CLAIMS

What is claimed is:

1	1.	An inter	poser to co	ouple a die	to a substrate	and comprising:

- a capacitor having first and second terminals;
- a first plurality of lands on a first surface thereof, including a first land
- 4 coupled to the first terminal and a second land coupled to the second terminal; and
- a second plurality of lands on a second surface thereof, including a third land
- 6 coupled to the first terminal and a fourth land coupled to the second terminal.
- 1 2. The interposer recited in claim 1 wherein the first and second lands are
- 2 positioned to be coupled to corresponding power supply nodes of the die, and
- 3 wherein the third and fourth nodes are positioned to be coupled to corresponding
- 4 power supply nodes of the substrate.
- 1 3. The interposer recited in claim 1 wherein the first and second lands are
- 2 coupled to the first and second terminals, respectively, of the capacitor by a
- 3 conductive path that comprises at least one via, and wherein the third and fourth
- 4 lands are coupled to the first and second terminals, respectively, of the capacitor by
- 5 a conductive path that comprises at least one additional via.
- 1 4. The interposer recited in claim 3 wherein the at least one via and the at least
- 2 one additional via are located at an interior region of the interposer.
- 1 5. The interposer recited in claim 3 wherein the at least one via and the at least
- 2 one additional via are located at a peripheral region of the interposer.

- 1 6. The interposer recited in claim 1 wherein the capacitor comprises at least one
- 2 high permittivity layer.
- 1 7. The interposer recited in claim 1 wherein the capacitor comprises a plurality
- 2 of high permittivity layers.
- 1 8. The interposer recited in claim 7 wherein the capacitor comprises a plurality
- 2 of conductive layers interleaved with the high permittivity layers, such that
- 3 alternating conductive layers are coupled to the first and second lands, respectively.
- 1 9. The interposer recited in claim 1 wherein the capacitor comprises at least one
- 2 embedded discrete capacitor.
- 1 10. The interposer recited in claim 1 wherein the first plurality of lands
- 2 comprises a fifth land positioned to be coupled to a corresponding signal node of the
- 3 die, and wherein the second plurality of lands comprises a sixth land positioned to
- 4 be coupled to a corresponding signal node of the substrate.
- 1 11. The interposer recited in claim 10 wherein the fifth and sixth lands are
- 2 coupled by a conductive path that comprises at least one via.
- 1 12. An electronic assembly comprising:
- a die comprising first and second power supply nodes;
- a substrate having third and fourth power supply nodes; and
- 4 an interposer coupling the die to the substrate and comprising:
- 5 a capacitor having first and second terminals;
- a first plurality of lands on a first surface thereof, including a first
- 7 land coupled to the first power supply node and the first terminal, and further

8	including a secon	d land coupled to	the second power	supply node and	the second
---	-------------------	-------------------	------------------	-----------------	------------

- 9 terminal; and
- a second plurality of lands on a second surface thereof, including a
- third land coupled to the third power supply node and the first terminal, and further
- including a fourth land coupled to the fourth power supply node and the second
- 13 terminal.
- 1 13. The electronic assembly recited in claim 12 wherein the capacitor comprises
- 2 a plurality of high permittivity layers.
- 1 14. The electronic assembly recited in claim 13 wherein the capacitor comprises
- 2 a plurality of conductive layers interleaved with the high permittivity layers, such
- 3 that alternating conductive layers are coupled to the first and second lands,
- 4 respectively.
- 1 15. The electronic assembly recited in claim 12 wherein the capacitor comprises
- 2 at least one embedded discrete capacitor.
- 1 16. An electronic system comprising an electronic assembly comprising:
- a die comprising first and second power supply nodes;
- a substrate having third and fourth power supply nodes; and
- an interposer coupling the die to the substrate and comprising:
- 5 a capacitor having first and second terminals;
- a first plurality of lands on a first surface thereof, including a first
- 7 land coupled to the first power supply node and the first terminal, and further
- 8 including a second land coupled to the second power supply node and the second
- 9 terminal; and

10	a second plurality of lands on a second surface thereof, including a				
11	third land coupled to the third power supply node and the first terminal, and further				
12	including a fourth land coupled to the fourth power supply node and the second				
13	terminal.				
1	17. The electronic system recited in claim 16 wherein the capacitor comprises a				
2	plurality of high permittivity layers.				
1	18. The electronic system recited in claim 17 wherein the capacitor comprises a				
2	plurality of conductive layers interleaved with the high permittivity layers, such that				
3	alternating conductive layers are coupled to the first and second lands, respectively.				
1	19. The electronic system recited in claim 16 wherein the capacitor comprises at				
2	least one embedded discrete capacitor.				
1	20. A data processing system comprising:				
2	a bus coupling components in the data processing system;				
3	a display coupled to the bus;				
4	external memory coupled to the bus; and				
5	a processor coupled to the bus and comprising an electronic assembly				
6	including:				
7	a die comprising first and second power supply nodes;				
8	a substrate having third and fourth power supply nodes; and				
9	an interposer coupling the die to the substrate and comprising:				
10	a capacitor having first and second terminals;				
11	a first plurality of lands on a first surface thereof, including a				
12	first land coupled to the first power supply node and the first terminal, and further				

13	including a second land coupled to the second power supply node and the second
14	terminal; and
15	a second plurality of lands on a second surface thereof,

and further including a fourth land coupled to the fourth power supply node and the

including a third land coupled to the third power supply node and the first terminal,

18 second terminal.

16

- 1 21. The data processing system recited in claim 20 wherein the capacitor
- 2 comprises a plurality of high permittivity layers.
- 1 22. The data processing system recited in claim 21 wherein the capacitor
- 2 comprises a plurality of conductive layers interleaved with the high permittivity
- 3 layers, such that alternating conductive layers are coupled to the first and second
- 4 lands, respectively.
- 1 23. A method for making an interposer to couple a die to a substrate, the
- 2 method comprising:
- forming within a multilayer ceramic structure at least one capacitor having
- 4 first and second terminals;
- 5 forming in the structure first and second power supply nodes;
- forming a first plurality of lands on a first surface of the structure, including
- a first land coupled to the first terminal and to the first power supply node, and a
- 8 second land coupled to the second terminal and to the second power supply node,
- 9 wherein the first and second lands are positioned to be coupled to first and second
- 10 power supply nodes of the die; and
- forming a second plurality of lands on a second surface of the structure,
- including a third land coupled to the first terminal and to the first power supply
- 13 node, and a fourth land coupled to the second terminal and to the second power

- supply node, wherein the third and fourth lands are positioned to be coupled to first
- and second power supply nodes of the substrate.
- 1 24. The method recited in claim 23 wherein the at least one capacitor is formed
- 2 of a plurality of high permittivity layers.
- 1 25. The method recited in claim 24 wherein the at least one capacitor is formed
- 2 of a plurality of conductive layers interleaved with the high permittivity layers, such
- 3 that alternating conductive layers are coupled to the first and second lands,
- 4 respectively.
- 1 26. The method recited in claim 23 wherein the at least one capacitor is formed
- 2 of at least one embedded discrete capacitor.
- 1 27. A method of making an electronic assembly comprising:
- 2 providing a die having first and second power supply nodes;
- 3 providing an interposer comprising:
- 4 at least one capacitor having first and second terminals; and
- 5 a first plurality of lands on a first surface thereof including a first
- 6 land coupled to the first terminal, and a second land coupled to the second terminal;
- 7 and
- 8 a second plurality of lands on a second surface thereof including a
- 9 third land coupled to the first terminal, and a fourth land coupled to the second
- 10 terminal;
- providing a substrate comprising third and fourth power supply nodes;
- coupling the first and second lands to the first and second power supply
- 13 nodes; and

- coupling the third and fourth lands to the third and fourth power supply
- 15 nodes.
- 1 28. The method recited in claim 27 wherein the at least one capacitor is formed
- 2 of a plurality of high permittivity layers.
- 1 29. The method recited in claim 28 wherein the at least one capacitor is formed
- 2 of a plurality of conductive layers interleaved with the high permittivity layers, such
- 3 that alternating conductive layers are coupled to the first and second lands,
- 4 respectively.
- 1 30. The method recited in claim 27 wherein the at least one capacitor is formed
- 2 of at least one embedded discrete capacitor.