10. 튜플 자료형

- 1. 튜플 만들기
- 2. 튜플 인덱싱(indexing), 슬라이싱(slicing)
- 3. 튜플은 immutable 객체입니다
- 4. 튜플에 +, *, in, not in, del 연산자 사용하기
- 5. 튜플에 함수 적용하기 len(), max(), min(), sum(), sorted(), reversed()
- 6. 튜플 메소드
- 7. 튜플의 이용
- 8. 정리

1. 튜플 만들기

- ◆ 튜플은 ()를 이용하여 데이터를 모아서 관리함
- ◆ 튜플은 immutable한 객체임
- ◆ immutable하기 때문에 객체 수정과 관련된 메소드들은 없음

튜플	리스트
()	[]
immutable	mutable
메소드 2개 count(), index()	메소드 11개

1. 튜플 만들기

- ◆ 튜플은 () 안에 콤마를 이용하여 데이터를 모아서 관리함
- ◆ 괄호없이 콤마로 데이터들을 분리해도 튜플로 간주함

```
>>> T1 = (3, 2, 7, 1)
>>> type(T1)
⟨class 'tuple'⟩
>>> T2 = 5, 3, 7 # 괄호가 없이 콤마로 여러 데이터를 적는 경우도 튜플입니다.
>>> type(T2)
⟨class 'tuple'⟩
>>> T3 = 6, 8, 9, # 맨 마지막에 콤마가 있기도 합니다.
>>> type(T3)
⟨class 'tuple'⟩
```

```
    ⟩⟩⟩ a = 3; b = 4; c = 5
    ⟩⟩⟩ a, b, c # 튜플로 츨력하게 되니까 괄호로 묶어서 출력합니다.
    (3, 4, 5)
```

1. 튜플 만들기

◆ 원소가 1개인 튜플 생성하기 (괄호에 데이터가 1개 있으면 괄호 무시함, 튜플 아님)

```
# 괄호 안에 정수만 하나 있으면 튜플이 아니라 정수입니다.
\rangle\rangle\rangle T1 = (5)
\rangle\rangle type(T1)
⟨class 'int'⟩
\rangle\rangle\rangle T2 = ('apple')
                      # 괄호 안에 문자열만 하나 있으면 튜플이 아니라 문자열입니다.
\rangle\rangle type(T2)
<class 'str'>
\rangle\rangle len(T2)
                        # 'apple'의 길이가 나와요.
5
                       # 괄호 안에 리스트만 하나 있으면 튜플이 아니라 리스트입니다.
\rangle\rangle\rangle T3 = ([1,2,3])
\rangle\rangle type(T3)
⟨class 'list'⟩
\rangle\rangle\rangle len(T3)
                        # 리스트 [1,2,3]의 길이가 나와요.
3
>>> T4 = ((1,3,5,7,9)) # 괄호 안에 튜플이 하나 있으면 역시 그냥 튜플입니다.
\rangle\rangle type(T4)
⟨class 'tuple'⟩
\rangle\rangle\rangle len(T4)
                        # 튜플 (1,3,5,7,9)의 길이가 나와요.
                                                                                      4
5
```

1. 튜플 만들기

◆ 원소가 1개인 튜플을 만들려면, 반드시 콤마를 넣어야 한다

```
>>> S1 = (5,) # S1 = 5, 라고 해도 똑같습니다.
\rangle\rangle\rangle type(S1)
⟨class 'tuple'⟩
\rangle\rangle len(S1)
⟩⟩⟩ S2 = ('hello',) # S2 = 'hello', 라고 해도 똑같습니다.
\rangle\rangle type(S2)
⟨class 'tuple'⟩
\rangle\rangle len(S2)
〉〉〉 S3 = ([1,2,3],) # S3 = [1,2,3], 라고 해도 똑같습니다.
\rangle\rangle\rangle type(S3)
⟨class 'tuple'⟩
\rangle\rangle len(S3)
```

1. 튜플 만들기

◆ 빈 튜플 만들기

빈 괄호 이용하기	tuple() 함수 이용하기
>>> T = () >>> type(T) <class 'tuple'=""></class>	>>> T = tuple() >>> type(T) <class 'tuple'=""></class>

◆ 다른 자료형을 튜플로 변환하기 (tuple(iterable) 함수 사용)

튜플 ← 문자열	<pre> >>> book = 'Harry Potter' >>> T1 = tuple(book) >>> T1 ('H', 'a', 'r', 'r', 'y', ' ', 'P', 'o', 't', 't', 'e', 'r') </pre>
튜플 ← 리스트	<pre> >>> L = [1, 3, 5, 7] >>> T2 = tuple(L) >>> T2 (1, 3, 5, 7) </pre>

1. 튜플 만들기

튜플 ← 집합	<pre></pre>
튜플 ← 사전	>>> area_code = {'서울':'02', '경기':'031', '인천':'032'} >>> T4 = tuple(area_code) # 키만 튜플에 저장합니다. >>> T4 ('서울', '경기', '인천')
튜플 ← range()	<pre> >>> T5 = tuple(range(10, 60, 10)) >>> T5 (10, 20, 30, 40, 50) </pre>
튜플 ← reversed()	<pre> >>> T6 = tuple(reversed([13, 25, 11, 12])) >>> T6 (12, 11, 25, 13) </pre>

2. 튜플 인덱싱(indexing), 슬라이싱(slicing)

◆ 인덱싱, 슬라이싱은 리스트와 똑같음

```
>>> primes = (2, 3, 5, 7, 11, 13, 17, 19, 23, 29)
>>> print(primes[5])
13
>>> print(primes[-1]) # -1은 맨 마지막 자리입니다.
29
>>> print(primes[3:7]) # 인덱스 3에서 인덱스 6까지입니다.
(7, 11, 13, 17)
>>> print(primes[8:2:-3])
(23, 13)
```

3. 튜플은 immutable 객체입니다

◆ 튜플 객체는 만든 후에 내용을 수정할 수 없음

```
〉〉〉〉 T = (1, 3, 6, 7)
〉〉〉 T [2] = 5 # 인덱스 2에 있는 6을 5로 바꾸려고 하는데 에러가 발생해요.
TypeError: 'tuple' object does not support item assignment
〉〉〉〉 del T [2] # T [2] 에 있는 6을 삭제하려고 하는데 에러가 발생해요.
TypeError: 'tuple' object doesn't support item deletion
```

◆ del 연산자를 이용해서 튜플을 통째로 삭제하는 것은 가능함

```
>>> T = ('apple', 'banana', 'grape', 'orange')
>>> del T
>>>> T
```

NameError: name 'T' is not defined

3. 튜플은 immutable 객체입니다

- ◆ 튜플 안에는 9가지 자료형을 모두 저장할 수 있음
- ◆ 튜플에 mutable 객체인 리스트, 집합, 사전도 저장 가능함

```
>>> T = ([1,2,3], [7,8])
>>> T[0][2] = 100 #T[0]는리스트
>>> T
([1,2,100], [7,8])
>>> T[1][0] = 200 #T[1]은리스트
>>> T
([1,2,100], [200,8])
```


3. 튜플은 immutable 객체입니다

```
\rangle\rangle\rangle T = ([1,2,3], (4,5), 'hello')
\rangle\rangle\rangle T[0] = [10, 20, 30]
T[0] = [10, 20, 30]
TypeError: 'tuple' object does not support item assignment
\rangle\rangle\rangle T[0] [0] = 10
                                   # 튜플 안에 저장된 리스트는 수정이 가능합니다.
\rangle\rangle\rangle T[0][1] = 20
\rangle\rangle\rangle T[0][2] = 30
\rangle\rangle\rangle T
([10, 20, 30], (4, 5), 'hello')
\rangle\rangle\rangle T[1][0] = 40
                                   # 튜플 안에 저장된 튜플은 수정할 수 없습니다.
T[1][0] = 40
TypeError: 'tuple' object does not support item assignment
>>> T[2][0] = 'H'
                                    # 튜플 안에 저장된 문자열도 수정할 수 없습니다.
T[2][0] = 'H'
TypeError: 'str' object does not support item assignment
```

4. 튜플에 +, *, in, not in, del 연산자 사용하기

◆ 문자열, 리스트에서 사용하던 것과 같음

```
>>> T = (7, 8, 2, 5, 4)
>>> S = (6,9)
>>> T + S # 튜플 T와 S를 연결한 새로운 튜플을 만듭니다.
(7, 8, 2, 5, 4, 6, 9)
>>> S * 5 # 튜플 S를 5번 반복해서 만든 새로운 튜플을 만듭니다.
(6, 9, 6, 9, 6, 9, 6, 9, 6, 9)
>>> 4 in T
True
>>> 10 not in S
True
```

4. 튜플에 +, *, in, not in, del 연산자 사용하기

◆ +=, *= 도 사용 가능함

```
\rangle\rangle T = (1, 2, 3)
\rangle\rangle\rangle S = (4, 5)
\rangle\rangle\rangle id(T), id(S)
(64908064, 64962512)
\rangle\rangle\rangle T += S
\rangle\rangle\rangle id(T), id(S)
(64788544, 64962512)
\rangle\rangle\rangle T
(1, 2, 3, 4, 5)
\rangle\rangle\rangle S
(4, 5)
\rangle\rangle\rangle A = (7, 9)
\rangle\rangle\rangle A *= 3
\rangle\rangle\rangle A
(7, 9, 7, 9, 7, 9)
```


5. 튜플에 함수 적용하기

len(), max(), min(), sum(), sorted(), reversed()

```
\rangle\rangle primes = (5, 13, 2, 7, 9)
(5, 13, 2, 36)
>>> sorted(primes)
                         # sorted() 함수의 결과는 리스트입니다.
[2, 5, 7, 9, 13]
>>> reversed(primes)
(reversed object at 0x01660B90)
>>> tuple(reversed(primes)) # reversed() 함수 결과를 tuple로 변환합니다.
(9, 7, 2, 13, 5)
⟩⟩⟩ list(reversed(primes)) # reversed() 함수 결과를 list로 변환합니다.
[9, 7, 2, 13, 5]
```

◆ 튜플은 immutable하기 때문에 객체, 변수, 변수명

메소드	설명	반환값	발생 가능 에러
count(x)	데이터 x의 개수를 반환합니다.	있음	없음
index(x)	데이터 x의 인덱스를 반환합니다. x가 없는 데이터이면, ValueError가 발생합니다.	있음	ValueError

- ◆ 튜플에 있는 데이터 개수 세기 count(x)
 - 반드시 1개의 데이터 x를 인수로 넣어야 하고, x가 튜플에 없으면 0을 반환함.

```
>>> T = (3, 7, 9, 3, 2, 7, 3, 7)
>>> T.count(7) # 튜플 T에는 7이 3개 있습니다.
3
>>>> T.count(5) # 튜플 T에는 5가 없습니다.
0
```

◆ 튜플에 있는 데이터 위치 찾기 - index()

>>> T = (3, 7, 9, 3, 2, 7, 3, 7)		
인수 1개인 경우	>>> T.index(2) 4 >>> T.index(7) # 데이터가 여러 개인 경우 첫 번째 인덱스 반환 1 >>> T.index(5) # 없는 데이터에 대해서는 ValueError 발생 ValueError: tuple.index(x): x not in tuple	
인수 2개인 경우	>>> T.index(7, 5) # T[5:]에서 처음으로 7이 있는 인덱스 반환 5 >>> T.index(3, 2) # T[2:]에서 처음으로 3이 있는 인덱스 반환 3 >>> T.index(9, 5) # T[5:]에서 9가 없으므로 ValueError 발생 ValueError: tuple.index(x): x not in tuple	
인수 3개인 경우	>>> T.index(7, 3, 6) # T[3:6]에서 7의 인덱스를 반환 5 >>> T.index(2, -6, -1) # T[-6:-1]에서 2의 인덱스를 반환 4	

CODE 59 튜플의 count 메소드와 똑같이 동작하는 코드

```
T = (89, 90, 85, 99, 77, 58, 85, 77)
score = int(input('Enter score:'))
         # cnt는 개수를 세기 위한 변수입니다.
cnt = 0
for x in T:
             # 튜플 T에서 원소를 하나씩 차례대로 가져와서 루프를 수행합니다.
   if x == score: # x와 score가 같으면 cnt 값을 1 증가시킵니다.
       cnt += 1
print("{} - There are {}.".format(score, cnt))
[결과 1]
                       [결과 2]
                                               [결과 3]
Enter score: 85
                       Enter score: 90
                                               Enter score: 100
85 - There are 2.
                       90 - There are 1.
                                               100 - There are 0.
```

7. 튜플의 이용

◆ print() 함수에서 튜플 사용하였음

```
>>> a = 10; b = 20
>>> print('a = %d b = %d' % (a,b)) # (a,b)가 튜플임
a = 10 b = 20
```

- ◆ 간단히 swap하기
 - swap은 두 변수의 값을 바꾸는 일을 의미함.
 - 리스트를 이용해서도 swap을 할 수 있음.

```
    ⟩⟩⟩ a = 10; b = 20
    ⟩⟩⟩ b, a = a, b # (b, a) = (a, b)와 같은 표현입니다.
    ⟩⟩⟩ print(a, b) # 출력해 보면 a의 값과 b의 값이 바뀌어 있어요.
    20 10
```

7. 튜플의 이용

◆ IDLE에서 간단히 변수 출력하기

```
    ⟩⟩⟩ a = 10; b = 20; c = 30
    ⟩⟩⟩ a, b, c # 괄호가 없더라도 데이터가 콤마로 분리되어 나열되면 튜플로 인식함.
    (10, 20, 30)
```

8. 정리

◆ 리스트와 튜플 비교

	리스트	튜플
기호		()
저장되는 데이터	아홉 가지 자료형 모두 저장 가능	아홉 가지 자료형 모두 저장 가능
변경 가능성	변경 가능 (mutable 자료형)	변경 불가능 (immutable 자료형)
메소드	append(), insert(), clear() 등 11개의 메소드가 있음.	count(), index() 두 개만 있음.