

Budapesti Műszaki és Gazdaságtudományi Egyetem

Villamosmérnöki és Informatikai Kar Irányítástechnika és Informatika Tanszék

Parametrikus görbék és felületek pontos offsetelése

SZAKDOLGOZAT

Készítette Sandle Nátán Konzulens Salvi Péter

Tartalomjegyzék

1.	\mathbf{Bev}	vezetés	1
	1.1.	CAD/CAM	1
	1.2.	Racionális görbék/felületek	1
	1.3.	Kontrollpont-alapú reprezentáció	1
	1.4.	Parametrikus sebesség	1
2.	\mathbf{PH}	Görbék	2
	2.1.	PH síkgörbék	2
		2.1.1. Alapok	2
		2.1.2. Reprezentáció komplex számokkal	2
		2.1.3. Interpoláció	2
	2.2.	PH térgörbék	2
		2.2.1. Alapok	2
		2.2.2. Reprezentáció kvaterniókkal	2
		2.2.3. Interpoláció	2
3.	PN	felületek	3
4.	\mathbf{PN}	interpoláció \mathbb{C}^1 folytonossággal	4
	4.1.	Duális reprezentáció	4
	4.2.	Izotropikus tér	4
	4.3.	Coons-patch	4
	4.4.	Folyamat	4
5.	Implementációs részletek		
	5.1.	Polinom osztály	5
		Megjelenítés	
6	Ero	dmények	6

HALLGATÓI NYILATKOZAT

Alulírott Sandle Nátán, szigorló hallgató kijelentem, hogy ezt a szakdolgozatot meg nem engedett segítség nélkül, saját magam készítettem, csak a megadott forrásokat (szakirodalom, eszközök stb.) használtam fel. Minden olyan részt, melyet szó szerint, vagy azonos értelemben, de átfogalmazva más forrásból átvettem, egyértelműen, a forrás megadásával megjelöltem.

Hozzájárulok, hogy a jelen munkám alapadatait (szerző(k), cím, angol és magyar nyelvű tartalmi kivonat, készítés éve, konzulens(ek) neve) a BME VIK nyilvánosan hozzáférhető elektronikus formában, a munka teljes szövegét pedig az egyetem belső hálózatán keresztül (vagy autentikált felhasználók számára) közzétegye. Kijelentem, hogy a benyújtott munka és annak elektronikus verziója megegyezik. Dékáni engedéllyel titkosított diplomatervek esetén a dolgozat szövege csak 3 év eltelte után válik hozzáférhetővé.

Budapest, 2025-03-17	
	Sandle Nátán
	hallgató

Bevezetés

- 1.1. CAD/CAM
- 1.2. Racionális görbék/felületek
- 1.3. Kontrollpont-alapú reprezentáció
- 1.4. Parametrikus sebesség

PH Görbék

- 2.1. PH síkgörbék
- 2.1.1. Alapok
- 2.1.2. Reprezentáció komplex számokkal
- 2.1.3. Interpoláció
- 2.2. PH térgörbék
- 2.2.1. Alapok
- 2.2.2. Reprezentáció kvaterniókkal
- 2.2.3. Interpoláció

PN felületek

PN interpoláció C^1 folytonossággal

- 4.1. Duális reprezentáció
- 4.2. Izotropikus tér
- 4.3. Coons-patch
- 4.4. Folyamat

Implementációs részletek

- 5.1. Polinom osztály
- 5.2. Megjelenítés

Eredmények