

DISTA

Corso: Analisi Numerica

Docente: Roberto Piersanti

Radici di equazioni non lineari Lezione 1.3b

Metodi numerici per il calcolo delle radici

Modifica il metodo delle corde

- Il metodo delle corde: un caso particolare della famiglia di metodi
- Utilizza una retta di pendenza costante:

$$q = \frac{f(b) - f(a)}{b - a}$$

 $q = \frac{f(b) - f(a)}{b - a}$ Rapporto incrementale di f(x) in [a, b]

- Modificare il metodo delle corde:
 - Rapporto incrementale variabile q_n
 - Retta con inclinazione diversa $\forall n$
 - migliora la velocità della ricerca della radice α

Metodo delle Secanti:

rapporto incrementale tra gli ultimi due punti calcolati

Metodo di Newton:

impiega la derivata prima della funzione nel punto corrente

Metodo delle secanti (2° metodo della famiglia)

- \blacktriangleright Consideriamo f(x) arbitraria con una radice lpha e due valori iniziali x_{n-1}, x_n
- \blacktriangleright Scegliamo una retta con pendenza variabile $q_n \ \forall n$
- ightharpoonup Prendiamo la secante passante per i punti $(x_{n-1},f(x_{n-1}))$ $(x_n,f(x_n))$

Processo iterativo: $x_n \longrightarrow x_{n+1}$

- 1. Dato x_{n-1}, x_n , calcoliamo $f(x_{n-1}), f(x_n)$
- 2. Troviamo q_n della retta secante
- 3. Tracciamo la retta secante con pendenza q_n
- 4. x_{n+1} : intersezione delle retta con l'asse x

Metodo delle Secanti

$$x_{n+1} = x_n - \frac{(x_n - x_{n-1})f(x_n)}{f(x_n) - f(x_{n-1})} \quad \forall n \ge 1$$

Metodo di Newton (3° metodo della famiglia)

- ightharpoonup Consideriamof(x) arbitraria, continua e derivabile, una radice lpha, un punto x_n
- > Scegliamo la retta con pendenza variabile $q_n = f'(x_n) \ \forall n$
- \blacktriangleright Prendiamo la tangente alla curva nel punto $(x_n, f(x_n))$

Processo iterativo: $x_n \longrightarrow x_{n+1}$

- 1. Dato x_n , calcoliamo $f(x_n)$
- 2. Troviamo $q_n=f'(x_n)$ della retta tangente
- 3. Tracciamo la retta tangente con pendenza q_n
- 4. x_{n+1} : intersezione delle retta con l'asse x

Metodo di Newton

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad \forall n \ge 0$$

Metodo di Newton

> Introduce la derivata prima della funzione

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)} \quad \forall n \ge 0$$

- ightharpoonup Metodo Corde e Secanti si basano solo sui valori della f(x) nei punti iterati
- La **secante** esprime meglio il comportamento della curva rispetto alla **corda**
- La tangente descrive la pendenza della curva in maniera più accurata possibile
- Il Metodo di Newton fornisce una convergenza più rapida
- > Applicabilità del Metodo di Newton:
 - La funzione deve essere anche derivabile
 - o Inoltre la derivata non deve annullarsi ad ogni iterazione

$$f'(x_n) \neq 0 \quad \forall n$$