Ejemplos de derivación numérica

Profesor
Edgar Miguel Vargas Chaparro
Monitor
Sebastian Guerrero Salinas

- Para $f(x) = e^x$ y x = 1, vamos a calcular los cocientes incrementales D_k usando los incrementos $h_k = 10^{-k}$ para k = 1, 2, ..., 10; arrastraremos nueve cifras decimales en todas las operaciones.
- En la siguiente tabla, se muestran los valores $f(1 + h_k)$ y $(f(1 + h_k) f(1))/h_k$ que se utilizan para calcular D_k .

h_k	$f_k = f(1+h_k)$	$f_k - e$	$D_k = (f_k - e)/h_k$
$h_1 = 0, 1$	3,004166024	0,285884196	2,858841960
$h_2 = 0,01$	2,745601015	0,027319187	2,731918700
$h_3 = 0,001$	2,721001470	0,002719642	2,719642000
$h_4 = 0,0001$	2,718553670	0,000271842	2,718420000
$h_5 = 0,00001$	2,718309011	0,000027183	2,718300000
$h_6 = 10^{-6}$	2,718284547	0,000002719	2,719000000
$h_7 = 10^{-7}$	2,718282100	0,000000272	2,720000000
$h_8 = 10^{-8}$	2,718281856	0,000000028	2,800000000
$h_9 = 10^{-9}$	2,718281831	0,00000003	3,00000000
$h_{10}=10^{-10}$	2,718281828	0,00000000	0,00000000

Tabla: Cálculo de los cocientes incrementales $D_k = (e^{1+h_k} - e)/h_k$

4 D > 4 A > 4 B > 4 B > B = 900

• El incremento mayor $h_1=0,1$ no proporciona una buena aproximación $D_1\approx f'(1)$ porque h_1 es demasiado grande; el cociente incremental es la pendiente de una recta secante que pasa por dos puntos que no están suficientemente cerca

Por otro lado, cuando se usa la fórmula

$$D_k = \frac{f(x + h_k) - f(x)}{h_k}; \ k = 1, 2, ...$$

trabajando con una precisión fija de nueve cifras decimales, h_9 proporciona la aproximación $D_9=3$ y h_{10} proporciona $D_{10}=0$.

• Si h_k es demasiado pequeño, entonces los valores de la función $f(x + h_k)$ y f(x) están demasiado cerca y puede aparecer el problema de la pérdida de cifras significativas debido a la substracción de cantidades que son casi iguales.

- El valor $h_{10} = 10^{-10}$ es tan pequeño que los valores $f(x + h_{10})$ y f(x) almacenados por el computador son iguales y, en consecuencia, el cociente incremental calculado es cero.
- Así, en este ejemplo, el valor exacto del límite es $f'(1) \approx 2,718281828$ y puede observarse que el valor $h_5 = 10^{-5}$ es el que da la mejor aproximación $D_5 = 2,7183$.

Sea f(x) = cos(x)

Se utilizarán las fórmulas

$$f'(x) \approx \frac{f(x+h) - f(x-h)}{2h} \tag{1}$$

$$f'(x) \approx \frac{-f(x+2h) + 8f(x+h) - 8f(x-h) + f(x-2h)}{12h}$$
 (2)

Con incrementos h = 0.1, 0.01, 0.001 y 0.0001 para calcular aproximaciones a f'(0.8). Se trabajará con nueve cifras decimales significativas

- Se compararán los valores obtenidos con el exacto $f'(0.8) = -\sin(0.8)$.
- Usando la fórmula (1) con h = 0.01, obtenemos

$$f'(0.8) \approx \frac{f(0.81) - f(0.79)}{0.02} \approx \frac{0.689498433 - 0.703845316}{0.02}$$
$$\approx -0.717344150$$

• Usando la fórmula (2) con h = 0.01, obtenemos

$$f'(0.8) \approx \frac{-f(0.82) + 8f(0.81) - 8f(0.79) + f(0.78)}{0.12}$$

$$\approx \frac{-0.682221207 + 8(0.689498433) - 8(0.703845316) + 0.710913538}{0.12}$$

$$\approx -0.717356108$$

• El error en las aproximaciones proporcionadas por las fórmulas (1) y (2) resulta ser -0.000011941 y 0.000000017, respectivamente. Vemos que, en este ejemplo, la fórmula (2) proporciona una aproximación a f'(0.8) mejor que la que proporciona la fórmula (1) cuando h = 0.01 pero no cuando h = 0.0001 como se puede ver en la tabla a continuación.

Incre	Aproximación	Error fórmula	Aproximación	Error fórmula
	fórmula (1)	(1)	fórmula (2)	(2)
0.1	-0.716161095	-0.001194996	-0.717353703	-0.000002389
0.01	-0.717344150	-0.000011941	-0.717356108	0.000000017
0.001	-0.717356000	-0.000000091	-0.717356167	0.000000076
0.0001	-0.717360000	-0.000003909	-0.717360833	0.000004742

Tabla: Derivación numérica mediante las fórmulas (1) y (2)

Nuevamente tomamos f(x) = cos(x)

• Se utilizará la fórmula

$$f''(x_0) \approx \frac{f_1 - 2f_0 + f_{-1}}{h^2}$$
 (3)

Con h = 0.1, 0.01 y 0.001 para calcular aproximaciones a f''(0.8). Se trabajará con nueve cifras decimales.

• Luego, se compararán estas aproximaciones con el valor exacto de la segunda derivada, que es $f''(0.8) = -\cos(0.8)$

• Los cálculos cuando h = 0.01 son:

$$f''(0.8)pprox rac{f(0.81)-2f(0.80)+f(0.79)}{0.0001} \ pprox rac{0.689498433-2(0.696706709)+0.703845316}{0.0001} \ pprox -0.696690000$$

• El error de la aproximación obtenida es -0.000016709. El resto de los cálculos se resumen en la tabla a continuación.

Incremento	Aproximación fórmula (3)	Error fórmula (3)
h = 0.1	-0.696126300	-0.000580409
h = 0.01	-0.696690000	-0.000016709
h = 0.001	-0.696000000	-0.000706709

Tabla: Aproximaciones numéricas a f''(x)

Continuamos con f(x) = cos(x)

Ahora utilizando la fórmula

$$f''(x_0) = \frac{-f_2 + 16f_1 - 30f_0 + 16f_{-1} - f_{-2}}{12h^2}$$
 (4)

Con h = 1.0, 0.1 y 0.01 para calcular aproximaciones a f''(0.8). Se trabajará con nueve cifras decimales significativas.

• Luego, se compararán estas aproximaciones con el valor exacto de la segunda derivada, que es f''(0.8) = -cos(0.8)

• Se realizarán los cálculos con h = 0.1:

$$f''(0.8) \approx \frac{-f(1.0) + 16f(0.9) - 30f(0.8) + 16f(0.7) - f(0.6)}{0.12}$$
$$\approx \frac{-0.540302306 + 9.945759488 - 20.90120127 + 12.23747499 - 0.825335615}{0.12}$$
$$\approx -0.696705958$$

El resto se recoge en la siguiente tabla:

Incremento	Aproximación fórmula (4)	Error fórmula (4)
h = 1.0	-0.689625413	-0.007081296
h = 0.1	-0.696705958	-0.000000751
h = 0.01	-0.696690000	-0.000016709

Tabla: Aproximaciones numéricas a f''(x)

Derivada del polinomio interpolador de Newton

Con N=4:

• Si los cinco nodos son $t_k = x + hk$ para k = 0, 1, 2, 3 y 4, entonces la fórmula:

$$P'(t_0) = a_1 + a_2(t_0 - t_1) + a_3(t_0 - t_1)(t_0 - t_2) + \dots + a_N(t_0 - t_1)(t_0 - t_2)(t_0 - t_3) \dots (t_0 - t_{N-1})$$
(5)

Es una manera equivalente de calcular la fórmula de diferencias progresivas para aproximar f'(x) de orden $O(h^4)$

Derivada del polinomio interpolador de Newton

- Si los cinco nodos $\{t_k\}$ son $t_0 = x$, $t_1 = x + h$, $t_2 = x h$, $t_3 = x + 2h$ y $t_4 = x 2h$, entonces (5) es la fórmula de diferencias centradas para aproximar f'(x) de orden $O(h^4)$.
- Cuando los nodos son $t_k = x kh$, entonces (5) es la fórmula de diferencias regresivas para aproximar f'(x) de orden $O(h^4)$.