

Universidad Nacional de Ingeniería Escuela Profesional de Matemática Ciclo 2021-1

[Análisis Convexo - CM3E2] [Prof: Jonathan Munguia]

UNI, 09 de julio de 2021

Práctica Calificada 5

1. Sea $f: \mathbb{R}^n \to \mathbb{R}$ definida por

$$f(x_1, x_2, \cdots, x_n) = \max_{i} |x_i|.$$

Mostrar que $\partial f(0) = \operatorname{co}(e_1, \dots, e_n, -e_1, \dots, -e_n)$ donde $e_i = (0, \dots, 1, \dots, 0), i = 1, \dots, n$ son los vectores canónicos de \mathbb{R}^n . [8ptos]

Solución: Como $\partial f(0) = \{s \in \mathbb{R}^n : \langle s, d \rangle \leq f'(0, d) \quad \forall d \in \mathbb{R}^n \}$, donde f'(0, d) = f(d). Si consideramos $s = e_i =: v_i$, se obtiene para cada $d \in \mathbb{R}^n$ que $\langle s, d \rangle = d_i \leq f(d)$, entonces $e_i \in \partial f(0)$ para $1 \leq i \leq n$. De manera similar $v_{n+i} := -e_i \in \partial f(0)$ para $1 \leq i \leq n$. Luego, si $s \in C := \operatorname{co}(\{v_i\}_{i=1}^{2n})$, entonces $s = \sum_{i=1}^{2n} t_i v_i$ con $\sum_i t_i = 1$,

$$\langle s, d \rangle = \sum_{i} t_i \langle v_i, d \rangle \le f(d) \Longrightarrow \operatorname{co}(\{v_i\}_{i=1}^{2n}) \subset \partial f(0).$$

- 2. Sean $f, g : \mathbb{R}^n \to \mathbb{R}$ convexas y sci. Dado $s \in \mathbb{R}^n$, mostrar la equivalencia de las siguientes proposiciones:
 - i) $f^*(s) + g^*(-s) \le 0$;
 - ii) Existe $r \in \mathbb{R}$ tal que

$$f(x) \ge \langle s, x \rangle + r \ge -g(x) \quad \forall x \in \mathbb{R}^n.$$

Asumiendo la existencia de algún $\overline{x} \in \mathbb{R}^n$ tal que $f(\overline{x}) = -g(\overline{x})$, establezca la relación

$${s \in \mathbb{R}^n : f^*(s) + g^*(-s) \le 0} = \partial f(\overline{x}) \cap -\partial g(\overline{x}).$$

[12ptos]

Solución: $i) \Longrightarrow ii$):

$$g^*(-s) \le -f^*(-s) = -\sup_{y \in \mathbb{R}^n} [\langle y, s \rangle - f(y)]$$
$$\Longrightarrow \sup_{x \in \mathbb{R}^n} [\langle x, -s \rangle - g(x)] \le \inf_{y \in \mathbb{R}^n} [f(y) - \langle y, s \rangle],$$

tomando r como semisuma del supremo e ínfimo anterior, se tiene

$$\forall x \in \mathbb{R}^n: \quad f(x) \ge r + \langle x, s \rangle \ge -g(x). \tag{1}$$

ii) ⇒ i): De la hipótesis y la definición de conjugada, se tiene

$$-r \ge \langle s, x \rangle - f(x) \quad \forall x \in \mathbb{R}^n,$$
$$-r \ge \sup_{x \in \mathbb{R}^n} [\langle s, x \rangle - f(x)]$$
$$-r \ge f^*(s),$$

de manera similar

$$r \ge \langle -s, x \rangle - g(x) \quad \forall x \in \mathbb{R}^n,$$
$$r \ge \sup_{x \in \mathbb{R}^n} [\langle -s, x \rangle - g(x)]$$
$$r \ge g^*(-s),$$

así se obtiene $0 \ge f^*(s) + g^*(-s)$.

Existe $\overline{x} \in \mathbb{R}^n$ con $f(\overline{x}) = -g(\overline{x})$, tal que

$$A := \{ s \in \mathbb{R}^n : f^*(s) + g^*(-s) \le 0 \} = \partial f(\overline{x}) \cap -\partial g(\overline{x}) := B.$$

 $A \subset B$: Dado $s \in A$, tomando $x = \overline{x}$ en (1), se deduce que

$$f(\overline{x}) = -g(\overline{x}) = \langle s, \overline{x} \rangle + r, \tag{2}$$

De (1) y (2), se obtiene

$$f(x) \ge f(\overline{x}) + \langle s, x - \overline{x} \rangle \ \forall x \in \mathbb{R}^n \iff s \in \partial f(\overline{x}),$$
 (3)

$$g(x) \ge g(\overline{x}) + \langle -s, x - \overline{x} \rangle \ \forall x \in \mathbb{R}^n \iff -s \in \partial g(\overline{x}),$$
 (4)

luego $s \in B$.

 $B \subset A$: Sea $s \in \partial f(\overline{x}) \cap -\partial g(\overline{x})$, por la hipótesis $f(\overline{x}) = -g(\overline{x})$ y (3)-(4), obtenemos

$$-r \ge \langle s, x \rangle - f(x) \ \forall x \in \mathbb{R}^n \Longrightarrow -r \ge f^*(s),$$

$$r \ge \langle -s, x \rangle - g(x) \ \forall x \in \mathbb{R}^n \Longrightarrow r \ge g^*(-s),$$

luego, $0 \ge f^*(s) + g^*(-s)$.