AI4CI

Artificial Intelligence for Continuous integration

Aakanksha Duggal Hema Veeradhi Karan Chauhan Oindrilla Chatterjee Shrey Anand

- What is AI4CI
- Tools and Services
- Machine Learning Models
 - Github Time to Merge
 - Optimal Stopping Point
 - Build Log Clustering
- Engage

- What is AI4CI
- Tools and Services
- Machine Learning Models
 - Github Time to Merge
 - Optimal Stopping Point
 - Build Log Clustering
- Engage

AlOps Al + DevOps Artificial Intelligence for IT Operations

Dev & Ops: **DevOps**

AlOps
Al + DevOps

Artificial Intelligence for IT Operations

Dev & Ops: **DevOps**

CI/CD
Continuous Integration,
Continuous Delivery

Automating stages of app development

AIOps

AI + DevOps

CI/CDContinuous Integration,
Continuous Delivery

Al for Continuous Integration

What is AI4CI?

- What is AI4CI
- Tools and Services
- Machine Learning Models
 - Github Time to Merge
 - Optimal Stopping Point
 - Build Log Clustering
- Engage

Tools and Services

CI/CD Data Sources

AlOps Tools

TestGrid

Metric **Dashboards**

Prow

Model Services

Github

ML Services on Operate First

- Tools **built** on Operate First and **available** on Operate First
- Al Services deployed on Operate First Cloud:
 - Github time-to-merge prediction
 - Optimal Stopping point prediction
 - Build log clustering

- What is AI4CI
- Tools and Services
- Machine Learning Models
 - Github Time to Merge
 - Optimal Stopping Point
 - Build Log Clustering
- Engage

GitHub PR TTM: Overview

- How do you calculate, track, and forecast project dev KPIs?
 - velocity, blockers, idea to production time, etc.
- How do you collect data in a format suitable for analytics
- How can you augment DevOps with AI/ML
 - E.g. predict time-to-merge of pull request

Code Repository

Collect data using MI tool

```
python -m srcopsmetrics.cli \
--create \
--repository foo_repo \
--entities PullRequest, Issue, Commit
```

types of files, # lines, author, etc.

- Transform features for ML
- Feature selection using mutual information, chi sq, etc

Superset dashboard

- Classification and regression setups
- SVM, RF, XGB, etc.

GitHub PR TTM: Service Endpoint

- Service deployed as a custom Seldon inference server
 - http://github-pr-ttm-ds-ml-workflows-ws.apps.smaug.na.operate-first.clo
 ud/predict
- Demo notebook
 - https://github.com/aicoe-aiops/ocp-ci-analysis/blob/master/notebooks
 /time-to-merge-prediction/model inference.ipynb

GitHub PR TTM: Next Steps

- Generalize model across repos
- Integrate into Thoth bots
- Set up model monitoring
- Reiterate on model

- What is AI4CI
- Tools and Services
- Machine Learning Models
 - Github Time to Merge
 - Optimal Stopping Point
 - Build Log Clustering
- Engage

Optimal Stopping Point: Overview

Problem to Address

Every new Pull Request to a repository with new code changes is subjected to an automated set of builds and tests before being merged. Some tests may run for longer durations than expected.

Longer running tests are often painful as they can block the CI/CD process for longer periods of time. How can we optimize the running time of our tests and prevent bottlenecks?

Optimal Stopping Point: Overview

Problem to Address

Every new Pull Request to a repository with new code changes is subjected to an automated set of builds and tests before being merged. Some tests may run for longer durations than expected.

Longer running tests are often painful as they can block the CI/CD process for longer periods of time. How can we optimize the running time of our tests and prevent bottlenecks?

Solution

By predicting the optimal stopping point for a test, we can better allocate development resources.

TestGrid Data

Test | Timestamps with Test Status

TestGrid Data

Feature Engineering

Find the **distribution type for passing and failing tests**. Probability density plots are used to find the probabilities of test duration

Predict optimal stopping point by finding the point where:

probability of failure > probability of passing

SELDOW

Model Interactions

- Feature Engineering notebook:
 https://www.operate-first.cloud/data-science/ai4ci/notebooks/data-sources/TestGrid/metrics/probability to fail.ipynb
- Model training notebook:
 https://www.operate-first.cloud/data-science/ai4ci/notebooks/optimal-stopping-point/ospmodel.ipynb
- Model service deployed as a custom Seldon inference server:
 http://optimal-stopping-point-ds-ml-workflows-ws.apps.smaug.na.operate-first.cloud/predict
- Model inference notebook:
 https://www.operate-first.cloud/data-science/ai4ci/notebooks/optimal-stopping-point/model
 el inference.ipynb

- What is AI4CI
- Tools and Services
- Machine Learning Models
 - Github Time to Merge
 - Optimal Stopping Point
 - Build Log Clustering
- Engage

Build Log Clustering

- Introduction
 - Openshift CI build logs
 - Pep's work on EDA and clustering
- Endpoint
- Deployment config
- Demo notebook
- Next steps
 - Create a model for build logs from other jobs

- What is AI4CI
- Tools and Services
- Machine Learning Models
 - Github Time to Merge
 - Optimal Stopping Point
 - Build Log Clustering
- Engage

Engage

Get Started

https://www.operate-first.cloud/data-science/ai4ci/docs/get-started.md

Open Data Sources

Notebooks

Dashboards

Model Endpoints

Automated Workflows

Video Playlist

Engage

Contribute

https://www.operate-first.cloud/data-science/ai4ci/docs/get-started.md

KPI Metric

ML Analysis

Thank you, questions?

https://github.com/aicoe-aiops/ocp-ci-analysis

@OperateFirst

https://tinyurl.com/aiforci

https://www.operate-first.cloud/data-science/ai4ci/

