Reproducing and reducing a model of memory and learning in Drosophila

Lab Rotation Report

Marshall Mykietyshyn BCCN, Technische Universität Berlin

L. Jiang (2020) Task

Classical conditioning task

- Inputs are odours (appetitive or aversive)
- Unconditioned stimuli (US) used to condition neutral stimuli (CS)
- US signaled by reinforcement
- Novelty: dopamine-gated plasticity

L. Jiang (2020) Task

Classical conditioning task

- Task trials = series of intervals
- Stimulus presentation times are randomized (within a window)
- Stimulus presentation lengths are constant
- Neuron activities reset after intervals

- 1. Kenyon Cells (KCs)
- 2. Output (readout)
- 3. Context (ext)
- Mushroom-Body Output Neurons (MBONs)
- 5. Dopaminurgic Neurons (DANs)
- 6. Feedback Neurons (FBNs)

- 1. Kenyon Cells (KCs)
- 2. Output (readout)
- 3. Context (ext)
- Mushroom-Body Output Neurons (MBONs)
- 5. Dopaminurgic Neurons (DANs)
- 6. Feedback Neurons (FBNs)

- 1. Kenyon Cells (KCs)
- 2. Output (readout)
- 3. Context (ext)
- Mushroom-Body Output Neurons (MBONs)
- 5. Dopaminurgic Neurons (DANs)
- 6. Feedback Neurons (FBNs)

- 1. Kenyon Cells (KCs)
- Output (readout)
- 3. Context (ext)
- Mushroom-Body Output Neurons (MBONs)
- 5. Dopaminurgic Neurons (DANs)
- 6. Feedback Neurons (FBNs)

- 1. Kenyon Cells (KCs)
- 2. Output (readout)
- Context (ext)
- Mushroom-Body Output Neurons (MBONs)
- 5. Dopaminurgic Neurons (DANs)
- 6. Feedback Neurons (FBNs)

- Kenyon Cells (KCs)
- 2. Output (readout)
- 3. Context (ext)
- Mushroom-Body Output Neurons (MBONs)
- 5. Dopaminurgic Neurons (DANs)
- 6. Feedback Neurons (FBNs)

- 1. Kenyon Cells (KCs)
- 2. Output (readout)
- 3. Context (ext)
- Mushroom-Body Output Neurons (MBONs)
- 5. Dopaminurgic Neurons (DANs)
- 6. Feedback Neurons (FBNs)

Backprop trained weights

Context to feedback neurons (W^{ext})

 Recurrent weights among output circuitry (W^{recur})

MBONs to the output (W^{readout})

Represents evolution and lifetime learning

Dynamically updated weights

- KCs→MBONs (W^{KC→MBON})
- LTD/LTP mechanism ($\tau = 5s$)
- Model of synaptic plasticity

Represents short-term learning

$$au_{W} \dot{\mathbf{W}}_{ij}^{KC o MBON} = - \mathbf{W}_{ij}^{KC o MBON} + \mathbf{w}_{ij}$$

Dynamically updated weights

-10 s

- LTD/LTP mechanism ($\tau = 5s$)
- Model of synaptic plasticity

Represents short-term learning

$$au_{W} \dot{\mathbf{W}}_{ij}^{KC o MBON} = - \mathbf{W}_{ij}^{KC o MBON} + \mathbf{w}_{ij}$$

 $\Delta W_{KC \to MBON}$

→ ΔT 10 s

Output circuitry

Output circuitry =

MBONs + DANs + FBNs

- DAN→MBON weights = 0
 - So that DANs only affect MBONs through plasticity

Output circuitry

 DANs are paired 1-to-1 with MBONs through weight update equation

$$\circ$$
 $N_{MBON} = N_{DAN}$

$$rac{dw_{ij}}{dt} = ar{r}_{DAN,i}(t) r_{KC,j}(t) - ar{r}_{KC,j}(t) r_{DAN,i}(t)$$
 $oldsymbol{\mathsf{W}}_{\mathsf{KC} o \mathsf{MBON}}$

Where
$$i \in [0, 1, \ldots, N_{MBON}]$$
 $j \in [0, 1, \ldots, N_{KC}]$

Comparison of Results

1st-order Conditioning

Comparison of Results

Extinction Conditioning

Comparison of Results

2nd-order Conditioning

Modifications to Network

Remove Feedback Connections

- No feedback (2-hop MBON→DAN)
- No feedback (1-hop MBON→DAN)
- No feedback (no MBON→DAN)

Train only on second-order conditioning

Eliminate LTP weight updates (LTD only)

Modifications to Network

Remove Feedback Connections

- No feedback (2-hop MBON→DAN)
- No feedback (1-hop MBON→DAN)
- No feedback (no MBON→DAN)

Train only on second-order conditioning
Eliminate LTP weight updates (LTD only)

Modifications to Network

Remove Feedback Connections

- No feedback (2-hop MBON→DAN)
- No feedback (1-hop MBON→DAN)
- No feedback (no MBON→DAN)

Train only on second-order conditioning
Eliminate LTP weight updates (LTD only)
Use a minimum number of MBONs

Modifications to Network

Remove Feedback Connections

- No feedback (2-hop MBON→DAN)
- No feedback (1-hop MBON→DAN)
- No feedback (no MBON→DAN)

Train only on second-order conditioning

Eliminate LTP weight updates (LTD only)

Modifications to Network

Remove Feedback Connections

- No feedback (2-hop MBON→DAN)
- No feedback (1-hop MBON→DAN)
- No feedback (no MBON→DAN)

Train only on second-order conditioning

Eliminate LTP weight updates (LTD only)

Modifications to Network

Remove Feedback Connections

- No feedback (2-hop MBON→DAN)
- No feedback (1-hop MBON→DAN)
- No feedback (no MBON→DAN)

Train only on second-order conditioning

Eliminate LTP weight updates (LTD only)

Modifications to Network

Remove Feedback Connections

- No feedback (2-hop MBON→DAN)
- No feedback (1-hop MBON→DAN)
- No feedback (no MBON→DAN)

Train only on second-order conditioning

Eliminate LTP weight updates (LTD only)

MBON Sensitivity - All Classical Conditioning

MBON Sensitivity - Only 2nd-order Conditioning

Qualitative Assessment - Error ~10⁻⁴

Qualitative Assessment - Error ~10⁻³

Qualitative Assessment - Error ~10⁻²

Network Performance Comparison of 20 Networks First-order Conditioning Task

Network Performance Comparison of 20 Networks

Extinction Task

Model Simplification - Summary

Minimal Model

- Halved N_{MBON} (20 -> 10)
- Removed FBN population (1-hop)
- Eliminated LTP from weight updates (optional)

Skills Learned

- PyTorch
- Engineering-prototyping balance
- Packages and modules vs. notebooks
- Periodic reassessment of completed work

Lab Rotation - Summary

- Reproduced model of memory and learning
 - Similar performance to Jiang 2020
- Reduced their model
 - Simplest form while maintaining performance
 - Halved size of MBON and DAN populations
 - Removed feedback neuron population
- Began to analyze the network dynamics (not shown here)