Particle spectrograph

Wave operator and propagator

$\tau_{1}^{\#2}{}_{\alpha}$	0	0	0	$\frac{2ik}{t_1 + 2k^2t_1}$	$-\frac{i\sqrt{2}}{(t_1+2k^2t_1)^2}$	0	$\frac{-4k^4r_5+2k^2t_1}{(t_1+2k^2t_1)^2}$
$\tau_{1^{-}\alpha}^{\#1}$	0	0	0	0	0	0	0
$\sigma_{1}^{\#2}{}_{lpha}$	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	$\frac{-2k^2r_5+t_1}{(t_1+2k^2t_1)^2}$	0	$\frac{i\sqrt{2}k(2k^2r_5-t_1)}{(t_1+2k^2t_1)^2}$
$\sigma_{1}^{\#1}{}_{\alpha}$	0	0	0	0	$\frac{\sqrt{2}}{t_1 + 2 k^2 t_1}$	0	$-\frac{2ik}{t_1+2k^2t_1}$
$\tau_1^{\#1}{}_+\alpha\beta$	$-\frac{i\sqrt{2}k}{t_1+k^2t_1}$	$-\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	$\frac{-2k^4r_5+k^2t_1}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#2}{}_{\alpha\beta}$		$\frac{-2k^2r_5+t_1}{(1+k^2)^2t_1^2}$	$\frac{i(2k^3r_5-kt_1)}{(1+k^2)^2t_1^2}$	0	0	0	0
$\sigma_{1}^{\#1}{}_{+}\alpha\beta$	0	$-\frac{\sqrt{2}}{t_1+k^2t_1}$	$\frac{i\sqrt{2}k}{t_1+k^2t_1}$	0	0	0	0
,	$r_1^{\#1} + \alpha \beta$	$r_{1}^{#2} + \alpha \beta$	$t_1^{\#1} + \alpha \beta$	$\sigma_{1}^{\#1} +^{lpha}$	$\sigma_{1}^{\#2} +^{\alpha}$	$\tau_{1}^{\#1} +^{\alpha}$	$\tau_{1}^{\#2} + ^{\alpha}$

	$S = = \iiint (f^{\alpha\beta} \tau_{\alpha\beta} + \omega^{\alpha\beta\chi} - \sigma_{\alpha\beta\chi} + \frac{1}{2} t_1 (2 \omega^{\alpha\prime} - \omega^{\beta}_{\alpha} - 4 \omega^{\beta}_{\alpha} - 3 f^{\alpha\prime} + 4 \omega^{\beta}_{\beta} - 3 f^{\alpha\prime} + 4 \omega^{\beta}_{\alpha} - 3 f^{\alpha\prime} + 4 \omega^{\beta}_{\alpha} - 3 f^{\alpha\prime} + 4 \omega^{\beta}_{\beta} - 3 f^{\alpha\prime} + 4 \omega^{\beta}_{\beta} - 3 \phi^{\beta}_{\beta} - 3 \phi^$	$\partial_{t}f_{\alpha\theta}\partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{\alpha\prime}\partial^{\theta}f^{\alpha\prime} + \partial_{\theta}f_{1\alpha}\partial^{\theta}f^{\alpha\prime} + 2\omega_{\alpha\beta\prime}\left(\omega^{\alpha\prime\theta} + 2\partial^{\theta}f^{\alpha\prime}\right)\right) + \frac{1}{3}r_{2}\left(4\partial_{\beta}\omega_{\alpha\prime\theta} - 2\partial_{\beta}\omega_{\alpha\beta\prime} + 2\partial_{\beta}\omega_{\alpha\beta\prime} - 2\partial_{\theta}\omega_{\alpha\prime\beta}\right)\partial^{\theta}\omega^{\alpha\beta\prime} + \frac{1}{3}r_{2}\left(4\partial_{\beta}\omega_{\alpha\prime\theta} - 2\partial_{\beta}\omega_{\alpha\beta\prime} + 2\partial_{\beta}\omega_{\alpha\beta} - 2\partial_{\beta}\omega_{\alpha\beta\prime}\right)\partial^{\theta}\omega^{\alpha\beta\prime} + \frac{1}{3}r_{2}\left(4\partial_{\beta}\omega_{\alpha\beta} - 2\partial_{\beta}\omega_{\alpha\beta\prime}\right)\partial^{\theta}\omega^{\alpha\beta\prime} + \frac{1}{3}r_{2}\left(4\partial_{\beta}\omega_{\alpha\beta}\right)\partial^{\theta}\omega^{\alpha\beta\prime} + \frac{1}{3}r_{2}\left(4\partial_{\beta}\omega_{\alpha\beta}\right)\partial^{\phi}\omega^{\beta} + \frac{1}$	$r_{5}\left(\partial_{l}\omega_{\theta}^{\ \ \ \ } \partial^{\theta}\omega^{lpha_{l}}_{\ \ \ \ \ \ \ } -\partial_{ heta}\omega_{lpha^{k}}^{\ \ \ \ \ } -(\partial_{lpha}\omega^{lpha_{l}}^{\ \ \ \ \ } -2\partial^{\theta}\omega^{lpha_{l}}_{\ \ \ \ \ })(\partial_{\kappa}\omega_{l}^{\ \ \ \ \ \ } -\partial_{\kappa}\omega_{\theta}^{\ \ \ \ \ })))[$ $t,\ x,\ y,\ z]dlzdlydlxdlt$	$\omega_{1}^{*2} = f_{1}^{*1} = \frac{f_{1}^{*2}}{\alpha} = f_$	- (1+	$ \sigma_{0}^{\#1} $ $ \frac{1}{k^{2}k^{2})^{2}} $ $ \frac{i}{k^{2}k^{2}} $ $ 0 $ $ 0 $	$\begin{array}{c c} \hline t_1 & \hline \\ \hline t_1 & \hline \\ \hline$	$ \tau_{0}^{#1} + \frac{\tau_{0}^{*1}}{\sqrt{2} k} + 2k^{2})^{2} \\ $	$t_0^{t_0}$ t_1 t_1 t_1 t_1 t_2 t_3)	0 0 0 1 r ₂ -t ₁
	$\frac{\theta}{\theta} - 4$	$\alpha\theta_{l}$ ($\alpha\theta_{l}$	$\partial^{ heta}\omega^{\epsilon}$	$f_1^{\#1}$	0	0	0	0	0	0	0
	$a' \qquad \omega'$ $a \qquad \omega'$	α'' + 2 ω $\omega_{\alpha\beta\theta}$ +	, αιθ - 2	$\omega_{1^-}^{\#2}$	0	0	0	$\frac{t_1}{\sqrt{2}}$	0	0	0
	$rac{1}{2} t_1 (2 \omega')$	$f_{I\alpha}\partial^{\theta}f^{\alpha I}$, $g\omega_{I}\partial^{\alpha}-\partial_{I}\partial^{\alpha}$	$_{lpha }^{lpha }$ - $(\partial _{lpha }\omega)$	$\omega_{1^{-}}^{\#1}{}_{\alpha}$	0	0	0	$k^2 r_5 - \frac{t_1}{2}$	$\frac{t_1}{\sqrt{2}}$	0	$-ikt_1$
nc	$\sigma_{lphaeta\chi}^{}+$	$a'' + \partial_{\theta}$ $a'' + 2\partial_{\theta}$	$\int_{-\kappa}^{\kappa} \partial^{\theta} \omega$	$f_1^{\#1} + \alpha \beta$	$-\frac{ikt_1}{\sqrt{2}}$	0	0	0	0	0	0
e) actic	$\omega^{\alpha\beta\chi}$	$_{\theta}f_{\alpha_{l}}\partial^{\theta}f_{\alpha_{l}}$	$^{\prime\prime}_{}$ - $\partial_{\theta}\omega$	$\omega_1^{\#_2^2}$	$-\frac{t_1}{\sqrt{2}}$	0	0	0	0	0	0
Quadratic (free) action	$f^{\alpha\beta} t^{\alpha\beta} + f^{\alpha} - f^{\alpha}$	$\frac{\partial^2 f^{\alpha l}}{\partial \theta^2 f^{\alpha l}} + \frac{\partial^2 f^{\alpha l}}{\partial \theta^2 \alpha_{l} \theta^{-l}}$	$r_{5} \left(\partial_{i} \omega_{\theta}^{\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	$\omega_{1+lphaeta}^{\#1}$ $\omega_{1+lphaeta}^{\#2}$ $f_{1+lphaeta}^{\#1}$	~~	$-\frac{t_1}{\sqrt{2}}$		0	0	0	0
Quadr	S == [][](1) 2 0, f ⁶	$\frac{1}{3}r_2$ (4	$r_5 (\partial_i c$ t, x, y		$\omega_1^{\#1} + \tau^{lphaeta}$	$\omega_{1}^{\#2} + \alpha^{eta}$	$f_{1}^{#1} \dagger^{\alpha\beta}$	$\omega_{1^{\bar{-}}}^{\#1} +^{\alpha}$	$\omega_1^{\#2} +^{lpha}$	$f_{1}^{\#1} \dagger^{\alpha}$	$f_{1}^{#2} + \alpha$

	$\sigma_{2^{+}\alpha\beta}^{\#1}$	$ au_{2}^{\#1}{}_{lphaeta}$	$\sigma_{2}^{\#1}{}_{\alpha\beta\chi}$	
$\sigma_{2}^{\#1}\dagger^{lphaeta}$	$\frac{2}{(1+2k^2)^2t_1}$	$-\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	0	
$\tau_{2}^{\#1} \dagger^{\alpha\beta}$	$\frac{2i\sqrt{2}k}{(1+2k^2)^2t_1}$	$\frac{4k^2}{(1+2k^2)^2t_1}$	0	
$\sigma_2^{\#1}$ † $^{\alpha\beta\chi}$	0	0	$\frac{2}{t_1}$	

	$\omega_{2^{+}\alpha\beta}^{\#1}$	$f_{2^{+}\alpha\beta}^{\#1}$	$\omega_{2-\alpha\beta\chi}^{\#1}$	
$\omega_{2}^{\#1} \dagger^{\alpha\beta}$	<u>t</u> 1 2	$-\frac{ikt_1}{\sqrt{2}}$	0	
$f_{2+}^{\#1}\dagger^{\alpha\beta}$	$\frac{i k t_1}{\sqrt{2}}$	$k^2 t_1$	0	
$\omega_2^{\#1}$ † $^{lphaeta\chi}$	0	0	<u>t</u> 1 2	
	$\omega_{0}^{\#1}$	$f_{0}^{#1}$	$f_{0+}^{\#2}$	ω_0

	ω_0^+	⁷ 0 ⁺	70+	ω_0 -
$\omega_{0}^{\#1}$ †	-t ₁	$i \sqrt{2} kt_1$	0	0
$f_{0}^{\#1}\dagger$	$-i \sqrt{2} kt_1$	$-2 k^2 t_1$	0	0
$f_{0+}^{#2}\dagger$	0	0	0	0
$\omega_{0}^{\#1}$ †	0	0	0	$k^2 r_2 - t_1$

Source constraints/gauge generators				
SO(3) irreps	Multiplicities			
$\tau_{0^{+}}^{\#2} == 0$	1			
$\tau_{0+}^{\#1} - 2 i k \sigma_{0+}^{\#1} == 0$	1			
$\tau_1^{\#2\alpha} + 2ik \sigma_1^{\#2\alpha} == 0$	3			
$\tau_1^{\#1\alpha} == 0$	3			
$\tau_{1+}^{\#1}{}^{\alpha\beta} + i k \sigma_{1+}^{\#2}{}^{\alpha\beta} == 0$	3			
$\tau_{2+}^{\#1}{}^{\alpha\beta} - 2 i k \sigma_{2+}^{\#1}{}^{\alpha\beta} == 0$	5			
Total constraints:	16			

Massive and massless spectra

(No massless particles)

Unitarity conditions

 $r_2 < 0 \&\& t_1 < 0$