Lista de Exercícios IPE # Auxiliar

Exercício I (Super fácil - lembrar conceitos)

Considere o espaço amostral Ω = [0, 1) com a seguinte medida de probabilidade $P(A) = \int_A 1 \, d \omega$, $A \subset \Omega$.

Para $A = \begin{bmatrix} 0, \frac{1}{2} \end{bmatrix}$, $B = \begin{bmatrix} 0, \frac{1}{4} \end{bmatrix} \cup \begin{bmatrix} \frac{1}{2}, \frac{3}{4} \end{bmatrix}$, $C = \begin{bmatrix} 0, \frac{1}{8} \end{bmatrix} \cup \begin{bmatrix} \frac{1}{4}, \frac{3}{8} \end{bmatrix} \cup \begin{bmatrix} \frac{1}{2}, \frac{5}{8} \end{bmatrix} \cup \begin{bmatrix} \frac{3}{4}, \frac{7}{8} \end{bmatrix}$, determine se A, B e C são mutualmente independentes.

Exercício 2

Seja $X \sim \text{Geo}(p)$.

- a) Mostre que $P(X > n) = p^n$.
- b) Determine $P(\{X > n + k\} \mid \{X > n\})$. O que vc pode dizer a respeito da variável aleatória?

Exercício 3

Uma luz de intensidade λ é direcionada a um fotomultiplicador que gera $X \sim \text{Poisson}(\lambda)$ primárias. O fotomultiplicador também gera Y secundárias, onde dado X = n, Y é condionalmente geométrica com parámetro $(n + 1)^{-1}$. Encontre o número esperado de secundárias e a correlação entre as primárias e secundárias.

Exercício 4

A entropia diferential de uma variável contínua X com densidade f é $h(X) = E[-\ln(f(X))] = \int_{-\infty}^{+\infty} f(x) \ln\left(\frac{1}{f(x)}\right) dx$.

Se $X \sim \text{Uni}(0, 2)$, encontre h(X). Repita para $X \sim \text{Uni}(0, \frac{1}{2})$ e para $X \sim N(\mu, \sigma^2)$. Como você compararia as distribuições? Justifique.

Exercício 5

Sejam X e Y variáveis uniformes independentes no intervalo (0, 1). Mostre que se $U = \sqrt{-2 \ln(X)} \cos(2 \pi Y)$ e $V = \sqrt{-2 \ln(X)} \sin(2 \pi Y)$, então U e V são variáveis N(0, 1) independentes.

Exercício 6

Sejam X e Y variáveis independentes e com distribuição Uniforme Contínua em (0, 1). Defina as variáveis W e Z como o mínimo e máximo entre X e Y, respectivamente. Mostre que a esperança condicional de W dado Z é $\frac{Z}{2}$.