

supervised 🗾	Openura In-house
Naire Bayes	0.784
Caussia Boyes	0.527
Desicion Tree	0.757
Rondon Desicion Tre	ze 0.795
K-00	2
5V M	? 0.883
Logistic Ragress	sol 0.798

• Naire Bayes, logistic Regression, 5VM,
Desicion Tree look good.

• We have a small "test" data,
labelled - by "HUMAN".

supervised	Openua	In-house
Noice Bayes	0,653	_
Caussia Boyes	0.525	
Desicion Tree	0.623	
Rondon Desicion Tree	0.643	
K-00	?	
5V M	?	
Logistic Ragesson	0.634	

· Human -labelled data show lower results _ data is limited (small_sized) Lyour-models cannot make prediction as good as human! The prediction of human is consistent? We made an experiment. We alse a sentences and regularly asked students balaced) to label the sentence "1" or "0" poslneg.

Result 50% say 1

50% say 0 The failure / the issue with human dots is web-known. (Ghe ref.). Needs -10 be done by people multiple-lines 10 docrease the error. (2) What if we don't push into 2 carlegares,

Wh we start with binary-classification, -> Noutral scored data is 20 times more then positive or regoline sourced data. We wont to facus an "polarity" of 6ethment

Homon-error is a common problem, people who uses human annotators ruses following sequence. eachers 2 times by some amortator 4 2 differt by different anatota 4 get a CI et the end.

-> &- Meons

Plans	fer Con	rpetitions	
	,		