The variational autoencoder

Clayton W. Seitz

April 3, 2023

Variational Bayes

The variable \mathbf{x} has a latent representation or code \mathbf{z} . We often say that \mathbf{z} is the *causal source* of \mathbf{x} . The distribution we are after is the *evidence* in Bayes rule $P(\mathbf{x})$

$$P(\mathbf{x}) = \frac{P_{\Phi}(\mathbf{x}|\mathbf{z})P_{\Omega}(\mathbf{z})}{Q_{\Psi}(\mathbf{z}|\mathbf{x})}$$

It is common to take $P_{\Omega}(\mathbf{z})$ to be Gaussian. We then try find the model parameters $\Theta = (\Phi, \Psi)$ that maximize the likelihood of the observed data:

$$\Theta^* = \underset{\Theta}{\operatorname{argmin}} - \log P(\mathbf{x}_{\operatorname{obs}})$$

Computing the evidence

We can alternatively write the evidence as

$$P(\mathbf{x}) = \int P_{\Omega}(\mathbf{z}) P_{\Phi}(\mathbf{x}|\mathbf{z}) d\mathbf{z}$$

$$= \int P_{\Omega}(\mathbf{z}) P_{\Phi}(\mathbf{x}|\mathbf{z}) \frac{P_{\Psi}(\mathbf{z}|\mathbf{x})}{P_{\Psi}(\mathbf{z}|\mathbf{x})} d\mathbf{z}$$

$$= \mathbb{E}_{\mathbf{z} \sim P_{\Psi}(\mathbf{z}|\mathbf{x})} \frac{P_{\Omega}(\mathbf{z}) P_{\Phi}(\mathbf{x}|\mathbf{z})}{P_{\Psi}(\mathbf{z}|\mathbf{x})}$$

We call Ψ and Φ the encoder and decoder, respectively

The evidence lower bound (ELBO)

$$\begin{split} \log P(\mathbf{x}) &= \log \ \mathbb{E}_{\mathbf{z} \sim P_{\Psi}(\mathbf{z}|\mathbf{x})} \frac{P_{\Omega}(\mathbf{z}) P_{\Phi}(\mathbf{x}|\mathbf{z})}{P_{\Psi}(\mathbf{z}|\mathbf{x})} \\ &\geq \mathbb{E}_{\mathbf{z} \sim P_{\Psi}(\mathbf{z}|\mathbf{x})} \log \ \frac{P_{\Omega}(\mathbf{z}) P_{\Phi}(\mathbf{x}|\mathbf{z})}{P_{\Psi}(\mathbf{z}|\mathbf{x})} \\ &- \log P(\mathbf{x}) \leq \mathbb{E}_{\mathbf{z} \sim P_{\phi}(\mathbf{z}|\mathbf{x})} \log \frac{P_{\Psi}(\mathbf{z}|\mathbf{x})}{P_{\Omega}(\mathbf{z})} - \log P_{\Phi}(\mathbf{x}|\mathbf{z}) \end{split}$$

The ELBO objective

$$\Theta^* = \underset{\Phi, \Psi}{\operatorname{argmin}} \ \mathbb{E}_{\mathbf{x} \sim \operatorname{Pop}, \ \mathbf{z} \sim P_{\Psi}(\mathbf{z}|\mathbf{x})} \log \frac{P_{\Psi}(\mathbf{z}|\mathbf{x})}{P_{\Omega}(\mathbf{z})} - \log P_{\Phi}(\mathbf{x}|\mathbf{z})$$

$$= \underset{\Phi, \Psi}{\operatorname{argmin}} \ D_{\mathrm{KL}}(P_{\Psi}||P_{\Omega}) - \mathbb{E}_{\mathbf{x} \sim \operatorname{Pop}, \ \mathbf{z} \sim P_{\Psi}(\mathbf{z}|\mathbf{x})} \log P_{\Phi}(\mathbf{x}|\mathbf{z})$$

The first term is a **rate term** to be minimized and the second a **reconstruction term** to be maximized

The variational autoencoder Clayton W. Seitz 5

References I