Advanced Artificial Intelligence

Bayes' Nets: Inference

Instructors: Fatemeh Mansoori--- University of Isfahan

[These slides were created by Dan Klein and Pieter Abbeel for AI Course at UC Berkeley.]

Bayes' Net Representation

- A directed, acyclic graph, one node per random variable
- A conditional probability table (CPT) for each node
 - A collection of distributions over X, one for each combination of parents' values

$$P(X|a_1\ldots a_n)$$

- Bayes' nets implicitly encode joint distributions
 - As a product of local conditional distributions
 - To see what probability a BN gives to a full assignment, multiply all the relevant conditionals together:

$$P(x_1, x_2, \dots x_n) = \prod_{i=1}^n P(x_i | parents(X_i))$$

Inference

 Inference: calculating some useful quantity from a joint probability distribution

- Examples:
 - Posterior probability

$$P(Q|E_1 = e_1, \dots E_k = e_k)$$

Most likely explanation:

$$\operatorname{argmax}_q P(Q = q | E_1 = e_1 \dots)$$

Inference by Enumeration

General case:

* Works fine with multiple query variables, too

$$P(Q|e_1 \dots e_k)$$

 Step 1: Select the entries consistent with the evidence

 Step 2: Sum out H to get joint of Query and evidence

$$P(Q, e_1 \dots e_k) = \sum_{h_1 \dots h_r} P(\underbrace{Q, h_1 \dots h_r, e_1 \dots e_k})$$

$$X_1, X_2, \dots X_n$$

Step 3: Normalize

$$\times \frac{1}{Z}$$

$$Z = \sum_{q} P(Q, e_1 \cdots e_k)$$
$$P(Q|e_1 \cdots e_k) = \frac{1}{Z} P(Q, e_1 \cdots e_k)$$

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+a	-j	0.1
-a	+j	0.05
-a	-j	0.95

ш	P(E)
+e	0.002
-e	0.998

Α	M	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-е	+a	0.94
+b	-е	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-е	+a	0.001
-b	-e	-a	0.999

Example: Alarm Network

Α	J	P(J A)
+a	+j	0.9
+ a	.	0.1
-a	+j	0.05
-a	-j	0.9 5

Α	М	P(M A)
+a	+m	0.7
+a	-m	0.3
-a	+m	0.01
-a	-m	0.99

E	P(E)
+e	0.002
-е	0.998

В	Е	Α	P(A B,E)
+b	+e	+a	0.95
+b	+e	-a	0.05
+b	-e	+a	0.94
+b	-e	-a	0.06
-b	+e	+a	0.29
-b	+e	-a	0.71
-b	-e	+a	0.001
-b	-e	-a	0.999

В	Е	Α	J	М	P(A B,E)
+b	+e	+a	+j	+m	0.000001197
+b	+e	-a	+j	+m	5E-11
+b	-e	+ a	+j	+m	0.0006
+b	-е	-a	+j	+m	3E-8
-b	+e	+a	+j	+m	0.000365
-b	+e	-a	+j	+m	7E-7
-b	-е	+a	+j	+m	0.0006
-b	-e	-a	+j	+m	0.0005

В	J	М	P(B,+j,+m)
+b	+j	+m	0.0006019629
-b	+j	+m	0.0014

$$P(B \mid +j,+m)$$

Inference by Enumeration in Bayes' Net

- Given unlimited time, inference in BNs is easy
- Reminder of inference by enumeration by example:

$$P(B \mid +j,+m) \propto_B P(B,+j,+m)$$

$$= \sum_{e,a} P(B,e,a,+j,+m)$$

$$= \sum_{e,a} P(B)P(e)P(a|B,e)P(+j|a)P(+m|a)$$

$$=P(B)P(+e)P(+a|B,+e)P(+j|+a)P(+m|+a) + P(B)P(+e)P(-a|B,+e)P(+j|-a)P(+m|-a)P(B)P(-e)P(+a|B,-e)P(+j|+a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+m|-a)P(+m|-a)P(+m|+a) + P(B)P(-e)P(-a|B,-e)P(+j|-a)P(+m|-a)P(+$$

M

Inference by Enumeration?

Example: Traffic Domain

Random Variables

R: Raining

■ T: Traffic

■ L: Late for class!

$I \left(I \mid IC \right)$				
+r	+t	0.8		
+r	-t	0.2		
-r	+t	0.1		
-r	-t	0.9		

P(T|R)

$I_{-}(L I_{-})$				
+t	+	0.3		
+t	-	0.7		
-t	+	0.1		
-t	-1	0.9		

D(I|T)

Inference by Enumeration: Procedural Outline

- Track objects called factors
- Initial factors are local CPTs (one per node)

P(R)	
+r	0.1
-r	0.9

- 1-	n)
+t	0.8
-t	0.2
+t	0.1
-t	0.9
	+t -t

D(T|D)

P(L T)		
+t	+	0.3
+t	_	0.7
-t	+	0.1
-t	-	0.9

- Any known values are selected
 - E.g. if we know $L = +\ell$, the initial factors are

$$P(R)$$

$$\begin{array}{c|c} +r & 0.1 \\ \hline -r & 0.9 \end{array}$$

$$\begin{array}{c|cccc} P(T|R) \\ \hline +r & +t & 0.8 \\ +r & -t & 0.2 \\ \hline -r & +t & 0.1 \\ -r & -t & 0.9 \\ \hline \end{array}$$

$$P(+\ell|T)$$
+t + 0.3
-t + 0.1

Procedure: Join all factors, eliminate all hidden variables, normalize

Operation 1: Join Factors

- First basic operation: joining factors
- Combining factors:
 - Just like a database join
 - Get all factors over the joining variable
 - Build a new factor over the union of the variables involved

Example: Join on R

Example: Multiple Joins

Example: Multiple Joins

+r	0.1
-r	0.9

P(T|R)

Join R

DI	$^{\prime}$ D	T	١
$I \subset \{$	$_{\cdot}$ $oldsymbol{n},$	1	Į

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

(R, T, L)

P	(L	T	י י ע
	•		-

+t	+	0.3
+t	-	0.7
-t	+	0.1
-t	-1	0.9

P(L|T)

+t	+	0.3
+t	7	0.7
-t	+	0.1
-t	-	0.9

P(R,T,L)

l r	1.4	+	0.024
+r	+t	+1	0.024
+r	+t	-	0.056
+r	-t	+	0.002
+r	-t	7	0.018
-r	+t	+	0.027
-r	+t	-	0.063
-r	-t	+	0.081
-r	-t	-	0.729

Operation 2: Eliminate

Second basic operation: marginalization

- Take a factor and sum out a variable
 - Shrinks a factor to a smaller one
 - A projection operation
- Example:

+r	+t	0.08
+r	-t	0.02
-r	+t	0.09
-r	-t	0.81

 $\operatorname{\mathsf{sum}}\ R$

P(T)

+t	0.17
-t	0.83

Multiple Elimination

Thus Far: Multiple Join, Multiple Eliminate (= Inference by Enumeration)

Marginalizing Early (= Variable Elimination)

Traffic Domain

$$P(L) = ?$$

Inference by Enumeration

Variable Elimination

$$=\sum_t P(L|t)\sum_r P(r)P(t|r)$$
Join on r

Eliminate r

Eliminate t

Marginalizing Early! (aka VE)

0.9

+|

-t

-t

0.9

0.1

0.9

Evidence

- If evidence, start with factors that select that evidence
 - No evidence uses these initial factors:

P(R)			
+r	0.1		
-r	0.9		

+r	+t	0.8
+r	-t	0.2
-r	+t	0.1

-t 0.9

P(T|R)

$$\begin{array}{c|cccc} P(L|T) \\ \hline +t & +l & 0.3 \\ +t & -l & 0.7 \\ \hline -t & +l & 0.1 \\ \hline -t & -l & 0.9 \\ \hline \end{array}$$

• Computing P(L|+r) the initial factors become:

$$P(+r)$$

+t	+	0.3
+t	-1	0.7
-t	+	0.1
-t	-	0.9

We eliminate all vars other than query + evidence

Evidence II

- Result will be a selected joint of query and evidence
 - E.g. for P(L | +r), we would end up with:

Normalize

General Variable Elimination

- Query: $P(Q|E_1 = e_1, \dots E_k = e_k)$
- Start with initial factors:
 - Local CPTs (but instantiated by evidence)
- While there are still hidden variables (not Q or evidence):
 - Pick a hidden variable H
 - Join all factors mentioning H
 - Eliminate (sum out) H
- Join all remaining factors and normalize

$$i \cdot \sum = i \times \frac{1}{Z}$$

Example

 $P(B|j,m) \propto P(B,j,m)$

P(E)

P(A|B,E)

P(j|A)

P(m|A)

Choose A

P(A|B,E)

P(m|A)

P(j, m, A|B, E) \sum

P(j,m|B,E)

P(E)

P(j,m|B,E)

Example

P(B)

P(E)

P(j,m|B,E)

Choose E

P(j,m|B,E)

P(j, m, E|B) \sum

P(j, m|B)

Finish with B

P(B|j,m)

Same Example in Equations

$$P(B|j,m) \propto P(B,j,m)$$

P(B) P(E) P(A|B,E) P(j|A) P(m|A)

$$P(B|j,m) \propto P(B,j,m)$$

 $= \sum_{e,a} P(B,j,m,e,a)$ m
 $= \sum_{e,a} P(B)P(e)P(a|B,e)P(j|a)P(m|a)$ us
 $= \sum_{e} P(B)P(e)\sum_{a} P(a|B,e)P(j|a)P(m|a)$ us
 $= \sum_{e} P(B)P(e)f_{1}(B,e,j,m)$ jo
 $= P(B)\sum_{e} P(e)f_{1}(B,e,j,m)$ us
 $= P(B)f_{2}(B,j,m)$ io

marginal obtained from joint by summing out

use Bayes' net joint distribution expression

use $x^*(y+z) = xy + xz$

joining on a, and then summing out gives f₁

use $x^*(y+z) = xy + xz$

joining on e, and then summing out gives f₂

All we are doing is exploiting uwy + uwz + uxy + uxz + vwy + vwz + vxy + vxz = (u+v)(w+x)(y+z) to improve computational efficiency!

Another Variable Elimination Example

Query:
$$P(X_3|Y_1 = y_1, Y_2 = y_2, Y_3 = y_3)$$

Start by inserting evidence, which gives the following initial factors:

$$p(Z)p(X_1|Z)p(X_2|Z)p(X_3|Z)p(y_1|X_1)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_1 , this introduces the factor $f_1(Z, y_1) = \sum_{x_1} p(x_1|Z)p(y_1|x_1)$, and we are left with:

$$p(Z)f_1(Z,y_1)p(X_2|Z)p(X_3|Z)p(y_2|X_2)p(y_3|X_3)$$

Eliminate X_2 , this introduces the factor $f_2(Z, y_2) = \sum_{x_2} p(x_2|Z)p(y_2|x_2)$, and we are left with:

$$p(Z)f_1(Z,y_1)f_2(Z,y_2)p(X_3|Z)p(y_3|X_3)$$

Eliminate Z, this introduces the factor $f_3(y_1, y_2, X_3) = \sum_z p(z) f_1(z, y_1) f_2(z, y_2) p(X_3|z)$, and we are left:

$$p(y_3|X_3), f_3(y_1, y_2, X_3)$$

No hidden variables left. Join the remaining factors to get:

$$f_4(y_1, y_2, y_3, X_3) = P(y_3|X_3)f_3(y_1, y_2, X_3).$$

Normalizing over X_3 gives $P(X_3|y_1,y_2,y_3)$.

Computational complexity critically depends on the largest factor being generated in this process. Size of factor = number of entries in table. In example above (assuming binary) all factors generated are of size 2 --- as they all only have one variable (Z, Z, and X_3 respectively).

Variable Elimination Ordering

■ For the query $P(X_n | y_1,...,y_n)$ work through the following two different orderings as done in previous slide: $Z, X_1, ..., X_{n-1}$ and $X_1, ..., X_{n-1}$, Z. What is the size of the maximum factor generated for each of the orderings?

- Answer: 2ⁿ⁺¹ versus 2² (assuming binary)
- In general: the ordering can greatly affect efficiency.

VE: Computational and Space Complexity

- The computational and space complexity of variable elimination is determined by the largest factor
- The elimination ordering can greatly affect the size of the largest factor.
 - E.g., previous slide's example 2ⁿ vs. 2
- Complexity of VE is linear in
 - Size of the model (#factor, #variable)
 - Size of the largest factor
- Size of factor is exponential in its scope

Polytrees

- A polytree is a directed graph with no undirected cycles
- The time and space complexity of exact inference in polytrees is linear in the size of the network

For poly-trees you can always find an ordering that is efficient

Variable order in Polytree

- Drop edge direction
- Pick some node as a root
- Do a DFS on the root (use undirected edges)
- Eliminate nodes in the order of DFS
- Would never get a factor larger than the original CPTs.

P(JohnCalls | Burglary =true)

$$\mathbf{P}(J\,|\,b) = \alpha\,P(b)\sum_{e}P(e)\sum_{a}P(a\,|\,b,e)\mathbf{P}(J\,|\,a)\sum_{m}P(m\,|\,a)\;.$$

- The last sentences is sum to 1
- In general: any leaf nodes that is not a query variable or an evidence variable can be removed
- After the removal of leaf node, other leaf nodes are generated that can be removed
- every variable that is not an ancestor of a query variable or evidence variable is irrelevant to the query and can be removed with the VE algorithm

Finding Elimination Ordering

- Greedy search using heuristic cost function
 - At each point, eliminate node with smallest cost
- Possible cost function
 - Min_neighbors: # number of neighbors in current graph (smallest factor)
 - Min_weight : weight (#values) of factor formed
 - Total number of values in the factor forms
 - Min-fill : number of new fill edges
 - Weighted min-fill: total weight of new fill edges (edge weight = product of weights of the 2 nodes)

Bayes' Nets

- **✔** Representation
- ✓ Conditional Independences
- Probabilistic Inference
 - Enumeration (exact, exponential complexity)
 - ✓ Variable elimination (exact, worst-case exponential complexity, often better)
 - ✓ Inference is NP-complete
 - Sampling (approximate)
- Learning Bayes' Nets from Data