Homework #3

Due date: 12/09 18:59

1. (Simulation of Targeting POV-VWAP)

The agent aims to maximize the performance criterion

$$E_0 \left[X_T^{\nu} + Q_T^{\nu} (S_T^{\nu} - \alpha Q_T^{\nu}) - \varphi \int_0^T (v_u - \rho \mu_u)^2 du \right]$$

Here ρ is the target ratio of the market speed, μ_t is the market trading speed, v_t is the agent's execution speed, Q_t^v denotes the agent's inventory, X_t^v is the cash process, and S_t^v is the midprice; each is assumed to satisfy the following dynamics:

$$dQ_t^v = -v_t dt$$

$$dX_t^v = (S_t^v - kv_t)v_t dt$$

$$dS_t^v = -bv_t dt + \sigma dW_t$$

and W_t is a Brownian motion.

In the double limit of first ensuring full liquidation, and then forcing the tracking penalty to infinity, the optimal strategy is given by

$$\lim_{\varphi \to \infty} \lim_{\alpha \to \infty} v_t^* = \rho \left[\mu_t - \frac{1}{T - t} \int_t^T E_t[\mu_u] du \right] + \frac{Q_t^{v^*}}{T - t}$$

Furthermore, when the market's order-flow rate μ_t satisfies the following dynamics:

$$d\mu_t = -\kappa \mu_t dt + \eta_{1+N_t} dN_t$$

where N_t is a Poisson process with intensity λ and $\eta_1, \eta_2, ...$ are iid exponential random variables with mean η , then we may express the optimal trading rate as

$$\lim_{\varphi \to \infty} \lim_{\alpha \to \infty} v_t^* = \rho \left[\mu_t - \frac{1}{T - t} \left((\mu_t - \psi) \frac{1 - e^{-\kappa(T - t)}}{\kappa} + \psi(T - t) \right) \right] + \frac{Q_t^{v*}}{T - t}$$

where $\psi = \frac{\lambda \eta}{\kappa}$