Challenge-2

Wong Zi Xin

2023-08-21

```
Welcome! Hope you have watched the lecture videos and followed the instructions in code-along. Go through the steps described below,
carefully. It is totally fine to get stuck - ASK FOR HELP; reach out to your friends, TAs, or the discussion forum on Canvas.
Here is what you have to do,
   1. Pair with a neighbor and work
   2. Download the Challenge-2.Rmd and playlist_data.csv files from Canvas
  3. Move the downloaded files to the folder, "Week-2"
  4. Set it as the working directory
```

5. **Edit** content wherever indicated

6. **Remember** to set eval=TRUE after completing the code to generate the output 7. **Ensure** that echo=TRUE so that the code is rendered in the final document

8. **Inform** the tutor/instructor upon completion

9. Submit the document on Canvas after they approve 10. **Attendance** will be marked only after submission

I. Exploring music preferences

Question 1.2: load the tidyverse package to work with .csv files in R.

11. Once again, **do not hesitate** to reach out to the tutors/instructor, if you are stuck

dataset, playlist data.csv, containing information about DJs, their preferred music genres, song titles, and ratings. Using the data-set you are required to complete some tasks that are listed subsequently. All these tasks are based on the concepts taught in the

video lectures. The questions may not be entirely covered in the lectures; To complete them, you are encouraged to use Google and the resources therein.

A. Background

B.Tasks

Imagine that you have been hired as a data analyst by a radio station to analyze music preferences of their DJs. They have provided you with a

Task-1 In the lecture, we used two data-sets, starwars and anscombe's quartet that were readily available with the packages, tidyverse and

Tmisc, respectively. When we have to use custom-made data-sets or the ones like we downloaded from Canvas, we have to import it using the R commands before using them. All the questions below are related to this task. Question 1.1: What does the term "CSV" in playlist_data.csv stand for, and why is it a popular format for storing tabular data? **Solution:**

The word "CSV" stands for "Comma-Separated Values". It is popular because each line represents a record and it is easy to read and write for

Solution: # Load the necessary package to work with CSV files in R.

library(tidyverse) — tidyverse 2.0.0 — ## — Attaching core tidyverse packages — ## **✓** dplyr 1.1.2 ✓ readr 2.1.4 ## / forcats 1.0.0 / stringr 1.5.0

✓ ggplot2 3.4.3 ✓ tibble 3.2.1 ## ✓ lubridate 1.9.2 ✓ tidyr 1.3.0

```
## ✔ purrr
              1.0.2
 ## — Conflicts —
                                                        tidyverse_conflicts() —
 ## * dplyr::filter() masks stats::filter()
 ## * dplyr::lag() masks stats::lag()
 ## i Use the conflicted package (<a href="http://conflicted.r-lib.org/">http://conflicted.r-lib.org/</a>) to force all conflicts to become errors
Question 1.3: Import the data-set, playlist_data.csv
Solution:
 # Import the "playlist_data.csv" dataset into R
 read_csv("playlist_data.csv")
```

Delimiter: "," ## dbl (3): Rating, Age, Plays_Per_Week

A tibble: 26 × 7

Rows: 26 Columns: 7

Delimiter: ","

read_delim {readr}

tibble

Description

read_delim(

delim = NULL,

quote = "\"",

escape backslash = FALSE,

Question 1.7: Display the contents of the data-set

file,

Solution:

playlist data

8 DJ H

i 16 more rows

A tibble: 6 × 7

1 DJ A

3 DJ C

4 DJ D

5 DJ E

6 DJ F

2 DJ B

<chr> <chr> <dbl> <chr>

Pop

Pop

Rock

Rock

Pop

No output is required for this code

9 DJ I

10 DJ J

Solution:

— Column specification —

dbl (3): Rating, Age, Plays_Per_Week

<chr>

Pop

Rock

<chr>

1 DJ A

2 DJ B

```
## Rows: 26 Columns: 7
## — Column specification —
## chr (4): DJ_Name, Music_Genre, Experience, Location
##
\#\# i Use `spec()` to retrieve the full column specification for this data.
## i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

DJ_Name Music_Genre Rating Experience Age Location Plays_Per_Week

3.8 Intermediate 24 City Y

4.2 Advanced

<dbl> <chr>

28 City X

80

60

R Documentation

<dbl> <chr>

Electronic 30 City Z 100 3 DJ C 4.5 Advanced 4 Intermediate 22 City X 4 DJ D 70 Pop Electronic 4.8 Advanced 27 City Y 90 5 DJ E 3.6 Intermediate 25 City Z ## 6 DJ F Rock 55 4.3 Advanced 29 City X 85 ## 7 DJ G Pop 4.1 Intermediate 23 City Y 75 ## 8 DJ H Electronic ## 9 DJ I Rock 3.9 Advanced 31 City Z 70 4.4 Intermediate 26 City X 95 ## 10 DJ J Pop ## # i 16 more rows **Question 1.4:** Assign the data-set to a variable, playlist_data **Solution:** # Assign the variable to a dataset playlist_data <- read_csv("playlist_data.csv")</pre>

i Use `spec()` to retrieve the full column specification for this data. ## i Specify the column types or set `show_col_types = FALSE` to quiet this message.

chr (4): DJ_Name, Music_Genre, Experience, Location

```
From now on, you can use the name of the variable to view the contents of the data-set
Question 1.5: Get more information about read_csv() command and provide a screenshot of the information displayed in the "Help" tab of the
"Files" pane
Solution:
 # More information about the R command, complete the code
 ?read_csv("playlist_data.csv")
 knitr::include_graphics("Screenshot.png")
```

decimal point. This format is common in some European countries. Usage

read_csv() and read_tsv() are special cases of the more general read_delim(). They're

useful for reading the most common types of flat file data, comma separated values and tab

separated values, respectively. read_csv2() uses; for the field separator and, for the

Read a delimited file (including CSV and TSV) into a

escape_double = TRUE, More information about read_csv command **Question 1.6:** What does the skip argument in the read_csv() function do?

Solution: It is used to specify the number of lines to skip at the beginning of the CSV file before reading in the data.

A tibble: 26 × 7 DJ_Name Music_Genre Rating Experience Age Location Plays_Per_Week <chr> <dbl> <chr> <dbl> <chr>

Electronic 4.1 Intermediate 23 City Y

read_csv() function to import this file into R and store it in a variable named sales_data?

3.9 Advanced

4.4 Intermediate 26 City X

Only the list of commands that execute the task mentioned in the question are required

Type the name of the variable, to see what it contains

28 City X 80 1 DJ A Pop 4.2 Advanced 60 2 DJ B Rock 3.8 Intermediate 24 City Y 3 DJ C Electronic 4.5 Advanced 30 City Z 100 ## 4 DJ D 4 Intermediate 22 City X 70 Pop 5 DJ E Electronic 4.8 Advanced 27 City Y ## 6 DJ F 3.6 Intermediate 25 City Z Pop 4.3 Advanced ## 7 DJ G 29 City X 85

31 City Z

Question 1.8: Assume you have a CSV file named sales_data.csv containing information about sales transactions. How would you use the

75

70 95

<dbl>

60

100

70

90

55

```
library(tidyverse)
 read_csv("sales_data.csv")
 sales_data <- read_csv("sales_data.csv")</pre>
Task-2
After learning to import a data-set, let us explore the contents of the data-set through the following questions
Question 2.1: Display the first few rows of the data-set to get an overview of its structure
Solution:
 # Type the name of the variable we assigned the data-set to
 head(playlist_data)
```

Solution: # Stack columns of playlist_data glimpse(playlist_data)

Rows: 26 ## Columns: 7

Number of DJs

[1] 26

Solution:

nrow(playlist_data)

Location of DJs

Age of DJs

[26] 25

playlist_data\$Age

ggplot(playlist_data) +

aes(x=Age,y=Rating)

4.5 -

4.0 -

3.5 **-**

Solution:

4.5 **-**

3.5 **-**

Solution:

4.5 **-**

3.5 **-**

Solution:

22.5

22.5

ggplot(playlist_data) + aes(x=Age,y=Rating) +

geom_point()

Question 3.3: Represent data using points

complete the code to generate the plot

playlist_data\$Location

\$ DJ_Name <chr> "DJ A", "DJ B", "DJ C", "DJ D", "DJ E", "DJ F", "DJ G",... ## \$ Music_Genre <chr> "Pop", "Rock", "Electronic", "Pop", "Electronic", "Rock... ## \$ Rating <dbl> 4.2, 3.8, 4.5, 4.0, 4.8, 3.6, 4.3, 4.1, 3.9, 4.4, 4.6, ... ## \$ Experience <chr> "Advanced", "Intermediate", "Advanced", "Intermediate",... ## \$ Age <dbl> 28, 24, 30, 22, 27, 25, 29, 23, 31, 26, 32, 28, 29, 25,... <chr> "City X", "City Y", "City Z", "City X", "City Y", "City... ## \$ Location

\$ Plays_Per_Week <dbl> 80, 60, 100, 70, 90, 55, 85, 75, 70, 95, 110, 75, 60, 8...

[1] "City X" "City Y" "City Z" "City X" "City Y" "City Z" "City X" "City Y" ## [9] "City Z" "City X" "City Y" "City Z" "City X" "City Y" "City X" ## [17] "City Y" "City Z" "City X" "City Y" "City Z" "City X" "City Z"

[1] 28 24 30 22 27 25 29 23 31 26 32 28 29 25 31 26 27 24 29 23 28 24 30 22 27

DJ_Name Music_Genre Rating Experience Age Location Plays_Per_Week

Rock 3.8 Intermediate 24 City Y

Electronic 4.5 Advanced 30 City Z

3.6 Intermediate

Electronic 4.8 Advanced

Question 2.2: Display all the columns of the variable stacked one below another

4.2 Advanced 28 City X

4 Intermediate 22 City X

<dbl> <chr>

27 City Y

25 City Z

```
Question 2.3: How many columns are there in the dataset?
Solution:
 # Number of columns
 ncol(playlist_data)
 ## [1] 7
Question 2.4: What is the total count of DJs?
Solution:
```

[25] "City X" "City Y" **Question 2.6:** Display the age of the DJs **Solution:**

Question 2.5: Display all the location of all the DJs

```
Task-3
Let us plot the data to get more insights about the DJs.
Question 3.1: Create a plot to visualize the relationship between DJs' ages and their ratings.
Solution:
 # complete the code to generate the plot
```

complete the code to generate the plot ggplot(playlist_data) + aes(x=Age,y=Rating)

22.5

25.0

25.0

Question 3.2: Label the x-axis as "Age" and the y-axis as "Rating."

```
4.0 -
```

27.5

27.5

Age

30.0

30.0

32.

32.5

Rating × 4.0 -

27.5

Age

×

×

×

×

25.0

Question 3.5: Insert a suitable title and briefly provide your insights in the caption

```
# complete the code to generate the plot
ggplot(playlist_data) +
aes(x=Age,y=Rating) +
 geom_point(shape=4) +
 labs(title="Age versus Rating",caption = "Source: tidyverse playlist dataset")
    Age versus Rating
                                           ×
                                           X
               X
```

X

30.0

32.5

4.5 -× X X Rating X X 4.0 -× × × × X X X 3.5 **-**× 22.5 25.0 27.5 30.0 32. Age Source: tidyverse playlist dataset