Redox Potential Calculations Using NWChem

Example Calculation: Redox Potential for $[FeCp_2]^{0/+}$

As an example of how to do this part of the assignment, we will compute the redox potential

$$\Delta G(\mathrm{aq}) = -\mathrm{n} \; \mathrm{F} \; \mathrm{E}_m^{(0/+)}$$

from a calculation for the Gibbs free energy change, $\Delta G_{\rm ox}({\rm sol})$, for the reaction

$$[\mathrm{Fe}(\mathrm{II})\mathrm{Cp_2}]^0(\mathrm{solv}) \longrightarrow [\mathrm{Fe}(\mathrm{III})\mathrm{Cp_2}]^+(\mathrm{solv}) + e^-$$

The Born-Haber Cycle

$$\begin{array}{c} \Delta G_{\rm ox}({\rm g}) \\ & \Delta G_{\rm solv}({\rm Fe(II)}) \\ & \Delta G_{\rm solv}({\rm Fe(III)}) \end{array} \longrightarrow \begin{array}{c} ({\rm FeCp_2}]^+({\rm g}) + e^- \\ & \Delta G_{\rm solv}({\rm Fe(III)}) \\ & \Delta G_{\rm solv}({\rm Fe(III)}) \end{array}$$

Using the Born-Haber Cycle, we obtain:

$$\Delta G_{\rm ox}({\rm solv}) = \Delta G_{\rm ox}({\rm g}) + \Delta G_{\rm solv}({\rm III}) - \Delta G_{\rm solv}({\rm II})$$

where

$$\begin{split} &\Delta G_{\rm solv}({\rm II}) = {\rm E}_{\rm solv}^{\rm scf}({\rm II}) - {\rm E}_{\rm g}^{\rm scf}({\rm II}) \\ &\Delta G_{\rm solv}({\rm III}) = {\rm E}_{\rm solv}^{\rm scf}({\rm III}) - {\rm E}_{\rm g}^{\rm scf}({\rm III}) \\ &\Delta G_{\rm ox}({\rm g}) = \left({\rm E}_{\rm g}^{\rm scf}({\rm III}) + {\rm G}_{\rm Correction}({\rm g},\,{\rm III})\right) - \left({\rm E}_{\rm g}^{\rm scf}({\rm II}) + {\rm G}_{\rm Correction}({\rm g},\,{\rm II})\right) \end{split}$$

The correction for the free energy $G_{Correction}$ because of temperature is given by $G^0 = H^0 - TS^0$ where H^0 is the molecular enthalpy obtained from the minimum energy structure, and S^0 is the molecular entropy obtained from a frequency calculation.

Example Calculation: Redox Potential for $[FeCp_2]^{0/+}$

Tabulated Energies (au) from Calculations				
$[\mathrm{FeCp}_2]^0$		$[\mathrm{FeCp}_2]^+$		
$E_{g}^{scf}(Fe(II))$	-510.439067386	$E_g^{scf}(Fe(III))$	-510.170289413	
G _{Correction} (g, Fe(II))	0.134232	$G_{Correction}$ (g, $Fe(III)$)	0.132483	
$E_{solv}^{scf}(Fe(II))$	-510.444248948	$E_{solv}^{scf}(Fe(III))$	-510.239713457	

$$\begin{array}{|c|c|c|c|} \hline \textbf{Calculated Free Energy Values (au)} \\ \hline \Delta G_{\rm solv}(\text{Fe(II)}) & -0.005181562 \\ \hline \Delta G_{\rm solv}(\text{Fe(III)}) & -0.069424027 \\ \hline \Delta G_{\rm ox}(\text{g}) & +0.267028973 \\ \hline \Delta G_{\rm ox}(\text{solv}) & +0.202786508 \\ \hline \end{array}$$

$$E_{m}^{0/+} = -\frac{(-0.202786508~au) \times 627.51~kcal/mol)}{(1) \times 96500~C/mol} \times \frac{4186~J}{kcal} \times \frac{1~V}{J/C} \approx 5.52~V$$

Experimental Determination of $\mathbf{E}_{\mathbf{m}}^{0/+}$ for $[\mathbf{FeCp}_2]^0$

E ⁰ (Absolute Reduction Potential, NHE)	
E ⁰ (Saturated Calomel Electrode (SCE), Relative to NHE)	0.26 V
$E_{\rm m}^{0/+}$ (Relative to SCE)	$0.43~\mathrm{V}$
$E_{\rm m}^{0/+}({ m Relative \ to \ NHE})$	5.29 V

Notes on Comparing Calculated and Experimental Redox Potentials

- Experimental redox potentials are reported relative to a standard electrode.
- If the standard is the **Normal Hydrogen Electrode (NHE)**, then 4.60 V is either subtracted from the absolute reduction potential (i.e. the cost of free electron) or added to the absolute oxidation potential (return of remove electron) in order to determine the potential.
- Adjustment to other standard electrodes is straightforward, since their potentials relative to the NHE is known.

Exercises

Consider the redox pairs $[FeCp_2]^{0/+}$ and $[FeCp_2^*]^{0/+}$ where $Cp = \eta - C_5H_5$ and $Cp^* = \eta - C_5Me_5$.

- 1. Obtain minimum energy structures for $[FeCp_2]^{0/+}$ and $[FeCp_2^*]^{0/+}$. Compare them to the corresponding X-ray crystal structures.
- 2. Calculate the redox potential for the $[FeCp_2]^{0/+}$ pair in water (H_2O) , acetonitrile $(CH_3 C \equiv N)$, and dimethyl sulfoxide $((CH_3)_2S = O)$.
 - Compare the calculated results to the experimental values given in Connelly, N.G.; Geiger, W.E., Chemical Reviews. 1996, 96, 877-910.
- 3. Construct an orbital interaction diagram for FeCp₂, and then use this to rationalize all the results obtained for exercise #2.