

Ψηφιακή Σχεδίαση

Διάλεξη 3 – Απλοποίηση Συναρτήσεων - Χάρτες Karnaugh

Γεώργιος Κεραμίδας, Επίκουρος Καθηγητής 2° Εξάμηνο, Τμήμα Πληροφορικής

Αντιστοίχιση με ύλη Βιβλίου

- Το συγκεκριμένο σετ διαφανειών καλύπτει τα εξής κεφάλαια/ενότητες:
 - Κεφάλαιο 2: 2.4, 2.5, 2.6, 2.7

• Βιβλίο [68406394]: Ψηφιακή Σχεδίαση, 5η Έκδοση, Mano Morris, Ciletti Michael

Απλοποίηση Συναρτήσεων

- Η πολυπλοκότητα του κυκλώματος ~ με την πολυπλοκότητα της αλγεβρικής έκφρασης από την οποία η συνάρτηση υλοποιείται.
- Σκοποί της απλοποίησης
 - Λιγότεροι όροι
 - Απλούστεροι όροι
- Θέλουμε απλές και συστηματικές μεθόδους
- Υπάρχουν :
 - Η μέθοδος του χάρτη (μέθοδος Karnaugh / k-map) : γραφική μέθοδος για συναρτήσεις έως 5 μεταβλητών.
 - Η μέθοδος Quine-McClauskey : αλγεβρική μέθοδος
 - Η μέθοδος Espresso : αλγεβρική μέθοδος
- Οι μέθοδοι αυτοί δε μας δίνουν τις υλοποιήσεις με τις λιγότερες πύλες, αλλά τις απλούστερες υλοποιήσεις με NOT, AND & OR.

Η Μέθοδος του Χάρτη

- Ο χάρτης είναι ένα διάγραμμα αποτελούμενο από τετράγωνα.
- Κάθε τετράγωνο παριστάνει ένα ελαχιστόρο.
- Αν ο ελαχιστόρος αληθεύει τη συνάρτηση, υπάρχει 1 στο αντίστοιχο τετράγωνο. Αν όχι υπάρχει 0.
- "Γειτονιές" (Τετράγωνα / ορθογώνια 2 ή 4 ή 8 ή 16 ή ... επαληθευόμενων ή αδιάφορων ελαχιστόρων) στο χάρτη υποδεικνύουν ελαχιστόρους που μπορούν να απλοποιηθούν

Α	В	Y
0	0	α
0	1	β
1	0	γ
1	1	δ

Α	В	Υ
0	0	α
0	1	β
1	0	γ
1	1	δ

AB	0	1
0	α	β
1	γ	δ

Α	В	Y
0	0	1
0	1	1
1	0	0
1	1	0

Α	В	Y
0	0	0
0	1	1
1	0	1
1	1	1

$$Y = A + B$$

Α	В	Y			
0	0	0	AB	0	1
0	1 0	1	0		1
1	0	1	1	1	1
1	1	1	'		

Α	В	Y	
0	0	0	A B 0 1
	1	1	0 1
1		1	1 1 1
1	1	1	

	В		
0	0 1 0 1	0	A B 0 1
0	1	1	0 1
1	0	1	1 1 1
1	1	1	

$$Y = A + B$$

Χάρτης Δυο (2) Μεταβλητών

• Ο χάρτης περιέχει 4 τετράγωνα, ένα για κάθε ελαχιστόρο.

- Το χ εμφανίζεται ως συμπλήρωμα στη γραμμή 0 και κανονικά στη γραμμή 1.
- Το γ εμφανίζεται ως συμπλήρωμα στη στήλη 0 και κανονικά στη στήλη 1.

• Παραδείγματα
$$x^{\gamma}$$
 0

$$xy = \Sigma(3) = m_3$$

$$x+y = \Sigma(1,2,3) = m_1 + m_2 + m_3$$

Απλοποίηση Λογικών Συν. Με K -maps

- Για να απλοποιήσουμε μία λογική συνάρτηση χρησιμοποιώντας χάρτη Karnaugh, ακολουθούμε τα εξής βήματα:
 - Γράφουμε τη συνάρτηση με μορφή αθροίσματος ελαχιστόρων
 - Τοποθετούμε τους όρους της συνάρτησης στον χάρτη Karnaugh σημειώνοντας με "1" το αντίστοιχο τετράγωνο
 - Δημιουργούμε ομάδες με "1" των 2, 4, 8, 16 (δυνάμεις του 2) μελών από γειτονικά τετράγωνα (οριζόντια ή κάθετα, συνεχόμενα ή αναδιπλούμενα, αλλά όχι διαγώνια).
 - Προσπαθούμε να δημιουργούμε όσο το δυνατόν μεγαλύτερες ομάδες. Κάθε "1" μπορεί να συμμετέχει σε περισσότερες από μία ομάδες
 - Ξαναγράφουμε τη συνάρτηση με όρους τους ελεύθερους όρους που πιθανόν να υπάρχουν και τις ομάδες (παραλείποντας τις μεταβλητές που μέσα στην ομάδα αλλάζουν τιμή)

$$Y = \overline{ABC} + \overline{ABC}$$

$$000 \quad 001$$

- Προσοχή
 - Στη σειρά 00 01 11 10
 - Κώδικας Gray

$$Y = \overline{A}\overline{B}$$

$$Y = \overline{A}\overline{B}\overline{C} + \overline{A}\overline{B}C$$

$$000 \quad 001$$

- Προσοχή
 - Στη σειρά 00 01 11 10
 - Κώδικας Gray
 - Τα γειτονικά κελιά διαφέρουν κατά 1 bit ή μια μεταβλητή

$$Y = \overline{A} + B$$

$$Y = ABC + ABC + ABC + ABC 000 100 010 110$$

$$Y = ABC + ABC + ABC + ABC 000 100 010 110$$

Χάρτης Τριών (3) Μεταβλητών

- Ο χάρτης περιέχει 8 τετράγωνα, ένα για κάθε ελαχιστόρο.
- Οι ελαχιστόροι τοποθετούνται σε σειρά όμοια με τον κώδικα Gray.

					x	cz - 00	01	11	10	Κώδικας Gray
	m_0	m_1	m_3	m_2	yz	x'y'z'	x'y'z	x'yz	x'yz'	Gruy
	m_4	m_5	m_7	m_6	$x \begin{cases} 1 \end{cases}$	xy'z'	xy'z	xyz	xyz'	
,					, (•

- Το άθροισμα δύο ελαχιστόρων της συνάρτησης που βρίσκονται σε γειτονικά τετράγωνα απλοποιείται σε ένα όρο ΚΑΙ με δύο μόνο παράγοντες.
- Το άθροισμα τεσσάρων ελαχιστόρων της συνάρτησης που βρίσκονται σε γειτονικά τετράγωνα απλοποιείται σε ένα όρο με ένα μόνο παράγοντα.
- Το άθροισμα οκτώ ελαχιστόρων της συνάρτησης που βρίσκονται σε γειτονικά τετράγωνα καταλαμβάνει όλο το χάρτη και παριστάνει τη συνάρτηση που είναι πάντα ίση με 1

Παραδείγματα Χάρτη Τριών (3) Μεταβλητών

$$F(x,y,z) = \Sigma(2,3,4,5)$$

$$F(x,y,z) = x'y + xy'$$

$$F(x,y,z) = \Sigma(3,4,6,7)$$

Z,

$$F(x,y,z) = yz+xz'$$

Παραδείγματα Χάρτη Τριών (3) Μεταβλητών

 $F(x,y,z) = \Sigma(0,2,4,5,6)$

$$F(x,y,z) = z' + xy'$$

F(A,B,C) = A'C+A'B+AB'C+BC

 \boldsymbol{C}

 $F(A,B,C) = \Sigma(1,2,3,5,7) = C+A'B$

25 March 2021

Γεώργιος Κες

ίκης, Τμήμα Πληροφορικής

32

$$Y = AB + CD$$

Karnaugh 4-Μεταβλητών

$$Y = \overline{BD}$$

Karnaugh 4-Μεταβλητών

Karnaugh 4-Μεταβλητών

Χάρτης Τεσσάρων (4) Μεταβλητών

- Ο χάρτης περιέχει 16 τετράγωνα, ένα για κάθε ελαχιστόρο.
- Οι ελαχιστόροι τοποθετούνται σε σειρά όμοια με τον κώδικα Gray.

m_0	m_1	m_3	m_2
m_4	m_5	m_7	m_6
m_{12}	m_{13}	m ₁₅	m_{14}
m_8	<i>m</i> ₉	m_{11}	m_{10}

		yz		,	y	
1	wx\	0.0	01	11	10	
	00	w'x'y'z'	w'x'y'z	w'x'yz	w'x'yz'	
	01	w'xy'z'	w'xy'z	w'xyz	w'xyz'	
	11	wxy'z'	wxy'z	wxyz	wxyz'	ر ا
w	10	wx'y'z'	wx'y'z	wx'yz	wx'yz'	
				,	•	

- Κάθε 2ⁿ γειτονικά τετράγωνα διαφέρουν σε n μεταβλητές και οδηγούν σε έναν όρο ΚΑΙ με k – n παράγοντες, όπου k το πλήθος των μεταβλητών της συνάρτησης.
- Η πάνω ακμή ακουμπάει στην κάτω και η δεξιά στην αριστερή (γειτονικότητα).

Παραδείγματα Χάρτη Τεσσάρων (4) Μεταβλητώ

F(A,B,C,D) = B'D' + B'C' + A'CD'

Συνθήκες Αδιαφορίας

- Συμβολίζονται με Χ και αντιστοιχούν σε συνδυασμούς εισόδων που δεν ορίζονται για μία συνάρτηση.
- Π.χ. F(w,x,y,z)=Σ(1,3,7,11,15) με συνθήκες αδιαφορίας d(w,x,y,z)=Σ(0,2,5)

. VZ					
wx \	00	01	11	1	0
00	X	1	1	X	
01	0	×	1	0	
11	0	0	1	0	
10	0	0	1	0	

yz					
WX X	00	01	11	_ 1	0
00	×	1	1	×	
01	0	×	1	0	
11	0	0	1	0	
10	0	0	1	0	

$$F = yz + w'x' = \Sigma(0,1,2,3,7,11,15)$$
 $F = yz + w'z = \Sigma(1,3,5,7,11,15)$

$$F = yz + w'z = \Sigma(1,3,5,7,11,15)$$

• Οι αδιάφοροι όροι μπορούν να χρησιμοποιηθούν ως άσσοι ή μηδενικά ανάλογα με την απλοποίηση που οδηγεί στο μικρότερο κύκλωμα.

Συνθήκες Αδιαφορίας

Οι Χάρτες Karnaugh εγγυόνται την υλοποίηση με τις λιγότερες πύλες NOT, OR, AND. Όχι αναγκαστικά την ίδια υλοποίηση σε επίπεδο πυλών

$$F = yz + w'x' = \Sigma(0,1,2,3,7,11,15)$$

$$F = yz + w'z = \Sigma(1,3,5,7,11,15)$$

• Οι αδιάφοροι όροι μπορούν να χρησιμοποιηθούν ως άσσοι ή μηδενικά ανάλογα με την απλοποίηση που οδηγεί στο μικρότερο κύκλωμα.

Χάρτης Πέντε (5) μεταβλητών

		A = 0						
		DE		1	D			
į	BC	0 0	01	11	10			
	00	0	1	3	2			
	01	4	5	7	6	$\left. \right _{C}$		
В	11	12	13	15	14			
D	10	8	9	11	10			
	- '				,	,		

		A = 1					
		DE		1	D		
Ì	BC	0 0	01	11	10		
	00	16	17	19	18		
	01	20	21	23	22	$\left\ \right\ _C$	
B	11	28	29	31	30		
D	10	24	25	27	26		
	E						

εώργιος Κεραμίδας / Αριστοτέλειο Πανεπιστήμιο Θεσσαλονίκης, Τμήμα Πληροφορικής

Χάρτης Πέντε (5) μεταβλητών

 $F(A, B, C, D, E) = \Sigma(0, 2, 4, 6, 9, 13, 21, 23, 25, 29, 31)$

$$F(A, B, C, D, E) = A'B'E' + BD'E + ACE$$

Πρωτεύοντες Όροι (Prime Implicants)

• Πρωτεύοντας Όρος (πρώτος συνεπαγωγός ή prime implicant ή PI) : ένα γινόμενο παραγόντων που σχηματίζεται συνδυάζοντας το μεγαλύτερο δυνατό αριθμό γειτονικών τετραγώνων.

Πρωτεύοντες Όροι (Prime Implicants)

• Θεμελιώδης Ορος (ουσιώδης πρώτος συνεπαγωγός) : όταν καλύπτει ένα ελαχιστόρο που δεν καλύπτει κανένας άλλος prime implicant.

Αλγόριθμος απλοποίησης με πίνακα Karnaugh

• Βήμα 1 :

- Βρες όλους τους ουσιώδεις πρώτους συνεπαγωγούς της συνάρτησης
 - Για κάθε 1 του πίνακα βρες τις "γειτονιές του"
 - Επέλεξε τις μέγιστες σε πλήθος γειτονιές. Αυτοί είναι οι πρώτοι συνεπαγωγοί
 - Επέλεξε από τους πρώτους συνεπαγωγούς τους μοναδικούς που καλύπτουν κάποιο 1. Αυτοί είναι οι ουσιώδεις πρώτοι συνεπαγωγοί

• Βήμα 2:

• Για κάθε 1 του πίνακα που δεν έχει ήδη "καλυφθεί", επέλεξε τυχαία ένα πρώτο συνεπαγωγό του

• Βήμα 3:

• Πήγαινε στο Βήμα 2 μέχρι να "καλυφθούν" όλοι οι 1 του πίνακα

Εύρεση συμπληρώματος

wx yz	00	01	11	10
00	1	1	0	1
01	0	1	0	0
11	0	0	0	0
10	1	1	0	1

$$F' = xz' + wx + yz$$

$$F = (x' + z) (w' + x') (y' + z')$$

Υλοποίηση με πύλες NAND & NOR

(α) Δύο σύμβολα για πύλες ΟΧΙ-ΚΑΙ

(β) Δύο σύμβολα για πύλες ΟΥΤΕ

(γ) Τρία σύμβολα για αντιστροφείς

Υλοποίηση με πύλες NAND

- Παράδειγμα:
- Υλοποίηση της συνάρτησης F=AB+CD+E με NAND

(a) KAI-H (AND-OR)

(β) OXI KAI-OXI KAI (NAND-NAND)

(Y) OXI KAI-OXI KAI (NAND-NAND)

25 March 2021

Γεώργιος Κε

Υλοποίηση με πύλες NAND

Υλοποίηση με πύλες NAND

Παράδειγμα (2)

(α) Διάγραμμα ΚΑΙ-Ή

(β) Διάγραμμα με πύλες ΟΧΙ-ΚΑΙ με δύο γραφικά σύμβολα

25 March 2021

Γεώργιος Κεραμί

(γ) Διάγραμμα με πύλες ΟΧΙ-ΚΑΙ με ένα γραφικό σύμβολο.

55

Παράδειγμα (3)

(γ) Εναλλακτικό διάγραμμα με πύλες ΟΧΙ-ΚΑΙ

Κυκλώματα NOR Πολλαπλών Επιπέδων

(β) Διάγραμμα με πύλες ΟΥΤΕ

$$F = (AB + E)(C + D)$$

(γ) Εναλλακτικό διάγραμμα με πύλες ΟΥΤΕ

ΣXHMA 4-19

Yλοποίηση της F = (AB + E)(C + D) με πόλες OYTE

Η Συνάρτηση ΧΟΚ

Αποκλειστικό ή (XOR) $x \oplus y = x'y + xy'$

Αποκλειστικό OYTE (XNOR)
$$(x \oplus y)' = xy + x'y'$$

- Ιδιότητες:
 - $x \oplus 0 = x$

$$x \oplus 1 = x'$$

• $x \oplus x = 0$ $x \oplus x' = 1$

$$\mathbf{c} \oplus \mathbf{x'} = \mathbf{1}$$

• $x \oplus y' = (x \oplus y)'$ $x' \oplus y = (x \oplus y)'$

$$x' \oplus y = (x \oplus y)'$$

• Η πράξη XOR είναι αντιμεταθετική και προσεταιριστική:

$$A \oplus B = B \oplus A$$

$$A \oplus (B \oplus C) = (A \oplus B) \oplus C = A \oplus B \oplus C$$

 Δεν φτιάχνονται συχνά πύλες XOR με περισσότερες από 2 εισόδους.

Η Συνάρτηση ΧΟΚ

• Η συνάρτηση ΧΟR πολλών μεταβλητών είναι περιττή: παίρνει τιμή 1 μόνο όταν περιττός αριθμός εισόδων είναι ίσος με 1.

(β) Άρτια συνάρτηση $F = (A \oplus B \oplus C)'$

(β) Άρτια συνάρτηση τριών εισόδων

Υλοποιήσεις Συνάρτησης XOR

25 March 2021

φορικής

Η Συνάρτηση ΧΟΚ

• Μια συνάρτηση XOR η μεταβλητών είναι μια περιττή συνάρτηση που ορίζεται ως το λογικό άθροισμα των 2ⁿ/2 ελαχιστόρων των οποίων οι δυαδικές αριθμητικές τιμές τους έχουν περιττό αριθμό άσσων.

25 March 2021

Γεώργιος Κει

 $F = (A \oplus B \oplus C \oplus D)'$

Δημιουργία και έλεγχος ισοτιμίας

- Ένας τρόπος εντοπισμού σφαλμάτων κατά τη μετάδοση δεδομένων είναι και η ισοτιμία. Στα bit δεδομένων προστίθεται ένα επιπλέον bit, που ονομάζεται bit ισοτιμίας και ο σκοπός του είναι να δημιουργήσει άρτιο ή περιττό πλήθος 1. Το κύκλωμα που παράγει το bit ισοτιμίας, ονομάζεται γεννητρια ισοτιμίας (parity generator).
- Όταν ο παραλήπτης λάβει το μήνυμα ελέγχει το πλήθος των 1.
 Αν η ισοτιμία του δέκτη δε συμφωνεί με το πλήθος των 1 τότε έχει εντοπισθεί ένα σφάλμα. Το κύκλωμα που ελέγχει την ισοτιμία, ονομάζεται ελεγκτής ισοτιμίας (parity checker)

Γεννήτρια και Ελεγκτής Ισοτιμίας

_			-	
	TO	CT	-0	αc
-				

Πίνακας Αληθείας για τη Γεννήτρια Άρτιας Ισοτιμίας

Μήνυ	μα τρι	Bit Ισοτιμίας	
x	y	z	P
. 0	0	0	0
0	0	1	1
0	1	0	1
0	1	1	0
1	0	0	1
1	0	1	0
1	1	0	0
1	1	1	1

Ελεγκτής Άρτιας	Ισοτιμίας
-----------------	-----------

Τέ	σσερα	Bits 🛆	έκτη	'
x	y	z	P	
0	0	0	0	
0	0	0	1	
0	0	1	0	
0	0	1	1	
0	1	0	0	
0	1	0	1	
0	1	1	0	
0	1	1	1	
1	0	0	0	
1	0	0	1	
1	0	1	0	
1	0	1	1	
1	1	0	0	
1	1	0	1	
1	1	1	0	
1	1	1	1	

Παραλήπτης

Τέο	Τέσσερα Bits Δέκτη		έκτη	Έλεγχος Λάθους Ισοτιμίας
x	y	z	P	С
0	0	0	0	0 .
0	0	0	1	1-
0	0	1	0	1
0	0	1	1	0
0	1	0	0	1
0	1	0	1	0
0	1	1	0	δ Λάθος
0	1	1	1	
1	0	0	0	1
1	0	0	1	0
1	0	1	0	0
1	0	1	1	1 //
1	1	0	0	0.//
1	1	0 .	1	1
1	1	1	0	1 1
1	1	1	1	0
				1

Γεννήτρια και Ελεγκτής Ισοτιμίας

• Τα κυκλώματα αυτά χρησιμοποιούνται στην ανίχνευση λαθών κατά τη μετάδοση ή λειτουργία των κυκλωμάτων.

• Το bit ισοτιμίας είναι περιττή πληροφορία η οποία όμως μπορεί να χρησιμοποιηθεί για την ανίχνευση μονού αριθμού λαθών.

Η μεγάλη εικόνα

- Κάθε μέθοδος απλοποίησης (Karnaugh που είδαμε, υπάρχουν και άλλες) μας δίνει ένα ελάχιστο (όχι απαραίτητα μοναδικό) κύκλωμα για υλοποίηση με πύλες NOT, AND και OR.
- Αν θέλω ελάχιστο αριθμό πυλών πρέπει να :
 - Κάνω αλγεβρικές απλοποιήσεις επί της απλοποιημένης μορφής της συνάρτησης ώστε να χρησιμοποιήσω πύλες NAND, NOR, XOR, XNOR.
 - Διαμοιράζομαι πύλες μεταξύ διαφόρων συναρτήσεων που σκοπεύω να υλοποιήσω ταυτόχρονα.

Αλγεβρικές απλοποιήσεις μετά το Karnaugh

- G (A, B, C, D) = $\Sigma(0, 1, 2, 4, 5, 8, 9, 10)$
- Karnaugh & Λογικό διάγραμμα:

$$G = A'C' + B'D' + B'C'$$

- Περαιτέρω αλγεβρική απλοποίηση
- G = (A+C)' + B'(C'+D') =
 (A+C)' + B'(CD)' =
 (A+C)' + (B+CD)' = ((A+C) (B+CD))'
- Νέο λογικό διάγραμμα:

Διαμοίραση υποσυναρτήσεων

• Μετά από απλοποίηση έχουμε καταλήξει στις συναρτήσεις:

$$Z(A, B, C, D) = D'$$
 $Y(A, B, C, D) = CD + C'D'$ $X(A, B, C, D) = B'C + B'D + BC'D'$ $W(A, B, C, D) = A + BC + BD$

• Ισχύει ότι :

$$Y = (C \oplus D)'$$

 $X = B' (C+D) + B (C+D)' = B \oplus (C+D)$
 $W = A + B (C+D)$

• Χρησιμοποιώντας αυτές τις μορφές ο όρος (C+D) διαμοιράζεται

Απλοποίηση και πραγματικός κόσμος

- Μέχρι ώρας είδαμε την απλοποίηση κυκλωμάτων θεωρώντας μόνο τη λογική τους λειτουργία.
- Στο πραγματικό κόσμο, υπάρχει και μια άλλη διάσταση: η χρονική.
- Θυμηθείτε ότι οι πύλες μοιάζουν με συστάδες διακοπτών, καθένας φτιαγμένος από τρανζίστορ.
- Κάθε τέτοιος διακόπτης χρειάζεται κάποιο χρόνο ώστε να αποκαταστήσει τη λειτουργία του, να μεταφέρει δηλαδή το σήμα από τη μία άκρη του στην άλλη.
- Ως εκ τούτου, κάθε πύλη έχει καθυστέρηση διάδοσης, οριζόμενη ως ο χρόνος που μεσολαβεί από την αλλαγή της εισόδου έως την αλλαγή της εξόδου που αυτή θα προκαλέσει.
- Η καθυστέρηση διάδοσης μπορεί να είναι διαφορετική για κάθε είδος μετάβασης της εξόδου. Αλλη δηλαδή η τιμή της για 0->1 και άλλη για 1->0.

Στο πραγματικό κόσμο μπορεί να μη μας συμφέρει καν η απλοποίηση!

• Ας υποθέσουμε το κύκλωμα που ορίζεται από το παρακάτω πίνακα Karnaugh που μας οδηγεί στην απλοποίηση και την υλοποίηση :

- Αφού F(x, y, z) = x y' + yz, θα είναι F(1, y, 1) = y' + y = 1, δηλαδή η έξοδος δε θα έπρεπε να εξαρτάται από το y.
- Στο πραγματικό κόσμο όμως η διαδρομή από την είσοδο y στο a είναι πιο αργή από την είσοδο y στο b λόγω της ύπαρξης του αντιστροφέα.
- Η έξοδος συνεπώς θα παρουσιάσει μια προσωρινή μηδενική τιμή για x=1, z=1 και y 1->0.
- Αυτή είναι μια αιχμή (static 1 hazard).
- Παρατηρείστε ότι αυτή συμβαίνει κατά τη μετάβαση από τον ελαχιστόρο m7 στον m3.
- Στατικές αιχμές της κατάστασης 1, εμφανίζονται κατά τις μεταβάσεις μεταξύ ελαχιστόρων που ανήκουν σε άλλες ομάδες

Λύση: μη απλοποιημένη συνάρτηση

• Αν συμπεριλάβουμε το πρώτο συνεπαγωγό που καλύπτει τη μετάβαση από το m_3 στο m_7 το πρόβλημα της στατικής αιχμής στη κατάσταση 1 λύνεται.