TQFT problems Math 502

- 1. **Semi-simple TQFTs** A TQFT/Frobenius algebra Z(-)/A is called *semi-simple* if A is semi-simple: i.e. there exists a basis e_1, \ldots, e_n of A such that $e_i \cdot e_j = \delta_{ij}e_i$. Let $\mu_i = \mu(e_i)$ where μ is the co-unit.
 - (a) Show that $\mu_i \neq 0$.
 - (b) Define $\lambda_i = \mu_i^{-1}$. Show that the value of the TQFT on the closed, genus g surface is given by

$$Z(g) = \sum_{i=1}^{n} \lambda_i^{g-1}.$$

Hint: compute the "genus adding operator" $G:A\to A$ given by evaluating Z on the genus 1 cobordism from the circle to the circle by observing it is the composition of the coproduct with the product.

- 2. Genus adding operator in various cases. Given a TQFT/Frobenius algebra Z(-)/A, let $G: A \to A$ be the genus adding operator defined in the hint above. Let Z(g) be the value of the TQFT on the closed genus g surface.
 - (a) Let $A = \mathbb{C}[x]/(x^2+1)$, having comultiplication $\mu(a+bx) = a$. Compute $G: A \to A$ (as a matrix with respect to the basis $\{1, x\}$) and Z(g).
 - (b) Let $A = \mathbb{C}[x]/(x^2-1)$, having comultiplication $\mu(a+bx) = a$. Compute $G: A \to A$ (as a matrix with respect to the basis $\{1, x\}$) and Z(g).
 - (c) Let $A = \mathbb{C}[x]/(x^2)$, having comultiplication $\mu(a + bx) = b$. Compute $G : A \to A$ (as a matrix with respect to the basis $\{1, x\}$) and Z(g).
 - (d) (Some knowledge of topology required). Let $A = H^{ev}(M, \mathbb{C})$ be the even degreed part of the cohomology of a compact oriented even dimensional manifold M. A is a commutative algebra via cup product and has co-unit given by $\mu: A \to \mathbb{C}$ where $\mu(\omega) = \int_M \omega$ (in particular $\mu(\omega) = 0$ unless $\deg(\omega) = \dim(M)$). Note that Poincaré duality implies that the associated bilinear form is non-degenerate. Compute $G: A \to A$ and Z(g) in this case.
 - (e) Which of the above cases are semi-simple?
- 3. The Fibonacci TQFT. Let $A = \mathbb{C}[x]/(x^2 x 1)$ with $\mu(1) = -1$ and $\mu(x) = 2$. Compute the G, the genus adding operator, as a matrix with respect to the basis $\{1, x\}$. Let $W^1(g)$ be the genus g cobordism from the empty set to the circle. Show that $Z(W^1(g))$ viewed as an element of A is given by

$$f_{g-1} + f_g x$$

where f_n is the *n*th Fibonacci number.