ФЕДЕРАЛЬНОЕ ГОСУДАРСТВЕННОЕ АВТОНОМНОЕ ОБРАЗОВАТЕЛЬНОЕ

УЧРЕЖДЕНИЕ ВЫСШЕГО ОБРАЗОВАНИЯ МОСКОВСКИЙ ФИЗИКО-ТЕХНИЧЕСКИЙ ИНСТИТУТ (НАЦИОНАЛЬНЫЙ ИССЛЕДОВАТЕЛЬСКИЙ УНИВЕРСИТЕТ) ФИЗТЕХ-ШКОЛА РАДИОТЕХНИКИ И КОМПЬЮТЕРНЫХ ТЕХНОЛОГИЙ

Работа 2.5.1. Измерение коэффициента поверхностного натяжения жидкости

Работу выполнил: Долгов Александр Алексеевич, группа Б01-106 Долгопрудный, 2022

Содержание

1	Ані	нотация	3
2	Teo	ретические сведения	3
3	Экс	спериментальная установка	5
4	Me	тодика измерений	6
	4.1	Измерения	6
	4.2	Получение расчётной формулы	7
5	Обо	ррудование	8
6	Обр	работка полученных результатов	9
	6.1	Глубина погружения иглы	9
	6.2	Поверхностное натяжение	10
7	Вы	вод	11
8	Прі	иложения	13
	8.1	Таблица 1. Измерение глубины погружения нити	13
	8.2	Таблица 2. Поверхностное натяжение	13
	8.3	График 1. Температурная зависимость поверхностного натяжения	14
	8.4	График 2. Теплота образования единицы поверхности	
	8.5	График 3. Удельная внутренняя энергия поверхности	15

1 Аннотация

В данной работе измеряется коэффициент поверхностного натяжения дистиллированной воды и определяются полная поверхностная энергия и количество теплоты, необходимое для изотермического образования единицы поверхности жидкости, при различных значениях температуры.

2 Теоретические сведения

Коэффициент поверхностного натяжения (поверхностное натяжение) жидкости (σ , [σ] = $\frac{H}{M}$) - работа, которую нужно совершить, чтобы изотермически и квазистатически площадь поверхности жидкости на единицу при сохранении объёма жидкости неизменным.

Из определения поверхностной энергии и первого начала термодинамики получаем, что:

$$\delta A_{\rm T} = -d\Psi_{\rm T}^{\ 1} \tag{1}$$

Свободную энергию жидкости можно представить в виде:

$$\Psi = \Psi_{\mathsf{o}\mathsf{6}} + \Psi_{\mathsf{n}\mathsf{o}\mathsf{B}},\tag{2}$$

где $\Psi_{\rm o6}$ - составляющая свободной энергии, пропорциональная объёму (объёмная свободная энергия), $\Psi_{\rm пов}$ - составляющая свободной энергии, пропорциональная температуре (поверхностная свободная энергия). Таким образом, $\Psi_{\rm пов} = \sigma \Pi$, где Π - площадь поверхности жидкости.

Получим формулу для количества теплоты, которое нужно сообщить плёнке жидкости в изотермическом процессе для изменения площади поверхности на dП. В таком процессе поверхность совершат работу $\delta A_T = -\sigma d\Pi.$

По первому началу термодинамики (для данного процесса):

$$dU = TdS + \sigma d\Pi \tag{3}$$

 $^{^{1}}$ Индекс T означает, что величины берутся для изотермического процесса

По определению поверхностной энергии:

$$\Psi = U - TS \Rightarrow d\Psi = dU - TdS - SdT \tag{4}$$

Отсюда получаем:

$$d\Psi = \sigma d\Pi - SdT \Rightarrow S = -\left(\frac{\partial \Psi}{\partial T}\right)_{\Pi} \tag{5}$$

Так как в качестве термодинамической системы рассматривается плёнка жидкости, то

$$\Psi_{\text{o6}} \ll \Psi_{\text{пов}} \Rightarrow \Psi \approx \Psi_{\text{пов}}$$
 (6)

Поэтому последнее соотношение принимает вид:

$$S = -\left(\frac{\partial \Psi_{\text{nob}}}{\partial T}\right)_{\text{II}} \tag{7}$$

Подставим (7) в первое уравнение (4) и учтём (6):

$$\Psi_{\text{dob}} = \Pi + T \left(\frac{\partial \Psi_{\text{dob}}}{\partial T} \right)_{\Pi} \tag{8}$$

Так как коэффициент поверхностного натяжения не зависит от площади поверхности жидкости, то $d\Psi_{\text{пов}} = \sigma d\Pi$. Окончательно получаем:

$$U = \Pi \left(\sigma - T \frac{d\sigma}{dT} \right)$$
 (9)

В случае проведения над жидкостью изотермического процесса среди всех величин в (9) изменяется только площадь, а величина в скоб-ках остаётся постоянной. Отсюда, использую первое начало термодинамики, получаем:

$$\delta Q = -T \frac{d\sigma}{dT} d\Pi \tag{10}$$

Из (10) видно, что величина $q=\frac{\delta Q}{d\Pi}$ в изотермическом процессе является константой. Это есть количество теплоты, которое необходимо

сообщить поверхности плёнки для увеличения её площади на единицу. Приведём окончательную формулу:

$$q = -T\frac{d\sigma}{dT}$$
 (11)

Также приведём без вывода формулу Лапласа:

$$P_{in} - P_{out} = \sigma \left(\frac{1}{R_1} + \frac{1}{R_2} \right), \tag{12}$$

где $P_{\rm out}$ - давление во внешней среде, $P_{\rm in}$ - давление внутри жидкости $R_1,\ R_2$ - радиусы главных кривизн поверхности жидкости. Для сферической поверхности формула Λ апласа принимает вид:

$$P_{in} - P_{out} = \frac{2\sigma}{R}$$
 (13)

3 Экспериментальная установка

Схема экспериментальной установки приведена на рисунке 1.

Рис. 1. Схема установки для измерения температурной зависимости коэффициента поверхностного натяжения

В сосуд ${\bf B}$ налита исследуемая жидкость (дистиллированная вода), тестовая жидкость (этиловый спирт) налита в сосуд ${\bf E}$. Во время проведения эксперимента обе колбы герметично закрываются пробками. Сосуд, для жидкости в котором проводят измерения, закрывается пробкой, через которую проходит металлическая игла ${\bf C}$ (другая пробка обычная). Верхний конец иглы сообщён с атмосферой, а нижний погружён в жидкость. При определённой разнице давлений между атмосферой и установкой воздух начнёт проходить через иголку в жидкость (пробулькивание).

Для создания разности давлений в установке предусмотрен аспиратор ${\bf A}$, который разделён краном ${\bf K}_2$ на две области. Та из них, что выше крана заполнена водой. При открытии крана ${\bf K}_2$ вода поступает в нижнюю область. Разряжения воздуха в установке можно добиться путём открывания крана ${\bf K}_1$, из которого по каплям вытекает вода. Так как сосуды ${\bf B}$ и ${\bf C}$ соединены трубками с нижней областью аспиратора, то при понижении уровня воды объём такого "объединённого сосуда" увеличивается, а давление в нём уменьшается. Разность давлений между установкой и атмосферой измеряет я с помощью микроманометра ${\bf M}$.

Чтобы температура воды в сосуде ${\bf B}$ поддерживалась постоянной, рубашка ${\bf D}$, окружающая этот сосуд, соединена с термостатом.

4 Методика измерений

4.1 Измерения

Для исключения влияния гидростатического столба жидкости (воздуху приходится через него "пробулькивать") можно разместить иглу С так, чтобы её нижняя часть лишь касалась поверхности жидкости. У данного решения есть ряд проблем, связанных с измерением зависимости коэффициента поверхностного натяжения именно от температуры:

1. Так как игла металлическая, то её теплопроводность выше, чем у жидкости. Поэтому температура нижнего конца иглы будет меньше, чем в объёме жидкости.

2. Тепловое расширение жидкости в любом случае приводит к образования гидростатического столба внутри иглы

Для устранения описанных выше проблем можно погрузить иглу как можно глубже, не касаясь дна. Пусть микроманоментр измерил разность давлений ΔP_1 , тогда

$$\Delta P_1 = \Delta P + \rho g h, \tag{14}$$

где ΔP - разность давлений вызванная поверхностным натяжением, ρ - плотность исследуемой жидкости, h - высота гидростатического столба внутри иглы. Так как поперечное сечение иглы постоянно, то величина ρh отличается от массы на постоянный множитель \Rightarrow величина ρh практически не изменяется в ходе эксперимента. Эту величину можно измерить двумя способами:

1. Измерим разность давлений $\Delta P_1'$, когда игла лишь касается поверхности жидкости. Затем при той же температуре измерим разность давлений $\Delta P_1''$, когда игла максимально погружена в жидкость. В силу несжимаемости жидкости:

$$\rho h = \frac{\Delta P_1'' - \Delta P_1'}{q} \tag{15}$$

2. Во время проведения измерения первым способом можно измерить глубину погружения иглы с помощью линейки. Это можно сделать, измерив, на сколько изменилось расстояние от пробки до верхнего конца иглы при её погружении.

4.2 Получение расчётной формулы

Шкала микроманометра проградуирована в миллиметрах. Если значение на шкале составляет р мм, то разность давлений, измеренная микроманометром равна

$$\Delta P_1 = \alpha \frac{\gamma}{\gamma_0} pg$$

паскалей, где α - постоянная угла наклона, γ - текущая плотность спирта в трубке микроманометра, γ - плотность спирта, указанная на корпусе микроманометра. В данной работе:

$$\alpha = 0, 2, \ \gamma_0 = 807, 5 \frac{\kappa r}{m^3}, \ \gamma = 803, 1 \frac{\kappa r}{m^3}$$

Отношение $\frac{\gamma}{\gamma_0} \approx 0,995 \approx 1$, поэтому для данного опыта можно написать:

$$\Delta P_1 = 0, 2pg, \tag{16}$$

где $[P_1] = \Pi a$, [p] = MM.

Так как поперечное сечение иглы имеет форму круга, то поверхность жидкости в игле имеет сферическую или близкую к ней форму. Поэтому для расчётов воспользуемся формулой Лапласа в форме (13):

$$\sigma = \frac{1}{2}R\Delta P = \frac{1}{4}D\Delta P,$$

где D - диаметр иглы. Далее запишем ΔP , используя формулы (14) и (16).

$$\sigma = \frac{1}{4}D(\Delta P_1 - \rho gh) = \frac{1}{4}D(0,2pg - \rho gh)$$

Окончательно получаем:

$$\sigma = \frac{1}{4}gD(0, 2p - \rho h)$$
(17)

5 Оборудование

Диаметр иглы измерялся с помощью микроскопа. Получено значение:

$$D = 1,15 \pm 0,05 \text{ mm}$$

Показания микроманометра и линейки (измерение глубины погружения иглы) измерялись с точностью $0,5\,$ мм.

6 Обработка полученных результатов

6.1 Глубина погружения иглы

Данное измерение состояло из двух серий: сначала игла лишь касалась поверхности спирта, а затем была погружена полностью. Для каждого случая разность давлений измерялась 10 раз. Результаты измерений приведены в таблице 1. Также в этой таблице представлены результаты измерений расстояния от пробки до верхнего конца иглы для каждой из серий.

На основании этих данных усредним значения $\Delta P_1''$ и $\Delta P_1'''$ для каждой серии. Значение ρh найдём по формуле (15):

Игла лишь касается поверхности спирта:

$$\langle \Delta P_1' \rangle = 0, 2 \cdot 9, 81 \cdot 118 \; \Pi a = 232 \; \Pi a$$

$$\sigma_{\text{случ}}' = \sqrt{\frac{1}{90} \sum_{i=1}^{10} (\Delta P_1' - \langle \Delta P_1' \rangle)} = 0, 3 \; \Pi a; \; \sigma_{\text{сист}}' = 0, 2 \cdot 9, 81 \cdot 0, 5 \; \Pi a \approx 1 \Pi a$$

$$\sigma' = \sqrt{(\sigma_{\text{случ}}')^2 + (\sigma_{\text{сист}}')^2} \approx 1 \; \Pi a$$

Игла максимально погружена в спирт:

$$\langle \Delta P_1'' \rangle = 0, 2 \cdot 9, 81 \cdot 197, 4 \; \Pi a = 387 \; \Pi a$$

$$\begin{split} \sigma_{\text{случ}}'' &= \sqrt{\frac{1}{90} \sum_{i=1}^{10} (\Delta P_1'' - \langle \Delta P_1'' \rangle)} = 0,16 \; \Pi a; \; \sigma_{\text{сист}}'' = 0,2 \cdot 9,81 \cdot 0,5 \; \Pi a \approx 1 \Pi a \\ \\ \sigma'' &= \sqrt{(\sigma_{\text{случ}}'')^2 + (\sigma_{\text{сист}}'')^2} \approx 1 \Pi a \end{split}$$

Отсюда получаем:

$$\begin{split} \rho h &= \frac{387 - 232}{9,81} \frac{\kappa r}{\text{m}^2} = 15,8 \; \frac{\kappa r}{\text{m}^2} \\ \sigma_{\rho h} &= \frac{1}{g} \sqrt{(\sigma')^2 + (\sigma'')^2} \approx 1,4 \; \frac{\kappa r}{\text{m}^2} \end{split}$$

Таким образом: $\rho h = (15, 8 \pm 1, 4)$ Па

Используя измеренное расстояние от пробки до верхней части иглы в обеих сериях экспериментов, получаем:

$$\rho h = 1000~\frac{\text{kg}}{\text{m}^3} \cdot (22-6,5)~\text{mm} = 15,5~\frac{\text{kg}}{\text{m}^2}$$

$$\sigma_{
hoh}=1000~{{
m Kr}\over{
m M}^3}\cdot\sqrt{0,5^2+0,5^2}$$
 мм $pprox 0,7$ Па

Таким образом: $\rho h = (15, 5 \pm 0, 7)$ Па

Отрезок, на котором лежит граница абсолютной погрешности ρh , найденный вторым способом (измерением расстояния), полностью принадлежит отрезку, найденному первым способом. Поэтому их пересечение - второй отрезок. Таким образом, далее считаем, что

$$\rho h = (15, 5 \pm 0, 7) \Pi a$$

6.2 Поверхностное натяжение

Для определения зависимости поверхностного натяжения от температуры было проведено 8 измерений разности давлений при различных значениях температуры. В течение каждого измерения показания с микроманометра снимались в тот момент, когда они практически не отличались для последовательных "пробулькиваний". Таким образом, для каждого измерения получено единственное значение разности давлений. Данные приведены в таблице 2. В таблице также представлены значения коэффициентов поверхностного натяжения, вычисленные по формуле (17), и их погрешности.

Остановимся более подробно на вычислении погрешности. Пусть Δ_{σ} , Δ_{D} , $\Delta_{\rho h}$, Δ_{p} - соответственно погрешности коэффициента поверхностного натяжения, диаметра иглы, величины ρh и показаний микроманометра. Тогда:

$$\Delta_{\sigma} = \sqrt{\left(\frac{\partial \sigma}{\partial D}\right)^2 \Delta_D^2 + \left(\frac{\partial \sigma}{\partial p}\right)^2 \Delta_p^2 + \left(\frac{\partial \sigma}{\partial (\rho h)}\right)^2 \Delta_{\rho h}^2}$$

Из (17) получаем:

$$\frac{\partial \sigma}{\partial D} = \frac{1}{4}g(0, 2p - \rho h); \ \frac{\partial \sigma}{\partial p} = \frac{1}{20}gD; \ \frac{\partial \sigma}{\partial (\rho h)} = -\frac{1}{4}gD$$

Откуда:

$$\Delta_{\sigma} = \frac{1}{4}g\sqrt{(0,2p-\rho h)^2\Delta_D^2 + D^2\left(\frac{\Delta_p^2}{25} + \Delta_{\rho h}^2\right)}$$

Замечание: в данную формулу g подставляется численно, p и D - в миллиметрах, ρh - в $\frac{\kappa r}{m^2}$; размерности погрешностей соответствуют размерности самих величин; размерность результата - $\frac{MH}{M}$.

Зависимость $\sigma(T)$, построенная согласно таблице 1, отражена на графике 1. По методу наименьших квадратов получены коэффициенты, описывающие наилучшую прямую, проходящую через экспериментальные точки. Если $\sigma(T)=kT+b$, то

$$k = (-0, 159 \pm 0, 007) \frac{MH}{M \cdot K}$$

 $b = (115 \pm 2) \frac{MH}{M}$

Графики зависимостей теплоты образования единицы поверхности и внутренней энергии поверхности от температуры также приведены в приложении (в качестве $\frac{\mathrm{d}\,\sigma}{\mathrm{d}\,\mathrm{T}}$ берётся найденный из МНК коэффициент k).

7 Вывод

В ходе данной работы была измерена температурная зависимость коэффициента поверхностного натяжения воды. Полученное значение с точностью до найденное абсолютной погрешности совпадает с табличными значениями (например, задача 12.9 из "Сборник задач по общему курсу физики. Ч. 1 / под ред. В.А. Овчинкина 4-е изд., испр. - М.: Физматкнига, 2016. - 560с.").

Стоит, однако, заметить, что значения самого коэффициента поверхностного натяжения не совпадают с табличными в пределах найденных погрешностей (в качестве табличных данный рассматривалось описание данной работы). Тем не менее, можно проследить закономерность, что полученные результаты отличаются от табличных примерно на одну и ту же величину (меньше на $\approx 4 \frac{\text{мH}}{\text{m}}$). Такая погрешность, очевидно, систематическая. Поэтому её можно объяснить либо ошибкой экспериментатора, либо тем, что не было учтено влияние некоего внешнего фактора. Этим же объяснятся довольно странный характер графика 4.

8 Приложения

8.1 Таблица 1. Измерение глубины погружения нити

Таблица 1. Измерение глубины погружения иглы									
ΔP' ₁ , мм	h, мм	ΔP'' ₂ , мм	h, mm						
119,5	22	197							
117,0		197							
117,0		197							
116,5		197							
117,5		197	6.5						
118,0		197	6,5						
118,0		198							
118,5		198							
118,5		198							
119,0		198							

8.2 Таблица 2. Поверхностное натяжение

Таблица 2. Поверхностное натяжение									
T, ℃	T, K	р, мм	σ, мН/м	$\Delta(\sigma)$, MH/M					
25,3	298,3	197	67,4	3,5					
30,1	303,1	196	66,8	3,5					
35,1	308,1	195	66,3	3,5					
40,4	313,4	193	65,2	3,5					
45,0	318,0	192	64,6	3,4					
50,0	323,0	191	64,0	3,4					
55,0	328,0	189	62,9	3,4					
60,0	333,0	187	61,8	3,3					

8.3 График 1. Температурная зависимость поверхностного натяжения

8.4 График 2. Теплота образования единицы поверхности

8.5 График 3. Удельная внутренняя энергия поверхности

