DSM2 Learning Series: ECO-PTM

April 16, 2024

Xiaochun Wang (DWR), Doug Jackson (QEDA), Adam Pope (USGS), Brad Tom (DWR)

ECO-PTM -- An Individual Based Ecological Particle Tracking Model That Considers Tidal Flows

ECO-PTM is an individual-based ecological particle tracking model that tracks three types of particles, neutrally buoyant (Delta smelt larvae), position oriented (longfin smelt larvae), and salmon (Chinook salmon):

- Based on a random-walk particle-tracking method
- ➤ Utilizes flow information from a 15-minute-time-step hydrodynamic simulation of the Delta that captures the estuary's temporal and spatial tidal variations
- Used commonly for impact analyses of larvae entrainment of Delta smelt and longfin smelt into water project facilities
- Applied for analyses of juvenile salmon migration and survival through the Delta
- > Attached fish-like behaviors to the salmon particles
- Calibrated and validated behavior parameters with field tag data: simulated outputs match observations

Model Applications

ECO-PTM can be an effective tool for quantitatively assessing water resources management actions, such as impacts on entrainment or fish survival from:

- > Fish Barriers
- Project operation changes
- Restoration actions

For more information contact Xiaochun.Wang@water.ca.gov

ECO-PTM Team

- U.S. Geological Survey, Western Fisheries Research Center:
 - Russ Perry, Adam Pope, Dalton Hance, Michael Dodrill

- QEDA Consulting:
 - Doug Jackson

- California Department of Water Resources:
 - Xiaochun Wang, Bradley Tom, Gourab Saha

Why ECO-PTM?

Quantitative assessment tool to explore and evaluate management actions that benefit both species recovery efforts and California's water demands

Delta Simulation Model II (DSM2)

Hydro

Flow, velocity, water levels

Qual

Water Quality Model

- Salinity including chloride, bromide, ...
- Water Temperature
- Dissolved oxygen

GTM

General Transport Model

- Salinity
- Suspended sediment
- Sediment bed
- Mercury
- Modular for easy expansion

ECO-PTM

Ecological Particle Tracking Model

- Neutrally buoyant particles Delta smelt larvae
- Position oriented particles Longfin smelt larvae
- Salmon particles
 Chinook salmon smolts

ECO-PTM Output

• Entrainment into facilities (smelt larvae)

Survival through the Delta (salmon smolt)

Entrainment (smelt larvae)

Survival (salmon smolt)

ECO-PTM output depends on:

- species
- insert locations
- flow conditions
- management scenarios
- •

3 Fish **Species** Insertion Locations 1000's of **ECO-PTM** runs Flow Conditions Management **Actions**

Cloud Computing

How to use Cloud Computing is not covered in this Intro class 9

ECO-PTM: Take Home Points

3 Fish Species
Delta Smelt Larvae
Longfin Smelt Larvae
Chinook Salmon Smolts

Today's Training

What is ECO-PTM

Why it can be used for evaluations

How we use it

Questions? Please type them into Teams chat

Include slide # if possible

Xiaochun Wang (Xiaochun.Wang@water.ca.gov)