Numerikus matematika

Baran Ágnes

Előadás Lebegőpontos számok

1/26

Lebegőpontos számok

Lebegőpontos számok

Példa.

$$a = 10$$

$$0.3721 = \frac{3}{10} + \frac{7}{10^2} + \frac{2}{10^3} + \frac{1}{10^4}$$
$$21.65 = 0.2165 \cdot 10^2 = \left(\frac{2}{10} + \frac{1}{10^2} + \frac{6}{10^3} + \frac{5}{10^4}\right) \cdot 10^2$$

$$a = 2$$

$$0.1101 = \frac{1}{2} + \frac{1}{2^2} + \frac{0}{2^3} + \frac{1}{2^4}$$
$$0.001011 = 0.1011 \cdot 2^{-2} = \left(\frac{1}{2} + \frac{0}{2^2} + \frac{1}{2^3} + \frac{1}{2^4}\right) \cdot 2^{-2}$$

Lebegőpontos számok

A nemnulla lebegőpontos számok alakja:

$$\pm a^k \left(\frac{m_1}{a} + \frac{m_2}{a^2} + \dots + \frac{m_t}{a^t} \right)$$

ahol

a>1 egész, a számábrázolás alapja

t > 1, egész, a mantissza hossza

 $k_- \le k \le k_+$ egész, a karakterisztika, ahol $k_- < 0$ és $k_+ > 0$ adott

 $1 \leq m_1 \leq a-1$, egész (a szám normalizált)

 $0 \le m_i \le a-1$, egész, ha $i=2,\ldots,t$

röviden: $[\pm |k|m_1, \ldots, m_t]$ ahol (m_1, \ldots, m_t) a mantissza.

Az a, t, k_-, k_+ értékek egyértelműen leírják az ábrázolható számok halmazát.

Példa.

Legyen a = 2, t = 4, $k_{-} = -3$, $k_{+} = 2$.

(a) Írjuk fel a következő számok lebegőpontos alakját:

(b) Hány pozitív normalizált lebegőpontos szám ábrázolható ilyen jellemzők mellett?

A legnagyobb ábrázolható szám:

$$M_{\infty} = a^{k_{+}} \left(\frac{a-1}{a} + \frac{a-1}{a^{2}} + \dots + \frac{a-1}{a^{t}} \right)$$

$$= a^{k_{+}} \left(1 - \frac{1}{a} + \frac{1}{a} - \frac{1}{a^{2}} + \dots + \frac{1}{a^{t-1}} - \frac{1}{a^{t}} \right)$$

$$= a^{k_{+}} \left(1 - a^{-t} \right)$$

A legkisebb pozitív normalizált ábrázolható szám:

$$\varepsilon_0 = a^{k_-} \left(\frac{1}{a} + 0 + \dots + 0 \right) = a^{k_- - 1}$$

Szubnormális számok: ha $k = k_-$, akkor $m_1 = 0$ is lehet.

Az 1 mindig lebegőpontos szám:

$$1 = a^1 \cdot \frac{1}{a}$$
, vagy röviden: $1 = [+|1|1,0,\ldots,0]$

Az 1 jobboldali szomszédja:

$$1 + \varepsilon_1 = [+|1|1, 0, \dots, 0, 1]$$

másképp:

$$1 + \varepsilon_1 = a \left(\frac{1}{a} + 0 + \dots + 0 + \frac{1}{a^t} \right) = 1 + a^{1-t}$$

azaz $\varepsilon_1 = a^{1-t}$ (gépi epszilon)

Az IEEE lebegőpontos aritmetikai szabvány:

	egyszeres pontosság	dupla pontosság	
méret	32 bit	64 bit	
mantissza	23+1 bit	52+1 bit	
karakterisztika	8 bit	11 bit	
$arepsilon_1$			
M_{∞}	$pprox 10^{38}$ $pprox 10^{308}$		

mivel m_1 mindig 1, ezért nem ábrázoljuk az előjel ábrázolására 1 bit

Adott a,t,k_+,k_- mellett az ábrázolható lebegőpontos számok a $[-M_\infty,M_\infty]$ intervallum egy megszámlálható részhalmazát alkotják.

Példa

- (a) Ábrázoljuk számegyenesen az a=2, t=4, $k_-=-3$, $k_+=2$ jellemzők mellett felírható összes pozitív normalizált lebegőpontos számot.
- (b) A fenti számábrázolási jellemzők mellett mennyi lesz M_∞ , ε_0 és ε_1 értéke?
- (c) Mit mondhatunk két szomszédos szám távolságáról?
- (d) Mit mondhatunk a szomszédos számok távolságáról, ha k_+ értékét 4-re módosítjuk?
- (e) Mi lenne, ha $k_+ > 4$ teljesülne?

Példa.

A pozitív normalizált lebegőpontos számok $a=2,\ t=4,\ k_-=-3,\ k_+=2$ esetén.

	k = 0	k = 1	k = 2	k = -1	k = -2	k = -3
0.1000	8 16	8 8	<u>8</u>	<u>8</u> 32	<u>8</u> 64	8 128
0.1001	$\frac{9}{16}$	<u>9</u>	94	$\frac{9}{32}$	$\frac{9}{64}$	$\frac{9}{128}$
0.1010	$\frac{10}{16}$	<u>10</u>	$\frac{10}{4}$	$\frac{10}{32}$	<u>10</u> 64	$\frac{10}{128}$
0.1011	$\frac{11}{16}$	$\frac{11}{8}$	$\frac{11}{4}$	$\frac{11}{32}$	$\frac{11}{64}$	$\frac{11}{128}$
0.1100	$\frac{12}{16}$	<u>12</u>	$\frac{12}{4}$	$\frac{12}{32}$	$\frac{12}{64}$	$\frac{12}{128}$
0.1101	13 16	<u>13</u>	<u>13</u>	$\frac{13}{32}$	$\frac{13}{64}$	$\frac{13}{128}$
0.1110	$\frac{14}{16}$	<u>14</u> 8	$\frac{14}{4}$	$\frac{14}{32}$	$\frac{14}{64}$	$\frac{14}{128}$
0.1111	15 16	<u>15</u> 8	<u>15</u> 4	1 <u>5</u> 32	<u>15</u> 64	15 128

$$M_{\infty}=2^2(1-2^{-4})=rac{15}{4}$$
 és $arepsilon_0=2^{-3-1}=rac{1}{16}\left(=rac{8}{128}
ight)$

Baran Ágnes Numerikus matematika Lebegőpontos számok

10 / 26

Legyen $y = a^k \cdot 0.m_1m_2...m_t$.

A legközelebbi nála nagyobb szám

$$a^k \cdot \frac{1}{a^t} = a^{k-t}$$

távolságra van tőle.

Nagyobb karakterisztika o nagyobb lépésköz.

Ha k > t, akkor a lépésköz nagyobb mint 1.

a = 2, t = 4, $k_{-} = -3$ esetén

$$\varepsilon_0 = a^{k_- - 1} = 2^{-4} = \frac{1}{16},$$

 $\varepsilon_1 = a^{1 - t} = 2^{-3} = \frac{1}{8}$

Példa

Vizsgáljuk meg számítógépünkön a $2^{66}+1==2^{66}$, $2^{66}+10==2^{66}$, $2^{66}+100==2^{66}$, $2^{66}+1000==2^{66}$ iogikai kifejezések értékét!

Dupla pontosság esetén (t = 53):

y	a jobboldali szomszéd távolsága
1	$\approx 2.22 \cdot 10^{-16}$
16	$\approx 3.5527 \cdot 10^{-15}$
1024	$\approx 2.27 \cdot 10^{-13}$
$2^{20}\approx 10^6$	$\approx 2.33 \cdot 10^{-10}$
$2^{52} \approx 4.5 \cdot 10^{15}$	1
$2^{60}\approx 1.15\cdot 10^{18}$	256
$2^{66} \approx 7.38 \cdot 10^{19}$	16384

Kerekítés

A $[-M_{\infty}, M_{\infty}]$ intervallumból nem minden szám írható fel lebegőpontos alakban.

Példa

A 0.1 kettes számrendszerbeli alakja:

0.0001100110011001100...

Az $\frac{1}{3}$ kettes számrendszerbeli alakja:

0.0101010101010....

Kerekítés

Legyen $x \in [-M_{\infty}, M_{\infty}]$ egy valós szám, fl(x) pedig a hozzárendelt lebegőpontos szám.

Szabályos kerekítés esetén:

$$fl(x) = \begin{cases} 0, & \text{ha } |x| < \varepsilon_0 \\ \text{az } x\text{-hez legközelebbi lebegőpontos számok} \\ \text{közül a nagyobb abszolút értékű,} \end{cases} \quad \text{ha } |x| \geq \varepsilon_0$$

Levágás esetén:

$$fl(x) = \begin{cases} 0, & \text{ha } |x| < \varepsilon_0 \\ \text{az } x\text{-hez legközelebbi lebegőpontos szám a 0 felé, ha } |x| \ge \varepsilon_0 \end{cases}$$

Megjegyzés

Ha az ábrázolni kívánt szám két szomszédos lebegőpontos szám között félúton helyezkedik el, akkor a valóságban az előzőnél bonyolultabb kerekítési szabály alapján történik a kerekítés.

15/26

Példa

Legyen a=2, t=4, $k_-=-3$, $k_+=2$. Mi lesz a 0.1-hez rendelt lebegőpontos szám szabályos kerekítés, illetve levágás esetén?

A 0.1 kettes számrendszerben, normalizálva:

$$2^{-3} \cdot 0.1100110011001100...$$

Szabályos kerekítés:

$$fI(0.1) = 2^{-3} \cdot 0.1101$$

Levágás:

$$fl(0.1) = 2^{-3} \cdot 0.1100$$

Kerekítés

Az abszolút hiba becslése

szabályos kerekítésnél:

$$|fl(x) - x| \le \begin{cases} \varepsilon_0, & \text{ha } |x| < \varepsilon_0 \\ \frac{1}{2}\varepsilon_1|x|, & \text{ha } |x| \ge \varepsilon_0 \end{cases}$$

levágásnál:

$$|f|(x) - x| \le \begin{cases} \varepsilon_0, & \text{ha } |x| < \varepsilon_0 \\ \varepsilon_1 |x|, & \text{ha } |x| \ge \varepsilon_0 \end{cases}$$

Kerekítés

A **relatív hiba** becslése, ha $|x| \ge \varepsilon_0$

szabályos kerekítésnél:

$$\frac{|fl(x)-x|}{|x|}\leq \frac{1}{2}\varepsilon_1$$

levágásnál:

$$\frac{|fl(x)-x|}{|x|}\leq \varepsilon_1$$

Gépi epszilon (ε_1)

Adott számábrázolási jellemzők mellett az 1 és a jobboldali lebegőpontos szomszédjának a távolsága.

Alapműveleteknél:

1. példa:

$$a = 10, t = 3$$

$$x = 0.425 \cdot 10^{-1}, y = 0.677 \cdot 10^{-2}$$

$$fl(x + y) = ?$$

$$y \to y = 0.0677 \cdot 10^{-1} \quad (\textbf{tartal\'ek sz\'amjegyek})$$

$$x + y = 0.425 \cdot 10^{-1} + 0.0677 \cdot 10^{-1} = 0.4927 \cdot 10^{-1}$$

$$fl(x + y) = \begin{cases} 0.492 \cdot 10^{-1}, & \text{lev\'ag\'as} \\ 0.493 \cdot 10^{-1}, & \text{szab\'alyos kerek\'it\'es} \end{cases}$$

2. példa:

$$a = 10, t = 3$$

 $x = 0.367 \cdot 10^{-2}, y = 0.682 \cdot 10^{-2}$
 $f(x + y) = ?$

$$x + y = 0.367 \cdot 10^{-2} + 0.682 \cdot 10^{-2} = 1.049 \cdot 10^{-2} = 0.1049 \cdot 10^{-1}$$

$$fl(x+y) = egin{cases} 0.104 \cdot 10^{-1}, & ext{levágás} \\ 0.105 \cdot 10^{-1}, & ext{szabályos kerekítés} \end{cases}$$

Alapműveleteknél:

Jelölje \triangle a négy alapművelet valamelyikét, legyen x és y lebegőpontos szám. Tfh a gép a műveletet pontosan végrehajtja és az eredményhez hozzárendel egy lebegőpontos számot. Ekkor

szabályos kerekítés esetén:

$$|fl(x\triangle y) - x\triangle y| \le \begin{cases} \varepsilon_0, & \text{ha } |x\triangle y| < \varepsilon_0 \\ \frac{1}{2}\varepsilon_1|x\triangle y|, & \text{ha } |x\triangle y| \ge \varepsilon_0 \end{cases}$$

levágás esetén:

$$|\mathit{fl}(x\triangle y) - x\triangle y| \leq \begin{cases} \varepsilon_0, & \text{ha } |x\triangle y| < \varepsilon_0 \\ \varepsilon_1 |x\triangle y|, & \text{ha } |x\triangle y| \geq \varepsilon_0 \end{cases}$$

Összefoglalva:

ha $|x\triangle y| > M_{\infty}$, akkor **túlcsordulás**,

ha $|x\triangle y|<arepsilon_0$, akkor alulcsordulás $(fl(x\triangle y)=0)$

ha $\varepsilon_0 \leq |x \triangle y| \leq M_{\infty}$, akkor az előző reláció átírható:

$$\mathit{fl}(x\triangle y) = (x\triangle y)\cdot (1+arepsilon_{\triangle}), \quad \mathsf{ahol} \ |arepsilon_{\triangle}| \leq arepsilon_1 egin{cases} 1, & \mathsf{lev\'ag\'as} \ rac{1}{2}, & \mathsf{szab\'alyos} \ \mathsf{kerek\'it\'es} \end{cases}$$

A hibák terjedése

Legyenek x_0, x_1, \ldots, x_n lebegőpontos számok.

$$S_n = \sum_{i=0}^n x_i = ?$$
, ha az összeadás algoritmusa:

$$S_0 = x_0,$$
 $S_k = S_{k-1} + x_k,$ $k = 1, ..., n.$

A hiba becslése:

$$|fl(S_n) - S_n| \leq n\varepsilon_1|x_0| + n\varepsilon_1|x_1| + (n-1)\varepsilon_1|x_2| + \dots + \varepsilon_1|x_n|$$

Egy durvább becslés:

$$|f(S_n) - S_n| \le n\varepsilon_1 \sum_{k=0}^n |x_k|$$

Ha minden x_k pozitív, akkor

$$\left|\frac{fl(S_n)-S_n}{S_n}\right|\leq n\varepsilon_1$$

Megjegyzések

A lebegőpontos összeadás nem asszociatív

Példa

```
Vizsgálja meg számítógépén a 0.4-0.5+0.1==0 és a 0.1-0.5+0.4==0 logikai kifejezések értékét.
```

 Az elvégzett műveletek számának növekedésével a kerekítési hiba tipikusan nő. Matematikailag ekvivalens kifejezések értékére lényegesen különböző értékeket kaphatunk a gépi számítás során.

Példa

Az alábbi algoritmus végrehajtása után mennyi az x elméleti, illetve a gépi számítás után adódó értéke?

```
x=1/3;
for i=1:40
    x=4*x-1;
end
```

Példa

Számítógépén határozza meg és ábrázolja az 1 egy kis környezetében az $(x-1)^8$ kifejezés értéket az alábbi két (matematikailag ekvivalens) módon:

$$y_1(x) = (x-1)^8,$$

 $y_2(x) = x^8 - 8x^7 + 28x^6 - 56x^5 + 70x^4 - 56x^3 + 28x^2 - 8x + 1$

Megjegyzések

 A kifejezések alkalmas átalakításával elkerülhető, hogy a köztes eredmények (és így a végeredmény is) túlcsorduljanak.

Példa

Legyen $x = (10^{200}, 1)$. Számítsa ki gépén az x normáját az alábbi két módon.

(a)

$$||x|| = \sqrt{x_1^2 + x_2^2}$$

(b)

$$c = \max\{|x_1|, |x_2|\}, \quad ||x|| = c \cdot \sqrt{\left(\frac{x_1}{c}\right)^2 + \left(\frac{x_2}{c}\right)^2}$$