

# DFS PORTION of FCC 47 CFR PART 15 SUBPART E DFS PORTION of INDUSTRY CANADA RSS-247 ISSUE 2

#### CERTIFICATION TEST REPORT

**FOR** 

## **5 GHz FIXED OUTDOOR WIRELESS TRANSCEIVER**

**MODEL NUMBER: PTP 450b (HIGH-GAIN)** 

FCC ID: Z8H89FT0042 IC: 109W-0042

**REPORT NUMBER: 12338572-E2V1** 

**ISSUE DATE: JULY 5, 2018** 

Prepared for

CAMBIUM NETWORKS 3800 GOLF ROAD ROLLING MEADOWS, IL 60008-4023, U.S.A.

Prepared by

UL VERIFICATION SERVICES INC. 47173 BENICIA STREET FREMONT, CA 94538, U.S.A.

TEL: (510) 771-1000 FAX: (510) 661-0888



# **Revision History**

| Rev. | Issue<br>Date | Revisions     | Revised By |
|------|---------------|---------------|------------|
| V1   | 06/05/18      | Initial Issue | Henry Lau  |

# **TABLE OF CONTENTS**

| 1. | ATTESTATION OF TEST RESULTS           | 4                                |
|----|---------------------------------------|----------------------------------|
| 2. | TEST METHODOLOGY                      | 5                                |
| 3. | FACILITIES AND ACCREDITATION          | 5                                |
| 4. | CALIBRATION AND UNCERTAINTY           | 5                                |
| 4  | 4.1. MEASURING INSTRUMENT CALIBRATION | 5                                |
| 4  | 4.2. MEASUREMENT UNCERTAINTY          | 5                                |
| 5. | DYNAMIC FREQUENCY SELECTION           | 6                                |
| ł  | 5.1. OVERVIEW                         | 6<br>10<br>12<br>12              |
|    | 5.2. RESULTS FOR 10 MHz BANDWIDTH     | 15<br>24<br>24<br>24             |
|    | 5.3. RESULTS FOR 40 MHz BANDWIDTH     | 34<br>43<br>48<br>48<br>53<br>54 |
|    | 5.4. BRIDGE MODE RESULTS              |                                  |
| Ο. | JEIUF FNUIUJ                          | 04                               |

# 1. ATTESTATION OF TEST RESULTS

**COMPANY NAME:** CAMBIUM NETWORKS

3800 GOLF ROAD

ROLLING MEADOWS, IL 60008-4023, U.S.A.

**EUT DESCRIPTION:** 5 GHz FIXED OUTDOOR WIRELESS TRANSCEIVER

MODEL: PTP 450b (HIGH-GAIN)

SERIAL NUMBER: 0a-00-3e-7f-ff-f5

**DATE TESTED:** JUNE 21 to 22, 2018

#### APPLICABLE STANDARDS

STANDARD TEST RESULTS

DFS Portion of CFR 47 Part 15 Subpart E Complies

DFS Portion of INDUSTRY CANADA RSS-247 Issue 2 Complies

UL Verification Services Inc. tested the above equipment in accordance with the requirements set forth in the above standards. All indications of Pass/Fail in this report are opinions expressed by UL Verification Services Inc. based on interpretations and/or observations of test results. Measurement Uncertainties were not taken into account and are published for informational purposes only. The test results show that the equipment tested is capable of demonstrating compliance with the requirements as documented in this report.

**Note:** The results documented in this report apply only to the tested sample, under the conditions and modes of operation as described herein. This document may not be altered or revised in any way unless done so by UL Verification Services Inc. and all revisions are duly noted in the revisions section. Any alteration of this document not carried out by UL Verification Services Inc. will constitute fraud and shall nullify the document. This report must not be used by the client to claim product certification, approval, or endorsement by NVLAP, NIST, any agency of the Federal Government, or any agency of any government.

Approved & Released For

UL Verification Services Inc. By:

Genry men

Prepared By:

HENRY LAU
TEST ENGINEER

UL Verification Services Inc.

DOUG ANDERSON EMC ENGINEER

UL Verification Services Inc.

Douglas Combuser

DATE: JULY 5, 2018 IC: 109W-0042

# 2. TEST METHODOLOGY

The tests documented in this report were performed in accordance with the DFS portion of FCC CFR 47 Part 2, FCC CFR 47 Part 15, FCC 06-96, FCC KDB 789033, KDB 905462 D02 and D03 and RSS-247 Issue 2.

## 3. FACILITIES AND ACCREDITATION

The test sites and measurement facilities used to collect data are located at 47173 Benicia Street, Fremont, California, USA.

UL Verification Services Inc. is accredited by NVLAP, Laboratory Code 200065-0.

#### 4. CALIBRATION AND UNCERTAINTY

#### 4.1. MEASURING INSTRUMENT CALIBRATION

The measuring equipment utilized to perform the tests documented in this report has been calibrated in accordance with the manufacturer's recommendations, and is traceable to recognized national standards.

#### 4.2. MEASUREMENT UNCERTAINTY

Where relevant, the following measurement uncertainty level has been estimated for tests performed on the apparatus:

| PARAMETER | UNCERTAINTY |
|-----------|-------------|
| Time      | ± 0.02 %    |

The Uncertainty figure is valid to a confidence level of 95%.

DATE: JULY 5, 2018

IC: 109W-0042

# 5. DYNAMIC FREQUENCY SELECTION

## 5.1. OVERVIEW

#### 5.1.1. LIMITS

#### **INDUSTRY CANADA**

IC RSS-247 is closely harmonized with FCC Part 15 DFS rules. The deviations are as follows:

RSS-247 Issue 2

**Note:** For the band 5600–5650 MHz, no operation is permitted.

Until further notice, devices subject to this annex shall not be capable of transmitting in the band 5600–5650 MHz. This restriction is for the protection of Environment Canada weather radars operating in this band.

#### **FCC**

§15.407 (h), FCC KDB 905462 D02 "COMPLIANCE MEASUREMENT PROCEDURES FOR UNLICENSED-NATIONAL INFORMATION INFRASTRUCTURE DEVICES OPERATING IN THE 5250-5350 MHz AND 5470-5725 MHz BANDS INCORPORATING DYNAMIC FREQUENCY SELECTION" and KDB 905462 D03 "U-NII CLIENT DEVICES WITHOUT RADAR DETECTION CAPABILITY".

DATE: JULY 5, 2018 IC: 109W-0042

Table 1: Applicability of DFS requirements prior to use of a channel

| Requirement                     | Operational Mode |                                  |                               |  |  |
|---------------------------------|------------------|----------------------------------|-------------------------------|--|--|
|                                 | Master           | Client (without radar detection) | Client (with radar detection) |  |  |
| Non-Occupancy Period            | Yes              | Not required                     | Yes                           |  |  |
| DFS Detection Threshold         | Yes              | Not required                     | Yes                           |  |  |
| Channel Availability Check Time | Yes              | Not required                     | Not required                  |  |  |
| U-NII Detection Bandwidth       | Yes              | Not required                     | Yes                           |  |  |

Table 2: Applicability of DFS requirements during normal operation

| Requirement                       | Operational Mode |                      |                   |  |  |
|-----------------------------------|------------------|----------------------|-------------------|--|--|
|                                   | Master           | Client (without DFS) | Client (with DFS) |  |  |
| DFS Detection Threshold           | Yes              | Not required         | Yes               |  |  |
| Channel Closing Transmission Time | Yes              | Yes                  | Yes               |  |  |
| Channel Move Time                 | Yes              | Yes                  | Yes               |  |  |
| U-NII Detection Bandwidth         | Yes              | Not required         | Yes               |  |  |

| Additional requirements for     | Master Device or Client with | Client                 |
|---------------------------------|------------------------------|------------------------|
| devices with multiple bandwidth | Radar DFS                    | (without DFS)          |
| modes                           |                              |                        |
| U-NII Detection Bandwidth and   | All BW modes must be         | Not required           |
| Statistical Performance Check   | tested                       |                        |
| Channel Move Time and Channel   | Test using widest BW mode    | Test using the         |
| Closing Transmission Time       | available                    | widest BW mode         |
|                                 |                              | available for the link |
| All other tests                 | Any single BW mode           | Not required           |

Note: Frequencies selected for statistical performance check (Section 7.8.4) should include several frequencies within the radar detection bandwidth and frequencies near the edge of the radar detection bandwidth. For 802.11 devices it is suggested to select frequencies in all 20 MHz channel blocks and a null frequency between the bonded 20 MHz channel blocks.

# Table 3: Interference Threshold values, Master or Client incorporating In-Service Monitoring

| Maximum Transmit Power                                   | Value       |
|----------------------------------------------------------|-------------|
|                                                          | (see notes) |
| E.I.R.P. ≥ 200 mill watt                                 | -64 dBm     |
| E.I.R.P. < 200 mill watt and                             | -62 dBm     |
| power spectral density < 10 dBm/MHz                      |             |
| E.I.R.P. < 200 mill watt that do not meet power spectral | -64 dBm     |
| density requirement                                      |             |

Note 1: This is the level at the input of the receiver assuming a 0 dBi receive antenna

**Note 2:** Throughout these test procedures an additional 1 dB has been added to the amplitude of the test transmission waveforms to account for variations in measurement equipment. This will ensure that the test signal is at or above the detection threshold level to trigger a DFS response.

**Note 3:** E.I.R.P. is based on the highest antenna gain. For MIMO devices refer to KDB publication 662911 D01.

Table 4: DFS Response requirement values

| Development                       | M-1                                                                                             |
|-----------------------------------|-------------------------------------------------------------------------------------------------|
| Parameter                         | Value                                                                                           |
| Non-occupancy period              | 30 minutes                                                                                      |
| Channel Availability Check Time   | 60 seconds                                                                                      |
| Channel Move Time                 | 10 seconds (See Note 1)                                                                         |
| Channel Closing Transmission Time | 200 milliseconds + approx. 60 milliseconds over remaining 10 second period. (See Notes 1 and 2) |
| U-NII Detection Bandwidth         | Minimum 100% of the U-<br>NII 99% transmission<br>power bandwidth.<br>(See Note 3)              |

**Note 1:** Channel Move Time and the Channel Closing Transmission Time should be performed with Radar Type 0. The measurement timing begins at the end of the Radar Type 0 burst.

**Note 2:** The *Channel Closing Transmission Time* is comprised of 200 milliseconds starting at the beginning of the *Channel Move Time* plus any additional intermittent control signals required to facilitate a *Channel* move (an aggregate of 60 milliseconds) during the remainder of the 10 second period. The aggregate duration of control signals will not count quiet periods in between transmissions.

**Note 3:** During the *U-NII Detection Bandwidth* detection test, radar type 0 should be used. For each frequency step the minimum percentage of detection is 90 percent. Measurements are performed with no data traffic.

Table 5 - Short Pulse Radar Test Waveforms

| Radar | Pulse                                 | PRI                    | Pulses                                                  | Minimum       | Minimum  |
|-------|---------------------------------------|------------------------|---------------------------------------------------------|---------------|----------|
| Type  | Width                                 | (usec)                 |                                                         | Percentage    | Trials   |
|       | (usec)                                |                        |                                                         | of Successful |          |
|       |                                       |                        |                                                         | Detection     |          |
| 0     | 1                                     | 1428                   | 18                                                      | See Note 1    | See Note |
|       |                                       |                        |                                                         |               | 1        |
| 1     | 1                                     | Test A: 15 unique      |                                                         | 60%           | 30       |
|       |                                       | PRI values randomly    |                                                         |               |          |
|       |                                       | selected from the list | Roundup:                                                |               |          |
|       |                                       | of 23 PRI values in    | {(1/360) x (19 x 10 <sup>6</sup> PRI <sub>usec</sub> )} |               |          |
|       |                                       | table 5a               |                                                         |               |          |
|       |                                       | Test B: 15 unique      |                                                         |               |          |
|       |                                       | PRI values randomly    |                                                         |               |          |
|       |                                       | selected within the    |                                                         |               |          |
|       |                                       | range of 518-3066      |                                                         |               |          |
|       |                                       | usec. With a           |                                                         |               |          |
|       |                                       | minimum increment      |                                                         |               |          |
|       |                                       | of 1 usec, excluding   |                                                         |               |          |
|       |                                       | PRI values selected    |                                                         |               |          |
|       |                                       | in Test A              |                                                         |               |          |
| 2     | 1-5                                   | 150-230                | 23-29                                                   | 60%           | 30       |
| 3     | 6-10                                  | 200-500                | 16-18                                                   | 60%           | 30       |
| 4     | 11-20                                 | 200-500                | 12-16                                                   | 60%           | 30       |
|       | · · · · · · · · · · · · · · · · · · · | Aggregate (Radar T     | ypes 1-4)                                               | 80%           | 120      |

**Note 1:** Short Pulse Radar Type 0 should be used for the *Detection Bandwidth* test, *Channel Move Time*, and *Channel Closing Time* tests.

Table 6 - Long Pulse Radar Test Signal

| Radar    | Pulse  | Chirp | PRI    | Pulses | Number | Minimum       | Minimum |
|----------|--------|-------|--------|--------|--------|---------------|---------|
| Waveform | Width  | Width | (µsec) | per    | of     | Percentage    | Trials  |
| Type     | (µsec) | (MHz) |        | Burst  | Bursts | of Successful |         |
|          |        |       |        |        |        | Detection     |         |
| 5        | 50-100 | 5-20  | 1000-  | 1-3    | 8-20   | 80%           | 30      |
|          |        |       | 2000   |        |        |               |         |

Table 7 - Frequency Hopping Radar Test Signal

| i abio i | Table 7 Troquelley Hopping Radar Tool Olynar |        |        |         |          |               |         |  |  |  |
|----------|----------------------------------------------|--------|--------|---------|----------|---------------|---------|--|--|--|
| Radar    | Pulse                                        | PRI    | Pulses | Hopping | Hopping  | Minimum       | Minimum |  |  |  |
| Waveform | Width                                        | (µsec) | per    | Rate    | Sequence | Percentage of | Trials  |  |  |  |
| Type     | (µsec)                                       |        | Hop    | (kHz)   | Length   | Successful    |         |  |  |  |
|          |                                              |        |        |         | (msec)   | Detection     |         |  |  |  |
| 6        | 1                                            | 333    | 9      | 0.333   | 300      | 70%           | 30      |  |  |  |

#### 5.1.2. TEST AND MEASUREMENT SYSTEM

## RADIATED METHOD SYSTEM BLOCK DIAGRAM



## **SYSTEM OVERVIEW**

The short pulse and long pulse signal generating system utilizes the NTIA software. The Vector Signal Generator has been validated by the NTIA. The hopping signal generating system utilizes the CCS simulated hopping method and system, which has been validated by the DoD, FCC and NTIA. The software selects waveform parameters from within the bounds of the signal type on a random basis using uniform distribution.

The short pulse types 1, 2, 3 and 4, and the long pulse type 5 parameters are randomized at run-time.

The hopping type 6 pulse parameters are fixed while the hopping sequence is based on the August 2005 NTIA Hopping Frequency List. The initial starting point randomized at run-time and each subsequent starting point is incremented by 475. Each frequency in the 100-length segment is compared to the boundaries of the EUT Detection Bandwidth and the software creates a hopping burst pattern in accordance with Section 7.4.1.3 Method #2 Simulated Frequency Hopping Radar Waveform Generating Subsystem of KDB 905462 D02. The frequency of the signal generator is incremented in 1 MHz steps from  $F_L$  to  $F_H$  for each successive trial. This incremental sequence is repeated as required to generate a minimum of 30 total trials and to maintain a uniform frequency distribution over the entire Detection Bandwidth.

The signal monitoring equipment consists of a spectrum analyzer. The aggregate ON time is calculated by multiplying the number of bins above a threshold during a particular observation period by the dwell time per bin, with the analyzer set to peak detection and max hold.

# SYSTEM CALIBRATION

A 50-ohm load is connected in place of the spectrum analyzer, and the spectrum analyzer is connected to a horn antenna via a coaxial cable, with the reference level offset set to (horn antenna gain – coaxial cable loss). The signal generator is set to CW mode. The amplitude of the signal generator is adjusted to yield a level of –64 dBm as measured on the spectrum analyzer.

Without changing any of the instrument settings, the spectrum analyzer is reconnected to the Common port of the Spectrum Analyzer Combiner/Divider. The Reference Level Offset of the spectrum analyzer is adjusted so that the displayed amplitude of the signal is –64 dBm.

The spectrum analyzer displays the level of the signal generator as received at the antenna ports of the Master Device. The interference detection threshold may be varied from the calibrated value of –64 dBm and the spectrum analyzer will still indicate the level as received by the Master Device.

DATE: JULY 5, 2018

IC: 109W-0042

REPORT NO: 12338572-E2V1 DATE: JULY 5, 2018 IC: 109W-0042 FCC ID: Z8H89FT0042

## ADJUSTMENT OF DISPLAYED TRAFFIC LEVEL

A link is established between the Master and Slave and the distance between the units is adjusted as needed to provide a suitable received level at the Master and Slave devices. Traffic that meets or exceeds the minimum requirement is generated using iPerf traffic generator software and streamed from the Master to the Slave radio devices. The monitoring antenna is adjusted so that the WLAN traffic level, as displayed on the spectrum analyzer, is at lower amplitude than the radar detection threshold.

#### TEST AND MEASUREMENT EQUIPMENT

The following test and measurement equipment was utilized for the DFS tests documented in this report:

| TEST EQUIPMENT LIST                        |              |        |       |          |  |  |  |  |  |
|--------------------------------------------|--------------|--------|-------|----------|--|--|--|--|--|
| Description Manufacturer Model T No. Cal D |              |        |       |          |  |  |  |  |  |
| Spectrum Analyzer, PXA, 3Hz to 44GHz       | Keysight     | N9030A | T459  | 06/30/18 |  |  |  |  |  |
| Signal Generator, MXG X-Series RF Vector   | Agilent      | N5182B | T1134 | 04/23/19 |  |  |  |  |  |
| Arbitrary Waveform Generator               | Agilent / HP | 33220A | T190  | 04/23/19 |  |  |  |  |  |

#### **5.1.3. TEST AND MEASUREMENT SOFTWARE**

The following test and measurement software was utilized for the tests documented in this report:

| TEST SOFTWARE LIST               |         |                                                  |  |  |  |
|----------------------------------|---------|--------------------------------------------------|--|--|--|
| Name                             | Version | Test / Function                                  |  |  |  |
| Aggregate Time-PXA               | 3.1     | Channel Loading and Aggregate Closing Time       |  |  |  |
| FCC 2014 Detection Bandwidth-PXA | 3.1.1   | Detection Bandwidth in 5 MHz Steps               |  |  |  |
| In Service Monitoring-PXA        | 3.3.4   | In-Service Monitoring (Probability of Detection) |  |  |  |
| PXA Read                         | 3.1     | Signal Generator Screen Capture                  |  |  |  |
| SGXProject.exe                   | 1.7     | Radar Waveform Generation and Download           |  |  |  |

#### **5.1.4. TEST ROOM ENVIRONMENT**

The test room temperature and humidity shall be maintained within normal temperature of 15~35 °C and normal humidity 20~75% (relative humidity).

#### **ENVIRONMENT CONDITION**

| Parameter   | Value            |
|-------------|------------------|
| Temperature | 25.9 and 26.5 °C |
| Humidity    | 32 and 34 %      |

# **5.1.5. SETUP OF EUT**

## **RADIATED METHOD EUT TEST SETUP**



#### **SUPPORT EQUIPMENT**

The following support equipment was utilized for the DFS tests documented in this report:

|                            | PERIPHERAL SUPPORT EQUIPMENT LIST |                     |                   |             |  |  |  |  |
|----------------------------|-----------------------------------|---------------------|-------------------|-------------|--|--|--|--|
| Description                | Manufacturer                      | Model               | Serial Number     | FCC ID      |  |  |  |  |
| Gigabit Switching Power    | Phihong                           | PSA15A-300 (AP)     | 000868116P0401    | DoC         |  |  |  |  |
| Supply (EUT)               |                                   |                     |                   |             |  |  |  |  |
| Notebook PC (EUT           | Lenovo                            | Type 4236-B92       | PB-HEXC4 12/05    | DoC         |  |  |  |  |
| Controller/Console)        |                                   |                     |                   |             |  |  |  |  |
| AC Adapter                 | Lenovo                            | 42T4418             | 11S42T4418Z1ZGWG  | DoC         |  |  |  |  |
| (Controller/Console PC)    |                                   |                     | 08R90M            |             |  |  |  |  |
| 5 GHz Fixed Outdoor        | Cambium                           | PTP 450b (Mid-Gain) | 0a-00-3e-70-51-8f | Z8H89FT0032 |  |  |  |  |
| Transceiver (Slave Device) | Networks                          |                     |                   |             |  |  |  |  |
| Gigabit Switching Power    | Phihong                           | PSA15A-300 (AP)     | 0167552117P0401   | DoC         |  |  |  |  |
| Supply (Slave)             |                                   |                     |                   |             |  |  |  |  |
| Notebook PC (Slave Host)   | Lenovo                            | Type 20B7-S0A200    | PF-02JN9J 14/06   | DoC         |  |  |  |  |
| AC Adapter (Host PC)       | Lenovo                            | ADLX65NCC2A         | 11S45N0263Z1ZSHD  | DoC         |  |  |  |  |
|                            |                                   |                     | 41A5JY            |             |  |  |  |  |

DATE: JULY 5, 2018

IC: 109W-0042

#### 5.1.6. DESCRIPTION OF EUT

For FCC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges.

For IC the EUT operates over the 5250-5350 MHz and 5470-5725 MHz ranges, excluding the 5600-5650 MHz range.

The EUT is a Master Device.

The manufacturer has declared that the highest power level within these bands is 30 dBm EIRP in the 5250-5350 MHz band and 30 dBm EIRP in the 5470-5725 MHz band.

The EUT utilizes a proprietary protocol. Two nominal channel bandwidths are implemented: 10 MHz and 40 MHz.

The manufacturer has declared that the lowest gain antenna assembly utilized with the EUT has a gain of 2 dBi and the highest gain antenna assembly utilized with the EUT has a gain of 24 dBi.

The rated output power of the Master unit is > 23dBm (EIRP). Therefore the required interference threshold level is -64 dBm. After correction for procedural adjustments, the required radiated threshold at the antenna port is -64 + 1 = -63 dBm.

The calibrated radiated DFS Detection Threshold level is set to -63 dBm.

One integrated antenna array is utilized to meet the diversity and MIMO operational requirements.

The EUT uses one vertically polarized and one horizontally polarized transmitter/receiver chain. During testing the vertical chain is connected to a dipole antenna.

The Slave device associated with the EUT during these tests does not have radar detection capability.

WLAN traffic that meets or exceeds the minimum required loading was generated by transferring a data stream from the Master Device to the Slave Device using iPerf version 2.0.5 software package.

TPC is required since the maximum EIRP is greater than 500 mW (27 dBm).

The software installed in the EUT is Canopy version 15.1.4.

#### **UNIFORM CHANNEL SPREADING**

This function is not required per KDB 905462.

DATE: JULY 5, 2018

IC: 109W-0042

## 5.2. RESULTS FOR 10 MHz BANDWIDTH

#### 5.2.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5550 MHz.

#### 5.2.2. RADAR WAVEFORMS AND TRAFFIC

#### **RADAR WAVEFORMS**















# **TRAFFIC**



# **CHANNEL LOADING**



The level of traffic loading on the channel by the EUT is 17.3%.

#### 5.2.3. CHANNEL AVAILABILITY CHECK TIME

**Note:** Per table 2 of KDB 905462 D02, this test is only required to be performed at the highest supported channel bandwidth. Therefore, the manufacturer has chosen not to perform this test for 10 MHz channel bandwidth.

#### **5.2.4. OVERLAPPING CHANNEL TESTS**

#### **RESULTS**

These tests are not applicable. The manufacturer's channel mapping plan prohibits overlapping channel from occurring.

#### **5.2.5. MOVE AND CLOSING TIME**

**Note:** Per table 2 of KDB 905462 D02, this test is only required to be performed at the highest supported channel bandwidth. Therefore, the manufacturer has chosen not to perform this test for 10 MHz channel bandwidth.

DATE: JULY 5, 2018

IC: 109W-0042

#### 5.2.6. DETECTION BANDWIDTH

## REFERENCE PLOT OF 99% POWER BANDWIDTH



#### **RESULTS**

| FL     | FH     | Detection | 99% Power | Ratio of        | Minimum |
|--------|--------|-----------|-----------|-----------------|---------|
|        |        | Bandwidth | Bandwidth | Detection BW to | Limit   |
|        |        |           |           | 99% Power BW    |         |
| (MHz)  | (MHz)  | (MHz)     | (MHz)     | (%)             | (%)     |
| 5545.0 | 5555.0 | 10.0      | 9.065     | 110.3           | 100     |

# **DETECTION BANDWIDTH PROBABILITY**

| BANDWIDTH P         | ROBABILITY                                                | RESULTS                                                                                      |                                                                                                                                                                                       |
|---------------------|-----------------------------------------------------------|----------------------------------------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|                     |                                                           | 29445<br>8 us PRI, 18 Pu                                                                     | DFS 1<br>Ises per Burst                                                                                                                                                               |
| Number<br>of Trials | Number<br>Detected                                        | Detection<br>(%)                                                                             | Mark                                                                                                                                                                                  |
| 10                  | 10                                                        | 100                                                                                          | FL                                                                                                                                                                                    |
| 10                  | 10                                                        | 100                                                                                          |                                                                                                                                                                                       |
| 10                  | 10                                                        | 100                                                                                          | FH                                                                                                                                                                                    |
|                     | dwidth Test Res<br>aveform: 1 us P<br>Number<br>of Trials | dwidth Test Results aveform: 1 us Pulse Width, 142 Number Number of Trials Detected 10 10 10 | Aveform: 1 us Pulse Width, 1428 us PRI, 18 Pu           Number of Trials         Number Detection         (%)           10         10         100           10         10         100 |

# 5.2.7. IN-SERVICE MONITORING

## **RESULTS**

| CC Radar Test Summ     | агу       |           |        |            |      |       |      |          |          |              |
|------------------------|-----------|-----------|--------|------------|------|-------|------|----------|----------|--------------|
| Cianal Tuna            | Number    | Detection | Limit  | Pass/Fail  | Dete | ction |      |          |          | In-Service   |
| Signal Type            | Number    | Detection | Lilino | Passiraiii | Band | width |      | Test     | Employee | Monitoring   |
|                        | of Trials | (%)       | (%)    | /          | FL   | FH    | OBW  | Location | Number   | Version      |
| FCC Short Pulse Type 1 | 30        | 90.00     | 60     | Pass       | 5545 | 5555  | 9.06 | DFS 1    | 29445    | Version 3.3. |
| FCC Short Pulse Type 2 | 30        | 96.67     | 60     | Pass       | 5545 | 5555  | 9.06 | DFS 1    | 29445    | Version 3.3. |
| FCC Short Pulse Type 3 | 30        | 73.33     | 60     | Pass       | 5545 | 5555  | 9.06 | DFS 1    | 29445    | Version 3.3. |
| FCC Short Pulse Type 4 | 30        | 83.33     | 60     | Pass       | 5545 | 5555  | 9.06 | DFS 1    | 29445    | Version 3.3. |
| Aggregate              |           | 85.83     | 80     | Pass       |      |       |      |          |          |              |
| FCC Long Pulse Type 5  | 30        | 100.00    | 80     | Pass       | 5545 | 5555  | 9.06 | DFS 1    | 29445    | Version 3.3. |
| FCC Hopping Type 6     | 33        | 81.82     | 70     | Pass       | 5545 | 5555  |      | DFS 1    | 29445    | Version 3.3. |

# **TYPE 1 DETECTION PROBABILITY**

| Waveform | Pulse Width | PRI  | Pulses    | Test  | Frequency | Successful Detection |
|----------|-------------|------|-----------|-------|-----------|----------------------|
|          | (us)        | (us) | Per Burst | (A/B) | (MHz)     | (Yes/No)             |
| 1001     | 1           | 3066 | 18        | Α     | 5548      | Yes                  |
| 1002     | 1           | 558  | 95        | Α     | 5555      | Yes                  |
| 1003     | 1           | 538  | 99        | Α     | 5548      | Yes                  |
| 1004     | 1           | 818  | 65        | Α     | 5552      | Yes                  |
| 1005     | 1           | 898  | 59        | Α     | 5547      | Yes                  |
| 1006     | 1           | 718  | 74        | Α     | 5551      | Yes                  |
| 1007     | 1           | 598  | 89        | Α     | 5553      | Yes                  |
| 1008     | 1           | 878  | 61        | Α     | 5554      | Yes                  |
| 1009     | 1           | 578  | 92        | Α     | 5547      | Yes                  |
| 1010     | 1           | 678  | 78        | Α     | 5547      | Yes                  |
| 1011     | 1           | 938  | 57        | Α     | 5548      | Yes                  |
| 1012     | 1           | 918  | 58        | Α     | 5549      | Yes                  |
| 1013     | 1           | 618  | 86        | Α     | 5554      | Yes                  |
| 1014     | 1           | 798  | 67        | Α     | 5554      | Yes                  |
| 1015     | 1           | 838  | 63        | Α     | 5548      | Yes                  |
| 1016     | 1           | 1257 | 42        | В     | 5547      | No                   |
| 1017     | 1           | 2955 | 18        | В     | 5554      | Yes                  |
| 1018     | 1           | 1910 | 28        | В     | 5551      | Yes                  |
| 1019     | 1           | 2543 | 21        | В     | 5552      | Yes                  |
| 1020     | 1           | 1628 | 33        | В     | 5552      | Yes                  |
| 1021     | 1           | 2390 | 23        | В     | 5555      | Yes                  |
| 1022     | 1           | 1604 | 33        | В     | 5549      | Yes                  |
| 1023     | 1           | 1301 | 41        | В     | 5551      | Yes                  |
| 1024     | 1           | 1998 | 27        | В     | 5555      | No                   |
| 1025     | 1           | 3019 | 18        | В     | 5555      | Yes                  |
| 1026     | 1           | 2652 | 20        | В     | 5553      | Yes                  |
| 1027     | 1           | 2608 | 21        | В     | 5554      | Yes                  |
| 1028     | 1           | 1016 | 52        | В     | 5549      | Yes                  |
| 1029     | 1           | 2454 | 22        | В     | 5552      | No                   |
| 1030     | 1           | 2346 | 23        | В     | 5550      | Yes                  |

# **TYPE 2 DETECTION PROBABILITY**

| Waveform | Pulse Width (us) | PRI<br>(us) | Pulses Per Burst | Frequency<br>(MHz) | Successful Detection<br>(Yes/No) |
|----------|------------------|-------------|------------------|--------------------|----------------------------------|
| 2001     | 1.4              | 159         | 25               | 5553               | Yes                              |
| 2002     | 2.5              | 200         | 24               | 5551               | Yes                              |
| 2003     | 3.3              | 213         | 23               | 5553               | Yes                              |
| 2004     | 2.6              | 177         | 27               | 5546               | Yes                              |
| 2005     | 3.6              | 195         | 27               | 5552               | Yes                              |
| 2006     | 3.2              | 163         | 27               | 5549               | Yes                              |
| 2007     | 2.5              | 227         | 27               | 5546               | Yes                              |
| 2008     | 2.2              | 199         | 28               | 5552               | Yes                              |
| 2009     | 1.7              | 187         | 25               | 5546               | Yes                              |
| 2010     | 3.9              | 168         | 27               | 5553               | Yes                              |
| 2011     | 1.7              | 160         | 28               | 5553               | Yes                              |
| 2012     | 4                | 183         | 23               | 5554               | Yes                              |
| 2013     | 2                | 222         | 24               | 5552               | Yes                              |
| 2014     | 4.6              | 212         | 23               | 5554               | Yes                              |
| 2015     | 2.8              | 174         | 24               | 5554               | Yes                              |
| 2016     | 1.7              | 168         | 24               | 5555               | Yes                              |
| 2017     | 4.2              | 215         | 23               | 5546               | Yes                              |
| 2018     | 1.2              | 174         | 29               | 5552               | Yes                              |
| 2019     | 2                | 188         | 28               | 5545               | Yes                              |
| 2020     | 1.3              | 152         | 25               | 5550               | No                               |
| 2021     | 2.3              | 169         | 24               | 5554               | Yes                              |
| 2022     | 1.9              | 218         | 25               | 5550               | Yes                              |
| 2023     | 1.2              | 202         | 25               | 5545               | Yes                              |
| 2024     | 3.1              | 217         | 26               | 5548               | Yes                              |
| 2025     | 2.6              | 161         | 23               | 5547               | Yes                              |
| 2026     | 2.6              | 224         | 25               | 5551               | Yes                              |
| 2027     | 4.5              | 215         | 26               | 5551               | Yes                              |
| 2028     | 2.7              | 158         | 27               | 5550               | Yes                              |
| 2029     | 4.8              | 197         | 29               | 5546               | Yes                              |
| 2030     | 3.3              | 186         | 28               | 5549               | Yes                              |

# **TYPE 3 DETECTION PROBABILITY**

|      |      | PRI  | Pulses Per Burst | Frequency | Successful Detection |
|------|------|------|------------------|-----------|----------------------|
|      | (us) | (us) |                  | (MHz)     | (Yes/No)             |
| 3001 | 8.7  | 496  | 18               | 5551      | Yes                  |
| 3002 | 9.5  | 477  | 18               | 5551      | Yes                  |
| 3003 | 7.9  | 372  | 18               | 5546      | Yes                  |
| 3004 | 7.1  | 499  | 17               | 5550      | Yes                  |
| 3005 | 9.8  | 288  | 17               | 5554      | Yes                  |
| 3006 | 9.1  | 428  | 16               | 5545      | No                   |
| 3007 | 6    | 481  | 17               | 5551      | No                   |
| 3008 | 7.8  | 383  | 16               | 5550      | Yes                  |
| 3009 | 9    | 331  | 17               | 5551      | Yes                  |
| 3010 | 6.8  | 379  | 16               | 5550      | Yes                  |
| 3011 | 6.3  | 340  | 18               | 5547      | Yes                  |
| 3012 | 8.5  | 400  | 18               | 5552      | Yes                  |
| 3013 | 8.2  | 374  | 16               | 5551      | Yes                  |
| 3014 | 6.4  | 329  | 17               | 5546      | Yes                  |
| 3015 | 8.5  | 316  | 17               | 5551      | Yes                  |
| 3016 | 9.2  | 284  | 17               | 5552      | Yes                  |
| 3017 | 7.4  | 417  | 17               | 5554      | Yes                  |
| 3018 | 8.2  | 398  | 17               | 5552      | Yes                  |
| 3019 | 6.6  | 426  | 17               | 5545      | No                   |
| 3020 | 9.9  | 419  | 16               | 5547      | No                   |
| 3021 | 8.5  | 460  | 16               | 5552      | Yes                  |
| 3022 | 7.8  | 348  | 18               | 5548      | Yes                  |
| 3023 | 6.9  | 402  | 16               | 5555      | No                   |
| 3024 | 6.5  | 436  | 18               | 5546      | Yes                  |
| 3025 | 7.7  | 252  | 16               | 5548      | Yes                  |
| 3026 | 9.6  | 299  | 18               | 5554      | Yes                  |
| 3027 | 9.1  | 261  | 17               | 5555      | No                   |
| 3028 | 7.2  | 321  | 16               | 5555      | No                   |
| 3029 | 6.9  | 295  | 18               | 5553      | Yes                  |

# **TYPE 4 DETECTION PROBABILITY**

| (us)         (us)         (MHz)         (Yes/No)           4001         13.8         488         13         5554         No           4002         15.2         456         12         5551         Yes           4003         11.2         338         13         5551         Yes           4004         13.1         318         13         5556         Yes           4005         18.7         346         12         5553         Yes           4006         16.8         340         14         5553         Yes           4007         18.5         381         14         5549         Yes           4008         12.3         269         14         5554         Yes           4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5555         No           4011         11.9         423         16         5555         Yes           4012         16.2         471         14         5555         No           4013    | Waveform | Pulse Width | PRI  | Pulses Per Burst | Frequency | Successful Detection |
|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------|-------------|------|------------------|-----------|----------------------|
| 4002         15.2         456         12         5551         Yes           4003         11.2         338         13         5551         Yes           4004         13.1         318         13         5546         Yes           4005         18.7         346         12         5553         Yes           4006         16.8         340         14         5553         Yes           4007         18.5         381         14         5549         Yes           4008         12.3         269         14         5554         Yes           4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5552         Yes           4011         11.9         423         16         5552         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No |          | (us)        | (us) |                  | (MHz)     | (Yes/No)             |
| 4003         11.2         338         13         5551         Yes           4004         13.1         318         13         5546         Yes           4005         18.7         346         12         5553         Yes           4006         16.8         340         14         5553         Yes           4007         18.5         381         14         5549         Yes           4008         12.3         269         14         5554         Yes           4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5552         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes | 4001     | 13.8        | 488  | 13               | 5554      | No                   |
| 4004         13.1         318         13         5546         Yes           4005         18.7         346         12         5553         Yes           4006         16.8         340         14         5553         Yes           4007         18.5         381         14         5549         Yes           4008         12.3         269         14         5554         Yes           4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5555         No           4011         11.9         423         16         5555         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No   | 4002     | 15.2        | 456  | 12               | 5551      | Yes                  |
| 4005         18.7         346         12         5553         Yes           4006         16.8         340         14         5553         Yes           4007         18.5         381         14         5549         Yes           4008         12.3         269         14         5554         Yes           4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5552         Yes           4011         11.9         423         16         5555         No           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No   | 4003     | 11.2        | 338  | 13               | 5551      | Yes                  |
| 4006         16.8         340         14         5553         Yes           4007         18.5         381         14         5549         Yes           4008         12.3         269         14         5554         Yes           4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5552         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes    | 4004     | 13.1        | 318  | 13               | 5546      | Yes                  |
| 4007         18.5         381         14         5549         Yes           4008         12.3         269         14         5554         Yes           4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5552         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes    | 4005     | 18.7        | 346  | 12               | 5553      | Yes                  |
| 4008         12.3         269         14         5554         Yes           4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5552         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes    | 4006     | 16.8        | 340  | 14               | 5553      | Yes                  |
| 4009         19.3         323         16         5555         No           4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5552         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes    | 4007     | 18.5        | 381  | 14               | 5549      | Yes                  |
| 4010         18.3         357         14         5553         Yes           4011         11.9         423         16         5552         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes   | 4008     | 12.3        | 269  | 14               | 5554      | Yes                  |
| 4011         11.9         423         16         5552         Yes           4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes   | 4009     | 19.3        | 323  | 16               | 5555      | No                   |
| 4012         16.2         471         14         5555         No           4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes   | 4010     | 18.3        | 357  | 14               | 5553      | Yes                  |
| 4013         15.1         432         15         5552         Yes           4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes           4025         16.4         494         14         5552         Yes  | 4011     | 11.9        | 423  | 16               | 5552      | Yes                  |
| 4014         19.9         492         16         5552         No           4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes           4025         16.4         494         14         5552         Yes           4026         15.5         278         12         5549         Yes           4027         13.8         344         15         5546         Yes  | 4012     | 16.2        | 471  | 14               | 5555      | No                   |
| 4015         19.2         466         14         5549         Yes           4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes           4025         16.4         494         14         5552         Yes           4026         15.5         278         12         5549         Yes           4027         13.8         344         15         5546         Yes           4028         13.4         391         15         5546         Yes | 4013     | 15.1        | 432  | 15               | 5552      | Yes                  |
| 4016         15.4         421         13         5552         No           4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes           4025         16.4         494         14         5552         Yes           4026         15.5         278         12         5549         Yes           4027         13.8         344         15         5546         Yes           4028         13.4         391         15         5546         Yes                                                                             | 4014     | 19.9        | 492  | 16               | 5552      | No                   |
| 4017         20         408         16         5548         Yes           4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes           4025         16.4         494         14         5552         Yes           4026         15.5         278         12         5549         Yes           4027         13.8         344         15         5546         Yes           4028         13.4         391         15         5546         Yes                                                                                                                                                        | 4015     | 19.2        | 466  | 14               | 5549      | Yes                  |
| 4018         12.4         376         15         5548         Yes           4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes           4025         16.4         494         14         5552         Yes           4026         15.5         278         12         5549         Yes           4027         13.8         344         15         5546         Yes           4028         13.4         391         15         5546         Yes                                                                                                                                                                                                                                  | 4016     | 15.4        | 421  | 13               | 5552      | No                   |
| 4019         17.4         258         12         5549         Yes           4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes           4025         16.4         494         14         5552         Yes           4026         15.5         278         12         5549         Yes           4027         13.8         344         15         5546         Yes           4028         13.4         391         15         5546         Yes                                                                                                                                                                                                                                                                                                              | 4017     | 20          | 408  | 16               | 5548      | Yes                  |
| 4020         19.4         372         14         5547         Yes           4021         15.8         267         15         5549         Yes           4022         13.9         394         13         5550         Yes           4023         15.6         301         12         5551         Yes           4024         14.2         441         15         5554         Yes           4025         16.4         494         14         5552         Yes           4026         15.5         278         12         5549         Yes           4027         13.8         344         15         5546         Yes           4028         13.4         391         15         5546         Yes                                                                                                                                                                                                                                                                                                                                                                                          | 4018     | 12.4        | 376  | 15               | 5548      | Yes                  |
| 4021     15.8     267     15     5549     Yes       4022     13.9     394     13     5550     Yes       4023     15.6     301     12     5551     Yes       4024     14.2     441     15     5554     Yes       4025     16.4     494     14     5552     Yes       4026     15.5     278     12     5549     Yes       4027     13.8     344     15     5546     Yes       4028     13.4     391     15     5546     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4019     | 17.4        | 258  | 12               | 5549      | Yes                  |
| 4022     13.9     394     13     5550     Yes       4023     15.6     301     12     5551     Yes       4024     14.2     441     15     5554     Yes       4025     16.4     494     14     5552     Yes       4026     15.5     278     12     5549     Yes       4027     13.8     344     15     5546     Yes       4028     13.4     391     15     5546     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4020     | 19.4        | 372  | 14               | 5547      | Yes                  |
| 4023     15.6     301     12     5551     Yes       4024     14.2     441     15     5554     Yes       4025     16.4     494     14     5552     Yes       4026     15.5     278     12     5549     Yes       4027     13.8     344     15     5546     Yes       4028     13.4     391     15     5546     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4021     | 15.8        | 267  | 15               | 5549      | Yes                  |
| 4024     14.2     441     15     5554     Yes       4025     16.4     494     14     5552     Yes       4026     15.5     278     12     5549     Yes       4027     13.8     344     15     5546     Yes       4028     13.4     391     15     5546     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                              | 4022     | 13.9        | 394  | 13               | 5550      | Yes                  |
| 4025     16.4     494     14     5552     Yes       4026     15.5     278     12     5549     Yes       4027     13.8     344     15     5546     Yes       4028     13.4     391     15     5546     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4023     | 15.6        | 301  | 12               | 5551      | Yes                  |
| 4026     15.5     278     12     5549     Yes       4027     13.8     344     15     5546     Yes       4028     13.4     391     15     5546     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                      | 4024     | 14.2        | 441  | 15               | 5554      | Yes                  |
| 4027     13.8     344     15     5546     Yes       4028     13.4     391     15     5546     Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          | 4025     | 16.4        | 494  | 14               | 5552      | Yes                  |
| 4028 13.4 391 15 5546 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4026     | 15.5        | 278  | 12               | 5549      | Yes                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4027     | 13.8        | 344  | 15               | 5546      | Yes                  |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            | 4028     | 13.4        | 391  | 15               | 5546      | Yes                  |
| 4029 12.2 353 13 5552 Yes                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  | 4029     | 12.2        | 353  | 13               | 5552      | Yes                  |

# **TYPE 5 DETECTION PROBABILITY**

| 1<br>2<br>3<br>4 | (MHz)<br>5550 | Successful Detection<br>(Yes/No) |
|------------------|---------------|----------------------------------|
| 2                |               |                                  |
| 3                |               | Yes                              |
|                  | 5550          | Yes                              |
|                  | 5550          | Yes                              |
| 4                | 5550          | Yes                              |
| 5                | 5550          | Yes                              |
| 6                | 5550          | Yes                              |
| 7                | 5550          | Yes                              |
| 8                | 5550          | Yes                              |
| 9                | 5550          | Yes                              |
| 10               | 5550          | Yes                              |
| 11               | 5552          | Yes                              |
| 12               | 5552          | Yes                              |
| 13               | 5554          | Yes                              |
| 14               | 5549          | Yes                              |
| 15               | 5551          | Yes                              |
| 16               | 5548          | Yes                              |
| 17               | 5549          | Yes                              |
| 18               | 5554          | Yes                              |
| 19               | 5549          | Yes                              |
| 20               | 5554          | Yes                              |
| 21               | 5551          | Yes                              |
| 22               | 5547          | Yes                              |
| 23               | 5551          | Yes                              |
| 24               | 5547          | Yes                              |
| 25               | 5551          | Yes                              |
| 26               | 5547          | Yes                              |
| 27               | 5551          | Yes                              |
| 28               | 5547          | Yes                              |
| 29               | 5551          | Yes                              |

Note: The Type 5 randomized parameters tested are shown in a separate document.

# **TYPE 6 DETECTION PROBABILITY**

| IA AUC | just 2005 Hopping Se              | auence                                 |                             |                                    |
|--------|-----------------------------------|----------------------------------------|-----------------------------|------------------------------------|
| Trial  | Starting Index<br>Within Sequence | Signal Generator<br>Frequency<br>(MHz) | Hops within<br>Detection BW | Successfu<br>Detection<br>(Yes/No) |
| 1      | 278                               | 5545                                   | 2                           | Yes                                |
| 2      | 753                               | 5546                                   | 2                           | Yes                                |
| 3      | 1228                              | 5547                                   | 2                           | Yes                                |
| 4      | 1703                              | 5548                                   | 3                           | Yes                                |
| 5      | 2178                              | 5549                                   | 2                           | Yes                                |
| 6      | 2653                              | 5550                                   | 2                           | Yes                                |
| 7      | 3128                              | 5551                                   | 1                           | No                                 |
| 8      | 3603                              | 5552                                   | 1                           | No                                 |
| 9      | 4553                              | 5553                                   | 4                           | Yes                                |
| 10     | 5028                              | 5554                                   | 3                           | Yes                                |
| 11     | 5503                              | 5555                                   | 3                           | Yes                                |
| 12     | 5978                              | 5545                                   | 4                           | Yes                                |
| 13     | 6453                              | 5546                                   | 2                           | No                                 |
| 14     | 7403                              | 5547                                   | 2                           | Yes                                |
| 15     | 7878                              | 5548                                   | 4                           | Yes                                |
| 16     | 8353                              | 5549                                   | 1                           | Yes                                |
| 17     | 8828                              | 5550                                   | 2                           | Yes                                |
| 18     | 9778                              | 5551                                   | 1                           | No                                 |
| 19     | 10253                             | 5552                                   | 4                           | Yes                                |
| 20     | 11678                             | 5553                                   | 1                           | Yes                                |
| 21     | 12153                             | 5554                                   | 1                           | Yes                                |
| 22     | 12628                             | 5555                                   | 1                           | Yes                                |
| 23     | 13103                             | 5545                                   | 3                           | Yes                                |
| 24     | 13578                             | 5546                                   | 3                           | Yes                                |
| 25     | 14053                             | 5547                                   | 3                           | Yes                                |
| 26     | 14528                             | 5548                                   | 3                           | Yes                                |
| 27     | 15003                             | 5549                                   | 1                           | Yes                                |
| 28     | 15478                             | 5550                                   | 1                           | No                                 |
| 29     | 15953                             | 5551                                   | 2                           | No                                 |
| 30     | 16428                             | 5552                                   | 3                           | Yes                                |
| 31     | 16903                             | 5553                                   | 3                           | Yes                                |
| 32     | 17378                             | 5554                                   | 2                           | Yes                                |
| 33     | 17853                             | 5555                                   | 3                           | Yes                                |

# 5.3. RESULTS FOR 40 MHz BANDWIDTH

#### 5.3.1. TEST CHANNEL

All tests were performed at a channel center frequency of 5550 MHz.

#### 5.3.2. RADAR WAVEFORMS AND TRAFFIC

#### **RADAR WAVEFORMS**















### **TRAFFIC**



### **CHANNEL LOADING**



The level of traffic loading on the channel by the EUT is 19.22%.

REPORT NO: 12338572-E2V1 FCC ID: Z8H89FT0042

#### 5.3.3. CHANNEL AVAILABILITY CHECK TIME

### PROCEDURE TO DETERMINE INITIAL POWER-UP CYCLE TIME

A link was established on channel then a software reset command was issued to the EUT. The time from the cessation of traffic to the re-initialization of traffic was measured as the time required for the EUT to complete the total power-up cycle. The time to complete the initial power-up period is 60 seconds less than this total power-up time.

#### PROCEDURE FOR TIMING OF RADAR BURST

With a link established on channel, the EUT was reset. A radar signal was triggered within 0 to 6 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

The Non-Occupancy list was cleared. With a link established on channel, the EUT was reset. A radar signal was triggered within 54 to 60 seconds after the initial power-up period, and transmissions on the channel were monitored on the spectrum analyzer.

DATE: JULY 5, 2018 IC: 109W-0042

### **QUANTITATIVE RESULTS**

No Radar Triggered

| Timing of | Timing of        | Total Reset and CAC | Initial Reset |
|-----------|------------------|---------------------|---------------|
| Reset     | Start of Traffic | Cycle Time          | Cycle Time    |
| (sec)     | (sec)            | (sec)               | (sec)         |
| 32.9      | 153.2            | 120.3               | 60.3          |

**Radar Near Beginning of CAC** 

| Timing of | Timing of   | Radar Relative | Radar Relative  |
|-----------|-------------|----------------|-----------------|
| Reset     | Radar Burst | to Reset       | to Start of CAC |
| (sec)     | (sec)       | (sec)          | (sec)           |
| 32.47     | 96.7        | 64.2           | 3.9             |

#### Radar Near End of CAC

| Timing of | Timing of   | Radar Relative | Radar Relative  |
|-----------|-------------|----------------|-----------------|
| Reset     | Radar Burst | to Reset       | to Start of CAC |
| (sec)     | (sec)       | (sec)          | (sec)           |
| 32.92     | 150.8       | 117.9          | 57.6            |

### **QUALITATIVE RESULTS**

| Timing of Radar Burst         | Display on Control<br>Computer | Spectrum Analyzer Display                                                        |
|-------------------------------|--------------------------------|----------------------------------------------------------------------------------|
| No Radar<br>Triggered         | EUT marks Channel as active    | Transmissions begin on channel after completion of the initial reset and the CAC |
| Within 0 to 6 second window   | EUT indicates radar detected   | No transmissions on channel                                                      |
| Within 54 to 60 second window | EUT indicates radar detected   | No transmissions on channel                                                      |

### **TIMING WITHOUT RADAR DURING CAC**

Software Reset Command Issued Traffic ceases Start of Initial Reset cycle End of Initial Reset cycle Start of CAC End of CAC Traffic is Initiated TIMING WITHOUT RADAR – NORMAL RESET AND CAC CYCLE :58 PM Jun 21, 2018 TRACE 1 2 3 4 5 6 Frequency g Type: Log-Pwr eq 5.550000000 GHz Trig: Free Run #Atten: 0 dB Auto Tune Mkr2 153.2 s -79.35 dBm ef Offset -21.8 dB ef -45.00 dBm Center Freq 5.550000000 GHz Start Fred 5.550000000 GHz Stop Freq 5.550000000 GHz Center 5.550000000 GHz Res BW 3.0 MHz Span 0 Hz Sweep 300.0 s (40001 pts) CF Step 3.000000 MHz **#VBW 3.0 MHz** MKR MODE TRC SCL -79.26 dBm -79.35 dBm Freq Offset

Transmissions begin on channel after completion of the initial reset cycle and the CAC.

STATUS

#### **TIMING WITH RADAR NEAR BEGINNING OF CAC**

Software Reset Command Issued Traffic ceases Start of Initial Reset cycle



No EUT transmissions were observed after the radar signal.

### **TIMING WITH RADAR NEAR END OF CAC**

Software Reset Command Issued Traffic ceases Start of Initial Reset cycle



No EUT transmissions were observed after the radar signal.

REPORT NO: 12338572-E2V1 FCC ID: Z8H89FT0042

#### **5.3.4. OVERLAPPING CHANNEL TESTS**

#### **RESULTS**

These tests are not applicable. The manufacturer's channel mapping plan prohibits overlapping channel from occurring.

#### 5.3.5. MOVE AND CLOSING TIME

### **REPORTING NOTES**

The reference marker is set at the end of last radar pulse.

The delta marker is set at the end of the last WLAN transmission following the radar pulse. This delta is the channel move time.

The aggregate channel closing transmission time is calculated as follows:

Aggregate Transmission Time = (Number of analyzer bins showing transmission) \* (dwell time per bin)

The observation period over which the aggregate time is calculated begins at (Reference Marker + 200 msec) and ends no earlier than (Reference Marker + 10 sec).

#### **RESULTS**

| Channel Move Time | Limit |
|-------------------|-------|
| (sec)             | (sec) |
| 0.000             | 10    |

| Aggregate Channel Closing Transmission Time | Limit  |
|---------------------------------------------|--------|
| (msec)                                      | (msec) |
| 0.0                                         | 60     |

DATE: JULY 5, 2018 IC: 109W-0042

### **MOVE TIME**



### **CHANNEL CLOSING TIME**



### AGGREGATE CHANNEL CLOSING TRANSMISSION TIME

No transmissions are observed during the aggregate monitoring period.



DATE: JULY 5, 2018 IC: 109W-0042

### **LONG PULSE CHANNEL MOVE TIME**

The traffic ceases prior to 10 seconds after the end of the radar waveform.



DATE: JULY 5, 2018

IC: 109W-0042

#### 5.3.6. NON-OCCUPANCY PERIOD

### **RESULTS**

No EUT transmissions were observed on the test channel during the 30-minute observation time. After the 30-minute non-occupancy period the EUT performed a new CAC, then resumed transmissions upon detecting no radar during this CAC period.



#### 5.3.7. DETECTION BANDWIDTH

### REFERENCE PLOT OF 99% POWER BANDWIDTH



#### **RESULTS**

| FL    | FH    | Detection | 99% Power | Ratio of        | Minimum |
|-------|-------|-----------|-----------|-----------------|---------|
|       |       | Bandwidth | Bandwidth | Detection BW to | Limit   |
|       |       |           |           | 99% Power BW    |         |
| (MHz) | (MHz) | (MHz)     | (MHz)     | (%)             | (%)     |
| 5530  | 5570  | 40        | 36.714    | 109.0           | 100     |

## **DETECTION BANDWIDTH PROBABILITY**

| DETECTION      | I BANDWID       | TH PROBAE       | BILITY RESU      | ILTS            |
|----------------|-----------------|-----------------|------------------|-----------------|
| Detection Band | lwidth Test Res | ults            | 29445            | DFS 1           |
| FCC Type 0 Wa  | veform: 1 us P  | ulse Width, 142 | 28 us PRI, 18 Pu | ilses per Burst |
| Frequency      | Number          | Number          | Detection        | Mark            |
| (MHz)          | of Trials       | Detected        | (%)              |                 |
| 5530           | 10              | 10              | 100              | FL              |
| 5535           | 10              | 10              | 100              |                 |
| 5540           | 10              | 10              | 100              |                 |
| 5545           | 10              | 10              | 100              |                 |
| 5550           | 10              | 10              | 100              |                 |
| 5555           | 10              | 10              | 100              |                 |
| 5560           | 10              | 10              | 100              |                 |
| 5565           | 10              | 10              | 100              |                 |
| 5570           | 10              | 10              | 100              | FH              |

# **5.3.8. IN-SERVICE MONITORING**

### **RESULTS**

| FCC Radar Test Summ    | агу       |           |         |           |      |       |       |          |          |               |
|------------------------|-----------|-----------|---------|-----------|------|-------|-------|----------|----------|---------------|
| Signal Tuna            | Number    | Detection | Limit   | Pass/Fail | Dete | ction |       |          |          | In-Service    |
| Signal Type            | Number    | Detection | Lilling | Passirani | Band | width |       | Test     | Employee | Monitoring    |
|                        | of Trials | (%)       | (%)     |           | FL   | FH    | OBW   | Location | Number   | Version       |
| FCC Short Pulse Type 1 | 30        | 93.33     | 60      | Pass      | 5530 | 5570  | 36.71 | DFS 1    | 29445    | Version 3.3.4 |
| FCC Short Pulse Type 2 | 30        | 100.00    | 60      | Pass      | 5530 | 5570  | 36.71 | DFS 1    | 29445    | Version 3.3.4 |
| FCC Short Pulse Type 3 | 30        | 96.67     | 60      | Pass      | 5530 | 5570  | 36.71 | DFS 1    | 29445    | Version 3.3.4 |
| FCC Short Pulse Type 4 | 30        | 96.67     | 60      | Pass      | 5530 | 5570  | 36.71 | DFS 1    | 29445    | Version 3.3.4 |
| Aggregate              |           | 96.67     | 80      | Pass      |      |       |       |          |          |               |
| FCC Long Pulse Type 5  | 30        | 100.00    | 80      | Pass      | 5530 | 5570  | 36.71 | DFS 1    | 29445    | Version 3.3.4 |
| FCC Hopping Type 6     | 41        | 100.00    | 70      | Pass      | 5530 | 5570  |       | DFS 1    | 29445    | Version 3.3.4 |

### **TYPE 1 DETECTION PROBABILITY**

| Waveform | Pulse Width | PRI  | Pulses    | Test  | Frequency | Successful Detection |
|----------|-------------|------|-----------|-------|-----------|----------------------|
|          | (us)        | (us) | Per Burst | (A/B) | (MHz)     | (Yes/No)             |
| 1001     | 1           | 3066 | 18        | Α     | 5531      | Yes                  |
| 1002     | 1           | 558  | 95        | Α     | 5554      | Yes                  |
| 1003     | 1           | 538  | 99        | Α     | 5535      | Yes                  |
| 1004     | 1           | 818  | 65        | Α     | 5556      | Yes                  |
| 1005     | 1           | 898  | 59        | Α     | 5551      | Yes                  |
| 1006     | 1           | 718  | 74        | Α     | 5545      | Yes                  |
| 1007     | 1           | 598  | 89        | Α     | 5549      | Yes                  |
| 1008     | 1           | 878  | 61        | Α     | 5540      | Yes                  |
| 1009     | 1           | 578  | 92        | Α     | 5537      | Yes                  |
| 1010     | 1           | 678  | 78        | Α     | 5530      | Yes                  |
| 1011     | 1           | 938  | 57        | Α     | 5540      | Yes                  |
| 1012     | 1           | 918  | 58        | Α     | 5535      | Yes                  |
| 1013     | 1           | 618  | 86        | Α     | 5569      | Yes                  |
| 1014     | 1           | 798  | 67        | Α     | 5552      | Yes                  |
| 1015     | 1           | 838  | 63        | Α     | 5538      | Yes                  |
| 1016     | 1           | 1257 | 42        | В     | 5540      | Yes                  |
| 1017     | 1           | 2955 | 18        | В     | 5556      | Yes                  |
| 1018     | 1           | 1910 | 28        | В     | 5540      | Yes                  |
| 1019     | 1           | 2543 | 21        | В     | 5555      | No                   |
| 1020     | 1           | 1628 | 33        | В     | 5533      | Yes                  |
| 1021     | 1           | 2390 | 23        | В     | 5563      | Yes                  |
| 1022     | 1           | 1604 | 33        | В     | 5566      | Yes                  |
| 1023     | 1           | 1301 | 41        | В     | 5547      | Yes                  |
| 1024     | 1           | 1998 | 27        | В     | 5544      | Yes                  |
| 1025     | 1           | 3019 | 18        | В     | 5562      | Yes                  |
| 1026     | 1           | 2652 | 20        | В     | 5536      | Yes                  |
| 1027     | 1           | 2608 | 21        | В     | 5536      | Yes                  |
| 1028     | 1           | 1016 | 52        | В     | 5559      | Yes                  |
| 1029     | 1           | 2454 | 22        | В     | 5546      | No                   |
| 1030     | 1           | 2346 | 23        | В     | 5542      | Yes                  |

## **TYPE 2 DETECTION PROBABILITY**

| Waveform | Pulse Width<br>(us) | PRI<br>(us) | Pulses Per Burst | Frequency<br>(MHz) | Successful Detection<br>(Yes/No) |
|----------|---------------------|-------------|------------------|--------------------|----------------------------------|
| 2001     | 1.4                 | 159         | 25               | 5534               | Yes                              |
| 2002     | 2.5                 | 200         | 24               | 5548               | Yes                              |
| 2003     | 3.3                 | 213         | 23               | 5533               | Yes                              |
| 2004     | 2.6                 | 177         | 27               | 5549               | Yes                              |
| 2005     | 3.6                 | 195         | 27               | 5566               | Yes                              |
| 2006     | 3.2                 | 163         | 27               | 5560               | Yes                              |
| 2007     | 2.5                 | 227         | 27               | 5544               | Yes                              |
| 2008     | 2.2                 | 199         | 28               | 5534               | Yes                              |
| 2009     | 1.7                 | 187         | 25               | 5532               | Yes                              |
| 2010     | 3.9                 | 168         | 27               | 5554               | Yes                              |
| 2011     | 1.7                 | 160         | 28               | 5561               | Yes                              |
| 2012     | 4                   | 183         | 23               | 5544               | Yes                              |
| 2013     | 2                   | 222         | 24               | 5565               | Yes                              |
| 2014     | 4.6                 | 212         | 23               | 5541               | Yes                              |
| 2015     | 2.8                 | 174         | 24               | 5567               | Yes                              |
| 2016     | 1.7                 | 168         | 24               | 5534               | Yes                              |
| 2017     | 4.2                 | 215         | 23               | 5568               | Yes                              |
| 2018     | 1.2                 | 174         | 29               | 5531               | Yes                              |
| 2019     | 2                   | 188         | 28               | 5568               | Yes                              |
| 2020     | 1.3                 | 152         | 25               | 5559               | Yes                              |
| 2021     | 2.3                 | 169         | 24               | 5553               | Yes                              |
| 2022     | 1.9                 | 218         | 25               | 5539               | Yes                              |
| 2023     | 1.2                 | 202         | 25               | 5567               | Yes                              |
| 2024     | 3.1                 | 217         | 26               | 5563               | Yes                              |
| 2025     | 2.6                 | 161         | 23               | 5536               | Yes                              |
| 2026     | 2.6                 | 224         | 25               | 5549               | Yes                              |
| 2027     | 4.5                 | 215         | 26               | 5543               | Yes                              |
| 2028     | 2.7                 | 158         | 27               | 5540               | Yes                              |
| 2029     | 4.8                 | 197         | 29               | 5548               | Yes                              |
| 2030     | 3.3                 | 186         | 28               | 5548               | Yes                              |

## **TYPE 3 DETECTION PROBABILITY**

| Waveform | Pulse Width (us) | PRI<br>(us) | Pulses Per Burst | Frequency<br>(MHz) | Successful Detection<br>(Yes/No) |
|----------|------------------|-------------|------------------|--------------------|----------------------------------|
| 3001     | 8.7              | 496         | 18               | 5564               | Yes                              |
| 3002     | 9.5              | 477         | 18               | 5538               | Yes                              |
| 3002     | 7.9              | 372         | 18               | 5534               | Yes                              |
| 3004     | 7.1              | 499         | 17               | 5533               | Yes                              |
| 3005     | 9.8              | 288         | 17               | 5532               | Yes                              |
| 3006     | 9.1              | 428         | 16               | 5559               | Yes                              |
| 3007     | 6                | 481         | 17               | 5534               | Yes                              |
| 3008     | 7.8              | 383         | 16               | 5543               | Yes                              |
| 3009     | 9                | 331         | 17               | 5534               | Yes                              |
| 3010     | 6.8              | 379         | 16               | 5548               | Yes                              |
| 3011     | 6.3              | 340         | 18               | 5565               | Yes                              |
| 3012     | 8.5              | 400         | 18               | 5536               | Yes                              |
| 3013     | 8.2              | 374         | 16               | 5544               | Yes                              |
| 3014     | 6.4              | 329         | 17               | 5569               | Yes                              |
| 3015     | 8.5              | 316         | 17               | 5567               | Yes                              |
| 3016     | 9.2              | 284         | 17               | 5533               | Yes                              |
| 3017     | 7.4              | 417         | 17               | 5534               | Yes                              |
| 3018     | 8.2              | 398         | 17               | 5556               | Yes                              |
| 3019     | 6.6              | 426         | 17               | 5568               | Yes                              |
| 3020     | 9.9              | 419         | 16               | 5555               | No                               |
| 3021     | 8.5              | 460         | 16               | 5534               | Yes                              |
| 3022     | 7.8              | 348         | 18               | 5538               | Yes                              |
| 3023     | 6.9              | 402         | 16               | 5559               | Yes                              |
| 3024     | 6.5              | 436         | 18               | 5545               | Yes                              |
| 3025     | 7.7              | 252         | 16               | 5542               | Yes                              |
| 3026     | 9.6              | 299         | 18               | 5555               | Yes                              |
| 3027     | 9.1              | 261         | 17               | 5540               | Yes                              |
| 3028     | 7.2              | 321         | 16               | 5561               | Yes                              |
| 3029     | 6.9              | 295         | 18               | 5536               | Yes                              |
| 3030     | 9.2              | 250         | 16               | 5531               | Yes                              |

## **TYPE 4 DETECTION PROBABILITY**

| Waveform | Pulse Width (us) | PRI<br>(us) | Pulses Per Burst | Frequency<br>(MHz) | Successful Detection<br>(Yes/No) |
|----------|------------------|-------------|------------------|--------------------|----------------------------------|
| 4001     | 13.8             | 488         | 13               | 5541               | Yes                              |
| 4002     | 15.2             | 456         | 12               | 5544               | Yes                              |
| 4003     | 11.2             | 338         | 13               | 5566               | Yes                              |
| 4004     | 13.1             | 318         | 13               | 5568               | Yes                              |
| 4005     | 18.7             | 346         | 12               | 5551               | Yes                              |
| 4006     | 16.8             | 340         | 14               | 5555               | Yes                              |
| 4007     | 18.5             | 381         | 14               | 5552               | Yes                              |
| 4008     | 12.3             | 269         | 14               | 5536               | Yes                              |
| 4009     | 19.3             | 323         | 16               | 5545               | Yes                              |
| 4010     | 18.3             | 357         | 14               | 5554               | Yes                              |
| 4011     | 11.9             | 423         | 16               | 5538               | Yes                              |
| 4012     | 16.2             | 471         | 14               | 5569               | Yes                              |
| 4013     | 15.1             | 432         | 15               | 5545               | Yes                              |
| 4014     | 19.9             | 492         | 16               | 5544               | Yes                              |
| 4015     | 19.2             | 466         | 14               | 5543               | Yes                              |
| 4016     | 15.4             | 421         | 13               | 5541               | Yes                              |
| 4017     | 20               | 408         | 16               | 5564               | Yes                              |
| 4018     | 12.4             | 376         | 15               | 5553               | Yes                              |
| 4019     | 17.4             | 258         | 12               | 5542               | Yes                              |
| 4020     | 19.4             | 372         | 14               | 5562               | Yes                              |
| 4021     | 15.8             | 267         | 15               | 5568               | Yes                              |
| 4022     | 13.9             | 394         | 13               | 5537               | Yes                              |
| 4023     | 15.6             | 301         | 12               | 5549               | Yes                              |
| 4024     | 14.2             | 441         | 15               | 5547               | Yes                              |
| 4025     | 16.4             | 494         | 14               | 5563               | No                               |
| 4026     | 15.5             | 278         | 12               | 5557               | Yes                              |
| 4027     | 13.8             | 344         | 15               | 5551               | Yes                              |
| 4028     | 13.4             | 391         | 15               | 5553               | Yes                              |
| 4029     | 12.2             | 353         | 13               | 5536               | Yes                              |

REPORT NO: 12338572-E2V1 DATE: JULY 5, 2018 IC: 109W-0042 FCC ID: Z8H89FT0042

### **TYPE 5 DETECTION PROBABILITY**

| Data Sheet for FC | C Long Pulse | Radar Type 5         |  |
|-------------------|--------------|----------------------|--|
| Trial             |              | Successful Detection |  |
|                   | (MHz)        | (Yes/No)             |  |
| 1                 | 5550         | Yes                  |  |
| 2                 | 5550         | Yes                  |  |
| 3                 | 5550         | Yes                  |  |
| 4                 | 5550         | Yes                  |  |
| 5                 | 5550         | Yes                  |  |
| 6                 | 5550         | Yes                  |  |
| 7                 | 5550         | Yes                  |  |
| 8                 | 5550         | Yes                  |  |
| 9                 | 5550         | Yes                  |  |
| 10                | 5550         | Yes                  |  |
| 11                | 5538         | Yes                  |  |
| 12                | 5539         | Yes                  |  |
| 13                | 5540         | Yes                  |  |
| 14                | 5535         | Yes                  |  |
| 15                | 5537         | Yes                  |  |
| 16                | 5534         | Yes                  |  |
| 17                | 5535         | Yes                  |  |
| 18                | 5540         | Yes                  |  |
| 19                | 5535         | Yes                  |  |
| 20                | 5540         | Yes                  |  |
| 21                | 5565         | Yes                  |  |
| 22                | 5560         | Yes                  |  |
| 23                | 5565         | Yes                  |  |
| 24                | 5560         | Yes                  |  |
| 25                | 5565         | Yes                  |  |
| 26                | 5560         | Yes                  |  |
| 27                | 5565         | Yes                  |  |
| 28                | 5560         | Yes                  |  |
| 29                | 5565         | Yes                  |  |
| 30                | 5560         | Yes                  |  |
|                   |              |                      |  |

Note: The Type 5 randomized parameters tested are shown in a separate document.

## **TYPE 6 DETECTION PROBABILITY**

|       | e Width, 333 us PRI, 9<br>Just 2005 Hopping Se | •                  | 1 Burst per Hop | )                     |
|-------|------------------------------------------------|--------------------|-----------------|-----------------------|
|       | Starting Index                                 | Signal Generator   | Hops within     | Successful            |
| Trial | Within Sequence                                | Frequency<br>(MHz) | Detection BW    | Detection<br>(Yes/No) |
| 1     | 56                                             | 5530               | 8               | Yes                   |
| 2     | 531                                            | 5531               | 11              | Yes                   |
| 3     | 1006                                           | 5532               | 11              | Yes                   |
| 4     | 1481                                           | 5533               | 7               | Yes                   |
| 5     | 1956                                           | 5534               | 8               | Yes                   |
| 6     | 2431                                           | 5535               | 11              | Yes                   |
| 7     | 2906                                           | 5536               | 9               | Yes                   |
| 8     | 3381                                           | 5537               | 12              | Yes                   |
| 9     | 3856                                           | 5538               | 10              | Yes                   |
| 10    | 4331                                           | 5539               | 6               | Yes                   |
| 11    | 4806                                           | 5540               | 8               | Yes                   |
| 12    | 5281                                           | 5541               | 9               | Yes                   |
| 13    | 5756                                           | 5542               | 13              | Yes                   |
| 14    | 6231                                           | 5543               | 10              | Yes                   |
| 15    | 6706                                           | 5544               | 5               | Yes                   |
| 16    | 7181                                           | 5545               | 7               | Yes                   |
| 17    | 7656                                           | 5546               | 5               | Yes                   |
| 18    | 8131                                           | 5547               | 13              | Yes                   |
| 19    | 8606                                           | 5548               | 6               | Yes                   |
| 20    | 9081                                           | 5549               | 5               | Yes                   |
| 21    | 9556                                           | 5550               | 10              | Yes                   |
| 22    | 10031                                          | 5551               | 10              | Yes                   |
| 23    | 10506                                          | 5552               | 9               | Yes                   |
| 24    | 10981                                          | 5553               | 11              | Yes                   |
| 25    | 11456                                          | 5554               | 9               | Yes                   |
| 26    | 11931                                          | 5555               | 6               | Yes                   |
| 27    | 12406                                          | 5556               | 7               | Yes                   |
| 28    | 12881                                          | 5557               | 9               | Yes                   |
| 29    | 13356                                          | 5558               | 9               | Yes                   |
| 30    | 13831                                          | 5559               | 10              | Yes                   |
| 31    | 14306                                          | 5560               | 5               | Yes                   |
| 32    | 14781                                          | 5561               | 9               | Yes                   |
| 33    | 15256                                          | 5562               | 8               | Yes                   |
| 34    | 15731                                          | 5563               | 9               | Yes                   |
| 35    | 16206                                          | 5564               | 5               | Yes                   |
| 36    | 16681                                          | 5565               | 10              | Yes                   |
| 37    | 17156                                          | 5566               | 7               | Yes                   |
| 38    | 17631                                          | 5567               | 6               | Yes                   |
| 39    | 18106                                          | 5568               | 9               | Yes                   |
| 40    | 18581                                          | 5569               | 8               | Yes                   |

IC: 109W-0042

REPORT NO: 12338572-E2V1 FCC ID: Z8H89FT0042

#### 5.4. **BRIDGE MODE RESULTS**

Per KDB 905462, Section 5.1 (footnote 1):

Networks Access Points with Bridge and/or MESH modes of operation are permitted to operate in the DFS bands but must employ a DFS function. The functionality of the Bridge mode as specified in §15.403(a) must be validated in the DFS test report. Devices operating as relays must also employ DFS function. The method used to validate the functionality must be documented and validation data must be documented. Bridge mode can be validated by performing a test statistical performance check (Section 7.8.4) on any one of the radar types. This is an abbreviated test to verify DFS functionality. MESH mode operational methodology must be submitted in the application for certification for evaluation by the FCC.

This device does not support Bridge Mode therefore this test was not performed.

DATE: JULY 5, 2018

IC: 109W-0042

# 6. SETUP PHOTOS

### **DYNAMIC FREQUENCY SELECTION MEASUREMENT SETUP**





# **END OF REPORT**