

Stock Price Prediction

using ARIMA and XGBoost Model

2024-08-03

I. Introduction

This report presents the findings of stock price prediction project, which aimed to develop models for forecasting stock prices based on historical data. Five stocks have been used: Apple (AAPL), Google (GOOGL), Morgan Stanley (MS), JP Morgan(JPM), and Goldman Sachs (GS).

II. Methodology

The approach involves the following steps:

- 1. Data Collection and Preparation
- 2. Exploratory Data Analysis (EDA)
- 3. Feature Engineering
- 4. Model Development (ARIMA and Gradient Boosting)
- 5. Model Evaluation

III. Data Collection and Preparation

Data of 5 Stocks - Apple, Google, Morgan Stanley, JP Morgan and Goldman Sachs was collected from Yahoo Finance using yfinance library

Augmented Dickey-Fuller test Results:

Metric	AAPL	GOOGL	MS	JPM	GS
ADF Statistic	0.2600	0.1529	-0.8182	-0.8664	-1.1432
p-value	0.9754	0.9695	0.8137	0.7988	0.6976
1% Critical Value	-3.4330	-3.4330	-3.4330	-3.4330	-3.4330
5% Critical Value	-2.8627	-2.8627	-2.8627	-2.8627	-2.8627
10% Critical Value	-2.5674	-2.5674	-2.5674	-2.5674	-2.5674

IV. Model Development

ARIMA Model:

I used auto_arima function of the pmdarima to find the optimal p,q,d values instead of ACF and PACF Plots.

```
Performing stepwise search to minimize aic
                                 : AIC=5298.559, Time=1.21 sec
ARIMA(2,1,2)(0,0,0)[0] intercept
ARIMA(0,1,0)(0,0,0)[0] intercept
                                 : AIC=5300.881, Time=0.23 sec
                                 : AIC=5299.351, Time=0.17 sec
ARIMA(1,1,0)(0,0,0)[0] intercept
                                 : AIC=5299.632, Time=0.35 sec
ARIMA(0,1,1)(0,0,0)[0] intercept
ARIMA(0,1,0)(0,0,0)[0]
                                 : AIC=5301.885, Time=0.09 sec
                                 : AIC=5297.974, Time=1.07 sec
ARIMA(1,1,2)(0,0,0)[0] intercept
ARIMA(0,1,2)(0,0,0)[0] intercept
                                 : AIC=5297.632, Time=0.44 sec
                                 : AIC=5294.344, Time=0.62 sec
ARIMA(0,1,3)(0,0,0)[0] intercept
                                 : AIC=5294.000, Time=2.06 sec
ARIMA(1,1,3)(0,0,0)[0] intercept
ARIMA(2,1,3)(0,0,0)[0] intercept
                                 : AIC=5272.445, Time=9.55 sec
ARIMA(3,1,3)(0,0,0)[0] intercept
                                 : AIC=5272.005, Time=9.56 sec
                                 : AIC=5271.683, Time=5.50 sec
ARIMA(3,1,2)(0,0,0)[0] intercept
                                 : AIC=5294.429, Time=1.75 sec
ARIMA(3,1,1)(0,0,0)[0] intercept
                                 : AIC=5301.005, Time=2.53 sec
ARIMA(2,1,1)(0,0,0)[0] intercept
                                 : AIC=5273.014, Time=11.12 sec
ARIMA(3,1,2)(0,0,0)[0]
Best model: ARIMA(3,1,2)(0,0,0)[0] intercept
Total fit time: 46.272 seconds
                            SARIMAX Results
Dep. Variable:
                                     No. Observations:
                                                                    1996
                                    Log Likelihood
Model:
                  SARIMAX(3, 1, 2)
                                                               -2628.842
Date:
                 Sat, 03 Aug 2024
                                    AIC
                                                                5271.683
Time:
                          07:32:46
                                    BIC
                                                                5310.872
Sample:
                         01-31-2014
                                    HQIC
                                                                 5286.074
                       - 01-03-2022
Covariance Type:
                               opq
______
               coef
                                             P>|z|
                                                       [0.025
                      std err
intercept
            0.0477
                        0.027
                                  1.734
                                             0.083
                                                       -0.006
                                                                   0.102
             0.5766
ar.L1
                        0.014
                                 42.405
                                             0.000
                                                       0.550
                                                                   0.603
ar.L2
            -0.9181
                       0.012
                                 -74.331
                                             0.000
                                                       -0.942
                                                                  -0.894
ar.L3
            -0.0772
                       0.012
                                 -6.398
                                           0.000
                                                       -0.101
                                                                  -0.054
                       0.009
                                                       -0.642
                                 -71.570
ma.L1
            -0.6246
                                             0.000
                                                                  -0.607
ma.L2
             0.9731
                       0.009
                                103.374
                                             0.000
                                                       0.955
                                                                   0.992
sigma2
             0.8169
                         0.014
                                  59.225
                                             0.000
                                                        0.790
                                                                   0.844
Ljung-Box (L1) (Q):
                                 0.02
                                       Jarque-Bera (JB):
                                                                  2377.44
Prob(Q):
                                 0.89
                                       Prob(JB):
                                                                     0.00
Heteroskedasticity (H):
                                 5.82
                                       Skew:
                                                                    -0.04
Prob(H) (two-sided):
                                 0.00
                                       Kurtosis:
                                                                     8.35
```

XGBoost Model:

I used Bayesian optimization instead of GridSearch and RandomSearch for Hyperparameter Tuning for the following reasons.

- Efficiency: Bayesian optimization explores the hyperparameter space more efficiently than GridSearchCV.
- Complex Search Spaces: Bayesian optimization handles complex relationships between hyperparameters better.
- Early Stopping: Bayesian optimization can terminate the search early if performance plateaus.

Model Parameters:

- 1. ARIMA (Auto-Regressive Integrated Moving Average)
 ARIMA(3,1,2)(0,0,0)[0] intercept
- 2. XGBoost

```
'n_estimators': 325, 'learning_rate': 0.0455081099701603, 'max_depth': 5, 'min_child_weight': 14, 'subsample': 0.9939195480488889, 'colsample_bytree': 0.9742302863939567
```

V. Key Findings

Data Analysis

- The stock prices of all five companies showed an overall upward trend over the analyzed period.
- We observed varying levels of volatility across the stocks, with some periods of high volatility coinciding with major market events.
- The distribution of daily returns for most stocks appeared to be approximately normal but with fat tails, indicating the presence of extreme price movements.

Feature Engineering

- **Exponential Moving Average (EMA)** 9 days: Calculates the EMA over a 9-day period to capture short-term trends.
- **Simple Moving Averages (SMA)**: Computes SMAs for various window sizes (5, 10, 15, and 30 days) to analyze price trends over different periods.
- **Relative Strength Index (RSI)**: Measures the speed and change of price movements over a 14-day period, indicating overbought or oversold conditions.
- Moving Average Convergence Divergence (MACD): Computes the difference between the 12-day and 26-day EMAs to assess the strength and direction of a trend.
- MACD Signal Line: Calculates the 9-day EMA of the MACD to identify potential buy or sell signals.
- **Stochastic Oscillator**: Measures momentum by comparing the closing price to its price range over a specific period. The <u>Technical Analysis Library</u> (ta) was used to calculate Stochastic Oscillator.

Feature Importance Graph

Model Performance

Metric	ARIMA Model	XGBoost Model	
Mean Squared Error (MSE)	2.589	1.662	
Root Mean Squared Error (RMSE)	1.609	1.289	
Mean Absolute Error (MAE)	1.211	0.981	
Mean Absolute Percentage Error (MAPE)	1.401	1.140	

The Evaluation Metrics and the Graph show that the **XGBoost Model is better** in Accuracy and Reliability than the ARIMA Model.

VI. Visualizations

Closing Price vs Date Graph:

Seasonal Decomposition of the Stocks:

Seasonal Decomposition of Stocks data

Volume vs Date Graph:

Volatility vs Date Graph:

