

One tool to rule them all -R als statistisches Sackmesser

Dr. Peter Moser

R - ein multifunktionales Statistikwerkzeug

Im STAT seit 2000 verwendet, anfangs vor allem in der Analyseabteilung, heute amtsweit im Einsatz

- Warum R?
 - Programmiersprache f\u00f6rdert strukturiertes Denken in Funktionen und Abl\u00e4ufen und die Replizierbarkeit von Auswertungen und Analysen
 - Weltweite Nutzergemeinschaft Lösungen für (fast alle) denkbaren
 Probleme sind im Internet zu finden
 - Open source getragen von einer breiten Entwicklercommunity, kein kostspieliges Lizenzmodell
 - Erweiterbarer Programmkern Funktionalität ist durch "libraries",
 Codebibliotheken ausbaubar (vorteilhaft in einem restriktiven Verwaltungs-IT-Umfeld!)

Vielseitigkeit - In einer Umgebung kann eine Vielzahl analytischer Probleme gelöst werden

Exempel: ein hedonisches Bodenpreismodell

 Veredelung der notariellen Handänderungsdaten, einer der wertvollsten Datensätze des Amts

- Ziele:

- Erkenntnisgewinn: Wie funktioniert der Markt für Wohnbauland im Kanton Zürich, Welche Lage- und Grundstückseigenschaften beeinflussen die Preise in welchem Ausmass?
- Praktische Anwendung: Erzeugung kleinräumiger Schätzwerte für den ganzen Kanton für verschiedene Zwecke
- Methodisch anspruchsvolles, vielfältiges Projekt:
 - Aufbereitung und Berechnung von Mikro und Makro-Lagecharakteristiken aus unterschiedlichsten Quellen
 - Datenmanagement
 - Modellierung
 - Vermittlung und Visualisierung der Resultate

Von (fast) A bis Z mit R umgesetzt

Lageeigenschaften I

Grundlage: Google-Routing API

Distanz zu Detailhandelsgeschäften

Grundlage: STATENT

Lageeigenschaften II

Sonneneinstrahlung

Grundlage: DHM25

Grundlage: OGD, ARE-CH

Datenaufbereitung

- Lageeigenschaften in
 25X25 Meter-Raster: für
 Wohnbauland im Kanton ZH
 ~325K Zellen
- 7000 Landtransaktionen:
 Datenbereinigung und
 Aufbereitung in Oracle-DB,
 Lageeigenschaften aus dem
 Raster
- Transaktionsdaten k\u00f6nnen dank einheitlicher Projektionsinformationen mit Lageeigenschaften verkn\u00fcpft werden.

Transaktionen

X	у	gmiv	detailhandel	insol	oevg	qmpreis
697774	232951	39.6	0.3	1.4	3	358.0
687840	233933	23.6	0.4	0.9	4	1382.6
702102	241644	27.3	0.3	1.3	1	328.9
683831	264093	24.5	0.4	1.7	4	1608.4
693364	258787	26.0	0.2	1.6	4	570.0
704212	268992	33.4	2.0	1.5	4	1384.0

Raster

X	у	gmiv	detailhandel	insol	oevg
690213	283288	39.6	0.2	1.2	2
690238	283288	39.6	0.2	1.2	2
690263	283288	39.6	0.2	1.3	2
690288	283288	39.6	0.2	1.3	2
690313	283288	39.3	0.2	1.4	2
690338	283288	39.3	0.2	1.4	2

Modellieren - die "Kernkompetenz" von R

- Die ganze Bandbreite moderner statistischer Modellierungstechniken steht zur Verfügung:
- Zur Modellierung der "lärmigen"
 Bodenpreise wird ein robustes Modell verwendet.
- Output auf die Konsole ist möglich -
- In der R-Programmiersprache ist das Modell aber ein Objekt, das alle nötigen Informationen enthält (Parameter, Residuen, robuste Gewichte, design matrix etc.) und so seinerseits als Input dient.

	log(qmpreis)
log(mean_kern_mivoev	7) -0.495*** (-0.529, -0.461)
distarb200ha	-0.027*** (-0.035, -0.019)
distdetailhandel	-0.072*** (-0.089, -0.054)
distprimarschulen	-0.094*** (-0.141, -0.047)
oevgkarech_n	-0.020*** (-0.033, -0.007)
hlstrassendist	0.023^{***} (0.009, 0.037)
I(hlstrassendist2)	-0.002*** (-0.004, -0.001)
laerm_strasse_bahn	-0.016*** (-0.022, -0.010)
fluglaerm_n_t_db	-0.043*** (-0.052, -0.034)
sin(aspect)	-0.039*** (-0.055, -0.022)
insol2	0.093^{***} (0.045, 0.141)
log(bergs + 1)	0.099^{***} (0.079, 0.118)
log(seesicht + 1)	0.058^{***} (0.022, 0.095)
seedist_trunc	0.071*** (0.054, 0.089)

Eine Welt von R-Objekten

Resultate I: Bedeutung der Einflussfaktoren

Resultate II: kleinräumige Schätzwerte

- Die Schätzwerte werden durch Kombination des Modellobjekts mit den Lageeigenschaften im Rasterobjekt erzeugt.
- Reliefschattierung, wichtige
 Verkehrswege sind bei Swisstopo als
 GEOtiff (Bildformat mit Koordinaten und Projektionsinformationen)
 verfügbar.
- Gemeindegrenzen (ArcGis Shapefile)
- können deshalb problemlos kombiniert werden

Resultate III: Besonnung – Verteilung und Effekt

Resultate IV: Schätzwerte in .kml (Google-Earth)

Weiterführende Informationen

Verwendete R-libraries:

- Aufbereitung, Handling, Verarbeitung räumlicher Daten: raster, sp, rgdal, maptools, rgeos, cleangeo, insol....
- Modellierung: robustbase, effects, relimp, car, stargazer, FNN....
- Visualisierung: lattice, latticeExtra, gridExtra, leafletR, plotKML, classInt diagrammeR ...

Die Publikation:

"Der Preis des Bodens – Ein hedonisches Modell der Landpreise im Kanton Zürich statistik.info 05/2017

Koordinaten:

peter.moser@statistik.ji.zh.ch

Twitter: @statistik zh; @peterjamoser