Herbst 24 Themennummer 2 Aufgabe 1 im Bayerischen Staatsexamen Analysis (vertieftes Lehramt)

a) Sei

$$F: \mathbb{R}^2 \to \mathbb{R}, \ (x,y) \mapsto \frac{1}{3}y^3 + x^2y - xy.$$

Bestimmen Sie alle kritischen Punkte von F und entscheiden Sie begründet, welche lokale Maxima bzw. lokale Minima sind.

b) Bestimmen Sie alle stationären Lösungen des Differentialgleichungssystems

$$\dot{x} = x^2 - x + y^2,$$

$$\dot{y} = y - 2xy.$$

Entscheiden Sie begründet, welche stationären Lösungen stabil bzw. instabil sind.

Lösungsvorschlag:

a) Für den Gradienten erhält man $\nabla F(x,y) = (2xy-y,y^2+x^2-x)^{\mathrm{T}}$, wir bestimmen die Nullstellen: 2xy-y=(2x-1)y wird genau dann 0, wenn $x=\frac{1}{2}$ oder y=0 gilt. Im ersten Fall wird aus der zweiten Gleichung $y^2-\frac{1}{4}=0$; diese besitzt genau die Lösungen $y=\pm\frac{1}{2}$. Wir erhalten die kritischen Punkte $z_1=(\frac{1}{2},\frac{1}{2})$ und $z_2=(\frac{1}{2},-\frac{1}{2})$. Im zweiten Fall wird aus der zweiten Gleichung $x^2-x=x(x-1)=0$, was genau die Lösungen x=0 und x=1 besitzt. Wir erhalten $z_3=(0,0)$ und $z_4=(1,0)$. Um zu entscheiden, welche lokale Extrema sind, untersuchen wir die Definitheit der

Hessematrizen. Es gilt
$$H_F(x,y) = \begin{pmatrix} 2y & 2x-1 \\ 2x-1 & 2y \end{pmatrix}$$
, also $H_F(z_1) = \begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}$, $H_F(z_2) = \begin{pmatrix} -1 & 0 \\ 0 & -1 \end{pmatrix}$, $H_F(z_3) = \begin{pmatrix} 0 & -1 \\ -1 & 0 \end{pmatrix}$ und $H_F(z_4) = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}$.

Die ersten beiden Matrizen sind in Diagonalform, ihre Eigenwerte stehen also auf der Hauptdiagonalen. Damit ist die erste Matrix positiv definit und z_1 ein lokales Minimum und die zweite Matrix ist negativ definit und z_2 ein lokales Maximum. Die anderen beiden Matrizen haben als Determinante -1, d. h. das Produkt ihrer Eigenwerte ist negativ und es muss einen positiven und einen negativen Eigenwert geben. Damit sind beide indefinit und z_3 , z_4 sind Sattelpunkte.

b) Wir bestimmen die Nullstellen von $f(x,y) = \binom{x^2 - x + y^2}{y - 2xy}$, da wir den Gradienten von F erhalten, sind die Ruhelagen genau die kritischen Punkte von F, d. h. $z_1 = (\frac{1}{2}, \frac{1}{2}), z_2 = (\frac{1}{2}, -\frac{1}{2}), z_3 = (0,0)$ und $z_4 = (1,0)$. Damit ist F Stammfunktion von f und -F eine Lyapunovfunktion für das obige Differentialgleichungssystem. Für $i \in \{1, 2, 3, 4\}$ gibt es jeweils offene Umgebungen um z_i , sodass auf diesen $\nabla(-F) \cdot f(x,y) = -\|f(x,y)\|_2^2 < 0$ für alle $(x,y) \neq z_i$ gilt, weil f nur endlich viele und damit isolierte Nullstellen besitzt. Daher gilt nach der Direkten Methode von Lyapunov, dass z_2 (asymptotisch) stabil ist, weil z_2 ein striktes, lokales Minimum von -F ist. Alle anderen Ruhelagen sind instabil, weil diese keine Minima sind. Beachte: z minimal für $-F \iff z$ maximal für F.

 $\mathcal{J}.\mathcal{F}.\mathcal{B}.$