

Fundação CECIERJ - Vice Presidência de Educação Superior a Distância

Curso de Tecnologia em Sistemas de Computação Disciplina: Computação Gráfica AP3 - 1° semestre de 2013.

Nome -

Assinatura -

Observações:

- i) Prova sem consulta e sem uso de máquina de calcular.
 - ii) Use caneta para preencher o seu nome e assinar nas folhas de questões e nas folhas de respostas.
 - iii) Você pode usar lápis para responder as questões.
 - iv) Ao final da prova devolva as folhas de questões e as de respostas.
 - Todas as respostas devem ser transcritas nas folhas de respostas. As respostas nas folhas de questões não serão corrigidas.

Na última página encontra-se a folha de respostas. Preencha corretamente e sem rasuras. Todas as questões tem o mesmo peso.

- 1) Quando dizemos que no OpenGL "O ray tracing é um algoritmo recursivo", referimonos ao fato de que:
 - A O reflexo consiste numa chamada recursiva de um raio, na direção do observador
 - B Usamos estruturas hierárquicas, portanto com acesso recursivo para as folhas
 - C O reflexo consiste numa chamada recursiva de um raio, partindo da câmera
 - D O reflexo consiste numa chamada recursiva de um raio, partindo da normal
 - E O reflexo consiste numa chamada recursiva de um raio, partindo do ponto de interseção
- 2) Podemos dizer que utilizamos o glBegin() no OpenGL para
 - A Inicializar um programa OpenGL
 - B Iniciar o envio de vértices
 - C Inicializar o call-back de desenho
 - D Limpar a tela no término de um frame
 - E Criar um novo material a ser usado
- 3) Podemos afirmar que o Z-Buffer:
 - A É um estágio que corresponde a projeção dos polígonos
 - B Permite pintar polígonos de forma ordenada com a profundidade
 - C Realiza Clipping de polígonos projetados
 - D É necessário para calcular o coeficiente especular do Phong
 - E É uma etapa feita depois do Swap de buffers

- 4) A componente de iluminação difusa num ponto p pode ser descrita no Phong como
 - A Cor(p) = material . (N.L), sendo N a normal do ponto e L o vetor de luz para o mesmo ponto
 - $B \ Cor(p) = material \ . \ (N.O)$, sendo N a normal do ponto e O o vetor de observador para o mesmo ponto
 - C Cor (p) = material . L, sendo L o vetor de iluminação
 - $D \ Cor(p) = material \ . (R.O)$, sendo R o vetor de reflexo e O o vetor do observador para o mesmo ponto
 - E Cor (p) = material . I, sendo I a constante da luz da cena
- 5) Não podemos dizer que o Environment-mapping:
 - A cria deformações aparentes na superfície
 - B É usada para simular reflexos em tempo real
 - C Precisa de um mapeamento planar sempre
 - D São fundamentais no Ray tracing
 - E Só pode ser usada em planos
- 6) Em relação ao Bump-mapping:
 - A cria deformações aparentes na superfície
 - B cria deformações reais na superfície
 - C Precisa do modelo de iluminação Phong para ser usado
 - D São invariantes a rotação
 - E Só pode ser usada em planos
- 7) <u>Indique o item que não corresponde a um algoritmo de recorte</u>
 - A Algoritmo do ponto médio
 - B Weiler-Atherton
 - C Sutherland-Hodgeman
 - D Cyrus-Beck
 - E Cohen-Sutherland
- 8) Escolha a opção que não consiste em uma afirmação verdadeira sobre funções implícitas
 - A Lidam naturalmente com mudanças de topologia quando o nível da função é alterado
 - B São apropriadas para problemas de classificação ponto-conjunto
 - C Permitem a realização de amostragem pontual de modo fácil
 - D Não permitem a descrição de formas complexas
 - E Descrevem sólidos de forma tão natural quanto superfícies
- 9) Indique qual das matrizes abaixo não corresponde a uma matriz de projeção

- 10) Indique a propriedade correta que define uma transformação afim $T:R^2 \rightarrow R^2$:
 - A Se T é uma transformação afim então T(ax+by) = aT(x)+bT(y), dado que a+b=1, $x e y \in \mathbb{R}^2$, $a e b \in \mathbb{R}$.
 - B Se T é uma transformação afim então T(ax+by) = aT(x)+bT(y), dado que a+b >= 1, $x e y \in \mathbb{R}^2$, $a e b \in \mathbb{R}$.
 - C Se T é uma transformação afim então T(ax+by)=aT(x).bT(y), $x e y \in R^2$, $a e b \in R$.
 - D Se T é uma transformação afim então T(ax+by) = aT(x)+bT(y), dado que a+b=0, x e $y \in \mathbb{R}^2$, a e $b \in \mathbb{R}$.
 - E Se T é uma transformação afim então T(ax+by)=aT(x)+bT(y), dado que a+b>0, x e $y\in R^2$, a e $b\in R$.
- 11) <u>Seja T uma matriz de transformação aplicada aos vértices v de um objeto gráfico O, representado por uma malha. A transformação T' aplicada às normais dos vértices, que produz o mesmo efeito que a transformação T, aplicada aos respectivos vértices é dada por:</u>

A T' = T
B T' =
$$T^{-T}$$

C T' = T^{-1}
D T = T^{T}
E T = -T

Observação: A^T representa a matriz transposta de A.

12) <u>Indique a matriz em coordenadas homogêneas que calcula a reflexão de um objeto planar</u> em torno do eixo dado pela reta y=x

Tabela de respostas. Preencha sem rasuras apenas uma resposta:

Questão	1	2	3	4	5	6	7	8	9	10	11	12
Resposta	Е	В	В	A	A,	Α	A	C,D	E	A	В	C
					C,							
					D,							
					E							