20-R-IM-DK-6		
July 6, 2020 10:00 AM		
Intermediate	Principle of Impulse and Monentum	
Inspiration: 19-4		
		r model car. The $2 kg$ wheel with a radius of $r = 0.1 m$ is rotating at $omega = 1.0 cm$
T.	equivalent to a constant force of F = 20 N. If the coefficien	th in its first two seconds of operation is equal to $F = 10t$ N and afterwards is not of kinetic friction between the braking arm and the wheel is $mu_k = 0.2$, ill stop. The point of contact P between the wheel and the arm is a distance
		ervo motor is applied at exactly half of the horizontal distance to A from the
(8 × 1) × A	Broke 5 A 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5 5	
√ /w "	$2M_A = 0 = F(0.2) + F_F(0.2)$	
	= F(0.15) + 0.2N(0.15) - N(0.3)
F	0.8 N(0.3) = F(0.15) N = 0.625 F	
<u> </u>	N - 0.625 P	
FE	IBW, + Elis Made = IBW	
1170	12m(2w, + SicFF dt =	0
N Fe	$\frac{1}{2}(2)(0.1^2)(10) = \int_0^2 (0.1)(6.2)$	2) (0-625 F) dt _
, , , , , , , , , , , , , , , , , , ,		w scenarios
(sh TBf	$6.1 = 6.0125 \int_{0}^{t} F$	de 8 = 5. Fat
	V. v	250 €
	Within Z seconds	After 2 Seconds 12512
	$8 = \int_{0}^{t} lot at$	$8 = \int_{0}^{\infty} 10t dt + \int_{0}^{\infty} 20$
	8 = 5 t ² (t = 1.26491 < 2 V	
	t=1.2649 22	$8 = 5(2)^{2} + 20(t-2)$
		Q = Z0 + Z0E - 40
		$28 \cdot 206$ $t = 1.4 \angle 2 \times than 2$