DM 10. Enoncé

Problème 1 : un anneau principal

Définitions et propriétés (admises) : Soit A un ensemble.

- On dit que (A, +) est un groupe commutatif si et seulement si, pour tout $x, y \in A$, x + y désigne un élément de A et si, pour tout $x, y, z \in A$,
 - -x + y = y + x (commutativité);
 - (A, +) possède un élément neutre, c'est-à-dire qu'il existe $0_A \in A$ tel que, pour tout $x \in A$, $x + 0_A = x$;
 - il existe $x' \in A$ tel que $x + x' = 0_A$. On dit que x' est le symétrique de x et on le note -x.
 - -x + (y+z) = (x+y) + z (associativité).
- Si (A, +) est un groupe commutatif, on dit qu'une partie B de A est un sous-groupe de A si et seulement si B est une partie non vide de A telle que pour tout $x, y \in B$, $x y \in B$. Dans ce cas, (B, +) est un groupe dont l'élément neutre est encore 0_A .
- Si (A, +) et (B, +) sont deux groupes et si $f: A \longrightarrow B$ est une application, on dit que f est un morphisme de groupes si et seulement si, pour tout $x, y \in A$, f(x+y) = f(x) + f(y).
- Si (A, +) est un groupe et $f: A \longrightarrow A$ est une application de A dans luimême, on dit que f est un automorphisme de groupes si et seulement si f est un morphisme de groupe et si f est bijective.
- On dit que $(A, +, \times)$ est un anneau si et seulement si, pour tout $x, y \in A$, x + y et $x \times y$ désignent des éléments de A, si (A, +) est un groupe commutatif et si, pour tout $x, y, z \in A$,
 - $-- x \times (y \times z) = (x \times y) \times z$ (associativité);
 - (A, \times) possède un élément neutre, c'est-à-dire qu'il existe $1_A \in A$ tel que, pour tout $x \in A$, $x \times 1_A = 1_A \times x = x$;
 - $-x \times (y+z) = (x \times y) + (x \times z)$ et $(x+y) \times z = (x \times z) + (y \times z)$ (distributivité).
- Un anneau $(A, +, \times)$ est dit commutatif si et seulement si, pour tout $x, y \in A$, $x \times y = y \times x$.
- On suppose que $(A, +, \times)$ est un anneau, dont les éléments neutres sont notés 0_A et 1_A .
 - Lorsque $B \subset A$, on dit que B est un sous-anneau de A si et seulement si c'est un sous-groupe de A tel que $1_A \in B$ et tel que, pour tout $a, b \in B$, $ab \in B$.

- Dans ce cas, $(B, +, \times)$ est un anneau, muni des mêmes éléments neutres 0_A et 1_A .
- Si $a \in A$, on dit que a est inversible dans A si et seulement si il existe $b \in A$ tel que $ab = ba = 1_A$. Dans ce cas, b est unique et il est noté a^{-1} .
- On dit que A est un corps si et seulement si $A \neq \{0_A\}$, A est un anneau commutatif, et si pour tout $a \in A \setminus \{0_A\}$, a est inversible dans A.
- Lorsque A est un corps et que $B \subset A$, on dit que B est un sous-corps de A si et seulement si B est un sous-anneau de A tel que, pour tout $b \in B \setminus \{0\}$, $b^{-1} \in B$.
- On dit que f est un automorphisme de l'anneau $(A, +, \times)$ si et seulement si c'est un automorphisme du groupe (A, +) tel que $f(1_A) = 1_A$ et tel que, pour tout $a, b \in A$, f(ab) = f(a)f(b).

Partie I

Soit $n \in \mathbb{N}^*$. On suppose que n n'est pas le carré d'un entier.

On pose $\mathbb{Z}[\sqrt{n}] = \{a + b\sqrt{n}/(a, b) \in \mathbb{Z}^2\}$ et $\mathbb{Q}[\sqrt{n}] = \{a + b\sqrt{n}/(a, b) \in \mathbb{Q}^2\}$

- 1°) a) Prouver que \sqrt{n} n'est pas un rationnel.
- b) En déduire que tout élément de $\mathbb{Q}[\sqrt{n}]$ s'écrit de manière unique sous la forme $a+b\sqrt{n}$, où $a,b\in\mathbb{Q}$.
- (2°) a) Montrer que $\mathbb{Q}[\sqrt{n}]$ est un sous-corps de \mathbb{R} (on ne demande pas de démontrer que \mathbb{R} est un corps).
- **b)** Montrer que $\mathbb{Z}[\sqrt{n}]$ est un sous-anneau de $\mathbb{Q}[\sqrt{n}]$.
- 3°) Lorsque $z = a + b\sqrt{n} \in \mathbb{Q}[\sqrt{n}]$, on appelle conjugué de z l'élément $\overline{z} = a b\sqrt{n}$ et on appelle norme de z la quantité $N(z) = z\overline{z}$.
- a) Montrer que l'application $z \mapsto \overline{z}$ est un automorphisme de l'anneau $\mathbb{Q}[\sqrt{n}]$.
- **b)** Soit $z, z' \in \mathbb{Q}[\sqrt{n}]$. Montrer que $[N(z) = 0 \iff z = 0]$.
- Montrer que N(zz') = N(z)N(z').
- c) Soit $z \in \mathbb{Z}[\sqrt{n}]$. Montrer que z est inversible dans $\mathbb{Z}[\sqrt{n}]$ si et seulement si |N(z)| = 1.

Partie II

Dans toute cette partie, n est égal à 2 ou à 3.

- **4°)** a) Montrer que, pour tout $\alpha \in \mathbb{Q}$, il existe $a \in \mathbb{Z}$ tel que $|\alpha a| \leq \frac{1}{2}$.
- **b)** Montrer que, pour tout $z \in \mathbb{Q}[\sqrt{n}]$, il existe $q \in \mathbb{Z}[\sqrt{n}]$ tel que |N(z-q)| < 1.
- **5°)** a) Soit $x,y \in \mathbb{Z}[\sqrt{n}]$ avec $y \neq 0$. Montrer qu'il existe $q,r \in \mathbb{Z}[\sqrt{n}]$ tels que x = qy + r et |N(r)| < |N(y)|.
- b) Le couple (q, r) est-il unique?
- 6°) Soit $(A, +, \times)$ un anneau commutatif et I une partie de A. On dit que I est un idéal de l'anneau A si et seulement si I est un sous-groupe de (A, +) tel que, pour tout $a \in A \text{ et } i \in I, ai \in I.$

Soit $a_0 \in A$. On pose $a_0 A = \{a_0 b/b \in A\}$. Montrer que $a_0 A$ est le plus petit idéal de A contenant a_0 .

On dit que a_0A est l'idéal engendré par l'élément a_0 .

- 7°) Soit I un idéal de l'anneau $\mathbb{Z}[\sqrt{n}]$. On suppose que $I \neq \{0\}$.
- a) Montrer que l'on peut poser $k_0 = \min(\{|N(z)|/z \in I \setminus \{0\}\})$.
- b) Soit y un élément de $I \setminus \{0\}$ tel que $|N(y)| = k_0$.

Montrer que I est l'idéal engendré par y.

c) Quels sont les sous-anneaux de l'anneau $\mathbb{Z}[\sqrt{n}]$?

Problème 2 : une intégrale dépendant d'un paramètre

 $\mathbf{1}^{\circ}$) Pour tout $x \in \mathbb{R}_{+}^{*}$, on pose

$$F(x) = \int_0^1 \frac{dt}{t^3 + t + x}.$$

- a) Montrer que F est décroissante sur \mathbb{R}_{+}^{*} .
- **b)** Montrer que $F(x) \xrightarrow[x \to +\infty]{} 0$.
- c) Montrer que $xF(x) \xrightarrow[x \to +\infty]{} 1$.
- **2°)** Pour tout $a, x \in \mathbb{R}_+^*$, on pose $F_a(x) = \int_0^1 \frac{dt}{at+x}$.
- a) Calculer $F_a(x)$, pour tout $a, x \in \mathbb{R}_+^*$.
- **b)** Montrer que, pour tout $x \in \mathbb{R}_+^*$, $F_2(x) \leq F(x) \leq F_1(x)$.
- c) En déduire la limite de F(x) lorsque x tend vers 0.
- **d)** Montrer que $\frac{F(x)}{-\ln x} \xrightarrow[x\to 0]{} 1$.
- **3°)** Pour tout $n \in \mathbb{N}^*$, on pose

$$I_n = \int_0^1 (t^3 + t)^n dt.$$

a) Montrer que, pour tout $n \in \mathbb{N}^*$,

$$I_n = \frac{2^{n-1}}{n+1} + \frac{6}{n+1} \int_0^1 \frac{t(t^3+t)^{n+1}}{(3t^2+1)^2} dt.$$

- **b)** Montrer que $\frac{1}{2^n} \int_0^1 \frac{t(t^3+t)^{n+1}}{(3t^2+1)^2} dt \xrightarrow[n \to +\infty]{} 0.$
- c) En déduire un équivalent simple de I_n lorsque n tend vers $+\infty$, c'est-à-dire une suite a_n aussi simple que possible telle que $\frac{I_n}{a_n} \underset{n \to +\infty}{\longrightarrow} 1$.

4°) a) Montrer que, pour tout $u \in \mathbb{R}_+$ et $n \in \mathbb{N}^*$,

$$\left| \frac{1}{1+u} - 1 + u - u^2 + \dots + (-1)^n u^{n-1} \right| \le u^n.$$

b) Soit $t \in [0,1], x \in \mathbb{R}_+^*$ et $n \in \mathbb{N}^*$. Montrer que

$$\left| \frac{1}{t^3 + t + x} - \frac{1}{x} + \frac{t^3 + t}{x^2} - \frac{(t^3 + t)^2}{x^3} + \dots + (-1)^n \frac{(t^3 + t)^{n-1}}{x^n} \right| \le \frac{2^n}{x^{n+1}}.$$

c) Montrer qu'il existe une suite $(a_k)_{k\in\mathbb{N}^*}$ de réels telle que, pour tout $n\in\mathbb{N}^*$, $F(x) = \frac{a_1}{x} + \frac{a_2}{x^2} + \dots + \frac{a_n}{x^n} + \frac{\varepsilon(x)}{x^n}$, où ε est une fonction telle que $\varepsilon(x) \underset{x\to +\infty}{\longrightarrow} 0$.