Algoritmusok és adatszerkezetek II. 2-3-4 fák és piros-fekete fák

Szegedi Tudományegyetem

Emlékeztető

Coospace kvíz

Az első Coospace kvíz ma 20:00-tól tölthető ki.

Végső kitöltési határidő: április 9. 10:00

Egyebek

- Hallgatói ösztöndíj a mestint tanszéken
- Szorgalmi feladatok
- Értékelés

Definíció

2-3-4 fa alatt olyan **általános keresőfát** értünk, amelynek minden x csúcsára $Rang(x) \in \{1,2,3\}$ (Mégis miért hívjuk akkor 2-3-4 fának?)

Piros-fekete fák tulajdonságai

- Minden csúcs színe piros vagy fekete
- A gyökér színe fekete
- Minden levele¹ fekete
- A piros csúcsoknak kizárólag fekete színű gyerekeik vannak
- Bármely csúcsból azonos számú fekete csúcs érintésével jutunk el bármelyik levélbe

¹levelek alatt itt most az "őrszemeket" értjük

Piros-fekete fák tulajdonságai

- Minden csúcs színe piros vagy fekete
- A gyökér színe fekete
- Minden levele¹ fekete
- 4 A piros csúcsoknak kizárólag fekete színű gyerekeik vannak
- Bármely csúcsból azonos számú fekete csúcs érintésével jutunk el bármelyik levélbe

Tétel

Bármely n kulcsú piros-fekete fa magassága legfeljebb $2\log(n+1)$.

Fekete-magasság

 bh(x) jelölje az x csúcsból induló, bármely levélig vezető úton található, (x-en kívüli) fekete csúcsok számát

Fekete-magasság

 bh(x) jelölje az x csúcsból induló, bármely levélig vezető úton található, (x-en kívüli) fekete csúcsok számát

A (teljes) fa fekete-magassága 2 A 9 gyökerű fa fekete-magassága 1 A 69 gyökerű fa fekete-magassága 2

A piros-fekete fák legrosszabb magasságának igazolása

Fontos észrevételek

- **1** x gyökerű fa h(x) magassága $\ge bh(x)$
- 2 x minden y gyerekére bh(y) = bh(x) vagy bh(y) = bh(x) 1
- **3** x minden y gyerekére $h(y) \le h(x) 1$

A piros-fekete fák legrosszabb magasságának igazolása

Fontos észrevételek

- **1** x gyökerű fa h(x) magassága $\ge bh(x)$
- 2 x minden y gyerekére bh(y) = bh(x) vagy bh(y) = bh(x) 1
- **3** x minden y gyerekére $h(y) \le h(x) 1$

Minden x gyökerű fa legalább $2^{bh(x)}-1$ csúcsot tartalmaz.

0 magas fára természetesen teljesül.

Az x gyökerű fában legalább annyi csúcs van, mint ahány csúcs a fiaiban legalább van +1, azaz $2*(2^{bh(x)-1}-1)+1=2^{bh(x)}-1$

A piros-fekete fák legrosszabb magasságának igazolása

Fontos észrevételek

- **1** x gyökerű fa h(x) magassága $\ge bh(x)$
- 2 x minden y gyerekére bh(y) = bh(x) vagy bh(y) = bh(x) 1
- **3** x minden y gyerekére $h(y) \le h(x) 1$

Minden x gyökerű fa legalább $2^{bh(x)} - 1$ csúcsot tartalmaz.

0 magas fára természetesen teljesül.

Az x gyökerű fában legalább annyi csúcs van, mint ahány csúcs a fiaiban legalább van +1, azaz $2*(2^{bh(x)-1}-1)+1=2^{bh(x)}-1$

A piros-fekete fák 4. tulajdonságából következően

Bármely x-ből levélig menő úton az érintett csúcsok **legalább** 1/2-e fekete $\Rightarrow bh(x) \geq h(x)/2$, vagyis az x gyökerű fában lévő n kulcsok száma $n \geq 2^{h/2} - 1 \Rightarrow h \leq 2\log(n+1)$

Piros-fekete fa implementációja

```
class Node {
    Object kulcs;
    boolean fekete;
    Node *apa;
    Node *bal;
    Node *jobb;
}
```


Piros-fekete fa implementációja

```
class Node {
    Object kulcs;
    boolean fekete;
    Node *apa;
    Node *bal;
    Node *jobb;
}
```

Megjegyzés

Az eddigi kiegészítő információk közül a legolcsóbb (csupán 1 bit)

AVL vs. piros-fekete fa

AVL fa legrosszabb magassága jobb, mint a piros-fekete fáé

$$h < 1.45 * h_{OTP}(n)$$
 vs. $h \le 2 * h_{OPT}(n)$

• $h_{OPT}(n)$ az n kulcsot tartalmazó, teljesen kiegyensúlyozott bináris keresőfa magassága

AVL vs. piros-fekete fa

AVL fa legrosszabb magassága jobb, mint a piros-fekete fáé

$$h < 1.45 * h_{OTP}(n)$$
 vs. $h \le 2 * h_{OPT}(n)$

- $h_{OPT}(n)$ az n kulcsot tartalmazó, teljesen kiegyensúlyozott bináris keresőfa magassága
- Gyakorlati jelentősége minimális: $n=2^{30}-1>10^9$ -ra azt kapjuk, hogy egy AVL/piros-fekete-fa legfeljebb 44/60 magas
- Ha a Keres művelet végrehajtása dominál, el lehet gondolkozni az AVL-fa használatán

AVL vs. piros-fekete fa

AVL fa legrosszabb magassága jobb, mint a piros-fekete fáé

$$h < 1.45 * h_{OTP}(n)$$
 vs. $h \le 2 * h_{OPT}(n)$

- $h_{OPT}(n)$ az n kulcsot tartalmazó, teljesen kiegyensúlyozott bináris keresőfa magassága
- Gyakorlati jelentősége minimális: $n=2^{30}-1>10^9$ -ra azt kapjuk, hogy egy AVL/piros-fekete-fa legfeljebb 44/60 magas
- Ha a Keres művelet végrehajtása dominál, el lehet gondolkozni az AVL-fa használatán
- A Beszúr és Töröl műveletek ugyanakkor implementációs szempontból egyszerűbbek/gyorsabbak piros-fekete fákra

A helyreállítás (egyik) záloga – átszínezés

- Ha van egy valid piros-fekete fánk, amelynek egy x csúcsa fekete, fiai viszont pirosak, akkor az 5. tulajdonságot nem sértő fát kapunk akkor is, ha x pirosra, fiai pedig feketére váltanak
- Másképpen, ha piros testvérpár színe feketére vált, a közös szülőnek a továbbiakban nem kell feketének lennie

Beszúrás utáni javítás átszínezéssel

- A beszúrandó kulcsot piros színnel szúrjuk be (arra a helyre ahova egyébként egy bináris keresőfába tennénk)
- Mitől romolhat el beszúrás kapcsán a piros-fekete fa?

Beszúrás utáni javítás átszínezéssel

- A beszúrandó kulcsot piros színnel szúrjuk be (arra a helyre ahova egyébként egy bináris keresőfába tennénk)
- Mitől romolhat el beszúrás kapcsán a piros-fekete fa?
 - Ha piros szülő jut piros gyerekhez

Beszúrás utáni javítás átszínezéssel

- A beszúrandó kulcsot piros színnel szúrjuk be (arra a helyre ahova egyébként egy bináris keresőfába tennénk)
- Mitől romolhat el beszúrás kapcsán a piros-fekete fa?
 - Ha piros szülő jut piros gyerekhez

Mi lehet ennek a helyreállításnak a velejárója?

A pirosra színezett csúcs mentén újabb helyreállításra lehet szükség

Beszúrás utáni javítás forgatással

- ullet $\alpha, \beta, \gamma, \delta$ egy-egy részfát jelöl
- AVL fákhoz hasonlóan, itt is a cikk-cakkos esetben van szükség 2 forgatásra (a cikk-cakkot δ -hoz viszonyítva nézzük)

Törlés utáni javítás átszínezéssel

- Bajt az okozhat, ha kiesik egy fekete csúcs
- A kieső csúcs feketeségét át kell ruházni, duplán fekete csúcsunk viszont nem maradhat
- Ha a duplán fekete csúcs testvére és unokaöccsei is feketék, a nagyszülő át tudja vállalni a feketeséget

Törlés utáni javítás átszínezéssel

- Bajt az okozhat, ha kiesik egy fekete csúcs
- A kieső csúcs feketeségét át kell ruházni, duplán fekete csúcsunk viszont nem maradhat
- Ha a duplán fekete csúcs testvére és unokaöccsei is feketék, a nagyszülő át tudja vállalni a feketeséget

Törlés utáni javítás átszínezéssel

- Bajt az okozhat, ha kiesik egy fekete csúcs
- A kieső csúcs feketeségét át kell ruházni, duplán fekete csúcsunk viszont nem maradhat
- Ha a duplán fekete csúcs testvére és unokaöccsei is feketék, a nagyszülő át tudja vállalni a feketeséget

Mi történt volna, ha a duplán fekete csúcs apja nem piros?

Szükség esetén a helyreállítást az apától folytathatjuk tovább.

Törlés utáni javítás forgatással

- Piros unokaöcs esetén forgatásra van szükség
- Ha a (d-vel megjelölt) duplán fekete csúcs távolabbi unokaöccse (E) piros, 1 forgatás is elég

(a) helyreállítás előtt

Törlés utáni javítás forgatással

- Piros unokaöcs esetén forgatásra van szükség
- Ha a (d-vel megjelölt) duplán fekete csúcs távolabbi unokaöccse (E) piros, 1 forgatás is elég
- Valóban, az egyes részfákig a forgatást követően is ugyanannyi fekete csúcs érintésével tudunk eljutni
 - α és β : 2/3; γ , ϵ és ζ : 1/2 (B kezdeti színétől függően)

(a) helyreállítás előtt

(b) helyreállítás után

Törlés utáni javítás segédforgatással

- Piros unokaöcs esetén forgatásra van szükség
- Ha a (*d*-vel megjelölt) duplán fekete csúcs közelebbi unokaöccse piros, segédforgatásra van szükség

(a) segédforgatás előtt

Törlés utáni javítás segédforgatással

- Piros unokaöcs esetén forgatásra van szükség
- Ha a (d-vel megjelölt) duplán fekete csúcs közelebbi unokaöccse piros, segédforgatásra van szükség
- 1 további forgatással garantáltan orvosolható (hiszen a duplán fekete csúcs távolabbi unokaöccse piros lett)

(a) segédforgatás előtt

(b) segédforgatás után

Egy további eshetőség segédforgatásra

• Piros testvér esetén is forgatni kell

(a) segédforgatás előtt

Egy további eshetőség segédforgatásra

- Piros testvér esetén is forgatni kell
- A duplán fekete csúcs megmarad, de a forgatást követően biztosan valamelyik már tárgyalt eset áll elő

(a) segédforgatás előtt

(b) segédforgatás után

2-3-4 és piros-fekete fák közötti kapcsolat

A fekete csúcsokat piros leszármazottaikkal összeolvasztva 2-3-4 fát kapunk.

Összegzés

- A piros-fekete fák az AVL fákhoz hasonló tulajdonságúak
- Piros-fekete fákkal tulajdonképp egy speciális hatékony általános keresőfát (2-3-4 fa) valósítunk meg

