Day 1, Lecture 3

Estimating the target

Estimating the target

In this lecture, our goal is to:

- Describe simple causal inference estimation methods for the average treatment effect, including the estimation equations estimator, an inverse probability weighted estimator and the g-formula based estimator.
- Compare the assumptions and performance of "double robust" estimation methods to estimation methods based on inverse probability weighting and (g-formula based) standardization.

Estimating the target

- one estimator is not more causal than another.
- different estimators are based on different nuisance parameters and have different statistical properties (bias/variance).

G-formula versus IP-weighting

- G-formula 1. Estimate nuisance parameters $f(a,x) = \mathbb{E}[Y \mid A = a, X = x]$ and the average over the marginal distribution μ_X of X
 - 2. Plug in to estimate the ATE:

$$\hat{\psi}_n^{\text{g-formula}} = \tilde{\Psi}(\hat{f}_n, \hat{\mu}_X) = \int_{\mathbb{R}^d} \left(\hat{f}_n(1, x) - \hat{f}_n(0, x)\right) d\hat{\mu}_X(x)$$

- IP-weighting 1. Estimate nuisance parameters $\pi(a \mid x) = P(A = a \mid X = x)$ and the average over the distribution P of O
 - 2. Plug in to estimate the ATE:

$$\hat{\psi}_{n}^{\mathsf{ipw}} = \tilde{\Psi}_{\mathsf{ipw}}(\hat{\pi}_{n}, \hat{P}_{n}) = \int_{\mathbb{R}^{d}} \sum_{a=0,1} \sum_{y=0,1} \left(\frac{ay}{\hat{\pi}_{n}(a \mid x)} - \frac{(1-a)y}{\hat{\pi}_{n}(a \mid x)} \right) d\hat{P}_{n}(x)$$

Estimating equation (EE) estimator

- EE estimator 1. Estimate nuisance parameters $f(a,x) = \mathbb{E}[Y \mid A = a, X = x], \pi(a \mid x) = \mathbb{E}[A \mid X = x]$ and the average over the distribution P of O
 - 2. Plug in to estimate the ATE:

$$\hat{\psi}_{n}^{\text{ee}} = \tilde{\Psi}_{\text{ee}}(\hat{f}_{n}, \hat{\pi}_{n}, \hat{P}_{n}) = \int_{\mathbb{R}^{d}} \sum_{a=0,1} \sum_{y=0,1} \left\{ \left(\frac{a}{\hat{\pi}_{n}(a \mid x)} - \frac{1-a}{\hat{\pi}_{n}(a \mid x)} \right) \left(y - \hat{f}_{n}(a, x) \right) + \hat{f}_{n}(1, x) - \hat{f}_{n}(0, x) \right\} d\hat{P}_{n}(o)$$

Estimation of the averages over μ_X and P is straightforward using the empirical average over the observed data.

This yields:

G-formula estimator requires estimator \hat{f}_n for conditional expectation f.

• consistent if \hat{f}_n is consistent.

IP-weighted estimator requires estimator $\hat{\pi}_n$ for the propensity score π .

• consistent if $\hat{\pi}_n$ is consistent.

¹which we get back to.

G-formula estimator requires estimator \hat{f}_n for conditional expectation f.

• consistent if \hat{f}_n is consistent.

IP-weighted estimator requires estimator $\hat{\pi}_n$ for the propensity score π .

• consistent if $\hat{\pi}_n$ is consistent.

EE estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .

¹which we get back to.

G-formula estimator requires estimator \hat{f}_n for conditional expectation f.

• consistent if \hat{f}_n is consistent.

IP-weighted estimator requires estimator $\hat{\pi}_n$ for the propensity score π .

• consistent if $\hat{\pi}_n$ is consistent.

EE estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .

consistent if either \hat{f}_n or $\hat{\pi}_n$ is consistent (commonly known as "double robustness").

¹which we get back to.

G-formula estimator requires estimator \hat{f}_n for conditional expectation f.

• consistent if \hat{f}_n is consistent.

IP-weighted estimator requires estimator $\hat{\pi}_n$ for the propensity score π .

• consistent if $\hat{\pi}_n$ is consistent.

EE estimator requires estimators \hat{f}_n and $\hat{\pi}_n$ for conditional expectation f and propensity score π .

- consistent if either \hat{f}_n or $\hat{\pi}_n$ is consistent (commonly known as "double robustness").
- ▶ the EE estimator and the TMLE estimator share the same large-sample properties,¹ and particularly this property.

¹which we get back to.

"Double robustness" —

SMALL EXERCISE:

By the law of large numbers, the EE estimator converges in probability to:

$$\mathbb{E}_{P_{\mathbf{0}}}\left[\left(\frac{A}{\pi(A\mid X)} - \frac{1-A}{\pi(A\mid X)}\right)\left(Y - f(A,X)\right) + f(1,X) - f(0,X)\right] \tag{1}$$

where (f,π) denotes the limit of $(\hat{f}_n,\hat{\pi}_n)$. Compute the right hand side of (1) when

- 1. $f = f_0$ (i.e., the outcome regression is consistently estimated), and
- 2. $\pi = \pi_0$ (i.e., the propensity score is consistently estimated).

Can't we just construct a good g-formula estimator???

Can't we just construct a good g-formula estimator???

- ▶ a logistic regression great if correctly specified, but horrible if not.
- a random forest properly tuned?

Predictive performance of an estimator can be measured in terms of some distance² between:

1) the observed outcome: Y_i

2) and the predicted conditional expectation: $\hat{f}_n(A_i, X_i)$

²Measured in terms of a *loss function*.

Predictive performance of an estimator can be measured in terms of some distance² between:

- 1) the observed outcome: Y_i
- 2) and the predicted conditional expectation: $\hat{f}_n(A_i, X_i)$

One example of a loss function $\mathcal{L}(f)(O)$ is the negative log-likelihood loss:

$$\mathcal{L}(\hat{f}_n)(Y_i,A_i,X_i) = -(Y_i\log(\hat{f}_n(A_i,X_i)) + (1-Y_i)\log(1-\hat{f}_n(A_i,X_i))).$$

²Measured in terms of a *loss function*.

Predictive performance of an estimator can be measured in terms of some distance² between:

- 1) the observed outcome: Y
- 2) and the predicted conditional expectation: $\hat{f}_n(A_i, X_i)$

One example of a loss function $\mathcal{L}(f)(O)$ is the negative log-likelihood loss:

$$\mathcal{L}(\hat{f}_n)(Y_i, A_i, X_i) = -(Y_i \log(\hat{f}_n(A_i, X_i)) + (1 - Y_i) \log(1 - \hat{f}_n(A_i, X_i))).$$

The estimator \hat{f}_n closest to the true f_0 minimizes the risk:

$$\mathbb{E}_{P_0}[\mathcal{L}(\hat{f}_n)(Y_i,A_i,X_i)].$$

²Measured in terms of a *loss function*.

The risk can be estimated in a cross-validation scheme.^a

I.e., for each sample split:

- 1. Each model is created and fitted on the training data: \hat{f}_n^{train} .
- 2. The quality of the model is checked on the validation data
 - Average of $\mathcal{L}(\hat{f}_n^{\mathsf{train}})(O_i)$ in the validation sample.

^aTo measure performance on independent data.

Simulated example

- $X \sim \text{Unif}(-2,2)$
- $X_1^{\text{noise}}, \dots, X_5^{\text{noise}} \sim N(0, 1)$
- ▶ $A \in \{0,1\}$ with distribution given X given by:

$$\mathsf{logit}\,\mathbb{E}[A\,|\,X] = \gamma_0 + \gamma_X^{\mathsf{T}}X$$

▶ $Y \in \{0,1\}$ with distribution given X and A given by:

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X^{\mathsf{T}} X^2$$

RF fitted with different values of tuning parameters (nodesize, mtry):

Different GLM models

GLM models fitted with different covariates and functional form of covariates:

This is all about constructing a good estimator for the conditional expectation f.

This does not necessarily translate into a good estimator for the target $\Psi(P)$.

This is all about constructing a good estimator for the conditional expectation f.

This does not necessarily translate into a good estimator for the target $\Psi(P)$.

TMLE is all about constructing a g-formula estimator which is a good estimator for *the target*.

Fix randomness:

```
set.seed(5)
```

Fix a sample size:

```
n <- 500
```

Generate covariate $X \in [-2, 2]$:

Generate binary treatment decision A:

```
A <- rbinom(n, 1, prob=plogis(-0.25 + 1.2*X))
```

(corresponding to logit $\mathbb{E}[A \mid X] = \gamma_0 + \gamma_X X$)

Generate binary outcome Y according to

$$\mathsf{logit}\,\mathbb{E}[\,Y\mid A,X\,] = \beta_0 + \beta_A A + \beta_X X^2$$

Generate binary outcome Y according to

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

First generate counterfactuals:

```
Y1 <- rbinom(n, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*1))
Y0 <- rbinom(n, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*0))
```

Generate binary outcome Y according to

$$\operatorname{logit} \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

First generate counterfactuals:

```
Y1 <- rbinom(n, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*1))
Y0 <- rbinom(n, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*0))
```

We only observe the counterfactual outcome corresponding to the observed treatment level:

```
Y <- A*Y1 + (1-A)*Y0
```

Observed data:

```
X A Y
1: -1.1991422 0 0
2: 0.7408744 1 0
3: 1.6675031 1 1
4: -0.8624022 0 1
5: -1.5813995 0 1
---
496: -0.3978523 1 0
497: -1.5069379 0 1
498: 1.8340120 1 1
499: 0.6349484 1 1
500: -0.5214807 0 1
```

Observed data:

X A Y 1: -1.1991422 0 0 2: 0.7408744 1 0 3: 1.6675031 1 1 4: -0.8624022 0 1 5: -1.5813995 0 1 -- 496: -0.3978523 1 0 497: -1.5069379 0 1 498: 1.8340120 1 1 499: 0.6349484 1 1 500: -0.5214807 0 1

Counterfactual data:

	Х	Y1	YΟ
1:	-1.1991422	0	1
2:	0.7408744	1	0
3:	1.6675031	1	1
4:	-0.8624022	0	1
5:	-1.5813995	1	1
496:	-0.3978523	0	1
497:	-1.5069379	0	1
498:	1.8340120	1	1
499:	0.6349484	0	0
500:	-0.5214807	0	0

Simulating many observations of counterfactuals allows us to approximate the true ATE:

```
X <- runif(1e6, -2, 2)
Y1 <- rbinom(1e6, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*1))
Y0 <- rbinom(1e6, 1, prob=plogis(-0.9 + 1.9*X^2 + 0.5*0))</pre>
```

The true ATE is then approximately:

```
(true.ate <- mean(Y1 - Y0))
```

[1] 0.070292

since ATE =
$$\mathbb{E}_{P_0}[Y^1] - \mathbb{E}_{P_0}[Y^0]$$
.

Fit correctly specified parametric model:

```
fit.glm <- glm(Y~A+X.squared, data=dt[, X.squared:=X^2],
    family=binomial)</pre>
```

Use model to estimate f(1, X) for all subjects:

And similarly f(0,X) for all subjects:

Then we can estimate the ATE by:

```
(fit.glm <- dt[, mean(pred.glm.A1-pred.glm.A0)])</pre>
```

```
[1] 0.04322891
```

Using a random forest (no tuning):

[1] 0.07005063

Using a misspecified parametric model:

```
fit.glm.mis <- glm(Y~A+X, data=dt, family=binomial)
dt[, pred.glm.mis.A1:=predict(fit.glm.mis, type="response",
    newdata=copy(dt)[, A:=1])]
dt[, pred.glm.mis.A0:=predict(fit.glm.mis, type="response",
    newdata=copy(dt)[, A:=0])]
(fit.glm.mis <- dt[, mean(pred.glm.mis.A1-pred.glm.mis.A0)])</pre>
```

[1] 0.09127889

We can investigate the properties of different estimators —

- We know the true value of ATE: $\psi_0 \approx 0.0702$
- ▶ We have generated the outcome Y according to

$$logit \mathbb{E}[Y \mid A, X] = \beta_0 + \beta_A A + \beta_X X^2$$

We have generated the treatment A according to

$$\operatorname{logit} \mathbb{E}[A \mid X] = \gamma_0 + \gamma_X X$$

If we repeat the experiment of drawing n observations we would every time end up with a different realization of the particular estimator.

Different estimators

G-formula estimator Using an estimator \hat{f}_n for $f(a,X) = \mathbb{E}[Y \mid A = a,X]$, estimate the ATE by: $\hat{\psi}_n^{\text{g-formula}} = \frac{1}{n} \sum_{i=1}^n \left\{ \hat{f}_n(1,X_i) - \hat{f}_n(0,X_i) \right\}$

Inverse probability weighted estimator Using an estimator $\hat{\pi}_n$ for $\pi(a \mid X) = P(A = a \mid X)$, estimate the ATE by:

$$\hat{\psi}_n^{\text{ipw}} = \frac{1}{n} \sum_{i=1}^n \left\{ \frac{A_i Y_i}{\hat{\pi}_n(A_i \mid X_i)} - \frac{(1 - A_i) Y_i}{\hat{\pi}_n(A_i \mid X_i)} \right\}$$

Different estimators

EE estimator Using an estimator \hat{f}_n for $f(a, X) = \mathbb{E}[Y \mid A = a, X]$ and an estimator $\hat{\pi}_n$ for $\pi(a \mid X) = P(A = a \mid X)$, estimate the ATE by:

$$\hat{\psi}_{n}^{\text{ee}} = \hat{\psi}_{n}^{\text{ee}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \frac{A_{i}}{\hat{\pi}_{n}(A_{i} \mid X_{i})} - \frac{(1 - A_{i})}{\hat{\pi}_{n}(A_{i} \mid X_{i})} (Y_{i} - \hat{f}_{n}(A_{i}, X_{i})) + \hat{f}_{n}(1, X_{i}) - \hat{f}_{n}(0, X_{i}) \right\}$$

TMLE estimator Update the estimator $\hat{f}_n \mapsto \hat{f}_n^*$ in a "targeted way" using the information from the estimator $\hat{\pi}_n$, then estimate the ATE by:

$$\hat{\psi}_{n}^{\text{tmle}} = \frac{1}{n} \sum_{i=1}^{n} \left\{ \hat{f}_{n}^{*}(1, X_{i}) - \hat{f}_{n}^{*}(0, X_{i}) \right\}$$

Today we will just (more or less blindly) use software to use TMLE.

Today we will just (more or less blindly) use software to use TMLE.

```
library(tmle)
```

- $Y \in \mathbb{R} \text{ or } Y \in \{0,1\}$
- ▶ $A \in \{0, 1\}$
- ▶ X a vector, matrix or a data frame

- gform
 - ightharpoonup optional regression formula for the propensity score π
 - ▶ on the form A~X1+X2
 - ▶ (overrides call to SuperLearner)
- Qform
 - optional regression formula for the conditional expectation f
 - ▶ on the form Y~X1+X2
 - (overrides call to SuperLearner)

- gform
 - lacktriangle optional regression formula for the propensity score π
 - ▶ on the form A~X1+X2
 - (overrides call to SuperLearner)
- Qform
 - optional regression formula for the conditional expectation f
 - ▶ on the form Y~X1+X2
 - (overrides call to SuperLearner)
- cvQinit=FALSE
 - default is TRUE which means cross-validated predicted values are estimated

- ▶ gform
 - ightharpoonup optional regression formula for the propensity score π
 - ▶ on the form A~X1+X2
 - (overrides call to SuperLearner)
- Qform
 - optional regression formula for the conditional expectation f
 - on the form Y~X1+X2
 - (overrides call to SuperLearner)
- cvQinit=FALSE
 - default is TRUE which means cross-validated predicted values are estimated
- gbound
 - truncation of predicted probabilities of treatment

On a sidenote — tomorrow

- ▶ Q.SL.library
 - optional vector of prediction algorithms to use for SuperLearner in initial estimation of f
- ▶ g.SL.library
 - optional vector of prediction algorithms to use for SuperLearner in initial estimation of π
- Q.discreteSL
 - if TRUE, a discrete super learner is used (rather than ensemble)
 - default is FALSE
- g.discreteSL
 - if TRUE, a discrete super learner is used (rather than ensemble)
 - default is FALSE

Note: The discrete super learner simply picks an algorithm from its library by minimizing the cross-validated empirical risk with respect a loss function.

What were the estimated IP weights?

```
summary(fit.tmle$g$g1W)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.04751 0.19441 0.49405 0.49400 0.79710 0.94109
```

Note that weights close to 0 or to 1 would indicate positivity issues.

What were the estimated IP weights?

```
summary(fit.tmle$g$g1W)
```

```
Min. 1st Qu. Median Mean 3rd Qu. Max. 0.04751 0.19441 0.49405 0.49400 0.79710 0.94109
```

Note that weights close to 0 or to 1 would indicate positivity issues.

What truncation level was used?

```
fit.tmle$gbound
```

[1] 0.03598084 1.00000000

I.e., no weights were truncated.

Practical 1: Explorations based on simulated data

As part of the exercise we will explore —

- 1. Comparing g-formula estimators for different estimators for f; either different logistic regressions or different machine learning algorithms.
- 2. Properties of the g-formula estimator and the IP-weighted estimator, compared to the TMLE estimator.
- 3. Double robustness: Misspecification of the outcome regression (f).

The exercise is described in detail in: day1-practical1.pdf.