

N-Channel Enhancement Mode Power MOSFET

Description

The GT080N10T uses advanced trench technology to provide excellent $R_{DS(ON)}$, low gate charge. It can be used in a wide variety of applications.

General Features

V_{DS} 100V
 I_D (at V_{GS} = 10V) 65A

• $R_{DS(ON)}$ (at $V_{GS} = 10V$) < $8m\Omega$ • $R_{DS(ON)}$ (at $V_{GS} = 4.5V$) < $9.5m\Omega$

• 100% Avalanche Tested

RoHS Compliant

Application

- Power switch
- DC/DC converters

Schematic diagram

TO-220

Ordering Information

Device	Package	Marking	Packaging
GT080N10T	TO-220	GT080N10	50pcs/Tube

Absolute Maximum Ratings $T_C = 25^{\circ}C$, unless otherwise noted					
Parameter	Symbol	Value	Unit		
Drain-Source Voltage	V _{DS}	100	V		
Continuous Drain Current	I _D	65	Α		
Pulsed Drain Current (note1)	I _{DM}	260	А		
Gate-Source Voltage	V_{GS}	±20	V		
Power Dissipation	P_{D}	100	W		
Single pulse avalanche energy (note2)	E _{AS}	144	mJ		
Operating Junction and Storage Temperature Range	T_J,T_stg	-55 To 150	°C		

Thermal Resistance					
Parameter	Symbol	Value	Unit		
Thermal Resistance, Junction-to-Ambient	R _{thJA}	50	°C/W		
Maximum Junction-to-Case	R _{thJC}	1.25	°C/W		

Specifications $T_J = 25^{\circ}C$, unless otherwise noted						
Parameter	Symbol	Took Conditions	Value			l lmi4
rarameter	Symbol	Test Conditions	Min.	Тур.	Max.	Unit
Static Parameters						
Drain-Source Breakdown Voltage	$V_{(BR)DSS}$	$V_{GS} = 0V, I_D = 250\mu A$	100			V
Zero Gate Voltage Drain Current	I _{DSS}	$V_{DS} = 100V, V_{GS} = 0V$			1	μΑ
Gate-Source Leakage	I _{GSS}	V_{GS} = $\pm 20 V$			±100	nA
Gate-Source Threshold Voltage	$V_{GS(th)}$	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$	1.0	1.7	2.5	V
Drain Sauras On Basistanas	В	$V_{GS} = 10V, I_{D} = 20A$		6.4	8.0	- mΩ
Drain-Source On-Resistance	$R_{DS(on)}$	$V_{GS} = 4.5V, I_D = 20A$		8.0	9.5	
Forward Transconductance	9 _{FS}	V _{GS} = 5V, I _D = 20A		47		S
Dynamic Parameters	I.		I			
Input Capacitance	C _{iss}			2530		pF
Output Capacitance	C _{oss}	$V_{GS} = 0V,$ $V_{DS} = 50V,$		395		
Reverse Transfer Capacitance	C _{rss}	f = 1.0MHz		13		
Total Gate Charge	Q_g	.,		43		
Gate-Source Charge	Q_{gs}	$V_{DD} = 50V,$ $I_{D} = 20A,$		7		nC
Gate-Drain Charge	Q_{gd}	$V_{GS} = 10V$		9		
Turn-on Delay Time	$t_{d(on)}$			10		
Turn-on Rise Time	t _r	$V_{DD} = 50V$		8		
Turn-off Delay Time	$t_{d(off)}$	$I_D = 20A,$ $R_G = 1.6\Omega$		23		ns
Turn-off Fall Time	t _f			6		
Drain-Source Body Diode Characte	eristics			•		
Continuous Body Diode Current	Is	T _C = 25°C			65	Α
Body Diode Voltage	V _{SD}	$T_J = 25^{\circ}C$, $I_{SD} = 20A$, $V_{GS} = 0V$			1.2	V
Reverse Recovery Charge	Qrr	I _F = 20A, V _{GS} = 0V		75		nC
Reverse Recovery Time	Trr	di/dt=100A/us		42		ns

Notes

- 1. Repetitive Rating: Pulse width limited by maximum junction temperature
- 2. EAS condition : Tj=25°C ,VDD=50V,VGS=10V,L=0.5mH,Rg=25 Ω The table shows the minimum avalanche energy, which is 400mJ when the device is tested until failure

TEL: 0755-29961263

3. Identical low side and high side switch with identical $R_{\mbox{\scriptsize G}}$

Gate Charge Test Circuit

Switch Time Test Circuit

EAS Test Circuit

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 1. Output Characteristics

Figure 3. Drain Source On Resistance

Figure 5. Capacitance

Figure 2. Transfer Characteristics

Figure 4. Gate Charge

Figure 6. Source-Drain Diode Forward

Typical Characteristics $T_J = 25^{\circ}\text{C}$, unless otherwise noted

Figure 8. Safe Operation Area

Figure 9. Normalized Maximum Transient Thermal Impedance

TO-220 Package Information

COMMON DIMENSIONS

SYMBOL	m m			
	MIN	NOM	MAX	
A	4. 37	4. 57	4. 77	
A 1	1. 22	1. 27	1. 42	
A 2	2. 49	2. 69	2. 89	
b	0. 75	0. 81	0. 96	
b 2	1. 22	1. 27	1. 47	
С	0. 30	0. 38	0. 48	
D1	8. 50	8. 70	8. 90	
D 2	5. 20	-	Ţ	
E	9. 86	10. 16	10. 36	
E 5	7. 06	_	_	
е	2. 54BSC			
e 1	5. 08BSC			
H1	6. 10	6. 30	6. 50	
L	13. 10	13. 40	13. 70	
L1	_	3. 75	4. 10	
ФР	3. 70	3. 84	3. 99	
Q	2. 54	2. 74	2. 94	