Examen parcial de Física - CORRENT CONTINU 17 de Març de 2016

Model A

Qüestions: 50% de l'examen

A cada questió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- T1) Si a un conductor cilíndric de coure de llargada 30 m i radi 0.2 mm li apliquem una diferència de potencial de 2 V, quants electrons hauran travessat una secció del conductor en 64 segons? (la càrrega d'un electró és de $-1.602 \cdot 10^{-19}$ C i la resistivitat de coure val $16.8 \cdot 10^{-9} \,\Omega \text{m}$).
 - a) 10^{-19} .
- b) $2 \cdot 10^{20}$. c) $2 \cdot 10^{12}$.
- d) 10^{20} .
- T2) La bateria del cotxe elèctric Tesla està formada per 7100 cel·les d'ió liti, amb una fem total de 375 V, que es carreguen fins a 240 Ah. Suposant que la resistència interna sigui negligible, durant quan de temps podria circular a 249 km/h, sabent que a aquesta velocitat consumeix una potència de 568 kW?
 - a) 0.6 h.
- b) 1 h.
- c) 0.16 h.
- d) 1.6 h.
- **T3**) Sabem que tres resistències elèctriques de $R_1 = R_2 = 3 \,\mathrm{k}\Omega$, i $R_3 = 6 \,\mathrm{k}\Omega$ estan connectades en paral·lel a una bateria ideal de 9 V. Quina de les següents afirmacions és certa?
 - a) $I_3 = 2I_1 = 2I_2$.
 - b) $P_1 = P_2 = 2P_3$.
 - c) $\Delta V_3 = 2\Delta V_1 = 2\Delta V_2$.
 - d) $I_1 = I_2 = I_3$.
- **T4)** En el circuit de la figura, $\epsilon = 12V$. Quant han de valer R_1 i R_2 per tal que l'equivalent Thévenin entre A i B sigui de $\epsilon_{\rm Th} = 6 V$ i $R_{\rm Th} = 12 \Omega$?

a)
$$R_1 = R_2 = 4.8 \,\Omega$$
.

b)
$$R_1 = 4 \Omega$$
, $R_2 = 5 \Omega$.

c)
$$R_1 = 5 \Omega$$
, $R_2 = 4 \Omega$.

d)
$$R_1 = R_2 = 6 \Omega$$
.

- **T5)** En el circuit de la figura, $\epsilon = 9 \,\mathrm{V}$, $C = 2 \,\mu\mathrm{C}$ i $R = 6 \,\Omega$. Si el generador es considera ideal, quant val l'energia dissipada en el circuit en 1 minut i 15 segons en règim estacionari?
 - a) 240 kJ.
 - b) 13.5 J.
 - c) 0 kJ.
 - d) 6.75 J.

Examen parcial de Física - CORRENT CONTINU 17 de Març de 2016

Model B

Qüestions: 50% de l'examen

A cada qüestió només hi ha una resposta correcta. Encercleu-la de manera clara. Puntuació: correcta = 1 punt, incorrecta = -0.25 punts, en blanc = 0 punts.

- **T1)** Sabem que tres resistències elèctriques de $R_1 = R_2 = 3 \,\mathrm{k}\Omega$, i $R_3 = 6 \,\mathrm{k}\Omega$ estan connectades en paral·lel a una bateria ideal de 9 V. Quina de les següents afirmacions és certa?
 - a) $I_1 = I_2 = I_3$.
 - b) $P_1 = P_2 = 2P_3$.
 - c) $I_3 = 2I_1 = 2I_2$.
 - d) $\Delta V_3 = 2\Delta V_1 = 2\Delta V_2$.
- **T2)** En el circuit de la figura, $\epsilon = 9 \,\text{V}$, $C = 2 \,\mu\text{C}$ i $R = 6 \,\Omega$. Si el generador es considera ideal, quant val l'energia dissipada en el circuit en 1 minut i 15 segons en règim estacionari?
 - a) 6.75 J.
 - b) 240 kJ.
 - c) 13.5 J.
 - d) 0 kJ.

- T3) Si a un conductor cilíndric de coure de llargada 30 m i radi 0.2 mm li apliquem una diferència de potencial de 2 V, quants electrons hauran travessat una secció del conductor en 64 segons? (la càrrega d'un electró és de $-1.602 \cdot 10^{-19}$ C i la resistivitat de coure val $16.8 \cdot 10^{-9} \Omega$ m).
 - a) $2 \cdot 10^{12}$.
- b) $2 \cdot 10^{20}$.
- c) 10^{-19} .
- d) 10^{20} .
- T4) La bateria del cotxe elèctric Tesla està formada per 7100 cel·les d'ió liti, amb una fem total de 375 V, que es carreguen fins a 240 Ah. Suposant que la resistència interna sigui negligible, durant quan de temps podria circular a 249 km/h, sabent que a aquesta velocitat consumeix una potència de 568 kW?
 - a) 1.6 h.
- b) 1 h.
- c) 0.16 h.
- d) 0.6 h.
- **T5)** En el circuit de la figura, $\epsilon = 12V$. Quant han de valer R_1 i R_2 per tal que l'equivalent Thévenin entre A i B sigui de $\epsilon_{\rm Th} = 6\,V$ i $R_{\rm Th} = 12\,\Omega$?
 - a) $R_1 = 5 \Omega$, $R_2 = 4 \Omega$.
 - b) $R_1 = R_2 = 6 \Omega$.
 - c) $R_1 = 4 \Omega$, $R_2 = 5 \Omega$.
 - d) $R_1 = R_2 = 4.8 \,\Omega.$

Cognoms i Nom:

Codi

Examen parcial de Física - CORRENT CONTINU 17 de Març de 2016

Problema: 50% de l'examen

En el circuit de la figura, sabem que la diferència de potencial entre els punts A i B és $V_A - V_B = 10$ V i que la potència dissipada per R_1 val $P_1 = 1.5$ W. Calculeu:

- a) Les intensitats I, I_1 i I_2 .
- b) La força electromotriu ε del generador i la potència subministrada P_{ε} (negligim la seva resistència interna).
- c) El circuit equivalent Thévenin entre els punts A i B.
- d) La càrrega Q que adquirirà un condensador de capacitat $C=4~\mu {\rm F}$ si el connectem entre els punts A i B. Determineu també l'energia U emmagatzemada pel condensador.

Dades: $R_1 = 150 \,\Omega$, $R_2 = 25 \,\Omega$, $R_3 = 75 \,\Omega$, $R_4 = 50 \,\Omega$

RESOLEU EN AQUEST MATEIX FULL

Respostes correctes de les questions del Test

Qüestió	Model A	Model B
T1)	b	b
T2)	c	d
T3)	b	b
T4)	a	c
T5)	c	d

Resolució del Model A

- T1) Sabent que la resistència del cable es calcula com R = $\frac{\rho l}{S}$, on S és la secció circular S = $\pi \, r^2 = 1.257 \cdot 10^{-7} \, \text{m}^2$, tenim que R = 4 Ω . Així, I = 2 V/R = 0.5 A i el nombre d'electrons es pot comptar com n = I $\cdot \frac{\Delta t}{q_e} = 2 \cdot 10^{20}$.
- **T2)** Sabent que la càrrega és de Q=240 Ah = 864 kC, l'energia que subministrarà serà de $\Delta U=Q\cdot 375$ V = 324 MJ. Consumint una potència de P=568 kW, pot funcionar durant $\Delta t=\frac{\Delta U}{P}=570.4$ s = 0.16 h.
- T3) El conjunt està connectat en paral·lel, de forma que la diferència de potencial als extrems de cada resistència és la mateixa, $\Delta V = 9$ V. Així, les intensitats que transporten són: $I_1 = \Delta V/R_1 = 3$ mA = I_2 , i $I_3 = 1.5$ mA. D'altra banda, les potències dissipades són: $P_1 = I_1 \Delta V = 27$ W = P_2 , mentre que $P_3 = 13.5$ W, de manera que $P_1 = P_2 = 2P_3$.
- T4) La resistència equivalent Thévenin entre A i B ve donada per: $R_{\rm Th}=12=R_1+R_1+\frac{R_1R_2}{R_1+R_2}$. D'altra banda, la tensió equivalent Thévenin entre A i B ve donada per: $\varepsilon_{\rm Th}=6=\frac{12\,R_2}{R_1+R_2}$. De la segona, tenim $R_1=R_2$, la qual cosa ens dóna, substituint en la primera: $R_1=R_2=4.8\,\Omega$.
- **T5)** Donat que les branques amb condensadors no transporten corrent en règim estacionari, I = 0 A per totes dues resistències, de manera que la potència dissipada en total és nul·la.

Resolució del Problema

a) Trobarem I_1 a partir de P_1 :

$$P_1 = R_1 I_1^2 \Rightarrow I_1 = \sqrt{P_1/R_1} = 0.1 A$$

$$V_A - V_B = R_1 I_1 - R_2 I_2 \Rightarrow I_2 = \frac{1}{R_2} (R_1 I_1 - (V_A - V_B)) = 0.2 A$$

Finalment, aplicant la llei dels nusos, ha de ser:

$$I = I_1 + I_2 = 0.3 A$$

b) Apliquem la llei de les malles a la malla superior amb sentit de recorregut l'horari:

$$-R_1I_1 + \varepsilon - R_4I_1 = 0 \Rightarrow \varepsilon = (R_1 + R_4)I_1 = 20 V$$

La potència subministrada pel generador és:

$$P_{\varepsilon} = \varepsilon I = 6 W$$

c) La força electromotriu del circuit equivalent Thévenin és directament:

$$\varepsilon_{\mathrm{Th}} = V_A - V_B = 10 \ V$$

Tenint en compte com estan combinades les resistències, la resistència del circuit equivalent Thévenin vindrà donada per:

$$R_{\rm Th} = \frac{1}{\frac{1}{R_1} + \frac{1}{R_4}} + \frac{1}{\frac{1}{R_2} + \frac{1}{R_3}} = 37.5 \ \Omega + 18.75 \ \Omega = 56.25 \ \Omega$$

d) Trobarem la càrrega i l'energia aplicant directament les fórmules:

$$Q = C(V_A - V_B) = 40 \ \mu C$$

$$U = \frac{1}{2} \frac{Q^2}{C} = 200 \ \mu J$$