PROBLEMS

There are 5 Processors P1 is consuming 50μsec & every successive process consumes double the time of previous process. Calculate SPEC rating of each process & SPEC of entire suite(Assume reference system which can execute P1 in 100μsec & each successive process with increase of 50μsec

Performance Measurement

- T is difficult to compute.
- Measure computer performance using benchmark programs.
- System Performance Evaluation Corporation (SPEC) selects and publishes representative application programs for different application domains, together with test results for many commercially available computers.
- Compile and run (no simulation)
- Reference computer

$$SPEC$$
 rating = $\frac{\text{Running}}{\text{Running}}$ time on the reference computer under tes

SPEC rating =
$$(\prod_{i=1}^{n} SPEC_{i})^{\frac{1}{n}}$$

Problem 2

A program contains 1000 instruction. Out of that 25% instructions require 4 clock cycles,40% instruction require 5 clock cycles & remaining require 3 clock cycles for execution. Find the total time required to execute the program running in a 1 GHz machine

Problem 2 A program contains 1000 instruction. Out of that 25% instructions require 4 clock cycles,40% instruction require 5 clock cycles & remaining require 3 clock cycles for execution. Find the total time required to execute the program running in a 1 GHz machine ▶ N=1000 ▶ 25% OF N=250 INSTRUCTIONS REQUIRE 4 CLOCK CYCLES **▶** 40% =400 5 ▶ 35 =350 3 CLO You

Memory Locations, Addresses, and Operations

- Memory
 consists of
 many millions
 of storage
 cells, each of
 which can
 store 1 bit.
- Data is usually accessed in nbit groups. n is called word

Memory Location, Addresses, and Operation

- To retrieve information from memory, either for one word or one byte (8-bit), addresses for each location are needed.
- A k-bit address memory has 2^k memory locations, namely 0 – 2^k-1, =0 TO 15 called memory space.
- 24-bit memory: 2²⁴ = 16,777,216 = 16M (1M=2²⁰)
 - 32-bit memory: 2³² = 4G (1G=2³⁰)
 - ▶ 1K(kilo)=210
 - ▶ 1T(tera)=240

Memory Location, Addresses, and Operation

32-bit word length example

- Address ordering of bytes
- Word alignment

Add-ins

- Words are said to be aligned in memory if they begin at a byte addr. that is a multiple of the num of bytes in a word.
 - ▶ 16-bit word: word addresses: 0, 2, 4,....
 - ▶ 32-bit word: word addresses: 0, 4, 8,....
 - ▶ 64-bit word: word addresses: 0, 8,16,....
- Access numbers, characters, and character strings

Comments

Symbols

uscrations | Add its | Links | Comments | Fext

Big-Endian and Little-Endian Assignments

Big-Endian: lower byte addresses are used for the most significant bytes of the word

Little-Endian: opposite ordering. lower byte addresses are used for the less significant bytes of the word

(a) Big-endian assignment

(b) Little-endian assignment

