3.1

(i)

$$(||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2) = \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle + \langle \mathbf{x}, \mathbf{y} \rangle + \langle \mathbf{y}, \mathbf{x} \rangle$$
$$= 2\langle \mathbf{x}, \mathbf{y} \rangle + 2\langle \mathbf{y}, \mathbf{x} \rangle$$
$$= 4\langle \mathbf{x}, \mathbf{y} \rangle$$
$$\frac{1}{4}(||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2) = \langle \mathbf{x}, \mathbf{y} \rangle$$

as desired.

(ii)

$$(||\mathbf{x} + \mathbf{y}||^2 + ||\mathbf{x} - \mathbf{y}||^2) = ||\mathbf{x}||^2 + ||\mathbf{x}||^2 + ||\mathbf{y}||^2 + ||\mathbf{y}||^2$$

$$= 2||\mathbf{x}||^2 + 2||\mathbf{y}||^2$$

$$= 2(||\mathbf{x}||^2 + ||\mathbf{y}||^2)$$

$$\frac{1}{2}(||\mathbf{x} + \mathbf{y}||^2 + ||\mathbf{x} - \mathbf{y}||^2) = ||\mathbf{x}||^2 + ||\mathbf{y}||^2$$

as desired.

3.2

$$\frac{1}{4}(||\mathbf{x} + \mathbf{y}||^2 - ||\mathbf{x} - \mathbf{y}||^2 + i||\mathbf{x} - i\mathbf{y}||^2 - i||\mathbf{x} + i\mathbf{y}||^2)$$
$$= \frac{1}{4}(4\langle \mathbf{x}, \mathbf{y} \rangle)$$

3.3

(i)
$$\cos \theta = \frac{\int_0^1(x)(x^5)dx}{\sqrt{\int_0^1 x^2 dx} \sqrt{\int_0^1 x^{10} dx}} = \frac{1/7}{\sqrt{1/3} \sqrt{1/11}} = \frac{1/7}{\sqrt{1/33}} = \frac{\sqrt{33}}{7}; \quad \theta = \cos^{-1}\left(\frac{\sqrt{33}}{7}\right)$$

(ii)
$$\cos \theta = \frac{\int_0^1 x^6 dx}{\sqrt{\int_0^1 x^4 dx} \sqrt{\int_0^1 x^8 dx}} = \frac{1/7}{\sqrt{1/5} \sqrt{1/9}} = \frac{3\sqrt{5}}{7}; \quad \theta = \cos^{-1} \left(\frac{3\sqrt{5}}{7}\right)$$

3.8

(i) *Proof.* Let V be the inner product space $C([-\pi, \pi]; \mathbb{R})$ with inner product

$$\langle f, g \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} f(t)g(t)dt$$

Let $X = \operatorname{span}(S) \subset V$, where $S = \{\cos(t), \sin(t), \cos(2t), \sin(2t)\}$. Observe that

$$\langle \cos(t), \sin(t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(t) dt = 0$$

$$\langle \cos(t), \cos(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(2t) dt = 0$$

$$\langle \cos(t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \sin(2t) dt = 0$$

$$\langle \sin(t), \cos(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \cos(2t) dt = 0$$

$$\langle \sin(t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \sin(2t) dt = 0$$

$$\langle \cos(2t), \sin(2t) \rangle = \frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \sin(2t) dt = 0$$

Thus, each function is orthogonal to each other. Now, observe that

$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(t) \cos(t) dt = 1$$
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(t) \sin(t) dt = 1$$
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \cos(2t) \cos(2t) dt = 1$$
$$\frac{1}{\pi} \int_{-\pi}^{\pi} \sin(2t) \sin(2t) dt = 1$$

Therefore, S is an orthonormal set.

(ii)
$$||t|| = \frac{1}{\pi} \int_{-\pi}^{\pi} t^2 dt = \frac{1}{\pi} (\frac{2\pi^3}{3}) = \frac{2\pi^2}{3}$$

- (iii) Recall from part (i) that each component of S is orthogonal to one another. Using this fact, $\operatorname{proj}_X(\cos(3t)) = 0$
- (iv) Note that $\langle \cos(t), t \rangle = 0$ and $\langle \cos(2t), t \rangle = 0$. Now, $\langle \sin(t), t \rangle \sin(t) = 2\sin(t)$ and $\langle \sin(2t), t \rangle \sin(2t) = -\sin(2t)$ Take the sum of each of these yields $proj_X(t) = 2\sin(t) - \sin(2t)$

3.9

Proof.
$$R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$$
 Now observe that

$$R_{\theta}^{H}R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix} \begin{bmatrix} \cos \theta & \sin \theta \\ -\sin \theta & \cos \theta \end{bmatrix}$$

$$= \begin{bmatrix} \cos^{2} \theta + \sin^{2} \theta & \cos \theta \sin \theta - \sin \theta \cos \theta \\ \sin \theta \cos \theta - \cos \theta \sin \theta & \sin^{2} \theta + \cos^{2} \theta \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix}$$

$$= I$$

By Theorem 3.2.15, the rotation is an orthonormal transformation.

3.10

(i) Let $Q \in M_n(\mathbb{F})$ be orthonormal. So, $\langle m, n \rangle = \langle Q_m, Q_n \rangle$. Observe that

$$(Qm)^HQn=m^Hn \Leftrightarrow m^HQ^HQn=m^Hn$$

Hence, $Q^HQ = I$. Note also that $\langle Qm, Qn \rangle = \langle m, n \rangle$. So,

$$m^H n = (Qm)^H Qn = m^H Q^H Qn$$

(ii) Proof. Let $Q \in M_n(\mathbb{F})$ be an orthonormal matrix. Observe that

$$||x|^2| = \langle x, x \rangle = \langle Qx, Qx \rangle = ||Qx||^2$$

(iii) Proof. Let $Q \in M_n(\mathbb{F})$ be an orthonormal matrix. Observe that

$$QQ^{H} = Q^{H}Q = I$$

$$\Rightarrow Q^{H} = Q^{-1}$$

Now observe that

$$(Q^H)^H = Q$$

 $(Q^H)(Q^H)^H = (Q)^H Q = I$

So $Q^H = Q^{-1}$ is an orthonormal matrix.

(iv)

(v) No. Let $Q=\begin{bmatrix}2&0\\0&\frac{1}{2}\end{bmatrix}$ so $Q^T=\begin{bmatrix}2&0\\0&\frac{1}{2}\end{bmatrix}$. Note that $\det(Q)=1$. Observe that

$$\begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 2 & 0 \\ 0 & \frac{1}{2} \end{bmatrix} = \begin{bmatrix} 4 & 0 \\ 0 & \frac{1}{4} \end{bmatrix} \neq I$$

and $Q \in M_n(\mathbb{F})$

(vi) Let $Q_1, Q_2 \in M_n(\mathbb{F})$ be orthonormal matrices. Hence, $Q_1^H Q_1 = I$ and $Q_2^H Q_2 = I$. Let $Q = Q_1 Q_2$. Observe that

$$Q^{H}Q = (Q_{1}Q_{2})^{H}(Q_{1}Q_{2})$$

$$= Q_{2}^{H}Q_{1}^{H}Q_{1}Q_{2}$$

$$= Q_{2}^{H}Q_{2}$$

$$= I$$

Therefore, Q_1Q_2 is an orthonormal matrix.

3.11 When we apply the Gram-Schmidt orthonormalization process to a collection of linearly dependent vectors then the kth step will produce $\mathbf{0}$

since \mathbf{x}_k is a linear combination of $\mathbf{x}_1, ..., \mathbf{x}_{k-1}$. Note also that by producing the zero vector or any multiple of it, the length of it will not be equal to one, which is a necessary condition to be orthonormal.

3.16

- (i)
- (ii)

3.17

Proof. Let $A \in M_{m \times n}$ have rank $n \leq m$, and let $A = \hat{Q}\hat{R}$ be a reduced QR decomposition. Note that \hat{Q} is an $m \times n$ orthonormal matrix and \hat{R} is an $n \times n$ upper-triangular matrix (see Remark 3.3.10). Observe that

$$A^{H}A\mathbf{x} = A^{H}\mathbf{b}$$
$$(\hat{Q}\hat{R})^{H}\hat{Q}\hat{R}\mathbf{x} = (\hat{Q}\hat{R})^{H}\mathbf{b}$$
$$\hat{R}^{H}\hat{Q}^{H}\hat{Q}\hat{R}\mathbf{x} = \hat{R}^{H}\hat{Q}^{H}\mathbf{b}$$
$$\hat{R}^{H}\hat{R}\mathbf{x} = \hat{R}^{H}\hat{Q}^{H}\mathbf{b}$$
$$\hat{R}\mathbf{x} = \hat{Q}^{H}\mathbf{b}$$

3.23 Let $(V, ||\cdot||)$ be a normed linear space. Observe that

$$||x - y + y|| \le ||x - y|| + ||y||$$
$$||x|| \le ||x - y|| + ||y||$$
$$||x|| - ||y|| \le ||x - y||$$

Also observe that

$$||y - x + x|| \le ||y - x|| + ||x||$$
$$||y|| \le ||x - y|| + ||x||$$
$$||y|| - ||x|| \le ||x - y||$$

Therefore, $|||x| - ||y|||| \le ||x - y||$

3.24 Let $C([a,b];\mathbb{F})$ be the vector space of all continuous functions from $[a,b]\subset\mathbb{R}$ to \mathbb{F} .

- (i) $||f||_{L^1} = \int_a^b |f(t)| dt$
 - positivity: $|f(t)| \ge 0$ by definition. If f(t) = 0, then |f(t)| = 0 and if $f(t) \ne 0$ then $|f(t)| \ne 0$. Thus $\int_a^b |f(t)| dt$ is positive.
 - scale preservation: Let $\alpha \in \mathbb{R}$ be a scalar. Note that $||\alpha f(t)||_{L^1} = \int_a^b |\alpha f(t)| dt = \int_a^b |\alpha| |f(t)| dt = |\alpha| \int_a^b |f(t)| dt$
 - triangle inequality:

$$||f + g||_{L^{1}} = \int_{a}^{b} |f(t) + g(t)| dt$$

$$\leq \int_{a}^{b} |f(t)| + |g(t)| dt$$

$$= \int_{a}^{b} |f(t)| dt + \int_{a}^{b} |g(t)| dt$$

Therefore, $||f||_{L^1}$ is a norm on $C([a,b];\mathbb{F})$.

- (ii) $||f||_{L^2} = \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$
 - positivity: |f(t)| is positive (see exercise 3.24 (i)). It follows that $|f(t)|^2$ is also positive. Hence $\int_a^b |f(t)|^2 dt$ is positive. Now, if $\int_a^b |f(t)|^2 dt = 0$ then $\left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}} = 0$. But if $\int_a^b |f(t)|^2 dt \neq 0$ then $\left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}} \neq 0$ and so $\left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$ is positive.

• scalar preservation: For some scalar $\alpha \in \mathbb{R}$ observe that

$$||\alpha f||_{L^2} = \left(\int_a^b |\alpha f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$= \left(\int_a^b |\alpha|^2 |f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$= \left(|\alpha|^2 \int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$$

$$= |\alpha| \left(\int_a^b |f(t)|^2 dt\right)^{\frac{1}{2}}$$

• triangle inequality: $||f+g||_{L^2} = \left(\int_a^b |f(t)+g(t)|^2\right)^{\frac{1}{2}}$. Observe that

$$(||f+g||_{L^{2}})^{2} = \int_{a}^{b} |f(t)+g(t)|^{2} dt$$

$$= \int_{a}^{b} |f(t)|^{2} + 2|f(t)g(t)| + |g(t)|^{2} dt$$

$$= ||f||_{L^{2}} + 2|f(t)g(t)| + ||g||_{L^{2}}$$

$$\leq ||f||_{L^{2}} + 2||f||_{L^{2}}||g||_{L^{2}} + ||g||_{L^{2}}$$

$$= (||f||_{L^{2}} + ||g||_{L^{2}})^{2}$$

Hence $||f + g||_{L^2} \le ||f||_{L^2} + ||g||_{L^2}$

Therefore $||f||_{L^2}$ is a norm on $C([a,b];\mathbb{F})$.

(iii)
$$||f||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x)|$$

• positivity: $|f(x)| \ge 0$ by definition. If f(x) = 0 then |f(x)| = 0, and if $f(x) \ne 0$ then $|f(x) \ne 0$. Thus $\sup_{x \in [a,b]} |f(x)|$ is positive.

• scalar preservation: For some scalar $\alpha \in \mathbb{R}$ observe that

$$||\alpha f||_{L^{\infty}} = \sup_{x \in [a,b]} |\alpha f(x)|$$
$$= \sup_{x \in [a,b]} |\alpha||f(x)|$$
$$= |\alpha| \sup_{x \in [a,b]} |f(x)|$$

• triangle inequality: Observe that

$$||f + g||_{L^{\infty}} = \sup_{x \in [a,b]} |f(x) + g(x)|$$

$$\leq \sup_{x \in [a,b]} (|f(x)| + |g(x)|)$$

$$= \sup_{x \in [a,b]} |f(x)| + \sup_{x \in [a,b]} |g(x)|$$

Therefore, $||f||_{L^{\infty}}$ is a norm on $C([a,b]); \mathbb{F}$.

3.26 Reflexive: Note that $||x||_a = ||x||_a$. Given $0 \le m \le M$ we have $m||x||_a \le ||x||_a \le M||x||_a$ where $||x||_a \le ||x||_a \le ||x||_a$ for m, M = 1. Thus, $||x||_a \sim ||x||_a$.

Symmetric: Suppose $||x||_a \sim ||x||_b$. There exists $m, M \in R$ with $0 < m \le M$ such that $m||x||_a \le ||x||_b \le M||x||_a$. Hence $\frac{1}{M}||x||_b \le ||x||_a \le \frac{1}{m}||x||_b$. Thus $||x||_b \sim ||x||_a$

Transitive: Suppose $||x||_a \sim ||x||_b$ and $||x||_b \sim ||x||_c$. There exists $m_1, M_1, m_2, M_2 \in \mathbb{R}$ with $0 < m_1 \le M_1$ and $0 < m_2 \le M_2$ such that $m_1 ||x||_a \le ||x||_b \le M_1 ||x||_a$ and $m_2 ||x||_b \le ||x||_c \le M_2 ||x||_b$. Now $m_2 ||x||_b \le ||x||_c$ so $m_1 m_2 ||x||_a \le ||x||_c$ and $||x||_c \le M_2 ||x||_b$. So $||x||_c \le M_1 M_2 ||x||_a$. Putting it all together we have $m_1 m_2 ||x||_a \le ||x||_c \le M_1 M_2 ||x||_a$. Thus $||x||_a \sim ||x||_c$.

Therefore, topological equivalence is an equivalence relation.

(i)

$$|x_1|^2 + |x_2|^2 + \dots + |x_n|^2 \le (|x_1| + |x_2| + \dots + |x_n|)^2$$
$$(|x_1|^2 + |x_2|^2 + \dots + |x_n|^2)^{\frac{1}{2}} \le |x_1| + |x_2| + \dots + |x_n|$$
$$||x||_2 \le ||x||_1$$

Now, $|\langle x, \mathbf{1} \rangle| \le ||x||_2 ||\mathbf{1}||_2$ (Cauchy-Schwartz) where $||\mathbf{1}||_2 = (1^2 + 1^2 + ... + 1^2)^{\frac{1}{2}} = \sqrt{n}$. So, $||x||_1 \le \sqrt{n}||x||_2$. Therefore, $||x||_2 \le ||x||_1 \le \sqrt{n}||x||_2$

(ii)

3.28 Let A be an $n \times n$ matrix.

(i)

3.29

3.30

Proof. Let $S \in M_n(\mathbb{F})$ be an invertible matrix. Given any matrix norm $||\cdot||$ on M_n define $||\cdot||_S$ by $||A||_S = ||SAS^{-1}||$. By definition 3.5.15, any norm $||\cdot||$ on the finite-dimensional vector space $M_n(\mathbb{F})$ that satisfies the submultiplicative property is called a *matrix norm*.

3.37

3.38

3.39

Proof. let V and W be finite-dimensional inner-product spaces.

(i) Let $S, T \in \mathcal{L}(V; W)$. Observe that

$$\langle (S+T)(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, (S+T)^*(\mathbf{w}) \rangle$$

which follows from the definition of adjoint. Now,

$$\langle (S+T)(\mathbf{v}), \mathbf{w} \rangle = \langle S(\mathbf{v}) + T(\mathbf{v}), \mathbf{w} \rangle$$

$$= \langle S(\mathbf{v}), \mathbf{w} \rangle + \langle T(\mathbf{v}), \mathbf{w} \rangle$$

$$= \langle \mathbf{v}, S^*(\mathbf{w}) \rangle + \langle \mathbf{v}, T^*(\mathbf{w}) \rangle$$

$$= \langle \mathbf{v}, (S^* + T^*)(\mathbf{w}) \rangle$$

Hence, $(S+T)^*=S^*+T^*$ Now, observe that for $\alpha\in\mathbb{F}$

$$\langle (\alpha T)(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, (\alpha T)^*(\mathbf{w}) \rangle$$

Additionally,

$$\langle (\alpha T)(\mathbf{v}), \mathbf{w} \rangle = \langle \alpha T(\mathbf{v}), \mathbf{w} \rangle$$

= $\alpha \langle \mathbf{v}, T^*(\mathbf{w}) \rangle$
= $\langle \mathbf{v}, \bar{\alpha} T^*(\mathbf{w}) \rangle$

Hence, $(\alpha T^*) = \bar{\alpha} T^*$

(ii) Let $S \in \mathcal{L}(V; W)$. Observe that

$$\langle (S^*)^*(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, (S^*)^*(\mathbf{w}) \rangle$$

Additionally,

$$\langle S^*(\mathbf{w}), \mathbf{v} \rangle = \overline{\langle \mathbf{v}, S^*(\mathbf{w}) \rangle}$$
$$= \overline{\langle S(\mathbf{v}), \mathbf{w} \rangle}$$
$$= \langle \mathbf{w}, S(\mathbf{v}) \rangle$$

Hence, $(T^*)^* = T$

(iii) Let $S, T \in \mathcal{L}(V)$. Observe that

$$\langle (ST)(\mathbf{v}), \mathbf{w} \rangle = \langle \mathbf{v}, (ST)^*(\mathbf{w}) \rangle$$

Additionally,

$$\langle (ST)(\mathbf{v}), \mathbf{w} \rangle = \langle S(T(\mathbf{v})), \mathbf{w} \rangle$$

$$= \langle T(\mathbf{v}), S^*(\mathbf{w}) \rangle$$

$$= \langle \mathbf{v}, T^*(S^*(\mathbf{w})) \rangle$$

$$= \langle \mathbf{v}, (T^*S^*)(\mathbf{w}) \rangle$$

Hence, $(ST)^* = T^*S^*$

(iv) Let $T \in \mathcal{L}(V)$ and suppose T is invertible. Observe that

$$(T^*)^{-1}T^* = I$$
$$((T^*)^{-1}T^*)^* = I^*$$

But $I^* = I$. From property (iii) we have that $T^{**}((T^*)^{-1})^* = I$. Note that $T^** = T$, so we have that

$$T((T^*)^{-1})^* = I$$

 $((T^*)^{-1})^* = T^{-1}$
 $(T^*)^{-1} = (T^{-1})^*$

3.40

3.44

3.45

3.46

3.47 Assume A is an $m \times n$ matrix of rank n. Let $P = A(A^H A)^{-1} A^H$

(i)

$$P^{2} = A(A^{H}A)^{-1}A^{H}A(A^{H}A)^{-1}A^{H}$$
(0.1)

$$= A(A^{H}A)^{-1}A^{H} (0.2)$$

(0.3)

(ii)

$$P^{H} = (A(A^{H}A)^{-1}A^{H})^{H}$$

$$= A((A^{H}A)^{-1})^{H}A^{H}$$

$$= A((A^{H}A)^{H})^{-1}A^{H}$$

$$= A(A^{H}A)^{-1}A^{H}$$

$$= P$$

(iii)

$$rank(P) = rank(A(A^{H}A)^{-1}A^{H})$$

Now because P is idempotent by (i) we have that

$$\operatorname{tr}(A(A^{H}A)^{-1}A^{H}) = \operatorname{tr}(A^{H}A(A^{H}A)^{-1})$$

= $\operatorname{tr}(I)$

where I is $n \times n$, so it has rank n. Therefore, rank(P)=n.

3.48

3.50