31. siječnja 2012.

Napomena: Zadatke obavezno predati s rješenjima nakon završetka testa.

1. zadatak (10 bodova)

Pitanja iz 1. ciklusa nastave:

- a) (3 boda) Nacrtati strukturu sustava regulacije brzine vrtnje istosmjernog nezavisno uzbuđenog motora s dvosmjernim tiristorskim usmjerivačem s kružnom strujom u krugu armature. Opisati funkciju prigušnica u armaturnom krugu motora, način upravljanja usmjerivačima, način određivanja referentnih vrijednosti struja (blok funkcijskog generatora). Navesti osnovnu prednost i nedostatak u odnosu na isti takav usmjerivač, ali bez kružnih struja.
- b) (4 boda) Nacrtati blokovsku strukturu sustava regulacije brzine vrtnje (i rotorskog toka) s vektorski upravljanim asinkronim strojem. Asinkroni stroj se napaja iz pretvarača frekvencije s utisnutim naponom. Na odgovarajuća mjesta u blokovskoj shemi unijeti kompenzacijske signale Δu_{sq} . Opisati blokove upravljačke strukture.
- c) (3 boda) Nacrtati blokovsku strukturu estimatora rotorskog toka gdje su struje i_{sq} i i_{sd} ulazne varijable u sustav estimacije. O čemu ovisi točnost estimacije iznosa rotorskog toka i kuta rotorskog toka?

2. zadatak (5 bodova)

Pitanja iz 2. ciklusa nastave (1. dio):

- a) (2 boda) Razmatra se kaskadna struktura upravljanja brzinom vrtnje stroja. Na blokovskom dijagramu pojasnite kako se moment stroja u radu sustava upravljanja ograničava na određeni iznos.
- b) (3 boda) Skicirajte vremenski odziv brzine vrtnje tako upravljanog, neopterećenog stroja, pri skokovitoj promjeni referentne veličine brzine vrtnje s $0.2\omega_n$ na $0.7\omega_n$ u trenutku t_0 , pri čemu je u trajanju $[t_0,t_0+\frac{T_M}{4}]$ aktivirano ograničavanje momenta na nazivni iznos, gdje je T_M mehanička vremenska konstanta stroja.

3. zadatak (5 bodova)

Pitnaja iz 2. ciklusa nastave (2. dio):

- a) (2 boda) Povratna veza po brzini vrtnje stroja ω obavlja se diferenciranjem susjednih uzoraka kuta zakreta stroja α mjerenih enkoderom. Odredite u z- području prijenosnu funkciju ovakvog mjernog člana brzine, tj. $G_{\omega m}(z) = \frac{\omega_m(z)}{a(z)}$.
- b) (3 boda) Ako se dinamičko ponašanje između referentne veličine momenta stroja m_R i brzine vrtnje stroja opisanog u 3-a) može aproksimirati prijenosnom funkcijom $G_s(s) = \frac{1}{Js(1+T_{el}s)}$, odredite prijenosnu funkciju procesa prikladnu za sintezu digitalnog regulatora brzine vrtnje stroja u vremenski kontinuiranom području. Vrijeme uzorkovanja digitalnog regulatora iznosi T.