תורת הקבוצות ⁻ תרגול מספר 8 חשבון עוצמות

תזכורת

ראינו כי ניתן להגדיר פעולות של חיבור, כפל וחזקה על עוצמות, באמצעות פעולות מתאימות על קבוצות. נניח כי A,B הן קבוצות כלשהן ונסמן את עוצמותיהן בי $A,B'=\kappa, |B|=\kappa, |B|=\kappa$ את עוצמותיהן בי

- וב־ $\{2\}$ נועדה לוודא שהאיחוד הוא איחוד זר). $\kappa + \lambda = |A \times \{1\} \cup B \times \{2\}|$
 - $\kappa \cdot \lambda = |A \times B| \bullet$
 - $\kappa^{\lambda} = \left| A^B \right| \, \bullet$

הגדרות אלו תקפות גם לקבוצות סופיות (כלומר, למקרה שבו העוצמות הן מספרים טבעיים) ומקיימות את חוקי החשבון המוכרים לנו (חיבור וכפל מקיימים את חוקי הפילוג, הקיבוץ והחילוף).

נהוג לסמן $_0 \% = |\mathbb{M}|$ ("אלף־אפס") ו־ $_0 \% = |\mathbb{M}|$. ניתן להוכיח כי $_0 \% = _0 \% \cdot _0 \% = _0 \% + _0 \%$ ו־ $_0 \% = _0 \% + _0 \%$

תרגיל

 $\Psi:\mathcal{P}\left(A
ight) o B^A$ נוכיח כי מבחינה פורמלית, $B=\{0,1\}$ ההוכחה כמעט טריוויאלית: נגדיר כעת נגדיר העתקה חח"ע ועל ועל. הפונקציה המציינת שלה: $\Psi\left(D
ight)=\chi_D$. קל לראות כי העתקה זו היא חח"ע ועל.

 κ את משפט קנטור כעת ניתן לנסח כך: $\kappa < 2^\kappa$ לכל ניתן ניתן את

 $(\mathbb{R}\sim 2^{\mathbb{N}}$ כמו כן, כעת ברור הקשר בין אינו איז (שכן פאינו אינו פיי $\aleph=2^{\aleph_0}$ ו־א בין כמו כן, כמו

תרגיל

נוכיח שחוקי חזקות המוכרים לנו מהמספרים השלמים מתקיימים גם כאן.

 $|A|=\kappa, |B|=\lambda, |C|=\mu$ יהיו A,B,C יהיו

- $(\kappa \cdot \lambda)^{\mu} = \kappa^{\mu} \cdot \lambda^{\mu} \bullet$
 - $\kappa^{\lambda+\mu} = \kappa^{\lambda} \cdot \kappa^{\mu} \bullet$
 - $\left(\kappa^{\lambda}\right)^{\mu} = \kappa^{\lambda \cdot \mu} \bullet$
- $\kappa^{\mu} \leq \lambda^{\mu}$ אם $\kappa \leq \lambda$ אם ullet

כדי להוכיח את החוקים הללו נציג במפורש פונקציות חח"ע ועל בין הקבוצות הרלוונטיות.

. $\Psi: \left(A imes B
ight)^C o A^C imes B^C$ במקרה הראשון, אנו רוצים למצוא פונקציה חח"ע ועל

Aוהשני מ־ והשני האחד אינטואיציה: באגף שמאל יש לנו פונקציה שמקבלת איבר ב־ ומחזירה זוג איברים האחד מ

Bבאגף ימין יש לנו זוג פונקציות שמקבלות כל אחת איבר ב־C ומחזירות האחת איבר ב-בר והשניה איבר ב-בר

באופן כללי פונקציה $f\left(x\right)=\left(f_{1}\left(x\right),f_{2}\left(x\right)\right)$ באופן כללי פונקציה לתאר בתור זוג של פונקציות: $f\left(x\right)=\left(f_{1}\left(x\right),f_{2}\left(x\right)\right)$ או ההתאמה שנבצע גם כאן:

באשר $\Psi(f)=(f_1,f_2)$ באשר $\Phi(f)=(f_1,f_2)$ באשר $\Phi(f)=(f_1,f_2)$

. Ψ את הופכת או שהעתקה לראות וקל $f\left(x
ight)=\left(f_{1}\left(x
ight),f_{2}\left(x
ight)
ight)$ נגדיר פונקציה נדיר פונקציה על פונקציה על בבירור הפיכה: בהינתן בהינתן על הופכת את Φ

. זרות. B.Cים שני: כאן אנו רוצים למצוא פונקציה חח"ע ועל אועל $\Psi:A^{B\cup C} o A^B imes A^C$ געבור למקרה השני: כאן אנו רוצים למצוא פונקציה חח"ע ועל

אינטואיציה: בהינתן פונקציה f שהתחום שלה הוא האיחוד הזר של B,C, אנחנו יכולים "לחלק את התחום לשניים" ולהגדיר שתי פונקציות, אחת לכל חלק של התחום.

g:A o B פורמלית, $\Psi(f)=(f_B,f_C)$ באופן כללי, אם $f_C=f|_C$. כאן הוא אופרטור הצמצום של פונקציה לתחום $\Phi(f)=(f_B,f_C)$ באופן כללי, אם $g|_D(x)=g(x)$ היא פונקציה ו־ $g|_D(x)=g(x)$ מוגדרת בתור פונקציה $g|_D(x)=g(x)$

במקרה השלישי, אנו רוצים למצוא פונקציה $A^{B \times C} \to A^{B \times C}$. סעיף זה ניתן בתרגילי הבית, אז נסתפק ברמז בלבד: במדעי המחשב נהוג במקרה השלישי, אנו רוצים למצוא פונקציה f(x,y)=3x+2y את אחד המשתנים ולקבל בחזרה פונקציה במשתנה יחיד. למשל, אם f(x,y)=3x+2y את נוכל לפעמים, בהינתן פונקציה בשני משתנים, "לקבע" את אחד המשתנים ולקבל בחזרה $g_5(y)=f(5,y)=2y+15$ שונים ולקבל, למשל, למשל, $g_7=f(x,y)=2y+3$ באופן כללי, $g_7=f(x,y)=2y+3$

אם כן, ניתן לחשוב על פונקציה (\mathbb{C} עריון שמאחורי הוכחת הוכחת $g(n)=g_n=f(n,y)$ כך ש־ $g:\mathbb{N} \to (\mathbb{N} \to \mathbb{N})$ הרעיון מאחורי הוכחת כן, ניתן לחשוב על פונקציה (עבור מצורת ההצגה הזו לצורת ההצגה ה"רגילה".

במקרה הרביעי, נתון לנו ש־ $\kappa \leq \lambda$, כלומר כבר קיימת פונקציה חח"ע (לאו דווקא על) $\varphi:A \to B$. אנו רוצים למצוא פונקציה חח"ע (לאו דווקא על) היא הפונקציה על $\varphi:C \to A$ אז $f:C \to B$ אז $f:C \to B^C$ על הפונקציה שהתקבלה כקלט. כלומר, אם $\Psi:A^C \to B^C$ איז שמעניינת אותנו. פורמלית, $\Psi:A^C \to B^C$

נוכיח ש־ Ψ חח"ע: נניח כי $f_1\left(a\right)=f_2\left(a\right)$, נשים לב לכך יהא G כלומר G בי G לומר G היא חח"ע קיבלנו את התוצאה המבוקשת.

 $2^{\aleph_0}=\aleph_0^{\aleph_0}$ אבל נראה $\mathcal{P}\left(\mathbb{N}
ight)\sim\mathbb{N}^{\mathbb{N}}$ אבל נראה $|\mathcal{P}\left(\mathbb{N}
ight)|=2^{\aleph_0}\leq\aleph_0^{\aleph_0}=\left|\mathbb{N}^{\mathbb{N}}
ight|$ אבל $2<\aleph_0$ אבל $|\kappa^\mu<\lambda^\mu<0$, אבל נראה $\kappa<\lambda$ אבל נראה $\kappa<\lambda$ נשתמש בקנטור־שרדר־ברנשטיין.

אז $A=\{4,1,17\}$ נתונה על ידי מיון אברי הקלט A ואולי חזרה אינסופית על האיבר האחרון (למשל, אם $f:\mathcal{P}\left(\mathbb{N}\right)\to\mathbb{N}^\mathbb{N}$ בכיוון אחד, $A\mapsto 1,4,17,17,17,\ldots$

בכיוון השני, $\{a_n\}\mapsto \{p_n^{a_n+1}\mid n\geq 0\}$ נתונה על ידי קידוד אברי הסדרה כחזקות של ראשוניים: $g:\mathbb{N}^\mathbb{N} o\mathcal{P}\left(\mathbb{N}
ight)$ כאשר $g:\mathbb{N}^\mathbb{N} o\mathcal{P}\left(\mathbb{N}
ight)$ ה- a_n י

תרגיל

B הוכיחו כי עוצמת קבוצת הסדרות האינסופיות של ממשיים A שווה לעוצמת קבוצת הסדרות האינסופיות של טבעיים חשבון עוצמות נותן פתרון מיידי:

$$|A| = \aleph^{\aleph_0} = (2^{\aleph_0})^{\aleph_0} = 2^{\aleph_0 \cdot \aleph_0} = 2^{\aleph_0} \le \aleph_0^{\aleph_0} = |B| \le |A|$$

קיבלנו שרשרת של אי־שוויונות שמתחילה ונגמרת באותו איבר ולכן כל המעברים הם שוויונות ממש.