We claim:

5	1.		ermop! ising		molding composition, essentially
		(A)			99% by weight of at least one
			(a1)	obtai	30 to 90% by weight of a core, inable by polymerizing a monomerare, essentially consisting of
15				(a11)	from 80 to 99.99% by weight of at least one $C_1\text{-}C_{10}\text{-}\text{alkyl}$ acrylate,
20				(a12)	from 0.01 to 20% by weight of at least one copolymerizable, polyfunctional, crosslinking monomer, and
20				(a13)	from 0 to 40% by weight, based or the total weight of components (all) and (al2), of at least one
25					other copolymerizable, monoethy- lenically unsaturated monomer, and
30			(a2)	shell monom	10 to 70% by weight of a graft l, obtainable by polymerizing a mer mixture in the presence of the (a1), and essentially consisting
35				(a21)	from 50 to 100% by weight of at least one styrene compound of the formula (I)

 $R^{1}C=CH_{2}$ (1)

5

10

15

20

25

30

where R^1 and R^2 , independently of one another, are hydrogen or C_1 - C_8 -alkyl and/or of a C_1 - C_8 -alkyl (meth)acrylate, and

- (a22) from 0 to 50% by weight of at least one monofunctional comonomer, and
- (B) from 1 to 80% by weight of a copolymer obtainable from at least one alpha-olefin and from at least one polar comonomer, with the proviso that the monomers used are not vinyl acetate or any vinylaromatic monomer, and
 - (C) from 0 to 80% by weight of a thermoplastic polymer, obtainable by polymerizing a monomer mixture, essentially consisting of
 - (c1) from 50 to 100% by weight of at least one vinylaromatic monomer and/or of a C_1-C_8 -alkyl (meth)acrylate, and
 - (c2) from 0 to 50% by weight of at least
 one monofunctional comonomer, and
 - (D) from 0.1 to 15% by weight of a three-block polymer made from $\,$
 - (d1) from 5 to 90% by weight of polyethylene oxide and

(d2) from 95 to 10% by weight of polypropylene oxide

and having a central polypropylene oxide block with a molar mass of from 800 to 5 000 g/mol and terminal blocks made from polyethylene oxide,

where components A to D give 100% by weight in total.

10

5

2. A thermoplastic molding composition as claimed in claim 1, wherein the particle size of the graft copolymers (A) as given by the average diameter (d_{50}) is from 60 to 1500 nm.

15

- 3. A thermoplastic molding composition as claimed in claim 2, wherein the particle size as given by the average diameter (d_{50}) is from 150 to 700 nm.
- 20 4. A thermoplastic molding composition as claimed in any one of claims 1 to 3, wherein the particle size distribution of component (A) is bimodal.
- 5. A thermoplastic molding composition as claimed in claim 4, wherein the component (A) used comprises a mixture of from 0.5 to 99.5% by weight of a graft copolymer (A) whose particle size as given by the average diameter (d_{50}) is from 200 to 1000 nm and from 99.5 to 0.5% by weight of a graft copolymer (A) whose particle size as given by the average diameter (d_{50}) is from 60 to 190 nm.
- 6. A thermoplastic molding composition as claimed in any one of claims 1 to 5, wherein the glass transition temperature of the core (al) is selected to be below 0°C.

- 7. A process for preparing thermoplastic molding compositions as claimed in any one of claims 1 to 6 in a manner known per se, which comprises mixing the components of claim 1 and, if desired, conventional additives in a mixing apparatus.
- 8. The use of the thermoplasic molding compositions as claimed in any one of claims 1 to 6, or prepared as claimed in claim 7, for producing moldings, films or fibers.

5

- The use of the thermoplastic molding compositions as claimed in any one of claims 1 to 6, or prepared as claimed in claim 7, for coating sheet-like structures to give sheet-like structures with a reduced-gloss surface and antistatic properties, via coextrusion.
- 10. A molding, a film or a fiber obtainable by way of the use as claimed in claim 8.
 - 11. A coating or film with leather-like appearance, produced by mixing
- 25 (A) from 20 to 99% by weight of at least one graft copolymer, essentially obtainable from
- (a1) from 30 to 90% by weight of a core, obtainable by polymerizing a monomer mixture, essentially consisting of
 - (all) from 80 to 99.99% by weight of n-butyl acrylate, and
- 35 (a12) from 0.01 to 20% by weight of tricyclodecenyl acrylate, and

		(a2) from 10 to 70% by weight of a graft shell, obtainable by polymerizing a monomer mixture in the presence of the
5		core (a1), and essentially consisting of
		(a21) from 60 to 90% by weight of styrene and
10		(a22) from 40 to 10% by weight of acrylonitrile, and
	(B)	from 1 to 80% by weight of a copolymer, prepared from
15		from 67 to 96% by weight of ethylene, from 1 to 20% by weight of n-butyl acrylate, from 3 to 10% by weight of (meth)acrylic acid, and
20		from 0 to 3% by weight of maleic anhydride, and
	(C)	from 0 to 80% by weight of a copolymer, prepared by continuous solution polymer-ization of
25		(c1) from 65 to 85% by weight of styrene and
30		(c2) from 15 to 35% by weight of acrylo- nitrile, and
	(D)	from 0.1 to 15% by weight of a three-block polymer made from
35		(d1) from 5 to 90% by weight of polyethylene oxide and

- (d2) from 10 to 95% by weight of polypropylene oxide
- and having a central polypropylene oxide block with a molar mass of from 800 to 5 000 g/mol and terminal blocks made from polyethylene oxide,

where components A to D give 100% by weight in total,

10

and then calendering or extruding to give films.

12. The use of coated sheet-like structures or of films with leather-like appearance as claimed in claim 11 for the internal fitting-out of houses, utility vehicles, aircraft, ships or trains, or in the furniture industry or in the sanitary sector.