CPE3300 COURSE PROJECT

MESSAGE-EXCHANGE NODES ON CSMA/CD BUS USING MANCHESTER LINE CODING WITH BUS THAT IDLES HIGH

TEST PROCEDURE FOR SECOND MILESTONE DEMONSTRATING MANCHESTER ENCODED TRANSMISSION February 6, 2024 (Ver. 1.0)

For convenience, record your design values here:	
Pin used for transmission: Pin used for channel monitoring:	
	SETUP TEST:
	Ensure the unit under test (UUT) is powered on and analog Discovery 2 is connected to the pins. Connect logic analyzer to transmission pin, set report Manchester. and the wave generator ected to the channel monitor pin shown above.
	BEGIN TEST:
state.	Part 1: Connect a constant Vcc to the RECIEVE input of the UUT verify the UTT is now idle
1.	Connect the transmission pin to the logic analyzer and send the following message "HI", Verify that the UUT provides the expected output (HI transmissited). Indicate Pass or Fail here:
2.	Connect the transmission pin to the logic analyzer and send the following message "\0", Verify that the UUT provides the expected output (\0 transmissited). Indicate Pass or Fail here:
3.	Connect the transmission pin to the logic analyzer and send no message. Verify that the UUT provides the expected output (no transmission). Indicate Pass or Fail here:
collisio	Part 2: Connect a constant ground to the RECIEVE input of the UUT verify the UTT is now

4. Connect the transmission pin to the logic analyzer and send the following message "HI", Verify that the UUT provides the expected output (no transmission). **Indicate Pass or Fail here:**

5.	Connect the transmission pin to the logic analyzer and send the following message "\0", Verify that the UUT provides the expected output (no transmission). Indicate Pass or Fail here:
6.	Connect the transmission pin to the logic analyzer and send no message. Verify that the UUT provides the expected output (no transmission). Indicate Pass or Fail here:
	Connect a constant square-wave frequency of 500 Hz to the RECIEVE input of the UUT and the UTT is now in the busy state.
7.	Connect the transmission pin to the logic analyzer and send the following message "HI", Verify that the UUT provides the expected output (no transmission). Indicate Pass or Fail here:
8.	Connect the transmission pin to the logic analyzer and send the following message "\0", Verify that the UUT provides the expected output (no transmission). Indicate Pass or Fail here:
9.	Connect the transmission pin to the logic analyzer and send no message. Verify that the UUT provides the expected output (no transmission). Indicate Pass or Fail here:
Part 4:	connect an oscilloscope to the transmission pin
10.	Connect the transmission pin to the logic analyzer and send the following message with only "\0"'s, verify that the UUT provides a 2kHz square wave output. Indicate Pass or Fail here:
11.	Connect the transmission pin to the logic analyzer and send the following message with only "SOH"'s ascii decimal value of 1, verify that the UUT provides a 2kHz square wave output. Indicate Pass or Fail here: