

2019 - 20

ISTANBUL OKAN ÜNİVERSİTESİ MÜHENDİSLİK FAKÜLTESİ MÜHENDİSLİK TEMEL BİLİMLERİ BÖLÜMÜ

MATH216 Mathematics IV - Exercise Sheet 4

N. Course

Exercise 19 (Homogeneous Second Order Linear ODEs with constant coefficients). Find the general solution of the following ODEs:

(a)
$$y'' - 2y' + 2y = 0$$
 (e) $y'' + 6y' + 13y = 0$ (i) $4y'' + 12y' + 9y = 0$

(e)
$$y'' + 6y' + 13y = 0$$

(i)
$$4y'' + 12y' + 9y = 0$$

(m)
$$4y'' + 17y' + 4y = 0$$

(b)
$$u'' + 2u' + 2u = 0$$

(f)
$$9y'' + 16y = 0$$

(i)
$$4y'' - 4y' - 3y =$$

(b)
$$y'' + 2y' + 2y = 0$$
 (f) $9y'' + 16y = 0$ (j) $4y'' - 4y' - 3y = 0$ (n) $4y'' + 20y' + 25y = 0$

(c)
$$u'' + 2u' - 8u = 0$$

(g)
$$y'' - 2y' + y = 0$$

(k)
$$y'' - 2y' + 10y =$$

(c)
$$y'' + 2y' - 8y = 0$$
 (g) $y'' - 2y' + y = 0$ (k) $y'' - 2y' + 10y = 0$ (o) $25y'' - 20y' + 4y = 0$

(d)
$$y'' - 2y' + 6y = 0$$

(h)
$$9y'' + 6y' + y = 0$$
 (l) $y'' - 6y' + 9y = 0$

(1)
$$y'' - 6y' + 9y = 0$$

(p)
$$2y'' + 2y' + y = 0$$

Solve the following IVPs:

(q)
$$\begin{cases} 9y'' + 6y' + 82y = 0 \\ y(0) = -1 \\ y'(0) = 2 \end{cases}$$

(r)
$$\begin{cases} y'' - 6y' + 9y = 0 \\ y(0) = 0 \\ y'(0) = 2 \end{cases}$$

Exercise 20 (Reduction of Order). In each of the following problems:

- (i) Check that y_1 solves the ODE;
- (ii) Use the method of reduction of order to find a second, linearly independent solution, y_2 [HINT: Start with $y_2(t) = v(t)y_1(t)$.];
- (iii) Check that your y_2 solves the ODE; and
- (iv) Calculate the Wronskian of y_1 and y_2 .

(a)
$$t^2y'' + 2ty' - 2y = 0$$
, $t > 0$; $y_1(t) = t$

(d)
$$t^2y'' - t(t+2)y' + (t+2)y = 0$$
, $t > 0$; $y_1(t) = t$

(b)
$$t^2y'' - 4ty' + 6y = 0$$
, $t > 0$; $y_1(t) = t^2$

(e)
$$xy'' - y' + 4x^3y = 0$$
, $x > 0$; $y_1(x) = \sin x^2$

(c)
$$t^2y'' + 3ty' + y = 0$$
, $t > 0$; $y_1(t) = t^{-1}$

(f)
$$(x-1)y'' - xy' + y = 0$$
, $x > 1$; $y_1(x) = e^x$