

Esquemas de representación ontológica para la integración de datos en los sistemas de información de planta

Fernando Roda Estanislao Musulin Marta Basualdo

www.cifasis-conicet.gov.ar

Grupo de Informática Aplicada a la Ingeniería de Procesos Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas

DOMINIO DE APLICACIÓN

Plantas químicas de grandes dimensiones

Procesos Continuos

SIP -> SISTEMAS DE INFORMACIÓN DE PLANTA

Son <u>sistemas distribuidos</u> compuestos por muchos subsistemas que interactúan entre si. Poseen una arquitectura en capas.

SIP - PROBLEMAS - OBJETIVOS

- ✓ Falta de integración y consistencia de los datos.
- ✓ Alta dependencia en los expertos del proceso.
- ✓ Altos niveles de acoplamiento en las aplicaciones.

La lógica del negocio permanece embebida en los módulos de los programas

El <u>conocimiento</u> generado por el SIP debe ser gestionado eficientemente para poder soportar:

- 1. PROCESOS
- 2. CONTROL CONVENCIONAL
- 3. CONTROL AVANZADO
- 4. SUPERVISIÓN DE LA PRODUCCIÓN

ENFOQUE PROPUESTO

"Incorporación de una capa semántica como metacontenido de los subsistemas operacionales"

ONTOLOGÍAS

BASE DE CONOCIMIENTO

ONTOLOGIA

Representación Formal

"An explicit specification of a conceptualization"

COMPONENTES:

- ✓ Conceptos (Individuos Clases)
- **√**Relaciones
- ✓ Axiomas Reglas

INTEGRACIÓN DE DATOS BASADO EN ONTOLOGÍAS

✓ Utilizar bases de conocimiento para combinar datos de y/o información de fuentes heterogéneas.

✓ Explotar las capacidades de razonamiento para soportar las tareas de control y supervisión.

✓ Mejor aprovechamiento de la información distribuida.
 ✓ Procesamiento en Tiempo Real

DESAFIO → Capturar la semántica y no sólo el vocabulario técnico (REUTILIZACION del conocimiento en diferentes casos de estudio)

REPRESENTACIÓN DEL CONOCIMIENTO

✓ 133 clases
✓ 77 propiedades
(objetos/datos)
✓ 279 axiomas

TECNOLOGÍA DE IMPLEMENTACIÓN

W3C STANDARS

LENGUAJES

 $OWL 2 \rightarrow SROIQ^{(D)}$

SWRL

CONSTRUCTOR

Protégé 4.1

SEMANTIC WEB

"The Semantic Web is an extension of the current web in which information is given well-defined meaning, better enabling computers and people to work in cooperation."

-- Tim Berners-Lee

RAZONADOR

Pellet 2

CONFIGURACIÓN DE EQUIPOS

ISA-95

Define la terminología para la integración de los sistemas de gestión en la capa de la empresa con los sistemas de control de la capa de planta.

ISA-S88

- Para procesos batch
- Posee una especificación más detallada de los sistemas de control

ISA-95/ISA-S88.

Se agregaron los instrumentos que se enlazan a los sistemas de control.

SCOPE

CONFIGURACIÓN DE EQUIPOS

✓ Jerarquía de agregación sin primitivas en OWL.

✓ Jerarquía de propiedades transitivas

✓ La clase ControlElement engloba todos los conceptos relacionados al control

El sistema de control es un conjunto de lazos de control distribuidos en el proceso en base a objetivos específicos de éste.

CONTROL CLÁSICO ▼── ● ControlSystem ▼ — hasControlLoop ▼ • ControlLoop hasSetPoint DynamicProperty ▼ **=**usesSensor • Measurementinstrument ▼···=// hasMeasuredProperty usesActuator Actuatorinstrument ▼···■// hasOutput ▼ -- I hasManipulatedProperty ▶--• | DynamicProperty hasFunctionBlock FunctionBlock

- ✓ Los sistemas de control quedan vinculados a los equipos por intermedio de los instrumentos (Sensores / Actuadores)
- ✓ Una cadena de propiedades establece a que centro de trabajo (Work Unit) pertenecen los sistemas de control.


```
:hasControlSystem rdf:type owl:ObjectProperty ; owl:inverseOf
:isControlSystemOf ;
owl:propertyChainAxiom
(:hasWorkUnit :hasEquipment :hasInstrument :UsedBy :isControlLoopOf).
```


✓InnerLoop es una clase definida con el axioma de equivalencia:

ControlLoop and (usedAsActuatorBy some ControlLoop)

✓ De esta forma el razonador puede clasificar automáticamente cada lazo

EVENTOS DE PLANTA

✓ La clase Event captura todos las mediciones realizadas por los dispositivos de planta.

►inversa de <u>hasProperty</u>

hasManipulatedProperty

Las variables son representadas por categorías disjuntas.

<AllDisjointClasses>

EVENTOS DE PLANTA

✓Los desvíos se encuentran asociados a una <u>variable</u> y a una <u>Guide Word</u>.

Palabras reservadas utilizadas en el estudio de HAZOP.

✓El estándar IEC 61882:2002 propone una serie de términos generales para clasificarlas.

✓ Las Guide Words son representadas mediante una herencia múltiple

EVENTOS DE PLANTA

RAZONAMIENTO PARA DETECCIÓN AUTOMÁTICA DE DESVIOS

✓ Reglas SWRL permiten especificar las condiciones para establecer si un Evento representa un Desvío.

```
hasPossibleDeviation(?e, ?g), hasLowerSpecificationValue(?g, ?lv), hasUpperSpecificationValue(?g, ?hv), hasValue(?e, ?v), greaterThanOrEqual(?v, ?lv), lessThanOrEqual(?v, ?hv) 
isRecognizedAsDeviation(?e, ?g)
```

→ Propiedad inferidas por el razonador. ?e: Evento ?g: Desvío

✓El razonador también clasifica automáticamente los Eventos y Desvíos activos

AXIOMAS DE EQUIVALENCIA

SUBCLASES DEFINIDAS

EJEMPLO DE APLICACIÓN → REACTOR CSTR

EJEMPLO DE APLICACIÓN → REACTOR CSTR

- ✓ Se generaron las instancias que representan el modelo de la planta
- ✓ Práctica W3C → Separar conceptos de Instancias

✓ Esto permite implementar un razonamiento incremental

PRUEBAS DE RAZONAMIENTO

3,1 seg.

Razonamiento completo

INTEL i7

8 Gb RAM

VERIFICACIÓN DE CONSISTENCIA

"LC1 se encontraba vinculado a un Centro de Trabajo Erróneo"

- 2) INFERENCIAS
- EXPLOTACIÓN DEL CONOCIMIENTO

2) INFERENCIAS

✓ Deducciones para un evento del sensor *Fmeter*

3) EXPLOTACIÓN DEL CONOCIMIENTO

- √W3C
- ✓ Rica sintaxis
- ✓ Soportado por muchos motores de consulta

Se utilizó OWI3 QueryTab > Protégé > Pellet

3) EXPLOTACIÓN DEL CONOCIMIENTO

✓El motor de consulta realiza inferencia por equiparación

Results

?ControlLoop	?Sensor	?FunctionBlock	?InnerLoop	?InnerSensor	?ActuatorInstrument
pre0:LC1	pre0:Lrsensor	pre0:PID1	pre0:LC2	pre0:Fmeter	pre0:Vf

CONCLUSIONES

- ✓Se desarrollo una ontología siguiendo un <u>enfoque dirigido por el</u> <u>conocimiento</u>.
- ✓ Conceptos propios de la ingeniería de procesos fueron implementados con éxito utilizando los estándares propuestos por W3C.
- ✓ Se obtuvo una conceptualización correcta para un reactor CSTR.
- ✓El razonamiento fue aprovechado para:

 Clasificación de los lazos de control
 Detección automática de desvíos
 Verificación de consistencia
- ✓ Los <u>tiempos de razonamiento</u> son compatibles con un procesamiento en tiempo real.

TRABAJOS FUTUROS

- ✓ Conceptualización de patrones temporales Tendencias.
- ✓ Diseño de la infraestructura Estrategias para poblar la KB.

Esquemas de representación ontológica para la integración de datos en los sistemas de información de planta

Fernando Roda Estanislao Musulin Marta Basualdo

www.cifasis-conicet.gov.ar

Grupo de Informática Aplicada a la Ingeniería de Procesos Centro Internacional Franco Argentino de Ciencias de la Información y de Sistemas