Activité 5 : Mouvement et forces

Objectifs de la séance :

- > Comprendre la notion de force, connaître des exemples de forces
- > Comprendre le lien entre mouvement et force
- > Comprendre le principe d'inertie

Document 1 – Force et action mécanique

> Un corps exerce une **action mécanique** sur le système étudié s'il est capable d'en modifier le mouvement. Une action mécanique est modélisée par une **force**.

La force exercée par un corps A sur un corps B est représentée par un vecteur $\overrightarrow{F}_{A/B}$. Ce vecteur possède les caractéristiques suivantes :

- Une **norme** notée $F_{A/B}$, qui s'exprime en newton (N).
- Une direction et un sens qui dépendent de la situation.
- Un point d'application : le centre du système B.

Document 2 – Exemples de forces

On distingue 2 types d'actions : les **actions de contact** (contact entre l'objet qui donne la force et l'objet qui la reçoit), et les **actions à distance** (pas de contact).

Force	Norme	Direction, sens
poids \overrightarrow{P}	$P = m \times g$	verticale, vers le bas
réaction du support \overrightarrow{R}	égale à celle du poids : $R = P$	perpendiculaire au support, vers le haut
frottements \overrightarrow{f}	dépend du cas étudié	\overrightarrow{f} est opposée à la vitesse \overrightarrow{v} (opposée au mouvement)

- Le poids \overrightarrow{P} représente l'interaction gravitationnelle de la Terre.
- La réaction du support \overrightarrow{R} représente l'action exercée par le support sur un objet posé dessus.
- Les frottements \overrightarrow{f} représentent l'action d'un milieu (gaz, liquide, support solide) sur un objet qui s'y déplace.

Système	Ballon	Curling
Forces appliquées		
Mouvement	Immobile	
Système	Parachutiste	Skieuse
Forces appliquées		
Mouvement		

 ${\tt FIGURE}\ 1-Représentation\ des\ forces\ pour\ quelques\ situations\ sportives$

1 – Forces et mouvement

1 – Parmi les forces \overrightarrow{P} , \overrightarrow{R} et \overrightarrow{f} , indiquer celles qui sont des forces de contact et celles qui sont des forces à distance.			
2 – En vous aidant des documents 1 et 2, compléter la figure 1 :			
• Sur chaque système étudié, schématiser avec des flèches la ou les forces entrant er jeu, en faisant attention à son point d'application.			
• Pour chaque système, indiquer son mouvement pour un ou une observatrice extérieure (trajectoire + évolution de la vitesse).			
2 – Principe d'inertie			
3 – Répondre par vrai ou faux en justifiant à l'aide d'exemples ou de contre exemples.			
• Si un objet est en mouvement, alors il est forcément accéléré.			
• Si un objet est en mouvement, alors il subit une force dans le sens du mouvement			
• Si deux objets sont animés par les mêmes forces, alors ils suivent la même trajectoire			
4 — On dit que deux forces se compensent si leur sommes vectorielle est nulle. Pour quels systèmes de la figure 1 les forces se compensent-elles?			
5 – Quel est le mouvement du système dans chaque cas où les forces se compensent ?			

	Document 3 – Conclusion : Le principe d'inertie	
]	Le principe d'inertie a été formulé pour la première fois par Newton en 1687. Newton s'appuyait sur les travaux de Descartes et de Galilée, et parfois on appelle ce principe la première loi de Newton . Sa formulation moderne est la suivante :	
	Si les forces qui s'exercent sur un système se compensent, alors ce système est soit, soit en mouvement	
	Réciproquement, si un système est, alors les forces	
déc	3 – Variation du vecteur vitesse 6 – Comment varie \overrightarrow{v} pour un système qui a un mouvement rectiligne uniforme? Et duire la variation de \overrightarrow{v} pour un système soumis à des forces qui se compensent.	n