УНИВЕРСИТЕТ ИТМО

Факультет программной инженерии и компьютерной техники

Курсовая работа

Вариант 94

Добрышкин Владимир Александрович P3107

Преподаватель Поляков Владимир Иванович Функция $f(x_1, x_2, x_3, x_4, x_5)$ принимает значение 1 при $x_5x_4 + x_3x_2x_1 = 1, 5, 6, 7, 8$ и неопределенное значение при $x_5x_4 + x_3x_2x_1 = 3$.

Таблица истинности

No	x_1	x_2	x_3	x_4	x_5	x_5x_4	$x_3x_2x_1$	x_5x_4	$x_3x_2x_1$	f
0	0	0	0	0	0	0	0	0	0	0
1	0	0	0	0	1	2	0	2	0	0
2	0	0	0	1	0	1	0	1	0	1
3	0	0	0	1	1	3	0	3	0	d
4	0	0	1	0	0	0	4	0	4	0
5	0	0	1	0	1	2	4	2	4	1
6	0	0	1	1	0	1	4	1	4	1
7	0	0	1	1	1	3	4	3	4	1
8	0	1	0	0	0	0	2	0	2	0
9	0	1	0	0	1	2	2	2	2	0
10	0	1	0	1	0	1	2	1	2	d
11	0	1	0	1	1	3	2	3	2	1
12	0	1	1	0	0	0	6	0	6	1
13	0	1	1	0	1	2	6	2	6	1
14	0	1	1	1	0	1	6	1	6	1
15	0	1	1	1	1	3	6	3	6	0
16	1	0	0	0	0	0	1	0	1	1
17	1	0	0	0	1	2	1	2	1	d
18	1	0	0	1	0	1	1	1	1	0
19	1	0	0	1	1	3	1	3	1	0
20	1	0	1	0	0	0	5	0	5	1
21	1	0	1	0	1	2	5	2	5	1
22	1	0	1	1	0	1	5	1	5	1
23	1	0	1	1	1	3	5	3	5	1
24	1	1	0	0	0	0	3	0	3	d
25	1	1	0	0	1	2	3	2	3	1
26	1	1	0	1	0	1	3	1	3	0
27	1	1	0	1	1	3	3	3	3	1
28	1	1	1	0	0	0	7	0	7	1
29	1	1	1	0	1	2	7	2	7	0
30	1	1	1	1	0	1	7	1	7	1
31	1	1	1	1	1	3	7	3	7	0

Аналитический вид

Каноническая ДНФ:

 $f = \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, \overline{x_4} \, x_5 \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, x_3 \, x_4 \, x_5 \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, x_2 \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee \overline{x_1} \, \overline{x_2} \, \overline{x_3} \, \overline{x_4} \, \overline{x_5} \vee$

Каноническая КНФ:

$$f = (x_1 \lor x_2 \lor x_3 \lor x_4 \lor x_5) (x_1 \lor x_2 \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor x_2 \lor \overline{x_3} \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor x_5) (x_1 \lor \overline{x_2} \lor x_3 \lor x_4 \lor \overline{x_5}) (x_1 \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4} \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor x_3 \lor \overline{x_4} \lor x_5) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor x_4 \lor \overline{x_5}) (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5})$$

Минимизация булевой функции методом Квайна-Мак-Класки

Кубы различной размерности и простые импликанты

	$K^0(f)$		K	$^{1}(f)$		$K^2(f)$	Z(f)	
m_2	00010	√	m_2 - m_3	0001X	\checkmark	m_2 - m_3 - m_6 - m_7	00X1X	0110X
m_{16}	10000	✓	m_2 - m_6	00X10	\checkmark	m_2 - m_3 - m_{10} - m_{11}	0X01X	0X101
m_5	00101	√	m_2 - m_{10}	0X010	\checkmark	m_2 - m_6 - m_{10} - m_{14}	0XX10	110X1
m_6	00110	✓	m_{16} - m_{17}	1000X	\checkmark	m_{16} - m_{17} - m_{20} - m_{21}	10X0X	X1011
m_{12}	01100	✓	m_{16} - m_{20}	10X00	\checkmark	m_{16} - m_{17} - m_{24} - m_{25}	1X00X	00X1X
m_{20}	10100	✓	m_{16} - m_{24}	1X000	\checkmark	m_{16} - m_{20} - m_{24} - m_{28}	1XX00	0X01X
m_3	00011	✓	m_6 - m_7	0011X	√	m_{20} - m_{21} - m_{22} - m_{23}	101XX	0XX10
m_{10}	01010	✓	m_5 - m_7	001X1	\checkmark	m_{20} - m_{22} - m_{28} - m_{30}	1X1X0	10X0X
m_{17}	10001	✓	m_3 - m_7	00X11	\checkmark	m_6 - m_7 - m_{22} - m_{23}	X011X	1X00X
m_{24}	11000	✓	m_{10} - m_{11}	0101X	\checkmark	m_5 - m_7 - m_{21} - m_{23}	X01X1	1XX00
m_7	00111	\checkmark	m_{12} - m_{13}	0110X		m_{12} - m_{14} - m_{28} - m_{30}	X11X0	101XX
m_{11}	01011	✓	m_{12} - m_{14}	011X0	\checkmark	m_6 - m_{14} - m_{22} - m_{30}	XX110	1X1X0
m_{13}	01101	✓	m_{10} - m_{14}	01X10	\checkmark			X011X
m_{14}	01110	✓	m_3 - m_{11}	0X011	\checkmark			X01X1
m_{21}	10101	✓	m_5 - m_{13}	0X101				X11X0
m_{22}	10110	✓	m_6 - m_{14}	0X110	\checkmark			XX110
m_{25}	11001	✓	m_{20} - m_{21}	1010X	\checkmark			
m_{28}	11100	✓	m_{20} - m_{22}	101X0	\checkmark			
m_{23}	10111	\checkmark	m_{17} - m_{21}	10X01	\checkmark			
m_{27}	11011	✓	m_{24} - m_{25}	1100X	\checkmark			
m_{30}	11110	✓	m_{24} - m_{28}	11X00	\checkmark			
			m_{17} - m_{25}	1X001	\checkmark			
			m_{20} - m_{28}	1X100	\checkmark			
			m_5 - m_{21}	X0101	\checkmark			
			m_6 - m_{22}	X0110	\checkmark			
			m_{12} - m_{28}	X1100	\checkmark			
			m_{22} - m_{23}	1011X	✓			
			m_{21} - m_{23}	101X1	\checkmark			
			m_{25} - m_{27}	110X1				
			m_{28} - m_{30}	111X0	\checkmark			
			m_{22} - m_{30}	1X110	\checkmark			
			m_7 - m_{23}	X0111	\checkmark			
			m_{11} - m_{27}	X1011				
			m_{14} - m_{30}	X1110	✓			

Таблица импликант

Вычеркнем строки, соответствующие существенным импликантам (это те, которые покрывают вершины, не покрытые другими импликантами), а также столбцы, соответствующие вершинам, покрываемым существенными импликантами. Затем вычеркнем импликанты, не покрывающие ни одной вершины.

	0-кубы																
	0	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
	0	0	0	0	1	1	1	1	0	0	0	0	0	1	1	1	1
Простые импликанты	0	1	1	1	0	1	1	1	0	1	1	1	1	0	0	1	1
	1	0	1	1	1	0	0	1	0	0	0	1	1	0	1	0	1
	0	1	0	1	1	0	1	0	0	0	1	0	1	1	1	0	0
	2	5	6	7	11	12	13	14	16	20	21	22	23	25	27	28	30
A 0110X						X	X										
B 0X101		X					X										
C 110X1														X	X		
D X1011					X										X		
E 00X1X	X		X	X													
F 0X01X	X				X												
G 0XX10	X		X					X									
H 10X0X									X	X	X						
I 1X00X									X					X			
J 1XX00									X	X						X	
K 101XX										X	X	X	X				
L 1X1X0										X		X				X	X
M X011X			X	X								X	X				
N X01X1		X		X							X		X				
O X11X0						X		X								X	X
P XX110			X					X				X					X

Ядро покрытия:

$$T = \{\}$$

Метод Петрика:

Запишем булево выражение, определяющее условие покрытия всех вершин:

$$Y = (E \lor F \lor G) \ (B \lor N) \ (E \lor G \lor M \lor P) \ (E \lor M \lor N) \ (D \lor F) \ (A \lor O) \ (A \lor B) \ (G \lor O \lor P) \ (H \lor I \lor J)$$
$$(H \lor J \lor K \lor L) \ (H \lor K \lor N) \ (K \lor L \lor M \lor P) \ (K \lor M \lor N) \ (C \lor I) \ (C \lor D) \ (J \lor L \lor O) \ (L \lor O \lor P)$$

Приведем выражение в ДНФ:

 $Y = ACFJNP\lor ADGILN\lor BCFHMO\lor BDEIKO\lor ACDEJNP\lor ACDGHLN\lor ACDGJLN\lor ACDGJNP\lor ACFGHLN\lor ACFGILN\lor ACFGILN\lor ACFGJLN\lor ACFGHLNP\lor ACFHMNO\lor ACFHNOP\lor ACFILNP\lor ACFJMNO\lor ADEIJNP\lor ADEIKNO\lor ADEILNP\lor ADFIJNP\lor ADFILNP\lor ADFIJNP\lor ADFILNP\lor ADGIJNP\lor ADGIKNO\lor BCDEHKO\lor BCDEHMO\lor BCDEJKO\lor BCDGHMO\lor BCEFHKO\lor BCEFJKO\lor BCFJKO\lor BCFJKMO\lor BCFJMNO\lor BCFJNOP\lor BDEHIMO\lor BDGIKNO\lor BDFIKMO\lor BDGIKMO\lor BDGIKMOV BDGIKMOV$

Возможны следующие покрытия:

$$C_{1} = \begin{cases} T \\ A \\ C \\ F \\ J \\ N \\ P \end{cases} = \begin{cases} 0110X \\ 110X1 \\ 0X01X \\ 1XX000 \\ X01X1 \\ XX110 \end{cases} \qquad C_{2} = \begin{cases} T \\ A \\ D \\ G \\ I \\ L \\ N \end{cases} = \begin{cases} 0110X \\ X1011 \\ 0XX10 \\ 1X00X \\ 1X1X0 \\ X01X1 \end{cases} \qquad C_{3} = \begin{cases} T \\ B \\ C \\ F \\ H \\ M \\ O \end{cases} = \begin{cases} 0X101 \\ 110X1 \\ 0X01X \\ 1X00X \\ X01X1 \end{cases}$$

$$S_{1}^{a} = 20 \qquad S_{2}^{a} = 20 \qquad S_{2}^{a} = 20 \\ S_{1}^{b} = 26 \qquad S_{2}^{b} = 26 \qquad S_{3}^{b} = 26$$

$$C_{19} = \begin{cases} T \\ A \\ D \\ E \\ I \end{cases} = \begin{cases} 0110X \\ X1011 \\ 00X1X \\ 1X00X \\ 1X1X00 \\ N \\ X01X1 \\$$

Рассмотрим следующее минимальное покрытие:

$$C_{\min} = \begin{cases} 0110X \\ 110X1 \\ 0X01X \\ 1XX00 \\ X01X1 \\ XX110 \end{cases}$$

$$S^{a} = 20$$

$$S^a = 20$$
$$S^b = 26$$

$$f = \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \vee x_1 \, x_2 \, \overline{x_3} \, x_5 \vee \overline{x_1} \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_2} \, x_3 \, x_5 \vee x_3 \, x_4 \, \overline{x_5}$$

Минимизация булевой функции на картах Карно

Определение МДНФ

$$f = \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \vee x_1 \, x_2 \, \overline{x_3} \, x_5 \vee \overline{x_1} \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_2} \, x_3 \, x_5 \vee x_3 \, x_4 \, \overline{x_5}$$

Определение МКНФ

$$f = (x_1 \lor x_3 \lor x_4) \ (\overline{x_2} \lor x_3 \lor x_5) \ (x_1 \lor x_2 \lor x_4 \lor x_5) \ (\overline{x_2} \lor \overline{x_3} \lor \overline{x_4} \lor \overline{x_5}) \ (\overline{x_1} \lor \overline{x_2} \lor \overline{x_3} \lor \overline{x_5}) \ (\overline{x_1} \lor x_2 \lor x_3 \lor \overline{x_4})$$

Преобразование минимальных форм булевой функции

Факторизация и декомпозиция МДНФ

$$f=\overline{x_1}\,x_2\,x_3\,\overline{x_4}\vee x_1\,x_2\,\overline{x_3}\,x_5\vee\overline{x_1}\,\overline{x_3}\,x_4\vee x_1\,\overline{x_4}\,\overline{x_5}\vee\overline{x_2}\,x_3\,x_5\vee x_3\,x_4\,\overline{x_5}\quad S_Q=26\quad \tau=2$$
 Декомпозиция невозможна
$$f=\overline{x_1}\,x_2\,x_3\,\overline{x_4}\vee x_1\,x_2\,\overline{x_3}\,x_5\vee\overline{x_1}\,\overline{x_3}\,x_4\vee x_1\,\overline{x_4}\,\overline{x_5}\vee\overline{x_2}\,x_3\,x_5\vee x_3\,x_4\,\overline{x_5}\quad S_Q=26\quad \tau=2$$

Факторизация и декомпозиция МКНФ

$$f = \underbrace{(x_1 \vee x_3 \vee x_4)}_{(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3} \vee x_5)}_{(\overline{x_1} \vee x_2 \vee x_3 \vee \overline{x_4})} \underbrace{(x_1 \vee x_2 \vee x_3 \vee \overline{x_4} \vee \overline{x_5})}_{(\overline{x_1} \vee \overline{x_2} \vee \overline{x_3} \vee \overline{x_5})} \underbrace{S_Q = 28}_{\overline{x_1} \times \overline{x_2}} = 2$$

$$f = \underbrace{(x_3 \vee (x_1 \vee x_4))}_{(\overline{x_2} \vee x_5)} \underbrace{(\overline{x_1} \vee x_2 \vee \overline{x_4})}_{(\overline{x_1} \vee x_2 \vee \overline{x_4})} \underbrace{(\overline{x_2} \vee \overline{x_3} \vee \overline{x_5} \vee \overline{x_1} \overline{x_4})}_{(\overline{x_2} \vee \overline{x_3} \vee \overline{x_5} \vee \overline{x_1} \vee \overline{x_4})} \underbrace{S_Q = 25}_{\overline{x_1} \times \overline{x_4}} = 2$$

$$\varphi = x_1 \vee x_4$$

$$\overline{\varphi} = \overline{x_1} \overline{x_4}$$

$$f = \underbrace{(x_3 \vee \varphi)}_{(\overline{x_2} \vee x_5)} \underbrace{(\overline{x_1} \vee x_2 \vee \overline{x_4})}_{(\overline{x_2} \vee \overline{x_3} \vee \overline{x_5} \vee \overline{\varphi})} \underbrace{(\varphi \vee x_2 \vee x_5)}_{(\varphi \vee x_2 \vee x_5)} = 3$$

$$S_Q = 23$$

$$\tau = 4$$

Синтез комбинационных схем

Будем анализировать схемы на следующих наборах аргументов:

$$\begin{split} &f([x_1=0,x_2=0,x_3=0,x_4=0,x_5=0])=0\\ &f([x_1=0,x_2=0,x_3=0,x_4=0,x_5=1])=0\\ &f([x_1=0,x_2=0,x_3=0,x_4=1,x_5=0])=1\\ &f([x_1=0,x_2=0,x_3=1,x_4=0,x_5=1])=1 \end{split}$$

Булев базис

Схема по упрощенной МДНФ:

$$f = \overline{x_1} \, x_2 \, x_3 \, \overline{x_4} \vee x_1 \, x_2 \, \overline{x_3} \, x_5 \vee \overline{x_1} \, \overline{x_3} \, x_4 \vee x_1 \, \overline{x_4} \, \overline{x_5} \vee \overline{x_2} \, x_3 \, x_5 \vee x_3 \, x_4 \, \overline{x_5} \quad (S_Q = 26, \tau = 2)$$

Схема по упрощенной МКНФ:

$$f = (x_3 \lor \varphi \ (\overline{x_2} \lor x_5) \ (\overline{x_1} \lor x_2 \lor \overline{x_4})) \ (\overline{x_2} \lor \overline{x_3} \lor \overline{x_5} \lor \overline{\varphi}) \ (\varphi \lor x_2 \lor x_5) \quad (S_Q = 23, \tau = 4)$$
$$\varphi = x_1 \lor x_4$$

Сокращенный булев базис (И, НЕ)

Схема по упрощенной МДНФ в базисе И, НЕ:

$$f = \overline{\overline{x_1} \, x_2 \, x_3 \, \overline{x_4}} \, \overline{x_1 \, x_2 \, \overline{x_3} \, x_5} \, \overline{\overline{x_1} \, \overline{x_3} \, x_4} \, \overline{x_1 \, \overline{x_4} \, \overline{x_5}} \, \overline{\overline{x_2} \, x_3 \, x_5} \, \overline{x_3 \, x_4 \, \overline{x_5}} \quad (S_Q = 33, \tau = 4)$$

Схема по упрощенной МКНФ в базисе И, НЕ:

Универсальный базис (И-НЕ, 2 входа)

Схема по упрощенной МДНФ в базисе И-НЕ с ограничением на число входов:

Схема по упрощенной МКНФ в базисе И-НЕ с ограничением на число входов:

