GATE EC 2017- Q.7

Tanmay Goyal - Al20BTECH11021

Question

The input x(t) and output y(t) of a continous time signal are related as:

$$y(t) = \int_{t-T}^{t} x(u) du$$
 (1)

The system is:

- Linear and Time-variant
- Linear and Time-invariant
- Non-Linear and Time-variant
- Mon-Linear and Time-invariant

Linear Systems and Time Invariant Systems

Definition

We say that a system is **linear** if and only if it follows the Principle of Superposition, i.e Law of Additivity and Law of Homogeneity.

Definition

A system is said to be **time invariant** if the output signal does not depend on the absolute time, i.e a time delay on the input signal directly equates to the delay in the output signal.

Lemma

Lemma

The system relating the input signal x(t) and output signal y(t), given by

$$y(t) = \int_{t-T}^{t} x(u) du$$
 (2)

is linear and time invariant in nature.

Proof: Law of Additivity

Let the input signals be $x_1(t)$ and $x_2(t)$, and their corresponding output signals be $y_1(t)$ and $y_2(t)$, then:

$$y_1(t) = \int_{t-T}^{t} x_1(u) \, du \tag{3}$$

$$y_2(t) = \int_{t-T}^t x_2(u) du$$
 (4)

$$y_1(t) + y_2(t) = \int_{t-T}^t [x_1(u) + x_2(u)] du$$
 (5)

Proof: Law of Additivity

Now, consider the input signal of $x_1(t) + x_2(t)$, then the corresponding output signal is given by y'(t):

$$y'(t) = \int_{t-T}^{t} [x_1(u) + x_2(u)] du$$
 (6)

Clearly, from (5) and (6):

$$y'(t) = y_1(t) + y_2(t) (7)$$

Thus, the Law of Additivity holds.

Proof: Law of Homogeneity

Consider an input signal kx(t), where k is any constant. Let the corresponding output be given by y'(t), then:

$$y'(t) = \int_{t-T}^{t} kx(u) du$$
 (8)

$$=k\int_{t-T}^{t}x(u)\,du\tag{9}$$

$$=ky(t) \tag{10}$$

Clearly, from (10),

$$y'(t) = ky(t) \tag{11}$$

Thus, the Law of Homogeneity holds.

Proof

Since both the Laws hold, the system satisfies the Principle of Superposition, and is thus, a **linear system**.

Proof: Time Invariance

To check for time-invariance, we would introduce a delay of t_0 in the output and input signals.

Delay in output signal:

$$y(t-t_0) = \int_{t-t_0-T}^{t-t_0} x(u) du$$
 (12)

Proof: Time Invariance

Now, we consider an input signal with a delay of t_0 , given by $x(t - t_0)$, and let the corresponding output signal be given by y'(t), then:

$$y'(t) = \int_{t-T}^{t} x(u - t_0) du$$
 (13)

Substituting $a = u - t_0$:

$$y'(t) = \int_{t-t_0-T}^{t-t_0} x(a) da$$
 (14)

Clearly, from (12) and (14):

$$y'(t) = y(t - t_0)$$
 (15)

Thus, the system is time-invariant.

Thus, **2) Linear and Time- invariant** is the correct answer.

Impulse response

Since the given system is an LTI system, it would possess an impulse response h(t), which is the output of the system when the input signal is the Impulse function, given by $\delta(t)$. Thus,

$$h(t) = \int_{t-T}^{t} \delta(u) du \tag{16}$$

Impulse function

The Impulse function can be loosely defined as:

$$\delta(t) = \begin{cases} \infty & t = 0 \\ 0 & \text{otherwise} \end{cases} \text{ and } \int_{-\infty}^{\infty} \delta(t) dt = 1$$
 (17)

Impulse response

Since the Impulse function is zero everywhere aside from t=0, the non-zero value of integration is a result of $\delta(0)$. Thus, we can say h(t) will be non-zero only if the limits of integration would include t=0, i.e:

$$h(t) = \begin{cases} \int_{t-T}^{t} \delta(u) du & t - T < 0; t > 0 \\ 0 & otherwise \end{cases}$$
 (18)

$$h(t) = \begin{cases} 1 & 0 < t < T \\ 0 & otherwise \end{cases}$$
 (19)

Graphs: Input and Output signals

Figure: $x_1(t) = \sin t$ and $x_2(t) = t$

Figure: $y_1(t)$ and $y_2(t)$

Graphs: Laws of Additivity and Homogeneity

Figure: Law of Additivity

Figure: Law of Homogeneity

Graphs: Time Invariance

