Estimation of sparse Gaussian graphical models:

The graphical lasso

Data: p quantitative variables measured on N observations. For example, p=5 proteins measured in N=10,000 cells

	protein1	protein2	protein3	protein4	protein5
cell 1	2.5	2.6	-1.3	2.8	4.7
cell 2	4.7	-3.3	1.8	3.3	3.4
cell 3	-1.2	-1.4	2.1	4.4	2.4

•

•

•

Goal: estimate the best undirected graph on the variables: a missing link means that the variables are **conditionally** independent

The Lasso for regression

 $\min \sum_{i} (y_i - \sum_{j} x_{ij}\beta_j)^2$ subject to $\sum_{j} |\beta_j| \le t$

• For $t \geq 0$ sufficiently small, some $\hat{\beta}_j$ will be zero. This is a smooth form of subset selection. We have fast algorithms for solving the lasso.

Lasso is a nice **convex** method for achieving sparsity.

Naive procedure for graphs

- The coefficient of the jth predictor in a regression measures the partial correlation between the response variable and the jth predictor
- Idea: apply lasso to graph problem by treating each node in turn as the response variable
- include an edge $i \leftrightarrow j$ in the graph if either coefficient of jth predictor in regression for x_i is non-zero, or ith predictor in regression for x_j is non-zero.

Better formulation

- Assume $\mathbf{x} \sim N(0, \Sigma)$ and let $\ell(\Sigma; \mathbf{X})$ be the log-likelihood. X_j, X_k are conditionally independent if $(\Sigma^{-1})_{jk} = 0$
- let $\Theta = \Sigma^{-1}$, and let S be the empirical covariance matrix, the problem is to maximize the penalized log-likelihood

$$\log \det \Theta - \operatorname{tr}(S\Theta) \text{ subject to } ||\Theta||_1 \le t, \tag{1}$$

over non-negative definite matrices Θ

• Convex problem! How to maximize?

 $lasso(\mathbf{X}_{[,-j]}, \mathbf{X}_j, t)$ Naive $lasso((\mathbf{X}^T\mathbf{X})_{[-j,-j]}, \mathbf{X}_{[-j,-j]}^T\mathbf{X}_j, t)$ Naive using inner products $lasso(\Sigma_{[-j,-j]}, \mathbf{X}_{[-j,-j]}^T\mathbf{X}_j, t)$ Exact!

Why does this work?

- Considered one row and column at a time, the log-likelihood and the lasso problem have the same gradient
- Resulting algorithm is a blockwise coordinate descent procedure

Details

Subgradient equation for maximization of the log-likelihood is

$$W - S - \rho \cdot \Gamma = 0, \tag{2}$$

using the fact that the derivative of log det Θ equals $\Theta^{-1} = W$, given in e.g (Boyd & Vandenberghe 2004), page 641. Here $\Gamma_{ij} \in \text{sign}(\Theta_{ij})$; i.e. $\Gamma_{ij} = \text{sign}(\Theta_{ij})$ if $\Theta_{ij} \neq 0$, else $\Gamma_{ij} \in [-1, 1]$ if $\Theta_{ij} = 0$.

The upper right block of equation (2) is

$$w_{12} - s_{12} - \rho \cdot \gamma_{12} = 0. (3)$$

Lasso problem is

$$\min_{\beta} \left\{ \frac{1}{2} ||W_{11}^{1/2}\beta - b||^2 + \rho ||\beta||_1 \right\}, \tag{4}$$

where $b = W_{11}^{-1/2} s_{12}$;

The sub-gradient equation from (4) works out to be

$$W_{11}\beta - s_{12} + \rho \cdot \nu = 0, \tag{5}$$

These are the same if we take $w_{12} = W_{11}\beta$.

Graphical Lasso Algorithm

- 1. Start with $W = S + \rho I$. The diagonal of W remains unchanged in what follows.
- 2. For each j = 1, 2, ..., p, 1, 2, ..., p, ..., solve the lasso problem (4), which takes as input the inner products W_{11} and s_{12} . This gives a p-1 vector solution $\hat{\beta}$. Fill in the corresponding row and column of W using $w_{12} = W_{11}\hat{\beta}$.
- 3. Continue until convergence

Cell signalling proteins

The Punch line

Timings for p = 400 variables

Method	CPU time
State-of-the-art convex optimizer	$27 \min$
Graphical lasso	$6.2~{ m sec}$

Take that, Steve Boyd!

Speed is also due to our use of the new **coordinate descent** procedures for lasso (Friedman, Hastie, Hoefling, Tibshirani)

References

Boyd, S. & Vandenberghe, L. (2004), Convex Optimization, Cambridge University Press.