Calculus I

Homework

Trigonometry review

1. Evaluate the difference quotient and simplify your answer.

(a)
$$\frac{f(2+h)-f(2)}{h}$$
, where $f(x)=x^2-x-1$.
 (d) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^4$.

(d)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^4$

(b)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^2$.

(e)
$$\dfrac{f(x)-f(a)}{x-a},$$
 where $f(x)=rac{1}{x}.$

(c)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^3$. (f) $\frac{f(x)-f(1)}{x-1}$, where $f(x)=\frac{x-1}{x+1}$.

answer: $\frac{1}{x+1}$

2. Write down a formula for a function whose graphs is given below. The graphs are up to scale. Please note that there is more than one way to write down a correct answer.

(c)

(d)

answer: y=x and y=x a

(b)

$$\begin{cases} 1->x \ge 2-1 & 4-x \le -1 \\ 0>x \ge 1-1 & 1+x \le -1 \\ 1>x \ge 0 & 1+x \le -1 \\ 2\ge x \ge 1 & 4-x \le -1 \\ \end{cases} = y \text{ formula}$$

3. Write down formulas for function whose graphs are as follows. The graphs are up to scale. All arcs are parts of circles.

1

4. Evaluate the difference quotient and simplify your answer.

(a)
$$\frac{f(2+h)-f(2)}{h}$$
, where $f(x)=x^2-x-1$.

(d) $\frac{f(a+h)-f(a)}{h}$, where $f(x)=x^4$.

(b)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^2$.

(e) $\frac{f(x) - f(a)}{x - a}$, where $f(x) = \frac{1}{x}$.

(c)
$$\frac{f(a+h)-f(a)}{h}$$
, where $f(x)=x^3$.

$$({\bf f})\ \frac{f(x)-f(1)}{x-1}, \ {\rm where}\ f(x)=\tfrac{x-1}{x+1}.$$

answer: $\frac{1}{x+1}$

5. Find the implied domain of the function.

(a)
$$f(x) = \frac{x+4}{x^2-4}$$
.

[c, t] = x :Towsing

$$\lim_{\substack{(z, z) \, \cap \, (z, z) \, \text{otherwise} \\ (e) \ h(x) = \frac{1}{\sqrt[6]{x^2 - 7x}}.$$

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$
.

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$
. (c) $f(t) = \sqrt[3]{3t - 1}$. (d) $f(u) = \frac{2x^3 - 5}{x^2 + 5x + 6}$. (e) $f(t) = \sqrt[3]{3t - 1}$. (f) $f(u) = \frac{u + 1}{1 + \frac{1}{u + 1}}$. (f) $f(u) = \frac{u + 1}{1 + \frac{1}{u + 1}}$.

(f)
$$f(u) = \frac{u+1}{1+\frac{1}{u+1}}$$
.

(c)
$$f(t) = \sqrt[3]{3t-1}$$
.

answer: $x \in \mathbb{R}$ (the domain is all real numbers)

(g)
$$F(x) = \sqrt{10 - \sqrt{x}}$$
.

(d)
$$g(t) = \sqrt{5-t} - \sqrt{1+t}$$
.

 $[001,0] \ni x$: Towsin

6. Find the implied domain of the function.

(a)
$$f(x) = \frac{x+4}{x^2-4}$$
.

answer: $x \in [-1, 5]$.

$$\text{(e)} \quad h(x) = \frac{1}{\sqrt[6]{x^2 - 2}}.$$

e)
$$h(x) = \frac{1}{\sqrt[6]{x^2 - 7x}}$$

(b)
$$f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$$
. (c) $f(t) = \sqrt[3]{3t - 1}$. (d) $f(x) = \frac{2x^3 - 5}{x^2 + 5x + 6}$. (e) $f(x) = \sqrt[3]{3t - 1}$. (f) $f(x) = \sqrt[3]{3t - 1}$.

(d) $q(t) = \sqrt{5-t} - \sqrt{1+t}$.

answer: alternatively:
$$x\in (-\infty,-3)\cup (-3,-2)$$

(f)
$$f(u) = \frac{u+1}{1+\frac{1}{u+1}}$$
.

(c)
$$f(t) = \sqrt[3]{3t-1}$$
.

(g)
$$F(x) = \sqrt{10 - \sqrt{x}}$$
.

answer: $x \in [0, 100]$

7. Compute the composite functions $(f \circ g)(x)$, $(g \circ f)(x)$. Simplify your answer to a single fraction. Find the domain of the

(a)
$$f(x) = \frac{x+2}{x-2}, g(x) = \frac{x-1}{x+2}.$$

(b)
$$f(x) = \frac{x+1}{3x-2}, g(x) = \frac{x-2}{x-1}.$$

I ,
$$k \neq x$$

$$\frac{x}{x^2 - k} = (x)(k \circ k)$$
 The parameter $\frac{x}{k} + k = x$
$$\frac{x^2 - k}{x^2 - k} = (x)(k \circ k)$$
 The parameter $\frac{x}{k} + k = x$ The parameter $\frac{$

(c)
$$f(x) = \frac{2x+1}{3x-1}, g(x) = \frac{x-2}{2x-1}.$$

$$\frac{\xi}{\zeta}, \xi - \neq x \qquad \frac{x + \xi}{x + \xi -} = (x)(\xi \circ \xi)$$

$$\frac{\xi}{\zeta}, \xi - \neq x \qquad \frac{x + \xi}{x + \xi -} = (x)(\xi \circ \xi)$$
The parameter of the proof of

(d)
$$f(x) = \frac{x+1}{x-2}, g(x) = \frac{x+2}{2x-1}.$$

(e)
$$f(x) = \frac{5x+1}{4x-1}, g(x) = \frac{4x-1}{3x+1}.$$

$$\frac{\frac{1}{L}\cdot\frac{6}{L}-\frac{1}{L}}{\frac{1}{L}\cdot\frac{6}{L}}-\frac{1}{L}\times\frac{x}{L}=$$

(f)
$$f(x) = \frac{3x-5}{x-2}$$
, $g(x) = \frac{x-2}{x-4}$.

$$\begin{array}{ll} \text{f}, \theta \neq x & \frac{1+xx-}{1-x} = (x)(\theta \circ \theta) \\ \text{f}, \theta \neq x & \frac{1-x}{1-x} = (x)(\theta \circ \theta) \end{array}$$

(g)
$$f(x) = \frac{x-3}{x+2}$$
, $g(y) = \frac{y+3}{y-4}$.

8. Find the functions $f \circ g$, $g \circ f$, $f \circ f$ and $g \circ g$ and their implied domains. The answer key has not been proofread, use with caution.

(a)
$$f(x) = x^2 + 1$$
, $g(x) = x + 1$.

Domain, all 4 cases:
$$x\in\mathbb{R}$$
 (all reals) in some order: $(1+x)^2+1$, $(x)^2+2$, $((x)^2+1)^2+1$, $2+x$

(b)
$$f(x) = \sqrt{x+1}$$
, $g(x) = x+1$.

Domain of
$$y = 0$$
 and $y = 0$ and $y = 0$ both one order $y = 0$ both of $y = 0$ both of $y = 0$ both order $y = 0$ both order

(c)
$$f(x) = 2x, g(x) = \tan x$$
.

In this subproblem, you are not required to find the domain.

$$\begin{array}{ll} \text{Domain } f \circ f \colon \text{all reals } (x \in \mathbb{R}). \text{ Domain } g \circ f \colon x \neq (2k+1) \frac{\pi}{2} \text{ for all } k \in \mathbb{Z} \\ \text{Domain } g \circ g \colon x \neq (4k+1) \frac{\pi}{4}, x \neq (4k+3) \frac{\pi}{4} \text{ for all } k \in \mathbb{Z} \\ \text{Domain } g \circ g \colon x \neq (2k+1) \frac{\pi}{2} \text{ and } x \neq k\pi + \text{arctan } \left(\frac{\pi}{2}\right) \text{ for all } k \in \mathbb{Z} \\ \text{is some order: } 2 \text{ tan } x, \text{ tan } (2x), 4x, \text{ tan } (\text{tan } x) \\ \text{is some order: } 2 \text{ tan } x, \text{ tan } x, \text{ tan } (\text{tan } x) \\ \end{array}$$

(d)
$$f(x) = \frac{x+1}{x-1}, g(x) = \frac{x-1}{x+1}.$$

nnswer: Dominin
$$f\circ g: x \neq -1$$
. Dominin $g\circ g: x \neq -1$. Dominin $g\circ g: x \neq -1$. Dominin $g\circ g: x \neq -1$. Dominin $g: x \neq -1$. Dominin

9. Convert from degrees to radians.

(h)
$$120^{\circ}$$
.

(i) 135° .

(o) 360° .

 $888997:30.0 \approx \frac{\pi}{21}$:39888 (b) 30° .

Subswell
$$\frac{3}{3}$$

answer:
$$\frac{61\pi}{36} \approx 5.323254$$

 $877893523.0 \approx \frac{\pi}{8}$:19Weris

answet:
$$\frac{3\pi}{4}$$

(c) 36° .

(p)
$$405^{\circ}$$
.

 $183818826.0 \approx \frac{\pi}{8}$:30 ms ans 1838188318831(d) 45° .

answer:
$$\frac{\pi}{6}$$

answer: $\frac{9\pi}{4}$

answer: 2 m

 $691896887.0 \approx \frac{\pi}{4}$: Tawrens

(q) 1200° .

(e) 60° .

m :Towere

answer: $\frac{20\pi}{3}$

(f) 75° .

(1) 225° .

(r) -900° .

answet: $\frac{\pi}{4}$

(g) 90° .

(m) 270° .

(s) -2014° .

Suswer: $\frac{2\pi}{3\pi}$

answer: $-\frac{1007}{1007} = -35.150931$

10. Convert from radians to degrees. The answer key has not been proofread, use with caution.

(a) 4π .

(d) $\frac{4}{3}\pi$.

(g) 5.

(h) -2014.

(b) $-\frac{7}{6}\pi$.

answer: 720°

answer: 105°

answer: $\left(\frac{\pi}{600}\right)^{\circ} \approx 586^{\circ}$

(e) $-\frac{3}{8}\pi$.

mswer: -362520°

(c) $\frac{7}{12}\pi$.

- (f) 2014π .
- answer: -67.5
- answer: 362520°

11. Prove the trigonometry identities.

(a)
$$\sin \theta \cot \theta = \cos \theta$$
.

(b)
$$(\sin \theta + \cos \theta)^2 = 1 + \sin(2\theta).$$

(g)
$$\tan(2\theta) = \frac{2\tan\theta}{1-\tan^2\theta}$$
.

(c)
$$\sec \theta - \cos \theta = \tan \theta \sin \theta$$
.
(d) $\tan^2 \theta - \sin^2 \theta = \tan^2 \theta \sin^2 \theta$.

(h)
$$\frac{1}{1-\sin\theta} + \frac{1}{1+\sin\theta} = 2\sec^2\theta$$
.

(e)
$$\cot^2 \theta + \sec^2 \theta = \tan^2 \theta + \csc^2 \theta$$
.

(i)
$$\tan \alpha + \tan \beta = \frac{\sin(\alpha + \beta)}{\cos \alpha \cos \beta}$$

(f)
$$2\csc(2\theta) = \sec\theta \csc\theta$$
.

(j)
$$\tan(\alpha + \beta) = \frac{\tan \alpha + \tan \beta}{1 - \tan \alpha \tan \beta}$$
.

(k) $\sin(3\theta) + \sin \theta = 2\sin(2\theta)\cos \theta$.

(1) $\cos(3\theta) = 4\cos^3\theta - 3\cos\theta$.

(m) $1 + \tan^2 \theta = \sec^2 \theta$.

(n)
$$1 + \csc^2 \theta = \cot^2 \theta$$
.

(o) $2\cos^2(2x) = 2\sin^4\theta + 2\cos^4\theta - \sin^2(2\theta)$.

(p) $\frac{1 + \tan\left(\frac{\theta}{2}\right)}{1 - \tan\left(\frac{\theta}{2}\right)} = \tan\theta + \sec\theta.$

12. Find all values of x in the interval $[0, 2\pi]$ that satisfy the equation.

(a)
$$2\cos x - 1 = 0$$
.
$$\frac{\varepsilon}{\omega_G} = x \text{ in } \frac{\varepsilon}{w} = x \text{ in sure}$$

(b) $\sin(2x) = \cos x$. answer: $x = x \cdot \frac{\pi}{\delta} = x \cdot \frac{\pi}{\delta} = x \cdot \frac{\pi}{\delta} = x \cdot \frac{\pi}{\delta} = x$

(c) $\sqrt{3}\sin x = \sin(2x)$.

, answer
$$x=\frac{\pi}{6}$$
 , $\frac{\pi}{6}$, $\frac{\pi}{6}$ = x . Then π

(d)
$$2\sin^2x=1$$
.
$$\frac{\mathfrak{p}}{\mathfrak{p}_{\mathcal{I}}}=x\cdot\mathfrak{p}\cdot\frac{\mathfrak{p}}{\mathfrak{p}_{\mathcal{I}}}=x\cdot\frac{\mathfrak{p}}{\mathfrak{p}_{\mathcal{E}}}=x\cdot\frac{\mathfrak{p}}{\mathfrak{p}}=x\cdot\text{idensure}$$

(e) $2 + \cos(2x) = 3\cos x$. answer: x=0 , $\alpha=0$, $\alpha=0$, $\alpha=0$. Then we have $\alpha=0$

(f) $2\cos x + \sin(2x) = 0$.

answer:
$$x = \frac{\pi}{2}$$
, $x = x$: The same $\frac{\pi}{2}$

(g) $2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0.$

(h) $|\tan x| = 1$. $\frac{\pi T}{\hbar} = x$ 10, $\frac{\pi G}{\hbar} = x$, $\frac{\pi E}{\hbar} = x$, $\frac{\pi}{\hbar} = x$ Then the subsection $\frac{\pi T}{\hbar} = x$ is a subsection of $\frac{\pi T}{\hbar} = x$ is a subsection of $\frac{\pi T}{\hbar} = x$ is a subsection of $\frac{\pi T}{\hbar} = x$.

(i) $3\cot^2 x = 1$. answer: x = x , $\frac{\pi c}{\xi} = x$, $\frac{\pi c}{\xi} = x$, $\frac{\pi}{\xi} = x$. Then we have

(j) $\sin x = \tan x$. answer: x=0 , x=x , 0=x . Then we have x=0

Solution. 12.g Set $\cos x = u$. Then

$$2\cos^2 x - (1+\sqrt{2})\cos x + \frac{\sqrt{2}}{2} = 0$$

becomes

$$2u^2 - (1 + \sqrt{2})u + \frac{\sqrt{2}}{2} = 0.$$

This is a quadratic equation in u and therefore has solutions

$$u_{1}, u_{2} = \frac{1 + \sqrt{2} \pm \sqrt{(1 + \sqrt{2})^{2} - 4\sqrt{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{1 - 2\sqrt{2} + 2}}{4}$$

$$= \frac{1 + \sqrt{2} \pm \sqrt{(1 - \sqrt{2})^{2}}}{4}$$

$$= \frac{1 + \sqrt{2} \pm (1 - \sqrt{2})}{4} = \begin{cases} \frac{1}{2} & \text{or} \\ \frac{\sqrt{2}}{2} \end{cases}$$

Therefore $u=\cos x=\frac{1}{2}$ or $u=\cos x=\frac{\sqrt{2}}{2}$, and, as x is in the interval $[0,2\pi]$, we get $x=\frac{\pi}{3},\frac{5\pi}{3}$ (for $\cos x=\frac{1}{2}$) or $x=\frac{\pi}{4},\frac{7\pi}{4}$ (for $\cos x = \frac{\sqrt{2}}{2}$).