Urban Simulation Assessment

April 24, 2019

2990 words excluding equations, code, headings, tables, and figures

1 Part 1

1.1 Introduction

This analysis uses a recursive function for calculating the marginal effect of a node's removal to consider the resilience of London's tube. Appendix 1 contains code for the function.

1.2 Impact Evaluation

The network effect metric will be discussed first because the node removal criteria was decided in the context of the network metric.

Breaking the network into isolates was investigated but not pursued. Instead, the focus will be on increasing the total length of a journey.

This is investigated using shortest topological path. Given the spatial nature of the tubes, where edge attributes represent actual distances, weighted shortest path might be an attractive option. In the context of the London tube though, total time and effort are more important than total distance. Trains can travel longer distances fairly rapidly while traveling through a high number of stations increases time because of the need to stop. Further, it is assumed that traveling through a higher number of stops implies a higher number of train changes which are difficult and slow. Thus by using geodesic path, what is being maximized is the increase in stoppage time, and line change time for travelers in the network.

The igraph package's mean_distance() function computes the average shortest path between nodes in the network. The unconnected parameter was used to specify that nodes that were not connected to the largest cluster were counted as 1 + the longest possible geodesic, the actual longest geodesic is much less than this. This demonstrates the incompatibility of different network measures. There was not a clear method for comparing the effect of a longer trip with the effect of removing a trip possibility entirely.

1.3 Node Removal Criteria

For each node, degree, betweeness, topological betweenness, closeness, topological closeness and eigenvector centrality were calculated. The correlations for these values across stations can be reviewed in figure 1. It was noted that correlations between weighted and

Figure 1: Correlation between station/node metrics

topological measures were high, indicating that the distances between tube stations are fairly consistent This supports the decision to use geodesic longest path. The correlation of measures betweenness and degree is also fairly high, indicating that tube stations at the middle of a line, with higher betweenness, also tend to have multiple lines, high degree. Correlations between eigenvector centrality and the other measures was very low, indicating that this does not give the same information as other metrics. Lastly, it was not clear why correlation between weighted and topological eigenvector centrality was 0.

In order to maximize the increase in travel time measured by the average length of geodesic paths, betweenness will be used to order node removals. This measure is the number of shortest paths between nodes that travel through a given node. Deleting the node with highest betweenness will force the highest number of trips to use an alternate, longer, path.

1.4 Analysis

Tables 1 through 4 show the effect on average geodesic path length for nodes deleted according to betweenness and eigenvector centrality. Tables 1 and 3 assume that the

	Node Deleted	Δ Avg Geodesic	Components
1	Green Park	0.46	1
2	King's Cross St. Pancras	30.97	2
3	Bank	1.01	2
4	Waterloo	1.14	2
5	Stockwell	17.73	4 $ $
6	Embankment	108.62	5
7	Baker Street	2.77	6
8	Notting Hill Gate	30.67	7
9	Ealing Common	26.62	9
10	Stratford	10.58	10
11	Canning Town	5.34	12
12	Hammersmith	8.38	14
13	Shadwell	7.83	16
14	Harrow-on-the-Hill	2.89	18
15	Camden Town	2.38	20
16	Canary Wharf	1.96	23
17	Mile End	0.96	24
18	Paddington	0.18	28
19	Earl's Court	0.11	31
20	Oxford Circus	-0.44	33
21	Woodford	-0.43	34
22	Aldgate East	-0.63	35
23	Finsbury Park	-0.35	38
24	Northfields	-0.42	39
25	Wembley Park	-0.54	41
26	North Acton	-0.59	43
27	Upney	-0.59	44
28	Rayners Lane	-0.60	46
29	Liverpool Street	-0.60	48
30	London Bridge	-0.60	50

Table 1: Network effect of prioritizing removal by betweenness (unnconnected = false)

Node Deleted	Δ Avg Geodesic	Components
Green Park	0.46	1
King's Cross St. Pancras	0.34	2
Bank	1.14	2
Waterloo	1.28	2
Stockwell	0.56	4
Embankment	-6.17	5
Baker Street	2.32	6
Notting Hill Gate	-1.74	7
Ealing Common	-2.86	9
Stratford	-0.36	10
Canning Town	0.34	12
Hammersmith	-1.11	14
Shadwell	-1.44	16
Harrow-on-the-Hill	-0.49	18
Camden Town	-0.57	20
Canary Wharf	-0.34	23
Mile End	-0.85	24
Paddington	-0.33	28
Earl's Court	-0.20	31
Oxford Circus	0.02	33
Woodford	-0.06	34
Aldgate East	0.00	35
Finsbury Park	-0.10	38
Northfields	-0.21	39
Wembley Park	0.01	41
North Acton	-0.08	43
Upney	-0.18	44
Rayners Lane	-0.12	46
Liverpool Street	-0.10	48
London Bridge	-0.08	50

Table 2: Network effect of prioritizing by betweenness (unnconnected = true)

	Node Deleted	Δ Avg Geodesic	Components
1	Embankment	0.12	1
2	Cannon Street	5.66	2
3	Moorgate	0.22	2
4	West India Quay	0.02	2
5	Great Portland Street	0.11	2
6	Farringdon	1.91	3
7	Paddington	23.34	4 $ $
8	Leicester Square	0.02	4 $ $
9	Heron Quays	15.48	5
10	Gloucester Road	0.32	5
11	Euston	34.93	6
12	Aldgate	-0.03	6
13	St. James's Park	-0.02	6
14	Mile End	0.50	6
15	Oxford Circus	0.31	6
16	Notting Hill Gate	3.48	7
17	Rotherhithe	-0.02	7
18	Blackfriars	-1.59	8
19	Baker Street	90.79	12
20	Barons Court	5.84	13
21	Aldgate East	1.50	14
22	Ruislip Manor	1.33	15
23	Blackwall	-0.34	15
24	King's Cross St. Pancras	15.42	18
25	Island Gardens	-1.07	19
26	West Ham	9.42	21
27	Holborn	2.77	24
28	Waterloo	-0.37	24
29	Victoria	5.98	25
30	Custom House	2.37	26

Table 3: Network effect of prioritizing by eigenvector centrality (unnconnected = false)

	Node Deleted	Δ Avg Geodesic	Components
1	Embankment	0.12	1
2	Cannon Street	-0.02	2
3	Moorgate	0.22	2
4	West India Quay	0.02	$2 \mid$
5	Great Portland Street	0.11	2
6	Farringdon	0.03	3
7	Paddington	-0.07	4
8	Leicester Square	0.03	4
9	Heron Quays	-0.21	5
10	Gloucester Road	0.40	5
11	Euston	-0.23	6
12	Aldgate	0.03	6
13	St. James's Park	0.03	6
14	Mile End	0.78	6
15	Oxford Circus	0.51	6
16	Notting Hill Gate	2.80	7
17	Rotherhithe	0.04	7
18	Blackfriars	0.00	8
19	Baker Street	-6.40	12
20	Barons Court	-0.22	13
21	Aldgate East	0.05	14
22	Ruislip Manor	-0.03	15
23	Blackwall	0.08	15
24	King's Cross St. Pancras	-0.93	18
25	Island Gardens	0.02	19
26	West Ham	0.37	21
27	Holborn	0.01	24
28	Waterloo	0.86	24
29	Victoria	-0.61	25
30	Custom House	-0.39	26

Table 4: Network effect of prioritizing by eigenvector centrality (unnconnected = true)

geodesic path between unconnected nodes equals 1 plus the number of nodes in the network, the longest possible path, while tables 2 and 4 do not include distances between unconnected nodes in the average.

This is seen when Kings Cross is deleted, creating a new unconnected component out of the 11 stations on the north east end of the Picadilly line. Excluding distances between unconnected nodes led to a decrease in average trip length (Table 2) because nodes disconnected had higher than average distance to other nodes, lowering the average metric. Table 1 shows a large increase in distance when Kings Cross is deleted as 11 distances of about 600 were added to the mean.

Looking at the effect data it seems that betweenness did a better job than eigenvector centrality of prioritizing nodes to remove. Using betweenness created more isolates. It's difficult to judge which method lengthened average shortest path the most because of the options for dealing with disconnected networks.

1.5 Conclusions

To improve this work, it would be good to add data about transportation networks besides the underground. In particular information about bus routes connected nodes would be useful because it would allow for a better estimate of average shortest path when stations become disconnected as the shortest path could then go through a bus route instead. Similarly, it would be good to include more granular data about where a rider would have to change trains. The current network assumes there's no cost to switch trains relative to staying on the same train passing through a station. Anyone who has walked from the Picadilly line to the Northern line at Kings Cross knows that there is a big difference.

An improvement to the data generally would be to use travel time data instead of using distance as an approximation.

Lastly, it would be interesting to build an igraph function that can compute average shortest path using edge weights since the current function cannot. This could confirm or reject the thought that tube stations are spaced fairly regularly based on the high correlation between weighted and topological centrality measures.

2 Part 2

2.1 The Models

2.1.1 Unconstrained

The model is constrained to the total flows of the system but flows out of origins and into destinations can be any value between 0 and total system flows.

This is useful for studying the change in connectivity between regions, for instance if a new transportation link was built, particularly the long term effects of a change where residence and employment are more flexible.

2.1.2 Production

The direction of flows changes but total flows from each origin are constant. This is useful for studying the effect of a new employment or consumption location that changes the destinations of people going to work or to spend money. The sums of the matrix rows are constant.

2.1.3 Attraction

The origin of flows into a region can change but the total flows into a region are constant. Reduced flows from one region are replaced by another. This could be used to study a new housing development that pulls people into residence in a different part of an area or a natural disaster forcing residents out of an area. The sums of the matrix columns are held constant.

2.1.4 Double

Doubly constrained models can predict the short term effects of a change to transportation networks. Homes and business locations are fixed but behavior patterns like shopping could change almost immediately due to the change in accessibility or travel times between locations. In this model, the sums of both the columns and rows are constant.

2.2 The Parameters

The parameters are ratios of how much a change of 1, in the logarithm of one of the predictor variables affects the logarithm of the estimate of flow. This is seen below, 1-3 for the unconstrained and 4-6 for the doubly constrained. The equation is log-linearized and then the flow estimate is solved for. In equation 6, A_i and B_i are vectors of parameters that allocate parts of the regions total flows across origins and destinations and k is an arbitrary intercept used for estimation.

$$T_{ij} = kV_i^{\mu} W_j^{\alpha} d_{ij}^{-\beta} \tag{1}$$

Para	ameter	Fit	
\overline{k} :	-12.5	RMSE:	2330.9
μ :	1.62	R^2 :	0.386
α :	1.55		
β :	1.5		

Table 5: Total constrained model results

$$ln(T_{ij}) = ln(k) + \mu(ln(V_i)) + \alpha(ln(W_i)) - \beta(ln(d_{ij}))$$
(2)

$$T_{ij} = e^{\{ln(k) + \mu(ln(V_i)) + \alpha(ln(W_j)) - \beta(ln(d_{ij}))\}}$$

$$(3)$$

$$\lambda_{ij} = A_i O_i B_j D_j d_{ij}^{-\beta} \tag{4}$$

$$ln(\lambda_{ij}) = ln(A_i O_i B_j D_j) - \beta ln(d_{ij})$$
(5)

$$\lambda_{ij} = A_i O_i B_j D_j - e^{\beta \ln(d_{ij})} + k \tag{6}$$

2.3 A Scenario

What if teleportation was invented and dramatically reduced travel times in connected boroughs but could only be used in London's outermost boroughs due to construction requirements? Origin and destination attributes remain constant but distances change between: Barnet, Bexley, Croydon, Enfield, Harrow, Havering, Hilingdon, Hounslow, Kingston, Redbridge, Richmond, Sutton, Waltham.

A doubly constrained model will estimate the short term effects where residences and businesses cannot relocate and a total constrained model will estimate the long term effects on business and residence locations.

To approximate the effect of fast transportation between outer boroughs, the lowest distance between centerpoints of two London boroughs, 2080 meters, is substituted for the real distance between each of the 9 outermost boroughs.

2.4 Setup

The parameters and fit of the unconstrained model are seen in table 5.

For the doubly constrained model, the estimated intercept was 24.63 and β was 1.92. This model also produces 32 origin and 32 destination specific parameters that will not be included here.

The signs of both model's estimated parameters were consistent with expectations and were significant to 0.0001.

2.5 Results

Lacking a feasible way to include a 35x35 matrix, data for a subset of relevant boroughs are presented. Tables 6 through 8 show the actual, unconstrained estimate and double constrained estimate for flows between the outer boroughs and between some outer boroughs and main destination inner boroughs (9, 10, 11).

2.6 Analysis

First, the difference between unconstrained and double constrained models can be seen in the total rows and columns where totals have changed for the unconstrained estimate and are constant in the double constrained estimate.

Second, It is notable that in the total-constrained model flows between the outer boroughs where distance was decreased, flows increased dramatically. Seen in the final row and column, total flows for these boroughs increase substantially, e.g. from 30,000 to 100,000 in Barnet. This is consistent with general expectations as a large part of London is highly accessible from Barnet in the scenario. Over the long term, it is reasonable to expect such a large change in distance to have effect on flows.

Third, the validity of the double constrained estimates is doubtful. All of the borough totals are constant, seen by comparing the final row and column of table 6 with those of table 8. Specific flows between pairs of outer boroughs, where distance decreased were reduced though and a reasonable expectation would be that these would increase.

This result was investigated closely but an exact explanation did not present. The code reproduced values found with fitted() for 7 boroughs using Senior's algorithm, (Senior 1979) to calculate balancing factors in the practical. Explanations that were investigated but not proven were; the initial guesses for the algorithm leading to local but not global maxes; the algorithm or implementation that worked for a 7x7 matrix was unable to successfully calculate balancing factors for a 33x33 matrix; the change in distance was too dramatic and where boroughs furthest apart became some of the closest, balancing factors simply do not exist.

Lastly, another reasonable concern is that the doubly constrained model is overspecified. Adjusting the double constrained model's $R^2 = 0.85$ for the number of variables only reduced to $\bar{R}^2 = 0.84$ indicating that over-specification is not a problem.

2.7 Parameter Effect

In the unconstrained model, only distance variables were changed for the scenario meaning that μ and α had no bearing on the magnitude of the change in flow. In the case of β a larger beta would lead to a larger change in flow for a given change in distance.

In the doubly constrained model, the same is true for β . For the vector of balancing factor parameters either μ_i and α_j or A_i and B_j , these simply adjusted the flow estimate from $exp(-\beta(log(distance)))$ so that the sum would equal the total flow into or out of a borough.

2.8 Conclusion

In conclusion, the unconstrained model predicts large effects of a dramatic change in distance that are consistent with what one might imagine would occur over a long time period as a result of a technological innovation like teleportation. Large increases in flows between connected boroughs with equivalent reductions in flows between boroughs that are now relatively more difficult to travel between.

With regard to the double constrained model, more work is clearly needed to understand the issue with the estimates. In Senior's paper, the algorithm is demonstrated with a 3x3 matrix and a 7x7 matrix is used in the practical. Researching this, larger matrix double constrained models were not found.

Table 6: True Flows between the outer boroughs of London

15	74391	51231	67450	64539	56955	49985	45621	37054	48403	30687	61005	45329	39635	57814	1800413
14	555	222	196	130	1710	95	1173	53	41	20	5441	46	41	0	17935
13	44	170	962	6744	47	34	20	58	101	1190	48	260	0	41	16652
12	229	06	191	480	86	246	45	548	7025	3788	88	0	750	101	23230
11	305	111	100	64	538	44	4844	35	31	31	0	12	26	3736	21033
10	89	22	227	827	38	107	33	150	1006	0	46	3549	3122	20	17043
6	611	161	285	581	339	1141	83	5293	0	1484	231	6873	541	271	39292
∞	1023	109	248	457	457	6919	116	0	12803	1070	212	3365	385	206	48351
7	131	394	119	82	233	29	0	21	28	24	3004	20	23	594	13275
9	2623	59	59	26	328	0	69	4688	396	89	110	167	20	112	18423
ಬ	4098	123	84	120	0	325	546	153	92	42	1187	41	45	2661	18456
4	148	710	6268	0	136	103	131	116	215	638	173	323	7602	253	31087
က	92	4998	0	5152	92	47	157	55	69	72	132	64	514	149	24934
2	34	0	3199	300	52	26	325	18	27	35	141	12	89	62	11740
1	0	132	162	204	5642	2008	194	692	253	104	292	173	81	715	30744
Borough	Barnet	Bexley	Bromley	Croydon	Enfield	Harrow	Havering	Hillingdon	Hounslow	Kingston	Redbridge	Richmond	Sutton	Waltham	(all)
	П	2	က	4	ಸ	9	2	∞	6	10	11	12	13	14	55

Table 7: Scenario Flows between Outer Boroughs using Total Constrained Model

	_	_	_	_	_	_	_	_	_	_	_	_	_	_	_
(all)	173516	96224	175190	158777	120425	79325	97189	95743	82379	52009	106850	71294	78340	83172	1800407
14	10307	5838	10838	9683	7250	4857	8009	5922	4937	3179	6354	4394	4701	0	89964
13	11285	6392	11866	10602	7938	5318	8229	6485	5405	3481	9269	4810	0	5232	92926
12	17547	9938	18451	16485	12343	8270	10228	10083	8404	5412	10817	0	8003	8136	153546
11	10890	6168	11451	10231	0992	5132	6348	6258	5216	3359	0	4642	4967	5049	91885
10	13228	7492	13909	12428	9304	6234	7711	7601	6336	0	8154	5639	6033	6133	115885
6	10211	5784	10737	9593	7182	4812	5952	2867	0	3149	6294	4353	4657	4734	88280
8	11285	6392	11866	10602	7938	5318	8229	0	5405	3481	9269	4810	5147	5232	94739
2	11087	6280	11658	10416	2799	5225	0	6371	5310	3419	6834	4726	5056	5140	91949
9	13018	7374	13689	12231	9157	0	7588	7481	6235	4015	8025	5549	5937	9809	112306
ಬ	11186	6336	11762	10509	0	5272	6520	6427	5357	3450	6895	4768	5102	5186	93013
4	11988	0629	12606	0	8432	5650	8869	6889	5742	2698	7390	5110	5468	5558	92696
က	12810	7256	0	12035	9010	6037	7467	7361	6135	3951	7897	5460	5842	5939	101381
2	11988	0	12606	11263	8432	5650	8869	6889	5742	3697	7390	5110	5468	5558	101364
1	0	7021	13035	11646	8720	5842	7226	7123	5937	3823	7642	5284	5654	5748	101282
Borough	Barnet	Bexley	Bromley	Croydon	Enfield	Harrow	Havering	Hillingdon	Hounslow	Kingston	Redbridge	Richmond	Sutton	Waltham	(all)
	1	2	က	4	ಸಾ	9	2	∞	6	10	11	12	13	14	15

Table 8: Scenario Flows between Outer Boroughs using Double Constrained Model

Borough 1 2 3 4 5 6 7 8 9 10 11 12 13 14 (all) 1 Barnet 0 7 4 2 4 7 8 9 10 11 12 13 14 (all) 2 Barnet 0 7 4 4 4 2 7 9 4 5 14 (all) 3 Bromley 13 3 7 0 7 6 2 11 14 6 7 4 64537 5 Enfield 17 4 8 12 6 9 11 6 7 6 45527 6 Harrow 12 8 6 9 1 1 6 9 1 1 1 1 1 1 1 1 1 1 1 1 1 1																
Borough 1 2 3 4 5 6 7 8 9 10 11 12 13 15 13 15 22 13 15 22 13 15 22 13 15 22 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 15 25 13 25 14 25 25 11 4 5 7 4 5 7 4 7 4 7 11 6 7 11 6 9 11 12 12 12 12 12 12 12 12 12 12 1	(all)	74393	51232	67450	64537	56957	49982	45622	37055	48403	30685	61005	45331	39633	57814	1800406
Borough 1 2 3 4 5 6 7 8 9 10 11 12 Barnet 0 7 14 23 14 12 5 23 29 13 15 22 Bexley 10 0 5 7 4 4 2 7 9 4 5 29 13 15 22 Bromley 13 3 0 9 6 5 9 12 6 9 6 9 6 9 12 7 9 11 14 6 7 11 14 6 7 11 14 6 7 11 14 6 7 11 14 6 7 11 14 6 7 11 14 6 7 11 14 15 14 14 14 14 14 14 14 14 14 <t< td=""><td>14</td><td>19</td><td>9</td><td>∞</td><td>6</td><td>10</td><td>∞</td><td>4</td><td>4</td><td>∞</td><td>23</td><td>10</td><td>6</td><td>9</td><td>0</td><td>17936</td></t<>	14	19	9	∞	6	10	∞	4	4	∞	23	10	6	9	0	17936
Borough 1 2 3 4 5 6 7 8 9 10 11 Barnet 0 7 14 23 14 12 5 23 29 13 15 Bexley 10 0 7 4 4 2 7 9 4 5 Bromley 13 3 0 9 6 5 2 9 12 6 7 Croydon 15 3 7 0 7 6 2 11 14 6 7 8 Enfield 17 4 8 12 0 7 6 2 11 14 6 7 8 Harrow 12 3 4 3 2 0 4 5 1 8 Harrow 12 3 4 3 4 3 4 5 4 4	13	13	4	ಬ	9	7	ಬ	2	3	ಬ	3	7	9	0	11	16649
Borough 1 2 3 4 5 6 7 8 9 10 Barnet 0 7 14 23 14 12 5 23 29 13 Bexley 10 0 5 7 4 4 2 7 9 4 Bromley 13 3 0 9 6 5 9 12 7 9 4 4 Croydon 15 3 7 0 7 6 2 11 14 6 7 9 4 8 12 6 7 6 2 11 14 6 7 9 11 14 15 14 15 11 14 15 14 15 14 15 14 15 14 15 14 15 14 14 15 14 15 14 14 15 14 14	12	22	7	6	11	12	6	4	4	6	ಬ	11	0	7	18	23232
Borough 1 2 3 4 5 6 7 8 9 Barnet 0 7 14 23 14 12 5 23 29 Bexley 10 0 5 7 4 4 2 7 9 Bromley 13 3 0 9 6 5 7 9 Croydon 15 3 7 0 7 6 5 9 12 Croydon 15 3 7 0 7 6 9 12 7 9 12 14 14 14 14 14 14 14 14 14 14 15 14 14 14 14 4 4 4 4 4 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14 14	11	15	22	9	2	∞	9	3	3	9	4	0	2	5	12	21032
Borough 1 2 3 4 5 6 7 8 Barnet 0 7 14 23 14 12 5 23 Bexley 10 0 5 7 4 4 2 7 Bromley 13 3 0 9 6 5 9 7 Croydon 15 3 7 0 7 6 2 11 Enfield 17 4 8 12 0 7 6 2 11 Havering 6 1 3 4 3 2 0 4 4 12 Hallingdon 6 1 3 4 3 2 0 4 4 10 Hounslow 12 3 6 9 5 5 9 12 14 Kingston 7 2 3 1 6 4 <td>10</td> <td>13</td> <td>4</td> <td>ಬ</td> <td>9</td> <td>7</td> <td>ಬ</td> <td>2</td> <td>2</td> <td>ಬ</td> <td>0</td> <td>2</td> <td>9</td> <td>4</td> <td>10</td> <td>17043</td>	10	13	4	ಬ	9	7	ಬ	2	2	ಬ	0	2	9	4	10	17043
Borough 1 2 3 4 5 6 7 Barnet 0 7 14 23 14 12 5 Bexley 10 0 5 7 4 4 2 Bromley 13 3 0 9 6 5 2 Croydon 15 3 7 0 7 6 2 Enfield 17 4 8 12 0 7 6 Harrow 12 3 6 9 5 0 2 Havering 6 1 3 4 3 2 1 Hillingdon 6 1 3 4 3 2 1 Hounslow 12 3 6 9 5 5 2 Kingston 7 2 3 5 3 3 1 Redbridge 16 4	6	29	6	12	14	16	11	5	9	0	7	15	14	6	24	39294
Borough 1 2 3 4 5 6 Barnet 0 7 14 23 14 12 Bexley 10 0 5 7 4 4 4 Bromley 13 3 0 9 6 5 5 Croydon 15 3 7 0 7 6 5 Enfield 17 4 8 12 0 7 6 Harvering 6 1 3 4 3 2 7 Havering 6 1 3 4 3 2 7 Hillingdon 6 1 3 4 3 2 7 Hounslow 12 3 6 9 5 5 5 Kingston 7 2 3 5 3 3 8 Redbridge 16 4 8 12	∞	23	7	6	11	12	6	4	0	6	ಒ	12	11	7	19	48352
Borough 1 2 3 4 5 Barnet 0 7 14 23 14 Bexley 10 0 5 7 4 Bromley 13 3 0 9 6 Croydon 15 3 7 0 7 Enfield 17 4 8 12 0 Harrow 12 3 6 9 5 Havering 6 1 3 4 3 Hillingdon 6 1 3 4 3 Hounslow 12 3 6 9 5 Kingston 7 2 3 5 3 Redbridge 16 4 8 12 7 Richmond 15 3 7 11 6 Sutton 2 5 7 4 Waltham 2 6 1	7	22	2	2	2	3	2	0	П	2	1	3	2	2	4	13276
Borough 1 2 3 4 Barnet 0 7 14 23 Bexley 10 0 5 7 Bromley 13 3 0 9 Croydon 15 3 7 0 Enfield 17 4 8 12 Harrow 12 3 6 9 Havering 6 1 3 4 Hillingdon 6 1 3 4 Hounslow 12 3 6 9 Kingston 7 2 3 5 Redbridge 16 4 8 12 Richmond 15 3 7 11 Sutton 10 2 5 7 Waltham 26 6 12 7 Waltham 26 6 12 19	9	12	4	2	9	7	0	2	2	22	3	9	9	4	10	18421
Borough 1 2 3 Barnet 0 7 14 Bexley 10 0 5 Bromley 13 3 0 Croydon 15 3 7 Enfield 17 4 8 Harrow 12 3 6 Havering 6 1 3 Hillingdon 6 1 3 6 Hounslow 12 3 6 1 Kingston 7 2 3 6 Redbridge 16 4 8 8 Richmond 15 3 7 7 Sutton 10 2 5 2 Waltham 26 6 12 3 Waltham 26 6 12 3	ည	14	4	9	7	0	ಬ	3	3	ಬ	3	7	9	4	11	18454
Borough 1 2 Barnet 0 7 Bexley 10 0 Bromley 13 3 Croydon 15 3 Enfield 17 4 Harrow 12 3 Havering 6 1 Hillingdon 6 1 Hounslow 12 3 Kingston 7 2 Redbridge 16 4 Richmond 15 3 Sutton 20 6 Waltham 26 6 (all) 30744 11741	4	23	7	6	0	12	6	4	4	6	2	12	11	2	19	31087
Borough 1 Barnet 0 Bexley 10 Bromley 13 Croydon 15 Enfield 17 Harrow 12 Havering 6 Hillingdon 6 Hounslow 12 Kingston 7 Redbridge 16 Richmond 15 Sutton 10 Waltham 26 (all) 30744	3	14	22	0	2	∞	9	3	3	9	3	∞	2	2	12	24935
Borough Barnet Bexley Bromley Croydon Enfield Harrow Havering Hillingdon Hounslow Kingston Redbridge Richmond Sutton Waltham (all)	2	2	0	3	3	4	3	1	1	3	2	4	33	2	9	11741
	1	0	10	13	15	17	12	9	9	12	7	16	15	10	26	30744
	Borough	Barnet	Bexley	Bromley	Croydon	Enfield	Harrow	Havering	Hillingdon	Hounslow	Kingston	Redbridge	Richmond	Sutton	Waltham	(all)
		1	2	က	4	ಬ	9	2	 		10	1	12	13	14	15

Table 9: Actual flows beteen Inner and Outer Boroughs

	Borough	1	2	3	4	9	9	2	8	6	10	11	(all)	
1	Barnet	0	12080	148	4098	2623	2222	89	305	229	555	16330	74391	
2	Camden	1496	0	147	295	330	4987	68	84	195	204	18829	51652	
က	Croydon	204	3248	0	120	26	1752	827	64	480	130	10583	64539	
4	Enfield	5642	5588	136	0	328	5317	38	538	86	1710	9052	56955	
2	Harrow	2008	3675	103	325	0	1395	107	44	246	92	7882	49985	
9	Islington	1001	10188	157	619	111	0	20	117	118	393	12835	50391	
7	Kingston upon Thames	104	1547	638	42	89	710	0	31	3788	20	5419	30687	
∞	Redbridge	292	3790	173	1187	110	3104	46	0	88	5441	8122	61005	
6	Richmond upon Thames	173	2504	323	41	167	1002	3549	12	0	46	8336	45329	
10	Waltham Forest	715	5554	253	2661	112	4310	20	3736	101	0	10314	57814	
11	Westminster	514	9829	216	121	142	2442	06	09	258	121	0	39288	
12	(all)	30744	147985	31087	18456	18423	86387	17043	21033	23230	17935	353405	1800413	

Table 10: Total Constrained Estimated Flows between Inner and Outer Boroughs

	Borough	1	2	3	4	ಬ	9	7	∞	6	10	11	(all)
1	Barnet	0	1626	11988	11186	13018	1144	13228	10890	17547	10307	1168	173516
2	Camden	713	0	170	360	360	3005	217	229	401	388	3300	24314
က	Croydon	11646	377	0	10509	12231	351	12428	10231	16485	9683	569	158777
4	Enfield	8720	640	8432	0	9157	672	9304	0992	12343	7250	520	120425
2	Harrow	5842	368	5650	5272	0	253	6234	5132	8270	4857	365	79325
9	Islington	391	2341	123	294	192	0	135	225	229	431	1359	19685
-1	Kingston	3823	143	3697	3450	4015	114	0	3359	5412	3179	219	52009
∞	Redbridge	7642	367	7390	6895	8025	461	8154	0	10817	6354	376	106850
6	Richmond	5284	276	5110	4768	5549	202	5639	4642	0	4394	423	71294
10	Waltham	5748	494	5558	5186	9809	703	6133	5049	8136	0	439	83172
11	Westminster	396	2556	199	226	276	1351	257	182	477	267	0	26914
12	(all)	101282	20319	92696	93013	112306	19356	115885	91885	153546	89964	26369	1800407

Table 11: Double Constrained Estimated Flows between Inner and Outer Boroughs

	Borough	1	2	3	4	ಬ	9	2	∞	6	10	11	(all)
П	Barnet	0	3192	23	14	12	2595	13	15	22	19	16212	74393
2	Camden	744	0	3274	069	752	455	1497	1306	1703	792	2587	51650
က	Croydon	15	9331	0	2	9	5286	9	2	11	6	18229	64537
4	Enfield	17	3612	12	0	2	1757	2	∞	12	10	15676	56957
က	Harrow	12	3237	6	5	0	2715	2	9	6	∞	10852	49982
9	Islington	974	733	2987	541	1016	0	1664	811	2116	419	4888	50388
-	Kingston	2	3762	5	3	3	2597	0	4	5	ಬ	7209	30685
∞	Redbridge	16	0609	12	2	9	2347	2	0	11	10	19567	61005
6	Richmond	15	4868	11	9	9	3756	9	2	0	6	9326	45331
10	Waltham Forest	26	4523	19	11	10	1488	10	12	18	0	17468	57814
11	Westminster	1296	887	2193	1028	865	1041	984	1439	11119	1049	0	39291
12	(all)	30744	147986	31087	18454	18421	86385	17043	21032	23232	17936	353401	1800406

3 Part 3

3.1 Overview

CA models use homogeneous cells that interact with each other according to a set of rules. Expanding a CA model to include heterogeneous cells or an environment results in a ABM. Thus CA could be thought of either as distinct from ABM or as a subset.

The simplicity of CA models is useful for studying mathematical processes whereas ABM is more useful for modeling "real world" phenomena. Often the value of ABM comes from the ability to conduct parameter sweeps, study the combination of multiple processes, and accessibility to non-technical audiences. CA tends to focus on the effect of initialization states on the long term outcome of the model whereas agent based models tend to be calculated for a large number of initialization values in order to study the effect of model dynamics independent of initialization values that may not accurately reflect the real world.

3.2 Three Scenarios

A baseline scenario explores a moderately recoverable disease to which immunity is low, e.g. the seasonal flu without a vaccination program. The second looks at the same disease with a vaccination program. The third looks at a disease that is more recoverable but with low immunity e.g. the common cold.

All three scenarios use a population of 1000 and infect 100 people.

3.2.1 Scenario 1

Scenario 1, no vaccine flu, uses 50% chance of immunity, since it's fairly common for someone with the flu to interact with someone else without infecting them and a 10% recovery probability on the guess that flu symptoms last between 3 and 9 days for the majority of the population.

Looking at Figure 2, the percentage of turtles infected over time for 20 trials, a steady state becomes clear. While this is not a perfect equilibrium, compared to the rapid increase in the first 20 ticks, the model becomes fairly stationary by tick 20 or 30.

The average percentage of turtles infected at 50 ticks was 38.79. The sample standard deviation was 1.799, which indicates a margin of error at 95% confidence of ± 0.842 using a t-value of 2.093. This implies that to get a margin of confidence of 0.5, 56.7 trial runs would be required. When 56 trials were run, the result was 37.93 ± 0.493 , so the estimate for n was accurate.

The total infection time per non-immune turtle per tick was also recorded. The 20 trial mean at tick 40 was 0.6343 ± 0.00669 . This adjusts for turtle immunity and runtime in order to compare results across scenarios later on.

Figure 2: % of Population Infected Over Time Scenario 1

Thus the model indicates that for these parameters, a fairly high number of turtles are infected and the infection will be passed around continually rather than dying out at some point in the future. Considering the low margin of error, if the model accurately reflects a real world scenario, we can have a good idea of how that scenario would play out.

3.2.2 Scenario 2

Scenario 2 looks at the flu in a society with high but imperfect immunization rates. This is seen in cases where infants and the elderly cannot receive the vaccine and others elect not to receive it or forget. This is accomplished by using the same recovery rate, 10% but increasing immunity probability to 80%.

Figure 3 shows the percentage of turtles infected over time. A steady state is more difficult to identify. The average percentage is lower than scenario 1 because of 80% population immunity. The lower mean scales the y-axis of the chart down from 0-14 instead of 0-45 in scenario 1. Thus while the standard deviation looks higher it is essentially the same, 1.869 in scenario 1 and 1.853 in scenario 2.

Because a steady state is less certain, a t-test can test whether mean of the set of trials is changing between steps. At step 50 the mean percent infected was 5.92 with st. deviation 1.799. At step 100 these were 6.90 and 1.99. At step 250 7.935 and 1.696. At step 400 8.075 and 1.502. At step 500 7.956 and 2.113.

Figure 3: % of Population Infected Over Time Scenario 2

The p-value for a t-test with the null hypothesis that the means at steps 50 and 100 are different was 0.116, a 12% chance of different means. The same test for the means at tick 250 and tick 500 had a p-value of 0.97. The test for steps 400 and 500 had a p-value of 0.84. Thus it cannot be said with confidence that a steady state exists for this model as rejecting the null hypothesis that the means are different begins to resemble simply getting lucky enough to choose ticks with means that are very similar by chance.

Sicktime per turtle per tick at 100 ticks was 0.1047 ± 0.01397 .

At tick 250, the mean percentage of turtles infected was 7.94 ± 0.794 . the variability in results is very similar to scenario 1 but that in light of the results of a t-test for a steady state, the true margin of error is likely to be higher since the process may not be stationary at tick 250, i.e. the true mean may change across ticks.

3.2.3 Scenario 3

This scenario investigates the common cold using a higher rate of recovery 25% and lower rate of immunity 5% since there is no vaccine for the common cold and many members of society continue their daily routines with a cold exposing relatively more people.

Figure 4 illustrates the percentage of turtles infected over time. Here a steady state seems more obvious. At 50 ticks the mean was 66.19 and st. deviation was 1.597. At

Figure 4: % of Population Infected Over Time Scenario 3

100 ticks this was 65.84 and 1.648. The 0.0499 p-value for a two tailed t-test indicates a 5% probability of the null hypothesis that the means are different.

At 50 ticks the mean percentage of turtles infected was 66.08 ± 0.902 Results for sick time per turtle per tick at tick 50 were 0.311 ± 0.0013 .

3.3 Conclusion

Comparing the three scenarios, Scenario 1 resulted in a 38% average infection rate while scenario 2 resulted in 7.93% of turtles infected on average. In cenario 3 66% of turtles were infected. At tick 50, non-immune turtles in scenario 1 had spent 63% of ticks infected on compared to 10% in scenario 2 and 31% in scenario 3, demonstrating the value of population immunity to non-immune members. This model replicates the empirical idea of "herd immunity"; general group immunity protecting non-immune members.

To continue, one could test whether there is a constant increase in sick time per non-immune turtle or whether sick time accelerates. One could also add a parameter for infection contagiousness. Adding in death or post-infection immunity would be an interesting extension.

4 Appendix 1

```
#Recursive function for calculating node removal effects
node_deleter <- function(igraph_object, node_function, network_function,</pre>
depth, unconn) {
  # check that it's an igraph object
  if(class(igraph_object) != "igraph") {
    return("i_graph_object must be of class igraph")
  } else {
    # if igraph object is null (all nodes have been deleted) return null
    if(is.null(igraph_object)) {
      return(NULL)
    } else {
      # if depth == 0 return null if enough nodes have been deleted
      # to complete the analysis
      if(depth == 0){
      } else {
        # match functions
        net_fun <- match.fun(network_function)</pre>
        node_fun <- match.fun(node_function)</pre>
        # calculate pre-deletion network measurement statistic
        network_stat_1 = net_fun(igraph_object, unconnected = unconn)
        # call node_function on igraph object
        node_stats = node_stats_calc(igraph_object, fun = node_fun)
        # station_name = max station stat
        target <- node_stats[which.max(node_stats$stat),]</pre>
        target <- as.character(target[[1]])</pre>
        # delete station
        igraph_object = delete.vertices(igraph_object, c(target))
        #calculate post_deletion network statistic
        network_stat_2 = net_fun(igraph_object, unconnected = unconn)
```

```
# calc change in network statistics due to deletion
# a positive change means that trips have gotten longer
network_change = network_stat_2 - network_stat_1

# join deleted station name and effect
value = data.frame(target, network_change, components(igraph_object)$no)

# return value
return (rbind(value, node_chopper(igraph_object, node_function,
network_function, (depth - 1), unconn = unconn)))

} # end deletion procedure
} # end recurse check
} # end type check
} # end function
```

References

Senior, Martyn L (1979). "From gravity modelling to entropy maximizing: a pedagogic guide". In: *Progress in Geography* 3.2, pp. 175–210.