Amendments to the Claims:

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

Claims 1-21 (Cancelled)

22. (Currently Amended) A flaw detection system using acoustic Doppler effect for detecting flaws in a medium wherein there is relative motion between the medium and system comprising:

air-coupled transducer means, spaced from the medium to be inspected, which transmit optical energy for introducing to and sensing receiving from the medium an acoustic signal that propagates in said medium at a predetermined frequency; and

means, responsive to the sensed <u>received</u> propagating acoustic signal, for detecting in the sensed <u>received</u> acoustic signal the Doppler shifted frequency representative of a flaw in the medium.

- 23. (Currently Amended) The flaw detection system using acoustic Doppler effect of claim 22 in which said transducer <u>means</u> includes a laser for transmitting said optical energy.
- 24. (Currently Amended) A flaw detection system using acoustic Doppler effect for detecting flaws in a medium wherein there is relative motion between the medium and

MIT-116J DWP:wj system comprising:

air-coupled transducer means, spaced from the medium to be inspected, for introducing to and sensing from the medium an acoustic signal that propagates in said medium at a predetermined frequency said transducer means including a laser-vibrometer interferometer an acoustic receiver for sensing the acoustic signal propagating in the medium and a transmitter that transmits optical energy.

25. (Currently Amended) A flaw detection system using acoustic Doppler effect for detecting flaws in a medium wherein there is relative motion between the medium and system comprising:

air-coupled transducer means, spaced from the medium to be inspected, for inducing an acoustic signal to propagate in the medium at a predetermined frequency and sensing receiving the propagating acoustic signal in the medium; and said transducer means including a transmitter and a receiver and said transmitter including a laser for locally heating the medium to generate acoustic signals; and

means, responsive to the sensed received propagating acoustic signal, for distinguishing the Doppler shifted frequency representative of a flaw in the medium.

26. (Currently Amended) A flaw detection system using acoustic Doppler effect for detecting flaws in a medium wherein there is relative motion between the medium and system comprising:

an air-coupled transducer, spaced from the medium to be inspected, that transmits optical energy for introducing to and sensing receiving from the medium an

MIT-116J DWP:wj acoustic signal that propagates in said medium at a predetermined frequency; and
a detector, responsive to the sensed received propagating acoustic signal,
that detects in the sensed received acoustic signal the Doppler shifted frequency
representative of a flaw in the medium.

28. (Currently Amended) A flaw detection system using acoustic Doppler effect for detecting flaws in a medium wherein there is relative motion between the medium and system, comprising:

an air-coupled transducer, spaced from the medium to be inspected, that introduces to and senses from the medium an acoustic signal that propagates in said medium at a predetermined frequency, said transducer including a laser vibrometer interferometer an acoustic receiver that senses the acoustic signal propagating in the medium and a transmitter that transmits optical energy.

29. (Currently Amended) A flaw detection system using acoustic Doppler effect for detecting flaws in a medium wherein there is relative motion between the medium and system, comprising:

an air-coupled transducer, spaced from the medium to be inspected, that induces an acoustic signal to propagate in the medium at a predetermined frequency and senses receives the propagating acoustic signal in the medium, said transducer including a transmitter and a receiver, said transmitter including a laser that locally heats the medium to generate acoustic signals; and

means, responsive to the sensed received propagating acoustic signal, for distinguishing the Doppler shifted frequency representative of a flaw in the medium.