

Outline

Data Exploration/Feature Selection

Modeling Approach

Interpreting Results

Goal:

Predict West Nile Virus presence in mosquito traps to inform pesticide use.

Data

Trap Information

Weather Data

Spray Data

Observations with Positive Results

Total Observations

Ratio of Traps with West Nile

Trap Data

Geographic Frequency

Observations with Positive Results

Total Observations

West Nile Positive Rate

0% 19%

August and September are bad!

Weather Data

"The Northern House mosquito, **Culex pipiens**, is the primary carrier of West Nile virus. This mosquito species thrives in water with high organic content, such as that found in catch basins (storm sewers). Consequently, a hot, dry summer increases the risk of West Nile virus infection, exactly the opposite of what many people believe"

Chicago Department of Public Health

West Nile Rate by Temperature

West Nile Rate by Dew Point

West Nile Rate by Rain - Previous Seven Days Rain Increase \rightarrow ? 25% 5% 10 6 9 11 Rain (cm) Over Previous Seven Days

Model Building

Model Features

Weather Data

20 Day Average Min Temp

20 Day Average Max Temp

3 Day Average Min Temp

Dew Point

Trap Data

Longitude

Latitude

Culex Pipiens

Month

Model Features

Score:

0.75110

ROC Curve

Interpreting Results

Final Predictions

Average Probability of West Nile Presence

1.74% 14.44%

Zip Code Map with Population Density

Density

195

Average Probability of West Nile Presence

1.87%

10.72%

Density x West Nile Probability

