

Übungsblatt 3 Differentialrechnung einer Veränderlichen

Aufgabe 1

Berechnen Sie die erste Ableitung der folgenden Funktionen:

a)
$$f(x) = x^3(x^3 - 4x)$$

b)
$$f(x) = \frac{13}{x^4}$$

c)
$$f(x) = \sqrt[4]{x^3}$$

d)
$$f(x) = (x^3 + x)^{25}$$

Berechnen Sie die erste Ableitung der folgenden Funktionen:
a)
$$f(x) = x^3(x^3 - 4x)$$
 b) $f(x) = \frac{13}{x^4}$ c) $f(x) = \sqrt[4]{x^3}$ d) $f(x) = (x^3 + x)^{25}$ e) $f(x) = \frac{x^3 + 1}{(x^2 - 1)^2}$ f) $f(x) = \sqrt{x} \cdot \ln x$ g) $f(x) = \frac{2x + 3}{e^x x^3}$ h) $f(x) = (ax)^x$ i) $f(x) = e^{x^3} \cdot \ln x^2$

f)
$$f(x) = \sqrt{x} \cdot \ln x$$

g)
$$f(x) = \frac{2x+3}{e^x x^3}$$

$$h) f(x) = (ax)^x$$

$$i) f(x) = e^{x^3} \cdot \ln x^2$$

Aufgabe 2

Untersuchen Sie die Funktion f(x) auf Stetigkeit und Differenzierbarkeit.

$$f(x) = \begin{cases} \frac{x^2}{2|x|} &, x \neq 0 \\ 0 &, x = 0 \end{cases}$$

Aufgabe 3

Ein Unternehmen produziere ein Gut gemäß folgender Produktionsfunktion:

$$x(r) = -r^3 + 12r^2 + 60r(x : \text{Ertrag, Output } [ME_x]; r : \text{Input } [ME_r]).$$

Bestimmen Sie die Nullstellen, die Extremwerte und die Wendepunkte und interpretieren Sie diese inhaltlich.

Aufgabe 4

Gegeben ist die Funktion $f: \mathbb{R} \to \mathbb{R}$ mit den Parametern $a, c \in \mathbb{R}$:

$$f(x) = \begin{cases} \frac{2}{3}x & x \le 3\\ (x-a)^{\frac{1}{2}} + c & x > 3 \end{cases}$$

- 1. Skizzieren Sie den Verlauf der Funktion im Bereich $0 \le x \le 6$ für den Fall a = 2 und $c = \frac{3}{2}$.
- 2. Bestimmen Sie alle Werte der Parameter a und c, so dass die Funktion f an der Stelle $x_0 = 3$ stetig ist.
- 3. Bestimmen Sie alle Werte der Parameter a und c, so dass die Funktion f an der Stelle $x_0 = 3$ differenzierbar ist.

Aufgabe 5

Gegeben sind eine Erlösfunktion $E(x) = x^4 + 2x^2$ sowie eine Kostenfunktion $K(x) = e^{\sqrt{x}}$ in Abhängigkeit von einer Menge x.

- 1. Wie lautet die Gewinnfunktion G(x)?
- 2. Ermitteln Sie für die Gewinnfunktion die erste Ableitung G'(x).
- 3. Ermitteln Sie für die Gewinnfunktion die zweite Ableitung G''(x).
- 4. Gesucht ist das Gewinnmaximum und es ist bekannt, dass es in der Nähe von x=600 liegen muss. Verwenden Sie Ihre Ergebnisse aus b) und c), um mit Hilfe des Newton-Verfahrens das Maximum der Gewinnfunktion anzunähern. Hinweis: Es sind zwei Iterationen durchzuführen.