الجمهورية الجزائرية الديمقراطية الشعبية

الديوان الوطني للامتحانات والمسابقات

دورة: جوان 2011

وزارة التربية الوطنية

امتحان بكالوريا التعليم الثانوي

الشعبة: علوم تجريبية

المدة: 03 ساعات ونصف

اختبار في مادة: الرياضيات

على المترشح أن يختار أحد الموضوعين التاليين الموضوع الأول

التمرين الأول: (03 نقاط)

 $u_{n+1}=3u_n+1$ ، u عدد طبيعي $u_0=-1$: $u_0=-1$ عدد المعرقة المعرقة بالمتثالية العددية المعرقة بالمعرقة بالمعرقة

 $v_n = u_n + \frac{1}{2}$: با المنتالية العددية المعرفة من أجل كل عدد طبيعي (v_n)

في كل حالة من الحالات الثلاث الآتية اقترحت ثلاث إجابات، إجابة واحدة فقط منها صحيحة، حدّدها مع التعليل.

المتتالية (ν,):

۲- لا حساسة و لا هندسية.

أ- حساسة.

نهایة المنتالیة (س) هی :

$$-\infty$$
 $-\frac{1}{2}$ $-\varphi$

+00

 $S_n = -\frac{1}{2} \left[1 + e^{\ln 3} + e^{2\ln 3} + e^{3\ln 3} + ... + e^{n\ln 3} \right]$ ، n عدد طبیعي n عدد طبیعي 3.

$$S_n = \frac{1 - 3^{n+1}}{4} - 2$$

$$S_n = \frac{1 - 3^n}{4} - \mathbf{v}$$

$$S_n = \frac{3^{n+1} - 1}{2}$$
 - 1

التمرين الثاني: (05 نقاط)

نعتبر في الفضاء المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{i}, \vec{j}, \vec{k})$ ، المستوي (\mathcal{P}) الذي يشمل النقطة x + 2y - 7 = 0 شعاع ناظمي له ؛ وليكن (Q) المستوي ذا المعادلة n(-2;1;5) و A(1;-2;1)

 (\mathcal{P}) كتب معادلة ديكارتية للمستوى (\mathcal{P}) .

B(-1;4;-1) مشتركة بين المستوبين (P) و (P).

+ - بين أنّ المستويين (\mathscr{D}) و (\mathscr{D}) متقاطعان وفق مستقيم (Δ) يطلب تعيين تمثيل وسيطيّ له.

لتكن النقطة (5;-2;-1)

أ - احسب المسافة بين النقطة C و المستوى (\mathcal{P}) ثم المسافة بين النقطة C والمستوى (\mathcal{P})

 \cdot (Δ) والمستقيم (Δ).

التمرين الثالث: (05 نقاط)

نعتبر في المستوي المنسوب إلى المعلم المتعامد والمتجانس $(O; \vec{u}, \vec{v})$ ، النقط B ، A و C التي لاحقاتها على الترتيب: $z_C = -4 + i$ و $z_B = 2 + 3i$ ، $z_A = -i$

 $\frac{z_C-z_A}{z_B-z_A}$ الشكل الجبري العدد المركب .1

ABC المثلث طويلة العدد المركب $\frac{z_C-z_A}{z_R-z_A}$ وعمدة له ؛ ثمّ استنج طبيعة المثلث $\frac{z_C-z_A}{z_R-z_A}$

2. نعتبر التحويل النقطي T في المستوي الذي يرفق بكل نقطة M ذات اللاحقة z ، النقطة M ذات اللاحقة z'=i

أ- بين أن النقاط A ، C ، A في استقامية.

D إلى B إلى A و يحول B إلى A الذي مركزه A و يحول B إلى

$$g(x) = \frac{x-1}{x+1}$$
 : با $\mathbb{R} - \{-1\}$ المعرفة على g المعرفة على إلى المعلم المتعامد المتجانس $g(x) = \frac{x-1}{x+1}$ الشكل المقابل) ، بقراءة بيانية: $(O; \vec{i}, \vec{j})$

أ - شكل جدول تغيرات الدالة g .

g(x) > 0 بيانيا المتراجحة

0 < g(x) < 1 چين بيانيا قيم x التي يكون من أجلها

$$f\left(x\right) = \frac{x-1}{x+1} + \ln\left(\frac{x-1}{x+1}\right)$$
 : با]l;+ ∞ [المعرفة على المجال f المعرفة على المجال (II)

 $(C_{f}, \vec{i}, \vec{j})$ تمثيلها البياني في المستوي المنسوب إلى المعلم المتعامد و المتجانس $(C_{f}, \vec{i}, \vec{j})$.

المسب
$$\lim_{x \to +\infty} f(x)$$
 و $\lim_{x \to +\infty} f(x)$ عُمِّ فَسُر النتيجتين هندسيا. الحسب 1

ب - احسب (x) أو ادرس إشارتها ثم شكل جدول تغيرات الدالة أ.

ب - α عدد حقیقي.

.]
$$\alpha$$
; + ∞ [المجال $x\mapsto \ln(x-\alpha)$ على المجال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ على المجال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ بيّن أنّ الدالة $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ على المجال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ المدال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ المجال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ المجال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ المجال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ المجال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ المدال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$ المدال $x\mapsto (x-\alpha)\ln(x-\alpha)-x$

الموضوع الثاني

التمرين الأول (04 نقاط)

عدد حقیقی موجب تماما ویختلف عن 1. α

 $v_n = u_n + \frac{1}{\alpha - 1} : n$ منتائیة عددیة معرفة من أجل كل عدد طبیعي $v_n = u_n + \frac{1}{\alpha - 1}$

. α متتالية هندسية أساسها α .1

 u_n عبارة α عبارة ν_n عبارة α عبارة α عبارة α عبارة α

- عين قيم العدد الحقيقي α التي تكون من أجلها المتتالية (u_n) متقاربة.

 $\alpha = \frac{3}{2}$ نضع. 2

. $T_n = u_0 + u_1 + ... + u_n$ و $S_n = v_0 + v_1 + ... + v_n$ و $S_n = v_0 + v_1 + ... + v_n$. المجموعين $S_n = v_0 + v_1 + ... + v_n$

التمرين الثاني: (04 نقاط)

1. أ - علم الناط A ، A و D . 1

ب - ما طبيعة الرباعي OABC ؟ علَّل إجابتك.

ج - عين لاحقة النقطة Ω مركز الرباعي OABC.

 $MO + \overline{MA} + \overline{MB} + \overline{MC} = 12$ عَيْن ثُمَ أَنشَىٰ $MO + \overline{MA} + \overline{MB} + \overline{MC} = 12$ عَيْن ثُمَ أَنشَىٰ $MO + \overline{MA} + \overline{MB} + \overline{MC}$

 $z^2-6z+13=0$: المعادلة ذات المجهول z التالية: $z^2-6z+13=0$ التالية: $z^2-6z+13=0$ التالية: $z^2-6z+13=0$ نسمى $z^2-6z+13=0$ المعادلة.

لتكن M نقطة من المستوي الاحقتها العدد المركب .

. $|z-z_0|=|z-z_1|$ من المستوي التي تحقق: M من المستوي التي تحقق النقط الم

التمرين الثالث: (05 نقاط)

C(3;-3;6) و B(2;1;7) ، A(0;1;5) النقط $O(\vec{i},\vec{j},\vec{k})$ و المتعامد و المتعامد

1. أ - اكتب تمثيلا وسيطيا للمستقيم (Δ) الذي يشمل النقطة B و (1;-4;-1) شعاع توجيه له.

 \overline{BC} و \overline{AB} متعامدان.

د - استنج المسافة بين النقطة A والمستقيم (Δ) .

 $h(t) = AM : \mathbb{R}$ المعرفة على M(2+t;1-4t;7-t) حيث $M(t) = AM : \mathbb{R}$ المعرفة على $M(t) = AM : \mathbb{R}$

استنتج قيمة العدد الحقيقي t التي تكون من أجلها المسافة AM أصغر ما يمكن.

- قارن بين القيمة الصغرى للدالة h، و المسافة بين النقطة A والمستقيم (Δ).

التمرين الرابع: (07 نقاط)

 $f(x)=e^x-ex-1:$ ب عتبر الدالة العددية f المعرفة على g باء باء المعددية $f(x)=e^x-ex-1:$ ب المعدد والمتجانس g المستوي المنسوب إلى المعلم المتعامد والمتجانس g

 $\lim_{x \to +\infty} f(x) = \lim_{x \to -\infty} f(x) = 1.$

ب - احسب f'(x) ثمّ ادرس إشارتها.

- شكّل جدول تغير ات الدالة ٢.

.0 مماس المنحنى (\mathcal{C}_f) مماس المنحنى (T) معادلة للمستقيم (T) مماس المنحنى .

 α عقبل في المجادلة α [1,75; 1,76] مقبل في المجال α عقبل في المجادل عادل عادل عادل عبين أنّ المعادلة α

 $-\infty$; 2] على المعتقيمين (Δ) و (Δ) ثم المنحنى (C_f) على المجال (Δ)

3. أ - احسب بدلالة α ، المساحة $A(\alpha)$ للحيّز المستوي المحدّد بالمنحنى C_f و حامل محور الغواصل والمستقيمين $x = \alpha$ و x = 0 اللّذين معادلتيهما: $x = \alpha$ و x = 0

.(می المساحات). $A(\alpha) = \left(\frac{1}{2}e\alpha^2 - e\alpha + \alpha\right)ua$: ب - اثبت ان : اث

الإجابة النموذ في قان الموضوع امتحان: ... شبهادة المحالوريا... دورة: .. 2011. الإجابة النموذ في المتعان المتع

عدد الصفحات 4

الإجابة النموذجية

العلامة		
المجموع	مجزأة	عناصر الإجابة الموضوع الأول
3 نقاط		التمرين الأول (3 نقاط)
	0,75+0,25	$V_{n+1} = 3 \; V_n$ كان $V_{n+1} = 3 \; V_n$
	0,75+0,25	$\lim_{n\to+\infty} 3^n = +\infty$ و $U_n = -\frac{1}{2} 3^n - \frac{1}{2}$ كأن $U_n = -\frac{1}{2} 3^n - \frac{1}{2}$ و $U_n = -\frac{1}{2} 3^n - \frac{1}{2}$
	0,75+0,25	$S_n = V_0 + V_1 + \dots + V_n = -\frac{1}{2} \frac{3^{n+1} - 1}{2}$ كأن $($
		التمرين الثاني (5 نقاط)
	1	$-2x+y+5z-1=0$: هي المعتوي (\mathscr{P}) عن المعادلة ديكارتية للمعتوي (\mathscr{P})
	0,5	(\mathcal{Q}) و (\mathcal{P}) من من $B(-1;4;-1)$ و B د التحقّق أنّ إحداثيات B
	0,5	(Δ) عبير متوازيين و منه (\mathscr{Q}) و (\mathscr{Q}) متقاطعان وفق مستقيم $ec{n}'(1;2;0)$
5 نقاط	0,5	$t \in \mathbb{R}$ $\begin{cases} x = 7 - 2t \\ y = t \end{cases}$ تمثیله الوسیطي: $z = 3 - t$
	0,5	$\mathbf{d}_1 = \frac{3\sqrt{30}}{5} : (\mathscr{P})$ و C ا - المسافة بين C. ا - المسافة بين
	0,5	$ ext{d}_2 = rac{6\sqrt{5}}{5}: \left(\mathcal{Q} ight)$ و C الممافة بين C و
	1	ب- $ec{n}.ec{n}'=0$ و منه $(arPhi)$ و $(arOmega)$ متعامدان.
	0,5	\cdot d $(C;(\Delta))=\sqrt{d_1^2+d_2^2}=3\sqrt{2}:(\Delta)$ والمستقيم C والمستقيم C استنتاج المسافة بين النقطة C
		التمرين الثالث (5 نقاط)
5 نقاط	0.75	$\frac{z_C-z_A}{z_B-z_A}=i$:الشكل الجبري للعدد المركب: 1
	0.5 x 2	$\arg\left(\frac{z_C - z_A}{z_B - z_A}\right) = \frac{\pi}{2} \int \frac{z_C - z_A}{z_B - z_A} = 1 \text{(a)}$
	0,5	ABC المثلث ABC : المثلث ABC متساوي الساقين وقائم في ABC
	0,5	2. أ - طبيعة T محدّدا عناصره المميّزة: T هو الدوران ذو المركز A والزاوية $\frac{\pi}{2}$
	0,5	$T\left(B ight) =C\;:T$ بالنحويل B بالنحويل T

)		
 تجريبيه	عيلوم	yezzenea	الشعبة:

العلامة		tible is that we also also	
مجزأة المجموع		تابع عناصر الإجابة للموضوع الأول	
	0,5	و منه \overrightarrow{AD} ، \overrightarrow{AD} في استقامية. $\overrightarrow{AD} = \frac{3}{2} \; \overrightarrow{AC} \; .1$.3	
	0,5	$K=rac{z_D-z_A}{z_C-z_A}=rac{3}{2}:h$ به تعیین نمبهٔ التحاکی $k=rac{z_D-z_A}{z_C-z_A}=rac{3}{2}$	
	0,75	$a=rac{3}{2}$ i و منه $z_D-z_A=a(z_B-z_A)$ و منه $z_D-z_A=a(z_B-z_A)$ عناصر التثنابه z_D هي المركز z_D والنسبة z_D والزاوية z_D	
		لتمرين الرابع (7 نقاط)	
	0,5	$\begin{array}{c ccccccccccccccccccccccccccccccccccc$	
	0,5	$x \in]-\infty;-1[\cup]1;+\infty[$ تكافئ $g(x)>0$ - ب	
	0,5	$x \in]1;+\infty[$ تکافئ $0 < g(x) < 1$ ج	
	1	$\lim_{x \to +\infty} f(x) = 1 \lim_{x \to +\infty} f(x) = -\infty \text{(II)}$	
7 نقاط	0,5	C_f و $x=1$ معادلتا مستقیمین مقاربین لک معادلتا مستقیمین و $x=1$	
	0,5	$g'(x) = \frac{2}{(x+1)^2}$ ، $]1;+\infty[$ من المجال x من عدد حقیقی x من المجال x عدد عقیقی x من المجال x	
	0,5+1	$x > 1$ $y'(x) > 0$ $f'(x) = \frac{2}{(x+1)^2} \left(\frac{2x}{x-1}\right) - 4$	
	0,5	x الداللة f : $f'(x)$ + $f(x)$ - ∞	
	0,5	$\ln\left(\frac{x-1}{x+1}\right) < 0$ على المجال] $+\infty$:]1;+∞	
	0,5	$h'(x) = \ln(x - \alpha)$ و منه $h(x) = (x - \alpha)\ln(x - \alpha) - x$	
	0,5	$F(x) = x - (x + 3) \ln(x + 1) + (x - 1) \ln(x - 1)$ $g(x) = 1 - \frac{2}{x + 1}$	

، تجریبیه العلامة		عناصر الإجابة للموضوع الثابي
المجموع	مجزأة	معتد الإجاب للموضوع التاقي
4 نقاط		التمرين الأول (4 نقاط)
	1	$v_{n+1}=lpha\;v_n$: هندسیة أساسها $lpha$ لأن $lpha$ الأن $lpha$ هندسیة أساسها الم
	0,5	$v_n = \left(6 + \frac{1}{\alpha - 1}\right) \alpha^n : \alpha$ و $n = 1$ ب عبارة n ب عبارة n
	0,5	$u_n = \left(6 + \frac{1}{\alpha - 1}\right) \alpha^n - \frac{1}{\alpha - 1}$: α و α بدلالة α بدلالة α بدلالة α
	0,5	$lpha\in]0;1[$ متقاربة إذا كان $lpha\in]0;1$
	0,75	$u_n=\left(6+rac{1}{lpha-1} ight)lpha^n-rac{1}{lpha-1}:lpha$ و $lpha$ بدلالة n و n بدلالة n بدلالة $\alpha\in]0;1[$ نضع $\alpha\in]0;1[$ بدلالة $\alpha\in]0;1[$ بالمجموع $\alpha\in]0;1[$ نضع $\alpha\in]0;1[$ بدلالة $\alpha\in]0;1[$ بالمجموع $\alpha\in]0;1[$
	0,75	$T_n = 16 \left(\frac{3}{2}\right)^{n+1} - 2n - 18 : T_n$ المجموع $T_n = 16 \left(\frac{3}{2}\right)^{n+1} - 2n - 18 : T_n$
		التمرين الثاني (4 نقاط)
	0,75	1. أ - تعليم النقط A ، B و C:
القناط 4	0,75	$\overrightarrow{OA} = \overrightarrow{CB}$ أي $\frac{z_B - z_C}{z_A} = 1$:انتعليل: $\frac{z_B - z_C}{z_A}$ أي $\frac{z_B - z_C}{z_A}$
	0,5	$z_{\Omega} = \frac{3}{2} + i : OABC$ مركز الرباعي Ω مركز الرباعي
	0,75	2. لدينا : $\Omega = 3$ ، (E) الدائرة التي مركزها Ω و نصف قطرها Ω - الإنشاء
	0,75	3. أ- $(2i)^2 - \Delta = 3 - 2i$ وعليه $\Delta = (2i)^2 - 3 - 2i$ أو العكس.
	0,5	ب - $ z-z_0 = z-z_1 $ معناه $ z-z_0 = z-z_1 $ إذن المجموعة المطلوبة هي محور القطعة $[AB]$ أي محور القواصل.

اختار مادة: الرياضيات الشعبة/السلك: علوم تجريبية العلامة عناصر الإجابة للموضوع الثاني المجموع مجزأة التمرين الثالث (5 نقاط) $\int x = 2 + \lambda$ $y = 1 - 4\lambda$; $\lambda \in \mathbb{R}$: (Δ) التمثيل الوسيطى للمستقيم المستقيم .1 1 $\overrightarrow{BC}=\overrightarrow{u}$ و $\lambda=1$ نتمي إلى $\lambda=1$ أو $\lambda=1$ أو $\lambda=1$ 0,5 $\overrightarrow{AB}.\overrightarrow{BC} = 0$ $\overrightarrow{BC}(1;-4;-1)$ $\overrightarrow{AB}(2;0;2) \rightarrow$ $d(A,(\Delta)) = AB = 2\sqrt{2} - \Delta$ 0,5 $h(t) = AM = \sqrt{8 + 18t^2}$: عبارة $h(t) = AM = \sqrt{8 + 18t^2}$: عبارة ولاية الم 0,75 5 تقاط $h'(t) = \frac{18t}{\sqrt{18t^2 + 8}} : t$ عدد حقیقی t عدد عقیقی انه من أجل كل عدد عقیقی 0,5 t=0 أي أي أي أي أي h'(t)=00.75 $h(0)=d(A,(\Delta))$ ومنه $h(0)=2\sqrt{2}$ هي $h(0)=2\sqrt{2}$ ومنه الحدية الصغرى للدالة الم التمرين الرابع: (07 نقاط) : $\lim_{x \to +\infty} f(x) = +\infty$ $\lim_{x \to -\infty} f(x) = +\infty$ $\lim_{x \to +\infty} f(x) = +\infty$ 1. 0.5×2 0,5 $f'(x) = e^x - e : f'(x)$ باسم - ب دراسة إشارة (x): f'(x) 0,5 0,5 ج - جدول تغيرات الدالة f: f'(x)-00 +00 7 نقاط $\lim_{x \to -\infty} [f(x) - (-ex - 1)] = 0 - 1.2$ 0,5 y=(1-e)x:0 عند النقطة ذات الفاصلة (\mathcal{C}_f) مماس (T) معادلة 0.5

1

1

1

0,5

f(1,76) = 0,028 f(1,75) = -0,0024[1,75;1,76] على مستمرة و مثز ايدة تماما على f(1,76) = 0,028

 $A(\alpha) = \left(-e^{\alpha} + \frac{1}{2}e^{\alpha^2} + \alpha + 1\right)ua : A(\alpha)$ is a lamb of α in α .3

-] $-\infty$; 2] على المجال (C_f) و (T) و (Δ) على المجال (Δ)

: و بالتعویض نجد أن $e^{\alpha} = e\alpha + 1$ و بالتعویض نجد أن $e^{\alpha} = e\alpha + 1$