CMPE 258 – HW2 Abhishek Bais Part 2 Execute automl vision

a) Firebase setup

b) Copy over the google-services JSON file

c) From firebase console - train a model -> import flower_photos.zip

d) Evaluate model

e) Deploy model

g) Add model to app, select image and check label and confidence

Part 2 Time Series forecasting

a) Create a notebook instance

b) Download lab materials

df = df[df.index < '2020-01-01']</pre>

c) Explore and visualize data 01-explore.ipynb file screenshots Create a project, load the data

```
In [10]: # Enter your project and region. Then run the cell to make sure the
  # Cloud SDK uses the right project for all the commands in this notebook.

PROJECT = 'My First Project' # REPLACE WITH YOUR PROJECT NAME
  REGION = 'us-central-1' # REPLACE WITH YOUR REGION e.g. us-central1

#Don't change the following command - this is to check if you have changed the project name above.
  assert PROJECT != 'your-project-name', 'Don''t forget to change the project variables!'

In [11]: target = 'total_rides' # The variable you are predicting
  target_description = 'Total Rides' # A description of the target variable
  features = {'day_type': 'Day Type'} # Weekday = W, Saturday = A, Sunday/Holiday = U
  ts_col = 'service_date' # The name of the column with the date field
  raw_data_file = 'https://data.cityofchicago.org/api/views/6iiy-9s97/rows.csv?accessType=DOWNLOAD'
  processed_file = 'cta_ridership.csv' # Which file to save the results to

Load data

In [12]: # Import CSV file
  df = pd.read_csv(raw_data_file, index_col=[ts_col], parse_dates=[ts_col])

In [13]: # Model data prior to 2020
```

Explore the data

Explore data

In [16]: # Print the top 5 rows
df.head()

Out[16]:

	day_type	bus	rail_boardings	total_rides
service_date				
2001-01-01	U	297192	126455	423647
2001-01-02	W	780827	501952	1282779
2001-01-03	W	824923	536432	1361355
2001-01-04	W	870021	550011	1420032
2001-01-05	W	890426	557917	1448343
4				

Analyze the patterns

Review summary statistics

Perform auto correlation

d) Create a table for BigQuery with cta_ridership.csv data

e) Create a time-series query and run it

f) Query model with evaluation statistics in asc order of AIC

g) Run a forecast query

h) Build a custom forecasting model 02-model.ipynb screenshots

Setup PROJECT, BUCKET File Edit View Run Kernel Git Tabs Settings Help Al Platform Notebooks

Update LSTM architecture

Evaluate results for each timestamp

Update CNN architecture

Evaluate the CNN model

Ensemble ML and statistical models

Study the conclusions

i) Train, predict in the cloud - 03-cloud-training.ipynb screenshots Setup PROJECT, BUCKET

Load and Preview the data

Process the data

Prepare the model

Submit a training job

Monitor the training job

Create a Model Version, Deploy the Model

Make Predictions on deployed model

```
print('Input:')
print(X_test.tolist()[:5])
pred_val = predict_json(PROJECT, REGION, MODEL_NAME, X_test.tolist(), version=abais_version)
print()
print('Predictions:')
print(pred_val[:5])
```

Input:
[[[6.637674434404358], [0.6876651648609055], [0.6852415102977003], [0.7590728805100179], [0.6856438386059], [-1.0852495684854537], [-1.7235066739500692], [0.4231264416097936], [0.5189255122400206], [0.42332185668975886], [0.18801672182980905], [-0.03106388567666394], [-1.1461023319582624], [-1.9432461245836974], [0.47850758284357586], [0.6881042143262819], [0.5709744456816684], [0.5195472874944554], [0.58893733812931], [0.510573287494359], [0.730131145809713], [0.5789052524984392], [0.6798434859495335], [0.3810208365227401], [-1.0912998223898318], [-1.8741808520359864], [0.7131757153000026], [0.7651510077305214]], [[0.68766516486 09055], [0.6852415102977003], [0.7590728805109179], [0.64856438386059], [-1.0852495684854537], [-1.7235065739500692], [0.423126461609793], [0.5189255122400206], [0.6823415102977003], [0.58801672182980905], [-0.03106388567666394], [-1.1461023319582624], [-1.94324612458369], [-1.685249584854537], [-1.874808520359864], [0.5189255122400206], [0.6823415102977003], [0.5789043456816684], [0.5195472874944554], [0.58496567835547], [-1.23590683756875], [-1.635893733812931], [0.5416571079705214], [0.730131145809713], [0.5789052524984392], [0.6798434859459335], [0.3810208365227401], [-1.0912998223898318], [-1.8741808520359864], [0.7181757135000026], [0.6852415102977003], [0.7590744456816684], [0.519547456816684], [0.519547456816684], [0.519547874944554], [0.58496567835547], [-1.2359068975856], [-1.685249568485457], [-1.0852495684854537], [-1.0852495

Predictions:

```
# Print prediction and compare to actual value
print('Predicted riders:', int(round(inverse_scale(np.array([pred_val[0][0]]).reshape(1,1))[0][0])))
print('Actual riders: ', int(round(inverse_scale(np.array([y_test[0]]))[0][0])))
```

Predicted riders: 1646008 Actual riders: 1647321

Cleanup

```
# Delete model version resource
!echo gcloud ai-platform versions delete {abais_version} --model {MODEL_NAME} --quiet

# Delete model resource
!echo gcloud ai-platform models delete {MODEL_NAME} --quiet
```

gcloud ai-platform versions delete version_1614359512 --model cta_ridership_4 --quiet gcloud ai-platform models delete cta_ridership_4 --quiet

Storage Buckets

For My Project 3837

For My First Project

