LISTA DE EJERCICIOS 3: ANÁLISIS FUNCIONAL

UNIVERSIDAD NACIONAL DE COLOMBIA, BOGOTÁ

PRIMER SEMESTRE 2025

PROFESOR: OSCAR RIAÑO

Observación. Salvo que se diga lo contrario, los espacios vectoriales considerados tienen como campo escalar \mathbb{R} .

 E^* denota el espacio de todos los funcionales continuos de E en \mathbb{R} . Hacemos esta observación, pues en otros contextos también se usa la notación E^* para denotar este espacio dual.

1. Espacios L^p

Ejercicio 1. (I) Sea \mathbb{R} con la σ -álgebra de Borel $\mathcal{B}(\mathbb{R})$.

- (a) Dado $x_0 \in \mathbb{R}$, considere δ_{x_0} la medida de Dirac centrada en x_0 dada por: $\delta_{x_0}(A) = 1$ si $x_0 \in A$, y $\delta_{x_0}(A) = 0$ si $x_0 \notin A$, para cada $A \in \mathcal{B}(\mathbb{R})$. Muestre que δ_{x_0} es una medida.
- (b) Sea $f: \mathbb{R} \to \mathbb{R}$ una función medible. Muestre que

$$\int_{\mathbb{D}} f(x) \, d\delta_{x_0} = f(x_0).$$

Sugerencia. Comience mostrando la afirmación para funciones simples positivas, luego para funciones medibles no negativas y concluya el resultado general.

- (c) De un ejemplo de una función que sea integrable con la medida δ_{x_0} para algún x_0 , pero que no sea integrable con la medida de Lebesgue.
- (II) Sea $\mathbb{N} = \{1, 2, 3, \dots\}$ con la σ -álgebra $\mathcal{P}(\mathbb{N})$.
 - (a) Considere la medida contadora μ dada por: $\mu(A) = \operatorname{cardinal}(A)$ si A es finito $y \ \mu(A) = \infty$ caso contrario, para cada $A \in \mathcal{P}(\mathbb{N})$. Muestre que μ es una medida.
 - (b) Dada $f : \mathbb{N} \to \mathbb{R}$ una función medible, es decir, f es una secuencia, $f = \{a_j\}_{j \in \mathbb{N}}$, para algunos $a_j \in \mathbb{R}$, $j \in \mathbb{N}$. Muestre que si f es integrable (es decir, $\int_{\mathbb{N}} |f| d\mu < \infty$), entonces

$$\int_{\mathbb{N}} f \, dx = \sum_{j=1}^{\infty} a_j.$$

Ejercicio 2. Sea (X, \mathcal{A}, μ) un espacio medible.

(I) Sea $1 \le p < \infty$. Para t > 0, defina $h_f(t) = \mu(\{|f| > t\})$. Muestre que si $f \in L^p(X, \mu)$ vale

$$||f||_{L^p}^p = p \int_0^\infty t^{p-1} h_f(t) dt.$$

Sugerencia. Note que $h_f(t) = \int_{\{|f|>t\}} d\mu \ y$ aplique el teorema de Fubini.

(II) Decimos que una secuencia de funciones medibles $\{f_n\}$ converge en medida en X a una función f, si para todo $\epsilon > 0$

$$\lim_{n \to \infty} \mu(\{|f_n - f| \ge \epsilon\}) = 0.$$

Si $1 \le p < \infty$, muestre que si $f_n \to f$ en $L^p(X, \mu)$, entonces f_n converge a f en medida. De un ejemplo, que muestre que la convergencia en medida no implica convergencia en L^p .

Ejercicio 3. Sea $\Omega \subseteq \mathbb{R}^n$ abierto. Sea $1 \leq p \leq \infty$. Entonces $L^p(\Omega)$ es un espacio de Banach.

Sugerencia. Vea la demostración del Teorema 4.8 de Brezis.

Ejercicio 4. Sean $1 \leq p \leq q \leq \infty$, $\Omega \subseteq \mathbb{R}^n$ abierto y acotado. Esto implica que $\lambda(\Omega) < \infty$, donde λ denota la medida de Lebesque.

(I) Muestre que $L^q(\Omega) \subseteq L^p(\Omega)$ y la función inyección es continua. Más aún, vale que

$$||f||_{L^p} \le |\Omega|^{\frac{1}{p} - \frac{1}{q}} ||f||_{L^q},$$

para todo $f \in L^q(\Omega)$.

- (II) Si $f \in L^{\infty}(\Omega)$. Muestre que $\lim_{p \to \infty} ||f||_{L^p} = ||f||_{L^{\infty}}$.
- (III) Muestre que si $f \in l^q$, para algún $1 \le q \le \infty$, entonces $f \in l^\infty$. Se puede mostrar que, $l^q \subseteq l^\infty$ y la inclusión es continua.
- (IV) Muestre que si $f \in l^q$, para algún $1 \le q < \infty$, también vale que $||f||_{l^\infty} = \lim_{p \to \infty} ||f||_{l^p}$. Sugerencia. Primero, muestre que $f \in l^p$ para todo $p \ge q$. Para esto, si $f = \{a_j\}_{j \in \mathbb{N}}$, utilice la designaldad $|a_j|^p = |a_j|^{p-q}|a_j|^q \le ||f||_{l^\infty}^{p-q}|a_j|^q$ y sume sobre j.

Ejercicio 5. Considere el espacio $L^p(\mathbb{R}^n)$, $1 \leq p \leq \infty$. Sean

$$f_0(x) = \begin{cases} |x|^{-\alpha}, & si \ |x| \le 1, \\ 0, & si \ |x| > 1. \end{cases} \quad f_1(x) = \begin{cases} 0, & si \ |x| \le 1, \\ |x|^{\alpha}, & si \ |x| > 1. \end{cases}$$

- (I) ¿Para qué valores de $\alpha \in \mathbb{R}$, $f_0 \in L^p(\mathbb{R}^n)$?
- (II) ¿Para qué valores de $\alpha \in \mathbb{R}$, $f_1 \in L^p(\mathbb{R}^n)$?
- (III) ¿Para qué valores de $\alpha \in \mathbb{R}$, $\frac{1}{1+|x|^{\alpha}} \in L^p(\mathbb{R}^n)$?

Sugerencia: Utilice coordenadas polares en \mathbb{R}^n .

Ejercicio 6. Considere el intervalo (0,1) equipado con la σ -álgebra de Borel y la medida de Lebesgue.

- (I) Considere la secuencia de funciones $\{f_n\}$ dada por $f_n(x) = ne^{-nx}$. Muestre que:
 - (a) $f_n \to 0$ en casi toda parte en (0,1).
 - (b) f_n está acotada en $L^1(0,1)$.
 - (c) f_n no converge fuertemente (es decir, en norma) a 0 en $L^1(0,1)$.
 - (d) f_n no converge débilmente a 0 en $\sigma(L^1, L^{\infty})$.
- (II) Dado $1 . Considere la secuencia de funciones <math>\{g_n\}$ dada por $g_n(x) = n^{\frac{1}{p}}e^{-nx}$. Muestre que:
 - (a) $g_n \to 0$ en casi toda parte en (0,1).
 - (b) $\{g_n\}$ está acotada en $L^p(0,1)$.
 - (c) g_n no converge fuertemente (es decir, en norma) a 0 en $L^p(0,1)$.
 - (d) g_n converge débilmente a 0 en $\sigma(L^p, L^{p'})$.

Ejercicio 7. Sea $\Omega \subseteq \mathbb{R}^n$ abierto.

- (I) Considere la secuencia de funciones $\{f_n\} \subseteq L^p(\Omega)$ y $f \in L^p(\Omega)$ con 1 . Asuma que
 - (a) $f_n \rightharpoonup f$ débilmente $\sigma(L^p, L^{p'})$.
 - (b) $||f_n||_{L^p} \to ||f||_{L^p}$.

Demuestre que $f_n \to f$ fuertemente (es decir, en norma) en $L^p(\Omega)$.

- (II) Construya una secuencia $\{f_n\}$ en $L^1(\Omega)$, $f_n \geq 0$ tales que
 - (a) $f_n \rightharpoonup f$ débilmente $\sigma(L^1, L^{\infty})$.
 - (b) $||f_n||_{L^1} \to ||f||_{L^1}$.
 - (c) $||f_n f||_{L^1}$ no se aproxime a cero.

Sugerencia (I). Sin pérdida de generalidad, asuma que $||f||_{L^p}=1$. Definiendo $\widetilde{f}_n:=\frac{f_n}{||f_n||_{L^p}}$, muestre que $\widetilde{f}_n \rightharpoonup f$ cuando $n \to \infty$. Concluya que podemos asumir que la secuencia $\{f_n\}$ en (I) satisface que $||f_n||=1$, para todo n. Ahora, sea $h \in L^{p'}(\Omega)$ tal que $||h||_{L^{p'}}=1$ y $\langle f,h\rangle=\int_{\Omega}fh\,dx=1$, ¿por qué existe tal h? Con esto concluya que para todo $\epsilon>0$, existe $N\in\mathbb{N}$ tal que si $n\geq N$, entonces

$$1 - \epsilon < \int_{\Omega} \left(\frac{f_n + f}{2} \right) h \le \left\| \frac{f_n + f}{2} \right\|_{L^p}.$$

 $\label{lem:condition} \textit{Utilice las desigualdades de Clarkson y la anterior para concluir el resultado deseado.}$

Ejercicio 8. (I) Sea $1 . Considere las secuencias <math>x_n = \{x_n^j\}_{j=1}^{\infty}$, para cada $n \in \mathbb{N}$ y $x = \{x^j\}_{j=1}^{\infty}$. Asuma que $x_n, x \in l^p$, para todo $n \in \mathbb{N}$.

Muestre que $x_n \rightharpoonup x$ en l^p si y solo si $\{x_n\}$ es acotada (en l^p) y $x_n^j \rightarrow x^j$ para cada entero positivo j.

(II) Considere la secuencia $x_n = (1, \frac{1}{2}, \frac{1}{3}, \dots, \frac{1}{n}, 0, 0, 0, \dots)$. ¿En qué espacios l^p , con $1 \le p \le \infty$, converge débilmente?

2. Espacios de Hilbert

Ejercicio 9. (1) Dado un espacio vectorial normado $(E, \| \cdot \|)$. Muestre que la norma de E proviene de un producto interno (real) si y solamente si se satisface la ley del paralelogramo:

$$||a + b||^2 + ||a - b||^2 = 2(||a||^2 + ||b||^2),$$

para todo $a, b \in E$. En particular, un espacio de Banach es de Hilbert si y solo si su norma satisface la ley del paralelogramo.

(II) Sea $\Omega \subseteq \mathbb{R}$ abierto. Muestre que $L^p(\Omega)$ es de Hilbert si, y solo si, p=2.

Ejercicio 10. Sea $\Omega \subseteq \mathbb{R}^n$ un abierto. Sea $w : \Omega \to \mathbb{R}$ una función medible positiva en casi toda parte. Verifique que el siguiente espacio (módulo clase de equivalencias) es de Hilbert

$$L^2(\Omega, w) = \{ f : \Omega \to \mathbb{R} : f \text{ es medible } y \int_{\Omega} |f(x)|^2 w(x) dx < \infty \}$$

con el producto interno $(f,g) = \int_{\Omega} f(x)g(x)w(x) dx$. ¿Qué condiciones se le pueden asignar a w para garantizar que $L^2(\Omega,w) \subseteq L^2(\Omega)$?

Ejercicio 11. Sea H un espacio de Hilbert y $\{x_n\}$ una secuencia en H.

(I) Suponga que $x_n \rightharpoonup x$ en H $y ||x_n|| \rightarrow ||x||$. Muestre que $x_n \rightarrow x$ en H.

(II) Suponga que $x_n \rightharpoonup x$ en H y lím sup $||x_n|| \le ||x||$. Muestre que $x_n \to x$ en H.

Ejercicio 12. Sea H un espacio de Hilbert

- (I) Sea $\{K_n\}_{n\geq 1}$ una secuencia decreciente $K_{n+1}\subseteq K_n$ de conjuntos convexos cerrados de H tal que $\bigcap K_n\neq \emptyset$. Demuestre que la secuencia de proyecciones $P_{K_n}f$ converge fuertemente a un límite e identifique este límite.
- (II) Sea $\{K_n\}_{n\geq 1}$ una secuencia creciente $K_n\subseteq K_{n+1}$ de conjuntos convexos cerrados no vacíos de H. Demuestre que la secuencia de proyecciones $P_{K_n}f$ converge fuertemente a un límite e identifique este límite.
- **Ejercicio 13.** (1) Muestre que los siguientes conjuntos M son subespacios cerrados no vacíos de $L^2((-1,1))$ y determine explícitamente la proyección P_M en cada caso.
 - (a) $M = \{ f \in L^2((-1,1)) : f(x) = f(-x) \text{ para casi todo } x \in (-1,1) \}.$
 - (b) $M = \{ f \in L^2((-1,1)) : \int_{-1}^1 f(x) \, dx = 0 \}.$
 - (c) $M = \{ f \in L^2((-1,1)) : f(x) = 0 \text{ para casi todo } x \in (-1,0) \}.$
 - (II) Sea $\Omega \subset \mathbb{R}^n$ un abierto acotado. Considere

$$K = \{ f \in L^2(\Omega) : \int_{\Omega} f(x) \, dx \ge 1 \}.$$

- (a) Muestre que K es un conjunto cerrado convexo de $L^2(\Omega)$.
- (b) Determine la proyección sobre K, es decir, el operador P_K .

Ejercicio 14. Sea H un espacio de Hilbert y $A \in L(H) = L(H, H)$ (el conjunto de funciones lineales continuas de H en H).

(I) Para $y \in H$ fijo, muestre que el funcional $\Phi_y : H \to \mathbb{R}$ dado por $x \mapsto (Ax, y)$ es lineal y continuo. Deduzca que existe un único elemento en H, que denotaremos por A^*y , tal que

$$(Ax, y) = (x, A^*y), \quad \forall x \in H.$$

- (II) Muestre que $A^* \in L(H)$. A^* se llama el adjunto de A. Sugerencia. Para la continuidad utilice el teorema del gráfico cerrado.
- (III) Verifique que $(A^*)^* = A$ y que $||A^*|| = ||A||$.

Ejercicio 15. Sea H un espacio de Hilbert y $M \subseteq H$ un subespacio cerrado. Considera la proyección ortogonal P_M . Muestre que

- (I) P_M es lineal.
- (II) $P_M^2 = P_M$ (esto es, aplicar dos veces el operador proyección da el mismo resultado).
- (III) $P_M^{\star} = P_M$, donde P_M^{\star} denota el adjunto de P_M (vea el Ejercicio 14).
- (IV) $Rango(P_M) = M$ y $Kernel(P_M) = M^{\perp}$.
- (V) Suponga que $P \in L(H)$. Entonces P es una proyección ortogonal sobre un subespacio cerrado de H si, y solo si, $P = P^2 = P^*$.

Ejercicio 16. Sea $A \in L(H)$. Para cada $t \geq 0$, definimos $e^{tA} = I + \sum_{n=1}^{\infty} \frac{(tA)^n}{n!}$, donde I denota el operador identidad, A^n denota la composición de A consigo mismo n veces.

(I) Muestre que e^{tA} , $t \ge 0$ está bien definida como elemento de L(H). Es decir, el límite $m \to \infty$ de $I + \sum_{n=1}^{m} \frac{(tA)^n}{n!}$ existe en L(H). Más aún,

$$||e^{tA}||_{L(H)} \le e^{t||A||_{L(H)}}.$$

- (II) Muestre que para todo $t,t'\geq 0,\ e^{tA}e^{t'A}=e^{(t+t')A}$ (en el sentido de composición de operadores).
- (III) Muestre que

$$\lim_{t \to 0^+} \|e^{tA} - I\|_{L(H)} = 0.$$

y

$$\lim_{t \to 0^+} \| \frac{e^{tA} - I}{t} - A \|_{L(H)} = 0.$$

 $\lim_{t\to 0^+}\|\frac{e^{tA}-I}{t}-A\|_{L(H)}=0.$ (IV) Encuentre el adjunto de e^{tA} , $t\geq 0$. Para la definición de adjunto, vea el

A la familia $\{e^{tA}\}_{t\geq 0}$ se le llama un semigrupo de operadores acotados sobre H, que son uniformemente continuos.

Universidad Nacional de Colombia, Bogotá $Email\ address: {\tt ogrianoc@unal.edu.co}$