ET D'AGRICULTURE

SESSION NORMALE ELECTRONIQUE DE PUISSANCE

Filière : 1ère Année BTS en Génie Electrique - Année 2019-2020 - Semestre 2

Durée: 3H

Nombre de page : 02

Enseignant: M. HOUNGUE Thierry

Document : Non autorisé

N.B: Nous vous prions de bien vouloir reporter le numéro d'une question sur votre copie avant d'y répondre.

Exercice 1 : redressement triphasé (12 pts)

La figure suivante présente un pont redresseur triphasé à thyristors dans lequel les éléments sont supposés parfaits. L'inductance de lissage est suffisamment grande pour que l'on puisse considérer le courant qui la traverse comme continu et parfaitement lissé (I_C= cte).

Dans ce circuit la tension d'alimentation est : $v_{1S}(\theta) = 114,4 \sin (314t)$.

Sachant que l'angle d'amorçage est $\psi = \frac{\pi}{4}$.

1^{ére} partie

- 1- Représenter sur DR2, l'allure de $u_C(\theta)$, $v_{TI}(\theta)$ et $i_{SI}(\theta)$.
- 2- Exprimer et représenter la valeur moyenne de la tension aux bornes de la charge en fonction de ψ (U_{Cmoy} = f(ψ)). Tirer vos conclusions.

2^{éme} partie

On modifie le montage précédent en montant une diode de roue libre D_{RL} aux bornes de la charge

- Représenter sur DR3, l'allure de u_C(θ), V_{T1}(θ), i_{S1}(θ) et i_{DRL}(θ).
- 2- Exprimer et représenter la valeur moyenne de la tension aux bornes de la charge en fonction de ψ (UCmoy = f(ψ)). Tirer vos conclusions.
- 3- Comparer cette courbe avec la précédente et en déduire le rôle de DRL.

Exercice 2: hacheur série (8pts)

On alimente un moteur à courant continu dont le schéma équivalent est donné ci-dessous, à l'aide d'un hacheur.

L'interrupteur électronique K et la diode sont supposés parfaits.

La période de hachage est T, le rapport cyclique α.

L'inductance L du bobinage de l'induit du moteur a une valeur suffisante pour que la forme du courant dans l'induit soit pratiquement continue.

Le hacheur est alimenté par une tension continue E = 220 V.

La f.e.m. E' du moteur est liée à sa vitesse de rotation n par la relation :

$$E' = 0.20 \text{ n}$$
 avec E' en V et n en tr/min

L'induit a pour résistance $R = 2.0 \Omega$.

- 1- Etude de la tension u pour $\alpha = 0.80$.
- 1-1- Représenter, en la justifiant, l'allure de la tension u.

On prendra comme instant origine celui où l'interrupteur K se ferme.

1-2- Déterminer l'expression littérale de la valeur moyenne < u > de la tension u, en fonction de E et du rapport cyclique α .

Calculer sa valeur numérique.

2- Fonctionnement du moteur pour $\alpha = 0.80$.

Le moteur fonctionne en charge, la valeur moyenne du courant d'induit est < I > = 10 A. Déterminer E' et en déduire n.

3- Le dispositif de commande du hacheur est tel que le rapport cyclique α est proportionnel à une tension de commande u_C : $\alpha = 100 \%$ pour $u_C = 5 \text{ V}$.

Tracer la caractéristique < u > en fonction de uc.