

Методы оптимизации

Лекция 9. Пример решения транспортной задачи

Селина Елена Георгиевна **Пример решения классической транспортной задачи.** Дана транспортная сеть, состоящая из семи вершин. Пункты 1,2,3—производители, пункты 4,5,6,7—потребители.

Источники:
$$egin{cases} d_1 = 11 \ d_2 = 11 \ d_3 = 8 \end{cases}$$

Получатели:
$$\begin{cases} d_4 = -5 \\ d_5 = -9 \\ d_6 = -9 \\ d_7 = -7 \end{cases}$$

Дана матрица транспортных расходов:

$$C = \begin{pmatrix} 7 & 8 & 5 & 3 \\ 2 & 4 & 5 & 9 \\ 6 & 3 & 1 & 2 \end{pmatrix}$$

Оформим в виде таблицы:

C/	C/X^0											
		4		5		6		7	a			
4	7		8	3	5	1	3	7	11	4	3	0
1	2		4	3	5		9	7		_	_	
2	_	5	•	6	Ĭ	-		-	11	6	0	
	6		3		1		2		8	0		•
3		-		-		8		-				
b	5	5		9		9		7	30			
	0)		3		1		0		ı		
				J		'		•				
				0		0						

Получаем начальный базис:

	ფ	1	7
5	G		
		8	

 $f_0 = \sum_{i=1}^{3} \sum_{j=1}^{4} C_{ij} X_{ij} = 24 + 5 + 21 + 10 + 24 + 8 = 92$

Для
$$(i,j) \in J_{\mathsf{G}} \Delta_{ij} = 0 \Rightarrow u_i + v_j = C_{ij}$$

Это система для определения потенциалов, в которой уравнений, переменных. Уравнений на одно больше, чем неизвестных, поэтому одному неизвестному, u_1 , присвоим значение 0. После этого определяем остальные потенциалы.

$$\begin{cases} u_1 + v_2 = 8 \\ u_1 + v_3 = 5 \\ u_1 + v_4 = 3 \\ u_2 + v_1 = 2 \\ u_2 + v_2 = 4 \\ u_3 + v_3 = 1 \end{cases}$$

$$\begin{cases} u_1 = 0 \\ u_2 = -4 \\ u_3 = -4 \\ v_1 = 6 \\ v_2 = 8 \\ v_3 = 5 \\ v_4 = 3 \end{cases}$$

Теперь находим все остальные Δ по формуле $\Delta_{ij} = u_i + v_j - C_{ij}$

$$\Delta_{32} = 1 > 0$$

$$\theta^* = \min_{-\theta} X_{ij} = 3$$

Новый базис:

		4	7
5	6		
	3	5	

$$f_1 = \sum_{i=1}^{3} \sum_{j=1}^{4} C_{ij} X_{ij} = 20 + 21 + 10 + 24 + 9 + 5 = 89 < f_0$$

C/	Δ								
		4		5		6		7	u
	7		8		5		3		0
1		-2		-1		-		_	•
	2		4		5		9		-4
2		-		-		-3		-9	
3	6	-5	3	•	1	•	2	-3	-4
V	,	5		7		5		3	

Получили оптимальный грузопоток:

Решение общей транспортной задачи путём сведения к задаче поиска кратчайшего пути и классической транспортной задаче

Общая транспортная задача решается через задачу поиска кратчайшего пути и классическую транспортную задачу.

Дан транспортный граф, состоящий из пунктов и дрог, соединяющих эти пункты. Даны интенсивности источников $d_i>0$ и интенсивность потребителей $d_j<0$. Могут быть пункты, не потребляющие и не производящие продуктов $d_k=0$.

Дана матрица $C = \{c_{ij}\}$ – матрица промежуточных расходов, $C_{ij} \geq 0$ – стоимость провоза продукта из і-го пункта в ј-ый (не обязательно полностью заполненная, не обязательно симметричная).

Требуется найти оптимальный грузопоток $X_{ij} \geq 0$

$$f = \sum_{(i,j)} c_{ij} X_{ij} \rightarrow min$$

Ограничения, учитывающие сбалансированность:

$$\sum_{k \in U_i^+} X_{ki} + d_i = \sum_{j \in U_i^-} X_{ij}$$
 , $i = 1, 2, ...$

 U_i^- - множество индексов, соответствующее выходящим дугам, U_i^+ - множество индексов, соответствующее входящим дугам.

 $\sum_i d_i = 0$ – естественные условия баланса (весь произведенный продукт будет потреблен)

$$\bigcup_{i} U_{i}^{-}$$

Алгоритм решения общей транспортной задачи

- I. 1) Из множества всех вершин выбираем производителей и нумеруем их I=1,...,М. Выбираем всех потребителей и нумеруем J=1,...,N.
- <mark>2) Д</mark>елаем преобразования: $a_I = d_I > 0$, $b_J = -d_J > 0$
- 3) Решаем задачу поиска кратчайшего пути и находим наиболее дешевые пути от каждого производителя к каждому потребителю. Если между каким-то производителем и каким-то потребителем не найдется дороги, то $C_{I'J'} = \infty$. Найдём Π_{IJ} самые дешевые пути от каждого производителя к каждому потребителю.
- II.Решаем получившуюся классическую транспортную задачу, в которой фигурируют a_I , b_J C_{IJ} .
- $\sum_{(i,j)} c_{ij} X_{ij} \to min$. Находим $X_{IJ}^* \geq 0$
- III. Находим оптимальный грузопоток исходной общей транспортной задачи.

Ограничения на пропускную способность

Пусть в нашей транспортной задаче имеются ограничения на пропускную способность на одну или несколько дорог.

$$0 \le x_{ij} \le r_{ij}$$

Пусть есть ограничение на дорогу из пункта 1 в пункт 2.

$$0 \le x_{12} \le r$$

Введём два промежуточных пункта (пункт 3 и пункт 4) следующим образом:

Соединим пункты 3 и 4 встречным потоком и объявим пункт 4 потребителем с интенсивностью г, а пункт 3 — производителем интенсивности г.

Условие баланса:

$$\begin{cases} x_1 + x_2 = r \\ x_2 + x_3 = r \end{cases}$$
$$x_1 = x_3 = x_{12}$$

$$x_1 \le r \Rightarrow x_{12} \le r$$

Таким образом, если имеются ограничения на пропускную способность, то изменяем сеть путём увеличения количества пунктов с дорогами без ограничения пропускной способности.

Условие задачи для расчетной работы №2

Дана транспортная сеть, состоящая из 7 вершин, связи между которыми заданы с помощью матрицы инцидентности. Найти оптимальный грузопоток.

$$\mathbf{G} = \begin{pmatrix} 0 & 1 & G_{13} & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & G_{24} & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & G_{35} & G_{36} & G_{37} \\ 0 & G_{42} & 0 & 0 & 1 & 0 & G_{47} \\ 0 & 0 & G_{53} & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

$$G_{13} = \begin{cases} 1, i = 3k, k = 0,1,2, \dots \\ 0, i \neq 3k \end{cases}$$

$$G_{24} = \begin{cases} 1, i = 2k \\ 0, i \neq 2k \end{cases}$$

$$G_{35} = \begin{cases} 1, i = 5k \\ 0, i \neq 5k \end{cases}$$

$$G_{36} = 1 - G_{13}$$

$$G_{37} = G_{13}$$

$$G_{42} = 1 - G_{24}$$

$$G_{47} = 1 - G_{35} - G_{53}$$

$$G_{53} = \begin{cases} 1, i = 5k + 4 \\ 0, i \neq 5k + 4 \end{cases}$$

Интенсивности источников, потребителей:

$$d_{1} = 2i + 1$$

$$d_{2} = i + 11$$

$$d_{3} = d_{4} = 0$$

$$d_{5} = -i$$

$$d_{6} = -(i + 4)$$

$$d_{7} = -(i + 8)$$

$$r_{15} = \begin{bmatrix} i + 1 \\ 2 \end{bmatrix}$$

$$r_{27} = \left[\frac{i+4}{3}\right]$$

[...] – целая часть числа

Матрица промежуточных расходов:

$$C_{kl} = [6 + 5\cos(\frac{\pi}{15}(i + 4k + l))]$$
, [...] — целая часть числа Найти оптимальный грузопоток.

Пример оформления расчетной работы №2

Условие задачи для варианта 20

Дана транспортная сеть, состоящая из семи вершин, связи между которыми задаются матрицей инцидентности размера 7x7.

$$\Gamma = \begin{pmatrix} 0 & 1 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 & 1 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 & 0 & 0 \end{pmatrix}$$

Стоимости:

Источники:
$$\begin{cases} d_1 = 41 \\ d_2 = 31 \end{cases}$$

Получатели:

$$\begin{cases} d_5 = -20 \\ d_6 = -24 \\ d_7 = -28 \end{cases}$$

Ограничения:

$$\begin{cases} r_{15} = 10 \\ r_{27} = 8 \end{cases}$$

$$C_{12} = 9$$

$$C_{15} = 10$$

$$C_{23} = 10$$

$$C_{24} = 10$$

$$C_{27} = 8$$

$$C_{34} = 7$$

$$C_{35} = 6$$

$$C_{36} = 5$$

$$C_{45} = 2$$

$$C_{56} = 1$$

$$C_{67} = 4$$

į	d_i	(<u>i,j</u>)	C_{ii}	<u>r</u> ų
1	41	(1,2)	9	-
1	41	(1,5)	10	10
		(2,3)	10	-
2	31	(2,4)	10	-
		(2,7)	8	8
		(3,4)	7	
3	0	(3,5)	6	-
		(3,6)	5	
4	0	(4,5)	2	-
5	-20	(5,6)	1	-
6	-24	(6,7)	4	-
7	-28	-	-	-

Ī

		-
<u>(1,2)</u> 9	(1,8) 10	
(2,3) 19	(2,4) 19	$\frac{(2,10)}{17}$
$\frac{(3,4)}{26}$	$\frac{(3,5)}{25}$	(3,6) 24
$\frac{(4,5)}{21}$		
$\frac{(5,6)}{22}$	$\frac{(6,7)}{26}$	

$$1 \xrightarrow{21} 5: 1,2,4,5$$

 $1 \xrightarrow{22} 6: 1,2,4,5,6$
 $1 \xrightarrow{26} 7: 1,2,4,5,6,7$
 $1 \xrightarrow{10} 8: 1,8$
 $1 \xrightarrow{17} 10: 1,2,10$

П.

111.		
$\frac{(2,3)}{10}$	$\frac{(2,4)}{10}$	$\frac{(2,10)}{8}$
(3,5) 16	(3,6) 15	(3,4) 17
(4,5) 12 (5,6)		
13		
$\frac{(6,7)}{17}$		

$$2 \xrightarrow{22} 5: 2,3,4,5$$

 $2 \xrightarrow{17} 6: 2,3,6$
 $2 \xrightarrow{20} 7: 2,3,6,7$
 $2 \xrightarrow{9} 8: -$
 $2 \xrightarrow{9} 10: 2,10$

III.	
(9,8)	(9,5)
0	0
(5,6)	
1	
(6,7)	
5	

$$9 \xrightarrow{0} 5: 9,5$$

$$9 \xrightarrow{1} 6: 9,5,6$$

$$9 \xrightarrow{4} 7: 9,5,6,7$$

$$9 \xrightarrow{0} 8:9,8$$

$$9 \xrightarrow{24} 10: 9,5,3,4,2,10$$

IV. (11,10)

 $11 \xrightarrow{0} 5: 11 \xrightarrow{0} 6: 11 \xrightarrow{0} 7: 11,7$ $11 \xrightarrow{0} 8: 11 \xrightarrow{0} 10: 11,10$

-- -------

	c/x ₀							,	
	5	6	7	8	10				
1	21 9	22 20	26	10 10	17	41	31	20	0
2	12 10	13 13	17	ı	% %	31	23	13	0
9	0 10	1	5	0	ı	10	0		
11	-	-	0 8	ı	0	8	0		
b	20	24	28	10	8				
	10	11	20	0	0				
		0	0						

	11	20	10	
10	13			8
10				
		8		

$$(u_1 + v_2 = 22)$$

$$u_1 + v_3 = 26$$

$$u_1 + v_4 = 10$$

$$u_2 + v_1 = 12$$

$$u_2 + v_2 = 13$$

$$u_3 + v_1 = 0$$

$$u_2 + v_5 = 8$$

$$u_4 + v_3 = 0$$

$$\begin{cases} u_1 = 0 \\ v_2 = 22 \\ v_3 = 26 \\ v_4 = 10 \\ v_1 = 21 \\ u_2 = -9 \\ u_3 = -21 \\ v_5 = 17 \\ u_4 = -26 \end{cases}$$

	5	6	7	8	10	u
1	21 0	22	26	10	17 0	0
2	12	13	17 0	4	8	-9
9	0	1 0	5 0	0 -11	4	-21
11	- -5	- -35	0	- -16	0 -9	-26
V	21	22	26	10	17	

f = 11 * 22 + 20 * 26 + 10 * 10 + 10 * 12 + 13 * 13 + 8 * 8 = 1215

$$1 \xrightarrow{(11)} 6: 1,2,4,5,6$$

$$1 \xrightarrow{(20)} 7: 1,2,4,5,6,7$$

$$1 \xrightarrow{(10)} 8:1,8$$

$$2 \xrightarrow{(10)} 5: 2,3,4,5$$

$$2 \xrightarrow{(13)} 6: 2,3,6$$

$$2 \xrightarrow{(8)} 10:2,10$$

$$9 \xrightarrow{(10)} 5: 9,5$$

$$11 \xrightarrow{(8)} 7: 11,7$$

Ответ: f = 1215

Оптимальный грузопоток:

Спасибо за внимание!