Table of Contents

Mircoarray Analysis: Effects on Clioquional on Yeast	1
Data Analysis: Determine sample groups we'll work with	2
WRITING TO EXCEL to be used with DAVID	6

Mircoarray Analysis: Effects on Clioquional on Yeast

Template by [Fernando Ramirez Thinh Nguyen] Code by [Fernando Ramirez] adapted from fetch.m adapted from https://www.mathworks.com/help/bioinfo/ug/working-with-geo-series-data.html background -- Clioquional - family of durge hydroxyquinolines, inhibit particular enzymes related to DNA replication. Drugs dound to have activity against both virla and protozoal infections

```
% 00.) Analayze the microarray dataset made available by the following
study
% https://www.ncbi.nlm.nih.gov/pubmed/21504115
% clioquinol.yeast.Li2010.pdf
```

01.) download the follwing GSE1757_series_matrix.txt file from https://ftp.ncbi.nlm.nih.gov/geo/se-ries/GSE17nnn/GSE17257/matrix/ index. This part is done manually. Extract the the compress txt.gz file using winRAR, move file to the working file directory.

```
%EDA - early data analysis (exploration stage)
gseData=bmes_downloadandparsegse_thinh_fernando('GSE17257');
get(gseData.Data); %understanding the size of the Rownames, ColNames
d = gseData.Data; % Exploring GSE data, row names and column names
Downloading https://ftp.ncbi.nlm.nih.gov/geo/series/GSE17nnn/GSE17257/
matrix/GSE17257_series_matrix.txt.gz ...
Reading C:\Users\Fernando A. Ramirez\AppData\Local\Temp
\GSE17257.txt ...
            Name: ''
        RowNames: {10928×1 cell}
        ColNames: {1×6 cell}
           NRows: 10928
           NCols: 6
           NDims: 2
    ElementClass: 'double'
gpl_platform = gseData.Header.Series.platform_id; %saving pointer to
 gpl_platform
qpl =
 bmes_downloadandparsegpl_thinh_fernando(gpl_platform); %obtaining
 metadata for the gsl platform
gpl.ColumnNames; %outputing to function, ensuring the cell array and
 metadata is read
```

```
Exploring the probsets to gene symbols, from the gplData, string
 comparison to the ID and Gene Symbol
gplProbesetIDs = gpl.Data(:, strcmp(gpl.ColumnNames, 'ID'));
geneSymbols = gpl.Data(:, strcmp(gpl.ColumnNames, 'Gene Symbol'));
gseprobes = d.rownames;
%row_change_geneSymbol = rownames(gse.Data.Data, ':', geneSymbols);
%the above code can be optimizing computationally by using a regex and
%saved to a variable, then variable is called.
%mapping the GSE to GPL values, intializing a zero non-vale matrix
MAP_GSE_GPL = zeros(numel(gseprobes),1);
%mapping of the geneSymbols same {} double as the gplProbesetIDs
%For each gseprobe, we need to search gplprobes and use the
 corresponding
%gene. Doing string comparison for each of them will be too slow.
 Let's
%use a Map container to speed this up.
map = containers.Map(gplProbesetIDs,1:numel(gplProbesetIDs));
for i = 1:numel(gseprobes)
    if map.isKey(gseprobes{i}); MAP_GSE_GPL(i) = map(gseprobes{i});
    end
end
gsegenes = gseprobes; %make a copy, so entries not found will keep the
 probe name.
%genenames = gseprobes;
gsegenes(find(MAP GSE GPL)) =
 gplProbesetIDs(MAP_GSE_GPL(find(MAP_GSE_GPL)));
%genenames(find(MAP_GSE_GPL)) =
 geneSymbols(MAP_GSE_GPL(find(MAP_GSE_GPL)));
d = d.rownames(':',gsegenes);
%datamatrix = d.rownames(':',genenames);
```

Data Analysis: Determine sample groups we'll work with

0.3) We are often interested in comparing groups of samples. We need to look at the header information and decide which information for samples we can use to group, Usually the Header.Samples structure usually contains what we need.

```
%taking a dive into the header information
samplegroups = gseData.Header.Samples.characteristics_ch1(2,:);
unique_samplegroups = unique(samplegroups)';
%in total there are 6 samplegroups, however two uniques ones as
follows
% 1% DMSO (dimethly sulfoxide)
% 80uM CQ (tumor development in chemotherapeutic agens, anticancer
drug Chloroquine)
```

```
% create logical vectirs for sample groups of interest
Idmso = strcmpi(samplegroups,'media supplement: 1% DMSO');
Icq = strcmpi(samplegroups, 'media supplement: 80 μM CQ');
%from a column indexing with logical vector
% create a numerical vector to assign each sample to a group 1-2. As
% indexed groups.
Igroups=zeros(1,numel(samplegroups)); %initialize samplegroup size of
 6 as groups
Igroups(Idmso) = 1;
Igroups(Icq) = 2;
groupnames={'DMSO' 'CO'};
colnames=d.colnames;
for i=1:2; colnames(Igroups==i) = groupnames(i); end
d=d.colnames(':',colnames); %this really means: "d.colnames=colnames;"
%04.) Show a hiearchical clustering of samples. (Just a hiearchical
%clustering (ie a dendrogram) of samples, not a heatmap of expression
%values.
% One idea is to only keep the genes that vary most across samples
% (ingoring sample groups.) This can be done using:
% lets try to to push this to computing to 90 variance level.
I =genevarfilter(d,'Percentile',90);
d2 = d(I, :);
% Let's create a distance matrix between pairs of genes.
% pdist() gives a vector (to save space). If you want the symmetric
matrix,
% just pass the result through squareform().
% argument changed to the spearman
% spearman is produced as a vector,
genedist = pdist(d2,'corr');
%'spearman'
*linkage group under each group. these results contain information
 about
%which two groups are combine at each branch.
%Agglomerative hierarcvhical cluster tree. Using the average method.
%average = UPGMA -- Unweighted average distance.
tree = linkage(genedist, 'average');
% visualize the tree, show only 20 nodes. Want to clear figure
% Groups of genes will have a numerical id for labels.
 %bmes fig geneclust; clf
dendrogram(tree, 20, 'Labels', d2.rownames);
h=qca;
h.XTickLabelRotation=45;
title('Hierarchical clustering of 20 nodes')
%distance = pdist(genedist);
%leafOrder = optimalleaforder(tree,distance)
```


%05.) Show a clustergram (heatmap,combined with clustering of samples
and
%clustering of genes of expression values

%3.) Report the top 10 most different genes between the Clioquinol and
%control groups.
[dpvals] = mattest(d(:,Idmso), d(:, Icq),'permute',1000);

```
[dpvals] = mattest(d(:,Idmso), d(:, Icq),'permute',1000);
[dpvals2] = mattest(datamatrix(:,Idmso), d(:, Icq),'permute',1000);
*performing two-sample t-test to evaluate differential expression of
 genes
%from two experimental conditions or phenotypes, in this case it is
 DSMO
%and CQ medium conditions
signif_dpvals = dpvals(dpvals(:,1) <= 0.01,:);</pre>
signif_d = d(dpvals(:,1) <= 0.01,:);
d_sig = d(dpvals(:,1) <= 0.01,:);</pre>
%taking fold change
log2fc = log2(mean(d_sig(:,Idmso),2) ./ mean(d_sig(:,Icq),2));
%taking log2 scale to `compress scaling of values
%scatter(log2fc, -log10(signif_dpvals(:,1)), '.');
%xlabel('log_2(dsmo:CQ) media suppplements in yeast'), ylabel('-
log_{10}(pvalue)');
negfc = 2.^log2fc;
negfc(negfc<1) = - 1./negfc(negfc<1);</pre>
```

```
%in order to compute the 10 most different genes between the
 Clioquinol and
%control groups signif_d is needed
% Add the foldchange information to the dpvals object:
signif_dpvals=[signif_dpvals bioma.data.DataMatrix(negfc,'ColNames',
{ 'neqfc' } ) ];
% Select the genes with pvalue<=0.01 and FC>=1.5.
I = signif dpvals(:,'p-values')<=0.01 &</pre>
 abs(signif_dpvals(:,'negfc'))>=1.5;
%I = abs(signif_dpvals(:,'negfc'))>=1.5;
%logical vector return
dsigfc = signif dpvals(I,:);
dsigfc = dsigfc.sortrows('p-values');
fprintf('Found %d genes with pvalue<=0.01 and FC>=1.5. Showing top 10:
\n',size(dsigfc,1));
disp(dsigfc(1:10,:))
Found 906 genes with pvalue<=0.01 and FC>=1.5. Showing top 10:
                  p-values
                                negfc
    1777371_at
                  1.2783e-09
                                -4.5182
    1777972_at
                 9.4241e-06
                                -6.8586
    1777623_at
                 1.8843e-05
                                -3.5109
    1771341_at
                 2.8282e-05
                                 -22.45
                 3.7698e-05
    1776525_at
                                 2.9046
    1771069_at
                 4.7146e-05
                                4.1521
    1777661 at
                  5.654e-05
                                -2.6123
    1771389_at
                  6.598e-05
                                -2.7784
    1773288_at
                  7.5387e-05
                                  3.451
    1780031_at 8.7097e-05
                                -3.5482
```

WRITING TO EXCEL to be used with DAVID

```
I=find(signif_dpvals(:,1)<=0.01);
nsig=numel(I);
xlsdata = cell(nsig, 3); %each row will contain
  genesymbol,pvalue,negfc
for i=1:nsig
  gene=signif_dpvals.rownames{I(i)};
  p=signif_dpvals.double(I(i), 1);
  nfc=signif_dpvals.double(I(i), 2);
  xlsdata(i,:) = {gene p nfc};
end

xlsdata=[ {'genesymbol' 'pvalue' 'negfc'}; xlsdata]; %add the header
  row.
xlswrite('cq.xlsx',xlsdata,'siggenesDMSO_cq');

Warning: Added specified worksheet.

%4.)Report the functional annotations (Go Biological Processes and
  KEGG</pre>
```

```
%Pathways) that are significantly different between the two groups.
% We have found the significantly different genes between two groups.
But
% what do these genes do? Are there significant differences in
biological
% functions between two groups? To answer these questions, we'll make
% of the Gene Ontology terms, which annotate each gene to one or more
% Biological Processes, Cellular Components, and Molecular Functions.
%imgo processes
figure(1)
imshow(imread('gobp1.png'))
figure(2)
imshow(imread('gobp2.png'))
figure(3)
imshow(imread('gobp3.png'))
%KEGG pathways
figure(4)
imshow(imread('KEGG.png'))
```

Functional Annotation Chart Current Gene List: List_1 Current Background: Saccharomyces cerevisiae 5288C 1190 DAVID IDs © Options Rerun Using Options Create Sublist								
	art records					Download File		
	d <u>Category</u> #	<u>lem</u>				lue <u>Benjamini</u>		
0	GOTERM_BP_DIRECT	ribosome biogenesis	KI =			1F- 5.3E-2		
	GOTERM BP DIRECT	rRNA processing	RT 🚃	62	5.2 4	^{3E+} 8.1E 2		
[]	GOTERM_BP_DIRECT	rRNA molloylation	RT 🖥	24	2.0 2.5	1.3F-1		
	GOTERM_BP_DIRECT	oxidation-reduction process	RI 🚃	90	7.6 8.6	3.4E-1		
	GOTERM DP DIRECT	lipid metabolic process	RT 🚃	45	3.8 3	^{0E+} 4.9E 1		
	GOTERM BP DIRECT	transmembrane transport	RT 🚞	64	5.4 $\frac{2.7}{3}$	7E- 7.0F-1		
[]	GOTERM_BP_DTRECT	ion transport	RT =	36	3.0 3.4	FE 7.6F-1		
	GOTERM_BP_DIRECT	transport	KI =	185	15.5 3.5	/./E-1		
	GOTERM DP DIRECT	maturation of 5.85 rRNA from tricistronic rRNA transcript (SSU rRNA, 5.65 rRNA, LSU rRNA)	RT [10	0.8 3	7.7E I		
	GOTERM_BP_DIRECT	maturation of LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S :RNA, LSU-rRNA)	RT 🖥	15	1.3 5.4	8.5F-1		
0	GOTERM_BP_DIRECT	translational initiation	RL ii	18	1.5 8.7	1.0E0		
	GOTERM DP DIRECT	siderophore transport	RT i	6	0.5 8.3	1E- 1.0E0		
[]	GOTERM_BP_DIRECT	metal ion transport	RT i	8	0.7 8.4	1.0F0		
	GOTERM_BP_DIRECT	tKNA aminoacylation for protein translation	RL ii	13	1.1 1.7	1.UE0		
	GOTERM BP DIRECT	carbohydrate metabolic process	RT 🖥	30	2.5 2	1.0E0		
	GOTERM_BD_DIRECT	iron ion homeoslasis	RT i	12	$-1.0 - \frac{1.3}{2}$	0E 1.0F0		
0	GOTERM_BP_DIRECT	ribosomal large subunit biogenesis	KL ii	18	1.5 2	SF- 1.0E0		

GOTERM_BP_DIRECT phospholipid translocation	RT i	6	0.5 5.9	9E- 1.0E0
GOTERM_BP_DIRECT activation of GTPase activity.	RT i	6	0.5 2	9E- 1.0E0
GOTERM_BP_DIRECT cell division	RT =	47	3.9 6.0	5E- 1.0E0
GOTERM_BP_DIRECT 'de novo' pyrimidine nucleobase biosynthetic process	RT I	5	0.4 7.1	2E- 1.0E0
GOTERM_BP_DIRECT <u>DNA-templated transcription, termination</u>	RT	6	0.5 8.	1E- 1.0E0
GOTERM_BP_DIRECT fungal-type cell wall chitin biosynthetic process	RT I	6	0.5 8.	1E- 1.0E0
GOTERM_BP_DIRECT mitochondrial electron transport, ubiquinol to cytochrome c	RT	6	0.5 8.	1E- 1.0E0
GOTERM_BP_DIRECT intracellular protein transport	RT 🖥	25	2.1 8.3	3E- 1.0E0
GOTERM_BP_DIRECT sphingolipid biosynthetic process	RT 🖥	7	0.6 8.1	5E- 1.0E0
GOTERM_BP_DIRECT transcription of nuclear large rRNA transcript from RNA polymerase I promoter	RT	7	0.6 8.1	5E- 1.0E0
GOTERM_BP_DIRECT phospholipid transport	RT 🖥	8	0.7 8.1	5E- 1.0E0
GOTERM_BP_DIRECT mitotic DNA replication checkpoint	RT	4	0.3 8.0	5E- 1.0E0
GOTERM_BP_DIRECT heterochromatin organization involved in chromatin silencing	RT	4	0.3 8.0	5E- 1.0E0
GOTERM_BP_DIRECT transcription factor import into nucleus	RT	4	0.3 8.0	5E- 1.0E0
GOTERM_BP_DIRECT 'de novo' UMP biosynthetic process	RT	4	0.3 8.0	5E- 1.0E0
GOTERM_BP_DIRECT cellular amino acid biosynthetic process	RT 🖥	25	2.1 9.1	2E- 1.0E0
GOTERM_BP_DIRECT phenylalanine transport	RI i	3	0.3 9.4	4E- 1.0E0
GOTERM_BP_DIRECT cadmium ion transport	RT	3	0.3 9.4	4E- 1.0E0
GOTERM_BP_DIRECT endonucleolytic cleavage in ITS1 to separate SSU-rRNA from 5.8S rRNA and LSU-rRNA from tricistronic rRNA transcript (SSU-rRNA, 5.8S rRNA, LSU-rRNA)	RI 🖥	13	1.1 9.1	BE- 1.0E0

	GOTERM_BP_DIRECT_regulation of translational initiation	KL 🖥	9	0.8 1.7F- 1.0E0
Ξ	GOTERM BP DIRECT cellular Iron Ion homeostasis	RT 🖥	15	1.3 2.9E- 1.0E0
	COTERM_RP_DIRECT_ <u>latty_acid_biosyalbelic_process</u>	RT 🖥	10	0.8 ^{1.90} / ₂ 1.0F0
Ξ	GOTERM_BP_DIRECT_tricarboxylic acid cycle	KL ii	12	1.0 2.2F- 1.0E0
	GOTERM BP DIRECT drug export	RT 🖥	4	0.3 2.3E- 1.0E0
Ξ	GOTERM_BP_DIRECT formation of cytoplasmic translation initiation complex	RL i	4	0.3 2.3F- 1.0E0
	GOTERN DP DIRECT fructose 2,6 bisphosphate metabolic process	RT 🖥	4	0.0 2.3E- 1.0E0
	COTERM_RP_DIRECT_IRNA_2'-O-methylation	RT i	4	0.3 2.3E 1.0E0
	GOTERM_BP_DIRECT_xenobiotic transport	RL i	6	0.5 2.6F- 1.0E0
Ξ	GOTERM DP DIRECT fructose metabolic process	RT 🖁	5	0.4 2.75 1.0E0
	COTERM_RP_DIRECT hydrogen ion transmembrane transport	RT =	14	1.2 2.8E 1.0E0
Ξ	GOTERM_BP_DIRECT_transcription from RNA_polymerase L promoter	RI 🖥	9	0.8 3.2F- 1.0E0
	GOTERM DP DIRECT cellular response to drug	RT 🖥	7	0.6 3.45° 1.000
	COTERM_RP_DIRECT_Inanslational termination	RT i	7	0.6 3.4E 1.0E0
	GOTEKM_BP_DIRECT_carbohydrate_phosphorylation	KL 🖥	1	0.6 3.4F- 1.0E0
Ξ	GOTERM BP DIRECT maturation of SSU rRNA from tricistronic rRNA transcript (SSU rRNA, 5.85 rRNA, LSU rRNA)	RT 🖥	21	1.6 3.75 1.0E0
	COTERM_RP_DIRECT_sagilio_ting_organization	RT i	6	0.5 4.0E 1.0E0
Ξ	GOTERM_BP_DIRECT_arror-prone translasion synthesis	KL i	6	0.5 2 1.0E0
	GOTERM OP DIRECT cell wall organization	RT 🚆	26	2.2 ^{4.1b-} 1.0E0
	COTERM_RP_DIRECT_IRNA_modification	RT i	5	0.4 4.7E 1.0E0
	GOTERM_BP_DIRECT_cellular manganese ion homeostasis	RI i	5	0.4 4.7F- 1.0E0
	COTERM_RP_DIRECT_protein import into nucleus	RT i	14	1.2 ^{5.0E} 1.0F0
	GOTERM_BP_DIRECT_regulation of ARE protein signal transduction	RL i	4	0.3 ^{5.0F-} 1.0E0
Ξ	GOTERM OP DIRECT very long chain fatty acid blosynthetic process	RT 🖥	4	0.3 ^{5.06-} 1.000
	COTERM_RP_DIRECT_positive regulation of CTDsec activity	RT =	26	2.2 ^{5.2E} 1.0E0
Ξ	GOTERM_BP_DIRECT formation of translation preinitiation complex	BL ii	8	0./ 5.2F- 1.0E0

Functional Annotation Chart Current Gene List: List_1 Current Background: Saccharomyces cerevisiae S288C 1190 DAVID IDs © Options								
Rerun	Using Options Cre	eate Sublist						
	rt records						F4	Download File
Sublist	Category	☆ Term	≑RT	Genes	Count	\$ %		Benjamini
	KEGG_PATHWAY	Metabolic pathways	RT	_	171	14.4	1.4E-7	1.4E-5
	KEGG_PATHWAY	Biosynthesis of secondary metabolites	<u>RT</u>		77	6.5	4.6E-4	2.3E-2
	KEGG_PATHWAY	Biosynthesis of antibiotics	RT		56	4.7	3.7E-3	1.2E-1
	KEGG_PATHWAY	Biosynthesis of amino acids	<u>RT</u>		35	2.9	6.3E-3	1.2E-1
	KEGG_PATHWAY	Fatty acid elongation	<u>RT</u>		6	0.5	7.1E-3	1.2E-1
	KEGG_PATHWAY	Biosynthesis of unsaturated fatty acids	<u>RT</u>		7	0.6	7.5E-3	1.2E-1
	KEGG_PATHWAY	Amino sugar and nucleotide sugar metabolism	<u>RT</u>		13	1.1	8.3E-3	1.2E-1
	KEGG_PATHWAY	Pyrimidine metabolism	<u>RT</u>		22	1.8	1.1E-2	1.5E-1
	KEGG_PATHWAY	Pentose phosphate pathway	<u>RT</u>		11	0.9	2.2E-2	2.5E-1
	KEGG_PATHWAY	Cell cycle - yeast	<u>RT</u>		32	2.7	3.0E-2	3.0E-1
	KEGG_PATHWAY	Phenylalanine metabolism	RT		6	0.5	3.6E-2	3.3E-1
	KEGG_PATHWAY	2-Oxocarboxylic acid metabolism	<u>RT</u>	i .	12	1.0	4.3E-2	3.4E-1
	KEGG_PATHWAY	RNA transport	<u>RT</u>		25	2.1	4.4E-2	3.4E-1
	KEGG_PATHWAY	Starch and sucrose metabolism	RT		13	1.1	5.0E-2	3.4E-1
	KEGG_PATHWAY	Valine, leucine and isoleucine biosynthesis	<u>RT</u>	1	6	0.5	5.3E-2	3.4E-1
	KEGG_PATHWAY	Citrate cycle (TCA cycle)	<u>RT</u>	1	11	0.9	5.5E-2	3.4E-1
	KEGG_PATHWAY	Carbon metabolism	RT		29	2.4	5.6E-2	3.4E-1
	KEGG_PATHWAY	<u>Glycerophospholipid metabolism</u>	<u>RT</u>	1	12	1.0	6.3E-2	3.6E-1
	KEGG_PATHWAY	MAPK signaling pathway - yeast	<u>RT</u>		15	1.3	7.1E-2	3.8E-1
	KEGG_PATHWAY	Ribosome biogenesis in eukaryotes	<u>RT</u>		23	1.9	8.0E-2	4.1E-1
	KEGG_PATHWAY	Alanine, aspartate and glutamate metabolism	<u>RT</u>		10	0.8	8.4E-2	4.1E-1
	KEGG_PATHWAY	Fatty acid metabolism	RT	1	8	0.7	9.3E-2	4.2E-1
	KEGG_PATHWAY	Oxidative phosphorylation	<u>RT</u>		19	1.6	9.8E-2	4.2E-1
	KEGG_PATHWAY	Purine metabolism	<u>RT</u>		24	2.0	9.9E-2	4.2E-1

%5.) Discuss whether your results align with the finding reported in the

% paper

%the results in the paper discuss gene of which fold changes were
%calculated using hte ratio of signals in C1-treated samples and DMSO
%treated controls, as shown in the analysis above. The genes that were
%found to have identical fold changes as stated in the paper and in
the

%analysis above were FRE3, FET3, ENB1, ZPS1,ZRT1,ZRT3,PCA1, and SMF1.

%discuss in the paper the genes were upregulated fold growth as analyed in

%our excel as abs(negfc). It would be nice to mapp these genes with
the

%Affymetrix probeIds, as this would eliminate the need to reference the

%geneSymbols in the code above to ensure that each ProbeID is referecing

%the correct Gene in the paper. This improvement could be added in a %revised iteration. Likewise a p-value threshold in the paper of p<0.01 was

%considered, likewise in this analysis. For the purposes of utilizing David

%bioinformatics database, probeset IDs were used initialize to map and %report the significant functional annotations of Go Biological Processes

%and KEGG pathways, respectively.

Published with MATLAB® R2020b