Санкт-Петербургский политехнический университет Петра Великого Институт прикладной математики и механики

Высшая школа прикладной математики и вычислительной физики

Отчёт по лабораторной работе №2

по дисциплине
«Математическая статистика»

Выполнила студентка группы 3630102/80401

Мамаева Анастасия Сергеевна

Проверил

Доцент, к.ф.-м.н.

Баженов Александр Николаевич

Санкт-Петербург 2021

СОДЕРЖАНИЕ

C :	ПИСОК ТАБЛИЦ	
1	Постановка задачи	4
2	Теория	4
	2.1 Распределения	4
	2.2 Вариационный ряд	4
	2.3 Выборочные числовые характеристики	Ę
	2.3.1 Характеристики положения	
	2.3.2 Характеристики рассеяния	-
3	Программная реализация	Ę
4	Результаты	6
	4.1 Характеристики положения и рассеяния	6
5	Обсуждение	ξ
6	Приложение	(

СПИСОК ТАБЛИЦ

1	Нормальное распределение (3)	(
2	Распределение Коши (4)	-
3	Распределение Лапласа (5)	•
4	Распределение Пуассона (6)	8
5	Равномерное распределение (7)	8

1 Постановка задачи

Сгенерировать выборки размером 10, 100 и 1000 элементов. Для каждой выборки вычислить следующие статистические характеристики положения данных: \overline{x} , medx, z_R , z_Q , z_{tr} . Повторить такие вычисления 1000 раз для каждой выборки и найти среднее характеристик положения и их квадратов:

$$E(z) = \overline{z} \tag{1}$$

Вычислить оценку дисперсии по формуле:

$$D(z) = \overline{z^2} - \overline{z}^2 \tag{2}$$

Представить полученные данные в виде таблиц.

2 Теория

2.1 Распределения

• Нормальное распределение

$$N(x,0,1) = \frac{1}{\sqrt{2\pi}}e^{\frac{-x^2}{2}} \tag{3}$$

• Распределение Коши

$$C(x,0,1) = \frac{1}{\pi} \frac{1}{x^2 + 1} \tag{4}$$

• Распределение Лапласа

$$L(x,0,\frac{1}{\sqrt{2}}) = \frac{1}{\sqrt{2}}e^{-\sqrt{2}|x|} \tag{5}$$

• Распределение Пуассона

$$P(k,10) = \frac{10^k}{k!}e^{-10} \tag{6}$$

• Равномерное распределение

$$U(x, -\sqrt{3}, \sqrt{3}) = \begin{cases} \frac{1}{2\sqrt{3}} & \text{при}|x| \le \sqrt{3} \\ 0 & \text{при}|x| > \sqrt{3} \end{cases}$$
 (7)

2.2 Вариационный ряд

Вариационным рядом называется последовательность элементов выборки, расположенных в неубывающем порядке. Одинаковые элементы повторяются. Запись вариационного ряда: $x_{(1)}, x_{(2)}, \ldots,$ Элементы вариационного ряда $x_{(i)} (i=1,2,\ldots,n)$ называются порядковыми статистиками.

2.3 Выборочные числовые характеристики

С помощью выборки образуются её числовые характеристики. Это числовые характеристики дискретной случайной величины X^* , принимающей выборочные значения $x_{(1)}, x_{(2)}, \ldots, x_{(n)}$.

2.3.1 Характеристики положения

• Выборочное среднее

$$\overline{x} = \frac{1}{n} \sum_{i=1}^{n} x_i \tag{8}$$

• Выборочная медиана

$$medx = \begin{cases} x_{(l+1)} & n = 2l+1\\ \frac{x_{(l)} + x_{(l+1)}}{2} & n = 2l \end{cases}$$
 (9)

• Полусумма экстремальных выборочных элементов

$$z_R = \frac{x_{(1)} + x_{(n)}}{2} \tag{10}$$

$$z_p = \begin{cases} x_{([np]+1)} & np-\text{дробноe} \\ x_{(np)} & np-\text{целоe} \end{cases}$$
 (11)

Полусумма квартилей

$$z_Q = \frac{z_{1/4} + z_{3/4}}{2} \tag{12}$$

• Усечённое среднее

$$z_{tr} = \frac{1}{n - 2r} \sum_{i=r+1}^{n-r} x_{(i)}, r \approx \frac{n}{4}$$
 (13)

2.3.2 Характеристики рассеяния

Выборочная дисперсия

$$D = \frac{1}{n} \sum_{i=1}^{n} (x_i - \overline{x})^2$$
 (14)

3 Программная реализация

Лабораторная работа выполнена на языке Python вресии 3.7 в среде разработки JupyterLab. Использовались дополнительные библиотеки:

- 1. scipy
- 2. numpy

В приложении находится ссылка на GitHub репозиторий с исходныи кодом.

4 Результаты

4.1 Характеристики положения и рассеяния

Как было проведено округление:

В оценке $x=E\pm D$ вариации подлежит первая цифра после точки. В данном случае $x=0.0\pm 0.1k,\,k$ - зависит от доверительной вероятности и вида распределения (рассматривается в дальнейшем цикле лабораторных работ). Округление сделано для k=1.

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Normal E(z) 10	-0.000003	-0.008031	0.036451	-0.021004	-0.012014
Normal D(z) 10	0.101239	0.091199	0.480519	0.475769	0.172801
$E(z) \pm \sqrt{D(z)}$	[-0.318184;	[-0.310023;	[-0.656743;	[-0.710764;	[-0.427707;
	0.318178]	0.293961]	0.729646]	0.668756]	0.403679]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Normal E(z) 100	-0.002052	-0.004684	0.012205	-0.011495	-0.008917
Normal D(z) 100	0.05601	0.050246	0.478019	0.50419	0.097187
$E(z) \pm \sqrt{D(z)}$	[-0.238716;	[-0.228840;	[-0.679184;	[-0.721558;	[-0.320665;
	0.234612]	0.219472]	0.703594]	0.698568]	0.302831]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Normal E(z) 1000	-0.001219	-0.003105	0.006667	-0.010076	-0.006475
Normal D(z) 1000	0.037681	0.033809	0.475955	0.497166	0.065463
$E(z) \pm \sqrt{D(z)}$	[-0.195335;	[-0.186977	[-0.683228;	[-0.715176;	[-0.262332;
	0.192897]	0.180767]	0.696562]	0.695024]	0.249382]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0

Таблица 1: Нормальное распределение (3)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Cauchy E(z) 10	-1.787828	-0.025951	-5.130831	-3.948137	-2.645886
Cauchy D(z) 10	4390.971	0.403047	71558.563	21478.02	2724.385
$E(z) \pm \sqrt{D(z)}$	[-68.0522;	[-0.660811;	[-272.635;	[-150.502	[-54.8415;
	64.4766]	0.608909]	262.373]	142.606]	49.5498]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Cauchy E(z) 100	-2.946291	-0.011733	-2.919987	7.274195	-5.064231
Cauchy D(z) 100	11499.485	0.214055	37287.433	194370.44	37068.767
$E(z) \pm \sqrt{D(z)}$	[-110.182;	[-0.474394;	[-196.019;	[-433.600;	[-197.596;
	104.289]	0.450928]	190.179]	448.148]	187.468]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Cauchy E(z) 1000	-2.272925	-0.007192	-1.740728	4.70099	-4.116761
Cauchy D(z) 1000	7794.082	0.143556	25043.95	129732.73	25183.86
$E(z) \pm \sqrt{D(z)}$	[-90.5570;	[-0.386079;	[-159.993;	[-355.483;	[-162.810;
	86.0111]	0.371695]	156.512]	364.885]	154.577]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0

Таблица 2: Распределение Коши (4)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Laplace E(z) 10	0.022501	0.011001	0.011483	0.023003	0.027397
Laplace D(z) 10	0.103582	0.077859	0.490929	0.47279	0.169248
$E(z) \pm \sqrt{D(z)}$	[-0.299340;	[-0.268031;	[-0.689180;	[-0.664594;	[-0.384000
	0.344342]	0.290033]	0.712146]	0.710600]	0.438794]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Laplace E(z) 100	0.012271	0.005379	0.021852	0.021828	0.015041
Laplace D(z) 100	0.057048	0.041891	0.492694	0.492542	0.095815
$E(z) \pm \sqrt{D(z)}$	[-0.226576;	[-0.199293;	[-0.680069;	[-0.679985;	[-0.294498;
	0.251118]	0.210051]	0.723773]	0.723641]	0.324580]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Laplace E(z) 1000	0.008403	0.003924	0.022277	0.022505	0.010596
Laplace D(z) 1000	0.038374	0.028103	0.487406	0.505289	0.064555
$E(z) \pm \sqrt{D(z)}$	[-0.187489;	[-0.163715;	[-0.675867;	[-0.688331;	[-0.243480;
	0.204295]	0.171563]	0.720421]	0.733341]	0.264672]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0

Таблица 3: Распределение Лапласа (5)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Poisson E(z) 10	9.979	9.8525	9.9655	10.044	9.997167
Poisson D(z) 10	0.975799	1.373994	4.68356	5.018564	1.779575
$E(z) \pm \sqrt{D(z)}$	[8.99117;	[8.68032;	[7.80134;	[7.80378;	[8.66315;
	10.9668]	11.0246]	12.1296]	12.2842]	11.3311]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Poisson E(z) 100	9.98473	9.8535	9.9615	10.0425	9.986043
Poisson D(z) 100	0.534271	0.786788	4.841018	5.073944	0.982735
$E(z) \pm \sqrt{D(z)}$	[9.25379;	[8.96648;	[7.76126;	[7.78995;	[8.99471;
	10.7156]	10.7405]	12.1617]	12.2950]	10.9773]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Poisson E(z) 1000	9.990781	9.902	9.955	10.057	9.99035
Poisson D(z) 1000	0.359408	0.529563	4.769308	5.025751	0.661672
$E(z) \pm \sqrt{D(z)}$	[9.39127;	[9.17428;	[7.77112;	[7.81518;	[9.17691;
	10.5902]	10.6297]	12.1388]	12.2988]	10.8037]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	

Таблица 4: Распределение Пуассона (6)

Characteristic	Mean	Median	z_R	z_Q	z_{tr}
Uniform E(z) 10	-0.003058	-0.008189	-0.008308	-0.058391	-0.000635
Uniform D(z) 10	0.10312	0.240584	0.509498	0.516179	0.1717448
$E(z) \pm \sqrt{D(z)}$	[-0.324181;	[-0.498682;	[-0.722099;	[-0.776846;	[-0.415056;
	0.318065]	0.482304]	0.705483]	0.660064]	0.413786]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Uniform E(z) 100	-0.001261	-0.005273	-0.013241	-0.026719	-0.001152
Uniform D(z) 100	0.056234	0.134553	0.506669	0.513444	0.095636
$E(z) \pm \sqrt{D(z)}$	[-0.238398;	[-0.372087;	[-0.725047;	[-0.743269;	[-0.310402;
	0.235876]	0.361541]	0.698565]	0.689831]	0.308098]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0
Uniform E(z) 1000	-0.000621	-0.003033	-0.005643	-0.017729	-0.000709
Uniform D(z) 1000	0.037829	0.090714	0.499291	0.501763	0.064392
$E(z) \pm \sqrt{D(z)}$	[-0.195117;	[-0.304220;	[-0.712248;	[-0.726081;	[-0.254464;
	0.193875]	0.298154]	0.700962]	0.690623]	0.253046]
$\widehat{E}(z)$	0.0	0.0	0.0	0.0	0.0

Таблица 5: Равномерное распределение (7)

5 Обсуждение

Исходя из данных, приведенных в таблицах, можно судить о том, что дисперсия характеристик рассеяния для распределения Коши является некой аномалией: значения слишком большие даже при увеличении размера выборки - понятно, что это результат выбросов, которые мы могли наблюдать в результатах предыдущего задания.

6 Приложение

Код программы GitHub URL:

https://github.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Sunshine/Math-Statistic-2021/blob/main/Lab2/Lab2.ipynb.com/Brightest-Brig