高温超导体材料临界转变温度的测定 实验报告

姓名: 王炜致 学号: 2022010542 实验日期: 2024.4.9 实验台号: 5

1 实验目的

超导现象是指材料低于某一临界温度时电阻变为零的现象,这一温度称为超导转变温度(Tc)。零电阻和完全抗磁性是超导材料的两个基本特性。高温超导材料是指转变温度 Tc 超过液氮温度的超导材料。

本实验通过学习超导体的基本概念,理解理想导体与超导体的区别,加深对超导材料两个基本特性的认识。使用液氮冷却高温超导样品、用铂电阻温度计测量温度,初步了解低温技术。用四引线法测量高温超导样品的电阻一温度特性,观察零电阻现象。用电磁感应法测量超导样品对互感线圈感应电压的影响,通过得到的感应电压—温度特性,了解完全抗磁性。

2 实验仪器

稳压稳流直流电源(艾德克斯 IT6333A/B, CH1: 60V3A, CH2: 60V3A, CH3: 5V3A);

信号发生器 (泰克 AFG1062, 双通道, 60 MHz, 采样率 300 MS/s);

5 位半数字万用表 (Fluke F8808A); 4 位半数字万用表 (胜利 Victor 8145B/C);

手持数字万用表(胜利 VC9806+, 四位半);液氮罐(3L);

测试头;测试头接线盒;电阻板,装有 10 个串联的 $1 \text{ k}\Omega$ 电阻和 10 个串联的 100 Ω 电阻;

双刀双掷换向开关; 导线; BNC-香蕉头导线 1 根。

3 数据处理与分析

电源输出设置: CH1:10V/0.005A;CH3:1V/1A

3.1 万用表测量导线/引线电阻及超导样品电阻

- 1. 数字万用表两条测试导线电阻: $R_{testwire} = 0.044\Omega$
- 2. 超导盒与样品间的引线电阻: $R_{wire} = 0.456 0.044 = 0.412\Omega$
- 3. 四引线法测量室温下超导样品电阻 R_{Super}

电源 CH3: 工作模式恒流,输出电压 $U_{CH3} = \underline{552}mV_{,}$,输出电流 $I_{CH3} = \underline{1000}mA$

超导样品上的电压 $U_{Super} = 0.306 mV$,样品电阻 $R_{Super} = 0.306 m\Omega$

4. 测试导线电阻、引线电阻、超导样品电阻量级比较

导线、引线电阻较超导样品电阻(室温)大 2-3 个数量级,可见导线、引线电阻确实对超导样品电阻测量造成极大影响。这就验证了使用四引线法测量的必要性。

3 数据处理与分析 2

3.2 电流换向法消除乱真电势的影响

1. 测量电压 $U_{Meas1} = \underline{0.306} mV$, $U_{Meas2} = -0.310 mV$,电流 $I = \underline{1000} mA$

乱真电势 $U_{Spur}=\frac{0.306-0.310}{2}=-0.002mV$,样品电压 $U_{Super}=\underline{0.308}mV$,样品电阻 $R_{Super}=\underline{0.308m}\Omega$

2. 乱真电势与样品上电压的数量级比较

乱真电势较超导样品上电压小 2 个数量级, 对超导样品上电压测量乃至超导样品电阻测量仍存在一定影响。

3.3 铂电阻温度计测量温度

1. 限流电阻 $R = \underline{10k}\Omega$,在 77K-室温范围铂电阻工作电流的变化 $\underline{0.9978 - 0.9892} = 8.58 \times 10^{-4} mA$ CH1 应恒压输出 10.000V,为使输出电流为 1mA,近似有限流电阻

$$R = \frac{U_{CH1}}{I_{CH1}} = 10k\Omega$$

由于铂电阻远小于该限流电阻值, CH1 输出电流应当可以近似视为 1mA。事实上, 将温度代入讲义公式

$$R_t = R_0[1 + At + Bt^2 + Ct^3(t - 100)]$$

得到 77K 温度下铂电阻 $R_{77K} \approx 22.0517\Omega$,室温下铂电阻 $R_{23^{\circ}C} \approx 108.9589\Omega$,由 $U_{CH1} = 10.000V$, $R = 10k\Omega$ 计算得

$$I_{77K} \approx 0.9978mA, I_{23^{\circ}C} \approx 0.9892mA$$

可以判断电流实际工作值应当与预设值偏差很小。

2. 计算室温 (23°C) 时铂电阻上的电压: $U_{t-calc} = \underline{107.7845} mV$ 取上述数据,由分压规律

$$U_{t-calc} = \frac{R_{23^{\circ}\text{C}}}{R_{23^{\circ}\text{C}} + R} U_{CH1} = \frac{108.9589}{108.9589 + 10k} \times 10.000V \approx 107.7845 mV$$

3. 室温下铂电阻两端的电压测量值: $U_{t-real} = 109.63 mV$

示数与计算结果接近 (实验时室温约为 25℃), 表明电路没有问题。

4. 电源 CH1: 工作模式恒压,输出电压 $U_{CH1} = 10.000V$,输出电流 $I_{CH1} = 1mA$

3.4 电磁感应法测超导样品对感应电压的影响

信号源设置:输出波形正弦波,频率 f=700Hz,幅度 $V_{pp}=2000mV$

线圈感应电压: $U_m = 20.34mV$

3.5 样品超导转变温度测量

1. 查附表 1 预估铂电阻电压 $U_{t=-150^{\circ}\mathrm{C}}=40.07mV$, $U_{t=-170^{\circ}\mathrm{C}}=31.89mV$

数据记录间隔参考下述规划: 在 U_{Super} 相对 U_t 变化较缓慢的阶段,记录数据间隔取 $\Delta t \approx 2^{\circ}$ C,在变化较快的阶段记录数据间隔取 $\Delta t \approx 0.1^{\circ}$ C。又读表知:温度每上升 1° C,铂电阻阻值约增加 0.4Ω ,则由通过铂电阻电流 $I_{CH1}=1mA$ 知变化缓慢阶段应间隔 $\Delta U_t=1mA\cdot 0.4\Omega\cdot 2=0.8mV$ 记录数据,变化较快阶段应间隔 $\Delta U_t=1mA\cdot 0.4\Omega\cdot 0.1=0.04mV$ 记录数据。

2. 降温测量(略)

3 数据处理与分析 3

3. 进入超导态后的乱真电势

电压 $U_{Meas1}=\underline{0.000}mV$, $U_{Meas2}=\underline{0.000}mV$, 电流 $I=\underline{1000}mA$ 乱真电势 $U_{Spur}=\underline{0.000}mV$,样品电压 $U_{Super}=\underline{0.000}mV$,样品电阻 $R_{Super}=\underline{0.000m}\Omega$

可见乱真电势与超导转变后样品电压可能处于同一数量级。

4. 升温测量

测量数据记录如下。由于 $I_{CH1}=1mA$,不同温度下铂电阻阻值 R_t 和 U_t 栏所填在数值上相同(如 29.83mV 对应 29.83 Ω),不予单独列表。又由于 $I_{CH3}=1000mA$,且乱真电势为 0,不同温度下超导样品阻值和 U_{Super} 在数值上相同(如 0.026mV 对应 0.026m Ω),亦不予单独列表。

	U_t/mV	29.83	30.64	31.44	32.25	33.05	33.92	34.03	34.14	34.25	34.30	
$U_{\mathcal{S}}$	Super/mV	-0.001	-0.001	-0.001	-0.001	-0.001	-0.001 0.000		0.001	0.002	0.003	
	U_m/mV	20.45	20.49	20.56	20.66	20.85	21.26	21.36	21.46	21.61	21.69	
	U_t/mV	34.35	34.40	34.46	34.51	34.61	34.66	34.72	34.80	34.85	34.92	
	U_{Super}/mV	0.004	0.004	0.005	0.007	0.008	0.010	0.012	0.015	0.018	0.022	
	U_m/mV	21.76	21.87	21.98	22.10	22.30	22.43	22.55	22.72	22.81	22.90	
_												
	U_t/mV	34.98	35.04	35.10	35.16	35.22	35.28	35.33	35.40	35.49	35.56	
i	U_{Super}/mV	0.026	0.030	0.035	0.044	0.050	0.060	0.066	0.075	0.083	0.088	
	U_m/mV	22.96	23.00	23.04	23.06	23.07	23.08	23.08	23.09	23.09	23.09	
					,	·		,				
	U_t/mV	35.64	35.72	35.78	35.90	36.04	36.22	36.42	36.63	36.83	37.62	
i	U_{Super}/mV	0.092	0.095	0.097	0.098	0.099	0.100	0.100	0.101	0.102	0.104	
	U_m/mV	23.08	23.08	23.08	23.08	23.07	23.07	23.06	23.06	23.05	23.03	
			U_t/mV	38.42	39.22	40.02	42.44	44.40	45.54			
		U_{Su}	$_{per}/mV$	0.105	0.107	0.109	0.116	0.120	0.123			
		U	U_m/mV		22.97	22.94	22.85	22.79	22.75			

利用讲义公式

 U_m/mV

$$t = \frac{-A + \sqrt{A^2 - 4B(1 - 0.01R_t)}}{2B}$$

可通过铂电阻阻值计算对应温度。处理后数据列表如下。

21.76

21.87

21.98

t/°C	-175.01	-173.04	-171.10	-169.12	-167.17	-165.05	-164.78	-164.51	-164.25	-164.12
R_t/Ω	29.83	30.64	31.44	32.25	33.05	33.92	34.03	34.14	34.25	34.30
$R_{Super}/m\Omega$	-0.001	-0.001	-0.001	-0.001	-0.001	0.000	0.000	0.001	0.002	0.003
U_m/mV	20.45	20.49	20.56	20.66	20.85	21.26	21.36	21.46	21.61	21.69
t/°C	-164.00	-163.88	-163.73	-163.61	-163.37	-163.24	-163.10	-162.90	-162.78	-162.61
R_t/Ω	34.35	34.40	34.46	34.51	34.61	34.66	34.72	34.80	34.85	34.92
$R_{Super}/m\Omega$	0.004	0.004	0.005	0.007	0.008	0.010	0.012	0.015	0.018	0.022

22.30

22.43

22.55

22.72

22.81

22.90

22.10

3 数据处理与分析 4

t/°C	-162.46	-162.32	-162.17	-162.02	-161.88	-161.73	-161.61	-161.44	-161.22	-161.05
R_t/Ω	34.98	35.04	35.10	35.16	35.22	35.28	35.33	35.40	35.49	35.56
$R_{Super}/m\Omega$	0.026	0.030	0.035	0.044	0.050	0.060	0.066	0.075	0.083	0.088
U_m/mV	22.96	23.00	23.04	23.06	23.07	23.08	23.08	23.09	23.09	23.09
t/°C	-160.85	-160.66	-160.51	-160.22	-159.87	-159.44	-158.95	-158.43	-157.94	-156.01
R_t/Ω	35.64	35.72	35.78	35.90	36.04	36.22	36.42	36.63	36.83	37.62
$R_{Super}/m\Omega$	0.092	0.095	0.097	0.098	0.099	0.100	0.100	0.101	0.102	0.104
U_m/mV	23.08	23.08	23.08	23.08	23.07	23.07	23.06	23.06	23.05	23.03

t/°C	-154.06	-152.10	-150.14	-144.20	-139.39	-136.59
R_t/Ω	38.42	39.22	40.02	42.44	44.40	45.54
$R_{Super}/m\Omega$	0.105	0.107	0.109	0.116	0.120	0.123
U_m/mV	23.00	22.97	22.94	22.85	22.79	22.75

3.5.1 $R_{Super}-t$ 曲线

图 1: $R_{Super} - t$ 曲线

由图可见, 超导中点转变温度

$$T_c^{middle} = T_{50\%R} = -161.88^{\circ}\text{C}$$

4 实验总结 5

超导完全转变温度

$$T_c^0 = -167.17$$
°C

超导起始转变温度

$$T_c^{onset} = T_R = -158.95$$
°C

转变宽度

$$\Delta T_c = T_{90\%R} - T_{10\%R} = -160.85$$
°C + 163.24°C = 2.39°C

3.5.2 $U_m - t$ 曲线

图 2: $U_m - t$ 曲线

可见样品进入超导状态后,线圈感应电压发生显著降低,事实上是完全抗磁性的体现。但由于超导样品尺寸较小且处于两个线圈之间,并没有将初级线圈与次级线圈完全屏蔽隔离,在样品进入超导态后,次级线圈仍能感应出电压,属于正常现象。

4 实验总结

通过本次实验,我了解了超导材料零电阻效应及迈斯纳效应两种基本性质,了解了利用四引线法、电流换向法进行精确测量的原理及方法,了解了通过电学方法(铂电阻温度计)测量温度的技术,了解了低温实验的基本操作,切实体会到超导材料在低温环境下性质的转变情况。同时,我巩固了 Origin 绘图工具的使用技能。

5 原始数据记录 6

5 原始数据记录

注:图中 C、铂电阻温度计测量温度部分,工作电流变化计算有误,以前文电子版为准。

2024 春物理实验 B(2)课程资料					20	24 春物理	上实验 B(2)	课程资料				
附录 2 实验测量数据记录参考实格 实验题目, <u>测生高温起导材料的转变温度</u> 维名, <u>全样数,</u> 学与2020-105种3 实验图号, <u>第</u> 二统上,实验台号, <u>5</u> ,实验台则 2024/4/9	JmA JA	U _t /mV U _{Super} /mV U _m /mV										
电源輸出设置、CHI: <u>fo V/_0.05</u> A; CH3: <u>/ V/_/</u> A A. 万用表測量等級引致电阻及超等得品电阻 1. 数字万用表离系素が安全电阻。 R _{moter} = 0.0 ΨΨ Ω		U _t /mV U _{Super} /mV									110	
2. 超野産与料品同的引致电阻: R _{ctor} = 0. 475 − 0. 412 L 3. 四引致法测量電温下超料品电阻 R _{ctor} - 0. 415 − 0. 412 L 4. 25 − 0. 412			nast= 0.00	mV,						L源屏幕显 R _{Super} =		
B、电流换向法消除乱真电势的影响	10000	4. 升温测	型 29.8¥m	v								
1.测量电压 U _{Messi} = <u>0.306</u> mV, U _{Messi} = <u>-0.310</u> mV, 电流 I= <u>/000</u> mA (电源屏幕显示值)		U _t /mV			31.44	32.25	33.05	33.92	34.03	34.14	34.25	34.30
乱真电势 U _{Spec} ⁶ 2.002 mV、样品电压 U _{Spec} = 0.30 g mV、样品电阻 R _{Spec} 0.30 g mV、 2.思考: 乱真电势 与样品上电压的数量级比较! U _{Spec} + U _{Spec} = U _{redic} b U _{Spec} = U _b = IR _{Super}		U _{Super} /mV	-0.00	-0.00	-0.001	-0.00	-0.00	0.000	0.000	0.00	0.002	0.00}
C. 铂电阻温度计测量温度 Usuper + Uspur = United S Usuper = United S		Um/mV	20.45	20.49	20.56	20.66	20.85	21.26	21.36	21.46	21.61	21.69
 (a.) 141年 展成电阻 R = 1ck Ω. 在77K-室蓋高階的电阻工作电流的变化 3. (+ 2 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 × 1 ×		U_t/mV $U_{\text{Super}}/\text{mV}$ U_{m}/mV	0.004	0.004	0.005	0.007	0.008	0.010	0.0/2	34.80	0.018	0.022
D、电磁感应法测超导样品对感应电压的影响		U _t /mV						1000		35.40	1 1	
信号羅设置,输出波形 <u>飞移的</u> 、 频率 f = <u>70○</u> Hz, 棚度 V _{v0} = <u>2∞∞</u> mV 线圈修应电压; U _o = 20.3 ¥ mV	10000	U _{Super} /mV		1			-				- 1	_
	100000	U _m /mV										
~ a(K・料品理 特交通度測数 · laf. 1		皇%,2	65°C,34	.00mV					6.22	36.42	36.63	36.83
变化较换的阶段记录数据阀雕取 Δ = 0.1 ° C	À1-											0.102
Usque/mV	-4:1-											23.05
发展 Un/mV	7054		17.62	38.	42 3	39.22	. 40	.02	42.44	44.4	9 4	17
St: 2°C, SUC=IMA-04R-2= NBMVSS			0.104	0 - 1	.5	0.107	0.1	109	0.116	0.120	0.	123
-55- At =0.1°C, Alt = /m/ .0.40.0.1 = 0.04 mV	(23,01	21	00	22 97	56	911		22.79		. 25