UNIVERSIDADE DE AVEIRO

DEPARTAMENTO DE ELECTRÓNICA, TELECOMUNICAÇÕES E INFORMÁTICA

Teste Teórico 2 - 4 de Julho de 2022

me:_					r	
						Duração: 1
a: Jus	stifique tod	as as resposta:	S.			
		•	io dos segmentos: .	data = 0x10010	000 e .text =	= 0x00400000
			MIPS apresentado.	· · · · · ·		
nha	Label	Assembl	y	Comenta	ário	
1		.data				
2	array:	.space 12				
3		. text				
4		la \$t(o, array	#instr	ução virtual!	
5		li \$t!	5, 3			
6		li \$t1	1, 0			
7	for:		1, \$t5 , endfor	:		
8		sll \$t2	2, \$t1, 2			
9		_	2,\$t2,\$t0			
10		sw \$t1	1,0(\$t2)			
		j for				
11						
	endfor:	li \$v(0, 10			
12 13 14 aber	ndo que o o	syscall pcode da instr	ução beq é 4, e que	_	_	
12 13 14 aber	ndo que o o	syscall pcode da instr		_	_	
	ndo que o o	syscall pcode da instr	ução beq é 4, e que	_	_	
12 13 14 aber	ndo que o o te o código i	syscall pcode da instr máquina (em l	ução beq é 4, e que pinário) da instrução	o da linha 7 (beq	\$t1, \$t5,	endfor).
12 13 14 aber	ndo que o o te o código i 31:26	syscall pcode da instr máquina (em l	ução beq é 4, e que pinário) da instrução 20:16	o da linha 7 (beq	\$t1, \$t5,	endfor).
12 13 14 aber	ndo que o o te o código i 31:26	pcode da instr máquina (em k	ução beq é 4, e que pinário) da instrução 20:16	o da linha 7 (beq	\$t1, \$t5,	endfor).
12 13 14 aber	ndo que o o te o código i 31:26	pcode da instr máquina (em k	ução beq é 4, e que pinário) da instrução 20:16	o da linha 7 (beq	\$t1, \$t5,	endfor).
12 13 14 aber	ndo que o o te o código i 31:26	pcode da instr máquina (em k	ução beq é 4, e que pinário) da instrução 20:16	o da linha 7 (beq	\$t1, \$t5,	endfor).
12 13 14 aber	ndo que o o te o código i 31:26	pcode da instr máquina (em k	ução beq é 4, e que pinário) da instrução 20:16	o da linha 7 (beq	\$t1, \$t5,	endfor).
12 13 14 aber esent	ndo que o o te o código i 31:26 ção (determ	pcode da instr máquina (em k 25:21	ução beq é 4, e que pinário) da instrução 20:16 stante):	15:11	\$t1, \$t5, 10:6	endfor).
12 13 14 aben essent	ndo que o o te o código o a 31:26	pcode da instr máquina (em k 25:21 inação da cons	ução beq é 4, e que pinário) da instrução 20:16	15:11	\$t1, \$t5, 10:6	endfor).
12 13 14 aben essent	ndo que o o te o código i	pcode da instr máquina (em k 25:21 inação da cons	ução beq é 4, e que pinário) da instrução 20:16 stante):	15:11	\$t1, \$t5, 10:6	endfor).
12 13 14 aberresent	ndo que o o te o código o a 31:26	pcode da instr máquina (em k 25:21 inação da cons	ução beq é 4, e que pinário) da instrução 20:16 stante):	15:11	\$t1, \$t5, 10:6	endfor).
12 13 14 aber esent	ndo que o o te o código i	pcode da instr máquina (em la 25:21 inação da cons pcode da instr).	ução beq é 4, e que pinário) da instrução 20:16 stante):	o da linha 7 (beq 15:11	\$t1, \$t5, 10:6 ina (em binário) o	endfor). 5:0 da instrução da
12 13 14 Jaber Jaber Jaber Jaber	ndo que o o te o código o a 31:26	pcode da instr máquina (em la 25:21 inação da cons pcode da instr).	ução beq é 4, e que pinário) da instrução 20:16 stante):	o da linha 7 (beq 15:11	\$t1, \$t5, 10:6 ina (em binário) o	endfor). 5:0 da instrução da
12 13 14 Jaber Jaber Jaber Jaber	ndo que o o te o código o a 31:26	pcode da instr máquina (em k 25:21 inação da cons pcode da instr).	ução beq é 4, e que pinário) da instrução 20:16 stante):	o da linha 7 (beq 15:11	\$t1, \$t5, 10:6 ina (em binário) o	endfor). 5:0 da instrução da
12 13 14 Jaber Jaber Jaber Jaber	ndo que o o te o código o a 31:26	pcode da instr máquina (em k 25:21 inação da cons pcode da instr).	ução beq é 4, e que pinário) da instrução 20:16 stante):	o da linha 7 (beq 15:11	\$t1, \$t5, 10:6 ina (em binário) o	endfor). 5:0 da instrução da
12 13 14 Jaber Jaber Jaber Jaber	ndo que o o te o código o a 31:26	pcode da instr máquina (em k 25:21 inação da cons pcode da instr).	ução beq é 4, e que pinário) da instrução 20:16 stante):	o da linha 7 (beq 15:11	\$t1, \$t5, 10:6 ina (em binário) o	endfor). 5:0 da instrução da

2) A Figura 1 representa uma implementação básica do datapath do MIPS.

Figura 1 - Datapath single-cycle

a) Preencha a tabela seguinte com o valor dos sinais de controlo durante a execução da instrução

sw \$t1,0(\$t2)

Sinal	Valores para sw \$t1,0(\$t2)
RegWrite	
RegDst	
ALUSrc	
ALUControl (ver Tabela II)	
Branch	
MemWrite	
MemToReg	

b) Adicione na **Figura 1** o que falta para que o *datapath* suporte a execução da instrução **sll** (*Shift Left Logical*).

Justifique/Descreva as alterações efetuadas.

a Figura 1, todos os o c 1 , \$t0 , 25 ".	caminhos e sinais a	ativos durante a ex	cecução da instruçã	ĕο

d) Acrescente à Tabela de Verdade da **Tabela II** o valor das entradas e saída *ALUControl*_{2:0} relativas à instrução **sII**. O valor do *FunCode*_{5:0} de **sII** é igual a 0.

Sugestão: Use uma das combinações disponíveis e não altere o número de bits de ALUControl.

ALUOp _{1:0}	Funct _{5:0}	ALUControl _{2:0}	
00	XXXXXX	010 (Add)	
01	XXXXXX	110 (Subtract)	
10	100000 (add)	010 (Add)	
10	100010 (sub)	110 (Subtract)	
10	100100 (and)	000 (And)	
10	100101 (or)	001 (Or)	
10	101010 (slt)	111 (Slt)	

Tabela II - Descodificador da ALU

e) Sendo o FunCode_{5:0} de sll igual a 0, preencha todos os campos de bits do quadro seguinte, para a instrução "sll \$tl,\$t0,25"; o número dos registos \$t0 e \$t1 é igual a 8 e 9, respetivamente.

Instrução sll rd, rt, shamt

31:26	25:21	20:16	15:11	10:6	5:0

7	-1 -	D	I
Zona	ae	Rascun	no:

f) Preencha a tabela seguinte com o valor dos sinais de controlo durante a execução da instrução:

"sll \$t1,\$t0,25".

Sinal	Valores para sll \$t1,\$t0,25
RegWrite	
RegDst	
ALUSrc	
ALUControl (resposta alínea d)	
Branch	
MemWrite	
MemToReg	

3) A **Figura 2** representa uma implementação do *datapath multicycle* e a **Figura 3** o diagrama de estados parcial do controlador respetivo.

Figura 2 - Datapath multicycle

a) Modifique, se necessário, o *datapath* da **Figura 2** para suportar a execução da instrução **andi**.

Justifique a(s) alteração(ões) efetuada(s).

b) Indique, na Tabela III, as alterações necessárias no descodificador da ALU.

Sugestão: Use uma das combinações disponíveis e não altere o número de bits de ALUControl.

ALUOp _{1:0}	Funct _{5:0}	ALUControl _{2:0}	
00	XXXXXX	010 (Add)	
01	XXXXXX	110 (Subtract)	
10	100000 (add)	010 (Add)	
10	100010 (sub)	110 (Subtract)	
10	100101 (or)	001 (Or)	
10	100110 (xor)	100 (Xor)	
10	101010 (slt)	111 (Slt)	

Tabela III - Descodificador da ALU, multi cycle.

	,
c)	Identifique cada um dos estados percorridos pela unidade de controlo durante a execução da instrução andi e explique por palavras as ações envolvidas em cada um deles.
	Sugestão: Consulte o diagrama de estados da Figura 3.

d) Considere nesta alínea, os caminhos ativos e o valor dos sinais de controlo relevantes durante a <u>fase</u> <u>EXECUTE</u>, da instrução <u>andi</u>.

Preencha na tabela seguinte o valor que os sinais de controlo assumem durante esse estado e assinale na figura 2 os caminhos ativos nessa fase.

Instr.	Op _{5:0}	lor	MemWrite	RegDst	MemToReg	RegWrite	AluSrcA	AluSrcB	Branch	PCSrc	ALUCtrl
andi	001100										

Sinais de Controlo na fase EXECUTE da instrução andi

e) No diagrama de estados da Figura 3 preencha os estados S9 e S10 com os valores dos sinais de seleção dos *multiplexers* e de *enable*. Use o descodificador da ALU da Tabela III.

Figura 3 - Diagrama de Estados do Controlador Principal

4) Traduza para assembly a seguinte função print_fact.

Respeite a convenção de uso de registos abordada nas aulas.

Não precisa de implementar a função factorial, basta invocá-la de acordo com a convenção.

```
int factorial(int );
int print_fact(int n){
    int i;
    if (n < 0)
        return -1;
    else
    {
        for(i = 0; i <= n; i++)
            print_int10( factorial(i) );
    }
    return 1;
}</pre>
```

Label	Assembly	Comentário	Label	Assembly	Comentário
					
					
				<u> </u>	