

MEC-E1070 Selection of Engineering Materials

Prof. Junhe Lian

Prof. Sven Bossuyt

Zinan Li (Course assistant)

Learning objectives for this Lecture

Knowledge and Understanding

Understanding of the potential of hybrid materials

Skills and Abilities

Ability to use the **synthesizer** to explore **material combinations**

Values and Attitudes

Inspiration to combine properties to create **new materials**

Resources

- Text: "Materials Selection in Mechanical Design", 4th edition by M.F. Ashby, Butterworth Heinemann, Oxford, 2016, Chapters 11-12.
- Software: GRANTA EduPack Hybrid synthesizer tool (Grantadesign.com)

Lecture outline

Cellular structures

Composites

Sandwich structures

Multi-layers

Part cost estimator

- ☐ Hybrid materials expanding the filled space
- Example Sandwich structures
- New developments Part cost estimator
- Next-generation material design

Advanced systems use hybrid materials

Sails – Kevlar + Nylon mixed weave With thermally bonded PET skin

Mast and boom – -CFRP, filament wound

Hull – sandwich construction, carbon fibre/PMAA foam core

Criteria of excellence: material indices

• Material index = combination of material properties that limit performance

Objective minimise mass	Const Stiffness	raints Strength
Tension (tie)	Ε/ρ	σ _y /ρ
Bending (beam)	Ε ^{1/2} /ρ	σ <mark>2/3</mark> /ρ
Bending (panel)	Ε ^{1/3} /ρ	σ <mark>1/2</mark> /ρ

Modulus and Density

Strength - Density

Using Hybrids to fill holes

Designing hybrid materials

Combine:

 Materials – relate properties to microstructure: controlled nature, scale through alloy design and processing.

Mechanics – accept properties as "given", optimise the geometry

 Textile technology – exploit unique strength and blending properties of fibers

Hybrid materials

Cellular structures

Composites

Sandwich structures

Multi-layers

Design variables:

- Choice of materials
- Volume fractions
- Configuration
- Connectivity
- Scale

Familiar Architectures

Composites

- Unidirectional
- Quasi-isotropic
- Particulate

Cellular structures

- Foams
- Honeycombs
- Triangulated lattices

Sandwich structures

Symmetric sandwiches

Many more

Example: Sandwich panel – property models

Stiff sandwich panels

The good and the bad about Hybrids

Hybrid corn

Hybrid cars

Improved yield, hardiness

..... but... Infertile

Low fuel consumption, emissions

..... but... Expensive

Synthesizer model for part cost

- Quickly estimate the cost to manufacture a component
- Compare different classes of materials and processing routes

Part cost comparison: Door panel

Accelerating new material development

Current internationally:

ICME - Integrated Computational Materials Engineering

MGI - The Materials Genome Initiative

AMD - Accelerated Material Development..... more

Vision: Materials Informatics

Use today's ability to store, process and retrieve information to accelerate material development

Almost all "bottom-up": sub-atomic \rightarrow $nano \rightarrow micron \rightarrow mm$ scale

Can envisage "top-down": Design requirements → Architecture

