

planetmath.org

Math for the people, by the people.

finite field

Canonical name FiniteField

Date of creation 2013-03-22 12:37:50 Last modified on 2013-03-22 12:37:50

Owner yark (2760) Last modified by yark (2760)

Numerical id 16

Author yark (2760)
Entry type Definition
Classification msc 12E20
Classification msc 11T99
Synonym Galois field

Related topic AlgebraicClosureOfAFiniteField

 $Related\ topic \qquad Irreducible Polynomials Over Finite Field$

A finite field (also called a Galois field) is a field that has finitely many elements. The number of elements in a finite field is sometimes called the order of the field. We will present some basic facts about finite fields.

1 Size of a finite field

Theorem 1.1. A finite field F has positive characteristic p > 0 for some prime p. The cardinality of F is p^n where $n := [F : \mathbb{F}_p]$ and \mathbb{F}_p denotes the prime subfield of F.

Proof. The characteristic of F is positive because otherwise the additive subgroup generated by 1 would be an infinite subset of F. Accordingly, the prime subfield \mathbb{F}_p of F is isomorphic to the field $\mathbb{Z}/p\mathbb{Z}$ of integers mod p. The integer p is prime since otherwise $\mathbb{Z}/p\mathbb{Z}$ would have zero divisors. Since the field F is an n-dimensional vector space over \mathbb{F}_p for some finite n, it is set-isomorphic to \mathbb{F}_p^n and thus has cardinality p^n .

2 Existence of finite fields

Now that we know every finite field has p^n elements, it is natural to ask which of these actually arise as cardinalities of finite fields. It turns out that for each prime p and each natural number n, there is essentially exactly one finite field of size p^n .

Lemma 2.1. In any field F with m elements, the equation $x^m = x$ is satisfied by all elements x of F.

Proof. The result is clearly true if x=0. We may therefore assume x is not zero. By definition of field, the set F^{\times} of nonzero elements of F forms a group under multiplication. This set has m-1 elements, and by Lagrange's theorem $x^{m-1}=1$ for any $x \in F^{\times}$, so $x^m=x$ follows.

Theorem 2.2. For each prime p > 0 and each natural number $n \in \mathbb{N}$, there exists a finite field of cardinality p^n , and any two such are isomorphic.

Proof. For n = 1, the finite field $\mathbb{F}_p := \mathbb{Z}/p\mathbb{Z}$ has p elements, and any two such are isomorphic by the map sending 1 to 1.

In general, the polynomial $f(X) := X^{p^n} - X \in \mathbb{F}_p[X]$ has derivative -1 and thus is separable over \mathbb{F}_p . We claim that the splitting field F of this

polynomial is a finite field of size p^n . The field F certainly contains the set S of roots of f(X). However, the set S is closed under the field operations, so S is itself a field. Since splitting fields are minimal by definition, the containment $S \subset F$ means that S = F. Finally, S has p^n elements since f(X) is separable, so F is a field of size p^n .

For the uniqueness part, any other field F' of size p^n contains a subfield isomorphic to \mathbb{F}_p . Moreover, F' equals the splitting field of the polynomial $X^{p^n} - X$ over \mathbb{F}_p , since by Lemma ?? every element of F' is a root of this polynomial, and all p^n possible roots of the polynomial are accounted for in this way. By the uniqueness of splitting fields up to isomorphism, the two fields F and F' are isomorphic.

Note: The proof of Theorem ?? given here, while standard because of its efficiency, relies on more abstract algebra than is strictly necessary. The reader may find a more concrete presentation of this and many other results about finite fields in [?, Ch. 7].

Corollary 2.3. Every finite field F is a normal extension of its prime subfield \mathbb{F}_p .

Proof. This follows from the fact that field extensions obtained from splitting fields are normal extensions. \Box

3 Units in a finite field

Henceforth, in light of Theorem ??, we will write \mathbb{F}_q for the unique (up to isomorphism) finite field of cardinality $q = p^n$. A fundamental step in the investigation of finite fields is the observation that their multiplicative groups are cyclic:

Theorem 3.1. The multiplicative group \mathbb{F}_q^* consisting of nonzero elements of the finite field \mathbb{F}_q is a cyclic group.

Proof. We begin with the formula

$$\sum_{d|k} \phi(d) = k,\tag{1}$$

where ϕ denotes the Euler totient function. It is proved as follows. For every divisor d of k, the cyclic group C_k of size k has exactly one cyclic subgroup

 C_d of size d. Let G_d be the subset of C_d consisting of elements of C_d which have the maximum possible http://planetmath.org/OrderGrouporder of d. Since every element of C_k has maximal order in the subgroup of C_k that it generates, we see that the sets G_d partition the set C_k , so that

$$\sum_{d|k} |G_d| = |C_k| = k.$$

The identity (??) then follows from the observation that the cyclic subgroup C_d has exactly $\phi(d)$ elements of maximal order d.

We now prove the theorem. Let k = q - 1, and for each divisor d of k, let $\psi(d)$ be the number of elements of \mathbb{F}_q^* of order d. We claim that $\psi(d)$ is either zero or $\phi(d)$. Indeed, if it is nonzero, then let $x \in \mathbb{F}_q^*$ be an element of order d, and let G_x be the subgroup of \mathbb{F}_q^* generated by x. Then G_x has size d and every element of G_x is a root of the polynomial $x^d - 1$. But this polynomial cannot have more than d roots in a field, so every root of $x^d - 1$ must be an element of G_x . In particular, every element of order d must be in G_x already, and we see that G_x only has $\phi(d)$ elements of order d.

We have proved that $\psi(d) \leq \phi(d)$ for all $d \mid q-1$. If $\psi(q-1)$ were 0, then we would have

$$\sum_{d|q-1} \psi(d) < \sum_{d|q-1} \phi(d) = q - 1,$$

which is impossible since the first sum must equal q-1 (because every element of \mathbb{F}_q^* has order equal to some divisor d of q-1).

A more constructive proof of Theorem ??, which actually exhibits a generator for the cyclic group, may be found in [?, Ch. 16].

Corollary 3.2. Every extension of finite fields is a primitive extension.

Proof. By Theorem $\ref{eq:proof}$, the multiplicative group of the extension field is cyclic. Any generator of the multiplicative group of the extension field also algebraically generates the extension field over the base field. \Box

4 Automorphisms of a finite field

Observe that, since a splitting field for $X^{q^m} - X$ over \mathbb{F}_p contains all the roots of $X^q - X$, it follows that the field \mathbb{F}_{q^m} contains a subfield isomorphic to \mathbb{F}_q .

We will show later (Theorem ??) that this is the only way that extensions of finite fields can arise. For now we will construct the Galois group of the field extension $\mathbb{F}_{q^m}/\mathbb{F}_q$, which is normal by Corollary ??.

Theorem 4.1. The Galois group of the field extension $\mathbb{F}_{q^m}/\mathbb{F}_q$ is a cyclic group of size m generated by the q^{th} power Frobenius map Frob_q .

Proof. The fact that Frob_q is an element of $\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)$, and that $(\operatorname{Frob}_q)^m = \operatorname{Frob}_{q^m}$ is the identity on \mathbb{F}_{q^m} , is obvious. Since the extension $\mathbb{F}_{q^m}/\mathbb{F}_q$ is normal and of degree m, the group $\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)$ must have size m, and we will be done if we can show that $(\operatorname{Frob}_q)^k$, for $k = 0, 1, \ldots, m-1$, are distinct elements of $\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)$.

It is enough to show that none of $(\operatorname{Frob}_q)^k$, for $k=1,2,\ldots,m-1$, is the identity map on \mathbb{F}_{q^m} , for then we will have shown that Frob_q is of order exactly equal to m. But, if any such $(\operatorname{Frob}_q)^k$ were the identity map, then the polynomial $X^{q^k}-X$ would have q^m distinct roots in \mathbb{F}_{q^m} , which is impossible in a field since $q^k < q^m$.

We can now use the Galois correspondence between subgroups of the Galois group and intermediate fields of a field extension to immediately classify all the intermediate fields in the extension $\mathbb{F}_{q^m}/\mathbb{F}_q$.

Theorem 4.2. The field extension $\mathbb{F}_{q^m}/\mathbb{F}_q$ contains exactly one intermediate field isomorphic to \mathbb{F}_{q^d} , for each divisor d of m, and no others. In particular, the subfields of \mathbb{F}_{p^n} are precisely the fields \mathbb{F}_{p^d} for $d \mid n$.

Proof. By the fundamental theorem of Galois theory, each intermediate field of $\mathbb{F}_{q^m}/\mathbb{F}_q$ corresponds to a subgroup of $\operatorname{Gal}(\mathbb{F}_{q^m}/\mathbb{F}_q)$. The latter is a cyclic group of order m, so its subgroups are exactly the cyclic groups generated by $(\operatorname{Frob}_q)^d$, one for each $d \mid m$. The fixed field of $(\operatorname{Frob}_q)^d$ is the set of roots of $X^{q^d} - X$, which forms a subfield of \mathbb{F}_{q^m} isomorphic to \mathbb{F}_{q^d} , so the result follows.

The subfields of \mathbb{F}_{p^n} can be obtained by applying the above considerations to the extension $\mathbb{F}_{p^n}/\mathbb{F}_p$.

References

[1] Kenneth Ireland & Michael Rosen, A Classical Introduction to Modern Number Theory, Second Edition, Springer-Verlag, 1990 (GTM 84). $[2]\ \ {\rm Ian\ Stewart},\ Galois\ Theory,\ Second\ Edition,\ {\rm Chapman\ \&\ Hall},\ 1989.$