

# POLITECNICO DI MILANO DIPARTIMENTO DI MECCANICA

20156 MILANO - Via La Masa, 1

## Corso di Principi di Ingegneria Elettrica Allievi Meccanici

### ESERCIZIO 1 (5 Crediti - 10 punti ) (8 Crediti - 8 punti )

$$R1 = 24 \Omega$$
  
 $X_1 = 18 \Omega$   
 $E1 = E2 = E3 = 220 V$   
Sia data la rete trifase di  
figura con alimentazione  
simmetrica diretta a 50 Hz. Si  
determini l'indicazione del  
wattmetro W.



#### ESERCIZIO 2 (8 Crediti - 8 punti)

Sia dato il circuito con ingressi stazionari riportato in figura. Si determinino i coefficienti di auto e mutua induttanza e la totale energia immagazzinata.

R= 12 Ω  

$$V_1$$
=50 V  
 $N_1$ =100  
 $N_2$ =150  
δ=3 mm  
 $A_{fe}$ =100 cm<sup>2</sup>

Permeabilità del ferro infinita.



#### ESERCIZIO 3 (5 Crediti - 10 punti ) (8 Crediti - 8 punti)

Sia dato il circuito in figura con ingressi stazionari, funzionante a regime. All'istante t=0 viene aperto l'interruttore S.

$$R_1 = 1 \Omega$$
,  $R_2 = 2 \Omega$ ,  $R_3 = 4 \Omega$   
 $V_1 = 100 V$ ,  $V_2 = 200 V$   
 $C = 6 mF$ 





#### **TEORIA**

- a) Metodo del generatore equivalente serie (Thevenin) (5 Crediti 5 punti) (8 Crediti 3 punti)
- b) Leggi di Kirchhoff (5 Crediti 5 punti) (8 Crediti 3 punti)