Nanyang Technological University SPMS/Division of Mathematical Sciences

2015/16 Semester 1

MH1810 Mathematics I

Tutorial 5

Please be remined that there will be a 15-minute quiz during the tutorial session.

Reference: Thomas' Calculus: Chapter 2, Section 2.1 - 2.2, 2.4 - 2.6.

1. Suppose that $\lim_{x\to 1} p(x) = 4$, $\lim_{x\to 1} q(x) = \pi$ and $\lim_{x\to 1} r(x) = 3$. Determine each of the following limits and justify each step by indicating the appropriate Limit Law(s).

(a)
$$\lim_{x \to 1} [\pi p(x) + q(x) - (qr)(x)]$$
 (b) $\lim_{x \to 1} \frac{p(x) + q(x)}{r(x)}$

- 2. Find the limit.
 - (a) $\lim_{x \to \pi/2} \cos x$ (b) $\lim_{x \to \infty} 179$ (c) $\lim_{x \to 3^{-}} (x^2 + \pi x + \sqrt{2})$ (d) $\lim_{y \to 3} 4^y$ (e) $\lim_{t \to 125} \sqrt[3]{t}$
- 3. Use continuity to determine the following limits.

(a)
$$\lim_{x \to 1} \sqrt{\frac{x}{1 + 3x}}$$

(b)
$$\lim_{x \to 1} \sin(x-1)^2$$

(c)
$$\lim_{x\to 1} \tan\left(\frac{(2-x^2)\pi}{3}\right)$$

(d)
$$\lim_{x \to 3} \ln|x - 2|$$

(e)
$$\lim_{x \to \sqrt{2}} \tan^{-1} \left(\frac{x^2}{2} \right)$$

4. Use appropriate techniques to find the following limits.

(a)
$$\lim_{x \to 1} \frac{x^3 - 1}{x^2 - 1}$$

(b)
$$\lim_{x \to \sqrt{2}} \frac{x^2 - 2}{x - \sqrt{2}}$$

(c)
$$\lim_{x \to 0^{-}} \frac{x}{\sqrt{x+1} - 1}$$

(d)
$$\lim_{t \to -3} \frac{t^2 - 9}{2t^2 + 7t + 3}$$

(e)
$$\lim_{x \to 1} \frac{\frac{1}{x} - 1}{x - 1}$$

(f)
$$\lim_{t \to \frac{\pi}{4}} \frac{\cos 2t}{\cos t - \sin t}$$

(g)
$$\lim_{h \to 0} \frac{(2+h)^3 - 8}{h}$$
.

(h)
$$\lim_{x \to 7^+} \frac{\sqrt{x+2}-3}{x-7}$$
.

(i)
$$\lim_{t\to 0^+} \left(\frac{1}{t} - \frac{1}{t^2 + t}\right)$$
.

(j)
$$\lim_{x\to 0} \left(x^4 \cos \frac{1}{x} \right)$$

5. Determine whether $\lim_{x\to 2} f(x)$ exists where

$$f(x) = \begin{cases} \frac{3x - 6}{x^2 - 4} & \text{if } 0 < x < 2, \\ 0 & \text{if } x = 2, \\ \frac{x - 2}{\sqrt{3 - x} - 1} & \text{if } 2 < x < 3. \end{cases}$$

- 6. If the product $h(x) = f(x) \cdot g(x)$ is continuous at x = 0, is it always true that f(x) and g(x) must be continuous at x = 0? Give reasons to your answer.
- 7. Find real constants c and d that makes g continuous at x = 4.

$$g(x) = \begin{cases} x^2 - c^2 & \text{if } x < 4, \\ d & \text{if } x = 4, \\ cx + 20 & \text{if } x > 4. \end{cases}$$

8. Suppose $3x \le f(x) \le x^3 + 2$ for $0 \le x \le 2$.

- (a) What is f(1)?
- (b) Use Squeeze Theorem to evaluate $\lim_{x\to 1} f(x)$.
- (c) Is f continuous at x = 1?

9. Under certain circumstances a rumor spreads according the equation

$$p(t) = \frac{1}{1 + ae^{-kt}}$$

where p(t) is the proportion of the population that knows the rumor at time t and a and k are positive constants.

- (a) Find $\lim_{t\to\infty} p(t)$.
- (b) For a = 10, k = 0.5 and t being measured in hours, how long will it take for 80% of the population to hear the rumor?

10. Determine the following infinite limits.

(a)
$$\lim_{x \to 1^-} \frac{1}{1 - x^2}$$

(b)
$$\lim_{x \to 1^+} \frac{x}{1 - \sqrt{x}}$$

Answers

1.	(a) 2π (b) $\frac{4+\pi}{3}$
2.	(a) 0 (b) 179 (c) $9 + 3\pi + \sqrt{2}$ (d) 64 (e) 5
	(a) $\frac{1}{2}$ (b) 0 (c) $\sqrt{3}$ (d) 0 (e) $\frac{\pi}{4}$
4.	(a) $\frac{3}{2}$ (b) $2\sqrt{2}$ (c) 2 (d) $\frac{6}{5}$ (e) -1 (f) $\sqrt{2}$ (g) 12. (h) $\frac{1}{6}$ (i) 1 (j) 0
7.	c = -2, d = 12
8.	(a) 3(c) Yes.
9.	(a) 1 (b) $\ln 0.025 \approx 7.3778$ hours
10.	(a) $+\infty$ (b) $-\infty$