

Explainable AI

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor
School of Computer Science and Engineering
Nanyang Technological University

Explainable AI through Argumentation

What is Argumentation?

- Evaluate "possible conclusions" by considering reasons for and against
 - Constructing pros and cons arguments
 - Evaluating arguments accordingly
- Resolve conflicts (within or across "agents")
- Often studied and applied in
 - Disciplines: philosophy, logic, law, artificial intelligence, computer science, etc.
 - Applications: decision-making, dispute resolution, negotiation, security, bioinformatics, etc.

Argumentation for Decision Making: How

- **1. Represent the decision problem**: decision, goals, attributes, contexts, and their relationships... 2. Construct arguments and attacks following an argumentation framework 3. Evaluate the acceptability of arguments w.r.t chosen criteria (typically certain argumentation semantics) **4. Derive argumentative explanations** from the
 - decision making process

- Abstract Argumentation
 - Arguments are "atomic"
 - Formalize relations ("attacks") between arguments

- An abstract argumentation framework (AF) is a pair (A, R) where
 - A is a set of arguments
 - $-R \subseteq A \times A$ is a relation representing "attacks"

- $A = \{a, b, c, d, e\}$
- $R = \{(a,b), (c,b), (c,d), (d,c), (d,e), (e,e)\}$

- Conflict Free Set:
 - Given an AF F = (A, R). A set $S \subseteq A$ is conflict-free (cf) in F, if, for each $a, b \in S$, $(a, b) \notin R$.

$$\Box cf(F) = \{\{a\},\$$

$$\Box cf(F) = \{\{a\}, \{b\}\}$$

$$\Box cf(F) = \{\{a\}, \{b\}, \{c\}\}\}$$

$$\Box cf(F) = \{\{a\}, \{b\}, \{c\}, \{d\}\}\}$$

$$\Box cf(F) = \{\{a\}, \{b\}, \{c\}, \{d\}\}\}$$

$$\Box cf(F) = \{\{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}\}\}$$

$$\Box cf(F) = \{\{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}\}\}$$

$$\Box cf(F) = \{\{a\}, \{b\}, \{c\}, \{d\}, \{a, c\}, \{a, d\}, \{b, d\}, \emptyset\}$$

Explainable Deep Learning through Data Relevance Analysis

AI and Data Contribution

Train Data

Learning Algorithm Performance Evaluation

Interpreting Neural Networks

- Interpreting black-box neural networks helps training, auditing, and debugging
- Trust is gained when you can explain why you make certain decisions

Data-based Model Interpretability

- How do the training data contribute to the model performance on the test sample?
- Does each training sample contribute positively or negatively?

Training Data

Training Data Influence the Entire Optimization Trajectory

Influence Function

 What is the influence of a training sample on the model (or on the loss of a test sample)?

```
Optimal model param. : \hat{\theta} \stackrel{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n L(z_i, \theta) Model param. by training w/o z : \hat{\theta}_{-z} \stackrel{\text{def}}{=} \arg\min_{\theta \in \Theta} \sum_{z_i \neq z} L(z_i, \theta) Model param. by upweighting z : \hat{\theta}_{\epsilon,z} \stackrel{\text{def}}{=} \arg\min_{\theta \in \Theta} \frac{1}{n} \sum_{i=1}^n L(z_i, \theta) + \epsilon L(z, \theta)
```

Influence Function

With the influence of upweighting a sample x
 on the parameters, we can linearly
 approximate the parameter changes due to
 removing x without retraining the model.

Training Sample	True vs. Pre- dicted Labels	Model Conf.	Contribution to Test Data	Test Sample	Influencer	Contrib.	True / Predicted Label	Model Conf.
6	5/5	0.66	-1.0×10^{-4}	6	6	-0.31	6/5	0.78
8	8/8	0.73	4.8×10^{-5}	8	8	0.091	8/3	0.80

Useful Applications

- Understanding DL model behaviours
- Debugging DL models
- Fixing wrongly labelled training data samples

Key Challenge

- Computational complexity is high (involving computing large Hessian-vector products (HVPs))
- Current solution:
 - Approximating HVPs with less computationally expensive means, possibly at the cost of some performance loss

(https://arxiv.org/abs/2102.02515)

Explainable Federated Learning through Shapley Value

Data Valuation Metrics

Quantity, Quality, Label Quality

Data Valuation Obstacle in FL

Evaluate contributions without seeing actual dataset?

Data Valuation Obstacle in FL

Data Valuation Obstacle in FL

Data Valuation Principles

- <u>Efficiency</u>: all contributions add up to 100%.
- <u>Symmetry</u>: Two contributors' contributions should show the same value if they join FL in different orders.
- <u>Free-rider</u>: Outcomes of any grouping won't change regardless of whether the contributor joins or not.
- <u>Linearity</u>: If divided into two parts, one's contribution is the sum of contributions in two parts.

- Example: A, B and C work together in a project worth 100 points.
- How many points should each of them get?

- V(A)=10, V(B)=20, V(C)=30
- V(AB)=60, V(BC)=50, V(AC)=65, V(ABC)=100

- B-C-A: (A,B,C)=(50,20,30)
 C-A-B: (A,B,C)=(35,35,30)
- A-C-B: (A,B,C)=(10,35,55)
- C-B-A: (A,B,C)=(50,20,30)
- B-A-C: (A,B,C)=(40,20,40)

• A=(10+50+35+10+50+40)/6=195/6=32.5

• B=(50+20+35+35+20+20)/6=180/6=30

• C=(40+30+30+55+30+40)/6=225/6=37.5

Limitations of Shapley Value in FL

- Fair but Inefficient
 - For a coalition with N participants, Shapley needs to train at least 2^N models to evaluate.

 If the FL model is a highly complex neural network, a single training session is already computationally expensive.

Guided Truncation Gradient (GTG)-Shapley

 Transforming evaluation process from training to gradient-based FL model reconstruction.

Process

Guided Truncation Gradient (GTG)-Shapley

- Monte-Carlo
 Approximation with
 Truncation on
 unnecessary sub-model evaluations.
- Only those bringing performance change larger than threshold will be retained.

Interesting Reading

Alejandro Barredo Arrieta *et al.* Explainable Artificial Intelligence (XAI): Concepts, taxonomies, opportunities and challenges toward responsible AI. *Information Fusion*, vol. 58, pp. 82-115 (2020)

Final Note

- Explainability is not a static concept.
- There is a spectrum of explanations w.r.t. Al.
- The definition of explainability can change based on the industry, the competitive. landscape, the regulatory environment, and the customer base.
- Decisions to adopt certain explainable Al techniques must be made by Al solution designers on a case-by-case basis.

Explainable AI

Yu Han

han.yu@ntu.edu.sg

Nanyang Assistant Professor School of Computer Science and Engineering Nanyang Technological University

