Effective from: 09.11.'20

Faculty of Engineering and Technology Term-Test1 Question Paper – B.Tech.

Department : Computer Science and Engineering

Programme : B. Tech. in Computer Science and Engineering

Semester / Batch : 6th Semester 2018 Batch

Date of Test : 17thMay 2021 Course Code : 19CSC311A

Course Title : Graph Theory and Optimization

Term Test<u> - 1</u>

INSTRUCTIONS TO STUDENTS

- 1. Answer all five Questions
- 2. Use of non-programmable scientific calculator is permitted
- 3. Missing data may be appropriately assumed
- 4. Notations used have usual meaning
- 5. Upload the scanned answer sheets in PDF format within the stipulated time to Section A:

https://u.pcloud.com/#page=puplink&code=80kkZXEv38yqQ308nUsUovV6UBYDGIRV0 Section B:

https://u.pcloud.com/#page=puplink&code=QOkkZjFplaM45r7HE9baCKxLSahEd5Rsk Section C:

https://u.pcloud.com/#page=puplink&code=YOkkZ9NRSRh3eUe5bsTKJ9gzne0414Tty

Maximum Duration: 1 Hour and 15 Minutes Maximum Marks: 25

IMPORTANT

You may retain the question paper for future reference

Q. No.	Question	Marks	со
1	Describe the characteristics used to classify a graph as (i) Hamiltonian graph (ii) Euler graph. Draw the graphs required to aid your description.	5	1
2	 Determine the number of regions in the planar graph given below using Euler's formula. Validate the formula by marking the regions on the graph. 	3	1

19CSC204A Page **1** of **2**

	Effec	tive from:	09.11.'2
	b. Show, by drawing, that complete bipartite graphs $K_{2,3}$ and $K_{2,4}$ are planar graphs.	2	3
3	Determine whether the following graphs are isomorphic by appropriately mapping the edges and vertices. A B C D C	5	2
4	Draw the structure of a K -Regular Graph. Show that any simple K_n graph is $(K-1)$ Regular.	5	2
5	 Determine the number of vertices of graph G=(V,E) in the following cases: G has 16 edges and all vertices of degree 4 G is regular with 15 edges G has 10 edges with 2 vertices of degree 4 and all other vertices of degree 3 	5	3

CO (ILO) - Course Outcomes:-

- 1. Describe the concepts, theories and techniques of graph theory and discrete optimization
- 2. Explain the principles of graph theory, discrete optimization and their applications in Computer Science and Engineering
- 3. Identify and apply appropriate approach from graph theory and discrete optimisation to formulate a given problem
- 4. Design graph theory and discrete optimisation based algorithms to solve problems in Computer Science and Engineering
- 5. Synthesize efficient algorithms for problems in Computer Science and Engineering using graph structures and discrete optimisation methods
- 6. Evaluate the utility of discrete optimisation and graph structures for modelling and analysis of computing systems

19CSC204A Page **2** of **2**