In [130]:

```
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
from sklearn.linear_model import LogisticRegression
from sklearn.preprocessing import StandardScaler
import re
from sklearn.datasets import load_digits
from sklearn.model_selection import train_test_split
```

In [496]:

```
a=pd.read_csv(r"C:\Users\user\Downloads\C10_air\madrid_2012.csv")
a
```

Out[496]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	TCH	TOL
0	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	7.0	18.0	NaN	NaN	NaN	2.0	NaN	NaN
1	2012- 09-01 01:00:00	0.3	0.3	0.7	NaN	3.0	18.0	55.0	10.0	9.0	1.0	NaN	2.4
2	2012- 09-01 01:00:00	0.4	NaN	0.7	NaN	2.0	10.0	NaN	NaN	NaN	NaN	NaN	1.5
3	2012- 09-01 01:00:00	NaN	0.2	NaN	NaN	1.0	6.0	50.0	NaN	NaN	NaN	NaN	NaN
4	2012- 09-01 01:00:00	NaN	NaN	NaN	NaN	1.0	13.0	54.0	NaN	NaN	3.0	NaN	NaN
210715	2012- 03-01 00:00:00	NaN	0.6	NaN	NaN	37.0	84.0	14.0	NaN	NaN	NaN	NaN	NaN
210716	2012- 03-01 00:00:00	NaN	0.4	NaN	NaN	5.0	76.0	NaN	17.0	NaN	7.0	NaN	NaN
210717	2012- 03-01 00:00:00	NaN	NaN	NaN	0.34	3.0	41.0	24.0	NaN	NaN	NaN	1.34	NaN
210718	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	44.0	36.0	NaN	NaN	NaN	NaN	NaN
210719	2012- 03-01 00:00:00	NaN	NaN	NaN	NaN	2.0	56.0	40.0	18.0	NaN	NaN	NaN	NaN

210720 rows × 14 columns

◀

In [497]:

a.info()

```
<class 'pandas.core.frame.DataFrame'>
RangeIndex: 210720 entries, 0 to 210719
Data columns (total 14 columns):
    Column
             Non-Null Count
                             Dtype
    -----
---
             -----
                             ----
0
             210720 non-null object
    date
    BEN
1
             51511 non-null
                            float64
2
    CO
             87097 non-null float64
3
    EBE
             51482 non-null float64
4
    NMHC
             30736 non-null float64
5
             209871 non-null float64
    NO
    NO_2
             209872 non-null float64
6
    0_3
             122339 non-null float64
7
8
    PM10
             104838 non-null float64
9
             52164 non-null float64
    PM25
             87333 non-null float64
10 SO_2
11
   TCH
             30736 non-null float64
12
    TOL
             51373 non-null float64
    station 210720 non-null int64
13
dtypes: float64(12), int64(1), object(1)
```

memory usage: 22.5+ MB

In [498]:

```
b=a.fillna(value=104)
b
```

Out[498]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн
0	2012- 09-01 01:00:00	104.0	0.2	104.0	104.00	7.0	18.0	104.0	104.0	104.0	2.0	104.00
1	2012- 09-01 01:00:00	0.3	0.3	0.7	104.00	3.0	18.0	55.0	10.0	9.0	1.0	104.00
2	2012- 09-01 01:00:00	0.4	104.0	0.7	104.00	2.0	10.0	104.0	104.0	104.0	104.0	104.00
3	2012- 09-01 01:00:00	104.0	0.2	104.0	104.00	1.0	6.0	50.0	104.0	104.0	104.0	104.00
4	2012- 09-01 01:00:00	104.0	104.0	104.0	104.00	1.0	13.0	54.0	104.0	104.0	3.0	104.00
210715	2012- 03-01 00:00:00	104.0	0.6	104.0	104.00	37.0	84.0	14.0	104.0	104.0	104.0	104.00
210716	2012- 03-01 00:00:00	104.0	0.4	104.0	104.00	5.0	76.0	104.0	17.0	104.0	7.0	104.00
210717	2012- 03-01 00:00:00	104.0	104.0	104.0	0.34	3.0	41.0	24.0	104.0	104.0	104.0	1.34
210718	2012- 03-01 00:00:00	104.0	104.0	104.0	104.00	2.0	44.0	36.0	104.0	104.0	104.0	104.00
210719	2012- 03-01 00:00:00	104.0	104.0	104.0	104.00	2.0	56.0	40.0	18.0	104.0	104.0	104.00

210720 rows × 14 columns

In [499]:

```
b.columns
```

Out[499]:

In [500]:

c=b.head(10)
c

Out[500]:

	date	BEN	со	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TOL
0	2012- 09-01 01:00:00	104.0	0.2	104.0	104.00	7.0	18.0	104.0	104.0	104.0	2.0	104.00	104.0
1	2012- 09-01 01:00:00	0.3	0.3	0.7	104.00	3.0	18.0	55.0	10.0	9.0	1.0	104.00	2.4
2	2012- 09-01 01:00:00	0.4	104.0	0.7	104.00	2.0	10.0	104.0	104.0	104.0	104.0	104.00	1.5
3	2012- 09-01 01:00:00	104.0	0.2	104.0	104.00	1.0	6.0	50.0	104.0	104.0	104.0	104.00	104.0
4	2012- 09-01 01:00:00	104.0	104.0	104.0	104.00	1.0	13.0	54.0	104.0	104.0	3.0	104.00	104.0
5	2012- 09-01 01:00:00	0.2	0.2	1.0	104.00	1.0	9.0	57.0	14.0	104.0	1.0	104.00	0.2
6	2012- 09-01 01:00:00	0.4	0.2	0.8	0.24	1.0	7.0	57.0	11.0	7.0	2.0	1.33	0.6
7	2012- 09-01 01:00:00	104.0	104.0	104.0	0.11	1.0	2.0	65.0	104.0	104.0	104.0	1.18	104.0
8	2012- 09-01 01:00:00	104.0	0.2	104.0	104.00	6.0	14.0	57.0	104.0	104.0	2.0	104.00	104.0
9	2012- 09-01 01:00:00	104.0	0.2	104.0	104.00	1.0	7.0	104.0	13.0	104.0	1.0	104.00	104.0
4.6			_	_		_	_	_	_	_	_		

In [501]:

```
d=c[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3',
    'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
d
```

Out[501]:

	BEN	со	EBE	NMHC	NO_2	O_3	PM10	SO_2	тсн	TOL	station
0	104.0	0.2	104.0	104.00	18.0	104.0	104.0	2.0	104.00	104.0	28079004
1	0.3	0.3	0.7	104.00	18.0	55.0	10.0	1.0	104.00	2.4	28079008
2	0.4	104.0	0.7	104.00	10.0	104.0	104.0	104.0	104.00	1.5	28079011
3	104.0	0.2	104.0	104.00	6.0	50.0	104.0	104.0	104.00	104.0	28079016
4	104.0	104.0	104.0	104.00	13.0	54.0	104.0	3.0	104.00	104.0	28079017
5	0.2	0.2	1.0	104.00	9.0	57.0	14.0	1.0	104.00	0.2	28079018
6	0.4	0.2	0.8	0.24	7.0	57.0	11.0	2.0	1.33	0.6	28079024
7	104.0	104.0	104.0	0.11	2.0	65.0	104.0	104.0	1.18	104.0	28079027
8	104.0	0.2	104.0	104.00	14.0	57.0	104.0	2.0	104.00	104.0	28079035
9	104.0	0.2	104.0	104.00	7.0	104.0	13.0	1.0	104.00	104.0	28079036

In [502]:

```
d.plot.line()
```

Out[502]:

<AxesSubplot:>

In [503]:

sns.pairplot(d)

Out[503]:

<seaborn.axisgrid.PairGrid at 0x11861bc7640>

In [504]:

```
x=d[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2']]
y=d['TCH']
```

In [505]:

```
from sklearn.model_selection import train_test_split
x_train,x_test,y_train,y_test=train_test_split(x,y,test_size=0.3)
```

In [506]:

```
from sklearn.linear_model import LinearRegression
lr=LinearRegression()
lr.fit(x_train,y_train)
```

Out[506]:

LinearRegression()

In [507]:

```
print(lr.intercept_)
```

1.079995522033144

In [508]:

```
coeff=pd.DataFrame(lr.coef_,x.columns,columns=['Co-efficient'])
coeff
```

Out[508]:

Co-efficient

BEN -4.486966e-04

CO -5.579009e-07

EBE 3.554396e-04

NMHC 9.894886e-01

NO_2 1.481931e-03

In [509]:

```
prediction=lr.predict(x_test)
plt.scatter(y_test,prediction)
```

Out[509]:

<matplotlib.collections.PathCollection at 0x1186acf8580>


```
In [510]:
print(lr.score(x_test,y_test))
0.0
In [511]:
from sklearn.linear_model import Ridge,Lasso
In [512]:
rr=Ridge(alpha=10)
rr.fit(x_train,y_train)
Out[512]:
Ridge(alpha=10)
In [513]:
rr.score(x_test,y_test)
Out[513]:
0.0
In [514]:
la=Lasso(alpha=10)
la.fit(x_train,y_train)
Out[514]:
Lasso(alpha=10)
In [515]:
la.score(x_test,y_test)
Out[515]:
```

0.0

In [516]:

```
a1=b.head(7000)
a1
```

Out[516]:

	date	BEN	СО	EBE	NMHC	NO	NO_2	O_3	PM10	PM25	SO_2	тсн	TC
0	2012- 09-01 01:00:00	104.0	0.2	104.0	104.0	7.0	18.0	104.0	104.0	104.0	2.0	104.0	104
1	2012- 09-01 01:00:00	0.3	0.3	0.7	104.0	3.0	18.0	55.0	10.0	9.0	1.0	104.0	2
2	2012- 09-01 01:00:00	0.4	104.0	0.7	104.0	2.0	10.0	104.0	104.0	104.0	104.0	104.0	1
3	2012- 09-01 01:00:00	104.0	0.2	104.0	104.0	1.0	6.0	50.0	104.0	104.0	104.0	104.0	104
4	2012- 09-01 01:00:00	104.0	104.0	104.0	104.0	1.0	13.0	54.0	104.0	104.0	3.0	104.0	104
6995	2012- 09-13 04:00:00	104.0	0.1	104.0	104.0	1.0	5.0	51.0	104.0	104.0	104.0	104.0	104
6996	2012- 09-13 04:00:00	104.0	104.0	104.0	104.0	1.0	6.0	104.0	5.0	104.0	2.0	104.0	104
6997	2012- 09-13 04:00:00	104.0	104.0	104.0	104.0	1.0	6.0	104.0	7.0	6.0	104.0	104.0	104
6998	2012- 09-13 04:00:00	104.0	104.0	104.0	104.0	1.0	9.0	104.0	5.0	1.0	104.0	104.0	104
6999	2012- 09-13 04:00:00	104.0	104.0	104.0	104.0	1.0	5.0	43.0	104.0	104.0	104.0	104.0	104

7000 rows × 14 columns

In [517]:

```
e=a1[['BEN', 'CO', 'EBE', 'NMHC', 'NO_2', 'O_3', 'PM10', 'SO_2', 'TCH', 'TOL', 'station']]
```

In [518]:

```
f=e.iloc[:,0:14]
g=e.iloc[:,-1]
```

```
In [519]:
h=StandardScaler().fit_transform(f)
In [520]:
logr=LogisticRegression(max_iter=10000)
logr.fit(h,g)
Out[520]:
LogisticRegression(max_iter=10000)
In [521]:
from sklearn.model_selection import train_test_split
h_train,h_test,g_train,g_test=train_test_split(h,g,test_size=0.3)
In [522]:
i=[[10,20,30,40,50,60,11,22,33,44,55]]
In [523]:
prediction=logr.predict(i)
print(prediction)
[28079059]
In [524]:
logr.classes_
Out[524]:
array([28079004, 28079008, 28079011, 28079016, 28079017, 28079018,
       28079024, 28079027, 28079035, 28079036, 28079038, 28079039,
       28079040, 28079047, 28079048, 28079049, 28079050, 28079054,
       28079055, 28079056, 28079057, 28079058, 28079059, 28079060],
      dtype=int64)
In [525]:
logr.predict proba(i)[0][0]
Out[525]:
0.0
In [526]:
logr.predict proba(i)[0][1]
Out[526]:
0.0
```

```
In [527]:
logr.score(h_test,g_test)
Out[527]:
0.959047619047619
In [528]:
from sklearn.linear_model import ElasticNet
en=ElasticNet()
en.fit(x_train,y_train)
Out[528]:
ElasticNet()
In [529]:
print(en.coef_)
             -0.
                                       0.98914588 0.
                                                              ]
[-0.
                          -0.
In [530]:
print(en.intercept_)
1.1154203887232939
In [531]:
prediction=en.predict(x_test)
print(en.score(x_test,y_test))
0.0
In [532]:
from sklearn.ensemble import RandomForestClassifier
rfc=RandomForestClassifier()
rfc.fit(h_train,g_train)
Out[532]:
RandomForestClassifier()
In [533]:
parameters={'max_depth':[1,2,3,4,5],
 'min_samples_leaf':[5,10,15,20,25],
 'n_estimators':[10,20,30,40,50]
 }
```

```
In [534]:
```

```
from sklearn.model_selection import GridSearchCV
grid_search=GridSearchCV(estimator=rfc,param_grid=parameters,cv=2,scoring="accuracy")
grid_search.fit(h_train,g_train)
```

Out[534]:

In [535]:

```
grid_search.best_score_
```

Out[535]:

0.9957142857142858

In [536]:

```
rfc_best=grid_search.best_estimator_
```

In [537]:

```
from sklearn.tree import plot_tree
plt.figure(figsize=(80,50))
plot_tree(rfc_best.estimators_[2],filled=True)
```

```
3096\nvalue = [191, 192, 202, 190, 170, 214, 204, 216, 221, 210\n221, 20
 3, 204, 177, 221, 231, 195, 228, 194, 201\n204, 225, 191, 195]'),
      Text(1083.1764705882351, 2038.5, 'X[9] <= -0.309 \setminus ini = 0.899 \setminus ini =
= 1274\nvalue = [191, 191, 0, 0, 170, 213, 202, 0, 220, 210, 221\n0, 203,
 0, 0, 0, 0, 0, 0, 204, 0, 0, 0]'),
      Text(393.88235294117646, 1585.5, 'X[8] <= -1.127 \setminus gini = 0.749 
 = 511\nvalue = [0, 191, 0, 0, 0, 210, 202, 0, 0, 0, 221, 0, 0\n0, 0, 0,
0, 0, 0, 0, 0, 0, 0, 0]'),
      Text(262.5882352941176, 1132.5, 'gini = 0.0\nsamples = 131\nvalue = [0,
0, 0, 0, 0, 0, 200, 0, 0, 0, 0, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0]'),
      Text(525.1764705882352, 1132.5, 'X[0] <= -1.748 \ngini = 0.668 \nsamples =
 380\nvalue = [0, 191, 0, 0, 0, 210, 2, 0, 0, 0, 221, 0, 0\n0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0]'),
      Text(262.5882352941176, 679.5, X[9] \leftarrow -1.777 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555 = 0.555
 203\nvalue = [0, 31, 0, 0, 0, 189, 0, 0, 0, 114, 0, 0\n0, 0, 0, 0, 0,
 0, 0, 0, 0, 0, 0]'),
      Text(131.2941176470588, 226.5, 'gini = 0.458\nsamples = 143\nvalue = [0,
 14, 0, 0, 0, 172, 0, 0, 0, 0, 64, 0, 0, 0\n0, 0, 0, 0, 0, 0, 0, 0, 0,
 0]'),
      Text(393.88235294117646. 226.5. 'gini = 0.564 \nsamples = 60 \nvalue = [0.564]
```

In []:

In []:		