2. Logika

Definice

Logika je věda o vyvozování (resp. logickém důsledku). Zkoumá argumenty postavené na předpokladech (tvrzeních, o nichž se předpokládá, že jsou pravdivá), které vedou k závěru. Deduktivní uvažování vyžaduje, aby závěr nevyhnutelně vyplýval z premis.

Výroky

Výrok je tvrzení (myšlenka vyjádřená jazykem), které může být pravdivé nebo nepravdivé (např. "venku prší").

Jednoduchý výrok: nemá žádnou další podčást, která by byla výrokem.

Složený výrok: obsahuje další podčásti (výroky) propojené logickými spojkami (např. konjunkce, disjunkce).

Predikáty

Predikát je výraz určující vlastnost nebo vztah, který lze připsat jednomu či více subjektům.

- **Jednomístné** (např. "x je vysoký")
- **Dvojmístné** (např. "x napadl y")
- Vícemístné (např. "x leží mezi y a z")

U predikátů se sleduje, za jakých podmínek je predikát (a tedy i výrok) pravdivý nebo nepravdivý.

Pravidla správného usuzování

Máme sérii tvrzení \$A1\$, \$A2\$,\$...\$,\$An\$, které vedou k závěru B.

Argument je **správný**, pokud NENÍ možná situace, kdy všechna tvrzení Ai jsou pravdivá, ale závěr B by byl nepravdivý.

Booleova algebra

Nauka o operacích s logickými konstantami 0 a 1 (pravda/nepravda) a s logickými proměnnými.

Základní logické operace:

- Konjunkce (AND, Λ): pravdivá jen tehdy, jsou-li oba operandy pravdivé.
- Disjunkce (OR, v): pravdivá, pokud je aspoň jeden operand pravdivý.
- **Negace (NOT, ¬)**: mění hodnotu z pravdy na nepravdu a naopak.

Dále platí důležité zákony jako komutativita, asociativita, distributivita, zákon identity, zákon neprotirečení a zákon vyloučeného středu.

Základní zákony

Zákon komutativní

Pořadí operandů nemá vliv na výsledek.

Při spojení dvou výroků operací AND (A) nebo OR (V) nezáleží na tom, který výrok je vlevo a který vpravo.

• Například: "A a B" je totéž jako "B a A", stejně tak "A nebo B" je totéž jako "B nebo A".

Zákon asociativní

Způsob seskupení výrazů nemá vliv na výsledek.

Když spojujeme více než dva výroky stejnou operací (AND nebo OR), je jedno, které dvojice uzavřeme do závorek – výsledek je vždy stejný.

Například: "(A a B) a C" je totéž jako "A a (B a C)", stejně tak "(A nebo B) nebo C" je totéž jako "A nebo (B nebo C)".

Zákon Distributivní

Operace AND se "roznásobí" přes OR a naopak.

Konjunkce (AND) může být rozdistribuována přes disjunkci (OR) a naopak.

• Například: "A a (B nebo C)" lze přepsat jako "(A a B) nebo (A a C)".

Zákon identity

Speciální prvky pro AND a OR.

Existují speciální pravdivostní hodnoty, které v kombinaci s výrokem výsledek nezmění:

- AND s pravdou (1) nechává výrok nezměněný: "A a pravda" je totéž jako "A".
- OR s nepravdou (0) nechává výrok nezměněný: "A nebo nepravda" je totéž jako "A".

Zákony negace

Výrok a jeho negace mají předvídatelné výsledky.

- Výrok současně pravdivý i nepravdivý (A a ne A) je vždy nepravda (výsledek je 0).
- Výrok nebo jeho negace (A nebo ne A) je vždy pravda (výsledek je 1).

Vennovy diagramy

Grafické znázornění množin a vztahů mezi nimi (sjednocení, průnik, rozdíl, doplněk).

Používají se k vizualizaci množinových operací a logických vztahů.

Eulerovy diagramy

Schematické prostředky pro znázornění množin a jejich vztahů.

Rozdíl oproti Vennovým diagramům: Eulerovy diagramy zobrazují pouze relevantní vztahy, ne nutně všechny možné (používají se hlavně k přehlednému vyjádření hierarchických vztahů).

Tautologie, kontradikce, splnitelná formule

Tautologie

Výroková formule pravdivá ve všech možných ohodnoceních proměnných (v tabulce vychází vždy 1).

Příklad: pv¬p ("Buď prší, nebo neprší").

Kontradikce

Výroková formule **nepravdivá ve všech ohodnoceních** (v tabulce samé 0).

Příklad: p∧¬p ("Prší a neprší současně").

Splnitelná formule

Existuje aspoň jedna interpretace (ohodnocení proměnných), která ji činí pravdivou.

Není pravdivá nutně ve všech interpretacích (to by byla tautologie), ale aspoň v jedné (na rozdíl od kontradikce).

Logický důsledek

Z výroků \$A_1\$, \$A_2\$, \$\dots\$, \$A_n\$ **logicky vyplývá** výrok B, jestliže v každém ohodnocení, kde jsou pravdivé všechny Ai, je pravdivé i B.

Klasický příklad:

- \$A_1\$: Všichni lidé jsou smrtelní.
- \$A_2\$: Sokrates je člověk.
- \$B\$: Sokrates je smrtelný.

Výrokový počet

Formalizovaná teorie výroků a logických spojek.

Řeší, jak se výroky mohou kombinovat (konjunkce, disjunkce, implikace atd.) a jaké jsou jejich pravdivostní hodnoty.

Věty a ekvivalence

Věta v logice je výrok, který lze ohodnotit jako pravdivý nebo nepravdivý podle hodnot proměnných.

Ekvivalence (**A**⇔**B**): výroky A a B mají stejnou pravdivostní hodnotu ve všech situacích (buď oba pravdivé, nebo oba nepravdivé).

Logické zákony

Zákon identity: Každé tvrzení je totožné samo se sebou \$A = A\$.

Zákon neprotirečení: Tvrzení nemůže být zároveň pravdivé a zároveň nepravdivé $-(P \land P)$.

Zákon vyloučeného středu: Každý výrok je buď pravdivý, nebo nepravdivý \$PV¬P\$.

Zákon dvojité negace: Dvojnásobná negace je ekvivalentní původnímu výroku \$\neg \neg P \equiv P\$.

Formule

Symbolická reprezentace výroků pomocí proměnných (p, q, r...) a logických spojek.

Jednoduché formule: samotné proměnné (p, q...).

Složené formule: kombinace pomocí \land , \lor , \rightarrow , \neg apod.

Sekvence

Řada logických výroků (premis), z nichž každý logicky navazuje na předchozí, vedoucí k závěru.

Typická sekvence začíná několika předpoklady, pokračuje mezikroky a končí závěrem, který z předpokladů logicky plyne.

Typický příklad:

- 1. Všichni lidé jsou smrtelní.
- 2. Sokrates je člověk.
- 3. Závěr: Sokrates je smrtelný.

Nepřímý důkaz

Metoda dokazování založená na předpokladu, že tvrzení neplatí. Pokud tento předpoklad vede k rozporu, plyne, že tvrzení musí být pravdivé.

Příklad: "Kdyby festival umění byl dnes, bylo by tu mnoho lidí"; pokud tu mnoho lidí není, festival není dnes.

DNF (Disjunktivní normální forma)

- Logický vzorec ve formě součtu součinů tzn. disjunkce (nebo-li "nebo") několika konjunkcí ("a").
- \$(A ∧ B) ∨ (A ∧ ¬B) ∨ (¬A ∧ C)\$
- Každý člen (v závorce) je kombinace proměnných a jejich negací, které stačí k
 pravdivosti celé formule.
- Když chceš vyjádřit, které konkrétní kombinace vstupů způsobí, že výrok bude pravdivý.
- Vhodné pro analýzu, kdy chceme vyjádřit, které konkrétní kombinace proměnných stačí k pravdivosti.

KNF (Konjunktivní normální forma)

- Logický vzorec ve formě součinu součtů tzn. konjunkce ("a") několika disjunkcí ("nebo") proměnných.
- \$(A ∨ B) ∧ (¬A ∨ C) ∧ (B ∨ ¬C)\$
- Každý člen (v závorce) je výrok, který musí být pravdivý, aby byl pravdivý celý výraz.
- Často používaná forma v logice, např. pro **automatizované dokazování** (SAT řešiče).
- Užitečné pro vyhodnocování, kdy výrok musí splňovat více "nebo" podmínek zároveň.

Sylogismy

- Forma deduktivního uvažování, kdy ze dvou tvrzení (premis) odvodíme logický závěr.
- Struktura klasického sylogismu:
 - 1. **Obecná (vyšší) premisa** vztah mezi kategoriemi P a M
 - 2. Konkrétní (nižší) premisa vztah mezi M a S
 - 3. **Závěr** vyvozený vztah mezi S a P
- Příklad:
 - 1. Všichni lidé (S) jsou smrtelní (P).
 - 2. Sokrates (M) je člověk (S).
 - 3. Závěr: Sokrates (M) je smrtelný (P)
- Použití:
 - o Základ **formální logiky**, filozofie, právního uvažování, matematických důkazů.