- 4. Лебедева Н.Н., Добронравова И.С. Организация ритмов ЭЭГ человека при особых состояниях сознания // Парапсихология в СССР. 1992. N 2. C. 27-43.
- 5. Ли А.Г. Ясновидение. Формирование особых состояний сознания для раскрытия экстрасенсорных способностей человека. М.: Из-во Фонда парапсихологии им. Л.Л.Васильева, 1993. 160 с.
- 6. Савилов В.Б., Ли А.Г. Зависимость особых состояний сознания от профиля функциональной асимметрии мозга // Нетрадиционные виды энергетики и проблемы энергоинверсии. Тезисы докладов региональной научно-теоретич. конф. Краснодар, КП ПО-1, 1989. С.59-62.

ИНФОРМАЦИОННЫЕ ПРОЦЕССЫ И МОДЕЛИ В НЕЙРОФИЗИОЛОГИИ

Е.А. Чернявский, Е.П. Попечителев

Санкт-Петербургский электротехнический университет, 197376, Санкт-Петербург, ул. проф. Попова, 5; тел/факс: (812)234-01-33, e-mail: bme@eltech.ru

В широком понимании теория информации представляет собою совокупность математических концепций и теорем, позволяющих оценить количество информации, содержащееся в том или ином сообщении с учетом его статистических свойств, определить пропускную способность канала связи, используемого для передачи сообщения, оценить эффективность используемых систем кодирования. Это своеобразный математического мышления, применяемый для конкретных ситуаций. В биологии эти методы позволяют формализовать описания биологических процессов и установить закономерности эволюции биосистем во времени: их становления, развития, старения и гибели. В процессе передачи информации на самых различных уровнях - от уровня генов до уровня экологического сообщества происходят информационные процессы, связанные со сбором, измерением, хранением, преобразованием, переработкой и распределением информации, а также с ее использованием в соответствии с программой развития организма. Нейрофизиологов теория информации привлекает тем, что она открывает новые походы к оценке способов преобразования, хранения и кодирования сигналов в первичной системе [1]. Особый интерес при этом представляет анализ промежуточных стадий прохождения генетической информации к местам синтеза белковых структур, а также проблема оценки скорости белкового синтеза.

В настоящее время принято, что носителем генетической информации в клетке является дезоксирибонуклеиновая кислота (ДНК), при этом сопутствующим является наличие в клетке рибонуклеиновой кислоты (РНК). Если принять концепцию о передаче информации в мозге по специфическим нервным трактам, то можно было бы при изучении каналов связи в нервной системе рассматривать конечный ряд сигналов, возникающих в канале, и ряд сигналов, достигающих места назначения, и оценивать вероятности появления каждого данного сигнала. Если бы мозг работал подобно простой телеграфной системе, можно было бы точно

оценить шум канала и вычислить его пропускную способность, вероятность ошибок.

В работах нейрофизиологов подтверждается наличие взаимосвязей элементов мозга, корреляций и статистически взаимозависимых элементов. принимают участие в организации изменений в поведении взаимодействующих ансамблей нейронов, которые можно оценить энтропией. В качестве примера указанных взаимосвязей может быть предложена «гистерезисная» модель уравновешивания нейронов в мозге человека, а также возбуждения и торможения нейронов (см. рис.). Нормальному функционированию мозга человека соответствует уравновешенное состояние нейронов. Зоне уравновешивания нейронов наименьшей затратой труда соответствует наибольшая эффективность его Перевозбуждение нейронов приводит К снижению эффективности труда при увеличении их затрат, что соответствует состоянию «заболевания мозга». В том случае нагрузка на мозг должна быть снята с целью возврата в зону уравновешивания. Увеличение нагрузки на мозг за пределами критической точки ведет, как правило, к необратимому заболеванию мозга, к «нейроинвалидности», которая может привести к летальному исходу. Перевозбуждение нейронов связано с перегрузкой мозга, с необоснованной попыткой получить желаемые результаты. Такое состояние опаснее физической перегрузки человека, которая ограничена его возможностями, чем она и контролируется. В отличие от этого мозговая перегрузка может только регулироваться разумной организацией труда.

Вторая (нижняя часть) гистерезисной кривой соответствует зоне переторможения нейронов, связанной с «неразумной» попыткой вернуться в зону уравновешивания нейронов, к которым относятся злоупотребление алкоголем, наркотиками, нерецептурными лекарствами, запои и т.п.. зону переторможения также связано с падением Попадание В «эффективности» труда. За пределами критической точки также наступает «нейроинвалидность», ведущая к деградации личности и, в конечном итоге, к летальному исходу.

Приведенная модель уравновешивания нейронов проверена в течение 30 лет на примерах защит докторских диссертаций, а также деятельности научных сотрудников. Известны конкретные примеры, подтверждающие практическую значимость данной модели.

На языке теории информации приведенная модель может быть Эффективность труда

Возб Норма оси Затраты труда Торм. H(x)p(x)β α

представлена следующим образом.

Пусть величина $x^{\tilde{}}$ соответствует эффективности труда, а p(x)вероятность расположения значения. $x \in x^*$ по затрат труда. Тогда энтропия x^* в зоне уравновешивания нейронов $H(x^*)_{vp}$ будет иметь наибольшее значение. В этом случае степень неопределенности, свобода состояния (возбуждения) нейронов будет соответствовать наибольшей активности работы мозга. По мере зоны удаления OT уравновешивания нейронов величина энтропии падает, стремясь к нулю.

Если принять, что энтропия $H(x^*)_{yp}$ имеет равномерный закон распределения в зоне α , β то есть

$$f(x) = \begin{cases} \frac{1}{\beta - \alpha} & \text{при } \alpha < x < \beta \\ 0 & \text{при } x < \alpha \text{ или } x > \beta \end{cases}$$

$$H^*(x) = \int_{\alpha}^{\beta} \frac{1}{\beta - \alpha} \log \frac{1}{\beta - \alpha} \partial x = \log(\beta - \alpha)$$

$$H(x) = \log(\beta - \alpha) - \log \Delta x$$

$$H(x) = \log \frac{\beta - \alpha}{\Delta x}$$

или

Изложенное выше позволяет сформулировать рекомендации по организации труда в период интенсивной умственной работы, например, над диссертацией, при написании книги, в процессе научной деятельности:

- соблюдать режим уравновешивания «возбуждения» и «торможения» нейронов за счет рациональной организации труда, помня, что кто устает во время работы, тот мало делает;
- попав в зону «перевозбуждения» нейронов, рекомендуется включиться в режим активного отдыха: спорт, театры, кино, дозированное вино и другие мероприятия, обеспечивающие возврат в зону уравновешивания нейронов;
- избегать попадания в зону «переторможения», Помнить высказывание философа «Лучшие быть живой собакой, чем мертвым львом», то есть лучше быть живым «кандидатом», чем мертвым «доктором».

В заключение следует отметить, что использование методов теории информации в нейрофизиологии – это дело будущего.

ОСНОВНЫЕ ПОЛОЖЕНИЯ ТЕОРИИ ОТКРЫТЫХ САМОСОВЕРШЕНСТВУЮЩИХСЯ ИНТЕЛЛЕКТУАЛЬНЫХ СИСТЕМ (ТОСИС)

П. Т. Тукабаев, О. А. Егупова

Новороссийский филиал Современного Гуманитарного Института г. Новороссийск, ул. Анапское шоссе, 15 б, тел. 67-04-29, 61-08-50

В 2000-2001 годах мы опубликовали основные положения ТОСИС. Эта работа появилась в результате системного анализа кризисных проблем в образовании, медицине и компьютерной технике. ТОСИС — это системное определение человека. Основные положения ТОСИС формулируются кратко, допускают однозначное понимание и заключаются в следующем:

Парадигма управления человека как системы – «развивайся сам». Иное понимание ставит человека в зависимое от внешних управляющих влияний положение и ведет к дегенерации системы. Человек как личность