## Support Vector Machines in real life

## Three ideas for support vector machines

- 1. Sets that aren't linearly separable.
- 2. Kernel functions and non-linear boundaries
- 3. Multiclass classification

### Reduced convex hulls and non-separable sets

In practice, we typically DO NOT have linearly separable sets.

In this case, we can look for a classifying hyperplane that puts **most** of the positive points on one side and **most** of the negative points on the other.

One approach is to do this by using the reduced convex hulls

$$C(A,r) = \{\sum_{i=1}^{n} \lambda_i x_i : 0 \le \lambda_i \le r, \sum_{i=1}^{n} \lambda_i = 1\}$$



### Reduced convex hulls and SVM

In practice, we choose a value r and find the closest points between the reduced convex hulls. This can be done by the SMO algorithm, the only change being the constraint on  $\delta$  which becomes:

$$\delta \geq \max\{-\lambda_i^+, -\lambda_j^-\}$$

and

$$\delta \le \min\{r - \lambda_i^+, r - \lambda_j^-\}.$$



#### Kernel functions

Recall that the function that we were trying to minimize depended only on the inner products  $(x_i^{\pm}, x_j^{\pm})$ . This allows for something called the *kernel trick*.

We can choose a **different** set of values for the dot products – basically, any collection of dot products so that the symmetric matrix  $(x_i^{\pm}, x_j^{\pm})$  is positive (semi)-definite – any redo the analysis. This matrix is called a *kernel*.

This amounts to embedding the points in a high dimensional space, possibly by a non-linear map, and finding the classifying hyperplane there.

Common choices of kernels:

- polynomial: finds separating polynomial curves instead of lines.
- radial basis kernel (rbf): this sets the "distance" between x and y to be

$$(x,y) = e^{-\|x-y\|^2/2\sigma^2}.$$

This greatly rescales the distance between points.

# Example



Polynomial Kernel

## Multiclass classification

In general, the idea is to train classifiers that discriminate each class from all of the others.

This requires  $\binom{n}{2}$  classifiers.