

Note per il corso di *Geometria e algebra lineare* 2024-25 LT in Informatica

1 Vettori geometrici

1.1

I prodotti cartesiani $\mathbb{R} \times \mathbb{R} = \mathbb{R}^2$ e $\mathbb{R} \times \mathbb{R} \times \mathbb{R} = \mathbb{R}^3$, costituiti dalle coppie e terne ordinate di numeri reali, vengono utilizzati in geometria analitica per rappresentare i punti del piano e dello spazio, mediante l'introduzione di un sistema di coordinate cartesiane. In \mathbb{R}^2 e in \mathbb{R}^3 si possono introdurre due operazioni, la *somma* e la *moltiplicazione per scalare* (cioè per un numero reale k), definite componente per componente:

Somma (a_1,a_2) + (b_1,b_2) = (a_1+b_1,a_2+b_2) , $k(a_1,a_2)$ = (ka_1,ka_2) . $k(a_1,a_2)$ = (ka_1,ka_2) . $k(a_1,a_2)$ = (ka_1,ka_2) . Similmente per le terne $(a_1,a_2,a_3) \in \mathbb{R}^3$.

Definizione 1. Per ogni coppia $A=(x_A,y_A)$, $B=(x_B,y_B)$ di punti del piano, il vettore geometrico \overrightarrow{AB} è l'elemento di \mathbb{R}^2 avente le componenti (x_B-x_A,y_B-y_A) . Analogamente per una coppia di punti dello spazio: $\overrightarrow{AB}=(x_B-x_A,y_B-y_A,z_B-z_A)\in\mathbb{R}^3$.

Due vettori geometrici \overrightarrow{AB} e \overrightarrow{CD} coincidono se e solo se A=B e C=D oppure $A\neq B$, $C\neq D$ e i segmenti AB e CD hanno la stessa direzione, lo stesso verso e la stessa lunghezza.

Nell'insieme dei vettori geometrici è possibile definire due operazioni. La somma di due vettori geometrici \overrightarrow{AB} e \overrightarrow{CD} del piano è il vettore geometrico

$$\overrightarrow{AB} + \overrightarrow{CD} = (x_B - x_A + x_D - x_C, y_B - y_A + y_D - y_C)$$

Similmente per i vettori dello spazio. Per ogni scelta dei punti A,B,C , vale sempre $\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AC}$.

Nel caso in cui i due vettori geometrici vengano rappresentati da segmenti con uguale punto iniziale A (vettori applicati in A), l'operazione di somma corrisponde alla "regola del parallelogramma": $\overrightarrow{AB} + \overrightarrow{AC} = \overrightarrow{AD}$, con ABDC parallelogramma.

• è associativa: $(\overrightarrow{AB} + \overrightarrow{BC}) + \overrightarrow{CD} = \overrightarrow{AB} + (\overrightarrow{BC} + \overrightarrow{CD})$ per ogni A, B, C, D.

- esiste un elemento neutro: il vettore nullo $\overrightarrow{O} = \overrightarrow{AA}$ (qualunque sia il punto A) ha la proprietà: $\overrightarrow{AB} + \overrightarrow{O} = \overrightarrow{O} + \overrightarrow{AB} = \overrightarrow{AB}$ per ogni A, B.
- per ogni A, B, esiste il *vettore opposto* di \overrightarrow{AB} , il vettore $\overrightarrow{-AB} = \overrightarrow{BA}$, tale che $\overrightarrow{AB} + \overrightarrow{BA} = \overrightarrow{BA} + \overrightarrow{AB} = \overrightarrow{O}$
- è commutativa: $\overrightarrow{AB} + \overrightarrow{CD} = \overrightarrow{CD} + \overrightarrow{AB}$ per ogni A, B, C, D.

Come vedremo, questo significa che l'insieme V^2 dei vettori geometrici del piano è un gruppo commutativo rispetto alla somma di vettori. Vale lo stesso risultato per l'insieme V^3 dei vettori geometrici dello spazio.

Il prodotto del numero reale t per il vettore geometrico AB del piano è il vettore geometrico t AB avente le componenti $(tx_B - tx_A, ty_B - ty_A)$. Analogamente per i vettori geometrici dello spazio.

Il prodotto t \overrightarrow{AB} ha la seguente interpretazione geometrica: t \overrightarrow{AB} è il vettore $\overrightarrow{AB'}$ con punto finale B' sulla semiretta AB se t>0, sulla semiretta opposta uscente da A se t<0, e tale che il segmento AB' abbia lunghezza |t| volte la lunghezza di AB. Ad esempio, (-1) $\overrightarrow{AB} = -\overrightarrow{AB}$. Se t=0 oppure $\overrightarrow{AB} = \overrightarrow{O}$, poniamo t $\overrightarrow{AB} = \overrightarrow{O}$. In particolare, t $\overrightarrow{AB} = \overrightarrow{AB'}$ se e solo se i punti A, B, B' sono allineati.

I vettori geometrici consentono di rappresentare in forma parametrica le rette nel piano e le rette e i piani nello spazio.

(t>0)

Dati due punti distinti P_1, P_2 di una retta r nel piano, ogni altro punto P della retta r verifica la condizione $P_1P = t$ P_1P_2 , con $t \in \mathbb{R}$. Posto $P_1 = (x_1, y_1)$ e $P_2 = (x_2, y_2)$, le coordinate (x, y) di P soddisfano quindi le equazioni parametriche:

$$\begin{cases} x = x_1 + t(x_2 - x_1)a & \text{Es.} \\ y = y_1 + t(y_2 - y_1)b & \rho(2,2) \end{cases} \qquad \rho_2(4,4) \qquad \rho = \begin{cases} x = 0 + \frac{1}{2}(4-0) \\ y = 0 + \frac{1}{2}(4-0) \end{cases}$$

Eliminando t dalle equazioni parametriche, si ottiene un'equazione cartesiana della retta, della forma $ax+by=c. \qquad \underbrace{\text{oimes}_{\substack{v: v_i + c_0 \\ v_i, v_i \in b}}}_{bx-ay: bx_i-ay: c} \xrightarrow{\text{oimes}_{\substack{v: v_i + c_0 \\ bx_i-ay: bx_i-ay: c}}} \xrightarrow{\text{oimes}_{\substack{v: v_i + c_0 \\ bx_i-ay: bx_i-ay: c}}}} \xrightarrow{\text{oimes}_{\substack{v: v_i + c_0 \\ bx_i-ay: c}}}} \xrightarrow{\text{oimes}_{\substack{v: v_i + c_0 \\ bx_i-ay$

Similmente, le coordinate (x, y, z) di un punto P sulla retta nello spazio passante per $P_1 = (x_1, y_1, z_1)$ e $P_2 = (x_2, y_2, z_2)$, soddisfano le equazioni:

$$\begin{cases} x = x_1 + t(x_2 - x_1) \\ y = y_1 + t(y_2 - y_1) \\ z = z_1 + t(z_2 - z_1) \end{cases}$$

L'eliminazione del parametro t in questo caso porta a due equazioni lineari in x,y,z, della forma ax+by+cz=d: la retta è intersezione di due piani non paralleli (non univocamente determinati).

1.3 Piani

Esempio. La retta per $P_1=(1,3,1)$ e $P_2=(2,0,0)$ ha vettore direzione $\overrightarrow{P_1P_2}=(1,-3,-1)$ ed equazioni parametriche

$$\begin{cases} x = 1 + t \\ y = 3 - 3t = 0 \end{cases} \begin{cases} \epsilon = x - 1 \\ y = 3 - 3x + 3 \end{cases} \Rightarrow \begin{cases} \epsilon = x - 1 \\ y + 3x = 6 \\ x + 2 = 2 \end{cases}$$

Eliminando t=x-1, si ottiene y=3-3(x-1), z=1-(x-1). La retta è intersezione dei piani di equazione

$$3x + y = 6$$
 e $x + z = 2$.

Sequende la formula prec. del punter - sulla nette, se un punter appartiene a due nette e' parte del piane F Sia π il piano passante per tre punti non allineati P_1, P_2, P_3 nello spazio. Un punto P

appartiene a π se e solo se esistono numeri reali s,t tali che $P_1P=s$ P_1P_2+t P_1P_3 (in tal caso, si dice che il vettore $\overrightarrow{P_1P}$ è combinazione lineare dei vettori $\overrightarrow{P_1P_2}$ e $\overrightarrow{P_1P_3}$). Infatti, P sta sul piano se e solo se è quarto vertice di un parallelogramma con vertice in P_1 e lati paralleli ai segmenti P_1P_2 e P_1P_3 .

Dunque le coordinate (x, y, z) di P soddisfano le equazioni parametriche:

Formula
del piano
$$\Rightarrow$$

$$\begin{cases} x = x_1 + s(x_2 - x_1) + t(x_3 - x_1) \\ y = y_1 + s(y_2 - y_1) + t(y_3 - y_1) \\ z = z_1 + s(z_2 - z_1) + t(z_3 - z_1) \end{cases}$$

dove
$$P_1 = (x_1, y_1, z_1)$$
, $P_2 = (x_2, y_2, z_2)$, $P_3 = (x_3, y_3, z_3)$.

Esempio. Determiniamo le equazioni parametriche e un'equazione cartesiana del piano π passante per i punti $P_1 = (1,3,1)$, $P_2 = (2,0,0)$ e $P_3 = (0,1,1)$.

Essendo $\overrightarrow{P_1P_2} = (1, -3, -1)$ e $\overrightarrow{P_1P_3} = (-1, -2, 0)$, otteniamo

$$\pi: \begin{cases} x = 1 + s - t \\ y = 3 - 3s - 2t \\ z = 1 - s \end{cases} \quad (s, t, \in \mathbb{R})$$

Per ottenere l'equazione cartesiana basta eliminare s e t:

$$\begin{cases} x = 1 + (1 - z) - t \\ y = 3 - 3(1 - z) - 2t \\ s = 1 - z \end{cases} \Rightarrow \begin{cases} t = -x - z + 2 \\ y = 3z - 2(-x - z + 2) \\ s = 1 - z \end{cases}$$
$$\Rightarrow 2x - y + 5z - 4 = 0$$

1.4 Lunghezza e prodotto scalare

Definizione 2. La *lunghezza* di un vettore geometrico $\overrightarrow{v} = (v_1, v_2, v_3)$ è la lunghezza di un qualunque segmento che rappresenta \overrightarrow{v} : se $\overrightarrow{v} = \overrightarrow{AB}$, la lunghezza di \overrightarrow{v} è

$$|\overrightarrow{v}| = |AB|$$
.

Per il Teorema di Pitagora, se il riferimento cartesiano fissato nel piano o nello spazio è ortogonale (assi a due a due perpendicolari), vale la formula

$$|\overrightarrow{v}|=\sqrt{v_1^2+v_2^2}$$
 nel piano e $|\overrightarrow{v}|=\sqrt{v_1^2+v_2^2+v_3^2}$ nello spazio,

dove v_1, v_2 , (e v_3) sono le componenti di \overrightarrow{v} .

Dati due vettori non nulli $\overrightarrow{v}=(v_1,v_2,v_3)$ e $\overrightarrow{w}=(w_1,w_2,w_3)$, diamo una formula per il coseno dell'angolo convesso θ formato dai due vettori (compreso tra $0 e \pi$ radianti). Sia $\cancel{u} = \cancel{v} - \cancel{w}$. Nel caso dei vettori dello spazio (per il piano la formula è analoga) si ha

 $\frac{|\overrightarrow{u}|^2 = (v_1 - w_1)^2 + (v_2 - w_2)^2 + (v_3 - w_3)^2}{\text{applied pice pice gara}} = |\overrightarrow{v}|^2 + |\overrightarrow{w}|^2 - 2 (v_1 w_1 + v_2 w_2 + v_3 w_3).$

D'altra parte, è anche

$$|\vec{u}|^2 = (|\vec{w}|\sin\theta)^2 + (|\vec{v}| - |\vec{w}|\cos\theta)^2 = |\vec{v}|^2 + |\vec{w}|^2 - 2|\vec{v}||\vec{w}|\cos\theta$$

e quindi si ha l'uguaglianza

$$(v_1w_1 + v_2w_2 + v_3w_3 = |\overrightarrow{v}||\overrightarrow{w}|\cos\theta,$$

da cui la formula

$$\frac{\vec{v} \cdot \vec{w}}{\cos \theta} = \frac{(v_1 w_1 + v_2 w_2 + v_3 w_3)}{|\vec{v}| |\vec{w}|} \leftarrow \text{Formula Finale Li} \quad \Theta$$

L'espressione a numeratore è il $\emph{prodotto scalare}$ di \overrightarrow{v} e \overrightarrow{w} :

$$(\overrightarrow{v} \cdot \overrightarrow{w} = v_1 w_1 + v_2 w_2 + v_3 w_3,$$

che si annulla quando i due vettori sono ortogonali ($\theta = \pi/2$). La stessa formula definisce il prodotto scalare se (almeno) uno dei due vettori è il vettore nullo. In tal caso $\vec{v} \cdot \vec{w} = 0$.

Per la proprietà distributiva del prodotto rispetto alla somma, il prodotto scalare è lineare rispetto ad entrambi gli argomenti (si dice che è bilineare):

$$(\overrightarrow{u} + \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{u} \cdot \overrightarrow{w} + \overrightarrow{v} \cdot \overrightarrow{w} \quad e \quad \overrightarrow{u} \cdot (\overrightarrow{v} + \overrightarrow{w}) = \overrightarrow{u} \cdot \overrightarrow{v} + \overrightarrow{u} \cdot \overrightarrow{w}$$

$$k(\overrightarrow{v} \cdot \overrightarrow{w}) = (k \overrightarrow{v}) \cdot \overrightarrow{w} = \overrightarrow{v} \cdot (k \overrightarrow{w}) \quad \forall k \in \mathbb{R}.$$

Si può anche esprimere la lunghezza di un vettore \overrightarrow{v} mediante il prodotto scalare:

$$|\overrightarrow{v}|^2 = v_1^2 + v_2^2 + v_3^2 = \overrightarrow{v} \cdot \overrightarrow{v}$$

Osservazione. La formula dell'angolo permette di dare un significato geometrico ai coefficienti a,b dell'equazione cartesiana ax+by=c di una retta r nel piano. Siano P_1 e P_2 punti di r . Si ha

$$ax_1 + by_1 = c$$
 e $ax_2 + by_2 = c$,

da cui, sottraendo, $a(x_2 - x_1) + b(y_2 - y_1) = 0$.

Quindi il prodotto scalare tra il vettore $\overrightarrow{n}=(a,b)$ e il vettore direzione $\overrightarrow{P_1P_2}$ è nullo. Dunque \overrightarrow{n} è un vettore ortogonale (o normale) alla retta r. \rightarrow Perpendico la re Analogamente, un piano di equazione cartesiana

$$ax + by + cz = d$$

ha vettore normale $\vec{n} = (a, b, c)$ o un qualunque suo multiplo non nullo.

Esercizio. Determinare equazioni della retta passante per l'origine e perpendicolare al piano di equazione cartesiana 2x - 3y + z = 2.

Un vettore direzione della retta richiesta è $\stackrel{\rightarrow}{n}=(2,-3,1)$. Dunque la retta ha equazioni parametriche

$$\begin{cases} x = 2t \\ y = -3t \\ z = t \end{cases}$$

1.5 Aree, volumi e prodotto vettoriale

Siano $\overrightarrow{v}=(v_1,v_2)$ e $\overrightarrow{w}=(w_1,w_2)$ due vettori del piano. Il parallelogramma di lati \overrightarrow{v} e \overrightarrow{w} ha area A il cui quadrato è uguale a

$$A^{2} = |\overrightarrow{v}|^{2} |\overrightarrow{w}|^{2} |\sin \theta|^{2} = |\overrightarrow{v}|^{2} |\overrightarrow{w}|^{2} (1 - \cos^{2} \theta) = |\overrightarrow{v}|^{2} |\overrightarrow{w}|^{2} - (\overrightarrow{v} \cdot \overrightarrow{w})^{2}$$
$$= (v_{1}^{2} + v_{2}^{2})(w_{1}^{2} + w_{2}^{2}) - (v_{1}w_{1} + v_{2}w_{2})^{2} = (v_{1}w_{2} - v_{2}w_{1})^{2}$$

Dunque $A = |v_1 w_2 - v_2 w_1|$.

Nello spazio vale ancora la formula per l'area del parallelogramma definito dai vettori $\overrightarrow{v} = (v_1, v_2, v_3)$ e $\overrightarrow{w} = (w_1, w_2, w_3)$:

$$A^{2} = (v_{1}^{2} + v_{2}^{2} + v_{3}^{2})(w_{1}^{2} + w_{2}^{2} + w_{3}^{2}) - (v_{1}w_{1} + v_{2}w_{2} + v_{3}w_{3})^{2}$$
$$= (v_{1}w_{2} - v_{2}w_{1})^{2} + (v_{1}w_{3} - v_{3}w_{1})^{2} + (v_{2}w_{3} - v_{3}w_{2})^{2}.$$

Si ha $A = |\overrightarrow{v} \times \overrightarrow{w}|$, dove

$$(\overrightarrow{v} \times \overrightarrow{w}) = (v_2w_3 - v_3w_2, v_3w_1 - v_1w_3, v_1w_2 - v_2w_1)$$

è il *prodotto vettoriale* di \overrightarrow{v} e \overrightarrow{w} .

Proprietà del prodotto vettoriale

- $1. \ \mid \overrightarrow{v} \times \overrightarrow{w} \mid = A \text{ area del parallelogramma di lati} \ \overrightarrow{v} \ \text{e} \ \overrightarrow{w}.$
- $2. \overrightarrow{w} \times \overrightarrow{v} = -\overrightarrow{v} \times \overrightarrow{w}.$
- 3. $\overrightarrow{v} \times \overrightarrow{w} = \overrightarrow{O}$ se e solo se \overrightarrow{v} e \overrightarrow{w} sono vettori proporzionali (infatti $A = 0 \Leftrightarrow$ l'angolo tra \overrightarrow{v} e \overrightarrow{w} è nullo o piatto oppure uno dei due vettori è nullo).
- 4. $\overrightarrow{v} \times \overrightarrow{w}$ è ortogonale a \overrightarrow{v} e a \overrightarrow{w} . (il prodotto scalare $\overrightarrow{v} \cdot (\overrightarrow{v} \times \overrightarrow{w})$ si annulla...)

- 5. Il *verso* del prodotto vettoriale $ec{v} imes ec{w}$ è determinato dalla *regola della mano destra* (o della vite destrorsa).
- 6. Il valore assoluto del *prodotto misto* $\vec{u} \cdot (\vec{v} \times \vec{w})$ di tre vettori dello spazio è uguale al volume V del parallelepipedo di lati $\overrightarrow{u}, \overrightarrow{v}, \overrightarrow{w}$. Infatti

$$|\overrightarrow{u} \cdot (\overrightarrow{v} \times \overrightarrow{w})| = |\overrightarrow{v} \times \overrightarrow{w}|(|\overrightarrow{u}||\cos\phi|) = A \cdot h = V$$

dove ϕ è l'angolo tra \overrightarrow{u} e $\overrightarrow{v} \times \overrightarrow{w}$, A è l'area della base definita dai vettori \overrightarrow{v} e \overrightarrow{w} e $h = |\vec{u}| |\cos \phi|$ è l'altezza corrispondente.

Esercizio. Il tetraedro con lati definiti dai vettori $\vec{u}, \vec{v}, \vec{w}$ ha volume $\frac{1}{6} | \vec{u} \cdot (\vec{v} \times \vec{w}) |$ (infatti è una piramide con base di area A/2 (A area del parallelogramma definito da \overrightarrow{v} e

Per calcolarlo, possiamo considerare il tetraedro T di vertici A = (0,0,0), B = (1,1,0), C = (1,0,1), D = (0,1,1), i cui lati sono quattro diagonali di facce di un cubo di lato 1. T è un tetraedro regolare di lato $\sqrt{2}$, con volume 1/3, come si ottiene dalla formula precedente ponendo

$$\vec{u} = \vec{AB} = (1, 1, 0), \ \vec{v} = \vec{AC} = (1, 0, 1), \ \vec{w} = \vec{AD} = (0, 1, 1).$$

Osservando che se il lato varia di un fattore a il volume varia di un fattore a^3 , si ottiene il volume $\frac{1}{3} \frac{1}{(\sqrt{2})^3} = \frac{\sqrt{2}}{12}$ del tetraedro regolare di lato 1. $\frac{\sqrt{b_{\text{nove'}}}}{\sqrt{b_{\text{nove'}}}} = \sqrt{b_{\text{nove'}}}$

$$\frac{\sqrt{\frac{1}{6}} | u \cdot (v \times w)|}{| u \cdot (v \times w)| = | u \cdot (-1, -1, 1)| = | -2 | = 2}$$

$$\sqrt{\frac{1}{6}} = \frac{2}{6} = \frac{1}{3}$$