Лабораторная работа №2 «Введение в объектно-ориентированное программирование на языке Scala»

Скоробогатов С.Ю.

19 марта 2016 г.

1 Цель работы

Целью данной работы является изучение базовых объектно-ориентированных возможностей языка Scala.

2 Исходные данные

Для выполнения лабораторной работы потребуется Scala версии не ниже 2.10. Её дистрибутив можно скачать с сайта по ссылке: http://www.scala-lang.org/download/.

Для установки Scala достаточно разархивировать архив в любой каталог файловой системы и дополнить переменную окружения РАТН путём к каталогу bin, в котором находятся REPL-интерпретатор и компилятор.

3 Задание

Выполнение лабораторной работы состоит из двух этапов:

- 1. разработка реализации на языке Scala одного из классов, краткое описание которого приведено в таблицах 1 и 2 (реализации всех классов, кроме класса из варианта 18, должны быть функциональными);
- 2. тестирование работоспособности всех методов класса в REPL-интерпретаторе.

Таблица 1: Варианты классов

	Таблица 1: Варианты классов
1	Элемент кольца вычетов по модулю n с операциями сложения и умножения.
2	Истинностное значение троичной логики («истина», «неизвестно», «ложь») с
	операциями конъюнкции («*»), дизъюнкции («+») и отрицания («!»). Вместо
	создания экземпляров класса должны быть заранее заготовлены три возможных
	объекта.
3	Множество строк с операциями объединения («+»), пересечения («*») и
	вычитания $(«-»)$.
4	Число с фиксированной точкой. Должно быть представлено в виде двух целых
	чисел: x — двоичное представление числа, n — точность (количество младших бит
	двоичного представления, отведённых для дробной части). При сложении и
	вычитании двух чисел результат имеет точность, максимальную из точностей этих
	двух чисел. При умножении двух чисел точности складываются, а при делении –
	вычитаются.
5	Элемент полукольца целых чисел, в котором сложение определяется как взятие
	максимума, а умножение – как обычное сложение целых чисел.
6	Элемент кольца подмножеств множества целых чисел, в котором сложение
	определяется как симметрическая разность, а умножение – как пересечение
	множеств.
7	Элемент свободной группы с двумя образующими. Представляет собой либо
	пустое слово (единица группы), либо конечное слово, составленное из четырёх
	символов $a, \tilde{a}, b, \tilde{b}$ таким образом, что в нём a не появляется рядом с $\tilde{a},$ а b не
	появляется рядом с \tilde{b} . Операция сложения двух слов определяется как их
	конкатенация с последующим сокращением пар $a\tilde{a}, \tilde{a}a, b\tilde{b}$ и $\tilde{b}b$. Операция взятия
	обратного элемента – как переворачивание слова с одновременной заменой a на \tilde{a} ,
	$ ilde{a}$ – на a,b – на $ ilde{b}$ и $ ilde{b}$ – на $b.$
8	Двоичное неотрицательное число произвольной разрядности с операциями
	сложения и умножения.
9	Целочисленный вектор в n -мерном пространстве с операциями сложения,
	вычитания, скалярного умножения, умножения на число и обращения (унарный
	минус).
10	Полином с целыми коэффициентами и операциями сложения, умножения и
	дифференцирования (унарный «!»).
11	Комплексное число с операциями сложения, умножения, вычитания и деления.
12	80-битовое целое число со знаком с операциями сложения, вычитания, умножения
- -	и изменения знака (унарный минус).
13	Подмножество множества \mathbb{N}_{1024} натуральных чисел от 0 до 1023, реализованное
	через битовую маску, с операциями объединения («+»), пересечения («*»),
	вычитания («-») и дополнения до \mathbb{N}_{1024} («!»).
14	Конечое множество интервалов на множестве вещественных чисел с операциями
1.4	объединения («+»), пересечения («*») и проверки принадлежности числа
	множеству интервалов («in»).
	MITOMOGIBY MITOPOWIOD (*III/).

Таблица 2: Варианты классов

	таолица 2. Барианты классов
15	Число, представленное последовательностью степеней простых делителей, на
	которое оно раскладывается, с операциями умножения («*»), вычисления
	наибольшего общего делителя («&») и сравнения («<»).
16	Отношение на множестве целых чисел с операциями объединения («+»),
	пересечения («*») и транзитивного замыкания («!»).
17	Вектор с вещественными коэффициентами в трёхмерном пространстве с
	операциями сложения («+»), вычитания («-»), скалярного произведения («*»),
	векторного произведения («**»), а также умножения на число («*»).
18	Вершина дерева в лесу непересекающихся множеств целых чисел с операциями
	поиска представителя множества («!») и объединения двух множеств («+»).
	Объекты класса, увы, придётся сделать изменяемыми.
19	
20	
	·