AMENDMENTS TO THE CLAIMS

1-2. (Cancelled)

- 3. (Currently amended) The-A method for preparing a trisaccharide (Manβ1→4GlcNβ1→4GlcN) of a reducing terminal in a core sugar chain structure of an asparagine-linked glycoprotein, of claim 2, further comprising
- (1) a process of preparing a mannose disaccharide compound (a type of ManP¹β1→4ManP¹) of the formula (I)

wherein P^1 is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl and triethylsilyl, and the wavy line means that $-OP^1$ is linked at an axial or equatorial position, or mixture of both, by hydrolyzing a polysaccharide having mannose β -1,4-bonds and protecting OH groups of the resulting hydrolysate,

- (2) a process of preparing a glycal compound, in which mannose of a reducing terminal of the mannose disaccharide is converted to glycal, by halogenation and reduction of the mannose disaccharide (a type of ManP¹β1→4ManP¹),
- (3) a process of preparing an azide disaccharide compound (a type of ManP¹β1→4ManP¹) shown with formula (II) in which a 2-azide group of mannose in a reducing terminal is linked at an equatorial position;

wherein P¹ is the same as described above, the wavy line means that -ONO₂ is linked at an axial or equatorial position, or mixture of both,

by azidenitration reaction of the glycal compound above,

- (4) a process of substituting the nitro group of the azide disaccharide compound (a type of ManP¹β1→4ManP¹) with a leaving group selected from the group consisting of fluorine atom, chlorine atom, trihaloacetoimidate, pentenyl4- pentenyl, alkylthio and arylthio, and
- (5) a process of preparing a trisaccharide compound (a type of Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) shown with the formula (III);

$$P_{P_{10}}^{10} \xrightarrow{OP_{1}} OP_{N_{3}}^{10} OP_{N_{2}}^{10} OP_{N_{3}}^{10} OP_{N_{3}}^{11} OP_{N_{3}}^{11}$$
(III)

wherein P¹ is an OH- protecting group, as described above, P² is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl-trimethylsilyl and triethylsilyl, P³ is an amino-protecting group selected from the group consisting of phthalimide, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl, benzoyl and benzyl, and P¹¹ is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl trimethylsilyl and triethylsilyl,

by a reaction of the product having the leaving group with amino-protected glucopyranoside shown with the formula;

wherein P^2 , P^3 and P^{11} are the same as described above.

- 4. (Currently amended) The method for preparing a trisaccharide (Manβ1→4GlcNβ1→4GlcN) of a reducing terminal in a core sugar chain structure of an asparagine-linked glycoprotein of claim 3, further comprising
- (6) a process of preparing an asparagine-linked trisaccharide (Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) compound shown with the formula (IV);

$$P^{6}-HN-CH-COOP^{5}$$

$$CH_{2}$$

$$CH_{2}$$

$$OP^{1}$$

$$OP^{2}$$

$$OP^{2}$$

$$OP^{2}$$

$$OP^{2}$$

$$OP^{3}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{4$$

wherein P^1 and P^2 are independently OH-protecting groups, as described above, P^4 and P^6 are independently amino-protecting groups selected from the group consisting of phthalimide, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl, benzoyl and benzyl, and P^5 is a carboxyl-protecting group which is t-Bu,

by deprotecting the P¹¹ group of the compound (III),

wherein P¹, P² and P¹¹ are independently OH-protecting groups, as described above, and P³ is an amino-protecting group, as described above,

reducing the azide group to an amino group, protecting the amino group with an acetyl group, forming an oxazoline ring simultaneously with deprotecting a hydroxy group of a reducing terminal, and coupling with a protected asparagines derivative of the formula:

wherein P⁵ and P⁶ are the same as described above, after introducing a -N=C=S group at the reducing terminal.

5. (Cancelled)

6. (Currently amended) A method for preparing an azide disaccharide (a type of ManP¹β1→4ManP¹) shown with the formula (II) in which a 2-azide group of mannose in a

reducing terminal is linked at an equatorial position;

wherein P¹ is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsillyl-trimethylsilyl and triethylsilyl, and the wavy line means that —NO₂—ONO₂ is linked at an axial or equatorial position, or mixture of both,

comprising a process of preparing a glycal compound, in which mannose of the reducing terminal of the mannose disaccharide is converted to glycal, by halogenation and reduction of the mannose disaccharide compound (a type of ManP¹ β 1 \rightarrow 4ManP¹) shown with the formula (I);

wherein P¹ is the same as described above and the wavy line means that -OP¹ is linked at an axial or equatorial position, or mixture of both, and subsequent azidenitration reaction of the glycal compound.

7. (Currently amended) A method for preparing a trisaccharide compound shown with the formula (III);

$$P_{P_{10}}^{10} \xrightarrow{OP_{1}} OP_{N_{3}}^{10} OP_{N_{9}}^{20} OP_{N_{9}}^{11}$$
(III)

wherein P¹, P² and P¹¹ are independently OH- protecting groups selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl trimethylsilyl and triethylsilyl, and P³ is an amino-protecting group selected from the group consisting of phthalimide, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl, benzoyl and benzyl,

comprising a process of substituting the nitro group of the azide disaccharide compound (a type

of ManP¹ β 1 \rightarrow 4ManP¹) shown with the formula (II) with a leaving group selected from the group consisting of fluorine atom, chlorine atom, trihaloacetoimidate, pentenyl4- pentenyl, alkylthio and arylthio;

wherein P¹ is the same as described above, the wavy line means that <u>NO₂—ONO₂</u> is linked at an axial or equatorial position, or mixture of both, and a 2-azide group of mannose in the reducing terminal is linked at the equatorial position,

and next, reacting the substituted compound having the leaving group with amino-protected glucopyranoside of the formula;

wherein P², P³ and P¹¹ are the same as described above.

8. (Currently amended) A method for preparing an asparagine-linked trisaccharide compound (Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) shown with the formula (IV)

$$P^{6}-HN-CH-COOP^{5}$$

$$CH_{2}$$

$$CH_{2}$$

$$OP^{1}$$

$$OP^{2}$$

$$OP^{2}$$

$$OP^{2}$$

$$OP^{3}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{4}$$

$$OP^{2}$$

$$OP^{4}$$

$$OP^{4$$

wherein P¹ and P² are independently OH- protecting groups selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsillyl trimethylsilyl and triethylsilyl, P⁴ and P⁶ are independently amino-protecting groups selected from the group consisting of phthalimide, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl, benzoyl and benzyl, and P⁵ is a carboxyl-protecting group which is t-Bu, by deprotecting the P¹¹ group of the compound (III),

wherein P¹ and P² are the same as described above, P³ is an amino-protecting group selected from the group consisting of phthalimide, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl, benzyl and benzyl, and P¹¹ is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl trimethylsilyl and triethylsilyl,

reducing the azide group to an amino group, protecting the amino group with an acetyl group, forming an oxazoline ring simultaneously with deprotecting a hydroxy group of a reducing terminal, and coupling with a protected asparagines derivative of the formula:

wherein P⁵ and P⁶ are the same as described above, after introducing a -N=C=S group at the reducing terminal.

9. (Currently amended) An azide disaccharide (a type of ManP¹ β 1 \rightarrow 4ManP¹) compound shown with the formula (II);

wherein P¹ is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsillyl-trimethylsilyl and triethylsilyl, and the wavy line means that -NO₂-ONO₂ is linked at an axial or equatorial position, or mixture of both.

10. (Currently amended) A trisaccharide compound (a type of Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) shown with the formula of (III);

$$P_{P_{10}}^{10} = 0$$
 $P_{P_{10}}^{10} = 0$
 $P_{P_{10}}^{10} = 0$

wherein P¹, P² and P¹¹ are independently OH-protecting groups selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl and triethylsilyl, and P³ is an amino-protecting group selected from the group consisting of phthalimide, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl, benzoyl and benzyl.

11-12. (Cancelled)

13. (Currently amended) The-A method for preparing a trisaccharide (Man β 1 \rightarrow 4GlcN β 1 \rightarrow 4GlcN) of a reducing terminal in a core sugar chain structure of an asparagine-linked glycoprotein, of claim 12, further-comprising

(1) a process of preparing a mannose disaccharide compound (a type of ManP¹β1→4ManP¹) of the formula (I)

wherein P¹ is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl and triethylsilyl, and the wavy line means that -OP¹ is linked at an axial or equatorial position, or mixture of both, by hydrolyzing guar gum or galactomannan of the formula (V);

wherein n is an integer of 50 or more,

and protecting OH groups of the resulting hydrolysate.

(2) a process of preparing a glycal compound, in which mannose of a reducing terminal of the mannose disaccharide is converted to glycal, by halogenation and reduction of the mannose disaccharide (a type of ManP¹β1→4ManP¹), and

(3) a process of preparing an azide disaccharide compound (a type of ManP¹β1→4ManP¹) shown with formula (II) in which a 2-azide group of mannose in a reducing terminal is linked at an equatorial position;

wherein P¹ is the same as described above, the wavy line means that -ONO₂ is linked at an axial or equatorial position, or mixture of both,

by azidenitration reaction of the glycal compound above,

- (4) a process of substituting the nitro group of the azide disaccharide compound (a type of $ManP^1\beta1\rightarrow 4ManP^1$) with a leaving group selected from the group consisting of fluorine atom, chlorine atom, trihaloacetoimidate, pentenyl4- pentenyl, alkylthio and arylthio, and
- (5) a process of preparing a trisaccharide compound (a type of Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) shown with the formula (III);

wherein P¹ is an OH- protecting group, as described above, P² is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl trimethylsilyl and triethylsilyl, P³ is an amino-protecting group selected from the group consisting of phthalimide, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl, benzoyl and benzyl, and P¹¹ is an OH-protecting group selected from the group consisting of acetyl, benzyl, 4-methoxybenzyl, benzoyl, methoxymethyl, tetrahydropyranyl, trimethylsilyl trimethylsilyl and triethylsilyl,

by a reaction of the product having the leaving group with amino-protected glucopyranoside shown with the formula;

wherein P², P³, and P¹¹ are the same as described above.

- 14. (Currently amended) The method for preparing a trisaccharide
 (Manβ1→4GlcNβ1→4GlcN) of a reducing terminal in a core sugar chain structure of an asparagine-linked glycoprotein of claim 13, further comprising
- (6) a process of preparing an asparagine-linked trisaccharide (Man β 1 \rightarrow 4GlcNP¹ β 1 \rightarrow 4GlcNP²) compound shown with the formula (IV);

$$\begin{array}{c} P^{6}-HN-CH-COOP^{5}\\ CH_{2}\\ P^{1}O\\ P^{1}O\\ \end{array}$$

wherein P¹ and P² are independently OH- protecting groups, as described above, P⁴ and P⁶ are independently amino-protecting groups selected from the group consisting of phthalimide, tert-butyloxycarbonyl, benzyloxycarbonyl, acetyl, benzoyl and benzyl, and P⁵ is a carboxyl-protecting group which is t-Bu,

by deprotecting the P¹¹ group of the compound (III),

$$P_{P_{10}}^{10} \xrightarrow{OP_{1}} OP_{N_{3}}^{10} OP_{N_{20}}^{10} OP_{N_{10}}^{10} OP_{N_{10}}^{$$

wherein P¹, P² and P¹¹ are independently OH- protecting groups, as described above, and P³ is an amino-protecting group, as described above,

reducing the azide group to an amino group, protecting the amino group with an acetyl group, forming an oxazoline ring simultaneously with deprotecting a hydroxy group of a reducing terminal, and coupling with a protected asparagine derivative of the formula:

wherein P⁵ and P⁶ are the same as described above, after introducing a -N=C=S group at the reducing terminal.