Загрузка и первичный анализ данных

Для выполнения задания был выдан датасет с данными о характеристиках моделей мобильных телефонов и их рейтингом цен.

https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification?select=train.csv (https://www.kaggle.com/datasets/iabhishekofficial/mobile-price-classification?select=train.csv)

```
from operator import itemgetter
from sklearn.model_selection import train_test_split, KFold, GridSearchCV
from sklearn.metrics import accuracy_score
from \ sklearn.neighbors \ import \ KNeighbors Regressor, \ KNeighbors Classifier \ and \ an approximately supported by the support \ KNeighbors \ and \ an approximately support \ an approximately support \ and \ an approximately support \ an approximately support \ an approximately support \ an approximately support \ and \ an approximately support \ an approximat
{\tt from \ sklearn.ensemble \ import \ RandomForestClassifier}
import numpy as np
import pandas as pd
import seaborn as sns
import math
import matplotlib.pyplot as plt
import matplotlib.ticker as ticker
 %matplotlib inline
sns.set(style="ticks")
data = pd.read_csv('Mobile_price_classification/data.csv', sep=",")
battery_power
                                                      int64
                                                         int.64
clock_speed float64
dual_sim
                                                       int64
int_memory
mobile_wt
n_cores
                                                        int64
px_height
                                                        int64
px_width
                                                        int64
ram
                                                        int.64
sc h
                                                      int64
SC W
                                                      int64
talk_time
three_g
                                                      int64
touch_screen
                                                      int64
                                                      int64
                                                        int64
price_range
dtype: object
data.shape
 (2000, 21)
np.where(pd.isnull(data))
 (array([], dtype=int64), array([], dtype=int64))
```

В массиве нет пропусков.

data

	battery_power	blue	clock_speed	dual_sim	fc	four_g	int_memory	m_dep	mobile_wt	n_cores	 px_height	px_width	ra
0	842	0	2.2	0	1	0	7	0.6	188	2	 20	756	25
1	1021	1	0.5	1	0	1	53	0.7	136	3	 905	1988	26
2	563	1	0.5	1	2	1	41	0.9	145	5	 1263	1716	26
3	615	1	2.5	0	0	0	10	0.8	131	6	 1216	1786	27
4	1821	1	1.2	0	13	1	44	0.6	141	2	 1208	1212	14
1995	794	1	0.5	1	0	1	2	0.8	106	6	 1222	1890	66
1996	1965	1	2.6	1	0	0	39	0.2	187	4	 915	1965	20
1997	1911	0	0.9	1	1	1	36	0.7	108	8	 868	1632	30
1998	1512	0	0.9	0	4	1	46	0.1	145	5	 336	670	86
1999	510	1	2.0	1	5	1	45	0.9	168	6	 483	754	39

2000 rows × 21 columns

Будем решать задачу классификации. Для решения задачи планируется использование метрики ассигасу. Проверим, можно ли применить ее.

```
np.unique(data['price_range'], return_counts=True)

(array([0, 1, 2, 3], dtype=int64), array([500, 500, 500], dtype=int64))
```

Классы сбалансированы. Можно использовать метрику ассигасу.

```
y=np.array(data['price_range'])
X=np.array(data.drop(['price_range'], axis=1))
X, y
```

Разделение выборки на обучающую и тестовую

```
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.3, random_state=1, shuffle=True)
```

Выборка разделена на обучающую X_train, y_train и тестовую X_test, y_test

Начинаем обучение

```
KNN_Clf= KNeighborsClassifier(n_neighbors=2)
KNN_Clf
```

```
KNN_Clf.fit(X_train, y_train)
```

KNeighborsClassifier(n neighbors=2)

```
KNeighborsClassifier(n_neighbors=2)
```

```
y_pred = KNN_Clf.predict(X_test)
accur = accuracy_score(y_test, y_pred)
accur
0.896666666666666
                                  Мы получили точность совпадения предсказанных результатов с истинными 90%
                                           Подбор гиперпараметра K с использованием GridSearchCV
parametrs = { 'n_neighbors': range (1, 30)}
clf = KNeighborsClassifier()
grid3 = GridSearchCV(clf, parametrs, cv=3)
grid3.fit(X, y)
{\tt GridSearchCV(cv=3,\ estimator=KNeighborsClassifier(),}
             param_grid={'n_neighbors': range(1, 30)})
grid3.best_params_
{'n_neighbors': 7}
grid5 = GridSearchCV(clf, parametrs, cv=5)
grid5.fit(X, y)
GridSearchCV(cv=5, estimator=KNeighborsClassifier(),
            param_grid={'n_neighbors': range(1, 30)})
grid5.best_params_
{'n_neighbors': 11}
grid7 = GridSearchCV(clf, parametrs, cv=7)
grid7.fit(X, y)
{\tt GridSearchCV(cv=7,\ estimator=KNeighborsClassifier(),}
            param_grid={'n_neighbors': range(1, 30)})
grid7.best_params_
{'n_neighbors': 12}
grid10 = GridSearchCV(clf, parametrs, cv=10)
grid10.fit(X, y)
GridSearchCV(cv=10, estimator=KNeighborsClassifier(),
             param_grid={'n_neighbors': range(1, 30)})
grid10.best_params_
```

```
{'n_neighbors': 12}
```

Оптимальное значение гиперпараметра К = 12

Создадим класс с оптимальным значением гиперпараметра						
<pre>KNN_Clf_Opt= KNeighborsClassifier(n_neighbors=12) KNN_Clf_Opt</pre>						
<pre>KNeighborsClassifier(n_neighbors=12)</pre>						
<pre>KNN_Clf_Opt.fit(X_train, y_train)</pre>						
<pre>KNeighborsClassifier(n_neighbors=12)</pre>						
<pre>y_pred_opt = KNN_Clf.predict(X_test)</pre>						
<pre>accur_opt = accuracy_score(y_test, y_pred_opt) accur_opt</pre>						
0.92						

Качество метрики оптимальной модели 92% выше, чем качество метрики исходной.