$Exercices \ MP/MP^* \ S\'eries \ Enti\`eres$

Exercice 1. Donner le rayon de convergence de

1.
$$\sum_{n\geqslant 1} \left(\cosh\left(\frac{1}{n}\right)\right)^{n^{\alpha}} z^n$$
,

2.
$$\sum_{n\geqslant 1} \left(1 + \frac{(-1)^n}{n^2}\right)^{n^3} z^n$$
.

Exercice 2.

1. Soit $(\theta_1, \ldots, \theta_p) \in [0, 2\pi[^p \text{ des r\'eels distincts}, (m_1, \ldots, m_p) \in (\mathbb{N}^*)^p$. Montrer que

$$\left(u_n = \sum_{k=1}^p m_k e^{in\theta_k}\right)_{n \in \mathbb{N}}$$
(1)

ne tend pas vers 0.

2. Soit $A \in \mathcal{M}_p(\mathbb{C})$ et $a_n = \text{Tr}(A^n)$. Donner le rayon de convergence et la somme de $\sum a_n z^n$.

Exercice 3. Donner le rayon de convergence et calculer la somme (en cas de convergence) de

$$\sum_{n\geqslant 1} \frac{z^n}{\sum_{k=1}^n k^2} = \sum_{n=\geqslant 1} \frac{6z^n}{n(n+1)(2n+1)}.$$
 (2)

Exercice 4. On définit

$$f:]-1,+\infty[\rightarrow \mathbb{R}$$

$$t \mapsto \begin{cases} \frac{t}{\ln(1+t)} & \text{si } t \neq 0, \\ 1 & \text{si } t = 0. \end{cases}$$

$$(3)$$

Montrer que f est développable en série entière sur]-1,1[, en déduire que f est \mathcal{C}^{∞} . On pourra former $\int_0^1 (1+t)^u du = I(t)$.

Exercice 5. Donner le rayon de convergence de $\sum_{n\geq 1} a_n z^n$ où

$$a_n = \left(\sum_{k=1}^n \frac{1}{k}\right)^{\ln(n)}.\tag{4}$$

Exercice 6. Donner le rayon de convergence de $\sum a_n z^n$ où a_n est le nombre de diviseurs n.

Exercice 7. Soit $(a_n)_{n\in\mathbb{N}}\in(\mathbb{R}_+^*)^{\mathbb{N}}$ telle que

$$\lim_{n \to +\infty} \frac{a_{n-1}a_{n+1}}{a_n^2} = l \in \mathbb{R}.$$
 (5)

Déterminer le rayon de convergence de $\sum a_n z^n$.

Exercice 8. Soit $z \in \mathbb{C}$ tel que |z| < 1. On pose $\phi(z) = \sum_{n=1}^{+\infty} (-1)^{n-1} \frac{z^n}{n}$. Déterminer $e^{\phi(z)}$.

Exercice 9. Donner le rayon de convergence et calculer la somme (sur le disque ouvert de convergence) de

$$\sum_{n=0}^{+\infty} \frac{z^n}{\cos\left(\frac{2n\pi}{3}\right)}.$$
 (6)

Exercice 10. Soit $(a_n)_{n\in\mathbb{N}}$ et $(b_n)_{n\in\mathbb{N}}$ des suites réelles, on suppose que

- i) pour tout $n \in \mathbb{N}$, $b_n \geqslant 0$,
- $ii) \ a_n \underset{+\infty}{\sim} b_n,$
- iii) le rayon de convergence de $\sum b_n z^n$ vaut 1,
- iv) $\sum b_n$ diverge.

On forme sur $[0,1[, f(x) = \sum_{n=0}^{+\infty} a_n x^n \text{ et } g(x) = \sum_{n=0}^{+\infty} b_n x^n.$

- 1. Montrer que $\lim_{x\to 1^-} g(x) = +\infty$.
- 2. Montrer que $f(x) \underset{x\to 1^-}{\sim} g(x)$.
- 3. Donner un équivalent simple quand $x \to 1^-$ de $h_p(x) = \sum_{n=1}^{+\infty} n^p x^n$ avec $p \in \mathbb{N}$.

Exercice 11. Soit $f(x) = \sum_{n=0}^{+\infty} a_n x^n$ de rayon de convergence 1. On suppose que $\lim_{x\to 1^-} S \in \mathbb{R}$ et que $a_n = \int_{+\infty}^{\infty} \left(\frac{1}{n}\right)$. Montrer que $\sum a_n$ converge et vaut S. On pourra étudier $f\left(1-\frac{1}{n}\right)$.

Exercice 12. Soit $f: \mathbb{C} \to \mathbb{C}$ développable en série entière avec un rayon de convergence $\rho > 0$ telle que $f(0) \neq 0$. Montrer qu'il existe une fonction T, développable en série entière, et r > 0, telle que si |z| < r, $f(z) = e^{T(z)}$.

Exercice 13. Soit $a \in \mathbb{R} \setminus \mathbb{Q}$, on pose pour tout $n \ge 1$, $a_n = \frac{1}{\sin(n\pi a)}$. Soit R_a le rayon de convergence de $\sum a_n z^n$.

- 1. Montrer que $R_a \leq 1$.
- 2. Évaluer R_a lorsque a est irrationnel algébrique.
- 3. Existe-t-il a tel que $R_a = 0$?

Exercice 14. Soit $(a_1, \ldots, a_N) \in \mathbb{N}^{\mathbb{N}}$ premiers entre eux dans leur ensemble. Pour $n \in \mathbb{N}$, on note $c_n = \left| \left\{ (p_1, \ldots, p_N) \in \mathbb{N}^N \middle| p_1 a_1 + \ldots p_N a_N = n \right\} \right|$. Donner un équivalent simple de c_n quand $n \to +\infty$.

Exercice 15. Soit

$$f: \mathbb{R} \to \mathbb{R}$$

$$x \mapsto \sqrt{1+x+x^2}$$
(7)

Montrer que f est développable en série entière, et donner le rayon de convergence de la série entière obtenue. On pourra dériver $f^2(x)$.

Exercice 16. Soit $f: [0, A[\to \mathbb{R} \text{ de classe } C^{\infty} \text{ telle que pour tout } n \in \mathbb{N}, \text{ pour tout } t \in [0, 1[, f^{(n)}(t) \ge 0.$

- 1. Soit $x \in [0, A[$, montrer que $\sum_{k \ge 0} \frac{f^{(k)}(0)}{k!} x^k$ converge.
- 2. On pose, pour $n \in \mathbb{N}$ et $x \in [0, A[, R_n(x)]] = \int_0^x \frac{(x-t)^n}{n!} f^{(n+1)}(t) dt$. Montrer que si x < y < A, on $a \in \mathbb{N}$ of $0 \le R_n(x) \le \left(\frac{x}{y}\right)^n R_n(y)$.
- 3. En déduire que f est développable en série entière sur [0, A[.
- 4. Application à tan.

Exercice 17. Déterminer le rayon de convergence de $\sum a_n z^n$ si

- 1. $a_n = \sum_{k=n}^{+\infty} \frac{(-1)^k}{k}$.
- 2. pour tout $p \in \mathbb{N}$, $a_{3p} = \frac{(-1)^p}{2^p}$, $a_{3p+1} = 3^p$ et $a_{3p+2} = 0$. Calculer la somme.
- 3. $a_n = \int_0^1 \frac{t^n}{1+t+t^2} dt$, et calcul. Quelle est la valeur en -1?

Exercice 18. On pose $\omega_0 = 1$. Pour tout $n \ge 1$, ω_n est le nombre de relations d'équivalence sur [1, n]. On s'intéresse à la série entière $\sum \frac{\omega_n}{n!} z^n = \sum a_n z^n$, de rayon de convergence R, de somme notée f(z).

- 1. Montrer que pour tout $n \in \mathbb{N}$, $\omega_{n+1} = \sum_{k=0}^{n} {n \choose k} \omega_k$ et que $\omega_n \leqslant n^n$ et R > 0.
- 2. Soit r > 1 et $n_0 = \lfloor re^r \rfloor$. On pose $A = \max_{k \leq n_0} \frac{\omega_k}{k!} r^k$. Montrer que pour tout $n \in \mathbb{N}$, $\frac{\omega_n t^n}{n!} \leq A$, en déduire R.
- 3. Montrer que pour tout $x \in]-R, R[, f'(x) = e^x f(x), déduire f(x)$ et une expression de ω_n .

Exercice 19. On appelle « partition » d'un entier $n \ge 0$ toute suite décroissante d'entiers naturels $(t_k)_{k \ge 1}$ telle que $\sum_{k=1}^{+\infty} t_k = n$ (somme finie). On note p_n le nombre de partitions de n. Soit R le rayon de convergence de $\sum_{n \ge 0} p_n z^n = f(z)$.

- 1. Montrer que R > 0.
- 2. Montrer que pour tout $x \in [0, R[$, on a $f(x) = \prod_{k=1}^{+\infty} \frac{1}{1-x^k}$, est-ce encore vrai pour $z \in D(0, R)$?
- 3. Évaluer R.

Exercice 20. Soit U un ouvert bornée non vide de \mathbb{C} et $f: \overline{U} \to \mathbb{C}$ continue sur \overline{U} analytique sur U, c'est-à-dire que pour tout $z_0 \in U$, il existe $(a_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ telle que pour tout $h \in \mathbb{C}$ tel que $|h| < d(z_0, \partial U)$, $f(z_0 + h) = \sum_{n=0}^{+\infty} a_n h^n$.

1. Montrer que pour tout $z_0 \in U$ et $r \in [0, d(z_0, \partial U)]$, on a

$$f(z_0) = \frac{1}{2\pi} \int_0^{2\pi} f(z_0 + re^{it}) dt.$$
 (8)

2. En déduire que |f| atteint son maximum et son minimum sur ∂U .

3. Que peut-on dire si f = 0 sur ∂U ?

Exercice 21.

- 1. Montrer que l'on peut, pour $q \in \mathbb{C}$, |q| < 1 fixé, pour tout $z \in \mathbb{C}$, on a $f(z) = \prod_{k=1}^{+\infty} (1-q^k z)$.
- 2. Montrer que f est développable en série entière.
- 3. De même pour $\frac{1}{f}$.

Exercice 22. Soit U un ouvert de \mathbb{C} et $f: U \to \mathbb{C}$ analytique sur U (développable en série entière au voisinage de tout point de U).

- 1. Soit $z_0 \in U$ et $r_0 > 0$, $(a_n)_{n \in \mathbb{N}}$ tels que si $h \in D(0, r_0)$, $f(z_0 + h) = \sum_{n=0}^{+\infty} a_n h^n$. On suppose qu'il existe $(\xi_k)_{k \in \mathbb{N}} \in U^{\mathbb{N}}$ telle que
 - (i) pour tout $k \in \mathbb{N}$, $\xi_k \neq z_0$,
 - (ii) $\lim_{n \to +\infty} \xi_k = z_0,$
 - (iii) pour tout $k \in \mathbb{N}$, $f(\xi_k) = 0$.

Montrer que pour tout $n \in \mathbb{N}$, $a_n = 0$.

2. On suppose de plus que U est connexe par arcs. Montrer que f=0 sur U. Est-ce encore vrai si (ξ_k) ne converge pas?

Exercice 23. Soit $\theta \in]0, \pi[$.

- 1. Montrer que $f(x) = \ln(1 2x\cos(\theta) + x^2)$ est développable en série entière en 0.
- 2. Qu'en déduit-on relativement à $\sum_{n\geq 1} \frac{\cos(n\theta)}{n}$?
- 3. Calcular $I(x) = \int_0^{\pi} \ln(1 2x\cos(\theta) + x^2) d\theta$.

Exercice 24. Soit $(p_n)_{n\in\mathbb{N}}$ une suite strictement croissante d'entiers naturels.

- 1. Donner le rayon de convergence de $\sum_{n\geqslant 0} x^{p_n}$. On pose $f(x)=\sum_{n\geqslant 0} x^{p_n}$.
- 2. On suppose que $n = \underset{n \to +\infty}{o}(p_n)$. Montrer que $\lim_{x \to 1^-} (1-x)f(x) = 0$.
- 3. Réciproque ?

Exercice 25. Soit $(u_0, v_0) \in \mathbb{C}^2$, et pour tout $n \in \mathbb{N}$, $u_{n+1} = u_n - v_n$ et $v_{n+1} = u_n - 2v_n$. DOnner le rayon de convergence et les sommes des séries entières $U(z) = \sum_{n=0}^{+\infty} u_n z^n$ et $V(z) \sum_{n=0}^{+\infty} v_n z^n$.

Exercice 26.

- 1. Donner le développement en série entière de $f(z) = \frac{\sin(\theta)}{z^2 2z\cos(\theta) + 1}$ avec $\theta \in [0, 2\pi[$.
- 2. En déduire $I(z) = \int_0^\pi \frac{\sin(\theta)d\theta}{z^2 z = 2z\cos(\theta) + 1}$.

Exercice 27.

1. Soit Y une variable aléatoire à valeurs dans [1, n]. Montrer que $(\mathbb{E}(Y^k))_{k \in [1, n]}$ caractérise la loi de Y.

2. Soit Y une variable aléatoire à valeurs dans \mathbb{N} . On suppose qu'il existe $a \in [0, 1[$ tel que $\mathbb{P}(Y = k) = \underset{k \to +\infty}{O}(a^k)$. Montrer que pour tout $n \in \mathbb{N}^*$, Y^n a une espérance finie et que $(\mathbb{E}(Y^n))_{n \ge 1}$ caractérise la loi de Y.

Exercice 28. Soit U un ouvert de \mathbb{C} et $f: U \to \mathbb{C}$ \mathcal{C}^1 au sens complexe, c'est-à-dire que pour tout $z_0 \in U$, il existe $f'(z_0) = \lim_{\substack{h \to 0 \\ h \in \mathbb{C}^*}} \frac{f(z_0+h)-f(z_0)}{h}$ et $f': U \to \mathbb{C}$ est continue.

1. Montrer que

$$g: [0,1] \to \mathbb{C}$$

$$\lambda \mapsto \int_0^{2\pi} \frac{f((1-\lambda)z + \lambda re^{it}) - f(z)}{re^{it} - z} re^{it} dt$$
(9)

est constante. En déduire que $f(z) = \sum_{n=0}^{+\infty} a_n z^n$ avec

$$a_n = \frac{1}{2\pi r^n} \int_0^{2\pi} f\left(re^{it}e^{-int}\right) dt.$$
 (10)

2. Montrer que pour tout $z_0 \in U$, on a pour $R = d(z_0, \partial U)$, il existe $(b_n)_{n \in \mathbb{N}} \in \mathbb{C}^{\mathbb{N}}$ tel que pour tout $h \in D(0, R)$, $f(z_0 + h) = \sum_{n=0}^{+\infty} b_n h^n$.

Exercice 29. Calculer, en précisant le domaine de définition,

$$S_0(x) = \sum_{n=0}^{+\infty} \frac{x^{3n}}{(3n)!}.$$
 (11)

Exercice 30. Soit $f(z) = \sum_{n=0}^{+\infty} a_n z^n$. On suppose que pour tout $z \in \mathbb{C}$, $z \in \mathbb{R}$ si et seulement si $f(z) \in \mathbb{R}$.

- 1. Montrer que pour tout $n \in \mathbb{N}$, $a_n \in \mathbb{R}$.
- 2. On pose $v(z) = \Im(f(z))$. Montrer que pour tout $m \ge 1$, pour tout r > 0,

$$\pi r^m a_m = 2 \int_0^{\pi} v\left(re^{i\theta}\right) \sin(m\theta) d\theta, \tag{12}$$

puis que $|r^m a_m| \leq mr |a_1|$.

3. En déduire que f est affine.

Exercice 31. Soit $\sum a_n z^n$ une série entière telle que $\sum |a_n|$ converge. On définit

$$f: \overline{D(0,1)} \to \mathbb{C}$$

$$z \mapsto \sum_{n=0}^{+\infty}$$

$$(13)$$

On note $P_{r,n}(x) = \sum_{k=-n}^n r^{|k|} e^{ikx}$, et pour $r \in [0,1[, P_r(x) = \sum_{k=-\infty}^{+\infty} r^{|k|} e^{ikx}]$. Il s'agit du noyau de Poisson.

1. Montrer que pour tout $x \in \mathbb{R}$, pour tout $n \in \mathbb{N}$, pour tout $r \in [0, 1[$,

$$\frac{1}{2\pi} \int_0^{2\pi} r^{|k|} e^{ikx} f(e^{i(x-t)}) dt = a_k r^k e^{ikx}.$$
 (14)

En déduire que

$$\frac{1}{2\pi} \int_0^{2\pi} P_r(t) f\left(e^{i(x-t)}\right) dt = f\left(re^{ix}\right). \tag{15}$$

- 2. Quel est le signe de P_r ? Calculer $\frac{1}{2\pi} \int_0^{2\pi} P_r(t) dt$.
- 3. Montrer que si $f(\mathbb{U}) \subset \mathbb{U}$, alors $f\left(\overline{D(0,1)}\right) \subset \overline{D(0,1)}$.

Exercice 32. Soit $(\Omega, \mathcal{T}, \mathbb{P})$ un espace probabilisé, $(A_n)_{n \geq 1} \in \mathcal{T}^{\mathbb{N}^*}$ indépendants tels que pour tout $n \geq 1$, $\mathbb{P}(A_n) = \frac{1}{n}$. On pose $R_n = \chi_{A_k}$.

- 1. Donner l'espérance et la variance de R_n , et donner à chaque fois un équivalent.
- 2. Montrer que pour tout $\varepsilon > 0$,

$$\lim_{n \to +\infty} \mathbb{P}\left(\left| \frac{R_n}{\ln(n)} - 1 \right| > \varepsilon \right) = 0. \tag{16}$$

- 3. Donner la fonction génératrice G_{R_n} . En déduire $\mathbb{P}(R_n=1)$ et $\mathbb{P}(R_n=2)$.
- 4. Soit $a < b \in (\mathbb{N}^*)^2$ et $T_n = R_{nb} R_{na}$. Donner la fonction génératrice G_{T_n} . Déterminer, pour $t \geqslant 1$, $\lim_{n \to +\infty} G_{T_n}(t)$. On pourra montrer que pour tout $x \geqslant 0$, $x \frac{x^2}{2} \leqslant \ln(1+x) \leqslant x$.

Exercice 33 (Marches aléatoires sur \mathbb{Z}^d). Soit $X \sim \mathcal{B}(p)$ avec $p \in]0,1[$. Soit $X_n \sim X$ avec $(X_n)_{n\geqslant 1}$ indépendants, et $S_n = \sum_{k=1}^n X_n$ (avec $S_0 = 0$). Soit

$$T = \begin{cases} \min \{n \ge 1 | S_n = 0\}, & \text{s'il existe } n \ge 1, S_n = 0, \\ +\infty & \text{sinon.} \end{cases}$$
 (17)

On note $\pi = \mathbb{P}(T < +\infty)$: probabilité de retour à l'origine en temps fini.

- 1. (a) Justifier qu'en posant pour tout $t \in [0,1[$, on peut définit $f(t) = \sum_{n=0}^{+\infty} \mathbb{P}(S_n = 0)t^n$ et $g(t) = \sum_{k=1}^{+\infty} \mathbb{P}(T=k)t^k$ \mathcal{C}^{∞} sur [0,1[.
 - (b) Montrer que g admet une limite finie quand $t \to 1^-$ que l'on exprimera en fonction de π .
- 2. Justifier que, pour $(k, m) \in (\mathbb{N}^*)^2$, $(S_{m+1} S_m, \dots, S_{m+k} S_m) \sim (S_1, \dots, S_k)$.
- 3. (a) Montrer que pour tout $n \ge 1$, $\mathbb{P}(S_n = 0) = \sum_{k=1}^n \mathbb{P}(T = k) \mathbb{P}(S_{n-k} = 0)$.
 - (b) En déduire que pour tout $t \in [0, 1[, f(t) = 1 + f(t)g(t).$
 - On suppose que $(S_n)_{n\geqslant 0}$ est une marche de Bernouilli de paramètre p.
- 4. (a) Montrer que pour tout $n \in \mathbb{N}$, $\mathbb{P}(S_{2n+1} = 0)$ et $\mathbb{P}(S_n = 0) = \binom{2n}{n}(pq)^n$.

- (b) Montrer que pour tout $t \in [0, 1[, f(t) = \frac{1}{\sqrt{1 4pqt^2}}]$.
- 5. (a) Calculer $g(t) = \sum_{n=0}^{+\infty} \mathbb{P}(T=k)t^k$ pour $t \in [0,1]$ et montrer que $\pi = 1 |p-q|$.
 - (b) Déterminer la loi de T.
- 6. (a) Montrer que si $p = \frac{1}{2}$, $\mathbb{E}(T) = +\infty$.
 - (b) On suppose que $p \neq \frac{1}{2}$, calculer l'espérance conditionnelle de T sachant $T < +\infty$:

$$\mathbb{E}_{T<+\infty}(T) = \frac{\mathbb{E}(T \times \mathbf{1}_{T<+\infty})}{\mathbb{P}(T=+\infty)}.$$
 (18)

- 7. Déterminer les $p \in]0,1[$ tels que $\pi = 1$.
- 8. Montrer que l'on a équivalence entre
 - (i) $\sum_{n=0}^{+\infty} \mathbb{P}(S_n = 0) = +\infty$,
 - (ii) $f(t) \xrightarrow[t\to 1^-]{} +\infty$,
 - (iii) $(S_n)_{n\geq 0}$ est récurrente (c'est-à-dire $\pi=1$).

On note $N_n = \sum_{k=1}^n \mathbf{1}_{\{S_k=0\}}$ le nombre de retours à l'origine avant l'instant n, et $N = \sum_{k=1}^{+\infty} \mathbf{1}_{\{S_k=0\}}$ le nombre de retours à l'origine à valeurs dans $\mathbb{N} \cup \{+\infty\}$. $(N_n)_{n\geqslant 1}$ converge simplement vers N dans $\mathbb{N} \cup \{+\infty\}$ et pour tout $n\geqslant 1$, $N_n\leqslant N$. Si Ω est dénombrable,

$$\mathbb{E}(N_n) = \sum_{\omega \in \Omega} N_n(\omega) \mathbb{P}(\{\omega\}) = \sum_{\omega \in \Omega} f_{\omega}(n). \tag{19}$$

Pour tout $n \in \mathbb{N}$, $f_{\omega}(n) \xrightarrow[n \to +\infty]{} N(\omega)\mathbb{P}(\{\omega\}) \geqslant 0$ et $|f_{\omega}(n)| \leqslant N(\omega)\mathbb{P}(\{\omega\})$. Si $\mathbb{E}(N) < +\infty$, $\sum f_{\omega}$ converge normalement sur \mathbb{N} et on peut intervertir. Si $\mathbb{E}(N) = +\infty$, soit A > 0, il existe χ fini inclus dans Ω tel que $\sum_{\omega \in \chi} N(\omega)\mathbb{P}(\{\omega\}) \geqslant 2A$ et $(\chi \text{ finie}) \lim_{n \to +\infty} N_n(\omega)\mathbb{P}(\{\omega\}) = \sum_{\omega \in \chi} N(\omega)\mathbb{P}(\{\omega\})$. Donc il existe $N_0 \in \mathbb{N}$ tel que pour tout $n \geqslant N_0$, $\sum_{\omega \in \chi} N_n(\omega)\mathbb{P}(\{\omega\}) \geqslant A$ et

$$\mathbb{E}(N_n) \geqslant \sum_{\omega \in Y} N_n(\omega) \mathbb{P}(\{\omega\}) \geqslant A, \tag{20}$$

 $car N_n \geqslant 0 \ donc \lim_{n \to +\infty} \mathbb{E}(N_n) = \mathbb{E}(N) = +\infty.$

- 9. (a) On suppose que $(S_n)_{n\geqslant 0}$ est transitoire (i.e. $p\neq \frac{1}{2}$, on a alors $\pi=1-|p-q|\neq 1$). Montrer que $\mathbb{E}(N)=\frac{\pi}{1-\pi}$. En déduire que $\{n\in\mathbb{N}|S_n=0\}$ est presque sûrement fini.
 - (b) On suppose que $p = \frac{1}{2}$. Que vaut $\mathbb{E}(N)$?
- 10. Pour $x \in \mathbb{Z}^d$, on note $N_n^x = |\{j \in [1, n], S_j = x\}|$ (nombre de passage par x entre les instants 1 et n). Montrer que pour tout $n \in \mathbb{N}$, $\mathbb{E}(N_n^x) \leq \mathbb{E}(N)$. On introduira

$$T^{x} = \begin{cases} \min \{n \ge 1 | S_{n} = x\}, & s'il \ existe \ n \ge 1, S_{n} = x, \\ +\infty, & sinon, \end{cases}$$
 (21)

le premier passage en x, et on formera

$$g_{x,n}(t) = \sum_{k=1}^{n} \mathbb{P}(T^x = k)t^k, f_{n,x}(t) = \sum_{k=0}^{n} \mathbb{P}(S_k = x)t^k,$$
 (22)

et on établira une formule reliant $g_{n,x}$ à $f_{n,x}$ de manière analogue à la question 3.

11. On suppose la marche $(S_n)_{n\geqslant 0}$ transitoire (donc la probabilité π de retour à l'origine en temps fini est strictement inférieure à 1). Montrer que $||S_n|| \xrightarrow[n\to+\infty]{} +\infty$ presque sûrement.

Exercice 34. Soit $X : \Omega \to \mathbb{N}$ variable aléatoire discrète telle que $\mathbb{P}(X = 0) = \alpha$ et

$$\mathbb{P}(X = n+2) = 5\mathbb{P}(X = n+1) - \mathbb{P}(X = n),$$

pour tout $n \in \mathbb{N}$. Donner la loi de X, son espérance et sa variance.