CS 245 Personal Notes

by Sam Gunter

Instructors: Jonathan Buss, Collin Roberts
Textbook: Mathematical Logic for Computer Science by Zhongwan Lu
Course Notes by: Collin Roberts
• Spring 2021 • University of Waterloo •

1	Introduction	2
2	Propositional Language: Syntax	4
3	Propositional Language: Semantics	5
4	Propositional Calculus: Essential Laws, Normal Forms	7
5	Adequate Set of Connectives	9
6	Propositional Logic: Formal Deduction	10
7	Propositional Logic: Resolution	13
10	First-Order-Logic	14
11	First-Order-Logic: Syntax	14
12	First-Order-Logic: Semantics	16
14	First-Order-Logic: Formal Deduction	17
14	First-Order-Logic: Soundness and Completeness	18
15	First-Order-Logic: Resolution and Automated Theorem Provers	19
16	Computing with Logical Formulas	21
17	Peano Arithmetic	23
18	Program Verification	25

Natural Deduction

- 1. Reflexivity: $A \vdash A$ is a theorem
- 2. (+): If $\Sigma \vdash A$, then $\Sigma, \Sigma' \vdash A$ is a theorem
- 3. $(\neg -)$: If $\Sigma, \neg A \vdash B$ and $\Sigma, \neg A \vdash \neg B$, then $\Sigma \vdash A$ is a theorem
- 4. $(\rightarrow -)$: If $\Sigma \vdash A \rightarrow B$ and $\Sigma \vdash A$, then $\Sigma \vdash B$ is a theorem
- 5. $(\rightarrow +)$: If $\Sigma, A \vdash B$, then $\Sigma \vdash A \rightarrow B$ is a theorem
- 6. $(\land -)$: If $\Sigma \vdash A \land B$, then $\Sigma \vdash A$ and $\Sigma \vdash B$ are theorems
- 7. $(\wedge +)$: If $\Sigma \vdash A$ and $\Sigma \vdash B$, then $\Sigma \vdash A \wedge B$ is a theorem
- 8. $(\vee -)$: If $\Sigma, A \vdash C$ and $\Sigma, B \vdash C$, then $\Sigma, A \vee B \vdash C$ is a theorem
- 9. $(\vee +)$: If $\Sigma \vdash A$, then $\Sigma \vdash A \vee B$ and $\Sigma \vdash B \vee A$ are theorems
- 10. $(\leftrightarrow -)$: If $\Sigma \vdash A \leftrightarrow B$ and $\Sigma \vdash B$, then $\Sigma \vdash A$ is a theorem
- 11. $(\leftrightarrow +)$: If Σ , $A \vdash B$ and Σ , $B \vdash A$, then $\Sigma \vdash A \leftrightarrow B$ is a theorem
- 12. $(\forall -)$: If $\Sigma \vdash \forall x A(x)$, then for a term t, $\Sigma \vdash A(t)$ is a theorem
- 13. $(\forall +)$: If $\Sigma \vdash A(u)$ and $u \notin \Sigma$, then $\Sigma \vdash \forall x A(x)$ is a theorem
- 14. $(\exists -)$: If Σ , $A(u) \vdash B$ and $u \notin \Sigma \cup B$, then Σ , $\exists x A(x) \vdash B$ is a theorem
- 15. $(\exists +)$: If $\Sigma \vdash A(t)$, then for A'(x) such that some occurrences of t in A(t) are replaced by $x, \Sigma \vdash \exists x A'(x)$ is a theorem
- 16. $(\approx -)$: If $\Sigma \vdash A(t_1)$ and $\Sigma \vdash t_1 \approx t_2$, then for $A'(t_2)$ such that some occurrences of t_1 in $A(t_1)$ are replaced by t_2 , $\Sigma \vdash A'(t_2)$ is a theorem
- 17. $(\approx +)$: $\emptyset \models u \approx u$ is a theorem
- 18. Membership Rule (\in): If $A \in \Sigma$, then $\Sigma \vdash A$

Peano's Axioms

- PA1: $\forall x(s(x) \not\approx 0)$
- PA2: $\forall x \forall y ((s(x) \approx s(y)) \rightarrow (x \approx y))$
- PA3: $\forall x(x + 0 \approx x)$
- PA4: $\forall x \forall y ((x + s(y)) \approx s(x + y))$
- PA5: $\forall x(s(x) \cdot 0 = 0)$
- PA6: $\forall x \forall y (x \cdot s(y) = x \cdot y + x)$
- PA7: Axiom Schema: For a formula A(u) where u is a free variable,

$$(A(0) \land \forall x(A(x) \rightarrow A(s(x)))) \rightarrow \forall xA(x)$$

1 Introduction

Def Logic: From the Greek word Logykos, reasoning. The science of proof, the fundamental science of thought, the art of applying knowledge, the analysis of arguments

- Plato (429-327BC) studies "What is Truth"
- Aristotle (384-322BC) lays down the first systemic treatment of valid reasoning "syllogisms"
- Rene Descartes (1596-1650) introduces algebraic symbols into geometry
- George Boole (1815-1864) proposes the use of algebra for logic
- Kurt Goel (1906-1978) demonstrates that any theory must have limitations
- Alan Turing (1912-1954) gives the first definition of computer programming

Def Syllogism: A kind of logical argument where a proposition is inferred from two others (premises)

Note: Based on form, not content

Applications:

- 1. Electronic digital circuits formed from logic gates to minimize components
- 2. Artificial Intelligence uses knowledge base and an inference engine
 - (a) DENDRAL to identify unknown organic molecules
 - (b) MYCIN to treat blood infections to the same degree as a specialist in blood infections
 - (c) MISTRAL to monitor dam safety
- 3. Automated Proof Verifiers
- 4. Databases such as SQL use first order logic
- 5. Software Design/Programming Languages
- 6. DNA Computing
- 7. Synthetic Biology

Def Truth-Preserving: If the premises are true, then the conclusion must be true

Def Logic: The analysis and appraisal of arguments

Def Argument: A set of statements including premise(s) and a conclusion

Def Valid: An argument is valid, correct, or sound when if its premises are true its conclusion is true

Def Compound Statements: Consists of several parts, each of which is its own statement

Def Hypothetical Syllogism: If p then q, if q then r, therefore if p then r

Def Disjunctive Syllogism: p or q, not q, therefore p

Def Modus Ponens: If p then q, p, therefore q

Def Proposition: A statement with a true or false value

Variable: any variable (p, q, r) Constants: 1 or true and 0 or false

Def Atomic Propositions: Cannot be further divided, a single variable

Def Compound Propositions: Combination of several variables

Def Logical Connectives: or, and, not, if, then, equivalence

Unary Connective: not or negation

Binary Connective: or, and, if, then, equivalence

Symmetric: or, and, equivalence

Def Negation: Not "reverses" the truth value of the proposition

 $\neg p$

Def Conjunction: True if both are true, false otherwise

 $p \wedge q$

Def Disjunction: False if both are false, true otherwise

 $p \lor q$

Def Implication: If a proposition (antecedent) implies another (consequent)

 $\mathbf{p} \to \mathbf{q}$

Vacuously True: If $p \to q$ but $\neg p$, then always true

Def Equivalence: Or biconditional, a double implication

 $\mathbf{p} \leftrightarrow \mathbf{q}$

2 Propositional Language: Syntax

Def Propositional Language \mathcal{L}^p : The formal language of propositional logic which is expressions from a set of symbols

- Proposition Symbols: p, q, r, . . .
- Connective Symbols: $\neg, \lor, \land, \rightarrow, \leftrightarrow$
- Punctuation Symbols: (,)

Def Expressions: Finite strings of the allowed symbols where the length is the number of occurrences of symbols, often defined by U, V, etc (Meta-symbols, along with $=, \neq$)

Empty Expression: ε

Def Concatenation: An expression followed by another expression UV

Note: $U\varepsilon = U$

Def Segment: If $U = W_1VW_2$ then V is a segment of U

if $V \neq U$, then a Proper Segment

if U = VW, then V is an Initial Segment

if U = WV, then V is a Terminal Segment

Def Atomic Formula: An expression with length 1 consisting of a variable

$$Atom(\mathcal{L}^p)$$

Def Formulas: The set $Form(\mathcal{L}^p)$ that meet the formation rules

- Every $Atom(\mathcal{L}^p)$ is in $Form(\mathcal{L}^p)$
- For $A, B \in Form(\mathcal{L}^p)$
 - $(\neg A) \in Form(\mathcal{L}^p)$
 - $(A \wedge B) \in Form(\mathcal{L}^p)$
 - $(A \vee B) \in Form(\mathcal{L}^p)$
 - $(A \to B) \in Form(\mathcal{L}^p)$
 - $(A \leftrightarrow B) \in Form(\mathcal{L}^p)$

Theorem Unique Readability: Every formula of $Form(\mathcal{L}^p)$ is of exactly one of the six forms in exactly one way

Lemma Every Formula in $Form(\mathcal{L}^p)$ has an equal number of left and right parentheses

Theorem Every Formula in $Form(\mathcal{L}^p)$ is an atom or one of the six forms

Def Precedence Rules: To aid in removing brackets, the connective symbols should be read in order of

- ¬
- ^
- \(\text{\sigma} \)
- ullet \rightarrow
- $\bullet \leftrightarrow$

Def Scopes: For $(\neg A)$, A is the scope of this negation. For (A *' B), A is the left scope and B is the right scope

3 Propositional Language: Semantics

Def Semantics: The meaning of logic (where syntax is the formation)

Def Truth Value: A function that maps to true or false, {0, 1}

$$t: Atom(\mathcal{L}^p) \mapsto \{0,1\}$$

Def Truth Table: Lists all possible truth valuations

Truth valuation: A single row

Def Value: The value of A with respect to t is

$$A^{t} = \begin{cases} \text{if } Atom(A), & t(p) \\ \text{if } A = (\neg B)^{t}, & \begin{cases} 1 & \text{if } B^{t} = 0 \\ 0 & \text{if } B^{t} = 1 \end{cases} \\ \text{if } A = (B \wedge C)^{t}, & \begin{cases} 1 & \text{if } B^{t} = C^{t} = 1 \\ 0 & \text{else} \end{cases} \\ \text{if } A = (B \vee C)^{t}, & \begin{cases} 1 & \text{if } B^{t} \neq 0 \neq C^{t} \\ 0 & \text{else} \end{cases} \\ \text{if } A = (B \to C)^{t}, & \begin{cases} 1 & \text{if } B^{t} = 0 \text{ or } C^{t} = 1 \\ 0 & \text{else} \end{cases} \\ \text{if } A = (B \leftrightarrow C)^{t}, & \begin{cases} 1 & \text{if } B^{t} = 0 \text{ or } C^{t} = 1 \\ 0 & \text{else} \end{cases} \end{cases}$$

Def Satisfiable: For given formulas $\Sigma \in Form(\mathcal{L}^p)$, if and only if there exists a t such that for all formulas $\Sigma^t = 1$ is satisfied ($\Sigma^t = 0$ if at least 1 formula does not satisfy)

Note: t satisfies, Σ is satisfied

Def Tautology: A formula which is true under all truth valuations

$$A^t = 1, \forall t$$

Def Contradiction: A formula which is false under all truth valuations

$$A^t = 0, \forall t$$

Def Contingent: A formula which may be true or false depending on truth valuation

Def Law of the Excluded Middle: $p \lor \neg p$ is a tautology

Theorem Let A be a tautology with proposition symbols $p_1, p_2, \dots p_n$, then replacing p_i with arbitrary formula B is also a tautology

Def Law of the Contradiction: $p \land \neg p$ is a contradiction

Def Law of identity: The final of Plato's essential thoughts, p = p

Def Tautological Consequence: For $\Sigma, A \in Form(\mathcal{L}^p)$, Σ tautologically entails A if and only if

$$\Sigma \vDash A : \forall t, \Sigma^t = 1 \rightarrow A^t = 1$$

 $\emptyset \vDash A$ is true for all $A \in Form(\mathcal{L}^p)$ is A is a tautology

Def Valid:

- The argument with premises $A_1, A_2, \dots A_n$ and conclusion C is valid
- $(A_1 \wedge A_2 \wedge \cdots \wedge A_n) \to C$ is a tautology
- $(A_1 \wedge A_2 \wedge \cdots \wedge A_n \wedge \neg C)$ is a contradiction
- $(A_1 \wedge A_2 \wedge \cdots \wedge A_n \wedge \neg C)$ is not satisfiable
- $\{A_1, A_2, \dots A_n, \neg C\}$ is not satisfiable
- $\{A_1, A_2, \dots A_n\} \vDash C$

Def Tautologically Equivalent: If $A \vDash B$ and $B \vDash A$ then

$$A \models B$$

Note: Equality implies equivalence but not vice versa

Def Proof by Contradiction: Assume the contrary, reach a contradiction

Def De Morgan's Law:

$$\neg(p \land q) \models (\neg p \lor \neg q)$$

Def Dual De Morgan's Law:

$$\neg(p \lor q) \models (\neg p \land \neg q)$$

Def Contrapositives:

$$(p \rightarrow q) \models (\neg q \rightarrow \neg p)$$

Def Bi-Conditional:

$$p \leftrightarrow q \models (p \rightarrow q) \land (q \rightarrow p)$$

Lemma Tautological Equivalences: Let $A \models A'$ and $B \models B'$, then

- 1. $\neg A \models \neg A'$
- 2. $A \wedge B \models A' \wedge B'$
- 3. $A \lor B \models A' \lor B'$
- 4. $A \rightarrow B \models A' \rightarrow B'$
- 5. $A \leftrightarrow B \models A' \leftrightarrow B'$

Theorem Replaceability of Tautologically Equivalent Formulas: Let $B \models B'$, and A' be A with some instances of B replaced by B', then $A' \models A$

Theorem Duality: Let A be composed of atoms, \neg , \wedge , \vee , then for $\Delta(A)$ made by replacing all atoms with their negation and all \vee with \wedge (and vice versa), $\neg A \models \Delta(A)$

Def Fuzzy Logic: Uses real values within [0,1] to denote partial truth where the restriction to $\{0,1\}$ coincides with classical logic, now

- And $(x, y) = \min\{x, y\}$
- $Or(x, y) = max\{x, y\}$
- Not(x) = 1 x

4 Propositional Calculus: Essential Laws, Normal Forms

Def Tautological Equivalences:

- $(A \wedge B) \wedge C \models A \wedge (B \wedge C)$
- $1 \land \neg A \models 0$
- $1 \wedge 0 \models 0$

Def Removing the Connectives: Connectives are definable (or reducible) in terms of \neg, \wedge, \vee

- $A \to B \models \neg A \lor B$
- $A \leftrightarrow B \models (A \land B) \lor (\neg A \land \neg B) \models (\neg A \lor B) \land (\neg B \lor A)$

Propositional Calculus Laws By dual pairs,

• Excluded Middle Law: $A \vee \neg A \models 1$

• Contradiction Law: $A \land \neg A \models 0$

• Identity Laws: $A \lor 0 \models A, A \land 1 \models A$

 Domination Laws: $A \lor 1 \models 1, A \land 0 \models 0$

• Idempotent Laws: $A \lor A \models A, A \land A \models A$

• Double-Negation Laws: $\neg(\neg A) \models A$

• Conductivity Laws: $A \vee B \models B \vee A$, $A \wedge B \models B \wedge A$

• Associativity Laws: $(A \lor B) \lor C \models A \lor (B \lor C), (A \land B) \land C \models A \land (B \land C)$

• Distributivity Laws: $A \lor (B \land C) \models (A \lor B) \land (A \lor C), A \land (B \lor C) \models (A \land B) \lor (A \land C)$

• De Morgan's Laws: $\neg(A \land B) \models \neg A \lor \neg B, \neg(A \lor B) \models \neg A \land \neg B$

• Absorption Laws: $A \lor (A \land B) \models A, A \land (A \lor B) \models A$

• Another Important Law (lec 4, pg 9): $(A \land B) \lor (\neg A \land B) \models B, (A \lor V) \land (\neg A \lor B) \models B$

Def Literal: Complementary literals are of the form $p, \neg p$

Def Disjunctive Clause: A disjunction with literals as disjuncts

$$(p \lor \neg q \lor s)$$

Def Conjunctive Clause: A conjunction with literals as conjuncts

$$(p \land \neg q \land s)$$

Def Disjunctive Normal Form: A disjunction with conjunctive clauses

$$p \vee (q \wedge r)$$

Def Conjunctive Normal Form: A conjunction with disjunctive clauses

$$p \wedge (q \vee r) \wedge (\neg q \vee r)$$

Theorem (lec 4 pg 23) Any formula $A \in Form(\mathcal{L}^p)$ is tautologically equivalent to some formula in disjunctive normal form

Theorem (lec 4 pg 24) Any formula $A \in Form(\mathcal{L}^p)$ is tautologically equivalent to some formula in conjunctive normal form

5 Adequate Set of Connectives

Def n-ary Connectives: A connective $f(A_1, A_2, \dots A_n)$ is defined by its truth-table

Note: There are 4 distinct unary connectives Note: There are 16 distinct binary connectives

p	q	Т	V	\leftarrow	\rightarrow		p	q	XOR	\leftrightarrow	$\neg q$	¬р	\wedge	f	f	\downarrow	上
1	1	1	1	1	1	0	1	1	0	1	0	0	1	0	0	0	0
1	0	1	1	1	0	1	1	0	1	0	1	0	0	1	0	0	0
0	1	1	1	0	1	1	0	1	1	0	0	1	0	0	1	0	0
0	0	1	0	1	1	1	0	0	0	1	1	1	0	0	0	1	0

Def Adequate: A set of connectives is adequate if they can express every truth table Note: The standard connectives are adequate $\{\neg, \land, \lor, \rightarrow, \leftrightarrow\}$

Theorem (Logic 5, pg 8): The set $\{\neg, \land, \lor\}$ is adequate

Corollary (Logic 5, pg 10): The sets $\{\neg, \land\}, \{\neg, \lor\}, \{\neg, \to\}$ are adequate

Def NOR: The Peirce arrow connective

р	q	$\mathbf{p}\downarrow\mathbf{q}$
1	1	0
1	0	0
0	1	0
0	0	1

Def NAND: The Sheffer stroke connective

p	q	$p \mid q$
1	1	0
1	0	1
0	1	1
0	0	1

Def Ternary Connective: The if, then, else connective

p	q	r	$ au(\mathrm{p,q,r})$
1	1	1	1
1	1	0	1
1	0	1	0
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	1
0	0	0	0

6 Propositional Logic: Formal Deduction

Def Formal Deduction: A relation between a set of premises and conclusion formulas

$$\{A_1, A_2, \dots\} = \Sigma \vdash A \text{ where } \Sigma \cup A = \Sigma, A$$

Def Proof: A finite sequence of sequents $(\Sigma_i \vdash A_i)$

Note: A Theorem is the final sequent in a valid proof

Def Natural Deduction: A set of eleven rules (or schema)

- 1. Reflexivity: $A \vdash A$ is a theorem
- 2. Addition of Premises: If $\Sigma \vdash A$, then $\Sigma, \Sigma' \vdash A$ is a theorem
- 3. \neg Elimination: If $\Sigma, \neg A \vdash B$ and $\Sigma, \neg A \vdash \neg B$, then $\Sigma \vdash A$ is a theorem
- 4. \rightarrow Elimination: If $\Sigma \vdash A \rightarrow B$ and $\Sigma \vdash A$, then $\Sigma \vdash B$ is a theorem
- 5. \rightarrow Introduction: If Σ , $A \vdash B$, then $\Sigma \vdash A \rightarrow B$ is a theorem
- 6. \wedge Elimination: If $\Sigma \vdash A \wedge B$, then $\Sigma \vdash A$ and $\Sigma \vdash B$ are theorems
- 7. \wedge Introduction: If $\Sigma \vdash A$ and $\Sigma \vdash B$, then $\Sigma \vdash A \wedge B$ is a theorem
- 8. \vee Elimination: If Σ , $A \vdash C$ and Σ , $B \vdash C$, then Σ , $A \vee B \vdash C$ is a theorem
- 9. \vee Introduction: If $\Sigma \vdash A$, then $\Sigma \vdash A \vee B$ and $\Sigma \vdash B \vee A$ are theorems
- 10. \leftrightarrow Elimination: If $\Sigma \vdash A \leftrightarrow B$ and $\Sigma \vdash B$, then $\Sigma \vdash A$ is a theorem
- 11. \leftrightarrow Introduction: If Σ , $A \vdash B$ and Σ , $B \vdash A$, then $\Sigma \vdash A \leftrightarrow B$ are theorems
- 12. Membership Rule \in : If $A \in \Sigma$, then $\Sigma \vdash A$

Def Formal Proof: Formula A is formally deducible from Σ if and only if $\Sigma \vdash A$ is generate by a finite applications of the rules of formal deduction

Def Semantics: Considers what is true or false

$$A \vDash B \text{ iff } A \to B \text{ is a tautology}$$

Def Syntax: Formulas are merely a sequence of abstract symbols

$$A \vdash B \text{ iff } \emptyset \vdash A \to B$$

Lemma Double-Negation Elimination $(\neg \neg -)$: For every A,

$$\neg \neg A \vdash A$$

Theorem Reductio Ad Absurdum (\neg +): If Σ , $A \vdash B$ and Σ , $A \vdash \neg B$, then

$$\Sigma \vdash \neg A$$

Lemma Contrapositive: For every A, B,

$$A \rightarrow B \vdash \neg B \rightarrow \neg A$$

Theorem Transitivity of Deducibility (Tr): Let $\Sigma \subseteq Form(\mathcal{L}^p)$, $A_1, A_2, \dots A_n \in Form(\mathcal{L}^p)$. If $\Sigma \vdash A_i$ for all $i \in \{1, 2, \dots n\}$ and $A_1, A_2, \dots A_n \vdash A$, then

$$\Sigma \vdash A$$

Def Syntactically Equivalent: When $A \vdash B$ holds

Lemma Syntactic Equivalence: If $A \vdash A'$ and $B \vdash B'$, then

- i) $\neg A \vdash \neg A'$
- ii) $A \wedge B \vdash A' \wedge B'$
- iii) $A \vee B \vdash A' \vee B'$
- iv) $A \to B \vdash A' \to B'$
- $v)\ A \leftrightarrow B \vdash \mid A' \leftrightarrow B'$

Theorem Replacement of Syntactically Equivalent Formulas (Repl): Let $B \vdash C$, for a given A, Let A' be constructed from the replacement of some occurances of B with C, then

$$A \vdash A'$$

Theorem Finiteness of Premise Set: If $\Sigma \vdash A$, then $\exists \Sigma_0 \subseteq \Sigma$ such that $\Sigma_0 \vdash A$

Def Soundness: Every statement that one proves should be actually correct

Def Completeness: One should be able to prove, within the system, every correct statement

Theorem Soundness and Completeness: Natural Deduction is both sound and complete for propositional logic, that is

$$\forall \Sigma, A, \text{ if } \Sigma \vdash A, \text{ then } \Sigma \vDash A$$

$$\forall \Sigma, A, \text{ if } \Sigma \vDash A, \text{ then } \Sigma \vdash A$$

Fallacy Denying the Antecedent: $p \rightarrow q, \neg p \vdash \neg q$

Fallacy Affirming the Consequent: $p \rightarrow q, q \vdash p$

Def Inconsistent: When there is a formula A such that for the set Σ , $\Sigma \vdash A$ and $\Sigma \vdash \neg A$

Lemma Inconsistent Sets: Let Σ be a set of formulas, Σ is inconsistent if and only if for every B, $\Sigma \vdash B$

Def Consistent: There is no formula A such that $\Sigma \vdash A$ and $\Sigma \vdash \neg A$

Lemma Consistent Sets: Let Σ be a set of formulas, Σ is consistent if and only if there exists a B such that $\Sigma \not\vdash B$

Lemma Proof and Inconsistency: Let Σ be a set of formulas, and A is a formula, then

 $\Sigma \vdash A$ if and only if $\Sigma \cup \{\neg A\}$ is inconsistent

 $\Sigma \not\vdash A$ if and only if $\Sigma \cup \{\neg A\}$ is consistent

Lemma Proof and Inconsistency Semantic Analogue: Let Σ be a set of formulas, and A is a formula, then

 $\Sigma \vDash A$ if and only if $\Sigma \cup \{\neg A\}$ is unsatisfiable

 $\Sigma \not\models A$ if and only if $\Sigma \cup \{\neg A\}$ is satisfiable

Def Maximal: A consistent set such that for every formula A, either $A \in \Sigma$ or $\neg A \in \Sigma$

Lemma Maximal Consistent Sets: Let Σ be a maximal consistent set, then for every A,

$$\Sigma \vdash A \iff A \in \Sigma$$

Theorem Soundness of Propositional Formal Deduction: For all Σ , C, if $\Sigma \vdash C$, then $\Sigma \vDash C$

Theorem Soundness of Propositional Formal Deduction 2: If Σ is satisfiable, then Σ is consistent

Theorem Completeness of Propositional Formal Deduction: For all Σ , A, if $\Sigma \vDash A$, then $\Sigma \vdash A$

Lemma Maximal Consistent: Let M be a maximal consistent set $M = \bigcup_{i=0}^{\infty} \Sigma_i$ for proposition formulas such that $\Sigma_{i+1} = \Sigma_i \cup \{A_i\}$ if $\Sigma_i \cup \{A_i\}$ is consistent

MC1: For every A, either $A \in M$ or $\neg A \in M$ but not both

MC2: If $M \vdash A$, then $A \in M$

MC3: For every A, B, if $A \in M$ and $A \to B \in M$, then $B \in M$

MC4: For every $B \in M$, for every $A, A \rightarrow B \in M$

MC5: For every $A \notin M$, for every $B, A \to B \in M$

7 Propositional Logic: Resolution

Def Resolution: A method to to prove a disjunctive clause by proving that $\{A_1, A_2, \dots A_n, \neg C\}$ is not satisfiable (leads to a contradiction) using the formal deduction rule with parents clauses $(C \lor p, D \lor \neg p)$ and the resolvent $(C \lor D)$. Two clauses can be resolved if and only if they contain complementary literals $(p, \neg p)$ in which case they resolve over p

$$C \vee p, D \vee \neg p \vdash_r C \vee D$$

Empty Clause: The resolvent of $p, \neg p \vdash_r \{\}$

Def Resolution Derivation: From a set of clauses S, the finite set of clauses such that each clause is in S or results from S

Def Resolution Procedure: For $S = \{D_1, D_2, \dots D_m\}$, choose two clauses that contain $p, \neg p$ and add their resolvent to S

Theorem Soundness of Resolution: The resolvent is tautologically implied by its parent clauses, thus it is sound

Def Set-of-Support Strategy: The set is partitioned into a non-contradictory auxiliary set and a set of support, thus each resolution takes at least one clause from the set of support

Theorem Completeness of the Set-of-Support: resolution with the set-of-support strategy is complete

Theorem Pigeonhole Principle P_n : One cannot put n+1 objects into n slots with distinct objects in distinct slots

Def Davis-Putnam Procedure: Treats clauses as sets, which allows the resolvent to be the union of two clauses with $p, \neg p$ omitted. A empty clause indicates a contradiction, where an empty set of clauses indicates the theorem is not valid.

- \bullet S_i' is all S_i after discarding those in which a literal and its complement appear
- T_i are parent clauses in which p_i , $\neg p_i$ appear
- U_i are resolvent clauses by resolving every pair of clauses in T_i
- S'_{i+1} is $(S'_i \setminus T_i) \cup U_i$

Theorem Soundness and Completeness of DPP: For a finite set of clauses S, S is unsatisfiable if and only if the output of DPP is the empty clause {}

10 First-Order-Logic

Def First-Order-Logic: An extension of propositional logic to allow identification of individuals and their properties

Def Domain: The domain, or universe of discourse, is the non-empty collection of all individuals/objects that are under consideration

Def Relations: Relations, or predicates, are the properties of individuals in an argument list

Def Arity: The number of elements in the argument list of a n-ary relation Property: A n = 1 relation

Def Atomic Formula: A relation name followed by an argument list that may take true/false values

$$Human(u) = \begin{cases} 1, & \text{if } u \text{ is a human} \\ 0, & \text{otherwise} \end{cases}$$

Def Quantifiers: For a quantifier (universal $\forall x$ or existential $\exists x$) and scope (A(x)), the variable x is bound to the quantifier (local to the scope)

Def Free Variable: A non-bound variable

Def Quantification Over a Subset: For the universal quantifier, define an implication. For the existential quantifier, define a conjunction.

11 First-Order-Logic: Syntax

Def Language: Specifies the basic elements

Def Terms: The syntactic expressions to denote objects

Def Atomic Formulas: Combine terms into propositions

Def Formulas: Built from atomic formulas through the use of connectives and quantifiers

Def Logical Symbols: Have a fixed syntactic use and semantic meaning

Parameters: Designated syntax, but undefined semantic meaning

Def Formal Language: The formula language of first-order logic, or \mathcal{L} , consists of expressions using logical symbols and parameters

• Connectives: $\neg, \rightarrow, \land, \lor, \leftrightarrow$

• Free Variable Symbols: u, v, w, u_1, \dots

• Bound Variable Symbols: x, y, z, x_1, \dots

- Quantifiers: \exists, \forall
- Punctuation Symbols: (),
- Individual Symbols (constant symbols): a, b, c, a_1, \ldots
- Relation Symbols (predicate symbols): F, G, H, F₁, ...
- Function Symbols: $f, g, h, f_1, ...$

Def Equality Symbol: A special binary relation which may be contained in \mathcal{L} ,

 \approx

Def Terms: Expressions to denote objects and their properties, such that $Term(\mathcal{L})$ is closed under the following rules

- 1. Closed Terms: Every individual symbol is a term of \mathcal{L}
- 2. Every free-variable symbol is a term of \mathcal{L}
- 3. For terms of \mathcal{L} $t_1, t_2, \dots t_n$, the n-ary function $f(t_1, t_2, \dots t_n)$ is a term of \mathcal{L}

Def Atoms: An expressions is in $Atom(\mathcal{L})$ if it follows one of the forms

- 1. If F is an n-ary formula symbol and $t_1, t_2, \dots t_n$ are terms in $Term(\mathcal{L})$, then $F(t_1, \dots t_n)$ is an atom
- 2. If t_1, t_n are terms in $Term(\mathcal{L})$, then $\approx (t_1, t_2)$ is an atom

Def Formulas: An expressions in $Form(\mathcal{L})$ is closed under the following rules

- 1. Every atom in $Atom(\mathcal{L})$ is in $Form(\mathcal{L})$
- 2. If A is in $Form(\mathcal{L})$, then $(\neg A)$ is in $Form(\mathcal{L})$
- 3. If A, B are in $Form(\mathcal{L})$, then $(A \vee B), (A \wedge B), (A \rightarrow B), (A \leftrightarrow B)$ are in $Form(\mathcal{L})$
- 4. If A(u) is in $Form(\mathcal{L})$ with u as a free-variable and x as a bound variable not in A(u), then $\forall x A(x)$ and $\exists x A(x)$ are in $Form(\mathcal{L})$

Theorem: Any term is exactly one of an individual symbol, a free variable symbol, or $f(t_1, ...t_n)$ where f is a n-ary function symbol

Theorem: Any formula in $Form(\mathcal{L})$, is exactly one of $(\neg A)$, $(A \lor B)$, $(A \land B)$, $(A \land B)$, $(A \land B)$, $(A \leftrightarrow B)$, $\forall x A(x)$, $\exists x A(x)$

Def Closed Formula: A sentence of $Form(\mathcal{L})$ has no free-variable symbols, denoted by $Sent(\mathcal{L})$

12 First-Order-Logic: Semantics

Def Assignment: A function which assigns a value in the domain for each free variable

Def Interpretation: For the language \mathcal{L} , contains a non-empty domain D and a specification of each individual symbol, each relation symbol, each function symbol

Def Valuation: An interpretation and an assignment, for valuation v, the value of each term t under v is

$$\mathbf{t}^v = \begin{cases} \mathbf{c}^v & \text{if t is a constant c} \\ \mathbf{u}^v & \text{if t is a free variable u} \\ f^v(\mathbf{r}_1^v, \dots \mathbf{t}_n^v) & \text{if t is } f(\mathbf{r}_1, \dots \mathbf{t}_n) \end{cases}$$

Def Value: The value of a formula A under valuation v is

- If A is an atom, then $A^v = 1$ if and only if $\langle t_1^v, \dots t_n^v \rangle \in F^v$
- If A is a connective, then A^v is the same as in propositional logic
- If A is a quantifier, then $\forall x$ must hold for every value in the domain, and $\exists x$ must hold for a value within the domain

Def Re-Assigned Valuation: The valuation v with free variable u re-assigned to domain element d is

$$\mathbf{w}^{v(\mathbf{u}/d)} = \begin{cases} d & \text{if w is u} \\ \mathbf{w}^v & \text{if w is not u} \end{cases}$$

Def Quantified Formulas: The valuation v with domain D of quantified formulas is

$$(\forall \mathbf{x} \mathbf{A}(\mathbf{x}))^v = \begin{cases} 1 & \text{if } \mathbf{A}(\mathbf{u})^{v(\mathbf{u}/d)} = 1 \text{ for every } d \text{ in } D \\ 0 & \text{otherwise} \end{cases}$$

$$(\exists \mathbf{x} \mathbf{A}(\mathbf{x}))^v = \begin{cases} 1 & \text{if } \mathbf{A}(\mathbf{u})^{v(\mathbf{u}/d)} = 1 \text{ for some } d \text{ in } D \\ 0 & \text{otherwise} \end{cases}$$

Def Valid: A formula A is valid if every interpretation and valuation satisfy A (A^v = 1), a set of formulas in \mathcal{L} , Σ , is valid iff for every valuation v and interpretation \mathcal{L} , $\Sigma^v = 1$

Def Satisfiable: A formula A is satisfiable if some interpretation and valuation satisfy A, a set of formulas in \mathcal{L} , Σ , is satisfiable iff there is some interpretation \mathcal{I} such that $\Sigma^v = 1$

Lemma Relevance Lemma: Let A be a formula with valuations v_1, v_2 such that $\mathbf{u}^{v_1} = \mathbf{u}^{v_2}$ for every free u in A, then

$$A^{v_1} = 1$$
 if and only if $A^{v_2} = 1$

Def Logical Consequence: The set of formulas Σ entails the formula A if for every valuation $v, \Sigma^v = 1$ implies $A^v = 1$ $\emptyset \models A$ means A is valid

Theorem There is no algorithm for deciding the validity or satisfiability of formulas in \mathcal{L}

14 First-Order-Logic: Formal Deduction

Def Quasi-Formula: A formula A(u) where the free variable u is replaced by the bound variable x

Def Substitution: The process of replacing a free variable u by a term t

Def Natural Deduction for Predicate Logic: For a set of formulas $\Sigma \in \mathcal{L}$ with $A \in \mathcal{L}$, A is formally deducible from Σ if and only if the sequent $\Sigma \vdash A$ can be generated from

- 1. Reflexivity: $A \vdash A$ is a theorem
- 2. (+): If $\Sigma \vdash A$, then $\Sigma, \Sigma' \vdash A$ is a theorem
- 3. $(\neg -)$: If Σ , $\neg A \vdash B$ and Σ , $\neg A \vdash \neg B$, then $\Sigma \vdash A$ is a theorem
- 4. $(\rightarrow -)$: If $\Sigma \vdash A \rightarrow B$ and $\Sigma \vdash A$, then $\Sigma \vdash B$ is a theorem
- 5. $(\rightarrow +)$: If Σ , $A \vdash B$, then $\Sigma \vdash A \rightarrow B$ is a theorem
- 6. $(\land -)$: If $\Sigma \vdash A \land B$, then $\Sigma \vdash A$ and $\Sigma \vdash B$ are theorems
- 7. $(\wedge +)$: If $\Sigma \vdash A$ and $\Sigma \vdash B$, then $\Sigma \vdash A \wedge B$ is a theorem
- 8. $(\vee -)$: If Σ , $A \vdash C$ and Σ , $B \vdash C$, then Σ , $A \lor B \vdash C$ is a theorem
- 9. $(\vee +)$: If $\Sigma \vdash A$, then $\Sigma \vdash A \vee B$ and $\Sigma \vdash B \vee A$ are theorems
- 10. $(\leftrightarrow -)$: If $\Sigma \vdash A \leftrightarrow B$ and $\Sigma \vdash B$, then $\Sigma \vdash A$ is a theorem
- 11. $(\leftrightarrow +)$: If Σ , $A \vdash B$ and Σ , $B \vdash A$, then $\Sigma \vdash A \leftrightarrow B$ is a theorem
- 12. $(\forall -)$: If $\Sigma \vdash \forall x A(x)$, then for a term t, $\Sigma \vdash A(t)$ is a theorem
- 13. $(\forall +)$: If $\Sigma \vdash A(u)$ and $u \notin \Sigma$, then $\Sigma \vdash \forall x A(x)$ is a theorem
- 14. $(\exists -)$: If $\Sigma, A(u) \vdash B$ and $u \notin \Sigma \cup B$, then $\Sigma, \exists x A(x) \vdash B$ is a theorem
- 15. $(\exists +)$: If $\Sigma \vdash A(t)$, then for A'(x) such that some occurrences of t in A(t) are replaced by $x, \Sigma \vdash \exists x A'(x)$ is a theorem
- 16. $(\approx -)$: If $\Sigma \vdash A(t_1)$ and $\Sigma \vdash t_1 \approx t_2$, then for $A'(t_2)$ such that some occurrences of t_1 in $A(t_1)$ are replaced by t_2 , $\Sigma \vdash A'(t_2)$ is a theorem
- 17. $(\approx +)$: $\emptyset \models u \approx u$ is a theorem
- 18. Membership Rule (\in) : If $A \in \Sigma$, then $\Sigma \vdash A$

Lemma From Logic 14 page 30: Let $A \vdash A', B \vdash B', C(u) \vdash C'(u)$, then

- 1. $\neg A \vdash | \neg A'$
- 2. $A \wedge B \vdash A' \wedge B'$
- 3. $A \vee B \vdash A' \vee B'$
- 4. $A \rightarrow B \vdash A' \rightarrow B'$
- 5. $A \leftrightarrow B \vdash A' \leftrightarrow B'$
- 6. $\forall x C(X) \vdash \forall x C'(x)$
- 7. $\exists x C(X) \vdash \exists x C'(x)$

Theorem Replacement of Equivalent Formulas: Let $A, B, C \in Form(\mathcal{L})$ with $B \vdash C$ and A' be the result of substituting some occurrences of B with C, then $A' \vdash A$

Theorem Complementation: Let A be composed of atoms of \mathcal{L}^p , \vee , \wedge , \neg , \forall , \exists , if A' is the result of exchanging \vee with \wedge , \forall with \exists , and negating all atoms, then A' \vdash \neg A

Theorem Soundness and Completeness: Let $\Sigma \subseteq Form(\mathcal{L})$ and $A \in Form(\mathcal{L})$, then $\Sigma \models A$ if and only if $\Sigma \vdash A$.

- since $\Sigma \vdash A \to \Sigma \vDash A$, formal natural deduction for predicate logic is sound
- since $\Sigma \models A \rightarrow \Sigma \vdash A$, formal natural deduction for predicate logic is complete

14 First-Order-Logic: Soundness and Completeness

Theorem: The formal deductive system of Natural Deduction is sound and complete for First-Order Logic, that is for a set of formulas Σ with formula A

$$\Sigma \vdash A$$
 if and only if $\Sigma \vDash A$

Lemma For a terms t, s(u), and formula A(u) with free variable u and valuation v,

$$s(t)^v = s(u)^{v(u/t^v)}$$

and

$$A(t)^v = A(u)^{v(u/t^v)}$$

Def Herbrand Universe: The set of terms in the language \mathcal{L} ($Term(\mathcal{L})$)

$$\mathcal{H} = \{ \lceil t \rceil : t \text{ is a term} \}$$

Note:

referring to the element, not the expression

15 First-Order-Logic: Resolution and Automated Theorem Provers

Def Prenex Normal Form: A formula such that all quantifiers are in the prefix and the expression B is the matrix

$$Q_1x_1Q_2x_2...Q_nx_nB$$
 where Q is \forall , \exists

Process

- 1. Eliminate all occurrences of \rightarrow and \leftrightarrow
 - $A \rightarrow B \models \neg A \lor B$
 - $A \leftrightarrow B \models (\neg A \lor B) \land (A \lor \neg B)$
 - $A \leftrightarrow B \models (A \land B) \lor (\neg A \land \neg B)$
- 2. Move all negations such that they apply to only literals
 - De Morgan's Laws $\neg(A \lor B) \models \neg A \land \neg B, \neg(A \land B) \models \neg A \lor \neg B$
 - Double negation $\neg \neg A \models A$
 - $\neg \exists x A(x) \models \forall x \neg A(x)$
 - $\bullet \neg \forall x A(x) \models \exists x \neg A(x)$
- 3. Standardize variables with the Replaceability of Bound Variable Symbols Theorem
- 4. Now move quantifiers to the front
 - $A \wedge \exists x B(x) \models \exists x (A \wedge B(x)) \text{ when } x \notin A$
 - $A \wedge \forall x B(x) \models \forall x (A \wedge B(x)) \text{ when } x \notin A$
 - $A \vee \exists x B(x) \models \exists x (A \vee B(x)) \text{ when } x \notin A$
 - $A \vee \forall x B(x) \models \forall x (A \vee B(x)) \text{ when } x \notin A$

Theorem Replaceability of Bound Variable Symbols: For a formula $A \in Form(\mathcal{L})$, if A' results from replacing some occurrences of QxB(x) with QyB(y) then $A \models A'$ and $A \vdash A'$

Def \exists -free Prenex Normal Form: A sentence $A \in Sent(\mathcal{L})$ that is in prenex normal form and contains no existential quantifier symbols.

Def Skolem Function: The function $f(x_1, x_2, \dots x_n)$ that expresses the individual generated by $\exists y A$ in $\forall x_1, \forall x_2, \dots \forall x_n \exists y A$ for given $x_1, x_2, \dots x_n$. For a $A \in Sent(\mathcal{L})$ with $A = \forall x_1 \forall x_2 \dots \forall x_n \exists y A$, define A' to be A with all instances of y replaced by the Skolem function $f(x_1, x_2, \dots x_n)$, then the sentence A skolemized is

 $\forall x_1 \forall x_2 \dots \forall x_n A'$ (often wrote as A' without quantifiers)

Theorem Given a $A \in Sent(\mathcal{L})$, there is an efficient procedure for finding a \exists -free prenex normal form A' such that A is satisfiable if and only if A' is satisfiable

Theorem Given a $A \in \exists$ -free prenex normal form, there is an efficient procedure for finding a finite set C_A of disjunctive clauses such that A is satisfiable if and only if C_A is satisfiable

Theorem For a set $\Sigma \subseteq Sent(\mathcal{L})$ with $A \in Sent(\mathcal{L})$, then $\Sigma \models A$ is valid if and only if the set

$$C_{\neg A} \cup \left[\bigcup_{B \in \Sigma} C_B\right]$$

is not satisfiable

 \mathbf{Def} Instantiation: An assignment of a quasi-term t_i' to a variable x_i

$$x_i := t_i'$$

Def Unification: Two formulas unify if there is a unifer instantiation such that the formulas are identical

Process Automated Theorem Proving:

- 1. Convert $A \in Sent(\mathcal{L})$ to prenex normal form
- 2. Remove existential quantifiers and replace with Skolem functions
- 3. Drop the universal quantifiers
- 4. Convert into conjunctive normal form clauses
- 5. Attempt to find {} (not satisfiable, thus valid) by resolving with unification

Theorem A set S of clauses is not satisfiable if and only if there is a resolution of the empty clause $\{\}$

- Soundness: If the resolution of S outputs the empty clause, then S is not satisfiable
- \bullet Completeness: If S is not satisfiable, then the resolution of S outputs the empty clause

Def Automated Proof Verification: Checks that a formal proof is correct, CASC is a yearly competition for first-order provers to compete

- Isabelle: higher order theorem prover using resolution and unification
- Coq: Proof checker including proving tactics and various decision procedures
- E or SPASS: Theorem prover for first order logic with equality
- Vampire: Theorem prover for first order logic

16 Computing with Logical Formulas

Def Algorithm: A finite sequence of well-defined computer-implementable instructions that solve a problem (give the correct output for every input)

- Analytical Engine: Babbage's met almost none of the requirements, it failed
- λ -Calculus: Church's had mathematical qualifications, but was not (clearly) general or implementable
- Turing Machine: An analogy using a tape (stack) of cells (paper) that could be edited (pencil) moved between (flip page) and operated on (read)

Def Turing Machine (TM): A $M=(Q,\Sigma,\Gamma,\delta,q_0,B,F)$ such that

- Q is the finite set of states of the control
- Σ is the finite set (alphabet) of input symbols
- Γ is the finite set of tape symbols such that $\Sigma \in \Gamma$
- $\delta: Q \times \Gamma \to Q \times \Gamma \times \{L, R\}$ is the transition function with left and right $\delta(q, a) = (r, b, d)$ where a at state q becomes b, then steps R/L (d) to set state r
- $q_0 \in Q$ is the start (initial) state
- B is the blank symbol such that $B \in \Gamma, B \notin \Sigma$
- $F \in Q$ is the set of final (accepting) states

Def TM Outcomes: For a TM M starting at string x

• If M reaches state q and symbol a such that $\delta(q, a)$ is undefined

$$M$$
 halts on x , $\begin{cases} \text{If } q \in F, \text{ then } M \text{ accepts } x \\ \text{If } q \notin F, \text{ then } M \text{ rejects } x \end{cases}$

• If M attempts to move left from the leftmost cell,

M crashes on x

• If M continues making transitions forever,

M runs forever (loops) on x

Def Decide: A TM M with alphabet Σ such that for all $x \in \Sigma$, M with x halts. Then M decides the language of strings over Σ that lead M to accept, that is

$$\{x \in \Sigma^* \mid M \text{ accepts input } x\}$$

Def Decidability: If there exists an algorithm (TM) that solves (decides) it

Def Turing Capabilities:

- Store finite information: In control or in the cells
- Make space on the tape: Using shift to free room
- Control structures: We can impose loops, recursion, subroutines, etc
- Copy a string
- Compare strings
- Lookup: An association list implements a dictionary

Def Universal Turing Machine: A TM, that given a description of another TM M, and an input x, performs M on x

Def Code: A code of a TM M, denoted $\langle M \rangle$ is the concatenate of all (i, j, i', j', d) tuples such that $\delta(q_i, s_j) = (i', j', d)$

Def Halting Problem: Given a $\langle M \rangle$ and x, does M with input x halt

$$\mathrm{HALT} = \{ \langle M \rangle, x \mid M \text{ halts on } x \}$$

Theorem Turing: The Halting Problem is undecidable

Def Reduction: A reduction from P_1 to P_2 is an always halting algorithm that given an instance x_1 of P_1 , produces a x_2 of P_2 such that in every case the answer to x_1 is equal to the answer to x_2 . For a reduction R,

$$\forall x_1, x_1 \in P_1 \text{ if and only if } R(x_1) \in P_2$$

Thus if P_2 is decidable, then P_1 is decidable and if P_1 is undecidable, then P_2 is undecidable

Def Post Correspondence Problem (PCP): Given a finite sequence $(s_1, t_1), (s_2, t_2) \dots (s_k, t_k)$ such that all strings are positive length, is there a sequence of indices $i_1, i_2, \dots i_n$ with $n \ge 1$ such that the concatenation of $s_{i_1} s_{i_2} \dots s_{i_n} = t_{i_1} t_{i_2} \dots t_{i_n}$ [undecidable]

Def Hilbert's Tenth Problem (IntegerRoot): Given a polynomial $q(x_1, x_2, ... x_n)$ with integers coefficients, does q have an integral root $(q(a_1, a_2, ... a_n) = 0)$ [undecidable]

Lemma There is a Turing Machine that given A of $Form(\mathcal{L})$, outputs a proof of A if such a proof exists, otherwise it may run forever

Theorem Godel's Incompleteness Theorem: For a set of formulas Γ such that membership is decidable, then $PA \cup \Gamma$ is inconsistent or there is a formula A such that $PA \cup \Gamma \not\vdash A$ and $PA \cup \Gamma \not\vdash \neg A$

17 Peano Arithmetic

Def Equality: Formal deduction rules concerning equality lead to reflexively, symmetry, and transitivity

- $(\approx +)$: $\emptyset \vdash u \approx u$
- $(\approx -)$: If $\Sigma \vdash A(t_1)$ and $t_1 \approx t_2$, then $\Sigma \vdash A(t_2)$ where $A(t_2)$ is $A(t_1)$ with some instances of t_1 replaced with t_2

Def Reflexivity: $\forall x(x \approx x)$

Def Symmetry: $\forall x \forall y ((x \approx y)) \rightarrow (y \approx x))$

Def Transitivity: $\forall x \forall y \forall z (((x \approx y) \land (y \approx z)) \rightarrow (x \approx z))$

Theorem EQSubs: For variable u and terms r, t_1, t_2 where $r(t_i)$ is r with all instances of u replaces with t_i . If $\Sigma \vdash t_1 \approx t_2$, then

$$\Sigma \vdash r(t_1) \approx r(t_2)$$

Theorem EQtrans(k): For all Σ with terms $t_1, t_2, \dots t_{k+1}$, if $\Sigma \vdash t_i \approx t_{i+1}$ for each $1 \leq t_i \leq k$, then

$$\Sigma \vdash \mathbf{t}_1 \approx \mathbf{t}_{k+1}$$

Def Domain Axioms: The set A of formulas that are accepted/assumed to be true within the class of domains

- Decidable: The set A should have an algorithm to determine which formulas are domain axioms
- Sound with Respect to Domain: The set A should guarantee that if $A \vdash B$, then B holds in the domain
- Complete: The set A should allow the formal proof of all true formulas in the domain

Def Axioms of Geometry: Euclid's Postulates appeared in Elements

- 1. A straight line may be drawn between any two points
- 2. Every straight line can be extended infinitely
- 3. A circle may be drawn with any center point, and any radius
- 4. All right angles are equal
- 5. Parallel Postulate: For every given point not on a given line, there is exactly one line through the point that does not meet the given line

Def Theory: The set of all formulas that can be proven by a set of axioms. For a given theory T with axioms X_T , $\Sigma \vdash_T C$ denotes $\Sigma, X_T \vdash C$

Def Number Theory Arithmetic: With the domain of \mathbb{N} , addition, multiplication, and ordering, we attempt to have a base set of axioms that derive all theorems

Def Peano's Axioms: Constant is 0, functions are $+,\cdot,s$, equality is \approx , then PA is

PA1: $\forall x(s(x) \not\approx 0)$

PA2: $\forall x \forall y ((s(x) \approx s(y)) \rightarrow (x \approx y))$

PA3: $\forall x(x + 0 \approx x)$

PA4: $\forall x \forall y ((x + s(y)) \approx s(x + y))$

PA5: $\forall x(s(x) \cdot 0 = 0)$

PA6: $\forall x \forall y (x \cdot s(y) = x \cdot y + x)$

PA7: Axiom Schema: For a formula A(u) where u is a free variable,

$$(A(0) \land \forall x(A(x) \rightarrow A(s(x)))) \rightarrow \forall xA(x)$$

Def \leq : $u \leq v$ if and only if $\exists z(u + z = v)$

Def $<: u < v \text{ if and only if } \exists z(u + s(z) = v)$

Def Even: Even(u) if and only if $\exists y(u = y + y)$

Def Prime: Prime(u) if and only if $(1 < u) \land \neg \exists y \exists z ((u = y \cdot z) \land (1 < y) \land (1 < z))$

Def Godel's Incompleteness Theorem: In any consistent formal theory T with a decidable set of axioms that expresses elementary arithmetic, there exists a statement that is true but cannot be proven

Def Paris-Harrington Theorem: One such theorem. Certain large sets exists but they are so large that Peano's Axioms cannot prove that they exist

18 Program Verification

Def Program Correctness: By inspection, testing and formal verification, does a program satisfy its specifications

Def Formal Program Verification:

- 1. Convert specifications R into a formula A_R of symbolic logic
- 2. Write program P which should realize A_R in a given programming environment
- 3. Prove that P satisfies A_R

Def Imperative Programming: Defines control flow as statements that change a programs state variables (C, C++, Java, Python, FORTRAN, Pascal)

Def Declarative Programming: Focuses on what should be accomplished with less how it should be (query such as SQL, logic such as PROLOG, functional such as scheme)

Def Sequential: No concurrency

Def Transformational: given inputs, compute outputs and terminate

Def Core Programming Language:

- Integer and Boolean expressions
- Assignment
- Sequence
- if-then-else conditional statements
- while-loops
- for-loops (omitted)
- \bullet arrays
- functions and procedures (omitted)

Def Hoare Triple: Precondition, code, postcondition (P)C(Q) where the precondition can be set to true if no constraints

Def Partial Correctness: For every state s such that P is true, if the execution of C terminates in s' and s' satisfies Q if and only if

$$\vDash_{par} (P)C(Q)$$

Def Complete Correctness: For every state s such that P is true, the execution of C terminates to s' and s' satisfies Q if and only if

$$\models_{tot} (P)C(Q)$$

Def First-Order Logic Conditions:

- Relation State(s): s is a program state
- Relation Condit(P): P is a condition
- Relation Code(C): C is a program
- Relation Inv(I): I is an invariant
- Relation Satisfies(s, P): State s satisfies condition P
- \bullet Relation Terminates (C, s): Program C terminates when execution begins in state s
- Function result(C, s): the state that results from executing code C on state s (if it terminates)
 - Partial correctness of Hoare triple (P) C (Q):

$$\forall s \forall P \forall C \forall Q[State(s) \land Condit(P) \land Code(C) \land Condit(Q) \longrightarrow (Satisfies(s, P) \land Terminates(C, s) \longrightarrow Satisfies(result(C, s), Q))]$$

Total correctness of Hoare triple (P) C (Q):

$$\forall s \forall P \forall C \forall Q[State(s) \land Condit(P) \land Code(C) \land Condit(Q) \longrightarrow (Satisfies(s, P) \longrightarrow Terminates(C, s) \land Satisfies(result(C, s), Q))]$$

Def Partial Correctness Proof: Annotated program where each statement has a Hoare triple with justification

Def Logical: After implied rules have been used, ordinary logic proofs must be sued to justify

Def Total Correctness Proof: For each while-loop, identify a strictly-decreasing non-negative integer through the loop (variant)

Def Array Assignment: $A\{i \leftarrow e\}$ is the array with entries given by

$$A\{i \leftarrow e\}[j] = \begin{cases} e, & \text{if } j = i \\ A[j], & \text{if } j \neq i \end{cases}$$

Theorem The Total Correctness Problem is undecidable

Theorem The Partial Correctness Problem is undecidable

Def Inference Rules:

• Assignment Rule: Q[E/x] is read as Q with E in place of x,

$$\overline{(\mathbb{Q}[E/x])x = E(\mathbb{Q})}$$

• Precondition Strengthening: $\emptyset \vdash P \rightarrow P'$,

$$\frac{\mathrm{P} \to \mathrm{P}', \langle\!\langle \mathrm{P}' \rangle\!\rangle \mathrm{C} \langle\!\langle \mathrm{Q} \rangle\!\rangle}{\langle\!\langle \mathrm{P} \rangle\!\rangle \mathrm{C} \langle\!\langle \mathrm{Q} \rangle\!\rangle}$$

• Postcondition Weakening: $\emptyset \vdash Q' \to Q$,

$$\frac{(\!|\mathrm{P}|\!)\mathrm{C}(\!(\mathrm{Q}'\!)),\mathrm{Q}'\to\mathrm{Q}}{(\!(\mathrm{P}|\!)\mathrm{C}(\!(\mathrm{Q})\!)}$$

• Composition: Implicit,

$$\frac{(\!\!|\!\!| P)\!\!|\!\!| C_1(\!|\!\!| Q)\!\!|\!\!|, (\!|\!\!| Q)\!\!|\!\!| C_2(\!|\!\!| R)\!\!|\!\!|}{(\!|\!\!|\!\!| P)\!\!|\!\!| C_1, C_2(\!|\!\!| R)\!\!|\!\!|}$$

• If-Then-Else:

• If-Then:

• Partial-While: With loop invariant I,

$$\frac{(I \wedge B) C(I)}{(I) \text{ while } (B), C(I \wedge \neg B)}$$

 $\bullet \mbox{ Array-Assignment: With } A\{i \leftarrow e\}[j] = \begin{cases} e, & \mbox{if } j = i \\ A[j], & \mbox{if } j \neq i \end{cases},$

$$\overline{(\mathbb{Q}[A\{e_1 \leftarrow e_2\}/A])A[e_1] = e_2(\mathbb{Q})}$$