LES ACIERS ALLIES

Diagramme d'équilibre des aciers alliés

- Le diagramme d'équilibre des aciers faiblement alliés est très proche de celui des aciers non alliés.

 Le diagramme d'équilibre des aciers fortement alliés, évolue en fonction de taux des éléments d'alliage

LES ACIERS ALLIES

L'insuffisance des propriétés des aciers non alliés en vue de certaines applications a conduit à la mise au point d'aciers alliés

Exemple:

- ◆ Aciers alliés **résistant à la temperature** (les aciers réfractaires).
- Aciers résistants à l'usure (acier au Manganese).
- Aciers résistant à la corrosion (les aciers inoxydables).
- L'amélioration de (la) ou des propriétés souhaitées se fait par addition en quantité suffisante d'un ou plusieurs éléments.

RAPPEL SUR LES DESIGNATIONS

Eléments de désignation -3

Les Aciers non alliés d'usage courant

Classification par emplois

Appellation courante

Aciers dits d'usage général Aciers
dits de construction

Classification par composition chimique

Aciers pour traitements thermiques

Symbole

S

Ē

C

Caractéristiques mécaniques Suivi de la valeur minimale de la limite d'élasticité $R_{e\ mini} \qquad (\text{ en mégapascals}; \ 1 \ \text{Mpa} = 1 \ \text{N/mm}^2)$

Suivi du pourcentage moyen de carbone multiplié par 100 exemple: 0,4% de C ==> 40

Un exemple

S 185

E 295

C 35

Emplois, principales propriétés Constructions mécaniques ou métalliques assemblées ou soudées.

S'il s'agit d'un <u>acier moulé</u> la désignation est précédée de la <u>lettre</u> <u>G</u>: exemples, GS185 ou GE295

Ces aciers conviennent aux traitements thermiques et au forgeage.
Un acier moulé sera précédé de la <u>lettre G</u> exemple, GC 25

Eléments de désignation -4

Les Aciers alliés

Aciers faiblement alliés

Teneur de chaque élément d'addition < 5%

La désignation comprend dans l'ordre:

Pas de symbole

Teneur en carbone [x par 100]

Une suite de symboles chimiques précisant les éléments d'addition, rangés dans l'ordre décroissant

Une suite de nombre, rangés dans le même ordre, indiquant la teneur des éléments d'addition:

[% x par 4], pour Cr - Co - Mn - Ni - Si - W [% x par 10], pour les autre éléments

Exemple:

Moins de 1 % de Nickel

Aciers fortement alliés

Teneur d'au moins un élément > 5%

La désignation comprend dans l'ordre:

Symbole X

Teneur en carbone [x par 100]

Une suite de symboles chimiques précisant les éléments d'addition, rangés dans l'ordre décroissant

Une suite de nombre, rangés dans le même ordre, indiquant la teneur des éléments d'addition:

la valeur correspond aux pourcentages nominaux réels

Ancienne et nouvelle désignation des aciers

- Exemples:

- 35 CD 4 (Ancienne désignation) est remplacé par 35 CrMo4 (Nouvelle désignation)

 Z2 CN 18-10 (Ancienne désignation) est remplacé par X2 CrNi 18-10 (Nouvelle désignation)

COUPE PSEUDO - BINAIRE Fe - C - Cr à 12 % Cr

INFLUENCE des éléments d'alliage SUR LE DOMAINE AUSTENITIQUE

Le caractère α ou γ-gène des éléments d'alliage influence l'extension du domaine austénitique.

MODIFICATION DU DOMAINE AUSTENITIQUE SOUS L'ACTION DES ELEMENTS D'ALLIAGES :

Manganèse et Chrome.

Diagramme d'équilibre du système fer – carbone – Manganèse à 13% de Manganèse

MERCI DE VOTRE ATTENTION