26 maggio 2025 Junedi 26 maggio 2025 13:09					
	ESER	C171 SUL	CALCOLO DIFFER	RUENZI AL E	
(1) eq. d	elle tongent	ne fund	indical,	y = f(c) + f'(c) (-	n - c)
	-1) -2nl	+3 n		.= 1	
f(n) = -	$3n^{2}+3n$			1 , 7 2 1 7 4 1	
	, -2×+3 -6×+3		nc < - 1 ₋₁	$-1 > 1$ $\beta_{4}'(1) = 1$	
(11) =	-6n+3		n<-1,	$\beta_{4}'(1) = 1$ $\beta_{4}'(1) = 1$ $\beta_{1}'(1) = -3$	\$ E'(1)
c, = 0 (0)	= 1	(0) = 3	t ₂ : y = 2	1 + 3 n	
$c_z = 1$ $\beta(1) =$	1 6'(1)=3, (1)=1	t'; y = 1 = t"; u = 2 +	(n-1) de niw (n-1) de dr.	P. A160L030
C3=2	s 6' (2) = -1		- (· · · · ·)	
f(n) = a	2 ol 2 ol 1 ol 2 ol 1 ol 2 ol 1 ol 1 ol		c, = -3 cz	= -2	
	and 2th		n < - 2 n ≥ - 2		
	and the	1 -	271.42-7.11 2	n < - 2	β'(-z)=- 2
b'(n)=		271+6-27	$\frac{2x+2-1x}{4+1} = \frac{2}{4+1}$ $= \frac{6}{(x+3)^2 + 4+1}$	n>-2	$b'_{+}(-z) = \frac{c}{c_{+}}$
	(1 4 4 3)	(n+3) ²	(n+3)2+4212		6+ (-1)- 17
C _R = -3	f (-3) onc	g3 (-3	$\frac{2}{37} = -\frac{2}{37} \qquad t_A$	$y = -andy 3 - \frac{2}{37}$	7 + 3)
C ₂ = - 2	f(-z)= - a	ulg 4 p'(-2))= - = 1	t'; y= - ard 4 - 2	(n+2) PUNTO
			24 7 14	$t_2: y = -andy + \frac{6}{1+}$	AMGOL
c ₃ = 0	f(°)=°	f'(0) = \frac{2}{3}		$t_{3} : y = \frac{2}{3} \pi$	

C3 = 0	f(o)=o	$\beta'(\circ) = \frac{2}{3}$		t ₃ ; y =	2 3 n	
					y = 8(c) + 8'(c)	(71-0)
fln)	= log (12-3)	+ 1)	c, = 1	$c_1 = 3$	C2 = 4	
21	/ log (4- n) -	ot ∠ 3	011- / 7-4	- n<3 f-	(3) = -1
β(π) =	leg (4-n)) 7	6	1 (2) - 1	- n<3 l- n>3 l+	3 (3) =1
				,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,		
C ₄ = 1	f(1)= ez 3	{'(ı) = - =	<u>4</u>	! y = log 3	- 1 (n-1)	
						0
C ₁ - 3	((3) - 6	b'(3) = -1, b.	(3) = 1	y = 71-3) le sin. Le dr.	ngo (·
	(1) - 8	01(1) - 1		y = log z +		
	(4) = log z					
Propos	6	(n)= \n-2 +x	2-24 +1	C1 = 0, C1 =	2	
	P	(n) = eog ((n	-41 3 + 1 × 1)	c, = -1 c2	=0 C3=1	
		(n) = and 1-			2 = 0 C3 = 1	
	5		+3	2, 1	2 = 0	
	D 6	<i>(</i> 01 . 1 .	00 . 1. (
		nell'interva	الم المحادث		€30,4[: p'(c)=0}	
f(x)=	n2-3n t	22 - 2+1	[-1,4		= Ja, 4[. 3 p' (c) (7
				2 = 2	a; b}	
	3 x² - 4 n	4 1		n=0, n=3		
f(x)=	$3x^{2} - 4x$ $x^{2} + 2x + 1$			06263		
				n<0, n>3	6'(0)=-4 6'(3)	= 14
f' (n) =	22+2			06763	l'(0)=2 l'(3)	
					× 6'(0), > 6'(3	
	for $n = \frac{2}{3} \notin$ for $n = -1$]-∞, 2[∪]3) + 00 [} => A	= · • •	B= {0;3} C=	2-1-, 4 5
	Pl 3)				=33	
min	-b = 1 = bl	0)	mexf = 33 =	B(4)		

Nuova sezione 1 Pagina 2

1, (c) 1,	rl 3)	= 16	(-1)= 8	g (4) = 33	
E1, 47	n f = 1 = 6(0) un C-1	= xf = 33 = 6(a)	
f(x) =	log 121 41 224 3	2	-2, 3]	- x ² -3-2x ²	750 P(2)-1
f(n)=	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	nco f'(1) = 1-71 1-71 1-71 1-71 1-11	$\frac{-\chi^{2}-3-2\chi^{2}}{(\chi^{2}+3)^{2}} = \frac{1}{\chi-1}$ $\frac{2^{2}+3-2\chi^{2}}{(\chi^{2}+3)^{2}} = \frac{3-\chi^{2}}{(\chi^{2}+3)^{2}}$ $\frac{3-\chi^{2}}{(\chi^{2}+3)^{2}} = \frac{3-\chi^{2}}{(\chi^{2}+3)^{2}}$	$h_{-}(0) = 4$
B= 1 # 5	209 C=	2-2;35			₹ p'(>)
			fer n= ∫3 ∈ Jo	p, +00 C A = { 53	: 5
f(53)= by 1) =lag \frac{1}{3}	f(-2)=log.	$\frac{3}{7}$ $\left(\left(3 \right) \right) = \log 3$	1 3
	6	og 3 4 Cos 3	3 /	$\frac{+1}{3}$ $\frac{1}{3}$ $\frac{7}{6}$ $\frac{\sqrt{3}+1}{6}$ $\frac{7}{3}$ $\frac{1}{4}$ $\frac{1}{3}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{4}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$ $\frac{1}{5}$	
(9),	$\log \frac{3}{7} = \beta ($		3 J	3 2 3 5 = 1 NO 7 3.	
(-1 ₁ 3)	ez = f(0) = f(3)			
	x) = 3x + x -	- 2 6"	(2)		
g' l	n) = 12 n ³ + 1	β"(¬	.) = 36 n²	("(2) = 144 >0 ("(2) = 37 >0 =	=) n=2 min rel?
in	c=z fēa	esc e cow.			
g ($\frac{\chi}{\chi_{2}^{2}+1}$ $\zeta = 0$ $c_{2}=1$	l'(n) =	22+1 1-22 e (22+1)2	_	
	c ₂ = 1			e -2x (x2+1)x- 4x	
		=	2 (1-22) e (2+1)	$-2n^{3}-2n-4n+4nc$ -4 $(n^{2}+1)^{3}$	3

```
= e (1-21) + (21)3
                                                                                                                                                                                                                                                                                                                                                                                                       = \frac{x^{2}}{x^{2}+1} \frac{(1-x^{2})^{2}+(2x^{2}-6x)(x^{2}+1)}{(x^{2}+1)^{4}}
                                          ρ"(0)=1>0 → dè min el? ρ'(0)=1 → NO ρ in c=0 è alesc e com
                                        β'(1) = 0 → Il f. i ster.
                                                                         nel f. c=1 & ac un mex rel
\int_{0}^{\infty} \int_{0}^{\infty} \left( x \right) = e^{-\frac{1}{n-1}}
                                                                                                                                                                                                                                                                                                                                                                                                  din. che è invent in 32, + 00 C
                                                                                                                                                                                                                                                                                                                                                                                     trevere l'in de def de f-1
                                                                                                                                                                                                                                                                                                                                                                                             cala (p-1) (e1)
                              \beta'(a) = e^{\frac{1}{n-2}} \frac{-1}{(n-1)^2} < 0 \quad \forall n \in \mathcal{J}_1 + \infty ( \Rightarrow )  | \beta | 
                                                               \beta: J_{2i+\infty} \subset S_{2i+\infty} \subset J_{2i+\infty} \subset J_{2i+
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            31/10 = 0m (/x) = +00
                                                    6-1: ) 1,+∞[ >> ] 2,+∞[
                                   cale. (f^{-1})(e^{2}) = \frac{1}{f'(e)} love c = tele de f(c) = e^{2}
                                               11, olvere \ell' = \ell' \ell' 
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                    N = \frac{S}{2} \in \int Z_1 + \infty I
                                                   l'(\frac{5}{7}) = -4 \frac{2}{7} \div 0 => (\frac{6}{7})'(\frac{1}{2}) = -\frac{1}{4 \frac{2}{7}}
                                            f(x) = and f\left(\frac{n+1}{n-1}\right)
                                                                                                                                                                                                                                                                                                                                   3-∞,-1[
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          (\ell^{-1})'\left(\frac{\pi}{6}\right)
                        In ]-01-1 ( (1)= and \ \frac{1+1}{n-1}
                                         \beta'(n) = \frac{1}{1 + \frac{n+1}{n-1}} \frac{1}{2\sqrt{\frac{n+1}{n-1}}} \frac{n-1-n-1}{(n-1)^2} = \frac{1}{2n} \frac{1}{\sqrt{\frac{n+1}{n-1}}} \frac{1}{(n-1)^2}
```

$= \frac{1}{2\pi (n-1)} \sqrt{\frac{n-1}{n+1}} < 0 \forall n \in \mathcal{C} - \infty, -1 \subseteq \mathbb{R} \text{ freth dear on insert}$
$\frac{\ln \beta - 2 - \omega }{2 - \omega_{1} - 1 \zeta} \left(- \lambda \right) = 0 \qquad \text{Su} \beta = 2 - \omega $
$ni = 0$ see $e^{i}e_{e}$. $g(n) = \frac{\pi}{6}$ and $g(n+1) = \frac{\pi}{6} = and g(n+1) = \frac{\pi}{13}$
$\frac{\chi+1}{\chi-1} = \frac{1}{3}$ => $3\pi+3 = \pi-1$ => $\pi = -2 \in J-\omega, -1$
$\beta'(-2) = -\frac{1}{12}\sqrt{3} \neq 0 \Rightarrow (\beta^{-1})'(\frac{\pi}{6}) = -\frac{12}{\sqrt{3}}$
(6)(6)(6)(7)
$f(x) = e^{\frac{x}{2^{2}+1}}$ $3-1,10 \qquad \left(e^{-2} \right)'(1) \qquad \left(e^{-2} \right) = 0$
I CAPITOLO
$\frac{z}{z} = a + ib \qquad 2z = z ^2 = a^2 + b^2 \qquad (i^2 = -1)$
t = \begin{align*}
$\frac{2-i}{3i+5} = \frac{(2-i)(5-3i)}{(5+3i)(5-3i)} = \frac{7-11i}{25+9} = \frac{7}{34} = \frac{11}{34}i$
3i+5 $(5+3i)(5-3i)$ $25+9$ 34 34
12 = { w,, w, } \(= \int \left[\frac{1}{\text{lett}} \] \(\text{cas} \) \(\text{arg} \) \(\text{lett} \) \(\text{lett} \)
Wo = Tel (cos d ti son d)
$U_{\lambda} = \int z \left(\cos \left(\frac{1}{m} + \frac{2\pi}{m} \right) \pm i \sin - \frac{1}{m} \right)$
$\sqrt{2} = \pm \sqrt{ 2 } \left(\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2} \right)$ $\sqrt{1+6i} \qquad 2 = \sqrt{37} \qquad \cos \alpha = \frac{1}{\sqrt{37}}$
$\sqrt{2} = \pm \sqrt{121} \left(\cos \frac{\alpha}{2} + i \sin \frac{\alpha}{2} \right)$ $\sqrt{1467} \qquad \pm 1 = \sqrt{37} \qquad \cos \alpha = \frac{1}{\sqrt{37}}$
$\sqrt{1+6i} = \pm \sqrt{3} + i + i + \frac{d}{2}$ $\cos \frac{d}{2} = \sqrt{1+\cos x}$ $\sin \frac{d}{2} = \sqrt{1-\cos x}$
$\sqrt{1+6i} = \pm \sqrt{3} + i \approx \frac{d}{2}$ $0 \Rightarrow \frac{d}{2} = \sqrt{1+\cos x}$ $2 \Rightarrow \sqrt{1+\cos x}$
$\sqrt{-16} = \pm 6 $ $\alpha = \pm 6 $ $\alpha = -6 $ $\alpha = -6 $ $\alpha = 6 $
V u · · · · · · · · · · · · · · ·

