Convolutional Neural Networks in TensorFlow

Overview

Convolutional NNs are one kind of NN architecture which work well with 2D data

Modeled on the visual cortex, they are amazing at image classification

How Po We See?

All neurons in the eye don't see the entire image

Each neuron has its own local receptive field

It reacts only to visual stimuli located in its receptive field

Some neurons react to more complex patterns that are combinations of lower level patterns

Neural Networks

Sounds like a classic neural network problem

Two Kinds of Layers in CNNs

Convolution

Local receptive field

Pooling

Subsampling of inputs

Two Kinds of Layers in CNNs

Convolution

Local receptive field

Pooling

Subsampling of inputs

In this context, a sliding window function applied to a matrix

In this context, a sliding window function applied to

a matrix

e.g. a matrix of pixels representing an image

In this context, a sliding window function applied to a matrix

Often called a kernel or filter

In this context, a sliding window function applied to a matrix

Kernel is applied element-wise in slidingwindow fashion

Representing Images as Matrices

=784 pixels

Representing Images as Matrices

Representing Images

0	O	O	O	0	O
0.2	0.8	0	0.3	0.6	0
0.2	0.9	0	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
Ο	O	0	0.2	0.8	0
Ο	0	0	0.2	0.2	0

Matrix

Kerne

0	0	0	0	0	0
0.2	0.8	0	0.3	0.6	O
0.2	0.9	Ο	0.3	0.8	Ο
0.3	0.8	0.7	0.8	0.9	Ο
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

Kernel

Matrix

O _{xl}	χО	O _{x1}	0	0	0
хО	0.8/1	хО	0.3	0.6	0
0.2 ₁	хО	O_{xl}	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

O _{xl}	χО	Oxi	0	0	0
хО	0.8 _{x1}	хО	0.3	0.6	0
0.2 ₁	хО	O _{xl}	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Matrix

Matrix

1	1.2	

Matrix

1	1.2	

Matrix

0	0	O _{xl}	хО	O _{x1}	0
0.2	0.8	хО	0.3 ₁	хО	0
0.2	0.9	O _{xl}	хО	0.8 ₁	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

1	1.2	1.1	

Matrix

1	1.2	1.1	

Matrix

1	1.2	1.1	0.9

Matrix

t	1.2	1.1	0.9

Matrix

1	1.2	1.1	0.9
1.9			

Matrix

1	1.2	1.1	0.9
1.9			

Matrix

1	1.2	1.1	0.9
1.9	2.7		

Matrix

1	1.2	1.1	0.9
1.9	2.7		

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0			

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0			

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1		

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1		

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0			

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0			

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8		

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8		

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8	2.0	

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8	2.0	

Matrix

1	1.2	1.1	0.9
1.9	2.7	2.5	1.9
1.0	2.1	2.4	1.4
1.0	1.8	2.0	1.8

Matrix

Choice of Kernel Function

Averaging neighbouring pixels ~ Blurring

Subtracting neighbouring pixels ~ Edge detection

Positive middle, negative neighbours ~ Sharpen

Negative corners, zero elsewhere ~ Edge enhance

More complex patterns ~ Emboss

. . .

Choice of Kernel Function

http://aishack.in/tutorials/image-convolution-examples/

Blur

1/9	1/9	1/9
1/9	1/9	1/9
1/9	1/9	1/9

A simple blur done with convolutions

Line Petection

Horizontal Lines

-1	-1	-1
2	2	2
-1	-1	-1

Horizontal lines

Edge Petection

-1	-1	-1
-1	8	-1
-1	-1	-1

Zero-padding, Stride Size

Narrow vs. Wide Convolution

Input matrix i.e. image

Narrow vs. Wide Convolution

Narrow vs. Wide Convolution

Narrow Convolution

Little zero padding; output narrower than input

Wide Convolution

Lots of zero padding; output wider than input

Without Zero Padding

Matrix

Zero Padding

Matrix

Zero Padding

Matrix

Zero Padding

With zero-padding, every element of matrix will be passed into filter

Can decide number of zero columns to pad with

Use to get output larger than input

Stride Size

O _{xl}	χО	O _{x1}	0	0	0
χО	0.8 _{x1}	хО	0.3	0.6	0
0.2 ₁	хО	O x1	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Stride Size

Horizontal stride of 1

Stride Size

O _{xl}	χО	O _{x1}	0	0	0
χО	0.8 _{x1}	хО	0.3	0.6	0
0.2 ₁	хО	O x1	0.3	0.8	0
0.3	0.8	0.7	0.8	0.9	0
0	0	0	0.2	0.8	0
0	0	0	0.2	0.2	0

Stride Size

Vertical stride of I

Stride Size

Stride size is an important hyper parameter in CNNs

Convolutional Neural Networks

Neural Networks for Image Classification

Corpus of Images

Layers in a neural network

ML-based Classifier

Neural Networks for Image Classification

Corpus of Images

Each layer consists of individual interconnected neurons

ML-based Classifier

Parameter Explosion

Consider a 100 x 100 pixel image (10,000 pixels)

If first layer = 10,000 neurons

Interconnections ~ 0(10,000 * 10,000)

100 million parameters to train neural network!

Parameter Explosion

Dense, fully connected neural networks can't cope

Convolutional neural networks to the rescue

CNNs Introduced

Eye perceives visual stimulus in 2D visual field

Eye sends 2D image to visual cortex

Visual cortex adds depth perception

Individual neurons in cortex focus on small field

"Local receptive field"

CNNs Introduced

CNNs perform spectacularly well at many tasks

Particularly at image recognition

Dramatically fewer parameters than DNN with similar performance

Inspirations for CNNs

Two Dimensions

Data comes in expressed in 2D

Local Receptive Fields

Neurons focus on narrow portions

CNN Layers

Convolution layers - zoom in on specific bits of input

Successive layers aggregate inputs into higher level features

Pixels >> Lines >> Contours/Edges >> Object

Convolutional Layers

Feature Maps

Feature Map

Pixels

Feature Maps

Convolutional Layer

Feature Maps Local Receptive Neuron i Field of Neuron i Convolutional Layer Pixels

Kernel Size

The convolutional kernel size is usually expressed in terms of width and height of receptive area

Use small convolutional kernels, more efficient

Stacking 2 3x3 kernels is preferable to 1 9x9 kernel

Feature Maps

Feature Maps Convolutional Layer Pixels

Feature Maps

All neurons in a feature map have the same weights and biases

Two big advantages over DNNs

- Dramatically fewer parameters to train
- CNN can recognise feature patterns independent of location

Feature Maps

The parameters of all neurons in a feature map are collectively called the filter

Why filter?

Because weights highlight (filter) specific patterns from the input pixels

Filters

Horizontal Filter

Neuron will detect horizontal lines in input

Vertical Filter

Neuron will detect vertical lines in input

Feature Maps

Notice also that neurons are not connected to all pixels

CNNs are sparse neural networks

Convolutional Layer

Each convolutional layer consists of several feature maps of equal sizes

The different feature maps have different parameters

Convolutional Layer

Each neuron's receptive field includes the feature maps of all previous layers

This is how aggregated features are picked up

The CNN as a whole consists of multiple convolutional (and pooling) layers

More on pooling layers in a bit

CNNs

Feature Map

Convolutional Layer

CNN

RGB Channels

RGB Channels

Output of a Convolution Layer Neuron

Output of a Convolution Layer Neuron

Input Image

Layer 1

Layer 2

Layer L

Output of a Convolution Layer Neuron

Neuron output depends on corresponding* neurons from each preceding layer (*corresponding: same receptive field and feature maps, different layers)

Pooling Layers

Two Kinds of Layers in CNNs

Convolutional

Local receptive field

Pooling

Subsampling of inputs

Convolution

Matrix

Convolution Result

Two Kinds of Layers in CNNs

Convolutional

Local receptive field

Pooling

Subsampling of inputs

Pooling Layers

Neurons in a pooling layer have no weights or biases

A pooling neuron simply applies some aggregation function to all inputs

Max, sum, average...

Matrix

Matrix

Matrix

Matrix

Matrix

Pooling Layers

Why use them?

- greatly reduce memory usage during training
- mitigate overfitting (via subsampling)
- make NN recognise features independent of location (location invariance)

Pooling Layers

Pooling layers typically act on each channel independently

So, usually, output area < input area but

Output depth = Input depth

CNNs for Classification

Alternating groups of convolutional and pooling layers

Each group of convolutional layers usually followed by a ReLU layer

The output of each layer is also an image

However successive outputs are smaller and smaller (due to pooling layers)

As well as deeper and deeper (due to feature maps in the convolutional layers)

This entire set of layers is then fed into a regular, feedforward NN

This entire set of layers is then fed into a regular, feedforward NN

This feed-forward has a few fully connected layers with ReLU activation

Finally a SoftMax prediction layer

Logistic Regression with One Neuron

SoftMax for Digit Classification

SoftMax for Image Classification

This is the output layer, emitting probabilities

Pooling Convolutional Pooling Convolutional

Typical CNN Architectures

Alternating groups of convolutional and pooling layers

Each group of convolutional layers usually followed by a ReLU layer

Image gets smaller and smaller (due to pooling)

Also deeper and deeper (due to convolution)

Dense Feedforward Layers Convolutional Layers

Typical CNN Architectures

At output end of CNN, regular feedforward NN stacked on

- Few fully connected layers
- Input into these are small images
- ReLU activations
- Finally, a Softmax prediction layer

Input is an image

Outputs are probabilities