定义 1.3.1 设 a_1, \dots, a_n 是 n $(n \ge 2)$ 个整数. 若整数 d 是它们中每一个数的因数,则 d 就叫做 a_1, \dots, a_n 的一个公因数.

d 是 a_1, \dots, a_n 的一个公因数的数学表达式为

$$d \mid a_1, \ldots, d \mid a_n$$
.

特别地, 当 $(a_1, ..., a_n) = 1$ 时, 称 $a_1, ..., a_n$ 互素或互质.

注 1 d > 0 是 a_1, \dots, a_n 的最大公因数的数学表达式可叙述为

- (i) $d \mid a_1, \dots, d \mid a_n$.
- (ii) 若 $e \mid a_1, \dots, e \mid a_n, \text{则 } e \mid d$.

详见定理 1.3.9 中的说明.

注 a,b 的最大公因数 d=(a,b) 是集合 \iff 若 d 是 a,b 的最大公园数,则 d 是 a-b $\{s\cdot a+t\cdot b\mid s,\,t\in \mathbf{Z}\}$ 残性现合中的最小正整数

中的最小正整数. 事实上, 由注 1(i) 及定理 1.1.3 可说明上述集合中的所有元素都是 d 的

例 1.3.6 设 p 是一个素数, a 为整数. 如果 p $\{a, 则 a 与 p 互素.$

证 设 (a,p)=d. 则有 $d\mid p$ 及 $d\mid a$. 因为 p 是素数, 所以由 $d\mid p$, 有 d=1 或 d=p. 对于 d=p, 由 $d\mid a$, 有 $p\mid a$, 这与假设 $p\mid a$ 矛盾, 因此, d=1, 即 (a,p)=1. 结论成立.

定理 1.3.3 设
$$a$$
, b , c 是三个不全为零的整数. 如果
$$a=q\cdot b+c \tag{1.10}$$

其中 q 是整数,则 (a,b) = (b,c).

证 设 d = (a, b), d' = (b, c), 则 d | a, d | b. 由定理 1.1.3, 得

$$d \mid a + (-q) \cdot b = c,$$

因而, $d \in b$, c 的公因数. 从而, $d \leq d'$.

同理, 由 $d' \mid b$, $d' \mid c$, 得到

$$d'\mid q\cdot b+c=a,$$

以及 d' 是 a, b 的公因数, $d' \leq d$.

因此, d = d'. 于是, 定理 1.3.3 成立.

证毕.

定理 1 3.4 设 a, b 是任意两个正整数, 则 $(a,b)=r_n$, 其中 r_n 是广义欧几里得除法式 (1.11) 中最后一个非零余数, 并且, 当 a>b 时, 计算 (a,b) 的时间为 $O(\log a \log^2 b)$.

证 根据广义欧几里得除法式 (1.11)、定理 1.3.3 以及定理 1.3.2, 有

$$\begin{array}{llll} r_{-2} & = & q_0 \cdot r_{-1} & + & r_0, & (a,b) = (r_{-2},r_{-1}) = (r_{-1},r_0), \\ r_{-1} & = & q_1 \cdot r_0 & + & r_1, & (r_{-1},r_0) = (r_0,r_1), \\ r_0 & = & q_2 \cdot r_1 & + & r_2, & (r_0,r_1) = (r_1,r_2), \\ & & \vdots & & & \vdots \\ r_{n-3} & = & q_{n-1} \cdot r_{n-2} & + & r_{n-1}, & (r_{n-3},r_{n-2}) = (r_{n-2},r_{n-1}), \\ r_{n-2} & = & q_n \cdot r_{n-1} & + & r_n, & (r_{n-2},r_{n-1}) = (r_{n-1},r_n), \\ r_{n-1} & = & q_{n+1} \cdot r_n & + & r_{n+1}, & (r_{n-1},r_n) = (r_n,r_{n+1}) = (r_n,0) = r_n. \end{array}$$

因此, 由性质 1.3.1, 计算 (a,b) 的时间为

$$O(\log r_{-2}\log r_{-1} + \dots + \log r_{n-1}\log r_n) = O(n\log a\log b) = O(\log a\log^2 b)$$

定理 1.3.4 成立.

例 1.3.12 设 a = -1859, b = 1573, 计算 (a, b). 解 由定理 1.3.1, (-1859, 1573) = (1859, 1573). 运用广义欧几里得除法,有

$$1859 = 1 \cdot 1573 + 286,$$

$$1573 = 5 \cdot 286 + 143,$$

$$286 = 2 \cdot 143 + 0.$$

根据定理 1.3.4, 得 (-1859, 1573) = 143.

定理 1.3.8 整数 a, b 互素的充分必要条件是存在整数 s, t 使得

sa + tb = 1.

证 根据定理 1.3.7 可立即得到命题的必要性.

反过来, 设 d = (a, b), 则有 $d \mid a, d \mid b$. 根据假设, 存在整数 s, t 使得

$$sa + tb = 1$$
.

则有

$$d \mid sa + tb = 1.$$

因此, d=1, 即整数 a, b 互素.

例 1.3.21 设 4 个整数 a, b, c, d 满足关系式

$$\begin{vmatrix} ad - bc = 1. & \begin{vmatrix} a - b \\ c - d \end{vmatrix} = 1$$

 \mathbb{N} (a,b) = 1, (a,c) = 1, (d,b) = 1, (d,c) = 1.

定理 1.3.9 / 设 a, b 是任意两个不全为零的整数, d 是正整数, 则 d 是整数 a, b 的最大 公因数的充要条件是:

- (i) d | a, d | b;
- (ii) 若 e | a, e | b, 则 e | d.

证 必要性. 若 d 是整数 a, b 的最大公因数,则显然有 (i) 成立.

再由广义欧几里得除法 (定理 1.3.7) 知, 存在整数 s, t 使得

$$sa + tb = d$$
.

因此, 当 e | a, e | b 时, 有

$$e \mid sa + tb = d$$
.

故(ii)成立.

反过来, 假设(i)和(ii)成立, 那么

- (i)说明 d 是整数 a, b 的公因数;
- (ii) 说明 d 是整数 a, b 的公因数中的最大数, 因为 $e \mid d$ 时, 有 $|e| \leq d$.

因此, d 是整数 a, b 的最大公因数.

证毕.

证毕.

注 定理 1.3.9(ii) 是说:整数的最大公因数是所有公因数的倍数.

其次, 讨论互素整数的构造 $\left(\frac{a}{(a,b)},\frac{b}{(a,b)}\right)=1.$ 定理 1.3.10 设 a,b 是任意两个不全为零的整数,

- (i) 若 m 是任一正整数,则 $(m \cdot a, m \cdot b) = m \cdot (a, b)$.
- (ii) 若非零整数 d 满足 $d \mid a, d \mid b, 则$ $\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{(a, b)}{|d|}$. 特別地,

$$\left(\frac{a}{(a,b)}, \frac{b}{(a,b)}\right) = 1.$$

证 设 $d = (a,b), d' = (m \cdot a, m \cdot b).$ 由广义欧几里得除法 (定理 1.3.7), 存在整数 s, t使得

$$sa + tb = d$$
.

两端同乘以m,得到

$$s(m \cdot a) + t(m \cdot b) = m \cdot d.$$

因此 $d' \mid m \cdot d$.

又显然有 $m \cdot d \mid m \cdot a, m \cdot d \mid m \cdot b$. 根据定理 1.3.9 (ii), 有 $m \cdot d \mid d'$. 故 $d' = m \cdot d$, 即 (i) 成立.

再根据 (i), 当 $d \mid a, d \mid b$ 时, 有

$$\begin{array}{rcl} (a,\ b) & = & \left(|d| \cdot \frac{a}{|d|},\ |d| \cdot \frac{b}{|d|} \right) \\ \\ & = & |d| \cdot \left(\frac{a}{|d|},\ \frac{b}{|d|} \right) \\ \\ & = & |d| \cdot \left(\frac{a}{d},\ \frac{b}{d} \right). \end{array}$$

因此, $\left(\frac{a}{d}, \frac{b}{d}\right) = \frac{(a, b)}{|d|}$. 特别地, 取 d = (a, b), 有

$$\left(\frac{a}{(a,b)}, \ \frac{b}{(a,b)}\right) = 1.$$

故 (ii) 成立.

证毕.

例 1.3.22 设 $a = 11 \cdot 200306$, $b = 23 \cdot 200306$, 计算 (a, b).

解 因为

$$(11, 23) = (11, 23 - 11 \cdot 2) = (11, 1) = 1,$$

所以

$$(a, b) = (11 \cdot 200306, 23 \cdot 200306) = 200306.$$

引理 1.1.1 设 a, b是两个正整数. 则 2^a-1 被 2^b-1 除的最小非负余数是 2^r-1 , 其中 r 是 a 被 b 除的最小非负余数. $2^a-1=(2^b-1)q$, $+(2^r-1)$, a=bq+r

证 当 a < b 时, r = a, 结论显然成立. 当 $a \ge b$. 对 a, b 用欧几里得除法, 存在不完全 商 q 及最小非负余数 r 使得

$$a = q \cdot b + r$$
, $0 \le r \le b$,

进而,

$$2^{a} - 1 = 2^{r}((2^{b})^{q} - 1) + 2^{r} - 1 = q_{1}(2^{b} - 1) + 2^{r} - 1,$$

其中 $q_1 = 2^r((2^b)^{q-1} + \cdots + 2^b + 1)$ 为整数, 结论成立.

证毕.

证毕.

引理 1.3.2 设 a, b 是两个正整数,则 $2^a - 1$ 和 $2^b - 1$ 的最大公因数是 $2^{(a,b)} - 1$.

运用广义欧几里得除法及引理 1.3.1 立即得到结论.

定理 1,3.19 设 a, b 是两个正整数,则正整数 $2^a - 1$ 和 $2^b - 1$ 互素的充要条件是 a 和

b 互素.

证 因为

$$(2^a - 1, 2^b - 1) = 2^{(a,b)} - 1,$$

而 $2^{(a,b)} - 1 = 1$ 的充要条件是 (a,b) = 1. 因此, 定理成立.

证毕.

定理(1.4) 设 a, b, c 是三个整数,且 $c \neq 0$. 如果 $c \mid ab, (a, c) = 1$,则 $c \mid b$. 证一 根据假设条件和定理 1.3.11 有

$$c \mid (a b, c) = (b, c).$$

从而 $c \mid b$.

证二 (直接证明) 因为 (a,c) = 1. 根据定理 1.3.8, 存在整数 s,t 使得

$$s \cdot a + t \cdot c = 1.$$

两端同乘以 b, 得到

$$s \cdot (ab) + (tb) \cdot c = b.$$

根据定理 1.1.3, 由 $c \mid ab$, $c \mid c$ 可得

$$c \mid s \cdot (ab) + (tb) \cdot c = b$$

即 $c \mid b$.

证毕.

例 1.4.1 因为 $15 \mid 2.75$, 又 (2,15) = 1, 所以 $15 \mid 75$.

定理 1.4.4 设 a, b 是两个互素正整数,则 (i) 若 $a \mid D, b \mid D,$ 则 $a \cdot b \mid D;$

- (ii) $[a, b] = a \cdot b$.
- (i) 设 $b \mid D$, 则存在整数 q, 使得 $D = q \cdot b$. 又 $a \mid D$, 即 $a \mid q \cdot b$, 以及 (a,b) = 1, 根 据定理 1.3.11 的推论, 得到 $a \mid q$. 因此存在整数 q', 使得 $q = q' \cdot a$, 进而, $D = q' \cdot (a \cdot b)$. 故 a · b | D. (i)得证.
- (ii) 显然 $a \cdot b \in a$, b 的公倍数. 又由(i)知, $a \cdot b \in a$, b 的公倍数中的最小正整数, 故 $[a,b] = a \cdot b$.
- (i) 的直接证明 由 $a \mid D$, $b \mid D$, 知存在 q_1, q_2 使得 $D = q_1 \cdot a$, $D = q_2 \cdot b$. 从而, $b \cdot D = q_1 \cdot (a \cdot b), \quad a \cdot D = q_2 \cdot (a \cdot b).$ 因为 (a,b) = 1, 所以由广义欧几里得除法, 可找到整 数 s,t,使得 $s \cdot a + t \cdot b = (a,b) = 1$,进而 $D = (s \cdot a + t \cdot b)D = s \cdot (a \cdot D) + t \cdot (b \cdot D) = b \cdot (a \cdot b)$ $s \cdot q_2 \cdot (a \cdot b) + t \cdot q_1 \cdot (a \cdot b) = (s \cdot q_2 + t \cdot q_1)(a \cdot b), \ \ \ \ \ \ \ a \cdot b \mid D.$

例 1.4.4 设 p, q 是两个不同的素数, 则 $[p,q] = p \cdot q$.

定理 1.4.5 设 a, b 是两个正整数.则 (i) 若 $a \mid D$, $b \mid D$,则 $[a,b] \mid D$;

- (ii) $[a,b] = \frac{a \cdot b}{(a,b)}$

证 令 d = (a, b). 根据定理 1.3.10, 有

$$\left(\frac{a}{d}, \frac{b}{d}\right) = 1.$$

又根据定理 1.4.4,

$$\left[rac{a}{d},rac{b}{d}
ight]=rac{a}{d}\cdotrac{b}{d},$$

进而 $[a,b] = \frac{a \cdot b}{d}$, 即 (ii) 成立.

再由

$$\frac{a}{d} \mid \frac{D}{d}, \qquad \frac{b}{d} \mid \frac{D}{d},$$

得到

$$\frac{a}{d} \cdot \frac{b}{d} \mid \frac{D}{d}$$
.

从而 $\frac{a \cdot b}{d}$ | D, 即 (i) 成立.

证毕.

定理 1.6.1 算术基本定理) 任一整数 n > 1 都可以表示成素数的乘积, 且在不考虑乘积顺序的情况下, 该表达式是唯一的, 即

$$n = p_1 \cdots p_s, \qquad p_1 \leqslant \cdots \leqslant p_s, \tag{1.21}$$

其中 pi 是素数, 并且若

$$n = q_1 \cdots q_t, \qquad q_1 \leqslant \cdots \leqslant q_t,$$

其中 q_j 是素数, 则 s = t, $p_i = q_i$, $1 \le i \le s$.

例 1.6.3 设正整数 n 有因数分解式

$$n = p_1^{\alpha_1} \cdots p_s^{\alpha_s}, \quad \alpha_i > 0, \ i = 1, \cdots, s.$$

则 n 的因数个数

$$d(n) = (1 + \alpha_1) \cdots (1 + \alpha_s).$$

例 1.6.6 伐 n 是合数, p 是 n 的素因数. 设 $p^{\alpha} \mid \mid n$ (即 $p^{\alpha} \mid n$, 但 $p^{\alpha+1} \nmid n$), 则 $p^{\alpha} \nmid \binom{n}{p}$, 其中 $\binom{n}{p} = \frac{n(n-1)\cdots(n-p+1)}{p!}$. $= C \stackrel{\mathsf{P}}{\mathsf{n}}$

证 因为 $p^{\alpha} \parallel n$, 设 $n = n' \cdot p^{\alpha}$, (n', p) = 1, 则对于 $1 \leq k \leq p - 1$, 有 (n - k, p) = 1. 否则, $p \mid n - (n - k) = k$, 矛盾. 根据定理 1.3.12, 有 $((n - 1) \cdots (n - p + 1), p) = 1$. 从而,

$$\binom{n}{p} = \frac{n}{p} \frac{(n-1)\cdots(n-p+1)}{(p-1)!} = n' \cdot \frac{(n-1)\cdots(n-p+1)}{(p-1)!} \cdot p^{\alpha-1}.$$

但

$$\left(n'\cdot\frac{(n-1)\cdots(n-p+1)}{(p-1)!},\ p\right)=1,$$

故 p^{α} $\bigwedge \binom{n}{p}$. 证毕.

注 例 1.6.6 将应用于 AKS 的证明.

定义 2.1.1 给定一个正整数 m. 两个整数 a, b 叫做 模 m 同余 a-b 被 m 整除, 或 $m \mid a-b$, 就记作 $a \equiv b \pmod{m}$. 否则, 叫做模 m 不同余, 记作 $a \not\equiv b \pmod{m}$.

定理 2.12 设 m 是一个正整数,则模 m 同余是等价关系,即

- (1) (自反性 对任一整数 a, 有 $a \equiv a \pmod{m}$.
- (2) (对称性 若 $a \equiv b \pmod{m}$, 则 $b \equiv a \pmod{m}$.
- (3) (传递性 若 $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$, 则 $a \equiv c \pmod{m}$.

证 可运用定理 2.1.1 来给出证明.

(1) (自反性) 对任一整数 $a, a = a + 0 \cdot m$, 所以

$$a \equiv a \pmod{m}$$
.

(2) (对称性) 若 $a \equiv b \pmod{m}$, 则存在整数 k 使得

$$a = b + q \cdot m$$
,

从而有

$$b = a + (-q) \cdot m.$$

因此,

$$b \equiv a \pmod{m}$$
.

(3) (传递性) 若 $a \equiv b \pmod{m}$, $b \equiv c \pmod{m}$, 则分别存在整数 q_1, q_2 使得

$$a = b + q_1 \cdot m, \qquad b = c + q_2 \cdot m,$$

从而

$$a = c + (q_1 + q_2) \cdot m.$$

因为 q_1+q_2 是整数, 所以

$$a \equiv c \pmod{m}$$
.

证毕.

例 2.1.3 因为 $39 \equiv 32 \pmod{7}$, $32 \equiv 25 \pmod{7}$, 所以

同时有

$$39 \equiv 39 \pmod{7}$$
, $25 \equiv 25 \pmod{7}$, 自反性

以及

$$32 \equiv 39 \pmod{7}$$
, $25 \equiv 32 \pmod{7}$. 对称性

定理 2.1.4 设 m 是一个正整数, 设 a_1 , a_2 , b_1 , b_2 是 4 个整数. 如果 $a_1 \equiv b_1 \pmod{m}$, $a_2 \equiv b_2 \pmod{m}$,

则

(i)
$$a_1 + a_2 \equiv b_1 + b_2 \pmod{m}$$
. (2.3)

$$(ii) \quad a_1 \cdot a_2 \equiv b_1 \cdot b_2 \pmod{m}. \tag{2.4}$$

证 依题设, 根据定理 2.1.1, 分别存在整数 q_1 , q_2 使得

$$a_1 = b_1 + q_1 \cdot m$$
, $a_2 = b_2 + q_2 \cdot m$,

从而

$$a_1 + a_2 = b_1 + b_2 + (q_1 + q_2) \cdot m,$$

$$a_1 \cdot a_2 = b_1 \cdot b_2 + (q_1 \cdot m) \cdot b_2 + b_1 \cdot (q_2 \cdot m) + (q_1 \cdot m)(q_2 \cdot m)$$

$$= b_1 \cdot b_2 + (q_1 + q_2 + q_1 \cdot q_2 \cdot m) \cdot m.$$
(交換性)

因为 $q_1 + q_2$, $q_1 + q_2 + q_1 \cdot q_2 \cdot m$ 都是整数, 所以根据定理 2.1.1, 可知式 (2.3) 和式 (2.4) 成立, 即定理成立. 证毕.

$$2^1 \equiv 2 \pmod{7}, \quad 2^2 \equiv 4 \pmod{7}, \quad 2^3 = 8 \equiv 1 \pmod{7},$$

又 $2003 = 667 \cdot 3 + 2$, 所以

$$2^{2003} = (2^3)^{667} \cdot 2^2 \equiv 1 \cdot 4 \equiv 4 \pmod{7}.$$

故第 22003 天是星期二.

定理
$$2.1.6$$
 设整数 n 有十进制表示式
$$n=a_k10^k+a_{k-1}10^{k-1}+\cdots+a_110+a_0,\quad 0\leqslant a_i<10.$$

则(i)3n的充分必要条件是

$$3 \mid a_k + \dots + a_0. \tag{2.6}$$

(ii) 9 | n 的充分必要条件是

$$9 \mid a_k + \dots + a_0.$$
 (2.7)
定理 $2.1.7$ 设整数 n 有一千进制表示式:
$$n = a_k 1000^k + \dots + a_1 1000 + a_0, \qquad 0 \leqslant a_i < 1000.$$

则 7(或 11, 或 13) 整除 n 的充分必要条件是 7(或 11, 或 13) 能整除整数

$$(a_0 + a_2 + \cdots) - (a_1 + a_3 + \cdots).$$

M 2.1.16 设 p, q 是不同的素数. 如果整数 a, b 满足

$$a \equiv b \pmod{p}, \quad a \equiv b \pmod{q},$$

则有

$$a \equiv b \pmod{p \cdot q}$$
.

证 设 $a \equiv b \pmod{p}$, $a \equiv b \pmod{p}$, 则

$$p \mid a - b$$
, $q \mid a - b$.

因为 p, q 是不同的素数, 所以根据定理 1.4.4, 有

$$p \cdot q \mid a - b$$
.

即

$$a \equiv b \pmod{p \cdot q}$$
.

证毕.

✓ 例 2.1.17 设 m, n, a 都是正整数. 如果

$$n^a \not\equiv 0, 1 \pmod{m},\tag{2.9}$$

则存在n的一个素因数p使得

$$p^a \not\equiv 0, 1 \pmod{m}. \tag{2.10}$$

证 反证法. 如果存在 n 的一个素因数 p, 使得 $p^a \equiv 0 \pmod{m}$, 则 $m \mid p^a$. 但 $p^a \mid n^a$, 故 $m \mid n^a$, 即 $n^a \equiv 0 \pmod{m}$. 这与假设式 (2.9) 矛盾.

如果对 n 的每个素因数 p,都有

$$p^a \equiv 1 \pmod{m}$$
.

根据定理 2.1.4 (ii), 有

$$n^a \equiv 1 \pmod{m}$$
.

这也与假设式 (2.9) 矛盾. 因此, 结论式 (2.10) 成立.

证毕.

设 m 是一个正整数. 对任意整数 a, 令

$$C_a = \{c \mid c \in \mathbf{Z}, \ c \equiv a \pmod{m}\}. \tag{2.11}$$

 C_a 是非空集合, 因为 $a \in C_a$.

定理 2.2.1 设 m 是一个正整数,则

- (i)任一整数必包含在一个 C_r 中, $0 \le r \le m-1$;
- (ii) $C_a = C_b$ 的充分必要条件是

$$a \equiv b \pmod{m}. \tag{2.12}$$

(iii) C_a 与 C_b 的交集为空集的充分必要条件是

$$a \not\equiv b \pmod{m}. \tag{2.13}$$

定义 2.3.1 设 m 是一个正整数,则 m 个整数 $1, \dots, m-1, m$ 中与 m 互素的整数的个数,记作 $\phi(m)$,通常叫做欧拉 (Euler) 函数.

例 2.3.1 设 m=10. 则 10 个整数 1, 2, 3, 4, 5, 6, 7, 8, 9, 10 中与 10 互素的整数为 1, 3, 7, 9, 所以 $\varphi(10)=4$.

定理 2.3.1 对于素数幂 $m = p^{\alpha}$,有

$$\varphi(m) = p^{\alpha} - p^{\alpha - 1} = m \prod_{p \mid m} \left(1 - \frac{1}{p}\right). \tag{2.26}$$

例 2.3.3 设 $m=7^2$, 则 $\varphi(7^2)=7^2\Big(1-\frac{1}{7}\Big)=42$.

定理 2.3.7 设 m 是一个正整数,a 是满足 (a,m)=1 的整数,则存在唯一的整数 $a',1\leqslant a' < m$ 使得

证一 (存在性证明) 因为 (a,m) = 1, 根据定理 2.3.4, k 遍历模 m 的一个最小简化剩余 系时, $a \cdot k$ 也遍历模 m 的一个简化剩余系. 因此, 存在整数 k = a', $1 \le a' < m$ 使得 $a \cdot a'$ 属于 1 的剩余类, 即式 (2.31) 成立.

(唯一性证明) 若有整数 a', a'' $1 \le a'$, a'' < m 使得

$$a \cdot a' \equiv 1, \quad a \cdot a'' \equiv 1 \pmod{m},$$

则 $a(a'-a'')\equiv 0\ (\mathrm{mod}\ m)$,从而, $a'-a''\equiv 0\ (\mathrm{mod}\ m)$. 故 a'=a''. 证毕.

因为在实际运用中,常常需要具体地求出整数,所以运用广义欧几里得除法给出定理 2.3.5 的构造性证明.

证二 (构造性证明) 因为 (a, m) = 1, 根据定理 1.3.7, 运用广义欧几里得除法, 可找到整数 s, t 使得

$$s \cdot a + t \cdot m = (a, m) = 1.$$

因此, 整数 $a' = s \pmod{m}$ 满足式 (2.31).

证毕.

定理 2.3.7 段 m, n 是互素的两个正整数,则

$$\varphi(m \cdot n) = \varphi(m) \cdot \varphi(n). \tag{2.33}$$

证 根据定理 2.3.6, 当 k_1 遍历模 m 的简化剩余系, 共 $\varphi(m)$ 个整数, 以及 k_2 遍历模 n 的简化剩余系, 共 $\varphi(n)$ 个整数时, $n \cdot k_1 + m \cdot k_2$ 遍历模 $m \cdot n$ 的简化剩余系, 其整数个数为 $\varphi(m) \cdot \varphi(n)$. 但模 $m \cdot n$ 的简化剩余系的元素个数又为 $\varphi(m \cdot n)$, 故式 (2.33) 成立. 证毕.

例 2.3.15
$$\varphi(77) = \varphi(7)\varphi(11) = 6 \cdot 10 = 60$$
.

例 2.3.16 $\varphi(30) = \varphi(2)\varphi(3)\varphi(5) = 1 \cdot 2 \cdot 4 = 8.$

下面再给出欧拉函数 $\varphi(m)$ 的计算.

定理 2.3.8 设正整数 m 的标准因数分解式为

$$m=\prod_{p|m}p^{lpha}=p_1^{lpha_1}\cdots p_k^{lpha_s},$$

则

$$\varphi(m) = m \prod_{\substack{n|m}} \left(1 - \frac{1}{p}\right) = m\left(1 - \frac{1}{p_1}\right) \cdots \left(1 - \frac{1}{p_k}\right). \tag{2.34}$$

由欧拉函数的可乘性 (定理 2.3.7 的式 (2.33)), 以及定理 2.3.1 的式 (2.26), 有

$$\begin{array}{lcl} \varphi(m) & = & \displaystyle \prod_{p \mid m} \varphi(p^{\alpha}) \ = & \displaystyle \prod_{p \mid m} (p^{\alpha} - p^{\alpha - 1}) \\ & = & \displaystyle m \Big(1 - \frac{1}{p_1} \Big) \cdots \Big(1 - \frac{1}{p_k} \Big). \end{array}$$

证毕.

特别地, 当 m 是不同素数 p, q 的乘积时, 有

推论 设p, q是不同的素数,则

$$\varphi(p \cdot q) = p \cdot q - p - q + 1. \tag{2.35}$$

定理 2.4.1 (Euler) 设 m 是大于 1 的整数. 如果 a 是满足 (a,m)=1 的整数,则

$$a^{\varphi(m)} \equiv 1 \pmod{m}. \tag{2.37}$$

定理 2.4.2 (Fermat) 设 p 是一个素数,则对任意整数 a,有

$$a^p \equiv a \pmod{p}. \tag{2.42}$$

证 分两种情形考虑.

逆定理:设n是一个奇正整数,若(a,n)=1,且a"

(i) 若 a 被 p 整数, 则同时有

NIN見台

豎床

$$a \equiv 0 \pmod{p}$$
 $\not \exists 1 \quad a^p \equiv 0 \pmod{p}$.

因此式 (2.42) 成立.

(ii) 若 a 不被 p 整数,则 (a,p) = 1 (见例 1.3.4). 根据定理 2.4.1 式 (2.37),

$$a^{p-1} \equiv 1 \pmod{p}$$
.

两端同乘 a, 得到式 (2.42).

证毕.

$$(p-1)! \equiv -1 \pmod{p}. \tag{2.44}$$

证 若 p=2, 结论显然成立.

现设 $p \ge 3$. 根据定理 2.3.5, 对于每个整数 a, $1 \le a \le p-1$, 存在唯一的整数 a', $1 \le a \le p-1$ $a' \leq p-1$, 使得

$$a \cdot a' \equiv 1 \pmod{p}$$
.

而 a' = a 的充要条件是 a 满足

$$a^2 \equiv 1 \pmod{p}$$
. $\Rightarrow \alpha^1 - 1 \equiv 0 \pmod{p}$
这时, $a = 1$ 或 $a = p - 1$. $\Rightarrow (\alpha + 1) (\alpha - 1) \equiv 0 \pmod{p}$
将 $2, \dots, p - 2$ 中的 a 与 a' 配对, 得到 $\Rightarrow \alpha + 1 \equiv 0 \pmod{p}$ $\Rightarrow \alpha = p - 1$
 $1 \cdot 2 \cdot \dots \cdot (p - 2)(p - 1) \equiv 1 \cdot (p - 1) \prod_{a} a \cdot a'$ \pmod{p} $\Rightarrow \alpha = 1$ \pmod{p}

因此, 定理 2.4.3 成立.

证毕.

$$f(x) = a_n x^n + \dots + a_1 x + a_0,$$

其中 a_i 是整数,则

$$f(x) \equiv 0 \pmod{m} \tag{3.1}$$

叫做模 m 同余式. 若 $a_n \not\equiv 0 \pmod{m}$, 则 n 叫做 f(x) 的次数, 记为 $\deg f$. 此时, 式 (3.1) 又 叫做模 m 的n 次同余式.

如果整数 x=a 使得式 (3.1) 成立, 即

$$f(a) \equiv 0 \pmod{m}$$

则 a 叫做该同余式 (3.1) 的 **解**. 事实上, 满足 $x \equiv a \pmod{m}$ 的所有整数都使得同余式 (3.1) 成立, 即 a 所在剩余类

$$C_a = \{c \mid c \in \mathbf{Z}, \ c \equiv a \pmod{m}\}$$

中的每个剩余都使得同余式 (3.1) 成立, 因此, 同余式 (3.1) 的解 a 通常写成

$$x \equiv a \pmod{m}$$
.

在模m的完全剩余系中,使得同余式(3.1)成立的剩余个数叫做同余式(3.1)的解数.

定理 3.1.3 设 m 是一个正整数, a 是满足 m / a 的整数, 则一次同余式

$$a x \equiv b \pmod{m} \tag{3.3}$$

有解的充分必要条件是 $(a, m) \mid b$. 而且, 当同余式 (3.3) 有解时, 其解为

$$x \equiv \frac{b}{(a,m)} \cdot \left(\left(\frac{a}{(a,m)} \right)^{-1} \left(\text{mod } \frac{m}{(a,m)} \right) \right) + t \cdot \frac{m}{(a,m)} \pmod{m},$$

 $t = 0, 1, \dots, (a, m) - 1.$ 其 (a, m)个部

定理 $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ $rac{1}{2}$ (中国剩余定理) 设 m_1, \cdots, m_k 是 k 个两两互素 的正整数,则对任意的整数 b_1, \cdots, b_k ,同余式组

$$\begin{cases} x \equiv b_1 \pmod{m_1} \\ \vdots \\ x \equiv b_k \pmod{m_k} \end{cases}$$
 (3.8)

一定有解, 且解是唯一的. 事实上,

(i) 若令

$$m = m_1 \cdots m_k$$
, $m = m_i \cdot M_i$, $i = 1, \cdots, k$,

则同余式组 (3.8) 的解可表示为

$$x \equiv b_1 \cdot M_1' \cdot M_1 + b_2 \cdot M_2' \cdot M_2 + \dots + b_k \cdot M_k' \cdot M_k \pmod{m}, \tag{3.9}$$

其中

$$M'_i \cdot M_i \equiv 1 \pmod{m_i}, i = 1, 2, \dots, k.$$

(ii) 若令

$$N_i = m_1 \cdots m_i, \quad i = 1, \cdots, k-1,$$

则同余式组 (3.8) 的解可表示为

$$x \equiv x_k \pmod{m_1 \cdots m_k}$$
,

其中 $N_i' \cdot N_i \equiv 1 \pmod{m_{i+1}}, i = 1, 2, \dots, k-1,$ 而 x_i 是同余式组

$$\left\{egin{array}{ll} x\equiv b_1\pmod{m_1} \ &dots \ x\equiv b_i\pmod{m_i} \end{array}
ight.$$

的解, $i=1,\cdots,k$, 并满足递归关系式

$$x_i \equiv x_{i-1} + ((b_i - x_{i-1})N'_{i-1} \pmod{m_i}) \cdot N_{i-1} \pmod{m_1 \cdots m_i}, \quad i = 2, \cdots, k.$$
 (3.10)

定理 3.4.4 同余式 (3.26) 的解数不超过它的次数.

证 反证法. 设 n 次同余式 (3.26) 的解数超过 n 个, 则式 (3.26) 至少有 n+1 个解. 设 它们为

$$x \equiv a_i \pmod{p}, \quad i = 1, \dots, n, n + 1.$$

根据定理 3.4.2, 对于 n 个解 a_1, \dots, a_n , 可得到

$$f(x) \equiv f_n(x)(x - a_1) \cdots (x - a_n) \pmod{p}$$
.

因为 $f(a_{n+1}) \equiv 0 \pmod{p}$, 所以

定理 3.4.4 同余式 (3.26) 的解数不超过它的次数.

证 反证法. 设 n 次同余式 (3.26) 的解数超过 n 个, 则式 (3.26) 至少有 n+1 个解. 设

fn(an+1)=an← 因为 a_i ≠ (它们为 项系数为 a____

多项式 $f(x) \pmod{p}$ 次数 < p. 根据定理 3.4.4, 多项式的解数 < p, 与假设条件矛盾, 故推论 成立.

定理 3.45 设 p 是一个素数, n 是一个正整数, $n \leq p$. 那么同余式

$$f(x) = x^{n} + \dots + a_{1}x + a_{0} \equiv 0 \pmod{p}$$
(3.29)

有 n 个解的充分必要条件是 $x^p - x$ 被 f(x) 除所得余式的所有系数都是 p 的倍数.

定义 4.1.1 设 m 是正整数. 若同余式

$$x^2 \equiv a \pmod{m}, \qquad (a, m) = 1 \tag{4.3}$$

有解,则 a 叫做模 m 的平方剩余(或二次剩余); 否则, a 叫做模 m 的平方非剩余(或二次非 剩余).

定理 4.21 (欧拉判别条件) 设 p 是奇素数, (a,p)=1, 则 (i) a 是模 p 的平方剩余的充分必要条件是

$$a^{\frac{p-1}{2}} \equiv 1 \pmod{p};$$

(ii) a 是模 p 的平方非剩余的充分必要条件是

$$a^{\frac{p-1}{2}} \equiv -1 \pmod{p}.$$

并且当 a 是模 p 的平方剩余时, 同余式 (4.4) 恰有二解.

定义 4.3. 设 p 是素数. 定义勒让得 (Legendre) 符号 如下:

$$\begin{pmatrix} \frac{a}{p} \end{pmatrix} = \begin{cases}
1, \quad \text{若 a 是模 p 的平方剩余;} \\
-1, \quad \text{若 a 是模 p 的平方非剩余;} \\
0, \quad \text{若 p | a.}
\end{cases}$$

由此, 对于 (a,p)=1, 有

$$\left(\frac{a}{p}\right) = 1 \iff x^2 \equiv a \pmod{p}$$
 有解

$$\left(\frac{a}{p}\right) = -1 \iff x^2 \equiv a \pmod{p}$$
 \mathbb{Z}

定理 4.3 2 设 p 是奇素数,则

$$(1) \left(\frac{1}{p}\right) = 1; \tag{4.11}$$

(2)
$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}}$$
. (4.12)

证 根据欧拉判别法则 (定理 4.3.1), 对于 a=1 时, 有 $a^{\frac{p-1}{2}}=1$, 所以式 (4.11) 成立; 而 对于 a = -1 时, 有 $a^{\frac{p-1}{2}} = (-1)^{\frac{p-1}{2}}$, 又因为 p 是奇数, 所以式 (4.12) 成立. 证毕.

进一步, 可以给出p的表达式.

推论 设p是奇素数,那么

$$\left(\frac{-1}{p}\right) = \begin{cases} 1, & \text{if } p \equiv 1 \pmod{4}; \\ -1, & \text{if } p \equiv 3 \pmod{4}. \end{cases}$$
 (4.13)

根据欧拉判别法则 (定理 4.3.1), 有

$$\left(\frac{-1}{p}\right) = \left(-1\right)^{\frac{p-1}{2}}.$$

若 $p \equiv 1 \pmod{4}$, 则存在正整数 k 使得 p = 4k + 1, 从而

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^{2k} = 1.$$

若 $p \equiv 3 \pmod{4}$, 则存在正整数 k 使得 p = 4k + 3, 从而

$$\left(\frac{-1}{p}\right) = (-1)^{\frac{p-1}{2}} = (-1)^{2k+1} = -1.$$

定理 4.3.3 设
$$p$$
 是奇素数,则
$$(i) (周期性) \left(\frac{a+p}{p}\right) = \left(\frac{a}{p}\right);$$

(ii) (完全可乘性)
$$\left(\frac{a \cdot b}{p}\right) = \left(\frac{a}{p}\right) \left(\frac{b}{p}\right);$$

(iii) 设
$$(a,p)=1$$
, 则 $\left(\frac{a^2}{p}\right)=1$.

引理 4.3.1 (Gauss) 设 p 是奇素数. a 是整数, (a,p)=1. 如果整数

$$a \cdot 1, a \cdot 2, \cdots, a \cdot \frac{p-1}{2}$$

中模 p 的最小正剩余大于 $\frac{p}{2}$ 的个数是 m, 则

$$\left(\frac{a}{p}\right) = (-1)^m.$$

定理 4.4.1 (二次互反律) 若 p, q 是互素奇素数,则

$$\left(\frac{q}{p}\right) = \left(-1\right)^{\frac{p-1}{2} \cdot \frac{q-1}{2}} \left(\frac{p}{q}\right)$$

定义 4.5.1 设 $m=p_1\cdots p_r$ 是奇素数 p_i 的乘积. 对任意整数 a, 定义雅可比 (Jacobi) 符号 为

$$\left(\frac{a}{m}\right) = \left(\frac{a}{p_1}\right) \cdots \left(\frac{a}{p_r}\right). \tag{4.23}$$

雅可比符号形式上是勒让得符号的推广, 但所蕴涵的意义已经不同. 与式 (4.10) 作比较, 对于 (a,m)=1, 有

$$\left(\frac{a}{m}\right) = 1 \qquad \iff x^2 \equiv a \pmod{m} \text{ 有解}$$

$$\left(\frac{a}{m}\right) = -1 \qquad \implies x^2 \equiv a \pmod{n} \text{ 无解}$$

$$(4.24)$$

雅可比符号为 -1, 可判断 a 是模 m 平方非剩余; 但雅可比符号为 1, 却不能判断 a 是 模 m 平方剩余. 例如, 3 是模 119 平方非剩余, 但

$$\left(\frac{3}{119}\right) = \left(\frac{3}{7}\right)\left(\frac{3}{17}\right) = (-1)(-1) = 1.$$

定义 5.1.1 设 m>1 是整数, a 是与 m 互素的正整数, 则使得

$$a^e \equiv 1 \pmod{m}$$

成立的最小正整数 e 叫做 a 对模 m 的 指数, 记作 $\operatorname{ord}_m(a)$.

如果 a 对模 m 的指数是 $\varphi(m)$, 则 a 叫做模 m 的 原根.

例 5.1.1 设整数
$$m=7$$
, 这时 $\varphi(7)=6$. 有

$$1^1 \equiv 1,$$
 $2^3 = 8 \equiv 1,$ $3^3 = 27 \equiv -1,$ $4^3 \equiv (-3)^3 \equiv 1,$ $5^3 \equiv (-2)^3 \equiv -1,$ $6^2 \equiv (-1)^2 \equiv 1 \pmod{7}.$

列成表为

\boldsymbol{a}	1	2	3	4	5	6
$\operatorname{ord}_m(a)$	1	3	6	3	6	2

因此, 3, 5 是模 7 的原根. 但 2, 4, 6 不是模 7 的原根.

例 5.12 设整数
$$m = 14 = 2.7$$
, 这时 $\varphi(14) = 6$. 有

$$\begin{bmatrix}
1^{1} \equiv 1, \\
9^{3} = (5)^{3} = 1,
\end{bmatrix}
\begin{bmatrix}
3^{3} = 27 \equiv -1, \\
11^{3} = (3)^{3} = 1,
\end{bmatrix}
\begin{bmatrix}
5^{3} = 125 \equiv -1, \\
13^{2} = (1)^{2} = 1 \pmod{14}.
\end{bmatrix}
\begin{bmatrix}
5^{3} = 125 \equiv -1, \\
13^{2} = (1)^{2} = 1 \pmod{14}.
\end{bmatrix}$$

列成表为

a	1	3	5	9	11	13
$\operatorname{ord}_m(a)$	1	6	6	3	3	2

因此, 3, 5 是模 14 的原根. 但 9, 11, 13 不是模 14 的原根.

$$a^d \equiv 1 \pmod{m} \tag{5.4}$$

的充分必要条件是

$$\operatorname{ord}_{m}(a) \mid d. \tag{5.5}$$

充分性. 设式 (5.5) 成立, 即 $\operatorname{ord}_m(a) \mid d$, 那么存在整数 q 使得 $d = q \cdot \operatorname{ord}_m(a)$. 因 此,有

$$a^d = \left\lceil a^{\operatorname{ord}_m(a)} \right\rceil^q \equiv 1 \text{ (mod } m).$$

必要性. 反证法. 如果式 (5.5) 不成立, 即 $\operatorname{ord}_{m}(a)$ d, 则由欧几里得除法 (定理 1.1.9), 存在整数 q, r 使得

$$d = q \cdot \operatorname{ord}_m(a) + r,$$
 $0 < r < \operatorname{ord}_m(a).$

从而,

$$a^r \equiv \left[a^{\operatorname{ord}_m(a)}\right]^q \cdot a^r = a^d \equiv 1 \pmod{m}.$$

这与 $\operatorname{ord}_m(a)$ 的最小性矛盾. 故式 (5.5) 成立.

证毕.

推论 1 设 m > 1 是整数, a 是与 m 互素的整数, 则

$$\operatorname{ord}_{m}(a) \mid \varphi(m). \tag{5.6}$$

根据欧拉定理 (定理 2.4.1), 有

$$a^{\varphi(m)} \equiv 1 \pmod{m}$$
.

由定理 5.1.1, 有式 (5.6).

证毕.

例 5.1 求整数 5 模 17 的指数 $\mathrm{ord}_{17}(5)$. 解 因为 $\varphi(17)=16$, 所以只需对 16 的因数 $d=1,\ 2,\ 4,\ 8,\ 16$, 计算 $a^d\pmod m$. 因为

$$5^1 \equiv 5, \ 5^2 = 25 \equiv 8, \ 5^4 \equiv 64 \equiv 13 \equiv -4, 5^8 \equiv (-4)^2 \equiv 16 \equiv -1, \ 5^{16} \equiv (-1)^2 \equiv 1 \pmod{17},$$

所以 $ord_{17}(5) = 16$. 这说明 5 是模 17 的原根.

推论 p 是奇素数,且 $\frac{p-1}{2}$ 也是素数. 如果 a 是一个模 p 不为 0, 1, -1 的整则 $\operatorname{ord}_p(a) = \frac{p-1}{2}$ 或 p-1. \Rightarrow $Q \neq 0$, $p \in \mathbb{Z}$ \Rightarrow $Q \neq 0$, $Q \neq 0$ 数,则

$$\operatorname{ord}_p(a) = \frac{p-1}{2} \quad \text{if } p-1.$$

$$a^{\varphi(p)} \equiv 1 \pmod{p}$$
.

根据推论 1, 整数 a 模 p 的指数 $\operatorname{ord}_p(a)$ 是 $\varphi(p)=p-1=2\cdot\frac{p-1}{2}$ 的因数, 但 $\operatorname{ord}_m(a)\neq 2$, 所以

证毕.

性质、5.1.1 设 m > 1 是整数, a 是与 m 互素的整数.

- (i) $\nexists b \equiv a \pmod{m}$, $\bowtie \operatorname{ord}_m(b) = \operatorname{ord}_m(a)$.
- (ii) 设 a^{-1} 使得 $a^{-1} \cdot a \equiv 1 \pmod{m}$, 则 $\operatorname{ord}_m(a^{-1}) = \operatorname{ord}_m(a)$.

证 (i) 若 $b \equiv a \pmod{m}$, 则

$$b^{\operatorname{ord}_{\mathbf{m}}(\mathbf{b})} \equiv b^{\operatorname{ord}_{\mathbf{m}}(a)} \equiv a^{\operatorname{ord}_{\mathbf{m}}(a)} \equiv 1 \pmod{m},$$

根据定理 5.1.1 式 (5.5), 有 $\operatorname{ord}_m(b) \mid \operatorname{ord}_m(a)$.

同样, 有 $\operatorname{ord}_m(a) \mid \operatorname{ord}_m(b)$. 故 $\operatorname{ord}_m(b) = \operatorname{ord}_m(a)$.

(ii) 因为

$$\left(\bigcap^{-1} \right)^{\operatorname{ord}_{m}(a^{-1})} \equiv (a^{-1})^{\operatorname{ord}_{m}(a)} \equiv \left[a^{\operatorname{ord}_{m}(a)} \right]^{-1} \equiv 1 \pmod{m},$$

根据定理 5.1.1 式 (5.5), 有 $\operatorname{ord}_m(a^{-1}) \mid \operatorname{ord}_m(a)$.

同样,有 $\operatorname{ord}_m(a) \mid \operatorname{ord}_m(a^{-1})$.故 $\operatorname{ord}_m(a^{-1}) = \operatorname{ord}_m(a)$.

例 5.1.8 整数 39 模 17 的指数为 $\operatorname{ord}_{17}(39) = \operatorname{ord}_{17}(5) = 16$. 整数 7 模 17 的指数为 16. 因为 $5^{-1} \equiv 7 \pmod{m}$.

定理 6.1 设 m > 1 是整数, a 是与 m 互素的整数, 则

$$1 = a^0, \ a, \ \cdots, \ a^{\operatorname{ord}_m(a) - 1}$$
 (5.7)

模 m 两两不同余. 特别地, 当 a 是模 m 的原根, p ord $_m(a) = \varphi(m)$ 时, 这 $\varphi(m)$ 个数

$$1 = a^0, \ a, \cdots, a^{\varphi(m)-1}$$
 (5.8)

组成模 m 的简化剩余系.

证 反证法. 如果式 (5.7) 中有两个数模 m 同余, 则存在整数 $0 \le k$, $l < \operatorname{ord}_m(a)$ 使得

$$a^k \equiv a^l \pmod{m}$$
.

不妨设 k > l. 则由 (a, m) = 1 和定理 2.1.8, 得

$$a^{k-l} \equiv 1 \pmod{m}$$
.

但 $0 < k - l < \operatorname{ord}_m(a)$. 这与 $\operatorname{ord}_m(a)$ 的最小性矛盾. 因此, 结论成立.

再设 a 是模 m 的原根, 即 $\operatorname{ord}_m(a) = \varphi(m)$, 则有 $\varphi(m)$ 个数即式 (5.8), 也即

$$1 = a^0, a, \dots, a^{\varphi(m)-1}$$

模 m 两两不同余. 根据定理 2.3.3, 这 $\varphi(m)$ 个数组成模 m 的简化剩余系. 证毕.

定理 5.1.3 设 m > 1 是整数, a 是与 m 互素的整数, 则

$$a^d \equiv a^k \pmod{m}$$

的充分必要条件是

$$d \equiv k \pmod{\operatorname{ord}_m(a)}$$
.

 $oldsymbol{\overline{u}}$ 根据欧几里得除法 (定理 1.1.9) , 存在整数 q, r 和 q', r' 使得

$$d = q \cdot \operatorname{ord}_m(a) + r, \quad 0 \leqslant r < \operatorname{ord}_m(a).$$
 $k = q' \cdot \operatorname{ord}_m(a) + r', \quad 0 \leqslant r' < \operatorname{ord}_m(a).$

又 $a^{\operatorname{ord}_m(a)} \equiv 1 \pmod{m}$, 故

$$a^d \equiv (a^{\operatorname{ord}_m(a)})^q \cdot a^r \equiv a^r, \quad a^k \equiv a^{r'} \pmod{m}.$$

必要性. 若
$$a^d \equiv a^k$$
, 则

必要性. 若
$$a^d \equiv a^k$$
, 则
$$a^r \equiv a^{r'} \pmod{m}.$$
 由定理 5.1.2, 得到 $r = r'$. 故 $d \equiv k \pmod{\operatorname{ord}_m(a)}.$ 为 $k \equiv q'$. $a^r \equiv a^{r'} \pmod{m}$ $a^r \equiv a^{r'} \pmod{m}$ $a^r \equiv a^{r'} \pmod{m}$ $a^r \equiv a^r \pmod{m}$

$$r = r', \quad a^d \equiv a^k \pmod{m}.$$

因此, 定理成立.

证毕.

例 5.1.10 $2^{1000000} \equiv 2^{10} \equiv 100 \pmod{231}$.

因为整数 2 模 231 的指数为 $ord_{231}(2) = 30, 10000000 \equiv 10 \pmod{30}$.

例 5.1.11 $2^{2002} \equiv 2^1 \equiv 2 \pmod{7}$.

因为整数 2 模 7 的指数为 $ord_7(2) = 3$, $2002 \equiv 1 \pmod{3}$.

定理 5.1.4 设 m > 1 是整数, a 是与 m 互素的整数. 设 d 为非负整数, 则

$$\operatorname{ord}_{m}(a^{d}) = \frac{\operatorname{ord}_{m}(a)}{(d, \operatorname{ord}_{m}(a))}.$$
(5.9)

证 因为

$$a^{d \operatorname{ord}_m(a^d)} = (a^d)^{\operatorname{ord}_m(a^d)} \equiv 1 \pmod{m},$$

根据定理 5.1.1, $\operatorname{ord}_{m}(a) \mid d \operatorname{ord}_{m}(a^{d})$. 从而

$$\frac{\operatorname{ord}_m(a)}{(d,\operatorname{ord}_m(a))} \mid \operatorname{ord}_m(a^d) \cdot \frac{d}{(d,\operatorname{ord}_m(a))}.$$

因为 $\left(\frac{\operatorname{ord}_m(a)}{(d,\operatorname{ord}_m(a))},\frac{d}{(d,\operatorname{ord}_m(a))}\right)=1$, 根据定理 1.3.11 之推论,

$$\frac{\operatorname{ord}_m(a)}{(d,\operatorname{ord}_m(a))}\mid \operatorname{ord}_m(a^d).$$

另一方面,有

$$(a^d)^{\frac{\operatorname{ord}_m(a)}{(d,\operatorname{ord}_m(a))}} = \left(a^{\operatorname{ord}_m(a)}\right)^{\frac{d}{(d,\operatorname{ord}_m(a))}} \equiv 1 \pmod m,$$

根据定理 5.1.1,

$$\operatorname{ord}_m\left(a^d\right) \mid \frac{\operatorname{ord}_m(a)}{(d, \operatorname{ord}_m(a))}.$$

因此, 有式 (5.9).

证毕.

例 5.1.12 整数 $5^2 \equiv 8 \pmod{17}$ 模 17 的指数为 $\operatorname{ord}_{17}(5^2) = \frac{\operatorname{ord}_{17}(5)}{(2, \operatorname{ord}_{17}(5))} = 8$.

推论 1 设 m > 1 是整数, g 是模 m 的原根. 设 $d \ge 0$ 为整数, 则 g^d 是模的原根当且仅 $\stackrel{\text{def}}{=} (d, \varphi(m)) = 1.$

证 根据定理 5.1.4 式 (5.9), 有

$$\operatorname{ord}_m\left(g^d\right) = \frac{\operatorname{ord}_m(g)}{(d,\operatorname{ord}_m(g))} = \frac{\varphi(m)}{(d,\varphi(m))}.$$

因此, g^d 是模的原根, 即 $\operatorname{ord}_m\left(g^d\right)=\varphi(m)$ 当且仅当 $(d,\varphi(m))=1$.

证毕.

推论 2 设 m > 1 是整数, a 是与 m 互素的整数. 设 $k \mid \operatorname{ord}_m(a)$ 为正整数, 则使得

$$\operatorname{ord}_m(a^d) = k, \quad 1 \leqslant d \leqslant \operatorname{ord}_m(a)$$

正整数 d 满足 $\frac{\operatorname{ord}_m(a)}{k} \mid d$, 且这样 d 的个数为 $\varphi(k)$.

定理 5.1/5 设 m>1 是整数. 如果模 m 存在一个原根 g, 则模 m 有 $\varphi(\varphi(m))$ 个不同的原根.

证 设 q 是模 m 的一个原根. 根据定理 5.1.2 式 (5.8), $\varphi(m)$ 个整数

$$q^0 = 1, q, \dots, q^{\varphi(m)-1}$$

构成模m的一个简化剩余系. 又根据定理 5.1.4之推论, g^d 是模m的原根当且仅当 $(d, \varphi(m))=1$. 因为这样的 d 共有 $\varphi(\varphi(m))$ 个,所以模 m 有 $\varphi(\varphi(m))$ 个不同的原根. 证毕.

推论 设m > 1是整数,且模m存在一个原根.设

$$\varphi(m) = p_1^{\alpha_1} \cdots p_s^{\alpha_s}, \quad \alpha_i > 0, \ i = 1, \cdots, s,$$

则整数 a, (a, m) = 1 是模 m 原根的概率是

$$\underbrace{\varphi(\varphi(m))}_{\varphi(m)} = \prod_{i=1}^{s} \left(1 - \frac{1}{p_i}\right).$$
(5.10)

定理 5.1.9 设 m>1 是整数, a, b 都是与 m 互素的整数. 如果 $(\operatorname{ord}_m(a),\operatorname{ord}_m(b))=1$, 则

$$\operatorname{ord}_{m}(a \cdot b) = \operatorname{ord}_{m}(a) \cdot \operatorname{ord}_{m}(b). \tag{5.11}$$

反之亦然.

定理 5.1.7 设 m, n 都是大于 1 的整数, a 是与 m 互素的整数, 则

- (i) 若 $n \mid m$, 则 $\operatorname{ord}_n(a) \mid \operatorname{ord}_m(a)$.
- (ii) 若 (m,n)=1, 则

$$\operatorname{ord}_{mn}(a) = [\operatorname{ord}_m(a), \operatorname{ord}_n(a)].$$

推论 1 设 p, q 是两个不同的奇素数, a 是与 $p \cdot q$ 互素的整数, 则

$$\operatorname{ord}_{p \cdot q}(a) = [\operatorname{ord}_p(a), \operatorname{ord}_q(a)] \mid [p-1, q-1].$$

推论 2 设 p, q=2p-1 是两个不同的奇素数, a 是与 $p \cdot q$ 互素的整数, 则

$$\operatorname{ord}_{p \cdot q}(a) = [\operatorname{ord}_p(a), \operatorname{ord}_q(a)] \mid q - 1.$$

定理 5.28 模 m 的原根存在的充要条件是 $m=2, 4, p^{\alpha}, 2p^{\alpha}$, 其中 p 是奇素数.