1. INTRODUCTION OF FLUID MECHANICS

FLUID: It's a substance which capable of flowing.

FLUID MECHANICS: It's science which deals with static and dynamic condition of fluid on action of force and interaction of fluid with respect of another fluid or solid on the boundary.

SOLID	LIQUID	
Solid does not deform continuously under the action of	Fluid deform continuously under the action of same	
same shear stress.	shear stress.	
Solid may regain shape after removal of shear stress.	Fluid deformation is permanent.	
For solids shear stress is directly proportional to shear	In fluids absolute value of shear strain is not important	
strain with elastic limit. E.g. Hook's Law	but rate of shear strain is important. E.g. Newtons law of	
	viscosity	
Solids are elastic in nature.	Fluids are viscous in nature.	

Solids: Elastic Liquids: Viscous Fluid: Elastic + Viscous E.g. Blood clot, earth's man	tle, etc
--	----------

	LIQUID	GAS	
Space Between Molecules	Small comparison	Larger comparison	
Force of Attraction	Enough to keep the liquid molecules	Minimum attraction between molecules	
Between the Molecules	together.	allowing greater freedom of movement	
Volume Comparison	Definite Volume	No definite Volume, occupies the volume of	
		the container in which it's kept	
Compressibility	Low or Incompressible	Compressible	

CONTINUUM CONCEPT:

- The continuum assumption is an idealization of continuum mechanics under which fluids can be treated as continuous, even though, on a microscopic scale, they are composed of molecules. The continuum hypothesis can lead to inaccurate results in applications like supersonic speed flows, or molecular flows on nano scale.
- Continuum concept validation.

$K_n = \lambda/L$	λ = Mean Free Path=Avg. distance just before collision	L = Characteristic Dimension

Knudsen No.: K _n	Type of Flow	
≤ 0.01	Continuum is valid	
$0.01 < K_n \le 0.1$	Slip Flow	
$0.1 < K_n \le 10$	Transition Flow	
$K_n > 10$	Free Molecular Flow	

- Continuous mass function of molecules/ Space & time.
- It's valid for highly Compressed Gases, Liquids, etc...
- If continuum concept is not valid, Rarefied Gas theory is used. E.g. Low Dense gas, Vacuum flow, etc...

CLASSIFICATION OF FLUID MECHANICS			
FLUID STATICS	FLUID KINEMATICS	FLUID DYNAMICS	
Fluids @ rest	Fluids are in motion without referring	Fluids are in motion with referring to	
Fluids in equilibrium Under the action of external forces	to the force acting on it.	the force acting on it.	

MEASUREMENT UNITS				
	SI SYSTEM	MKS		FPS SYSTEM
	Everywhere It's used	Absolute	Gravitational	
MASS	kg	kg	m. slug	g
FORCE	N	N	kgf	
PRESSURE	Ра		1kgf = 9.81N	