

JINJA MODERN SENIOR SECONDARY SCHOOL

Uganda Advanced Certificate of Education S5 END OF TERM TWO 2024 CHEMISTRY Paper 1

P525/1 2 hours 45 minutes

ame
ombination STRUCTIONS: swer all questions in section A and six questions in section B questions must be answered in the spaces provided
e Periodic Table, with relative atomic masses, is supplied.
athematical tables $(3-figure\ tables)$ are adequate or non-programmable scientific
ectronic calculators may be used
ustrate your answers with equations where applicable.
here necessary, use the following:
Molar gas constant $R = 8.31 \text{ JK}^{-1} \text{ mol}^{-1}$
Molar volume of a gas at s.t.p is 22.4 litres.
Standard temperature = $273 K$
Standard pressure = $101325 N m^{-2}$

						F	or Ex	amin	er's	Use C	Only						
1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	Total

SECTION A (46 MARKS)

1 (a)	The label o	n a nitric acid bottle reads as follows: Relative molecular mass = 63.01 70% m/v nitric acid Relative density 1.42 g cm ⁻³	
	(i)	Calculate the molarity of nitric acid	(1½marks)
•••••			
•••••	·····	12.5 2 6 11 11 11 250 2 6	
	(ii)	12.5 cm ³ of nitric acid was diluted to 250 cm ³ of s volumetric flask. What volume of that solution will 20 cm ³ of 0.1 M sodium carbonate solution.	
•••••			
•••••			
•••••			
•••••			
•••••			
•••••			
2.	excess. On	gaseous hydrocarbon (Y) was ignited with 205cm ³ cooling to room temperature the volume of the residual gas was treated with co	dual gas was

potassium hydroxide solution, there was a volume contraction to 125cm³.

	(a)	Calculate the molecular formula of Y	(02 marks)
•••••			
	(b)	Y reacts with Tollen's reagent to form a white precipitate structure of Y and give its IUPAC name (01 mark)	. Suggest the
	(c)	Write equation(s) for synthesis of Y from magnesium (01½ marks))
3.	Expla) Relat	ain the following observations, ive stability of +2 oxidation state in group(IV) increases do whereas that of +4 decreases.	
	••••••		
•••••	•••••		
used		he determination of molecular mass of polymers, osmotic ad of ebullioscopic and cryoscopic methods.	pressure is

(1 mark)	
••••••	
	Calcium compounds have higher melting points than aluminium compounds.
	The acid strength of oxoacids of chlorine decreases in the order HClO ₄ > HClO ₃ >HClO ₂ >HClO
pro (a)	mplete the following equations and in each case name the main organic oduct. $CH_3CH_2I \xrightarrow{Na} Ma$ $CH_3CH_2I \xrightarrow{dry \text{ ether}} Ma$ Ma
Name of 1	
	$CH_3CH=CH_2 + HBr$ ROOR $(1\frac{1}{2} marks)$
Name of 1	product
(c)	CH_3CH_2Br $\xrightarrow{CH_3CH_2OH/KOH}$ $(1\frac{1}{2} marks)$
Name of j	product

	(d) mark	11 1 · .	(1½
Nan	ne of pr	roduct	
5.	(a) 	(i) What is meant by the term diagonal relationship?	
	•••••		
	simi	(ii) State three properties in which beryllium and alum lar.	(1½ marks)
••••	(b)	Write equation(s) for the reaction(s) between the follow (i) Aluminium and sodium hydroxide.	wing (1½ marks)
		(ii) Beryllium carbide and water.	(1½ marks)
6.		Define the term hydration energy .	(02 marks)

(b)	State		affect the magnitude of hydr	(01 mark)
(c)	The	table below shows	enthalpies of hydration of Ca	l^{2+} and Cl^{-} ions.
		Ca ²⁺ Cl ⁻	Enthalpy of hydration 1577 381	ı (kJ mol ⁻¹)
mark)	(i)		values of enthalpies of hydra ositive or negative. Give a rea	_
	(ii)	Calculate the ent	halpy of hydration of calcium	chloride
	react (i)	tion(s) that would t was added aqueous sodium	served and write an equation(ake place when to a solution of the control of the c	of iron(II) excess. (3½
	••••••			
	(ii)	a few drops of co	ncentrated nitric acid and the	mixture boiled. (2½ marks)

•••••	•••••	•••••	••••••			
8. The first ionization energies of some group II metals of the periodic table and melting points of their chlorides are given in the table below						
and morning points	01 011011 011	orrano ara grivan				
Metal	Ma	Ca	Sr	Ba		
1 st ionization	Mg 738	590	549	505		
energy kJ mol ⁻¹	730	370	347	303		
Melting point of	708	772	873	967		
chlorides						
Briefly explain the variation in trends of: (a) the first ionization energy. (2 ½ marks)						
				(2 ½ marks)		
				(2 ½ marks)		
				(2 ½ marks)		
				(2 ½ marks)		
				(2 ½ marks)		
(a) the firs	st ionization					
(a) the firs	st ionization	energy.				
(a) the firs	st ionization	energy.				

•••••	•••••		•••••
••••••	•••••		•••••
•••••	•••••		
9	(a) mark	Write the electronic configuration of element Gallium (Ga)	(½
	(b)	Natural gallium consists of isotopes ⁶⁹ Ga and ⁷¹ Ga in atomic ra 3:2. The relative isotopic masses of ⁶⁹ Ga and ⁷¹ Ga are 68.9 and respectively. Calculate the approximate relative atomic mass of Gallium. <i>marks</i>)	170.9

(c) The figure below represents a mass spectrometer.

Name and state the function of parts (2marks)
C
D
E
F
SECTION B: (54 MARKS) Answer six questions from this section. Additional questions answered will not be marked. 10. (a) State three methods used in determining rates of chemical reactions. (01½ marks)

(b) The following experimental results were obtained for the reaction

Experiment	Initial concentration	Initial rate of increase	
No.		of NOC l /mol dm $^{-3}$ s $^{-1}$	
	$[Cl_2]$	[NO]	
1	0.10	0.10	1×10^{-4}
2	0.10	0.20	4×10^{-4}
3	0.30	0.10	3×10^{-4}

		(i)	Deduce the order of reaction with respect to \bullet Chlorine (C l_2)	(01½ marks)
			Nitrogen(II) oxide (NO)	(01½ marks)
		(ii)	Calculate the overall order of reaction. mark)	(01
•••••	(a)	(i) mark)	Write the rate equation for the reaction	(01
		(ii)	Calculate the value of the rate constant (K) and	d give its units. (02½ marks)
12.	(a)	State	the type of bond that exists in:	
		(i)	lead(II) chloride:	(1 mark)
		(ii)	lead(IV) chloride:	(1 mark)
		(iii)	silicon(IV) chloride:	(1 mark)

	(iv)	Aluminium oxide:	(1 mark)
(b)	type	e two physical properties which show that lead() of bond you have stated in (a)(i) above.	(02 marks)
(c)	Writ	e an ionic equation for the reaction between aque hydroxide solution and.	ueous sodium
	(i)	Aluminium oxide:	(1½ marks)
	(ii)	Silicon(IV) oxide:	(1½ marks)
13 A	compot	and P contains 60.0% carbon,13.3% hydrogen a	and the rest
oxy (a)		ulate the empirical formula of P	(1½ marks)
(b)		8g of P in 100g of solvent lowered the freezing .190°C (Kf for solvent is 1.63°C Mol ⁻¹ K ⁻¹)	point of solvent
	(i)	Determine the molecular formula of P. <i>marks</i>)	(03
	•••••		
	•••••		

	(ii)	P reacted with aqueous iodine and sodium hydroxide solution forming a yellow precipitate. Write the structural formula and name of P (02 marks)
•••••	••••••	
(c)		the mechanism for the reaction between P and hot concentrated phosphoric acid $(02\frac{1}{2} marks)$
	•••••	
•••••	•••••	
13 (a) other		three reasons why fluorine differs in its properties from the ents of group VII (03 marks)
	•••••	
	•••••	
	•••••	
	•••••	
(b)	Write (i)	e equations for reactions of fluorine with Water
•••••	•••••	
	(ii)	Cold dilute sodium hydroxide

BOB BONUS 2024@jínja modern ss chemístry dept

•••••	•••••	• • • • • • • • • • • • • • • • • • • •		
		(iii)	Hot dilute sodium hydroxide	
•••••	(c)		e an equation for the reaction between hon dioxide.	nydrofluoric acid and (01½ marks)
14.	Nitro equat	_	and hydrogen react to form ammonia acc $3H_{2(g)} + N_{2(g)} \rightleftharpoons 2NH_{3(g)}\Delta =$	
	(a)	State	the industrial conditions used to obtain	
oxidi: water			to P which is further oxidized to produce nitric acid.	
		(1)	Name P and Q P is	
		(ii)	Q is Write equations for the formation of F Equation for the formation of P:	P, Q and nitric acid. (01½ marks)
•••••	••••••	•••••	Equation for the formation of Q:	(01½ marks)

•••••	• • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	• • • • • • • • • • • • • • • • • • • •	•••••	• • • • • • • • • • • • • • • • • • • •	•••••
		Equa	ation for	the form	nation of	nitric aci	d:	(01%	/2 marks)
(c)	Write (i)	e equa		the reac	tion of c	oncentra	ted nitric		d d /2 marks)
	(ii)	copp	er	••••••	••••••	•••••	••••••	(014	/2 marks)
15. The ki			or the re	eaction be	etween P	and sod	ium hydi	roxide is	shown
Concentrate of P (mol l	_	1.05	0.88	0.74	0.51	0.37	0.26	0.16	0.10
Time		0.0	3.5	7.0	14.5	20.0	27.0	35.5	45.0

Plot a graph of Concentration of P against Time (03 marks) (a)

Deter	(i)	the half life of P	(03 marks)
	(ii)	the order of the reaction.	(01 mark)
	, ,	the rate constant for the reaction	(02 marks)
16 C	_	te the following organic reactions and write the accepted r OH H^+/H_2O \longrightarrow	

 17.			nape adopted by the follow (4 r	
 17.	(a) Draw the st molecules.	ructure and name the sl	nape adopted by the follow (4 r	 ing
 17.	(a) Draw the st		nape adopted by the follow	 ing
••••				••••
••••				
	(c) CH ₃ C≡ CH	H_2O , heat $60^{\circ}C$ $H_2SO_4(aq)/HgSO_4(aq)$	⇒(3 marks
••••				••••
••••				
		Warm	(3	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,

(0)		above.							ateu III (a)		
		` /	$\mathrm{BeC}l_2$						(2½ marks)		
			•••••								
		` '	H_2S						(2½ marks)		

PERIODIC TABLE

1												Т	1	Т	
,											3	4	5	6	7
															1
															Н
												т	T	Т	1.0
											5	6	7	8	9
Be											В	C	N	O	F
2 //g /4.3											10.8	12.0	14.0	16.0	19.0
2											13	14	15	16	17
Лg											Al	Si	P	S	Cl
4.3							Т	1		1	27.0	28.1	31.0	32.1	35.4
.0	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35
Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br
0.1	45.0	47.9	50.9	52.0	54.9	55.8	58.9	58.7	63.5	65.	69.7	72.6	74.9	79.0	79.9
8	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53
r	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I
7.6	88.9	91.2	92.9	95.9	98.9	101	103	103	108	112	115	119	122	128	127
6	57	72	73	74	75	76	77	78	79	80	81	82	83	84	85
Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	Ti	Pb	Bi	Po	At
37	139	178	181	184	186	190	192	195	197	201	204	207	209	(209)	(210
8	89														
Ra	Ac														
226)	(227)						T		_				.		
		57	58	59	60	61	62	63	64	65	66	67	68	69	70
		La	Ce	Fr	Nd	Pm	Sm	Eu	Gd	Tb	Dy	Но	Er	Tm	Yb
		139	140	141	144	(145)	150	152	157	159	162	165	167	169	173
		89	90	91	92	93	94	95	96	97	98	99	100	101	102
		Ac	Th	Pa	U	Np	Pu	Am	Cm	Bk	Cf	Ea	Fm	Mv	No
		(227)	232	231	238	237	(244)	(243)	(247)	(247)	251	(254)	(257)	(256)	(254
	·					•	•				•				

H – indicates Atomic number

2. H – indicates relative Atomic mass 1.0