Medical Image Processing for Diagnostic Applications

SVD in Optimization - Part 2

Online Course – Unit 7 Andreas Maier, Joachim Hornegger, Markus Kowarschik, Frank Schebesch Pattern Recognition Lab (CS 5)

Optimization Problem III

Further Readings

Another guite important optimization problem in image processing and pattern recognition is the following:

Problem: Given a matrix $\mathbf{A} \in \mathbb{R}^{n \times n}$.

Compute the matrix $\hat{\boldsymbol{B}} \in \mathbb{R}^{n \times n}$ of rank k < n that minimizes:

$$\hat{\boldsymbol{B}} = \underset{\boldsymbol{B}}{\operatorname{arg\,min}} \|\boldsymbol{A} - \boldsymbol{B}\|_2$$
, subject to $\operatorname{rank}(\boldsymbol{B}) = k$.

Solution: Using SVD, the solution can be computed easily by:

$$\widehat{\boldsymbol{B}} = \sum_{i=1}^{k} \sigma_i \boldsymbol{u}_i \boldsymbol{v}_i^{\mathsf{T}}.$$

onlz summ up the parts of u and v that are associated to the sinhular values

Example

The SVD can be used to compute the image matrix of rank 1 that approximates an image best w. r. t. $\|.\|_2$.

Figure 1 shows an image I and its rank 1-approximation $I' = \sigma_1 u_1 v_1^T$.

even in the first rank image we can still se the

Figure 1: Original X-ray image (left) and its rank 1-approximation (right)

bars/shutters

Optimization Problem IV

Further Readings

Problem: The *Moore–Penrose pseudoinverse* is required to find the solution to the following optimization problem:

$$\| {m A} {m x} - {m b} \|_2 o \min$$
 .

Solution: The least squares solution of this optimization problem is given by

$$\mathbf{x} = \mathbf{A}^{\dagger} \mathbf{b},$$

where we get $\mathbf{A}^{\dagger} \in \mathbb{R}^{n \times m}$ based on the SVD of $\mathbf{A} \in \mathbb{R}^{m \times n}$ by:

$$\mathbf{A}^{\dagger} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}} = \mathbf{V}\mathbf{\Sigma}^{\dagger}\mathbf{U}^{\mathsf{T}}.$$

Proof: We start with the optimization problem:

$$\frac{1}{2} \| \boldsymbol{A} \boldsymbol{x} - \boldsymbol{b} \|_2^2 \rightarrow \min,$$

which can be solved analytically by derivation of this functional:

$$\mathbf{A}^{\mathsf{T}}(\mathbf{A}\mathbf{x} - \mathbf{b}) = 0$$

$$\Leftrightarrow \qquad \mathbf{A}^{\mathsf{T}}\mathbf{A}\mathbf{x} - \mathbf{A}^{\mathsf{T}}\mathbf{b} = 0$$

$$\Leftrightarrow \qquad \mathbf{x} = (\mathbf{A}^{\mathsf{T}}\mathbf{A})^{-1}\mathbf{A}^{\mathsf{T}}\mathbf{b}.$$

The diagonal matrix Σ^{\dagger} in the SVD of the pseudo-inverse of \boldsymbol{A} is given by:

$$oldsymbol{\Sigma}^\dagger = \left(egin{array}{ccccc} rac{1}{\sigma_1} & & & & & 0 & \dots & 0 \\ & \ddots & & & & & & & & \\ & & rac{1}{\sigma_r} & & & dots & & dots \\ & & & 0 & & & & & \\ & & & \ddots & & & & \\ & & & 0 & \dots & 0 \end{array}
ight) \in \mathbb{R}^{n imes m},$$

where $\sigma_r > 0$ is the smallest nonzero singular value of **A**.

instead of dividing by zero, we just write zero

use Psudoinverse to estimate regression lines

Example

Compute the regression line through the following 2-D points:

Figure 2: Regression line through a set of 2-D points

All points (x_i, y_i) , i = 1, ..., 7, have to fulfill the line equation:

$$y_i = mx_i + t$$
, for $i = 1, ..., 7$.

Thus we get the following system of linear equations:

$$\begin{pmatrix} x & x & 1 \\ 2 & 1 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \\ -1 & 1 & 1 \\ -2 & 1 & \end{pmatrix} \begin{pmatrix} m \\ t \end{pmatrix} = \begin{pmatrix} y \\ 2 \\ 1 \\ 2 \\ 0 \\ 1 \\ -1 \\ -1 \end{pmatrix}.$$

x = M inverse * b

The Moore-Penrose pseudo-inverse for this particular problem is:

$$\boldsymbol{A}^{\dagger} = \left(\begin{array}{ccccc} 0.14 & 0.09 & 0.04 & -0.01 & -0.07 & -0.07 & -0.12 \\ 0.11 & 0.12 & 0.13 & 0.15 & 0.16 & 0.16 & 0.18 \end{array} \right).$$

Therefore, for the regression line we get the equation:

$$y = 0.56x + 0.41$$
.

Remarks on SVD Computation

Further Readings

Remarks on SVD Computation

- SVD can be computed for every matrix.
- SVD is numerically robust.
- In most practical situations we have more rows than columns:

$$m\gg n$$
.

• The time complexity to decompose $\mathbf{A} \in \mathbb{R}^{m \times n}$ is:

$$4m^2n + 8mn^2 + 9n^3$$
.

 For us, the SVD is a black box. We do not consider algorithms to compute the SVD numerically.

Summary Take Home Messages **Further Readings**

Take Home Messages

- We have studied two additional applications (see also previous unit):
 - low-rank approximation,
 - fitting of a regression line.
- SVD is the tool for linear equations it cannot fail (but in many special cases there may exist better solutions).
- SVD is provided by all standard libraries.

Further Readings

Read the original:

Gene H. Golub and Charles F. Van Loan. *Matrix Computations*. 3rd ed. Johns Hopkins Studies in the Mathematical Sciences. Baltimore: The Johns Hopkins University Press. Oct. 1996

A very detailed and easy to follow introduction of the SVD can be found in:

Carlo Tomasi's class notes, chapter 3 (a must-read).

The theory is described in an easy to read format in:

Llovd N. Trefethen and David Bau III. Numerical Linear Algebra. Philadelphia: SIAM, 1997

For details about the numerical computation of SVD see:

William H. Press et al. Numerical Recipes - The Art of Scientific Computing. 3rd ed. Cambridge University Press, 2007. Get at http://numerical.recipes/(August 2016).

Finally, have a look at:

Kaare Brandt Petersen and Michael Syskind Pedersen. The Matrix Cookbook. Online. Accessed: 25. April 2017. Technical University of Denmark, Nov. 2012. URL: http://www2.imm.dtu.dk/pubdb/p.php?3274