Agora e a saa rez.

Seção 1 (Retas tangentes e taxas de variação)

1) Determine a inclinação da reta tangente à curva $y=x^2+2x+1$ no ponto (1,4). Devemos encontrar m(1), usando o limite:

$$m(1) = \lim_{\Delta x \to 0} \frac{f(1 + \Delta x) - f(1)}{\Delta x}$$

$$m(1) = \lim_{\Delta x \to 0} \frac{(1 + \Delta x)^2 + 2(1 + \Delta x) + 1 - 4}{\Delta x}$$

$$m(1) = \lim_{\Delta x \to 0} \frac{1 + 2\Delta x + (\Delta x)^2 + 2 + 2\Delta x + 1 - 4}{\Delta x}$$

$$m(1) = \lim_{\Delta x \to 0} \frac{\Delta x(\Delta x + 4)}{\Delta x}$$

$$m(1) = \lim_{\Delta x \to 0} (\Delta x + 4) = 4$$

Assim, a inclinação da reta tangente à curva $y=x^2+2x+1$ no ponto (1,4) é igual a 4.

2) Qual a equação da reta tangente à esta mesma curva $y=x^2+2x+1$ no ponto (-1,0)?

Devemos determinar m(-1)

$$m(-1) = \lim_{\Delta x \to 0} \frac{f(-1 + \Delta x) - f(-1)}{\Delta x}$$

$$m(-1) = \lim_{\Delta x \to 0} \frac{(-1 + \Delta x)^2 + 2(-1 + \Delta x) + 1 - 0}{\Delta x}$$

$$m(-1) = \lim_{\Delta x \to 0} \frac{1 - 2\Delta x + (\Delta x)^2 - 2 + 2\Delta x + 1 - 0}{\Delta x}$$

$$m(-1) = \lim_{\Delta x \to 0} \Delta x = 0$$

Assim, a inclinação da reta tangente à curva $y=x^2+2x+1$ no ponto (-1,0) é igual a 0.

A reta tangente tem como equação:

$$y-f(-1)=m(x-(-1))$$

 $y-0=0(x+1)$
 $y=0$.

Agora e a sua vez:

Seção 2 (Derivada de uma função)

Determine a derivada das seguintes funções, usando a definição:

a)
$$g(x) = \sqrt{x}$$

$$g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{\sqrt{x + \Delta x} - \sqrt{x}}{\Delta x} \cdot \frac{(\sqrt{x + \Delta x} + \sqrt{x})}{(\sqrt{x + \Delta x} + \sqrt{x})}$$

$$= \lim_{\Delta x \to 0} \frac{x + \Delta x - x}{\Delta x (\sqrt{x + \Delta x} + \sqrt{x})}$$

$$= \lim_{\Delta x \to 0} \frac{1}{\sqrt{x + \Delta x} + \sqrt{x}} = \frac{1}{2\sqrt{x}}$$

b)
$$v(t) = 4 - t^2$$

 $v'(t) = \lim_{\Delta t \to 0} \frac{v(t + \Delta t) - v(t)}{\Delta t}$
 $= \lim_{\Delta t \to 0} \frac{4 - (t + \Delta t)^2 - (4 - t^2)}{\Delta t}$
 $= \lim_{\Delta t \to 0} \frac{4 - t^2 - 2t\Delta t - (\Delta t)^2 - 4 + t^2}{\Delta t}$
 $= \lim_{\Delta t \to 0} \frac{\Delta t(-2t - \Delta t)}{\Delta t}$
 $= \lim_{\Delta t \to 0} (-2t - \Delta t) = -2t - 0 = -2t$

c)
$$r(\theta) = \frac{2}{\theta + 1}$$

$$r'(\theta) = \lim_{\Delta\theta \to 0} \frac{r(\theta + \Delta\theta) - r(\theta)}{\Delta\theta}$$

$$= \lim_{\Delta\theta \to 0} \frac{\frac{2}{\theta + \Delta\theta + 1} - \frac{2}{\theta + 1}}{\Delta\theta}$$

$$= \lim_{\Delta\theta \to 0} \frac{\frac{2(\theta + 1) - 2(\theta + \Delta\theta + 1)}{\Delta\theta}}{\frac{(\theta + \Delta\theta + 1)(\theta + 1)}{\Delta\theta}}$$

$$= \lim_{\Delta\theta \to 0} \frac{-2\Delta\theta}{(\theta + \Delta\theta + 1)(\theta + 1)} \cdot \frac{1}{\Delta\theta}$$

$$= \lim_{\Delta\theta \to 0} \frac{-2}{(\theta + \Delta\theta + 1)(\theta + 1)} = -\frac{2}{(\theta + 1)^2}$$

Seção 3 (Regras de derivação)

Encontre a derivada das seguintes funções:

a)
$$y = 7 - \frac{3}{4}x^4$$

 $y' = 0 - 4 \cdot \frac{3}{4}x^3 = -3x^3$

b)
$$f(t) = 4t^3 - 6t + 3$$

$$f'(t) = 3 \cdot 4t^2 - 6 + 0 = 12t^2 - 6$$

c)
$$g(s) = (s^3 + 1)(s^2 + 3s)$$

Usamos a regra do produto, então:

$$g'(s) = (s^{3} + 1)(s^{2} + 3s)' + (s^{3} + 1)'(s^{2} + 3s)$$

$$= (s^{3} + 1)(2s + 3) + 3s^{2}(s^{2} + 3s)$$

$$= 2s^{4} + 3s^{3} + 2s + 3 + 3s^{4} + 9s^{3}$$

$$= 5s^{4} + 12s^{3} + 2s + 3$$

d)
$$h(x) = \frac{4}{3} \cdot \frac{x-1}{x+1}$$

Usamos a regra do quociente.

$$h'(x) = \frac{4}{3} \cdot \frac{(x+1)(x-1)' - (x-1)(x+1)'}{(x+1)^2}$$

$$= \frac{4}{3} \cdot \frac{(x+1) - (x-1)}{(x+1)^2}$$

$$= \frac{4}{3} \cdot \frac{2}{(x+1)^2}$$

$$= \frac{8}{3(x+1)^2}$$

e)
$$f(x) = (4-x^3)^{-1} \cdot (x+4)$$

Podemos reescrever a função como um quociente da seguinte forma:

$$f(x) = \frac{(x+4)}{(4-x^3)}$$

Assim, a derivada passa a ser:

$$f'(x) = \frac{(4-x^3)(x+4)' - (x+4)(4-x^3)'}{(4-x^3)^2}$$

$$= \frac{(4-x^3)(1+0) - (x+4)(0-3x^2)}{(4-x^3)^2}$$

$$= \frac{(4-x^3) - (x+4)(-3x^2)}{(4-x^3)^2}$$

$$= \frac{(4-x^3) - (-3x^3 - 12x^2)}{(4-x^3)^2}$$

$$= \frac{4-x^3 + 3x^3 + 12x^2}{(4-x^3)^2}$$

f)
$$y = \frac{2}{x^5} - \frac{5}{2x^6}$$

Podemos reescrevê-la da seguinte maneira:

$$y = 2x^{-5} - \frac{5}{2}x^{-6}$$
, logo

$$y' = -10x^{-6} + 15x^{-7}$$

g)
$$f(x) = \frac{x^2 + 6x}{x} = \frac{x(x+6)}{x} = x+6$$

Logo
$$f'(x) = 1 + 0 = 1$$

h)
$$r(t) = \frac{t^3 - 3t^2 + 1}{2}$$

Que é o mesmo que $r(t) = \frac{1}{2}(t^3 - 3t^2 + 1)$

Logo,
$$r'(t) = \frac{1}{2}(3t^2 - 6t)$$

i)
$$y = \frac{-3}{4}(4-x)(x^3-x)$$

$$y = \frac{-3}{4} \left[(4-x)(x^3 - x)' + (4-x)'(x^3 - x) \right]$$

$$= \frac{-3}{4} \left[(4-x)(3x^2 - 1) + (-1)(x^3 - x) \right]$$

$$= \frac{-3}{4} \left[12x^2 - 4 - 3x^3 + x - x^3 + x \right]$$

$$= \frac{-3}{4} \left[-4x^3 + 12x^2 + 2x - 4 \right]$$

$$= 3x^3 - 9x^2 - \frac{3}{2}x + 3$$

j)
$$g(x) = (x-1)(x^2-2)(x^3-3)$$

$$g'(x) = (x-1) [(x^{2}-2)(x^{3}-3)]' + (x-1)' [(x^{2}-2)(x^{3}-3)]$$

$$= (x-1) [(x^{2}-2)(x^{3}-3)]' + (x^{2}-2)' (x^{3}-3)] + (1-0)(x^{2}-2)(x^{3}-3)$$

$$= (x-1) [(x^{2}-2)(3x^{2}) + (2x)(x^{3}-3)] + (1)(x^{2}-2)(x^{3}-3)$$

$$= (x-1) [3x^{4} - 6x^{2} + 2x^{4} - 6x] + (x^{5} - 3x^{2} - 2x^{3} + 6)$$

$$= 3x^{5} - 6x^{3} + 2x^{5} - 6x^{2} - 3x^{4} + 6x^{2} - 2x^{4} + 6x + x^{5} - 3x^{2} - 2x^{3} + 6$$

$$= 6x^{5} - 5x^{4} - 8x^{3} - 3x^{2} + 6x + 6$$

Seção 4 (Regra da Cadeia)

Calcule a derivada $\frac{dy}{dx}$ das funções dadas:

a)
$$y = (4 - x^3)^8$$

Fazemos $y=u^8$, sendo $u=4-x^3$. Usando a regra da cadeia, temos:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= 8u^7 \cdot (-3x^2)$$

$$= 8(4-x)^7 \cdot (-3x^2)$$

$$= -24x^2 (4-x)^7$$

b)
$$y = \frac{4}{(3x^2 - x + 1)^3}$$

Podemos reescrever a função da seguinte forma: $y = 4 \cdot \left(3x^2 - x + 1\right)^{-3}$. Pela regra da cadeia, temos:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= -12u^{-4} \cdot (6x - 1)$$

$$= -12(3x^{2} - x + 1)^{-4} \cdot (6x - 1)$$

$$= -12 \cdot \frac{(6x - 1)}{(3x^{2} - x + 1)^{-4}}$$

$$= \frac{12 - 72x}{(3x^{2} - x + 1)^{-4}}$$

c)
$$y = (x^2 + 3x - 1)^4 (x^2 - x)$$

$$y' = (x^2 + 3x - 1)^4 (x^2 - x)' + [(x^2 + 3x - 1)^4]' (x^2 - x)$$

$$= (x^2 + 3x - 1)^4 (2x - 1) + [(x^2 + 3x - 1)^4]' (x^2 - x)$$

Calculando a derivada de $y = (x^2 + 3x - 1)^4$ separadamente temos $\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$, sendo $y = u^4$, $u = x^2 + 3x - 1$ logo:

$$\frac{dy}{dx} = 4u^{3} \cdot (2x+3)$$
$$= 4(x^{2} + 3x - 1)^{3} \cdot (2x+3)$$

Assim,

$$y' = (x^2 + 3x - 1)^4 (2x - 1) + \left[4(x^2 + 3x - 1)^3 (2x + 3) \right] (x^2 - x)$$
$$= (x^2 + 3x - 1)^3 \left[(x^2 + 3x - 1)(2x - 1) + 4(2x + 3)(x^2 - x) \right]$$

d)
$$y = \left(x^2 - \frac{4}{x^3}\right)^4$$

Podemos reescrever a função da seguinte forma $y=\left(x^2-4x^{-3}\right)^4$. Temos $u=x^2-4x^{-3}$, sendo . Pela regra da cadeia, temos:

$$\frac{dy}{dx} = \frac{dy}{du} \cdot \frac{du}{dx}$$

$$= 4u^{3} \cdot (2x + 12x^{-4})$$

$$= 4(x^{2} - 4x^{-3})^{3} \cdot (2x + 12x^{-4})$$

$$= 4\left(x^{2} - \frac{4}{x^{3}}\right)^{3} \cdot \left(2x + \frac{12}{x^{4}}\right)$$

Encontre a derivada das funções:

a)
$$f(x) = \sqrt[3]{x} + \frac{4}{x^3}$$

Reescrevendo a função, temos $f(x) = x^{\frac{1}{3}} + 4x^{-3}$. Então,

$$f'(x) = \frac{1}{3}x^{\frac{-2}{3}} - 12x^{-4}$$
$$= \frac{1}{3}x^{\frac{-2}{3}} - \frac{12}{x^4}$$

b)
$$y = (x^4 + x^3 - 2x)^4$$

$$y' = 4(x^4 + x^3 - 2x)^3 (x^4 + x^3 - 2x)'$$
$$= 4(x^4 + x^3 - 2x)^3 (4x^3 + 3x^2 - 2)$$

c)
$$f(x) = (x^{-3} + 2)(x^2 - x)$$

$$f'(x) = (x^{-3} + 2)(x^{2} - x)' + (x^{-3} + 2)'(x^{2} - x)$$
$$= (x^{-3} + 2)(2x - 1) + (-3x^{-4})(x^{2} - x)$$
$$= \left(\frac{1}{x^{3}} + 2\right)(2x - 1) - \frac{3}{x^{4}}(x^{2} - x)$$

d)
$$y = \frac{5 - x^3}{(x+2)^2}$$

$$y' = \frac{(x+2)^{2} (5-x^{3})' - (5-x^{3}) [(x+2)^{2}]'}{[(x+2)^{2}]^{2}}$$

$$= \frac{(x+2)^{2} (-3x^{2}) - (5-x^{3}) \cdot 2 \cdot (x+2)(x+2)'}{[(x+2)^{2}]^{2}}$$

$$= \frac{-3x^{2} (x+2)^{2} - 2(5-x^{3})(x+2) \cdot 1}{(x+2)^{4}}$$

$$= \frac{(x+2) [-3x^{2} (x+2) - 2(5-x^{3})]}{(x+2)^{4}}$$

$$= \frac{-x^{3} - 6x^{2} - 10}{(x+2)^{3}}$$

e)
$$g(x) = \frac{x^2 - x}{\sqrt{4 - x^4}}$$

Reescrevendo a função temos $g(x) = \frac{x^2 - x}{\left(4 - x^4\right)^{\frac{1}{2}}}$.

$$g'(x) = \frac{(4-x^4)^{\frac{1}{2}}(x^2-x)' - (x^2-x)\left[(4-x^4)^{\frac{1}{2}}\right]'}{\left[(4-x^4)^{\frac{1}{2}}\right]^2}$$

$$= \frac{\sqrt{4-x^4}(2x-1) - (x^2-x)\frac{1}{2}(4-x^4)^{\frac{-1}{2}}(4-x^4)'}{(4-x^4)}$$

$$= \frac{\sqrt{4-x^4}(2x-1) - \frac{1}{2}\frac{(x^2-x)}{\sqrt{4-x^4}}(-4x^3)}{(4-x^4)}$$

$$= \frac{(4-x^4)(2x-1) + 2x^3(x^2-x)}{(4-x^4)^{\frac{3}{2}}}$$

f)
$$h(x) = \sqrt{\frac{x^4 - 4}{16}}$$

Reescrevendo a função temos $h(x) = \sqrt{\frac{x^4 - 4}{16}} = \frac{\sqrt{x^4 - 4}}{\sqrt{16}} = \frac{1}{4}(x^4 - 4)^{\frac{1}{2}}.$

$$h'(x) = \frac{1}{4} \cdot \frac{1}{2} (x^4 - 4)^{-\frac{1}{2}} (x^4 - 4)'$$

$$= \frac{1}{8} (x^4 - 4)^{-\frac{1}{2}} \cdot 4x^3$$

$$= \frac{1}{2} \frac{x^3}{\sqrt{x^4 - 4}}$$

Seção 5 (Derivadas das funções exponenciais e logarítmica)

Determine a derivada das funções, usando as regras de derivação.

a)
$$y = e^{\frac{x^2}{4}}$$
, $y' = e^{\frac{x^2}{4}} \cdot \left(\frac{x^2}{4}\right)' = e^{\frac{x^2}{4}} \cdot \left(\frac{2x}{4}\right) = \frac{x}{2}e^{\frac{x^2}{4}}$

b)
$$y = \log_3(x^2 + 4)$$

 $y' = \frac{(x^2 + 4)}{(x^2 + 4)}\log_3 e$
 $= \frac{(2x + 0)}{(x^2 + 4)}\log_3 e$
 $= \frac{(2x)}{(x^2 + 4)}\log_3 e$

c)
$$y = (x+1)^{2x+1}$$

$$y' = (2x+1)(x+1)^{2x+1-1}(x+1)' + (x+1)^{2x+1}\ln(x+1)(2x+1)'$$

$$= (2x+1)(x+1)^{2x}(1+0) + (x+1)^{2x+1}\ln(x+1)(2+0)$$

$$= (2x+1)(x+1)^{2x} + 2(x+1)^{2x+1}\ln(x+1)$$

d)
$$y = 4^{\frac{x+1}{x}}$$

 $y' = 4^{\frac{x+1}{x}} \ln 4 \left(\frac{x+1}{x} \right)'$
 $= 4^{\frac{x+1}{x}} \ln 4 \left(\frac{(x)(x+1)' - (x+1)x'}{x^2} \right)$
 $= 4^{\frac{x+1}{x}} \ln 4 \left(\frac{(x)(1+0) - (x+1) \cdot 1}{x^2} \right)$
 $= 4^{\frac{x+1}{x}} \ln 4 \left(\frac{x-x-1}{x^2} \right)$
 $= \frac{-1}{x^2} 4^{\frac{x+1}{x}} \ln 4$

Seção 6 (Derivadas sucessivas)

1) Encontrar a derivada de 4ª ordem da função $y = x^5 - x^4 + 3x^2 - \frac{x}{3}$.

$$y' = 5x^4 - 4x^3 + 6x - \frac{1}{3}$$

$$y'' = 20x^3 - 12x^2 + 6$$

$$v''' = 60x^2 - 24x$$

$$y^{(4)} = 120x - 24$$

2) Determine a derivada de 2ª ordem da função:

$$f(x) = \frac{x+1}{x}$$

A função f(x) pode ser reescrita como $f(x) = \frac{x}{x} + \frac{1}{x} = 1 + \frac{1}{x} = 1 + x^{-1}$.

$$f'(x) = 0 - x^{-1-1} = -x^{-2} = -\frac{1}{x^2}$$

$$f''(x) = 2x^{-3} = \frac{2}{x^3}$$

3) Determine a derivada de 3ª ordem da função y= -ln x.

$$y' = \frac{-1}{x} = -x^{-1}$$

$$y'' = x^{-2} = \frac{1}{x^2}$$

$$y''' = -2x^{-3} = \frac{-2}{x^3}$$

Seção 7 (Derivação implícita)

Encontre y' das funções definidas implicitamente pelas equações:

a)
$$xy - 3x^2y^3 = 4$$

$$(xy - 3x^{2}y^{3})' = (4)'$$

$$(xy)' - (3x^{2}y^{3})' = (4)'$$

$$xy' + x'y - (3x^{2}(y^{3})' + (3x^{2})'y^{3}) = 0$$

$$xy' + 1y - (3x^{2}3y^{2}y' + 6xy^{3}) = 0$$

$$xy' + y - 9x^{2}y^{2}y' - 6xy^{3} = 0$$

$$y'(x - 9x^{2}y^{2}) = 6xy^{3} - y$$

$$y' = \frac{6xy^{3} - y}{x - 9x^{2}y^{2}}$$

b)
$$3x - x^2 + y^2 = 9y - 4$$

$$(3x - x^{2} + y^{2})' = (9y - 4)'$$

$$(3x)' - (x^{2})' + (y^{2})' = (9y)' - (4)'$$

$$3 - 2x + 2yy' = 9y' - 0$$

$$2yy' - 9y' = 2x - 3$$

$$y'(2y - 9) = 2x - 3$$

$$y' = \frac{2x - 3}{2y - 9}$$

Seção 8 (Diferencial)

1) Encontre Δy e dy para as funções indicadas:

a)
$$y = \frac{1}{3x^3}$$
, $\Delta x = 0,001$, $x = 1$

$$\Delta y = f(x_2) - f(x_1)$$

$$= f(x_1 + \Delta x) - f(x_1)$$

$$= f(1 + 0,001) - f(1)$$

$$= \frac{1}{3(1,001)^3} - \frac{1}{3(1)^3}$$

$$= 0,33233533 - 0,3333$$

$$-0,00099800333$$

$$f'(x) = \left(\frac{1}{3} \cdot (-3)x^{-3-1}\right)$$
$$= -x^{-4}$$
$$= -\frac{1}{x^4} dx$$

$$dy = f'(x)dx$$
$$= -\frac{1}{x^4}dx$$
$$= -\frac{1}{1^4}0,001$$
$$= -0,001$$

b)
$$y = (x+2)^2$$
, $\Delta x = 0.03$, $x = \frac{1}{2}$

$$\Delta y = f(x_2) - f(x_1)$$

$$= f(x_1 + \Delta x) - f(x_1)$$

$$= f\left(\frac{1}{2} + 0,03\right) - f\left(\frac{1}{2}\right)$$

$$= \left(\frac{1}{2} + 0,03 + 2\right)^2 - \left(\frac{1}{2} + 2\right)^2$$

$$= (2,53)^2 - (2,5)^2$$

$$= 6,4009 - 6,25$$

$$= 0,1509$$

$$f'(x) = 2(x+2)$$

$$dy = f'(x)dx$$

$$= 2(x+2)dx$$

$$= 2(0,5+2) \cdot 0,03$$

$$= 2(2,5) \cdot 0,03$$

$$= 0,15$$

2) Use diferenciais para estimar o volume de cobre na cobertura de um cubo de aço com 20cm de lado e coberto com 0,01cm de cobre.

O volume do cubo de aço é dado por V=P, sendo l=20 e a variação $\Delta l=dl=0,01$. Assim, é possível calcular dV:

$$dV = 3l^2 dl$$

= 3(20)² 0,01

O volume de cobre necessário para cobrir o cubo com um aumento de 0,01cm no lado é de 12cm³.

Atividades de auto-avaliação

1) Determine a derivada das funções, usando a definição:

a)
$$g(x) = \sqrt[3]{x}$$

$$g'(x) = \lim_{\Delta x \to 0} \frac{g(x + \Delta x) - g(x)}{\Delta x}$$
$$= \lim_{\Delta x \to 0} \frac{\sqrt[3]{x + \Delta x} - \sqrt[3]{x}}{\Delta x}$$

Para resolver este limite, é possível fazer uma substituição de variáveis chamando $u^3 = x + \Delta x$. Reescrevendo o limite temos:

$$g'(x) = \lim_{u \to \sqrt[3]{x}} \frac{\sqrt[3]{u^3} - \sqrt[3]{x}}{u^3 - x}$$
$$= \lim_{u \to \sqrt[3]{x}} \frac{u - \sqrt[3]{x}}{u^3 - x}$$

Ao substituirmos u no limite chegamos a uma indeterminação do tipo

 $\frac{0}{0}$. Para resolve-la, vamos fatorar o polinômio do denominador, cuja raiz é igual a $\sqrt[3]{x}$. Veja como fica o Briot-Ruffini:

	1	0	0	-x
$\sqrt[3]{x}$		$\sqrt[3]{x}$	$\left(\sqrt[3]{x}\right)^2$	x
	1	$\sqrt[3]{x}$	$\left(\sqrt[3]{x}\right)^2$	0

$$g'(x) = \lim_{u \to \sqrt[3]{x}} \frac{u - \sqrt[3]{x}}{\left(u - \sqrt[3]{x}\right) \left(u^2 + \sqrt[3]{x} \cdot u + \left(\sqrt[3]{x}\right)^2\right)}$$

$$= \lim_{u \to \sqrt[3]{x}} \frac{1}{\left(u^2 + \sqrt[3]{x} \cdot u + \left(\sqrt[3]{x}\right)^2\right)}$$

$$= \frac{1}{\left(\left(\sqrt[3]{x}\right)^2 + \sqrt[3]{x} \cdot \sqrt[3]{x} + \left(\sqrt[3]{x}\right)^2\right)}$$

$$= \frac{1}{\left(\left(\sqrt[3]{x}\right)^2 + \left(\sqrt[3]{x}\right)^2 + \left(\sqrt[3]{x}\right)^2\right)}$$

$$= \frac{1}{3\left(\sqrt[3]{x}\right)^2} = \frac{1}{3\sqrt[3]{x}^2}$$

b)
$$h(x) = \frac{\sqrt{x+1}}{3}$$

$$h'(x) = \lim_{\Delta x \to 0} \frac{\frac{\sqrt{x + \Delta x + 1}}{3} - \frac{\sqrt{x + 1}}{3}}{\frac{\Delta x}{\Delta x}}$$

$$= \lim_{\Delta x \to 0} \frac{1}{3} \cdot \frac{\sqrt{x + \Delta x + 1} - \sqrt{x + 1}}{\Delta x}$$

$$= \lim_{\Delta x \to 0} \frac{1}{3} \cdot \frac{\left(\sqrt{x + \Delta x + 1} - \sqrt{x + 1}\right)\left(\sqrt{x + \Delta x + 1} + \sqrt{x + 1}\right)}{\Delta x}$$

$$\left(\sqrt{x + \Delta x + 1} + \sqrt{x + 1}\right)$$

$$= \lim_{\Delta x \to 0} \frac{1}{3} \cdot \frac{\left(\sqrt{x + \Delta x + 1}\right)^2 - \left(\sqrt{x + 1}\right)^2}{\Delta x \left(\sqrt{x + \Delta x + 1} + \sqrt{x + 1}\right)}$$

$$= \lim_{\Delta x \to 0} \frac{1}{3} \cdot \frac{x + \Delta x + 1 - (x + 1)}{\Delta x \left(\sqrt{x + \Delta x + 1} + \sqrt{x + 1}\right)}$$

$$= \lim_{\Delta x \to 0} \frac{1}{3} \cdot \frac{x + \Delta x + 1 - x - 1}{\Delta x \left(\sqrt{x + \Delta x + 1} + \sqrt{x + 1}\right)}$$

$$= \lim_{\Delta x \to 0} \frac{1}{3} \cdot \frac{\Delta x}{\Delta x \left(\sqrt{x + \Delta x + 1} + \sqrt{x + 1}\right)}$$

$$= \lim_{\Delta x \to 0} \frac{1}{3 \left(\sqrt{x + \Delta x + 1} + \sqrt{x + 1}\right)}$$

$$= \frac{1}{3 \left(\sqrt{x + 0 + 1} + \sqrt{x + 1}\right)} = \frac{1}{3 \left(2\sqrt{x + 1}\right)} = \frac{1}{6\sqrt{x + 1}}$$

2) Determine a equação da reta tangente ao gráfico da função $y=x^2-3x$ no ponto x=3.

A equação da reta tangente é dada por $y - y_0 = m(x - x_0)$. O valor de m é dado pela derivada da função no ponto x=3. Assim, temos:

$$y' = 2x-3$$

 $y'(3) = 2 \cdot 3 - 3$
 $y'(3) = 6 - 3 = 3$

Para determinar o valor de y_{σ} é necessário calcular a imagem da função no ponto x=3:

$$f(x) = x^2 - 3x$$

$$f(3) = 3^2 - 3 \cdot 3 = 9 - 9 = 0$$

Substituindo os dados calculados na equação da reta tangente:

$$y - y_0 = m(x - x_0)$$

 $y - 0 = 3(x - 3)$
 $y = 3x - 9$

- 3) Seja a função $y=3x^3+x^2-3$:
- a) Ache a taxa de variação média de y em relação a x no intervalo [1,4].

$$\frac{\Delta y}{\Delta x} = \frac{y(4) - y(1)}{4 - 1} = \frac{\left(3 \cdot 4^3 + 4^2 - 3\right) - \left(3 \cdot 1^3 + 1^2 - 3\right)}{4 - 1} =$$
$$= \frac{\left(192 + 16 - 3\right) - \left(3 + 1 - 3\right)}{3} = \frac{205 - 1}{3} = \frac{204}{3}$$

b) Ache a taxa de variação instantânea de y em relação a x.

$$\frac{dy}{dx} = 9x^2 + 2x$$

c) Ache a taxa de variação instantânea de y em relação a x no ponto $x = \frac{1}{2}$.

Para encontrar a taxa de variação instantânea no ponto $x=\frac{1}{2}$, vamos substituir este ponto no resultado encontrado no item (b):

$$9\left(\frac{1}{2}\right)^2 + 2\left(\frac{1}{2}\right) = 9 \cdot \frac{1}{4} + 2 \cdot \frac{1}{2} = \frac{9}{4} + 1 = \frac{13}{4}$$

4) Determine a derivada das funções dadas:

a)
$$y = \frac{4}{x^3} - \frac{2}{x^4}$$

Reescrevendo a função temos $y = 4x^{-3} - 2x^{-4}$.

$$y' = 4 \cdot -3x^{-4}x' - 2 \cdot -4x^{-5}x'$$
$$= -12x^{-4} \cdot 1 + 8x^{-5} \cdot 1$$
$$= \frac{-12}{x^4} + \frac{8}{x^5}$$

b)
$$y = \frac{2x+3}{4-x^3}$$

 $y' = \frac{(4-x^3)(2x+3)' - (2x+3)(4-x^3)'}{(4-x^3)^2}$
 $= \frac{(4-x^3)(2+0) - (2x+3)(0-3x^2)}{(4-x^3)^2}$
 $= \frac{(4-x^3)(2) - (2x+3)(-3x^2)}{(4-x^3)^2}$
 $= \frac{8-2x^3+6x^3+9x^2}{(4-x^3)^2} = \frac{8+4x^3+9x^2}{(4-x^3)^2}$

c)
$$y = \sqrt{(2x^4 - 1)(5x^3 + 6x)}$$

Reescrevendo a função temos $y = \left[\left(2x^4 - 1 \right) \left(5x^3 + 6x \right) \right]^{\frac{1}{2}}$.

$$y' = \frac{1}{2} \Big[(2x^4 - 1)(5x^3 + 6x) \Big]^{\frac{-1}{2}} \cdot \Big[(2x^4 - 1)(5x^3 + 6x) \Big]'$$

$$= \frac{1}{2} \Big[(2x^4 - 1)(5x^3 + 6x) \Big]^{\frac{-1}{2}} \cdot \Big[(2x^4 - 1)(5x^3 + 6x) + (5x^3 + 6x)(2x^4 - 1)' \Big]$$

$$= \frac{1}{2\sqrt{(2x^4 - 1)(5x^3 + 6x)}} \cdot \Big[(2x^4 - 1)(15x^2 + 6) + (5x^3 + 6x)(8x^3 - 0) \Big]$$

$$= \frac{1}{2\sqrt{(2x^4 - 1)(5x^3 + 6x)}} \cdot (30x^6 + 12x^4 - 15x^2 - 6 + 40x^6 + 48x^4)$$

$$= \frac{(70x^6 + 60x^4 - 15x^2 - 6)}{2\sqrt{(2x^4 - 1)(5x^3 + 6x)}}$$

d)
$$y = \sqrt[4]{x^2 + 2x + 1}$$

Reescrevendo a função temos $y = (x^2 + 2x + 1)^{\frac{1}{4}}$.

$$y' = \frac{1}{4} (x^2 + 2x + 1)^{\frac{1}{4} - 1} (x^2 + 2x + 1)'$$

$$= \frac{1}{4} (x^2 + 2x + 1)^{\frac{-3}{4}} (2x + 2)$$

$$= \frac{2(x+1)}{4(x^2 + 2x + 1)^{\frac{3}{4}}}$$

$$= \frac{(x+1)}{2\sqrt[4]{(x^2 + 2x + 1)^3}}$$

e)
$$f(t) = \sqrt{3t} + \sqrt{\frac{4}{t}}$$

Reescrevendo a função temos $f(t) = (3t)^{\frac{1}{2}} + (\frac{4}{t})^{\frac{1}{2}}$.

$$f'(t) = \frac{1}{2} (3t)^{\frac{1}{2}-1} (3t)' + \frac{1}{2} \left(\frac{4}{t}\right)^{\frac{1}{2}-1} \left(\frac{4}{t}\right)'$$

$$= \frac{1}{2} (3t)^{\frac{-1}{2}} (3) + \frac{1}{2} \left(\frac{4}{t}\right)^{\frac{-1}{2}} \cdot 4 \cdot \frac{-1}{t^2}$$

$$= \frac{3}{2\sqrt{3t}} - \frac{2}{t^2 \sqrt{\frac{4}{t}}} = \frac{3}{2\sqrt{3t}} - \frac{2}{t^2} \sqrt{\frac{t}{4}} = \frac{3}{2\sqrt{3t}} - \frac{2}{t^2} \frac{\sqrt{t}}{2} = \frac{3}{2\sqrt{3t}} - \frac{\sqrt{t}}{t^2}$$

f)
$$r(\theta) = \left(\frac{4}{5\theta}\right)^{\sqrt{\theta}}$$

$$\begin{split} r'(\theta) &= \sqrt{\theta} \cdot \left(\frac{4}{5\theta}\right)^{\sqrt{\theta} - 1} \left(\frac{4}{5\theta}\right)' + \left(\frac{4}{5\theta}\right)^{\sqrt{\theta}} \ln\left(\frac{4}{5\theta}\right) \left(\sqrt{\theta}\right)' \\ &= \sqrt{\theta} \cdot \left(\frac{4}{5\theta}\right)^{\sqrt{\theta} - 1} \left(\frac{4}{5} \cdot \frac{-1}{\theta^2}\right) + \left(\frac{4}{5\theta}\right)^{\sqrt{\theta}} \ln\left(\frac{4}{5\theta}\right) \left(\frac{1}{2\sqrt{\theta}}\right) \end{split}$$

g)
$$f(x) = x^3 \ln\left(\frac{3x+1}{x^3}\right)$$

 $f'(x) = x^3 \left[\ln\left(\frac{3x+1}{x^3}\right)\right]' + \ln\left(\frac{3x+1}{x^3}\right) \cdot (x^3)'$
 $= x^3 \frac{\left(\frac{3x+1}{x^3}\right)'}{\frac{3x+1}{x^3}} + \ln\left(\frac{3x+1}{x^3}\right) \cdot 3x^2$
 $= x^3 \left(\frac{3x+1}{x^3}\right)' \frac{x^3}{3x+1} + \ln\left(\frac{3x+1}{x^3}\right) \cdot 3x^2$
 $= x^3 \frac{x^3}{3x+1} \left(\frac{x^3(3x+1)' - (3x+1)(x^3)'}{(x^3)^2}\right) + \ln\left(\frac{3x+1}{x^3}\right) \cdot 3x^2$
 $= \frac{x^6}{3x+1} \left(\frac{x^3(3) - (3x+1)(3x^2)}{(x^3)^2}\right) + \ln\left(\frac{3x+1}{x^3}\right) \cdot 3x^2$
 $= \frac{x^6}{3x+1} \left(\frac{3x^3 - 9x^3 - 3x^2}{x^6}\right) + \ln\left(\frac{3x+1}{x^3}\right) \cdot 3x^2$
 $= \frac{x^6}{3x+1} \left(\frac{-6x^3 - 3x^2}{x^6}\right) + \ln\left(\frac{3x+1}{x^3}\right) \cdot 3x^2$
 $= \left(\frac{-6x^3 - 3x^2}{3x+1}\right) + \ln\left(\frac{3x+1}{x^3}\right) \cdot 3x^2$

h)
$$y = e^{\frac{x^2}{4}}$$

$$y' = e^{\frac{x^2}{4}} \cdot \left(\frac{x^2}{4}\right)' = e^{\frac{x^2}{4}} \cdot \left(\frac{2x}{4}\right) = \frac{x}{2}e^{\frac{x^2}{4}}$$

$$y' = \frac{(x^2 + 4)'}{(x^2 + 4)} \log_3 e$$
(2x + 0)

i) $y = \log_3(x^2 + 4)$

$$=\frac{(2x+0)}{(x^2+4)}\log_3 e$$

$$= \frac{(2x)}{\left(x^2 + 4\right)} \log_3 e$$

j)
$$y = 4^{\frac{x+1}{x}}$$

 $y' = 4^{\frac{x+1}{x}} \ln 4 \left(\frac{x+1}{x} \right)'$
 $= 4^{\frac{x+1}{x}} \ln 4 \left(\frac{(x)(x+1)' - (x+1)x'}{x^2} \right)$
 $= 4^{\frac{x+1}{x}} \ln 4 \left(\frac{(x)(1+0) - (x+1) \cdot 1}{x^2} \right)$
 $= 4^{\frac{x+1}{x}} \ln 4 \left(\frac{x-x-1}{x^2} \right)$
 $= \frac{-1}{x^2} 4^{\frac{x+1}{x}} \ln 4$

k)
$$y = 7 - \frac{3}{4}x^4$$
 $y' = 0 - 4 \cdot \frac{3}{4}x^3 = -3x^3$

1)
$$f(t) = 4t^3 - 6t + 3$$
 $f'(t) = 3 \cdot 4t^2 - 6 + 0 = 12t^2 - 6$

m)
$$g(s) = (s^3 + 1)(s^2 + 3s)$$

Usamos a regra do produto, então:

$$g'(s) = (s^{3} + 1)(s^{2} + 3s)' + (s^{3} + 1)'(s^{2} + 3s)$$

$$= (s^{3} + 1)(2s + 3) + 3s^{2}(s^{2} + 3s)$$

$$= 2s^{4} + 3s^{3} + 2s + 3 + 3s^{4} + 9s^{3}$$

$$= 5s^{4} + 12s^{3} + 2s + 3$$

n)
$$h(x) = \frac{4}{3} \cdot \frac{x-1}{x+1}$$

Usamos a regra do quociente.

$$h'(x) = \frac{4}{3} \cdot \frac{(x+1)(x-1)' - (x-1)(x+1)'}{(x+1)^2}$$

$$= \frac{4}{3} \cdot \frac{(x+1) - (x-1)}{(x+1)^2}$$

$$= \frac{4}{3} \cdot \frac{2}{(x+1)^2}$$

$$= \frac{8}{3(x+1)^2}$$

o) Podemos reescrever a função como um quociente da seguinte forma:

$$f(x) = \frac{(x+4)}{(4-x^3)}$$

Assim, a derivada passa a ser:

$$f'(x) = \frac{(4-x^3)(x+4)' - (x+4)(4-x^3)'}{(4-x^3)^2}$$

$$= \frac{(4-x^3)(1+0) - (x+4)(0-3x^2)}{(4-x^3)^2}$$

$$= \frac{(4-x^3) - (x+4)(-3x^2)}{(4-x^3)^2}$$

$$= \frac{(4-x^3) - (-3x^3 - 12x^2)}{(4-x^3)^2}$$

$$= \frac{4-x^3 + 3x^3 + 12x^2}{(4-x^3)^2}$$

$$= \frac{4+2x^3 + 12x^2}{(4-x^3)^2}.$$

p) Reescrevendo a função temos $y = (x^2 + 2x + 1)^{\frac{1}{4}}$.

$$y' = \frac{1}{4} (x^2 + 2x + 1)^{\frac{1}{4} - 1} (x^2 + 2x + 1)'$$

$$= \frac{1}{4} (x^2 + 2x + 1)^{\frac{-3}{4}} (2x + 2)$$

$$= \frac{2(x+1)}{4(x^2 + 2x + 1)^{\frac{3}{4}}}$$

$$= \frac{(x+1)}{2\sqrt[4]{(x^2 + 2x + 1)^3}}.$$

q)
$$y = \frac{4}{x^3} - \frac{2}{x^4}$$

Podemos reescrever como:

$$y = 4x^{-3} - 2x^{-4}$$
$$y' = -12x^{-4} + 8x^{-5}$$

5) Para as funções escritas na forma implícita, calcular a derivada $\frac{dy}{dx}$:

a)
$$y^{2} = 4x - 8$$

 $(y^{2})' = (4x)' - (8)'$
 $2yy' = 4 - 0$
 $y' = \frac{4}{2y}$

b)
$$x^{2} + y^{2} - 4\sqrt{y} = 9$$

 $(x^{2})' + (y^{2})' - (4\sqrt{y})' = (9)'$
 $2x + 2yy' - 4\frac{1}{2}y^{\frac{1}{2}-1}y' = 0$
 $2yy' - 2y^{-\frac{1}{2}}y' = -2x$
 $y'\left(2y - 2y^{-\frac{1}{2}}\right) = -2x$
 $y' = \frac{-2x}{2y - 2y^{-\frac{1}{2}}}$

c)
$$xy^2 - x^4 = 3y$$

 $(xy^2)' - (x^4)' = (3y)'$
 $x(y^2)' + x'y^2 - 4x^3 = 3y'$
 $x2yy' + 1y^2 - 3y' = 4x^3$
 $y'(2xy - 3) = 4x^3 - y^2$
 $y' = \frac{4x^3 - y^2}{2xy - 3}$

6) Calcular a derivada sucessiva até a ordem n indicada:

a)
$$y = \frac{3}{x-4}$$
, $n = 4$

Reescrevendo a função temos $y = 3(x-4)^{-1}$

$$y' = 3 \cdot -1(x-4)^{-1-1} = -3(x-4)^{-2}$$

$$y'' = -3 \cdot -2(x-4)^{-2-1} = 6(x-4)^{-3}$$

$$y''' = 6 \cdot -3(x-4)^{-3-1} = -18(x-4)^{-4}$$

$$y^{IV} = -18 \cdot -4(x-4)^{-4-1} = 72(x-4)^{-5}$$

b)
$$f(x) = \frac{1}{2e^x}$$
, $n = 3$

Reescrevendo a função temos $f(x) = \frac{1}{2}e^{-x}$ $f'(x) = \frac{1}{2}e^{-x}(-x)' = \frac{1}{2}e^{-x}(-1) = \frac{-1}{2}e^{-x}$ $f''(x) = \frac{-1}{2}e^{-x}(-x)' = \frac{-1}{2}e^{-x}(-1) = \frac{1}{2}e^{-x}$ $f'''(x) = \frac{1}{2}e^{-x}(-x)' = \frac{1}{2}e^{-x}(-1) = \frac{-1}{2}e^{-x}$

c)
$$v(t) = \ln 3t$$
, $n = 2$
 $v'(t) = \frac{(3t)'}{3t} = \frac{3}{3t} = \frac{1}{t}$
 $v''(t) = \frac{-1}{t^2}$

7) O volume de um cano flexível varia, aproximadamente, 0,1cm³. Sabendo-se que a altura é constante e sempre igual a três vezes o raio da base, use diferenciais para determinar a correspondente variação do raio. (o volume de um cilindro é $V=\pi r^2 h$)

Pelos dados do problema, $dV=0.1e\ h=3r$. Assim, $V=\pi r^2 3r=3\pi r^3$.

$$dV = (3\pi r^3)' dr$$

$$0,1 = 3 \cdot 3\pi r^2 \cdot dr$$

$$\frac{0,1}{3 \cdot 3\pi r^2} = dr$$

$$dr = \frac{0,1}{9\pi r^2}$$