MRAM Neutron Accelerated Testing

Testing done at Los Alamos National Labs

Vincent O'Sullivan April 2005

Freescale Semiconductor Confidential Proprietary. Freescale™ and the Freescale logo are trademarks of Freescale Semiconductor, In All other product or service names are the property of their respective owners. © Freescale Semiconductor, Inc. 2004

LANL Neutron Beam Overview

LANL Neutron Beam at WNR Facilty

- Intensity: 100M x Ambient Neutron Flux at Sea Level New York City
- Energy Spectrum: Approx 1Mev to 800Mev per neutron
- Spectrum is close to Ambient Neutron flux from Sea level up to commercial aircraft altitudes

Ambient Neutron Spectrum vs WNR Spectrum

Chart from Los Alamos National Labs

Test Procedure

- Write 8 devices with all ones and 8 devices with all zeroes.
- Expose sets of 4 devices with both data states to significantly different doses of neutrons
- Maintain 1 set of 4 with both data states as controls.
- Capture bit fail before and after beam exposure
 - Used devices from Lot T38838

Data Summary

Run		Total Neutrons/cm2 >10Mev	Equivalent Device Hours in NYC	Total bit fails Pre	Total Bit Fails Post
0	Set 0	0		37	40
1.0	Set 1	853075578.5	60933969.89	11	3
2.0	Set 2	851959966.4	60854283.32	8	6
3.0	Set 3				
4.0	Set 3				
5.0	Set 3	14142335140	1010166796	4	3
6.0	Set 4				
7.0	Set 4				
8.0	Set 4				
8.1	Set 4				
9.0	Set 4				
10.0	Set 4				
11.0	Set 4	58341176078	4167226863	0	1

Neutrons are apparently good for MRAM! Worst case provides a FIT rate of no higher than 4.2. Number of fails, however, are too small, and within inherent non repeatability of setup.

Set0 All 0 Pre Post

Set0 All 1 Pre Post

Set1 All 0 Pre Post

Set1 All 1 Pre Post

Set 2 All 0 Pre Post

Set 2 All 1 Pre Post

Set 3 All 0 Pre Post

Set 3 All 1 Pre Post

Set 4 All 0 Pre Post

Set 4 All 1 Pre Post

Conclusions

- MRAM Static SER FIT rate due to neutrons is likely 100's X less than the latest SRAM technologies
- To Do:
 - Characterize dynamic MRAM neutron accelerated SER
 - If MRAM bitcell proves as robust as expected against neutron accelerated soft error, it may be used to characterize transistor technologies in periphery against neutron accelerated dynamic SER
 - MRAM Alpha accelerated soft error needs verification.

