ĐẠI HỌC QUỐC GIA TPHCM

TRƯỜNG ĐẠI HỌC KHOA HỌC TỰ NHIÊN

KHOA CÔNG NGHÊ THÔNG TIN

BÀI TẬP TUẦN 6

Môn học: Thực hành Đại số tuyến tính

Ca 1 - Nhóm 2:

23120006 - Trần Minh Hiếu Học

23120007 - Đỗ Trọng Huy

23120008 - Thái Gia Huy

23120009 - Nguyễn Thanh Khôi

23120010 - Hoàng Ngọc Phú

BÀI TẬP TUẦN 6

Mục lục

1	Bài 3.26	2
2	Bài 3.28	4
3	Bài 3.30	5
4	Bài 3.32	6
5	Bài 3.34	7
6	Bài 3.36	8
7	Bài 3.38	10
8	Bài 3.40	12
9	Bài 3.42	13
10	Bài 3.44	14
11	Bài 3.46	16

\bigcirc Bài 3.26 Trong \mathbb{R}^4 cho các vector

$$u = (1, 1, 0, -1), v = (1, 0, 0, -1)$$
 và $w = (1, 0, -1, 0).$

Đặt $U = \langle u, v, w \rangle$ và

$$W = \{(x_1, x_2, x_3, x_4) | x_1 + x_2 - x_3 + 2x_4 = 0\}.$$

- a) Chứng tỏ rằng W là một không gian con của \mathbb{R}^4 .
- b) Tìm một cơ sở cho mỗi không gian con $U, W, U + W, U \cap W$.

\land Lời giải

a) Dễ thấy $0 \in W$ vì 0 + 0 - 0 + 2.0 = 0. Xét số thực bất kỳ $\alpha \in \mathbb{R}$ và các vector:

$$u = (u_1, u_2, u_3, u_4) \in W$$

 $v = (v_1, v_2, v_3, v_4) \in W$

Ta có: $\alpha \cdot u = (\alpha u_1, \alpha u_2, \alpha u_3, \alpha u_4)$. Vì $\alpha \cdot (u_1 + u_2 - u_3 + 2u_4) = 0$ nên $\alpha \cdot u \in W$. Lại có: $u + v = (u_1 + v_1, u_2 + v_2, u_3 + v_3, u_4 + v_4)$. Vì

$$(u_1 + v_1) + (u_2 + v_2) - (u_3 + v_3) + 2(u_4 + v_4)$$

$$= (u_1 + u_2 - u_3 + 2u_4) + (v_1 + v_2 - v_3 + 2v_4)$$

$$= 0 + 0$$

$$= 0$$

Từ đây, ta suy ra: $u + v \in W$. Vậy $W \leq \mathbb{R}^4$.

b) • Tìm cơ sở của *U*: Lập

$$A_1 = \begin{bmatrix} u \\ v \\ w \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 \end{bmatrix}$$

Do $r(A_1) = 3 \Rightarrow dim(U) = 3$ nên cơ sở của U là $\{u, v, w\}$

• Tîm cơ sở của *W*: Ta có:

$$W = \{(x_1, x_2, x_3, x_4) | x_1 + x_2 - x_3 + 2x_4 = 0\}$$

$$= \{(a, b, a + b + 2c, c) | a, b, c \in \mathbb{R}\}$$

$$= \{a(1, 0, 1, 0) + b(0, 1, 1, 0) + c(0, 0, 2, 1) | a, b, c \in \mathbb{R}\}$$

$$= \langle x, y, z \rangle \text{ v\'oi } x = (1, 0, 1, 0), y = (0, 1, 1, 0), z = (0, 0, 2, 1)$$

Lập

$$A_2 = \begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

Do $r(A_2) = 3 \Rightarrow dim(W) = 3$ nên cơ sở của W là $\{x, y, z\}$

• Tìm cơ sở của U + W: Lập

$$A = \begin{bmatrix} u \\ v \\ w \\ x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 1 & 1 & 0 & -1 \\ 1 & 0 & 0 & -1 \\ 1 & 0 & -1 & 0 \\ 1 & 0 & 1 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 2 & 1 \end{bmatrix}$$

Từ đây bằng các phép biến đổi sơ cấp trên dòng ta được:

$$A \sim \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Từ đây ta có một cơ sở của U + V là $\{(1,0,0,0), (0,1,0,0), (0,0,1,0), (0,0,0,1)\}$

• Tìm cơ sở của $U \cap V$: Giả sử $a = (a_1, a_2, a_3, a_4) \in U \cap V$. Khi đó: Vì $a \in U$ nên a là tổ hợp tuyến tính của u, v, w.

$$\left[\begin{array}{ccc|c} u^T & v^T & w^T \mid a^T\end{array}\right] = \left[\begin{array}{ccc|c} 1 & 1 & 1 & a_1 \\ 1 & 0 & 0 & a_2 \\ 0 & 0 & -1 & a_3 \\ -1 & -1 & 0 & a_4 \end{array}\right] \sim \left[\begin{array}{ccc|c} 1 & 1 & 1 & a_1 \\ 0 & -1 & -1 & a_2 - a_1 \\ 0 & 0 & -1 & a_3 \\ 0 & 0 & 0 & a_1 + a_3 + a_4 \end{array}\right]$$

 $\text{Để } a \in U \text{ thì } a_1 + a_3 + a_4 = 0.$

Vì $a \in W$ nên $a_1 + a_2 - a_3 + 2a_4 = 0$

Từ 2 điều trên, xét ma trận: $\begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & -1 & 2 \end{bmatrix} \sim \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -2 & 1 \end{bmatrix}$

Khi đó a có dạng:

$$a = (-p - q, 2p - q, p, q) \text{ v\'oi } p, q \in \mathbb{R}$$

= $(-p, 2p, p, 0) + (-q, -q, 0, q)$
= $p \cdot (-1, 2, 1, 0) + q \cdot (-1, -1, 0, 1)$

Từ đây suy ra cơ sở của $U \cap V$ là $\{(-1, 2, 1, 0), (-1, -1, 0, 1)\}.$

2 Bài 3.28

Bài 3.28 Trong \mathbb{R}^4 cho các vector $u_1 = (1,2,0,1), u_2 = (1,1,1,0), v_1 = (1,0,1,0), v_2 = (1,3,0,1)$ và $U = \langle u_1, u_2 \rangle, W = \langle v_1, v_2 \rangle$. Tính dim(U+V) và $dim(U \cap V)$.

🕰 Lời giải

- Xét không gian con $U = \langle u_1, u_2 \rangle$:
 - Ta lập ma trận: $A = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{d_2 d_1} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 1 & -1 \end{bmatrix}$

Do đó, số chiều của U: dimU = 2 và một cơ sở của U là:

$$\{u_1 = (1, 2, 0, 1); u_3 = (0, -1, 1, -1)\}$$

- Xét không gian con $V = \langle v_1, v_2 \rangle$:
 - Ta lập ma trận: $B = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 1 & 3 & 0 & 1 \end{bmatrix} \xrightarrow{d_2 d_1} \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 3 & -1 & 1 \end{bmatrix}$

Do đó, số chiều của V: dimV = 2 và một cơ sở của V là:

$$\{v_1 = (1,0,1,0); v_3 = (0,3,-1,1)\}$$

* Ta có U + V được sinh bởi các vectơ:

$$u_1 = (1, 2, 0, 1); u_3 = (0, -1, 1, -1); v_1 = (1, 0, 1, 0); v_3 = (0, 3, -1, 1)$$

$$- \, \text{Lập:} \, C = \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 1 & 0 & 1 & 0 \\ 0 & 3 & -1 & 1 \end{bmatrix} \xrightarrow{d_3 - d_1}_{d_4 + 3d_2} \begin{bmatrix} 1 & 2 & 0 & 1 \\ 0 & -1 & 1 & -1 \\ 0 & 0 & -1 & 1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Do đó, số chiều của U + V : dim(U + V) = r(C) = 3

• Mặt khác, ta lại có định lý sau:

$$dim(U+V) = dimU + dimV - dim(U \cap V)$$

Suy ra:

$$dim(U \cap V) = dimU + dimV - dim(U + V) = 2 + 2 - 3 = 1$$

Vậy
$$dim(U + V) = 3$$
 và $dim(U \cap V) = 1$.

3 Bài 3.30

igoplusBài 3.30 Trong không gian \mathbb{R}^4 , cho W sinh bởi

$$S = \{u_1 = (1, -1, -1, 3), u_2 = (1, 3, 3, 3), u_3 = (0, 1, 1, 0), u_4 = (1, 5, 5, 3)\}$$

Tìm một tập con của S để là cơ sở của W.

🙇 Lời giải

$$\text{X\'et ma trận } A = \begin{bmatrix} 1 & -1 & -1 & 3 \\ 1 & 3 & 3 & 3 \\ 0 & 1 & 1 & 0 \\ 1 & 5 & 5 & 3 \end{bmatrix} \xrightarrow[d_4-d_1]{} \begin{bmatrix} 1 & -1 & -1 & 3 \\ 0 & 4 & 4 & 0 \\ 0 & 1 & 1 & 0 \\ 0 & 6 & 6 & 0 \end{bmatrix} \xrightarrow[d_4-6d_2]{} \begin{bmatrix} 1 & -1 & -1 & 3 \\ 0 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Suy ra W có một cơ sở $\{v_1 = (1, -1, -1, 3), v_2 = (0, 1, 1, 0)\}$. Hay tập $\{u_1, u_3\}$ là tập con của S và là cơ sở của W.

 $lue{ }$ Bài 3.32 Trong không gian $\mathbb{R}_2[t]$ cho các đa thức

$$f_1(t) = 1 + t - t^2$$

 $f_2(t) = t + t^2$
 $f_3(t) = 3 + 4t - t^2$

- a) Chứng minh tập hợp $\mathcal{B} = \{f_1, f_2, f_3\}$ là cơ sở của $\mathbb{R}_2[t]$.
- b) Cho $f(t) = 3 + t 2t^2$. Hãy tìm tọa độ của f theo cơ sở \mathcal{B} .

\land Lời giải

a) Lập ma trận

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 1 & 1 & 4 \\ -1 & 1 & -1 \end{bmatrix}$$

Ta có $det(A) = 1 \neq 0 \Rightarrow f_1, f_2, f_3$ độc lập tuyến tính.

Lại có $dim(\mathbb{R}_2[t])=3\Rightarrow \mathcal{B}$ là cơ sở của $\mathbb{R}_2[t]$

b) Lập ma trận:

$$\begin{bmatrix} 1 & 0 & 3 & 3 \\ 1 & 1 & 4 & 1 \\ -1 & 1 & -1 & -2 \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & -6 \\ 0 & 1 & 0 & -5 \\ 0 & 0 & 1 & 3 \end{bmatrix}$$

Vậy tọa độ của f theo cơ sở \mathcal{B} là $[f_t]_{\mathcal{B}} = \begin{bmatrix} -6 \\ -5 \\ 3 \end{bmatrix}$

 $lue{ }$ Bài 3.34 Trong không gian \mathbb{R}^3 , cho các vecto

$$u_1 = (2, 1, -1), u_2 = (2, -1, 2), u_3 = (1, 1, -1)$$

- a) Chứng minh tập hợp $\mathcal{B} = \{u_1, u_2, u_3\}$ là cơ sở của \mathbb{R}^3 .
- b) Tìm $[u]_{\mathcal{B}}$, biết rằng u = (1, 3, -2).
- c) Tìm $v \in \mathbb{R}^3$, biết rằng $[v]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$

🙇 Lời giải

- a) Ta có det $\begin{bmatrix} u_1 & u_2 & u_3 \end{bmatrix} = -1 \neq 0$ nên $\mathcal B$ độc lập tuyến tính. Do đó $\mathcal B$ là cơ sở của $\mathbb R^3$.
- b) Ta có $u = -5u_1 + u_2 + 9u_3$ nên $[u]_{\mathcal{B}} = \begin{bmatrix} -5\\1\\9 \end{bmatrix}$
- c) Ta có

$$[v]_{\mathcal{B}_0} = (\mathcal{B}_0 \to \mathcal{B})[v]_{\mathcal{B}}$$

$$= \begin{bmatrix} u_1^\top & u_2^\top & u_3^\top \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 & 2 & 1 \\ 1 & -1 & 1 \\ -1 & 2 & -1 \end{bmatrix} \begin{bmatrix} 2 \\ -3 \\ 4 \end{bmatrix}$$

$$= \begin{bmatrix} 2 \\ 9 \\ -12 \end{bmatrix}$$

Do đó v = (2, 9, -12).

Bài 3.36 Trong không gian \mathbb{R}^3 , cho các vector $u_1 = (1,2,2), u_2 = (1,-1,1), u_3 = (-1,2,-1), u_1' = (1,1,2), u_2' = (1,-2,1), u_3' = (2,1,4).$

- a) Chứng mình các tập hợp $\mathcal{B} = \{u_1, u_2, u_3\}$ và $\mathcal{B}' = \{u_1', u_2', u_3'\}$ là các cơ sở của \mathbb{R}^3 .
- b) Tìm $[u]_{\mathcal{B}}$ biết rằng u = (1, 2, 3).
- c) Tìm $v \in \mathbb{R}^3$ biết rằng $[v]_{\mathcal{B}} = \left[egin{array}{c} 2 \\ 3 \\ -1 \end{array} \right]$
- d) Tìm $[w]_{\mathcal{B}'}$ biết rằng $[w]_{\mathcal{B}} = \begin{bmatrix} 1 \\ -3 \\ 2 \end{bmatrix}$
- e) Xác định ma trận chuyển cơ sở $(\mathcal{B} \to \mathcal{B}')$ và $(\mathcal{B}' \to \mathcal{B})$.

\land Lời giải

a) Xét một vector bất kỳ $a=(x,y,z)\in\mathbb{R}^3$. Ta lập ma trận:

$$\begin{bmatrix} u_1^T & u_2^T & u_3^T & | & a^T \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & | & x \\ 2 & -1 & 2 & | & y \\ 2 & 1 & -1 & | & z \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 & | & x \\ 0 & -3 & 4 & | & y - 2x \\ 0 & 0 & -1 & | & 3z - 4x - y \end{bmatrix}$$

Hệ luôn có nghiệm với mọi vector a.

Vậy \mathcal{B} là tập sinh của \mathbb{R}^3 .

Mà \mathcal{B} độc lập tuyến tính nên \mathcal{B} là cơ sở của \mathbb{R}^3 .

Tương tự, ta cũng có \mathcal{B}' là cơ sở của \mathbb{R}^3 .

b) Ta lập ma trận mở rộng

$$\begin{bmatrix} u_1^T & u_2^T & u_3^T & | & u^T \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 2 & -1 & 2 & | & 2 \\ 2 & 1 & -1 & | & 3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & -1 & | & 1 \\ 0 & -3 & 4 & | & 0 \\ 0 & 0 & -1 & | & 3 \end{bmatrix}$$

Từ đây ta suy ra được $u=2u_1-4u_2-3u_3$. Vậy $[u]_{\mathcal{B}}=\begin{bmatrix}2\\-4\\-3\end{bmatrix}$

c) Ta có v được biểu diễn bởi:

$$v = 2u_1 + 3u_2 - u_3$$

= 2 \cdot (1, 2, 2) + 3 \cdot (1, -1, 1) - (-1, 2, -1)
= (6, -1, 8)

Vậy v = (6, -1, 8).

d) Ta có w được biểu diễn bởi:

$$w = u_1 - 3 \cdot u_2 + 2 \cdot u_3$$

= $(1,2,2) - 3 \cdot (1,-1,1) + 2 \cdot (-1,2,-1)$
= $(-4,9,-3)$

Vậy w = (-4, 9, -3).

Ta lập ma trận mở rộng

$$\begin{bmatrix} u_1^{'T} & u_2^{'T} & u_3^{'T} & | & w^T \end{bmatrix} = \begin{bmatrix} 1 & 1 & 2 & | & -4 \\ 1 & -2 & 1 & | & 9 \\ 2 & 1 & 4 & | & -3 \end{bmatrix} \longrightarrow \begin{bmatrix} 1 & 1 & 2 & | & -4 \\ 0 & -3 & -1 & | & 13 \\ 0 & 0 & 1 & | & 2 \end{bmatrix}$$

Khi đó, giải hệ phương trình thu được từ ma trận trên ta được:

$$w = -3 \cdot u_1' - 5 \cdot u_2' + 2 \cdot u_3'$$

Từ đó suy ra:

$$[w]_{\mathcal{B}'} = \begin{bmatrix} -3\\ -5\\ 2 \end{bmatrix}$$

e) Xét ma trận mở rộng

$$\begin{bmatrix} u_1^T & u_2^T & u_3^T & | & (u_1')^T & (u_2')^T & (u_3')^T \end{bmatrix} = \begin{bmatrix} 1 & 1 & -1 & | & 1 & 1 & 2 \\ 2 & -1 & 2 & | & 1 & -2 & 1 \\ 2 & 1 & -1 & | & 2 & 1 & 4 \end{bmatrix}$$

$$\longrightarrow \begin{bmatrix} 1 & 0 & 0 & | & 1 & 0 & 2 \\ 0 & 1 & 0 & | & -1 & 0 & -3 \\ 0 & 0 & 1 & | & -1 & -1 & -3 \end{bmatrix} = [I_3 \mid P_1]$$

Khi đó:
$$(\mathcal{B} \to \mathcal{B}') = P_1 = \begin{bmatrix} 1 & 0 & 2 \\ -1 & 0 & -3 \\ -1 & -1 & -3 \end{bmatrix}$$

Làm tương tự như ý trên, ta đưa: $\begin{bmatrix} u_1^T & u_2^T & u_3^T & | & (u_1')^T & (u_2')^T & (u_3')^T \end{bmatrix} \sim [P_2 \mid I_3]$.
Khi đó: $(\mathcal{B}' \to \mathcal{B}) = P_2 = \begin{bmatrix} 3 & 2 & 0 \\ 0 & 1 & -1 \\ 1 & 1 & 0 \end{bmatrix}$

© Bài 3.38 Cho W là không gian sinh bởi các vector $u_1 = (1,0,1,1), u_2 = (1,1,0,1), u_3 = (1,1,1,0).$

- a) Chứng minh tập hợp $\mathcal{B} = \{u_1, u_2, u_3\}$ là cơ sở của W.
- b) Cho $u=(a,b,c,d)\in\mathbb{R}^4$. Tìm mối liên hệ giữa a,b,c,d để $u\in W$. Với điều kiện đó, hãy xác định $[u]_{\mathcal{B}}$ theo a,b,c,d.
- c) Đặt $\mathcal{B}' = \{u_1' = (0,1,2,-3), u_2' = (2,0,1,3), u_3' = (0,1,-2,1)\}$. Chứng minh \mathcal{B}' là cơ sở của W và xác định $(\mathcal{B} \to \mathcal{B}')$.

🙇 Lời giải

a) Ta lập ma trận:
$$A = \begin{bmatrix} 1 & 0 & 1 & 1 \\ 1 & 1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix} \xrightarrow{d_2 - d_1} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 1 & 0 & -1 \end{bmatrix} \xrightarrow{d_3 - d_2} \begin{bmatrix} 1 & 0 & 1 & 1 \\ 0 & 1 & -1 & 0 \\ 0 & 0 & 1 & -1 \end{bmatrix}$$

Do đó, các vector u_1, u_2, u_3 độc lập tuyến tính.

- Kết luận: Không gian W được sinh bởi các vector u_1, u_2, u_3 và chúng độc lập tuyến tính với nhau nên \mathcal{B} là cơ sở của W.
- b) Để $u = (a, b, c, d) \in W$ thì u phải là tổ hợp tuyến tính của u_1, u_2, u_3 .
- Ta xét ma trận sau:

$$\begin{bmatrix} u_1^T & u_2^T & u_3^T \mid u^T \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 \mid a \\ 0 & 1 & 1 \mid b \\ 1 & 0 & 1 \mid c \\ 1 & 1 & 0 \mid d \end{bmatrix} \xrightarrow[d_4-d_1]{d_3-d_1} \begin{bmatrix} 1 & 1 & 1 \mid a \\ 0 & 1 & 1 \mid b \\ 0 & -1 & 0 \mid c-a \\ 0 & 0 & -1 \mid d-a \end{bmatrix}$$

$$\frac{d_{3}+d_{2}}{d_{4}+d_{3}} \left[\begin{array}{ccc|c} 1 & 1 & 1 & a \\ 0 & 1 & 1 & b \\ 0 & 0 & 1 & c-a+b \\ 0 & 0 & 0 & c+b+d-2a \end{array} \right] \xrightarrow[d_{1}-d_{2}]{} \left[\begin{array}{ccc|c} 1 & 0 & 0 & a-b \\ 0 & 1 & 0 & a-c \\ 0 & 0 & 1 & c-a+b \\ 0 & 0 & 0 & c+b+d-2a \end{array} \right]$$

• $u \in W$ khi và chỉ khi: c + b + d - 2a = 0

Suy ra mối liên hệ giữa a, b, c, d cần tìm là: c + b + d - 2a = 0

- Tọa độ của vector u theo cơ sở \mathcal{B} là:

$$[u]_{\mathcal{B}} = \begin{bmatrix} a - b \\ a - c \\ c - a + b \end{bmatrix}$$

Vậy:
$$u \in W$$
 và $[u]_{\mathcal{B}} = \begin{bmatrix} a-b \\ a-c \\ c-a+b \end{bmatrix}$ với $c+b+d-2a=0$.

c) Ta chứng minh các vector u_1, u_2, u_3 độc lập tuyến tính.

- Lập ma trận:
$$M = \begin{bmatrix} 0 & 1 & 2 & -3 \\ 2 & 0 & 1 & 3 \\ 0 & 1 & -2 & 1 \end{bmatrix} \xrightarrow{d_2 \leftrightarrow d_1} \begin{bmatrix} 2 & 0 & 1 & 3 \\ 0 & 1 & 2 & -3 \\ 0 & 0 & -4 & 4 \end{bmatrix}$$

• Hạng của ma trận: r(M) = 3 nên các vector u'_1, u'_2, u'_3 độc lập tuyến tính.

Mà theo ý a), ta có: dimW = 3 bằng với số vector của \mathcal{B}' nên \mathcal{B}' là cơ sở của W.

- Xét $u = (x, y, z, t) \in W$.
- Theo câu b), tọa độ của vector u theo cơ sở \mathcal{B} :

$$[u]_{\mathcal{B}} = \begin{bmatrix} x - y \\ x - z \\ z - x + y \end{bmatrix}$$

Thay lần lượt các vector u_1', u_2', u_3' (ta thấy u_1', u_2', u_3' đều thỏa điều kiện c + b + d - 2a = 0 nên $u_1', u_2', u_3' \in W$) vào phương trình tọa độ trên, ta được:

$$[u_1']_{\mathcal{B}} = \begin{bmatrix} -1 \\ -2 \\ 3 \end{bmatrix}; [u_2']_{\mathcal{B}} = \begin{bmatrix} 2 \\ 1 \\ -1 \end{bmatrix}; [u_3']_{\mathcal{B}} = \begin{bmatrix} -1 \\ 2 \\ -1 \end{bmatrix}$$

Như vậy, ma trận chuyển vị cơ sở cần tìm là:

$$(\mathcal{B} o \mathcal{B}') = \left[egin{array}{cccc} -1 & 2 & -1 \ -2 & 1 & 2 \ 3 & -1 & -1 \end{array}
ight]$$

Bài 3.40 Trong không gian \mathbb{R}^4 , cho các vector $u_1 = (1, 0, 1, -1), u_2 = (1, 1, -1, 2), u_3 = (1, 2, -2, 2)$ và $W = \langle \{u_1, u_2, u_3\} \rangle$.

- a) Chứng tỏ rằng $\mathcal{B} = \{u_1, u_2, u_3\}$ là cơ sở của W.
- b) Cho $u=(a,b,c,d)\in\mathbb{R}^4$. Tìm điều kiện của a,b,c,d để $u\in W$. Với điều kiện đó, hãy tìm $[u]_{\mathcal{B}}$ theo a,b,c,d.
- c) Cho $u_1' = (2,1,0,1), u_2' = (2,3,-3,4), u_3' = (3,3,-2,3)$. Chứng tỏ rằng $\mathcal{B}' = \{u_1', u_2', u_3'\}$ là cơ sở của W và xác định ma trận chuyển cơ sở từ \mathcal{B} sang \mathcal{B}' và từ \mathcal{B}' sang \mathcal{B} .

d) Tìm
$$[u]_{\mathcal{B}}$$
 và $[v]_{\mathcal{B}'}$, biết $[u]_{\mathcal{B}'} = \begin{bmatrix} 1 \\ -2 \\ 3 \end{bmatrix}$ và $[v]_{\mathcal{B}} = \begin{bmatrix} 2 \\ -3 \\ 1 \end{bmatrix}$

\land Lời giải

a) Ta chứng minh \mathcal{B} độc lập tuyến tính:

$$X\acute{e}t B = \begin{bmatrix} 1 & 0 & 1 & -1 \\ 1 & 1 & -1 & 2 \\ 1 & 2 & -2 & 2 \end{bmatrix} \xrightarrow{d_2 - d_1} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 2 & -3 & 3 \end{bmatrix} \xrightarrow{d_3 - 2d_2} \begin{bmatrix} 1 & 0 & 1 & -1 \\ 0 & 1 & -2 & 3 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$

Suy ra rank(B) = 3 hay \mathcal{B} độc lập tuyến tính. Mà theo giả thiết, \mathcal{B} là tập sinh của W. Do đó \mathcal{B} là cơ sở của W.

b) Ta cần tìm a, b, c, d sao cho u là tổ hợp tuyến tính của u_1, u_2, u_3 :

$$X\acute{e}t A = \begin{bmatrix} u_1^T & u_2^T & u_3^T \mid u^T \end{bmatrix} = \begin{bmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 2 & b \\ 1 & -1 & -2 & c \\ -1 & 2 & 2 & d \end{bmatrix} \xrightarrow{d_3 - d_1} \begin{bmatrix} 1 & 1 & 1 & a \\ 0 & 1 & 2 & b \\ 0 & -2 & -3 & -a + c \\ 0 & 3 & 3 & a + d \end{bmatrix}$$

$$\frac{d_{1}-d_{2}}{d_{4}-3d_{2}} \left\{ \begin{array}{c|cccc}
1 & 0 & -1 & a-b \\
0 & 1 & 2 & b \\
0 & 0 & 1 & -a+2b+c \\
0 & 0 & -3 & a-3b+d
\end{array} \right\} \left\{ \begin{array}{c|cccc}
1 & 0 & 0 & b+c \\
0 & 1 & 0 & 2a-3b-2c \\
0 & 0 & 1 & -a+2b+c \\
0 & 0 & 0 & -2a+3b+3c+d
\end{array} \right\}$$

Để u là tổ hợp tuyến tính của u_1, u_2, u_3 thì -2a + 3b + 3c + d = 0.

Và
$$u = (b+c)u_1 + (2a-3b-2c)u_2 + (-a+2b+c)u_3$$
 nên $[u]_{\mathcal{B}} = \begin{bmatrix} b+c \\ 2a-3b-2c \\ -a+2b+c \end{bmatrix}$

Với a, b, c, d thỏa -2a + 3b + 3c + d = 0.

c) Xét ma trận
$$C = \begin{bmatrix} 2 & 1 & 0 & 1 \\ 2 & 3 & -3 & 4 \\ 3 & 3 & -2 & 3 \end{bmatrix} \xrightarrow{d_2 - d_1} \begin{bmatrix} 2 & 1 & 0 & 1 \\ 0 & 2 & -3 & 3 \\ 0 & 3 & -4 & 3 \end{bmatrix} \xrightarrow{2d_3 - 3d_2} \begin{bmatrix} 2 & 1 & 0 & 1 \\ 0 & 2 & -3 & 3 \\ 0 & 0 & 1 & -3 \end{bmatrix}$$

Suy ra rank(C) = 3 hay \mathcal{B}' độc lập tuyến tính. Mặt khác, số vector của \mathcal{B}' bằng 3 = dimW. Do đó \mathcal{B}' là cơ sở của W.

Tìm ma trận chuyển cơ sở:

Dùng kết quả câu b, ta có:

$$[u_1']_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 0 \end{bmatrix}, [u_2']_{\mathcal{B}} = \begin{bmatrix} 0 \\ 1 \\ 1 \end{bmatrix}, [u_3']_{\mathcal{B}} = \begin{bmatrix} 1 \\ 1 \\ 1 \end{bmatrix}$$

$$\operatorname{Khi} \operatorname{\mathsf{d}} \circ (\mathcal{B} \to \mathcal{B}') = \begin{bmatrix} 1 & 0 & 1 \\ 1 & 1 & 1 \\ 0 & 1 & 1 \end{bmatrix}, \operatorname{va} (\mathcal{B}' \to \mathcal{B}) = (\mathcal{B} \to \mathcal{B}')^{-1} = \begin{bmatrix} 0 & 1 & -1 \\ -1 & 1 & 0 \\ 1 & -1 & 1 \end{bmatrix}$$

9 Bài 3.42

© Bài 3.32 Trong không gian \mathbb{R}^3 cho các vecto $u_1 = (3,2,3), u_2 = (2,1,-5), u_3 = (-3,-1,15)$. Đặt

$$\begin{cases} v_1 = u_1 - u_2 - u_3 \\ v_2 = -2u_1 + 5u_2 + 3u_3 \\ v_3 = u_1 - 2u_2 - u_3 \end{cases}$$

- a) Chứng minh $\mathcal{B} = \{u_1, u_2, u_3\}$ và $\mathcal{B}' = \{v_1, v_2, v_3\}$ là hai cơ sở của \mathbb{R}^3 .
- b) Tìm ma trận chuyển cơ sở từ \mathcal{B}' sang \mathcal{B} .

🕰 Lời giải

a)

Ta có:

$$v_1 = u_1 - u_2 - u_3 = (4, 2, -7)$$

 $v_2 = -2u_1 + 5u_2 + 3u_3 = (-5, -2, 14)$
 $v_3 = u_1 - 2u_2 - u_3 = (2, 1, -2)$

Lập
$$A = \begin{bmatrix} u_1^T & u_2^T & u_3^T \end{bmatrix} = \begin{bmatrix} 3 & 2 & -3 \\ 2 & 1 & -1 \\ 3 & -5 & 15 \end{bmatrix}$$

Ta có $det(A) = 3 \neq 0 \rightarrow u_1, u_2, u_3$ độc lập tuyến tính. Lại có số lượng vecto của \mathcal{B} là 3 và $dim(\mathbb{R}^3) = 3$, nên \mathcal{B} là cơ sở của R^3 .

$$L\hat{\mathbf{a}}\mathbf{p} \ C = \begin{bmatrix} v_1^T & v_2^T & v_3^T \end{bmatrix} = \begin{bmatrix} 4 & -5 & 2 \\ 2 & -2 & 1 \\ -7 & 14 & -2 \end{bmatrix}$$

Ta có $det(C) = 3 \neq 0 \rightarrow u_1, u_2, u_3$ độc lập tuyến tính. Lại có số lượng vecto của \mathcal{B}' là 3 và $dim(\mathbb{R}^3) = 3$, nên \mathcal{B}' là cơ sở của \mathbb{R}^3 .

b) Đặt $k=(a,b,c)\in\mathbb{R}^3$, ta tìm $[k]_{\mathcal{B}'}$ Xét ma trận mở rộng

$$A = \begin{bmatrix} v_1^T & v_2^T & v_3^T \mid k^T \end{bmatrix} = \begin{bmatrix} 4 & -5 & 2 & a \\ 2 & -2 & 1 & b \\ -7 & 14 & -2 & c \end{bmatrix} \rightarrow \begin{bmatrix} 1 & 0 & 0 & \frac{-10a}{3} + 6b - \frac{c}{3} \\ 0 & 1 & 0 & -a + 2b \\ 0 & 0 & 1 & \frac{14a}{3} - 7b + \frac{2c}{3} \end{bmatrix}$$

Thay k bởi u_1, u_2, u_3 , ta được

$$[u_1]_{\mathcal{B}'} = \begin{bmatrix} 1 \\ 1 \\ 2 \end{bmatrix}$$
, $[u_2]_{\mathcal{B}'} = \begin{bmatrix} 1 \\ 0 \\ -1 \end{bmatrix}$, $[u_3]_{\mathcal{B}'} = \begin{bmatrix} -1 \\ 1 \\ 3 \end{bmatrix}$

$$V_{\mathbf{A}\mathbf{B}}(\mathcal{B}' \to \mathcal{B}) = \begin{bmatrix} 1 & 1 & -1 \\ 1 & 0 & 1 \\ 2 & -1 & 3 \end{bmatrix}$$

10 Bài 3.44

O Bài 3.44 thức Sylvester

Cho A, B là hai ma trận vuông cấp n. Chứng minh bất đẳng

$$r(A) + r(B) - n \le r(AB) \le \min\{r(A), r(B)\}\$$

• Chứng minh $r(AB) \le \min\{r(A), r(B)\}$. Xét các phép biến đổi tương đương trên dòng v_1, v_2, \ldots, v_k sao cho

$$S = v_1(v_2(\dots(v_k(A))\dots)) = v_1(I_n)v_2(I_n)\cdots v_k(I_n)A$$

là ma trận bậc thang. Khi đó S có $\mathbf{r}(A)$ dòng khác 0. Suy ra SB có tối đa $\mathbf{r}(A)$ dòng khác 0 hay $\mathbf{r}(SB) \leq \mathbf{r}(A)$. Mặt khác

$$SB = v_1(I_n)v_2(I_n)\cdots v_k(I_n)AB$$

= $v_1(v_2(\dots(v_k(AB))\dots))$

Suy ra $r(AB) = r(SB) \le r(A)$. Ta lại có

$$\mathbf{r}(AB) = \mathbf{r}((AB)^{\top})$$
 $= \mathbf{r}(B^{\top}A^{\top})$
 $\leq \mathbf{r}(B^{\top})$
 $\leq \mathbf{r}(B)$

Do đó $r(AB) \le \min\{r(A), r(B)\}.$

• Chứng minh $r(A) + r(B) - n \le r(AB)$. Sử dụng S ở ý trên. Xét thêm các phép biến đổi tương đương trên cột h_1, h_2, \ldots, h_l sao cho

$$T = h_1(h_2(...(h_l(B))...)) = Bh_l(I_n) \cdot \cdot \cdot h_2(I_n)h_1(I_n)$$

với $p(T^{\top})$ là ma trận bậc thang rút gọn (trong đó p là hàm đổi cột k, n-k với $k=\overline{1,\lfloor n/2\rfloor}$. Đặt $a_1< a_2< \cdots < a_{{\bf r}(A)}$ lần lượt là tọa độ theo cột của các phần tử cơ sở dòng $1,2,\ldots,{\bf r}(A)$ của S. Và $b_1>b_2>\cdots>b_{{\bf r}(B)}$ là tọa độ theo dòng của T các phần tử tương ứng là phần tử cở sở dòng $1,2\ldots,{\bf r}(B)$ của $p(T^{\top})$. Để ý rằng có không quá $n-{\bf r}(B)$ số $a_i,\ i=\overline{1,{\bf r}(A)}$ sao cho $a_i\neq b_j,\ \forall i=\overline{1,{\bf r}(B)}$. Nên sẽ có ít nhất ${\bf r}(A)+{\bf r}(B)-n$ số $a_i,\ i=\overline{1,{\bf r}(A)}$ mà $a_i=b_j$ với $j\in\{1,\ldots,{\bf r}(B)\}$. Với mỗi a_i như vậy, ta có phần tử $(ST)_{ij}=S_{ia_i}T_{b_jj}\neq 0$ (do các phần tử trước phần tử cơ sở dòng i của S và các phần tử sau phần tử tương ứng cơ sở cột j của T bằng 0). Suy ${\bf r}_i$ 0. Suy ${\bf r}_i$ 1 ${\bf r}_i$ 2 ${\bf r}_i$ 3 ${\bf r}_i$ 4 ${\bf r}_i$ 5 ${\bf r}_i$ 6 ${\bf r}_i$ 7 ${\bf r}_i$ 8 ${\bf r}_i$ 9 ${\bf r}_i$ 9 của ${\bf r}_i$ 9 ${\bf r}_i$ 9 của ${\bf r}_i$ 9 ${\bf r}_i$ 9 của ${\bf r}_i$ 1 của ${\bf r}_i$ 2 của ${\bf r}_i$ 1 của ${\bf r}_i$ 2 của ${\bf r}_i$ 1 của ${\bf r}_i$ 2 của ${\bf r}_i$ 3 của ${\bf r}_i$ 1 của

$$ST = v_1(I_n)v_2(I_n) \cdots v_k(I_n)ABh_l(I_n) \cdots h_2(I_n)h_1(I_n)$$

= $h_1(h_2(\dots(h_l((v_1(v_2(\dots(v_k(AB))\dots)))))\dots))$

Nên $r(AB) = r(ST) \ge r(A) + r(B) - n$.

◯ Bài 3.46

Cho A là ma trận vuông cấp n thỏa $A^2 = I_n$. Chứng minh rằng

$$r(A + I_n) + r(A - I_n) = n$$

\land Lời giải

Theo bài 44, ta có

$$r(A + I_n) + r(A - I_n) - n \le r((A + I_n)(A - I_n))$$

hay

$$r(A + I_n) + r(A - I_n) \le n$$

Mặt khác, dễ thấy A khả nghịch nên $\mathbf{r}(2A)=\mathbf{r}(A)=n.$ Theo bài 43, ta có

$$r(A + I_n) + r(A - I_n) \ge r(A + I_n + A - I_n) = n$$

Từ đó, suy ra điều phải chứng minh.