Your Paper

You

December 17, 2023

Abstract

Your abstract.

1 Introduction

1.1 Pre-req

Let f be a homogeneous polynomial in $\mathbb{C}[x,y,z]$ of degree d+1 defining a curve C=V(f) and $\delta=P\partial_x+Q\partial_y+R\partial_z$ be a derivation with P,Q,R of the same degree a. Assume that $\delta(f)\in Der(f)=\{\delta|\delta(f)\in (f)\}$, without loss of generality we can take $\delta(f)=0$, that is $\delta\in Der_0(f)=\{\delta|\delta(f)=0\}$. Let \mathcal{T}_f be the sheaf of logarithmic derivations of f defined by the exact sequence

$$0 \to \mathcal{T}_f \to \mathcal{O}_{\mathbb{P}^2}^{\oplus 3} \to \mathcal{I}_J(d) \to 0 \tag{1}$$

where \mathcal{I}_J is the ideal sheaf defined by the three partial derivatives of f. If δ is a minimal degree derivation then we have an induced section $\tilde{\delta} \in H^0(\mathcal{T}_f(a))$ and a scheme of points Z satisfying the following diagram:

$$\mathcal{O}_{\mathbb{P}^{2}}(-a) = \mathcal{O}_{\mathbb{P}^{2}}(-a)$$

$$\downarrow \tilde{\delta} \qquad \qquad \downarrow \delta \qquad \qquad \downarrow \mathcal{I}_{J}(d) \hookrightarrow \mathcal{O}_{\mathbb{P}^{2}}(d)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel \qquad \qquad \downarrow \mathcal{I}_{Z}(a-d) \hookrightarrow F \longrightarrow \mathcal{I}_{J}(d)$$

The length of Z can be computed from the second Chern class $c_2(\mathcal{T}_f(a))$ with the additional knowledge that $c_2(\mathcal{T}_f) = d^2 - \sum_{p \in Sing(C)} \tau_p(C)$ where $\tau_p(C)$ is the Tjurina number of the singularity p (the sum for every singular point is called the total Tjurina number).

Lemma 1.1. If C is smooth then a = d and $n = d^2$

Proof. By dualizing the sequence

$$0 \to \mathcal{T}_f \to \mathcal{O}_{\mathbb{P}^2}^{\oplus 3} \to \mathcal{O}_{\mathbb{P}^2}(d) \to 0$$

we obtain

$$0 \to \mathcal{O}_{\mathbb{P}^2}(-d) \to \mathcal{O}_{\mathbb{P}^2}^{\oplus 3} \to \mathcal{T}_f(d) \to 0 \tag{2}$$

which implies that $H^0(\mathcal{T}_f(d-1)) = 0$ and $H^0(\mathcal{T}_f(d)) \neq 0$ so a = d and $n = d^2$.

Lemma 1.2. Let $\mathcal{O}_{Z(\delta)}$ be the structure sheaf of the zeroes of the three homogeneous forms defining δ (we will denote this scheme as $Z(\delta)$). Then:

$$\mathcal{E}xt^{1}(F, \mathcal{O}_{\mathbb{P}^{2}}) \cong \mathcal{O}_{Z(\delta)}$$
(3)

Proof. Dualizing the second column gives us the exact sequence:

$$0 \to F^* \to \mathcal{O}_{\mathbb{P}^2}^{\oplus 3} \to \mathcal{O}_{\mathbb{P}^2}(a) \to \mathcal{E}xt^1(F, \mathcal{O}_{\mathbb{P}^2}) \to 0 \tag{4}$$

which implies that $\mathcal{E}xt^1(F,\mathcal{O}_{\mathbb{P}^2})$ is a quotient of $\mathcal{O}_{\mathbb{P}^2}(a)$ by the image Φ of $\mathcal{O}_{\mathbb{P}^2}^{\oplus 3} \to \mathcal{O}_{\mathbb{P}^2}(a)$. Analyzing the support of the exact sequence

$$0 \to F^* \to \mathcal{O}_{\mathbb{P}^2}^{\oplus 3} \to \Phi \to 0$$

shows us that Φ is zero exactly at $Z(\delta)$, hence it corresponds to $\mathcal{I}_{Z(\delta)}(a)$.

Lemma 1.3. Z is contained in $Z(\delta)$.

Proof. By dualizing the third row we obtain

$$0 \to \mathcal{O}_{\mathbb{P}^2}(-d) \to F^* \to \mathcal{O}_{\mathbb{P}^2}(d-a) \to \mathcal{E}xt^1(\mathcal{I}_J(d), \mathcal{O}_{\mathbb{P}^2}) \to \mathcal{E}xt^1(F, \mathcal{O}_{\mathbb{P}^2}) \to \mathcal{E}xt^1(\mathcal{I}_Z(a-d), \mathcal{O}_{\mathbb{P}^2}) \to 0$$
(5)

which simplifies into

$$0 \to \mathcal{O}_{\mathbb{P}^2}(-d) \to F^* \to \mathcal{O}_{\mathbb{P}^2}(d-a) \to \omega_J \to \mathcal{O}_{Z(\delta)} \to \omega_Z \to 0 \tag{6}$$

and hence the support of ω_Z is contained in $Z(\delta)$.

1.2 Addition of a line

Now let $l = l_1 * x + l_2 * y + l_3 * z$ be the equation of a line L with $l_i \in \mathbb{C}$. We can construct a derivation of degree a+1 in $Der_0(f*l)$ from $Der_0(f)$ resulting in a morphism:

$$\delta \mapsto l\delta := l * \delta - \frac{\delta(l) * \delta_E}{d+2} \tag{7}$$

where $\delta_E = x * \partial_x + y * \partial_y + z * \partial_z$ is the Euler derivation. There is then the following commutative diagram:

$$\mathcal{O}_{\mathbb{P}^{2}}(-a-1) = \mathcal{O}_{\mathbb{P}^{2}}(-a-1)$$

$$\downarrow \tilde{\delta} \qquad \qquad \downarrow l\delta$$

$$\mathcal{T}_{f}(-1) \hookrightarrow \mathcal{T}_{f*l} \longrightarrow \mathcal{O}_{L}(a-d-|Z'\cap L|)$$

$$\downarrow \qquad \qquad \qquad \parallel$$

$$\mathcal{I}_{Z}(a-d-1) \hookrightarrow \mathcal{I}_{Z'}(a-d) \longrightarrow \mathcal{O}_{L}(a-d-|Z'\cap L|)$$

which implies that Z' can be divided by points in the line L and points outside the line, given by Z. An interesting fact is that the points in $Z' \cap L$ must be inside $Z(\delta(l))$, while $Z = Z' \setminus L$ are necessarily in the eigenscheme of δ :

Lemma 1.4. $Z' \setminus Z$ is contained in $Z(\delta(l))$ and Z is in the eigenscheme of δ . Furthermore, $Z(\delta(l)) \subset Z(\delta)$.

Proof. We start by remembering that any point in Z' must be in the vanishing of the three homogeneous polynomials constituting $l\delta$, so let $p=(p_1;p_2;p_3)\in Z'\subset V(l\delta)$. We have that $0=(l*\delta-\frac{\delta(l)*\delta_E}{d+2})|_p$, suppose first that p is not in Z and thus $p\in L$ so that l(p)=0. Then $0=\frac{\delta(l)*\delta_E}{d+2}|_p=\frac{\delta(l)(p)}{d+2}(p_1,p_2,p_3)$ which implies that $\delta(l)(p)=0$ so p is in $V(\delta(l))$. Now if $p\in Z$ then $p\in Z'\setminus L$, hence $l(p)=\alpha\neq 0$ and $\alpha*(P(p),Q(p),R(p))=\frac{\delta(l)(p)}{d+1}*(p_1,p_2,p_3)$. We have two cases to consider: If $\delta(l)(p)=0$ then P(p)=Q(p)=R(p)=0 and if $\delta(l)(p)\neq 0$ we would have that p is a fixed point of the rational map induced by the derivation δ . Either case implies that p is in the eigenscheme of δ .

To prove that $Z(\delta(l)) \subset Z(\delta)$ we consider the following diagram:

$$\mathcal{O}_{\mathbb{P}^{2}}(-a) = \mathcal{O}_{\mathbb{P}^{2}}(-a)$$

$$\downarrow^{\delta} \qquad \qquad \downarrow^{\delta(l)}$$

$$\mathcal{T}_{f} \longleftrightarrow \mathcal{O}_{\mathbb{P}^{2}}^{\oplus 3} \xrightarrow{\nabla(l)} \mathcal{O}_{\mathbb{P}^{2}}$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \downarrow$$

$$\mathcal{T}_{f} \longleftrightarrow F \longrightarrow \mathcal{O}_{Z(\delta(l))}$$

By comparing the supports in the third row we conclude that $Z(\delta(l))$ is in supp(F), which is $Z(\delta)$. \square

Corollary 1.4.1. If \mathcal{T}_f is free then $Z' \subset Z(\delta(l)) \cap L$

Proof. Since \mathcal{T}_f is free we have that Z is empty and $Z' \subset L$. Any point $p \in Z'$ must be in the zero set of the section $l\delta = l * \delta - \frac{\delta(l)}{d+2}\delta_E$, but since l(p) = 0 we have that $\frac{\delta(l)(p)}{d+2}\delta_E(p) = \frac{\delta(l)(p)}{d+2}(p_1, p_2, p_3) = 0$ so $\delta(l)(p) = 0$.

Corollary 1.4.2. Let L be a generic line so that it intersects the curve X given by f only in simple points. Then:

- \mathcal{T}_f free implies that Z' has length a
- X smooth implies that Z' has length $h^0(\mathcal{O}_Z) + d = d^2 + d$

Proof. The computation of $c_2\mathcal{T}_f(a)$ and $c_2\mathcal{T}_{f*l}(a+1)$ can be simplified in the following way: Let $n=h^0(\mathcal{O}_Z), \ n'=h^0(\mathcal{O}_Z), \ j=h^0(\mathcal{O}_J)$ and $j'=h^0(\mathcal{O}_{J'})$. Then $n+j=d^2-a*d+d^2$ and $n'+j'=(d+1)^2-(a+1)*(d+1)+(a+1)^2$.

Since L contributes with d+1 simple points in any case, we know how the total Tjurina number behaves: we have that j'=j+d+1. So by subtracting one equation from the other we have that $n'-n+d+1=-d^2+a*d-a^2+d^2+2d+1-ad-a-d-1+a^2+2a+1=-a^2+2d+1-a-d-1+a^2+2a+1=d+a+1$ so that n'-n=a. The first case is when n=0 so that n'=a, the second case happens when $n=d^2$ and a=d so that $n'=d^5+d$.

Possible question: Are all a points the entire $L \cap Z(\delta(l))$????

Proposition 1.5. If \mathcal{T}_f or better, the additional points are given by: is free then $Z' = L \cap Z(\delta(l))$

$$Proof. \ \, \overline{\text{TODO}!!!!!}$$

Example 1.1. Consider the union of two conics sharing a unique tangent given by x = 0, we can write explicitly $f = (z^2 - x * y) * (z^2 - x * y + x * z) * (z^2 - x * y - x * z)$. Denote X = V(f) and let L = V(a * x + b * y + c * z) be a general line.

A minimal derivation of f has degree 2 and can be found by computing the canonical derivation of the pencil of two conics sharing one tangent, say $\delta = P * \partial_x + Q * \partial_y + R * \partial_z$ with P, Q, R of degree 2. Explicitly we have that $P = -x^2, Q = 2 * z^2 + x * y, R = x * z$.

We can also compute the length of Z and Z' with the additional knowledge of the Tjurina numbers for the singularities of $X \cup L$ and conclude that X is free (hence Z is empty) and Z' has length 2. So we have the following diagram:

$$\mathcal{O}_{\mathbb{P}^{2}}(-3) = \mathcal{O}_{\mathbb{P}^{2}}(-3)$$

$$\downarrow_{\tilde{\delta}} \qquad \qquad \downarrow_{l\delta}$$

$$\mathcal{T}_{f}(-1) \longleftrightarrow \mathcal{T}_{f*l} \longrightarrow \mathcal{O}_{L}(-3 - |Z' \cap L|)$$

$$\downarrow_{\psi} \qquad \qquad \qquad \parallel$$

$$\mathcal{O}_{\mathbb{P}^{2}}(-4) \longleftrightarrow \mathcal{I}_{Z'}(-3) \longrightarrow \mathcal{O}_{L}(-3 - |Z' \cap L|)$$

The third row implies that Z' is contained in L so that $|Z' \cap L| = 2$. By the lemma above we also conclude that $Z' \subset V(\delta(l)) = V(a * P + b * Q + c * R)$, so it is possible to provide a form for both points in Z' in terms of a, b, c by considering the intersection of $V(\delta(l))$ and L:

Im working in the affine patch z = 1 because in my tests with code, Z' never touched the line z = 0. But I'm not sure how to argue that here. We work in the affine patch z=1, a*P+b*Q+c*R=0 implies that $-a*x^2+x*(c+b*y)+2*b=0$. Using the equation of the line b*y=-a*x-c we find $-2*a*x^2+2*b=0$ and hence (for a general line) $Z'=\{(\sqrt{\frac{b}{a}}:\frac{-\sqrt{a*b}-c}{b}:1),(-\sqrt{\frac{b}{a}}:\frac{\sqrt{a*b}-c}{b}:1)\}$. Denote the first point by C and the second point by D.

There are two distinguished lines for this example: x=0 and z=0. The first is the unique tangent for the singular point (0:1:0) and the second is the unique line passing through both singularities (0:1:0), (1:0:0). The intersection of each of those two lines with L gives then two points A=(0:-c:b) and B=(-b:a:0) in L. By projecting A,B,C,D to the line z=0 we can compute the cross-ratio $CR(A,B;C,D)=\frac{AC}{BC}*\frac{BD}{AD}$:

$$CR(A, B; C, D) = \frac{\sqrt{\frac{b}{a}}}{\sqrt{a*b} + c - \sqrt{a*b}} * \frac{-\sqrt{a*b} + c + \sqrt{a*b}}{-\sqrt{\frac{b}{a}}} = -1$$

$$(8)$$

So the cross-ratio is constant for any a, b, c, provided that $a \neq 0$ and $b \neq 0$. (I think there is a better argument here instead of requiring the non-vanishing conditions of a, b, ...).

Example 1.2. Consider a pencil of two conics sharing two tangents given by $C_1 = x^2 - z^2$ and $C_2 = y^2$ and pick the union of two smooth conics belonging to the arrangement. Let L = V(a*x + b*y + c*z) be a general line. Then the canonical derivation is given by $\delta' = y*\delta$ and hence the minimal derivation is $\delta = P*\partial_x + Q*\partial_y + R*\partial_z$ with P,Q,R of degree 1 which implies that $\delta(l) = a*P + b*Q + c*R$ is also of degree 1. Using the fact that the Tjurina number for each singularity is 3 we conclude that the length of Z is $c_2(\mathcal{T}_C(1)) = 1$, the same can be done for Z' since we just need to add each intersection with L in the total Tjurina number. If L is generic we conclude that Z' has length $c_2(\mathcal{T}_{C \cup L}(2)) = 2$. To understand the geometric configuration of Z and Z' we consider the following commutative diagram:

$$\mathcal{O}_{\mathbb{P}^{2}}(-2) = \mathcal{O}_{\mathbb{P}^{2}}(-2)$$

$$\downarrow \tilde{\delta} \qquad \qquad \downarrow l\delta$$

$$\mathcal{T}_{f}(-1) \hookrightarrow \mathcal{T}_{f*l} \longrightarrow \mathcal{O}_{L}(-2 - |Z' \cap L|)$$

$$\downarrow \qquad \qquad \downarrow \qquad \qquad \parallel$$

$$\mathcal{I}_{Z}(-3) \hookrightarrow \mathcal{I}_{Z'}(-2) \longrightarrow \mathcal{O}_{L}(-2 - |Z' \cap L|)$$

Using the third row of the diagram and the previous lemma we can also conclude that the point Z lies outside of L and hence $Z \cap L = 1$ for a generic line L. Let L_{δ} be the line defined by $\delta(l)$, the intersection $L_{\delta} \cap L$ is precisely the unique point in $Z' \setminus Z$. We can compute this point using the explicit form for the minimal derivation:

$$P = z, Q = 0, R = x \implies \delta(l) = a * z + c * x$$
$$a * x + b * y + c * z = 0 \implies L \cap L_{\delta} = \{(\frac{-a}{c} : \frac{-(c^2 - a^2)}{bc} : 1)\}$$

Now the splitting, I'm not sure where to put it Now, $|Z' \cap L| = 1$ implies that there is a surjection:

$$\mathcal{T}_{f*l}|_L \to \mathcal{O}_L(-3) \to 0 \tag{9}$$

Since $c_1(\mathcal{T}_{f*l}) = -4$ we need only to consider the possible splittings (-1, -3) and (0, -4). If we had $\mathcal{T}_{f*l}|_L \cong \mathcal{O}_L \oplus \mathcal{O}_L(-4) \to \mathcal{O}_L(-3)$ there would be a cokernel corresponding to a point in L. But since this morphism is a surjection we conclude this case does not occur, so we have $\mathcal{T}_{f*l}|_L \cong \mathcal{O}_L(-1) \oplus \mathcal{O}_L(-3)$.

Example 1.3. Consider our last example with L a sufficiently generic line passing through the unique point Z we still have that the length of Z' is 2. I'm a bit confused here because of the third exact row

$$0 \to \mathcal{I}_Z(-3) \to \mathcal{I}_{Z'}(-2) \to \mathcal{O}_L(-2 - |Z' \cap L|) \to 0 \tag{10}$$

Since Z is in L by construction the exact sequence above seems to be in contradiction. Because it is saying that L passes through Z' but does not intersect with Z. I think the contradiction is I assumed

that $l\delta$ is a minimal derivation so we conclude that δ itself is a minimal derivation for $C \cup L$ and thus it is free?

The original purpose of the example 1.3 was to look at $L_{\delta} = \delta(l)$ to conclude that $\mathcal{T}_{f*l}|_{L_{\delta}} = \mathcal{O}_{L_{\delta}}(-4) \oplus \mathcal{O}_{L_{\delta}}$ as we spoke in our last meeting.

Proposition 1.6. Let X = V(f) be a free curve with $\mathcal{T}_f \cong \mathcal{O}_{\mathbb{P}^2}(-a) \oplus \mathcal{O}_{\mathbb{P}^2}(-b)$ where $a \leq b$ and suppose that l is a linear form such that $H^0(\mathcal{T}_{l*f}(a)) \neq 0$. Then \mathcal{T}_{l*f} is free.

Proof. Let ξ be a derivation of degree a such that $\xi(l*f)=0$. The Leibniz rule implies that $f*\xi(l)=-l*\xi(f)$ so $\xi(f)\in(f)$ and hence ξ is in Der(f) (and $\xi(f)=-\frac{\xi(l)}{l}*f$). There is a canonical morphism given by $\mathcal{T}_{l*f}\to\mathcal{T}_f$ sending ξ to $\xi-\frac{\xi(f)}{f*deg(f)}*\delta_E$