Занятие 3. Линейные методы регрессии.

Елена Кантонистова

elena.kantonistova@yandex.ru

МЕТРИКИ КАЧЕСТВА И ФУНКЦИИ ОШИБКИ

- Функционал (функция) ошибки функция, которую минимизируют в процессе обучения модели для нахождения неизвестных параметров (весов).
- **Метрика качества** функция, которую используют для оценки качества построенной (уже обученной) модели.

МЕТРИКИ КАЧЕСТВА И ФУНКЦИИ ОШИБКИ

- Функционал (функция) ошибки функция, которую минимизируют в процессе обучения модели для нахождения неизвестных параметров (весов).
- **Метрика качества** функция, которую используют для оценки качества построенной (уже обученной) модели.

Иногда одна и та же функция может использоваться и для обучения модели (функция ошибки), и для оценки качества модели (метрика качества).

¬ ЛИНЕЙНАЯ РЕГРЕССИЯ

Линейная регрессия:

$$a(x) = w_0 + \sum_{j=1}^a w_j x_j$$

Обучение линейной регрессии - минимизация среднеквадратичной ошибки:

$$\frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2 \to \min_{w}$$

СРЕДНЕКВАДРАТИЧНОЕ ОТКЛОНЕНИЕ: MSE (MEAN SQUARED ERROR)

Среднеквадратичное отклонение:

$$MSE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (\boldsymbol{a}(\boldsymbol{x_i}) - \boldsymbol{y_i})^2$$

СРЕДНЕКВАДРАТИЧНОЕ ОТКЛОНЕНИЕ: MSE (MEAN SQUARED ERROR)

Среднеквадратичное отклонение:

$$MSE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2$$

Плюсы:

- Позволяет сравнивать модели
- Подходит для контроля качества во время обучения

СРЕДНЕКВАДРАТИЧНОЕ ОТКЛОНЕНИЕ: MSE

Среднеквадратичное отклонение:

$$MSE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2$$

Плюсы:

- Позволяет сравнивать модели
- Подходит для контроля качества во время обучения

Минусы:

- Плохо интерпретируется, т.к. не сохраняет единицы измерения (если целевая переменная кг, то MSE измеряется в кг в квадрате)
- Тяжело понять, насколько хорошо данная модель решает задачу, так как MSE не ограничена сверху.

> RMSE (ROOT MEAN SQUARED ERROR)

Корень из среднеквадратичной ошибки:

$$RMSE(a, X) = \sqrt{\frac{1}{l} \sum_{i=1}^{l} (a(x_i) - y_i)^2}$$

Плюсы:

- Все плюсы MSE
- Сохраняет единицы измерения (в отличие от MSE)

Минусы:

• Тяжело понять, насколько хорошо данная модель решает задачу, так как RMSE не ограничена сверху.

$^{\circ}$ КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ (R^2)

Коэффициент детерминации:

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{l} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{l} (y_{i} - \overline{y})^{2}},$$

где
$$\overline{y} = \frac{1}{l} \sum_{i=1}^{l} y_i$$
.

$^{\circ}$ КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ (R^2)

Коэффициент детерминации:

$$R^{2}(a,X) = 1 - \frac{\sum_{i=1}^{l} (a(x_{i}) - y_{i})^{2}}{\sum_{i=1}^{l} (y_{i} - \overline{y})^{2}},$$

где
$$\overline{y} = \frac{1}{l} \sum_{i=1}^{l} y_i$$
.

Коэффициент детерминации <u>объясняет долю дисперсии,</u> <u>объясняемую целевой переменной</u>.

- ullet Чем ближе ${
 m R}^2$ к 1, тем лучше модель объясняет данные
- Чем ближе R^2 к 0, тем ближе модель к константному предсказанию

$^{\circ}$ КОЭФФИЦИЕНТ ДЕТЕРМИНАЦИИ (R^2)

0 (плохое качество) $\leq R^2 \leq 1$ (хорошее качество)

MAE (MEAN ABSOLUTE ERROR)

Средняя абсолютная ошибка:

$$MAE(a, X) = \frac{1}{l} \sum_{i=1}^{l} |a(x_i) - y_i|$$

MAE (MEAN ABSOLUTE ERROR)

Средняя абсолютная ошибка:

$$MAE(a,X) = \frac{1}{l} \sum_{i=1}^{l} |a(x_i) - y_i|$$

Плюсы:

• Менее чувствителен к выбросам, чем MSE

MAE (MEAN ABSOLUTE ERROR)

Средняя абсолютная ошибка:

$$MAE(a, X) = \frac{1}{l} \sum_{i=1}^{l} |a(x_i) - y_i|$$

Плюсы:

• Менее чувствителен к выбросам, чем MSE

Минусы:

• МАЕ - не дифференцируемый функционал

MSLE (MEAN SQUARED LOGARITHMIC ERROR)

Среднеквадратичная логарифмическая ошибка:

$$MSLE(a, X) = \frac{1}{l} \sum_{i=1}^{l} (\log(\mathbf{a}(\mathbf{x_i}) + \mathbf{1}) - \log(\mathbf{y} + \mathbf{1}))^2$$

- Подходит для задач с неотрицательной целевой переменной (у ≥ 0)
- Штрафует за отклонения в порядке величин
- Штрафует заниженные прогнозы сильнее, чем завышенные

MAPE – Mean Absolute Percentage Error:

$$MAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|\mathbf{y_i} - \mathbf{a}(\mathbf{x_i})|}{|\mathbf{y_i}|}$$

МАРЕ измеряет относительную ошибку.

$MAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|\mathbf{y_i} - \mathbf{a}(\mathbf{x_i})|}{|\mathbf{y_i}|}$

Плюсы:

- Ограничена: $0 \le MAPE \le 1$
- Хорошо интерпретируема: например, МАРЕ=0.16 означает, что ошибка модели в среднем составляет 16% от фактических значений.

MAPE

MAPE

$$MAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|\mathbf{y_i} - \mathbf{a}(\mathbf{x_i})|}{|\mathbf{y_i}|}$$

Плюсы:

- Ограничена: $0 \le MAPE \le 1$
- Хорошо интерпретируема: например, МАРЕ=0.16 означает, что ошибка модели в среднем составляет 16% от фактических значений.

Минусы:

По-разному относится к недо- и перепрогнозу. Например, если правильный ответ y=10, а прогноз a(x)=20, то ошибка $\frac{|10-20|}{|10|}=1$, а если ответ y=30, то ошибка $\frac{|30-20|}{|30|}=\frac{1}{3}\approx 0.33$.

SMAPE – Symmetric Mean Absolute Percentage Error (симметричный вариант MAPE):

$$SMAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|y_i - a(x_i)|}{(|y_i| + |a(x_i)|)/2}$$

SMAPE – попытка сделать симметричным прогноз (то есть дать одинаковую ошибку для недо- и перепрогноза).

SMAPE – Symmetric Mean Absolute Percentage Error (симметричный вариант MAPE):

$$SMAPE(a, X) = \frac{1}{l} \sum_{i=1}^{l} \frac{|y_i - a(x_i)|}{(|y_i| + |a(x_i)|)/2}$$

SMAPE – попытка сделать симметричным прогноз (то есть дать одинаковую ошибку для недо- и перепрогноза).

Проверим:

Пусть правильный ответ y=10, а прогноз a(x)=20, то ошибка $\frac{|10-20|}{|10+20|/2}=\frac{2}{3}\approx 0.67$, а если ответ y=30, то ошибка $\frac{|30-20|}{|30+20|/2}=\frac{2}{5}=0.4$.

SMAPE — попытка сделать симметричным прогноз (то есть дать одинаковую ошибку для недо- и перепрогноза).

Проверим:

Пусть правильный ответ y=10, а прогноз a(x)=20, то ошибка $\frac{|10-20|}{|10+20|/2}=\frac{2}{3}\approx 0.67$, а если ответ y=30, то ошибка $\frac{|30-20|}{|30+20|/2}=\frac{2}{5}=0.4$.

Ошибки стали меньше отличаться друг от друга, но всётаки не равны.

SMAPE – попытка сделать симметричным прогноз (то есть дать одинаковую ошибку для недо- и перепрогноза).

"Сейчас уже в среде прогнозистов сложилось более-менее устойчивое понимание, что SMAPE не является хорошей ошибкой. Тут дело не только в завышении прогнозов, но ещё и в том, что наличие прогноза в знаменателе позволяет манипулировать результатами оценки." (см. источник)

МЕТОД БОРЬБЫ С ПЕРЕОБУЧЕНИЕМ: РЕГУЛЯРИЗАЦИЯ

Утверждение. Если в выборке есть линейно-зависимые признаки, то задача оптимизации $Q(w) \to min$ имеет бесконечное число решений.

• Большие значения параметров (весов) модели w – признак переобучения.

МЕТОД БОРЬБЫ С ПЕРЕОБУЧЕНИЕМ: РЕГУЛЯРИЗАЦИЯ

Утверждение. Если в выборке есть линейно-зависимые признаки, то задача оптимизации $Q(w) \to min$ имеет бесконечное число решений.

 Большие значения параметров (весов) модели w – признак переобучения.

Решение проблемы – регуляризация.

Регуляризованный функционал ошибки:

$$Q_{alpha}(w) = Q(w) + \alpha \cdot R(w),$$

где R(w) - регуляризатор.

РЕГУЛЯРИЗАЦИЯ

 Регуляризация штрафует за слишком большую норму весов.

Наиболее используемые регуляризаторы:

•
$$L_2$$
-регуляризатор: $R(w) = ||w||_2 = \sum_{i=1}^d w_i^2$

•
$$L_1$$
-регуляризатор: $R(w) = \big| |w| \big|_1 = \sum_{i=1}^d |w_i|$

РЕГУЛЯРИЗАЦИЯ

• Регуляризация штрафует за слишком большую норму весов.

Наиболее используемые регуляризаторы:

•
$$L_2$$
-регуляризатор: $R(w) = \big||w|\big|_2 = \sum_{i=1}^d w_i^2$

•
$$L_1$$
-регуляризатор: $R(w) = \big||w|\big|_1 = \sum_{i=1}^d |w_i|$

Пример регуляризованного функционала:

$$Q(a(w),X) = \frac{1}{l} \sum_{i=1}^{l} ((w,x_i) - y_i)^2 + \alpha \sum_{i=1}^{d} w_i^2,$$

где α – коэффициент регуляризации.

Все ли признаки в задаче нужны?

Все ли признаки в задаче нужны?

- Некоторые признаки могут не иметь отношения к задаче, т.е. они не нужны.
- Если есть ограничения на скорость получения предсказаний, то чем меньше признаков, тем быстрее
- Если признаков больше, чем объектов, то решение задачи будет неоднозначным.

Все ли признаки в задаче нужны?

- Некоторые признаки могут не иметь отношения к задаче, т.е. они не нужны.
- Если есть ограничения на скорость получения предсказаний, то чем меньше признаков, тем быстрее
- Если признаков больше, чем объектов, то решение задачи будет неоднозначным.

Поэтому в таких случаях надо делать отбор признаков, то есть убирать некоторые признаки.

Свойство модели, обученной с помощью минимизации функционала с добавлением L1-регуляризации:

В результате обучения такой модели происходит зануление некоторых весов, то есть отбор признаков.

ГИПЕРПАРАМЕТРЫ МОДЕЛИ

- Параметры модели величины, настраивающиеся по обучающей выборке (например, веса *w* в линейной регресии)
- Гиперпараметры модели величины, контролирующие процесс обучения. Поэтому они не могут быть настроены по обучающей выборке (например, коэффициент регуляризации α).

Проблема: если подбирать гиперпараметры по кроссвалидации, то мы будем использовать отложенную (валидационную) выборку для поиска наилучших значений гиперпараметров. Т.е. отложенная выборка становится обучающей.

СХЕМА РАЗБИЕНИЯ ДАННЫХ ДЛЯ ПОДБОРА ПАРАМЕТРОВ И ГИПЕРПАРАМЕТРОВ МОДЕЛИ

КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ: ONE-HOT ENCODING

• Предположим, категориальный признак $f_j(x)$ принимает m различных значений: $\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_m$.

Пример: еда может быть горькой, сладкой, солёной или кислой (4 возможных значения признака).

КОДИРОВАНИЕ КАТЕГОРИАЛЬНЫХ ПРИЗНАКОВ: ONE-HOT ENCODING

• Предположим, категориальный признак $f_j(x)$ принимает m различных значений: $\mathcal{C}_1,\mathcal{C}_2,\ldots,\mathcal{C}_m$.

Пример: еда может быть *горькой, сладкой, солёной или кислой* (4 возможных значения признака).

• Заменим категориальный признак на m бинарных признаков: $b_i(x) = [f_j(x) = C_i]$ (индикатор события).

Тогда One-Hot кодировка для нашего примера будет следующей:

горький =
$$(1,0,0,0)$$
, сладкий = $(0,1,0,0)$, солёный = $(0,0,1,0)$, кислый = $(0,0,0,1)$.

ONE-HOT ENCODING B PYTHON

Один из способов сделать One-hot кодирование в Python – применить функцию get_dummies из библиотеки pandas.

Пример:

data = pd.get_dummies(data, columns=['City_Category'],
dtype=int)

Пояснение:

Столбец 'City_Category' содержит категориальные данные, поэтому кодируем его. В результате применения кодирования вместо столбца 'City_Category' в таблице data появятся закодированные с помощью One-hot кодировки столбцы.

СЧЁТЧИКИ

Счётчик (mean target encoding) — это вероятность получить значение целевой переменной для данного значения категориального признака.

СЧЁТЧИКИ (ПРИМЕР)

	feature	target
0	Moscow	0
1	Moscow	1
2	Moscow	1
3	Moscow	0
4	Moscow	0
5	Tver	1
6	Tver	1
7	Tver	1
8	Tver	0
9	Klin	0
10	Klin	0
11	Tver	1

СЧЁТЧИКИ (ПРИМЕР)

	feature	target
0	Moscow	0
1	Moscow	1
2	Moscow	1
3	Moscow	0
4	Moscow	0
5	Tver	1
6	Tver	1
7	Tver	1
8	Tver	0
9	Klin	0
10	Klin	0
11	Tver	1

	feature	feature_mean	target
0	Moscow	0.4	0
1	Moscow	0.4	1
2	Moscow	0.4	1
3	Moscow	0.4	0
4	Moscow	0.4	0
5	Tver	0.8	1
6	Tver	0.8	1
7	Tver	0.8	1
8	Tver	0.8	0
9	Klin	0.0	0
10	Klin	0.0	0
11	Tver	0.8	1

ъ СЧЁТЧИКИ: ПРИМЕР

city	target	0	1	2
Moscow	1	1/4	1/2	1/4
London	0	1/2	0	1/2
London	2	1/2	0	1/2
Kiev	1	1/2	1/2	0
Moscow	1	1/4	1/2	1/4
Moscow	0	1/4	1/2	1/4
Kiev	0	1/2	1/2	0
Moscow	2	1/4	1/2	1/4

СЧЁТЧИКИ

В случае бинарной классификации счётчики можно задать формулой:

$$Likelihood = \frac{Goods}{Goods + Bads} = mean(target),$$

где Goods – число единиц в столбце target,

Bads – число нулей в столбце target.

СЧЁТЧИКИ: ОПАСНОСТЬ ПЕРЕОБУЧЕНИЯ

Вычисляя счётчики, мы закладываем в признаки информацию о целевой переменной и, тем самым, переобучаемся!

ъ СЧЁТЧИКИ: КАК ВЫЧИСЛЯТЬ

• Можно вычислять счётчики так:

city	target	
Moscow	1	
London	0	Вычисляем счетчики по этой части
London	2	Jion addin
Kiev	1	
Moscow	1	
Moscow	0	Кодируем признак вычисленными счётчиками
Kiev	0	и обучаемся по этой части
Moscow	2	