1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 3,21x_1 - 2,25x_2 + 2,13x_3 = 5,06 \\ 7,09x_1 + 9,17x_2 - 1,23x_3 = 4,75 \\ 0,43x_1 - 1,40x_2 - 4,62x_3 = -1,05 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 - 2x_2 = 11,4 \\ -x_1 + 6x_2 - 2x_3 = 5,7 \\ 2x_2 + 10x_3 - 4x_4 = 15,2 \\ -x_3 + 6x_4 = 9,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $\ln x + (x+1)^3 = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 1{,}3832$

x_i	1,375	1,380	1,385	1,390	1,395	1,400
y_i	5,04192	5,17744	5,32016	5,47069	5,62968	5,79788

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	1,1	1,0	1,4	1,4	2,0	1,3	2,0	2,1	2,6	2,4	2,8

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} e^{-x^2} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 + 0.2y \sin x y^2$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ $y''+\frac{y'}{x}+2y=x,\quad \begin{cases} y(0,7)=0,5\\ 2y(1)+3y'(1)=1,2 \end{cases}$

$$y'' + \frac{y'}{x} + 2y = x$$
, $\begin{cases} y(0,7) = 0.5 \\ 2y(1) + 3y'(1) = 1.2 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 6,42x_1 - 1,13x_2 + 1,05x_3 = 6,15 \\ 1,14x_1 - 5,15x_2 + 2,11x_3 = -4,16 \\ -0,71x_1 + 0,81x_2 - 3,02x_3 = -0,17 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 7x_1 - 3x_2 = 12,4 \\ -2x_1 + 7x_2 - 3x_3 = 6,7 \\ 3x_2 + 11x_3 - 5x_4 = 16,2 \\ -2x_3 + 7x_4 = 10,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $x \cdot 2^x = 1$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=0,\!1264$

x_i	0,115	0,120	0,125	0,130	0,135	0,140
y_i	8,65729	8,29329	7,95829	7,64893	7,36235	7,09613

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	1,9	1,8	2,2	2,1	2,6	2,1	2,7	2,5	2,9	2,7	3,3

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int\limits_{0,8}^{1,6} \frac{dx}{\sqrt{2x^2+1}}$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = \cos(x + y) + 0.5(x y)$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' - xy' + 2y = x + 1$$
, $\begin{cases} y(0,9) - 0.5y'(0,9) = 2\\ y(1,2) = 1 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 3.5x_1 - 2.12x_2 - 4.03x_3 = -7.5 \\ 0.61x_1 + 3.71x_2 - 0.05x_3 = 0.44 \\ -1.03x_1 - 2.05x_2 + 5.87x_3 = -1.16 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 6x_1 - x_2 = 10,4\\ x_1 + 7x_2 - x_3 = 6,7\\ x_2 + 9x_3 - 5x_4 = 14,2\\ x_3 + 5x_4 = 8,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $\sqrt{x+1} = \frac{1}{x}$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=0,1521$

x_i	0,150	0,155	0,160	0,165	0,170	0,175
y_i	6,61695	6,39989	6,19658	6,00551	5,82558	5,65583

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

)	c_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
3	v_i	1,1	1,0	0,7	0,8	0,3	0,7	0,4	0,6	-0,3	-0,9	-0,9

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{1.2}^{2} \frac{\lg(x+2)}{x} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = (1 y^2)\cos x + 0.5y$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O\!\!\left(h^2\right)$ решить краевую задачу для ОДУ

$$y'' + xy' + y = x + 1$$
, $\begin{cases} y(0,5) + 2y'(0,5) = 1 \\ y'(0,8) = 1,2 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 7,09x_1 + 1,17x_2 - 2,23x_3 = -4,75\\ 0,43x_1 + 1,40x_2 - 0,62x_3 = -1,05\\ 3,21x_1 - 4,25x_2 + 9,13x_3 = 5,06 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 10x_1 - x_2 = 13,4 \\ -3x_1 + 7x_2 - x_3 = 7,7 \\ x_2 + 8x_3 - 6x_4 = 15,5 \\ -2x_3 + 6x_4 = 9,7 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $x \cos x = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=0,1838$

x_i	0,180	0,185	0,190	0,195	0,200	0,205
y_i	5,61543	5,46693	5,32634	5,19304	5,06649	4,94619

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	3,0	2,1	2,3	2,6	2,5	2,7	2,3	1,8	1,8	1,2	1,0

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} \frac{\text{tg } x^{2}}{x^{2} + 1} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = \frac{\cos x}{x+1} 0.5y^2$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + 2y' - \frac{y}{x} = 3$$
, $\begin{cases} y(0,2) = 2\\ 0.5y(0,5) - y'(0,5) = 1 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases}
9,14x_1 - 2,15x_2 - 5,11x_3 = -4,16 \\
-0,71x_1 + 3,81x_2 - 0,02x_3 = -0,17 \\
0,42x_1 - 1,13x_2 + 7,05x_3 = 6,15
\end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 - 2x_2 = 10,0 \\ -x_1 + 7x_2 - 2x_3 = 5,5 \\ 2x_2 + 9x_3 - 4x_4 = 15,5 \\ -x_3 + 5x_4 = 9,0 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $3x + \cos x + 1 = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=0,2121$

x_i	0,210	0,215	0,220	0,225	0,230	0,235
y_i	4,83170	4,72261	4,61855	4,51919	4,42422	4,33337

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	2,0	2,4	1,6	1,8	1,7	1,8	1,5	1,3	1,5	1,2	1,0

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} \frac{\cos x}{x+1} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = \frac{\cos y}{x+2} + 0.3y^2$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + 2y' - xy = x^2$$
, $\begin{cases} y'(0,6) = 0.7 \\ y(0,9) - 0.5y'(0,9) = 1 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases}
1,61x_1 + 0,71x_2 - 0,05x_3 = 0,44 \\
-1,03x_1 - 2,05x_2 + 0,87x_3 = -1,16 \\
2,50x_1 - 3,12x_2 - 6,03x_3 = -7,50
\end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 - 4x_2 = 11,0 \\ -2x_1 + 6x_2 - 2x_3 = 5,0 \\ 2x_2 + 9x_3 - 5x_4 = 15,5 \\ -2x_3 + 6x_4 = 9,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $x + \lg x = 0.5$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=1,4179$

x_i	1,415	1,420	1,425	1,430	1,435	1,440
y_i	0,888551	0,889559	0,890637	0,891667	0,892687	0,893698

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	-1,0	-1,0	-0,9	-0,5	-0,7	-0,6	-0,3	-0,5	0,4	0,8	1,2

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} \sqrt{x} \cos x^2 dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 \sin(x + y) + \frac{0.5y}{x + 2}$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' - y' + \frac{2y}{x} = x + 0.4, \quad \begin{cases} y(1,1) - 0.5y'(1,1) = 2\\ y'(1,4) = 4 \end{cases}$$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 3,11x_1 - 1,66x_2 - 0,60x_3 = -0,92\\ -1,65x_1 + 3,51x_2 - 0,78x_3 = 2,57\\ 0,60x_1 + 0,78x_2 - 1,87x_3 = 1,65 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 + 2x_2 = 10,5 \\ x_1 + 6x_2 - 3x_3 = 5,5 \\ 2x_2 - 10x_3 - 4x_4 = 15,0 \\ -3x_3 - 6x_4 = 7,5 \end{cases}$$

$$A = egin{pmatrix} 50 + 3n & 10 - n & 3 \\ 10 - n & 20 + 2n & 10 - n \\ 3 & 10 - n & 90 - n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $2 x = \ln x$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=1{,}3926$

x_i	1,370	1,376	1,382	1,388	1,394	1,400
y_i	5,04192	5,17744	5,32016	5,47069	5,62968	5,79788

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	0,8	1,0	1,4	1,8	1,7	2,0	3,0	3,7	4,0	5,4	6,2

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0.5}^{1} \frac{\sin 2x}{x^2} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = \cos(1.5x + y) + x y$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h = 0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' - 3y' + \frac{y}{x} = 1$$
, $\begin{cases} y(0,4) = 2\\ y(0,7) + 2y'(0,7) = 0.7 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 0.71x_1 + 0.10x_2 + 0.12x_3 = 0.29 \\ 0.10x_1 + 0.34x_2 - 0.04x_3 = 0.32 \\ 0.12x_1 - 0.04x_2 + 0.90x_3 = -0.10 \end{cases}$$

2. Решить СЛАУ с точностью
$$\varepsilon = 0.01$$
: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8,5x_1 - 2x_2 = 13,5 \\ -1,5x_1 + 6,5x_2 - 2x_3 = 5,0 \\ 2x_2 + 10,5x_3 - 4x_4 = 15,0 \\ -x_3 + 5,5x_4 = 9,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $(x-1)^2 = 0.5e^x$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 0,1315$

x_i	0,110	0,116	0,122	0,128	0,134	0,140
y_i	8,65729	8,29329	7,95829	7,64893	7,36235	7,09613

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	2,1	2,0	2,0	2,5	2,4	3,1	3,2	3,8	4,0	4,6	5,4

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0.5}^{1} \frac{\lg(x^2+1)}{x} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = \frac{\cos y}{1,5+x} + 0.1y^2$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' - \frac{y'}{2} + 3y = 2x^2$$
, $\begin{cases} y(1) + 2y'(1) = 0.6 \\ y(1,3) = 1 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases}
0.54x_1 - 0.04x_2 + 0.10x_3 = 0.33 \\
-0.04x_1 + 0.50x_2 + 0.12x_3 = -0.05 \\
0.10x_1 + 0.12x_2 + 0.71x_3 = 0.28
\end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 2x_1 - 8x_2 = 11,4 \\ -2x_1 + 6x_2 - x_3 = 5,7 \\ -4x_2 + 10x_3 + 2x_4 = 15,2 \\ 6x_3 - x_4 = 9,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon=0.01$ уточнить один из корней уравнения $(2-x)e^x=0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 0,1611$

x_i	0,150	0,156	0,162	0,168	0,174	0,180
y_i	6,61695	6,39989	6,19658	6,00551	5,82558	5,65583

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	1,0	1,0	1,5	1,9	2,5	2,6	3,7	4,0	4,9	6,2	7,5

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0.5}^{1} \frac{\text{tg}(x^2 + 0.5)}{1 + 2x} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 + 0.6 \sin x 1.25 y^2$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + 3y' - \frac{y}{x} = x + 1,$$

$$\begin{cases} y'(1,2) = 1 \\ 2y(1,5) - 3y'(1,5) = 0.5 \end{cases}$$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 1,12x_1 - 0,43x_2 + 0,14x_3 = -0,17 \\ -0,07x_1 + 1,34x_2 + 0,72x_3 = 0,62 \\ 1,18x_1 - 0,08x_2 - 2,25x_3 = 1,12 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 5x_1 - x_2 = 9 \\ -x_1 + 7x_2 - 2x_3 = 5 \\ 2x_2 + 11x_3 - 4x_4 = 15 \\ -x_3 + 5x_4 = 10 \end{cases}$$

$$A = egin{pmatrix} 50 + 3n & 10 - n & 3 \\ 10 - n & 20 + 2n & 10 - n \\ 3 & 10 - n & 90 - n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $x^2 + 4\sin x = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=0,1875$

x_i	0,180	0,186	0,192	0,198	0,204	0,210
y_i	5,61543	5,46693	5,32634	5,19304	5,06649	4,94619

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	2,2	2,0	2,2	3,2	2,6	3,8	4,5	5,2	5,8	7,0	8,0

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_0^1 \frac{\sin x}{x+1} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = \cos(2x + y) + 1,5(x y)$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O\!\!\left(h^2\right)$ решить краевую задачу для ОДУ

$$y'' + 1.5y' - xy = 0.5, \begin{cases} 2y(1.3) - y'(1.3) = 1\\ y(1.6) = 3 \end{cases}$$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 1,97x_1 + 0,53x_2 - 0,84x_3 = 1,15 \\ 0,64x_1 - 1,72x_2 - 0,43x_3 = 0,15 \\ 0,32x_1 + 0,43x_2 - 0,93x_3 = -0,48 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 - x_2 = 10,5 \\ 3x_1 + 6x_2 - x_3 = 5,5 \\ 2x_2 + 9x_3 - 3x_4 = 15,0 \\ -2x_3 + 5x_4 = 9,0 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $2x \lg x = 7$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=0.2165$

x_i	0,210	0,216	0,222	0,228	0,234	0,240
y_i	4,83170	4,72261	4,61855	4,51919	4,42422	4,33337

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	2,1	2,0	2,0	2,5	2,9	3,1	3,2	2,8	2,0	1,6	0,8

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int\limits_0^1 \sqrt{x+1} \cos x^2 dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 \frac{0.1y}{x+2} \sin(2x+y)$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + 2xy' - y = 0,4,$$

$$\begin{cases} 2y(0,3) + y'(0,3) = 1\\ y'(0,6) = 2 \end{cases}$$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases}
6,67x_1 - 1,44x_2 - 0,18x_3 = 1,83 \\
0,48x_1 - 1,24x_2 + 0,37x_3 = -0,84
\end{cases}$$

$$0.86x_1 + 0.43x_2 + 1.64x_3 = 0.64$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 - 2x_2 = 10,4 \\ -x_1 + 6x_2 - 2x_3 = 6,7 \\ 2x_2 + 10x_3 - 4x_4 = 14,5 \\ -x_3 + 6x_4 = 10,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $5x 8 \ln x = 8$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 1,4258$

x_i	1,410	1,416	1,422	1,428	1,434	1,440
y_i	0,888551	0,889559	0,890637	0,891667	0,892687	0,893698

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	2,2	2,0	2,2	3,2	2,6	3,8	4,5	3,2	2,8	5,0	3,0

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} \frac{\lg(x^2 + 2)}{x + 1} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = \frac{\cos y}{1.25 + x} 0.1y^2$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' - 0.5xy' + y = 2$$
, $\begin{cases} y(0.4) = 1.2 \\ y(0.7) + 2y'(0.7) = 1.4 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases}
2,82x_1 + 0,43x_2 - 0,57x_3 = 0,48 \\
-0,35x_1 + 1,12x_2 - 0,48x_3 = 0,52 \\
0,48x_1 + 0,23x_2 + 2,37x_3 = 1,44
\end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 + 2x_2 = 15,0 \\ -3x_1 + 9x_2 - 2x_3 = 5,5 \\ x_2 + 10x_3 + x_4 = 15,0 \\ x_3 + 6x_4 = 9,5 \end{cases}$$

$$A = egin{pmatrix} 50 + 3n & 10 - n & 3 \\ 10 - n & 20 + 2n & 10 - n \\ 3 & 10 - n & 90 - n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon=0.01$ уточнить один из корней уравнения $3x-e^x=0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=1{,}3862$

x_i	1,375	1,379	1,383	1,387	1,391	1,395
y_i	5,04192	5,17744	5,32016	5,47069	5,62968	5,79788

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	1,0	1,2	1,6	2,6	1,8	2,7	3,5	4,4	4,5	5,2	6,3

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_0^1 \frac{\cos x^2}{x+1} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 + 0.8y \sin x 2y^2$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + \frac{2y'}{x} - 3y = 2$$
, $\begin{cases} y'(0,8) = 1,5 \\ 2y(1,1) + y'(1,1) = 3 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 1,60x_1 + 0,12x_2 + 0,57x_3 = 0,18 \\ 0,38x_1 + 1,25x_2 - 0,54x_3 = 0,63 \end{cases}$$

$$0.28x_1 + 0.46x_2 - 1.12x_3 = 0.88$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 - 1.5x_2 = 11.5 \end{cases}$$

$$\begin{cases} -x_1 + 6.5x_2 - 2x_3 = 5.0 \\ 2x_2 + 10x_3 + 2x_4 = 15.0 \end{cases}$$

$$2x_2 + 10x_3 + 2x_4 = 15,0$$

$$2x_3 + 6x_4 = 8,5$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $x^2 = \cos x$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 0,1232$

x_i	0,110	0,114	0,118	0,122	0,126	0,130
y_i	8,65729	8,29329	7,95829	7,64893	7,36235	7,09613

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,12	0,19	0,35	0,4	0,45	0,62	0,71	0,84	0,91	1,0
y_i	1,2	1,0	1,3	2,1	1,6	2,6	3,6	4,5	5,5	5,5	7,1

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{-2}^{1} \frac{\lg(x^2+3)}{2x} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 \sin(2x + y) + \frac{0.3y}{x + 2}$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h = 0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + 2x^2y' + y = x$$
, $\begin{cases} 2y(0.5) - y'(0.5) = 1 \\ y(0.8) = 3 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 1,36x_1 + 0,13x_2 - 1,14x_3 = 0,43 \\ 0,83x_1 - 3,48x_2 - 2,44x_3 = -0,15 \\ 0,20x_1 - 0,16x_2 + 1,30x_3 = 1,50 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8.5x_1 - x_2 = 10.0 \\ -x_1 + 5.5x_2 - 2x_3 = 5.5 \\ 2x_2 + 9x_3 + 4x_4 = 15.0 \\ x_3 + 3x_4 = 9.5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $x^3 = \cos x$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=0,1662$

x_i	0,150	0,154	0,158	0,162	0,166	0,170
y_i	6,61695	6,39989	6,19658	6,00551	5,82558	5,65583

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

						0,45					
y_i	0,8	1,2	1,1	1,7	1,4	1,9	2,4	3,1	3,5	4,1	3,9

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} \frac{\operatorname{tg} x^{2}}{x+1} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = \frac{\cos y}{1,75 + x} 0.5y^2$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h = 0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' - 3xy' + 2y = 1.5,$$

$$\begin{cases} y'(0.7) = 1.3 \\ 0.5y(1) + y'(1) = 2 \end{cases}$$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases}
-10,01x_1 - 4,23x_2 + 4,11x_3 = 4,22 \\
0,09x_1 + 5,17x_2 - 2,63x_3 = 1,85 \\
0,43x_1 + 2,40x_2 - 3,62x_3 = 1,15
\end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 + 4x_2 = 1,2 \\ -x_1 + 7x_2 + x_3 = 0,7 \\ 3x_2 + 7x_3 - 3x_4 = 5,2 \\ x_3 - 4x_4 = 3,5 \end{cases}$$

$$A = egin{pmatrix} 50 + 3n & 10 - n & 3 \\ 10 - n & 20 + 2n & 10 - n \\ 3 & 10 - n & 90 - n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $\ln^2 x + (x+1)^3 = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 1,272$

x_i	1,250	1,260	1,270	1,280	1,290	1,300
y_i	5,54221	5,57744	5,22012	5,17059	5,12001	5,09048

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0.08	0,10	0,12	0,14	0,16	0,18	0,20	0,22	0,24	0,26	0,28
y_i	1,3	1,0	1,2	1,4	2,1	1,3	2,2	2,1	2,7	2,8	2,9

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} e^{-x^3} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 + 0.3y \sin x y^3$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h = 0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + \frac{y'}{x^2} + 4y = x^2$$
, $\begin{cases} y(0,5) = 0.5 \\ y(1,1) - 3y'(1,1) = 1.3 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases}
5,21x_1 - 0,25x_2 - 1,13x_3 = 3,06 \\
2,09x_1 - 5,17x_2 - 2,53x_3 = 2,75 \\
0,42x_1 - 1,21x_2 + 2,62x_3 = -1,45
\end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 + 5x_2 = 17,4 \\ -x_1 + 3x_2 - x_3 = 3,7 \\ 2x_2 + 5x_3 - 2x_4 = 5,5 \\ x_3 - 3x_4 = 2,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $\ln x + (x+1)^5 = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 1,22$

x_i	1,00	1,10	1,20	1,30	1,40	1,50
y_i	2,24192	3,17865	4,12555	5,12343	6,98785	7,70001

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,10	0,20	0,30	0,40	0,50	0,60	0,70	0,80	0,90	1,00
y_i	0,1	0,3	1,3	1,3	2,1	2,3	2,9	2,8	3,6	3,7	4,8

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} 2^{-x^{2}} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 + 0.5y^3 \cos^2 x y$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + \frac{y'}{x} + 3y^2 = \sqrt{x},$$

$$\begin{cases} 3y(0,3) - 2y'(0,3) = 1,1 \\ y(0,7) = 0,5 \end{cases}$$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 7,11x_1 - 1,25x_2 - 1,12x_3 = 3,06 \\ 3,09x_1 + 4,15x_2 + 1,23x_3 = 3,75 \\ 1,43x_1 + 2,40x_2 - 4,12x_3 = 1,15 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} 8x_1 + x_2 = 1,34 \\ 3x_1 - 6x_2 + 2x_3 = 3,7 \\ 2x_2 - 9x_3 - 4x_4 = 11,1 \\ -x_3 - 3x_4 = 3,5 \end{cases}$$

$$A = egin{pmatrix} 50 + 3n & 10 - n & 3 \\ 10 - n & 20 + 2n & 10 - n \\ 3 & 10 - n & 90 - n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $\sin x (x+1)^2 = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 1{,}313$

x_i	1,305	1,310	1,315	1,320	1,325	1,330
y_i	1,24002	1,12314	1,00006	0,76809	0,53248	0,33221

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

Ī	x_i	0	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50
							2,4					
	<i>J</i> 1	-, -	-,-	-, -	_,_	_, .	_, .	-, -	-, -	-,-	.,.	-,-

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} 3^{-x^2} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 + yx^3 y^3$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h=0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + \frac{y'}{x^3} + 5y = \sqrt{x},$$

$$\begin{cases} y(0.9) - 3y'(0.9) = 1.1 \\ y(1.1) = 0.8 \end{cases}$$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 3,51x_1 + 0,25x_2 + 2,13x_3 = 5,34 \\ -4,09x_1 + 6,67x_2 - 1,03x_3 = 3,12 \end{cases}$$

$$0,23x_1 - 2,40x_2 + 5,56x_3 = -1,05$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{vmatrix}
-6x_1 - 3x_2 = 1,4 \\
-x_1 - 6x_2 - x_3 = -2.
\end{vmatrix}$$

$$\left[-x_1 - 6x_2 - x_3 = -2,7 \right]$$

$$\begin{cases} -x_1 - 6x_2 - x_3 = -2.7 \\ 2x_2 - 9x_3 - 4x_4 = 3.2 \end{cases}$$

$$\left| -3x_3 - 5x_4 \right| = 2,5$$

$$A = egin{pmatrix} 50 + 3n & 10 - n & 3 \\ 10 - n & 20 + 2n & 10 - n \\ 3 & 10 - n & 90 - n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $\cos x \left(2 x\right)^2 = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i, y_i\}$. Найти погрешность в точке $x^* = 1{,}182$

x_i	1,175	1,180	1,185	1,190	1,195	1,200	
y_i	0,01192	-0,00044	0,12436	0,10069	1,32008	1,49988	

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,05	0,10	0,15	0,20	0,25	0,30	0,35	0,40	0,45	0,50
y_i	0,11	0,12	0,10	0,12	0,15	0,15	0,17	0,14	0,18	0,19	0,17

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} x^{2} e^{-x^{2}} dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = 1 + 5y^2 \cos x + 3y^3$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h = 0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + \frac{3y'}{x} - 5\frac{y}{x^2} = \sin x$$
, $\begin{cases} y(0,2) = 0,3 \\ y(1) - y'(1) = 1,0 \end{cases}$

1. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом Гаусса, Б) методом простой итерации

$$\begin{cases} 1,22x_1 - 0,25x_2 + 0,13x_3 = 4,06 \\ -2,09x_1 + 3,17x_2 + 0,23x_3 = 4,05 \\ 0,23x_1 - 2,40x_2 + 5,05x_3 = 1,21 \end{cases}$$

2. Решить СЛАУ с точностью $\varepsilon = 0.01$: А) методом прогонки, Б) Методом Зейделя

$$\begin{cases} -9x_1 + 3x_2 = -3,4\\ 3x_1 - 8x_2 - 2x_3 = 1,7\\ 2x_2 - 9x_3 + 5x_4 = 2,2\\ x_3 - 5x_4 = 5,5 \end{cases}$$

$$A = \begin{pmatrix} 50+3n & 10-n & 3 \\ 10-n & 20+2n & 10-n \\ 3 & 10-n & 90-n \end{pmatrix}$$
, где n - номер варианта

- 4. С точностью $\varepsilon = 0.01$ уточнить один из корней уравнения $\sin x (x+1)^2 = 0$
 - А) методом простой итерации
 - Б) методом половинного деления (дихотомии)
 - В) Методом Ньютона
- 5. Выписать интерполяционные многочлены Лагранжа и Ньютона для узловых значений $\{x_i,y_i\}$. Найти погрешность в точке $x^*=1,283$

x_i	1,205	1,225	1,245	1,265	1,285	1,305	
y_i	3,02121	4,70944	7,37816	9,40069	8,44368	7,70688	

- 6. Для таблицы задания №5 выписать кубические сплайны дефекта 1 на каждом отрезке $x \in [x_{i-1}, x_i], i = \overline{1,4}, S''(x_1) = S''(x_6)$
- 7. Методом наименьших квадратов аппроксимировать линейным и квадратичным многочленом заданную таблицу

x_i	0	0,15	0,30	0,45	0,60	0,75	0,90	1,05	1,20	1,35	1,50
y_i	0,0	1,0	2,3	2,9	3,8	4,9	6,8	7,1	7,6	9,4	9,5

- 8. Используя таблицу задания №5 найти значения 1-й и 2-й производных в точках x^* и x_2
- 9. Методом Симпсона с точностью $\varepsilon = 10^{-4}$ вычислить интеграл $\int_{0}^{1} e^{-x^2} \sin x dx$
- 10. С шагом h = 0.1 и $\varepsilon = 0.01$ решить задачу Коши $y' = x y^3 x + 5y$, y(0) = 0
 - А) методом Рунге-Кутта 4-го порядка,
 - Б) Методом Адамса (начальный отрезок определить методом Рунге-Кутта)
- 11. Методом прогонки с шагом h = 0.1 и точностью $O(h^2)$ решить краевую задачу для ОДУ

$$y'' + \frac{y'}{x^2} - \frac{y}{x} = x^3$$
,
$$\begin{cases} y(0,5) = 0.5 \\ y(1) - 3y'(1) = 1.5 \end{cases}$$