

UNCLASSIFIED

ADA

**FUEL LUBRICITY IMPACT ON SHIPBOARD ENGINE AND FUEL  
SYSTEMS AND SENSITIVITY OF U.S. NAVY DIESEL ENGINES  
TO LOW-SULFUR DIESEL FUEL**

**INTERIM REPORT  
TFLRF No. 414**

**by  
Douglas M. Yost**

**U.S. Army TARDEC Fuels and Lubricants Research Facility  
Southwest Research Institute® (SwRI®)  
San Antonio, TX**

**by  
Allen S. Comfort  
Luis A. Villahermosa**

**U.S. Army TARDEC  
Force Projection Technologies  
Warren, Michigan**

**Contract No. DAAE-07-99-C-L053 (WD28 & WD31)**

**UNCLASSIFIED: Distribution Statement A. Approved for public release**

**June 2011**

UNCLASSIFIED

**UNCLASSIFIED**

**Disclaimers**

Reference herein to any specific commercial company, product, process, or service by trade name, trademark, manufacturer, or otherwise, does not necessarily constitute or imply its endorsement, recommendation, or favoring by the United States Government or the Department of the Army (DoA). The opinions of the authors expressed herein do not necessarily state or reflect those of the United States Government or the DoA, and shall not be used for advertising or product endorsement purposes.

**Contracted Author**

As the author(s) is(are) not a Government employee(s), this document was only reviewed for export controls, and improper Army association or emblem usage considerations. All other legal considerations are the responsibility of the author and his/her/their employer(s).

**DTIC Availability Notice**

Qualified requestors may obtain copies of this report from the Defense Technical Information Center, Attn: DTIC-OCC, 8725 John J. Kingman Road, Suite 0944, Fort Belvoir, Virginia 22060-6218.

**Disposition Instructions**

Destroy this report when no longer needed. Do not return it to the originator.

**UNCLASSIFIED**

UNCLASSIFIED

**FUEL LUBRICITY IMPACT ON SHIPBOARD ENGINE AND  
FUEL SYSTEMS AND SENSITIVITY OF U.S. NAVY DIESEL  
ENGINES TO LOW-SULFUR DIESEL FUEL**

**INTERIM REPORT  
TFLRF No. 414**

**by  
Douglas M. Yost**

**U.S. Army TARDEC Fuels and Lubricants Research Facility  
Southwest Research Institute® (SwRI®)  
San Antonio, TX**

**by  
Allen S. Comfort  
Luis A. Villahermosa**

**U.S. Army TARDEC  
Force Projection Technologies  
Warren, Michigan**

**Contract No. DAAE-07-99-C-L053 (WD28 & WD31)  
SwRI® Project No. 08.03227**

**UNCLASSIFIED: Distribution Statement A. Approved for public release**

**June 2011**

**Approved by:**



**Gary B. Bessee, Director  
U.S. Army TARDEC Fuels and Lubricants  
Research Facility (SwRI®)**

UNCLASSIFIED

## UNCLASSIFIED

**REPORT DOCUMENTATION PAGE**

*Form Approved  
OMB No. 0704-0188*

Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing this collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden to Department of Defense, Washington Headquarters Services, Directorate for Information Operations and Reports (0704-0188), 1215 Jefferson Davis Highway, Suite 1204, Arlington, VA 22202-4302. Respondents should be aware that notwithstanding any other provision of law, no person shall be subject to any penalty for failing to comply with a collection of information if it does not display a currently valid OMB control number. **PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS.**

|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                     |                                                                  |                                                    |
|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------|-------------------------------------|------------------------------------------------------------------|----------------------------------------------------|
| <b>1. REPORT DATE (DD-MM-YYYY)</b><br>30-06-2011                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>2. REPORT TYPE</b><br>Interim Report |                                     | <b>3. DATES COVERED (From - To)</b><br>March 2007 – June 2011    |                                                    |
| <b>4. TITLE AND SUBTITLE</b><br>Fuel Lubricity Impact on Shipboard Engine and Fuel Systems and Sensitivity of U.S. Navy Diesel Engines to Low- Sulfur Diesel Fuel                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                |                                         |                                     | <b>5a. CONTRACT NUMBER</b><br>DAAE07-99-C-L053                   |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                     | <b>5b. GRANT NUMBER</b>                                          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                     | <b>5c. PROGRAM ELEMENT NUMBER</b>                                |                                                    |
| <b>6. AUTHOR(S)</b><br>Yost, Douglas M.                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                     | <b>5d. PROJECT NUMBER</b><br>SwRI 08.03227.28; SwRI 08.03227.31  |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                     | <b>5e. TASK NUMBER</b><br>WD 28; WD 31                           |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                     | <b>5f. WORK UNIT NUMBER</b>                                      |                                                    |
| <b>7. PERFORMING ORGANIZATION NAME(S) AND ADDRESS(ES)</b><br>U.S. Army TARDEC Fuels and Lubricants Research Facility (SwRI®)<br>Southwest Research Institute®<br>P.O. Drawer 28510<br>San Antonio, TX 78228-0510                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 |                                         |                                     | <b>8. PERFORMING ORGANIZATION REPORT NUMBER</b><br>TFLRF No. 414 |                                                    |
| <b>9. SPONSORING / MONITORING AGENCY NAME(S) AND ADDRESS(ES)</b><br>U.S. Army RDECOM<br>U.S. Army TARDEC<br>Force Projection Technologies<br>Warren, MI 48397-5000                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |                                         |                                     | <b>10. SPONSOR/MONITOR'S ACRONYM(S)</b>                          |                                                    |
|                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |                                         |                                     | <b>11. SPONSOR/MONITOR'S REPORT NUMBER(S)</b>                    |                                                    |
| <b>12. DISTRIBUTION / AVAILABILITY STATEMENT</b><br>Approved for public release; distribution unlimited                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |                                         |                                     |                                                                  |                                                    |
| <b>13. SUPPLEMENTARY NOTES</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                   |                                         |                                     |                                                                  |                                                    |
| <b>14. ABSTRACT</b><br>This project attempted to determine the kerosene and Ultra Low Sulfur Diesel fuel lubricity requirements of Delphi DPA rotary fuel injection pumps and Detroit Diesel unit injectors. A test stand was configured to operate a rotary fuel injection pump and a stand configured to operated four unit injectors simultaneously, with data acquisition and control systems for logging data. Results suggest that synthetic kerosene fuel adversely impacts rotary fuel injection pump performance and durability. Synthetic diesel fuel can be blended with petroleum diesel fuel and fuel lubricity additives to provide the same protection as F-76 diesel fuel in rotary fuel injection pumps. The unit injectors are less sensitive to the low lubricity fuels than the rotary fuel injection pumps. |                                         |                                     |                                                                  |                                                    |
| <b>15. SUBJECT TERMS</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                         |                                         | High-speed diesel<br>Synthetic Fuel | S-8<br>Rotary Fuel Injection Pump<br>Lubricity<br>Unit Injectors |                                                    |
| <b>16. SECURITY CLASSIFICATION OF:</b>                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                           |                                         | <b>17. LIMITATION OF ABSTRACT</b>   | <b>18. NUMBER OF PAGES</b>                                       | <b>19a. NAME OF RESPONSIBLE PERSON</b>             |
| <b>a. REPORT</b><br>Unclassified                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                 | <b>b. ABSTRACT</b><br>Unclassified      | <b>c. THIS PAGE</b><br>Unclassified | 76                                                               | 19b. TELEPHONE NUMBER ( <i>include area code</i> ) |

Standard Form 298 (Rev. 8-98)

Prescribed by ANSI Std. Z39.18

UNCLASSIFIED

**UNCLASSIFIED**

**EXECUTIVE SUMMARY**

The U. S. Navy, U. S. Coast Guard and the Military Sea Lift Command rely on diesel fuel, for both main propulsion and power generation, in a large majority of their fleets. Much of the equipment is old and was put into service before diesel fuel lubricity was a significant problem. It is expected that much of the equipment will be sensitive to low-lubricity fuel and the problems it can cause, mainly premature wear of fuel-wetted components.

Two high-speed diesel engine fuel injection systems were identified that would be susceptible to low lubricity fuel effects on durability. The systems were (1) fuel-lubricated, rotary-distributor type fuel injection pumps and (2) mechanical unit injectors, with precision machined plunger helixes and sharp edges. Fuels included were: a synthetic kerosene fuel, a petroleum kerosene fuel, a F-76 diesel fuel, a commercial synthetic diesel fuel, and a reference Ultra Low Sulfur Diesel (ULSD) fuel. Corrosion Inhibitor/Lubricity Improver (CI/LI) additive effects were also included to modify fuel lubricity levels.

Operation of rotary fuel injection type pumps with synthetic kerosene fuel, whether blended, or with additives, has resulted in excessive or premature wear. That fact suggests neither the lubricity nor the viscosity of the S-8 or S-8 blends are adequate for the rotary injection pump use, with the current additives. Petroleum kerosene fuel, neat or with additives, resulted in performance degradation of the rotary fuel injection system, but not excessive premature wear. A synthetic ULSD/petroleum ULSD blend with a QPL lubricity additive offer adequate protection in the Delphi fuel lubricated rotary fuel injection equipment.

The unit injectors are less prone to wear with any of the lubricity and viscosity levels of the fuels evaluated. Migration of lubricant from the top of the injector appears to offer additional protection with low lubricity fuels.

**UNCLASSIFIED**

**FOREWORD/ACKNOWLEDGMENTS**

The U.S. Army TARDEC Fuel and Lubricants Research Facility (TFLRF) located at Southwest Research Institute® (SwRI®), San Antonio, Texas, performed this work during the period March 2007 through June 2011 under Contract No. DAAE-07-99-C-L053. The U.S. Army Tank-Automotive RD&E Center, Force Projection Technologies, Warren, Michigan administered the project. Mr. Luis Villahermosa (AMSRD-TAR-D/MS110) served as the TARDEC contracting officer's technical representative. Ms. Sherry Williams of NAVAIR served as the project technical monitor.

The author would like to acknowledge the contributions of Messrs. Craig Springer and Rodney Grinstead of the TFLRF technical support staff along with the administrative and report-processing support provided by Ms. Dianna Barrera.

**UNCLASSIFIED**

**TABLE OF CONTENTS**

| <b><u>Section</u></b>                                                 |      | <b><u>Page</u></b> |
|-----------------------------------------------------------------------|------|--------------------|
| EXECUTIVE SUMMARY .....                                               |      | V                  |
| FOREWORD/ACKNOWLEDGMENTS .....                                        |      | VI                 |
| LIST OF TABLES                                                        | VIII |                    |
| LIST OF FIGURES                                                       | IX   |                    |
| ACRONYMS AND ABBREVIATIONS .....                                      |      | X                  |
| 1.0 OBJECTIVE                                                         | 1    |                    |
| 2.0 BACKGROUND .....                                                  |      | 1                  |
| 3.0 APPROACH .....                                                    |      | 1                  |
| 4.0 DISCUSSION .....                                                  |      | 2                  |
| 4.1 Laboratory Lubricity Bench Tests .....                            |      | 2                  |
| 4.2 Delphi Rotary Fuel Injection Pumps.....                           |      | 4                  |
| 4.2.1 Test No. 1: Jet A (F2000) .....                                 |      | 4                  |
| 4.2.2 Test No. 2: Neat S-8 (F1000).....                               |      | 5                  |
| 4.2.3 Test No. 3: S-8 + 22.5-ppm DCI-4A .....                         |      | 6                  |
| 4.2.4 Test No. 4: Fuel Blend + 9-ppm DCI-4A .....                     |      | 8                  |
| 4.2.5 Test No. 5: Fuel Blend + 22.5-ppm DCI-4A .....                  |      | 9                  |
| 4.2.6 Test No. 6: F3000 then switched to F1000 .....                  |      | 14                 |
| 4.2.7 Test No. 7: F3000 (DF-2) .....                                  |      | 15                 |
| 4.2.8 Test No. 8: Fuel Blend + 22.5-ppm DCI-4A .....                  |      | 15                 |
| 4.2.9 Test No. 9: Jet-A (F2000) + 22.5-ppm DCI-4A .....               |      | 22                 |
| 4.3 Ultra Low Sulfur Diesel Fuels .....                               |      | 22                 |
| 4.3.1 Test No. 10: Clay-Filtered SASOL Synthetic ULSD .....           |      | 23                 |
| 4.3.2 Test No. 11: SASOL/ULSD Blend with Lubrizol 539D (65-ppm) ..... |      | 25                 |
| 4.4 DDC Unit Injector Tests .....                                     |      | 26                 |
| 4.4.1 DDC Unit Injector Test 1.....                                   |      | 26                 |
| 4.4.2 DDC Unit Injector Test 2.....                                   |      | 29                 |
| 5.0 CONCLUSIONS.....                                                  |      | 30                 |
| 5.1 S-8 (F1000) Rotary Fuel Injection Pump Wear Test Summary .....    |      | 30                 |
| 5.2 Jet A (F2000) Rotary Fuel Injection Pump Wear Test Summary .....  |      | 30                 |
| 5.3 F-76 (F3000) Rotary Fuel Injection Pump Wear Test Summary .....   |      | 30                 |
| 5.4 ULSD Rotary Fuel Injection Pump Wear Test Summary .....           |      | 31                 |
| 5.5 Unit Injector Wear Test Summary .....                             |      | 31                 |
| 6.0 RECOMMENDATIONS .....                                             |      | 32                 |
| 7.0 REFERENCES .....                                                  |      | 32                 |

APPENDIX A         Unit Injector Plunger Inspections

APPENDIX B         Unit Injector Radioactive Tracer Test Study

**UNCLASSIFIED**

**LIST OF TABLES**

| <b><u>Table</u></b>                                                                                   | <b><u>Page</u></b> |
|-------------------------------------------------------------------------------------------------------|--------------------|
| Table 1. Navy Lubricity Hardware Test Program Test Fuels.....                                         | 2                  |
| Table 2. Fuel Lubricity Test Results .....                                                            | 3                  |
| Table 3. Elemental Analysis of Pump Components .....                                                  | 4                  |
| Table 4. Delphi DPA Rotary Pump with S-8 + 22.5-ppm DCI-4A .....                                      | 7                  |
| Table 5. Delphi DPA Rotary Pump, Test 4.....                                                          | 10                 |
| Table 6. Delphi Pump Component Rockwell “C” Hardness Values .....                                     | 14                 |
| Table 7. Delphi Fuel Injection Pump Parts Condition Observations .....                                | 21                 |
| Table 8. Clay-Filter Results for SASOL Fuel CAF-7199.....                                             | 22                 |
| Table 9. Delphi Flow Performance Results After Clay-Filtered Synthetic<br>ULSD Operation .....        | 25                 |
| Table 10. Fuel Lubricity Results for Clay-Filtered Synthetic and Certification ULSD .....             | 26                 |
| Table 11. ASTM D 6079 HFRR Wear Scar Diameters for Test Fuels.....                                    | 27                 |
| Table 12. Lubricant Additive Elements in Test Fuels from Detroit Diesel<br>Unit Injector Test .....   | 28                 |
| Table 13. Lubricity Bench Test Results with Low Lubricity Fuels and Lubricating<br>Oil Addition ..... | 29                 |

**UNCLASSIFIED**

**LIST OF FIGURES**

| <b><u>Figure</u></b>                                                                                                                  | <b><u>Page</u></b> |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------|
| Figure 1. Rotary Pump Roller Shoes and Plungers 500-hours with 2000-g Fuel .....                                                      | 5                  |
| Figure 2. Delphi Pump Wear Debris with S-8 (F1000) Fuel .....                                                                         | 6                  |
| Figure 3. Operational Data Plot.....                                                                                                  | 8                  |
| Figure 4. Metal Debris inside Pump at 153-hours for Test No. 4 .....                                                                  | 9                  |
| Figure 5. Delphi DPA Pump Performance Data with a 50/50 Blend of S-8/Jet A with<br>22.5-ppm DCI-4A Corrosion Inhibitor Additive ..... | 11                 |
| Figure 6. Delphi DPA Pump Cam Lobe Wear with 50/50 S-8/Jet A Fuel with 22.5-ppm<br>DCI-4A Corrosion Inhibitor Additive .....          | 12                 |
| Figure 7. Delphi DPA Pump Cam Roller Wear with 50/50 S-8/Jet A Fuel with 22.5-ppm<br>DCI-4A Corrosion Inhibitor Additive .....        | 12                 |
| Figure 8. Delphi DPA Pump Cam Roller Shoe Wear with 50/50 S-8/Jet A Fuel with<br>22.5-ppm DCI-4A Corrosion Inhibitor Additive .....   | 13                 |
| Figure 9. Delphi DPA Pump Governor Weight with 50/50 S-8/Jet A Fuel with 22.5-ppm<br>DCI-4A Corrosion Inhibitor Additive .....        | 13                 |
| Figure 10. Pump Housing with Wear Debris for S-8/Jet A + 22.5-ppm DCI-4A Fuel Blend<br>at 250-hours .....                             | 16                 |
| Figure 11. Delphi Rotary Fuel Injection Pump Metering Valve after 250-hours with<br>S-8/Jet-A + 22.5-ppm DCI-4A Fuel .....            | 17                 |
| Figure 12. Wear Scars on Governor Thrust Washer from Governor Weights at 250-hours<br>with S-8/JET-A + 22.5-ppm DCI-4A Fuel .....     | 17                 |
| Figure 13. Delphi Thrust Washer with Typical Wear Pattern after 500-hours Jet A Fuel .....                                            | 18                 |
| Figure 14. Delphi Pumping Plunger Wear Scars after Operation with S-8/JET-A + 22.5-ppm<br>DCI-4A Fuel .....                           | 19                 |
| Figure 15. Roller Shoes Reveal Wear Scars at Pumping Plungers Contact Locations.....                                                  | 19                 |
| Figure 16. Delphi Rotary Fuel Injection Pump Distributor Rotor showing Evidence of<br>Distress at Discharge Ports .....               | 20                 |
| Figure 17. Fuel Delivery and Pump Speed for Delphi Pump with Clay-Filtered SASOL<br>Fuel over Test Duration .....                     | 24                 |

**UNCLASSIFIED**

**ACRONYMS AND ABBREVIATIONS**

|         |                                                         |
|---------|---------------------------------------------------------|
| %       | Percent                                                 |
| °C      | Degrees centigrade                                      |
| @       | At                                                      |
| ASTM    | American Society for Testing and Materials              |
| BOCLE   | Ball on Cylinder Lubricity Evaluator                    |
| BTU     | British thermal units                                   |
| cc      | Cubic centimeter                                        |
| cm      | Centimeter                                              |
| CI/LI   | Corrosion Inhibitor/Lubricity Improver                  |
| DDC     | Detroit Diesel Corporation                              |
| deg     | Degree                                                  |
| EPA     | Environmental Protection Agency                         |
| HFRR    | High-frequency reciprocating rig                        |
| IBP     | Initial boiling point                                   |
| Kg      | Kilo-gram                                               |
| L       | Liter                                                   |
| Max     | Maximum                                                 |
| Min     | Minimum                                                 |
| ml      | Milliliter                                              |
| mm      | Millimeter                                              |
| ppm     | Parts per million                                       |
| psi     | Pounds per square inch                                  |
| QPL     | Qualified Products List                                 |
| RATT    | Radioactive Tracer Technique                            |
| RPM     | Revolutions per minute                                  |
| sec     | Seconds                                                 |
| SLBOCLE | Scuffing load ball on cylinder lubricity evaluator      |
| SwRI    | Southwest Research Institute                            |
| TFLRF   | U.S. Army TARDEC Fuels and Lubricants Research Facility |
| ULSD    | Ultra-Low Sulfur Diesel                                 |
| USMC    | United States Marine Corps.                             |
| USN     | United States Navy                                      |
| WSD     | Wear Scar Diameter                                      |

**UNCLASSIFIED**

UNCLASSIFIED

## **1.0 OBJECTIVE**

The U. S. Navy, U. S. Coast Guard and the Military Sea Lift Command rely on diesel fuel, for both main propulsion and power generation, in a large majority of their fleets. Much of the equipment is old and was put into service before diesel fuel lubricity was a significant problem. It is expected that much of the equipment will be sensitive to low-lubricity fuel and the problems it can cause, mainly premature wear of fuel-wetted components. The objective of this project is to determine the sensitivity of Navy diesel fuel injection systems to synthetic, ultra-low sulfur diesel, or aviation kerosene fuels.

## **2.0 BACKGROUND**

As far as newer equipment is concerned, most manufacturers have taken the potential problem with fuel lubricity into consideration and are using components and materials that are less sensitive to fuel lubricity. However, some potential for problems still exists and must be addressed. Furthermore there were potential benefits identified for using JP-5 grade kerosene in lieu of marine diesel fuel for all fleet diesel engines. JP-5 grade kerosene also has potential impacts on diesel engine fuel injection system wear, due to lower lubricity and viscosity. For these reasons, the Navy undertook to investigate the extent of these potential problems and identify the equipment that is most sensitive.

## **3.0 APPROACH**

Two high-speed diesel engine fuel injection systems were identified that would be susceptible to low lubricity fuel effects on durability. Fuel-lubricated, rotary-distributor type fuel injection pumps are known to be highly sensitive to both low lubricity and low viscosity fuels. Mechanical unit injectors, with precision machined plunger helixes and sharp edges to control injection start and duration, were thought to be susceptible to scuffing from internal wear debris. Fuels were defined that spanned a range of lubricities as determined by the ASTM D 6079 Scuffing Load

UNCLASSIFIED

**UNCLASSIFIED**

Test. The scuffing load test, which measures the load for the onset of scuffing, was felt to be more representative of the fuel lubricity requirements of diesel fuel injection pumps for protection from damaging wear. Also included were a synthetic kerosene fuel, a commercial synthetic diesel fuel, and a reference Ultra Low Sulfur Diesel (ULSD) fuel. Corrosion Inhibitor/Lubricity Improver (CI/LI) additive effects were also included to modify fuel lubricity levels.

Initial plans were to use a Radioactive Tracer Technique (RATT) on selected fuel injection pump components to evaluate fuel lubricity and fuel type effects on fuel injection pump wear in motorized fuel injection test rigs. The thought being that the RATT approach would allow shorter operating time with each fuel to identify fuel specific wear rates. Difficulties with the RATT technique eventually led to performing 500 hour fuel injection system bench tests with the various test fuels. Fuel injection test stands were configured for a Delphi DPA Rotary fuel injection pump and Detroit Diesel mechanical unit injectors.

## 4.0 DISCUSSION

### 4.1 LABORATORY LUBRICITY BENCH TESTS

SwRI is analyzing the two primary test fuels used in this project. One is an aviation kerosene fuel and one is a reference diesel fuel. They are being analyzed for the purposes of this project and are also being checked for conformance to the JP-5 and F-76 specifications, respectively. The test results completed thus far are given in Table 1.

**Table 1. Navy Lubricity Hardware Test Program Test Fuels**

| Property               | Units             | F1000<br>S-8 | F2000<br>Jet A | F3000<br>Diesel |
|------------------------|-------------------|--------------|----------------|-----------------|
| Cetane Number, D 613   |                   | —            | —              | 48              |
| Density @ 15°C, D 4052 | kg/m <sup>3</sup> | 754.8        | 788.5          | 841.9           |

**UNCLASSIFIED**

## UNCLASSIFIED

| Property                           | Units                              | F1000<br>S-8      | F2000<br>Jet A    | F3000<br>Diesel   |
|------------------------------------|------------------------------------|-------------------|-------------------|-------------------|
| Distillation, D 86                 | °C @ vol% evap.<br>IBP<br>50<br>90 | 157<br>202<br>250 | 133<br>181<br>232 | 171<br>257<br>306 |
| Kinematic Viscosity @ 40°C, D 445  | mm <sup>2</sup> /s                 | 1.28              | 1.09              | 2.36              |
| Kinematic Viscosity @ -20°C, D 445 | mm <sup>2</sup> /s                 |                   | 3.23              | —                 |
| Net Heat of Combustion, D 240      | BTU/lb                             |                   | 18,679            | 18,365            |
| Total Sulfur, D 5453               | mass %                             | ~0                | 0.004             | 0.035             |
| BOCLE, D 5001                      | mm                                 | 1.02              | 0.49              | N/A               |
| HFRR, D 6079                       | mm                                 | 795               | 625               | 323               |
| SLBOCLE, D6078                     | g                                  | 1050              | 1850              | 3800              |

Several fuel blends of interest were made and tested in lubricity bench tests as shown in Table 2.

Table 2. Fuel Lubricity Test Results

| Lubricity Tests              | Fuel Description |           |                                 |                    |                     |                 |
|------------------------------|------------------|-----------|---------------------------------|--------------------|---------------------|-----------------|
|                              | S-8              | Fuel 2000 | Blend (50%v S-8/50%v Fuel 2000) | Blend +9ppm DCI-4A | Blend +22ppm DCI-4A | S-8+22ppm Nalco |
| ASTM D 6078<br>HFRR, microns | 795              | 625       | 615                             | 681                | 703                 | 735             |
| ASTM D 5001<br>BOCLE, mm     | 1.00             | 0.49      | 0.53                            | 0.54               | 0.54                | 0.57            |
| ASTM D 6079<br>SLBOCLE, g    | 1050             | 1850      | 2150                            | 2400               | 2900                | 1650            |

## UNCLASSIFIED

UNCLASSIFIED

## 4.2 DELPHI ROTARY FUEL INJECTION PUMPS

### 4.2.1 Test No. 1: Jet A (F2000)

A 500 hour test was completed using the 2000-g scuffing load fuel with an approximate 10% reduction of the injected volumetric fuel flow rate, as measured by the endurance stand instrumentation from the start of testing. The 500 hour post-test pump calibration stand results, on an accurate stand, using calibration fluid showed a 24% delivery decrease at 1300 rpm pump speed and an erratic delivery between injectors. The 500 hour test was performed at 1300 rpm and full rack, thus the delivery impact and erratic performance was expected to be more severe at the rated condition. Fuel delivery at other speeds had not changed.

Inspections of components revealed wear scars on the roller shoes and plungers, which can impact fuel metering and delivery. Components were analyzed for alloy constituents as shown in Table 3. Cr would be the dominant tracer element if irradiated, and would have a 27.7 day half-life for radioactive decay. The Roller Shoes and Plungers are similar enough that they can be activated together and are able to calculate combined mass wear rate. The roller shoe and plungers form a wear couple as shown in Figure 1.

**Table 3. Elemental Analysis of Pump Components**

| Alloy Element | Roller Shoe | Plunger | Roller | Stop Plate |
|---------------|-------------|---------|--------|------------|
| Fe            | 97.36       | 97.77   | 83.71  | 98.67      |
| Cr            | 1.49        | 1.56    | 4.14   | 0.29       |
| Mn            | 0.51        | 0.34    | —      | 0.71       |
| P             | 0.29        | —       | —      | —          |
| Si            | 0.36        | 0.33    | —      | 0.33       |
| Mo            | —           | —       | 5.19   | —          |
| W             | —           | —       | 5.05   | —          |
| V             | —           | —       | 1.91   | —          |

UNCLASSIFIED

UNCLASSIFIED



**Figure 1. Rotary Pump Roller Shoes and Plungers 500 hours with 2000-g Fuel**

#### **4.2.2 Test No. 2: Neat S-8 (F1000)**

A used Delphi pump was operated on the test stand. The pump was inspected and built with serviceable components, then sent to a diesel fuel injection service facility to verify pump operation. The pump was installed on the test stand to validate the test stand drive coupling arrangement and alignment. The drive system was validated by operating the pump for several hours on diesel fuel and monitoring the pump performance. Since the pump was mounted on the stand it was decided to switch load the fuel from the diesel fuel to the Neat S-8 (F1000) fuel. The pump is used on the Cummins 3.9L "B" series engine that has the following military applications: USMC rough terrain crane, USN 4000 lb rough terrain forklift, and Army 7.5T wheeled crane. The pump stand was operated at rated speed on neat S-8 fuel, at 16.5 hours the pump had worn to the point where there was no fuel delivery. Inspection of the pump revealed extreme roller and cam wear. Figure 2 shows the wear debris in the pump. There were indications of severe fuel lubricity problems with using neat S-8 fuel in a fuel lubricated rotary injection pump.

UNCLASSIFIED



**Figure 2. Delphi Pump Wear Debris with S-8 (F1000) Fuel**

#### **4.2.3 Test No. 3: S-8 + 22.5-ppm DCI-4A**

The Cummins 6BT5.9M engine that powers USN Rigid Inflatable Boats utilizes the Delphi CAV DPA rotary injection pump. Test 3, scheduled for 500 hours, was started using S-8 treated with DCI-4A at the maximum recommended treat level of 22.5 ppm as defined by QPL-25017. The test was stopped at 365 hours because of reduced fuel flow and increasing fuel return temperature. Table 4 shows the flow performance for the pump when new, after a 2 hour run in, after the 250 hour check, and at the end of the test (365 hours). At the end of test, the delivery at 1300 rpm was down, the delivery at 1200 rpm had fallen, but more importantly the governor action was compromised, that could lead to engine over speed. Governor action is compromised due to the accumulated wear on the governor linkages, arms, and pivots. Increased fuel return temperatures are a result of the increased level wear on the internal pump components.

## UNCLASSIFIED

**Table 4. Delphi DPA Rotary Pump with S-8 + 22.5 ppm DCI-4A**

| Model Number: 3062F304     |      |                                  | Serial Number: 11589CYG                             |            |             |             |
|----------------------------|------|----------------------------------|-----------------------------------------------------|------------|-------------|-------------|
| Test Operation             | RPM  | Range                            | Results, Flow in cc/1000 Strokes except where noted |            |             |             |
| Date                       |      |                                  | 8/6/2005                                            | 6/21/2006  | 7/24/2006   | 8/7/2006    |
| Comments                   |      |                                  | new                                                 | run-in     | test drum 1 | test drum 2 |
| Hours                      |      |                                  | 0                                                   | 2          | 250         | 365         |
| Test Fluid                 |      |                                  | Cal. Fluid                                          | Cal. Fluid | S-8+ DCI-4A | S-8+ DCI-4A |
| Transfer Pressure          | 1200 | 77 to 92 psi                     | 91                                                  | 92         | 90          | 90          |
| Fuel Delivery              | 1200 | 110 cc ± 1.1<br>Max. Spread 11.0 | 109                                                 | 109        | 109         | <b>99*</b>  |
| Housing Pressure           | 1200 | No Spec.                         | 0                                                   | 0          | 0           | 0           |
| Fuel Delivery (Gov.)       | 1430 | 2 cc Max.                        | 0                                                   | 0          | <b>7.9</b>  | <b>29.2</b> |
| Transfer Pressure          | 100  | 10 psi Min.                      | 8.5                                                 | 10         | 10          | 10          |
| Advance                    | 150  | 0.5 deg.                         | 0                                                   | 0          | 0           | 0           |
| Advance                    | 300  | 5.75 to 6.25 deg.                | 6                                                   | 6          | 6           | 6           |
| Cranking Fuel Delivery     | 100  | 90 cc                            | 96                                                  | 96         | 97          | 99          |
| Fuel Return                | 1200 | 10 to 110 cc/100 Strokes         | 41                                                  | 55         | 43.5        | 44          |
| Idle                       | 300  | 3cc (No Spec.)                   | 15                                                  | 5          | <b>32.5</b> | <b>33.5</b> |
| Complete Breakaway         | 1445 | No Spec.                         | 0                                                   | 0          | <b>5.3</b>  | <b>26.5</b> |
| Shutoff Lever & Solenoid   | 200  | 0.8 cc max                       | 0                                                   | 0          | 0.5         | 0.5         |
| Idle Governor              | 325  | No Spec.                         | 2                                                   | 12         | 18          | 80          |
| Record Fuel Delivery       | 1300 | 1200 RPM del. -4cc               | 105                                                 | 105        | <b>70.7</b> | <b>44.5</b> |
| Transfer Pressure          | 1300 | No Spec.                         | 94                                                  | 97         | 97          | 100         |
| Transfer Pressure          | 1430 | No Spec.                         | 115                                                 | 126        | 112         | 107         |
| Fuel Delivery <sup>#</sup> | 1430 | 2 cc Max.                        | 0                                                   | 0          | <b>6.6</b>  | <b>27.7</b> |
| Fuel Delivery              | 1277 | No Spec.                         | N.R.                                                | N.R.       | 75          | 48          |
| Fuel Delivery              | 1400 | No Spec.                         | N.R.                                                | N.R.       | 35.3        | 38.8        |

\*Bold parameters are of concern

<sup>#</sup>Fuel Delivery checked again at 1430-RPM after Complete Breakaway to determine if governor properly resets

UNCLASSIFIED

UNCLASSIFIED

#### 4.2.4 Test No. 4: Fuel Blend + 9 ppm DCI-4A

A test of the 50/50 S-8/Jet A fuel with 9 ppm DCI-4A was evaluated for a Delphi rotary pump. The pump was run-in for 2 hours at the fuel injection service, however there was damage due to un-lubricated contact between the drive thrust washer and the aluminum housing. The service supplied a new housing and installed the internal components into the new housing, made adjustments, and performed a calibration check noted as New housing in Table 5. At 153 hours, the test was stopped because of apparent pump wear. As shown in Figure 3, fuel temperature was increasing (the middle plot), and pump flow was decreasing (bottom plot). The pump cover was removed and metal wear debris was present, Figure 4. The pump-metering valve felt as if there was debris in the bore.



Figure 3. Operational Data Plot

UNCLASSIFIED

UNCLASSIFIED



**Figure 4. Metal Debris inside Pump at 153-hours for Test No. 4**

The pump flow performance presented in Table 5 was most impacted at cranking fuel delivery conditions with low flow. Fuel delivery was also low at 1200 and 1300 rpm pump speed, and delivery was excessive at governor breakaway.

#### **4.2.5 Test No. 5: Fuel Blend + 22.5-ppm DCI-4A**

A test of the 50/50 S-8/Jet A fuel with 22.5 ppm DCI-4A was performed for a Delphi rotary pump. Noted in Figure 5 is a change in pump return temperature and delivery at around 39 hours of operation. The change in return temperature suggests a change in the wear rate of the components in the pump. Likewise the variability of the pump delivery suggests a change in the pump, however the pump was still delivering fuel above the flow limit at 39 hours.

## UNCLASSIFIED

**Table 5. Delphi DPA Rotary Pump, Test 4**

| Model Number: 3062F304   |      |                                  | Serial Number: 11588CYG                             |            |                  |                  |
|--------------------------|------|----------------------------------|-----------------------------------------------------|------------|------------------|------------------|
| Test Operation           | RPM  | Range                            | Results, Flow in cc/1000 Strokes except where noted |            |                  |                  |
| Comments                 |      |                                  | new                                                 | run-in     | New Housing      | EOT              |
| Hours                    |      |                                  | 0                                                   | 2          | 0                | 153.4            |
| Test Fluid               |      |                                  | Cal. Fluid                                          | Cal. Fluid | Blend + 9 ppm CI | Blend + 9 ppm CI |
| Transfer Pressure        | 1200 | 77 to 92 psi                     | 91                                                  | 90         | 89               | 79               |
| Fuel Delivery            | 1200 | 110 cc ± 1.1<br>Max. Spread 11.0 | 113                                                 | 113        | 120              | <b>105*</b>      |
| Housing Pressure         | 1200 | No Spec.                         | 0                                                   | 0          | 0                | 0                |
| Fuel Delivery (Gov.)     | 1430 | 2 cc Max.                        | 2.1                                                 | 2          | 2                | 7                |
| Transfer Pressure        | 100  | 10 psi Min.                      | 12                                                  | 12         | 11               | 15               |
| Advance                  | 150  | 0.5 deg.                         | 0.5                                                 | 0.5        | 0.5              | 0.5              |
| Advance                  | 300  | 5.75 to 6.25 deg.                | 5.75                                                | 5.75       | 5.75             | 5.75             |
| Cranking Fuel Delivery   | 100  | 90 cc                            | 103                                                 | 102        | 106              | <b>70</b>        |
| Fuel Return              | 1200 | 10 to 110 cc/100 Strokes         | 40                                                  | 41         | 45               | 40               |
| Idle                     | 300  | 3cc (No Spec.)                   | 3.1                                                 | 3          | 3.1              | 3                |
| Complete Breakaway       | 1445 | No Spec.                         | 0.5                                                 | 1.5        | 1                | <b>5</b>         |
| Shutoff Lever & Solenoid | 200  | 0.8 cc max                       | 0.5                                                 | 0.5        | 0.5              | 0.5              |
| Idle Governor            | 325  | No Spec.                         | 1.5                                                 | 1.5        | 1.5              | 0.5              |
| Record Fuel Delivery     | 1300 | 1200 RPM del. -4cc               | 113                                                 | 113        | 120              | <b>95</b>        |
| Transfer Pressure        | 1300 | No Spec.                         | 94                                                  | 92         | 91               | 81               |
| Transfer Pressure        | 1430 | No Spec.                         | 112                                                 | 111        | 112              | 105              |
| Fuel Delivery            | 1430 | 2 cc Max.                        | 2                                                   | 4.1        | 2                | <b>6</b>         |

\*Bold parameters are of concern

UNCLASSIFIED

## UNCLASSIFIED



**Figure 5. Delphi DPA Pump Performance Data with a 50/50 Blend of S-8/Jet A with 22.5 ppm DCI-4A Corrosion Inhibitor/Lubricity Improver (CI/LI) Additive**

At 100 hours the stand shut down with a low flow rate, removal of the top cover indicated wear debris from the pump. Inspection of the hydraulic head and cam revealed massive wear between the rollers, roller shoes, and cam lobes. Figure 6 is a picture showing the heavy wear on the cam lobes. The wear pattern suggests the rollers were both sliding and rolling with evidence of material transfer.

The cam roller from the DPA pump is shown in Figure 7. The wear seen on the roller in Figure 7 is typical for all four rollers. Not evident from the photograph, the roller is slightly tapered due to wear. Once the roller becomes tapered, wear in the pump would have accelerated because the roller would no longer roll on an axis parallel to the driveshaft axis of rotation. Figure 8 shows one of the roller shoes, with severe wear that suggest the roller was shifting in the shoe, and not just rotating. The level of wear debris evident throughout the pump is shown on the governor weight in Figure 9.

UNCLASSIFIED

UNCLASSIFIED



**Figure 6. Delphi DPA Pump Cam Lobe Wear with 50/50 S-8/Jet A Fuel with 22.5 ppm DCI-4A CI/LI Additive**



**Figure 7. Delphi DPA Pump Cam Roller Wear with 50/50 S-8/Jet A Fuel with 22.5-ppm DCI-4A CI/LI Additive**

UNCLASSIFIED

UNCLASSIFIED



**Figure 8. Delphi DPA Pump Cam Roller Shoe Wear with 50/50 S-8/Jet A Fuel with 22.5-ppm DCI-4A CI/LI Additive**



**Figure 9. Delphi DPA Pump Governor Weight with 50/50 S-8/Jet A Fuel with 22.5-ppm DCI-4A CI/LI Additive**

UNCLASSIFIED

**UNCLASSIFIED**

To determine if the Delphi cam and roller components for the S-8 tests were manufactured to the same Rockwell "C" hardness, measurements were taken on components from three injection pumps. The components checked were the cam ring, the cam roller follower, and the cam roller shoe. Table 6, shows the hardness values for the pumps and components checked. All components averaged above RC 60, and appeared consistent.

**Table 6. Delphi Pump Component Rockwell "C" Hardness Values**

|                         |        |      |      |      |            |
|-------------------------|--------|------|------|------|------------|
| <b>Core Pump: F1000</b> | CAM    | 62.8 | 63.1 | 62.4 | 62.76 avg. |
|                         | ROLLER | 62.6 | 62.4 | 62.7 | 62.56 avg. |
|                         | SHOE   | 61.0 | 60.7 | 62.5 | 61.40 avg. |
| <b>SN: 09141EXG</b>     | CAM    | 63.2 | 63.5 | 63.6 | 63.43 avg. |
|                         | ROLLER | 61.3 | 61.9 | 61.8 | 61.66 avg. |
|                         | SHOE   | 62.0 | 62.3 | 61.4 | 61.90 avg. |
| <b>SN: 11589CYG</b>     | CAM    | 62.0 | 62.7 | 62.9 | 62.53 avg. |
|                         | ROLLER | 61.5 | 61.9 | 61.8 | 61.73 avg. |
|                         | SHOE   | 60.8 | 60.9 | 60.9 | 60.86 avg. |
| <b>SN: 41621FZG</b>     | CAM    | 62.6 | 62.9 | 63.1 | 62.86 avg. |
|                         | ROLLER | 61.2 | 60.5 | 61.1 | 60.93 avg. |
|                         | SHOE   | 61.8 | 60.6 | 62.5 | 61.63 avg. |

#### **4.2.6 Test No. 6: F3000 then switched to F1000**

Modifications to the test stand drive system were made to improve alignment and durability, and to determine if driveline issues may have affected the fuel injection pump durability with the low lubricity fuels. The Delphi rotary pump stand operated for 96 hours on DF-2 (F3000) without any driveline issues using a core pump built with serviceable components. At the conclusion of the 96 hours, the test stand fuel system was flushed and S-8 fuel was introduced into the stand. The test stand was operated for 79 hours on S-8 (F1000) fuel before the injected fuel quantity deteriorated. The injection quantity deteriorated by 50% when the run was terminated. Likewise there was an increase in the pump return temperature that indicates increased internal friction. Removal of the top cover revealed typical wear debris seen with low lubricity fuels in rotary fuel injection pumps. The core pump was a four-cylinder pump, the flow rate with this pump was low

**UNCLASSIFIED**

**UNCLASSIFIED**

compared to the other Delphi pumps evaluated due to increased internal leakage and lower cylinder count. The test stoppage due to the injection flow decrease was based on comparison to the injected flow from the pump during the initial hour of testing with the S-8 (F1000) fuel. The hours achieved on the S-8 fuel, over previous attempts to run the S-8 fuel, are in part due to the improved driveline stability and increased clearances due to the used parts. However only 79 hours durability on the S-8 (F1000) fuel would be considered poor lubricity performance.

#### **4.2.7 Test No. 7: F3000 (DF-2)**

A Delphi rotary pump completed the scheduled 500 hours of operation with the F3000 fuel. The fuel injection pump was sent to a local diesel service company for the 500 hour flow performance check and looked to meet the calibration specifications at the end of test. The injected quantity rate has slightly increased as the Delphi pump has run-in on the F3000 fuel. The governor action appears to be slightly advanced, governor starts reducing fuel at a lower speed. Inspection of pump after the top cover was removed revealed no evidence of any discoloration or wear debris.

#### **4.2.8 Test No. 8: Fuel Blend + 22.5-ppm DCI-4A**

Test stand calibration indicated the pump at 250 hours with S-8/Jet A and 22.5 ppm DCI-4A had a flow rate decrease of approximately 23 percent, and was performing similar to the pump that was evaluated for 500 hours with the neat Jet A fuel. Figure 10 shows the top of the pump with the cover removed and evidence of some wear debris. However the wear debris seen with this pump is a few larger particles, whereas the previous pumps revealed large quantities of very fine wear debris. Based on the calibration data this pump on an engine would be low on power above 2400 rpm and have compromised over-speed protection.

**UNCLASSIFIED**

UNCLASSIFIED



**Figure 10. Pump Housing with Wear Debris for S-8/Jet A + 22.5 ppm DCI-4A Fuel Blend at 250 hours**

Figure 11 is the metering valve from the test pump revealing an unusual wear pattern. The governor thrust washer from the S-8/Jet A + 22.5 ppm DCI-4A test revealed the highly unusual wear pattern shown in Figure 12. The thrust washer appeared to stop rotating and distinct wear scars formed from the action of the governor weights. Figure 13 shows a thrust washer with a more typical wear pattern. Other components of the governor linkage also revealed larger than normal wear scars.

The pumping plungers, Figure 14, from the S-8/Jet A + 22.5 ppm DCI-4A test revealed wear that caused them to cock in their bores when pressure was applied to measure the roller-to-roller dimension. The roller shoes in Figure 15 revealed substantial wear scars on the sides contacting the pumping plungers.

Another unusual result with the S-8/Jet A + 22.5 ppm DCI-4A fuel was evidence of distress on the distributor rotor discharge ports as revealed in Figure 16. The wear pattern appears to look like cavitation erosion rather than chipping. There was no evidence that the material removed from around the ports affected wear in other parts of the fuel injection pump. Chipping would

UNCLASSIFIED

**UNCLASSIFIED**

have resulted in scoring of the hydraulic head and rotor around the port area, but scoring was not evident. All parts observations are included in Table 7.



**Figure 11. Delphi Rotary Fuel Injection Pump Metering Valve after 250 hours with S-8/Jet-A + 22.5-ppm DCI-4A Fuel**



**Figure 12. Wear Scars on Governor Thrust Washer from Governor Weights at 250 hours with S-8/Jet A + 22.5 ppm DCI-4A Fuel**

**UNCLASSIFIED**

UNCLASSIFIED



**Figure 13. Delphi Thrust Washer with Typical Wear Pattern  
after 500 hours Jet A Fuel**

UNCLASSIFIED

UNCLASSIFIED



**Figure 14. Delphi Pumping Plunger Wear Scars after Operation with  
S-8/Jet A + 22.5 ppm DCI-4A Fuel**



**Figure 15. Roller Shoes Reveal Wear Scars at Pumping Plungers Contact Locations**

UNCLASSIFIED

UNCLASSIFIED



**Figure 16. Delphi Rotary Fuel Injection Pump Distributor Rotor showing Evidence of Distress at Discharge Ports**

UNCLASSIFIED

## UNCLASSIFIED

**Table 7. Delphi Fuel Injection Pump Parts Condition Observations**

| Pump Type : 3062F304                                          | SN: 67133JZB                                                                                                                                                                                      |  |
|---------------------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|
| Test condition : 250hrs 50/50 Blend S8/Jet A + 22.5ppm DCI-4A | AL: 27550 (PUMP)                                                                                                                                                                                  |  |
| Part Name                                                     | Condition of part                                                                                                                                                                                 |  |
| BLADES                                                        | Replaced at Diesel Injection (Factory Warranty) - Before test. Normal light wear - Post Test.                                                                                                     |  |
| LINER                                                         | Replaced at Diesel Injection (Factory Warranty) - Before test. Normal wear with light scratches - Post Test.                                                                                      |  |
| END PLATE                                                     | Very slight wear pattern.                                                                                                                                                                         |  |
| REG. PISTON                                                   | Normal Wear.                                                                                                                                                                                      |  |
| ROTOR                                                         | Light scratches. Chipping at distributor ports.                                                                                                                                                   |  |
| PLUNGERS                                                      | Very worn. Moved freely in their working area but stuck when pushed through to remove.                                                                                                            |  |
| SHOES                                                         | Replaced before test by Diesel Injection. Wear on back - plunger contact. No significant wear at adjusting plate contact. Roller contact looks normal.                                            |  |
| ROLLERS                                                       | Replaced before test by Diesel Injection. No visible wear.                                                                                                                                        |  |
| ADJUSTING PLATES                                              | Top - Wear marks from rollers. No significant wear from shoe contact.<br>Bottom - Wear marks from rollers. No significant wear from shoe contact.                                                 |  |
| CAM RING                                                      | Looks about the same as it did before test. Had some wear marks before test but was not replaced.                                                                                                 |  |
| THRUST. WASH.                                                 | Unusual wear pattern from the foot of the weights. There are four weights and there were six grooves worn into the washer. Normally the wear scar is consistent around the surface of the washer. |  |
| THRUST. SLEEVE.                                               | Worn from fingers of governor arm.                                                                                                                                                                |  |
| GOV. WEIGHTS                                                  | Heavy wear on foot from washer contact. Wear on heel from weight cage contact.                                                                                                                    |  |
| LINK HOOK                                                     | Groove worn into linkage long spring retainer.                                                                                                                                                    |  |
| M-VALVE                                                       | Unusual chatter wear marks on valve.                                                                                                                                                              |  |
| DR. SHAFT SPLINE                                              | Normal Wear.                                                                                                                                                                                      |  |
| DR. SHAFT SEAL AREA                                           | Worn from seal contact. Some wear at bearing pilot contact.                                                                                                                                       |  |
| ADV. PISTON                                                   | Normal Wear. One scratch.                                                                                                                                                                         |  |
| HOUSING                                                       | Normal Wear.                                                                                                                                                                                      |  |
| R/R DIMENSION - A/E                                           | 1.9930" Before test. As rec. from factory. Diesel Injection adjusted on the stand starting point unknown. After test - 1.9870"                                                                    |  |
| R/R DIMENSION - D/H                                           | 1.9930" Before test. As rec. from factory. Diesel Injection adjusted on the stand starting point unknown. After test - 1.9864"                                                                    |  |

UNCLASSIFIED

**UNCLASSIFIED**

#### **4.2.9 Test No. 9: Jet A (F2000) + 22.5 ppm DCI-4A**

A Delphi pump completed 500 hours with the F2000+22.5 ppm DCI-4A fuel. When the pump was put on the stand after changing the head and rotor, there appeared to be a surging at the test speed. It was felt the surging would cause excessive drive loadings so the rack stop was adjusted to eliminate the surge. The change of the rack stop increased the fuel delivery, but eliminated the surge. The delivery characteristics of the pump on the stand did not change from the 122 hour point to the 500 hour point. The pump rack stop was set back to the original value and the flow evaluated on the TFLRF stand prior to sending the pump to the flow performance stand. The pump delivery flow did not change from the 122 hour pre-adjustment change. The Delphi fuel injection pump appeared to function normally after 500 hours operation with F2000+22.5 ppm DCI-4A fuel.

### **4.3 ULTRA LOW SULFUR DIESEL FUELS**

Seven 55-gallon drums of SASOL Fischer-Tropsch process derived ULSD fuel (CAF-7199) were obtained for fuel lubricity testing. The HFRR and SLBOCLE lubricity tests were performed, and revealed that the test fuel was highly additive treated to improve fuel lubricity. The lubricity additive used was not known, nor was it known if it was on a QPL, so three drums of the fuel were clay-filtered to remove the additives. The bench test lubricity results for the fuel as received and each of the clay-filtered drums are shown in Table 8. The scuffing load result looks high for drum 2, but all the HFRR values look consistent for the clay-filtered batches. In addition a commercial ULSD (AF-7257) was obtained and clay-filtered to remove any lubricity improver additive, and a sample blend made with the SASOL fuel.

**Table 8. Clay-Filter Results for SASOL Fuel CAF-7199**

| Fuel                          | ASTM D6079 WSD @ 60°C, mm | ASTM D6078 Scuffing Load, grams |
|-------------------------------|---------------------------|---------------------------------|
| CAF-7199 as received          | 0.332                     | 4450                            |
| CAF-7199 Drum 1 Clay-Filtered | 0.575                     | 1800                            |
| CAF-7199 Drum 2 Clay-Filtered | 0.611                     | 2700                            |
| CAF-7199 Drum 3 Clay-Filtered | 0.602                     | 1500                            |
| AF-7257 ULSD Clay Filtered    | 0.602                     | 1600                            |
| 50% CAF-7199 / 50% AF-7257    | 0.584                     | 1800                            |

**UNCLASSIFIED**

**UNCLASSIFIED**

#### **4.3.1 Test No. 10: Clay-Filtered SASOL Synthetic ULSD**

A test with the clay-filtered SASOL test fuel in the Delphi rotary fuel injection pump was performed and terminated at 201 hours. During the first 20 hours of testing the fuel delivery was very consistent as shown in Figure 17. After 20 hours the fuel delivery started dropping off, and the pump speed was adjusted at one point to determine if the drop-off in delivery was due to governor action coming in at a lower speed. The fuel delivery was recovered at a lower speed, which suggests wear is occurring in the governor section.

The rotary fuel injection pump test was eventually terminated at 201 hours due to compromised governor action. Wear in the governor section of the fuel injection pump was causing the injection pump to severely reduce injection fuel flow at the rated speed condition. The fuel injection pump was operated on a flow performance stand with the results shown in Table 9. The shaded areas in Table 9 are operating conditions that are out of specification, marginally in specification, or conditions that could impact engine operation. It was noted some calibration parameters were off when new, but came into specification after the run-in. The pump roller-to-roller dimension controls maximum delivery, and is set prior to testing by TFLRF, and is not changed by the calibration facility per TFLRF instructions. Flow readings may be off due to the tolerance stack up of the rotor , plungers, plunger bore, roller shoes, rollers, and helical stop plate.

**UNCLASSIFIED**

UNCLASSIFIED



**Figure 17. Fuel Delivery and Pump Speed for Delphi Pump with Clay-Filtered SASOL Fuel over Test Duration**

UNCLASSIFIED

## UNCLASSIFIED

**Table 9. Delphi Flow Performance Results After Clay-Filtered Synthetic ULSD Operation**

| DELPHI DPA Rotary Pump   |          |                                  |                                                     |            |                     |
|--------------------------|----------|----------------------------------|-----------------------------------------------------|------------|---------------------|
| Model Number:            | 3062F304 | Range                            | Results, Flow in cc/1000 Strokes except where noted |            |                     |
| Test Operation           | RPM      | Serial Number:                   | 01749LAB                                            |            |                     |
| Date                     |          |                                  | 5/21/2008                                           | 5/21/2008  | 5/17/2010           |
| Comments                 |          |                                  | new                                                 | run-in     | clay-filter synfuel |
| Hours                    |          |                                  | 0                                                   | 2          | 201                 |
| Cal. Fluid               |          |                                  | Cal. Fluid                                          | Cal. Fluid | Cal. Fluid          |
| Test Fluid               |          |                                  | -                                                   | Cal. Fluid | CAF-7199            |
| Transfer Pressure        | 1200     | 77 to 92 psi                     | 100                                                 | 86         | 81                  |
| Fuel Delivery            | 1200     | 110 cc ± 1.1<br>Max. Spread 11.0 | 115                                                 | 115        | 110                 |
| Housing Pressure         | 1200     | No Spec.                         | 0                                                   | 0          | 0                   |
| Fuel Delivery (Gov.)     | 1430     | 2 cc Max.                        | 2.5                                                 | 2          | 3.6                 |
| Transfer Pressure        | 100      | 10 psi Min.                      | 15                                                  | 12         | 10                  |
| Advance                  | 150      | 0.5 deg.                         | 0.5                                                 | 0.5        | 0.5                 |
| Advance                  | 300      | 5.75 to 6.25 deg.                | 5.75                                                | 5.75       | 5.75                |
| Cranking Fuel Delivery   | 100      | 90 cc Min.                       | 100                                                 | 100        | 91                  |
| Fuel Return              | 1200     | 10 to 110 cc/100 Strokes         | 68                                                  | 69         | 60                  |
| Idle                     | 300      | 3cc (No Spec.)                   | 1                                                   | 3          | 8                   |
| Complete Breakaway       | 1445     | No Spec.                         | 0.5                                                 | 0.5        | 1.4                 |
| Shutoff Lever & Solenoid | 200      | 0.8 cc max                       | 0.5                                                 | 0.5        | 0.5                 |
| Idle Governor            | 325      | No Spec.                         | 0                                                   | 1          | 11                  |
| Record Fuel Delivery     | 1300     | 1200 RPM del. -4cc               | 116                                                 | 116        | 56.0                |
| Transfer Pressure        | 1300     | No Spec.                         | 100                                                 | 95         | 95                  |
| Transfer Pressure        | 1430     | No Spec.                         | 120                                                 | 115        | 103                 |
| Fuel Delivery            | 1430     | 2 cc Max.                        | 2.5                                                 | 2          | 2.9                 |

**4.3.2 Test No. 11: SASOL/ULSD Blend with Lubrizol 539D (65 ppm)**

Table 10 shows lubricity results for the clay-filtered test fuel blend (50% CAF-7199 / 50% AF-7257) with four different levels of a U.S. Navy approved fuel lubricity additive. A sample was made at the maximum treat rate of 200 ppm and one sample at 100 ppm. The HFRR test did not appear to distinguish a significant difference between the two treated samples, as the repeatability of the method is 0.05 mm. The BOCLE wear scars were not determined for the samples, because it was felt the Scuffing Load BOCLE and HFRR were more representative tests of the wear exhibited by fuels in diesel rotary fuel injection pumps. The test fuel blend at 50 ppm additive treatment exceeded the 0.520 mm Wear Scar Diameter (WSD) specified in ASTM D 975 for ULSD fuels. An additional 15 ppm additive (65 ppm total) was added to the blend and the resulting WSD was measured at 0.470 mm with the HFRR.

## UNCLASSIFIED

## UNCLASSIFIED

**Table 10. Fuel Lubricity Results for Clay-Filtered Synthetic and Certification ULSD**

| <b>Sample Code</b> | <b>Description</b>                                      | <b>Additive Treatment, ppm</b> | <b>ASTM D6079, mm</b> |
|--------------------|---------------------------------------------------------|--------------------------------|-----------------------|
| 10-1076            | 50% CAF-7199 / 50% AF-7257                              | 0                              | 0.564                 |
| 10-1077            | 50% CAF-7199 / 50% AF-7257 + 100 ppm Lubricity Additive | 100                            | 0.400                 |
| 10-1078            | 50% CAF-7199 / 50% AF-7257 + 200 ppm Lubricity Additive | 200                            | 0.444                 |
| 10-1352            | 50% CAF-7199 / 50% AF-7257 + 50 ppm Lubricity Additive  | 50                             | 0.540                 |
| 10-1354            | 50% CAF-7199 / 50% AF-7257 + 65 ppm Lubricity Additive  | 65                             | 0.470                 |

The Delphi rotary fuel injection pump successfully completed 500 hours of operation with the lubricity additive treated SASOL/ULSD blend. The side cover of the pump was removed and inspections revealed the pumps to be clean and free of any wear debris. The top cover of the pump was removed and inspections revealed the pumps to be clean and free of any wear debris.

#### **4.4 DDC UNIT INJECTOR TESTS**

In lieu of the difficulties with the RATT testing for unit injector wear, an alternate proposed approach was to modify an USN 4-71N engine to be used as an injection rig. The DD 4-71N engine was used because several unit injector rating tools were available for rating and inspecting 71 series injectors. The benefits of using the motored engine, as the injection rig is that proper injector and cam alignment and stiffness would be maintained during the course of testing. An additional benefit was that four injectors could be evaluated during one test interval, and the fuel supply to the injectors was modified so that four separate fuels could be evaluated during one test interval.

##### **4.4.1 DDC Unit Injector Test 1**

The Detroit Diesel Unit Injector rig test completed the 500 hours of operation, with differing test fuels in each of the four unit injectors, with all unit injectors functionally operational. Unit injector inspections for the various fuels and Test 1 are included as Appendix A. Overall the delivery performance of the injector did not change with any of the test fuels. All injectors exhibited some leakage around the rack and some tip wetness at 500 hours. All injectors showed

UNCLASSIFIED

**UNCLASSIFIED**

a decreased pressure drop time from 250 hours onward. The decreased pressure drop time is an indication of increased internal injector leakage between the lapped injector component surfaces. If internal leakage is substantial, the internal leakage could affect pressure development and injection timing. The wear ratings revealed that the most severe fuel was with the F2000+22.5 ppm DCI-4A blend. A surprise was the minimal wear seen with the F1000 fuel compared to both the F2000 fuels. The F3000 fuel had the least overall wear. The variation in wear is possibly due to variation in the fit of the barrel and plunger components.

The ASTM D 6079 High Frequency Reciprocating Rig wear scars were evaluated for the test fuels as blended, and after 250 hours of operation. The HFRR tests were performed at 60°C, where the repeatability of the method is 80 microns and the reproducibility of the method is 136 microns. The data in Table 11 suggest that the S-8 (F1000) fuel changed beyond the precision limits for the method, improving in lubricity value after the fuel re-circulated in the injection rig for 250 hours. The top end of the unit injector is lubricated with oil, and the migration of lubricating oil into the injector is possible. It should be noted that the fuels do appear to have discolored after operation. The low lubricity S-8 (F1000) fuel may have shown more sensitivity to contamination than the other fuels. Due to the re-circulating nature of the fuel loop in the injection rig, the accumulation of lube oil in the fuel is greater than what would be in an operating engine because there is not any consumption of fuel.

**Table 11. ASTM D 6079 HFRR Wear Scar Diameters for Test Fuels**

| <b>Fuel</b>         | <b>ASTM D 6079 HFRR, WSD micron</b> |                 | <b>WSD Change, micron</b> |
|---------------------|-------------------------------------|-----------------|---------------------------|
|                     | <b>0 hour</b>                       | <b>250 hour</b> |                           |
| JET A (F2000)       | 724                                 | 619             | 105                       |
| DF-2 (F3000)        | 323                                 | 439             | -116                      |
| S-8 (F1000)         | 768                                 | 408             | 361                       |
| JET A (F2000)+DCI4A | 696                                 | 580             | 116                       |

The EOT fuel samples were analyzed for lubricant additive metals from the first Detroit Diesel Unit Injector test. The results indicate that 1.5-2% dilution of lubricant in each of the test fuels, as traced by Ca, P, and Zn contents of the lube oil and fuel samples are shown in Table 12. This

**UNCLASSIFIED**

## UNCLASSIFIED

level of contamination had been shown by Lacey (Ref. 1) to alter the scuffing wear results of low lubricity fuels. It is believed that this lube oil contamination is built into the design of the fuel injector, and is exacerbated by our re-circulating of fuel. This lube oil contamination could have been why there had been unusual results with the repeatability attempts with the radioactive tracer methodology; the lube oil lessens the wear rate.

**Table 12. Lubricant Additive Elements in Test Fuels from Detroit Diesel Unit Injector Test**

| Results of the Analytical Evaluations of the Fuels and Lubricant |             |            |            |              |            |            |
|------------------------------------------------------------------|-------------|------------|------------|--------------|------------|------------|
| ASTM Methods                                                     | Sample Code | CL08-00294 | CL08-00295 | CL08-00296   | CL08-00297 | AL-27619-L |
| Sample Type                                                      | Jet-A       | DF-2       | S8         | Jet-A +DCI4A | Lube Oil   |            |
| D7111 Metals by ICP                                              | Calcium     | >5         | >5         | >5           | >5         |            |
| D5185 Metal Analysis by ICP                                      |             |            |            |              |            |            |
| ppm                                                              | Aluminum    | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Antimony    | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Barium      | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Boron       | <1         | <1         | <1           | <1         | 3          |
| ppm                                                              | Calcium     | 32         | 41         | 41           | 31         | 2276       |
| ppm                                                              | Chromium    | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Copper      | 9          | 6          | 6            | 7          | 15         |
| ppm                                                              | Iron        | <1         | <1         | <1           | <1         | 5          |
| ppm                                                              | Lead        | <1         | <1         | <1           | <1         | 4          |
| ppm                                                              | Magnesium   | <1         | <1         | <1           | <1         | 5          |
| ppm                                                              | Manganese   | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Molybdenum  | <1         | <1         | <1           | <1         | 1          |
| ppm                                                              | Nickel      | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Phosphorus  | 13         | 17         | 16           | 12         | 876        |
| ppm                                                              | Silicon     | 10         | 7          | 13           | 9          | 45         |
| ppm                                                              | Silver      | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Sodium      | <5         | <5         | <5           | <5         | 12         |
| ppm                                                              | Tin         | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Zinc        | 13         | 19         | 17           | 13         | 991        |
| ppm                                                              | Potassium   | <5         | <5         | <5           | <5         | <5         |
| ppm                                                              | Strontium   | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Vanadium    | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Titanium    | <1         | <1         | <1           | <1         | <1         |
| ppm                                                              | Cadmium     | <1         | <1         | <1           | <1         | 6          |

It was determined that the addition of the 0.5% engine lubricating oil to a 50%/50%-S-8/Jet-A fuel blend did change both the HFRR wear scar and SLBOCLE scuffing load values. Prior work at TFLRF had suggested 0.5% lubrication oil would have a minor effect. The response of the S-8/Jet-A blend to the lubricating oil addition (Table 13) suggest that low lubricity fuels show a positive response to lubricating oil contamination.

## UNCLASSIFIED

**UNCLASSIFIED**

**Table 13. Lubricity Bench Test Results with Low Lubricity Fuels and Lubricating Oil Addition**

| <b>Test Method</b> | <b>Description / Property</b>         | <b>Test Units</b> | <b>S-8/Jet A blend at 50%/50%</b> | <b>S-8/Jet A blend at 50%/50% with the addition of 0.5% lube oil</b> |
|--------------------|---------------------------------------|-------------------|-----------------------------------|----------------------------------------------------------------------|
| ASTM D6079         | Lubricity by HFRR                     | mm                | 0.650                             | 0.565                                                                |
| ASTM D6078         | Lubricity by SLBOCLE<br>Scuffing Load | grams             | 1500                              | 2000                                                                 |

#### **4.3.2 DDC Unit Injector Test 2**

The DDC unit injector test rig was used to evaluate the following four test fuels; SASOL, SASOL/ULSD + additive blend, F1000, and F1000/F2000 blend. Twenty gallons of fuel for each injector were changed every 125 hours of operation, for 500 hours total. One-hundred gallons of each test fuel or test fuel blend were blended for each unit injector.

The Detroit Diesel Unit Injector rig test completed the 500 hours of operation with all unit injectors functionally operational. Unit injector inspections for the various fuels and Test 2 are included as Appendix A. Overall the delivery performance of the injector did not change with any of the test fuels. All injectors did not exhibit leakage around the rack nor any tip wetness at 500 hours. All injectors showed an increased pressure drop time. The increased pressure drop time suggests the leakage from the internal sealing surfaces was reduced, possibly leading to more consistent injection events. The wear ratings revealed that the most severe fuel was with the SASOL clay-filtered fuel. A surprise was the minimal wear seen with the F1000 fuel than compared to wear seen with the SASOL/ULSD + additive blend. The F1000/F2000 fuel blend had slightly more overall wear than the F1000 fuel. Wear was determined by visual inspection of five different areas on the unit injector plungers, and comparing the level of wear in those locations between test fuels. The variation in wear is possibly due to variation in the fit of the barrel and plunger components.

**UNCLASSIFIED**

**UNCLASSIFIED**

## **5.0 CONCLUSIONS**

### **5.1 S-8 (F1000) ROTARY FUEL INJECTION PUMP WEAR TEST SUMMARY**

All instances of rotary fuel injection pump operation with S-8, whether blended, or with additives, have resulted in excessive or premature wear of the rotary fuel injection systems. That fact suggests neither the lubricity nor the viscosity of the S-8 or S-8 blends are adequate for the rotary injection pump use, with the current additives, because there does not appear to be any margin of protection with the fuel in the Delphi fuel lubricated rotary fuel injection equipment as currently configured. The Delphi fuel lubricated rotary fuel injection pump does not have pump component modifications available for low viscosity, low lubricity fuels. Another military rotary fuel injection equipment supplier offers modified, hardened parts for use with low lubricity fuels.

### **5.2 JET A (F2000) ROTARY FUEL INJECTION PUMP WEAR TEST SUMMARY**

Each instance of rotary fuel injection pump operation with Jet A, neat, or with additives, resulted in performance degradation of the rotary fuel injection system, but not excessive premature wear. This suggests the natural lubricity from the aromatic compounds, and additive effectiveness, does offer some protection in the Delphi fuel lubricated rotary fuel injection equipment as currently configured. However, similar fuel injection equipment in U.S. Army boats suffer chronic problems with JP-8 fuel.

### **5.3 F-76 (F3000) ROTARY FUEL INJECTION PUMP WEAR TEST SUMMARY**

As anticipated the rotary fuel injection pump operation with F3000 fuel operated normally without any performance degradation or premature wear. The natural lubricity from the aromatic compounds, and increased viscosity, provides protection in the Delphi fuel lubricated rotary fuel injection equipment as currently configured, and would be the fuel of choice.

**UNCLASSIFIED**

**UNCLASSIFIED**

**5.4 ULSD ROTARY FUEL INJECTION PUMP WEAR TEST SUMMARY**

Two types of ULSD fuels were examined, a synthetic Fischer-Tropsch fuel with extremely low sulfur and aromatics, and a U.S. EPA 15 ppm ULSD reference fuel. Both fuels were clay-filtered to remove any lubricity additives added during refining. The rotary fuel injection pump operation with the synthetic diesel fuel revealed performance degradation and increased wear. A synthetic ULSD/petroleum ULSD blend with a QPL lubricity additive suggests the natural lubricity from the aromatic compounds, and the additive effectiveness both offer adequate protection in the Delphi fuel lubricated rotary fuel injection equipment.

**5.5 UNIT INJECTOR WEAR TEST SUMMARY**

The unit injectors are less prone to wear with any of the lubricity and viscosity levels of the fuels evaluated. However, the results may have been skewed by lubricant contamination of the test fuels due to the re-circulating fuel system. Migration of lubricant from the top of the injector appears to offer additional protection with low lubricity fuels.

**UNCLASSIFIED**

UNCLASSIFIED

## 6.0 RECOMMENDATIONS

Based on the evaluations the following recommendations are suggested:

- The F1000 fuel, synthetic kerosene, even when blended with petroleum kerosene and treated with CI/LI, does not provide adequate protection for the Delphi fuel-lubricated rotary fuel injection pump. It is recommended that the F1000 fuel or F1000 fuel blends not be used in any mission critical engine that uses the Delphi fuel lubricated rotary fuel injection equipment.
- The F2000 fuel, petroleum kerosene, can provide adequate protection from excessive wear when treated with CI/LI, but will exhibit some engine performance degradation. Long term use is not recommended for the Delphi fuel-lubricated rotary fuel injection pump.
- A synthetic ULSD / petroleum ULSD blend treated with a QPL lubricity additive is equivalent to F-76 in the Delphi fuel-lubricated rotary fuel injection pump. Its' use would be recommended.

## 7.0 REFERENCES

- (1) P.I. Lacey, “*Evaluation of Thermally Induced Injection Pump seizures and the Effects of Lubricating Oil Addition on Aviation Turbine Fuel Lubricity*,” Letter Report No. BFLRF- 91-007, Belvoir Fuels and Lubricants Research Facility, Southwest Research Institute, San Antonio, TX, December 1991.
- (2) Douglas M. Yost, ”*Bridge Erection Boat (BEB) Fuel Injection Pump Evaluation*,” Interim Report TFLRF No. 396, TARDEC Fuels and Lubricants Research Facility, Southwest Research Institute, San Antonio, TX, June 2011.

UNCLASSIFIED

**APPENDIX A**

**Unit Injector Plunger Inspections**

UNCLASSIFIED

Lubricity



Oil Code: F2000

Test No.: DDUI01.P1

Plunger 1

View 1,2,3,4



Figure A1. Plunger for Test No. 1 from Cylinder 1, F2000 Fuel at 0 Hours

UNCLASSIFIED

Lubricity



Oil Code: F3000

Test No.: DDUI01.P2

Plunger 2

View 1,2,3,4



Figure A2. Plunger for Test No. 1 from Cylinder 2, F3000 Fuel at 0 Hours

UNCLASSIFIED

Lubricity



Oil Code: F1000

Test No.: DDUI01.P3

Plunger 3

View 1,2,3,4



Figure A3. Plunger for Test No. 1 from Cylinder 3, F1000 Fuel at 0 Hours

UNCLASSIFIED

Lubricity



|           |              |           |           |
|-----------|--------------|-----------|-----------|
| Oil Code: | F2000+9DC14A | Test No.: | DDUI01.P4 |
|-----------|--------------|-----------|-----------|

Plunger 4

View 1,2,3,4



Figure A4. Plunger for Test No. 1 from Cylinder 4, F2000 + 9-ppm DCI-4A at 0 Hours

## UNCLASSIFIED

**Table A1. Fuel F2000 Unit Injector Inspections**

## Detroit Diesel Fuel Injector Test Results

|                |      |                   |                 |
|----------------|------|-------------------|-----------------|
| Injector Model | 7N65 | Injector Location | DDUI01.P1       |
| Technician     | REG  | Test Fuel No.     | F2000, AL-27069 |

| Test                                     | Units               | Initial Check | Reassembly/Test Hours |       | Test Hours   | Test Hours |       |
|------------------------------------------|---------------------|---------------|-----------------------|-------|--------------|------------|-------|
| Injector Valve Opening and Spray Pattern |                     | 0             | 0                     |       | 250          | 500        |       |
| Pressure Reference No.                   |                     | 143           | 143                   |       | 142          | 140        |       |
| Spray Pattern                            |                     | good          | good                  |       | good         | good       |       |
| Unit Hold Time                           |                     |               |                       |       |              |            |       |
| Pressure Drop Time                       | sec.                | 54            | 60                    |       | 36.97        | 20.68      |       |
| Spray Tip                                |                     |               |                       |       |              |            |       |
| Pressure                                 | psig                | 2000          | 2000                  |       | 2000         | 2000       |       |
| Tip Dryness                              |                     | dry           | dry                   |       | dry          | leak/rack  |       |
| Needle Travel                            |                     |               |                       |       |              |            |       |
| Needle Valve Lift                        | in.                 | 0.0005        |                       |       |              | 0.001      |       |
| Calibration                              | ml/1000 strokes     | 34            | 34                    |       | 34           | 33         |       |
| Wear                                     | 1=light<br>6=severe | Rating (1-6)  | Weight                | WTD   | Rating (1-6) | Weight     | WTD   |
| Side 1                                   | (1-6)               | 1             | 0.286                 | 0.286 | 3            | 0.286      | 0.858 |
| Side 2                                   | (1-6)               | 1             | 0.071                 | 0.071 | 2            | 0.071      | 0.142 |
| Side 3                                   | (1-6)               | 1             | 0.214                 | 0.214 | 1            | 0.214      | 0.214 |
| Side 3 Helix                             | (1-6)               | 2             | 0.286                 | 0.572 | 3            | 0.286      | 0.858 |
| Side 4                                   | (1-6)               | 1             | 0.143                 | 0.143 | 1            | 0.143      | 0.143 |
| Total                                    | (1-6)               |               |                       | 1.286 |              |            | 2.215 |

UNCLASSIFIED



**Figure A5. Plunger Conditions for Test No. 1 from Cylinder 1 for Fuel F2000 at 500 Hours**

## UNCLASSIFIED

**Table A2. Fuel F3000 Unit Injector Inspections**

## Detroit Diesel Fuel Injector Test Results

|                |      |                               |           |
|----------------|------|-------------------------------|-----------|
| Injector Model | 7N65 | Injector Location             | DDUI01.P2 |
| Technician     | REG  | Test Fuel No. F3000, AL-27169 |           |

| Test                                     | Units               | Initial Check | Reassembly/Test Hours |       | Test Hours   | Test Hours |       |
|------------------------------------------|---------------------|---------------|-----------------------|-------|--------------|------------|-------|
| Injector Valve Opening and Spray Pattern |                     | 0             | 0                     |       | 250          | 500        |       |
| Pressure Reference No.                   |                     | 142           | 142                   |       | 141          | 141        |       |
| Spray Pattern                            |                     | good          | good                  |       | good         | good       |       |
| Unit Hold Time                           |                     |               |                       |       |              |            |       |
| Pressure Drop Time                       | sec.                | 46.43         | 70                    |       | 32.78        | 30.3       |       |
| Spray Tip                                |                     |               |                       |       |              |            |       |
| Pressure                                 | psig                | 2000          | 2000                  |       | 2000         | 2000       |       |
| Tip Dryness                              |                     | dry           | dry                   |       | dry          | leak/rack  |       |
| Needle Travel                            |                     |               |                       |       |              |            |       |
| Needle Valve Lift                        | in.                 | 0.01          |                       |       |              | 0.007      |       |
| Calibration                              | ml/1000 strokes     | 35            | 35                    |       | 35           | 35         |       |
| Wear                                     | 1=light<br>6=severe | Rating (1-6)  | Weight                | WTD   | Rating (1-6) | Weight     | WTD   |
| Side 1                                   | (1-6)               | 2             | 0.286                 | 0.572 | 2            | 0.286      | 0.572 |
| Side 2                                   | (1-6)               | 1             | 0.071                 | 0.071 | 1            | 0.071      | 0.071 |
| Side 3                                   | (1-6)               | 1             | 0.214                 | 0.214 | 1            | 0.214      | 0.214 |
| Side 3 Helix                             | (1-6)               | 2             | 0.286                 | 0.572 | 3            | 0.286      | 0.858 |
| Side 4                                   | (1-6)               | 1             | 0.143                 | 0.143 | 1            | 0.143      | 0.143 |
| Total                                    | (1-6)               |               |                       | 1.572 |              |            | 1.858 |

UNCLASSIFIED



**Figure A6. Plunger Conditions for Test No. 1 from Cylinder 2 for Fuel F3000 at 500 Hours**

## UNCLASSIFIED

**Table A3. Fuel F1000 Unit Injector Inspections**

## Detroit Diesel Fuel Injector Test Results

|                |      |                               |           |
|----------------|------|-------------------------------|-----------|
| Injector Model | 7N65 | Injector Location             | DDUI01.P3 |
| Technician     | REG  | Test Fuel No. F1000, AL-27074 |           |

| Test                                     | Units               | Initial Check | Reassembly/Test Hours |       | Test Hours   | Test Hours |       |
|------------------------------------------|---------------------|---------------|-----------------------|-------|--------------|------------|-------|
| Injector Valve Opening and Spray Pattern |                     | 0             | 0                     |       | 250          | 500        |       |
| Pressure Reference No.                   |                     | 140           | 140                   |       | 140          | 138        |       |
| Spray Pattern                            |                     | good          | good                  |       | good         | good       |       |
| Unit Hold Time                           |                     |               |                       |       |              |            |       |
| Pressure Drop Time                       | sec.                | 75            | 69                    |       | 37.26        | 34.9       |       |
| Spray Tip                                |                     |               |                       |       |              |            |       |
| Pressure                                 | psig                | 2000          | 2000                  |       | 2000         | 2000       |       |
| Tip Dryness                              |                     | dry           | dry                   |       | dry          | leak/rack  |       |
| Needle Travel                            |                     |               |                       |       |              |            |       |
| Needle Valve Lift                        | in.                 | 0.009         |                       |       |              | 0.002      |       |
| Calibration                              | ml/1000 strokes     | 35            | 36                    |       | 35           | 35         |       |
| Wear                                     | 1=light<br>6=severe | Rating (1-6)  | Weight                | WTD   | Rating (1-6) | Weight     | WTD   |
| Side 1                                   | (1-6)               | 1             | 0.286                 | 0.286 | 2            | 0.286      | 0.572 |
| Side 2                                   | (1-6)               | 1             | 0.071                 | 0.071 | 1            | 0.071      | 0.071 |
| Side 3                                   | (1-6)               | 1             | 0.214                 | 0.214 | 1            | 0.214      | 0.214 |
| Side 3 Helix                             | (1-6)               | 1             | 0.286                 | 0.286 | 2            | 0.286      | 0.572 |
| Side 4                                   | (1-6)               | 1             | 0.143                 | 0.143 | 1            | 0.143      | 0.143 |
| Total                                    | (1-6)               |               |                       | 1.000 |              |            | 1.572 |

UNCLASSIFIED



**Figure A7. Plunger Conditions for Test No. 1 from Cylinder 3 for Fuel F1000 at 500 Hours**

## UNCLASSIFIED

**Table A4. Fuel F2000 + 22.5 ppm DCI-4A Unit Injector Inspections**

## Detroit Diesel Fuel Injector Test Results

|                |      |                                              |           |
|----------------|------|----------------------------------------------|-----------|
| Injector Model | 7N65 | Injector Location                            | DDUI01.P4 |
| Technician     | REG  | Test Fuel No. F2000+22.5-ppmDCI-4A, AL-28182 |           |

| Test                                     | Units               | Initial Check | Reassembly/Test Hours |       | Test Hours   | Test Hours |       |
|------------------------------------------|---------------------|---------------|-----------------------|-------|--------------|------------|-------|
| Injector Valve Opening and Spray Pattern |                     | 0             | 0                     |       | 250          | 500        |       |
| Pressure Reference No.                   |                     | 144           | 147                   |       | 141          | 143        |       |
| Spray Pattern                            |                     | good          | good                  |       | good         | good       |       |
| Unit Hold Time                           |                     |               |                       |       |              |            |       |
| Pressure Drop Time                       | sec.                | 123           | 120                   |       | 73           | 69         |       |
| Spray Tip                                |                     |               |                       |       |              |            |       |
| Pressure                                 | psig                | 2000          | 2000                  |       | 2000         | 2000       |       |
| Tip Dryness                              |                     | dry           | dry                   |       | dry          | leak/rack  |       |
| Needle Travel                            |                     |               |                       |       |              |            |       |
| Needle Valve Lift                        | in.                 | 0.009         |                       |       |              | 0.003      |       |
| Calibration                              | ml/1000 strokes     | 34            | 34                    |       | 34           | 34         |       |
| Wear                                     | 1=light<br>6=severe | Rating (1-6)  | Weight                | WTD   | Rating (1-6) | Weight     | WTD   |
| Side 1                                   | (1-6)               | 1             | 0.286                 | 0.286 | 3            | 0.286      | 0.858 |
| Side 2                                   | (1-6)               | 1             | 0.071                 | 0.071 | 3            | 0.071      | 0.213 |
| Side 3                                   | (1-6)               | 1             | 0.214                 | 0.214 | 3            | 0.214      | 0.642 |
| Side 3 Helix                             | (1-6)               | 2             | 0.286                 | 0.572 | 5            | 0.286      | 1.43  |
| Side 4                                   | (1-6)               | 1             | 0.143                 | 0.143 | 3            | 0.143      | 0.429 |
| Total                                    | (1-6)               |               |                       | 1.286 |              |            | 3.572 |

UNCLASSIFIED



**Figure A8. Plunger Conditions for Test No. 1 from Cylinder 4 for Fuel F2000+22.5 ppm DCI4A at 500 Hours**

UNCLASSIFIED



Figure A9. Plunger Condition for Test No. 2 Cylinder 1, SASOL Clay-filtered Fuel at 0 Hours

UNCLASSIFIED



**Figure A10. Plunger Condition for Test No. 2 Cylinder 2, SASOL/ULSD Clay-filtered +Lubrizol 539D Fuel at 0 Hours**

UNCLASSIFIED



Figure A11. Plunger Condition for Test No. 2 Cylinder 3, F1000/F2000 Fuel at 0 Hours

UNCLASSIFIED



Figure A12. Plunger Condition for Test No. 2 Cylinder 4, F1000 Fuel at 0 Hours

## UNCLASSIFIED

**TableA5. Clay-Filtered Synthetic Diesel Fuel Unit Injector Inspections**

## Detroit Diesel Fuel Injector Test Results

|                |      |                   |                                |
|----------------|------|-------------------|--------------------------------|
| Injector Model | 7N65 | Injector Location | DDUJ02.P1                      |
| Technician     | REG  | Test Fuel No.     | SASOL (CAF-7199 clay-filtered) |

| Test                                           | Units               | Initial Check | Reassembly<br>Test Hours |        | Test Hours | Test Hours |        |       |
|------------------------------------------------|---------------------|---------------|--------------------------|--------|------------|------------|--------|-------|
| Test Hours                                     |                     |               | 0                        |        |            | 500        |        |       |
| Injector Valve<br>Opening and<br>Spray Pattern |                     |               |                          |        |            |            |        |       |
| Pressure<br>Reference<br>No.                   |                     |               | 147                      |        |            | 140        |        |       |
| Spray<br>Pattern                               |                     |               | Good                     |        |            | Good       |        |       |
| Unit Hold Time                                 |                     |               |                          |        |            |            |        |       |
| Pressure<br>Drop Time                          | sec.                |               | 397                      |        |            | 420        |        |       |
| Spray Tip                                      |                     |               |                          |        |            |            |        |       |
| Pressure                                       | psig                |               | 2000                     |        |            | 2000       |        |       |
| Tip Dryness                                    |                     |               | Dry                      |        |            | Dry        |        |       |
| Needle Travel                                  |                     |               |                          |        |            |            |        |       |
| Needle Valve<br>Lift                           | in.                 |               | 0.0095                   |        |            |            |        |       |
| Calibration                                    | ml/1000<br>strokes  |               | 32                       |        |            | 34         |        |       |
| Wear                                           | 1=light<br>6=severe |               | (1-6)                    | Weight | Wtd        | (1-6)      | Weight | Wtd   |
| Side 1                                         | (1-6)               |               | 1                        | 0.286  | 0.286      | 2          | 0.286  | 0.572 |
| Side 2                                         | (1-6)               |               | 1                        | 0.071  | 0.071      | 1          | 0.071  | 0.071 |
| Side 3                                         | (1-6)               |               | 1                        | 0.214  | 0.214      | 1          | 0.214  | 0.214 |
| Side 3 Helix                                   | (1-6)               |               | 1                        | 0.286  | 0.286      | 3          | 0.286  | 0.858 |
| Side 4                                         | (1-6)               |               | 1                        | 0.143  | 0.143      | 1          | 0.143  | 0.143 |
| Total                                          | (1-6)               |               |                          |        | 1          |            |        | 1.858 |

UNCLASSIFIED



Figure A13. Plunger Condition for Test No. 2 Cylinder 1, SASOL Clay-filtered Fuel at 500 Hours

## UNCLASSIFIED

**Table A6. Clay-Filtered Synthetic Diesel/ULSD + Lubrizol 539D Fuel Unit Injector Inspections**

| Detroit Diesel Fuel Injector Test Results |                     |               |                   |        |            |            |       |        |       |
|-------------------------------------------|---------------------|---------------|-------------------|--------|------------|------------|-------|--------|-------|
| Injector Model                            |                     |               | Injector Location |        |            |            |       |        |       |
| Technician                                |                     |               | Test Fuel No.     |        |            |            |       |        |       |
| Test                                      | Units               | Initial Check | Reassembly        |        | Test Hours | Test Hours |       |        |       |
| Test Hours                                |                     |               | Test Hours        |        | 0          | Test Hours |       |        |       |
| Injector Valve Opening and Spray Pattern  |                     |               |                   |        |            |            |       |        |       |
| Pressure Reference No.                    |                     |               | 150               |        |            | 140        |       |        |       |
| Spray Pattern                             |                     |               | Good              |        |            | Good       |       |        |       |
| Unit Hold Time                            |                     |               |                   |        |            |            |       |        |       |
| Pressure Drop Time                        | sec.                |               | 429               |        |            | 540        |       |        |       |
| Spray Tip                                 |                     |               |                   |        |            |            |       |        |       |
| Pressure                                  | psig                |               | 2000              |        |            | 2000       |       |        |       |
| Tip Dryness                               |                     |               | Dry               |        |            | Dry        |       |        |       |
| Needle Travel                             |                     |               |                   |        |            |            |       |        |       |
| Needle Valve Lift                         | in.                 |               | 0.01              |        |            |            |       |        |       |
| Calibration                               | ml/1000 strokes     |               | 34                |        |            | 34         |       |        |       |
| Wear                                      | 1=light<br>6=severe |               | (1-6)             | Weight | Wtd        |            | (1-6) | Weight | Wtd   |
| Side 1                                    | (1-6)               |               | 1                 | 0.286  | 0.286      |            | 1     | 0.286  | 0.286 |
| Side 2                                    | (1-6)               |               | 1                 | 0.071  | 0.071      |            | 1     | 0.071  | 0.071 |
| Side 3                                    | (1-6)               |               | 1                 | 0.214  | 0.214      |            | 1     | 0.214  | 0.214 |
| Side 3 Helix                              | (1-6)               |               | 1                 | 0.286  | 0.286      |            | 2     | 0.286  | 0.572 |
| Side 4                                    | (1-6)               |               | 1                 | 0.143  | 0.143      |            | 1     | 0.143  | 0.143 |
| Total                                     | (1-6)               |               |                   |        | 1          |            |       |        | 1.286 |

UNCLASSIFIED



**Figure A14. Plunger Condition for Test No. 2 Cylinder 2, SASOL/ULSD Clay-filtered +Lubrizol 539D Fuel at 500 Hours**

## UNCLASSIFIED

**Table A7. F1000/F2000 Fuel Unit Injector Inspections**

| Detroit Diesel Fuel Injector Test Results      |                     |               |                          |        |               |            |       |        |
|------------------------------------------------|---------------------|---------------|--------------------------|--------|---------------|------------|-------|--------|
| Injector Model                                 | 7N65                |               | Reassembly<br>Test Hours |        | Test Hours    | Test Hours |       |        |
| Technician                                     | REG                 |               |                          |        | Test Fuel No. | DDUI02.P3  |       |        |
| Test                                           | Units               | Initial Check |                          |        |               |            |       |        |
| Test Hours                                     |                     |               | 0                        |        |               | 500        |       |        |
| Injector Valve<br>Opening and<br>Spray Pattern |                     |               |                          |        |               |            |       |        |
| Pressure<br>Reference<br>No.                   |                     |               | 148                      |        |               | 136        |       |        |
| Spray<br>Pattern                               |                     |               | Good                     |        |               | Good       |       |        |
| Unit Hold Time                                 |                     |               |                          |        |               |            |       |        |
| Pressure<br>Drop Time                          | sec.                |               | 422.6                    |        |               | 480        |       |        |
| Spray Tip                                      |                     |               |                          |        |               |            |       |        |
| Pressure                                       | psig                |               | 2000                     |        |               | 2000       |       |        |
| Tip Dryness                                    |                     |               | Dry                      |        |               | Dry        |       |        |
| Needle Travel                                  |                     |               |                          |        |               |            |       |        |
| Needle Valve<br>Lift                           | in.                 |               | 0.009                    |        |               |            |       |        |
| Calibration                                    | ml/1000<br>strokes  |               | 34                       |        |               | 34         |       |        |
| Wear                                           | 1=light<br>6=severe |               | (1-6)                    | Weight | Wtd           |            | (1-6) | Weight |
| Side 1                                         | (1-6)               |               | 1                        | 0.286  | 0.286         |            | 3     | 0.286  |
| Side 2                                         | (1-6)               |               | 1                        | 0.071  | 0.071         |            | 1     | 0.071  |
| Side 3                                         | (1-6)               |               | 1                        | 0.214  | 0.214         |            | 1     | 0.214  |
| Side 3 Helix                                   | (1-6)               |               | 1                        | 0.286  | 0.286         |            | 1     | 0.286  |
| Side 4                                         | (1-6)               |               | 1                        | 0.143  | 0.143         |            | 1     | 0.143  |
| Total                                          | (1-6)               |               |                          |        | 1             |            |       | 1.572  |

UNCLASSIFIED



Figure A15. Plunger Condition for Test No. 2 Cylinder 3, F1000/F2000 Fuel at 500 Hours

## UNCLASSIFIED

**Table A8. F1000 (S8) Fuel Unit Injector Inspections**

| Detroit Diesel Fuel Injector Test Results |                     |               |                       |           |            |            |
|-------------------------------------------|---------------------|---------------|-----------------------|-----------|------------|------------|
| Injector Model                            | 7N65                |               | Injector Location     | DDUI02.P4 |            |            |
| Technician                                | REG                 |               | Test Fuel No.         | F1000     |            |            |
| Test                                      | Units               | Initial Check | Reassembly Test Hours |           | Test Hours | Test Hours |
| Test Hours                                |                     |               | 0                     |           |            | 500        |
| Injector Valve Opening and Spray Pattern  |                     |               |                       |           |            |            |
| Pressure Reference No.                    |                     |               | 154                   |           |            | 132        |
| Spray Pattern                             |                     |               | Good                  |           |            | Good       |
| Unit Hold Time                            |                     |               |                       |           |            |            |
| Pressure Drop Time                        | sec.                |               | 273.3                 |           |            | 300        |
| Spray Tip                                 |                     |               |                       |           |            |            |
| Pressure                                  | psig                |               | 2000                  |           |            | 2000       |
| Tip Dryness                               |                     |               | Dry                   |           |            | Dry        |
| Needle Travel                             |                     |               |                       |           |            |            |
| Needle Valve Lift                         | in.                 |               | 0.009                 |           |            |            |
| Calibration                               | ml/1000 strokes     |               | 34                    |           |            | 34         |
| Wear                                      | 1=light<br>6=severe |               | (1-6)                 | Weight    | Wtd        |            |
| Side 1                                    | (1-6)               |               | 1                     | 0.286     | 0.286      |            |
| Side 2                                    | (1-6)               |               | 1                     | 0.071     | 0.071      |            |
| Side 3                                    | (1-6)               |               | 1                     | 0.214     | 0.214      |            |
| Side 3 Helix                              | (1-6)               |               | 1                     | 0.286     | 0.286      |            |
| Side 4                                    | (1-6)               |               | 1                     | 0.143     | 0.143      |            |
| Total                                     | (1-6)               |               |                       |           | 1          |            |
|                                           |                     |               |                       |           |            | 1.286      |

UNCLASSIFIED



Figure A16. Plunger Condition for Test No. 2 Cylinder 4, F1000 Fuel at 500 Hours

## **APPENDIX B**

### **Unit Injector Radioactive Tracer Test Study**

UNCLASSIFIED

**Unit Injector Radioactive Tracer Tests**

A Detroit Diesel 8V-149 injector plunger RAD4 was irradiated by thermal neutrons in the 2PH1 location at the MIT Nuclear Research Laboratory research reactor. The plunger was encased in an aluminum canister packed with graphite wool and purged with helium (He). The average thermal neutron flux of the 2PH1 location is  $3.35 \times 10^{13}$  neutrons/cm<sup>2</sup>/sec. The test plunger RAD4, along with two small calibration pieces cut from another plunger, were exposed for 4.2 hours.

The irradiated parts appeared to be in as sent condition, with no visible changes to the surfaces. The two calibration pieces were carefully weighed and digested into a liquid solution containing a combination of hydrochloric and nitric acid. The solution was then diluted with DI water into a stock solution volume of 100 ml. A series of four calibrating solution concentrations were made from this stock solution. The calibrating solution concentrations were 1E-6, 1E-7, 1E-8, and 1E-9 gm/ml. These solutions were individually poured into a detector measurement vessel in order of increasing concentration. Each solution was counted on an Ortec High Purity Germanium (HPGe) detector (S/N 45-TP41226A, 80% relative efficiency) with a Canberra DSA-1000 multichannel acquisition system and analyzed with Canberra Genie-2000 gamma spectroscopy software. The measured counts at the 320.1 keV peak (Cr-51) were decay corrected to a reference date of 12/1/2005. Cr-51 has a half-life of 27.7 days. The decay corrected counts were then plotted against concentration and a least squares method was used to determine the slope of the resulting line. This slope is used as the calibration factor to convert decay corrected counts to the concentration of wear debris in the test fuel. The calibration curve is shown in Figure B1.

The Detroit Diesel unit injection rig was charged with the 2000-gram scuffing load fuel and operated with a dummy injector to make sure the system was clean. The rig was de-fueled and a fresh charge of 2000-gram fuel was added and the wear test with the fuel was initiated. The wear test was performed for 33.5 hours, at which time the wear readings with the 2000-g fuel appeared stable and the testing was halted. The system was cleaned and flushed several times due to the difficulties in removing all the tiny wear particles. An undyed on-highway diesel fuel was obtained from the SwRI fleet lab to be used as the good lubricity fuel. The system was charged with the diesel fuel and testing initiated. The unit injector was operated for 32.5 hours at which time the wear readings with the fuel appeared stable and the testing was halted.

## UNCLASSIFIED



**Figure B1. Radioactive Tracer Wear Calibration Curve**

Test fuel was circulated through a specially designed stainless steel vessel mounted on an Ortec HPGe detector (S/N 45-TP41226A). The vessel is designed to achieve a good counting efficiency. Fuel flow rate through the vessel was maintained at approximately 1 liter/minute. Sufficient counts were present to allow for a data measurement increment of 30 minutes, allowing for an increased time resolution. The Fuel 2000 was run for 33.5 hours and Fuel 3000 was run for 32.5 hours. Cumulative wear as a function of time is shown in Figure B2. It can be seen that Fuel 2000 had an initially lower wear rate that appeared to increase to a steady state rate starting at approximately 13 hours. Cumulative wear data for this steady state wear region between 13 and 33.5 hours were fitted to a line using the least squares method. This line is shown with 1 standard deviation confidence limits on the plot. The slope of this line represents the steady state wear rate. Fuel 3000 appeared to wear at a steady state rate from the beginning; therefore the entire data set was used to determine the steady state wear rate for Fuel 3000. Steady state wear rates for these two fuels are shown in Table B1.

## UNCLASSIFIED



Figure B2. Wear Slopes between Fuels

Table B1. Steady State Wear Rates

| Fuel | Wear Rate                     | Error                        |
|------|-------------------------------|------------------------------|
| 2000 | $12.89 \mu\text{g}/\text{hr}$ | $0.47 \mu\text{g}/\text{hr}$ |
| 3000 | $0.95 \mu\text{g}/\text{hr}$  | $0.14 \mu\text{g}/\text{hr}$ |

Following removal of the 3000-g fuel the Detroit Diesel unit injector rig was charged with the 1000-g scuffing load fuel. The rig was operated on the 1000-g fuel for 5.3 hours when it seized. The radioactive detection sample time was set at 15 minutes in anticipation of the wear rates being higher than the 2000-g fuel. The number of counts was below a threshold level for the 15 minute samples, so the integrating period was changed to 30 minutes after 3 hours of operation. Even with the 30 minute integration period very small wear rates were observed. Neighboring 15 minute sample counts were added to analyze as 30 minute samples, and the results are plotted as Figure B3. A wear rate is not discernable from the data. It is being suggested that the mechanism for seizure was evident from the beginning, with metal transferred between surfaces occurring, and wear material not showing up as activity in the fuel.

UNCLASSIFIED

A decayed plunger was reactivated at MIT and the calibrations performed. Wear was checked with Fuel 2000 with the new plunger and revealed a wear rate ( $10.6 \mu\text{g}/\text{hr}$ ) very similar to the wear rate of the first trial with Fuel 2000 ( $12.9 \mu\text{g}/\text{hr}$ ), see Figure B4.



**Figure B3. Fuel 1000 Radioactive Data over Test Period**



**Figure B4. DD 149 Unit Injector Wear with Fuel 2000**

UNCLASSIFIED

B-4

UNCLASSIFIED

The decision was made to add 10 ppm DCI-4A to the Fuel 2000 and look at the wear rate. The initial rate of wear seen (Figure B5) was at a lower level of 7.2 ug/hr before a sudden change in wear occurred. Inspection of the plunger revealed some scoring that might have occurred when the rack was adjusted to match flow rates with earlier work.



**Figure B5. DD 149 Unit Injector Wear with Fuel 2000 + 10 ppm DCI-4A**

The unit injector was reassembled and the wear rates check again, after the fuel in the reservoir was run through a clean-up filter. The wear rate was seen to be at an even higher value (39 ug/hr), indicating that the plunger wear was accelerating. The diesel fuel was put into the system to determine if the injector would heal itself when operated with a good lubricity fuel. The wear rate for the diesel fuel is shown in Figure B6, at 24.8 ug/hr. Also in Figure B6 is the wear rate seen when an adjustment was made to center the contact position of the rocker arm on the injector. The rocker arm contact was repositioned when it was noted it was hitting the injector off-center, and it was felt the contact might be adding an additional side thrust to the injector plunger. The realignment did reduce the wear rate, indicating the injector is sensitive to minor variations in alignment and the test method is sensitive enough to detect the result.

UNCLASSIFIED

The rig had been reconfigured in an attempt to resolve an alignment issue. Initially the wear rate started out low then shifted to a higher wear rate as seen in Figure B7. The cylinder head seemed to start bouncing around on the gasket material (which seals oil from leaking) and the wear rate started going up.



**Figure B6. DD 149 Unit Injector with Diesel Fuel and Centered Rocker Arm**



**Figure B7. Wear Rate Deviation Attributed to Head Movement**

UNCLASSIFIED

## UNCLASSIFIED

Several experiments were performed with Fuel 2000 to determine adequacy of the injection rig repairs. Prior to operation the barrel and plunger were lapped together in an attempt to polish the surfaces after running misaligned. The plot for Fuel 2000 is shown in Figure B8. The high wear rate eventually decayed to a steady value that repeated day to day, as represented by R603 through R605 in Figure B8. The wear rate stabilized at 62.0 micrograms/hour of material removed from the plunger. During run R606, 9 ppm of corrosion inhibitor fuel additive DCI-4A was added to the fuel, at the time denoted by the dashed vertical line. As seen in Figure B8 the wear rate decreased to a steady value of 27.8 micrograms/hour of material removed from the plunger. This wear rate appeared to stabilize over several days as reflected in runs R606, R607, and R68A. During operation of R68A, a fuel line broke and the test charge leaked out. It should be noted that the data collected was integrated over 30 minutes for the Fuel 2000 runs. At that time it was suggested that Fuel 3000 be put in the system to see the wear results. The Fuel 3000 runs are shown in Figure B9, which reveal an initial high wear rate that eventually stabilizes to a lower value. What is interesting, is the initial wear rate is higher than the rate seen at the end of the Fuel 2000 runs. The system was cleaned between fuels, and flushed with the test fuel until background counts were low, and then filled with the batch of the test fuel. There appears to be a run-in period with a fuel change that is not completely understood. It should be noted the statistics with the lower wear rate, higher lubricity fuel indicate more variability for the 30 minute counting period. More variability is evident because the wear rate is lower and also because the activity of the isotope being monitored is decaying.



Figure B8. Fuel 2000 and Fuel 2000 + DCI4A DDC Unit Injector Wear Rates

UNCLASSIFIED

B-7

**UNCLASSIFIED**

The data from the unit injector using radioactive tracer directionally showed wear between fuels, but was too inconsistent, and did not repeat within a fuel. Furthermore the decay of the isotope for the test plunger approached a level that required a new activation to complete the test program. Inspection of the plunger revealed it to be worn, and would not be suitable for reactivation. Activating a new plunger would mean repeating some test fuels, again. It was decided the RATT approach was not working with the current test rig, partly due to the rig not being robust enough.



**Figure B9. Fuel 3000 DDC Unit Injector Wear Rates**