DIFFRACTION

P47 – Optics: Unit 7

Course Outline

<u>Unit 1</u>: Electromagnetic Waves

Unit 2: Interaction with Matter

Unit 3: Geometric Optics

Unit 4: Superposition of Waves

Unit 5: Polarization

Unit 6: Interference

Unit 7: Diffraction

Unit 8: Fourier Optics

Unit 9: Modern Optics

UNIT 7

Diffraction

Single Slit Diffraction – The Huygens-Fresnel Principle

Light propagating through an aperture is a sum of "spherical wavelets"

$$E(r) = C \iint E(x', y', 0) u(k, R) dx'dy'$$
Incident light Diffracted "wavelet" (usually plane wave) (downstream propagation)

This isn't nearly as simple as it may seem.

Most of the challenge of diffraction theory involves doing this in a way you can actually solve!

Peatross & Ware

Scalar Diffraction Theory

We'll treat the field as a scalar wave, ignoring polarization.

Vector Helmholtz Equation

$$\nabla^2 \mathbf{E}(\mathbf{r}) + k^2 \mathbf{E}(\mathbf{r}) = 0$$

$$E(r,k) = \widehat{E}(r,k)u(r,k)^*$$

Scalar Helmholtz Equation

$$\nabla^2 E(\mathbf{r}) + k^2 E(\mathbf{r}) = 0$$

$$E(\mathbf{r},k) = E_0 \frac{e^{ikr}}{r} u(\theta,k)$$

This works fine as long as $\theta \leq \frac{\lambda}{d} \ll 1$

Equivalent to requiring that \widehat{E} can be approximated as constant in space

*Vector diffraction theory is graduate-level electrodynamics, and well beyond the scope of this course. See Jackson *Electrodynamics* Ch. 10.

Coordinates in Diffraction Problems

The wavelet function $\mathbf{u}(k, \mathbf{R})$ depends on position in a non-trivial way:

$$R = \sqrt{(x - x')^2 + (y - y')^2 + z^2}$$

$$R = \sqrt{(\rho - \rho')^2 + z^2}$$

Choose *Cartesian* or *cylindrical* coordinates depending on the symmetry of the aperture (if any)

Airy Disk and Resolution Limit

Irradiance from circular aperture:

$$I(\rho, z) = I_o \left(\frac{\pi a^2}{\lambda z}\right)^2 \left[2 \frac{J_o(kap/z)}{kap/z}\right]^2$$

First-order Bessel function:

Airy Disk and Resolution Limit

Irradiance from lens aperture, diameter, D:

$$\underline{T}(\rho,f) = \underline{T}_{o}\left(\frac{\pi D^{2}}{4\lambda f}\right)^{2} \left[2\frac{J_{o}(kD\rho/2f)}{kD\rho/2f}\right]^{2}$$

Resolution Limit:

When the first zero of one peak is at the same position as the second primary peak

Meet this condition when: $\frac{kDp}{2f} = 1.22 \pi$

Have minimum resolvable angle between two objects as:

$$\theta_{\text{min}} \simeq \frac{P}{f} = \frac{1.22 \, \lambda}{D}$$

The Diffraction Limit!

XIAOWEI ZHUANG - HARVARD

Illuminating biology at the nanoscale with single-molecule and super-resolution fluorescence microscopy

ELLOL Defection

UNIT 7

Multiple Slit Diffraction

Equivalent Diffraction

Gratings and Spectrometers

Fig.4 Diffraction Grating with Row of Slits

Fig.5 Reflective Blazed Diffraction Grating

Luminescence Spectroscopy

Stellar Spectroscopy

our sun

Stellar Spectroscopy

Hydrogen Sodium Calcium
H Na Ca

The star's chemical fingerprints

1. Receding star

2. Approaching star

Absorption

Wavelength

other suns

Array Theorem

Calculate the diffraction pattern caused by N identical apertures with $E_{\text{aperture}}(x', y', 0)$

Each aperture has a location (x'_n, y'_n) , so that we use $E_{\text{aperture}}(x' - x'_n, y' - y'_n, 0)$

$$E(x, y, z) = -i \frac{e^{ikz} e^{i\frac{k}{2z}(x^2 + y^2)}}{\lambda z} \sum_{n=1}^{N} \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} dy' E_{\text{aperture}}(x' - x'_n, y' - y'_n, 0) e^{-i\frac{k}{z}(xx' + yy')}$$

Change of variables: $x'' \equiv x' - x'_n$ and $y'' \equiv y' - y'_n$

$$E(x, y, z) = -i \frac{e^{ikz} e^{i\frac{k}{2z}(x^2 + y^2)}}{\lambda z} \sum_{n=1}^{N} \int_{-\infty}^{\infty} dx'' \int_{-\infty}^{\infty} dy'' E_{\text{aperture}}(x'', y'', 0) e^{-i\frac{k}{z}[x(x'' + x'_n) + y(y'' + y'_n)]}$$

$$E(x,y,z) = \left[\sum_{n=1}^{N} e^{-i\frac{k}{z}(xx'_n + yy'_n)}\right] \left[-i\frac{e^{ikz}e^{i\frac{k}{2z}(x^2 + y^2)}}{\lambda z} \int_{-\infty}^{\infty} dx' \int_{-\infty}^{\infty} dy' E_{\text{aperture}}(x',y',0) e^{-i\frac{k}{z}(xx' + yy')}\right]$$

Array Theorem in the Real World:

Discrete Fourier Transform of 2D Images

For a list of N sample data points (1D)

$$F(u) = \frac{1}{N} \sum_{n=0}^{N-1} f(n) e^{-i(2\pi nu)/N}$$

For an MxN array of sample data points (2D)

$$F(u,v) = \frac{1}{NM} \sum_{n=0}^{N-1} \sum_{m=0}^{M-1} f(n,m) e^{-2\pi i (\frac{nu}{N} + \frac{mv}{M})}$$

A lot of work has been put into algorithms to calculate this as efficiently as possible. (FFTW)

www.originlab.com

Fourier Optics: The Basic Idea

$$E(x, y, z) \cong -\frac{ie^{ikz}e^{i\frac{k}{2z}(x^2+y^2)}}{\lambda z} \iint_{\text{aperture}} E(x', y', 0) e^{-i\frac{k}{z}(xx'+yy')} dx' dy'$$

- 1. The intensity distribution in the far-field (Fraunhofer limit) is the 2D Fourier transform of the intensity distribution at the source.
- 2. A (perfect) lens causes the image at $z=\infty$ to form at its focal distance.

Babinet's Principle

Array Theorem

Diffraction from a complicated aperture is just the *coherent* sum of diffraction by its component parts

Reminder: add the electric field amplitudes, not the intensities!

Diffraction

UNIT 7

The Arago Spot

What is the "correct" nature of light?

Corpuscular Theory of Light

SUN SHADOWING OBJECT GROUND

Wave Theory of Light

Fresnel-Kirchoff – Circular Aperture

Example: What is the on-axis electric field due of a plane wave diffracting through a circular aperture?

$$E(0,0,z) = -\frac{i}{\lambda} \iint_{\text{aperture}} E(x', y', 0) \frac{e^{ik\sqrt{x'^2 + y'^2 + z^2}}}{\sqrt{x'^2 + y'^2 + z^2}} dx' dy'$$

Change to cylindrical coordinates!

$$= -\frac{iE_0}{\lambda} \int_{0}^{2\pi} d\phi' \int_{0}^{\ell/2} \frac{e^{ik\sqrt{\rho'^2 + z^2}}}{\sqrt{\rho'^2 + z^2}} \rho' d\rho'$$

Integration over ϕ is trivial, integral over ρ isn't too bad...

$$= -\frac{iE_0}{\lambda} 2\pi \left. \frac{e^{ik\sqrt{\rho'^2 + z^2}}}{ik} \right|_0^{\ell/2} = -E_0 \left(e^{ik\sqrt{(\ell/2)^2 + z^2}} - e^{ikz} \right)$$

On-Axis Intensity Behind Circular Aperture

$$I(0,0,z) \propto E(0,0,z) E^*(0,0,z)$$

$$\propto |E_0|^2 \left(e^{ik\sqrt{(\ell/2)^2 + z^2}} - e^{ikz} \right) \left(e^{-ik\sqrt{(\ell/2)^2 + z^2}} - e^{-ikz} \right)$$

$$\propto 2|E_0|^2 \left[1 - \cos\left(k\sqrt{(\ell/2)^2 + z^2} - kz\right) \right]$$

Fresnel Diffraction - Single Slit

$$E(x, y, z) \cong -\frac{ie^{ikz}e^{i\frac{k}{2z}(x^2+y^2)}}{\lambda z} \iint_{\text{aperture}} E(x', y', 0) e^{i\frac{k}{2z}(x'^2+y'^2)} e^{-i\frac{k}{z}(xx'+yy')} dx' dy'$$

Fresnel Diffraction – Circular Aperture

Intensity pattern at varying distances behind a circular aperture:

$$E(\rho,z) = -iE_0 \frac{2\pi e^{ikz} e^{i\frac{k\rho^2}{2z}}}{\lambda z} \int_0^{\ell/2} \rho' d\rho' e^{i\frac{k\rho'^2}{2z}} J_0\left(\frac{k\rho\rho'}{z}\right)$$

Has to be computed numerically

Credit: MuthuKutty at en.wikipedia

Bessel

Function

Limits of Diffraction

Fraunhofer:

$$\lambda > \frac{d^2}{z}$$

$$\lambda \cong \frac{d^2}{z}$$

$$\lambda \ll d, z$$
$$(\lambda \to 0)$$

Imagine illuminating the same slit with different wavelengths Keeping everything else the same:

← Microwave

 $\text{X-ray} \rightarrow$

Diffraction