Applied Statistics Project

2021/2022

"All models are wrong, but some are useful"

George E. P. Box

1. Data analysis

1. Data Analysis

- Variable analysis:
 - Histograms
 - Box-plots

- Polynomial regression analysis:
 - Scatter-Plots
 - ANOVA

1.0 Response Variable

Y describes the performance of a calculation software

```
> summary(dataset$y)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. 4.454 30.819 41.413 38.957 47.687 65.336

1.1.1 CPU Speed

Data analysis

> summary(dataset\$x1)

Min. 1st Qu. Median Mean 3rd Qu. Max. -1.700 -0.912 0.046 0.000 0.842 1.695

1.1.2 CPU Speed

Polynomial regression

$$Y = \beta_0 + \beta_1 X_1 + \varepsilon$$

```
> lm(formula = y \sim x1, data = dataset)
```

Coefficients:

```
Estimate Std. Error t value Pr(>ltl)
(Intercept) 38.957 1.147 33.962 < 2e-16 ***
x1 6.728 1.153 5.836 6.92e-08 ***
```

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

Residual standard error: 11.47 on 98 degrees of freedom Multiple R-squared: 0.2579, Adjusted R-squared: 0.2503

F-statistic: 34.06 on 1 and 98 DF, p-value: 6.924e-08

> cor(dataset\$x1, dataset\$y)
0.5078409

1.1.3 CPU Speed

F Test

P-Values lower than the significance level means we can reject the null hypothesis

$$\begin{cases} H_0: \beta_1 = 0 \\ H_A: \beta_1 \neq 0 \end{cases}$$

1.2.1 HDD Capacity

Data analysis

> summary(dataset\$x2)

```
Min. 1st Qu. Median Mean 3rd Qu. Max. -1.889 -0.720 0.001 0.000 0.687 1.754
```


1.2.2 HDD Capacity

Polynomial regression

$$Y = \beta_0 + \beta_1 X_2 + \varepsilon$$

```
> lm(formula = y \sim x2, data = dataset)
```

Coefficients:

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

Residual standard error: 13.24 on 98 degrees of freedom Multiple R-squared: 0.01169, Adjusted R-squared: 0.001609

F-statistic: 1.16 on 1 and 98 DF, p-value: 0.2842

> cor(dataset\$x2, dataset\$y)
0.1081392

1.2.3 HDD Capacity

F Test

P-Values higher than the significance level means we fail to reject the null hypothesis

$$\begin{cases} H_0: \beta_1 = 0 \\ H_A: \beta_1 \neq 0 \end{cases}$$

1.3.1 Number of tasks

Data analysis

> summary(dataset\$x3)

Min. 1st Qu. Median Mean 3rd Qu. Max. -1.691 -0.818 0.116 0.000 0.739 1.716

1.3.2 Number of tasks

Polynomial regression

$$Y = \beta_0 + \beta_1 X_3 + \beta_2 X_3^2 + \beta_3 X_3^3 + \varepsilon$$

```
> lm(formula = y \sim x3 + I(x3^2) + I(x3^3),
data = dataset)
Coefficients:
                                         Pr(>ltl)
          Estimate
                    Std. Error
                                t value
                                                     ***
           45.788
                      1.565
                                29.255
                                         < 2e-16
(Intercept)
           -1.123
                                -0.411
                      2.734
                                          0.6821
                                                     ***
I(x3^2)
           -6.508
                      1.174
                                -5.544
                                          2.59e-07
I(x3^3)
            3.441
                      1.413
                                2.435
                                          0.0168
Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
```


> cor(dataset\$x3, dataset\$y)
0.4348121

1.3.3 Number of tasks

$$Y = \beta_0 + \beta_1 X_3^2 + \beta_2 X_3^3 + \varepsilon$$

> $lm(formula = y \sim I(x3^2) + I(x3^3)$, data = dataset)

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	45.6951	1.5421	29.631	< 2e-16	***
I(x3^2)	-6.4751	1.1661	-5.553	2.45e-07	***
I(x3^3)	2.9046	0.5387	5.392	4.90e-07	***

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

Residual standard error: 10.28 on 97 degrees of freedom Multiple R-squared: 0.4098, Adjusted R-squared: 0.3976 F-statistic: 33.67 on 2 and 97 DF, p-value: 7.832e-12

P-Values lower than than significance level means we can reject the null hypothesis

$$\begin{cases} H_0: \beta_1 = \beta_2 = 0 \\ H_A: \exists \beta_i \neq 0 \end{cases}$$

1.4.1 Aging

Data analysis

> summary(dataset\$x4)

Min. 1st Qu. Median Mean 3rd Qu. Max. -1.546 -0.840 -0.109 0.000 0.890 1.715

1.4.2 **Aging**

Polynomial regression

$$Y = \beta_0 + \beta_1 X_4 + \varepsilon$$

```
> lm(formula = y \sim x4, data = dataset)
Coefficients:
                     Std. Error t value
                                          Pr(>ltl)
          Estimate
(Intercept) 38.957
                     1.150
                                33.888
                                          < 2e-16
           -6.686
                     1.155
                               -5.787
                                         8.62e-08 ***
x4
Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1
Residual standard error: 11.5 on 98 degrees of freedom
```

Multiple R-squared: 0.2547, Adjusted R-squared: 0.2471

F-statistic: 33.48 on 1 and 98 DF, p-value: 8.621e-08

> cor(dataset\$x4, dataset\$y)
-0.5046424

X4

1.4.3 Aging

F Test

P-Values lower than the significance level means we can reject the null hypothesis

$$\begin{cases} H_0: \beta_1 = 0 \\ H_A: \beta_1 \neq 0 \end{cases}$$

1.5.1 Sound card performance

Data analysis

```
> summary(dataset$x5)
```

Min. 1st Qu. Median Mean 3rd Qu. Max. -1.614 -0.902 0.051 0.000 0.851 1.562

1.5.2 Sound card performance

Polynomial regression

$$Y = \beta_0 + \beta_1 X_5 + \varepsilon$$

> cor(dataset\$x5, dataset\$y)
-0.007079301

1.5.3 Sound card performance F Test

P-Values higher than the significance level means we fail to reject the null hypothesis

$$\begin{cases} H_0: \beta_1 = 0 \\ H_A: \beta_1 \neq 0 \end{cases}$$

1.6.1 RAM Performance

Data analysis

> summary(dataset\$x6)

Min. 1st Qu. Median Mean 3rd Qu. Max. -1.700 -0.901 0.091 0.000 0.982 1.675

1.6.2 RAM Performance

Polynomial regression

$$Y = \beta_0 + \beta_1 X_6 + \beta_2 X_6^2 + \varepsilon$$

```
> lm(formula = y \sim x6 + I(x6^2), data =
dataset)
Coefficients:
         Estimate
                    Std. Error t value
                                        Pr(>ltl)
(Intercept) 35.819
                     1.960
                              18.275
                                       < 2e-16
                               2.734
          3.526
                     1.290
                                       0.00744
x6
                               2.104
I(x6^2)
          3.170
                     1.507
                                        0.03797
```

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

Residual standard error: 12.71 on 98 degrees of freedom Multiple R-squared: 0.09781, Adjusted R-squared: 0.07921

F-statistic: 5.258 on 2 and 97 DF, p-value: 0.00679

> cor(dataset\$x6, dataset\$y)
0.2379949

1.6.3 RAM Performance

F Test

P-Values lower than the significance level means we can reject the null hypothesis

$$\begin{cases} H_0: \beta_1 = \beta_2 = 0 \\ H_A: \exists \beta_i \neq 0 \end{cases}$$

1.7 Correlation analysis

2. Regression analysis

2.0 Stepwise regression

P-value criteria

- Stepwise regression with forward selection:
 - Starting from null model, we add a variable to the model
 - We perform linear regression on this model and we check the T-test results
 - We remove any variables with p-values greater than the significance level (α = 0.05)

2.0.1 T test

$$\begin{cases} H_0: \ \beta_i = 0 \\ H_A: \ \beta_i \neq 0 \end{cases}$$

$$t = \frac{\hat{\beta}_i}{SE(\hat{\beta}_i)} \sim T_{n-k-1}$$

$$\begin{cases} p < \alpha & \text{reject } H_0 \\ p > \alpha & \text{cannot reject } H_0 \end{cases}$$

$$SE(\hat{\beta}_i) = \hat{\sigma}\sqrt{v_i}$$

2.1 Two-predictors model

```
> lm(formula = y \sim x1 + x2, data = dataset)
```

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)
(Intercept)	38.9573	1.1516	33.828	< 2e-16 ***
x1	6.6546	1.1675	5.700	1.29e-07 ***
x2	0.5588	1.1675	0.479	0.633

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

Residual standard error: 11.52 on 97 degrees of freedom Multiple R-squared: 0.2597, Adjusted R-squared: 0.2444

F-statistic: 17.01 on 2 and 97 DF, p-value: 4.652e-07

2.1.1 Diagnostics

- Residual analysis is used to show whether the assumptions made in OLS estimation are valid
- Residuals true mean needs to be zero
- Our model should not be affected by heteroschedasticity
- Error term should be normally distributed

2.2 Four-predictors model

```
> lm(formula = y \sim x1 + x4 + I(x3^2) +
I(x3^3), data = dataset)
Coefficients:
         Estimate
                    Std. Error
                                          Pr(>ltl)
                                t value
(Intercept) 44.8061
                                48.994
                                          < 2e-16 ***
                   0.9145
x1
           6.0777
                    0.6166
                                9.857
                                         3.34e-16
                                -9.529
                                         1.67e-15
          -5.8706
                    0.6161
I(x3^2)
                                -8.141
          -5.6451
                    0.6934
                                         1.52e-12
                    0.3217
                                 7.171
I(x3^3)
           2.3070
                                         1.61e-10
```

Residual standard error: 6.073 on 95 degrees of freedom Multiple R-squared: 0.7984, Adjusted R-squared: 0.7899 F-statistic: 94.05 on 4 and 95 DF, p-value: < 2.2e-16

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

2.3 Final model

```
> lm(formula = y \sim x1 + x4 + I(x3^2) + I(x3^3) + x6 + x1:x6 + x5, data = dataset)
```

Coefficients:

	Estimate	Std. Error	t value	Pr(>ltl)	
(Intercept)	44.6421	0.7490	59.605	< 2e-16	***
x 1	5.8433	0.5046	11.579	< 2e-16	***
x 4	-6.1328	0.5053	-12.138	< 2e-16	***
I(x3^2)	-5.3854	0.5730	-9.399	4.20e-15	***
I(x3^3)	2.2342	0.2650	8.432	4.52e-13	***
x6	2.7491	0.5026	5.469	3.86e-07	***
x 5	1.3506	0.5123	2.636	0.00984	**
x1:x6	-2.1690	0.5056	-4.290	4.41e-05	***

Signif. codes: 0 "*** 0.001 "** 0.01 "* 0.05 ". 0.1 " 1

Residual standard error: 4.945 on 92 degrees of freedom Multiple R-squared: 0.8705, Adjusted R-squared: 0.8607

F-statistic: 88.38 on 7 and 92 DF, p-value: < 2.2e-16

2.4 R²

$$R^2 = \frac{SQR}{SQTOT} = 1 - \frac{SQE}{SQTOT}$$

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7	Step 8
0.2579023	0.259651	0.605671	0.7983896	0.8077924	0.8449553	0.8705436	0.8731806

2.5 BIC

$$BIC = -2\log L + k\log n$$

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7	Step 8
783.5433	787.9126	729.5241	667.0445	666.8735	654.5976	636.5607	639.1078

2.6 AIC

$$AIC = -2\log L + 2k$$

Step 1	Step 2	Step 3	Step 4	Step 5	Step 6	Step 7	Step 8
775.7278	777.4919	716.4983	651.4134	648.6373	631.151	613.1141	613.0561

//Step command outputs a model with non-significant predictors

2.7 Overfitting

- Is our final model overfitted?
- Overfitting happens when fitted values of a model are too close to the original ones
 - Overfitted models predictions are not reliable

- How to check for overfitting:
 - Cross-validation
 - Train-test splitting

2.8 Train test splitting

- We split dataset in two parts:
 - Training set (70 observations)
 - Test set (30 observations)

$$MSE = \frac{1}{n} \sum_{i=1}^{n} (y_i - \overline{y_i})^2$$

- We compare MSE across different models
 - This gives an idea of the prediction error

2.9 Should we include x5 then?

It depends.

- Variable x5 describes the sound card performances; so we are led to believe that x5 doesn't explain Y
- Despite this, we overlooked what the variables describes, so we attempted to fit all the predictors
- It is quite counterintuitive to think of a relation between sound card performances and software performances
- Why does experimental evidence suggests otherwise?
 - Spurious correlation
 - P-value deflation

Thanks for your attention!