Name: Jeodalyn Edulag

Course, Year and Section: BSIT 2-A

Worksheet-1 in R

Worksheet for R Programming

Instructions:

- Use RStudio or the RStudio Cloud accomplish this worksheet. + Save the R script as *RWorksheet lastname#1.R*.
- Create your own *GitHub repository* and push the R script as well as this pdf worksheet to your own repo.

Accomplish this worksheet by answering the questions being asked and writing the code manually.

Using functions:

```
seq(), assign(), min(), max(), c(), sort(), sum(), filter()
```

- 1. Set up a vector named age, consisting of 34, 28, 22, 36, 27, 18, 52, 39, 42, 29,35, 31, 27, 22, 37, 34, 19, 20, 57, 49, 50, 37, 46, 25, 17, 37, 42, 53, 41, 51, 35, 24, 33, 41.
- a. How many data points? Answer: 34 data points
 - b. Write the R code and its output.

#R CODE

```
age <- c(34, 28, 22, 36, 27, 18, 52, 39, 42, 29, 35,31, 27, 22, 37, 34, 19, 20, 57, 49, 50, 37, 46, 25, 17, 37, 42, 53, 41, 51, 35, 24, 33, 41) #OUTPUT

age [1:34] 34, 28, 22, 36, 27, 18, 52, 39, 42, 29, 35,31, 27, 22, 37, 34, 19, 20, 57, 49, 50, 37, 46, 25, 17, 37, 42, 53, 41, 51, 35, 24, 33, 41
```

2. Find the reciprocal of the values for age.

Write the R code and its output.

r_age <- 1/age r_age

- [1] 0.02941176 0.03571429 0.04545455 0.02777778 0.03703704 0.05555556 0.01923077 0.02564103
- [9] 0.02380952 0.03448276 0.02857143 0.03225806 0.03703704 0.04545455 0.02702703 0.02941176
- $[17]\ 0.05263158\ 0.05000000\ 0.01754386\ 0.02040816\ 0.02000000\ 0.02702703\ 0.02173913\ 0.04000000$
- $[25]\ 0.05882353\ 0.02702703\ 0.02380952\ 0.01886792\ 0.02439024\ 0.01960784\ 0.02857143\ 0.04166667$

[33] 0.03030303 0.02439024

3. Assign also new_age <- c(age, 0, age).

What happen to the new_age?

Answer: This will display two sets of the vector with the specific age in each set, with zero at the center.

[1] 34 28 22 36 27 18 52 39 42 29 35 31 27 22 37 34 19 20 57 49 50 37 46 25 17 37 42 53 41 51

[31] 35 24 33 41 0 34 28 22 36 27 18 52 39 42 29 35 31 27 22 37 34 19 20 57 49 50 37 46 25 17

[61] 37 42 53 41 51 35 24 33 41

4. Sort the values for age.

Write the R code and its output.

sort(age)

[1] 17 18 19 20 22 22 24 25 27 27 28 29 31 33 34 34 35 35 36 37 37 37 39 41 41 42 42 46 49 50

[31] 51 52 53 57

5. Find the minimum and maximum value for age.

Write the R code and its output.

min(age) max(age)

OUTPUT [1] 17

[1] 57

- 6. Set up a vector named data, consisting of 2.4, 2.8, 2.1, 2.5, 2.4, 2.2, 2.5, 2.3, 2.3, 2.4, and 2.7.
 - a. How many data points?

Answer: 12 data points

b. Write the R code and its output.

Data <- c(2.4, 2.8, 2.1, 2.5, 2.4, 2.2, 2.5, 2.3, 2.5, 2.3, 2.4, 2.7)

Data

OUTPUT

[1] 2.4 2.8 2.1 2.5 2.4 2.2 2.5 2.3 2.5 2.3 2.4 2.7

7. Generates a new vector for data where you double every value of the data. | What happento the data?

data * 2

Answer: The sum of the values of each data point in the vector. [1] 4.8 5.6 4.2 5.0 4.8 4.4 5.0 4.6 5.0 4.6 4.8 5.4

8. Generate a sequence for the following scenario:

```
8.1 Integers from 1 to 100. seq(1:100)
```

OUTPUT

```
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 [23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 [45] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 [67] 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 [89] 89 90 91 92 93 94 95 96 97 98 99 100
```

8.2 Numbers from **20** to **60** x <- 20:60 print(x)

OUTPUT

[1] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 [31] 50 51 52 53 54 55 56 57 58 59 60

*8.3 Mean of numbers from 20 to 60

mean(20:60) OUTPUT: [1] 40

*8.4 Sum of numbers from 51 to 91

sum(51:91) OUTPUT: [1] 2911

```
seq(1:1000)
#OUTPUT: Integers from 1 to 1000
    a. How many data points from 8.1 to 8.4?_____
Answer: [1] 223
    b. Write the R code and its output from 8.1 to 8.4.
     8.1
     seq(1:100)
         [1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22
         [23] 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43
         [45] 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65
     66
         [67] 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87
     88
         [89] 89 90 91 92 93 94 95 96 97 98 99 100
     8.2
     x <- 20:60
     print(x)
      [1] 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46
  47 48 49
      [31] 50 51 52 53 54 55 56 57 58 59 60
     8.3
    seq(20,60)
      [1] 40
     8.4
    sum(51:91)
        [1] 2911
```

c. For 8.5 find only maximum data points until 10.

max(1:10) OUTPUT: [1] 10

*8.5 Integers from 1 to 1,000

9. *Print a vector with the integers between 1 and 100 that are not divisible by 3, 5 and 7 using filter option.

filter(function(i) { all(i %% c(3,5,7) != 0) }, seq(100)) Write the R code and its output.

OUTPUT

[1] 1 2 4 8 11 13 16 17 19 22 23 26 29 31 32 34 37 38 41 43 44 46 47 52 53 58 59 61 62 64 [31] 67 68 71 73 74 76 79 82 83 86 88 89 92 94 97

10. Generate a sequence backwards of the integers from 1 to 100.

Write the R code and its output.

```
seq(from =100, to =1)
OUTPUT

[1] 100 99 98 97 96 95 94 93 92 91 90 89 88 87 86 85 84 83 82

[20] 81 80 79 78 77 76 75 74 73 72 71 70 69 68 67 66 65 64 63

[39] 62 61 60 59 58 57 56 55 54 53 52 51 50 49 48 47 46 45 44

[58] 43 42 41 40 39 38 37 36 35 34 33 32 31 30 29 28 27 26 25

[77] 24 23 22 21 20 19 18 17 16 15 14 13 12 11 10 9 8 7 6

[96] 5 4 3 2 1
```

11. List all the natural numbers below 25 that are multiples of 3 or 5.

```
sum((1:25)[((1:25)\%\%3 == 0) | ((1:25)\%\%5 == 0)])
OUTPUT: [1] 168
```

Find the sum of these multiples

a. How many data points from 10 to 11?

Answer: 101 data points

b. Write the R code and its output from 10 and 11.

12. Statements can be grouped together using braces '{' and '}'. A group of statements is sometimes called a **block**. Single statements are evaluated when a new line is typed at the end of the syntactically complete statement. Blocks are not evaluated until a new line is entered after the closing brace.

Enter this statement: $\{x <-0+x+5+\}$ Describe the output.

Error: unexpected '}' in " $\{x <-0+x+5+\}$ "

The closing brace ")" is error with the given statement

13. *Set up a vector named score, consisting of 72, 86, 92, 63, 88, 89, 91, 92, 75, 75 and 77. To access individual elements of an atomic vector, one generally uses the x[i] construction.

```
Find x[2] and x[3]. Write the R code and its output.
```

```
score <- c(72, 86, 92, 63, 88, 89, 91, 92, 75,75, 77)
  score[2]
  score[3]
  OUTPUT: x[2]=86, x[3]=92
14. Create a vector a = c(1,2,NA,4,NA,6,7).
    a. Change the NA to 999 using the codes print(a,na.print="-999").
    a = c(1,2,NA,4,NA,6,7)
   print(a,na.print="-999")
   OUTPUT
   [1] 1 2-999 4-999 6 7
    b. Write the R code and its output. Describe the output.
   a <- c(1,2,NA,4,NA,6,7)
   print(a,na.print="-999")
 OUTPUT
 [1] 1 2-999 4-999 6 7
 Describe the output: When comparing the first and second statements, "-999"
   was substituted for "NA."
```

15. A special type of function calls can appear on the left hand side of the assignment operator as in > class(x) <- "foo".

```
Follow the codes below:
```

```
name = readline(prompt="Input your name: ")
age = readline(prompt="Input your age: ")
print(paste("My name is",name, "and I am",age ,"years old."))
print(R.version.string)
```

```
What is the output of the above code?

name = readline(prompt="Input your name: ")

Input your name: Jeodalyn Edulag

age = readline(prompt="Input your age: ")

Input your age: 19

print(paste("My name is",name, "and I am",age ,"years old."))

[1] "My name is Jeodalyn Edulag and I am 19 years old."

print(R.version.string)

[1] "R version 4.2.1 (2022-06-23 ucrt)"
```