Fastställandedatum	Reviderad
Fastställd av Filosofiska fakultetens kvalitetsnämnd	
Kursplan	
Morrow In re	
Gäller från: 2017 VT	
Filosofiska fakulteten	
Fristående kurs	
Bayesian Learning	
Bayesian Learning, 6 hp	
732A91	

2016-04-13

Diarienummer 2016-00201

Huvudområde

Statistik

Utbildningsnivå

Avancerad nivå

Fördjupningsnivå

A1X

Förkunskapskrav

Kandidatexamen i något av följande ämnen: statistik, matematik, tillämpad matematik, datavetenskap, teknik eller motsvarande examen. Utöver detta, erfordras godkända/avklarade kurser i kalkyl, linjär algebra, statistik och programmering. Studenten ska också ha följande kurser godkända: En grundkurs i sannolikhetslära och inferens; en kurs som inkluderar multipel linjär regression. Engelska B eller motsvarande.

Mål

Efter avslutad kurs skall den studerande på en avancerad nivå kunna:

- redogöra för de största skillnaderna mellan Bayesiansk och frekventistisk inferens,
- analysera grundläggande statistiska modeller som utnyttjar det Bayesianska tillvägagångssättet och tolka resultat på ett korrekt sätt,
- använda Bayesianska modeller för prediktion och beslutsfattande,
- implementera avancerade statistiska modeller genom att använda avancerade simuleringstekniker,
- genomföra den Bayesianska inferensen.

Kursinnehåll

Kursen behandlar:

Likelihood, Subjektiv sannolikhet, Bayes sats, apriori och aposteriori fördelningar, Bayesiansk analys av följande modeller: Bernoulli, Normal, Multinomial, Multivariat normal; Linjär och icke-linjär regression, Binär regression, Mixture modeller, Regulariseringsprior, Klassificering, Naive Bayes, Marginalisering, Aposteriori approximation, Prediktion, Beslutsteori, Markov Chain Monte Carlo, Gibbs sampling, Bayesiansk variabelselektion, Modelselektion, Modelviktning.

Undervisnings- och arbetsformer

Kursen består av föreläsningar, lektioner och datorlaborationer. Föreläsningarna presenterar begrepp och metoder. Lektionerna ägnas åt lösning av matematiskt inriktade uppgifter. Datorlaborationerna ägnas åt praktiska övningar i Bayesiansk inferens. Utöver detta ska den studerande utöva självstudier.

Språk: Engelska.

Examination

Datortentamen samt skriftliga laborationsuppgifter. Detaljerad information återfinns i studiehandlednignen.

Betygsskala

AF

Övrig information

Planering och genomförande av kurs skall utgå från kursplanens formuleringar. Den kursvärdering som skall ingå i varje kurs skall därför behandla frågan om hur kursen överensstämmer med kursplanen.

Kursen bedrivs på ett sådant sätt att både mäns och kvinnors erfarenhet och kunskaper synliggörs och utvecklas.

Ämnesområde

Statistik

Utbildningsområde

Samhällsvetenskapliga området

Institution

Institutionen för Datavetenskap