Foundations of Deep Learning

Fall 2024

Homework 3: Generalization, Regularization and Adversarial Examples

Lecturer: Aurelien Lucchi

The points of the best-two-out-of-three homeworks, including this one, will be contributed to the final score. The points of each problem in this exercise sheet are equally weighted. Period: 14 November 2024 18:00 - 19 December 2024 23:55 (Bern time).

Problem 1 (PAC Bayes Bounds) (10 Points):

We consider a supervised learning scenario with a hypothesis space \mathcal{H} and a dataset $S = \{(x_1, y_1), \dots, (x_n, y_n)\}$ drawn i.i.d. from an unknown distribution D over $\mathcal{X} \times \mathcal{Y}$. The performance of a hypothesis $h \in \mathcal{H}$ is measured using a loss function $\ell(h, (x, y))$, which quantifies the error of the hypothesis on a given data point (x, y).

The true risk $\mathcal{R}(h)$ and the empirical risk $\hat{\mathcal{R}}(h)$ of a hypothesis h are defined as:

$$\mathcal{R}(h) = \mathbb{E}_{(x,y)\sim D}[\ell(h,(x,y))], \quad \hat{\mathcal{R}}(h) = \frac{1}{n} \sum_{i=1}^{n} \ell(h,(x_i,y_i)).$$

In the PAC-Bayes framework, we extend these definitions to posterior distributions over hypotheses. Let P be a prior distribution over \mathcal{H} and Q a posterior distribution after observing the data. The **true risk** $\mathcal{R}(Q)$ and the **empirical risk** $\hat{\mathcal{R}}(Q)$ of a posterior distribution Q are given by:

$$\mathcal{R}(Q) = \mathbb{E}_{h \sim Q}[\mathcal{R}(h)], \quad \hat{\mathcal{R}}(Q) = \mathbb{E}_{h \sim Q}[\hat{\mathcal{R}}(h)]$$

The Kullback-Leibler (KL) divergence between the posterior Q and the prior P is defined as:

$$\mathrm{KL}(Q||P) = \int_{\mathcal{H}} Q(h) \log \left(\frac{Q(h)}{P(h)} \right) dh.$$

The PAC-Bayesian bound provides a high-probability guarantee on the true risk of a hypothesis sampled from the posterior distribution. Here we present another version of the PAC-Bayesian bound from Catoni (2003):

Theorem 1. For any numbers $\lambda > 0$, $\delta \in (0,1)$, any distribution Q over \mathcal{H} , with probability at least $1 - \delta$ over the choice of the training set S, there exists a constant C > 0 independent to λ, δ, Q, S such that:

$$\mathcal{R}(Q) \le \hat{\mathcal{R}}(Q) + \frac{\lambda C^2}{8n} + \frac{1}{\lambda} \left(\mathit{KL}(Q||P) + \log\left(\frac{1}{\delta}\right) \right).$$

Here, λ controls the trade-off between the empirical risk and the complexity term involving the KL divergence.

- a) Assume that the hypothesis set \mathcal{H} is finite with size |N| and the prior P is the uniform distribution over $\mathcal{H} = \{h_1, ..., h_N\}$ and the posterior Q is in the set of the Dirac masses on \mathcal{H} .
 - i) Show that with probability at least 1δ over the choice of the training set S, it holds that

$$\mathcal{R}(Q) \leq \hat{\mathcal{R}}(Q) + \frac{\lambda C^2}{8n} + \frac{1}{\lambda} \left(\log \left(\frac{N}{\delta} \right) \right).$$

ii) By optimizing λ , show that with probability at least $1-\delta$ over the choice of the training set S, it holds that

$$\mathcal{R}(Q) \le \hat{\mathcal{R}}(Q) + C\sqrt{\frac{\log \frac{N}{\delta}}{2n}}.$$

Note that we have recovered the uniform Hoeffding bound in the lecture note.

- b) Assume that the prior P is a Gaussian distribution $\mathcal{N}(\mu_0, \sigma_0^2 I)$ and the posterior Q is Gaussian $\mathcal{N}(\mu, \sigma^2 I)$ over the parameter space $\mathcal{H} = \mathbb{R}^d$.
 - i) Using the formula for KL divergence between two Gaussians:

$$\mathrm{KL}(\mathcal{N}(\mu, \Sigma) \| \mathcal{N}(\mu_0, \Sigma_0)) = \frac{1}{2} \left(\mathrm{tr}(\Sigma_0^{-1} \Sigma) + (\mu - \mu_0)^\top \Sigma_0^{-1} (\mu - \mu_0) - d + \log \frac{\det \Sigma_0}{\det \Sigma} \right).$$

to show that with probability at least $1 - \delta$,

$$\mathcal{R}(Q) \leq \hat{\mathcal{R}}(Q) + \frac{1}{\lambda} \left(\frac{1}{2} \left(\frac{\|\mu - \mu_0\|_2^2}{\sigma_0^2} + d \left(\frac{\sigma^2}{\sigma_0^2} - 1 - \log \frac{\sigma^2}{\sigma_0^2} \right) \right) + \log \left(\frac{1}{\delta} \right) \right) + \frac{\lambda C^2}{8n}.$$

ii) By optimizing λ , show that with probability at least $1-\delta$ over the choice of the training set S, it holds that

$$\mathcal{R}(Q) \le \hat{\mathcal{R}}(Q) + C\sqrt{\frac{1}{2n} \left(\frac{1}{2} \left(\frac{\|\mu - \mu_0\|_2^2}{\sigma_0^2} + d\left(\frac{\sigma^2}{\sigma_0^2} - 1 - \log\frac{\sigma^2}{\sigma_0^2}\right)\right) + \log\left(\frac{1}{\delta}\right)\right)}.$$

Problem 2 (Regularization in Linear Regression) (10 Points):

Consider a linear regression problem where the input $\mathbf{x} \in \mathbb{R}^d$ is drawn i.i.d. from a standard isotropic Gaussian distribution $\mathcal{N}(0, I_d)$. The true target coefficient is $\mathbf{w}^* \in \mathbb{R}^d$, and the observed label $y \in \mathbb{R}$ is generated as:

$$y = \mathbf{x}^{\top} \mathbf{w}^* + \epsilon$$
,

where $\epsilon \sim \mathcal{N}(0, \sigma^2)$ is centered Gaussian noise with variance σ^2 . Given a dataset (\mathbf{X}, \mathbf{y}) of n i.i.d. samples, we aim to explore the effects of regularization on the generalization properties of the linear regression estimator.

The true risk $\mathcal{R}(\mathbf{w})$ and the empirical risk $\mathcal{R}(\mathbf{w})$ of a hypothesis \mathbf{w} are defined as follows:

$$\mathcal{R}(\mathbf{w}) = \mathbb{E}_{(\mathbf{x},y)}[(y - \mathbf{x}^{\top}\mathbf{w})^2], \quad \hat{\mathcal{R}}(\mathbf{w}) = \frac{1}{n} \sum_{i=1}^{n} (y_i - \mathbf{x}_i^{\top}\mathbf{w})^2.$$

The regularized least-squares estimator $\hat{\mathbf{w}}$ with regularization parameter $\lambda > 0$ aims to minimize the regularized empirical risk:

$$\hat{\mathbf{w}} = \arg\min_{\mathbf{w}} \left(\hat{\mathcal{R}}(\mathbf{w}) + \lambda \|\mathbf{w}\|_{2}^{2} \right) = \arg\min_{\mathbf{w}} \frac{1}{n} \|\mathbf{y} - \mathbf{X}\mathbf{w}\|_{2}^{2} + \lambda \|\mathbf{w}\|_{2}^{2}$$

where $\mathbf{X} \in \mathbb{R}^{n \times d}$ is the data matrix, $\mathbf{y} \in \mathbb{R}^n$ is the vector of observed labels, $\lambda > 0$ is the regularization parameter, and I_d is the $d \times d$ identity matrix.

- a) Write down the closed-form solution of $\hat{\mathbf{w}}$.
- b) Substituting $y = \mathbf{x}^{\top} \mathbf{w}^* + \epsilon$, show that:

$$\mathbb{E}_{\epsilon}[\mathcal{R}(\hat{\mathbf{w}})] = \mathbb{E}_{\epsilon} \left[\|\mathbf{w}^* - \hat{\mathbf{w}}\|^2 \right] + \sigma^2.$$

c) Show that the expected value can be decomposed as:

$$\mathbb{E}_{\epsilon} \left[\| \mathbf{w}^* - \hat{\mathbf{w}} \|^2 \right] = \text{Bias}^2 + \text{Variance},$$

where

$$\operatorname{Bias}^{2} = \lambda^{2} \left\| \left(\frac{1}{n} \mathbf{X}^{\top} \mathbf{X} + \lambda I_{d} \right)^{-1} \mathbf{w}^{*} \right\|^{2}, \quad \operatorname{Variance} = \sigma^{2} \operatorname{Tr} \left((\mathbf{X}^{\top} \mathbf{X} + n\lambda I_{d})^{-2} \mathbf{X}^{\top} \mathbf{X} \right).$$

Discuss the behavior of these two terms when $\lambda \to 0$ and $\lambda \to \infty$.

d) Note that for $n \gg d$, by the Law of Large Numbers, the covariance matrix $\mathbf{X}^{\top}\mathbf{X} \approx nI_d$. Substituting this approximation, we obtain the proxies B and V for the two terms:

$$\operatorname{Bias}^2 \approx B^2 = \frac{\lambda^2}{(1+\lambda)^2} \|\mathbf{w}^*\|^2, \quad \operatorname{Variance} \approx V = \frac{d\sigma^2}{n(1+\lambda)^2}.$$

Now find

$$\lambda^* = \operatorname*{argmin}_{\lambda}(B^2 + V).$$

What can you interpret from the result?

Problem 3 (Adversarial Training in Linear Regression) (10 Points):

Recall the definition of the adversarial loss in adversarial training:

$$R_{\mathrm{adv}}(\mathbf{w}) = R_{\mathrm{adv}}(f_{\mathbf{w}}) = \mathbb{E}_{(\mathbf{x},y) \sim \mathcal{D}} \left[\max_{\|\boldsymbol{\delta}\| \le \rho} \ell(f_{\mathbf{w}}(\mathbf{x} + \boldsymbol{\delta}), y) \right]$$

where $\Delta(\mathbf{x})$ is neighborhood of \mathbf{x} . Now we try to write down its analytic form in the case of linear regression: assume that $\mathbf{x} \in \mathcal{N}(0, \mathbf{I}_d), \ y \sim \mathbf{x}^\top \mathbf{w}^* + \epsilon$ for some fixed $\mathbf{w}^* \in \mathbb{R}^d$ and $\epsilon \sim \mathcal{N}(0, \sigma^2), \ f_{\mathbf{w}}(\cdot) = (\cdot)^\top \mathbf{w}$ and $\ell(a, b) = (a - b)^2$.

a) Show that

$$R_{\text{adv}}(\mathbf{w}) = \|\mathbf{w} - \mathbf{w}^*\|^2 + \sigma^2 + \rho^2 \|\mathbf{w}\|^2 + 2\rho c_0 \|\mathbf{w}\| \sqrt{\|\mathbf{w} - \mathbf{w}^*\|^2 + \sigma^2}$$

where $c_0 = \sqrt{2/\pi}$.

b) Show that R_{adv} is convex wrt \mathbf{w} and there exists some constant c > 0 such that $\mathbf{w}_{\text{adv}}^* := \operatorname{argmin}_{\mathbf{w}} R_{\text{adv}}(\mathbf{w})$ is equal to 0 whenever $\rho \geq c$.

References

Olivier Catoni. A pac-bayesian approach to adaptive classification. preprint, 840(2):6, 2003.