

Week 1 – Forward Contracts

MIT Sloan School of Management

Outline

- Forward contract basics
 - Definition
 - Profit/Loss
 - A forward currency hedge and payoff diagrams
 - Review of risk-free rates and the yield curve
 - Interpretation of forward contracts as highly levered positions
- Pricing formulas
 - Financial assets: stocks, bonds, currencies
 - Commodities
- Key concepts for hedging and speculating

Forward contract basics

Definition: Forward Contract

A **forward contract** is an agreement between two counterparties to trade a prespecified amount of goods or securities at a pre-specified future date, T, for a prespecified price, F_0 .

Notes:

- It is free to enter into a forward contract initially: the contract is an agreement to exchange goods or securities for money in the future, and not today
 - In practice you may have to post collateral, but typically you earn a return on the collateral
 - A "pre-paid forward" is an exception. In this case the payment is made upfront.
- The pre-specified price F_0 is set to ensure that the value of the forward contract is zero for both counterparties at the inception of the contract
- Terminology: The counterparty who agrees to buy (sell) the goods or securities has long (short) position
- Other features: Forwards are traded "over-the-counter". The contract may specify physical delivery or cash settlement.

Profit/Loss from a forward contract

Let S_t be the spot price of one unit of the good or security at t, and N be the size of the contract (# of units)

Definition: The "spot price" is the current market price

The Profit/Loss (P/L) at the contract maturity T for each counterparty is

- P/L long = $N \times (S_T F_0)$
- P/L short = $N \times (F_0 S_T)$

Questions for you to think about:

- What are the details of the transactions that makes this true for physical settlement?
- What are the details of the transactions that make this true for cash settlement?
- Does it matter if the short already owns the asset?
- Does it matter whether or not the long wants to own the asset?
- How can a zero-sum contract benefit both counterparties?
- What is the P/L if you sell the contract at time t < T

Forward contract timing of cash flows

Long contract

Short contract

No initial cash flows but collateral may be required

Payoff = S_T - F_0

Payoff = F_0 - S_T

Forward contracts are always "zero-sum" in their payoffs

Example 2.1: Hedging with a forward currency contract

A US firm has sold a piece of equipment to a German client and now it has a receivable of EUR 5 million in T = 6 months.

Let S_t = USD/EUR exchange rate at t. Assume the current rate S_0 = 1.2673

Unhedged dollar payoff at T = EUR 5 million x S_T

What is the risk?

Exchange rate risk: Euro can depreciate vs. the dollar (S_T declines)

Example 2.1 (cont.)

Hedging strategy: enter into a forward contract with a bank to exchange euros for dollars at T = 6 months at an exchange rate F, say F = 1.28, decided today

The firm is short the Euro forward

Dollar P/L of forward contract at $T = 5 \text{ mil } x (F - S_T)$

Total payoff at T

= payoff from original position T + payoff of forward contract at T

$$= (N \times S_T) + N \times (F - S_T)$$

 $= 5 \text{ mil } \times 1.28 = \6.4 million

The hedge locks in the dollar payoff at T to be $N \times F$, regardless of the exchange rate movement

Payoff diagrams for hedging example

Example 2.2: Speculating with forwards

Directional bets

- Think that euro will depreciate versus dollar?
 - Short forwards or futures on dollar/euro exchange rate
 - It costs essentially nothing
 - Each tick in exchange rate movement => large profits (or losses)

Levered position: return on capital very high (or low)

The price of a bond is the present value of its promised payments

- The Treasury spot yield curve provides a reference market rate for discounting cash flows of different maturities that are free from default risk
- Rates along the Treasury yield curve make up the term structure of "risk-free" rates
- Risky or illiquid bond cash flows are discounted at rates that include a premium

Notation: The market rate to discount a cash flow arriving at time t back to time 0, stated on a continuous basis, is r_t

Price of a zero coupon bond with face value Z paid at time T is given by

$$P = e^{-r_T T} Z$$

Recall that:

$$\lim_{n\to\infty} (1+r/n)^n = e^r$$

Implied forward prices and forward rates

Current price of bond is maturing at T_2 is:

$$P_{B,0} = e^{-r_{T_2}T_2}Z$$

We can prove that the forward price for delivery at T_1 is:

$$F = e^{r_{T_1}T_1}P_{B,0}$$

Substituting for bond price =>

$$F = e^{-r_{T_2}T_2} Z e^{r_{T_1}T_1} = Z e^{(r_{T_1}T_{1-}r_{T_2}T_2)}$$

The **forward price implies a "forward rate"** which is the return locked in on the bond delivered in the forward contract.

The implied forward rate $f(0, T_1, T_2)$ solves:

Note on notation:
$$f(0,T_1,T_2)$$
 denotes the forward rate between time T_1 and T_2 , as of time 0.

$$F = Ze^{-f(0,T_1,T_2)(T_2,T_1)}$$

$$f(0,T_1,T_2) = \frac{T_2 r_{T_2} - T_1 r_{T_1}}{T_2 - T_1}$$

 The standard pricing formulas for forwards that we will derive depend on the assumption that market participants can borrow and lend at a risk-free rate

- In practice this can be accomplished by
 - Buying and selling Treasury securities
 - Collateralized borrowing and lending, e.g., using repurchase agreements (RPs or repos)

Using payoff diagrams to understand forward contracts as highly levered positions

Stock	Long bond			Longho	nd		
spot price T	Payoff T			Long bo	na		
0	65	70					
10	65	50					
20	65	30					
30	65	⊢					
40	65	# 10 <u></u>					
50	65	10 Jay 10 o	20	40	60	80	100
60	65	-30					
70	65	-50					
80	65						
90	65	-70	-70 Stock price at T				
100	65						

Stock	Short bond	Short bond					
spot price T	Payoff T	Snort bond					
0	-65						
10	-65						
20	-65						
30	-65	—					
40	-65	at					
50	-65	Payoff	20	40	60	80	100
60	-65	P					
70	-65						
80	-65						
90	-65		Stock price at T				
100	-65			этоск р	ince at 1		

Using pay off diagrams to understand forwards as highly levered positions

Stock spot price T	Long stock Payoff T				Long sto	ck		
0	0	110						
10	10	90						
20	20	70						
30	30	⊢ 50						
40	40	off a						
50	50	Payoff at .						
60	60	10						
70	70	-10	0	20	40	60	80	100
80	80			20	40	30	30	100
90	90	-30		- 1	Stock Pr	rice at T		
100	100							

Stock	Short stock	
spot price T	Payoff T	
0	0	
10	-10	
20	-20	
30	-30	
40	-40	
50	-50	
60	-60	
70	-70	
80	-80	
90	-90	
100	-100	

Using pay off diagrams to understand forwards as highly levered positions

Stock	Long stock for	ward	Long stock forward					
spot price T	Payoff T			Lon	g stock to	orward		
0	-65		40					
10	-55		20					
20	-45							
30	-35		⊢ °					
40	-25		Payoff at T	20	40	60	80	100
50	-15		ayo					
60	-5		-40					
70	5		-60					
80	15		-60					
90	25		-80	Stock Price at T				
100	35				Stock Pr	ice at 1		

Stock	Short bond & Long stock				
spot price T	Payoff T				
0	-65				
10	-55				
20	-45				
30	-35				
40	-25				
50	-15				
60	-5				
70	5				
80	15				
90	25				
100	35				

Short bond & Long stock = synthetic long forward

Takeaways from payoff diagram example

Long forward positions are equivalent to borrowing and going long in the underlying asset

- Allows high long risk exposure to underlying with no money down (except collateral)
- Implicit leverage allows some people to borrow who otherwise couldn't

Forward short positions are equivalent to lending and going short the underlying

- Allows high short risk exposure to underlying with no money down (except collateral)
- Provides access to short exposure even when underlying is unavailable to borrow and short

Pricing formulas and their derivations

Some definitions: No arbitrage

<u>Definition*</u>: An **arbitrage opportunity** is a trading strategy that either

- (1) Yields a positive profit today, and zero cash flows in the future; or
- (2) Costs nothing today and yields a positive profit in the future
- The value of many derivative securities is estimated by assuming that no arbitrage opportunities exist
- In well functioning markets, no arbitrage opportunities can persist
- If they did, arbitrageurs would take giant positions to profit from them, quickly eliminating them

Note that "no arbitrage" does not imply there are no market frictions

^{*}This is a technical definition. The term "arbitrage" is used more loosely by traders.

Some definitions: No arbitrage

The Law of One Price:

Securities with identical payoffs must have the same price

Otherwise, an arbitrage opportunity arises...

Buy Low / Sell High

Buy the security with the low price and simultaneously sell (short) the one with a high price

This yields an upfront profit

The arbitrageur is hedged, as future cash flows cancel out exactly

Some definitions: Short sales

Exploiting an arbitrage opportunity often requires taking offsetting long and short positions

Traders can take a short position either by

- 1. selling an asset they already own
- 2. borrowing an asset and then selling it
 - The trader must later buy the asset and return it to the lender
 - Shorting involves borrowing costs
 - Not all assets are available to short

Which forwards and futures are priced by no-arbitrage?

Forwards for **pure investment assets can be priced using** relatively simple **no-arbitrage** arguments

• For instance, in Example 2.1, we will see how the pre-specified forward exchange rate F_0 = 1.28 USD/EUR was determined

We will see that a "cash and carry" strategy can be used to derive forward prices for pure investment assets via no-arbitrage reasoning

Forwards and futures for **non-investment assets** (e.g., agricultural commodities, energy, metals) **cannot be valued simply by no-arbitrage conditions**

Inventory of pricing formulas for financial forwards

Stocks

- Stock with known dividend D at time t < T:
- Stock with known dividend yield q:
 - r is the risk-free rate that matches cash flow maturity
 - P_{S,t} is the stock price at time t

$$F_0 = [P_{S,0} - D(e^{-rt})](e^{rT})$$

$$F_0 = P_{S,0} e^{(r-q)T}$$

Bonds

- Bond with coupon *C* at time *t* < *T*:
 - r is the risk-free rate that matches cash flow maturity
 - P_{B,t} is the bond price at time t

$F_0 = [P_{B.0} - C(e^{-rt})](e^{rT})$

Currencies

- E.g., pay euros for dollars:
 - r_{\$} (r_€) is the USD (EUR) risk-free rate
 - S_t is the exchange rate (USD per EUR) at time t

$$\mathsf{F}_0 = S_o(e^{(r_{\varsigma} - r_{\varepsilon})T})$$

Recap of example 2.1: Hedging with a forward currency contract

A US firm has sold a piece of equipment to a German client and now it has a receivable of EUR 5 million in T = 6 months.

Risk is that Euro can depreciate vs. the dollar (S_T declines)

Hedge with short forward contract in Euros

Let S_t = USD/EUR exchange rate at t. Assume the current rate S_0 = 1.2673

Unhedged dollar payoff at T = EUR 5 million x S_T

Also assume 6-month USD interest rate is 5%, & 6-month EUR interest rate is 3%

Recap example 2.1 (cont.)

Hedging strategy: enter into a forward contract with a bank to exchange euros for dollars at T = 6 months at an exchange rate F, say F = 1.28, decided today

How is the prespecified exchange rate F = 1.28 USD/EUR determined?

<u>Practice problem:</u> Verify that if interest rates and the spot exchange rate are as stated in this example, that the no-arbitrage forward exchange rate is 1.28.

Deriving forward prices from no-arbitrage conditions: Cash and carry for a non-dividend paying stock

short stock forward Receive F

Deliver share of stock

buy stock for $-P_{S,0}$ borrow $P_{S,0}$

Use for delivery in forward Repay borrowing $-P_{S,0}(e^{rT})$

Net cash flow = 0

 $P/L = F - P_{S,0}(e^{rT})$

Conclusion: $F \leq P_{S,0}(er^T)$

Deriving forward prices from no-arbitrage conditions: Reverse cash and carry for a non-dividend paying stock

long stock forward

Pay -F receive share of stock

short stock for $P_{S,0}$ lend $-P_{S,0}$

Use stock received to cover short Receive loan repayment $P_{S,0}(e^{rT})$

Net cash flow = 0

$$P/L = P_{S,0}(e^{rT}) - F$$

Conclusion: $F \ge P_{S,0}(er^T)$

Forward price with no arbitrage

If $F - P_{S,0}(e^{rT}) > 0$ then cash and carry is arbitrage opportunity If $P_{S,0}(e^{rT}) - F > 0$ then reverse cash & carry is arbitrage opportunity

Hence, the forward price for a stock with no dividends between 0 and T must be:

$$F_0 = P_{S,0}(e^{rT})$$

Forward prices for commodities

Some assets that are not purely financial---like oil, metals and some agricultural commodities--are storable and held as investments

Storing commodities has costs and benefits

- Storage cost "U" (lump sum payments)
- Storage cost "u" (percentage of spot price)
- Convenience yield "y" (percentage of spot price)

Forward price $F_{0,T}$ at contract initiation comes from no-arbitrage condition that again can be demonstrated using cash-and-carry and reverse cash-and-carry logic.

 Adjustments for costs and benefits are like adjustments for stock dividends and bond coupons

Forward prices for commodities

Forward price with lump-sum storage cost U

$$F_{0,T} = (S_0 + PV(U)) \times e^{rT}$$

Forward price with proportional storage cost u

$$F_{0,T} = S_0 \times e^{(r+u)T}$$

Forward price with convenience yield y

$$F_{0,T} = S_0 \times e^{(r-y)T}$$

Forward price with proportional storage cost and convenience yield

$$F_{0,T} = S_0 \times e^{(r+u-y)T}$$

Describing the shape of the forward curve

Contango is a pattern of forward prices that increases with contract maturity

Backwardation is a pattern of forward prices over time that decreases with

contract maturity

West Texas Intermediate Spot Price with Futures

What about commodities that cannot be stored?

- May be no storage or very limited storage life
 - Electricity
 - Lettuce, strawberries, live concerts...
- For non-storable commodities, forward prices can have information about future spot prices because no-arbitrage conditions don't hold
 - Approach to pricing is to model stochastic future spot prices
 - Also must infer discount rates

Key takeaways on forwards

• For stocks, bonds, currencies, metals, stored agricultural commodities, etc., there is no new information in forward prices over what can be learned from spot prices!

Why?

- Forward price *F* has no uncertainty associated with it, a forward transition involves a certain payment for delivery of a specific asset.
- The forward price is tied down by no-arbitrage conditions that depend only on the underlying spot price, interest rates, and associated cash flows between 0 and T (dividends, coupons, storage costs, convenience yield)
- Implication: Don't try to predict future spot prices using forward prices!
 - Discussion question: Is the expected future price of a non-dividend paying stock higher or lower than its forward price?

Key concepts for hedging and speculating

Valuing a forward contract over time

We have seen that the initial forward price is determined by no-arbitrage, and the initial value of the contract, f_0 , is 0.

How does the value of a forward contract evolve over time?

This is determined by another no-arbitrage relationship:

- Suppose that $K = F_0$ is the original delivery price and F_t is the forward price for a contract that would be negotiated today for the same underlying and delivery date.
- By considering the difference between a contract with delivery price K and a contract with delivery price F_t we can deduce that the value of a long forward contract, $f_{t,T}$, at time t is

$$(F_t - K)e^{-r(T-t)}$$

the value of a short forward contract is

$$(K - F_t)e^{-r(T - t)}$$

<u>Definition</u>: **Basis** is the difference between the spot and forward price of a security or commodity.

No-arbitrage implies basis goes to zero on contract expiration date.

<u>Definition:</u> Cross-hedging involves using a contract type to hedge which differs from the security or commodity being hedged.

Limited contract types => traders often have to cross-hedge

Hedge ratios

<u>Definition</u>: The **hedge ratio** is the relative number of forward contracts to units of the asset being hedged that maximizes the effectiveness of the hedge.

Goal is to have $N_s \times E(dS) = N_F \times E(dF)$ so that same total dollar expected price change

$$=> N_s / N_F = E(dF) / E(dS)$$

- N_F = number forward units
- N_S = number spot units
- *E(.)* = expected value
- *dF* = change in value of forward contract
- dS = change in value of spot security or commodity

Note: If long in spot then short in forwards, and vice versa.