Lecture 25

b-jet Identification (b-Tagging)

Critical as b-jet ubiquitous in higgs final states.

Triggering

- LHC provides orders of magnitude more collisions than we can save to disk.
 - Can only keep 1 out of 40,000 events / Discarded data lost forever
- Interesting physics is incredibly rare:
 - ~1 Higgs per billion events / ~1 Di-Higgs per trillion events

Triggering: Process of selecting which collisions to save for further analysis.

Triggering at the LHC:

- Custom Electronics + Commodity CPU
- Fast processing of images (micro-seconds / seconds)
- Events rate from 40 MHz \rightarrow 1kHz.
- Data rate from 80 TBs (!) \rightarrow 2 GB/s

55

_To

collect data faster, each event has multiple proton collisions.

Significantly complicates analysis of events

Vacuum Fluctuations

QM+Spaceetime \Rightarrow Anti-particles \Rightarrow Vacuum is interesting place.

Because of QM, need to put in Energy to probe smaller distances.

$$E \cdot t \sim E \cdot x \sim 1 \Rightarrow \text{Small distances} \Rightarrow \text{large E}$$

If $E >> 2m_2$ nothing stops you from making e^+e^- pairs.

So operationally, should think of the vacuum as filled of particle-anti-particle pairs constantly coming in and out of existance:

No meaningful sense in which the vacuum is empty.

Example 1

Example 2

diagram gives a correction to the mass of the Z-boson from the top quark