Mitschrift zum

Basiskurs Mathematik

bei Prof. Kreuzer im WS 16/17

author last change

Maximilian Reif <reifmaxi@fim.uni-passau.de>

March 6, 2017, version 0.8.1

github https://github.com/lordreif/basiskurs-mathe

Contents

1	Rec	hnen mit ganzen Zahlen	5		
	1.1	Zahlensysteme	5		
	1.2	Beispiele	5		
	1.3	Division mit Rest	5		
	1.4	Beispiele	6		
	1.5	Vielfaches, Teiler, Primzahl	6		
	1.6	Beispiele	6		
	1.7	Fundamentalsatz der Arithmetik	6		
	1.8	Beispiele	6		
	1.9	ggT,kgV	7		
	1.10		7		
	1.11	Beispiele	7		
	1.12	Teilbarkeitsregeln	7		
2	Rec	hnen mit Brüchen und Reellen Zahlen	8		
	2.1	Rechenregeln für Brüche	8		
	2.2	Beispiele	9		
	2.3	Potenzen	9		
	2.4	Beispiele	9		
	2.5	Rechenregeln für Potenzen	9		
	2.6	Wurzeln	10		
	2.7	Beispiele	10		
	2.8	Irrationalitätsbeweis von $\sqrt{2}$ nach Euklid	10		
3	\mathbf{Rec}	hnen mit Buchstaben	11		
	3.1	Definition Term/Koeffizient/Monom/Polynom	11		
	3.2	0 0	11		
	3.3	Beispiele und Formeln	12		
	3.4	0 0	12		
	3.5	Der Grad	13		
	3.6	Beispiele	13		
	3.7	Rationale Funktion	13		
	3.8	Bemerkung	13		
	3.9	Beispiele	13		
4	Lineare und Quadratische Gleichungen				
	4.1	9	14		
	4.2	0	14		
	4.3	•	14		
	4.4	1 ,	14		
	4.5	Satz von Vieta	15		
	16	Paigniala	15		

	4 7	0.1.77.77
	4.7	Substitution
	4.8	Lineare Gleichungssysteme
	4.9	Beispiel
		Schnittpunkt von zwei Kreisen
	4.11	Aufgabe
5	$\mathbf{U}\mathbf{n}\mathbf{g}$	leichungen 18
	5.1	Definition
	5.2	Beispiele
	5.3	Rechenregeln für Ungleichungen
	5.4	Beispiel
	5.5	Bemerkung
	5.6	Beispiele
	5.7	Beispiel
	5.8	Betrag
	5.9	Beispiel
		Betragsungleichungen
		Dreiecksungleichung
		Beispiel
		Beispiel
	0.10	Despire
6		ne Geometrie 23
	6.1	Definition
	6.2	Das gleichseitige Dreieck
	6.3	$\label{eq:def:Der Innenwinkelsummensatz} Der Innenwinkelsummensatz$
	6.4	Das Bogenmaß
	6.5	Beispiel
	6.6	Das gleichschenklig-rechtwinklige Dreieck $\ \ldots \ \ldots \ 24$
	6.7	Bemerkung
	6.8	Der allgemeine Innenwinkelsummensatz $\ \ldots \ \ldots \ 24$
	6.9	Das reguläre $n\text{-Eck}$
	6.10	Besondere Linien im Dreieck $\ \ldots \ \ldots \ \ldots \ 25$
	6.11	Kongruente Dreiecke
	6.12	Die Kongruenzsätze im Dreieck
	6.13	Besondere Punkte im Dreieck
	6.14	Die Fläche des Dreiecks
	6.15	Das rechtwinklige Dreieck
		Der Satz des Thales
	6.17	Die zentrische Streckung
		Der Strahlensatz
		Ähnlichkeit
		Korollar
		Beispiel
		Die Satzgruppe des Pythagoras
		=

	6.23 Beispiel	30 30
7	Trigonometrie	31
11	Die komplexen Zahlen	32
	11.1 Definition	32
	11.2 Bemerkung	32
	11.3 Beispiele	33
	11.4 Komplexe Konjugation	33
	11.5 Rechenregeln für komplexe Konjugation	33
	11.6 Die komplexe Zahlenebene	33
	11.7 Algebraische Beschreibung geometrischer Mengen	35
	11.8 Algebraische Interpretation von Abbildungen der Zeichenebene	35
	11.9 Geometrische Interpretation von $z \mapsto \overline{z} \dots \dots \dots$	36
	11.10Inversion am Kreis	36
	11.11Eigentschaften der Inversion am Kreis	37
	11.12Die komplexe e -Funktion	37
	11.13Die Eulersche Formel	38
	11.14Korollar	38
	11.15Beispiel	38
12	Kombinatorik	39
	12.1 Definition	39
	12.2 Satz: Die Gruppe S_n hat $n!$ Elemente	39
	12.3 Beispiel	39
	12.4 Definition	39
	12.5 Formel für die Binomialkoeffizienten	40
	12.6 Das Pascalsche Dreieck	40

1 Rechnen mit ganzen Zahlen

 $\mathbb{N} = \{0, 1, 2, 3, \dots\}$ Menge der natürlichen Zahlen $\mathbb{Z} = \{0, 1, -1, 2, -2, \dots\}$ Menge der ganzen Zahlen

1.1 Satz (Zahlensysteme)

Sei $b \in \mathbb{N}$ mit $b \geq 2$. (Die Zahl b heißt **Basis** des Zahlensystems) Dann gibt es zu jeder natürlichen Zahl $n \in \mathbb{N}$ eindeutig bestimmte Elemente $a_0, a_1, \ldots, a_k \in \{0, 1, \ldots, b-1\}$ sodass gilt:

$$n = a_0 + a_1 \cdot b + a_2 \cdot b^2 + \dots + a_k \cdot b^k.$$

Die Zahlen a_0, \ldots, a_k heißen **Ziffern** von n in der Darstellung zur Basis b. Schreibweise: $n_{[b]} = a_k a_{k-1} \ldots a_1 a_0$ (fehlt [b] so ist [10] gemeint)

1.2 Beispiele

• Binärsystem, b=2

$$-5_{[10]} = 101_{[2]}$$

$$-101_{[10]} = 64_{[10]} + 32_{[10]} + 4_{[10]} + 1_{[10]} = 1100101_{[2]}$$

Notation:
$$10_{[10]} = A_{[16]}, 11_{[10]} = B_{[16]}, \dots, 15_{[10]} = F_{[16]}$$

$$-101_{[10]} = 5 \cdot 16 + 5 = 55_{[16]}$$

$$-1B3_{[16]} = 256_{[10]} + 11_{[10]} \cdot 16_{[10]} + 3_{[10]} = 435_{[10]}$$

1.3 Satz (Division mit Rest)

Sei $n \in \mathbb{Z}$ und $m \in \mathbb{N}_+$.

Dann gibt es eine eindeutige Darstellung $n = q \cdot m + r$ mit $q \in \mathbb{Z}$ (genannt **Quotient**) und $r \in \{0, 1, \dots, m-1\}$ (genannt **Rest**).

$$\underline{\text{Schreibweise:}} \underset{\text{"ist kongruent"}}{\underline{\text{Nod}}} m \equiv r \pmod{m}$$

1.4 Beispiele

• Die Zahl n = 87 soll durch m = 5 geteilt werden:

$$n = q \cdot m + r = 17 \cdot 5 + 2$$

• Die möglichen Reste bei der Division einer Quadratzahl durch 12 sind:

1.5 Definition (Vielfaches, Teiler, Primzahl)

- 1. Ist der Rest bei der Division von n durch m gleich Null, so heißt n ein **Vielfaches** von m und m ein **Teiler** von n.
- 2. Eine Zahl $n \geq 2$ heißt eine **Primzahl**, wenn sie nur zwei positive Teiler 1 und n besitzt.

1.6 Beispiele

- Die Teiler von 12 sind 1, 2, 3, 4, 6, 12.
- Die ersten Primzahlen sind 2, 3, 5, 7, 11, 13, 17, 19,...

1.7 Satz (Fundamentalsatz der Arithmetik)

Sei $n \in \mathbb{N}_+$. Dann gibt es eine (bis auf die Reihenfolge) eindeutige Darstellung

$$n = p_1^{\alpha_1} \cdot p_2^{\alpha_2} \cdot \ldots \cdot p_n^{\alpha_n}$$

mit paarweise verschiedenen Primzahlen p_1, \ldots, p_k und $\alpha_i \in \mathbb{N}_+$. Diese Darstellung heißt **Primfaktorzerlegung** von n.

1.8 Beispiele

- $24 = 2^3 \cdot 3$
- $111 = 3 \cdot 37$

- $1011 = 7 \cdot 11 \cdot 13$
- $1024 = 2^10$
- $729 = 3^6$
- $625 = 5^4$

1.9 Definition (ggT, kgV)

Seien $a, b \in \mathbb{N}_+$.

- 1. Die größte positive ganze Zahl $g \in \mathbb{N}_+$ mit g|a und g|b heißt der **größte gemeinsame Teiler** (ggT) von a und b.
- 2. Die kleinste positive ganze Zahl $k \in \mathbb{N}_+$ mit a|k und b|k heißt das kleinste gemeinsame Vielfache (kgV) von a und b.

1.10 Satz (ggT/kgV durch Primfaktorenzerlegung)

Sei $a, b \in \mathbb{N}_+$ mit Primfaktorzerlegungen

$$a = p_1^{\alpha_1} \cdot \ldots \cdot p_k^{\alpha_k} \text{ und} b = p_1^{\beta_1} \cdot \ldots \cdot p_k^{\beta_k} \text{ mit } \alpha_i, \beta_i \ge 0.$$

Dann gilt:

- 1. $ggT(a,b) = p_1^{\gamma_1} \cdot p_2^{\gamma_2} \cdot \ldots \cdot p_k^{\gamma_k} \text{ mit } \gamma_i = min\{\alpha_i, \beta_i\}$
- 2. $kgV(a,b) = p_1^{\delta_1} \cdot p_2^{\delta_2} \cdot \ldots \cdot p_k^{\delta_k}$ mit $\delta_i = max\{\alpha_i, \beta_i\}$

1.11 Beispiele

- $ggT(30,75) = 2^0 \cdot 3^1 \cdot 5^1 = 15$, denn $30 = 2 \cdot 3 \cdot 5$ und $75 = 3 \cdot 5^2$
- ggT(64, 81) = 1, denn $64 = 2^6, 81 = 3^4$

1.12 Bemerkung (Teilbarkeitsregeln)

- 1. 2|n genau dann, wenn die Endziffer von n in $\{0, 2, 4, 6, 8\}$ ist.
- 2. 3|n genau dann, wenn die Quersumme(Qs) von n durch 3 Teilbar ist.
- 3. 4|n genau dann, wenn $4|(10a_1 + a_0)$.

- 4. 5|n genau dann, wenn $a_0 \in \{0,5\}$ gilt.
- 5. 6|n genau dann, wenn 2|n und 3|n.
- 6. 8|n genau dann, wenn $8|(100a_2 + 10a_1 + a_0)$.
- 7. 9|n genau dann, wenn 9|Qs(n).
- 8. 10|n genau dann, wenn $a_0 = 0$ gilt.
- 9. 11|n genau dann, wenn $11|(a_0 a_1 + a_2 + \cdots \pm a_k)$.
- 10. 12|n genau dann, wenn 3|n und 4|n.

1.13 Beispiele

- 9|123453
- 11|1232

1.14 Bemerkung (Geschicktes Rechnen)

- 1. Dritte binomische Formel: $(x-y)(x+y) = x^2 y^2$ plus Quadratzahlen
 - $13 \cdot 17 = 15^2 2^2 = 225 4 = 221$
 - $23 \cdot 25 = 576 1 = 575$
 - $27 \cdot 33 = 900 9 = 891$
- 2. Multiplikation durch Umsortierung der Primfaktoren
 - $8 \cdot 375 = 8 \cdot 3 \cdot 125 = 10^3 \cdot 3 = 3000$
 - $40 \cdot 75 = 4 \cdot 10 \cdot 3 \cdot 25 = 3000$
- 3. Quadrieren mittels erster binomischer Formel: $(x+y)^2 = x^2 + 2xy + y^2$
 - $43^2 = 40^2 + 2 \cdot 3 \cdot 40 + 9 = 1600 + 240 + 9 = 1849$
 - $98^2 \cdot (100 2)^2 = 10000 400 + 4 = 9604$

Querverweis binom

1.15 Definition (Rekursive Definition von ggT und kgV)

Für $n \geq 2$ und $a_0, \ldots, a_n \in \mathbb{N}_+$ gilt:

- $ggT(a_1, a_2, ..., a_n) = ggT(ggT(a_1, a_2, ..., a_{n-1}), a_n)$
- $kgV(a_1, a_2, ..., a_n) = kgV(kgV(a_1, a_2, ..., a_{n-1}), a_n)$

1.16 Satz: Es gibt unendlich viele Primzahlen

BEWEIS. Angenommen es gibt nur endlich viele Primzahlen p_1, p_2, \ldots, p_k . Dann betrachte die Primfaktorenzerlegung von $n = p_1 \cdot p_2 \cdot \ldots \cdot p_k + 1$. Die Zahlen p_1, p_2, \ldots, p_k teilen n nicht, sondern lassen den Rest 1. Also sind p_1, p_2, \ldots, p_k nicht alle Primzahlen, was im Widerspruch zur Annahme steht

2 Rechnen mit Brüchen und Reellen Zahlen

 $\mathbb{Q}=\left\{\frac{a}{b}|a\in\mathbb{Z},b\in\mathbb{N}_{+}\right\}$ Menge der rationalen Zahlen

2.1 Bemerkung (Rechenregeln für Brüche)

Für alle $a, c \in \mathbb{Z}$ und $b, c \in \mathbb{N}_+$ gilt:

1. (Gleichheit von Brüchen)

$$\frac{a}{b} = \frac{c}{d}$$
genau dann wenn $ad = bc$

Beispiel: $\frac{3}{6} = \frac{1}{2}$

Kürzen von Brüchen:

$$\frac{a \cdot n}{b \cdot n} = \frac{a}{b} \text{ für alle } n \in \mathbb{N}_+$$

2. (Addition/Subtraktion von Brüchen)

$$\frac{a}{b} + \frac{c}{d} = \frac{ad + bc}{bd} = \frac{a \cdot \tilde{b} + c \cdot \tilde{d}}{kgV(b,d)}$$

mit $\tilde{b} = \frac{kgV(b,d)}{b}$ und $\tilde{d} = \frac{kgV(b,d)}{d}$.

Beispiele:
$$\frac{1}{4} + \frac{1}{4} = \frac{2}{4} = \frac{1}{2}, \frac{7}{30} + \frac{11}{45} = \frac{22}{90} + \frac{22}{90} = \frac{43}{90}$$

3. (Multiplikation von Brüchen)

$$\frac{a}{b} \cdot \frac{c}{d} = \frac{a \cdot c}{b \cdot d}$$

4. (Division von Brüchen/Doppelbrüche) Sei nun $c \neq 0$. Dann gilt:

$$\frac{\frac{a}{b}}{\frac{c}{d}} = \frac{a}{b} \cdot \frac{d}{c} = \frac{ad}{bc}$$

5. (Kehrwert eines Bruchs)

$$\left(\frac{a}{b}\right)^{-1} = \frac{1}{\frac{a}{b}} = \frac{b}{a} \text{ falls } a \in \mathbb{Z} \backslash \{0\}$$

10

2.2 Beispiele

1. Für $n \ge 1$ gilt

$$\frac{1}{m} - \frac{1}{m-1} = \frac{m+1}{m(m+1)} - \frac{m}{m(m+1)} = \frac{1}{m(m+1)},$$

also zB $\frac{1}{3} - \frac{1}{4} = \frac{1}{12}$.

- 2. $\frac{1}{2} + \frac{1}{4} = \frac{3}{4}$
 - $\bullet \ \ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} = \frac{7}{8}$
 - $\bullet \ \ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \frac{1}{16} = \frac{15}{16}$
 - $\bullet \ \frac{1}{2} + \frac{1}{4} + \frac{1}{8} + \dots + \frac{1}{2^n} = \frac{2^n 1}{2^n}$

2.3 Definition (Potenzen)

1. Sei $a \in \mathbb{R}$. Dann definiere $a^0 = 1, a^1 = a, a^2 = a^1 \cdot a = a \cdot a$ etc. Für $n \ge 1$ sei also $a^n = a^{n-1} \cdot a = \underbrace{a \cdot a \cdot \ldots \cdot a}_{n-mal}$.

Die Zahl a^n heißt die n-te Potenz von a.

2. Sei $a \in \mathbb{R}$ mit $a \neq 0$. Für n = -k mit $k \geq 1$ setze $a^n = a^{-k} = \frac{1}{a^k}$.

2.4 Beispiele

- $343 = 7^3 x$
- $2^{-3} = \frac{1}{2^3} = \frac{1}{8} = 0,125$
- $\bullet \ a^{-2} = \frac{1}{a^2}$
- $3^6 = 9^3 = 729$

2.5 Bemerkung (Rechenregeln für Potenzen)

Für $a, b \in \mathbb{R}$ und $k, l \in \mathbb{Z}$ gilt:

- $1. \ a^k \cdot b^k = (ab)^k$
- $2. \ a^k \cdot a^l = a^{k+l}$
- $3. \left(a^k\right)^l = a^{kl}$
- 4. $\frac{a^k}{a^l} = a^{k-l}$ falls $a \neq 0$

5.
$$\left(\frac{a}{b}\right)^k = \frac{a^k}{b^k}$$
 falls $b \neq 0$

2.6 Definition (Wurzeln)

1. Sei $a \in \mathbb{R}_+ = \{a \in \mathbb{R} | a > 0\}$ und $k \in \mathbb{N}_+$. Dann gibt es genau ein $b \in \mathbb{R}_+$ mit $b^k = a$. Diese Zahl b heißt die k-te Wurzel von a und wird mit $b = \sqrt[k]{a}$ bezeichnet.

Im Fall k=2 schreiben wir auch einfach $b=\sqrt{a}$. ("Quadratwurzel")

Gänsefüßchen

2. Für $a \in \mathbb{R}_+$ und $m, n \in \mathbb{N}_+$ setzen wir $a^{\frac{m}{n}} = \sqrt[n]{a^m}$. Insbesondere sei also $a^{\frac{1}{m}} = \sqrt[m]{a}$.

Mit dieser Definition gelten die Rechenregeln für Potenzen auch für rationale Exponenten. Insbesondere sei $a^{-\frac{m}{n}}=\frac{1}{a^{\frac{m}{n}}}$.

2.7 Beispiele

- $\sqrt[3]{24} = \sqrt{2^3 \cdot 3} = \sqrt[3]{2^3} \cdot \sqrt[3]{3} = 2 \cdot \sqrt[3]{3}$
- $\sqrt[3]{216} = 6$
- $\sqrt{484} = 22$
- $\sqrt{\frac{36}{121}} = \frac{6}{11}$
- $\bullet \ \sqrt{6} \cdot \sqrt{3} = \sqrt{2} \cdot \sqrt{3} \cdot \sqrt{3} = 3\sqrt{2}$

2.8 Satz (Euklid)

Behauptung. $\sqrt{2}$ ist keine rationale Zahl.

Beweis. Angenommen $\sqrt{2}$ wäre rational.

Dann gäbe es $a, b \in \mathbb{N}_+$ mit $\sqrt{2} = \frac{a}{b}$.

Durch Kürzen können wir annehmen, dass ggT(a,b) = 1 g Blitz, qed

Durch Quaddrieren folgt $2 = \frac{a^2}{b^2}$, also $2b^2 = a^2$.

Da a^2 gerade ist, muss auch a gerade sein, das heißt $\exists c \in \mathbb{N}_+$ mit a = 2c.

Einsetzen liefert $2b^2 = (2c)^2 \Leftrightarrow b^2 = 2c^2$.

Somit muss auch b gerade sein. BLITZ zu ggT(a,b)=1.

3 Rechnen mit Buchstaben

Seien a, b, c, \ldots Buchstabensymbole.

FRAGE. Was ist $(x-a) \cdot (x-b) \cdot (x-c) \cdot \cdots \cdot (x-z)$?

HINWEIS. Betrachte den 24. Faktor!

3.1 Definition

1. Ein Produkt der Form $(a^{n_a} \cdot b^{n_b} \cdot c^{n_c} \dots)$ mit $n_a, n_b, n_c, \dots \in \mathbb{N}$ heißt **Term**.

Beachte: $a^2bc = caba = acab$ etc. (Kommutativgesetz)

- 2. Ein Ausdruck der Form $c \cdot t$ mit einem **Koeffizienten** $c \in \mathbb{R}$ und einem Term t heißt **Monom**.
- 3. Eine entliche Summe von Monomen heißt Polynom.

3.2 Bemerkung (Rechenregeln für Polynome)

Seien f, g, h, \ldots Polynome.

1. Distributivgesetze:

$$f \cdot (g+h) = f \cdot g + f \cdot h$$
 (bedeutet $(f \cdot g) + (f \cdot h)$ "Punkt vor Strich") $(f+g) \cdot h = f \cdot h + g \cdot h$

2. Kommutativgesetz:

$$f \cdot g = g \cdot f, \quad f + g = g + f$$

3. Assoziativgesetz:

$$(f \cdot g) \cdot h = f \cdot (g \cdot h), \quad (f+g) + h = f + (g+h)$$

Die Klammern können auch ganz weggelassen werden.

4. Prioritätsregel: Exponent vor Punkt vor Strich!

$$f^2q + h = ((f \cdot f) \cdot q) + h$$

Gänsefüßchen

3.3 Beispiele

1. (Erste binomische Formel)

$$(a+b)^2 = a^2 + 2ab + b^2$$

2. (Zweite binomische Formel)

$$(a-b)^2 = a^2 - 2ab + b^2$$

3. (Dritte binomische Formel)

$$(a+b) \cdot (a-b) = a^2 - b^2$$

4. (Teleskopsumme)

$$1 - a^{n+1} = (1 + a + a^2 + a^3 + \dots + a^n) \cdot (1 - a)$$

5.
$$1+a^n = (1-a+a^2-a^3+\cdots+a^{n-3}-a^{n-2}+a^{n-1})\cdot(1+a)$$
 falls n ungerade

6.
$$a^n - b^n = (a - b)(a^{n-1} + a^{n-2}b + \dots + ab^{n-2} + b^{n-1})$$

7.
$$a^n + b^n = (a+b) \cdot (a^{n-1} - a^{n-2}b + a^{n-3}b^2 - \cdots + b^{n-1})$$
 falls n ungerade

8.
$$a^3 + b^3 = (a+b) \cdot (a^2 - ab + b^2)$$

3.4 Bemerkung (Rechenregeln für symbolische Berechnungen)

1.

$$(-1)(-1) = 1$$

 $(-1)(+1) = -1$
 $(-x)(-y) = xy$

2. (Ausklammern)

Man kann die Distributivgesetze oft "andersherum" anwenden:

$$ab + a + b + 1 = a \cdot (b+1) + (b+1) = (a+1)(b+1)$$

 $x^2 + 3x + 2 = (x+1)(x+2)$ (Vieta)

Gänsefüsche Link to Vieta

3.5 Definition

- 1. Ist $t = x_1^{\alpha_1} \cdot \ldots \cdot x_n^{\alpha_n}$ ein Term, so heißt $deg(t) = \alpha_1 + \ldots + \alpha_n$ der **Grad** von t.
- 2. Ist $f = c_1t_1 + \ldots + c_st_s$ ein Polynom mit $c_1 \neq 0, \ldots, c_s \neq 0$ so heißt $deg(f) = max\{deg(t_1), \ldots, deg(t_s)\}$ der **Grad** von f.
- 3. Ist $f = c_1t_1 + \ldots + c_st_s$ ein Polynom mit $c_1 \neq 0, \ldots, c_s \neq 0$ und gilt $deg(t_1) = \ldots = deg(t_s)$, so heißt f ein homogenes Polynom.

3.6 Beispiele

- Das Polynom $f = x^3 + y^3$ ist homogen vom Grad 3.
- Das Polynom $p = x^4 + 4y^4$ ist homogen vom Grad 4.

3.7 Definition

Seien f, g Polynome mit $g \neq 0$. Dann heißt $\frac{f}{g}$ eine **rationale Funktion**.

3.8 Bemerkung

Man kann mit rationalen Funktionen entsprechend der Bruchregeln rechnen.

3.9 Beispiele

- $\frac{1}{x-1} \frac{1}{x+1} = \frac{(x+1)-(x-1)}{x^2-1} = \frac{2}{x^2-1}$
- $\bullet \ \frac{x}{y} \frac{y}{x} = \frac{x^2 y^2}{xy}$
- $\frac{x^2 y^2}{x + y} = \frac{(x y)(x + y)}{x + y} = x y$

4 Lineare und Quadratische Gleichungen

4.1 Definition

Eine Gleichung der Form ax + b = 0 mit Zahlen a, b und $a \neq 0$ heißt eine **lineare Gleichung** mit einer Unbestimmten.

4.2 Bemerkung

Die Lösung einer Gleichung ax + b = 0 ist $x_1 = -\frac{b}{a}$ (falls $a \neq 0$). Die Menge $L = \{-\frac{b}{a}\}$ heißt die **Lösungsmenge** der Gleichung. (Wenn $\frac{1}{a}$ nicht definiert ist, so gilt $L = \emptyset$.)

4.3 Definition

Seien a, b, c Zahlen mit $a \neq 0$. Dann heißt $ax^2 + bx + c = 0$ eine **quadratische** Gleichung mit einer Unbestimmten.

4.4 Bemerkung (Lösen einer quadratischen Gleichung über \mathbb{R}/\mathbb{C})

R/Q fett

1. Schritt: Wegen $a \neq 0$ kann man durch a teilen und erhält: $x^2 + px + q = 0 \text{ mit } p = \frac{b}{a}, q = \frac{c}{a}$

2. Schritt: (quadratische Ergänzung) $(x + \frac{p}{2})^2 - \frac{p^2}{4} + q = 0$

3. Schritt: (Wurzel ziehen) $(x+\frac{p}{2})^2 = \frac{p^2}{4} - q = \frac{p^2-4q}{4}$ Ist $p^2-4q<0$, so gibt es in $\mathbb R$ keine Lösung. Ansonsten: $x+\frac{p}{2}=\pm\frac{1}{2}\sqrt{p^2-4q}$

Die Lösungen sind also $x_1 = -\frac{p}{2} + \frac{1}{2}\sqrt{p^2 - 4q}$ und $x_1 = -\frac{p}{2} - \frac{1}{2}\sqrt{p^2 - 4q}$

16

Die Zahl $\Delta=p^2-4q$ heißt die **Diskriminante** der Gleichung.

4.5 Satz (Vieta)

Seien $x_1.x_2$ die Lösungen einer quadratischen Gleichung $x^2 + px + q = 0$. Dann gilt: $x_1 + x_2 = -p$ und $x_1 \cdot x_2 = q$.

BEWEIS. Sind x_1, x_2 die Lösungen, so gilt:

$$(x - x_1)(x - x_1) = 0$$
 und somit $x^2 - x_1x - x_2x + x_1x_2 = 0$,
also $x^2 - (x_1 + x_2)x + (x_1x_2) = 0$.

ANWENDUNG: Um $x^2 + px + q = 0$ zu lösen, finde zwei Zahlen mit Summe -p und Produkt q.

centering, qed

4.6 Beispiele

- $x^2 3x + 2 = 0$ hat die Lösungen $x_1 = 1$ und $x_2 = 2$.
- $x^2 4x + 3, L = \{1, 3\}$
- $x^2 + 3x + 2, L = \{-1, -2\}$
- $x^2 + x 2, L = \{1, -2\}$

4.7 Bemerkung (Substitution)

Manchmal kann man eine Gleichung durch eine geschickte **Substitution** lösen.

- Löse $x^4 7x^2 + 10$ in \mathbb{R} . Setze $y = x^2$. Erhalte $y^2 - 7y + 12 = 0$ mit $L = \{3, 4\}$ und somit $x_{1/2} = \pm \sqrt{3}, x_{3/4} = \pm 2$.
- Löse $x 18\sqrt{x} + 17 = 0$ in \mathbb{R} . Setze $y = \sqrt{x}$. Erhalte $y^2 - 18y + 17 = 0$ mit $L = \{1, 17\}$, also $\sqrt{x} = 1$ und $\sqrt{x} = 17$. Somit sind $x_1 = 1$ und $x_2 = 289$.

4.8 Bemerkung (Lineares Gleichungssystem)

Gegeben seien Zahlen $a_1, a_2, b_1, b_2, c_1, c_2$ mit $a_1b_1 - a_2b_2 \neq 0$. Dann heißt $\begin{cases} a_1x + b_1y + c_1 = 0 \\ a_2x + b_2y + c_2 = 0 \end{cases}$ ein **lineares Gleichungssystem** mit zwei Unbestimmten x, y. 1. Lösungsmethode "Einsetzen" Ist $a_1 \neq 0$, so wird $x = -\frac{b_1}{a_1}y - \frac{c_1}{a_1}$. Setze dies in die zweite Gleichung ein und erhalte $a_2\left(-\frac{b_1}{a_1}y - \frac{c_1}{a_1}\right) + b_2y + c = 0$. Löse diese lineare Gleichung und erhalte y_1 . Dann gilt $x_1 = -\frac{b_1}{a_2}y_1 - \frac{c_1}{a_1}$. $L = \{(x_1, y_1)\}$.

Sonderfall: y hebt sich in der ersetzten Gleichung auf: $a_2 \cdot \left(-\frac{b_1}{a_1}\right) + b_2 = 0$, also $\frac{-a_2b_1 + a_1b_2}{a_1} = 0$ und somit $a_1b_2 - a_2c_1 = 0$.

In diesem Fall lautet die ersetzte Gleichung: $a_2\left(-\frac{c_1}{a_1}\right) + c_2 = 0$, also $\frac{-a_2c_1 + a_1c_1}{a_1} = 0$ und somit $a_1c_2 - a_2c_1 = 0$

Es gibt zwei Möglichkeiten:

- (a) $a_1c_2 a_2c_1 \neq 0 \Rightarrow L = \emptyset$
- (b) $a_1c_2 a_2c_1 = 0 \Rightarrow y$ beliebig, $x = -\frac{b_1}{a_1}y \frac{c_1}{a_1}$ Somit gilt: $L = \left\{ \left(-\frac{b_1}{a_1} \cdot \lambda - \frac{c_1}{a_1}, \lambda \right) \middle| \lambda \in \mathbb{R} \right\} \subseteq \mathbb{R}^2$
- 2. Lösungsmethode "Inderreduzieren", "Gauß-Verfahren"

 <u>Ziel:</u> Bilde Linearkombinationen der beiden Gleichungen, in denen nur eine der beiden Unbestimmten vorkommt.

Gänsefüßchen

4.9 Beispiel

$$\text{L\"{o}se} \left\{ \begin{array}{ll} 2x + 5y = 9 & \text{(I)} \\ 3x - 4y = 2 & \text{(II)} \end{array} \right.$$

 $3\cdot(I)-2\cdot(II)$: 15y+8y=27-4 liefert y=1. Einsetzen von y=1 in (II) ergibt $3x=6\Leftrightarrow x=2\Rightarrow L=\{(2,1)\}$.

4.10 Beispiel (Schnittpunkt von zwei Kreisen)

 $x^2 + y^2 - 4x - 4y = 0 K_2$

Gleichung $K_1 - K_2$: 6x - 2y + 6 = 0, also y = 3x + 3. Setze dies in K_1 (oder K_2) ein: $x^2 + (3x + 3)^2 + 2x - 6 \cdot (3x + 1) + 1 = 0$.

Liefert:
$$x_1 = -1$$
, $x_2 = \frac{4}{5}$, also $y_1 = 0$, $y_2 = \frac{27}{5} \Rightarrow L = \{(-1,0), (\frac{4}{5}, \frac{27}{5})\}$

4.11 Aufgabe (Aus einem alten chinesischem Rechenbuch)

In einem Stall sind Hühner und Schweine. Es sind 40 Tiere. Zusammen haben sie 70 Füße.

Wie viele Tiere von jeder Sorte sind es?

5 Ungleichungen

Seien f, g Polynome in Unbestimmten x_1, x_2, \ldots, x_n (oder x, y, z) mit Koeffizienten aus \mathbb{R} .

5.1 Definition

Es gibt 5 Typen von Ungleichungen:

- 1. $f \leq g$
- $2. f \geq g$
- 3. f < g
- 4. f > g
- 5. $f \neq g$

Interpretation: $f \leq g$ bedeutet, dass die Ungleichung gelten soll, wenn man für x_1, \ldots, x_n Zahlen (aus einem Definitionsbereich $D \subseteq \mathbb{R}^n$) einsetzt.

5.2 Beispiele

- Für $x \in \mathbb{R}$ gilt: $x^2 \ge 0$.
- Für $x, y \in \mathbb{R}$ gilt: $x^2 + y^2 \ge 2xy$

Beweis.

$$(x - y)^{2} \ge 0$$

$$\Leftrightarrow x^{2} - 2xy + y^{2} \ge 0$$

$$\Leftrightarrow x^{2} + y^{2} \ge 2xy$$

Folgerung: Für $x, y \ge 0$ gilt:

$$\underbrace{\sqrt{xy}}_{\text{geometrisches Mittel}} \le \underbrace{\sqrt{\frac{x^2 + y^2}{2}}}_{\text{quadratisches Mittel}}$$

• Arithmetisches Mittel: $\frac{x+y}{2} \le \sqrt{xy}$

Größenverhätnisse

5.3 Bemerkung (Rechenregeln für Ungleichungen)

- 1. $f \leq g$ ist äquivalent mit $g \geq f$
 - f < g ist äquivalent mit g > f
 - $f \leq g$ ist äquivalent mit [f < g oder f = g]
 - $f \neq g$ ist äquivalent mit [f < g oder f > g]
- 2. Sei h ein weiteres Polynom. Dann ist $f \leq g$ äquivalent mit $f + h \leq g + h$.
- 3. $f \leq g$ ist äquivalent mit $-f \geq -g$
- 4. Gilt $f \leq g$ und $h \geq 0$ so folgt $f \cdot h \leq g \cdot h$ Gilt $f \leq g$ und $h \leq 0$ so folgt $f \cdot h \geq g \cdot h$
- 5. Für $0 < f \le g$ gilt $0 < \frac{1}{g} \le \frac{1}{f}$

Eine Ungleichung zu lösen bedeutet, alle $(x_1, \ldots, x_n) \in \mathbb{R}^n$ zu finden, für die die Ungleichung gilt.

5.4 Beispiel

$$\text{L\"{o}se } \left\{ \begin{array}{ll} 3x - 4y \leq 1 & \text{(I)} \\ x + y \geq 2 & \text{(II)} \end{array} \right..$$

Skizze:

$$\frac{\text{(II)':} \quad -x - y \ge -2}{\text{(I)+3(II)':} \quad -7y \le 5 \Rightarrow y \ge \frac{5}{7}} \\ \frac{\text{(II):} \quad x \ge 2 - y}{\text{aus (I):} \quad x \ge \frac{1}{3} + \frac{4}{3}y}$$
 Es folgt: $L = \left\{ (x,y) \in \mathbb{R}^2 | y \ge \frac{5}{7} \land 2 - y \le x \le \frac{1}{3} + \frac{4}{3}y \right\}$

5.5 Bemerkung

Ist $h : \mathbb{R} \to \mathbb{R}$ monoton steigend, (das heißt aus $x \leq y$ folgt $h(x) \leq h(y)$,) so gilt:

$$\text{Aus } f \leq g \text{ folgt } h \circ f \leq h \circ g. \\ \overset{\uparrow}{\underset{\text{Komposition}}{\text{Komposition}}}$$

5.6 Beispiele

- Die Funktion $h: \mathbb{R}_0^+ \to \mathbb{R}_0^+, x \mapsto \sqrt{x}$ ist monoton steigend. Somit folgt aus $0 \le f \le g$ die Ungleichung $0 \le \sqrt{f} \le \sqrt{g}$.
- Die Abbildung $\ln : \mathbb{R}_+ \to \mathbb{R}, x \mapsto \ln(x)$ ist monoton steigend. Aus $0 \le f \le g$ die Ungleichung $0 \le \ln(f) \le \ln(g)$.

5.7 Beispiel

Löse die Ungleichung $x^2 - \frac{1}{2}x - \frac{1}{2} \ge 0$ in \mathbb{R} .

Quadratische Ergänzung:

$$\left(x - \frac{1}{4}\right)^2 \ge \frac{1}{2} + \frac{1}{16} = \frac{9}{16}$$

Fallunterscheidung!

1. Fall: $x - \frac{1}{4} \ge 0$: Wurzelziehen ist erlaubt. ...und liefert: $x - \frac{1}{4}$, also $x \ge 1$.

Die Lösungsmenge im 1. Fall ist also: $L_1 = \{x \in \mathbb{R} | x \geq \frac{1}{4} \land x \geq 1\} = \{x \in \mathbb{R} | x \geq 1\}$

2. Fall: $x-\frac14<0$, also $\frac14-x>0$ Die Ungleichung $(\frac14-x)^2\geq\frac9{16}$ liefert $\frac14-x\geq\frac34$, also $x\leq-\frac12$

Anmerkung des Autors: in der Klammer wurde -1 ausgeklammert, da diese beim Quadrieren belanglos ist. Eine (einfachere) Alternative ist 5.9.

Dies zeigt $L_2 = \{x \in \mathbb{R} | x < \frac{1}{4} \land x \le -\frac{1}{2}\} = \{x \in \mathbb{R} | x \le -\frac{1}{2}\}$

Insgesamt ergibt sich die Lösungsmenge $L = L_1 \cup L_2 = \{x \in \mathbb{R} | x \ge 1 \lor x \le -\frac{1}{2}\}.$

5.8 Definition

Für jedes $x \in \mathbb{R}$ heißt

 $|x|\begin{cases} x & \text{für } x \ge 0 \\ -x & \text{für } x < 0 \end{cases}$ der (Absolut-)Betrag von x.

5.9 Beispiel

Im letzten Beispiel folgt aus $\left(x-\frac{1}{4}\right)^2$ die Ungleichung $|x-\frac{1}{4}|\geq \frac{3}{4}$

5.10 Beispiel

Löse die Ungleichung $|x+1| + |x-1| \le 2$.

Fallunterscheidung!

- 1. Fall: x < -1Die Ungleichung lautet $-(x+1) - (x-1) \le 2$ und somit $x \ge -1$. Dies liefert $L_1 = \emptyset$
- 2. Fall: $-1 \le x < 1$ Die Ungleichung lautet $(x+1) - (x-1) \le 2$ und somit $2 \le 2$. Somit folgt $L_2 = \{x \in \mathbb{R} | -1 \le x \le 1\}$
- 3. Fall: $x \ge 1$ Die Ungleichung lautet $(x+1)+(x-1) \le 2$ und somit $x \le 1$. Dies zeigt $L_3 = \{1\}$.

Insgesamt erhalten wir $L = L_1 \cup L_2 \cup L_3 = \{x \in \mathbb{R} | -1 \le x \le 1\}.$

5.11 Dreiecksungleichung

- 1. Für $x, y \in \mathbb{R}$ gilt: $|x + y| \le |x| + |y|$ (Dreiecksungleichung)
- 2. Es gilt für alle $x, y \in \mathbb{R}$ die umgekehrte Dreiecksungleichung: $||x| |y|| \le |x + y|$

BEWEIS.

- 1. Aus $xy \le |x| \cdot |y| = |xy|$ folgt $x^2 + 2xy + y^2 \le |x|^2 + 2|x||y| + |y|^2$, also $(x+y)^2 \le (|x|+|y|)^2$. Da |x+y|, |x| und |y| nicht negativ sind, ist Wurzelziehen erlaubt.
- 2. Nach 1. gilt $|x| \le |x+y| + |-y| = |(x+y)-y|$ und somit $|x+y| \ge |x| |y|$.

 Andererseits gilt, ebenfalls nach 1., die Ungleichung $|x+y-x| = |y| \le |x+y| + |-x| = |x+y| + |x|$ und somit $|x+y| \ge |y| |x|$.

Kombiniert man beide Erkenntnisse, so folgt $|x+y| \ge ||x|-|y||$.

qed

5.12 Beispiel

Löse
$$\sqrt{2x-1} < x+1$$
 für $x \in \mathbb{R}$.

Damit die Wurzel definiert ist, muss gelten $2x - 1 \ge 0$, also $x \ge \frac{1}{2}$. Dann ist die rechte Seite positiv und Quadrieren erlaubt.

Es folgt:
$$2x - 1 < x^2 + 2x + 1$$
, also $x^2 > -2$.

Insgesamt erhalten wir: $L = \{x \in \mathbb{R} | x \ge 0, 5\}.$

5.13 Beispiel

Löse
$$\sqrt{x^2+1} > x+1$$
 in \mathbb{R} .

- 1. Fall: x+1 < 0. In diesem Fall gilt $\sqrt{x^2+1} > 0 > x+1$, also $L_1 = \{x \in \mathbb{R} | x < -1\}$.
- 2. Fall: $x+1 \ge 0$.

 Jetzt ist Quadrieren eine Äquivalenzumformung und es folgt $x^2+1 > x^2+2x+1$, also x<0.

 Dies liefert $L_2=\{x\in\mathbb{R}|-1\ge x<0\}$.

Insegesamt folgt: $L = L_1 \cup L_2 = \{x \in \mathbb{R} | x < 0\}.$

6 Ebene Geometrie

Die Grundlage der ebenen Geometrie ist die **Zeichenebene**. Nach der Einführung von rechtwinkligen (kartesischen) Koordinaten ist dies die Menge \mathbb{R}^2 . Genauer gesagt ist sie der **2-dimensionale affine Raum** über \mathbb{R} und wird mit $\mathbb{A}^2(\mathbb{R})$ bezeichnet.

Die Elemente von $\mathbb{A}^2(\mathbb{R})$ heißen **Punkte**.

Zu je zwei verschiedenen Punkten in $\mathbb{A}^2(\mathbb{R})$ gibt es genau eine **Gerade**, die diese enthält.

Notation:

- $A, B, \dots \in \mathbb{A}^2(\mathbb{R})$ Punkte
- G = AB Gerade durch die Punkte A und B
- [AB] Strecke von A nach B
- $a = \overline{AB}$ Länge der Strecke [AB]

6.1 Definition

Seien $A, B, C \in \mathbb{A}^2(\mathbb{R})$ drei **nicht kollineare** (=nicht auf einer Gerade) Punkte.

Dann heißt die Vereinigung der Strecken [AB], [BC] und [CA] das **Dreieck** mit den **Seiten(längen)** $a = \overline{BC}, b = \overline{AC}, c = \overline{AB}$. Die Punkte A, B, C heißen die **Ecken** des Dreiecks.

Notation: $\triangle ABC$ (Nummerierung gegen den Uhrzeigersinn!)

Die Winkel an den Ecken des Dreiecks werden mit $\alpha = \angle BAC, \beta = \angle CBA, \gamma = \angle ACB$ bezeichnet.

6.2 Beispiel (Das gleichseitige Dreieck)

Es gelte: a = b = c. Dann heißt $\triangle ABC$ ein gleichseitiges Dreieck.

Skizze

6.3 Satz

In einem Dreieck $\triangle ABC$ gilt $\alpha + \beta + \gamma = 180^{\circ} = \pi$.

6.4 Definition (Bogenmaß)

Im **Bogenmaß** gilt $180^{\circ}=\pi, 360^{\circ}=2\pi, 90^{\circ}=\frac{\pi}{2}$ usw.

Es entspricht der Länge des Kreisbogens auf dem Einheitskreis, der diesem Winkel entspricht.

6.5 Beispiel

Im gleichseitigen Dreieck gilt: $\alpha = \beta = \gamma = 60^{\circ} = \frac{\pi}{3}$.

6.6 Beispiel

Dasgleichschenklig-rechtwinklige Dreieck erfüllt $\alpha = \beta = 45^{\circ}$ und $\gamma = 90^{\circ}$.

Ein 90°-Winkel heißt auch **rechter Winkel** und wird auch wie folgt notiert:

Skizze

6.7 Bemerkung

- 1. Die Winkel an einer Geradengleichung erfüllen SKIZZE mit $\alpha + \beta = 180^{\circ}$.
- 2. Werden zwei **parallele** Geraden (d.h. Geraden, die sich nicht schneiden) von einer dritten Gerade geschnitten, so gilt: SKIZZE ("Z-Winkelsatz") $\alpha + \beta = 180^{\circ}$

Skizze, Gänsefüßchen

6.8 Satz

Die Summe der Innenwinkel in einem **konvexen** n-Eck (d.h. die Strecke von einem Punkt des n-Ecks zu einem anderen liegt vollständig im Inneren) beträgt $(n-2) \cdot 180^{\circ}$.

BEWEIS.

Skizze

Ausgehend von einer Ecke A zeichne die Diagonalen zu den nicht anliegenden Ecken ein. Diese zerlegen das n-Eck in n-2 Dreiecke. Aus der Aufteilung der Außenwinkel folgt, dass die Winkelsumme im n-Eck gleich der n-2 Dreiecke ist und es folgt die Behauptung.

qed

6.9 Beispiel (Das reguläre n-Eck)

Das reguläre n-Eck hat n Ecken, n gleich lange Seiten und n gleich große Innenwinkel.

Skizz

6.10 Definition (Besondere Linien im Dreieck)

- 1. Fällt man von einer Ecke das Lot auf die gegenüberliegende Gerade, so heißt die entstehende Stecke eine **Höhe** des Dreiecks. Notation: h_a, h_b, h_c
- 2. Verbindet man eine Ecke des Dreiecks mit dem Mittelpunkt der gegenüberliegenden Seite, so heißt die entstehende Strecke eine **Seitenhalbierende**. Notation: s_a, s_b, s_c
- 3. Fällt man auf die Mittelpunkte der Seiten einers Dreiecks die Lote, so heißen diese die **Mittelsenkrechten** des Dreiecks. Notation: M_a, M_b, M_c
- 4. Zeichnet man im Dreieck ΔABC jeweils die Geraden ein, die die Winkel α, β, γ halbieren, bezeichet man diese als **Winkelhalbierende**. Notation: $W_{\alpha}, W_{\beta}, W_{\gamma}$

Skizzen

6.11 Definition (Kongruente Dreiecke)

- 1. Zei Teilmengen T_1, T_2 von $\mathbb{A}^2(\mathbb{R})$ heißen **kongruent** (oder **deckungs-gleich**), wenn sie durch eine **Bewegung** (hier: durch Verschiebungen, Rotationen, Spiegelungen) ineinander überführbar sind. Statt Bewegung sagt man auch oft **Kongruenzabbildung**.
- 2. Eine Abbildung $\varphi : \mathbb{A}^2(\mathbb{R}) \to \mathbb{A}^2(\mathbb{R})$ heißt **Kongruentabbildung**, wenn wie Längen und Winkel erhält.

6.12 Satz (Die Kongruenzsätze im Dreieck)

Zwei Dreiecke ΔABC und $\Delta A'B'C'$ sind kongruent, wenn eine der folgenden Bedingungen erfüllt ist:

- 1. (sss-Satz) Die Seitenlängen sind paarweise gleich.
- 2. (sws-Satz) Zwei Seitenlängen und der eingeschlossene Winkel sind jeweils gleich.

3. (wsw-Satz) Zwei entsprechende Seitenlängen und die jeweils anliegenden Winkel sind gleich.

6.13 Satz

- 1. Die drei Mittelsenkrechten eines Dreiecks schneiden sich in einem Punkt. Der Schnittpunkt ist der **Umkreismittelpunkt** des Dreiecks.
- 2. Die Winkelhalbierenden schneiden sich in einem Punkt. Der Schnittpunkt ist der Innkreismittelpunkt des Dreiecks.
- 3. Die drei Seithenhalbierenden eines Dreiecks schneiden sich in einem Punkt. dieser Punkt ist der **Schwerpunkt** des Dreiecks.
- 4. Die drei Höhen des Dreiecks schneiden sich in einem Punkt ("Höhenschnittpunkt").

Skizze, Gänsefüßchen, Beweis)

6.14 Satz (Fläche des Dreiecks)

Die Fläche F des Dreiecks $\triangle ABC$ ist gegeben durch $F = \frac{1}{2} \cdot c \cdot h_c$.

BEWEIS. $F = F_1 + F_2 = \frac{1}{2} \cdot p \cdot h_c + \frac{1}{2} \cdot q \cdot h_c = \frac{1}{2} h_c(p+c) = \frac{1}{2} \cdot c \cdot h_c$

6.15 Beispiel (Rechtwinkliges Dreieck)

Ist in einem Dreieck einer der Innenwinkel gleich 90° , so heißt es ein **rechtwinkliges Dreieck**. Dann heißt [AB] die **Hypotenuse** des Dreiecks und [BC], [AC] heißen die **Katheten** des Dreiecks. Es gilt: $\alpha + \beta = 90^{\circ}$.

6.16 Satz (Der Satz des Thales)

Ist M der Mittelpunkt der Hypotenuse und zeichnet man den Kreis um M mit Radius $\frac{c}{2}$, so liegt die Ecke C auf diesem Kreis. Er heißt **Thaleskreis** des Dreiecks.

Umgekehrt gilt: Liegt die Eckt C auf dem Kreis um den Mittelpunkt M von [AB] mit Radius $\frac{c}{2}$, so ist das Dreieck ΔABC rechtwinklig mit $\gamma = 90^{\circ}$.

Beweise+Skizzen

6.17 Definition (Zentrische Streckung)

Eine **zentrische Streckung (Homothetie)** mit Zentrum Z und Streckungsfaktor $\lambda \in \mathbb{R}_+$ ist die Abbildung, die jedem Punkt P abbildet auf den Punkt Q auf der Halbgeraden [ZP], der von Z (in Richtung P) die Entfernung $\lambda \cdot \overline{ZP}$ besitzt.

Skizze

Zentrische Streckungen sind winkelerhaltend.

6.18 Satz (Der Strahlensatz)

Gegeben seien zwei Geraden, die sich in einem Punkt Z schneiden. Diese Geraden G_1, G_2 werden von zwei parallelen Geraden H_1, H_2 geschnitten. Die Schnittpunkte seien A, A', B, B'.

Skizze

Setze
$$a = \overline{ZA}$$
 $a' = \overline{ZA'}$ $a'' = \overline{AA'}$
 $b = \overline{ZB}$ $b' = \overline{ZB'}$ $b'' = \overline{BB'}$
 $c = \overline{AB}$ $c' = \overline{A'B'}$

1. Strahlensatz

$$\frac{a}{a'} = \frac{b}{b'}$$
 und $\frac{a}{a''} = \frac{b}{b''}$

2. Strahlensatz

$$\frac{a}{a'} = \frac{b}{b'} = \frac{c}{c'}$$

3. Umkehrung des 1. Strahlensatz

Gilt
$$\frac{a}{a'} = \frac{b}{b'}$$
 so folgt $H_1 \parallel H_2$.

Vorsicht: Die Umkehrung des 2. Strahlensatzes gilt nicht.

Blitz

BEWEIS.

1. Betrachte die zentrische Streckung mit dem Zentrum Z und dem Streckungsfaktor $\frac{a'}{a}$.

Bei der zentrischen Streckung wird H_1 in eine parallele Gerade abgebildet, denn würde sich H_1 und ihr Bild in einem Punkt schneiden,

so wäre dieser Punkt ein Fixpunkt ungleich Z der Abbildung, was für $\lambda \neq 1$ nicht geht.

Also wird H_1 auf H_2 abgebildet. Somit wird B auf B' abgebiltet und $\frac{b'}{b} = \lambda = \frac{a'}{a}$.

- 2. Die Strecke [AB] wird bei der zentrische Streckung auf [A'B'] abgebildet, also gilt $\frac{c'}{c}=\lambda=\frac{a'}{a}.$
- 3. Nach Voraussetzung wird bei der zentrischen Streckung mit $\lambda = \frac{a'}{a}$ sowohl A in A' also auch B in B' überführt. Also wird [AB] in [A'B']überführt und es folgt $A'B' \parallel AB$.

qed

6.19 **Definition**

Zwei ebene geometrische Figuren heißen ähnlich, wenn es eine Kongruenzabbildung und eine anschließende zentrische Streckung gibt, die die eine in die andere überführt.

6.20 Korollar

Sind zwei ebene geometrische Figuren ähnlich, so sind entsprechende Winkel gleich und entsprechende Streckenlängen stehen in einem festen Verhältnis λ .

6.21 Beispiel

Der Schwerpunkt eines Dreiecks teilt die Seitenhalbierenden im Verhältnis 2:1.

Beweis.

Skizze

Zeichne die Parallele zu CM_c durch M_a . Ihr Schnittpunkt mit der Seite [AB] sei P.

Nach dem Strahlensatz gilt: $\frac{\overline{BM_c}}{\overline{BP}} = \frac{\overline{BC}}{BM_a} = \frac{2}{1} = \frac{\overline{BS}}{\overline{BQ}}$. Strahlensatz mit Zentrum A: Die Geraden AM_a und AB werden von zwei paralleln Geraden geschnitten: $\frac{\overline{AM_a}}{\overline{AS}} = \frac{\overline{BC}}{\overline{BM_a}} = \frac{3}{2}$

6.22Satz (Die Satzgruppe des Pythagoras)

Sei $\triangle ABC$ ein rechtwinkliges Dreieck mit $\gamma = 90^{\circ}$.

1. (Satz des Pytagoras, ca. 540 v. Chr.)

$$a^2 + b^2 = c^2$$

- 2. (Umkehrung des Satzes von Pytagoras) Gilt in einem Dreieck $\triangle ABC$ die Gleichung $a^2 + b^2 = c^2$, so ist $\triangle ABC$ rechtwinklig mit $\gamma = 90^{\circ}$.
- 3. (Höhensatz)

 $h^2 = pq$, wobei $h = h_c$ und p, q **Hypotenusenabschnitte**.

4. (Kathetensatz)

$$a^2 = cq$$
 und $b^2 = cp$

Skizze

BEWEIS.

1. Die äußeren Dreiecke sind kongruent.

$$\Rightarrow (a+b)^2 = c^2 + 4(\frac{1}{2}ab) = c^2 + 2ab \Rightarrow a^2 + b^2 = c^2$$

2. Konstruiere das rechtwinklige Dreieck $\Delta A'B'C'$ mit den Seitenlängen a.b.c und Katheten a,b.

Nach 1. gilt: $\tilde{c} = c$. Nach sss-Satz folgt die Behauptung.

3. Nach 1. gilt: $p^2+h^2=b^2$ und $q^2+h^2=q^2$

$$\Rightarrow p^{2} + q^{2} + 2h^{2} = q^{2} + b^{2} = c^{2} = (p+q)^{2} = p^{2} + 2pq + q^{2} \Rightarrow 2h^{2} = 2hq \Rightarrow h^{2} = pq$$

4.

$$a^{2} = h^{2} + q^{2} = pq + q^{2} = q(p+q) = qc$$

 $b^{2} = h^{2} + p^{2} = pq + p^{2} = p(p+q) = pc$

Skizzen, Be-

6.23 Beispiel

Sei ΔABC ein gleichseitiges Dreieck.

Skizze

Für die Höhe h gilt dann: $h^2=\left(\frac{a}{2}\right)^2=a^2\Rightarrow h=\frac{\sqrt{3}}{2}a.$ Für die Fläche folgt: $F=\frac{\sqrt{3}}{4}a^2.$

6.24 Beispiel

Sei ΔABC gleichschenklig-rechtwinklig.

Skizze

Es gilt: $c^2 = 2a^2 \Rightarrow c = \sqrt{2}a$ und $h^2 + \left(\frac{c}{2}\right)^2 = a^2 \Rightarrow h^2 = \frac{a^2}{2} \Rightarrow h = \frac{\sqrt{2}}{2}a$. Schließlich folgt: $F = \frac{1}{2}a^2$.

7 Trigonometrie

11 Die komplexen Zahlen

11.1 Definition

1. Wir führen auf \mathbb{R}^2 eine Multiplikation ein durch

$$(a,b) \cdot (c,d) = (ac - bd, bc - ad).$$

Wie man leicht nachprüft, erhält man damit einen Körper \mathbb{C} . Dieser enthält \mathbb{R} mittels der injektiven Abbildung

$$\iota: \mathbb{R} \hookrightarrow \mathbb{C}, a \mapsto (a, 0)$$

- 2. Schreibweisen:
 - Statt $e_1 = (1,0)$ schreibe 1.
 - Statt $e_2 = (0,1)$ schreibe i.

Jedes Element von $\mathbb C$ hat also eine eindeutige Darstellung der Form

$$a + b \cdot i \text{ mit } a, b \in \mathbb{R}.$$

3. Für $z = a + bi \in \mathbb{C}$ heißt Re(z) = a der **Realteil** von z und Im(z) = b der **Imaginärteil** von z.

11.2 Bemerkung

- 1. Die Zahl i erfüllt $i^2 = 1$, denn $(0,1) \cdot (0,1) = (0-1,0) = (-1,0)$. Man schreibt daher auch $i = \sqrt{-1}$.
- 2. Für $a \in \mathbb{R}_{>o}$ gilt:

$$(\sqrt{a} \cdot i)^2 = a \cdot (-1) = -a$$
, also $\pm \sqrt{a} \cdot i = \sqrt{-a}$

3. Für $z = a + bi \in \mathbb{C} \setminus \{0\}$ gilt:

$$\frac{1}{z} = \frac{1}{a+bi} = \frac{a-bi}{(a+bi)(a-bi)} = \frac{a-bi}{a^2+b^2} = \frac{a}{a^2+b^2} - \frac{b}{a^2+b^2} \cdot i$$

11.3 Beispiele

1. Für
$$n \in \mathbb{Z}$$
 gilt: $i^n =$

$$\begin{cases}
i & \text{falls} \quad n \equiv 1 \pmod{4} \\
-1 & \text{falls} \quad n \equiv 2 \pmod{4} \\
-i & \text{falls} \quad n \equiv 3 \pmod{4} \\
1 & \text{falls} \quad n \equiv 0 \pmod{4}
\end{cases}$$

- 2. $(1+i)^2 = 2i$
- 3. In $\mathbb C$ besitzt jede quadratische Gleichung genau 2 Lösungen.

11.4 Definition

Die Abbildung $K : \mathbb{C} \to \mathbb{C}$, $a + bi \mapsto a - bi$ heißt die **komplexe Konjugation**.

Für $z \in \mathbb{C}$ schreiben wir statt K(z) auch \overline{z} .

Funktion schöner machen

11.5 Bemerkung (Rechenregeln für komplexe Konjugation)

- 1. $\overline{\overline{z}} = z$
- $2. \ \overline{z_1 + z_2} = \overline{z_1} + \overline{z_2}$
- 3. $\overline{z_1 \cdot z_2} = \overline{z_1} \cdot \overline{z_2}$
- 4. Für $a \in \mathbb{R}$ gilt: $\overline{a \cdot z} = a \cdot \overline{z}$
- 5. $\frac{1}{z} = \overline{(\frac{1}{z})}$
- 6. $\overline{z} + z = 2a = 2 \operatorname{Re}(z)$
- 7. $z \overline{z} = 2bi = 2\operatorname{Im}(z) \cdot i$

7.3

11.6 Bemerkung (Die komplexe Zahlenebene)

Im $\mathbb{A}^2(\mathbb{R})$ führen wir kartesische Koordinaten ein und identifizieren die Zahl $z = a + bi \in \mathbb{C}$ mit dem Punkt (a, b).

Skizze

Geometrische Interpretation der Körperoperationen:

1. Addition:

$$(a+bi)+(c+di)=(a+c)+(b+d)i$$
entspricht der Vektoraddition.

2. Multiplikation mit i: $(a+bi) \cdot i = -b + ai$.

Dies entspricht also der Drehung um 90° im mathematisch positiven Sinn um den Ursprung.

3. Abstand zum Nullpunkt/Länge des Vektors Der **Betrag** einer komplexen Zahl z=a+bi ist $|z|=\sqrt{a^2+b^2}$

Eigenschaften:

(a)
$$|z_1 \cdot z_2| = |z_1| \cdot |z_2|$$
 für $z_1, z_2 \in \mathbb{C}$

(b)
$$|c \cdot z| = |c| \cdot |z|$$
 für $c \in \mathbb{R}, z \in \mathbb{C}$

(c)
$$|z_1 + z_2| \le |z_1| + |z_2|$$
 für $z_1, z_2 \in \mathbb{C}$

4. Der **Winkel** φ (oder das **Argument**) einer komplexen Zahl $z \in \mathbb{C} \setminus \{0\}$ mit z = a + bi und $a, b \in \mathbb{R}$ erfüllt $z = |z| \cdot \cos(\varphi) + |z| \cdot \sin(\varphi) \cdot i$ ($\varphi \in [0, 2\pi[)$.

Wir schreiben $\varphi = \operatorname{arc}(z)$.

5. Sei r = |z| und $\varphi = \operatorname{arc}(z)$. Dann ist die Multiplikation mit

$$z = r \cdot \cos(\varphi) + r \cdot \sin(\varphi)i = r(\cos(\varphi) + \sin(\varphi)i)$$

die Komposition der Multiplikation mit $\cos(\varphi) + \sin(\varphi)i$ und der Multiplikation mit $r \in \mathbb{R}_+$. Letztere ist die zentrische Streckung um den Faktor r mit Mittelpunkt 0.

Nun wende die erste Multiplikation an auf $\tilde{z} = \tilde{r} \cdot (\cos(\psi) + \sin(\psi)i)$. Dann gilt:

$$\begin{split} \tilde{z} \cdot \big(\cos(\varphi) + \sin(\varphi)i\big) &= \\ \tilde{r} \big(\cos(\psi) + \sin(\psi)i\big) \big(\cos(\varphi) + \sin(\varphi)i\big) &= \\ \tilde{r} \Big[\big(\cos(\psi)\cos(\varphi) - \sin(\psi)\sin(\varphi)\big) + \big(\sin(\psi)\cos(\varphi) + \cos(\psi)\sin(\varphi)\big)i \Big] &= \\ \tilde{r} \Big[\cos(\psi + \varphi) + \sin(\psi + \varphi)i \Big] \end{split}$$

Das Produkt hat also denselben Betrag, aber der Winkel ist um φ größer. Die Multiplikation mit $\cos(\varphi) + \sin(\varphi)i$ entspricht also der Drehung um den Winkel φ um den Nullpunkt.

Insgesamt ist die Multiplikation mit z also eine Drehstreckung mit Zentrum 0.

Skizzen!s

11.7 Bemerkung (Algebraische Beschreibung geometrischer Mengen)

1. (Kreis mit Mittelpunkt $m \in \mathbb{C}$ und Radius $r \in \mathbb{R}_+$) Der Abstand von $z \in \mathbb{C}$ zu m ist gegeben durch |z - m|. Der Kreis ist also gegeben durch $K = \{z \in \mathbb{C} \mid |z - r| = r\}.$

2. Eine Gerade G durch z=a+bi und $\tilde{z}=c+di$ ist gegeben durch $G=\{z+\lambda(\tilde{z}-z)|\lambda\in\mathbb{R}\}$ (explizite Darstellung).

 $\label{eq:main_eq} \textit{Implizite Darstellung: } \underline{G} = \{z \in \mathbb{C} | \overline{e}z + e\overline{z} + g = 0\} \text{ mit } e \in \mathbb{C}, \ g \in \mathbb{R}.$

Es gilt: $\overline{e}z + e\overline{z} = \overline{e}z + \overline{(ez)} = 2\operatorname{Re}(\overline{e}z)$.

Schreibe: $e = \alpha + \beta i \text{ mit } \alpha, \beta \in \mathbb{R} \text{ und } z = x + y i \text{ mit } x, y \in \mathbb{R}.$

Dann folgt:

$$\operatorname{Re}(\overline{e}z) = \operatorname{Re}((\alpha + \beta i)(x + yi)) =$$

$$\operatorname{Re}((\alpha x + \beta y) + (-\beta x + \alpha y)i) =$$

$$\alpha x + \beta y.$$

$$\left(= \left\langle \begin{pmatrix} \alpha \\ \beta \end{pmatrix}, \begin{pmatrix} x \\ y \end{pmatrix} \right\rangle \right)$$

Dann folgt:

$$\overline{e}z + e\overline{z} + \underbrace{g}_{\in \mathbb{R}} = \underbrace{2\alpha x + 2\beta y + g = 0}_{\text{implizite Geradengleichung in } \mathbb{R}^2}.$$

11.8 Bemerkung (Algebraische Interpretation von Abbildungen der Zeichenebene)

1. (Translation)

Die Translation τ um den Vektor a+bi ist die Addition

$$\tau: \mathbb{C} \to \mathbb{C}, z \mapsto z + (a + bi)$$

.

2. (Drehung)

Die Drehung um den Winkel φ um den Nullpunkt entspricht der Multiplikation mit $\cos(\varphi) + \sin(\varphi)i$.

Sei nun $m \in \mathbb{C}$.

Die Drehung $\rho m, \varphi$ ist die Komposition von

- (a) Verschiebung um -m
- (b) Drehung um 0 um Winkel φ
- (c) Verschiebung um +m

Es gilt also: $\rho_{m,\varphi}: \mathbb{C} \to \mathbb{C}, z \mapsto (\cos(\varphi) + \sin(\varphi)i)(z-m) + m.$

3. (Spiegelung an einer Geraden durch 0) G habe einen Richtungsvektor a+bi.

Die Gerade durch z und \tilde{z} haben dann den Richtungsvektor -b+ai.

Dann ist $G \cap H$ der Lotfußpunkt $l \in \mathbb{C}$ und es gilt:

$$\tilde{z} = \sigma_G(z) = z + 2(l - z) = -z + 2l.$$

Funktionen, Skizzen

11.9 Bemerkung (Geometrische Interpretation von $z \mapsto \overline{z}$)

fett

Die Abbildung $\kappa : \mathbb{C} \to \mathbb{C}, a+bi \mapsto a-bi$ entspricht der Spiegelung an der Funktion $\operatorname{Re}(z)$ -Achse.

11.10 Bemerkung (Inversion am Kreis)

Die Abbildung $\iota : \mathbb{C}\setminus\{0\} \to \mathbb{C}\setminus\{0\}, z \mapsto \frac{1}{\bar{z}}$ wirkt auf $z = a + bi = r(\cos(\varphi) + \sqrt{\frac{1}{2}})$ wie folgt:

$$\iota(z) = \frac{1}{z} = \kappa \left(\frac{1}{r} \cdot \frac{\cos(\varphi) - \sin(\varphi)i}{(\cos(\varphi) + \sin(\varphi)i)(\cos(\varphi) - \sin(\varphi)i)} \right) = \frac{1}{r} \kappa(\cos(\varphi) - \sin(\varphi)i) = \frac{1}{r} (\cos(\varphi) + \sin(\varphi)i)$$

Die Zahl $\iota(z)$ liegt also auf demselben Halbstrahl druch 0 wie z. Ihr Betrag ist $\frac{1}{x}$.

skizze

Der Einheitskreis $\mathbb{E} = \{\cos(\varphi) + \sin(\varphi)i | \varphi \in [0, 2\pi[\}]$ bleibt dabei fest.

Es gilt: $\iota^2(z) = \iota(\iota(z)) = z$.

Die geometrische Interpretation von $\frac{1}{z}$ ist also der Punkt, der aus z entsteht, indem man zuerst an der Re(x)-Achse spiegelt und dann die Inversion am Einheitskreis durchführt.

11.11 Satz (Eigentschaften der Inversion am Kreis)

- 1. Ist G eine Gerade in \mathbb{C} , die nicht durch 0 geht, so ist $\iota(G)$ ein Kreis.
- 2. Ist G eine Gerade durch 0, so gilt $\iota(G\setminus\{0\}) = G\setminus\{0\}$.
- 3. Ist K ein Kreis in \mathbb{C} , der durch 0 geht, so ist $\iota(K\setminus\{0\})$ eine Gerade, die nicht durch 0 geht.
- 4. Ist K ein Kreis in \mathbb{C} , der nicht durch 0 geht, so ist $\iota(K)$ wieder ein Kreis.

11.12 Bemerkung (Die komplexe e-Funktion)

Die reelle e-Funktion $x \mapsto e^x$ erfüllt $(e^x)' = e^x$ und $e^0 = 1$. Für alle $x \in \mathbb{R}$ gilt:

$$e^x = 1 + \frac{1}{1!}x + \frac{1}{2!}x^2 + \dots = \sum_{n>0} \frac{1}{n!}x^n$$

.

Für $z \in \mathbb{C}$ konvergiert die Reihe

$$\sum_{n\geq 0} \frac{1}{n!} z^n \in \mathbb{C}$$

ebenfalls.

Weitere Potenzreihen, die für jedes $x \in \mathbb{R}$ konvergieren, sind:

- $\sin x = \frac{1}{1!}x \frac{1}{3!}x^3 + \frac{1}{5!}x^5 + \dots$
- $\cos x = 1 \frac{1}{2!}x^2 + \frac{1}{4!}x^4 \frac{1}{6!}x^6 + \dots$

Durch dieselben Potenzreihen erhält man e^z , $\sin(z)$ und $\cos(z)$ auch für alle $z \in \mathbb{C}$.

Man weißt nach, dass $e^{z_1+z_2}=e^{z_1}\cdot e^{z_2}$ für alle $z_1,z_2\in\mathbb{C}$ gilt.

11.13 Satz (Die Eulersche Formel)

Für alle
$$\varphi \in \mathbb{R}$$
 gilt: $e^{i\varphi} = \underbrace{\cos(\varphi) + i \cdot \cos(\varphi)}_{\text{Punkt auf dem Einheitskreis}}$

BEWEIS. Es gilt:

$$\begin{split} e^{i\varphi} &= 1 + \frac{1}{1!}(i\varphi) + \frac{1}{2!}(i^2\varphi^2) + \frac{1}{3!}(i^3\varphi^3) + \dots = \\ &= (1 - \frac{1}{2!}\varphi^2 + \frac{1}{4!}\varphi^4 - \frac{1}{6!}\varphi^6 + \dots) + i(\frac{1}{1!}\varphi - \frac{1}{3!}\varphi^3 + \frac{1}{5!}\varphi^5 - + \dots) = \\ &= \cos\varphi + i \cdot \sin\varphi \end{split}$$

qed

11.14 Korollar

$$e^{i\pi} + 1 = 0.$$

11.15 Beispiel

Aus der Eulerschen Formel folgt:

$$e^{i(\alpha+\beta)} = \cos(\alpha+\beta) + i \cdot \sin(\alpha\beta).$$

Ferner gilt:

$$\begin{split} e^{i(\alpha+\beta)} &= e^{i\alpha} \cdot e^{i\beta} = \\ &= (\cos(\alpha) + i \cdot \sin(\alpha))(\cos(\beta) + i \sin(\beta)) = \\ &= [\cos\alpha \cdot \cos\beta - \sin\alpha \sin\beta] + i [\sin\alpha \cos\beta + \cos\alpha \sin\beta]. \end{split}$$

Durch Vergleich der Real- und Imaginärteile folgen die Additionstheoreme für sin und cos.

12 Kombinatorik

Kombinatorik ist die Kunst des Zählens.

12.1 Definition

Seien a_1, \ldots, a_n paarweise verschiedene Objekte $(n \ge 1)$.

1. Eine Anordnung $(a_{i_1}, a_{i_2}, \dots, a_{i_n})$ mit $\{i_i, \dots, i_n\} = \{1, \dots, n\}$ heißt auch **Permutation** von a_1, \dots, a_n .

Schreibweisen:

$$\sigma = \begin{pmatrix} a_1 & a_2 & \dots & a_n \\ a_{i_1} & a_{i_2} & \dots & a_{i_n} \end{pmatrix} \text{ oder einfach } \sigma = \begin{pmatrix} 1 & 2 & \dots & n \\ i_1 & i_2 & \dots & i_n \end{pmatrix}.$$

Ohne Einschränkung betrachten wir also meißt die Permutationen der Menge $\{1, \ldots, n\}$.

2. Die Menge aller Permutationen von n Objekten heißt die **symmetrische** Gruppe S_n .

12.2 Satz: Die Gruppe S_n hat n! Elemente.

BEWEIS. Halte ein Element, zB a_n fest. Für die Bilder $\sigma(a_1)$ unter $\sigma \in S_n$ gibt es n Möglichkeiten, für $\sigma(a_2)$ gibt es dann noch n-1 Möglichkeiten usw.

Am Ende gibt es für $\sigma(a_n)$ nur noch 1 Auswahl. Insgesamt gibt es $n \cdot (n-1) \cdot (n-2) \cdot \ldots \cdot 2 \cdot 1 = n!$ Permutationen.

qed

12.3 Beispiel: Wir ordnen Permutationen

Dieser Punkt wurde während der Ausführung gestrichen, da der Kentnissstand der Studierenden in Lineare Algebra nicht ausreichend war.

12.4 Definition

Gegeben seien n paarweise verschiedene Objekte a_1, \ldots, a_n .

1. Sei $0 \le m \le n$. Eine Teilmenge von $\{a_1, \ldots, a_n\}$ bestehend aus m Elementen heißt auch **Auswahl** von m Elementen.

2. Die Anzahl der Auswahlen von m Elementen aus $\{a_1, \ldots, a_n\}$ heißt der **Binomialkoeffizient** $\binom{n}{m}$.

12.5 Satz (Formel für die Binomialkoeffizienten)

Für
$$n \ge 1$$
 und $0 \le m \le n$ gilt: $\binom{n}{m} = \frac{n(n-1)(n-2)...(n-(m+n))}{1 \cdot 2 \cdot ... \cdot m} = \frac{n!}{m!(n-m)!}$ (mit $0! = 1$).

12.6 Bemerkung (Das Pascalsche Dreieck)

1. Die Binomialkoeffizienten erfüllen die Formel

$$\binom{n}{m} = \binom{n-1}{m} + \binom{n-1}{m-1} \text{ für } m \ge 1, n \ge 2.$$

2. Die Biomialkoeffizienten sind gegeben durch das Pascalsche Dreieck: