20th CSEC – Past Year Paper Solution 2015-2016 Sem 1 MH 1812 – Discrete Mathematics

1) a) $p \leftrightarrow q \equiv (p \rightarrow q) \land (q \rightarrow p)$ (by definition) $\equiv (\neg p \lor q) \land (\neg q \lor p)$ (by definition) $\equiv [(\neg p \lor q) \land \neg q] \lor [(\neg p \lor q) \land p]$ (DeMorgan's) $\equiv [(\neg p \land \neg q) \lor (q \land \neg q)] \lor [(\neg p \land p) \lor (p \land q)]$ (DeMorgan's) $\equiv (\neg p \land \neg q) \lor (p \land q)$ $\equiv p \wedge q \vee \neg p \wedge \neg q$ (Operator precedence) b) $\neg (\exists x \in X, \forall y \in Y, P(x, y)) \equiv (\forall x \in X, \exists y \in Y, P(x, y))$ X can only be 2 or 3: (1) When x = 2, y = 7: $x \equiv y \mod 5 = 2$ That is, P (2,7) is true. (2) When x = 3, y = 8: $x \equiv y \mod 5 = 3$ That is, P (3,8) is true. So $\forall x \in X, \exists y \in Y, P(x, y)$ is true, which means $\neg(\exists x \in X, \forall y \in Y, P(x, y))$ is true. c) A valid argument satisfies: If the premises are true, then the conclusion is true. [premise 1] pΛq ∴ p is true, and q is true [i] $p \rightarrow \neg r$ and p is true [premise 2 and i] ∴ ¬r is true [ii] $q \rightarrow \neg s$ and q is true [premise 3 and i] ∴ ¬s is true So from (ii) and (iii), $\neg r \land \neg s$ is true. According to the definition, this argument is valid. 2) a) i) Let $y \in f(SUT)$ arbitrary. Then there exists $x \in (SUT)$ such that f(x) = y. Since $x \in (S \cup T), x \in S$ or $x \in T$, then $f(x) \in f(S)$ or $f(x) \in f(T)$. That is, $f(x) \in f(S) \cup f(T)$ Thus, $f(S \cup T) \subset f(S) \cup f(T)$ [1] Let $y \in f(S) \cup f(T)$ arbitrary.

[2]

Then there exists $x \in S$ or $x \in T$ such that f(x) = y. Since $x \in S$ or $x \in T$, $x \in (S \cup T)$, then $f(x) \in f(S \cup T)$

Thus, $f(S)Uf(T) \subset f(S \cup T)$

20th CSEC – Past Year Paper Solution 2015-2016 Sem 1 MH 1812 – Discrete Mathematics

From [1] and [2], $f(S \cup T) = f(S) \cup f(T)$.

ii) Disprove:

Suppose set A = {x1, x2, x3}, set Y = {y1, y2},
$$f(x1) = f(x3) = y1, f(x2) = y2$$
.
If $S = \{x1, x2\}, T = \{x2, x3\}, then S \cap T = x2, f(x2) = y2$.
However, $f(S) = \{y1, y2\}, f(T) = \{y1, y2\}, f(S) \cap f(T) = \{y1, y2\}, which is not equal to y2.$

b) Yes, we can use membership table to solve this question. We should notice that premise is $A \oplus B = B \oplus C$, and we should get the conclusion that A = C.

$A \oplus B$	$B \oplus C$	В	A	С
0	0	0	0	0
0	0	1	1	1
0	1	0	0	0
0	1	1	1	1
1	0	0	1	1
1	0	1	0	0
1	1	0	1	1
1	1	1	0	0

And we can get the conclusion that A = C.

3) We can use matrix representation to solve this question.

Since the relation should be reflexive, which means every element of A is related to itself, the matrix's diagonal entries should all be true while the others can be true or false.

$$\begin{bmatrix} T & TorF & TorF & TorF \\ TorF & T & TorF & TorF \\ TorF & TorF & \ddots & TorF \\ TorF & TorF & TorF & T \end{bmatrix}$$

So we can construct 2^{n*n-n} distinct matrixes. That is, there are 2^{n*n-n} distinct reflexive relations on a set with n elements.

4)

Figure 1: Graph

20th CSEC – Past Year Paper Solution *2015-2016 Sem 1* MH 1812 – Discrete Mathematics

- a) Yes, this graph is bipartite. Bipartite graph is a graph whose vertices can be partitioned into 2 (disjoint) subsets V and W such that each edge only connects a $v \in V$ and $a \in W$. Suppose $V = \{a, c, d\}$, $W = \{e, b\}$, then each edge only connects a node in V and a node in W. Thus, this graph is bipartite.
- b) An Euler path (Eulerian trail) is a walk on the edges of a graph which uses each edge in the original graph exactly once. (The beginning and end of the walk may or not be the same vertex). If we follow this order: e→c→b→d→e→a→b, we can walk on the edges of the graph which use each edge exactly once.

--End of Answers--

Solver: Deng Yue