Recommendation system

Deep learning approach

Utility matrix matrix with user, item and rating of user to item

	А	В	С	D	Е	F
Mưa nửa đêm	5	5	0	0	1	?
Cỏ úa	5	?	?	0	?	?
Vùng lá me bay	?	4	1	?	?	1
Con cò bé bé	1	1	4	4	4	?
Em yêu trường em	1	0	5	?	?	?

1. Content-Based Recommendations

Recommend based on item property

			-	-	- v.			
	Α	В	С	D	Е	F	item's feature vectors	
Mưa nửa đêm	5	5	0	0	1	?	$\mathbf{x}_1 = [0.99, 0.02]$ -	> Pre caculated
Cỏ úa	5	?	?	0	?	?	$\mathbf{x}_2 = [0.91, 0.11]$	
Vùng lá me bay	?	4	1	?	?	1	$\mathbf{x}_3 = [0.95, 0.05]$	
Con cò bé bé	1	1	4	4	4	?	$\mathbf{x}_4 = [0.01, 0.99]$	
Em yêu trường em	1	0	5	?	?	?	$\mathbf{x}_5 = [0.03, 0.98]$	SGD
User's models	θ_1	θ_2	θ_3	θ_4	θ_5	θ_6	← need to optimize <	
Hình 2: Giả sử feature vector cho mỗi item được cho trong cột cuối cùng Với mỗi user chúng tạ cần tìm một mộ hình θ .								

Hình 2: Giả sử feature vector cho môi *item* được cho trong cột cuối cùng. Với môi *user*, chúng ta cân tìm một mô hình θ_i tương ứng sao cho mô hình thu được là *tốt nhất*.

2. User-user, item-item Collaborative Filtering

Need predict

missing value

to fill utility

matrix

Recommend based on similarity of user or item

3. Matrix Factorization Collaborative Filtering

Utility matrix ≈ item maxtrix * user matrix (two low rank maxtrix)

$$\mathbf{Y} \approx \hat{\mathbf{Y}} = \mathbf{X}\mathbf{W}$$

Need predict missing value to fill utility matrix

"Shallow" approach Why is it not accurate?

- We need predict or caculate missing value in utility matrix to fill low rank matrix, ex:
 - Content-Based Recommendations: item feature vector.
 - User-user or item-item Collaborative Filtering: Normalized utility maxtrix.
 - Matrix Factorization Collaborative Filtering: full utility matrix.

Deeplearning approach

- In deeplearning, we treat each unique value in categorycal variable with a unique id. Each unique id represent by a embedding vector with n dimension.
- The same with item

User	Id	Embedding vector (5 dimension)							
user A	1	0,188	0,769	0,206	0,168	0,075			
user B	2	0,342	0,900	0,272	0,486	0,180			
user C	3	0,288	0,827	0,401	0,800	0,738			
user D	4	0,858	0,817	0,651	0,203	0,786			
user E	5	0,373	0,784	0,462	0,327	0,954			
user F	6	0,212	0,057	0,325	0,668	0,699			
user G	7	0,467	0,197	0,590	0,448	0,494			

Deeplearning approach Example

User A rate item 1 with score = 7

"Shallow" vs Deeplearning approach What's Different?

Deeplearning approach only use data of user already rate item to fit model!

Deeplearning approach How to caculate embedding vector?

backpropagation is the key!

Deeplearning approach Very flexible!

Concat every categorycal, continous variable! user property (age, city...), item property (year made, price...), economic value...

Flexible in DL network strucure: Feed forward net, Convolutional net, dropout layer, batchnorm layer....

Deeplearning approach One last thing. Session base recommendation

Recommend base on order of user action with sequence model.

Sequence model