Change of Variables Formula in Measure Theory

Hui

December 16, 2012

Let $(\Omega_i, \mathcal{F}_i)$, i = 1, 2 be two measureable spaces.

Let $f: \Omega_1 \longrightarrow \Omega_2$ be $(\mathcal{F}_1, \mathcal{F}_2) - measurable$

Let $h: \Omega_2 \longrightarrow \mathcal{R} \ be < \mathcal{F}_2, \mathcal{B}(\mathcal{R}) > -measurable$

Let $I(x) \equiv x$ is identity function in \mathcal{R}

 μ_1 is a measure on $(\Omega_1, \mathcal{F}_1)$, $\mu_2 = \mu_1 f^{-1}$ and $\mu_3 = \mu_2 f^{-1}$ then we have

$$g = h \circ f \in L^1(\Omega_1, \mathcal{F}_1, \mu_1) \Longleftrightarrow h(\cdot) \in L^1(\Omega_2, \mathcal{F}_2, \mu_2) \Longleftrightarrow I(\cdot) \in L^1(\mathcal{R}, \mathcal{B}(\mathcal{R}))$$
 (1)

$$\int_{\Omega_1} g d\mu_1 = \int_{\Omega_2} h d\mu_2 = \int_{\mathcal{R}} x d\mu_3 \tag{2}$$

Proof

1. Claim
$$g = h \circ f \in L^1(\Omega_1, \mathcal{F}_1, \mu_1) \iff h(\cdot) \in L^1(\Omega_2, \mathcal{F}_2, \mu_2)$$
 and $\int_{\Omega_1} g d\mu_1 = \int_{\Omega_2} h d\mu_2$

(a) Let $h = I_A$ $A \in \mathcal{F}_2$

$$\int_{\Omega_2} I_A \ d\mu_2 = \int_{\Omega_2} I_A \ d(\mu f^{-1}) = \mu_1 f^{-1}(A) = \mu_1 [f^{-1}(A)] = \int_{\Omega_1} I_{f^{-1}(A)} \ d\mu_1 = \int_{\Omega_1} I_A(f) \ d\mu_1$$

$$= \int_{\Omega_1} I_A \circ f \ d\mu_1$$

$$= \int_{\Omega_1} h \circ f \ d\mu_1$$

So for $h = I_A$, Claim 1 holds

- (b) By linearity, Claim 1 holds for all nonnegative simple function h in Ω_2
- (c) If h is nonnegative measurable function, then there exists $\{h_n\}_{n\geq 1}$, sequence of nonnegative simple functions, so that $0\leq h_n\uparrow h$. Then $\{h_n\circ f\}_{n\geq 0}$ is a sequence of simple functions that increase to $h\circ f$. By MCT, Claim 1 holds.
- (d) If h is measurable function,

$$\int_{\Omega_1} h^+ \circ f \ d\mu_1 = \int_{\Omega_2} h^+ d_{\mu_1 f^{-1}} \tag{3}$$

$$\int_{\Omega_1} h^- \circ f \ d\mu_1 = \int_{\Omega_2} h^- d_{\mu_1 f^{-1}} \tag{4}$$

and $h^{\pm} \circ f = (h \circ f)^{\pm}$. Then we have

$$\int_{\Omega_1} h \circ f \ d\mu_1 = \int_{\Omega_1} h^+ \circ f \ d\mu_1 - \int_{\Omega_1} h^- \circ f \ d\mu_1 = \int_{\Omega_2} h^+ d\mu_1 f^{-1} - \int_{\Omega_2} h^- d\mu_1 f^{-1} = \int_{\Omega_2} h \ d\mu_1 f^{-1}$$

So Claim 1 holds.

2. Claim $\int_{\Omega_2} h \ d\mu_2 = \int_{\mathcal{R}} x \ d\mu_3$

$$\int_{\mathcal{R}} x \ d\mu_3 = \int_{\mathcal{R}} x \ d\mu_2 h^{-1} = \int_{\Omega_2} h I_{\mathcal{R}}(h) \ d\mu_2 = \int_{\Omega_2} h \ d\mu_2$$

So Claim 2 holds.