PROJECT 2

AI_11_김희경

주제: 국방비 예측 데이터

※ 데이터 선정 이유 ※

우크라이나와 러시아의 전쟁을 보며 내가 누리고 있는 안전이 언제든지 없어질 수 있다고 느꼈다.

국가와 국민을 지키기 위해 각 나라마다 국방비에 어느정도 투자하는지 궁금하여 선정함.

X 가설 X

GDP대비 국방비 비율과 국가지출 대비 국방비 비율이 국방비에 큰 영향을 미친다.

※ 베이스라인 모델 ※

단순선형회귀모델

2000~2020년 나라별 국방비 데이터를 이용하여 분석해 보았습니다.

데이터 수집

https://www.kaggle.com/datasets/prasertk/military-expenditure-by-country-from-19702020

데이터 전처리

※ Pandas 이용하여 데이터 전처리※

	1 df.columns = ['country', 'iso3c', 'iso2c', 'year','M_USD','M_of_gov','M_of_GDP', 'adminregion', 'incomeLevel'] 2 df.head()										
	country	iso3c	iso2c	year	M_USD	M_of_gov	M_of_GDP	adminregion	incomeLevel	%	
0	Afghanistan	AFG	AF	1970	2.939586e+06	NaN	1.629606	South Asia	Low income		
1	Afghanistan	AFG	AF	1971	NaN	NaN	NaN	South Asia	Low income		
2	Afghanistan	AFG	AF	1972	NaN	NaN	NaN	South Asia	Low income		
3	Afghanistan	AFG	AF	1973	3.341272e+06	NaN	1.868910	South Asia	Low income		
4	Afghanistan	AFG	AF	1974	3.581366e+06	NaN	1.610825	South Asia	Low income		

<pre>1 idx = df1[df1['incomeLevel']=='Aggregates'].index 2 idx3 = df1[df1['incomeLevel']=='Not classified'].index 3 df1 = df1.drop(idx) 4 df1 = df1.drop(idx3)</pre>									
1 df1									
	country	iso3c	year	M_USD	M_of_gov	M_of_GDP	adminregion	incomeLevel	
30	Afghanistan	AFG	2000		0.00	0.00	South Asia	Low income	
31	Afghanistan	AFG	2001		0.00	0.00	South Asia	Low income	
32	Afghanistan	AFG	2002		0.00	0.00	South Asia	Low income	
33	Afghanistan	AFG	2003		0.00	0.00	South Asia	Low income	
34	Afghanistan	AFG	2004	125111557	16.13	2.43	South Asia	Low income	

2 df 3 va 4 df 5 pd 6 df	1 = df1.fill	(['iso2 SD':0,'I na(valu play.fl	c'],axi: M_of_go e=value: oat_fori	v':0,'M_of_GD s) mat = '{:.2f}				
	country	iso3c	year	M_USD	M_of_gov	M_of_GDP	adminregion	incomeLevel
30	Afghanistan	AFG	2000		0.00	0.00	South Asia	Low income
31	Afghanistan	AFG	2001	0	0.00	0.00	South Asia	Low income
32	Afghanistan	AFG	2002		0.00	0.00	South Asia	Low income
33	Afghanistan	AFG	2003	0	0.00	0.00	South Asia	Low income
34	Afghanistan	AFG	2004	125111557	16.13	2.43	South Asia	Low income

	1 df1 = df1[pd.notnull(df1['incomeLevel'])] 2 df1.reset_index(drop=True)										
	country	iso3c	year	M_USD	M_of_gov	M_of_GDP	adminregion	incomeLevel			
0	Afghanistan	AFG	2000	0	0.00	0.00	South Asia	Low income			
1	Afghanistan	AFG	2001	0	0.00	0.00	South Asia	Low income			
2	Afghanistan	AFG	2002	0	0.00	0.00	South Asia	Low income			
3	Afghanistan	AFG	2003	0	0.00	0.00	South Asia	Low income			
4	Afghanistan	AFG	2004	125111557	16.13	2.43	South Asia	Low income			

모델링을 통한 성능 비교 방법(선형회귀)

[선형회귀:예측하고자 하는 변수(종속변수)가 다른 특성(독립변수)과 선형관계를 이루는 것]

R^2: 0.02517293924773356

R^2: 0.012574960107511912

왼쪽 그래프의 R^2값과 기울기가 더 크다.

모델링을 통한 성능 비교 방법(선형회귀)

국방비는 그 나라의 힘을 보여주는 지표

모델링을 통한 성능 비교 방법(다중 선형회귀)

R^2 0.025941858164886034

단순선형회귀모델보다 다중선형회귀모델의 정확도가 더 높음

모델링을 통한 성능 비교 방법(결정트리)

※결정트리 점수 확인※

[결정트리:스무고개 하듯 특성들의 수치를 가지고 질문을 통해 정답클래스를 찾아가는 과정]

```
[150] 1 from sklearn.tree import DecisionTreeRegressor
2 pipe = make_pipeline(DecisionTreeRegressor(min_samples_leaf=54, random_state=10))
3 pipe.fit(X_train, y_train)
4 print('훈련 정확도: ', pipe.score(X_train, y_train))
5 print('테스트 정확도: ', pipe.score(X_test, y_test))
```

훈련 정확도: 0.14580786547071256 테스트 정확도: 0.11429540876904143

> Min_samples_split을 이용하여 과적합 제어 단순선형회귀모델에 비해 정확도가 낮음

모델링을 통한 성능 비교 방법(결정트리)

※결정트리를 통해 특성중요도 확인※

[결정트리:스무고개 하듯 특성들의 수치를 가지고 질문을 통해 정답클래스를 찾아가는 과정]

모델링을 통한 성능 비교 방법(랜덤포레스트)

※랜덤포레스트 점수 확인※

[랜덤포레스트:훈련과정에서 구성한 다수의 결정 트리로부터 분류,평균 예측치를 출력함]

Min_samples_split을 이용하여 과적합 제어 단순선형회귀모델에 비해 정확도가 낮음

모델링을 통한 성능 비교 방법(하이퍼파라미터 튜닝)

[하이퍼파라미터 튜닝:모델의 성능을 확보하기 위해 조절하는 주요 설정값]

※하이퍼파라미터 튜닝을 적용하여 회귀평가지표 확인하기※

[회귀평가지표로 MAE, MSE, RMSE, R2이 있다.이 지표를 보고 모델의 성능을 평가한다.그중 R2는 0~1사이의 값으로 표현한다.]

1 #테스트 테이터 스코어

- 2 y_pred = boosting.predict(X_test)
- 3 MAE=mean_absolute_error(y_test, y_pred)
- 4 MSE=mean_squared_error(y_test, y_pred)
- 5 RMSE=np.sqrt(MSE)
- 6 R2= r2_score(y_test, y_pred)
- 7 print(MAE, MSE, RMSE, R2)

11511621855.084803 3.17779356358649e+21 56371921765.95091 -1.3116378337319663

R2값이 -1.3이므로 성능이 아주 낮은 비정상적인 모델이다.

머신러닝 모델 해석(PDP)

※PDP로 머신러닝 모델 해석하기※

[PDP:모델의 예측값이 특정 피쳐의 변화에 따라 평균적으로 어떻게 변화하는지 보여주는 그래프]

변화가 매우 불규칙적이므로 좋은 모델이 아니다.

머신러닝 모델 해석(SHAP)

※SHAP로 머신러닝 모델 해석하기※

[SHAP:특정 데이터에 대해 모델의 예측값에 각 피쳐들이 얼마나 기여했는지 보여줌]

전반적으로 SHAP value가 커야 예측값에 영향을 많이 준다. 분포가 작으므로 예측값에 영향을 작게 준다.

종합 결론

※결론※

- 1.GDP 대비 국방비 비율(M_of_GDP)과 국가 지출 대비 국방비 비율(M_of_gov)은 국방비에 큰 영향을 주지 않는다.
- 2.예측 성능이 낮은 모델이므로 성능이 좋은 모델이 아니다.

X 반성X

- 1. 이상치 제거를 하면 좀 정확도가 올라갈 것이라고 생각합니다.->미국이란 나라도 중요하지만, 전체적인 정확도를 위해선 제거가 필수인 것 같습니다.
- 2. 독립변수(M_of_GDP, M_of_gov)를 이용하여 국방비(USD)단위로 맞췄다면 더 좋은 성능이 나올 것이다.
- 3. 데이터가 부족했고 독립변수 설정과 가설에 문제가 있었던 거 같습니다.
- 4. 데이터를 선정할 때 주제도 중요하지만, 다양한 정보가 있는 데이터를 선정하고 E DA와 전처리를 잘 하는 것이 중요합니다.