FREE RESOLUTIONS OVER A COMPLETE HYPERSURFACE (AND FRIENDS)

Based on "Homological algebra on a complete intersection, with an application to group representations." by David Eisenbud

David DeMark

MATH 8212 University of Minnesota

2 May 2018

Throughout this talk, we let...

Throughout this talk, we let...

• (A, \mathfrak{m}) be a regular local ring

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular sequence of finite length

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Such a *B* is a *complete intersection of codimension n*.

Throughout this talk, we let...

- (A, \mathfrak{m}) be a regular local ring
- x_1, \ldots, x_n a regular sequence of finite length
- $B := A/\langle x_1, \ldots, x_n \rangle$

Such a B is a complete intersection of codimension n. We shall study the structure of B-free resolutions of B-modules, relating these to their liftings to A.

CLARIFICATION: B-FREE

We do **NOT** mean...

CLARIFICATION: B-FREE

FIGURE: Another "B-Free" Object.

WHY DO WE CARE?

WHY DO WE CARE?

• Classifying maximal CM modules over complete hypersurfaces! (case n = 1)

Theorem (6.1)

Let $x \in A$, $d = \dim A$, and $B := A/\langle x \rangle$. Then,

- For any B-module M and minimal free resolution \mathbf{F} , the truncation at F_{d+1} is periodic with period 2.
- **F** periodic \iff M is a maximal CM module w/o a free summand.
- If so, F is induced a matrix factorization.

Why do we care?

• Generalizing Auslander-Buchsbaum and Serre!

THEOREM (AUSLANDER-BUCHSBAUM-SERRE)

For (R, \mathfrak{m}) local, R is regular \iff gl dim $(R) < \infty$.

WHY DO WE CARE?

• Generalizing Auslander-Buchsbaum and Serre!

Theorem (6.1)

For (R, \mathfrak{m}) local with dim R = d, TFAE:

- For some $x_1, \ldots, x_{d+1} \in R$, $\mathfrak{m} = \langle x_1, \ldots, x_{d+1} \rangle$ and $\hat{0}$ is unmixed in $\hat{R}^{\mathfrak{m}}$ (i.e. all associated primes of $\hat{0}$ are minimal).
- For any f.g. R-module M with minimal free resolution \mathbf{F} , the truncation of \mathbf{F} at degree d+1 is periodic of period 2.
- There exists a free resolution $\mathbf{F}: \cdots \to F_1 \to F_0 \to 0$ of $R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}}$ where for some n, $\operatorname{rank} F_n < n$.

We call such an R an abstract hypersurface.

Why do we care?

• Generalizing Auslander-Buchsbaum and Serre!

Theorem (6.1)

For (R, \mathfrak{m}) local with dim R = d, TFAE:

- For some $x_1, \ldots, x_{d+1} \in R$, $\mathfrak{m} = \langle x_1, \ldots, x_{d+1} \rangle$ and $\hat{0}$ is unmixed in $\hat{R}^{\mathfrak{m}}$ (i.e. all associated primes of $\hat{0}$ are minimal).
- For any f.g. R-module M with minimal free resolution \mathbf{F} , the truncation of \mathbf{F} at degree d+1 is periodic of period 2.
- There exists a free resolution $\mathbf{F}: \cdots \to F_1 \to F_0 \to 0$ of $R_{\mathfrak{m}}/\mathfrak{m}R_{\mathfrak{m}}$ where for some n, $\operatorname{rank} F_n < n$.

We call such an R an abstract hypersurface.

SET-UP

Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\textbf{F}:\ldots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

SET-UP

Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\textbf{F}:\ldots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

SET-UP

Let M be a B-module, and \mathbf{F} a free resolution of B.

$$\textbf{F}:\ldots \xrightarrow{\partial_3} F_2 \xrightarrow{\partial_2} F_1 \xrightarrow{\partial_1} F_0 \xrightarrow{\partial_0} 0$$

Let $\tilde{\partial}_i$ denote an arbitrary lifting of