$STA365_homework1_code$

Ruike Xu

03/02/2022

Question 2

Part b

```
# Assume that r = p

p \leftarrow seq(0, 1, by=0.01)

Ep\_Sp \leftarrow -log2(p)*p - (1-p)*log2(1-p)

plot(p, Ep\_Sp,type="l", xlab="Values of p", ylab="Ep[s(p)]", main ="Shannon information entropy")
```

Shannon information entropy

Question 4

Part C

```
theta <- seq(0, 1, by=0.1)
prob_X <- dbinom(66, size = 100, prob = theta)
prob_likelihood <- tibble(theta, prob_X)
ggplot(prob_likelihood, aes(x=theta, y=prob_X)) +
  geom_point(size = 2) + labs(x="value of theta",
  y="Probabilities given theta",
  title="Probabilities against different theta values under binomial distribution")</pre>
```

Probabilities against different theta values under binomial distribution

${\bf Question}~{\bf 5}$

Part C

```
# 95% Credible interval for prior Beta(2,8)
qbeta(c(0.025, 0.975), 17, 36)
```

[1] 0.2032978 0.4510240

Part D

Prior distribution p(theta) for Beta(2,8) prior

Likelihood function p(y|theta)

Posterior distribution p(theta|y) for Beta(2,8) prior

Part E

```
# 95% Credible interval for prior Beta(8,2)
qbeta(c(0.025, 0.975), 23, 30)
```

[1] 0.3046956 0.5679528

Prior distribution p(theta) for Beta(8,2) prior

Likelihood function p(y|theta)

Posterior distribution p(theta|y) for Beta(8,2) prior

