Forward Probability, Backward Probability, Baum Welch Algorithm

HMM

HMM parameters are given by: $\Theta = (A, B, \Pi)$ HMM Definition:

- Set of states: S where |S|=N
- Start state : $S_0 / P(S_0) = 1*/$
- Output Alphabet : O where |O|=K
- State Transition Probabilities:
 A = {a_{ii}} (prob. of going from state S_i to state S_i)
- Emission Probabilities : $B = \{b_j (O_k)\}$ (prob. Of outputting symbol O_k from state j)
- Initial State Probabilities : $\Pi = \{\Pi_i\} = \{P(X_1 = i)\}$

Baum Welch Algorithm

- When corpus is available but not labeled, will use EM algorithm to estimate parameters of HMM.
- EM algorithm is used to find the maximum likelihood estimate of the parameters of HMM.

EM Algorithm

- 1. Choose some initial values for $\Theta = (A, B, \Pi)$.
- 2. Repeat the following step until convergence.
- 3. Determine probable (state) paths:

.....,
$$X_{t-1} = i$$
, $X_t = j$,

- 4. Count the expected number of transitions, $\{a_{ij}\}$, as well as the expected number of times various emissions, $b_i(O_k)$, are made.
- 5. Re-estimate $\Theta = (A, B, \Pi)$ using $\{a_{ij}\}$ and $b_i(O_k)$.
- A forward-backward algo is used for finding probable state paths.

Forward-Backward Algorithm

Forward Probability

- $\alpha_k(i) = F(k, i) = Probability of being in state <math>S_i$ after having seen $O_0O_1O_2 \dots O_k$ i.e., The forward variable $\alpha_k(i)$ or F(k, i) is defined as the joint probability of the partial observation sequence $O_0O_1O_2 \dots O_k$ and that the hidden state at time k is S_i :
- $\alpha_k(i) = F(k, i) = P(O_0O_1O_2 O_k, S_i)$
- With m as length of observation sequence

P(Observed Sequence)=
$$P(O_0O_1O_2 O_m)$$

= $\sum_{i=0}^{N} P(O_0O_1O_2 O_m, S_i)$

Forward Probability

• P(Observed Sequence)=
$$\sum_{i=0}^{N} F(m, i)$$

Method to re-compute forward recursively,

$$F(k,q) = \sum_{p=0}^{N} F(k-1,p) P(S_p \stackrel{o_k}{\rightarrow} S_q)$$

Backward Probability

We define backward probability as:

B(k, i) = Probability of seeing $O_kO_{k+1}O_{k+2}....O_m$ given that the state was S_i .

$$B(k, i) = P(O_kO_{k+1}O_{k+2} O_m / S_i)$$

Where m is length of observed sequence.

This is better expressed by working through the mathematical calculation

Backward Probability

$$S_0 \rightarrow S_p S_q S_m S_{final}$$

• So, the backward probability B(k, p) is the probability of seeing $O_kO_{k+1}O_{k+2}$ O_m given that the state was S_p .

B(k, p) = P(O_kO_{k+1}O_{k+2} O_m / S_p)
B(k, p) = P(O_{k+1}O_{k+2} O_m, O_k / S_p)
perform marginalization
B(k, p) =
$$\sum_{q=0}^{N} P(O_{k+1}O_{k+2} ... O_m, O_k, S_q / S_p)$$

So, backward probability is:

$$\mathbf{B(k, p)} = \sum_{q=0}^{N} P(O_k, S_q / S_p) . P(O_{k+1} O_{k+2} ... O_m / O_k, S_q, S_p)$$

$$= \sum_{q=0}^{N} P(O_{k+1} O_{k+2} ... O_m / S_q) . P(O_k, S_q / S_p)$$

$$= \sum_{q=0}^{N} B(k+1, q) . P(S_p \xrightarrow{O_k} S_q)$$
where,

K+1 goes on increasing towards end of observation sequence.

Boundary Condition for B(k, p)

 Boundary condition for B(k, p) is obtained from the last symbol B(m, final) where S_{final} is one of the states of HMM.

Backward Probability

- B(k, i) = Probability of seeing $O_kO_{k+1}O_{k+2}....O_m$ given that the state was S_i .
- $B(k, i) = P(O_k O_{k+1} O_{k+2} O_m / S_i)$
- With m as length of observation sequence

P(Observed Sequence) =
$$P(O_0O_1O_2 O_m)$$

= $P(O_0O_1O_2 O_m/S_0)$
= $B(0,0)$

B(k, p) =
$$\sum_{q=0}^{N} B(k+1, q) \cdot P(S_p \xrightarrow{o_k} S_q)$$

Baum Welch algorithm

- ✓ Training Hidden Markov Model (not structure learning, i.e., the structure of the HMM is pre-given). This involves:
- ✓ Learning probability values ONLY

The Learning Problem

Learning: Given an observation sequence O and the set of possible states in the HMM, learn the HMM parameters A and B.

- Baum-Welch = Forward-Backward Algorithm (Baum 1972)
- Is a special case of the EM or Expectation-Maximization algorithm (Dempster, Laird, Rubin)
- The algorithm will let us train the transition probabilities A= {a_{ij}} and the emission probabilities B={b_i(o_t)} of the HMM

General Idea

- Start by devising a model
 - Any model that predicts the corpus observations via some hidden structure (tags, ...)
- Initially guess the parameters of the model!
 - Educated guess is best, but random can work
- Expectation step: Use current parameters (and observations) to reconstruct hidden structure
- Maximization step: Use that hidden structure (and observations) to re-estimate parameters

Repeat until convergence!

General Idea

For Hidden Markov Models

For Hidden Markov Models

For Hidden Markov Models

Start of baum-welch algorithm

Training sequence/Observation sequence = abb aaa bbb aaa

Sequence of states with respect to input symbols

$$\xrightarrow{\text{O/p seq}} q \xrightarrow{a} r \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{a} r \xrightarrow{a} q \xrightarrow{a} r \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{b} q \xrightarrow{a} r \xrightarrow{a} q \xrightarrow{a} r$$
 State seq

Calculating probabilities from table

$$P(q \xrightarrow{a} r) = 5/8$$

$$P(q \xrightarrow{b} q) = 3/8$$

$$P(S^{i} \xrightarrow{W_{k}} S^{j}) = \frac{C(S^{i} \xrightarrow{W_{k}} S^{j})}{\sum_{l=1}^{T} \sum_{m=1}^{A} C(S^{i} \xrightarrow{W_{m}} S^{l})}$$

Table of counts

Src	Dest	O/P	Count
q	r	а	5
q	q	b	3
r	q	а	3
r	q	b	2

T=#states

A=#alphabet symbols

Now if we have a non-deterministic transitions then multiple state seq possible for the given o/p seq (ref. to previous slide's feature). Our aim is to find expected count through this.

Learning probabilities

Machine Given: Learn from it

Initial guess

$\in \rightarrow a$	a -	$\rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q		r	q	r	q	q	0.00077				
q	1	r	q	q	q	q					
q	\ (q	q	r	q	q					
q	1	q	q	q	q	q					
	Expected Count →										
New Probabilities (P) →											

State sequences

 $^* \subseteq$ is considered as starting and ending symbol of the input sequence string

P(state seq:qrqrqq)= $P(qrqrqq) = P(S_0 \stackrel{\in}{\rightarrow} q) * P(q \stackrel{a}{\rightarrow} r) * P(r \stackrel{b}{\rightarrow} q) * P(q \stackrel{a}{\rightarrow} r) * P(r \stackrel{b}{\rightarrow} q) * P(q \stackrel{b}{\rightarrow} q)$ = 1* 0.04 * 1.0 * 0.04 * 1.0 * 0.48 = 0.00077

$\in \rightarrow a$	$a \rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q	r	q	r	q	q	0.00077				
q	r ^r	q	q	q	q	0.00442				
q	q	q	r	q	q	0.00442				
q	q	q	q	q	q	0.02548				
	E	kpected	Count ·	\						
		New F	Probabi	lities (P) >					
	_						<u> </u>			

State sequences

 $^* \subseteq$ is considered as starting and ending symbol of the input sequence string

P(qrqrqq) =
$$P(S_0 \stackrel{\in}{\rightarrow} q) * P(q \stackrel{a}{\rightarrow} r) * P(r \stackrel{b}{\rightarrow} q) * P(q \stackrel{a}{\rightarrow} r) * P(r \stackrel{b}{\rightarrow} q) * P(q \stackrel{b}{\rightarrow} q)$$

= 1* 0.04 * 1.0 *0.04 * 1.0 *0.48
= 0.00077

$\in \rightarrow a$	$a \rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q	r	q	r	q	q	0.00077				
q	r	q	q	q	q	0.00442				
q	q	q	r	q	q	0.00442				
q	q	q	q	q	q	0.02548				
	E	pected	Count -	\		0.035				
		New F	Probabil	lities (P) >					
									<u>. </u>	!I

State sequences

 $^* \in$ is considered as starting and ending symbol of the input sequence string

```
Expected Count (path) = Summation(path Column)
= (0.00077+0.00442+0.00442+0.2548)
= 0.03509 ≈ 0.035
```

$\in \rightarrow a$	$a \rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q	r	q	r	q	q	0.00077	0.00154			
q	r	q	q	q	q	0.00442				
q	q	q	r	q	q	0.00442				
q	q	q	q	q	q	0.02548				
	Expected Count → 0.035									
		New F	Probabil	ities (P						

Count for state transitions, i.e., $q \xrightarrow{a} r$, $r \xrightarrow{b} q$, and so on.

Count($q \xrightarrow{a} r$) = path * number of transitions = 0.00077 * 2 = 0.00154

$\in \rightarrow a$	$a \rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q	r	q	r	q	q	0.00077	0.00154	0.00154	0	0.00077
q	r	q	q	q	q	0.00442	0.00442	0.00442	0.00442	0.00884
q	q	q	r	q	q	0.00442	0.00442	0.00442	0.00442	0.00884
q	q	q	q	q	q	0.02548	0.0	0.000	0.05096	0.07644
	Expected Count → 0.035							0.01	0.06	0.095
		New F	Probabil	ities (P						

$\in \rightarrow a$	$a \rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q	r	q	r	q	q	0.00077	0.00154	0.00154	0	0.00077
q	r	q	q	q	q	0.00442	0.00442	0.00442	0.00442	0.00884
q	q	q	r	q	q	0.00442	0.00442	0.00442	0.00442	0.00884
q	q	q	q	q	q	0.02548	0.0	0.000	0.05096	0.07644
Expected Count → 0.035							0.01	0.01	0.06	0.095
		New F	Probabil	ities (P	0.06					

Estimating new probabilities for state sequences, i.e., $q \xrightarrow{a} r \xrightarrow{b} q$ and so on.

Normalized new probability for
$$q \xrightarrow{a} r = \frac{expected\ count\ of\ q \xrightarrow{a} r}{\sum expected\ count\ of\ q \xrightarrow{*} *}$$

$$= \frac{0.01}{0.01 + 0.06 + 0.095}$$

$$= 0.06$$

$\in \rightarrow a$	a	$\rightarrow b$	$b \rightarrow a$	$a \rightarrow b$	$b \rightarrow b$	$b \rightarrow \in$	P(path)	$q \xrightarrow{a} r$	$r \xrightarrow{b} q$	$q \xrightarrow{a} q$	$q \xrightarrow{b} q$
q		r	q	r	q	q	0.00077	0.00154	0.00154	0	0.00077
q	\ 	r	р	р	q	q	0.00442	0.00442	0.00442	0.00442	0.00884
q		q	q	r	q	q	0.00442	0.00442	0.00442	0.00442	0.00884
q		q	q	q	q	q	0.02548	0.0	0.000	0.05096	0.07644
	Expected Count → 0.035								0.01	0.06	0.095
	New Probabilities (P) →								1.0	0.36	0.581

State sequences

Note:

- Now new path values can be recomputed.
- So new expected counts which will lead to new probability values.
- •This way through multiple iterations the probability values will converge.

What is an epoch?

- It is one iteration over all observation patterns.
- So, after each iteration we get updated probabilities. This is done until converges.

The Baum-Welch Algorithm

- initialize the parameters of the HMM
- iterate until convergence
 - initialize $n_{k,c}$, $n_{k \to l}$ with pseudocounts
 - **E-step**: for each training set sequence j = 1...n
 - calculate $f_k(i)$ values for sequence j
 - calculate $b_k(i)$ values for sequence j
 - add the contribution of sequence j to $n_{k,c}$, $n_{k\rightarrow l}$
 - **M-step**: update the HMM parameters using $n_{k,c}$, $n_{k \to l}$ where,
 - $n_{k,c}$ be the expected number of emissions of c from state k for the training set, and
 - $n_{k\rightarrow l}$ be the expected number of transitions from state k to state l for the training set

Example of Hidden Markov Model

Example of Hidden Markov Model

- 1. Two states: 'Low' and 'High' atmospheric pressure.
- 2. Two observations: 'Rain' and 'Dry'.
- 3. Transition probabilities: P('Low'|'Low')=0.3, P('High'|'Low')=0.7, P('Low'|'High')=0.2, P('High'|'High')=0.8
- 4. Observation probabilities:
 P('Rain'|'Low')=0.6, P('Dry'|'Low')=0.4,
 P('Rain'|'High')=0.4, P('Dry'|'High')=0.3.
- 5. Initial probabilities: say P('Low')=0.4, P('High')=0.6.

Calculation of observation sequence probability

- Suppose we want to calculate a probability of a sequence of observations in our example, {'Dry','Rain'}.
- 2. Consider all possible hidden state sequences:
- 3. P({'Dry','Rain'}) = P({'Dry','Rain'}, {'Low','Low'}) + P({'Dry','Rain'}, {'Low','High'}) + P({'Dry','Rain'}, {'High','Low'}) + P({'Dry','Rain'}, {'High','High'})

where first term is:

```
P({'Dry','Rain'}, {'Low','Low'})= P({'Dry','Rain'} | {'Low','Low'}) P({'Low','Low'}) = P('Dry'|'Low')P('Rain'|'Low') P('Low')P('Low'|'Low) = 0.4*0.4*0.6*0.4*0.3
```