Eliminating Trends

Fits & Filters

STAT 464 / 864 Fall 2024
Discrete Time Series Analysis
Skyepaphora Griffith, Queen's University

Eliminating m_t

$$X_t = m_t + s_t + Y_t \quad (\star)$$

Once $\,m_t\,$ is accounted for, we can examine the data's remaining periodic structures

Fig 1: Australian Red Wine Sales from Jan. 1980 to Oct. 1991

Notice the fluctuations in sales are independent from the general upward trend

Eliminating m_t

$$X_t = m_t + s_t + Y_t \quad (\star)$$

Once $\,m_t\,$ is accounted for, we can examine the data's remaining periodic structures

Method 1

Polynomial Regression (Similar to linear models)

Method 2

Moving Average (MA) Smoothing Filters

Method 3

Exponential Smoothing

Polynomial Regression

$$X_t = m_t + s_t + Y_t \quad (\star)$$

Assume m_t is well fit by a polynomial of some order $p \geq 1$

$$m_t = a_0 + a_1 t + a_2 t^2 + \dots + a_p t^p$$

Use **linear regression** to estimate unknown coefficients $\{a_k\}$

Estimates chosen to minimize:

$$\sum_{t=1}^{N} (x_t - (a_0 + \dots + a_p t^p))^2$$

Moving Average (MA) Smoothing Filters

"Smooths" the series by estimating points using an average of surrounding data

- $oldsymbol{\mathbb{P}}$ Choose a **time-bandwidth** non-negative integer q
- \bigcirc Get average of points in a (2q+1)-diameter window, centered at t

$$\hat{m}_t = \frac{1}{2q+1} \sum_{j=-q}^{q} x_{t-j}$$

Moving Average (MA) Smoothing Filters

"Smooths" the series by estimating points using an average of surrounding data

- oxedown Choose a **time-bandwidth** non-negative integer q
- \bigcirc Get average of points in a (2q+1)-diameter window, centered at t

$$\hat{m}_t = \frac{1}{2q+1} \sum_{j=-q}^{q} x_{t-j}$$

MA Smoothers: Endpoint Issues

Near endpoints of series,

$$t \in [1,q] \text{ and } t \in [N-q+1,N]$$

The estimate \hat{m}_t uses timepoints we don't get to observe

Possible Solutions:

- 1) pad" the ends with copies of $\,x_1\,$ and $\,x_N\,$ (ITSMR does this)
- set the missing data to 0
- 3) shorten window towards boundaries → only ever covers observed values

MA-Smoothers: Choice of q

Too small: Not smooth enough.

Extreme: If q = 0 you're doing nothing

Too big: smooth but lose apparent

evolution of trend over time

Extreme: If $q \geq N$, you're just taking the

mean at all t (flattening effect!)

Just right: smallest $\,q\,$ capable of smoothing significant trends

Exponential Smoothing: Derivation

Let
$$\alpha \in [0, i]$$
. Then

 $\hat{m}_{i} = X_{i}$. For $t = 2$, $\hat{m}_{t} = \lambda X_{t} + (1-\alpha) \hat{m}_{t-1}$

Note that

 $\hat{m}_{t} = \alpha X_{t} + (1-\alpha) \hat{m}_{t-1}$
 $= \alpha X_{t} + (1-\alpha) (\alpha X_{t-1} + (1-\alpha) \hat{m}_{t-2})$
 $= \alpha X_{t} + \alpha (1-\alpha) X_{t-1} + (1-\alpha) \hat{m}_{t-2}$
 $= \lambda X_{t} + \alpha (1-\alpha) X_{t-1} + \alpha (1-\alpha)^{2} X_{t-2} + ... + \lambda (1-\alpha)^{2} X_{2}$
 $+ (1-\alpha)^{2} X_{1}$
 $= \sum_{i=1}^{k-2} \alpha (1-\alpha)^{2} X_{1-i} + (1-\alpha)^{2} X_{1}$
 \hat{m}_{i}

The weights $\, \alpha (1-\alpha)^j \,$ decrease exponentially as ${\bf j}$ increases ie) as we go further into the past

Let
$$d \in [0, 1]$$
. Then $\hat{m}_{t-1} = \sum_{j=0}^{t-2} d(1-d)^{j} \chi_{t-j} + (1-d)^{t-1} \chi_{t-j}$. For $t \geq 2$, $\hat{m}_{t} = d \chi_{t} + (1-d) \hat{m}_{t-1} = \sum_{j=0}^{t-2} d(1-d)^{j} \chi_{t-j} + (1-d)^{t-1} \chi_{t-j}$.

- In the case $\, \alpha = 0$, we have $\, \hat{m}_t = \hat{m}_1 = x_1 \quad \forall t \,$ $\,$ $\,$ you never take current value into account
- $egin{array}{c} \mathbb{C} \end{array}$ Note \hat{m}_t is computed only from the past relative to t
 - this smoother is one-sided
 - it behaves in the spirit of **forecasting**

