La récupération de l'énergie de la houle, Partie 1 : Caractérisation de la ressource et bases de l'hydrodynamique.

Aurélien BABARIT², Jean-Marc ROUSSET², Hakim MOUSLIM², Judicaël AUBRY¹, Hamid BEN AHMED¹ et Bernard MULTON¹

 Laboratoire SATIE CNRS, ENS de Cachan, Site de Bretagne Campus de Ker Lann, 35170 BRUZ nom@bretagne.ens-cachan.fr
 Laboratoire de Mécanique des Fluides CNRS, Ecole Centrale de Nantes
 rue de la Noë, 44 321 Nantes Cédex 3 aurelien.babarit@ec-nantes.fr

Résumé: Cet article traite, en deux parties, de la problématique de récupération de l'énergie de la houle. La première partie est consacrée à la caractérisation de la ressource énergétique que constitue la houle, et dans un second temps, à la modélisation physique de l'interaction d'un fluide avec une structure, problème physique typique dans la récupération de l'énergie des vagues. Dans la seconde partie, un panorama de plusieurs récupérateurs de l'énergie de la houle, aussi appelés houlogénérateurs, sera présenté mais ne saurait être exhaustif étant donnée la diversité de principes qui existent. Le dernier chapitre mettra en avant les problématiques de génie électrique spécifiques à de tels systèmes.

Introduction

Les perspectives d'exploitation des énergies marines, dans le panel des énergies renouvelables, ne cessent de prendre de l'importance, notamment dans les pays disposant d'une exposition favorable mais également tenant compte du fait que les populations continentales ont une tendance naturelle à migrer vers les zones côtières. Au point de vue politique de la France, les engagements pris lors du grenelle de la mer, en juillet 2009, en sont la preuve. «Soutenir et planifier le développement durable des énergies marines», «Engager une politique industrielle volontariste pour les énergies marines», «Agir en priorité en Outre-mer pour développer et produire l'énergie renouvelable», ce sont les trois engagements pris par le gouvernement à propos des énergies marines. Cette prise de position politique était nécessaire car les énergies marines ont besoin, pour leur développement, d'un cadre législatif clair mais aussi d'un soutien aussi bien industriel que financier.

Sous le vocable Énergies Marines Renouvelables, on a pris l'habitude de regrouper à la fois l'énergie marémotrice et des courants marins, l'éolien offshore, l'énergie thermique des mers, celles des gradients de salinités, et également l'énergie des vagues à laquelle on s'intéresse plus en détail ici [Multon (Partie 2)]. Depuis une trentaine d'années, nombre de systèmes houlogénérateurs (systèmes de récupération de l'énergie des vagues) ont été proposés et étudiés, de par le monde mais principalement en Europe. On distingue plusieurs types de houlogénérateurs : les colonnes

d'eau oscillantes, les rampes à déferlement et les systèmes à corps mus par la houle. Ainsi, les plus récents (Pelamis, AWS, CETO, SEAREV, Wavebob...) font partie de ces systèmes actionnés directement par les vagues. Ils sont également, pour la plupart «offshore», c'est-à-dire situés loin de la côte, là où la ressource énergie des vagues est meilleure et où l'impact visuel est réduit.

Nous présentons dans cette première partie, la caractérisation énergétique et physique de la ressource houlomotrice ainsi que les outils de bases de l'hydrodynamique permettant de traiter le problème de l'interaction fluide-structure de ces systèmes de récupération de l'énergie des vagues.

1 Caractérisation de la ressource houlomotrice.

1.1 Origine de la houle

La houle est générée par l'effet du vent sur la surface des océans. Plus il souffle fort, longtemps et sur une grande distance, et plus la hauteur des vagues générées va être importante. Ces vagues, ondes de gravité, ont la particularité de se propager sans dissipation d'énergie et peuvent donc voyager sur de longues distances avant d'être dissipées sur les côtes. La houle est donc un concentré d'énergie éolienne, certains journalistes l'ont surnommée « houille bleue ».

1.2 Physique d'une vague

Du point de vue de la mécanique des fluides, la physique de l'écoulement associé à la houle est incompressible et irrotationnel, i.e:

$$div \vec{V} = 0$$

$$rot \vec{V} = \vec{0}$$

Où \vec{V} est la vitesse du fluide.

La divergence du champ de vitesses peut être vue dans le contexte de la mécanique des fluides, comme le taux relatif de variation de volume de la particule de fluide considéré (Note: une particule fluide est un ensemble fermé, de masse constante, et de taille mésoscopique, c'est-à-dire contenant un grand nombre de molécules d'eau, mais assez petit pour considérer des grandeurs comme constantes, par exemple la température, la masse volumique ou la pression). Considérer un fluide comme incompressible se traduit donc par une divergence nulle de son champ de vitesse.

La notion de rotationnel de la vitesse décrit en mécanique des fluides une rotation de la particule fluide. Dans un écoulement irrotationnel, le rotationnel de vitesse est nul en tout point, et on peut écrire à l'aide du théorème de Stokes que la vitesse dérive d'un potentiel Φ :

$$\vec{V} = \vec{grad} \quad \phi$$

En combinant cette dernière équation avec celle traduisant l'incompressibilité, on montre que ce potentiel est gouverné dans tout le domaine fluide par l'équation de Laplace :

$$\Delta \phi(\mathbf{M}, \mathbf{t}) = 0 \quad \forall M \in \Omega$$

On retrouve un tel formalisme en magnétostatique avec le potentiel magnétique scalaire.

Comme nous l'avons évoqué, c'est le vent, soufflant à l'interface air-mer, qui déforme celle-ci. Cette déformation induit alors un écoulement en volume qui tend à faire revenir cette interface à l'équilibre (interface horizontale). C'est la gravité qui engendre ce retour à l'équilibre et c'est pourquoi la houle est qualifiée d'onde de gravité.

Figure 1 : Définition du domaine fluide

Pour calculer cet écoulement, il convient, à l'instar de la magnétostatique, d'écrire des conditions aux limites du domaine fluide, les plus intéressantes s'écrivant sur la surface libre, dont la position est définie par :

$$z = \eta(x, y, t)$$

Ces conditions aux limites sont :

$$\begin{cases} \frac{\partial \phi}{\partial z} = \frac{\partial \eta}{\partial t} + \frac{\partial \phi}{\partial x} \frac{\partial \eta}{\partial x} + \frac{\partial \phi}{\partial y} \frac{\partial \eta}{\partial y} \\ \eta = -\frac{1}{g} \left(\frac{\partial \phi}{\partial t} + \frac{1}{2} \left| \overrightarrow{grad} \phi \right|^2 \right) \end{cases} \quad z = \eta(x, y, t)$$

La première est la condition cinématique de surface libre, qui traduit le fait que la surface libre est une frontière physique, la seconde est la condition dynamique de surface libre, qui traduit la continuité de pression à la traversée l'interface (les effets de tension superficielle étant négligés à l'échelle de la houle).

Figure 2 : définition de la longueur d'onde et de la hauteur (crête à creux) de vagues.

Comme on peut le voir, les deux conditions sur la surface libre sont non linéaires et il est donc difficile d'aller beaucoup plus loin analytiquement avec ces formulations. Cependant, la hauteur des vagues H étant en général petite devant leur longueur d'onde λ , on peut procéder au développement en série de perturbations $\varepsilon=H/\lambda$ des quantités liées à l'écoulement :

$$\begin{cases} \eta = \varepsilon \eta_1 + \varepsilon^2 \eta_2 + \dots + \varepsilon^{n-1} \eta_{n-1} + O(\varepsilon^n) \\ \phi = \varepsilon \phi_1 + \varepsilon^2 \phi_2 + \dots + \varepsilon^{n-1} \phi_{n-1} + O(\varepsilon^n) \end{cases}$$

Ce développement s'appelle le développement de Stokes. On appelle la houle associée à l'ordre de troncature n Houle de Stokes d'ordre n. Dans le cas où l'on néglige les effets d'ordre supérieur à 1, les conditions aux limites se linéarisent, ce qui permet de trouver une solution analytique au problème en utilisant la méthode de séparation des variables.

Figure 3 : Définition de la période (temporelle) et de l'amplitude de la houle régulière.

Considérons ainsi le cas particulier d'une houle régulière de pulsation ω , d'amplitude A (la moitié de la hauteur crête à creux H) et se propageant dans la direction des x positifs dans un milieu de profondeur infinie (houle de Stokes de 1^{er} ordre aussi appelé houle d'Airy). On peut montrer que son potentiel s'écrit :

$$\phi(x, y, z, t) = \operatorname{Im}(A \frac{ig}{\omega} e^{k(z-ix)} e^{i\omega t})$$

avec

- g l'accélération de la gravité.
- k le nombre d'onde, défini par $k=2\pi/\lambda$, où λ est la longueur d'onde de la houle (typ 100m).

Notons que les conditions de surface libre imposent une relation entre le nombre d'onde k et la pulsation ω qui s'appelle relation de dispersion :

$$kg = \omega^2$$

1.3 Puissance linéique d'une vague

En tout point du domaine fluide, la pression peut être calculée en utilisant la relation de Bernoulli :

$$\frac{p}{\rho} = -gz - \frac{\partial \phi}{\partial t}$$

Et on rappelle que la vitesse du fluide s'obtient en dérivant le potentiel :

$$\vec{V} = \vec{grad} \phi$$

Considérons à présent une surface élémentaire dS perpendiculaire à la direction de propagation (x>0). Le flux d'énergie à travers cette surface s'écrit:

$$f = p\vec{V}\vec{x}dS$$
$$f = -\rho gz\vec{V}\vec{x}dS - \rho \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial x}dS$$

Considérons à présent la moyenne temporelle de ce flux sur une période de houle. On montre facilement que la contribution de la pression hydrostatique $-\rho gz$ est nulle et il ne reste que la contribution de la pression dynamique. Tout calcul fait, on obtient :

$$F = -\frac{1}{T} \int_0^T \rho \frac{\partial \phi}{\partial t} \frac{\partial \phi}{\partial x} dt$$
$$F = \frac{1}{2} \rho A^2 g \omega e^{2kz}$$

Intégrons à présent ce flux à travers une surface délimitée verticalement par le fond de l'océan et la surface libre, et de largeur 1 m. En s'aidant là encore de la relation de dispersion, on obtient la puissance moyenne transportée par mètre de largeur de vagues :

$$P = \frac{1}{8\pi} \rho g^2 A^2 T \quad (W.m^{-1})$$
$$P \approx H^2 T \quad (kW.m^{-1})$$

On exprime usuellement cette quantité en kW/m de front d'onde. Il est intéressant de constater que l'énergie transportée par les vagues est proportionnelle au carré de l'amplitude, mais est également proportionnel à la période des vagues. Ainsi, paradoxalement pour un électricien habitué à des puissances proportionnelles à la fréquence, plus le mouvement de la houle est lent, et plus l'énergie transportée est importante. Les mouvements rapides

étant d'habitude les plus énergétiques, ceci est suffisamment inhabituel pour être remarqué.

1.4 Aspect fréquentiel : houle réelle

La houle d'Airy est une solution régulière (i.e. monochromatique et monodirectionnelle) du problème de la propagation de la houle à la surface des océans. En pratique, la houle est irrégulière, c'est-à-dire qu'elle est à la fois multidirectionnelle et multi fréquentielle, et les enregistrements temporels en provenance de mesures en mer peuvent laisser à penser que l'on a affaire à un phénomène parfaitement aléatoire.

Figure 4 : Enregistrement temporel de houle mesuré en mer.

Heureusement, lorsqu'on s'intéresse au contenu spectral de la houle irrégulière, on s'aperçoit qu'il est relativement stationnaire sur des durées de l'ordre de l'heure, et qu'il présente, que ce soit pour un léger clapot ou une mer de tempête, une forme caractéristique. Cette forme peut être approchée par une fonction mathématique, dépendante de quelques paramètres statistiques, et que l'on appelle spectre de houle.

Figure 5 : Exemple de spectre de houle (spectre de Pierson-Moskowitz).

L'un des plus utilisé est le spectre de Pierson-Moskowitz :

$$S(f) = \frac{5}{16} \frac{H_s^2}{T_1^5 f^5} e^{-\frac{5}{4} \frac{1}{T_1^4 f_4}}$$

Il est caractérisé par deux grandeurs :

• La période de pic du spectre T_I , pour laquelle le spectre est maximum.

• La hauteur significative H_S . A cette dernière grandeur correspond une définition statistique exacte, mais il est plus simple de retenir qu'elle correspond également assez bien avec la hauteur ressentie par les gens de mer.

En considérant la houle irrégulière comme une superposition de houles régulières dont les amplitudes élémentaires sont données par le spectre, on peut à nouveau calculer la puissance transportée par les vagues. On peut constater que la « chute » de puissance linéique par rapport à une houle régulière est de 60%.

$$P = 0.4H_S^2 T_1 \, kW/m$$

Le tableau suivant donne quelques exemples de cette puissance transportée pour des valeurs typiques de H_s et T_l . On peut voir que le niveau d'énergie transportée par les vagues est très variable en fonction de l'état de la mer, et peut atteindre des niveaux de puissance considérable dans les cas de fortes tempêtes.

Echelle de	4	5	6	o
Beaufort	4	3	U	0
H _s (m)	1	2	3	5.5
$T_1(s)$	6	8	10	14
P (kW/m)	2.4	12.8	36	170

1.5 Répartition géographique

A partir de mesures en mer, où à l'aide de modèles océano-météorologiques, on peut déterminer les états de mer qui existent en un site donné et leur densité de probabilité. En sommant les produits de cette densité de probabilité avec la puissance transportée dans l'état de mer correspondant, on peut calculer la puissance moyenne disponible en différents endroits.

Figure 6 : Carte mondiale de la ressource énergie des vagues (Source : Douglas Westwood).

Sur la figure (6) sont ainsi portées les moyennes annuelles du flux d'énergie des vagues à l'échelle de la planète. On peut voir, avec des niveaux de ressource de l'ordre de 40 kW/m, que les zones les mieux exposées sont :

- Dans l'hémisphère nord, la côte ouest des Etats-Unis et du Canada, la façade atlantique européenne ainsi que les îles d'Hawaii.
- Dans l'hémisphère sud, la côté chilienne, sud africaine, australienne et néo zélandaise. Les îles du Pacifique présentent également des niveaux de ressource très intéressants.

D'après l'Agence Internationale de l'Energie, la ressource exploitable 'Energie des vagues' à l'échelle mondiale représenterait environ 20 000 TWh par an, soit un sixième de la consommation mondiale d'énergie primaire.

2 Méthodes d'évaluation de l'hydrodynamique des systèmes de récupération de l'énergie des vagues.

Lorsqu'il s'agit d'évaluer les performances d'un système de récupération de l'énergie des vagues, il est nécessaire de prendre en compte les effets d'interaction des vagues avec la structure. Il s'agit là d'un problème très complexe pour lequel il n'est pas possible d'obtenir de réponse analytiquement, à part dans des cas très simples et sous un grand nombre d'hypothèses. Historiquement, la seule possibilité d'obtenir des réponses a donc été d'avoir recours à l'expérimentation sur des maquettes à échelle réduite en bassin d'essai. Ces bassins sont essentiellement de grandes piscines, équipés d'un côté de volets mobiles pour générer de la houle, et de l'autre côté d'une plage artificielle, afin de dissiper la houle et d'éviter les réflexions.

Figure 7 : Le bassin de génie océanique de l'Ecole Centrale de Nantes.

Avec l'essor de la puissance de calcul informatique, on a assisté depuis une vingtaine d'années à l'apparition de bassins virtuels, pendant numérique des bassins physiques. Ce ne sont ni plus moins que des outils de simulation numérique en hydrodynamique et il en existe à présent un grand nombre. Ils se différencient les uns des autres par les hypothèses sur lesquels ils sont bâtis, la précision de leurs résultats et leur rapidité d'exécution.

Dans la suite de cet article, on présente dans un premier temps les méthodes numériques utilisées usuellement pour traiter le problème de l'interaction fluide-structure de système de récupérations de l'énergie des vagues, puis les méthodes expérimentales utilisées notamment pour valider les prévisions de ces modèles numériques.

2.1 Méthodes numériques.

Dans le cas de la récupération de l'énergie des vagues, on utilise essentiellement des outils basés sur une théorie potentielle linéarisée, principalement pour des raisons de rapidité et de précision dans la représentation de la houle. On peut noter que ce type de méthodes est utilisé également de manière très courante dans l'industrie offshore.

2.1.1 Présentation du problème

Considérons le cas d'un système de récupération de l'énergie des vagues très simple, composé d'un cylindre vertical flottant. On suppose tous ses degrés de liberté bloqués, sauf le pilonnement (mouvement de translation vertical z). On suppose également que ce système est relié au fond la mer par un convertisseur d'énergie (par exemple un vérin hydraulique), qui amortit le mouvement de la bouée en le transformant en une autre forme d'énergie (huile sous pression dans le cas du vérin ou électrique dans le cas d'un générateur linéaire).

2.1.2 Bilan des forces

En appliquant le principe fondamental de la dynamique à ce système, on peut écrire :

$$m\ddot{z} = f_{FS} + f_{gravit\acute{e}} + f_{Convertisseur}$$

Où:

- f_{Convertisseur} représente la force exercée par le convertisseur sur le flotteur.
- $f_{gravit\acute{e}}$ est la force due à la pesanteur, égal à -mg.
- f_{FS} représente la force associée à l'interaction fluide structure. Elle correspond simplement à

l'intégration de la pression *p* sur la surface mouillée *S* du flotteur.

En faisant les mêmes hypothèses que pour la description de la houle, on se place à nouveau dans le cadre d'un écoulement dérivant d'un potentiel Φ . En utilisant la relation de Bernoulli pour exprimer la pression, on peut montrer :

$$f_{FS} = \int_{S} p\vec{n}.\vec{z}dS$$

$$f_{FS} = -\rho g \int_{S} z \vec{n} . \vec{z} dS - \rho \int_{S} \frac{\partial \Phi}{\partial t} \vec{n} . \vec{z} dS$$

où \vec{n} est un vecteur normal à la surface du flotteur.

Dans cette dernière équation, le premier terme est simplement l'intégration de la pression hydrostatique que la surface du flotteur. Il correspond à **l'effort hydrostatique**, mieux connu sous le nom de Poussée d'Archimède. Le second est la partie dynamique de la pression, c'est l'**effort hydrodynamique**.

2.1.3 Effort hydrostatique

Supposons à présent que l'amplitude du mouvement est petite par rapport aux dimensions du corps. On peut alors montrer que la somme de l'effort hydrostatique et de l'effort de gravité se réduit à un effort de raideur :

$$-mg - \rho g \int_{S} z \vec{n} \cdot \vec{z} dS = -Kz$$

Ainsi, la somme des efforts du à la poussée d'Archimède et à la gravité est équivalente à un ressort de coefficient K.

Soit A la surface associé à l'intersection du plan z=0 avec le volume défini par la surface du flotteur. Le coefficient de raideur K est donné par :

$$K = \rho g A$$

2.1.4 Efforts hydrodynamiques

Usuellement, on représente le potentiel de l'écoulement comme la superposition de trois composantes :

$$\phi = \phi_I + \phi_D + \phi_R$$

Cette décomposition s'appelle la décomposition de Haskind. Chacun des termes correspond à un phénomène particulier :

- Le premier terme Φ_I correspond au potentiel de la houle incidente, se propageant en l'absence de corps (cf paragraphe 1). Les efforts de pression hydrodynamique associés à ce terme sont les **efforts de Froude-Krylov**.
- Le second terme Φ_D est appelé potentiel de houle diffractée. Il correspond au champ de houle qui serait réfléchi par le flotteur si celui

était fixe (on peut penser au champ renvoyé par une digue). Les efforts de pression hydrodynamique associés à ce terme sont les efforts de diffraction.

 Le troisième terme Φ_R est appelé potentiel de radiation. Il correspond au champ de houle qui est émis par le flotteur lorsque celui-ci bouge en eau calme (on peut penser au champ de vagues créé par un caillou jeté dans un lac). Les efforts de pression hydrodynamique associés à ce terme sont les efforts de radiation.

2.1.4.1 Effort d'excitation et de diffraction

On appelle efforts d'excitation les efforts dus aux termes de houle incidente et de diffraction :

$$f_{ex} = -\rho \int_{S} \frac{\partial (\Phi_{I} + \Phi_{D})}{\partial t} \vec{n}.\vec{z}dS$$

2.1.4.2 Effort de radiation

En ce qui concerne les efforts de radiation, on peut montrer, dans le domaine fréquentiel, que :

$$f_{rad} = -\rho \int_{S} \frac{\partial \Phi_{R}}{\partial t} \vec{n} . \vec{z} dS$$

$$f_{rad} = -CM(\omega) \ddot{z} - CA(\omega) \dot{z}$$

En d'autres termes, les efforts de radiation sont la somme de deux parties, l'une proportionnelle à l'accélération et l'autre à la vitesse du flotteur. Le coefficient associé à l'accélération à la dimension d'une masse, on l'appelle masse d'eau ajoutée. Le terme proportionnel à la vitesse est le coefficient d'amortissement de vagues. Il correspond au transfert d'énergie mécanique du flotteur dans le champ de vagues rayonné.

2.1.5 Équation du mouvement dans le domaine fréquentiel

Finalement, l'équation du mouvement d'un flotteur dans la houle s'écrit, dans le domaine fréquentiel :

$$(m + CM(\omega))\ddot{z} + (CA(\omega) + B)\dot{z} + \rho gAz = f_{ex}(\omega)$$

Où le terme $B\dot{z}$ représente l'effort du convertisseur d'énergie (dans le cas d'un effort de type visqueux). On constate que cette équation est similaire à celle d'un oscillateur mécanique simple (système masse – ressort par exemple), mais dont les coefficients varieraient avec la fréquence.

En pratique, les coefficients CM, CA et f_{ex} sont calculés à l'aide de logiciels dédiés (WAMIT, Aquaplus par exemple) et basés sur des méthodes aux éléments frontières. Une fois ce calcul fait, la vitesse du flotteur s'obtient très simplement par :

$$\dot{z} = \frac{f_{ex}}{(CA+B) + i[(m+CM)\omega - K/\omega]}$$

Et la puissance moyenne produite par ce récupérateur de l'énergie des vagues pour une houle de pulsation ω est :

$$P = \frac{1}{2} B |\dot{z}|^2$$

La figure 8 présente la fonction de transfert et la puissance moyenne produite ainsi obtenues pour le cas d'un flotteur cylindrique de 10 m de diamètre et 10 m de tirant d'eau (hauteur moyenne mouillée du flotteur).

Figure 8 : Fonction de transfert d'un flotteur cylindrique, en mètre de réponse par mètre d'amplitude de houle incidente.

Figure 9 : Puissance absorbée par le système de récupération de l'énergie des vagues, en kW par mètre d'amplitude de vagues au carré.

Comme on pouvait s'y attendre vu l'allure de l'équation du mouvement de ce système de récupération de l'énergie des vagues, on observe une résonance dans la fonction de transfert. Cette période de résonance correspond également au maximum de production d'énergie qui atteindrait, d'après le modèle, presque 1MW dans le cas d'une houle régulière d'amplitude 1m.

Ces résultats sont des résultats théoriques, issus de modèles numériques basés sur des hypothèses qui peuvent être mis en défaut dans la pratique. C'est pourquoi on est amené à effectuer des essais en bassin, afin de vérifier la validité de ces modèles.

2.2 Méthodes expérimentales

2.2.1 Bassins de houle

L'objectif principal pour mettre en œuvre des essais bassin sur un dispositif de récupération de l'énergie des vagues est l'étude du comportement de la machine et l'estimation de ses performances à l'aide d'un modèle réduit placé dans des conditions environnementales simulées et contrôlées. Il s'agit ainsi de reproduire au mieux et de façon réaliste le dispositif récupérateur d'énergie, de mesurer des grandeurs physiques permettant de décrire le système puis de comparer ces données aux résultats des études numériques. Dans ce contexte, le bassin d'essais le plus approprié se trouve alors être un bassin dit de génie océanique.

Un bassin de génie océanique est une cuve contenant habituellement de l'eau douce et doté sur un côté d'un dispositif de génération de vagues. Les vagues peuvent se propager selon une seule direction (dans l'axe du bassin) ou selon plusieurs directions (houles multidirectionnelles). Elles sont absorbées à l'extrémité du bassin généralement par un système se comportant comme une plage sur laquelle les vagues déferlent. Certains bassins peuvent être en eau de mer, d'autres peuvent être aussi dotés de dispositifs générant du vent au -dessus de la surface libre ou du courant mobilisant toute ou partie de la colonne d'eau. On peut citer pour l'exemple le bassin de génie océanique de l'Ecole Centrale de Nantes qui est le plus grand en France. Long de 50 m, large de 30 m avec une profondeur constante de 5m, ce bassin en eau douce est doté de 48 volets qui permettent de générer des houles multidirectionnelles de plus de 1 mètre crête à creux.

Le choix de l'échelle de réduction est une première étape cruciale dans la préparation des essais car elle doit être compatible notamment avec les dimensions et les capacités techniques du bassin et les caractéristiques mécaniques du modèle réduit.

Afin de modéliser physiquement et de façon pertinente ces caractéristiques, il s'agit le plus souvent de respecter le rapport des forces extérieures appliquées au système étudié sur les forces de gravité : la valeur de ce ratio doit rester identique qu'elle que soit l'échelle considérée. Cette démarche correspond à un respect de la similitude de Froude : les dimensions sont alors réduites d'un facteur géométrique λ . Toutefois cette similitude implique également que le temps et la vitesse de la maquette sont dans un rapport de racine carrée de λ , les forces dans un rapport de λ au cube par rapport au prototype. Exemple : une machine réelle (appelée couramment prototype) qui est étudiée à l'échelle du 25ème voit ses dimensions divisées par 25, sa vitesse par 5 et ses forces divisées par $25^3=15$ 625.

Mais que ce soit pour le prototype ou pour la maquette, les caractéristiques de l'eau sont quasiment identiques (en première approximation) : il en résulte une distorsion d'une autre similitude, dite de Reynolds, qui caractérise les effets de la viscosité de l'eau sur les écoulements autour du système étudié. Le nombre de Reynolds ne pouvant être respecté à la fois avec le prototype et la maquette, il s'agit alors de s'assurer que le régime des écoulements reste quand même identique ce qui revient à s'assurer la plupart du temps que les écoulements restent turbulents localement, à proximité de la maquette. Cette démarche conduit parfois à ajouter une faible rugosité sur des éléments de la maquette (bande de sable collée sur des profils, etc.) pour générer de la turbulence sur les parois.

Le choix de l'échelle de réduction doit également tenir compte des contraintes apportées par le bassin d'essai lui-même : les caractéristiques des houles générées, la taille et les coûts de fabrication de la maquette, etc. Dans le cas d'un système houlomoteur, il est courant de dissocier son comportement en situation opérationnelle normale, c'est à dire en situation de production pour des conditions environnementales usuelles (direction, hauteurs et périodes de houle, vitesse et direction du vent, du courant, etc.), de son comportement en situations extrêmes proches de son état limite ultime. On parle alors d'essais de survivabilité. Il est ainsi parfois nécessaire de réaliser deux maquettes d'échelles différentes pour étudier ces deux cas. Les dimensions de la configuration « production » sont alors choisies les plus grandes possibles afin de limiter les effets d'échelle qui peuvent fausser les extrapolations des données maquette aux données prototype. Ces effets d'échelle peuvent être observés dans des situations complexes au cours desquelles les phénomènes physiques ne sont pas correctement modélisés soit par méconnaissance initiale de ceux-ci, soit par la différence des milieux considérés (mer ouverte et milieu « infini » pour le prototype, parois et milieu « fini » pour la maquette).

Les essais en bassin de génie océanique impliquent donc la mise en oeuvre d'une maquette sur la quelle de nombreuses catégories de mesures peuvent être réalisées. Citons tout d'abord les mesures liées à l'environnement de la maquette : la mesure des élévations de la surface libre donnant après analyse les caractéristiques statistiques et spectrales des houles (hauteurs, périodes, direction), les mesures du vent (module de vitesse, direction), celles des courants etc.

Les autres mesures correspondent à la caractérisation du comportement et des performances du système étudié. On peut citer notamment (liste non exhaustive) :

- les mouvements de la maquette dans la houle (les six degrés de liberté) obtenus par trajectographie ou par centrale inertielle;
- les efforts globaux et locaux par des capteurs dynamométriques et des capteurs de pression;
- les efforts d'ancrages si le système est flottant ;
- les efforts internes dans les matériaux par des jauges de contraintes;
- les caractéristiques physiques permettant d'estimer les performances du convertisseur d'énergie (mesure de couple, de vitesse, de déformation, de courant électrique ou autre, en fonction de la technologie employée).

La diversité des machines à tester en modèle réduit implique de mettre en place au niveau international des méthodologies adoptées, approuvées et suivies par les différents protagonistes (concepteurs, chercheurs, responsables des bassins d'essais, etc.). Une démarche similaire a été initiée il y a très longtemps, près d'un siècle maintenant, dans le domaine l'hydrodynamique navale et des bassins d'essais des carènes : elle est toujours active et les améliorations sont continues en particulier au sein de l'International Towing Tank Conference (ITTC). Le domaine des énergies marines étant juste émergeant, méthodologies d'essais ne sont pas encore totalement validées et approuvées.

2.2.1 Site d'expérimentation en mer

Le développement par jalons des nouvelles technologies de production d'énergie à partir de la houle nécessite une évaluation de la faisabilité technique et une estimation des coûts de production de l'énergie. Le passage par des campagnes d'essais de prototypes en conditions réelles précède les phases de commercialisation.

L'expérimentation en mer ouverte est une étape de validation du comportement de la machine de récupération de l'énergie des vagues et de ses performances en conditions d'exploitation opérationnelles. Cette étape peut correspondre à une démonstration du fonctionnement et de l'interaction de l'ensemble des composants du système lorsque c'est le cas d'un prototype. Les moyens de fabrication, d'installation et de démantèlement des systèmes font aussi l'objet d'essais en mer.

L'expérimentation en mer d'un système houlomoteur de production d'énergie nécessite l'accès au domaine maritime pour la réalisation des essais et aux infrastructures du réseau d'électricité. Le recueil des données mesurées et la conduite des campagnes

d'essais nécessitent l'accès à une base terrestre depuis laquelle seront opérées les prototypes en essais.

Les essais en mer de systèmes houlogénérateurs se font à des échelles significatives des prototypes par rapport aux caractéristiques des vagues rencontrées en conditions réelles. Typiquement, les prototypes testés en mer sont étudiés à des échelles allant du 1:3 à l'échelle 1:1. Ces prototypes intègrent la chaîne de conversion de l'énergie (Power Take Off) à bord et une multitude de capteurs et d'instruments de mesure qui permettront de relever l'état du système pendant les essais.

Les essais ont pour objectifs de tester et de valider les points suivants :

- Les procédures d'opérations en mer
- La qualité du courant électrique produit
- L'intégration au réseau électrique
 Les rendements de la chaîne de conversion
- L'efficacité des stratégies de contrôle
- La tenue des structures

Dans le cas des systèmes houlogénérateurs, ces essais peuvent s'effectuer sur des infrastructures dédiées dites Sites d' Expérimentations en Mer. Ces sites d'essais en mer sont des infrastructures qui permettent l'accès au domaine public maritime afin d'y effectuer des campagnes à caractère temporaire de caractérisation du prototype en mer. Le site d'essais en mer offre un accès à une zone balisée par des bouées de signalisation adaptées à la réglementation marine locale. La durée des campagnes d'essais en mer se prévoit entre 3 mois et 1 an. De telles infrastructures existent ou sont en cours de développement dans le monde. On peut citer par exemple en Ecosse le site « European Marine Energy Centre » (EMEC) construit en 2004 ou encore le SEM-REV, projet en construction porté par l'Ecole Centrale de Nantes au large du Croisic en France. Les sites d'essais disposent également de l'infrastructure électrique d'évacuation de l'énergie produite. Cela se traduit par la présence d'un câble haute tension statique posé ou enfouit sous le fond marin et d'un poste de livraison électrique possédant des cellules de raccordement et de protection des machines. Selon les tensions utilisées, les postes de livraison peuvent être équipés de transformateurs élévateurs de tension. Les essais électriques des systèmes houlogénérateurs correspondent aux analyses de système suivantes :

- Etats de charge du convertisseur selon les conditions d'opération
- Stabilité électrique
- Recueil des niveaux de production d'énergie et de seuillage

 Qualité du courant (tension en état permanent, flicker, variations lors des mises sous tension, harmoniques, puissance réactive, filtrage et comportement sur défaut)

Ces mesures s'effectuent au niveau du poste électrique de livraison et au sein du système de conversion d'énergie du prototype. Les données recueillies en mer transitent par fibre optique ou par haute fréquence jusqu'à la terre. Les mesures électriques se font selon les dispositions IEC en utilisant des instruments de qualimétrie électrique adéquats.

Tout comme les essais en bassin de génie océanique, les essais en mer requièrent une caractérisation de l'environnement à l'aide de mesures des paramètres océano-météorologiques. Ces mesures en milieu océanique se font à l'aide des instruments suivants :

- Bouée houlographe de mesure de houle directionnelle
- Courantomètres à effet doppler
- Capteurs PUV (pression et vitesses)
- Mesure 3D de vent en mer
- Marégraphes

Figure 10 : Mesures de l'environnement, Spectre directionnel de houle au SEM-REV le 01/06/09 à 9h

Les mesures de mouvements du système se font à l'aide de différentes technologies de mesures inertielles embarquées à bord du prototype. Des tensiomètres peuvent être déployés sur les lignes d'amarrage afin de caractériser les efforts de chargement et la réponse des lignes.

Conclusion

Dans la première partie de cet article, on a tout d'abord exposé les outils de base pour modéliser la houle d'un point de vue mathématique. Notamment, ces modèles nous ont permis d'exprimer le flux d'énergie transportée par les vagues, ce qui nous a permis de mettre en évidence le gisement considérable d'énergie renouvelable que représente cette ressource.

Ensuite, on s'est intéressé au problème de la tenue à la mer de systèmes flottants, dont font partie bon nombre de systèmes de récupération de l'énergie des vagues. On a présenté les notions fondamentales en hydrodynamique d'efforts hydrostatique et hydrodynamique (en particulier les notions d'efforts de diffraction, radiation, masse d'eau ajoutée et amortissement de vagues), pour finir avec l'équation fondamentale de la tenue à la mer d'un corps flottant dans la houle, dans le domaine fréquentiel.

Enfin, on a présenté les moyens d'essai qui peuvent être utilisés pour tester les structures offshores telles que les récupérateurs de l'énergie des vagues, tant à échelle réduite qu'à grande échelle.

Pour finir, notons que ce qui a été présenté ici ne saurait constituer plus qu'une introduction aux aspects hydrodynamiques de la récupération de l'énergie des vagues. Au lecteur curieux d'en savoir plus, on conseille la lecture des ouvrages suivants :

- B. Molin (2002) Hydrodynamique des Structures Offshore, Editions Technip.
- J. Falnes (2000) Ocean Waves and Oscillating Systems: linear interaction including wave-energy extraction, Cambridge University Press.
- J. Cruz (2008) Ocean Wave Energy Current status and Future Perspectives, Springer.

Rappels

Les opérateurs vectoriels, divergence et rotationnel s'expriment pour un champ vectoriel ayant seulement deux composantes (suivant x et y) et dans une base cartésienne, par :

$$div \vec{V} = \frac{\partial V_x}{\partial x} \vec{i} + \frac{\partial V_y}{\partial y} \vec{j}$$

$$\overrightarrow{rot} \, \overrightarrow{V} = \left(\frac{\partial V_y}{\partial x} - \frac{\partial V_x}{\partial y} \right) \overrightarrow{k}$$

où i, j, k sont les trois vecteurs unitaires de la base cartésienne.

La récupération de l'énergie de la houle, Partie 2 : Systèmes de récupération et aspects électriques.

Judicaël AUBRY¹, Aurélien BABARIT², Hamid BEN AHMED¹ et Bernard MULTON¹

1. Laboratoire SATIE CNRS, ENS de Cachan, Site de Bretagne Campus de Ker Lann, 35170 BRUZ nom@bretagne.ens-cachan.fr 2. Laboratoire de Mécanique des Fluides CNRS, Ecole Centrale de Nantes 1 rue de la Noë, 44 321 Nantes Cédex 3 aurelien.babarit@ec-nantes.fr

Cet article traite, en deux parties, de la problématique de récupération de l'énergie de la houle. La première partie est consacrée à la caractérisation de la ressource énergétique que constitue la houle, et dans un second temps, à la modélisation physique de l'interaction d'un fluide avec une structure, problème physique typique dans la récupération de l'énergie des vagues. Dans la seconde partie, un panorama de plusieurs récupérateurs de l'énergie de la houle, aussi appelés houlogénérateurs, sera présenté mais ne saurait être exhaustif étant donnée la diversité de principes qui existent. Le dernier chapitre mettra en avant les problématiques de génie électrique spécifiques à de tels systèmes.

1 Les systèmes de récupération de l'énergie de la houle

Récupérer l'énergie de la houle est une idée ancienne. Le premier brevet relatif à cette idée provient des frères Girard et date de 1799. Plus récemment, la crise pétrolière de 1973, a relancé cette idée et les premiers systèmes réalistes destinés à récupérer cette énergie sont nés. Au fur et à mesure des avancées technologiques, ces systèmes se sont éloignés de la côte. Pour la plupart d'abord « onshore », les systèmes ont migrés au voisinage des côtes dans un zone que l'on apelle « nearshore » ou en pleine mer pour devenir « offshore ». L'intérêt de cette migration est la diminution de l'impact visuel, environnemental voire sonore mais aussi la possibilité d'exploiter une ressource plus forte car la majeure partie de l'énergie de la houle est dissipée à l'approche des côtes lorsque la bathymétrie remonte. Les systèmes « onshore » ont aussi l'inconvénient de devoir s'adapter à la topologie de la côté tandis que la technologie « offshore » permet de standardiser plus facilement les systèmes. La maintenance devient par contre beaucoup plus problématique quand le houlogénérateur est situé à quelques kilomètres des côtes et qu'il faut des conditions climatiques particulières (mer calme, pas de vent...) pour pouvoir intervenir. Dans certaines zones « bien exposées », on estime à seulement quelques jours, la fenêtre annuelle de temps disponible pour la maintenance.

1.1 Les colonnes d'eau oscillantes

Figure 1 : Principe d'une colonne d'eau oscillante

Figure 2 : Turbogénérateur Wavegen à turbines Wells en cours de montage (groupe de 500 kW), courtesy of Wavegen

Le principe de ces systèmes (cf figure 1) est de se servir des variations de hauteur de la surface libre de la mer comme d'un piston. Les oscillations de la surface libre créent, dans une cavité, des variations de pression avec l'extérieur. Le flux d'air ainsi créé à travers un orifice permet d'entraîner une turbine reliée à un alternateur. La turbine est conçue de telle manière que son sens de rotation soit indépendant du sens de circulation du flux d'air (Turbine Wells (cf figure 2) ou Deniss-Auld).

Figure 3 : Limpet et Oceanlinx (Source Wavegen et Oceanlinx)

Installé à Islay, en Écosse, depuis 2001, le prototype **Limpet (UK)** (cf figure 3) (Land Installed Marine Powered Energy Transformer) (cf figure 3), de la société Wavegen, et d'une puissance de 500kW, est raccordé au réseau électrique du Royaume-Uni. Il exploite trois colonnes d'eau permettant d'atteindre une surface de captation de 169m² (surface interne de la cavité). Le turbogénérateur est constitué de deux turbines Wells, entraînant chacune une génératrice à double alimentation de 250kW.

Oceanlinx (AU) (anciennement Energetech) est une compagnie australienne ayant mis au point un système offshore à base de colonne d'eau oscillante à turbine Deniss-Auld (cf figure 3). Il est prévu pour fournir à la fois de l'électricité avec une puissance maximale de 1.5MW mais aussi de l'eau désalinisée. Cette double production est très intéressante pour des sites isolés comme des îles. Plusieurs projets sont d'ailleurs en cours, notamment sur les îles d'Hawaï. Ces dispositifs flottants peuvent être aussi utilisés comme "brises-vagues" afin de protéger des sites côtiers comme par exemple des ports ou des sites de pisciculture.

Figure 4: Mighty Whale et Sperboy (Source Jamstec et Sperboy)

La **Mighty Whale (JP)** (cf figure 4) (Jamstec : Japan Marine Science and Technology Center) est un navire prototype de 50 m sur 30 m et 12 m de profondeur, mis en service en 1998. La puissance maximale est de 110 kW pour Hs = 8 m et Tp = 10 à 15 s. Le système de conversion comprend 3 chambres à colonnes oscillantes associées à 3 groupes turbines Wells génératrices asynchrones (1 x 50 kW et 2 x 30 kW) à vitesse variable (300 à 1800 tr/min).

Le **Sperboy (UK)** (cf figure 4) constitué d'un flotteur de 4 m de diamètre sous lequel se trouvent des tubes (colonnes d'eau oscillantes) descendant à 12 m sous la surface et au-dessus duquel se trouve le système

de conversion contenant les chambres de compression et un ensemble de 4 turbines génératrices horizontales délivrant une puissance totale maximale de 140 kW.

1.2 Les systèmes à déferlement

Figure 5 : Principe des systèmes à déferlement

Dans ces dispositifs (cf figure 5), l'eau déferle sur une pente douce pour remplir un réservoir situé au dessus du niveau de la mer. L'eau stockée est alors évacuée entraînant dans le même temps une turbine reliée à un générateur électrique. Le principal avantage de ces systèmes est de lisser naturellement la puissance récupérée. Le réservoir joue le rôle de capacité dans laquelle on stockerait de l'énergie potentielle de pesanteur. Certains dispositifs sont fixés à la côte et subissent l'effet des marées. D'autres systèmes sont amarrés en pleine mer, et sont libres de monter et descendre aux rythmes des marées. Ils récupèrent donc l'eau de manière optimale tout au long de la journée et ne sont pas influencés par les marées.

Figure 6: Tapchan

Le **Tapchan (NO)** (cf figure 6) (pour Tapered Channel : Canal fuselé). Construit en 1985 sur la côte Norvégienne, à Toftstallen, il a fonctionné pendant six ans puis fut arrêté à la suite d'une tempête. Il fournissait une puissance de 350kW. De tels systèmes côtiers, sont assez intrusifs du point de vue environnemental et ne sont réalisables que sur des sites présentant une morphologie adaptée.

Figure 7: Wave Dragon (Source Wave Dragon)

Le Wave Dragon (DK) (cf figure 7) est un dispositif offshore, flottant et amarré. Il possède des chambres de lestage permettant d'ajuster sa ligne de flottaison en fonction de la houle incidente. Il est équipé de 16 turbines basse chute (type Kaplan)

permettant d'évacuer l'eau du réservoir, transformant ainsi l'énergie potentielle accumulée en énergie électrique. L'utilisation de plusieurs turbines permet de mieux optimiser le rendement global du système en fonction du débit. Les turbines Kaplan entraînent ainsi des génératrices synchrones à aimants permanents en entraînement direct. Les dimensions de la version échelle 1 sont 300 m (distance entre extrémités des bras), 170 m (longueur) et 17 m de hauteur dont 3 à 6 m au-dessus du niveau de la mer. La masse totale est de 33 000 tonnes avec un réservoir d'une capacité de 8000 m3. Sa puissance maximale est de 7 MW avec une productivité annuelle de 20 GWh pour une ressource moyenne de 36 kW/m. Ainsi le nombre d'heures en équivalent à pleine puissance atteint 2800.

1.3 Les systèmes à corps mus par la houle

Figure 8 : Les systèmes à corps mus par la houle à référence externe

Figure 9 : Les systèmes à corps mus par la houle à référence interne

La houle anime ici un mouvement relatif entre plusieurs corps (cf figure 9). Un des corps peut être amarré (cf figure 8). Le mouvement créé est souvent simple, une translation ou une rotation, mais peut être aussi plus complexe. Ce mouvement est amorti afin de récupérer de l'énergie. Le générateur électrique peut constituer lui même l'amortisseur, on parle alors d'entraînement direct. Le mouvement peut aussi être amorti par un système hydropneumatique ou oléopneumatique associé alors à un moteur hydraulique entrainant une génératrice électrique.

Figure 10 : Oyster (Source Aquamarine)

Le système **Oyster** (**UK&IR**) (cf figure 10) de la Aquamarine Power, développé compagnie collaboration avec l'université Queen's de Belfast, consiste en un panneau de 18m sur 12 qui oscille avec les vagues. Son mouvement vient comprimer un fluide (eau) au travers de deux pistons. Le fluide mis sous pression alimente une turbine hydro-électrique au travers d'un conduit l'amenant au niveau de la côte. C'est un dispositif à référence externe, conçu pour être "nearshore" et fonctionner avec une bathymétrie de 10 à 12m. La puissance crête d'une "Oyster" (huître en anglais) est comprise entre 300kW et 600kW. Son poids est quant à lui de 194 tonnes. Ce système est actuellement en phase de déploiement sur le site de 1'EMEC en **Ecosse** (cf. Partie 1: d'expérimentation en mer).

Figure 11: Powerbuoy (Source OPT)

Le système **PowerBuoy** (**USA**) (Ocean Power Technologies, Inc) (cf figure 11) est une bouée immergée, avec une partie fixe, un ancrage tendu et une partie oscillante au rythme de la houle, le mouvement relatif est amorti pour être converti en électricité. Seule une balise indique la présence du système sous l'eau pour la navigation. Ce système, dont la fréquence propre rend ses performances très sensibles à la période de houle, nécessite un contrôle spécifique pour maximiser l'extraction de l'énergie, incluant notamment une composante prédictive. Le dispositif de conversion comprend une pompe, un accumulateur et un moteur hydrauliques, ce dernier entraînant une génératrice électrique.

Un modèle de 40 kW a été testé entre 1997 et 2002 : il fait 9 m de haut pour un diamètre de 1,5 m au niveau du flotteur, avec une masse de 2140 kg. Des modèles de 150 et 250 kW sont envisagés.

Figure 12 : Pelamis (Source OPD)

Pour le **Pelamis (UK)** (cf figure 12), les corps en mouvement sont ici des cylindres reliés entre eux par des articulations à deux degrés de liberté (type sphérique à doigt). Le mouvement est amorti par des vérins hydrauliques. L'énergie est stockée sous forme

pneumatique dans des cavités remplies de gaz et mises sous pression par de l'huile. Six moteurs hydrauliques entraînent chacun une génératrice asynchrone de 125kW. Le stockage intermédiaire sous pression permet au Pelamis de fournir une énergie électrique de manière relativement continue malgré une ressource très pulsatoire. C'est à l'heure actuelle le système le plus abouti. Une ferme de 3 Pelamis a été installée au nord du Portugal. La puissance installée est de 2.25MW. Le coût annoncé du kWh pour cette ferme d'Aguçadoura est de 0.23€kWh. La production annuelle estimée est de 2.7GWh par unité pour une ressource de 55kW/m, soit 3600 heures à pleine puissance. Plusieurs projets de fermes sont envisagés notamment en Écosse et en Cornouaille. Les principaux inconvénients de ce système restent sa sensibilité au milieu marin, très corrosif, et sa résistance à la fatigue mécanique en cyclage.

Figure 13: CETO (Source Carnegie)

CETO (AU) est ce que l'on appelle un « point absorber », c'est-à-dire un système pilonnant (qui effectue des mouvements verticaux). Il est conçu pour être totalement submergé et comprimer de l'eau de mer. Cette eau sous pression est acheminée à terre pour être utilisé dans un osmoseur inverse pour la production d'eau désalinisée et entrainer une turbine Pelton pour la production d'électricité.

EDF Energies Nouvelles, qui a acquis en janvier 2008 un droit exclusif d'utilisation de cette technologie dans l'hémisphère nord et à La Réunion, prévoit d'installer à l'Île Maurice, 200 MW sur 5 sites expérimentaux de 40 MW chacun, soit l'équivalent de 50% des besoins électriques de l'île.

Figure 14 : Principe de fonctionnement de l'Anaconda (Source Checkmate)

L'Anaconda (UK) est un récupérateur de l'énergie des vagues exploitant ce que l'on appelle les ondes de renflement. Ce sont des ondes de pression générées à l'intérieur d'un tube de caoutchouc long de 200m avec un diamètre de 7m. Les ondes de pression, composées d'alternances de surpression et de

dépression, viennent s'accumuler dans deux réservoirs situés à l'extrémité du tube (un réservoir pour la haute pression, un pour la basse). L'énergie électrique est ensuite produite en exploitant la différence de pression entre ces deux réservoirs.

La puissance maximale annoncée pour le système à l'échelle 1 est de 1MW pour un poids de 110 tonnes (principalement de caoutchouc). Le coût du kWh envisagé est de 0,7 centimes d'euros.

Figure 15: AWS (Source AWS)

L'idée de l'AWS (UK) (Archimede Wave Swing) est d'exploiter le mouvement de pilonnement (vertical) d'une bouée immergée. Une unité de production est constituée d'un flotteur cylindrique qui coulisse sous l'effet de la houle autour d'un autre fixé sur le fond de la mer. Le mouvement créé actionne un générateur électrique linéaire en entraînement direct. La version pilote, testée en 2004, au large du Portugal, était dimensionnée pour une puissance crête de 2MW et une puissance nominale de 1MW. Le générateur linéaire est une machine à aimants permanents déposés en surface. Le système n'ayant qu'un seul degré de liberté, la modélisation hydrodynamique et mécanique système se ramène à une équation différentielle du second ordre. Le terme de rappel (proportionnel à la position) est dû au fait que le flotteur agit comme un piston. Lors de son mouvement il comprime et détend de l'air dans une chambre étanche mais aussi de l'azote dans des pistons. La pression de l'azote dans ces pistons est ajustable et ce terme de rappel peut donc être ajusté afin d'ajuster la fréquence de résonance du système aux différentes fréquences d'excitation rencontrées. Cela permet de récupérer le maximum d'énergie sur une plage de périodes de houle assez élevée (entre 5 et 15s). L'effet de résonance permet d'atteindre des amplitudes de mouvement jusqu'à sept fois plus grande que l'amplitude de la variation de hauteur de la surface de la mer. L'énergie annuelle récupérée annoncée est de 1.64GWh sur le site pilote portugais, soit 1640 heures à puissance nominale. Sur la version pilote et pour des raisons de coût, la partie mobile du générateur linéaire est plus longue de seulement trois mètres que la partie fixe. Cela grève évidemment les capacités du système sur les mouvements de forte amplitude. Pour éviter d'avoir des mouvements d'amplitude trop importante, le système est prévu avec des butées mécaniques. Le système possède des amortisseurs hydrauliques eux aussi prévus pour limiter les mouvements. Cela évite au générateur linéaire de devoir fournir des forces trop importantes pour avoir des mouvements raisonnables, mais l'énergie récupérée est en contre partie plus faible.

Figure 16 : Schéma de principe du SEAREV avec chaîne de conversion directe

Figure 17 : Ancienne géométrie avec chaine de conversion indirecte (à gauche) et nouvelle géométrie du SEAREV (Source Ecole Centrale de Nantes)

Le principe du Searev (FR) a été élaboré au Laboratoire de Mécanique des Fluides (LMF) de l'Ecole Centrale de Nantes [Searev, Babarit]. Une collaboration est en place depuis 2003 avec le laboratoire SATIE afin d'étudier une solution de conversion d'énergie composée d'une génératrice en entraînement direct associée à un convertisseur électronique et une stratégie de pilotage en lieu et place d'une solution oléopneumatique [Ruellan]. Le Searev est constitué d'un flotteur mis en mouvement par la houle. A l'intérieur de celui-ci, une roue à masse excentrée, pendule par rapport au flotteur. Une génératrice électrique (type machine synchrone à aimants par exemple) en entraînement direct, permet de convertir l'énergie mécanique de la roue pendulaire en énergie électrique et amortit alors le mouvement relatif entre ces deux parties. Le contrôle de ce dernier permet d'imposer à chaque instant le couple qu'oppose le générateur au pendule.

Nous présentons à titre d'exemple à la figure 18 le profil de variation de la puissance électrique récupérée pour une houle donnée : T_p =8s, H_s =3m. Le contrôle du couple de récupération est de type amortissement visqueux avec un écrêtage de la puissance.

Il en résulte deux paramètres de contrôle, le coefficient d'amortissement visqueux et la puissance d'écrêtage, en fonction desquels nous traçons, sur la figure 19, la puissance mécanique récupérée pour la même houle que précedemment. Nous pouvons remarquer, qu'à puissance d'écrêtage donnée, il existe une valeur du coefficient d'amortissement visqueux qui

maximise la puissance mécanique (points blancs). Jusqu'à une puissance d'écrêtage de 1.5 MW, la puissance mécanique maximale est peu affectée (la durée cumulée dans la zone d'écrêtage est faible). Audelà, on constate une diminution de la puissance mécanique récupérable qui va de pair avec une augmentation du coefficient d'amortissement optimal.

Figure 18 : Exemple de puissance électrique écrétée et récupérée pour une houle de H_s =3m, T_p =8s

Figure 19 : Cartographie de la puissance mécanique (avant conversion électrique) en fonction des deux paramètres de contrôle du couple de récupération pour une houle de $H_s=3m$, $T_p=8s$

2 Quelques problématiques « Génie électrique » dans les houlogénérateurs.

2.1. Entraînement direct ou indirect

Le but premier des convertisseurs d'énergie des vagues (Wave Energy Converters ou WEC) est de transformer une énergie mécanique en énergie électrique. Quelle que soit la manière dont cette conversion est faite, il y aura forcément un maillon de la chaîne de conversion où des compétences électrotechniques seront requises. Cependant selon les systèmes, la conversion électromécanique ne remplit pas le même cahier des charges. Dans le cas du Pelamis, le mouvement est amorti par des vérins et l'énergie est stockée sous forme hydraulique. L'énergie électrique est alors produite dans un second temps. On parle de conversion indirecte. Dans le cas de l'AWS (ancienne version), le mouvement est directement amorti par un générateur électrique. Il n'y a pas de passage par une autre forme d'énergie. On parle alors de conversion directe (Direct Drive) [Mueller].

La conversion directe est à l'heure actuelle assez peu envisagée. Elle offre pourtant des avantages importants en termes de fiabilité et de maintenance, points cruciaux dans des systèmes « offshore », mais aussi d'un point de vue rendement de conversion. En limitant le nombre d'étages de conversion, on limite les multiples sources de pertes.

Elle a malgré tout ses inconvénients. Elle nécessite de développer des génératrices électriques non standards et donc plus coûteuses et la puissance produite est naturellement pulsante au rythme des vagues. Dans le cas de la conversion directe, le travail de conception de la chaîne de conversion électrique est également plus complexe. Le cahier des charges est tel que le générateur ne peut se trouver dans un catalogue fabricant. A l'heure actuelle, peu de systèmes utilisent la conversion directe et parmi eux, tous (à notre connaissance) utilisent un générateur linéaire, a priori plus adapté à la récupération de l'énergie des vagues lorsque les mouvements sont linéaires. L'inconvénient du générateur linéaire est qu'il y a toujours une partie active inutilisée, alors que les générateurs tournants ne présentent pas cet inconvénient. Seul le projet SEAREV, envisage à l'heure actuelle, l'utilisation d'un générateur tournant en entraînement direct. Quelles soient linéaires ou tournantes, ce sera principalement des machines lentes et donc de taille et de masse importantes [Mc Donald].

2.2. Lissage de la production électrique

La houle est une forme d'énergie naturellement pulsante : à l'échelle de la vague mais aussi à l'échelle de ce que l'on appelle les « bouffées » de vagues (voir figure 4 de la première partie). C'est aussi une source d'énergie que l'on qualifie d'intermittente, au même titre que l'énergie éolienne ou solaire, mais son intermittence (variabilité à l'échelle de l'heure et de la journée) est plus prédictible que celle des deux énergies précédemment citées, notamment grâce au fait que la houle est un sous-produit du vent et que la mesure de ce dernier permet de prévoir la ressource houlomotrice au moins à court terme.

Un des enjeux pour la pénétration de l'énergie des vagues dans un réseau électrique est de pallier cet aspect pulsatoire. Les systèmes à déferlement passant naturellement par une forme de stockage gravitaire, permettent de produire une puissance « lissée ». Dans les systèmes à colonnes d'eau oscillante, la pulsation de la puissance produite est double de celle des vagues. Pour les systèmes à corps mus par la houle, le choix d'une conversion indirecte offre une forme d'énergie intermédiaire permettant le lissage de la puissance, mais la conversion directe peut nécessiter de faire appel à des moyens de stockage.

Ce système de stockage doit être dimensionné en tenant compte du vieillissement en cyclage. En effet, si l'on considère une vague toutes les 8s en moyenne, cela fait sur 10ans environ 40 millions de cycles. A l'heure actuelle, même s'il reste des avancées

technologiques à effectuer, la seule technologie capable d'envisager de supporter un cyclage aussi important est celle des supercondensateurs [Murray]

2.3. Le transport de l'énergie électrique

Tous les houlogénérateurs récents sont conçus pour fonctionner au large. La question de l'acheminement de la puissance récupérée sur la côte doit donc être posée. Certains systèmes, comme le CETO, ne transmettent à terre que de l'eau sous pression. Mais d'autres génèrent l'électricité à bord.

Pour des raisons économiques, il peut être prévu, à l'instar des éoliennes offshore, de mutualiser le câble électrique d'acheminement pour une ferme de houlogénérateurs, voire des moyens marins différents (éolien, hydrolien et houle). Les « hubs », où viendraient se brancher les différents systèmes, seraient le point de raccordement commun.

2.4. Le dimensionnement sur cycle de la chaîne de conversion

Les systèmes de production électrique classiques (alternateur, turbo alternateur pour centrales thermiques ou nucléaires) sont conçus pour fonctionner sur un point nominal. Leurs dimensionnements est donc aussi fait de manière classique en ne considérant qu'un seul point de fonctionnement. On parle ainsi de couple quadratique, censé représenter le couple « dimensionnant ». Cette approche traditionnelle relie le couple quadratique au courant efficace, donc aux pertes Joule et enfin à l'échauffement de la machine.

Dans le contexte de la récupération de l'énergie de la houle mais c'est aussi vrai dans les éoliennes, et principalement dans les systèmes où la conversion directe est envisagée, la notion d'un point de fonctionnement nominal devient caduque. Il convient alors de définir une démarche de dimensionnement « sur cycle » dans laquelle la notion de point de fonctionnement nominal n'est pas nécessaire à la construction du cahier des charges.

Afin d'illustrer ce principe de l'optimisation sur cycle d'une chaîne de conversion électrique, le lecteur pourra se reporter aux références [Aubry, Ruellan] disponibles sur Internet.

Conclusion

Dans cette deuxième partie de l'article consacré à la récupération de l'énergie de la houle, nous avons dans un premier temps présenté les différents types de houlogénérateurs : les colonnes d'eau oscillantes, les rampes à déferlement, les systèmes à corps mus par la houle.

Nous avons ensuite évoqué les problématiques du génie électrique liés à ces houlogénérateurs et qui en font des contextes de recherche intéressants.

Références

Colonnes d'eau oscillantes :

Wavegen: http://www.wavegen.co.uk/ Oceanlinx: http://www.oceanlinx.com/ Jamstec: http://www.jamstec.go.jp Sperboy: http://www.sperboy.com/

Systèmes à déferlement :

Wave Dragon: http://www.wavedragon.net/

Systèmes à corps mus par la houle :

Aquamarine: http://www.aquamarinepower.com/

OPD: http://www.pelamiswave.com/

OPT: http://www.oceanpowertechnologies.com/ Checkmate: http://www.checkmateuk.com/seaenergy/

Ceto: http://www.carnegiecorp.com.au/ AWS: http://www.awsocean.com

[Aubry] J. Aubry, B. Multon, H. Ben Ahmed, M. Ruellan, – Optimisation en couplage fort du pilotage et de la chaine de conversion tout-électrique du houlogénérateur Searev, Conférence Electrotechnique du Futur 2009, Disponible sur http://hal.archives-ouvertes.fr/hal-00439646

[Babarit] A. Babarit, – Optimisation Hydrodynamique et Contrôle Optimal d'un récupérateur de l'Énergie des Vagues. . Thèse de doctorat de l'université de Nantes, 2005

[Mc Donald] A. S. Mc Donald, – Structural analysis of low speed, high torque electrical generators for direct drive renewable energy converters. . Thèse de doctorat de l'université d'Edimbourgh, 2008

[Mueller] M. A. Mueller, H. Polinder, N. Baker – Current and Novel Electrical Generator Technology for Wave Energy Converters, Electric Machines & Drives Conference, 2007. IEMDC '07. IEEE International

[Multon] B. Multon, A. Clément, M. Ruellan, J. Seigneurbieux, H. Ben Ahmed – Systèmes de conversion des ressources énergétiques marines , Chapitre 7 du tome 1 du livre « Les Nouvelles Technologies de l'Energie », Hermès Publishing, 2006.

[Murray] D. B. Murray, M.G. Egan, J. G. Hayes et D. L. O'Sullivan – Applications of Supercapacitor Energy Storage for a Wave Energy Converter System, Proceedings of the 8th European Wave and Tidal Energy Conference, Uppsala, Sweden, 2009

[Ruellan] M. Ruellan – Méthodologie de dimensionnement d'un système électromagnétique de récupération de l'énergie des vagues. Thèse de doctorat de l'École normale supérieure de Cachan, 2007, Disponible sur http://tel.archives-ouvertes.fr/tel-00239367/fr/

[Searev] A. Clément, A. Babarit, G. Duclos, – Appareil pour convertir l'énergie des vagues en énergie électrique. Brevet d'invention français, N° d'enregistrement national : 0410927