Pontificia Universidad Católica Madre y Maestra Facultad de Ciencias e Ingeniería Escuela de Ingeniería Mecánica y Eléctrica ST-IME-425-T-101: Mecánica de Fluidos II

Proyecto de optimización de redes cerradas

Nombre del alumno:	;	V	1atrícula: _	 ;	Calificación:	;
Nombre del alumno:	;	Ν	1atrícula: _	 ;		
Nombre del alumno:	;	Ν	latrícula: _	 ;		

Instrucciones: Resolver el problema en grupos de 3 estudiantes y presentar la solución el 08/12/2021.

La red hidráulica mostrada (ver Figura 1) tiene 26 nodos, 34 tuberías y nueve mallas. A través de esta fluye agua a una temperatura promedio de 25°C, proveniente de dos tanques en los nodos 1 y 2, con elevaciones de 100 y 95 m, respectivamente. Las longitudes de las tuberías se detallan en la Tabla 1. Igualmente, las demandas nodales y las cabezas mínimas requeridas se encuentran en la Tabla 2.

Se necesita seleccionar un conjunto de diámetros que mantenga las cabezas nodales por encima de los valores mínimos requeridos y que todas las velocidades se encuentren por debajo de 3.0 m/s. Como objetivo de optimización se busca minimizar la inversión total del sistema de tuberías, cumpliendo todas las restricciones de diseño y considerando que existen 14 diámetros de disponibles (ver Tabla 3), donde todas las tuberías tienen un coeficiente de rugosidad C = 130 (Hazen-Williams).

Figura 1: Topología de la red hidráulica.

Datos de la red hidráulica adaptados del caso de estudio 3: G. H. B. Cassiolato, E. P. Carvalho, J. A. Caballero, and M. A. S. S. Ravagnani, "Optimization of water distribution networks using a deterministic approach," *Engineering Optimization*, vol. 53, no. 1, pp. 107–124, 2021, DOI: 10.1080/0305215X.2019.1702980.

Tabla 1: Longitudes de las tuberías.

Tubería	Longitud (m)		
1	300		
2	820		
3	940		
4	730		
5	1,620		
6	600		
7	800		
8	1,400		
9	1,175		
10	750		
11	210		
12	700		
13	310		
14	500		
15	1,960		
16	900		
17	850		
18	650		
19	760		
20	1,100		
21	660		
22	1,170		
23	980		
24	670		
25	1,080		
26	750		
27	900		
28	650		
29	1,540		
30	730		
31	1,170		
32	1,650		
33	1,320		
34	3,250		

Tabla 2: Demandas y cabezas nodales.

Nada	Demanda	Cabeza		
Nodo	(m³/min)	mínima (m)		
1	-	100		
2	-	95		
3	18.40	85		
4	4.50	85		
5	6.50	85		
6	4.20	85		
7	3.10	82		
8	6.20	82		
9	8.50	85		
10	11.50	85		
11	8.20	85		
12	13.60	85		
13	14.80	82		
14	10.60	82		
15	10.50	85		
16	9.00	82		
17	6.80	82		
18	3.40	85		
19	4.60	82		
20	10.60	82		
21	12.60	82		
22	5.40	80		
23	2.00	82		
24	4.50	80		
25	3.50	80		
26	2.20	80		

Tabla 3: Diámetros disponibles y sus precios.

Diámetro	Costo unitario
(m)	(USD/m)
0.15	14.50
0.20	20.80
0.25	28.00
0.30	36.14
0.35	45.18
0.40	55.32
0.45	67.24
0.50	79.20
0.60	106.46
0.70	138.71
0.75	154.36
0.80	172.39
0.90	209.96
1.00	252.14

Para resolver este problema, se plantean los siguientes pasos:

- i. Plantee todas las ecuaciones de continuidad (nodos) y conservación de la energía (mallas).
- ii. Elabore un conjunto de *scripts* en MATLAB que permitan calcular:
 - a. Los caudales en cada tubería, para los diámetros seleccionados.
 - b. La velocidad máxima y las cabezas nodales, para los diámetros seleccionados.
 - c. El costo total de las tuberías seleccionadas, en base a los diámetros y longitudes.
- iii. Obtenga un conjunto de diámetros comerciales que minimice el costo total de las tuberías cumpliendo las restricciones de cabeza hidráulica nodal y velocidad máxima. Se sugiere aprovechar los *scripts* desarrollados anteriormente y usar los complementos de optimización:
 - Optimization Toolbox: https://www.mathworks.com/help/optim/
 - Global Optimization Toolbox: https://www.mathworks.com/help/gads/

Luego de definir el conjunto de diámetros óptimos, deberá evaluar la siguiente situación:

Durante la temporada de sequías, los tanques disminuyen su nivel entre un 10% y un 30%, fluctuando temporalmente de forma arbitraria, pero con una trayectoria continua (ver *Figura 2*). Para solucionar el problema de abastecimiento de agua, deberá seleccionar adecuadamente una o más bombas (si lo desea, puede realizar extrapolaciones usando las leyes de afinidad) que puedan proveer los caudales nodales definidos, manteniendo las restricciones previamente definidas.

- Explique en cuál(es) tubería(s) conectaría la(s) bomba(s), cómo y por qué.
- Detalle el procedimiento de selección y las especificaciones de la(s) bomba(s).
- Estime el consumo eléctrico mensual, considerando las fluctuaciones de nivel.
- Establezca cuáles medidas adicionales tomaría para mitigar el efecto de las sequías.


```
% suma aleatoria entre -0.5 y 0.5
N=cumsum(rand(200,2)-0.5);
% valores máximos y mínimos de N
Nmin=min(N); Nmax=max(N);
% normalización de 0 a 1
N=(N-Nmin)./(Nmax-Nmin);
% porcentaje de reducción de nivel
prN=(30-10)*N+10;
% porcentaje de nivel original
pN=100-prN;
% día del mes
d=linspace(0,30,200);
```

Figura 2: Ejemplo de trayectoria aleatoria con límites.

Cada grupo deberá subir en la PVA todos los documentos y archivos de MATLAB creados como parte de la solución, además de preparar una presentación breve (menos de 15 min) donde explique claramente la metodología y los resultados. Las presentaciones orales se llevarán a cabo en modalidad presencial y se evaluará cada estudiante individualmente en la sesión de fecha 08/12/21.