AD-A110 078

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON (ALBERTA) F/6 4/1
DIFFUSION AND BROUND DEPOSITION OF 100 MICRON PARTICLES FROM A --ETC(U)

DRES-284

NL

READ

RE

MA110078

UNCLASSIFIED

SUFFIELD REPORT

NO. 284

LEVEL II

y

DIFFUSION AND GROUND DEPOSITION OF 100 MICRON PARTICLES FROM A POINT AT A HEIGHT OF 92 METRES (U)

by

O. Johnson

Project No. 13E10

SEPTEMBER 1980

Δ

EILE COPY

This document has been approved for public release and sale; its distribution is unlimited.

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD; RALSTON: ALBERTA

0126 82062

UNLIMITED DISTRIBUTION

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD REPORT NO. 284

DIFFUSION AND GROUND DEPOSITION OF 100 MICRON PARTICLES FROM A POINT AT A HEIGHT OF 92 METRES (U)

рà

0. Johnson

Project No. 13E10

WARNING

The use of this information is permitted subject to recognition.

TABLE OF CONTENTS

	Page
INTRODUCTION	1
EXPERIMENTAL DETAILS	2
PREDICTION MODELS FOR DOWNWIND DISTRIBUTION OF DEPOSIT	
DENSITY	3
DEPOSIT DATA AND ANALYSIS	6
DISCUSSION	6
CROSSWIND SPREAD OF THE DEPOSIT DENSITY	8
conclusions	8
TABLES	
FIGURES	
APPENDIX A	

þ

Accession F.

A

ACKNOWLEDGEMENTS

E.R. Walker of the Meteorology Section wrote the programme for carrying out the field trials. C.H.H. Diehl, M.G. Dudley and E.E. Howlett of the Particulate Group carried out the assessment of the deposit density distribution for the particulate trials.

Mrs B.R. Larson of the Computer Group made the Sloping Plume model calculations required for predicting the deposit density distribution.

S.B. Mellsen of the Chemistry Section made similar calculations using the Monaghan and McPherson K-Theory model. Members of the Meteorology Section and the Instrumentation Group measured and processed the meteorological data. Their contributions are very much appreciated.

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD REPORT NO. 284

DIFFUSION AND GROUND DEPOSITION OF 100 MICRON PARTICLES FROM A POINT AT A HEIGHT OF 92 METRES (U)

by

0. Johnson

ABSTRACT

The results of a series of field trials on the diffusion and ground deposition of 100 micron glass microspheres from a continuous point source at a height of 92 metres are discussed. The observed crosswind integrated deposit density as a function of distance from the source was used to test two prediction models. One of these models employs appropriately averaged standard deviations of vertical turbulence as the main parameter of atmospheric diffusion. The other is the steady state K-Theory diffusion model with a coefficient of eddy diffusivity which varies with height. In general, there was reasonably good agreement between the observed and predicted crosswind integrated deposit density as a function of distance, for the sloping plume model. However, the K-Theory model predicts a peak deposit much lower than observed and a more gradual decrease in the deposit density than observed.

(U)

DEFENCE RESEARCH ESTABLISHMENT SUFFIELD RALSTON ALBERTA

SUFFIELD REPORT NO. 284

DIFFUSION AND GROUND DEPOSITION OF 100 MICRON PARTICLES FROM A POINT AT A HEIGHT OF 92 METRES (U)

bу

0. Johnson

INTRODUCTION

During the period between 1958 and 1967 several series of field trials were conducted at the Defence Research Establishment Suffield in a study of the diffusion and deposition on the ground of particles released from low level sources. Hage (1961) reported on a series of field trials in which glass microspheres of 100 microns diameter were released from a continuous point source at a height of 15 metres, and Walker (1965) reported on similar trials using 50 micron particles released from 8 metres. Results of seven field trials in which 30 micron glass microspheres were released from a height of 2.75 metres have been reported by Johnson, McCallum and Larson (1974).

For these series of field trials, mathematical models for predicting the downwind distribution of deposit density on the ground have been tested. In addition the mass recovery, estimated from the deposits on the surface samplers, was compared with the total mass emitted.

In this paper the results of 14 field trials on the diffusion and deposition on the ground of glass microspheres of nominal 100 micron mass median diameter from a continuous point source at a height of 92 metres

are discussed. (Trial 2 was unsuccessful.) The main objective of this study was to provide a mathematical model which adequately predicts the downwind distribution of the deposit density of particles of terminal velocities equivalent to those of about 100 micron glass microspheres. Two models were tested: a Gaussian Sloping Plume model, Walker (1965), and a Steady State K-Theory model, Monaghan and McPherson (private communication).

EXPERIMENTAL DETAILS

The sampling technique and meteorological instrumentation were similar to those described by Hage, Diehl and Dudley (1960). Glass microspheres coated with fluorescent dye were emitted continuously for periods of 28 to 60 minutes from the top of a 92 metre tower. The particles were collected on horizontal adhesive sampling surfaces placed on the ground along crosswind arcs at downwind distances up to 4,828 metres. The number of particles collected on each sampling surface were counted visually under ultra-violet light, by means of a magnifier.

The distribution of particle sizes by mass was determined for two samples taken from the lot used in the field trials. The data are given in Table 1.

On four of the field trials, microspheres from the sampling surfaces on a small number of arcs were measured by microscope, so that the variation in mass median diameter with downwind distance could be compared with that predicted from the model, using the distribution in the bulk sample. The data are given in Table 2.

Meteorological measurements in support of the field trials were made near the source for a period of 60 minutes, which included the period of emission (Table 3). Wind speeds were recorded at 8 levels on the 92 metre tower (Table 4) and the temperature difference between heights of 13 and 1 metre were measured (Table 5). Crosswind and vertical angular deflections of light vanes, mounted at heights of 16, 48 and 92 metres on the tower, were recorded continuously on magnetic tape and high speed recorder paper charts. The magnetic tape record was digitized at one second intervals and the standard deviations of the vane angles were computed with data averaging times of 1, 5, 10, 20, 60 and 100 seconds.

PREDICTION MODELS FOR DOWNWIND DISTRIBUTION OF DEPOSIT DENSITY

(a) Sloping Plume Model

Since the microspheres used for these field trials vary somewhat in size, there is a certain amount of downwind spread in the deposit pattern which has to be considered. Walker (1965) developed a prediction model in which particles in each size class were spread about the non-turbulent gravity fall path by Gaussian vertical turbulence, with angular standard deviation σ . The horizontal wind speed $\overline{\mathbf{u}}$ was considered constant, and if the terminal velocity of the particle size class is 'v', then the distribution of mass Q about the gravity fall path is:

and σ is the angular standard deviation of Gaussian turbulent spread. These relationships are shown in Figure 29. The distance downwind 'x' travelled by a particle before landing is

$$x = h \cot \phi$$
Hence
$$\theta = \tan^{-1} \frac{h}{x} - \tan^{-1} \frac{v}{u} - \frac{h}{x} - \frac{v}{u}$$

The deposit density is then

$$D = \left| \frac{dQ}{dx} \right| = \left| \frac{dQ}{d\theta} \right| \left| \frac{d\theta}{dx} \right| = \frac{h}{x^2} \frac{Q}{\sqrt{2\pi \sigma}} \exp \left(-\theta^2 / 2\sigma^2 \right) \dots (2)$$

The average of the standard deviation σ at 16, 48 and 92 metres was taken from Table 6, as equivalent to the vertical vane angle standard deviation when the data were averaged over periods equal to the travel time divided by the factor β , which represents the ratio between Lagrangian and Eulerian time scales, Pasquill (1962). The travel time was taken as the distance to each sampling arc divided by the mean of the wind speed at 16, 48 and 92 metres. $\beta = 1$ and $\beta = 4$ were used in the prediction model.

(b) Steady State K-Theory Model

In the K-theory model, Monaghan and McPherson (private communication), the atmospheric dispersion of particulate material is described by the two-dimensional steady state diffusion equation

$$u(z) \frac{\partial c}{\partial x} = \frac{\partial \{K(z) \frac{\partial c}{\partial z}\}}{\partial z} + \frac{\partial c}{\partial z} + \dots \qquad (3)$$

where

- c = steady state concentration at x,z for a continuous line source, or total dosage when the line source is instantaneous.
- K(z) = the coefficient of eddy diffusivity at height z.
- u(z) = the mean horizontal wind speed at height z.
- q = terminal velocity of the particles, assumed monodisperse.

It is assumed that there is an impervious "lid" for diffusion at height H, where the vertical flux of material is zero or,

Lim F = 0

z+H

z+0

The flux of material at the lower is undary of the turbulent atmosphere is given by

$$Lim \{-F\} = E(P_a + q/S)S Lim c$$

z+0

 $P_{\mathbf{a}}$ is the mean transport velocity of non-settling material between the rough surface and the turbulent boundary layer and is related to the sublayer Stanton member B by

$$P_a = u_B/S$$

where S is the total specific surface of the roughness elements, and E is the efficiency of retention of the surface.

The boundary conditions are therefore

$$Lim \{K(z) \partial c/\partial z + qc\} = 0$$

z→H

and Lim
$$\{K(z) \partial c/\partial z + qc\} = E(P_a + q/S)S$$
 Lim c,
 $z \rightarrow 0$ $z \rightarrow 0$

with the initial condition

$$\lim_{x\to 0} c = Q\delta(z-h)/u(h)$$

where Q is the source strength, h is the release height and $\delta(z)$ is the Dirac delta function.

Simple functional forms for mean wind speed and the eddy diffusion coefficient were adopted as follows:

$$u(z) = u(2) \{(x+\Delta l)/2\}^p$$

and

$$K(z) = A(z+\Delta l) u(2)$$
;

p and A are constants related to atmospheric stability and Δl is a length of the same order as the roughness length z_0 of the surface. u(2) is the mean wind speed at 2 meters.

In the above equations the following assumptions were made:

E = 1

S = 1

H = 500 meters

 $P_{a} = 0.01 u(2)$

A = 0.04

Equation (3) is solved by a finite difference approximation method in which the discretization in the vertical is in terms of equal intervals of diffusive resistance rather than length.

DEPOSIT DATA AND ANALYSIS

The particle counts on each sampling surface were converted to deposit densities in mg/m^2 by using a mean particle mass computed from Table 1. The data are given in Appendix A. The downwind distribution of deposit density was determined by crosswind integration along each arc. This was done by multiplying the deposit density by the spacing of the samplers and then summing. Table 7 shows the crosswind integrated deposit density (CWID) normalized by dividing by the total mass emitted.

The CWID at each sampling distance was predicted from equation (2) of the sloping plume model. The predicted and observed normalized CWID as a function of distance for $\beta=1$ and $\beta=\frac{1}{4}$ are given in Table 7 as Model A and plotted in Figures 1 to $1^{\frac{1}{4}}$. Predictions of the CWID distribution were also made using the steady state K-Theory model.

Comparison of the predicted and observed distances to peak deposit, peak deposit and recovery to the farthest sampling distance are given in Table δ .

DISCUSSION

the stand of the same

(a) Sloping Plume Model

Table 8 shows the predicted and observed deposit density characteristics for all the trials. In general, there is fairly good agreement between predicted and observed deposit density characteristics. The average of the predicted distances to the peak deposit was 9% less than observed when β = 4 was used. The average of the predicted peak CWID was 19% higher than observed. Predicted recovery to the maximum distance sampled was 15% higher than observed. The reduced observed CWID and recovery may be

attributed to the very low recoveries for trials 5, 7 and 8. The wind speeds for these trials were very high and may have raised dust which subsequently settled on the sampling surfaces.

Figures 1 to 14 show that the choice of β = 1 or β = 4 makes a considerable difference in the predicted pattern of the deposit density as a function of distance from the source, particularly with respect to the distance to the peak deposit and the magnitude of the peak. In general the observed data are better predicted when β = 4 is used in the sloping plume model.

The results of the sizing of the particles on the sampling surfaces given in Table 2 show that there is only a small decrease in the mass median diameter with distance from the source. In view of these results, the observed deposit density was not corrected for variation in particle size with distance from the source.

(b) Steady State K-Theory Model

表示的基本的企工可能的是 2000年2

The downwind distribution of the CWID predicted by the K-Theory Model was computed from equation (3) and most of the characteristics of the distribution are given in Table 8 as Model B. The predicted and observed characteristics are compared as well as the predictions made by the two models.

When averaged for all the trials the ratio of the predicted to observed distance to the peak deposit was 0.9 for the sloping plume model (Model A) and 1.0 for the K-Theory (Model B). The ratio of predicted to observed peak deposit density was 1.2 for Model A and 0.45 for Model B. The ratio of predicted to observed CWID at the maximum distance sampled was 0.75 for Model A and 2.0 for Model B. The ratio of predicted to observed recovery to the maximum distance sampled was 1.15 for Model A and 0.90 for Model B.

The distance to peak deposit and recovery are, on average, well predicted by both models. However, the K-Theory Model predicts a peak deposit much lower than observed and a more gradual decrease in the deposit density with distance than observed.

CROSSWIND SPREAD OF THE DEPOSIT DENSITY

The angular standard deviations for the particle deposit density distribution across each sampling arc, σ_p , were compared with the crosswind vane angle standard deviation, σ_y , using data averaging times equal to the travel time to each arc ($\beta=1$) and one quarter of the travel time ($\beta=4$). The data are given in Table 9 and plotted in Figures 15 - 28.

With $\beta = \frac{1}{4}$ the average of the ratio $\frac{\sigma_y}{\sigma_p}$ for all the trials was

1.06. For 9 of the trials σ_y was greater than σ_p . $\frac{\sigma_y}{\sigma_p}$ varied between 0.66

and 1.35 except Trial 7 for which the ratio was 1.49. There appears to be no obvious explanation for the high ratio for this trial. The decrease in the observed standard deviation with distance is consistent with predictions.

Similar results were reported by Walker (1965) for 50 micron microspheres released from a height of 8 metres. For 30 micron microspheres emitted from a height of 2.75 metres, Johnson et al. (1974), the ratio ${}^{\sigma}_{y}/{}^{\sigma}_{p}$ varied between 0.73 and 0.83.

CONCLUSIONS

Well on the second

The observed crosswind integrated deposit density as a function of distance was compared with that predicted by the Gaussian sloping plume model, using standard deviations of the plume equivalent to the vertical turbulence standard deviations when the data were averaged over periods equivalent to the travel time to each sampling arc (β = 1) and one quarter of the travel time (β = 4). For most of the trials there was good agreement between the observed and predicted deposit density distribution when β = 4 was used.

The distance to the peak deposit and recovery were well predicted by the Steady State K-Theory model. However, the predicted peak deposit was much lower than observed and there was a more gradual decrease in the deposit density with distance than observed.

A comparison of predictions by the two models indicates that the data are better predicted by the sloping model than by the K-Theory model.

The standard deviation of the crosswind distribution of the deposit density was compared with the standard deviation of crosswind turbulence using averaging periods for $\beta=1$ and $\beta=4$. There was reasonably good agreement between observed and predicted standard deviations when $\beta=4$ was used.

REFERENCES

Hage, K.D.	1961	"Description and Test of a Model for the Deposit of Particulates from an Elevated Source", Suffield Technical Paper No. 217.
Hage, K.D., C.H.H. Diehl and M.G. Dudley	1960	"On the Ground Deposit of Particles Emitted from a Continuous Elevated Point Source. Part I. Deposition of Nominal 100µ Glass Microspheres from 15 Metres", Suffield Technical Paper No. 197.
Johnson, O. J.A. McCallum and B.R. Larson	1974	"Diffusion and Deposition of 30 Micron Particles from a Low Level Source", Suffield Technical Paper No. 367.
Pasquill, F.	1962	"Atmospheric Diffusion", Van Nostrand, London.
Walker, E.R.	1965	"On the Ground Deposit of Particles Emitted from a Continuous Elevated Point Source. Part II. Deposit of Nominal 50µ Glass Microspheres from 8 Merres", Suffield Technical Paper No. 304.

TABLE 1

CUMULATIVE MASS - DIAMETER DISTRIBUTION OF MICROSPHERES

			į							-	-					
SAMPLE 1 Diameter (u) 89 94 97 Mass (%) 1.19 2.59 5.67 Diameter (u) 110 h11 113 Mass (%) 69.53 83.33 85.75	л я : я :	(u) 89 94 97 (g) 1.19 2.59 5.67 (u) 110 111 113 (g) 69.53 83.33 85.75	94 2.59 11 13	97 5.67 113 85.75	98 7 10.44 11.5 5 88.30	99 13.71 117 90.99	100 17.08 118 93.74	98 99 100 101 102 103 104 105 106 107 108 109 7 10.44 13.71 17.08 27.49 29.28 36.64 42.32 46.22 48.22 58.53 60.64 62.82 115 117 118 119 127 88.30 90.99 93.74 96.57 100	102 29.28 127 100	103	104	105	106	107	108	109 62.82
SAMFLE 2 Dismeter (μ) 92 94 97 98 99 100 101 102 103 105 106 107 108 109 111 Mass (π) 1.33 4.17 5.73 8.94 17.22 20.63 29.42 34.85 40.44 44.38 48.44 60.95 65.24 74.06 78.71 Dismeter (μ) 112 113 114 115 118 120 124 120.00 93.83 96.77 100.00	- H	92 1.33 12 1	94 4.17 13 85.94	97 5.73 114 88.46	98 8.94 115 91.04	99 17.22 118 93.83	(#) 92 94 97 98 99 100 101 (#) 1.33 4.17 5.73 8.94 17.22 20.63 29.4; (#) 112 113 114 115 118 120 124 (#) 83.49 85.94 88.46 91.04 93.83 96.77 100.0	101 29.42 124 100.0	34.85	103 40.44	105 44.38	106	107	108 65.24	109 74.06	111
															_	7

TABLE 2

OBSERVED AND COMPUTED MASS MEAN DIAMETERS AT SAMPLING ARCS (MICRONS)

TRIAL	REFERENCE	182.9	274.3	ARC 365.8	DISTANCE 548.6	ARC DISTANCE (METERS) 365.8 548.6 731.5	1097.3	1609.3	2414	3621
m	OBS. Eq(μ) β=1 β=μ			110.6	109.3 108.7 108.3		106.9 106.6 107.3	106.3 105.6 106.8		
. 	OBS. Eq(4) 8=1 8=4	108.6 111.9 109.8	105.9 109.3 108.6	105.6 107.8 107.9	102.8 105.9 107.0	104.2 104.3 106.4				
W	OBS. Eq(4) β=1 β=4					107.0 113.8 110.4	103.7 110.4 109.2	•		101.1
v	OBS. Eq(4) β=1 β≈4			113.0 113.6 110.5	113.7 111.5 109.4	107.6 110.2 108.8	109.7 108.6 108.2	112.7 107.0 107.5	112.0 104.9 106.9	121.5 102.0 106.2
-	OBS. Eq(4) β=1 β=4									115.6 107.0 107.4

TABLE 3
EMISSION PARAMETERS

TRIAL NO.	DATE DD/MM/YY	START MST	DURATION MIN.	AMOUNT EMITTED(gm)	EMISSION HEIGHT(m)
1	13/02/64	1454	47	226 52	92.5
3	06/10/64	1105	60	13522	92.5
4	23/10/64	1111	40	7765	92.5
5	28/10/64	1428	45	13494	92.5
6	27/04/65	1434	36	16837	92.5
7	28/04/65	1038	29	19051	92.5
8	10/05/65	1726	28	22425	92.5
9	14/07/65	1108	10 1	58µ 1360	30.5
10	14/07/65	1512	43	9072	92.5
11	06/10/66	1605	41	9072	92.5
12	24/11/66	1503	38	9072	92.5
13	13/12/66	1457	36	9072	92.5
14	15/12/66	1420	29	9072	92.5
15	16/12/66	1040	29	9072	92.5

TABLE 4
WINDSPEED (m.sec⁻¹) OVER EMISSION PERIOD

TRIAL					HEIG	HEIGHTS (m)			Surfa	Surface To
NO.	2	8	16	32	1,8	1 9	80	92	92	30m
٦	3.03	3.52	3.71	3.89	3.95	00.4	40.4	4.08	3.84	
т	3.80	4.72	1.90	5.00	5.02	5.05	5.08	5.09	4.92	
4	1.96	2.27	2.39	2.58	2.39	2.65	2.70	2.77	5.49	
5	8.21	10.59	11.75	12.62	13.07	13.95	14.36	15.10	12.88	
9	99.9	8.18	8.61	8.94	9.00	9.46	9.60	69.6	96.8	
7	10.75	10.75 12.53	13.38	14.18	14.60	14.90	15.12	15.26	14.41	
æ	6.51	11.28	13.36	15.32	16.63	17.67	18.52	19.16	15.86	
6	3.91	5.44	5.91	6.35	6.55	99.9	6.75	₹8.9		5.47
07	2.04	3.12	3.86	4.68	5.19	5.55	5.85	6.00	4.72	
11	4.00	5.42	6.53	7.62	8.50	9.20	9.75	10.06	8.07	
12	2.08	8.08	44.6	11.15	12.46	13.52	14.60	15.45	11.87	
13	4.77	6.50	7.92	10.10	11.11	13.00	14.03	14.70	10.96	_
17	3.45	5.33	6.37	7.62	8.65	9.70	10.65	11.31	8.30	
15	₽.70	7.10	8.41	10.02	11.62	13.40	14.65	15.62	11.24	

TABLE 5
METEOROLOGICAL CONDITIONS

TRIAL NO.	ΔΤ °C 13m - 1m	OC T	R.H. %	WIND DIRECTION (Deg)
1	0.10	3.3	31	280
3	-1.00	21.1	39	270
Ъ	-1.10	12.2	46	250
5	-0.28	13.3	34	250
6	-1.85	24.4	24	240
7	-1.15	20.6	40	235
8	-0.38	21.7	28	245
9	-2.00	27.2	45	260
10	-1.35	28.3	34	283
11	0.40	23.3	28	270
12	-0.10	4.1	68	220
13	1.30	4.1	78	210
14	0.90	5.2	72	235
15	1.40	5.2	76	245

TABLE 6

MEAN STANDARD DEVIATION OF VANE ANGLES AT 16, 48 and 92 m (RADIANS) OVER EMISSION PERIOD

TRIAL NO.													
	(g)			4	VI VVERAGI	ERTICA ING TI	VERTICAL ANGLE AVERAGING TIME (SECONDS)	E CONDS)					
		٦	ι,	07	15	20	9	75	150	300	90j	006	1200
•		C	720	9,0	5	2	7	Ĺ		,		ç	
k .⊣		060.	.090 J.076	890	1.004	090.	970.	\$40.	•034	•05e	.021	.018	
т		.158	158 138	.126	.118	.113	.091	980.	.080	±450.	040.	.029	.022
7		.220	.204	.192	-186	178	.136	.130	.103	720.	770.	.026	
# _{\(\sigma\)}		170.	.051	.043	040.	.037	.027	.026	.021	910.	010.		
9		960.	080 960.	.072	.067	.063	970.	.042	.032	.022	.011		
۲,	-	920.	.076 .062	.057	.053	150.	.040	.037	.031	.027	920.		
ထ		.051	.051 .035	.028	.025	.021	.015	410.	.010	.008	•		
× 6		104	104 .090	.082	.077	.073	950.						
10		.188	.168	.152	.143	.136	.108	.111	.084	170.			
11#		.057	.041	.034	.030	.027	.019	.018	,014	.012			
12•		.035	.022	910.	410.	.012	.008	.008	.007	900.			
13		740.	.037	1€0.	.032	.030	.027	.025	.022	.019			
14=		.042	.032	.028	.026	.025	.020	.015	900.	,00¢			
15		.043	.043 .027	.019	910.	.014	.010	600.	.007	.003			

* 48m misg; = 48m only; x 92m misg; • 16 m misg.

TABLE 6 (Cont'd)

MEAN STANDARD DEVIATION OF VANE ANGLES AT 16, 48 and 92 m (RADIANS) OVER EMISSION PERIOD

TRIAL NO.	(b)				HORIZC	HORIZONTAL AGING TIME	ANGLE (SECONDS)	(8)					
	<u> </u>	П	5	10	15	50	09	75	150	300	009	006	1200
Н	•	123	311.	τττ:	.109	.107	660.	760.	.085	.075	790.	450.	
m	•	.253	.247	777	.242	.240	.231	.229	.223	.215	.212	.202	.197
-7	•	.20t	.189	181.	.173	.168	.136	.131	.102	790.	.034	910.	
~	•	060.	.077	.070	990.	790.	.054	.051	240.	η£0·	.026		
9	•	.208	.200	961.	.192	.189	921.	.172	.160	.138	.083		
۲-	•	.113	660.	-092	.088	.086	.075	.072	.062	.052	.028		
ω	•	680.	920.	690.	190.	.065	090.	650.	950.	.052			
×o	•	.145	.136	.131	.127	,125	.102						
10	•	.259	.252	.248	442.	zηz.	.228	,224	.211	.187	.163		
11*	·.	090.	740.	.042	.038	.035	.028	.025	.022	.020			
12	•	.061	740.	040.	.037	.035	.031	.031	.030	.029			
13*	•	.075	990.	.063	.062	190.	.059	.059	950.	.051			
17	•	.050	.039	.033	.031	.029	.025	.025	.023	.021	.021		
15	•	190.	.052	.041	770.	.042	.038	.037	•035	.030			
		-											

x 92 m misg; * h8 m misg;

OBSERVED AND PREDICTED NORMALIZED CROSSWIND INTEGRATED DEPOSIT DENSITIES (mg g^1m^1) TABLE 7

Angellian with

						AR	ARC DISTANCE (m)	ICE (m)					
Trial	Reference	182.9	274.3	365.8	548.6	731.5	914.4	1097.3	1371.6	1609.3	११५८	3621	4828
					,			,					
н	Observed Predicted B=1		100.	1.208	2.654	1.137		.070		.001	.000		
ю		.001	.020	.879	1.494	1.032		194.		.217	100.	190.	800.
	Predicted B=1 B=L	960	.834	1.028	1.043	.676	····	.303		.130	.045	.014	900.
4	Observed Predicted B=1	1.180	2.418	1.178	.988	.374	•	.021		.132	.000	.000	
r	Observed Predicted 8=1	(31.5	•	000	.002	082.		.251		.542	111.	.061 .076	.026 .019
	η=8			000.	940.	.243		.493		707.	.200	.077	.035
9	Observed Predicted 8=1		000	441.	.379	.600		.376		.1466	.225	.095	.030
	Observed Predicted 8=1			!	.00.	.218		162		.381	.085	180.	.015
80	β=4 Observed Predicted β=1				.003	.000		.118		.205	.113	.054	.000
	β=h				000.	.010		.184		.439	.342	.132	.048

OBSERVED AND PREDICTED NORMALIZED CROSSWIND INTEGRATED DEPOSIT DENSITIES (mg g -1 m -1) TABLE 7 (Cont'd)

2.707 1.966 .851 3.735 4.244 1.884 4.000 2.914 1.533 .001 .218 .882 .064 .724 1.261 .382 1.176 1.320 .002	.327 .220 .418 .926 1.213 .039	1 1	4.416		-3.5		1		
2.707 1.966 3.735 1.244 1.000 2.914 .001 .218 .064 .724 .382 1.176	.327 .220 .418 .926 1.213 .917	.158		1097.3	13/1.6	1609.3	2414	3621	4828
2.707 1.966 3.735 4.244 4.000 2.914 .001 .218 .064 .724 .382 1.176	.327 .220 .418 .926 1.213 .917	.158							
.001 .064 .382 .1.176	.926 1.213 .917 .039	.032	.006	.001	000.	000.	.0023 .000 .000		
	.039	.663 .818 .575	.376 .521 .368	.259	.176 .192 .161	.161 .124 .112	.099 .037 .043	.035 .009 .016	
Observed Predicted B=1	.028	.256 .111 .417	.609 .783 .986	.835 1.486 1.148	.741 1.128 .802	.534 .518 .489	.092 .018 .060	.000 .000 .004	
# # # # # # # # # # # # # # # # # # #			.006	.036 .036	.381 .342 .602	.659 1.120 1.015	.149 .274 .296	.056 .003 .009	
Observed Predicted B=1 B=4			.069 .341 .459	. 607 . 629	.873 .713 .620	.674 .619 .494	.236 .223 .192		
Observed Predicted B=1 B=4		.007	.267 .707 .903	1.106 1.341 1.107	1.179	.654 .593 .500	.028 .005 .078	.000 .000 .006	
Observed Predicted 8=1 8=4			.036	.194 .069 .220	.393 .656 .819	.691 1.395 1.012	.212 .135 .235	.023 .001 .008	

TABLE 8

COMPARISON OF OBSERVED AND PREDICTED NORMALIZED CROSSWIND INTEGRATED DEPOSIT DENSITY CHARACTERISTICS

Trial Number	ч	т	.7	7.	9	7	ω	6	10	11	12	13	7,7	15
Distance to Peak Deposit (m)														
Observed Predicted Model A Predicted Model B	550 500 800	530 380	275	1500	750	1200	1440	183	450 370	1150	1640	1410	1270	1700 1560
	-1)	, ,	0	200		000	1310	707	450		0011	1100	006	1100
d Model A d Model B	2.359	2.359 1.253 2.359 1.253 .635 .478	2.466	.193 .185	.701	.156 .128	243	2.707 4.0000 1.617	.967 1.323 .949	.844	1.150	.645 .50	1.23	.735 1.050 365
CWID at Farthest Distance Sampled													?	•
Observed Predicted Model A	.026	900.	.000	.026	.030	.015	.000	.023	.035	.008	950.	.236	600.	.023
Fredicted Model B Recovery to Farthest Distance Semmled (#)	.143	.038	.025	.071	.107	.067	.067	.047	.028	.080	100	560.	.065	760.
Observed Predicted Model A Predicted Model B	118 99 77	114 88 101	100 92 92	55 55 55	64 84 84	30 74 72	37 86 67	92 109 84	80 87 93	87 99 73	76 79	74	8 9 8	73 124 17
Windspeed (m sec ⁻¹) AT 13m - 1m (oc)	3.84	4.92	2.49	12.88	~ 7	14.44	15.86	5.47	4.72	8.07 .40	11.87	10.96	8.30	11.24
													,	

TABLE 9

STANDARD DEVIATIONS OF CROSSWIND PARTICLE DISTRIBUTION $^{\sigma}_{\mathbf{p}}$ (RADIANS) AND CROSSWIND VANE ANGLES $^{\sigma}_{\mathbf{y}}$ (RADIANS)

	1,828		.200 .217 .033		.032 .047 .022	.163	.048 .070 .048
	3621	· · · · · · · · · · · · · · · · · · ·	.204 .221 .205	.056	.035 .052 .042	.117 .167 .164	.055 .074 .054
	7172	.061 .084	.209	.015	.040 .058 .051	.144 .174 .188	.061 .078
	1609.3	.068	.229 .232	.030	.044 .060 .053	.156	.066
	1371.6						
	1097.3	.075 .097 .103	.232 .232	.047 .116 .123	950. 490.	.164 .185 .225	.071 .086 .079
CE (m)	914.4						
C DISTANCE	731.5	.081 .101	.235 .235	.065	.054 .067	.171	.077 .090 .056
ARC	548.6	.086 .103	.226 .237 .239	.080 .138 .117	.057 .069 .064	.176	.080 .092 .022
	365.8	.093 .106	.229 .240 .241	.103 .150	.060 .073 .025	.182 .195 .124	
	274.3	.097 .108 .170.	.232 .242 .230	.116		.185 .198 .059	
	182.9		.235	.133			
	Reference	о у 8=1 о р	σ β=1. Ω β=1.	σy 8=1 β=4 σ	σ β=1 β=4 σ p	σ β=1 β=4 σ β=4	y 8=1
	Irial No.		м	. ≠	Ŋ	9	i~

TABLE 9 (Cont'd)

STANDARD DEVIATIONS OF CROSSWIND PARTICLE DISTRIBUTION OF (RADIANS) AND CROSSWIND VANE ANGLES OF (RADIANS)

	<u> </u>						
	4828	.052 .060 .009					
	3621	.054 .060 .067	.101	.155 .202 .149	.023	.029	
	2414	.056 .062	.056	.169	.020	.030 .031 .054	.053 .059 .051
	1609.3	.058 .063 .059	.147	.183 .222 .212	.021	.030	.056
	1371.6		.101* .128 .170	.188	.021 .030	.030 .033 .047	.057 .060 .048
	1097.3	. 060 . 066 . 067	.105 .123	.196 .228 .239	.022 .031 .045	.030 .034 .045	.058 .061 .036
DISTANCE (m)	4.416		.109 .139 .141.	.202 .231 .244	.023 .033	.031	.059 .061 .034
ARC DIST	731.5	.061 .068 .068	11. 142. 132	.210 .235 .254	.024 .034 .047		
	548.6	.062 .070	.120	.217 .238 .260	.025 .030		
	365.8		.100* .124 .117	.224 .242 .249	.030 .041		
	274.3		.105	.228 .245 .185			
	182.9		.114 .132 .119 .129	.235 .248 .140			
	Reference	σy β=1 β=μ σ	g 8=1 g 8=4 g 100 p	σ β=1 β=4 σ	σy β=1 β=4 σ _p	σ β=1 σ β=4	σy β=1 β=1, σ
Trial	No.	ω	0	10	11	12	13

* Less than 500 #'s.

TABLE 9 (Cont'd)

STANDARD DEVIATIONS OF CROSSWIND PARTICLE DISTRIBUTION $^{\sigma}_{
m p}$ (RADIANS) AND CROSSWIND VANE ANGLES $^{\sigma}_{
m y}$ (RADIANS)

	21 LR28		<u></u>	\$ 50 50 50 50 50 50 50 50 50 50 50 50 50 5
	19621			.036
	2414	.021	70°	.033
	1609.3	.022	,034	.035 .040 .033
	1371.6	.022	.038	.035 .040 .035
	1097.3	.023	.037	.036 .041
ARC DISTANCE (m)	914.4	.024 .028	.032	.03? .042 .034
ARC DIS	731.5	.024 .028	.032	
	548.6			
	365.8			
	274.3			
	182.9			
	Reference	y 8=1 8=4	g & g=1	β=4 σ p
Trial		71	15	

SR284

UNCLASSIFIED

ころうかいかいこうにはないとうとう こうしょうこうかんせいかんしょうしゅんかん

UNCLASSIFIED

3

UNCLASSIFIED

ないをかられるアイガング、一般を表示を、ある、ないない

FIGURE 29 : GEOMETRY OF SIMPLE DIFFUSION MODELS

(WALKER, 1965)

APPENDIX A

OBSERVED DEPOSIT DENSITIES (mg/m²)

APPENDIX A

CE (M)	F)3	01.						.93 1.89 .80	10 10
1371.6 1609	1												_					п	10 10
AUM SUUALI	1097.3					-					* .03	71. *	_;	99.	* 2.32	* * 2.32	* .66 * 2.32 * 6.29 *14.24	* 2.32 * 6.29 *14.24 *20.20	* 66 * 2 . 32 * 6 . 29 *14 . 24 *20 . 20
DISTANCE FROM SOURCE (M)	914.4													-	^ <u></u> -	·	·		·
DIS	731.5						·····		••	.10	.17	6.52	29.31	10.71	64.77	64.57	64.77 64.57 131.11	64.77 64.57 131.11 186.36	64.77 64.57 131.11 186.36 130.83
	548.6					·	.03	.17		.63	.43	12.52	85.83		177.72	177.72	177.72 153.28 300.01	177.72 153.28 300.01 600.41	177.72 153.28 300.01 600.41
	365.8	.03	00.	.03	8.	%	.07	.07	.10	.17	.43	.89	2.19		79.87	79.87 134.01	79.87 134.01 88.11	79.87 134.01 88.11 314.71	
	274.3				 ,	····							.10		01.	.20	.10	.20	.10
	182.9												*****						
TRIAL SAMPLER NO. NO.		66	100	101	102	103	104	105	901	107	108	109	110		1	111	112	112 113 114	111 112 114 115
TRIAL NO.		٦																	

OBSERVED DEPOSIT DENSITIES (mg/m²)

* Estimated

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL NO.	SAMPLER NO.					DISTANC	E FROM S	DISTANCE FROM SOURCE (M)					
		182.9	274.3	365.8	548.6	731.5	η·η16	1097.3	1371.6	1609.3	4145	3621	1,828
1			.13	203.15	183.28	130.93		24.60		* 5.17	.53		
(Cont'd)	118			98.81	102.62	57.66		5.53		4.31	96.		
				71.13	54.24	10.83	_	5.89		1.13	, t ₃		
	120			37.35	16.64	25.37		19.07		5.07	9.		
	121			8.58	15.86	19.11		3.74		5.33	1.22		
	122			3.84	58.91	1.99		.63		.93	04.	<u> </u>	
	123			58.61	ηη. 69	23.21		2.05		.53	94.		
	124			78.38	26.56	5.73		1.66		.53	70.		
	125			*69.5h	*13.25	9.14		66° *		.50	70.		
	126			*56.29	*13.25	3.64		99* *		0 1 .			
	127	,		#39.7 ^t	*13.25	99:		* .33		* .33			
	128	-		*19.87	* 9.93			* .17		* .17			
	129			99.	96·# *								
	130				99.								

* Estimated

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL NO.	SAMPLER NO.					DISTANCE	E FROM SOURCE	OURCE (M)					
		182.9	274.3	365.8	548.6	731.5	4.416	1097.3	1371.6	1609.3	2414	3621	4828
			,										
m	87		.23		.13								
	88		.13		.20								
	89		.23		.13							.07	
	8		.50		.10			.07		.10		8.	
	91		.50	.10	.10		9 100 + 1-4-0	.20		.10	.03	8.	
	92		.89	.13	.10		·	.10		.13	%	.10	
	93		.23	.10	.13			71.		.07	.03	8.	
	₹6		.10	.07	.27			.30		.10	.07	.07	
	95		.07	•03	.30	.07	-	.27		.10	.10	8.	
	96		.13	4.37	5.33	3.68		.07		.13	.07	.20	
	26		.03	99.5	14.50	21.59		1.06		.17	.07		
	86		11.	23.28	34.47	17.75		1.70		1.32	•30	.13	
	66		.23	32.48	71.12	32.18		5.20		1.26	94.	9.	
	100		.20	34.57	105.99	59.20		14.41		42.4	1.95	1.13	
	101	.23	.20	76.19	82.84	04.44		19.61		94.9	2.38	1.13	.27

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL NO.	SAMPLER NO.					DISTANCE	DISTANCE FROM SOURCE (M)	URCE (M)					
		182.9	274.3	365.8	548.6	731.5	4.416	1097.3	1371.6	1609.3	5414	3621	4828
~													
(Cont'd)	102	.10	.07	62.98	81.75	34.67		13.28		5.93	2.45	.63	.36
	103	.07	.33	148.47	94.46	33.44		10.96		2.55	.53	04.	.10
	104	.10	01.	33.67	58.01	23.34		3.87		9.	.36	.10	01.
	105	.23	1.26	19.61	38.54	20.66		4.37		.27	.27		.27
	901	.23	.20	51.15	31.49	14.80		4.34		1.03	99.	71.	.07
	107	.17	5.33	41.82	19.27	20.79		90.9		1.69	.60	.20	.03
•	108	.07	.76	46.59	28.41	23.41		7.28		.63	.23	.07	.03
	109	.03	1.56	23.57	24.60	17.02		9.44		1.52	.23	.23	
	110	.03	2.45	18.31	26.36	5.36		6.19		3.15	96.	.23	
	111	.20	2.35	41.02	29.40	15.79		6.23		3.48	1,32	.20	
	112	.23	6.92	28.71	26.42	27.91		7.81		2.38	.93	.07	
	113	.07	04.	32.98	27.78	19.77		5.63		2,62	.56	.07	
	114		2.19	27.32	34.40	17,98		4.97		2.35	1.06	.23	
	115		.13	25.76	28.08	13.91		6.62		2.98	1.16	.53	
-11-	911		.03	35.56	17.28	15.99		3.84		2.72	.36	.63	

OBSERVED DEPOSIT DENSITIES (mg/m2)

Control of the contro

DISTANCE FROM SOURCE (M)	3.6 731.5 914.4 1097.3 1371.6 1609.3 2414 3621 4828	.49 6.79 5.07 1.13 .10 .63	16.16 3.31 1.23 .03	17.35 3.21 .93 .03	12.65 1.59 1.60 .03	70. 71. 61.1 00.3	2.22 .66 .10	1.06	1.52 .13 .03	.03	70. 00.	.20	.13	
OURCE (M)	 	5.07	3.31	3.21	1.59	1.19	99.	.36	.13	.03				
FROM SC														
TANCE	914.4													
SIG	731.5	62.9	16.16	17.35	12.65	2.00	2.22	1.06	1.52	.13	.07			
	548.6	31.49	33.54	47.38	27.45	11.26	1.13	2.42	.27	.33	00.	.20	.13	
	365.8	41.62	53.34	37.45	27.61	23.44	.13	.13	.03					
	274.3	.03	.03											
	182.9									-				
SAMPLER NO.				119	120	121	122	123	124	125	156	127	128	
TRIAL NO.		<u>ه</u>	(Cont'd)										··	

OBSERVED DEPOSIT DENSITIES (mg/m²)

NO.	NO.					DIST	ANCE FRO	DISTANCE FROM SOURCE (M)	(W)				
		182.9	274.3	365.8	548.6	731.5	914.4	1097.3	1371.6	1609.3	7172	3621	4828
4	83	.20											
	48	.56											
	85	.76											
	98	9.	.33	.10	71.								
	87	.63	.13	71.	.23	.17		.17					
	88	1.09	5.13	.20	.70	.07		.07					
	— 68	3.94	3.87	7.99	.56	1.03		.03					
	8	10.53	14.01	5.40	1.19	1.39		.10					
	16	13.34	16.03	9.77	2,62	2,38		.03				į.	
	92	22.15	34.07	18,51	12.09	2.22		.03					
	93	28.81	28.38	24.57	8.28	2.05		.17					
	76	53.94	33.47	30.30	17.71	3.28		.30					
	95	127.04	51.55	36.16	15.73	7,22		1.16		70.			-
	%	90.19	40.82	33.97	42.55	8,41		2.95		.17			
	- 16	36.95	66.75	14.50	35.86	9.54		3.48		.23			
	98	42.02	183.46	62.48	28.71	8.58		2,38		1.52			
								-					

OBSERVED DEPOSIT DENSITIES (mg/m²)

NO.	SAMPLER NO.					DIS	TANCE FR	DISTANCE FROM SOURCE (M)	(M)				
		182.9	£.475	365.8	548.6	731.5	914.4	1097.3	1371.6	1609.3	2414	3621	4828
77	66	88.70	167.17	64.86	37.15	11.19		3.24		2.58	.36		
Cour. a	100	58.51	236.80	63.27	41.92	7.45		6.36		2.38	.63		
-	101	68.34	227.27	68.87	40.33	11.49		3.94		2.62	.93	.03	
	102	114.92	200.15	69.06	34.17	12.15		5.23		2.28	2.38	.03	
	103	117,61	211.27	39.45	15.16	11.59		6.56		2.05	1.52	.36	
	104	77.58	151.97	18.18	14.90	2.00		6.09		1.99	.86	.26	
	105	70.52	107.67	34.67	4.80	3.21		3.64		.73	.76	.26	
	106	93.87	29.80	18.97	2.68	1.23		2,98		98.	.26	.10	-
	107	18.67	32.38	19.07	66.	.93		1.72		.50	.10	.20	
	108	21.06	18.48	3.24	.20	.53		.63		.13	.03		
	109	11.59	17.38	7.38	.17	.23		.23		.20			
	110	16.06	18.74	.43	.03	9.		.13		03			
	111	5.86	24.50	.20		.76		.10		1			
	112	8.01	10.26	9.		.43							
	113	.33	16.12	3.28		.33	,						
	711	.03	7.68	6.79		04.			_				

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL NO.	TRIAL SAMPLER NO. NO.					DIST	ANCE FRO	DISTANCE FROM SOURCE (M)	(M)				
		182.9	274.3	365.8	9*845	731.5	η.416	1097.3	1371.6	1609.3	η[ηΖ	3621	4828
4	ı		.89	1.89		.36							
(Cont'd)			.03	.83		.03							
				.33									
	118			%									
	911			.03									
2	8											.07	
	91											.03	
	92											71.	
	93				.17			.03		.07		.43	.20
	76				.76	.50		1.69		1.89		1.52	1.66
	95				.20	2,42		7.75		7.05	1.19	2.78	1.13
	96			.03	.86	7.05		13.77		14.10	3.74	1.99	.76
	97			.07	1.42	4.11		17.45		17.91	3.74	1.26	, 33
	98			.03	2.22	12,88		17.65		18.57	2.98	.73	.10
	66				1.62	13.11		20.36		12.95	77.7	9.	.03
									,				

OBSERVED DEPOSIT DENSITIES (mg/m²)

							 									
	4828	.03					.03	%	8.	.03	%	°.	%	8.	8.	.13
	3621	.20	.07											<u></u>		.07
	2414	1.62	•03													
	1609.3	45.4	.73	.20												
(M)	1371.6						-									
DISTANCE FROM SOURCE (M)	1097.3	7.91	1.66	.07												
ANCE FROI	914.4															
DIST/	731.5	2,91	.30	01.												
	548.6	09.	00.	00.	.03	.03										
	365.8															
	274.3															
	182.9				4.											
SAMPLER NO.		ł	101	102	103	104	 79	65	99	19	68	69	70	17	72	,
TRIAL NO.		ហ	(Cont'd)				 9			··						

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL	SAMPLER)IQ	STANCE F	DISTANCE FROM SOURCE (M)	E (W)				
		182.9	274.3	365.8	548.6	731.5	914.4	1097.3	1371.6	1609.3	ηΙηΖ	3621	4828
	[•	Ç
9												01.	OT:
(Cont'd												09.	.13
	92						-					.73	.10
	77											.20	.13
	42	_										.56	.07
·	79				.03	70.		.10		04.		.23	.07
	8			2.22	1.03	4.90		2.58		1.19		.53	.10
	81			.83	2.48	14.27		2.88		3.91	94.	.63	.10
	82			.50	24.53	11.92		5.26		2.72	1.66	99.	96.
	83			2.68	19.57	10.23		7.68		5.10	2.68	.53	94.
	78			28.41	26.52	18.24		8.18		4.83	2.52	04.	.30
	85			26.65	00.44	17.91		6.26		3.71	2.55	.56	01.
	98			17.35	17.02	8.87		19.4		1,60	2.19	.50	.36
	87			8.15	15.99	15,20		3.38		06.4	2.55	98.	.26
	88			10.26	12,28	10.93		2,85		3.61	2.55	1.23	.20

OBSERVED DEPOSIT DENSITIES (mg/m²)

The second second

Cont ⁴ d 89 89 80 80 80 80 80 80 80 80	TRIAL NO.	TRIAL SAMPLER NO. NO.					DISTAN	CE FROM	DISTANCE FROM SOURCE (M)					
89 .10 39.43 15.59 6.85 8.71 1.52 3.01 90 .07 13.05 12.12 15.59 8.64 2.68 3.31 91 .03 7.81 9.44 10.66 4.87 4.6 3.08 92 .03 8.18 10.40 7.75 7.48 1.13 1.56 94 .03 8.18 10.40 7.75 7.81 1.13 1.56 94 .03 8.41 21.79 21.36 7.68 6.36 1.32 96 4.430 38.94 12.58 7.68 6.36 1.32 96 7.33 7.05 21.82 10.03 2.15 1.66 96 7.33 7.05 21.82 11.82 3.21 2.15 100 7.1 15.16 11.82 3.24 2.28 3.74 100 8.44 2.32 12.61 11.39 2.09 2.09			182.9	274.3	365.8	548.6	731.5	4.416	1097.3	1371.6	1609.3	7172	3621	4828
90 .07 13.05 12.12 15.59 8.64 2.68 3.31 91 .03 7.81 9.44 10.66 4.87 .46 3.08 92 .03 7.81 10.40 7.75 13.48 1.13 1.56 94 .23 6.03 23.57 13.18 6.26 3.51 1.15 95 .23 6.03 23.57 13.18 7.81 1.99 2.05 96 .23 12.59 12.58 10.03 2.15 1.35 96 .23 7.05 21.82 10.03 2.15 1.63 96 .23 7.05 21.82 10.03 2.15 1.63 100 .23 7.75 16.16 11.59 2.18 2.18 100 .27 27.98 11.59 2.28 3.74 100 .27 2.36 2.79 2.18 2.18 101 .27 2.36	9			.10	39.43	15.59	6.85		8.71		1.52	3.01		.23
.03 7.81 9.44 10.66 4.87 .46 3.08 .03 8.18 10.40 7.75 7.48 1.13 1.56 .23 6.03 23.57 13.18 6.26 3.51 2.45 8.41 21.79 21.36 7.68 6.26 3.51 2.45 4,30 38.94 12.58 7.68 6.36 1.32 5,33 7.05 21.82 10.03 2.15 1.66 .23 9.77 16.16 11.82 3.21 2.28 .17 15.00 27.98 11.59 2.28 3.74 .23 2.32 12.61 11.39 3.54 .96 .23 4.67 3.05 2.09 .20 .24 .25 4.67 3.05 2.09 .20 .27 .27 .27 .27 .27 .20 .27 .27 .27 .27 .20 .20 .20 .28 .29 .20 .20 .20 .20 .20 .20<	(Cont'd			.07	13.05	12.12	15.59		8.64		2.68	3.31	_	04.
.03 8.18 10.40 7.75 7.48 11.13 11.56 .23 6.03 23.57 13.18 6.26 3.51 2.45 8.41 21.79 21.36 7.68 6.36 1.32 1.32 4.30 38.94 12.58 10.03 2.15 1.68 11.82 2.15 1.66 5.33 7.05 21.82 10.03 2.15 11.82 3.21 2.15 1.17 15.00 27.98 11.59 2.28 3.74 1.47 23.11 8.44 2.78 3.54 96 2.32 12.61 11.39 3.54 96 2.32 4.67 3.05 2.09 2.09 2.03 4.67 3.05 2.09 2.09 1.75 5.07 .07 .03		91		.03	7.81	77.6	10.66		14.87		94.	3.08		.36
8.41 23.57 13.18 6.26 3.51 2.45 8.41 21.79 21.36 7.81 1.99 2.05 4,30 38.94 12.58 7.68 6.36 1.32 5,33 7.05 21.82 10.03 2.15 1.66 .23 9.77 16.16 11.82 3.21 2.15 .17 15.00 27.98 11.59 2.28 3.74 .17 2.32 12.61 11.39 3.54 .96 .23 2.32 12.61 11.39 3.54 .96 .20 4.67 3.05 2.09 .20 .20 4.67 3.05 2.09 .20 .17 1.75 5.07 .03 .17 .17 .07 .13 .17 .17 .07 .13		92		.03	8.18	10.40	7.75		7.48		1.13	1.56		95.
8.41 21.79 21.36 7.81 1.99 2.05 4,30 38.94 12.58 7.68 6.36 1.32 5,33 7,05 21.82 10.03 2.15 1.66 .23 9,77 16.16 11.82 3.21 2.15 .17 15.00 27.98 11.59 2.28 3.74 .17 2.32 12.61 8.44 2.78 3.54 .96 .23 12.61 11.39 3.54 .96 .20 4.67 3.05 2.09 .20 .20 4.67 3.05 2.09 .20 .21 1.75 5.07 .07 .13 .21 .21 .22 .22 .23 .23 .23 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20		93		.23	6.03	23.57	13.18		6.26	, 44	3.51	2.45		.07
1 \$1.30 \$38.94 \$12.58 7.68 6.36 1.32 1.66 1.003 2.15 1.66 11.82 3.21 2.15 1.66 3.21 2.15 1.66 3.21 2.15 2.28 3.74 2.15 2.16 8.44 2.78 3.74 2.12 2.12 3.74 2.12 3.74 2.12 3.54 2.05 2.09 2.05 2.09 2.00		76			8.41	21.79	21.36		7.81		1.99	2.05		.10
5.33 7.05 21.82 10.03 2.15 1.66 .23 9.77 16.16 11.82 3.21 2.15 .17 15.00 27.98 11.59 2.28 3.74 .17 23.11 8.44 2.78 2.78 2.12 .20 2.32 12.61 11.39 3.54 .96 .20 4.67 3.05 2.09 .20 .10 8.71 8.31 .07 .13 .175 5.07 .03 .17 .17 .17 .03		95			4.30	38.94	12.58		7.68		6.36	1.32		.03
.23 9.77 16.16 11.82 3.21 2.15 .17 15.00 27.98 11.59 2.28 3.74 .17 23.11 8.44 2.78 2.12 2.32 12.61 11.39 3.54 .96 .20 4.67 3.05 2.09 .20 .10 8.71 8.31 .07 .13 .175 5.07 .03 .17 .17 .03		96			5.33	7.05	21.82		10.03		2.15	1.66		-07
11.59 2.28 3.74		76			.23	9.77	16.16		11.82		3.21	2.15		.03
2.32 12.61 11.39 2.78 2.12 2.32 2.32 12.61 11.39 3.54 .96 .20 2.09 .20 1.0 8.71 8.31 .07 1.13 1.75 5.07 5.07 .13 1.75 7.07 1.13 1.75 5.07 5.07 1.13 1.15 1.15 1.15 1.15 1.15 1.15 1.15		98			.17	15.00	27.98		11.59		2.28	3.74		.07
2.32 12.61 11.39 3.54 .96 2.0 4.67 3.05 2.09 .20 2.10 8.71 8.31 .07 .13 1.75 5.07 5.07 2.13 .03		66				74.4	23.11		8.14		2.78	2.12		.10
.20 4,.67 3.05 2.09 .20 .20 .20 .20 .20 .20 .20 .20 .20 .20		100				2.32	12.61		11.39		3.54	96.		.03
01. 8.31 .07 .0707		101				.20	19.4		3.05		2.09	.20		.03
71.75 5.07 1.175 1.07 1.07 1.07 1.07 1.07 1.07 1.07 1.07		102				.10	8.71		8.31		.07	.13		.03
.17		103					1.75		5.07			.03		
		104					.17		.17					
		105							.07					

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL	SAMPLER					DIST	ANCE FRO	DISTANCE FROM SOURCE (M)	(M)				
		182.9	274.3	365.8	548.6	731.5	4.416	1097.3	1371,6	1609.3	2414	3621	4828
7	76												.10
	77												.13
	78												9.
	62					_							94.
	&												.13
	81											.13	.26
	82											9.	.50
	83						,,					96.	.26
	₹8											1.32	917.
	85					.36		•33				.79	8.
	88		·			oi.	·	2.58		66.	.20	.89	.10
	87					.30		3.48		1.99	.43	.63	
	88					0 1 .		42.4		3.94	1.92	1.69	
	89					1.09		13.11		11.36	3.58	.56	
	8					99.9		8.01		10.76	3.87	.07	
	16					47.8		15.73		6.72	2.98	01.	
								_					

OBSERVED DEPOSIT DENSITIES (mg/m²)

182.9 274.3 365.8 548.6 731.5 1097.3 1371.6 1609.3 2111 365 365.8 348.6 731.5 348.6 348.	TRIAL	SAMPLER					DIST	ANCE FROM	DISTANCE FROM SOURCE (M)	(M)				
92 10.76		NO.	182.9	274.3	365.8	548.6	731.5	914.4	1097.3	1371.6	1609.3	2h14	3621	4828
93 10.76 14.34 10.63 10.76 4.54 2.91 933 10.63 10.76 10.89 10.76 10.83 10.63 10.63 10.89 10.63 10.63 10.89 10.63 1														
93	<u></u>					91 ر	10.89		10.76		45.4	2,91		
95	Cont.al		5			2.78	14.34		10.63		4.14	2.85		
85 2.58 96 87 88 88 89 90 90 91 92 93 1.95 1.95 94 95 95 96 96 96 97 96 96 97 96 96 97 96 96 97 96 96 97 96		y g				.76			8.94		2.45	.43		
96 96 96 97 98 99 90 91 92 93 93 94 95 95 96 97 96 97 96 97 97 97 98 98 99 90 90 90 90 90 90 90 90 90						-			2.58			.03		
86 87 88 89 90 91 92 92 93 93 93 94 957 958		6	د جاسبياني و مو			•	• 03		. 20					
86 87 89 89 90 91 92 92 93 93 94 957 958 957 958									= 4.4					٠
86 87 89 90 91 91 92 92 93 93 94 957 958	α	8.		_	_									
.03 .07 .03 .07 .04 .07 .07 .03 .2.15 .1.82 .93 .03 .03 .0.57 .1.89 .04 .057 .1.89 .05 .057 .1.89	0	3 8									-			
.03 .07 .04 .07 .07 .03 2.15 .08 .03 2.15 .03 .03 8.44 3.11 1.89 .76 .76 9.27 13.84 5.73		8 6		_							_		₹. —	
.03 .07 .03 .046 .07 .03 .2.15 .1.82 .93 8.44 3.11 1.89 .76 .76 9.27 13.84 5.73 .76 .76 9.64 9.67		, o									_	_	1.7	.
.03 2.15939393939393939		χο σ							-		.03			6 .03
.03 2.15 1.82 .93 .23 .33 8.44 3.11 1.89 .76 .76 9.27 13.84 5.73		\$ 6 6							1.95	.	94.		1.06	6 .03
.23 .33 8.44 3.11 1.89 .76 .76 9.27 13.84 5.73		6					.03		2,15		1.82		3 1.36	9
.76 .76 9.27 13.84 .63 3.05 9.64 9.57						23			η ή. 8		3.11			6
75.6 4.64 9.57		2 6				26			9.27		13.84			6
		93				.63			79.6		9.57		1.49	<u>6</u>

OBSERVED DEPOSIT DENSITIES (mg/m²)

MO. 182.9 274.3 365.8 548.6 731.5 914.4 1097.3 1371.6 1609.3 2414 3 95 1.13 1.49 1.49 19.77 12.45 5.36 96 53 43 8.58 28.01 7.58 97 46 1.89 6.06 9.64 1.79 99 17 2.62 1.82 2.65 1.95 100 3 33 1.13 33 36 60 03 33 13 33 36 70 17 23 13 33 34 71 93 74 33.58 75	TRIAL	SAMPLER					DISTANC	CE FROM 8	DISTANCE FROM SOURCE (M)			İ		
95 1.19 1.49 1.45 5.36 9.64 1.75 9.64 1.75 9.64 1.82 9.64 1.75 9.64 1.82 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.64 1.75 9.75 9.75 9.75 9.75 9.75 9.75 9.75 9		<u>.</u>		274.3	365.8	548.6	731.5	914.4	1097.3	1371.6	1609.3		3621	μ828
96 .53 .43 8.58 28.01 7.58 97 .46 1.89 6.06 9.64 1.79 98 .18 .18 6.06 9.64 1.79 99 .17 .03 .33 1.13 .33 .36 100 .03 .03 .03 .03 .00	60					1.19	1.49		19.77		12.45	5.36	2.38	
97 46 1.89 6.06 9.64 1.79 98 17 2.62 1.82 2.65 1.95 99 17 93 33 1.1.3 33 36 100 93 93 10 93 9 9 9 71 93 46	Cont'd					.53	:43		8.58		28.01	7.58	1.19	
98 99 100 100 67 68 68 69 69 69 70 11 12 12 13 11 33 36 70 10 10 10 10 10 10 10 10 10 10 10 10 10	,					91.	1.89		90.9		79.6	1.79	.53	
99 1.13333333333333		86				71.	2,62		1.82		5.65	1.95		
100 67 .03 68 .03 69 .06 70 .17 71 .93 72 .46 73 33.58 74 33.58 75 89.60 .23		. &				.03	.33		1.13		•33	.36		
67 .03 68 .03 69 .06 70 .17 72 .93 72 .46 73 33.58		100				-	.03		.10			.07		
67 .03 68 .03 69 .06 70 .17 71 .93 72 .46 73 33.58 75 89.60														
.03 .06 .17 .93 .93 .301 .301 .89.60	0	19	.03					•••						
.06 .17 .93 .46 .3.01 .3.58		89	.03											
.17 .93 .46 3.01 33.58		8	90.											
.93 .46 3.01 33.58 89.60		2	71.											
3.01		17	.93											
33.58		72	94.											
33.58		23	3.01											
89.60		7.	33.58											
		75	89.60											

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL NO.	SAMPLER NO.					DISTAN	CE FROM 8	DISTANCE FROM SOURCE (M)					
		182.9	274.3	365.8	9*815	731.5	η.μ16	1097.3	1371.6	1609.3	7178	3621	4828
6	1	110.56	1.19										
(Cont'd		120.30	1.72	.13						•			
	78	46.66	8.81	3.68		.03		90.					
	79	39.54	37.95	14.87	2.12	.53	•30	.10	90.				
	80	28.91	55.03	22.32	1.80	1.39	.79	.23	.13	90.			
	81	25.76	42.12	21.89	42.4	1.49	04.	.30	.33	90.	90.		
	82	19.61	28.05	7.02	1.13	99.		90.	.20	.10	0	_	
	83	17.68	32.58	14.07	1.52	.63		94.	.13	.13	.13	_	
	1 8	17.91	56.69	5.36	1.75	.83	.30	.33	٥4.	•03	0		
	85	14.97	9.14	9.61	1.52	.30	.20	.20	. 20		.13		
	98	22.75		3.08	2.02	.17	.20	.26	.13	90.	.03		
	87	12.55	5.20	.79	.30	.43	.50	94.	.17	.03			
	88	7.52		.33	.43	.10	.50	04.	0	90.	. <u>-</u>		
	86	6.72	4.27	1.49	8.	.23	.26	98.	.10	0	-	-	
	8	9.01	1.72	1.09	1.13	66.	.36	.10	•36	•03	-		
	91	7.75	3.21	2.75	.73	04.	90.	.13	.03	.13			
			,	-									

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL NO.	TRIAL SAMPLER NO. NO.					DISTAN	NCE FROM	DISTANCE FROM SOURCE (M)	M)				
		182.9	274.3	365.8	548.6	731.5	4.416	1097.3	1371.6	1609.3	5414	3621	4828
6		2.52	7.25	1.39	98.	01.	•33	.13	0	.10			
(Cont'd		.33	2,62	.36		90.	90.		.03				
	†6	.17	.36	.10	.10	90.			.03				
	95	.03	.30	.13									
	%			.10				· · · · · ·					
	76			90.									
10	95			2.15	.03	.17					- 		
	%			8.11	1.10	.83			90.				
	76		.03	3.77	92.9	2,62	,17	.17	.10				, , , , , , , , , , , , , , , , , , ,
	96		0	13.91	8.71	3.68	.33	71.	. 26	.03			
	8		0	14.04	3.48	1.89	.70	.36	.30	.20	.07		
	100		5.63	4.21	3.34	14.21	16.4	.89	94.	.10	.26	.07	
	101		1.26	4.To	64.9	5.76	3.38	1.92	.23	71.	.26	.07	
	102		12.45	7.95	9.21	4.77	2.25	3.25	.86	.20	.13	.10	

OBSERVED DEPOSIT DENSITIES (mg/m²)

																		-
	4828																	
	3621	0	0	.03	0	0	.03	.17	.10	.13	.23	.30	.23	•30	.23	.36	.20	
	5414	. 20	.33	.56	.50	.30	99.	.63	.79	66.	.23	04.	.63	.33	1.03	.70	.33	
	1609.3	09.	.30	.93	1.49	96.	.89	1.26	1.06	96.	1.06	.89	92.	.63	1.29	3.08	2.48	
(1	1371.6	2.35	66.	1.03	.89	2.05	1.59	1.82	.70	.50	96.	1.16	.56	.53	.27	2,62	2.25	
DISTANCE FROM SOURCE (M)	1097.3	2.91	5.09	2.27	1.72	2.38	2.78	2,72	3.84	1.82	2,62	2.22	1.72	1,16	4.21	4.11	2.78	
NCE FROM	914.4	3.11	2.22	3.34	3.25	6.13	3.15	5.00	4.50	3.91	3.38	3.08	2.72	2.91	6.42	8,18	7.38	7
DISTA	731.5	11.19	16.72	04.4	10.01	10.03	7.22	5.43	8.61	6.99	6.36	1,80	9.14	74.6	20.76	16.52	11.36	
	548.6	14.67	15.07	25.17	22.45	77.77	23.28	18.68	15.83	12,62	6.79	7.85	10.79	20.53	30.30	16.59	14.83	
	365.8	5.83	14.70	18.34	77.19	14.21	16.99	36.66	22.52	16.39	14.37	11.95	20.83	11.95	16.72	29.80	30.70	
	274.3	6.92	1,777	1.72	11.95	12.32	9.87	7.52	15.13	10.73	8.11	10.43	33.28	13.97	3.44	7.12	2.35	
	182.9	.20	.30	.03	.13	.13	90.	.03	.03	.03	0	90.	90.	0	.20	.03		
SAMPLER NO.		103	104	105	901	107	108	109	110	111	112	113	114	115	116	117	118	
TRIAL		01	(Cont'd)			_												_

OBSERVED DEPOSIT DENSITIES (mg/m2)

TRIAL NO.	SAMPLER NO.					DISTA	NCE FROM	DISTANCE FROM SOURCE (M)	(F				
		182.9	274.3	365.8	548.6	731.5	η.μι6	1097.3	1371.6	1609.3	2414	3621	4828
10			2.15	50.86	10.76	5.46	7.52	3.58	3.18	1.79	.36	.13	
(Cont'd			2.88	23.68	11.32	14.24	4.11	2.75	2.81	2.28	.33	.10	
	121		5.03	23.81	34.67	10.36	3.18	96.	04.	5.30	.07	.13	
	122		1.19	20.89	36.66	11.95	5.03	2.91	1.06	5.30	04.	.10	
	123		6.95	27.12	25.43	10.56	6.29	3.05	8.	01.	.17	.13	
	124			2.28						94.		.07	
	125			.13						94.		.30	
	126									.13		.10	
	5						03	1	9				
1	102					01.	5.10	5.26	3,11	99.	.17		
	103				3.48	1.85	13.11	9.70	8.15	5.17	1.29		
	104			.50	3.77	6.75	25.13	22.68	20.69	9.93	1.19		
	105			94.	3.21	10.96	19.93	62.48	45.39	18.61	3.71	.26	
	106			.26	5.03	25.03	47.05	61.68	41.92	34.77	3.08	.43	

OBSERVED DEPOSIT DENSITIES (mg/m²)

	_								1				
TRIAL SAMPLER	— Ej					DIST	ANCE FROM	DISTANCE FROM SOURCE (M)	Œ				
<u>.</u>	182.9	472 6.	4.3	365.8	548.6	731.5	4.416	1097.3	1371.6	1609.3	2414	3621	4828
	+	-+							70		1,6	10	
				.23	2.52	29.30	27.45	29.77	49.86	13.11	•	2 6	
(Cont'd)					.53	11.22	5.00	4.30	36.85	3,18		0.0.	
			·		70.	5.33	.17	.07	.07	.13			
110			,,_			.36							
												(
												8	
12 75		-										99.	
91										······································		.93	
77												3.46	
78												.60	
79												01.	
& —										.03		.70	
81								-		.30		. 79	
88	<u> </u>							8		8.11	.30		
& 	~						07.		15.79	(u	2.15		
≅											3.54		
æ	-2						3.61	10.99					

OBSERVED DEPOSIT DENSITIES (mg/m²)

を表示される

TRIAL	SAMPLER					DIST	ANCE FROM	DISTANCE FROM SOURCE (M)	M)				
·		182.9	274.3	365.8	548.6	731.5	η.μ16	1097.3	1371.6	1609.3	१११८	3621	4828
5	1						3.01	10.79	17.05	19.20	2.55		
(Cont'd							3.51	9.27	12.75	14.01	10.4		
	88						2.78	2.75	7.38	5.36	2.75		
	89						1.52	1.13	1.23	.30	95.		
	8						.20				.23		
13	69								.13	70.	.23		
	2								40°8	13.87	.03		
	7							.50	5.99	14.07	2.78		
	72						.33	.33	9.30	14.40	8.28		
	73	····					.36	95.	19.84	19.80	5.20		
	72						1.52	19.97	48.18	24.27	74.4		
	75					******	5.63	24.80	38.14	18.48	2.91		
	91						9.34	32.12	6.92	3.81	1.42		
	77						2.55	8.84	.07	.10	.10		

OBSERVED DEPOSIT DENSITIES (mg/m²)

10. NO. 182.9 274.3 36 80 81 82 82 84 85 86 87 88			DISTA	INCE FROM	DISTANCE FROM SOURCE (M)	(W)				
78 80 81 82 83 84 85 86	365.8 548.6		731.5	914.4	1097.3	1371.6	1609.3	2414	3621	1,828
80 81 82 84 85 86 87		-							.13	
83 83 84 85 87									0	
82 83 85 87									.13	
82 83 84 85 86 87									.56	
83 84 85 86 87		•				,	,	_	Q .	
85 86 87 88	-		· ·		.33	•36	1.19		<u>.</u>	
85 86 87 88			94.	8.94	55.03	38.74	15.13	.33		
86			.50	24.20	99.99	43.31	21.89	.43		
888			1.23	32.85	99.13	87.41	51.25	09.		
- 88			.26		33.08	43.31	17.70	1.29		
				2.12	7.32	10.33	1.42	04.		
68					.30					

OBSERVED DEPOSIT DENSITIES (mg/m²)

TRIAL No.	SAMPLER NO.					DIS	TANCE FR	DISTANCE FROM SOURCE (M)	(M)				
		182.9	274.3	365.8	548.6	731.5		914.4 1097.3 1371.6 1609.3	1371.6		5414	3621	4828
15	91											.20	
	92											95.	
	93									04.		96.	
	76						.36	1.46	7.88	15.53	2.25	09.	
	95						3.21	16.99	25.09	39.80	9.11	.20	
	96			-			3.44	17.12	24.70	38.87	8.28	.03	
	97						2.95	9.34	14.54	15.60	2.88		
	86	*****					97.	1.19	2,09	1.42	.36		
	66		·				10.	.07	.20	70.			
													

UNCLASSIFIED

Security Classification

	DOCUMENT CONTR (Security classification of title, body of abstract and indexing an			e overall document is classified)
1.	ORIGINATING ACTIVITY			IT SECURITY CLASSIFICATION UNCLASSIFIED
	DEFENCE RESEARCH ESTABLISHMENT SUFF	IELD	2b. GROUP	
3	DOCUMENT TITLE		<u> </u>	
1	DIFFUSION AND GROUND DEPOSITION OF HEIGHT OF 92 METRES (U)	100 MICRON F	PARTICLES F	ROM A POINT AT A
4	DESCRIPTIVE NOTES (Type of report and inclusive detes)	Suffield Rep	ort	
6.	AUTHOR(S) (Lest name, first name, middle initial)			
	Johnson, O.			
6.	DOCUMENT DATE SEPTEMBER 1980	7a. TOTAL NO	OF PAGES	76. NO. OF REFS
8.	PROJECT OR GRANT NO.	Se. ORIGINATO	OR'S DOCUMEN	T NUMBER(S)
	Project No. 13E10	SUFFIELL	REPORT NO	. 284
•	CONTRACT NO.	9b. OTHER DO		3) (Any other numbers that may be
10.	DISTRIBUTION STATEMENT	<u>*</u>	· · · · · · · · · · · · · · · · · · ·	
	UNLIMITED DISTRIBUTION			
11.	SUPPLEMENTARY NOTES	12. SPONSORIN	G ACTIVITY	
13.	ABSTRACT	<u> </u>		

The results of a series of field trials on the diffusion and ground deposition of 100 micron glass microspheres from a continuous point source at a height of 92 metres are discussed. The observed crosswind integrated deposit density as a function of distance from the source was used to test two prediction models. One of these models employs appropriately averaged standard deviations of vertical turbulence as the main parameter of atmospheric diffusion. The other is the steady state K-Theory diffusion model with a coefficient of eddy diffusivity which varies with height. In general, there was reasonably good agreement between the observed and predicted crosswind integrated deposit density as a function of distance, for the sloping plume model. However, the K-Theory model predicts a peak deposit much lower than observed and a more gradual decreese in the deposit density than observed.

(U)

KEY WORDS

Glass beads - diffusion

Diffusion models

Microspheres

INSTRUCTIONS

 ORIGINATING ACTIVITY Enter the name and address of the organization issuing the document.

- DOCUMENT SECURITY CLASSIFICATION: Enter the overall security classification of the document including special warning terms whenever applicable.
- 2b GROUP Enter security reclassification group number. The three groups are defined in Appendix 'M' of the DRB Security Regulations.
- DOCUMENT TITLE: Enter the complete document title in all capital letters. Titles in all cases should be unclassified. If a sufficiently descriptive title cannot be selected without classification, show title classification with the usual one-capital-letter abbreviation in perenthees immediately following the title.
- 4 DESCRIPTIVE NOTES: Enter the category of document, e.g. technical report, technical note or technical letter. If appropriate, enter the type of document, e.g. interim, progress, summery, annual or final. Give the inclusive dates when a specific reporting period is covered.
- AUTHOR(S): Enter the name(s) of author(s) as shown on or in the document. Enter lest name, first name, middle initial.
 If initiary, show rank. The name of the principal author is an absolute minimum requirement.
- DOCUMENT DATE. Enter the date (month, year) of Establishment approvel for publication of the document.

Charles College

- 7a TOTAL NUMBER OF PAGES: The total page count should follow normal pagenation procedures, i.e., enter the number of pages containing information.
- To NUMBER OF REFERENCES: Enter the total number of references creat in the discussion.
- th PROJECT OR GRANT NUMBER. If appropriate, enter the applicable research and development project or grant number under which the document was written.
- 8b. CONTRACT NUMBER It appropriate, enter the applicable number under which the document was written.
- 9a. ORIGINATOR'S DOCUMENT NUMBER(S): Enter the official document number by which the document will be identified and controlled by the originating activity. This number must be unique to this document.

A THE STREET STREET

- 9b. OTHER DOCUMENT NUMBER(S): If the document has been assigned any other document numbers (either by the originator or by the sponsor), also enter this number(s).
- 10. DISTRIBUTION STATEMENT: Enter any limitations on further dissemination of the document, other than those imposed by security classification, using standard statements such as:
 - "Qualified requesters may obtain copies of this document from their defence documentation center."
 - (2) "Announcement and dissemination of this document is not authorized without prior approval from originating activity."
- 11. SUPPLEMENTARY NOTES: Use for additional explanatory notes.
- SPONSORING ACTIVITY: Enter the name of the departmental project office or laboratory sponsoring the research and development. Include address.
- 13. ABSTRACT: Enter an abstract giving a brief and factual summary of the document, even though it may also appear elsewhere in the body of the document itself, it is highly dealrable that the abstract of classified documents be unclassified. Each peragraph of the abstract shell end with an indication of the security classification of the information in the peragraph (unless the document itself is unclassified) represented as (TS), (S), (C), (R), or (U).

The length of the obstract should be limited to 20 single-spaced standard typewritten lines; 7% inches long.

14. KEY WORDS: Key words are technically meaningful terms or short ghrases that characterize a document and could be helpful in cataloging the document. Key words should be selected so that no security classification is required. Identifiers, such as equipment model designation, trade name, military project code name, geographic location, may be used as key words but will be followed by an indication of technical context.

