Machine Learning TD1

1. Considérons 2 variables binaires X_1 et X_2 . Le tableau 1 décrit les lois jointes $P(X_1, X_2)$ et conditionnelles $P(Y = 1 | X_1, X_2)$:

X_1	X_2	$P(X_1, X_2)$	$P(Y=1 X_1,X_2)$
0	0	0.3	0.6
0	1	0.3	0.2
1	0	0.2	0.4
1	1	0.2	0.8

Table 1 – Distribution $P(Y, X_1, X_2)$

- Quel est le classifieur "Bayes optimal" $f^*(x_1, x_2)$ de y? Que vaut son erreur de généralisation?
- Construire un classifieur naïf de Bayes et calculer son erreur de généralisation. Comparez-le à f^* .
- Construire un arbre de décision de niveau 1 (avec le gain de gini) et calculer son erreur de généralisation. Comparez-le à f^* .
- Construire un échantillon de 10 exemples par un procédé de tirage aléatoire que vous explicitez. Quelle est sa log vraisemblance d'après le vrai modèle? Construire un classifieur naïf de Bayes et un arbre de décision de niveau 1. Comparez les performances avec les précédentes. Conclure.
- 2. Quelle est l'entropie d'unve variable aléatoire gaussienne?
- 3. On cherche à caractériser la fonction $f^*(.)$ à valeur continue dans [0,1] qui minimise l'espérance de la fonction coût $l(Y, f(X)) = |Y f(X)|^q$ en fonction de q. Caractériser la solution pour q = 2 et q = 1 dans le cas discret et continu.
- 4. On pose L_{ij} le coût lorsqu'on assigne x à C_j alors que $x \in C_i$.
 - Exprimer la classe optimale C_i de x en fonction des $p(C_j|x)$ et des L_{ij} .
 - Dans le cas de deux classes, C_0 et C_1 . On pose $p = p(C_1|x)$, trouver le seuil de décision optimal p^* en fonction des L_{ij} .
- 5. Dans le tableau 2 figurent les résultats d'un classifieur multi-label sur une base de test.
 - Quelles sont les fonctions de coût que l'on peut proposer pour quantifier les erreurs de prédictions en apprentissage multi-label?
 - Comment se géréralisent le rappel, la précision et la F-mesure au cas multi-label? Faire l'application numérique à partir du taleau 2.

Y_1	1	0	1	1
Y_2	1	1	0	1
\hat{Y}_1	0	0	1	1
\hat{Y}_2	1	1	1	0

Table 2 – Prédictions obtenues sur la base de test

— Dans le tableau 3, figurent les probabilités conditionnelles $P(Y_1, Y_2|X)$ estimées par un classifieur probabiliste multilabel pour un X donné.

Y_1	Y_2	$\hat{P}(Y_1, Y_2 X)$
0	0	0.25
0	1	0.30
1	0	0.27
1	1	0.18

Table 3 – Estimation de $P(Y_1, Y_2|X)$ par un classifieur probabiliste multilabel.

- Calculer la prédiction optimale avec le *Hamming loss*, le *zero-one loss*", le rappel, la précision et la F-mesure.
- Montrer que la solution qui minimise le $Hamming\ loss$ ne dépend que des marginales $P(Y_j|X)$. En déduire une procédure simple d'apprentissage multilabel pour minimiser le $Hamming\ loss$.
- 6. Dans le tableau ci-dessous figurent les prédictions (ordonnées) d'un classfieur probabiliste avec les valeurs binaires cibles sur un jeu de test.
 - Calculer le rank loss, la précision, le rappel, la F-mesure.
 - Dessiner la courbe ROC associée à ces prédictions répétées. Que vaut l'AUC ?
 - Si le coût de se tromper sur un exemple positif est 2 fois plus élévé que sur un exemple négatif, quels sont les seuils qui minimisent le coût moyen sur ce jeu de test?

True Y										
$\hat{P}(Y=1\mid X)$	1.0	0.9	0.8	0.7	0.6	0.5	0.4	0.3	0.2	0.1

Table 4 – Prédictions d'un classfieur probabiliste sur une base de test.