Linear Algebra (MA20105)

Assignment-2

Instructor: Dr. H.P. Sarwar Indian Institute of Technology Kharagpur

- 1. Apply the Gram-Schmidt process to the vectors $\beta_1 = (1,0,1), \beta_2 = (1,0,-1)$ and $\beta_3 = (0,3,4)$ to obtain an orthonormal basis for \mathbb{R}^3 with the standard inner product. Let $A = (\beta_1^t, \beta_2^t, \beta_3^t)$. Then write A = QR where Q is an orthogonal matrix and R is an upper triangular matrix.
- 2. Let W be a subspace of \mathbb{R}^2 spanned by the vector (3,4). Using the standard inner product, let E be the orthogonal projection of \mathbb{R}^2 onto W. Find:
 - (a) a formula for $E(x_1, x_2)$;
 - (b) the matrix of E in the standard ordered basis;
 - (c) W^{\perp}
 - (d) an orthonormal basis in which E is represented by the matrix

$$\begin{bmatrix} 1 & 0 \\ 0 & 0 \end{bmatrix}.$$

5 Marks