Algoritmos y Estructura de Datos 2

Departamento de Computación Facultad de Ciencias Exactas y Naturales Universidad de Buenos Aires

Exorcismo Extremo TP1

Integrante	LU	Correo electrónico
Rosinov, Gaston Einan	37/18	grosinov@gmail.com
Schuster, Martin Ariel	208/18	m.a.schuster98@gmail.com
Panichelli, Manuel	72/18	panicmanu@gmail.com

Reservado para la cátedra

Instancia	Docente	Nota
Primera entrega		
Segunda entrega		

Índice

1.	TAD JUEGO	3
2.	TAD Habitacion	5
3.	TAD Accion	6
4.	TAD DIRECCION	8
5.	EXTENSIONES Y RENOMBRES	9

1. TAD JUEGO

TAD JUEGO

géneros juego

exporta TODO

usa Habitacion

igualdad observacional

$$(\forall j,j': \text{juego}) \ \left(j =_{\text{obs}} j' \Longleftrightarrow \begin{pmatrix} (n=0? =_{\text{obs}} m=0?) \land_{\text{L}} \\ (\neg (n=0?) \Rightarrow_{\text{L}} (\text{pred}(n) =_{\text{obs}} \text{pred}(m))) \end{pmatrix} \right)$$

igualdad observacional

$$(\forall j, j': \text{juego}) \left(j =_{\text{obs}} j' \iff \begin{pmatrix} (\text{accionesPJs}(j) =_{\text{obs}} \text{accionesPJs}(j')) \land \\ (\text{accionesFan}(j) =_{\text{obs}} \text{accionesFan}(j')) \land \\ (\text{localizarJugadores}(j) =_{\text{obs}} \text{localizarJugadores}(j')) \land \\ (\text{hab}(j) =_{\text{obs}} \text{hab}(j')) \land \\ ((\forall p: pj) \text{ (vivePJ?}(j, p) =_{\text{obs}} \text{vivePJ?}(j', p))) \land \\ ((\forall f: \text{fantasma}) \text{ ((viveFan?}(j, p) =_{\text{obs}} \text{viveFan?}(j', p)))} \end{pmatrix} \right)$$

observadores básicos

accionesPJs : juego \longrightarrow dicc(pj, secu(accion))

acciones Fan : juego $\longrightarrow \operatorname{dicc}(pj, \operatorname{secu}(\operatorname{accion}))$

hab : juego \longrightarrow hab

vivePJ? : juego $j \times pj p$ \longrightarrow bool $\{p \in jugadores(j)\}$

viveFan? : juego $j \times \text{fantasma} f \longrightarrow \text{bool}$ $\{f \in \text{fantasmas}(j)\}$

ubicacionInicialFan : juego $j \times \text{fantasma } f \longrightarrow \text{ubicacion} \quad \{f \in \text{fantasmas}(f)\}$

localizar Jugadores : juego \longrightarrow dicc(pj, ubicacion)

generadores

iniciar : conj(pj) $pjs \times \text{secu(accion)} \ as \times \text{ubicacion} \ u \longrightarrow \text{juego}$ {esConexa?(h) \land

 \times hab h $\neg \emptyset?(as) \land \neg \emptyset?(pis) \land \neg \emptyset?($

 $\neg \emptyset$?(pjs) \land esValida?(h, pos(u))}

prox Paso : juego $j \times pj p \times accion a \longrightarrow juego$ { $p \in jugadores(j) \land_L$

 $\neg \operatorname{esMirar}(a)$

otras operaciones

 $\text{jugadores} \qquad \qquad : \text{juego} \qquad \qquad \longrightarrow \text{conj(pj)}$

fantasmas : juego \longrightarrow conj(fantasma)

termina Ronda : juego $j \times pj$ $p \times accion$ $\longrightarrow bool$ $\{p \in jugadores(j)\}$

```
\{pjs \subseteq jugadores(j)\}
  estanVivos
                             : juego \times conj(pj) pjs
                                                                                             \rightarrow bool
                                                                                                ubicacion
  ubicacionInicialPJ
                             : juego j \times pj p
                                                                                                                   \{p \in jugadores(j)\}
  ubicacionPJ
                                                                                                ubicacion
                             : juego j \times pj p
                                                                                                                   \{p \in \text{jugadores}(j)\}
  ubicacionFan
                             : juego j \times fantamsa f
                                                                                                ubicacion
                                                                                                                   \{f \in fantasmas(j)\}\
  deducirUbicacion
                             : juego j \times ubicacion u \times acciones
                                                                                                ubicacion
                                                                                                        \{esValida?(hab(j), pos(u))\}
  moriraFantasma
                             : juego j \times pj p \times accion \times fantasma f
                                                                                               bool
                                                                                                                  \{p \in \text{jugadores}(j) \land \}
                                                                                                                  f \in fantasmas(j)
  moriraPJ
                             : juego j \times \text{conj}(\text{fantasma}) fs \times \text{pj } p \times \text{accion}
                                                                                          \longrightarrow bool
                                                                                                                  \{p \in \text{jugadores}(j) \land \}
                                                                                                                  fs \subseteq fantasmas(j)
  moriraPJPorFan
                            : juego j × fantasma g × pj p × accion
                                                                                             \rightarrow bool
                                                                                                                  \{p \in \text{jugadores}(j) \land \}
                                                                                                                  f \in fantasmas(j)
  accionFan
                             : juego j \times fantasma f
                                                                                               accion
                                                                                                                 \{f \in fantasmas(j) \land_L \}
                                                                                                                 viveFan?(j, f)
  inicializarAcciones
                                                                                          \longrightarrow dicc(pj, secu(accion))
                             : conj(pj)
  agregarFantasma
                             : juego j \times \text{ubicacion } u \times \text{dicc}(\text{fantasma} \times \text{se-} \longrightarrow \text{dicc}(\text{fantasma}, \text{secu}(\text{accion}))
                               cu(accion) × fantasma × secu(accion)
                                                                                                        \{esValida?(hab(j), pos(u))\}
  generarAccionesFan : juego j \times ubicacion u \times secu(accion)
                                                                                             \rightarrow secu(accion)
                                                                                                         \{esValida?(hab(j), pos(u))\}
  nombreSiguienteFan : juego
                                                                                             \rightarrow fantasma
                 \forall pjs: \text{conj}(pj), \forall p: pj, \forall j: \text{juego}, \forall h: \text{hab}
axiomas
  accionesPJs(iniciar(pjs, as, u, h))
                                                       ≡ inicializarAcciones(pjs)
                                                       \equiv if \neg terminaRonda(j, p, a)
  accionesPJs(proxPaso(j, p, a))
                                                           then definir(p, obtener(p, accionesPJs(j)) \circ a, accionesPJs(j))
                                                           else inicializarAcciones(jugadores(j))
  accionesFan(iniciar(pjs, as, u, h))
                                                          definir(nombreSiguienteFan(j), as, vacio)
                                                       \equiv if \neg terminaRonda(j, p, a)
  accionesFan(proxPaso(j, p, a))
                                                           then accionesFan(j)
                                                           {\bf else} \ {\bf agregarFantasma}(j, ubicacionInicialPJ(j, p), accionesFan(j),
                                                           nombreSiguienteFan(j), obtener(p, accionesPJs(j)) o a )
                                                           fi
  hab(iniciar(pjs, as, u, h))
  hab(proxPaso(j, p, a))
                                                        \equiv hab(j)
  vivePJ?(iniciar(pjs, as, u, h), p')
                                                       ≡ true
  vivePJ?(proxPaso(j, p, a), p')
                                                       \equiv terminaRonda?(j, p, a) \vee
                                                           if p = p'
                                                           then \neg \text{moriraPJ}(j, \text{fantasmas}(j), p, a)
                                                           else vivePJ?(j, p') \land \neg moriraPJ(j, fantasmas(j), p, a)
                                                           fi
  viveFan?(iniciar(pjs, as, u, h), f)
                                                        ≡ true
  viveFan?(proxPaso(j, p, a), f)
                                                       \equiv terminaRonda?(j, p, a) \vee
                                                           (viveFan?(j, f) \land \neg moriraFantasma(j, p, a, f))
  ubicacionInicialFan(iniciar(pjs, as, u, h))
```

```
\label{eq:bispect} \begin{array}{ll} ubicacionInicialFan(proxPaso(j,\,p,\,a)) & \equiv & \textbf{if} \ f \in fantasmas(j) \\ & \textbf{then} \ ubicacionInicialFan(j,\,f) \\ & \textbf{else} \ ubicacionInicialPJ(j,\,p) \\ & \textbf{fi} \end{array}
```

2. TAD HABITACION

TAD HABITACION

géneros hab

exporta hab, observadores, generadores, esConexa?

usa POSICION, BOOL, NAT

igualdad observacional

$$(\forall h, h': \mathrm{hab}) \ \left(h =_{\mathrm{obs}} h' \Longleftrightarrow \begin{pmatrix} (\forall p: \mathrm{posicion})(\mathrm{esValida?}(p, h) =_{\mathrm{obs}} \mathrm{esValida?}(p, h') \wedge_{\mathtt{L}} \\ (\mathrm{esValida?}(p, h) \Rightarrow_{\mathtt{L}} \\ (\mathrm{estaOcupada?}(p, h) =_{\mathrm{obs}} \mathrm{estaOcupada?}(p, h')))) \end{pmatrix} \right)$$

observadores básicos

esValida? : hab \times posicion \longrightarrow bool

esta Ocupada? : hab $h \times \text{posicion } p \longrightarrow \text{bool}$ {esValida?(h, p)}

generadores

nueva : nat $n \longrightarrow hab$ $\{n>1\}$

ocupar : hab $h \times \text{posicion } p \longrightarrow \text{hab}$

 $\{esValida?(h, p) \land_L \neg estaOcupada?(h, p)\}$

otras operaciones

esConexa? : hab \longrightarrow bool tamano : hab \longrightarrow nat

posiciones : hab \longrightarrow conj(posicion)

posiciones Libres : hab $h \times \text{conj}(\text{posicion})$ $ps \longrightarrow \text{conj}(\text{posicion})$ {ps \subseteq posiciones (h)}

 $\text{verificarAlcance} \quad : \text{ hab } h \times \text{conj(posicion)} \ ps \qquad \longrightarrow \text{ bool} \qquad \qquad \{\text{ps} \subseteq \text{posiciones(h)}\}$

verificarAlcancePos: hab $h \times \text{conj}(\text{posicion}) ps \times \text{posicion} p \longrightarrow \text{bool}$

 $\{ps \subseteq posiciones(h) \land p \in posiciones(h)\}\$

axiomas $\forall h$: hab $\forall ps$: conj(posicion) $\forall p$: posicion $\forall n, k, tam$: nat

 $esValida?(nueva(n),p) \\ \hspace{0.5in} \equiv \hspace{0.1in} 0 \leq \Pi_1(p) < n \hspace{0.1in} \wedge \hspace{0.1in} 0 \leq \Pi_2(p) < n$

 $esValida?(ocupar(h,p'),p) \equiv p = p' \lor_L esValida?(h, p)$

 $estaOcupada?(nueva(n),p) \equiv false$

 $estaOcupada?(ocupar(h,p'),p) \equiv p = p' \lor estaOcupada?(h, p)$

 $tamano(nueva(n)) \equiv n$

 $tamano(ocupar(h, p)) \equiv tamano(h)$

esConexa?(h) = verificarAlcance(h, posicionesLibres(posiciones(h)))

```
posicionesLibres(h, ps)
                                   \equiv if \emptyset?(ps)
                                       then \emptyset
                                       else
                                       (if estaOcupada?(h, dameUno(ps)) then ∅ else {dameUno(ps)} fi)
                                       \cup posicionesLibres(h, sinUno(ps))
                                       fi
verificarAlcance(h, ps)
                                   \equiv if \emptyset?(ps)
                                       then true
                                       verificarAlancePos(h, ps, dameUno(ps)) \(\times\) verificarAlcance(h, p)
                                       fi
verificarAlcancePos(h, ps, p)
                                   \equiv if \emptyset?(ps)
                                       then true
                                       else
                                       esAlcanzable(h, p, dameUno(ps)) \land verificarAlcancePos(h, p, sinUno(ps))
                                      darPosiciones(h, tamano(h) - 1, tamano(h) - 1, tamano(h) - 1)
posiciones(h)
                                   \equiv if n=0? \land k=0?
darPosiciones(h, n, k, tam)
                                       then \emptyset
                                       else if k = 0?
                                       then Ag((n,k), darPosiciones(h, n - 1, tam, tam))
                                       else Ag((n,k), darPosiciones(h, n, k - 1, tam))
                                       fi
                                       fi
```

3. TAD ACCION

TAD ACCION

géneros accion

exporta observadores, generadores, genero, otras operaciones

igualdad observacional

$$(\forall a, a' : accion) \left(a =_{obs} a' \iff \begin{pmatrix} esNada(a) =_{obs} esNada(a') \land \\ esDisparar(a) =_{obs} esDisparar(a') \land \\ esMover(a) =_{obs} esMover(a') \land \\ esMirar(a) =_{obs} esMirar(a') \land \\ ((esMover(a) \lor esMirar(a)) \Rightarrow_{L} direccion(a) =_{obs} direccion(a')) \end{pmatrix} \right)$$

secu(accion)

observadores básicos

esMover : accion \rightarrow bool esMirar : accion \rightarrow bool esDisparar : accion \rightarrow bool esNada : accion \rightarrow bool direction : accion a \rightarrow direction $\{esMirar(a) \lor esMover(a)\}$

direction : action $u \longrightarrow direction$

generadores

```
disparar
                                                                                     \rightarrow accion
  nada
                                                                                     \rightarrow accion
otras operaciones
                                                                                                              \{esValida?(h, pos(u))\}
  ubicacionLuegoDe
                                 : accion a \times \text{hab } h \times \text{ubicacion } u
                                                                                  \longrightarrow conj(pos)
  posiciones
Afectadas
Por : accion a \times hab \ h \times ubicacion \ u
                                                                                   \rightarrow \text{conj}(\text{pos})
                                                                                                              \{esValida?(h, pos(u))\}
                                 : accion
                                                                                   \rightarrow accion
                                                                                                              \{esValida?(h, pos(u))\}
  invertir
                                 : hab h \times \text{ubicacion } u \times \text{secu(accion)}
                                                                                  \longrightarrow secu(accion)
                \forall n, m: \text{nat}, \forall u: \text{ubicacion}, \forall a: \text{habitacion}
axiomas
  posiciones Afectadas Por(mover(d), h, u) \equiv \emptyset
  posicionesAfectadasPor(mirar(d), h, u)
  posicionesAfectadasPor(nada, h, u)
  posicionesAfectadasPor(disparar, h, u)
                                                     \equiv if esValida?(h, proxPosEnDir(dir(u), pos(u)) \wedge_L
                                                          \neg estaOcupada?(h, proxPosEnDir(dir(u), pos(u)))
                                                          Ag(proxPosEnDir(dir(u), pos(u)),posicionesAfectadasPor(disparar,h,
                                                          \langle proxPosEnDir(dir(u), pos(u)), dir(u) \rangle))
                                                         else ∅
                                                         fi
                                                      \equiv if vacia?(as)
  invertir(h, u, as)
                                                         then <>
                                                         else
                                                         invertir(h,
                                                                        ubicacionLuegoDe(prim(as), h, u), fin(as))
                                                          \neg(\text{prim}(\text{as}), \text{h}, \text{u})
                                                      \equiv if pos(ubicacionLuegoDe(mover(d), h, u)) = pos(u)
  \neg(mover(d), h, u)
                                                         then mirar(opuesta(d))
                                                         else mover(opuesta(d))
  \neg(mirar(d), h, u)
                                                      \equiv mirar(opuesta(d))
  ¬(disparar, h, u)
                                                      ≡ disparar
  \neg(nada, h, u)
                                                      \equiv nada
  ubicacionLuegoDe(nada, h, u)
                                                      ≡ u
  ubicacionLuegoDe(disparar, h, u)
                                                      \equiv u
  ubicacionLuegoDe(mirar(d), h, u)
                                                      \equiv \langle pos(u), d \rangle
  ubicacionLuegoDe(mover(d), h, u)
                                                      \equiv \langle (\mathbf{if} \text{ esValida?}(h, \text{proxPosEnDir}(d, \text{pos}(u))) \wedge_L \rangle
                                                          ¬estaOcupada?(h, proxPosEnDir(d, pos(u)))
                                                         then proxPosEnDir(d, pos(u))
                                                         else pos(u)
                                                         \mathbf{fi}), \mathbf{d}
  esMirar(mirar(d))
                                                      ≡ true
  esMirar(mover(d))
                                                      \equiv false
  esMirar(disparar)
                                                      \equiv false
  esMirar(nada)
                                                      \equiv false
  esMover(mirar(d))
                                                      \equiv false
  esMover(mover(d))
                                                      ≡ true
  esMover(disparar)
                                                      \equiv false
  esMover(nada)
                                                      \equiv false
```

esDisparar(mirar(d)) \equiv false esDisparar(mover(d)) \equiv false esDisparar(disparar) ≡ true esDisparar(nada) \equiv false esNada(mirar(d)) \equiv false esNada(mover(d)) \equiv false esNada(disparar) \equiv false esNada(nada) ≡ true direction(mirar(d)) $\equiv d$ direction(mover(d)) $\equiv d$

Fin TAD

4. TAD DIRECCION

${f TAD}$ DIRECCION

géneros direccion

exporta observadores, generadores, otras operaciones

igualdad observacional

$$(\forall d, d': \text{direccion}) \left(d =_{\text{obs}} d' \iff \begin{pmatrix} \text{esArriba}(\mathbf{d}) =_{\text{obs}} \text{esArriba}(\mathbf{d}') \land \\ \text{esAbajo}(\mathbf{d}) =_{\text{obs}} \text{esAbajo}(\mathbf{d}') \land \\ \text{esIzquierda}(\mathbf{d}) =_{\text{obs}} \text{esIzquierda}(\mathbf{d}') \land \\ \text{esDerecha}(\mathbf{d}) =_{\text{obs}} \text{esDerecha}(\mathbf{d}') \end{pmatrix} \right)$$

observadores básicos

 $\begin{array}{lll} \operatorname{esArriba} & : \operatorname{direccion} & \longrightarrow \operatorname{bool} \\ \operatorname{esAbajo} & : \operatorname{direccion} & \longrightarrow \operatorname{bool} \\ \operatorname{esIzquierda} & : \operatorname{direccion} & \longrightarrow \operatorname{bool} \\ \operatorname{esDerecha} & : \operatorname{direccion} & \longrightarrow \operatorname{bool} \end{array}$

generadores

arriba : \longrightarrow direccion abajo : \longrightarrow direccion izquierda : \longrightarrow direccion derecha : \longrightarrow direccion

otras operaciones

opuesta : direccion \longrightarrow direccion proxPosEnDir : direccion \times posicion \longrightarrow posicion

axiomas

opuesta(arriba) \equiv abajo opuesta(abajo) \equiv arriba opuesta(izquierda) \equiv derecha opuesta(derecha) \equiv izquierda

```
proxPosEnDir(arriba, p)
                                     \equiv \langle \Pi_1(p), \Pi_2(p) + 1 \rangle
proxPosEnDir(abajo, p)
                                     \equiv \langle \Pi_1(p), \Pi_2(p) - 1 \rangle
proxPosEnDir(izquierda, p) \equiv \langle \Pi_1(p) - 1, \Pi_2(p) \rangle
proxPosEnDir(derecha, p)
                                     \equiv \; \langle \Pi_1(p) \, + \, 1, \, \Pi_2(p) \rangle
esArriba(arriba)
                                     ≡ true
esArriba(abajo)
                                     \equiv false
                                     \equiv false
esArriba(izquierda)
esArriba(derecha)
                                     \equiv false
esAbajo(arriba)
                                     \equiv false
esAbajo(abajo)
                                     ≡ true
esAbajo(izquierda)
                                     \equiv false
esAbajo(derecha)
                                     \equiv false
esIzquierda(arriba)
                                     \equiv false
esIzquierda(abajo)
                                     \equiv false
esIzquierda(izquierda)
                                     \equiv true
esIzquierda(derecha)
                                     \equiv false
esDerecha(arriba)
                                     \equiv false
esDerecha(abajo)
                                     \equiv false
esDerecha(izquierda)
                                     \equiv false
esDerecha(derecha)
                                     \equiv true
```

5. EXTENSIONES Y RENOMBRES

```
TAD FANTASMA ES NAT
```

TAD PJ ES NAT

TAD Posicion ES Tupla(Nat, Nat)

TAD NAT extiende NAT

```
otras operaciones
```

```
\bullet\% \bullet : nat \times nat \longrightarrow nat
                  \forall n, m : \text{nat}
axiomas
   n \% m \equiv if n < m then n else (n - m) \% m fi
```

Fin TAD

TAD UBICACION extiende TUPLA (POSICION, DIRECCION)

otras operaciones

axiomas

```
pos : ubicación \longrightarrow posición
\operatorname{dir}:\operatorname{ubicacion}\longrightarrow\operatorname{direccion}
                    \forall u: ubicacion
```

$$\begin{array}{ll} pos(u) \; \equiv \; \Pi_1(u) \\[0.2cm] dir(u) \; \equiv \; \Pi_2(u) \end{array}$$

TAD SECUENCIA extiende SECUENCIA

otras operaciones

$$\bullet [\bullet] : \sec u(\alpha) \ s \times \text{nat} \ i \longrightarrow \alpha$$

$$\{ i < \text{long(s)} \}$$

$$\textbf{axiomas} \quad \forall \ s : \sec u(\alpha), \ \forall \ i : \text{nat}$$

$$s[i] \ \equiv \ \textbf{if} \ i = 0? \ \textbf{then} \ \text{prim(s)} \ \textbf{else} \ \text{fin(s)}[i-1] \ \textbf{fi}$$