Notas del curso Topología I

Cristo Daniel Alvarado

15 de marzo de 2024

Índice general

0.	Intr	oduccion	2
	0.1.	Temario	2
	0.2.	Bibliografía	2
1.	Con	ceptos Fundamentales	3
	1.1.	Fundamentos	3
	1.2.	Bases de una topología	16
	1.3.	Sub-bases	20
	1.4.	Subespacios topológicos	23
	1.5.	Relaciones de orden y la topología del orden	28
	1.6.	Estudio del espacio topológico $(\overline{\mathcal{S}_{\omega}}, \tau_{\prec})$	31
	1.7.	Funciones Continuas	33
	1.8.	Funciones abiertas, cerradas y homemorfismos	38
	1.9.	Topología Producto	41

Capítulo 0

Introduccion

0.1. Temario

Checar el Munkres

0.2. Bibliografía

- 1. J. R. Munkres 'Topología' Prentices Hall.
- 2. M. Gemignsni 'Elementary Topology' Dover.
- 3. J. Dugundji 'Topology' Allyn Bacon.

Capítulo 1

Conceptos Fundamentales

1.1. Fundamentos

Definición 1.1.1

Sea X un conjunto y \mathcal{A} una familia no vacía de subconjuntos de X. Definamos los **complementos** de \mathcal{A}

$$\mathcal{A}' := \left\{ X - A \middle| A \in \mathcal{A} \right\}$$

(básicamente es el conjunto de todos los complementos de los conjuntos en \mathcal{A}). Para no perder ambiguedad, no denotaremos al complemento de un conjunto por B^c , sino por X - B (para denotar quien es el conjunto sobre el que se toma el complemento del conjunto).

La unión de los elementos de A se define como el conjunto:

$$\bigcup \mathcal{A} = \bigcup_{A \in \mathcal{A}} A = \left\{ x \in X \middle| x \in A \text{ para algún elemento } A \in \mathcal{A} \right\}$$

denotada por el símbolo de la izquierda.

La intersección de los elementos de A se define como el conjunto:

$$\bigcap \mathcal{A} = \bigcap_{A \in \mathcal{A}} A = \left\{ x \in X \middle| x \in A \text{ para todo elemento } A \in \mathcal{A} \right\}$$

Observación 1.1.1

En caso de que la colección \mathcal{A} sea vacía, no se puede hacer lo que marca la definición anterior. Como \mathcal{A} es vacía, entonces \mathcal{A}' también es vacía.

- 1. Suponga que $\cup A \neq \emptyset$, entonces existe $x \in X$ tal que $x \in \cup A$, luego existe algún elemento $A \in A$ tal que $x \in A$, pero esto no puede suceder, pues la familia A es vacía. $\#_c$. Por tanto, $\cup A = \emptyset$.
- 2. Ahora, si aplicamos las leyes de Morgan, y tomamos

$$X - \cap \mathcal{A} = X - \cap \emptyset = \cup \emptyset' = \cup \emptyset = \emptyset$$

luego, $\cap \mathcal{A} = X$.

En definitiva, si \mathcal{A} es una colección vacía, entonces definimos $\cup \mathcal{A} = \emptyset$ y $\cap \mathcal{A} = X$.

La observación junto con la definición anterior se usarán a lo largo de todo el curos y serán de utilidad.

Definición 1.1.2

Sea X un conjunto y sea τ una familia de subconjuntos de X. Se dice que τ es una **una topología** definida sobre X si se cumple lo siguiente:

- 1. $\emptyset, X \in \tau$.
- 2. Si \mathcal{A} es una subcolección de τ , entonces $\bigcup \mathcal{A} \in \tau$.
- 3. Si $A, B \in \tau$, entonces $A \cap B \in \tau$.

Observación 1.1.2

En algunos libros viejos viene la siguiente condición adicional a la definición:

4. Si $p, q \in X$ con $p \neq q$, entonces existen $U, V \in \tau$ tales que $p \in U, q \in V$ y $U \cap V = \emptyset$.

en este caso se dirá que el espacio es Hausdorff.

Observación 1.1.3

Se tienen las siguientes observaciones:

1. Sea X un conjunto y A una familia de subconjuntos de X. Si

$$\mathcal{A} = \{ A_{\alpha} | \alpha \in I \}$$

entonces podemos escribir

$$\bigcup \mathcal{A} = \bigcup_{A \in \mathcal{A}} A = \bigcup_{\alpha \in I} A_{\alpha}$$

e igual con la intersección:

$$\bigcap \mathcal{A} = \bigcap_{A \in \mathcal{A}} A = \bigcap_{\alpha \in I} A_{\alpha}$$

Si \mathcal{A} es una familia vacía, y se toma como definición lo dicho en la observación 1.0.1, entonces podemos omitir el primer inciso de la definición anterior.

2. Si τ es una topología sobre X y para $n \in \mathbb{N}$, $A_1, ..., A_n \in \tau$, entonces $A_1 \cap ... \cap A_n \in \tau$.

Ejemplo 1.1.1

Sea X un conjunto no vacío.

- 1. El conjunto potencia (denotado por \mathcal{P}) de X es una topología sobre X, la cual se llama la **topología discreta**, y se denota por τ_D .
- 2. La colección formada únicamente por X y \emptyset es una topolgía sobre X, es decir $\tau = {\emptyset, X}$ es llamada la **topología indiscreta**, y se escribe como τ_I .
- 3. En el caso de que $X = \{1\}$, se tendría que $\tau_D = \{\emptyset, \{1\}\}\$ y $\tau_I = \{\emptyset, \{1\}\}\}$. Si $X = \{1, \zeta\}$, entonces $\tau_D = \{\emptyset, \{1\}, \{\zeta\}, \{1, \zeta\}\}\$ y $\tau_I = \{\emptyset, \{1, \zeta\}\}$.
- 4. Si τ es una topología sobre X, entonces

$$\tau_I \subset \tau \subset \tau_D$$

4

5. Sea $a \in X$. Entonces $\tau = \{\emptyset, X, \{a\}, \}$ es una topología sobre X.

6. Sea $A \subseteq X$ y sea $\tau(A) = \{B \subseteq X | A \subseteq B\} \cup \{\emptyset\}$. Esta familia $\tau(A)$ es una topología sobre X.

Solución:

Para el inciso 6., veamos que $\tau(A)$ es una topología sobre X. En efecto, verificaremos que se cumplen las 3 condiciones:

- 1. Claro que $\emptyset \in \tau(A)$ por definición de $\tau(A)$. Además $X \in \tau(A)$ ya que $X \subseteq X$ y $A \subseteq X$.
- 2. Sea \mathcal{B} una familia no vacía de subconjuntos de $\tau(A)$, entonces existe $B_0 \in \mathcal{B}$ tal que $A \subseteq B_0$, por lo cual

$$A \subseteq B_0 \subseteq \bigcup_{B \in \mathcal{B}} B \subseteq X$$

por tanto $\bigcup_{B \in \mathcal{B}} B \in \tau(A)$.

3. Sean $C, D \in \tau(A)$, entonces $A \subseteq C$ y $A \subseteq B$, por ende $A \subseteq B \cap C \subseteq X$. Así, $B \cap C \in \tau(A)$.

Por los incisos anteriores, la familia descrita en el inciso 6. es una topología sobre X.

Observación 1.1.4

Sea X un conjunto no vacío. Si $A = \{a\} \subseteq X$, entonces escribimos τ_a en vez de $\tau(A)$.

Ejemplo 1.1.1

Se continuan con los ejemplos anteriores:

- 7. Sea $\tau_{cf} = \{A \subseteq X | X A \text{ es un conjunto finito}\} \cup \{\emptyset\}$. Esta es una topología sobre X y se llama la **topología de los complementos finitos**.
- 8. Si X es un conjunto finito, entonces $\tau_{cf} = \tau_D = \mathcal{P}$.
- 9. Considere (en un conjunto finito X) a τ_{cf} y sean $a, b \in X$ con $a \neq b$. Si $U_a = X \{b\}$, $U_b = X \{a\}$, entonces $U_a, U_b \in \tau_{cf}$ y además, $a \in U_a$ pero $b \notin U_a$ y $a \notin U_b$ pero $b \in U_b$. Esta propiedad es muy importante tenerla en mente pues más adelante se usará.

Solución:

Veamos que la famila del ejemplo 7. es una topología sobre X. En efecto, veamos que se cumplen las 3 condiciones:

- 1. Claro que $\emptyset \in \tau_{cf}$ (por definición de τ_{cf}). Y además $X \in \tau_{cf}$ ya que $\emptyset = X X$ es un conjunto finito y $X \subseteq X$.
- 2. Sea \mathcal{A} una familia no vacía de subconjuntos de τ_{cf} . Se cumple entonces que existe $A_0 \in \mathcal{A}$ tal que $X A_0$ es finito. Por lo cual como

$$X - \bigcup A \subseteq X - A$$

ya que $A \subseteq \bigcup \mathcal{A}$, se tiene que $X - \bigcup \mathcal{A}$ es finito y $\bigcup \mathcal{A} \subseteq X$. Por tanto, $\bigcup \mathcal{A} \in \mathcal{A}$.

3. Sean $A, B \in \tau_{cf}$. Probaremos que $A \cap B \in \tau_{cf}$. Afirmamos que $X - A \cap B$ es finito, en efecto, por leyes de Morgan se tiene que

$$X - (A \cap B) = (X - A) \cup (X - B) \subseteq X$$

donde X - A y X - B son finitos, por lo cual su unión también lo es. Por tanto $A \cap B \in \tau_{cf}$.

Por los tres incisos anteriores, se sigue que τ_{cf} es una topología sobre X.

A continuación se verá una proposición la cual tiene como objetivo el inducir una topología sobre un espacio métrico (X,d) arbitrario.

Proposición 1.1.1

Sea (X, d) un espacio métrico. Dados $a \in X$ y $\varepsilon \in \mathbb{R}^+$, al conjunto $B_d(x, \varepsilon) = \{y \in X | d(x, y) < \varepsilon\}$ se llama ε -bola con centro en x y radio ε .

Sea

$$\tau_d = \{ A \subseteq X | \forall a \in A \exists r > 0 \text{ tal que } B_d(a, r) \subseteq A \}$$

Esta colección es una topología sobre X.

Demostración:

Se verificará que se cumplen las tres condiciones.

- 1. Por vacuidad, $\emptyset \in \tau_d$. Además, $X \in \tau_d$, pues para todo $x \in X$, $B_d(x, 1) \subseteq X$.
- 2. Sean \mathcal{A} una familia no vacía de subconjuntos de τ_d . Sea $p \in \cup \mathcal{A}$, es decir que existe $A_{\beta} \in \mathcal{A}$ tal que $p \in A_{\beta}$, así existe r > 0 tal que $B_d(a, r) \subseteq A_{\beta} \subseteq \cup \mathcal{A}$, luego $\cup \mathcal{A} \in \tau_d$.
- 3. Sean $M, N \in \tau_d$, y sea $p \in M \cap N$, es decir que $p \in M$ y $p \in N$, por lo cual existen $r_1, r_2 > 0$ tales que $B_d(p, r_1) \subseteq M$ y $B_d(p, r_2) \subseteq N$. Sea $r = \min\{r_1, r_2\}$, es inmediato que $B_d(p, r) \subseteq B_d(p, r_i)$, para i = 1, 2. Por tanto, $B_d(p, r) \subseteq M \cap N$. Luego, como el p fue arbitrario, se sigue que $M \cap N \in \tau_d$.

Definición 1.1.3

La topología de la proposición anterior es llamada la topología generada por la métrica d.

Ejercicio 1.1.1

Sea (X, d) espacio métrico. Veamos que, dados $x \in X$ y r > 0, se cumple que $B_d(x, r) \in \tau_d$.

Solución:

Sea $y \in B_d(x,r)$, entonces d(x,y) < r. Sea $\varepsilon = d(x,y)$ y, supongamos que $x \neq y$ (pues en caso contrario, el caso es inmediato ya que $B_d(x,r) \subseteq B_d(x,r)$) luego $\varepsilon > 0$ y además $\varepsilon < r$. Sea $s = r - \varepsilon \in \mathbb{R}^+$.

Afirmamos que $B_d(y,s) \subseteq B_d(x,r)$. En efecto, sea $z \in B_d(y,s)$, entonces

$$d(z,y) < s$$

$$\Rightarrow d(z,y) < r - \varepsilon$$

$$\Rightarrow d(z,y) + \varepsilon < r$$

$$\Rightarrow d(z,y) + d(y,x) < r$$

$$\Rightarrow d(z,x) < r$$

por tanto, $x \in B_d(x,r)$. Luego, $B_d(x,r) \in \tau_d$.

Lema 1.1.1

Todo espacio métrico (X, d) es Hausdorff.

Demostración:

Veamos que dados $x, y \in X$, $x \neq y$ existen $r, s \in \mathbb{R}^+$ tales que $B_d(x, r) \cap B_d(y, s) = \emptyset$. Como $x \neq y$ entonces $d(x, y) = m \in \mathbb{R}^+$. Tomemos $r = \frac{m}{\pi}$ y $s = \frac{\pi - 1}{\pi}m$ y veamos que la intersección es vacía.

En efecto, en caso de que no lo fuese se tendría que si existiera $p \in B_d(x,r) \cap B_d(y,s)$, entonces $d(p,x) < \frac{m}{\pi}$ y $d(p,y) < \frac{\pi-1}{\pi}m$, por lo cual de la desigualdad triangular se sigue que:

$$d(x,y) \le d(p,x) + d(p,y) < \frac{1+\pi-1}{\pi}m = m = d(x,y)$$

lo cual es una contradicción $\#_c$. Por tanto, la intersección es vacía.

Retomando al espacio métrico (X,d), tenemos que para $A\subseteq X,\ A\in\tau_d$ si y sólo si existen $\{a_\alpha\}_{\alpha\in I}\subseteq A$ y $\{\varepsilon_\alpha\}_{\alpha\in I}\subseteq\mathbb{R}^+$ tales que

$$\bigcup_{\alpha \in I} B_d(a_\alpha, \varepsilon_\alpha) = A$$

donde $\forall \alpha \in I$ se tiene que $A_{\alpha} \in \mathcal{A}$.

Corolario 1.1.1

Sea (X, d) un espacio métrico y

$$\mathcal{B}_d = \left\{ B_d(x, \varepsilon) | x \in X, \varepsilon \in \mathbb{R}^+ \right\}$$

entonces, para $A \subseteq X$ se tiene que $A \in \tau_d$ si y sólo si existe una colección $\{B_\alpha\}_{\alpha \in I} \subseteq \mathcal{B}_d$ tal que $A = \bigcup_{\alpha \in I} B_\alpha$. La colección $\mathcal{B}_d \subseteq \tau_d$.

Ejemplo 1.1.2

Sea $m \in \mathbb{N}$ y considere el espacio métrico \mathbb{R}^m con la métrica d_u , siendo:

$$d_u(x,y) = [(x_1 - y_1)^2 + \dots + (x_m - y_m)^2]^{\frac{1}{2}}$$

para $x = (x_1, ..., x_m), y = (y_1, ..., y_m) \in \mathbb{R}^m$. Esta métrica será denominada **métrica usual**. Vamos a escribir a la topología generada por esta métrica como τ_u , y se dice la **topología usual definida sobre** \mathbb{R}^m . En particular, cuando m = 1 tenemos que τ_u la topología usual definida sobre \mathbb{R} . En este caso, se tiene que $A \in \tau_u$ si y sólo si existen $\{a_\alpha\}_{\alpha \in I}$ y $\{B_\alpha\}_{\alpha \in I}$ subfamilias de \mathbb{R} tal que $A = \bigcup_{\alpha \in I} (a_\alpha, b_\alpha)$.

Observación 1.1.5

Tenemos que para todo $n \in \mathbb{N}$, los conjuntos $\left(-\frac{1}{n}, \frac{1}{n}\right) \in \tau_u$, y $\bigcap_{n \in \mathbb{N}} \left(-\frac{1}{n}, \frac{1}{n}\right) = \{0\} \notin \tau_u$. Es decir, que la topología solo es cerrada (en general) bajo intersecciones finitas.

Definición 1.1.4

Sea X un conjunto, y sean τ_1 y τ_2 topologías sobre X. Decimos que τ_2 es **más fina** que la topología τ_1 si se tiene que $\tau_1 \subseteq \tau_2$ (a veces también se dice que τ_1 es **menos fina** que τ_2).

Ejemplo 1.1.3

Sea $X = \{1, 2, 3\}, \tau_1 = \{X, \emptyset, \{1\}\}, \tau_2 = \{X, \emptyset, \{2\}\}.$ Tomemos

$$\tau_1 \cup \tau_2 = \{X, \emptyset, \{1\}, \{2\}\}\$$

la familia $\tau_1 \cup \tau_2$ no es una topología sobre X, pues no es cerrada bajo uniones arbitrarias. Con esto se tiene que la unión de dos topologías no necesariamente es una topología.

Teorema 1.1.1

Sea X un conjunto, y sea $\{\tau_{\alpha}\}_{{\alpha}\in I}$ una familia de topologías sobre X, entonces $\tau=\bigcap_{{\alpha}\in I}\tau_{\alpha}$ es una topología sobre X.

Demostración:

Veamos que se cumplen las tres condiciones.

- 1. Claro que $X, \emptyset \in \tau$, pues $X, \emptyset \in \tau_{\alpha}$, para todo $\alpha \in I$.
- 2. Sea $\mathcal{A} = \{A_{\beta}\}_{\beta \in J} \subseteq \tau = \bigcap_{\alpha \in I} \tau_{\alpha}$ una subcolección arbitraria de elementos de τ . Por ser τ_{α} una topología, se sigue que $\bigcup \mathcal{A} \in \tau_{\alpha}$, para todo $\alpha \in I$. Por tanto, $\bigcup \mathcal{A} \in \tau$.
- 3. Sean $K, L \in \tau$, entonces $K, L \in \tau_{\alpha}$, para todo $\alpha \in I$, luego como τ_{α} es una topología sobre X, se tiene que $L \cap K \in \tau_{\alpha}$, para todo $\alpha \in I$, por tanto $L \cap K \in \tau$.

Por los tres incisos anteriores, se sigue que τ es una topología sobre X.

Corolario 1.1.2

Sea X un conjunto y sean A una familia de subconjuntos de X. Definimos

$$\mathcal{K} = \{ \tau | \tau \text{ es una topología sobre } X \text{ y } \mathcal{A} \subseteq \tau \}$$

Entonces:

- 1. $\tau_D \in \mathcal{K}$.
- 2. Definiendo $\tau(\mathcal{A}) = \bigcap_{\tau \in \mathcal{K}} \tau$, se tiene que $\tau(\mathcal{A})$ es una topología sobre X.
- 3. Para toda topología $\tau \in \mathcal{K}$, $\tau(\mathcal{A}) \subseteq \tau$.
- 4. $\tau(\mathcal{A}) \in \mathcal{K}$.

Demostración:

- De 1. Es inmediato, pues como $\mathcal{A} \subseteq \mathcal{P} = \tau_D$ y τ_D es una topología sobre X, se sigue que $\tau_D \in \mathcal{K}$.
- De 2. Es inmediato del teorema anterior.
- De 3. Como $\tau(\mathcal{A}) = \bigcap_{\tau \in \mathcal{K}} \tau$, entonces $\tau(\mathcal{A}) \subseteq \tau$, para toda $\tau \in \mathcal{K}$.
- De 4. Por 2. $\tau(\mathcal{A})$ es una topología sobre X, y además $\mathcal{A} \subseteq \tau(\mathcal{A})$, pues $\mathcal{A} \subseteq \tau$, para todo $\tau \in \mathcal{K}$, luego $\mathcal{A} \subseteq \bigcap_{\tau \in \mathcal{K}} \tau = \tau(\mathcal{A})$. Por ende, $\tau(\mathcal{A}) \in \mathcal{K}$.

Definición 1.1.5

Un espacio topológico es una pareja (X, τ) en donde X es un conjunto y τ es una topología sobre X. A los elementos de τ los llamaremos los **conjuntos abiertos** del espacio (X, τ) a veces también se les nombra como los τ -abiertos de X.

Ejemplo 1.1.4

Ejemplos de espacios topológicos son (\mathbb{R}, τ_D) , (\mathbb{R}, τ_I) , (\mathbb{R}, τ_{cf}) , (\mathbb{R}, τ_u) , etc... Las diferencias notables son que $\{1, \sqrt{2}\}$ es abierto en (\mathbb{R}, τ_D) , pero no en (\mathbb{R}, τ_u) .

Sea X un conjunto y $\mathcal{A} \subseteq \mathcal{P}$. Por el corolario anterior, podemos trabajar con la topología $\tau(\mathcal{A})$, y tenemos así al espacio topológico $(X, \tau(\mathcal{A}))$, el cual en particular tiene como abiertos a los elementos de la familia \mathcal{A} .

Definición 1.1.6

Sea (X, τ) un espacio topológico.

1. Un subconjunto $C \subseteq X$ es un **conjunto cerrado** del espacio topológico (X, τ) si $X - C \in \tau$.

Ejemplo 1.1.5

En (\mathbb{R}, τ_u) se tiene que \mathbb{R} y \emptyset son abiertos y cerrados a la vez, pero el conjunto [1, 2[no es abierto ni cerrado,]1, 2[es abierto pero no cerrado y [1, 2] no es abierto pero sí es cerrado.

Proposición 1.1.2

Sea (X, τ) un espacio topológico.

- 1. Si $A_1, ..., A_n$ son subconjuntos cerrados de (X, τ) , entonces su unión $A_1 \cup ... \cup A_n$ es un cerrado de (X, τ) .
- 2. Si \mathcal{A} es una familia arbitraria de conjuntos cerrados en (X, τ) , entonces $\bigcap \mathcal{A}$ es un conjunto cerrado.

Demostración:

De (1): Consideremos el complemento de la unión. Se tiene que:

$$X - \bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} (X - A_i)$$

el cuál es abierto por ser intersección finita de abiertos. Luego $\bigcap_{i=1}^n A_i$ es cerrado.

De (2): Basta con aplicar leyes de Morgan.

Ejemplo 1.1.6

Considere (\mathbb{R}, τ_u) y, para $n \in \mathbb{N}$ definimos $A_n = (-\frac{1}{n}, \frac{1}{n})$, es claro que cada uno de estos conjuntos es abierto. Sea $B_n = \mathbb{R} - A_n = (-\infty, -\frac{1}{n}] \cup [\frac{1}{n}, \infty)$.

Se tiene que:

$$\bigcup_{n\in\mathbb{N}} B_n = \bigcup_{n\in\mathbb{N}} \mathbb{R} - A_n = \mathbb{R} - \bigcap_{n\in\mathbb{N}} A_n = \mathbb{R} - \{0\}$$

el cual es abierto. Por tanto, la unión arbitraria de cerrados no es cerrada (en general).

Definición 1.1.7

Sea (X, τ) un espacio topológico y, sean $x \in X$ y $V \subseteq X$ tal que $x \in V$. Se dice que V es una **vecindad de** x si existe $U \in \tau$ abierto tal que $x \in U$ y $U \subseteq V$.

- 1. Si V es una vecindad de x y $V \in \tau$, decimos que V es una vecindad abierta de x.
- 2. Si V es una vecindad de x y $X V \in \tau$, decimos que V es una vecindad cerrada de x.

Al conjunto de todas las vecindades del punto x lo denotamos por $\mathcal{V}(x)$. Tenemos que $X \in \mathcal{V}(x)$ para todo $x \in X$.

9

Definición 1.1.8

Se define el conjunto [|1, n|] llamado **intervalo natural de** 1 **a** n como el conjunto $\{1, 2, ..., n\}$.

Ejercicio 1.1.2

Sea (X, τ) un espacio topológico.

- 1. Si $V_1, ..., V_n \in \mathcal{V}(x)$ para $x \in X$, entonces $V_1 \cap ... \cap V_n \in \mathcal{V}(x)$.
- 2. Si $\{V_{\alpha}\}_{\alpha\in I}\subseteq \mathcal{V}(x)$ para $x\in X$, entonces $\bigcup_{\alpha\in I}V_{\alpha}\in \mathcal{V}(x)$.

Solución:

Probaremos ambos incisos:

De (1): Como $x \in V_i$ para $i \in [|1, n|]$, entonces existen $U_1, ..., U_n$ abiertos en X tales que $x \in U_i \subseteq V_i$ para todo $i \in [|1, n|]$, luego $x \in \bigcap_{i=1}^n U_i \subseteq V_1 \cap ... \cap V_n$ donde el primer conjunto es abierto, luego $V_1 \cap ... \cap V_n \in \mathcal{V}(x)$.

De (2): Es inmediato.

Definición 1.1.9

Sea (X, τ) un espacio topológico y $A \subseteq X$.

- 1. Sea $x \in X$. x es un **punto de acumulación de** A si para todo U abierto que contiene a x se tiene que $(U \{x\}) \cap A \neq \emptyset$ (U contiene un punto de A diferente de x). Al conjunto de todos los puntos de acumulación lo llamaremos el **conjunto derivado de** A, y se denota por A'.
- 2. Un elemento $a \in A$ es un **punto interior** de A, si A es una vecindad de x (es decir, $A \in \mathcal{V}(x)$). **El interior de** A es el conjunto de todos los puntos interiores de A y se escribe \mathring{A} . Es claro que $\mathring{A} \subseteq A$.
- 3. Sea

$$\mathcal{C} = \left\{ C \subseteq X \middle| X - C \in \tau, A \subseteq C \right\}$$

es claro que C es no vacía, pues $X \in C$. La **cerradura de** A es el conjunto $\bigcap_{C \in C} C$ y se denota por \overline{A} . Si $x \in \overline{A}$, diremos que x **es un punto adherente de** A. Es claro que $A \subseteq \overline{A}$.

4. La frontera de A es el conjunto $\overline{A} \cap \overline{X-A}$ y se denota por Fr(A).

Proposición 1.1.3

Sea (X, τ) un espacio topológico, $x \in X$ y sean $A, B \subseteq X$. Entonces:

- 1. $\mathring{A} \subseteq A \subseteq \overline{A}$.
- 2. $\mathring{A} = \bigcup \{U \in \tau | U \subseteq A\} = \bigcup A$.
- 3. $\mathring{A} \in \tau$.
- 4. Si $V \in \tau$ tal que $V \subseteq A$, entonces $V \subseteq \mathring{A}$.
- 5. A es abierto si y sólo si $\mathring{A} = A$.
- 6. $\mathring{A} = \mathring{A}$.

- 7. $\widehat{A \cap B} = \mathring{A} \cap \mathring{B}$.
- 8. $\mathring{A} \cup \mathring{B} \subseteq \widehat{A \cup B}$.
- 9. \overline{A} es un conjunto cerrado.
- 10. Si $K \subseteq X$ es cerrado de (X, τ) y $A \subseteq K$, entonces $\overline{A} \subseteq K$.
- 11. A es cerrado si y sólo si $\overline{A} = A$.
- 12. $\overline{\overline{A}} = \overline{A}$.
- 13. $\overline{A \cup B} = \overline{A} \cup \overline{B}$.
- 14. $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.
- 15. $\emptyset = \mathring{\emptyset} = \overline{\emptyset} \text{ y } X = \mathring{X} = \overline{X}.$
- 16. Si $A \subseteq B$, entonces $\mathring{A} \subseteq \mathring{B}$ y $\overline{A} \subseteq \overline{B}$.
- 17. $x \in \overline{A}$ si y sólo si para todo abierto $U \subseteq X$ tal que $x \in U$ se tiene que $U \cap A \neq \emptyset$.
- 18. $x \in Fr(A)$ si y sólo si para todo abierto U tal que $x \in U$ se cumple que $U \cap A \neq \emptyset$ y $U \cap (A X) \neq \emptyset$.
- 19. $\overline{A} = A \cup A'$.
- 20. A es un conjunto cerrado si y sólo si $A' \subseteq A$.
- 21. $\overline{A} = \mathring{A} \cup \operatorname{Fr}(A)$.
- 22. Fr(A) = Fr(X A).
- 23. $\overline{A} \operatorname{Fr}(A) = \mathring{A}$.

Demostración:

Se probarán todos los incisos.

- De (1): Si $x \in \mathring{A}$, entonces $A \in \mathcal{V}(x)$, luego $x \in A$. Por tanto, $\mathring{A} \subseteq A$. Ahora, es claro que $A \subseteq \overline{A}$, pues de la definción de cerradura de A, todos los elementos de la intersección en esta definición contienen a A, luego A está contenida en la intersección.
 - De (2): Veamos que se tienen las dos contenciones:
 - $\mathring{A} \subseteq \bigcup \mathcal{A}$. Sea $x \in \mathring{A}$, entonces $A \in \mathcal{V}(x)$, por lo cual existe un abierto $U \in \tau$ tal que $x \in U \subseteq A$, luego $U \in \mathcal{A}$, es decir que $x \in \bigcup \mathcal{A}$.
 - $\bigcup A \subseteq \mathring{A}$. Sea $x \in \bigcup A$, entonces existe $U \in \tau$ con $U \subseteq A$ tal que $x \in U$, por lo cual $A \in \mathcal{V}(x)$, luego $x \in \mathring{A}$.

por los dos incisos anteriores, se sigue que $\mathring{A} = \bigcup \mathcal{A}$, es decir que el interior de A es el conjunto abierto más grande contenido en A.

- De (3): Es inmediato de (2).
- De (4): Es inmediato de (2).
- De (5): Supongamos que A es abierto, entonces $A \in \tau$. Además, $A \subseteq A$, por lo cual de (4) se sigue que $A \subseteq \mathring{A}$. Ya se tiene que $\mathring{A} \subseteq A$, por tanto $A = \mathring{A}$.

La recíproca es inmediata.

De (6): Por (3), se tiene que \mathring{A} es abierto, luego por (5) se sigue que $\mathring{A} = \mathring{A}$.

De (7): Probaremos las dos contenciones:

- $\widehat{A \cap B} \subseteq \mathring{A} \cap \mathring{B}$. Si $x \in \widehat{A \cap B} \subseteq A \cap B$, entonces existe $U \in \tau$ tal que $x \in U \subseteq A \cap B$, en particular $x \in U \subseteq A$ y $x \in U \subseteq B$, luego $x \in \mathring{A}$ y $x \in \mathring{B} \Rightarrow x \in \mathring{A} \cap \mathring{B}$. Por tanto, $\widehat{A \cap B} \subseteq \mathring{A} \cap \mathring{B}$.
- $\mathring{A} \cap \mathring{B} \subseteq \widehat{A \cap B}$. El conjunto $\mathring{A} \cap \mathring{B} \in \tau$ y $\mathring{A} \cap \mathring{B} \subseteq A \cap B$. Por (4), se sigue que $\mathring{A} \cap \mathring{B} \subseteq \widehat{A \cap B}$.

de los dos incisos anteriores, se sigue que $\widehat{A \cap B} = \mathring{A} \cap \mathring{B}$.

- De (8): Se tiene que $\mathring{A} \cup \mathring{B} \in \tau$ es tal que $\mathring{A} \cup \mathring{B} \subseteq A \cup B$, luego por (4) se sigue que $\mathring{A} \cup \mathring{B} \subseteq \widehat{A \cup B}$.
- De (9): Es inmediato de la definición de \overline{A} , pues este conjunto es intersección arbitraria de cerrados.
- De (10): Es inmediato de la definición de \overline{A} . Esto significa que la cerradura de un conjunto es el cerrado más pequeño que contiene a A.
- De (11): Suponga que A es cerrado, entonces como $A \subseteq A$, se tiene por (10) que $\overline{A} \subseteq A$. Luego, como $A \subseteq \overline{A}$ por (1), se sigue que $A = \overline{A}$.

La recíproca es inmediata de (9).

- De (12): Por (9), \overline{A} es cerrado, luego por (11) se tiene que $\overline{A} = \overline{\overline{A}}$.
- De (13): Proaremos las dos contenciones:
- $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$. El conjunto $\overline{A} \cup \overline{B}$ es un cerrado que contiene a $A \cup B$, por tanto del inciso (10) se tiene que $\overline{A \cup B} \subseteq \overline{A} \cup \overline{B}$.
- Como $A, B \subseteq A \cup B$, entonces $A, B \subseteq \overline{A \cup B}$, luego por (10) se tiene que $\overline{A}, \overline{B} \subseteq \overline{A \cup B}$. Por tanto, $\overline{A} \cup \overline{B} \subset \overline{A \cup B}$.

de los dos incisos anteriores, se sigue que $\overline{A \cup B} = \overline{A} \cup \overline{B}$.

De (14): Como $A \subseteq \overline{A}$ y $B \subseteq \overline{B}$, entonces $A \cap B \subseteq \overline{A} \cap \overline{B}$. Por (10), se sigue que $\overline{A \cap B} \subseteq \overline{A} \cap \overline{B}$.

De (15): Se dividirá en dos partes:

- $\emptyset = \mathring{\emptyset} = \overline{\emptyset}$. Como $\emptyset \subseteq \mathring{\emptyset} \subseteq \emptyset$, entonces $\emptyset = \mathring{\emptyset}$. Ahora, como \emptyset es un cerrado que contiene a \emptyset , se sigue por (10) que $\overline{\emptyset} \subseteq \emptyset$. Por ende, $\overline{\emptyset} = \emptyset$.
- Para X el caso es casi análogo a \emptyset (al final todo esto resulta más en un juego de palabras que en otra cosa).
- De (16). Como $A\subseteq B$, entonces $\mathring{A}\subseteq B$, y $A\subseteq \overline{B}$, por (4) y (10), se debe tener que $\mathring{A}\subseteq \mathring{B}$ y $\overline{A}\subset \overline{B}$.

De (17): Sea $x \in X$:

- \Rightarrow): Suponga que $x \in \overline{A}$, entonces para todo $C \subseteq X$ cerrado tal que $A \subseteq C$, $x \in C$. Suponga que existe $U_0 \in \tau$ abierto tal que $x \in U_0$ y $U_0 \cap A = \emptyset$. Entonces $A \subseteq X U_0$ es un cerrado que contiene a A, luego $x \in X U_0$, es decir $x \notin U_0 \#_c$. Por tanto, $U \cap A \neq \emptyset$ para todo $U \in \tau$ tal que $x \in U$.
- \Leftarrow): Sea $L \subseteq X$ un cerrado tal que $A \subseteq L$. Probaremos que $x \in L$, suponiendo la tesis para este $x \in X$. Suponga que $x \notin L$, entonces $x \in X L$ el cual es abierto, por tanto $(X L) \cap A \neq \emptyset$, es decir $A \nsubseteq L \#_c$. Por tanto, $x \in L$.
 - De (18): Es inmediato de la definición de $Fr(A) = \overline{A} \cap \overline{X} \overline{A}$ y del inciso (17).
 - De (19): Se probarán las dos contenciones:

- $\overline{A} \subseteq A \cup A'$. Sea $x \in \overline{A}$. Si $x \in A$, se tiene el resultado. Suponga que $x \notin A$. Como $x \in \overline{A}$, por (17) para todo abierto $U \subseteq X$ se tiene que $U \cap A \neq \emptyset$, pero $x \notin A$, por lo cual $(U \{x\}) \cap A \neq \emptyset$. Por tanto, $x \in A'$.
- $A \cup A' \subseteq \overline{A}$. Es inmediata de la definición de \overline{A} y A'.

por los dos incisos anteriores se sigue que $\overline{A} = A \cup A'$.

De (20): Suponga que A es cerrado, entonces por (11), $\overline{A} = A$, luego por (19) se tiene que $A \cup A' = \overline{A} = A$, es decir que $A' \subseteq A$.

Si $A' \subseteq A$, entonces $A = A \cup A' = \overline{A}$ por (11), luego $A = \overline{A}$, es decir que A es cerrado.

De (21): Es claro que $\mathring{A} \cap \operatorname{Fr}(A) \subseteq \overline{A}$, pues $\mathring{A}, \operatorname{Fr}(A) \subseteq \overline{A}$. Ahora, si $x \in \overline{A}$ sea $U \subseteq X$ tal que $x \in U$. Se tienen dos casos:

- $U \subseteq A$, en este caso se sigue de la definición que $x \in \mathring{A}$.
- $U \nsubseteq A$, entonces existe $y \in U$ tal que $y \notin A$, es decir que $U \cap (X A) \neq \emptyset$. Como $x \in \overline{A}$, entonces $U \cap A \neq \emptyset$. Por ser el U arbitrario, se sigue por (18) que $x \in Fr(A)$.

es decir que $x \in \mathring{A} \cup \operatorname{Fr}(A)$. Por tanto, $\overline{A} \subseteq \mathring{A} \cup \operatorname{Fr}(A)$. Así, $\overline{A} = \mathring{A} \cup \operatorname{Fr}(A)$.

De (22): Veamos que A = X - (X - A), por lo cual:

$$\operatorname{Fr}(A) = \overline{A} \cap \overline{X - A} = \overline{X - A} \cap \overline{A} = \overline{X - A} \cap \overline{X - (X - A)} = \operatorname{Fr}(X - A)$$

De (23): Observemos que: $x \in \overline{A} - Fr(A)$ si y sólo si se cumple que

- Para todo U abierto tal que $x \in U$ se cumple que $U \cap A \neq \emptyset$.
- Existe U_0 abierto tal que $x \in U_0$ y, $U_0 \cap A = \emptyset$ o $U_0 \cap (X A) = \emptyset$.

Por ambas condiciones, debe suceder que $U_0 \cap A \neq \emptyset$ y $U_0 \cap (X - A) = \emptyset$, es decir que $U_0 \subseteq A$, esto es que $x \in \mathring{A}$. Por tanto, $x \in \overline{A} - \operatorname{Fr}(A)$ si y sólo si $x \in \mathring{A}$. Luego se tiene la igualdad.

Proposición 1.1.4

Sea (X, τ) un espacio topológico y $\{A_{\alpha}\}_{{\alpha} \in I} \subseteq \mathcal{P}(X)$.

- 1. $\bigcup_{\alpha \in I} \overline{A_{\alpha}} \subseteq \overline{\bigcup_{\alpha \in I} A_{\alpha}}$.
- 2. $\overline{\bigcap_{\alpha \in I} A_{\alpha}} \subseteq \bigcap_{\alpha \in I} \overline{A_{\alpha}}$.

Demostración:

Probemos ambos incisos:

De (1): Si $x \in \bigcup_{\alpha \in I} \overline{A_{\alpha}}$, sea $U \in \tau$ tal que $x \in U$, luego $\exists \alpha \in I$ tal que $x \in \overline{A_{\alpha}}$, por ende $U \cap A_{\alpha} \neq \emptyset$, por tanto $U \cap (\bigcup_{\alpha \in I} A_{\alpha}) \cap \neq \emptyset$. Como el $U \in \tau$ fue arbitrario, se sigue que $x \in \overline{\bigcup_{\alpha \in I} A_{\alpha}}$.

De (2): Si $x \in \overline{\bigcap_{\alpha \in I} A_{\alpha}}$, entonces para $U \in \tau$ tal que $x \in U$ se cumple que $(\bigcap_{\alpha \in I} A_{\alpha}) \cap U \neq \emptyset \Rightarrow \bigcap_{\alpha \in I} (A_{\alpha} \cap U) \neq \emptyset$, es decir que $U \cap A_{\alpha} \neq \emptyset$, para todo $\alpha \in I$, luego como $U \in \tau$ fue arbitrario, se sigue que $x \in \overline{A_{\alpha}}$ para todo $\alpha \in I$. Así $x \in \bigcap_{\alpha \in I} \overline{A_{\alpha}}$.

Ejemplo 1.1.7

Considere al espacio topológico (\mathbb{R}, τ_u) . Tomemos

1. $A =]0, 1] \cup \{9\}$. Tenemos que $\overline{A} = [0, 1] \cup \{9\}$, A' = [0, 1], por lo cual no podemos relacionar (al menos de forma directa) a A junto con su A' (esto es, uno no está contenido dentro del

otro).

2. Sea $n \in \mathbb{N}$, defina $A_n = \left[\frac{1}{n}, 1\right]$. Se tiene que

$$\bigcup_{n\in\mathbb{N}} \overline{A_n} =]0,1]$$

y,

$$\bigcup_{n\in\mathbb{N}} A_n =]0,1] \Rightarrow \overline{\bigcup_{n\in\mathbb{N}} A_n} = [0,1]$$

es decir que $\overline{\bigcup_{n\in\mathbb{N}} A_n} \nsubseteq \bigcup_{n\in\mathbb{N}} \overline{A_n}$.

3. Considere $X=\{a,b\}$, tomemos al espacio topológico $(X,\tau=\{X,\emptyset,\{a\}\})$. Si $A=\{a\}$ y $b=\{b\}$, entonces $\mathring{A}=\{a\}, \ \mathring{B}=\emptyset, \ \overline{A}=X, \ \overline{B}=B$. Luego $X=\widehat{A\cup B}\nsubseteq \mathring{A}\cup \mathring{B}=A$. Además $A\cap B=\emptyset\Rightarrow \overline{A\cap B}=\emptyset$. Por ende, $B=\overline{A}\cap \overline{B}\nsubseteq \overline{A\cap B}$.

Definición 1.1.10

Para $x \in \mathbb{R}$, se define el **suelo de** x (denotado por $\lfloor x \rfloor$) como el máximo entero tal que $\lfloor x \rfloor \leq x$.

Ejercicio 1.1.3

Considere (\mathbb{R}, τ_u) . Encuentre $\mathring{\mathbb{N}}, \overline{\mathbb{N}}, \mathbb{N}', \operatorname{Fr}(\mathbb{N})$.

Solución:

Hagamos cada uno de los incisos:

1. $\mathring{\mathbb{N}}$) Afirmamos que $\mathring{\mathbb{N}} = \emptyset$. En efecto, si fuese el caso contrario, existiría U abierto no vacío en (\mathbb{R}, τ_u) tal que $U \subseteq \mathbb{N}$, luego si $x \in U \cap \mathbb{N} \neq \emptyset$ (por ser U no vacío), entonces existe r > 0 tal que $|x - r, x + r| \subseteq U$.

Sea $\delta = \min\{1, r\} > 0$, entonces $]x - \delta, x + \delta[\subseteq U$, pero como $x \in \mathbb{N}$, no puede ser que $x + \frac{1}{2} \in \mathbb{N}$, lo cual contradice el hecho de que $U \subseteq \mathbb{N}$. Por tanto, $\mathring{\mathbb{N}} = \emptyset$.

2. $\overline{\mathbb{N}}$) Probaremos que \mathbb{N} es cerrado. Si $x \in \mathbb{R} - \mathbb{N}$, entonces existe $r = \min\{x - \lfloor x \rfloor, 1 - x + \lfloor x \rfloor\} > 0$ (pues $x \notin \mathbb{N}$, luego |x| < x) tal que $|x - r, x + r| \subseteq \mathbb{R} - \mathbb{N}$.

En efecto, supongamos que $x - \lfloor x \rfloor \le 1 - x + \lfloor x \rfloor$, entonces

$$\begin{aligned}]x-r,x+r[\subseteq]\lfloor x\rfloor,x+1-x+\lfloor x\rfloor[\\ \subseteq]\lfloor x\rfloor,\lfloor x\rfloor+1[\end{aligned}$$

es decir, $]x - r, x + r \subseteq \mathbb{R} - \mathbb{N}$. Si $x - \lfloor x \rfloor \leq 1 - x + \lfloor x \rfloor$ el caso es análogo. Por tanto, $\mathbb{R} - \mathbb{N}$ es abierto, luego \mathbb{N} es cerrado y, por ende $\overline{\mathbb{N}} = \mathbb{N}$.

- 3. N') Afirmamos que el conjunto es vacío. Sea $x \in \mathbb{R}$. Se tienen dos casos:
 - $x \in \mathbb{N}$) En este caso, existe $r = \frac{1}{2} > 0$ tal que $(]x r, x + r[-\{x\}) \cap \mathbb{N} = \emptyset$.
 - $x \notin \mathbb{N}$) En este caso, existe $r = \min\{x \lfloor x \rfloor, 1 x + \lfloor x \rfloor\} > 0$ tal que (como se vió en (2)) $|x r, x + r| \cap \mathbb{N} = \emptyset$, en particular $(|x r, x + r| \{x\}) \cap \mathbb{N} = \emptyset$.

Por ambos incisos, se sigue que $\mathbb{N}' = \emptyset$.

4. $Fr(\mathbb{N})$) Afirmamos que $Fr(\mathbb{N}) = \mathbb{N}$. En efecto, ya se sabe que $\mathbb{N} = \overline{\mathbb{N}}$. Probaremos que $\mathbb{N} \subseteq \overline{\mathbb{R} - \mathbb{N}}$ y con ello se tendría el resultado.

Sea $x \in \mathbb{N}$, entonces si U es un abierto tal que $x \in U$, entonces existe r > 0 tal que $]x - r, x + r[\subseteq U$, luego si $\delta = \min\{1, r\} > 0$, se tiene que el elemento $x + \frac{\delta}{2} \in \mathbb{R} - \mathbb{N}$, es decir que $U \cap (\mathbb{R} - \mathbb{N}) \neq \emptyset$. Por tanto, $x \in \overline{\mathbb{R} - \mathbb{N}}$, así $\mathbb{N} \subseteq \overline{\mathbb{R} - \mathbb{N}}$.

Ejercicio 1.1.4

Considere (\mathbb{R}, τ_I) , (\mathbb{R}, τ_D) y (\mathbb{R}, τ_{cf}) . Encuentre en cada uno de los espacios anteriores $\mathring{\mathbb{Z}}$, $\overline{\mathbb{Z}}$, \mathbb{Z}' , $\operatorname{Fr}(\mathbb{Z})$.

Solución:

Consideremos cada una de las topologías por separado.

- 1. En (\mathbb{R}, τ_I) :
 - $\mathring{\mathbb{Z}}$) Afirmamos que $\mathring{\mathbb{Z}} = \emptyset$. En efecto, como $\tau_I = \{\emptyset, \mathbb{R}\}$, el único abierto contenido en \mathbb{Z} es \emptyset , luego $\mathring{\mathbb{Z}} = \emptyset$.
 - $\overline{\mathbb{Z}}$) Como el único cerrado que contiene a \mathbb{Z} es \mathbb{R} , se sigue que $\overline{\mathbb{Z}} = \mathbb{R}$.
 - \mathbb{Z}') Sea $x \in \mathbb{R}$, si U es un abierto tal que $x \in U$, entonces debe suceder que $U = \mathbb{R}$, luego $(U \{x\}) \cap \mathbb{Z} \neq \emptyset$. Por tanto $x \in \mathbb{Z}'$. Así, $\mathbb{R} = \mathbb{Z}'$.
 - $\operatorname{Fr}(\mathbb{Z})$ Como $\overline{\mathbb{R} \mathbb{Z}} = \mathbb{R}$, entonces se tiene que $\operatorname{Fr}(\mathbb{Z}) = \mathbb{R}$.
- 2. En (\mathbb{R}, τ_D) :
 - \bullet $\mathring{\mathbb{Z}}$) Es claro que $\mathring{\mathbb{Z}} = \mathbb{Z}$, pues en la topología discreta todo subconjunto de \mathbb{R} es abierto.
 - \bullet $\overline{\mathbb{Z}})$ Es claro que $\overline{\mathbb{Z}}=\mathbb{Z},$ pues en la topología discreta todo subconjunto de \mathbb{R} es cerrado.
 - \mathbb{Z}') Afirmamos que $\mathbb{Z}' = \emptyset$. En efecto, si $x \in \mathbb{Z}$, entonces $\{x\}$ es un abierto en \mathbb{R} tal que $x \in \{x\}$, y se cumple que $(\{x\} \{x\}) \cap \mathbb{Z} = \emptyset$. Luego $\mathbb{Z}' = \emptyset$.
 - $\operatorname{Fr}(\mathbb{Z})$) Como $\mathbb{R} \mathbb{Z}$ es cerrado, por un inciso anterior se sigue que $\operatorname{Fr}(\mathbb{Z}) = \emptyset$.
- 3. En (\mathbb{R}, τ_{cf}) :
 - $\mathring{\mathbb{Z}}$) Sea $U \subseteq \mathbb{Z}$ abierto, es decir que $\mathbb{R} U$ es finito o $U = \emptyset$. Se tiene entonces que:

$$\mathbb{R} - \mathbb{Z} \subseteq \mathbb{R} - U$$

como $\mathbb{R} - \mathbb{Z}$ es infinito, entonces por Cantor-Bernstein debe suceder que $\mathbb{R} - U$ también sea infinito. Por tanto, $U = \emptyset$. Luego entonces $\mathring{\mathbb{Z}} = \emptyset$.

- $\overline{\mathbb{Z}}$) Sea $C \subseteq \mathbb{R}$ un cerrado tal que $\mathbb{Z} \subseteq C$. Como en τ_{cf} los cerrados son todos los subconjuntos finitos o \mathbb{R} , entonces al ser \mathbb{Z} infinito no puede ser que C sea finito, luego $C = \mathbb{R}$. Por ende, $\overline{\mathbb{Z}} = \mathbb{R}$.
- \mathbb{Z}') Sea $x \in \mathbb{R}$, afirmamos que $x \in \mathbb{Z}'$. En efecto, si $U \subseteq \mathbb{R}$ es abierto tal que $x \in U$, entonces $\mathbb{R} U$ es finito, luego como \mathbb{Z} es infinito, existe $z \in \mathbb{Z}$ tal que z < y, para todo $y \in \mathbb{R} U$ y x < y. Es decir que $y \in (U \{x\}) \cap \mathbb{Z}$. Por tanto, $(U \{x\}) \cap \mathbb{Z} \neq \emptyset$, es decir que $x \in \mathbb{Z}'$.
- Fr(Z)) Computemos $\overline{\mathbb{R} \mathbb{Z}}$. Sea $C \subseteq \mathbb{R}$ cerrado tal que $\mathbb{R} \mathbb{Z} \subseteq C$, entonces como C es cerrado, C es finito o $C = \mathbb{R}$, pero C no puede ser finito ya que $\mathbb{R} \mathbb{Z}$ es infinito, luego $C = \mathbb{R}$. Así, $\overline{\mathbb{R} \mathbb{Z}} = \mathbb{R}$. Por tanto, Fr(Z) = Z.

Definición 1.1.11

Sea (X, τ) un espacio topológico. Se dice que el espacio (X, τ) es de **Hausdorff** si para todo $x_1, x_2 \in X$ distintos existen $U_1, U_2 \in \tau$ tales que $x_1 \in U_1, x_2 \in U_2$ y $U_1 \cap U_2 = \emptyset$.

Ejemplo 1.1.8

Considere (X, τ) donde $X = \{1, 2\}$ y $\tau = \{X, \emptyset, \{1\}\}$, entonces (X, τ) no es de Hausdorff.

Ejemplo 1.1.9

 (\mathbb{R}, τ_I) no es de Hausdorff (cuando el espacio tiene más de un elemento esto se sigue cumpliendo).

Ejemplo 1.1.10

Sea (X, d) un espacio métrico y consideremos al espacio topológico (X, τ_d) . Este espacio es de Hausdorff.

Ejemplo 1.1.11

Sea (X, d) es espacio métrico tal que la métrica de él está definida como:

$$d(x,y) = \begin{cases} 0 & \text{si } x \neq y \\ 1 & \text{si } x = y \end{cases}$$

dado $p \in X$ considere $B_d(p, 1) = \{p\}$. Entonces para todo $p \in X$, $\{p\} \in \tau_D \Rightarrow \forall A \subseteq X$, $A \in \tau_d$, es decir que $\tau_d = \tau_D$.

Definición 1.1.12

Un espacio topológico (X, τ) se dice **metrizable** si existe una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

Proposición 1.1.5

Si (X,τ) es un espacio metrizable, entonces (X,τ) es un espacio de Hausdorff.

Demostración:

Es inmediata de la definición de espacio metrizable y del ejemplo 1.1.10.

Ejemplo 1.1.12

Considere $X = \{1, 2\}$, si tomamos al espacio topológico $(X, \tau = \{X, \emptyset, \{2\}\})$ obtenemos que este espacio no es metrizable por no ser de Hausdorff.

Ejemplo 1.1.13

Considere (X, τ_D) . Este espacio es metrizable tomando la métrica discreta.

1.2. Bases de una topología

Definición 1.2.1

Sea (X, τ) un espacio topológico. Una subcolección \mathcal{B} de τ es una base para la toplogía τ si todo $U \in \tau$ puede escribirse como unión arbitraria de elementos de \mathcal{B} .

Si \mathcal{B} es una base para τ , a sus elementos los llamaremos **básicos**.

Observación 1.2.1

Cualquier topología es una base para sí misma.

Considere al espacio topológico (X, τ) . Una base \mathcal{B} de τ cumple que:

- 1. $\mathcal{B} \subseteq \tau$.
- 2. Si $U \in \tau$ entonces existe $\{U_{\alpha}\}_{{\alpha}\in I} \subseteq \mathcal{B}$ tal que $U = \bigcup_{{\alpha}\in A} U_{\alpha}$.

¿Qué pretendemos con esta definición?

Básicamente lo que se pretende es descibir a todos los elementos de la topología mediante un conjunto más pequeño de elementos (esto permite que sea más fácil de manejar y que las propiedades deseadas para los elementos de la topología se sigan cumpliendo).

Ejemplo 1.2.1

Sea X un conjunto y sea $\mathcal{M} = \{\{p\} \mid p \in X\}$. Esta es una base para τ_D definida sobre X.

Ejemplo 1.2.2

Sea (X, d) un espacio métrico y sea τ_d la topología generada por la métrica d. Entonces, las colecciones:

$$\mathcal{B}_1 = \left\{ B_d(x, r) \middle| x \in X, r \in \mathbb{R}^+ \right\}$$

es una base para la topología generada por τ_d . Además,

$$\mathcal{B}_2 = \left\{ B_d(x, q) \middle| x \in X, q \in \mathbb{Q}^+ \right\}$$

es otra base. Más aún:

$$\mathcal{B}_3 = \left\{ B_d\left(x, \frac{1}{n}\right) \middle| x \in X, n \in \mathbb{N} \right\}$$

es otra base.

Ejemplo 1.2.3

Sea $X = \{a, b, c, d\}$ y $\kappa = \{\{a, b, c\}, \{c, d\}\}$. Afirmamos que no existe una topología definida sobre X tal que κ sea base de ella.

En efecto, suponga que τ es una topología sobre X y κ es una base para τ , entonces $\{a,b,c\}$ y $\{c,d\}$ están en τ , luego su intersección $\{c\} \in \tau$. Pero, $\{c\}$ no puede ser escrito como unión de elementos de κ .

Proposición 1.2.1

Sea (X, τ) un espacio topológico y sea $\mathcal{B} \subseteq \tau$. Entonces, \mathcal{B} es una base para la topología τ si y sólo si dados $U \in \tau$ y $u \in U$ existe $B \in \mathcal{B}$ tal que $u \in B \subseteq U$.

Demostración:

Probaremos la doble implicación.

 \Rightarrow): Suponga que \mathcal{B} es una base para la topología τ . Sea $U \in \tau$ y $u \in U$. Como \mathcal{B} es una base entonces exise una subcolección $\mathcal{C} \subseteq \mathcal{B}$ tal que $U = \bigcup \mathcal{C}$, luego existe $C_{\alpha} \in \mathcal{C}$ tal que $u \in C_{\alpha}$. Por ende $u \in C_{\alpha} \subseteq U$. Tomando $B = C_{\alpha} \in \mathcal{B}$ se tiene el resultado.

 \Leftarrow): Suponga que se cumple la tesis. Ya se tiene que $\mathcal{B} \subseteq \tau$. Sea entonces $U \in \tau$. Para cada $x \in U$ existe $B_x \in \mathcal{B}$ tal que $x \in B_x \subseteq U$, luego la colección:

$$\{U_x \in \mathcal{B} \big| x \in U\}$$

es una subcolección de \mathcal{B} tal que $\bigcup_{x\in U} U_x = U$. Por tanto, \mathcal{B} es una base de τ .

Corolario 1.2.1

Sea (X, τ) un espacio topológico y sea \mathcal{B} una base de la topología τ . Sea $U \subseteq X$, entonces U es abierto en τ si y sólo si dados $x \in U$ existe $B \in \mathcal{B}$ tal que $x \in B \subseteq U$.

Demostración:

Es inmediato de la proposición anterior.

Corolario 1.2.2

Sea X un conjunto y sean τ_1, τ_2 dos topologías definidas sobre X. Tomemos $\mathcal{B}_1, \mathcal{B}_2$ bases para τ_1, τ_2 , respectivamente, entonces los siguientes resultados son equivalentes:

- 1. $\tau_1 \subseteq \tau_2$.
- 2. Dados $x \in X$ y $B_1 \in \mathcal{B}_1$ tal que $x \in B_1$ existe $B_2 \in \mathcal{B}_2$ tal que $x \in B_2$ y $B_2 \subseteq B_1$.

Demostración:

Probaremos la doble implicación.

- 1) \Rightarrow 2): Sean $x \in X$ y $B_1 \in \mathcal{B}_{\in}$ tal que $x \in B_1$. Como $\tau_1 \subseteq \tau_2$, entonces en particular B_1 es abierto de τ_2 , luego existe $B_2 \in \mathcal{B}_2$ tal que $x \in B_2 \subseteq B_1$.
 - 2) \Rightarrow 1): Sea $U \in \tau_1$, como \mathcal{B}_1 es base de τ_1 entonces existe $\{B_{\alpha}\}_{{\alpha} \in I}$ subcolección de \mathcal{B}_1 tal que:

$$\bigcup_{\alpha \in I} B_{\alpha} = U$$

Sea $u \in U$, entonces existe $\beta \in I$ tal que $u \in B_{\beta}$. Por (2) existe C_{β} tal que $u \in C_{\beta} \subseteq B_{\beta}$. Formamos la subcolección $\{C_{\alpha}\}_{{\alpha} \in I}$, por lo anterior se sigue que:

$$U = \bigcup_{\alpha \in I} C_{\alpha}$$

$$\subseteq \bigcup_{\alpha \in I} B_{\alpha}$$

$$= U$$

$$\Rightarrow U = \bigcup_{\alpha \in I} C_{\alpha}$$

donde $\bigcup_{\alpha \in I} C_{\alpha} \in \tau_2$ por ser \mathcal{B}_2 una base de τ_2 . Por tanto, $U \in \tau_2$. Finalmente, se sigue que $\tau_1 \subseteq \tau_2$.

Corolario 1.2.3

Sean d_1 y d_2 métricas definidas sobre el conjunto X. Consideremos τ_{d_1} y τ_{d_2} . Entonces $\tau_{d_1} \subseteq \tau_{d_2}$ si y sólo si dado $x \in X$ y $\varepsilon \in \mathbb{R}^+$ existe $\delta \in \mathbb{R}^+$ tal que $B_{d_2}(x,\varepsilon) \subseteq B_{d_1}(x,\delta)$

Demostración:

Es inmediato del corolario anterior.

Corolario 1.2.4

Sea X un conjunto y sea \mathcal{B} una colección de subconjuntos de X tal que \mathcal{B} es base para dos topologías τ_1 y τ_2 definidas sobre X. Entonces, $\tau_1 = \tau_2$.

Demostración:

Es inmediato del corolario 1.2.2.

Corolario 1.2.5

Sea (X, τ) un espacio topológico y sea \mathcal{B} una base para τ . Entonces, se cumple lo siguiente:

- 1. La intersección de dos elementos de \mathcal{B} se puede escribir como una unión de elementos de \mathcal{B} .
- 2. Existe $\{B_{\alpha}\}_{{\alpha}\in I}\subseteq \mathcal{B}$ tal que

$$\bigcup_{\alpha \in I} B_{\alpha} = X$$

Demostración:

Es inmediato de la definición de base.

¿Es posible prescindir de un espacio topológico para definir lo que es una base?

Definición 1.2.2

Sea X un conjunto arbitrario y sea \mathcal{A} una familia de subconjuntos de X, \mathcal{A} se dice que es **una** base para una topología sobre X si cumple lo siguiente:

- 1. La intersección de dos elementos de \mathcal{A} se puede escribir como una unión de elementos de \mathcal{A} .
- 2. X se puede escribir como una unión de elementos de A.

Proposición 1.2.2

Sea \mathcal{A} una base para una topología sobre el conjunto X. Entonces, la colección $\tau_{\mathcal{A}}$ dada por:

$$\tau_{\mathcal{A}} = \{U \subseteq X \big| U \text{ se puede escribir como una unión de elementos de } \mathcal{A}\}$$

es una topología sobre X y \mathcal{A} es una base para ella. La topología $\tau_{\mathcal{A}}$ es llamada **topología** generada por \mathcal{A} .

Demostración:

Veamos que $\tau_{\mathcal{A}}$ es una topología sobre X.

- 1. Es claro que $X \in \tau_{\mathcal{A}}$ y además $\emptyset \in \tau_{\mathcal{A}}$ ya que se puede ver como la unión de los elementos de la familia vacía.
- 2. Sea $\mathcal{U} = \{U_{\alpha}\}_{{\alpha \in I}} \subseteq \tau_{\mathcal{A}}$, entonces dado ${\alpha \in I}$ existe $\{A_{\beta}^{\alpha}\}_{{\beta \in I_{\alpha}}} \subseteq \mathcal{A}$ tal que

$$U_{\alpha} = \bigcup_{\beta \in J_{\alpha}} A_{\beta}^{\alpha}$$

19

luego

$$\bigcup_{\alpha \in I} U_{\alpha} = \bigcup_{\alpha \in I} \left(\bigcup_{\beta \in J_{\alpha}} A_{\beta}^{\alpha} \right) \in \tau_{\mathcal{A}}$$

donde la unión está en τ_A por definición de la misma.

3. Sean $U, V \in \tau_{\mathcal{A}}$, entonces existen $\{A_{\alpha}\}_{{\alpha}\in I}$ y $\{B_{\beta}\}_{{\beta}\in J}$ subcolecciones de \mathcal{A} tales que:

$$U = \bigcup_{\alpha \in I} A_{\alpha} \quad \mathbf{y} \quad V = \bigcup_{\beta \in J} B_{\beta}$$

se tiene que:

$$U \cap V = \left(\bigcup_{\alpha \in I} A_{\alpha}\right) \cap \left(\bigcup_{\beta \in J} B_{\beta}\right)$$
$$= \left(\bigcup_{\alpha \in I \ y \ \beta \in J} A_{\alpha} \cap B_{\beta}\right)$$
$$= \left(\bigcup_{(\alpha,\beta) \in I \times J} A_{\alpha} \cap B_{\beta}\right)$$

sabemos que para $\alpha \in I$ y $\beta \in J$, el conjunto $A_{\alpha} \cap B_{\beta}$ se puede escribir como una unión de elementos de \mathcal{A} , por tanto $U \cap V$ es una unión de elementos de \mathcal{A} .

por los tres incisos anteriores, se sigue que $\tau_{\mathcal{A}}$ es una topología sobre X. El hecho de que \mathcal{A} sea una base para esta topología es inmediato de la definición de $\tau_{\mathcal{A}}$.

1.3. Sub-bases

Definición 1.3.1

Sea X un conjunto y \mathcal{S} una colección no vacía de subconjuntos de X. Entonces, se dice que \mathcal{S} es una **sub-base para** $\tau(\mathcal{S})$.

Ejemplo 1.3.1

Sea $X = \{a, e, i, o, u\}$, $S = \{\{a, e\}, \{e, i\}\}$. S es una sub-base para $\tau(S)$ pero no es una base para $\tau(S)$.

Sea
$$S' = \{\{a, e\}, \{e, i\}, \{e\}\}\$$
. Entonces $\tau(S) = \tau(S')$, pues

- 1. $S \subseteq S'$ implica que $\tau(S) \subseteq \tau(S')$.
- 2. Como $\{a, e\}$, $\{e, i\} \in \tau(\mathcal{S})$ entonces $\mathcal{S}' \subseteq \tau(\mathcal{S})$ lo cual implica que $\tau(\mathcal{S}') \subseteq \tau(\mathcal{S})$.

Proposición 1.3.1

Sea X un conjunto arbitrario y sea S una colección no vacía de subconjuntos de X. Sea

 $\mathcal{B} = \{B \subseteq X | B \text{ se puede escribir como una intersección finita de elementos de } \mathcal{S}\} \cup \{X\}$

Entonces,

1. \mathcal{B} es una base para una topología sobre X.

2. $\tau_{\mathcal{B}}$ es la topología más gruesa definida sobre X para la cual \mathcal{S} es una colección de conjuntos abiertos, es decir que $\tau_{\mathcal{B}} = \tau(\mathcal{S})$.

Demostración:

Notemos antes que $S \subseteq \mathcal{B}$.

De (1): Sean $M, N \in \mathcal{B}$, entonces existen $S_{M,1}, ..., S_{M,k}, S_{N,1}, ..., S_{N,l} \in \mathcal{S}$ tales que:

$$M = \bigcap_{i=1}^{k} S_{M,i}$$
 y $N = \bigcap_{j=1}^{n} N_{N,j}$

por tanto:

$$M \cap N = \left(\bigcap_{i=1}^{k} S_{M,i}\right) \cap \left(\bigcap_{j=1}^{n} N_{N,j}\right)$$
$$= \left(\bigcap_{i=1,j=1}^{k,n} S_{M,i} \cap S_{N,j}\right)$$

luego, por definición de \mathcal{B} se sigue que $M \cap N \in \mathcal{B}$.

Además, de la definición es claro que $X \in \mathcal{B}$. Por tanto, \mathcal{B} es una base de una topología sobre X.

De (2): De la observación que se hizo al inicio, se tiene que $S \subseteq \tau_{\mathcal{B}}$, es decir que $\tau_{\mathcal{B}}$ es una topología que contiene a S, luego $\tau(S) \subseteq \tau_{\mathcal{B}}$.

Suponga que τ es una topología sobre X tal que $S \subseteq \tau$. Es claro que $B \subseteq \tau$ ya que τ es cerrado bajo intersecciones finitas. Por tanto, $\tau_B \subseteq \tau$. Luego:

$$\tau_{\mathcal{B}} \subseteq \tau(\mathcal{S})$$

Por ambas contenciones se sigue la igualdad.

Observación 1.3.1

Sea X un conjunto y S una colección no vacía de subconjuntos de X. Sea $M \in \tau(S)$, es decir que existe $\{A_{\alpha}\}_{{\alpha}\in I}\subseteq \mathcal{P}(X)$ tal que:

$$M = \bigcup_{\alpha \in I} A_{\alpha}$$

y además, dado $\beta \in I$ existen $S_{\beta,1},...,S_{\beta,n_{\beta}} \in \mathcal{S}$ tales que:

$$A_{\beta} = \bigcap_{i=1}^{n_{\beta}} S_{\beta,i}$$

por tanto,

$$M = \bigcup_{\alpha \in I} \left(\bigcap_{i=1}^{n_{\alpha}} S_{\alpha,i} \right)$$

lo cual caracteriza a los elementos de $\tau(S)$.

Ejercicio 1.3.1

Demuestre que las siguientes colecciones de subconjuntos de \mathbb{R} son base para una topología sobre \mathbb{R} :

1.
$$\mathcal{B}_1 = \{]a, b[| a, b \in \mathbb{R}, a < b \}.$$

2.
$$\mathcal{B}_2 = \{ [a, b] | a, b \in \mathbb{R}, a < b \}.$$

3.
$$\mathcal{B}_3 = \{ [a, b] | a, b \in \mathbb{R}, a < b \}.$$

4.
$$\mathcal{B}_4 = \left\{ B - K \middle| B \in \mathcal{B}_1 \right\} \cup \mathcal{B}_1$$
, con $K = \left\{ \frac{1}{n} \middle| n \in \mathbb{N} \right\}$.

5.
$$\mathcal{B}_5 = \{ a, \infty [| a \in \mathbb{R} \}.$$

6.
$$\mathcal{B}_6 = \left\{ \left[-\infty, b \right] \mid b \in \mathbb{R} \right\}.$$

7.
$$\mathcal{B}_7 = \{ A \subseteq \mathbb{R} | \mathbb{R} - A \text{ es finito} \}.$$

Solución:

La demostrción de (1)-(3) es muy similar, por lo que solo se probará para (3).

De (3): Tenemos que verificar que la intersección de dos elementos de \mathcal{B}_3 se puede escribir como unión de elementos de \mathcal{B}_3 y que \mathbb{R} puede ser escrito como unión de elementos de esta colección. En efecto:

- 1. Sean $[a_1, b_1], [a_2, b_2] \in \mathcal{B}_3$. Se tienen dos casos:
 - $]a_1,b_1]\cap]a_2,b_2]=\emptyset$. En este caso la intersección se escribe como la unión de los elementos de la familia vacía.
 - $|a_1, b_1| \cap |a_2, b_2| \neq \emptyset$. Analicemos este caso.
- 2. Notemos que:

$$\mathbb{R} = \bigcup_{m \in \mathbb{Z}}]m, m+1]$$

donde $[m, m+1] \in \mathcal{B}_3$ para todo $m \in \mathbb{Z}$.

por 1) y 2) se sigue que \mathcal{B}_3 es una base para una topología sobre \mathbb{R} .

De (4):

La prueba de (5) y (6) es muy similar, por lo cual solo se hará la de (5).

De (5): Se tienen que verificar dos condiciones:

1. Sean $a, b \in \mathbb{R}$. Sea $c = \max\{a, b\} \in \mathbb{R}$, tenemos que:

$$]a, \infty[\cap]b, \infty[=]c, \infty[$$

en efecto, si $x \in]a, \infty[\cap]b, \infty[$, entonces x > a y x > b, luego $x > \max\{a, b\} = c$, así pues $x \in]c, \infty[$. Si $x \in]c, \infty[$ es claro que $x \in]a, \infty[\cap]b, \infty[$. Luego la intersección de estos dos elementos de \mathcal{B}_5 se escribe como unión de elementos de \mathcal{B}_5 , pues $]c, \infty[\in \mathcal{B}_5$.

2. Notemos que:

$$\mathbb{R} = \bigcup_{m \in \mathbb{N}}]-m, \infty[\tag{1.1}$$

donde] $-m, \infty \in \mathcal{B}_5$ para todo $m \in \mathbb{N}$.

Por los dos incisos anteriores, se sigue que \mathcal{B}_5 es una base para una topología sobre \mathbb{R} .

De
$$(7)$$
:

Observación 1.3.2

Usamos la notación:

$$\mathcal{B}_l = \left\{ [a, b] \middle| a, b \in \mathbb{R}, a < b \right\}$$

a la topología $\tau_{\mathcal{B}_l}$ la llamaremos la **topología del límite inferior**, y se denota por τ_l .

1.4. Subespacios topológicos

Ejercicio 1.4.1

Sea (X,τ) un espacio topológico y $Y\subseteq X$. Demostrar que

$$\tau_Y = \left\{ Y \cap U \middle| U \in \tau \right\}$$

es una topología sobre Y.

Demostración:

Verifiquemos que se cumplen las tres condiciones:

- 1. Es claro que $\emptyset \in \tau_Y$, pues $\emptyset = Y \cap \emptyset$ donde $\emptyset \in \tau$. Además, $Y \in \tau_Y$ pues $Y = Y \cap X$ con $X \in \tau$.
- 2. Sea $\{A_{\alpha}\}_{{\alpha}\in I}\subseteq \tau_Y$ una subcolección no vacía de elementos de τ_Y . Entonces, para cada $\alpha\in I$ existe $U_{\alpha}\in \tau$ tal que

$$A_{\alpha} = Y \cap U_{\alpha}$$

por lo cual:

$$\bigcup_{\alpha \in I} A_{\alpha} = \bigcup_{\alpha \in I} (Y \cap U_{\alpha})$$
$$= Y \cap \bigcup_{\alpha \in I} U_{\alpha}$$

donde $\bigcup_{\alpha \in I} U_{\alpha} \in \tau$. Por tanto, $\bigcup_{\alpha \in I} A_{\alpha} \in \tau_{Y}$.

3. Sean $A, B \in \tau_Y$ entonces, existen $U, V \in \tau$ tales que:

$$A = Y \cap U$$
 y $B = Y \cap V$

por tanto:

$$A \cap B = (Y \cap U) \cap (Y \cap V)$$
$$= Y \cap (U \cap (Y \cap V))$$
$$= Y \cap (Y \cap (U \cap V))$$
$$= Y \cap (U \cap V)$$

donde $U \cap V \in \tau$. Así $A \cap B \in \tau_Y$.

por los tres incisos anteriores se sigue que τ_Y es una topología sobre Y.

Definición 1.4.1

Sea (X, τ) un espacio topológico y sea $Y \subseteq X$. A la topología sobre Y,

$$\tau_Y = \left\{ Y \cap U \middle| U \in \tau \right\}$$

la llamaremos la topología inducida por τ en Y. A la pareja (Y, τ_Y) la llamaremos un

subespacio topológico de (X, τ) .

Si $A \in \tau_Y$, se dice que A es un **abierto en** Y. Si $A \subseteq Y$ y cumple que $Y - A \in \tau_Y$, se dice que A es un **cerrado en** Y.

Ejemplo 1.4.1

Considere (\mathbb{R}, τ_u) , $Y = [0, 1[, A = [0, \frac{1}{2}[$. Podemos escribir:

$$A =]-1, \frac{1}{2} [\cap Y$$

donde] $-1, \frac{1}{2} [\in \tau_u, \text{ por ende } A \in \tau_Y, \text{ pero } A \text{ no es abierto en } (\mathbb{R}, \tau_u).$

Se tiene además que $\mathring{A} =]0, \frac{1}{2}[$ y, como $A \in \tau_Y$, entonces $\mathring{A}^Y = A = [0, \frac{1}{2}[$.

Ejemplo 1.4.2

Considere (\mathbb{R}, τ_u) . Tomemos al subconjunto \mathbb{N} . Como:

$$\{m\} = \mathbb{N} \cap]m - \frac{1}{2}, m + \frac{1}{2}[, \quad \forall m \in \mathbb{N}$$

así, $\{m\} \in \tau_{u_{\mathbb{N}}}$, es decir que coincide con la topología discreta de \mathbb{N} , pero $\{m\} \notin \tau_u$.

Ejemplo 1.4.3

Considere (\mathbb{R}, τ_u) , Y = [0, 1[, $A = [0, \frac{1}{2}[\in \tau_{u_Y}]$. Sea $B = [\frac{1}{2}, 1[\subseteq Y]]$. Se tiene que B = Y - A, es decir que B es un cerrado de (Y, τ_{u_Y}) , pero no es cerrado en (\mathbb{R}, τ_u) .

Además, $\overline{B} = [\frac{1}{2}, 1]$, y $\overline{B}^Y = B = [\frac{1}{2}, 1]$ (por ser cerrado en la topología del subespacio).

Sea $M \subseteq Y$, denotamos por $Fr(M)_Y$ a la frontera de M en (Y, τ_{u_Y}) .

Proposición 1.4.1

Sean (X, τ) un espacio topológico y $Y \subseteq X$.

- 1. Si Y es abierto (respectivamente, cerrado) en (X, τ) y $U \subseteq Y$ es un conjunto abierto (respectivamente, cerrado) en (Y, τ_Y) , entonces U es abierto (respectivamente, cerrado) en (X, τ) .
- 2. Si \mathcal{B} es una base para τ , entonces la colección:

$$\mathcal{B}_Y = \left\{ Y \cap B \middle| B \in \mathcal{B} \right\}$$

es una base para la topología τ_Y .

- 3. Sea $A \subseteq Y$. Entonces, A es cerrado en Y si y sólo si existe $C \subseteq X$ cerrado en X tal que $A = Y \cap C$.
- 4. Sea $B \subseteq Y$. Si \overline{B} es la cerradura de B en X, entonces la cerradura de B en Y, denotada por \overline{B}^Y , es $Y \cap \overline{B}$.
- 5. Sea $A \subseteq Y$, si \hat{A}^Y denota al interior de A en Y, entonces $Y \cap \mathring{A} \subseteq \hat{A}^Y$.
- 6. Sea $A \subseteq Y$, si $Fr(A)_Y$ es la frontera de A en Y, entonces $Fr(A)_Y \subseteq Y \cap Fr(A)$.

Demostración:

- De (1): En ambos casos la prueba es inmediata de la definción de subespacio de un espacio topológico.
 - De (2): Se deben verificar dos condiciones:
 - 1. $\mathcal{B}_Y \subseteq \tau_Y$, esto es inmediato pues si $Y \cap B \in \mathcal{B}_Y$, entonces $B \in \mathcal{B}$, luego $B \in \tau$ y, por ende $Y \cap B \in \tau_Y$.
 - 2. Sea $U \in \tau_Y$ abierto no vacío. Entonces existe $V \in \tau$ tal que $U = Y \cap V$. Sea $\{B_\alpha\}_{\alpha \in I} \subseteq \mathcal{B}$ tal que $V = \bigcup_{\alpha \in I} B_\alpha$, entonces:

$$U = Y \cap V$$

$$= Y \cap \left(\bigcup_{\alpha \in I} B_{\alpha}\right)$$

$$= \left(\bigcup_{\alpha \in I} Y \cap B_{\alpha}\right)$$

por tanto, U es unión de elementos de \mathcal{B}_Y .

por los dos incisos anteriores se sigue que \mathcal{B}_Y es base de τ_Y .

De (3): Probaremos la doble implicación:

 \Rightarrow): Suponga que A es cerrado en Y, entonces $Y-A \in \tau_Y$, luego existe $U \in \tau$ tal que $Y-A = Y \cap U$. Tomemos C = X - U, se tiene que:

$$Y \cap C = (X - U) \cap Y$$

$$= (X \cap Y) - (U \cap Y)$$

$$= Y - (U \cap Y)$$

$$= Y - (Y \cap U)$$

$$= Y - (Y - A)$$

$$= A$$

$$\Rightarrow A = Y \cap C$$

Prueba alternativa de la igualdad de conjuntos. Sea $a \in A$, en particular $a \in Y$. Si $a \in U$, entonces $a \notin A$, luego esto contradice el hecho de que $Y - A = Y \cap U$, por tanto $a \in C$. Así, $a \in C \cap Y$.

Si $p \in Y \cap C$, entonces $p \in Y$ y $p \notin U$, luego $p \notin Y - A$, es decir $p \in A$.

Por lo anterior se sigue que $A = Y \cap C$.

 \Leftarrow): Suponga que existe $C \subseteq X$ cerrado en X tal que $A = Y \cap C$. Hay que ver que A es cerrado en Y, para ello, notemos que:

$$Y - A = Y - (Y \cap C)$$

$$= Y - (Y - Y \cap U)$$

$$= Y \cap U$$

donde U = X - C es abierto en X y, por ende $Y \cap U$ es abierto en Y, luego Y - A es abierto en Y lo que implica que A es cerrado.

De (4): Se probarán las dos contenciones:

• $Y \cap \overline{B} \subseteq \overline{B}^Y$) Por el inciso anterior, $Y \cap \overline{B}$ es un cerrado en Y el cual contiene a B (pues $B \subseteq \overline{B}, Y$), luego $\overline{B}^Y \subseteq Y \cap \overline{B}$.

■ $\overline{B}^Y \subseteq Y \cap \overline{B}$) Sea $M \subseteq Y$ cerrado en Y tal que $B \subseteq M$, luego por (3) existe $K \subseteq X$ cerrado tal que $M = Y \cap K$, siendo K un cerrado que contiene a B, luego $\overline{B} \subseteq K$. Por tanto, $Y \cap \overline{B} \subseteq M$. Por ende, al ser M un cerrado en Y arbitrario que contiene a B se sigue que $Y \cap \overline{M} \subseteq \overline{B}^Y$.

Por las dos contenciones se sigue que $\overline{B}^Y = Y \cap \overline{B}$.

De (5): Es inmediato.

De (6): Observemos que:

$$Fr(A)_{Y} = \overline{A}^{Y} \cap \overline{Y - A}^{Y}$$

$$= (Y \cap \overline{A}) \cap (Y \cap \overline{Y - A})$$

$$= Y \cap (\overline{A} \cap \overline{Y - A})$$

$$\subseteq Y \cap (\overline{A} \cap \overline{X - A})$$

$$= Y \cap Fr(A)$$

$$\Rightarrow Fr(A)_{Y} \subseteq Y \cap Fr(A)$$

pues, $Y - A \subseteq X - A$.

Observación 1.4.1

En el inciso (3) de la demostración anterior, notemos que:

$$(Y \cap U) \cup (Y \cap C) = Y$$

pues, $U \cup C = X$ donde U y C son disjuntos, luego $Y \cap U$ y $Y \cap C$ lo son , así $Y - Y \cap U = Y \cap C$. Esto justifica un paso en la demostración de la vuelta de (3).

Ejemplo 1.4.4

Considere (\mathbb{R}, τ_u) y, considere el subespacio $(\mathbb{Z}, \tau_{u\mathbb{Z}})$. Entonces, $\mathring{\mathbb{N}} = \emptyset$ y, $\mathring{\widehat{\mathbb{N}}}^Y = \mathbb{N}$. Por ende, $\mathring{\mathbb{N}}^Y \nsubseteq \mathring{\mathbb{N}}$.

Ejemplo 1.4.5

Considere (\mathbb{R}^2, τ_u) y el subespacio (Y, τ_{uY}) con:

$$Y = \left\{ (x, y) \in \mathbb{R}^2 \middle| y = 0 \right\}$$

entonces, Fr(Y) = Y y $Fr(Y)_Y = \emptyset$.

Observación 1.4.2

Sea (X, τ) un espacio topológico y sean $Y, Z \subseteq X$ tales que $Z \subseteq Y$. Tenemos que podemos considerar a (Z, τ_Z) como subespacio de X.

También, podemos considerar a (Z, τ_{Y_Z}) como subespacio de (Y, τ_Y) .

¿Es cierto que $\tau_{Y_Z} = \tau_Y$? La respuesta es que sí:

- Sea $M \in \tau_Z$, entonces, $M = Z \cap U$ donde $U \in \tau$, luego como $M \subseteq Y$ se sigue que: $M = Z \cap (Y \cap U)$ siendo $Y \cap U \in \tau_Y$, así $M \in \tau_{Y_Z}$.
- Sea $K \in \tau_{Y_Z}$, entonces existe $L \in \tau_Y$ tal que $K = Z \cap L$, pero como $L \in \tau_Y$ entonces existe $U \in \tau$ tal que $L = Y \cap U$, por tanto: $K = Z \cap (Y \cap U) = Z \cap U$ pues $Z \subseteq Y$, luego $K \in \tau_Z$.

por ambos incisos, se sigue la igualdad.

El objetivo de esta aclaración es que podamos considerar de forma más sencillas subespacios dentro de subespacios.

Definición 1.4.2

Sea (X, τ) un espacio topológico. Una propiedad P que se cumple para (X, τ) se dice que es una **propiedad que se hereda**, si se verifica en cualquier subespacio topológico de (X, τ) . A veces simplemente se dice que P es una **propiedad hereditaria**.

Ejemplo 1.4.6

La propiedad de ser un espacio de Hausdorff es hereditaria.

Demostración:

Sea (X, τ) un espacio de Hausdorff y sea $Y \subseteq X$ arbitrario. Sean $p, q \in Y$ con $p \neq q$, en particular como X es de Hausdorff, existen $M, N \in \tau$ tales que $p \in M, q \in N$ y $M \cap N = \emptyset$.

En particular, $p \in Y \cap M$ y $q \in Y \cap N$, donde ambos conjuntos son abiertos en Y y, además $(Y \cap M) \cap (Y \cap N) = \emptyset$. Por tanto, (Y, τ_Y) es de Hausdorff.

Ejemplo 1.4.7

Sea (X, τ) un espacio topológico tal que τ tiene una base numerable, sea \mathcal{B} tal base. Si $Y \subseteq X$ es arbitrario, sabemos que

 $\mathcal{B}_Y = \left\{ Y \cap B \middle| B \in \mathcal{B} \right\}$

es una base para τ_Y , la cual es numerable por ser \mathcal{B} numerable. Luego esta propiedad es hereditaria.

Ejercicio 1.4.2

La propiedad de ser metrizable se hereda.

Demostración:

Sea (X, τ) un espacio topológico metrizable, entonces existe una métrica $d: X \times X \to \mathbb{R}$ tal que $\tau_d = \tau$.

Sea ahora (Y, τ_Y) un subespacio de (X, τ) . Considere la restricción de d a $Y \times Y$, es decir:

$$\rho = d \Big|_{Y \times Y}$$

es claro que ρ es una métrica sobre Y. Para ver que (Y, τ_Y) es metrizable, hay que ver que:

$$\tau_{\rho} = \tau_{Y}$$

donde

$$\tau_{\rho} = \left\{ A \subseteq Y \middle| \forall x \in A \exists r_x \in \mathbb{R}^+ \text{ tal que } B_{\rho}(x, r_x) \subseteq A \right\}$$

Sea $A \in \tau_{\rho}$, entonces para cada $x \in A$ existe $r_x \in \mathbb{R}^+$ tal que $B_{\rho}(x, r_x) \subseteq A$, esto es:

$$A = \bigcup_{x \in A} B_{\rho}(x, r_x)$$

pero, notemos que:

$$B_{\rho}(x, r_x) = \left\{ y \in Y \middle| \rho(x, y) < r_x \right\}$$

$$= \left\{ y \in Y \middle| d(x, y) < r_x \right\}$$

$$= \left\{ u \in X \middle| d(x, u) < r_x \right\} \cap Y$$

$$= B_d(x, r_x) \cap Y$$

1.5. Relaciones de orden y la topología del orden

Definición 1.5.1

Una relación \mathcal{R} definida sobre un conjunto A es una **relación de orden lineal** si se cumple lo siguiente:

- 1. Dados $a, b \in A$ distintos se tiene que aRb ó bRa.
- 2. Para todo elemento de $a \in A$, $a\mathcal{R}a$.
- 3. Si $a, b, c \in A$ son tales que aRb y bRc, entonces aRc.

Definición 1.5.2

Si \mathcal{R} es una relación de orden lineal definida sobre el conjunto A, diremos que (A, \mathcal{R}) es un **conjunto ordenado**.

Proposición 1.5.1

Sea (X, \mathcal{R}) un conjunto ordenado y sea $B \subseteq X$.

- 1. Si existe $b \in B$ tal que $\forall x \in B \{b\}$, $b\mathcal{R}x$, entonces b es único y se dice el **elemento mínimo** (a veces también llamado **primer elemento**) de B.
- 2. Si existe $b \in B$ tal que $\forall x \in B \{b\}$, $x\mathcal{R}b$, entonces b es único y se dice el **elemento máximo** (a veces también llamado **último elemento**) de B.

Demostración:

De 1): Suponga que existe $b \in B$ tal que:

$$b\mathcal{R}x, \quad \forall x \in B - \{b\}$$

si $b' \in B$ es diferente de b y tal que

$$b'\mathcal{R}x, \quad \forall x \in B - \{b'\}$$

entonces se tendría que $b\mathcal{R}b'$ y $b'\mathcal{R}b$, lo cual es una contradicción ya que \mathcal{R} es un orden lineal.

Por tanto, tal b es único.

De 2): Es análoga a (1)

Observación 1.5.1

Si (X, \prec) es un conjunto ordenado y $a, b \in X$, escribimos $a \leq b$ si $a \prec b$ o a = b.

Definición 1.5.3

Sea (A, \prec) un conjunto ordenado y $B \subseteq A$.

- 1. Si existe $a \in A$ tal que para todo $x \in B$ se cumple que $a \leq x$, diremos que B está **acotado** inferiormente por A. En este caso, a se dice una **cota inferior de** B.
- 2. Si existe $a' \in A$ tal que para todo $x \in B$ se cumple que $x \leq a'$, diremos que B está acotado superiormente por A. En este caso, a' se dice una cota superior de B.
- 3. Si B está acotado inferiormente y el conjunto de cotas inferiores de B tiene elemento máximo, diremos que tal elemento es la máxima cota inferior de B (abreviado máx. c.i.).
- 4. Si *B* está acotado superiormente y el conjunto de cotas superiores de *B* tiene elemento mínimo, diremos que tal elemento es la mínima cota superior de *B* (abreviado mín. c.s.).
- 5. Si cada subconjunto no vacío acotado superiormente (resp. inferiormente) del conjunto ordenado (A, \prec) tiene mínima cota superior (resp. máxima cota inferior), se dice que (A, \prec) tiene la propiedad de la **mínima cota superior** (resp. **máxima cota inferior**).

Definición 1.5.4

Un conjunto ordenado (A, \prec) es un **continuum lineal** si cumple:

- 1. (A, \prec) tiene la propiedad de la mínima cota superior.
- 2. Si $a, b \in A$ tales que $a \prec b$, entonces existe $c \in A$ tal que $a \prec c$ y $c \prec b$ (a veces escrito como $a \prec c \prec b$).

Definición 1.5.5

Sea (A, \prec) un conjunto ordenado y sean $a, b \in A$ tales que $a \prec b$. Definimos los siguientes conjuntos:

- 1. $(a,b) = \{x \in A | a \prec x \prec b\}$, llamado el **intervalo abierto con extremos** a **y** b.
- 2. Si $(a,b) = \emptyset$, a se dice el **predecesor inmediato de** b, y b el **sucedor inmediato de** a.
- 3. $[a, b] = \{x \in A | a \leq x \leq b\}$, llamado el **intervalo cerrado con extremos** a **y** b.
- 4. $(a,b] = \{x \in A | a \prec x \leq b\}$, llamado el intervalo abierto por la izquierda y cerrado por la derecha con extremos a y b.
- 5. $[a,b) = \{x \in A | a \leq x \prec b\}$, llamado el intervalo abierto por la derecha y cerrado por la izquierda con extremos a y b.
- 6. Los siguientes cuatro conjuntos se llaman rayos determinados por el elemento a:

I)
$$(a, +\infty) = \left\{ x \in A \middle| a \prec x \right\}.$$

II)
$$[a, +\infty) = \left\{ x \in A \middle| a \leq x \right\}.$$

III)
$$(-\infty, a) = \left\{ x \in A \middle| x \prec a \right\}.$$

IV)
$$(-\infty, a] = \{x \in A | x \leq a\}.$$

7. Al rayo $(-\infty, a)$ también se le conoce como la **sección definida por el elemento** a, y se escribe S_a , es decir:

$$\mathcal{S}_a = \left\{ x \in A \middle| x \prec a \right\}$$

Proposición 1.5.2

Sea (X, \prec) un conjunto ordenado y sea $\mathcal B$ la colección de todos los subconjuntos de X de los siguientes tipos:

- 1. Todos los intervalos abiertos de X.
- 2. Todos los invervalos de la forma $[a_0, b)$ donde a_0 es el elemento mínimo de (X, \prec) (si es que tal a_0 existe).
- 3. Todos los invervalos de la forma $(a, b_0]$ donde b_0 es el elemento máximo de (X, \prec) (si es que tal b_0 existe).

Entonces, \mathcal{B} es una base para una topología sobre X, la cual llamaremos la **topología del orden** y se denota por τ_{\prec} .

Tenemos además, que la colección S_a de todos los rayos de la forma $(a, +\infty)$ con $a \in X$ es una sub-base para τ_{\prec} .

Demostración:

Tenemos cuatro casos:

- 1. X no tiene elemento máximo y mínimo. Se tienen que verificar dos cosas:
 - I) Si $(a_1, b_1), (a_2, b_2)$ es un intervalo abierto en X, entonces la intersección de ambos es unión de intervalos abiertos. En efecto, si la intersección es no vacía, entonces:

$$(a_1, b_1) \cap (a_2, b_2) = (\max\{a_1, a_2\}, \min\{b_1, b_2\})$$

el cual es un intervalo abierto.

II) X es unión de intevalos abiertos. En efecto, sea

$$\mathcal{A} = \left\{ (a, b) \middle| a, b \in X, a \prec b \right\}$$

entonces:

$$X = \bigcup \mathcal{A}$$

2. X tiene elemento máximo pero no mínimo.

Definición 1.5.6

Sean (A, \prec_A) y (B, \prec_B) dos conjuntos ordenados. definimos la relación \prec sobre $A \times B$ de la siguiente manera

$$(a,b) \prec (c,d) \iff a \prec_A c \text{ o, } a = c \text{ y } b \prec_B d$$

esta relación es un orden definido sobre $A \times B$ y se dice el **orden del diccionario**.

Demostración:

Se deben cumplir tres cosas:

- 1. Sean $(a,b), (c,d) \in A \times B$ y suponga que $(a,b) \neq (c,d)$, se tienen dos casos:
 - I) $a \neq c$, entonces $a \prec_A c$ ó $a \prec c$. En el primer caso se tiene que $(a,b) \prec (c,d)$. En caso contrario se tendría que $(c,d) \prec (a,b)$.
 - II) a = c, entonces, puede suceder $b \prec_B d$ ó $d \prec_B b$ ó b = d, por tanto $(a, b) \prec (c, d)$ ó $(c, d) \prec (a, b)$ ó (a, b) = (c, d), en cuyo caso los elementos son iguales, cosa que no puede suceder. Por tanto solo puede suceder que $b \prec_B d$ ó $d \prec_B b$.

por tanto, $(a, b) \prec (c, d)$ o $(c, d) \prec (a, b)$.

- 2. Como \prec_A y \prec_B son antireflexivos, entonces siempre se tiene que $(a,b) \not\prec (a,b)$.
- 3. Sean $(x_1, y_1), (x_2, y_2), (x_3, y_3) \in A \times B$ tales que $(x_1, y_1) \prec (x_2, y_2)$ y $(x_2, y_2) \prec (x_3, y_3)$. Entonces $(x_1 \prec_A x_2 \circ x_1 = x_2 y y_1 \prec_B y_2)$ y $(x_2 \prec_A x_3 \circ x_2 = x_3 y y_2 \prec_B y_3)$ $\Rightarrow [(x_1 \prec_A x_2 \circ x_1 = x_2 y y_1 \prec_B y_2) y (x_2 = x_3 y y_2 \prec_B y_3)]$ $\Rightarrow [(x_1 \prec_A x_2 \circ x_1 = x_2 y y_1 \prec_B y_2) y (x_2 = x_3 y y_2 \prec_B y_3)]$ $\Rightarrow [(x_1 \prec_A x_2 y x_2 \prec_A x_3) \circ (x_1 = x_2 y y_1 \prec_B y_2 y x_2 \prec_A x_3)] \circ$ $[(x_1 \prec_A x_2 y x_2 = x_3 y y_2 \prec_B y_3)] \circ [(x_1 \prec_A x_2 y x_2 = x_3 y y_2 \prec_B y_3)] \circ$ $\Rightarrow [(x_1 \prec_A x_3) \circ (x_1 \prec_A x_3)] \circ$ $[(x_1 \prec_A x_3) \circ (x_1 = x_3 y y_1 \prec_B y_3)]$ $\Rightarrow x_1 \prec_A x_3 \circ x_1 = x_3 y y_1 \prec_B y_3$ $\Rightarrow (x_1, y_2) \prec (x_3, y_3)$

por los tres incisos anteriores, se sigue que \prec es un orden en $A \times B$.

Definición 1.5.7

Un conjunto ordenado (X, \mathcal{R}) se dice que está **bien ordenado** si todo subconjunto no vacío de X tiene primer elemento o elemento mínimo.

1.6. Estudio del espacio topológico $(\overline{\mathcal{S}_{\omega}}, \tau_{\prec})$

Proposición 1.6.1

Existe un conjunto bien ordenado no numerable, en el cual toda sección de él es numerable.

Demostración:

Sean $X = \{1, 2\}$ y $\alpha = (1, 2)$. Tenemos que (X, α) es un conjunto bien ordenado. Tomemos ahora sea Y un conjunto no numerable y sea β un buen orden definido sobre Y, luego la pareja (Y, β) es un conjunto bien ordenado.

Sea $Z = X \times Y$ y consideremos la relación \prec definida sobre Z de la siguiente manera:

$$(a,b) \prec (c,d) \iff a\alpha c \circ a = c y b\beta d$$

Ya tenemos que (Z, \prec) es un conjunto ordenado (por la proposición anterior), el cual es no numerable.

Veamos que (Z, \prec) está bien ordenado. Sea $A \subseteq Z$ no vacío. Se tienen dos casos:

1. Suponga que existe $y \in Y$ tal que $(1, y) \in A$. Entonces, el conjunto:

$$\mathcal{B} = \left\{ l \in Y \middle| (1, l) \in A \right\}$$

este conjunto es no vacío pues $(1, y) \in \mathcal{B}$. Sea m el primer elemento de \mathcal{B} , el cual existe por ser Y bien ordenado. Veamos que (1, m) es el primer elemento de A. Como $m \in B$, tenemos que $(1, m) \in A$. Sea $(x, y) \in A$, se tienen dos casos:

- I) x = 1, en cuyo caso $y \in \mathcal{B}$ y, por ende $m\beta y$ o $m = \beta$, lo cual implica que $(1, m) \leq (x, y)$.
- II) x=2, en cuyo caso se tiene que $1\alpha x$ y, por ende, $(1,m) \prec (x,y)$.

en cualquier caso, $(1, m) \leq (x, y)$. Luego este elemento es el primer elemento de A.

2. Suponga que para todo $(x,y) \in A$, x=2. Sea

$$\mathcal{C} = \left\{ l \in Y \middle| (2, l) \in A \right\}$$

el cual es no vacío pues $A \neq \emptyset$. $C \subseteq Y$ no vacío el cual es bien ordenado, luego tiene primer elemento, digamos $m \in C$. Por tanto, $(2, m) \in A$ y afirmamos que es el primer elemento de A, pues si $(x, y) \in A$ se tiene que x = 2 y, por definición de C se sigue que $m\beta y$ o m = y, en cuyo caso se tiene que $(2, m) \preceq (x, y)$, lo cual prueba la afirmación.

por ambos incisos, se sigue que A tiene primer elemento. Por ser A no vacío arbitrario, se tiene que (Z, \prec) es un conjunto no numerable bien ordenado.

Además, tenemos que para todo $y \in Y$, $\mathcal{S}_{(2,y)}$ es una sección de (Z, \prec) no numerable, pues si $l \in Y$, entonces $(1, l) \prec (2, y)$, es decir que para todo $l \in Y$, $(1, l) \in \mathcal{S}_{(2,y)}$, con lo cual esta sección es no numerable. Sea

$$W = \left\{ z \in Z \middle| S_z \text{ es una sección no numerable de } (Z, \prec) \right\}$$

por lo anterior, $W \neq \emptyset$. Sea ω el primer elemento de W, es decir que la sección S_{ω} es no numerable y, para todo $z \in Z$, $w \leq z$.

Tenemos que la pareja (S_{ω}, \prec) es un conjunto bien ordenado no numerable en el que toda sección de él es numerable. Recordemos que:

$$\mathcal{S}_{\omega} = \left\{ z \in Z \middle| z \prec \omega \right\}$$

y este conjunto es bien ordenado por \prec , pues es subconjunto de Z y es no numerable por como se eligió. Vamos a ver que toda sección de él es numerable.

Sea $r \in \mathcal{S}_{\omega}$, entonces:

$$\mathcal{S}_r = \left\{ z \in \mathcal{S}_\omega \middle| z \prec r \right\}$$

como $r \prec \omega$ se tiene que por elección de ω debe suceder que \mathcal{S}_r no puede ser no numerable, es decir que es a lo sumo numerable.

Veamos que es numerable. En efecto, suponga que existe $p \in \mathcal{S}_{\omega}$ tal que \mathcal{S}_p es una sección finita. Se tiene entonces que

Observación 1.6.1

Denotaremos por $\overline{\mathcal{S}_{\omega}} = \mathcal{S}_{\omega} \cup \{\omega\}$, es decir:

$$\overline{\mathcal{S}_{\omega}} = \left\{ z \in Z \middle| z \preceq \omega \right\}$$

Sea τ_{\prec} la topología generada por el buen orden \prec en Z, y considere a $\overline{\mathcal{S}_{\omega}}$ con la topología del

subespacio $\tau_{\prec_{\overline{S_{\omega}}}}$, la cual denotaremos simplemente por τ_{\prec} .

Proposición 1.6.2

Si $A \subseteq \mathcal{S}_{\omega}$ numerable, entonces existe $s \in \mathcal{S}_{\omega}$ tal que para todo $a \in A$, $a \prec s$.

Demostración:

Tenemos que para todo $a \in A$, el conjunto S_a es numerable, luego

$$B = \bigcup_{a \in A} \mathcal{S}_a$$

es numerable. Por lo tanto, existe $s \in \mathcal{S}_{\omega} - (A \cup B)$. Veamos que para todo $a \in A$, $a \prec s$. Suponga que $s \prec k$ para algún $k \in A$, es decir que $s \in \mathcal{S}_k \subseteq B$, luego $s \in A \cup B \#_c$. Por tanto, tal s cumple lo deseado.

Proposición 1.6.3

 $(\overline{\mathcal{S}_{\omega}}, \tau_{\prec})$ es un espacio de Hausdorff.

Demostración:

Sea p el primer elemento de $\overline{S_{\omega}}$. Además, sean $a, b \in \overline{S_{\omega}}$ tales que $a \prec b$. Se tienen dos casos:

1. Suponga que $b = \omega$, entonces existe $c \in S_{\omega}$ tal que $a \prec c \prec b$ (en caso contrario se tendría que $S_{\omega} = S_a \cup \{a\}$, donde un lado es no numerable y el otro sí, lo cual no puede suceder). Entonces:

$$a \in [p, c)$$
 y $b \in (c, \omega]$

donde $[p,c),(c,\omega]\in\tau_{\prec}$ y su intersección es vacía.

- 2. Suponga que $b \prec \omega$:
 - I) Si no existe $c \in \mathcal{S}_{\omega}$ tal que $a \prec c$ y $c \prec b$, entonces $a \in [p, b)$ y $b \in (a, \omega]$ y, [p, b), $(a, \omega] \in \tau_{\prec}$ son disjuntos.
 - II) Si existe $c \in \mathcal{S}_{\omega}$ tal que $a \prec c \prec b$, entonces $a \in [p, c)$ y $b \in (c, \omega]$, donde $[p, c), (c, \omega] \in \tau_{\prec}$ son disjuntos.

por los dos incisos anteriores, se sigue que el espacio es de Hausdorff.

Proposición 1.6.4

 ω es un punto de acumulación de \mathcal{S}_{ω} .

Demostración:

Sea B un básico de τ_{\prec} tal que $\omega \in B$, entonces existe $a \in \mathcal{S}_{\omega}$ tal que $(a, \omega] \subseteq B$. Suponga que $B \cap \mathcal{S}_{\omega} = \emptyset$, en particular $(a, \omega] \cap \mathcal{S}_{\omega} = \emptyset$, es decir que:

$$\mathcal{S}_{\omega} = \mathcal{S}_a \cup \{a\}$$

lo cual no puede suceder ya que entonces se tendría que \mathcal{S}_{ω} es numerable $\#_c$. Por tanto, la intersección es no vacía, es decir que existe $x \in \mathcal{S}_{\omega}$ tal que $x \in B$.

1.7. Funciones Continuas

Definición 1.7.1

Sean (X, d) y (Y, ρ) dos espacios métricos, y $f: (X, d) \to (Y, \rho)$ una función. La función f se dice una **función continua** si dado $x_0 \in X$ y $\varepsilon \in \mathbb{R}^+$, existe $\delta \in \mathbb{R}^+$ tales que si

$$x \in B_d(x_0, \delta) \Rightarrow f(x) \in B_\rho(f(x_0), \varepsilon)$$

que es equivalente a decir que $f(B_d(x_0, \delta)) \subseteq B_{\rho}(f(x_0), \varepsilon)$.

Proposición 1.7.1

Sean (X, d) y (Y, ρ) dos espacios métricos, y $f: (X, d) \to (Y, \rho)$ una función. Entonces, f es una función continua si y sólo si dado $U \subseteq Y$ abierto, $f^{-1}(U) \subseteq X$ es abierto.

Demostración:

 \Rightarrow): Suponga que f es continua y sea $U \subseteq Y$ abierto. Si $x \in f^{-1}(U)$, entonces $f(x) \in U$. Como U es abierto, existe $\varepsilon \in \mathbb{R}^+$ tal que $B_{\rho}(f(x), \varepsilon) \subseteq U$. Pero, como f es continua entonces existe $\delta \in \mathbb{R}^+$ tal que

$$f(B_d(x,\delta)) \subseteq B_\rho(f(x),\varepsilon) \subseteq U$$

es decir que $B_d(x,\delta) \subseteq f^{-1}(U)$. Por tanto, al ser $x \in f^{-1}(U)$ arbitrario, se sigue que $f^{-1}(U)$ es abierto.

 \Leftarrow): Suponga que para todo $U \subseteq Y$ abierto, $f^{-1}(U)$ es abierto en X. Sean ahora $x_0 \in X$ y $\varepsilon \in \mathbb{R}^+$. Como el conjunto $B_{\rho}(f(x_0), \varepsilon)$ es abierto, entonces $f^{-1}(B_{\rho}(f(x_0), \varepsilon))$ donde $x_0 \in f^{-1}(B_{\rho}(f(x_0), \varepsilon))$, por ende existe $\delta \in \mathbb{R}^+$ tal que

$$B_d(x_0, \delta) \subseteq f^{-1}(B_\rho(f(x_0), \varepsilon))$$

\Rightarrow f(B_d(x_0, \delta)) \subseteq B_\rho(f(x_0), \varepsilon)

por tanto, como el $x_0 \in X$ fue arbitrario se sigue que f es continua en X.

Definición 1.7.2

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios topológicos y $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función. Decimos que f es una **función continua** si para todo $U \in \tau_2$ se tiene que $f^{-1}(U) \in \tau_1$ (imágenes inversas de abiertos son abiertas).

Ejemplo 1.7.1

Sea (X_1, τ_1) un espacio topológico tal que τ_1 es la topología discreta, es decir que $\tau_1 = \mathcal{P}(X)$. Sea (X_2, τ_2) un espacio topológico arbitrario. Entonces, toda función $f: (X_1, \tau_1) \to (X_2, \tau_2)$ es continua.

Ejemplo 1.7.2

Sea (X_1, τ_1) un espacio toplógico arbitrario y, sea (X_2, τ_2) un espacio topológico tal que $\tau_2 = \tau_I$. Entonces, toda función $f: (X_1, \tau_1) \to (X_2, \tau_2)$ es continua.

Proposición 1.7.2

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios topológicos y $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función. Entonces, f es una función continua si y sólo si dados $x \in X_1$ y $V \in \mathcal{V}(f(x))$ existe $U \in \mathcal{V}(x)$ tal que $f(U) \subseteq V$.

Demostración:

 \Rightarrow): Suponga que f es continua. Sea $x \in X_1$ y $V \in \mathcal{V}(f(x))$, entonces existe $W \in \tau_2$ tal que $f(x) \in W \subseteq V$, es decir que $x \in f^{-1}(W)$ donde al ser f continua se tiene que $f^{-1}(W) \in \tau_1$, esto es que $U = f^{-1}(W) \in \mathcal{V}(x)$. Además, $U = f^{-1}(W) \subseteq f(V)$.

 \Leftarrow): Sea $V \in \tau_2$ y sea $x \in f^{-1}(V)$, entonces $f(x) \in V$ donde $V \in \mathcal{V}(f(x))$. Así, por la tesis existe $U \in \mathcal{V}(x)$ tal que $f(U) \subseteq V$, lo cual implica que:

$$x \in U \subseteq f^{-1}(f(U)) \subseteq f^{-1}(V)$$

por tanto, $f^{-1}(V) \in \tau_1$.

Corolario 1.7.1

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios topológicos y $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función. Entonces, f es continua si y sólo si dado $x \in X_1$ y dado $V \in \tau_2$ tales que $f(x) \in V$ existe $U \in \tau_1$ tal que $x \in U$ y $f(U) \subseteq V$.

Demostración:

Es inmediato de la proposición anterior.

Proposición 1.7.3

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios topológicos, \mathcal{B} una base para τ_2 y $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función. Entonces, f es continua si y sólo si para todo $B \in \mathcal{B}$ se tiene que $f^{-1}(B) \in \tau_1$.

Demostración:

 \Rightarrow): Es inmediata.

 \Leftarrow): Sea $U \in \tau_2$, como \mathcal{B} es base, entonces existe $\{B_{\alpha}\}_{{\alpha}\in I} \subseteq \mathcal{B}$ tal que

$$U = \bigcup_{\alpha \in I} B_{\alpha}$$

por lo cual:

$$f^{-1}(U) = f^{-1}\left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} f^{-1}(B_{\alpha})$$

donde $f^{-1}(B_{\alpha}) \in \tau_1$, para todo $\alpha \in I$. Luego, $f^{-1}(U) \in \tau_1$.

Proposición 1.7.4

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios topológicos y, $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función. Entonces, lo siguientes enunciados son equivalentes:

- 1. f es continua.
- 2. $\forall A \subset X_1, \ f(\overline{A}) \subset \overline{f(A)}$.
- 3. Si $A \subseteq X_2$ cerrado, entonces $f^{-1}(A)$ es cerrado de X_1 .

Demostración:

1) \Rightarrow 2): Sea $A \subseteq X_1$ y $x \in \overline{A}$. Queremos ver que dado $V \subseteq X_2$ abierto tal que $f(x) \in X_2$ contiene puntos de f(A), i.e. $V \cap f(A) \neq \emptyset$.

Como f es continua, entonces $f^{-1}(V)$ es abierto en X_1 , luego como $x \in \overline{A}$ entonces $f^{-1}(V) \cap A \neq \emptyset$, así existe $a \in f^{-1}(V) \cap A$ por lo cual $f(A) \in V$ y $f(a) \in f(A)$, así $V \cap f(A) \neq \emptyset$. Finalmente, se sigue que $f(\overline{A}) \subseteq \overline{f(A)}$.

2) \Rightarrow 3): Sea $A \subseteq X_2$ cerrado. Por (2) se tiene que

$$\overline{f^{-1}(A)} \subseteq f^{-1}(f(\overline{f^{-1}(A)})) \subseteq f^{-1}(\overline{f(f^{-1}(A))}) \subseteq f^{-1}(\overline{A}) = f^{-1}(A)$$

(la segunda contención se da por (2)) y pues $f(f^{-1}(A)) \subseteq A$.

3) \Rightarrow 1): Sea $U \in \tau_2$, entonces $X_2 - U$ es cerrado en X_2 , luego $f^{-1}(X_2 - U) = X_1 - f^{-1}(U)$ siendo $f^{-1}(U)$ cerrado, luego $f^{-1}(U) \in \tau_1$.

Ejemplo 1.7.3

Sean (X_1, τ_1) y (X_2, τ_2) dos espacios topológicos y $y_0 \in X_2$. Definimos la función $\underline{y_0} : (X_1, \tau_1) \to (X_2, \tau_2)$ tal que $\forall x \in X_1$ se tiene que $\underline{y_0}(x) = y_0$. Esta función es una función continua y se llama una **función constante**.

Sea $f:(\mathbb{R}, \tau_u) \to (\mathbb{R}, \tau_I)$ tal que para todo $x \in \mathbb{R}$, f(x) = 4 (esto es que $f = \underline{4}$). Por lo anterior esta es una función continua. Se tiene por ende que:

$$\overline{f(\mathbb{N})} = \mathbb{R} \quad \text{y} \quad f(\overline{\mathbb{N}}) = 4$$

es decir que $\overline{f(\mathbb{N})} \not\subseteq f(\overline{\mathbb{N}})$.

Ejemplo 1.7.4

Sean (X_1, τ_1) , (X_2, τ_2) y (X_3, τ_3) tres espacios topológicos.

1. Tomemos $A \subseteq X_1$, y sea $i_A: (A, \tau_{1_A}) \to (X_1, \tau_1)$ la función definida de por:

$$\forall a \in A, i_A(a) = a$$

tenemos que esta función es una función continua y se llama la función inclusión de A en X_1 . Además, tenemos que para $U \in \tau_1$, $i^{-1}(U) = U \cap A \in \tau_{1_A}$.

- 2. Sea $f:(X_1,\tau_1)\to (X_2,\tau_2)$ una función continua.
 - I) Si $B \subseteq X_2$ cumple que $f(X_1) = B$, entonces, la función $F: (X_1, \tau_1) \to (B, \tau_{2_B})$ definida para todo $x \in X_1$, F(x) = f(x) es continua. F se dice que es **una reestricción** del rango de f.

La continuidad se sigue del hecho de que si $U \in \tau_{2B}$, entonces existe $V \in \tau_2$ tal que $U = V \cap B$, luego

$$F^{-1}(U) = f^{-1}(U) = f^{-1}(V \cap B) = f^{-1}(V) \cap f^{-1}(B) = f^{-1}(V) \cap X_1 = f^{-1}(V)$$

donde el miembro de la derecha está en τ_1 . Por tanto, F es continua.

II) Si (X_3, τ_3) es un espacio topológico que tiene a (X_2, τ_2) como subespacio, entonces la función $F: (X_1, \tau_1) \to (X_3, \tau_3)$ tal que $\forall x \in X_1, F(x) = f(x)$ se llama **una expansión del rango de** f.

La continuidad se sigue del hecho de que si $U \in \tau_3$, entonces:

$$F^{-1}(U) = F^{-1}(U \cap X_2) \cup F^{-1}(U \cap (X_3 - X_2)) = F^{-1}(U \cap X_2) \cup \emptyset = f^{-1}(U \cap X_2)$$

donde el mimebro de la derecha está en τ_1 ya que $U \cap X_2$ está en τ_2 por ser f continua.

III) Si $A \subseteq X_1$, entonces la función $f_A : (A, \tau_{1_A}) \to (X_2, \tau_2)$ tal que para todo $x \in A$, $f_A(x) = f(x)$ es una función continua y se dice **la función reestringida (del dominio) de** f **al conjunto** A. Esta función también es continua.

3. Si $f:(X_1,\tau_1)\to (X_2,\tau_2)$ es una función y $\{A_\alpha\}_{\alpha\in I}\subseteq \tau_1$ tal que:

$$\bigcup_{\alpha \in I} A_{\alpha} = X_1$$

entonces, f es continua si y sólo si $\forall \alpha \in I$, $f_{A_{\alpha}}:(A_{\alpha},\tau_{1_{A_{\alpha}}}) \to (X_{2},\tau_{2})$ es una función continua.

4. Si $f:(X_1,\tau_1)\to (X_2,\tau_2)$ es una función y $\{C_\alpha\}_{\alpha\in I}$ es una familia finita de conjuntos cerrado sen (X_1,τ_1) , tal que

$$\bigcup_{\alpha \in I} C_{\alpha} = X_1$$

entonces, f es continua si y sólo si $\forall \alpha \in I$, $f_{C_{\alpha}}:(C_{\alpha},\tau_{1_{C_{\alpha}}}) \to (X_{2},\tau_{2})$ es una función continua.

5. Sean A, B subconjuntos abiertos (respectivamente, cerrados) de (X_1, τ_1) tales que $X_1 = A \cup B$. Si $f_1: (A, \tau_{1_A}) \to (X_2, \tau_2)$ y $f_2: (B, \tau_{1_B}) \to (X_2, \tau_2)$ son funciones continuas tales que para todo $x \in A \cap B$ se tiene que $f_1(x) = f_2(x)$, entonces, la función $f: (X_1, \tau_1) \to (X_2, \tau_2)$ definida como:

$$\forall x \in X_1, \quad f(x) = \begin{cases} f_1(x) & \text{si} \quad x \in A \\ f_2(x) & \text{si} \quad x \in B \end{cases}$$

es una función continua.

6. Si $f:(X_1,\tau_1)\to (X_2,\tau_2)$ y $g:(X_2,\tau_2)\to (X_3,\tau_3)$ son funciones continuas, entonces $g\circ f:(X_1,\tau_1)\to (X_3,\tau_3)$ es continua.

Demostración:

De (3): La necesidad es inmediata del inciso anterior.

Para la suficiencia, suponga que para todo $\alpha \in I$, la función $f_{A_{\alpha}}$ es continua. Sea $U \in \tau_2$, entonces por hipótesis se tiene que $f_{A_{\alpha}}^{-1}(U) \in \tau_{1_{A_{\alpha}}}$, por tanto:

$$\forall \alpha \in I, f^{-1}(U) \cap A_{\alpha} \in \tau_{1_{A_{\alpha}}}$$

por otro lado,

$$f^{-1}(U) = f^{-1}(U) \cap X_1 = f^{-1}(U) \cap \left(\bigcup_{\alpha \in I} A_\alpha\right) = \left(\bigcup_{\alpha \in I} f^{-1}(U) \cap A_\alpha\right)$$

donde todos los miembros de unión en la derecha están en τ_1 ya que cada A_{α} es abierto, y, al ser $f^{-1}(U)$ abierto en $\tau_{A_{\alpha}}$, se sigue que $f^{-1}(U)$ debe ser elemento de τ_1 . Por tanto, $f^{-1}(U)$ es abierto.

De (4): La necesidad es inmediata de un inciso anterior.

Para la suficiencia...

De (5): Supongamos que A, B son abiertos. Sea $U \in \tau_2$. Como f_1 y f_2 son continuas, entonces $f_1^{-1}(U) \in \tau_{1_A}$ y $f_2^{-1}(U) \in \tau_{1_B}$, como A y B son abiertos en (X_1, τ_1) , entonces $f_1^{-1}(U)$ y $f_2^{-1}(U)$ son abiertos en (X_1, τ_1) . Por tanto,

$$f^{-1}(U) = f_1^{-1}(U) \cup f_2^{-1}(U) \in \tau_1$$

se sigue entonces que f es continua.

De (6): Sea $U \in \tau_3$, entonces $g^{-1}(U) \in \tau_2$, por lo cual $f^{-1}(g^{-1}(U)) \in \tau_1$. Como:

$$(g \circ f)^{-1}(U) = f^{-1}(g^{-1}(U)) \in \tau_1$$

entonces, se sigue que $q \circ f$ es continua.

1.8. Funciones abiertas, cerradas y homemorfismos

Definición 1.8.1

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos y $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función entre ellas.

- 1. Decimos que f es una función abierta, si para todo $U \in \tau_1$, $f(U) \in \tau_2$.
- 2. Decimos que f es una **función cerrada**, si para todo $X_1 U \in \tau_1$, $X_2 f(U) \in \tau_2$ (en otras palabras, si $U \subseteq X_1$ es cerrado, entonces $f(U) \subseteq X_2$ es cerrado).

Veamos ejemplos de funciones que sean abiertas, cerradas y continuas.

Considere $X = \{a, b\}$ con $a \neq b$, $\tau_1 = \{X, \emptyset, \{a\}\}$ y $\tau_2 = \{X, \emptyset, \{b\}\}$

- 1. Tomemos $id:(X,\tau_1)\to (X,\tau_2)$. Esta función no es continua, tampoco es abierta ni cerrada.
- 2. Tomemos $id:(X,\tau_I=\{X,\emptyset\})\to (X,\tau_D)$. Esta función no es continua, pero si es abierta y cerrada.
- 3. Tomemos $id = id^{-1}: (X, \tau_D) \to (X, \tau_I = \{X, \emptyset\})$. Esta función es continua, pero no es abierta ni cerrada.
- 4. Tomemos $id = id^{-1}: (X, \tau_1) \to (X, \tau_1)$. Esta función es continua, abierta y cerrada.
- 5. Tomemos $\underline{a}:(X,\tau_D)\to (X,\tau_1)$. Esta función es continua, abierta pero no es cerrada.
- 6. Tomemos $\underline{b}:(X,\tau_D)\to (X,\tau_1)$. Esta función es continua, pero no es abierta y sí es cerrada.
- 7. Tomemos $f:(X,\tau_D)\to(\mathbb{R},\tau_u)$ tal que f(a)=0 y f(b)=1. Esta función es continua, pero no abierta ni cerrada.

Los ejemplos anteriores se resumen en la siguinte tabla.

Ejemplo	Continua	Abierta	Cerrada
1	×	×	×
2	×		$\sqrt{}$
3		×	×
4	$\sqrt{}$		$\sqrt{}$
5	$\sqrt{}$		×
6	$\sqrt{}$	×	
7		×	×

Definición 1.8.2

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos. Se dice que los espacios topológicos son **homeo-morfos**, si existe una función $h: (X_1, \tau_1) \to (X_2, \tau_2)$ biyectiva tal que h y h^{-1} son continuas y, en tal caso, se dice que h es un **homeomorfismo entre los espacios** (X_1, τ_1) y (X_2, τ_2) , o simplemente un **homeomorfismo**, y se escribe

$$(X_1, \tau_1) \simeq (X_2, \tau_2)$$

Proposición 1.8.1

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos, y $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función biyectiva. Entonces, los siguientes enunciados son equivalentes:

1. f es un homeomorfismo.

- 2. f es continua y abierta.
- 3. f es continua y cerrada.
- 4. $A \subseteq X_2$ es cerrado si y sólo si $f^{-1}(A) \subseteq X_1$ es cerrado.
- 5. $A \in \tau_2$ si y sólo si $f^{-1}(A) \in \tau_1$.
- 6. Si \mathcal{B} es una base para τ_1 , entonces la colección

$$f(\mathcal{B}) := \left\{ f(B) \middle| B \in \mathcal{B} \right\}$$

es una base para τ_2 .

Demostración:

 $1) \Rightarrow 2$): Es claro que f es continua. Por ser homeomorfismo, se sigue que f^{-1} también es abierta. Para ver que f es abierta, sea $U \in \tau_1$, entonces

$$f(U) = (f^{-1})^{-1}(U)$$

luego, como f^{-1} es continua, se sigue que $f(U) \in \tau_2$.

- 2) \Rightarrow 3): Ya se tiene que f es continua. Sea $C \subseteq X_1$ cerrado. Como f es abierta, entonces el conjunto $X_2 f(U) \in \tau_2$, luego f(U) es cerado.
 - 3) \Rightarrow 4): Haremos la doble implicación.
 - \Rightarrow): Sea $A \subseteq X_2$ cerrado, como f es continua, entonces $f^{-1}(A) \subseteq X_1$ es cerrado.
- \Leftarrow): Sea $A \subseteq X_2$ tal que $f^{-1}(A) \subseteq X_1$ es cerrado. Como f es cerrada, entonces $f(f^{-1}(A)) = A$ (pues es biyección) es cerrado.
- $4) \Rightarrow 5$): $A \in \tau_2$ sii $X_2 A$ es un cerrado sii $f^{-1}(X_2 A)$ es un cerrado sii $X_1 f^{-1}(A)$ es cerrado sii $f^{-1}(A) \in \tau_1$.
- 5) \Rightarrow 6): Sea \mathcal{B} una base de τ_1 . Tenemos que dado $B \in \mathcal{B}$, $B \in \tau_1$. Como f es biyectiva, entonces $B = f^{-1}(f(B))$, luego $f(B) \in \tau_2$.

Por tanto, $f(\mathcal{B}) \subseteq \tau_2$. Ahora, si $A \in \tau_2$, por lo anterior se tiene que $f^{-1}(A) \in \tau_1$, luego existe una subcolección $\{B_{\alpha}\}_{{\alpha} \in I}$ tal que:

$$f^{-1}(A) = \bigcup_{\alpha \in I} B_{\alpha}$$

luego:

$$A = f(f^{-1}(A)) = f\left(\bigcup_{\alpha \in I} B_{\alpha}\right) = \bigcup_{\alpha \in I} f(B_{\alpha})$$

donde $f(B_{\alpha}) \in f(\mathcal{B})$ para todo $\alpha \in I$. Por tanto, $f(\mathcal{B})$ es una base para τ_2 .

 $(6) \Rightarrow 1$): Sea \mathcal{B} una base para τ_1 . Por hipótesis se tiene que $f(\mathcal{B})$ es una base de τ_2 .

Sea ahora $U \in \tau_2$, entonces existe $\{B_{\alpha}\}_{{\alpha} \in I} \subseteq \mathcal{B}$ tal que

$$U = \bigcup_{\alpha \in I} f(B_{\alpha})$$

luego,

$$f^{-1}(U) = f^{-1}\left(\bigcup_{\alpha \in I} f(B_{\alpha})\right) = \bigcup_{\alpha \in I} f^{-1}(f(B_{\alpha})) = \bigcup_{\alpha \in I} B_{\alpha}$$

donde el lado de la derecha es abierto por ser \mathcal{B} base de τ_1 . Así, f es continua.

Sea ahora $V \in \tau_1$, luego existe $\{B_{\beta}\}_{\beta \in I}$ tal que:

$$V = \bigcup_{\beta \in J} B_{\beta}$$

luego,

$$f(V) = f\left(\bigcup_{\beta \in J} B_{\beta}\right) = \bigcup_{\beta \in J} f(B_{\beta})$$

donde los elementos de la izquierda están en $f(\mathcal{B})$, así $f(V) = (f^{-1})^{-1}(V)$ es abierto en X_2 . Por ende, f^{-1} es continua.

Como ambas funciones f y f^{-1} son continuas, se sigue que f es homeomorfismo.

Corolario 1.8.1

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos, y $f: (X_1, \tau_1) \to (X_2, \tau_2)$ una función biyectiva. Entonces, f es un homeomorfismo $\iff f$ es continua y abierta $\iff f$ es continua y cerrada.

Demostración:

Es inmediato del teorema anterior.

Ejercicio 1.8.1

Sea X un conjunto y τ_1, τ_2 dos topologías sobre X. Sea $\mathrm{id}_X : (X, \tau_1) \to (X, \tau_2)$. Entonces, id_X es homeomorfismo si y sólo si $\tau_1 = \tau_2$.

Demostración:

Se probarán las dos implicaciones.

 \Rightarrow):

(⇒):

Definición 1.8.3

Las propiedades de los espacios topológicos que se pueden definir por medio de sus subconjuntos abiertos (de forma equivalente, cerrados), son llamados **invariantes con respecto a homeomorfismos**.

Así, diremos que una propiedad P que cumple un espacio topológico es una **propiedad topológica** si todo espacio topológico que es homeomorfo a (X, τ) posee esa propiedad, es decir P puede considerarse como una propiedad de la clase de los espacios topológicamente equivalentes a (X, τ) .

Proposición 1.8.2

La propiedad de ser un espacio de Hausdorff es topológica.

Demostración:

Sean (X_1, τ_1) y (X_2, τ_2) espacios topológicos, $f: (X_1, \tau_1) \to (X_2, \tau_2)$ un homeomorfismo entre ellos. Supongamos que (X_1, τ_1) es Hausdorff, probaremos que (X_2, τ_2) también lo es.

En efecto, sean $p, q \in X_2$, $p \neq q$. Como $f^{-1}(p), f^{-1}(q) \in X_1$ son distintos por ser f biyectiva y al ser (X_1, τ_1) Hausdorff, entonces existen abiertos $V_1, V_2 \in \tau_1$ tales que

$$f^{-1}(p) \in V_1, \quad f^{-1}(q) \in V_2, \quad V_1 \cap V_2 = \emptyset$$

Tomemos $U_1 = f(V_1)$ y $U_2 = f(V_2)$ abiertos en (X_1, τ_1) ya que f es una función abierta. Se tiene que $p \in U_1, q \in U_2$ y:

$$U_1 \cap U_2 = f(V_1) \cap f(V_2) = f(V_1 \cap V_2) = f(\emptyset) = \emptyset$$

por tanto, el espacio (X_2, τ_2) es Hausdorff.

Ejercicio 1.8.2

La propiedad de ser un espacio metrizable es topológica.

Demostración:

Ejercicio 1.8.3

La propiedad de tener una base numerable es topológica.

Demostración:

1.9. Topología Producto

Proposición 1.9.1

Sean Y un conjunto y (X,τ) un espacio topológico. Si $f:Y\to X$ es una función, entonces

$$\tau' = \left\{ f^{-1}(U) \middle| U \in \tau \right\}$$

es una topología sobre Y y es la topología más gruesa definida sobre Y tal que $f:(Y,\tau')\to (X,\tau)$ es una función continua.

Demostración:

Primero veremos que τ' es una topología sobre Y.

- 1. Es claro que $Y = f^{-1}(X), \emptyset = f^{-1}(\emptyset) \in \tau'$ ya que $X, \emptyset \in \tau$.
- 2. Sean $M_1, M_2 \in \tau'$, entonces existen $U_1, U_2 \in \tau$ tales que $M_1 = f^{-1}(U_1)$ y $M_2 = f^{-1}(U_2)$, luego:

$$M_1 \cap M_2 = f^{-1}(U_1) \cap f^{-1}(U_2) = f^{-1}(U_1 \cap U_2) \in \tau'$$

pues, $U_1 \cap U_2 \in \tau$.

3. Sea $\{M_{\alpha}\}_{{\alpha}\in I}={\mathcal A}\subseteq {\tau}'$ una colección de elementos de ${\tau}'$, entonces existe $\{U_{\alpha}\}_{{\alpha}\in I}\subseteq {\tau}$ tal que

$$M_{\alpha} = f^{-1}(U_{\alpha}), \quad \forall \alpha \in I$$

luego,

$$\bigcup_{\alpha \in I} M_{\alpha} = \bigcup_{\alpha \in I} M_{\alpha}$$

$$= \bigcup_{\alpha \in I} f^{-1}(U_{\alpha})$$

$$= f^{-1} \left(\bigcup_{\alpha \in I} U_{\alpha}\right)$$

donde $\bigcup_{\alpha \in I} U_{\alpha} \in \tau$, por ende $\bigcup_{\alpha \in I} M_{\alpha} \in \tau'$.

por los tres incisos anteriores, se sigue que τ' es una topología sobre Y.

Es claro que la función f es continua (pues imagen inversa de abiertos simpre es abierta). Sea ahora σ una topología sobre Y tal que $f:(Y,\tau)\to (X,\tau)$ es una función continua. Hay que probar que $\tau'\subseteq \sigma$. En efecto, ...

Definición 1.9.1

Sean $\{X_{\alpha}\}_{{\alpha}\in I}$ una familia no vacía de subconjuntos de X y $x:I\to \bigcup_{{\alpha}\in I}X_{\alpha}$ tal que para todo ${\alpha}\in I,\, x({\alpha})\in X_{\alpha}$. Denotamos a

$$x(\alpha) := x_{\alpha}, \quad \forall \alpha \in I$$

y, a la función x la denotaremos simplemente por $(x_{\alpha})_{\alpha \in I}$. Formamos así el conjunto:

$$\prod_{\alpha \in I} X_{\alpha} = \left\{ x : I \to \bigcup_{\alpha \in I} X_{\alpha} \middle| x \text{ es una función tal que para todo } \alpha \in I, x_{\alpha} \in X_{\alpha} \right\}$$

le llamaremos el producto cartesiano de la famila $\{X_{\alpha}\}_{\alpha\in I}$.