Proyecto # 3: Kevin el encargado

Laura Victoria Riera Pérez Marié del Valle Reyes

Cuarto año. Ciencias de la Computación. Facultad de Matemática y Computación, Universidad de La Habana, Cuba

13 de junio de 2023

I. Repositorio del proyecto

https://github.com/computer-science-crows/algorithms-design-and-analysis

II. DEFINICIÓN INICIAL DEL PROBLEMA

Kevin ha sido puesto al frente de la comisión de la facultad que elegirá las fechas de las pruebas de los k cursos que se dan en la facultad.

Cada curso tiene una cantidad de pruebas determinadas que quiere poner, y propone para esto, por ejemplo, los días { 17, 34, 65 y 87 } del curso escolar, si vemos a este como una sucesión de días en los que se imparten clases. Para mostrarse flexibles, los cursos a veces elaboran más de una propuesta incluso.

Por un problema de desorganización las propuestas se regaron y ahora no se sabe que curso propuso que propuesta, pero ya Kevin esta cansado de tanta gestión. Kevin quiere elegir k propuestas que ninguna quiera poner pruebas el mismo día que las otras, así supone que todo el mundo estará contento, ayude a Kevin.

III. DEFINICIÓN EN TÉRMINOS MATEMÁTICO - COMPUTACIONALES

La entrada de nuestro problema es el número k de cursos impartidos en el semestre y una lista p que contiene al menos k propuestas. Una propuesta es una lista con días del curso escolar en donde podrían efectuarse las pruebas de un curso. El objetivo es encontrar una cantidad k de propuestas sin días en común para formar el calendario de exámenes. La salida del problema es una lista con una combinación posible de propuestas en caso de existir, de lo contrario, se ofrecen disculpas a Kevin y se retorna una lista vacía.

Teoría de grafos

Este problema también puede ser resuelto utilizando el enfoque de la teoría de grafos, modelándolo como un grafo donde cada nodo representa una propuesta, y una arista entre dos nodos indica que las propuestas correspondientes tienen algún día en común.

Definición 1. *Sea* G = (V, E) *un grafo.* $A \subseteq V$ *es un conjunto independiente de G si el subgrafo inducido por A no tiene aristas.*

Un conjunto independiente en este caso, constituiría un conjunto de propuestas que no tienen diás en común. El problema estaría en buscar un conjunto independiente de tamaño k.

IV. Problema NP: Máximo conjunto independiente

V. Soluciones implementadas

Backtrack

Como primera solución al problema fue implementado un *backtrack*. Esta es una solución correcta, ya que genera todas las combinaciones posibles de k propuestas y verifica si cumplen con la restricción de que no haya dos cursos con exámenes el mismo día. La complejidad temporal de este algoritmo es $O(n^k)$, donde n es el número de propuestas. En una computadora de 32GB de RAM, intel core i7-11na generación, se puede resolver para una cantidad máxima . Dicha solución puede ser encontrada en src/solutions/backtrack_solution.py.

ajustar al problema actual

II. Programación lineal

Este problema puede ser modelado también como un problema de optimización lineal. Sea x_i una variable binaria que indica que se tomó el vértice i. Se quiere maximizar la suma de $x_i \forall i \in V$. Las restricciones añadidas garantizan que ningún par de vértices elegidos sean vecinos, y por tanto la solución hallada sea un conjunto independiente.

$$\begin{cases} \text{máx} & z = \sum_{i \in V} x_i \\ \text{s.a.} & x_i + x_j \le 1 \quad \forall (i, j) \in E \\ & x_i \in \{0, 1\} \quad \forall i \in V \end{cases}$$
 (1)

Esta solución fue implementada utilizando la librería *PuLP* y puede ser encontrada en *sr-c/solutions/linear_prog_solution.py*. La complejidad temporal para resolver problemas con PuLP depende del solucionador subyacente que se utilice. Por defecto, PuLP usa COIN-OR Branch and Cut Solver (CBC), el cual se basa en el método simplex y es combinado con otros algoritmos.

La complejidad temporal del método simplex es generalmente $O(n^2 \cdot log(n))$ (el caso peor es $O(2^n)$, pero en general es bastante rápido), donde n es el número de variables en el problema. Sin embargo, debido a los algoritmos adicionales utilizados por CBC, la complejidad temporal real puede variar según la instancia específica del problema.

III. Metaheurística: Algoritmo genético

En la resolución del problema se utiliza el algortimo genético como metaheurística. La implementación se basa en representar las soluciones como una lista binaria del mismo tamaño que la lista de propuestas de entrada. En esta representación, un valor de 1 en un índice indica que esa propuesta ha sido seleccionada, mientras que un valor de 0 indica que no ha sido seleccionada.

El objetivo del algoritmo genético es encontrar una lista binaria con exactamente k valores de 1, lo que representa la selección de k propuestas sin que ninguna de ellas tenga días comunes. Para lograr esto, se emplean dos operadores principales: mutación y cruzamiento.

La operación de mutación consiste en intercambiar posiciones en la lista binaria. Esto permite explorar nuevas soluciones al cambiar las propuestas seleccionadas. Por ejemplo, si se encuentra un 1 en un índice, se puede intercambiar ese valor con otro índice donde haya un 0 y viceversa.

El operador de cruzamiento, o crossover, se aplica a dos listas binarias. Dado un índice i, se intercambian todos los elementos hasta el índice i de una lista con los elementos de la otra lista. Esto permite combinar características de ambas soluciones y explorar nuevas posibilidades.

La función de evaluación se encarga de determinar la calidad de una solución. En este caso, devuelve un número positivo si la lista binaria es válida, es decir, si cumple con las restricciones de que las propuestas seleccionadas no tengan días comunes. Por el contrario, devuelve un número negativo si la lista binaria no es válida.

El algoritmo genético continúa iterando hasta encontrar una lista binaria válida que cumpla con las restricciones. Se generan nuevas soluciones aplicando mutación y crossover, y se seleccionan las mejores soluciones para la siguiente generación, utilizando la función de evaluación como criterio de selección.

iv. Aproximaciones

Los algoritmos de aproximación son una técnica poderosa para tratar problemas de optimización NP-hard, proporcionando garantías comprobables sobre la distancia de la solución devuelta a la óptima. Estos algoritmos son particularmente útiles cuando una solución exacta es intratable y se puede encontrar rápidamente una solución casi óptima.

- iv.1. Greedy
- iv.2. Random
- iv.3. Bellman-Ford

VI. Generador de casos de prueba

En *src/app/generator.py* fue implementado un generador, el cual recibe una cantidad *s* de muestras a producir, genera valores random con el formato de entrada de los algoritmos implementados, halla la solución óptima con *backtrack* y las guarda en *json/test_cases.json*. Se generaron 3000 casos de prueba.

VII. TESTER

En *src/app/tester.py* fue implementado un tester, que recibe una función y prueba el desempeño de la misma en cuanto a si obtuvo la solución óptima o no, y el tiempo que demoró en hacerlo, comparando con los casos de prueba obtenidos con el generador. Además, estos resultados se guardan en un *.json* con el nombre de la función en la carpeta tests. La solución implementada fue testeada para todos los casos de prueba generados y puede encontrarse en *json/tests/corruption_strategy_solution.json* .

VIII. Comparación de soluciones implementadas

REFERENCIAS

[1] Cormen, Thomas H. y otros. *Introduction to Algorithms*. The MIT Press. 4ta Edición. Cambridge, Massachusetts. 2022.