கணிதம் கற்பித்தல்

(Teaching of Mathematics)

வளநூல் – முதலாம் ஆண்டு (ஆசிரியர் கல்விப் பட்டயப் பயிற்சி)

தீண்டாமை ஒரு பாவச்செயல்

தீண்டாமை ஒரு பெருங்குற்றம்

தீண்டாமை மனிதத்தன்மையற்ற செயல்

தமிழ்நாட்டுப் பாடநூல் கழகம் கல்லூரிச் சாலை, சென்னை – 600 006. © தமிழ்நாடு அரசு முதல் பதிப்பு - 2008

தலைவர்

பேரா. Dr. கே. சுப்பம்மாள்

முன்னாள் பேராசிரியா் மற்றும் துறைத்தலைவா், கல்வியியல் துறை, அன்னை தெரசா மகளிா் பல்கலைக்கழகம், கொடைக்கானல்.

நூலாசிரியர்கள் மற்றும் மேலாய்வாளர்கள்

Dr. K. ஸ்ரீனிவாசன்

இணைப் பேராசிரியர், கணிதத் துறை, மாநிலக் கல்லூரி, (தன்னாட்சி) சென்னை–600 005.

Dr. E. ராம் கணேஷ்

இணைப்பேராசிரியா், கல்வி நுட்பவியல் துறை, பாரதிதாசன் பல்கலைக் கழகம், திருச்சி

திரு. M.K. சுப்பிரமணியன்

துணை இயக்குநர் (ஓய்வு), ஆசிரியர் கல்வி ஆராய்ச்சி பயிற்சி இயக்ககம், சென்னை – 600 006.

நூலாசிரியர் & ஒருங்கிணைப்பாளர்

நல்லாசிரியர் **Dr. C. சரோஜா** உதவி பேராசிரியர், ஆசிரியர் கல்வி ஆராய்ச்சி பயிற்சி இயக்ககம், சென்னை – 600 006.

நூலாசிரியர்கள்

Dr. R. பார்வதி

விரிவுரையாளர், மாவட்ட ஆசிரியர் கல்வி, பயிற்சி நிறுவனம், கிருஷ்ணகிரி.

நல்லாசிரியர் **S. முருகேசன்** விரிவுரையாளர், மாவட்ட ஆசிரியர் கல்வி, பயிற்சி நிறுவனம், குமுளுர், திருச்சி மாவட்டம். நல்லாசிரியர். **S.P.கவின்** முதுநிலை விரிவுரையாளர், மாவட்ட ஆசிரியர் கல்வி, பயிற்சி நிறுவனம், தேரூர், கன்னியாகுமரி மாவட்டம்.

நல்லாசிரியர். **Dr. M. காமினி தேவி** முதுநிலை விரிவுரையாளர், மாவட்ட ஆசிரியர் கல்வி பயிற்சி நிறுவனம், ராணிப்பேட்டை, வேலூர் மாவட்டம்.

திரு. பி. இராமலிங்கம்

முதுநிலை விரிவுரையாளர், மாவட்ட ஆசிரியர் கல்வி, பயிற்சி நிறுவனம், கீழ்பெண்ணாத்தூர், திருவண்ணாமலை மாவட்டம்.

வளநூல் தயாரிப்பு : தமிழ்நாடு அரசுக்காக ஆசிரியர் கல்வி ஆராய்ச்சி பயிற்சி இயக்ககம், சென்னை – 600 006.

இந்நூல் 70 ஜி.எஸ்.எம். தாளில் அச்சிடப்பட்டுள்ளது.

வெப் ஆப்செட் முறையில் அச்சிட்டோர் :

இயக்ககத்திலிருந்து...

எண்பொருள வாகச் செலச்சொல்லித் தான்பிறாவாய் நுண்பொருள் காண்பது தறிவு.

மாணவர்களின் திறமைகளை வளப்படுத்துவதும் சுயக் கட்டுப்பாட்டை வளர்ப்பதும் சிறந்த கருத்துகளைக் கேட்டுணரச் செய்வதும் எதையும் கற்றுக்கொள்வதில் முனைப்பை ஏற்படுத்துவதுமெனக் கல்வியின் பரிமாணங்கள் பலவாகும். இக்கல்வியைக் 'கலைத்திட்டம்'(Curriculum) எனும் முறையான ஒழுங்கமைப்புடன் அளித்தலே கல்வி நிறுவனங்களின் தலையாய பணியாகும்.

கலைத்திட்டம் காலத்திற்குக் காலம், இடத்திற்கு இடம், சூழலுக்குச் சூழல், தேவைக்கேற்ப, கற்பவாக்கேற்ப மாற்றி வரையறுக்கப்படுகிறது. தேசிய ஆசிரியா கல்வி ஆராய்ச்சி பயிற்சிக் குழுமம், தற்போதைய கல்வி அமைப்பிற்கெனத் "தேசியக் கலைத்திட்டம் 2005"(NCF 2005)–ஐ வடிவமைத்துள்ளது.

- 1. பள்ளிக்கு வெளியில் பெற்ற கற்றல் அனுபவ அறிவைப் பள்ளி அறிவோடு தொடர்புபடுத்துதல்
- 2. மனப்பாடம் செய்வதைத் தவிர்த்துப் பொருள் புரிந்து கற்பதை உறுதிப்படுத்துதல்
- 3. பாடநூல்களுக்கு அப்பாற்பட்டும் படித்தறிதல் மற்றும் செய்தி திரட்டுதல்
- 4. தேர்வு முறைகளை மேலும் நெகிழ்வாக்கி வகுப்பறைக் கற்றல் செயல்பாடுகளுடன் ஒருங்கிணைத்தல்
- 5. நாட்டின் மக்களாட்சி முறை மற்றும் நாகரிக பண்பாட்டுக் கூறுகளைக் கல்வியோடு இணைத்தல்

முதலியன இதனுடைய வழிகாட்டும் கோட்பாடுகளாகும். இதன் அடிப்படையில், அரசாணை (நிலை) எண். 82, பள்ளிக் கல்வித் (யு1) துறை, நாள் 05.04.2007இன்படி ஆசிரியர் கல்விப் பட்டயப் படிப்பிற்கான கலைத்திட்டமும் பாடத்திட்டமும் தயாரிக்கப்பட்டுள்ளன. 2008–2009ஆம் கல்வியாண்டு முதல் நடைமுறையில் உள்ள இப்புதிய கலைத்திட்டத்தின் மூலம் மாணவ ஆசிரியர்கள் கீழ்க்காணும் திறன்களைப் பெறுவர்.

- தொடர்ந்து அறிவைப் பெருக்கும் திறன்
- அறிந்தவற்றைச் செயல்படுத்தும் திறன்
- தம் திறமைகளை அறிந்து அவற்றிற்கு ஏற்ப வாழும் திறன்; பிறரோடு ஒருமித்து வாழும் திறன்
- 🕨 அனைத்துப் பாடப்பகுதிகளிலும் அதிகபட்சக் கற்றல் அடைவு பெறும் திறன்
- 🕨 ஆக்கப்பூர்வமான செயல்பாடுகளில் ஈடுபடும் திறன்
- ஆய்வு மனப்பான்மை, புதிய கண்டுபிடிப்புகள் ஆகியவற்றில் செயல்திறனை மேம்படுத்தித் தொலைநோக்குப் பார்வையில் சிந்திக்கும் திறன்

மேலும் இக்கலைத்திட்டம் கீழ்க்காணும் நோக்கங்களையும் கொண்டுள்ளது.

- மாணவ ஆசிரியர்களின் பணித்திறனை மேம்படுத்தி, அவர்களின் முழு ஆளுமையை வெளிக்கொணர்தல்
- மாணவ ஆசிரியர்களிடம் நன்னெறி, நாட்டு ஒருமைப்பாடு, மனித நேயப் பண்புகளை வளர்த்தல்
- வளரிளம் பருவக் கல்வி, உடல்நலக் கல்வி, வாழ்க்கைத்திறன் கல்வி, மக்கள் தொகைக் கல்வி, சுற்றுச்சூழல் கல்வி, மனித உரிமைக் கல்வி, சாலைப் பாதுகாப்புக் கல்வி, அமைதிக் கல்வி போன்றவற்றிற்கு முக்கியத்துவம் அளித்தல்.

மேற்கண்ட நோக்கங்களில் அடைவு பெற, இரண்டாண்டு ஆசிரியா் கல்வி பட்டயப் படிப்பிற்கு எட்டு பாடங்கள் மற்றும் ஒன்பது செய்முறைப் பயிற்சிகள் (Practicum) உருவாக்கப்பட்டுள்ளன.

வ. எண்	முதலாமாண்டுப் பாடங்கள்	இரண்டாமாண்டுப் பாடங்கள்				
1	கற்கும் குழந்தை (Learning Child)	இந்தியக் கல்வி முறை (Indian Education System)				
2	கற்றலை எளிதாக்குதலும் மேம்படுத்துதலும் (Facilitating and Enhancing learning)	கற்றலை எளிதாக்குதலும் மேம்படுத்துதலும் (Facilitating and Enhancing learning)				
3	தமிழ்மொழி கற்பித்தல் (Teaching of Tamil)	தமிழ்மொழி கற்பித்தல் (Teaching of Tamil)				
4	மலையாள மொழி கற்பித்தல் (Teaching of Malayalam)	மலையாள மொழி கற்பித்தல் (Teaching of Malayalam)				
5	தெலுங்கு மொழி கற்பித்தல் (Teaching of Telgu)	தெலுங்கு மொழி கற்பித்தல் (Teaching of Telgu)				
6	உருது மொழி கற்பித்தல் (Teaching of Urdu)	உருது மொழி கற்பித்தல் (Teaching of Urdu)				
7	மழலையர் பராமரிப்பு மற்றும் கல்வி (Early Childhood Care and Education)	மழலையர் பராமரிப்பு மற்றும் கல்வி (Early Childhood Care and Education)				
8	ஆங்கில மொழி கற்பித்தல் (Teaching of English)	ஆங்கில மொழி கற்பித்தல் (Teaching of English)				
9	கணிதம் கற்பித்தல் (Teaching of Mathematics)	கணிதம் கற்பித்தல் (Teaching of Mathematics)				
10	அறிவியல் கற்பித்தல் (Teaching of Science)	அறிவியல் கற்பித்தல் (Teaching of Science)				
11	சமூக அறிவியல் கற்பித்தல் (Teaching of Social Science)	சமூக அறிவியல் கற்பித்தல் (Teaching of Social Science)				

ฌ.	முதலாமாண்டுப் பாடங்கள்	இரண்டாமாண்டுப் பாடங்கள்				
1	குழந்தையை உற்றுநோக்கல் மற்றும் தனிமாணாக்கா் ஆய்வு	செயல் திட்டங்கள்				
2	பள்ளிப் பாா்வை	கலைக் கல்வி மற்றும் பணியனுபவம்				
3	கதை கூறுதல்	கணினிக் கல்வியியல்				
4	உடற்கல்வி, உடல்நலக்கல்வி மற்றும் யோகக்கலை	உடற்கல்வி, உடல்நலக்கல்வி மற்றும் யோகக்கலை				
5	சுயவளர்ச்சிப் பணிமனை	சுயவளர்ச்சிப் பணிமனை				
	கற்றல் கற்பித்தல் பொருள்கள்	கற்றல் கற்பித்தல் பொருள்கள்				

சென்னைப் பல்கலைக்கழக முன்னாள் கல்வியியல் துறைத் தலைவர் முனைவர் பி.எஸ். பாலசுப்பிரமணியம் அவர்களின் தலைமையில், கோவை பாரதியார் பல்கலைக்கழக முன்னாள் தொலைவழிக் கல்வி இயக்குநர் முனைவர் எஸ். சுவாமிநாதபிள்ளை, கொடைக்கானல் அன்னை தெரசா மகளிர் பல்கலைக்கழக முன்னாள் துணைவேந்தர் முனைவர் எஸ். இலட்சுமி, சென்னைக் கல்வியியல் மேம்பாட்டு நிறுவனத்தின் முன்னாள் பேராசிரியர் வி.கணபதி, திண்டுக்கல் காந்திகிராம கிராமியப் பல்கலைக்கழக முன்னாள் துணைவேந்தர் முனைவர் ஜி.பங்கஜம், பாண்டிச்சேரி விநாயகா மிஷன் பல்கலைக்கழகக் கல்வியியல் துறைத் தலைவர் முனைவர் கே. சுப்பம்மாள், சென்னைப் பல்கலைக்கழகத் தற்போதைய கல்வியியல் துறைத் தலைவர் முனைவர் டி.குமரன், சிதம்பரம் அண்ணாமலை பல்கலைக்கழகக் கல்வியியல் பராசிரியர் முனைவர் ஏ.க கிருஷ்ணமூர்த்தி ஆகிய குழுத் தலைவர்கள் பல அமர்வுகளில் கலந்துரையாடி, நூல்கள் பல ஆய்ந்தும் தேர்ந்தும் கருத்துகளைப் பகுத்தும் தொகுத்தும் எளிமைப்படுத்தி வளநூல்களை உருவாக்க வழிகாட்டியுள்ளனர்.

ஒவ்வொரு வளநூல் குழுவும், ஆசிரியர் கல்வி ஆராய்ச்சி பயிற்சி இயக்ககம், மாவட்ட ஆசிரியர் கல்வி பயிற்சி நிறுவனங்கள், கல்வியியல் கல்லூரிகள், பல்கலைக்கழகங்கள், வட்டார வள மையம், பள்ளிகள், தன்னார்வத் தொண்டு நிறுவனங்களைச் சார்ந்த கல்வியாளர்களை மேலாய்வாளர்களாகவும் ஒருங்கிணைப்பாளர்களாகவும் நூலாசிரியர்களாகவும் கொண்டுள்ளது. மேலும், திருவனந்தபுரம் கேரளப் பல்கலைக்கழக ஆசிரியக் கல்வியியல் கல்லூரியின் முதல்வர் முனைவர் சி.கே.லில்லி, சென்னை ஆதர்ஷ் கல்வி நிறுவனங்களின் கல்வியியல் ஆலோசகர் முனைவர் என்.லலிதா, கிருஷ்ணகிரி முன்னாள் மாவட்ட தொடக்கக் கல்வி அலுவலர் திரு கே.நாராயணப்பிள்ளை, சென்னைப் பல்கலைக்கழக உருதுமொழி துறைத் தலைவர் முனைவர் எஸ்.சையத் சஜித் ஹூசைன் ஆகியோரைக் குழுத்தலைவர்களாகக் கொண்டு சிறுபான்மைப் பாடங்களுக்கும் வளநூல்கள் உருவாக்கப்பட்டுள்ளன.

காரைக்குடி அழகப்பா பல்கலைக்கழக முன்னாள் ஆட்சிமன்ற உறுப்பினர் முனைவர் ஏ.எம். மூர்த்தி, கிருஷ்ணமூர்த்தி அறக்கட்டளையின் The School அமைப்பைச் சார்ந்த திருமதி. சுமத்ரா ஆ. கௌதமா, தன்னார்வக் கல்வியாளர்களான ஆமுக்தா மால்யதா மஹோபாத்ரா மற்றும் முனைவர் பாலாஜி சம்பத் (எய்ட் – இந்தியா), வேதாத்ரி மகரிஷி மனவளக் கலை மன்றத்தின் உதவிப் பேராசிரியர் திரு. டி.என்.அருளானந்தம், புதுவை பண்பாடு மற்றும் மொழியியல் நிறுவன முதுநிலை விரிவுரையாளர் முனைவர் த.பரசுராமன் ஆகிய கல்வியாளர்களும் வளநூல்கள் உருவாக்கத்திற்குப் பங்களித்துள்ளனர்.

கற்பித்தல் என்னும் ஆசிரியர் மையக் கல்வியிலிருந்து தானேகற்றல் என்னும் மாணவர் மையக் கல்விக்கு மாறியுள்ள இன்றைய தொடக்கக் கல்வி முறை, செயல்கள் வழிக் கற்றலையே அடிப்படையாகக் கொண்டுள்ளது. இப்புதிய வளநூல்களின் ஒவ்வோர் இயலும் செயல்களைக் கொண்டு தொடங்கி மாணவர்கள் தாமாகவே கருத்தை அறிந்துகொள்வதாகக் கட்டமைக்கப்பட்டுள்ளன. மாணவ ஆசிரியர்கள், நூலகங்களைப் பயன்படுத்துதல், பள்ளி மாணவர்களிடம் கற்றல் திறனை மேம்படுத்தத் தமது வகுப்பறைக் கற்பித்தலை வலுப்படுத்துதல், உற்றுநோக்கும் திறன், வகுப்பறை மேலாண்மை, பாடப்பொருளறிவு, துணைக் கருவிகள் மற்றும் கற்றல் பொருள்களைப் பயன்படுத்தும் திறன், தலைமைப்பண்பு, குழந்தை உளவியலை அறிந்திருத்தல் ஆகிய அனைத்துத் திறன்களையும் அடைய வளநூல்கள் வழிகாட்டும். இவ்வளநூல்களைக் கற்பதன் மூலம் பணிஈடுபாடும் (Commitment) விரிந்த அறிவும் பரந்த ஆற்றலும் (Competence) பொறுப்புணர்வுடன் மாணவர் மனங்கொள்ளத்தக்க வகையில் கருத்துகளை எடுத்துரைக்கும் மாண்பும் (Communication) உடைய நல்லாசிரியர்கள் உருவாவர்.

வளநூல் (Source Book) என்பது கற்பதற்கான வளங்கள், ஆதாரங்கள் முதலியன எங்கெங்கே உள்ளன என்பதைக் காட்டும் வழிகாட்டியே. அதிலிருந்து கற்றலை விரிவுபடுத்தித் தேவையான செய்திகளை ஆங்காங்கே திரட்டி மாணவர்களது அறிதல், புரிதல், பயன்படுத்துதல், பகுத்தல், தொகுத்தல், மதிப்பிடல் திறன்களை மேம்படுத்துவதும் தரமான ஆசிரியக் கல்வி பெற வழிவகுப்பதும் வழிகாட்டுவதும் ஆசிரியக் கல்வியாளர்களின் கடமையாகும். புதிய வளநூல்களில் கூறப்பட்டுள்ள கருத்துகளை முழுமையாக உள்வாங்கி, முறையாகப் படித்துப் பயனடைவது அனைத்து மாணவ ஆசிரியர்களின் பொறுப்பாகும்.

வளநூல்களைச் செம்மையாக உருவாக்க உதவிய அனைத்துக் கல்வியாளர்களுக்கும் கற்பிக்கவிருக்கும் ஆசிரியக் கல்வியாளர்களுக்கும் கற்கவுள்ள மாணவ ஆசிரியர்களுக்கும் எமது உளமார்ந்த பாராட்டுகள்!

இயக்குநர்,

ஆசிரியர் கல்வி ஆராய்ச்சி பயிற்சி இயக்ககம், சென்னை – 600 006.

அறிமுகம்

கணிதம் என்பது வெறும் சூத்திரங்களும், எந்திரமயமான முறைகளும் கொண்டதல்ல. குழந்தைகள் கணிதம் பற்றிப் பேச வேண்டும். தங்களுக்குள் விவாதித்து கூடி செயல்பட வேண்டும். சவால் மிக்க கணிதத்தைக் கூறவேண்டும்; அதேபோல் தீர்வும் காண வேண்டும்.

ஆசிரியா்களும், மாணவா்களும் தினமும் ஏறக்குறைய 6 மணிநேரம் – ஆண்டில் 1000 மணிநேரம் நேரடியாக உடனிருந்து பயிலுகின்றனா். எனவே மாணவா்கள் பன்முகத்திறன்களைப் பெறுவதற்கு முடியும்.

NCF - 2005 அடிப்படை திறன்களை பரிந்துரை செய்கிறது. அவை

- 💠 அடிப்படைக்கருத்தை உணர்தல்
- 💠 வரிசைப்படுத்துதல்
- 💠 பிரச்சனையை மதிப்பிடுதல்
- 💠 பிரச்சனைகளுக்குத் தீர்வு செய்தல்
- 💠 ஊகித்தப்பின் சரியா எனப் பார்க்கும் பயிற்சிகள் முதலியன ஆகும்.

இத்திறமைகளை வளர்ப்பதற்கான பாடப்பகுதிகளை உள்ளடக்கியதோடு கற்பிக்கும் முறைகளையும் புதிய அணுகுமுறைகளையும் இந்நூலில் கொடுக்கப்பட்டுள்ளன.

கணிதம் என்றால் குழந்தைகளை தாங்களே சிந்தித்து ஆராய்ந்து கண்டுபிடிக்கும் வழிமுறைகளுக்கு பழக்கப்படுத்துவதற்கான செயல்பாடுகள் என்பது ஒரு பொருள். இதற்கு ஏற்ப கற்றல் செயல்கள் கொடுக்கப்பட்டுள்ளன.

அளவுகளை மதிப்பிடுவது, தீா்வுகளைத் தோராயமாகக் காண்பது போன்ற கூா்மையான திறமைகளை வளா்ப்பதற்கான செயல்பாடுகளைக் கொண்ட பாடப்பகுதிகளும் உள்ளன.

மேலும் NCF - 2005 கூறும் ஆசிரியர் பயிற்சிக்கான தொலைநோக்கு பார்வை நன்கு செயல்படுவதற்கு ஏற்ப பாடப்பொருள்கள் அமைந்துள்ளன. சில சிறப்பம்சங்கள் இங்கு எடுத்துக்காட்டாக கொடுக்கப்படுகின்றன.

முழுமையான அடிப்படை அறிவையும் கற்பிக்கும் முறைகளையும் மாணவ ஆசிரியர் பெறுதல் – (எண்கள் அமைப்புகள், வடிவியல், அளவீடுகள் போன்ற பாடப் அலகுகள் வளநூலில் உள்ளன)

அறிவினை வளர்த்திடும் தத்துவம்–(கணித வரலாறு, கணிதமொழி போன்ற பாட அலகுகள் இடம்பெற்றுள்ளன.)

பிரச்சனையை மதிப்பிடுதல் மற்றும் தீா்வு காணல் – தீா்வாய்வு முறை எடுத்துக்காட்டுடன் கொடுக்கப்பட்டுள்ளது.

ஊகித்து பின்பு சரியா என பார்க்கும் பயிற்சிகள்....... போன்ற திறன்களை வளர்ப்பதற்கான செயல்பாடுகளைக் கொண்ட பாட அலகுகள் சேர்க்கப்படுள்ளன – வரைகலை அமைப்புகள் -Password Strategy etc. போன்ற புதிய அணுகுமுறையில் கொடுக்கப்படுள்ளன.

கருத்து பரிமாற்றம் செய்யும் விவாதங்களை வளர்த்திட, விவாதங்களை மதிப்பிட, ஊகங்களை ஆராய்ந்திட உதவுவதாகக் கணிதம் கற்பித்தல் வளநூல் அமைந்துள்ளது.

ஆசிரியர் குழு

பாடத்திட்டம் (Syllabus)

கணிதம் கற்பித்தல் – முதலாம் ஆண்டு

பகுதி அ (பாடப்பொருள்)

அலகு 1 கணித வரலாறு

1.1 பாபிலோனியர்கள் **–**எகிப்தியர்கள் – கிரேக்கர்கள் –ரோமானியர்கள் – சீனர்கள் – ஜப்பானியர்கள் – இந்தியர்கள் – அரேபியர்கள்

1.2. வியத்தகு கணித மேதைகள்

ஆர்யபட்டா — பிரம்மகுப்தா — பாஸ்கரா — இராமானுஜன் — யூக்ளிட் — பிதாகரஸ் — காஸ் — கோஷி — ஜான் நேப்பியர்

அலகு 2 எண்கள் அமைப்புகள்

இயல் எண்கள் – குறையற்ற முழு எண்கள் – முழுக்கள் – விகிதமுறு எண்கள் – விகிதமுறா எண்கள் – ஆழ்நிலை எண்கள் – மெய்யெண்கள் – இரட்டை எண்கள் மற்றும் ஒற்றை எண்கள் – பகா எண்கள் மற்றும் பகுஎண்கள்

அலகு 3 அளவைகளும் அளவிடுதலும்

அளவைகளின் வரலாறு – அன்றாட வாழ்வில் அளவைகள் –அளவைகளின் வகைப்பாடு – மெட்ரிக் அளவைகள் – கோணங்களின் அளவை – நாட்காட்டி மற்றும் கால அளவைகள் – தவறுக்கு வித்தாகும் சில அளவைகள்

அலகு 4 வடிவியல்

வடிவியல் வரலாறு – புள்ளி, கோடு, கோட்டுத்துண்டு, கோட்டுக்கதிர் கருத்து விளக்கம்
- ஒழுங்கு மற்றும் ஒழுங்கற்ற வடிவங்கள் – சமச்சீர், சர்வசம மற்றும் ஒத்த உருவங்கள் –
பக்கம் பற்றிய கருத்து – முப்பரிமாண வடிவங்களின் பரப்பு மற்றும் கனஅளவு – முப்பரிமாண வடிவங்கள் மற்றும் முப்பரிமாண அச்சுகள்

பாடநூல்கள்

வகுப்பு : 1 முதல் 5 வரை அனைத்து பகுதிகள்

வகுப்பு : 6 முதல் 8 வரை (பாடப்பகுதிகள் 2, 4, 6)

வகுப்பு: 9 (பாடப்பகுதிகள் 1, 2, 5, 6, 7)

வகுப்பு : 10 (பாடப்பகுதி 2 மட்டும்)

பகுதி ஆ (கற்பித்தல் முறைகள்)

அலகு 5 கணித மொழி

கணிதத்தின் சொற்களஞ்சியம் – கணிதக் குறியீடுகளும், மொழிச் சொற்களும் கணிதத்தின் தன்மை (அ) பண்பு – ஆண்டர்சன் அறிவுசார் கற்றலில் சீரமைத்த படிகள் – ஆண்டர்சனின் கருத்துரைகள் – ஆண்டர்சனின் அறிவுசார் கற்றல் வகைகள் – கணி தம் கற்பித்தலின் சவால்கள் – பயன்பாட்டுக் கணிதம்

அலகு 6 தீர்வாய்வு முறை

தீர்வாய்வு முறை என்பது என்ன? - ஒழுங்கான வரைபடக் குறிப்புகள் - தீர்வாய்வின் நோக்கங்கள் – ஒழுங்கான திட்டங்கள் சார் வழிகாட்டுதல் உத்திகள்– தீர்வு காண விழைதல் மற்றும் விரைதல்– தீர்வு காணும் நான்கு வழி நிலைகள் – கணிதம் கற்பித்தலில் உள்ள சிக்கலைத் தீர்க்கும் வழிநிலைகள்+

அலகு 7 வரைகலை அமைப்புகள்

வரைகலை அமைப்பு – வரைகலை அமைப்பின் வகைகள் –வரைகலை அணிஅமைப்பு – வரைகலை அமைப்பின் உட்கூறுகள் – வரைகலை அமைப்பு வளர்ச்சியில் கணினியின் பங்கு -CRA அணுகுமுறை

அலகு 8 ஒப்பார்குழு கற்பித்தல்

ஒப்பார்குழு கற்பித்தல் பொருளாக்கம் – ஒப்பார்குழு கற்பித்தல் அணுகுமுறை பற்றிய முன்னோட்டம் – ஒப்பார்குழு கற்பித்தல் முறை – கருத்தாக்கம் –ஒப்பார்குழு கற்பித்தல் அணுகுமுறையின் செயலாக்கம் – ஒப்பார்குழு கற்பித்தலின் பயன்கள் – நினைவூட்டு கற்பித்தல் உத்தி – ஆரம்பப் பள்ளிக் கணிதத்தை கற்பிப்பதில் ஆக்க பூர்வமான அணுகுமுறை – செயல்வழிக் கற்றலில் ஒப்பார்குழு கற்பித்தல்

அலகு 9 செயல் வழிக்கற்றல் அணுகுமுறை

செயல் வழிக்கற்றல் – கணிதத்தில் செயல்வழிக்கற்றலின் அணுகுமுறை செயல்வழிக்கற்றலின் சிறப்பம்சங்கள்– கணிதப்பாடத்துக்கு செயல் வழிக்கற்றலுக்கான வகுப்பறைச் சூழல் – செயல்வழிக்கற்றலும், கணிதச் செயல்பாடுகளும் – வாக்கியக் கணக்குகள் – கடினப்பகுதி கண்டறிதல் – வாக்கியக் கணக்கு ஒரு கடினப்பகுதியா?– வாக்கியக் கணக்குகளைக் கற்பிப்பதில் ஆசிரியரின் பங்கு

அலகு 10 கணக்கிடுதலில் இயலாமை

மாணவர்கள் பொதுவாகச் செய்யும் பிழைகள் – பிழைகளை வகைப்படுத்துதல்

கால ஒதுக்கீடு 100 மணிநேரம்

பிரிவு I பாடப்பொருள்

அ) வளநூல்

அலகு 1 6 **மணிநேரம்** அலகு 2 8 **மணிநேரம்** அலகு 3 6 **மணிநேரம்** அலகு 4 4 **மணிநேரம்**

ஆ) பாடநூல்கள்

வகுப்பு I முதல் V (அனைத்துப்பாடங்களும்) 5 **மணிநேரம்** வகுப்பு VI முதல் VIII வரை (பாடங்கள் 1, 3 & 5) 14 **மணிநேரம்** IX வகுப்பு (பாடங்கள் 1, 2, 5, 6, 7) X வகுப்பு (பாடம் 2 மட்டும்)

பிரிவு II கற்பித்தல் முறை

வளநூல்

- அலகு 5 4 **மணிநேரம்** அலகு 6 10 **மணிநேரம்** அலகு 7 10 **மணிநேரம்** அலகு 8 8 **மணிநேரம்** அலகு 9 8 **மணிநேரம்** அலகு 10 4 **மணிநேரம்**
- பிரிவு I (அலகு 1 முதல் 4 வரை) 24 **மணிநேரம்** பாடநூல்பாடங்கள் 32 **மணிநேரம்** பிரிவு II (அலகு 5 முதல் 10 வரை) 44 **மணிநேரம்** மொத்தம் 100 **மணிநேரம்**

பொருளடக்கம்

		பக்க எண்
அலகு 1	கணித வரலாறு	1
	(History of Mathematics)	
அலகு 2	எண்கள் அமைப்புகள்	23
	(Number System)	
அலகு 3	அளவைகளும் அளவிடுதலும்	48
	(Measure & Measurements)	
ച ്ചരക്ര 4	ഖ ழമിധ ര്	73
	(Geometry)	
அலகு 5	கணித மொழி	86
	(Language of Mathematics)	
அலகு 6	தீர்வாய்வு முறை	107
	(Problem Solving Method)	
அலகு 7	வரைகலை அமைப்புகள்	135
	(Graphic Organizer)	
அலகு 8	ஒப்பார்குமு கற்பித்தல்	150
	(Peer Tutoring)	
அலகு 9	செயல்வழிக் கற்றல் மூலம் கணிதம் கற்பித்தல்	165
	(Activity Based Learning Approach - ABL)	
அலகு 10	கணக்கிடுதலின் இயலாமை	191
	(Learning Difficulties)	

ூணைப்புகள்

		பக்க எண்
1.	வினாத்தாள் கட்டமைப்பு (Blueprint)	205
2.	மதிப்பெண் ஒதுக்கீடு விவரம் (Mark Distribution)	207
3.	அகமதிப்பீடு - மதிப்பெண் பங்கீடு (Continuous Assessment)	208
4.	மாதிரி வினாத்தாள் (Model Question Paper)	209
5.	வினாத்தாள் - முகம் (Profile)	215
6.	செய்முறைப் பயிற்சி (Practicals)	217
7.	கலைச் சொற்கள் (Glossaries)	218
8.	மேற்கோள் நூல்கள் (Bibliography)	227

அலக 1 கணித வரலாறு

(History of Mathematics)

1.1 அறிமுகம்

கணிதம் நம் அன்றாட வாழ்க்கையில் முக்கியமான பங்கு வகிக்கிறது. மனித இனத்தின் அறிவு வளர்ச்சிக்கும், கணித வரலாற்றுக்கும் நெருங்கிய தொடர்பு உள்ளது. மொழி பாடங்கள் தவிர இதர பாடங்களில் கணிதப்பாடம் வாழ்க்கை தொடர்புடைய பாடங்களில் முதன்மையானது. மொழியியலில் கூட (Linguistics) ஆராய்ச்சியின் போது கணிதம் பயன்படுத்தப் படுகிறது.இதையே உலகப் பொது மறையாம் திருக்குறளில்,

'எண்ணென்ப ஏனை எழுத்தென்ப இவ்விரண்டும் கண்ணென்ப வாழும் உயிர்க்கு'

என்ற குறளில் எண்ணறிவின் அவசியத்தை திருவள்ளுவர் கூறியுள்ளார். எண்ணியலுக்கு பிறகுதான் பிற கணித கோட்பாடுகள் வளர்ச்சியடைந்தன.

கணிதத்தின் மீது ஆர்வம் ஏற்பட வேண்டுமெனில் கணித வரலாறு அவசியம் தெரிந்திருக்க வேண்டும். கணித வரலாறும், கணித மேதைகளின் வரலாறும் பிரிக்க இயலாத ஒன்றாகும். பாடம் புகட்டக் கூடிய ஆசிரியர்களுக்கு கணித வரலாறு தெரிந்திருத்தல் அவசியம். பாடத் தலைப்போடு அதன் வளர்ச்சியினையும் அத்தலைப்பை அறிமுகப்படுத்திய கணித மேதைகளின் வாழ்க்கை வரலாற்றையும் முன்னுரையாகக் கொடுத்து மாணவர்களை கணித பாடத்தின்பால் ஈர்க்க இயலும். மேலும் இந்த கணித வரலாற்று அறிவு மாணவர்களுக்கு ஆய்வு சிந்தனையைத் தூண்டும். கணிதத்தின்பால் அவர்கள் ஈர்க்கப்படுவர். கணிதவியலானது அறிவை வளர்ப்பதோடு கற்பவரின் வாழ்க்கை நெறிமுறைகளையும் செம்மைப்படுத்தும் என்பது உண்மை.

1.2 கணித வளர்ச்சி – வரலாற்றுச் சுவடுகள்

உலக நாடுகள் அனைத்தும் கணித வளர்ச்சிக்கு உறுதுணையாக இருந்திருந்தாலும் சில குறிப்பிட்ட நாடுகளே சிறப்பாக துணைபுரிந்துள்ளன. அந்நாடுகளைப் பற்றிய ஆய்வினை கீழே காண்போம்.

1.2.1. பாபிலோனியர்கள்

மெசபடோமியா பகுதியில் (இன்றைய ஈராக்) வாழ்ந்த மக்கள் பாபிலோனியர்கள். கி.மு. 539 ஆம் ஆண்டு சுமேரியர்களின் இடைப்பட்ட காலம் பாபிலோனியர்களின் காலம் என கருதப்படுகிறது. 1850 ஆம் ஆண்டு வரை பூமிக்கடியில் புதையுண்டு கிடந்த 400 களிமண் தகடுகள் (Clay Tablet) கண்டெடுக்கப்பட்டன. பாபிலோனியர்கள் களிமண்ணில் எண்களை பதித்து தகடுகளை உருவாக்கினர். கி.மு. 1800 முதல் 1600 வரை உள்ள காலக்கட்டத்தில் தான் அதிகமான களிமண் தகடுகள் கிடைத்துள்ளன. பின்னங்கள், இயற்கணிதம், இருபடி

சமன்பாடுகள், பிதாகரஸ் தேற்றம், திரிகோணமிதி சார்புகள் (Trigonometrical function) குறித்த கணித தகவல்கள் இத்தகடுகளில் குறிப்பிடபட்டிருந்தன. YBC 7289 எனப் பெயரிடப்பட்ட களிமண் தகடு மூலம் $\sqrt{2}$ ன் மதிப்பு ஆறு தசம இட திருத்தமாக எழுதப்பட்டுள்ளதனை அறியலாம். இத்தகட்டின் படத்தை இங்கே காணலாம்.

Babylonian clay tablet YBC 7289 with annotations. The diagonal displays an approximation of the square root of 2 in four sexagesimal figures, which is about six decimal figures. $1 + 24/60 + 51/60^2 + 10/60^3 = 1.41421296...$

பாபிலோனியா்கள் 60 ஐ அடிப்படையாக கொண்ட எண்முறையை பயன்படுத்தினா். பாபிலோனிய எண்முறை கீழே கொடுக்கப்பட்டுள்ளது.

1	7	11 <7	21 ≪₹	31 ⋘7	41 Æ 7	51 4 7
2	TY	12 <17	22 ≪17	32 ⋘™	42 XTY	52. ÆTT
3	***	13 ≺™	23≪111	33 ⋘™	43 ₹111	53.4XTT
4	*	14 💎	24 ≪❤	34 ⋘❤	44 Æ 🌄	54.4₹
5	**	15 ≺%	25 ≪₹	35 ⋘₩	45 🏖 🕎	55.4
6	111	16 ∢†††	26 ≪∰	36 ⋘∰	46 Æ₹₹ ₹	56 Æ
7	₩.	17 ≺₹	27 ≪₹	37 ₩₩	47 Æ	57 🏈 🔻
8	#	18 🔫	28 ≪ ₩	38 ⋘₩	48 🏈	58 🏈
9	#	19 ≺ ∰	29 ≪₩	39 ⋘幕	49 -2/17	59 🏈 蒂
10	<	20	30 ₩	40 裚	50 🍇	

இதிலிருந்துதான் இன்று நாம் பயன்படுத்தும் 1 நிமிடத்திற்கு 60 நொடி, 1 மணிக்கு 60 நிமிடம், வட்டத்தின் கோண அளவு 360° (60 x 6) ஆகியவை பழக்கத்தில் வந்தன. 60–ன் வகுத்திகளான 1, 2, 3, 4, 5, 6, 10, 12, 15, 20 மற்றும் 30 ஆகியவற்றை பயன்படுத்தி பின்ன வடிவ கணக்குகள் மற்றும் இடமதிப்புகளைக் கையாண்டனர்.

கிடைக்கப் பெற்ற தகடுகளில் பழைய பாபிலோனியாகள் காலத்திய (கி.மு. 2000 – 1600) களிமண் தகடுகளே அதிகமாகும். எனவேதான் மெசபடோமியா கணிதத்தை பாபிலோனியாகளின் காலம் என குறிப்பிடுகிறோம். இத்தகடுகளில் வாய்பாடு, கணக்குகள் மற்றும் அதன் தீா்வுகள் எழுதப்பட்டிருந்தன.

பாபிலோனியாகள், எண்களின் அடிப்படை செயலுக்கு முன்பே கணக்கிடப்பட்ட வாய்பாட்டை பயன்படுத்தினா். 1854 –ல் யூபரேட்ஸில்(EUPHRATES) உள்ள சென்கெராவில் (SENKERAH) கிடைக்கப்பட்ட 2 தகடுகளில் 1 முதல் 59 வரையிலான எண்களின் வாக்கமும், 1 முதல் 32 வரையிலான எண்களின் கனமும் பொறிக்கப்பட்டிருந்தன. வாக்கத்திற்கான பெருக்கல் செயலை எளிமைப்படுத்த

$$ab = \frac{(a+b)^2 - a^2 - b^2}{2}$$

$$ab = \frac{(a+b)^2 - (a-b)^2}{4}$$
 ஆகிய சூத்திரங்களை பயன்படுத்தினர்.

வகுத்தலுக்கு பெருக்கல் தலைகீழியை பயன்படுத்தினர்.

அதாவது
$$\frac{a}{b} = a \times \frac{1}{b}$$
 இங்கு $\frac{1}{b}$ என்பது b—ன் பெருக்கல் தலைகீழி

2,3, 5 ஆகிய பகா காரணிகளைக் கொண்ட எண்களை 60 அடிமான எண்களுக்கு பயன்படுத்தினர். $\frac{1}{7}$, $\frac{1}{11}$, $\frac{1}{13}$ ஆகிய தலைகீழிகளுக்கு 60 அடிமானத்தில் முடிவுள்ள

இலக்கங்களில் அமைப்பு இல்லை. எடுத்துக்காட்டாக $\frac{1}{13}$ ஐ எடுத்துக் கொள்வோம் இதற்கு

கீழ்க்கண்டவாறு தோராயமாக கணக்கிட்டனர். அதாவது
$$\frac{1}{13} = \frac{7}{91} = 7 \times \frac{1}{91} \approx 7 \times \frac{1}{90} = 7 \times \frac{40}{3600}$$

பாபிலோனியா்கள் இருபடி சமன்பாட்டிற்கு தீா்வுகாண சூத்திரத்தை பயன்படுத்தினா். உதாரணமாக $x^2+bx=c$ என்ற இருபடி சமன்பாட்டை எடுத்துக்கொள்வோம். இச்சமன்பாட்டில் b–ம், c–ம் முழுக்களாக இருக்க வேண்டிய அவசியமில்லை. ஆனால் c என்பது மிகை எண். இச்சமன்பாட்டின் தீா்வினை

$$x = -\frac{b}{2} + \sqrt{\left(\frac{b}{2}\right)^2 + c}$$
 எனக் கண்டார்கள்.

முப்படி சமன்பாட்டிற்கு தீா்வினைக் காண n³+n² மதிப்பு அட்டவணையை பயன்படுத்தினா்.

எடுத்துக்காட்டாக $ax^3 + bx^2 = c$ என்ற சமன்பாட்டை எடுத்துக்கொள்வோம். இதனை a^2 – ஆல் பெருக்கி, b^3 ஆல் வகுக்க.

$$\left(\frac{ax}{b}\right)^3 + \left(\frac{ax}{b}\right)^2 = \frac{ca^2}{b^3}$$
 எனக்கிடைக்கும்.

இச்சமன்பாட்டில்
$$y=rac{ax}{b}$$
 என பிரதியிட்டால் $y^3+y^2=rac{ca^2}{b^3}$ என கிடைக்கும்.

இப்போது $\mathbf{n}^3 + \mathbf{n}^2$ மதிப்பு அட்டவணையிலிருந்து **y**—யின் மதிப்பினை காணலாம். இதிலிருந்து x—யின் மதிப்பினை காணலாம்.

பரப்பளவு, கன அளவு காண பாபிலோனியாகள் பொது விதிகளை பயன்படுத்தினா். மேலும் அவாகள் கணித கருத்துகளையும் கண்டுபிடித்தனா். அவை

வட்டத்தின் சுற்றளவு = 3 முறை வட்டத்தின் விட்டம் வட்டத்தின் பரப்பளவு = 1/2 (சுற்றளவு)² இங்கு π–ன் மதிப்பு 3 என பயன்படுத்தினர். உருளையின் கனஅளவு = அடிப்பக்கபரப்பு x உயரம் முதலியன ஆகும்.

1.2.2 எகிப்தியர்கள்

பாபிரஸ் கையெழுத்துப் பிரதிகள் மூலமாகவும், கல்வெட்டுகள் மூலமாகவும், பழம்பெரும் சின்னங்களின் மூலமாகவும் எகிப்தியர்களின் கணித அறிவைப் பற்றிய பல சான்றுகள் நமக்குக் கிடைத்திருக்கின்றன. எகிப்திய கணிதமானது எகிப்திய மொழியில் எழுதப்பட்டது. ஏற்கனவே கிரேக்க மொழியில் இருந்த கருத்துக்கள் ஹெலனிஸ்டிக் (Hellenistic) காலத்தில் இருந்து எகிப்திய மொழிக்கு மாற்றப்பட்டது. இதனால் எகிப்திய கணிதமானது கிரேக்க மற்றும் பாபிலோனிய கணிதத்துடன் இணைந்து உருவாகி அது ஹெலனிஸ்டிக் கணிதமானது. இதனை பின்னர் இஸ்லாமிய மன்னர்கள் எகிப்திய வல்லுனர்களைக் கொண்டு மாற்றி அமைத்தார்கள்.

எகிப்து மக்கள் தங்கள் அன்றாட வாழ்க்கைக்குத் தேவையான அடிப்படை எண்கணிதத்தையும், வடிவகணிதத்தையும் ஏற்படுத்திக் கொண்டனர். இவர்கள் முழு எண்களையும், பின்னங்களையும் கூட்டுவதற்கும், கழிப்பதற்கும் அறிந்திருந்தனர். அவர்களின் வணிக சம்பந்தமான கணக்குகளைத் தீர்க்க பெருக்கலையும், வகுத்தலையும் கையாண்டனர். ஒவ்வோர் ஆண்டும் நைல் நதியின் வெள்ளப் பெருக்கெடுப்பிற்குப் பின் நைல் நதியின் பள்ளத்தாக்குகளின் நிலப்பரப்பை அளந்து வரி விதித்தனர். இந்நிகழ்வு தான் வடிவ கணிதத்தின் பிறப்பிடமாக அமைந்தது.

எண்களைக் குறிக்கும் முறைகளில் மிகப்பழமையான ஏடுகள் மூலம் நமக்குக் கிடைத்தவை எகிப்தியருடையதாகும். அவர்கள் பயன்படுத்திய எண் குறியீடுகள் கி.மு. 3300க்கும் முற்பட்டவை என ஆராய்ச்சிகள் காட்டுகின்றன. எகிப்திய எண்ணுருக்கள் கீழே கொடுக்கப்பட்டுள்ளன.

Value	due 1 10 100		1,000	10,000	100,000	1 million, or infinity	
Hieroglyph	1	n	9	\$	9		五
Description	Single stroke	Cattle hobble or yoke	Coil of rope	Water lily (also called Lotus)	Finger	Tadpole or Frog	Man with both hands raised

இவர்களுடைய எண்கள் 10 அடிமான எண்கள் ஆகும்.

1.2.3 கிரேக்கர்கள்

கிரேக்க நாட்டு கணிதம் என்பது கி.மு. 600லிருந்து 450 வரை உள்ள கணிதம் ஆகும். கிரேக்க கணித மேதைகள் இத்தாலியிலிருந்து வட அமெரிக்கா வரையிலான இடங்களில் வாழ்ந்து வந்தனர். கிரேக்கர்கள் உய்த்தறி (inductive) முறையை பயன்படுத்தி கணக்குகளுக்குத் தீர்வு கண்டனர்.

கிரேக்க கணிதத்தில், தாலஸ் (கி.மு. 624– 546) மற்றும் பிதாகரஸ் (கி.மு. 582–507) ஆகிய இருவரும் பெரும் பங்கு வகித்தனர். இவர்கள் எகிப்தியர்கள், மெசபடோமியர்கள் மற்றும் இந்தியர்களின் கணித கருத்துகளால் கவரப்பட்டனர்.

தாலஸ் வடிவியலை பயன்படுத்தி பிரமிடுகளின் உயரத்தையும், கப்பலுக்கும், கடற்கரைக்கும் உள்ள தூரத்தையும் கணக்கிட்டனர். பிதாகரஸ் வழித் தோன்றல்கள் (Pythagoreans) மூலம் பிதாகரஸ் தேற்றம் வெளிப்பட்டது. மேலும் இவர்களால் பிதாகரஸ் மூன்றன் தொகுதிகளும் (Triplet) கண்டுபிடிக்கப்பட்டது.

அரிஸ்டாடில் (கி.மு. 384 – 322) முதன்முதலில் தாக்க விதிகளை (Laws of logic) கண்டுபிடித்தாா். யூக்ளிட் (கி மு 300) என்ற கணிதவியலாளரின் 'Elements'' என்ற புத்தகம் மேற்கத்திய பகுதியில் மிகப் பிரபலமாக அறியப்பட்டிருந்தது. இப்புத்தகத்தில் யூக்ளிட் $\sqrt{2}$ ஒா் விகிதமுறா எண் என்றும், பகா எண்கள் முடிவற்றவை என்றும் கண்டிறிந்தாா். மேலும் கூம்பு வெட்டிகளையும் (Conic) அறிமுகம் செய்தாா்.

ஆனால் இரடோஸ்தெனஸ் (கி.மு. 230–ல்) பகா எண்களைப் பற்றிய அரிய உண்மைகளைக் கண்டுபிடித்தார். ஆர்க்கிமிடீஸ் (கி.மு. 287 –212) ஓர் கிரேக்க கணித மேதை இவர் தன் 75 ஆம் வயதில் கணித சூத்திரத்தை உருவாக்கி கொண்டிருந்த பொழுது ரோமானிய வீரரால் தூக்கி எறியப்பட்பட்டதாக வரலாறு கூறுகிறது.

கிரேக்க எண்கள் ரோமானிய எண்களை ஒத்தவை.

I=1 , $\pi=5$, $\Delta=10$, $\pi\Delta=50$, H=100, $\pi H=500$, X=1000, $\pi X=5000$, m=10,000 மற்றும் $\pi m=50,000$ ஆகும்.

கி.பி. 4 ஆம் நூற்றாண்டிற்குப் பின் அவர்கள் 1, 2............. 9 வரை உள்ள எண்களுக்கு சில எழுத்துக்களையும், 10,20...........90 வரை உள்ள எண்களுக்கு வேறு எழுத்துக்களையும், 100, 200.....900 வரை உள்ள எண்களுக்கு வேறு சில எழுத்துக்களையும் பயன்படுத்தினர். இவ்வாறு எண்களைக் குறிக்க 27 எழுத்துக்கள் தேவைப்பட்டன. 24 கிரேக்க எழுத்துக்களுடன் 6க்கு பகுறியீட்டையும் (Digamma) 90க்கு கறியீட்டையும் (Qoppa) 900க்கு கறியீட்டையும் (Sampi) பயன்படுத்தினர். கிரேக்க எண்கள் அட்டவணை கீழே கொடுக்கப்பட்டுள்ளது.

Letter	Value	Letter	Value	Letter	Value	
αÜ	1	ı.	10	ρ□	100	
β□	2	κП	20	σ□	200	
γ 🗆	3	λ□	30	τ	300	
δ□	4	μ□	40	υ□	400	
ε□	5	v□	50	φ□	500	
□□ or □□ or στ□	6	ξ□	60	χ□	600	
ζ□	7	о□	70	ψ□	700	
η□	8	π□	80	ω□	800	
θ□	9		90		900	

1.2.4 ரோமானியர்கள்

ரோமானியர்கள் பல பொறியியல் திட்டங்களை வகுத்து கணிதயியலுக்கு சிறப்பு செய்தனர். மேம்பாலங்கள், பல பெரிய சாலைகள், பாலங்கள், பொதுக் கட்டிடங்கள் பலவும் கட்டினர். நில அளவை முறையிலும் வியத்தகு முன்னேற்றம் அடைந்தனர். கால்வாய்களும், பாலங்களும் கட்டுவதற்கு சிறிதளவு கணித அறிவையே ரோமானியர்கள் பயன்படுத்தியமையால் புதுமையான கணிதக் கொள்கைகளை அவர்களால் வழங்கஇயலவில்லை.

ரோமானிய எண்ணுருக்கள் பழைய ரோம எண்ணுருவான எட்ரஸ்கன் (Etruscan) எண்ணுருவிலிருந்து உருவானது. இவ்வடிவமானது இப்போது நாம் பயன்படுத்தும் அமைப்பிலிருந்து சற்று மாறுபட்டது.

ரோமானிய எண்ணுருக்கள் இன்றைய காலக் கட்டங்களில் கடிகாரங்கள், புத்தக அறிமுகபக்கங்கள், இசை வடிவங்கள், மன்னர்களின் வழித் தோன்றல்கள் போன்றவற்றில் பெரிதும் பயன்பாட்டில் உள்ளன.

ரோமானிய எண்	மதிப்பு
I	1 (Unus)
V	5(Quinque)
X	10 (decem)
L	50(quinquaginta)
C	100 (Centum)
D	500 (quingenti)
M	1000 (Mille)

பிற எண்களைக் குறிக்க பின்வரும் விதிகளைப் பயன்படுத்தினர்.

- 1 எந்த எண்ணுருவையும் தொடர்ந்து மூன்று முறைகளுக்கு மேல் பயன்படுத்தக் கூடாது.
- அதிக மதிப்புள்ள எண் குறியீட்டிற்கு வலப்புறம் குறைந்த மதிப்புள்ள எண்குறியீடு வந்தால் கூட்டிக் கொள்ளவேண்டும்.
- அதிக மதிப்புள்ள எண்குறியீட்டிற்கு இடப்புறம் குறைந்த மதிப்புள்ள எண் குறியீடு வந்தால் கழித்துக் கொள்ள வேண்டும்.
- 4. அதிக மதிப்புள்ள குறியீட்டிற்கு முன்னதாக குறைந்த மதிப்புள்ள குறியீடுகள் சில விதிகளுக்கு உட்பட்டே வரவேண்டும்.

ரோமானியாகள் அதிக மதிப்புள்ள எண்களைக் குறிக்க எண்ணின் மேல் ஒரு கோடிட்டனா்.

$\overline{V} = 5,000$	$\overline{C} = 100,000$
$\overline{\mathbf{X}} = 10,000$	= 500,000
= 50.000	= 1 million

'0' என்ற எண்ணைக் குறிக்க ரோமானிய எண்முறையில் தனி குறியீடு இல்லை. இடமதிப்பு கருத்தை அவர்கள் பயன்படுத்தாததே இதற்கு காரணம் ஆகும். ரோமானியர்கள் பின்ன எண்களுக்கு 12 ஐ அடிமானமாகக் கொண்டனர். நாணயங்களையும் இவற்றைக் கொண்டே வெளியிட்டனர். (பின்ன எண்களும் நாணயமும் இணைக்கப்பட்டுள்ளது).

A Triens coin (1/3 or 4/12 of an as). Note the four dots indicating its value

A Semis Coin (1/2 or 6/12 of an as). Note the S indicating its value

Each of these fractions had a name, which was also the name of the corresponding coin:

Fraction	Roman Numeral	Name (nominative and genitive)	Meaning		
1/12	*	uncia, unciae	"ounce"		
2/12 = 1/6	** or :	sextans, sextantis	"sixth"		
3/12 = 1/4	••• or .:	quadrans, quadrantis	"quarter"		
4/12 = 1/3	**** Of ::	triens, trientis	"third"		
5/12 •••• or :•: quincunx, quincunci		quincunx, quincuncis	"five-ounce" (quinquae unciae + quincurx)		
6/12 = 1/2	5	semis, semissis	"half"		
7/12 S*		septunx, septuncis	"seven-ounce" (septem unclae → septunx)		
8/12 = 2/3	S= or S:	bes, bessis	"twice" (as in "twice a third")		
SV12 = 364 (See or See		dodrans, dodrantis or nonuncium, nonuncii	"less a quarter" (de-quadrans → dodrans) or "ninth ounce" (nona uncia → nonuncium)		
10/12 = 5/6	2 = S or S:: dextans, dextantis or decurx, decuncis		"less a sixth" (de-sextans → dextans) or "ten ounces" (decem unciae → decunx)		
11/12	S or Sr-1	deunx, deuncis	"less an ounce" (de-uncia → deunx)		
12/12 = 1	1	as, assis	"unit"		

1.2.5. சீனர்கள் (கி.மு. 500 – கி.பி. 1300)

கி.மு. 212–ல் பேரரசா் குயின் ஷிஹாங்(Qin shihuang) ஒரு முறை குயின்(Qin) நாட்டிற்கு வெளியே உள்ள அனைத்து புத்தகங்களையும் எரிக்கும்படி கட்டளையிட்டாா். இதனை மக்கள் முழுவதுமாக நடைமுறைப்படுத்தாததால் சீனா்கள் கணிதம் பற்றி சில குறிப்புகள் மட்டுமே கிடைத்துள்ளன. மோஜிங் (Mojing)கணிதத்திற்கு ஓரளவு பணியாற்றியுள்ளாா்.

இச்சம்பவத்திற்குப் பின்னா் ஹான் பேரரசு (கி.மு. 202– கி.பி. 220 வரை) ஆட்சியில்

இருந்தபோது கணிதத்தில் கவனம் செலுத்தினர். அவற்றில் ஒன்பது அத்தியாயங்களைக் கொண்ட கணிதக் கலை மிகவும் முக்கியமானது ஆகும். இதில் 246, வாழ்க்கை கணக்குகள், விவசாயம், வியாபாரம், வடிவியல், பொறியியல் தொடர்பாக இருந்தன. இதில் பிதாகரஸ் தேற்றத்திற்கு கணித நிரூபணத்தினையும், காஸியன் (நீக்கு) சூத்திரத்தையும் அமைத்தனர். லியூஹீய் கி.பி. 3 ஆம் நூற்றாண்டில் இவற்றை கண்டுபிடிக்க உதவினார்.

வானவியல் ஆராய்ச்சியாளரான ஷாங்ஹெங் π–ன் மதிப்பை தோராயமாக கண்டு, இதை பயன்படுத்தி கோளத்தின் பரப்பைக் கணக்கிட்டார். யாங்ஹீய் (Yang Hai கி.பி. 1238 – 1298) மாய சதுரத்தினை கண்டுபிடித்தார். ஜீ சோங்கி 5 ஆம் நூற்றாண்டில் π–ன் மதிப்பை 7 தசம

The Nine Chapters on the Mathematical Art

இடதிருத்தமாக கண்டுபிடித்தார். ஏறத்தாழ 1000 வருடத்திற்கு இம்மதிப்பை பயன்படுத்தினர். தாங் (Tang) பேரரசின் காலத்தில் குறை எண்கள், ஈருறுப்புத் தேற்றம், அணிகள் முறையில் நேரியல் சமன்பாட்டினை தீர்வு காணுதல், சீனமீதித் தேற்றம் ஆகியவை கண்டுபிடிக்கப்பட்டனர். பாஸ்கலின் முக்கோணத்தினை, ஐரோப்பியருக்கு முன்பே சீனர்கள் கண்டுபிடித்திருந்தனர்.

1.2.6. ஜப்பானியர்கள்

ஜப்பானிய எண்கள் சீனமுறையை பின்பற்றியயே அமைந்துள்ளன. படித்தலுக்கு இரண்டு விதமான ஒலிப்பு முறையை பயன்படுத்தினர். அவை (1) சீன –ஜப்பானியர் முறையில் படித்தல் (2) ஜப்பானிய குன்யோமி முறையில் படித்தல். ஜப்பானிய எண்களை எழுதுவதற்கும் இரண்டு முறையினை கடைபிடித்தனர். (1) இந்திய முறை (2) சீன முறை

1.2.7. இந்தியர்கள்

வேத கணிதம் கற்காலத்திற்குப் பிந்தைய உலோக காலத்திலேயே உருவானது. கி.பி. 9–ம் நூற்றாண்டில் ஷதபதபிராமணா என்பவர் π –ன் மதிப்பை இரண்டு தசம இடத்திருத்தமாக கண்டுப்பிடித்தார். கி.மு. 800– 500 ஆம் காலகட்டங்களில் விகிதமுறா எண்கள், பகாஎண்கள், கனமூலம் π –ன் மதிப்பு, ஒருபடி, இருபடி சமன்பாடுகளை தீர்த்தல், பிதாகரஸ் தேற்றத்தின் நிரூபணம் ஆகியவை கண்டுப்பிடிக்கப்பட்டன.

சூர்ய சித்தாந்தாவில் திரிகோணமிதி அறிமுகப்படுத்தப்பட்டது. ஓர் ஆண்டிற்கு 365.253627 நாட்கள் உள்ளன என கணித்தனர். இப்போதைய கணிப்பான 365.25636305 நாட்களைவிட 1.4 நொடியே அதிகமானது.

இந்திய கணித மேதை ஆர்யபட்டா π –ன் மதிப்பு 3.1416 என கணக்கிட்டார். 14 –ம் நூற்றாண்டில் மாதவா என்ற கணிதவியலார் π = 31.4159265359 என கணக்கிட்டார். இஸ்லாமியர்கள் இந்திய எண்முறையை கி.பி. 12 –ம் நூற்றாண்டில் ஐரோப்பிய நாடுகளுக்கு எடுத்துச் சென்று பயன்படுத்தினர்.

பத்து அடிமான எண்முறை இந்தியாவிலிருந்து உலகெங்கும் பரவியது. இந்திய எண் முறையானது இந்து – அரேபிய எண் முறை என்றே முந்தைய காலங்களில் கூறப்பட்டது. தேவனகிரி எண்முறையும் பயன்பாட்டில் இருந்திருக்கிறது.

Devanagari numeral	Arabic/Western numeral	Sanskrit word for the ordinal numeral (wordstem)
0	0	âūnya (शृत्य)
8	1	éka (एक)
२	2	dvi (ft)
m	3	tri (चि)
8	4	catúr (चतुर्)
4	5	pañcha (পথ)
ų¥	6	sá s (पप्)
9	7	saptá (सप्त)
۷	8	aşļá (अप्त)
9	9	náva (नय)

நாம் பயன்படுத்தும் பூஜ்ஜியம் என்ற வார்த்தை அரேபிய மொழியில் பயன்படுத்தும் 'Sifr' என்ற வார்த்தையிலிருந்து உருவானது. 0 முதல் 9 வரை உள்ள எண்கள் சில இந்திய மொழிகளில் கீழே கொடுக்கப்பட்டுள்ளது.

Variant	0	1	2	3	4	5	6	7	8	9	Used in
Eastern Nagari numerals	0	Л	N	9	œ	ਲ	Ð	σ	ъ	10	Bengali language Assamese language
Gujarati numerals	0	٩	α'	$\boldsymbol{\gamma}$	%		w	9	7	১	Gujarati language
Gurumukhi numerals	0	٩	α	m	∞	7	w	9	t	ᢣ	Punjabi language
Kannada numerals	0	С	9	જ	¢	æ	Ø	ی	ದ	ها	Kannada language
Malayalam numerals	lo	q	Ь	E	ල	(3)	ന്	ඉ	പ	ൻ	Malayalam language
Tamil numerals	0	க	a	ъ	步	(5)	- Эπ	৳	Ŧ	சூ	Tamil language
Telugu numerals	0	С	ി	m	Э	Ŕ	J	N	5	lω	Telugu language
Lepcha numerals Lepcha (http://www.omniglot.com/writing/lepcha.htm)									Sikkim and Bhutan		

1.2.8 அரேபியா்கள் : (கி.பி. 800 – 1500)

முகமது நபியின் மறைவுக்குப்பின் கிட்டத்தட்ட ஒரு நூற்றாண்டுக்குள்ளாகவே அவருடைய சீடர்கள் எகிப்து, ஆப்பிரிக்காவின் வடபாகம், ஸ்பெயினின் சில பாகங்களையும் சிசிலியையும் கைப்பற்றினர். கிழக்கு முகமாக அவர்கள் இந்தியாவுக்குள்ளும் வந்தனர். இவர்கள் கிரேக்க, இந்திய கணிதத்தையும் தெரிந்து கொண்டனர். மதச் சார்பான சடங்குகள், விருந்து நாள்களை பிறை கொண்டு கணக்கிட அவர்களுக்கு கணித அறிவு தேவைப்பட்டது.

இந்திய கணித கருத்துக்களை அரபு மொழியில் மொழி பெயர்க்க இந்திய வானியல் நிபுணர் ஒருவர் பாக்தாத்திற்கு கி.பி. 770–ல் வரவழைக்கப்பட்டார். இந்திய எண் இலக்கங்கள் அரேபியக் கணிதவியலில் இணைந்ததற்கு இம்மொழி பெயர்ப்புகள் காரணமாகின. முகமது நபிக்குப் பின் தோன்றிய இஸ்லாமிய ஆட்சியாளரான ஹரூண் –அல் – ரஷீத் என்பவருக்காக யூக்ளிட், டால்மி போன்றவர்களின் நூல்கள் அரபு மொழியில் மொழிப்பெயர்க்கப்பட்டன. கிரேக்க, இந்திய நாட்டு நூல்கள் பலவும் இஸ்லாமிய மாணவர்களுக்கு கிடைக்கும் வாய்ப்பிருந்தது.

இயற்கணிதம், கணிதத்தின் ஒரு பிரிவு ஆகும். முகம்மது இ பின் ஆல்–கோவாரிஸ்மி (Mohammed ibn Al Khowarizmi ஏறத்தாழ கி.பி. 825) என்ற அரபு கணித வல்லுநர் முதல் இயற்கணித நூலை எழுதினார். இந்நூலின் பெயர் அல்ஜபர் வால் முகபாலா (Aljebar W'al Muquabalah) ஆகும். பின்னர் இந்நூல் ஆங்கிலத்தில் (Algebra) அல்ஜிப்ரா என

அழைக்கப்பட்டது. இயற்கணிதத்தில், தெரியாத அல்லது கண்டறிய வேண்டிய எண்கள் குறியீடுகளாலும் எழுத்துக்களாலும் குறிக்கப்படுகின்றன.

தற்போது பயன்பாட்டில் உள்ள 1 முதல் 9 வரையிலான எண்கள் பிராமி (Brahmi) எண்ணுருவிலிருந்து வரவழைக்கப்பட்டது. புத்தர்கள் கி.மு. 300–ல் 1,4,6 என்ற எண் உருவை பயன்படுத்தினர். அதன்பின்னர் 2,7,9 ஐ பயன்படுத்தியதாக பதிவாகி உள்ளது.

கற்றல் செயல்

கணித வரலாறு குறித்த செய்தித் தொகுப்பு (Scrap Book) தயாரித்தல்.

1.3 வியத்தகு கணித மேதைகளில் சிலர்

ஆர்யபட்டா, பிரம்மகுப்தா, பாஸ்கரா, ராமானுஜன், யூக்ளிட், பிதாகரஸ், காஸ் ஆகிய கணித மேதைகள், கணிதத்திற்கு ஆற்றிய பணிகள், கணித கண்டுபிடிப்புகள் ஆகியவற்றைப் பற்றி நாம் தெரிந்து கொள்வோம்.

1.3.1 ஆர்யபட்டா I (கி.பி. 476-550)

ஆர்யபட்டா I, ஆர்யபட்டா II என இருவர் பற்றி வரலாறு தெரிவிக்கிறது. ஆர்யபட்டா – I வாழ்ந்த 400 ஆண்டுக்குப்பின் ஆர்யபட்டா II வாழ்ந்ததாக தெரிகிறது. ஆர்யபட்டா – I ஒரு இந்திய கணித மேதை ஆவார்.

இவர் பாடலிபுத்ராவிற்கு அருகில் உள்ள குசுமாபுரா (Kusumapura) என்னும் ஊரில் பிறந்தார். இவர் ஆர்யபட்டியா என்ற நூலை தனது 23 ஆம் வயதில் எழுதினார். ஆர்யபட்டியா நூலை எழுதும் போது பாடலிபுத்ராவை குப்த பேரரசு ஆண்டதாக வரலாறு கூறுகிறது. இவர் தென்னிந்தியாவில் பிறந்ததாகவும் கூறுகின்றனர். ஆர்யபட்டா வானசாஸ்திரத்திற்கு 3 புத்தகங்கள் எழுதியதாக தெரிகிறது. ஆர்யபட்டியா என்ற நூலில் 66 கணித விதிகள் நிரூபணமின்றி கொடுக்கப்பட்டுள்ளது.

Statue of Aryabhatta on the grounds of IUCAA, Pune

ஆர்யபட்டியாவில் கணிதம் மற்றும் வானவியல் பற்றி எழுதியுள்ளார். கணிதப் பகுதியில் எண்ணியல், இயற்கணிதம், திரிகோணமிதி, பின்னங்கள், சமன்பாடுகள், ஆகியவை அடங்கும்.

இப்ரா (Ifra) என்பவா் ஆா்யபட்டா பூச்சியத்தின் இடமதிப்பையும், –, + குறிகளையும் தெரிந்துள்ளாா் என கூறுகிறாா். ஆா்யபட்டா வா்க்க மூலம், கனமூலம் பற்றி கூறியுள்ளாா்.

by = ax + c, by = ax - c (இதில் a, b, c என்பவை முழுக்கள்) என்ற சமன்பாட்டிற்கு முதன்முதலாக முழு எண் தீர்வுகள் உள்ளமைக்கான சோதனையை ஆர்யபட்டியா நூலில் குறிப்பிடப்பட்டுள்ளது.

π–ன் மதிப்பை காண பின்வரும் முறையை கூறியுள்ளார்.

100 உடன் 4 ஐ கூட்டி அதை 8 ஆல் பெருக்கி விடையுடன் 62000 ஐ கூட்டுக.

வரும் விடையானது 20,000 விட்டமுள்ள வட்டத்தின் சுற்றளவிற்கு தோராயமாக சமம்.

அதாவது
$$\pi = = 3.1416$$

 $\sqrt{10}=3.1622$ எனவும் பயன்படுத்தியுள்ளனர். n முழுக்களின் கூடுதல், வர்க்கம், கனம் காணுதல், முக்கோணம் மற்றும் வட்டத்தின் பரப்பு காணும் சூத்திரங்கள் ஆகியவற்றை கண்டுபிடித்தார்.

ஆர்யபட்டா II (கி.பி. 920–1000)

இவரின் வாழ்க்கை வரலாறு பற்றி சரியான தகவல்கள் பெறப்படவில்லை. பின்கிரி (Pingree) என்பவர், ஆர்யபட்டா II 950– 1100 வரை வாழ்ந்தார் என குறிப்பிடுகிறார். மகா சித்தாந்தா (Mahasiddhanta) என்ற 18 அத்தியாயங்களை கொண்ட நூலினை இவர் உருவாக்கியுள்ளார். by = ax + c என்ற சமன்பாட்டிற்கு (indeterminate equation) 20 வழிமுறைகளில் தீர்வு காண வழிமுறை கொடுக்கப்பட்டுள்ளது. மேலும் சைன் (sine) மதிப்புகளுக்கு 5 தசம இலக்கங்கள் துல்லியமாக காண அட்டவணையும் கொடுத்துள்ளார். $\frac{20000}{20000}$

1.3.2 பிரம்மகுப்தா (கி.பி. 598 – 670)

இவர் ஓர் இந்திய கணித மேதை. இவர் உஜ்ஜயினியில் பிறந்தார். இவரின் தந்தை ஜிஸ்னு குப்தா. பிரம்மகுப்தா, கணிதம் மற்றும் வானவியலில் நிறைய பணியாற்றியுள்ளார். இவர் 628 ஆம் ஆண்டு பிரம்மபுஷ்ட சித்தாந்தா எனும் நூலை எழுதியுள்ளார். இதில் 25 அத்தியாயங்கள் உள்ளன.

இவர் உஜ்ஜயினியில் உள்ள வானவியல் கழகத்தில் (Astronomical Observatory) தலைவராக பணிபுரிந்துள்ளார். இம்மையம் முக்கியமான கணித மையமாக செயல்பட்டது. திறமை மிக்க கணித மேதை வராஹமிஹிரா இங்கு பணிபுரிந்ததோடு கணித வான சாஸ்திரம் (Mathematical Astronomy) என்ற பள்ளியையும் நிறுவினார்.

பிரம்ம குப்தாவின் இரண்டாவது நூல் கந்தகத்யாகா–வை (Khnadhakhadyaka) தன் 67–ம் வயதில் எழுதினார். இந்நூலில் 8 அத்தியாயங்கள் உள்ளன. அவர் முதல் நூலான பிரம்ம புஷ்ட சித்தாந்தாவில் உள்ள 25 அத்தியாயங்களில் முதல் 10 அத்தியாயங்கள் வானவியல் பற்றியது. மீதி 15 அத்தியாயங்களில் கணிதப் பிரிவுகளான இயற்கணிதம், கோளம், பூச்சியம் பற்றி குறிப்பிட்டுள்ளார். பூச்சியம் கொண்டு சில பண்புகளையும் வரையறுத்துள்ளார்.

பூச்சியத்தை ஓர் எண்ணுடன் கூட்டினாலோ அல்லது ஓர் எண்ணிலிருந்து கழித்தாலோ அதே எண் கிடைக்கும். பூச்சியத்தால் ஓர் எண்ணை பெருக்கினால் 0 கிடைக்கும் என நிறுவினார்.

- 💠 மிகை எண், குறை எண் பயன்படுத்தி எண்கணித விதிகளை வரையறுத்துள்ளார்.
- 💠 குறை எண்ணிலிருந்து பூச்சியத்தை கழித்தால் குறை எண் கிடைக்கும்.
- 💠 மிகை எண்ணிலிருந்து பூச்சியத்தை கழித்தால் மிகை எண் கிடைக்கும்.
- 💠 பூச்சியத்திலிருந்து பூச்சியத்தை கழித்தால் கிடைப்பது பூச்சியம்.
- 💠 குறை எண்ணை பூச்சியத்திலிருந்து கழித்தால் மிகை எண் கிடைக்கும்.
- 💠 மிகை எண்ணை பூச்சியத்திலிருந்து கழித்தால் குறை எண் கிடைக்கும்.
- 💠 பூச்சியத்தை குறை எண் அல்லது மிகை எண்ணால் பெருக்கினால் பூச்சியம் கிடைக்கும். மேலும்

- 1) (+) \times (+) = (+) 4) (+) \div (-) = (-) 2) (+) \times (-) = (-) 5) (-) \times (-) = (+) 3) (+) \times (+) = (+) 6) (-) \div (-) = (+)

எனவும் கூறினார்.

பூச்சியத்தை பூச்சியத்தால் வகுத்தால் பூச்சியம் கிடைக்கும் எனவும் கூறினார். ஆனால் நிருபிக்கவில்லை. (தற்போது இதனை 'தேரப்பெறாதது' என்பா்.)

முதல் n இயல் எண்களின் வாக்கங்களின் கூடுதல் காண உதவும் சூத்திரம்

$$\frac{n(n+1)(2n+1)}{6}$$
 என கண்டுபிடித்தார்.

முதல் 'n' இயல் எண்களின் கனங்களின் கூடுதல் காண உதவும் சூத்திரம்

$$\left[rac{n(n+1)}{2}
ight]^2$$
 எனவும் கண்டுபிடித்தார். ஆனால் இவற்றிற்கான நிரூபணம்
கொடுக்கப்படவில்லை.

பிரம்மகுப்தா ஒர் ஆண்டு என்பது 365 நாள்கள் 6 மணி 5 நிமிடம் 19 நொடிகள் என கண்டுபிடித்து தனது முதல் நூலில் கூறியுள்ளார். இவரின் இரண்டாவது நூலில் ஒர் ஆண்டு என்பது 365 நாள்கள் 6 மணி நேரம் 12 நிமிடம் 36 நொடிகள் என மாற்றியுள்ளார்.

1.3.3. பாஸ்கரா I (கி.பி. 600 – 680)

இந்திய கணித மேதையான இவர் சௌராஷ்டிராவில் (இன்றைய குஜராத் மாநிலம்) பிறந்தார். இவர் ஆர்யபட்டா I-ன் வழிவந்தவர் என கூறப்படுகிறது. இவர் மஹாபாஸ்கரியா (Mahabaskariya), லகு பாஸ்கரியா (Laghu Bhaskariya) மற்றும் ஆர்ய பட்டிய பாஸ்யா (Aryabhatiyabasya) ஆகிய நூல்களை எழுதியுள்ளார். மஹாபாஸ்கரியா 8

அத்தியாயங்களை கொண்டது. இவை அனைத்தும் வானவியலைப் பற்றியது. மேலும் திரிகோணமிதியில் $\sin x$ என்பதன் மதிப்பினைக் காண

$$\sin x = \frac{16x(\pi - x)}{[5\pi^2 - 4x(\pi - x)]}$$

என்ற சூத்திரத்தை பயன்படுத்தியுள்ளார்.

ஆக இருக்கும்போது $\sin x = 1$ என அமைவதைக் காணலாம்.

பாஸ்கரா-II (கி.பி. 1114 – 1185)

இவர் கி.பி. 1114 ஆம் ஆண்டு இந்தியாவில் விஜயபுராவில் பிறந்தார். இவர் பாஸ்கராச்சார்யா என்றும் அழைக்கப்பட்டார். இவரின் தந்தை மஹேஸ்வரா. மஹேஸ்வரா ஒரு ஜோதிடரும் கூட. இவர் குடும்பத்தவர் அனைவரும் கணித வல்லுநர்களாக இருந்தனர்.

பாஸ்கராச்சார்யா உஜ்ஜயினியில் உள்ள வானியல் கழகத்தின் (Astronomical Observatory) தலைவராக இருந்தார்.

வராஹமிஹிராவும், பிரம்ம குப்தாவும் இவருக்கு முன் இதே நிறுவனத்தில் பணியாற்றியவர்கள் ஆவர்.

பாஸ்கராச்சார்யாவின் நூல்கள் பின்வருமாறு

1 லீலாவதி — கணிதம் பற்றிய நூல் π 13 அத்தியாயங்கள் $x=\frac{\pi}{2}$

2. பீஜ கணிதம் – இயற்கணிதம் பற்றிய நூல் – 12 அத்தியாயங்கள்

3. சித்தாந்த சிரோமணி – பகுதி 1 – கணித வானவியல்

பகுதி 2 – கோளம் – 13 அத்தியாயங்கள்

4. வசன பாஷ்யா – சித்தாந்த சிரோமணி குறித்து பாஸ்கராச்சார்யாவின் விமா்சனம்

5. கரண குதூஹலா – சித்தாந்த சிரோமணியின் சுருங்கிய வடிவம்

6. விவர்ணா – சிஷதிவிதிதந்ராவை பற்றிய விளக்கம் (Sisha dhividhi dantra)

 $x^2 = 9$ என்ற சமன்பாட்டிற்கு இரண்டு தீர்வுகள் உள்ளன என அறிந்திருந்தார் என்பதற்கு சான்றுகள் உள்ளன. மேலும் அதனைக் கணக்கிட.

$$\sqrt{a \pm \sqrt{b}} = \sqrt{\frac{a + \sqrt{a^2 + b}}{2}} \pm \sqrt{\frac{a - \sqrt{a^2 - b}}{2}}$$

என்ற சூத்திரத்தை பயன்படுத்தினார் என்பதுவும் தெரியவருகிறது.

பிஸி (Fyzi) என்பவா் லீலாவதி புத்தகத்தை பொ்சியன் மொழியில் 1587 ஆம் ஆண்டு மொழி பெயா்த்தாா்.

லீலாவதியில் பாஸ்கராச்சார்யா குறிப்பிட்டுள்ள ஓர் நிகழ்ச்சியை காண்போம்.

பாஸ்கராச்சார்யாவின் மகள் லீலாவதி. தன் மகளுக்கு மணமுடிக்க குறிப்பிட்ட நேரத்தை தேர்ந்தெடுத்தார். மேல் பாத்திரத்தில் ஊற்றிய நீர் கீழே உள்ள பாத்திரத்தை அடையும் நேரமும் சமமாக இருக்கும்படி அமைத்தார். லீலாவதி எதிர்பாராதவிதமாக அப்பாத்திரத்தை எட்டிப் பார்க்க ஒரு முத்து அவள் ஆடையில் இருந்து அக்கோப்பையில் விழுந்து விட்டது. அது பாத்திரத்தின் துளையை மூடிவிட்டது. அதிர்ஷ்ட நேரம் தாண்டிவிட்டது என்பதால் அவள் திருமணத்தை நிறுத்தி விட்டார். இந்நிகழ்ச்சிக்கு முழு ஆதாரம் இல்லை. இவர் திரிகோணமிதியில் ஆர்வம் காட்டினார்.

 $\sin(A+B) = \sin A \cos B + \cos A \sin B$

 $\sin(A-B) = \sin A \cos B - \cos A \sin B$ என கண்டுபிடித்தார். 1207– ஆம் ஆண்டு பாஸ்கராச்சார்யாவின் கண்டுபிடிப்புகளை ஆராய ஒரு கல்வி நிறுவனம் நிறுவப்பட்டது.

1.3.4 ஸ்ரீனிவாச ராமானுஜன் (1887 – 1920)

இவர் தமிழ்நாட்டின் ஈரோட்டில் 1887 ஆம் ஆண்டு டிசம்பர் 22 ஆம் நாள் பிறந்தார். ராமானுஜரின் பெற்றோர் கே. ஸ்ரீனிவாச ஐயங்கார், கோமளத்தம்மாள் ஆவர். ராமானுஜரின் தந்தை ஒரு துணிக் கடையில் குமாஸ்தாவாக பணியாற்றினார். கும்பகோணத்தில் சாரங்கபாணி தெருவில் உள்ள ஒரு வீட்டில் வசித்தனர். இப்போது இவ்வீடு அருங்காட்சியகமாக மாற்றப்பட்டுள்ளது.

1892 ஆம் ஆண்டு அக்டோபா் முதல் தேதி காஞ்சிபுரத்தில் ஒரு பள்ளியில் சோ்ந்தாா். 1894 மாா்ச் –ல் தெலுங்கு வழி பள்ளிக்கு மாறினாா். இவரின் தாத்தா நீதிமன்ற அலுவலராக காஞ்சிபுரத்தில் பணியாற்றினாா். அவா் பணியிலிருந்து ஓய்வுபெற்றபோது ராமானுஜரும், அவா் தாயாரும் மீண்டும் கும்பகோணம் வந்தனா். அங்கு கங்கயன் (Kangayan) ஆரம்ப பள்ளியில் சோ்ந்தாா்.

ராமானுஜர் தனது 16 வயதில் "A synopsis of elementary results in pure and applied mathematics" by George S.Carr என்ற புத்தகத்தை படித்தார். அதில் 5000 க்கு மேலான தேற்றங்கள் இருந்தன. இதுவே ராமானுஜர் கணிதத்தில் அதிக ஈடுபாடு காட்ட காரணமாயிருந்தது. அடுத்த ஆண்டு அவர் பெர்னோலி (Bernoulli)எண்ணை கண்டுபிடித்தார். யூலர் (Euler constant) எண்ணினை 15 தசம இலக்கங்களுக்கு திருத்தமாக கண்டுபிடித்தார்.

1904 ம் ஆண்டு பள்ளிப் படிப்பை முடித்தார். இவருக்கு கும்பகோணம் அரசு கல்லூரியில் படிக்க படிப்பு உதவித்தொகை கிடைத்தது. ராமானுஜர் மற்ற பாடங்களை விட கணிதத்தில் அதிக ஆர்வம் காட்டியதால் பிற பாடங்களில் தேர்ச்சி பெறவில்லை. எனவே அவருக்கு படிப்பு உதவித்தொகை நிறுத்தப்பட்டது. 1906 –ல் F.A. பட்டப்படிப்பில் தேர்ச்சி பெறவில்லை. அவர் நாட்டம் முழுவதும் கணித பாடத்திலேயே இருந்தது. பட்டம் பெறாமலே கல்லூரியை விட்டு வெளியேறி தனியாக கணிதத்தில் ஆராய்ச்சியை துவங்கினார். 1909 ஆம் ஆண்டு ஜூலை 14 ஆம் தேதி 9 வயது நிரம்பிய ஜானகியம்மாளை மணந்தார்.

மாவட்ட உதவி ஆட்சியா் வி. இராமசாமி ஐயரை (இந்திய கணித கழகம் துவக்கியவா்) சந்தித்து தனக்கு வருவாய் துறையில் ஏதேனும் ஒரு வேலை கேட்டாா். தன் கணித கண்டுபிடிப்புகளை அவரிடம் காட்டினாா். இராமசாமி ஐயா் அதனைப் பாா்த்து விட்டு உன் அறிவுத் திறனுக்கு இங்கு வேலை செய்ய வேண்டாம் என்று கூறி சென்னையில் உள்ள அவரது நண்பா்களை (கணித துறையில் உள்ளவா்கள்) பாா்க்கச் சொல்லி ஒரு கடிதம் கொடுத்தனுப்பினாா். அதனைப் பாா்த்த உதவி ஆட்சியாின் நண்பா்கள் நெல்லை மாவட்ட ஆட்சியரான ராமச்சந்திரராவ்—க்கு (இந்திய கணித கழகத்தின் செயலா்) கடிதம் எழுதினா். ராமச்சந்திரராவ் ராமானுஜாின் கணிதப் பணியால் ஈா்க்கப்பட்டாா். எனினும் இவை அனைத்தும் இவரின் சொந்த கண்டுபிடிப்புகளா என சந்தேகப்பட்டாா். ராமானுஜா் தனக்கும் மும்பையில் உள்ள பேராசிரியா் சுல்தானாவுக்கும் உள்ள தொடா்பை கூறினாா். ராமானுஜாின் நண்பா் சி.வி. ராஜகோபாலச்சாா்யரும் இவரைப் பற்றி எடுத்துக்கூறினாா். ராமச்சந்திரராவ் ராமானுஜாின் கணித அறிவை சோதித்து பின் வியந்தாா். இராமானுஜருக்கு நிதி உதவி அளித்து சென்னைக்கு அனுப்பி கணித ஆராய்ச்சியைத் தொடரச் செய்தாா். இராமசாமி ஐயரின் உதவியுடன் அவருடைய கணித ஆராய்ச்சிக் கட்டுரை முதல் முதலாக Journal of Indian Mathematics ல் வெளியானது.

இராமானுஜர் அந்த இதழில் $\sqrt{1+2\sqrt{1+3\sqrt{1+...}}}$ என்ற கணக்கை கொடுத்து ஆறு மாத காலத்திற்குள் அதற்கான விடையை எழுதி அனுப்புமாறு கூறியிருந்தார்.

அடுத்த மூன்று இதழ்களில் யாருமே அக்கணக்கிற்கான விடையை தெரிவிக்கவில்லை. பின்னர் ராமானுஜர் தன் நோட்டுப்புத்தகத்தின் 105 ஆவது பக்கத்தில் இக்கணக்கிற்கான விடை காணும் சமன்பாட்டை கொடுத்திருந்தார்

$$x + n + a = \sqrt{ax + (n+a)^2 + x\sqrt{a(x+n) + (n+a)^2 + (x+n)\sqrt{etc}}}$$

இதை பயன்படுத்தினால் அந்த கணக்கின் விடை 3 எனத் தெரியவரும். பெர்னோலி எண்ணின் பண்புகள் குறித்தும் ஆராய்ச்சி இதழில் எழுதினார்.

1912–ஆம் ஆண்டு சென்னை ஏ.ஜி. அலுவலத்தில் (Accountant General's office) மாதம் ரூ.20 சம்பளத்தில் தற்காலிக பணி கிடைத்தது. ஒரு சில வாரத்திலேயே அப்பணி முடியும் தருவாயில் சென்னையில் கப்பல் கழகத்துக்கு (Account of the Madras Port Trust) க்கு விண்ணப்பித்தார். அந்த விண்ணப்பத்துடன் மாநிலக் கல்லூரி கணித பேராசிரியரின் சிபாரிக கடிதத்தையும் சேர்த்து அனுப்பினார். 1912, மார்ச் மாதம் கணக்கராக ரூ. 33 மாத சம்மபளத்தில்

வேலை கிடைத்தது. அவா் அலுவலகப் பணியை வேகமாக முடித்து விட்டு மீதி நேரத்தில் இந்திய கணித கழகத்தின் பொருளாளா் எஸ். நாராயண ஐயா் மற்றும் சா் பிரான்சிஸ் ஸ்பிாிங் இவா்களுடன் இணைந்து தன் கணித ஆராய்ச்சி பணியை தொடா்ந்தாா்.

1913 ஆம் ஆண்டு ஜனவரி 16 ஆம் நாள் ராமானுஜர் ஜி.எச். ஹார்டி என்பவருக்கு கடிதம் எழுதினார். 1913 பிப்ரவரி 8 ஆம் தேதி ஹார்டி ராமானுஜருக்கு தன்னை சந்திக்கும்படி பதில் கடிதம் எழுதினார். ராமானுஜர் வெளிநாடு செல்ல விரும்பவில்லையெனினும், தன் நண்பர்கள் மற்றும் ஹார்டியின் வற்புறுத்தலால் கேம்பிரிட்ஜ் பல்கலைக்கழகத்திற்கு சென்றார். 5 ஆண்டுகள் அங்கு ஹார்டி மற்றும் லிட்டில் வுட் ஆகியோருடன் தங்கி ஆராய்ச்சி பணியை தொடர்ந்தார். 1916–ல் ஆராய்ச்சிப்பட்டம் இராமானுஜருக்கு கிடைத்தது. பகு எண்களுக்கான ஆராய்ச்சிக்காக அப்பட்டம் கிடைத்தது. 1917 டிசம்பர் 6–ல் லண்டன் கணித கழகத்தில் இராமானுஜர் தேர்வு செய்யப்பட்டார். ராயல் சொசைட்டி உறுப்பினராக தேர்வு செய்யப்பட்ட இரண்டாவது இந்தியர் இவரே. ராயல் சொசைட்டி வரலாற்றிலேயே இளம் வயதில் தேர்வு செய்யப்பட்டவரும் இவரே ஆவார்.

இங்கிலாந்தில் இவர் உடல் நிலை மிகவும் மோசமடைந்தது. முதல் உலகப்போரின் போது அவருக்கு அவர் விரும்பிய சைவ உணவு கிடைக்கவில்லை. எனவே அவர் 1919–ல் இந்தியா திரும்பினார். தன் 32–ம் வயதில் இவ்வுலக வாழ்விலிருந்து விடுபட்டார். அவர் மறைந்தாலும் அவர் விட்டுச் சென்ற கணித பொக்கிஷங்கள் இன்றும் அவரை நினைவுப்படுத்துகின்றது. இராமானுஜரின் கையெழுத்துப் பிரதியைக் கீழே காணலாம்.

$$\frac{1}{4} + 2 = (1\frac{1}{4})^{2}$$

$$\frac{1}{4} + 2 \cdot 3 = (2\frac{1}{4})^{2}$$

$$\frac{1}{4} + 2 \cdot 3 \cdot 5 = (6\frac{1}{4})^{2}$$

$$\frac{1}{4} + 2 \cdot 3 \cdot 5 \cdot 7 = (14\frac{1}{4})^{2}$$

$$\frac{1}{4} + 2 \cdot 3 \cdot 5 \cdot 7 \cdot 11 \cdot 13 \cdot 17 = (7/4\frac{1}{4})^{2}$$

1.3.5 யூக்ளிட் (கி.மு. 325 – 265)

யூக்ளிட் எகிப்தில் உள்ள அலெச்சாண்டிரியாவில் பிறந்தார். இவரின் 'Elements' என்ற புத்தகத்தின் மூலம் மிக பிரபலமானார். இவர் அலெச்சாண்டிரியாவில் ஆசிரியராக பணிபுரிந்தார். யூக்ளிடின் பிறப்பு பற்றி இரு விதமான செய்திகள் உண்டு. அரேபிய எழுத்தாளர் ஒருவர், யூக்ளிட் நௌகிரேட்ஸின் மகன் என்றும் இவர் டயர் (Tyre) எனும் இடத்தில் பிறந்தார் என்றும் கூறினார். இரண்டாவது செய்தி இவர் மெகாராவில் (Megare) பிறந்தார் என்றும் கூறப்படுகிறது.

யூக்ளிட் தன் Elements என்ற புத்தகத்தில் வரையறைகள் கொடுத்திருந்தார்.

இரண்டு புள்ளிகளுக்கு இடையே நேர்கோடு வரைய முடியும்.

நேர் கோடு வரைதல், வட்டம் வரைதல் பற்றியும் குறிப்பிட்டிருந்தார்.

கொடுக்கப்பட்ட கோட்டிற்கு இணையாக ஒரு புள்ளி வழியே ஒரே ஒரு கோடுதான் வரைய முடியும் என்பதனை குறிப்பிட்டிருந்தார்.

அவருடைய Elements என்ற புத்தகம் 13 பிரிவுகளாக பிரித்து எழுதப்பட்டது.

முதல் 6 பிரிவுகள் வடிவியல் (Plane Geometry) குறித்தது. அதாவது முதல் 3 பிரிவுகள் முக்கோணம், இணைகரம், செவ்வகம், சதுரம் ஆகியவற்றின் அடிப்படை பண்புகளையும், 4வது பிரிவு வட்டத்தின் பண்புகள், வட்டத்தை ஒட்டிய கணக்குகளையும், 5வது பிரிவு விகிதம் பற்றியும், 6 வது பிரிவு வடிவியல் பயன்பாடு பற்றியும். 7வது பிரிவு மீப்பெரு பொது வகுத்திகளையும், 8வது மற்றும் 9வது பிரிவுகள் பெருக்கல் தொடர் (Geometry Progression) பற்றியும், 10 வது பிரிவு விகித முறா எண்களையும் 11, 12 ஆவது பிரிவுகள் முப்பரிமாண வடிவியல் பற்றியும் எழுதப்பட்டது.

1482 ஆம் ஆண்டு Elements–ன் முதல் பதிப்பு வெளியானது. அதன் பிறகு 1000 க்கும் மேற்பட்ட பதிப்புகள் வெளியாயின. வடிவியலின் (Geometry) தந்தை என இவரை குறிப்பிடுவர்.

1.3.6 பிதாகரஸ் (கி.மு 569 – 475)

இவர் ஒரு கிரேக்க கணிதவியலாளராவார். பிதாகரஸின் தந்தை நிசார்சஸ் (Mnesarchus) தாய் பிதாயஸ்(Pythais). இவர் தாயாரின் சொந்த ஊர் சமோஸ் (Samos). பிதாகரஸின் தந்தை

ஓர் வியாபாரி. பிதாகரஸ் தன் குழந்தைப்பருவத்தில் வியாபார நிமித்தமாக அடிக்கடி தந்தையுடன் வெளியில் செல்வார். பிதாகரஸ் படிப்பதில் திறமையானவர். இவர் பாடல் எழுதுவதிலும், பாடுவதிலும் புலமை மிக்கவர். இவர், இவருடைய மூன்று தத்துவ ஆசிரியர்களால் மிகவும் ஈர்க்கப்பட்டார். அம்மூவரில் முக்கியமானவர் பெரிகைட்ஸ் (Pharekydes) ஆவார். மற்ற இருவர்களில் ஒருவர் தேலஸ் (Thales). மற்றொருவர் அனாக்ஸிமேன்டர் (Anaximader) ஆவார். பிதாகரஸ், தன் 18 ஆம் வயதில் தேலஸை சந்தித்தார். அவரை எகிப்து நாட்டிற்குச் சென்று மேலும் சில கணித கருத்துகளை கற்கும்படி கூறினார்.

கி.மு. 535 –ல் பிதாகரஸ் எகிப்து சென்றார். கி.மு. 525 –ல் எகிப்தின் மீது பெர்சிய மன்னர் படையெடுத்தார். பிதாகரஸை ஒரு கைதியாக எண்ணி பாபிலோனுக்கு அனுப்பினார். கி.மு 520–ல் பிதாகரஸ் பாபிலோனை விட்டு வெளியேறி சமோசுக்கு சென்றார். அங்கு ஒரு பள்ளியை (The

Semi Circle) நிறுவினார். இப்பள்ளியில் பாடம் கற்பிப்பதோடு அடிக்கடி அரசியல் கூட்டம் நிகழும் இடமாகவும் அமைந்தது. கி.மு 518–ல் பிதாகரஸ் சமோஸை விட்டு தென் இத்தாலிக்கு சென்றார். பிதாகரஸ் ஒரு மதம் மற்றும் தத்துவம் சார்ந்த பள்ளி நிறுவினார். அப்பள்ளியில் அதிக உறுப்பினர்கள் சேர்ந்தனர்.

பிதாகரஸ் இசையில் கணித கோட்பாடுகள் பற்றி (Mahematical Theory of Music) அதிக கவனம் செலுத்தினார். அவர் சிறந்த இசை மேதை. இசை நிகழ்ச்சி மூலம் வரும் பணத்தை உடல் நலம் குன்றியவருக்கு உதவ பயன்படுத்தினார்.

பிதாகரஸ் எண்களின் பண்புகளைப் பற்றி ஆராய்ந்தார். ஒற்றை எண்கள், இரட்டை எண்கள், முக்கோண எண்கள், செவ்விய எண்கள் (Perfect Numbers) பற்றி ஆராய்ந்து ஒவ்வோர் எண்ணுக்கும் ஓர் தனித்தன்மை உண்டு என்றார். 10 என்பது ஓர் அற்புதமான எண். இது முதல் 4 இயல் எண்களின் கூடுதலைக் கொண்டது. இந்த எண்களை புள்ளி வடிவில் குறித்தால் ஒரு முக்கோண வடிவம் கிடைக்கும்.

பாபிலோனியர்கள் 1000 ஆண்டுகளுக்கு முன்பே பிதாகரஸ் தேற்றதை தெரிந்து வைத்திருந்தனர். மேலும் பிதாகரஸ், முக்கோணத்தின் கோணங்களின் கூடுதல் இரு செங்கோணங்களுக்கு சமம் என்று கண்டறிந்தார். இதையே பொதுமைப்படுத்தி n பக்கமுள்ள பலகோணத்தின் உட்கோணங்களின் கூடுதல் 2n-4 செங்கோணம் என்றும், வெளிகோணங்களின் கூடுதல் 4 செங்கோணங்கள் என்றும் கூறினார்.

இவர் society at Croton என்ற கணித கழகத்தினை உருவாக்கினார். இதில் உள்ள உறுப்பினர்களை Pythagoreans அதாவது பிதாகரஸ் வழித்தோன்றல்கள் என்று அழைத்தனர்.

கி.மு. 513 –ல் இவர் டெலோஸ் (Delos) சென்று தன் பழைய ஆசிரியர் பெரிகைலெகவுக்கு (Pherekyeles)பணிவிடை செய்தார். ஆசிரியர் இறக்கும் தருவாயில் ஆசிரியருடன் பணிபுரிந்தார். தன் ஆசிரியர் இறந்த பிறகு மீண்டும் குரோட்டன் வந்தார். கி.மு .510–ல் குரோட்டன் (croton)–ல் இருந்தவர்களால் சிபேரிஸ் (sybaris) தாக்கப்பட்டது. கி.மு. 508–ம் ஆண்டு குரோட்டனில் இருந்த பிதாகரஸ் சொசைட்டி, சைலோனால் (cylon) தாக்கப்பட்டது. பிதாகரஸ் மெடாபொண்டியம் தப்பி சென்றார். குரோட்டனில் பிறந்த சைலோன்(cylon) தீவிரவாத செயல்களில் ஈடுபட்டார். அவர் பிதாகரசுடன் இணைந்து கணித கழகத்தில் பணியாற்ற விரும்பினார். அவரின் தீவிர வாத செயல் பிடிக்காததால் பிதாகரஸ் அவரை சேர்க்கவில்லை. இதனால் கோபம் கொண்ட சைலோன் கணித கழகத்தை இடித்தார்.

இவர் மெடாபொன்டியத்தில் (Meta Pontium) இறந்ததாக கூறப்படுகிறது. சிலர் இவர் கழகம் இடிக்கப்பட்டதால் மனமுடைந்து தற்கொலை செய்து கொண்டதாகவும் கூறப்படுகிறது. பிதாகரஸ் மெடாபொன்டியத்திலிருந்து மீண்டும் குரோட்டன் வந்தார் என்றும் கூறப்படுகிறது. இவர் கி.மு 480க்கு பிறகும் வாழ்ந்ததாக தெரிகிறது.

1.3.7 காஸ் (கி.பி. 1777 – 1855)

கார்ல் பிரெட்ரிச் காஸ் (Carl Friedrich gauss) என்பவர் 1777 ஆம் ஆண்டு பிரன்ஸ்விக் (Brunswick) என்னும் ஊரில் பிறந்தார். இவரின் தந்தை கெப்ஹார் காஸ் (Gebhard Gauss) இவரின் தாய் டெரோதியா பென்ஸ்(Dorothea Benze) ஆவார். காஸின் தந்தை ஒரு கூலித் தொழிலாளி. தன் தந்தையின் கணக்கிடும் திறனில் இருந்த தவறை காஸ் மூன்று வயது குழந்தையாக இருக்கும் போதே திருத்தினார். காஸ் தன் புத்திக்கூர்மையை தன் தாயிடமே பெற்றதாக கூறினார்.

1784 ஆம் ஆண்டு இவர் பள்ளியில் சேர்க்கப்பட்டார். இவரின் ஆசிரியர் புட்னர் (Buttnner). இவர் திறமைகளை கண்டு

இவருக்காக சில புத்தகங்களை வரவழைத்தார். ஆசிரியரின் உதவியாளரான மார்டின் பார்டல்ஸீம் (Martin Bartels) காஸீக்கு தனி கவனம் செலுத்தினார். பார்டல்ஸீம் கணித வல்லுநர். இவர் காசன் (Kazan) பல்கலைக்கழகத்தின் பேராசிரியராக பணியாற்றினார்.'

காஸ் 1788–ல் இடைநிலை கல்வி பயில பள்ளியில் சேர்ந்தார். 1791–ல் அவருக்கு அரசின் படிப்பு உதவித்தொகை கிடைத்தது. இடைநிலை கல்வியில் சிறந்து விளங்கியமையால் காஸ் 'Collegium Carolinum' என்ற நிறுவனத்தில் சேர தேர்ந்தெடுக்கப்பட்டார். 1792 முதல் 1795 வரை காஸ், நியூட்டன், யூலர், லெக்ரான்ஜ் ஆகியோரின் ஆராய்ச்சிகளைப் படித்தறிந்தார். அவர் கூட்டு, பெருக்கல் சராசரியில் (Arithmetic - Geometric mean) நிறைய ஆராய்ச்சிகள் செய்தார். காஸ் பிரன்ஸ்விக்கிலிருந்து கோட்டின்ஜென் சென்றார். அங்கு உள்ள நூலகம் அவருக்கு மிகவும் பயன்பட்டது. அங்கு ஒழுங்கு பல கோணத்தின் அமைப்பு பற்றியும் (construction of regular polygon) இயற்கணித அடிப்படை தேற்றத்தின் நிரூபணம் (Proof for fundametal theorem of Algebra) ஆகியவற்றையும் கண்டுபிடித்தார்.

காஸ் 1798 –ல் பிரன்ஸ்பர்க் திரும்பினார். 1807 வரை அங்கு இருந்தார். காஸ் எண்ணியலில் 1801–ல் மிகப் பெரும் பணியாற்றினார். பிற்காலங்களில் காஸ் கணிதத்தின் அனைத்து பிரிவுகளிலும் திறமையை நிரூபித்தார். குறிப்பாக convergence என்ற குவிதல் பற்றிய உண்மைகளை வெளிக்கொணர்ந்தவர் ஆவார்.

1.3.8 கோஷி (Cauchy) (1789 - 1857)

1789–ல் பாரிஸில் பிறந்த கோஷியின் பெற்றோர் லூயிஸ் – பிரான்கோயிஸ், மேரி மெடலின் ஆவர். இவரது தந்தை ஒரு வழக்கறிஞர். கோஷி மிகவும் எளிமையான வாழ்க்கையை விரும்பினார். ஆரம்பக் கல்வியை அவரது தந்தையிடமிருந்து கற்றார். தன்னுடைய இருப்பிடத்திற்கு அருகாமையில் வசித்து வந்த லக்ராஞ்ச் என்ற கணிதவியலாளரை சந்திக்க இன்னெரு கணித மேதையான லாப்லாஸ் வந்திருந்த போது லாப்லாஸை சந்திக்க வாய்ப்பு கிடைத்தது. மேலும் லக்ராஞ்ச் கோஷியின் தந்தையிடம், கோஷி பிற்காலத்தில் புகழ் பெற்ற விஞ்ஞானியாக வருவார் என்று உறுதி கூறினார். மேலும் 17 வயதிற்கு முன் கணித புத்தகங்கள் எதனையும் காட்ட வேண்டாம் என்று கூறினார். ஆனால் அதற்கான காரணம் விளக்கப்படவில்லை.

18–ஆம் நூற்றாண்டில் இறுதியில் நெப்போலியன் ஆட்சிக்கு வந்ததும், கோஷியின் தந்தை அரசுப் பணியை விட்டு விலகி பாரிஸுக்கு சென்றார். கோஷி 1804–ல் இடைநிலைக் கல்வியை முடித்தார். 1805 ஆம் ஆண்டு எகோல் (Ecole) பல் தொழில் நுட்பக் கல்லூரியில் சேர்ந்தார். 1809–ஆம் ஆண்டு பொறியியல் வல்லுநராக பணியாற்றினார். 1810–ஆம் ஆண்டு செர்பர்க் (Cherbourg) சென்று நெப்போலியனின் கப்பல் படைத் தளத்திற்கு உதவினார்.

கோஷிக்கு முதன் முதலில் பெருமை சேர்த்தது லக்ராஞ்ச் கொடுத்த ஒரு தீர்வாய்வு கணக்கினை அதாவது ('Convex Polyhedran is rigid') 'குவிவு பலகோண பட்டகம் கட்டிருக்கப்பட்டிருக்கும்' என்பதற்கு தீர்வு கண்டதாகும். மேலும் கோஷியின் தேற்றமானது யூலரின் உரைகோளினை "ஒரு மூடிய புறப்பரப்பானது கட்டிருக்கப்பட்டிருக்கும்" (any closed surface is rigid) பகுதியாக நிறைவு செய்ததும் முக்கியமானது ஆகும். இரண்டாவது அடைவாக பெர்மாட்டின் உரைகோளுக்கு தீர்வு கண்டமையாகும் அதாவது "ஒவ்வொரு முழு எண்ணும் அதிக பட்சமாக n, n - கோண எண்களின் கூடுதலாக எழுத முடியும்" என்பதாகும். (Every Integer is the sum of atmost n, n-agonal numbers)

1814–ல் கோஷியின் தொகையீட்டு தேற்றத்தினை பிரெஞ்ச் கல்விக்குழுவில் சமா்ப்பித்தாா். தன் இறந்த வருடமாண 1857 வரை கணித்ததில் அரிய பல கண்டுபிடிப்புகளை வெளி உலகுக்கு கொணா்ந்தாா்.

குறிப்பாக

ஒருங்கலின் (Convergence) தந்தை கோஷி எனில் பாய்வின் (divergence) தந்தை காஸ் ஆவார்.

முக்கிய குறிப்பு:

நோபல் பரிசானது கணித பாடத்தில் சிறப்பு செய்பவர்களுக்கு கிடையாது என்பது அனைவருக்கும் தெரிந்த ஒன்று. ஆனால் அதற்கு இணையாக கணித பாடத்திற்கு மட்டுமே கொடுக்கப்படும் பரிசு, கணித மாமேதை ஏபலின் (Abel) பெயரில் ஏபல் பரிசு கொடுக்கப்படுகிறது.

1.3.9 ஜான் நேப்பியர் (John Napier 1550 - 1617)

ஜான் நேப்பியா் என்ற கணித மேதை 1550 ஆம் ஆண்டு ஸ்காட்லாந்தில் உள்ள எடின்பாக் நகரில் பிறந்தாா். இவரின் பெற்றோா் சா் அா்ச்சிபால்ட் நேப்பியா் (Sir Archibald Napier) மற்றும் ஜேனட் போத்வெல் (Janet Bothwell). இவா் வெளிநாட்டுக்குச் சென்று கல்வி பயின்றாா். இவா் பயின்ற இடம் பற்றி சரியான தகவல் கிடைக்கப்பெறவில்லை.

நேப்பியர் மதம் சார்ந்த கல்வியில் அதிக ஈடுபாடு கொண்டிருந்தார். பின்னாளில் நேப்பியரின் ஆர்வம் மதக்கல்வியிலிருந்து கணிதத்திற்கு மாறியது. அதிக இலக்க எண்களைப் பெருக்கவும், வகுக்கவும், கனம் காணவும் அதிக நேரம் தேவைப்படுகிறது. எனவே இதனை எளிமைப்படுத்த ஓர் அட்டவணையை தயாரிக்க வேண்டும் என்பதை நோக்கமாகக் கொண்டு செயல்பட்டார். 20 ஆண்டு கால ஆய்வுக்கு பின் 1614 ஆம் ஆண்டு கணக்கிடுதல் பற்றிய "Mirifici Logarithm Orum Canonis Descriptio" என்ற புத்தகத்தை வெளியிட்டார். இந்தப்புத்தகத்தில்

37 பக்கத்தில் விளக்கமும். 90 பக்கம் மடக்கை அட்டவணை, வானவியல், இயற்பியல், இயங்கு நிலை மற்றும் ஜோதிடம் ஆகிய துறைகளின் ஆய்வுக்கு உதவுகிறது.

ஆங்கில கணித மேதை ஹென்றி பிரிக்ஸ் (Henry Briggs) என்பவர் நேப்பியரின் மடக்கை அட்டவணையைப் எளிமைப்படுத்தி பயன்படுத்த எண்ணினார். டெஸ்கிரிப்டோ புத்தகத்தின் வெளியீட்டிற்குப் பின் பிரிக்ஸ் என்பவர் நேப்பியரைச் சந்தித்து அவரின் கண்டு பிடிப்பைப் பாராட்டி தன் விருப்பத்தைத் தெரிவித்தார். பிரிக்ஸ் என்பவரின் கருத்தை நேப்பியர் வரவேற்றார், நேப்பியரும், பிரிக்ஸ் என்பவரும் இணைந்து மடக்கை அட்டவணையை எளிமைப்படுத்தினர். மேலும் எண் பட்டைகளைக் கொண்டு பெருக்கல் அளவு கோல் ஒன்றை நேப்பியர் கண்டுபிடித்தார். நேப்பியர் பட்டைகள் தொடக்கப்பள்ளி கணிதத்தில் பெருக்கலுக்கு இன்றும் பயன்படுத்தப்பட்டு வருகிறது.

கற்றவை

நாடுகளும் கணிதமும்			ந்தகு கணித மேதைகள்
*	பாபிலோனியா்கள்	*	ஆர்யபட்டா
*	எகிப்தியா்கள்	*	பிரம்மகுப்தா
*	கிரேக்கர்கள்	*	பாஸ்கரா
*	ரோமானியாகள்	*	இராமானுஜன்
*	சீனா்கள்	*	யூக்ளிட்
*	ஜப்பானியா்கள்	*	பிதாகரஸ்
*	இந்தியா்கள்	*	காஸ்
*	அரேபியா்கள்	*	கோஷி
		*	ஜான் நேப்பியா்

கற்றல் செயல்

🌣 கணித மேதைகளின் படத்தொகுப்பு(Album) தயாரித்தல்.

அலகு 2

எண்கள் அமைப்புகள்

(Number System)

2.1 அறிமுகம்

எண்ணும் எழுத்தும் கண்ணெனத் தகும். எண்கள் விஞ்ஞானத்தின் திறவுகோலெனில் எண்ணியல் கணிதவியலின் நுழைவாயில். வேத காலங்களிலிருந்தே இந்தியர்கள் எண்களையும் பின்னங்களையும் பயன்படுத்தி வருகின்றனர். மேலும் பகா எண்களையும் பழக்கத்தில் ஈடுபடுத்தினர். ஆனால் கிரேக்கர்கள் பகு எண்களை மட்டுமே எண்களாகவும். பகா எண்களை எண்களில்லை என்றும் கருதினர். ஆனால் இந்தியர்கள் பகு எண்கள் மற்றும் பகா எண்களை எண்களாக கருதிய காரணத்தினாலேயே பூச்சியம் (0) என்ற எண்ணினையும் குறை எண்களையும் மற்றும் முடிவிலி (∞)யினையும் காண முடிந்தது. குறிப்பாக பிரம்மகுப்தா முதன் முறையாக குறை எண்களை அறிமுகம் செய்தார். இவர் 'கடன்' என்ற வார்த்தைக்காக குறை குறியீட்டினை (–) பயன்படுத்தினார். மற்றும் எண்ணியல் அடிப்படை செயலிகளான +, -, X, ÷ ஆகியவற்றின் விதிகளையும் ஏற்படுத்தினார். 766 A.D–ல் இந்திய எண்ணுருக்களான (இலக்கங்கள்) 0,1,2, ... 9 ஆகியவற்றை அரபு கணித வல்லுனர்கள் பாக்தாத் தமைையிடத்துக்கு கொண்டு சென்று பயன்படுத்தத் தொடங்கினர். இந்திய எண் முறை ரோமானிய எண் முறையினைவிட எளிதாகவும் சிறந்தாகவும் அமைந்த காரணத்தினால் ரோமானிய அரசின் அணையை மீறி ரோமானிய வியாபார சமூகத்தினர் இந்திய எண் முறையை பயன்படுத்தத் தொடங்கினர் என்பது வரலாறு.

2.2 இயல் எண்கள் (Natural Numbers) அல்லது எண்ணும் எண்கள் (Counting Numbers)

கணிதத்தின் அடிப்படையாக எண்ணியல் அமைவதால் அனைத்து வகை எண்களில். எண்ணியலின் நான்கு அடிப்படை செயல்பாடுகள் எவ்வாறு அமைகிறது என்பதனை காண்பது அவசியம். மேலும் (பிறமொழிகளிலிருந்து) ஆங்கில நூற்களிலிருந்து தமிழாக்கம் செய்யும் போது அதன் பொருள் மாறா வண்ணம் பார்த்துக் கொள்ள வேண்டியது மிக அவசியம். எண் கணிதத்தில் தவிர்க்க முடியாத ஆங்கில வார்த்தைகள் finite, infinite, countable, uncountable ஆகும். இங்கு நேரடியாகப் பொருள் கொண்டால் finite மற்றும் countable இரண்டும் ஒரே மாதிரியாகவும் infinite மற்றும் uncountable ஆகியவை ஒரே மாதிரியாகவும் தோன்றும். ஆனால் இவை முற்றிலும் வேறானவை என்பதனை தெரிந்து கொண்டு எண்கள் பற்றிய கருத்திற்கு செல்லலாம். இயல் எண்களுக்கு (Natural Number) இன்னொரு பெயர் எண்ணும் எண்கள் (Counting numbers) ஆகும். நாம் 1,2,3, ... என இயல்பாக எண்ணுவதற்கு பயன்படுத்துவதால் இதற்கு இப்பெயர் வரக் காரணமாகிறது. அப்படியானால் Countable என்ற வார்த்தையின் உள்ளார்ந்த தமிழ் பொருள் என்ன? அதாவது 'எண்ணிடத்தக்க' ஆகும். அதாவது ஒரு எண் கூறப்படும் போது அதன் அடுத்த எண் சொல்லக்கூடிய வகையில்

அமையுமானால் அதனை எண்ணிடத்தக்கது எனலாம். ஆனால் எண்ணிடத்தக்க வகையில் (Countable) உள்ள ஒரு அமைப்பில் ஒரு எண் சொல்லப்படும் போது அடுத்த எண் சொல்லக்கூடிய வகையில் இருக்க வேண்டிய அவசியமில்லை. இது எண்ணிடத்தக்கதற்கான (Countable) ஒரு உதாரணமேயன்றி வரையறை அல்ல. இப்போது ஒரு இயல் எண் கூறினால் அடுத்த இயல் எண் சொல்ல முடியுமா? நிச்சயமாக முடியும் எனவே, இயல் எண்கள் எண்ணிடத்தக்க (Countable) வகையை சார்ந்தது. அப்படியானால் இயல் எண்களின் எண்ணிக்கை எண்ணில் அடங்கக் கூடியதா? நிச்சயமாக இல்லை. அதாவது இயல் எண்களின் எண்ணிக்கை எண்ணிலடங்காது. அதனையே ஆங்கிலத்தில் infinite என்கிறோம். நிச்சயமாக இயல் எண்கள் எண்ணிலடங்கிய வகையை சார்ந்ததல்ல. ஆனால் இவை எண்ணிலடங்கா எண்ணத்தக்க (அல்லது முடிவுறா எண்ணத்தக்க) (Countably infinite) வகையை சார்ந்தது. அவ்வாறாயின் முடிவுறு எண்ணத்தக்க (Countably finite) அல்லது எண்ணிலடங்கிய எண்ணத்தக்க வகைக்கு உதாரணம் கூறிட முடியுமா?

"10 என்ற இயல் எண்ணிற்கு கூடுதலாகவும் 35 என்ற இயல் எண்ணிற்கு குறைவாகவும் உள்ள இயல் எண்களின் தொகுப்பு" என்ற உதாரணத்ததினை எடுத்துக் கொள்ளலாம்.

இயல் எண்களுக்கு மிகை முழு எண்கள் (Positive integers) என்ற பெயரும் உண்டு. அதாவது கணத்தில் குறிப்பிடுவோமானால்

இயல் எண்களில் கணத்தில் முதல் உறுப்பு '1' எனத் தெரியும். கடைசி உறுப்பினை கூறிட இயலுமா ? இயலாது. எனவே இது ஒரு முடிவுறா (Infinite) தொகுப்பு ஆகும். ஒரு உறுப்பு தெரியும் பட்சத்தில் அடுத்த உறுப்பினைக் கூறிட இயலும்.

மேலும் உறுப்பு I க்கு முந்தைய எண் அதாவது முன்னி கிடையாது. எனவே இயல் எண்களில் கணத்திற்கு கீழ் எல்லை (Lower bound) உண்டு. ஆனால் மேல் எல்லை (Upper Bound) கிடையாது.

இயல் எண்களின் கணத்தில் அடிப்படை செயலிகளை பயன்படுத்த இயலுமா என்பதனைப் பார்ப்போம்.

இரு இயல் எண்களின் கூடுதல் எப்போதும் இயல் எண்ணாகவே இருக்கும் என்பதனை அறிவோம்.

இரு இயல் எண்களின் பெருக்கல் எப்போதும் இயல் எண்ணாகவே இருக்கும் என்பதையும் அறிவோம்.

இரு எண்களின் வித்தியாசம் அதாவது ஒரு இயல் எண்ணிலிருந்து இன்னொரு இயல் எண்ணினை கழிக்கும்போது கண்டிப்பாக அது இயல் எண்ணாக இருக்குமா ?

இருக்க வேண்டிய அவசியமில்லை.

உ.ம் 5-5=0. இங்கு 0 ஒரு இயல் எண் இல்லை.

3-7 = -4. இங்கு -4 ஒரு இயல் எண் இல்லை.

ஒரு இயல் எண்ணினை இன்னொரு இயல் எண்ணால் வகுத்தால் கிடைக்கும் எண் கண்டிப்பாக இயல் எண்ணாக இருக்குமா ? இருக்க வேண்டிய அவசியமில்லை.

இயல் எண் 1–ஐ இயல் எண் 2–ல் வகுக்கும்போது கிடைப்பது $\frac{1}{2}$ ஆகும். இது இயல் எண் அல்ல.

குறிப்பு

- ஒரு முடிவினை (result) தவறு என்று நிரூபிக்க ஒரு எடுத்துக்காட்டு போதுமானது.
 அதே நேரத்தில் முடிவினை ஒரு எடுத்துக்காட்டு மூலம் நிரூபிக்க கூடாது.
- முடிவாக N என்ற இயல் எண்களின் கணத்தில் கூட்டல் மற்றும் பெருக்கல் ஆகிய செயலிகள் மட்டுமே முழுமையாக செயல்படும்.
- இயல் எண்களின் 'கழித்தல்' செயலியினை பயன்படுத்தும்போது முதல் எண் பெரியதாகவும் இரண்டாவது எண் சிறியதாகவும் பயன்படுத்தப்பட்டமையைக் காண்க.
- இயல் எண்களின் 'வகுத்தல்' செயலியினை பயன்படுத்தும் போது முதல் உறுப்பினை இரண்டாம் உறுப்பு கொண்டு வகுக்கும்போது மீதி பூச்சியம் வருமாறு பயன்படுத்தப்பட்டமையைக் காண்க.
- இயல் எண்களின் '0' என்ற (இலக்கத்தினை) உருவினை நாம் பயன்படுத்தி உள்ளோம். இது இலக்கமாக இடம்பெற்றதே தவிர எண்ணாக இடம்பெறவில்லை என்பதனை கவனத்தில் கொள்ளவும்.
- 💠 '0' என்பது எண்ணாகவும் இலக்கமாகவும் பயன்பாட்டில் உள்ளது.

2.3 குறையற்ற முழு எண்கள் (Non-negative Integers)

0 என்ற எண், குறை முழு எண்களை கண்டுபிடிக்கும் முன்னர் கண்டுபிடிக்கப்பட்ட எண்ணாகும். ஒரு எண்ணிக்கையின் ஆரம்ப நிலை 0 எனக் கொள்ளப்படும். எண்ணுவதற்கு எதுவும் இல்லையெனின் அதன் எண்ணிக்கையின் முடிவு 0 ஆகும். கணிதவியலாளர்கள் 0–ஐ எண்ணாக கருதும்போது கணிதவியலாளரல்லதோர் '0' க்கு இல்லை என்ற பொருள் கொள்வதால் '0' –ஐ எண்ணல்ல என்று சொல்வதுமுண்டு. அது சரியல்ல.

நாம் ஏற்கனவே எண்ணுவதற்கு பயன்படக்கூடியதால் இயல் எண்களுக்கு எண்ணும் எண்கள் என்ற பெயர் உண்டு என்பதனை பார்த்தோம். இயல் எண்களை வைத்து எண்ணிக்கையைத் தொடங்கும் முன் தொடக்க நிலையினை சொல்ல இயலாது. எனவே தொடக்க நிலையினை அதாவது 0 என்ற எண்ணினை இயல் எண்களுடன் சேர்க்கும் போது எண்ணுவதற்கான தேவை முழுமை அடைகிறது. அதாவது {0,1, 2,} என்ற கணம் கிடைக்கிறது. இங்கு கீழ் எல்லையாக குறிப்பிடப்பட்டுள்ள 0 என்பது எண்ணாகும். இந்த எண்கள் அமைப்பினை ஆங்கிலத்தில் whole numbers அல்லது non-negative intergers என்று கூறுவர். தமிழில் குறையற்ற முழு எண்கள் என்று குறிப்பிடுவதே பொருள் பொதிந்ததாக இருக்கும்.

இயல் எண்கள் (அல்லது) எண்ணும் எண்கள் (அல்லது) மிகை முழு எண்கைளை

N = {1,2,3......} எனக் குறிப்பிடும்போது குறையற்ற மிகை முழு எண்களை

W = {0,1,2,3,.....} எனக் குறிப்பிடுவோம்.

இப்போது W–ல் நான்கு அடிப்படை செயலிகளை செயல்படுத்தும் போது கூட்டல் மற்றும் பெருக்கல் மட்டுமே முழுமையாக குறையற்ற முழு எண்ணினை கொடுக்குமே தவிர கழித்தல் மற்றும் வகுத்தலை முழுமையாக செயல்படுத்த இயலாது. அதாவது

இரு குறையற்ற முழு எண்களின் கூடுதல் ஒரு குறையற்ற முழு எண்ணாகவும்

இரு குறையற்ற முழு எண்களின் பெருக்கல் ஒரு குறையற்ற முழு எண்ணாகவும் இருக்கும்.

இரு குறையற்ற முழு எண்களின் வித்தியாசம் ஒரு குறையற்ற முழு எண்ணாக இருக்க வேண்டிய அவசியம் இல்லை.

இரு குறையற்ற எண்களின் வகுத்தல் ஒரு குறையற்ற முழு எண்ணாகவும் இருக்க வேண்டிய அவசியமில்லை.

குறிப்பு

- (1) (a) இயல் எண்களில் எவ்வாறு கழித்தலின் போது முதல் எண் பெரியதாகவும் இரண்டாம் எண் சிறிதாகவும் எடுத்துக் கொள்கிறோமோ அவ்வாறே குறையற்ற முழு எண்களிலும் எடுத்துக்கொள்கிறோம்.
 - (b) இயல் எண்களில் எவ்வாறு வகுத்தலின் போது முதல் உறுப்பினை இரண்டாம் உறுப்பு கொண்டு வகுக்கும் போது மீதி பூச்சியமாக இருக்குமாறு எடுத்துக் கொள்கிறோமோ அவ்வாறே குறையற்ற முழு எண்களிலும் எடுத்துக் கொள்கிறோம்.
- (2) குறிப்பாக $\mathbf{0}$ என்ற எண் இடம் பெறுவதால் $\frac{0}{1}, \frac{1}{0}, \frac{0}{0}$ போன்ற வகுத்தல்கள் முக்கிய பங்கு வகிக்கிறது.

சில அடிப்படைக் கோட்பாடுகள்

- (1) பூச்சியத்தை பூச்சியமில்லா குறையற்ற முழு எண்ணினால் வகுக்கும் போது பூச்சியம் கிடைக்கும்.
- (2) பூச்சியமில்லா குறையற்ற எண்ணினை பூச்சியத்தால் வகுக்கும் போது ஒரு எண் கிடைப்பதில்லை. இதனை கீழ்வகுப்புகளில் ''வரையறுக்கப்படவில்லை'' (undefined) என்று குறிப்பிடுவோம். உயர் கணிதத்தில் இதன் பயன்பாடு மிகவும் முக்கியமானது.
- (3) பூச்சியத்தை பூச்சியத்தால் வகுக்கும்போது நேரடியாக ஒரு எண் கிடைப்பதில்லை கீழ்வகுப்புகளில் அனுமதிக்கப்படாத (not permitted) செயல் என்று இதனை குறிப்பிடுவோம். ஆனால் உயர் கணிததில் (calculus) இந்த வடிவம் மிகவும் முக்கியத்துவம் வாய்ந்ததாகும்.

மேற்குறிப்பிட்ட மூன்று கருத்துக்களையும் கீழ்க்கண்டவாறு ஆராயலாம்.

ஒரு பெருக்கல் கூற்றிற்கு தொடர்புடைய இரண்டு வகுத்தல் கூற்றுக்கள் உண்டு என நமக்குத் தெரியும். அதாவது

6 x 7 = 42 என்ற பெருக்கல் கூற்றிற்கு =
$$\frac{42}{6}$$
 = 7; $\frac{42}{7}$ = 6 எனவும்

 $5 \times 4 = 20$ என்ற பெருக்கல் கூற்றிற்கு $= \frac{20}{5} = 4; \frac{20}{4} = 5$ போன்ற வகுத்தல் கூற்றுக்களும் உண்டு.

இப்போது கீழ்க்காணும் பெருக்கல்களின் இரு வகுத்தல் கூற்றுகளைக் காண்போம்.

(a) – ன்படி பூச்சியத்தை பூச்சியமில்லாத முழு எண்களால் வகுக்க கிடைப்பது பூச்சியமாகும்.

(b) – ன்படி பூச்சியத்தை பூச்சியத்தால் வகுக்க பல மதிப்புகள் கிடைக்கின்றன. இதனை 'வரையறுக்கப்படவில்லை' என்று கீழ் வகுப்புகளில் குறிப்பிட்டாலும் உயர் வகுப்புகளில் இதனை தேரப்பெறாத எண் (indeterminate) என்று குறிப்பிடுவர்.

மேலும் $\frac{1}{0}$, $\frac{2}{0}$, $\frac{3}{0}$,க்கு முழு எண் உண்டு என எடுத்துக்கொண்டால் $\frac{1}{0}$ = x என ஆகும். அதாவது இதனை பெருக்கல் பலனாக எழுதும்போது 1=0 x x என அமையும். இது ஏற்றுக்கொள்ளக்கூடியதல்ல.

எனவே $\frac{1}{0}$, $\frac{2}{0}$, $\frac{3}{0}$ போன்றவற்றிற்கு இணையாக எந்த எண்ணும் கிடையாது. இவற்றை பொதுவாக 'முடிவிலி' என்று சொல்லாலும் ' ∞ ' என்ற குறியீட்டாலும் குறிப்பிடுவா். குறிப்பாக முடிவிலி அல்லது ∞ என்பது ஒரு எண்ணல்ல. ஒரு குறியீடு (symbol) மட்டுமே.

எனவே
$$\frac{0}{0} =$$
 தேரப்பெறாதது (indeterminate)
$$\frac{0}{1} = \mathbf{0}$$

$$\frac{1}{0} =$$
வரையறுக்கப்படாதது (not defined) ஆகும்.

குறிப்பாக $\frac{1}{0}$ ஐ ∞ எனக்குறிப்பிடுவதை பின்னர் பார்க்கலாம்

2.4 முழுக்கள் (Integers)

குறையற்ற எண்களை ஒரு கோட்டில் சம தூரத்தில் இருக்கும்படியாக கீழ்காணும் வகையில் குறிப்பிடுவோம்.

+

இங்கு 0 என்பது தொடக்க நிலையை குறிப்பிடுகிறது. ஒவ்வொரு மிகை முழு எண்ணும் சமதூரத்தில் 0–க்கு வலப்பக்கமாக அமைந்துள்ளது.

0க்கு இடப்பக்கமாக சமதூரங்களில் உள்ள 1,2,3..........ஆகிய எண்களை எவ்வாறு குறிப்பிடுவது.

இங்கும் 0 ஆனது இடப்பக்கமாக தொடக்க நிலையினை குறிப்பிடுகிறது.

மேற்காணும் இரண்டு அமைப்புகளையும் ஒரே கோட்டு அமைப்பாக மாற்றும்போது வலப்பக்கம் அமைந்துள்ள மிகை முழு எண்களும் இடப்பக்கம் அமைந்துள்ள எண்களும் ஒரே மாதிரி அமைந்து விடுகிறது. ஆனால் இடப்பக்கம் அமைந்துள்ள எண்கள் வலப்பக்கத்திற்கு எதிர்த்திசையில் அமைந்துள்ளதால், அவ்வெண்களுக்கு குறை (எதிர்) குறியீட்டினைப் பயன்படுத்தி ஒரே கோட்டில் அமைக்கலாம். அதாவிது,

இங்கு 0க்கு இடப்பக்கம் அமைந்துள்ள எண்களான -1,-2,-3,......ஆகியவை குறை முழு எண்கள் ஆகும். குறிப்பாக 0 என்பது மிகை முழு எண்களின் தொடக்க நிலையாகவும் குறை முழு எண்களின் முடிவு நிலையாகவும் அமைகிறது. எனவே 0ஐ மிகை முழு எண் என்றோ அல்லது குறை முழு எண் என்றோ சொல்லிட இயலாது. ஆனால் முழு எண்களின் கணத்தில் மிகை முழு எண்கள், குறை முழு எண்கள் மற்றும் 0 அடங்கும். 0 என்பது ஒரு முழு எண் ஆனால் மிகையுமல்ல. குறையுமல்ல.

இம்மூன்று வகையான எண்களின் சேர்க்கை கணத்தினை முழு எண்கள் (முழுக்கள் என்றும் சிலர் குறிப்பிடுவர்) (Integers)என்பர். அதனை Z என்று குறிப்பிடுவர்.

$$\therefore Z = \{ \dots -3, -2, -1, 0, 1, 2, 3 \dots \}$$
 முழுஎண்களின் கோட்டு அமைப்பு

இயல் எண்களின் இன்னொரு பெயர் மிகை முழு எண்கள் (positive integers) என இப்போது தெரியவருகிறது. இதனை எழுத்துக் குறியீட்டில் N (or) Z⁺ எனக் குறிப்பிடலாம்.

முழுக்கள் கணத்திலிருந்து குறை எண்கள் கணத்தினை நீக்கிவிட்டால் கிடைக்கக்கூடிய கணம் $\{0,1,2,3,.....\}$ ஆகும். எனவே இதனை குறையற்ற முழு எண்கள் (Nonnegative Integers) என்கிறோம்.

குறை முழு எண்களை கணத்தில் {....., -4, -3, -2, -1} என எழுதலாம்

அதாவது

N (a)
$$Z^+ = \{1,2,3,...\}$$

W = $\{0,1,2,3,...\}$
Z = $\{..., -3,-2,-1,0,1,2,...\}$
 $Z^- = \{...,-3,-2,-1\}$

பூச்சியமற்ற முழு எண்களின் கணம் (Non-zero intergers)

$$Z - \{0\} = \{ \dots, 3, -2, -1, 1, 2, 3, \dots \}$$
 அ**தம்**.

எல்லா கணங்களின் உறுப்புகளும் வரிசை படுத்தி எழுதப்பட்டுள்ளதை கவனிக்கவும்.

மேற்கண்ட எண்களின் கணங்களில்

- 1. முதல் உறுப்பு
- 2. கடைசி உறுப்பு
- 3. கீழ் எல்லை
- 4. மேல் எல்லை

இவற்றை ஆராயவும்.

இப்போது எண்ணியலின் அடிப்படைச் செயலிகளை (arithmetic operations) முழுக்கள் (integers) கணத்தில் பார்ப்போம்.

இயல் எண்கள் மற்றும் குறையற்ற முழு எண்களின் கணத்தில் கூட்டல் மற்றும் பெருக்கல் செயலிகள் மட்டுமே முழுமையான தீர்வை தந்தன. கழித்தலும், வகுத்தலும் முழுமையான தீர்வுகளை தரவில்லை.

இப்போது கழித்தலுக்கும், முழுக்களின் கணம் முழுமையான தீர்வினை கொடுப்பதைக் காணலாம்.

இரு முழுக்களின்(integers) கூடுதல் மற்றும் பெருக்கற் பலன் எப்போதும் முழு எண்ணாக இருக்கும். மேலும் இரு முழுக்களின் வித்தியாசமும் ஒரு முழு எண்ணாகவே இருக்கும்.

இரு முழுக்களின் வகுத்தல் கண்டிப்பாக முழு எண்ணாக இருக்க முடியுமா ? (தற்போது பூச்சியத்தால் வகுப்பதனை தவிர்போம்)

இருக்க வேண்டிய அவசியமில்லை.

$$2 \div 3 = \frac{2}{3}$$

$$-4 \div 7 = \frac{-4}{7}$$

குறிப்பு :

விகிதமுறு எண்களைப்(Rational Numbers)பற்றி தெரியாத பட்சத்தில் முழு எண்களின் வகுத்தலை பயன்படுத்தும் போது நடைமுறையில் மிகை முழு எண் மட்டுமே விடையாக வரும்படியான கணக்குகள் பயன்படுத்தப்ட்டமையைக் காண்க.

2.5 விகிதமுறு எண்கள் (Rational Numbers)

மேற்குறிப்பிட்டுள்ள இரு உதாரணங்களிலும் இரு உறுப்புகளும் முழுக்கள் எண்களாகவே உள்ளன. ஆனால் முடிவானது முழுக்கள் எண்ணாக இல்லை என்பதனை அறிகிறோம். இதனை நிவர்த்தி செய்ய நாம் ஏற்கனவே மேம்படுத்திக் கொண்டு வரும் எண்களின் கணத்தினை மேலும் மேம்படுத்த முயற்சி செய்வோம்.

விகிதம் என்றால் நமக்குத் தெரியும். ஒரு எண்ணினை விகித அடிப்படையில் எழுத முடியுமாயின் அதனை விகிதமுறு எண் எனலாம். அதாவது விகிதமுறு எண் என்பது $\frac{p}{q}$ என்ற விகிதமுறு அடிப்படையில் [p,q என்பவை முழு எண்கள் (integers) குறிப்பாக $q \neq 0$] எழுத இயல வேண்டும். எல்லா பின்னங்களையும் உதாரணங்களாக எடுத்துக் கொள்ளலாம். $\frac{1}{2},\frac{3}{2},\frac{4}{7}$ என்ற பின்னங்கள் விகிதமுறு எண்களுக்கு உதாரணங்கள். மேலும் $\frac{-4}{7},\frac{-1}{2},\frac{-3}{2}$ போன்ற பின்னங்களும் விகிதமுறு எண்களுக்கு உதாரணங்கள். விகிதமுறு எண்களின் கணத்தினை Q என்று குறிப்பிடுவர். அதாவது

 $\mathbf{Q} = \left\{ \quad : p,q$ என்பவை முழுக்கள், $q \neq 0 \right\}$ எல்லா முழுக்களும் விகிதமுறு எண்களா ?

ஆம். எல்லா முழுக்களையும் $\frac{p}{q}$, q=1 என எழுதலாம். எனவே எல்லா முழுக்கள் அல்லது Z–ல் உள்ள எல்லா உறுப்புகளும் விகிதமுறு எண்களாகும். குறிப்பாக $\mathbf{0}$ என்ற எண்ணும் விகிதமுறு எண்ணாகும். விகிதமுறு எண்களின் கணத்திலிருந்து (Q) மிகை எண்களை மட்டுத் தனித்து எடுக்கும் போது அந்த கணத்தினை மிகை விகிதமுறு எண்கள் என்போம். இதனை \mathbf{Q}^+ எனக் குறிப்பிடுவோம். பூச்சியமற்ற விகிதமுறு எண்களின் தொகுப்பினை $\mathbf{Q} - \{0\}$ என எழுத வேண்டும்.

இப்போது விகிதமுறு எண்களின் கணத்தில் நான்கு அடிப்படை செயலிகளைப் பார்ப்போம்.

இரு விகிதமுறு எண்களின் கூடுதல் ஒரு விகிதமுறு எண் ஆகும்.

- இரு விகிதமுறு எண்களின் வித்தியாசம் ஒரு விகிதமுறு எண் ஆகும்.
- இரு விகிதமுறு எண்களின் பெருக்கல் ஒரு விகிதமுறு எண் ஆகும்.
- இரு விகிதமுறு எண்களின் வகுத்தல் ஒரு விகிதமுறு எண்ணாக இருக்க வேண்டுமா ?

பூச்சியமற்ற இரு விகிதமுறு எண்களின் வகுத்தல் ஒரு விகிதமுறு எண்ணாக கண்டிப்பாக இருக்கும்.

பூச்சியம் என்ற விகிதமுறு எண் பகுதியில் வரும்போது அதை வகுத்தல் வரையறுக்கப்படாத ஒன்றாகவோ $\begin{pmatrix} p \\ 0 \end{pmatrix}$ தேரப்பெறாததாகவோ $\begin{pmatrix} 0 \\ 0 \end{pmatrix}$ அமைந்து விடும். எனவே பூச்சியமற்ற விகிதமுறு எண்களின் தொகுப்பில் அதாவது $\mathbf{Q} - (\mathbf{0})$ –ல் வகுத்தல் முழுமையாக செயல்படும். $\mathbf{Q} - \{\mathbf{0}\}$ –ல் கூட்டலும் கழித்தலும் முழுமையாக செயல்படுமா ? செயல்படாது. ஏன் ?

இப்போது எல்லா இயல் எண்களும் (N). எல்லா குறையற்ற மிகை ழுமு எண்களும் (W), எல்லா முழுக்களும் (Z) எல்லா பின்னங்களும் விகிமுறு எண்களாகும். ஆனால் ஒரு விகிதமுறு எண் ஒரு இயல் எண்ணாக இருக்க வேண்டிய அவசியம் இல்லை.

ஒரு விகிதமுறு எண்ஒரு இயல் எண்ணாகவோ ஒரு குறையற்ற மிகை முழு எண்ணாகவோ இருக்க வேண்டிய அவசியமில்லை.

ஒரு விகிதமுறு எண் ஒரு முழு எண்ணாக இருக்க வேண்டிய அவசியமில்லை.

ஒரு விகிதமுறு எண் ஒரு பின்னமாக இருக்க வேண்டிய அவசியமில்லை.

0–ஐ மிகை மற்றும் குறையற்ற விகிதமுறுஎண் என்று கூறிட முடியுமா ?

விகிதமுறு எண்ணின் திட்ட வடிவம் (Standard form)

ஒரு விகிதமுறு எண்ணின் திட்ட வடிவம் (Standard Form) என்பது

- (1) பகுதியானது மிகை எண்ணாக இருத்தல் வேண்டும்.
- (2) பகுதிக்கும் தொகுதிக்கும் 1–ஐத் தவிர பொது வகுத்தி இருத்தல் கூடாது.

$$\frac{4}{-5}$$
 என்பதன் திட்டவடிவ விகிதமுறு எண் $\frac{-4}{5}$

என்பதன் திட்டவடிவ விகிதமுறு எண்
$$\frac{1}{2}$$

மேலும் $\frac{4}{-5}$, $\frac{-4}{5}$, $-\frac{4}{5}$ ஆகிய வடிவங்கள் ஒரே விகிதமுறு எண்ணினையே குறிக்கிறது என்பதனை கவனத்தில் கொள்க.

எண்கோட்டில் விகிதமுறு எண்கள்

சிந்தனைக்கு

இரண்டு விகிதமுறு எண்களுக்கு இடையில் இன்னொரு விகிதமுறு எண் இருக்குமா ? அவ்வாறெனில் இருவிகிதமுறு எண்களுக்கு இடையில் எத்தனை விகிதமுறு எண்கள் இருக்கும்.

விகிதமுறு எண்களின் மிக முக்கியமான பண்பு

எந்தவொரு விகிதமுறு எண்ணினையும் இரு வகைகளில் தசம வடிவில் எழுதலாம். அதாவது

- 1. முடிவுறு தசம எண்ணிக்கையில்
- 2. முடிவில்லா தசம எண்ணிக்கையில் (மீண்டும் திரும்பும் வகையில்)
 - (i) $\frac{p}{q}$ -ல் q ஆனது 2 (அ) 5 (அ) 2 மற்றும் 5 ஆகிய பகா காரணிகளால் ஆன

எண்ணாக இருப்பின் (உதாரணமாக $4 = 2 \times 2$, $25 = 5 \times 5$, $8 = 2 \times 2 \times 2$) $\frac{p}{q}$ -ன் தசம வடிவத்தில் உள்ள தசம இலக்கங்கள் முடிவுற்றதாக அமையும்.

எடுத்துக்காட்டு
$$\frac{3}{4} = 0.75;$$
 $\frac{1}{2} = 0.5;$ $\frac{2}{5} = 0.4;$ $\frac{5}{8} = 0.625$

(ii) q-ஆனது 2 (அ) 5 இல்லாத ஏதேனும் ஒரு காரணியை கொண்டிருக்குமானால் (6 = 2x3, 12 = 2x2x3, 15= 3x5) $\frac{p}{q}$ -ன் தசம வடிவத்தில் உள்ள தசம இலக்கங்கள் முடிவுற்றதாக அமையும்.

ஆனால் ஒரு குறிப்பிட்ட இலக்கங்கள் மீண்டும் மீண்டும் அதுவே தொடர்ந்து வரும்.

$$\frac{1}{3} = 0.333.... = 0.\overline{3}$$

$$\frac{2}{11} = 0.181818... = 0.1\overline{8}$$

$$\frac{1}{7} = 0.142857142857... = 0.\overline{142857}$$

$$\frac{1}{12} = 0.08333.... = 0.08\overline{3}$$

$$\frac{2}{15} = 0.1333... = 0.1\overline{3}$$

$$-\frac{3}{13} = -0.230769230769... = -0.\overline{230769}$$

இவற்றிலிருந்து நாம் தெரிந்து கொள்வது, எந்தவொரு விகிமுறு எண்ணினையும் (i) முடிவுறு தசம எண்ணிக்கை அல்லது (ii) குறிப்பிட்ட இலக்கங்கள் மீண்டும் மீண்டும் இடம்பெறும் வகையில் முடிவற்ற தசம எண்ணிக்கை கொண்ட தசம வடிவில் எழுதலாம்.

மேலும் இவ்வாறு கொடுக்கப்பட்ட தசம வடிவங்களை $\frac{p}{q}$ என்ற விகிதமுறு எண் வடிவிலும் மாற்றி அமைக்கலாம். எடுத்துக்காட்டுகளைப் பார்ப்போம்.

$$0.75 = \frac{75}{100} = \frac{3}{4}$$

$$0.675 = \frac{675}{100} = \frac{27}{40}$$

$$0.3\overline{5} = \frac{16}{45}$$

$$0.\overline{431} = \frac{431}{999}$$

$$0.\overline{142857} = \frac{1}{7}$$
 (எவ்வாறு கிடைக்கிறது)

 $0.\overline{142857}$ என்பதன் விகிதமுறு எண் வடிவம் = ?

$$\mathcal{X} = 0.\overline{142857}$$

அதாவது .
$$\mathcal{X} = 0.142857142857...$$
 ... (1)

இதனை 1000000 ஆல் பெருக்க(ஏன்)

$$1000000X = 142857.142857142857$$
 ... (2)

(2) - (1) 999999X = 142857

$$\mathcal{X} = \frac{142857}{999999} = \frac{1}{7}$$

இப்போது 0.1512034189......என்ற தசம வடிவினை விகிதமுறு எண்ணாக எழுத முடியுமா ? முடியாது எனில், ஏன் ?

2.6 விகிதமுறா எண்கள் (Irrational Numbers)

 $\sqrt{2}=1.414$ என்பது சரியா ?

 $\sqrt{3} = 1.732$ என்பது சரியா ?

சரி எனில்
$$(1.414)^2 = 2$$
 மற்றும் $(1.732)^2 = 3$

என சரியாக கிடைக்குமா ? மேற்சொன்ன இரு மதிப்புகளும் சரியான மதிப்புகள் அல்ல. அவை தோராயமான மதிப்புகள். அவ்வாறெனில் $\sqrt{2}$, $\sqrt{3}$ போன்றவற்றின் மதிப்பினை தசம வடிவில்

- (i) முடிவுள்ள தசம இலக்கங்களை கொண்டதாகவோ அல்லது
- (ii) முடிவற்ற தசம இலக்கங்கள் ஆனால் குறிப்பிட்ட இலக்கங்கள் மீண்டும் மீண்டும் வருமாறு எழுத இயலுமா ?

நிச்சயமாக முடியாது. அவ்வாறு எழுத முடியாது எனில் $\sqrt{2}$, $\sqrt{3}$ போன்றவற்றின் மதிப்புகளை $\frac{p}{q}$ (p, q) என்பவை முழுக்கள் $q \neq 0$) என்ற வடிவில் எழுத இயலாது. அதாவது $\sqrt{2}$, $\sqrt{3}$ போன்றவை விகிதமுறு எண்கள் அல்ல என்று பொருள்.

இங்கு $\sqrt{2}$ -ன் மதிப்பானது 1 க்கும் 2 க்கும் இடையே உள்ளது என்பது தெளிவு. ஆனால் $\frac{p}{q}$ வடிவத்தில் எழுத இயலவில்லை.

 $\sqrt{3}$ -ன் மதிப்பானது **1** மற்றும் **2**க்கு இடையே உள்ளது என்பது தெளிவு. ஆனால் $\frac{p}{q}$ வடிவத்தில் எழுத இயலவில்லை.

அதாவது ஒரு எண்ணை $\frac{p}{q}$ (p,q என்பவை முழுக்கள் $q \neq 0$) என்ற விகித வடிவத்தில் எழுத முடியாது எனில் அதனை விகிதமுறா எண் என்கிறோம்.

இந்த விகிதமுறா எண்களின் எண்ணிக்கை எண்ணில் (finite) அடங்குமா ? அடங்காது.

மிக முக்கிய குறிப்பு

விகிதமுறு எண்களின் தொகுப்பு எண்ணிடத்தக்க வகையை சார்ந்தது ஆகும். மேலும் முடிவுறா வகையை சார்ந்ததும் ஆகும். குறிப்பாக Nல் ஒரு எண் சொல்லப்படுமானால் அடுத்த எண் சொல்ல முடியும் Qல் அவ்வாறு இயலாது எனினும் கணிதக் கோட்பாடுகளின்படி இது எண்ணிடத்தக்கதானது (countable) ஆகும். அதனால் countable என்பதன் தமிழாக்கத்தினை சரியாகப் புரிந்து கொள்ள வேண்டும். இதன் வரையறையானது உயர்கணிதத்தில் தான் பயன்படுத்தப்படும் என்பதனை நினைவில் கொள்க.

எண்ணிலடங்கா (infinite) விகிதமுறா எண்கள் உள்ளன. ஆனால் எந்தவொரு விகிதமுறா எண்ணாக இருந்தாலும் அதனுடைய தோராய மதிப்பின் மூலம் எண் கோட்டில் அதன் இடத்தினை கோடிட்டுக்காட்ட இயலும்.

0 நிச்சயமாக விகிதமுறா எண் இல்லை என்பது தெரியும். $2+\sqrt{3}$, $\sqrt{5}$, $2-\sqrt{7}$ போன்றவை விகிதமுறா எண்களே. (ஏன் ?) இப்போது விகிதமுறா எண்களின் கணத்தில் 4 அடிப்படைச் செயலிகளை பயன்படுத்துவோம்.

இரண்டு விகிதமுறா எண்கணைக் கூட்டினால் விகிதமுறா எண் எப்போதும் கிடைக்குமா?

இரண்டு விதமுறா எண்களைக் கழித்தால் விகிதமுறா எண் எப்போதும் கிடைக்குமா ?

இரண்டு விகிதமுறா எண்களைக் பெருக்கினால் விகிதமுறா எண் எப்போதும் கிடைக்குமா?

இரண்டு விகிதமுறா எண்களை வகுத்தால் விகிதமுறா எண் எப்போதும் கிடைக்குமா ? இந்த நான்கு வினாக்களுக்கும் விடை : கிடைக்க வேண்டிய அவசியமில்லை என்பதே.

 $2+\sqrt{3}$, $2-\sqrt{3}$ ஆகிய இரண்டும் விகிதமுறா எண்களே. இவற்றை கூட்டும்போது கிடைக்கும் **4** என்பது விகிதமுறு எண்.

 $4+\sqrt{3}$, $5+\sqrt{3}$ ஆகியவை விகிதமுறா எண்களே. இவற்றை கழிக்கும் போது கிடைப்பது -1 என்ற விகிதமுறு எண்ணே ஆகும்.

 $2+\sqrt{3}$, $2-\sqrt{3}$ ஆகிய இரண்டும் விகிதமுறா எண்களை பெருக்கும் போது கிடைக்க கூடியது **1** என்ற விகிகமுறு எண்ணே.

 $4+2\sqrt{3}$, $\mathbf{2}+\sqrt{3}$ ஆகியவவை விகிதமுறா எண்கள். ஆனால் இதன் வகுத்தல் $\mathbf{2}$ என்ற விகிதமுறு எண்ணாகும்.

எனவே விகிதமுறா எண்களின் கணத்தில் 4 செயலிகளும் முழுமையாக செயல்படுத்த இயலாது. மிக விரிவாக நாம் அடைந்த இருவகையான எண் தொகுப்புகள்

- (1) விகிதமுறு எண்கள்
- (2) விகிதமுறா எண்கள்

குறிப்பு

नुलं ?

விகிதமுறா எண்களின் தொகுப்பு 'எண்ணத்தக்கதல்ல' (uncountable) வகையை சார்ந்தது. இதன் உள்ளார்ந்த அர்த்தம் தெரியவேண்டுமெனில் உயர்கணிதத்திற்குச் செல்ல வேண்டும்.

2.7 மெய்யெண்கள் (Real Numbers)

விகிதமுறு மற்றும் விகிதமுறா எண்களின் தொகுப்பு மெய்யெண்கள் (Real Numbers) ஆகும். இங்கு மெய் என்ற வார்த்தையின் உள்ளார்ந்த பொருள் என்னவெனில் ஒரு 'எண் கோட்டில் நாம் குறிப்பிடும் எண்ணிற்கு உகந்த இடத்தினை தோராயமாகவோ, அல்லது சரியாகவோ குறிப்பிட இயலும் என்று பொருள்'.

எனவேதான் எண் கோட்டினை மெய்யெண் கோடு (Real line) என்பா். இதுவரை நாம் பாா்த்த எண்கள் எதுவாயினும் அவற்றை மெய்யெண் கோட்டில் சுட்டிக்காட்ட இயலும்.

இவ்வாறு சுட்டிக்காட்ட முடியாத எண்கள் உள்ளனவா ? ஆம். அவற்றை கலப்பெண்கள் (Complex numbers) எனக் குறிப்பிடுவார்கள். அந்த எண்களை தற்போது நாம் தவிர்போம். மெய்யெண்களின் தொகுப்பினை R என்று குறிப்பிடுவர். மெய்யெண் கோடு

ஆகும்.

பூச்சியமற்ற மெய்யெண்களின் தொகுப்பினை R - {0} எனக் குறிப்பிடுவர்.

மிகை மெய்யெண்களை R+ எனக்குறிப்பிடுவர்

இப்போது R-ல் 4 வகையான அடிப்படை செயலிகளை பார்க்கலாம்.

கூட்டல், கழித்தல், பெருக்கல் ஆகியவை முழுமையாக R-ல் செயல்படும். அதாவது

- இரு மெய்யெண்களைக் கூட்டினால் கிடைப்பது மெய்யெண்ணாகும்.
- இரு மெய்யெண்களைக் கழித்தால் கிடைப்பது மெய்யெண்ணாகும்.
- இரு மெய்யெண்களைக் பெருக்கினால் கிடைப்பது மெய்யெண்ணாகும்.

ஆனால் 0–ம் ஒரு மெய்யெண். ஆதலால் வகுத்தலின் போது முழுமையான தீர்வு கிடைக்காது. 0–ஐ நீக்கினால் வகுத்தலும் முழுமையாக செயல்படும்.

அதாவது, R - {0}–ல் வகுத்தல் முழுமையாக செயல்படும்.

R-{0}–ல் கூட்டல், கழித்தல் செயலிகள் முழுமையாக செயல்படுமா ? செயல்படாது. ஏன் ?

எந்த இரு மெய்யெண்களும் (x, y) கீழ்க்காணும் ஏதேனும் ஒரு வரிசை விதிக்கு உட்பட்டிருக்கும். அதாவது (i) x < y or (ii) x = y or (iii) x > y

கொடுக்கப்படும் மெய் எண்களின் தொகுப்பினை ஏறு முகமாகவோ இறங்கு முகமாகவோ வரிசைப்படுத்தி எழுத இயலும். இதனை வரிசைப் பண்பு (order relation) என்பர்.

2.8 சிறப்பு எண் தொகுப்புகள்

- 1) இரட்டை எண்கள் (Even Numbers)
- 2) ஒற்றை எண்கள் (Odd Numbers)

- 3) பகா எண்கள் (Prime Numbers)
- 4) பகு எண்கள் (Composite numbers)

மேற்குறிப்பிட்ட நான்கு வகை எண் வகைகளை பார்க்கும் முன்னர் வகுப்பான், வகுத்தி, காரணிகள் பற்றி தெரிந்திருக்க வேண்டும். வகுத்தல் கோட்பாட்டினை நினைவுபடுத்துவோம்.

$$\frac{$$
வகுபடுஎண்}{வகுக்கும் எண்} = $\frac{D}{d}$

Divident = quotient x divisor + remainder (i.e) $D = q \times d + r$

இங்கு D என்பது வகுபடு எண்

d என்பது வகுப்பான் அல்லது வகுக்கும் எண்

q என்பது ஈவு; r என்பது மீதி

இங்கு குறிப்பாக d–ஐ ஆங்கிலத்தில் divisor என்று கூறுகிறோம்.

பொதுவாக ஓர் எண்ணினை ஒரு வகுக்கும் எண் மீதியின்றி வகுக்குமானால் அந்த வகுக்கும் எண்ணினை வகுத்தி என்று தமிழிலும் divisor ஆங்கிலத்தில் என்று குறிப்பிடுவோம்.

ஆனால் வகுத்தல் கோட்பாட்டில் உள்ள divisor என்ற சொல் வகுத்தி என்ற பொருளில் வராது. அதன் தமிழாக்கம் வகுக்கும் எண் அல்லது வகுப்பான் ஆகும். எனவே ஆங்கிலத்தில் divisor என்ற சொல்லுக்கு இடத்திற்கேற்ப வகுப்பான், வகுத்தி என்ற பொருள்கள் உள்ளன.

எல்லா வகுத்திகளும் அவ்வெண்ணுக்கு வகுப்பானாக இருக்கும். ஆனால் வகுப்பான் வகுத்தியாக இருக்க வேண்டிய அவசியம் இல்லை.

மேற்காணும் நான்கு வகையான சிறப்பு எண்களின் தொகுப்புகள் ஒரு குறிப்பிட்ட எண் கணத்தினை (Number set) பொறுத்து வரையறுக்கப்படும்.

2.8.1 இரட்டை மற்றும் ஒற்றை எண்கள்

ஒரு முழு எண் 2 என்ற எண்ணால் வகுபடும் போது மீதி 0 ஆக இருப்பின் அவ்வெண் இரட்டை எண் ஆகும். இந்த வரையறையின்படி N,W,Z–ல் இரட்டை எண்களின் தொகுப்பு மாறுபடும். அதாவது

N–ல் இரட்டை எண்கள் {2,4,6,......} ஆகும்.

W–ல் இரட்டை எண்கள் {0,2,4,6,....} ஆகும்.

Z–ல் இரட்டை எண்கள் {...,-4,-2,0,2,4,....} ஆகும்.

ஒரு முழு எண் **2** என்ற எண்ணால் வகுபடும்போது மீதி **0** ஆக இல்லாமல் இருப்பின் அவ்வெண் ஒற்றை எண் ஆகும்.

இந்த வரையறையின்படி

N-ல் ஒற்றை எண்கள் {1,3,5.....} ஆகும்.

W-ல் ஒற்றை எண்கள் {1,3,5,....} ஆகும்

Z-ல் ஒற்றை எண்கள் {...-3, -1, 1, 3, 5.......} ஆகும்.

எனவே ஒற்றை மற்றும் இரட்டை எண்களை முழுக்கள் (integers) அல்லது அதன் உட்கணங்களில் மட்டுமே வரையறுக்கலாம்.

நாம் ஏற்கனவே வகுத்தி என்ற சொல்லினை பார்த்தோம். அதாவது ஒரு எண்ணானது ஒரு வகுபடு எண்ணால் மீதியின்றி வகுபடுமானால் அதனை வகுத்தி என்கிறோம். அவ்வாறெனில் எந்தவொரு எண்ணிற்கும் 1ம், அந்த எண்ணும் எப்போதும் வகுத்திகளாகவே இருக்கும் என்பது தெளிவு.

காரணி என்பது 1 ம், அந்த எண்ணினையும் தவிர்த்த பிற வகுத்திகளாகும்.

எடுத்துக்காட்டாக 18 என்ற எண்ணின் வகுத்திகள் 1, 2, 3, 6, 9, 18 ஆகும். ஆனால் காரணிகள் 2, 3, 6, 9 மட்டுமே ஆகும்.

2.8.2 பகா எண்கள் மற்றும் பகு எண்கள் (Prime Numbers and Composite Numbers)

பகா மற்றும் பகு எண்களை இயல் எண்களின் கணத்தில் மட்டுமே வரையறுக்கப்படும் என்பதனை கவனத்தில் கொள்க.

ஒரு இயல் எண்ணிற்கு 1 மற்றும் அந்த எண் ஆகிய இரு வகுத்திகள் மட்டுமே இருப்பின் அந்த இயல் எண் ஒரு பகா எண்ணாகும் (Prime Number). அதாவது 1–க்கு பெரிதான ஒரு இயல் எண்ணுக்கு காரணிகள் இல்லாமல் இருப்பின் அந்த எண் பகா எண்ணாகும்.

அவ்வாறெனில் மீச்சிறு பகா எண் என்ன? 2–ஆகும். இதற்கு 1,2 ஆகிய இரு வகுத்திகள் உள்ளன. ஆனால் காரணிகள் இல்லை. பகா எண்களின் தொகுப்பினை பிற எண் தொகுப்பு மாதிரியாக முற்றிலும் அறிந்து கொள்ளும் வகையில் எழுத இயலாது. ஆனால் அடுத்தடுத்த பகா எண்களை கூறிட இயலும். இருப்பினும் {2, 3, 5, 7, 11, 13, 17, 19, 23, 29,...} என பகா எண்களை எழுதலாம்.

குறிப்பாக இரட்டை பகா எண் 2 என்பது மட்டுமே உள்ளது என்பதை கவனிக்க. பிற அனைத்தும் ஒற்றைப்படை பகா எண்கள்.

இரண்டுக்கும் மேலான வகுத்திகளைக் கொண்ட ஒரு இயல் எண்ணினை பகு எண்கள் என்கிறோம்.

அவ்வாறெனில் மீச்சிறு பகு எண் என்ன?

4. ஆகும் இதன் வகுத்திகள் 1, 2, 4 ஆகும். அதாவது இதற்கு 2 என்ற காரணி உள்ளது. இப்போது இயல் எண்களின் கணத்தில் ஓர் எண், பகா எண் இல்லையெனில் அதனை பகு எண் என்று கூறிட இயலுமா ?

1 என்ற இயல் எண் பகு எண்ணா? பகா எண்ணா? இதற்கு ஒரே ஒரு வகுத்தி மட்டுமே உள்ளதால் இதனை பகு எண்ணாகவோ அல்லது பகா எண்ணாகவோ கருத இயலாது. எனவே **1**–ஐ தவிர்த்த இயல் எண்களில் ஓர் எண் பகா எண் இல்லையெனில் அதனை பகு எண் எனலாம்.

பகு எண்கள், பகா எண்கள் மற்றும் **1**–ன் தொகுப்பு ஒரு இயல் எண்களின் கணமாக அமையும்.

இங்கு பகா என்பதன் பொருள் 'பகுக்க இயலாத' அதாவது "பெருக்கலாக எழுத இயலாத" அதாவது "காரணிகளின் பெருக்கலாக எழுத இயலாத" என்பதாகும்.

பகு என்பது "பகுக்க இயலும்" அதாவது "காரணிகளின் பெருக்கலாக எழுத இயலும்" என்று பொருள். பகு எண்கள் {4, 6, 8, 9, 10...} ஆகும்.

குறிப்பு

- 1. இரு தொடர்ந்த இயல் எண்கள் பகா எண்களாக இருக்க இயலுமா ? அவ்வாறெனில் சிலவற்றை குறிப்பிட இயலுமா ?
- 2. எல்லா ஒற்றை எண்களும் பகா எண்களா ?
- 3 பகு எண்களின் கணத்திற்கு மற்றும் பகா எண்களின் கணத்திற்கு தனியாக கணப்பெயர்கிடையாது.
- 4. இரட்டை எண்களின் கணத்திற்கும் ஒற்றைப்படை எண்களின் கணத்திற்கும் தனியாக கணப்பெயர் கிடையாது.
- 5. எந்தவொரு பகு எண்ணினையும் பகாக் காரணிகளின் பெருக்கலாக எழுத முடியுமா ? ஆம்.
- இரட்டை எண் + இரட்டை எண் ⇒ இரட்டை எண்
 இரட்டை எண் − இரட்டை எண் ⇒ இரட்டை எண் (Z−ல்)
 இரட்டை எண் × இரட்டை எண் ⇒ இரட்டை எண்
 இரட்டை எண் ÷ இரட்டை எண் ⇒ ஒரு முழு எண்ணாகவே இருக்க வேண்டிய அவசியமில்லை.
- 7. N–ல் உள்ள இரட்டை எண்களில் 4 வகை அடிப்படை செயலிகளில் எவை முழுமையாக செயல்படும் ?

W–ல் உள்ள இரட்டை எண்களில் 4 வகை அடிப்படை செயலிகளில் எவை முழுமையாக செயல்படும் ?

Z–ல் உள்ள இரட்டை எண்களில் 4 வகை அடிப்படை செயலிகளில் எவை முழுமையாக செயல்படும் ?

- 8. ஒற்றை எண் + ஒற்றை எண் ⇒ இரட்டை எண் ஒற்றை எண் − ஒற்றை எண் ⇒ இரட்டை எண் (Z−ல்) ஒற்றை எண் x ஒற்றை எண் ⇒ ஒற்றை எண் ஒற்றை எண் ÷ ஒற்றை எண் ⇒ முழு எண்ணாக இருக்க வேண்டிய அவசியமில்லை.
- 9. N –ல் உள்ள ஒற்றை எண்களில் 4 வகை அடிப்படை செயலிகளில் எவை முழுமையாக செயல்படும் ?

W–ல் உள்ள ஒற்றை எண்களில் 4 வகை அடிப்படை செயலிகளில் எவை முழுமையாக செயல்படும் ? Z-ல் உள்ள ஒற்றை எண்களில் 4 வகை அடிப்படை செயலிகளில் எவை முழுமையாக செயல்படும் ?

10. ஒற்றை எண் + இரட்டை எண் ஒற்றை எண் ஒற்றை எண் − இரட்டை எண் ⇒ ஒற்றை எண் (Z–ல்) ஒற்றை எண் x இரட்டை எண் ⇒ இரட்டை ஒற்றை எண் ÷ இரட்டை எண் ⇒ ஒரு முழு எண்ணாக இருக்க வேண்டிய அவசியமில்லை

2.9 வென் படங்களில் எண் அமைப்புகள் (Venn Diagram)

இதுவரை நாம் பார்த்த எண் அமைப்புகளை வென்படங்கள் மூலம் எளிதாக புரிந்து கொள்ளலாம், இங்கு

$$N \subset W \subset Z \subset Q \subset R$$

even

2.10 பூச்சியம் (0) மற்றும் 1 பற்றிய சிறப்புகள்

0–ஐ பற்றி

- (1) 0–ஓர் இலக்கமாகவும் எண்ணாகவும் செயல்படும்.
- (2) 0- W -ன் கீழ் எல்லை.
- (3) 0– மிகையற்ற, குறையற்ற முழு எண்.
- (4) 0– என்பது W,Z–ல் ஓர் இரட்டை எண்
- (5) 0–ஐ எந்த எண்ணோடு கூட்டினாலும் அந்த எண்ணின் மதிப்பு மாறுவதில்லை (அதனால் கூட்டலில் இதனை சமனி உறுப்பு என்பர்)
- (6) 0–ஐ எந்த எண்ணிலிருந்து கழித்தாலும் அந்த எண் மாறுவதில்லை.
- (7) 0-g+0, -0 என்று எண்ணியலில் எழுதுவது உகந்ததல்ல.
- (8) 0–ஐ எந்த பூச்சியமற்ற எண் கொண்டு வகுத்தாலும் பூச்சியமே கிடைக்கும்.
- (9) 0–ஐ எந்த பூச்சியமற்ற எண் கொண்டு பெருக்கினாலும் பூச்சியமே கிடைக்கும்.
- (10) 0 ஐ 0 கொண்டு வகுத்தால் தேரப்பெறாத வடிவம் (indeterminate form) கிடைக்கும்.
- (11) பூச்சியமற்ற எண்ணினைக் 0 கொண்டு வகுப்பது வரையறுக்கப்படாத (undefined) ஒன்றாகும். உயர் கணிதத்தில் +∞ அல்லது −∞ என இடத்தை பொறுத்து பொருள் கொள்ளப்படும்.
- (12) 0 ஒரு விகிதமுறு எண்.

1–ஐ பற்றி

- (1) 1–என்பது இயல் எண்களின் கீழ் எல்லை.
- (2) 1– ஒரு பகு எண்ணும் அல்ல பகா எண்ணும் அல்ல.

- (3) 1– N, W, Z–ல் ஒரு ஒற்றைப்படை எண்.
- (4) எந்த எண்ணினையும் 1 ஆல் பெருக்கினாலும் அந்த எண் மாறுவதில்லை.(அதனால் 1–ஐ பெருக்கலில் சமனி உறுப்பு என்பர்)
- (5) எந்த எண்ணினையும் 1–ல் வகுத்தால் அந்த எண் மாறுவதில்லை.
- (6) 1 ஒரு முழு, விகிதமுறு, மெய்யெண்.

2.11 முடிவிலி (∞) என்றால் என்ன?

யஜுர் வேதத்தில் (BC 400-300) "If you remove a part from infinity or add a part to infinity still what remains is infinity" என குறிப்பிடப்பட்டுள்ளது.

 ∞ என்ற குறியீடான 'infinity' லத்தீன் மொழியான 'infinitas' என்ற சொல்லிருந்து (பொருள் – unboundedness - எல்லையில்லா) வந்ததாக கூறப்படுகிறது. உயர் கணிதத்தில் எண்கள் பயன்பாட்டின் போது ($\frac{1}{0}$, $\frac{2}{0}$ஆகியவற்றிற்கு இணையான) 'முடிவிலி' (infinity) –ஐ அடிக்கடி கையாளப்படும். இது எண் மாதிரியான தோற்றத்தைக் கொடுத்தாலும் பிற எண்களைப் போன்று இதனை கையாளுதல் இயலாது. முடிவில்லா தூரத்திற்கும் முடிவில்லா நேரத்திற்கும் முடிவில்லா அளவிற்கும் கூட கணிதத்தில் ∞ என்ற முடிவிலியை பயன்படுத்துவர். இந்த ∞ யுடன் வரையறுக்கப்பட்ட எந்த மதிப்பினை சேர்த்தாலும் நீக்கினாலும் அதன் தன்மை மாறாதது. ∞ ஒரு மெய்யெண் அல்லவாக இருப்பினும் அத்துடன் எந்த மெய்யெண்ணை சேர்த்தாலும் அல்லது கழித்தாலும் அது ∞ ஆகவே இருக்கும். ∞ என்ற குறியீட்டினை ஜான் வாலிஸ் (John Wallis - 1655) என்ற கணிதவியலாளர் அறிமுகப்படுத்தியதாக கணித இலக்கியம் கூறுகிறது.

வலப்பக்க எல்லையில்லா தூரத்தினை $+\infty$ எனக்கொண்டால் இடப்பக்க எல்லையில்லா தூரத்தினை $-\infty$ எனக்கொள்ளலாம். மேலே உள்ள எல்லையில்லா உயரத்தினை $+\infty$ எனக்கொண்டால் கீழே உள்ள எல்லையில்லாத் தாழ்வினை $-\infty$ எனக்கொள்ளலாம்.

சாதாரண வகுத்தல் மூலம் ∞ —யினை அறிய முயற்சி செய்வோம். வகுத்தல் என்பது தொடர்ச்சியான கழித்தல் முறை என்பது நமக்குத் தெரியும். இங்கு நாம் பயன்படுத்தும் '0' —ஐ எண்ணாக கருத வேண்டுமே தவிர 'இல்லை' என்ற பொருள்படும்படி கருதக்கூடாது. $\frac{8}{2}$ என்பதனைக் காண, எத்தனை முறை 8–லிருந்து 2 கழிக்க இயலும் என்பதனை கண்டால் போதுமானது. 8 இனிப்புகளை 2 இனிப்புகள் வீதம் எத்தனை குழந்தைகளுக்கு கொடுக்க இயலும்?

1) 8-2=6

ஒரு குழந்தைக்கு கொடுத்தாயிற்று. இன்னும் கொடுக்க இயலுமா ? ஆம். இன்னும் 6 இனிப்புகள் உள்ளன. கொடுக்கவும்.

2) 6-2=4

இரண்டு குழந்தைகளுக்கு கொடுத்தாயிற்று. இன்னும் கொடுக்க இயலுமா ? ஆம். இன்னும் 4 இனிப்புகள் உள்ளன. கொடுக்கவும்.

3) 4-2=2.

மூன்று குழந்தைகளுக்கு கொடுத்தாயிற்று. இன்னும் கொடுக்க இயலுமா ? ஆம். இன்னும் 2 இனிப்புகள் உள்ளன. கொடுக்கவும்.

4) 2-2=0.

நான்கு குழந்தைகளுக்கு கொடுத்தாயிற்று. இன்னும் கொடுக்க இயலுமா ? இயலாது. ஏன் ? இனிப்பு தீர்ந்து விட்டது. அதாவது இனிப்பு கையில் இருக்கும் வரை கொடுத்துக் கொண்டே இருக்கலாம். மொத்தம் எத்தனை குழந்தைகளுக்கு கொடுக்கப்பட முடிந்தது ? 4 குழந்தைகளுக்கு.

அப்படியானால் மேற்சொன்ன விதிப்படி $\frac{1}{0}$ என்ற வகுத்தலை கழித்தல் முறைப்படி பார்ப்போமா ? கையில் உள்ள இனிப்புகள் எவ்வளவு ?

ஒரு குழந்தைக்கு கொடுக்கப்பட வேண்டிய இனிப்பு எவ்வளவு?

0 (இது எண். மாறாக 'இல்லை' அல்ல)

முதல் குழந்தைக்கு 0 இனிப்பு கொடுத்த பின்னர் எவ்வளவு இனிப்பு மீதம் இருக்கும் ?

1 - 0 = 1

மீதம் உள்ளதா ?

1

ஆம்.

அவ்வாறெனில் அடுத்த குழந்தைக்கு கொடுக்கலாமா ? ஆம். இரண்டாம் குழந்தைக்கு கொடுத்த பின்னர் மீதம் எவ்வளவு இருக்கும் ?

1 - 0 = 1

மீதம் உள்ளதா ?

ஆம்.

அவ்வாறெனில் அடுத்த குழந்தைக்கும் கொடுக்கலாமா ? ஆம்.

இவ்வாறு இனிப்பு (1) பூச்சியமாகும்வரை கொடுத்துக்கொண்டே இருக்கலாம். எப்போது பூச்சியமாகும்.

எப்போதும் பூச்சியமாகாது.

அப்படியானால் எவ்வளவு குழந்தைகளுக்கு '0' இனிப்பு கொடுக்க இயலும்.

'அளவில்லா' குழந்தைகளுக்கு கொடுத்துக்கொண்டே இருக்கலாம். அந்த 'அளவில்லா' எண்ணிக்கையை நாம் ∞ என்ற குறியீடு மூலம் குறிப்பிடுகிறோம்.

மேலும் உபநிடதத்தில் முடிவிலி பற்றி

"பூர்ணமத: பூர்ணமிதம் பூர்ணாத் பூர்ணமுதச்யதே பூர்ணஸ்ய பூர்ணமாதாய பூர்ணமே வாவசிஷ்யதேயதே" எனக்கூறப்பட்டடுள்ளது,

அதாவது,

"அது பூரணம், இது பூரணம்; பூரணத்தினின்று பூரணம் தோன்றுகிறது. பூரணத்தினின்றும் பூரணத்தை அகற்றினாலும் எஞ்சுவது பூரணமே" இங்கு பூரணம் என்பது ∞ யினைக் குறிப்பிடுகிறது. மேலும் ∞ யிலிருந்து எந்த குறிப்பிட்ட மதிப்பினை அகற்றினாலும் ∞ யின் மதிப்பு மாறுவதில்லை என அறிக.

2.12 தொடர்ச்சித் தன்மை (இரண்டு வகையினை பிரிக்கும் பகுதி):

பொதுவாக நிரப்பி (Complement) என்ற கருத்தினை பலர் தவறாக பயன்படுத்தி வருவதை காணலாம்.

உட்புறப் (interior) புள்ளிகளுக்கு நிரப்பி (complement) என்னவென்று கேட்டால் உடனே வெளிப்புற (exterior) புள்ளிகள் என்று பதில் சொல்வது இயல்பு.

அதாவது உட்புற புள்ளி இல்லாத புள்ளிகள் எவையென்றால் உடனே வெளிப்புற புள்ளிகள் என்று விடை கூறிட இயலாது. உட்புறத்தினையும், வெளிப்புறத்தினையும் இணைக்கும் எல்லைப் புள்ளிகளை மறந்து விடுகிறோம். இந்த எல்லைப்புள்ளிகள்தான் இரண்டு வகைப் புள்ளிகளுக்கு இடையே தொடர்ச்சித் தன்மையைக் கொடுக்கிறது.

குறையற்ற முழு எண்கள் என்றால் உடனே மிகை முழு எண்கள் என்று தவறாக புரிந்து கொண்டு இரண்டு வகையினை இணைக்கும் 0–ஐ மறந்து விடுகிறோம்.

அன்றாட நிகழ்வுகளில் தொடர்ச்சித் தன்மையை பார்க்கலாம். உள்ளே – வெளியே என்ற இரு நிலைகளை பிரிக்கக்கூடிய அல்லது இணைக்கக் கூடிய ஒரு பகுதி 'உள்ளே'யில் முடிவுப்பகுதியாக அமைந்து 'வெளியே'யின் தொடக்கமாக அமையும். பகல் – இரவு என்ற இரு நிலைகளை பிரிக்கக்கூடிய நேரப்பகுதி (மாலைப்பொழுது) அல்லது இணைக்கக் கூடிய ஒரு நேரப் பகுதி பகல் பொழுதின் முடிவாகவும் இரவுப் பொழுதின் ஆரம்பமாகவும் அமைவதைக் காணலாம்.

ஒரு வீட்டின் வாசல்படியினை வீட்டின் உட்பகுதி என்றோ அல்லது வீட்டின் வெளிப்புறப்குதி என்றோ சொல்ல இயலாது. வாசல்படியானது 'வீட்டின் உள்ளே', 'வீட்டின் வெளியே' ஆகிய பகுதிகளை இணைக்கும் இடமாக அமைவதைக் காணலாம்.

இதே போன்றுதான் மிகை எண்களையும் குறை எண்களையும் இணைக்கும் எண்ணாக அல்லது பிரிக்கும் எண்ணாக 0 அமைவதை காணலாம். அதனால்தான் 0 மிகையுமல்ல; குறையுமல்ல.

மேற்சொன்ன உதாரணங்களின்படி இரண்யன் கேட்ட வரங்கள் கணித கோட்பாட்டினாலேயே தவறாகிவிட்டன என்பதனை தெரிந்து கொள்ளலாம்.

எனவே நிரப்பி என்பதும் எதிர் (opposite) என்பதும் ஒன்றல்ல.

$\mathbf{2.13}~\pi$ என்றால் என்ன $\mathbf{?}$

கணிதத்தில் இடம்பெறும் ஒரு முக்கியமான எண் π ஆகும். இது ஒரு கிரேக்க எழுத்து ஆகும். வில்லியம்ஸ் ஜோன்ஸ் என்பவரால் 1706 –ல் அறிமுகப்படுத்தப்பட்டு யூலரினால் பயன்பாட்டிற்கு வந்ததாக ஆராய்ச்சியாளர்கள் குறிப்பிடுகிறார்கள். சில இடங்களில் இந்த எண்ணினை வட்ட மாறிலி (circular constant) ஆர்க்கிமிடியன் மாறிலி (Archimedes Constant), லுடோல்ப் எண் (Ludolophs's number) என்றும் குறிப்பிடுவார்கள்.

 π என்பது ஒரு வட்டத்தின் சுற்றளவுக்கும் அதன் விட்டத்திற்கும் உள்ள விகிதமாகும். அதாவது $\pi=\frac{C}{d}$ இங்கு C என்பது வட்டத்தின் சுற்றளவு. d என்பது வட்டத்தின் விட்டம். வட்டத்தின் அளவினை மாற்றினாலும் π –ன் மதிப்பு மாறுவதில்லை. மேலும் π என்பது ஒரு வட்டத்தின் பரப்பளவுக்கும் அதன் ஆரத்தினை ஒரு பக்கமாக கொண்ட ஒரு சதுரத்தின் பரப்பளவுக்கும் உள்ள விகிதம் என்றும் வரையறுக்கலாம். அதாவது $\pi=\frac{A}{r^2}$ இங்கு A என்பது வட்டத்தின் பரப்பு

பொதுவாக π –யினை $\frac{22}{7}$ என்ற விகிதமுறு எண்ணாக அல்லது 3.14 என்ற முடிவுறு தசம இலக்கங்கள் உள்ள எண்ணாக பயன்படுத்துவதை அறிவோம். இவை தோராய மதிப்புகளே தவிர உண்மையான மதிப்புகள் அல்ல. $\pi \approx \frac{22}{7}$ என்று எழுதுவதே சரியானது. ஆனால் கீழ் வகுப்புகளில் $\frac{22}{7}$ (அல்லது) 3.14 என்ற தோராய மதிப்புகளை சமமான மதிப்புகளாக பயன்படுத்தியுள்ளோம் என்பதனை அறிக.

π ஆனது ஒரு விகிதமுறு எண்ணே அல்ல. இது ஒரு விகிதமுறா எண்ணாகும். அதாவது π யினை முழு எண்களின் விகிதமாக எழுத இயலாது. π என்பது ஒரு விகிதமுறா எண் என்பதனை 1761–ல் ஜோகன் ஹென்ரிச் லாம்பர்ட் என்பவர் கண்டுபிடித்தார்.

மேலும் πஆனது ஒரு ஆழ்நிலை எண் (transcendental) என்பதனை 1882-ல் பெர்டினாண்ட் வோன் லிண்ட்மாண் (Ferdinand Von Lindemann) நிறுவினார். அதாவது எந்தவொரு பல்லுறுப்புக் கோவைச் சமன்பாட்டிற்கும் πஆனது ஒரு மூலமாக இருக்காது என்பதாகும்.

நாம் ஏற்கனவே குறிப்பிட்டபடி π ஒரு விகிதமுறா எண்ணாக இருப்பதால் இதனை முடிவுள்ள தசம எண்ணிக்கையுள்ள எண்ணாகவோ அல்லது குறிப்பிட்ட இலக்கங்கள் மீண்டும் இடம்பெறும் வகையில் முடிவற்ற தசம இலக்கங்கள் உள்ள எண்ணாகவோ எழுத இயலாது.

தேவையினை பொறுத்து தசம ஸ்தானங்களின் தோராய மதிப்பிற்கு πன் மதிப்பினை எடுத்துக் கொள்வது மரபு.

கணிப்பான் மூலம் π–ன் கோடிக்கணக்கான தசம இலக்கங்களை கூட தற்போது கணக்கிட இயலும். இருப்பினும் 50 இலக்கங்களுக்கு தோராயமாக π–ன் மதிப்பு

3.14159265358979323846264338327950288419716939937510 ஆகும்.

இந்த இலக்கங்கள் முடிவுறாது மற்றும் குறிப்பிட்ட இலக்கங்கள் மீண்டும் மீண்டும் திரும்ப வருமாறும் அமையாது.

 π ஒரு விகிதமுறா எண்ணாக இருப்பினும் எண்கோட்டில் அது 3–க்கும் 4க்கும் இடையில் அமைவதைக் காணலாம். எனவே மெய்யெண் கோட்டில் π இடம் பெறுவதைக் காணலாம்.

2.14 e (யூலர் எண்) என்றால் என்ன?

மெய்யெண் கோடானது, முழுமையடைய வேண்டுமாயின் இன்னொரு ஆழ்நிலை எண் (transcendental Number) பற்றி தெரிந்து கொள்வது நல்லது. அதாவது e என்ற ஆழ்நிலை எண் யூலர் என்பவரால் அறிமுகப்படுத்தப்பட்டமையால் அவரது பெயரால் யூலர் எண் என்றும் அழைக்கப்படுகிறது. இதுவும் விகிதமுறா எண்ணாகும். இந்த எண் உயர்கணிதத்தில் மிகவும் பயன்பாட்டில் உள்ளது. இதன் தோராய மதிப்பு 2.71828 ஆகும். அதாவது $e \simeq 2.71828$ ஆகும்

எனவே இந்த எண்ணும் மெய்யெண் கோட்டில் இடம்பெறும் என்பதனைத் தெரிந்துகொள்வோம். இப்போது மெய்யெண் கோட்டினை முழுமையாக வரைவோம்.

2.15 அறம எண்கள் (algebraic numbers) என்றால் என்ன?

மெய்யெண்களின் ஆழ்நிலை எண்களைத் தவிர்த்த எண்களை அறம எண்கள் எனலாம். அதாவது பல்லுறுப்புக் கோவை சமன்பாட்டின் (polynomial equation) மெய்யெண் மூலங்கள் அனைத்தும் அறம எண்களாகும்.

எடுத்துக்காட்டாக $x^2 - 4x + 3 = 0$ என்ற பல்லுறுப்பு கோவையின் மெய் மூலங்கள் **1,3** ஆகும். இவை அறம எண்கள் ஆகும்.

கற்றவை

- 💠 எண்கள் அமைப்புகள்
- இயல் எண்கள்
- 💠 0 சார்ந்த அடிப்படை உண்மைகள்
- ❖ ∞ சார்ந்த அடிப்படை உண்மைகள்
- 🌣 (បុណ្ត្រទំភពាំ
- 💠 விகிதமுறு எண்கள்
- 💠 விகிதமுறா எண்கள்
- மய்யெண்கள்
- 💠 ஆழ்நிலை எண்கள்
- 💠 அறம எண்கள்

கற்றல் செயல்

∞,π,eஆகியன பற்றிய விவரங்கள் எடுத்துக்காட்டுகள் எழுதுதல்

அலக 3 **அளவைகளும் அளவிடுதலும்**

(Measure & Measurements)

3.1 அறிமுகம்

நாம் ஒரு பொருளைப் பற்றி தெரிந்திருக்கிறோம் என்றால் அதன் அளவையினை, எண்ணால் சொல்லத் தெரிந்திருக்க வேண்டும். அவ்வாறு ஒரு எண்ணின் அளவையால் சொல்ல முடியவில்லையெனில் அப்பொருளைப் பற்றிய தெளிவின்மையே காரணம் என்பது புலனாகிறது. அளவை ஏன்? (Why measure?)

ஒரு பொருளை அளவிடுகிறோம் என்றால் அதனை தரமான சம துண்டுகளின் (Standard Pieces) எண்ணிக்கையாக எண்ணுகிறோம் என்று பொருள். அது நீளமாக, பரப்பாக, கன அளவாக இருக்கலாம். பொருளானது மிகவும் சிறியதாக இருப்பின் சமதுண்டுகளின் அளவு வசதிக்கேற்ப குறைத்துக் கொள்ளக் கூடிய வசதியும் உள்ளது என்பதனை அறிவோம். இரும்பு பொருளின் நிறையினைக் காண நாம் கிலோ கிராமை தரமான சமதுண்டாக கொண்டால் தங்கத்தின் நிறையின் மி.கிராமை தரமான சமதுண்டாக கொள்ளலாம்.

எனவே ஒரு பொருளைப் பற்றிய அறிவு வேண்டுமாயின் அதன் அளவையினைப் பற்றிய சிந்தனை வேண்டும்.

இதனையே கெல்வின் என்ற பிரிட்டிஷ் விஞ்ஞானி கீழ்க்கண்டவாறு குறிப்பிடுகிறார். To learn something.

"When you measure what you are speaking about and express it in numbers, you know something about it, but when you cannot (or do not) measure it, when you cannot (or do not) express it in numbers, then your knowledge is of a meagre and unsatisfactory kind."

3.2 அளவைகளின் வரலாறு

அன்றாட வாழ்வில் அளவைகள் மிகவும் இன்றியமையாத ஒன்றாகும்.

- 💠 🛮 துணிக்கடைக்கு சென்று துணியை வாங்கும் போதும்
- 💠 சந்தைக்கு சென்று காய்கறிகளை வாங்கும் போதும்
- 💠 பால்காரரிடம் பால் வாங்கும் போதும்
- பேருந்தில் பயணம் செய்வதற்கு போது ஆகும் தொலைவு மற்றும் காலத்தை கணக்கிடும் போதும்
- 💠 காலநிலையை குறிக்கும் போதும்
- 💠 தோட்டத்தின் பரப்பைக் கணக்கிடும் போதும்
- 💠 தொட்டியின் கொள்ளளவு காணும் போதும்
- 💠 வாகனத்தின் வேகத்தைக் கணக்கிடும் போதும்

தகுந்த அளவைகளை பயன்படுத்தியே கணக்கிடுகிறோம். அவை திட்டம் சாரா அளவைகள், திட்ட அளவைகள் என இருப் பிரிவுகளாக உள்ளன.

பன்னெடுங்காலமாக பயன்படுத்தப்பட்டு வந்த திட்டம் சாரா அளவைகளுக்கு மாற்றாக அனைத்து நாடுகளும் ஏற்றுக்கொள்கின்ற வகையில் திட்டம் சார்ந்த அளவைகள் வரையறுக்கப்பட்டு பயன்பாட்டில் உள்ளது.

முற்காலத்தில் நீளங்களை அளக்க பொருட்களின் தன்மைக்கேற்ப சாண், முழம், கஜம், காலடி, தப்படி போன்ற திட்டம் சாரா அளவைகள் பயன்பாட்டில் இருந்தன. இது போன்று மணல் கடிகாரம், சூரியனின் நிழல், சந்திரனின் தோற்றம், நட்சத்திரங்களின் நிலை ஆகியன காலத்தை அளக்க முன்னோர்கள் பயன்படுத்தினர்.

ஒவ்வொரு அளவீடும் நம்பகத்தன்மை உடையதாகவும் அனைவரும் ஏற்றுக்கொள்ளும் படியும், பொதுவான அலகை பின்பற்றும் வகையிலும் தோற்றுவிக்கப்பட்டதே திட்டம் சார்ந்த அளவைகள் ஆகும்.

பிரான்ஸ் நாட்டவரான காப்ரியல் மௌடன் (Gabriel Mouton) என்ற அறிஞர் மெட்ரிக் அளவைகளின் தந்தை என்று அழைக்கப்படுகிறார். அவர் 1670 ஆம் ஆண்டு அளவியலில் தசம முறையை அறிமுகப்படுத்தினார்.

முற்காலத்தில் உள்ள அலகு முறையில் நீளம், நிறை, காலம் ஆகிய மூன்று அலகுகள் மட்டும் அடிப்படை அலகுகள் என வரையறுக்கப்பட்டிருந்தன.அவை C.G.S., M.K.S., F.P.S. ஆகியவையாகும்.

C.G.S. முறை (C.G.S. Systems)

இம்முறை அளவீட்டில் நீளத்தினை சென்டிமீட்டர் (cm) என்ற அலகாலும், நிறையினை கிராம் (g) என்ற அலகாலும், காலத்தினை வினாடி (s) என்ற அலகாலும் அளவிடப்பட்டன. எனவே தான் இதை C.G.S. முறை என்கிறோம்.

M.K.S. முறை (M.K.S. System)

இம்முறையில் நீளத்தினை மீட்டர் (m) என்ற அலகாலும், நிறையினை கிலோகிராம் (kg) என்ற அலகாலும், காலத்தினை வினாடி (s) என்ற அலகாலும் அளவிடப்பட்டன. எனவேதான் இதை M.K.S. முறை என்கிறோம்.

F.P.S. முறை (F.P.S. System)

நீளத்தை அடி (Foot) என்ற அலகாலும், நிறையை பவுண்டு (Pound) என்ற அலகாலும், காலத்தை வினாடி (Second) என்ற அலகாலும் அளவிடப்பட்டன. ஆகையால் .F.P.S. முறை என பெயர் பெற்றது.

இப்பொழுதும் சில நாடுகளில் நிறைக்கு பவுண்டு என்ற அலகு இன்றும் பரவலாக பயன்பாட்டில் உள்ளது.

S.I அலகு முறை

தற்போது நாம் பயன்படுத்திவரும் அளவை முறையானது ஆஸ்திரேலியாவினரால் அறிமுகப்படுத்தப்பட்ட பன்னாட்டு அலகு அமைப்பு முறை, (International system of units) சுருக்கமாக S.I. முறையாகும்.

தற்போது உலகம் முழுவதும் S.Iஅலகுமுறை பின்பற்றப்பட்டு வருகிறது. இதில் ஏழு அடிப்படை அலகுகள் உள்ளன. அவை:

- 1. நீளத்தை அளக்க மீட்டர்
- 2. நிறையை அளக்க கி.கி.
- 3. நேரத்தை அளவிட வினாடி
- 4. மின்சாரத்தை அளவிட ஆம்பியர்
- 5. வெப்பநிலையை அளவிட கெல்வின் (Thermodyanamics)
- 6. பொருட்களின் அளவை அளவிட போல்
- 7. வெளிச்ச அளவை அளவிட கேன்டிலா

S.I–ல் இல்லாத அலகுகளைக் கூட நாம் பயன்படுத்தி வருவதைக் காணலாம்.

எடுத்துக்காட்டாக

hectare	-	Area	ஹெக்டேர்	_	பரப்பு
day (d)	-	Time interval	நாள் (d)	_	நேரம்
Hour (h)	-	Time interval	மணி (h)	_	நேரம்
Minute (min)	-	Time interval	நிமிடம் (min)	_	நேரம்
Tonne (t)	-	Mass	டன் (t)	_	நிறை

உலக சரித்திரத்தை பார்ப்போமானால் பலதரப்பட்ட அலகுகள் உருவாக்கப்பட்டு வெவ்வேறு நாடுகளில் பயன்பாட்டில் உள்ளமையை அறியலாம்.

அளவையின் பொருள்

ஓர் அளவையை தீர்மானிப்பதில் அலகு முக்கியப்பங்கு வகிக்கிறது எடுத்துக்காட்டாக ஒரு கொடிக்கம்பத்தின் உயரத்தை கணக்கிட அது எந்த அலகினால் அளக்கப்படவேண்டும் என்பதை முதலில் முடிவு செய்தல் வேண்டும். பின்னர் அந்த அலகின் எத்தனை மடங்கு என்பதே அக்கொடிக்கம்பத்தின் உயரமாகும். அவ்வலகினை மீட்டராக எடுத்துக்கொண்டால், மீட்டர் என்ற உறுதி செய்யப்பட்ட அலகின் மடங்காக கொடிக்கம்பத்தின உயரம் கிடைப்பதை காண்கிறோம்.

ஒரு புத்தகத்தின் நீளம் 30 செமீ எனக் கருதும் போது 1 செமீ என்று செய்யப்பட்ட அலகின் 30 மடங்காக புத்தகத்தின நீளம் உள்ளது என்பது புலனாகிறது. இதிலிருந்து அளவீட்டிலும் ஓர் எண்ணும் அலகும் இணைந்தே வருவதை காணலாம்.

3.3 அன்றாட வாழ்வில் அளவைகள்

கணிதத்தில் அளவைகள் என்றவுடன் உயரம், நீளம், ஆழம், தூரம் போன்ற நீட்டல் சம்பந்தப்பட்ட அளவைகள் பரப்பு, புறப்பரப்பு, மொத்தப்பரப்பு போன்ற இருபடி அளவைகள், கன அளவான முப்படி அளவைகள் மட்டுமே நினைவுக்கு வரும். குறிப்பாக நாம் கவனிக்க வேண்டியது என்னவெனில் மேற்சொன்ன அனைத்தும் ஒருபடி, இருபடி, முப்படி அளவைகளில் உள்ளமைவேயாகும். இந்த அளவைகளைத் தவிர்த்து பல அளவைகளை நாம் தெரிந்து வைத்திருக்கிறோம். அதாவது,

கோணத்தின் அளவீடு – டிகிரி மற்றும் ரேடியன்

வெப்பநிலை அளவீடு – செல்சியஸ், பாரன்ஹீட், கெல்வின்

சத்தத்தின் அளவீடு – டெசிபல்

அடர்த்தி அளவீடு – அலகு கிடையாது (மெய்யெண்)

பூகம்பத்தின் தாக்கம் – ரிக்டர் கணினி வேகத்திறன் – MIPS

மேற்குறிப்பிட்ட அனைத்து அளவைகளும் நம் அன்றாட வாழ்வில் பின்னி பிணைந்திருக்கிறது. ரிக்டர் அளவுகோல் என்பது சமீபத்தில் (2004) சுனாமியின் பேரலை அழிவின் போது அனைவரும் உச்சரித்த சொல்லாக இருந்ததை அறிவோம். பூகம்பமானது எந்த இடத்தில் மையமாகக் கொண்டு அதன் அளவு எந்த ரிக்டர் அளவுக்கு உள்ளதோ, அந்த அளவு மூலம் சுனாமி பேரலை எச்சரிக்கையினை மக்களுக்கு முன்கூட்டி சொல்ல இயலும். ஆனால் ரிக்டர் அளவுகோல் கூடும் போது (இது மடக்கை logarithm வகையை சார்ந்தது. அதாவது 1 ரிக்டர் மற்றும் 2 ரிக்டர் அளவுகளுக்கு இடையில் 1 வித்தியாசமாக இருந்தாலும் தாக்கம் 10–ன் மடங்காக மாறுவதற்கு) வேகம் பன்மடங்கு அதிகரிக்கிறது.

3.4 அளவைகளின் வகைப்பாடு

சில அளவைகளுக்காக பயன்படுத்தப்படும் சூத்திரங்களை அதன் மாறிகளின் அடுக்குகளின் எண்ணிக்கையைப் பொறுத்து வகைப்படுத்தலாம்.

3.4.1 ஒருபடி அளவைகள் : (Linear measure)

இங்கு நீட்டல் மற்றும் சுற்றளவுகளை உதாரணமாக கொள்ளலாம்.

நீளம், தூரம், ஆழம், உயரம் அனைத்துமே நீட்டல் அளவையை சார்ந்தவை.

ஒரு சதுரத்தின் சுற்றளவு : 4a

(பக்க நீளம் a உடைய)

ஒரு செவ்வகத்தின் சுற்றளவு : 2(l+b)

(l நீளம், b அகலம்)

ஒரு வட்டத்தின் சுற்றளவு : $2\pi r$

(ஆரம் *r*)

மேற்குறிப்பிட்ட அளவுகளில் பயன்படுத்தப்பட்டுள்ள உறுப்புகளின் மாறிகளின் அடுக்கின் படி 1 ஆகும். அதாவது, மாறிலிகளை தவிர்த்து, a,l+b, rஆகியவற்றின் படி 1 ஆகும். எனவே இவற்றை ஒருபடி அளவைகள் என்கிறோம்.

சிந்திக்க

ஒருபடி அளவைக்கு வேறு ஏதேனும் அளவைகள் உள்ளனவா?

3.4.2 இருபடி அளவைகள் (Square measurements)

பொதுவாக பரப்பு பற்றிய அளவைகளே இருபடி அளவைகளாக உள்ளன. குறிப்பாக பரப்பளவு காணும் சில சூத்திரங்களைப் பார்ப்போம்.

a பக்கமுள்ள சதுரத்தின் பரப்பளவு : a^2

l,b பக்கங்களுடைய செவ்வகத்தின் பரப்பளவு : $l \times b$

அடிப்பக்கம் (*b*) குத்துயரம் (*h*)

உடைய முக்கோணத்தின் பரப்பளவு $\frac{1}{2}b \times h$

உருளையின் வளைபரப்பளவு (r,h) : $2\pi \mathrm{rh}$

உருளையின் மொத்தப் பரப்பளவு (r,h) : $2\pi rh+\ 2\pi r^2$

கூம்பின் வளைபரப்பளவு $(r,\,l)$: $\pi r l$

கோளத்தின் புறப்பரப்பளவு (r) : $4\pi r^2$

வட்டத்தின் பரப்பளவு (r) : πr^2

ஒரு இணைகரத்தின் $(b,\,h)$ பரப்பளவு : $b \ge h$

அனைத்து சூத்திரங்களிலும் நாம் வெவ்வேறு மாறிகளை பயன்படுத்தியுள்ளோம்.

ஆனால் அனைத்து சூத்திரங்களிலும் மாறிகளின் அடுக்குகளின் கூடுதல் 2 ஆக அமைந்துள்ளதை கவனிக்கவும். எனவே பரப்பளவு சம்மந்தப்பட்ட அனைத்து அளவைகளும் இருபடி அளவைகளாகும். இங்கு அலகினை குறிப்பிடும் போது சதுர அலகு அல்லது அலகு என்ற சொற்களை பயன்படுத்துகிறோம்.

3.4.3 முப்படி அளவைகள் (Cubic Measurements)

பொதுவாக கன அளவுகளே முப்படி அளவைகளாக வருகின்றன. எடுத்துக்காட்டாக

கனச்சதுரத்தின் கனஅளவு (a) : a^3

கனச்செவ்வகத்தின் கனஅளவு (l,b,h) : $l \times b \times h$

உருளையின் கனஅளவு (r,h) : $\pi r^2 h$

கூம்பின் கனஅளவு (r,h) : $\frac{1}{3}\pi r^2 h$

கோளத்தின் கனஅளவு (r) : $\frac{4}{3}\pi r^3$

ஆகிய சூத்திரங்களை எடுத்துக் கொள்வோம். இங்கு மாறிலிகளைத் தவிர்த்து மாறிகளின் அடுக்குகளின் கூடுதல் 3 ஆக வருவதை கவனிக்கவும். எனவே இவை முப்படி அளவைகள் ஆகும். இதன் அலகினை கன அலகு அல்லது அலகு³ என்ற சொற்களால் பயன்படுத்துகிறோம்.

மேற்சொன்ன கருத்துகளினின்று நாம் தெரிந்து கொள்வது என்னவெனில் ஒரு சூத்திரத்தின் படி 1 ஆக இருப்பின் அது நீளம் சம்பந்தப்பட்ட செய்கையினையும்

படி 2 ஆக இருப்பின் பரப்பளவு சம்பந்தப்பட்ட செய்கையினையும்

படி 3 ஆக இருப்பின் கனஅளவு சம்பந்தப்பட்ட செய்கையினையும் குறிக்கிறது என்பதனை அறியலாம்.

இப்போது மேற்சொன்ன 3 அளவைகளுக்கு தொடர்பான மெட்ரிக் அளவைகளையும், கொள்ளளவு (முகத்தல் அளவு) மற்றும் நிறுத்தல் அளவைகளையும் காண்போம்.

3.5 மெட்ரிக் அளவைகள்

பொருட்களின் நீளம், கொள்ளளவு, எடை முதலியவற்றை அளக்கப் பயன்படும் அளவு முறைகள் பல வகைப்படும். பல நாடுகள் தமக்கென தனியான அளவு முறைகளைக் கொண்டுள்ளன. எனினும் மெட்ரிக் அளவைகள், கணக்கிட மிகவும் எளிதாகவும் சுலபமாகவும் உள்ளதால் உலகில் உள்ள பெரும்பான்மையான நாடுகள் மெட்ரிக் அளவு முறையையே பயன்படுத்துகின்றன.

மெட்ரிக் அளவு முறையில்

நீளத்தின் அடிப்படை அலகு மீட்டர் (மீ)

எடையின் அடிப்படை அலகு கிராம் (கி)

கொள்ளளவின் அடிப்படை அலகு லிட்டர் (லி)

மெட்ரிக் அளவைகளின் பிற துணை அலகுகள் பத்தின் அடுக்குகளில் உள்ளதால், இது தசமமுறை எனவும் அழைக்கப்படுகிறது.

அட்டவணையை

அலகு	1000	100	10	1	$\frac{1}{10}$	$\frac{1}{100}$	$\frac{1}{1000}$
அளவையின்	கிலோ	ஹெக்டா	டெகா	மீட்டர்	டெசி	சென்டி	மில்லி
பெயர்				கிராம்			
				லிட்டர்			

மேலின அலகுகள் டெகா, ஹெக்டா, கிலோ (முறையே பத்து, நூறு, ஆயிரம் என்ற பொருளில்) என்ற முன்னிணைப்புகளுடன் அழைக்கப்படுகின்றன.

கீழின அலகுகள் டெசி, சென்டி, மில்லி (முறையே 10 ல் ஒன்று, 100 ஒன்று, 1000ல் ஒன்று என்ற பொருளில்) முன்னிணைப்புகளுடன் அழைக்கப்படுகின்றன.

இனமாற்றம் 1

மேலின அலகை கீழின அலகாக மாற்றம் செய்தல் :

மெட்ரிக் முறையில் ஒரு மேலின அலகைக் கீழின அலகாக மாற்றம் செய்ய அதனைப் பத்தின் அடுக்குகளில் பெருக்க வேண்டும்

கீழே உள்ள அட்டவணையைக் காண்க

↗ ^{×′}	10 × ×	¹⁰ √ ×	10 x 1	10 x 1	10 x	10
ஆயிரம்	நூறு	பத்து	ஒன்று	பத்தில்	நூறில்	ஆயிரத்தில்
				ஒன்று	ஒன்று	ஒன்று
(1000)	(100)	(10)	(1)	$\left(\frac{1}{10}\right)$	$\left(\frac{1}{100}\right)$	$\left(\frac{1}{1000}\right)$
கிலோ	ஹெக்டா	டெகா	மீட்டர்	டெசி	சென்டி	மில்லி
(கி)	(ഐ)	(டெகா)	கிராம்	(പെ)	(செ)	(மி)
			லிட்டர்			

இனமாற்றம் 2

கீழின அலகை மேலின அலகாக மாற்றம் செய்தல் :

மெட்ரிக் முறையில் ஒரு கீழின அலகை மேலின அலகாக மாற்றம் செய்ய அதனை பத்தின் அடுக்குகளில் வகுக்க வேண்டும்.

கீழே உள்ள அட்டவணையைக் காண்க:

÷	10 K 🗸 ÷	¹⁰ ↖ ∠ ÷	10 K 🗸 ÷	10 ĸ ∠ ÷ 1	10 K K	÷ 10 🤨
ஆயிரம்	நூறு	பத்து	ஒன்று	பத்தில்	நூறில்	ஆயிரத்தில்
(1000)	(100)	(10)	(1)	ஒன்று $\left(\frac{1}{10}\right)$	ஒன்று $\left(\frac{1}{100}\right)$	ஒன்று $\left(\frac{1}{1000}\right)$
கிலோ	ஹெக்டா	டெகா	மீட்டர்	டெசி	சென்டி	மில்லி
(கி)	(ஹெ)	(டெகா)	கிராம்	(டெ)	(செ)	(மி)
			லிட்டர்			

எடுத்துக்காட்டுகள் மூலம் கீழின அலகுகளாகவும் மேலின அலகுகளாகவும் எவ்வாறு மாறுகிறது என்பதனைக் காணலாம்.

3.5.1 நீட்டல் அளவைகள்

தொலைக்காட்சியில் ஒரு நாள் பெய்யும் மழையின் அளவை எவ்வாறு அறிவிக்கின்றனர்? மில்லி மீட்டர், சென்டி மீட்டர் என்ற அலகுகளை கொண்டு அல்லவா? ஒரு வகுப்பறையின் நீளம் மற்றும் அகலத்தை எவ்வாறு அளக்கிறோம்? மீட்டரில் அல்லவா? இரண்டு இடங்களுக்கு இடையேயுள்ள தொலைவை எவ்வாற கூறுகிறோம்? கிலோ மீட்டரில் அல்லவா?

இவை அனைத்தும் நீளம், அகலம், உயரம், தொலைவு போன்ற நீட்டல் அளவைகளின் சில எடுத்துகாட்டுகள் ஆகும்.

மாற்றல் அட்டவணை

1000 மீ. = 1 கி.மீ.

இப்போது சில கீழின அலகுகளாகவும் மேலின அலகுகளாகவும் எவ்வாறு மாறுகிறது என்பதைக் காண்போம்.

எடுத்துக்காட்டு 1

2 கி.மீ.–ஐக் கீழின அலகுகளாக

எனக்கிடைக்கும்.

எடுத்துக்காட்டு 2

$$3456789$$
 ഥി.ഥീ. = 345678.9 കെ.ഥീ. $\left[\frac{3456789}{10} = \frac{3456789}{10^1}\right]$

$$=34567.89$$
 വെടി ഥ്. $\left[\frac{3456789}{100} = \frac{3456789}{10^2}\right]$

$$= 3456.789$$
 மி. $\left[\frac{3456789}{1000} = \frac{3456789}{10^3} \right]$
 $= 345.6789$ டெகா மி. $\left[\frac{3456789}{10000} = \frac{3456789}{10^4} \right]$
 $= 34.56789$ ஹெ.மி. $\left[\frac{3456789}{100000} = \frac{3456789}{10^5} \right]$
 $= 3.456789$ கி.மி. $\left[\frac{3456789}{1000000} = \frac{3456789}{10^6} \right]$

எனக்கிடைக்கும்.

குறிப்பு

- இதே செயல் முறையினை மற்ற இரண்டு அளவைகளான நிறுத்தல் மற்றும் கொள்ளவைகளிலும் பின்பற்றலாம்.
- தசம முறையில் மேலின அலகாக மாற்றும் போது தசம புள்ளியை இடப்புறமாக நகர்த்தியும், கீழின அலகாக மாற்றும் போது தசம புள்ளியை வலப்புறமாக நகர்த்தியும் எளிதாக மாற்றம் செய்யலாம்.

எடுத்துக்காட்டு 3

4682.5 மி.மீ. ஐ மீட்டராக மாற்ற வேண்டுமாயின் 1000 ஆல் வகுக்க வேண்டும் (ஏன் ?) இங்கு கீழின அலகை மேலின அலகாக மாற்றுகிறோம்.

តាតាទីល 4682.5 យ៉ា.យំ.
$$=\frac{4682.5}{1000}$$
 យំ. $=4.6825$ យំ.

எடுத்துக்காட்டு 4

5.2345 கி.மீ. –ஐ மீட்டராக மாற்ற வேண்டுமாயின் அதனை 1000 –ல் பெருக்க வேண்டும் (ஏன் ?) இங்கு மேலின அலகை கீழின அலகாக மாற்றுகிறோம்.

எடுத்துக்காட்டு 5

3 கி.மீ. 5 ஹெ.மீ. 2 டெகா மீ. 7 மீ, என்பதை மீட்டராக மாற்றுதல்

3 கி.மீ. 5 ஹெ.மீ. 2 டெகா மீ. 7 மீ

$$= (3 \times 1000 \text{ LB}) + (5 \times 100 \text{ LB}) + (2 \times 10 \text{ LB}) + 7 \text{ LB}.$$

$$= (3000 + 500 + 20 + 7)$$
 Land.

= 3527 மீ.

சுருக்குமுறை

கி.மீ.	ஹெ.மீ.	டெகா மீ.	மீ.	
3	5	2	7	= 3527

(சுருக்கு முறையில் அலகுகளைக் கட்டங்களில் முறையாக இறங்கு வரிசையில் எழுதி காண்கிறோம்)

எடுத்துக்காட்டு 6

எனவே **7256** மீ. =
$$\frac{7256}{1000}$$
 கி.மீ. = 7.256 கி.மீ.

சுருக்க முறை

கி.மீ.	ஹெ.மீ.	டெகா மீ.	மீ.	
7		- 5	6	
,	2	3	0	

= 7.256 கி.மீ.

மெட்ரிக் அளவைகளில் கூட்டலும், கழித்தலும்

மெட்ரிக் அளவைகள் பத்தின் அடுக்குகளை அடிப்படையாகக் கொண்டவை. எனவே, மெட்ரிக் அளவைகளில் கூட்டலும், கழித்தலும் எண்ணியலில் உள்ள கூட்டல் மற்றும் கழித்தல் போன்றே அமையும்.

எடுத்துக்காட்டு 7

கூடுதல் = 17மீ. 2டெசி மீ. 5 செ.மீ.

எடுத்துக்காட்டு 8

ஒரு விளையாட்டுதிடலின் நான்கு பக்கங்களின் நீளங்கள் 35 மீ. 42 செ.மீ., 16 மீ. 83 செ.மீ., 63 மீ. 25 செ.மீ., 15 மீ. 93 செ.மீ., அத்திடலை ஒரு முறை சுற்றிவந்தால் மொத்தம் எவ்வளவு தொலைவு ஆகும்.

		மீ.	செ.மீ.
முதல் பக்க நீளம்	=	35	42
இரண்டாவது பக்க நீளம்	=	16	83
மூன்றாவது பக்க நீளம்	=	63	25
நான்காவது பக்க நீளம்	=	15	93
		131	43

திடலின் மொத்த தொலைவு = 131 மீ. 43 செ.மீ. ஆகும்.

மெட்ரிக் அளவைகளில் பெருக்கலும், வகுத்தலும்

மெட்ரிக் அலகுகள் பத்தின் அடுக்குகளில் அமைந்துள்ளன என்பதை ஏற்கனவே கண்டோம். மெட்ரிக் அளவைகளின் பெருக்கலும், வகுத்தலும் எண்ணியலில் உள்ள பெருக்கலையும், வகுத்தலையும் ஒத்திருக்கும்.

எடுத்துக்காட்டு 9

ஒரு சீருடை தைக்க 1 மீ. 80 செ.மீ. துணி தேவை. ஒரு தையற்காரா் 52 சீருடைகளுக்கான துணியை வாங்கினாா். அவா் வாங்கிய துணியின் அளவு எவ்வளவு ?

1 சீருடை தைக்க தேவையான துணி = 1 மீ. 80 செ.மீ. = 1.80 மீ.

ஃ 52 சீருடை தைக்க தேவையா துணி = 1.80 x 52

தேவையான துணியின் அளவு 93 மீ. 60 செ.மீ.

குறிப்பு

கொடுக்கப்பட்ட அளவுகளை ஒரே அலகாக(மேலின / கீழின) மாற்றிய பின்புதான் பெருக்கவோ அல்லது வகுக்கவோ வேண்டும்.

எடுத்துக்காட்டு: 10

7மீ. 9 டெசி மீ. 2 செ.மீ. நீளமுள்ள கம்பிச்சுருள் ஒன்றிலிருந்து 22செ.மீ. நீளமுள்ள துண்டுகள் எத்தனை வெட்டியெடுக்கலாம்?

கம்பிச்சுருளின் மொத்த நீளம் = 7மீ. 9 டெசி மீ. 2 செ.மீ.

= 700 செ.மீ. + 90 செ.மீ. + 2 செ.மீ.

= 792 செ.மீ.

ஒரு துண்டின் நீளம் = 22 செ.மீ.

792 செ.மீ. நீளத்தில் பெறுவது 792 ÷ 22 துண்டுகள் = 36

எனவே, 36 துண்டுகள் வெட்டி எடுக்கலாம்.

குறிப்பு

மெட்ரிக் அளவைகளில் வகுபடும் எண்ணையும் வகுக்கும் எண்ணையும் ஒரே அலகாக மாற்றியபின் வகுக்க வேண்டும்.

3.5.2 பரப்பு பற்றிய சில கருத்துக்கள்

பரப்பு என்ற சொல்லை பயன்படுத்த அப்பொருளானது இரு பரிமாணப் பொருளாகவோ அல்லது முப்பரிமாண பொருளாகவோ இருக்க வேண்டும். கன அளவினைப் பற்றி பேசவேண்டுமானால் அது ஒரு முப்பரிமாண (கனப்பொருள்) பொருளாக இருத்தல் வேண்டும். ஒரு ஒழுங்கான வடிவம் உடைய பொருளினை கீழ்க்கண்டவாறு வகைப்படுத்தலாம். அதற்கு தகுந்தபடி பரப்புகளையோ கன அளவுகளையோ கணக்கிடலாம்.

வெவ்வேறு பரப்பமைப்பு கொண்ட பொருட்கள்

சமதளப் பொருட்கள் (Plane surface)

ஒரு பொருளின் அனைத்து பக்கங்களும் சமதளங்களாக அமைந்திருந்தால் அப்பொருள் சமதளப்பொருள் எனப்படும்.

(எ–டு) கனசதுரம், கனச்செவ்வகம்

வளைதளப் பொருட்கள் (Curved Surface)

ஒரு பொருளின் முழுப்பகுதியும் வளைதளமாக அமைந்திருந்தால் அப்பொருள் வளைதளப் பொருள் எனப்படும். (எ–டு) கோளம்.

சமதளமும் வளைதளமும் இணைந்த பொருட்கள்

ஒரு பொருளின் பகுதிகள் சமதளங்களையும் வளைதளங்களையும் கொண்டிருப்பின் அது சமதளமும் வளைதளமும் இணைந்த பொருள் ஆகும். (எடு) உருளை, கூம்பு, அரைக்கோளம்.

புறப்பரப்பு (LSA - Lateral Surface Area)

ஒரு கன உருவத்தின் மேல்பரப்பு மற்றும் அடிப்பரப்பு நீங்கலாக உள்ள பக்கப்பரப்புகளின் கூடுதல் புறப்பரப்பு எனப்படும்.

> (எ–டு) கனசதுரம்

நிழலிடப்பட்ட பகுதி நீங்கலாக உள்ள நான்கு சதுரங்களின் பரப்பளவுகளின் கூடுதல் ஆகும். இது $4a^2$ சதுர அலகுகள் ஆகும். இங்கு a என்பது கனச் சதுரத்தின் பக்க அளவு.

வளைபரப்பு (CSA - Curved Surface Area)

வளைதளத்தை உள்ளடக்கிய ஒரு கன உருவத்தின் மேற்பரப்பு மற்றும் கீழ்பரப்பு இருப்பின் அவை நீங்கலாக உள்ள எஞ்சிய பகுதியின் வளைவான பகுதியின் பரப்பே வளைபரப்பு எனப்படும்.

(எ–டு) உருளை நிழலிடப்பட்ட பகுதி நீங்கலாக உள்ள எஞ்சிய வளைபரப்பு உருளையின் வளைபரப்பு ஆகும். உருளையின் வளைபரப்பு $2\pi rh$ ச. அலகுகள் ஆகும். இங்கு r என்பது உருளையின் ஆரம் மற்றும் h என்பது உருளையின் உயரம்.

கோளம்

கோளத்திற்கு மேற்பரப்பு மற்றும் அடிப்பரப்புகள் இல்லை. இதற்கு வளைபரப்பு மட்டுமே உண்டு கோளத்தின் வளைபரப்பு = $4\pi r^2$ ச. அலகுகள் ஆகும். இங்கு r கோளத்தின் ஆரம் ஆகும்.

மொத்த புறப்பரப்பு (TSA - Total Surface Area)

ஒரு கனஉருவத்தின் அடிப்பரப்பு, மேற்பரப்பு மற்றும் புறப்பரப்பு (அல்லது) வளைபரப்பினை உள்ளடக்கிய பரப்புகளின் கூடுதல் அக்கன உருவத்தின் மொத்தப் புறப்பரப்பு ஆகும்.

அரைக்கோளத்தின் மொத்த புறப்பரப்பு

அரைக்கோளத்தின் வளைபரப்பு + அரைக்கோளத்தின் அடிப்பக்க பரப்பு

$$= 2\pi r^2 + \pi r^2$$

= $3\pi r^2$

இங்கு r அரைக்கோளத்தின் ஆரம் ஆகும். உருளையின் மொத்தப் புறப்பரப்பு = $2\pi rh + 2\pi r$

3.5.3 பரப்பளவு அளவைகள்

ஒரு புத்தகத்தை ஒரு மேசை மீது வைத்தால் அது மேசை மீது சிறிது இடத்தை அடைத்துக் கொள்கிறது. கரும்பலகை சுவற்றின் மீது சிறிது இடத்தை அடைத்து கொள்கிறது. தரைமீது ஒரு பாயைப் பரப்பினால், பாய் தரையில் அடைத்துக் கொள்ளும் இடத்தின் அளவு அப்பொருளின் பரப்பளவு எனப்படுகிறது.

எனவே, ஒரு பொருள் ஒரு சமதளப்பகுதியில் அடைக்கும் இடத்தின் அளவு அப்பொருளின் பரப்பளவு எனப்படுகிறது.

பரப்பளவின் அலகு

படத்தை பார்க்க – அது 1செமீ பக்க அளவு கொண்ட ஒரு சதுரம் ஆகும். எனவே, "1 செ.மீ. சதுரம்" என்கிறோம். அதன் பரப்பளவு 1 சதுர சென்டிமீட்டர் ஆகும். இதை சுருக்கமாக "1 ச.செ.மீ." என எழுதலாம். இதையே நாம் "அலகுசதுரம்" என்கிறோம். பரப்பளவை அளப்பதற்கான அடிப்படை அலகு இந்த அலகு சதுரம் ஆகும்.

ஒரு பொருளின் பரப்பளவைக் குறிக்க சதுர சென்டிமீட்டர் (அ) செ.மீ² என்ற அலகு பயன்படுத்தப்படுகிறது.

சதுர வடிவ அளவு மற்றும் பரப்பளவை உற்று நோக்குக.

வடிவம்	சதுரத்தின் பக்க அளவு	சதுரத்தின் பரப்பளவு
	1செமீ சதுரம்	1 ச.செமீ
	2செமீ சதுரம்	4 ச.செமீ
	3செமீ சதுரம்	9 ச.செமீ
പ്രേഹ് വ	NOT ON OUT OF	

நீட்டல் அளவைகள் பரப்பு அளவைகள்

1 செ.மீ. = 10 மி.மீ. 1 ச.செ.மீ. = 100 ச.மி.மீ. (10 x 10)
1 டெசி மீ. = 10 செ.மீ. 1 ச.டெசி மீ. = 100 ச.செ.மீ.
1 மீ. = 10 டெசி மீ. 1 ச.மீ. = 100 ச.டெசி மீ.
1 டெகா மீ. = 10 மீ. 1 ச.டெகா மீ. = 100 ச.டெசி மீ.
1 ஹெ.மீ. = 10 டெகா மீ. 1 ச.ஹெ.மீ. = 100 ச.டெகா மீ.

1 கி.மீ. = 10 ஹெ.மீ. 1 ச.கி.மீ. = 100 ச.ஹெ.மீ. 1 மீ. = 100 செ.மீ. 1 ச.மீ. = 10000 ச.செ.மீ. \Longrightarrow (100 x 100)

மேலும் வயலின் பரப்பளவு இன்னும் பெரிதாக இருக்குமானால் அதன் பரப்பளவை சதுரமீட்டர் (அ) ஏர் (அ) ஹெக்டேர் போன்ற அலகுகளால் குறிக்கிறோம்

100 ச.மீ. = 1 ஏர்

100 ஏர் = 1 ஹெக்டர்

10000 ச.மீ. = 1 ஹெக்டர்

எடுத்துக்காட்டு: 11

6 ச.மீ. –ஐ ச.செ.மீ. – ஆக மாற்றம் செய்தல்

1 ச.மீ. = 10000 ச.செ.மீ.

6 ச.மீ. = 60000 ச.செ.மீ.

எடுத்துக்காட்டு 12

758 ச.மீ. –ஐ (அ) ஏராக (ஆ) ஹெக்டேராக மாற்றம் செய்தல்

(அ) 100 ச.மீ. = 1 ஏர் (ஆ) 10000 ச.மீ. = 1 ஹெக்டேர் 758 ச.மீ. =
$$\frac{758}{1000}$$
 ஏர் 758 ச.மீ. = $\frac{758}{10000}$ ஹெக்டேர் = 7.58 ஏர் = 0.0758 ஹெக்டேர்

எடுத்துக்காட்டு 13

3.2. ஹெக்டரை (அ) ஏரில் (ஆ) சதுர மீட்டரில் கூறுதல்

3.5.4 கன அளவு அளவைகள்

நமது அன்றாட வாழ்வில் நாம் பல திடப்பொருட்களை பார்த்தும் அவற்றை பயன்படுத்தியும் உள்ளோம். அவ்வாறான சில பொருட்கள் கீழே கொடுக்கப்பட்டுள்ளன.

இப்பொருட்களை எந்த ஓர் இடத்திலாவது வைத்தால் என்ன ஆகும்? அவை வைக்கப்படுகின்ற இடத்தை (Space)அடைத்துக் கொள்ளும் அல்லவா? அந்த இடத்தை அப்பொருளின் கனஅளவு என்கிறோம்.

எனவே, ஒரு பொருள் அடைத்து கொள்ளும் இடத்தின் அளவை அப்பொருளின் கன அளவை என்கிறோம்.

தண்ணீர், பால், எண்ணெய் போன்ற திரவங்கள் வடிவம் அற்றவை. அவை கொள்கலன்களின் வடிவத்தை அடைத்துக் கொள்கின்றன. ஆகையால் கொள்ளளவைக் கொண்டு கணக்கிடலாம்.

கொள்ளளவு : ஓர் உள்ளீடற்ற திடப்பொருளின் உட்புறத்தின் அளவு அதன் கொள்ளளவு என அழைக்கப்படுகிறது.

கனஅளவின் அலகு

அலகு கனசதுரத்தின் வடிவத்தை காண்க. அதன் ஒவ்வொரு விளிம்பும் 1 செ.மீ. நீளமுடையது. அதன் ஒவ்வொரு முகமும் 1ச.செ.மீ. பரப்பளவு உடையது.

அதன் கனஅளவு = அடிப்பரப்பளவு X உயரம் ஆகும்.

இதனை சுருக்கமாக **1**க. செ.மீ. (அ) **1** செ.மீ³ என எழுதலாம்.

1 செ.மீ. கனசதுரத்தின் அளவைக் குறிக்க கன சென்டிமீட்டர் (அ) செ.மீ³ என்ற அலகு பயன்படுகிறது.

3.5.5 முகத்தல் அளவைகள் அல்லது கொள்ளளவைகள்

மருத்துவர்கள் குழந்தைகளுக்கு மருந்து மற்றும் போலியோ சொட்டு மருந்து போன்றவற்றின் அளவுகளை எவ்வாறு நிர்ணயிக்கிறார்கள்? மில்லி லிட்டரில் தானே? தற்காலத்தில் மினரல் நீர் குவளைகளிலும் (Cans), குப்பிகளிலும் (Bottles) விற்கப்படுகிறது. குவளைகள் மற்றும் குப்பிகளின் கொள்ளளவுகள் என்ன தெரியுமா? லிட்டர் மற்றும் மில்லிலிட்டர் அல்லவா? மேற்கண்டவை முகத்தல் அளவை (அ) கொள்ளளவைகளுக்குச் சில எடுத்துக்காட்டுகள் ஆகும்.

மாற்றல் அட்டவணை

10 மி.லி. = 1 செ.லி.

1000 மி.லி. = 1 லி.

10 செ.லி. = 1 டெசி லி.

10 டெசி லி. = 1 லி.

10 லி. = 1 டெகா லி.

10 டெகா லி. = 1 ஹெ.லி.

10 ஹெ.லி. = 1 கி.லி.

மேற்கண்ட மாற்றல் அட்டவணைகளைப் பயன்படுத்தி முகத்தல் அளவைகளில் ஓர் அலகினை அவற்றின் மற்ற அலகுகளுக்கு மாற்றம் செய்யலாம்.

எடுத்துக்காட்டு 14

3லி. 500 மி.லி. –ஐ மி.லி. ஆக மாற்றம் செய்தல்:

3ରി. 500 ഥി.லി. = (3 x 1000ഥി.லി) + 500 ഥി.லி.

= 3000 மி.லி. + **500** மி.லி.

= 3500 மி.லி.

சுருக்கமுறை:

லி.	െകി കി.	செ.லி.	மி.லி.
3	5	0	0

= 3500 மி.லி.

திரவப்பொருளின் கன அளவை அது வைக்கப்பட்டுள்ள கொள்கலனின் கொள்ளளவைக் கொண்டு நாம் கணக்கிடுகிறோம்.

3.5.6 கன அளவுக்கும் கொள்ளவுக்கும் இடையேயான தொடர்பு

10 செ.மீ. விளிம்பு அளவுள்ள உள்ளீடற்ற காலியான ஒரு கனச்சதுரத்தை எடுத்துக்கொள்க. இதனுள் 1000 மி.லி. (அ) 1 லி. தண்ணீரை ஊற்றினால் இந்த கனச்சதுரம் முழுவதுமாகத் தண்ணீரால் நிரப்பப்படுவதை காணலாம்.

எனவே, 10 செ.மீ. பக்க அளவுள்ள கனசதுரத்தின் கொள்ளளவு = 1000 மி.லி.

10 செ.மீ. x 10 செ.மீ. x 10 செ.மீ. = 1 லி.

1000 க.செ.மீ. = 1 லி.

நினைவு கொள்க 1 $\mathbf{L}^3 = 1$ கி.லி. அல்லது \mathbf{L} க.செ. $\mathbf{L}^6 = 1$ டி.லி. என அறியலாம்.

எடுத்துக்காட்டு 15

கொடுக்கப்பட்டுள்ள கனஅளவுகளைக் கொள்ளளவில் எவ்வாறு மாற்றுவாய்?

(அ) 37 செ.மீ (ஆ) 5.6மீ

= 5600 லிட்டர்

எடுத்துக்காட்டு 16

கொடுக்கப்பட்டுள்ள கொள்ளளவுகளைக் கனஅளவில் எவ்வாறு மாற்றுவாய் ?

(அ) 9317 மி.லி. (ஆ) 73.46 லி. (இ) 3 கி.லி.

3.5.7 நிறுத்தல் அளவைகள்

அரிசி, சர்க்கரை, பருப்பு போன்ற பொருட்களை மளிகை கடைகளில் இருந்து நாம் எந்த அளவுகளில் வாங்குகிறோம். கிராம், கிலோகிராம் போன்ற அளவுகளில் அல்லவா? காய்கறி விற்பவர்கள் காய்கறிகளை எவ்வாறு எடை போடுகின்றனர்? கிலோ கிராம்களில் அல்லவா? மொத்த வியாபாரிகள் பொருட்களை அதிக அளவில் எப்படி வாங்குகிறார்கள் எனத் தெரியுமா? குவிண்டால் மற்றம் டன்களில் தானே? தங்கத்தின் விலை மிக அதிகம். எனவே, நாம்மால் தங்கத்தை அதிக அளவில் வாங்க முடியாது. மக்கள் கிராம் மற்றும் மில்லிகிராம் அளவில் மட்டுமே தங்கத்தை வாங்குகிறார்கள். இத்தகைய அளவுகள் நிறுத்தல் அளவைகளுக்குச் சில எடுத்துகாட்டுகள் ஆகும்.

மாற்றல் அட்டவணை

1000 மி.கி. = 1 கி.

1000 கி. = 1 கி.கி.

100 கி.கி. = 1 குவிண்டால்

1000 கி.கி. = 1 டன்

10 குவிண்டால் = 1 டன்

மேற்கண்ட மாற்றல் அட்டவணைகளைப் பயன்படுத்தி நிறுத்தல் அளவைகளில் ஓா் அலகினை அவற்றின் மற்ற அலகுகளுக்கு மாற்றம் செய்யலாம்.

எடுத்துகாட்டு 17

7256 கிராமை கிலோகிராமாக மாற்றம் செய்தல்

7256 ණි.
$$=\frac{7256}{1000}$$
 ණි.ණි.

= 7.256 கி.கி.

சுருக்க முறை

கி.கி.	ஹெ.கி.	டெகா கி.	கி.	
7	2	5	6] = 7. 256 கி.கி.

எடுத்துக்காட்டு 18

4 டன் 8 குவி 15 கி.கி. –ஐ கி.கி .மாக மாற்றுதல்

1டன் = 1000கி.கி. மற்றும் 1 குவிண்டால் = 100 கி.கி.

எடுத்துக்காட்டு 19

ஒரு சத்துணவு கூடத்திற்கு வழங்கப்பட்ட 125 கி.கி. 325 கி. பருப்பில் 78 கி.கி. 675 கி. செலவாகிவிட்டது. மீதி இன்னும் எவ்வளவு கையிருப்பு இருக்கும்?

3.6 கோணங்களின் அளவை (Measurements of angles)

ஒரு கோணத்தின் அளவு தொடக்க நிலையிலிருந்து முடிவு நிலை வரை $\frac{1}{360}$ மடங்கு சுழற்சிக்குச் சமமாக இருந்தால் 1 பாகை (One degree) என்பர். அதை 1º என்றும் குறிப்பிடுகிறோம். பாகையை கலைகள் மற்றும் விகலைகளாகப் பிரிக்கிறோம்.

அது, 1 பாகை (1º) = 60 கலைகள் (minutes 60')

1 கலை (1') = 60 விகலைகள் (seconds (60")

கோணத்தின் அளவினை வட்ட அளவை (circular measure) முறையாகவும் அளவிடலாம். இந்த அளவின் அலகை ரேடியன் என்கிறோம்.

ரேடியன் அளவு (Radian measure)

வரையறை: r என்ற ஆரத்திற்குச் சமமான வட்ட வில் வட்டமையம் **0** வில் தாங்கும் கோணம் ஒரு ரேடியன் எனப்படும்.

குறிப்பு

- 1. கோணத்தின் அளவு எண்களின் காண நாம் ரேடியனைப் பயன்படுத்துகிறோம்.
- 2. ரேடியன் என்ற வார்த்தையை சில சமயங்களில் எழுதாமலும் விட்டுவிடலாம். ஆகவே ஒரு சுழற்சியில் அலகு (Unit) கொடுக்கப்படவில்லை எனில் அது ரேடியனைக் குறிக்கும்.
- 3. 1° ல் C என்பது வட்ட அளவைக் குறிக்கும்.

பாகைகளுக்கும் ரேடியன்களுக்கும் உள்ள தொடர்பு (Relation between Degrees and Radians)

r ஆரமுடைய வட்டத்தின் சுற்றளவு $2\pi r$ எனவே 1 அலகு ஆரமுடைய வட்டத்தின் சுற்றளவு 2π . θ என்பது ஒரு முழுச்சுற்று எனில் π என்பது 1 அலகு ஆரமுடைய வட்டத்தின் பரிதியை முழுமையாகச் சுற்றும்.

 θ என்பது இடஞ்சுழியாக ஒரு முழுச்சுற்று எனில் $\theta = 2\pi$ ரேடியன் என்கிறோம். ஒரு முழுச்சுற்று = 360° என்பது நமக்குத் தெரியும். $360^\circ = 2\pi$ ரேடியன்கள் அல்லது $180^\circ = \pi$ ரேடியன்.

$$1^0 = \frac{\pi}{180}$$
 ரேடியன் ஆகும்.

3.7 நாட்காட்டி (Calendar) மற்றும் கால அளவைகள் (Time Measure)

நாட்காட்டி என்றதும் நாள், வாரம், மாதம் போன்ற கருத்துகள் நம் கண்முன் தோன்றுகிறதல்லவா! நாட்காட்டியை Calendar என்று ஆங்கிலத்தில் கூறுகிறோம். இன்றைய தேதி என்ன? 09.09.2009 எனக் கொள்வோம். தேதி என்பது நாளுக்கு பெயரிடுதல் என்பது தெளிவு. ஒரு தேதியுனுள் நாள், மாதம், ஆண்டு போன்ற கருத்துகள் உள் அடங்கி யிருக்கின்றன. இவற்றையும் தவிர மதம் சார்ந்த, வணிகம் சார்ந்த, நிர்வாகம் சார்ந்த, சமூகம் சார்ந்த காலநிலையில் சூரியன் சந்திரன் சார் சுழற்சியின் விளைவுகளை கணித்தும் கூறப்பட்டிருப்பதை பார்க்கலாம். இவ்வாறு காலண்டரில் பல்வேறு நிகழ்வுகளைப் பற்றிய விவரங்கள் கொடுக்கப்பட்டிருக்கின்றன இவற்றை பட்டியலிட்டு பார்த்து மேலும் பல கருத்துக்களை அறிந்து கொள்ளலாம்.

சமூகம், மதம், வணிகம், நிர்வாகம் முதலியன சார்ந்த நாள்களை வரிசைப்படுத்திகக் காட்டும் அமைப்பிற்கு காலண்டர் என்று பெயர். காலண்டர் என்பதை ஓர் அமைப்பு முறை எனலாம். நெறிப்படுத்திய நிகழ்வுகளை வரிசையாகக் கொண்ட பட்டியலையும் காலண்டரின் ஓர் உட்பிரிவாகத் தான் கொள்ளப்படுகிறது.

காலண்டர் அமைப்பு முறை (Calender Systems)

காலண்டர் அமைப்பு முறையை அடிப்படையாகக் கொண்டு பல்வேறு வகைகள் உள்ளன.

- (i) சந்திரனின் சுழற்சியை அடிப்படையாகக் கொண்டது இஸ்லாமிய காலண்டர். இதனை சந்திரக்காலண்டர் என்றும் கூறுவர்.
- (ii) சூரியனின் இயக்கத்தை அடிப்படையாகக் கொண்டது பெர்சியன் காலண்டர் இதை சூரிய காலண்டர் (Solar Calendar) என்பர்.
- (iii) சந்திரன் மற்றும் சூரியன் இயக்கங்களை அடிப்படையாகக் கொண்டு அமைவது ஜூயிஸ் காலண்டர் (Jewish Calender)
 - இவை மட்டுமன்றி வானவியல் காலண்டர் எண்ணியல் காலண்டர் என 34 வகை காலண்டர்கள் உள்ளன.

உலக அளவில் கிரிகோரியன் (Gregorian) காலண்டர் அனைத்து நாட்டினரும் பயன்படுத்தும் பொதுவான காலண்டராகும் (சீனா, இந்தியா உள்பட). சில வகை காலண்டர்களைப் பற்றி பார்ப்போமா

சூரிய காலண்டர்

இது ஒவ்வொரு சூரிய நாள்களை அடிப்படையாகக் கொண்டது. சூரிய நாள் என்பது அடுத்தடுத்த இரண்டு சூரிய மறைவின் இடைப்பட்ட கால அளவை குறிப்பதாகும். அதாவது 1 சூரிய நாள் = 1 பகல் + 1 இரவு. சூரிய உதயத்தையும் மறைவையும் அடிப்படையாகக் கொண்டுள்ளது என்பதன் மறைமுகப் பொருள் சூரியனின் சுழற்சியாகும். எனவே சூரிய சுழற்சியின் நிகழ்வுகளில் ஆண்டிற்கு ஆண்டு கால அளவுகளில் சிறு வேறுபாடுகள் நிகழலாமல்லவா! இதன் விளைவாக லீப் ஆண்டு மற்றும் சாதாரண ஆண்டு போன்றவை நிகழ்கின்றன.

இன்றைய காலண்டர் பற்றி

பல்வேறு வகை காலண்டர்கள் காணப்பட்டாலும் நம் இந்தியாவில் நடைமுறையில் உள்ள காலண்டர் கிரிகோரியன் காலண்டர் (Gregorian Calender) ஆகும். வரலாறுகளில் காலத்தை AD (Anno Domain) மற்றும் BC (Before Christ) என்று பயன்படுத்தி வருகிறோம். இது கிறித்தவ மதத்தை சார்ந்துள்ளது என்பது தெளிவாக தெரிகிறது. உலகமயமாக்குதலை நோக்கி நடை போடும் இக்காலகட்டத்தில் மதம் சார்ந்த கருத்துகளை உதிர்த்துவிட்டு CE (Common Era) மற்றும் BCE (Before Common Era) என AD மற்றும் BC க்கு மாற்றாக உலக அளவில் அங்கீகரிக்கப்பட்டு விட்டது.

செய்து பார்க்க

நாட்காட்டியின் ஏதேனும் ஒரு நாளின் தேதியினை மேற்கூறிய செய்திகளின்படி விவாதிக்க

தெரிந்து கொள்க

- சித்திரை மாதமானது தமிழ் வருடத்தின் முதல் மாதமாக இருந்து வந்தது. ஆங்கிலவருடம் 2009 முதல் தை மாதம் தமிழ் வருடத்தின் முதல் மாதமாக நடைமுறைப்படுத்தப்படுகிறது.
- திருவள்ளுவர் ஆண்டு என்பது நடைமுறையில் உள்ள கிரிகோரியன் ஆண்டுடன் 39ஐ கூட்ட கிடைக்கும்,
- 💠 சக ஆண்டிற்கும், கிரிகோரியன் ஆண்டிற்கும் 71 ஆண்டுகள் வித்தியாசம்.

கால அளவைகள்

பண்டைய காலத்தில் மக்கள் பகல் பொழுதில் சூரியனின் நிலை, நிழலின் அமைப்பு ஆகியவற்றைக் கொண்டும், இரவில் நட்சத்திரங்களைக் கொண்டும் நேரத்தை அறிந்து கொண்டனர்.

சாதாரண நேரமும் இரயில்வே நேரமும்; சாதாரண ஆண்டும் லீப் ஆண்டும்

ஒரு நாள் நள்ளிரவு முதல் மறுநாள் நள்ளிரவு வரை உள்ள நேரத்தை 1 நாள் என்று கணக்கிடுகிறோம். பூமி தன்னைத்தானே சுற்றிவர ஒருநாள் ஆகிறது மற்றும் பூமி சூரியனைச் சுற்றி ஒருமுறை வலம் வர ஆகும் காலம் 1 ஆண்டு ஆகும்.

நடைமுறையிலுள்ள காலக்கணக்கீட்டு வாய்ப்பாட்டை கவனிக்க.

60 நொடிகள் = 1 நிமிடம்

60 நிமிடங்கள் = 1 மணி

24 மணி = 1 நாள்

7 நாட்கள் = 1 வாரம்

30 நாட்கள் = 1 மாதம்

12 மாதங்கள் = 1ஆண்டு

52 வாரங்கள் = 1ஆண்டு

365 நாட்கள் = 1 ஆண்டு

366 நாட்கள் = 1 லீப் ஆண்டு

லீப் ஆண்டு

வருடத்தை 4 ஆல் வகுத்தால், மீதி 0 வருமானால், அவ்வருடம் லீப் ஆண்டு எனப்படும். லீப் ஆண்டிற்கு 366 நாட்கள் மற்றும் லீப் ஆண்டில் பிப்ரவரி மாதத்திற்கு 29 நாட்கள் ஆகும்.

(எ– டு) 1952, 1960, 1984

குறிப்பு 1

கொடுக்கப்பட்ட வருடம் நூற்றாண்டு எனில், அவ்வருடம் 400 ஆல் வகுபட்டால்தான் லீப் வருடம் ஆகும்.

(எ-டு) 2000, 2400, 2800

1900 என்பது லீப் வருடமா ? இல்லையா ? என்பதை செய்து பார்க்கவும்.

குறிப்பு 2

ஒருவருடத்திற்கான நாட்களை பின்னமாக உள்ள பகுதியை நீக்கிவிட்டு 365 எனக் கொண்டுள்ளோம். இதனை சமப்படுத்த லீப் வருடங்களை உருவாக்கியுள்ளோம். இந்த லீப் வருடங்களிலும் உள்ள பின்னப்பகுதியை சரி செய்ய நூற்றாண்டுகளில் சரி செய்யப்பட்டுள்ளமையைக் காண்க.

நள்ளிரவு 12 மணிமுதல் நண்பகல் 12 மணி வரையுள்ள காலத்தை முற்பகல்(மு.ப/ A.M) என்றும், நண்பகல் 12 மணிமுதல் நள்ளிரவு 12 மணி வரையுள்ள காலத்தை பிற்பகல் (பி.ப/ P.M) என்றும் கூறுகிறோம். வீடு, பள்ளி போன்ற இடங்களில் பொதுவாக 12 மணி நேர கடிகாரங்களை பயன்படுத்துகிறோம். ஆனால் இரயில்வே, விமானப் போக்குவரத்து போன்றதுறைகளில் 24 மணி நேர கடிகாரத்தைப் பயன்படுத்துகின்றனர். இவ்வகையான 24 மணி நேர கடிகார நேரத்தை பொதுவாக "இரயில்வே நேரம்" என்கிறோம். இரயில்வே நேரங்களில் முற்பகல் (a.m) பிற்பகல் (p.m) என்று குறிப்பிடுவதில்லை.

இரயில்வே நேரங்களில் நள்ளிரவு 12 மணியை 24.00 மணி (அ) 00.00 மணி என்று குறிப்பிடுகிறோம்.

இதேபோல் நண்பகல் 12 என்பதை 12.00 மணி எனவும்,

9.10 மு.ப. என்பதை 09 – 10 மணி எனவும்

9.10 பி.ப என்பதை 21 –10 மணி எனவும் குறிக்கிறோம்.

குறிப்பு 3

1. பி.ப என்று குறிக்கப்பட்ட சாதாரண நேரத்தை இரயில்வே நேரத்திற்கு மாற்றுவதற்குச் சாதாரண நேரத்துடன் 12 மணியைக் கூட்டவேண்டும்.

- 2. இரயில்வே நேரத்தை சாதாரண நேரமாக மாற்றும் போது 12 மணிக்கு அதிகமாக உள்ள நேரத்திலிருந்து 12 மணியைக் கழிக்க வேண்டும்.
- இரயில்வே நேரத்தை குறிக்கும் போது "மணி" என்று குறிப்பிடவேண்டும் "மு.ப",
 "பி.ப" என்று குறிப்பிடக்கூடாது.

3.8 தவறுக்கு வித்தாகும் சில அளவைகள்

பொதுவாக ஆங்கிலத்தில் உள்ள சொற்களைத் தமிழில் கையாளும் போது தவறாகப் பொருள் கொண்டு பயன்படுத்தி வருவதைக் காணலாம். குறிப்பாக

Speed - Velocity வேகம் – திசைவேகம்

Mass - Weight நிறை – எடை

Distance (length) - Displacement தூரம் – இடப்பெயர்ச்சி

ஆகியவற்றை எடுத்துக்கொள்ளலாம்.

இங்கு வேகம், நிறை, தூரம் என்பவை குறியீடற்ற அளவைகள். ஆனால் திசைவேகம், எடை, இடப்பெயர்ச்சி போன்றவை குறியீடு உள்ளவை. அதாவது வெக்டர் சார்ந்ததாகும். ஆகவே இங்கே குறிப்பிடப்பட்டுள்ள வார்த்தைகளை மாற்று வார்த்தைகள் மூலம் பயன்படுத்தக்கூடாது.

இடப்பெயர்ச்சி மற்றும் தூரம் (Displacement & Distance)

இடப்பெயர்ச்சி என்பது இரு நிலைகளுக்கு இடைப்பட்ட ஒரு திசையுடன் கூடிய குறுகிய தொலைவே ஆகும். இது ஒரு வெக்டர் அளவீடு (எண் மதிப்பு மற்றும் திசையுடன் கூடியது) ஆகும். ஆனால் தூரம் என்பது திசை குறியீடின்றி அளக்கப்படும் நீட்டல் அளவையாகும்

வேகம் மற்றும் திசைவேகம்

ஓா் அலகு காலத்தில் (ஒரு நொடியில்) பொருள் கடக்கும் தொலைவு, வேகம் எனப்படும்.

அதாவது வேகம் =
$$\frac{$$
கடந்த தொலைவு (d) $}{$ காலம் (t) $}=\frac{$ (d) மீட்டர் $}{$ (t)செகன்ட் $}=\frac{d}{t}$ m/sec

எனவே, வேகத்தை அளக்க m/s என்ற அலகை பயன்படுத்துகிறோம், வேகம் ஸ்கேலார் (எண்மதிப்பை மட்டும்) அளவாகும். d ஆனது எப்போதும் மிகையாகவே இருக்கும்

ஒரு குறிப்பிட்ட திசையுடன் கூடிய வேகம், திசைவேகம் எனப்படும்.

இங்கு s குறையாகவோ, மிகையாகவோ இருக்கலாம். திசைவேகம் மற்றும் வேகம் இவை இரண்டுமே m/s என்ற அலகால் அளக்கப்படுகிறது. திசைவேகம் வெக்டர் (எண்மதிப்பு மற்றும் திசையை சார்ந்து) அளவாகும்.

நிறையும் எடையும் (Mass & Weight)

ஒரு பொருளில் அடங்கியுள்ள பருப்பொருளின் அளவு அதன் நிறை (Mass) எனப்படும். நிறை என்பது அந்த பொருளின் உள்ளே இருக்கும் பருப்பொருளின் அளவாகும். நிறை என்பது ஒரு ஸ்கேலார் (scalar) அளவாகும். நிறையை கிலோகிராம் (kg) என்ற அடிப்படை அலகால் அளக்கிறோம்.

நிறையும் எடையும் ஒன்றல்ல, எடை என்பது அப்பொருளின் மீது செயல்படும் புவிஈர்ப்பு விசை ஆகும். கொடுக்கப்பட்ட பொருளின் எடை என்பது இடத்துக்கு இடம் (வெளி space) மாறுபடும். ஏனெனில் புவி ஈர்ப்பு விசை (g) என்பது வெளியினை(space) பொறுத்து மாறுபடும் அளவு என்பது குறிப்பிடத்தக்கது.

எடை என்பது வெக்டர் அளவாகும்.

எடை (weight) = நிறை x புவி ஈர்ப்பு முடுக்கம்

W = m x g ஆகும்

புவியீர்ப்பு முடுக்கம் (g) இன் மதிப்பு 9.81 மீ/வி² ஆகும்

குறிப்பு :

ஒளியின் திசைவேகம்

ஒளியானது ஒரு நொடியில் செல்லும் தொலைவு ஒளியின் திசைவேகம் எனப்படும்.

காற்றில் அல்லது வெற்றிடத்தில் ஒளியின்

திசைவேகம் = 3 x 10⁸ மீட்டர் / வினாடி

= 30,00,00,000 மீட்டர் / வினாடி

ஒளி ஆண்டு (Light Year)

தொலைவிலுள்ள விண்மீன்களிலிருந்து ஒளி பூமியினை அடைவதற்கு பல மில்லியன் ஆண்டுகள் ஆகின்றன. இதனால் விண்மீன்களின் தொலைவு ஒளி ஆண்டினைக் கொண்டு அளவிடப்படுகிறது. ஒரு ஆண்டுக் காலத்தில் ஒளிக்கதிர் ஏறக்குறைய 3 x 10⁸ மீட்டர் / வினாடி வேகத்தில் செல்லக்கூடிய தொலைவை ஒரு ''ஒளி ஆண்டு'' என்கிறோம். வானியல் தொலைவிற்கான அலகு ஒளி ஆண்டு ஆகும்.

1 ஒளி ஆண்டு = 30,00,00,000 x 60 x 60 x 24 x 365 1/4 மீ

= **9.46** x 10¹² கி.மீ

பேரண்டத்தில் விண்மீன்களுக்கு இடையேயான (நட்சத்திரங்களின்) தொலைவை அளக்க பயன்படும் மிகப் பெரிய அளவையே ஒளி ஆண்டு அளவையாகும். இது கால அளவு போன்று தோன்றினாலும், இது தூரத்தை குறிப்பிடுகிறது என்பது தெளிவு.

கற்றவை

- 💠 அளவைகளின் வரலாறு
- CGS, MKS, FPS, முறைகள்
- ❖ SI அலகு முறை
- 💠 அளவையின் பொருள்
- 💠 இருபடி அளவைகள்
- 💠 முப்படி அளவைகள்
- 💠 முகத்தல் அளவைகள்
- 💠 நிறுத்தல் அளவைகள்
- 💠 ரேடியன்கள் / டிகிரி
- 💠 வேகம் / திசைவேகம்
- ❖ நிறை / எடை
- 💠 இடப்பெயர்ச்சி / தூரம்

கற்றல் செயல்

- பல்வேறு வகையான, அளவைகள் மற்றும் அட்டவணை (Measaurement Coversion Table) சேகரித்தல்
- பல்வகை, பன்னாட்டு பழமையான நாட்காட்டி
 (விவரங்களுடன்) சேகரித்தல்

அலகு 4

வழவியல்

(Geometry)

4.1 அறிமுகம்

'Literacy' என்ற எழுத்தறிவு பெற்றவர்கள் என்பதற்கான அடிப்படையினை ஆங்கிலத்தில் 3R தெரிந்திருக்க வேண்டும் என்று கூறுவார்கள். அவை Read, Write, Arithemetic ஆகும். இங்கு ஒலி அமைப்பைப் பொறுத்து R, R, R என்று எடுத்துக் கொள்ளப்படுகிறது. மூன்றாவதாக குறிப்பிடப்பட்டுள்ள 'arithemetic' என்ற எண்ணியலில் வடிவியலும் அடங்குகிறது.

4.2 வடிவியல் வரலாறு

'Geometry' என்ற வார்தையானது 'Geo'(பூமி) மற்றும் 'metron' (அளவிடுதல்) என்ற கிரேக்க வார்த்தைகளால் உருவானது. வடிவியலின் மூலத்தை பார்ப்போமானால் அது நிலத்தினை அளப்பதற்காக உருவானது என்பதனை தெரிந்து கொள்ளலாம். பண்டைய எகிப்தியர்கள் வடிவியலை முதன் முதலில் பயன்படுத்த தொடங்கினர் என்பது வரலாறு. அவர்கள் நேர்கோடுகளால் அடைபட்ட (Rectilinear Figures) உருவங்களுக்கு (முக்கோணம், செவ்வகம் போன்றவை) அளவிடும் முறையை பயன்படுத்தினர். பின்னர் பாபிலோனியர்கள் இம்மாதிரியான வடிவங்களுக்கு பரப்புகளை கண்டு அதற்குரிய சூத்திரங்களையும் அறிமுகப்படுத்தினர். இவை ரிண்ட் பாப்பிரஸ் (1650 BC) –ன் மூலம் தெரிய வருகிறது. எகிப்தியர்களும், பாபிலோனியர்களும் அன்றாட வாழ்க்கை முறைக்கு இவற்றைப் பயன்படுத்தினார்களேத் தவிர அறிவியலுக்கு அடிப்படையாக பெரிதும் உதவவில்லை என்பது தெளிவு.

2500 BC – 1750 BC காலங்களில் ஹராப்பா, மொகஞ்சதாரோ அகழ்வாராய்ச்சியின் போது தாழிகளில் (Potteries) கண்டெடுக்கப்பட்டதில் வெட்டிக்கொள்ளும் வட்டங்கள், அரைக்கோளங்கள் போன்ற உருவங்கள் இடம்பெற்றிருந்தது தெரியவருகிறது. இதிலிருந்து பண்டைய காலத்தவர்கள் வடிவியலைப் பற்றி தெரிந்திருந்தார்கள் என்பது தெள்ளத் தெளிவாகிறது. ஆனால் எந்த அளவுக்கு புரிந்து வைத்திருந்தார்கள் என்பதற்கான ஆதாரங்கள் கிடைக்கப் பெறவில்லை.

வேதகாலங்களிலும் வேத விற்பன்னர்கள் வடிவியலை பயன்படுத்தி வேதசாலைகளை உருவாக்கியுள்ளது தெரியவருகிறது. (800BC - 500 BC) மேலும் சுல்ப சூத்திரங்களில் (Sulbasutras) பரப்புகளைக் காண சூத்திரங்கள் பயன்படுத்தப்பட்டுள்ளதை அறியலாம். இந்திய கணித வடிவியலாளர்களாக பிரம்மகுப்தா, பாஸ்கரா II, ஆர்யபட்டா ஆகியோரை குறிப்பிடலாம். பிரம்மகுப்தா வட்ட நாற்கரங்களையும், பாஸ்கரா, பிதாகரஸ் தேற்றத்திற்கு வடிவியல் முறையில் (dissection Proof) நிரூபணமும், ஆர்யபட்டா இருசமபக்க முக்கோணங்கள், பிரமிடுகளின் கனஅளவு மற்றும் π –ன் தோராய மதிப்பினையும் கொடுத்துள்ளனர்.

கிரேக்க கணித மாமேதையான யுக்ளிட் (Euclid) (300 BC) என்பவர் வடிவியலின் தந்தை என்று போற்றப்படுபவர். வடிவியலில் உய்த்தறி நிறுவல் (Proof by deductive reasoning) என்ற புதிய யுக்தியினை முதன்முதலாக அறிமுகப்படுத்தி வடிவியலை எளிமையாக வடிவமைத்தவர். இந்த யுக்தியில் ஏற்கனவே நிறுவப்பட்டுள்ள முடிவுகளையும் சில உரைகோள்களையும் (axioms) அல்லது அடிகோள்கள்(postulates) பயன்படுத்தினார். இம்முறையினையே யுக்ளிட் வடிவியல் (Euclidean Geometry) என்கிறோம். வடிவியலில் மிக முக்கியமாக, யுக்ளிட் –ன் 5 வது உரைகோள் மிகவும் முக்கியத்துவம் வாய்ந்ததாகும்.

"if a straight line falling on two straight lines makes the interior angles on the same side less than two right angles, the two straight lines, if produced indefinitely meet on that side on which are the angles less than the two right angles"

"இரு நேர்கோடுகளை கோடு ஒரு வெட்டும் போது குறுக்காக ஒரே பக்கத்தில் அமைந்த உள்அமை கோணங்களின் கூடுதல் 180° க்கு குறைவாக இருப்பின் குறுக்குக் கோட்டின் அப்பக்கத்தில் இரு கோடுகளையும் நீட்டும் போது அவை ஒன்றையொன்று வெட்டிக்கொள்ளும்.

இதனை 1729-ல் பிளேபெயர்(Playfair) சின்ற ஸ்காட்லாந்து கணிதவியலாளர் மாற்றி அமைத்தார். அதுவே பின்னாளில் பிளேபெயர் உரைகோள் ஆனது. இந்த உரைகோள் உண்மையானது / உண்மையற்றது என்பதனை ஆராய்ச்சி செய்யும் முயற்சியே Non - Euclidean வடிவியலின் ஆரம்பமானது.

யுக்ளிட் வடிவியல் கூறும் கருதுகோள்களில் சில

- ஒரு தளத்தில் உள்ள இரு வெவ்வேறு புள்ளிகளை உள்ளடக்கியதாக ஒரே ஒரு நேர்க்கோடு மட்டுமே கிடைக்கும்.
- 2. ஒரு தளத்தில் உள்ள இரு வெவ்வேறு நேர்க்கோடுகளுக்கு ஒன்றுக்கு மேலான பொதுப் புள்ளிகள் இருக்க இயலாது.
- 3. ஒரு நேர்க்கோடும் அதன் மீதல்லாத ஒரு புள்ளியும் கொடுக்கப்பட்டிருப்பின் அப்புள்ளி வழியாக, கொடுக்கப்பட்ட நேர்க்கோட்டிற்கு இணையாக ஒரே ஒரு நேர்க்கோடு மட்டுமே வரையமுடியும்.
- 4. இரு வெட்டிக்கொள்ளும் நேர்க்கோடுகள் இரண்டும் ஒரு குறிப்பிட்ட நேர்க்கோட்டுக்கு இணையாக இருத்தல் இயலாது.

மேற்கண்ட கருது கோள்கள்

(1) புள்ளி, கோடு, கோட்டுத்துண்டு, ஒருபக்கம், வட்டத்தின் மையம் மற்றும் ஆரம், செங்கோணம், சா்வசமம், உட்கோணங்கள் போன்ற கருத்துக்களைப் புரிந்து கொள்ள உதவுகிறது. (2) இணைக்க, நீட்டுக, வரைக, வெட்டுக போன்ற கணித வினைச் சொற்களை புரிந்து கொள்ளவும் ஏதுவாகிறது.

4.3 புள்ளி, கோடு, கோட்டுத்துண்டு, கோட்டுக்கதிர் கருத்து விளக்கம்

புள்ளி, கோடு, தளம் ஆகிய மூன்றும் சேர்ந்து கட்டப்பட்ட கணிதக் கட்டுமானமே வடிவியல் (Geometry) எனப்படுகிறது. வடிவியலில் பயன்படுத்தப்படும் நேர்க்கோடுகளாக இருந்தாலும் அல்லது வளைவரைகளாக இருந்தாலும் அதன் அடிப்படை புள்ளியாக அமைகிறது. குறிப்பாக நகரும் ஒரு புள்ளியின் பாதையே நேர்க்கோடாகவோ அல்லது வளைவரையாகவோ அமைகிறது. எனவே அனைத்து வடிவங்களுக்கும் புள்ளியே ஆதாரம்.

4.3.1. புள்ளி

வடிவியலின் அடிப்படைக் கருத்து புள்ளி ஆகும். உயர்கணிதத்தில் புள்ளியை வரையறுத்தல் என்பது அனுமதிக்கப்படாத செயல் எனக் கூறப்படுகிறது என்பதனைத் தெரிந்து கொள்ளுதல் நன்று. ஏனெனில் வெவ்வேறு கணிதவியலாளர்கள் புள்ளியை வறையறுத்தாலும், அவர்களிடம் இருந்து ஒருமித்த கருத்து பெறப்படவில்லை. எனினும் புள்ளியைப் பற்றி பின்வரும் கருத்துக்களைப் பெறலாம்.

- 💠 எல்லா வடிவியல் கருத்துக்களுக்கும் அடிப்படை புள்ளி ஆகும்.
- புள்ளி என்பது 0–பரிமாணம் கொண்டது. அதாவது, அதற்கு நீளம், அகலம், உயரம்
 என்பன கிடையாது
- புள்ளியை விளக்க இயலுமே தவிர, வரையறுக்க இயலாது (எ.டு) பென்சிலின் கூர்முனை புள்ளி ஆகும். இரு கோடுகள் ஒரு புள்ளியில் வெட்டிக் கொள்ளும்.
- 💠 எந்த இரு புள்ளிகளுக்கு இடையிலும் ஒரு புள்ளியைக் காண இயலும்.

4.3.2. கோடு

எண்ணிலடங்கா புள்ளிகளின் தொகுப்பு ஒரு கோடு எனலாம். கோடு என்பது 1 பரிமாண வடிவியல் உருவம் ஆகும். ஏனெனில் கோட்டிற்கு நீளம் மட்டுமே உண்டு. அகலம், உயரம் என்ற பரிமாணங்கள் கிடையாது.

ஒரு தளத்தில் ஒரு புள்ளியின் நியமப்பாதை ஒரு கோடு என வரையறுக்கலாம்.

ஒரு தளத்தில் வரையப்பட்ட ஒரு கோடு கிடைமட்டமாகவோ செங்குத்தாகவோ அல்லது சாய்வாகவோ அமையும்

ஒரு தளத்தில் வரையப்பட்ட இரு கோடுகள்

- சமமாக
- வெட்டும் கோடுகளாக
- இணை கோடுகளாக
- செங்குத்துக் கோடுகளாக அமையலாம்.

ஒரு கோட்டினை ஆங்கில எழுத்துக்களின் சிறிய எழுத்துக்களாகிய l,m,n ...எனக் குறிக்கலாம் அல்லது அக்கோட்டின் மீது அமைந்துள்ள ஏதேனும் இரு புள்ளிகளைக் கொண்டும் குறிக்கலாம். (σ – Θ)

இக்கோட்டினை AB எனக் குறிக்க இயலும்.

- ஒரு கோட்டினை இருபுறமும் எவ்வளவு தூரம் வேண்டுமானாலும் நீட்டலாம் என்பதால் அதற்குக் குறிப்பிட்ட நீளம் கிடையாது.
- ஒரே தளத்தில் அமையாத வெட்டாக் கோடுகள் ஒன்றையோன்று சந்திக்காது. இவற்றிற்கு ஒரு தளஅமையாக் கோடுகள் (Skew Lines) என்கிறோம். இவ்விரு கோடுகளை உள்ளடக்கிய தளத்தினை உருவாக்க இயலாது.

4.3.3. கோட்டுத்துண்டு (Line Segment)

ஒரு கோட்டின் மீது அமையும் ஏதேனும் இரு புள்ளிகள் மற்றும் அவ்விரு புள்ளிகளுக்கு இடையேயான அனைத்துப் புள்ளிகளின் தொகுப்பை ஒரு கோட்டுத்துண்டு என்கிறோம்.

படத்தில் என்பது ஒரு கோட்டு துண்டு. இவ்விறே, , O, என்பனவற்றை கோட்டுத்துண்டுகள் எனலாம். ஒரு கோட்டுத்துண்டில், இரு முடிவுப் புள்ளிகள் உள்ளதால் அதற்கு குறிப்பிட்ட நீளம் உண்டு.

சிந்தனைக்கு

ஒரு புள்ளிக்கு நீளம், அகலம், உயரம் கிடையாதெனில், நீளம் பூச்சியமாகிறது. ஒரு கோட்டுத்துண்டு எண்ணிலடங்கா புள்ளிகளாலானது. அவ்வாறெனின் எந்தவொரு கோட்டுத்துண்டின் நீளத்தையும் பூச்சியம் என்று கூறிட இயலுமா ? (∞ x 0)

4.3.4. கோட்டுக்கதிர் (Ray)

ஒரு கோட்டின் மீது 0 என்ற புள்ளி அமைந்தால், அக்கோட்டினை 0-புள்ளி இரு கதிர்களாகப் பிரிக்கிறது எனலாம். கோட்டுக்கதிருக்கும் குறிப்பிட்ட நீளம் கிடையாது.

1

இங்கு OA மற்றும் OB ஆகிய இரு கோட்டுக்கதிர்கள் உள்ளன.

4.4. ஒழுங்கு மற்றும் ஒழுங்கற்ற வடிவங்கள்

சூத்திரங்களை பயன்படுத்தி நீளம், பரப்பு, கனஅளவு போன்றவற்றை கணக்கிடும் வகையில் அமைந்த உருவங்களை ஒழுங்கு வடிவங்கள் என்று கூறலாம். எடுத்துக்காட்டாக சதுரம், செவ்வகம், இணைகரம், சாய்வகம், சரிவகம் போன்றவை நாற்கரம் என்ற பொதுப் பெயர் தவிர, சிறப்புப் பெயரையும் பெற்றுள்ள வடிவங்கள் ஆகும். இவை ஒழுங்கு நாற்கரங்கள் எனப்படும். மேலும் கோளம், கூம்பு, உருளை போன்ற உருவங்களுக்கும் தகுந்த

நீளம், அகலம், சுற்றளவு, பரப்பளவு, கனஅளவு

ஆகியனவற்றைக் கணக்கிட்டுக் கூற இயலும். ஒழுங்கு நாற்கரங்களின் சுற்றளவு, பரப்பளவு ஆகியனவற்றைக் கணக்கிட, சூத்திரங்கள் பயன்படுகின்றன.

எனவே ஒழுங்கான வடிவங்கள் கொண்ட உருவங்களுக்கு மட்டுமே சூத்திரங்களைக் கொண்டு சுற்றளவு, பரப்பளவு கணக்கிட இயலும்.

இவ்வாறே கனச்சதுரம், கனச்செவ்வகம் போன்றவைகளும் ஒழுங்கு வடிவங்களாகும். ஒரு பல கோணத்திற்கு நேரடியாக சூத்திரங்களை பயன்படுத்தி காணுதல் இயலாது. அதுவே ஒழுங்கு பலகோணமாக இருப்பின் காண இயலும். 3 நேர் கோடுகளால் ஒழுங்கற்ற அடைப்பட்ட உருவம் உருவாக்க இயலுமா ? இயலாதெனில் ஏன் ?

அவ்வாறெனில், ஒழுங்கற்ற உருவங்கள் என்றால் என்ன ? சூத்திரங்களைப் பயன்படுத்தி நீளம், பரப்பு, கனஅளவு ஆகியனவற்றை நேரிடையாகக் கணக்கிட இயலாது எனில் அவை ஒழுங்கற்ற உருவங்கள் எனலாம்.

சில யுக்திகளைப் பயன்படுத்தி (எடுத்துக்<u>காயிடாக</u> வரைபடத்தாள் போன்றன) ஒழுங்கற்ற உருவங்களின் சுற்றளவு பரப்பளவு ஆகியவற்றை தோரரயமாக கணக்கிட இயலும்.

மேற்கண்ட வடிவங்கள் ஒழுங்கான வடிவங்களா ? இதனை சரியான முறையில் ஒழுங்கு வடிவங்களாகப் பிரித்து தேவையான சூத்திரங்களைப் பயன்படுத்தி தேவையான அளவைகளைக் காண இயலும். ஆகவே மேற்கூறியவற்றை ஒழுங்கற்ற வடிவம் எனக் கூற இயலாது.

படம் 1 –ல் வட்டப்பகுதியும் சதுரப் பகுதியும் இணைந்துள்ளது.

(1)

படம் 2–ல் ஒரு சதுரத்திலிருந்து சாய்வகப் பகுதி நீக்கப்பட்டுள்ளது.

படம் 3–ல் ஒரு செவ்வகப் பகுதியும், வட்டப்பகுதியும் இணைந்துள்ளது.

கீழ்க்கண்ட வடிவங்களைக் காண்க

இவற்றை ஒழுங்கான வடிவத்திற்கு மாற்ற இயலுமா ?

ஏற்கனவே அறிந்த சூத்திரங்களைப் பயன்படுத்தி, நீளம், சுற்றளவு, பரப்பளவு ஆகிய அளவைகளைக் காண இயலாது. எனவே இவற்றை ஒழுங்கற்ற வடிவங்கள் என்கிறோம்.

ஆனால், ஒரு ஒழுங்கற்ற இரு பரிமாண, முப்பரிமாண வடிவங்களுக்குத் தேவையான நீளம், பரப்பு, கன அளவு ஆகியவற்றை நுண் கணிதத்தின் (Calculus) மூலம் காண இயலும் என்பதனை அறிந்து கொள்க. இங்கு இதைப்பற்றிய கருத்துக்களைத் தவிர்க்கலாம்.

4.4.1. முக்கோணங்கள்

இரு கோட்டுத் துண்டுகளால் ஒரு மூடிய உருவத்தை பெற முடியாதல்லவா ? எனவே மூடிய உருவத்தைப் பெற வேண்டும் எனில் குறைந்த பட்சம் 3 கோட்டுத் துண்டுகள் இருக்க வேண்டும். இவ்வாறு,

மூன்று கோட்டுத் துண்டுகளால் அடைபட்ட அல்லது மூடிய உருவத்தை முக்கோணம் என்கிறோம். (மூன்று கோணங்களை உருவாக்குவதால் இப்பெயர் வரக் காரணமாகிறது.)

அக்கோட்டுத்துண்டுகளை முக்கோணத்தின் பக்கங்கள் எனவும், இரண்டு கோட்டுத்துண்டுகளுக்கு இடையே ஏற்படுவதை கோணங்கள் எனவும் கூறலாம். இக் கோணங்களின் அடிப்படையிலும், பக்கங்களின் அடிப்படையிலும் முக்கோணங்களை கீழ்க்கண்டவாறு வகைப்படுத்தலாம்.

பக்கங்களின் அடிப்படையில்

- சமபக்க முக்கோணம்
- இருசமபக்க முக்கோணம்
- அசமபக்க முக்கோணம்

கோணங்களின் அடிப்படையில்

- குறுங்கோண முக்கோணம்
- செங்கோண முக்கோணம்
- விரிகோண முக்கோணம்

முக்கோணத்தின் முக்கிய பண்பு

ஒரு முக்கோணத்தின் இரு பக்க அளவுகளின் கூடுதல் மூன்றாவது பக்கத்தின் நீளத்தை விட அதிகமாக இருக்கும். இந்த பண்பை அடிப்படையாகக் கொண்ட முக்கோண சமனிலி விதி (Triangle inequality) என்பதை பல தலைப்புகளில் உயர்கணிதத்தில் பார்க்கலாம்.

4.4.2. நான்கு பக்கங்கள் கொண்ட அடைப்பட்ட வடிவங்கள்

ஒரு மூடிய உருவம் பெற குறைந்தபட்சம் மூன்று கோட்டுத்துண்டுகள் தேவை எனக் கண்டோம். இதற்கும் மேற்பட்ட கோட்டுத்துண்டுகளால் ஒரு அடைபட்ட உருவத்தை பெற இயலுமா ? அவற்றின் சிறப்பு வகைகள் மற்றும் பண்புகள் பற்றி இங்குக் காண்போம்.

பொதுவாக, நான்கு பக்கங்களால் அடைபட்ட உருவத்தை நாற்கரம் என்கிறோம். இந்நாற்கரம், ஏதேனும் சிறப்புப் பண்புகளைப் பெற்றிருப்பின், சிறப்புப் பெயரிட்டு அழைக்கின்றோம்.

இந்நாற்கரங்களின் வரையறை மற்றும சிறப்புப் பண்புகளைப் பற்றி ஏழாம் வகுப்பு கணிதப் பாடப் பகுதியில் இடம் பெற்றுள்ளது. தற்போது அவற்றிற்கிடையேயான சில ஒற்றுமை, வேற்றுமைகளைக் காணலாம்.

சிந்தனைக்கு

வடிவியலில் முக்கோணத்தினைத் தவிர்த்து நாற்கரங்கள் சிறப்பிடத்தினைப் பெற்றுள்ளது என்பதனை அறிவோம்.

- 1. சதுரம், செவ்வகம், இணைகரம், சாய் சதுரம் எல்லாமே நூற்கரங்கள்.
- 2. நூற்கரங்கள் எனில் மேற்குறிப்பிட்ட ஒன்றாக இருக்க வேண்டிய அவசியமில்லை.
- 3. சதுரம், செவ்வகம், சாய்சதுரம் எல்லாமே இணைகரம் ஆகும்.
- 4. இணைகரம் எனில் சதுரமாக, செவ்வகமாக அல்லது சாய்சதுரமாக இருக்க வேண்டிய அவசியமில்லை.
- 5. ஒரு சதுரம், செவ்வகமாக ஏற்றுக்கொள்ளப்படும்.
- 6. ஒரு செவ்வகம் சதுரமாக இருக்க வேண்டியதில்லை.
- 7. சதுரம் ஒரு சாய்சதுரம் ஆகும் (சாய்வு 0).
- 8. சாய்சதுரம் சதுரமாக இருக்க வேண்டியதில்லை.

எத்தனை கோட்டுத்துண்டுகளால் ஒரு மூடிய உருவத்தைப் பெறமுடியும். மூன்று அல்லது மூன்றிற்கு மேற்பட்ட கோட்டுத் துண்டுகள் எத்தனை இருப்பினும் அதைத் கொண்டு ஒரு மூடிய உருவத்தைப் பெற இயலும்.

கோட்டுத் துண்டுகளின் எண்ணிக்கை	உருவத்தின் பெயர்
3	முக்கோணம்
4	நாற்கரம்
5	ஐங்கோணம்
6	அறுகோணம்
7	எழுகோணம்
8	எண் கோணம்

பொதுவாக 5 அல்லது ஐந்திற்கு மேற்பட்ட கோட்டுத் தூண்டுகளால் உருவாகும் அடைப்பட்டஉருவத்தினை 'பல கோணம்' எனலாம்.

பலகோணத்தின் அனைத்துப் பக்கங்களின் நீளங்களும் சமமாக இருப்பின் அதனை 'ஒழுங்கு பல கோணம்' (Regular Polygon) என்கிறோம்.

ஒழுங்கு ஐங்கோணத்தின் ஐந்து பக்கங்களின் நீளங்களும் சமம் எனவும். ஒழுங்கு அறுகோணத்தின் ஆறு பக்கங்களின் சமம் எனவும் அறியலாம்.

4.5. முப்பரிமாண வடிவங்கள் மற்றும் முப்பரிமாண அச்சுகள்

முப்பரிமாண வடிவங்களுக்கும், முப்பரிமாண அச்சுகளுக்கும் இடையே உள்ள வேறுபாட்டினை மாணாக்கர்கள் உணர்ந்து கொள்ளுதல் அவசியம் ஆகும்.

முப்பரிமாண வடிவங்கள் என்பது ஒரு தளத்தில் அமைக்க இயலாத வடிவியல் உருவங்கள் ஆகும். அந்த உருவங்களின் சில புள்ளிகள் மட்டுமே தளத்துடன் பொருந்தி இருக்கும்.

வடிவங்கள்	தளத்துடன் பொருந்தும் புள்ளிகள்
கன சதுரம்	சதுர அடிப்பரப்பு மட்டும்
கன செவ்வகம்	செவ்வக அடிப்பரப்பு மட்டும்
உருளை	வட்ட அடிப்பரப்பு மட்டும்
கூம்பு	வட்ட அடிப்பரப்பு மட்டும்
கோளம்	ஒரே ஒரு புள்ளி மட்டும்

மேலும் முப்பரிமாண உருவங்களுக்கு நீளம், அகலம், உயரம் என்ற மூன்று பரிமாணங்கள் உள்ளதால் இவற்றிற்கு கன அளவு உண்டு.

முப்பரிமாண அச்சுகள்

P என்ற ஏதேனும் ஒரு புள்ளியை எடுத்துக் கொள்வோம். இதனை ஒரு பரிமாண வரைபடத்தில் குறிக்க.

படத்தில் P–ன் அலகுத்தூரம் **3** என்பது தெளிவாகின்றது. அதாவது P–என்னும் புள்ளி ஆதிப்புள்ளியில் இருந்து **3** அலகு தூரத்தில் உள்ளது எனலாம்.

P–என்ற புள்ளியின் திட்டமான இடத்தினை ஒரு தளம் அல்லது பரப்பில் குறிப்பிட, x–அச்சு மற்றும் y–அச்சுகளைப் பயன்படுத்துகிறோம்.

எடுத்துக்காட்டாக P (3,4) எனில்

P–ன் x– அச்சுதூரம் 3 அலகு

y–அச்சுதூரம் 4 அலகு எனப் பொருள்படும்.

இவ்வாறே Q–ன் அச்சுத்தூரம் (–2,3) என காண்கிறோம்.

P-ன் திட்டமான இருப்பிடத்தை ஒரு கூறு வெளியில் (Space) குறிப்பிட வேண்டும் எனில், x,y மற்றும் z என்ற மூன்று அச்சுகளைப் பயன்படுத்துதல் வேண்டும்.

முப்பரிமாண உருவங்களுக்கு நீளம், அகலம், உயரம் ஆகிய்⁴மூன்று பரிமாணங்கள் உள்ளன. ஆனால் முப்பரிமாண அச்சு என்பது ஒரு புள்ளியின் திட்டமான இடத்தினை வரையறுக்கப் பயன்படுகிறது.

4.6 சமச்சீர், சர்வசம மற்றும் ஒத்த உருவங்கள்

(Symmetry, Congruence & Similarity)

கணக்குப் பாடத்தில் சமச்சீர் மற்றும் ஒத்த உருவங்கள் ஆகியவற்றிற்கு இடையேயுள்ள வேறுபாட்டினை உணர்தல் அவசியம் ஆகும். இவற்றினை ஒரே பொருள்படும்படி தவறாக கையாளுதல் கூடாது.

சமச்சீர் (Symmetry)

சமச்சீர் என்பது ஒரு கணிதக் கருத்து ஆயினும் இயற்கையில் 'சமச்சீர்' கொண்ட பொருட்கள் அழகையும், கலை உணர்வையும் கொண்டுள்ளது எனில் அது மிகையாகாது. இதற்கு வரையறை வேண்டுமாயின் நாம் சார்பு என்ற உயர் கணிதத்திற்கு செல்ல வேண்டியது வரும். எனவே எடுத்துக்காட்டுகள் மூலம் புரிந்து கொள்வோம்.

ஒரு இலையின் அமைப்பை எடுத்துக் கொண்டால், அது, நடு நரம்பினைப் பொறுத்து இரு புறமும் சமச்சீராக உள்ளது. அதாவது நடு நரம்பினை ஒரு அச்சாகக் கொண்டு மடக்கினால் இருபக்கமும் பொருந்துமாறு அமையும். பொதுவாக எந்தவொரு பொருளையும் ஒரு நேர்கோட்டால் இரு சமமாக பிரிக்க முடியுமாயின், அந்த கோட்டைப் பொறுத்து அது சமச்சீர் தன்மை கொண்டது எனலாம். நம் உடல் அமைப்பு கூட சமச்சீர் தன்மை உடையது என்பதனை தெரிந்து கொள்ளலாம். பல கட்டிடங்கள் பார்ப்பதற்கு அழகாக இருக்கிறது எனில் அதற்கு காரணம் சமச்சீர் தன்மையே ஆகும்.

சதுரம் என்ற அமைப்பை எடுத்துக் கொள்வோம்.

இப்படத்தில் 1 என்ற அச்சைப்பொறுத்து அவ்வடிவம் சமச்சீராக உள்ளது. இவ்வாறாக 2, 3, 4-ம் சமச்சீர் அச்சுகளாகும். அந்தந்த அச்சைப் பொறுத்து சதுரம் சமச்சீராக உள்ளது.

எனவே ஒரு வடிவியல் உருவம் ஒரு அச்சைப் பொறுத்து இரு சமக்கூறுகளாக பெற்றிருப்பின் அதற்கு சமச்சீர் தன்மை உள்ளது எனலாம்.

செவ்வகம், இணைகரம், சாிவகம், சாய்சதுரம் ஆகியவற்றில் சமச்சீர் தன்மை உள்ளதா ? முயன்று பார்க்க.

வடிவவொத்த உருவங்கள் (Similarity) மற்றும் ஒருங்கிசைவு (அ) சர்வசம உருவங்கள் (Congruent)

நாம் பார்க்கும் உருவங்களில் சில

- (i) வடிவத்தில் (shape) ஒரே மாதிரியாகவும் அளவில் (size) மாறுபட்டும்.
- (ii) வடிவத்திலும் (shape) அளவிலும் (size) ஒரே மாதியாகவும் இருப்பதை உணர்கிறோம்.

முதல் வகை ஒத்த உருவங்கள் வகையிலும்

இரண்டாம் வகை சர்வ சம உருவங்கள் வகையிலும் பிரிக்கப்படுகிறது.

1) இரு கோட்டுத் துண்டுகள் சர்வசமம் எனில் அவை சமமான நீளமுடையது எனப்பொருள். *l, m* ஆகிய கோட்டுத்துண்டுகள் சர்வசமம்.

2) இரு முக்கோணங்கள் சா்ம சமம் எனில் ஒத்தப் பக்கங்களும், கோணங்களும் சமமாக இருத்தல் வேண்டும். *PQR*, *ABC* ஆகிய முக்கோணங்கள் சா்வசமம்,

3) இரு கோணங்கள் சா்வ சமம் எனில் அந்த கோணங்களின் அளவு சமமாக இருத்தல் வேண்டும். <u>/B</u> , <u>/P</u> ஆகியவை சா்வ சமம்

ஆனால் வடிவொத்த உருவங்களில் இவ்வாறு இருக்க வேண்டிய அவசியமில்லை.

எடுத்துக்காட்டாக கீழ்க்காணும் முக்கோணங்களை எடுத்துக் கொள்வோம்.

மேற்கண்ட படத்தில், சமமாகவும் மேலும்,

முறையே

ஆகியவற்றிற்கு

என்ற விகிதத்திலும் உள்ளது எனில் ABC, PQR ஆகிய முக்கோணங்கள் ஒத்த முக்கோணங்கள் ஆகும்.

எனவே

- (i) ஒத்த கோணங்கள் சமமாகவும்.
- (ii) ஒத்த பக்கங்களின் விகிதங்கள் $\frac{1}{PQ}$ = $\frac{1}{QR}$ = $\frac{1}{RP}$ அவை ஒத்த வடிவங்கள் எனலாம்.

எனவே ஒத்த உருவங்கள் என்ற கருத்தினை அறிய குறைந்தபட்சம் இரண்டு உருவங்கள் அவசியம் எனத் தெளிவாகின்றது.

குறிப்பு

- (i) எல்லா சமபக்க முக்கோணங்களும் ஒத்த உருவங்கள்
- (ii) வெவ்வேறு பக்க அளவுகள் உள்ள எல்லா சதுரங்களும் ஒத்த உருவங்கள்
- (iii) வெவ்வேறு பக்க அளவுகள் உடைய ஒழுங்கு ஐங்கோணம், ஒழுங்கு அறுங்கோணம் முதலியனவும் ஒத்த உருவங்களாகும்.

எல்லாச் செவ்வகங்களும் ஒத்த உருவங்களாக அமையுமா?

(iv) நீள, அகலங்களின் விகிதங்கள் சமமாக இருந்தால் மட்டுமே செவ்வகங்களை ஒத்த உருவங்களாகக் கருதலாம்.

சிந்தனைக்கு

E,F முறையே ABCD என்ற செவ்வகத்தின் AB,CD யின் நடுப்புள்ளிகள் எனில், சமச்சீர், வடிவொத்த உருவங்கள் மற்றும் சர்வசமம் ஆகிய கருத்துகளை ஆராய்க.

கற்றவை

- 💠 வடிவியல் வரலாறு
- 💠 கருதுகோள்கள்
- 💠 புள்ளி, கோடு
- 💠 ஒழுங்கற்ற வடிவங்கள்
- 💠 முக்கோணத்தின் பண்பு
- 💠 முப்பரிமாண வடிவங்கள்
- 💠 முப்பரிமாண அச்சுகள்
- 💠 சா்வசம / சமச்சீா் / ஒத்த உருவங்கள்

கற்றல் செயல்

- ஒழுங்கான வடிவங்கள் / உருவங்கள் –வாழ்க்கைப் பயன்பாடு
 பட்டியல்
- 💠 அழகுணா்கலைகளில் கணித வடிவம் / உருவங்கள் பயன்பாடு

அலகு 5

(Language of Mathematics)

5.1 அறிமுகம்

"எண்ணும், எழுத்தும் கண்ணெனத் தகும்"

கண்ணிற்கு ஒப்பாக கருதப்பட்டுள்ள எண், எழுத்து முதலியன முறையே கணிதத்தையும், மொழியறிவையும் குறிப்பவையாகும். வாழ்வில் வெற்றி பெற இவ்விரண்டு அறிவினையும் ஒருவர் பெறவேண்டிய அவசியத்தையே இக்கூற்று தெரிவிக்கின்றன. தனி மனித வளர்ச்சியோடு சமுதாய வளர்ச்சிக்கும், கணித அறிவும், அதனால் ஏற்படக்கூடிய அறிவியல் மற்றும் தொழில்நுட்ப வளர்ச்சியும் அவசியமாகிறது. இன்றைய உலகம் அறிவுசார் உலகமாக இருக்கிறது. இதற்கு இணையாகத்தனிமனிதர்கள் வளர வேண்டுமானால் குழந்தைப் பருவத்திலிருந்தே கணித அறிவை அவர்கள் வளர்த்துக் கொள்ளல் வேண்டும். எனவே கணிதம் ஒரு முக்கிய பாடமாக ஆரம்பக்கல்வி முதல் இடம்பெற்றுள்ளது. கணிதம் என்றவுடன் நாம் நினைவுகூர்பவை எண்கள், அவற்றைப் பயன்படுத்தும் இடங்கள், முறைகள், வடிவியல் உருவங்கள், குறியீடுகள், சமன்பாடுகள், வரைபடங்கள் முதலியன ஆகும். இவையனைத்தும் கணிதத்தின் அடிப்படைச்சிந்தனை சக்திகள் ஆகும். இவற்றை வளர்த்துக் கொள்வதற்கு கணிதமொழி இடைவினையாக அமைகிறது.

கணிதமொழி என்பது குறியீடுகளைக் கொண்டு அமைந்துள்ளது. எண்ணுருக்களே குறியீடுகள் என்றாலும் எண்ணுருக்களைத் தவிர மீதியுள்ளவற்றை குறியீடுகள் என்கிறோம். குறியீடுகள் அனைத்து மொழியினருக்கும் பொதுவானது.

கோடுகளும், புள்ளிகளும், படங்களும் கணிதமொழியின் குறியீடுகளாக பயன்பட்டு வருகின்றன. எனவே குறியீடுகள் என்பது வாக்கிய அமைப்பின் சுருங்கிய வடிவமாகும். சரியான பொருத்தமான குறியீடுகளை பயன்படுத்தவில்லை எனில் எதிர்மறையான பொருள் கொடுக்கும் வாய்ப்பு உள்ளது. எனவே கணிதமொழியை தொடக்க நிலையிலேயே சரியாக புரிந்து கொள்வது மிகவும் அவசியமாகும். குறியீடுகள் உயர்வகுப்பில் அதிக அளவில் பயன்படுத்தப்படுகிறது. அவை இன்றைய அறிவியல் வளர்ச்சிக்கு முக்கிய பங்குவகிக்கிறது. கணிப்பானில் குறியீடுகள் பயன்பாடு அதிக அளவில் உள்ளதைக் காணலாம்.

5.2 கணிதத்தின் சொற்களஞ்சியம்

கணிதத்திற்கென்று தனியாக ஒரு மொழி இருக்கிறது. கணிதமொழியை ஆங்கிலத்தில் Symbolic Language என்கிறோம். இது உலக அளவில் அங்கீகரிக்கப்பட்ட குறியீடுகளின் தொகுப்பு ஆகும். இவை மொழி, இன, இடம் இவற்றிற்கு அப்பாற்பட்டு, உலகநாடுகள் அனைத்திலும் மாற்றமின்றி பயன்பாட்டில் உள்ளது. கணிதற்திற்கே உரிய பயன்பாட்டினைக்

கொண்ட கூற்றுக்களையும், குறியீடுகளையும் கணிதமொழி என்கிறோம். கணிதத்தின் குறியீட்டு மொழியே அதன் தனித்தன்மையாகும். கணித அளவுகளின் தொடர்புகள் குறியீடுகள் மூலம் தெரிவிக்கப்படுகின்றன. எடுத்துக்காட்டாக,

a=b & b=c எனில் a=c என்பதை கணித மொழியானது ஒரு குறிக்கோளுடன் துல்லியமாகவும் சுருக்கமாகவும் குறிப்பிடுகிறது. இங்கு a , b , c என்பவை எழுத்துக்களாக பயன்படவில்லை. மாறாக எண்ணுருக்களாக பயன்படுத்தப்படுகின்றன. ஒவ்வொரு சமன்பாடும், ஒப்பின்மையும்(inequality), எண்களில் ஒப்பிடுதல் தன்மைகளும் கணித வாக்கியங்களாகும். =, >, < என்பவை இவற்றிற்கான குறியீடுகளாகும்

$$3 = 3$$
, $5 > 2$, $1 < 9$

எண் கணிதத்தின் அடிப்படையான எண்களே எண்ணுருக்களாகக் குறியீடுகள் மூலம்தான் குறிக்கப்படுகின்றன.

இந்திய எண்ணுருக்கள் 0,1,2,3,4,5,6,7,8,9

5.3 கணிதக் குறியீடுகளும் மொழிச்சொற்களும்

- எண் இலக்கக் குறியீடுகள் 0,1,2,3,4,5,6,7,8,9
- ❖ எண்ணியல் அடிப்படைச் செயல்களுக்கான குறியீடுகள் +, −, ×, ÷
- 🌣 கணச்செயலிகள் $\,\cup\,,$
- **ஃ** கணிதத்தொடர்புகளை விளக்கும் குறியீடுகளில் சில $=, \neq, <, >,$
- 💠 தமிழ் எண்ணுருக்கள். க உ ந ச ரு சு எ அ கூ
- ❖ ரோமானியா எண்கள் I, II, III, IV, V, VI, VII, VIII, IX, X, L, C, D, M
- இயற்கணிதத்தில் ஆங்கில எழுத்துக்களை மாறிகளுக்கும், மாறிலிகளுக்கும் பயன்படுத்துகிறோம். எடுத்துக்காட்டு: x+ y = a
 - இங்கு x,y என்பன மாறிகள்; a என்பது மாறிலி எனக் கொள்ளலாம்.
- வடிவங்களின் முனைப்புள்ளிகளைக் குறிப்பிடவும் ஆங்கில எழுத்துக்களைப் பயன்படுத்துகிறோம்.

- குறிப்பிட்ட கணிதப்பகுதிகளில் லத்தீன் மொழி எழுத்துக்களையும்
 பயன்படுத்துகிறோம்
 α, β, θ, γ, ψ, ζ, δ, λ, μ, ω............
- கணிதத்தில் ஒரு விதியையோ அல்லது கோட்பாட்டையோ சுருக்கமாகக் குறியீட்டு முறையில் கூறுவது சூத்திரம் எனப்படும்.
 - **1**. சதுரத்தின் பக்க அளவு a அலகு எனில் அதன் பரப்பு, $A=a^2$ ச.அ
 - 2. வட்டத்தின் ஆரம் ${
 m r}$ அலகு எனில் அதன் பரப்பு $A=\pi {
 m r}^2$ ச.அ. சுற்றளவு $C=2\pi {
 m r}$ அலகு

வடிவங்களும் குறியீடுகளும்

கணித மொழியில் வடிவங்களையே குறியீடுகளாக சில இடங்களில் பயன்படுத்துகிறோம்.

சதுரம் ABCD ←── ☐ ABCD

முக்கோணம் ABC ← → ABC

கோணம் ABC — | ABC

கதிர் AB 👝 AB

கோட்டுத்துண்டு $PQ \longleftrightarrow \overline{PQ}$

கணித மொழியினை

- 🛨 பொருள்களின் மொழி (Things Language)
- 🛨 குறியீட்டு மொழி (Symbolic Language)
- 🛨 செயல்பாட்டு மொழி (Functional Language)
- ★ படமொழி (Picture Language)

என்னும் அடிப்படையிலும் வகைப்படுத்தலாம்.

கணித மொழியில் எழுதுதல் (Mathematical Statement)

இலக்கங்களான 0, 1,9 என்ற குறியீடுகளை இடமதிப்பு என்ற ஒரு கருத்தினையும் கொண்டு அனைத்து எண்களையும் உருவாக்கிய முறை கணித மொழிக்கே உரிய சிறப்புத்தன்மையாகும்.

எடுத்துக்காட்டு 1

ஒரு எண்ணில் பாதியும், அதில் பாதியும், ஒன்றையும் கூட்டினால் கிடைக்கும். அவ்வெண் யாது ?

தீா்வு :

தேவையான எண்ணை n என்க.

 $\frac{n}{2} + \frac{1}{2} \left(\frac{n}{2} \right) + 1 = n$ கணக்கின் படி :

 $\frac{n}{2} + \frac{n}{4} + 1 = n$ அதாவது

இப்போது தீர்வு காண்பது எளிதல்லவா ?

எடுத்துக்காட்டு 2

ஒரு எண்ணின் இருமடங்குடன் இரண்டை கூட்டி அதனை ஐந்து மடங்காக்குக.

தீர்வு : கொடுக்கப்பட்ட எண்ணை x என்க.

எண்ணின் இருபடங்குடன் இரண்டை கூட்டுக. அதாவது 2x+2அதன் ஐந்து மடங்கு 5(2x+2)

எடுத்துக்காட்டு 3

ஒரு பூச்சியமற்ற எண்ணுடன் 20 ஐ கூட்டிய பின் கிடைக்கும் எண்ணிலிருந்து அதன் ஐந்து மடங்கைக் கழிக்க பூச்சியமாகிறது. அவ்வெண் யாது ?

தீா்வு :

கண்டுபிடிக்க வேண்டிய எண் x என்க.

கணக்கின்படி x + 20 - 5x = 0

-4x = -20 =

x = 5. எனவே அந்த எண் 5

எடுத்துக்காட்டு 4

ஒரு செங்கோண முக்கோணத்தில் பெரிய பக்கத்தின் மீதான சதுரத்தின் பரப்பு மற்ற இரண்டு பக்கங்களின் மீதான சதுரங்களின் மொத்த பரப்பிற்கு சமம்.

தீர்வு :

பெரிய பக்கத்தினை *5* செ.மீ எனவும்

பிற இரு பக்கங்களை *3* செ.மீ,*4* செ.மீ எனவும் எடுத்துக்கொள்க.

முதல் சதுரத்தின் பரப்பு $= 4 \times 4 = 16$ ச.செ.மீ.

இரண்டாவது சதுரத்தின் பரப்பு $= 3 \times 3 = 9$ "

மூன்றாவது சதுரத்தின் பரப்பு $= 5 \times 5 = 25$ "

4

5

3

П

I

பெரியபக்கத்தின் பரப்பு மற்ற இரண்டு பக்கங்களின் மீதான சதுரங்களின் மொத்தப் பரப்பிற்குச் சமம்.

16 + 9 = 25

5.4 கணிதத்தின் தன்மை அல்லது பண்பு

திட்பம் (Precision)

கணிதத்திற்கென்றே சில தனித் தன்மைகள் உள்ளன. அவற்றுள் முதன்மையானது திட்பம். ஒரு கணக்கையோ அல்லது கணிதப் தீர்வினையோ விடுவிப்பதால் கிடைக்கும் விடை சரி அல்லது தவறு என்றே அமையும். இவ்விரண்டும் அல்லாத ஓர் இடைநிலை கருத்திற்கு கணிதத்தில் இடமில்லை. கணிதத்தின், இப்பண்பானது மாணவர்களின் மனப்பயிற்சிக்கு பெரிதும் துணைபுரிகிறது. மாணவர்களிடம் சரியான மற்றும் கூரிய சிந்தனையை தூண்டவல்லதாக அமைகிறது.

கருத்தியல் நிலை (Abstractness)

கருத்தியல் நிலை கணிதத்தின் மற்றொரு சிறப்புத் தன்மையாகும். கணிதம், அதன் தொடக்க நிலையிலேயே கருத்தியல் சார்ந்ததாக அமைகிறது. எண்களை இரண்டு அல்லது ஐந்து என்று கூறும்போது அதற்கு பொருள் கூற முடியாது. அதனை ஒரு பொருளோடு இணைத்துக் கூறும் போது, அதாவது இரண்டு பேனாக்கள், ஐந்து மிட்டாய்கள், என்று கூறும்போதுதான், அவை பொருளுடையதாக அமையும். Twoness, Fiveness என்பது தன்மையாகும். எண்கள் அனைத்துமே ஒரு கருத்தைக் குறிப்பதாகும். அவை உருவ அமைப்பிற்கு அப்பாற்பட்டது. பொருட்களைக் காட்டி விளக்கும் போது அக்கருத்தானது காட்சி நிலையாகிறது. காட்சி நிலை, கருத்து நிலைக்கு ஆதாராமாகிறது. காட்சி நிலையில் அறிமுகப்படுத்திய பின் கருத்து நிலைக்குச் செல்கிறோம். கருத்து நிலைக்குச் சென்ற பின் கருத்துநிலையிலேயே கணக்குகளை புரிவதற்கும், செய்வதற்கும் வகை செய்தல் வேண்டும்.

எடுத்துக்காட்டு:

தர்க்க முறை (Logical Structure)

கணிதத்தின் மற்றொரு சிறந்த பண்பு அதன் வகை பிறழாத தாக்க முறையாகும். ஒரு கணக்கினைத் தீாக்க முற்படும் போது அதனை நன்கு வகைப்படுத்தி பகுத்தறிந்து கொடுக்கப்பட்டுள்ள விவரங்களை தாக்க முறையில் வரிசைப்படுத்த வேண்டும். ஒவ்வொரு படியும் காரணகாரியத்துடன் அமையும் போது தவறுகள் ஏற்படாது. தகுந்த ஆதாரங்களின்றி அமையும் கூற்றுக்களை உண்மையென ஏற்றுக்கொள்ள முடியாது.

எடுத்துக்காட்டு

ஒரு குவளையில் பாதி நீா் இருக்கும்போது அது பாதி நிரம்பி இருக்கிறது. அல்லது பாதி காலியாக உள்ளது என்று கூறலாம். இதனையே கணிதவாக்கியமாக, $\frac{1}{2}$ நிரம்பியிருக்கிறது = $\frac{1}{2}$ காலியாக உள்ளது எனக்கூறி இரண்டுப்பக்கம் உள்ள $\frac{1}{2}$ யை நீக்கவிட்டு "நிரம்பியிருக்கிறது = காலியாக உள்ளது" என கூற முடியாது. கணிதக் கூற்றுகளை தருக்க முறைப்படி விளக்கிக் கூற என மனப்பயிற்சி பெறுதல் வேண்டும். இதுவே தெளிவான சிந்தனைக்கு ஏதுவாக அமைகிறது. அதாவது கணிதத்தில் சொற்கள் ஆயினும் சரி, குறியீடுகளாயினும் சரி, மிகத் திட்டவட்டமான நடையைப் பயன்படுத்தும் திறன் இன்றியமையாததாகும்.

சொல்லமைப்பு

சொற்கூற்றிலும், கணிதக்கூற்றிலும் சொல்லமைப்பின் செயல்பாடுகள் வேறுபடுகிறது. எடுத்துக்காட்டாக 'கூட்டுக' மற்றும் 'சேர்க்க' என்ற சொற்களை எடுத்துக் கொள்வோம்.

எடுத்துக்காட்டு 1

3 உடன் 7-ஐக் கூட்டுக.

3 பூக்களுடன் 7 பூக்களைச் சேர்க்க.

எடுத்துககாட்டு 2

'கழிக்க' மற்றும் 'நீக்குக' என்ற சொற்களும் பயன்பாட்டில் வேறுபடுகின்றன.

15 –ல் இருந்து 8–ஐ கழிக்க.

15 மணிகள் கொண்ட ஒரு மாலையில் இருந்து 8 மணிகளை நீக்குக.

அவ்வாறே, 'வகுத்தல்' மற்றும் 'பகுத்தல்' ஆகிய சொற்களைக் தகுந்த முறையில் கையாளுதல் வேண்டும்.

கற்றல் செயல்

கணிதக் கூற்றுகள் பற்றிய செய்தித் தொகுப்பு அல்லது படத்தொகுப்பு தயாரித்தல்

கணித பாடத்தின் சிறப்புத்தன்மையை, அதன் நுட்பத்தையும் அதன் பயன்பாட்டுத் தன்மையை வைத்தே அறிந்து கொள்ளலாம். கணிதப்பாடம் கற்றுக்கொள்வதன் மூலம், எந்த ஒரு செயலையும் திறம்பட அறிந்து கொள்ளுதல், அதனை புரிந்து கொண்டு பயன்படுத்துதல் பகுத்தறிதல், தொகுத்தறிதல், மதிப்பிடுதல், போன்றவற்றை சிறப்புடன் செய்ய இயலும். இக்கருத்தினை பென்ஜமின் புளும் மற்றும், ஆண்டர்சன் குழுவினரும் வலியுறுத்தி கூறியுள்ளனர். ஆண்டர்சன் சீரமைத்த கற்றல் படிநிலைகளை காண்போம்.

5.5. ஆண்டர்சன் அறிவுசார் கற்றலில் சீரமைத்த படிநிலைகள்

உளவியல் மேதை பென்ஜமின் புளும் (Benjamin Bloom) 1950–ன் தொடக்க காலம் முதல் 1970–ன் இறுதிக் காலம் வரை கற்றல் நிகழும் வழிகளைப்பற்றி ஆய்வு செய்து வகைப்படுத்தினார். கற்றல் மூன்று நிலைகளில் நிகழும் என்றும் விளக்கியுள்ளார். அவைகளாவன.

- 1. அறிவுசார் கற்றல் (Congnitive learning)
- 2. பண்புசார் கற்றல் (Affective Learning)
- 3. உடல் இயக்கம் சார் கற்றல் (Psychomotor learning)

அறிவுசார் கற்றல் 'ஆறு படிநிலைகளில்', நிகழும் என்றும் கூறினார். பெஞ்சமின் புளும் அவர்களின் ஆராய்ச்சியைத் தொடர்ந்து அவருடைய மாணவர் ஆண்டர்சன்(Anderson) அறிவுசார் கற்றலின் படிநிலைகளை சீர்மைபடுத்தினார்.

பெஞ்சமின் புளும், அறிவின்(Knowledge) வகைகளை

- 1. உண்மைகள் பற்றிய அறிவு (Factual Knowledge)
- 2. கருத்து தொடர்பான அறிவு (Conceptul Knowledge)
- 3. செயல்முறை பற்றிய அறிவு (Procedural Knowledge)

என்னும் மூன்று பகுதிகளாக பிரித்து காட்டியுள்ளார். இம்மூன்றும் கருத்தியல் நிலையைப் பெறுவதற்கான கற்றல் நிகழ்வுகளின் வளர்நிலை படிகளாகும். இதுவே செயல் வழிக்கற்றலுக்கு அடிப்படையாக அமைகிறது என்பது தெளிவு. ஆண்டர்சன் அறிதல் வகைகளை நான்கு நிலைகளில் விளக்கியுள்ளார். பெஞ்சமின் புளூம் அவர்கள் கூறிய மூன்று நிலைகளுடன் நான்காவதாக 'அறிந்து கொள்ள அறிதல்' (Meta Cognition) என்றொரு பரிமாணத்தை விளக்கியுள்ளார். கீழே உள்ள அட்டவணை அறிவுசார் கற்றலின் வகைகளையும், அதன் வழிமுறைகளுக்கான செயல்பாடுகளையும், குறிக்கோள்களையும் தெளிவாகக் காட்டுகிறது.

- புரிந்து கொள்ளத் தேவையான உண்மைகளை அறிதல்(Factual Knowledge)
 இப்பகுதி அடிப்படை உண்மைகள், சொற்கூறுகள் (Terms), ஒரு தீர்வாய்வுக்கு தெரிந்து கொள்ள வேண்டிய பகுதிகளின் விவரங்கள் போன்ற பரிமாணங்களைக் கொண்டது.
- கருத்து தொடர்பான அறிவுத்திறன் (Conceptual Knowledge)
 வகைப்படுத்துதல், கொள்கைகள், பொதுமைப்படுத்துதல், மாதிரிகள்(Model)
 ஆகியவற்றை உள்ளடக்கியது.
- 3. செயல்படுத்தும் முறைகள் பற்றிய அறிவு (Procedural Knowledge) ஒரு முறையின் குறிப்பிட்ட சில கூறுகளைப்பற்றி தெரிந்து கொள்ள உதவுவது மற்றும் பாடப்பொருள் படித்தலின் பகுதிகள் பற்றி அறிய உதவுவது போன்றவைகளுடன், மேலும் ஆய்வு விசாரணை (Enquiry) அடிக்கோள் முறைகள் (Algorithms), நுட்பங்கள் (Techniques), தீர்வு முறைகள் (Method) ஆகிய அனைத்தையும் உள்ளடக்கியது.
- 4. அறிந்து கொள்ள அறிய உதவும் அறிவு (Meta Cognition)
 அறிதலை அறிதல் (learning to learn) என்பது சூழல் மற்றும்
 நிபந்தனைக்குட்பட்ட அறிவு, தன்னைத்தானே அறிதல், ஆகியவற்றை
 உள்ளடக்கிய சிக்கலைத் தீர்க்கக் கூடிய அறிவு சார்ந்த செயலை குறிக்கின்றது.
 மேலும் ஆயத்த நிலையில் உள்ள அறிவினை பிரதிப்பலிக்கும் யுக்தி என்றும்
 இதனைக் கூறலாம். கற்பதற்கும் தெரிந்து கொள்ளவேண்டும் அல்லவா?

Meta Cognition என்பது அறிந்து கொள்ள அறிதல் என்பதே ஆகும். இது உணர்வு பூர்வமானது. மேலும், இது படைப்பாற்றல் கல்வி முறைக்கு (Active Learning Method) அடிப்படையாக அமைந்துள்ளது. அதாவது, கற்றுக்கொள்வதற்கு பின்பற்றும் வழிமுறைகளை உள்ளடக்கியுள்ளது. இதனை படமாக வெளிப்படுத்துவதன் மூலம் (காட்சி நிலை) தீர்வின் நுட்பங்கள், கற்போரின் சூழல், நிபந்தனைக்குட்பட்ட அறிவுத்திறன் ஆகியவற்றை தெரிந்து கொள்ள முடிகிறது. கற்போரும் கற்றல் பாதையில் தடங்கலின்றி செல்வதற்கும், வழிகாட்டுதல் பெறுவதற்கும் ஏதுவாகிறது.

அறிவுசார் கற்றலின் வழிமுறைகள் Cognitive Process Dimension நினைவிற்கு கொண்டு சீர்தூக்கி அறிவுத்திறனின் பயன் ப<mark>குத்தல்</mark> Analyzing படைத்தல் புரிதல் பார்த்தல் பகுதிகள் படுத்துதல் Understanding Creating வருதல் Evaluating Kowledge Dimensions Applying Remembering புரிந்து கொள்ள தேவையான உண்மைகள் Factual Knowledge கருத்தாக்கம் / பொதுமை படுத்துதல் Conceptual Knowledge முறைகள் பற்றிய அறிவு Procedural Knowledge அறிந்து கொள்ள அறிதல் Meta Cognition

விளக்கங்கள் Explanations	நீன்ட கால நினைவுப்பகுதியிலிருந்து தேவையான அறிவுத்திறனை மீளக் கொணர்தல். Retrieve relevent Knowledge from the long - term memory.	் நண்ட கால நினைவிப்பகுதியிலிருந்து தற்போதைய செய்திகளுக்கு தொடர்புடைய அறிவுப்பகுதியை கண்டறிதல்	நீண்ட கால நினைவுப்பகுதியிலிருந்து தேவையான அறிவுத்திறனை மீளப்பெறுதல்.	வாய்வழியாகவோ, எழுத்து வழியாகவோ, மேலும் படவழியாகவோ சொல்லப்பட்ட செய்திகளுக்கு ஒரு பொருளை (அர்த்தம்) அமைத்தல்.		.0	ஒருமுறையில் தெரிவிக்கப்பட்டதை மற்றொரு முறைக்கு மாற்றுதல். (எ.டு) எண்முறையில் தெரிவிக்கப்பட்ட கருத்தை எழுத்துவடிவில் மாற்றுதல்.	
மாற்றுப் பெயர்கள் Alternative Names		அடையாளம் காணல் Identifying	மீளப்பெறுதல் Retrieving		தெளிவாக்குதல் Clarifying	பொழிப்புரை செய்தல் Parapharasing	பிரதிநிதியாக செயல்படுதல் Representing	மொழி பெயர்த்தல் Translating
அறிவுசார் கற்றலுக்கான வழிகளின் வகைகள் Catagories and Congnitive Process	நினைவிற்கு கொண்டு வருதல் Remembering	கண்டுணா்தல் Recognizing	நினைவிற்கு வரவழைத்தல் Recalling	புரிந்து கொள்ளுரதல் Understanding	பொருள் விளக்கம் தருதல் Interpreting			

முறை ng ஒரு குறிப்பிட்ட எடுத்துக்காட்டை கண்டுபிடித்தல்		காணுதல் வகையினத்திற்கு தேவைப்படும் சில செய்திகளை உறுதி செய்தல் sing	சய்தல் ing	நத்துதல் பொதுக்கருத்துகளுக்கும் சுருக்கம் செய்தல் zing	கண்டறிதல் கொடுக்கப்பட்ட செய்திகளிலிருந்து தர்க்க ரீதியான முடிவுகளை வரவழைத்தல் ing	,கல் Ition	ருகல் lion	ரத்தல் ng	காட்டுதல் ing	த்துதல் இரண்டு பொருள்களுக்கு, எண்ணங்களுக்கு, இடையேயுள்ள g	தல் Ig	த்தல் ling காரண காரியங்களுக்கு முன்மாதிரியை அமைத்தல்	
விளக்கும் முறை Illustrating	காலநுட்பம் Instantiating	வகையினம் காணுதல் Categorising	சுருக்கம் செய்தல் Abstracting	பொதுமைப்படுத்துதல் Generalizing	ஆராப்ந்து முடிவுகண்டறிதல் Concluding	புறச்செருகல் Extrapolation	இடைச்செருகல் Intrapolation	வருவது உரைத்தல் Predicting	வேறுபடுத்திக்காட்டுதல் Contrasting	தொடர்பு படுத்துதல் இது இது முற்ற	ஒத்திருத்தல் matching	கட்டமைத்தல் Constructing	
II. 2. எடுத்துக்காட்டுகளை உருவாக்கிதருதல்	Examplifying	II. 3. வகைப்படுத்துதல் Classifing	II. 4. செய்திச்சுருக்கம் Summarizind		II. 5. அனுமானித்தல் Inferring					II. 6. ஒப்பிடுதல் Comparing		II. 7. விரிக்குரைக்கல்	

III. ஆளல் Apply III-1. நிர்வகித்தல் Executing III-2. பயன்படுத்துதல் IIIP-2. பயன்படுத்து காணல் IV-1. வேறுபடுத்தி காணல் Differentiating IV-2. ஒழுங்குப்படுத்துதல் Organizing	செயல்படுத்துதல் Carrying out பயன்படுத்துதல் Using வேறுபாடுகளை கண்டறிதல் Distriminating ஒளிமுகப்பு/ குவிமையம் Focusing தெரிந்தெடுப்பு பண்பறிதல் Selecting தேடிக் கண்டுபிடித்தல் Finding இசைவுடையதாயிருத்தல் Coherence Intergraing எல்லைக்கோடு Outlining	கொடுக்கப்பட்டுள்ள சூழ்நிலையில் ஒரு குறிப்பிட்ட முறையினை செயல்படுத்துதல். நன்கு அறிந்த பணியில் ஒரு செயல்முறையினை செயல்படுத்துதல். அறிந்த சூழ்நிலையில் ஒரு செயல்முறையினை பயன்படுத்துதல். ஒரு செய்தியின் முக்கிய கூறுகளை பிரித்து அவைகள் ஒன்றோடு ஒன்று எவ்வாறு உறவு படுத்தப்படுகிறது என்பதனையும் மற்றும் அதன் ஒட்டு யொத்த அமைப்பையும் அறிதல். மற்றும் முக்கியவான, முக்கியமில்லா கூறுகளை நெரித்தறிதல்.
	அமைப்பு Structuring	
IV-3. இயல்பான குணம் Attributing	Deconstructing	ஒரு தலைப்பட்சம், மதிப்பு, உள்விளைவு போன்றவைகள் கொடுக்கப்பட்ட செய்திகளில் இந்த கோணத்தில் கண்டறிந்து அதனை உறுதி செய்தல்.

	V. மதிப்பீடு / கண்க்கீடு/ கணி Evaluate		செப்திகளில் தரத்தையும் அடிப்படைகளையும் ஆதாரமாகக் கொண்டு மதிப்பீடு செப்தல்
	V-1. சரிபார்த்தல் Checking	ஒருதரப்படுதல் Coordinating	
		கண்டுபிடித்தல் Detecting	ஒரு செயலின் செய்கின்ற வழியில் அல்லது அதன் பலனில் உள்ள கொள்கை, மாறாயை, தவறான நம்பிக்கைகளை கண்டுபிடித்தல்
		கண்காணித்தல் Monitering	அதன் உட்கூறுகளில் உள்ள பயனுறு தன்மை அதன் உட்கொள்கை மாறாமை இவைகளை கண்டறிதல்.
		தேர்வ Testing	
	V - 2. திறனாய்வு செய்தல் Critising	மதிப்பீடு செய்தல் Judging	உட்புற வெளிப்புற கொள்கை மாறாமையை கண்டறிதல். எந்த வழிமுறையில் செயல்படுவதால் தீர்வு கிடைக்கும் என்பதையும் கண்டறிதல்.
	VI. உருவாக்குதல் Create		உறுப்புகளை ஒன்று சேர்த்து இசைவுடைய முழு செபல்முறையை உருவாக்குதல். அதன் உறுப்புகளை புதிய உருவினை உருவாக்க முயலுதல்
98	VI-1. பிறப்பித்தல் Generating	தற்காலிக பொது விளக்கம் Hypothesising	மாற்றுமுறை பொது விளக்கத்தை கண்டறிதல்.
	V1- 2.திட் டமிடுதல் Planning	வேலைப்பாடு Designing	சில பணிகளை செய்வதற்கான செயல்திட்டங்களை உருவாக்குதல்
	V1-3விளைவ Producing	இணைத்து உருவாக்குதல் constructing	புதிய பொருளை உருவாக்குதல்.

5.6 ஆண்டர்சனின் கருத்துரைகள்

கணிதம் இரு பெரும் பிரிவுகளை கொண்டது

- 1. ஆதாரக்கணிதம் (அ) அடிப்படைக்கணிதம் (Pure/Basic Mathematics)
- 2. பயன்பாட்டுக்கணிதம் (Applied Mathematics)

அறிவுசார் தேவைகளுக்கு ஆதாரக்கணிதம் பயன்படுகிறது.

நவீன கணிதம் பல முன்னேற்றங்களை கண்டு, சிறப்புடன் திகழ்கிறது. கணிதத்தின் வளர்ச்சிப்படிகளை பின்னோக்கி பார்த்தால் பெரும் மலைப்பாகவே தோன்றுகிறது. இயற்கையின் விதிகளையெல்லாம் உள்ளடக்கிய தர்க்க ரீதியான, மனிதனால் உருவாக்கப்பட்ட ஓர் அறிவியல், கணிதம் ஆகும். கணிதத்தில் பொய்யான கூற்றுக்களோ, கருத்துக்களோ கிடையாது. கணிதம் பொய்ப்பதும் இல்லை. தவறான தகவல்களை தருவதும் இல்லை. எடுத்துக்காட்டாக தகவல் விதியை பற்றி பார்ப்போம். இவ்விதியானது தர்க்க ரீதியான தத்துவங்களை விதிமுறைகளாக கொண்டது.

இயல் எண்களின் கணத்தில் a, b, c மூன்று வெவ்வேறு எண்களை எடுத்துக் கொள்வோம். a ஆனது b–ஐ விட பெரியது, மற்றும் b ஆனது c ஐ விட பெரியது என்றும் வைத்துக்கொள்வோம். இவ்விரு கூற்றுகளிலும் இருந்து a ஆனது c ஐ விட பெரியது என்று கூறுவது 'தர்க்கம்' ஆகும். வடிவகணிதத்தில் பயன்படும் பல நிரூபணங்கள் அறிவுசார் தேவையின் அடிப்படையிலேயே அமைந்துள்ளது. இப்போது, ஆண்டர்சன் என்ற உளவியலாளர் விளக்கிய அறிவுசார் கற்றலின் பரிமாணங்களை காண்போம்.

5.7 ஆண்டா்சனின் அறிவுசாா் கற்றல் $\frac{a-b}{a}$ ஆக்கள்

I. நேர்மறை நிரூபணம் (Direct Proof)

ஏற்கெனவே கற்றறிந்த அடிகோள் அல்லது தேற்றத்திலிருந்து தொடங்கி, படிப்படியாக (Syllogism) தாக்க ரீதியனான தொடாபுகள் மூலம் தேவைப்படும் அல்லது விரும்பும் முடிவினை பெறுவதாகும்.

ஒர் உண்மையான கூற்றில் (P) தொடங்கி, படிப்படியாக, தர்க்க ரீதியாக விவாதித்து தேவையான கூற்று(Q) ம் உண்மை என்ற முடிவுக்கு வருதல். இதன் மூலம் P மெய்யென்றால் Q வும் மெய் என்பது நிரூபிக்கப்படும். எடுத்துக்காட்டாக,

$$\frac{a}{b}$$
 = 7 எனில் $\frac{a-b}{a+b} = \frac{3}{4}$ எனக் காட்டுக.

a=7b கொடுக்கப்பட்ட உண்மை

$$\frac{a-b}{a+b} = \frac{7b-b}{7b+b} = \frac{b(7-1)}{b(7+1)} = \frac{6b}{8b}$$

......பிரதியிட்டு மதிப்பு காணுதல்

II. மறைமுக நிரூபணம் (Indirect Proof)

ஏதேனும் ஒரு கூற்று (A) மூலம் மற்றொரு கூற்றை (B) உணர்த்துகிறது என்று நிரூபிக்க வேண்டும் என வைத்துக் கொள்வோம்.

கூற்று (A) கூற்று (B) ஐ உணர்த்தவில்லை என கருத்துக்கள் உருவாக்கிக் கொண்டு, தர்க்க ரீதியாக விவாதித்து கருதுகோள் தவறு என்ற முடிவுக்கு வருதல். அதனின்று கூற்று (A) ஆனது கூற்று (B) ஐ உணர்த்துகிறது என்பதை நிரூபித்தல்.

எடுத்துக்காட்டு

 $\sqrt{2}$ ஒரு விகிதமுறா எண் என நிரூபிக்க

இதனை நேரடியாக நிரூபிக்க இயலாது.

இதனை மறைமுக நிரூபண முறையில் நிரூபிப்போம்

 $\sqrt{2}$ ஒரு விகிதமுறா எண் இல்லை என எடுத்துக்கொள்வோம்

அதாவது $\sqrt{2}$ ஒரு விகிமுறு எண் என்போம்.

 $\therefore \sqrt{2} = \frac{p}{q}$ (p, q பூச்சியமற்ற முழு எண்கள், 1 மட்டுமே காரணி) \Longrightarrow (கருதுகோள்)

$$\Rightarrow$$
 p = $\sqrt{2}q$

$$\Rightarrow$$
 p² = 2q²

 $\Rightarrow \sqrt{2}$

 p^2 ஓர் இரட்டை எண்

p ஓர் இரட்டை எண்.

p=2m எனலாம் (m ஒரு முழுஎண்)

$$p^2 = 4m^2$$

இதிலிருந்து $4m^2 = 2q^2$

 q^2 ஓர் இரட்டை எண்

q ஓர் இரட்டை எண்ணாகும்.

இவற்றிலிருந்து $p,\,q$ க்கு ${f 2}$ ஒரு பொதுக்காரணியாக அமைந்துள்ளது எனத் தெரிகிறது.

இது கருதுகோளுக்கு தவறான முடிவாகும்.

என்பது விகிதமுறு எண் என்பது தவறு.

 $\therefore \sqrt{2}$ ஒரு விகிதமுறா எண்ணாகும்.

III. எதிர்மறை நிரூபணம் (Contrapositive proof)

கூற்று (A) கூற்று (B) என இரண்டு கூற்றுகளை எடுத்துக்கொள்வோம். கூற்று (A) மெய்யெனில் கூற்று (B) மெய் என நிரூபிப்பதற்கு பதிலாக கூற்று (B) மெய்யில்லை எனில் கூற்று (A) யும் மெய்யில்லை என்று நிருபிக்கும் முறையை எதிர்மறை நிரூபாணம் என்கிறோம்.

எடுத்துக்காட்டு

ஒரு தளத்தில் அமைந்த இரண்டு கோடுகள் ஒன்றையொன்று வெட்டிக்கொள்ளும் போது குத்தெதிர் கோணங்கள் சமம்.

இதனை நிருபிக்க, குத்தெதிர் கோணங்கள் சமம் இல்லை என்ற கருதுகோளை உருவாக்கி கொண்டு, படிப்படியாக தர்க்க முறைப்படி தவறு என்று நிரூபித்தல். இதனடிப்படையில் குத்தெதிர் கோணங்கள் சமம் என்று நிரூபிக்கப்படுகிறது.

IV. எதிர் எடுத்துக்காட்டின்படி தவறென்று நிரூபித்தல் (Disprove by Counter Example)

ஒரு கூற்று தவறானது என நிரூபிக்க ஒரு எடுத்துக்காட்டு தருதல்

எடுத்துக்காட்டு

"ஒரு எண்ணின் வா்க்கம், அவ்வெண்ணை விட எப்போதும் பொியது."

இக்கூற்று, எப்போதும் உண்மையானது என்று சொல்வதற்கில்லை. சில சமயங்கள் தவறாக இருக்கும் என்பதற்கு ஒரு எடுத்துக்காட்டு தருவோம். எடுத்துக்கொள்ளும் எண் ஒன்றை (1) விடக்குறைவானால் அதன் வாக்கம் இன்னும் குறைவானதாக இருக்கும்.

$$p = \frac{1}{2}$$
$$p^2 = \frac{1}{4}$$

 p^2 ன் மதிப்பு Pன் மதிப்பை விட குறைவு என்பதை காண்க.

கற்றல் செயல் எதிர் எடுத்துக்காட்டின் மூலம் தவறு என நிரூபித்தல் முறைக்கான படிநிலைகளை ஒரு எடுத்துக்காட்டுடன் எழுதுதல்.

V. வடிவ இயல் மூலம் நிரூபணம்

 $(a+b)^2=a^2+2ab+b^2$ என்பதனை சரிபார்க்க.

கற்றல் செயல் : $(a-b)^2=a^2-2ab+b^2$ –ஐ வடிவ இயல் முறையில் நிரூபித்தல்.

VI. அமைப்பு முறை நிரூபணம் (Construction)

கூற்று : இருசமபக்க முக்கோணத்தில் சமபக்கங்களுக்கு எதிரில் உள்ள கோணங்கள் சமம்.

சமமற்ற பக்கத்தின் எதிர்முனைப் புள்ளி வழியே வரையப்படும் செங்குத்துக்கு இரண்டு சர்வ சமமுக்கோணங்களை உருவாக்கும். இவ்வாறு அமைப்புகளை உருவாக்கி நிரூபிக்கலாம்.

கற்றல் செயல் :அமைப்புமுறை நிரூபணம் முறையின் கற்றல் படிநிலைகள் ஓர் எடுத்துக்காட்டுடன் எழுதல்.

5.8 கணிதம் கற்பித்தலின் சவால்கள்

'கணக்கு இனிக்கும்' என்ற கூற்றினை உணர செய்வதற்கு கற்றல் கற்பித்தல் வகுப்பறை நிகழ்வுகளில் எதிர்கொள்ளும் சவால்களுக்கான காரணங்களை NCF - 2005பரிந்துரைகளின் அடிப்படையில் ஆராய்ந்தறிவோம்.

- மாணவர்களை மையமாகக் கொண்ட கற்றல் நிகழ்வுகளை உருவாக்கி நடைமுறைப்படுத்துதல்.
- 💠 தானே கற்றல் முறையை பின்பற்றுதல்.
- 💠 வாழ்க்கையில் நடைமுறைப்படுத்தக் கூடிய பாடப்பொருளாக மாற்றுதல்.
- வாழ்வியல் முறைகளிலும், பண்பியலிலும் பொருளுடைய நன்னெறிகளை கற்றல் வெளிப்பாடாக ஏற்படுத்துதல்.

இவற்றை எல்லாம் எதிர்கொண்டு வகுப்பறையில் கற்றல் நிகழ்வுகளை மேற்கொள்வதற்கான திறன்களில் சிலவற்றைப் பார்ப்போம்

1. ஆசிரியர்களின் கற்பிக்கும் திறன்

பள்ளிகளில் உள்ள ஆசிரியர்கள் கணித கருத்துகளை கற்பிக்கும் வல்லுநர்களாக இருக்கவேண்டும். பள்ளியின் சமுதாயச் சூழல், பெற்றோர்களின் பொருளாதாரச் சூழல், மாணவர்களின் மனநிலை இவைகளை ஆய்ந்து அச்சூழலுக்கு ஏற்ப கற்பிக்கும் திறன் மிக்கவர்களாக இருக்க வேண்டும். இதனை கற்பிக்கும் திறன் (Teaching Competency) என்று கூறுவோம். தற்போதுள்ள சூழ்நிலையில், கணிதத்தை கற்பிக்கும் போது அதற்கான எடுத்துக்காட்டுகள், துணைக்கருவிகள், கற்பிக்கும் முறைகள், மதிப்பீடு, வலுவூட்டுதல், அனைத்தும் பொறுத்தமாக அமைதல் வேண்டும்.

2. ஆசிரியரின் கருத்தாற்றல்

ஆழ்ந்த சிந்தனை மிக்கவராக ஆசிரியர் திகழ வேண்டும். கணித கருத்துக்களில் ஆழ்ந்த புலமை பெற்றவராகவும் இருக்க வேண்டும். சூழ்நிலையில் உள்ள செய்திகளின் தொகுப்பை கருத்தாக மாற்றி, இணையான பிரிதொரு சூழ்நிலையில் பயன்படுத்தும் திறனை பெற்றவராக இருக்க வேண்டும். இதனை கணித கருத்தியல் திறன் (Contextual competency) என்று கூறுவோம்.

3. பாடப்பொருள் பற்றிய அறிவுத் திறன்

ஆசிரியருக்கு கணித பாடத்தில், கருத்துக்களை கற்பிக்கின்ற போது, அதற்குரிய பாடப்பொருளை நன்கு உணர்ந்து, மாணவர்களின் மனநிலையறிந்து, கருத்துக்களை எளிமையாக்கி கற்பிக்கும் திறன் மிக்கவராக இருக்க வேண்டும். இதனை கருத்து திறன் (Content Competency) என்போம்.

4. வகுப்பறையில் மாணவா்களுக்கு கருத்துக்களை படைக்கும் திறன்

கற்பிக்கும் கருத்துக்கள் மாணவர்களை முழுமையாக சென்றடைய வேண்டும். கருத்துச்சிதைவு ஏற்படாமல் அடைவு நிலை இருத்தல் வேண்டும். கையாளும் மொழி, மாணவர்களின் சூழ்நிலைக்கேற்ப அமைத்தல் வேண்டும். இதனை கருத்துப் பரிமாற்றம் (Transactional competency) என்று கூறுவோம்.

5. துணைக்கருவிகள் பற்றிய அறிவுத்திறன்

கணிதம் ஒரு கருத்துப்பாடம். கருத்துக்களை எளிமையாக மாற்றி மாணவர்களுக்கு கற்பிக்கவேண்டும். கணிதம் கற்றலில், ஒரு நல்ல சிறந்த துணைக்கருவி இருக்குமானால் மேலும் எளிமையாகும். சில தருணங்களில் துணைக்கருவிகள் வாங்குவதாகவோ அல்லது தாமே செய்வதாகவோ கூட அமையலாம். மாணவர்களே கூட வடிவமைக்கலாம். இவைகளுக்கான திட்டமிடுதலில் அறிவுத்திறன் பெற்றவராக இருக்கவேண்டும். இதனை கருவியை கையாளும் திறன் (Competency related to Teaching Learning Material - TLM) என்போம்.

துணைக்கருவிகள் தரமானதாகவும் (Stanadarized) எளிமையாகவும் (Simple) விலை குறைவாகவும் (Low cost), அல்லது விலை இல்லாததாகவும் (No cost) அமைந்தால் சிறப்பாக இருக்கும்.

6. நிர்வாகத்திறன் (Competency Related to Management)

வகுப்பறை மேலாண்மைத்திறன், பள்ளி மேலாண்மைத்திறன் பெற்றவராகவும் இருக்க வேண்டும். வகுப்பறையில் மாணவர்கள் களைப்புற்று இருக்கும் நேரத்தில் கணித பாடத்தை கற்பிக்கக் கூடாது. எனவே காலை முதல் இரண்டு பிரிவு வேளைகளிலோ அல்லது மதியம் இரண்டு, மூன்றாவது பிரிவு வேளைகளிலோ கற்பிக்கலாம். மாணவர்களின் ஏற்புத்திறன் அறிந்து தயார்படுத்தும் திறன் கணிதம் கற்றலை கரும்பாக்கும்.

7. பாட இணைச்செயல்கள், புறச் செயல்கள் பற்றிய திறன்

கணித மன்றம், ஆய்வகம், நூலகம், கற்றல் முறை இவைகளை இயக்கும் திறன் பெற்றவராகவும் இருக்க வேண்டும். இதுபற்றிய சிந்தனைக்கு மூத்த கணித ஆசிரியரையோ அல்லது தலைமை ஆசிரியரையோ அணுகி தெரிந்து கொள்ள வேண்டும்.

8. பெற்றோர்களுடன் உறவுநிலை

நல்ல கணக்காசிரியர் தனது மாணவர்களின் பெற்றோர்களை மாதம் ஒருமுறையோ அல்லது ஒரு பருவத்திற்கு ஒரு முறையோ சந்தித்து மாணவர்களின் கணித ஆற்றலை பற்றி தெரிவிக்கவேண்டும். இது பெற்றோர், ஆசிரியரின் உறவுநிலையை வலுபடுத்தும்.

9. சமுதாயத்துடன் உறவு நிலை

பள்ளியை ஒட்டிய சமுதாயத்துடன் நல்ல உறவு கொள்பவராக இருக்கவேண்டும். இது பள்ளி மேம்பாட்டிற்கு மிகவும் உறுதுணையாக அமையும்.

ஆசிரியர் வெறும் திறன் மிக்கவராக மட்டும் இருந்தால் போதாது; மாணவர்களுக்கு கணித கருத்துக்களை கற்பிக்கும் மனப்பான்மை உள்ளவராகவும் இருக்க வேண்டும். அற்பணிப்பு மனப்பான்மை மிக்கவராக இருக்கவேண்டும். மாணவர்களுக்கு தன் பணியின் மீது கயக்கட்டுபாட்டாளராக (Accountability) இருக்க வேண்டும். தனது பள்ளிக்கு, நிர்வாகத்திற்கு, கலைத்திட்டத்திற்கு அற்பணிப்பு உள்ளவராக இருக்க வேண்டும். தனிப்பட்ட விருப்பு, வெறுப்பின்றி செயல்படவேண்டும். இதனை அற்பணிப்பு (Performing Area) என்று கூறலாமா?

இவைகளை எல்லாம் தாண்டி, ஒரு ஆசிரியர் செயல் திறன் மிக்கவராக இருக்கவேண்டும். வகுப்பறையில் எல்லாவித கற்பித்தல் யுக்திகளையும் கடைபிடித்து மாணவர்களின் அடைவு நிலை (Achievement) அதிகம் பெற பாடுபடவேண்டும். தனக்கு கொடுக்கப்பட்ட வேலையை சரியாக, முறையாக செய்தல் வேண்டும்.

10. மதிப்பீடு செய்யும் திறன் (Competency Related to Evaluation)

மாணவா்கள் தாங்கள் சோதிக்கப்படுகிறோம் என்ற மன அழுத்தத்தை பெறாமல் இருக்கும் வகையில் மதிப்பீடுகள் அமைத்தல் வேண்டும். மதிப்பீடு கற்றலை ஊக்குவிப்பதாக இருக்க வேண்டுமே தவிர குறை காணும் செயல்பாடுகளாக இருத்தல் கூடாது. மதிப்பிடுதலில் விருப்பு வெறுப்பின்றி செயல்படவேண்டும். மதிப்பிடுதலுக்கு நன்கு திட்டமிடல் வேண்டும். அனைத்து மதிப்பிடுதல் முறைகளையும் <u>ஆழ்ந்து</u> கற்றவராக இருக்க வேண்டும்.

5.9 பயன்பாட்டுக் கணிதம்

கணிதம் இல்லாத இடமே இல்லை. பூமி ஓர் உலக கிராமமாக மாறவேண்டும் என மார்ஷல் மெக்லுகன் (1970) கூறினார். அது இன்று அற்புதமாக நிறைவேறி மனிதர்களை இணைக்கும் பாலமாகவுள்ள தகவல் தொடர்பு, நெடுஞ்சாலையாக மாறியிருப்பதற்கு கணிதம் வித்திடவில்லை எனில் இன்றைய தொழில்நுட்ப வளர்ச்சி நிகழ்ந்திருக்காது. கணிதம் அறிவின் ஊற்றுக்கண். அங்கெங்கினாதபடி எங்கும் நிறைந்திருக்கும் பயன்பாட்டுக்கணிதம் பற்றி பட்டியலிட்டு பார்ப்பதற்குத்தான் முடியுமா?

உலகப்பொதுக்கல்வி பற்றி UNESCO–வின் டேலர் கமிஷன் குறிப்பு கூறுவதாவது: கல்வி 4 தூண்களில் நிற்கிறது அவை

- i) தெரிந்து கொள்வதற்கு கற்றல் (Learning to know)
- ii) காரியங்களை செய்வதற்கான செயலாற்றல் பெறுவதற்கு கற்றல் (Learning to do)
- iii) இணக்கமாக வாழ்வதற்கு கற்றல் (Learning to live together)
- iv) ''நீ, நீயாக'' இருப்பதற்கு கற்றல் (Learning to be)

சமுதாய மாற்றம் கல்வி பெறும் வழிகளையும் பெருக்கியுள்ளது. ஆசிரியர் மட்டுமே கல்வியை அளிப்பதில்லை. சமுதாய மாற்றமும், கல்வித் தொழில் நுட்பமும் கல்வி பெறுவதற்கு பலவழி சாலைகளை அமைத்துக் கொண்டிருக்கின்றன. செயல்பாட்டு கல்விமுறை ஆசிரியரின் செயல்திறனுக்குரிய தேடலை அதிகரிக்கச் செய்கிறது. என்றால் மிகையாகாதன்றோ!

(எ–டு) பிரச்சனைகளை முன்னிறுத்தல்

- 235 + 367 = 602 என்றால் 234 + 360 = ?
 இதற்கான விடையை எப்படி காணலாம் ?
- 5384 என்ற எண்ணின் ஏதேனும் ஒரு இலக்கத்தை மாற்றியமைத்தால் எண்ணிக்கை கூடுமா? குறையுமா? எவ்வளவு?
- ❖ படவிளக்கம்

 $3 \times 5 = 5 \times 3$ என்பது ஏன் ?

கற்பிக்கும் கணித கருத்துக்கள் வாழ்க்கையில் எங்கு, எப்படி பயன்படுத்தவேண்டும் என்பதை உணர்ந்து கொள்ள வேண்டும். இந்த 'வாழ்க்கை கணக்குத்திறனை தான் சமுதாயம் மாணவர்களிடம் எதிர்பார்க்கின்றது. இதனை நன்கு திட்டமிட்டு செயல்படுத்துவதற்கு திறமையான அற்பணிப்பு மனப்பான்மையுள்ள செயல்திறனை பயன்பாட்டுக் கணிதம் மூலம் வளர்த்துக்கொள்ளலாம்.

கற்றவை

- 💠 கணிதக் குறியீடுகள்
- 💠 கணித மொழி
- 💠 கணிதத்தின் தன்மை
- 💠 ஆண்டர்சனின் கற்றல் படிநிலைகள்
- 💠 🛮 அறிவுசாா் கணிதம் (அ) ஆதாரக் கணிதம்
- 💠 கணிதம் கற்பித்தலின் சவால்கள்
- 💠 பயன்பாட்டுக்கணிதம்

கற்றல் செயல்

- 💠 🔹 கணிதக் கூற்றுகள் பற்றிய செய்தித் தொகுப்பு அல்லது படத்தொகுப்பு தயாரித்தல்
- எதிர் எடுத்துக்காட்டின் மூலம் தவறு என நிரூபித்தல் முறைக்கான படிநிலைகளை ஒரு எடுத்துக்காட்டுடன் எழுதுதல்.
- $(a b)^2 = a^2 2ab + b^2 2ab + ab^2$ வடிவ இயல் முறையில் நிரூபித்தல்.
- அமைப்புமுறை நிரூபணம் முறையின் கற்றல் படிநிலைகள் ஓர் எடுத்துக்காட்டுடன் எழுதல்.

அலக 6

தீர்வாய்வு முறை

(Problem Solving Method)

6.1 அறிமுகம்

இன்றைய கல்விப்புரட்சியில் தீர்வாய்வு முறை என்பது கணிதத்தின் அனைத்து நிலைகளிலும் முக்கிய நோக்கம் வாய்ந்ததாகக் கருதப்படுகிறது. எண்களின் அமைப்பு முறை பற்றி அடிப்படையாக புரிந்து கொள்ளும் திறன்கள், கணித தீர்வாய்வு முறையில் உள்ள திறன்கள் மற்றும் நுட்பங்கள் பிள்ளைகளுக்கு தொடக்கப்பள்ளி காலத்திலேலே ஆரம்பமாகிவிடுகிறது. அவர்கள் இந்த ஆரம்ப கால நிலையில் எண் அறிவை வளர்த்துக் கொண்டு எண்களைக் கையாளுகின்றனர். தொடக்கப்பள்ளியில் கணிதத்தின் பல்வேறு வகையான கூட்டல், கழித்தல், பெருக்கல், வகுத்தல் போன்ற செயல்கள் மூலம் கணக்கின் அடிப்படைக் கொள்கைகளைக் கற்றுக்கொள்கின்றனர்.

3,4 மற்றும் 5ஆம் வகுப்பு மாணவர்கள் நடைமுறை வாழ்வில் உள்ள கணக்குகளை கற்பதனால் அவர்கள் தங்களுடைய கணித திறன்களையும், நுட்பங்களையும் மென்மேலும் மெருகேற்றிக் கொள்ள முடிகிறது. நடுநிலைப் பள்ளியில் பயிலும் மாணவர்கள் இக்கணித திறன்களையும் நுட்பங்களையும் வீடு, பள்ளி மற்றும் சமூகத்தில் திறமையாக கையாள முடியும் என்ற நிலை பெறுதல் வேண்டும் என்பதே கணிதம் கற்றலின் முக்கிய நோக்கமாகும்.

வீட்டிலேயே கணக்குகள் செய்வதற்குக் கற்றுக் கொள்வதால் எண்களைப் பற்றிய போதுமான அறிவோடு குழந்தைகள் தொடக்கப் பள்ளியில் நுழைகிறார்கள். அதாவது, முறையான எண்ணறிவும் எழுத்தறிவும் பெற்றிருந்தால் கணிதத்தை கையாளும் முறைகளை தாங்களாகவே கண்டுபிடித்துக் கொள்வார்கள். எனவே, அவர்கள் எவ்வாறு எண்களை பலவிதமாக தொடர்புபடுத்துவதை எண்களின் அமைப்பையும் மற்றும் முக்கிய பங்கையும் இயல்பாக அங்கீகரிக்கின்றனர். சில சமயங்களில் எந்தவித சூத்திரத்தையோ அல்லது குறியீட்டையோ பயன்படுத்தாமலே குறிப்பிட்டப் பொருட்களின் எண்ணிக்கையையோ அல்லது எடையையோ மாணவர்களால் கணிக்க முடிகிறது. எண் அறிவை நன்கு வளர்த்துக் கொண்ட மாணவர்கள் கணக்கைத் தீர்ப்பதில் எந்தவித தடையோ, தடங்கலோ இல்லாமல் மகிழ்ச்சியாக தங்களை ஈடுபடுத்திக்கொள்கின்றனர். ஆகவே எண்கள் பற்றிய அறிவை மாணவர்களிடையே வளர்ப்பது ஒரு ஆசிரியரின் தலையாய கடமையாகும்.

கற்கும் அறிவு பெற்ற அனைத்து மாணவர்களாலும் கணக்கைப் படித்துப் பார்த்து கொண்டு மட்டும் கணக்குகள் எவ்வாறு போடுவது என்பதை அறிந்து கொள்ள முடியாது. பாடப்புத்தகத்தில் உள்ள கணக்குகளையும் நடைமுறை வாழ்வில் உள்ள கணக்குத் தீர்வுகளையும் கற்றுக்கொள்ளவது அவசியம் ஆகிறது.

அதாவது, ஆசிரியரின் வழிகாட்டுதல் தேவைப்படுகிறது. இத்தருணத்தில் தீர்வாய்வு முறையில் கற்பிக்கலாம். தீர்வாய்வு முறை என்பது தெரிந்தவற்றிலிருந்து ஆரம்பித்து படிப்படியாகத் தருக்க முறையில் விடை காண்பதை அடிப்படையாகக் கொண்டுள்ளது. கணக்குகளை எளிமையாகச் செய்வதற்கு தீர்வாய்வு முறையில் பொதுவாக 4 படிநிலைகள் பின்பற்றபடுகின்றன.

- 1. கணக்கை வாசித்தல் (Read the Problem)
- 2. என்ன செய்யவேண்டும் என்று முடிவெடுத்தல் (Decide what to do)
- 3 கணக்கிடுதல் (Compute)
- 4. விடையைச் சரிபார்த்தல் (Check your answer)

கணக்கை முதலில் வாசித்து அதை நன்கு புரிந்து கொள்ள வேண்டும். புரிந்து கொள்ளுதல் என்பது எண்கள், சொல் மற்றும் கணக்கில் உள்ள குறியீடுகளுக்கான சார்பு (Function) மற்றும் தொடர்பை குறிப்பதற்கான திறனாகும். இந்தச் சார்பே எவ்வாறு தீர்வு காண வேண்டும் என்ற முடிவு எடுப்பதற்கு அடிப்படையாக அமைகிறது.

தொடக்கப்பள்ளியில் பயிலும் மூன்றாம் வகுப்பு மாணவர்களுக்குப் போதுமான அடிப்படை எழுத்தறிவு இல்லாததால் வாக்கிய கணக்குகளைப் புரிந்துகொள்வதற்கு மிகவும் சிரமப்படுகிறார்கள். தொடக்க பள்ளியில் படிக்கும் திறன் கொண்ட மாணவர்கள் கணக்குகளை தீர்வாய்வு செய்யும் தகுதி உடையராகக் கருதப்படுகிறார்கள்.

எடுத்துக்காட்டுகள்

- வெற்றியிடம் 15 மிட்டாய்கள் உள்ளன. அவன் நண்பன் ஜேம்ஸ் வெற்றியிடம் மேலும்
 மிட்டாய்கள் கொடுத்தால். வெற்றியிடம் மொத்தமாக எத்தனை மிட்டாய்கள்
 உள்ளன?
- சபாவிடம் 14 பந்துகள் உள்ளன. பாத்திமாவிடம் 5 பந்துகள் உள்ளன. பாத்திமாவைவிட சுபாவிடம் எத்தனை பந்துகள் கூடுதலாக உள்ளன?

பின்வரும் 4 படிநிலைகளைக் கையாண்டால் கணக்குகளைத் தீர்வாய்வு செய்வது எளிமையாக இருக்கும்.

6.2 தீர்வாய்வு முறை என்பது என்ன?

கணக்கில் கொடுக்கப்பட்ட கருத்துக்களைக் கொண்டு பிற தேவையான துணைக்கருத்துக்களைக் கண்டுப்பிடித்து கொடுக்கப்பட்ட கணக்கிற்கு தீர்வு காண்பதற்கு மேற்கொள்ளும் கற்பித்தல் முறை தீர்வாய்வு முறை எனப்படும்

கணிதத் தீா்வாய்வு முறை மிக நுட்பமான அறிவுத்திறன் மற்றும் பல்வேறு செயல்பாடுகளோடு தொடா்புடையதாகும். தீா்வாய்வு முறை **2** உட்கூறுகளைக் கொண்டது.

- 1. தொடர்புப்படுத்துதல்.
- 2. தீர்வு காணல்.

தீர்வு காண்பதற்கு முதலில் கணக்கிலுள்ள கருத்துக்களைத் தொடர்புபடுத்தாமல் வெற்றி காண இயலாது. கணக்குக்கான தீர்வை கொடுக்கப்பட்டுள்ள கருத்துக்களோடு தொடர்புபடுத்தியிருந்தாலே மாணவனுக்கு அக்கணக்குக்கான தீர்வு புரிந்திருக்கிறது என அறிந்து கொள்ள முடியும். அதுவே அவனுக்கு தீர்வுக்கான திட்டமிடலுக்கும் வழிகாட்டும். கணக்குகளை சரியாக தொடர்பு படுத்துவதற்கு தெரியாத மாணவர்கள் தீர்வு காண்பதிலும் சிரமப்படுவார்கள்.

6.3 ஒழுங்கான வரைபடக் குறிப்புகள் (Schematic Representions)

தீர்வு காண்பதற்குக் கொடுக்கப்பட்ட கணக்கின் கருத்துக்களை தொடர்புபடுத்துதல் மூலம் படவிளக்கமாக கொடுக்க வேண்டும். தொடர்புபடுத்திய பின்புதான் தீர்வு காண்பதற்கான திட்டமிடல் என்பது படத்தை மட்டும் வரைந்து காட்டுவது முக்கியமல்ல. வரைந்த உருவத்தில் கருத்துகளைத் தொடர்புபடுத்திக் காட்டுவதே முக்கியமாகும். அதாவது மனக்கண்ணில் கற்பனை செய்து கருத்துக்களை தொடர்புபடுத்தும் முறையை உருவகப்படுத்தி பின்பு கருத்துகளுடன் தொடர்புபடுத்தி முழுமையாக பார்க்க வேண்டும். இவ்வாறு ஒழுங்கான வரைபட குறிப்புகள் (Schematic Representions) சரியாகப் புரிந்து கொள்ளவில்லை எனில் இவை வரைபடங்களாக மட்டுமே தெரியும்; கருத்துகளை அல்லது தகவல்களைத் தொடர்புபடுத்தி பார்க்க இயலாது.

(எ–டு) கீதாவிடம் 15 பசை ஒட்டிகள் உள்ளன. அவள் தோழி மேரி மேலும் 6 பசை ஒட்டிகளை கீதாவுக்கு கொடுத்தாள். கீதாவிடம் மொத்தம் எத்தனை பசை ஒட்டிகள் உள்ளன. ?

6.4 தீர்வாய்வின் நோக்கங்கள்

கணக்கிலுள்ள தகவல்களை முறைப்படுத்துவதற்கு பின்வரும் நோக்கங்களை அடிப்படையாகக் கொண்டு தீர்வாய்வு முறை அமைகிறது. தீர்வாய்வு முறையைப் பயன்படுத்துவதற்கு ஆயத்த நிலைகளை உருவாக்கிக் கொள்ளவேண்டும். ஆயத்த நிலையாவன:

- 💠 வாசித்தல்
- 💠 சிறு பகுதிகளாகப் பிரித்தல்
- 💠 கருத்துக்களை அல்லது தகவல்களை உருவகப்படுத்துதல்

மிகத் திறமையாகக் கணக்கை கையாள்வதற்கு (Manipulatives to be developed) கணக்கிலுள்ள கூறுகளைத் தொடர்புபடுத்த வேண்டும். இவ்வாறு குறியீடுகளின் மூலம் கணக்கை தொடர்புபடுத்தி கணிதக் கூற்றுகளாக எழுதுவதன் மூலம் விடை காண்பதில் சிக்கல் ஏற்படாது; கற்றல் தடையின்றி நிகழும். இதனை வலுவூட்டும் வகையில் ஜிதேந்திராவின் "ஒழுங்கான திட்டங்கள் சார் வழிகாட்டுதல் உத்திகள்" என்ற முறை அமைந்துள்ளது.

6.5 ஒழுங்கான திட்டங்கள் சார் வழிகாட்டுதல் உத்திகள் (Schema based strategy Instruction)

இந்த உத்தியை ஜிதேந்திரா (2005) வடிவமைத்துத் தொடக்கநிலையில் கணக்கு கற்பிக்கும் முறைகள் பயன்படுவதற்கு உகந்த உத்தியாகக் கொடுத்துள்ளார். அதன்மூலம் தொடக்கப்பள்ளி குழந்தைகள் கணக்குகளுக்கு தீர்வு காணும் முறையை விளக்கியுள்ளார். இது நான்கு படிகளை கொண்ட வழிமுறையாகும் (4 step process) -

- 1. கணக்கு எந்த வகை என கண்டுபிடித்தல் (Find the problem type)
- 2. கணக்கில் உள்ள தகவலை ஒரு படத்தின் மூலம் முறைப்படுத்துதல். (Organise the information in the problem, using the diagram)
- 3. கணக்குக்கான தீர்வைத் திட்டமிடுதல் (Plan to solve the problem)
- 4 கணக்குக்குத் தீர்வு காணல் (Solve the problem)

ஒவ்வொரு கணக்குக்கும் ஒரு வரைபடம் மற்றும் தானாக முறைப்படுத்திய செயல் அட்டவணையும் கொடுக்க வேண்டும்.

எடுத்துக்காட்டு

பாவைக்கு படம் வரைந்து வண்ணம் தீட்டுவதில் விருப்பம் அதிகம். அவர் இதுவரை 8 படங்களுக்கு வண்ணம் தீட்டிவிட்டார். அவர் மேலும் 3 படங்களுக்கு வண்ணம் தீட்டினார் எனில், மொத்தம் எத்தனை அவரிடம் இருக்கும் ?

- படி 1 : என்ன கண்டுபிடிக்க வேண்டும் என்பதை அறிதல்
- படி **2**: கணக்கிலுள்ள முக்கிய தகவலை கோடிடுதல் மற்ற எண்களை வட்டமிடுதல்

இங்கு 3, 8 ஆகியவற்றை வட்டமிடுதல்.

மேலும் என்ற சொலை அடிக்கோடிடுதல்.

படி **3** : கணிதக் கூற்றுகளை எழுதுதல். முதலில் வண்ணம் தீட்டிய படங்களின் எண்ணிக்கை = **8**

> மேலும் வண்ணம் தீட்டிய படங்களின் எண்ணிக்கை எத்தனை எனஅறிதல்.

படி 4 : கூட்ட வேண்டுமா ? கழிக்க வேண்டுமா ? எனத் தீர்மானித்தல்.

மொத்தம் என்ற சொல்லைக் கொண்டு கூட்ட வேண்டும் எனத் தீர்மானித்தல்.

கூட்டல் செயல் செய்தல், கூட்டி விடை எழுதுதல்.

ஒவ்வொரு கணக்கிற்கும் தீர்வுகாண மேற்கண்ட நான்கு படி நிலைகளையும் மாணவர்கள் பயன்படுத்த ஆசிரியர்கள் பயிற்சி அளித்தல்.

மாணவா்கள் எளிதாகவும் தன்னம்பிக்கையுடனும் மற்றும் ஆா்வத்துடனும் தீா்வு காண முனைப்போடு செயல்படுவா்.

6.6 தீர்வு காண விழைதல் மற்றும் விரைதல்

ஒரு கணக்கு என்பது அதன் தீர்வைக் காண்பதற்கான செயலாகும். அதாவது

- கணக்கைக் கையாள்பவர் அதற்கான தீர்வைக் காண முனைப்புடன் செயல்படுதல் –வாசித்தல்.
- அவர் தீர்வு காண்பதற்குத் தயார் நிலையில் இல்லாமல் இருத்தலை
 உணர்ந்து அதற்கான வழிமுறைகளைத் தேடுதல்.
- 💠 தீர்வைக் காண்பதற்காக தன்னால் இயன்ற முயற்சி செய்தல்.

6.7 தீர்வு காணும் நான்கு வழி நிலைகள்

தீர்வாய்வு உத்தி தொடக்கநிலையளவிலான வாழ்க்கைக் கணக்குகளையும் நன்கு புரிந்து கொண்டு ஆர்வத்துடன் தீர்வுகாண்பதற்கும் மற்றும் மாணவர்களிடையே தீர்வாய்வு பற்றிய மனப்பாங்கை வளர்ப்பதற்கும் பெரிதும் பயன்படும். இது நான்கு படிகளைக் கொண்டது. அவை

- 1. கணக்கை புரிந்து கொள்ளுதல் (Understand the Problem)
- 2. உத்திகளைத் திட்டமிடுதல் (Plan the Strategies)
- **3**. முயற்சி செய்தல் (Try it)
- 4. திரும்பப் பார்த்தல் (Look back)

1. கணக்கைப் புரிந்துகொள்ளுதல்

கணக்கிற்குத் தீர்வுகாண்பதற்கு முன் அக்கணக்கை முதலில் புரிந்து கொள்ளுதல் அவசியம். கொடுக்கப்பட்டுள்ள எல்லாத்தகவல்களைக் கண்டுபிடிக்கவும் மற்றும் என்ன கேட்கப்பட்டுள்ளது என்பதை அறிய ஒன்று அல்லது இரண்டு முறை வாசிக்க வேண்டும். இதுவே கணக்கை புரிந்து கொள்ளுதல் ஆகும். அதாவது

கணக்கை ஒன்று அல்லது இரண்டு முறை வாசித்து என்ன தகவல்கள் கொடுக்கப்பட்டுள்ளன?

என்ன தகவல்கள் கேட்கப்பட்டுள்ளன?

கணக்கைத் தீர்ப்பதற்கான நிபந்தனை யாது ? என புரிந்து கொள்ளவேண்டும்.

2. உத்திகளைத் திட்டமிடுதல்

கணக்கை புரிந்து கொண்ட பிறகு மாணவர்கள் இது மாதிரியான கணக்கைத் தீர்ப்பதற்கான தங்களது முந்தைய அனுபவத்தை நினைவு கூர்ந்து அந்தக் கணக்கைத் தீர்ப்பதற்கான உத்திகளை காணுதலே திட்டமிடுதல் எனலாம்.

3. முயற்சி செய்தல்

மேற்கண்டவாறு திட்டமிட்டவுடன், கணக்கிற்கான விடையை அடைய முயற்சி மேற்கொள்ளுதல் வேண்டும். அதாவது, கணக்கின் தீர்வு காண இந்த படிநிலை சரிதானா என நன்றாகப் பார்க்க வேண்டும். மற்றும் இந்த படிநிலை சரிதான் என நிரூபிக்க முயற்சி மேற்கொள்ள வேண்டும்.

4. திரும்பப் பார்த்தல் (Look back)

கணக்கிற்குத் தீர்வு கண்டவுடன், கணக்கின் படிநிலைகளை ஒவ்வொன்றாகத் மீண்டும் பார்க்க வேண்டும். அவ்வாறு பார்க்கும் பொழுது நாம் ஏதாவது ஒரு படி நிலையைத் தவறாகக் கையாண்டிருந்தால் அதைச் சரி செய்ய முடியும். மேலும் அந்த கணக்கின் தீர்வைக் காணச் சரியாகத் திட்டமிடலாம்.அதாவது பின்வரும் வினாக்களின் பட்டியலை (Check list) பயன்படுத்தி திரும்பப் பார்க்கலாம்.

- (i) விடையை நான் சரிபார்த்தேனா ?
- (ii) விவரங்களை நான் சரிபார்த்தேனா ?
- (iii) விடையைக் காண ஏதாவது வேற்று முறையை நான் உருவாக்கி உள்ளேனா ?
- (iv) கணக்கின் ஒவ்வொரு படி நிலையையும் ஒரு முறையேனும் மேற்பார்வை செய்தேனா ?

மேற்கண்ட நான்கு படிநிலைகளைக் கொண்டு தொடக்கக்கல்வி அளவிலான கணக்குகளை செய்யலாம் என ஆய்வுகள் கூறுகின்றன.

தீர்வாய்வு உத்தியை வாக்கியக் கணக்குகளில் (Word Problem) பயன்படுத்தும் முறைகள்

தீா்வாய்வு உத்தியில் கூறப்பட்ட நான்கு நிலைகளையும் பயன்படுத்தி வாக்கியக் கணக்குகளை செய்வதற்கு பயன்படுத்தும் முறைகளைக் காண்போம்.

- (a) பட்டியலை உருவாக்குதல் (Make a table)
- (b) முறைப்படுத்தப்பட்ட வரிசையை உருவாக்குதல் (Make an organized list)
- (c) அமைப்பைக் கண்டுபிடித்து உருவாக்குதல் (Look for a pattern)
- (d) ஊகித்தல் மற்றும் சரிபார்த்தல் (Guess & check)
- (e) படங்கள் அல்லது வரைபடங்கள் வரைதல் (Draw a picture or graph)
- (f) பின்னோக்கிச் செய்தல் (Work backwards)

மேற்கண்ட முறைகளை ஒரு ஆசிரியர் பயன்படுத்தும் போது மாணவர்கள் கணிதத் தீர்வாய்வு முறையை எளிதாகவும் மற்றும் வலுவாகவும் புரிந்து கொள்ள முடியும். இங்கு ஒவ்வொரு முறைகளுக்கும் எடுத்துக்காட்டுகள் கொடுக்கப்பட்டுள்ளன.

(a) பட்டியலை உருவாக்குதல் (Make a table)

எடுத்துக்காட்டு

மதியும், மணியும் ஒரு புத்தகத்தை தனித்தனியே வாசிக்க ஓரே நாளில் ஆரம்பித்தனர். மதி ஒரு நாளைக்கு 8 பக்கங்கள் வீதமும் மணி 5 பக்கங்கள் வீதம் வாசித்தால், மதி 56 பக்கங்கள் வாசித்திருக்கும் பொழுது, மணி எத்தனை பக்கங்கள் வாசித்திருப்பார்?

விடை

தொடக்க நிலை மாணவர்களுக்கு ஏற்ற வகையில் கீழ்க்கண்டவாறு பட்டியலைத் தயாரிக்கலாம். இது கணக்கை புரிந்து கொள்வதற்கு பயன்படுகிறது. இந்த பட்டியல், கணக்கின் தகவல்களைக் கொண்டது. எனவே இந்த கணக்கில் நான்கு படிநிலைகளையும் பயன்படுத்தி தீர்வு காண்போம்.

⊔டி –1

கணக்கை புரிந்துகொள்ளுதல்

எத்தனை பக்கங்கள் மதி ஒவ்வொரு நாளும் வாசித்தார் ? (8)

எத்தனை பக்கங்கள் மணி ஒவ்வொரு நாளும் வாசித்தார் ? (5)

இருவரும் ஒரே நாளில் தான் வாசிக்க ஆரம்பித்தனரா ? ஆம்

மேற்கண்ட வினாக்களுக்கு மாணவாகள் சரியாக பதிலளித்தால் அவாகள் கணக்கைப் புரிந்து கொண்டனா் எனலாம்.

படி −2

உத்திகளைத் திட்டமிடுதல்

- 💠 முதல் நாளின் முடிவில் மதி எத்தனை பக்கங்கள் வாசித்தார் ? (8)
- 💠 முதல் நாளின் முடிவில் மணி எத்தனை பக்கங்கள் வாசித்தார் ? (5)
- மதி 16 பக்கங்கள் வாசித்து முடிக்கும் போது, மணி எத்தனை பக்கங்கள் வாசிப்பார்? (10)
- முதல் ஐந்து நாட்களில் மதி எத்தனை பக்கங்கள்
 வாசித்திருப்பார்? (8,16,24,32,40)

படி —3 **முயற்சி செய்தல் (Try it)**

நாள்	மதி வாசித்த பக்கங்கள்	மணி வாசித்த பக்கங்கள்
1	8	5
2	16	10
3	24	15
4	32	20
5	40	25
6	48	30
7	56	35

ஆகவே மதி 56 பக்கங்கள் வாசிக்கும் போது , மணி **35** பக்கங்களே வாசித்திருப்பார்.

படி –4 **திரும்பப் பார்த்தல் (Look back)**

விடை = 35 பக்கங்கள்

சரிபார்ப்புப் பட்டியலைப் பயன்படுத்தி மீள்பார்வைச் செய்தல்

(b) முறைப்படுத்தப்பட்ட வரிசையை உருவாக்குதல் (Make an organized list)

எடுத்துக்காட்டு

வீரன் இரண்டு கால்சட்டைகள் வைத்துள்ளார். அவற்றில் ஒன்று கறுப்பு மற்றொன்று பச்சை. அத்துடன் நான்கு சட்டைகளும் வைத்திருந்தார்: அவை ஒரு வெள்ளை சட்டை, ஒரு சிவப்புச்சட்டை, ஒரு மஞ்சள் மற்றும் ஒரு கோடு போட்ட சட்டை எனில் எத்தனை வெவ்வேறு வகைகளில் அவர் சட்டை, கால்சட்டைகளை அணியமுடியும்?

⊔டி −1

கணக்கை புரிந்து கொள்ளுதல்

- 💠 எத்தனை கால்சட்டை வீரனிடம் உள்ளன. ? (2)
- எத்தனை சட்டைகள் வீரனிடம் உள்ளன ? (4)

படி −2

உத்திகளைத் திட்டமிடுதல்

- வீரன் கறுப்பு கால்சட்டை அணிந்தால் எந்த சட்டை அணிய வாய்ப்புள்ளது ?
 (வெள்ளை, சிவப்பு, மஞ்சள், அல்லது கோடு போட்ட சட்டை)
- ❖ வீரன் பச்சை கால்சட்டை அணிந்தால், அவர் அனைத்து வகை சட்டைகளையும் அணிய முடியுமா ? ஆம்.

⊔டி –3

முயற்சி செய்தல்

முறைப்படுத்தப்பட்ட வரிசையை உருவாக்குதல்

	கால் சட்டை	←	சட்டை
1	கறுப்பு		வெள்ளை
2	கறுப்பு	←	சிவப்பு
3	கறுப்பு	←	மஞ்சள்
4	கறுப்பு	←	கோடு போட்ட சட்டை
5	பச்சை	←	வெள்ளை
6	பச்சை	←	சிவப்பு
7	பச்சை	←	மஞ்சள்
8	பச்சை	←	கோடு போட்ட சட்டை

ஆகவே வீரன் 8 வெவ்வேறு வகைகளில் சட்டை, கால் சட்டை அணிய முடியும்.

⊔டி –4

திரும்பப் பார்த்தல் (Look back)

சரிபார்ப்புப் பட்டியலைப் பயன்படுத்தி மீள்பார்வைச் செய்தல்.

(c) அமைப்பைக் கண்டுபிடித்து உருவாக்குதல் (Look for a pattern)

எடுத்துக்காட்டு

மூன்று படிகள் கொண்ட ஒரு படிக்கட்டைக் கட்டுவதற்கு 6 பெட்டிகளை வளவன் பயன்படுத்தினார் என்றால் 6 படிகள் கொண்ட படிக்கட்டை கட்டுவதற்கு அவருக்கு எத்தனை பெட்டிகள் தேவைப்படும்?

படி –1 கணக்கை புரிந்துகொள்ளுதல்

வளவன் கட்டிய படிக்கட்டுகளின் எண்ணிக்கை எத்தனை? பயன்படுத்திய பெட்டிகள் எத்தனை? கட்டவேண்டிய படிக்கட்டுகள் எத்தனை? தேவையான பெட்டிகள் எத்தனை?

படி −2

உத்திகளைத் திட்டமிடுதல்

- முதல் படிக்கட்டைக்கட்டுவதற்கு எத்தனை பெட்டிகள்
 பயன்படுத்தப்பட்டுள்ளன? (1)
- இரண்டாவது படிக்கட்டில் எத்தனை பெட்டிகள்
 பயன்படுத்தப்பட்டுள்ளன ? (2)
- மூன்றாவது படிக்கட்டில் எத்தனை பெட்டிகள்
 பயன்படுத்தப்பட்டுள்ளன ? (3)
- 💠 மொத்தம் எத்தனை பெட்டிகள் பயன்படுத்தப்பட்டுள்ளன ? (6)

படி –3 **முயற்சி செய்தல்**

படிகட்டில் உள்ள பெட்டிகள்	புதிய படிகளை கட்ட தேவைப்படும் பெட்டிகள்	மொத்த பெட்டிகளின் தேவை
1 –வது	1	1
2–வது	2	1+2=3
3–வது	3	1+2+3 = 6
4–வது	4	1 + 2 + 3 + 4 = 10
5–வது	5	1 + 2 + 3 + 4 + 5 = 15
6–வது	6	1+2+3+4+5+6=21

படி – 4

திரும்பப் பார்த்தல்

21 பெட்டிகளைக் கொண்டு 6 – படிகளுடன் படிக்கட்டை வரைந்து விளக்கலாம். ஆகவே 6 – படி கொண்ட படிக்கட்டை (Stair Case) கட்ட 21 பெட்டிகள் வேண்டும்.

(d) ஊகித்தல் மற்றும் சரிபார்த்தல் (Guess & cheek)

எடுத்துக்காட்டு

நான் 5 அட்டைகளில் 5 வெவ்வேறு எண்கள் எழுதினேன். அந்த எண்களின் கூட்டுத்தொகை 15 ஆகும். எனில் அந்த 5 அட்டைகளில் நான் எந்தெந்த எண்களை எழுதினேன்?

படி −1

கணக்கைப் புரிந்துகொள்ளுதல்

- 💠 எத்தனை எண்கள் நான் எழுதினேன் (5)
- 💠 அந்த எண்களின் கூட்டுத்தொகை என்ன (15)
- 💠 ஒவ்வொரு அட்டையிலும் எத்தனை எண்கள் உள்ளன (1)
- ஏதேனும் இரண்டு எண்களாவது சமமான எண்களாக இருக்குமா ? (இல்லை) அவை வெவ்வேறு எண்களாக இருக்கும்?

உத்திகளைத் திட்டமிடுதல்

- அட்டையில் ஏதாவது ஒரு எண் 15 ஆக இருக்குமா ? (இல்லை. ஏனென்றால் மீதமுள்ள அனைத்து எண்களும் 0 ஆக இருக்கும்)
- 💠 5 எண்களைக் கூட்டினால் 15 ஆக வரும் எண்களைத் தேர்வு செய்க.

படி −3

முயற்சி செய்தல்

- ் முயற்சி (1)
 0,1,2,3,4 ⇒ 0+1+2+3+4=10 ⇒ (15 அல்ல)
- ் முயற்சி (2) ⇒1, 2, 3, 4, 5 ⇒ 1 + 2 + 3 + 4 + 5 = 15 ⇒ (சரி)

⊔டி –4

திரும்பப் பார்த்தல் (Look back)

ஆகவே அந்த எண்கள் 1, 2, 3, 4, மற்றும் 5 ஆகும்.

(e) படங்கள் அல்லது வரைபடங்கள் வரைதல் (Draw a picture or graph)

எடுத்துக்காட்டு

கோணி – ஓட்டப்பந்தயத்திற்காகப் (Sack race) ஆரம்பக்கோடு வரைவதற்காக நிலாவும், பூமாவும் ஒரு கயிற்றை எடுத்துக்கொண்டனர். அந்தக் கயிறானது 10 மீட்டர் நீளம் உடையது. கயிற்றின் ஒவ்வொரு 2 மீட்டர் முடிவில் ஒரு கம்பம் நிறுத்தினால் எத்தனை கம்பங்கள் அவர்கள் பயன்படுத்தினார்கள்.

படி −1

கணக்கைப் புரிந்து கொள்ளுதல்

- 💠 கயிறு எவ்வளவு நீளம் உள்ளது ? (10 மீட்டர்)
- எவ்வளவு தூர இடைவெளியில் கம்பம் நிறுவப்பட்டது ? (2 மீட்டர்)

படி−2

உத்திகளைத் திட்டமிடுதல்

- கம்பத்தைக்கயிற்றின் முடிவில் மட்டும் நிறுத்தினால்
 எத்தனை கம்பங்கள் இருக்கும் ?
- அவர்கள் 3 கம்பங்களை ஒவ்வொரு 2 மீட்டர்
 இடைவெளியில் நிறுத்தினால் கயிற்றின் நீளம் எவ்வளவு ? (4 மீட்டர்)

4 கம்பங்களை எடுத்துக் கொண்டு ஒரு படத்தை (6 மீட்டர்)
 வரைந்து கயிற்றின் நீளம் எவ்வளவு எனப்பார்க்கவும்

⊔டி– 3

முயற்சி செய்தல்

படத்தை வரைக

படி −4

திரும்பப் பார்த்தல்

விடை = 6 கம்பங்கள்

எனவே, நிலா மற்றும் பூமா மொத்தம் 6 கம்பங்களைப் பயன்படுத்தினர்.

(f) பின்னோக்கி செய்தல்

வளவன், செழியன் மற்றும் இமயன் ஒரு பெட்டியில் தங்க நாணயங்கள் வைத்திருந்தனர். அவற்றில் ஒரு சரிபாதி தங்க நாணயங்களை மண்ணில் புதைத்தனர். மீதமுள்ள ஒரு சரிபாதியை அவர்களுக்குள் பங்கிட்டுக் கொண்டனர். செழியன் 2000 நாணயங்கள் பெற்றுக்கொண்டார் என்றால் பெட்டியில் எவ்வளவு தங்க நாணயங்கள் இருந்திருக்கும்.

படி −1

கணக்கைப் புரிந்து கொள்ளுதல்

- பெட்டியில் எத்தனை தங்க நாணயங்கள் இருந்தன
 என தெரியுமா ?
 (தெரியாது)
- எத்தனை தங்க நாணயங்களை மண்ணில்புதைக்கப்பட்டன என தெரியுமா ? (தெரியாது)
- எத்தனை தங்க நாணயங்கள் ஒவ்வொருவரும்
 பங்கிட்டுக் கொண்டனர்? (2000)
- மூன்று நபருக்கு எத்தனை நாணயங்கள்
 வழக்கப்பட்டிருக்கும்? (6000)

படி −2

உத்திகளைத் திட்டமிடுதல்

- 💠 சமமாக பங்கீட்டு செய்யப்பட்டுள்ளது,
- 💠 மொத்தம் மூவர்
- 💠 ஒருவர் (செழியன்) பெற்றது = ரூ.2000
- 💠 மற்ற இருவர் பெற்றது = ரூ. 2000 + 2000

⊔டி –3

முயற்சி செய்தல் அல்லது விடையைக் காண்பதற்கான செயல்களை உருவாக்குதல்

2000 நாணயங்களுடன் ஆரம்பிக்கவும்.

முன்றால் பெருக்கவும் (3 நபர்கள்)

 $3 \times 200 = 6000$

இரண்டால் பெருக்கவும் (பாதி நாணயங்கள் புதைக்கப்பட்டது)

 \implies 2 x 6000 = 12000

ஆகவே 12000 தங்கநாணயங்கள் பெட்டியில் இருந்திருக்கும்

படி −4

திரும்பப் பார்த்தல் Look back)

விடை சரிபார்த்தல் – செய்து பாருங்களேன்!

மேற்கண்ட தீர்வாய்வு உத்திகளை பயன்படுத்தி கணக்குகளுக்கு தீர்வு காண்பது மாணவர்களுக்கு எளிமையாகவும் மற்றும் கணிதத்தின் மேல் மாணவர்களுக்கு நல்ல மனப்பான்மையையும் வளர்க்கும்.

6.8 கணிதம் கற்பித்தலில் உள்ள சிக்கலைத் தீர்க்கும் வழிநிலைகள்

1. விளக்கமாகக் கற்பித்தல் அல்லது தெளிவாகக் கற்பித்தல் (Explicit Instruction)

விளக்கக் கற்பித்தல் என்பது அறிவுசார் வழிநிலைக் கற்பித்தல் முறைகளான நினைவூட்டுச் சொற்கள், மாதிரிகள், வாய்மொழி, சோதனை (ஒத்திகை) மற்றும் பின்னூட்டங்களை உள்ளடக்கியதாகும். பாடங்கள் அனைத்தையும் உயர்வான ஒழுங்கமைப்புகள் மற்றும் வடிவமைப்புகளைக் கொண்ட கற்றல் மற்றும் பயிற்சியானது, அறிவுசார் வழிமுறைகள் மற்றும் வழிநிலைகளுடன், பொருத்தமான நினைவூட்டுச் சொற்கள் மற்றும் எண்ணத்தூண்டல்களை வளர்த்துக் கொள்ள உதவ வேண்டும். ஒவ்வொரு மாணவரின் செய்கைக்கும் சரியான மற்றும் நேர்பின்னூட்டங்கள் உடனடியாக அளிக்கப்பட வேண்டும். மீக்கற்றல், தேர்ச்சிக்கற்றல், மற்றும் தாமாகவே முற்படல் ஆகியன இவ்வணுகுமுறையின் இலக்குகள் ஆகும்.

இவ்விதக் கற்பித்தல் முறையானது மாணவாகளை கற்றல் மற்றும் பயிற்சியில் கணிதச் சிக்கலைத் தீா்க்கும் முறைகளில் சுறுசுறுப்பாக செயல்படவைக்கிறது. இத்தகைய அணுகுமுறையின் வாயிலாக ஆசிாியா்கள் மற்றும் மாணவா்களுக்கு இடையே நல்ல உறவுமுறை ஏற்படுகிறது.

எடுத்துக்காட்டு

ஒருவர் ரூ.1250 கொடுத்து 10 புத்தகங்களை வாங்குகிறார் எனில் அவர் 42 புத்தகங்கள் வாங்க வேண்டுமெனில் எவ்வளவு கொடுக்கவேண்டும்?

நினைவூட்டுச் சொற்கள்

எந்த ஒரு கணக்கையும் படித்து பார்த்தவுடன் என்ன கொடுக்கப்பட்டுள்ளது மற்றும் என்ன கேட்கப்பட்டுள்ளது என்பதை அறிய வேண்டும்.

10 புத்தகங்களின் விலை = ரூ 1250 (கொடுக்கப்பட்டுள்ளது)

42 புத்தகங்களின் விலை = ? (கேட்கப்பட்டுள்ளது)

இவ்வாறு மாணவர்கள் புரிந்து எழுதாவிடில் அவர்களுக்கு நேர் பின்னூட்டங்களை ஆசிரியர் உடனடியாக அளித்து புரிய வைக்க வேண்டும்.

எண்ணத்தூண்டல்

கணக்கை படித்துக் புரிந்து கொண்டதும் கொடுக்கப்பட்டதிலிருந்து ஒரு பொருளின் விலையை கணக்கிட வேண்டும் என்ற எண்ணம் எழவேண்டும்.

அதாவது,

10 புத்தகங்களின் விலை = ரூ.1250

பல புத்தகங்களின் விலையிலிருந்து 1 புத்தகத்தின்விலை கண்டுபிடிக்க வகுத்தல் செயலை மேற்கொள்ளவேண்டும் என்ற சிந்தனை உருவாக வேண்டும்.

⇒ ஒரு புத்தகத்தின் விலையிலிருந்து பல புத்தகங்களின் விலையை காண்பதற்கு பெருக்க வேண்டும் என்ற எண்ணத்தை வளர்த்துக் கொள்ளவேண்டும்.

இவ்வாறு மாணவர்களுக்கு பயிற்சி அளிக்கும்போது சிந்தனை திறன் வளர்கிறது. நினைவாற்றல் தூண்டப்படுகிறது. இது போன்று சிந்தனையை தூண்டும் பல செயல்களை விளக்க கற்பித்தல் முறையில் காணலாம்.

2. வரிசைப்படுத்துதல் மற்றும் கூறுபடுத்துதல் (Sequencing and segmenting)

வரிசைப்படுத்துதல் மற்றும் கூறுபடுத்துதல் என்பதன் பொருள் விளக்கம், செய்யபட வேண்டிய வேலையை துணைப்பகுதிகளின் உட்கூறுகளாக பிரித்தல், குறைந்த செயல்திறன் அளித்தல் மற்றும் பகுதிகளை முழுவதுமாக தொகுத்தல் என்பதாகும்.

அறிவுசார் செயல்முறை மற்றும் சுய ஒழுங்கு நிலைகளைத் தொடர்ச்சியாக சொல்லிக் கொடுத்து அவற்றை நடைமுறைப்படுத்த வேண்டும். ஆரம்ப நிலையில் கணக்கை வாசிக்கச் செய்து பின்னர் அடுத்தபடியாக அக்கணக்கிற்கு தீர்வு காண்பதற்கும் வழிவகுக்க வேண்டும். மாணவர்களுக்கு கணக்கை வாசிக்க கற்றுத் தந்த பின்னர் அவர்கள் அக்கணக்கைப் படிப்படியாக எப்படி செய்வது என்பதற்கான வழிமுறைகளைப் புரியவைக்க வேண்டும். ஆசிரியர், மாணவர்களிடம் பாடம் கற்பிக்கும் போது எந்த அளவு புரிந்து கொண்டார்கள் என்பதை அறிய அவர்களை சோதனையிடுவதால்தான் பல்வேறு வழிமுறைகளைக் கற்றுத்தர இயலும். இவை மாணவர்களுக்கு நினைவூட்டுச் சொற்கள் மற்றும் எண்ணத்தூண்டல்களையும் கொண்ட அம்சங்களாக வெளிப்படும். மாணவர்கள் கணக்கை வாசிக்கும் போதே அவர்கள் என்ன செய்ய வேண்டும் என்றும் அதனை எப்படி திரும்பச் சொல்ல வேண்டும் என்பதைக் கற்றுக் கொள்ள வேண்டும். மேலும் அவர்கள் பல்வேறு வார்த்தைகளுக்கு அர்த்தம் புரிந்து கொண்டு படிக்கும் போது கூடுதலான அளவில் கற்றல் தொடர்வதற்கு வாய்ப்புள்ளது.

எடுத்துக்காட்டு

7 செ.மீ, 6 செ.மீ மற்றும் 5 செ.மீ உள்ள ஒரு அசமபக்க முக்கோணத்தை வரைக.

படி 1

7 செ.மீ உள்ள கோட்டுத்துண்டு வரைக. AB என்று பெயரிடுக.

படி 2.

கவராயம் பயன்படுத்தி A என்ற புள்ளியில் இருந்து 6 செ.மீ அளவில் ஒரு வில் வரையவும். இதே போன்று B என்ற புள்ளியிலிருந்தும் 5 செ.மீ அளவுள்ள மற்றொரு வில் வரையவும். இரண்டு விற்களும் வெட்டும் புள்ளியை C எனக் குறிப்பிடவும்.

படி 3 :

AC மற்றும் BC ஐ இணைக்கவும். இப்பொழுது ABC என்ற முக்கோணம் கிடைக்கும்.

இவ்வாறு மாணவர்கள் கணக்கை வாசித்தவுடன் அதைப் புரிந்துகொண்டு சுய ஒழுங்குமுறைகளை உருவாக்கிக் கொள்ளவேண்டும். பின்பு மாணவர்கள் அவற்றை படிப்படியாக பின்பற்றி விடை கண்டுபிடிக்க வேண்டும். இதனையே வரிசை படுத்துதல் மற்றும் கூறுபடுத்துதல் அணுகுமுறை என்கிறோம்.

3. திரும்பக்கூறும் பயிற்சி மற்றும் பிழைத்திருத்தும் பயிற்சி (Drill - Repetion and Practice - Review)

கணக்கைத் தீர்க்கும் போது ஏற்படும் முன்னேற்றத்தைத் சரிபார்க்க தேர்ச்சித் திறன் அளவீடு, பிழைத்திருத்தத்தை வரிசைப்படுத்துதல், திரும்பத் திரும்ப பயிற்சி கொடுத்தல், பிழைத்திருத்தத்தை பகிர்ந்தளித்தல், பயிற்சியில் ஒரே மாதிரியான கணக்குகளை பயன்படுத்துதல் மற்றும் நேர் பின்னூட்டம் ஆகிய கூறுகளை இம்முறை உள்ளடக்கியது. இதன் மூலம் புரிந்து கொள்ளுதல், கேள்விக் கேட்டல், சரிபார்த்தல் போன்ற திறன்கள் கற்றல் வெளிப்பாடாக மாணவர்களிடம் ஏற்படும்.

புரிந்து கொள்ளுதல்

மாணவாக்ள் தாமாகவே பல்வேறு வகையான சொற்களை நடைமுறைப்படுத்த கற்றுக் கொள்வதற்கு, அவ்வகையான சொற்களை வாசித்துப் புரிந்து கொள்ளவேண்டும்.

முக்கியமான தகவல்களை அடிக்கோடிடல் வேண்டும். கணக்கைச் சொந்த நடையில் அமைத்தல் வேண்டும்.

கேள்விக்கேட்டல்

நான் முக்கியமான தகவல்களை அடிக்கோடிடல் செய்திருக்கிறேனா? என்ன கேட்கப்பட்டுள்ளது? நான் எதை எதிர்பார்க்கிறேன்? போன்ற வினாக்கள் மூலம் கற்றல் இடைவெளிகளை சரி செய்து கொள்ள வேண்டும்.

சரிபார்த்தல்

மாணவர்கள் தாமாகவே கணக்கை செய்யக் கூடிய திறனைப் பெறும் வரை அவர்களுக்குப் பயிற்சி அளித்தல் வேண்டும். பின்பு சுய மதிப்பீடு செய்து சரிபார்க்கும் பயிற்சியையும் அளிக்க வேண்டும்

4. வழிகாட்டி நேரிடை வினாக்கள் மற்றும் துலங்கல்கள் (Directed Questioning and Responses)

செயல்வழிக் கற்பித்தல் மற்றும் கற்றலின் அறிவுசார் முறைக் கற்பித்தலைப் பயன்படுத்தி பங்கேற்கும் உத்திகளை முன்னிலைப்படுத்த வழிகாட்டல் அவசியம். வழிகாட்டல் முறை பல்வேறு விதமாக அமையலாம்.

- கணிதச் சிக்கலைத் தீர்க்க மாணவர்களை ஆரம்பநிலையிலேயே விவாதத்தில் பங்கேற்கச் செய்தல்,
- ஆசிரியர் உதவியுடன் தனியாள் செய்கை இலக்குகள் மற்றும் சிக்கலுக்கு நல்ல தீர்வை
 உருவாக்குதல்,
- ஆசிரியர் மாணவர்களிடம் செயல்முறை தொடர்பு கல்வி மற்றும் பொருள் தொடர்பான வினாக்களை கேட்டறிதல்,
- 💠 மேலும் ஆசிரியர் மாணவர்களிடம் நேரடி முறையிலான வினாக்களைக் கேட்டல்,
- எப்பொழுது மற்றும் எப்படி உதவி கேட்க வேண்டும் என்பதைப் பற்றி மாணவர்களுக்குக் கற்றுத் தருதல்.

எடுத்துக்காட்டாக

4 செ.மீ நீளம் மற்றும் 3 செ.மீ அகலமும் கொண்ட செவ்வகத்தின் பரப்பளவை காண்க. (செயல்முறை தொடர்பான வினாக்கள்)

இந்த கணக்கின் தீர்வு காண்பதற்கான நேரிடை வினாக்கள்

- 1. என்ன கேட்கப்பட்டுள்ளது ?
- 2. என்ன விபரங்கள் தேவைப்படுகின்றன?
- 3. இந்தக் கணக்கைத் தீர்க்க என்ன விவரங்கள் கொடுக்கப்பட்டுள்ளன?
- 4. இந்தக் கணக்கிற்கு விடை காண எவ்வாறு தொடங்க வேண்டும் ?
- 5. இந்த கணக்கிற்கு விடை காண உன் முந்தைய அறிவை எவ்வாறு பயன்படுத்துவாய் ?

பொருள் தொடர்பான வினாக்கள்

- 1. செவ்வகம் என்றால் என்ன ?
- 2. செவ்வகத்தின் பரப்பு காணும் சூத்திரம் என்ன ?
- 3. அந்த சூத்திரத்தில் பிரதியிட தேவையான உறுப்புகளின் மதிப்புகள் கொடுக்கப்பட்டுள்ளனவா ?

இதுபோன்ற நேரிடை வினாக்கள் மாணவாகளின் விரிசிந்தனையை தூண்டி முந்தைய அறிவை நினைவு கூா்ந்து துலங்கச் செய்கிறது.

5. கடின நிலைக் கட்டுப்பாடு (Control Difficulty)

செயல்களை எளிமையிலிருந்து கடினநிலைக்கு செல்லல் என்ற கோட்பாட்டின் அடிப்படையில் கற்றல் செயல்களை அமைக்கும் போது கடின நிலை படிப்படியாக அதிகரிக்கவேண்டும். அதாவது

- (i) எளிமையிலிருந்து கடின நிலை அமைத்தல்
- (ii) எளிய முறையில் சிறு அலகுகளாக செய்து காட்டுதல்.
- (iii) தேவையான உதவிகள், பொருத்தமான நினைவூட்டுச் சொற்கள், எண்ணத் தூண்டல்கள் மற்றும் கலந்துரையாடலுக்கு வழிகாட்டுதல் ஆகியவை கடின தன்மையிலிருந்து கருத்தியல் நிலையை உருவாக்குகிறது.

மாணவாகள் கணிதச் சிக்கலுக்குத் தீா்வு காண விளக்கமின்றி படிநிலை மாற்றங்கள் செய்து கற்பிப்பதன் விளைவாக, கணக்கைத் தீா்க்கும்போது முடிவை அறியாத நிலைக்கு சென்று விடுகிறாா்கள். இப்படிப்பட்ட கணிதச் சிக்கலைத் தீா்வு காண சிறு சிறு அலகுகளாகப் பிரித்துக் கொண்டு படிநிலைகளை அதிகரித்து மீண்டும், மீண்டும் கையாளும் போது அதில் வல்லுநா்கள் ஆகிறாா்கள். இவ்வாறு செய்வதால் தொடக்க நிலையில் அறியாமல் இருந்த கருப்பொருட்கள் படிப்படியாக புரிவதற்கு ஆரம்பித்துவிடுகிறது.

எடுத்துக்காட்டு

15 செ.மீ நீளம் மற்றும் **10** செ.மீ அகலம் கொண்ட ஒரு செவ்வகத்தை நீளம் மற்றும் அகலத்தை வளைச்சுற்றளவாகக் கொண்டு இரண்டு உருளைகள் செய்யும் போது எந்த உருளையின் கனஅளவு அதிகமாக இருக்கும்?

இக்கணக்கை செய்து காட்டல் முறையில் கற்பிக்கலாம்,

நீளத்தை வளைச்சுற்றளவாகக் கொண்டு ஒரு உருளையை செய்து அதில் மணலைப் போட்டு நிரப்பி அந்த மணலை தனியாக வைத்துக் கொள்ளலாம். பின்பு அகலத்தை வளைச்சுற்றளவாகக் கொண்டு மற்றொரு உருளையை செய்து அதில் மணலை நிரப்பி அந்த மணலை தனியாக வைத்து, எந்த உருளையில் நிரப்பிய மணல் அதிகமாக இருக்கிறது என்பதை மாணவர்களே உணர்ந்து கொள்கின்றனர். பின்பு செய்துபார்த்து விடை எழுதுகின்றனர். இவ்வாறு எளிமை படுத்தப்படுகிறது. கடின நிலை கட்டுபாடு என்பதற்கு இது ஒரு சிறந்த எடுத்துக்காட்டாகும்.

6. தொழில் நுட்பம் (Technology)

கணிப்பான் (calculator) மற்றும் கணிப்பொறியானது (Computer) குறிப்பிட்ட எல்லைக்கு அப்பால் விரிவுபடுத்தப்பட்டு பயன்பாட்டிலுள்ளது. கல்வி தொழில்நுட்பத்தை கையாள்வதற்கு ஏற்ப பாடப்பகுதிகளையும், வரைபடங்களையும் வடிவமைத்துக் கொண்டு காட்சி செய்முறைப்பயிற்சியில் பயன்படுத்தலாம். மேலும் கணிதச் சிக்கலைத் தீர்க்க, மாணவர்களுக்குக் கணக்கிடும் கருவியை எப்படி பயன்படுத்த வேண்டும் என்பதனைக் கற்றுத்தர வேண்டும். கூட்டல், கழித்தல் போன்றவற்றை நன்றாக புரிந்து கொண்ட பிறகு கணிப்பான் கருவியைக் கையாளும் முறையைக் கற்றுத் தந்து அதில் அவர்களை வல்லுனராக விளங்க வைக்கலாம். கடினமாக உணரக் கூடிய கணிதப் பாடப்பொருளை இப்போதைய தொழில் நுட்ப உதவியுடன் ஆசிரியர்கள் கற்பிக்க முனைய வேண்டும். ஆகவே, ஆசிரியர்கள் தகவல் தொடர்பு தொழில் நுட்பத்தில் அறிவையும் திறனையும் வளர்த்துக் கொள்ளல் மிகவும் அவசியம் ஆகிறது.

உளவியல் கோட்பாட்டின்படி மாணவர்கள் 83 சதவிகிதம் பார்ப்பதினால் (Seeing)கற்றுக்கொள்கிறார்கள். எனவே கணிதத்தை வளர்ந்துவரும் தொழில்நுட்ப உதவியுடன் கற்பிக்கும்பொழுது மாணவர்கள் சிறப்பாக கற்றுக்கொள்ள வாய்ப்பு ஏற்படும். பின்வரும் அட்டவணையை மனதில் கொண்டு மின் பாடப்பொருள்களை (e-Content) தயாரிக்கலாம். இவ்வாறான மின் பாடப்பொருள் கணக்குத் தீர்வாய்வுக்கு மாணவர்களிடையே ஆர்வத்தையும் மற்றும் நாட்டத்தையும் நன்கு வளர்க்கும்.

கணிதப்பாடப்பொருள் Content	காட்சிகள் Visuals	விளைவு Effect
ஒரு கணித பாடப்	ஒவ்வொரு பொருளுக்குத்	இவ்வாறு பொருளுக்குத்
பொருளை மாணவர்களுக்கு	தகுந்த காட்சிகள்(Visuals)	தகுந்த காட்சிகள்
ஆசிரியர் எவ்வாறு	அல்லது அனிமேசன் இங்கே	கொண்டு கற்பிக்கும்
பல உத்திகளை பயன்படுத்தி கற்பிப்பாரோ, அவை	காட்டவேண்டும். (இணையதளத்தில்	விளைவுகளை இங்கே குறிப்பிட
அனைத்தையும் இங்கே	சேகரிக்கலாம்)	வேண்டும்.
கொடுக்கப்படவேண்டும்		

இவ்வாறான மின்– பொருளை நாம் இணையதளத்தில் பார்க்கலாம்.

7. குழுக் கற்பித்தல் (Group Instruction)

சிறு குழுக் கற்பித்தல் (5–8 மாணவர்கள்) வாயிலாக ஆசிரியர்கள் மாணவர்களின் உறவுநிலை மேம்படுகிறது. இச்சூழல் கற்றலை மகிழ்ச்சிவுடையதாக்குகிறது. ஆசிரியர்கள் மற்றும் மாணவர்கள் உறவு நிலைக்கு அறிவுசார் வழிநிலைக் கற்பித்தல் ஒர் அடித்தளமாக அமைந்துள்ளது. குறிப்பிட்ட பயிற்சிக்கு பின் குழு கற்பித்தல் மூலம் அறிவுசார் வழிநிலைக் கற்பித்தலை தீவிரப்படுத்தலாம்.

வடிவியல் போன்ற கணிதப்பாடங்களைக் குழுக்கற்றல் மூலமாக தொடக்கப்பள்ளியளவில் கற்பிக்கலாம்.

எடுத்துக்காட்டு

சாய்சதுரம், சதுரம், செவ்வகம் மற்றும் இணைகரம் போன்ற வடிவியல் உருவங்களின் ஒற்றுமை மற்றும் வேற்றுமைகளை குழுக்கற்றல் மூலம் கற்பிக்கலாம்.

8. ஒத்த வயதினர் ஈடுபாடும், ஆசிரியருக்கான உதவியும் (Peer Involvement and supplements to Teacher)

எழுதுதல் படித்தல் திறன்கள் பெற்ற மாணவர்கள் வீட்டுப் பாடங்களை நினைவில் வைக்கவும், பல்வேறு வகையான கணக்கிற்கு தீர்வு காணும் முறைகள் மற்றும் சுய நெறிப்படுத்தும் வழிமுறைகளையும் நினைவூட்டுச் சொற்கள் வாயிலாக மேம்படுத்தலாம்.

எடுத்துக்காட்டு

ஜித்தேந்திரா குழுவினர் கணக்கை நெறிப்படுத்தலுக்கு மாற்றியமைக்கும் முறைகளாக கூறுவன;

- 💠 மாணவர்கள் முதலில் கணக்கைக் கண்டறிதல்,
- 💠 கணக்கை வாசித்தல்,
- திரும்பக் கூறல்
- அவர்களாகவே இவை மாற்றக்கூடிய கணக்குதானா என தாங்களாகவே கேட்டுக்கொள்ளல்.
- 💠 கணக்குகளைத் தானே முறைப்படுத்திச் சரிபார்க்கும் பட்டியலோடு ஒப்பீடு செய்தல்.

இவற்றை பயன்படுத்தி கணித வார்த்தைகளை எப்படி வாசிக்க வேண்டும் எப்படித் திரும்பக்கூற வேண்டும் என்பதில் வல்லுநர் ஆன பின்பு அடுத்த அமைப்பிற்கு(படிக்கு) இட்டுச்செல்ல வேண்டும். முறையாகக் கற்றுக் கொண்டால் அவற்றை அன்றாட வாழ்வில் பயன்படுத்தி ஒவ்வொரு படிநிலைகளையும் வெற்றிகரமாக அமைத்துக் கொள்ள முடியும். சிறுகுழுக் கற்பித்தல் (அ) வீட்டுப்பாடம் செய்து முடித்த பிறகு மாணவர்கள் அனைவரும் பொதுக்கல்வி கணிதத்தின் சிக்கலிற்கு தீர்வு காண கற்றுக்கொண்டவைகளை வகுப்பில் பயன்படுத்தச் செய்தல் வேண்டும். பொதுக்கல்வி ஆசிரியர்கள் கற்பித்தலில் விழிப்புணர்வுடன் இருக்க வேண்டும். எவ்வாறெனில் இவர்களிடமிருந்து மாணவர்கள் பெறும் விளக்கவுரை பொதுக்கணித வகுப்பில் மாணவர்களுக்கு உதவியாக இருத்தல் வேண்டும். இதைச் செய்வதற்கு பொது மற்றும் சிறப்புப்பாடம் கற்பிக்கும் ஆசிரியர்கள் மாணவர்களைப் பற்றியும், பாடம் கற்பித்தலின் முறைபற்றியும் கண்டிப்பாக அவர்களுக்கு வெளிப்படுத்த வேண்டும். மேலும் ஆசிரியர்கள் மாணவர்களிடையே உறவை வளர்ப்பதற்கு பொது மற்றும் சிறப்புப் பாட வகுப்பில் என்ன நடத்தப்பட்டுள்ளது என்பதை அவர்கள் அறிய வேண்டும். மாணவர்களது முன்னேற்றத்திற்கு அல்லது வளர்ச்சிக்கு பொது மற்றும் சிறப்புக்கல்வி அளிப்பது மிக

அவசியமானதாகும். ஆசிரியர்களிடமிருந்து மாணவர்கள் என்ன கற்றார்கள்? அதனை எம்முறையில் செயல்படுத்துகிறார்கள் மற்றும் அவர்கள் பெற்ற திறனை எவ்வாறு படிப்படியாக வளர்த்துக் கொள்கிறார்கள் என்பதை கண்காணிக்க வேண்டும்.

9. திறம்படக் கையாளும் உத்திகள் (Strategy cues)

தொடக்க நிலை மாணவர்களுக்கு நினைவூட்டு அட்டைகளைக் கொடுத்து வகுப்பறை மற்றும் வீட்டில் பயன்படுத்தி அவர்களுக்கு எண்ணத் தூண்டலையும், நினைவாற்றல் தூண்டலையும் ஏற்படுத்துதல் ஒரு கற்பித்தல் உத்தியாகும். வகுப்பறையில் உள்ள சுவற்றில் மாணவர்களைக் கவரும் வகையில் மிகப்பெரிய வரைபட அட்டை, கணக்குப்படங்கள், சரிபார்க்கும் பட்டியல் ஆகியவை சிந்திக்கும் திறனை வலுப்படுத்தும் சாதனங்களாக கையாளுவதும் மற்றோரு வகையான உத்தியாகும். கலந்துரையாடல் போன்ற உத்தியையும் மேற்கொள்ளலாம். மேல் வகுப்பில் வழங்கப்படும் கற்பித்தல் முறைகளுக்கு அடிப்படையாக விளங்குவது அறிவுசார் வழிநிலைக் கற்பித்தல் ஆகும். இவற்றினுள் வாய்மொழி ஒத்திகை, செய்முறை கற்பித்தல், காட்சிகள், பணிமாற்றி செயல்படுதல், செயல் பின்னூட்டம், பயிற்சியைப் பகிர்ந்தளித்தல் மற்றும் தேர்ச்சி அறிக்கை ஆகிய செயல்கள் அடங்கியுள்ளன.

(i) வாய்மொழி ஒத்திகை (Verbal Rehearsal)

மாணவர்கள் கணக்கை முழுவதுமாக செய்து முடிப்பதற்கு முன்பாகவே அவர்கள் அதற்குரிய படிகளை மனப்பாடம் செய்து வாய்மொழியாக ஒப்புவித்து ஒத்திகை செய்து பார்த்துக் கொள்ள வேண்டும். இது ஒரு விதமான மனப்பாடம் செய்யும் வழிமுறையாகும். இந்த வழிமுறையானது மாணவர்கள் அவர்களது தீர்வு காண வேண்டிய கணக்கின் படிநிலைகளையும் தானாகவே நினைவுக்குக் கொண்டு வருவதற்கு உதவும். வாய்மொழி ஒத்திகை உத்தியை பயன்படுத்தி வாக்கிய கணக்குகளைத் தீர்வுக் காண மாண்டேகு (2003) மற்றும் இத்தேந்திரா(2005) ஆகியோர் கூறும் படி நிலைகள் பின்வருமாறு:

- (i) ஒத்த கூறல் (Say),
- (i) கேள்விக்கேட்டல் (Ask),
- (i) சரிபார்த்தல் (Check) போன்றவை ஆகும்.

இவை வாக்கிய கணக்குகளுக்கு தீர்வு காண்பதற்கு வழிகாட்டுதல் செய்கின்றன. மேலும் சுருக்குவழி(Acranyms) பயன்படுத்தி சூத்திரங்களை அடிக்கடி நினைவுப்படுத்துவதும் வாய்மொழி ஒத்திகை ஆகும்.

எடுத்துக்காட்டு

ஜித்தேந்திராவின் கணக்கு தீர்வு காணும் முறையில் சுருக்கமாக (FOPS) என்பது உருவாக்கப்பட்டுள்ளது. அதாவது,

F - கணக்கின் வகையைக் கண்டறிதல் (Find)

0 = வரைப்படத்தின் மூலம் அந்த கணக்கின் விவரங்ளை ஒருக்கிணைத்தல் (**O**rganise)

P = அந்தக் கணக்கை தீர்வு காண திட்டமிடல் (**P**lan)

S= தீர்வு காணுதல் (**S**olve)

அடைவுத்திறன் குறைவாக உள்ள மாணவர்களுக்கு காட்சிகள் மூலம் எண்ணத்தூண்டும் வகையில் படம் மற்றும் எழுத்துக்கள் உள்ளடக்கிய முறையைப் பயன்படுத்தி மனப்பாடம் செய்ய தூண்டலாம். எப்பொழுது மாணவர்கள் கணக்கின் தீர்வு காணக் கூடிய படிகளை மனப்பாடம் செய்து முடித்து விடுகிறார்களோ, அப்போதே அவற்றை நினைவுப்படுத்தும் சொற்களை கொடுத்து எளிமையாக கற்க உதவ வேண்டும்.

(ii) செய்முறை கற்பித்தல் (Process Modeling)

செய்முறை கற்பித்தல் என்பது ஒரு முடிவை நோக்கிய செயலாகும். ஒரு கணக்கின் தகவல்களை விளக்கும்போது அந்தக் கணக்கின் படிநிலைப்பற்றி ஆழமாக சிந்திக்கும் நிலை உருவாகிறது. கணக்குகளுக்குத் தீர்வு காணும் போதும், தீர்வு காண்பதை விளக்கும் போதும் மாணவர்கள் மனதில் தோன்றுபவற்றைக் கூறுவதாகும். அதாவது மனதில் ஒரு வரைபடம் உருவாகிறது எனலாம். முதன் முறையாக கணக்கிற்கு மாணவர்கள் தீர்வு காணும் வழிநிலைகளை ஆசிரியர் கற்பிக்கும்போது, கணக்கிற்கு அதை தீர்வு காண்பவர் போலவே சொல்லித்தர வேண்டும். மாணவா்களுக்கு அதை காதால் கேட்கவும், கவனிக்கவும் தீா்வு காணல் எப்படி என்பதைப் புரிந்து கொள்ளும் வாய்ப்பை இது ஏற்படுத்தும். அதாவது சரியான பிரச்சினைகளுக்கு சரியான மற்றும் தவறான தீர்வு காணும் அணுகுமுறைகளும் கற்றுதரப் படவேண்டும். சரியான செயல்கள் மாணவர்களது கணக்கிற்குச் சரியான விடை காண உதவுபவர்கள் பயன்படுத்தக் கூடிய வழிநிலைகளை மட்டும் வழிகாட்டுதல் செய்யும். சரியில்லாத செயல்கள் மாணவாகளுக்கு சுயமாக அவாகள் பயன்படுத்தும் வழிமுறைகளில் உள்ள தவறுகளைக் கண்டுபிடித்து அவைகளை சரி செய்து கொள்ள உதவும். மாணவர்கள் தொடர்ச்சியாகக் கற்கும் போது அவர்கள் உடன்பயிலும் ஒத்த (Peer)மாணவர்களுக்கு ஒரு முன் மாதிரியாகத் திகழமுடியும். ஆரம்பக்கட்டத்தில் மாணவர்களுக்குத் தேவையான எண்ணத்தூண்டல்கள் மற்றும் வலுவூட்டல்கள் அதிக அளவில் தேவைப்படும். நாளடைவில் அவர்கள் மற்ற அடைவுபெற்ற மாணவர்களைப் போல, கணக்குகளுக்குத் திறமையாகத் தீர்வு காணவும், தானாகவே விடையைக் கண்டுபிடிக்கவும் செய்வர். ஆரம்பத்தில் வாய்விட்டு கூத்திரங்களையும், படிகளையும் கூறும் மாணவர்கள் படிப்படியாக அதை மனதிற்குள்ளேயே கூறிக்கொள்ளும் நிலை ஏற்பட்டு இறுதியில் ஒரு கணக்கை பார்த்தவுடன் மனதிற்குள் படிகளை உருவாக்கி அதற்குரிய தீர்வை மட்டும் வெளிக்கொணர அவர்கள் திறனுடையவராக மாறிவிடுவர். கணக்கிற்கு தீர்வுகாணும் செயலில் கீழ்கண்ட மூன்று படிநிலைகளில் சிந்தனையை வளர்த்துக்கொள்ள வேண்டும் அவை:

- 1. கணக்கை வாசித்தவுடன் அக்கணக்கிற்கான தீர்வு காணும் செயலை திட்டமிட்டு வளர்த்தல்
- 2. கணக்கை செய்து கொண்டிருக்கும் பொழுது அக்கணக்கிற்கான தீர்வுகாணும் செயலை திட்டமிட்டு பராமரித்தல்.
- 3. கணக்கை செய்து முடித்தவுடன், இதே மாதிரியான மற்ற கணக்குகளுக்கு இதே முறையை பயன்படுத்த முடியுமா என்ற செயலை திட்டமிட்டு மதிப்பிடல்

ஒரு கணக்கிற்கு தீர்வுகாண்பதற்கான எண்ணங்களைச் சரிபார்ப்பது மிகவும் அவசியம். எடுத்துக்காட்டாக ஒரு கணக்கை வாசித்தவுடன் கீழ்க்கண்ட வழிமுறைகளை ஒரு மாணவன் தன்னைத் தானே கேட்டு சரிபார்க்க வேண்டும்.

- 💠 நான் இந்த கணக்கை வாசித்தவுடன் முதன்முதலில் என்ன செய்ய வேண்டும் ?
- 💠 இந்தக் கணக்கினைத் தீா்வுகாண என் முந்தைய அறிவு பயன்படுமா ?
- 💠 இந்த கணக்கைச் சரியாகப் புரிந்து கொண்டேனா ?
- 💠 இதற்கான தீர்வு எந்தக் கோணத்தில் இருக்க வேண்டும் ?
- 💠 போதுமான நேரத்தில் கணக்கை முடிக்க முடியுமா ?

அந்தக் கணக்கை ஒரு மாணவன் தீர்வு கண்டு கொண்டிருக்கும் பொழுது கீழ்க்கண்ட வழிமுறைகளை தன்னிடமே கேட்டுச் சரிபார்க்க வேண்டும்.

- கொடுக்கப்பட்ட வழிமுறைகளை பின்பற்றுகிறேனா ?
- 💠 அந்த கணக்கிற்கு விடை காண எந்த செய்தி முக்கியம் ?
- சரியான விடை கிடைக்கவில்லை எனில் மாற்றுவழி என்ன ?
- 💠 🛮 இந்த கணக்கிற்கு விடை காண வேறு வழிமுறைகள் உள்ளனவா ?
- 💠 🛮 கணக்கின் கடினத்திற்கேற்ப வேகத்தைச் சரி செய்ய வேண்டுமா ?

ஒரு கணக்கிற்கு தீர்வு கண்டவுடன் ஒரு மாணவன் கீழ்கண்ட வழிமுறைகளைப் பின்பற்றவேண்டும்.

- நான் கொடுக்கப்பட்ட கணக்கிற்குத் தீர்வுகாண அனைத்து வழிமுறைகளையும் பின்பற்றினேனா?
- 💠 ஏதேனும் புதிய அணுகுமுறைகளைப் பயன்படுத்தினேனா ?
- 💠 இந்த அணுகுமுறைகளை வேறு கணக்கிற்குப் பயன்படுத்த முடியுமா ?

இவ்வாறு எண்ணங்களை மாணவர்களுக்குள் வளர்க்கும்பொழுது மாணவர்கள் கணக்கைத் தீர்ப்பதற்கான திறமைகளை மற்றும் தன்னம்பிக்கையை வளர்த்துக் கொள்ள முடியும்.

(iii) காட்சிப்படுத்துதல் (Visualisation)

காட்சிப்படுத்துதல் என்பது கூர்மையான (கூரிய) சிக்கலை வெளிப்படுத்தும் வழிமுறையாகும். இம்முறையில் மாணவர்கள் கணக்கைப்பற்றி ஒரு தோற்றத்தை (அ) உருவத்தை ஒரு காகிதத்திலோ (அ) மனதிலோ வரைவதாகும். தொகுப்பட்ட கணக்கின் முக்கிய கூறுபாடுகள் எவைஎனக் கண்டுபிடிக்கவும் அவற்றை குறிப்பிட்ட திட்டவடிவில் மேம்படுத்தவும், மாணவா்களுக்கு இம்முறையில் பயிற்சி அளிக்கப்படுகிறது. இதைச் செய்ய ஆசிரியர்கள் பல்வேறு வழிமுறைகளையும், கையாளுதல் முறைகளையும் கற்றுத்தருவது அவசியம். இருபரிமாண மற்றும் முப்பரிமாண வடிவில் கருத்துக்களை உருவகப்படுத்த வேண்டும். இதில் அடைவுத்திறன் ஒவ்வொரு மாணவர்களுக்கிடையேயும் வேறுபடும். நாளடைவில் மாணவர்கள் இதில் திறமை உடையவர்களாக மாறி அவர்களே படங்கள், பட்டியல்கள்(Tables) வரைபடங்கள்(Graphs) என பல வகைகளில் காட்சியை வெளிப்படுத்துவர். ஆரம்பக்கட்டத்தில் மாணவர்களுக்கு காகிதம், பென்சில் இவற்றை கொண்டு எவ்வாறு பயன்படுத்துவது, எப்படி மொழிபெயர்ப்பது, முடிவுகளை எவ்வாறு வெளிப்படுத்துவது என்பவை எல்லாம் கற்றுக் கொடுக்கவேண்டும். பின்னாளில் மாணவா்களுக்கு திறனடைவு ஏற்பட்டவுடன் மனதிலேயே அவா்கள் உருவமாதிாியை வரைந்து விடுவர். இதில் ஆச்சரியம் (அ) வியப்பு என்னவெனில் கொடுக்கப்பட்ட கணக்கு புதுமையாகவோ (அ) சவால்மிக்கதாகவோ இருப்பின் அவர்கள் அடிக்கடி பயன்படுத்தும் வழிநிலைகளைக் கொண்டு அவற்றை திறமையான வகையில் தீர்வு காண்பர்.

(iv) பணிமாற்றி செயல்படுதல் (Role Reversal)

பணிமாற்றி செயல்படுதல் என்பது ஒரு முக்கியமான கற்பித்தல் செயல்பாடாகும். இம்முறை மாணவர்களைச் சுயமாகச் செயல்பட வைக்கும். மாணவர்கள் கணக்கிற்குத் தீர்வு காணும் முறையில் அனுபவம் பெறப்பெற ஆசிரியர் இருக்கும் இடத்தை மாணவனே எடுத்து ஆசிரியரின் பணியை மாணவனே ஆசிரியரைப்போல் செயல்படும் முறை இதுவாகும். இம்முறையில் ஆசிரியராக மாறியுள்ள மாணவன் தலைக்குமேல் பிம்பம் வீழ்த்தியைப்(Overhead Project) பயன்படுத்தலாம் அல்லது எந்தவொரு புதிய முறையையும்

எது மாணவர்களுக்குச் சிறந்த உதவியாக இருக்கும் என எண்ணுகின்றானோ அம்முறையைப் பயன்படுத்தியும் கற்பித்தலை நடைமுறைப்படுத்தலாம். மற்ற மாணவர்களை தன்னை நோக்கிக் கேள்விகள், சந்தேகங்கள் கேட்க இவரே எண்ணத்தைத் தூண்டுவார். இம்முறையில் வகுப்பு ஆசிரியரும், மற்ற மாணவர்களைப் போல கேள்விகள் சந்தேகங்களைக் கேட்டு ஆசிரியராக நடித்துக் கொண்டிருக்கும் மாணவரைக் கற்பித்தலில் சிறந்தவராக மாற்ற உதவுவார்.

(v) செயல்திறன் பின்னூட்டம் (Performance Feedback)

- ஒரு நிகழ்ச்சியின் வெற்றிக்கு உறுதுணையாக இருப்பது செயல்திறன் பின்னூட்டம் ஆகும். அது பாடம் கற்பிக்கும்போது மாணவர்களின் வளர்ச்சியைக் கண்காணித்து அவர்களை வழிநடத்துதல்.
- 💠 ஆசிரியர்கள் மற்றும் பெற்றோர்கள் மாணவர்களது வளர்ச்சிக்கு உதவிபுரிதல்
- 💠 🛮 மாணவா்களின் திறமையை உருவகப்படுத்திக்காட்டுதல் ஆகியன ஆகும்.

மாணவர்களை மிகவும் பலப்படுத்தி காட்டவும், பயிற்சி நேரத்தில் ஆசிரியர்கள் மாணவர்களின் செயல்திறனை கூர்ந்து நோக்கவும் மற்றும் அவர்களை நன்றாக கண்காணிக்கவும் வேண்டும். ஒவ்வொரு மாணவர்களுக்கும் உடனடியாக சரியான பின்னூட்டங்கள் தரப்படவேண்டும். திரும்பத்திரும்ப அதனைச் செய்வதால் மாணவர்கள் அதில் திறமைமிக்கவர்களாகி விடுவார்கள். மாணவர்கள் குறிப்பிட்ட பழக்கவழக்கங்களை அறிந்திருக்க வேண்டும். அவர்கள் எதற்காக பாராட்டப்பட்டார்களோ அதனால் அவர்கள் திறம்பட செய்வதற்கு சுலபமாக இருக்கும். பாராட்டுதல் உண்மையாக இருக்க வேண்டும். மாணவர்களுக்குக் கட்டாயம், இவை கற்றுத்தரப்பட வேண்டும். எப்படிக் கொடுப்பது மற்றும் வலுவூட்டுவது என்பதனை அவர்கள் கற்றுக்கொள்ள வேண்டும். மாணவர்களுக்கு நன்கு கற்றுத்தந்து அவர்கள் தாங்களாகவே ஒரு கணக்கைத் தீர்க்க வல்லவராக பலப்படுத்திக் கொள்ளச் செய்தலே ஆசிரியரின் குறிக்கோளாக இருத்தல் வேண்டும்.

(vi) பகிர்வுப் பயிற்சி (Distributed Practice)

கணக்குகளை செய்யும் பயிற்சிகளில் பங்களித்தல் மற்றும் பங்கேற்றல் மூலமாக மாணவர்கள் என்ன கற்றுத் தெரிந்திருக்கிறார்கள் என்பதை அறிய முடிகிறது. கணக்குகளை தீர்வு காணும் திறனை பெற்றப் பின்பு அதனை செயல்படுத்த தெரிந்திருக்க வேண்டும். முடிவில் அவர்கள் கணக்குகளுக்கு தீர்வு காணும் திறமை மற்றும் செயல்திறன் வளர்ச்சி பெற்றவராக இருக்க வேண்டும். மாணவர்கள் செய்து கற்றலுக்கு நிறைய வாய்ப்புகள் கொடுக்கப்பட வேண்டும். அவர்கள் வேலைத்திறனை தக்க வைத்துக்கொள்ள, விடாமல் தொடர்ந்து பயிற்சி கொடுத்து கொண்டே இருக்க வேண்டும்.

"சித்திரமும் கைப்பழக்கம் செந்தமிழும் நாப்பழக்கம்" என்னும்

கூற்றுகள் பன்முறைப் பயிற்சியை வலியுறுத்துகின்றன.

(vii) **தேர்ச்சி அறிக்கை**

வெற்றி வெற்றியை கொடுக்கும் என்பதால் தேர்ச்சி திறனை பெறும் மாணவர்கள் மேன்மேலும் ஊக்கம் பெற்று முன்னேறுகின்றனர். எனவே, கல்வியின் அடுத்த நிலை அவர்களுக்கு கனிந்து வருகிறது. அதாவது தேர்ச்சி நிலை என்பது மாணவர்களை உயர்கல்விக்கு அல்லது தொடர்படிப்புக்கு வழிகாட்டுதல் செய்வதாகவே அமைதல் வேண்டும்.

ஒரு கணக்கை சரியாக விடை கண்டுபிடித்த மாணவன் அடுத்த கணக்கு போடுவதற்கு தயார் நிலையில் இருக்கிறான்.

கற்றவை

- தீர்வாய்வு உத்திகள், பட்டியலை உருவாக்குதல், முறைபடுத்தப்பட்ட வரிசையை உருவாக்குதல், அமைப்புகளை கண்டுபிடித்து உருவாக்குதல், யூகித்தல் மற்றும் சரிபார்த்தல், படங்கள் அல்லது வரைபடங்கள் வரைதல் பின்னோக்கி சரி பார்த்தல்
- 💠 தீர்வு காண விழைதல் மற்றும் விரைதல்
- 💠 வரிசைப்படுத்துதல் மற்றும் கூறுபடுத்துதல்
- 💠 திரும்ப கூறும் பயிற்சி மற்றும் பிழை திருத்தும் பயிற்சி
- 💠 வழிகாட்டி நேரிடை வினாக்கள் மற்றும் துலங்கல்கள்
- 💠 கடின நிலைக் கட்டுபாடு
- 💠 தொழில் நுட்பம்
- 💠 குழு கற்பித்தல்
- வாய்மொழி ஒத்திகை
- 💠 செய்முறை கற்பித்தல்
- 💠 காட்சிப்படுத்துதல்
- 💠 பணிமாற்றி செயல்படுதல்

- 💠 செயல்திறன் பின்னோட்டம்
- பகிர்வு பயிற்சி
- 💠 (FOPS) வரையறுத்தல்
- தீர்வு காணும் வழிமுறைகள் கணக்கை புரிந்து கொள்ளுதல், உத்திகளைத் திட்டமிடுதல், விடைகாண செயல்கள் உருவாக்குதல் மற்றும் மீள பார்த்தல்.

கற்றல் செயல்

- கழித்தல் பாடத்திற்கு ஒரு 'ஒழுங்கான வரைபடக்குறிப்பு' வரைக.
- ஒழுங்கான திட்டங்கள் சார் வழிகாட்டுதல் உத்திகளில் அடிப்படையில் கழித்தல் பாடத்திற்கு ஒரு வரைபடமும் படிநிலைகளையும் தருக.
- பாடப்புத்தகத்தில் ஒரு கணக்கை தேர்வு செய்து செய்முறை கற்பித்தல் (Process Modeling) அடிப்படையில் கற்பிக்க படிநிலைகளை பட்டியலிடு.
- பாடப்புத்தகத்தில் ஒரு கணக்கை தேர்வு செய்து காட்சிப்படுத்துதல் (Visualisation) அமைக்க

கற்றலில் இனிமை

ചെത്രെ 7

ഖത്വെക്കാര എതഥப്புகள்

(Graphic Organizer)

7.1 அறிமுகம்

வாக்கியக் கணக்குகளுக்கு (Word Problems) தீர்வு காண்பதற்குரிய மையக் கருத்துக்கள், பாடப்பொருளின் தொடர்பு, மற்றும் சரியான நுணுக்கங்களைக் கையாளுதல் போன்றவை அடிப்படையாக உணரப்படுகிறது. கணக்குகளைத் தீர்வு காண்பதற்கான அடிப்படை வழிமுறைகளைப் (மாணவர்கள்) பயன்படுத்தும் ஆற்றலில் பின்தங்கிய நிலை காணப்படுகிறது. காரணம் கணிதம் தருக்க அடிப்படையிலும் குறியீடுகள் நிறைந்தும் உள்ளதால் கல்வியாளர்களின் ஆய்வுபடி, வரைகலை அமைப்புகளோடு கணக்குகளைத் தீர்க்கும் போது இவ்வாறான கடினத்தைக் குறைக்க முடியும் என்று நம்பப்படுகிறது. ஹெர்பார்ட் ஸ்பென்ஸரின் கீழ்கண்ட கற்பித்தல் பின்னணியில் வரைகலை அமைப்பினை இங்கு காண்போம்.

- (1) தெரிந்தவற்றிலிருந்து தெரியாதவற்றிற்குப் போதல் (Known to Unknown)
- (2) எளிமையிலிருந்து சிக்கலுக்கு போதல் (Simple to Complex)
- (3) குறிப்பிட்டவற்றிலிருந்து பொதுமைப்படுத்துதல். (Particular to General)
- (4) காட்சிப்பொருள் மூலமாகக் கருத்துப்பொருள் அறிதல். (Concrete to abstract)

7.2 வரைகலை அமைப்பு (Graphics Organizers)

ஜிதேந்திரா (2002) என்பவரின் கூற்றுப்படி, வரைகலை அமைப்புகள் என்பது ஒரு பாடப்பொருளை வரைகலைமுறையைப் பயன்படுத்தி முறைப்படுத்தப்பட்டு மாணவர்கள் எளிதாக கற்றுக்கொள்ள உதவும் முறையாகும். கணக்கைத் தீர்ப்பதற்குத் தேவையான கருத்துக்கள் மற்றும் சொற்றொடர்களைப் பாடப்பொருளோடு இணைத்து மாணவர்கள் அக்கணக்கை பொருளோடு நன்கு புரிந்துகொள்ள இவ்வரைகலை அமைப்புகள் மிகவும் பயன்படுகின்றன. கணிதபாடப் பொருளை நெடுநாட்கள் மாணவர்கள் நினைவில் வைத்துக்கொள்ள இவ்வரைகலை அமைப்புகள் மெரிதும் பயன்படுகின்றன. துவக்கப்பள்ளி மற்றும் நடுநிலைப்பள்ளி மாணவர்களிடையே வரைகலை அமைப்புப் பயன்பாடு குறித்து மேற்கொண்ட ஆய்வுகளின்படி வரைகலை அமைப்புகள் கணித பாடம் கற்க மிகச்சிறந்தது என்று கண்டறியப்பட்டுள்ளது. குறிப்பாகச் சில கணக்குகளுக்கு மிகவும் பொருத்தமான

மற்றும் பின்தங்கிய மாணவர்களுக்கு பயன்படும் வரைகலை அமைப்புகள் பல கண்டுபிடிக்கப்பட்டுள்ளன.

மாணவர்களின் சிந்தனையைத் (Thinking) தூண்டவும், கணக்கைப் புரிந்து கொள்ளத் தேவையான பாடப்பொருட்களின் தொடர்புகள், ஒற்றுமைகள் மற்றும் வேற்றுமைகளை புரிந்து கொள்ளவும் வரைகலை அமைப்புகள் ஒரு மிகச்சிறந்த கருவியாகப் பயன்படுகிறது.

எடுத்துக்காட்டு 1

ஒரு பரிசுப்பொருளின் விற்பனை ஒரு குறிப்பிட்ட விழாவிற்கு முன் துவங்கப்பட்டது. அதே வாரத்தில் அந்த பரிசுப்பொருளின் விற்பனை விலை 20% குறைந்துவிட்டது. இந்நிலையில் அந்த பொருள் ரூ. 60க்கு விற்கப்பட்டது. இவ்வாறு விற்றபோதிலும், அது வாங்கிய விலையைக் காட்டிலும் 25% இலாபத்தை ஈட்டினால் விழாவிற்கு முன்னதாக அந்த பரிசுப்பொருளின் விற்பனை விலை என்ன?

மேற்கண்ட கணக்கை மாணவர்கள் புரிந்து கொண்டு அவற்றை மனதில் முறைப்படுத்துவதை கடினமாக கருதுகிறார்கள். கீழ்கண்ட வரைகலை அமைப்பு (Graphic Organiser) அவர்களுக்கு இந்தக் கணக்கை நன்கு எளிமையாக புரிந்துகொள்ளவும், அவர்களுடைய எண்ணங்களை முறைப்படுத்தவும் பயன்படுகிறது.

மேற்கண்ட வரைகலை அமைப்பானது மாணவாகளுக்கு கணக்கின் தீா்வு காண்பது என்ற விரிசிந்தனையை தூண்ட மிகவும் பயன்படும்.

எடுத்துக்காட்டு 2

$$a + a = ?$$

 $a \times a = ?$

$$a - a = ?$$

 $a \div a = ?$

என்பனவற்றை விளக்கும் வரைகலை அமைப்பு

மேற்கண்ட எடுத்துக்காட்டு 2–இல் a=5 –க்கான வரைகலை அமைப்பு

7.3 வரைகலை அமைப்பின் வகைகள்

வரைகலை அமைப்புகளை பல வகைகளில் நாம் குறிப்பிடலாம். தொடக்க நிலையில் கணிதத்தை சிறப்பாக கற்க கற்பிக்க இவ்வமைப்பு பெரிதும் பயன்படுகிறது. அவற்றை ஒவ்வொன்றாக இங்கு காண்போம்.

1. வரைகலை வரிசை அமைப்புகள் (Hierarchial Graphic Organizers)

ஒருபாடப்பொருளை அதன் முதல் வகையிலிருந்து அடுத்தடுத்த வகைகள் வரை இணைக்க இவ்வகையான **வரைகலை வரிசை அமைப்பு** மிகவும் பொருத்தமாக இருக்கும். முதற்பாடப்பொருள் மற்றும் அதன் உப கிளைகருத்துக்களை இணைக்க அம்புகுறிகள், கோட்டுத்துண்டுகள், நிறங்கள், எண்கள் மற்றும் சொற்றொடர்களைப் பயன்படுத்தலாம்.

எ–டு 1

ஒரிலக்க எண்கள்	ஈரிலக்க எண்கள்	மூவிலக்க எண்கள்	
0,1,2,3,4,5,6,7,8,9,	10,11,1299 >	100,101,102,203999	

எ−டு 2

ஓர் இலக்க எண்களில் கூட்டல்		இரண்டு இலக்க எண்களில் கூட்டல்		மூன்று இலக்க எண்களில் கூட்டல்	
5 +		15 +		237 +	
7	\rightarrow	12	\rightarrow	173	

2. வரைகலை சங்கிலி அமைப்பு (ChainGraphic Organizers)

ஒரு மையப் பாடப்பொருளை சார்ந்த மற்ற பாடப்பொருட்களையும் சங்கிலி போன்ற அமைப்புகளோடு தக்க படங்களின் மூலம் விவரிப்பதே **வரைகலை சங்கிலி** அமைப்பாகும். இவ்வகை அமைப்பைப் பயன்படுத்தும் போது மாணவர்களால் ஒரு கணிதப்பாடப்பொருளை சுற்றியுள்ள ஒத்த கருத்துக்களை சேர்த்துப்பார்க்கும் பொழுது முழுமையான விவரங்களை அறிய முடிகிறது.

3. வரைகலை அணிஅமைப்பு (Matrix GraphicOrganizer)

அணி என்பது நிரைகள் மற்றும் நிரல்கள் அமைப்பில் இருக்கும் உறுப்புகளின் தொடர்பைக் குறிப்பதாகும். அணிகளின் நிரைகள் மற்றும் நிரல்கள் அமைப்பு போன்று **வரைகலை அணி அமைப்பில்** பாடப்பொருளை அமைத்துக் கொள்ள வேண்டும்.

வடிவங்களின் வாய்ப்பாடுகள்

அளவுகள்	வட்டம்	சதுரம்	செவ்வகம்	முக்கோணம்
ប្របំបតាល <mark>្</mark>	πr² ச.அ	பக்கம் x பக்கம் ச.அ	நீளம் x அகலம் ச.அ.	1/2 X அடிப்பக்கம் X குத்துயரம் ச.அ
சுற்றளவு	2πr அலகு	4xபக்கம் அலகு	(2 (நீளம்) + 2 அகலம்) அலகு	$a\!+\!b\!+\!c$ அலகு

4 வரைகலை வலை அமைப்பு (Spider Graphic Organizer)

பாடப்பொருளின் முதன்மைக்கருத்துகளை மையமாகக் கொண்டு பிற உப கருத்துகளை அறிய உதவும் அமைப்பை வரைகலை வலை அமைப்பு எனக்கூறலாம்.

5. வரைகலை செடி அமைப்பு (Tree Graphic Organizer)

6. வரைகலை வென்பட அமைப்பு (Venn Diagram Graphic Organizer)

வெவ்வேறு கணிதபாடக் கருத்துக்களை ஒற்றுமை மற்றும் வேற்றுமைகளை குறிப்பிட இவ்வகையான வரைகலை அமைப்பை பயன்படுத்தலாம். வென்படங்களைப் பயன்படுத்துவதன் மூலம் கணித பாடக் கருத்துக்களை பருப்பொருளாக கற்றுணர முடியும்.

எடுத்துக்காட்டு

பகா எண்களும் இரட்டை எண்களும்.

இவ்வரைகலை வென்பட அமைப்பு பகா எண்கள் மற்றும் இரட்டை எண்களின் ஒற்றுமை, வேற்றுமைகளை விளக்குகிறது.

7.4 வரைகலை அமைப்பின் முக்கியத்துவம்

படைப்பாற்றல் மற்றும் நம்பகத்தன்மையுள்ள வரைகலை அமைப்புகளை தொடக்க நிலையிலேயே பயன்படுத்துவது சாலச் சிறந்ததாகும். இவ்வாறு தொடர்ந்து மாணவர்கள் வரைகலை அமைப்புக்களைப் பயன்படுத்தினால் கணிதப் பாடப்பொருளை முறைப்படுத்தவும் மனதில் பதியவைக்கவும் முடிகிறது. வரைகலை அமைப்புகளை கணிதபாட கலைத்திட்டத்தில் சேர்க்கப்பட்டிருப்பது இக்கால கட்டத்திற்கு மிகவும் பொருத்தமான ஒன்றாகும்.

7.5 வரைகலை அமைப்பின் உட்கூறுகள்

வரைகலை அமைப்பு பல உட்கூறுகளைக் கொண்டது. அவற்றில் சிலவற்றை இங்கு காண்போம்.

1. தொடர்ச்சியான வரைகலை

எ–டு

1. ஒரு கணக்கைத் தீா்ப்பதற்குக் தேவையான தொடா் செயல்களைக் குறிக்க ஒரு வாிசை படத்தை கீழ்க்கண்டவாறு பயன்படுத்தலாம்.

தீர்க்க :
$$3x + 5 = 29$$

2. கோர்வையான வரைகலை

ஒரு கோா்வையான வரைகலை அமைப்பை உருவாக்க, தரப்பட்டுள்ள பாடப்பொருள் கருத்துகளை மிகவும் தெளிவாக அளிப்பது முக்கியமானதாகும். அச்செய்திகள் தொடா்புடனும் சிதறல் இல்லாமலும் இருத்தல் அவசியமாகும்.

ஒரு கோர்வையான வரைகலை அமைப்பு இரு படிகளை கொண்டுள்ளது.

- a. தெளிவான மையக்கருத்தும் (Main Idea) துணைத் தகவல்களும்(Supporting detail) கொண்ட அமைப்பை எழுதுதல்
- b. இரண்டு அல்லது அதற்கு மேற்பட்ட தொடர்ச்சியான கருத்துக்களை இணைத்துக்காட்ட எண்களையோ, அம்புக்குறிகளையோ அல்லது கோடுகளையோ பயன்படுத்துதல்.

கணிதப்பாடத்தில் உள்ள மைய மற்றும் கணக்கின் தீர்விற்கு உகந்த கருத்துக்களை கற்பித்தலில் மாணவர்களுக்கு சிரமமாக இருக்கும் நிலையில் ஆசிரியர்கள் கோர்வையான வரைகலை அமைப்பை உருவாக்க நேரடி போதனா முறையைக் கையாளுதல் வேண்டும்.

நேரடி போதனா முறை (Direct Instruction) என்பது கீழ்க்கண்ட முக்கிய உட்கூறுகளை உள்ளடக்கியதாகும்.

- (i) மீள்பார்வை (Review)
- (ii) சமர்ப்பித்தல் (Presentation)
- (iii) வழிகாட்டும் பயிற்சி (Guided Practice)
- (iv) திருத்தங்கள் மற்றும் பின்னூட்டம் மதிப்பீடு (Corrections and feedback)
- (v) தன்னிச்சையாக பயிற்சி பெறுதல் (Independent Practice)
- (vi) வார மற்றும் மாத மீள்பார்வை ((Weekly and Monthly Revision)

3. ஒருங்கமைக்கப்பட்ட வரைகலை

ஒருங்கமைக்கப்பட்ட வரைகலை அமைப்புகளை ஆசிரியர்கள் புதுமையான அணுகுமுறை மூலம் கற்பிப்பதால் மாணவர்களிடம் கற்றலில் ஆர்வம் ஏற்படுகிறது.

வரைகலை அமைப்புகளைப் பயன்படுத்துவதற்கான பயிற்சி ஆசிரியர் நேரிடை அணுகுமுறை (Teacher Directed) மற்றும் மாணவர் நேரிடை (Students Directed) அணுகுமுறைகளை கொண்டதாகும். தொடக்க நிலையில் அவ்விரண்டு அணுகுமுறைகளும் பயன் உள்ளதாக இருக்கும். நாம் இப்போது அந்த இரு அணுகு முறைகளையும் காண்போம்.

1. ஆசிரியர் நேரிடை அணுகுமுறை (Teacher Direct approach)

ஒரு கணிதக் கருத்தை கற்பிப்பதற்காக உருவாக்கப்பட்ட செயல்பாடுகளில் விடுபட்ட இடங்களை பூர்த்தி செய்வதற்கான குறிப்புகளை கொடுத்து அவற்றை முழுமையடைய செய்யும் அணுகுமுறை ஆசிரியர் நேரிடை அணுகுமுறை எனப்படும். அதாவது முழுமையடையா அமைப்புகளை பூர்த்தி செய்தல் என்பதே இதன் அடிப்படையாகும். இங்கு ஆசிரியர் ஓர் ஏதுவாளராக (facilitator) செயல்படுவார்.

எடுத்துக்காட்டு

கீழே கொடுக்கப்பட்டுள்ள வரைகலை அமைப்பை எவ்வாறு பூர்த்தி செய்யலாம்.

படிகள்

- 💠 கொடுக்கப்பட்ட தகவல்களை வாசிக்கச் செய்தல்.
- ஆசிரியர் சில குறிப்பிட்ட தகவல்களை நேரிடையாக மாணவர்களுக்கு அளித்து வழிகாட்டுதல்.
- 💠 மாணவர்கள் அந்த வரைகலை அமைப்பைப் பூர்த்தி செய்தல்.
- 💠 பூர்த்தி செய்த வரைகலை அமைப்பை சரிபார்த்தல்.
- முழுமையடையா வரைகலை அமைப்பினை முழுமை அடையச் செய்யும் திறனை மதிப்பிடல்.

2. மாணவர் – நேரிடை அணுகுமுறை (Student - Direct Approch)

மாணவர்களுக்குக் கொடுக்கப்பட்ட வரைகலை அமைப்பைப் பூர்த்தி செய்வதில் மாணவர்களின் பங்கு மற்றும் பொறுப்பைத் தூண்டுவது மாணவர்– நேரிடை அணுகுமுறையின் நோக்கமாகும். இங்கு ஆசிரியரின் மேற்பார்வையில் மாணவர்களே முழு பொறுப்புடன் செயல்படுகின்றனர். கொடுக்கப்பட்டிருக்கும் வரைகலை அமைப்பில் வழிகாட்டுதலுக்கான (Clues) தகவல்கள் ஏதும் இருக்காது. எனவே மாணவர்கள் தனது முழுமையான தனித்துவத்தை வெளிப்படுத்துவதற்கான வாய்ப்புகள் அதிகமாக உள்ளன.

எடுத்துக்காட்டு

 $(a+b)^2 = a^2 + 2ab + b^2$ என்ற சூத்திரத்தை வரைகலை அமைப்பின் மூலம் உணர்த்த, ஆசிரியர் முழுமையடையா வரைகலை அமைப்புகளை தனித்தனியாகக் கொடுத்து மாணவர்களை பொறுப்புடன் பங்கேற்க வைத்து அதை பூர்த்தி செய்யத்தூண்டுவதாகும்.

மேற்கண்ட முழுமையடையா வரைகலை அமைப்பை மாணவர்கள் சூத்திரத்திற்கேற்ப பூர்த்தி செய்தல் வேண்டும். இவ்வாறான மாணவர் – நேரிடைச் செயல்களின் போது ஆசிரியர் கண்காணிப்பளராகவும் வழிகாட்டியாகவும் (Guide) ஏதுவாளராகவும் (Facilitator) இருத்தல் வேண்டும்.

மாணவர்களின் அறிவுத்திறன் மற்றும் தேவைகளுக்கு ஏற்ப கணித நோக்கக்கூறுகளை அடைய வரைகலை அமைப்பின் ஏதாவது ஒரு அணுகுமுறையைப் பயன்படுத்த ஆசிரியர்களே தீர்மானிக்கலாம். ஆசிரியர் – நேரிடை அணுகுமுறையை பயன்படுத்தும்போது, கீழ்க்கண்டவற்றை மனதில் கொள்ளலாம்.

- 1. கற்பித்தல் வேகத்தைக் கட்டுப்படுத்தல்.
- 2. கற்பித்தலின் போது அதற்கான பின்னணி தகவல்களைச் சேகரித்தல்.
- 3. பாடப்பொருளுக்கு ஏற்றவாறு முழுவிவாதத்தை ஊக்குவித்தல்.

மாணவர் நேரிடை அணுகுமுறையில் கவனிக்க வேண்டியவை

1. ஒவ்வொரு மாணவனுக்கும் தனிக்கவனம் செலுத்துதல்

2. பாடப்பொருளைப் புரிந்து கொள்ளத் தேவையான செய்திகளை அல்லது தகவல்களை மாணவர்கள் கண்டுபிடிக்க சில பொருத்தமான குறிப்புகளை (Clues) அளித்தல்.

வரைகலை அமைப்பின் வளர்ச்சி

ஹார்டன் மற்றும் லாவிட் (1994) வரைகலை அமைப்பின் வளர்ச்சிக்கு நான்கு படிநிலைகளை பரிந்துரை செய்கின்றனர்.

படிநிலை 1

கடினப்பகுதியைக் கண்டறிதல்

மாணவாகள் கடினமாக உணரும் பாடப்பொருளுக்கு உகந்த வரைகலை அமைப்புகளை உருவாக்கி கற்பித்தல்.

படிநிலை 2

அலகுகளாகப் பிரித்தல்

அவ்வாறு தேர்வு செய்த பாடப்பொருளை சிறுசிறு பாடப்பொருள் கொண்ட அலகுகளாகப் பிரித்தல்.

படிநிலை 3

பாடப்பொருளை உருவாக்குதல்

எந்த தகவல் மாணவாகளைச் சென்றடைய வேண்டுமோ, அதனை இலக்காக அடையத் தேவையான முக்கிய கருத்துகளையும் பாடப்பொருளையும் உருவாக்குதல்.

படிநிலை 4

வரைகலை அமைப்பைத் தெரிவு செய்தல்

பாடப்பொருளை அல்லது பாடக்கருத்தைச் சிறப்பாக மாணவர்களுக்குக் கற்பிக்க அப்பாடக்கருத்திற்கு பொருத்தமான வரைகலை அமைப்பு ஒன்றை தெரிவு செய்தல்.

7.6 வரைகலை அமைப்பு வளர்ச்சியில் கணினியின் பங்கு

வரைகலை அமைப்பின் வளர்ச்சியில் கணினியின் பங்கு மகத்தானது. கணினி வசதி உடைய பள்ளிகளில் வரைகலை அமைப்புகளை கணினி உதவியுடன் மாணவர்களுக்குச் சிறப்பாக கற்பிக்க இயலுகிறது. ஆசிரியர்கள் வரைகலை அமைப்பை முறைப்படுத்தப்பட்ட பல உட்கூறுகளாகக் கொண்டு, அனிமேஷன் (Animation) மூலம் வரைகலையின் ஒவ்வொரு உட்கூறாக மாணவர்களுக்கு விளக்க முடியும். இதில் ஆசிரியர் பின்னணி விளக்க உரை (Background voice) மற்றும் காட்சிகள் (Visual) உதவியுடன் கணினி மூலம் இந்த வரைகலை அமைப்பை கணிதம் கற்பிக்க பயன்படுத்த முடியும். இதையே நாம் மின்வரைகலை அமைப்பு (e-Graphic Organizer) எனக் கூறுகிறோம். இணையதள உதவியுடன் இதனை நாம் மேற்கொள்ளலாம்.

எடுத்துகாட்டு: ஜாவா ஆப்லெட்ஸ் (Java Applets) போன்ற இணையதள முகவரிக்குச் சென்று கணிதப்பாடப்பொருளை (தொடக்கநிலை மற்றும் நடுநிலை) மிகவும் சிறப்பாக கற்பிக்க முடியும். மேலும் www.inspiration.com என்ற முகவரியிலும் இந்த வரைகலை அமைப்பு குறித்து அறியலாம். இவ்வாறான மின்–வரை கலை அமைப்பின் மூலம் கணிதத்தைப் கற்பிக்கும் போது, மாணவர்களின் ஆர்வமும் நாட்டமும் வளர்கின்றது. ஆசிரியர்களாகிய நாம் இன்றைய தொழில்நுட்ப புரட்சி யுகத்தில் தொழில்நுட்பங்களை பயன்படுத்தாமல் கற்பிக்க முயல்வது அறியாமையாகும்.

7.7 காட்சிநிலை – மாதிரிநிலை – கருத்தியல் நிலை அணுகுமுறை (Concrete - Representational - Abstract Approach)- CRA அணுகுமுறை

கணித கற்றலை முழுமைப்படுத்துவதற்கு காட்சிநிலை – மாதிரி நிலை – கருத்தியல் நிலை அணுகுமுறை (CRA) பயன்படுகிறது. இம்முறையில் மூன்று கூறுகள் உள்ளன. அவை காட்சி நிலை (Concrete) மாதிரி நிலை (Representation) மற்றும் கருத்தியல் நிலை (Abstract) ஆகும்.

இம்மூன்று கூறுகளும் கற்றல் மேலாண்மைத் திறனை வளர்க்கிறது. ஒவ்வொரு கூறும் நினைவாற்றல் மற்றும் அறிவுச்சார்ந்தவற்றை மேம்படுத்துகிறது.

காட்சி நிலை: கருத்துப் பொருளைக் காட்சிப் பொருட்கள் மூலம் விளக்கும்போது அது காட்சி நிலையாகிறது. அதாவது, கணிதக் கருத்துக்களைக் கற்பிப்பதற்கு திண்மான அல்லது துல்லிய பொருட்களை பயன்படுத்துதல் இன்றியமையாதாகும்.

எடுத்துக்காட்டு : இரண்டு புத்தகங்கள், ஐந்து பேனாக்கள், வட்டத் தட்டு, சிகப்பு துண்டு , கன சதுரம்

மாதிரி நிலை: கையாள முடியாத திண்மப் பொருட்களை மாதிரியாக வடிவமைத்து அளிப்பதே மாதிரி நிலையாகிறது.

எடுத்துக்காட்டு : உலக உருண்டை, வரைபடம்

கருத்தியல் நிலை: ஒரு கருத்தை (Concept) பருப்பொருளின்றி விளக்க முடியாத நிலை கருத்தியல் நிலையாகும்.

எடுத்துக்காட்டு : எண்களை பொருட்களின் துணையோடு கற்பித்தல்.

7.8 CRA மூலம் பின்னத்தைக் கற்பித்தல்

எடுத்துக்காட்டு

காட்சிநிலை

8 பகுதிகளைக் கொண்ட பின்ன வட்டை எடுத்துக்கொள்க. இதில் 3 துண்டுகள் குறிக்கும் பின்னம் எட்டில் மூன்று ஆகும். இதனைக் காட்சி நிலையில் பின்வரும் படத்தின் மூலம் அறியலாம்.

மாதிரி நிலை

8 பகுதிகளைக் கொண்ட பின்ன வட்டுகளின் படங்களைக் கொண்ட அட்டைகளின் எடுத்துக்கொள்க. அதில் எட்டில் மூன்றைக் குறிக்கும் பின்னத்தை வண்ணமிடச் செய்து அறியலாம்.

கருத்தியல் நிலை

மொத்தப்பகுதிகளான எட்டு பாகங்களில் மூன்று பாகங்களை மட்டும் குறிப்பதை $\frac{3}{8}$ என்று குறிப்பிடுகிறோம். இதில் 3 என்பது தொகுதி, 8 என்பது பகுதியாகும். பின்னத்தில் வரும் நடுக்கோடு தொகுதியையும், பகுதியையும் பிரித்து காட்டுகிறது. அதாவது, $\frac{3}{8}$ – ஐ மூன்றின் கீழ் எட்டு என்று படித்தல் வேண்டும். இதுவே, தகாபின்னத்தை கற்றுகொள்வதற்கு அடிப்படையான கருத்தாகும். எட்டில் மூன்று என்பதை மூன்றின் கீழ் எட்டு என புரிந்துகொண்டு பயன்படுத்துவதை கருத்தியல் நிலை என்கிறோம். கருத்தியல் நிலை தொடர் கற்றலை ஏற்படுத்தி கணித மனப்பான்மையை வளர்க்கிறது. (Mathematising)

கற்றவை

- 💠 வரைகலை அமைப்பு
- 💠 🛮 வரைகலை அமைப்பின் வகைகள்
- 💠 கடினப்பகுதியை கண்டறிதல்
- CRA அணுகுமுறை

கற்றல் செயல்

வரைகலை அமைப்புகள் (Graphic Organizer)

- 💠 எண் பெருக்கலுக்கான வரைகலை அமைப்பு தருக.
- (a b)² = a² 2ab + b² என்ற சூத்திரத்தை மாணவர்களுக்கு
 விளக்க ஒரு வரைகலை அமைப்பு தயார் செய்க.

அலக 8

ஒப்பார்குமு கற்பித்தல்

(Peer Tutoring)

8.1 அறிமுகம்

கணிதப் பாடம் கருத்துச் செறிவு நிறைந்த பாடம். இப்பாடம் கற்றுக் கொள்ள மாணவர்களின் கவனிக்கும் திறன், புரிந்து கொள்ளும் திறன், பயன்படுத்தும் திறன் மூன்றும் மிக முக்கியம். கணிதப்பாடத்தை ஆசிரியர் கற்பிக்கும் போது ஒரு நொடிப்பொழுது கவனச்சிதறல் ஏற்பட்டாலும் அந்தக் கருத்து புரியாமல் போகவும் வாய்ப்புள்ளது. எனவே ஒவ்வொரு மாணவனுக்கும் ஆசிரியரின் தனிக் கவனத்துடன் கற்பித்தல் தேவைப்படுகிறது. கற்பித்தல் என்பது கற்றலுக்குத் துணை போகும் ஒரு செயலாகும். கற்றல் பல வழிகளில் நடைபெறும். அவற்றை மூன்று பிரிவுகளாக வகைப்படுத்தலாம். அவை

- (i) ஆசிரியர் மாணவர் முறை (Teacher Vs Pupil Approach)
- (ii) துணைப்பொருள்கள் மாணவர் முறை (Material Vs Pupil Approach)
- (iii) மாணவர் மாணவர் முறை (Pupil Vs Pupil Approach)

மேலும், மாணவாகள் குழுக்கள் குழுக்களாக நட்புறவுடன் செயல்படுவதை நாம் கண்கூடாக பாா்க்கிறோம். இவ்வாறான இயல்பூக்கத்தின் அடிப்படையில்தான் ஒப்பாா்குழு கற்பித்தல் அணுகுமுறை அமைந்துள்ளது.

8.2 ஒப்பார்குழு கற்பித்தல் – பொருளாக்கம்

மாணவாகள் தங்களுக்குள் குழு அமைத்துக் கற்றலுக்கு உதவி செய்யும் உத்தி ஒப்பாா்குழு கற்பித்தல் அணுகுமுறை எனப்படுகிறது. ஒப்பாா்குழு என்பது ஒத்த வயது அல்லது ஒத்த நிலை மாணவா்களைக் குறிக்கிறது.

ஆன்டிரீவ் பெல் என்பவர் முதன்முதலில் முறையான ஒப்பார்குழு கற்பித்தல் முறையை அறிமுகப்படுத்தினார். இங்கிலாந்தில் ராணுவத்தில் கண்காணிப்பாளராக இவர் பணியாற்றினாார். அங்கு போரில் தந்தையை இழந்த மாணவர்களுக்கு ஒரு பள்ளி ஆரம்பிக்கப்பட்டது. குழந்தைகள் மணலில் வரைவதைப் பார்த்தார். மணியை எழுது பொருளாக தன் பள்ளியில் அறிமுகப்படுத்தினார்.

1791–92ல் பெல் அந்தப் பள்ளியில் வகுப்புகள் முறையை மாற்றி அமைத்தார். கற்றல் அடைவை அளவாக வைத்து மாணவர்களைக் குழுக்களாகப் பிரித்தார். நன்கு படிக்கும் மாணவர்களை பிற மாணவர்களுக்குக் கற்றுத்தரப் பயன்படுத்தினார். அவர் பிரித்த

வகுப்பறையில் பாதி மாணவர்கள் பிற மாணவர்களுக்குக் கற்றுத்தரும் நிலையில் இருந்தனர். ஆசிரியர்கள், மாணவர்கள் கற்றலுக்கு துணைபுரிபவராகவும், கற்பிக்கும் மாணவர்கள் கண்காணிப்பவராகவும் இருந்தார்கள்.

லேன்கேஸ்டர் (Lancaster - 1801) என்பவர் பெல்லின் முறையில் சிறு மாற்றம் கொண்டுவந்தார். தன்னுடன் பயிலும் மாணவர்களுக்குக் கற்பிப்பவருக்கு கற்றல் பொருட்களையும், அவற்றைப் பயன்படுத்தும் முறை அடங்கிய குறிப்பையும் கொடுத்தார். குறிப்பேட்டில் உள்ள வினாக்களுக்கான விடையையும் குறிப்பிட்டிருந்தார்.

வில்லியம் ஃபௌல் (William Fowl) என்பவரும் ஒப்பார்குழு கற்பித்தலுக்கு பங்களித்துள்ளார். அவர் மாணவர்கள் பெரியவர்களிடம் கற்பதை விட ஒப்பார்குழு கற்பித்தலில் அதிக அடைவைப் பெறுகின்றனர் எனக் கூறினார்.

8.3 ஒப்பார்குழு கற்பித்தல் அணுகுமுறை பற்றிய முன்னோட்டம்

டேமன் மற்றும் பெல்பஸ் (Damm and Phelps - 1989) என்பவர்கள் மீத்திறன் மிக்க மாணவர்கள் கொண்ட குழு கற்பித்தல் முறையை ஒப்பார்குழு கற்பித்தல் என்கின்றனர். அதாவது, ஒப்பார்குழு கற்பித்தல் ஒத்த வயதுள்ள மாணவர்களிடையே நடைபெறும் கற்பித்தல் செயலைக் குறிக்கும் என கூறுகின்றனர்.

காஸ்டட்(Gausted) (1993) கூற்றுப் படி ஒப்பார்குழு கற்றலில் சில நேரங்களில் கற்பிக்கும் மாணவன் கற்கும் மாணவனை விட வயதில் பெரியவனாக இருக்கிறார் என்றும் கூறுவதுண்டு; இதில் வரும் செயல்பாடுகளை பட்டியலிட்டு அறிந்து கொள்ளலாம்.

டேமன் மற்றும் பெல்பஸ் ஆகியோர் ஒப்பார்குழு கற்பித்தலை பல்வேறு மாணவர்களைக் கொண்ட குழுக்களில் ஏற்படும் கற்பித்தலை குறிக்கிறது என்றும் கூறுகின்றனர். ஏனெனில் சில நேரங்களில் கற்போர் கற்பிப்பவரை விட இரண்டு அல்லது மூன்று வயது பெரியவராக இருப்பர்.

ஒப்பார்குழு கற்பித்தலும் பல்வேறு வயது மாணவர் கற்பித்தலும் ஒன்றோடொன்று தொடர்புள்ளமையால் இதனை "ஒப்பார்குழு கல்வி" (Peer Education) "பங்கேற்பு கற்றல்" (Partner Learning) "ஒப்பார்குழு கற்றல்" (Peer Learning) "மாணவன் – கற்பித்தல் – மாணவன்" (Child - Teach -Child) "கற்பித்தல் மூலம் கற்றல்" (Learning through teaching) என பலவிதமாக குறிக்கலாம் என்று பிர்ட்ஸ், டிக்ஸான் மற்றும் மெக்கலின் (Britz, Dixon, McLaughlin) (1989) ஆகியோர் கூறுகின்றனர். ஒப்பார்குழு கற்பித்தலை "இணைந்து கற்றல்" (Cooperative Learning)என வேக்னர் (Wagner) (1982) குறிப்பிடுகிறார்.

8.4 ஒப்பார்குழு கற்பித்தல் முறை – கருத்தாக்கம்

இம்முறையானது இங்கிலாந்தில் அறிமுகமாகி 300 ஆண்டுகளாக நடைமுறையில் உள்ளது. கற்போர் அடிப்படையில் குழு கற்பித்தல் மூன்று வகைப்படும். அவை

- (i) ஒப்பார்குழு (Peer Group)
- (ii) ஒவ்வார்குழு (Reciprocal Peer Group)
- (iii) பல் வயதினர் குழு (Cross age Group)

மாணவர் மைய கல்வி முறை என்பதால் குழுக்களுக்கேற்றவாறு கற்பித்தல் அணுகுமுறை அமைந்துள்ளது.

8.4.1 ஒப்பார்குழு கற்பித்தல் அணுகுமுறை

ஒத்த வயதினரை (அ) ஒரே வகுப்பினரைக் கொண்ட குழு ஒப்பார்குழு எனப்படும். உளவியல் அடிப்படையில் பார்க்கும் போது இக்குழு தாமாகவே உருவாகிறது. குழுவினர் தங்களுக்குள்ள பொறுப்பை தாமாகவே எடுத்துக்கொண்டு செயல்படுவர். (Role of Responsibility) அனைவருடைய பங்கேற்பும் பங்களிப்பும் இணக்கமான முறையில் இருப்பதை காணலாம். இச்சூழல் கற்றல் கற்பித்தல் செயல்பாடுகளுக்கு ஏற்புடையதாகும். மேலும் கற்றலுக்கான ஆயத்த நிலையை இங்கு காணலாம். அவர்கள் போக்கிலேயே கற்றல் செயல்பாடுகளை அமைத்துக் கொண்டால் கற்றலில் சுமை இருக்காது; மாறாக சுவையுள்ளதாக அமையும். செயல்வழிகற்றல் வகுப்பறைகளில் இம் மாதிரியான குழுக்களைப் பார்க்கலாம். இதனை நட்புக் குழு (Friends Group) என்றும் கூறுவர். மாணவர்கள் விருப்பத்தோடு செயல்படுவதால் கற்றலில் மகிழ்ச்சி ஏற்படுகிறது. இங்கு ஆசிரியர் பங்களிப்பு மிகக்குறைந்த அளவு இருக்கும். மாணவர்கள் தங்களுக்குள் கருத்துப்பரிமாற்றம் செய்து கொண்டு கற்கின்றனர்.

- (எ–டு) (i) எண்களை வரிசையாக எழுதுதல் வரிசை தவறிய எண்களை உடனுக்குடன் சக நண்பர்கள் சரி செய்கின்றனர்.
 - (ii) வாய்பாடுகள் கூறுதல்
 - (iii) வாக்கியக் கணக்குகளை செய்தல்

8.4.2 ஒவ்வார்குழு கற்பித்தல் அணுகுமுறை

ஆசிரியர் மாணவர்களை குழுக்களாகப் பிரிக்கும் போது ஒவ்வார்குழு அமைகிறது. . இக்குழுவிற்கு ஒரு தலைவர் இருப்பார். ஆசிரியருக்கு உதவும் கரங்களாக குழுத்தலைவர் செயல்படுவார். தொடர்பணிக்காக கொடுக்கப்பட்டிருக்கும் ஒப்படைப்புகளை சரிபார்த்தல் போன்ற பணிகளில் குழுத்தலைவரே ஆசிரியரின் மேற்பார்வையில் செயல்படுவார். தலைமைப் பண்பு இயல்பாக உள்ள மாணவர்களுக்கு குழுக்களில் தலைமைப் பொறுப்புக் கொடுப்பதால் அவர்களது தன்னெடுப்பூக்கம் (Self - assertion) விரும்பத் தக்க வகையில் மடைமாற்றம் செய்யப்படுகிறது. மேலும் மெதுவாகக் கற்போருக்கும் வழிகாட்டுதல் கிடைக்கிறது. பிற மாணவர்கள் பன்முறை பயிற்சி பெறுகின்றனர். எனவே, அனைத்து மாணவர்களுமே கற்றல் செயலில் ஈடுபடுகின்றனர் எனலாம்.

(எ–டு) திட்டம் சாரா அளவைகள்

8.4.3 பல் வயதினர் குழு கற்பித்தல் அணுகுமுறை

1 முதல் 5 வகுப்பு வரையில் பல வகுப்பு மாணவர்களைக் கொண்ட குழுக்களாகப் பிரித்துக் கொண்டு கற்பிக்கும் முறைக்கு பல்வகுப்பினர் குழு கற்பித்தல் என்று பெயர். தொடக்கநிலையில் பாட அமைப்பு வட்ட சுருள் அமைப்பில் உள்ளதால் பொதுவான திறன்களுக்கான பாடப்பகுதிகள் உள்ளன. இக்குழுக்களில் ஒத்த திறன்களுக்கான பாடப் பகுதிகள் கற்பிக்கப்படுகின்றன. செயல் வழிக் கற்றல் முறையில் இத்தகைய குழு கற்பித்தல் நடைபெறுகிறது.

எ–டு பெருக்கல் செயல்

ஒரு குழுவில் ஓரிலக்க எண்ணால் ஓரிலக்க எண்ணைப் பெருக்குதல் என்ற திறனில் ஆரம்பித்து ஐந்திலக்க எண்வரை பயன்படுத்தும் கணக்குகள் கற்பிக்கப்படுகின்றன. ஆசிரியர் துணையுடன் கற்றபின் மாணவர்கள் குழுக்களாக செயல்பாடுகளில் ஈடுபட்டு கணக்கிடும் திறனில் பயிற்சி பெறுகின்றனர். இங்கு கற்றல் தொடர்ந்து நடைபெறுகிறது. கற்றலில் தடை ஏற்படும் பொழுது சக மாணவர்கள் கற்றலுக்கு உதவி செய்கின்றனர். இங்கு ஆசிரியர் செயல்பாடு ஓரளவுதான் தேவைப்படுகிறது.

8.5 ஒப்பார்குழு கற்பித்தல் அணுகுமுறையின் செயலாக்கம்

இம்முறையை நடைமுறைப்படுத்துவதன் முக்கிய நோக்கம் அனைத்து மாணவர்களிடமும் கற்றல் அடைவு ஏற்படவேண்டும் என்பதே ஆகும். இந்த அணுகுமுறையின் அடிப்படை விதிகளில் சிலவற்றை இங்கு காண்போம்.

- 💠 மீத்திறன் மிக்க மாணவர்களுக்கு முறையாக ஆசிரியர் பயிற்றுவிக்க வேண்டும்.
- 💠 குழுக்களை அமைப்பதில் தனிக் கவனம் செலுத்தவேண்டும்.
- ஒப்பார்குழு மாணவர்கள் கற்பிக்கும் போது பொருத்தமாக கற்பித்தல் பொருட்களை கையாள வேண்டும்.
- ஆசிரியர் கற்றுக் கொடுத்த பாடத்தையே ஒப்பர்குழு மாணவர்கள் கற்றுத்தந்து
 அடைவைச் சோதிக்க வேண்டும்.
- 💠 ஆசிரியர் வழிகாட்டுதலின் பேரில்தான் கற்பித்தலைத் துவக்க வேண்டும்.
- குழுவில் கற்றல், கற்பித்தல் சிறப்பாக நடைபெறுகிறதா என ஆசிரியர் கண்காணித்து மதிப்பீடு செய்ய வேண்டும்.

குழுக்களில் மாணவர்கள் கற்க உதவி செய்யும் குறிப்புகள்

 கற்றுக் கொடுப்பவர் கற்பவருக்கு உதவி தேவைப்படும் பொழுது மட்டும் உதவி செய்தால் போதும்.

- கற்பிக்கும் மாணவர் நேரடியாக விடையைக் கூறாமல் அதை கண்டுபிடிக்கும் வழியைக் குறிப்புகளாக (Clues) வழங்க வேண்டும்.
- கருத்தைக் கூறப் பயன்படுத்தும் விளக்கம் திருப்தி அளிக்கவில்லையெனில் வேறு விளக்கமளிக்கலாம்.
- கருத்தைப் புரியவைக்கக் கூறிய விளக்கம் அவருக்கு சின்றடைந்ததா என உறுதிப்படுத்தவேண்டும்.

(எ–டு) ஒப்பார்குழு கற்பித்தல் உத்தியில் மூன்றாம் வகுப்பு பின்னம் என்ற கருத்தை எவ்வாறு கற்றுக்கொள்கிறார்கள் எனப் பார்ப்போம்.

பின்னத்தாளைக் கொண்டு ஆசிரியா் பின்னம், பகுதி, தொகுதி போன்ற கருத்துக்களை கற்றுக் கொடுத்தபின் மாணவா்கள் 3 போ் கொண்ட குழுக்களாகப் பிரிந்து கொள்கின்றனா்.

i) படம் **(1)** குறிக்கும் பின்னத்தை எழுதுக. மூவரும் விவாதித்து $\frac{1}{4}$ என எழுதுகின்றனர்.

ii) $\frac{2}{3}$ –ஐக் காட்டும் பாகத்தை நிழலிட்டு காட்டுக.

தங்கள் குறிப்பேடுகளில் மாணவாகள் குறித்துக் கொள்கின்றனா். தவறாக செய்பவருக்கு அங்கு வழிகாட்டுதலும் நடைபெறுகிறது.

iii) பகுதி, தொகுதி எழுதுக :
$$\frac{5}{7}$$

தொகுதி– 5, பகுதி –7 என எழுதாத மாணவருக்கு சக மாணவர்கள் ஆசிரியரிடம் கேட்டு வழிகாட்டுவார்கள்.

iv) பின்னங்களை அமைத்துக் காட்டுக :–

v) கொடுக்கப்பட்டுள்ள பின்னங்களுக்கு படம் வரைந்து காட்டுக.

8.6 ஒப்பார்குழு கற்பித்தலின் பயன்கள்

- ஆசிரியர் கற்பிக்கும்போது உள்ள ஈடுபாட்டை விட ஒப்பார்குழு மாணவர்கள் கற்கும் போது மாணவர்களிடையே ஈடுபாடு அதிகமாக உள்ளது.
- கற்பிக்கும் மாணவர்களுக்குத் தன்னம்பிக்கை வளர்கிறது. பாடப்பொருளில் நல்ல தெளிவு கிடைக்கிறது. எனவே இது கற்பவர், கற்பிப்பவர் இருவருக்கும் பயனளிக்கும் வகையில் உள்ளது.
- ஒவ்வொரு மாணவருக்கும் தனிக்கவனம் செலுத்த முடியாத நிலையில் இம்முறை ஆசிரியர்களுக்குப் பயனுள்ளதாக உள்ளது.
- 💠 மெதுவாகக் கற்கும் மாணவாகள் தனிக்கவனம் செலுத்தப்படுகின்றனா்.
- ஆசிரியரை விட ஒப்பார்குழுவில் கற்பிப்பவருக்கு கற்கும் மாணவர்கள் அதிகமாகப் பதிலளிக்கின்றனர்.
- 💠 மாணவா்களிடையே நட்புறவு வளா்கிறது.
- கருத்துத் தெளிவு கிடைத்து மெதுவாகக் கற்போர் பதிலளிக்கும் போது அவர்களுக்கு தன்னம்பிக்கை பிறப்பதோடு கற்றலில் ஆர்வம் ஏற்படுகிறது.
- மாணவர்கள் தன் நிலையில் பயிலும் மாணவர்களுக்கு கற்றுத் தரும்போது அவர்களின் நிலைக்குக் கருத்தை எளிமைப்படுத்தி கற்பிக்கின்றனர்.

மேற்கூறிய பயன்களை உற்று நோக்குங்கால், இம்முறை கணிதப்பாட கற்பித்தலுக்கு மிகவும் உகந்ததொரு முறை என அறியலாம்.

8.7 நினைவூட்டுக் கற்பித்தல் உத்தி

வரையறை

ஒரு புதுக்கருத்தை கற்கும்போது மாணவர்களின் நினைவுத் திறனை மேம்படுத்த உதவும் உத்தியே நினைவூட்டுக் கற்பித்தல் உத்தியாகும். ஏற்கனவே தெரிந்த செய்தியுடன் புதுத் தகவலை காட்சி மற்றும் ஒலி இணைக்கிறது. இந்த உத்தியானது மீத்திற மாணவர்கள், சராசரி நிலையில் உள்ள மாணவர்கள், ஓரளவு குறைபாடு உள்ள மாணவர்கள் ஆகிய அனைவரிடமும் எதிர்பார்க்கும் கற்றல் விளைவை கற்றல் ஏற்படுத்துகிறது என நிரூபிக்கப்பட்டுள்ளது. சொற்கள் மற்றும் பாடப்பகுதியை நினைவு கூற முடியாத மாணவர்களுக்கு இந்த உத்தி மிகவும் பயனுள்ளது. நினைவூட்டுகற்பித்தல் உத்தியை மூன்று அடிப்படைப் பிரிவுகளாக பிரிக்கலாம்.

- 1. முக்கிய வார்த்தை உத்தி (Key Word Strategy)
- 2. ஒத்த ஓசை உத்தி (Pegword Strategy)
- 3. வாக்கியம் (அ) எழுத்து உத்தி (Letter Strategy)

8.7.1 நினைவூட்டுக் கற்பித்தல் உத்தியை நடைமுறைப்படுத்துதல்

மாணவர்களுக்கு எந்த கருத்துகளை முக்கியமாக நினைவில் கொள்ள வேண்டும் என்று கூறுவதோடு எவ்வாறு நினைவில் வைத்துக்கொள்ளலாம் என்றும் கற்பிக்க வேண்டும்.

- 💠 நினைவுக் குறிப்புகளைத் தாமே உருவாக்க வேண்டும்.
- நினைவூட்டுக் கற்பித்தல் உத்தியின் வழிமுறைகளையும் தெரிந்துகொள்ள வேண்டும்.
- அனைத்துப் படிகளையும் பயன்படுத்த அறிந்து கற்றுக் கொள்ளும் வரை தொடர்ந்து பயிற்சி அளிக்க வேண்டும்.
- கற்ற கருத்தை மீண்டும் சரியாக நினைவுப்படுத்துவதற்கு முடிகிறதா என
 ஆசிரியர் உறுதிப்படுத்த வேண்டும்.

8.7.2 முக்கிய வார்த்தை உத்தி (Key Word Stratregy)

ஒரு புதிய வார்த்தையைக் கற்பிக்கும் போது ஒத்த ஓசை உடைய வார்த்தையை இணைத்துக் கற்பித்து நினைவு கூற வைத்தலை முக்கிய வார்த்தை உத்தி என்பர். முக்கிய வார்த்தை உத்தி பொதுவாக எடுத்துக்காட்டுடன் கையாளப்படுகிறது. ஆசிரியர் படம் அல்லது வரைபடம் உருவாக்கி இணைத்துக் கற்பித்து மாணவர்களை நினைவு கூற வைக்க வேணடும்.

- (எ–டு) தொகுதி, பகுதி என்பனவற்றை புரிந்து கொள்வதில் சிக்கல் வராமலிருக்க தொகுதியிலுள்ள தொ – விற்கு தொப்பி என்ற சொல்லை இணைத்துக் கொண்டு தொப்பி மேலே இருக்கும் என நினைவில் கொள்கின்றனர்.
- (எ–டு) ஆங்கில மாதங்களில் நாட்களை கைவிரல்களை மடக்கி மூட்டுகளிலுள்ள பள்ளம் மேடு கொண்டு அறிதல்

8.7.3 ஒத்த ஓசை உத்தி (Peg word Strategy)

எண்களை அறிமுகப்படுத்த அந்த எண்ணைக் குறிக்கும் ஒத்த ஓசையுடைய வார்த்தையைப் பயன்படுத்தி நினைவு கூற வைத்தல் ஒத்த ஓசை உத்தி எனப்படும். எண்ணுடன் இணைந்த செய்தியை தெரிந்து கொள்ள அல்லது வரிசைப்படுத்த உதவுகிறது.

எடுத்துக்காட்டு

ற்றதுக்கா	பட்டு	
	i)	"ஒன்று யாவா்க்கும் தலை ஒன்று"
	ii)	One, two, three,four, five
		Once, I caught a fish alive
	iii)	One two
		Buckle my shoe

போன்ற எண்பாடல்களை பயன்படுத்தலாம்.

8.7.4 வாக்கியம் அல்லது எழுத்து உத்தி (Letter Strategy)

ஒரு வார்த்தையின் ஒவ்வொரு எழுத்தும் ஒரு வார்த்தையின் முதல் எழுத்தாக அமையும்.

எடுத்துக்காட்டு 1

'STAR' என்ற வார்த்தை வாக்கியக் கணக்கு மற்றும் சமன்பாடுகளை கற்பிக்க உதவுகிறது. S - Search the word problem

T - Translate the words into an equation in a picture form

A - **A**nswer the problem

R - Reivew the solution

எடுத்துக்காட்டு 2

'BODMAS' பயன்படுத்தி ஒன்றுக்கும் மேற்பட்ட கணித செயல்களைக் கொண்ட கணக்குகளை செய்வதற்கு முடியும். இதனை,

அந்த **வ**ள்ளல் பெயர் கூட **க**ர்ணன்தான் என்றும் கூறி அடிப்படை செயல்களின் வரிசையை கணக்கிடுவதற்கு பயன்படுத்துகின்றனர்.

8.8 ஆக்க பூர்வமான அணுகுமுறை (constructivistic Approach)

ஆக்கப்பூா்வமான அணுகுமுறையில் பங்கேற்று கற்கும் நிலை முதன்மைப் படுத்தப்படுகிறது. கற்றல் சூழலில் அனைவரும் பங்களிப்பு செய்வதற்கு வாய்ப்புகள் உள்ளன. இது குழுக்கற்றல் முறையை அடிப்படையாகக் கொண்டு மேம்படுத்தப்பட்ட முறையாகும்.

8.8.1 பங்கேற்று கற்றல் முறை (Active Learning Strategy)

இந்த அணுகுமுறையில் கற்பவர், கற்பிப்போர் ஆகியோர் தயாரிப்பு நிலைக்கு உட்படுத்தப்பட்டு ஆயத்த நிலையில் உள்ளனர். மேலும் இங்கு மாணவரின் பங்கேற்பு அதிக அளவில் இருக்கிறது. ஆசிரியரின் செயல்பாடு தேவையான இடத்தில் கற்றலில் ஏற்படும் இடைவெளிகளை சரிசெய்வதாகவே அமைகிறது.

ஆசிரியர் தான் கற்பிக்க வேண்டிய பாடத்தை முன் கூட்டியே மாணவர்களிடம் கூறி அவர்களை தயாரித்து வரச் செய்ய வேண்டும். அடுத்த நாள் வகுப்பில் அப்பாடத்தின் உட்பிரிவுகளை ஆசிரியர் கூற, மாணவர்கள் தாம் உள் வாங்கிய கருத்துக்களை கூறி கற்பிக்கும் போது மாணவர்களுக்கு அந்தப் பாடத்தைப் பற்றிய கருத்து முழுமையாகச் சென்றடையும். இம்முறையில் ஆசிரியர் பாடப்பொருள் சார்ந்த அறிவை மேம்படுத்தித்தான் வகுப்பறையில் இம்முறையை சிறப்பாக செயல்படுத்த வேண்டும். அனைத்து மாணவர்களையும் கற்பித்தலில் ஈடுபட வைக்க வேண்டும். இம்முறையில் மாணவன் கற்பித்தல் செயலில் ஈடுபடும்போது தன்னுடைய பலம், பலவீனத்தை அறிந்து தன்னை மேம்படுத்திக் கொள்ள முடியும். பங்கேற்று கற்கும் அணுகுமுறை ஒப்பார்குழு கற்பித்தலில் சுயக்கற்றல் முறைக்கு வழிவகுக்கிறது.

8.8.2 ஆக்கப் பூர்வமான கற்றல் முறை (Constructivism - Learning Theory)

ஜீன் பியாஜே, "கற்றல் என்பது அறிவை உள்வாங்கும் செயல் என்றும், ஏற்கனவே கற்ற அனுபவங்களை வைத்து நடைமுறையில் உள்ள அனுபவங்களிலிருந்து புது அறிவை உருவாக்கிக் கொள்கின்றனர்" என்றும் கூறினார். தோல்வி என்பது கற்றலின் முதல்படி என்று விளக்கியுள்ளார். ஆக்கப் பூர்வ முறையில் கற்றல் எவ்வாறு நிகழ்கிறது என்றும் அதனை எவ்வாறு பயன்படுத்துவது என்றும் கூறியுள்ளார். இம்முறையில் மாணவர்கள் கணிதக் கருத்தை தாமே உருவாக்கிக் கொள்கின்றனர்.

8.8.3 கற்பித்தல் மூலம் கற்றல் (Learning by Teaching)

ஜீன் போல் மார்ட்டின் (Jean-Pol Martin) (1987)-ல் ஆயிரத்திற்கும் மேற்பட்ட ஆசிரியர்கள் கற்பித்தல் மூலம் கற்கும் பணியில் ஈடுபட்டதைக் கண்டார். 2001 முதல் இந்த முறை ஜெர்மனியில் ஒரு புரட்சியை ஏற்படுத்தியது.

மார்ட்டின் என்பவரின் கற்பித்தல் மூலம் கற்றல் முறையானது ஆப்ரகாம் மாஸ்லோ என்பவரின் அடிப்படைத் தேவை படிநிலைகளுடன் தொடர்புடையது. ஆப்ரகாம் மாஸ்லோ என்பவரின் முழுமையான கற்றல், தயாரித்தல் மற்றும் கற்பித்தல் ஆகிய செயல்கள் மார்ட்டினின் கருத்துக்கு ஒத்திருந்தன. சுதந்திரத்துடன் செயல்படும் திறமைகள் வளர்க்கப்பட்டன.

8.8.4 கற்போரின் இயல்பு

சமூக நோக்கில் ஆக்கபூர்வ முறையானது கற்போர் அனைவருக்கும் தேவையான ஒன்றே என்றும் கற்போர் பல்நோக்கு சிந்தனை உடையவர் என்றும் கூறுகிறது. கருத்துப் பரிமாற்றம் மூலமாக கற்றல் மேம்படுகிறது. குழந்தைகள் தனது சிந்திக்கும் திறனை பிற குழந்தைகள் பெரியவர்களுடன் உரையாடுவதன் மூலம் வளர்த்துக் கொள்கின்றனர். மாணவர்கள் தாம் கற்றுக் கொண்டவற்றை கண்ணாடி பிரதிபலிப்பதை போல் அப்படியே கூறாமல் சிந்தித்து ஆக்கப்பூர்வமாக செயல்படுகின்றனர்.

8.8.5 கற்பிப்பவரின் பங்கு

"ஆசிரியர் ஏதுவாளராகச் செயல்படவேண்டும்" என பேளர்ஸ் பெல்ட் (1995) (Ballersfeld) கூறியுள்ளார். பழைய கற்பித்தல் முறையில் மாணவர் ஆசிரியர் கற்பிப்பதை அப்படியே ஏற்றுக் கொள்பவராக இருந்தனர். அதாவது, ஆசிரியர் மையக் கல்வியே பின்பற்றப்பட்டது. ஆனால் இச் சூழலில் கற்போர் மையக்கல்வி பின்பற்றப்படுகிறது. இச் சூழலில் மாணவர் தன்னார்வத்துடன் கற்பவராக உள்ளனர். கற்றல் சூழலை ஆசிரியர் உருவாக்க வேண்டும். மாணவர்கள் குழுவில் கற்றுக் கொள்வதை கண்காணிக்க வேண்டும்.

8.8.6 செயல்படுத்தும் படிநிலைகள்

மாணவர்கள் பாடங்களைக் கற்கவும், கற்பிக்கவும் பொறுப்புள்ளவராகிறார்கள். புதிய பாடப்பகுதியானது சிறு அலகாக பிரிக்கப்பட்டு மூன்று மாணவர்கள் கொண்ட ஒவ்வொரு குழுவிற்கும் பகிர்ந்தளிக்கப்படுகிறது. மாணவர்கள் கற்பிக்கப்பயன்படுத்தும் பொருள்கள் நடைமுறைப்படுத்துவதற்கு ஏதுவாக இருத்தல் அவசியம். படிநிலைகள் பின்வருமாறு கொடுக்கப்பட்டுள்ளன.

படிநிலைகள்	மாணவர் நடத்தைகள்	ஆசிரியர் நடத்தைகள்	பிற முறையிலிருந்து மாறுபடுதல்
வீட்டில் தயரிப்பு	வகுப்பறையில் மாணவர் கற்பித்தலின் தரம் அவர்களது தயாரிப்பை பொறுத்துள்ளது.	ஆசிரியா் அந்தக் கருத்தில் கருத்தாழம் மிக்கவராக இருந்தால் தான் மாணவா் கற்பிக்கும் போது ஏற்படும் பிழைகளை நிவா்த்தி செய்ய முடியும்	புதிய பாடம் நடத்தி முடிக்க நேரம் குறிப்பிடத் தேவையில்லை. வீட்டுப்பாடமானது நடத்திய பாடத்தினைக் குறித்து உயாநிலை கருத்தை;ப் பற்றி விவாதிப்பதாக இருக்க வேண்டும்.
பாடம் நடத்தும் போது உள்ள கலந்தாய்வு	மாணவாகள் வட்டமாக உட்காாந்து மற்றவா கற்பிப்பதை கூாந்து கவனித்து கேள்விகள் கேட்டல்	வகுப்பறையில் அதிக சப்தம் எழாமலும், மாணவாகள் கூா்ந்து கவனிக்கிறாா்களா என கண்காணித்தல்.	ஒரு மாணவன் வகுப்பு நடத்தும் போது மற்றவர்கள் அமைதியாக கவனிப்பதால் (ஆசிரியர் உட்பட) கற்றல் கற்பித்தல் வலுப்பெறுகிறது.
அறிமுகம் புதிய கருத்தைப் பற்றி தகவல் சேகரித்தல்	மனித வளத்தை பயன்படுத்தி தயாரித்த புதிய கருத்திற்கான தகவலை ஒரு மாணவன் படிக்க மற்றவா் புதிய கருத்தைப் பற்றி வவிாதித்தல்	ஆசிரியர் மாணவர்களிடையே புதிய கருத்தைப் பற்றி தகவலைப் பரிமாறிக் கொள்கிறார்களா ? என அறிதல்	ஏற்கனவே மாணவரிடம் உள்ள அறிவானது மேம்படுகிறது.
முதல் ஆழக் க ற்பித்தல் வகுப்பறையில் தகவல் சேகரித்தல்	தன் வகுப்பில் உள்ள மாணவர்கள் புதிய தலைப்பை உட்பிரிவுகளைக தங்களுக்குள் பிரித்து கேள்வி கேட்டு பாடத்தில் தெளிவு பெறுதல்	ஆசிரியா் மாணவா்களிடம் கேள்வி கேட்டு கருத்தை தெளிவு படுத்துதல்	மாணவா்களிடம் ஏற்கனவே உள்ள அறிவானது கருத்துப் பாிமாற்றம் மூலம் மேம்பட்டு புதிய கருத்து பெறப்படுகிறது,
புதிய பாடப் பொருளை வகுப்பறையில் அறிமுகப்படு த் துதல்	கற்பிக்கும் மாணவர்கள் அறிமுகப்படுத்தும் பாடப் பொருளை குழுவிற்குள் சிறு தலைப்புகைளாகப் பிரித்து நடத்துதல்	ஆசிரியா் மாணவா் கற்பிப்பதையும், விவாதிப்பதையும் உற்று நோக்கி பாடப் பொருளில் தெளிவு பெறுவதை உறுதி செய்தல்	படிப்படியாக புதிய பாடப்பொருளை கற்றுக் கொள்ளல்
இரண்டாவது ஆழக்கற்றல் பன்முறைப்பயிற்சி	கற்பித்தபாடப் பொருளில் பன்முறைப் பயிற்சியை அனைத்து மாணவரும் செய்தல்	புதிய கணக்குகளை உருவாக்க ஆசிரியா் உதவுதல்	ஆசிரியா் இயக்குநராக செயல்படுதல்
மூன்றாவது ஆழக்கற்றல் வீட்டுப்பாடம்	அனைத்து மாணவர்களும் வீட்டுப் பாடம் செய்து பயிற்சி பெறுதல்	ஆசிரியர் வீட்டுப் பாடத்தை திருத்துதல்	ஆரம்பநிலைக் கல்வியல் தயாரிப்பு பாடம் நடத்தும் போதே கூட நடைபெறுகிறது. ஆனால் உயா் நிலையில் அதிக வீட்டுப் பாடம், கலந்தாய்வுக்கு அதிகநேரம் கிடைக்க வழிவகுக்கிறது.

இம் முறையின் பயன்கள்

- 💠 மாணவர்களின் செயல்பாடு ஊக்கப்படுத்தப்படுகிறது.
- 💠 மாணவா்கள் திறமை மிக்கவராகவும், சுறுசுறுப்பானவராகவும் செயல்படுகின்றனா்.
- ஆசிரியர் கற்பிப்பவர், மாணவர் அமைதியாக கற்பவர் என்ற நிலை மாற்றப்பட்டுள்ளது.
- 💠 மாணவாகள் திறம்பட கற்க மற்றும் கற்பிக்க வாய்ப்புள்ளது.
- மாணவர்கள் பாட அறிவோடு குழு வேலை, திட்டமிடும் திறன், கற்பிப்பு திறமை, தன்னம்பிக்கை ஆகியவற்றையும் பெறுகின்றனர்.

குறைகள்

- 💠 பாட அறிமுகத்திற்கு அதிக நேரம் தேவைப்படும்.
- ஆசிரியரின் கண்காணிப்பு சரியாக இல்லையெனில் பாடப்பொருள் தெளிவாகச் சென்றடையாது.

8.9 செயல்வழிக் கற்றலில் ஒப்பார்குழு கற்பித்தல்

தற்போது தமிழ்நாட்டில் உள்ள அனைத்து அரசுப் பள்ளிகளிலும் செயல் வழிக்கற்றல் நடைமுறைப் படுத்தப்பட்டுள்ளது. கற்றல் கற்பித்தல் செயல்பாடுகளில் ஆறு குழுக்கள் அமைகின்றன.

- குழு –1 வெளிப்புறச் செயல்பாடு
- குழு 2 ஆசிரியர் முழு உதவியுடன் கற்றல்
- குழு -3 ஒரளவு ஆசிரியர் உதவியுடன் கற்றல்

குழு – 4 மற்றும் குழு 5 ஆகியவற்றில் ஒப்பார்குழு கற்பித்தல் நடைபெறுகிறது. குழு – 4ல் ஆசிரியரின் முழு உதவியுடன் கற்றலும், குழு – 5ல் ஆசிரியர் ஓரளவு உதவியுடன் கற்றலும் நடைபெறுகிறது. குழு 6–ல் தானே கற்றல் நடைபெறுகிறது. செயல் வழிக் கற்றலில் ஒப்பார்குழு என்ற வார்த்தை 'சகமாணவர் குழு' என பயன்படுத்தப்படுகிறது.

செயல் வழிக்கற்றல் உத்தியில் கணிதப்பாடம் எவ்வாறு வலுவூட்டப்படுகிறது என்பதற்கும், மாறுபட்ட வயதுள்ள கற்றல் குழுவில் அல்லது ஜோடியில் ஒருவர் மீத்திறமிக்கவராகவும் மற்றொருவர் மெதுவாகக் கற்போராகவும் இருந்தால் வலுவூட்டல் எவ்வாறு நிகழும் என்பதற்கும் ஒர் எடுத்துக்காட்டைக் காண்போம்.

எடுத்துக்காட்டு

ஒரு தட்டில் உள்ள 15 லட்டுகளை 5 நபருக்கு சமமாகப் பிரித்தால் ஒவ்வொருவருக்கும் கிடைக்கும் லட்டுகள் எத்தனை ? என விடைத்தாளை ஆசிரியர் கற்பிக்கும் மாணவர்களுக்குக் கொடுத்து தொடர் கழித்தல் முறையில் வகுத்தலைச் செய்யச் சொல்கிறார்.

மாணவர் 1 : கிண்ணத்தில் மொத்தம் எத்தனைலட்டுகள் உள்ளன ?

மொத்த லட்டுகள்

மாணவர் 2 : 15

மாணவர் 1 : நா்மதாவிற்கு மூன்று லட்டுகள் கொடு

மாணவர் 2 : 3 லட்டுகள் கொடுத்தல்

மாணவர் 1 : கிண்ணத்தில் மீதி எத்தனை லட்டுகள் உள்ளன?

மாணவர் 2 : (15-3= ?)

மாணவர் 1 : 12 லட்டில் முல்லைக்கு 3 லட்டு கொடுத்தால் எத்தனை லட்டுகள் மீதி இருக்கும் ?

விடையை எழுதுக.

மாணவர் : 1 இதே போல் 9 லட்டிலிருந்து பரதன், நன்னன், அழகன் ஆகிய மூவருக்கும் மூன்று லட்டுகள் வீதம் கொடுத்தால் ஒவ்வொரு முறையும் எத்தனை லட்டுகள் மீதியிருக்கும் என்பதை எழுதுக.

பரதனுக்கு கொடுத்தது போக மீதி லட்டுகள்

நன்னனுக்கு கொடுத்தது போக மீதி லட்டுகள்

அழகனுக்கு கொடுத்தது போக மீதிலட்டுகள்

மாணவர் 1: 3 என்ற எண்ணை 15 என்ற எண்ணிலிருந்து 5 முறை கழிக்க மீதி 0
15÷ 3=5 என எழுதலாம். இம்முறை தொடர்கழித்தல் முறையில் வகுத்தல் எனப்படும்.

குறிப்பு

மாணவா் (2) எங்கு தவறு செய்தாலும் தவறைத் திருத்திச் சரியாகச் செய்ய வைக்கவேண்டியது மாணவன் (1)ன் பொறுப்பு. இதனை ஆசிரியா் மேற்பாா்வையிட வேண்டும்.

இதன் மூலம் மாணவா் (1) இந்தக் கருத்தில் திறமை மிக்கவராக மாறுவதுடன் உதவி செய்யும் மனப்பான்மையைப் பெறுகிறாா். ஆரம்பப்பள்ளிக் கணிதத்தைக் கற்பிக்க பல்வேறு உத்திகள் கையாளப்பட்டாலும் ஒப்பார்குழு கற்பித்தல் என்பது வகுப்பறைச் சூழலில் பல்வேறு பயன்களை உள்ளடக்கியதாக உள்ளது.

கற்றவை

- 💠 ஒப்பார்குழு கற்பித்தல்
- 💠 ஒவ்வாா்குழு கற்பித்தல்
- 💠 பல் வயதினா்குழு கற்பித்தல்
- 💠 நினைவூட்டுக் கற்பித்தல் உத்தி
- 💠 முக்கிய வார்த்தை உத்தி
- 💠 ஒத்த ஓசை உத்தி
- 💠 வாக்கியம் அல்லது எழுத்து உத்தி
- 💠 பங்கேற்றுக்கற்றல் அணுகுமுறை
- 💠 🛮 கற்பித்தல் மூலம் கற்றல்

கற்றல் செயல்

- முதலாம் வகுப்பு மாணவருக்கு கணிதப்பாடம் கற்பிக்க ஒப்பார்குழு
 கற்பித்தல் உத்தியை பயன்படுத்தி ஓர் உரையாடல் தயார் செய்தல்.
- 💠 ஒத்த ஓசையுள்ள சொற்களைத் தயார் செய்தல்.

நட்புக்குழு

அலகு 9

செயல்வழிக் கற்றல் மூலம் கணிதம் கற்பித்தல்

(Activity Based Learning Approach - ABL)

9.1 அறிமுகம்

ஒவ்வொரு மனிதருக்குள்ளும் புதைந்திருக்கும் ஆற்றலை, ஆளுமைத் திறனை வெளிக் கொணர்வதே கல்வியாகும். மாணவர்கள் மகிழ்வுடன் கற்கவும், கற்றல் கற்பித்தல் கரும்பாய் இனித்திடவும், ஒரு பள்ளிச் சூழல் சார்ந்த தேடுதல் தொடர்ந்து கொண்டே இருக்கிறது.

வகுப்பறைகளில் மாணவர்கள் பதுமைகளாக அஞ்சி ஒடுங்கிக் கிடக்காமல் அவர்களுக்கு அளப்பரிய சுதந்திரத்தை வழங்கி தங்கள் சொந்த வேகத்திலும், விருப்பத்திலும், நெஞ்சில் துணிவோடும் கணிதம் பயிலும் வாய்ப்புள்ளதொரு கல்வி முறையை பள்ளிகளில் செயல்ப்படுத்திடல் வேண்டும் என்ற அடிப்படையில் உருவாக்கப்பட்ட முறையே செயல் வழிக்கற்றல் (Activity Based Learning Approach) முறையாகும்.

கணிதத்தை ஆசிரியர் வாழ்க்கையோடு தொடர்புபடுத்தத் தவறிய காரணத்தினால் தான் சில மாணவர்களுக்குக் கணிதம் கற்கண்டாக இல்லாது கசந்து போனதாக ஆய்வுகள் கூறுகின்றன. கணிதக் குறியீடுகள், கணிதக் கூற்றுகள் மற்றும் கணிதச் செயல்பாடுகள் அனைத்தும் மனிதனுடைய அன்றாட வாழ்வில் எதிர் கொள்ளும் பிரச்சனைகளைத் தீர்ப்பதற்கான அருமருந்து ஆகும்.

9.2 செயல் வழிக்கற்றல்

செயல் வழிக்கற்றல் என்பது செயல்பாடுகளின் அடிப்படையிலான ஒரு கற்றல் முறையாகும்.

திறன்களை, திட்டமிட்டு உருவாக்கப்பட்ட செயல்பாடுகளின் மூலம் மாணவர்கள் அடைவுபெற வைப்பதே இதன் முதன்மையான நோக்கமாகும்.

மாணவன் கற்றலை செயல்பாடுகள் மூலம் கற்றால் அவன் கற்க வேண்டிய கருத்தை முழுவதுமாகவும், ஆழமாகவும் புரிந்து கொள்கிறான் என்பது சீன பழமொழி.

யஷ்பால் கல்விக்குழு, தொடக்க நிலைக் கல்வியில் முன்னேற்றத்தையும், எழுச்சியையும், புத்தகச்சுமையையும் குறைக்க வேண்டுமென்று பரிந்துரை செய்தது. தேசியக்கலைத்திட்டம் -2005, பாடங்களைப் புரிந்து கொள்ளாமல் மனப்பாடம் செய்யும் முறையினைப் புறந்தள்ளி, அனைத்து மாணவர்களின் படைப்பாற்றலை வளர்க்கும், தன்னம்பிக்கையைப் பெருக்கும் செயல் அடிப்படையிலான கல்வியே இன்றைய தேவை என்று வலியுறுத்தியுள்ளது.

சோதனை முறையில் சென்னை மாநகராட்சியின் அனைத்து பள்ளிகளிலும் இம்முறை இரண்டாண்டுகள் சோதனை அடிப்படையில் செயல்படுத்தப்பட்டு, பின்னர் அடுத்த நிலையில், மாநிலத்தில் உள்ள அனைத்து ஊராட்சி ஒன்றியங்களிலும் நடைமுறைப்படுத்தி வெற்றியடைந்தது. இதனைத் தொடர்ந்து தமிழ்நாட்டின் அனைத்து ஆரம்பப்பள்ளிகளிலும் ஒன்று முதல் நான்கு வகுப்புகளுக்கு இம்முறை செயல்படுத்தப்பட்டு வருகிறது. அனைவருக்கும் கல்வி இயக்ககம் என்ற தனித்துறை, அரசால் ஏற்படுத்தப்பட்டு இம்முறையை கண்காணிக்கவும், நெறிப்படுத்தவும், வழிப்படுத்துவும் செய்கிறது.

9.3 கணிதத்தில் செயல்வழிக்கற்றலின் அணுகுமுறை

கற்றல் கற்பித்தல் முறையின் சிறப்பே அதன் அணுகுமுறைகள் தான் என்பதை நாம் அறிவோம். செய்துபார்த்து அனுபவரீதியாகக் கற்றல், கற்றதை சகமாணவர்களோடு பகிர்தல், அதனை மீண்டும் மீண்டும் செய்து பெற்ற திறனை வலுவூட்டல், ஒவ்வொரு குழந்தையின் அனுபவமும் தனிப்பட்டது என்ற உயர்ந்த கோட்பாடுகளின் தாக்கமே இம்முறையின் கீழ்கண்ட அணுகுமுறைகளாகும்.

- 💠 நடைமுறை பாடத்திட்டத்தில் மாற்றமின்மை
- நடைமுறையில் உள்ள திறன் பகுதிகள் மற்றும் திறன்களை சிறு கூறுகளாகப் பிரித்து கற்றல் படிகளாகக் கருதுதல்.
- 💠 கற்றலின் படிகளை செயல்பாடுகளாக உருவாக்குதல்
- அனைத்துக் கற்றல் படிகளையும், பாடவாரியாக கற்றல் ஏணிப்படிகளாக அமைத்தல்.
- 💠 ஒவ்வொரு கற்றல் படியிலும் உள்ளடங்கிய செயல்கள்
 - 1. அறிமுகச் செயல்கள்
 - 2. கற்றல் செயல்கள்
 - 3. வலுவூட்டல் செயல்கள்
 - 4. மதிப்பீட்டுச் செயல்கள்
 - 5. குறைநீக்குச் செயல்கள்
 - 6. வளம் பெருக்குச் செயல்கள்

- 💠 ஒவ்வொரு திறனுக்கும் உகந்த கற்றல் அட்டைகள்
- 💠 பல்வகுப்புக் கற்பித்தல் முறையின் அடிப்படையில் குழு அட்டைகள்.
- 💠 மதிப்பீட்டுக்காக திறனடைவுப் பட்டியல்
- 💠 ஆரோக்கிய சக்கரம்
- 💠 காலநிலை அட்டவணை
- 💠 மாணவர் வருகைப்பதிவு
- 💠 திறனடைவுப் பட்டியல்

9.4 செயல்வழிக்கற்றலின் சிறப்பம்சங்கள்

- 💠 பாடச்சுமையிலிருந்து மாணவாகளுக்கு விடுதலை.
- ஆசிரியரின் கற்பித்தல் வேகத்திற்கு இணையாகக் கற்க முடியாத மாணவர்களுக்கு பாதுகாப்பு.
- 💠 மாணவர்களின் தேர்வு பயம் அற்ற மனநிலை.
- 💠 மாணவாகளின் திறனடைவு ஏற்றத்தாழ்வுகளுக்குத் தீா்வு.
- 💠 மாணவா்களின் சுய கற்றலுக்காக தாழ்நிலை கரும்பலகை.
- 💠 மாணவர்களின் படைப்பாற்றலை வளர்க்க கம்பிப் பந்தல்.
- 💠 ஆர்வமூட்டுகின்ற கவர்ச்சியான வண்ண கற்றல் செயல் அட்டைகள்.
- படிகளை எளிதில் மனதிற்கொள்ள செயல் அட்டைகளில் அச்சிடப்பட்ட விதவிதமான உருவங்கள்.
- 💠 இடைவெளி குறைந்து ஆசிரியர் மாணவர் தோழமை உணர்வு.
- 💠 படிக்கும் வேகத்திற்கு ஏற்ப தன்னம்பிக்கையுடன் முன்னேறிச் செல்ல வாய்ப்பு.
- 💠 சகமாணவன் உதவியுடன் வலுவான கற்றல் சூழல்.
- ❖ மாணவனின் ஒவ்வொரு அடைவு நிலையிலும் அளிக்கப்படும் அங்கீகாரத்தின் மூலம் மேலும் மேலும் கற்கத்தூண்டும் ஆர்வம்.
- 💠 தான் கற்க வேண்டியதைத் தானே தேர்ந்தெடுத்துக் கொள்ள உரிய சுதந்திரம்.
- 💠 நெகிழ்வுத் தன்மையுடைய வீட்டுப்பாடச் செயல்கள்.
- பள்ளிக்கு வர இயலாத நாட்களில் பயிற்றுவிக்கப்பட்ட பாடம் குறித்த மாணவர்களின் அச்சமின்மை.
- பின்தங்கிய மாணவர்களை எளிதில் ஆசிரியர்கள் கண்டறிந்து கூடுதல் அக்கறை மேற்கொள்ளும் வாய்ப்பு.
- 💠 தலைமைப்பண்புகளை வளர்க்கும் சக மாணவர்கள் செயல்பாடு.

9.5 கணித பாடத்தில் செயல் வழிக்கற்றலுக்கான வகுப்பறைச் சூழல்

செயல்வழிக்கற்றலுக்கான வகுப்பறையின் அமைப்பு சாதாரண வகுப்பறைகளிலிருந்து வித்தியாசமாக அமைந்திருக்கும். வகுப்பறையில் மாணவர்கள் சுதந்திரமாகவும், குழுக்களாகவும் பிரிந்து செயல்பட ஏதுவாக பாய்கள் பரப்பப்பட்டு விசாலமாக இருக்கும்.

வகுப்பறையின் சுவா்களில் உள்ள தாழ்நிலைக் கரும்பலகையில் ஒவ்வொரு மாணவனுக்கும் இடம் ஒதுக்கப்பட்டிருப்பது இவ்வகுப்பறையின் சிறப்பாகும்.

மெல்லிய கம்பிகளால் பந்தல் அமைத்து மாணவாகளின் படைப்புகளை வகுப்பறையில் தொங்கவிட்டிருப்பது ஒரு சிறந்த காட்சியாகும்.

கற்றல் அட்டைகளை அவற்றின் சின்னங்களுக்கு ஏற்ப தனித்தனித் தட்டுகளில் வைக்கப்பட்டு தட்டுகளின் முகப்பில் அச்சின்னங்கள் ஒட்டப்பட்டிருக்கும்.

ஒரு அட்டை எந்த வகுப்பிற்குரியது என்பதை அதன் விளிம்பில் உள்ள வண்ணத்தை வைத்து எளிதில் மாணவர்களால் அடையாளங் காண முடியும்.

வண்ணம்
கருஞ்சிவப்பு
பச்சை
நீலம்
மஞ்சள்

இவ்வகுப்புகளில் மாணவாகள் ஆறு குழுக்களாக பிரிந்து குழு அட்டையில் குறிக்கப்பட்டிருக்கும் செயலைச் செய்வாாகள். ஒவ்வொரு குழுவுக்கும் தனித்தனியாக குழு எண் மற்றும் சின்னங்களுடன் கூடிய குழு அட்டைகள் வழங்கப்பட்டிருக்கும்.

குழு எண்	செயல்கள்
1.	ஆசிரியர் முழு உதவியுடன் கற்றல்
2.	ஆசிரியர் முழு உதவியுடன் கற்றல்
3.	ஆசிரியர் சிறு உதவியுடன் கற்றல்
4.	சக மாணவா் முழு உதவியுடன் கற்றல்
5.	சக மாணவர் சிறு உதவியுடன் கற்றல்
6.	தானே கற்றல் மற்றும் மதிப்பீட்டுச் செயல்கள்.

செயல்வழிக் கற்றலில் வகுப்பறை குழுக்கள்

ஆசிரியர் முழு உதவியுடன் கற்றல்

ஆசிரியா் சிறு உதவியுடன் கற்றல்

சகமாணவா் முழு உதவியுடன் கற்றல்

சகமாணவா் சிறு உதவியுடன் கற்றல்

தானேக் கற்றல்

முதல் குழுவில் உள்ள செயல்பாடுகளை நிறைவு செய்த மாணவர் ஏணிப்படி அமைப்பின்படி ஒவ்வொரு படிநிலையிலும் உள்ள சின்னங்களுக்குரிய செயல்களை வரிசைப்படி செய்திடல் வேண்டும்.

ஆரம்ப நிலையில் அட்டைகளைத் தேர்ந்தெடுப்பது, அதற்குரிய சரியான குழுவுக்கு செல்வது போன்றவற்றில் ஏற்படும் சிக்கல்கள் காலப்போக்கில் சரியாகி விடும்.

சரியான செயல் அட்டைகளைத் தேர்வு செய்வதும் செயல்கள் நிறைவுற்ற பின்னர் அவற்றிற்கான சரியான இடங்களில் மீண்டும் வைப்பதிலும் மாணவர்களுக்கு பயிற்சி அளித்து ஆசிரியர் கண்காணித்தல் வேண்டும்.

சில படிகளில் அமைந்திருக்கும் குழுவிளையாட்டு, தனி விளையாட்டு போன்ற நிகழ்வுகளை அனைத்து மாணவாகளையும் சேர்த்து செயல்படுத்தலாம்.

மாணவர்களுக்கான முன்னேற்ற அறிக்கை அட்டையில் ஒவ்வொரு படிநிலை அடைவிற்கு ஏற்ப கீழ்கண்டவாறு வண்ணங்களில் குறியீடு செய்தல் வேண்டும்.

குறியீடு வண்ணம்	அடைவிற்கான காலக்கெடு
பச்சை	குறித்த காலத்துக்கு முன் முடிப்பவா்
நீலம்	குறித்த காலக்கெடுவுக்குள் முடிப்பவர்
சிவப்பு	குறித்த காலத்துக்குப் பின் முடிப்பவா்

9.6 செயல்வழிக்கற்றலும், கணிதச் செயல்பாடுகளும்

கணிதத்திற்கான கற்றல் அட்டைப் பெட்டியில் முதல் நான்கு வகுப்புகளுக்கான கீழ்க்கண்ட எண்ணிக்கையில் கற்றல் படிகளும், கற்றல் அட்டைகளும் இருக்கும்.

வகுப்பு	கற்றல் படிகள்	கற்றல் அட்டைகள்	பொதுவான அட்டைகள்
1	15	164	173
2	11	153	1/3
3	19	192	42
4	16	199	. <u>-</u>

சின்னங்கள்

கணித பாட அட்டைகளின் மேற்புறத்தில் இடதுபக்கம் பறவைகளின் சின்னமும், வலது புறத்தில் அட்டை எண்களும் கொடுக்கப்பட்டிருக்கும். கற்றல் அட்டைகளில் உள்ள சில சின்னங்கள் பொதுவானதானவும், சில சின்னங்கள் குறிப்பிட்ட வகுப்புகளுக்கு மட்டும் இருக்கும். உரியதாகவும் அட்டைகளுக்கான தலைப்புகளை சொற்களில் அமைக்காமல் உருவங்களின் மூலம் அளித்திருப்பதின்முக்கியத்துவத்தை உணர்தல் வேண்டும்.

செயல்கள்

கூட்டல், கழித்தல் போன்ற பயிற்சிச் கொண்ட செயல்பாடுகள் அட்டைகளில் விடைகளுக்கான காலியிடங்கள் தரப்பட்டிருக்கும். ஒரே அட்டையை மாணவா்கள் பல முறை எழுதி பயன்படுத்துவது எப்படி என்ற கேள்வி எழலாம். இதற்கான தீர்வு சிந்தித்தல் குறித்து அவசியம். இக்கணக்குகளை மாணவர்களுக்கு ஒதுக்கப்பட்ட கரும்பலகையில் அல்லது நோட்டுப்புத்தகத்தில் செய்து பயிற்சி மேற்கொண்டால் போதுமானதாகும்.

மதிப்பீடு

எல்லாச் செயல்களையும் மாணவர்களே தேர்வு செய்து, மாணவர்களே செய்யும் பொழுது அவர்கள் பெற்ற அடைவு மதிப்பீட்டுக்குரியவையாகும். காகம், வாத்து மற்றும் கழுகு உருவங்களைக் கொண்ட அட்டைகள் மதிப்பீட்டிற்குரியனவாகும். காகம் அட்டை நடைமுறையில் உள்ள அலகுத் தேர்வுக்கு ஒப்பானதாகும். வாத்து அட்டை பருவத் தேர்வுக்கும், கழுகு அட்டை ஆண்டுத் தேர்வுக்கும் பயன்படுத்தப்படுகின்றன.

இவ்வட்டைகளைக் கொண்டு செயல்பாடுகள் செய்யும் மாணவர்கள் ஆசிரியரின் பார்வையில் தனித்தனியாக இருக்க வேண்டும் என்று அறிவுறுத்தப்படுகின்றனர். இதனை நிறைவு செய்த மாணவர்கள் படிநிலையை வெற்றிகரமாக முடித்தமைக்காக கிரீடம் அணிந்து கொள்வதுடன், அவர்கள் அக்குழுவில் உள்ள மற்ற மாணவர்களுக்கு உதவி செய்யத் தகுதி பெற்றவர்களாகக் கருதப்படுகிறார்கள்.

செயல்வழிக்கற்றல் மூலம் நடைபெறும் சில கற்றல், கற்பித்தல் செயல்பாடுகளுக்குரிய எடுத்துக்காட்டுகளை இங்கு கண்போம்.

எடுத்துக்காட்டு 1

வகுப்பு I

திறன் : பூஜ்யம் அறிதல்

மாணவர் : இத்திறன் 1–வது வகுப்புக்கா கற்றல் ஏணிப்படியில் 7–வ நிலையில் உள்ளதால் அப்ப நிலையில் உள்ள முதல் செய அட்டையான பெங்குயின்– 8– செயல் அட்டைகள் பெட்டியில் இடு

ஆசிரியர் : பெங்குயின் –8 வெளிப்புற செ ஆசிரியரிடம் மாணவர் கொடுத் சிலரையும் அழைத்துக்கொண் அட்டையில் குறிப்பிட்டபடி பூஜ்யத்

2) 1300, 1325. 1605. 1610. 1400. 1500 ஆ) எண்பெயர் எழுதுக 1) 1345 2) 1408 3) 1679 4) 1980 இ) விரித்து எழுதுக 1905 = ஈ) சேர்த்து எழுதுக 2) 1000 + 900+ 90 + உ) கோடிட்ட இலக்கத்தின் இடமதிப்பை எழுதுக 1) 1325 2) 1708

அ) எண்களின்அமைப்பை உற்றுநோக்கி

1220.

1230.

1) 1210,

மாணவர் : அடுத்த செயல் அட்டை மயில் 12- ஐ வருத்து ஆவாயாடம் தருதல்.

ஆசிரியர் : இச்செயல், ஆசிரியரின் முழு உதவியுடன் செயல்பட வேண்டியதாகும். இங்கு குச்சிப்பலகை, குச்சிக்கட்டு போன்ற துணைக்கருவிகளின் உதவியுடன் பூஜ்யத்தைத் கற்பித்தல்.

மாணவர் : அடுத்த செயல் அட்டை குருவி –10ஐ எடுத்து வந்து ஆசிரியரிடம் தருதல்.

ஆசிரியர் : இச்செயல் ஆசிரியரின் முழு உதவியுடன் செயல்பட வேண்டியதாகும்.

இங்கு செயல் அட்டை, மணல் தாள், பொருத்துதல் படம் போன்றவற்றின் உதவியுடன் பூஜ்ய உருவத்தை அறிமுகம் செய்தல்.

மாணவர் : அடுத்த செயல் அட்டை பட்டம் 5 –ஐ எடுத்து வருதல்.

ஆசிரியர் : இச்செயல் ஆசிரியரின் சிறு உதவியுடன் செயல்படுவதாகும். இங்கு ஆசிரியர் பூஜ்யத்தை எழுத பயிற்சி அளித்தல்.

மாணவர் : அடுத்த செயல் அட்டை அன்னம் – 4 ஐ எடுத்து வந்து சகமாணவர்கள் உதவியுடன் குழுக்கற்றலில் ஈடுபடுதல். இங்கு அட்டையில் உள்ள பொருட்களை எண்ணி, எழுதி பூஜ்யம் கருத்தில் வலுப்பெறுதல்.

ஆசிரியர் : மாணவர்கள் குழுக்செயல்களை ஆசிரியர் கண்காணித்தல்.

மாணவர் : அடுத்த செயல் அட்டை கோழிக் (

ஆசிரியர் : இது பிங்கோ விளையாட்டு முறைய ஆசிரியரின் சிறு உதவியுடன் இ அட்டையில் சிறுமணிகள் அல் பொருத்தும் முதல் நபர் பாராட்(போதும் பாராட்டு பெறுகின்றன பயிற்சியாகும். ச் செயல்பாடு அட்டையாகும். ாகும். எண்கள் எழுதப்பட்ட நாக் கொண்டு சரியாகப் நவர்கள் செய்து முடிக்கும் நத்து வலுப்பெறுவதற்கான

து வருதல்.

மாணவர் : அடுத்த செயல் அட்டை மீன்கொத்தி 2–ஐ மாணவன் எடுத்து வருதல். இதுதானே கற்றலுக்குரிய அட்டையாகும். சக மாணவரின் துணையுடன் ஆடுபுலி ஆட்டம் என்ற விளையாட்டின் மூலம் பூஜ்யம் கருத்தை மிக ஆழமாகவும், வேகமாகவும், எளிமையாகவும் மாணவர்கள் புரிந்து கொள்கிறார்கள்.

ஆசிரியர் : இச்செயல்பாடுகளை ஆசிரியர் மேற்பார்வை செய்து கொண்டே, ஆசிரியரின் முழு உதவித் தேவைப்படும் குழுவில் அதிக கவனம் செலுத்துதல். இச்செயல் அட்டைச் செயல்பாடுகளை சரியாக செய்யும் மாணவர்கள் பூஜ்யம் குறித்த திறனை பெற்று விட்டதாகச் கருதப்படுகிறார்கள்.

எடுத்துக்காட்டு 2 வகுப்பு : II

திறன்: நாணயங்களை அறிதல் இத்திறனுக்காக கற்றல், கற்பித்தல் வகுப்பறைச் செயல்பாடுகளையும், அச்செயல்பாடுகளில் ஆசிரியர் மாணவர் பங்கு என்ன என்பது பற்றியும் இங்கு பார்ப்போம்.

மாணவர் : இத்திறன் 2–வது வகுப்புக்கான கற்றல் ஏணிப்படியில் 8–வது படி நிலையில் உள்ளது. அப்படி நிலையின் முதல் செயல் அட்டையான மயில் –18–ஐ மாணவர் எடுத்து வருதல்.

ஆசிரியர் : இது ஆசிரியரின் முழு உதவியுடன் செயல்படவேண்டிதாகும். ஆசிரியர் மாணவரிடமிருந்து அவ்வட்டையைப் பெற்று ஆயத்தப்படுத்தும் முகமாக தொகுப்பில் உள்ள நாணயங்கள் மற்றும் ரூபாய் நோட்டுகளை இனம் காணும் வகையில் செயல்பாடுகள் அமைத்தல்.

மாணவர் : அடுத்த அட்டைகளான புறா-2. ஆகியவற்றை எடுத்து வருதல்.

ஆசிரியர் : இது ஆசிரியரின் சிறு உதவியுட செயலாகும். செயல் அட் தரப்படுள்ள ரூபாய், நாணா மொத்த மதிப்புகளை ஒன்றன் பின் கண்டறிந்து கையேட்டில் ஆசிரியரிடம் ஒப்புதல் பெறுத

மாணவர் : அடுத்த அட்டை கோழிக்குஞ்சு – 1 ஐ எடுத்து வருதல்.

திறனை வளர்க்கும் செயல்பாடுகளாகும்.

ஆசிரியர் : இது பிங்கோ விளையாட்டு முறையில் அமைந்த அட்டையாகும். இக் குழு விளையாட்டில், அட்டையில் உள்ள கட்டங்களில் தரப்பட்டுள்ள ரூபாய், நாணயங்கள் படங்களுக்குகெதிரே ஆசிரியரின் வினாக்களுக்கு ஏற்ப சரியாக நிரப்பும் முதல் மாணவரை பாராட்டுதல். அடுத்து சரியாகச் செய்யும் மாணவர்களும் பிங்கோ, பிங்கோ எனக் கூறி பாராட்டு பெறுதல். இது விளையாட்டு முறையில் இத்திறனை வலுப்படுத்துவதாகும்.

மாணவர் : அடுத்த செயல் அட்டைகள் புறா – 4, புறா –5 ஆகியவற்றை மாணவர் எடுத்து வருதல்.

ஆசிரியர் : இது ஆசிரியரின் சிறு உதவியுடன் நடைபெறுவதாகும். இச்செயல்பாடு வாழ்க்கைக் கணக்குகளுக்கு அடிப்படையாக அமைந்ததாகும். அட்டையில் தரப்பட்டுள்ள பொருட்களின் விலைக்கேற்ப அதன் எதிரே பொருத்தமான நாணயங்களை எடுத்து வைத்தல்.

> அட்டையில் உள்ள கணக்குகளில் கோரப்பட்டுள்ள பொருட்களின் விலை, மொத்த விலை ஆகியவற்றைக் கண்டறிதல்.

இவை இப்படி நிலையில் உள்ள கடைசி செயல் அட்டையாகும்.

இத்தனைச் செயல்களையும் செய்யும் மாணவர் நாணயங்களை அறிந்து கொள்ளவும், அவற்றொடு தொடர்புடைய எளிமையான கணக்குகளைத் தீர்க்கும் திறனையும் பெற்றதாகக் கருதப்படுகிறார்.

எடுத்துக்காட்டு 3

வகுப்பு : II

திறன் : கன உருவங்கள், தளங்கள் அறிமுகட

மாணவர் : இத்திறன் 3-ம் வகுப்புக்கான ஏணிப்படியில் 11-வது படிநி உள்ளது. அந்நிலையின் முதல் அட்டையான மயில் -20 ஐ அட்டைகள் பெட்டியில் இருந்து ப

ஆசிரியா் : இது ஆசிரியரின் முழு உத

செயல்படுவதாகும். கணிதப்பெட்டியில் உள்ள கன உருவப் பொருட்களுக்கு பொருத்தமான, சுற்றுச்சூழலில் உள்ள பொருட்களை மாணவர்களால் அடையாளங்காணச் செய்தல்.

்ற என்னோர். கன்ச்செல்லகல், கூட்டி, உருளை ஆகிய என உருகங்களை இளம் கண்டு வகைப்படுத்துதல்.

2) சமதால், வளைதடைக், இரன்டும் உடைய பொருட்களின் பெயர் அடுதல் இரணைக்கருவிகள் கணிதப் பெட்டகத்தில் உள்ள கன உருகங்கள், கன உருகங்களை ஒத்த பெருட்கள் பெட்டகத்தில் உள்ள கன உருகங்கள், கன உருகங்களை ஒத்த பெருட்கள் (பந்து, டப்பா, சக்கள் குல்லா, சோப்பு, பகடை, பென்கில், புல்லான்குழல், எறுவிசன்பரும், புத்தகம், அஞ்சல் குட்டை, முட்டை, தீப்பெட்டி டம்னர், புபன் பாக்க்), படிட்டி பட்டி, என்னெனப்டப்பா).

கற்றல் கற்பித்தல் செயல்கள்

கனிதப் பெட்டகத்தில் உள்ள கன உருகங்களை ஒங்கொள்ளுக எடுத்துக் காட்டி அதற்கு ஒத்த உருவமுடைய நம் வாழ்க்கைக் குழலில் பயன்படும் பெருட்களைக்கொள்ள, குகியலிலிறித்து எடுத்துக்காட்டக் செய்தல்.

கணிதப் பெட்டகத்தில் உள்ள கன உருகங்களின் கடியில்ல பெயர்களை கனச்சலும், கணச்செய்வகம், கம்பு, கேனம், உருகை என்று ஒப்பொருகின்கள்கள் குறிவிகள்ளதுகத் தனித்தனியக அடுமுகம் செய்தல்.

நம் வாழ்க்கைச் முதலில் பயன்படும் பல்வகைப் பொருட்களின் குறிவிகள்ளதாக குறிவுக்களை குறிவிகள்ளதாக குறிவுக்கைக் குழலில் மன்படுக்கின் பெயரைக் கூறி செய்தல்.

கணிதப் பட்டத்தில் டன்னைகை உருகங்களை ஒப்பொருக்கைச் குழலில் உள்ளன என்று கேட்டு அறிதல்.
உள்ளன என்று கேட்டு அறிதல்.

20

உருவங்களின் பெயாகளை அறிமுகம் செய்தல். அன்றாடம் உபயோகிக்கும் பொருட்களின் உருவங்களைக் கூற வைத்தல்.

இச்செயல்பாடுகள் அனைத்தும் மாணவாகளை ஆயத்தப்படுத்தும் வகையில் அமைந்துள்ளன.

மாணவர் : கொக்கு 1, கொக்கு –2 ஆகிய அடுத்துவரும் செயல் அட்டைகளை மாணவர் எடுத்து வருதல்.

ஆசிரியர் : இப்பகுதி, கருத்துக்களைப் புரிந்து கொள்ள உதவுவதுடன் ஆசிரியரின் சிறு உதவியுடன் செயல்படுவதாகும். முதல் அட்டையில் கன உருவப் பொருட்களின் படங்களும், அவற்றுக்கெதிரே அட்டவணையும் தரபட்டுள்ளது.

இரண்டாம் அட்டையில் சமதள, வளைதளப் பொருட்களும், அவற்றுக்கெதிரே அட்டவணையும் தரப்பட்டுள்ளது.

மாணவாகள் சரியான உருவங்கள் மற்றும் தளங்களைக் கண்டறிந்து குறிப்பேட்டில் எழுதுதல்.

சதுரம், செவ்வகம்,

வழியாக வரைந்து

எடுத்துக்காட்டாக.

ம் சமம் என்பதை

மாணவர் : அடுத்த அட்டையான மயில் –21ஐ எடுத்து வருதல்.

ஆசிரியர் : இது சதுரம், செவ்வகம், முக்சே

இது ஆசிரியரின் முழு உதவியுடன் முக்கோணம், வட்டம் ஆகிய உ பழகுதல். மேற்கண்ட உருவங்களி காகித மடிப்பு மூலமாக சதுரத்

பயிலுவதற்கான ஆயத்த நிலைய

விளக்குதல்.

மாணவர் : அடுத்த அட்டையான கொக்கு எடுத்து வருதல்.

ஆசிரியர் : இது ஆசிரியர் சிறு உதவியுடன் நடைபெறும் செயலாகும். நாணயம், பெட்டி, பகடை, முக்கோண உருவத்தின் விளிம்புகள் வழியாக உருவங்களை குறிப்பேட்டில் வரைய வைத்தல்.

மாணவா் : அடுத்து மரங்கொத்தி –4 அட்டையை எடுத்து வருதல். இது மாணவரின் சுயகற்றல் அட்டையாகும். இங்கு அட்டவணையில் தரப்பட்டுள்ள உருவங்களையும், பொருட்களையும் பொருத்தும் செயல் இடம் பெறுகிறது. கூடுதலாக உருவங்களும், அவற்றின் பண்புகளும் தரப்பட்டு பொருத்தும்படியான வலுவூட்டும் செயல்கள் இடம் பெறுகின்றன.

ஆசிரியர் : மேற்கண்ட செயல்களை மேற்பார்வை செய்தல்.

மாணவா் : காகம் –10 செயல் அட்டையை எடுத்துவருதல். இது மதிப்பீட்டிற்கான அலகுத் தோ்வாகும். இது சக மாணவா்கள் மற்றும் ஆசிரியரின் உதவியின்றி செய்யப்படும் செயலாகும்.

> குறிப்பிட்ட உருவங்களை வரைதல், பொருத்துதல், சரியான விடையைத் தேர்ந்தெடுத்தல், கோடிட்ட இடத்தை நிரப்புதல் போன்ற வினாக்கள் மூலம் மாணவர்கள் மதிப்பீடு செய்யப்படுகிறார்கள்.

ஆசிரியர் : இவ்வட்டையில் உள்ள செயல்பாடுகளை சரியாகச் செய்த மாணவர்கள் மேற்கண்ட திறனைப் பெற்றதாகக் கருதப்படுகிறார்கள்.

எடுத்துக்காட்டு 4 வகுப்பு : IV

திறன் : பின்னங்கள் அறிமுகம்

இத்திறனுக்கான கற்றல் கற்பித்தல் செயல்பாடுகளை இங்கே காண்போம்.

மாணவர் : இத்திறன் 4–ம் வகுப்புக்கான கற்றல் ஏணிப்படியில் 11 –வது படி நிலையில் உள்ளது.
இப்படிநிலையின் முதல் செயல் அட்டையான மயில் –34 –ஐ எடுத்துவந்து
ஆசிரியரிடம் தருதல்.

ஆசிரியா் : இவ்வட்டைச் செயல்பாடுகள் ஆசிரியாின் முழு உதவியுடன் நடைபெறுவதாகும்.

ஆசிரியர், தகுபின்னத்தை அறிமுகம் செய்யும் முகமாக பகுதியையும், தொகுதியையும் நினைவு கூர்தல். 10 பாகங்களைத் கொண்ட பின்ன வட்டு, 20 பாகங்களைக் கொண்ட கட்டத்தாள் போன்றவற்றைப் பயன்படுத்தி தகுபின்னம் அறிமுகம் செய்யப்படுதல்.

மாணவர் : அடுத்த அட்டையான தூக்கணாங்குருவி – 2 –ஐ எடுத்து வருதல்.

இது ஆசிரியரின் சிறு உதவியுடன் நடைபெறும் செயலாகும். நிழலிட்ட பாகம் குறிக்கும் தகுபின்னத்தை எழுதுதல், செவ்வகக்கட்டங்களில் தகுபின்னத்தைக் குறித்தல் போன்ற செயல்களை மாணவர் செய்தல்.

ஆசிரியர் : மாணவரின் ஐயங்களுக்கு ஆசிரியர் பதிலளித்தல்.

Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш	Ш

மாணவர் : தூக்கணாங்குருவி – 3 அட்டையை மாணவர் எடுத்து வந்து செயல்பாடுகளில் ஈடுபடுதல். தேவைப்படின் ஆசிரியர் உதவி செய்யும் நிலை இதுவாகும்.

இங்கு பின்னங்களுக்குரிய பொருட்களின் எண்ணிக்கையை எழுதி மாணவாகள் பயிற்சி பெறுகிறாா்கள்.

எடுத்துகாட்டு பின்னம் 1/3 குறிக்கும் கட்டங்களின் எண்ணிக்கை என்ன?

ஆசிரியர் : செயல்களை மேற்பார்வை செய்தலும், வழிகாட்டுதலும்.

மாணவர் : மயில் –35 செயல் அட்டையை எடுத்து வந்து ஆசிரியரிடம் அளித்தல்.

ஆசிரியர் : இது ஆசிரியர் முழு உதவியுடன் நடைபெறுவதாகும். பின்னவட்டுகள், கற்கள், காகித மடிப்புகள் போன்ற துணைக்கருவிகள் மூலம் சமான பின்னத்தை ஆசிரியர் அறிமுகம் செய்தல்.

மாணவா் : தூக்கணாங் குருவி – 4 செயல் அட்டையை எடுத்து வந்து செயல்களைச் செய்தல். நிழலிட்ட பகுதிகள், பின்னவட்டுகள் மற்றும்

பொருட்களின் எண்ணிக்கையை அடிப்படையாக வைத்து சமான பின்னங்களை எழுதுதல்.

மாணவர் : மயில் –36 செயல் அட்டையை எடுத்து வந்து ஆசிரியரிடம் அளித்தல்.

ஆசிரியர் : இது ஆசிரியருக்கான அட்டையாகும். இங்கு பின்னவட்டுகள் மற்றும் கட்டத்தாட்களை பயன்படுத்தி தகுபின்னத்தை ஏறுவரிசையிலும், இறங்கு வரிசையிலும் அமைக்கக் கற்றுக் கொடுத்தல்.

மாணவா் : மயில் −37 செயல் அட்டையை எடுத்து வந்து ஆசிாியாிடம் அளித்தல்.

ஆசிரியா் : பின்னவட்டு, கட்டத்தாள், பொரிக்காத அப்பளம் போன்றவற்றைப் பயன்படுத்தி கலப்புப்பின்னம் மற்றும் பரிமாற்றம் செய்ய பயிற்சி அளித்தல்

மாணவர் : தூக்கணாங்குருவி – 5,6 அட்டைகளை ஒன்றன்பின் ஒன்றாக எடுத்து வந்து தேவைப்படின் ஆசிரியரின் சிறு உதவியுடன் செயல்களைச் செய்தல். அட்டையில் தரப்பட்டுள்ள தகுபின்னங்களை ஒப்பிட்டு ஏறுவரிசையிலும், இறங்குவரிசையிலும் எழுதுதல். தகாபின்னம், கலப்பு பின்னங்களை படங்களில் நிகலிடுதல். தகா பின்னத்தை கலப்புப்பின்னாமாகவும், கலப்புப் பின்னத்தை தகாபின்னமாகவும் மாற்றி பயிற்சி செய்தல்.

மாணவர் : படிநிலையின் இறுதிச் செயல் அட்டையான மதிப்பீடு அட்டை காகம் – 10ஐ எடுத்து வந்து தானே செய்தல். இவ்வட்டையில், இத்திறன் பகுதியில் மாணவர் செய்த அனைத்து வகை செயல்பாடுகளின் அடிப்படையிலான கேள்விகளுக்கு விடையளித்தல்.

ஆசிரியர் : இந்நிலையில் மாணவரின் செயல்பாடுகளை மதிப்பீடு செய்து, சரியாக செய்திருப்பின் அடுத்த படி நிலைக்கு மாணவரை அனுப்பி வைத்தல். மதிப்பீட்டு அட்டை செயல்பாடுகள் திருப்திகரமாக இல்லாத நிலையில், இப்படி நிலையின் முதல் அட்டையிலிருந்து மீண்டும் தொடர மாணவருக்கு வாய்ப்பு கொடுத்தல்.

சிந்தனைக்குச் சில வினாக்கள்

பறவைகள், மிருகங்கள், வாகனங்கள் என்று பல்வேறு உருவங்களையும், அவை குறிப்பிடும் செயல்களையும் மாணவர்களால் எளிதில் அடையாளங் காண முடிகிறதா ?

வகுப்பறையில் அமர்த்தப்பட்டுள்ள ஆறு குழுக்களையும் தனியொரு ஆசிரியரால் திறம்பட மேற்பார்வை செய்ய முடிகிறதா? இதனை ஆசிரியர், பணிச்சுமை எனக் கருதுகிறாரா?

தங்கள் பிள்ளைகள் பாடப்புத்தங்களை மூட்டையாகக்கட்டி தோளில் சுமக்கவில்லையே, கடினமான வீட்டுக் கணக்குகளை செய்யவில்லையே என்று பெற்றோர்கள் கருதுகின்றனரா?

ஒன்று முதல் நான்கு வகுப்பு வரையிலான மாணவர்களை அவர்களது அடைவுநிலையின் அடிப்படையில் அவர்களுக்குரிய குழுவில் அமர்த்துவதை ஆசிரியரால் சிரமமின்றி சரியாகச் செய்ய முடிகிறதா ? இதில் தவறுகள் நேரின், மாணவர்கள் சந்திக்கும் பிரச்சினைகள் என்ன ? நான்காம் வகுப்பில் தற்போது படித்துக் கொண்டிருக்கும் ஒரு மாணவனை, அவனது அடைவு நிலையின்படி ஒன்றாவது நிலையில் அமர்த்தும் போது, அம்மாணவனால் அல்லது பெற்றோரால் அதனை ஏற்றுக்கொள்ள முடிகிறதா ?

ஒவ்வொரு படி நிலையின் இறுதியிலும் செய்யப்படும் மதிப்பீடு முழுமையானதுதானா ? இதில் ஏற்படும் தவறுகள் மாணவனை எங்ஙனம் பாதிக்கிறது ?

கணிதத்தின் எல்லா பகுதிகளையும் செயல்வழிக்கற்றல் மூலம் திறம்பட கற்க, கற்பிக்க முடிகிறதா ? எந்த பகுதிகளை கற்க,கற்பிக்க கடினமாக உள்ளன ?

இம்முறை, பல்வகுப்புக் கற்பித்தலை மையமாகக் கொண்டது என்பதை நாம் அறிவோம். வகுப்புவாரியாக போதிய மாணவாகள் உள்ள ஒரு பள்ளியில் பல்வகுப்பு கற்பித்தல் அல்லாத சாதாரண முறையில் செயல் வழிக்கற்றலை நடைமுறைப்படுத்த இயலுமா ?

தானே கற்றலை அடிப்படையாகக் கொண்ட இம்முறையில் மாணவர்கள் சுயமாக எந்த அளவுக்குக் கற்கிறார்கள் ? இந்த சுயகற்றல் நிகழ்வுகளில் மாணவர்கள் எதிர்கொள்ளும் தடைகளும், தீர்வுகளும் யாவை ?

9.7 வாக்கியக் கணக்குகள்

வாக்கியக் கணக்கு என்பது கணித அடிப்படைச் செயல்களையும், வாழ்க்கையில் அன்றாடம் பயன்படக்கூடிய நிகழ்வுகளையும் உள்ளடக்கிய குறிப்பிட்ட படிகளில் தீர்வு காண்பதற்குரிய கணக்கு ஆகும்.

எடுத்துக்காட்டு 5

5-ஐயும், 3 -ஐயும் கூட்டினால் எத்தனை வரும் என்பது ஒரு வாக்கியக் கணக்கா? அல்லது, எழில் கடைக்குச் சென்ற போது 5 ஆரஞ்சுப் பழங்களையும், 3 மாம்பழங்களையும் வாங்கி வந்தால், அவன் வாங்கிவந்த மொத்த பழங்கள் எத்தனை என்பது ஒரு வாக்கியக் கணக்காக அமையுமா?

இரண்டு கணக்குகளும் ஒரே கருத்தினை உணர்த்துவதாக இருப்பினும் வரையறை அடிப்படையில் பார்க்கும் போது இரண்டாம் கணக்கினை நாம் வாக்கியக் கணக்கு என்று கூறுகிறோம்.

மூன்றுவகை வாக்கியக் கணக்குசார் திறன்கள்

வாக்கியக் கணக்குளைச் சரியாக செய்யத் துணைபுரியும் மூன்று வகை திறன்கள் கண்டறியப்பட்டுள்ளன.

அவை

- 1. புரியும் வகையில் மாற்றுதல் (Decipher)
- 2. பொருள் படுத்துதல் (Interpret)
- 3. பதிலளித்தல் (Respond)

இம்மூன்று திறன்களையும் அடையாத மாணவர்கள் வாக்கியக் கணக்குகளைச் சரியாகச் செய்வதில்லை. இம்மூன்றில் ஏதேனும் ஒன்றில் பின்தங்கிய நிலையிலிருப்பினும் அம்மாணவனால் சரியான தீர்வினைக் கண்டறிய இயலாது.

எடுத்துக்காட்டு 6

ஒரு கடையில் 30 வகையான சோப்புகள் உள்ளன. அக்கடைக்குச் சோப்பு வாங்க வந்தவரிடம் 10 ரூபாய் இருந்தால், ஒரு சோப்பின் விலை என்ன ?

சில மாணவர்கள் இக்கணக்கை செய்ய முற்படுவதுடன், செய்து முடித்து ஏதேனும் ஒரு விடையையும் கூறி விடுகின்றனர். இக்கணக்கின் தீர்வை கண்டறிய இயலாது அல்லது இது ஒரு பொருளே இல்லாத கணக்கு அல்லது இது நடைமுறைக்கு ஒவ்வாத கணக்கு என்று எத்தனை மாணவர்களால் கூற இயலுகிறது ?

இக்கணக்கினை,

- புரியும் வகையில் மாற்றம் செய்ய இயலாது
- பொருள் படுத்த இயலாது.
- பதிலளித்தல் இயலாது.

எடுத்துக்காட்டு 7

தரப்பட்டுள்ள ஒரு நாடா இருவருக்கு சமமாக பிரித்து கொடுக்கப்படுகிறது. அதில் ஒருவா் தனக்குரிய பங்கில் மூன்றில் இரண்டு பாகத்தை பயன்படுத்திய பின் 1 மீட்டா் அளவுள்ள நாடா மீதியாகக் கிடைக்கிறது எனில், தரப்பட்ட மொத்த நாடாவின் நீளம் என்ன?

இக்கணக்கைத் தீர்ப்பதில் தவறு செய்யும் பெரும்பாலான மாணவர்கள் கணக்கில் தரப்பட்டுள்ள விவரங்களை புரியும் வகையில் மாற்றும் திறனை (Decipher) அடையாதவர்களாக இருக்கிறார்கள். இதனை நிவர்த்தி செய்ய ஆசிரியர் பின்பற்ற வேண்டியவை.

- கணக்கினை பல படிகளாக பிரித்து உணர்த்துதல்
- கணக்கினை பல முறை கவனமாகப் படித்து புரிய வைத்தல்
- துணைக் கருவிகளைப் பயன்படுத்துதல்
- எளிய நிலையிலிருந்து கடின நிலை வரையிலான பல வாக்கியக் கணக்குகளை படிப்படியாக அளித்துத் தீர்க்க வைத்தல்.

எடுத்துக்காட்டு 8

மூன்று நண்பர்கள் வெகுநாட்களுக்குப்பின் சந்தித்த போது மூன்று பேரும் ஒருவருக்கொருவர் மாறிமாறி பரிசுப் பொருட்களை பரிமாறிக் கொள்கிறார்கள் எனில் அங்கு பரிமாறப்பட்ட பரிசுப் பொருட்களின் எண்ணிக்கை எத்தனை ?

இக்கணக்கைத் தீா்ப்பதில் தவறு செய்யும் பெரும்பாலான மாணவா்கள், கணக்கினை புரிந்து கொண்டாலும் பொருள்படுத்த (Interpret) இயலாதவா்களாக இருக்கிறாா்கள்.

இதனை நிவிர்த்தி செய்ய ஆசிரியர் பின்பற்ற வேண்டியவை.

- பட விளக்கம் மூலம் விளக்குதல்.
- செயல்பாடுகளின் அடிப்படையில் நேரடி அனுபவத்தை அளித்தல் (நடித்துக் காட்டல் –
 Role play).

எடுத்துக்காட்டு 9

ஒரு பள்ளியைச் சேர்ந்த 380 மாணவர்கள் கல்விச்சுற்றுலா செல்லத் திட்டமிடுகிறார்கள். ஒருபேருந்தில் 60 மாணவர்கள் மட்டுமே செல்ல முடியுமெனில் அனைத்து மாணவர்களும் செல்ல எத்தனை பேருந்துகளை ஏற்பாடு செய்ய வேண்டும் ?

இதற்கான சரியான விடை 7 என்பதை முதலில் எத்தனைபேர் ஒத்துக் கொள்வார்கள் ?

இக்கணக்கைப் பொறுத்த வரையில், பெரும்பாலான மாணவர்களால் கருத்தினை புரியும் வகையில் மாற்றம் செய்ய இயலுகிறது. பொருள் படுத்த இயலுகிறது. ஆனால் பதிலளித்தலில் தவறு செய்கிறார்கள். மாணவர்களிடம் இருந்து பெறப்பட்ட பல வித்தியாசமான விடைகளை இங்கு காண்போம். அவை,

- 6 பேருந்துகளும், மீதி 20 மாணவர்களும்
- அனைத்து மாணவா்களும் பேருந்தில் செல்ல இயலாது
- 20 மாணவர்களுக்குச் சுற்றுலா செல்ல வாய்ப்பில்லை
- 6 பேருந்துகள். மீதியுள்ள 20 மாணவாகளும் 6 பேருந்துகளிலுமாக 4, 4, 3, 3, 3, 3 என்று பங்கீடு செய்யப்பட்டு பயணம் செய்யலாம்.

இதனை நிவர்த்தி செய்ய ஆசிரியர் பின்பற்ற வேண்டியவை. கணக்கில் உள்ள எண்களிலும், அடிப்படைச் செயல்களிலும் மட்டுமே மையம் கொண்டிருக்கும் மாணவர்களின் கவனத்தை உண்மையான நடைமுறைச் சூழலுக்குக் கொண்டு வருதல். ஆரம்ப நிலையிலிருந்தே கணிதச் செயல்பாடுகளை வாழ்க்கையின் நிகழ்வுகளோடு தொடர்புபடுத்துதல்.

ஒவ்வொரு வாக்கியக்கணக்கைத் தீர்க்கும் போதும், தன்னை அச்சூழலில் ஓர் அங்கமாக்கி, அதோடு ஒன்றி, தனக்கேற்பட்ட ஒரு நிகழ்வுக்குத் தாமே தீர்வு காண்பது போன்ற ஒரு மன நிலையை மாணவனிடம் உருவாக்குதல்.

9.8 வாக்கியக் கணக்குகளின் தன்மை

கணக்குகளின் தன்மை மற்றும் கடின நிலையின் அடிப்படையில் அவற்றை மூன்று வகைகளாக பிரிக்கலாம் என்று கணிதவியலாளர்கள் கூறுகின்றனர்.

- 1. மாற்றம் நேரும் கணக்குகள் (Change questions)
- 2. இணைப்புக் கணக்குகள் (combine questions)
- 3. ஒப்பிடு கணக்குகள் (Comparing questions)

1. மாற்றம் நேரும் கணக்குள் (Change questions)

ஒருவாிடம் இருக்கின்ற ஒரு பொருளின் மதிப்பு ஒரு நிகழ்வினால் மாற்றம் நேரிடுமாயின், அத்தகைய கணக்குகள் மாற்றம் நேரும் கணக்குதள் என்று அழைக்கப்படுகிறது.

எடுத்துக்காட்டு 10

பூமாலையிடம் 5 கோலிகள் இருந்தன. பூவரசன் பூமாலைக்கு மீண்டும் 2 கோலிகளை அளித்தால், பூமாலையிடம் தற்போது இருக்கும் கோலிகள் எத்தனை ?

பூமாலையிடம் இருந்த கோலிகளின் எண்ணிக்கையில் பூவரசனிடம் இருந்து பெற்ற கோலிகளின் வரவினால் நேரிட்ட மாற்றத்தை இக்கணக்கு உணர்த்துகிறது.

2. இணைப்புக் கணக்குகள் (combine questions)

இரண்டு அல்லது அதற்கு மேற்பட்ட வெவ்வேறு நிலையில் உள்ள தொடர்புடைய அல்லது தொடர்பற்ற பொருட்களை ஒரு நிகழ்வின் மூலம் இணைத்து புதியதொரு மதிப்பை கண்டிறியும் கணக்குகள் இணைப்புக் கணக்குள் எனப்படுகிறது.

எடுத்துக்காட்டு 11

பூமாலையிடம் 5 கோலிகளும், பூவரசனிடம் 2 கோலிகளும் இருப்பின் அவர்கள் இருவரிடமும் இருக்கும் மொத்த கோலிகள் எத்தனை ?

பூமாலையிடம் இருந்த கோலிகளும் பூவரசனிடம் இருந்த கோலிகளும் இணைந்து புதிய ஒரு மதிப்பு உருவானதை இக்கணக்கு உணர்த்துகிறது.

3. ஒப்பீடு செய்யும் கணக்குகள் (comparing questions)

இரு பொருட்களை ஒப்பிடுவதுடன் அவற்றின் வித்தியாசத்தை ஒரு நிகழ்வின் மூலம் கூறப்பட்டுள்ளதால் இது ஒப்பீடு கணக்குகள் என்று அழைக்கப்படுகிறது.

எடுத்துக்காட்டு 12

பூமாலையிடம் 5 கோலிகள் உள்ளன. பூவரசனிடம் உள்ளதை விட கூடுதலாக 2 கோலிகள் பூமாலையிடம் இருப்பின், பூவரசனிடம் உள்ள கோலிகள் எத்தனை ?

பூவரசனிடம் உள்ள கோலிகளை பூமாலையிடம் உள்ள கோலிகளோடு ஒப்பிட்டு புதியதொரு மதிப்பு உருவாவதை இக்கணக்கின் மூலம் அறிகிறோம்.

9.9 வாக்கியக் கணக்கு ஒரு கடினப்பகுதியா?

வாக்கியக் கணக்குகளைத் தீர்க்கத் தெரியாத மாணவர்கள் கணிதத்தில் பின் தங்கியவர்களாகக் கருதப்படுகின்றனர். அவர்கள் கீழ்கண்டவற்றில் ஏதேனும் ஒன்றையோ அல்லது ஒன்றுக்கு மேற்பட்டவற்றையோ கடினமாகக் கருதுகிறார்கள்.

- 💠 கணக்கை வாசித்தல்
- 💠 கணக்கின் மொழியைப் புரிந்து கொள்ளுதல்
- 💠 சொற்றொடர்களின் பொருளைப் புரிந்து கொள்ளுதல்
- 💠 தரப்பட்டுள்ள மொத்தத் தகவல்களிலிருந்து தேவையற்றதை களைதல்
- 💠 அத்தகவல்களிலிருந்து தேவையான மற்றும் முக்கியமானவற்றை பிரித்தறிதல்
- 💠 கணக்கைத் தீர்ப்பதற்கான ஒரு திட்டத்தைத் தயாரித்தல்
- அத்திட்டத்தைச் செயல்படுத்துதல்
- 💠 கொடுக்கப்பட்டிருக்கும் தகவல்களை கவனித்து வாக்கியங்களாக மாற்றுதல்
- 💠 பல்வேறு படி நிலைகளில் கணக்கைச் செய்தல்
- 💠 சரியான உத்திகளைக் கையாளுதல்
- 💠 சரியான கணக்கீடுகளை அறிந்திருத்தல்

9.10 வாக்கியக் கணக்குகளைக் கற்பிப்பதில் ஆசிரியரின் பங்கு

வாக்கியக் கணக்குகளைக் கற்பிப்பதில் ஆசிரியரின் பங்கு மகத்தானது. ஆரம்ப நிலையிலேயே மாணவர்களுக்கு வாக்கியக் கணக்குகளைத் தீர்ப்பதற்கான அடித்தளத்தை அமைத்துக் கொடுப்பது ஓர் ஆசிரியரின் தலையாய கடமையாகும்.

- வேறும் எண்களைக் கொண்டே கணித வகுப்பறைச் செயல்பாடுகளைச் செய்ய முயலும் ஒருவர் கணித ஆசிரியரே அல்ல.
- ஆரம்ப நிலையிலேயே வாக்கியக்கணக்குகளை அறிமுகம் செய்யாது பிற்பட்ட காலக்கட்டத்தில் கற்பிக்க முயலும் ஆசிரியர் தோல்வியைத் தழுவுகிறார்.

அக்கணக்குகளைக் கடினமாக உணரும் மாணவர்கள் எதிர் கொள்ளும் பிரச்சினைகளை நிவர்த்தி செய்ய ஆசிரியர் சிரமப்படுகிறார்.

வாக்கியக் கணக்குகளைக் கற்பிப்பதில் ஒரு கணித ஆசிரியரின் பங்கு என்ன என்பதைக் காண்போம்.

- வாக்கியக் கணக்குகளின் அடிப்படையான கணித அடிப்படைச் செயல்களில் மாணவர்களின் திறனை உறுதி செய்தல்
- வாக்கியக் கணக்குகளைத் தீர்ப்பதற்கான திறன்களைப் பெறாத மாணவர்களுக்கு குறுக்கு வழி முறைகளைச் சொல்லிக் கொடுத்து தேர்ச்சி பெற வைக்கும் நோக்கினைத் தவிர்த்தல்
- சிக்கலான சொற்றொடர்களையும், அமைப்பையும் உடைய கணக்குகளை
 எளிமையாக்கித் தீர்வுகாண வழி வகுத்தல்
- ❖ ஒவ்வொரு கணிதச் செயல்பாட்டையும், வாழ்க்கை நிகழ்வுகளோடு தொடர்புபடுத்துதல்
- வாக்கியக் கணக்குகளை மாணவர்கள் பலமுறை படிக்கவும், ஆழமாக படிநிலைகளைக் குறித்து சிந்திக்கவும் உரிய வாய்ப்புகளையும், கால அவகாசத்தையும் வழங்குதல்.
- 💠 கணக்குகளின் படிநிலை குறித்து திட்டமிடுவதற்கு வழி செய்தல்
- ❖ வாக்கியக்கணக்குகளில் வரும் எண்களிலேயே மையங்கொண்டிருக்கும் மாணவர்களின் எண்ண ஓட்டத்தை யதார்த்த நிலைக்குக் கொண்டு வருதல்
- வாக்கியக் கணக்குகளின் படிநிலைகளில் மாணவர்களுக்கு ஏற்படும் தடைகளை நிவர்த்தி செய்யத் தேவையான உத்திகளைக் கண்டறிதலும், பயன்படுத்துதலும்
- வாக்கியக் கணக்குகளின் படிநிலைகளில் வரும் செயல்பாடுகளுக்குரிய அடிப்படைச் செயல்கள் எவை என்பதை மாணவர்கள் உணர்ந்து செயல்படுதலுக்குரியச் சூழலை ஆசிரியர் உருவாக்குதல்
- வாக்கியக் கணக்குகளைத் தீர்க்கும் திறன், மாணவனின் நிஜவாழ்க்கையில் எதிர் கொள்ளும் பிரச்சினைகளைத் தீர்க்க அடி கோலுகிறது என்பதை மாணவர்கள் உணர வைத்தல்

- ❖ கணிதம் வாழ்க்கையோடு இணைந்த அறிவியல் என்பதை மாணவர்கள் உணரும் வகையில் அன்றாட வகுப்பறைச் செயல்களை திட்டமிட்டு அமைத்தல்
- ❖ கீழ் வகுப்புகளில் வாக்கியக் கணக்குகளைத் திறம்படத் தீர்க்கும் மாணவர்களே, உயர் வகுப்பு கணிதத்தில் ஒளிரும் வகையில் சிறந்து விளங்குகின்ற உண்மையை மாணவர்களுக்கு உணர்த்துதல்

9.11 செயல்வழிக்கற்றலும், வாக்கியக் கணக்குகளும்

வாக்கியக் கணக்குகளைத் தீர்க்கும் திறனைச் செயல்வழிக்கற்றல் மேம்படுத்துகிறது. இக்கற்றல் முறையில் முதல் வகுப்பில் இருந்தே வாக்கியக் கணக்குகளை மாணவர்கள் தீர்ப்பதற்கு ஏதுவான செயல்பாடுகள் வடிவமைக்கப்பட்டுள்ளன.

எடுத்துக்காட்டாக, ஆந்தை உருவம் கொண்ட கற்றல் அட்டைகளைக் கருதுக. இவ்வுருவம் பதிக்கப்பட்ட கற்றல் அட்டைகள் வாக்கியக் கணக்குகள் திறன் மேம்பாட்டிற்காக தனிக்கவனத்தோடு உருவாக்கப்பட்டவையாகும்.

இக்கற்றல் அட்டைகளின் ஒரு புறத்தில் படங்களும், மறு புறத்தில் படத்திற்கு தொடர்பான வினாக்களும் தரப்பட்டுள்ளன.

ஆசிரியர் கேட்கும் வினாக்களுக்கு குழந்தைகள் அட்டையில் உள்ள படங்களைப் பார்த்தும், வகுப்பறைக்கு உள்ளேயும் வெளியேயும் பெற்ற அவர்களின் அனுபவத்தின் அடிப்படையிலும் விடையளிக்கும் வகையில் இச்செயல் அட்டைகள் உருவாக்கப்பட்டுள்ளன.

5 படிகளில் வாக்கியக் கணக்குக்களுக்குத் தீர்வு காணுகின்ற உத்திகள் இக்கற்றல் கற்பித்தலில் கையாளப்பட்டுள்ளன.

ஆசிரியரின் வழிகாட்டுதலின்றி மாணவர்களால் வாக்கியக்கணக்குகளை தீர்ப்பது அரிய செயல் என்ற கோட்பாட்டை நினைவில் கொண்டு இவ்வகை செயல் அட்டைகளின் மேற்புறத்தில் ஆசிரியரின் கை உருவம் அச்சிடப்பட்டிருக்கும்.

இவ்வுருவம், இவ்வகை செயல் அட்டைகளைக் கொண்டு செயல்பாடுகள் நடைபெறும் போது ஆசிரியரின் தனிக்கவனத்திற்கான அடையாளமாகும்.

கணித கற்றல் அட்டைகளில் சின்னங்களும் செயல்பாடுகளும்

	பாட்டு, படம் வ உருவெ நடித்து நடித்தி வகுப்பி	செயல்பாடு கதை, புதிர், விடுகதை கூறுதல் ரைதல் காட்டுதல் ல், குரல் மாற்றி பேசுதல் அட்டைகளை அறிமுகம் செய்தல்				
	வாய் பென்சில் தாராநாத் முகமுடி கேரமாளி கேர்றல் அட்டைப்பெட்டி	பாட்டு, கதை, புதிர், விடுகதை கூறுதல் படம் வரைதல் உருவொற்றி வரைதல் நடித்து காட்டுதல் நடித்தல், குரல் மாற்றி பேசுதல் கற்றல் அட்டைகளை அறிமுகம் செய்தல் வகுப்பரைக்கு வெளியே செய்யும் செயல்பாடுகள்			1 1 1 1 1	
	பன்சில் ராநாத் நகமுடி நாமாளி யுட்டைப்பெட்டி	படம் வரைதல் உருவொற்றி வரைதல் நடித்து காட்டுதல் நடித்தல், குரல் மாற்றி பேசுதல் கற்றல் அட்டைகளை அறிமுகம் செய்தல் வகப்பரைக்கு வெளியே செய்யும் செயல்பாடுகள்		1 1 1 1 4	1 1 1 1	
_	ராநாத் நகமுடி நாமாளி டிட்டைப்பெட்டி ங்குவின்	உருவொற்றி வரைதல் நடித்து காட்டுதல் நடித்தல், குரல் மாற்றி பேசுதல் கற்றல் அட்டைகளை அறிமுகம் செய்தல் வகப்பரைக்கு வெளியே செய்யும் செயல்பாடுகள்	1 1 1		1 1 1	1 1 1 1 1
M	நகமுடி நாமாளி யுட்டைப்பெட்டி ங்குவின்	நடித்து காட்டுதல் நடித்தல், குரல் மாற்றி பேசுதல் கற்றல் அட்டைகளை அறிமுகம் செய்தல் வகப்பரைக்கு வெளியே செய்யும் செயல்பாடுகள்	1 1 1		1 1 1	1 1 1 1
	நாமாளி யுட்டைப்பெட்டி ங்குவின்	நடித்தல், குரல் மாற்றி பேசுதல் கற்றல் அட்டைகளை அறிமுகம் செய்தல் வகப்பளைக்கு வெளியே செய்யும் செயல்பாடுகள்	1 1	1 1 4	1 1	1 1 1
	டிட்டைப்பெட்டி ங்குவின்	கற்றல் அட்டைகளை அறிமுகம் செய்தல் வகப்பரைக்கு வெளியே செய்யும் செயல்பாடுகள்	1	ו ע	I	l l
	ங்குவின்	வகப்பரைக்கு வெளியே செய்யும் செயல்பாடுகள்		ιζ		ı
))	ದ	,	Ŋ	ဂ
	பயில்	வகுப்பறைக்குள் செய்யும் செயல்பாடுகள்	29	30	36	35
	சுருவி	இரப்பர் எண் மூலம் எண் உருவை அறிமுகம் செய்தல்	#	I	ı	ı
	_ காற்றாடி	என்ணட்டைகள் அடுக்குதல்	1	I	ı	ı
	uili	எண் உரு எழுதும் முறை	5	I	ı	I
\$ \}	பாராசூட்	கூட்டல், கழித்தல், கணக்குள் செய்தல்	-	I	ı	I
্ ক	அன்னம்	எண்கள் சம்பந்தமாக பயிற்சி செயல்பாடுகள்	8	10	25	3
9	சேவல்	கூட்டல் சம்பந்தமான பயிற்சி செயல்பாடுகள்	12	19	#	7
J. Or	கொக்கு	வடிவங்கள் சம்பந்தமான பயிற்சி செயல்பாடுகள்	1	-	3	4

வ.எண்	உருவம்	உருவத்தின் பெயர்	செயல்பாடு	П	П	Ш	IV
16		மரங்கொத்தி	பொருத்துதல்	5	2	5	2
17		пфг	நாணயங்கள் சம்பந்தமான பயிற்சி செயல்பாடுகள்	1	10	15	16
18		கிளி	கழித்தல் சம்பந்மான பயிற்சி செயல்பாடுகள்	13	16	6	9
19	•	கோழி குஞ்சு	பிங்கோ விளையாட்டு	12	45	-	I
20	W.	காகம்	அலகுத்தேர்வு	\$	12	17	9
21		வாத்து	திருப்பகலுக்கான செயல்பாடுகள்	4	3	3	က
22		ஆந்தை	வாழ்க்கைக் கணக்குகள்	2	4	9	6
23	4	வெளவால்	பெருக்கல் சம்பந்மான பயிற்சி செயல்பாடுகள்	ı	7	9	4
24		多俱倒	தேர்வு சம்பந்மான செயல்பாடுகள்	2	2	3	က
25		மீன்கொத்தி	கணித சம்பந்தமான செயல்பாடுகள்	10	7	9	9
26	4	சிறுமி சிந்தித்தல்	மனக்கணக்கு சம்பந்மான பயிற்சி செயல்பாடுகள்	I	ı	9	7
27	*	நெருப்புக்கோழி	பரப்பளவு சம்பந்தமான பயிற்சி செயல்பாடுகள்	I	ı	1	2
28		வான்கோழி	வகுத்தல் சம்பந்தமான பயிற்சி செயல்பாடுகள்	-	_	6	2
29	Å	தூக்கணாங்குருவி	பின்னம் சம்பந்மான பயிற்சி செயல்பாடுகள்	I	Ι	5	œ
30		வீடு	வீட்டுப்பாடத்திற்கான செயல்பாடுகள்	17	20	21	34
31		குயில்	கூட்டல் கழித்தல் அட்டவணைகள்	2	I	ı	ı

கற்றவை

- 💠 செயல் வழிக் கற்றலின் பொருள்
- 💠 செயல் வழிக் கற்றலின் அணுகுமுறைகள்
- 💠 செயல் அட்டைக் குறியீடுகள் (logo)
- 💠 செயற் குழுக்கள் அமைத்தல்
- 💠 செயல் வழிக்கற்றல் செயல்பாடுகள்
- எடுத்துக்காட்டுகள்
- 💠 வாக்கியக்கணக்கின் பொருள்
- வாக்கியக் கணக்குகளைச் சரியாகச் செய்யத்
 துணைபுரியும் 3 வகை திறன்கள்
- 💠 வாக்கியக்கணக்குகள் கடினப்பகுதியாகக் காரணிகள்
- 💠 ஆசிரியரின் தலையாயப் பங்கு

கற்றல் செயல்

- ஒரிலக்க எண்களின் கூடுதல் பாடத்தை செயல் வழிக்கற்றல் மூலம் கற்பிக்கும்போது ஏற்படும் ஆசிரியர்–மாணவர் உரையாடல் தயாரித்தல்
- "வடிவங்கள்" பாடத்திற்கு கற்பித்தல் படிநிலைகளை எழுதுதல்.
- 💠 இரப்பா் எண் மூலம் எண் உருவை அறிமுகம் செய்தல்.

அலகு 10

கணக்கிடுதலின் இயலாமை

(Learning Difficulties)

10.1 அறிமுகம்

''மாணவர்களால் என்ன செய்ய முடியுமோ, அதை அவர்களை செய்ய வைக்க முடிவதே கல்வியாகும்.''

கணக்கிடும் திறன் மாணவர்களுக்கு மாணவர் வேறுபடுகிறது. ஒரு சில கணக்குகளுக்குத் தீர்வு காணும் போது சில மாணவர்கள் மட்டுமே தவறு செய்கிறார்கள். சில கணக்குகளுக்குத் தீர்வு காணும் போது பெரும்பாலான மாணவர்கள் தவறு செய்கிறார்கள். அவ்வாறு கணக்குகளுக்குத் தீர்வு காணும் போது பொதுவாக ஏற்படக்கூடிய பிழைகள், பிழைகள் ஏற்படுவதற்கான காரணங்கள், பிழைகளைத் தவிர்ப்பதற்குரிய வழிமுறைகள் ஆகியவற்றை இங்கு பார்க்கலாம். தொடக்க நிலை வகுப்புகளில் கணக்கு செய்யும் போது மாணவர்களிடம் பொதுவாக ஏற்படும் பிழைகளை கண்டறிதல், பிழைகளை வகைப்படுத்தத் தெரிந்து கொள்ளுதல், பிழைகள் ஏற்படக் காரணங்கள் என்ன என்று தெரிந்து கொள்ளுதல், பிழைகளை நீக்குவதற்குரிய வழிமுறைகளைப் பட்டியலிடுதல், தொடக்க நிலை வகுப்புகளில் கணக்குப் பாடத்தில் கடினமான பகுதிகளை கண்டறிதல், கணக்குக் கற்றலில் இயலாமைக்கான காரணங்களை அறிந்து கற்றலுக்கு உதவுதல் போன்றவற்றை ஆசிரியர் அறிந்துக் கொள்ளுதல் அவசியம்.

10.2 மாணவர்கள் பொதுவாகச் செய்யும் பிழைகள்

கணக்குப் பாடத்தில் தொடக்கப்பள்ளி மாணவர்களிடம் நடத்தப்பட்ட ஓர் ஆய்வின் போது பூஜ்யம் வரும் கூட்டல், கழித்தல், பெருக்கல், வகுத்தல் செயல்களைக் கொண்ட கணக்குகளில் மாணவர்கள் அதிக அளவில் தவறு செய்கிறார்கள் எனக் கண்டுபிடிக்கப்பட்டுள்ளது.

5 + 0 = 0 எனவும் 5 - 0 = 0 எனவும் $5 \times 0 = 5$ எனவும் $0 \div 5 = 5$ எனவும்

விடைகள் தரப்பட்டிருந்தன. எனவே பூச்சியம் வரக்கூடிய கணக்குகளுக்குத் தீர்வு காணும் போது மாணவர்களிடம் தனிக்கவனம் செலுத்தி, சரியான விடை கண்டுபிடிப்பதற்குக் கற்றல் பொருள்கள் பயன்படுத்திச் செயல்பாடுகளை உருவாக்கவேண்டும். கூட்டல், கழித்தல், கணக்குகளில் மாணவர்கள் இட மதிப்புக்கு ஏற்றவாறு எண்களை எழுதாமல் பிழைகள் செய்வது அதிக அளவில் உள்ளது. எடுத்துக்காட்டாக 275 + 73+ 84+ 2 என்ற கணக்கை

275 +

73

84

2

எனத் தவறாக எழுதுவதால் பிழைகள் ஏற்படுவதையும் காணலாம். இது கூட்டலில் ஏற்பட்ட பிழையல்ல, அதனால் இம்மாதிரி பிழைகளைச் சரிசெய்ய இடமதிப்புப்படி எண்களை எழுதுவதற்குத்தான் பன்முறைப் பயிற்சி தரவேண்டுமேயல்லாமல் கூட்டலில் பன்முறைப் பயிற்சி தருவது அவசியமல்ல. இவ்வாறு பிழைகளை வகைப்படுத்தி அறிந்து கொண்டு சரியான பொருத்தமான தீர்வுகள் அளித்தல் வேண்டும்.

16-7 = ? என்ற கணக்கிற்கு விடை எழுதாமலிருந்தால் கழித்தல் செயல் முழுமையாக அறிந்திருக்கவில்லை என்பது புலனாகிறது. கழித்தல் கருத்தினைப் பருப் பொருள் கொண்டு சொல்லிக் கொடுத்தால் போதுமானது.

எடுத்துக்காட்டு : 5−2 என்பதை * * * * * * என்ற படவிளக்கம் மூலம் எளிமைப்படுத்தலாம். பன்முறைப் பயிற்சியளிப்பதற்கு நூறு அடிப்படை கழித்தல் கணக்குகளையும் பயன்படுத்தலாம்.

16-7 என்பதற்கு 8 என எழுதியிருந்தால் கழித்தல் செயல் அறிந்திருக்கிறான் ஆனால் கணக்கிடுவதில் பிழை ஏற்படுகிறது என அறிந்து கொள்ளலாம். இவ்வகையான பிழையைச் சரி செய்வதற்குக் கழித்தல் செயலில் பன்முறைப் பயிற்சி அளித்தலே போதுமானதாகும். இவ்வாறு பிழைகளை கண்டறிந்து சரியான திருத்தம் மேற்கொள்வதே பொருத்தமான செயல்பாடாகும். "நூறு அடிப்படைக் கழித்தல் கணக்கு" என்பது என்ன? 18 வரையுள்ள எண்களிலிருந்து ஓரிலக்க விடை கிடைக்கும் படியாக ஓரிலக்க எண்களைக் கொண்டு உருவாக்கும் கழித்தல் கணக்குகள் என்கிறோம்.

என நூறு கணக்குகள் அமைக்கலாம். இந்த நூறு கணக்குகளையும் எழுதிப் பார்த்து வினாவங்கி தயாரித்து இவற்றை அட்டவணையாக அமைத்துப் பார்த்தால் இன்னும் எளிமையாக இருக்கும். இதே போன்று நூறு கூட்டல் கணக்குகளும் உண்டு. அவற்றின் அட்டவணை இங்கே கொடுக்கப்பட்டிருக்கிறது.

+	0	1	2	3	4	5	6	7	8	9
0	0	1	2	3	4	5	6	7	8	9
1	1	2	3	4	5	6	7	8	9	10
2	2	3	4	5	6	7	8	9	10	11
3	3	4	5	6	7	8	9	10	11	12
4	4	5	6	7	8	9	10	11	12	13
5	5	6	7	8	9	10	11	12	13	14
6	6	7	8	9	10	11	12	13	14	15
7	7	8	9	10	11	12	13	14	15	16
8	8	9	10	11	12	13	14	15	16	17
9	9	10	11	12	13	14	15	16	17	18

செய்து பார்த்தல் : 18 க்குள் வரும் எண்களில் ஈரிலக்க எண் விடையாக கிடைக்கும் கழித்தல் கணக்குகளைக் கொண்ட தொகுப்பு ஒன்று தயாரிக்கவும்.

கூட்டல், கழித்தல் ஆகிய செயல்களுக்கு நூறு அடிப்படை கருத்துகள் உள்ளன போன்று பெருக்கல், வகுத்தல் ஆகியவற்றிற்கும் கணக்குகள் அமைத்துப் பார்த்துத் தெரிந்து கொள்க. 18க்குள் எண்களை ஒரிலக்க எண்களால் மட்டுமே பெருக்குதல் வேண்டும். அதிக பட்சமாக விடை 81 தான் வரும். வகுத்தல் என்பது பெருக்கல் செயலின் எதிர் செயல்தான் என அறிதல் வேண்டும். அடிப்படை வகுத்தல் கணக்குகள் உருவாக்குவதற்கும் அறிந்திருக்க வேண்டும்.

- 💠 ஒரிலக்க எண்களால் வகுக்கும் கணக்குகள்.
- 💠 வகுத்தால் மீதி வரக்கூடாது
- ❖ மீதியின்றி ஓரிலிக்க எண்ணால் வகுக்கும் போது விடை ஓரிலக்க எண்ணாகத்தான் இருக்க வேண்டும்.

இந்த நிபந்தனைகளுக்குட்பட்டு அடிப்படை வகுத்தல் கருத்துகளை உருவாக்கி பட்டியலிட்டுப் பார்க்கவும்.

பெருக்கல் வாய்பாடுகளில் போதிய பயிற்சி இல்லாமல் பல மாணவர்களும் பெருக்கல் வாய்பாடுகளில் தவறு செய்வதையும் காணலாம். எடுத்துக்காட்டு 7,8,9 எண்களால் பெருக்கும் கணக்குகளில் அதிகமாக பிழை ஏற்படுகிறது. 8 X 7 = ? 7 X 9 = ?

அடிப்படைச் செயல்களில் கடினமான பகுதி என மாணவர்களால் உணரப்படுவது வகுத்தல் செயலே ஆகும். பெருக்கல் வாய்பாடுகள் சரியாகத் தெரியாததே வகுத்தல் கணக்குகளில் ஏற்படும் பிழைகளுக்குக் காரணமாக அமைகிறது. எனவே வகுத்தல் கணக்குகளில் ஏற்படும் பிழைகளைத் தவிர்க்க பெருக்கல் வாய்பாடுகளை மாணவர்கள் நன்கு கற்றுக் கொள்ளவேண்டும்.

எடுத்துக்காட்டு 1 515
$$\div$$
 5 = ? $\frac{5}{515}$ $\frac{1}{3)30}$ எடுத்துக்காட்டு 2 30 \div 3 = $\frac{15}{0}$ $\frac{3}{0}$

என செய்துவிடுகின்றனர். இந்த கணக்குகளில் ஏற்பட்டுள்ள பிழைகளை விவாதித்து குறைதீர் நடவடிக்கைப் பற்றி அறிந்துகொள்ளவும்.

பொதுவாக அடிப்படைச் செயல்களான கூட்டல், கழித்தல், பெருக்கல், வகுத்தல் ஆகியவற்றைத் திறம்படச் செய்யும் மாணவர்கள் கூட இச்செயல்களை உள்ளடக்கிய வாழ்க்கைக் கணக்குகளில் தவறு செய்வதைக் காணலாம். தொடக்கப்பள்ளி மாணவர்களுக்கு நடத்தப்பட்ட ஒரு குறையறி சோதனையின்போது இவ்வுண்மை வெளிப்பட்டது.

எடுத்துக்காட்டாக 37 + 25 = 62 என்பதைச் சரியாகச் செய்யக் கூடிய மாணவன் ஒரு புத்தகத்தின் விலை ரூ.37, ஒரு பேனாவின் விலை ரூ. 25 என்றால் மொத்தம் எவ்வளவு கொடுக்க வேண்டும் என்ற கணக்குக்கு விடை எழுதுவதில்லை. இது எதனால் எனில் மொழிக்கூற்றுகளை கணிதக் கூற்றுகளாக எழுத முடியவில்லை, இதன் கராணம் மொழித்திறன் குறைவாக இருக்கலாம்.

ஆனால் மாணவர்களுக்குக் கணக்குக் கற்றுக் கொடுப்பதன் ஒரு முக்கிய நோக்கம் அவர்களை எதிர்கால வாழ்விற்காக ஒரு சிறந்த குடிமகனாகத் தயார் செய்வதாகும். எனவே 37 + 25=62 என்பதை அன்றாட வாழ்க்கைச் சூழ்நிலையில் எவ்வாறு பயன்படுத்துவது என்பதைக் கற்றுக் கொடுப்பது மிக முக்கியமான ஒன்றாகும். இது போன்ற வாழ்க்கைக் கணக்குகளில் வரக்கூடிய எண்களைச் கூட்டவேண்டுமா, கழிக்கவேண்டுமா, பெருக்க வேண்டுமா, வகுக்க வேண்டுமா என்பதற்குரிய பயிற்சி மாணவர்களுக்குத் தரப்படவேண்டும். சுய மதிப்பீடு செய்தல் சரிபார்த்தல் போன்ற அல்லது விடை திறன்களை மாணவர்கள் வளர்த்துக்கொள்வதற்குக் கற்றல் செயல்பாடுகள் மூலம் பன்முறைப் பயிற்சி அளிக்க வேண்டும். பன்முறைப் பயிற்சியின் போது சில கற்றல் குறிப்புகளையும் கூறலாம். எடுத்துக்காட்டாக, கூட்டும் போது விடை அதிகரிக்கும் போன்ற கருத்துகளைக் கூறுமிடத்து கூர் சிந்தனை வளர்ச்சி ஏற்படுகிறது.

குறையறி சோதனை

மாணவர்கள் செய்யக்கூடிய பிழைகளைக் குறையறி சோதனைகள் நடத்துவதன் மூலம் நன்கு அறிந்து கொள்ளலாம். மாதாந்திரத் தேர்வுகள், பருவத் தேர்வுகள், காலாண்டுத் தேர்வு, அரையாண்டுத் தேர்வு, முழு ஆண்டுத் தேர்வு ஆகிய யாவுமே குறையறி சோதனைகள் அல்ல. அவை அடைவுத் தேர்வுகள் ஆகும். இந்த அடைவுத் தேர்வுகளின் நோக்கம் மாணவர்கள் ஆசிரியர்கள் கற்றுக் கொடுத்ததில் எத்தனை விழுக்காடு கற்றுத் தேர்நிருக்கிறார்கள் என்பதைக் கண்டறிதலே ஆகும். எடுத்துக்காட்டாக காலாண்டுத் தேர்வில் ஒரு மாணவன் கணக்கு தேர்வில் 80 விழுக்காடு மதிப்பெண்கள் பெற்றிருக்கிறான் என்றால் ஆசிரியர் கற்றுக் கொடுத்தில் 100க்கு 80 அளவுக்கு அப்பாடப்பகுதியில் கற்றுத் தேர்ந்திருக்கிறான் என்பதே பொருள். இந்த 80 தான் அவனுடைய கற்றல் அளவுகோலாக ஆசிரியர்களாலும், மாணவனாலும், பெற்றோராலும் கருதப்படுகிறது. விடுப்பட்டுள்ள 20 விழுக்காடு மதிப்பெண்களைப் பற்றி யாரும் அதிகம் கருத்தில் கொள்வதில்லை.

ஒரு குறிப்பிட்ட பாடப்பகுதியில் மாணவர்களின் அடைவுநிலைப் பற்றி அறிந்துகொள்வதற்காக அப்பாடப் பகுதியிலுள்ள எல்லா உட்கூறுகளையும் உள்ளடக்கிய வினாத்தாள் தயாரித்து நடத்தப்படும் சோதனையை குறையறி சோதனை என்கிறோம். குறைகளை அறிந்து கொள்வதற்காக மேற்கொள்ளும் சோதனை என்பதால் குறையறி சோதனை என பெயர் காரணத்துடன் குறிப்பிடப்பட்டு வருகிறது.

ஒரு குறிப்பிட்ட பாடப்பகுதியில் உள்ள எல்லா உட்கூறுகளையும் உள்ளடக்கிய ஒரு வினாத்தாள் தயாரிக்கப்படவேண்டும். எடுத்துக்காட்டாக இரண்டாம் வகுப்பு கணக்குப்பாடத்தில் 'கூட்டல்' என்ற தலைப்பில் உருவாக்கப்படும் குறையறி சோதனையில் கேட்கப்படும் வினாக்கள் பின்வரும் வினாக்களை உள்ளடக்கியதாக இருக்கவேண்டும்.

பெயர் மாற்றம் இல்லாக் கூட்டல், பெயர் மாற்றம் வரும் கூட்டல், ஒரிலக்க எண்களைக் கூட்டுதல், ஈரிலக்க எண்களோடு ஓரிலக்க எண்களைக் கூட்டுதல், ஈரிலக்க எண்களோடு ஈரிலக்க எண்களைக் கூட்டுதல் இவ்வாறு கூட்டப்படும் எண்களில் ஓர் எண்ணில் ஒன்றாம் இடத்தில் பூச்சியம் வருதல், இரண்டு எண்களிலும் ஒன்றாம் இடத்தில் பூச்சியம் வருதல், இரண்டு எண்களிலும் ஒன்றாம் இடத்தில் பூச்சியம் வருதல், இரண்டு இலக்க எண்களைப் பயன்படுத்தி வரும் வாழ்க்கைக் கணக்குகள் எனப் பல்வேறு வகையான கணக்குகள் குறையறி சோதனையில் இடம் பெறவேண்டும்.

தனிப்பட்ட கவனம் செலுத்த வேண்டியதன் அவசியம்

மாணவன் 24+35 = 59 என விடை எழுதி உள்ளான். ஆனால் முதலில் பத்துகளைக்கூட்டி 5 எனவும் பின்னர் ஒன்றுகளைக் கூட்டி 9 எனவும் எழுதி 59 என விடை கிடைத்துள்ளது. இந்த விடையைச் சரி என எடுத்துக் கொள்வதா, தவறு என எடுத்து கொள்வதா என சிந்திக்கவேண்டும்.

இங்கு விடை சரியாக இருந்த போதிலும் முறை தவறாக உள்ளது. எனவே இந்த விடையை சரி என எடுத்துக் கொண்டால், மாணவன் செய்த முறையையும் சரி என நாம் ஒப்புக் கொள்வதாகவே பொருளாகும். எனவே விடை மட்டும் சரியாக இருந்தால் போதாது. செய்கின்ற முறையும் சரியானதாக இருத்தல் வேண்டும்.

24 + 35 போன்ற பெயர் மாற்றம் வராத கூட்டல்களைத் தான் முதலில் கற்றுக் கொடுக்கிறோம். இதுபோன்ற சுமார் 20 அல்லது 30 கணக்குகளில் நன்கு பயிற்சி பெற்ற பிறகே பெயர் மாற்றமின்றி வரும் கூட்டல் கணக்குகளை செய்வர். பெயர் மாற்றம் வராத கூட்டல்களையெல்லாம் முதலில் பத்துகளைக் கூட்டி பின்னர் ஒன்றுகளைக் கூட்டி விடை சரியாக வரப்பெற்ற மாணவன் பெயர் மாற்றம் வரக்கூடிய கூட்டல்களிலும் அதே முறையைப் பின்பற்றி 28 + 37 = 515 என்று தவறாகச் செய்கின்றனர். எனவே, விடை சரியாக இருந்தாலே கணக்கு சரி என்னும் எண்ணத்தை விட்டுவிட்டு, செய்த முறையும் சரியாக உள்ளதா என்று சரிபார்க்கவேண்டும். இவ்வாறான பிழைகளை மாணவர்கள் கணக்கு செய்யும் போது கவனித்தால் தான் கண்டுபிடிக்க முடியும். விடையை மட்டும் பார்த்துவிட்டு கணக்கு சரி தவறு எனக் கூறமுடியாது. எனவே மாணவர்களுக்குக் கற்றுக் கொடுப்பதற்கு மட்டுமல்ல, பிழைகளைக் கண்டுபிடிக்கவும் தனிக்கவனம் செலுத்த வேண்டியது அவசியம் ஆகும்.

பிழை	பிழை திருத்தம்
26	26
<u>x 3</u> 618	26
010	<u>+ 26</u>

10.3 பிழைகளை வகைப்படுத்துதல்

மாணவர்கள் கணக்குப் பாடத்தில் செய்யும் பிழைகளைக் கருத்துப்பிழைகள், கணக்கிடுதல் பிழைகள், இயலாமைப் பிழைகள் என மூன்று விதமாகப் பிரிக்கலாம்.

கருத்துப் பிழைகள்: கணிதக் கருத்துகள் புரியாததால் ஏற்படும் பிழைகளைக் கருத்துப் பிழைகள் என்கிறோம். 3 செ.மீ. நீளமும், 2 செ.மீ. அகலமும் உள்ள செவ்வகத்தின் பரப்பு 6 சென்டிமீட்டர் என எழுதுகிறார்கள். பரப்பளவை குறிப்பிடுவதற்கு செ.மீ.² என்ற அலகை பயன்படுத்தவேண்டும் என்ற கருத்தை அவர்கள் அறிந்திருக்கவில்லை. இம்மாதிரியான பிழைகளைக் கருத்துப் பிழைகள் என்கிறோம்.

கணக்கிடுதலில் பிழைகள் : 3 செ.மீ. நீளம், 2 செ.மீ. அகலம் கொண்ட செவ்வகத்தின் பரப்பு 5 செ.மீ.² என மாணவன் கூறினால் அங்கே கணக்கிடுதலில் பிழை உள்ளதைத் தெரிந்து கொள்ளலாம்.

இயலாமை பிழைகள் : எழுத்துபிறழ்ச்சி, எண் பிறழ்ச்சி, நினைவு பிறழ்ச்சி போன்றவற்றை ஏற்படுத்தக் கூடிய "டிஸ்கால்குலியா" "டிஸ்லெக்சியா" எனப்படும் இயலாமைப் பிழைகளும் விடையளிக்கும்போது ஏற்படுகின்றன.

'டிஸ்லெக்சியா' என்பது எழுத்தறிவில் குறைபாட்டையும் 'டிஸ்கால்குலியா' என்பது எண்ணறிவில் குறைபாட்டையும் குறிக்கும். இந்த இரு குறைபாடுகளில் ஒன்று மிக அதிகமாகவும் மற்றது மிகக் குறைந்த அளவிலும் இருக்கலாம். அல்லது இரண்டுமே மிக அதிக அளவில் இருக்கலாம். ஆனால் ஒன்று மட்டும் இருந்து மற்ற குறைபாடு இல்லாமல் இருப்பது அரிது. பெரும்பாலும் ஒரு குறைப்பாட்டைத் தீர்ப்பதற்காக எடுக்கப்படும் நடவடிக்கை மற்ற குறைபாட்டைத் தீர்ப்பதற்கும் ஒரளவு பயன்படும். மேலும் ஆட்டிஸம் மற்றும் ஹைபர் ஆக்டிவிட்டி என்பவையும் ஒரு விதமான மூளை தொடர்பான பிரச்சனைகள் ஆகும். இவைப் பற்றிய விளக்கங்கள் பிற்பகுதியில் கொடுக்கப்பட்டுள்ளன. இயலாமைப் பிழைகளுக்கான எடுத்துக்காட்டுகள் சில.

எடுத்துக்காட்டு 1

3-ஐ எனவும் த எனவும் எழுதுதல்

எடுத்துக்காட்டு 2

81–ஐ 18 என எழுதுதல்.

எடுத்துக்காட்டு 3

கூட்டல், பெருக்கல் வேறுபாடு அறியாமை + X

10.3.1 பிழைகள் ஏற்படப் பிற காரணங்கள்

மாணவா்களின் கவனக்குறைவு, உடல்நலக்குறைவு, ஓய்வின்மை ஆகிய காரணங்களாலும் பிழைகள் ஏற்படக்கூடும்.

13+12 என்ற கணக்கை மாணவன் கவனக் குறைவால் 18 + 12 என எழுதி இந்த கணக்கைச் சரியாகச் செய்திருந்தாலும் அது கொடுக்கப்பட்டுள்ள கணக்குக்குத் தீர்வாகாது. எனவே இத்தகைய பிழைகளைக் கவனக் குறைவுப் பிழைகள் என்கிறோம்.

உடல் நலக்குறைவு காரணமாக மாணவனின் உடலும் உள்ளமும் சோர்வடைந்த நிலையில் மாணவன் கணக்குகளைச் செய்யும்போது முழுஈடுபாட்டுடன் செய்ய இயலாது. சாதாரணமாக நல்ல முறையில் கணக்குகளைச் செய்யும் மாணவர்களுக்குக்கூட உடல் நலக் குறைவு ஏற்படும்போது ஈடுபாடு குறைவதால் பிழைகள் செய்யக் கூடும்.

பிழைகளைப் போக்கும் வழிகளில் சில

பன்முறைப்பயிற்சி அளிப்பதன் மூலம் பல பிழைகளைத் தவிர்க்க முடியும். எடுத்துக்காட்டாக வாக்கிய கணக்குகளில் தவறு செய்யும் மாணவர்களை முதலில் பல்வேறு வகையான வாழ்க்கைக் கணக்குகள் கொடுத்து அக்கணக்குகளைத் தீர்க்கப் பயன்படுத்த வேண்டிய கணிதச் செயல், கூட்டலா, கழித்தலா, பெருக்கலா, வகுத்தலா எனக் கண்டுபிடித்துக் கூறச் செய்யவேண்டும். வாக்கிய கணக்கிலுள்ள கருத்துக்களை கணிதக் கூற்றாக மாற்றும் திறன் பெறுதல் வேண்டும். இந்தத் திறன் நன்கு வலுப்பெற்ற பிறகே அக்கணக்குகளுக்குத் தீர்வு காணச் செய்யலாம்.

கூட்டல், கழித்தல் கணக்குகளில் தவறு செய்யும் மாணவர்களுக்காக புளியங்கொட்டைகள், கோலிகள், சோழிகள், மணிகள் போன்றவற்றைப் பயன்படுத்தி கூட்டல் கணக்குகள் அமைத்து, பொருட்களைச் சேர்ப்பதன் மூலம் கூட்டலையும், பொருட்களை நீக்குவதன் மூலம் கழித்தலையும் விளக்கிக் கூறலாம், முதலில் தரப்பட்டுள்ள பொருட்களை (சோழிகள், மணிகள் முதலியன) பத்துப் பத்தாக ஒரு பாலிதீன் பையில் போட்டு மாணவர்கள் கட்டி வைக்கச் செய்யலாம். பின்னர் இரண்டு இலக்க எண் கூட்டல்களுக்கு துணைக் கருவிகளாக இப்பொருட்களைப் பயன்படுத்தச் செய்யலாம். எடுத்துக்காட்டாக 34+27 என்ற கணக்கைச் செய்வதற்கு, மாணவர்களை மூவர் கொண்ட குழுக்களாகப் பிரித்து ஒரு மாணவர் 34–ஐக் குறிப்பதற்கு 3 பத்துகள், 4 ஒன்றுகள் என்ற எண்ணிக்கையில் 3 பத்துப் பாக்கெட்களும் 4 உதிரிகளும் எடுத்து வைக்கலாம். பின்பு அடுத்த மாணவர் 27–ஐ குறிக்க 2 பத்துப் பாக்கெட் சோழிகளையும் 7 தனி சோழிகளையும் எடுத்து வைக்கலாம். முன்றாம் மாணவர் இந்த சோழிகளை ஒன்று சேர்த்து மொத்தம் எத்தனை எனக் கூறுவர். முதலில் இந்த மாணவர் 4 தனிச் சோழிகளையும் 7 தனிச் சோழிகளையும் ஒன்று சேர்த்து பத்து தனிச் சோழிகளை ஒரு பாலிதீன் பாக்கெட்டில் போட்டு ஒரு பத்து சோழி பாக்கெட்டாக மாற்றி மீதி ஒரு சோழியை தனியாக வைக்கலாம். இப்போது ஏற்கனவே உள்ள 3 மற்றும் 2 பத்து பாக்கெட் சோழிகளுடன் புதிதாக உருவாக்கப்பட்ட ஒரு பத்துப்பாக்கெட் .சோழியும் சேர்த்து 6 பத்துப் பாக்கெட் சோழிகளும் மற்றும் ஒரு தனிச் சோழியும் முடிவில் இருக்கும். ஆகவே விடை 61 என வருவதைக் கண் கூடாகக் காண்கிறார்கள். இம்முறையில் முதலில் ஒன்றுகளைச் சேர்த்து பத்துகள் கொண்ட பாக்கெட்டாக மாற்ற முடிகிறதா என்று மாணவர்கள் முயற்சி செய்கின்றனர். இவ்வாறே பொருட்களை நீக்குவதன் மூலம் கழித்தல் கணக்குகளைக் கற்பித்து பிழைகளை நீக்கலாம். அதற்கான செயல்பாட்டினை எழுதிப் பார்க்கவும்.

எண் விளையாட்டு இரண்டு மாணவர்களில் ஒருவர் மாற்றி ஒருவர் ஓர் எண்ணைக் கூறவேண்டும். ஆனால் இருவரும் கூறக்கூடிய எண் 999க்குள்தான் இருக்க வேண்டும். முதலில் ஒருவர் ஒரு எண்ணைக் கூறுவார். அடுத்து அடுத்தவர் ஓர் எண்ணைக் கூறவேண்டும். அடுத்தடுத்து இவ்வாறு ஐந்து எண்களை எழுதவேண்டும். ஐந்து எண்களின் மொத்தம் என்ன என்பதை ஐந்து எண்களும் எழுதப்படுவதற்கு முன்பே கூறிவிடலாம்.

எடுத்துக்காட்டு

ஐந்து எண்களைக் கூட்டி வரும் கூட்டுத்தொகை 2345

ஒருவர் (A)	347
மற்றவர் (B)	525
(A)	474
(B)	326
(A)	673

ஐந்து எண்களின் கூடுதல் 2345 வருவதைக் காணலாம்.

இது எவ்வாறு நிகழ்கிறது என்பதை மாணவர்களுக்கு விளக்கினால் இதுபோன்று வெவ்வேறு எண்கள் கூடுதல் வருமாறு அவர்கள் எண் விளையாட்டு அமைத்து விளையாடலாம்.

கூட்டுத்தொகையாக நாம் முதலில் எழுதும் எண் 2000இல் இருந்து 2997க்குள் எந்த எண்ணும் இருக்கலாம். கூட்டுத்தொகையாக எழுதும் எண்ணின் கடைசி மூன்று இலக்கங்களுடன் 2 ஐச் சேர்த்து முதல் எண்ணை எழுத வேண்டும். மேற்கண்ட எடுத்துக்காட்டில் 2345 என்று கூட்டுத்தொகை எழுதப்பட்டிருக்கிறது. கடைசி மூன்று இலக்கங்கள் அமைக்கும் எண்ணான 345 உடன் 2 ஐச் சேர்த்து 2345 என்ற எண் எழுதவேண்டும். 347- 2 = 345 என்பதை கொண்டு 2 ஐ சேர்த்து எழுதப்படுகிறது. அதன்பின்னர் இரண்டாவதாக கூறும் எண்ணை 999ல் இருந்து கழித்து மூன்றாவது எண்ணை எழுத வேண்டும். இவ்வாறே நான்காவதாக கூறும் எண்ணையும் 999ல் இருந்து கழித்து ஐந்தாவது எண்ணை எழுத வேண்டும்.

இந்த விளையாட்டை மாணவாகளுக்குச் சொல்லிக் கொடுத்தால் மாணவாகளே தங்களுக்குள் இந்த எண் விளையாட்டை மீண்டும் மீண்டும் விளையாடி, கூட்டல், கழித்தல் கணக்குகளில் பன்முறைப் பயிற்சி பெறுவா்.

கடினப் பகுதிகளைக் கண்டறிதல்

கற்றல் கற்பித்தலுக்குக் கடினமான கருத்து (Concept) என்பதனை இரண்டு வழிகளில் வகைப்படுத்தலாம்.

- கற்றலுக்குக் கடினமான பாடப்பொருள்.
- 2. பொருத்தமில்லாத கற்பித்தல் முறை

கடினமான கருத்து என்பதன் விளக்கம் பின்வருமாறு

- 1. புரிந்து கொள்வதற்கு கருத்து கடினமானதாக (hot spot) இருக்கலாம். (அல்லது)
- ஒரு கருத்தைக் கற்பிக்க எடுத்துக் கொண்ட எடுத்துக்காட்டு ஏற்புடையதாக இல்லாமல் இருக்கலாம். (அல்லது)
- 3. பாடப் பொருளினைக் கற்பிக்கப் பயன்படுத்திய கற்பித்தல் முறை பொருத்தமின்றி இருக்கலாம்.

ஒரு கருத்தில், ஒரே மாதிரியான தவறைப் பல மாணவர்கள் செய்வது (அல்லது) பலமுறை ஒரே மாதிரியான தவறினை ஒரு மாணவர் செய்வது, ஆகிய இச்செயல்பாடுகளின் மூலம் கடினமான கணிதக் கருத்துக்களை கண்டறியலாம். மேலும் வகுப்பறைச் செயல்பாடுகள் இயல்பாக இல்லாமல் செயற்கையாக அமையும் போதும், கணிதக் கருத்தைப் பற்றி உரையாடும் போதும், தேர்வுகள் மூலமும், வகுப்பறைச் செயல்பாடுகளின் போது மாணவர்களே கூறும் போதும் கணிதத்தில் உள்ள கடினப்பகுதியைக் கண்டறியலாம்.

பின்வரும் பாடப்பகுதிகள் கடினமான பாடப்பகுதிகளாகக் கண்டறியப்பட்டுள்ளன.

- 1. இடமாற்றத்துடன் வரும் கூட்டல்கள்
- 2. இடமாற்றத்துடன் வரும் கழித்தல்கள்
- 3. பூச்சியம் வரக்கூடிய அடிப்படைச் செயல்கள்
- 4. வகுத்தல் கணக்குகள்
- 5. வெவ்வேறு பகுதிகள் கொண்ட பின்னங்களைக் கூட்டல், கழித்தல், ஒப்பிடல்
- 6. வெவ்வேறு தசம இடங்கள் கொண்ட தசம எண்களைக் கூட்டல், கழித்தல்.

கணக்குக் கற்றலில் இயலாமை

நல்ல நினைவாற்றலும், சிறந்த திறன்களும் பெற்றுள்ள சில மாணவர்கள், வகுப்பிலுள்ள மற்ற மாணவர்களுடன் ஒப்பிடுகையில் குறைந்த அடைவுத்திறன் பெற்றவர்களாகத் தோன்ற மாட்டார்கள். ஆனால் அவர்களுடைய உண்மையான திறன்களுக்கேற்றவாறு அவர்களின் அடைவுத் திறன் உள்ளதா எனப்பார்த்தால், அவர்களின் அடைவுத்திறன், அவர்களின் உண்மையான ஆற்றலுக்குக் குறைவாக இருப்பதைக் காணலாம்.

இம்மாதிரியான மாணவர்களைத் தொடக்க நிலையிலேயே கண்டறிதல் நலம். கற்றலில் இயலாமை உள்ள மாணவர்களை பின்வரும் செயல்கள் மூலம் அறிந்து கொள்ளலாம்.

- 1. எண் தொடர்களில் எண்களுக்கு இடையே உள்ள ஒற்றுமையைக் கண்டறிவதில் சிக்கல்.
- 2. அடிப்படை கணித க் கருத்துக்களை அதிக நாள் நினைவில் வைத்திருக்க இயலாமை.
- 3. எண்களைப் பற்றி போதிய கருத்துகள் உருவாகாமல் இருத்தல்.
- 4. கொடுத்துள்ள தகவல்களுக்கு இடையே உள்ள ஒற்றுமையை அறிவதில் சிக்கல்.

சில சிக்கல்கள் தொடக்கத்தில் வெளிப்படாமல் சற்றுகாலம் கடந்து வெளிப்படலாம். மனக்கணக்குகளை மிகச் சரியாகச் செய்யும் சில குழந்தைகள் அதே கணக்குகளை எழுதிச் செய்யும்போது பிழைகள் செய்யலாம். அல்லது எழுதிச் செய்யும் போது சரியாக செய்து மனக்கணக்கைச் செய்யும்போது பிழைகள் செய்யலாம்.

கற்றலில் குறைபாடு

சில மாணவர்கள் நல்ல உடல் தகுதியுடனும், நல்ல உளப்பாங்குடனும் இருப்பினும் அவர்களின், அடைவுத்திறன்கள் குறைவாக இருக்கும். இத்தகைய மாணவர்களைக் கற்றலில் இயலாமை உள்ள மாணவர்கள் எனக் கூறுகிறோம். இவ்விதமான கற்றலில் இயலாமை உளவியல் சார்ந்தாகவும் இருக்கலாம் அல்லது மூளை பிரச்சனையை சார்ந்தாகவும் இருக்கலாம்.

மூளை பிரச்சனைகள்

1. டிஸ்லெக்ஷியா (Dyslexia)

இதனை ஒருவித மூளையில் ஏற்படும் பிரச்சனை எனலாம். இது கற்றலில் குறையை ஏற்படுத்தக் கூடிய மூளைப் பிரச்சனை என்றால் மிகவும் பொருத்தமானதாகும். இதனால் எழுத்துப்பிறழ்ச்சி ஏற்படுகிறது. Dyslexia உள்ளவர்கள் Top என்பதை Pot என்றும் Pot என்பதை Top என்றும் எழுதுகின்றனர். மேலும் ஓர் எடுத்துக்காட்டு life என்பதை File எனவும் எழுதுவர். இவ்வாறு எழுதும் குழந்தைகளுக்குக் கற்றலில் குறை உள்ளது என்பதை அறியலாம். இந்த குழந்கைகளுக்கு எந்த குறையும் இருக்காது. அதாவது அறிவுத்திறன் சோதனை (IQ Test) என்று வைத்தால் 130 வரை மதிப்பெண் எடுத்து (90 மதிப்பெண்கள் இயல்பானது) மருத்துவரையும், பெற்றோரையும் வியப்படையச் செய்வர்.

எடுத்துக்காட்டு 1 ஒரு பையில் 36 ஆப்பிள்கள் உள்ளன. அவற்றிலிருந்து 18ஐ எடுத்துவிட்டால் பையில் மீதி எவ்வளவு ? என்று கேட்டால் 18 எனக் கூறிவிடுவர். ஆனால் எழுதும் போது 81 என எழுதுவர்.

எடுத்துக்காட்டு 2 A, B, C,.....வரிசையாக எழுதும் போது நடுநடுவே எழுத்துக்கள் இல்லாமல் போயிருக்கும். 1,2,3...... எழுதும் போது எண்கள் விடுபட்டு போயிருக்கும்.

எடுத்துக்காட்டு 3 பெரிய எழுத்துக்களுக்கும் சிறிய எழுத்துகளுக்கும் வித்தியாசம் தெரிவதில்லை. SANKAR என்பதை SaNkAr என எழுதுவர்.

எடுத்துக்காட்டு 4 b,d இவற்றை மாற்றி எழுதுதல்,

எடுத்துக்காட்டு 5 7 ஐ 7 எனவும் 5 ஐ 🗸 எனவும் எழுதுவர்.

டிஸ்லெக்ஷியா நடத்தைகள்

- 💠 பெரிய கேள்விகள் புரிவதில் தடுமாற்றம்.
- 💠 தொடர்ச்சியாக ஒரு பக்கம் எழுதுவதைக் கூட சிரமமாகக் கருதுதல்.
- 💠. உச்சரிப்பு அடிப்படையான ஆங்கிலத்தில் கற்றல் குறை ஏற்படுதல்.

எடு: But பட்

put புட் இவற்றைப் புரிந்து கொண்டு பயன்படுத்துவதற்கு இயலாமை ஏற்படுகிறது.

2. டிஸ்கால்குலியா (Dyscaculia)

நினைவாற்றலில் குறுகிய கால இழப்பு (Short term Memory Loss) உள்ளவர்களுக்கு டிஸ்கால்குலியா பிரச்சனை ஏற்படுகிறது.

எடுத்துக்காட்டு x க்கு பதிலாக + எழுதி விட்டு ஒரு கோட்டின் குறுக்கே மறுகோடு அவ்வளவு தானே என சிந்தித்து பொருள் உணர மறுத்தல்.

டிஸ்கால்குலியா என்ற பிரச்சனையை முன்று வகையாக பிரிக்கலாம்.

- 💠 சாதாரணமான அறிவுத்திறன் (Pure Specific Learning Dissabilities)
- ❖ மெதுவாக புரிந்து கொள்ளும் திறன் (Slow Learning)
- 🌣 ஹைபர் ஆக்டிவிட்டி குறைபாடு (Attention Difficult Hyper Acitivity Disorder)

3. ஹைபர் ஆக்டிவிட்டி

ஓரிரு வயதை கடந்த குழந்தையின் நடவடிக்கையை பார்த்தால், வியப்பாக இருக்கும். வயதுக்கு மீறிய நடவடிக்கைகள் இருக்கும். காரண மில்லாமல் உணர்ச்சி வசப்படும். இப்படி பல மனபாதிப்புகள் சேர்ந்தது தான், ஹைபர் ஆக்டிவிட்டி குறைபாடு. சிறிய வயது முதல், 19 வயது வரை இந்த பாதிப்பு இருக்கும். பெரியவர்களாகி விட்ட சிலரும் இந்த கோளாறுடன் உள்ளனர். அவர்களை பார்த்தால், இந்த பாதிப்பு இருப்பவர்கள் போல தெரியாது. அவர்கள் உணர்ச்சிவசப்படும் முறையை பார்த்தால் மட்டும் புரிந்து கொள்ளலாம். அதையும் மருத்துவரால் தான் கண்டுபிடிக்க முடியும்.

உடலில் குறிப்பிட்ட புரோட்டீன்களை எளிதில் கரைக்க முடியாது; அந்த புரோட்டீன்கள் அதிகமாகும் போதுதான், சில குழந்தைகளுக்கு இந்த பாதிப்பு வருகிறது.

பாலில் உள்ள கேசின் என்ற புரோட்டீன் தான், பாலாடைக் கட்டியாக மாற்ற பயன்படுகிறது. இதோடு கூட, உடலில் உள்ள சில வகை புரோட்டீன்களை கரைத்து, உடல் எதிர்ப்பு சக்தியையும், மூளை நரம்பு மண்டலத்தின் செயல்பாடுகளையும் சீராக்க பெப்டிடெஸ் என்ற என்சைம் தேவை.

சில வகை உணவுகளில், இந்த என்சைம் உள்ளது. இந்த என்சைம் இருப்பவர்களுக்கு, குறிப்பிட்ட சில புரோட்டீன்கள் கரைந்து போகின்றன. அதனால், அவர்களுக்கு ஹைபர் ஆக்டி விட்டி குறைபாடு ஏற்படுவதில்லை. இவ்விதப் பாதிப்புகளை கண்டறிந்து தனிக்கவனம் செலுத்தித் தீர்வு காண வேண்டும்.

4. ஆட்டிஸம் (Autism)

இது மூளையில் ஏற்படும் ஒருவிதமான பிரச்சனையாகும். தன் உணர்வுகளை வெளிப்படுத்துவதும், பிறர் உணர்வுகளை புரிந்து கொள்ளுவதும் இவர்களுக்கு இயலாது. சமுதாய உறவுகளிலிருந்து விலகியே இருப்பார்கள். கிட்டத்தட்ட கட்டுப்பாட்டுடனும், துல்லியத்துடனும் சில காரியங்களை ஒரே மாதிரி திரும்பத்திரும்பச் செய்வார்கள். சாதாரணமாக பொது அறிவு மிகவும் குறைவாக இருக்கும். ஆனால் எதாவது ஒரு வேலை அல்லது ஒரு துறையில் அறிவு ஜீவி என்று சொல்லக் கூடிய அளவு திறமை பெற்றிருப்பார்கள். ஆனால் இது மிக அபூர்வம். ஆட்டியம் உள்ளவர்களை மருந்து கொடுத்தோ, அறுவை சிகிச்சை செய்தோ சரிப்படுத்த இயலாது. பிறரை அண்டியே இவர்கள் இருக்க வேண்டும். இப்பிரச்சனை உள்ளவர்களை தனியாக நடைப்பெற்று வரும் பள்ளிகளிலோ அல்லது தனிகவனம் செலுத்தியோ ஒரளவு கற்றல் திறனை மேம்படுத்தலாம்.

இயலாமைக் குழந்தைகளுக்கு உதவும் முறை

கற்றல் திறன் ஏற்படவில்லை என்றால், குழந்தைகள் எவ்வாறு கற்றுக் கொள்வார்களோ அம்முறையில் நாம் கற்பித்தலை மாற்றி அமைத்துக் கொள்ளவேண்டும். எண்களுக்கிடையே உள்ள ஒற்றுமையைக் காட்டி கணிதச் செயல்களைச் செய்து கற்கலாம்.

$$6 + 4 = 10$$

$$60 + 40 = 100$$

$$600 + 400 = 1000$$

என்று இந்தக் கூட்டல்களுக்கிடையே உள்ள ஒற்றுமையைச் சுட்டிக்காட்டி விளக்கலாம்.

$$4 \times 6$$
 என்பதை $(2 \times 6) \times 2 = 12 \times 2 = 24$

அல்லது

2 x 2 x 3 x 2 = 24 எனப்பகுத்துக் கற்பிக்கலாம்.

15 என்பதை 51 என மாற்றிப் வாசிப்பதும் நீண்ட நெடும் பெருக்கல் வாய்பாடுகளை மனப்பாடமாக ஒப்பிக்க இயலாமல் போவதும் குறைந்த கால நினைவாற்றலை கொண்டிருப்பவை. இடவல மாற்றத்துடன் எண்களை எழுதுவதும், அதாவது, 5, 6, 7 என்ற எண் உருக்களை 2 3 7 என எழுதுவதும், கணக்கும் பிரச்சினை என கருதுவதைவிட உளவியல் சார்ந்த பிரச்சினை எனக் கருத்தில் கொண்டு, இம்மாணவர்களிடம், பரிவும், தனிக்கவனமும் செலுத்தி அவர்களின் இயலாமையை இல்லாமை ஆக்க முயற்சிக்க வேண்டும். இச்சிக்கல்களைத் தீர்ப்பதற்கு முதல் படியாக, கொடுக்கப்பட்டுள்ள கணக்கை, அதன் சொல்லாக்கம் (வாக்கிய வடிவம்), தேவையான அடிப்படைக் கருத்துகள் பற்றிய அறிவு நான்கு அடிப்படைச் செயல்கள் பற்றிய அறிவு குறுகிய கால மற்றும் நீண்ட கால நினைவாற்றல், வரிசைப்படுத்தும் திறன், பொதுமைப்படுத்தும் திறன், எழுதுதல் திறன், முப்பரிமாணக் கருத்துகள் என்று பல படிகளாகப் பிரித்து இதில் எந்தப் பகுதியில் மாணவர்களுக்குக் கடினத்தன்மை உள்ளது எனக் கண்டறிதல் வேண்டும்.

கற்றவை

- 💠 பூஜ்யத்தை பயன்படுத்துவதால் ஏற்படும் பிழைகள்
- 💠 🛮 இட மதிப்பு சரியாக தெரியாவிட்டால் கூட்டலில் ஏற்படும் பிழை
- 💠 வகுத்தலில் வரும் பிழைகள்
- 💠 பிழைகளின் வகைகள்
- 💠 நூறு கூட்டல் அட்டவணை
- கடினப்பகுதிகள்
- 💠 மூளைப் பிரச்சனைகள்

கற்றல் செயல்

- மாணவர்கள் பொதுவாக அதிகம் தவறு செய்யும் ஒரு கணிதப் பகுதியை தேர்வு செய்து அதற்குரிய தீர்வை ஆராய்தல்.
- 💠 வகுத்தலில் வரும் பிழைகளைகண்டறிந்து சரிசெய்தல்
- மூளை சம்பந்தமான பிரச்சனை உள்ள மாணவர் ஒருவரின் விவரங்கள் சேகரித்து தொகுத்தல்.

இணைப்புகள்

வினாத்தாள் கட்டமைப்பு (Blueprint)

- வினாத்தாள் பிரிவு அ, பிரிவு ஆ, பிரிவு இ ஆகிய மூன்று பிரிவுகளைக் கொண்டது.
- 💠 2 மதிப்பெண்கள் கொண்ட வினாக்கள் அடங்கிய பகுதி, பிரிவு 'அ' ஆகும்.
- 💠 4 மதிப்பெண்கள் கொண்ட வினாக்கள் அடங்கிய பகுதி, பிரிவு 'ஆ' ஆகும்.
- 🜣 10 மதிப்பெண்கள் கொண்ட வினாக்கள் அடங்கிய பகுதி, பிரிவு 'இ' ஆகும்.

பிரிவு – அ (மதிப்பெண்கள் 40)

- 💠 இப்பிரிவில் 20 வினாக்கள் கேட்கப்படும்
- 💠 ஒவ்வொரு வினாவிற்கும் மதிப்பெண் 2 ஆகும்.
- 💠 அனைத்து வினாக்களுக்கும் விடையளிக்க வேண்டும்.
- 10 வினாக்கள், வளநூல் அலகு 1, 2, 3, 4 மற்றும் 1 முதல் 10 வகுப்பு வரையிலான பாடநூற்களிலிருந்து கேட்கப்படும்.
- 💠 10 வினாக்கள் வளநூல் அலகு 5, 6, 7, 8, 9, 10 ஆகியவற்றிலிருந்து கேட்கப்படும்.

பிரிவு – ஆ (மதிப்பெண்கள் 40)

- 💠 பிரிவு ஆ, இரு பகுதிகளைக் கொண்டது.
- பகுதி I –ல் 8 வினாக்கள் வளநூல் அலகு 1, 2, 3, 4 மற்றும் 1 முதல் 10 வரையிலான பாநூற்களிலிருந்து கேட்கப்படும்.
- 💠 ஏதேனும் 5 வினாக்களுக்கு விடையளிக்க வேண்டும்.
- பகுதி II –ல் 8 வினாக்கள் வளநூல் அலகு 5, 6, 7, 8, 9, 10 ஆகியவற்றிலிருந்து கேட்கப்படும்.
- 💠 ஏதேனும் 5 வினாக்களுக்கு விடையளிக்க வேண்டும்.
- 🜣 ஒவ்வொரு வினாவிற்கும் மதிப்பெண் 4 ஆகும்.

பிரிவு – இ மதிப்பெண் 20

- 💠 இப்பிரிவில் இரு வினாக்களுக்கும் விடையளிக்க வேண்டும்.
- ❖ ஒவ்வொரு வினா எண்ணிலும் இரு வினாக்கள் 'அல்லது' அடிப்படையில் கொடுக்கப்பட்டிருக்கும்.
- 💠 ஒவ்வொரு வினாவிற்கும் மதிப்பெண் 10 ஆகும்.
- 💠 இப்பிரிவில் உள்ள 4 வினாக்களும் வளநூல் அலகு 6, 7, 8, 9 லிருந்து கேட்கப்படும்.

பொதுக்குறிப்புகள்

- 2 மதிப்பெண் வினா, கணக்குகளாக இருப்பின் அதற்கு தகுந்த விடையினையும், கணக்கு அல்லாத வினாக்களாக இருப்பின் குறைந்தது இருபடிநிலைகள் (2 கருத்துக்கள்) கொண்டவையாக இருக்க வேண்டும்.
- 2. 4 மதிப்பெண் வினா, கணக்குகளாக இருப்பின் அதற்கு தகுந்த விடையினையும், கணக்கு அல்லாத வினாக்களாக இருப்பின் குறைந்தது 4 படிநிலைகள் (4 கருத்துகள்) கொண்டவையாக இருக்க வேண்டும்.
- 10 மதிப்பெண்கள் வினாக்களுக்கு சற்று விரிவாக தேவையான அளவில் விடையளிக்க வேண்டும்.

மதிப்பெண் ஒதுக்கீடு

மதிப்பெண்		9	8	8	8		10	12	9	22	48	8	22	9	144
பிரிவு'இ'		-	-	1	-		ı	I	I	1	1	1	1	1	4
பிரிவு 'ஆ'		1	1	1	1		2	2	1	2	1	1	2	1	16
பிரிவ'அ'		1	2	2	2		1	2	1	2	2	2	2	1	20
பாட அலகுகள்	A. பாடப்பொருள் பகுதி	கணித வரலாறு	எண்கள் அமைப்பு	அளவைகளும், அளவிடுதலும்	ழ்பு மித்திர்	B. வகுப்பு பாடநூல்	1–8 வகுப்பு பாடநூல்	9,10 வகுப்பு பாடநூல்	கணித மொழி	தீர்வாய்வு முறை	ക്കുന്നുക്കു	ஒப்பார்குழு கற்பித்தல்	செயல்வழிக்கற்றல்	கணக்கிடுதலின் இயலாமை	மொத்த வினாக்கள்
ह्या.हारहेंग		1	2	3	4				5	9	7	ω.	6	10.	
				nter Toit		6					htəl Də2				

BLUE PRINT

பிரிவு		9)	ֈ	6	மொத்த	%
கூறுகள்	அ	பகுதி I	பகுதி II	<u> </u>	மதிப்பெண்கள்	70
அறிதல்	_					
Knowledge	4	2	2		24	17
K						
புரிதல்						
Understanding	4	2	2	1	34	23
U						
ஆளல்						
Application	6	2	2	2	48	34
Α						
ஆற்றல்						
Skill	6	2	2	1	38	26
S						
மொத்தம்	20	16	ô	4	144	100

அகமதிப்பீடு – மதிப்பெண் பங்கீடு

1.	செய்முறைப் பயிற்சி (Practicals) (பாட அலகுகளிலிருந்து)	}	5
2.	பாடப்பொருள் சார்ந்த தொடர்பணிகள் (வளநூலில் இல்லாத பாட அலகுகளுக்கு தொடர்புடைய பாடப்பொருள்)	}	5
3.	சோதனைத்தாள் – அலகுச் சோதனை தயாரித்தல் (வினாவடிவமைப்பு, பகுப்பாய்வு செய்தல்)	}	5
4.	கருத்தரங்கு i) வினாடி வினா நிகழ்ச்சி (3) ii) கணிதமன்ற செயல்பாடுகளில் ஏதேனும் ஒன்று (2)	}	5
5.	வினா வங்கி தயாரித்தல் i) பள்ளிப்பாடநூல் பாடங்களுக்கு ii) வளநூல் பாட அலகுகளில் ஏதேனும் ஒன்றனுக்கு	}	5
	மொத்தம்		25

ஆசிரியர் பட்டயத் தோ்வு முதலாம் ஆண்டு மாதிரி வினாத்தாள் — I

நேரம் : 3 மணி நேரம் மதிப்பெண்கள் : 100

பிரிவு – அ

அனைத்து வினாக்களுக்கும் விடையளிக்கவும். ஒவ்வொரு வினாவிற்கும் 2 மதிப்பெண்

 $20 \times 2 = 40$

- 1. இந்திய எண்முறையினைப் பற்றி சிறுகுறிப்பு வரைக.
- 2. விகிதமுறா எண் எவ்வாறு அமையும் ?
- 3. அறம எண்கள் மற்றும் ஆழ்நிலை எண்களை வேறுபடுத்தி காட்டுக.
- 4. குரிய காலண்டர் மற்றும் இன்றைய காலண்டர் பற்றி சிறுகுறிப்பு வரைக.
- 5. பாகை ரேடியன் வேறுபடுத்தி காட்டுக.
- 6. யூக்ளிட் கூறிய ஐந்தாவது உரைகோள் யாது?
- 7. கொடுக்கப்பட்ட இருகோடுகளை அதன் அமைப்பைப் பொறுத்து வேறுபடுத்துக.
- 8. இரண்டடிமான எண்ணாக 57–னை மாற்றுக.
- 9. பக்க நீளங்கள் முறையே 3, 4, 10 செ.மீ. உடைய ஒரு முக்கோணத்தினை வரைய முயற்சி செய்க. முடியாதெனில் ஏன் ?
- 10. 4 செ.மீ விட்டமுடைய ஒரு உலோகத்தாலான கோள அமைப்பு பொருளை உருக்கி 1 செ.மீ. ஆரமுடைய கோள அமைப்பு குண்டுகளாக எத்தனை உருவாக்கலாம் ?
- 11. அறிவுசார் கற்றலில் பென்ஜமீன் பூளும் மற்றும் ஆண்டர்சன் விளக்கிய படிநிலைகளை வரிசைப்படுத்துக.
- 12. கணிதம் கற்பித்தலில் மாணவா்களுக்கு ஏற்படும் சவால்கள் இரண்டு கூறுக.
- 13. வரிசைப்படுத்துதல் மற்றும் கூறுபடுத்துதல் என்பதனை எடுத்துக்காட்டுடன் கூறுக.
- 14. ஹாா்டன் மற்றும் லாவிட்டின் வரைகலை வளா்ச்சி படிநிலைகளை பட்டியலிடுக.
- 15. ஆசிரியர் நேரிடை அணுகுமுறை என்றால் என்ன ?
- 16. ஒப்பார்குழு கற்பித்தலினால் ஏற்படும் நன்மைகளை எழுதுக.
- 17. செயல்வழிக்கற்றலின் சிறப்பம்சங்கள் யாவை ?

- 18. நான்காம் வகுப்பு மாணவாகளுக்கு பின்னங்களை எவ்வாறு அறிமுகப்படுத்துவீா்.
- 19. கற்றலில் ஏற்படும் மற்றும் இயலாமைப் பிழைகள் பற்றி எழுதுக.
- 20. மூன்றாம் வகுப்பு கணக்குப்பாடத்தில் கடினப் பகுதிகளாக கருதப்படும் திறன்களுக்கான2 காரணங்களை கூறுக.

ஐந்து வினாக்களுக்கு மட்டும் விடையளிக்கவும் $5 \times 4 = 20$

- 21. கணிதமேதை ஸ்ரீனிவாச இராமானுஜம் கணிதக் கொள்கைகளைச் சுருக்கமாகக் கூறு.
- 22. எண் அமைப்புகளின் வென்படத்தினை வரைந்து 4 வெவ்வேறு வகை எண்களை அவற்றில் குறிப்பிடுக.
- 23. ஒரு, இரு, மூன்று படி அளவைகளை உதாரணங்களுடன் விளக்குக.
- 24. சமச்சீர், சர்வசமம், ஒத்த உருவங்கள் விளக்குக.
- 25. பெருக்கல், தலைகீழி என்றால் என்ன ? $\frac{3}{4}$ –ன் பெருக்கல் தலைகீழி என்ன ? p, q ம் ஒரு முழு எண்ணாக இருப்பின் $\frac{p}{q}$ –க்கு தலைகீழி எப்பொழுதும் கிடைக்குமா ? காரணம் கூறுக.
- நாற்கரம், இணைகரம், சாய்சதுரம், செவ்வகம், சதுரம் ஆகியவற்றை பண்பால் இணைத்துக்காட்டுக.
- 27. ஒரு தண்ணீர் கொள்கலன், உருளையின் மேல் கூம்பு வடிவத்தால் ஆன அமைப்பாக உள்ளது. உருளையின் ஆரம் 3 மீ, கூம்பின் உயரம் 4 மீ எனில் கொள்கலன் செய்ய தேவையான தகட்டின் பரப்பு என்ன?
- **28**. AB = 5 செ.மீ, BC = 6 செ.மீ. , CD = 4 செ.மீ, DA = 5.5 செமீ, AC = 7 செ.மீ. நீளங்கள் உடைய என்ற நாற்கரத்தினை வரைக.

பகுதி – II ஐந்து வினாக்களுக்கு மட்டும் விடையளிக்கவும் 5 x 4 = 20

- 29. கணித மொழியில் கணித செயல்களைக் குறிக்க உதவும் குறியீடுகளை தொகுத்து எழுதுக.
- 30. தீர்வு காணும் வழிநிலைகளை பட்டியலிடுக. தீர்வாய்வின் நோக்கங்கள் யாவை ?
- 31. கணிதம் கற்பித்தலின் உள்ள சிக்கல்களைத் தீர்க்கும் வழிநிலைகளை எழுதுக.

- 32. வகுப்பறையில் வரைகலை அமைப்பின் பயன்பாடுகளை எழுதுக.
- 33. வரைகலை அமைப்பு வளர்ச்சியில் கணினியின் பங்கு என்ன?
- ஆம்பப் பள்ளிக் கணிதத்தை கற்பித்தலின் ஆக்கப்பூர்வமான அணுகுமுறைகளை எழுதுக.
- 35. வாக்கியக் கணக்குகளைக் கற்பிப்பதில் ஆசிரியரின் பங்கினை விவரி ?
- 36. கணக்கிடுதலின் மாணவர்கள் பொதுவாகச் செய்யும் பிழைகளை எவ்வாறு நிவர்த்தி செய்வாய்?

பிரிவு - இ இரு வினாக்களுக்கும் விடையளிக்கவும் $2 \times 10 = 20$

37. அ) கணிதம் கற்பித்தலின் சிக்கலைத் தீர்க்கும் வழிமுறைகளை எழுது.

அல்லது

- அ) வரைகலை அமைப்பின் வகைகளை விவரி.
- 38. அ) செயல்வழிக் கற்றலில் ஒப்பார்குழு கற்பித்தல் பற்றி விவரி.

அல்லது

ஆ) செயல்வழிக் கற்றிலில் கணிதப்பாடம் கற்பிக்க வகுப்பறைச் சூழல் எவ்வாறு அமையவேண்டும். என்பதனை விளக்குக.

ஆசிரியர் பட்டயத் தேர்வு முதலாம் ஆண்டு மாதிரி வினாத்தாள் — II

நேரம் : 3 மணி நேரம் மதிப்பெண்கள் : 100

பிரிவு – அ

அனைத்து வினாக்களுக்கும் விடையளிக்கவும். ஒவ்வொரு வினாவிற்கும் 2 மதிப்பெண்

 $20 \times 2 = 40$

- 1. ரோமானிய எண்ணுருக்களைப் பயன்படுத்துவதற்கு பின்பற்றப்படும் விதிமுறைகளில் ஏதேனும் இரண்டனுக்கு எடுத்துக்காட்டுக்களுடன் எழுதுக.
- 2. π என்ற எண் பற்றி சிறுகுறிப்பு எழுதுக ?
- முடிவுறா எண்ணத்தக்க வகை, முடிவுறு எண்ணத்தக்க வகை இவைகளை எடுத்துக்காட்டுகளுடன் வேறுபடுத்திக் காட்டுக.
- 4. மிகை எண்கள், குறையற்ற எண்கள் பற்றி ஒப்பிட்டு எழுதுக.
- 5. C.G.S.முறை, M.K.S. முறைகளில் நீளத்தின் அடிப்படை அலகு, நிறையின் அடிப்படை அலகுகளை எழுதுக.
- 6. திட்டம் சாரா அளவைகள் என்றால் என்ன? மூன்றாம் வகுப்பு பாடத்திலிருந்து எடுத்துக்காட்டுகள் தருக.
- 7.

நிழலிட்ட பகுதியின் பரப்பு என்ன ?

- 8. சமச்சீர் வடிவங்கள், ஒத்த வடிவங்கள் பற்றி எழுதுக.
- 9. 0.001 ஐ பின்னமாக எழுதுக.
- 10. கனசதுரம், கனச்செவ்வகம் இவற்றை வேறுபடுத்திக் காட்டுக.
- 11. கணித மொழியில் 'கூட்டுக', 'சேர்க்க' என்பவை பயன்பாட்டில் வேறுபடுவதைக் காட்டுக.
- 12. தீர்வாய்வு முறையில் பின்பற்றப்படும் 4 படிநிலைகளை எழுதுக.
- 13. கடினநிலை கட்டுப்பாடு (Control Difficulty) என்றால் என்ன ? எடுத்துக்காட்டு தருக.
- 14. வரைகலை அமைப்பு என்பதை ஜிதேந்திரா கூற்றுப்படி வரையறை செய்க.
- 15. ஒருங்கமைக்கப்பட்ட வரைகலை என்பது என்ன ? எடுத்துக்காட்டு தருக.
- 16. ஒப்பார்குழு, ஒவ்வார் குழு கற்றல் அணுகுமுறைகளின் செயல்பாடுகளை எழுதுக.

- 17. ஒத்த ஓசை உத்தி, எழுத்து உத்தி என்பனவற்றை பயன்படுத்தும் முறைகளைக் கூறுக.
- 18. செயல்வழிக்கற்றல் அட்டைகளில் I முதல் IV வகுப்புகளுக்கு ஒதுக்கப்பட்டுள்ள வண்ணங்களை எழுதுக.
- 19. வாக்கிய கணக்குகளின் மாற்றம் நேரும் கணக்குகள், இணைப்பு கணக்குகள் பற்றி எடுத்துக்காட்டுகளுடன் எழுதுக.
- 20. கடினப்பகுதிகளைக் கண்டறியும் இரண்டு முறைகளைக் கூறுக.
- 21. உரைகோள் என்றால் என்ன ? இரண்டு எடுத்துக்காட்டுகள் தருக.
- 22. முடிவிலி என்றால் என்ன? விளக்கி எழுதுக.
- 23. இருபடி அளவைகள் என்றால் என்ன? எடுத்துக்காட்டு தருக.
- 24. சிறப்பு நூற்கரங்கள் என்றால் என்ன ? ஏதேனும் 4 எடுத்துக்காட்டுகள் தருக.
- 25. புள்ளி, கோடு, கோட்டுத்துண்டு, கோட்டுக்கதிர் கருத்து விளக்கம் தருக.
- 26. ஓர் எண்ணின் பாதியுடன் அந்த எண்ணின் ஐந்தில் ஒரு பங்கைக் கூட்டினால் 21 கிடைக்கிறது. அந்த எண்ணைக் காண்க.
- 27. ஈவு, மீதி காண்க. 505 மீ 35 செ.மீ ÷ 5
- 28. நிரூபிக்க:

$$(1+2+3+4....+10)^2 = 1^3+2^3+3^3+...+10^3$$

பகுதி — II ஐந்து வினாக்களுக்கு மட்டும் விடையளிக்கவும் 5 x 4 = 20

- **29**. $\frac{x}{y} = 7$ எனில் $\frac{x-y}{x+y} = \frac{3}{4}$ என நேர்மறை நிருபணம் மூலம் நிரூபிக்க.
- 30. ஒழுங்கான வரைபடக் குறிப்புகள் பற்றி எடுத்துக்காட்டுகளுடன் எழுதுக.
- 31. A யும், B யும் ஒரு புத்தகத்தை தனித்தனியே வாசிக்க ஒரே நாளில் ஆரம்பித்தனர். A ஒரு நாளுக்கு 8 பக்கங்கள் வீதமும், B 5 பக்கங்கள் வீதம் வாசித்தால் A 56 பக்கங்கள் வாசிக்கும் போது B எத்தனை பக்கங்கள் வாசித்திருப்பார்?
- 32. வரைகலை அமைப்புகளின் வகைகளை எழுதுக.
- 33. பங்கேற்றுக் கற்றல் அணுகுமுறை பற்றி குறிப்பு வரைக.
- 34. செயல்வழிக்கற்றலில் எத்தனை குழுக்களின் செயல்பாடுகள் நடைபெறும் அவை யாவை ?

- 35. செயல்வழிக்கற்றல் அணுகுமுறையில் கற்றல் ஏணிப்படிகள் பற்றியும் மைல்கற்கள் பற்றியும் குறிப்பு வரைக.
- 36. இரண்டாம் வகுப்பு கணக்குப் பாடத்தில் கழித்தல் என்ற திறனுக்கு உருவாக்கப்படும் குறையறி சோதனையில் இடம்பெறும் ஏதேனும் நான்கு வினாக்கள் எழுதுக.

பிரிவு – இ

இரு வினாக்களுக்கும் விடையளிக்கவும் $2 \times 10 = 20$

- 37. அ) i) அலகுச்சதுரம் என்றால் என்ன?
 - ii) 6 x 8 செ.மீ. அளவுகொண்ட செவ்வகத்தின் பரப்பளவை கற்பிக்க பயன்படுத்தும் செயல்பாடுகளை எழுதுக.
 - iii) செவ்வகத்தின் பரப்பளவு காணும் சூத்திரத்தை எவ்வாறு வரவழைப்பீர் ?

அல்லது

- 37. ஆ) i) ஒப்பார் குழு கற்றல் அணுகுமுறை என்றால் என்ன ?
 - ii) ஒப்பார் குழு கற்றல் அணுகுமுறையின் 3 விதமான குழுக்களை எழுதுக.
- 38. அ) i) CRA அணுகுமுறை என்றால் என்ன?
 - ii) அதன் மூன்று உட்கூறுகளையும் எடுத்துக்காட்டுகளுடன் விளக்குக.
 - iii) CRA மூலம் சமான பின்னங்களை எவ்வாறு கற்பிப்பீர் ?

அல்லது

38. ஆ) செயல்வழிக் கற்றல் அணுகுமுறையை முதல் வகுப்பில் கையாளுதல் பற்றி கட்டுரை வரைக.

	10																				~	1
	6																		~	>		2
	8																>	\				2
	7														>	>						2
ofile)	9												~	~								2
முகம் (Profile)	5											<i>^</i>										1
- 1	शक्तंप IX - XI									<i>^</i>	~											2
வினாத்தாள்	வகப்பு I - VIII								~													1
வினா	4						~	~														2
	3				/	/																2
	2		^	~																		2
	1	<i>^</i>																				
	அலகு வினா என்	1	2	3	4	5	9	7	8	6	10	11	12	13	14	15	16	17	18	19	20	

	10																`	1					ı
	6														^	/		2				^	1
	8													^				1		^			1
	7												^					1		^			1
(9										^	^						2	^				1
வினாத்தாள் – முகம் (Profile)	5									_								1					ı
– முகம்	வகுப்பு IX - XI							^	_									2					
்த்தாள் -	வகுப்பு I - VIII					^	<i>^</i>											2					
வினா	4				^													1					
	3			`														1					
	2		>															1					
	1	>																1					
	अन्न अन्न	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36	மொத்தம்	37.ම	37 ු	38€	38 ஆ	

செய்முறை பயிற்சி

வகுப்பு I முதல் IV வரையுள்ள கணிதத்திறன்களில் ஒப்படை / தொடர்பணி செய்தல்.

- 1. ஏதேனும் இரண்டு திறன்களுக்கு கற்றல் செயல்பாடுகள் எழுதல்.
- தானேக்கற்றல் கருவிகள் 2 தயார் செய்து அவற்றைப் பயன்படுத்தும் முறை பற்றி எழுதுதல்.
- 3. தீர்வாய்வு முறையில் ஏதேனும் ஒரு திறனைக் கற்பிக்கும் முறை எழுதுதல்.
- 4. ஒப்பார்குழுக் கற்றல் முறையை எடுத்துக்காட்டுடன் எழுதுதல்.
- 5. செயல்வழிக் கற்றல் முறை பற்றி எழுதுதல்.
- 6. வரைகலை அமைப்பு அணுகுமுறையை பயன்படுத்தி நான்காம் வகுப்பு திறன்களில் ஏதேனும் ஒன்றை கற்பிக்கும் முறை பற்றி எழுதுதல்
- 7. கணிதமொழி பற்றி கட்டுரை எழுதுதல்.
- 8. கற்றலில் ஏற்படும் குறைபாடுகள் பற்றி செய்திகள் / விவரங்கள் சேகரித்து எழுதுதல்.
- 9. நான்காம் வகுப்பு மாணவர்கள் பொதுவாக செய்யும் பிழைகளும், பிழைத்திருத்தமும் (வகுப்பு I முதல் வகுப்பு IV வரை ஏதேனும் வகுப்புகளையும் எடுத்துக்கொள்ளலாம்.) என்ற தலைப்பில் கட்டுரை எழுதுதல்
- 10. எண் வளர்ச்சி பற்றி கட்டுரை எழுதுதல்.
- 11. கணிதவியல் வல்லுநாகள் (ஏதேனும் 2) பற்றி கட்டுரை எழுதுதல்.
- 12. படத்தொகுப்பு (வகுப்பு I முதல் IV வரை) தயாரித்தல்.
- 13. வடிவயியல் –படத்தொகுப்பு (வகுப்பு I முதல் IV வரை) தயாரித்தல்
- 14. அளவுகள் பற்றி எடுத்துக்களுடன் தொகுத்து எழுதுதல்.
- 15. அளவிடுதல் பற்றி எடுத்துக்களுடன் தொகுத்து எழுதுதல்.
- 16. மதிப்பிடுதல் பற்றி கட்டுரை எழுதுதல்.
- 17. அடைவுச்சோதனைத்தாள் ஏதேனும் ஒருவகுப்பிற்கு ஏதேனும் ஒருபாடப்பகுதிக்கு தயாரித்தல்.
- 18. செய்தித்தொகுப்பு தயாரித்தல்.
- 19. காலண்டர் பற்றி தொகுத்து எழுதுதல்.
- 20. முப்பரிமாணம் பற்றி கட்டுரை எழுதுதல்.

கலைச்சொற்கள்

அலகு 1

Astronomer - வானியல் நிபுணர்

Astronomial Observatory - வானாராய்ச்சி நிலையம்

Mathematical Astronomy - கணித வாக்கிய வான சாஸ்திரம்

Astronomy - வானவியல்

Indeterminate - தேரப்பெறாதது

Manuscript copy - கையெழுத்துப்பிரதி

Three dimensional Geometry - முப்பரிமாண வடிவியல்

Perfect Number - செவ்விய எண்

Arithmetic - Geometric Mean - கூட்டு, பெருக்கல் சராசரி

Logarithmic- table - மடக்கை அட்டவணை

Clay Tablet - களிமண் தகடு

Conics - கூம்பு வெட்டிகள்

Linear Equation - நேரியல் சமன்பாடு

Binomial Theorem - ஈருறுப்புத்தேற்றம்

Huerstic Thinking - ஆய்வு சிந்தனை

Laws of Logic - தர்க்க விதிகள்

Linguistics - மொழியியல்

Scrap Book - செய்தித் தொகுப்பு

Trigonometric Function - திரிகோணமிதி சார்புகள்

அலகு -2

Algebraic Numbers - அறம எண்கள்

Arithmetic Operations - எண்ணியலின் அடிப்படைச் செயல்கள்

Boundary - எல்லை

Calculus - நுண் கணிதம்

Circular Constant - வட்ட மாறிலி

Complex Numbers - கலப்பெண்கள்

Composite Numbers - பகு எண்கள்

Countable - எண்ணிடத்தக்க

Countably finite - முடிவுறு எண்ணிடத்தக்க

Countably Infinite - முடிவுறா எண்ணடத்தக்க

Counting Numbers - எண்ணும் எண்கள்

Divident - வகுபடு எண்

Divisor - வகுக்கும் எண் (அ) வகுப்பான்

Even Numbers - இரட்டை எண்கள்

Finite - எண்ணிலடங்கிய (முடிவுறு)

Indeterminate - தேரப்பெறாத

Infinity - முடிவிலி

Integers - (ជុំប្រុស់តត់ា (ជុំប្រុ តេសាត់ា)

Irrational Numbers - விகிதமுறா எண்கள்

Lower bound - கீழ் எல்லை

Natural Numbers - இயல் எண்கள்

Non-negative Integers - குறையற்ற முழு எண்கள்

not permitted - அனுமதிக்கப்படாத

Numbers Set - எண் கணம்

Odd Numbers - ஒற்றைப்படை எண்கள்

Order Relation - வரிசைப்பண்பு

Positive Integers - மிகை முழு எண்கள்

Prime Numbers - பகா எண்கள்

Quotient - मध्

Rational Numbers - விகிதமுறு எண்கள்

Real line - மெய்யெண் கோடு

Real Numbers - மெய்யெண்கள்

Remainder - மீதி

Symbol - குறியீடு

Transcendental - ஆழ்நிலை எண்

Uncountable - எண்ணிடத்தக்கதல்ல

Undefined - வரையறுக்கப்படாத

Upper bound - மேல் எல்லை

Venn Diagram - வென்படம்

Whole Numbers - குறையற்ற முழு எண்கள்

அலகு -3

BCE - Before Comman Era

CE - Comman Era

Circular Measure - வட்ட அளவை

Cubic Measures - முப்படி அளவைகள்

Curved Surface Area (CSA) - வளைபரப்பு

Curved Surface - வளைதளப் பொருட்கள்

Degrees - பாகை

Displacement - இடப்பெயர்ச்சி

International System Of Units - பன்னாட்டு அலகு அமைப்புமுறை (IS)

Lateral Surface Area (LSA) - புறப்பரப்பு

Light Year - ஒளி ஆண்டு

Linear Measures - ஒருபடி அளவைகள்

Logarithm - மடக்கை

Plane Surface - சமதளப் பொருட்கள்

Radian Measure - ரேடியன் அளவை

Solar Calendar - சூரியகாலண்டர்

Square Measures - இருபடி அளவைகள்

Standard Pieces - சம துண்டுகள்

Total Surface Area (TSA) - மொத்த புறப்பரப்பு

Weight - எடை

அலகு -4

Axioms - உரைகோள்கள்

Calculus - நுண்கணிதம்

Congruent - சர்வசமம் (அ) ஒருங்கிசைவு

Deduction - உய்த்தறிநிறுவல்

Function - சார்பு

Literacy - តម្រេ្ធ់្ងិគ្នាៀល្ប

Location - திட்டமான இடம்

locus - நியமப்பாதை

Postulates - அடிகோள்கள்

Potteries - தாழிகள்

Similar - வடிவொத்த

Skew Lines - ஒருதள அமையாக்கோடுகள்

Space - கூறுவெளி

Symmetry - சமச்சீர்

Three Dimensional Axes - முப்பரிமாண அச்சுகள்

Triangle inequality - முக்கோண சமனிலிவிதி

Undefinied (not permited) - அனுமதிக்கப்படாத செயல்

அலகு -5

Abstraction - கருத்தியல் நிலை (நுண்மையாக்கம்)

Affective Learning - பண்புசார் கற்றல்

Analysis - பகுத்தல்

Analyze - பகுத்தாய்தல்

Application - ஆளல்

Apply - பயன்படுத்துதல்

Area - பரப்பு

Checking - சரிபார்த்தல்

Cognitive Learning – அறிவுசார் கற்றல்

Comprehension - புரிதல்

Conceptual Knowledge - கருத்தாக்க அறிவு

Concrete - காட்சிநிலை

Co-ordinating - ஒருங்கிணைத்தல்

Create - படைத்தல்

Detecting - கண்டுபிடித்தல்

Evaluate - சீர்தூக்கி பார்த்தல்

Evaluation - மதிப்பிடுதல்

Factual Knowledge - உண்மை அறிதல்

Generating - உருவாக்குதல்

Hypothesising - அனுமானித்தல்

Inequality - ஒப்பின்மை (அ) சமனிலி

Integers – (ជុំប្រុស់តត់ា (ជុំប្រុ តេសាត់ា)

Irrational Number – விகிதமுறா எண்

Knowledge - அறிதல்

Logical Structure - தருக்க முறை சொல்லமைப்பு

Meta Cognition - அறிந்துகொள்ளும் அறிவு

Model - மாதிரி

Monitering - கண்காணித்தல் / வழிகாட்டுதல்

Multiples - மடங்குகள்

Precision - திட்பம்

Procedural Knowledge - செயலாக்க அறிவு

Producing – உருவாக்குதல்

Psychomotor Learning - உடல் இயக்கம் சார் கற்றல்

Rational Number – விகிதமுறு எண்

Remember - நினைவிற்கு கொணர்தல்

Standardized – தரம் வாய்ந்த

Structuring - அமைப்புகள்

Symbolic - இடுகுறியான

Synthesis - தொகுத்தல்

Terms - உ<u>ற</u>ுப்புகள்

Understand - புரிந்து கொள்ளுதல்

அலகு -6

4 Step Process type - நான்கு படிகளைக் கொண்ட வழிமுறை

Abstractness - கருத்தியல் (நுண்மம்)

Attitude - மனப்பாங்கு

Check list - சரிபார்க்கும் பட்டியல்

Check - சரிபார்த்தல்

Competencies - திறன்கள்

Compute - கணக்கிடு

Decide what to do - என்ன செய்வதென்று முடிவெடு

Guess - யூகித்தல்

Guidance - வழிகாட்டுதல்

Information - தகவல்கள்

Logical - தருக்க (அ) தர்க்க

Look back - மீள்பார்வை

Make a table - பட்டியலை உருவாக்குதல்

Manipulatives to be developed - மிகத் திறமையாகக் கையாள்வது

Organise the information - தகவலை ஒழுங்குபடுத்துதல்

Pattern - அமைப்பு

Plan the strategies - உத்திகளைத் திட்டமிடுதல்

Plan to solve the problem - கணக்குக்கான தீர்வை திட்டமிடல்

Problem Solving Method - தீர்வாய்வு முறை

Read the Problem - கணக்கை படித்துப்பார்

Schema based Strategy instruction - ஒழுங்கான திட்டங்கள் சார்

வழிகாட்டுதல் உத்திகள்

Schematic Representaions - வரைபடக் குறிப்புகள்

Steps - படிநிலைகள்

Try it - முயற்சி செய்தல்

Understand the problem - கணக்கைப் புரிந்து கொள்ளுதல்

அலகு -7

Background Voice - பின்னணி விளக்க உரை

Chain Graphic Organizer - வரைகலை சங்கிலி அமைப்பு

Column - நிரல்

Composite Number - பகு எண்

e - Graphic Oraganizer - யின் வரைகலை அமைப்பு

Educationist - கல்வியாளர்

facilitator - ஏதுவாளர்

Graphic Organizer - வரைகலை அமைப்பு

Matrix Graphic Organizer - வரைகலை அணி அமைப்பு

Prime Number - பகா எண்

Row - நிரை

Spider Graphic organizer - வரைகலை வலை அமைப்பு

Venn Diagram Graphic organizer- வரைகலை வென்பட அமைப்பு

அலகு -8

Active Learning Strategy - பங்கேற்று கற்றல் முறை

Clues - குறிப்புகள்

Constructive learning Theory - ஆக்கபூர்வமான கற்றல் முறை

Cross age Group - பல்வகுப்பினர் குழு

Friends Group - நட்புக்குழு

Keywords Strategy - முக்கிய வார்த்தை உத்தி

Letter Strategy - எழுத்து உத்தி

Partner Learning - பங்கேற்பு கற்றல்

Password Strategy - ஒத்த ஒசை உத்தி

Peer Education - ஒப்பார்குழு கல்வி

Peer Group - ஒப்பார்குழு

Peer Tutoring - ஒப்பார்குழு கற்பித்தல்

Reciprocal Peer Group - ஒவ்வார்குழு

அலகு -9

Achievement Chart - திறனடைவுப்பட்டியல்

Change Questions - மாற்றம் நேரும் கணக்குகள்

Combine Questions - இணைப்புக் கணக்குகள்

Comparing Questions - ஒப்பீடு கணக்குகள்

Decipher - புரியும் வகையில் மாற்றுதல்

Disco Wire Bundhal - கம்பிப் பந்தல்

Flexibility - நெகிழ்வுத் தன்மை

Health Chart - சுகாதாரக் குறிப்பு

Interpret - பகுத்தாய்வு செய்து கூறுதல்

Low Level Board - தாழ்நிலைக் கரும்பலகை

Personality - ஆளுமைத்திறன்

Respond - பதிலளித்தல்

Role play - நடித்துக்காட்டல்

Weather Chart - காலநிலை அட்டவணை

அலகு -10

Autism - முளை தொடர்பான ஒரு பிரச்சனை

Concrete Object - பருப்பொருள்

Dyscalculia - எண்ணறிவில் குறைபாடு

Dyslexia - எழுத்தறிவில் குறைபாடு

Genius - திறமையானவர்

Hyper Activity - மூளை தொடர்பான ஒரு செயல்பாடு

Operation - செயலி

Percentage - விழுக்காடு

Place Value - இடமதிப்பு

Three Dimension - முப்பரிமாணம்

மேற்கோள் நூல்கள்

- Mathematics and its History (Second Edition), John Still will, Springer International Edition
- Activity Based Learning A Report on an Innovative Method in TN, SSA, Anandalakshmi. S.
- 3. Sucessful Teaching in Secondary Schools Sterling. Eurasia Publishing House (Pvt) Ltd. New Delhi, Callahah. G.
- 4. Methods of Teaching Educational Technology, Discovery Publishing, New Delhi, Chodaverepu Jalaja Kumari and Digumarti Bhaskara Rao (2004)
- 5. Learning by Doing. Etienne Benson Four Keys to undergraduate research in your Laboratory.
- 6. Evaluation, 2007, NCERT Materials
- 7. Primary Science and Numeracy. Hatfield: Association for Science Education Feasey, R. and Gallear, B.
- 8. The Internet in School. London: Cassell Education, Grey, D. (1999).
- 9. Multimedia in Action Vikash Publishing House Washington, James. E. Shuman (1998)
- 10. Active Assessment.: David Fulton in Association with Millgate House Publishers, Naylor, S., Keogh, B. and Goldsworthy, A. London.
- 11. Mastery of Teaching Skills, Discovery Publishing, New Delhi, SBJR Chowdary Nagaeswararao and D. Bhaskarea Roa, (2004)
- Methods and Techniques of Teaching. Sonali Publications, New Delhi, Singamanenai Nageswara Rao, Peethala Sreedhar, Diyumarti Bhaskara Rao (2004)
- 13. Successful Teaching in Secondary Schools Eurasia Publishing House Pvt Limited, New Delhi, Sterling. G. Callahan
- 14. 1000 Ideas for Primary Science. Lodon: Hodder & Stoughton Wood, D. (1998)
- 15. இளங்கல்வியியல் முதலாம் ஆண்டு கல்வியியல் மதிப்பீடு 2006. தமிழ்நாடு திறந்த நிலைப் பல்கலைக்கழகம், கல்வியியல் பள்ளி, தொழில்நுட்பக் கல்வி வளாகம், கிண்டி, சென்னை –25

- கற்பவனைத் தோற்றுவிப்போம், உயர் தொடக்கநிலை வகுப்புகள் 2007 –08 மாநில திட்ட இயக்குனரகம், அனைவருக்கும் கல்வி இயக்கம், சென்னை, தமிழ்நாடு
- 17. செயல்வழிக் கற்றல் தானே கற்றல் (முதல் மூன்று வகுப்புகளுக்குரியவை) ஆசிரியர் கையேடு 2005. அனைவருக்கும் கல்வி இயக்கம் மற்றும் ஆசிரியர்கல்வி ஆராய்ச்சி பயிற்சி இயக்ககம், சென்னை–6.
- 18. தேசிய கலைத்திட்ட வடிவமைப்பு (2005)
- பள்ளி முன் பருவ கல்வி. பங்கஜம் மு. 1998.
 லெட்சுமி சேவா சங்கம், காந்தி கிராமம் 624 302
- 20. Intel Teach to the Future, Intel Innovation in Education Intel Corporation www.educationinindia.net. Coral Oho. Martinez and Jane Krauss (2004).
- Learning by Doing. A teacher role in learning by Doing Method. http://www.qscc.gld.edu.au.
 Measurement in Science years 1 to 10 source Book Module.
- 22. www.primaryresources.co.uk -

A website that provides ideas for a range of acitivity ideas for worksheets and ideas for assessments.

23. http://www.nea.org/bt/Lstudents/1-1-q-9. html. Learn more about Active Learning.

வளநூல் ஆசிரியர் கல்வி பட்டயப் படிப்பு – கணிதவியல் கல்வி –2001, தமிழ்நாடு பாடநூல் நிறுவனம், சென்னை – 6.

கணக்கு பாடநூல்கள், தமிழ்நாட்டு பாடநூல் கழகம், சென்னை –6.

ஒன்றாம் வகுப்பு (1999)

இரண்டாம் வகுப்பு (2001)

மூன்றாம் வகுப்பு (2001)

நான்காம் வகுப்பு (1999)

ஐந்தாம் வகுப்பு (2000)

ஆறாம் வகுப்பு (2003)

ஏழாம் வகுப்பு (2004)

எட்டாம் வகுப்பு (2005)

ஒன்பதாம் வகுப்பு (2003)

பத்தாம் வகுப்பு (2004)