Московский государственный технический университет им. Н.Э.Баумана Кафедра «Системы обработки информации и управления»

Лабораторная работа по дисциплине «Технологии машинного обучения» на тему «Подготовка обучающей и тестовой выборки, кросс-валидация и подбор гиперпараметров на примере метода ближайших соседей»

Выполнила: Студентка группы ИУ5-64 Бершауэр Наталья

1. Цель лабораторной работы

Изучение сложных способов подготовки выборки и подбора гиперпараметров на примере метода ближайших соседей

2. Задание

- 1. Выбрать набор данных (датасет) для решения задачи классификации или регрессии.
- 2. С использованием метода train_test_split разделить выборку на обучающую и тестовую.
- 3. Обучить модель k-ближайших соседей для произвольно заданного гиперпараметра К. Оценить качество модели с помощью подходящих для задачи метрик.
- 4. Построить модель и оценить качество модели с использованием кросс-валидации.
- 5. Произвести подбор гиперпараметра К с использованием GridSearchCV и кроссвалидации.

3. Ход выполнения лабораторной работы

```
Подключим необходимые библиотеки и загрузим набор данных
[]]: import pandas as pd
     import seaborn as sns
     import numpy as np
     import matplotlib.pyplot as plt
    from sklearn.model_selection import train_test_split, cross_val_score,
      GridSearchCV
     from sklearn.neighbors import KNeighborsClassifier
    from sklearn.metrics import accuracy_score
     %matplotlib inline
     # Устанавливаем тип графиков
     sns_set(style="ticks")
     # Для лучшего качествоа графиков
     from IPython.display import set_matplotlib_formats
     set_matplotlib_formats("retina")
     # Устанавливаем ширину экрана для отчета
     pd.set_option("display.width", 70)
     # Загружаем данные
     data = pd_read_csv("heart.csv")
data.head()
```

```
3
         56
                1
                   1
                             120
                                   236
                                           0
                                                     1
                                                            178
                                                                      0
         57
     4
                    0
                             120
                                   354
                                                     1
                                                            163
                                                                      1
                0
                                           0
        oldpeak slope
                              thal target
                          ca
     0
             2.3
                      0
                           0
                                 1
             3.5
                                 2
     1
                      0
                           0
                                          1
     2
             1.4
                       2
                           0
                                 2
                                          1
     3
                      2
                                 2
             8.0
                           0
                                          1
     4
                                 2
                                          1
             0.6
                           0
[2]: data.shape
[2]: (303, 14)
[3]: data.dtypes
                    int64
[3]: age
     sex
                    int64
                    int64
     ср
     trestbps
                    int64
     chol
                    int64
     fbs
                    int64
                    int64
     restecg
     thalach
                    int64
                    int64
     exang
     oldpeak
                   float64
     slope
                    int64
                    int64
     ca
     thal
                    int64
                    int64
     target
     dtype: object
[4]: data.isna().sum()
[4]: age
                  0
                  0
     sex
                  0
     ср
                  0
     trestbps
                  0
     chol
     fbs
                  0
                  0
     restecg
     thalach
                  0
                  0
     exang
     oldpeak
                  0
     slope
                  0
     ca
                  0
     thal
                  0
     target
                  0
     dtype: int64
[5]: data.isnull().sum()
```

```
0
[5]: age
                  0
     sex
     ср
                  0
     trestbps
                  0
     chol
                  0
     fbs
                  0
     restecg
                  0
     thalach
                  0
     exang
                  0
     oldpeak
                  0
     slope
                  0
                  0
     ca
     thal
                  0
                  0
     target
     dtype: int64
```

Как видим, пустых значений нет, значет нет необходимости преобразовывать набор данных

Разделим данные на целевой столбец и признаки

```
[6]: X = data_drop("target", axis=1)
Y = data["target"]
print(X, "\n")
print(Y)
```

	age	sex	ср	trestbps	chol	fbs	restecg	thalach	exang \
0	63	1	3	145	233	1	0	150	0
1	37	1	2	130	250	0	1	187	0
2	41	0	1	130	204	0	0	172	0
3	56	1	1	120	236	0	1	178	0
4	57	0	0	120	354	0	1	163	1
298	57	0	0	140	241	0	1	123	1
299	45	1	3	110	264	0	1	132	0
300	68	1	0	144	193	1	1	141	0
301	57	1	0	130	131	0	1	115	1
302	57	0	1	130	236	0	0	174	0

	oldpeak	slope	ca	thal
0	2.3	0	0	1
1	3.5	0	0	2
2	1.4	2	0	2
3	0.8	2	0	2
4	0.6	2	0	2
298	0.2	1	0	3
299	1.2	1	0	3
300	3.4	1	2	3
301	1.2	1	1	3
302	0.0	1	1	2

```
0
             1
      1
      2
      3
      4
             1
      298
             0
      299
             0
      300
             0
      301
             0
      302
             0
      Name: target, Length: 303, dtype: int64
 [7]: X.shape
 [7]: (303, 13)
 [8]: Y.shape
 [8]: (303,)
     С использованием метода train test split разделим выборку на обучающую
      и тестовую
 [9]: X_train, X_test, Y_train, Y_test = train_test_split(X, Y, test_size=0.25,_
       →random_state=1)
[10]: print("X_train:", X_train.shape)
      print("X_test:", X_test.shape)
      print("Y_train:", Y_train.shape)
print("Y_test:", Y_test.shape)
     X_train: (227, 13)
     X_test: (76, 13)
     Y_train: (227,)
     Y_test: (76,)
     Обучим
                          к-ближайших соседей
                модель
                                                     для
                                                            произвольно
                                                                            заданного
      гиперпараметра К
[11]: # В моделях к-ближайших соседей большое значение к
      # ведёт к большому смещению и низкой дисперсии (недообучению)
      # 70 ближайших соседей
      cl1_1 = KNeighborsClassifier(n_neighbors=70)
      cl1_1.fit(X_train, Y_train)
      target1_0 = cl1_1.predict(X_train)
      target1_1 = cl1_1.predict(X_test)
      accuracy_score(Y_train, target1_0), accuracy_score(Y_test, target1_1)
```

[303 rows x 13 columns]

[11]: (0.6475770925110133, 0.5789473684210527)

Построим модель и оценим качество модели с использованием кроссвалидации

- [12]: scores = cross_val_score(KNeighborsClassifier(n_neighbors=2), X, Y, cv=3)
- [13]: # Значение метрики ассигасу для 3 фолдов scores
- [13]: array([0.6039604, 0.53465347, 0.61386139])
- [14]: # Усредненное значение метрики ассигасу для 3 фолдов пр.mean(scores)
- [14]: 0.5841584158415842

Произведем подбор гиперпараметра К с использованием GridSearchCV и кросс-валидации

```
[15]: # Список настраиваемых параметров

n_range = np.array(range(1, 50, 2))

tuned_parameters = [{ "n_neighbors": n_range}]

n_range
```

- [15]: array([1, 3, 5, 7, 9, 11, 13, 15, 17, 19, 21, 23, 25, 27, 29, 31, 33, 35, 37, 39, 41, 43, 45, 47, 49])

CPU times: user 2.69 s, sys: 2.37 ms, total: 2.69 s

Wall time: 2.69 s

[16]: {'n_neighbors': 37}

Проверим результаты при разных значения гиперпараметра на тренировочном наборе данных:

[17]: plt.plot(n_range, clf_gs.cv_results_["mean_train_score"]);

Очевидно, что для K=1 на тренировочном наборе данных мы находим ровно ту же точку, что и нужно предсказать, и чем больше её соседей мы берём — тем меньше точность.

Посмотрим на тестовом наборе данных

[18]: plt.plot(n_range, clf_gs.cv_results_["mean_test_score"]);

Проверим получившуюся модель:

```
[19]: cl1_2 = KNeighborsClassifier(**clf_gs.best_params_)
    cl1_2.fit(X_train, Y_train)
    target2_0 = cl1_2.predict(X_train)
    target2_1 = cl1_2.predict(X_test)
    accuracy_score(Y_train, target2_0), accuracy_score(Y_test, target2_1)
```

[19]: (0.6740088105726872, 0.5921052631578947)

Как видим, точность модели улучшилось