Multilayer Block Models for Exploratory Analysis of Computer Event Logs

Corentin Larroche

 ${\tt corentin.larroche@ssi.gouv.fr}$

French National Cybersecurity Agency (ANSSI), Paris, France

Complex Networks '22, Palermo, Italy November 9th, 2022

Problem definition - Computer network monitoring

Event logs

- Record various types of activity
- Many events can be seen as interactions between entities
- Here, we focus on authentications and network flows
- Massive amount of data
- Goal: quickly explore and understand their content, and uncover suspicious behaviors

Related work - Visualization tools

ages of the street of the stre

LogonTracer [Tomonaga, 2017]

FloVis [Taylor et al., 2009]

APTHunter [Siadati et al., 2016]

Related work - Visualization tools

VISUAL [Ball et al., 2004]

LogonTracer [Tomonaga, 2017]

FloVis [Taylor et al., 2009]

APTHunter [Siadati et al., 2016]

Problem

Displaying everything does not scale well!

▶ Need to **summarize** the graphs

Summarizing the data

Intuition: many nodes have similar connectivity patterns.

Summarizing the data

Intuition: many nodes have similar connectivity patterns.

Summarizing the data

Intuition: many nodes have similar connectivity patterns.

Definitions

Let \mathcal{U}, \mathcal{V} be the **top** and **bottom** node sets, respectively. Assume there are L edge types. We consider a bipartite multiplex graph $\mathcal{G} = (\mathcal{U}, \mathcal{V}, \mathcal{E})$, where $\mathcal{E} \subset \mathcal{U} \times \mathcal{V} \times [L]$ is the edge set. For each type $\ell \in [L]$, the biadjacency matrix for layer ℓ is denoted $\mathbf{B}^{(\ell)} = (b_{i,i}^{(\ell)})$.

Definitions

Let \mathcal{U},\mathcal{V} be the **top** and **bottom** node sets, respectively. Assume there are L **edge types**. We consider a **bipartite multiplex graph** $\mathcal{G} = (\mathcal{U},\mathcal{V},\mathcal{E})$, where $\mathcal{E} \subset \mathcal{U} \times \mathcal{V} \times [L]$ is the edge set. For each type $\ell \in [L]$, the biadjacency matrix for layer ℓ is denoted $\mathbf{B}^{(\ell)} = (b_{ij}^{(\ell)})$.

Generative model: multilayer extension of the **Poisson latent block** model [Govaert and Nadif, 2010].

lackbox H top clusters, K bottom clusters

Definitions

Let \mathcal{U},\mathcal{V} be the **top** and **bottom** node sets, respectively. Assume there are L **edge types**. We consider a **bipartite multiplex graph** $\mathcal{G} = (\mathcal{U},\mathcal{V},\mathcal{E})$, where $\mathcal{E} \subset \mathcal{U} \times \mathcal{V} \times [L]$ is the edge set. For each type $\ell \in [L]$, the biadjacency matrix for layer ℓ is denoted $\mathbf{B}^{(\ell)} = (b_{ij}^{(\ell)})$.

- lacktriangledown H top clusters, K bottom clusters
- ► For each $\ell \in [L]$, let $\Theta^{(\ell)} = (\theta_{hk}^{(\ell)})$ be a cluster connectivity matrix.

Definitions

Let \mathcal{U},\mathcal{V} be the **top** and **bottom** node sets, respectively. Assume there are L **edge types**. We consider a **bipartite multiplex graph** $\mathcal{G}=(\mathcal{U},\mathcal{V},\mathcal{E})$, where $\mathcal{E}\subset\mathcal{U}\times\mathcal{V}\times[L]$ is the edge set. For each type $\ell\in[L]$, the biadjacency matrix for layer ℓ is denoted $\mathbf{B}^{(\ell)}=(b_{ij}^{(\ell)})$.

- lacktriangledown H top clusters, K bottom clusters
- ► For each $\ell \in [L]$, let $\Theta^{(\ell)} = (\theta_{hk}^{(\ell)})$ be a cluster connectivity matrix.
- ▶ $\forall i \in \mathcal{U}$, draw cluster $U_i \sim \text{Mult}(\boldsymbol{\pi})$.

Definitions

Let \mathcal{U},\mathcal{V} be the **top** and **bottom** node sets, respectively. Assume there are L **edge types**. We consider a **bipartite multiplex graph** $\mathcal{G}=(\mathcal{U},\mathcal{V},\mathcal{E})$, where $\mathcal{E}\subset\mathcal{U}\times\mathcal{V}\times[L]$ is the edge set. For each type $\ell\in[L]$, the biadjacency matrix for layer ℓ is denoted $\mathbf{B}^{(\ell)}=(b_{ij}^{(\ell)})$.

- lacktriangledown H top clusters, K bottom clusters
- ► For each $\ell \in [L]$, let $\Theta^{(\ell)} = (\theta_{hk}^{(\ell)})$ be a cluster connectivity matrix.
- $\forall i \in \mathcal{U}$, draw cluster $U_i \sim \text{Mult}(\boldsymbol{\pi})$.
- ▶ $\forall j \in \mathcal{V}$, draw cluster $V_j \sim \operatorname{Mult}(\boldsymbol{\rho})$.

Definitions

Let \mathcal{U},\mathcal{V} be the **top** and **bottom** node sets, respectively. Assume there are L **edge types**. We consider a **bipartite multiplex graph** $\mathcal{G} = (\mathcal{U},\mathcal{V},\mathcal{E})$, where $\mathcal{E} \subset \mathcal{U} \times \mathcal{V} \times [L]$ is the edge set. For each type $\ell \in [L]$, the biadjacency matrix for layer ℓ is denoted $\mathbf{B}^{(\ell)} = (b_{ij}^{(\ell)})$.

- lacktriangledown H top clusters, K bottom clusters
- ► For each $\ell \in [L]$, let $\Theta^{(\ell)} = (\theta_{hk}^{(\ell)})$ be a cluster connectivity matrix.
- $\forall i \in \mathcal{U}$, draw cluster $U_i \sim \text{Mult}(\boldsymbol{\pi})$.
- ▶ $\forall j \in \mathcal{V}$, draw cluster $V_j \sim \operatorname{Mult}(\boldsymbol{\rho})$.
- $\forall (i, j, \ell) \in \mathcal{U} \times \mathcal{V} \times [L], \text{ draw edge indicator } b_{ij}^{(\ell)} \sim \operatorname{Poisson}(\mu_i \nu_j \theta_{U_i V_j}^{(\ell)}).$

Model inference and selection

Cluster assignments and model parameters are inferred through maximum likelihood estimation.

Goal: maximize the complete data log-likelihood

$$L_{\mathrm{C}} = \sum_{i} \log \pi_{U_i} + \sum_{\boldsymbol{j}} \log \rho_{V_j} + \sum_{i,\boldsymbol{j},\boldsymbol{\ell}} \left\{ b_{i\boldsymbol{j}}^{(\boldsymbol{\ell})} \log \left(\mu_i \nu_{\boldsymbol{j}} \theta_{U_i V_j}^{(\boldsymbol{\ell})} \right) - \mu_i \nu_{\boldsymbol{j}} \theta_{U_i V_{\boldsymbol{j}}}^{(\boldsymbol{\ell})} \right\}$$

Model inference and selection

Cluster assignments and model parameters are inferred through maximum likelihood estimation.

Goal: maximize the complete data log-likelihood

$$L_{\mathrm{C}} = \sum_{i} \log \pi_{U_i} + \sum_{\boldsymbol{j}} \log \rho_{V_j} + \sum_{i,\boldsymbol{j},\boldsymbol{\ell}} \left\{ b_{i\boldsymbol{j}}^{(\boldsymbol{\ell})} \log \left(\mu_i \nu_{\boldsymbol{j}} \theta_{U_i V_j}^{(\boldsymbol{\ell})} \right) - \mu_i \nu_{\boldsymbol{j}} \theta_{U_i V_j}^{(\boldsymbol{\ell})} \right\}$$

- ▶ We adapt the **variational EM** procedure of [Govaert and Nadif, 2010]:
 - (i) Estimate node activities μ, ν from the marginal totals of ${f B}^{(1:L)}$
 - (ii) Introduce soft cluster assignment matrices $\mathbf{U} \in [0,1]^{|\mathcal{U}| \times H}$ and $\mathbf{V} \in [0,1]^{|\mathcal{V}| \times K}$
 - (iii) Alternately optimize $\mathbf{U},\,\mathbf{V}$ and $\mathbf{\Theta}^{(1:L)}$
 - (iv) Round ${\bf U}$ and ${\bf V}$ to obtain hard cluster assignments

Model inference and selection

Cluster assignments and model parameters are inferred through maximum likelihood estimation.

Goal: maximize the complete data log-likelihood

$$L_{\mathrm{C}} = \sum_{i} \log \pi_{U_i} + \sum_{j} \log \rho_{V_j} + \sum_{i,j,\ell} \left\{ b_{ij}^{(\ell)} \log \left(\mu_i \nu_j \theta_{U_i V_j}^{(\ell)} \right) - \mu_i \nu_j \theta_{U_i V_j}^{(\ell)} \right\}$$

- ▶ We adapt the **variational EM** procedure of [Govaert and Nadif, 2010]:
 - (i) Estimate node activities μ, ν from the marginal totals of ${f B}^{(1:L)}$
 - (ii) Introduce soft cluster assignment matrices $\mathbf{U} \in [0,1]^{|\mathcal{U}| \times H}$ and $\mathbf{V} \in [0,1]^{|\mathcal{V}| \times K}$
 - (iii) Alternately optimize $\mathbf{U},\,\mathbf{V}$ and $\mathbf{\Theta}^{(1:L)}$
 - (iv) Round \mathbf{U} and \mathbf{V} to obtain hard cluster assignments

Model selection

The number of clusters is selected through **grid search** by maximizing the **integrated completed likelihood** (ICL [Biernacki et al., 2000]),

$$ICL \propto 2L_C - (H - 1)\log|\mathcal{U}| - (K - 1)\log|\mathcal{V}| - LHK\log(L|\mathcal{U}||\mathcal{V}|)$$

First case study – Network flows (description)

Dataset – VAST Challenge 2013 MC3

Two weeks of **simulated network flows** between an enterprise network and external hosts, with **several attacks** (DDoS, port scans, botnet infection, data exfiltration).

$$Flow = (@IP_{src}, @IP_{dst}, protocol, Port_{dst})$$

Case 1: internal source, external destination

Case 2: external source, internal destination

- ► 1,220 internal hosts (top nodes)
- 200 external hosts (bottom nodes)
- ▶ 18 edge types (dest. port restricted to 10 well-known ports and one "Other port" token)
- ▶ 26,597 edges

Relevant clusters:

Supicious behaviors:

Relevant clusters:

Supicious behaviors:

► Internal workstations

Relevant clusters:

► Internal workstations

Supicious behaviors:

 Outbound SSH traffic from 8 internal hosts to an external host (botnet C&C)

Relevant clusters:

- Internal workstations
- Internal servers

Supicious behaviors:

 Outbound SSH traffic from 8 internal hosts to an external host (botnet C&C)

Relevant clusters:

- ► Internal workstations
- Internal servers

- Outbound SSH traffic from 8 internal hosts to an external host (botnet C&C)
- Many ports with few connections (port scans)

Relevant clusters:

- Internal workstations
- Internal servers
- External Web servers

- Outbound SSH traffic from 8 internal hosts to an external host (botnet C&C)
- Many ports with few connections (port scans)

Relevant clusters:

- Internal workstations
- Internal servers
- External Web servers
- External FTP and mail servers

- Outbound SSH traffic from 8 internal hosts to an external host (botnet C&C)
- Many ports with few connections (port scans)

Second case study – Authentication logs (description)

Dataset – "Comprehensive, Multi-Source Cyber-Security Events"

58 days of authentication logs from a real enterprise network, with labelled events corresponding to a red team exercise.

$$\mathsf{Event} {=} (\mathsf{U}_{\mathrm{src}}, \, \mathsf{U}_{\mathrm{dst}}, \, \mathsf{H}_{\mathrm{src}}, \, \mathsf{H}_{\mathrm{dst}}, \, \mathsf{AuthPkg}, \, \mathsf{LogonType})$$

Case 1: $H_{\rm src} = H_{\rm dst}$

Case 2: $H_{\rm src} \neq H_{\rm dst}$

- 74,049 users (top nodes)
- ► 16,119 hosts (bottom nodes)
- 44 edge types
- ▶ 869,547 edges

Relevant clusters:

Relevant clusters:

Supicious behaviors:

Service accounts

Relevant clusters:

- Service accounts
- Anonymous credentials

Relevant clusters:

- Service accounts
- Anonymous credentials

Supicious behaviors:

Compromised user accounts among anonymous credentials

Relevant clusters:

- Service accounts
- Anonymous credentials
- ▶ Potential admin accounts

Supicious behaviors:

 Compromised user accounts among anonymous credentials

Relevant clusters:

- Service accounts
- Anonymous credentials
- Potential admin accounts
- Servers

Supicious behaviors:

 Compromised user accounts among anonymous credentials

Relevant clusters:

- Service accounts
- Anonymous credentials
- ▶ Potential admin accounts
- Servers
- Workstations

Supicious behaviors:

 Compromised user accounts among anonymous credentials

Relevant clusters:

- Service accounts
- Anonymous credentials
- ► Potential admin accounts
- Servers
- Workstations

- Compromised user accounts among anonymous credentials
- Outbound NTLM authentications mostly originating from compromised host

Conclusion and perspectives

Contributions

We propose a **graph-oriented approach** to event log exploration. Our method uncovers **meaningful clusters** of entities, and it helps **detect suspicious behaviors**. Overall, it facilitates exploratory analysis by **summarizing** the information contained in the logs.

Future work:

- ► Better model selection criteria
- Adding a temporal dimension
- Clustering edge types in addition to top and bottom nodes

References

- [Ball et al., 2004] Ball, R., Fink, G. A., and North, C. (2004). Home-centric visualization of network traffic for security administration. In *VizSec/DMSec*.
- [Biernacki et al., 2000] Biernacki, C., Celeux, G., and Govaert, G. (2000). Assessing a mixture model for clustering with the integrated completed likelihood. *IEEE Trans. Pattern Anal. Mach. Intell.*, 22(7):719–725.
- [Govaert and Nadif, 2010] Govaert, G. and Nadif, M. (2010). Latent block model for contingency table. Commun. Stat. Theory Methods, 39(3):416–425.
- [Siadati et al., 2016] Siadati, H., Saket, B., and Memon, N. (2016). Detecting malicious logins in enterprise networks using visualization. In *VizSec*.
- [Taylor et al., 2009] Taylor, T., Paterson, D., Glanfield, J., Gates, C., Brooks, S., and McHugh, J. (2009). Flovis: Flow visualization system. In *CATCH*.
- [Tomonaga, 2017] Tomonaga, S. (2017). Visualise event logs to identify compromised accounts logontracer.