3.8 Chemical Mechanical Planarization (CMP)

Outline: 3.8.1 Introduction

- What is CMP?
- Necessity of CMP
- Applications of CMP
- 3.8.2 Equipment Configuration
- 3.8.3 Consumables
 - Slurries
 - Pads
 - Brushes and Conditioner
- 3.8.4 Process Issues
 - Removal rate
 - Selectivity
 - · Dishing and Erosion
 - Polishing Copper and Porous Low-k Materials
- 3.8.5 Post CMP Cleaning
- 3.8.6 Summary

Sources: - R&D results @ TU Chemnitz/ZfM and Fraunhofer ENAS (e.g. European Projects NanoCMOS and PULLNANO)

- chihiwu@cc.ee.ntu.edu.tw
- S. Beaudoin, D. Boning, S. Raghavan

NSF/SRC Engineering Research Center for Environmentally Benign Semiconductor Manufacturing

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

EMAS Unauthorized copyling and distribution is prohibited.

3.8.1 Introduction

What is CMP

Fraunhofer

- CMP is mechanically enhanced chemical etching or chemically enhanced mechanical grinding
- CMP is able to planarize surfaces by removal of material such that topography is eliminated or material is left at defined areas
- CMP provides local and global planarity
- CMP enables indirect patterning due to an adjustable polish selectivity between different materials

Necessity of CMP

- Photolithography resolution $R = k_1 \lambda / NA$
- To improve resolution, $NA \uparrow \text{ or } \lambda \downarrow$
- $DOF = \# k_2 \lambda / (NA)^2$, both approaches to improve resolution reduce DOF
- Planarization is inevitable for lithography for the 0.25 µm node and below

Applications of CMP

- STI formation
- Tungsten plug formation
- Deep trench capacitor
- Cu dual damascene
- •

Chapter 3.8 - 1

CMP in IC manufacturing

Pressure

Membrane

Retaining Ring

Polishing Head

Wafer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited

Polishing Pad and Pad Conditioner

Polishing Pad

Platen

Chapter 3.8 - 5

Slurry

Slurry Dispenser

Slurry Dispenser Polishing Head Polishing Pad Pad Conditioner Down Force Pad Conditioner Carrier

Rotation

Backing film Wafer Pad/// Platen

Single head two table (2nd table not visible) machine lpec 472

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 7

Fraunhofer

Schematic of Polishing Head

Uniformity Control

Wafer carrier with pressure zone control for example: SFI Momentum, Ebara F-Rex200 or Applied Materials Mirra

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited

Chapter 3.8 - 9

Consumables 3.8.3

3.8.3.1 Slurries

- Chemicals in the slurry react with surface materials, form chemical compounds that can be removed by abrasive particles
- Particles in slurry mechanically abrade the wafer surface and remove materials
- Oxide slurry: alkaline solution with silica
- Metal slurry: acidic solution with alumina
- Additives control the pH value of slurries
 - oxide, pH at 10 to 12
 - metal, pH at 6 to 2

Slurries for oxide (SiO₂) polishing

- suspension of colloidal/fumed silica particles in alkaline medium
- hydroxyl ions attack SiO₂, causing softening and chemical dissolution
- particles range from 10 to 3000 nm, mean size 160 nm
- 12% (wt) particles, KOH or NH₄OH used to set pH ~11
- other concerns: particle size distribution (scratching), particle shape, particle agglomeration

Removal mechanism for oxide (SiO₂) polishing

 Formation of hydrogen bonds of silica and surface

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited

Chapter 3.8 - 11

Removal mechanism for oxide (SiO₂) polishing

Silicon Oxide Surface

Slurries for metal (W, Al, Cu) polishing

- Metal CMP process is similar to the metal wet etch process
 - Oxidant cause metal dissolution and passivation (reactions to form protective layer on metal surface)
 - Metal oxide is removed by abrassive particles (typically alumina particles, α or γ)
 - Repeated metal oxidation and oxide removal
- W polishing examples:

- alumina / peroxide: 1 part slurry, 1 part 50% H₂O₂, pH 3.7 - 4.0

- alumina / ferric nitrate: 6% alumina solids, 5% Fe(NO₃)₃, pH 1.5 - alumina / potassium iodate: 6% alumina solids, 2 - 8% KIO₃, pH 4.0

Al polishing: peroxide or iodate-based slurries

• Cu polishing: H₂O₂ or ammonia-based solutions, passivating agents

3.8.3.2 Pads

Structural classification

- Solid Polyurethane Sheet
 - Example: IC2000
- Polyurethane with voids
 - Isolated void; e.g., IC1000, FX 9
 - Interconnected void
- Polyurethane with abrasives
 - Fixed abrasive pad / table
- Felt impregnated with polyurethane
 - TWI: 817, 813, hard porous pads
 - Rodel: Suba series
 - Pad properties can be tailored for specific applications by adjusting porosity, ratio of polyurethane to fiber.
- Poromeric
 - TWI: BP-30Rodel: Politex

source: Rodel

"hard pad" IC1000 by Rodel -> good planarization performance

source: Rodel

"soft pad" Suba series by Rodel -> low surface roughness but poor planarization performance

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 15

- thickness ~ 1 3 mm
- hardness affects planarization and nonuniformity --> stacked pads
- surface treatment (conditioning) required to control polish rate and slurry transport
 - --> scraping pad surface with hard edge to remove debris and open pores
- pads wear out quickly (100-1000 wafers/pad!)
- use of perforated, grooved pads for improved slurry transport and uniformity

IC1000 layer (thickness ~ 1.37 mm)

Bonding epoxy layer (thickness ~ 300 mm)

SubalV layer (thickness ~ 1.24 mm)

SEM cross section of a two pad composite (IC1000/ SubalV).

Wafer

3.8.3.3 Brushes and Conditioner

PVA brush for post CMP cleaning

- · water / chemistry supply and particle transportation
- application of mechanical forces to particle

Source: Metron Technologies

Diamond type of conditioner

- · "pad grinding" between or while polishing
- flattening and cleaning of pad

PVA = Polyvinyl Alcohol

Source: Abrasive Technologies

Advanced Integrated Circuit Technology

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited

Chapter 3.8 - 17

Process Issues 3.8.4

3.8.4.1 Removal rate

- Removal rate law was found by Preston 1927 for glass polishing
- The Preston equation

$$R = K_p \cdot p \cdot \Delta v$$

gives only very crude estimates for the blanket removal rate

- p is the polishing pressure
- ⊿v is relative velocity of wafer and pad
- K_p is the Preston coefficient (closely related to the coefficient of friction, depends in reality both on p and △v)

3.8.4.2 Selectivity

- · Ratio of removal rates of different materials
- · Affect CMP defects, such as erosion or dishing
- The slurry chemistry is the primary factor that affects removal selectivity of CMP process
- STI oxide CMP require high oxide to nitride selectivity, from 100:1 to 300:1
- For metal CMP process, selectivity to oxide, nitride, and barriers is very important.
- Example for Cu CMP:

		EPOCH Cu bulk slurry	Rohm and Haas Cu clearing slurry	RR* [nm/min]	Rohm and Haas barrier slurry
Cu-RR* [nm/min]		500 1000	500 650	TiN	150 200
Select.	Cu : SiC	> 55	> 600	TaN	100 150
	Cu . SiC	<i>></i> 33		Cu	40 50
	Cu : SiN	> 110	> 60	SiC	3 4
	Cu : HM	> 1000	> 1000	SiN	6 8
	Cu : TaN	> 100	> 300	MSQ-HM	22 25
	C TiN	. 14	. 10	•	
	Cu : TiN	> 14	> 10	SiO ₂	7 8

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 19

3.8.4.3 Dishing and Erosion

Main Kinds of Nonuniformity:

<u>Dishing</u>

- reduction in thickness of large features consisting of softer material towards the center of the features (More materials are removed from the center, cross-section view looks like a dish)
- Usually happens at a larger opening area
 - · large metal pads
 - STI oxide in the trenches.
- caused by differences in polishing rates of different materials

Pattern erosion

- thinning of oxide and metal in a patterned area
- increases with pattern density

Edge effect

 variations in removal rate due to stress variations with radial distance across wafer (3 - 6 mm edge exclusion required)

Erosion Caused by High Pattern Density

Unauthorized copying and distribution is prohibited

Circuit Opening Caused by Erosion

Chapter 3.8 - 21

Dishing Effect of STI USG

Dishing Effect of W CMP

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 23

Dishing / Erosion and Selectivity

- Both dishing and erosion effects are related to the removal selectivity
- Metal CMP process:
 - If metal to oxide selectivity is too high, more metal removal, causes dishing and recessing
 - If the selectivity is not high enough, both oxide and metal will be polished, causes erosion

IC Layout and Erosion

- IC design layout can directly affect the erosion problems
- Designing opening area less than 30% of the chip surface can help to solve the erosion problem
- Erosion will be decreased by reducing the structure density variation across the chip. Homogenization of structure density is achieved by the inclusion of dummy structures.

3.8.5 Polishing Copper and Porous Low-k Materials

- Development Trend: More widely use of copper and low-k dielectrics in future BEOL interconnection schemes. This requires
 - low-k dielectric CMP
 - copper and barrier layer CMP processes with high selectivity to low-k dielectric
- Low-k and ultra low-k dielectrics can be obtained using material with less polar bonds and / or an introduced porosity.
- The physical properties of such materials can be very different from that what is known from traditional dielectrics like silicon oxide or silicon nitride.
- Moreover, the variety of materials and integration concepts thwarts "standard" process solutions.
- Major challenges for CMP are the low mechanical strength and the partly low adhesion of low-k / ultra low-k materials.
- Common approach to handle low-k / ultra low-k integration schemes:
 - Low down force CMP
 - Protection of low-k / ultra low-k materials by cap layers
 - Use of optimized consumables

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 25

CMP related issues of porous low-k materials in damascene architectures

How to overcome? - Low down-force processes and tuned consumables!

CMP consumables for low-k based integration schemes - Polish Pads

Hard pads (stiff pads)

- Polyurethane based materials (hard foam)
- Consists of one or two layers (single pads, stacked pads)
- Specific grooving:
 - k-grooved
 - xy-k-grooved
 - · spiral grooved
- Excellent planarization behavior
- Critical regarding defectivity
- → Cu and barrier CMP

Soft pads (flexible pads)

- Poromeric based materials (mixture of polyurethane and polyester – textile character)
- Single layer pads
- With / without embossing
- Poor planarization behavior
- Outstanding low defectivity
- → Barrier and dielectric CMP

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 27

CMP consumables for low-k based integration schemes - Slurries I

Tendency: pad materials with excellent planarization behavior and low defectivity

Common / general status

- High number of dedicated copper and barrier slurries available on the market
 - Dow Chemical, Cabot, Fujimi, Air Products, Anji, BASF,
- Acidic and alkaline chemistries
- Different types of abrasives (polish particles)
 - Silica (colloidal, fumed, amorphous)
 - Alumina
 - Ceria

Requests coming from the device manufactures (IDMs)

- Tunable removal rates for Cu slurries (Cu bulk removal / Cu clearing)
- Tunable selectivity for Cu and barrier slurries (selective / non-selective approaches
- 2 Platen processes: P1 Cu bulk and clearing / P2 barrier removal
- Low defectivity
- Low cost of ownership
- Environmental friendly

Tendency: highly concentrated slurries, to be diluted at the point of use

CMP consumables for low-k based integration schemes - Slurries II

Example for a state of the art slurry system form Cabot Microelectronics (2014)

EPOCH™ C8917 Cu slurry

- Amorphous silica abrasives
- Abrasive concentration: <3% (by weight)
- Abrasive size: 20 ...25 nm
- Dilution ratio 9:1 (water : slurry)
- Oxidizer type: H₂O₂
- Oxidizer concentration 1.5% (by weight)
- Acidic chemistry
- pH value 4.2 (ready to use mixture)
- 2.0 ... 2.5 psi for Cu bulk removal
- 1.0 ... 1,5 psi for Cu clearing
- Slurry flow 200 ml/min
- in-situ conditioning at 5 psi
- Removal rate about 600 nm/min
- Selectivity Cu:Ta = 1000:1

ICUE™ B7002 barrier slurry (Ta)

- Colloidal silica abrasives
- Abrasive concentration 14% (by weight)
- Abrasive size: 110 nm
- Ready to use (non-dilutable)
- Oxidizer type: H₂O₂
- Oxidizer concentration 1.0% (by weight)
- Alkaline chemistry
- pH value 10 (ready to use mixture)
- 1.0 ... 1,5 psi for Ta removal
- Slurry flow 200 ml/min
- ex-situ conditioning at 5 psi (10s)
- Removal rate about 60nm/min
- Tunable selectivity to Cu, low-k, and TEOS by downforce and chemistry

EMAS

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 29

Dishing Effect of Cu CMP

- Dual-damascene copper metallization requires that both bulk Cu and barrier Ta layer need to be removed by the CMP process.
- Cu slurry cannot effectively remove Ta, the lengthy over polishing step for Ta removal can cause copper recess and dishing effects

Copper deposition

3.8.5 Post CMP Cleaning

- Removes particles and chemical contamination after CMP
- Involves buff, brush clean, megasonic clean, spin-rinse dry steps
- Buffing:
 - after main polish , wafers "polished" using soft pads
 - used following metal CMP
 - oxide slurries, DI water, or NH₄OH used
 - changes pH of system to reduce adhesion of metal particles
 - · removes metal particles embedded in wafers
 - can reduce cleaning loads
- Brush cleaning
 - brushes made from PVA with 90% porosity
 - usually double sided scrubbing, roller or disk-type
 - brushes probably make direct contact with wafer
 - NH₄OH (1-2%) added for particle removal (prevents redeposition), citric acid
 (0.5%) added for metal removal, HF etches oxide to remove subsurface defects
- Megasonic cleaning
 - sound waves add energy to particles, thin boundary layers
 - cleaning chemicals added (TMAH, SC1, etc.)
 - "acoustic streaming" induces flow over particles
 - importance uncertain

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 31

Brush Box

[OnTrak Systems, Inc.]

Post CMP Cleaning (cont'd)

- Spin-rinse drying
 - following cleaning, wafers rotated at high speed
 - water and/or cleaning solution (SC1) sprayed on wafer at start
 - hydrodynamics drain solutions from wafer
 - probably no effect on cleaning, but ensures that particles dislodged from wafer during preceding steps do not resettle on wafer

Double Side Scrubbing (DSS) System Configuration

(OnTrak Systems, Inc.)

Fraunhofer

Only for internal use at TU Chemnitz for study purposes. Unauthorized copying and distribution is prohibited.

Chapter 3.8 - 33

Station

3.8.6 Summary

- Main applications of CMP are dielectric planarization and bulk film removal
 - STI, PMD and IMD planarization, tungsten plugs, and dual damascene copper interconnections.
- Need CMP for < 0.25 μm features patterning due to depth-of-focus requirement
- Advantages of CMP: high-resolution patterning, higher yield, lower defect density
- A CMP system usually consists of wafer carrier, a polishing pad on a rotating platen, a pad conditioner, and a slurry delivery system
- Oxide slurries: alkaline solutions at 10 < pH < 12 with colloidal suspension silica abrasives
- Tungsten slurries are acidic solutions at 4 < pH < 7 with alumina abrasives
- Copper slurries: acidic with alumina abrasives
- The removal selectivity is mainly determined by the slurry chemistry
- Oxide CMP process: silica particles form chemical bonds with surface atoms and abrade removal of materials from the surface
- Two metal removal mechanisms in metal CMP process: wet etch and passivation/abrasion
- Endpoint detection methods:
 - Optical
 - Thickness measurement for dielectric film
 - · Reflectivity measurement for metal film
 - Motor current
- Post-CMP clean reduces defects and improves yield

