Санкт-Петербургский национальный исследовательский университет

информационных технологий, механики и оптики УЧЕБНЫЙ ЦЕНТР ОБЩЕЙ ФИЗИКИ ФТФ

Группа <u>Р3224</u>	К работе допущен	
Студенты Кобик Никита, Маликов Глеб	Работа выполнен <u>а</u>	
Преподаватель Иванов Виктор Юрьевич	Отчет принят	

Рабочий протокол и отчет по лабораторной работе №1.04

Исследование равноускоренного

вращательного движения (маятник Обербека)

1. Цель работы.

- Проверка основного закона динамики вращения, связывающего угловое ускорение вращающегося тела с моментами действующих сил.
- Проверка зависимости момента инерции от положения масс относительно оси вращения.

2. Рабочие формулы и исходные данные.

- 1) Основной закон динамики вращения: $I_{\rm E} = M M_{\rm TD}$
 - I момент инерции крестовины с утяжелителем;
 - ξ угловое ускорение крестовины;
 - М момент силы натяжения нити;
 - $M_{\text{тр}}$ момент силы трения в оси крестовины.
- 2) Второй закон Ньютона: ma = mg T
 - m масса груза, создающего натяжение нити;
 - а ускорение груза, создающего натяжение нити;
 - g ускорение свободного падения;
 - Т сила натяжения нити.
- 3) Зависимость пройденного пути h от времени t при постоянном ускорении: $h = \frac{at^2}{2}$

$$(a = \frac{2h}{t^2})$$

- h путь, пройденный телом, которое создает натяжение нити;
- t время, за которое был пройден h.
- 4) Связь между угловым ускорением крестовины и линейным ускорением груза: $\mathcal{E} = \frac{2a}{d}$ d диаметр ступицы;
- 5) Осевой момент силы для силы натяжения нити: $M = \frac{Td}{2}$
- 6) Из определения момента инерции и т. Штейнера: $I = I_0^2 + 4m_{yt}R^2$
 - I_0 сумма моментов инерции стержней крестовины с утяжелителями, момента инерции ступицы и собственных центральных моментов инерции утяжелителей;
 - R расстояние между осью вращения и центром утяжелителя;
 - m_{yT} масса утяжелителя;
 - I коэффициент наклонной зависимости М(E).

3. Измерительные приборы.

№ п/п	Наименование	Тип прибора	Используемый диапазон	Погрешность прибора
1	Секундомер	Цифровой	[0,01; 60] c	0,005 с
2	Линейка	Измерительный	[0,700] мм	0,5 мм

	Параметры установки					
1.	Масса каретки	$(47,0 \pm 0,5) \ \Gamma$				
2.	Масса шайбы	$(220,0\pm0,5)\ \Gamma$				
3.	Масса грузов на крестовине	$(408,0\pm0,5)\ \Gamma$				
4.	Расстояние от оси до первой риски	$(57,0\pm0,5)$ mm				
5.	Расстояние между рисками	$(25,0\pm0,2)\ { m MM}$				
6.	Диаметр ступицы	$(46,0\pm0,5)\ { m mm}$				
7.	Диаметр груза на крестовине	$(40.0 \pm 0.5) \ \mathrm{MM}$				
8.	Высота груза на крестовине	$(40,0\pm0,5)\ { m mm}$				
9.	Расстояние, проходимое грузом (h)	$(700,0\pm0,1)$ mm				

4. Схема установки

Рис. 1. Стенд лаборатории механики (общий вид)

Общий вид экспериментальной установки изображен на Рис. 1. В состав установки входят:

- 1. Основание
- 2. Рукоятка сцепления крестовин
- 3. Устройства принудительного трения
- 4. Поперечина
- 5. Груз крестовины
- 6. Трубчатая направляющая
- 7. Передняя крестовина
- 8. Задняя крестовина
- 9. Шайбы каретки
- 10. Каретка
- 11. Система передних стоек

5. Результаты прямых измерений и их обработки (таблицы, примеры расчетов).

Масса груза,		Положение утяжелителей				
Г	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
	4,69	5,68	6,69	7,81	8,50	10,37
0.27	4,66	5,69	6,66	7,87	9,03	10,07
$m_1 = 0,27$	4,91	5,84	6,72	7,84	9,02	9,91
	4,75	5,74	6,69	7,84	8,85	10,12
	3,27	3,52	4,36	5,34	6,19	6,66
0.40	3,18	3,63	4,35	5,72	6,47	6,72
$m_2 = 0,49$	3,13	3,64	4,17	5,40	6,16	6,87
	3,19	3,60	4,29	5,49	6,27	6,75
	2,51	2,94	3,45	4,30	5,00	5,54
0.71	2,56	2,93	3,55	4,47	5,09	5,62
$m_3 = 0.71$	2,53	3,02	3,49	4,56	4,94	5,59
	2,53	2,96	3,50	4,44	5,01	5,58
0.02	2,23	2,59	3,10	3,57	4,40	4,95
	2,23	2,59	3,06	3,88	4,37	4,87
$m_4 = 0.93$	2,12	2,46	3,09	4,13	4,59	4,97
	2,19	2,55	3,08	3,86	4,45	4,93

Таблица 1. Результаты прямых измерений

6. Расчет результатов косвенных измерений (таблицы, примеры расчетов).

$$a = \frac{2h}{t^2} = \frac{2 * 0.7}{4.75^2} = 0.062 \left[\frac{M}{c^2} \right]$$

$$\varepsilon = \frac{2a}{d} = \frac{2 * 0.062}{0.046} = 2.69 \left[\frac{paA}{c^2} \right]$$

$$M = \frac{md}{2} (g - a) = \frac{0.27 * 0.046}{2} (9.81 - 0.062) = 0.06 [H \cdot M]$$

		1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
m_1	t_{cp}	4,75	5,74	6,69	7,84	8,85	10,12
	а	0,06	0,04	0,03	0,02	0,02	0,01
	ε	2,69	1,85	1,36	0,99	0,78	0,59
	M	0,06	0,06	0,06	0,06	0,06	0,06
m_2	t_{cp}	3,19	3,60	4,29	5,49	6,27	6,75
	а	0,14	0,11	0,08	0,05	0,04	0,03
	ε	5,97	4,71	3,30	2,02	1,55	1,34
	M	0,11	0,11	0,11	0,11	0,11	0,11
m ₃	t_{cp}	2,53	2,96	3,50	4,44	5,01	5,58
	а	0,22	0,16	0,11	0,07	0,06	0,04
	ε	9,48	6,93	4,98	3,08	2,43	1,95
	M	0,16	0,16	0,16	0,16	0,16	0,16

m4	t_{cp}	2,19	2,55	3,08	3,86	4,45	4,93
	а	0,29	0,22	0,15	0,09	0,07	0,06
	ε	12,65	9,39	6,40	4,09	3,07	2,50
	M	0,20	0,20	0,21	0,21	0,21	0,21

Таблица 2. Результаты вычисления а, М, Е

$$\begin{split} M &= M_{\mathrm{Tp}} + I \varepsilon \\ \overline{M} &= \frac{M_1 + M_2 + M_3 + M_4}{4} = \frac{0,06 + 0,11 + 0,16 + 0,20}{4} = 0,13 \; \mathrm{H \cdot M} \\ \overline{\varepsilon} &= \frac{\varepsilon_1 + \varepsilon_2 + \varepsilon_3 + \varepsilon_4}{4} = \frac{2,69 + 5,97 + 9,48 + 12,65}{4} = 7,7 \; \mathrm{pag} \backslash \mathrm{c}^2 \\ I_1 &= \frac{\sum (\varepsilon_i - \overline{\varepsilon})(M_i - \overline{M})}{\sum (\varepsilon_i - \overline{\varepsilon})^2} = \frac{\sum (\varepsilon_i - 7,70)(M_i - 0,13)}{\sum (\varepsilon_i - 7,70)^2} = 0,01 \; \mathrm{Kr} \cdot \mathrm{M}^2 \\ M_{\mathrm{TD}} &= \overline{M} - I_1 * \overline{\varepsilon} = 0,13 - 0,01 * 7,70 = 0,02 \; \mathrm{H} \cdot \mathrm{M} \end{split}$$

	$\mathbf{M} = \mathbf{M}_{\mathrm{Tp}} + \mathbf{I}\boldsymbol{\varepsilon}$					
	1 риска	2 риска	3 риска	4 риска	5 риска	6 риска
I	0,01	0,02	0,03	0,05	0,06	0,08
\mathbf{M}_{TP}	0,0218	0,0218	0,0175	0,0132	0,0104	0,0107
M _{cp}	0,1316	0,1324	0,1331	0,1336	0,1338	0,1340
ε _{cp}	7,7002	5,7181	4,0108	2,5452	1,9545	1,5969

Таблица 3. Результаты вычисления I и M_{тр}

$$\begin{split} I &= I_0 + 4 m_{\text{yt}} R^2 \\ \bar{I} &= \frac{I_1 + I_2 + I_3 + I_4 + I_5 + I_6}{6} = \frac{0,01 + 0,02 + 0,03 + 0,05 + 0,06 + 0,08}{6} = 0,0417 \text{ кг} \cdot \text{m}^2 \end{split}$$

Риска	R	\mathbb{R}^2	I
1	0,077	0,005929	0,01
2	0,102	0,010404	0,02
3	0,127	0,016129	0,03
4	0,152	0,023104	0,05
5	0,177	0,031329	0,06
6	0,202	0,040804	0,08
Среднее:	0,1395	0,0213	0,0417

Tаблица 4. Pезультаты вычисления R^2 и I

По данным таблицы из формулы (6) по МНК получаем:

$$\begin{split} \overline{R^2} &= \frac{R_1^2 + R_2^2 + R_3^2 + R_4^2 + R_5^2 + R_6^2}{6} = 0,0213 \text{ m}^2 \\ m_{\text{yt}} &= \frac{\sum \left(R^2_{i} - \overline{R^2}\right)(I_i - \overline{I})}{\sum \left(R^2_{i} - \overline{R^2}\right)^2} = \frac{\sum (R^2_{i} - 0,0213)(I_i - 0,0417)}{\sum (R^2_{i} - 0,0213)^2} = 1,9 \text{ kg} \\ I_0 &= I - 4 * m_{\text{yt}} R^2 = 0,0417 - 4 * 1,9 * 0,0213^2 = 0,0011336 \text{ kg} \cdot \text{m}^2 \end{split}$$

7. Расчет погрешностей измерений (для прямых и косвенных измерений).

1) Времени t:

$$\bar{t} = 4,75 \text{ c.}$$

$$S_{\langle t \rangle} = \sqrt{\frac{1}{N(N-1)} \sum_{i=1}^{N} (t_i - \langle t \rangle)^2} = 0,07881 \text{ (c)}$$

Доверительная вероятность: $\alpha = 0.95$, N = 3

Коэффициент Стьюдента: 4,30

Доверительный интервал: $\Delta t' = t_{\alpha,N} \cdot S_{\bar{t}} = 0.0748$ (c)

Абсолютная погрешность:
$$\delta_{\bar{t}} = \frac{\Delta_{\bar{t}}}{\bar{t}} * 100\% = \frac{0,0748}{4,75} * 100\% = 1,57\%$$

2) Ускорения а (для положения утяжелителей на 1 риске и массы m₁):

$$a = \frac{2h}{t^2}; \bar{a} = 0.06 \text{ m/c}^2; h = 70.0 \pm 0.1 \text{mm}; t = 4.75 \pm 0.10 \text{c.}$$

$$\Delta a = \sqrt{(\frac{\delta a}{\delta h} * \frac{2}{3} * \Delta h)^2 + (\frac{\delta a}{\delta t} * \Delta t)^2} = 0.0175 \text{m/c}^2$$

$$\delta_a = \frac{\Delta_a}{\bar{a}} * 100\% = \frac{0.0175}{0.06} * 100\% = 28\%$$

3) Момента силы натяжения нити М (для положения утяжелителей на 1 риске и массы ты): M = md/2(g-a); $\overline{M} = 0.0599 \text{ H} * \text{м}$; $m = 220.0 \pm 0.5 \text{г}$

$$\Delta M = \sqrt{\left(\frac{\delta M}{\delta m} * \frac{2}{3} * \Delta m\right)^2 + \left(\frac{\delta M}{\delta d} * \frac{2}{3} \Delta d\right)^2 + \left(\frac{\delta M}{\delta a} * \Delta a\right)^2} = 0,0001 \text{H} \cdot \text{M}$$

$$\delta_{\text{M}} = \frac{\Delta_{\text{M}}}{\text{M}} * 100\% = \frac{0,0001}{0,0599} * 100\% = 0,178\%$$

4) Углового ускорения крестовины Е (для положения утяжелителей на 1 риске и массы m1):

$$\varepsilon = \frac{2a}{d}; \overline{\varepsilon} = 2,69;$$

$$\Delta \varepsilon = \sqrt{\left(\frac{\delta \varepsilon}{\delta d} * \frac{2}{3} \Delta d\right)^2 + \left(\frac{\delta \varepsilon}{\delta a} * \Delta a\right)^2} = 0,76$$

$$\delta_{\varepsilon} = \frac{\Delta_{\varepsilon}}{\overline{\varepsilon}} * 100\% = \frac{0,78}{2,69} * 100\% = 28\%$$

9. Окончательные результаты

$$\begin{split} \bar{t} &= 4,\!75 \pm 0,\!0748 \text{ c.} ; \delta_{\bar{t}} = 1,\!57\%; \alpha = 0,\!95 \\ a &= (0,\!06 \pm 0,\!0175) \text{ м/}c^2; \delta_a = 28\%; \alpha = 0,\!95 \\ \epsilon &= 2,\!69 \pm 0,\!76 \text{ рад/}c^2; \delta_{\epsilon} = 28\%; \alpha = 0,\!95 \\ \text{M} &= (0,\!0599 \pm 0,\!0001) \text{ H} * \text{м}; \delta_{M} = 0,\!178\%; \alpha = 0,\!95 \end{split}$$

10. Выводы и анализ результатов работы.

Таким образом, нам удалось исследовать зависимости момента силы натяжения нити от углового ускорения и момента инерции от положения масс относительно оси вращения. Графики линейных зависимостей представлены в пункте 8. Тем самым мы подтвердили основной закон динамики вращательного движения и теорему Штейнера, что и являлось главной целью данной лабораторной работы. Следовательно, проверка основного закона динамики вращения была успешной.