* Big - grande operação.
Introduups:
Big D mede quanto "tempo" um algoritmo leve pere ser executado.
Medinos a velocidade de un algoritmo com base no número aproximado de Etapas
que ele leva para ser executado. Esse cálculo é feito em relação ao tamenho da
entrada, que denotamos por n. Portanto, se recebermos um vetor de compri-
mento n estamos disendo que queromos saber aproximadamente quantas operações o algoritmo
exigiriz para esse comprimento.
. Melhor solução?
· Internal 20 Crisas
Algoritmo 1 - Algoritmo 2 -
Resolve o problems en $O(n)$ Resolve o problems en $O(n^2)$
up pior (350 M vezes up pior caro MXM vezes
O que Big O significa?
Bio O auto a maita a manta de como
Big O avalia a <u>vapidez</u> com que no «so algorítmo lide com um grande número de itens.
1. Julgamos a velocidade com base no número de Étapas e não no tempo calculado
(ou seja, segundos ou minutos).
2. Nós ws importamos com as etapas que armentam com base no tamanho da
entrada.

1º) Int vinte = 20;
inti;
for (i=0; i < vinte; i++) {
for (i = 0, i < vinte; i++) { Printf ("Hello World\n");
}

3° Int n, i, i,
Scanf (" %d", &n);
for (i = 0; i < m; i++){
for (j=0;j <n;d++) th="" {<=""></n;d++)>
printf ("%d", i*{);
}
}

1º não depende da entrada. Não importa o tamanha dos dados ele sempre realizavá o mesmo número de operações. Portanto é um algoritmo de complexidade O(1)-constante. Ele sempre executa o mesmo número de operações, porque o bop sempre vai de 0-20.

Dà o 2° usa un loop for, ele intere a entre de para os 1.000.000 intens, isso é o que Chamamos de O(n).

Com o 30) que possui for animhados, ele irá interagir 1.000.000 vezes para todos os 1.000.000

Le elementos para um total de 1.000.000.000.000 l sso o torna um algoritmo (102). l sso é

1 milhao contra 1 trilhas de operações para o 20) vs 3°).

Graficemente:

Big O Complexity

O pior Caso:

Puendo calculamos a complexidade do tempo Big O de um algoritmo, devenos nos basear na possibilidade do pior caso.

Exemplo Simples:

mellor caso
No melhor dos hipótes, interamos aperas 1 Hem, então realmente encontramos o iten
no tempo O(1) - nesse caso, o tamanho do vetor não ivá importar, porém esse é um caso extremo
e muito varo, alem de mas fornecer muito significado.
, , , , , , , , , , , , , , , , , , , ,
No caso médio, ironos interar metade do vetor, que é (015 n)
No pior caso, teriamos que interar todo o vetor para encontrar o
o último item, que é U(n).
Assim dizemos que nossa complexidade Big O é o pior cenário, o que nos permi
contabilizar com segurança qualquer resultado.

Por Paulo Henrique Diviz de Lima Alencar.

Referências:
BIG O NATATION TIME AND SPACE COMPLEXITY. Skilled.dev, 2020. Disponível em: https://skilled.dev/course/big-o-time-and-space-complexity . Acesso em: 25 dez. de 20