

Technische Grundlagen der Informatik: Übungssatz 14

Aufgabe 14.1

Die nebenstehende Schaltung ist hinsichtlich ihrer Funktion zu analysieren.

- (a) Ermitteln Sie die Schaltfunktionen für die FF-Eingänge $J_0, K_0 \dots J_2, K_2$ und die Ausgänge $A_0 \dots A_2$ und Y!
- (b) Stellen Sie die Zustandsfolge- und Ausgabetabelle auf!
- (c) Zeichnen Sie den Zustandsgraphen! Der Startzustand ist $(Q_2, Q_1, Q_0) := (0, 0, 0).$
- (d) Welcher Automatentyp liegt vor? Charakterisieren Sie so genau wie möglich und begründen Sie!

(e) Vervollständigen Sie dieses Impulsdiagramm! Startzustand: $(Q_2, Q_1, Q_0) := (0, 0, 0)$

- (f) Erläutern Sie warum im Impulsdiagramm direkt nach der 7. steigenden Taktflanke ein Übertragsimpuls ausgegeben wird, obwohl der Zustand anschließend nicht von 5 auf 0 wechselt?
- (g) Welche Funktion erfüllt die Schaltung, wenn nach Anlegen der Betriebsspannung der Zustand $(Q_2, Q_1, Q_0) := (0, 0, 0)$ eingenommen wird?
- (h) Wie erfolgt praktisch die Initialisierung der Schaltung mit dem Startzustand $(Q_2,\,Q_1,\,Q_0):=(0,\,0,\,0)$?

Die nebenstehende Schaltung ist hinsichtlich ihrer Funktion zu analysieren.

- (a) Ermitteln Sie die Schaltfunktionen für die FF-Eingänge $J_0, K_0 \dots J_3, K_3$ und die Ausgänge $A_0 \dots A_3$ und Y!
- (b) Worin besteht der Unterschied zur Aufgabe 14.1? Wie wirkt sich dies auf die Zustandsfolge- und Ausgabetabelle sowie auf den Zustandsgraphen aus?
- (c) Welcher Automatentyp liegt vor? Charakterisieren Sie so genau wie möglich und begründen Sie!
- (d) Hausaufgabe: Stellen Sie die Zustandsfolge- und Ausgabetabelle auf!

- (e) **Hausaufgabe:** Zeichnen Sie den Zustandsgraphen! Der Startzustand ist $(Q_3, Q_2, Q_1, Q_0) := (0, 0, 0, 0)$.
- (f) **Hausaufgabe:** Vervollständigen Sie dieses Impulsdiagramm! Der Startzustand ist $(Q_3, Q_2, Q_1, Q_0) := (0, 0, 0, 0)$

(g) **Hausaufgabe:** Welche Funktion erfüllt die Schaltung, wenn nach Anlegen der Betriebsspannung der Zustand $(Q_3, Q_2, Q_1, Q_0) := (0, 0, 0, 0)$ eingenommen wird?

Gegeben sei die folgende Zusammenschaltung der Zähler aus den vorherigen beiden Aufgaben. Der 7-Segment-Dekoder berechnet aus einer Zahl im BCD-Code die Ansteuerung für eine 7-Segment-Anzeige, siehe auch Übungsaufgabe 12.7.

- (a) Welche Zahlenabfolge wird auf der zweisteligen 7-Segment-Anzeige dargestellt, wenn die rechte Anzeige die höherwertige Stelle ist.
- (b) Wofür kann die Schaltung eingesetzt werden, wenn die Frequenz des Taktes C 1Hz beträgt? Was zeigt dann der Ausgang Y an?

Aufgabe 14.4

Hausaufgabe:

Entwerfen Sie einen Binärzähler modulo 3 (Zählfolge: 0,1,2,0,1,2...), der beim Übergang von 2 nach 0 einen Übertragsimpuls Y ausgibt. Der Zähler soll nur dann weiterzählen, wenn der Zähleingang E=1 ist. Außerdem soll der Zähler mit R=1 auf 0 zurückgestellt werden können, auch wenn E=0 ist. Das Zurückstellen hat ebenfalls synchron zur Taktflanke zu erfolgen.

Für den Aufbau sind taktflanken-gesteuerte JK-Flipflops zu verwenden, die zur positiven Taktflanke schalten. Außerdem befinden sich diese Flipflops nach Anlegen der Betriebsspannung automatisch im Zustand 0. Die Zustandskodierung ist so zu wählen, dass der Zustand Q gleich dem am Ausgang $A = (A_1, A_0)$ angezeigten Zählerstand ist.

Achten Sie auf minimalen Schaltungsaufwand! Nutzen Sie nicht belegte Positionen in der Zustandskodierung für die Vereinfachung der Schaltfunktionen.

- (a) Zeichnen Sie den Zustandsgraphen!
- (b) Stellen Sie die Zustandsfolge- und Ausgabetabelle auf!
- (c) Ermitteln Sie die minimalen Schaltfunktionen für die FF-Eingänge und die Ausgänge!
- (d) Zeichnen Sie die Schaltung!

Zusatzaufgabe:

Entwerfen Sie einen Binärzähler modulo 10 (Zählfolge: 0,1,2,4,5,6,7,8,9,0...), der beim Übergang von 9 nach 0 einen Übertragsimpuls Y ausgibt. Der Zähler soll nur dann weiterzählen, wenn der Zähleingang E=1 ist. Außerdem soll der Zähler mit R=1 auf 0 zurückgestellt werden können, auch wenn E=0 ist. Das Zurückstellen hat ebenfalls synchron zur Taktflanke zu erfolgen.

Für den Aufbau sind taktflanken-gesteuerte T-Flipflops zu verwenden, die zur positiven Taktflanke schalten. Außerdem befinden sich diese Flipflops nach Anlegen der Betriebsspannung automatisch im Zustand 0. Die Zustandskodierung ist so zu wählen, dass der Zustand Q gleich dem am Ausgang $A = (A_1, A_0)$ angezeigten Zählerstand ist.

Achten Sie auf minimalen Schaltungsaufwand! Nutzen Sie nicht belegte Positionen in der Zustandskodierung für die Vereinfachung der Schaltfunktionen.

- (a) Zeichnen Sie den Zustandsgraphen!
- (b) Erstellen Sie die Zustandsfolge- und Ausgabetabelle!
- (c) Wie ist dieser Zähler zusammen mit dem Modulo-3-Zähler aus Aufgabe 14.4 zu verschalten, sodass ein Stundenzähler für 24 Stunden entsteht? Der Stundenzähler soll einen Zähleingang E (= Übertrag vom Minutenzähler) und einen Übertragsausgang Y (= 1 beim Wechsel von 23 auf 0) besitzen.

Eine Produktionsmaschine PM, die zur Herstellung eines Produktes drei Arbeitsgänge benötigt, soll mit Hilfe eines Steuerautomaten SA (siehe Prinzipskizze) automatisiert werden.

Die Randbedingungen sind:

 Die Ansteuerung der Produktionsmaschine erfolgt über 3 Ansteuerleitungen M1, M2 und M3, auf denen nur 4 Signalbelegungen technisch sinnvoll eingesetzt werden (siehe Tabelle).

Befehl	M1	M2	М3
Ruhe	0	0	0
1. Arbeitsg.	1	0	0
2. Arbeitsg.	0	1	0
3. Arbeitsg.	0	0	1

- Die Maschine soll solange im Ruhezustand verbleiben, bis durch einen START-Impuls ein neuer Arbeitszyklus (1., 2., 3. Arbeitsgang) begonnen wird.
- Die Signale auf M1, M2 und M3 müssen solange erhalten bleiben, bis die Produktionsmaschine durch ein high-aktives Fertigsignal F zu erkennen gibt, dass ein Arbeitsgang beendet ist und der nächste begonnen werden kann.
- Zwischen 2 Arbeitsgängen muss kurz (1 Takt) der Ruhebefehl signalisiert werden. Daraufhin setzt die Maschine sofort das Fertigsignal auf ,0' zurück (Verzögerung < Taktperiode).
- Bei Störungen gibt die Produktionsmaschine ein Havariesignal H ab. In diesem Fall muss die Maschine sofort angehalten werden ("Ruhe").
- Jedes Mal, wenn die Maschine in den Ruhezustand zurückkehrt (auch bei Havarie), soll der Steuerautomat ein Zyklusendesignal ZE abgeben.
- Es stehen ausschließlich taktflanken-gesteuerte D-Flipflops (positive Taktflanke) und NAND-Gatter zur Verfügung. Die Flipflops befinden sich nach dem Anlegen der Betriebsspannung automatisch im Zustand "0".
- (a) Entwerfen Sie den Zustandsgraphen für den Steuerautomaten! Verwenden Sie dabei symbolische Bezeichner (A,B,C,...) für die Kodierung (Namen) der Zustände! Die tatsächliche Zustandskodierung wird erst später festgelegt.
- (b) Wie könnte verhindert werden, dass bei zu langem START-Impuls der 1. Arbeitsgang übersprungen wird?
- (c) Nehmen Sie an die Zustände seien binär kodiert und zwar in der Reihenfolge, wie sie bei einem vollständigen Arbeitszyklus durchlaufen werden.
 - Geben Sie die Zustandskodierung an! Wie viele FFs werden dazu benötigt?
 - Geben Sie Schaltfunktionen für die Ausgänge M_1 , M_2 und M_3 an! Wie viele NAND-Gatter werden dafür benötigt? Freie Belegungen in der Zustandskodierung dürfen zur Optimierung genutzt werden.
- (d) Nehmen Sie an die Zustände seien mit einem Gray-Code kodiert und zwar in der Reihenfolge, wie sie bei einem vollständigen Arbeitszyklus durchlaufen werden.
 - Geben Sie die Zustandskodierung an! Wie viele FFs werden dazu benötigt?
 - Geben Sie Schaltfunktionen für die Ausgänge M₁, M₂ und M₃ an! Wie viele NAND-Gatter werden dafür benötigt? Freie Belegungen in der Zustandskodierung dürfen zur Optimierung genutzt werden.
- (e) Nehmen Sie an die Zustände seien one-hot kodiert.
 - Geben Sie eine mögliche Zustandskodierung an! Wie viele FFs werden dazu benötigt?
 - Geben Sie Schaltfunktionen für die Ausgänge M_1 , M_2 und M_3 an! Wie viele NAND-Gatter werden dafür benötigt?
 - Vergleichen Sie kurz den Schaltungsaufwand mit der Lösung aus b).

Zusatzaufgabe:

Zur Analyse eines taktsynchronen Bitstromes auf einer Leitung X sollen durch einen Sequenzdetektor SD Sequenzen von jeweils genau drei aufeinanderfolgenden ,1' erkannt werden. Eine solche Sequenz ist durch den Wert ,1' auf der Ausgangsleitung Y des Detektors anzuzeigen. Bei mehr als drei aufeinanderfolgenden Einsen, wird jede dritte ,1' angezeigt. Beispiel:

Entwerfen Sie den Sequenzdetektor ausschließlich mit taktflanken-gesteuerten T-Flipflops (positive Taktflanke) und NAND-Gattern, wobei auf minimalen Gatteraufwand zu achten ist. Die Flipflops befinden sich nach dem Anlegen der Betriebsspannung automatisch im Zustand "0".