1.拓扑排序

图的导出边 $(a,b,w)(a为入点,b为出点,w为权重),m[b_i]为b_i的入度$

- 将所有入度为0的顶点入栈,初始化数组t,表示完成该点所对应的最短时间,初始化为0
- 若栈为空
 - \circ 栈顶元素出栈,以该元素为入点的所有边 (a,b_i,w_i)
 - $t[b_i] = max(t[b_i], t[a] + w_i)$
 - $m[b_i]$ 减去1,若操作后为0,则 b_i 入栈
- 栈清空后,数组的元素最大值即为最短时间

2

(1)

是的,因为Dijkstra节点每次增加一个,则增加一条边与原来第一组相连,最终覆盖所有顶点,所以连通,有边数=点数-1,又连通,所以是无环

(2)

否

类似这个图片,我们对A应用Dijkstra算法,(A,C),(A,B),(C,D)这三条边被加入 而最小生成树是D-B-A-C

最小生成树

(1)

(A,B),(B,E),(E,F),(E,D),(E,C)

(2)

(E,F),(E,D),(B,E),(A,B),(E,C)

(3)

假设存在两个最小生成树,

(3)

如果不唯一, 假设 T_1 和 T_2 都是最小生成树. 假设 $e=\mathop{\arg\min}_{e_i\in T_1\cup T_2,e_i\not\in T_1\cap T_2}w(e_i)$.

不妨设 $e\in T_1, e\not\in T_2$, 将 e 添加到 T_2 则后者成环, 注意到这个环不可能在 T_1 中完整出现, 因此存在 $e'\in T_2\setminus T_1$, e' 在 e 引起的这个环上

此时, $T_1\cup\{e'\}\setminus\{e\}$, $T_2\cup\{e\}\setminus\{e'\}$ 都是生成树, 注意到 T_1 和 T_2 是最小生成树, 因此 $w(e')-w(e)\geq 0$, $w(e)-w(e')\geq 0$, 从而 w(e)=w(e') . 矛盾。