Unifikation (1)

Substitution:

- Ersetzen von Variablen durch andere Variablen oder andere Formen von Termen (Konstanten, Strukturen, ...)
- Abbildung, die jedem Term eindeutig einen neuen Term zuordnet, wobei sich der neue vom alten Term nur durch die Ersetzung von Variablen unterscheidet.

```
• Notation: U = {Nachname / mueller, MM / 11}
```

• Die Substitution U verändert nur die Variablen Nachname und MM, alles andere bleibt unverändert!

```
• U(person(fritz, Nachname, datum(27, 11 2007)))
= person(fritz, mueller, datum(27, 11, 2007))
```

Unifikation (2)

Unifikator:

- Substitution, die zwei Terme "gleichmacht".
- z.B., Anwendung der Substitution $U = \{ Nachname/mueller, MM/11 \}$:

```
U(person(fritz, Nachname, datum(27,11 2007))
= U(person(fritz, mueller, datum(27, MM, 2007)))
```

- <u>allgemeinster Unifikator</u>:
 - Unifikator, der möglichst viele Variablen unverändert lässt.
 - Beispiel: datum (TT, MM, 2007) und datum (T, 11, J)

```
- U_1 = \{ TT/27, T/27, MM/11, J/2007 \}
- U_2 = \{ TT/T, MM/11, J/2007 \}
```

Das Prolog-System sucht <u>immer</u> einen allgemeinsten Unifikator.

Unifikation (3) - Berechnung eines allgemeinsten Unifikators

Eingabe: zwei Terme T_1 und T_2 (im allgemeinen mit ggfs. gemeinsamen Variablen)

<u>Ausgabe</u>: ein allgemeinster Unifikator U für T_1 und T_2 , falls T_1 und T_2 unifizierbar sind, ansonsten Fehlschlag

Methode:

- 1. Wenn T_1 und T_2 gleiche Konstanten oder Variablen sind, dann ist $U = \emptyset$
- 2. Wenn T_1 eine Variable ist, die nicht in T_2 vorkommt, dann ist $U = \{T_1 / T_2\}$ "occurs check"
- 3. Wenn T_2 eine Variable ist, die nicht in T_1 vorkommt, dann ist $U = \{T_2 / T_1\}$

Unifikation (4) - Berechnung eines allgemeinsten Unifikators

Methode (Forts.):

- 4. Falls $T_1 = f(T_{11},...,T_{1n})$ und $T_2 = f(T_{21},...,T_{2n})$ Strukturen mit dem gleichen Funktor und der gleichen Anzahl von Komponenten sind, dann
 - 1. Finde einen allgemeinsten Unifikator U_1 für T_{11} und T_{21}
 - 2. Finde einen allgemeinsten Unifikator U_2 für $U_1(T_{12})$ und $U_1(T_{22})$

. . .

n. Finde einen allgemeinsten Unifikator U_n für

$$U_{n-1}(...(U_1(T_{1n})...) \text{ und } U_{n-1}(...(U_1(T_{2n}))...)$$

Falls alle diese Unifikatoren existieren, dann ist

$$U = U_n \circ U_{n-1} \circ ... \circ U_1$$
 (Komposition der Unifikatoren)

5. Sonst: T_1 und T_2 sind nicht unifizierbar.

Unifikation - Beispiele

$$datum(1, 4, 1985) = datum(1, 4, Jahr)$$
?

Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:

- 1. Finde einen allgemeinsten Unifikator U₁ für **1** und **1**
 - \Rightarrow gleiche Konstanten, daher $U_1 = \emptyset$
- 2. Finde einen allgemeinsten Unifikator U_2 für $U_1(4)$ und $U_1(4)$
 - \Rightarrow gleiche Konstanten, daher $U_2 = \emptyset$
- 3. Finde einen allgemeinsten Unifikator U_3 für $U_2(U_1(1985))$ und $U_2(U_1(Jahr))$
 - \Rightarrow Konstante vs. Variable, daher $U_3 = \{ Jahr / 1985 \}$

Ein allgemeinster Unifikator insgesamt ist:

$$U = U_3 \circ U_2 \circ U_1 = \{ Jahr / 1985 \}$$

Unifikation - Beispiele

```
loves(marcellus, mia) = loves(X, X) ?
```

Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:

- 1. Finde einen allgemeinsten Unifikator U_1 für marcellus und X
 - \Rightarrow Konstante vs. Variable, daher $U_1 = \{x / marcellus\}$
- 2. Finde einen allgemeinsten Unifikator U_2 für $U_1(mia)$ und $U_1(x)$
 - \Rightarrow verschiedene Konstanten, daher existiert U₂ nicht!

Folglich existiert auch kein Unifikator für die Ausgangsterme!

Unifikation - Beispiele

$$d(E,g(H,J)) = d(F,g(H,E)) ?$$

Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:

- 1. Finde einen allgemeinsten Unifikator U_1 für **E** und **F**
 - \Rightarrow verschiedene Variablen, daher $U_1 = \{ \mathbf{E}/\mathbf{F} \}$
- 2. Finde einen allgemeinsten Unifikator U_2 für $U_1(g(H,J))$ und $U_1(g(H,E))$

$$g(H,J) = g(H,F)$$
?

- ⇒ Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:
 - Finde einen allgemeinsten Unifikator U₂₁ für **H** und **H**
 - \Rightarrow gleiche Variablen, daher $U_{21} = \emptyset$
 - Finde einen allgemeinsten Unifikator U_{22} für $U_{21}(\mathbf{J})$ und $U_{21}(\mathbf{F})$
 - \Rightarrow verschiedene Variablen, daher $U_{22} = \{ \mathbf{F}/\mathbf{J} \}$

$$U_2 = U_{22} \circ U_{21} = \{ \mathbf{F}/\mathbf{J} \}$$

Ein allgemeinster Unifikator insgesamt ist:

$$U = U_2 \circ U_1 = \{ \mathbf{E}/\mathbf{J}, \mathbf{F}/\mathbf{J} \}$$

Bedeutung des "occurs check"

Zur Erinnerung:

- 2. Wenn T_1 eine Variable ist, die nicht in T_2 vorkommt, dann ist $U = \{T_1 / T_2\}$ "occurs check"
- 3. Wenn T_2 eine Variable ist, die nicht in T_1 vorkommt, dann ist $U = \{T_2 / T_1\}$

Also zum Beispiel:

$$x = q(x)$$
?

⇒ Es existiert kein Unifikator.

In Prolog wird diese Überprüfung jedoch standardmäßig nicht durchgeführt!

Bedeutung des "occurs check"

Ohne "occurs check":

$$p(X) = p(q(X))$$
?

Strukturen mit gleichem Funktor, gleicher Anzahl von Komponenten, also:

1. Finde einen allgemeinsten Unifikator U_1 für \mathbf{x} und $\mathbf{q}(\mathbf{x})$

$$\Rightarrow$$
 Variable vs. Term, daher $U_1 = \{x / q(x)\}$

$$U = U_1 = \{ x / q(x) \} !$$

Obwohl es ja eigentlich <u>nicht</u> stimmt, dass U(p(x)) und U(p(q(x))) gleich sind!