embedded VISION SUMMIT 2018

At the Edge of Al at the Edge
Ultra efficient Al on low-power
devices

XNOR.AI

Mohammad Rastegari

mohammad@xnor.ai

May 2018

Problem

Al is confined to the cloud

far from the users at the edge

Goal

XNOR.AI bridges the growing divide between AI models dependent on the cloud and devices running at the edge

Deep learning models reliant on the cloud

Growing demand for edge devices

Opportunities

Intelligent cameras that preserve privacy, security and bandwidth at home

Information captured across all family members devices and fully synced

Intelligent cameras on phones and wearables

detection

Mobile phone camera used in car to detect objects on the road and increase safety

shopping

Opportunities

Intelligent cameras for Advanced Driver Assistance Systems (ADAS)

Smart backup camera Smart Mirrors improve visibility when changing lanes, backing out of a parking space, or driving with a vehicle full of cargo Stereoscopic Smart cameras to detect objects around vehicle and assist driver

Opportunities

Intelligent cameras provide real-time tracking, recognition & detection on device

What we do

Image Tagging

Image Enhancement

Tracking

Action Recognition

Object Detection

Scene Recognition

Segmentation

What we do

Object Detection: An Expensive Task in Al

Dash Cam

XNOR.NI

Security Camera

Fine Grain Categories

Hardware Platforms

XNOR.AI provides fast and efficient AI at the edge

Desktop CPU \$500

Mobile CPU Raspberry Pi-3 \$600 \$35

NonoPi-A64 \$25

Pine-64 \$15

Raspberry Pi-0 \$5

Low Power Al

State-of-the-Art AI: all the way to Pi Zero

XNOR \$5 deep learning machine... on Raspberry Pi Zero

Modular AI at Edge

Low Power Al

Ambarella S5L

- Very low power (~2x lower than Pi Zero)
- Standard AI model for object detection
 - 1 fps
- XNOR Al Model for object detection
 - 17 fps

How our technology works

Convolutional Neural Network

GPU!

Number of Operations:

- AlexNet →1.5B FLOPs
- VGG → 19.6B FLOPs

Inference time on CPU:

- AlexNet →~3 fps
- VGG \rightarrow ~0.25 fps

Lower Precision

Reducing Precision

- Saving Memory
- Saving Computation

{-1,+1}	{0,1}
MUL	XNOR
ADD, SUB	Bit-Count (popcount)

Why Binary?

- Binary Instructions
 - AND, OR, XOR, XNOR, PopCount (Bit-Count)

• Easy to Implement in hardware

Training Binary Weight Networks

Naive Solution:

- 1. Train a network with real value parameters
- 2. Binarize the weight filters

Train for binary weights:

- 1. Randomly initialize ${f W}$
- 2. For iter = 1 to N
- 3. Load a random input image X
- 4. $\mathbf{W}^{\mathrm{B}} = \mathrm{sign}(\mathbf{W})$
- 5. $\alpha = \frac{\|W\|_{\ell_1}}{n}$
- 6. Forward pass with $\alpha, \mathbf{W}^{\mathbf{B}}$
- 7. Compute loss function C
- 8. $\frac{\partial \mathbf{C}}{\partial \mathbf{W}} = \text{Backward pass with } \alpha, \mathbf{W}^{\mathbf{B}}$
- 9. Update $\mathbf{W} \ (\mathbf{W} = \mathbf{W} \frac{\partial \mathbf{C}}{\partial \mathbf{W}})$

- 1. Randomly initialize f W
- 2. For iter = 1 to N
- 3. Load a random input image X
- 4. $W^B = sign(W)$
- 5. $\alpha = \frac{\|W\|_{\ell_1}}{n}$
- 6. Forward pass with $lpha, \mathbf{W}^{\mathbf{B}}$
- 7. Compute loss function C
- 8. $\frac{\partial \mathbf{C}}{\partial \mathbf{W}} = \mathbf{Backward\ pass\ with\ } \alpha, \mathbf{W}^{\mathbf{B}}$
- 9. Update $\mathbf{W} \ (\mathbf{W} = \mathbf{W} \frac{\partial \mathbf{C}}{\partial \mathbf{W}})$

- 15x Smaller
- 10x Faster
- 200% power efficiency

XNOR.AI

1. Randomly initialize W
2. For iter = 1 to N
3. Load a random input image X
4. W^B = sign(W)
5. $\frac{d}{dx} = \frac{MW}{R}$ 6. Forward pass with $\frac{d}{dx}$, W^B
7. Compute loss function C
8. $\frac{dx}{dx}$ = Backward pass with $\frac{d}{dx}$, W^B

Update W (W = W - @)

Integrate with XNOR.AI

How to integrate with XNOR.AI?

Enterprise

CUSTOMER INPUT

XNOR-NET

XNOR CORE

HARDWARE PLATFORMS

CUSTOM INTEGRATIONS

XNOR.AI deep learning Deep learning platform for model creation and optimization

XNOR.AI CORE

A proprietary code base that automatically translates binarized deep learning models into highly optimized programs that run on the leading hardware platforms

Product integrations for devices Custom work done as part of our services agreement

Integrate with XNOR.AI

Developers:

Al Everywhere For Everyone

Integrate with XNOR.AI

Developers Platform

Application Domains

XNOR.AI technology powers multiple domains

Company Background

Al Everywhere

Founded:

2017 by <u>Professor Ali Farhadi</u> and <u>Dr. Mohammad Rastegari</u>

Intellectual Property:
Highly strategic patent portfolio covering
efficient Al at the edge

Press:

New York Times
Tech Crunch

Board members:

Ali Farhadi (CEO), Oren Etzioni (CEO of Allen Institute for AI), Matt McIlwain (Madrona Venture Group)

XNOR Innovations in AI:

XNOR-Net, Yolo, Yolo9000, LCNN, Neural Speed Reading, understanding actions (imSitu), question answering (BiDAF)

Awards:

Best paper at CVPR 2017 CVPR 2016 People's Choice Award

Thank you !!!

Learn more
Visit our table #809
www.xnor.ai

Mohammad Rastegari | Chief Technology Officer | mohammad@xnor.ai

