Numerical Analysis

established about 4'000 years ago

- 5. Алгебраїчна проблема власних значень
 - ∘ 5.1. Степеневий метод
 - 5.2. Ітераційний метод обертання

5. Алгебраїчна проблема власних значень

Нехай задано матрицю $A\in\mathbb{R}^{n\times n}$. Тоді задача на власні значення ставиться так: знайти число λ та вектор $x\neq 0$, що задовольняють рівнянню

$$Ax - \lambda x.$$
 (1)

Означення: λ називається власним значенням A, а x — власним вектором.

3(1)

$$\det(A - \lambda E) = P_n(\lambda) = = (-1)^n \lambda^n + a_n \lambda^{n-1} + \dots + a_0 = 0.$$
 (2)

Тут $P_n(\lambda)$ — характеристичний багаточлен.

Для розв'язання багатьох задач механіки, фізики, хімії потрібне знаходження всіх власних значень $\lambda_i, i=\overline{1,n}$, а іноді й всіх

власних векторів x_i , що відповідають λ_i .

Означення: Цю задачу називають *повною проблемою власних значень*.

В багатьох випадках потрібно знайти лише максимальне або мінімальне за модулем власне значення матриці. При дослідженні стійкості коливальних процесів іноді потрібно знайти два максимальних за модулем власних значення матриці.

Означення: Останні дві задачі називають *частковими проблемами власних значень*.

5.1. Степеневий метод

Література:

- БЖК, стор. 309-314;
- КБМ, стор. 149–157.
- 1. Знаходження λ_{\max} : $\lambda_{\max} \equiv |\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \ldots$

Нехай $x^{(0)}$ — заданий вектор, будемо послідовно обчислювати вектори

$$x^{(k+1)} = Ax^{(k)}, \quad k = 0, 1, \dots$$
 (3)

Тоді $x^{(k)} = A^k x^{(0)}$. Нехай $\{e_i\}_{i=1}^n$ — система власних векторів. Представимо $x^{(0)}$ у вигляді:

$$x^{(0)} = \sum_{i=1}^{n} c_i e_i. (4)$$

Оскільки $Ae_i=\lambda_i e_i$, то $x^{(k)}=\sum_{i=1}^n c_i \lambda_i^k e_i$. При великах k: $x^{(k)}pprox c_1 \lambda_1^k e_1$. Тому

$$\mu_1^{(k)} = \frac{x_m^{(k+1)}}{x_m^{(k)}} = \lambda_1 + O\left(\left|\frac{\lambda_2}{\lambda_1}\right|^k\right). \tag{5}$$

Значить $\mu_1^{(k)} \xrightarrow[k o \infty]{} \lambda_1.$

Якщо матриця $A=A^{\mathsf{T}}$ симетрична, то існує ортонормована система векторів $\langle e_i,e_j \rangle = \delta_{ij}$. Тому

$$\mu_{1}^{(k)} = \frac{\left\langle x^{(k+1)}, x^{(k)} \right\rangle}{\left\langle x^{(k)}, x^{(k)} \right\rangle} =$$

$$= \frac{\left\langle \sum_{i} c_{i} \lambda_{i}^{k+1} e_{i}, \sum_{j} c_{j} \lambda_{j}^{k} e_{j} \right\rangle}{\left\langle \sum_{i} c_{i} \lambda_{i}^{k} e_{i}, \sum_{j} c_{j} \lambda_{j}^{k} e_{j} \right\rangle} =$$

$$= \frac{\sum_{i} c_{i}^{2} \lambda_{i}^{2k+1}}{\sum_{i} c_{i}^{2} \lambda_{i}^{2k}} =$$

$$= \frac{c_{1}^{2} \lambda_{1}^{2k+1} + c_{2}^{2} \lambda_{2}^{2k+1} + \dots}{c_{1}^{2} \lambda_{1}^{2k} + c_{2}^{2} \lambda_{2}^{2k} + \dots} =$$

$$= \lambda_{1} + O\left(\left|\frac{\lambda_{2}}{\lambda_{1}}\right|^{2k}\right) \xrightarrow[k \to \infty]{} \lambda_{1}.$$
(6)

Це означає збіжність до максимального за модулем власного значення з квадратичною швидкістю.

Якщо $|\lambda_1|>1$, то при проведенні ітерацій відбувається зріст компонент вектора $x^{(k)}$, що приводить до «переповнення» (overflow). Якщо ж $|\lambda_1|<1$, то це приводить до зменшення компонент (underflow). Позбутися негативу такого явища можна нормуючи вектори $x^{(k)}$ на кожній ітерації.

Алгоритм степеневого методу знаходження максимального за модулем власного значення з точністю ε виглядає так:

```
e[0] = x[0] / norm(x[0])

k = 0
while True:
    k += 1

    x[k + 1] = A * x[k]
    µ[k][1] = scalar_product(x[k + 1], e[k])
    e[k + 1] = x[k + 1] / norm(x[k + 1])

if abs(µ[k + 1][1] - µ[k][1]) < E:
    break

\[ \lambda[1] = \lambda[k + 1][1] \]</pre>
```

За цим алгоритмом для симетричної матриці $A^{\rm T}=A$ швидкість прямування $\mu_{\scriptscriptstyle 1}^{(k)}$ до $\lambda_{\rm max}$ — квадратична.

2. Знаходження λ_2 : $|\lambda_1|\geq |\lambda_2|\geq |\lambda_3|\geq \dots$ Нехай λ_1 , e_1 відомі.

Задача 10: Довести, що якщо $|\lambda_1| \geq |\lambda_2| \geq |\lambda_3| \geq \dots$ то

$$\mu_2^{(k)} = rac{x_m^{(k+1)} - \lambda_1 x_m^{(k)}}{x_m^{(k)} - \lambda_1 x_m^{(k-1)}} \xrightarrow[k o \infty]{} \lambda_2, \qquad (7)$$

де $x^{(k+1)} = Ax^{(k)}$, $x_m^{(k)} - m$ -та компонента $x^{(k)}$.

Задача 11: Побудувати алгоритм обчислення λ_2 , e_2 , використовуючи нормування векторів та скалярні добутки для обчислення $\mu_2^{(k)}$.

3. Знаходження мінімального власного числа $\lambda_{\min}(A) = \min_i |\lambda_i(A)|.$

Припустимо , що $\lambda_i(a)>0$ то відоме λ_{\max} . Розглянемо матрицю $B=\lambda_{\max}E-A$. Маємо

$$\forall i: \quad \lambda_i(B) = \lambda_{\max} - \lambda_i(A).$$
 (8)

Тому $\lambda_{\max}(B)=\lambda_{\max}(A)-\lambda_{\min}(A)$. Звідси $\lambda_{\min}(A)=\lambda_{\max}(A)-\lambda_{\max}(B)$.

Якщо $\exists \underline{i}:\lambda_i(A)<0$, то будуємо матрицю $A=\sigma E+A$, $\sigma>0$: $\overline{A}>0$ і для неї попередній розгляд дає необхідний результат. Замість $\lambda_m ax$ в матриці B можна використовувати $\|A\|$.

Ще один спосіб обчислення мінімального власного значення полягає в використання обернених ітерацій:

$$Ax^{(k+1)} = x^{(k)}, \quad k = 0, 1, \dots$$
 (9)

Але цей метод вимагає більшої кількості арифметичних операцій: складність методу на основі формули (3): $Q=O(n^2)$, а на основі (9) — $Q=O(n^3)$, оскільки треба розв'язувати СЛАР, але збігається метод (9) швидше.

5.2. Ітераційний метод обертання

Література:

• КБМ, стор. 157–161.

Це метод розв'язання повної проблеми власних значень для симетричних матриць $A^{\mathsf{T}}=A$. Існує матриця U, що приводить матрицю A до діагонального виду:

$$A = U\Lambda U^{\mathsf{T}},\tag{10}$$

де Λ — діагональна матриця, по діагоналі якої стоять власні значення $\lambda_i; U$ — унітарна матриця, тобто: $U^{-1} = U^\intercal$.

3 (1) маємо

$$\Lambda = U^{\mathsf{T}} A U. \tag{11}$$

Нехай $\exists ilde{U}$ — матриця, така що $ilde{\Lambda} = ilde{U}^{\mathsf{T}} A ilde{U}$ і $ilde{\Lambda} = \left(ilde{\lambda}_{ij} \right)_{i,j=1}^n$, $\left| ilde{\lambda}_{ij} \right| < \delta \ll 1, i \neq j.$

Тоді діагональні елементи мало відрізняються від власних значень

$$|\tilde{\lambda}_{ij} - \lambda_i(A)| < \varepsilon = \varepsilon(\delta).$$
 (12)

Введемо

$$t(A) = \sum_{\substack{i,j=1\\i \neq j}}^{n} a_{ij}^{2}.$$
 (13)

З малості величини t(A) випливає, що діагональні елементи малі. По $A=A_0$ за допомогою матриць обертання U_k :

$$U_{k} = \begin{pmatrix} 1 & \cdots & 0 & \cdots & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cos \phi & \cdots & -\sin \phi & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & \sin \phi & \cdots & \cos \phi & \cdots & 0 \\ \vdots & \ddots & \vdots & \ddots & \vdots & \ddots & \vdots \\ 0 & \cdots & 0 & \cdots & 0 & \cdots & 1 \end{pmatrix}. \quad (14)$$

що повертають систему векторів на кут φ , побудуємо послідовність $\{A_k\}$ таку, що $A_k \longrightarrow \Lambda$.

Задача 12: Показати, що матриця обертання U_k є унітарною: $U_k^{-1} = U_k^\intercal$.

Послідовно будуємо:

$$A_{k+1} = U_K^T A_k U_k, (15)$$

Означення: Процес (15) називається *монотонним*, якщо: $t(A_{k+1}) < t(A_k)$.

Задача 13: Довести, що для матриці (15) виконується:

$$a_{i,j}^{(k+1)} = a_{i,j}^{(k)} \cos(2arphi) + rac{1}{2} \Big(a_{j,j}^{(k)} - a_{i,i}^{(k)} \Big) \sin(2arphi), ~~(16)$$

Показати, що

$$t(A_{k+1}) = t(A_k) - 2\left(a_{i,j}^{(k)}\right)^2 \tag{17}$$

якщо вибирати arphi з умови $a_{i.i}^{(k+1)}=0.$

Звідси

$$\varphi = \varphi_k = \frac{1}{2}\arctan(p^{(k)}),$$
 (18)

тобто

$$p^{(k)} = \frac{2a_{i,j}^{(k)}}{a_{i,i}^{(k)} - a_{i,j}^{(k)}},\tag{19}$$

де

$$\left| a_{i,j}^{(k)} \right| = \max_{\substack{m,l \\ m \neq l}} \left| a_{m,l}^{(k)} \right|. \tag{20}$$

Тоді $t(A_k) \xrightarrow[k \to \infty]{} 0$. Чим більше n тим більше ітерацій необхідно для зведення A до Λ .

Якщо матриця несиметрична, то застосовують QR- або QLметоди.

Назад до лекцій

Назад на головну

numerical-analysis is maintained by csc-knu.

© 2019 Київський національний університет імені Тараса Шевченка, Андрій Риженко, Скибицький Нікіта