1. Define or state:

- a) Sufficient Statistic
- b) Minimal Sufficient Statistic
- c) Likelihood Function for θ
- d) Exponential Family
- e) Ancillary Statistic
- f) Complete Statistic
- g) Factorization Theorem
- h) Basu's Theorem
- i) Cramer Rao Lower Bound
- j) Fisher's Information for θ
- k) Minimum Variance Unbiased Estimator for θ
- l) Maximum Likelihood Estimator for θ
- m) Rao-Blackwell Theorem
- n) Lehmann-Scheffe Theorem
- o) Unbiased Estimator for θ
- 2. Suppose Y_i , i = 1, ..., n, are a random sample with $(Y_i | X_i = x_i) \sim \text{Poisson}(\lambda x_i)$.
 - a) (10 points) Using the factorization criterion, find a non-trivial sufficient statistic for λ .
 - b) (10 points) Find the maximum likelihood estimator of λ .
 - c) (10 points) Calculate the bias for $\hat{\lambda}_{MLE}$.
 - d) (10 points) Calculate the variance of $\hat{\lambda}_{MLE}$.
 - e) (10 points) Calculate the Cramer-Rao Lower Bound for unbiased estimators of λ .
 - f) (10 points) Is $\hat{\lambda}_{MLE}$ the UMVUE for μ ? Justify your answer.

1. Define or state:

- a) Statistical hypothesis
- b) Hypothesis test
- c) Likelihood ratio test
- d) Power function
- e) Size α test
- f) Level α test
- g) Unbiased test
- h) Uniformly most powerful test
- i) Neyman-Pearson Lemma
- j) Karlin-Rubin Theorem
- k) p-value
- 1) Valid p-value
- m) Interval estimator
- n) Coverage probability
- o) Confidence coefficient
- p) Pivotal quantity
- q) Credible set
- r) HPD credible set

2. Let X be a random variable with

- a) Find the most powerful level 0.0975 test of $H_0: \theta = 0$ versus $H_1: \theta = 1$.
- b) What is the power of the test you found in 2a?
- c) Is the test obtained in part 2a the UMP level .0975 test for $H_0: \theta = 0$ versus $H_1: \theta \in \{1, 2\}$? Justify your answer.

3. $X_1, ..., X_n \sim U(\theta, 1)$

- a) Show that $X_{(1)}/(1-\theta)$ is a pivotal quantity.
- b) Find a 1α confidence interval for θ using the pivot.
- c) Find a 1α confidence interval for θ by pivoting the CDF of $X_{(1)}$.

In addition to the material covered on previous exams, you should be able to:

1. Define or state:

- a) Consistency
- b) Asymptotic variance
- c) Asymptotic efficiency
- d) Asymptotic relative efficiency
- e) Asymptotic properties of the MLE
- f) Asymptotic distribution of the median
- g) Asymptotic distribution of the LRT
- h) Wald test
- i) Score test

2. Pick your favorite distribution:

- a) Is it a member of the exponential family?
- b) Find a minimal sufficient statistic.
- c) Find the MLE.
- d) Find the CRLB.
- e) Find the CRLB for $\tau(\theta)$
- f) Is the MLE UMVUE?
- g) Find the LRT for testing $H_0: \theta = \theta_0$ versus $H_1: \theta \neq \theta_0$
- h) Find the UMP test of $H_0: \theta = \theta_0$ versus $H_1: \theta = \theta_1$.
- i) Find a pivotal quantity. Construct a confidence interval based on this pivotal quantity.
- Create a pivot from the CDF. Construct a confidence interval based on this pivotal quantity.
- k) Create an HPD credible set using a conjugate prior.
- 1) What is the exact distribution of the MLE?
- m) What is the asymptotic distribution of the MLE?
- n) What is the asymptotic distribution of the LRT test you found above?