Lecture 01: [Rabiner] Chapter 1 Introduction to Digital Speech Processing

DEEE725 음성신호처리실습

Speech Signal Processing Lab

Instructor: 장길진

Introduction to Speech Processing

- Speech is the most natural form of human-human communications.
 - The most intriguing signals that humans work with every day.
- Academic perspectives
 - Speech is also related to sound and acoustics
 - acoustics is a branch of physical science.
 - Speech is related to human physiological capability
 - physiology is a branch of medical science.
 - Speech is related to language
 - linguistics is a branch of social science.
- Purpose of speech processing:
 - To understand speech as a means of communication
 - To represent speech for transmission and reproduction
 - To analyze speech for recognition and extraction of information
 - To discover some physiological characteristics of the talker

Basics

- **speech** is composed of a sequence of sounds
- sounds (and transitions between them) serve as a symbolic representation of information to be shared between humans (or humans and machines)
- arrangement of sounds is governed by rules of language (constraints on sound sequences, word sequences, etc.) /spl/ exists, /sbk/ doesn't exist
- linguistics is the study of the rules of language
- phonetics is the study of the sounds of speech

Speech Sciences

Linguistics:

 science of language, including phonetics, phonology, morphology, and syntax

Phonemes:

 smallest set of units considered to be the basic set of distinctive sounds of a languages (20-60 units for most languages)

• Phonemics:

study of phonemes and phonemic systems

Phonetics:

 study of speech sounds and their production, transmission, and reception, and their analysis, classification, and transcription

Phonology:

phonetics and phonemics together

Syntax:

meaning of an utterance

Speech Applications

- Prevalent speech applications are
 - speech coding (vocoder)
 - speech synthesis (Text-to-speech; TTS)
 - speech recognition and understanding (Speech-totext; STT)
 - other applications

The Speech Cycle

The Speech Stack

Applications:

Coding, synthesis, recognition,

Processing Algorithms:

Speech/silence detection, pitch detection, formant analysis, ...

Signal Representations:

Temporal, short-time spectrum, linear predictive coding, ceptral analysis

Fundamental Science/Technology:

DSP theory, acoustics, linguistics, perception, ...

The Speech Signal

Speech Signals in Various Scales

Digital Speech Processing

 Need to understand the nature of the speech signal, and how DSP techniques, communication technologies, and information theory methods can be applied to help solve the various application scenarios described above

Why Digital Processing of Speech?

- digital processing of speech signals (DPSS)
 enjoys an extensive theoretical and experimental
 base developed over the past 80 years
- much research has been done since 1965 on the use of digital signal processing (DSP) in speech communication problems
 - highly advanced *implementation technology* (VLSI) exists that is well matched to the computational demands of DPSS
- there are abundant applications that are in widespread and commercial uses

A Cellular Phone – One of the Top DSP Applications

Hierarchy of Digital Speech Processing

Digital Speech Representation

Sampling rate: 16K, PCM (pulse code modulation, Analog-to-digital)

PCM (pulse code modulation)

- Sampling rate (Fs, Hz)
 - Number of samples per unit time (usually second)
 - According to Nyquist theorem, up to Fs/2 Hz can be represented in the frequency domain
 - Example
 - Music CD: 44100 Hz = **44.1** kHz
 - Human-audible frequency range is known to be 20Hz~20kHz
 - Vocoders including 2G cellular phone: 8 kHz
 - Speech recognition: $8 \text{ kHz} \rightarrow 16 \text{ kHz}$
 - Number of bytes per sample: $\underline{2}$ bytes = $\underline{16}$ bits
 - $2^{16} = 65,536$ different levels are represented

Various Data Rates

- CD, 44.1 kHz
 - 1 second = 44.1 * 1000 * 2 bytes = 88,200 bytes = 705,600 bits → 705.6 kbps (kilobits per second)
 - 700MB CD = 700*1^6*8 / 705.6
 = 132 min (mono) or 66 min (stereo)
 - Standard mp3 encoding bitrate is 128 kbps for stereo signal
 - About 1/11 compression
- Vocoders, 8 kHz
 - 1 second = 8 * 1000 * 2 bytes = 16,000 bytes → 128 kbps
- High-quality voice, 16 kHz
 - -1 second = 32,000 bytes \rightarrow 256 kbps

Speech Coding

Speech Coding

- The process of transforming a speech signal into a representation for *efficient transmission* and *storage*
 - narrowband and broadband wired telephony
 - cellular communications
 - Voice over IP (VoIP) to utilize the Internet as a real-time communications medium
 - extremely narrowband communications channels
 - e.g. battlefield applications using HF radio
- Example coding methods
 - 64 kbps PCM (pulse-code modulation)
 - 32 kbps ADPCM (adaptive differential PCM)
 - 8 kbps CELP (code-excited linear prediction)
 - 2.4 kbps LPC10E
 - less than 1.0 kbps MBE (multi-band excitation)

Slide credits:

Yuchen Fan, Matt Potok, Christopher Shroba

SPEECH SYNTHESIS: SHORT HISTORY

Speech Synthesis

- The process of generating a speech signal using computational means for effective humanmachine interactions
 - machine reading of text or email messages
 - telematics feedback in automobiles
 - handheld devices such as foreign language
- Already, widely used in many applications
 - Try Googling "TTS"

The First 'Speaking Machine'

 Wolfgang von Kempelen, Mechanismus der menschlichen Sprache nebst Beschreibung einer sprechenden Maschine, 1791 (in Deutsches Museum still and playable)

First to produce whole words, phrases – in many languages

Joseph Faber's Euphonia, 1846

- Constructed 1835 w/pedal and keyboard control
 - Whispered and ordinary speech
 - Model of tongue,
 pharyngeal cavity with
 manipulatable shape
 - Singing too: "God Save the Queen"
- Forerunners of Modern Articulatory Synthesis: George Rosen's DAVO synthesizer (1958) at MIT

The Voder ...

Developed by Homer Dudley at Bell Telephone Laboratories, 1939

2004-02-11

The Voder

- World's Fair in NY, 1939
- Requires much training to 'play'
- Purpose: coding/compression
 - Reduce bandwidth
 needed to transmit
 speech, so many phone
 calls can be sent over
 single line

... an acoustic synthesizer

Architectural blueprint for the Voder

The Pattern Playback

Developed by Franklin Cooper at Haskins Laboratories, 1951

The Pattern Playback

Answers:

These days a chicken leg is a rare dish.

- It's easy to tell the depth of a well.
- Four hours of steady work faced us.
- 'Automatic' synthesis from spectrogram but can also use hand-painted spectrograms as input
- Purpose: understand perceptual effect of spectral details

Formant/Resonance/Acoustic Synthesis

- Parametric or resonance synthesis
 - Specify minimal parameters, e.g. f0 and first 3 formants
 - Pass electronic source signal thru filter
 - Harmonic tone for voiced sounds
 - Aperiodic noise for unvoiced
 - Filter simulates the different resonances of the vocal tract
- E.g.
 - Walter Lawrence's Parametric Artificial Talker (1953) for vowels and consonants
 - Gunnar Fant's Orator Verbis Electris (1953) for vowels
 - Formant synthesis download (M\$demo)

Concatenative Synthesis

- Most common type today
- First practical application in 1936: British Phone company's Talking Clock
 - Optical storage for words, part-words, phrases
 - Concatenated to tell time
- E.g.
 - And a 'similar' example from Radio Free Vestibule (1994)

- Bell Labs TTS (1977) (1985)

Pronunciation Issues

- Rules for disambiguation in context: bass
- Lexicon: comb, tomb, Punxsutawney Phil
 - Letter-to-Sound Rules
 - Hand built
 - Learned from data (pronunciation dictionary)
 - Hard to get good accuracy and coverage many exceptions
 - Dictionary of pronunciations
 - More accurate
 - New (Out-of-Vocabulary) words a problem

Not Quite There

- Festival concatenative
- Acuvoice concatenative!
- HMM synthesis (Rob Donovan):
- Rhetorical unit selection
 - (acquired by Nuance)
- AT&T Labs <u>Naturally Speaking</u>

SPEECH RECOGNITION

Pattern Matching Problems

- speaker verification
- word spotting
- automatic indexing of speech recordings

Speech Recognition and Understanding

- The process of extracting usable linguistic information from a speech signal in support of human-machine communication by voice
 - command and control (C&C) applications
 - voice dictation to create letters, memos, and other documents
 - natural language voice dialogues with machines to enable Help desks, Call Centers
 - voice dialing for cellphones and smartphones
 - voice-driven Internet search
 - Chatbots

Text-to-Phoneme Conversion

 Goal: Find out if your office mate has had lunch already.

Text: "Did you eat yet"

Phonemes: /dld yu it yεt/

Articulator Dynamics: /dl jə it jɛt/

Demos (1): Nuance

- https://youtu.be/oNc2f2BhZ50
 - IDF 2012: Nuance Speech Recognition Demo with Nuance Dragon and an Ultrabook at IDF 2012 in San Francisco.
- https://youtu.be/WvbNBBh_wPw
 - Nuance Speech Recognition Demo for EMA
- https://youtu.be/NRE77IW5I2Y
 - How Nuance's Dragon NaturallySpeaking speech recognition software works

Demos (2)

- https://youtu.be/dXHZqUiManw
 - Jarvis on Ubuntu using Speech Recognition
- https://youtu.be/94IOUW0EQyg
 - pyJARVIS: Ubuntu voice control with python
 - It is a multi-language voice control system developed in python, using natural language processing.
 - GitHub link: https://github.com/rcorcs/Natl
- https://youtu.be/u9FPqkuoEJ8
 - Siraj Raval, "How to Make a Simple Tensorflow Speech Recognizer"
 - Code: https://github.com/llSourcell/tensorflow_speech_rec ognition demo

Demos (3)

- https://youtu.be/NaqZkV_fBIM
 - Neon's implementation of Baidu's "Deep Speech
 2" model for speech recognition trained on audio-books from the Librispeech corpus.
 - Spectrogram (top left), raw audio (top right), and
 FFT spectrum (bottom)
- https://youtu.be/g-sndkf7mCs (92 minutes)
 - Deep Learning for Speech Recognition (Adam Coates, Baidu)

Other Speech Applications

- Speaker Verification
 - secure access to premises, information, and virtual spaces
- Speaker Recognition
 - legal and forensic purposes; also for personalized services
- Speech Enhancement
 - for use in noisy environments, or to eliminate echo
- Voice Conversion
 - to align voices with video segments, to change voice qualities, to speed-up or slow-down prerecorded speech (e.g., talking books, rapid review of material, careful scrutinizing of spoken material, etc.)
 - potentially to improve intelligibility and naturalness of speech
- Language Translation
 - to convert spoken words in one language to another to facilitate natural language dialogues between people speaking different languages, i.e., tourists, business people

Speech Applications: Summary

Research field	Tech. level	Relevant tech/theory	Applications
Speech coding	Saturated	Signal processing; Compression; Information theory; Communication	Vocoders; VoIP
Speech enhancement / BSS (blind signal separation)	Moderate; Difficult in real conditions	Noisy speech recognition; Echo elimination; Far-field speech recognition; Vocoders	
Voice conversion	Moderate	Video/voice alignments; Voice intelligibility and naturalness improvement; talking books, rapid review of material, careful scrutinizing of spoken material, etc.	
Speech synthesis	Saturated → Advancing	Natural language processing (NLP); Search	Text-to-speech (TTS)
Speech recognition	Difficult; large- scale	Machin learning; Pattern classification; NLP; Deep learning; Artificial intelligence	HCI; ARS; Chatbot; AI speakers
Keyword spotting	Moderate; Difficult in real conditions	Machin learning; Pattern classification; NLP; Deep learning; Artificial intelligence	HCI; AI speakers
Speaker recognition / verification	Moderate; Difficult in real conditions	Authentication; legal and forensic purposes; personalized services	
Translation	Difficult; large- scale	Speech recognition; NLP; Deep learning; RNN	Touring, etc.

Topics to be Covered

- Speech production model—acoustics, articulatory concepts, speech production models
- Speech perception model—ear models, auditory signal processing, equivalent acoustic processing models
- Review some basic DSP concepts
- Time domain processing concepts—speech properties, pitch, voiced/unvoiced, energy, autocorrelation, zero-crossing rates
- Short time Fourier analysis methods—digital filter banks, spectrograms, formant estimation
- Linear predictive coding methods—autocorrelation method, covariance method, relation to vocal tract models
- Speech waveform coding and source models—delta modulation, PCM, ADPCM, vector quantization, CELP coding
- Speech recognition—the Hidden Markov Model (HMM)
- Deep learning methods for speech recognition (TBA)

DEEE725 음성신호처리실습 장길진

END OF CHAPTER 1. INTRODUCTION TO DIGITAL SPEECH PROCESSING