CHEATSHEET

January 17, 2025

MobCom Cheatsheet

Creating a cheat sheet for David Tse's "Fundamentals of Wireless Communication" involves summarizing the key mathematical concepts and principles in a compact format. Here's an organized breakdown:

1.0.1 1. Signal Representation

- Baseband and Passband Signals:
 - $-x(t) = \operatorname{Re}\{\tilde{x}(t)e^{j2\pi f_c t}\}\$
 - Complex baseband: $\tilde{x}(t) = x_I(t) + jx_O(t)$
- Fourier Transform: $-X(f) = \int_{-\infty}^{\infty} x(t)e^{-j2\pi ft}dt$ Parseval's Theorem: $\int |x(t)|^2 dt = \int |X(f)|^2 df$

1.0.2 2. Channel Models

- Additive White Gaussian Noise (AWGN):
 - -y(t) = h(t) * x(t) + n(t)
 - $-n(t) \sim \mathcal{CN}(0, N_0)$
- Multipath Channel: $-h(t) = \sum_{l=1}^{L} h_l \delta(t \tau_l)$
 - Coherence Bandwidth: $B_c \sim \frac{1}{\Delta \tau}$
- Doppler Shift:
- $\begin{array}{c} -\ f_d = \frac{v}{\lambda} \\ -\ \text{Coherence Time:}\ T_c \sim \frac{1}{f_d} \\ \bullet \ \ \text{Rayleigh and Rician Fading:} \end{array}$
 - Rayleigh: $|h| \sim \text{Rayleigh}(\sigma)$
 - Rician: $|h| \sim \text{Rice}(K)$

1.0.3 3. Capacity

- Shannon's Capacity:
 - $C = B \log_2(1 + \text{SNR})$ for AWGN.

• MIMO Channel Capacity:

$$-C = \log_2 \det \left(I + \frac{\text{SNR}}{M_t} H H^\dagger \right)$$
 • Water-Filling Algorithm:

- - Power allocation: $P_i = \left(\mu \frac{\sigma_i^2}{|h_i|^2}\right)^+$

1.0.4 4. Diversity

- Order of Diversity:

 - $-P_{\text{outage}} \propto \text{SNR}^{-d}$ -d = Number of Independent Paths
- Combining Techniques:
 - Maximal Ratio Combining (MRC): $y = \sum h_i^* y_i$
 - Selection Combining: Select the best h_i .

1.0.5 **5.** Modulation

• PSK:

$$-\ s_k = e^{j2\pi k/M}, \, k \in [0, M-1]$$

- QAM:
 - Constellation points: $\sqrt{E_s} \cdot (\pm 1 \pm j)$
- Probability of Error:
 - $-P_e \sim Q\left(\sqrt{2{\rm SNR}}\right)$ for BPSK.

1.0.6 6. Coding

- Channel Coding Theorem:
 - -R < C: Reliable transmission possible.
- Hamming Bound:
 - Minimum distance d_{\min} : 2t + 1, where t is the error-correcting capability.
- LDPC and Turbo Codes:
 - Iterative decoding with near-capacity performance.

1.0.7 7. OFDM

• Orthogonality:
$$-\int_0^T e^{j2\pi f_n t} e^{-j2\pi f_m t} dt = 0, \ n \neq m$$

• Subcarrier Spacing:

–
$$\Delta f = \frac{1}{T}$$
, $T = \text{Symbol duration}$.

- Cyclic Prefix:
 - Prevents ISI by appending $T_{\rm CP} \geq \tau_{\rm max}$.

1.0.8 8. MIMO

• Spatial Multiplexing:

$$-y = Hx + n, H \in \mathbb{C}^{N_r \times N_t}$$

• Diversity-Multiplexing Tradeoff:

$$- \ d + r = N_t \cdot N_r$$

1.0.9 9. Random Matrices

• Wishart Distribution:

$$-\ W = XX^\dagger, X \sim \mathcal{CN}(0,I)$$

- Eigenvalue Distribution:
 - Marchenko-Pastur law.

1.0.10 10. Estimation and Detection

• MMSE Estimator: $- \ \hat{x} = \frac{\sigma_x^2 h^* y}{\sigma_x^2 |h|^2 + N_0}$ • ML Detection:

$$- \hat{x} = \frac{\sigma_x^2 h^* y}{\sigma_x^2 |h|^2 + N_0}$$

$$-\ \hat{x} = \mathop{\arg\min}_{x} ||y - Hx||^2$$

This cheat sheet simplifies key formulas and principles. For deeper understanding, refer to the text for derivations, examples, and insights.

[]: