Streaming Algorithm For Graph Spanners

Satpute Aniket Tukaram: CS21BTECH11056 Vishal Vijay Devadiga: CS21BTECH11061 Harshit Pant : CS21BTFCH11021 Mahin Bansal: CS21BTECH11034

> Under the Guidance of Prof(Dr).Rogers Mathew

April 14, 2024

Overview

- Introduction
- 2 Algorithm
 - Definitions
 - Algorithm
- Analyzing the running time
 - Overall Time Complexity
 - Time for Prune(u, i)
 - Time for Processing an edge
- Analysis of Stretch of Spanner
 - Lemma
 - Proof
 - 2k-1 spanner

Overview

- A spanner is a sparse sub-graph that preserves approximate distance between each pair of vertices.
- A t-spanner of a graph G = (V, E), for any $t \in N$, is a sub-graph (V, E_s) , $E_s \subseteq E$ such that, for any $u, v \in V$, their distance in the sub- graph is at most t times their distance in the original graph.
- The parameter t is called the stretch associated with the t-spanner

Team 6 (IITH) Paper Presentation April 14, 2024 3/29

Overview

- Computing *t*-spanner of smallest size for a graph is NP-hard.
- The goal of this paper is to design an efficient algorithm that, for any weighted graph on n vertices, computes a (2k-1)-spanner of size $O(n^{1+\frac{1}{k}})$.

4 / 29

Preliminaries

- We assume that n, the number of vertices is known in advance and the vertices are numbered from 1 to n.
- The central idea of the algorithm is a suitable grouping of vertices called clustering.
- A cluster is a subset of vertices, and a clustering \mathcal{C} , is a union of disjoint clusters. Each cluster will have a unique vertex which will be called its center.
- C[v] will denote the center of the cluster containing v unless v does not belong to any cluster, in which case C[v] = 0.
- A cluster c is said to be adjacent to a vertex u if there is some edge (u, v) in the graph for some $v \in c$.
- With respect to a clustering C, v is said to be **clustered vertex** if it belongs to some cluster $c \in C$.

Initializing Clusterings

$$S_0 \leftarrow V; \ S_k \leftarrow \emptyset;$$
For $(0 < i < k)$
 S_i is formed by selecting each $v \in S_{i-1}$ independently with probability $n^{-1/k};$
For (each $v \in V$ and $0 \le i < k)$
if $(v \in S_i)$ $C_i[v] \leftarrow v$ else $C_i[v] \leftarrow 0$.

Figure: Forming the initial *k* clusterings

- We define $I_c(v)$ to be the highest level i < k such that v appears as center of some cluster in C_i .
- We will say that a cluster $c \in C_i$ is a sampled cluster at level i if its center was selected to form a cluster center at $(i+1)^{th}$ level.

Team 6 (IITH) Paper Presentation April 14, 2024 6/29

Working Example

Figure: Example with n=9 and k=4

Assertion \mathcal{A}

Assertion

 \mathcal{A} : For each cluster $c' \in \mathcal{C}_{i+1}$, there exists a unique sampled cluster c at level i such that $c \subseteq c'$, and vice versa.

8/29

Some Definitions

Let G(V, E) be the graph under consideration with n vertices Let there be k clusterings $\{C_i|0 \le i < k\}$ of the vertices of G formed by the preprocessing steps.

For the below definitions, consider v to be a vertex $\in V$ and $\mathcal C$ is the collection of the k clusterings

- $C_i[v]$ denotes the center of the cluster $c \in C_i$ such that $v \in c$, if v doesn't belong to any cluster in C_i then $C_i[v] = 0$
- A cluster c is said to **adjacent** to v if $\exists (u, v) \in G(E)$ for some $u \in c$.
- With respect to a clustering C, v is said to be **clustered vertex** if it belongs to some cluster $c \in C$.

9 / 29

Team 6 (IITH) Paper Presentation April 14, 2024

Some Definitions (Contd...)

- $I_C(v)$: highest i < k such that v appears as center of some cluster in C_i
- I(v): highest i < k such that v appears as a member of some cluster in C_i . (Initially $I(v) = I_C(v)$)s
- A cluster $c \in C_i$ is a **sampled cluster** at level i if its center is selected to a form a cluster center at level (i + 1)
- For each $v \in V, \varepsilon(v)$: stores one edge per unsampled cluster at level I(v) which is adjacent to v.
- For each $v \in V$, Temp(v) is a buffer to store the edges.
- ε_{ϵ} stores the partially constructed spanner.

Team 6 (IITH) Paper Presentation

Algorithm - Processing an edge in the stream

$$\begin{split} & \textbf{If } (\ell(u) > \ell(v)) \quad \text{swap } (u,v) \textbf{ Endif} \\ & i \leftarrow \ell(u) \; ; \quad x \leftarrow \mathcal{C}_i[v] \; ; \quad h \leftarrow \ell_c(x); \\ & \textbf{If } (h > i) \quad \textit{// opportunity for } u \textit{ to move } up \\ & \textbf{For } j = i + 1 \text{ to } h \quad \textbf{do} \quad \mathcal{C}_j[u] \leftarrow x; \\ & \ell(u) \leftarrow h; \\ & \mathcal{E}_S \leftarrow \mathcal{E}_S \cup Temp(u) \cup \mathcal{E}(u); \\ & Temp(u) \leftarrow \emptyset; \quad \mathcal{E}(u) \leftarrow \{(u,v)\}; \\ & \textbf{Else} \\ & Temp(u) \leftarrow Temp(u) \cup \{(u,v)\}; \\ & \textbf{If } (|Temp(u)| = |\mathcal{E}(u)|) \textit{ Prune}(u,i) \quad \textbf{Endif} \\ & \textbf{Endif} \end{split}$$

Figure: Processing an edge (u, v) of the stream

Team 6 (IITH) Paper Presentation April 14, 2024 11 / 29

Algorithm - Prune(u, i)

- 1. For each $(u, w) \in \mathcal{E}(u)$ do $A[\mathcal{C}_i[w]] \leftarrow 1$.
- 2. For each $(u, v) \in Temp(u)$ do

 If $(A[\mathcal{C}_i[v]] = 0)$ $A[\mathcal{C}_i[v]] \leftarrow 1;$ $\mathcal{E}(u) \leftarrow \mathcal{E}(u) \cup \{(u, v)\} \text{ Endif}$ $Temp(u) \leftarrow Temp(u) \setminus (u, v).$
- 3. For each $(u, w) \in \mathcal{E}(u)$ do $A[\mathcal{C}_i[w]] \leftarrow 0$.

Figure: The procedure Prune(u, i)

12 / 29

Team 6 (IITH) Paper Presentation April 14, 2024

Working Example

Figure: Example with n=9 and k=4 and for the first edge

 Team 6 (IITH)
 Paper Presentation
 April 14, 2024
 13/29

Explanation: Algorithm

The algorithm is explained informally below:

- Let $(u, v) \in \sigma$ be an edge $\in G(E)$. When this edge appears we process on u if $I(u) \leq I(v)$, otherwise we process on v.
- A vertex $u \in V$ waits in the I(u) clustering until it appears in one of the vertex in an edge of the stream, where it might get a chance to move to a level higher than I(u)
- WLOG, consider I(v) > I(u), two cases arise here
- Case 1 The clustering $c \in \mathcal{C}_{I(u)}$ containing v is a sampled cluster[10] at the level I(u)
- Case 2 The clustering $c \in \mathcal{C}_{l(u)}$ containing v is an unsampled cluster at the level l(u)

Team 6 (IITH) Paper Presentation April 14, 2024 14 / 29

Explanation (Contd...): Case 1

We handle the two cases separately

Case 1:

- Follows from the assertion, $\exists c' \in \mathcal{C}_{l(u)+1}$ such that $c \subseteq c'$ and hence we add u to the cluster c'.
- We keep on adding u to the cluster in the next higher level which is guaranteed to exist by the lemma, until the level $I_C(\mathcal{C}_{I(u)}[v])$
- We update the new I(u) which is now $I_C(C_{I(u)}[v])$
- We add the previous values of Temp(u) and $\varepsilon(u)$ to ε_s
- Since I(u) has been updated, we also need to update Temp(u) and $\varepsilon(u)$
- Temp(u) is set to ϕ and $\varepsilon(u)$ becomes $\{(u, v)\}$

4□▶ 4□▶ 4□▶ 4□▶ □ 990

15/29

Explanation (Contd...): Case 2

Case 2:

- c is an unsampled cluster.
- In this case we add the edge (u, v) only if we have not seen any edge incident from any other vertex \in c.
- In order to achieve this we use the Temp(u) and $\varepsilon(u)$ lists.
- We simply add the edge to Temp(u) as it is a probable edge which can be added to the spanner.
- The list Temp(u) will be pruned when its size becomes significant (equal to $\varepsilon(u)$)

16/29

Paper Presentation

Explanation (Contd...): Prune

Prune(u, i)

- We need to decide whether the edges $(u, w) \in Temp(u)$, which is essentially an edge from an unsampled cluster incident on u, should or not be added to the spanner, since only one edge per unsampled cluster incident on u needs to be added to the spanner.
- In order to achieve this, we use A[0...n] is used which is initially set to 0 $\forall i \in \{1...n\}$
- Next using the centers of the clusters, we mark all clusters which already have an edge incident on u in $\varepsilon(u)$ to 1
- Finally $\forall (u,v) \in Temp(u)$, we check if the cluster is marked and if not then no edge from this cluster is included in $\varepsilon(u)$ and hence we mark the cluster and include this edge in $\varepsilon(u)$
- Finally we again mark all the entries in A to 0

Some Observations

Observation

For each vertex $v \in V$, $|Temp(v)| < |\varepsilon(v)|$ always except just before the invocation of Prune(v, i) when $|Temp(v)| = |\varepsilon(v)|$

18 / 29

Team 6 (IITH) Paper Presentation A

Final Output

 After executing the algorithm at any stage we define two sets of edges

$$\varepsilon^{+} = \bigcup_{u \in V} \varepsilon(u) \cup \varepsilon_{S} \tag{1}$$

$$Temp = \bigcup_{u \in V} Temp(u) \tag{2}$$

ullet The obtained $arepsilon^+ \bigcup \mathit{Temp}$ is our (2k-1)-spanner till that stage.

Team 6 (IITH) Paper Presentation April 14, 2024 19 / 29

Analyzing the running time

- The time complexity of algorithm depends on two processes:
 - Processing an edge (u, v) of the stream:(11)
 - Procedure of *Prune*(*u*, *i*):(12
- In case of Processing an edge only the for loop that increases the level of vertex is to be considered. All other steps happen in O(1) time
- As we can see in function Prune(u, i), its time complexity depends on $|\varepsilon(u)| + |Temp(u)|$
- The time for pre-processing i.e. creating the initial clusters, clusterings, defining I(u) and $I_c(u)$ is in order of O(nk)

Time for Prune(u, i)

- As we can see from (18) order of $|\varepsilon(u)| + |Temp(u)|$ is same as O(|Temp(u)|)
- In the procedure Prune(u, i) it can be seen that any edge from Temp(u) is accessed only once, after that the edge is either discarded or becomes member of $\varepsilon(u)$
- This means each edge is processed for O(1) time in Prune(u, i) which leads to O(m) time complexity for this step (m is number of edges in stream)

21/29

Team 6 (IITH) Paper Presentation April 14, 2024

Time for Processing an edge

- We know that each iteration of the for loop increases level of a vertex and the level of vertex doesn't exceed k-1.
- Therefore maximum of O(nk) iteration of this loop will be executed (as number of vertex is n)
- This gives total time complexity as O(nk + m) = O(m)
- To ensure O(m) time complexity we can start algorithm after nk edges. If stream is less than nk we can output those nk edges as it is as spanner edges

Team 6 (IITH) Paper Presentation April 14, 2024 22 / 29

A vertex becoming a member of cluster c'

A vertex u becomes a member of c' only when:

- Edge (u, v) appears in the stream
- I(u) < I(v), where I(u) = j, and j < i
- ullet Vertex v is a member of some sampled cluster c in \mathcal{C}_j
- v belongs to c' in C_i

By assertion A, c is a subset of c'

23 / 29

Team 6 (IITH) Paper Presentation April 14, 2024

Current edge $\equiv (v, o)$, Cluster $C' \in C_i$ Cluster center of $C' \equiv X$

pis a path from u to a in cluster C' such that,

$$|p| = j < i$$

Lemma

Lemma

Let c' be any cluster in C_i .

Each vertex $u \in c'$ is connected to its center x by a path of length at most i edges from ε^+

Proof by Induction

The lemma is to be proved by induction on i. Let:

- $x \leftarrow$ Center of cluster c'
- $(u, v) \leftarrow \text{Edge appearing in stream}$

Considering that if c' is a singleton cluster, there is nothing to prove.

Assuming otherwise, let $u \neq x$ be a vertex belonging to c'.

- By induction hypothesis, there exists a path $\subseteq \varepsilon^+$ between v and x of length at most j
- Since vertex u adds edge (u, v) to $\varepsilon(u)$ while joining c', there exists a path $\subseteq \varepsilon^+$ of length at most $j+1 \le i$ between u and center of cluster c'

Stretch of Spanner

An edge (u, v) that appears in the stream, either belongs to $\varepsilon^+ \cup Temp$ or it is discarded by the prune function.

- If it belongs to $\varepsilon^+ \cup \textit{Temp}$, that is, the spanner, then is the distance between u and v is the same in both the spanner and the original graph.
- If it is discarded, then:
 - There exists an edge (u, w) in $\varepsilon(u)$ incident from the same cluster, say in C_i that v belongs to.
 - v and w is connected by a path through the center of the cluster with length at most 2i.
 - Thus, distance between u and v is at most 2i + 1.
 - Since, i < k, distance between u and v is at most 2k 1.

27 / 29

Stretch of Spanner

This implies any shortest path in the original graph is stretched by a factor of at most 2k-1.

Thus, the set $\varepsilon^+ \cup Temp$ is a 2k-1 spanner for the stream of edges seen so far.

Team 6 (IITH)