

深度学习基础知识

第1部分:深度学习介绍

NVIDIA 深度学习培训中心 (DLI)

人工智能、加速计算和加速数据科学实战培训

- 面向开发者、数据科学家和研究人员
- 权威机构和专家强强联合打造专业培训
- 运用前沿技术的端到端、多行业应用开发课程
- 真实经验分享,获取现实可用的专业知识
- · 完全配置的 GPU 实时开发环境
- · 由具有学科专业知识的 DLI 认证讲师授课
- · NVIDIA 全球开发者培训证书

查看课程 <u>nvidia.cn/dli</u>

要查看课堂笔记,请全屏显示并单击 "notes"(笔记)按钮

欢迎大家!

本课程的目标

- 助您快速入门并独立解决问题
- 为您能够立即开始处理深度学习项目构建基础
- 本课程不包含深度学习领域的全部内容,但会让您获得很好的起步优势
- 为您继续阅读相关文章、教程或进一步学习奠定基础

课程议题

第 1 部分: 深度学习简介

第2部分:神经网络是如何训练的

第3部分:卷积神经网络

第 4 部分:数据增强与模型部署

第5部分: 预训练的模型

第6部分: 更高级的模型结构

课程议题 - 第 1 部分

- ▶ 人工智能(AI)的历史
- * 深度学习的进化
- 深度学习是如何令世界改观的
- ▶ 本课程概览
- 第一个练习

愉快地学习!

人类与机器学习对比

放松性警觉

人类	机器
休息和消化	训练
战斗或逃跑	预测

人工智能的开端

计算机的部分用途是 完成人工任务

早期阶段, 通用智能看起来有可能实现

事实证明, 这比预期要难

早期神经网络

受到生物学启发

构建于 20 世纪 50 年代

被冯·诺伊曼结构超越

专家系统

高度复杂

由数百位工程师编程

对许多规则进行严格编程

专家系统 - 局限性

这三幅图像是什么?

儿童如何学习?

- 让他们接触大量数据
- 向他们提供"正确答案"
- 他们将自己挑选重要的模式

深度学习革命

数据

- 网络需要大量信息进行学习
- 数字时代和互联网提供了这些 数据

计算能力

需要找到一种方法,能让我们的人工"大脑"在实际时间内观察大量数据

GPU 的重要性

什么是深度学习?

深度学习彻底颠覆了传统的编程方法

传统编程

构建分类器

定义一组 分类规则

机器学习

构建分类器

向模型展示示例 以及有关如何 分类的答案

模型进行猜测, 而我们会告诉它 正确与否

训练过程中, 模型学习如何正确 进行分类。模型 自主学习规则

这是一个根本性的转变

何时选择深度学习

经典编程

如果规则清晰易懂, 通常只对其进行 编程即可 深度学习

如果规则微妙 复杂且难以辨别,则 使用深度学习

深度学习与其他 AI 对比

网络具有深度和复杂性

多达数十亿参数(并且仍在增长)

模型中包含许多层

对学习复杂规则很重要

深度学习正在如何令世界改观

计算机视觉

机器人技术 和制造业

目标检测

自动驾驶汽车

自然语言处理

实时翻译

语音识别

虚拟助理

推荐系统

内容策划

定向广告

购物建议

强化学习

ALPHAGO 战胜 围棋世界冠军

AI 机器人战胜职业 电子游戏玩家

股票交易机器人

实战练习

- 熟悉和适应深度学习的流程
- 接触不同的模型和数据类型
- 开始着手处理自己的项目

课程结构

深度学习"Hello World"程序 训练更复杂的模型 用来提升性能的新架构和新技术 预训练的模型 迁移学习

课程所用平台

GPU 驱动的云服务器

JupyterLab 平台

用于交互式编码的 Jupyter Notebook

课程所用软件

- 主要的深度学习平台:
 - TensorFlow 和 Keras (Google)
 - Pytorch (Facebook)
 - MXNet (AWS)
- · 我们将使用 Pytorch
- 建议大家在深入学习的过程中也接触其他平台

第一项练习:

对手写体数字进行分类

认识神经网络

训练网络对手写体数字 作出正确分类

• 过去很重要且计算机又难以处理的任务

尝试像神经网络 _____那样学习

• 接触示例, 并尝试找出其运作规则

让我们开始吧!

DEEP LEARNING INSTITUTE

学习更多 DLI 课程,请访问 nvidia.cn/DLI