Analyzing Android Encrypted Network Traffic to Identify User Actions

Mauro Conti, Senior Member, IEEE, Luigi Vincenzo Mancini, Riccardo Spolaor, and Nino Vincenzo Verde

Structural unit	Move	Corresponding Sentences
Introduction	Move 1	The writers highlight the interest of their
section		work.
	Step 1	THE amount of sensitive data that users
		handle with their mobile devices is truly
		staggering. People continuously carry
		these devices with them and use them for
		daily communication activities, including
		not only voice calls and SMS, but also
		emails and social network interactions. A
		typical user gains access to her savings
		and checking account by using her
		smartphone. She installs and uses several
		apps to communicate with friends or
		acquaintances. Through her smartphone,
		she gets information about sensitive
		topics such as diseases, sexual or religious
		preferences, etc.
	Step 2	Describing what is known about the
		research topic.
		As a consequence, <u>several concerns have</u>
		been raised about the capabilities of these
		portable devices to invade the privacy of
		users actually becoming "tracking
		<u>devices"</u> . In this context, an important
		aspect is related to the possibility of

		continuously spying and locating an
		continuously spying and locating an
		individual [3], [32], [35].
Step	3	Reviewing items of previews research to
		reinforce the importance of their
		research.
		Solutions to identify and isolate malicious
		code running on smartphones [31], [37],
		[42] as well as to protect against attacks
		coming from the network [4], [11] might
		significantly reduce current threats to
		user privacy. While people become more
		familiar with mobile technologies and
		their related privacy threats (also thanks
		to the attention raised by the media, e.g.,
		see the recent attention on NSA for
		supposedly eavesdropping foreign
		governments leaders such as Angela
		Merkel [35]), users have started adopting
		good practices that better adapt to their
		privacy feeling and understanding.
		However, many mobile apps use the
		Secure Sockets Layer (SSL) – and its
		successor Transport Layer Security (TLS) –
		as a building block for encrypted
		communications.
Mov	e 2	Establishing a niche
Step		Criticism of the weak points of any
		previous work
Step	1C	indicating the possible gaps regarding
		previous work
		Unfortunately, we believe that even
		adopting such good practices would not
		anopting and book practices would not

willing to trace people. Indeed, several attacks may violate the privacy of the user even when the adversary does not physically or remotely control the user device. In this paper, we consider a passive attacker that is able to sniff the network traffic of the devices from the network side. Obviously, if the network traffic is not encrypted, the task of such an attacker is simple: he can analyze the payload and read the content of each packet.

Even when such solutions are in place, the adversary can still infer a significant amount of information from the analysis of the properly encrypted network traffic. For example, work leveraging analysis of encrypted traffic already highlighted the possibility of understanding the apps a user has installed on her device [36], or identify the presence of a specific user within a network [38].

Step 1D

presenting writer's work as a continuation of previous research topic

This work focuses on understanding whether the user profiling made through analyzing encrypted traffic can be enhanced to understand exactly what actions the user is doing on her phone: as concrete examples, we aim at identifying actions such as the user sending an email,

	receiving an email, browsing someone profile on a social network, publishing a post or a tweet. The underlying issue we leverage in our work is that SSL and TLS protect the content of a packet, while they do not prevent the detection of
	networks packets patterns that instead
	may reveal some sensitive information
	about the user behavior.
Move 3	Description of the main feature of the
	study
Step 1B	In this paper (which is an extended
	version of the work in [12]), we propose a
	framework to infer which particular
	actions the user executes on some app
	installed on her mobile-phone. In
	particular, we <u>assume</u> that the traffic is
	encrypted and the adversary eavesdrops
	(without modifying them) the messages
	exchanged between the user's device and
	the web services that she uses.
Step 1C	Announcing the main findings
	Our framework <u>analyzes</u> the network
	communications
	and leverages information available in
	TCP/IP packets (like IP addresses and
	ports), together with other information
	like the size, the direction
	(incoming/outgoing), and the timing. By
	using an approach based on machine
	learning, each app that is of interest is
	analyzed independently. To set up our

system, for each app we first pre-process a dataset of network packets labeled with the user actions that originated them, we cluster them in flow typologies that represent recurrent network flows, and finally we analyze them in order to create a training set that will be used to feed a classifier. The trained classifier will then be able to classify new traffic traces that have never been seen before. We run a thorough set of experiments to evaluate our solution considering seven popular apps: Facebook, Gmail, Twitter, Tumblr, Dropbox, Google+ and Evernote. The results show that it can achieve accuracy and precision higher than 95%, for most of the considered actions. In the current version of the paper, we also add a discussion

(not present in [12]) about the key idea underneath our traffic analysis approach. In particular, we examine in depth the concept of network flow and the metric to evaluate the similarity between them. We also report details of the machine learning techniques we leverage in our method. Furthermore, in addition to our previous work [12], we run a thorough comparison of our solution with three state of the art algorithms, showing that our solution outperforms them in all of the cases.

Step 1D

Indicating the RA structure

Organization: The rest of this paper is organized as follows. In Section II, we revise the state of the art around our research topic. In Section III, we introduce some background knowledge on machine learning and data mining tools used in our work. In Section IV, we present our framework describing all its different components. We present the evaluation of our solution for identifying user actions in Section V, where we compare with similar solutions as well. In Section VI, we discuss about possible countermeasures against the proposed attack. Finally, in Section VII we draw some conclusions and point out ways in which this work can be further extended.