Qualità del software(6)

L'attività di **analisi dei requisiti** è importantissima, comporta molte competenze ed è complessa, per cui viene chiamata **Ingegneria dei requisiti**. Un requisito può essere visto da due lati:

- Vista cliente: qual'è il bisogno da soddisfare;
- Vista fornitore: come deve essere la soluzione del bisogno.

Dovrò prima interrogare gli stakeholders e poi chiedermi cosa serve a me per soddisfare quei requisiti. Quando queste due cose sono soddisfatte avrò soddisfatto il **requisito utente**. Sui requisiti si effettua *breakdown*, spezzamento, perchè rende più facile verificare che siano soddisfatti.

Dei processi di supporto al ciclo di vita sono:

- La Verifica: faccio in modo che tutte le attività assegnate introducano la più piccola possibilità di errore, rivolta principalmente ai processi (modo di lavorare);
- la Validazione: accertare che il prodotto realizzato corrisponda alle attese.

Questi due processi formano la qualifica.

Si lavora sempre secondo regole di procedura. Devono esistere delle regole prima di iniziare il lavoro. Avremo alla fine specializzato un prodotto che soddisfa i requisiti iniziali e le sue aspettative. Un lavoro **verificato** è un lavoro fatto nel modo giusto e secondo le regole date.

Molti dei sistemi al giorno d'oggi sono detti **socio-tecnici**, hanno come dato rilevante l'elemento **umano**, che è come la persona userà quel prodotto. Chiedersi che ruolo ha l'utente umano nel sistema è parte fondamentale dell'AR. In ogni sistema organizzato c'è uno *sportello* rivolto all'umano; molto spesso si chiama *front office* (interfaccia utente). L'opposizione è il *back office* in cui si prepara ciò che andrà al front office (es. database). Devo capire entrambe queste parti per realizzare un sistema socio-tecnico. E' molto raro progettare un sistema esclusivamente tecnico. Ci sono due fasi:

- Analisi: analisi dei bisogni e delle fonti, classificazione dei requisiti, visione UC, confronto con le fonti(committente, sottofornitori);
- Validazione: successiva all'Analisi, predispone la revisione interna/esterna, di prove e dimostrazioni.

In questa fase i processi coinvolti sono la **Documentazione** e la **Gestione e manutenzione dei prodotti**. Questo tipo di analisi dei requisiti da luogo a un ciclo di vita simile:

Questo rappresentato è un modello sequenziale con le base line, condizione di massima sicurezza. In opposto con un modello *Agile* non fissiamo la base line ma abbiamo i requisiti dal confronto con il cliente. I prodotti attesi alla fine di questa fase sono molteplici:

- Dall'analisi dei bisogni e delle fonti:
 - Capitolato d'appalto: (unico di responsabilità del cliente, definisce i requisiti)
 - Studio di fattibilità: serve a valutare rischi (individuazione dei rischi), costi e benefici per poi decidere se procedere
 - Analisi dei requisiti: analisi dei bisogni e delle fonti
- Dalla ripartizione dei requisiti
 - Specifica tecnica (modellazione architetturale del SW con caratterizzazione architetturale dei componenti)

Per produrli si può ricorrere a due tipi di approccio:

- Approccio Funzionale
- Approccio Object-Oriented

Un ulteriore passo sarà quello della classificazione dei requisiti trovati:

- Attributi di prodotto: definiscono le caratteristiche richieste al sistema, esprimono requisiti funzionali, prestazionali e quantitativi
- Attributi di processo: pongono vincoli sui processi impiegati nel progetto, esprimono ulteriori requisiti extra-funzionali

Sicuramente i requisiti devono essere verificabili, chi impone un requisito teoricamente deve avere anche idea di come accertarne il soddisfacimento, vediamo per i vari tipi di requisiti una linea guida per verificarli:

- Requisiti funzionali: test, dimostrazione formale, revisione;
- Requisiti prestazionali: misurazione;
- Requisiti qualitativi: verifica ad hoc;

• Requisiti dichiarativi: revisione.

in oltre tutti questi tipi di requisiti hanno diversa utilità strategica, possono essere:

- Obbligatori: irrinunciabili per qualsiasi stakeholder;
- Desiderabili: non strettamente necessari ma di valore aggiunto riconoscibile;
- Opzionali: relativamente utili, contrattabili in seguito.

L'interesse di un fornitore è **negoziare** questi requisiti. A noi sta il compito di classificare in modo elastico. I requisiti non devono essere in contraddizione tra loro, non devono essere mai in conflitto o sovrapposti. I requisiti nascono scritti in un linguaggio naturale, (*i capitolati*) e noi vogliamo portarci in un linguaggio che sia il più vicino possibile ad automi. Cercheremo tecniche che rendono il più possibile automatico ciò che facciamo (es. UML o tabelle).

IEE 830-1998 è un documento che descrive le pratiche raccomandate per scrivere la specifica dei requisiti. Ci sono 8 proprietà fondamentali:

- 1. Unambigous: mai alcuna incertezza su che cosa significano;
- 2. Correct: non deve nascere sbagliato perchè fa danni;
- 3. Completi;
- 4. Verifiable: a basso costo;
- 5. Consistence: non posso chiedere una cosa e il suo contrario;
- 6. **Modifiable:** serve una tecnica che renda modificabile l'insieme dei requisiti. Sui requisiti devo poter aggiungere, togliere, cercare, aggiornare: operazioni tipiche da basi di dati;
- 7. Traceable: deve essere univocamente identificabile;
- 8. Ranked: per rilevanza.

Verifica dei requisiti Deve essere eseguita su un documento organizzato. Tecnica di ricerca a pettine, walkthrough, tecnica completamente manuale, una ricerca a largo spettro; lo si fa quando non si sa esattamente cosa cercare; tecnica dell'ispezione, in cui c'è una lettura mirata e strutturata; questa tecnica è molto più automatizzabile.

Facendo walkthrough impariamo e sviluppiamo tecniche per fare ispezione. Sui requisiti devo poter fare una buona identificazione e classificazione. Dentro un progetto tutto rimanda ai requisiti, tutto è sempre in una forma tracciabile e riconducibile al perchè e li, questo deve essere fatto attraverso procedure e automatizzazioni.

SEMAT, nella struttura c'è una progressione di stati molto utili da analizzare. I requisiti hanno un ciclo di vita proprio che passa attraverso 6 stati, ciascuno con delle dipendenze.

- 1. **Conceived:** (concepito), si vede un'opportunità nel fare le cose e i committenti sono identificati. **Bounded**, i requisiti sono su un recinto e potrò ragionare macroscopicamente di fattibilità;
- 2. Coherent: quando i requisiti sono classificati e quelli chiari sono distinti;
- 3. Acceptable: diventa un punto dal quale avanzare e dal quale non vorremmo mai retrocedere, Base line;
- 4. **Addressed:** i requisiti sono collocati, ho delle soluzioni specifiche e il prodotto che sto facendo soddisfa i requisiti. Questo stato lo raggiungiamo prima del collaudo;
- 5. Fullfilled: in cui "le cose sono soddisfatte", stato dell'accattazione. Le transizioni sono più vicine nel tempo nella parte iniziale