

DD2437 – Artificial Neural Networks and Deep Architectures (annda)

Lecture 6: Self-organising maps (SOMs)

Pawel Herman

Computational Science and Technology (CST)

KTH Royal Institute of Technology

February 2018

KTH Pawel Herman DD2437 annda

- · Vector Quantisation
- · Topology preserving (Kohonen) maps
- · Supervised competitive learning

Lecture overview

- Vector Quantisation
- Self-organising maps (SOMs)
- Learning vector quantisation

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- · Supervised competitive learning

Vector Quantisation

- The idea borrowed from information coding, data compression
- Represent data in terms of few (limited) typical data vectors –

code vectors

- > compression
- noise reduction

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- · Supervised competitive learning

Vector Quantisation

- The idea borrowed from information coding, data compression
- Represent data in terms of few (limited) typical data vectors –

code vectors

- compression
- noise reduction
- Voronoi partitioning

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Vector Quantisation – unsupervised learning

Network architecture for unsupervised learning

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Vector Quantisation – unsupervised learning

Network architecture for unsupervised learning

- Winner-take-all (WTA) mechanism
 - ONLY ONE output (the winner) unit gets active hard competition
 - competition is one of the most fundamental computation in the brain via so-called *lateral* inhibition

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- · Supervised competitive learning

The fundamental principle

Update the *winning* unit (prototype/code vector) to make it more specialised ("even better").

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

The fundamental principle

Update the *winning* unit (prototype/code vector) to make it more specialised ("even better").

Basic algorithm

- the normalised weight vectors,
 w_A, ..., w_C are generated randomly
- for each input vector, x, calculate "proximity" to weight vectors and determine the nearest neighbour
- make an update of the nearest weight vector and normalize weights

If the **red** node w_4 wins, then:

$$\Delta \vec{w}_{A} = \eta \vec{x}$$

OR

$$\Delta \vec{w}_{A} = \eta(\vec{x} - \vec{w}_{A})$$

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- · Supervised competitive learning

The fundamental principle

Update the *winning* unit (prototype/code vector) to make it more specialised ("even better").

Basic algorithm

- the normalised weight vectors,
 w_A, ..., w_C are generated randomly
- for each input vector, x, calculate
 "proximity" to weight vectors and determine the nearest neighbour
- make an update of the nearest weight vector and normalize weights

proximity definition determines how we find the winner (*scalar product* is more popular)

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- Supervised competitive learning

The fundamental principle

Update the *winning* unit (prototype/code vector) to make it more specialised ("even better").

Properties

- the algorithm finds cluster in data –
 purely unsupervised approach
- each node protects its "territory"
- there is also a batch version

If the **red** node w_4 wins, then:

$$\Delta \vec{w}_{A} = \eta \vec{x}$$

OR

$$\Delta \vec{w}_A = \eta(\vec{x} - \vec{w}_A)$$

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- · Supervised competitive learning

Competitive learning – problem with dead units

Dead unit problem

Prototype vectors far from actual data will never become better.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

Competitive learning – problem with dead units

Dead unit problem

Prototype vectors far from actual data will never become better.

Methods to avoid dead units

- Initialise algorithm (the weights) with data samples
- "Leaky learning" (soft-competition) some updates for all
- Learning with conscience balanced update allowing losers to win
- Introduce noise to data

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Topographic map

colours

poverty

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Topographic map

"The spatial location of an output neuron in a topographic map corresponds to a particular domain or feature drawn from the input space"

Bullinaria, 2004

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- Supervised competitive learning

Topology preserving maps

Learning principle

Competitive learning where winning "spills over" to neighbours.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Topology preserving maps

Learning principle

Competitive learning where winning "spills over" to neighbours.

Competitive learning

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Topology preserving maps

Learning principle

Competitive learning where winning "spills over" to neighbours.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Low-dimensional (discrete) OUTPUT space (*n*<=2), where output **nodes** are represented.

Multi-dimensional (often continuous) INPUT space (n>2), where both **inputs**, x, and **weight** vectors, w, are represented.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

In the OUTPUT space the <u>distance between the nodes (their neigbourhood)</u> is defined to determine.....

....which nodes apart from the winner (best matching unit) get their weights, w, updated

Multi-dimensional (often continuous) INPUT space (n>2), where both **inputs**, x, and **weight** vectors, w, are represented.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

In the OUTPUT space the distance between the nodes (their neighbourhood) is defined

The <u>links between the nodes</u> are commonly used to define some discrete <u>distance measure</u>, <u>d</u>, in the <u>discrete</u> OUTPUT space

Multi-dimensional (often continuous) INPUT space (n>2), where both **inputs**, x, and **weight** vectors, w, are represented.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

In the OUTPUT space the distance between the nodes (their neighbourhood) is defined

The <u>links between the nodes</u> are commonly used to define some discrete <u>distance measure</u>, <u>d</u>, in the <u>discrete</u> OUTPUT space

The links are not always shown explicitly

Multi-dimensional (often continuous) INPUT space (n>2), where both **inputs**, x, and **weight** vectors, w, are represented.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

Distance and neighbourhood in the output space

In the OUTPUT space the distance between the nodes (their neighbourhood) is defined

The <u>links between the nodes</u> are commonly used to define some discrete <u>distance measure</u>, <u>d</u>, in the <u>discrete</u> OUTPUT space

Multi-dimensional (often continuous) INPUT space (n>2), where both inputs, x, and weight vectors, w, are represented.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

Distance and neighbourhood in the output space

In the OUTPUT space the distance between the nodes (their neighbourhood) is defined

The <u>links between the nodes</u> are commonly used to define some discrete <u>distance measure</u>, <u>d</u>, in the <u>discrete</u> OUTPUT space

h shrinks since σ exponentially decreases over time: $\sigma(t) = \sigma_0 \exp\left(-\frac{t^2}{\tau}\right)$

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

Update of the corresponding input weights

In the OUTPUT space the distance between the nodes (their neighbourhood) is defined

The <u>links between the nodes</u> are commonly used to define some discrete <u>distance measure</u>, <u>d</u>, in the <u>discrete</u> OUTPUT space

Multi-dimensional (often continuous) INPUT space (n>2), where both **inputs**, x, and **weight** vectors, w, are represented.

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

SOM visualisation – showing lattices

In cases when the <u>dimensionality</u> of the INPUT space is <u>low ($n \le 3$)</u> SOMs are often visualized only in the INPUT/WEIGHT space

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

SOM visualisation – showing lattices

In cases when the <u>dimensionality</u> of the INPUT space is <u>low (n<=3)</u>
SOMs are often visualized only in the INPUT/WEIGHT space
and then....

... it is very useful to **show links between nodes** as they illustrate neighbourhood (topographical relationship) in the OUTPUT space

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

SOM visualisation – showing lattices in *input* space

... it is very useful to **show links between nodes** as they illustrate neighbourhood (topographical relationship) in the OUTPUT space

2 inputs – **2D** INPUT space (x_1, x_2) corresponding to **2D** WEIGHT space (w_1, w_2)

2D arrangement of nodes (lattice) in the OUTPUT space

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

SOM visualisation – showing lattices in *input* space

... it is very useful to **show links between nodes** as they illustrate neighbourhood (topographical relationship) in the OUTPUT space

2 inputs – **2D** INPUT space (x_1, x_2) corresponding to **2D** WEIGHT space (w_1, w_2)

1D arrangement of nodes in the OUTPUT space

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

SOM visualisation demo

Lower-dimensional manifold

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Following initialisation there are three learning stages

- Competition (mapping of a continuous input space onto a discrete output space of units)
- Cooperation (lateral interaction through topographic neighbourhood)
- 3. Weight (synaptic) adaptation

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Following initialisation there are three learning stages

- Competition (mapping of a continuous input space onto a discrete output space of units)
- 2. Cooperation (lateral interaction through topographic neighbourhood)
- 3. Weight (synaptic) adaptation
 - a) topological ordering: high learning rate and large neighbourhood
 - b) convergence: low learning rate and small neighbourhood (a long process of fine tuning)

- · Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Following initialisation there are three learning stages

- Competition (mapping of a continuous input space onto a discrete output space of units)
- Cooperation (lateral interaction through topographic neighbourhood)
- Weight (synaptic) adaptation
 - a)
- topological ordering: high learning rate and large resignbourhood convergence: low learning rate and small relighbourhood b)

GLOBAL ordering vs LOCAL fit

- · Vector Quantisation
- **Topology preserving (Kohonen) maps**
- · Supervised competitive learning

Following initialisation there are three learning stages

- Competition (mapping of a continuous input space onto a discrete output space of units)
- Cooperation (lateral interaction through topographic neighbourhood)
- Weight (synaptic) adaptation
- topological ordering: high learning rate and large reighbourhood convergence: low learning rate and small reighbourhood se from local interactions"

 Turing a)

"Global order can arise from local interactions" Turing

GLOBAL ordering vs LOCAL fit

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

Following initialisation there are three learning stages

output space

 Competition (mapping of a continuous input space onto a discrete output space of units)

Cooperation (lateral interaction through topographic neighbourhood)

nput space

3. Weight (synaptic) adaptation

- a) topological ordering: high learning rate and large neighbourhood
- b) convergence: low learning rate and small neighbourhood

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

SOM example

High-dimensional feature description

	Dove	Hen	Duck	Goose	Owl	Hawk	Eagle	Fαx	Dog	Wolf	Cat	Tiger	Lion	Horse	Zebra	Cow
Small	1	1	1	1	1	1	0	0	0	0	1	0	0	0	0	0
Medium	0	0	0	0	0	0	1	1	1	1	0	0	0	0	0	0
Large	0	0	0	0	0	0	0	0	0	0	0	1	1	1	1	1
2 legs	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
4 legs	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
Fur	0	0	0	0	0	0	0	1	1	1	1	1	1	1	1	1
Hoofs	0	0	0	0	0	0	0	0	0	0	0	0	0	1	1	1
Mane	0	0	0	0	0	0	0	0	0	1	0	0	1	1	1	0
Feathers	1	1	1	1	1	1	1	0	0	0	0	0	0	0	0	0
Hunter	0	0	0	0	1	1	1	1	0	1	1	1	1	0	0	0
Runner	0	0	0	0	0	0	0	0	1	1	0	1	1	1	1	0
Flyer	1	0	0	1	1	1	1	0	0	0	0	0	0	0	0	0
Swimmer	0	0	1	1	0	0	0	0	0	0	0	0	0	0	0	0

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

SOM example

2D visualisation

Dog		Fox		Cat		Eagle	
						Owl	
.				Tiger			
Wol	f.					Hawk	
		Lion					
.						Dove	
Hors	se .				Hen		
.			Cow			Goose	
Zeb	ra .				Duck		

- Vector Quantisation
- Topology preserving (Kohonen) maps
- Supervised competitive learning

SOM example

2D visualisation

Dog	Dog	Fox	Fox	Fox	Cat	Cat	Cat	Eagle	Eagle
Dog	Dog	Fox	Fox	Fox	Cat	Cat	Cat	Eagle	Eagle
Wolf	Wolf	Wolf	Fox	Cat	Tiger	Tiger	Tiger	Owl	Owl
Wolf	Wolf	Lion	Lion	Lion	Tiger	Tiger	Tiger	Hawk	Hawk
Wolf	Wolf	Lion	Lion	Lion	Tiger	Tiger	Tiger	Hawk	Hawk
Wolf	Wolf	Lion	Lion	Lion	Owl	Dove	Hawk	Dove	Dove
Horse	Horse	Lion	Lion	Lion	Dove	Hen	Hen	Dove	Dove
Horse	Horse	Zebra	Cow	Cow	Cow	Hen	Hen	Dove	Dove
Zebra	Zebra	Zebra	Cow	Cow	Cow	Hen	Hen	Duck	Goose
Zebra	Zebra	Zebra	Cow	Cow	Cow	Duck	Duck	Duck	Goose

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

The brain analogy of topographic mapping

Sensory experience is multi-dimensional, so there is a need to map them to spatial relations in the cortex preserving topology.

"Kohonen map captures the essential features of computational maps in the brain"

- Vector Quantisation
- Topology preserving (Kohonen) maps
- · Supervised competitive learning

The brain analogy of topographic mapping

Sensory experience is needed for developing neural circuitry through analogous *neurobiological processes*.

"Kohonen map captures the essential features of computational maps in the brain"

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- Supervised competitive learning

Learning Vector Quanitsation (LVQ)

Learning Vector Quantisation (LVQ) is a supervised competitive learning algorithm (classes are known)

- Vector Quantisation
- · Topology preserving (Kohonen) maps
- Supervised competitive learning

Learning Vector Quanitsation (LVQ)

Learning Vector Quantisation (LVQ) is a supervised competitive learning algorithm (classes are known)

$$\Delta \vec{w} = +\eta(\vec{x} - \vec{w})$$

$$\Delta \vec{w} = -\eta (\vec{x} - \vec{w})$$

if the winner belongs to the *right* class

if the winner belongs to the wrong class