Example of Hierarchical Clustering Using Heap

INF 553 Wensheng Wu

Clustering Problem

	b	C	d
а	1	5	7
b		4	6
С			2

Initial Heap Before Heapified

After Heapified

After one merge

• Extract: 1, (a, b) 1,(a,b) - New cluster: ab 4,(b,c) 2,(c,d) 6,(b,d) 5,(a,c) 7,(a,d) 7,(a,d) 4,(b,c) 2,(c,d) 6,(b,d) 5,(a,c)

Sifting root down

Remove Nodes Having Old Clusters

- Need an index to know which nodes having a or
 b
 - # of clusters = 4
 - Need to remove 2n 3 = 5 nodes
 - (a, b) already removed
 - Remove 4 more here

4,(b,c)

7,(a,d)

5,(a,c)

2,(c,d)

2,(c,d)

Compute Distance of ab with c & d

	b	С	d
а	1	5	7
b		4	6
С			2

Adding new pairs to heap

- # of clusters
 - before merge = 4 or n
 - After merge = 3 or n -1
 - ab, c, d
- Add n 2 pairs
 - Dist btw ab and c
 - Dist btw ab and d

2,(c,d)

Merging c and d

- Remove 2, (c, d)
- Remove all nodes involving c and d

$$-2k-3=3$$
, since $k=3$

⇒Empty heap

Empty heap

Adding new pairs to heap

- Clusters: (ab) (cd)
 - Distance = dist btw b and c = 4

- Add to heap
 - Add k 2 = 1 node

4,(ab, cd)

Final merge => (abcd)

Dendrogram

Using Lazy Deletion

Do not remove nodes that involve old clusters

- Until they show up at the root
 - When doing ExtractMin

After one merge

• Extract: 1, (a, b) 1,(a,b) – New cluster: ab – Old clusters: a, b 4,(b,c) 2,(c,d) 6,(b,d) 5,(a,c) 7,(a,d) 7,(a,d) 4,(b,c) 2,(c,d) 6,(b,d) 5,(a,c)

After sifting root down

Add Pairs for New Cluster ab

• 4, (ab, c) and 6, (ab, d): sifting up if needed

Second Merge

- Extract 2, (c, d), i.e., merge c and d
 - Move last leaf to root and sift down (next slide)

Sift down root

Can go either way, say left

Add Pairs for New Cluster cd

Find Next Two Clusters Merge

- Old clusters: a, b, c, d
 - A & b merged into ab, c & d => cd
- Extract 4, (b, c)
 - found out it is for old cluster

After Exacting 4, (b, c)

Found a Qualified Pair

Extract 4, (ab, cd)

