TEMA №15

Изпъкнали обвивки

Съдържание

Тема 15: Изпъкнали обвивки

- Изпъкнали многоъгълници
- Изпъкнали многостени
- Изпъкнала обвивка

Изпъкнали многоъгълници

Малко терминология

Терминология

- Разглеждаме само прости многоъгълници (не се самопресичат)
- Те разделят равнината на две условни зони:
 вътрешност и външност

 Видове точки според положението им спрямо многоъгълника

Изпъкнали многоъгълници

Изпъкнали многоъгълници

- Нямат вдлъбнати върхове
- Отсечка между всеки две невъншни точки е само от невъншни точки

Едно основно свойство

 Непразното сечение на изпъкнали многоъгълници е изпъкнал многоъгълник

Доказателство (полагаме $\Box(x) \equiv "x$ е изпъкнал")

Предполагаме
$$! \ \triangle (a \cap b) \Rightarrow$$
 $\exists PQ : P, Q \in a \cap b \text{ и } \exists M \in PQ : M \notin a \cap b$ $\{P, Q \in a, \triangle (a)\} \Rightarrow M \in a$ $\} \Rightarrow M \in a \cap b$ $\{P, Q \in b, \triangle (b)\} \Rightarrow M \in b$ Това противоречи с $M \notin a \cap b$

- \Rightarrow !! \triangle ($a \cap b$)
- $\Rightarrow \Box (a \cap b)$

Същото нещо, но на човешки:

- Предполагаме, че сечението не е изпъкнало. Значи може да намерим отсечка, чиито краища са в сечението, а някаква вътрешна нейна точка е извън сечението.
- Обаче, и двата края принадлежат на единия многоъгълник, т.е. и някаквата точка също, понеже той е изпъкнал. По същата причина точката е и в другия многоъгълник.
- Щом тя е в двата, значи е и в сечението им. Т.е. червеното ни предположение е грешно. Затова сечението е не е неизпъкнало, което значи, че е изпъкнало.

Друго основно свойство: V - E = 0

- Където V е броят върхове, а E е броят страни
- 3а нормалните хора $V \ge 3$

За ненормалните съществуват

- Двуъгълник V=2(не е отсечка)
- Едноъгълник V=1(не е точка)
- Безъгълник V=0 (не е нищо)

Чрез изродените случаи

Два изпъкнали многоъгълника

– Винаги имат сечение-многоъгълник

Изпъкнали многостени

Дефиниция

Многостен

- 3D тяло, ограничено от равнинни многоъгълници
- Всяко ребро на многостена е страна на точно два от тези многоъгълника
- Всеки многоъгълник е стена на многостена

История и примери

История

- Изследвани още от древна Гърция
- Ползвани в математиката, астрономията, изкуствата

Изпъкнали многостени

Изпъкнали многостени

 През всеки връх съществува равнина, такава че всички точки от многостена са само в едното полупространство

Правилни многостени

 Трябва да са от еднакви правилни многоъгълници, сключващи еднакви стенни ъгли

Платонови тела

- Правилни многостени
- От еднакви правилни многоъгълници
- Сключващи еднакви стенни ъгли
- Само 5 са: ✓ ✓ ✓

Използване на Платонови тела

- Да се търси истината
- Смисълът на съществуването на света

Формула на Ойлер

Прост многостен

- Многостен, който не се самопресича
- Може да бъде "издут" до сфера

За всеки прост многостен

– Където V е броят върхове, E – ръбове, а F – стени:

$$V - E + F = 2$$

Да я проверим

Октаедър 6 - 12 + 8 = 2

- Върхове V=6
- Ръбове *E* = 12
- Стени F = 8

Додекаедър 20 - 30 + 12 = 2

- Върхове V = 20
- Ръбове E = 30
- Стени F = 12

Още за V - E + F = 2

Важи за многостени, за които:

- Всички стени са обкръжени от единичен "пръстен" от ръбове
- Всеки ръб се споделя от точно две стени и се простира между точно два върха
- Във всеки връх се срещат поне 3 ръба
- В многостена няма дупки и тунели

Тримерни тела в КГ

- Спазващи формулата на Ойлер
- Отговарящи на 4-те условия
- Удобни за представяне на тримерни обекти с мрежа

$$V = 8, E = 12, F = 6$$

 $8 - 12 + 6 = 2$

$$V = 10, E = 15, F = 7$$

 $10 - 15 + 7 = 2$

По-сложни тела

Топологични сфери

- За формулата на Ойлер се иска "да няма тунели"
- Такива тела са топологично еквивалентни на сфера

Какво правим с другите обекти

Има доста такива обекти – халба за бира, геврекосморка със захар (или без захар) и т.н.

По-обща формула

Ако в 3D обект има T тунела, то V - E + F = 2 - 2T

- Модел на поничка: T=1, а V-E+F=0
- 3D модел на рамка за очила: T=2, а V-E+F=-2
- Модел на език с 3 пиърсинга: T=3, а V-E+F=-4

Още за формулата V - E + F = 2 - 2T

 Не зависи колко детайлно сме представили обекта като 3D мрежа

Да проверим с поничка

– Ама много груба, тоблеронска, поничка

$$V = 12$$
 $E = 24$
 $F = 12$
 $V - E + F = 2 - 2T$
 $T = 1$
 $12 - 24 + 12 = 2 - 2.1$

Изпъкнала обвивка

Изпъкнала обвивка в 2D

Няколко еквивалентни дефиниции

 Това е най-малкият по площ изпъкнал многоъгълник включващ всички върхове от многоъгълника

 Сечението на всички изпъкнали многоъгълници, които включват върховете на многоъгълника

 Обединението на всички триъгълници определени от върховете на многоъгълник

Изпъкнала обвивка в 3D

Изпъкнала обвивка на многостен

- Минималният изпъкнал многостен, включващ всички точки от многостена
- Или: сечението на всички многостени, включващи всички точки от многостена

Намиране на обвивка

Намиране на изпъкнала обвивка

- Разглеждаме само в 2D
- Алгоритъм "Добавяне на точки"
- Алгоритъм "Опаковане на подарък"
- Алгоритъм "Сканиране на Греъм"

Алгоритъм "Добавяне на точки"

Основна идея

Алгоритъм

- Имаме многоъгълник а
- Създаваме безъгълник b
- Един по един всеки връх от a включваме в b
- Всяко такова включване променя b така, че да е винаги изпъкнал (с цената на изтриване на върхове)

Една стъпка

Проверяваме дали $P \in b$

– Ако да, значи няма нужда да се добавя

Построяваме тангентите през P към b

Това са прави, свързващи P с връх на b така, че b да е само от едната страна

– Запомняме двата тангенциални върха

Премахваме по-близките върхове

- Това са върховете между запомнените два, които са откъм P спрямо правата която минава през тях

Шпакловаме

- Свързваме P с двата запомнени върха
- Вече имаме новия изпъкнал b

Да се внимава

 При тангенциални страни запомняме само подалечния от двата върха

Алгоритъм "Опаковане на подарък"

Основна идея

Алгоритъм

- Избираме точка, която със сигурност принадлежи към изпъкналата обвивка
- Коя да е тази точка? Ами ... най-лявата, тази с най-малка \boldsymbol{x} координата, е ОК.
- Завъртаме по часовниковата стрелка вертикален лъч от тази точка, докато опре до друга точка
- После завъртаме от другата и т.н.

Да го покажем

Избираме най-лявата точка

– Ако са няколко, избираме най-горната

Завъртаме вертикален лъч

- Докато опре до друга точка
- Тази точка е следващата от обвивката

Завъртаме остатъка от лъч

- Около новата точка
- Така намираме поредната точка

Продължаваме в този дух

- Около още по-нова точка
- Така намираме още по-поредна точка

И още веднъж

И за последно

Рано или късно стигаме до първия връх
 (Забележка: догодина да ползвам по-къс пример)

Какво би станало?

Ако изберем друга начална точка?

- Най-долната, най-дясната, най-горната
- Пак ще се опакова подаръка, стига първият лъч да е тангенциален

Ако изберем обратна посока на въртене?

– Ще ни се завие свят, но пак ще се опакова подаръка

Алгоритъм "Сканиране на Греъм"

Основна идея

Алгоритъм

- Избираме точка P_0 , която със сигурност принадлежи към изпъкналата обвивка, примерно пак най-лявата
- Сортираме всички останали точки според ъгъла им в полярни координати спрямо P_0
- Избираме втора и трета точки: P_1 и P_2
- Работим с последните 3 избрани точки

Ето как работим

 Ако към третата сме направили завой надясно, изтриваме втората и пак гледаме последните три избрани точки

Пример

– Избираме най-лявата точка

Сортираме според ъгъла

- Ползваме полярни координати
- Точката (0,0) е в P_0
- Сортираме (преномерираме) точките

Избираме втора и трета точки

- Ползваме P_1 и P_2
- $-P_0P_1P_2$ е текущият ни изпъкнал многоъгълник
- Забелязваме, че от P_0P_1 завиваме наляво за P_2 това е добре

Избираме нова точка

- Това ще да е следващата P_3
- Последните три избрани точки вече са P_1 , P_2 и P_3
- Забелязваме, че от P_1P_2 завиваме наляво за P_3 (направо не вярваме на късмета си)

Избираме нова точка – P_4

- Вече работим с P_2 , P_3 и P_4
- Забелязваме, че от P_2P_3 завиваме надясно за P_4 , т.е. P_3 не може да е в изпъкналата обвивка
- P_3 трябва да се премахне

Премахваме P_3

- Вече последните три точки са P_1 , P_2 и P_4
- Завоят към P_4 е ляв, т.е. текущият многоъгълник $P_0P_1P_2P_4$ е изпъкнал
- Продължаваме нататък

Добавяме P_5

- Аналогично, добавянето на P_5 , ще премахне P_4 , защото завоят от P_2P_4 към P_5 е десен
- Текущият изпъкнал многоъгълник става $P_0P_1P_2P_5$

Следващите две стъпки са ясни

- Добавяме P_6 без проблеми и
- И стигаме до първата точка P_0
- С това изпъкналата обвивка $P_0P_1P_2P_5P_6$ е готова

Алгоритмите "на живо"

Илюстрации

Динамични илюстрации

- Алгоритъм "Добавяне на точки"
- Алгоритъм "Опаковане на подарък"
- Алгоритъм "Сканиране на Греъм"

Въпроси и коментари

Повече информация

[KLRO] ctp. 25-26, 429-432

[LASZ] ctp. 78-88, 112-116, 139-145, 182-183

[MORT] ctp. 214-216

А също и:

- Graham's Scanning
 http://www.personal.kent.edu/~rmuhamma/Compgeometry/
 MyCG/ConvexHull/GrahamScan/grahamScan.htm
- The Convex Hull of a 2D Point Set or Polygon
 http://softsurfer.com/Archive/algorithm 0109/algorithm 0109.htm

Край