(c) Show that $\left|\frac{R_1}{n} - \frac{2n+1}{2}\right| = \left|\frac{R_2}{n} - \frac{2n+1}{2}\right|$. (Hint: What is $R_1 + R_2$?)

Sample Exam 2

(5 pts)

Introduction to Non-parametric Methods

On my honor. I have neither given nor received unauthorized gid on this examination

Signature:			Date:	
	Pri	int Name:	UFID:	
	Instructions:			
	i. This is a 50 minute exam. There are 4 problems, worth a total of 55 points. Maximum sco is 50, and whatever point you get above 50 will be carried forward.			
	ii.	You may not use any books, other reference One page (two-sided) hand-written notes is		the exam.
1.		a the first 10 days of 2021 pre-season NBA, Atlanta Hawks scored 91,96,99 and Orlando magic cored 97, 86, 100 and 103. These two teams have not played each other so far.		
	` '	Argue that this can be framed into testing Note that, the range (maximum and mini- light, state a proper set of one-sided hypo	mum) is quite different for these two team	(2 pts) as. In this (3 pts)
	(c)	Obtain the Ansari-Bradley test statistic \mathcal{C}	<i>!</i> .	(5 pts)
	(d)	Under the null hypothesis , what is the ra	nge of C ?	(4 pts)
	(e)	Write down the pvalue in terms of $P(C \ge (c))$.	$\geq t$) or $P(C \leq t)$ where t is your answer :	from part (3 pts)
2.	Con	nsider the same data from Q1 and note that	their means are very similar.	
	(a)	In this light, design a two-sided hypothesis	test for testing location shift with proper	notation. (3 pts)
	(b)	Why does a two-sided test (as compared to	a one-sided one) makes more sense given t	this data? (2 pts)
	(c)	Compute that Wilcoxon rank-sum statisti	c W .	(5 pts)
	(d)	What sort of values of W should favor H_1	? (small, large or both?)	(2 pts)
3.	Aga	Again consider the same data from Q1. If we were to test equality of distribution,		
	(a)	Write the appropriate hypotheses with pro-	oper notation.	(3 pts)
	(b)	Compute the KS test statistic.		(5 pts)
4.	In the context of a two-sided median equality test for two groups of equal size n , let R_1 and R_2 be the sum of ranks of two groups.			
	(a)	State the appropriate set of hypotheses.		(3 pts)
	` ′	Argue why 'Reject if $ R_2 - R_1 $ is large' is	s an intuitive rejection rule.	(3 pts)

(d) Use (c) to show that the Kruskal-Wallis test statistic H can be written as

$$H = \frac{12}{2n+1} \left(\frac{R_2}{n} - \frac{2n+1}{2} \right)^2$$
 (7 pts)

Sample From 2 Solutions

- 1.a. Since the two terms did not pray each other, the series dul affect each other Tim it is okay to assume independence and compare the two samples
- 5. 11. 0, 2 = 02 vs H; 0, 5002 where of eximine of OM series Oi= " AH scores
- 97 100 103 → OM [96] [99] → AH 1 2 3 4 3 2 1

C = 2+3+3=8

- €. under H, :-> C smould be high given they there the media the racks should be in the middle spectrum and two (mind be high
- d. lowest value of (> (+1+2=4 Longest " " ") 3+ at 3=10
- 2. G(t)= F(c+6) where Godiston for of AM some,

Ho: 0 = 0

- (6) Since they admost shore the mean, there is not enough evidence from data for a specific preference
- (c) Just room. 8 ([9] (91) 97 (5) 160 103 0M 1 2 3 4 5 6 7 W= sm of rooks of 2nd sample = 2+3+5=10

- (1) under HI, to small or large values of w man two-sided equality is somewhat violated and thun favors H.
- (a) Hi: G(t) = F(t) for end t } G, f on before

 Hi: G(t) + F(t) for some t } (b) Please complet.
- U. (a) Wy = 12 mere n, medan of Pop" M2 -> " " 2 41: 7 / nz
 - (b) R, sm of rooks of tied sample PZ 7 " " " second 11 IRI-Rel should be smul if both one everly
 - (c) $R_1 + R_2 = \frac{2n(2n+1)}{2} = \frac{n(2n+1)}{2}$ $R_1 - n\frac{(2n+1)}{2} = \frac{n(2n+1)}{2} - R_2$ $tm \left(\frac{R_1}{n} - \frac{8(2n+1)}{2}\right) = \left(\frac{R_2}{n} - \frac{8(2n+1)}{2}\right)$
 - (d) $H = \frac{12}{(24)(2n\pi)} \left(\frac{R_1}{n} \frac{2n+1}{2} \right)^2 + n \left(\frac{R_2}{n} \frac{2n+1}{2} \right)^2$ emul from pout (()) $= \frac{12}{(2nn)} \left(\frac{R_1}{n} - \frac{2n+1}{2} \right)^2$