Package 'autostats'

June 7, 2024

Type Package
Title Auto Stats
Version 0.4.1

Maintainer Harrison Tietze harrison4192@gmail.com

Description Automatically do statistical exploration. Create formulas using 'tidyselect' syntax, and then determine cross-validated model accuracy and variable contributions using 'glm' and 'xgboost'. Contains additional helper functions to create and modify formulas. Has a flagship function to quickly determine relationships between categorical and continuous variables in the data set.

Encoding UTF-8

Imports dplyr, stringr, tidyselect, purrr, janitor, tibble, rlang, stats, rlist, broom, magrittr, ggeasy, ggplot2, jtools, gtools, ggthemes, patchwork, tidyr, xgboost, parsnip, recipes, rsample, tune, workflows, framecleaner, presenter, yardstick, dials, party, data.table, nnet, recosystem, Ckmeans.1d.dp, broom.mixed, igraph

RoxygenNote 7.3.1

URL https://harrison4192.github.io/autostats/,
 https://github.com/Harrison4192/autostats

BugReports https://github.com/Harrison4192/autostats/issues

Suggests knitr, rmarkdown, forcats, parallel, doParallel, hardhat, flextable, glmnet, ggstance, Matrix, BBmisc, readr, lubridate, ranger, XICOR

VignetteBuilder knitr

License MIT + file LICENSE

NeedsCompilation no

Author Harrison Tietze [aut, cre]

Depends R (>= 3.5.0)

Repository CRAN

Date/Publication 2024-06-04 09:44:44 UTC

2 auto_anova

Contents

Index		29
	visualize_model	27
	tidy_xgboost	25
	tidy_shap	24
	tidy_predict	22
	tidy_glm	21
	tidy_formula	20
	tidy_ctree	19
	tidy_cforest	18
	impute_recosystem	17
	get_params	16
	$f_modify_formula \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots \ldots$	15
	f_formula_to_charvec	15
	$f_charvec_to_formula \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	14
	eval_preds	14
	create_monotone_constraints	13
	cap_outliers	12
	auto_variable_contributions	11
	auto_t_test	
	auto_tune_xgboost	
	auto_model_accuracy	
	auto_cor	
	auto_boxplot	
	auto_anova	2

Description

auto_anova

A wrapper around lm and anova to run a regression of a continuous variable against categorical variables. Used for determining the whether the mean of a continuous variable is statistically significant amongst different levels of a categorical variable.

Usage

```
auto_anova(
  data,
  ...,
  baseline = c("mean", "median", "first_level", "user_supplied"),
  user_supplied_baseline = NULL,
  sparse = FALSE,
  pval_thresh = 0.1
)
```

auto anova

auto_anova 3

Arguments

data a data frame

... tidyselect specification or cols

baseline choose from "mean", "median", "first_level", "user_supplied". what is the base-

line to compare each category to? can use the mean and median of the target

variable as a global baseline

user_supplied_baseline

if intercept is "user_supplied", can enter a numeric value

sparse default FALSE; if true returns a truncated output with only significant results

pval_thresh control significance level for sparse output filtering

Details

Columns can be inputted as unquoted names or tidyselect. Continuous and categorical variables are automatically determined. If no character or factor column is present, the column with the lowest amount of unique values will be considered the categorical variable.

Description of columns in the output

target continuous variables

predictor categorical variables

level levels in the categorical variables

estimate difference between level target mean and baseline

target_mean target mean per level

n rows in predictor level

std.error standard error of target in predictor level

level_p.value p.value for t.test of whether target mean differs significantly between level and baseline

level_significance level p.value represented by stars

predictor_p.value p.value for significance of entire predictor given by F test

predictor_significance predictor p.value represented by stars

conclusion text interpretation of tests

Value

data frame

```
iris %>%
auto_anova(tidyselect::everything()) -> iris_anova1
iris_anova1 %>%
print(width = Inf)
```

4 auto_boxplot

auto_boxplot

auto_boxplot

Description

Wraps geom_boxplot to simplify creating boxplots.

Usage

```
auto_boxplot(
    .data,
    continuous_outcome,
    categorical_variable,
    categorical_facets = NULL,
    alpha = 0.3,
    width = 0.15,
    color_dots = "black",
    color_box = "red"
)
```

Arguments

```
.data
                 data
continuous_outcome
                 continuous y variable. unquoted column name
categorical_variable
                 categorical x variable. unquoted column name
categorical_facets
                 categorical facet variable. unquoted column name
alpha
                 alpha points
width
                 width of jitter
color_dots
                 dot color
color_box
                 box color
```

Value

ggplot

```
iris %>%
auto_boxplot(continuous_outcome = Petal.Width, categorical_variable = Species)
```

auto_cor 5

auto_cor auto correlation

Description

Finds the correlation between numeric variables in a data frame, chosen using tidyselect. Additional parameters for the correlation test can be specified as in cor.test

Usage

```
auto_cor(
   .data,
   ...,
   use = c("pairwise.complete.obs", "all.obs", "complete.obs", "everything",
        "na.or.complete"),
   method = c("pearson", "kendall", "spearman", "xicor"),
   include_nominals = TRUE,
   max_levels = 5L,
   sparse = TRUE,
   pval_thresh = 0.1
)
```

Arguments

.data	data frame	
	tidyselect cols	
use	method to deal with na. Default is to remove rows with NA	
method	correlation method. default is pearson, but also supports xicor.	
include_nominals		
	logicals, default TRUE. Dummify nominal variables?	
max_levels	maximum numbers of dummies to be created from nominal variables	
sparse	logical, default TRUE. Filters and arranges cor table	
pval_thresh	threshold to filter out weak correlations	

Details

includes the asymmetric correlation coefficient xi from xicor

Value

data frame of correlations

Examples

```
iris %>%
auto_cor()

# don't use sparse if you're interested in only one target variable
iris %>%
auto_cor(sparse = FALSE) %>%
dplyr::filter(x == "Petal.Length")
```

auto_model_accuracy
auto model accuracy

Description

Runs a cross validated xgboost and regularized linear regression, and reports accuracy metrics. Automatically determines whether the provided formula is a regression or classification.

Usage

```
auto_model_accuracy(
  data,
  formula,
 n_folds = 4,
  as_flextable = TRUE,
  include_linear = FALSE,
  theme = "tron",
  seed = 1,
 mtry = 1,
  trees = 15L,
 min_n = 1L,
  tree_depth = 6L,
  learn_rate = 0.3,
  loss_reduction = 0,
  sample_size = 1,
  stop_iter = 10L,
  counts = FALSE,
 penalty = 0.015,
 mixture = 0.35
)
```

Arguments

```
data frame
formula formula
... any other params for xgboost
```

auto_tune_xgboost 7

n_folds number of cross validation folds

as_flextable if FALSE, returns a tibble

include_linear if TRUE includes a regularized linear model

theme make_flextable theme

seed seed

mtry # Randomly Selected Predictors; defaults to .75; (xgboost: colsample_bynode)

(type: numeric, range 0 - 1) (or type: integer if count = TRUE)

trees # Trees (xgboost: nrounds) (type: integer, default: 500L)

min_n Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 2L);

[typical range: 2-10] Keep small value for highly imbalanced class data where leaf nodes can have smaller size groups. Otherwise increase size to prevent

overfitting outliers.

tree_depth Tree Depth (xgboost: max_depth) (type: integer, default: 7L); Typical values:

3-10

learn_rate Learning Rate (xgboost: eta) (type: double, default: 0.05); Typical values: 0.01-

0.3

loss_reduction Minimum Loss Reduction (xgboost: gamma) (type: double, default: 1.0); range:

0 to Inf; typical value: 0 - 20 assuming low-mid tree depth

sample_size Proportion Observations Sampled (xgboost: subsample) (type: double, default:

.75); Typical values: 0.5 - 1

stop_iter # Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L)

only enabled if validation set is provided

counts if TRUE specify mtry as an integer number of cols. Default FALSE to specify

mtry as fraction of cols from 0 to 1

penalty linear regularization parameter

mixture linear model parameter, combines 11 and 12 regularization

Value

a table

auto_tune_xgboost

Description

Automatically tunes an xgboost model using grid or bayesian optimization

8 auto_tune_xgboost

Usage

```
auto_tune_xgboost(
  .data,
  formula,
  tune_method = c("grid", "bayes"),
  event_level = c("first", "second"),
  n_fold = 5L,
  n_{iter} = 100L,
  seed = 1,
  save_output = FALSE,
  parallel = TRUE,
  trees = tune::tune(),
 min_n = tune::tune(),
 mtry = tune::tune(),
  tree_depth = tune::tune(),
  learn_rate = tune::tune(),
  loss_reduction = tune::tune(),
  sample_size = tune::tune(),
  stop_iter = tune::tune(),
  counts = FALSE,
  tree_method = c("auto", "exact", "approx", "hist", "gpu_hist"),
  monotone_constraints = 0L,
  num_parallel_tree = 1L,
  lambda = 1,
  alpha = 0,
  scale_pos_weight = 1,
  verbosity = 0L
)
```

Arguments

.data	dataframe
formula	formula
tune_method	method of tuning. defaults to grid
event_level	for binary classification, which factor level is the positive class. specify "second" for second level
n_fold	integer. n folds in resamples
n_iter	n iterations for tuning (bayes); paramter grid size (grid)
seed	seed
save_output	FASLE. If set to TRUE will write the output as an rds file
parallel	default TRUE; If set to TRUE, will enable parallel processing on resamples for grid tuning
trees	# Trees (xgboost: nrounds) (type: integer, default: 500L)
min_n	Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 2L); [typical range: 2-10] Keep small value for highly imbalanced class data where

auto_tune_xgboost 9

leaf nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.

mtry # Randomly Selected Predictors; defaults to .75; (xgboost: colsample_bynode)

(type: numeric, range 0 - 1) (or type: integer if count = TRUE)

tree_depth Tree Depth (xgboost: max_depth) (type: integer, default: 7L); Typical values:

3-10

learn_rate Learning Rate (xgboost: eta) (type: double, default: 0.05); Typical values: 0.01-

0.3

loss_reduction Minimum Loss Reduction (xgboost: gamma) (type: double, default: 1.0); range:

0 to Inf; typical value: 0 - 20 assuming low-mid tree depth

sample_size Proportion Observations Sampled (xgboost: subsample) (type: double, default:

.75); Typical values: 0.5 - 1

stop_iter # Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L)

only enabled if validation set is provided

counts if TRUE specify mtry as an integer number of cols. Default FALSE to specify

mtry as fraction of cols from 0 to 1

tree_method xgboost tree_method. default is auto. reference: tree method docs

monotone_constraints

an integer vector with length of the predictor cols, of -1, 1, 0 corresponding to decreasing, increasing, and no constraint respectively for the index of the

predictor col. reference: monotonicity docs.

num_parallel_tree

should be set to the size of the forest being trained. default 1L

lambda [default=.5] L2 regularization term on weights. Increasing this value will make

model more conservative.

alpha [default=.1] L1 regularization term on weights. Increasing this value will make

model more conservative.

scale_pos_weight

[default=1] Control the balance of positive and negative weights, useful for unbalanced classes. if set to TRUE, calculates sum(negative instances) / sum(positive instances). If first level is majority class, use values < 1, otherwise normally val-

ues >1 are used to balance the class distribution.

verbosity [default=1] Verbosity of printing messages. Valid values are 0 (silent), 1 (warn-

ing), 2 (info), 3 (debug).

Details

Default is to tune all 7 xgboost parameters. Individual parameter values can be optionally fixed to reduce tuning complexity.

Value

workflow object

10 auto_t_test

Examples

```
iris %>%
framecleaner::create_dummies() -> iris1
iris1 %>%
tidy_formula(target = Petal.Length) -> petal_form
iris1 %>%
rsample::initial_split() -> iris_split
iris_split %>%
rsample::analysis() -> iris_train
iris_split %>%
rsample::assessment() -> iris_val
## Not run:
iris_train %>%
auto_tune_xgboost(formula = petal_form, n_iter = 10,
parallel = FALSE, tune_method = "grid", mtry = .5) -> xgb_tuned
xgb_tuned %>%
parsnip::fit(iris_train) %>%
parsnip::extract_fit_engine() -> xgb_tuned_fit
xgb_tuned_fit %>%
tidy_predict(newdata = iris_val, form = petal_form) -> iris_val1
## End(Not run)
```

auto_t_test

auto t test

Description

Performs a t.test on 2 populations for numeric variables.

Usage

```
auto_t_test(data, col, ..., var_equal = FALSE, abbrv = TRUE)
```

Arguments

data

dataframe

col a column with 2 categories representing the 2 populations

... numeric variables to perform t.test on. Default is to select all numeric variables

var_equal default FALSE; t.test parameter

abbrv default TRUE; remove some extra columns from output

Value

dataframe

Examples

```
iris %>%
  dplyr::filter(Species != "setosa") %>%
  auto_t_test(col = Species)
```

auto_variable_contributions

Plot Variable Contributions

Description

Return a variable importance plot and coefficient plot from a linear model. Used to easily visualize the contributions of explanatory variables in a supervised model

Usage

```
auto_variable_contributions(data, formula, scale = TRUE)
```

Arguments

data dataframe formula

scale logical. If FALSE puts coefficients on original scale

Value

```
a ggplot object
```

cap_outliers

Examples

```
iris %>%
framecleaner::create_dummies() %>%
auto_variable_contributions(
  tidy_formula(., target = Petal.Width)
)
iris %>%
auto_variable_contributions(
tidy_formula(., target = Species)
)
```

cap_outliers

cap_outliers

Description

Caps the outliers of a numeric vector by percentiles. Also outputs a plot of the capped distribution

Usage

```
cap_outliers(x, q = 0.05, type = c("both", "upper", "lower"))
```

Arguments

x numeric vector

q decimal input to the quantile function to set cap. default .05 caps at the 95 and

5th percentile

type chr vector. where to cap: both, upper, or lower

Value

numeric vector

```
cap_outliers(iris$Petal.Width)
```

Description

helper function to create the integer vector to pass to the $monotone_constraints$ argument in xgboost

Usage

```
create_monotone_constraints(
   .data,
   formula,
   decreasing = NULL,
   increasing = NULL
)
```

Arguments

. data dataframe, training data for tidy_xgboost

formula used for tidy_xgboost

decreasing character vector or tidyselect regular expression to designate decreasing cols character vector or tidyselect regular expression to designate increasing cols

Value

a named integer vector with entries of 0, 1, -1

f_charvec_to_formula

eval_preds

eval_preds

Description

Automatically evaluates predictions created by tidy_predict. No need to supply column names.

Usage

```
eval_preds(.data, ..., softprob_model = NULL)
```

Arguments

```
    .data dataframe as a result of tidy_predict
    ... additional metrics from yarstick to be calculated
    softprob_model character name of the model used to create multiclass probabilities
```

Value

tibble of summarized metrics

```
f_charvec_to_formula charvec to formula
```

Description

takes the lhs and rhs of a formula as character vectors and outputs a formula

Usage

```
f_charvec_to_formula(lhs, rhs)
```

Arguments

lhs lhs atomic chr vec rhs rhs chr vec

Value

formula

```
lhs <- "Species"
rhs <- c("Petal.Width", "Custom_Var")

f_charvec_to_formula(lhs, rhs)</pre>
```

f_formula_to_charvec 15

```
f_formula_to_charvec Formula_rhs to chr vec
```

Description

Accepts a formula and returns the rhs as a character vector.

Usage

```
f_formula_to_charvec(f, include_lhs = FALSE, .data = NULL)
```

Arguments

```
f formula
include_lhs FALSE. If TRUE, appends lhs to beginning of vector
.data dataframe for names if necessary
```

Value

chr vector

Examples

```
iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f
f %>%
f_formula_to_charvec()
```

f_modify_formula

Modify Formula

Description

Modify components of a formula by adding / removing vars from the rhs or replacing the lhs.

```
f_modify_formula(
   f,
   rhs_remove = NULL,
   rhs_add = NULL,
   lhs_replace = NULL,
   negate = TRUE
)
```

16 get_params

Arguments

f	formula
rhs_remove	regex or character vector for dropping variables from the rhs
rhs_add	character vector for adding variables to rhs
lhs_replace	string to replace formula lhs if supplied
negate	should rhs_remove keep or remove the specified vars. Set to FALSE to keep

Value

formula

Examples

```
iris %>%
tidy_formula(target = Species, tidyselect::everything()) -> f

f

f %>%
    f_modify_formula(
    rhs_remove = c("Petal.Width", "Sepal.Length"),
    rhs_add = "Custom_Variable"
)

f %>%
    f_modify_formula(
    rhs_remove = "Petal",
    lhs_replace = "Petal.Length"
)
```

get_params

get params

Description

s3 method to extract params of a model with names consistent for use in the 'autostats' package

```
get_params(model, ...)
## S3 method for class 'xgb.Booster'
get_params(model, ...)
## S3 method for class 'workflow'
get_params(model, ...)
```

impute_recosystem 17

Arguments

```
model a model ... additional arguments
```

Value

list of params

Examples

```
iris %>%
   framecleaner::create_dummies() -> iris_dummies

iris_dummies %>%
   tidy_formula(target = Petal.Length) -> p_form

iris_dummies %>%
   tidy_xgboost(p_form, mtry = .5, trees = 5L, loss_reduction = 2, sample_size = .7) -> xgb

## reuse these parameters to find the cross validated error

rlang::exec(auto_model_accuracy, data = iris_dummies, formula = p_form, !!!get_params(xgb))
```

impute_recosystem

impute_recosystem

Description

Imputes missing values of a numeric matrix using stochastic gradient descent. recosystem

```
impute_recosystem(
    .data,
    lrate = c(0.05, 0.1),
    costp_l1 = c(0, 0.05),
    costq_l1 = c(0, 0.05),
    costp_l2 = c(0, 0.05),
    costq_l2 = c(0, 0.05),
    nthread = 8,
    loss = "l2",
    niter = 15,
    verbose = FALSE,
    nfold = 4,
    seed = 1
)
```

18 tidy_cforest

Arguments

.data	long format data frame
lrate	learning rate
costp_l1	11 cost p
costq_l1	11 cost q
costp_12	12 cost p
costq_12	12 cost q
nthread	nthreads
loss	loss function. also can use "11"
niter	training iterations for tune
verbose	show training loss?
nfold	folds for tune validation
seed	seed for randomness

Details

input is a long data frame with 3 columns: ID col, Item col (the column names from pivoting longer), and the ratings (values from pivoting longer)

pre-processing generally requires pivoting a wide user x item matrix to long format. The missing values from the matrix must be retained as NA values in the rating column. The values will be predicted and filled in by the algorithm. Output is a long data frame with the same number of rows as input, but no missing values.

This function automatically tunes the recosystem learner before applying. Parameter values can be supplied for tuning. To avoid tuning, use single values for the parameters.

Value

long format data frame

Description

Runs a conditional inference forest.

```
tidy_cforest(data, formula, seed = 1)
```

tidy_ctree 19

Arguments

data dataframe formula formula seed seed integer

Value

a cforest model

Examples

```
iris %>%
tidy_cforest(
   tidy_formula(., Petal.Width)
) -> iris_cfor

iris_cfor

iris_cfor %>%
visualize_model()
```

tidy_ctree

tidy ctree

Description

tidy conditional inference tree. Creates easily interpretable decision tree models that be shown with the visualize_model function. Statistical significance required for a split, and minimum necessary samples in a terminal leaf can be controlled to create the desired tree visual.

Usage

```
tidy_ctree(.data, formula, minbucket = 7L, mincriterion = 0.95, ...)
```

Arguments

.data dataframe formula formula

minbucket minimum amount of samples in terminal leaves, default is 7

mincriterion (1 - alpha) value between 0 -1, default is .95. lowering this value creates more

splits, but less significant

... optional parameters to ctree_control

Value

a ctree object

20 tidy_formula

Examples

```
iris %>%
tidy_formula(., Sepal.Length) -> sepal_form
iris %>%
tidy_ctree(sepal_form) %>%
visualize_model()
iris %>%
tidy_ctree(sepal_form, minbucket = 30) %>%
visualize_model(plot_type = "box")
```

tidy_formula

tidy formula construction

Description

Takes a dataframe and allows for use of tidyselect to construct a formula.

Usage

```
tidy_formula(data, target, ...)
```

Arguments

data dataframe
target lhs
... tidyselect. rhs

Value

a formula

```
iris %>%
tidy_formula(Species, tidyselect::everything())
```

tidy_glm 21

 $tidy_glm$ tidy glm

Description

Runs either a linear regression, logistic regression, or multinomial classification. The model is automatically determined based off the nature of the target variable.

Usage

```
tidy_glm(data, formula)
```

Arguments

data dataframe formula formula

Value

glm model

```
# linear regression
iris %>%
tidy_glm(
tidy_formula(., target = Petal.Width)) -> glm1
glm1
glm1 %>%
visualize_model()
# multinomial classification
tidy_formula(iris, target = Species) -> species_form
iris %>%
tidy_glm(species_form) -> glm2
glm2 %>%
visualize_model()
# logistic regression
dplyr::filter(Species != "setosa") %>%
tidy_glm(species_form) -> glm3
```

22 tidy_predict

```
suppressWarnings({
glm3 %>%
visualize_model()})
```

tidy_predict

tidy predict

Description

tidy predict

```
tidy_predict(
 model,
 newdata,
 form = NULL,
 olddata = NULL,
 bind_preds = FALSE,
)
## S3 method for class 'Rcpp_ENSEMBLE'
tidy_predict(model, newdata, form = NULL, ...)
## S3 method for class 'glm'
tidy_predict(model, newdata, form = NULL, ...)
## Default S3 method:
tidy_predict(model, newdata, form = NULL, ...)
## S3 method for class 'BinaryTree'
tidy_predict(model, newdata, form = NULL, ...)
## S3 method for class 'xgb.Booster'
tidy_predict(
 model,
 newdata,
 form = NULL,
 olddata = NULL,
 bind_preds = FALSE,
)
## S3 method for class 'lgb.Booster'
tidy_predict(
 model,
```

tidy_predict 23

```
newdata,
form = NULL,
olddata = NULL,
bind_preds = FALSE,
...
)
```

Arguments

model model

newdata dataframe

form the formula used for the model

olddata training data set

bind_preds set to TURE if newdata is a dataset without any labels, to bind the new and old data with the predictions under the original target name

... other parameters to pass to predict

Value

dataframe

```
iris %>%
  framecleaner::create_dummies(Species) -> iris_dummy

iris_dummy %>%
  tidy_formula(target= Petal.Length) -> petal_form

iris_dummy %>%
  tidy_xgboost(
    petal_form,
    trees = 20,
    mtry = .5
) -> xg1

xg1 %>%
  tidy_predict(newdata = iris_dummy, form = petal_form) %>%
  head()
```

24 tidy_shap

|--|

Description

plot and summarize shapley values from an xgboost model

Usage

```
tidy_shap(model, newdata, form = NULL, ..., top_n = 12, aggregate = NULL)
```

Arguments

model xgboost model

newdata dataframe similar to model input

form formula used for model

... additional parameters for shapley value

top_n top n features

aggregate a character vector. Predictors containing the string will be aggregated, and re-

named to that string.

Details

returns a list with the following entries

shap_tbl: table of shaply values

shap_summary: table summarizing shapley values. Includes correlation between shaps and feature values.

swarmplot: one plot showing the relation between shaps and features

scatterplots: returns the top 9 most important features as determined by sum of absolute shapley values, as a facetted scatterplot of feature vs shap

Value

list

tidy_xgboost 25

boost	
boost	

Description

Accepts a formula to run an xgboost model. Automatically determines whether the formula is for classification or regression. Returns the xgboost model.

Usage

```
tidy_xgboost(
  .data,
  formula,
  . . . ,
 mtry = 0.75,
 trees = 500L,
 min_n = 2L,
  tree_depth = 7L,
  learn_rate = 0.05,
  loss_reduction = 1,
  sample_size = 0.75,
  stop_iter = 15L,
  counts = FALSE,
  tree_method = c("auto", "exact", "approx", "hist", "gpu_hist"),
 monotone_constraints = 0L,
  num_parallel_tree = 1L,
  lambda = 0.5,
  alpha = 0.1,
  scale_pos_weight = 1,
  verbosity = 0L,
  validate = TRUE,
 booster = c("gbtree", "gblinear")
)
```

Arguments

.data	dataframe
formula	formula
	additional parameters to be passed to set_engine
mtry	# Randomly Selected Predictors; defaults to .75; (xgboost: colsample_bynode) (type: numeric, range 0 - 1) (or type: integer if count = TRUE)
trees	# Trees (xgboost: nrounds) (type: integer, default: 500L)
min_n	Minimal Node Size (xgboost: min_child_weight) (type: integer, default: 2L); [typical range: 2-10] Keep small value for highly imbalanced class data where leaf nodes can have smaller size groups. Otherwise increase size to prevent overfitting outliers.

26 tidy_xgboost

tree_depth Tree Depth (xgboost: max_depth) (type: integer, default: 7L); Typical values:

3-10

learn_rate Learning Rate (xgboost: eta) (type: double, default: 0.05); Typical values: 0.01-

0.3

loss_reduction Minimum Loss Reduction (xgboost: gamma) (type: double, default: 1.0); range:

0 to Inf; typical value: 0 - 20 assuming low-mid tree depth

sample_size Proportion Observations Sampled (xgboost: subsample) (type: double, default:

.75); Typical values: 0.5 - 1

stop_iter # Iterations Before Stopping (xgboost: early_stop) (type: integer, default: 15L)

only enabled if validation set is provided

counts if TRUE specify mtry as an integer number of cols. Default FALSE to specify

mtry as fraction of cols from 0 to 1

tree_method xgboost tree_method. default is auto. reference: tree method docs

monotone_constraints

an integer vector with length of the predictor cols, of -1, 1, 0 corresponding to decreasing, increasing, and no constraint respectively for the index of the

predictor col. reference: monotonicity docs.

num_parallel_tree

should be set to the size of the forest being trained. default 1L

lambda [default=.5] L2 regularization term on weights. Increasing this value will make

model more conservative.

alpha [default=.1] L1 regularization term on weights. Increasing this value will make

model more conservative.

scale_pos_weight

[default=1] Control the balance of positive and negative weights, useful for unbalanced classes. if set to TRUE, calculates sum(negative instances) / sum(positive instances). If first level is majority class, use values < 1, otherwise normally val-

ues >1 are used to balance the class distribution.

verbosity [default=1] Verbosity of printing messages. Valid values are 0 (silent), 1 (warn-

ing), 2 (info), 3 (debug).

validate default TRUE. report accuracy metrics on a validation set.

booster defaults to 'gbtree' for tree boosting but can be set to 'gblinear'

Details

In binary classification the target variable must be a factor with the first level set to the event of interest. A higher probability will predict the first level.

reference for parameters: xgboost docs

Value

xgb.Booster model

visualize_model 27

Examples

```
options(rlang_trace_top_env = rlang::current_env())

# regression on numeric variable

iris %>%
    framecleaner::create_dummies(Species) -> iris_dummy

iris_dummy %>%
    tidy_formula(target= Petal.Length) -> petal_form

iris_dummy %>%
    tidy_xgboost(
    petal_form,
        trees = 20,
        mtry = .5
    ) -> xg1

xg1 %>%
    tidy_predict(newdata = iris_dummy, form = petal_form) -> iris_preds

iris_preds %>%
    eval_preds()
```

visualize_model

visualize model

Description

s3 method to automatically visualize the output of of a model object. Additional arguments can be supplied for the original function. Check the corresponding plot function documentation for any custom arguments.

```
visualize_model(model, ...)
## S3 method for class 'RandomForest'
visualize_model(model, ..., method)
## S3 method for class 'BinaryTree'
visualize_model(model, ..., method)
```

28 visualize_model

```
## S3 method for class 'glm'
   visualize_model(model, ..., method)
    ## S3 method for class 'multinom'
   visualize_model(model, ..., method)
   ## S3 method for class 'xgb.Booster'
   visualize_model(
     model,
      top_n = 10L,
      aggregate = NULL,
      as_table = FALSE,
      formula = NULL,
     measure = c("Gain", "Cover", "Frequency"),
      method
    )
    ## Default S3 method:
    visualize_model(model, ..., method)
Arguments
    model
                    a model
                    additional arguments
    . . .
                    choose amongst different visualization methods
   method
                    return top n elements
    top_n
    aggregate
                    = summarize
    as_table
                    = false, table or graph,
    formula
                    = formula,
                    = c("Gain", "Cover", "Frequency")
   measure
```

Value

a plot

Index

```
auto_anova, 2
auto_boxplot, 4
auto_cor, 5
auto_model_accuracy, 6
auto_t_test, 10
auto_tune_xgboost, 7
auto\_variable\_contributions, \\ 11
cap_outliers, 12
cor.test, 5
{\tt create\_monotone\_constraints}, 13
ctree_control, 19
eval_preds, 14
f_charvec_to_formula, 14
f_formula_to_charvec, 15
f_modify_formula, 15
geom_boxplot, 4
get_params, 16
impute_recosystem, 17
set_engine, 25
tidy_cforest, 18
tidy_ctree, 19
{\tt tidy\_formula, \textcolor{red}{20}}
tidy_glm, 21
tidy_predict, 14, 22
tidy_shap, 24
{\tt tidy\_xgboost}, {\color{red} 25}
visualize_model, 19,27
xicor, 5
```