Representation Theory

Ikhan Choi

June 9, 2022

Contents

Ι	Finite group representations	3
1	Character theory 1.1 Irreducible representations 1.2 Group algebra	4 4 4 5
2	Classification of representations 2.1 Symmetric groups	6 6 6
3	Brauer theory	7
II	Lie algebras	8
4	Semisimplicity 4.1 Cartan subalgebra	9 9
5	Root systems5.1 Dynkin diagram5.2 Real forms	10 10 10
6	Representations of Lie algebras6.1 Representations of $\mathfrak{sl}(2,\mathbb{C})$ 6.2 Universal enveloping algebra6.3 Highest weight theorem	11 11 11 11
II	I Lie groups	12
7	Lie correspondence7.1 Baker-Campbell-Hausdorff formula7.2 Fundamental groups of Lie groups	13 13 13
8	Compact Lie groups 8.1 Special orthogonal groups	14 14 14 14

9	Rep	resentations of Lie groups	15		
	9.1	Peter-Weyl theorem	15		
	9.2	Spin representations	15		
IV	IV Quantum groups				
10	0 Hopf algebras				
11			18		

Part I Finite group representations

Character theory

1.1 Irreducible representations

- 1.1 (Definition of group representations).
- 1.2 (Intertwining maps).
- 1.3 (Subrepresentations). We say invariant or stable
- 1.4 (Irreducible representations). indecomposable and irreducible
- **1.5** (Maschke's theorem). Let G be a finite group and k a field of characteristic coprime to |G|. Let (ρ, V) be a finite-dimensional representation of G over k. Let W be an invariant subspace of V.
 - (a) There is an invariant subspace W^{\perp} of V that is a complement of W.
 - (b) Every finite-dimensional representation of G over k is isomorphic to the direct sum of irreducible representations of G over k.
 - (c) If $k = \mathbb{R}$ or \mathbb{C} , then there is a inner product on V such that W^{\perp} is orthogonal to W. With this innerproduct, $\rho(g)$ is orthogonal (resp. unitary) for all $g \in G$.
- **1.6** (Schur's lemma). Let G be a finite group and k a field. Let (ρ_1, V_1) and (ρ_2, V_2) be irreducible representations of G over k. Let $\psi \in \hom_G(V_1, V_2)$ be an intertwining map.
 - (a) If V_1 and V_2 are not isomorphic, then $\psi = 0$.
 - (b) If V_1 and V_2 are isomorphic, then ψ is a homothety.

1.2 Group algebra

- **1.7** (Modules and representations). ring <-> group module <-> representation finitely generated <-> finite dimensional
- 1.8 (Wedderburn's theorem). central idempotents dimension computation
- **1.9** (Group algebra). regular representation k[G]-module and G-representation correspondence
 - (a) $\mathbb{C}[G]$ is the direct sum of all irreducible representations.
 - (b) $|G| = \sum_{[V] \in \hat{G}} (\dim V)^2$.
- **1.10.** The number of irreducible representations and the number of conjugacy classes double counting on $Z(\mathbb{C}[G])$.

1.3 Characters

- 1.11 (Space of class functions). Ring and inner product structure on the space of class functions.
 - (a) $\dim \operatorname{hom}_G(V_1, V_2) = \langle \chi_{V_1}, \chi_{V_2} \rangle$.
 - (b) Irreducible characters form an orthonormal basis of the space of class functions.
- **1.12** (Characters classify representations). Let G be a finite group and let Rep(G) be the category of finite-dimensional representations of G over \mathbb{C} .

$$Tr : \mathbf{Rep}(G) \to \{\text{finite sum of irreducible characters}\}\$$

surjectivity: trivial injectivity: Suppose two characters are equal. Maschke -> all characters are sum of irreducible characters Schur -> orthogonality, so the coefficients are all equal irreducible-factor-wisely construct an isomorphism.

1.13 (Character table). computation of matrix elements by character table abelian group, 1dim rep lifting

$$S^3$$
 | e | (12) | (123)
 1 | 1 | 1 | 1 | ϵ | 1 | -1 | 1 | ρ | 2 | 0 | -1

the dual inner product: conjugacy check relation to normal subgroups center of rep algebraic integer dim of irrep divides group order burnside pq theorem

Classification of representations

2.1 Symmetric groups

young tableux

2.2 Linear groups over finite fields

GL2 and SL2 over finite fields

2.3 Induced representations

induction and restriction of reps (from and to subgroup) frobenius reciprocity, mackey theory tensoring, complex, real symmetric, exterior

Brauer theory

Part II Lie algebras

Semisimplicity

killing forms,

4.1 Cartan subalgebra

Root systems

- 5.1 Dynkin diagram
- 5.2 Real forms

Representations of Lie algebras

6.1 Representations of $\mathfrak{sl}(2,\mathbb{C})$

6.1 (Pauli matrices). Pauli matrices are

$$\sigma_1 = \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}, \quad \sigma_2 = \begin{pmatrix} 0 & -i \\ i & 0 \end{pmatrix}, \quad \sigma_3 = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

- (a) $\{\sigma_1, \sigma_2, \sigma_3\}$ is a basis of complex Lie algebra $\mathfrak{sl}(2, \mathbb{C})$, and $\{i\sigma_1, i\sigma_2, i\sigma_3\}$ is a basis of real Lie algebra $\mathfrak{so}(3)$.
- (b) For a unit vector $n = (n_1, n_2, n_3) \in \mathbb{R}^3$, $n_1 \sigma_1 + n_2 \sigma_2 + n_3 \sigma_3$ has eigenvalues ± 1 .

6.2 Universal enveloping algebra

PBW theorem, verma module

6.3 Highest weight theorem

Exercises

6.2 (Triplets and quadraplets). Let (π_2, V_2) be the irreducible representation of $\mathfrak{sl}(2, \mathbb{C})$ of degree two. Consider $V_2 \otimes V_2$. Cartan element S_z . $V_2^{\otimes 3}$.

6.3 (Casimir element). Casimir element decomposes a representation into irreducible representations.

Part III

Lie groups

Lie correspondence

7.1 Baker-Campbell-Hausdorff formula

Lie's three theorems

7.2 Fundamental groups of Lie groups

Compact Lie groups

- 8.1 Special orthogonal groups
- 8.2 Special unitary groups
- 8.3 Symplectic groups

Exercises

```
8.1 (Lorentz group). SL(2,\mathbb{C}) \rightarrow SO^+(1,3)
```

(a) O(1,3) has four components and $SO^+(1,3)$ is the identity component. Orthochronous $O^+(1,3)$, proper SO(1,3).

Representations of Lie groups

- 9.1 Peter-Weyl theorem
- 9.2 Spin representations

Clifford algebra

Part IV Quantum groups

Hopf algebras