

Санкт-Петербургский государственный университет Кафедра системного программирования

Разработка СПО прикладного уровня системы оплаты проезда российского производства на платных автодорогах

Пантелеймонов Андрей Радиевич, группа 23.М04-мм

Научный руководитель: д.ф.-м.н. А.Н. Терехов, профессор кафедры системного программирования

Консультант: А.Г. Шадрин, ктн, Инженер-исследователь ООО «ЛИС»

Санкт-Петербург 2024

Введение

- Ежедневно платными дорогами пользуются сотни тысяч водителей
- Ключ к большой пропускной способности бесперебойное и быстрое функционирование системы оплаты проезда
- Уход иностранных организаций, осуществлявших обслуживание на платных автодорогах породил острую необхоимость создания российской системы

Введение

- Компании ООО «ЛИС» и ООО «Мобил-групп» в тесном сотрудничестве создают комплекс ПО и АО (аппаратное обеспечение), которое позволит в полном объёме заменить ушедшие аналоги
- Продуктом будет АО с установленным ПО, позволяющим проводить весь цикл обработки и передачи информации

Постановка задачи

Цель: Разработать ПО для аппаратного обеспечения для работы на системах оплаты проезда

Задачи:

- Изучить имеющуюся документацию предыдущих производителей на российском рынке
- Изучить соответствующие стандарты необходимые для разработки системы
- Реализовать обмен между канальным уровнем и прикладным
- Реализовать выдачу информации в режиме реального времени для информирования оператора о текущем статусе в терминах описанных в документах протоколов
- Реализовать логирование работы системы для анализа ошибок и сбора статистики
- Реализовать демонизацию ПО
- Провести апробацию продукта

Обзор предметной области

Рис.: Архитектура стека DSRC

Обзор предметной области

Initialisation	1997	'Hello, welcome, where do you come from, how do you want to pay' Negotiation of the EFC contract to use		
Presentation	Alek .	our payment details and your entry ticket' E data (details on contract, account, vehicle ansaction, etc.)		
Receipt	'Here is your receil The RSE writes an ticket)	pt' electronic receipt (which may also serve as an entry		
Tracking and Closing	'Thank you and go The RSE tracks the eventually closes the	vehicle through the communication zone and		

Рис.: Процесс транзакции кратко

Обзор предметной области

Рис.: Процесс транзакции чуть более подробно

Обзор аналогов

 Norbit(Норвегия) — комплекс ПО и АО для осуществления полного цикла обмена информацией между RSU (Road-Side Unit, или устройство, принимающее сигнал с транспондера) и ОВИ (On-Board Unit, транспондер, который находится непосредственно в автомобиле)

Решение Norbit являлось фактически монополистом в системах, которые отвечают за систему оплаты проезда на платных автодорогах в России, в связи с чем было решено отталкиваться именно от документации, некогда предоставленной этим разработчиком.

Выбор редактора диаграмм

Было принято решение использовать уже существующий редактор диаграмм, на основе элементов которого строить диаграммы сети, после чего отправлять данные в другие компоненты приложения

Требования

- Возможность добавлять и хранить метаданные для элементов диаграмм
- Возможность экспорта диаграммы не только в графическом формате, но и в виде кода на одном из языков разметки
- Лицензия, позволяющая использовать данный редактор в разработке коммерческого ПО

Разработка

- В качестве языка программирования используется язык C++ 11 стандарта
- В качестве базовой ОС, на которой будет работать ПО, была выбрана Ubuntu

Формат входных данных

В качестве входящих данных прикладному уровню с канального уровня через LLC подуровень приходит строка в hex формате, например: 100a002c 00600000 24760e71 c0039190 0001c101 02105700 01ff0070 02021dd1 0204118e 0d7bf301 00320100 00320100

Здесь первые 2 октета - заголовок, а последний - незначащий. Однако для дальнейшей работы необходимо перевести информацию в двоичный формат.

Формат входных данных

На скриншоте видно, что код страны - 10 бит, причём в кодировке ІТА2

					F	
	AID tyID	DSRCApplicationEnti-	00	0001	No extension, AID = 1, EFC	
23	EID		0000	0101	Associated with a context mark. Example : 5 ₁₀	
24	Parameter	CONTAINER {	0000	0010	No extension, Container Choice = 2 ₁₀ , Octet string	
25			0001	0000	No extension, octet string length = 1610	
26	EFC-ContextMark SEQUENCE {					
	ContractProv	ider SEQUENCE {				
	CountryCode (SIZE(10))	BIT STRING	1010	0100	10 bit country code according to ISO 3166 with ITA2 binary	
27			0.0		Encoding based on ISO 14816. Example : SE	
	IssuerIdentifi	er INTEGER (016383) }	0.0	0000	14 bits issuer identifier. Example : 1 ₁₀ (Öresundskonsortiet)	
28			0000	0001		
29	TypeOfContr (SIZE(2))	act OCTET STRING	0000	0000	Type of contract. Example : 2 ₁₀	
30			0000	0010		
31	ContextVersi	on INTEGER (0127,) }	0000	0001	No extension, context version. Example : 110	
32	CONTAINER {		0000	0010	No extension, Container Choice = 2 ₁₀ , Octet string	
33			0000	0010	No extension, octet string length = 2 ₁₀	
34	AC_CR-Reference SEQUENCE { AC-MasterKeyRef Int1,		0000	0001	AC_CR-Reference to, consisting of AC_CR-Mas-	
					terKeyRef and AC_CR-Diversifier, used for the computation of AC_CRKey and	
35	AC_CR-Dive	rsifier Int1 } }	0000	0001	AC_CR.	
36	CONTAIN	ER {	0000	0010	No extension, Container Choice = 2 ₁₀ , Octet	

Рис.: Подробная структура полей, пример из стандарта ISO14906

Протокол EARP

Компанией Norbit был разработан протокол EARP (EFC Attribute Read Protocol), который позволяет получить информацию о совершенных транзакциях. Примером вывода информации согласно этому протоколу является:

```
20100611T095008.513 578,00008,00001,001:-----
0000/002a/0000
[104/00645 +015.7/05.1/00.0]
AutoPASS <0EC7AC9DB0EA114C> |
099:021830C008CC3CDE140000C28422C6DF9C187A21EDF42A770F2B |
```

На скриншоте каждый элемент имеет конкретное описание. Так, например, первые 19 символов - текущее время, первые 3 цифры после пробела - код страны данной транзакции согласно ISO 3166-1. На скриншоте это число 578 - Норвегия (согласно 3166-1)

Формат выходных данных

В качестве выходных данных протокола EARP (для наглядности) для примера со входными данными, получается следующая строка: 20240104T004349.744 643,00001,65280,112:02021dd10204118e0d7b f301/0032/0100

Для теста (входных данных) был взят транспондер одного из автовладельцев, ежедневно пользующегося услугами ЗСД, код 643 соответствует России.

Формат выходных данных

Страна приходит в бинарном формате длиной 10 бит в алфавите ITA2, поэтому необходимо в двоичном потоке найти этот кусок и выделить 10 бит:

```
Есть EID
Есть Parameter
00000001 - EID в сообщении
0000001000010000 - Parameter в сообщении
0101011100 - Country Code в сообщении
```

Формат выходных данных

Следующим шагом является уже установка соответствия согласно алфавиту ITA-2

Table 1 — ITA-2 alphabet

		•	
Α	11000	N	00110
В	10011	0	00011
С	01110	Р	01101
D	10010	Q	11101
Е	10000	R	01010
F	10110	S	10100
G	01011	Т	00001
Н	00101	U	11100
-1	01100	V	01111
J	11010	W	11001
K	11110	X	10111
L	01001	Υ	10101
M	00111	Z	10001

Так, на предыдущем слайде поле country code имело значение 01010'11100, тогда согласно этой таблице получим, что страна Россия (RU)

Текущие результаты

- Изучена необходимая документация для реализации прикладного уровня
- Изучены стандарты необходимые для реализации
- Частично реализован цикл обмена информацией между RSU и OBU
- Реализован перевод данных в протокол EARP
- Реализовано логирование поступающей информации

Дальнейшие планы

- Реализовать полный цикл обмена информацией
- Реализовать отправку информации в биллинг
- Провести апробацию продукта

Исходный код находится на локальном Gitlab