#### Module 2 Quiz

Quiz, 10 questions

1 point

1.

Consider the given network. What is the value of node F's local clustering coefficient?



- 0.5
- 0.6
- 0.7
- 0.8

### $Module\ 2\ Quiz$ Given the following two networks, which of the following is True?

Quiz, 10 questions



- Network (A) has higher average local clustering coefficient and higher transitivity than (B).
- Network (A) has higher average local clustering coefficient but lower transitivity than (B).
- Network (A) has lower average local clustering coefficient and lower transitivity than (B).
- Network (A) has lower average local clustering coefficient but higher transitivity than (B).

### $Module \ \ 2 \ Quiz$ Consider the network shown below and select all that apply.

Quiz, 10 questions



- The radius of this network is half of its diameter.
- The deletion of node G will make the network disconnected.
- If we perform Breadth-First Search (BFS) from node A, the BFS tree we obtain will have a depth of 4.
- Node C and D are in the center of the network.
- F is the only in the periphery of the network.
- ✓ The eccentricity of node B and C are equal.

## $Module\ 2\ Quiz$ Select all that apply for the network below.

Quiz, 10 questions



- It is a disconnected graph with 2 connected components.
- If edge (E,G) is removed, the number of connected components will not change.
- The local clustering coefficient of node I is higher than node J and K.
- $\checkmark$  We can make the graph connected by adding edge (E,J).

5

## $Module\ 2\ Quiz_{ply}^{\text{Consider three networks (A), (B) and (C) below and select all that}$

Quiz, 10 questions



| <b>✓</b>     | Only network (B) is a strongly connected graph.                                                                                        |
|--------------|----------------------------------------------------------------------------------------------------------------------------------------|
|              | We can change network (A) from a weakly connected graph to a strongly connected graph by adding a directed edge from node C to node D. |
| $\checkmark$ | All edges in network (B) are needed for the network to be strongly connected.                                                          |
| <b>✓</b>     | We only need to add one directed edge in order to change network (C) to a strongly connected graph.                                    |

1 point

6.

Which of the following is true about network robustness and connectivity? Select all that apply.

| <u> </u> | The closure of an airport and the cancellation of a flight<br>route are examples of two different kinds of network<br>attacks in the real world. |
|----------|--------------------------------------------------------------------------------------------------------------------------------------------------|
|          | Adding more edges to a network always makes it more                                                                                              |

robust.

| Module 2 Qu        | <br>ıiz      | A network that has a high average local clustering coefficient always has a high node connectivity. |
|--------------------|--------------|-----------------------------------------------------------------------------------------------------|
| Quiz, 10 questions | <u> </u>     | Network robustness measures a network's ability to                                                  |
|                    |              | maintain its connectivity.                                                                          |
|                    | $\checkmark$ | Adding edges to a network can never make the network less robust.                                   |
|                    |              |                                                                                                     |

1 point

7. Consider the network given below.



What's the node connectivity of the network?

| 1 |
|---|
| 2 |
| 3 |
|   |

# Module 2 Quiz

Quiz, 10 questions

8

Consider the network given below.



What is the edge connectivity of the network?

- 1
- 2
- 3
- ( ) 4



What is the total number of simple paths from node D to node K?

The directed network below shows how information can be Quiz, 10 questions

The directed network below shows how information can be example, node A can pass the information to node C directly but not vice-versa. If node C wants to send messages to node A, all data must be forwarded by node B.



Suppose we want to block all information channels from node E to node K. Which of the following options achieve this goal? Check all that apply.

|          | Removing node H only           |
|----------|--------------------------------|
|          | Removing node G and H          |
| <b>✓</b> | Removing node F and H          |
|          | Removing edge (H,K)            |
| <u> </u> | Removing edges (H,K) and (E,F) |
|          | Removing edges (H,K) and (F,G) |
|          |                                |



#### Module 2 Quiz

Quiz, 10 questions

I, **Varun Varun**, understand that submitting work that isn't my own may result in permanent failure of this course or deactivation of my Coursera account.

Learn more about Coursera's Honor Code

Submit Quiz

