Analytics Basics: Models, Algebra, & Functions

Decision making is at the core of supply chain management.

- How many facilities should I open and where?
- What transportation option should I use?
- How should I trade-off service and cost?
- Where should I source my raw material from?
- How should I share risk with my customers/suppliers?
- How much inventory should I have?
- What is my demand for next year?
- How can I make my supply chain more resilient?

Analytical models are used to make supply chain decisions

Model Classification

Classification of Models

	Strategy Evaluation <	Strategy Generation
	Deterministic Simulation	Linear Programming
Certainty	Econometric Models	Network Models
	Systems of Simultaneous Equations	Integer and MILP Non-Linear Programming
	Input-Output Models	Control Theory
Uncertainty	Monte-Carlo Simulation	Decision Theory
	Econometric Models	Dynamic Programming
	Stochastic Processes	Inventory Theory
	Queuing Theory	Stochastic Programming
	Reliability Theory	Stochastic Control Theory

Categories of Mathematical Models

Model Category	Functional Form f(·)	Independent Variables	OR/MS Techniques
Descriptive What has happened?	known, well-defined	unknown or uncertain	Simulation, PERT, Queueing Theory, Inventory Models
Predictive What could happen?	unknown, ill-defined	known or under decision maker's control	Regression Analysis, Time Series Analysis, Discriminant Analysis
Prescriptive What should we do?	known, well-defined	known or under decision maker's control	Classic Opt., LP, MILP, CPM, EOQ, NLP,

Source: Ragsdale, 2004

Roadmap for the Course

- Deterministic Prescriptive Modeling
 - Basic functions & algebra
 - Classical optimization (calculus)
 - Math programming (LPs, IPs, MILPs, & Non-Linear)
- Stochastic/Uncertainty Predictive & Descriptive
 - Basic probability and distributions
 - Statistical analysis (hypothesis testing)
 - Econometric modeling (regression)
 - Simulation

SCx Approach to Modeling

- Educating Drivers not Mechanics!

Mathematical Functions

Mathematical Functions

"... a relation between a set of inputs and a set of permissible outputs with the property that each input is related to exactly one output." FUNCTION f:
OUTPUT f(x)

source: Wikipedia

$$y = f(x)$$

we say:

"f of x" or that "y is a function of x"

If given a value for x, then I can compute the value for y.

Example:
$$f(x) = x^2$$

$$x= 2$$
 then $y = f(2) = 2^2 = 4$

$$x= 3.4$$
 then $y = f(3.4) = 3.4^2 = 11.56$

$$x=-2$$
 then $y = f(-2) = (-2)^2 = 4$

Linear Functions

"y changes linearly with x"

Typically, constants are denoted by letters from the start of the alphabet (a, b, c, ...) while variables are letters from the end of the alphabet (x, y, z).

Examples: Linear Functions

Truckload Transportation Costs:

```
cost = f(distance) = $200 + 1.35 $/km * (distance)
```

Warehousing Costs

```
cost = f(# cases) = €2,500 + 2.5 €/case * (# cases)
```

Profit Equation

```
profit = f(volume) = (r-c) * v + d
    where:
    r = revenue per item(\(\frac{1}{2}\)/item)
    c = cost per item (\(\frac{1}{2}\)/item)
    v = volume sold (items)
    d = fixed cost (\(\frac{1}{2}\))
```

Quadratic Functions

Quadratic Functions

Parabola - Polynomial function of degree 2 where a, b, and c are numbers and a≠0

- When a>0, the function is convex (or concave up)
- When a<0, the function is concave down

Finding Roots of Quadratic

- The root(s) of a quadratic
 - Values of x for when y=0
 - There can be 2, 1, or 0 roots

- Find r_1 and r_2 such that $ax^2+bx+c = a(x-r_1)(x-r_2)$
- Quadratic equation

(i)
$$y = 2x^2$$

(ii) $y = 2x^2 - 6x + 4$
(iii) $y = 3x^2 - 4x + 2$

$$r_1, r_2 = \frac{-b \pm \sqrt{b^2 - 4ac}}{2a}$$

Example: Finding Roots

(i)
$$y = 2x^2$$
 so that $a=2$, $b=c=0$

$$r_1, r_2 = \frac{-0 \pm \sqrt{0^2 - 4(2)(0)}}{2(2)} = \frac{0}{4} = 0$$

(ii)
$$y = 2x^2 - 6x + 4$$
 so that $a=2$, $b=-6$, $c=4$

$$r_1, r_2 = \frac{6 \pm \sqrt{(-6)^2 - 4(2)(4)}}{2(2)} = \frac{6 \pm \sqrt{36 - 32}}{4} = \frac{6 \pm 2}{4}$$

$$r_1 = \frac{8}{4} = 2$$
 $r_2 = \frac{4}{4} = 1$

(iii) $y = 3x^2 - 4x + 2$ so that a=3, b=-4, c=2

$$r_1, r_2 = \frac{4 \pm \sqrt{(-4)^2 - 4(3)(2)}}{2(3)} = \frac{4 \pm \sqrt{16 - 24}}{6} = \frac{4 \pm \sqrt{-8}}{6}$$

 r_1, r_2 are complex numbers

(i)
$$y = 2x^2$$

(ii)
$$y = 2x^2 - 6x + 4$$

(iii)
$$y = 3x^2 - 4x + 2$$

Quadratic Functions in Practice

Quadratic Functions in Practice

- Example: Manufacturing iWidgets what price to set?
 - Cost of producing iWidgets is a linear function of the number produced, x:
 - \bullet cost =f(# made) = 500,000 + 75x
 - Demand for iWidgets is also a linear function of the price, p:
 - ◆ unit sales = f(price) = 20,000 80p

- Revenue = $(20,000-80p)p = 20,000p 80p^2$
- Costs = 500,000+75(20,000-80p) = 2,000,000 6000p

What are the root(s) of this equation?

iWidget Example

Profit = $-80p^2 + 26,000p - 2,000,000$

Quadratic Functions in Practice

Example: Parcel Trucking – impact of weight

Parcel carriers combine many orders into a single shipment.

The cost of an individual order is a function of its weight, w.

However, it is not linear – it is tapering.

 $cost = f(weight) = 33 + 0.067w - 0.00005w^2$

Other Common Functional Forms

Power Function $y=f(x) = ax^b$

The shape of the curve is dictated by the value of b

Exponential Functions

Logarithms

Logarithms

$$y=b^x \longleftrightarrow \log_b(y)=x$$

y is the value of b raised to the xth power.

x is the power that I need to raise the base, b, to equal y.

$$100 = 10^{x}$$
 $log_{10}(100) = x$ $x=2$
 $5 = 10^{x}$ $log(5) = x$ $x = 0.7$
 $1 = e^{x}$ $log_{e}(1) = ln(1) = x$ $x=0$
 $e = e^{x}$ $ln(e) = x$ $x=1$

Properties of Logarithms

- log(xy) = log(x) + log(y)
- log(x/y) = log(x) log(y)
- $log(x^a) = a log(x)$

Examples:

•
$$ln(3*5) = ln(3) + ln(5) = 2.71$$

•
$$ln(12/7) = ln(12) - ln(7) = 0.54$$

•
$$ln(3^6) = 6 ln(3) = 6.59$$

•
$$\log(3*5^2) = \log(3) + 2\log(5) = 1.88$$

Practical Example: Doubling Time

- You have invested a sum of money that has an interest rate of 7% annually.
 How many years, T, will it take to double in value?
 - We know that F=P(1+r)ⁿ and we want to find the n where F=2P
 - $F=2P=P(1+r)^n$ which reduces $t\phi = (1+r)^n = (1.07)^n$
 - We can transform this by taking the in or log of both sides:
 - ln(2) = n ln(1.07)
 - Rearranging gives us: n = ln(2) / ln(1.07) = 0.693 / 0.182 = 10.24 = T
 - We could also use log_{10} where T = log(2)/log(1.07) = 10.24
 - The investment will double in value in 10.24 years.
- Can we come up with a general equation or approximation?
 - We know that $T = \ln(2) / \ln(1 + r)$
 - Plotting this for T=f(r) . . . looks like T=ar⁻¹=a/r
 - Turns out T≈ 70/r

Multivariate Functions

Multivariate Functions

These are just functions with more than one independent variable.

still just a single output

we still just say: "y is a function of $x_1, x_2, ... x_n$ "

$$y = f(x_1, x_2, ...x_n)$$

INPUT
$$(x_1, x_2, ..., x_n)$$

FUNCTION f:

OUTPUT $y = f(x_1, x_2, ..., x_n)$

Example:
$$f(x_1, x_2) = x_1 + 2x_2 + 5x_1x_2$$

 $x_1 = 2, x_2 = 4$ then $y = f(2,4) = 2 + 2(4) + 5(2)(4) = 50$
 $x_1 = -1, x_2 = 0$ then $y = f(-1,0) = -1 + 2(0) + 5(-1)(0) = -1$
 $x_1 = 0, x_2 = -\frac{1}{2}$ then $y = f(0, -\frac{1}{2}) = 0 + 2(-\frac{1}{2}) + 5(0)(-\frac{1}{2}) = -1$

Examples: Multivariate Functions

Parcel Trucking – impact of weight & distance

Parcel carriers combine many orders into a single shipment.

The cost of an individual order is a function of its weight, w,

and the distance.

cost =f(weight, distance)
$$= c_1 + c_2 w + c_3 w^2 + c_4 d + c_5 d^2 + c_6 dw$$

Total Logistics Cost Equation

```
cost = f(Demand, Order Cost, Order Size, ) = cD + AD/Q where:
    D = annual demand (items)
    c = cost per item (\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{\frac{
```

Properties of Functions

Properties of a Function: Convexity

A function is convex if it "holds water"

Properties of a Function: Continuity

A function is continuous if you can draw it without lifting pen from paper!

Key Points from Lesson

Key Points from Lesson (1/2)

- Different models used for different purposes
 - Descriptive what has happened?
 - Predictive what could happen?
 - Prescriptive what should we do?
- Functions y=f(x)
 - Linear functions where y= ax + b
 - Quadratic functions where $y = ax^2 + bx + c$
 - Power functions where y= ax^b
 - Exponential functions where y= ab^x

Key Points from Lesson (2/2)

- Logarithms
 - $y=b^x$ is equivalent to $log_b(y) = x$
 - Natural log $ln(y) = log_e(y)$
- Multivariate functions $y=f(x_1, x_2, ..., x_n)$
 - Multiple inputs still lead to single output value
- Properties of functions
 - Convexity does the function "hold water"?
 - Continuity can I draw the function without lifting my pencil

Questions, Comments, Suggestions? Use the Discussion Forum!

"Wilson – realizing he is asymptotic to the door"
Yankee Golden Retriever Rescued Dog
(www.ygrr.org)

