Math 322 – Linear Algebra Homework 1

Amandeep Gill

February 11, 2015

Problem 1 Let $V = \{(a_1, a_2) : a_1, a_2 \in \mathbb{R}\}$ with the operations component-wise addition and $\forall c \in \mathbb{R}$,

$$c(a_1, a_2) = \begin{cases} (0, 0) & \text{if } c = 0\\ (ca_1, \frac{a_2}{c}) & \text{if } c \neq 0 \end{cases}$$

Show whether V is a vector space over \mathbb{R}

Proof: V is not a vector space since it fails the distributive property of vector over scalars

$$(1+1)\vec{a} = ((1+1)a_1, \frac{a_2}{1+1}) = (2a_1, \frac{a_2}{2}) \neq (a_1+a_1, a_2+a_2) = (2a_1, 2a_2)$$

Problem 2 Show that if $W \subseteq V$ and V is a vector space over some field F, W is a vector space if and only if span(W) = W

Proof:

- (⇒) Let W be a subspace of V, then by the definition of vector spaces $\forall \vec{w_1}, \vec{w_2} \in W$ and $\forall c \in F, c\vec{w_1} + \vec{w_2} \in W$. Since $W \subseteq span(W)$ and $span(W) \subseteq W$ as the span consists of all linear combination of elements of W, span(W) = W.
- (\Leftarrow) Let span(W) = W. Since $W \subseteq V$ and because span(W) denotes all possible linear combinations of elements from W, $\forall \vec{w_1}, \vec{w_2} \in W$ and $\forall c \in F, c\vec{w_1} + \vec{w_2} \in W$. Therefore W is a vector space.

Problem 3 Let V be a vector space over some field F such that dim(V) = n, and let $S \subseteq V$ such that span(S) = V, then $\exists \beta \subseteq S$ such that $span(\beta) = V$, $|\beta| = n$, and $|S| \geqslant n$.

Proof: Since V is a vector space, V has a basis β_1 such that $span(\beta_1) = V$ and $|\beta| = n$. If $\beta_1 \subseteq S$, then the hypothesis holds. If $\beta_1 \not\subseteq S$, then $\beta_1 \subseteq span(S)$. This means that $\forall b_i \in \beta, \exists s_1, s_2, \ldots, s_m \in S$ and $c_1, c_2, \ldots, c_m \in F$ such that $b_i = c_1s_1 + c_2s_2 + \cdots + c_ms_m$. Let B be the set containing every s_i from S where the scalar multiplier is not the 0 in F, then $|B| \leq |\beta| \cdot m$ and span(B) = S. Because B is finite set that spans $S, \exists \beta \subseteq B$ such that $\beta \subseteq S$ and $span(\beta) = V$, and $|\beta| = n$. It also follows that $|S| \geqslant |\beta| = n$.