Primeira Prova - Integração

Semestre 2018/2 - Prof. Ricardo M. S. Rosa

30 de outubro de 2018

Obs: Sejam claros nas suas repostas e façam as devidas justificativas. Boa sorte!

1º Questão: Considere a medida de Lebesgue m e a sequência $(E_n)_{n\in\mathbb{N}}$ dos conjuntos

$$E_n = \bigcup_{j=0}^{2^{n-1}-1} \left[\frac{2j}{2^n}, \frac{2j+1}{2^n} \right].$$

- (1) Determine explicitamente o conjunto $\liminf_{n\to\infty} E_n$. $\liminf_{n\to\infty} E_n =$ "união dos extremos" = $\bigcup_{n\in\mathbb{N}} \bigcup_{j=0}^{2^n-1} \{j/2^n\}$.
- (2) Determine explicitamente o conjunto $\limsup_{n\to\infty} E_n$. $\limsup_{n\to\infty} E_n = [0,1)$.
- (3) Dado um intervalo [a, b] com $0 \le a < b \le 1$, mostre que

$$\lim_{n \to \infty} m([a, b] \cap E_n) = \frac{b - a}{2}.$$

Considere $n \in \mathbb{N}$ tal que $2^n b > 1$. Sejam j_1 o menor inteiro tal que $j_1 \ge 2^{n-1}a$ e j_2 o maior inteiro tal que $j_2 \le 2^{n-1}b + 1/2$, de modo que $2(j_1 - 1)/2^n < a \le 2j_1/2^n$ e $(2j_2 - 1)/2^n \le b < (2j_2 + 1)/2^n$. Assim,

$$\bigcup_{j_1 \leq j \leq j_2-1} \left[\frac{2j}{2^n}, \frac{2j+1}{2^n}\right] \subset [a,b] \cap E_n \subset \bigcup_{j_1-1 \leq j \leq j_2} \left[\frac{2j}{2^n}, \frac{2j+1}{2^n}\right],$$

o que nos dá

$$\frac{b-a}{2} - \frac{3}{2^{n+1}} < \frac{j_2 - j_1}{2^n} \le m([a,b] \cap E_n) \le \frac{j_2 - j_1 + 2}{2^n} \le \frac{b-a}{2} + \frac{5}{2^{n+1}}.$$

Portanto, $\lim_{n\to\infty} m([a,b]\cap E_n)=(b-a)/2$.

(4) Dado um conjunto mensurável $A \subset [0,1]$ qualquer, mostre que

$$\lim_{n \to \infty} m(A \cap E_n) = \frac{1}{2}m(A).$$

Como m(A) é finito, dado $\varepsilon > 0$, existe um número finito de intervalos disjuntos $Q_j = [a_j, b_j] \subset [0, 1], \ j = 1, \ldots, J$, satisfazendo $m(A \triangle F) < \varepsilon$, onde $F = \bigcup_j Q_j$ e $A \triangle F$ é a diferença simétrica entre A e F. Pelo item anterior, para cada j, existe N_j tal que $|m(Q_j \cap E_n) - m(Q_j)/2| \le \varepsilon/J$. Usando que

$$|m(A) - m(F)| \le m(F \triangle A) < \varepsilon$$

e

$$|m(A \cap E_n) - m(F \cap E_n)| \le m(F \triangle A) < \varepsilon$$

obtemos

$$|m(A \cap E_n) - \frac{1}{2}m(A)| \le \frac{3\varepsilon}{2} + \sum_{j=1}^{J} \left| m(Q_j \cap E_n) - \frac{1}{2}m(Q_j) \right| \le \frac{5\varepsilon}{2},$$

para $n \geq N = \max_j N_j$. Como $\varepsilon > 0$ é arbitrário, obtemos $\lim_{n \to \infty} m(A \cap E_n) = m(A)/2$.

2º Questão: Dada uma função real f definida no intervalo [0,1], considere a função f^* definida por

$$f^{\star}(x) = \sup_{x \le y \le 1} f(y), \quad \forall x \in [0, 1].$$

(1) Mostre que se $(\varphi_n)_{n\in\mathbb{N}}$ é uma sequência de funções definidas em [0,1] que converge pontualmente para f e $\varphi_n(x) \leq f(x)$, para todo $x \in [0,1]$ e todo $n \in \mathbb{N}$, então a sequência $(\varphi_n^*)_{n\in\mathbb{N}}$ converge pontualmente para f^* .

Para cada $x \in [0,1]$, como $\varphi \leq f$ em todos os pontos de [0,1], temos $\varphi_n^*(x) = \sup_{x \leq y \leq 1} \varphi(x) \leq \sup_{x \leq y \leq 1} f(x) \leq f^*(x)$. Por outro lado, dado $\varepsilon > 0$, existe $y_0, x \leq y_0 \leq 1$ tal que $f(y_0) > f^*(x) - \varepsilon/2$. Como $\varphi_n(y_0)$ converge para $f(y_0)$, obtemos $\varphi_n(y_0) > f(y_0) - \varepsilon/2 > f^*(x) - \varepsilon$, para n suficientemente grande. Portanto, $f^*(x) \geq \varphi_n^*(x) = \sup_{x \leq y \leq 1} \varphi_n(y) \geq \varphi_n(y_0) > f^*(x) - \varepsilon$, para n suficientemente grande. Como $\varepsilon > 0$ é arbitrário, isso implica em $\lim_{n \to \infty} \varphi_n^*(x) = f^*(x)$, para todo $x \in [0,1]$.

(2) Mostre que se φ é uma função simples em [0,1], então φ^{\star} é uma função escada.

Seja $\varphi = \sum_{j=1}^{J} a_j \chi_{E_j}$, onde $a_j \in \mathbb{R}$ e os conjuntos E_j são Lebesgue mensuráveis e disjuntos. Para cada j, seja $b_j = \sup E_j$, com $b_0 = 0$. Sem perda de generalidade, podemos reordenar os conjuntos de tal forma que $0 = b_0 \leq b_1 \leq \cdot \leq b_J \leq 1$. Dessa forma, obtemos $\varphi^* = \sum_{j=1}^{J} c_j \chi_{I_j}$, onde $c_j = \max\{0, a_j, \ldots, a_J\}$ e cada I_j é um intervalo com extremos b_{j-1} e b_j , sendo aberto ou fechado à esquerda ou à direita dependendo de b_{j-1} não pertencer ou pertencer a E_{j-1} e de b_j pertencer ou não a E_j , respectivamente.

Outra maneira é escrever $\varphi(x) = \sum_{j=1}^J a_j \chi_{E_j}$ com $0 < a_j < \ldots < a_J$ e $E_J \subset \ldots \subset E_1, J \in \mathbb{N}$. Nesse caso, $\varphi^*(x) = \sum_{j=1}^J c_j \chi_{I_j}$, onde $c_j = \max\{0, a_j\}$ e $I_j = [0, b_j)$, se $b_j = \sup E_j$ com $b_j \notin E_j$ ou $I_j = [0, b_j]$, se $b_j = \max E_j$.

(3) Mostre que se f é mensurável e não-negativa, então f^* também é mensurável.

Sendo f mensurável e não-negativa, existe uma sequência de funções simples φ_n que converge para f pontualmente e com $0 \le \varphi_n \le f$. Segue, então, que $\varphi_n^{\star} \to f^{\star}$ pontualmente. Além disso, como φ_n é simples, temos φ_n^{\star} escada, portanto mensurável. Logo, f^{\star} , sendo o limite pontual de funções mensuráveis, também é mensurável.

- (4) Dê um exemplo de uma função real f em [0,1] e de uma sequência $(\varphi_n)_{n\in\mathbb{N}}$ de funções reais em [0,1] tais que a sequência converge pontualmente para f mas $(\varphi_n^*)_{n\in\mathbb{N}}$ não converge para f^* em um conjunto de medida positiva.
 - Por exemplo, f(x) = 0 e $\varphi_n = \chi_{[(n-1)/n,1)}$ ou $\varphi_n(x) = \max\{0, 1 n | x (n 1)/n | \}$, para $x \in [0,1]$, de forma que $\varphi_n^* \to \chi_{[0,1)}$, pontualmente, enquanto que $f^* \equiv 0$.
- **3º** Questão: Seja $E \subset [0,1]$ um subconjunto mensurável em relação à medida de Lebesgue m em \mathbb{R} e seja a > 0. Considere a função f dada por $f(t) = m(E \cap [t, t+a])$, para todo $t \in [0,1]$.
 - (1) Mostre que f é absolutamente contínua em [0, 1].

Para todo $0 < h < a \in [0, 1]$, temos

$$E \cap [t+h, t+h+a] = (E \cap [t+h, t+a)) \cup (E \cap [t+a, t+h+a])$$

= $((E \cap [t, t+a)) \setminus (E \cap [t, t+h)) \cup (E \cap [t+a, t+h+a]),$

de modo que

$$f(t+h) = f(t) - m(E \cap [t, t+h)) + m(E \cap [t+a, t+h+a])$$

Logo,

$$|f(t+h-f(t))| \le \max\{m(E\cap[t,t+h)), m(E\cap[t+a,t+h+a])\} \le h,$$

mostrando que f é Lipschitz contínua, portanto absolutamente contínua.

(2) Escreve uma decomposição de f da forma f=g-h onde g e h são não-decrescentes.

$$f(t) = m(E \cap [t, t+a]) = m(E \cap [0, t+a]) - m(E \cap [0, t]) = g(t) - h(t)$$
, onde $g(t) = m(E \cap [0, t+a]) \in h(t) = m(E \cap [0, t])$.

(3) Mostre que $f' = \chi_{E-a} - \chi_E$ quase sempre, onde χ_{E-a} e χ_E são as funções características dos respectivos conjuntos $E - a = \{t - a; t \in E\}$ e E.

Temos, usando, em particular, a invariância da medida de Lebesgue por translações, que

$$f(t) = m(E \cap [t, t+a]) = m((E \cap [0, t+a]) \setminus (E \cap [0, t))$$

$$= m(E \cap [0, t+a]) - m(E \cap [0, t))$$

$$= m(E \cap [0, a]) + m(E \cap [a, t+a]) - m(E \cap [0, t])$$

$$= m(E \cap [0, a]) + m((E - a) \cap [0, t]) - m(E \cap [0, t])$$

$$= f(0) + \int_0^t (\chi_{E-a}(s) - \chi_E(s)) \, dm(s).$$

Como $\chi_{E-a} - \chi_E$ é integrável, segue, novamente, que f é absolutamente contínua e, pelo Teorema da Diferenciação de Lebesgue, que $f' = \chi_{E-a} - \chi_E$ quase sempre. Observe que, em relação à decomposição f = g - h no item anterior, temos $g(t) = f(0) + \int_0^t \chi_{E-a}(s) \, \mathrm{d}m(s) \, \mathrm{e} \ h(t) = \int_0^t \chi_E(s) \, \mathrm{d}m(s)$.