Inversare locala

Definitie 1. Fie D si G multimi deschise si nevide din \mathbb{R}^n . O functie $f:D\to G$ se numeste difeomorfism (sau schimbare de coordomate) daca este bijectiva, de clasa C^1 si inversa ei este de clasa C^1 .

Teorema 2. (de inversare locala) Fie D o multime deschisa din \mathbb{R}^n , $x_0 \in D$ si $f = (f_1, f_2, \ldots, f_n) : D \to \mathbb{R}^n$ o functie de clasa C^1 cu proprietatea ca $df(x_0)$ este o aplicatie liniara inversabila (adica f are Jacobianul nenul in x_0). Atunci exista o vecinatate deschisa U a lui x_0 , o vecinatate deschisa V a lui $y_0 = f(x_0)$ astfel incat $f|_U$ este un difeomorfism de la U la V.

Demonstratie. Sa consideram functia

$$F = (F_1, F_2, \dots, F_n) : D \times \mathbb{R}^n \to \mathbb{R}^n, \quad F(x, y) = f(x) - y$$

Observam ca pentru ¹ orice $(x, y) \in D \times \mathbb{R}^n$

$$\frac{\partial F_i}{\partial x_j}(x,y) = \frac{\partial f_i}{\partial x_j}(x), \quad \frac{\partial F_i}{\partial y_j}(x,y) = -\delta_{ij}.$$

Asadar

- (1) F_i sunt de clasa C^1 ,
- (2) $F_i(x_0, y_0) = 0$, $i = 1, 2, \dots, n$

(3)
$$\frac{D(F_1,\dots,F_n)}{D(x_1,\dots,x_n)}(x_0,y_0) = \frac{D(f_1,\dots,f_n)}{D(x_1,\dots,x_n)}(x_0) \neq 0$$

Putem deci aplica Teorema functiilor implicite si obtinem o vecinatate deschisa V a lui y_0 , o vecinatate deschisa U a lui x_0 astfel incat pentru orice punct $y \in V$ exista un unic punct $x = \varphi(y) \in U$ astfel incat F(x,y) = 0, adica f(x) = y. De aici rezulta ca f este bijectiva pe multimea U. In plus functia $\varphi : V \to U$ este de clasa C^1 si are proprietatea ca

$$\varphi(y_0) = x_0$$
 si $F(\varphi(y), y) = 0$ pentru orice $y \in V$, adica $f(\varphi(y)) = y$ pentru orice $y \in V$

Rezulta ca φ este inversa functiei $f: U \to V$. Asadar inversa lui $f: U \to V$ este de clasa C^1 si deci f este un difeomorfism intre U si V.

 $^{^{1}\}delta_{ii} = 1, \delta_{ij} = 0 \operatorname{daca} i \neq j$

Corolar 3. Fie D o multime deschisa din \mathbb{R}^n si $f: D \to \mathbb{R}^n$ o functie de clasa C^1 astfel incat matricea Jacobiana este inversabila pentru orice $a \in D$. Atunci f este o aplicatie deschisa adica duce deschisi in deschisi.

Demonstratie. Fie G o multime deschisa din D si fie $y_0 \in f(G)$. Atunci exista $x_0 \in G$ astfel incat $f(x_0) = y_0$. Conform Teoremei de inversare locala aplicata pe multimea G, exista $U \subset G$ o vecinatate deschisa a lui x_0 astfel incat f(U) sa fie deschisa. Dar $y_0 \in f(U) \subset f(G)$, ceea ce spune ca f(G) este o vecinatate a lui y_0 . Cum y_0 a fost ales arbitrar rezulta ca f(G) este deschisa.

Teorema 4. Fie $f: D \to G$ o aplicatie bijectiva de clasa C^1 intre doi deschisi din \mathbb{R}^n . Urmatoarele afirmatii sunt echivalente:

- (i) f este difeomorfism
- (ii) pentru orice $a \in D$ diferentiala df(a) este inversabila.
- (iii) Pentru orice punct $a \in D$ Jacobianul $J_f(a)$ este nenul.

Intervale din \mathbb{R}^n

Sa consideram dreptunghiul din \mathbb{R}^2 din figura. Interiorul sau este format din toate punctele $(x,y) \in \mathbb{R}^2$ astfel incat $a_1 < x < b_1$ si $a_2 < x < b_2$ adica $x \in (a_1,b_1)$ si $y \in (a_2,b_2)$. Dreptunghiul este produsul cartezian al intervalelor deschise (a_1,b_1) si (a_2,b_2) . Pentru a include, de asemenea, toate sau unele dintre laturi ar trebui sa inlocuim intervalele deschise cu cele inchise, inchis-deschise sau deschis-inchise. In mod similar, facand produsele carteziene a trei intervale obtinem paralelipipede dreptunghice din \mathbb{R}^3 . Multimile de acest fel vor fi numite intervale din \mathbb{R}^n .

Definitie. Se numeste interval din \mathbb{R}^n orice produs cartezian de intervale din \mathbb{R} (intervalele pot fi deschise, inchise, inchise sau deschis-inchise). Multimea intervalelor din \mathbb{R}^n va fi notata cu $\mathcal{C}(\mathbb{R}^n)$. Daca

$$\overline{a} = (a_1, a_2, \dots, a_n), \overline{b} = (b_1, b_2, \dots, b_n)$$

cu $a_k \leq b_k, k = 1, 2, ..., n$ atunci, intervalul inchis $[\overline{a}, \overline{b}]$, intervalul deschis $(\overline{a}, \overline{b})$, intervalul deschis $(\overline{a}, \overline{b})$, intervalul inchis-deschis $[\overline{a}, \overline{b})$ sunt prin definitie, multimile

$$[\overline{a}, \overline{b}] = {\overline{x} : a_k \le x_k \le b_k} = [a_1, b_1] \times \cdots \times [a_n, b_n];$$

$$(\overline{a}, \overline{b}) = {\overline{x} : a_k < x_k < b_k} = (a_1, b_1) \times \cdots \times (a_n, b_n);$$

$$(\overline{a}, \overline{b}] = {\overline{x} : a_k < x_k \le b_k} = (a_1, b_1] \times \cdots \times (a_n, b_n];$$

$$[\overline{a}, \overline{b}) = {\overline{x} : a_k \le x_k < b_k} = [a_1, b_1] \times \cdots \times [a_n, b_n].$$

In toate cazurile $\overline{a}, \overline{b}$ se numesc capetele intervalului. Numarul

$$\|\overline{b} - \overline{a}\| = \sqrt{\sum_{k=1}^{n} (a_k - b_k)^2}$$

reprezinta lungimea diagonalei intervalului, iar

$$\prod_{k=1}^{n} (b_k - a_k) = (b_1 - a_1)(b_2 - a_2) \cdots (b_n - a_n)$$

se numeste volumul intervalului. Multimea

$$[\overline{a},\overline{b}]\setminus(\overline{a},\overline{b})$$

este frontiera topologica a oricarui interval care are capetele \bar{a} si \bar{b} ; aceasta consta din 2n fete. Intervalele vor fi notate cu litare mari, de exemplu $J = [\bar{a}, \bar{b}]$; lungimea diagonalei lui J o vom nota cu dJ si volumul lui J cu v(J) sau vol(J). Intervalul J se numeste degenerat daca si numai daca exista k astfel incat $a_k = b_k$; in acest caz vol(J) = 0. De asemenea, multimea vida este considerata un interval cu $vol(\emptyset) = 0$

Observatie. orice interval J din \mathbb{R}^n poate fi scris ca reuniune disjuncta de 2^n intervale avand lungimea diagonalei $\frac{1}{2}dJ$.

Exercitiu 5. Aratati ca daca un interval J se scrie ca reuniunea disjuncta a doua intervale A si B atunci vol(J) = vol(A) + vol(B).

Propozitie 6. Daca un interval J din \mathbb{R}^n se scrie ca reuniune disjuncta de m intervale $A_1, A_2, \ldots A_m$ atunci

$$\operatorname{vol}(J) = \sum_{i=1}^{m} \operatorname{vol}(A_i).$$

Demonstratie Exercitiu!

Integrabilitate Riemann pentru functii de mai multe variabile

Sa consideram un interval J din \mathbb{R}^n . Se numeste descompunere a intervalului J o familie

$$\mathcal{P} = \{A_1, A_2, \dots A_p\}$$

de intervale din \mathbb{R}^n incluse in J astfel incat

$$J = \bigcup_{i=1}^{p} A_i$$
 si $A_i \cap A_j = \emptyset$, $\forall i \neq j$.

Numarul $\|\mathcal{P}\| = \max\{dA_1,\ldots,dA_n\}$ se numeste norma descompunerii $\mathcal{P}.$ Daca

$$\mathcal{P} = \{A_1, A_2, \dots A_p\}, \quad \mathcal{Q} = \{B_1, B_2, \dots B_q\}$$

sunt doua descompuneri ale intervalului J, spunem ca Q este mai fina decat P daca pentru orice $B_j \in \mathcal{Q}$ exista $A_i \in \mathcal{P}$ astfel incat $B_j \subset A_i$. In acest caz $A_i = \bigcup_{B_j \subset A_i} B_j$. Fie

$$\mathcal{P} = \{A_1, A_2, \dots A_p\}$$

o descompunere a lui A si \mathbb{R}^n si o functie $f:J\to\mathbb{R}$ marginita.

$$m_i = \inf\{f(x) : x \in A_i\}$$
 $M_i = \sup\{f(x) : x \in A_i\}$

Definim

$$s_{\mathcal{P}}(f) = \sum_{i=1}^{p} m_i \operatorname{vol}(A_i)$$
 suma Darboux inferioara

$$S_{\mathcal{P}}(f) = \sum_{i=1}^{p} M_i \operatorname{vol}(A_i)$$
 suma Darboux superioara

Integrala inferioara si superioara a functiei f sunt prin definitie

$$\underline{\int}_{J} f = \sup_{\mathcal{P}} s_{\mathcal{P}}(f), \quad \overline{\int}_{J} f = \inf_{\mathcal{P}} S_{\mathcal{P}}(f).$$

Pentru integrala inferioara se mai foloseste si notatia

Figure 1: Sume Darboux

$$\int_{-I} f(x)dx \text{ sau } \int_{-I} fdx$$

iar pentru integrala superioara se mai foloseste si notatia

$$\overline{\int}_J f(x) dx$$
 sau $\underline{\int}_J f dx$.

Spunem ca f este integrabila daca

$$\int_{I} f = \overline{\int}_{J} f$$

In acest caz numarul

$$\int_{J} f(x)dx = \underbrace{\int}_{J} f = \overline{\int}_{J} f$$

se numeste integrala Riemann a functiei f pe J. Se folosesc si notatiile urmatoare

$$\int_J f \ dx \text{ sau } \int_J f(x_1, x_2, \dots, x_n) \ dx_1 dx_2 \dots dx_n.$$

Daca f este o functie de doua variabile, integrala (numita dubla) se noteaza

$$\iint_{I} f(x,y) \ dxdy$$

Daca f este o functie de trei variabile, integrala (numita tripla) se noteaza

$$\iiint_I f(x,y,z) \ dxdydz$$

Propozitie 7. Daca \mathcal{P} si \mathcal{Q} sunt doua descompuneri ale lui J astfel incat \mathcal{P} este mai fina decat \mathcal{Q} , atunci

$$s_{\mathcal{Q}}(f) \le s_{\mathcal{P}}(f) \le S_{\mathcal{P}}(f) \le S_{\mathcal{Q}}(f)$$

Demonstratie. Sa presupunem ca $\mathcal{P} = \{A_1, A_2, \dots A_p\}$, si $\mathcal{Q} = \{B_1, B_2, \dots B_q\}$. Fie $I_k = \{j : A_j \subset B_k\}$. Atunci

$$B_k = \bigcup_{j \in I_k} A_j \quad \text{vol}(B_k) = \sum_{j \in I_k} \text{vol}(A_j)$$

Fie

$$m_k = \inf\{f(x) : x \in B_k\} \quad m'_j = \inf\{f(x) : x \in A_j\}$$

Observam ca daca $j \in I_k$ atunci, $m_k \leq m'_j$ si prin urmare

$$s_{\mathcal{Q}}(f) = \sum_{k=1}^{q} m_k \operatorname{vol}(B_k) = \sum_{k=1}^{q} \sum_{j \in I_k} m_k \operatorname{vol}(A_j) \le \sum_{k=1}^{q} \sum_{j \in I_k} m'_j \operatorname{vol}(A_j)$$
$$\le \sum_{j=1}^{p} m'_j \operatorname{vol}(A_j) = s_{\mathcal{P}}(f)$$

Similar se demonstreaza ca

$$S_{\mathcal{P}}(f) \le S_{\mathcal{Q}}(f)$$

iar inegalitatea

$$s_{\mathcal{P}}(f) \le S_{\mathcal{P}}(f)$$

este evidenta.

Propozitie 8. Pentu orice descompuneri \mathcal{P} si \mathcal{Q} ale lui J, $s_{\mathcal{P}}(f) \leq S_{\mathcal{Q}}(f)$.

Demonstratie. Sa presupunem ca $\mathcal{P} = \{A_1, A_2, \dots A_p\}$, si $\mathcal{Q} = \{B_1, B_2, \dots B_q\}$. Fie $K = \{(i, j) : A_i \cap B_j \neq \emptyset\}$ Sa consideram descompunerea

$$\mathcal{P} \vee \mathcal{Q} = \{A_i \cap B_j : (i,j) \in K\}$$

Atunci $\mathcal{P} \vee \mathcal{Q}$ este o rafinare atat pentru \mathcal{P} cat si pentru \mathcal{Q} . Aplicand propozitia anterioara, obtinem

$$s_{\mathcal{P}}(f) \le s_{\mathcal{P} \vee \mathcal{Q}}(f) \le S_{\mathcal{P} \vee \mathcal{Q}}(f) \le S_{\mathcal{Q}}(f).$$

Teorema 9. (Criteriul lui Darboux) O functie marginita $f: J \to \mathbb{R}$ este integrabila Riemann daca si numai daca pentru orice $\varepsilon > 0$ exista o descompunere \mathcal{P} astfel incat

$$S_{\mathcal{P}}(f) - s_{\mathcal{P}}(f) < \varepsilon$$

Demonstratie. Fie $\varepsilon > 0$ si \mathcal{P} o descompunere a lui J astfel incat

$$S_{\mathcal{P}}(f) - s_{\mathcal{P}}(f) < \varepsilon.$$

Deoarece

$$s_{\mathcal{P}}(f) \le \underline{\int}_{J} f \le \overline{\int}_{J} f \le S_{\mathcal{P}}(f)$$

Atunci

$$\overline{\int}_{J} f - \underline{\int}_{J} f \le S_{\mathcal{P}}(f) - s_{\mathcal{P}}(f) < \varepsilon$$

Cum ε a fost ales arbitrar, rezulta ca

$$\overline{\int}_{J} f = \underline{\int}_{J} f$$

si deci f este integrabila Riemann.

Reciproc, daca f este integrabila Riemann, atunci pentru orice $\varepsilon>0$ exista doua descompuneri \mathcal{P}' si \mathcal{P}'' astfel incat

$$S_{\mathcal{P}'}(f) < \int_J f(x)dx + \frac{\varepsilon}{2}$$

$$s_{\mathcal{P}''}(f) > \int_{J} f(x) dx - \frac{\varepsilon}{2}$$

Fie $\mathcal{P} = \mathcal{P}' \vee \mathcal{P}''$. Aplicand Propozitia 8, obtinem

$$s_{\mathcal{P}''}(f) \le s_{\mathcal{P}}(f) \le S_{\mathcal{P}}(f) \le S_{\mathcal{P}'}(f)$$

ai atunci

$$S_{\mathcal{P}}(f) - s_{\mathcal{P}}(f) \le S_{\mathcal{P}'}(f) - s_{\mathcal{P}''}(f) < \left(\int_J f(x) dx + \frac{\varepsilon}{2} \right) - \left(\int_J f(x) dx - \frac{\varepsilon}{2} \right) = \varepsilon.$$

Daca $A \subset \mathbb{R}^n$, notam cu χ_A functia definita astfel

$$\chi_A(x) = \begin{cases} 1 & \text{daca } x \in A \\ 0 & \text{daca } x \notin A \end{cases}$$

Propozitie 10. Fie $\mathcal{P} = \{A_1, A_2, \dots, A_p\}$ o descompunere a intervalului J si $f = \sum_{i=1}^p c_i \chi_{A_i}$. Atunci f este integrabila si

$$\int_{J} f = \sum_{i=1}^{p} c_{i} \operatorname{vol}(A_{i})$$

Demonstratie. Sa consideram o descompunere arbitara $\mathcal{P}' = \{B_1, B_2, \dots, B_q\}$ si $K = \{(i, j) : A_i \cap B_j \neq \emptyset\}$ Consideram descompunerea

$$\mathcal{P} \vee \mathcal{P}' = \{ A_i \cap B_j : (i,j) \in K \}.$$

Pentru $(i,j)\in K$ avem $f=c_i$ pe $A_i\cap B_k$ si atunci

$$c_i = \inf\{f(x) : x \in A_i \cap B_k\} = \sup\{f(x) : x \in A_i \cap B_k\}$$

Cum

$$A_i = \bigcup_k (A_i \cap B_k)$$

avem

$$vol(A_i) = \sum_k vol(A_i \cap B_k)$$

Prin urmare,

$$s_{\mathcal{P}'}(f) \le s_{\mathcal{P} \vee \mathcal{P}'}(f) = \sum_{i} \sum_{k} c_i \operatorname{vol}(A_i \cap B_k) = \sum_{i} c_i \operatorname{vol}(A_i) = s_{\mathcal{P}}(f)$$

si deci

$$\sum_{i} c_{i} \operatorname{vol}(A_{i}) = \sup_{\mathcal{P}} s_{\mathcal{P}}(f) = \underline{\int_{J}} f$$

Similar se arata

$$\sum_{i} c_{i} \operatorname{vol}(A_{i}) = \overline{\int}_{J} f.$$

Definitie 11. O functie de tipul celei din propozitia anterioara se numeste functie elementara sau etajata.

Propozitie 12. Daca $f, g: J \to \mathbb{R}$ sunt integrabile Riemann si α este un numar real, atunci functiile f + g, fg, αf sunt integrabile si

$$\int_{J} (f+g) = \int_{J} f + \int_{J} g, \quad \int_{J} \alpha f = \alpha \int_{J} f$$

Demonstratie. Exercitiu!

Exemplu 13. Fie $f: J = [0, 1] \times [0, 1] \to \mathbb{R}$

$$f(x,y) = \begin{cases} 1 & \text{daca } x, y \in \mathbb{Q}, 0 \le x, y \le 1 \\ 0 & \text{altfel} \end{cases}$$

Daca $\mathcal{P} = \{A_1, A_2, \dots, A_p\}$ este o descompunere arbitrara,

$$s_{\mathcal{P}}(f) = \sum_{i=1}^{p} 0 \cdot \text{vol}(A_i) = 0$$

$$S_{\mathcal{P}}(f) = \sum_{i=1}^{p} 1 \cdot \text{vol}(A_i) = 1$$

Asadar,

$$\underline{\int}_{J} f = 0 \text{ si } \overline{\int}_{J} f = 1$$

si deci f nu este intagrabila Riemann.

Remarca 14. La fel ca in cazul functiilor de o variabila reala, integrala Riemann multipla poate fi definita cu ajutorul sumelor Riemann. Fie $J \in \mathcal{C}(\mathbb{R}^n)$, $f: J \to \mathbb{R}$, $\mathcal{P} = \{A_1, A_2, \dots, A_p\}$ o descompunere a lui J si $\xi = \{\xi_1, \dots, \xi_p\}$ un sistem de puncte astfel incat $\xi_i \in A_i$. Suma

$$\sigma_{\mathcal{P}}(\xi, f) = \sum_{i=1}^{n} f(x_i) \operatorname{vol}(A_i)$$

se numeste suma Riemann asociata functiei f, descompunerei \mathcal{P} si sistemului de puncte ξ (numit sistem de puncte intermediare asociat lui \mathcal{P}). Se poate arata ca daca f este marginita atunci f este integrabila daca si numai daca exista un numar real I cu proprietatea ca pentru orice $\varepsilon > 0$ exista $\eta_{\varepsilon} > 0$ astfel incat

$$|\sigma_{\mathcal{P}}(f,\xi) - I| < \varepsilon$$

oricare ar fi descompunerea \mathcal{P} cu $\|\mathcal{P}\| < \eta_{\varepsilon}$ si oricare ar fi sistemul de puncte ξ asociat lui \mathcal{P} .

Exercitiu. Demonstrati ca functiile $f, g: J = [0,1] \times [0,2] \to \mathbb{R}, f(x,y) = x, g(x,y) = x + y$ sunt integrabile Riemann si calculati

$$\iint_J f(x,y) dx dy, \quad \iint_J g(x,y) dx dy$$

folosind sume Darboux. Verificati rezultatul folosind Teorema lui Fubini (din Cursul 11).