6 Distributions Derived from the Normal Distribution

Definition. The random variable X_1, \dots, X_n are called a random sample of size n form the population if X_1, \dots, X_n are all independent random variables and the marginal pdf (continuous case) or pmf (discrete case) of each X_i is f(x). In other words,

$$X_1, \cdots, X_n \stackrel{iid}{\sim} f(x)$$

Definition. Any function $g(X_1, \dots, X_n)$ of the sample is called a (sample) statistics.

Definition. The distribution of a statistic $T = g(X_1, \dots, X_n)$ is called the **sampling** distribution of T

Definition. Let X_1, \dots, X_n be a random sample from some distribution/population. Then sample mean and sample variance is

$$\overline{X} = \frac{1}{n} \sum_{i=1}^{n} X_i \text{ and } S^2 = \frac{1}{n-1} \sum_{i=1}^{n} (X_i - \overline{X})^2$$

The sampling distribution can be partially characterized by

$$E[\overline{X}] = E[\frac{1}{n} \sum_{i=1}^{n} X_i] = \frac{1}{n} \sum_{i=1}^{n} E[X_i] = \frac{1}{n} \cdot n\mu = \mu$$

$$Var(\overline{X}) = Var(\frac{1}{n}\sum_{i=1}^{n} X_i) = \frac{1}{n^2}\sum_{i=1}^{n} Var(X_i) = \frac{1}{n^2} \cdot n\sigma^2 = \frac{\sigma^2}{n}$$

Note that in practice, we can compute

Remark. If $X_i \sim \mathbb{N}(\mu, \sigma^2)$ then

$$\overline{X} \sim \mathcal{N}\left(\mu, \frac{\sigma^2}{n}\right)$$

If n is large, even if X_i are not normal, by CLT we have

$$\overline{X} \sim \mathcal{N}(\mu, \frac{\sigma^2}{n}) \iff P(\overline{X} \le t) \approx \Phi(\frac{t-\mu}{\sigma/\sqrt{n}})$$

Definition. chi-squred distribution If $Z \sim \mathcal{N}(0,1)$, the distribution of $U = Z^2$ is called the chi-squared distribution with 1 degree of freedom. Let $Z_1, \dots, Z_n \stackrel{iid}{\sim} \mathcal{N}(0,1)$, the distribution of statistic $X^2 = \sum_{i=1}^{n} Z_i^2$ is called **chi-squred distribution with** n **degrees of freedom** and is denoted by χ_n^2 Remark.

1.
$$\chi_1^2 = \Gamma(\frac{1}{2}, \frac{1}{2})$$
 and $\chi_n^2 = \Gamma(\frac{n}{2}, \frac{1}{2})$ and therefore $E[\chi_n^2] = n$ and $Var[\chi_n^2] = 2n$

- 2. MGF of $Y \sim \chi_n^2$ is $M_Y(t) = (1-2t)^{-n/2}$ (note mgf for gamma $(1-\theta t)^{-k}$)
- 3. $X \sim \chi_m^2$ and $Y \sim \chi_n^2$ then $X + Y \sim \chi_{m+n}^2$

Definition. t distribution If $Z \sim \mathcal{N}(0,1)$ and $U \sim \chi_n^2$ and Z and U are independent, then the distribution of $Z/\sqrt{U/n}$ is called the t distribution with n degrees of freedom.

Remark. 1. density function is symmetric, i.e. f(x) = f(-x).

2. As
$$n \to \infty$$
, $Z \stackrel{d}{\sim} \mathcal{N}(0,1)$

Definition. F distribution Let U and V be independent chi-squared random variable with m and n degrees of freedom. The distribution of

$$W = \frac{U/m}{V/n}$$

is called F distribution with m and n degrees of freedom and denoted by $F_{m,n}$

Remark. Let X_1, \dots, X_m and Y_1, \dots, Y_n be two independent random samples from a $\mathcal{N}(\mu, \sigma^2)$ distribution and let S_X^2 and S_Y^2 be their sample variances. Then

$$F = \frac{S_X^2}{S_Y^2} \sim F_{m-1, n-1}$$

Theorem. independence of \overline{X} and S^2 Let $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ and let \overline{X} and S^2 be sample mean and variance, then \overline{X} and S^2 are independent

Theorem. relationship between S^2 and chi-squared distribution Let $X_1, \dots, X_n \stackrel{iid}{\sim} \mathcal{N}(\mu, \sigma^2)$ and let $S^2 = \frac{1}{n-1} \sum_{i=1}^n (X_i - \overline{X})^2$ be sample variance, then

$$\frac{(n-1)S^2}{\sigma^2} \sim \chi_{n-1}^2$$

Corollary. sample standardization converges to t distribution Let \overline{X} and S^2 be given, then

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} \sim t_{n-1}$$

Proof.

$$\frac{\overline{X} - \mu}{S/\sqrt{n}} = \frac{\frac{\overline{X} - \mu}{\sigma/\sqrt{n}}}{\sqrt{S^2/\sigma^2}} = \frac{\mathcal{N}(0, 1)}{\sqrt{\chi_{n-1}^2/(n-1)}} \sim t_{n-1}$$

8 Parameter Estimation and Fitting of Probability Distribution

Definition. estimator of parameter Let X_1, \dots, X_n be a random sample from some distribution, and let θ be a parameter of that distribution. Any statistic $U = U(X_1, \dots, X_n)$ that is used to estimate θ is called an estimator of θ , $\hat{\theta}$

Definition. Method of Moments Estimator The kth moment of a distribution is defined as

$$\mu_k = E[X^k]$$

The kth sample moment is defined as

$$m_k = \frac{1}{n} \sum_{i=1}^n X_i^k$$

Suppose the goal is to estimate $\theta = (\theta_1, \dots, \theta_p)$ characterizing the distribution $f_X(x|\theta)$. The methods of moment estimator of is the solution to

$$\mu_i(\hat{\theta}) = m_i \ i = 0, \cdots, p$$

Remark. The idea is by using this system of equation, we express population parameters θ with parameters. Then replace known parameter by estimates $\hat{\theta}$

The following comes up in simplifying equality for second moments $m_2 - m_1 = \sigma^2$,

$$\frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \overline{X}^{2} = \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - 2\overline{X}^{2} + \overline{X}^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} X_{i}^{2} - \frac{2\overline{X}}{n} \sum_{i=1}^{n} X_{i} + \frac{1}{n} \sum_{i=1}^{n} \overline{X}^{2}$$

$$= \frac{1}{n} \sum_{i=1}^{n} (X_{i} - \overline{X})^{2} \qquad \text{(looks similar to } S^{2})$$

Definition. Consistent Estimator Let $X_1, \dots, X_n \sim f_{\theta}$ (a sample from a distribution characterized by θ). We say that $\hat{\theta_n} = \hat{\theta_n}(X_1, \dots, X_n)$ is a consistent estimator of θ if $\hat{\theta_n}$ converges in probability to θ as n approaches infinity; that is, for any $\epsilon > 0$

$$\lim_{n \to \infty} \mathbb{P}\left(\left| \hat{\theta_n} - \theta \right| > \epsilon \right) = 0$$

Remark. Remember how weak law of large number (LLN) implies that sample moments converges in probability to population moments, that is for any $\epsilon > 0$,

$$\lim_{n \to \infty} \mathbb{P}\left(\left|\frac{1}{n}\sum_{i=1}^{n} X_i - \mathbb{E}[X]\right| > \epsilon\right) = 0$$

Or equivalently, sample moment $m_1 = \overline{X}$ is a consistent estimator for population moment $\mu_1 = \mathbb{E}[X]$. Since function relating estimates to sample moments are continuous, the estimates will converge to parameters as the sample moments converge to population moments. In general for any k

$$m_k \stackrel{p}{\to} \mu_k$$

Theorem. Property for Convergence in Probability Let $\hat{\theta}_n \stackrel{p}{\to} \theta$ and $\hat{\eta}_n \stackrel{p}{\to} \eta$

- 1. $\hat{\theta}_n + \hat{\eta}_n \stackrel{p}{\to} \theta + \eta$
- 2. $\hat{\theta}_n \hat{\eta}_n \stackrel{p}{\to} \theta \eta$
- 3. $g(\hat{\theta}_n) \stackrel{p}{\to} g(\theta)$ for any continuous $g(\theta)$

Remark. Method of Moments Estimators are usually consistent. Take MME estimator for normal distribution.

$$\hat{\sigma}^2 = \frac{1}{n} \sum_{i=1}^n (X_i - \overline{X})^2 = m_2 - m_1^2$$

By Weak Law of Large Numbers, $m_1 = \overline{X} \stackrel{p}{\to} \mathbb{E}[X]$ and by its generalization $m_2 = \frac{1}{n} \sum_{i=1}^{n} X_i^2 \stackrel{p}{\to} \mathbb{E}[X^2]$, so by property for convergence in probability

$$\hat{\sigma}^2 = m_2 - m_1^2 \stackrel{p}{\to} \mathbb{E}[X^2] - (\mathbb{E}[X])^2 = \sigma^2$$

implies that both $\hat{\mu}$ and $\hat{\sigma^2}$ are consistent estimator for normal distribution. Note that sample variance is also consistent

$$S^2 = \frac{n}{n-1}\hat{\sigma^2} \xrightarrow{p} 1 \cdot \sigma^2 = \sigma^2$$

The Method of Maximum Likelihood

Definition. Likelihood Function Let X_1, \dots, X_n be continuous random variables with joint pdf $f(x_1, \dots, x_n | \theta)$, where θ is a parameter. For a given vector of observations (x_1, \dots, x_n) , the probability of observing the given data as a function of parameter θ , i.e. the likelihood function, is given by

$$\mathcal{L} = f(x_1, \cdots, x_n | \theta)$$

If X_1 are assumed to be i.i.d., their joint density is the product of marginal densities

$$\mathcal{L} = \prod_{i=1}^{n} f(X_i = x_i | \theta)$$

For convinience of maximizing \mathcal{L} we maximize the log likelihood

$$l(\theta) = \sum_{i=1}^{n} \log f(X_i = x_i | \theta)$$

Definition. The Maximum Likelihood Estimator (MLE) of θ is

$$\hat{\theta}_{MLE} = \arg\max_{\theta} \mathcal{L}(\theta)$$

Remark. We can also maximize log likelihood $l(\theta)$. For simplificity sake, we compute θ as critical points which satisfies the condition that first order partial $l'(\theta) = 0$ in order to find the maximum. We then use second derivative test to verify it is indeed the maximum point, i.e. $l''(\theta) < 0$ One thing to note that the final $\hat{\theta}$ should not depend on population parameter θ but be expressed entirely of sample statistics

Definition. The Newton-Raphson Method finds successively better approximations to the roots (or zeroes) of a real-valued function x : f(x) = 0. The following process is repeated until a sufficiently accurate value x_{n+1} is reached

$$x_{n+1} = x_n - \frac{f(x_n)}{f'(x_n)}$$

where x_0 is the initial guess for the root of function

Remark. Sometimes there is no closed form solution (i.e. maximum value) to $\frac{\partial l}{\partial \theta} = 0$. We use Newton-Raphson method to find $\hat{\theta}$ that satisfies the function. We iterate over θ to convergence

$$\hat{\theta}_{new} = \hat{\theta}_{old} - \frac{l'(\hat{\theta}_{old})}{l''(\hat{\theta}_{old})}$$