Polynômes de LEGENDRE

Adrien-Marie Legendre, mathématicien français est né en 1752 et est mort en 1833.

1) Définition des polynômes L_n

Pour $n \in \mathbb{N}$, on pose

$$L_n = \frac{1}{2^n n!} \left((X^2 - 1)^n \right)^{(n)}$$

Pour $n \in \mathbb{N}$, on pose $P_n = (X^2 - 1)^n$ de sorte que $L_n = \frac{1}{2^n n!} P_n^{(n)}$.

2) Degré, coefficient dominant

Soit $n \in \mathbb{N}$. P_n est de degré 2n et donc L_n est de degré 2n-n=n. Ensuite, $\operatorname{dom}(L_n)=\frac{1}{2^n n!}\operatorname{dom}\left(X^2n-\ldots\right)^{(n)}=\frac{2^n n!}{x!}\frac{(2n)!}{n!}=\frac{\binom{2n}{n}}{2^n}.$

$$\forall n \in \mathbb{N}, \, \deg\left(L_n\right) = n \, \operatorname{et} \, \operatorname{dom}\left(L_n\right) = \frac{\binom{2n}{n}}{2^n}.$$

 $\mathrm{Puisque} \ \mathrm{pour} \ \mathrm{tout} \ n \in \mathbb{N}, \ \mathrm{deg} \, (L_n) = n, \ \mathrm{pour} \ \mathrm{tout} \ n \in \mathbb{N}, \ (L_k)_{0 \leqslant k \leqslant n} \ \mathrm{est} \ \mathrm{une} \ \mathrm{base} \ \mathrm{de} \ \mathbb{R}_n[X].$

3) Parité

Soit $n \in \mathbb{N}$. On a $P_n(-X) = P_n(X)$ puis, en dérivant n fois, $(-1)^n P_n^{(n)}(-X) = P_n^{(n)}(X)$ ou encore $L_n(-X) = (-1)^n L_n(X)$. Donc,

Pour tout $n \in \mathbb{N}$, L_n a la parité de n.

4) Coefficients.

Soit $n \in \mathbb{N}$. En développant P_n grâce à la formule du binôme de Newton, on a $P_n = \sum_{k=0}^n (-1)^k \binom{n}{k} X^{2n-2k}$. Par suite, (en notant |x| la partie entière d'un réel x)

$$\begin{split} L_n &= \frac{1}{2^n n!} \sum_{k=0}^n (-1)^k \binom{n}{k} \left(X^{2n-2k} \right) (n) = \frac{1}{2^n n!} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \left(X^{2n-2k} \right) (n) \\ &= \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \frac{(2n-2k)!}{n!(n-2k)!} X^{n-2k} = \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \binom{2n-2k}{k} X^{n-2k}. \\ &\forall n \in \mathbb{N}, \, L_n = \frac{1}{2^n} \sum_{k=0}^{\lfloor n/2 \rfloor} (-1)^k \binom{n}{k} \binom{2n-2k}{k} X^{n-2k}. \end{split}$$

5) Les premiers polynômes de Legendre.

$$\begin{split} L_0 &= (1)^{(0)} = 1. \ L_1 = \frac{1}{2} \left(X^2 - 1 \right)' = X. \ L_2 = \frac{1}{8} \left(X^4 - 2X^2 + 1 \right)'' = \frac{1}{8} \left(12X^2 \right) 4 \right) = \frac{1}{2} \left(3X^2 - 1 \right). \\ L_3 &= \frac{1}{8 \times 6} \left(X^6 - 3X^4 + 3X^2 - 1 \right)^{(3)} = \frac{1}{48} \left(120X^3 - 72X \right) = \frac{1}{2} \left(5X^3 - 3X \right) \end{split}$$

$$L_0 = 1$$
, $L_1 = X$, $L_2 = \frac{1}{2}(3X^2 - 1)$, $L_3 = \frac{1}{2}(5X^3 - 3X)$.

6) Une autre expression de L_n . Valeurs en 1 et -1

Soit $n \in \mathbb{N}$. D'après la formule de Leibniz,

$$\begin{split} L_n &= \frac{1}{2^n n!} \left((X-1)^n (X+1)^n \right) = \frac{1}{2^n n!} \sum_{k=0}^n \binom{n}{k} \left((X-1)^n \right)^{(k)} \left((X+1)^n \right)^{(n-k)} \\ &= \frac{1}{2^n n!} \sum_{k=0}^n \binom{n}{k} \frac{n!}{(n-k)!} (X-1)^{n-k} \frac{n!}{k!} (X+1)^k = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k} \frac{n!}{k! (n-k)!} (X-1)^{n-k} (X+1)^k \\ &= \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X-1)^{n-k} (X+1)^k. \end{split}$$

$$\forall n \in \mathbb{N}, \ L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X-1)^{n-k} (X+1)^k.$$

$$\begin{split} & \text{Ensuite, } L_0(1) = 1 \text{ puis, pour } n \geqslant 1, L_n = \frac{1}{2^n} \sum_{k=0}^n \binom{n}{k}^2 (X-1)^{n-k} (X+1)^k = \frac{1}{2^n} \left((X+1)^n + \sum_{k=0}^{n-1} \binom{n}{k}^2 (X-1)^{n-k} (X+1)^k \right). \\ & \text{On en déduit que } L_n(1) = \frac{1}{2^n} (1+1)^n = 1, \text{ ce qui reste vrai quand } n = 0. \text{ Par parité, } L_n(-1) = (-1)^n. \end{split}$$

$$\forall n \in \mathbb{N}, L_n(1) = 1 \text{ et } L_n(-1) = (-1)^n.$$

7) Orthogonalité des polynômes L_n et norme de L_n

- a) Un produit scalaire sur $\mathbb{R}[X]$. Pour $(P,Q) \in (\mathbb{R}[X])^2$, on pose $\langle P,Q \rangle = \int_{-\infty}^{\infty} P(t)Q(t) dt$.
 - $\bullet \ \text{Pour tout} \ (P,Q) \in (\mathbb{R}[X])^2, \ \text{la fonction} \ t \mapsto P(t)Q(t) \ \text{est continue sur le segment} \ [-1,1] \ \text{et donc la fonction}$ $\begin{array}{l} t\mapsto P(t)Q(t) \ {\rm est\ int\acute{e}grable\ sur\ [-1,1].\ \langle\ ,\ \rangle\ est\ une\ application\ de\ (\mathbb{R}[X])^2\ dans\ \mathbb{R}.} \\ \bullet\ {\rm Pour\ tout\ }(P,Q)\in (\mathbb{R}[X])^2,\ \langle P,Q\rangle=\langle Q,P\rangle.\ {\rm Donc,\ }\langle\ ,\ \rangle\ {\rm est\ sym\acute{e}trique}.} \\ \bullet\ \langle\ ,\ \rangle\ {\rm est\ bilin\acute{e}air\acute{e}}\ {\rm par\ bilin\acute{e}air\acute{e}}\ {\rm du\ produit\ et\ lin\acute{e}air\acute{e}}\ {\rm de\ l'int\acute{e}gration}.} \end{array}$

 - Pour tout $P \in \mathbb{R}[X]$, $\langle P, P \rangle = \int_{-1}^{1} (P(t))^2 dt \ge 0$ et de plus,

$$\begin{split} \langle P,P\rangle &= 0 \Rightarrow \int_{-1}^{1} (P(t))^2 \ dt = 0 \\ &\Rightarrow \forall t \in [-1,1], \ (P(t))^2 = 0 \ (\text{fonction continue, positive, d'intégrale nulle}) \\ &= \Rightarrow \forall t \in [-1,1], \ P(t) = 0 \\ &\Rightarrow P = 0 \ (\text{polynôme ayant une infinité de racines}). \end{split}$$

Ainsi, \langle , \rangle est une forme bilinéaire, symétrique, définie, positive et donc \langle , \rangle est un produit scalaire sur $\mathbb{R}[X]$.

b) Orthogonalité des polynômes L_n

Soit $(n, m) \in \mathbb{N}^2$ tel que n < m (en particulier, $m \ge 1$). Montrons par récurrence que pour tout $k \in [0, m]$,

$$\left\langle P_n^{(n)}, P_m^{(m)} \right\rangle = (-1)^k \int_{-1}^1 P_n^{(n+k)}(t) P_m^{(m-k)}(t) dt (*).$$

- L'égalité est vraie quand k = 0.
- Soit $k \in [0, m-1]$. Une intégration par parties fournit :

$$\begin{split} \left\langle P_{n}^{(n)}, P_{m}^{(m)} \right\rangle &= (-1)^{k} \int_{-1}^{1} P_{n}^{(n+k)}(t) P_{m}^{(m-k)}(t) dt \\ &= (-1)^{k} \left(\left[P_{n}^{(n+k)}(t) P^{(m-k-1)}(t) \right]_{-1}^{1} - \int_{-1}^{1} P_{n}^{(n+k+1)}(t) P_{m}^{(m-k-1)} dt \right) \end{split}$$

 ${\rm Maintenant},\ 1\ {\rm et}\ -1\ {\rm sont}\ {\rm racines}\ {\rm d'ordre}\ \mathfrak{m}\ {\rm de}\ P_{\mathfrak{m}}\ {\rm et}\ {\rm donc}\ {\rm d'ordre}\ \mathfrak{m}-(\mathfrak{m}-k-1)=k+1\ {\rm de}\ P_{\mathfrak{m}}^{(\mathfrak{m}-k-1)}.\ {\rm Puisque}$

$$k+1\geqslant 1, \ 1 \ \mathrm{et} \ -1 \ \mathrm{sont} \ \mathrm{racines} \ \mathrm{de} \ P_{\mathfrak{m}}^{(\mathfrak{m}-k-1)}. \ \mathrm{Il} \ \mathrm{reste} \ \left\langle P_{\mathfrak{n}}^{(\mathfrak{n})}, P_{\mathfrak{m}}^{(\mathfrak{m})} \right\rangle (-1)^{k+1} \int_{-1}^{1} P_{\mathfrak{n}}^{(\mathfrak{n}+k+1)}(t) P_{\mathfrak{m}}^{(\mathfrak{m}-k-1)} \ dt.$$

Le résultat est démontré par récurrence. En particulier, quand k=n, on obtient $\left\langle P_n^{(n)},P_m^{(m)}\right\rangle = (-1)^n\int_{-1}^1P_n^{(m+n)}(t)P_m(t)\ dt.$

 $\mathrm{Puisque}\ n+m>2n=\deg\left(P_{n}\right),\ P_{n}^{(m+n)}=0\ \mathrm{puis}\ \left\langle P_{n}^{(n)},P_{m}^{(m)}\right\rangle =0\ \mathrm{et}\ \mathrm{donc}\ \left\langle L_{n},L_{m}\right\rangle =0.\ \mathrm{On}\ \mathrm{a}\ \mathrm{montr\'e}\ \mathrm{que}$

 $(L_n)_{n\in\mathbb{N}}$ est une famille orthogonale de l'espace euclidien $(\mathbb{R}[X],\langle\;,\;\rangle)$.

c) Norme de L_n

Soit $n \in \mathbb{N}$. Les égalités (*) sont encore valables quand m = n. Quand k = m = n, on obtient :

$$\begin{split} \left\|L_{n}\right\|^{2} &= \left\langle L_{n}, L_{n} \right\rangle = \frac{(-1)^{n}}{2^{2n}(n!)^{2}} \int_{-1}^{1} \left(t^{2}-1\right)^{n} \left(\left(t^{2}-1\right)^{n}\right)^{(2n)} \; dt = \frac{((2n)!}{2^{2n}(n!)^{2}} \int_{-1}^{1} \left(1-t^{2}\right)^{n} \; dt \\ &= \frac{(2n)!}{2^{2n}(n!)^{2}} \times 2 \int_{0}^{1} \left(1-t^{2}\right)^{n} \; dt \; (\mathrm{par} \; \mathrm{parit\acute{e}}) \\ &= \frac{2(2n)!}{2^{2n}(n!)^{2}} \int_{\frac{\pi}{2}}^{0} \left(1-\cos^{2}(u)\right)^{n} \; \left(-\sin(u)du\right) = \frac{2(2n)!}{2^{2n}(n!)^{2}} \int_{0}^{\frac{\pi}{2}} \sin^{2n+1}(t) \; dt. \end{split}$$

Le calcul usuel des intégrales de Wallis (voir la rubrique « Intégration ») fournit $\int_0^{\frac{\pi}{2}} \sin^{2n+1}(t) \ dt = W_{2n+1} = \frac{2^{2n}(n!)^2}{(2n+1)!}.$ Il reste $\|L_n\|^2 = \frac{2}{2n+1}$ et donc

$$\forall n \in \mathbb{N}, \, \|L_n\| = \sqrt{\frac{2}{2n+1}}.$$

8) Racines de L_n

Soit $n \ge 1$. Montrons par récurrence que pour tout $k \in [0,n]$, $P_n^{(k)}$ s'annule en (au moins) k réels deux à deux distincts de l'intervalle]-1,1[.

- La proposition est vraie quand k = 0.
- Soit $k \in [0, n-1]$. Supposons que $P_n^{(k)}$ s'annule en k réels deux à deux distincts de l'intervalle]-1,1[. Puisque P_n admet -1 et 1 pour racines d'ordre n, $P_n^{(k)}$ admet -1 et 1 pour racines d'ordre n-k avec n-k>0. En particulier, $P_n^{(k)}$ s'annule en -1 et 1 et donc $P_n^{(k)}$ s'annule en k+2 réels deux à deux distincts de l'intervalle [-1,1]. On note $x_0, x_1, \ldots, x_k, x_{k+1}$, ces réels où la numérotation a été faite de sorte que $-1 = x_0 < x_1 < \ldots < x_k < x_{k+1} = 1$.

Ainsi, pour chaque $i \in [0,k]$, $P_n^{(k)}$ est continue sur $[x_i,x_{i+1}]$, dérivable sur $]x_i,x_{i+1}[$ et prend la même valeur en x_i et x_{i+1} à savoir 0. D'après le théorème de ROLLE, $P_n^{(k+1)} = \left(P_n^{(k)}\right)'$ s'annule dans chacun des k+1 intervalles $]x_i,x_{i+1}[$, $0 \leqslant k \leqslant n$,

On a montré par récurrence que pour tout $k \in [0, n]$, $P_n^{(k)}$ s'annule en k réels deux à deux distincts de l'intervalle]-1,1[. En particulier, $P_n^{(n)}$ et donc L_n s'annule en n réels deux à deux distincts de l'intervalle]-1,1[. Puisque L_n est de degré n, on a « trouvé » toutes les racines de L_n , toutes réelles, simples et dans]-1,1[.

Pour tout $n \in \mathbb{N}^*$, L_n a n racines simples, toutes dans]-1,1[.

9) Equation différentielle

Soit $n \ge 1$. On a $P_n = \left(X^2 - 1\right)^n$ puis $P_n' = 2nX\left(X^2 - 1\right)^{n-1}$ et donc $\left(X^2 - 1\right)P_n' = 2nXP_n$. On dérive n+1 fois cette égalité grâce à la formule de Leibniz. On obtient

$$\left(X^2-1\right)P_n^{(n+2)}+2(n+1)XP_n^{(n+1)}+2\frac{(n+1)n}{2}P_n^{(n)}=2n\left(XP_n^{(n+1)}+(n+1)P_n^{(n)}\right)$$

ou encore, après multiplication des deux membres par $\frac{1}{2^n n!}$

$$\left(X^2-1\right)L_n''+2(n+1)XL_n'+n(n+1)L_n=2nXL_n'+2n(n+1)L_n$$

et finalement

$$(X^2-1)L_n''+2XL_n'-n(n+1)L_n=0$$

ce qui reste vrai quand n = 0.

Pour tout
$$n \in \mathbb{N}$$
, $(X^2 - 1) L''_n + 2XL'_n - n(n+1)L_n = 0$.

10) Eléments propres d'un endomorphisme

L'égalité précédente s'écrit aussi

Pour tout
$$n \in \mathbb{N}$$
, $((X^2 - 1) L'_n)' = n(n + 1)L_n$.

Soit $n \in \mathbb{N}^*$. Posons $T: \mathbb{R}_n[X] \to \mathbb{R}_n[X]$. Vérifions que T est un endomorphisme de $\mathbb{R}_n[X]$. $P \mapsto \left(\left(X^2-1\right)P'\right)'$

Soit $P \in \mathbb{R}_n[X]$. Alors, $P' \in \mathbb{R}_{n-1}[X]$ puis $(X^2 - 1)$ $P' \in \mathbb{R}_{n+1}[X]$ et finalement, $T(P) = ((X^2 - 1))$ $P' \in \mathbb{R}_n[X]$. T est une application de $\mathbb{R}_n[X]$ dans lui-même.

Soient
$$(P, Q) \in (\mathbb{R}_n[X])^2$$
 et $(\lambda, \mu) \in \mathbb{R}^2$.

$$T(\lambda P + \mu Q) = \left(\left(X^2 - 1\right)(\lambda P + \mu Q)'\right)' = \lambda \left(\left(X^2 - 1\right)P'\right)' + \mu \left(\left(X^2 - 1\right)Q'\right)' = \lambda T(P) + \mu T(Q).$$

Finalement, T est un endomorphisme de $\mathbb{R}_n[X]$. L'égalité $\left(\left(X^2-1\right)L_n'\right)'=n(n+1)L_n$ fournit encore : $\forall k\in [0,n]$, $T\left(L_k\right)=k(k+1)L_k$. La famille $(L_k)_{0\leqslant k\leqslant n}$ est donc une base de $\mathbb{R}_n[X]$ constituée de vecteurs propres de T.

11) Relation de récurrence

Soit $n\geqslant 1.$ $P_{n+1}'=2(n+1)X\left(X^2-1\right)^n=2(n+1)XP_n$ (I) puis

$$\begin{split} P_{n+1}'' &= 2(n+1)P_n + 2(n+1)XP_n' = 2(n+1)P_n + 2(n+1)X \times 2nXP_{n-1} = 2(n+1)P_n + 4n(n+1)X^2P_{n-1} \\ &= 2(n+1)P_n + 4n(n+1)\left(X^2 - 1 + 1\right)P_{n-1} = 2(n+1)P_n + 4n(n+1)P_n + 4n(n+1)P_{n-1} \\ &= 2(n+1)(2n+1)P_n + 4n(n+1)P_{n-1} \end{split}$$

et donc, $P_{n+1}''=2(n+1)(2n+1)P_n+4n(n+1)P_{n-1}\ ({\rm II}).$

On dérive n fois la relation (I) grâce à la formule de Leibniz. On obtient $P_{n+1}^{(n+1)} = 2(n+1)XP_n^{(n)} + 2n(n+1)P_n^{(n-1)}$ puis après division des deux membres par $\frac{1}{2^{n+1}(n+1)!}$,

$$L_{n+1} = XL_n + \frac{1}{2^n(n-1)!}P_n^{(n-1)}$$
 (III).

On dérive $\mathfrak{n}-1$ fois la relation (II) grâce à la formule de Leibniz. On obtient $P_{\mathfrak{n}+1}^{(\mathfrak{n}+1)}=2(\mathfrak{n}+1)(2\mathfrak{n}+1)P_{\mathfrak{n}}^{(\mathfrak{n}-1)}+4\mathfrak{n}(\mathfrak{n}+1)P_{\mathfrak{n}-1}^{(\mathfrak{n}-1)}$ puis, après division des deux membres par $\frac{1}{2^{\mathfrak{n}+1}(\mathfrak{n}+1)!}$

$$L_{n+1} = \frac{2n+1}{2^n n!} P_n^{(n-1)} + L_{n-1} \quad (IV).$$

 $(2n+1)\times(III)-n\times(IV)$ fournit alors $(n+1)L_{n+1}=(2n+1)XL_n-nL_{n-1}$. Ainsi,

$$L_0 = 1, L_1 = X \text{ et } \forall n \in \mathbb{N}^*, (n+1)L_{n+1} - (2n+1)XL_n + nL_{n-1} = 0.$$