2022-2023 MP2I

DM 8, corrigé

PROBLÈME Théorème de Fermat-Euler

Question préliminaire:

Soit $k \ge 1$ un entier impair. On teste rapidement pour k = 1, il n'y a que 0 dans $\left] -\frac{1}{2}, \frac{1}{2} \right[$, donc un seul entier. Si k = 2, il n'y a que -1, 0, 1 dans $\left] -\frac{3}{2}, \frac{3}{2} \right[$. On conjecture donc qu'il ne va y avoir que k entiers dans l'intervalle $\left[-\frac{k}{2}, \frac{k}{2} \right[$.

Pour le prouver, puisque k est impair, on remarque que les entiers dans l'intervalle $\left]-\frac{k}{2},\frac{k}{2}\right[$ sont les entiers contenus dans $\left[-\frac{k}{2}+\frac{1}{2},\frac{k}{2}-\frac{1}{2}\right]$. Or, le nombre d'entiers dans $\left[a,b\right]$ est b-a+1. On en déduit que le nombre d'entiers dans $\left[-\frac{k}{2}+\frac{1}{2},\frac{k}{2}-\frac{1}{2}\right]$ est :

$$\frac{k}{2} - \frac{1}{2} - \left(-\frac{k}{2} + \frac{1}{2}\right) + 1 = k.$$

Puisqu'il y a k entiers consécutifs dans cet intervalle, on en déduit que pour tout n entier, il existe un unique n_0 dans cet intervalle tel que $n \equiv n_0$ [k]. On a alors bien $|n_0| < \frac{k}{2}$.

Partie I.

- 1) Les possibilités pour x [4] sont 0, 1, 2, 3. Les possibilités pour x^2 [4] sont donc 0, 1, 0, 1. Supposons alors que p s'écrive comme une somme de deux carrés. Les possibilités pour p [4] sont donc 0, 1 ou 2. Or, puisque p est impair, la seule possibilité est 1. Ceci entraine que $p \equiv 1$ [4].
- 2) On suppose désormais que $p \equiv 1$ [4].
 - a) Soit $a \in [1, p-1]$. Puisque a < p et que p est premier, il n'admet aucun facteur de p dans sa décomposition en facteurs premiers. On en déduit que $a \wedge p = 1$. D'après le théorème de Bezout, il existe donc $u, v \in \mathbb{Z}$ tels que au + pv = 1. Ceci entraîne, en considérant cette égalité modulo p que $au \equiv 1$ [p].
 - b) Soit u_0 l'unique entier de [0, p-1] tel que $u_0 \equiv u$ [p]. On a alors $au_0 \equiv 1$ [p]. De plus, on a $u_0 \neq 0$ car sinon, on aurait $au_0 \equiv 0$ [p], ce qui est absurde. Ceci entraine que $u_0 \in [1, p-1]$.

On a donc montré l'existence du u_0 . Il reste à montrer l'unicité. Supposons qu'il existe $u_1 \in [1, p-1]$ tel que $au_1 \equiv 1$ [p]. On a alors $au_0 \equiv au_1$ [p], ce qui revient à $a(u_0 - u_1) \equiv 0$ [p]. On en déduit que :

$$p|a(u_0-u_1).$$

Or, $a \wedge p = 1$ donc d'après le théorème de Gauss, on a $p|(u_0 - u_1)$. On a donc $u_0 \equiv u_1$ [p]. Or, puisque u_0 et u_1 sont dans [1, p-1], on en déduit que $u_0 = u_1$ d'où l'unicité.

c) On va procéder par double implication.

- (\Leftarrow) Si $a \equiv 1$ [p] ou $a \equiv -1$ [p], alors on a directement $a^2 \equiv 1$ [p] (on a le droit de multiplier des modulos).
- (⇒) Réciproquement, supposons que $a^2 \equiv 1$ [p]. On a alors $a^2 1 \equiv 0$ [p], c'est à dire $p|(a^2 1)$. On a donc p|(a-1)(a+1). Or, p est premier. On en déduit que p|(a-1) ou p|(a+1), ce qui entraine $a-1\equiv 0$ [p] ou $a+1\equiv 0$ [p] et donc $a\equiv 1$ [p] ou $a\equiv -1$ [p].
 - d) Soit $a \in [1, p-1]$ vérifiant $a = a^{-1}$. On a alors d'après la définition de a^{-1} que $a^2 \equiv 1$ [p]. D'après la question précédente, ceci entraine que $a \equiv 1$ [p] ou $a \equiv -1$ [p]. Or, les seuls éléments de [1, p-1] qui vérifient ceci sont a = 1 et a = p-1. On a donc la propriété voulue.
 - e) On a $(p-1)! = 1 \times 2 \times 3 \times ... \times (p-2) \times (p-1)$. On effectue donc le produit de tous les éléments de [1, p-1]. Or, si a est différent de 1 et de p-1, il admet un inverse a^{-1} qui est différent de a et qui est aussi dans [1, p-1]. On peut donc regrouper dans le produit chaque terme différent de 1 et de (p-1) avec son inverse. Ceci donne donc, puisque $aa^{-1} \equiv 1$ [p] que toutes les paires que l'on regroupe sont toutes égales à 1 modulo p. On en déduit que :

$$\begin{array}{rcl} (p-1)! & \equiv & 1 \times (p-1) \ [p] \\ & \equiv & -1 \ [p]. \end{array}$$

3) En suivant l'indication de l'énoncé, on va écrire :

$$(p-1)! = 1 \times 2 \times \ldots \times \frac{p-1}{2} \times \left(\frac{p-1}{2} + 1\right) \times \ldots \times (p-2) \times (p-1).$$

Or, de la même idée que dans la question préliminaire, on a $p-1\equiv -1$ [p], $p-2\equiv -2$ [p], ..., jusqu'à :

$$\frac{p-1}{2} + 1 \equiv \frac{p-1}{2} + 1 - p [p]$$
$$\equiv -\frac{p-1}{2} [p].$$

Ceci entraine que la seconde partie du produit est congrue modulo p à $(-1)^k \left(\frac{p-1}{2}\right)!$ où k est le nombre de termes dans le produit, c'est à dire $k=\frac{p-1}{2}$ (puisque l'on prend la moitié des termes et que l'on a p-1 termes dans le produit). Puisque $p\equiv 1$ [4], ceci entraine que k est pair et on a donc la deuxième partie du produit qui est congrue modulo p à $\left(\frac{p-1}{2}\right)!$. On en déduit finalement que :

$$(p-1)! \equiv \left(\left(\frac{p-1}{2}\right)!\right)^2 [p].$$

4) Posons $x = \left(\frac{p-1}{2}\right)!$. On a bien $x \in \mathbb{Z}$ (on a même $x \in \mathbb{N}$). D'après les deux questions précédentes, on a $(p-1)! \equiv x^2$ [p] et $(p-1)! \equiv -1$ [p]. Ceci entraine que $x^2 \equiv -1$ [p], soit $x^2 + 1 \equiv 0$ [p].

Or, d'après la question préliminaire, puisque p est impair, il existe $x_0 \in \mathbb{Z}$ tel que $|x_0| < \frac{p}{2}$ tel que $x \equiv x_0$ [p]. On a donc bien $x_0^2 + 1 \equiv x^2 + 1$ [p], d'où $x_0^2 + 1 \equiv 0$ [p].

Partie II.

a) Soit $k \in \mathbb{Z}$ tel que $x_0^2 + 1 = kp$. On a bien $1 \le k$ puisque $0 < x_0^2 + 1$. De plus, on a $|x_0| < \frac{p}{2}$ donc par stricte croissance de $x \mapsto x^2$ sur \mathbb{R}_+ , on a $x_0^2 < \frac{p^2}{4}$. On en déduit que $kp < 1 + \frac{p^2}{4}$. En divisant par p > 0, on obtient :

$$k < \frac{1}{p} + \frac{p}{4}.$$

Puisque p est premier impair, on a p > 2 et donc $\frac{1}{p} < 1 < \frac{p}{2}$. On a donc :

$$k < \frac{3p}{4} < p.$$

On a bien le résultat voulu.

b) Vérifions que $k \in E$. En prenant $a = |x_0|$ et b = 1, on a $a, b \in \mathbb{N}$ et $a^2 + b^2 = kp$. Puisque $k \in [1, p-1]$, on a bien $k \in E$. On en déduit que E est non vide. E est non vide minoré et c'est une partie de \mathbb{N}^* , il admet donc un minimum. Puisque k < p, on en déduit que ce minimum est aussi strictement plus petit que p.

- 6) On suppose par l'absurde que m est pair.
 - a) On a $a^2 + b^2$ pair puisque m est pair. Or, si a et b ne sont pas de même parité, on a par exemple a pair et b impair (l'autre cas se traite de la même façon). On a donc a^2 pair et b^2 impair, ce qui entraine $a^2 + b^2$ impair : absurde! On en déduit que a et b sont de même parité.
 - b) Puisque a et b sont de même parité, on en déduit que $\frac{a+b}{2}$ et $\frac{a-b}{2}$ sont entiers. On a de plus :

$$\left(\frac{a+b}{2}\right)^{2} + \left(\frac{a-b}{2}\right)^{2} = \frac{a^{2} + 2ab + b^{2}}{4} + \frac{a^{2} - 2ab + b^{2}}{4}$$
$$= \frac{a^{2} + b^{2}}{2}$$
$$= \frac{m}{2}p.$$

Or, on a $\frac{m}{2} < m$ et $\frac{m}{2} \in \mathbb{N}^*$ car m est un entier strictement positif. Le calcul précédent prouve que $\frac{m}{2} \in E$, ce qui absurde car $\frac{m}{2}$ est strictement plus petit que le minimum de E! On en déduit que m est forcément impair.

- 7) On suppose l'absurde que $m \geq 3$.
 - a) On peut vérifier cette égalité en développant les deux expressions. On peut également voir cette égalité en posant $z_1 = \alpha + i\beta$ et $z_2 = \delta + i\gamma$. On a alors :

$$(\alpha^{2} + \beta^{2})(\gamma^{2} + \delta^{2}) = |z_{1}|^{2} \times |z_{2}|^{2}$$

$$= |z_{1}z_{2}|^{2}$$

$$= |(\alpha\delta - \beta\gamma) + i(\alpha\gamma + \beta\delta)|^{2}$$

$$= (\alpha\gamma + \beta\delta)^{2} + (\alpha\delta - \beta\gamma)^{2}.$$

b) Soient $a_0, b_0 \in \mathbb{Z}$ tels que $|a_0| < \frac{m}{2}$, $|b_0| < \frac{m}{2}$, et $a_0 \equiv a$ [m], $b_0 \equiv b$ [m] (tout existe d'après la question préliminaire puisque m est impair). On pose $n = a_0^2 + b_0^2$. Supposons par l'absurde que n = 0. Puisque n est une somme de termes positifs, on en déduit que $a_0 = b_0 = 0$. On a donc $a \equiv 0$ [m] et $b \equiv 0$ [m], ce qui entraine que m divise a et m divise b. Puisque $a^2 + b^2 = mp$, on en déduit en divisant par m^2 que :

$$\left(\frac{a}{m}\right)^2 + \left(\frac{b}{m}\right)^2 = \frac{p}{m}.$$

Or, on a à gauche une somme d'entiers (tout est entier et on élève au carré). On en déduit que m divise p, ce qui implique puisque p est premier et m > 1 que m = p. Or, on a montré à la question II.5.b que l'on avait m < p. On a donc une absurdité, ce qui entraine que $n \neq 0$.

c) Puisque $a^2 + b^2 = mp$, on a $a^2 + b^2 \equiv 0$ [m]. Puisque $a_0 \equiv a$ [m] et $b_0 \equiv b$ [m], on en déduit que $n = a_0^2 + b_0^2 \equiv 0$ [m]. On a donc $a_0^2 + b_0^2$ divisible par m, ce qui entraine qu'il existe $u \in \mathbb{N}$ (car tout est positif) tel que n = um. D'après la question précédente, $n \neq 0$ donc on a $1 \leq u$.

De plus, on a $a_0^2 < \frac{m^2}{4}$ (toujours par stricte croissante de $x \mapsto x^2$ sur \mathbb{R}_+) et $b_0^2 < \frac{m^2}{4}$ donc $n < \frac{m^2}{2}$. On a donc $um < \frac{m^2}{2}$, ce qui entraine $u < \frac{m}{2}$.

d) On a $um = n = a_0^2 + b_0^2$ et $mp = a^2 + b^2$. D'après l'identité de Lagrange, on a :

$$(um) \times (mp) = (a_0^2 + b_0^2)(a^2 + b^2)$$

= $(a_0a + b_0b)^2 + (a_0b - ab_0)^2$.

On en déduit que m^2up s'écrit comme une somme de deux carrés. De plus, on remarque que :

$$a_0a + b_0b \equiv a^2 + b^2 [m]$$
$$\equiv 0 [m]$$

et que:

$$\begin{array}{rcl} a_0b-ab_0 & \equiv & ab-ab \ [m] \\ & \equiv & 0 \ [m] \end{array}$$

On a donc m qui divise $a_0a + b_0b$ et $a_0b - ab_0$. Ceci entraine que $\frac{a_0a + b_0b}{m}$ et $\frac{a_0b - ab_0}{m}$ sont entiers. Or, on a :

$$up = \left(\frac{a_0a + b_0b}{m}\right)^2 + \left(\frac{a_0b - ab_0}{m}\right)^2.$$

up s'écrit donc comme une somme de deux carrés d'entiers.

e) On a $1 \le u$ et u entier et up s'écrit comme une somme de deux carrés d'entiers donc $u \in E$. Or, on a u < m donc on a construit un élément strictement plus petit que le minimum : absurde!

On en déduit que m=1. Ceci prouve qu'il existe $a,b\in\mathbb{N}$ tels que $a^2+b^2=p$, ce qui montre bien que si $p\equiv 1$ [4], alors p s'écrit comme une somme de deux carrés d'entiers. L'autre sens a été montré dans la question I.1, on a bien montré l'équivalence demandée.