A computational model for growth of thin organic semiconductor films

Benjamin R. Hillman

Western Washington University

August 8, 2016

Outline

- the experiment
- the model
- scaling theory
- results from simulation
- future work

The Experiment

- organic semiconductor heated and evaporated
- vapor deposited onto substrate
- particles diffuse and form islands

Forced Deposition

- vapor propelled out of a nozzle
- large velocity gradient near substrate
 - boundary layer though which particles must diffuse
- possible aggregation of particles in vapor as they diffuse through boundary layer as well as on substrate
- some sort of cluster growth model is needed...

Diffusion Limited Aggregation Model

- start with seed particle
- drop one particle at a time
- let particle walk until it runs into the seed or wanders away
- continue process to grow cluster

Deposition, Diffusion, Aggregation Model

- deposition: monomers deposited at rate F monomers per unit time per unit area
- diffusion: monomers diffuse with mean time between hops $\tau \sim 1/D$
- aggregation: monomers stick to other monomers
 - form islands
 - islands grow by capture of monomers

Defining The Coverage

- what do we do when monomers land atop islands or other monomers?
 - let them walk around until they "fall down"?
 - ignore them?
- how do we define coverage?
 - total number of monomers deposited divided by total area?
 - total number of occupied grid sites divided by total number of grid sites?

Growth Regimes

- initial deposition
 - monomers few and far between
 - · linear increase in monomer density
- aggregation
 - island formation by aggregation of monomers becomes important
 - · island density increases and monomer density levels off
- coalescence
 - merging of islands becomes important
 - island density quickly drops

Growth Regimes

Island Morphology

Scaling Theory

• island size distribution can be written in the form:

$$N_s(heta) = rac{ heta}{\langle s
angle^2} f_i\left(rac{s}{\langle s
angle}
ight)$$

- f_i is a universal scaling function
 - does not depend on coverage
 - does not depend on R, so long as R is large
 - ullet dependent only on critical island size i

In Search Of A Functional Form for f_i ...

- assumptions proposed by Amar and Family [?]
 - the island size distribution behaves as u^i for small u
 - the distribution has an exponential cuttoff for large u
 - the distribution peaks at the average island size (u = 1)
- leads to the functional form

$$f_i(u) = C_i u^i e^{-ia_i u^{1/a_i}}$$

• The constants C_i and a_i are determined by applying the sum rules $\int f_i(u) du = \int u f_i(u) du = 1$,

$$rac{\Gamma[(i+2)a_i]}{\Gamma[(i+1)a_i]} = (ia_i)^{a_i}, \quad C_i = rac{(ia_i)^{(i+1)a_i}}{a_i\Gamma[(i+1)a_i]}.$$

...but is there a better way?

- why assume distribution peaks at u = 1?
- lets relax the constraint u = 1 and see what we get...
- more simple scaling function $f_i(u) = Au^i e^{-iub}$
- sum rules again fix constants and BLAM!

$$f_i(u) = rac{(i+1)^{i+1} u^i e^{-(i+1)u}}{\Gamma(i+1)}$$

The Small R Regime...

...The Asymptotic Large R Regime...

...The Not So Small, Not So Asymptotic Large R Regime

Future Work

- get to the bottom of two dimensional scaling theory for i=1
- investigate scaling theory for i > 1
- deposition of clusters
- extend model to three dimensions
 - diffusion through boundary layer
 - diffusion through liquid crystal layer

References

- Jacques G. Amar and Fereydoon Family, Phys. Rev. Lett. 74, 2066 (1995)
- J.A. Blackman and P.A. Mulheran, Phys. Rev. B. 54, 11 681 (1996)
- Pablo Jensen, Rev. Mod. Phys. 71, 1695 (1999)