Introduction to Testing

Dr. Durga Prasad Mohapatra Professor Department Of CSE NIT, Rourkela.

Defect Reduction Techniques

- Review
- Testing
- Formal verification
- Development process
- Systematic methodologies

Why Test?

- Ariane 5 rocket self-destructed 37 seconds after launch
- Reason: A control software bug that went undetected
- Conversion from 64-bit floating point to 16-bit signed integer value had caused an exception
 - The floating point number was larger than 32767
 - Efficiency considerations had led to the disabling of the exception handler.
- Total Cost: over \$1 billion

How Do You Test a Program?

- Input test data to the program.
- Observe the output:
 - Check if the program behaved as expected.

How Do You Test a Program?

How Do You Test a Program?

- If the program does not behave as expected:
 - Note the conditions under which it failed.
 - Later debug and correct.

What's So Hard About Testing?

- Consider int proc1(int x, int y)
- Assuming a 64 bit computer
 - ∘ Input space = 2¹²⁸
- Assuming it takes 10secs to key-in an integer pair
 - olt would take about a billion years to enter all possible values!
 - o Automatic testing has its own problems!

Testing Facts

- Consumes largest effort among all phases
 - Largest manpower among all other development roles
 - Implies more job opportunities
- About 50% development effort
 - But 10% of development time?
 - How?

Testing Facts

- Testing is getting more complex and sophisticated every year.
 - Larger and more complex programs
 - Newer programming paradigms

Overview of Testing Activities

- Test Suite Design
- Run test cases and observe results to detect failures.
- Debug to locate errors
- Correct errors.

Error, Faults, and Failures

- A failure is a manifestation of an error (also defect or bug).
 - Mere presence of an error may not lead to a failure.

Pesticide Effect

Errors that escape a fault detection technique:

Can not be detected by further applications of that technique.

1

Pesticide Effect

- Assume we use 4 fault detection techniques and 1000 bugs:
 - Each detects only 70% bugs
 - How many bugs would remain
 - \circ 1000*(0.3)⁴=81 bugs

Fault Model

- Types of faults possible in a program.
- Some types can be ruled out
 - Concurrency related-problems in a sequential program

13

Fault Model of an OO Program

Hardware Fault-Model

- Simple:
 - Stuck-at 0
 - Stuck-at I
 - Open circuit
 - Short circuit.
- Simple ways to test the presence of each
- Hardware testing is fault-based testing

15

Software Testing

- Each test case typically tries to establish correct working of some functionality
 - Executes (covers) some program elements
 - For restricted types of faults, fault-based testing exists.

Test Cases and Test Suites

- Test a software using a set of carefully designed test cases:
 - The set of all test cases is called the test suite

Test Cases and Test Suites

- A test case is a triplet [I,S,O]
 - is the data to be input to the system,
 - S is the state of the system at which the data will be input,
 - O is the expected output of the system.

Aim of Testing

- The aim of testing is to identify all defects in a software product.
- However, in practice even after thorough testing:
 - one cannot guarantee that the software is error-free.

Aim of Testing

The input data domain of most software products is very large:

 it is not practical to test the software exhaustively with each input data value.

Aim of Testing

Testing does however expose many errors:

- testing provides a practical way of reducing defects in a system
- increases the users' confidence in a developed system.

Aim of Testing

Testing is an important development phase:

- requires the maximum effort among all development phases.
- In a typical <u>development organization</u>:
 - maximum number of software engineers can be found to be engaged in testing activities.

Aim of Testing

Many engineers have the wrong impression:

- o testing is a secondary activity
- it is intellectually not as stimulating as the other development activities, etc.

Aim of Testing

Testing a software product is in fact:

- as much challenging as initial development activities such as specification, design, and coding.
- Also, testing involves a lot of creative thinking.

Levels of Testing

Software products are tested at three levels:

- Unit testing
- Integration testing
- System testing

Unit testing

During unit testing, modules are tested in isolation:

- If all modules were to be tested together:
 - it may not be easy to determine which module has the error.

Unit testing

Unit testing reduces debugging effort several folds.

 Programmers carry out unit testing immediately after they complete the coding of a module.

Integration testing

After different modules of a system have been coded and unit tested:

- modules are integrated in steps according to an integration plan
- partially integrated system is tested at each integration step.

System Testing

- System testing involves:
 - validating a fully developed system against its requirements.

Verification versus Validation

- Verification is the process of determining:
 - Whether output **Of** one phase of development conforms to its previous phase.
- Validation is the process of determining:
 - Whether a fully developed system conforms to its SRS document.

Verification versus Validation

- Verification is concerned with phase containment of errors,
 - Whereas the aim of validation is that the final product be error free.

31

Design of Test Cases

- Exhaustive testing of any non-trivial system is impractical:
 - Input data domain is extremely large.
- Design an optimal test suite:
 - Of reasonable size and
 - Uncovers as many errors as possible.

Design of Test Cases

- If test cases are selected randomly:
 - Many test cases would not contribute to the significance of the test suite,
 - Would not detect errors not already being detected by other test cases in the suite.
- Number of test cases in a randomly selected test suite:
 - Not an indication of effectiveness of testing.

33

3

Design of Test Cases

- Testing a system using a large number of randomly selected test cases:
 - Does not mean that many errors in the system will be uncovered.
- Consider following example:
 - Find the maximum of two integers x and y.

Design of Test Cases

- The code has a simple programming error:
- If (x>y) max = x;
 else max = x;
- Test suite {(x=3,y=2);(x=2,y=3)} can detect the error,
- A larger test suite {(x=3,y=2);(x=4,y=3);
 (x=5,y=1)} does not detect the error.

Design of Test Cases

- Systematic approaches are required to design an optimal test suite:
 - Each test case in the suite should detect different errors.

Design of Test Cases

- There are essentially three main approaches to design test cases:
 - Black-box approach
 - White-box (or glass-box) approach
 - Grey-box (or model based) approach

Black-Box Testing

- Test cases are designed using only functional specification of the software:
 - Without any knowledge of the internal structure of the software.
- For this reason, black-box testing is also known as functional testing.

Black-box Testing Techniques

- There are many approaches to design black box test cases:
 - Equivalence class partitioning
 - Boundary value analysis
 - State table based testing
 - Decision table based testing
 - Cause-effect graph based testing
 - Orthogonal array testing
 - Positive-negative testing

White-box Testing

- Designing white-box test cases:
 - Requires knowledge about the internal structure of software.
 - White-box testing is also called structural testing.

White-Box Testing Techniques

- There exist several popular white-box testing methodologies:
 - Statement coverage
 - Branch coverage
 - Path coverage
 - Condition coverage
 - MC/DC coverage
 - Mutation testing
 - Data flow-based testing

Coverage-Based Testing Versus Fault-Based Testing

- Idea behind coverage-based testing:
 - Design test cases so that certain program elements are executed (or covered).
 - Example: statement coverage, path coverage, etc.
- Idea behind fault-based testing:
 - Design test cases that focus on discovering certain types of faults.
 - Example: Mutation testing.

Why Both BB and WB Testing?

Black-box

- Impossible to write a test case for every possible set of inputs and outputs
- Some code parts may not be reachable
- Does not tell if extra functionality has been implemented.

White-box

- Does not address the question of whether or not a program matches the specification
- Does not tell you if all of the functionality has been implemented
- Does not discover missing program logic

44

Grey Box / Model Based Testing

- In grey box testing, test cases are designed from design documents / models, such as UML diagrams.
- Grey-box testing is also called model based testing.
- Mainly used for testing of O-O systems.

Summary

- Discussed importance of testing and the basic concepts of testing.
- Presented the levels of testing.
 - Unit testing
 - Integration testing
 - System testing
- Discussed the fundamentals of black box testing, white box testing and grey box testing.

12/7/202208/10/1003/08/

4

References

 R. Mall, Fundamentals of Software Engineering, (Chapter - 10), Fifth Edition, PHI Learning Pvt. Ltd., 2018.

Thank You