

ETM101 / ETM102 / ETE702 RESISTÊNCIA DOS MATERIAIS

Método de Integração da Equação Diferencial da Linha Elástica

INSTITUTO MAUÁ DE TECNOLOGIA MAUÁ

Aplicações

Ponte rolante DEMAG

Ensaio destrutivo da asa do Boing 787 – Carregamento 2,5g

MAUÁ MAUÁ

Aplicações

Marquise

Lâmina de turbina eólica de 83 m

Prateleira

Simulação MEF

INSTITUTO MAUÁ DE TECNOLOGIA

Aplicações

Parafuso de movimento de uma máquina

Ensaio de deflexão em viga de concreto

Mancal de rolamento

Objetivos

Determinação dos deslocamentos transversais (flechas - y) e deslocamentos angulares (rotações ou inclinações - φ) em barras submetidas ao momento fletor.

Critérios

Os projetos e dimensionamentos de vigas devem ser feitos quanto ao critério de resistência, relacionado às tensões limites do material e, ao critério de rigidez, relacionado aos deslocamentos máximos da estrutura.

Condição de Resistência:

$$\sigma_{m\acute{a}x} \leq \overline{\sigma}$$

Condição de Rigidez:

$$y_{m ext{\'a}x} \leq \bar{y}$$

$$\varphi_{\text{máx}} \leq \overline{\varphi}$$

Nós estudaremos os deslocamentos na flexão por meio do método da Integração da Linha Elástica.

Normas

➤ A norma NBR 8800 - "Projeto de Estruturas de Aço e de Estruturas Mistas de Aço e Concreto de Edifícios" apresenta como limites de flechas (y):

Vigas de cobertura: 1/250 do vão da viga ->

- Os manuais recomendam as rotações máximas (φ) nos mancais para eixos com mancais de rolamentos rígidos com uma carreira de esferas: 8 minutos (0,0024 radianos).
- Para eixos de redutores os manuais recomendam flecha máxima de 1/1500 a 1/5000 da distância entre mancais.

Hipóteses

1) Segundo a "Hipótese de Navier", as seções planas permanecem planas durante a deformação

2) O material da estrutura obedece a "Lei de Hooke", ou seja, trabalha no regime elástico, $\sigma = E.\epsilon$

3) Existe uma variação linear das tensões na seção segundo a "Hipótese de Bernoulli", $\sigma = M.y/l_{LN}$

Compressão

Superfície

4) Pequenos deslocamentos.

INSTITUTO MAUÁ DE TECNOLOGIA

Expressão da Curvatura

Expressão da Curvatura

$$tg \frac{d\alpha}{2} \cong \frac{d\alpha}{2} = \varepsilon' \frac{dx}{2} \frac{1}{y'} \longrightarrow d\alpha = \varepsilon' \frac{dx}{y'}$$

Mas como o material obedece à lei de Hooke. $\varepsilon' = \frac{\sigma'}{E}$

Substituindo na equação acima encontramos: $d\alpha = \frac{\sigma'}{E \ y'} dx$

distribuição das tensões é linear: $\sigma' = \frac{M}{I} y'$ \rightarrow $d\alpha = \frac{M}{I} \frac{y'}{E \ y'} dx$

Portanto:
$$d\alpha = \frac{M}{E I} dx$$
 ou

Expressão da Curvatura

Na realidade estamos interessados em calcular as flechas y (deslocamentos lineares) e rotações φ (deslocamentos angulares). Analisando no sistema de coordenadas x y da figura

$$\varphi = \frac{dy}{dx}$$

derivando novamente

$$\frac{d^2y}{dx^2} = \frac{d\varphi}{dx}$$

como o raio R é grande, o arco AB pode ser confundido com a corda dx, assim:

$$\widehat{A}\widehat{B} = R \ d\alpha \cong dx$$

$$\frac{d\alpha}{dx} = \frac{1}{R}$$

$$\frac{d\alpha}{dx} = \frac{M}{EI} = \frac{1}{R}$$

No cálculo pode-se demonstrar que a curvatura de uma função é dada por:

$$\frac{1}{R} = \pm \frac{\frac{d^2 y}{dx^2}}{[1 + (\frac{dy}{dx})^2]^{\frac{3}{2}}}$$

Equação Diferencial da Linha Elástica (E.D.L.E.)

No nosso caso, como as deformações são pequenas $\varphi = \frac{dy}{dx}$ é bem menor do que um, deste modo $1 + (\frac{dy}{dx})^2 \cong 1$ e,

portanto
$$\frac{1}{R} = \pm \frac{d^2 y}{dx^2}$$

teremos a chamada equação diferencial da linha elástica:

$$\frac{d^2y}{dx^2} = \frac{d\varphi}{dx} = \pm \frac{M}{EI}$$

O sinal + ou - a ser usado na equação dependerá do sistema de coordenadas utilizado para resolver o problema.

Convenções de Sinais

$$\frac{d^2y}{dx^2} = \frac{d\varphi}{dx} = -\frac{M}{EI}$$

Processo de Integração da EDLE

$$\frac{d^2y}{dx^2} = \frac{d\varphi}{dx} = -\frac{M}{EI}$$

$$d\varphi = -\frac{M}{EI}dx$$

$$\varphi = \int d\varphi = \int \frac{-M}{EI} dx + C_1$$

$$\frac{dy}{dx} = \varphi$$

$$y = \int dy = \int \varphi \, dx + C_2$$

As constantes de integração
$$C_1$$
e C_2 são calculadas em função das **condições de contorno** do problema.

Relações entre os EIS e Deslocamentos

Admitindo que o produto de rigidez *EI* é constante ao longo da barra, podese fazer as seguintes relações:

$$y = f(x) \Rightarrow$$
 deslocamento transversal

$$y' = \frac{dy}{dx} = \theta \implies$$
 deslocamento angular

$$y'' = \frac{d^2y}{dx^2} = \frac{M}{EI} \Rightarrow$$
 momento fletor

$$y'' = \frac{d^3y}{dx^3} = \frac{V}{EI} \Rightarrow$$
 força cortante

$$y''' = \frac{d^4 y}{dx^4} = -\frac{w}{EI} \Rightarrow \text{carga distribuída}$$

Exercício 1

Problemas com vários trechos

- ➤ O problema resolvido tem a característica de que o diagrama de momentos fletores pode ser expresso por apenas uma função ao longo de todo o comprimento da barra. Este não é o caso mais comum.
- A barra bi-apoiada da figura abaixo tem uma carga concentrada aplicada entre os dois apoios e seu diagrama de momentos fletores não pode ser determinado apenas por uma função.

- ➤ O diagrama, neste caso, é formado por duas retas.
- ➤ Devemos dividir o problema em dois trechos, isto é, uma função irá representar o diagrama no trecho AC, onde x varia de 0 a 2L, enquanto que outra função irá representar o diagrama no trecho CB, onde x varia de 2L a 3L.
- ➤ Podemos utilizar o processo da integração da EDLE para cada um dos trechos, mas ocorrerá um problema.
- Ao integrarmos a primeira equação encontraremos duas constantes de integração C1 e C2 e ao integrarmos a segunda equação encontraremos outras duas constantes de integração, diferentes das primeiras, C3 e C4.
- ➤ As condições de contorno fornecem apenas duas equações para resolver o problema, a condição de yA = 0, que vale para o primeiro trecho e condição de yB = 0 que vale para o segundo trecho.

Problemas com vários trechos

- Precisamos de mais duas equações para determinar as quatro constantes de integração.
- Estas equações adicionais são determinadas pelas **propriedades da linha elástica**, que são:
 - A linha elástica é contínua, isto é, não apresenta descontinuidade. Não existe uma variação discreta de flecha. A barra não tem "dente".
 - A linha elástica é derivável, isto é, não tem ponto anguloso. Não existe uma variação discreta de rotação. A barra não tem "bico".
- A figura abaixo mostra as formas que a linha elástica não pode apresentar.

➤ Na emenda dos trechos teremos, portanto, duas condições de contorno adicionais que são:

$$\begin{cases}
\phi_{1^{\circ} \text{ TRECHO}} = \phi_{2^{\circ} \text{ TRECHO}} \\
y_{1^{\circ} \text{ TRECHO}} = y_{2^{\circ} \text{ TRECHO}}
\end{cases}$$

Com estas duas equações adicionais, teremos **quatro equações**, condição que possibilita calcular as quatro constantes de integração desejadas.

Funções de Singularidade

- Para solucionar mais facilmente estes problemas, foram desenvolvidos vários processos para o cálculo de flechas e rotações.
- ➤ Um deles é o Processo da Integração da Equação Diferencial da Linha Elástica usando as **Funções de Singularidade** (ou Funções Singulares).
- A determinação da linha elástica nos casos vistos anteriormente é trabalhosa pelo fato de que é necessário dividir a barra em vários trechos para descrever o momento fletor. Cada trecho tem uma função diferente para representar o momento fletor.
- ➤ Utilizando-se as **funções de singularidade**, também chamadas funções singulares, podemos **representar o momento fletor na barra inteira por meio de apenas uma função** e deste modo qualquer problema terá apenas duas constantes de integração. As funções de singularidade foram apresentadas por Macaulay.

Funções de Singularidade

As funções de singularidade ou funções singulares podem ser definidas para $n \ge 0$ como:

$$\begin{cases} \langle x - a \rangle^n = (x - a)^n & \text{se} & x \ge a \\ = 0 & \text{se} & x < a \end{cases}$$

Notar a notação especial introduzida por Macaulay, os "parênteses angulares", que indicam a função de singularidade. Deste modo:

Se $x \ge a$, ou, alternativamente, se $x - a \ge 0$, a função de singularidade se reduz a uma função comum. Se x < a, ou, alternativamente, se x - a < 0, a função assume o valor zero.

➤ Alguns exemplos de função de singularidade:

Funções de Singularidade

A função de singularidade é integrada do mesmo modo que uma função polinomial comum, assim:

$$\int_{0}^{x} \langle x - a \rangle^{n} = \frac{\langle x - a \rangle^{n+1}}{n+1} + C_{1}$$
 para $n \ge 0$

Deste modo, utilizando-se a função de singularidade pode-se representar um diagrama de momentos fletores formado, por exemplo, por várias retas com diferentes inclinações, por meio de apenas uma equação.

Momento concentrado

Função singular

$$M = -M_0 \langle x - L \rangle^0$$

Força concentrada

Função singular

$$M = -P\langle x - L \rangle^1$$

Funções de Singularidade

Carregamento distribuído uniforme

Função singular

$$M = -p \frac{\langle x - L \rangle^2}{2}$$

Carregamento distribuído linear

Função singular

$$M = -k \frac{\langle x - L \rangle^3}{6}$$

k – inclinação da reta

$$k = \frac{p_0}{a}$$

Obs.: Quando o momento fletor provocado por carga distribuída é representado por função de singularidade, a carga deve ir até o final da viga, pois representa a função para qualquer x > L

Exercícios