Modelling temperature impacts on fish growth using a growth model with reproductive costs: can we reproduce the temperature-size rule?

Asta Audzijonyte, Egle Jakubavičiūtė, Max Lindmark, Shane A. Richards

Nature Research Centre, Lithuania

University of Tasmania, Australia

2014-2020 Operational Programme for the European Union Funds Investments in Lithuania

Can we explain temperature-size rule mechanistically? Can we model it?

Model with EMERGENT maturation size and age

The Energetic Cost of Reproduction and Its Effect on Optimal Life-History Strategies

Adding temperature. Temperature speeds up life processes

This speeding up might be size dependent

Lindmark et al. 2017, Ecology Letters

Temperature can affect intake, metabolism and mortality

42 scenarios of different parameter combinations

	Mat	Mat	Wgt	Wgt	Wgt	Wgt	Spawn							
Name	age	wgt	1 y	5у	10 y	15 y	3у	Fitness	E _M	E _I	A_{M}	A_{I}	Z P.	$M_{ m P,min}$
Life-history	respons	es in base	line scena	rio										
Base (1)	3	632	99	3026	6860	9063	150	314	0	0	0	0	8	0.2
Scenario gr	oup I: O	riginal TSI	R explanati	ion – metak	oolism activ	ation ener	gy is highe	r: <i>E</i> _M > <i>E</i> _I						
I-1 (2)	3	0.83	0.94	0.77	0.66	0.61	0.91	0.58	0.7	0	0	0	8	0.2
I-2 (3)	3	1.02	1.04	1.01	0.98	0.97	1.09	1.03	0.15	0.05	0	0	8	0.2
I-3 (4)	3	0.96	1.05	0.91	0.80	0.75	1.13	0.84	0.6	0.1	0	0	8	0.2
(Group <u>la</u> :	Metabol	ism activati	ion energy i	s higher, co	mbined wi	th differen	t temperat	ure-size in	teractions				
I-4 (5)	2	1.12	2.34	2.93	3.22	3.30	4.28	7.41	0.7	0.63	0	0.01	8	0.2
I-5 (6)	3	1.28	1.14	1.33	1.34	1.32	1.56	1.66	0.7	0.01	0	0.01	8	0.2
I-6 (7)	3	0.73	0.93	0.62	0.46	0.39	0.95	0.38	0.7	0.01	0.01	0	8	0.2
I-7 (8)	2	0.64	1.67	1.22	1.07	0.99	1.88	1.74	0.7	0.63	0	-0.005	8	0.2
I-8 (9)	3	0.58	0.81	0.48	0.36	0.32	0.64	0.22	0.7	0.01	0	-0.01	8	0.2
I-9 (10)	3	0.95	0.97	0.94	0.94	0.95	0.90	0.89	0.7	0.01	-0.01	0	8	0.2
I-10 (11)	3	0.65	0.82	0.58	0.50	0.46	0.58	0.32	0.7	0.01	-0.01	-0.01	8	0.2
	Group Jb	: Metabo	lism activat	tion energy	is higher, co	ombined w	ith increase	ed mortalit	У					
I-11 (12)	2	0.41	1.06	0.85	0.83	0.81	1.53	0.23	0.15	0.05	0	0	8	0.4
I-12 (13)	3	0.97	1.05	0.90	0.78	0.72	1.24	0.21	0.6	0.1	0	0	8	0.4
Scenario gr	oup II: Li	fe-history	evnlanati	on - increas	ed mortalit	y only								
•	oup ու. եր 2	0.42	1.02	0.86	0.82	0.80	1.49	0.02	0	0	0	0	4	0.2
II-1 (14)	2	0.42	1.02	0.86	0.82	0.80	1.49	0.02	U	U	U	U	4	0.2

42 emergent growth and maturation curves

maturation (y)

Age (d)

Two main ways how TSR can emerge

1. Metabolism increases more with size than intake

Two main ways how TSR can emerge

1. Or at least metabolism decreases with size slower than intake

Two main ways how TSR can emerge

2. Metabolism does not increase, but relative intake rate decreases in large fish + mortality increases

Wootton et al. 2022, Ecol. Letters – TSR observed without increased baseline metabolic rate

In each case life-history optimisation is important

Take home & significance

Temperature – size rule growth is likely to be caused by a combination of **physiological processes related to food or oxygen intake and use**

AND

life-history optimisation of energy allocation between growth, reproduction and other processes

To understand how it works we need cross-disciplinary research and dialogue

Publication accepted in The Biological Bulletin special issue "An oxygen perspective on climate change"

Play with the model yourself!

github.com/astaaudzi/TSRmodel

2014-2020 Operational Programme for the European Union Funds Investments in Lithuania

www.sif.lt

This project has received funding from European Regional Development Fund (project No 01.2.2-LMT-K-718-02-0006) under grant agreement with the Research Council of Lithuania (LMTLT).