Laboratorio di Elettronica e Tecniche di Acquisizione Dati 2024-2025

Amplificatori operazionali

cfr. http://physics.ucsd.edu/~tmurphy/phys121/phys121.html

Amplificatori differenziali

Amplificatore differenziale: dispositivo elettronico che amplifica la differenza in ampiezza tra due segnali in input

2 ingressi V_1, V_2

1 output V_{o}

$$V_d = V_1 - V_2$$

Segnale differenziale:
$$V_d = V_1 - V_2$$
 $V_1 = V_c + V_d/2$

Segnale modo comune:
$$V_c = \frac{V_1 + V_2}{2}$$
 $V_2 = V_c - V_d/2$

$$V_2 = V_c - V_d/2$$

$$V_2 = \text{GND} \Rightarrow V_0 = A_1 V_1$$

$$V_1 = \text{GND} \Rightarrow V_0 = A_2 V_2$$

$$V_0 = A_1 V_1 + A_2 V_2 = (A_1 + A_2) V_c + \frac{A_1 - A_2}{2} V_d = A_c V_c + A_d V_d$$

$${\cal A}_c = {\cal A}_1 + {\cal A}_2$$
 amplificazione di modo comune

$$A_d = rac{A_1 - A_2}{2}$$
 amplificazione di modo differenziale

$$ho = A_d/A_c$$
 rapporto di reiezione del modo comune (CMRR, common mode rejection ratio)

$$V_0 = A_d(V_d + rac{1}{
ho}V_c) \xrightarrow{
ho o \infty} A_dV_d$$
 risposta ideale voluta

Amplificatori differenziali

$$V_0 = A_d(V_d + \frac{1}{\rho}V_c)$$

Amplificatore differenziale ideale:

- Amplifica la differenza tra i segnali: $\,A_d\gg 1\,$
- Immune a variazioni comuni ai due ingressi $ho\gg 1$

Esempio di applicazione:

eliminazione di rumore ambientale "pickuppato" da linea di trasmissione

$$+V + V_{noise}$$

$$V_0 = A_d[(V + V_{noise}) - (-V + V_{noise})] = 2A_dV$$

$$-V + V_{noise}$$

Amplificatori differenziali

Amplificatore differenziale: dispositivo elettronico che amplifica la differenza in ampiezza tra due segnali in input

- 2 ingressi V_1, V_2
- 1 output V_{o}

Segnale differenziale:
$$V_d = V_1 - V_2$$
 $V_1 = V_c + V_d/2$

$$V_1 = V_c + V_d$$

$$V_2 = V_c - V_d/2$$

$$A_c = A_1 + A_2$$

$$A_d = \frac{A_1 - A_2}{2}$$

$$V_0 = A_d(V_d + \frac{1}{\rho}V_c) \xrightarrow{\rho \to \infty} A_d V_d$$

come saranno
$$A_1$$
 e A_2 per avere $A_c \sim 0$?

$$A_1 \sim -A_2 \implies A_c \sim 0$$

$$A_1 \sim -A_2 \implies A_d \sim 2\frac{A_1}{2} = A_1 = A$$

$$\longrightarrow V_o = A_1 V_1 + A_2 V_2 \sim AV_1 - AV_2 = AV_d$$

Amplificatore operazionale

Un amplificatore operazionale è un circuito integrato, costituito principalmente di transistor a giunzione bipolare, che amplifica l'ampiezza di un segnale in ingresso grazie ad un'alimentazione fornita esternamente in maniera duale.

$$V_{out} = A (Vin^+ - Vin^-)$$

Amplificatore operazionale

- Ingressi differenziali
- Guadagno differenziale molto alto (in realtà c.a. 10⁵, con tolleranze < 20%)
- Guadagno nel modo comune nullo (in realtà CMRR = c.a. 100 dB *)
- Impedenza d'ingresso molto alta (in realtà c.a. 10⁶ Ω)
- Impedenza in uscita nulla (indipendente dal carico, vero fino a c.a. 20 mA)
- "Sfasamento" nullo tra ingresso ed uscita
- Larghezza di banda infinita (in realtà c.a. MHz, slew rate 1 20 V/µs)

Il segnale in uscita è limitato dai valori di alimentazione $V_0 \in [-V_{cc}, +V_{cc}]$

Alimentazione:

- spesso indicati come "+V_{cc}" e "-V_{cc}"
- in generale sono due alimentazioni indipendenti e possono essere usati due valori, anche differenti (noi, in un'esperienza, utilizzeremo -1V e 5V)
 - → sarebbe più corretto parlare di V+_{cc} e V-_{cc}

$$V_0 \in [-V_{cc}, +V_{cc}]$$

	Ideal	Practical (LM741)
Open Loop gain A	∞	10 ⁵
Gain-Bandwidth Product GBP	œ	1MHz
Input Impedance Z_{in}	\propto	$0.3-2M\Omega$
Output Impedance Z_{out}	0 Ω	10-100 Ω
Output Voltage V _{out}	Depends only on $V_d = (V_+ - V)$ Differential mode signal	Depends slightly on average input V_c = $(V_++V)/2$ Common- Mode signal
CMRR	\propto	80-100dB

https://www.st.com/content/ccc/resource/technical/document/datasheet/group1/d6/9e/4e/8a/fa/65/4c/d0/CD00001252/files/CD00001252.pdf/jcr:content/translations/en.CD00001252.pdf

Table 3. Electrical characteristics at $V_{CC} = \pm 15 \text{ V}$, $T_{amb} = 25 \text{ °C}$ (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Unit
V _{io}	Input offset voltage ($R_s \le 10 \text{ k}\Omega$) $T_{amb} = +25 \text{ °C}$ $T_{min} \le T_{amb} \le T_{max}$		1	5 6	mV
l _{io}	Input offset current T _{amb} = +25 °C T _{min} ≤T _{amb} ≤T _{max}		2	30 70	nA.
I _{ib}	Input bias current T _{amb} = +25 °C T _{min} ≤T _{amb} ≤T _{max}		10	100 200	- nA
A_{vd}	Large signal voltage gain ($V_o = \pm 10 \text{ V}$, $R_L = 2 \text{ k}\Omega$) $T_{amb} = +25 ^{\circ}\text{C}$ $T_{min} \leq T_{amb} \leq T_{max}$	50 25	200		V/mV
SVR	Supply voltage rejection ratio (R _s ≤10 kΩ) T _{amb} = +25 °C T _{min} ≤Γ _{amb} ≤Γ _{max}	77 77	90		dB
I _{CC}	Supply current, no load T _{amb} = +25 °C T _{min} ≤T _{amb} ≤T _{max}		1.7	2.8 3.3	mA
V _{icm}	Input common mode voltage range T _{amb} = +25 °C T _{min} ≤T _{amb} ≤T _{max}	±12 ±12			V
CMR	Common mode rejection ratio (R _S \leq 10 k Ω) T_{amb} = +25 °C T_{min} \leq T_{max}	70 70	90		dB
los	Output short circuit current	10	25	40	mA
$\pm V_{opp}$	$ \begin{array}{lll} \text{Output voltage swing} \\ T_{amb} = +25 ^{\circ}\text{C} & R_L = 10 \text{k}\Omega \\ & R_L = 2 \text{k}\Omega \\ T_{min} \leq T_{amb} \leq T_{max} & R_L = 10 \text{k}\Omega \\ & R_L = 2 \text{k}\Omega \end{array} $	12 10 12 10	14 13		V
SR	Slew rate $V_i = \pm 10 \text{ V}, R_L = 2 \text{ k}\Omega, C_L = 100 \text{ pF, unity gain}$	0.25	0.5		V/µs
t _r	Rise time $V_i = \pm 20$ mV, $R_L = 2$ k Ω , $C_L = 100$ pF, unity gain		0.3		μѕ
K _{ov}	Overshoot $V_i = 20 \text{ mV}$, $R_L = 2 \text{ k}\Omega$, $C_L = 100 \text{ pF}$, unity gain		5		%
R _i	Input resistance	0.3	2		МΩ

Applicazioni non lineari di Op-Amp

Op-Amp operato in saturazione ("open loop"): $V_{out} = A (V^+ - V^-)$

Applicazioni non lineari di Op-Amp

Op-Amp operato in saturazione ("open loop"): V_{out} = A (V⁺ - V⁻)

Quanto è "larga" la zona lineare?

- $A \sim 10^5$
- $|V_{cc}| \sim 10 \text{ V} \sim |V_{out}|^{MAX}$

$$\rightarrow |V_{out}|^{MAX} / A \sim 10 \text{ V} / 10^5 = 10^{-4} \text{ V} = 0.1 \text{ mV} = |V_{d}|^{linear}$$

Applicazione non lineare: 1 bit ADC converter / Comparatore

- $V_{IN} > V_{REF} \rightarrow V_{OUT} = V_{CC}^{+}$
- $V_{IN} < V_{REF} \rightarrow V_{OUT} = V_{CC}(*)$

A causa del grande guadagno a loop aperto, la zona lineare è trascurabile

(*) in realtà l'op-amp satura a $V^+_{SAT} < V^+_{CC}$ e $V^-_{SAT} < V^-_{CC}$; per amplificatori ideali spesso si assume $|V_{SAT}|^{+/-} = |V_{CC}|^{+/-}$

Diverse modalità per definire la tensione di riferimento

DC Battery Reference Source

Diverse modalità per definire la tensione di riferimento

DC Battery Reference Source

Comparatore non invertente

Comparatore invertente

Per poter operare un op-amp in condizioni più flessibili, si introduce un circuito di feedback o retroazione

POSITIVE FEEDBACK

Se _{Vout} è poco maggiore/minore di *Vin*, *Vout* tende ad aumentare fino a +/-*Vcc*

Soggetto a oscillazioni e derive, poco interessante

NEGATIVE FEEDBACK

Se *Vout* > *Vin*, *Vout* tende a diminuire "correggendo" la differenza Se *Vout* < *Vin*, *Vout* tende ad aumentare "correggendo" la differenza

Circuito autoregolante, Vout tende a diventare uguale a Vin

Per poter operare un op-amp in condizioni più flessibili, si introduce un circuito di feedback o retroazione

$$\begin{cases} x_o = Ax_i \\ x_f = \beta x_0 \\ x_i = x_s - x_f \end{cases} \qquad A_f = \frac{x_o}{x_s} = \frac{Ax_i}{x_i + x_f} = \frac{Ax_i}{x_i + \beta Ax_i} = \frac{Ax_i}{x_i (1 + \beta A)}$$

Per poter operare un op-amp in condizioni più flessibili, si introduce un circuito di feedback o retroazione

$$\begin{cases} x_o = Ax_i \\ x_f = \beta x_0 \end{cases} \qquad A_f = \frac{x_o}{x_s} = \frac{A}{1+\beta A} \qquad A_f < A$$
 il guadagno con feedback negativo è r

il guadagno con feedback negativo è minore del guadagno a loop aperto

$$A_f = \frac{x_o}{x_s} = \frac{A}{1 + \beta A}$$
 A: guadagno dell'op-amp con feedback in A: guadagno a loop-aperto (senza feedback)

 A_f : guadagno dell'op-amp con feedback invertente

B: quadagno del circuito di feedback

 $A_f < A$ il guadagno con feedback negativo è minore del guadagno a loop aperto

$$A_f \stackrel{\beta A \gg 1}{\longrightarrow} \frac{1}{\beta}$$
 il guadagno con feedback negativo è determinato completamente dalla rete di feedback (che può essere implementata "stabile" a piacere)

$$\frac{\mathrm{d}A_f}{A_f} = \frac{1}{1 + \beta A} \frac{\mathrm{d}A}{A} \xrightarrow{\beta A \gg 1} 0$$

il guadagno con feedback negativo è indipendente dalle fluttuazioni dell'open-loop gain

(tipicamente molto grandi, > 10%, e dipendenti dalla temperatura)

Per poter operare un op-amp in condizioni più flessibili, si introduce un circuito di feedback o retroazione

$$A_f = \frac{x_o}{x_s} = \frac{A}{1 + \beta A}$$
 A: guadagno dell'op-amp con feedback in A: guadagno a loop-aperto (senza feedback)

 A_f : guadagno dell'op-amp con feedback invertente

β: guadagno del circuito di feedback

 $A_f < A$ il guadagno con feedback negativo è minore del guadagno a loop aperto

$$A_f \stackrel{\beta A \gg 1}{\longrightarrow} \frac{1}{\beta}$$
 il guadagno con feedback negativo è determinato completamente dalla rete di feedback (che può essere implementata "stabile" a piacere)

$$\frac{\mathrm{d}A_f}{A_f} = \frac{1}{1+\beta A} \frac{\mathrm{d}A}{A} \xrightarrow{\beta A \gg 1} 0$$

il guadagno con feedback negativo è indipendente dalle fluttuazioni dell'open-loop gain (tipicamente molto grandi, > 10%, e dipendenti dalla temperatura)

$$x_i = \frac{x_0}{A} = \frac{1}{1+\beta A} x_s \overset{\beta A \gg 1}{\longrightarrow} 0$$
 il segnale $x_i = x_s - x_f$ ai capi dell'amplificatore è trascurabile: PRINCIPIO DEL CORTO VIRTUALE

Si preferisce quindi disegnare op-amp con alti guadagni A a loop aperto e determinare con precisione il guadagno $1/\beta$ per mezzo di un feedback negativo implementato con componenti passivi (maggior controllo)

Regole d'oro dell'operazionale

Un amplificatore operazionale ideale operato in una qualunque configurazione con **feedback negativo** obbedisce alle seguenti regole:

- PRINCIPIO DEL CORTO VIRTUALE: l'op-amp opera in modo da mandare a zero la differenza di potenziale tra i capi di input invertente e non invertente
- REGOLA DELLA CORRENTE: la corrente erogata o assorbita dagli input dell'op-amp è nulla (vera anche senza feedback negativo)

Per un op-amp reale, si osservano:

- differenze di potenziale agli input inferiori a 1 mV
- correnti massime di decine di nA.

Buffer

Feedback negativo con carico: **BUFFER** o **INSEGUITORE DI TENSIONE**L'op-amp tira corrente (*Vin<0*) o eroga corrente (*Vin>0*) attraverso il carico forzando *Vout* a diventare uguale a *Vin*.

Circuito utilizzato **per disaccoppiare parti di circuito** senza preoccuparsi delle impedenze. Ricordiamo che:

- impedenza ingresso op-amp infinita: non fluisce corrente nel pin V+
- impedenza uscita op-amp nulla
- posso interfacciare un circuito ad alta impedenza con un circuito a bassa impedenza senza che il generatore (che alimenta il primo) consumi troppa potenza.
- i due circuiti sono disaccoppiati, il circuito di carico non modifica la tensione erogata dal circuito sorgente

Amplificatore invertente

Terminali input a "ground virtuale" $I_1 = (V_s - V_-)/R_1 = V_s/R_1$

L'op. amp. non assorbe corrente $I_2 = I_1$

$$(V_{-} - V_{o}) = R_{2}I_{2} = V_{s} \cdot R_{2}/R_{1}$$

$$rac{V_o}{V_s} = -rac{R_2}{R_1}$$
 II segnale in uscita è amplificato di un fattore -R₂/R₁ II segno "-" lo rende un amplificatore invertente

Amplificatore invertente in transimpedenza

Amplificatore invertente collegato a un generatore di corrente $V_o = -I_s R_f$

Convertitore corrente – tensione: genera un output in tensione proporzionale all'intensità di corrente generata dal generatore. Generalmente utilizzato per rivelare piccole intensità di corrente

(Sono generatori di corrente: fotodiodi, fotomoltiplicatori al silicio, ...)

(*) nel caso di un convertitore corrente-tensione, la resistenza del sistema viene anche indicata in gergo come "transimpedenza"

Amplificatore invertente in transimpedenza

Amplificatore invertente collegato a un generatore di corrente $V_o = -I_s R_f$

Convertitore corrente – tensione:

il "guadagno" è $V_0 / I_s = R_f$

→ il "guadagno" ha le dimensioni di una resistenza

(*) nel caso di un convertitore corrente-tensione, la resistenza del sistema viene anche indicata in gergo come "transimpedenza"

Amplificatore non-invertente

Terminali input in "corto virtuale" $I_1 = (V_{GND} - V_i)/R_1 = -V_i/R_1$

L'op. amp. non assorbe corrente $I_2=I_1$

$$(V_i - V_o) = R_2 I_2 = -V_i \cdot R_2 / R_1$$

$$rac{V_o}{V_i}=1+rac{R_2}{R_1}$$
 II segnale in uscita è amplificato di un fattore 1 + R_2/R_1 II segno "+" lo rende un amplificatore non invertente

Amplificatore sommatore

Stesse considerazioni per la configurazione non invertente, ma la corrente che fluisce lungo $R_{\rm f}$ è data dalla somma delle correnti in input

$$V_{out} = -R_f \cdot \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \ldots \right) \ \ \text{somma pesata delle tensioni in input}$$

Utilizzando il medesimo valore per resistenze di feedback e di input:

$$V_{out} = -(V_1 + V_2 + V_3 + ...)$$

Amplificatore sommatore

Stesse considerazioni per la configurazione non invertente, ma la corrente che fluisce lungo R_f è data dalla somma delle correnti in input

$$V_{out} = -R_f \cdot \left(\frac{V_1}{R_1} + \frac{V_2}{R_2} + \frac{V_3}{R_3} + \ldots \right) \quad \text{somma pesata delle tensioni in input}$$

Utilizzando il medesimo valore per resistenze di feedback e di input:

$$V_{out} = -(V_1 + V_2 + V_3 + \dots)$$

La "somma" in realtà è fatta dal corto fra gli *N* input. Il punto, di nuovo, è che l'output è fornito dall' op.amp. e quindi il carico è separato dagli input.

Amplificatore sommatore Possibili applicazioni

Sommatore di segnali da diverse sorgenti per analisi combinata

Digital-to-Analog converter (DAC)

I bit digitali di una parola sono convertiti in tensione in base alla loro posizione nella parola.

Integratore / Filtro passa basso

quindi:

$$\left|rac{ ilde{V}_{out}(f)}{ ilde{V}_{in}(f)}
ight|=rac{1}{2\pi RCf}=rac{1}{rac{f}{f_C}}$$
 con $f_C=rac{1}{2\pi RC}$

retta solo in scala log-log!

Integratore / Filtro passa basso

$$\left| \frac{\tilde{V}_{out}(f)}{\tilde{V}_{in}(f)} \right| = \frac{1}{2\pi RCf} = \frac{1}{\frac{f}{f_C}} \qquad f_C = \frac{1}{2\pi RC}$$

$$f_C = \frac{1}{2\pi RC}$$

a basse frequenze raggiungo la saturazione.

Integratore / Filtro passa basso

Aggiungo una resistenza ed estendo il calcolo precedente

$$rac{ ilde{V}_{out}(f)}{ ilde{V}_{in}(f)} = rac{Z_{out}}{Z_{in}} \quad egin{array}{c} Z_{in} = R_1 \ Z_{out} = Z_C \parallel Z_R \end{array}$$

$$\frac{\tilde{V}_{out}(f)}{\tilde{V}_{in}(f)} = \frac{Z_{out}}{Z_{in}} = \frac{\frac{1}{\frac{1}{R_2} + j\omega C}}{R_1} = \frac{\frac{R_2}{R_1}}{1 + j\omega R_2 C}$$

$$\left|\frac{\tilde{V}_{out}(f)}{\tilde{V}_{in}(f)}\right| = \frac{R_2}{R_1} \cdot \frac{1}{\sqrt{1 + (f/f_C)^2}} \quad f_c = \frac{1}{2\pi R_2 C}$$

A (dB) $\frac{R_2}{R_1}$ -20dB/decade $\approx \frac{1}{R_2C_1} \approx \frac{1}{R_1C}$

La resistenza di controllo regolarizza il guadagno a basse frequenze

$$z = x + iy \rightarrow |z| = \sqrt{x^2 + y^2}$$

Derivatore/ Filtro passa alto

$$\left| \frac{\tilde{V}_{out}(f)}{\tilde{V}_{in}(f)} \right| = 2\pi RCf = \frac{f}{f_C}$$

$$f_C = \frac{1}{2\pi RC}$$

$$V_{out} = -RC \frac{\mathrm{d}V_{in}}{\mathrm{d}t}$$

Op-amp ideale: nessuna dipendenza da f, amplifica ugualmente segnali a qualunque frequenza

Op-amp reale: banda limitata, il guadagno a loop aperto dipende dalla frequenza del segnale

Risposta in frequenza di op-amp ideale (A infinito)

Guadagno a loop aperto di un op-amp reale

- massimo e "piatta" fino a c.a 10 Hz
- decresce con pendenza -20dB/decade

$$A_{0,f} = \frac{A_0}{(1+\beta A_0)} \qquad \omega_{C,f} = \omega_C(1+\beta A_0)$$

$$A_0 \cdot \omega_C = A_{0,f} \cdot \omega_{C,f} \quad \text{Gain-BandWidth (GBW) product}$$

$$A_0 \cdot \omega_C = A_{0,\,f} \cdot \omega_{C,\,f}$$
 Gain-BandWidth (GBW) product

In presenza di feedback (negativo), il guadagno dell'amplificatore diminuisce e la banda passante aumenta in maniera da mantenere costante il prodotto tra guadagno e banda passante

$$A_{0,f} = \frac{A_0}{(1+\beta A_0)} \qquad \omega_{C,f} = \omega_C(1+\beta A_0) \qquad \qquad \text{* vedi ultima slide}$$

$$A_0 \cdot \omega_C = A_{0,f} \cdot \omega_{C,f}$$
 Gain-BandWidth (GBW) product = GBP

frequenza a guadagno unitario

$$A_o \ \omega_c = \text{GBP} = 1 \ \omega_{c,fc}$$

$$A_o \ \omega_c = \omega_{c,fc} = 1 \ \text{MHz} = 10^6 \ \text{Hz}$$

$$A_o \ \omega_c = 10^5 \ \omega_c = 10 \ \text{Hz}$$

$$\Rightarrow \omega_c = 10 \ \text{Hz}$$

Table 3. Electrical characteristics at $V_{CC} = \pm 15 \text{ V}$, $T_{amb} = 25 \text{ °C}$ (unless otherwise specified) (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit
GBP	Gain bandwidth product V_i = 10 mV, R_L = 2 k Ω , C_L = 100 pF, f =100 kHz	0.7	1		MHz
A _{vd}	Large signal voltage gain (V_o = ±10 V, R_L = 2 k Ω) T_{amb} = +25 °C $T_{min} \le T_{amb} \le T_{max}$	50 25	200		V/mV

https://www.st.com/content/ccc/resource/technical/document/datasheet/group1/d6/9e/4e/8a/fa/65/4c/d0/CD00001252/files/CD00001252.pdf/jcr:content/translations/en.CD00001252.pdf

Table 3. Electrical characteristics at $V_{CC} = \pm 15 \text{ V}$, $T_{amb} = 25 \text{ °C}$ (unless otherwise specified) (continued)

Symbol	Parameter	Min.	Тур.	Max.	Unit
GBP	Gain bandwidth product V_i = 10 mV, R_L = 2 k Ω , C_L = 100 pF, f =100 kHz	0.7	1		MHz
THD	Total harmonic distortion $f=1\text{ kHz, }A_{V}=20\text{ dB, }R_{L}=2\text{ k}\Omega,V_{O}=2V_{pp},C_{L}=100\text{ pF,}\\ T_{amb}=+25^{\circ}\text{ C}$		0.06		%
e _n	Equivalent input noise voltage $f = 1 \text{ kHz}, R_s = 100 \Omega$		23		$\frac{\text{nV}}{\sqrt{\text{Hz}}}$
Øm	Phase margin		50		Degree

Op-amp ideale: nessuna dipendenza da f, amplifica ugualmente segnali a qualunque frequenza

Op-amp reale: banda limitata, il guadagno a loop aperto dipende dalla frequenza del segnale

Risposta in frequenza di op-amp ideale (A infinito)

Guadagno a loop aperto di un op-amp reale

- massimo e "piatta" fino a c.a 10 Hz
- decresce con pendenza -20dB/decade (*)

^{*} GBP determina il "termine noto" (o comunque la frequenza a guadagno unitario): la pendenza viene solamente dalla scala log-log!

Verifichiamo la risposta in frequenza di un op-amp con feedback negativo

$$A_f = \frac{x_o}{x_s} = \frac{A}{1 + \beta A}$$
 $\frac{A}{\beta}$ guadagno a loop aperto β guadagno rete feedback

$$G=rac{1}{1+j\omega/\omega_C}$$
 G attenuazione filtro passa basso 1° ordine G' ordine G'

$$A_f(\omega) = \frac{A(\omega)}{1 + \beta A(\omega)} = \frac{\frac{A_0}{1 + j\frac{\omega}{\omega_C}}}{1 + \frac{\beta A_0}{1 + j\frac{\omega}{\omega_C}}} = \frac{A_0}{1 + \beta A_0 + j\frac{\omega}{\omega_C}}$$

$$= \frac{\frac{A_0}{1+\beta A_0}}{1+j\frac{\omega}{\omega_C(1+\beta A_0)}} = \frac{A_{0,f}}{1+\frac{\omega}{\omega_C f}}$$

* divido sopra e sotto per 1 + beta A0

$$A_{0,f} = rac{A_0}{(1+eta A_0)}$$
 guadagno di feedback

$$\omega_{C,f} = \omega_C (1 + \beta A_0)$$
 frequenza di taglio di feedback