

Model Optimization and Tuning Phase Template

Date	15 July 2024	
Team ID	739989	
Project Title	Crop Prediction using machine learning	
Maximum Marks	10 Marks	

Model Optimization and Tuning Phase

The Model Optimization and Tuning Phase involves refining machine learning models for peak performance. It includes optimized model code, fine-tuning hyperparameters, comparing performance metrics, and justifying the final model selection for enhanced predictive accuracy and efficiency.

Hyperparameter Tuning Documentation (6 Marks):

Model	Tuned Hyperparameters	Optimal Values	
KNN			
Decision tree			
SVM			
Random Forest			

Performance Metrics Comparison Report (2 Marks):

[] rfclassifier=RandomForestClassifier()
rfclassifier.fit(X_train,y_train)
y_pred=rfclassifier.predict(X_test)
print(classification_report(y_test,y_pred))

	precision	recall	f1-score	support
apple	1.00	1.00	1.00	23
banana	1.00	1.00	1.00	20
blackgram	1.00	1.00	1.00	21
chickpea	1.00	1.00	1.00	22
coconut	1.00	1.00	1.00	20
coffee	1.00	1.00	1.00	24
cotton	1.00	1.00	1.00	20
grapes	1.00	1.00	1.00	20
jute	0.90	1.00	0.95	18
kidneybeans	1.00	1.00	1.00	19
lentil	1.00	1.00	1.00	25
maize	1.00	1.00	1.00	20
mango	1.00	1.00	1.00	17
mothbeans	1.00	1.00	1.00	14
mungbean	1.00	1.00	1.00	20
muskmelon	1.00	1.00	1.00	18
orange	1.00	1.00	1.00	24
papaya	1.00	1.00	1.00	15
pigeonpeas	1.00	1.00	1.00	21
pomegranate	1.00	1.00	1.00	23
rice	1.00	0.89	0.94	19
watermelon	1.00	1.00	1.00	17
accuracy			1.00	440
macro avg	1.00	1.00	1.00	440
weighted avg	1.00	1.00	1.00	440

Final Model Selection Justification (2 Marks):

Final Model	Reasoning
	The Random forest model usually provides high accuracy due to
	combining the predictions of multiple decision trees. Its ability to
	handle complex relationships, minimize overfitting. It can handle both
Random Forest	classification and regression justifying its selection as the final model.