Lasso Regression: Explanation and Formula

Lasso Regression (Least Absolute Shrinkage and Selection Operator) is a linear regression technique that uses L1 regularization to improve model performance by adding a penalty to the loss function. The penalty term encourages sparsity in the model by shrinking some coefficients to exactly zero, effectively performing feature selection.

Objective Function

The objective function for Lasso Regression is:

$$\mathcal{L}(\theta) = \sum_{i=1}^{n} (y_i - \hat{y}_i)^2 + \lambda \sum_{j=1}^{p} |\theta_j|$$

Where:

- $\mathcal{L}(\theta)$: Total loss function.
- y_i : Actual target value for the *i*-th observation.
- $\hat{y}_i = X_i^{\top} \theta$: Predicted value for the *i*-th observation.
- θ_j : Coefficients (parameters) of the j-th predictor.
- λ : Regularization hyperparameter (controls the penalty strength).
- n: Number of observations (samples).
- p: Number of predictors (features).

Key Characteristics of Lasso Regression

- L1 Regularization: The penalty term, $\lambda \sum_{j=1}^{p} |\theta_j|$, forces some coefficients to become exactly zero.
- Feature Selection: By setting some coefficients to zero, Lasso automatically selects the most important predictors.
- **Sparsity:** Lasso regression is particularly effective in high-dimensional datasets where many predictors are irrelevant.

Effect of Regularization Parameter (λ)

- When $\lambda=0,$ Lasso regression reduces to Ordinary Least Squares (OLS) regression.
- As $\lambda \to \infty$, all coefficients shrink towards zero, resulting in an overly simplistic model.
- The optimal λ balances model complexity and generalization ability. It is typically determined using cross-validation.

Soft-Thresholding in Lasso Regression

The coefficients in Lasso regression are estimated using a method called **soft-thresholding**. For each predictor j, the coefficient θ_j is updated as:

$$\theta_j = \operatorname{sign}(z_j) \cdot \max(|z_j| - \lambda, 0)$$

Where:

- z_j : The correlation between the j-th predictor and the residuals of the model
- $sign(z_j)$: The sign of z_j (positive or negative).
- λ : Regularization parameter.

This formula shrinks coefficients with small contributions to zero, while retaining those with large contributions.

Advantages of Lasso Regression

- Feature Selection: Identifies and retains only the most relevant predictors.
- Simplicity: Produces a sparse model that is easier to interpret.
- Effective in High-Dimensional Data: Handles datasets with many irrelevant predictors.

Limitations of Lasso Regression

- Bias in Coefficients: The L1 penalty can introduce bias in the coefficient estimates.
- Multicollinearity: Lasso may arbitrarily select one predictor from a group of highly correlated predictors.
- Dependent on Scaling: Features must be standardized for proper regularization.