

Utilizzo di Modelli Linguistici Avanzati per l'Interrogazione di Dati Sanitari

Relatore **Prof. Gennaro Costagliola**

Candidato
Teodoro Grauso
Matricola 0512111084

Obiettivi della Tesi

Introduzione

Facilitare l'accesso ai dati clinici

Migliorare l'efficienza operativa

Aumentare la precisione delle informazioni

Introduzione

Dati

Modelli

Framework

Linguaggi

FHIR (Fast Healthcare Interoperability Resources) è uno standard per lo scambio elettronico di informazioni sanitarie.

Informazioni Principali

- Patient: Dati sui pazienti.
- Appointment: Informazioni sugli appuntamenti.
- Condition: Dettagli sulle diagnosi effettuate.
- Observation: Misurazioni e analisi cliniche.
- **DiagnosticReport**: Risultati di test diagnostici.
- CarePlan: Piani di cura.
- AllergyIntolerance: Dettagli su allergie o intolleranze.

I Large Language Model (LLM) sono modelli di intelligenza artificiale che utilizzano reti neurali per elaborare e generare testo.

Questi modelli vengono addestrati su **vasti dataset testuali** provenienti da varie fonti, come libri, articoli e siti web.

Maggiore è la **qualità** (e la quantità) di questi dati, migliore sarà il comportamento del modello.

È possibile dividere i Modelli Linguistici in due tipi:

- Modelli Aperti (Llama, Mistral 7B, GPT-4All, ...)
- Modelli Proprietari (Gemini, GPT-40, ...)

Open Source

Pro	Contro
Privacy	Scarsa qualità
Personalizzabili	Capacità ridotte
Costi contenuti	

Proprietari

Pro	Contro
Qualità	Costo
Potenti	Limiti d'utilizzo
	Privacy

Per l'utilizzo e la gestione dei modelli è stata utilizzata la libreria LangChain.

La libreria ha semplificato l'**implementazione dei modelli**, eliminando la necessità di scrivere codice specifico per ogniuno di essi.

Ha agevolato la creazione di prompt personalizzati, usati per le diverse richieste ai modelli.

Sistema Proposto

Sistema Proposto

Prompt per interagire con GPT e generare query FHIR

Sistema Proposto

Prompt per interagire con Mistral e generare frasi in linguaggio naturale

Esempio

Sistema Proposto

Virtual Assistant

Hi, I'm your virtual assistant!

Hi. Who are you?

I am a virtual assistant here to help you with your FHIR server queries. How can I assist you today?

I would like to know who is the patient with id 123456.

The patient is called John Doe, was born on 1 January 1980, is male, and has the unique identifier '123456'.

Type your message here

Send

Close

```
"resourceType": "Patient",
    "id": "123456",
    "identifier": [
        "system": "http://hospital.smarthealthit.org",
        "value": "123456"
    "name": [
11
12
        "use": "official",
        "family": "Doe",
13
14
        "given": [
          "John"
15
    "gender": "male",
    "birthDate": "1980-01-01"
21 }
```

Esempio

Sistema Proposto

Virtual Assistant

Hi, I'm your virtual assistant!

Hi, I would like to know which observation was performed on patient '30163' on '2019-09-26'.

On September 26, 2019, the body temperature of patient 30163 was 36.2 °C.

The heart rate of patient 30163 was 73 bpm on September 26, 2019.

The height of patient 30163 was 90 cm, and their weight was 78.9 kg.

Virtual Assistant

Hi, I'm your virtual assistant!

I would like the systolic blood pressure measurements of the patient with id 123456.

Type your message here

Send

Close

Close

Valutazione Risultati

La valutazione dei risultati è stata effettuata tramite la libreria **Pydantic**.

Sono state sviluppate delle classi per gestire le varie tipologie di risorse FHIR principali.

È stata creata una funzione di valutazione che misura la somiglianza tra due oggetti della stessa classe.

Valutazione Patient

Valutazione Risultati

Frase di riferimento

```
1 reference = Patient(
2   id="12345",
3   active=True,
4   name=["John", "Doe"],
5   gender="male",
6   birthDate="1980-05-15",
7   deceasedBoolean=False,
8   address=["123 Main St", "Atlanta", "USA"],
9   telecom=["123-456-7890", "john.doe@example.com"],
10   maritalStatus="married"
```

Frase generata

```
1 generated = Patient(
2   id="12345",
3   name=["John", "Doe"],
4   gender="male",
5   birthDate="1980-05-15",
6   address=["123 Main St", "Atlanta", "USA"],
7   telecom=["123-456-7890", "john.doe@example.com"],
8   maritalStatus="married"
9 )
```

Valutazione Risultati

	Patient: 81,82%
Percentuali medie di	Observation: 88,89%
somiglianza ottenute	Appointment: 100%
	AllergyIntolerance: 85,71%

I risultati sono molto soddisfacenti!

In conclusione, si è dimostrato come l'accesso ai dati clinici è stato semplificato con l'utilizzo dell'Intelligenza Artificiale.

Sviluppi Futuri

- Implementare un'infrastruttura interna per ottimizzare la velocità di inferenza.
- Utilizzare modelli multilingua.

Grazie per l'attenzione!

Relatore **Prof. Gennaro Costagliola**

Candidato
Teodoro Grauso
Matricola 0512111084

