Words aren't created equal: Investigating bias on the CDI

Anonymous CogSci submission

Abstract

Children's early language skill has been linked to later educational outcomes, making it important to accurately measure early language. Parent-reported instruments such as the Communicative Development Inventories (CDIs) have been shown to provide valid, consistent measures of children's aggregate early language skill. However, CDIs are predominantly comprised of hundreds of vocabulary items, some of which may not be heard (and thus learned) equally often by children of varying backgrounds. Here, we use a database of American English CDIs to identify words that show strong bias for particular groups of children, along the axes of sex (male vs. female), race/ethnicity (white vs. non-white), and socioeconomic status (high vs. low). For each axis, we identify dozens of strongly biased items, and show that eliminating these items reduces the expected ability difference between groups. For sex, we consider how to propose replacement words that may show less bias, on the basis of their relatively equal frequency in adult speech directed to male and female children.

Keywords: language acquisition; word learning; measuring instrument bias; development;

Introduction

Researchers, clinicians, and parents have long been fascinated with the surprising speed and variability in the growth of young children's vocabulary. Children's early vocabulary growth is assumed to reflect not only their exposure to childdirected speech, but also the varying difficulty of different types of words, and individual differences in the aptitude of the child – including potential language deficits. Research has uncovered both within-child consistency in development, as well as significant influence from external factors. For example, Bornstein, Hahn, & Putnick (2016) found stability in core language skills across 10 years of children's development, despite changes in maternal income and education over the study period. Yet socioeconomic status (SES) has also been found to be predictive of children's early language skill, and of later educational outcomes (for a review, see Schwab & Lew-Williams, 2016). Biological factors are also predictive of language skill: first-born children tend to outpace their siblings, and female children tend to have better language skills than their age-matched male counterparts (Fenson et al., 1994) – an sex-based verbal advantage that continues through high school (see Petersen, 2018 for a review). However, it is also difficult to measure language skill: in any short recording children are unlikely to use all of the words and constructions that they know, and any comprehensive battery of language measures will likely exhaust children's attention span.

The MacArthur-Bates Communicative Development Inventories (CDIs; Fenson et al., 2007) are a set of parentreported measures of children's productive and receptive language skills, which produce a low-cost and reliable way to estimate children's early language skills (Fenson et al., 1994). CDIs have shown good predictive validity [e.g., Fenson et al. (1994); Bornstein et al. 2012, Duff et al. 2015]. Our focus will be on the vocabulary checklist portion of the CDI Words & Sentences (CDI:WS) form, comprised of 680 earlylearned words across 22 categories (e.g., animals, vehicles, action words, pronouns) selected to assess the productive vocabulary of children 16 to 30 months of age. For each item on the CDI:WS, caregivers are asked to respond whether the target child has been heard to say (i.e. produce) the given item.¹ Children's total vocabulary score on the CDI:WS is tightly correlated with other facets of early language (e.g., grammatical competence and gesture), suggesting that the language system is "tightly woven" (Frank, Braginsky, Yurovsky, & Marchman, 2021). Due to these desirable properties, CDIs have been adapted to dozens of languages, and a central repository of CDI data contributed from all over the world has been created (Wordbank; Frank, Braginsky, Yurovsky, & Marchman, 2017; Frank et al., 2021).

Inspired by the utility and widespread use of the CDI, researchers have recently been using psychometric models on CDI data to construct short, adaptive tests to reliably assess language ability using only a small subset of the CDI items (e.g., Mayor & Mani, 2019, p. @kachergis2021cat). These psychometric models typically come from the Item-Response Theory (IRT) framework (Baker, 2001), which assumes that not only test-takers (here, children) have normally-distributed ability, but that items (words on the CDI) have normallydistributed difficulty. The very efficacy of these IRT-based models depends on words varying in difficulty, and hence being more/less informative of the ability level of different individuals. For example, asking whether a 22-month-old produces the word "ball" is far less informative of that child's language ability than asking whether they produce "table", as 96% of 22-month-olds can produce the former, while only 47% produce the latter.

While it is quite reasonable to expect that some CDI words

¹The CDI: Words and Gestures form includes a subset of the CDI:WS items and targets children 12 to 18 months of age, measuring both comprehension and production.

are easier than others, and even to use these varying difficulties to predict variation in children's language ability, the use of psychometric models highlights the possibility that some CDI items may function differently (i.e., be more/less difficult) for different groups of children. The idea that some items on a test may show bias, favoring one group over another, is known as Differential Item Function (DIF; Holland & Wainer (1993)]. A variety of

Fundamental DIF Problem

what is our goal for measuring vocabulary? - identifying language delays, predicting later reading, or talking...

how you select items influences how well you achieve these goals (and what bias you find)

We take the approach put forward by Stenhaug, Frank, & Domingue (2021): GLIMMER plots based on the 1-parameter logistic are sufficient to identify bias, without potentially obscuring DIF in a more complex model's additional parameters.

Differential item functioning (DIF) is a technique in IRT used to identify items that show bias against demographic groups. DIF is a statistical characteristic of an item that shows the extent to which the item might operate differently or measure varying abilities for subgroups and members of separate demographic groups. DIF is, however, a challenging metric for identifying bias for a couple reasons. Firstly, DIF is extremely hard to accurately root out. The process of finding DIF involves using the test you used to do IRT analysis in order to look for bias within the very same test. Secondly, the presence of DIF does not necessarily indicate the presence of bias; it can indicate that one demographic has a higher average ability level than the other. These two issues are the basis upon which we get the Fundamental DIF Identification problem.

This problem can be be understood through a concrete example that is well-known from research on early language learning: consider the fact that females show a larger vocabulary than males across early development [see Frank et al. (2021) Ch. 6?; OTHER REFS]. The question is whether or not females actually have a higher ability level, or if the tests predominantly have words that are easier for females (i.e., biased). (It could even be that the test is biased toward males but the language ability of females is large enough to overcome that bias.) To address this question, we need to know the ability levels of girls and boys in order to confirm that if a word is learned earlier by girls it is simply because of an ability difference rather than a bias inherent to the word. The problem arises from the fact that we measure ability level using the very same test that we are trying to check for biased words. If the boys and girls were of the same average language ability, this would not be an issue but given the evidence showing that girls have a higher ability level, we need to know the difference in ability so that when we find DIF for a specific word can be sure it is outside of the expecting DIF that results naturally from their difference in ability.

The outline of this paper is as follows. First, we will introduce the Wordbank data and the Rasch model we use to analyze the data.

Methods

Vocabulary Data

Participants We analyze parent-reported Wordbank data from 5520 American English CDI: Words & Sentences administrations for children 16 to 30 months of age (Frank et al., 2017, 2021). Unlike other projects Wordbank relies on the kindness of others to contribute their data which means that often meta-data for some sets is missing. When they received complete information, the Wordbank data set collected demographic data consisting of Birth Order, Race/Ethnicity, Sex and Mothers Education. We focused on comparing data between demographic groups on the axes of Sex, Ethnicity and Mother's Education, a proxy for socioeconomic status (henceforth, SES). Our data included 1989 female and 2105 male participants, and an additional 1426 participants whose sex remained unreported. In terms of Ethnicity data was recorded from 2202 white, 67 Asian, 222 Black, 131 Hispanic, and 93 "Other" participants as well as 2805 unreported. Given our distribution of ethnicities, for our analysis we split participants into White (2202) and Non-White (513). Finally, we split participants into high and low SES, of which we had 4973 high SES participants, corresponding to mothers' education of some college or higher and 547 Low SES participants.

Rasch Model

The Rasch model, also known as the 1-parameter logistic (1PL) model, is the simplest Item Response Theory model, and is thus the easiest to use to investigate potential differences in item function across different groups of participants. The goal of the Rasch model is to jointly estimate for each child j a latent ability θ_j , and for each item i a difficulty parameter b_i . In the model, the probability of child j knowing (i.e., producing or understanding) a given item i is

$$P_i(x_i = 1|b_i, \theta_j) = \frac{1}{1 + e^{-D(\theta_j - b_i)}}$$

where D is a constant scaling parameter (D=1.702) which makes the logistic closely match the ogive function in traditional factor analysis (Chalmers, 2012; Reckase, 2009). Child ability (θ) and item difficulty (b) distributions are standardized (i.e., mean of 0), and expected to be normally-distributed. Children with high latent ability (θ) will be more likely to produce any given item than children with lower latent ability, and more difficult items will be produced by fewer children (at any given θ) than easier items.

For each demographic dimension (sex, socioeconomic status, and ethnicity) we fit a separate Rasch model for each demographic group.

Results

Figure 2: GLIMMER plot of a sample of CDI:WS words from the SES bias model. Words at the top are easier to learn for children from low-SES families, while those at the bottom are easier for those from high-SES families.

Figure 1: GLIMMER plot of a sample of CDI:WS words from the sex bias model. Words at the top are easier to learn for females, while those at the bottom are easier for males.

Figure 3: GLIMMER plot of a sample of CDI:WS words from the ethnicity bias model. Words at the top are easier to learn for children from low-SES families, while those at the bottom are easier for those from high-SES families.

Discussion

Acknowledgements

Place acknowledgments (including funding information) in a section at the end of the paper.

References

- Baker, F. B. (2001). *The basics of item response theory*. ERIC.
- Bornstein, M. H., Hahn, C.-S., & Putnick, D. L. (2016). Stability of core language skill across the first decade of life in children at biological and social risk. *Journal of Child Psychology and Psychiatry*, 57(12), 1434–1443.
- Chalmers, R. P. (2012). mirt: A multidimensional item response theory package for the R environment. *Journal of Statistical Software*, 48(6), 1–29. http://doi.org/10.18637/jss.v048.i06
- Fenson, L., Dale, P. S., Reznick, J. S., Bates, E., Thal, D. J., Pethick, S. J., ... Stiles, J. (1994). Variability in early communicative development. *Monographs of the Society for Research in Child Development*, i–185.
- Fenson, L., Marchman, V. A., Thal, D. J., Dale, P. S., Reznick, J. S., & Bates, E. (2007). *MacArthur-Bates Communicative Development Inventories: User's guide and technical manual (2nd ed.)*. Baltimore, MD: Brookes.
- Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2017). Wordbank: An open repository for develop-

- mental vocabulary data. *Journal of Child Language*, 44(3), 677.
- Frank, M. C., Braginsky, M., Yurovsky, D., & Marchman, V. A. (2021). *Variability and consistency in early language learning: The wordbank project*. MIT Press.
- Holland, P. W., & Wainer, H. (1993). *Differential item functioning*. Routledge.
- Kachergis, G., Marchman, V. A., Dale, P., Mankewitz, J., & Frank, M. C. (2021). Online computerized adaptive tests (cat) of children's vocabulary development in english and mexican spanish.
- Mayor, J., & Mani, N. (2019). A short version of the MacArthur-Bates Communicative Development Inventories with high validity. *Behavior Research Methods*, *51*(5), 2248–2255.
- Petersen, J. (2018). Gender difference in verbal performance: A meta-analysis of united states state performance assessments. *Educational Psychology Review*. Springer.
- Reckase, M. D. (2009). Multidimensional item response theory models. In *Multidimensional item response theory* (pp. 79–112). Springer.
- Schwab, J. F., & Lew-Williams, C. (2016). Language learning, socioeconomic status, and child-directed speech. *WIREs Cognitive Science*, 7, 264–275. http://doi.org/10.1002/wcs.1393
- Stenhaug, B., Frank, M. C., & Domingue, B. (2021). Treading carefully: Agnostic identification as the first step of detecting differential item functioning.