§6.3 同步时序电路设计

Synchronous Sequential Circuit Design

已知 → 功能或状态图

例 1. 设计同步5进制加法计数器

1) 确定状态及状态图

M-5 计数器, 5 个状态: S_0, S_1, S_2, S_3, S_4

在计数脉冲CLK作用下

- 5 个状态周期性变换
- 在 S_4 状态下进续输出Y=1

2) 状态化简

M-5, 5 个状态, 不须再化简

3) 状态分配、编码

$$2^{n-1} \leq$$
状态数 $\leq 2^n$

n: 二进制位数

3位

4) 选择 FF,确定驱动方程、状态方程 Q^{n+1} 及输出方程

方法 1: 先不确定用哪种触发器

由状态表填卡诺图

Q_2^{n+1} Q_0^{n}	$2^{\mathrm{n}} Q_1^{\mathrm{n}} = 0$	01	11	10
0	0	0	Ф	0
1	0	1	Ф	Ф

状态表

Q_2^n	Q_1	$^{n}Q_{0}^{n}$	Q_2^{n+1}	Q^{i+}	Q_0^{n+1}	Y
0	0.	(0	0	1	0
0	8	1	0	1	0	0
0	1	9	0	1	1	0
0	1	1	1	0	0	0
1.	0	0	0	0	0	1

也可直接填卡诺图

直接填卡诺图

5个 有效状态 3億二进制数 3个FF

	$2^{\mathbf{n}} \mathbf{Q}_{1}^{\mathbf{n}} $	01	11	10
0	0	0	Ф	1
1	0	0	Ф	Φ

$$Q_2^{n+1} = Q_1^n Q_0^n$$

$$= D_2$$

$$D_2 = Q_1^n Q_0^n$$

$$Q_1^{n+1} = Q_0^n \overline{Q}_1^{n} + \overline{Q}_0^n Q_1^n$$

$$= Q_0^n \oplus Q_1^n$$

$$= T_1 \oplus Q_1^n$$

$$Q_0^{n+1} = \overline{Q}_2^n \overline{Q}_0^n$$

$$= D_0$$

$$= \overline{Q}_0^n$$

$$Y_{Q_{2}^{n}Q_{1}^{n}}$$
 Q_{0}^{n}
 $Q_{$

$$Y = Q_2^{\text{n}}$$

$$\begin{cases} J_0 = Q_2^n \\ K_0 = 1 \end{cases}$$

$$D_2 = Q_1^{\text{n}} Q_0^{\text{n}} \qquad T_1 = Q_0^{\text{n}} \qquad \begin{cases} J_0 = \overline{Q}_2^{\text{n}} \\ K_0 = 1 \end{cases}$$

5) 电路

6)检查是否可以自启动

$$Q_{2}^{n+1} = Q_{1}^{n} Q_{0}^{n}$$

$$Q_{1}^{n+1} = Q_{0}^{n} \overline{Q}_{1}^{n} + \overline{Q}_{0}^{n} Q_{1}^{n}$$

$$= Q_{0}^{n} \oplus Q_{1}^{n}$$

$$Q_{0}^{n+1} = \overline{Q}_{2}^{n} \overline{Q}_{0}^{n}$$

可以自启动

状态表

$Q_2^r Q_1^r Q_0^r$	Q_2^{n+1}	Q_1^{i+1}	Q_0^{n+1}	Y
0 0 0	0	0	1	0
0 8 1	0	1	0	0
610	0	1	1	0
0 10	1	0	0	0
1 0 0	0	0	0	1
1 0 1	0			1
1 0 1	0	1	0	1
1 1 0	0	1	0	1
1 1 1	1	0	0	1
	-			

方法 2: 确定照哪种触发器

- 4) 选择 FF 选 JK-FFs
- 5) 状态方程 Q^{n+1} 及控制输入-J,K

状态表

$\overline{Q_2^nQ_1^nQ_0^n}$	Q_2^{n+}	Q_1^{n+1}	Q_0^{n+1}	Y
0 0 0	0	0	1	0
0 0 1	0	1	0	0
0 1 0	0	1	1	0
0 1 1	1	0	0	0
1 0 0	0	0	0	1

JK-FF 激励表

Q^n	$\rightarrow Q^{n+1}$	3	K
0	0	, 0	×
0.	(I)	1	X
1	0	X	1
	1	×	0

$Q_2^n \Rightarrow Q_2^{n+1} \quad J_2$

0	0	0

$$1 \quad 0 \quad X$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

$$\mathbf{X} \mathbf{X} \mathbf{X} \mathbf{X}$$

驱动方程 $J=F(Q_2^n,Q_1^n,Q_0^n)$

得到 $2^{\#}$ -FF 控制输入 J_2 驱动卡诺图

状态图

$Q_2^n Q_1^n Q_0^n$	Q_2^{n+1}	Q_1^{n+1}	Q_0^{n+1}	Y
0 0 0	0	0	1	0
0 0 1	0	1	0	0
0 1 0	0	1	1	0
0 1 1	1	0	0	0
1 0 0	0	0	0	1

0

JK-FF 激励表

$Q^n \rightarrow Q^{n+1}$	Į K
0 0	$\overline{}$ $\overline{}$ \times
0 6	$1 \times$
1 0	× 1
1	\times 0

$$Q_1^n \Rightarrow Q_1^{n+1} \quad \mathbf{K}_1$$

$$\mathbf{X} \quad \mathbf{X} \quad \mathbf{X} \quad \mathbf{X}$$

$$\mathbf{X} \subset \mathbf{X}$$
 \mathbf{X}

得到各个触发器控制输入驱动卡诺图及控制输入

$$J_2 = Q_1^n Q_0^n$$

3	10	Q_0^n
64		

$$J_0 = \overline{\mathcal{Q}_2^n}$$

$$K_1 = \mathcal{Q}_0^n$$

$$K_0 = 1$$

输出卡诺图

$Q_2^n Q_1^n Q$	$Q_0^n \mid Q_2^{n-1}$	Q_1^{n+1}	Q_0^{n+1}	Y					
0 0	$0 \mid 0$	0	1	0					
000	1 0	1	0	0					
21	$0 \mid 0$	1	1	0					
0 1	1 1	0	0	0					
10	0 0	0	0	1					

$$Y = Q_2^n \qquad \left\{ \begin{array}{l} J_2 = Q_1^n Q_0^n \\ K_2 = 1 \end{array} \right.$$

$$\begin{cases} J_1 = \mathcal{Q}_0^n \\ K_1 = \mathcal{Q}_0^n \end{cases} \begin{cases} J_0 = \overline{\mathcal{Q}}_2^n \\ K_0 = 1 \end{cases}$$

7)检查是否可以自启动

例 2. 设计一个串行数据检测器。该检测器有一个输入端X。电路的功能是对输入信号进行检测。当连续输入三个1 (以及三个以上1) 时,该电路输出Y=1,否则输出Y=0。

时钟周期	T_1	T_2	T_3	T_4	T_5	T_{5}	$\overline{2}_{7}$	T_8	77,	T_{10}	T_{11}	T_{12}	T_{13}	T_{14}	T_{15}
X	0	1	0	1	1	1	0	0	1	1	1	1	0	1	0
Y	0	0	0	0	0	01	0	0	0	0	1	1	0	0	0

1) 根据设计要求,设定状态

- S_0 —初始状态或没有收到1时的状态
- S_1 —收到一个1后的状态
- S_2 —连续收到两个1后的状态
- S_3 —连续收到三个1(以及三个以上1)后的状态

X=1, 收到一个""

输入三个1 (以及三个以上1) ,输出Y=1

2) 画出状态转换图

 S_0 —初始状态或没有收到1时的状态;

 S_1 —收到一个1后的状态;

 S_2 —连续收到两个1后的状态;

 S_3 —连续收到三个1 (以及三个以上1) 后的状态。

X=1, 收到一个"1"

输入三个1 (以及三个以之1) $_{1}$ 输出Y=1

3) 状态化简

状态化简: 合并等效状态

等效状态:

在相同的输入条件下,输出相同、次态也相同的状态

 S_2 和 S_3 是等效状态,将 S_2 和 S_3 合并为 S_2

3) 状态分配、编码

Set
$$S_0 = 00$$

$$S_1 = 01$$
 编码可以不连续
$$S_2 = 11$$

编码后的状态图

状态表

X	C_1	O_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
6	$\hat{0}$	0	0	0	0
0	0	1	0	0	0
0	1	0	Φ	Φ	Φ
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	Ф	Φ	Φ
1	1	1	1	1	1

4) 选触发器及控制输入

$$Q_1^{n+1} = XQ_0^n = D_1 \qquad D_1 = XQ_0^n$$

$$Q_0^{n-1} = X = D_0 \qquad D_0 = X$$

X	Q_1^n	\mathcal{Q}_{2}^{n}	Q_1^{n+1}	Q_0^{n+1}	Y	
0	0	Ú	0	0	0	
0	0	1	0	0	0	
6	1	0	Φ	Φ	Φ	
0	1	1	0	0	0	
1	0	0	0	1	0	
1	0	1	1	1	0	
1	1	0	Φ	Φ	Φ	
1	1	1	1	1	1	

$$Y = XQ_1^n$$

5) 电路

2 D-FFs

$$D_1 = XQ_0^{\text{n}}$$

$$Y = XQ_1^n$$

6) 自启动

从电路的状态图分析

可以自启动

但其功能错误, 输出应设置为0,才符合题意

检测连续输入三个及以上个1时,电路输出Y=1。

自启动

让*X*=1, 10对应的输出 为0

状态表

X	Q_1^n	Q_0^n	Q_1^{n+1}	Q_0^{n+1}	Y
0	0	0	0	0	0
0	0	1	0	0	0
0	1	0	0	0	0
0	1	1	0	0	0
1	0	0	0	1	0
1	0	1	1	1	0
1	1	0	0	10	0
1	1	1	1	1	1

$$Y = XQ_1^nQ_0^n$$

既实现自启动, 也符合题意

可以在最初设计时考虑自启动(K-map随意项的填写)

例 3. 设计 M-6 减法计数器

6 个状态

直接用3位数编码

 $Q_3Q_2Q_1$

/Z

$Z_{Q_1^n}$	11	10		
0	1	0	Ф	0
1	0	0	Ф	0

$$Q_3^{n+1}$$
 $Q_3^{n}Q_2^{n}$
 Q_1^{n}
 $00 \quad 01 \quad 11 \quad 10$
 $0 \quad \Phi \quad 0$
 $1 \quad 0 \quad \Phi \quad 1$

$$Q_3^{n+1} = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + Q_3 Q_1$$

$$D_3 = \overline{Q_3} \ \overline{Q_2} \ \overline{Q_1} + Q_3 Q_1$$

$$Q_2^{n+1} = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$D_2 = Q_2 Q_1 + Q_3 \overline{Q_1}$$

$$Q_1^{n+1} = \overline{Q}_1$$

$$D_1 = \overline{Q_1}$$

$$Z = \widehat{\wp}_3 \ \overline{Q_2} \ \overline{Q_1}$$

自启动及电路图略

例 4. 按照下面状态图设计电路

1) 确定状态及状态表

状态数 GE FF 个数

n FFs \rightarrow 2ⁿ 状态

 $2^{n-1} \le$ 次态数 $\le 2^n \rightarrow n$ FFs

3 < 2² 需要 2 个 FF

状态表 (根据状态图)

XIZ

À	\mathcal{Q}_2^n	Q_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
$\overline{0}$	0	0	0	0	0
0	0	1	ф	ф	ф
0	1	0	1	0	0
0	1	1	1	1	0
1	0	0	1	0	0
1	0	1	ф	ф	ф
1	1	0	1	1	0
1	1	1	0	0	1

2)选择 FF (K-map, 圏 1)

2# FF 选择 JK-FF

$$Q_2^{n+1} = \overline{X}Q_2^n + X\overline{Q}_1^n$$

$$Q_2^{n+1} = J_2 \overline{Q}_2^n + \overline{K}_2 Q_2^n$$

$$Q_{1}^{n+1}$$
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{2}^{n}
 Q_{1}^{n}
 Q_{2}^{n}
 Q_{2}^{n}
 Q_{3}^{n}
 Q_{4}^{n}
 Q_{5}^{n}
 $Q_$

比到 $J_2 = ?$ $K_2 = ?$

不能按上面方法圈,必须圈 $Q_2^{n+1} = Q_2^{n} + Q_2^{n}$

$$Q_{2}^{n+1}$$

$$Q_{1}^{n} Q_{2}^{n} Q_{2}^{n}$$

$$0 \qquad 0 \qquad 1 \qquad 1 \qquad 1$$

$$1 \qquad \phi \qquad 1 \qquad 0 \qquad \phi$$

$$\overline{Q}_{2}^{n} \qquad Q_{2}^{n} \qquad \overline{Q}_{2}^{n}$$

$$Q_{2}^{n+1} = X\overline{Q}_{2}^{n} + (\overline{X} + \overline{Q}_{1}^{n})Q_{2}^{n}$$

$$= X\overline{Q}_{2}^{n} + \overline{XQ}_{1}^{n}Q_{2}^{n}$$

$$\vdots \begin{cases} J_{2} = X \\ K_{2} = XQ_{1}^{n} \end{cases}$$

- · 能找到系数 (控制变量) 时尽量 化简
- 找不到系数时,牺牲化简也要找到系数

1# FF

JK-FF

$$Q_1^{n+1} = J_1 \overline{Q}_1^n + \overline{K}_1 Q_1^n$$

$$= XQ_2^n \overline{Q}_1^n + \overline{X}Q_1^n$$

$$\therefore \begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

输出 Z

$Z = XQ_1^n$

电路

$$\begin{cases} J_2 = X \\ K_2 = XQ_1^n \end{cases}$$

$$\begin{cases} J_1 = XQ_2^n \\ K_1 = X \end{cases}$$

3) 讨论: 01 状态

分析卡诺图 K-map

$$XQ_2^nQ_1^n = 001$$
, (Z=0)

Next state $Q_2^{n+1}Q_1^{n+1} = 01$,

 $XQ_2^nQ_1^n = 101$ 时,(Z=1)

Next state $Q_2^{n+1}Q_1^{n+1} = 10$,

实现自启动

要分析输出的物理意义 (即电路功能) 是否正确

此电路为<mark>可控</mark>模3加 法计数器

X=0,保持原状态X=1,作加法计数

输出Y=1,为进位输出

显然自启动之后电路功能出现错误

应该将次=1时01状态的输出设为0,次态为00

在设计电路时

在填状态表的不能填。

X=0,保持原状态 X=1,作加法计数(从0开始)

状态表

	3	Q_2^n	Ω_1^n	Q_2^{n+1}	Q_1^{n+1}	Z
•	0	9	0	0	0	0
1	U	0	1	0	1	0
	0	1	0	1	0	0
	0	1	1	1	1	0
	1	0	0	1	0	0
	1	0	1	0	0	0
	1	1	0	1	1	0
	1	1	1	0	0	1