Politecnico di Milano Ingegneria Fisica

Analisi Matematica II

Programma d'esame a.a. 2019/2020

Funzioni di una variabile a valori vettoriali e curve.

Limiti e continuità di funzioni a valori vettoriali. Curve in \mathbb{R}^3 , parametrizzazione e sostegno; curve semplici, chiuse, piane. Curve di Jordan. Curve in forma polare. Curve regolari e regolari a tratti. Vettore tangente e versore tangente. Cambi di parametro: curve equivalenti e opposte. Lunghezza di una curva regolare. Ascissa curvilinea e integrali curvilinei (prima specie). Normale principale, curvatura e raggio di curvatura. Vettore accelerazione: componenti tangenziale e centripeta (*). Formule di calcolo per la curvatura (*).

Calcolo differenziale per funzioni di più variabili.

Funzioni di più variabili: insieme di definizione, grafico, insiemi di livello. Elementi di topologia in \mathbb{R}^n : intorni sferici, punti interni, esterni, di frontiera, di accumulazione. Insiemi aperti, chiusi, limitati, connessi. Limiti di funzioni di più variabili: definizione e proprietà; verifiche di esistenza e non esistenza del limite (funzioni di 2 variabili). Continuità di una funzione in un punto e in un insieme; proprietà delle funzioni continue. Teorema di Weierstrass. Teorema degli zeri (*).

Derivate parziali. Vettore gradiente. Concetto di differenziabilità. Piano tangente. Continuità delle funzioni differenziabili (*). Condizioni sufficienti di differenziabilità. Funzioni di classe \mathcal{C}^1 . Derivate direzionali e formula del gradiente (*). Direzione di massima crescita di una funzione in un punto. Derivazione delle funzioni composte. Ortogonalità del gradiente alle curve di livello (*). Derivate e differenziali di ordine superiore, matrice Hessiana, formula di Taylor (2° ordine). Forme quadratiche, matrice associata e classificazione; test degli autovalori. Punti stazionari ed estremi liberi di funzioni di più variabili. Teorema di Fermat. Test delle derivate seconde (*).

Funzioni implicite e teorema del Dini (caso scalare in 2 e 3 variabili). Calcolo delle derivate della funzione implicita. Retta tangente (piano tangente) al grafico di funzioni implicite. Punti regolari di curve definite implicitamente da equazioni. Estremi vincolati, moltiplicatori di Lagrange (*). Estremi globali di funzioni di più variabili.

Funzioni a valori vettoriali: differenziabilità e matrice Jacobiana. Derivazione delle funzioni composte. Superfici regolari in forma parametrica, piano tangente e vettore normale. Trasformazioni di coordinate; coordinate polari, cilindriche, sferiche. Teorema di inversione locale.

Equazioni differenziali.

Definizioni e terminologia. Soluzione di un'equazione differenziale. Integrale generale. Problema di Cauchy. Teorema di esistenza e unicità locale della soluzione del problema di Cauchy per equazioni del 1° ordine in forma normale. Intervallo massimale di esistenza di una soluzione. Teorema di esistenza e unicità in grande. Metodi elementari di integrazione di alcune equazioni del 1° ordine: equazioni a variabili separabili, equazioni lineari, equazioni omogenee.

Politecnico di Milano Ingegneria Fisica

Equazioni lineari del 2° ordine. Problema di Cauchy. Teorema di esistenza e unicità per le equazioni in forma normale. Spazio vettoriale delle soluzioni delle equazioni omogenee (*); struttura dell'integrale generale delle equazioni complete (*). Metodo di somiglianza per la ricerca di soluzioni particolari delle equazioni complete. Equazioni a coefficienti costanti: equazione caratteristica e integrale generale delle equazioni omogenee e delle equazioni complete. Equazioni di Eulero.

Sistemi del 1° ordine in forma normale: teorema di esistenza e unicità locale e in grande. Riduzione di equazioni del secondo ordine a sistemi del 1° ordine. Sistemi lineari. Sistemi lineari di 2 equazioni a coefficienti costanti. Sistemi omogenei a coefficienti costanti: risoluzione con il metodo di eliminazione. Equazione caratteristica e autovalori della matrice dei coefficienti. Sistemi completi.

Integrali curvilinei di forme differenziali.

Lavoro di un campo vettoriale lungo una curva e integrali curvilinei di forme differenziali. Integrali lungo curve chiuse e circolazione di un campo vettoriale. Campi conservativi (forme esatte) e funzione potenziale. Proprietà dei campi conservativi: indipendenza dal cammino di integrazione e circolazione nulla (*). Rotore di un campo vettoriale e condizione necessaria per un campo conservativo (*). Campi irrotazionali in insiemi semplicemente connessi. Determinazione del potenziale di un campo conservativo.

Integrali multipli.

Integrali doppi su rettangoli, definizione e calcolo, integrali iterati. Integrali su insiemi limitati. Proprietà degli integrali: linearità, monotonia, additività rispetto al dominio di integrazione; teorema della media; integrali di funzioni positive e calcolo di volumi. Insiemi misurabili e misura di un insieme (secondo Peano-Jordan). Domini semplici e regolari. Integrali su domini semplici, formule di riduzione. Cambiamento di variabili nell'integrazione. Determinante Jacobiano di una trasformazione e suo significato geometrico. Integrali doppi in coordinate polari. Applicazioni fisiche e geometriche degli integrali doppi.

Integrali di volume: integrazione per fili e per strati. Integrali in coordinate sferiche e cilindriche. Applicazioni al calcolo di volumi, baricentri e momenti di inerzia.

Superfici e integrali di superfice.

Superfici in forma parametrica, superfici regolari e regolari a pezzi. Area di una superficie regolare e integrali di superficie. Versore normale, superfici orientabili; bordo di una superficie orientata percorso in senso positivo. Flusso di un campo vettoriale attraverso una superficie orientata.

I teoremi di Gauss-Green, della divergenza e del rotore

Formula di Gauss-Green nel piano (*); domini ammissibili per il teorema di Gauss-Green. Applicazione al calcolo delle aree e degli integrali doppi. Invarianza della circolazione di un campo (piano) irrotazionale per deformazioni della traiettoria.

Teorema della divergenza (di Gauss) (*); domini ammissibili per il teorema della divergenza.

Significato della divergenza di un campo vettoriale. Applicazione al calcolo di flussi.

Politecnico di Milano Ingegneria Fisica

Legge di Gauss. Equazione di continuità (*). Teorema del rotore (di Stokes). Significato del rotore di un campo vettoriale. Legge di Ampère.

Serie di potenze e di Fourier

Successioni e serie di funzioni, nozione di convergenza semplice (puntuale) e uniforme. Convergenza totale di una serie di funzioni. Derivazione e integrazione termine a termine di una serie di funzioni.

Serie di potenze, raggio di convergenza e intervallo di convergenza. Calcolo del raggio di convergenza: criterio della radice e del rapporto. Proprietà delle serie di potenze all'interno dell'intervallo di convergenza. Convergenza agli estremi dell'intervallo. Derivazione e integrazione termine a termine delle serie di potenze. Serie di Taylor e funzioni analitiche.

Polinomi trigonometrici e serie trigonometriche. Serie di Fourier associata a una funzione 2π -periodica; calcolo dei coefficienti. Periodi diversi da 2π . Funzioni periodiche regolari a tratti e convergenza puntuale della serie di Fourier associata. Scarto quadratico e approssimazione in media quadratica di una funzione con la sua serie di Fourier. Disuguaglianza di Bessel e identità di Parseval.

Degli argomenti contrassegnati con (*) può essere richiesta la dimostrazione in sede di esame orale.