Class 10: Structural Bioinformatics pt. 1

Carly Chang (A16843962)

Table of contents

1.	The PDB dababase	1
2.	Using Mol*	5
3.	Introduction to Bio3D in R	9
4.	Predicting functional dynamics	12

1. The PDB dababase

The main repository of biomolecular structure data is called the PDB found at: https://www.rcsb.org/

Let's see what this data base contains. I went to PDB > Analyze > PDB Statistics > By Experiment Method and Molecular Type

```
pdbstats <- read.csv("Data Export Summary.csv")
pdbstats</pre>
```

	Molecular.Type	X.ray	EM	NMR	Multiple.methods	Neutron	Other
1	Protein (only)	169,563	16,774	12,578	208	81	32
2	Protein/Oligosaccharide	9,939	2,839	34	8	2	0
3	Protein/NA	8,801	5,062	286	7	0	0
4	Nucleic acid (only)	2,890	151	1,521	14	3	1
5	Other	170	10	33	0	0	0
6	Oligosaccharide (only)	11	0	6	1	0	4
	Total						

^{1 199,236}

^{2 12,822}

^{3 14,156}

^{4 4,580}

```
5 213
```

6 22

Q1: What percentage of structures in the PDB are solved by X-Ray and Electron Microscopy.

```
pdbstats$X.ray
```

```
[1] "169,563" "9,939" "8,801" "2,890" "170" "11"
```

The comma in these numbers is causing them to be read as characters rather than numeric.

I can fix this by replacing "," for nothing "" with the sub() function and converting it to numeric: sub() replaces only the first occurence, gsub() replaces all occurences.

```
x <- pdbstats$X.ray
as.numeric(sub(",","",x))</pre>
```

```
[1] 169563 9939 8801 2890 170 11
```

Or I can use the **readr** package and the **read_csv()** function in the tidyverse package:

```
library(readr)
pdbstats <- read_csv("Data Export Summary.csv")

Rows: 6 Columns: 8
-- Column specification ------
Delimiter: ","
chr (1): Molecular Type
dbl (3): Multiple methods, Neutron, Other
num (4): X-ray, EM, NMR, Total

i Use `spec()` to retrieve the full column specification for this data.</pre>
```

```
i Specify the column types or set `show_col_types = FALSE` to quiet this message.
```

pdbstats

A tibble: 6 x 8 `Molecular Type` NMR `Multiple methods` Neutron Other `X-ray` EM<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl>1 Protein (only) 169563 16774 12578 208 81 32 199236 2 Protein/Oligosacc~ 9939 2839 2 12822 34 8 0 3 Protein/NA 8801 5062 286 7 0 0 14156 4 Nucleic acid (onl~ 2890 151 1521 14 3 4580 5 Other 170 10 33 0 0 213 6 Oligosaccharide (~ 11 0 6 1 22

I want to clean the column names so that are all lower case and don't have spaces in them using janitor package:

colnames(pdbstats)

```
[1] "Molecular Type" "X-ray" "EM" "NMR"
[5] "Multiple methods" "Neutron" "Other" "Total"
```

library(janitor)

Attaching package: 'janitor'

The following objects are masked from 'package:stats':

chisq.test, fisher.test

```
df <- clean_names(pdbstats)
df</pre>
```

A tibble: 6 x 8 molecular_type nmr multiple_methods neutron other total x_ray em<chr> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> <dbl> 1 Protein (only) 169563 16774 12578 208 81 32 199236 2 Protein/Oligosacchar~ 9939 2839 34 8 2 12822 3 Protein/NA 8801 5062 286 7 0 0 14156 4 Nucleic acid (only) 2890 14 3 4580 151 1521 1 5 Other 170 10 33 0 0 0 213 6 Oligosaccharide (onl~ 11 0 6 1 0 4 22 Total number of X-ray structures:

```
sum(df$x_ray)
```

[1] 191374

Total number of structures

```
sum(df$total)
```

[1] 231029

Find percent of X-ray structures

```
sum(df$x_ray)/sum(df$total) * 100
```

[1] 82.83549

Percent of EM structures

```
sum(df$em)/sum(df$total) * 100
```

[1] 10.75017

Q2: What proportion of structures in the PDB are protein?

```
sum(df[1,"total"])/sum(df$total)
```

[1] 0.8623852

2. Using Mol*

The main Mol* homepage at: http://molstar.org/viewer/. We can input our own PDB files or just give it a PDB database accession code (4 letter PDB code) > Q4: Water molecules normally have 3 atoms. Why do we see just one atom per water molecule in this structure?

Water is only one dot so that it is more simplified and easier to view.

Q5: There is a critical "conserved" water molecule in the binding site. Can you identify this water molecule? What residue number does this water molecule have

Water 308

Q6: Generate and save a figure clearly showing the two distinct chains of HIV-protease along with the ligand. You might also consider showing the catalytic residues ASP 25 in each chain and the critical water (we recommend "Ball & Stick" for these side-chains). Add this figure to your Quarto document.

Figure 1: Molecular view of 1HSG $\,$

Figure 2: 1HSG Molecular Surface showing ligand binding site $\,$

Figure 3: 1HSG Water 308

Figure 4: 1HSP Important Aspartic Acid Residue

3. Introduction to Bio3D in R

We can use the ${\bf bio3D}$ package for structural bioinformatics to read PDB data into R

```
pdb <- read.pdb("1hsg")</pre>
```

Note: Accessing on-line PDB file

pdb

Call: read.pdb(file = "1hsg")

Total Models#: 1

Total Atoms#: 1686, XYZs#: 5058 Chains#: 2 (values: A B)

Protein Atoms#: 1514 (residues/Calpha atoms#: 198) Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)

Non-protein/nucleic Atoms#: 172 (residues: 128)

Non-protein/nucleic resid values: [HOH (127), MK1 (1)]

Protein sequence:

PQITLWQRPLVTIKIGGQLKEALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYD QILIEICGHKAIGTVLVGPTPVNIIGRNLLTQIGCTLNFPQITLWQRPLVTIKIGGQLKE ALLDTGADDTVLEEMSLPGRWKPKMIGGIGGFIKVRQYDQILIEICGHKAIGTVLVGPTP VNIIGRNLLTQIGCTLNF

+ attr: atom, xyz, seqres, helix, sheet, calpha, remark, call

Q7: How many amino acid residues are there in this pdb object?

pdbseq(pdb)

"P" "O" "I" "T" "L" "W" "O" "R" "P" "L" "V" "T" "I" "K" "I" "G" "G" "O" "L" "K" "E" "A" "L" "L" "D" "T" "G" "A" "D" "D" "T" "V" "L" "E" "E" "M" "S" "L" "P" "R" "W" "K" "P" "K" "M" "I" "G" "G" "I" "G" "G" "F" "I" "K" "V" "R" "Q" "O" "I" "L" "I" "E" "I" "C" "G" "H" "K" "A" "I" "G" "T" "V" "L" "V" "P" "V" "N" "I" "I" "G" "R" "N" "L" "L" "T" "Q" "I" "G" "C" "T" "L" "N" "Q" "I" "T" "L" "W" "Q" "R" "P" "L" "V" "T" "I" "K" "I" "G" "G" "Q" "L" "K" "E" "A" "L" "L" "D" "T" "G" "A" "D" "D" "T" "V" "L" "E" "E" "M" "S" "L" "P" "G" "\" "K" "P" "K" "M" "T" "G" "G" "T" "G" "G" "F" "T" "K" "V" "V" "R" "O" "Y" "ם" "ם" 62 63 "H" "K" "A" "T" "G" "T" "V" "I." "T" "I." "T" "E" "T" "C" "G" пЛп ηĠιι ייקיי 82 83 84 85 86 87 88 92 93 "V" "N" "T" "T" "G" "R" "N" "I." "I." "T" "O" "T" "G" "C" "T" "I." "N" "F"

length(pdbseq(pdb))

[1] 198

Q8: Name one of the two non-protein residues?

MK1

Q9: How many protein chains are in this structure?

2 (A and B)

Looking at the pdb object in more detail

attributes(pdb)

```
$names
[1] "atom" "xyz" "seqres" "helix" "sheet" "calpha" "remark" "call"
$class
[1] "pdb" "sse"
```

head(pdb\$atom)

```
type eleno elety alt resid chain resno insert
                                                         Х
                                                                 у
                                                                       z o
1 ATOM
           1
                  N < NA >
                           PRO
                                    Α
                                          1
                                               <NA> 29.361 39.686 5.862 1 38.10
2 ATOM
           2
                           PRO
                                               <NA> 30.307 38.663 5.319 1 40.62
                 CA <NA>
3 ATOM
           3
                  C <NA>
                           PRO
                                          1
                                               <NA> 29.760 38.071 4.022 1 42.64
                                    Α
4 ATOM
           4
                  O <NA>
                           PRO
                                          1
                                              <NA> 28.600 38.302 3.676 1 43.40
                                    Α
5 ATOM
           5
                 CB <NA>
                           PRO
                                               <NA> 30.508 37.541 6.342 1 37.87
                                    Α
                                          1
6 ATOM
                                               <NA> 29.296 37.591 7.162 1 38.40
           6
                 CG <NA>
                           PRO
                                    Α
                                          1
  segid elesy charge
  <NA>
            N
                 <NA>
1
2
  <NA>
            С
                 <NA>
3
  <NA>
            С
                 <NA>
  <NA>
            0
                 <NA>
5
  <NA>
            С
                 <NA>
  <NA>
            С
                 <NA>
```

Let's try a new function not yet in the bio3d package. It requires the **r3dmol** and **shiny** package that we need to install.

```
library(r3dmol)
source("http://tinyurl.com/viewpdb")
#view.pdb(pdb, backgroundColor="lightblue")
```

4. Predicting functional dynamics

```
We can use the nma() function in bio3d to predict the large-scale functional motions of
biomolecules.
adk <- read.pdb("6s36")
  Note: Accessing on-line PDB file
   PDB has ALT records, taking A only, rm.alt=TRUE
adk
 Call: read.pdb(file = "6s36")
   Total Models#: 1
     Total Atoms#: 1898, XYZs#: 5694 Chains#: 1 (values: A)
     Protein Atoms#: 1654 (residues/Calpha atoms#: 214)
     Nucleic acid Atoms#: 0 (residues/phosphate atoms#: 0)
     Non-protein/nucleic Atoms#: 244 (residues: 244)
     Non-protein/nucleic resid values: [ CL (3), HOH (238), MG (2), NA (1) ]
   Protein sequence:
      MRIILLGAPGAGKGTQAQFIMEKYGIPQISTGDMLRAAVKSGSELGKQAKDIMDAGKLVT
      DELVIALVKERIAQEDCRNGFLLDGFPRTIPQADAMKEAGINVDYVLEFDVPDELIVDKI
      VGRRVHAPSGRVYHVKFNPPKVEGKDDVTGEELTTRKDDQEETVRKRLVEYHQMTAPLIG
      YYSKEAEAGNTKYAKVDGTKPVAEVRADLEKILG
+ attr: atom, xyz, seqres, helix, sheet,
        calpha, remark, call
m <- nma(adk)
```

Building Hessian... Done in 0.018 seconds. Diagonalizing Hessian... Done in 0.435 seconds.

plot(m)

Write out a trajectory of the predicted molecular motion:

mktrj(m,file="adk_m7.pdb")