

دانشگاه صنعتی امیرکبیر (پلی تکنیک تهران) دانشکده مهندسی برق

گزارش کار تمرین عملی سوم مقدمه ای بر یادگیری ماشین

Bayes

نگارش علی بابالو

استاد راهنما استاد ساناز سیدین

دى ماه 1401

• اضافه کردن کتابخانه

در ابتدا پس از کتابخانه های همیشگی پانداز و نامپای از کتابخانه sklearn و sklearn با پارامتر های توزیع Gaussian, Bernoulli, Categorical را ایمپورت می کنیم. برای جدا کردن دیتاست به تست و ترین train_test_split را اضافه می کنیم همچنین برای محاسبه کراس ولیدیشن مورد و ترین accuracy_score, cross_val_score

• خواندن دیتاست

]:	Sample code number	Clump Thickness	Uniformity of Cell Size	Uniformity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Bland Chromatin	Normal Nucleoli	Mitoses	Class
0	1000025	5	1	1	1	2	1	3	1	1	0
1	1002945	5	4	4	5	7	10	3	2	1	(
3	1015425	3	1	1	1	2	2	3	1	1	
	1016277	6	8	8	1	3	4	3	7	1	
4	1017023	4	1	1	3	2	1	3	1	1	(
678	776715	3	1	1	1	3	2	1	1	1	(
679	841769	2	1	1	1	2	1	1	1	1	(
680	888820	5	10	10	3	7	3	8	10	2	1
681	897471	4	8	6	4	3	4	10	6	1	1
682	897471	4	8	8	5	4	5	10	4	1	1
	rows × 11 column										
df_; y = df_;	<pre>x = df.iloc[:,1 df.Class x</pre>			rmity of Cell	Marginal	Single Epithelial Cell	Bare	Bland	i N	Normal ucleoli	
df_; y = df_;	x = df.iloc[:,1 df.Class x Clump Thickness	:-1]	f Cell Unifo Size 1						d N	Normal ucleoli	Mitoses
df_; y = df_;	<pre>c = df.iloc[:,1 df.Class c Clump Thickness</pre>	:-1]	Size	rmity of Cell Shape	Marginal Adhesion	Single Epithelial Cell Size	Bare Nuclei	Blanc Chromatir	i N N	ucleoli '	Mitose
df_: y = df_:	x = df.iloc[:,1 df.Class Clump Thickness 5	:-1]	Size 1	rmity of Cell Shape 1	Marginal Adhesion	Single Epithelial Cell Size 2	Bare Nuclei 1	Blanc Chromatir 3	1 N 1 N	ucleoli '	Mitose
df_: y = df_:	x = df.iloc[:,1 df.Class Clump Thickness 5 5 3	:-1]	1 4	rmity of Cell Shape 1 4	Marginal Adhesion 1 5	Single Epithelial Cell Size 2 7	Bare Nuclei 1	Blanc Chromatir 3	1 N N 3 3	ucleoli 1 2	Mitose
df_x y = df_x df_x	x = df.iloc[:,1 df.Class c Clump Thickness 5 5 6	:-1]	1 4 1	rmity of Cell Shape 1 4 1	Marginal Adhesion 1 5	Single Epithelial Cell Size 2 7 2	Bare Nuclei 1 10 2	Blanc Chromatir 3	1 N N 3 3 3	ucleoli 1 2	Mitose
df_x y = df_x 0 1 2	<pre>c = df.iloc[:,1 df.class c Clump Thickness 5 5 6 4</pre>	:-1]	1 4 1 8	rmity of Cell Shape 1 4 1 8	Marginal Adhesion 1 5 1	Single Epithelial Cell Size 2 7 2 3	Bare Nuclei 1 10 2	Blanc Chromatir	1 N N 3 3 3 3	ucleoli 1 2 1 7	Mitose
df_: y = df_: 0 1 2 3	x = df.iloc[:,1 df.Class c Clump Thickness 5 5 6 4	:-1]	1 4 1 8 1	rmity of Cell Shape 1 4 1 8	Marginal Adhesion 1 5 1 1 3	Single Epithelial Cell Size 2 7 2 3 3	Bare Nuclei	Blanc Chromatir 3 3 3 3	1 N N S S S S S S S S S S S S S S S S S	1 2 1 7 1	Mitose
df_3 y = df_3 0 1 2 3 4	x = df.iloc[:,1 df.class Clump Thickness 5 5 4 4	:-1]	1 4 1 8 1	rmity of Cell Shape 1 4 1 8 1	Marginal Adhesion 1 5 1 1	Single Epithelial Cell Size 2 7 2 3 3 2	Bare Nuclei 1 10 2 4 1	Blanc Chromatir 3 3 3 3	1 N N N N N N N N N N N N N N N N N N N	1 2 1 7 1	Mitose:
df_3 y = df_3 0 1 2 3 4 678	Clump Thickness 5 6 4	:-1]	1 4 1 8 1 1	rmity of Cell Shape 1 4 1 8 1 1	Marginal Adhesion 1 5 1 1 3 1	Single Epithelial Cell Size 2 7 2 3 2 3	Bare Nuclei 1 10 2 4 4 1 1 2 2	Blanc Chromatir	1 N N N N N N N N N N N N N N N N N N N	1 2 1 7 1 1	Mitoses

```
In [5]: X_train, X_test, y_train, y_test = train_test_split(df_x, y, test_size=0.2, stratify=y)
X_train, X_val, y_train, y_val = train_test_split(X_train, y_train, test_size=0.15, stratify=y_train)
In [6]: X_train = X_train.reset_index(drop=True)
y_train = y_train.reset_index(drop=True)
             X_test = X_test.reset_index(drop=True)
y_test = y_test.reset_index(drop=True)
            X_val = X_val.reset_index(drop=True)
y_val = y_val.reset_index(drop=True)
In [7]: X_test
Out[7]:
                             Clump
                                               Uniformity of Cell
                                                                            Uniformity of Cell
Shape
                                                                                                                            Single Epithelial Cell
                                                                                                                                                             Bare
Nuclei
                                                                                                                                                                                                    Normal
Nucleoli Mitoses
                                                                                                                                                                             Chromatin
              0
              2
                  3
               132
               133
               134
               135
In [ ]:
```

بعد از خواندن دیتاست ستون اخر را بعنوان لیبل برمی داریم و باقی دیتاست جز داده آموزش و آموزش است. سپس با استفاده از تابع train_test_split دیتاست را به داده آموزش و ولیدیشن و تست تقسیم می کنیم و برای توزیع یکنواخت ار گیومنت stratify استفاده می کنیم.

Bernoulli Naive Bayes

CategoricalNB

```
In [14]: clf_c = CategoricalNB()
    clf_c.fit(X_train, y_train)
    clf_c.score(X_val, y_val)
Out[14]: 0.975609756097561
In [15]: y_clfc_predicted = clf_c.predict(X_test)
print(f'Model accuracy score: {accuracy_score(y_clfc_predicted, y_test)}')
                 Model accuracy score: 0.9635036496350365
In [16]: plt.figure(figsize=(5,4))
    sns.set(font_scale=1.4) # for label size
    sns.heatmap(confusion_matrix(y_test, y_clfc_predicted), annot=True, annot_kws={"size": 16}) # font size
    sls.heatmap(confusion_matrix(y_test, y_clfc_predicted), annot=True, annot_kws={"size": 16}) # font size
                 {\tt confusion\_matrix}(y\_{\tt test},\ y\_{\tt clfc\_predicted})
                                                                                  - 80
                                   84
                                                              5
                   0
                                                                                  - 60
                                                                                   40
                                                                                   - 20
                                    0
                                                              1
Out[16]: array([[84, 5], [ 0, 48]], dtype=int64)
```

Gaussian Naive Bayes

```
In [8]: gnb = GaussianNB()
    gnb.fit(X_train, y_train)
    gnb.score(X_val, y_val)
Out[8]: 0.975609756097561
In [9]: y_gnb_predicted = gnb.predict(X_test)
print(f'Model accuracy score: {accuracy_score(y_gnb_predicted, y_test)}')
        Model accuracy score: 0.948905109489051
{\tt confusion\_matrix}({\tt y\_test},\ {\tt y\_gnb\_predicted})
                                          80
                 82
         0
                                          60
                                         -40
                  0
                                         - 20
                  0
                               1
```

ســپس با فراخوانی توابع مربوطه داده را آموزش داده و آن را با متد score با داده های ولیدیشــن ولیدیشــن predic بر روی داده های تســت خروجی این الگوریتم را پیش بینی میکنیم ســپس با تابع accuracy_score دقت الگوریتم را بر اسـاس مقایسـه مقدار پیشبینی شـده و مقدار میکنیم و با تابع میکنیم که نتایج در عکس ها مشـخص هســتند. ســپس با اســتفاده از تابع واقعی محاســبه میکنیم که نتایج در عکس در محاسـبه و با کتابخانه سـیبورن آن را نمایش میدهیم. این کار را برای توزیع های نرمال برنولی و کتگوریکال تکرار میکنیم که نتایح مشخص است.

Cross Validation

```
In [22]: from sklearn.model_selection import cross_val_score

scores_gnb = cross_val_score(gnb, df_x, y, cv = 5, scoring='accuracy')
scores_clf_b = cross_val_score(clf_b, df_x, y, cv = 5, scoring='accuracy')
scores_clf_c = cross_val_score(clf_c, df_x, y, cv = 5, scoring='accuracy')

print('Cross-validation_Gaussian scores:{}'.format(scores_gnb))
print('Cross-validation_Bernoulli scores:{}'.format(scores_clf_b))
print('Cross-validation_Categorical scores:{}'.format(scores_clf_c))

Cross-validation_Gaussian scores:{}0.94160584 0.93430657 0.9708022 0.97058824 0.97794118]

Cross-validation_Bernoulli scores:{}0.4963504 0.64963504 0.65441176 0.6470582]
Cross-validation_Categorical scores:{}0.97080292 0.94890511 0.97810219 0.98529412 0.97794118}

In [23]: print('Average cross-validation_Gaussian score: {:.4f}'.format(scores_gnb.mean()))
print('Average cross-validation_Categorical score: {:.4f}'.format(scores_clf_b.mean()))
Average cross-validation_Gaussian score: 0.9590
Average cross-validation_Bernoulli score: 0.6501
Average cross-validation_Categorical score: 0.9722

In []:
```

برای کراسولیدیشن نیز از تابع cross_val_score استفاده می کنیم با cv=5 که نتایج دقت این مدل اموزش الگوریتم نیز مشاهده می شود. سپس میانگین تمام دقت های کلاس های مختلف را محاسبه می کنیم که میتوانید آن را مشاهده بکنید