(A) two quadrilaterals		(B) one pentagon and or	ne triangle
	(C) two triangles		(D) one triangle and one	
23.		we the lines $y - y - 1 = 0$	and $2(x - y) - 5 = 0$, then the	
20.	(A) $(-\infty, 3) \cup (9/2, \infty)$		(C) $(-\infty, 3)$	(D) $(9/2, \infty)$
24.				ne. Number of parallelograms
24.		ese three points as vertices		
	(A) one	(B) two	(C) three	(D) four
25.	If $P = (1,0)$; $Q = (-1,0)$ & $SQ^2 + SR^2 = 2 SP^2$ is -	z R = (2,0) are three given p	points, then the locus of the p	points S satisfying the relation,
	(A) A straight line paralle	l to x-axis	(B) A circle passing throu	igh the origin
	(C) A circle with the cent	re at the origin	(D) A straight line paralle	el to y-axis
26.	The area of triangle forme	d by the lines $x + y - 3 = 0$	0, $x - 3y + 9 = 0$ and $3x - 3$	2y + 1 = 0 is -
	(A) $\frac{16}{7}$ sq. units	(B) $\frac{10}{7}$ sq. units	(C) 4 sq. units	(D) 9 sq. units
27.	The co-ordinates of foot o	f the perpendicular drawn o	n line $3x - 4y - 5 = 0$ from	the point $(0, 5)$ is -
	(A) (1, 3)	(B) (2, 3)	(C) (3, 2)	(D) (3, 1)
28.			erpendicular lines in a plan	
	(A) square	(B) circle	(C) straight line	
29.	Distance of the point		(C) straight line $3x + y + 4 = 0$ meas	(D) two intersecting lines ured parallel to the line
	3x - 4y + 8 = 0 is - (A) $15/2$	(B) 9/2	(C) 5	(D) none

30.	Three vertices of triangle A A is -	ABC are A(-1, 11), B(-9, -8	s) and $C(15, -2)$. The equation	on of angle bisector of angle
	(A) $4x - y = 7$	(B) $4x + y = 7$	(C) $x + 4y = 7$	(D) $x - 4y = 7$
31.	Given the four lines with t	he equations		
		x + 2y - 3 = 0, $3x + 4y -$	- 7 = 0	
		2x + 3y - 4 = 0, 4x + 5y	-6 = 0	
	then			[JEE 1980]
	(A) they are all concurrent		(B) they are the sides of a	quadrilateral
	(C) only three lines are co		(D) none of the above	
32.	The co-ordinates of the p	point of reflection of the or		-2y - 5 = 0 is -
	(A) (1, -2)	(B) (2, -1)	(C) $\left(\frac{4}{5}, -\frac{2}{5}\right)$	(D) (2, 5)
33.	If the axes are rotated th	nrough an angle of 30 in	the anti-clockwise direction	n, the coordinates of point
	$(4,-2\sqrt{3})$ with respect to	new axes are-		
	(A) $(2, \sqrt{3})$	(B) $(\sqrt{3}, -5)$	(C) (2, 3)	(D) $(\sqrt{3}, 2)$
34.	If one diagonal of a square	is along the line $x = 2y$ and	one of its vertex is $(3, 0)$, the	n its sides through this vertex
	are given by the equations			
	(A) $y - 3x + 9 = 0$, $x - 3y$		(B) $y - 3x + 9 = 0$, $x - 3$	
0.5	(C) $y + 3x - 9 = 0$, $x + 3y$		(D) $y - 3x + 9 = 0$, $x + 3$	
35.	The line $(p + 2q)x + (p - q)x +$	3q)y = p - q for different va	alues of p and q passes thro	ugh a fixed point whose co-
	(A) $\left(\frac{3}{2}, \frac{5}{2}\right)$	(B) $\left(\frac{2}{5}, \frac{2}{5}\right)$	(C) $\left(\frac{3}{5}, \frac{3}{5}\right)$	(D) $\left(\frac{2}{5}, \frac{3}{5}\right)$
36.	The equation $2x^2 + 4xy -$	$py^2 + 4x + qy + 1 = 0$ will	represent two mutually per	pendicular straight lines, if -
	(A) $p=1$ and $q=2$ or 6	.,	(B) $p = -2$ and $q = -2$	
	(C) $p = 2$ and $q = 0$ or 8		(D) $p = 2$ and $q = 0$ or 6	
37.		straight lines through ori	•	the pair of straight lines
	(A) $3x^2 - 7xy - 5y^2 = 0$	(B) $3x^2 + 7xy + 5y^2 = 0$	(C) $3x^2 - 7xy + 5y^2 = 0$	(D) $3x^2 + 7xy - 5y^2 = 0$
38.	If the straight lines joining	the origin and the points of	intersection of the curve	
	$5x^2 + 12xy - 6y^2 + 4x - 5$ value of k -	2y + 3 = 0 and $x + ky - 1$	L = 0 are equally inclined to	the co-ordinate axis, then the
	(A) is equal to 1	(B) is equal to -1 (C) is	s equal to 2 (D) does not ex	xist in the set of real numbers
SELE	CT THE CORRECT ALT	ΓERNATIVES (ONE OR Μ	ORE THAN ONE CORR	ECT ANSWERS)
39.	Coordinates of a point whi	ch is at 3 units distance from	n the point $(1, -3)$ on the lim	ne $2x + 3y + 7 = 0$ is/are -

(A)
$$\left(1 + \frac{9}{\sqrt{13}}, 3 - \frac{6}{\sqrt{13}}\right)$$
 (B) $\left(1 - \frac{9}{\sqrt{13}}, -3 + \frac{6}{\sqrt{13}}\right)$ (C) $\left(1 + \frac{9}{\sqrt{13}}, -3 - \frac{6}{\sqrt{13}}\right)$ (D) $\left(1 - \frac{9}{\sqrt{13}}, 3 - \frac{6}{\sqrt{13}}\right)$

The angle between the lines y – x + 5 = 0 and $\sqrt{3}$ x – y + 7= 0 is/are -

(A) 15 (B) 60 (C) 165

If line y - x + 2 = 0 is shifted parallel to itself towards the x-axis by a perpendicular distance of $3\sqrt{2}$ units, then 41. the equation of the new line is may be -

(A) y = x + 4

(C) $y = x - (2 + 3\sqrt{2})$ (D) y = x - 8

(D) 75

42. Three lines px + qy + r = 0, qx + ry + p = 0 and rx + py + q = 0 are concurrent if - [JEE 1985]

(A)
$$p + q + r = 0$$

(B)
$$p^2 + q^2 + r^2 = pr + qr + pq$$

(C)
$$p^3 + q^3 + r^3 = 3pqr$$

- (D) none of these
- 43. All points lying inside the triangle formed by the points (1, 3), (5, 0) and (-1, 2) satisfy [JEE 1986]

(A)
$$3x + 2y \ge 0$$

(B)
$$2x + y - 13 \ge 0$$

(B)
$$2x + y - 13 \ge 0$$
 (C) $2x - 3y - 12 \le 0$ (D) $-2x + y \ge 0$

$$(D) -2x + y \ge 0$$

44. The diagonals of a square are along the pair of lines whose equation is $2x^2 - 3xy - 2y^2 = 0$. If (2, 1) is a vertex of the square, then the vertex of the square adjacent to it may be -

(D)
$$(1, -2)$$

45. Equation of two equal sides of a triangle are the lines 7x + 3y - 20 = 0 and 3x + 7y - 20 = 0 and the third side passes through the point (-3, 3), then the equation of the third side can be -

(A)
$$x + y = 0$$

(B)
$$x - y + 6 = 0$$

(C)
$$x + 3 = 0$$

(D)
$$y = 3$$

СНЕСК	YOUR GR	RASP		A	NSWER	KEY			EX	ERCISE-1
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	D	Α	С	Α	D	С	С	D	В	Α
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	D	D	Α	D	С	С	D	D	С	Α
Que.	21	22	23	24	25	26	27	28	29	30
Ans.	Α	Α	В	С	D	В	D	Α	С	В
Que.	31	32	33	34	35	36	37	38	39	40
Ans.	С	В	В	D	D	С	Α	В	B,C	A,C
Que.	41	42	43	44	45					
Ans.	A,D	A,B,C	A,C	C,D	A,B					

EXERCISE - 02

BRAIN TEASERS

SELECT THE CORRECT ALTERNATIVES (ONE OR MORE THAN ONE CORRECT ANSWERS)

1.	The co-ordinates of a point and B is $(2, -4)$ will be -	nt P on the line $2x - y +$	5 = 0 such that $ PA -$	PB \mid is maximum where A is (4, - 2)
	(A) (11, 27)	(B) (-11, - 17)	(C) (-11, 17)	(D) (0, 5)
2.	triangle OAB, O being th	ne origin, with right angle	at Q. P and Q lie res	A triangle APQ is inscribed in the pectively on OB and AB. If the area
	of the triangle APQ is 3	$3/8^{th}$ of the area of the t	riangle OAB, then $\frac{A0}{B0}$	$\frac{Q}{Q}$ is equal to -
	(A) 2	(B) 2/3	(C) 1/3	(D) 3
3.	Lines, $L_i: x + \sqrt{3}y = 2$,	and L_2 : ax + by = 1, me	eet at P and enclose an	angle of 45 between them. Line L_3 :
	$y = \sqrt{3}x$, also passes thro	_		
4.		(B) $a^2 + b^2 = 2$ e lines $2x - 3y - 6 = 0$; 3		(D) $a^2 + b^2 = 4$ $4y - 12 = 0$. If the points $P(\alpha,0)$ and
	Q $(0,\beta)$ always lie on or in	nside the ΔABC , then rang	ge of α & β -	
	(A) $\alpha \in [-1, 2] \& \beta \in [-1, 2]$	-2, 3]	(B) $\alpha \in [-1, 3]$ &	$\beta \in [-2, 4]$
	(C) $\alpha \in [-2, 4] \& \beta \in [-2, 4]$	-3, 4]	(D) $\alpha \in [-1, 3] \&$	$\beta \in [-2, 3]$
5.	The line $x + 3y - 2 = x - 7y + 5 = 0$. The equa		veen a pair of straigh	nt lines of which one has equation
6.	through (5, 3). Then the	ough the point A $(1, 2)$ is requation of AB is -		the x-axis line mirror and then passes
7.	Let the algebraic sum o		nces from the points	(D) $4x - 5y = -6$ (3, 0), (0, 3) & (2, 2) to a variable co-ordinates are-
	(A) (3, 2)	(B) (2, 3)	(C) $\left(\frac{3}{5}, \frac{3}{5}\right)$	(D) $\left(\frac{5}{3}, \frac{5}{3}\right)$
8.	The image of the pair of	lines respresented by ax^2 +	$2h xy + by^2 = 0 by th$	ne line mirror $y = 0$ is :
	(A) $ax^2 - 2hxy + by^2 = 0$		(B) $bx^2 - 2h xy + $	- -
	(C) $bx^2 + 2h xy + ay^2 =$		(D) $ax^2 - 2h xy - 1$	
9.	The pair of straight lines	$x^2 - 4xy + y^2 = 0 \text{ together}$	er with the line $x + y +$	$4\sqrt{6} = 0$ form a triangle which is :
	(A) right angled but not i	isosscles	(B) right isosceles	
	(C) scalene		(D) equilateral	
10.	Let A \equiv (3, 2) and B \equiv	(5, 1). ABP is an equilate	eral triangle is constru	cted on the side of AB remote from
	the origin then the ortho	ocentre of triangle ABP	is -	
	(A) $\left(4 - \frac{1}{2}\sqrt{3}, \frac{3}{2} - \sqrt{3}\right)$	(B) $\left(4 + \frac{1}{2}\sqrt{3}, \frac{3}{2} + \sqrt{3}\right)$	(C) $\left(4 - \frac{1}{6}\sqrt{3}, \frac{3}{6}\right)$	$-\frac{1}{2}\sqrt{3}$ (D) $\left(4+\frac{1}{6}\sqrt{3},\frac{3}{6}+\frac{1}{2}\sqrt{3}\right)$

 $(C) \begin{pmatrix} \frac{1}{2} & 6 & 0 \\ 0 & 6 & 0 \end{pmatrix} \begin{pmatrix} 1 & 1 \\ 0 & 1 \end{pmatrix} \begin{pmatrix} 1 & 1 \\$

11. The line PQ whose equation is x - y = 2 cuts the x axis at P and Q is (4,2). The line PQ is rotated about P through 45 in the anticlockwise direction. The equation of the line PQ in the new position is -

(A) $y = -\sqrt{2}$ (B) y = 2(C) x = 2

12. Distance between two lines respresented by the line pair, $x^2 - 4xy + 4y^2 + x - 2y - 6 = 0$ is -

(B) $\sqrt{5}$ (C) $2\sqrt{5}$

13. The circumcentre of the triangle formed by the lines, xy + 2x + 2y + 4 = 0 and x + y + 2 = 0 is -

(A) (-1, -1)

(B) (-2, -2)

(C) (0, 0)

(D) (-1, -2)

- Area of the rhombus bounded by the four lines, ax \pm by \pm c = 0 is -

- (A) $\frac{c^2}{2ab}$ (B) $\frac{2c^2}{ab}$ (C) $\frac{4c^2}{ab}$ (D) $\frac{ab}{4c^2}$ If the lines ax + y + 1 = 0, x + by + 1 = 0 & x + y + c = 0 where a, b & c are distinct real numbers different from 1 are concurrent, then the value of $\frac{1}{1-a} + \frac{1}{1-b} + \frac{1}{1-c} =$
 - (A) 4

- (D) 1
- If one vertex of an equilateral triangle of side 'a' lies at the origin and the other lies on the line $x \sqrt{3}y = 0$, then the co-ordinates of the third vertex are -
 - (A) (0, a)
- (B) $\left(\frac{\sqrt{3} \ a}{2}, -\frac{a}{2}\right)$ (C) (0, -a)
- (D) $\left(-\frac{\sqrt{3}}{2}, \frac{a}{2}\right)$

- The area enclosed by $2|x| + 3|y| \le 6$ is -
 - (A) 3 sq. units
- (B) 4 sq. units
- (C) 12 sq. units
- (D) 24 sq. units
- 18. The point (4, 1) undergoes the following three transformations successively -
 - Reflection about the line y = x(i)
 - (ii) Translation through a distance 2 units along the positive directions of x-axis.
 - Rotation through an angle $\pi/4$ about the origin.

The final position of the point is given by the coordinates :

- (A) $\left(\frac{7}{\sqrt{2}}, -\frac{1}{\sqrt{2}}\right)$ (B) $\left(\frac{7}{\sqrt{2}}, \frac{1}{\sqrt{2}}\right)$ (C) $\left(-\frac{1}{\sqrt{2}}, \frac{7}{\sqrt{2}}\right)$
- (D) none of these
- If the equation $ax^2 6xy + y^2 + bx + cx + d = 0$ represents a pair of lines whose slopes are m and m^2 , then value(s) of a is/are -
 - (A) a = -8
- (B) a = 8
- (C) a = 27
- (D) a = -27
- Given the family of lines, a(3x + 4y + 6) + b(x + y + 2) = 0. The line of the family situated at the greatest 20. distance from the point P (2,3) has equation -
- (A) 4x + 3y + 8 = 0 (B) 5x + 3y + 10 = 0 (C) 15x + 8y + 30 = 0
- If the vertices P, Q, R of a triangle PQR are rational points, which of the following points of the triangle PQR is/are always rational point (s)? [JEE 98]
 - (A) centriod
- (B) incentre
- (C) circumcentre
- (D) orthocentre
- 22. Let PQR be a right angled isosceles triangle, right angled at P (2, 1). If the equation of the line QR is 2x + y = 3, then the equation representing the pair of lines PQ and PR is -[JEE 99]
 - (A) $3x^2 3y^2 + 8xy + 20x + 10y + 25 = 0$
- (B) $3x^2 3y^2 + 8xy 20x 10y + 25 = 0$
- (C) $3x^2 3y^2 + 8xy + 10x + 15y + 20 = 0$ (D) $3x^2 3y^2 8xy 10x 15y 20 = 0$

BRAIN	TEASERS			A	NSWER	KEY			EX	ERCISE-2
Que.	1	2	3	4	5	6	7	8	9	10
Ans.	В	D	В	D	С	Α	D	Α	D	D
Que.	11	12	13	14	15	16	17	18	19	20
Ans.	С	В	Α	В	D	A,B,C,D	С	С	B,D	Α
Que.	21	22								
Ans.	A,C,D	В								

EXERCISE-03

MISCELLANEOUS TYPE QUESTIONS

MATCH THE COLUMN

Following questions contains statements given in two columns, which have to be matched. The statements in Column-I are labelled as A, B, C and D while the statements in Column-II are labelled as p, q, r and s. Any given statement in Column-I can have correct matching with ONE statement in Column-II.

1.		Column-I	Column-II		
	(A)	If $3a - 2b + 5c = 0$, then family of straight lines $ax + by + c = 0$ are always	(p)	$3\sqrt{2}$	
	(B)	concurrent at a point whose co-ordinates is (a, b), then the values of a – 5b Number of integral values of b for which the origin and the point (1, 1) lie on the same side of the straight line $a^2x + aby + 1 = 0$ for all $a \in R - \{0\}$ is	(q)	5	
	(C)	Vetices of a right angled triangle lie on a circle and extrimites of whose	(r)	12	
		hypotenuse are $(6, 0)$ and $(0, 6)$, then radius of circle is			
	(D)	If the slope of one of the lines represented by	(s)	3	
		$ax^2 - 6xy + y^2 = 0$ is square of the other, then a is	(t)	8	

· [Column-I		Column-II		
(A)	Two adjacent sides of a parallogram are $4x + 5y = 0$ and $7x + 2y = 0$	(p)	1		
	and one diagonal is $ax + by + c = 0$, then $a + b + c$ is equal to		_		
(B)	If line $2x - by + 1 = 0$ intersects the curve	(q)	0		
	$2x^2 - by^2 + (2b - 1)xy - x - by = 0$ at points A & B and AB				
	subtends a right angle at origin, then value of $b + b^2$ is equal to				
(C)	A line passes through point (3, 4) and the point of intersection of the	(r)	5		
	lines $4x + 3y = 12$ and $3x + 4y = 12$ and length of intercepts on				
	the co-ordinate axes are a and b, then ab is equal to				
(D)	A light ray emerging from the point source placed at $P(2, 3)$ is	(s)	4		
	reflected at a point 'Q' on the y-axis and then passes through the				
	point R(5, 10). If co-ordinates of Q are (a, b), then a $+$ b is				

ASSERTION & REASON

These questions contain, Statement-I (assertion) and Statement-II (reason).

- (A) Statement-I is true, Statement-II is true; Statement-II is correct explanation for Statement-I.
- (B) Statement-I is true, Statement-II is true; Statement-II is NOT a correct explanation for Statement-I.
- (C) Statement-I is true, Statement-II is false.
- (D) Statement-I is false, Statement-II is true.

1. Let
$$L_1 : a_1x + b_1y + c_1 = 0$$
, $L_2 : a_2x + b_2y + c_2 = 0$ and $L_3 : a_3x + b_3y + c_3 = 0$.

Statement-I : If L_1 , L_2 and L_3 are three concurrent lines, then $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$.

Because

Statement-II : If $\begin{vmatrix} a_1 & b_1 & c_1 \\ a_2 & b_2 & c_2 \\ a_3 & b_3 & c_3 \end{vmatrix} = 0$, then the lines L_1 , L_2 and L_3 must be concurrent.

(A) A

(B) B

(C) C

(D) D

JEE-Mathematics

2. Statement-I: The diagonals of the parallelogram whose sides are ℓx + my + n = 0, ℓx + my + n' = 0, $mx + \ell y + n = 0$, $mx + \ell y + n' = 0$ are perpendicular.

Statement-II: If the perpedicular distances between parallel sides of a parallelogram are equal, then it is a rhombus.

(A) A

Statement-I: The equation $2x^2 + 3xy - 2y^2 + 5x - 5y + 3 = 0$ represents a pair of perpendicular straight 3.

Because

Statement-II: A pair of lines given by $ax^2 + 2hxy + by^2 + 2qx + 2fy + c = 0$ are perpendicular, if

(A) A

Statement-I: The joint equation of lines 2y = x+1 and 2y = -(x+1) is $4y^2 = -(x+1)^2$. 4.

Because

Statement-II: The joint equation of two lines satisfy every point lying on any one of the line.

(A) A

COMPREHENSION BASED QUESTIONS

Comprehension # 1:

A locus is the curve traced out by a point which moves under certain geomatrical conditions:

To find the locus of a point first we assume the co-ordinates of the moving point as (h,k) and then try to find a relation between h and k with the help of the given conditions of the problem. If there is any variable involved in the process then we eliminate them. At last we replace h by x and k by y and get the locus of the point which will be an equation in x and y.

On the basis of above information, answer the following questions:

1. Locus of centroid of the triangle whose vertices are (acost, asint), (bsint, - b cost) and (1, 0) where t is a parameter is -

(A)
$$(3x - 1)^2 + (3y)^2 = a^2 - b^2$$

(B)
$$(3x - 1)^2 + (3y)^2 = a^2 + b^2$$

(C)
$$(3x + 1)^2 + (3y)^2 = a^2 + b^2$$

(D)
$$(3x + 1)^2 + (3y)^2 = a^2 - b^2$$

A variable line cuts x-axis at A, y-axis at B where OA = a, OB = b (O as origin) such that $a^2 + b^2 = 1$ 2. then the locus of circumcentre of Δ OAB is -

(A)
$$x^2 + v^2 = 4$$

(B)
$$x^2 + y^2 = 1/4$$
 (C) $x^2 - y^2 = 4$ (D) $x^2 - y^2 = 1/4$

(C)
$$x^2 - y^2 = 4$$

(D)
$$x^2 - y^2 = 1/4$$

The locus of the point of intersection of the lines $x \cos \alpha + y \sin \alpha = a$ and $x \sin \alpha - y \cos \alpha = b$ where 3. α is variable is -

(A)
$$x^2 + y^2 = a^2 + b^2$$
 (B) $x^2 + y^2 = a^2 - b^2$ (C) $x^2 - y^2 = a^2 - b^2$ (D) $x^2 - y^2 = a^2 + b^2$

(B)
$$x^2 + v^2 = a^2 - b^2$$

(C)
$$x^2 - v^2 = a^2 - b^2$$

(D)
$$x^2 - v^2 = a^2 + b^2$$

Comprehension # 2:

For points $P \equiv (x_1, y_1)$ and $Q \equiv (x_2, y_2)$ of the coordinate plane, a new distance d(P, Q) is defined by

$$d(P, Q) = |x_1 - x_2| + |y_1 - y_2|$$

8

Let O = (0, 0), A = (1, 2), B = (2, 3) and C = (4, 3) are four fixed points on x - y plane.

On the basis of above information, answer the following questions :

Let R(x, y), such that R is equidistant from the points O and A with respect to new distance and if 1. $0 \le x \le 1$ and $0 \le y \le 2$, then R lies on a line segment whose equation is -

(A)
$$x + y = 3$$

(B)
$$x + 2y = 3$$

(C)
$$2x + y = 3$$

(D)
$$2x + 2y = 3$$

- 2. Let S(x, y), such that S is equidistant from points O and B with respect to new distance and if $x \ge 2$ and $0 \le y \le 3$, then locus of S is -
 - (A) a line segment

(B) a line

(C) a vertical ray

- (D) a horizontal ray
- 3. Let T(x, y), such that T is equidistant from point O and C with respect to new distance and if T lies in first quadrant, then T consists of the union of a line segment of finite length and an infinite ray whose labelled diagram is -

MISCELLANEOUS TYPE QUESTION

ANSWER KEY

EXERCISE-3

- Match the Column
 - **1**. (A) \rightarrow (q); (B) \rightarrow (s); (C) \rightarrow (p); (D) \rightarrow (t)
- **2**. (A) \rightarrow (q); (B) \rightarrow (s); (C) \rightarrow (p); (D) \rightarrow (r)

- Assertion & Reason
 - **1**. C
- **2**. A
- **3**. D
- **4**. D
- Comprehension Based Questions
 - Comprehension # 1 : 1. B
 - **1**. D
- **2**. B **3**. A
- Comprehension # 2: 1.
- **2**. D
- **3**. A

EXERCISE - 04 [A]

CONCEPTUAL SUBJECTIVE EXERCISE

- 1. Determie the ratio in which the point P(3, 5) divides the join of A(1, 3) & B(7, 9). Find the harmonic conjugate of P w.r.t. A & B.
- 2. The area of a triangle is 5. Two of its vertices are (2, 1) & (3, -2). The third vertex lies on y = x + 3. Find the third vertex.
- 3. Two vertices of a triangle are (4, -3) & (-2, 5). If the orthocentre of the triangle is at (1, 2), find the coordinates of the third vertex.
- 4. The line 3x + 2y = 24 meets the y-axis at A & the x-axis at B. The perpendicular bisector of AB meets the line through (0,-1) parallel to x-axis at C. Find the area of the triangle ABC.
- 5. A line is such that its segment between the straight lines 5x y 4 = 0 and 3x + 4y 4 = 0 is bisected at the point (1, 5). Obtain the equation.
- 6. A straight line L is perpendicular to the line 5x y = 1. The area of the triangle formed by the line L & the coordinate axes is 5. Find the equation of the line.
- 7. A line cuts the x-axis at A(7, 0) and the y-axis at B(0, -5). A variable line PQ is drawn perpendicular to AB cutting the x-axis in P and the y-axis in Q. If AQ and BP intersect at R, find the locus of R.

[IIT-JEE 1990]

- **8.** The vertices of a triangle OBC are O(0, 0), B (-3, -1), C (-1, -3). Find the equation of the line parallel to BC & intersecting the sides OB & OC, whose perpendicular distance from the point (0, 0) is half.
- 9. If the straight line drawn through the point $P(\sqrt{3},2)$ & making an angle $\frac{\pi}{6}$ with the x-axis, meets the line $\sqrt{3}x 4y + 8 = 0$ at Q. Find the length PQ.
- 10. The points (1, 3) & (5, 1) are two opposite vertices of a rectangle. The other two vertices lie on the line y = 2x + c. Find c & the remaining vertices.
- 11. If a, b, c are all different and the points $\left(\frac{r^3}{r-1}, \frac{r^2-3}{r-1}\right)$ where r=a, b, c are collinear, then prove that 3(a+b+c)=ab+bc+ca-abc.
- 12. Two sides of a rhombus ABCD are parallel to the lines y = x + 2 and y = 7x + 3. If the diagonals of the rhombus intersect at the point (1, 2) and the vertex A is on the y-axis. find possible co-ordinates of A.

 [IIT-JEE 1985]
- 13. Find the direction in which a straight line may be drawn through the point (2, 1) so that its point of intersection with the line $4y 4x + 4 + 3\sqrt{2} + 3\sqrt{10} = 0$ is at a distance of 3 unit from (2, 1).
- 14. Straight lines 3x + 4y = 5 and 4x 3y = 15 intersect at the point A. Points B and C are chosen on these two lines such that AB = AC. Determine the possible equations of the line BC passing through the point (1, 2)

 [IIT-JEE 1990]
- 15. Find the equation of the line which bisects the obtuse angle between the lines x 2y + 4 = 0 and 4x 3y + 2 = 0. [IIT-JEE 1978]
- **16.** A line through A (-5, -4) meets the line x + 3y + 2 = 0, 2x + y + 4 = 0 and x y 5 = 0 at the points B, C & D respectively, if $\left(\frac{15}{AB}\right)^2 + \left(\frac{10}{AC}\right)^2 = \left(\frac{6}{AD}\right)^2$. Find the equation of the line.

- 17. A variable line, drawn through the point of intersection of the straight lines $\frac{x}{a} + \frac{y}{b} = 1$ & $\frac{x}{b} + \frac{y}{a} = 1$, meets the coordinate axes in A & B. Show that the locus of the mid point of AB is the curve 2xy (a + b) = ab (x + y).
- In a triangle ABC, D is a point on BC such that $\frac{BD}{DC} = \frac{AB}{AC}$. The equation of the line AD is 2x + 3y + 4 = 0 & the equation of the line AB is 3x + 2y + 1 = 0. Find the equation of the line AC.
- Show that all the chords of the curve $3x^2 + 3y^2 2x + 4y = 0$ which subtend a right angle at the origin are concurrent. Also find the point of concurrency.

CONCEPTUAL SUBJECTIVE EXERCISE

ANSWER

EXERCISE-4(A)

$$\left(\frac{7}{2}, \frac{13}{2}\right)$$
 or $\left(-\frac{3}{2}, \frac{3}{2}\right)$

$$5. 83x - 35y + 92 = 0$$

1.
$$1:2; Q(-5, -3)$$
 2. $\left(\frac{7}{2}, \frac{13}{2}\right)$ or $\left(-\frac{3}{2}, \frac{3}{2}\right)$ 3. $(33, 26)$ 4. 91 sq. units
5. $83x - 35y + 92 = 0$ 6. $x + 5y + 5\sqrt{2} = 0$ or $x + 5y - 5\sqrt{2} = 0$
7. $x^2 + y^2 - 7x + 5y = 0$ 8. $2x + 2y + \sqrt{2} = 0$ 9. 6 units
10. $C = -4; B(2, 0); D(4, 4)$ 12. $\left(0, \frac{5}{2}\right), (0, 0)$ 13. 171, 99 14. $x - 7y + 13 = 0$ and $7x + y - 9 = 0$

7.
$$x^2 + y^2 - 7x + 5y = 0$$

8.
$$2x + 2y + \sqrt{2} = 0$$

12.
$$\left(0,\frac{5}{2}\right)$$
, $(0,0)$

14.
$$x-7y+13=0$$
 and $7x+y-9=0$

15.
$$(4+\sqrt{5})x-(2\sqrt{5}+3)y+(4\sqrt{5}+2)=0$$
 16. $2x+3y+22=0$ **18**. $9x+46y+83=0$

16.
$$2x + 3y + 22 = 0$$

18.
$$9x + 46y + 83 = 0$$

19.
$$\left(\frac{1}{3}, -\frac{2}{3}\right)$$

EXERCISE - 04 [B]

BRAIN STORMING SUBJECTIVE EXERCISE

- 1. Find the equation of the straight lines passing through (-2, -7) & having an intercept of length 3 between the straight lines 4x + 3y = 12, 4x + 3y = 3.
- 2. Determine all values of α for which the point (α, α^2) lies inside the triangle formed by the lines 2x + 3y 1 = 0; x + 2y 3 = 0; 5x 6y 1 = 0.
- 3. Find the co-ordinates of the orthocentre of the triangle, the equations of whose sides are x + y = 1, 2x + 3y = 6, 4x y + 4 = 0, without finding the co-ordinates of its vertices.
- 4. Let ABC be a triangle with AB = AC. If D is the midpoint of BC, E is the foot of the perpendicular drawn from D to AC and F the mid-point of DE, prove that AF is perpendicular to BE. [IIT-JEE 1989]
- 5. Find the condition that the diagonals of the parallelogram formed by the lines ax + by + c = 0; ax + by + c' = 0; a'x + b'y + c = 0 & a'x + b'y + c' = 0 are at right angles. Also find the equation to the diagonals of the parallelogram.
- 6. Find the co-ordinates of the incentre of the triangle formed by the line x + y + 1 = 0; x y + 3 = 0 & 7x y + 3 = 0. Also find the centre of the circle escribed to 7x y + 3 = 0.
- 7. Lines $L_1 \equiv ax + by + c = 0$ and $L_2 \equiv \ell x + my + n = 0$ intersect at the point P and makes an angle θ with each other. Find the equation of a line L different from L_2 which passes through P and makes the same angle θ with L_1 [IIT-JEE 1988]
- 8. A triangle is formed by the lines whose equations are AB : x + y 5 = 0, BC : x + 7y 7 = 0 and CA : 7x + y 14 = 0. Find the bisector of the interior angle at B and the exterior angle at C. Determine the nature of the interior angle at A and find the equation of the bisector.
- 9. The distance of a point (x_1, y_1) from each of two straight lines which passes through the origin of co-ordinates is δ ; find the combined equation of these straight lines.
- 10. Equation of a line is given by $y + 2at = t (x at^2)$, t being the parameter. Find the locus of the point intersection of the lines which are at right angles.
- 11. A rectangle PQRS has its side PQ parallel to the line y = mx and vertices P,Q and S on the lines y = a, x = b and x = -b, respectively. Find the locus of the vertex R. [IIT-JEE 1996]
- 12. A variable straight line of slope 4 intersects the hyperbola xy=1 at two points. Find the locus of the point which divides the line segment between these two points in the ratio 1:2. [IIT-JEE 1997]
- 13. The vertices of a triangle are A $(x_1, x_1 \tan \theta_1)$, B $(x_2, x_2 \tan \theta_2)$ & C $(x_3, x_3 \tan \theta_3)$. If the circumcentre O of the triangle ABC is at the origin & H $(\overline{x}, \overline{y})$ be its orthocentre, then show that $\frac{\overline{x}}{\overline{y}} = \frac{\cos \theta_1 + \cos \theta_2 + \cos \theta_3}{\sin \theta_1 + \sin \theta_2 + \sin \theta_3}$.
- 14. The ends A, B of a straight line segment of constant length 'c' slide upon the fixed rectangular axes OX & OY respectively. If the rectangle OAPB be completed then show that the locus of the foot of the perpendicular drawn from P to AB is $x^{2/3} + y^{2/3} = c^{2/3}$.

BRAIN STORMING SUBJECTIVE EXERCISE ANSWER KEY EXERCISE-4(B)

1.
$$7x + 24y + 182 = 0$$
 or $x = -2$ **2.** $-\frac{3}{2} < \alpha < -1 \ U \ \frac{1}{2} < \alpha < 1$ **3.** $\left(\frac{3}{7}, \frac{22}{7}\right)$

- 5. $a^2 + b^2 = a'^2 + b'^2$; (a + a') x + (b + b') y + (c + c') = 0; (a a') x + (b b') y = 0 6. (-1, 1); (4, 1)
- 7. $2(a\ell + bm) (ax + by + c) (a^2 + b^2) (\ell x + my + n) = 0$
- 8. 3x + 6y 16 = 0; 8x + 8y 21 = 0; acute angle bisector, 12x + 6y 39 = 0
- **9.** $(y_1^2 \delta^2) x^2 2x_1y_1xy + (x_1^2 \delta^2) y^2 = 0$ **10.** $y^2 = a(x 3a)$
- **11.** $(m^2 1)x my + b (m^2 + 1) + am = 0$ **12.** $16x^2 + y^2 + 10xy = 2$

EXERCISE - 05 [A]

JEE-[MAIN] : PREVIOUS YEAR QUESTIONS

(3) above the x-axis at a distance of $\frac{3}{2}$ from it (4) above the x-axis at a distance of $\frac{2}{3}$ from it

JEE-Mathematics

				
11.	If non-zero numbers a,b,c that point is-	are in H.P., then the straigh	It line $\frac{x}{a} + \frac{y}{b} + \frac{1}{c} = 0$ always	passes through a fixed point [AIEEE 2005]
	that point is			
	(1) (-1,2)	(2) (-1,-2)	(3) (1,-2)	$(4) \left(1, -\frac{1}{2}\right)$
12.	A straight line passing throits equation is-	bugh the point $A(3,4)$ is such	that its intercept between th	e axes is bisected at A. Then [AIEEE 2006]
	(1) 3x - 4y + 7 = 0	(2) $4x + 3y = 24$	$(3) \ 3x + 4y = 25$	(4) $x + y = 7$
13.	If (a,a^2) falls inside the ar	ngle made by the lines $y = \frac{1}{2}$	$\frac{x}{2}$, x > 0 and y = 3x, x > 0	0, then a belongs to-
		•		[AIEEE 2006]
	(1) (3,∞)	$(2) \left(\frac{1}{2}, 3\right)$	$(3) \left(-3, -\frac{1}{2}\right)$	$(4) \left(0,\frac{1}{2}\right)$
14.	Let P(-1,0) Q(0,0) and R($(3,3\sqrt{3})$ be three points. T	he equation of the bisector	of the angle PQR is-
			I	AIEEE 2007], [IIT Scr. 2002]
	(1) $\sqrt{3} x + y = 0$	(2) $x + \frac{\sqrt{3}}{2}y = 0$	(3) $\frac{\sqrt{3}}{2}x + y = 0$	$(4) x + \sqrt{3} y = 0$
15.	If one of the lines of my^2 is-	$+ (1 - m^2)xy - mx^2 = 0$ is	a bisector of the angle bett	ween the lines xy=0, then m [AIEEE 2007]
	$(1) -\frac{1}{2}$	(2) -2	(3) 1	(4) 2
16.	The perpendicular bisector value of k is-	of the line segment joining	P(1, 4) and $Q(k, 3)$ has y-	intercept -4. Then a possible [AIEEE 2008]
	(1) 1	(2) 2	(3) -2	(4) -4
17.	The lines $p(p^2 + 1) x - y$	$y + q = 0$ and $(p^2 + 1)^2x +$	$(p^2 + 1)y + 2q = 0$ are	[AIEEE 2009]
	Perpendicular to a comm	on line for :		
	(1) Exactly two values of	p	(2) More than two values	of p
	(3) No value of p		(4) Exactly one value of 1	p
18.	The line L given by $\frac{x}{5} + \frac{y}{b}$	= 1 passes through the poin	t (13, 32). The line K is para	allel to L and has the equation
	$\frac{x}{c} + \frac{y}{3} = 1$. Then the distance	ance between L and K is :		[AIEEE-2010]
	(1) $\frac{23}{\sqrt{15}}$	(2) $\sqrt{17}$	(3) $\frac{17}{\sqrt{15}}$	(4) $\frac{23}{\sqrt{17}}$
19.	The lines $L_1 : y - x = 0$ bisector of the acute angle	and $L_2 : 2x + y = 0$ intersele between L_1 and L_2 inters	ct the line $L_3 : y + 2 = 0$ a sects L_3 at R .	at P and Q respectively. The
	Statement - 1 : The rat	io PR : RQ equals $2\sqrt{2}$: $\sqrt{2}$	/ 5	
				similar triangles. [AIEEE 2011]

- (1) Statement-1 is true, Statement-2 is false.
- (2) Statement-1 is false, Statement-2 is true
- $(3) \ Statement \hbox{-} 1 \ is \ true, \ Statement \hbox{-} 2 \ is \ true; \ Statement \hbox{-} 2 \ is \ a \ correct \ explanation for \ Statement \hbox{-} 1$
- (4) Statement-1 is true, Statement-2 is true; Statement-2 is **not** a correct explanation for Statement-1.

- 20. The lines x + y = |a| and ax - y = 1 intersect each other in the first quadrant. Then the set of all possible values of a is the interval: [AIEEE 2011]
 - (1) (-1, 1]
- (2) $(0, \infty)$
- (3) $[1, \infty)$
- $(4) (-1, \infty)$
- A line is drawn through the point (1, 2) to meet the coordinate axes at P and Q such that it forms a triangle 21. OPQ, where O is the origin. If the area of the triangle OPQ is least, then the slope of the line PQ is:

[AIEEE 2012]

 $(1) -\frac{1}{2}$

(2) $-\frac{1}{4}$

(3) -4

- (4) -2
- 22. If the line 2x + y = k passes through the point which divides the line segment joining the points (1, 1) and (2, 4) in the ratio 3:2, then k equals: [AIEEE 2012]

(3) 5

- (4) 6
- 23. A ray of light along $x + \sqrt{3}y = \sqrt{3}$ gets reflected upon reaching x-axis, the equation of the reflected ray is : [JEE(Main)-2013]
 - (1) $y = x + \sqrt{3}$
- (2) $\sqrt{3}y = x \sqrt{3}$ (3) $y = \sqrt{3}x \sqrt{3}$ (4) $\sqrt{3}y = x 1$
- 24. The x-coordinate of the incentre of the triangle that has the coordinates of mid points of its sides as (0, 1)(1, 1) and (1, 0) is : [JEE(Main)-2013]
 - (1) $2 + \sqrt{2}$
- (2) $2 \sqrt{2}$
- (3) $1 + \sqrt{2}$
- (4) $1 \sqrt{2}$

PREVIOUS YEARS QUESTIONS					A	NSW	ER I	KEY				EXE	RCISE-5	[A]	
Que.	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15
Ans	3	3	1	1	3	2	4	3	4	1	3	2	2	1	3
Que.	16	17	18	19	20	21	22	23	24						
Ans	4	4	4	1	3	4	4	2	2						

1.

EXERCISE - 05 [B]

JEE-[ADVANCED] : PREVIOUS YEAR QUESTIONS

		$(A) \frac{\left m+n \right }{\left(m-n \right)^2}$	(B) $\frac{2}{ m+n }$	(C) $\frac{1}{ m+n }$	(D) $\frac{1}{ m-n }$
	(b)		eger values of m, for who and $y = mx + 1$ is also are		he point of intersection of
		(A) 2	(B) 0	(C) 4	(D) 1
					[JEE 2001 (Screening)]
2.	(a)	Let $P = (-1, 0)$, $Q = 0$ of the angle PQR is	= $(0, 0)$ and R = $(3, 3\sqrt{3})$	5) be three points. Then t	he equation of the bisector
		(A) $\frac{\sqrt{3}}{2}x + y = 0$	(B) $x + \sqrt{3} y = 0$	(C) $\sqrt{3} x + y = 0$	(D) $x + \frac{\sqrt{3}}{2}y = 0$
	(b)			ne parallel lines $4x + 2y =$ divides the segment PQ in the	= 9 and $2x + y + 6 = 0$ at the ratio
		(A) 1 : 2	(B) 3 : 4	(C) 2 : 1	(D) 4 : 3
	(c)	The area bounded by	the curves $y = x - 1$ a	nd y = - x + 1 is	
		(A) 1	(B) 2	(C) $2\sqrt{2}$	(D) 4
					[JEE 2002 (Screening)]
	(d)	Through P and Q to	wo straight lines \boldsymbol{L}_1 and \boldsymbol{L}	$_2$ are drawn, parallel to 2	= 3 at P and Q respectively. 2x - y = 5 and $3x + y = 53, as L varies, is a straight[JEE 2002 (Mains)]$
	(e)		points P and Q. Find the		(,2) and cuts the positive of OP + OQ, as L varies, [JEE 2002 Mains, 5]
3.	The	e area bounded by the	angle bisectors of the lines	$x^2 - y^2 + 2y = 1$ and the line	ne $x + y = 3$, is
	(A)	2	(B) 3	(C) 4	(D) 6
					[JEE 2004 (Screening)]
4.					a-axis and passing through [JEE 2005, Mains, 2]
5.	(a)			of the triangle OPQ. The R are of equal area. The coo	point R inside the triangle ordinates of R are
		(A) $(4/3, 3)$	(B) $(3, 2/3)$	(C) $(3, 4/3)$	(D) $(4/3, 2/3)$
	(b)		and L_2 : $2x + y = 0$ intecute angle between L_1 and		$\boldsymbol{0}$ at \boldsymbol{P} and $\boldsymbol{Q},$ respectively.
		Statement-1 : The rat	io PR : RQ equals $2\sqrt{2}$:	$\sqrt{5}$	
		because			
		Statement-2 : In any	triangle, bisector of an ang	gle divides the triangle into	two similar triangles.
		(A) Statement-1 is tru	e, statement-2 is true; state	ement-2 is a correct explana	tion for statement-1.
		(B) Statement-1 is true	e, statement-2 is true; stater	ment-2 is NOT a correct exp	lanation for statement-1.
		(C) Statement-1 is tru	ue, statement-2 is false.		
		(D) Statement-1 is fall	lse, statement-2 is true.		[JEE 2007, 3+3]
			1.6		

(a) Area of the parallelogram formed by the lines y = mx, y = mx + 1, y = nx and y = nx + 1 equals

6. Consider the lines given by

$$L_1 = x + 3y - 5 = 0$$

$$L_2 = 3x - ky - 1 = 0$$

$$L_3 = 5x + 2y - 12 = 0$$

Match the statements / Expression in Column-II with the statements / Expressions in Column-II and indicate your answer by darkening the appropriate bubbles in the 4 4 matrix given in OMR.

Column-I

Column-II

 L_1 , L_2 , L_3 are concurrent, if (A)

(P) k = -9

(B) One of L_1 , L_2 , L_3 is parallel to at least one of the other two, if

 $k = -\frac{6}{5}$ (Q)

(C) L_1 , L_2 , L_3 form a triangle, if

 $k = \frac{5}{6}$ (R)

 L_1 , L_2 , L_3 do not form a triangle, if (D)

(S) [JEE 2008, 6]

7. Let P, Q, R and S be the points on the plane with position vectors $-2\tilde{i}-\tilde{j}$, $4\tilde{i}$, $3\tilde{i}+3\tilde{j}$ and $-3\tilde{i}+2\tilde{j}$ respectively.

The quadrilateral PQRS must be a

- (A) parallelogram, which is neither a rhombus nor a rectangle
- (C) rectangle, but not a square
- (D) rhombus, but not a square

[JEE 2010, 3]

A straight line L through the point (3, -2) is inclined at an angle 60 to the line $\sqrt{3}x + y = 1$. If L also intersect 8. the x-axis, then the equation of L is [JEE 2011, 3 (-1)]

(A)
$$y + \sqrt{3}x + 2 - 3\sqrt{3} = 0$$

(B)
$$y - \sqrt{3}x + 2 + 3\sqrt{3} = 0$$

(C)
$$\sqrt{3}y - x + 3 + 2\sqrt{3} = 0$$

(D)
$$\sqrt{3}v + x - 3 + 2\sqrt{3} = 0$$

For a > b > c > 0, the distance between (1, 1) and the point of intersection of the lines ax + by + c = 0 and 9.

bx + ay + c = 0 is less than $2\sqrt{2}$. Then

[JEE(Advanced) 2013, 2M]

(A)
$$a + b - c > 0$$

(B)
$$a - b + c < 0$$

(C)
$$a - b + c > 0$$

(D)
$$a + b - c < 0$$

PREVIOUS YEARS QUESTIONS

ANSWER **KEY**

EXERCISE-5

1. (a) D; (b) A

(b) B; **(c)** B; **(d)** x - 3y + 5 = 0; **(e)** 18

3. Α y = 2x + 1, y = -2x + 1

(a) C; (b) C 5.

(A) S; (B) P,Q; (C) R; (D) P,Q,S

7. Α 8. В **9.** A or C or A,C