I Questions de cours

1 - Énoncer et démontrer le théorème de la limite monotone.

Donner l'expression explicite du terme u_n où $(u_n)_{n\in\mathbb{N}}$ est une suite arithmético-géométrique.

2 - Montrer que si u est une suite telle que les deux sous-suites $(u_{2n})_{n\in\mathbb{N}}$ et $(u_{2n+1})_{n\in\mathbb{N}}$ tendent vers une même limite (finie ou infinie), alors la suite u tend vers cette limite commune.

Donner l'expression explicite du terme u_n où $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente linéaire homogène d'ordre 2 à coefficients complexes constants.

3 - Montrer que la série harmonique diverge.

Donner l'expression explicite du terme u_n où $(u_n)_{n\in\mathbb{N}}$ est une suite récurrente linéaire homogène d'ordre 2 à coefficients réels constants.

II Exercices

Exercice 1:

Soient $x_0, y_0 \in \mathbb{R}$ tels que $1 < x_0 < y_0$.

On pose pour tout $n \in \mathbb{N}$:

$$x_{n+1} = \frac{1}{2} (x_n + \sqrt{y_n}) \text{ et } y_{n+1} = \frac{1}{2} (\sqrt{x_n} + y_n)$$

- 1 Montrer que pour tout $n \in \mathbb{N}$, $x_n > 1$ et $y_n > 1$.
- 2 Montrer que si l'on suppose que $(x_n)_{n\in\mathbb{N}}$ ou $(y_n)_{n\in\mathbb{N}}$ converge alors l'autre suite converge aussi et préciser dans ce cas les valeurs des limites possibles.
- 3 Établir par récurrence que pour tout $n \in \mathbb{N}$, $x_n \leq y_n$.
- 4 En déduire que les suites convergents.

Exercice 2:

Soient $(u_n)_{n\in\mathbb{N}}$ une suite réelle et $S_n = \frac{1}{n}\sum_{k=1}^n u_k$.

1 - On suppose que $(u_n)_{n\in\mathbb{N}}$ tend vers 0.

Soient $\varepsilon > 0$ et $n_0 \in \mathbb{N}^*$ tels que, pour tout $n \ge n_0$, $|u_n| \le \varepsilon$.

Montrer qu'il existe une constante M>0 telle que, pour tout $n\geq n_0$, on ait :

$$|S_n| \le \frac{M(n_0 - 1)}{n} + \varepsilon$$

En déduire que la suite $(S_n)_{n\in\mathbb{N}^*}$ converge et préciser sa limite.

- 2 On suppose que $u_n = (-1)^n$. Que dire de $(S_n)_{n \in \mathbb{N}^*}$? Qu'en déduisez-vous?
- 3 On suppose que $(u_n)_{n\in\mathbb{N}}$ converge vers ℓ .

Montrer que $(S_n)_{n\in\mathbb{N}^*}$ converge vers ℓ .

4 - On suppose que $(u_n)_{n\in\mathbb{N}}$ tend vers $+\infty$. Montrer que $(S_n)_{n\in\mathbb{N}^*}$ tend vers $+\infty$.

Exercice 3:

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par :

$$\forall n \in \mathbb{N}^*, \ u_n = \prod_{k=1}^n \left(1 + \frac{k}{n^2}\right)$$

On pose $v_n = \ln(u_n)$.

1 - Montrer, pour tout $x \ge 0$, l'inégalité :

$$x - \frac{x^2}{2} \le \ln(1+x) \le x$$

2 - En déduire que

$$\frac{n+1}{2n} - \frac{(n+1)(2n+1)}{12n^3} \le v_n \le \frac{n+1}{2n}$$

- 3 Montrer que $(v_n)_{n\in\mathbb{N}^*}$ converge et préciser sa limite.
- 4 En déduire que $(u_n)_{n\in\mathbb{N}^*}$ converge et préciser sa limite.

Exercice 4:

1 - Déterminer deux réels a et b tels que

$$\frac{1}{k^2 - 1} = \frac{a}{k - 1} + \frac{b}{k + 1}$$

- 2 En déduire la limite de la suite de terme général $u_n = \sum_{k=2}^n \frac{1}{k^2 1}$.
- 3 Sur le même modèle, déterminer la limite de la suite de terme général $v_n = \sum_{k=0}^n \frac{1}{k^2 + 3k + 2}.$

Exercice 5:

Soit $(u_n)_{n\in\mathbb{N}^*}$ la suite définie par $u_n = \sum_{k=1}^n \frac{1}{k^2}$.

- 1 Démontrer que la suite $(u_n)_{n\in\mathbb{N}^*}$ est croissante.
- 2 Démontrer que, pour tout $n \in \mathbb{N}^*$, on a

$$\frac{1}{(n+1)^2} \le \frac{1}{n} - \frac{1}{n+1}$$

- 3 Démontrer que, pour tout $n \in \mathbb{N}^*$, $u_n \leq 2 \frac{1}{n}$.
- 4 En déduire que la suite $(u_n)_{n\in\mathbb{N}^*}$ est convergente.

Exercice 6:

Soient $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ deux suites définies par :

$$u_n = \sum_{k=0}^{n} \frac{1}{k!}$$
 et $v_n = u_n + \frac{1}{n \times n!}$

- 1 Montrer que les suites $(u_n)_{n\in\mathbb{N}^*}$ et $(v_n)_{n\in\mathbb{N}^*}$ sont adjacentes. On notera e leur limite commune
- 2 Montrer que, pour tout $n \in \mathbb{N}^*$, $n!u_n \le n!e \le n!u_n + \frac{1}{n}$.
- 3 En déduire que e est un nombre irrationnel.

Indication: On pourra raisonner par l'absurde.

Exercice 7:

Soit $(u_n)_{n\in\mathbb{N}}$ une suite de réels telle que :

$$\forall (m,n) \in \mathbb{N}^2, \ u_{m+n} \ge u_m + u_n$$

On suppose que l'ensemble $\left\{\frac{u_n}{n}, n \in \mathbb{N}^*\right\}$ est majoré et on note ℓ sa borne supérieure.

1 - Soient $n \in \mathbb{N}$ et $m, q, r \in \mathbb{N}$ tels que n = mq + r.

Comparer u_n et $qu_m + u_r$.

2 - On fixe $m \in \mathbb{N}$ et $\varepsilon > 0$.

En utilisant la division euclidienne de n par m, démontrer qu'il existe un entier N tel que :

$$\forall n \ge N, \ \frac{u_n}{n} \ge \frac{u_m}{m} - \varepsilon$$

3 - Démontrer que $\lim_{n \to +\infty} \frac{u_n}{n} = \ell$.