Oxford Summer School. September 2007

Soft Condensed Matter 2

The study of surfactant self-assembly, and polymers in solution using Small Angle Neutron Scattering

Jeff Penfold
ISIS Facility, Rutherford Appleton Lab

Small Angle Scattering

SAS is scattering in the forward direction, and is related to the scattering properties of materials at small scattering vectors, Q

Wave vector transfer Q defined as $Q = \frac{4\pi}{2} \sin \frac{\theta}{2}$

$$Q = \frac{4\pi}{\lambda} \sin \frac{\theta}{2}$$

$$\frac{d\sigma}{d\Omega} = N \left\langle \left| \sum_{i(V)} \overline{b}_i \exp(iQ.R_i) \right|^2 \right\rangle_Q \qquad Q = k_i - k_f = 2k_i \sin \frac{\theta}{2}$$

A Guinier, G Fournet, Small angle scattering of x-rays, Wiley & Sons, NY, 1955

Contrast Variation

 $\rho(r)$ Scattering length density

$$\rho(r)\delta v = \sum_{j(V)} b_j$$

$$\frac{d\sigma}{d\Omega} = N \left\langle \left| \int_V p(r) \exp(iQ.r) dr \right|^2 \right\rangle_Q$$

 $\left\langle \ \
ight
angle_Q$ all orientation with respect to Q

N is the number of scattering objects

Molecule	Bulk density (g.cm ⁻³)	Molecular weight (g.mol ⁻¹)	Molar volume (ų)	Scattering length density (10 ¹⁰ cm ⁻²)
H ₂ O	1.0	18.015	29.915	-0.560
D ₂ O	1.112	20.0314	29.915	6.400
toluene C ₇ H ₈	0.865	92.140	176.884	0.939
$\mathbf{C}_{7}\mathbf{D}_{8}$	0.9407	100.205	176.884	5.647
heptane C ₇ H ₁₆	0.684	100.20	243.267	-0.547
C_7D_{16}	0.794	116.33	243.267	6.300
cyclohexane C ₆ H ₁₂	0.779	84.161	179.403	-0.278
C_6D_{12}	0.891	96.258	179.406	6.685
silicon	2.329	28.0855	20.025	2.074
SiO ₂ vitreous	2.2	60.0843	45.352	3.475
SiO ₂ α quartz	2.648	"	37.679	4.183
TiO ₂	4.23	79.899	31.366	2.604
Al ₂ O ₃	3.97	101.961	42.648	5.699
poly(ethylene)- CH ₂ -	0.92	14.027	25.318	-0.329
poly(styrene) - C ₈ H ₈ -	1.05	104.151	164.71	1.412
d-poly(styrene) - C_8D_8 -	1.131	112.216	164.71	6.468

Some characteristic scattering patterns

Instrumentation

D11/D22 (ILL)
Monochromatic

LOQ (ISIS)
White beam TOF

Typical Q range 2 x 10^{-3} to 0.5 Å⁻¹ Probes dimensions (~2 π /Q) ~ 3000 to 10Å

Dilute Solution: non-interacting particles

Scattering from isolated particles, determined by particle form factor

$$\frac{d\sigma}{d\Omega} = N \langle F^2(Q) \rangle_Q$$

$$F(Q) = \int_{V_p} (\rho(r) - \rho_s) \exp(iQ.r) dr$$

$$I(Q=0) = NV^2(\rho - \rho_s)^2$$

Extrapolation to Q=0 determined by scattering volume and contrast

Concentrated Solution: interacting particles

For globular interacting polydisperse particles, in the 'decoupling approx' (no correlation between position and orientation)

$$\frac{d\sigma}{d\Omega} = N \left[S(Q) \langle F(Q) \rangle_{Q}^{2} + \Delta(Q) \right]$$

$$\Delta(Q) = \left\langle \left| F(Q) \right|^2 \right\rangle_Q - \left\langle F(Q) \right\rangle_Q^2$$

 Q/nm^{-1} S(Q) is the inter-particle structure factor, $\Delta(Q)$ a coherent disorder term switched on by interactions

For monodisperse spheres

$$\frac{d\sigma}{d\Omega} = NP(Q)S(Q) \qquad P(Q) = |F(Q)|^2$$

J B Hayter, J Penfold, Colloid Polym Sci 261 (1983) 1022 M Kotlarchyck, S H Chen, J Chem Phys 79 (1983) 2461

Form Factors: Spheres and core+shell

For monodisperse particles with centro-symmetry

$$\langle F^2(Q)\rangle_Q = \langle F(Q)\rangle_Q^2 = F_Q^2(Q)$$

$$V = 4\pi R^3/3$$

$$F_s(Q) = V(\rho - \rho_s)F_0(QR)$$

The geometrical form-factor, $F_0(QR)$, is given as,

$$F_0(QR) = 3[\sin(QR) - QR\cos(QR)]/(QR)^3 = 3j_1(QR)/(QR)$$

For m concentric spherical shells,

$$F_{s}(Q) = V_{1}(\rho_{1} - \rho_{2})F_{0}(QR_{1}) + V_{2}(\rho_{2} - \rho_{3})F_{0}(QR_{2}) + V_{m}(\rho_{m} - \rho_{s})F_{0}(QR_{m})$$

Drop, shell, core form-factors

Form Factors: Ellipses and rods

Ellipsoids

$$\langle F^{2}(Q)\rangle_{Q} = V_{e}^{2}(\rho - \rho_{s})^{2} \int_{0}^{1} F_{0}^{2} \langle Qa[1 + (e^{2} - 1)x^{2}]^{\frac{1}{2}} dx$$

where $x=\cos\beta$, angle between Q and major axis of ellipsoid with axes a, a, ae

Cylinders or Rods

$$\langle F^{2}(Q)\rangle_{Q} = V^{2}(\rho - \rho_{s})^{2} \int_{0}^{\pi/2} F^{2}(Q) \sin \gamma d\gamma$$
$$F(Q) = 2j_{0}(Ql\cos\gamma)J_{1}(Qa\sin\gamma)/(Qa\sin\gamma)$$

 γ is angle between Q and cylinder axis, I is rod half length, a radius, $J_1(x)$ first order Bessel function of first kind, $j_0(x)=\sin x/x$

Particle Form-factors

Other Form-Factors

Gaussian Coil

y=QRg

Kratky-Porod Worm-like Chains

$$\frac{d\sigma}{d\Omega} \approx \pi NV^2 (\Delta \rho)^2 \frac{1}{QL} \exp\left(-\frac{Q^2 R_g^2}{2}\right)$$

Approximate Relationships, Limiting Laws

$$I(Q=0)$$

$$\frac{d\sigma}{d\Omega}(Q=0) \approx NV^2 (\Delta \rho)^2$$

Invariant

$$\int_{0}^{\infty} Q^{2} \frac{d\sigma}{d\Omega} dQ = 2\pi^{2} \phi (1 - \phi) \Delta \rho^{2}$$

Volume fraction, ϕ =NV, $\Delta \rho$ =(ρ - ρ_s)

Provide information about total scattering volume and contrast Important information and constraints for subsequent modelling

POROD's Law: limit at high Q

For particles with well-defined interface scattering at high Q decays as Q⁻⁴.

Extrapolation to high Q provides estimate of surface area

Guinier's Law

At low Q, scattering cross-section can be approximated by Guinier expansion,

Series expansion of P(Q),

$$P(Q) \approx 1 - \frac{(QR)^2}{10} +$$

$$\frac{d\sigma}{d\Omega} \approx NV^2 (\Delta p)^2 \exp\left(\frac{R_g^2 Q^2}{3}\right) \qquad R_s^2 = \frac{5}{3} R_g^2 \qquad \text{Valid for } QR_g < 1$$

Plot of Log(scattering intensity) v Q² is linear with slope related to Rg and intercept $NV^2(\Delta \rho)^2$

For rod-like or elongated structures

At low to intermediate Q, Q-1 dependence

$$Q\frac{d\sigma}{d\Omega} = \pi NV^2 (\Delta \rho)^2 \exp^{-(QR_c)^2} / 2$$

At intermediate Q, or QRc < 1, a plot of logQd σ /d Ω v Q² will be linear, Q⁻² Guinier regime

At high Q, Q⁻⁴ dependence, the scattering contains only information about the local rod cross-section

$$\frac{d\sigma}{d\Omega} \approx \frac{4\pi}{Q} \left(\frac{J_1(QR_c)}{QR_c} \right)^2$$

Self-Assembly

Surfactant micelles and meso-phases

Surfactants

(solution behaviour)

Sodium dodecyl sulphate, SDS CH₃(CH₂)₁₁OSO₃-Na⁺

Sodium Octanoate, NaO CH₃(CH₂)₇CO₂-K⁺

n-hexadecyltrimethyl ammonium bromide $C_{16}TAB$, $CH_3(CH_2)_{15}N^+(CH^3)^3Br^-$

N-dodecyloctaetyleneglycol monoether $CH_3(CH_2)_{11}(OCH_2CH_2)_8OH$

Phase diagram for SDS

Micelle Structure

Gruen, Prog Coll Polym Sci (1985) 70 6

B Smit et al, Nature 348 (1990) 624, J Phys Chem 95 (1991) 6361

Micelle Structure

0.03M $C_{16}TAC$ in D_2O

0.6 and 1.2M Na Octanoate in D_2O

5.0

Some model parameters for some simple micelles

 C_{12} TAB (C): small spherical micelles SDS, C_{16} TAC: elliptical, ee 1.23 to 2.47

Micelle Growth: elongated structures

Surfactant conc, electrolyte induces micellar growth to rod-like structures

Counterions, such as salicylate, induce extreme growth and highly elongated structures

Measured over 3 decades of Q, and 4 decades of intensity Consistent with randomly oriented rigid cylinders with exponential distribution of lengths

Micelle Growth: elongated structures

Persistence length, lp=1.9/Q*

C16E6 in D2O, 0.6, 1.2, 1.8 g/L

Holtzer plot (QI(Q) v Q)
emphasises Q⁻¹ to Q⁻²
transition to provide estimate of
Persistence length

C16E6 shows substantial conc induced growth of, interpreted as polymer-like micelles or worm-like chains

Composition of mixed surfactant micelles

If P(Q), $S(Q) \sim 1.0$ then

$$I(Q) \approx \sum_{i} N_{i} V_{i}^{2} \left(\rho_{ip} - \rho_{s}\right)^{2}$$

for example, h-SDS/ h-C12E6 and h-SDS / d-C12E6 in D2O

$$R = \frac{I(Q)_{hh}}{I(Q)_{hd}} (Q \to 0)$$

$$V_{f} = \frac{\left(\sqrt{R} - 1\right)\!\left(\rho_{hSDS} - \rho_{D2O}\right)}{\left(\rho_{hC12eE6} - \rho_{hSDS}\right) - \sqrt{R}\left(\rho_{dC12E6} - \rho_{hSDS}\right)}$$

Mixed Surfactant micelles 0.1 M C16TAB / C12E6 0.8 0.1M NaCl of SDS 0.6 Scattering eross section (m^{-1}) Mole % hh/D2O dh/D2O 0.2 dh/H2O 2,95 010 0.45 3,25 300 250

C16TAB / C12E6 0.1M NaCI

Mixed Surfactant micelles

Simple free energy terms explains main trends Growth of C12E6 rich micelles attributed to dehydration

$$\upsilon = \left(\frac{4\pi l_c^3}{3V_o}\right) \left(\frac{a_e l_c - 2}{V_o}\right)^{-1} \qquad \left(\frac{1}{4\pi l_c^3}\right)^{-1} \qquad \left(\frac{1}{4\pi l$$

Penfold et al, J Phys Chem B 109 (2005) 10760

Alkyl chain contribution

~ -17 to 18 kT

Adsorption of mixed surfactants (SDS / C12E6)

at the oil-water interface

Prepare hexadecane in water emulsions (σ ~0.2 microns) by ultrasound

Use h/d hexadecane to index match to D2O Can dilute and add surfactant

Adsorbed layer thickness varies from 8 to 15 Å

Adsorbed amount from 2.05 to 6.68 x 10-10 mol cm-2

See Scattering from adsorbed layer only + free micelles

Adsorbed amounts and composition from

$$\Gamma = \frac{d(\rho_s - \rho_2)}{N_a V(\rho_s - \rho_a)}$$

Conc / ordered Systems

Lyotropic micellar and liquid crystalline phases

Progression of micellar shapes based on simple geometric constraints

V/Al <1/3 1/3<V/Al<1/2 1/2<V/Al<1 V/Al >1

Spherical Rods Bilayers Inverted

Increasing order with increasing surfactant concentration Additional phases (not shown) include cubic, bicontinuous, mlv

NI/QUAT

Complex evolution of solution microstructure, from cationic to nonionic rich. Related to relative preferred curvature of the different surfactant components.

Now seen in a variety of different systems, which include lipid / nonionic mixtures and other ionic / nonionic surfactant mixtures

DHDAB / C12E12

For nonionic rich, globular micelles which grow with increasing cationic content, extensive micellar region

At low concentrations, transition to vesicles
At higher concentrations, transition to L\(\beta\), and coexistence region

Shear flow alignment / orientation

Couette Flow Cell

d<<r shear gradient constant across gap

For ISIS Couette cell 0.5mm G=5.28N

Outer cylinder rotates

G/Dr: Elongated particles, tend to align in flow direction, Brownian motion randomises alignment, Dr

Significant alignment when G>>Dr

J B Hayter, J Penfold, J Phys Chem 88 (1984) 4589 H G Jerrard, Chem Rev 51 (1852) 345 H Thurn, J Kalus, H Hoffmann, J Chem Phys 80 (1984) 3440

For orientation in Couette flow,

$$I(Q) = I(Q, \Psi) = A \int_{0}^{2\pi} d\phi \int_{0}^{\pi} P(\theta, \phi; \Gamma) \left[F^{2}(Q, \gamma^{+}) + F^{2}(Q, \gamma^{-}) \right] \sin \theta d\theta$$

 $\cos \gamma^{\pm} = \sin \theta \cos \phi \cos \psi \pm \cos \theta \sin \psi$

$$Q_{\perp}$$
 refers to $\Psi = 0$

$$Q_{\scriptscriptstyle II}$$
 refers to $\Psi=\pi/2$

Orientation distribution comes from solution to the diffusion equation

$$P(\theta, \phi; \Gamma) = \frac{(1 - \cos^2 \phi_0)(1 + \sin^2 \theta \cos 2\phi_0)^{3/2}}{4\pi (1 - \sin^2 \theta \cos 2\phi_0 \cos 2(\phi - \phi_0))^2}$$

Elongated Micelles (rod-like)

Calculation for 21=2700, 2a=47

0.04M DDACI / 4M NaCl (a) G=2000 s-1 (b) 3000 (c) 5000 and (d) 7000

Calculation for 21=2500, 2a=44

PG Cummins, E Staples, J Penfold, J B Hayter, J Chem Soc Farad Trans 83 (1987) 2773, Langmuir 5 (1989) 1195, Chem Phys Lett 138 (1987) 436

Orientational order in concentrated lamellar phases

51 wt % C16E6

Cell side, low shear

Cell centre, G=5000s-1

Aligned parallel to flow-vorticity plane at low shear, and parallel to flow-shear gradient plane at high shear

(Penfold, Staples, Khan Lohdi, Tiddy, Tucker, J Phys Chem 1997 101 66)

At intermediate shear see more complex distribution

Mapping flow fields using SANS (elongational flow)

50.6 wt% $C_{16}E_6$ / D_2O at 55°C Lamellar phase dispersion

Distribution of orientational order reflects flow pattern

In anisotropy and d spacing variation with flow rate, see stretching of lamellae sheets and reduction in domain size

Flow induced effects in mixed surfactant mesophases

De-mixing in principle flow directions, J = 18s-1 form of 'banding'

Polymers and polymeric materials

Kinetics of co-polymer trans-esterification

(Backsona, Richards, King, Polymer 40 (1999) 4205)

Polyesters, such as PET (polyethylene terphalate) extensively used in packaging PEN (poly-ethylene napthalene 2 6 dicarboxylate) has superior physical properties but due to high processing costs wish to use as blend

At elevated temperatures interchange reactions (scission and recombination), TRANS-ESTERFICATION, occurs

> Follow reaction kinetics in-situ using SANS

Results in formation of co-polymers in blends and changes in MW distribution in homo-polymers

Block co-polymer ordered phases

Poly-styrene - poly-isoprene block co-polymers

Microstructure of aqueous gels (block copolymers)

Phase diagram of aqueous solutions of E41B8 (oxyethylene-oxybutylene block copolymer) forms micellar gel with cubic packing Hard gel is bcc or fcc, depending on preparation conditions, soft gel is a defective cubic phase

Oriented fcc gel, induced by shear flow Shear \rightarrow

SANS from fcc gel of 25% E41B8 in 0.1M K2SO4 (oriented under shear)

Phase diagram of aqueous solution of E41B8

C Booth, G E Lu, S M Mai, B U Komaneschek, S M King, I A Hamley, J A Pople, A J Ryan, J P A Fairclough, N J Terrill

Real time SANS study of transient phases in polymer crystallisation (Ungar, Spells)

Enlided, Extended

Polymers often crystallise through transient phases, Important in processing of crystalline polymers (PE, PP, nylon)

ager Folded (MF) Form

SANS data show that initial transient structure is in form of NIF which subsequently transforms to FE.

Final structures can be E, F, or FE

Zeng et al, Phys Rev Lett 30 (2003) 155508

Structural rearrrangements in polymer / surfactant mixtures (Cosgrove et al)

Fig. 1: SANS data shown as Q²I(Q) against Q, for 15-arm PEO star (130000 g mol-1) in D₂Q, adding D-SDS.

◆,without SDS; ■,1500 ppm SDS; ▲,3000 ppm SDS; ●,
10000 ppm SDS. Solid lines are fits to the Benoit star form factor, with the corresponding radius of gyration and the number of arms shown in the inset.

Weakly interacting polymer chains / surfactants form 'pearl necklace' structures

Rather different behaviour seen when polymer is in form of star rather than linear chain

Binding of micelles to arms of star forces conformational transformation into two bundles of stretched arms

ISIS

Mapping polymer flow by SANS (McLeish et al)

Entangled polymer melt flow through extended contraction visualised by SANS

Comparison of birefringence (stress difference pattern), and theory

Bent et al, Science 301 (2003) 1691, Graham et al Macromol 39 (2006) 2700

Summary

Described basics of technique

Illustrated the scope of the technique with examples from Soft Matter, over a broad range that included,

Surfactant aggregates, emulsions, super-critical fluids, liquid crystalline phases, micro-gels, and polymers

Presented work from a number of collaborations and other groups, which include,

Richardson (Bristol), Ryan (Sheffield), Thomas (Oxford), Richards (Durham), Cosgrove (Bristol), Ungar (Sheffield), McLeish (Leeds), and Unilever

