САНКТ-ПЕТЕРБУРГСКИЙ ПОЛИТЕХНИЧЕСКИЙ УНИВЕРСИТЕТ

Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчет по лабораторным работам №5-6 по дисциплине «Математическая статистика»

Выполнил студент: Колосков Александр группа: 3630102/80301

Проверил: к.ф.-м.н., доцент Баженов Александр Николаевич

Содержание

		Стр	аница
1	Пос	тановка задачи	4
2	Teo	рия	4
	2.1	Двумерное нормальное распределение	. 4
	2.2	Корреляционный момент и коэффициент корреляции	
	2.3	Выборочные коэффициенты корреляции	
		2.3.1 Выборочный коэффициент корреляции Пирсона	. 4
		2.3.2 Выборочный квадрантный коэффициент корреляции	. 5
		2.3.3 Выборочный коэффициент ранговой корреляции Спирмена	. 5
	2.4	Эллипсы рассеивания	. 5
	2.5	Простая линейная регрессия	. 5
		2.5.1 Модель простой линейной регрессии	. 5
		2.5.2 Метод наименьших квадратов	. 5
		2.5.3 Расчётные формулы для МНК-оценок	. 5
	2.6	Робастные оценки коэффициентов линейной регрессии	. 6
3	Pea	лизация	6
4	Рез	ультаты	6
	4.1	Выборочные коэффициенты корреляции	. 6
	4.2	Эллипсы рассеивания	. 8
	4.3	Оценки коэффициентов линейной регрессии	. 9
		4.3.1 Выборка без возмущений	. 9
		4.3.2 Выборка с возмущениями	. 9
5	Обо	уждение	10
	5.1	Выборочные коэффициенты корреляции и эллипсы рассеивания	. 10
	5.2	Оценки коэффициентов линейной регрессии	

Список иллюстраций

	Странии	Įε
1	Эллипсы рассеивания. $\rho=0(4)$	8
	Эллипсы рассеивания. $\rho=0.5(4)$	
3	Эллипсы рассеивания. $\rho=0.9(4)$	Ć
	Выборка без возмущений	
	Выборка с возмущениями	

Список таблиц

	Страни	ца
1	Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho = 0(4)$	6
2	Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho = 0.5(4)$	7
3	Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho = 0.9(4)$	7
4	Выборочные коэффициенты корреляции смешанного распределения. (1)	7

1 Постановка задачи

1. Сгенерировать двумерные выборки размерами 20, 60, 100 для нормального двумерного распределения $N(x, y, 0, 0, 1, 1, \rho)$.

Коэффициент корреляции ρ взять равным 0, 0.5, 0.9.

Каждая выборка генерируется 1000 раз и для неё вычисляются: среднее значение, среднее значение квадрата и дисперсия коэффициентов корреляции Пирсона, Спирмена и квадрантного коэффициента корреляции.

Повторить все вычисления для смеси нормальных распределений:

$$f(x,y) = 0.9N(x,y,0,0,1,1,0.9) + 0.1N(x,y,0,0,10,10,-0.9).$$
(1)

Изобразить сгенерированные точки на плоскости и нарисовать эллипс равновероятности.

2 Теория

2.1 Двумерное нормальное распределение

Двумерная случайная величина (X,Y) называется распределенной нормально, если её плотность вероятности определяется формулой

$$N(x, y, \overline{x}, \overline{y}, \sigma_x, \sigma_y, \rho_{XY}) = \frac{1}{2\pi\sigma_x\sigma_y\sqrt{1 - \rho_{XY}^2}} \times \left\{ -\frac{1}{2(1 - \rho_{XY}^2)} \left[\frac{(x - \overline{x})^2}{\sigma_x^2} - 2\rho_{XY} \frac{(x - \overline{x})(y - \overline{y})}{\sigma_x\sigma_y} + \frac{(y - \overline{y})^2}{\sigma_y^2} \right] \right\}, \quad (2)$$

где $\overline{x}, \overline{y}, \sigma_x, \sigma_y$ - математические ожидания и средние квадратические отклонения компонент X, Y соответственно, а ρ_{XY} - коэффициент корреляции.

2.2 Корреляционный момент и коэффициент корреляции

K oppeляционный момент (ковариация) двух случайных величин X,Y:

$$K_{XY} = \operatorname{cov}(X, Y) = \mathbf{M}\left[(X - \overline{x})(Y - \overline{y}) \right]. \tag{3}$$

Коэффициент корреляции ρ_{XY} случайных величин X,Y:

$$\rho_{XY} = \frac{K_{XY}}{\sigma_x \sigma_y}. (4)$$

Kosapuauuonhoй матрицей случайного вектора (X,Y) называется симметричная матрица вида

$$K = \begin{pmatrix} D_X & K_{XY} \\ K_{YX} & D_Y \end{pmatrix}. \tag{5}$$

Кореляционной матрицей случайного вектора (X,Y) называется нормированная ковариационная матрица вида

$$R = \begin{pmatrix} 1 & \rho_{XY} \\ \rho_{YX} & 1 \end{pmatrix}. \tag{6}$$

2.3 Выборочные коэффициенты корреляции

2.3.1 Выборочный коэффициент корреляции Пирсона

Выборочный коэффициент корреляции Пирсона:

$$r = \frac{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x}) (y_i - \overline{y})}{\sqrt{\frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2 \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y})^2}} = \frac{K_{XY}}{s_X s_Y},$$
(7)

где K, s_X^2, s_Y^2 — выборочные ковариация и дисперсии случайных величин X, Y.

2.3.2 Выборочный квадрантный коэффициент корреляции

$$r_Q = \frac{(n_1 + n_3) - (n_2 + n_4)}{n},\tag{8}$$

где n_1, n_2, n_3, n_4 — количества точек с координатами (x_i, y_i) , попавшими соответственно в I, II, III и IV квадранты декартовой системы с осями $x^{'} = x - \text{med } x, y^{'} = y - \text{med } y$ и с центром в точке с координатами (med x, med y).

2.3.3 Выборочный коэффициент ранговой корреляции Спирмена

Обозначим ранги, соответствующие значениям переменной X, через u, а ранги, соответствующие значениям переменной Y, — через v.

Выборочный коэффициент ранговой корреляции Спирмена:

$$r_S = \frac{\frac{1}{n} \sum_{i=1}^n (u_i - \overline{u}) (v_i - \overline{v})}{\sqrt{\frac{1}{n} \sum_{i=1}^n (u_i - \overline{u})^2 \frac{1}{n} \sum_{i=1}^n (v_i - \overline{v})^2}},$$
(9)

где $\overline{u}=\overline{v}=\frac{1+2+\ldots+n}{n}=\frac{n+1}{2}$ — среднее значение рангов.

2.4 Эллипсы рассеивания

Уравнение проекции эллипса рассеивания на плоскость xOy:

$$\frac{(x-\overline{x})^2}{\sigma_x^2} - 2\rho_{XY} \frac{(x-\overline{x})(y-\overline{y})}{\sigma_x \sigma_y} + \frac{(y-\overline{y})^2}{\sigma_y^2} = C, \quad C - \text{const.}$$
 (10)

Центр эллипса (10) находится в точке с координатами $(\overline{x}, \overline{y})$, оси симметрии эллипса составляют с осью Ox углы, определяемые уравнением

$$\tan 2\alpha = \frac{2\rho_{XY}\sigma_x\sigma_y}{\sigma_x^2 - \sigma_y^2}. (11)$$

2.5 Простая линейная регрессия

2.5.1 Модель простой линейной регрессии

Регрессионую модель описания данных называют простой линейной регрессией, если

$$y_i = \beta_0 + \beta_1 x_i + \varepsilon_i, \quad i = 1, ..., n, \tag{12}$$

где $x_1, ..., x_n$ – заданные числа (значения фактора); $y_1, ..., y_n$ – наблюдаемые значения отклика; $\varepsilon_1, ..., \varepsilon_n$ – независимые, нормально распределенные $N(0, \sigma)$ с нулевым математическим ожиданием и одинаковой (неизвестной) дисперсией случайные величины (ненаблюдаемые); β_0, β_1 – неизвестные параметры, подлежащие оцениванию.

2.5.2 Метод наименьших квадратов

Метод наименьших квадратов (МНК):

$$Q(\beta_0, \beta_1) = \sum_{i=1}^{n} \varepsilon_i^2 = \sum_{i=1}^{n} (y_i - \beta_0 - \beta_1 x_i)^2 \to \min_{\beta_0, \beta_1}.$$
 (13)

2.5.3 Расчётные формулы для МНК-оценок

МНК-оценки параметров β_0 и β_1 :

$$\widehat{\beta}_1 = \frac{\overline{x}\overline{y} - \overline{x} \cdot \overline{y}}{\overline{x^2} - (\overline{x})^2},\tag{14}$$

$$\widehat{\beta}_0 = \overline{y} - \overline{x}\widehat{\beta}_1. \tag{15}$$

2.6 Робастные оценки коэффициентов линейной регрессии

Метод наименьших модулей:

$$\sum_{i=1}^{n} |y_i - \beta_0 - \beta_1 x_i| \to \min_{\beta_0, \beta_1} . \tag{16}$$

$$\widehat{\beta}_{1R} = r_Q \frac{q_y^*}{q_x^*},\tag{17}$$

$$\widehat{\beta}_{0R} = \operatorname{med} y - \widehat{\beta}_{1R} \operatorname{med} x, \tag{18}$$

$$r_Q = \frac{1}{n} \sum_{i=1}^n \operatorname{sign}(x_i - \operatorname{med} x) \operatorname{sign}(y_i - \operatorname{med} y), \tag{19}$$

$$q_y^* = \frac{y_{(j)} - y_{(l)}}{k_q(n)}, \quad q_x^* = \frac{x_{(j)} - x_{(l)}}{k_q(n)}$$
 (20)

$$l = \left\{ egin{array}{ll} [n/4] + 1 & \mbox{при} \ n/4 \ \mbox{дробном}, \\ n/4 & \mbox{при} \ n/4 \ \mbox{целом}. \end{array}
ight.$$

$$j = n - l + 1.$$

$$\operatorname{sign} z = \begin{cases} 1 & \text{при } z > 0, \\ 0 & \text{при } z = 0, \\ -1 & \text{при } z < 0. \end{cases}$$

Уравнение регрессии здесь имеет вид

$$y = \widehat{\beta}_{0R} + \widehat{\beta}_{1R} \cdot x.$$

$$k_q(20) = 1.491.$$

$$(21)$$

3 Реализация

Лабораторная работа выполнена на языке Python в среде PyCharm с использованием библиотек numpy, scipy.stats, matplotlib.pyplot, statsmodels

4 Результаты

4.1 Выборочные коэффициенты корреляции

n=20	r(7)	$r_S(9)$	$r_Q(8)$
E(z)	-0.0077	-0.0037	0.0067
$E(z^2)$	0.0498	0.0498	0.0497
D(z)	0.0497	0.0497	0.0496
n = 60	r	r_S	r_Q
E(z)	-0.0057	-0.0066	-0.0168
$E(z^2)$	0.0535	0.0529	0.0507
D(z)	0.0535	0.0528	0.0504
n = 100	r	r_S	r_Q
E(z)	-0.0048	-0.0069	-0.0088
$E(z^2)$	0.0517	0.051	0.056
D(z)	0.0517	0.051	0.056

Таблица 1: Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho = 0(4)$

n=20	r(7)	$r_S(9)$	$r_Q(8)$
E(z)	0.4922	0.4701	0.3296
$E(z^2)$	0.252	0.2318	0.1233
D(z)	0.0098	0.0108	0.0147
n=60	r	r_S	r_Q
E(z)	0.4986	0.4768	0.334
$E(z^2)$	0.2574	0.2379	0.1269
D(z)	0.0088	0.0106	0.0153
n=100	r	r_S	r_Q
E(z)	0.4988	0.4744	0.329
$E(z^2)$	0.2584	0.2359	0.1237
D(z)	0.0097	0.0109	0.0155

Таблица 2: Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho=0.5(4)$

n=20	r(7)	$r_S(9)$	$r_Q(8)$
E(z)	0.8997	0.8869	0.7142
$E(z^2)$	0.81	0.7872	0.5151
D(z)	0.0004	0.0007	0.005
n=60	r	r_S	r_Q
E(z)	0.8977	0.8843	0.7133
$E(z^2)$	0.8062	0.7826	0.5138
D(z)	0.0004	0.0007	0.0051
n=100	r	r_S	r_Q
E(z)	0.8985	0.8854	0.7118
$E(z^2)$	0.8076	0.7846	0.512
D(z)	0.0004	0.0006	0.0053

Таблица 3: Выборочные коэффициенты корреляции двумерного нормального распределения. $\rho=0.9(4)$

n=20	r	r_S	r_Q
E(z)	-0.3039	0.4771	0.1509
$E(z^2)$	0.5442	0.3042	0.2747
D(z)	0.4518	0.0765	0.2519
n=60	r	r_S	r_Q
E(z)	-0.6378	0.4742	0.3501
$E(z^2)$	0.487	0.2513	0.2017
D(z)	0.0802	0.0264	0.0791
n=100	r	r_S	r_Q
E(z)	-0.6888	0.4756	0.3935
$E(z^2)$	0.5051	0.2422	0.2105
D(z)	0.0307	0.016	0.0556

Таблица 4: Выборочные коэффициенты корреляции смешанного распределения. (1)

4.2 Эллипсы рассеивания

Рис. 1: Эллипсы рассеивания. $\rho = 0(4)$

Рис. 2: Эллипсы рассеивания. $\rho = 0.5(4)$

Рис. 3: Эллипсы рассеивания. $\rho = 0.9(4)$

4.3 Оценки коэффициентов линейной регрессии

4.3.1 Выборка без возмущений

• Критерий наименьших квадратов:

$$\hat{a} = 1.8986 \quad \hat{b} = 1.9533$$

• Критерий наименьших модулей:

$$\hat{a} = 1.9332 \quad \hat{b} = 1.6795$$

Рис. 4: Выборка без возмущений

4.3.2 Выборка с возмущениями

• Критерий наименьших квадратов:

$$\hat{a} = 0.3261 \quad \hat{b} = 2.2993$$

• Критерий наименьших модулей:

$$\hat{a} = 0.4383 \quad \hat{b} = 2.0391$$

Рис. 5: Выборка с возмущениями

5 Обсуждение

5.1 Выборочные коэффициенты корреляции и эллипсы рассеивания

Для двумерного нормального распределения дисперсии выборочных коэффициентов корреляции упорядочены следующим образом: $D(r) < D(r_S) < D(r_Q)$. Аналогичные неравенства наблюдаются для величины $|\rho - r_{ind}|$, из чего можно сделать вывод, что оценка Пирсона коэффициента корреляции (7) является оптимальной в анализе двумерного нормального распределения.

Для смеси нормальных распределений наименьшая выборочная дисперсия наблюдается у коэффициента корреляции Спирмена. Кроме того коэффициент Спирмена наиболее устойчив к изменению размеров анализируемой выборки, из чего можно сделать вывод, что оценка Спирмена коэффициента корреляции (9) является оптимальной в анализе смеси нормальных распределений.

Процент попавших элементов выборки в эллипс рассеивания (95%-ная доверительная область) примерно равен его теоретическому значению.

5.2 Оценки коэффициентов линейной регрессии

Для сравнительно небольшой выборки (n=20) без возмущений критерий наименьших квадратов и критерий наименьших модулей дают сравнимые результаты (с небольшим выигрышем МНК в оценке коэффициента сдвига и небольшим выигрышем МНМ в оценке коэффициента наклона)

Для выборки с возмущениями МНК и МНМ также дают приблизительно одинаковые результаты. Стоит отметить, что в соответствии с построением эксперимента (резкие и равнозначные отклонения выборки на краях), хотя обоим методам сильно вредят отклонения в оценке коэффициента наклона, оценке коэффициента сдвига они вредят в меньшей степени.

Репозиторий

https://github.com/KoloskovAleksandr/MathStatLabs2021