Goldmax, 300 Series, Conformally Coated, **Z5U Dielectric, 25 – 250 VDC (Commercial Grade)**

Overview

KEMET's Goldmax conformally coated radial leaded ceramic capacitors in Z5U dielectric feature an 85°C maximum operating temperature and are considered "general-purpose." The Electronics Industries Alliance (EIA) characterizes Z5U dielectric as a Class III material. Components of this classification are fixed, ceramic dielectric capacitors suited for bypass and decoupling or other applications in which dielectric losses, high insulation resistance and capacitance stability are not of major importance. Z5U exhibits a predictable change in capacitance with respect to time and voltage and displays wide variations in capacitance with reference to ambient temperature. Capacitance change is limited to +22%, -56% from +10°C to +85°C.

Benefits

- Radial leaded technology
- Conformally coated
- 0.100", 0.200", 0.250" and 0.400" lead spacing
- +10°C to +85°C operating temperature range
- · Lead (Pb)-free, RoHS and REACH compliant
- DC voltage ratings of 25 V, 50 V, 100 V, 200 V, and 250 V

Ordering Information

С		335		C	225	M	5	U	5	Т	A	7303
Ceramic	St	yle/Si	ze	Specification/ Series	Capacitance Code (pF)	Capacitance Tolerance ¹	Rated Voltage (VDC)	Dielectric	Design	Lead Finish²	Failure Rate	Packaging (C-Spec)
	315 316 317 318 320 321 322 323	324 325 326 327 328 330 331 333	335 336 340 346 350 356	C = Standard	First two digits represent significant figures. Third digit specifies number of zeros.	M = ±20% Z = +80%, -20%	3 = 25 5 = 50 1 = 100 2 = 200 A = 250	U = Z5U	5 = Multilayer	T = 100% Matte Sn H = SnPb (60/40)	A = N/A	See "Packaging C-Spec Ordering Options Table" below

¹ Additional capacitance tolerance offerings may be available. Contact KEMET for details.

Standard: 100% matte tin (Sn) with nickel (Ni) underplate and steel core ("T" designation).

Alternative 1: 60% tin (Sn)/40% lead (Pb) finish with copper-clad steel core ("H" designation).

Alternative 2: 60% tin (Sn)/40% lead (Pb) finish with 100% copper core (available with "H" designation code with C-Spec). Contact KEMET for C-Spec details.

² Lead materials:

Benefits cont'd

- Capacitance offerings ranging from 100 pF to 10 μF
- Available capacitance Tolerances of ±20% and +80%/-20%
- Non-polar device, minimizing installation concerns
- 100% pure matte tin-plated lead finish allowing for excellent solderability
- SnPb-plated lead finish option available upon request (Sn60/Pb40)
- Encapsulation meets flamability standard UL 94V-0

Applications

Typical applications include limited temperature, decoupling and bypass.

Application Notes

These devices are not recommended for use in overmold applications and/or processes.

Packaging C-Spec Ordering Options Table

Packaging Type ¹	Packaging/Grade Ordering Code (C-Spec)
Bulk Bag	Not required (Blank)
12" Tape & Reel (16.0±0.5 mm lead length)	7301
12" Tape & Reel (18.0 mm minimum lead length)	7303
Ammo Pack (16.0±0.5 mm lead length)	7305
Ammo Pack (18.0 mm minimum lead length)	7317

¹ Default packaging is "Bulk Bag". An ordering code C-Spec is not required for "Bulk Bag" packaging. Bulk bag option is required for Size/Style C321 and C331.

Qualification/Certification

Commercial Grade products are subject to internal qualification. Details regarding test methods and conditions are referenced in Table 2, Performance & Reliability.

¹ "Tape and Reel" packaging option is not available for Size/Style C321 and C331. For more information see "Packaging Quantities".

¹ "Ammo Pack" packaging option is not available for Size/Style C321, C331, C350 and C356. For more information see "Packaging Quantities".

¹ "Ammo Pack" and "Tape and Reel" packaging options have the same lead tape configuration. For more information see "Tape & Reel Packaging Information".

Dimensions - Inches (Millimeters)

^{*} May be supplied in a "Shoulder Bend" or "Straight" Lead configuration. Please see Capacitance Range Waterfall section of this document to determine lead configuration availability by capacitance value.

Series	Style / Size	S Lead Spacing ±0.030 (0.78)	L Length Maximum	H Height Maximum	T Thickness Maximum	F Lead Diameter +0.004 (0.10), -0.001 (0.025)	LL Lead Length Minimum
C31X	315		0.150 (3.81)	0.120 (3.14)	0.100 (2.54)		0.276 (7.00)
USIX	316		0.150 (3.81)	0.230 (5.84)	0.100 (2.54)		0.200 (5.08)
	324	0.100 (2.54)	0.200 (5.08)	0.230 (5.84)	0.125 (3.18)1		0.276 (7.00)
C32X	320		0.200 (5.08)	0.230 (5.84)	0.125 (3.18)1		0.276 (7.00)
	326		0.200 (5.08)	0.300 (7.62)	0.125 (3.18) ¹		0.200 (5.08)
0011	317	0.000 (5.00)	0.150 (3.81)	0.200 (5.08)	0.100 (2.54)		0.276 (7.00)
C31X	318	0.200 (5.08)	0.150 (3.81)	0.235 (5.97)	0.100 (2.54)		0.276 (7.00)
	321	0.250 (6.35)	0.200 (5.08)	0.260 (6.60)	0.125 (3.18)1		0.276 (7.00)
	322		0.200 (5.08)	0.260 (6.60)	0.125 (3.18)1		0.276 (7.00)
0001	323		0.200 (5.08)	0.300 (7.62)	0.125 (3.18)1	0.000 (0.54)	0.276 (7.00)
C32X	325	0.000 (5.00)	0.200 (5.08)	0.300 (7.62)	0.125 (3.18)1	0.020 (0.51)	0.276 (7.00)
	328	0.200 (5.08)	0.200 (5.08)	0.300 (7.62)	0.125 (3.18)1		0.276 (7.00)
	327		0.200 (5.08)	0.320 (8.13)	0.125 (3.18)1	•	0.200 (5.08)
	330		0.280 (7.11)	0.360 (9.14)	0.160 (4.07)	•	0.276 (7.00)
	331	0.250 (6.35)	0.280 (7.11)	0.360 (9.14)	0.160 (4.07)	•	0.276 (7.00)
C33X	333		0.280 (7.11)	0.400 (10.16)	0.160 (4.07)	•	0.276 (7.00)
	335		0.280 (7.11)	0.400 (10.16)	0.160 (4.07)	•	0.276 (7.00)
	336	0.200 (5.08)	0.280 (7.11)	0.400 (10.16)	0.160 (4.07)	•	0.200 (5.08)
00.41/	340	1	0.290 (7.36)	0.400 (10.16)	0.160 (4.07)		0.276 (7.00)
C34X	346	1	0.290 (7.36)	0.400 (10.16)	0.160 (4.07)		0.200 (5.08)
0051/	350	0.400(40.45)	0.330 (8.38)	0.400 (10.16)	0.200 (5.08)	0.005 (0.64)	0.276 (7.00)
C35X	356	0.400 (10.16)	0.330 (8.38)	0.400 (10.16)	0.200 (5.08)	0.025 (0.64)	0.200 (5.08)

¹ Thickness maximum (T) = 0.160" (4.07 mm) for capacitance values greater than or equal to 4.7 μ F

Environmental Compliance

Lead (Pb)-free, REACH and RoHS compliant without exemptions when ordered with a 100% tin (Sn) wire lead finish. Product ordered with tin/ lead (Sn60/Pb40) wire lead finish do not meet RoHS criteria.

Series	Termination Finish (Wire Lead)	RoHS Compliant	RoHS Exemption Code	REACH Compliant ¹	Halogen Free
200 (0277)	100% Matte Sn	Yes	n/a	Yes	Yes
300 (C3XX)	Sn60/Pb40	No	n/a	Yes	Yes

¹ REACH compliance indicates product <u>does not</u> contain Substance/s of Very High Concern (SVHC)

Electrical Parameters/Characteristics

Item	Parameters/Characteristics
Operating Temperature Range	-10°C to +85°C
Capacitance Change with Reference to +25°C and 0 VDC Applied (TCC)	+22%, -56%
Aging Rate (Maximum % Cap Loss/Decade Hour)	7.0%
Dielectric Withstanding Voltage	250% of rated voltage (5±1 second and charge/discharge not exceeding 50 mA at 25°C)
Dissipation Factor (DF) Maximum Limit at 25°C	See Dissipation Factor Limit Table
Insulation Resistance (IR) Limit at 25°C	100 megohm microfarads or 10GΩ (Rated voltage applied for 120±5 seconds at 25°C)

Regarding Aging Rate: Capacitance measurements (including tolerance) are indexed to a referee time of 48 or 1,000 Hours. Please refer to a part number specific datasheet for referee time details.

To obtain IR limit, divide $M\Omega$ - μ F value by the capacitance and compare to $G\Omega$ limit. Select the lower of the two limits.

Capacitance and dissipation factor (DF) measured under the following conditions:

1 kHz ±50 Hz and 1.0 ±0.2 V_{rms} if capacitance \leq 10 μF

120 Hz ±10 Hz and 0.5 ±0.1 V_{rms} if capacitance > 10 μF

Note: When measuring capacitance, it is important to ensure the set voltage level is held constant. The HP4284 and Agilent E4980 have a feature known as Automatic Level Control (ALC). The ALC feature should be switched to "ON."

Post Environmental Limits

	High Temperature Life, Biased Humidity and Storage Life										
Style/Size Rated DC Voltage		Capacitance Dissipation Factor Value (Maximum %)		Capacitance Shift	Insulation Resistance						
C31X	All	All	5.0								
	25	< 2.2 µF	5.0								
C32X, C33X, C34X	> 25	< 2.2 µF	5.0	±30%	10% of Initial Limit						
U34X	25 / 50	≥ 2.2 µF	20.0								
C35X	All	All	5.0								

Dissipation Factor (DF) Limit Table

Style/Size	Rated DC Voltage	Rated Capacitance	Dissipation Factor (Maximum %)
C31X	All	All	4.0
	25	< 2.2 μF	4.0
C32X, C33X, C34X	> 25	< 2.2 μF	4.0
	25 / 50	≥ 2.2 µF	10.0
C35X	All	All	4.0

Table 1A - C31X Style/Size, Capacitance Range Waterfall

	C315, C3	16, C317, C318	Style/Size (0.100" a	and 0.200" Lead	Spacing)	
Rated Volt	age (VDC)	25	50	100	200	250
Voltag	e Code	3	5	1	2	A
Capacitance	Capacitance Tolerance		Capacitance	Code (Available		
100pF		101	101	101	101	101
120pF		121	121	121	121	121
150pF	-	151	151	151	151	151
180pF 220pF	-	181 221	181 221	181 221	181 221	181 221
270pF	-	271	271	271	271	271
330pF	-	331	331	331	331	331
390pF	-	391	391	391	391	391
470pF	-	471	471	471	471	471
560pF		561	561	561	561	561
680pF		681	681	681	681	681
820pF		821	821	821	821	821
1000pF		102	102	102	102	102
1200pF		122	122	122	122	122
1500pF		152	152	152	152	152
1800pF		182	182	182	182	182
2200pF		222	222	222	222	222
2700pF		272	272	272	272	272
3300pF	_	332	332	332	332	332
3900pF		392	392	392	392	392
4700pF	-	472	472	472	472	472
5600pF	-	562 682	562 682	562 682	562 682	562 682
6800pF 8200pF	-	822	822	822	822	822
0.01µF	M = ±20%	103	103	103	103	103
0.012μF	Z = +80%/ -20%	123	123	123	123	123
0.015μF	-	153	153	153	153	153
0.018µF		183	183	183	183	183
0.022µF		223	223	223	223	223
0.027µF		273	273	273	273	273
0.033µF		333	333	333	333	333
0.039µF		393	393	393	393	393
0.047µF		473	473	473	473	473
0.056µF		563	563	563	563	563
0.068µF		683	683	683		
0.082μF		823	823	823		
0.1µF		104	104	104		
0.12µF		124	124 154	124 154		
0.15µF		154 184	154	154		
0.18μF 0.22μF		224	224	224		
	-			224		
0.27μF 0.33μF		2/4 334	334			
0.39µF		394	394			
0.47µF		474	474			
0.56µF		564	564			
0.68µF		684	684			
0.82µF		824				
1.0µF		105				
	age (VDC)	25	50	100	200	250
Voltag	e Code	3	5	1	2	Α

Table 1B - C32X Style/Size, Capacitance Range Waterfall

Rated Volt	tage (VDC)	25	50	100	200	250
	e Code	3	5	1	2	Α
Capacitance	Capacitance Tolerance	<u> </u>		Code (Available (l	
100pF		101	101	101	101	101
120pF	_	121	121	121	121	121
150pF	_	151	151	151	151	151
180pF 220pF	_	181 221	181 221	181 221	181 221	181 221
270pF		271	271	271	271	271
330pF		331	331	331	331	331
390pF		391	391	391	391	391
470pF		471	471	471	471	471
560pF		561	561	561	561	561
680pF		681	681	681	681	681
820pF		821	821	821	821	821
1000pF		102	102	102	102	102
1200pF		122	122	122	122	122
1500pF 1800pF		152	152 182	152 182	152	152
2200pF		182 222	222	222	182 222	182 222
2700pF		272	272	272	272	272
3300pF		332	332	332	332	332
3900pF		392	392	392	392	392
4700pF		472	472	472	472	472
5600pF		562	562	562	562	562
6800pF		682	682	682	682	682
8200pF		822	822	822	822	822
0.01µF		103	103	103	103	103
0.012µF	M = ±20%	123	123	123	123	123
0.015µF	Z = +80%/ -20%	153	153	153	153	153
0.018μF 0.022μF		183 223	183 223	183 223	183 223	183 223
0.022μF 0.027μF		273	273	273	273	273
0.033μF		333	333	333	333	333
0.039µF		393	393	393	393	393
0.047µF		473	473	473	473	473
0.056µF		563	563	563	563	563
0.068µF		683	683	683	683	683
0.082µF		823	823	823	823	823
0.1µF		104	104	104	104	104
0.12µF		124	124	124	124	124
0.15µF		154	154	154	154	154
0.18μF 0.22μF		184 224	184 224	184 224		
0.22μF 0.27μF		274	274	274		
0.33µF		334	334	334		
0.39µF		394	394	394		
0.47µF		474	474	474		
0.56µF		564	564			
0.68µF		684	684			
0.82µF		824	824			
1.0µF		105	105			
1.2µF		125	125			
1.5µF		155	155			
1.8μF 2.2μF		185 225	185 225			
	tage (VDC)	25	50	100	200	250
Rated Voltage (VDC) Voltage Code		23	30	100	1 400	200

 $^{^{1}}$ Thickness maximum (T) = 0.160" (4.07 mm) for capacitance values greater than or equal to 4.7 μ F

Table 1B - C32X Style/Size, Capacitance Range Waterfall cont'd

	C320, C322, C323, C326, C328 Style/Size (0.100" and 0.200" Lead Spacing)									
Rated Vol	tage (VDC)	25	50	100	200	250				
Voltag	e Code	3	5	1	2	Α				
Capacitance	Capacitance Tolerance		Capacitance Code (Available Capacitance)							
2.7µF 3.3µF 3.9µF 4.7µF 5.6µF 6.8µF 10µF	M = ±20% Z = +80%/ -20%	275 335 395 4751	275 335 395 4751							
	tage (VDC)	25	50	100	200	250				
Voltag	e Code	3	5	1	2	Α				

 $^{^{1}}$ Thickness maximum (T) = 0.160" (4.07 mm) for capacitance values greater than or equal to 4.7 μ F

Table 1C - C32X Style/Size, Capacitance Range Waterfall

	C321, C324,	C325, C327 Style	e/Size (0.100", 0.2	00" and 0.250" Le	ead Spacing)		
Rated Volt	age (VDC)	25	50	100	200	250	
Voltag	e Code	3	5	1	2	Α	
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)					
100pF		101	101	101	101	101	
120pF		121	121	121	121	121	
150pF		151	151	151	151	151	
180pF		181	181	181	181	181	
220pF		221	221	221	221	221	
270pF		271	271	271	271	271	
330pF		331	331	331	331	331	
390pF		391	391	391	391	391	
470pF		471	471	471	471	471	
560pF		561	561	561	561	561	
680pF		681	681	681	681	681	
820pF		821	821	821	821	821	
1000pF		102	102	102	102	102	
1200pF	M = ±20%	122	122	122	122	122	
1500pF	Z = +80%/ -20%	152	152	152	152	152	
1800pF		182	182	182	182	182	
2200pF		222	222	222	222	222	
2700pF		272	272	272	272	272	
3300pF		332	332	332	332	332	
3900pF		392	392	392	392	392	
4700pF		472	472	472	472	472	
5600pF		562	562	562	562	562	
6800pF		682	682	682	682	682	
8200pF		822	822	822	822	822	
0.01µF		103	103	103	103	103	
0.012µF		123	123	123	123	123	
0.015µF		153	153	153	153	153	
0.018µF		183	183	183	183	183	
Rated Volt	age (VDC)	25	50	100	200	250	
Voltag	e Code	3	5	1	2	A	

 $^{^{1}}$ Thickness maximum (T) = 0.160" (4.07 mm) for capacitance values greater than or equal to 4.7 μ F

Table 1C - C32X Style/Size, Capacitance Range Waterfall cont'd

	C321, C324,	C325, C327 Styl	e/Size (0.100", 0.2	00" and 0.250" L	ead Spacing)	
Rated Volt	age (VDC)	25	50	100	200	250
Voltag	e Code	3	5	1	2	A
Capacitance	Capacitance Tolerance		Capacitance	Code (Available	Capacitance)	
0.022µF		223	223	223	223	223
0.027µF		273	273	273	273	273
0.033µF		333	333	333	333	333
0.039µF		393	393	393	393	393
0.047µF		473	473	473	473	473
0.056µF		563	563	563	563	563
0.068µF		683	683	683	683	683
0.082µF		823	823	823	823	823
0.1µF		104	104	104	104	104
0.12µF		124	124	124	124	124
0.15µF		154	154	154	154	154
0.18µF		184	184	184		
0.22µF		224	224	224		
0.27µF		274	274	274		
0.33µF		334	334	334		
0.39µF	M = ±20%	394	394	394		
0.47µF	Z = +80%/ -20%	474	474	474		
0.56µF		564	564			
0.68µF		684	684			
0.82µF		824	824			
1.0µF		105	105			
1.2µF		125	125			
1.5µF		155	155			
1.8µF		185	185			
2.2µF		225	225			
2.7µF		275	275			
3.3µF		335	335			
3.9µF		395	395			
4.7µF		475¹	475¹			
5.6µF		565¹				
6.8µF		685¹				
10µF		106¹				
Rated Volt	age (VDC)	25	50	100	200	250
Voltag	e Code	3	5	1	2	A

 $^{^{1}}$ Thickness maximum (T) = 0.160" (4.07 mm) for capacitance values greater than or equal to 4.7 μ F

Table 1D - C33X Style/Size, Capacitance Range Waterfall

	C330, C331, C333, C335, C336 Style/Size (0.200" and 0.250" Lead Spacing)						
Rated Volt	tage (VDC)	25	50	100	200	250	
Voltag	Voltage Code		5	1	2	A	
Capacitance	Capacitance Tolerance		Capacitance Code (Available Capacitance)				
4700pF		472*	472*	472*	472*	472*	
5600pF		562*	562*	562*	562*	562*	
6800pF		682*	682*	682*	682*	682*	
8200pF		822*	822*	822*	822*	822*	
0.01µF		103*	103*	103*	103*	103*	
0.012µF		123*	123*	123*	123*	123*	
0.015µF		153*	153*	153*	153*	153*	
0.018µF		183*	183*	183*	183*	183*	
0.022µF		223*	223*	223*	223*	223*	
0.027µF		273*	273*	273*	273*	273*	
0.033µF		333*	333*	333*	333*	333*	
0.039µF		393*	393*	393*	393*	393*	
0.047µF		473*	473*	473*	473*	473*	
0.056µF		563*	563*	563*	563*	563*	
0.068µF		683*	683*	683*	683*	683*	
0.082µF	14 .000	823*	823*	823*	823*	823*	
0.1µF	M = ±20%	104*	104*	104*	104*	104*	
0.12µF	Z = +80%/ -20%	124*	124*	124*	124*	124*	
0.15µF		154*	154*	154*	154*	154*	
0.18µF		184*	184*	184*	184	184	
0.22µF		224*	224*	224*	224	224	
0.27µF		274*	274*	274*	274	274	
0.33µF		334*	334*	334*	334	334	
0.39µF		394*	394*	394*	394	394	
0.47µF		474*	474*	474*	474	474	
0.56µF		564*	564*	564*	564	564	
0.68µF		684*	684*	684*	684	684	
0.82µF		824*	824*	824*	824	824	
1.0µF		105*	105*	105*	105	105	
1.2µF		125*	125*	125	125	125	
1.5µF		155*	155*				
1.8µF		185*	185*				
2.2µF		225*	225*				
Rated Volt	tage (VDC)	25	50	100	200	250	
Voltag	e Code	3	5	1	2	A	

^{*} Capacitor is supplied with a "Shoulder-Bend" lead configuration in Style/Size C330 and C331.

Table 1E - C34X Style/Size, Capacitance Range Waterfall

C340, C346 Style/Size (0.200" Lead Spacing)						
Rated Voltage (VDC)		25	50	100	200	250
Voltag	Voltage Code		5	1	2	Α
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)				
0.068µF		683*	683*	683*	683*	683*
0.082µF		823*	823*	823*	823*	823*
0.1µF		104*	104*	104*	104*	104*
0.12μF		124*	124*	124*	124*	124*
0.15µF		154*	154*	154*	154*	154*
0.18µF		184*	184*	184*	184	184
0.22µF		224*	224*	224*	224	224
0.27μF		274*	274*	274*	274	274
0.33µF		334*	334*	334*	334	334
0.39µF		394*	394*	394*	394	394
0.47µF		474*	474*	474*	474	474
0.56µF		564*	564*	564*	564	564
0.68µF	M = ±20% Z = +80%/ -20%	684*	684*	684*	684	684
0.82µF		824*	824*	824*	824	824
1.0µF	Z - TOU %/ -ZU %	105*	105*	105*	105	105
1.2µF		125*	125*	125	125	125
1.5µF		155*	155*	155		
1.8µF		185*	185*	185		
2.2µF		225*	225*	225		
2.7µF		275	275			
3.3µF		335	335			
3.9µF		395	395			
4.7μF		475	475			
5.6µF		565	565			
6.8µF		685	685			
8.2µF		825	825			
10µF		106	106			
Rated Volt	age (VDC)	25	50	100	200	250
Voltag	e Code	3	5	1	2	A

^{*} Style/Size C340 is supplied in a "Shoulder-Bend" lead configuration. For additional information and reference see Lead Configurations.

Table 1F - C35X Style/Size, Capacitance Range Waterfall

C350, C356 Style/Size (0.400" Lead Spacing)						
Rated Voltage (VDC) Voltage Code		25	50	100	200	250
		3	5	1	2	Α
Capacitance	Capacitance Tolerance	Capacitance Code (Available Capacitance)				
0.18µF		184	184	184	184	184
0.22µF		224	224	224	224	224
0.27µF		274	274	274	274	274
0.33µF		334	334	334	334	334
0.39µF		394	394	394	394	394
0.47µF		474	474	474	474	474
0.56µF		564	564	564	564	564
0.68µF		684	684	684	684	684
0.82µF		824	824	824	824	824
1.0µF		105	105	105	105	105
1.2µF	M = ±20%	125	125	125	125	125
1.5µF	Z = +80%/ -20%	155	155			
1.8µF		185	185			
2.2µF		225	225			
2.7µF		275	275			
3.3µF		335	335			
3.9µF		395	395			
4.7µF		475	475			
5.6µF		565	565			
6.8µF		685	685			
8.2µF		825	825			
10μF		106	106			
Rated Vol	tage (VDC)	25	50	100	200	250
Voltag	e Code	3	5	1	2	Α

Soldering Process

Recommended Soldering Methods:

- Solder Wave
- Hand Soldering (Manual)

Recommended Soldering Profile:

· Optimum Wave Solder Profile

Mounting

All encased capacitors will pass the Resistance to Soldering Heat of MIL-STD-202, Method 210, Condition C. This test simulates wave solder topside board mount product. This demonstration of resistance to solder heat is in accordance with what is believed to be the industry standard. More severe treatment must be considered reflective of an improper soldering process.

The above figure is a recommended solder wave profile for both axial and radial leaded ceramic capacitors.

Hand Soldering (Manual)

Manual Solder Profile with Pre-heating

Table 2 - Performance & Reliability: Test Methods and Conditions

Stress	Reference	Test or Inspection Method
Solderability	J-STD-002	Magnification 50X. Conditions: a) Method A, at 235°C, Category 3
Temperature Cycling	JESD22 Method JA-104	5 cycles (-55°C to +125°C), measurement at 24 hours +/-4 hours after test conclusion.
Biased Humidity	MIL-STD-202 Method	Load humidity, 1,000 hours 85°C/85%RH and rated voltage. Add 100 K ohm resistor. Measurement at 24 hours +/-4 hours after test conclusion.
Diasea Hailliaity	103	Low volt humidity, 1,000 hours 85C°/85%RH and 1.5 V. Add 100 K ohm resistor. Measurement at 24 hours +/-4 hours after test conclusion.
Moisture Resistance	MIL-STD-202 Method 106	t = 24 hours/cycle. Steps 7a and 7b not required. Unpowered. Measurement at 24 hours +/-4 hours after test conclusion.
Thermal Shock	MIL-STD-202 Method 107	-55°C to +125°C. Note: Number of cycles required - 300. Maximum transfer time - 20 seconds. Dwell time - 15 minutes. Air - Air.
High Temperature Life	MIL-STD-202 Method 108/EIA-198	1,000 hours at 125°C (85°C for Z5U) with 1 X rated voltage applied.
Storage Life	MIL-STD-202 Method 108	125°C, 0 VDC for 1,000 hours.
Vibration	MIL-STD-202 Method 204	5 g for 20 minutes, 12 cycles each of 3 orientations. Note: Use 8"X5" PCB .031" thick 7 secure points on one long side and 2 secure points at corners of opposite sides. Parts mounted within 2" from any secure point. Test from 10-2000 Hz.
Resistance to Soldering Heat	MIL-STD-202 Method 210	Condition B. No preheat of samples. Note: single wave solder – procedure 2.
Terminal Strength	MIL-STD-202 Method 211	Conditions A (454g), Condition C (227g)
Mechanical Shock	MIL-STD-202 Method 213	Figure 1 of Method 213, Condition C.
Resistance to Solvents	MIL-STD-202 Method 215	Add aqueous wash chemical – OKEM Clean or equivalent.

Storage & Handling

The un-mounted storage life of a leaded ceramic capacitor is dependent upon storage and atmospheric conditions as well as packaging materials. While the ceramic chips enveloped under the epoxy coating themselves are quite robust in most environments, solderability of the wire lead on the final epoxy-coated product will be degraded by exposure to high temperatures, high humidity, corrosive atmospheres, and long term storage. In addition, packaging materials will be degraded by high temperature and exposure to direct sunlight – reels may soften or warp, and tape peel force may increase.

KEMET recommends storing the un-mounted capacitors in their original packaging, in a location away from direct sunlight, and where the temperature and relative humidity do not exceed 40 degrees centigrade and 70% respectively. For optimum solderability, capacitor stock should be used promptly, preferably within 18 months of receipt. For applications requiring pre-tinning of components, storage life may be extended if solderability is verified. Before cleaning, bonding or molding these devices, it is important to verify that your process does not affect product quality and performance. KEMET recommends testing and evaluating the performance of a cleaned, bonded or molded product prior to implementing and/or qualifying any of these processes.

Construction

Marking

¹ To properly request the inclusion of the date code in the marking information provided on the component, ordering code C-SPEC 9207 must be added to the end of the ordering code.

Date Code					
15 20					
Manufacturing Year: 15 = 2015	Manufacturing Week: 20 = Week 20 (of mfg. calendar year)				

Packaging Quantities

Style/ Size	Standard Bulk Quantity	Ammo Pack Quantity Maximum	Reel Quantity Maximum (12" Reel)	
315				
316				
317		2500	2500	
318				
320				
321		N/A	N/A	
322	500/Bag			
323		2500		
324				
325			2500	
326				
327				
328				
330		1500	1500	
331		N/A	N/A	
333	250/Bag			
335		1500		
336				
340	100 /D	1000	1000	
346	100/Bag	1000	1000	
350	EO/Dog	NI/A	E00	
356	50/Bag	N/A	500	

Tape & Reel Packaging Information

KEMET offers standard reeling of Molded and Conformally Coated Radial Leaded Capacitors in accordance with EIA standard 468. Parts are taped to a tagboard carrier strip, and wound on a reel as shown in Figure 1. Kraft paper interleaving is inserted between the layers of capacitors on the reel. Ammopack is also available, with the same lead tape configuration and package quantities.

Carrier Strip

Charged:

C

Figure 3: Standard Reel

(Note: Non-standard lead lengths available in bulk only.)

Figure 2: Lead Tape Configuration (See Table Below)

Ceramic Radial Tape and Reel Dimensions

Metric will govern

	Constant Dimensions — Millimeters (Inches)							
D ₀ ±0.2 (0.008)	P ₀ ±0.3 (0.012)	ΔH ±0.2 (0.008)	L ₁ Maximum	t ±0.2 (0.008)	T Maximum	W +1.0/-0.5 (+0.039/-0.020)	W₀ Minimum	W ₂ Maximum
4.00 (0.157)	12.7 (0.500)	4.0 (0.157)	1.0 (0.039)	0.7 (0.051)	1.5 (0.059)	18.0 (0.709)	5.0 (0.197)	3.0 (0.118)

Ceramic Radial Tape and Reel Dimensions cont'd

Metric will govern

Variable Dimensions — Millimeters (Inches)								
				ŀ	4	F	I ₀	
F	P ₁	Р	P ₂	Straight Lead	Configuration	Formed Lead Configuration ²		
±0.78 (0.030) ¹	±0.30 (0.012) ¹	±0.3 (0.012)	±1.3 (0.51)		Packagin	g C-Spec³		
				7301/7305	7303/7317	7301/7305	7303/7317	
2.54 (0.100)	5.08 (0.200)	12.7 (0.500)	6.35 (0.250)					
4.32 (0.170)	3.89 (0.153)	12.7 (0.500)	6.35 (0.250)		18.0 (0.709) Minimum	16.0±0.5 (0.630±0.020)	18.0 (0.709) Minimum	
5.08 (0.200)	3.81 (0.150)	12.7 (0.500)	6.35 (0.250)					
5.59 (0.220)	3.25 (0.128)	12.7 (0.500)	6.35 (0.250)					
6.98 (0.275)	2.54 (0.100)	12.7 (0.500)	6.35 (0.250)					
7.62 (0.300)	2.24 (0.088)	12.7 (0.500)	6.35 (0.250)	16.0±0.5 (0.630±0.020)				
9.52 (0.375)	7.62 (0.300)	12.7 (0.500)	6.35 (0.250)					
10.16 (0.400)	7.34 (0.290)	25.4 (1.000)	N/A					
12.06 (0.475)	6.35 (0.250)	25.4 (1.000)	N/A					
14.60 (0.575)	5.08 (0.200)	25.4 (1.000)	N/A					
17.14 (0.675)	3.81 (0.15)	25.4 (1.000)	N/A					

¹ Measured at the egress from the carrier tape, on the component side.

³ The "Packaging C-Spec" is a 4 digit code which identifies the packaging type, lead length and/or lead material. When ordering, the proper code must be included in the 15th through 18th character positions of the ordering code. See "Ordering Information" section of this document for further details.

5	Symbol Reference Table				
D_{o}	Sprocket Hole Diameter				
$P_{\scriptscriptstyle{0}}$	Sprocket Hole Pitch				
Р	Component Pitch				
F	Lead Spacing				
P ₁	Sprocket Hole Center to Lead Center				
P ₂	Sprocket Hole Center To Component Center				
Н	Height to Seating Plane (Straight Leads Only)				
H₀	Height to Seating Plane (Formed Leads Only)				
H ₁	Component Height Above Tape Center				
ΔΗ	Component Alignment				
L ₁	Lead Protrusion				
t	Composite Tape Thickness				
W	Carrier Tape Width				
W _o	Hold-Down Tape Width				
W ₂	Hold-Down Tape Location				

² Formed lead configuration includes: "shoulder bend", "inside kink", "outside kink", and "snap-in". For more information regarding available lead configurations see "Dimensions" section of this document.

KEMET Electronic Corporation Sales Offices

For a complete list of our global sales offices, please visit www.kemet.com/sales.

Disclaimer

All product specifications, statements, information and data (collectively, the "Information") in this datasheet are subject to change. The customer is responsible for checking and verifying the extent to which the Information contained in this publication is applicable to an order at the time the order is placed.

All Information given herein is believed to be accurate and reliable, but it is presented without guarantee, warranty, or responsibility of any kind, expressed or implied.

Statements of suitability for certain applications are based on KEMET Electronics Corporation's ("KEMET") knowledge of typical operating conditions for such applications, but are not intended to constitute – and KEMET specifically disclaims – any warranty concerning suitability for a specific customer application or use. The Information is intended for use only by customers who have the requisite experience and capability to determine the correct products for their application. Any technical advice inferred from this Information or otherwise provided by KEMET with reference to the use of KEMET's products is given gratis, and KEMET assumes no obligation or liability for the advice given or results obtained.

Although KEMET designs and manufactures its products to the most stringent quality and safety standards, given the current state of the art, isolated component failures may still occur. Accordingly, customer applications which require a high degree of reliability or safety should employ suitable designs or other safeguards (such as installation of protective circuitry or redundancies) in order to ensure that the failure of an electrical component does not result in a risk of personal injury or property damage.

Although all product-related warnings, cautions and notes must be observed, the customer should not assume that all safety measures are indicted or that other measures may not be required.