Nous innovons pour votre réussite !

Contrôle en réseaux d'assainissement

Durée (2 h : 00 mn)

Prof. A.Ramadane, Ph.D.

Université Internationale de Casablanca

Exercice 1 (4,5 points)

Deux pompes identiques placées en série puisent l'eau d'une source pour la refouler vers une réservoir, tel que montré sur la figure 3.34.

Fig. 3.34

La conduite de refoulement a une longueur totale de 6,0km, un coefficient de Hazen-Williams de C_{HW} = 150 et une diamètre D = 0,510m. La courbe caractéristique de chacune des pompes est fournie sur le tableau ci-joint.

1) Il faut trouver le débit de fonctionnement et la hauteur manométrique de chacune des pompes.

2) Il faut trouver la puissance absorbée par chacune des pompes ($\rho = 1000 \text{kg/m}^3$).

Débit (1/s)	0	10	20	30	40	50	60	70	80
Hp (m)		21,75	20	19	17,5	16	14	11	8
η (%)	0	25	50	70	80	82	80	70	65

Université Internationale de Casablanca

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite!

Exercice2 (4,5 points)

Fig. 3.36

La station de pompage de la figure 3.36 est constituée de trois pompes fonctionnant en parallèle.

Chaque pompe est constituée de trois cellules en série.

La courbe caractéristique d'une cellule type est donnée au tableau ci-

après.

1) Quel est le débit de fonctionnement lorsque toutes les pompes sont en marche?
2) Y a-t-il danger de cavitation?

T= 30°

Université Internationale de Casablanca

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite :

Q	Н	(NPSH)requis
(litres/seconde)	mètres	7-1
0	42,0	
25	39,0	
50	36,0	
75	34,0	
100	32,0	
125	31,5	
150	31,0	
175	30,5	
200	30,0	10,4
225	29,0	10,5
250	26,0	11,3
275	23,5	12,5
300	19,5	14,3

Courbe caractéristique d'une cellule

Exercice3 (4 points)

De

Peu Déc Peuis Discuter l'impact de l'urbanisation sur les réseaux d'assainissement Rappeler La gestion des eaux pluviales vue en cours.

Exercice 4 (7 points)

La figure montre schématiquement un réseau d'égout comprenant quatre bassins de drainage situés dans la région de Montréal et quatre conduites pluviales.

La période de retour choisie pour la conception étant de 1/5, on peut utiliser la relation suivante qui décrit la courbe IDF pour cette récurrence :

$$i = \frac{21844}{t+12}$$

où i est l'intensité des précipitations (mm/h) et t la durée de la pluie en minutes.

Université Internationale de Casablanca

(64) (6/4/2)028 = you (now UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite

Caractéristique des bassins de drainage avant urbanisme

Noeud	A _i (ha)	Ci	L _i (m)	S _i (%)	Cote au sol Z _i (m)
1	1,4	0,48	81	1,0	20,0
2	1,5	0,58	79	1,0	19,1
3	1,3	0,59	78	1,0	18,8
4	1,2	0,60	75	1,0	18,2
5			100000	10000	16,0

Après urbanisation le coefficient de ruissèlement est augmenté de 5 %

Noeud		Longueur de	Coefficient de	
1	j	conduite (m)	Manning	
1	3	100	0,013	
2	3	100	0,013	
3	4	90	0,013	
4	5	100	0,013	

Après réhabilitation par la méthode de chemisage le coefficient de Manning est amélioré de 1/100

Université Internationale de Casablanca

Nous innovons pour votre réussite!

Diamètres disponibles®

Le diamètre doit être choisi parmi ceux de la liste suivante (en millimètres): 75, 100, 125, 150, 200, 250, 300, 350, 400, 450, 500, 600, 750, 900, 1050, 1200, 1350, 1500, 1650, 1800, 2100, 2400 et 2700.

Contraintes

Quand une conduite coule pleine, les vitesses maximale et minimale d'écoulement sont respectivement:

$$V_{max} = 3.0m/s$$
 et $V_{min} = 0.9m/s$.

La couverture de sol minimale au-dessus de la couronne doit être de 2,0m pour toutes les conduites. Cette profondeur protège les conduites du gel et assure un écoulement gravitaire à partir des sous-sols des maisons.

Faites la conception du réseau d'égout pluvial

Annexe:

Cas de la conduite circulaire coulant partiellement pleine

y	A	R _H	V	Q
D	Ap	R _{Hp}	V_{p}	Q,
0.05	0.0187	0.1302	0.2569	0.0048
0,10	0,0520	0,2541	0.4011	0,0209
0.15	0.0941	0.3715	0.5168	0.0486
0,20	0,1424	0,4824	0.6151	0,0876
0.25	0.1955	0.5865	0.7007	0.1370
0,30	0,2523	0,6838	0.7761	0,1968
0.35	0.3119	0.7740	0.8430	0.2629
0,40	0,3735	0,8569	0.9022	0,3370
0.45	0.4346	0.9323	0.9544	0.4165
0,50	0,5000	1,0000	1.0000	0,5000
0.55	0.5635	1,0595	1.0393	0,5857
0,60	0,6265	1,1105	1.0724	0,6718
0,65	0.6880	1,1526	1.0993	0.7564
0,70	0,7476	1,1849	1.1198	0,8372
0.75	0,8045	1,2067	1.1335	0.9119
0,80	0,8576	1,2167	1,1397	0,9775
0.85	0,9059	1,2131	1.1374	1,0304
0,90	0,9480	1,1921	1,1243	1,0658
0,95	0,9813	1,1458	1,0950	1,0745
1,00	1,0000	1,0000	1,0000	1,0000

Propriétés géométriques et hydrauliques d'une conduite coulant partiellement pleine

Université Internationale de Casablanca

UNIVERSITÉ INTERNATIONALE DE CASABLANCA

Nous innovons pour votre réussite!

Température	Pression de
°C	vapeur kN/m ² , abs
0	0.61
5	0.87
10	1.23
15	1.70
20	2.34
25	3.17
30	4.24
40	7.38
50	12.33
60	19.92
70	31.16
80	47.34
90	70.10
100	101.33

Université Internationale de Casablanca