Math 415 Homework 1

Parker Gabel

January 14, 2019

1 Find all the zero divisors of $\mathbb{Z}/20\mathbb{Z}$.

Notice that the additive identity of $\mathbb{Z}/20\mathbb{Z}$ is $\mathbb{Z} = 1\mathbb{Z}$. Therefore a zero divisor is any $a,b \in \mathbb{Z}$ such that $ab \equiv 1 \mod 20$. This is the set of all integers that are coprime to 20 or $\{[1], [3], [7], [9], [11], [13], [17], [19]\}$. ([x] means the equivalence class of x modulo 20)

2 Determine $U(\mathbb{Z}[i])$ where $\mathbb{Z}[i] \subseteq \mathbb{C}$ is the ring of Gaussian Integer.

Notice $1 \in \mathbb{Z}[i]$ is its own inverse so $1 \in \mathrm{U}(\mathbb{Z}[i])$. Likewise $-1 \in \mathbb{Z}[i]$ is its own inverse so $-1 \in \mathrm{U}(\mathbb{Z}[i])$. Notice i(-i) = 1 = (-i)i so i, $-i \in \mathrm{U}(\mathbb{Z}[i])$.

I claim there are no more units in the Gaussian Integers.