

Actividad Semanal – 7 Regresiones y K means

CIENCIA Y ANALITICA DE DATOS Profesor: María de La Paz Rico

Alumno: Guillermo Alfonso Muñiz Hermosillo - A01793101

ENLACE COLLAB:

https://colab.research.google.com/drive/1XYWc7A6WkHxNMCkBqhdHH aiYAz2ocqT?usp=sharing

ENLACE GITHUB:

https://github.com/PosgradoMNA/actividades-de-aprendizaje-A01793101-GuillermoMuniz/tree/main/Acitividades%20Semanales/ActividadSemanal7-Regresiones%20y%20K%20means

Actividad Semanal -- 7 Regresiones y K means

CIENCIA Y ANALITICA DE DATOS

Profesor: María de La Paz Rico

Alumno: Guillermo Alfonso Muñiz Hermosillo - A01793101

COLLAB LINK

GITHUB LINK

```
In []: import numpy as np
import pandas as pd

from sklearn.model_selection import train_test_split, cross_validate, GridSearce
from sklearn.linear_model import LinearRegression, Ridge, Lasso

from sklearn.pipeline import Pipeline
from sklearn.preprocessing import StandardScaler
import matplotlib.pyplot as plt
import seaborn as sns
sns.set()
import ssl
ssl._create_default_https_context = ssl._create_unverified_context
```

Ejercicio 1. Costo en la industria de manufactura.

Out[]:

	Number of Units	Manufacturing Cost
982	7.518630	25.169406
610	4.855505	32.989285
83	2.672300	49.030499
913	6.250181	30.838120
814	5.586303	31.731383
346	3.978838	41.817553
766	5.419682	33.692138
11	1.574600	64.552496
691	5.104258	25.245474
418	4.197989	29.317949

Verificando que no existan datos nulos.

```
In [ ]: df.isna().any()
```

Out[]: Number of Units False Manufacturing Cost False

dtype: bool

Obteniendo medidas estadisticas

In []: df.describe()

Out[]:		Number of Units	Manufacturing Cost
	count	1000.000000	1000.000000
	mean	4.472799	40.052999
	std	1.336241	10.595322
	min	1.000000	20.000000
	25%	3.594214	32.912036
	50%	4.435958	38.345781
	75%	5.324780	44.531822
	max	10.000000	100.000000

```
In [ ]: df.columns
```

Out[]: Index(['Number of Units', 'Manufacturing Cost'], dtype='object')

Para conocer la distribucion de nuestros datos, muestro la siguiente grafica de caja

```
In []: sns.set(rc={'figure.figsize':(15,5)})
        plt.boxplot(df.to_numpy(), labels=df.columns, showmeans=True, vert=False)
```


Como podemos ver, Manufactiring cost tiene unos cuantos outliers y su magnitud es un poco mayor al number of units.

```
In []: scaler = StandardScaler()
    dfScaled = pd.DataFrame(scaler.fit_transform(df), columns=df.columns)
    dfScaled.head()
```

Out[]:		Number of Units	Manufacturing Cost
	0	-2.600231	5.194801
	1	-2.460970	5.333204
	2	-2.456848	3.173583
	3	-2.446910	5.242089
	4	-2.376528	5.545221

```
In []: sns.set(rc={'figure.figsize':(15,5)})
    plt.boxplot(dfScaled.to_numpy(), labels=dfScaled.columns, showmeans=True, vert=
    plt.show()
```


Divide los datos del costo de manufactura.

Utilizar la función train_test_split.

```
In []: X = dfScaled[['Number of Units']]
y = dfScaled['Manufacturing Cost']
```

```
In []: xtrain, xtest, ytrain, ytest = train_test_split(X, y, test_size=0.2, random_st

In []: def graficarPredicciones(x2, ypred):
    plt.scatter(X, y)
    plt.plot(x2, ypred, "r-", linewidth=2, label="Predictions")
    plt.xlabel("$X$", fontsize=18)
    plt.ylabel("$y$", rotation=0, fontsize=18)
    plt.legend(loc="upper left", fontsize=14);
    plt.axis([-3, 6, -4, 7]);
```

REGRESION LINEAL

MODELADO

Out[]: LinearRegression()

La ecuacion generada con el conjunto de entrenamiento es:

La visualizacion de este modelo generado es:

```
In [ ]: y_hat = lr.predict(xtrain)
graficarPredicciones(xtrain, y_hat)
```


Sus errores y su r squared son:

```
In [ ]: from sklearn import metrics
```

```
from sklearn.metrics import r2 score
maes = []
r2s = []
modelos = []
modelos.append('Linear Regression')
maes.append(metrics.mean_absolute_error(ytrain, y_hat))
r2s.append(r2_score(ytrain, y_hat))
print('Error medio Absoluto (MAE):', metrics.mean_absolute_error(ytrain, y_hat)
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(ytrain, y
print('r2_score',r2_score(ytrain, y_hat))
Error medio Absoluto (MAE): 0.44487025252822726
Root Mean Squared Error: 0.6125472434542465
```

r2 score 0.555997358980481

REGRESION POLINOMIAL

MODELO

```
In [ ]: from sklearn.preprocessing import PolynomialFeatures
        polyfeat = PolynomialFeatures(degree=3, include bias=False)
        Xpoly = polyfeat.fit_transform(xtrain)
In [ ]: lrpoly = LinearRegression(fit_intercept=True)
        lrpoly.fit(Xpoly, ytrain)
Out[]: LinearRegression()
```

La ecuacion generada con el conjunto de entrenamiento es:

```
In [ ]: lrpoly.coef_, lrpoly.intercept_
Out[]: (array([-0.62117566, 0.2198283, -0.04569872]), -0.2262232795624534)
                      \hat{y} = -0.62117X + 0.21982X^2 - 0.04569X^3 - 0.22622
```

La visualizacion de este modelo generado es:

```
In []: y hatpoly = lrpoly.predict(Xpoly)
        graficarPredicciones(xtrain, y hatpoly)
```


Sus errores y su r squared son:

```
In []: modelos.append('Polinomial Regression')
    maes.append(metrics.mean_absolute_error(ytrain, y_hatpoly))
    r2s.append(r2_score(ytrain, y_hatpoly))

    print('Error medio Absoluto (MAE):', metrics.mean_absolute_error(ytrain, y_hatpoly)

    print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(ytrain, y_print('r2_score',r2_score(ytrain, y_hatpoly))

    Error medio Absoluto (MAE): 0.41470261009919945
    Root Mean Squared Error: 0.5499221716410964
    r2 score 0.6421435631309922
```

Realiza la regresión con Ridge y Lasso

MODELOS

```
In []: RidgeModel = Ridge(alpha = 0.01)
RidgeModel.fit(xtrain, ytrain)

LassoModel = Lasso(alpha = 0.01)
LassoModel.fit(xtrain, ytrain)
```

Out[]: Lasso(alpha=0.01)

La ecuacion generada por AMBOS MODELOS con el conjunto de entrenamiento es:

```
In [ ]: RidgeModel.coef_, RidgeModel.intercept_ \hat{y} = -0.70276X - 0.02871 In [ ]: LassoModel.coef_, LassoModel.intercept_ 0ut[ ]: (array([-0.69226697]), -0.028835721615773094)
```

$$\hat{y} = -0.69226X - 0.02883$$

La visualizacion de este modelo generado es:

• RIDGE

• LASSO

Sus errores y su r squared son:

• Ridge

```
In []: modelos.append('Ridge')
    maes.append(metrics.mean_absolute_error(ytrain, y_hatRidge))
    r2s.append(r2_score(ytrain, y_hatRidge))
```

```
print('Error medio Absoluto (MAE):', metrics.mean_absolute_error(ytrain, y_hatf
print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(ytrain, y_
print('r2_score',r2_score(ytrain, y_hatRidge))
```

Error medio Absoluto (MAE): 0.444869731029353 Root Mean Squared Error: 0.6125472435204601 r2_score 0.5559973588844915

Lasso

```
In []: modelos.append('Lasso')
    maes.append(metrics.mean_absolute_error(ytrain, y_hatLasso))
    r2s.append(r2_score(ytrain, y_hatLasso))

print('Error medio Absoluto (MAE):', metrics.mean_absolute_error(ytrain, y_hatl print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(ytrain, y_print('r2_score',r2_score(ytrain, y_hatLasso)))

Error medio Absoluto (MAE): 0.4443075550254994
Root Mean Squared Error: 0.6126330401812333
    r2_score 0.5558729713790165
```

GRAFICAR MAE y R2

MAE

R SQUARED

```
In []: plt.barh(modelos, r2s)
  plt.title('R2 POR MODELO')
  for index, value in enumerate(r2s):
```



```
In []: sns.set(rc={'figure.figsize':(15,10)})
    resid = [ytrain-y_hat, ytrain-y_hatpoly, ytrain-y_hatRidge, ytrain-y_hatLasso]
    plt.boxplot(resid, labels=modelos, showmeans=True, vert=False)
    plt.title('RESIDUO DE ERRORES REALES A PREDICHOS')
    plt.show()
```


Explica tus resultados:

• Que método conviene más a la empresa, ¿por que?

Por el momento el que parece ser mas conveniente a la empresa es la regresion polinomial. Ya que sus predicciones son mas certeras que los otros modelos. Con un error de 0.64 promedio es el que tiene mejor desempeño en el conjunto de validacion.

• ¿Que porcentajes de entrenamiento y evaluación usaste?

Use 80 % del conjunto de datos para entrenamiento y validacion y 20% lo deje destinado a Prueba.

• ¿Que error tienes? ¿es bueno?, ¿cómo lo sabes?

El MAE de 0.414 del modelo polinomial es el mejor. Lo sabemos porque mientras mas cercano sea el MAE a 0, mas preciso sera nuestro modelo. Lo sabemos porque este error es el promedio de los errores absolutos en nuestro conjunto de datos.

Ejercicio 2. Regresión múltiple.

Comenzamos leyendo nuestro conjunto de datos y verificando si existen nulos

In []: dfhouses = pd.read_csv('https://raw.githubusercontent.com/marypazrf/bdd/main/kodhouses.sample(10)

Out[]:		id	date	price	bedrooms	bathrooms	sqft_living	sqft_lot
	4915	6117500430	20140819T000000	925000.0	5	3.50	4050	13495
	21594	5087900040	20141017T000000	350000.0	4	2.75	2500	5995
	17931	2979800750	20140911T000000	552000.0	2	1.00	1150	5000
	15748	3342103281	20141020T000000	500000.0	4	1.00	1160	20100
	8863	1226059161	20141229T000000	562000.0	4	2.75	2560	83200
	3357	5742600090	20150425T000000	490000.0	3	1.00	960	5750
	9096	4174600331	20140717T000000	384000.0	6	3.00	2320	4502
	12004	1965200075	20150316T000000	845000.0	3	1.75	1600	2538
	1057	8127700445	20140716T000000	699000.0	3	1.75	1670	5375
	815	1421069208	20141223T000000	379000.0	3	3.25	2660	17852

10 rows × 21 columns

In []: dfhouses.isna().any()

```
Out[]: id
                          False
                          False
        date
        price
                          False
        bedrooms
                          False
        bathrooms
                          False
        sqft_living
                          False
        sqft_lot
                          False
        floors
                          False
        waterfront
                          False
        view
                          False
        condition
                          False
        grade
                          False
        sqft_above
                          False
        sqft_basement
                          False
        yr_built
                          False
        yr_renovated
                          False
        zipcode
                          False
        lat
                          False
        long
                          False
        sqft_living15
                          False
        sqft_lot15
                          False
        dtype: bool
```

Eliminamos datos no relevantes

```
In []: dfhouses.drop('id', axis = 1, inplace = True)
    dfhouses.drop('date', axis = 1, inplace = True)
    dfhouses.drop('zipcode', axis = 1, inplace = True)
    dfhouses.drop('lat', axis = 1, inplace = True)
    dfhouses.drop('long', axis = 1, inplace = True)
```

Obtenemos las medidas estadisticas

```
In [ ]: dfhouses.describe()
```

Out[]:		price	bedrooms	bathrooms	sqft_living	sqft_lot	floors
	count	2.161300e+04	21613.000000	21613.000000	21613.000000	2.161300e+04	21613.000000
	mean	5.400881e+05	3.370842	2.114757	2079.899736	1.510697e+04	1.494309
	std	3.671272e+05	0.930062	0.770163	918.440897	4.142051e+04	0.539989
	min	7.500000e+04	0.000000	0.000000	290.000000	5.200000e+02	1.000000
	25%	3.219500e+05	3.000000	1.750000	1427.000000	5.040000e+03	1.000000
	50%	4.500000e+05	3.000000	2.250000	1910.000000	7.618000e+03	1.500000
	75%	6.450000e+05	4.000000	2.500000	2550.000000	1.068800e+04	2.000000
	max	7.700000e+06	33.000000	8.000000	13540.000000	1.651359e+06	3.500000

Escalamos nuestro conjunto de datos para tener datos normalizados

```
In [ ]: dfScaHouse = pd.DataFrame(scaler.fit_transform(dfhouses), columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.columns=dfhouses.col
```

```
price bedrooms
                                    bathrooms sqft_living
                                                             sqft_lot
                                                                          floors waterfront
                                                                                                   view
Out[]:
          0
             -0.866717
                         -0.398737
                                     -1.447464
                                                 -0.979835
                                                            -0.228321
                                                                      -0.915427
                                                                                   -0.087173
                                                                                             -0.305759
          1 -0.005688
                        -0.398737
                                      0.175607
                                                 0.533634
                                                            -0.189885
                                                                       0.936506
                                                                                   -0.087173
                                                                                             -0.305759
          2 -0.980849
                         -1.473959
                                     -1.447464
                                                 -1.426254
                                                            -0.123298
                                                                      -0.915427
                                                                                   -0.087173
                                                                                             -0.305759
          3
              0.174090
                         0.676485
                                      1.149449
                                                 -0.130550
                                                           -0.244014
                                                                      -0.915427
                                                                                   -0.087173
                                                                                             -0.305759
             -0.081958
                        -0.398737
                                     -0.149007
                                                -0.435422 -0.169653
                                                                      -0.915427
                                                                                   -0.087173
                                                                                             -0.305759
```

```
In []: sns.set(rc={'figure.figsize':(15,5)})
   plt.boxplot(dfScaHouse.to_numpy(), labels=dfScaHouse.columns, showmeans=True, v
   plt.show()
```



```
In []: yhouse = dfScaHouse['price']
Xhouse = dfScaHouse.loc[:, dfScaHouse.columns != 'price']
```

```
In []: plt.figure(figsize=(12,8))
    sns.heatmap(Xhouse.corr(), annot=True, cmap='Dark2_r', linewidths = 2)
    plt.show()
```


Divide los datos.

Utiliza la función train_test_split

Regresión Múltiple Lineal

MODELO

```
In []: lrHouse = LinearRegression()
lrHouse.fit(XtrainH, ytrainH)

Out[]: LinearRegression()

In []: lrHouse.coef_, lrHouse.intercept_

Out[]: (array([-8.49373282e-02, 8.29572558e-02, 1.34076744e+13, 3.19633535e-04, 4.71070593e-02, 1.30860436e-01, 8.63454234e-02, 3.66019652e-02, 3.82672571e-01, -1.20887193e+13, -6.46084260e+12, -2.84053071e-01, 1.25985923e-02, 5.29822807e-02, -3.90266766e-02]), -0.002892357793083432)
```

La visualizacion de este modelo generado es:

Sus errores y su r squared son:

```
In []: maesH = []
    r2sH = []
    residH = []
    maesH.append(metrics.mean_absolute_error(ytrainH, y_hatLRHous))
    r2sH.append(r2_score(ytrainH, y_hatLRHous))
    residH.append(ytrainH-y_hatLRHous)

print('Error medio Absoluto (MAE):', metrics.mean_absolute_error(ytrainH, y_hat print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(ytrainH, y print('r2_score', r2_score(ytrainH, y_hatLRHous))

Error medio Absoluto (MAE): 0.3801957937264814
Root Mean Squared Error: 0.5835971614744226
    r2_score 0.6528725163450275
```

REGRESION POLINOMIAL

MODELO

```
In []: polyfeatH = PolynomialFeatures(degree=8, include_bias=False)
    XpolyH = polyfeat.fit_transform(XtrainH)

In []: lrpolyH = LinearRegression(fit_intercept=True)
    lrpolyH.fit(XpolyH, ytrainH)

Out[]: LinearRegression()
```

La ecuacion generada con el conjunto de entrenamiento es:

```
In []: lrpolyH.coef_[0:30], lrpolyH.intercept_
Out[]: (array([ 2.49310414e+08, -7.49967135e-02, -1.01720819e-01, 6.82339365e-01, 6.11904319e-02, 1.17439777e-04, 5.04409043e-01, -3.91473610e-01, -6.04808889e-02, -2.49721352e-01, 2.66113028e-01, -5.90875831e-01, -3.65619600e+01, 1.98318530e-01, 1.79742400e-01, -7.50380009e-03, 1.25152394e-02, -3.68860364e-03, -1.87834725e-02, 3.78385149e-02, 2.83822898e+09, 2.51857787e-02, 1.31868571e-03, -3.36515903e-03, 1.77266449e-03, -1.09218955e-02, -5.33830747e-02, 1.00634433e+00, -6.80588931e-03, 6.17225021e-02]), -8.64770484687528)
```

Sus errores y su r squared son:

```
In []: y_hatPRHous = lrHouse.predict(XtrainH)

maesH.append(metrics.mean_absolute_error(ytrainH, y_hatPRHous))
    r2sH.append(r2_score(ytrainH, y_hatPRHous))
    residH.append(ytrainH-y_hatPRHous)

print('Error medio Absoluto (MAE):', metrics.mean_absolute_error(ytrainH, y_hat print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(ytrainH, y print('r2_score', r2_score(ytrainH, y_hatPRHous)))

Error medio Absoluto (MAE): 0.3801957937264814
Root Mean Squared Error: 0.5835971614744226
    r2_score 0.6528725163450275
```

Realiza la regresión con Ridge y Lasso

MODELOS

```
In []: RidgeModelH = Ridge(alpha = 0.10)
RidgeModelH.fit(XtrainH, ytrainH)

LassoModelH = Lasso(alpha = .01)
LassoModelH.fit(XtrainH, ytrainH)
```

Out[]: Lasso(alpha=0.01)

La ecuacion generada por AMBOS MODELOS con el conjunto de entrenamiento es:

```
Out[]: (array([-0.06984475, 0.07145965, 0.38742126, -0. , 0.02973128, 0.12411084, 0.0880468 , 0.02807131, 0.38116594, 0. , 0.00518928, -0.26357658, 0.010054 , 0.04219924, -0.0274872]), -0.0015428850748442054)
```

Sus errores y su r squared son:

• Ridge

```
In []: y_hatLassoH = LassoModelH.predict(XtrainH)

maesH.append(metrics.mean_absolute_error(ytrain, y_hatLasso))
    r2sH.append(r2_score(ytrain, y_hatLasso))
    residH.append(ytrainH-y_hatLassoH)

print('Error medio Absoluto (MAE):', metrics.mean_absolute_error(ytrain, y_hatl print('Root Mean Squared Error:', np.sqrt(metrics.mean_squared_error(ytrain, y_print('r2_score', r2_score(ytrain, y_hatLasso))
```

Error medio Absoluto (MAE): 0.4443075550254994 Root Mean Squared Error: 0.6126330401812333 r2 score 0.5558729713790165

GRAFICAR MAE y R2

MAE

```
In []: modelos
Out[]: ['Linear Regression', 'Polinomial Regression', 'Ridge', 'Lasso']
In []: maesH
```


• R SQUARED

Out[]: [0.3801957937264814,

0.3801957937264814,


```
In []: sns.set(rc={'figure.figsize':(15,10)})
    plt.boxplot(residH, labels=modelos, showmeans=True, vert=False)
    plt.title('RESIDUO DE ERRORES REALES A PREDICHOS RLM')
    plt.show()
```

RESIDUO DE ERRORES REALES A PREDICHOS RLM

Explica tus resultados:

• Que método conviene más a la empresa, ¿por que?

Por el momento el que parece ser mas conveniente a la empresa es el modelo con correccion Rigge. Ya que sus predicciones son mas certeras que los otros modelos. Con un error de 0.65 promedio y un MAE de 0.35 es el que tiene mejor desempeño en el conjunto de validacion.

• ¿Que porcentajes de entrenamiento y evaluación usaste?

Use 90 % del conjunto de datos para entrenamiento y validacion y 10% lo deje destinado a Prueba.

• ¿Que error tienes? ¿es bueno?, ¿cómo lo sabes?

El MAE de 0.379 del modelo RIDGE es el mejor. Lo sabemos de la misma manera que en el ejercicio 1. Mientras mas cercano sea el MAE a 0, mas preciso sera nuestro modelo. Este error es el promedio de los errores absolutos en nuestro conjunto de datos.

Agrega las conclusiones

Como podemos ver, el modelo de Regresion Lineal Multiple con correccion Ridge y alpha de 0.10 nos entrega un mejor desempeño que cualquier otro modelo que hayamos probado. Si bien es cierto que el R2 deberia de ser un poco mayor por lo que quiza haga falta realizar alguna transformacion adicional para verificar estos valores.

Por el momento para ambos ejercicios podemos deducir que los metodos de regresion nos ayudan a encontrar una funcion para poder predecir nuestra variable de salida.

Necesitamos ser precisos con nuestro preprocesamiento de nuestros datos y encontrar las mejores soluciones posibles.

EJERCICIO 3 - KMEANS

```
In []: from tqdm import tqdm
!pip install geopandas
import geopandas as gpd

url="https://raw.githubusercontent.com/marypazrf/bdd/main/target-locations.csv'
dfKmeans=pd.read_csv(url)
```

```
Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-w
heels/public/simple/
Collecting geopandas
  Downloading geopandas-0.10.2-py2.py3-none-any.whl (1.0 MB)
                                   1.0 MB 15.8 MB/s
Collecting pyproj>=2.2.0
  Downloading pyproj-3.2.1-cp37-cp37m-manylinux2010_x86_64.whl (6.3 MB)
                                6.3 MB 61.9 MB/s
Requirement already satisfied: shapely>=1.6 in /usr/local/lib/python3.7/dist-p
ackages (from geopandas) (1.8.5.post1)
Requirement already satisfied: pandas>=0.25.0 in /usr/local/lib/python3.7/dist
-packages (from geopandas) (1.3.5)
Collecting fiona>=1.8
  Downloading Fiona-1.8.22-cp37-cp37m-manylinux2014 x86 64.whl (16.7 MB)
                                    16.7 MB 69.6 MB/s
Requirement already satisfied: click>=4.0 in /usr/local/lib/python3.7/dist-pac
kages (from fiona>=1.8->geopandas) (7.1.2)
Requirement already satisfied: attrs>=17 in /usr/local/lib/python3.7/dist-pack
ages (from fiona>=1.8->geopandas) (22.1.0)
Collecting munch
  Downloading munch-2.5.0-py2.py3-none-any.whl (10 kB)
Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-pac
kages (from fiona>=1.8->geopandas) (57.4.0)
Collecting cliqi>=0.5
 Downloading cligj-0.7.2-py3-none-any.whl (7.1 kB)
Collecting click-plugins>=1.0
 Downloading click_plugins-1.1.1-py2.py3-none-any.whl (7.5 kB)
Requirement already satisfied: six>=1.7 in /usr/local/lib/python3.7/dist-packa
ges (from fiona>=1.8->geopandas) (1.15.0)
Requirement already satisfied: certifi in /usr/local/lib/python3.7/dist-packag
es (from fiona>=1.8->geopandas) (2022.9.24)
Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-p
ackages (from pandas>=0.25.0->geopandas) (2022.6)
Requirement already satisfied: numpy>=1.17.3 in /usr/local/lib/python3.7/dist-
packages (from pandas>=0.25.0->geopandas) (1.21.6)
Requirement already satisfied: python-dateutil>=2.7.3 in /usr/local/lib/python
3.7/dist-packages (from pandas>=0.25.0->geopandas) (2.8.2)
Installing collected packages: munch, cligj, click-plugins, pyproj, fiona, geo
pandas
Successfully installed click-plugins-1.1.1 cligj-0.7.2 fiona-1.8.22 geopandas-
0.10.2 munch-2.5.0 pyproj-3.2.1
```

In []: dfKmeans.describe()

Out[]:		latitude	longitude
	count	1839.000000	1839.000000
	mean	37.791238	-91.986881
	std	5.272299	16.108046
	min	19.647855	-159.376962
	25%	33.882605	-98.268828
	50%	38.955432	-87.746346
	75%	41.658341	-80.084833
	max	61.577919	-68.742331

```
In [ ]: dfKmeans.isna().any()
Out[]: name
                     False
        latitude
                     False
        longitude
                     False
        address
                     False
        phone
                     False
        website
                     False
        dtype: bool
In [ ]: latlong=dfKmeans[["latitude","longitude"]]
In [ ]: latlong.plot.scatter( "longitude","latitude")
```

WARNING:matplotlib.axes._axes:*c* argument looks like a single numeric RGB or RGBA sequence, which should be avoided as value—mapping will have precedence in case its length matches with *x* & *y*. Please use the *color* keyword—argument or provide a 2-D array with a single row if you intend to specify the same RGB or RGBA value for all points.

Out[]: <matplotlib.axes._subplots.AxesSubplot at 0x7f273c940f90>


```
In []: from shapely.geometry import Point
!pip install qeds
import qeds
qeds.themes.mpl_style();

dfKmeans["Coordinates"] = list(zip(dfKmeans.longitude, dfKmeans.latitude))
dfKmeans["Coordinates"] = dfKmeans["Coordinates"].apply(Point)
dfKmeans.head()
```

Looking in indexes: https://pypi.org/simple, https://us-python.pkg.dev/colab-w heels/public/simple/

Collecting geds

Downloading geds-0.7.0.tar.gz (24 kB)

Requirement already satisfied: pandas in /usr/local/lib/python3.7/dist-package s (from geds) (1.3.5)

Requirement already satisfied: requests in /usr/local/lib/python3.7/dist-packages (from qeds) (2.23.0)

Collecting quandl

Downloading Quandl-3.7.0-py2.py3-none-any.whl (26 kB)

Requirement already satisfied: scipy in /usr/local/lib/python3.7/dist-packages (from geds) (1.7.3)

Requirement already satisfied: numpy in /usr/local/lib/python3.7/dist-packages (from qeds) (1.21.6)

Collecting quantecon

Downloading quantecon-0.5.3-py3-none-any.whl (179 kB)

■| 179 kB 19.6 MB/s

Requirement already satisfied: matplotlib in /usr/local/lib/python3.7/dist-pac kages (from qeds) (3.2.2)

Requirement already satisfied: pyarrow in /usr/local/lib/python3.7/dist-packag es (from qeds) (6.0.1)

Requirement already satisfied: openpyxl in /usr/local/lib/python3.7/dist-packa ges (from qeds) (3.0.10)

Requirement already satisfied: plotly in /usr/local/lib/python3.7/dist-package s (from geds) (5.5.0)

Requirement already satisfied: pandas_datareader in /usr/local/lib/python3.7/d ist-packages (from geds) (0.9.0)

Requirement already satisfied: scikit-learn in /usr/local/lib/python3.7/dist-p ackages (from qeds) (1.0.2)

Requirement already satisfied: seaborn in /usr/local/lib/python3.7/dist-packag es (from qeds) (0.11.2)

Requirement already satisfied: statsmodels in /usr/local/lib/python3.7/dist-pa ckages (from qeds) (0.12.2)

Requirement already satisfied: cycler>=0.10 in /usr/local/lib/python3.7/dist-p ackages (from matplotlib->geds) (0.11.0)

Requirement already satisfied: pyparsing!=2.0.4,!=2.1.2,!=2.1.6,>=2.0.1 in /us r/local/lib/python3.7/dist-packages (from matplotlib->geds) (3.0.9)

Requirement already satisfied: python-dateutil>=2.1 in /usr/local/lib/python3. 7/dist-packages (from matplotlib->qeds) (2.8.2)

Requirement already satisfied: kiwisolver>=1.0.1 in /usr/local/lib/python3.7/d ist-packages (from matplotlib->qeds) (1.4.4)

Requirement already satisfied: typing-extensions in /usr/local/lib/python3.7/d ist-packages (from kiwisolver>=1.0.1->matplotlib->geds) (4.1.1)

Requirement already satisfied: six>=1.5 in /usr/local/lib/python3.7/dist-packa ges (from python-dateutil>=2.1->matplotlib->geds) (1.15.0)

Requirement already satisfied: et-xmlfile in /usr/local/lib/python3.7/dist-pac kages (from openpyxl->qeds) (1.1.0)

Requirement already satisfied: pytz>=2017.3 in /usr/local/lib/python3.7/dist-p ackages (from pandas->geds) (2022.6)

Requirement already satisfied: lxml in /usr/local/lib/python3.7/dist-packages (from pandas datareader->qeds) (4.9.1)

Requirement already satisfied: urllib3!=1.25.0,!=1.25.1,<1.26,>=1.21.1 in /us r/local/lib/python3.7/dist-packages (from requests->qeds) (1.24.3)

Requirement already satisfied: idna<3,>=2.5 in /usr/local/lib/python3.7/dist-p ackages (from requests->qeds) (2.10)

Requirement already satisfied: chardet<4,>=3.0.2 in /usr/local/lib/python3.7/d ist-packages (from requests->geds) (3.0.4)

A01793101_ActividadSemana7_RegresionesYKMeans Requirement already satisfied: certifi>=2017.4.17 in /usr/local/lib/python3.7/ dist-packages (from requests->geds) (2022.9.24) Requirement already satisfied: tenacity>=6.2.0 in /usr/local/lib/python3.7/dis t-packages (from plotly->geds) (8.1.0) Collecting inflection>=0.3.1 Downloading inflection-0.5.1-py2.py3-none-any.whl (9.5 kB) Requirement already satisfied: more-itertools in /usr/local/lib/python3.7/dist -packages (from quandl->geds) (9.0.0) Requirement already satisfied: numba in /usr/local/lib/python3.7/dist-packages (from quantecon->qeds) (0.56.4) Requirement already satisfied: sympy in /usr/local/lib/python3.7/dist-packages (from quantecon->qeds) (1.7.1) Requirement already satisfied: setuptools in /usr/local/lib/python3.7/dist-pac kages (from numba->quantecon->geds) (57.4.0) Requirement already satisfied: llvmlite<0.40,>=0.39.0dev0 in /usr/local/lib/py thon3.7/dist-packages (from numba->quantecon->qeds) (0.39.1) Requirement already satisfied: importlib-metadata in /usr/local/lib/python3.7/ dist-packages (from numba->quantecon->geds) (4.13.0) Requirement already satisfied: zipp>=0.5 in /usr/local/lib/python3.7/dist-pack ages (from importlib-metadata->numba->quantecon->qeds) (3.10.0) Requirement already satisfied: threadpoolctl>=2.0.0 in /usr/local/lib/python3. 7/dist-packages (from scikit-learn->qeds) (3.1.0) Requirement already satisfied: joblib>=0.11 in /usr/local/lib/python3.7/dist-p ackages (from scikit-learn->geds) (1.2.0) Requirement already satisfied: patsy>=0.5 in /usr/local/lib/python3.7/dist-pac kages (from statsmodels->geds) (0.5.3) Requirement already satisfied: mpmath>=0.19 in /usr/local/lib/python3.7/dist-p Building wheels for collected packages: geds Building wheel for geds (setup.py) ... done

ackages (from sympy->quantecon->qeds) (1.2.1)

Created wheel for geds: filename=geds-0.7.0-py3-none-any.whl size=27812 sha2 56=856e99330d68a024ce0a604f5cd1402d7fc9619cf8e4d5fd362db6e4789fce96

Stored in directory: /root/.cache/pip/wheels/fc/8c/52/0cc036b9730b75850b9845 770780f8d05ed08ff38a67cbaa29

Successfully built geds

Installing collected packages: inflection, quantecon, quandl, geds Successfully installed inflection-0.5.1 qeds-0.7.0 quandl-3.7.0 quantecon-0.5.

3

Out[]:		name	latitude	longitude	address	phone	website
	0	Alabaster	33.224225	-86.804174	250 S Colonial Dr, Alabaster, AL 35007- 4657	205- 564- 2608	https://www.target.com/sl/alabaster/2276
	1	Bessemer	33.334550	-86.989778	4889 Promenade Pkwy, Bessemer, AL 35022- 7305	205- 565- 3760	https://www.target.com/sl/bessemer/2378
	2	Daphne	30.602875	-87.895932	1698 US Highway 98, Daphne, AL 36526- 4252	251- 621- 3540	https://www.target.com/sl/daphne/1274
	3	Decatur	34.560148	-86.971559	1235 Point Mallard Pkwy SE, Decatur, AL 35601	256- 898- 3036	https://www.target.com/sl/decatur/2084
	4	Dothan	31.266061	-85.446422	4601 Montgomery Hwy, Dothan, AL 36303-1522	334- 340- 1112	https://www.target.com/sl/dothan/1468
In []:	<pre>gdf = gpd.GeoDataFrame(dfKmeans, geometry="Coordinates") gdf hoad()</pre>						

gdf.head()

, 18:59	A01793101_ActividadSemana7_RegresionesYKMeans								
Out[]:		name	e lat	itude	longitude	addre	ess	phone	website
	0	Alabaste	r 33.22	4225	-86.804174	Colonial Alabas AL 3500	ter,	205- 564- 2608	https://www.target.com/sl/alabaster/2276
	1	Besseme	r 33.33	4550	-86.989778	Promena Pk Bessem AL 3502	wy, ner,	205- 565- 3760	https://www.target.com/sl/bessemer/2378
	2	Daphne	e 30.60	2875	-87.895932	1698 Highway Daphne, 3652	98, AL	251- 621- 3540	https://www.target.com/sl/daphne/1274
	3	Decatu	r 34.56	60148	-86.971559	1235 Po Mall Pkwy Decatur, 35601	ard SE, AL	256- 898- 3036	https://www.target.com/sl/decatur/2084
	4	Dothar	n 31.26	6061	-85.446422	Montgom	wy, AL	334- 340- 1112	https://www.target.com/sl/dothan/1468
In []:	<pre>world = gpd.read_file(gpd.datasets.get_path("naturalearth_lowres")) world = world.set_index("iso_a3") world.head()</pre>								
Out[]:	iso	p _a3	op_est	conti	nent	name	gd	p_md_es	t geometry
		FJI 9	920938	Oce	eania	Fiji		8374.0	MULTIPOLYGON (((180.00000 -16.06713, 180.00000
		TZA 539	950935	Δ	Africa	Tanzania		150600.0	POLYGON ((33.90371 -0.95000, 34.07262 -1.05982

```
34.07262 -1.05982...
                                                             POLYGON ((-8.66559 27.65643,
ESH
         603253
                      Africa
                                   W. Sahara
                                                     906.5
                                                                        -8.66512 27.58948...
                      North
                                                              MULTIPOLYGON (((-122.84000
      35623680
                                     Canada
                                                 1674000.0
CAN
                    America
                                                                      49.00000, -122.9742...
                      North
                              United States of
                                                              MULTIPOLYGON (((-122.84000
                                               18560000.0
USA 326625791
                    America
                                     America
                                                                     49.00000, -120.0000...
```

```
In []: import warnings
warnings.filterwarnings('ignore')

fig, gax = plt.subplots(figsize=(10,10))
# By only plotting rows in which the continent is 'South America' we only plot
```

```
world.query("name == 'United States of America'").plot(ax=gax, edgecolor='black
# By the way, if you haven't read the book 'longitude' by Dava Sobel, you should
gax.set_xlabel('longitude')
gax.set_ylabel('latitude')

gax.spines['top'].set_visible(False)
gax.spines['right'].set_visible(False)
```



```
In [ ]: # Step 3: Plot the cities onto the map
        # We mostly use the code from before --- we still want the country borders plot
        # add a command to plot the cities
        fig, gax = plt.subplots(figsize=(10,10))
        # By only plotting rows in which the continent is 'South America' we only plot,
        # South America.
        world.query("name == 'United States of America'").plot(ax = gax, edgecolor='bla
        # This plot the cities. It's the same syntax, but we are plotting from a differ
        # I want the cities as pale red dots.
        gdf.plot(ax=gax, color='red', alpha = 0.5)
        gax.set xlabel('longitude')
        gax.set_ylabel('latitude')
        gax.set_title('Target en Estados Unidos')
        gax.spines['top'].set visible(False)
        gax.spines['right'].set_visible(False)
        plt.show()
```


Convertimos nuestras ubicaciones a un arreglo de Numpy para poder obtener los centros de Kmeans

Para encontrar nuestro mejor lugar en el almacen, se necesita encontrar el numero optimo de centroids para poder colocar en esas ubicaciones los almacenes de manera que esten distribuidos especificamente

```
xx, yy = np.meshgrid(np.linspace(mins[0], maxs[0], resolution),
                     np.linspace(mins[1], maxs[1], resolution))
Z = clusterer.predict(np.c_[xx.ravel(), yy.ravel()])
Z = Z.reshape(xx.shape)
plt.contourf(Z, extent=(mins[0], maxs[0], mins[1], maxs[1]),
            cmap="Pastel2")
plt.contour(Z, extent=(mins[0], maxs[0], mins[1], maxs[1]),
            linewidths=1, colors='k')
plot_data(X)
if show_centroids:
    plot_centroids(clusterer.cluster_centers_)
if show xlabels:
    plt.xlabel("$x_1$")
else:
    plt.tick_params(labelbottom=False)
if show_ylabels:
    plt.ylabel("$x_2$", rotation=0)
else:
    plt.tick_params(labelleft=False)
```

```
In [ ]: from sklearn.cluster import KMeans
        kmeans_iter1 = KMeans(n_clusters=10, init="random", n_init=1, max_iter=10,
                               random_state=5)
        kmeans_iter2 = KMeans(n_clusters=20, init="random", n_init=1, max_iter=10,
                               random state=5)
        kmeans_iter3 = KMeans(n_clusters=40, init="random", n_init=1, max_iter=10,
                               random state=5)
        kmeans_iter4 = KMeans(n_clusters=51, init="random", n_init=1, max_iter=10,
                               random state=5)
        kmeans iter1.fit(XKmeans)
        kmeans iter2.fit(XKmeans)
        kmeans iter3.fit(XKmeans)
        kmeans iter4.fit(XKmeans)
        plt.figure(figsize=(15, 10))
        plt.subplot(321)
        plot decision boundaries(kmeans iter1, XKmeans, show centroids=False,
                                 show ylabels=False, show xlabels=False)
        plot_centroids(kmeans_iter1.cluster_centers_)
        plt.title("10 CLUSTERS")
        plt.subplot(322)
        plot decision boundaries(kmeans iter2, XKmeans, show centroids=False,
                                  show_ylabels=False, show_xlabels=False)
        plot centroids(kmeans iter2.cluster centers )
        plt.title("20 CLUSTERS")
        plt.subplot(323)
        plot decision boundaries(kmeans iter3, XKmeans, show centroids=False, show ylak
        plot centroids(kmeans iter3.cluster centers )
        plt.title("40 CLUSTERS")
```

```
plt.subplot(324)
plot_decision_boundaries(kmeans_iter4, XKmeans, show_centroids=False, show_ylak
plot_centroids(kmeans_iter4.cluster_centers_)
plt.title("51 CLUSTERS")

plt.show()
```



```
In []: kmeans_per_k = [KMeans(n_clusters=k, random_state=42).fit(XKmeans)
                        for k in range(10, 60, 5)]
        inertias = [model.inertia_ for model in kmeans_per_k]
        l = []
        for k in kmeans_per_k:
            l.append(k.n_clusters)
        plt.figure(figsize=(15, 8))
        plt.plot(l, inertias, "bo-")
        plt.xlabel("$k$")
        plt.ylabel("Inertia")
        plt.annotate("", xy=(25, inertias[3]), xytext=(25.5, 5550),
                     arrowprops=dict(facecolor='black', shrink=0.001))
        plt.text(25.5, 5550, "Elbow", horizontalalignment="center")
        plt.axis([9, 56, 1000, 23000])
        plt.grid()
        plt.show()
```


Por lo visto en las anteriores graficas, tomaremos como 25 el numero de clusters, lo que quiere decir 25 almacenes.

Out[]: Text(0.5, 1.0, '25 CLUSTERS')

En la grafica anterior, podemos verificar como quedaran los almacenes respecto a las tiendas. A continuación lo veremos en el mapa

Encuentra las latitudes y longitudes de los almacenes

```
In [ ]: dfCoordinates = pd.DataFrame(kmeans_final.cluster_centers_, columns=['lat', 'lo
dfCoordinates["Coordinates"] = list(zip(dfCoordinates.long, dfCoordinates.lat))
```

```
dfCoordinates["Coordinates"] = dfCoordinates["Coordinates"].apply(Point)
dfCoordinates = gpd.GeoDataFrame(dfCoordinates, geometry="Coordinates")
```

```
In []: fig, gax = plt.subplots(figsize=(15,10))

world.query("name == 'United States of America'").plot(ax = gax, edgecolor='bla')

dfCoordinates.plot(ax=gax, color='red', marker = "*", markersize = 200)

gdf.plot(ax=gax, color='blue', alpha = 0.05, marker= ".")

gax.set_xlabel('longitude')
 gax.set_ylabel('latitude')
 gax.set_title('Target en Estados Unidos')

gax.spines['top'].set_visible(False)
 gax.spines['right'].set_visible(False)

plt.show()
```


Como podemos observar, existe un punto marcado como almacen fuera de tierra firme, para ese caso necesitariamos ajustar nuestro modelo para tener un rango de coordenadas en las que se pueden construir los almacenes

¿a cuantas tiendas va surtir?, ¿sabes a que distancia estará?

```
plt.title('Tiendas por Almacen')
plt.ylabel('Numero de Tiendas')
for i in range(len(xax)):
    plt.text(i, yax[i], yax[i], ha = 'center')
plt.xticks(rotation = 90)
plt.bar(xax, yax)
```

Out[]: <BarContainer object of 25 artists>

En el grafico anterior observamos el numero de tiendas a la que cada almacen va a abastecer. En el dataframe podremos observar a que distancia estara.

```
In [ ]: distancesKm.loc[distancesKm['Almacen'] == 22]
```

Out[]:

	Almacen	Distance
931	22	2.06
1275	22	2.50
1276	22	1.94
1277	22	2.51
1278	22	3.70
1481	22	0.36
1482	22	5.00
1483	22	1.68
1484	22	2.87
1485	22	2.92

¿Cómo elegiste el número de almacenes?

El numero de almacenes se eligio al sacar la grafica de Elbow, la cual indica en que numero de clusters la particion en mas empieza a no ser significativa para el promedio de las distancias al centro del grupo.

¿Qué librerías nos pueden ayudar a graficar este tipo de datos?

Las librerias que nos han ayudado en esta practica son todas aquellas de graficos geograficos, matplolib y seaborn. Así como las librerias para encontrar nuestros modelos optimos y convertir datos.

¿Consideras importante que se grafique en un mapa?, ¿por qué?

Para este caso de K-Mean fue muy importante el graficar en un mapa, ya que pudimos no solo observar la distribucion de las tiendas sino tambien observamos como nuestras predicciones pueden ser erroneas para el caso, como el caso del almacen que no esta en una cordenada con tierra firme. Fue importante poder observar visualmente esta informacion y ayudo a tomar decisiones importantes.

Conclusiones

El metodo de K-means es un metodo de predicciones para datos no etiquetados muy util, ya que para estos casos nos permite conocer, detectar y agrupar nuestros datos para poder realizar las predicciones con un alto grado de precision. En este caso particular al utilizar esta tecnica nos ayudo a identificar el numero y ubicacion de los posibles almacenes algo

que definitivamente ayudaria a nuestra empresa a reducir costos y tomar decisiones inteligentes sin depender de datos etiquetados.

K-means me parecio un metodo super interesante ya que el aprendizaje no supervisado me parece que es una parte primordial del aprendizaje automatico y debemos de ser capaces de llevar a cabo estos metodos con precision para poder resolver las necesidades del mundo actual.