Теория категорий Категориальная логика

Валерий Исаев

28 апреля 2021 г.

План лекции

Интерпретация
Подстановка
Корректность интерпретации

Регулярные теории

Когерентные теории

Импликация и ∀

Подстановка

- ightharpoonup Пусть U и $V-\mathcal{S}$ -индексированные множества переменных. Тогда подстановка из U в V (обозначается $\rho:U o V$) – это просто V-индексированное множество термов $\{\rho(x)\in \mathrm{Term}(V)_s\}_{(x:s)\in V}$
- lacktriangle Подстановка (x:=a) это просто ρ такая, что $\rho(x)=a$ и $\rho(y) = y$ для любого $y \neq x$.
- ightharpoonup Если ho:U o V и $t\in \mathrm{Term}(V)_{s}$, то t[
 ho] это терм в $t \in \mathrm{Term}(U)_{s}$, который определяется рекурсивно:
 - **Р** Если t = x, то $t[\rho] = \rho(x)$.
 - ightharpoonup Если $t = f(t_1, \dots t_k)$, то $t[\rho] = f(t_1[\rho], \dots t_k[\rho])$.
- lacktriangle Подстановка arphi[
 ho] в формулы определяется рекурсией по построению φ .

Интерпретация подстановки в термах

Если ho:U o V, то мы определяем $[\![
ho]\!]:[\![U]\!] o [\![V]\!]$ как $\langle
ho(x)
angle_{x\in V}.$

Lemma

Если $t \in \mathrm{Term}(V)_s$ и $\rho: U \to V$, то $\llbracket t[\rho] \rrbracket = \llbracket \rho \rrbracket \circ \llbracket t \rrbracket$.

Доказательство.

Индукцией по построению t.

Интерпретация подстановки в формулах

Lemma

Если $\varphi \in \operatorname{Form}_{\Sigma}(V)$ и $\rho : U \to V$, то существует (уникальный) морфизм $d_{arphi[
ho]} o d_{arphi}$ такой, что следующий квадрат является пулбэком:

$$\begin{array}{c} d_{\varphi[\rho]} \longrightarrow d_{\varphi} \\ \llbracket \varphi[\rho] \rrbracket \bigvee_{} & \bigvee_{} \llbracket \varphi \rrbracket \\ \llbracket U \rrbracket \xrightarrow{} \llbracket \rho \rrbracket^{} \nearrow \llbracket V \rrbracket \end{array}$$

- ightharpoons Доказывается индукцией по построению arphi.
- Сейчас мы проверим это утверждение только для атомарных формул, так как мы вводили только их пока.
- Для других связок проверим позже.

Импликация и ∀

Интерпретация подстановки

Если $\varphi = R(t_1, \dots t_k)$, то мы получаем следующую диаграму:

Правый квадрат — это определение интерпретации $R(t_1, \ldots t_k)$. Композиция нижних стрелок – это $\langle \llbracket t_1[\rho] \rrbracket, \dots \llbracket t_k[\rho] \rrbracket \rangle$. По определению интерпретации $R(t_1[\rho], \dots t_k[\rho])$ у на есть стрелка $d_{arphi[
ho]} o d_R$ такая, что внешний прямоугольник является пулбэком. По свойствам пулбэков у нас есть стрелка $d_{\omega extsf{I} o extsf{l}} o d_{\omega}$ такая, что левый квадрат является пулбэком.

Интерпретация подстановки

Если $arphi=(t_1=t_2)$, то в следующей диаграмме $\llbracket arphi
Vert$ по определению является уравнителем $\llbracket t_1
Vert, \llbracket t_2
Vert : \llbracket V
Vert o \llbracket s
Vert,$ а $\llbracket \varphi[
ho]
rbracket$ является уравнителем $\llbracket t_1
rbracket \circ \llbracket
ho
rbracket, \llbracket t_2
rbracket \circ \llbracket
ho
rbracket : \llbracket U
rbracket o \llbracket s
rbracket.$

По универсальному свойству уравнителей у нас есть стрелка $d_{arphi[
ho]} o d_arphi$ и квадрат является пулбэком.

Правила вывода

Во всех наших логиках будут следующие правила вывода:

$$\frac{\varphi \vdash^{V} \psi \land \varphi}{\varphi \vdash^{V} \chi} \qquad \frac{\varphi \vdash^{V} \psi \qquad \psi \vdash^{V} \chi}{\varphi \vdash^{V} \chi} \\
\frac{\varphi \vdash^{U} \psi}{\varphi[\rho] \vdash^{V} \chi[\rho]}$$

С добавлением логических связок будут добавляться и правила вывода.

0000

- Разумеется мы хотим, чтобы интерпретация уважала правила вывода.
- ▶ Первые два правила очевидны: $\llbracket \varphi
 rbracket$ является подобъектом самого себя и, если $\llbracket \varphi
 rbracket$ является подобъектом $\llbracket \psi
 rbracket$ и $\llbracket \psi
 rbracket$ является подобъектом $\llbracket \chi
 rbracket$, то $\llbracket \varphi
 rbracket$ является подобъектом $\llbracket \chi
 rbracket$.
- Третье правило следует из леммы об интерпретации подстановки.

Корректность интерпретации

Корректность Т

▶ Правило вывода для ⊤:

$$\varphi \longmapsto \top$$

▶ Чтобы доказать, что эта аксиома всегда корректна, нужно проверить, что для любой подобъект $d_{\varphi} \hookrightarrow V$ является подобъектом $[\![\top]\!] = id_V : V \hookrightarrow V$, что очевидно.

0000

Корректность Л

► Правила вывода для ∧:

$$\frac{\varphi \longmapsto \psi \qquad \varphi \longmapsto \chi}{\varphi \longmapsto \psi \land \chi} \\
\underline{\varphi \longmapsto \psi \land \chi} \qquad \underline{\varphi \longmapsto \psi \land \chi} \\
\underline{\varphi \longmapsto \psi} \qquad \underline{\varphi \longmapsto \chi}$$

▶ Эти правила уважаются, так как по определению пулбэков стрелка $[\![\varphi]\!] \to [\![\psi]\!] \cap [\![\chi]\!]$ существует тогда и только тогда, когда существуют стрелки $[\![\varphi]\!] \to [\![\psi]\!]$ и $[\![\varphi]\!] \to [\![\chi]\!]$.

План лекции

Интерпретация
Подстановка
Корректность интерпретации

Регулярные теории

Когерентные теории

Импликация и ∀

Интерпретация \exists

- Теории, в которых формулы состоят только из равенств, конъюнкций, ⊤ и ∃ называются регулярными.
- ▶ Мы не можем проинтерпретировать ∃ в произвольной конечно полной категории.
- Категории, где можно это сделать, называются регулярными.
- Формальное определение будет дано ниже.

Интерпретация ∃ в **Set**

- ightharpoonup Пусть $\llbracket \varphi(x, x_1, \dots x_n)
 Vert$: $d_{\varphi} \hookrightarrow \llbracket s
 Vert \times \llbracket s_1
 Vert \times \dots \times \llbracket s_n
 Vert$.
- ► Как проинтерпретировать $\exists (x:s)(\varphi(x,x_1...x_n))$?
- ightharpoonup Если рассмотреть $\pi_{1,\ldots,n} \circ \llbracket \varphi \rrbracket : d_{\omega} \to \llbracket s_{1} \rrbracket \times \ldots \times \llbracket s_{n} \rrbracket$, то это почти дает нам интерпретацию $\exists (x:s)(\varphi(x,x_1,\ldots x_n)),$ так как прообраз некоторого элемента $(a_1, \ldots a_n)$ населен тогда и только тогда, когда существует $a \in [s]$, такой что $(a, a_1, \ldots a_n) \in \llbracket \varphi \rrbracket$.
- lacktriangle Единственная проблема заключается в том, что $\pi_{1,\dots,n}\circ\llbracket\varphi
 rbracket$ не является мономорфизмом.
- Мы можем решить эту проблему, определив интерпретацию $\exists (x:s)(\varphi(x,x_1,\ldots x_n))$ как образ $\pi_{1...n} \circ \llbracket \varphi \rrbracket$.

Образ морфизма

- Мы можем обобщить понятие образа функции на произвольную категорию.
- lacktriangle Образ морфизма f:A o B это наименьший мономорфизм $\operatorname{Im} f \hookrightarrow B$, через который f факторизуется.
- lacktriangle Другими словами, существует стрелка $A o {
 m Im}\, f$, такая что для любых стрелок $g:A\to C$ и $h:C\hookrightarrow B$ если $h\circ g=f$, то $\operatorname{Im} f$ является подобъектом C:

Интерпретация существования

- В произвольной категории образ может не существовать, но он уникален, если существует.
- Если предположить, что в категории существуют образы, то можно попробовать проинтерпретировать существование так же как и в **Set**.
- ightharpoonup Если $\llbracket \varphi(x,x_1,\ldots x_n)
 right
 right
 ceil : d_{\omega} \hookrightarrow \llbracket s
 right
 ceil imes \llbracket s_1
 right
 right
 ceil imes \ldots imes \llbracket s_n
 right
 right
 ceil ,$ то мы определяем $\llbracket\exists (x:s)\varphi \rrbracket$ как образ $\pi_{1,\dots,n}\circ \llbracket\varphi \rrbracket$.

Интерпретация подстановки

- Так как правила вывода для существования используют подстановку, нам нужно знать как она интерпретируется, чтобы проверить эти правила.
- ightharpoonup Утверждене: если φ формула со свободными переменными в $\{x_1: s_1, \dots x_n: s_n\}$ и $t_1, \dots t_n$ — термы сортов $s_1, \ldots s_n$, то $[\![\varphi[x_1 := t_1, \ldots x_n := t_n]\!]\!]$ является пулбэком d_{ω} :

$$d_{\varphi[x_1:=t_1,...x_n:=t_n]} \xrightarrow{} d_{\varphi}$$

$$\llbracket \varphi[x_1:=t_1,...x_n:=t_n] \rrbracket \bigvee_{\langle t_1,...t_n \rangle} \downarrow \llbracket s_1 \rrbracket \times \ldots \times \llbracket s_n \rrbracket$$

Интерпретация подстановки

- lacktriangle Доказывать это утверждение мы будем индукцией по arphi.
- Для Т это очевидно, так как пулбэк тождественного. морфизма – тождественный морфизм.
- Проверим для равенства. Пусть $[\![t]\!], [\![t']\!] : [\![s_1]\!] imes \ldots imes [\![s_n]\!] o [\![s']\!]$ и $[\![t_i]\!] : V o [\![s_i]\!]$. Тогда нужно показать, что морфизм E o V в диаргамме ниже является уровнителем $\llbracket t \rrbracket \circ \langle \llbracket t_1 \rrbracket, \dots \llbracket t_n \rrbracket \rangle$ и $\llbracket t'
 Vert \circ \langle \llbracket t_1
 Vert, \dots
 Vert t_n
 Vert
 Vert \rangle$, что легко сделать, используя универсальное свойство пулбэков.

Интерпретация подстановки в \exists

- Даже если в категории существуют образы всех морфизмов, они могут не коммутировать с пулбэками.
- Категория называется регулярной, если у всех морфизмов. существуют образы, и они стабильны относительно пулбэков.
- Таким образом, в любой регулярной категории подстановка действительно интерпретируется как пулбэк.

Корректность интерпретации \exists

Правила вывода для ∃:

$$\frac{\exists (x:s)\varphi \longmapsto \psi}{\varphi \longmapsto \psi} \qquad \frac{\varphi \longmapsto \psi}{\exists (x:s)\varphi \longmapsto \psi}$$

- lacktriangle Обратите внимание, что ψ определен в контексте $x_1, \dots x_n$ но используется также и в контексте $x_1, \ldots x_n, x$. По лемме об интерпретации подстановки ψ во втором контексте интерпретируется как пулбэк.
- Используя этот факт, легко показать, что данные правила. корректны.

План лекции

Интерпретация
Подстановка
Корректность интерпретации

Регулярные теории

Когерентные теории

Импликация и ∀

Определение

- Категория называется когерентной, если она регулярна, для любого объекта A в порядке подобъектов $\mathrm{Sub}(A)$ существуют все конечные копроизведения, и для любого морфизма $f:A\to B$ функтор $f^*:\operatorname{Sub}(B)\to\operatorname{Sub}(A)$ сохраняет их.
- Эта дополнительная структура это в точности то, что необходимо для интерпретации ложного утверждения и дизъюнкций.

Дистрибутивность пересечений

Proposition

В когерентной категории пересечении дистрибутивно над объединением подобъектов: $A \cap (B \cup C) \simeq (A \cap B) \cup (A \cap C)$ и $A \cap 0 = 0$.

Когерентные теории

Доказательство.

Функтор $A\cap -: \mathrm{Sub}(X) o \mathrm{Sub}(X)$ можно определить как композицию

$$\operatorname{Sub}(X) \xrightarrow{f^*} \operatorname{Sub}(A) \xrightarrow{\exists_f} \operatorname{Sub}(X)$$

где $f:A\to X$ и \exists_f – левый сопряженный к f^* . Функтор f^* сохраняет копроизведения по предположению когерентности, а \exists_f сохраняет копределы как левый сопряженный. 4 D > 4 A > 4 B > 4 B >

Начальный объект

Proposition

В когерентной категории существует строгий начальный объект.

Когерентные теории

Доказательство.

Определим 0 как наименьший подобъект 1. Заметим, что $\pi_1: X \times 0 \hookrightarrow X$ является наименьшим подобъектом X. Если у нас есть стрелка X o 0, то π_1 является изоморфизмом. Другими словами, он является и наибольшим подобъектом X. Следовательно, у любого такого X ровно один подобъект – он сам.

Когерентные теории

Начальный объект

Доказательство.

Докажем, что если есть морфизм $A \to 0$, то A является подобъектом 1. Дествительно, если у нас есть пара стрелок $f,g:B\to A$, то так как у нас есть стрелка $B\to 0$, то уравнитель f и g является изоморфизмом, то есть f и g равны. Следовательно $X\times 0$ изоморфен 0, то есть 0 — строгий. Докажем, что 0 — начальный. Так как у нас есть стрелка из $X\times 0$ в 0, то $X\times 0\simeq 0$, а значит у нас есть стрелка из 0 в X. Если у нас есть стрелки $f,g:0\to X$, то их уравнитель является подобъектом 0, а значит изоморфизмом, то есть f и g равны.

План лекции

Интерпретация
Подстановка
Корректность интерпретации

Регулярные теории

Когерентные теории

Импликация и ∀

Квантор всеобщности

▶ Правила вывода для ∀ дуальны правилам для ∃:

$$\frac{\varphi \longmapsto \forall (x:s)\psi}{\varphi \longmapsto \psi} \qquad \frac{\varphi \longmapsto \psi}{\varphi \longmapsto \forall (x:s)\psi}$$

- То есть у нас есть биекция между стрелками $\pi_1^*(\llbracket \varphi \rrbracket) \to \llbracket \psi \rrbracket$ в $\mathrm{Sub}(X \times \llbracket s \rrbracket)$ и $\llbracket \varphi \rrbracket \to \llbracket \forall (x : s) \psi \rrbracket$ в $\mathrm{Sub}(X)$, где $\pi_1: X \times \llbracket s \rrbracket \to X$.
- lacktriangle Таким образом, $\llbracket \forall (x:s)\psi
 rbracket$ можно определить как $\forall_{\pi_1}(\llbracket\psi
 rbracket)$, где $\forall_{\pi_1}: \mathrm{Sub}(X imes \llbracket s
 rbracket) o \mathrm{Sub}(X)$ — правый сопряженный к $\pi_1^* : \operatorname{Sub}(X) \to \operatorname{Sub}(X \times \llbracket s \rrbracket)$.

Гейтинговы категории

- Категория называется гейтинговой, если она регулярна, у любого объекта существует минимальный подобъект и объединения подобъектов, и для любого морфизма f:X o Y существует правый сопряженный функтор $\forall_f : \operatorname{Sub}(Y) \to \operatorname{Sub}(X)$ к функтору $f^* : \operatorname{Sub}(Y) \to \operatorname{Sub}(X)$.
- lacktriangle Так как гейтингова категория регулярна, то у функтора f^* есть и левый сопряженный. Таким образом, мы получаем цепочку сопряженных функторов:

$$\exists_f \dashv f^* \dashv \forall_f$$

ightharpoonup Мы не требуем, чтобы f^* сохранял наименьший подобъект и объединения, так как это следует из того, что он левый сопряженный.

∀ коммутирует с подстановкой

Чтобы доказать, что \forall коммутирует с подстановкой, нам нужно доказать, что для любого пулбэка слева квадрат функторов справа коммутирует с точностью до изоморфизма.

∀ коммутирует с подстановкой

Функторы в правом квадрате являются правыми сопряженными к следующим функторам:

$$\begin{array}{ccc} \operatorname{Sub}(A) & \stackrel{\exists_h}{\longleftarrow} \operatorname{Sub}(P) \\ f^* & & & & & & \\ f^* & & & & & \\ \operatorname{Sub}(C) & \stackrel{\textstyle \longleftarrow}{=} \operatorname{Sub}(B) \end{array}$$

 Так как этот квадрат коммутирует по регулярности, то квадрат на предыдущем слайде коммутирует по уникальности правых сопряженных функторов.

Импликация

- Интерпретация импликации определяется так же как интерпретация экспонент.
- ightharpoonup То есть $\llbracket arphi
 ightharpoonup (-)
 rbracket : \mathrm{Sub}(X)
 ightharpoonup \mathrm{Sub}(X)$ правый сопряженный к $\llbracket \varphi \wedge - \rrbracket = \llbracket \varphi \rrbracket \cap -.$
- ightharpoonup Так как $A \cap -$ является композицией

$$\operatorname{Sub}(X) \xrightarrow{f^*} \operatorname{Sub}(A) \xrightarrow{\exists_f} \operatorname{Sub}(X)$$

где $f:A\hookrightarrow X$, то правый сопряженный к нему существует в любой гейтинговой категориии.

- lacktriangle Таким образом, мы можем проинтерпретировать $arphi o \psi$ как $\forall_{\llbracket\varphi\rrbracket}(\llbracket\varphi\rrbracket^*(\psi))$.
- lacktriangle Так как $orall_{\llbracket arphi
 Vert}$ и $\llbracket arphi
 Vert^*$ коммутируют с подстановкой, то и интерпретация импликации с ней коммутирует.