IN THE CLAIMS

- 1. (Currently Amended) A binder mixture comprising
 - (A) at least one polymer with a saturated main chain that is not polyester and
 - (B) at least one polyester having a main chain that is at least one of saturated andor unsaturated,

wherein,

(i) at least one of (A) and/or (B) has at least one of structural units 1 and/or II.

(•)

(II) in which the index n is an integer from 1 to 10;

and with the provisos that

- (ii) when the polyester (B) has no structural units I or II, (B) comprises at least one of malcic esters and and or fumaric esters incorporated in its main chain, and
- (iii) when (A) contains no structural units I or II, (A) comprises covalently bonded photoinitiators of the Norrish II type as at least one of side groups and/or end groups, and

wherein at least one of:

(I) polymer (A) is a polyacrylate and comprises at least one copolymeric poly(meth)acrylate comprising in copolymerized form at least one (meth)acrylate monomer comprising at least one of structural unit I, structural unit II, further

(meth)acrylic esters, and/or further olefinically unsaturated monomers copolymcrizable therewith, and/or

- (II) components (A) and (B) are in a proportion of from 50:50 to 99.5:0.5.
- 2. (Canceled)
- 3. (Currently Amended) The binder mixture as claimed in claim 1, wherein the polymer (A) comprises at least one of structural unit I and/or Π and also at least one covalently bonded photoinitiator of the Norrish II type as at least one of a side group and/or end group.
- 4. (Currently Amended) The binder mixture of claim 1, wherein the polyester (B) comprises at least one of structural units 1 and/or II and at least one of maleic esters and/or fumaric ester groups incorporated in its main chain.
- 5. (Currently Amended) The binder mixture of claim 1, wherein the polymer (A) <u>further</u> comprises at least one of <u>another</u> polyacrylate, <u>a polyurethane</u>, <u>a polyurethane</u>, <u>a polyether</u>, and/or <u>a polyepoxide</u>.
- 6. (Canceled)
- 7. (Currently Amended) The binder mixture as claimed in claim 5, wherein the polyurethanes (A) comprises the reaction products of a polyisocyanates, a compounds comprising isocyanate-reactive groups, and at least one of the following:
 - i) <u>a compounds</u> comprising at least one structural unit I and at least one isocyanatereactive group,
 - ii) a compounds comprising at least one structural unit Π and at least one isocyanate-reactive group
 - iii) a compounds comprising at least one structural unit I, at least one structural unit II, and at least one isocyanate-reactive group, and/or
 - iv) a compounds comprising at least one photoinitiator group and at least one isocyanate-reactive group.

- 8. (Currently Amended) The binder mixture as claimed in claim 5, wherein the polyepoxides (A) comprises a reaction products of a polyepoxides and at least one of
 - a_compounds comprising at least one structural unit I and at least one epoxidereactive group;
 - a_compounds comprising at least one structural unit II and at least one epoxidereactive group;
 - iii) <u>a compounds comprising at least one structural unit I, at least one structural unit II, and at least one epoxide-reactive group; and/or</u>
 - iv) a compounds comprising at least one photoinitiator group and at least one cpoxide-reactive group.
- 9. (Previously Presented) The binder mixture of claim 1, wherein in the polyesters
 (B) the structural unit 1 is incorporated in the form of the structural unit III

(III)

and the structural unit II is incorporated in the form of the structural unit IV

(IV) in which the index n is an integer from 1 to 10.

10. (Currently Amended) The binder mixture of claim 1, wherein in at least one of (A) and/or (B) the structural unit I is incorporated in the form of the structural unit V

(V)

and the structural unit II is incorporated in the form of structural units VI

- 11. (Previously Presented) The binder mixture of claim 1 comprising components (A) and (B) in a proportion of from 60:40 to 99.5:0.5-to 0.5:99.5.
- 12. (Currently Amended) A method of using the binder mixture of claim 1 comprising preparing coating materials comprising the binder mixture of claim 1, wherein the coating materials are curable by at least one of thermally and/or with actinic radiation.
- 13. (Currently Amended) A coating material comprising the binder mixture of claim 1, wherein the coating material is curable by at least one of thermally and/or with actinic radiation.
- 14. (Currently Amended) A method of using the coating material as claimed in claim 13 comprising applying the coating material to a substrate and curing the coating material by at least one of actinic radiation and/or heating.
- 15. (Currently Amended) A method of coating substrates for at least one of an automotive OEM finish, an automotive refinish, an industrial coating, a coil coating, a container coating, andor a furniture coating comprising applying the coating material of claim 13 to the substrate and curing it by at least one of with actinic radiation and/or by heating.
- 16. (Previously Presented) A substrate coated by the method of claim 15.
- 17. (Currently Amended), The binder mixture of claim 1 further characterized by at least two of the following:

- i) the polymer (A) comprises at least one structural unit I and or II and also at least one covalently bonded photoinitiator of the Norrish II type as at least one of a side group and/or end group;
- ii) the polyester (B) comprises at least one of structural units I and/or II and at least one of maleic esters and/or fumaric ester groups incorporated in its main chain;
- the polymer (A) <u>further</u> comprises at least one of <u>another</u> polyacrylate, <u>a</u> polyurcthane, <u>a polyether</u>, and <u>lor a polyepoxide</u>;
- iv) in the polyesters (B), the structural unit I is incorporated in the form of the structural unit III

ത്ത

and the structural unit II is incorporated in the form of the structural unit IV

(IV) in which the index n is an integer from 1 to 10;

v) in at least one of (A) and/or (B) the structural unit I is incorporated in the form of the structural unit V

(V)

and the structural unit II is incorporated in the form of structural units VI

(VI);

and/or

vi) components (A) and (B) are in a proportion of from 60:40 to 99.5:0.5 to 0.5:99.5.

18. (Canceled)

- 19. (Currently Amended) The binder mixture of claim 17, wherein polymer (A) is a further comprises the polyurethane and comprises the comprising a reaction products of a polyisocyanates, a compounds comprising isocyanate-reactive groups, and at least one of the following:
 - i) <u>a compounds</u> comprising at least one structural unit I and at least one isocyanatereactive group,
 - ii) a compounds comprising at least one structural unit II and at least one isocyanatereactive group
 - iii) a compounds comprising at least one structural unit I, at least one structural unit II, and at least one isocyanate-reactive group, and or
 - iv) a compounds comprising at least one photoinitiator group and at least one isocyanate-reactive group.
- 20. (Currently Amended) The binder mixture of claim 17, wherein polymer (A) is a further comprises the polycpoxide and comprises comprising a reaction products of a polycpoxides and at least one of
 - a compounds comprising at least one structural unit I and at least one cpoxidereactive group;
 - ii) <u>a compounds comprising at least one structural unit II and at least one epoxide-reactive group;</u>
 - iii) a compounds comprising at least one structural unit I, at least one structural unit
 II, and at least one epoxide-reactive group; and/or
 - iv) <u>a compounds comprising at least one photoinitiator group and at least one epoxide-reactive group.</u>

- 21. (Currently Amended) The method of claim 12, wherein the binder mixture is characterized by at least one of:
 - the polymer (A) comprises at least one structural unit I and/or II and also at least one covalently bonded photoinitiator of the Norrish II type as at least one of a side group and/or end group;
 - ii) the polyester (B) comprises at least one of structural units I and/or II and at least one of maleic esters and/or fumaric ester groups incorporated in its main chain;
 - iii) the polymer (A) <u>further</u> comprises at least one of <u>another</u> polyacrylate, <u>a</u> polyurethane, <u>a polyether</u>, and <u>further</u> comprises at least one of <u>another</u> polyacrylate, <u>a</u>
 - iv) in the polyesters (B), the structural unit I is incorporated in the form of the structural unit II

(m)

and the structural unit II is incorporated in the form of the structural unit IV

(IV) in which the index n is an integer from 1 to 10;

v) in at least one of (A) and/or (B) the structural unit I is incorporated in the form of the structural unit V

 (\mathbf{v})

and the structural unit II is incorporated in the form of structural units VI

and/or

- vi) components (A) and (B) are in a proportion of from 60:40 to 99.5:0.5 to 0.5:99.5.
- 22. (Currently Amended) The coating material of claim 13, wherein the binder mixture is characterized by at least one of:
 - the polymer (A) comprises at least one structural unit I and/or Π and also at least one covalently bonded photoinitiator of the Norrish II type as at least one of a side group and/or end group;
 - ii) the polyester (B) comprises at least one of structural units I and/or II and at least one of maleic esters and/or fumaric ester groups incorporated in its main chain;
 - iii) the polymer (A) <u>further comprises</u> at least one of <u>another polyacrylate</u>, <u>a</u> polyurethane, <u>a polyether</u>, and/or <u>a polyepoxide</u>;
 - iv) in the polyesters (B), the structural unit I is incorporated in the form of the structural unit III

(III)

and the structural unit II is incorporated in the form of the structural unit IV

(IV) in which the index n is an integer from 1 to 10;

v) in at least one of (A) and <u>/or</u> (B) the structural unit I is incorporated in the form of the structural unit V

(V)

and the structural unit II is incorporated in the form of structural units VI

and/or

- vi) components (A) and (B) are in a proportion of from 60:40 to 99.5:0.5-to 0.5:99.5.
- 23. (Currently Amended) The method of claim 14, wherein the binder mixture is characterized by at least one of:
 - the polymer (A) comprises at least one structural unit I and/or II and also at least one covalently bonded photoinitiator of the Norrish II type as at least one of a side group and/or end group;
 - ii) the polyester (B) comprises at least one of structural units I and/or Π and at least one of maleic esters and/or fumaric ester groups incorporated in its main chain;
 - iii) the polymer (A) <u>further comprises at least one of another polyacrylate, a polyurethane, a polyether, and/or a polyepoxide;</u>
 - iv) in the polyesters (B), the structural unit I is incorporated in the form of the structural unit III

(III)

and the structural unit II is incorporated in the form of the structural unit IV

(IV) in which the index n is an integer from 1 to 10;

v) in at least one of (A) and/or (B) the structural unit I is incorporated in the form of the structural unit V

(V)

(VI);

and the structural unit II is incorporated in the form of structural units VI

and/or

- vi) components (A) and (B) are in a proportion of from 60:40 to 99.5:0.5 to 0.5:99.5
- 24. (Currently Amended) The method of claim 15, wherein the binder mixture is characterized by at least one of:
 - i) the polymer (A) comprises at least one structural unit I and/or II and also at least one covalently bonded photoinitiator of the Norrish II type as at least one of a side group and/or end group;
 - ii) the polyester (B) comprises at least one of structural units I and/or II and at least one of maleic esters and/or fumaric ester groups incorporated in its main chain;
 - iii) the polymer (A) <u>further comprises</u> at least one of <u>another polyacrylate</u>, <u>a</u> polyurethane, <u>a polyether</u>, and <u>or a polyepoxide</u>;
 - iv) in the polyesters (B), the structural unit I is incorporated in the form of the structural unit III

(III)

and the structural unit II is incorporated in the form of the structural unit IV

(IV) in which the index n is an integer from 1 to 10;

v) in at least one of (A) and/or (B) the structural unit I is incorporated in the form of the structural unit V

(V)

and the structural unit II is incorporated in the form of structural units VI

(VI);

and/or

- vi) components (A) and (B) are in a proportion of from 60:40 to 99.5:0.5-to 0.5:99.5.
- 25. (Currently Amended) The substrate of claim 16, wherein the binder mixture is characterized by at least one of:
 - i) the polymer (A) comprises at least one structural unit I and or II and also at least one covalently bonded photoinitiator of the Norrish II type as at least one of a side group and/or end group;

- ii) the polyester (B) comprises at least one of structural units I and/or II and at least one of maleic esters and/or furnaric ester groups incorporated in its main chain;
- iii) the polymer (A) <u>further comprises</u> at least one of <u>another polyacrylate</u>, <u>a</u> polyurethane, <u>a polyether</u>, and <u>further comprises</u> at least one of <u>another polyacrylate</u>, <u>a</u>
- iv) in the polyesters (B), the structural unit I is incorporated in the form of the structural unit III

(III)

and the structural unit II is incorporated in the form of the structural unit JV

(IV) in which the index n is an integer from 1 to 10;

v) in at least one of (A) and/or (B) the structural unit I is incorporated in the form of the structural unit V

(V)

and the structural unit II is incorporated in the form of structural units VI

(VI);

and/or

vi) components (A) and (B) are in a proportion of from 60:40 to 99.5:0.5 to 0.5:99.5.