2020 考研-数学-基础阶段 第三次测试卷解析 PSM(协议)

本试卷满分 100 分, 考试时间 30 分钟

一、解答题:请将正确答案及其解题过程写在题后的空白部分。

1、(本小题满分 20 分) 设
$$f(x) = \begin{cases} x^2 + 2x + b, & x \le 0 \\ \ln(1+ax), & x > 0 \end{cases}$$
处处可导。

- (1) 确定常数 a,b;
- (2) 求f'(x)。

【答案】(1)
$$a=2$$
, $b=0$; (2) $f'(x) = \begin{cases} 2x+2, x \le 0 \\ \frac{2}{1+2x}, x > 0 \end{cases}$

【解析】(1)因为函数 f(x) 为可导函数,则必连续,因此, $\lim_{x\to 0^+} f(x) = \lim_{x\to 0^-} f(x) = f(0)$,

即得b=0,又因f(x)在x=0处可导,故 $f'_{+}(0)=f'_{-}(0)$,即 $\lim_{x\to 0^{+}}\frac{\ln(1+ax)}{x}=2$,故a=2,因此,a=2,b=0;

(2)由(1)知,
$$f(x) = \begin{cases} x^2 + 2x, & x \le 0 \\ \ln(1+2x), & x > 0 \end{cases}$$
,故当 $x < 0$ 时, $f'(x) = 2x + 2$,当 $x > 0$

时,
$$f'(x) = [\ln(1+2x)]' = \frac{2}{1+2x}$$
,当 $x = 0$ 时, $f'(0) = 2$,因此, $f'(x) = \begin{cases} 2x+2, x \le 0 \\ \frac{2}{1+2x}, x > 0 \end{cases}$ 。

序号	错误原因	学习建议	备注
23010	不清楚可导与连续的关系	讲义第 38 页可导与连续; 讲义 38	
1		页例 4 以及习题册 38 页 5 题;注意	
		体会可导蕴含连续。	
23010	不清楚函数在一点处连续的概	讲义 29 页连续的概念; 讲义 29 页	

2	念	例 1 以及习题册 27 页 5 题; 注意体	
		会函数在一点处连续的两种表述方	
		法。	
23010	不清楚常用的求导公式	讲义 41 页求导公式; 讲义 41 页例	
3		1;注意体会导数计算中常用的求导	
		公式。	
23010	不清楚计算分段点处的导数要	讲义 35 页函数在一点的导数; 讲义	
4	用定义	37页例3以及习题册38页6题、8	
		题;注意体会求函数具体点处的导	
		数时要用导数的定义进行计算。	
23010	计算型错误	建议1、2、3、4。	
5			
23010	其他;	A	
6			

- 2、(本小题满分10分)下列命题
 - ①设 $f_{-}'(x_0)$ 与 $f_{+}'(x_0)$ 均存在,则f(x)在 $x = x_0$ 处必连续
 - ②设 $\lim_{x\to x_0^-} f'(x)$ 与 $\lim_{x\to x_0^+} f'(x)$ 均存在且相等,则 f(x) 在 $x=x_0$ 处必连续
 - ③设 $\lim_{x\to x_0^-} f(x)$ 与 $\lim_{x\to x_0^+} f(x)$ 均存在且相等,则 f(x) 在 $x=x_0$ 处极限存在
 - ④设 $\lim_{x\to x_0^{-}} f(x)$ 与 $\lim_{x\to x_0^{+}} f(x)$ 均存在,则 f(x) 在 $x=x_0$ 处必连续

正确的个数(

(A) 1

(C) 3

(D) 4

【答案】(B)

【解析】① $f_{-}'(x_0)$ 与 $f_{+}'(x_0)$ 均存在,则 f(x) 在 $x = x_0$ 处左连续且右连续,故 f(x) 在 $x = x_0$ 处连续,该选项正确;

②
$$\diamondsuit$$
 $f(x) = \begin{cases} x^2, & x \neq 0, \\ 1, & x = 0, \end{cases}$, $\iiint_{x \to 0^-} f'(x) = \lim_{x \to 0^-} 2x = 0$, $\lim_{x \to 0^+} f'(x) = \lim_{x \to 0^+} 2x = 0$, (\Box)

f(x) 在 x = 0 处不连续, 故该选项错误;

③由左右极限与极限的关系(f(x)在 $x=x_0$ 处左、右极限都存在且相等的充要条件是 f(x)在 $x=x_0$ 处极限存在),故该选项正确;

④ f(x) 在 $x = x_0$ 处连续,需 $\lim_{x \to x_0^-} f(x)$ 与 $\lim_{x \to x_0^+} f(x)$ 均存在且相等且等于该点的函数值,

而本题该点处函数值未知,故该选项错误。

序号	错误原因	学习建议	备注
23020	不清楚函数在一点处极限存在	讲义 13 页极限的概念以及 29 页连	
1	与连续的区别与联系	续的概念; 习题册 27 页 1 题、2 题、	
		4 题;注意体会函数在一点的处极	
		限与在该点处的连续性没有必然联	
		系。	
23020	不清楚导函数在一点处的极限	讲义 35 页函数在一点处的导数;注	
2	与原函数在该点处的连续性的	意体会研究导函数在一点处的极限	
	区别与联系	时,与原函数在该点处的连续性无	
		必然联系。	
23020	不清楚函数在一点处导数存在	讲义 38 页可导与连续; 习题册 38	
3	与连续的关系	页 6 题、7 题;注意体会函数在一	
		点处左(右)导数存在时,则函数	
		在该点处左(右)连续。	
23020	其他;		
4			

3、(本小题满分 30 分) 设函数 y = y(x) 由方程 $\sin y + e^x - xy - 1 = 0$, $y \in (-\pi, \pi)$ 所确

定,试求
$$\frac{\mathrm{d}y}{\mathrm{d}x}\Big|_{x=0}$$
, $\frac{\mathrm{d}^2y}{\mathrm{d}x^2}\Big|_{x=0}$ 。

【答案】
$$y'|_{x=0} = -1$$
, $y''|_{x=0} = -3$ 。

【解析】 $\sin y + e^x - xy - 1 = 0$ 两边同时对 x 求导得, $\cos y \cdot y' + e^x - y - xy' = 0$ (1),将 x = 0 代入原方程,可得 y = 0,将 x = 0, y = 0 代入 (1) 式,可解得, $y'\big|_{x=0} = -1$; (1) 式两边同时对 x 求导可得, $-\sin y \cdot y'^2 + \cos y \cdot y'' + e^x - 2y' - xy'' = 0$,将 x = 0, y = 0, $y'\big|_{x=0} = -1$ 代入,解得 $y''\big|_{x=0} = -3$ 。

序号	错误原因	学习建议	备注
23030	不清楚隐函数的求导法则	讲义 44 页隐函数的导数;讲义 45	
1		页例5和例6以及习题册45页3题、	
		4 题;注意体会隐函数求导时需注	

		意方程两边同时对 x 求导并将 y 看	
		成关于x的函数。	
23030	不清楚计算隐函数二阶导时如	讲义 44 页隐函数的导数; 讲义 45	
2	何简化做题步骤	页例 6 以及习题册 45 页 6 题;注意	
		体会在计算二阶导数时,直接对求	
		导后的方程两侧同时对 x 求导即	
		可,不必计算出一阶导函数。	
23030	不清楚常见函数的求导公式	讲义 41 页求导公式; 讲义 41 页例	
3		1;注意体会导数计算中常用的求导	
		公式。	
23030	计算型错误	建议1、2、3。	
4			
23030	其他;	4	
5			

4、(本小题满分 20 分) 若函数
$$y = y(x)$$
满足 $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 + \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 0$,且 $\frac{\mathrm{d}y}{\mathrm{d}x} \neq 0$,求 $\frac{\mathrm{d}^2x}{\mathrm{d}y^2}$ 。

【答案】1。

【解析】
$$\frac{\mathrm{d}x}{\mathrm{d}y} = \frac{1}{y'(x)}$$
, $\frac{\mathrm{d}^2x}{\mathrm{d}y^2} = \frac{d}{dy} \left(\frac{dx}{dy}\right) = \frac{d}{dx} \left(\frac{1}{y'(x)}\right) \cdot \frac{dx}{dy} = -\frac{y''}{y'^3}$,又因 $\left(\frac{\mathrm{d}y}{\mathrm{d}x}\right)^3 + \frac{\mathrm{d}^2y}{\mathrm{d}x^2} = 0$,

故
$$\frac{d^2x}{dy^2} = -\frac{y''}{{y'}^3} = 1$$
。

序号	错误原因	学习建议	备注
23040	不清楚反函数的求导法则	讲义 43 页反函数求导法则; 讲义	
1		43 页例 3;注意体会反函数的导数	
		与原函数导数的关系。	
23040	不清楚抽象函数求导时求导变	讲义 46 页抽象函数的导数;讲义	
2	量与自变量如何区分	47 页例 11、例 12; 注意体会抽象	
		函数求导中当自变量与求导变量不	
		一致时,要插入中间变量,进而计	
		算导数。	
23040	计算型错误	建议1、2。	
3			
23040	其他;		
4			

5、(本小题满分 20 分) 若函数 y = y(x)二阶可导,且满足微分方程

 $y'' + (y')^2 - \frac{1}{x}y' + 4x^2 = 0$, 试做变量替换 $u = e^v$, $x = \sqrt{t}$ 将该方程化为 u 关于 t 的微分方程。

【答案】
$$\frac{d^2u}{dt^2} + u = 0$$
。

【解析】
$$\frac{dy}{dx} = \frac{dy}{du} \frac{du}{dt} \frac{dt}{dx} = \frac{1}{u} \frac{du}{dt} 2\sqrt{t}$$
,

$$\frac{d^2y}{dx^2} = \frac{d}{dx} \left(\frac{1}{u}\right) \frac{du}{dt} 2\sqrt{t} + \frac{1}{u} \frac{d}{dx} \left(\frac{du}{dt}\right) 2\sqrt{t} + \frac{1}{u} \frac{du}{dt} \frac{d(2\sqrt{t})}{dx}$$

$$= \frac{-2\sqrt{t}}{u^2} \left(\frac{du}{dt}\right)^2 2\sqrt{t} + \frac{2\sqrt{t}}{u} \frac{d^2u}{dt^2} 2\sqrt{t} + \frac{2}{u} \frac{du}{dt} = \frac{-4t}{u^2} \left(\frac{du}{dt}\right)^2 + \frac{4t}{u} \frac{d^2u}{dt^2} + \frac{2}{u} \frac{du}{dt},$$

将
$$\frac{dy}{dx}$$
 与 $\frac{d^2y}{dx^2}$ 代入上述方程得,

$$-\frac{4t}{u^2} \left(\frac{du}{dt}\right)^2 + \frac{4t}{u} \frac{d^2u}{dt^2} + \frac{2}{u} \frac{du}{dt} + \frac{4t}{u^2} \left(\frac{du}{dt}\right)^2 - \frac{1}{u\sqrt{t}} \frac{du}{dt} 2\sqrt{t} + 4t = 0,$$

整理得,
$$\frac{d^2u}{dt^2} + u = 0$$
 。

序号	错误原因	学习建议	备注
23050	不清楚题目的考查内容	讲义 47 页例 12、例 13; 注意体会	
1		此类题目主要考查抽象函数的导	
		数。	
23050	不清楚抽象函数求导时求导变	讲义 46 页抽象函数的导数; 讲义	
2	量与自变量如何区分	47 页例 11、例 12; 注意体会抽象	
		函数求导中当自变量与求导变量不	
		一致时,要插入中间变量,进而计	
		算导数。	
23050	计算型错误	建议1、2。	
3			
23050	其他;		
4			