

Zadatak Zatvor

Alice i Bob su nepravedno osuđeni na zatvor s maksimalnim osiguranjem. Sada moraju isplanirati bijeg. Da bi to učinili, moraju moći komunicirati što učinkovitije (posebno Alice mora slati dnevne informacije Bobu). Međutim, ne mogu se sastati i mogu razmjenjivati informacije samo putem bilješki napisanih na salvetama. Svaki dan Alice želi poslati novu informaciju Bobu - broj između 0 i N-1. Za svaki ručak Alice dobiva tri salvete i na svaku salvetu napiše broj između 0 i M-1 (mogu se ponavljati) i ostavlja ih na svom sjedalu. Zatim njihov neprijatelj, Charly, uništava jednu od salveta i pomiješa preostale dvije. Konačno, Bob pronalazi dvije preostale salvete i čita brojeve na njima. Mora točno dekodirati izvorni broj koji mu je Alice htjela poslati. Na salvetama je ograničen prostor, pa je M fiksan. Međutim, Alicein i Bobov cilj je maksimizirati protok informacija, tako da mogu slobodno odabrati što veći broj N. Pomozi Alici i Bobu tako što ćeš za svakog od njih primijeniti strategiju, pokušavajući maksimizirati vrijednost od N.

🔏 Implementacijski detalji

Budući da se radi o komunikacijskom problemu, vaš će se program izvršavati u dva odvojena izvršavanja (jedno za Alice i jedno za Boba) koja ne mogu dijeliti podatke ili komunicirati na bilo koji drugi način osim onog opisanog ovdje. Potrebno je implementirati tri funkcije:

```
int setup(int M);
```

Ova funkcija će biti pozvana jednom na početku Alicinog izvršavanja vašeg programa i jednom na početku Bobovog izvršavanja. Dodijeljen je M i funkcija mora vratiti željeni N. Oba poziva funkcije setup moraju vratiti isti N.

```
std::vector<int> encode(int A);
```

Ova funkcija implementira Alisinu strategiju. Bit će pozvana s brojem za kodiranje A $(0 \le A < N)$ i mora vratiti tri broja W_1, W_2, W_3 $(0 \le W_i < M)$ koji kodiraju A. Ova funkcija bit će pozvana ukupno T puta – jednom dnevno (vrijednosti A mogu se ponavljati između dana).

```
int decode(int X, int Y);
```

Ova funkcia implementira Bobovu strategiju. Bit će pozvana s dva od tri broja koje vraća encode nekim redoslijedom. Mora vratiti istu vrijednost A koju je encode primio. Ova će se funkcija također pozivati T puta - što odgovara T pozivima funkcije encode; bit će istim redoslijedom. Svi pozivi funkcije encode dogodit će se prije svih poziva funkcije decode.

Ograničenja

- $M \le 4300$
- T = 5000

Bodovanje

Za određeni podzadatak, udio S bodova koje dobijete ovisi o najmanjem N koji vraća setup na bilo kojem testu u tom podzadatku. Također ovisi o N^* , što je ciljana vrijednost od N koja vam je potrebna da biste dobili puni broj bodova za podzadatak:

- Ako je vaše rješenje krivo na bilo kojem primjeru, tada je S=0.
- Ako je $N \ge N^*$, tada je S = 1.0.
- $\bullet \ \ \mathsf{Akoje} \ N^* \text{, tadaje} \ S = \max \Big(0.35 \max \Big(\frac{\log(N) 0.985 \log(M)}{\log(N^*) 0.985 \log(M)}, 0.0 \Big)^{0.3} + 0.65 \left(\frac{N}{N^*} \right)^{2.4}, 0.01 \Big).$

Podzadaci

Podzadatak	Bodovi	M	N^*
1	10	700	82017
2	10	1100	202217
3	10	1500	375751
4	10	1900	602617
5	10	2300	882817
6	10	2700	1216351
7	10	3100	1603217
8	10	3500	2043417
9	10	3900	2536951
10	10	4300	3083817

Primjer

Razmotrimo sljedeći primjer s T=5. Ovdje imamo shemu kodiranja gdje Alice šalje tri jednaka broja za kodiranje 0 ili tri različita broja za kodiranje 1. Primijetite da Bob može dekodirati izvorni broj iz bilo koja dva od tri broja koje je Alice poslala.

Osoba	Poziv funkcije	Povratna vrijednost	
Alice	setup(10)	2	
Bob	setup(10)	2	
Alice	encode(0)	{5, 5, 5}	
Alice	encode(1)	{8, 3, 7}	
Alice	encode(1)	{0, 3, 1}	
Alice	encode(0)	{7, 7, 7}	
Alice	encode(1)	{6, 2, 0}	
Bob	decode(5, 5)	0	
Bob	decode(8, 7)	1	
Bob	decode(3, 0)	1	
Bob	decode(7, 7)	0	
Bob	decode(2, 0)	1	

1 Ocjenjivač probnih primjera

Za primjer ocjenjivača, svi pozivi na encode i decode bit će u istom izvršavanju vašeg programa. Osim toga, setup će se pozvati samo jednom (za razliku od dva puta, jednom po izvršavanju, kao u sustavu ocjenjivanja).

Ulaz je samo jedan cijeli broj – M. Zatim će ispisati N koje je vaš setup vratio. Zatim će pozvati funkcije encode i decode ovim redoslijedom T puta sa slučajno generiranim brojevima od 0 do N-1 i slučajno generiranim izborima koja dva od tri broja iz encode dati decode (i kojim redoslijedom). Ispisat će poruku o pogrešci ako vaše rješenje nije uspjelo.