Методы Оптимизации. Даниил Меркулов. Оптимизация for dummies

Задача преподавателя: избежать подобных ситуаций

Задача 1

Доказать, что для того, чтобы $S \subseteq \mathbb{R}^n$ было афинным множеством необходимо и достаточно, чтобы S содержало все возможные афинные комбинации своих точек.

Идея:

- Пусть S содержит все афинные комбинации своих точек o афинно Достаточно очевидно.
- Пусть S афинно o S содержит все афинные комбинации своих точек Доказывать по индукции. Проверить для одного, поверить для k доказать для k+1

Задача 2

Доказать, что для того, чтобы $K \subseteq \mathbb{R}^n$ было выпуклым конусом необходимо и достаточно, чтобы K содержало все возможные неотрицательные комбинации своих точек.

Идея:

- Пусть K содержит все конические комбинации своих точек o K выпуклый конус Достаточно очевидно.
- Пусть K выпуклый конус o K содержит все конические комбинации своих точек Доказывать по индукции. Проверить для одного, поверить для k доказать для k+1

Задача 3

Найти проекцию точки $y\in\mathbb{R}^n$ на афинное множество $S=\{x\in\mathbb{R}^n\mid x=Ay,y\in\mathbb{R}^m,A\in\mathbb{R}^{n\times m}\}$, $m< n, \ \ \mathrm{rank}\ A=m,\ y\notin S$

Идея:

• Интуиция в том, что это чистейший метод наименьших квадратов в линейном случае.

$$A^Tc=0, \quad \pi_S(y)=\pi=y+eta c$$

• Докажем с помощью критерия, что проекция будет искаться в таком виде:

$$\pi = A \cdot (A^T A)^{-1} A^T y$$

• Так как целевое множество - афинно, то необходимо и достаточно показать:

$$\left(\pi-y\right)^T\left(x-\pi\right)=0$$

Задача 4

Найти проекцию $\pi_S(y)$ точки y множество $S=\{x_1,x_2\in\mathbb{R}^2\mid |x_1|+|x_2|=1\}$ в $\|\cdot\|_1$ норме. Рассмотреть различные положения y.

Идея:

Задача 5

Используя лемму о конусе, сопряженному к сумме конусов и лемму о конусе, сопряженном к пересечению замкнутых выпуклых конусов, доказать, что конусы

$$K_1=\{x\in\mathbb{R}^n\mid x=Ay,y\geq 0,y\in\mathbb{R}^m,A\in\mathbb{R}^{n imes m}\},\;\;K_2=\{p\in\mathbb{R}^n\mid A^Tp\geq 0\}$$

взаимодвойственны

Задача 6

Найти множества S^*, S^{**}, S^{***} , если

$$S = \{x \in \mathbb{R}^2 \mid x_1 + x_2 \geq 0, \;\; 2x_1 + x_2 \geq -4, \;\; -2x_1 + x_2 \geq -4 \}$$

Идея:

• Представить множество как выпуклую + коническую оболочку точек и применить теорему.

Задача 7

Проверить, что функция $f(x) = \sqrt{1 + x^T x}$ выпукла на \mathbb{R}^n . Будет ли она строго выпуклой? Идея:

• Использовать критерий второго порядка

Задача 8

Для каких значений $x \in \mathbb{R}^3$ функция $f(x) = rac{x_1^3}{3} + rac{x_1x_2^2 + x_1x_3^2}{2}$ выпукла и строго выпукла?

Идея:

• Использовать критерий второго порядка

Задача 9

Пусть задана функция двух переменных:

$$f(x,y) = \max\left\{|x-1| + e^{|y-1|}, |x-y-1|
ight\}$$

Кроме того, есть множество:

$$S = \left\{ (x,y)^T \in \mathbb{R}^2 \mid y \geq 1, x-y \geq 0
ight\}$$

Найти $\partial f(A), \partial_S f(A)$, если $A=(1,1)^T$.

Задача 10

Используя условие оптимальности $0 \in \partial_S f(x_*)$, решить задачу

$$\min |x| + |y|$$
s.t. $(x-1)^2 + (y-1)^2 \le 1$

Задача 11

Даня Чернявский всю сознательную жизнь торговал криптовалютой. В определенный момент ему показалось, что он выучил оптимизацию и он может подойти к задаче формирования криптопортфеля с умом. У него имелись на выбор криптовалюты, индексируемые $1, \ldots, C$. Текущие курсы криптовалют к рублю: $\lambda_1, \ldots, \lambda_C$. Для Дани существует лишь два исхода: криптовалюта вырастет в $\frac{\pi}{e}$ раз - успех и провал в других случаях. Пользуясь секретными телеграм чатами, он сумел оценить вероятности успеха для каждой криптовалюты как p_1, \ldots, p_C . Однако, Даня - бедный трейдер и имеет ограниченный бюджет, составляющий z рублей. Давайте поможем сформулировать оптимизационную задачу выбора инвестиционного криптопортфеля Дане так, чтобы максимизировать средний выигрыш. Является ли эта задача выпуклой, если она, конечно, разрешима?

Задача 12

$$extr(x_1 - 3)(x_2 - 2), x \in \mathbb{R}^2$$

 $x_1 + 2x_2 = 4(1); x_1^2 + x_2^2 \le 5(2); x_1 \ge 0(3); x_2 \ge 0(4)$

Идея:

$$L(x,y) = (x_1 - 3)(x_2 - 2) + \lambda_1(x_1 + 2x_2 - 4) + \lambda_2(x_1^2 + x_2^2 - 5) - \lambda_3 x_1 - \lambda_4 x_2$$

$$\frac{\partial L}{\partial x_1} = x_2 - 2 + \lambda_1 + 2\lambda_2 x_1 - \lambda_3 = 0;$$

$$\frac{\partial L}{\partial x_2} = x_1 - 2 + 2\lambda_1 + 2\lambda_2 x_2 - \lambda_4 = 0;$$

$$x_1 + 2x_2 = 4; \quad \lambda_2(x_1^2 + x_2^2 - 5) = 0, \quad \lambda_2 \ge 0$$

$$\lambda_3 x_1 = 0, \quad \lambda_3 \ge 0; \lambda_4 x_2 = 0, \lambda_4 \ge 0$$

Таким образом надо рассмотреть 8 случаев, когда $\lambda_i=0,\quad i\in\overline{2,4}$, т.е. ограничение неактивно или $\lambda_i\geq 0,\quad i\in\overline{2,4}$ - ограничение активно. Составим таблицу вариантов, где 0 - ограничение неактивно; A - ограничение активно.

λ	1	2	3	4	5	6	7	8
λ_2	0	0	0	0	A	A	A	A
λ_3	0	0	A	A	0	0	A	A
λ_4	0	\overline{A}	0	\overline{A}	0	A	0	A