Logic Gates

LOGIC GATES

Digital Computers

- Imply that the computer deals with digital information, i.e., it deals with the information that is represented by binary digits
- Why BINARY? instead of Decimal or other number system?

* Consider the calculation cost - Add	0 1 2 3 4 5 6 7 8 9		
Consider the calculation cost. Add	0 0 1 2 3 4 5 6 7 8 9 1 1 2 3 4 5 6 7 8 9 10		
<u>0 1</u>	2 2 3 4 5 6 7 8 9 1011		
0 0 1	3 3 4 5 6 7 8 9 101112 4 4 5 6 7 8 9 10111213		
1 1 10	5 5 6 7 8 9 1011121314		

9 101112131415161718

BASIC LOGIC BLOCK - GATE -

Types of Basic Logic Blocks

- Combinational Logic Block Logic Blocks whose output logic value depends only on the input logic values
- Sequential Logic Block
 Logic Blocks whose output logic value
 depends on the input values and the
 state (stored information) of the blocks

Functions of Gates can be described by

- Truth Table

Computer Organization

- Boolean Function
- Karnaugh Map

Logic Gates

COMBINATIONAL GATES

Name	Symbol	Function	Truth Table	
AND	А в — х	X = A • B or X = AB	A B X 0 0 0 0 1 0 1 0 0 1 1 1	
OR	А x	X = A + B	A B X 0 0 0 0 1 1 1 1 1 1	
I	A — X	X = A'	A X 0 1 1 0	
Buffer	AX	X = A	A X 0 0 1 1	
NAND	А X	X = (AB)'	A B X 0 0 1 0 1 1 1 0 1 1 1 0	
NOR	АX	X = (A + B)'	A B X 0 0 1 0 1 0 1 0 1 1 0	
XOR Exclusive OR	А	X = A ⊕ B or X = A'B + AB'	A B X 0 0 0 0 1 1 1 1 1 1 0	
XNOR Exclusive NOR or Equivalence		X = (A ⊕ B)' or X = A'B'+ AB	A B X 0 0 1 0 1 0 1 0 0 1 1 1	

BOOLEAN ALGEBRA

Boolean Algebra

- * Algebra with Binary(Boolean) Variable and Logic Operations
- * Boolean Algebra is useful in Analysis and Synthesis of **Digital Logic Circuits**
 - Input and Output signals can be represented by Boolean Variables, and
 - Function of the Digital Logic Circuits can be represented by Logic Operations, i.e., Boolean Function(s)
 - From a Boolean function, a logic diagram can be constructed using AND, OR, and I

Truth Table

- * The most elementary specification of the function of a Digital Logic **Circuit is the Truth Table**
 - Table that describes the Output Values for all the combinations of the Input Values, called *MINTERMS*
 - n input variables \rightarrow 2ⁿ minterms

BASIC IDENTITIES OF BOOLEAN ALGEBRA

```
[1] x + 0 = x

[3] x + 1 = 1

[5] x + x = x

[6] x \cdot x = x

[7] x + x' = 1

[8] x \cdot X' = 0

[9] x + y = y + x

[10] xy = yx

[11] x + (y + z) = (x + y) + z

[12] x(yz) = (xy)z

[13] x(y + z) = xy + xz

[14] x + yz = (x + y)(x + z)

[15] (x + y)' = x'y'

[16] (xy)' = x' + y'
```

[15] and [16] : De Morgan's Theorem

Usefulness of this Table

- Simplification of the Boolean function
- Derivation of equivalent Boolean functions to obtain logic diagrams utilizing different logic gates
 - -- Ordinarily ANDs, ORs, and Inverters
- -- But a certain different form of Boolean function may be convenient to obtain circuits with NANDs or NORs

→ Applications of De Morgans Theorem

Boolean Algebra

EQUIVALENT CIRCUITS

Many different logic diagrams are possible for a given Function

(3)

COMPLEMENT OF FUNCTIONS

A Boolean function of a digital logic circuit is represented by only using logical variables and AND, OR, and Invert operators.

- → Complement of a Boolean function
 - Replace all the variables and subexpressions in the parentheses appearing in the function expression with their respective complements

$$A,B,...,Z,a,b,...,z \Rightarrow A',B',...,Z',a',b',...,z'$$

$$(p+q) \Rightarrow (p+q)'$$

- Replace all the operators with their respective complementary operators

$$\begin{array}{c} \mathsf{AND} \Rightarrow \mathsf{OR} \\ \mathsf{OR} \Rightarrow \mathsf{AND} \end{array}$$

- Basically, extensive applications of the De Morgan's theorem

$$(x_1 + x_2 + ... + x_n)' \Rightarrow x_1'x_2'... x_n'$$

 $(x_1x_2 ... x_n)' \Rightarrow x_1' + x_2' + ... + x_n'$

Map Simplification

SIMPLIFICATION

Simplification from Boolean function

- Finding an equivalent expression that is least expensive to implement
- For a simple function, it is possible to obtain a simple expression for low cost implementation
- But, with complex functions, it is a very difficult task

Karnaugh Map (K-map) is a simple procedure for simplifying Boolean expressions.

