Summary for Week 6 Recitation

Yau Wing Li

March 31, 2020

We will talk about least square solution and least norm (cf. Lecture 17). Since not every linear equation $A\vec{x} = \vec{b}$ can be solved, we are looking for the closest solution instead. That is finding some \vec{x} such that the norm of $\vec{b} - A\vec{x}$ is the smallest. \vec{x} is not unique whenever the null space of A is non-zero. It is because adding an element in null space to \vec{x} will not change the value of $A\vec{x}$. In other words, those \vec{x} satisfying norm of $\vec{b} - A\vec{x}$ minimal is an affine space.

What is an affine space? An affine space is very close to a vector subspace, except it does not necessarily contain zero vector. Let us first recall definition of subspace.

A vector subspace W of a vector space V has following properties.

- 1. W contains the zero vector of V.
- 2. W is closed under addition.
- 3. W is closed under scalar multiplication.

An affine space is a translation of some subspace W. i.e. We can find $\vec{v} \in V$ such that the affine space is the same as $\{\vec{v} + \vec{w} : \text{for } \vec{w} \in W\}$. We usually denote this affine space as $\vec{v} + W$.

Example 0.1. $\{(x,y): x+y=0\}$ is a subspace of \mathbb{R}^2 . Hence $\{(x,y): x+y=1\}$ is an affine space. What is a translation vector \vec{v} ?

Going back to our original problem, there are many \vec{x} minimizing norm of $\vec{b} - A\vec{x}$, which one should we choose? There are no obvious preferences. Nevertheless, we could choose the \vec{x} with smallest norm, i.e. closest to the origin.

Exercise 0.2. Which point of $\{(x,y): x+y=1\}$ is closest to the origin?

Let's work out an real example, A = [1,1;1,1] and $\vec{b} = [2;0]$. One can check that $A\vec{x} = \vec{b}$ has no solutions. Null space of A is $\{(x,y): x+y=0\}$. The point in the column space of A closest to b is [1;1]. The set $\{\vec{x}: A\vec{x} = [1;1]\} = \{(x,y): x+y=1\}$. So the answer in Exercise 0.2 is what we want, the x minimize norm of $\vec{b} - A\vec{x}$ with smallest norm.

Now use Julia to check you get the correct answer!

To be continued... SVD should appear in somewhere.