Outline

- 1. Graph Neural Networks
- 2. Graph Classification
- 3. U2GNN and Transformer
- 4. Papers

What is GNN?

- GNN是在可以图 (Graph) 上定义卷积(特征聚合)操作,进行反向传播,从而实现端到端的图表示学习的一类神经网络模型
- GNN分为两类:基于空间和基于谱
- GNN是一种图表示学习的方法, 其它方法还 包括图嵌入等

Spatial-based and spectral based

spatial-based	spectral-based		
在图的空间拓扑结构上进行,也叫Message Passing Neural Network (MPNN)	运用谱图理论,在 频域 进行		
可以处理大型图,可以在部分节点中执行,而不是整个图,还可以引入节点采样来提高效率	计算成本随着图的大小增加而急剧增加,难 以处理大型图		
各种图都行	只可以在无向图上工作,因为有向图上拉普 拉斯矩阵没有定义。在有向图上应用,就只 能化有向图为无向图。		
在每个节点执行本地卷积,可以在不同的位 置和结构之间共享权重	假定一个固定的图,难以添加新的节点		
GAT、GraphSAGE	GCN		

GNN framework

ICML2017, Gilmer J, et al. Neural message passing for quantum chemistry

GNN framework

How is a simplest GNN implemented?

Common GNN variants

1. **GAT**:

- a) $e_{ij} = a(WH_i|WH_j)$
- b) $\alpha_{ij} = softmax(e_{ij})$
- c) $H_i^* = \sigma(\sum_{j \in N(i)} \alpha_{ij} W H_j)$

2. GraphSAGE:

- a) Mean aggregator: $H_i^* = \sigma(W \cdot mean(\{H_i\} \cup \{H_i, \forall j \in N(i)\}))$
- b) GCN aggregator: $H_i^* = \sigma(W \cdot concate(H_i, H_{N(i)}))$
- c) ...
- 3. GIN: $H_i^* = MLP(\sum_{j \in N(i) \cup \{i\}} H_j)$
- 4. GCN: $H^* = \sigma(\widetilde{D}^{-\frac{1}{2}}\widetilde{A}\widetilde{D}^{-\frac{1}{2}}HW)$

GNN-related research

GNN Python frameworks

Deep Graph library (DGL)

https://github.com/dmlc/dgl

PyTorch Geometric

https://github.com/pyg-team/pytorch_geometric

GNN Researchers

Jure Leskovec (莱斯科维奇) https://cs.stanford.edu/~jure/

Node2Vec, GraphSAGE, GIN, DiffPool, PyG, OGB

William L. Hamilton

https://williamleif.github.io/

Graph Representation Learning, GraphSAGE

Thomas N. Kipf (托马斯·基普夫) https://tkipf.github.io/

GCN

Petar Veličković (维利克科维奇) https://petar-v.com/

GAT, DGI

GNN Researchers

Muhan Zhang (张牧涵)

https://muhanzhang.github.io/

DGCNN, SEAL

Peng Cui (崔鹏)

https://pengcui.thumedialab.com/

SDNE

Jie Tang (唐杰)

https://keg.cs.tsinghua.ed u.cn/jietang/

Graph Classification benchmark

Open Graph Benchmark (OGB)

https://ogb.stanford.edu/

https://ogb.stanford.edu/docs/leader_graphprop/

TUDataset

https://chrsmrrs.github.io/datasets/docs/home/

https://paperswithcode.com/task/graph-classification

Graph Classification experimental setting

图分类的衡量指标通常是准确率(±标准差),但对于实验设置,目前存在两套主流的方法:

- 1. 10次十折交叉验证,每次十折交叉中,9折作为训练集,在训练集中划分验证集,用于参数搜索;1折作为测试集,用于验证模型性能,实验结果取100次实验模型的均值及标准差。(PATCHY-SAN, DGCNN)
- 2. 1次十折交叉验证,9折作为训练集,1折作为验证集,没有测试集,在每次训练过程中,记录验证集在每个epoch的准确率,一共得到10条验证集准确率曲线,将10条曲线做平均得到一条平均曲线,取平均曲线的最高点,作为最终的准确率。(GIN, DiffPool, U2GNN...)

ICLR 2020: A Fair Comparison of Graph Neural Networks for Graph Classification

Graph Classification baselines

- 1. Graph kernels:
 - 1. GK
 - 2. SP
 - 3. RW
 - 4. WL
- 2. Deep learning
 - 1. DGK
 - 2. DGCNN
 - 3. PATCHY-SAN
 - 4. DiffPool
 - 5. ECC

Transformer

Transformer & Self-attention

U2GNN

Figure 1: Illustration of our U2GNN.

U2GNN

Figure 2: A t-SNE visualization of the node embeddings learned by GIN-0 and our U2GNN on the PTC dataset.

U2GNN

Table 2: Graph classification results (% accuracy). The best scores are in bold.

Model	COLLAB	IMDB-B	IMDB-M	DD	PROTEINS	MUTAG	PTC
GK [39]	72.84 ± 0.28	65.87 ± 0.98	43.89 ± 0.38	78.45 ± 0.26	71.67 ± 0.55	81.58 ± 2.11	57.26 ± 1.41
WL [38]	79.02 ± 1.77	73.40 ± 4.63	49.33 ± 4.75	79.78 ± 0.36	74.68 ± 0.49	82.05 ± 0.36	57.97 ± 0.49
PSCN [34]	72.60 ± 2.15	71.00 ± 2.29	45.23 ± 2.84	77.12 ± 2.41	75.89 ± 2.76	92.63 ± 4.21	62.29 ± 5.68
GCN [24]	81.72 ± 1.64	73.30 ± 5.29	51.20 ± 5.13	79.12 ± 3.07	75.65 ± 3.24	87.20 ± 5.11	_
GFN [7]	81.50 ± 2.42	73.00 ± 4.35	51.80 ± 5.16	78.78 ± 3.49	76.46 ± 4.06	90.84 ± 7.22	_
GraphSAGE [16]	79.70 ± 1.70	72.40 ± 3.60	49.90 ± 5.00	65.80 ± 4.90	65.90 ± 2.70	79.80 ± 13.9	_
GAT [42]	75.80 ± 1.60	70.50 ± 2.30	47.80 ± 3.10	_	74.70 ± 2.20	89.40 ± 6.10	66.70 ± 5.10
DGCNN [54]	73.76 ± 0.49	70.03 ± 0.86	47.83 ± 0.85	79.37 ± 0.94	75.54 ± 0.94	85.83 ± 1.66	58.59 ± 2.47
SAGPool [27]	_	_	_	76.45 ± 0.97	71.86 ± 0.97	_	_
PPGN [30]	81.38 ± 1.42	73.00 ± 5.77	50.46 ± 3.59	_	77.20 ± 4.73	90.55 ± 8.70	66.17 ± 6.54
CapsGNN [47]	79.62 ± 0.91	73.10 ± 4.83	50.27 ± 2.65	75.38 ± 4.17	76.28 ± 3.63	86.67 ± 6.88	_
DSGC [37]	79.20 ± 1.60	73.20 ± 4.90	48.50 ± 4.80	77.40 ± 6.40	74.20 ± 3.80	86.70 ± 7.60	_
GIN-0 [48]	80.20 ± 1.90	75.10 ± 5.10	52.30 ± 2.80	_	76.20 ± 2.80	89.40 ± 5.60	64.60 ± 7.00
GCAPS [43]	77.71 ± 2.51	71.69 ± 3.40	48.50 ± 4.10	77.62 ± 4.99	76.40 ± 4.17	_	66.01 ± 5.91
IEGN [31]	77.92 ± 1.70	71.27 ± 4.50	48.55 ± 3.90	_	75.19 ± 4.30	84.61 ± 10.0	59.47 ± 7.30
U2GNN	77.84 ± 1.48	$\textbf{77.04} \pm \textbf{3.45}$	$\textbf{53.60}\pm\textbf{3.53}$	80.23 ± 1.48	78.53 ± 4.07	89.97 ± 3.65	69.63 ± 3.60

Unsupervised U2GNN

$$\mathcal{L}_{U2GNN}\left(v\right) = -\log\frac{\exp(\boldsymbol{o}_{v}\cdot\boldsymbol{e}_{v})}{\sum_{v'\in\mathcal{V}'}\exp(\boldsymbol{o}_{v'}\cdot\boldsymbol{e}_{v})}$$

Model	COLLAB	IMDB-B	IMDB-M	DD	PROTEINS	MUTAG	PTC
DGK [49]	73.09 ± 0.25	66.96 ± 0.56	44.55 ± 0.52	73.50 ± 1.01	75.68 ± 0.54	87.44 ± 2.72	60.08 ± 2.55
AWE [20]	73.93 ± 1.94	74.45 ± 5.83	51.54 ± 3.61	71.51 ± 4.02	_	87.87 ± 9.76	_
uGCN	93.28 ± 0.99	94.50 ± 2.79	81.66 ± 3.16	94.31 ± 1.71	$\textbf{89.09}\pm\textbf{3.25}$	$\textbf{95.36} \pm \textbf{2.64}$	$\textbf{92.67} \pm \textbf{4.60}$
U2GNN	95.62 ± 0.92	96.41 ± 1.94	89.20 ± 2.52	95.67 ± 1.89	80.01 ± 3.21	88.47 ± 7.13	91.81 ± 6.61

Papers

https://github.com/thunlp/GNNPapers

https://github.com/benedekrozemberczki/awesom e-graph-classification