Санкт-Петербургский Политехнический Университет Петра Великого Институт Компьютерных наук и технологий Кафедра компьютерных систем и программных технологий

Лабораторная работа 6

Предмет: Проектирование реконфигурируемых гибридных вычислительных систем

Tема: Port-Level IO Protocols

Задание 1

Студент: Ерниязов Т.Е. Гр. № 3540901/81501

Преподаватель: Антонов А.П.

Оглавление

Задание	3
Ход работы	5
Решение 1	5
Решение 2	9
Выводы	14

Задание

- Создать проект lab6_1
- Микросхема: xa7a12tcsg325-1q
- Создать Си код на основе слайда (функция foo)

- Создать тест lab6_1_test.c на основе слайда выше.
- Сделать solution1
 - о задать: clock period 6; clock uncertainty 0.1
 - о осуществить моделирование (на основе слайда выше, с выводом результатов в консоль)
 - о осуществить синтез (с настройками по умолчанию интерфейс ap-fifo)
 - привести в отчете:
 - performance estimates=>summary
 - utilization estimates=>summary
 - Performance Profile
 - interface estimates=>summary
 - о объяснить какой интерфейс использован для блока (и какие сигналы входят) и для портов (и какие сигналы входят).
 - scheduler viewer (выполнить Zoom to Fit)
 - O На скриншоте показать Latency
 - На скриншоте показать Initiation Interval
 - resource viewer (выполнить Zoom to Fit)
 - На скриншоте показать Latency
 - На скриншоте показать Initiation Interval
 - Ocyществить C|RTL моделирование
 - Привести результаты из консоли
 - Открыть временную диаграмму (все сигналы)
 - Отобразить два цикла обработки на одном экране
 - На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Сделать solution2
 - Задать протокол
 - a: ap_bus
 - о осуществить моделирование
 - о осуществить синтез
 - привести в отчете:
 - performance estimates=>summary
 - utilization estimates=>summary
 - Performance Profile

- interface estimates=>summary
 - о объяснить какой интерфейс использован для блока (и какие сигналы входят) и для портов (и какие сигналы входят).
- scheduler viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- resource viewer (выполнить Zoom to Fit)
 - о На скриншоте показать Latency
 - O На скриншоте показать Initiation Interval
- Осуществить C|RTL моделирование
 - Привести результаты из консоли
 - Открыть временную диаграмму (все сигналы)
 - Отобразить два цикла обработки на одном экране
 - о На скриншоте показать Latency
 - о На скриншоте показать Initiation Interval
- Выводы
 - о Объяснить отличие протоколов

Ход работы

Решение 1

Исходные файлы

```
#define DCT SIZE 5
void foo(int d[DCT SIZE]){
     static int acc = 0;
     int i;
     for (i = 0; i < 4; i++)
          acc += d[i+1];
          d[i] = acc;
     }
}
Тест
#include <stdio.h>
int main()
     int d[5];
     int i;
     for (i = 0; i < 5; i++) {
          d[i] = i + 5;
     }
     foo(d);
     int res[5] = \{6, 13, 21, 30, 9\};
     int pass;
     fprintf(stdout, "Expected Actual\n");
     for (i = 0; i < 5; i++)
          fprintf(stdout, "res[%d]: %d == d[%d]: %d\n", i, res[i], i,
d[i]);
          if (res[i] == d[i]) {
               pass = 1;
          } else {
               pass = 0;
               break;
          }
     }
     if (pass) {
          fprintf(stdout, "-----Pass!----\n");
          return 0;
     } else {
          fprintf(stderr, "-----Fail!-----\n");
          return 1;
     }
}
```

Настройка решения

Clock Period: 6	Uncertainty: 0.1
Part Selection	
Part: xa7a12tcsg325-1q	

Моделирование

Моделирование пройдено без ошибок.

Симуляция с настройками и интерфейсом по умолчанию:

Полученное значение задержки укладывается в заданное целевое значение.

Период задержки до получения результатов составляет 13 тактов, интервал инициализации составляет 14 тактов. Всего на одну итерацию приходится 3 такта.

Использование ресурсов

Данное решение потребует на микросхеме 74 регистра и 111 LUT.

			BRAM	DSP	FF	LUT	Bits P0	Bits P1	Bits P2	Banks/Depth	Words	W*Bits*Banks
~		foo	0	0	74	111						
	>	@ I/O Ports(1)					32					
		Instances(0)	0	0	0	0						
		Memories(0)	0		0	0	0			0	0	0
	>	Expressions(3)	0	0	0	60	38	37	0			
	>	1010 Registers (5)			74		74					
		Channels(0)	0		0	0	0			0	0	0
	>	Multiplexers(3)	0		0	51	7			0		
		■ DSP(0)		0								

Интерфейс

Interface

■ Summary

RTL Ports	Dir	Bits	Protocol	Source Object	С Туре
ap_clk	in	1	ap_ctrl_hs	foo	return value
ap_rst	in	1	ap_ctrl_hs	foo	return value
ap_start	in	1	ap_ctrl_hs	foo	return value
ap_done	out	1	ap_ctrl_hs	foo	return value
ap_idle	out	1	ap_ctrl_hs	foo	return value
ap_ready	out	1	ap_ctrl_hs	foo	return value
d_address0	out	3	ap_memory	d	array
d_ce0	out	1	ap_memory	d	array
d_we0	out	1	ap_memory	d	array
d_d0	out	32	ap_memory	d	array
d_q0	in	32	ap_memory	d	array

Ap_memory — интерфейс по умолчанию для аргументов — массивов. Может быть указан только для массивов.

C/RTL моделирование

```
Vivado Simulator 2019.2
Time resolution is 1 ps
source foo.tcl
## run all
// Inter-Transaction Progress: Completed Transaction / Total Transaction
// Intra-Transaction Progress: Measured Latency / Latency Estimation * 100%
//
// RTL Simulation : "Inter-Transaction Progress" ["Intra-Transaction Progress"] @ "Simulation Time"
## quit
INFO: [Common 17-206] Exiting xsim at Tue Dec 10 04:48:05 2019...
INFO: [COSIM 212-316] Starting C post checking ...
Expected Actual
res[0]: 6 == d[0]: 6
res[1]: 13 == d[1]: 13
res[2]: 21 == d[2]: 21
res[3]: 30 == d[3]: 30
res[4]: 9 == d[4]: 9
-----Pass!-----
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***
```

На временной диаграмме отображена задержка и интервал инициализации.

Решение 2

Исходные файлы

```
#define DCT SIZE 5
void foo(int d[DCT_SIZE]){
     static int acc = 0;
     int i;
     for (i = 0; i < 4; i++)
          acc += d[i+1];
          d[i] = acc;
     }
}
Тест
#include <stdio.h>
int main()
     int d[5];
     int i;
     for (i = 0; i < 5; i++) {
          d[i] = i + 5;
     }
     int res[5] = \{6, 13, 21, 30, 9\};
     int pass;
     fprintf(stdout, "Expected Actual\n");
```

Моделирование

Задание интерфейса ap_bus

Синтез

Производительность

Полученная величина задержки укладывается в заданное значение.

Использование ресурсов

Utilization Estimates Summary Name BRAM_18K DSP48E FF LUT URAM DSP Expression FIFO Instance Memory Multiplexer 65 Register 109 Total 109 125 0 Available 40 16000 8000 0 Utilization (%) 0 ~0 0 Detail

Для данного решения на микросхеме будет задействовано 109 портов и 125 LUT.

Данные, отображенные на рисунке соответствуют описанным выше.

Задержка для каждой итерации составляет 6 тактов, всего происходит 4 повтора итераций. Полный цикл занимает 26 тактов.

Приведем диаграмму, определяющую последовательность операций для каждой итерации.

Интерфейс

Interface

Summary

RTL Ports	Dir	Bits	Protocol	Source Object	C Type
ap_clk	in	1	ap_ctrl_hs	foo	return value
ap_rst	in	1	ap_ctrl_hs	foo	return value
ap_start	in	1	ap_ctrl_hs	foo	return value
ap_done	out	1	ap_ctrl_hs	foo	return value
ap_idle	out	1	ap_ctrl_hs	foo	return value
ap_ready	out	1	ap_ctrl_hs	foo	return value
d_req_din	out	1	ap_bus	d	pointer
d_req_full_n	in	1	ap_bus	d	pointer
d_req_write	out	1	ap_bus	d	pointer
d_rsp_empty_n	in	1	ap_bus	d	pointer
d_rsp_read	out	1	ap_bus	d	pointer
d_address	out	32	ap_bus	d	pointer
d_datain	in	32	ap_bus	d	pointer
d_dataout	out	32	ap_bus	d	pointer
d_size	out	32	ap_bus	d	pointer

Все порты с протоколами ap_ctrl_hs представляют собой порты block level I/O. Протокол ap_bus реализует переменные указателя и передачи по ссылке в качестве шины общего назначения, аналогичной типичному интерфейсу DMA.

C/RTL моделирование

```
Vivado Simulator 2019.2
Time resolution is 1 ps
source foo.tcl
## run all
// Inter-Transaction Progress: Completed Transaction / Total Transaction
// Intra-Transaction Progress: Measured Latency / Latency Estimation * 100%
// RTL Simulation : "Inter-Transaction Progress" ["Intra-Transaction Progress"] @ "Simulation Time"
$finish called at time : 231 ns : File "D:/Antonov/lab6_z1/lab6_z1_source/solution1/sim/verilog/foo.autotb.v" Line 21
## quit
INFO: [Common 17-206] Exiting xsim at Tue Dec 10 04:48:05 2019...
INFO: [COSIM 212-316] Starting C post checking ...
Expected Actual
res[0]: 6 == d[0]: 6
res[1]: 13 == d[1]: 13
res[2]: 21 == d[2]: 21
res[3]: 30 == d[3]: 30
res[4]: 9 == d[4]: 9
-----Pass!-----
INFO: [COSIM 212-1000] *** C/RTL co-simulation finished: PASS ***
```


Выводы

В первом варианте решения был задействован интерфейс по умолчанию ар_теторый предназначен к использованию только для аргументов — массивов. Во втором варианте был использован интерфейс ар_bus. Протокол ар_bus реализует переменные указателя и передачи по ссылке в качестве шины общего назначения, аналогичной типичному интерфейсу DMA.

Результат полученной величины задержки и количество тактов интервала инициализации с протоколом по умолчанию является меньшим. Таким образом первое решение является оптимальным.