FILIÈRE MP

COMPOSITION DE MATHEMATIQUES – A – (XLCR)

(Duré: 4 heures)

L'utilisation des calculatrices n'est pas autorisée pour cette épreuve.

Dans tout le problème

- E est un \mathbb{R} -espace vectoriel de dimension finie $n \in \mathbb{N}^*$,
- Id est l'application identité sur E: Id(x) = x pour tout $x \in E$,
- L(E) est l'algèbre des endomorphismes de E,
- GL(E) est le groupe des automorphismes de E,
- $E^* = L(E, \mathbb{R})$ est l'espace vectoriel des formes linéaires sur E,
- A(E) est l'espace vectoriel des applications $\omega: E \times E \to \mathbb{R}$ qui sont bilinéaires et antisymétriques, c'est-à-dire qui vérifient, quel que soit $(x,y,z) \in E^3$ et quel que soit $\lambda \in \mathbb{R}$,

$$\omega(\lambda x+y,z) = \lambda \omega(x,z) + \omega(y,z), \qquad \omega(x,\lambda y+z) = \lambda \omega(x,y) + \omega(x,z),$$

$$\omega(x,y) = -\omega(y,x).$$

Pour tout $\omega \in A(E)$ et $x \in E$, on note $\omega(x,\cdot)$ la forme linéaire définie par

$$\left| \begin{array}{ccc} \omega(x,\cdot) : & E & \to & \mathbb{R} \\ & y & \mapsto & \omega(x,y) \end{array} \right|$$

Pour tout $\omega \in A(E)$, on note φ_{ω} l'application linéaire définie par

$$\begin{vmatrix}
\varphi_{\omega} : E & \to E^* \\
x & \mapsto \omega(x, \cdot)
\end{vmatrix}$$

Un élément ω de A(E) est appelé forme symplectique sur E si φ_{ω} est un isomorphisme de $E \operatorname{sur} E^*$.

Un élément J de L(E) est appelé **structure complexe sur** E s'il vérifie $J^2 = -Id$.

On dit qu'une forme symplectique ω sur E dompte une structure complexe J si $\omega(x,J(x))>0$ pour tout $x \in E \setminus \{0\}$.

On note

- $\mathcal{M}_n(\mathbb{R})$ l'algèbre des matrices carrées de taille n à coefficients réels,
- $GL_n(\mathbb{R})$ le groupe des matrices inversibles de taille n à coefficients réels,
- I_n la matrice unité de taille n,
- lorsque n est pair, J_n la matrice carrée de taille n définie par blocs

$$J_n = \begin{pmatrix} 0 & -I_{\frac{n}{2}} \\ I_{\frac{n}{2}} & 0 \end{pmatrix}$$

- det l'application déterminant sur $\mathcal{M}_n(\mathbb{R})$,
- ${}^{t}M$ la transposée de la matrice M.

On identifie tout élément de $\mathcal{M}_1(\mathbb{R})$ à un nombre réel.

La partie I est utilisée dans les parties III et IV. Les parties II et III indépendantes entre elles, sont utilisées dans la partie IV.

Partie I: Bases symplectiques

- 1. Montrer que la dimension de l'espace vectoriel E^* vaut n.
- 2. Montrer que $\omega(x,x)=0$ pour tout $\omega\in A(E)$ et pour tout $x\in E$.
- 3. Soit $\omega \in A(E)$ et $\mathcal{B} = (b_1, \dots, b_n)$ une base de E.
 - (a) Montrer qu'il existe une unique matrice $M \in \mathcal{M}_n(\mathbb{R})$, dont on précisera les coefficients, telle que pour tout $(x,y) \in E^2$, $\omega(x,y) = {}^t X M Y$ où $X,Y \in \mathbb{R}^n$ sont les matrices colonnes représentant respectivement x et y dans la base \mathcal{B} :

$$X = \begin{pmatrix} x_1 \\ \vdots \\ x_n \end{pmatrix}, \quad Y = \begin{pmatrix} y_1 \\ \vdots \\ y_n \end{pmatrix}, \quad x = x_1b_1 + \dots + x_nb_n, \\ y = y_1b_1 + \dots + y_nb_n.$$

On notera alors $M = \text{Mat}_{\mathcal{B}}(\omega)$.

- (b) Montrer que M est antisymétrique, c'est-à-dire que ${}^tM = -M$.
- (c) Montrer que l'espace vectoriel A(E) est de dimension 1 lorsque E est de dimension 2.
- (d) Montrer l'équivalence entre les trois énoncés suivants.
 - (\mathcal{E}_1) : ω est une forme symplectique sur E.
 - (\mathcal{E}_2): Pour tout $x \in E \setminus \{0\}$, il existe $y \in E$ tel que $\omega(x,y) \neq 0$.
 - (\mathcal{E}_3) : Mat_{\mathcal{B}} (ω) est inversible.
- 4. Montrer que, s'il existe une forme symplectique sur E, alors E est de dimension paire.

Dorénavant, jusqu'à la fin du problème, n est un entier pair ≥ 2 .

5. Montrer que l'application ω_0 définie par

$$\omega_0: \mathbb{R}^n \times \mathbb{R}^n \to \mathbb{R}$$

$$(X,Y) \mapsto {}^t X J_n Y$$

est une forme symplectique sur \mathbb{R}^n .

Jusqu'à la fin de cette partie, on fixe une forme symplectique ω sur E.

Le but des questions 6 à 9 est de montrer qu'il existe une base \mathcal{B} de E telle que $\operatorname{Mat}_{\mathcal{B}}(\omega) = J_n$.

- 6. Traiter le cas où E est de dimension 2.
- 7. Soit F un sous-espace vectoriel de E.

(a) Montrer que, pour toute forme linéaire $u: F \to \mathbb{R}$, il existe une forme linéaire $\widetilde{u}: E \to \mathbb{R}$ dont la restriction à F coïncide avec u.

On note F^ω le sous-espace vectoriel de E défini par

$$F^{\omega} = \{ x \in E : \forall y \in F, \, \omega(x, y) = 0 \}$$

et ψ_F l'application linéaire définie par

$$\begin{vmatrix}
\psi_F : & E & \to & F^* \\
 & x & \mapsto & \varphi_\omega(x)|_F
\end{vmatrix}$$

où $\varphi_{\omega}(x)|_F$ est la restriction de $\varphi_{\omega}(x)$ à F.

- (b) Montrer que la restriction de ω à $F \times F$ est une forme symplectique sur F si et seulement si $F \cap F^{\omega} = \{0\}$.
- (c) Quels sont le noyau et l'image de ψ_F ?
- (d) Montrer que $\dim(F) + \dim(F^{\omega}) = \dim(E)$.
- (e) Montrer que, si la restriction de ω à $F \times F$ est une forme symplectique sur F, alors $E = F \oplus F^{\omega}$ et la restriction de ω à $F^{\omega} \times F^{\omega}$ est une forme symplectique sur F^{ω} .
- 8. Montrer par récurrence qu'il existe une base $\widetilde{\mathcal{B}}$ de E telle que

$$\operatorname{Mat}_{\widetilde{\mathcal{B}}}(\omega) = \begin{pmatrix} J_2 & 0 & \cdots & 0 \\ 0 & J_2 & \ddots & \vdots \\ \vdots & \ddots & \ddots & 0 \\ 0 & \cdots & 0 & J_2 \end{pmatrix}$$

9. Conclure. En déduire que ω dompte au moins une structure complexe sur E.

Partie II: Deux outils sur les polynômes

On note $\mathbb{R}_d[X]$ l'espace vectoriel des polynômes de degré $\leqslant d$ à coefficients réels, pour tout $d \in \mathbb{N}$.

10. Soit $P,Q\in\mathbb{R}[X]$ des polynômes non nuls de degrés respectifs p et q strictement positifs. Montrer que l'application linéaire $L_{P,Q}$ définie par

$$\begin{vmatrix} L_{P,Q} : & \mathbb{R}_{q-1}[X] \times \mathbb{R}_{p-1}[X] & \to & \mathbb{R}_{p+q-1}[X] \\ (V,W) & \mapsto & VP + WQ \end{vmatrix}$$

est un isomorphisme si et seulement si P et Q sont premiers entre eux dans $\mathbb{R}[X]$.

11. Soit $d \in \mathbb{N}^*$. Construire une application

$$\begin{array}{ccc} r: & \mathbb{R}_d[X] & \to & \mathbb{R} \\ & P & \mapsto & r(P) \end{array}$$

polynomiale en les coefficients de P, telle que, si r(P) est non nul, alors les racines de P dans \mathbb{C} sont simples.

<u>Indication</u>: On pourra utiliser la question précédente.

12. Soit $d \in \mathbb{N}^*$ et f une fonction polynomiale sur \mathbb{R}^d . On suppose que la fonction f est non nulle. Montrer que $f^{-1}(\mathbb{R} \setminus \{0\})$ est dense dans \mathbb{R}^d .

<u>Indication</u>: On pourra utiliser le fait qu'un polynôme non nul à une variable n'a qu'un nombre fini de racines.

Dans les parties III et IV, on fixe deux formes symplectiques ω et ω_1 sur E.

Partie III: Réduction simultanée

13. Montrer qu'il existe un unique $u \in GL(E)$ tel que $\omega_1(x,y) = \omega(u(x),y)$ pour tout $(x,y) \in E^2$. Montrer alors que u appartient à l'ensemble S défini par

$$S = \left\{ u \in GL(E) : \forall (x,y) \in E^2, \, \omega(x,u(y)) = \omega(u(x),y) \right\}.$$

Dans les questions 14 à 19, on suppose que E est de dimension 4.

- 14. Soit \mathcal{B} une base de E telle que $\operatorname{Mat}_{\mathcal{B}}(\omega) = J_4$. Soit $U \in \mathcal{M}_4(\mathbb{R})$ la matrice de u dans la base \mathcal{B}
 - (a) Quelle relation y a-t-il entre les matrices J_4 et U?
 - (b) Montrer qu'il existe $N \in \mathcal{M}_2(\mathbb{R})$ et $\alpha, \beta \in \mathbb{R}$ tels que

$$U = \begin{pmatrix} N & \alpha J_2 \\ \beta J_2 & {}^t N \end{pmatrix} .$$

(c) Déterminer, en fonction de N, α et β les coefficients du polynôme T défini par $T(X) = \det(N - XI_2) + \alpha\beta$. Montrer que T est un polynôme annulateur de U.

Dans les questions 15 à 19, on suppose que u n'admet aucune valeur propre réelle.

Le but des questions 15 à 19 est de montrer qu'il existe une base $\widetilde{\mathcal{B}}$ de E, r > 0 et $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$ tels que

$$\operatorname{Mat}_{\widetilde{\mathcal{B}}}(\omega) = J_4$$
 \boldsymbol{et} $\operatorname{Mat}_{\widetilde{\mathcal{B}}}(\omega_1) = r \begin{pmatrix} 0 & -R_{-\theta} \\ R_{\theta} & 0 \end{pmatrix}$

$$\boldsymbol{ou} \ R_{\theta} = \begin{pmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{pmatrix}.$$

- 15. Montrer que U est diagonalisable sur \mathbb{C} . En déduire qu'il existe $\lambda \in \mathbb{C} \setminus \mathbb{R}$ et des vecteurs Z et Y de \mathbb{C}^4 linéairement indépendants sur \mathbb{C} tels que $UZ = \lambda Z$ et $UY = \lambda Y$.
- 16. Soient Z_1, Z_2, Y_1, Y_2 des vecteurs de \mathbb{R}^4 tels que $Z = Z_1 + iZ_2$ et $Y = Y_1 + iY_2$. Soient $(z_1, z_2, y_1, y_2) \in E^4$ de coordonnées respectives Z_1, Z_2, Y_1, Y_2 dans la base \mathcal{B} . Montrer que $\widetilde{\mathcal{B}} := (z_1, z_2, y_1, -y_2)$ est une base de E.
- 17. Montrer que

$$\omega(z_1, z_2) = \omega(y_1, y_2) = 0, \omega(z_1, y_1) = -\omega(z_2, y_2), \omega(z_1, y_2) = \omega(z_2, y_1).$$

- 18. Montrer que, quitte à remplacer Y par ξY avec $\xi \in \mathbb{C} \setminus \{0\}$ bien choisi, on a $\omega(z_1, y_1) = -1$ et $\omega(z_1, y_2) = 0$.
- 19. Montrer qu'il existe r > 0 et $\theta \in \mathbb{R} \setminus \pi \mathbb{Z}$ tels que

$$\operatorname{Mat}_{\widetilde{\mathcal{B}}}(u) = r \begin{pmatrix} R_{\theta} & 0 \\ 0 & R_{-\theta} \end{pmatrix}$$

et conclure.

Jusqu'à la fin de cette partie, on ne fait plus d'hypothèse sur la dimension de E ni sur l'endomorphisme u. On considère un polynôme $P \in \mathbb{R}[X]$ annulateur de u et une décomposition $P = P_1 \cdots P_r$, où $r \in \mathbb{N}^*$ et P_1, \ldots, P_r sont des polynômes premiers entre eux deux à deux dans $\mathbb{R}[X]$. On note $F_j = \ker[P_j(u)]$ pour $j = 1, \ldots, r$.

- 20. Montrer que $E = F_1 \oplus \cdots \oplus F_r$ et que F_j est stable par u pour $j = 1, \ldots, r$.
- 21. Montrer que, pour tous j et k appartenant à $\{1,\ldots,r\}$ et distincts, on a $F_k \subset F_j^{\omega}$ et $F_k \subset F_j^{\omega_1}$ (la notation F^{ω} est définie en question 7).

On dit alors que F_1, \ldots, F_r sont deux à deux orthogonaux pour ω et pour ω_1 .

- 22. En déduire que, pour tout $j \in \{1, ..., r\}$, les restrictions de ω et ω_1 à $F_j \times F_j$ sont des formes symplectiques sur F_j .
- 23. On suppose que le polynôme caractéristique de u est à racines au plus doubles dans \mathbb{C} . Montrer que E est la somme directe de sous-espaces de dimension 2 ou 4, deux à deux orthogonaux pour ω et ω_1 , et sur lesquels les restrictions de ω et ω_1 sont des formes symplectiques.

Partie IV: Structures complexes domptées simultanément

Dans cette partie, nous allons étudier les liens entre les propositions

- (\mathcal{F}_1) : Il existe une structure complexe domptée par ω et par ω_1 .
- $(\mathcal{F}_2):$ Le segment $[\omega, \omega_1] = \{(1-\theta)\omega + \theta\omega_1; \theta \in [0,1]\}$ est inclus dans l'ensemble des formes symplectiques sur E.
- 24. Soit u l'automorphisme de E défini en question 13. On suppose que (\mathcal{F}_2) est satisfaite et que le polynôme caractéristique de u est à racines au plus doubles dans \mathbb{C} . Montrer que (\mathcal{F}_1) est satisfaite.

<u>Indication</u>: On pourra démontrer puis utiliser le fait que, pour tout $\theta \in \mathbb{R} \setminus \pi\mathbb{Z}$, il existe $\phi \in \mathbb{R}$ tel que, pour tout $X \in \mathbb{R}^2 \setminus \{0\}$, ${}^tXR_{\phi}X > 0$ et ${}^tXR_{\theta+\phi}X > 0$.

- 25. Soit S l'ensemble défini en question 13. Montrer que l'ensemble des éléments de S, dont le polynôme caractéristique P est à racines au plus doubles dans \mathbb{C} , est dense dans S.

 <u>Indication</u>: On pourra utiliser r(P') où l'application r est définie en question 11.
- 26. Que peut-on conclure?