Домашнее задание для студентов 2 курса к 6-му модулю: 2 этап (По программе курса физики на 3 семестра)

<u>Примечание</u>: необходимые табличные данные (константы двухатомных молекул, табличные значения масс нуклидов и прочее смотреть на стенде кафедры между ауд. 475 и 477).

Двухатомная молекула.

- 1. Найти для молекул H_2 и NO энергию, необходимую для возбуждения их на первый вращательный уровень.
- 2. Найти для молекулы HCl квантовые числа J двух соседних вращательных уровней, с разностью энергий 7,86 м $_{2}$ B.
- 3. Для двухатомной молекулы известны интервалы между тремя последовательными вращательными уровнями: $\Delta E_1 = 0.20 \ \text{мэВ}$ и $\Delta E_2 = 0.30 \ \text{мэВ}$. Найти вращательную энергию среднего уровня.
- 4. Найти температуры, при которых средняя кинетическая энергия поступательного движения молекул H_2 и N_2 равна их вращательной энергии в состоянии с квантовым числом J=1.
- 5. Найти энергию, необходимую для возбуждения молекулы водорода из основного состояния на первый колебательный уровень ($\upsilon=1$). Во сколько раз эта энергия больше энергии возбуждения данной молекулы на первый вращательный уровень (J=1)?
- 6. Найти разность энергий состояний с квантовыми числами $\upsilon'=1,\ J'=0,\$ и $\upsilon=0,\ J=5$ у молекулы OH.
- 7. Вычислить для молекулы HF число вращательных уровней, расположенных между основным и первым возбужденным колебательными уровнями, считая вращательные состояния не зависящими от колебательных.
- 8. Найти момент инерции молекулы СН и расстояние между ее ядрами, если частотные интервалы между соседними линиями чисто вращательного спектра этих молекул равны $\Delta \omega = 5,50 \cdot 10^{12} \ c^{-1}$.
- 9. Известны длины волн двух соседних линий чисто вращательного спектра молекул HCl: 117 и 156 мкм. Определить:
- а) момент инерции этих молекул;
- б) вращательные квантовые числа уровней, между которыми происходят переходы, соответствующие этим линиям.
- 10. Сколько линий содержит чисто вращательный спектр молекул ОН?
- 11. В колебательно-вращательном спектре поглощения молекул НВг частоты нулевых линий, соответствующих запрещенным переходам ($\Delta J=0$) между основным и ближайшими возбужденными колебательными уровнями ($\upsilon=0$ и $\upsilon'=1,\ 2$), равны $4.82\cdot 10^{14}$ и $9.48\cdot 10^{14}$ c^{-1} . Определить частоту колебаний и коэффициент ангармоничности этих молекул.
- 12. Определить число колебательных энергетических уровней, которое имеет молекула HBr, если коэффициент ангармоничности $x = 17,1 \cdot 10^{-3}$.
- 13. Определить энергию диссоциации молекулы СО. Изобразить на потенциальной кривой схему колебательных энергетических уровней и отметить на ней энергию диссоциации.
- $_{14.}$ Молекула NO переходит из низшего возбужденного состояния в основное. Определить длину волны λ испущенного при этом фотона. На потенциальной кривой изобразить схему колебательных энергетических уровней молекулы и отметить на ней соответствующий энергетический переход.
- $_{15.}$ Определить угловую скорость вращения молекулы S_2 , находящейся на первом возбужденном вращательном уровне.
- $_{16.}$ Найти момент инерции и межъядерное расстояние молекулы CO, если интервалы ΔE между соседними линиями чисто вращательного спектра испускания молекул CO равны 0,48~мэB.
- 17. Будет ли монохроматическое электромагнитное излучение с длиной волны $\lambda = 3$ *мкм* возбуждать вращательные и колебательные уровни молекулы HF, находящейся в основном состоянии?
- 18. Вычислить для молекулы НВг число вращательных уровней, расположенных между основным и первым возбужденным колебательными уровнями, считая вращательные состояния не зависящими от колебательных.
- 19. Определить число колебательных энергетических уровней, которое имеет молекула ОН, если коэффициент ангармоничности $x = 22,2\cdot10^{-3}$.
- 20. Определить энергию диссоциации молекулы N_2 . Изобразить на потенциальной кривой схему колебательных энергетических уровней и отметить на ней энергию диссоциации.

- 21. Длинноволновый край полосы поглощения чистого германия лежит вблизи длины волны $\lambda_1 = 1,9$ мкм. Оценить отсюда ширину запрещенной зоны германия.
- 22. Красная граница фотоэффекта сурьмяно-цезиевого фотокатода соответствует длине волны $\lambda_1 = 650~$ нм. Красная граница собственной фотопроводимости отвечает $\lambda_2 = 2,07~$ мкм. Определить положение (в эB) дна зоны проводимости данного полупроводника относительно вакуума.
- 23. Изобразить энергетическую схему кислородо-цезиевого фотокатода, если известно, что энергия активации донорных примесей равна 0,6 эB, красная граница фотоэффекта при очень низких температурах соответствует длине волны $\lambda_1 = 1,3$ мкм и начало возрастания фототока вблизи следующих двух коротковолновых максимумов отвечает $\lambda_2 = 600$ нм и $\lambda_3 = 350$ нм.
- 24. Красная граница проводимости чистого беспримесного германия при очень низких температурах соответствует длине волны $\lambda_1 = 1.7 \, \text{мкм}$. Вычислить температурный коэффициент сопротивления этого полупроводника при $T = 300 \, K$.
- 25. Найти минимальную энергию, необходимую для образования пары электрон-дырка в чистом теллуре, если известно, что его электропроводность возрастает в n=5,2 раза при увеличении температуры от $T_1=300$ до $T_2=400$ K.
- 26. На рис. 1 изображен график зависимости логарифма электропроводности от обратной температуры для кремния с примесью бора. Объяснить характер данного графика. Определить ширину запрещенной зоны кремния ΔE_0 и энергию активации примесных атомов.
- 27. Для закиси меди (р-типа) получена следующая зависимость удельного сопротивления от абсолютной температуры:

T, <i>K</i>	286	345	455	556	667	833
ρ , $O_{M} \cdot c_{M}$	12,2	3,49	1,00	0,223	0,018	0,0015

Построив соответствующий график, найти ширину запрещенной зоны ΔE_0 данного полупроводника и энергию активации акцепторных примесей ΔE_A .

- 28. Изобразить энергетическую схему примесного фотокатода при температурах близких к $0\,K$, у которого наблюдается 3 максимума фототока и 4 максимума фотопроводимости. Красная граница фототока соответствует поглощению кванта света с энергией $0,05\,_{9}B$, начала следующих максимумов фототока соответствуют поглощению квантов света с энергиями $0,07\,_{9}B$ и $0,4\,_{9}B$. Красная граница фотопроводимости соответствует поглощению кванта света с энергией $0,01\,_{9}B$, а начала следующих максимумов фотопроводимости соответствуют поглощению квантов света с энергиями $0,02\,_{9}B$, $0,04\,_{9}B$ и $0,37\,_{9}B$. Определить ширину зоны проводимости.
- 29. Вычислить и сравнить между собой концентрации электронов проводимости при температуре T = 300~K: а) в чистом беспримесном полупроводнике, ширина запрещенной зоны которого равна 1~9B; б) в полупроводнике n-типа, энергия активации примесных атомов которого равна 0.2~9B. Концентрация донорных атомов составляет $n = 2 \cdot 10^{14} c_M$ -3.
- 30. Вычислить удельное сопротивление полупроводника n-типа при температуре T=50~K, если известно, что концентрация донорных атомов $n=5\cdot 10^{17}~cm^{-3}$, энергия их активации $\Delta E=0,1~9B$, подвижность электронов $U=500~cm^2/B\cdot ce\kappa$.

Ядро атома. Энергия связи.

- 31. Определить массу протонов и нейтронов в ядре нейтрального атома хрома Cr^{52} .
- 32. Пользуясь табличными значениями масс определить энергию связи атома гелия.
- 33. Определить энергию связи на нуклон для изотопов гелия: He^3 и He^4 , если масса атомов 3,0160 и 4,0026 *а.е.м*.
- 34. Определить дефект массы, энергию связи, и энергию связи на нуклон для ядра ${\rm Li}^7$, если масса атома 7,016 *а.е.м.*
- 35. Найти с помощью табличных значений масс нуклидов: а) энергию связи на один нуклон в ядре O^{16} ; б) энергию, необходимую для разделения ядра O^{16} на четыре одинаковые частицы.
- 36. Вычислить массу в а.е.м.:
- а) нуклида Li^8 , энергия связи ядра которого 41,3 $M \ni B$;
- б) ядра C^{11} с энергией связи на один нуклон 6,04 $M \ni B$.

- 37. Сколько тепла выделяется при образовании 1 г He^4 из дейтерия H^2 ? Какая масса каменного угля с теплотворной способностью 30 $\kappa \not\square \mathscr{H}$ эквивалентна этому теплу?
- 38. При бомбардировке изотопа лития (${\rm Li}^6$) дейтерием образуются две α частицы и выделяется энергия 22,3 MэB. Определить массу изотопа лития.
- 39. Определить энергию реакции $\text{Li}^7 + p \rightarrow 2 \text{ He}^4$, если энергия связи на один нуклон в ядрах Li^7 и He^4 равны 5,60 и 7,60 $M \ni B$.
- 40. Определить массу нейтрального атома, если ядро этого атома состоит из трех протонов и двух нейтронов и энергия связи ядра равна 26,3 *МэВ*.
- 41. Какую наименьшую энергию нужно затратить, чтобы разделить на отдельные нуклоны ядра Li^7 и Be^7 ?
- 42. Определить энергию связи, которая выделится при образовании из протонов и нейтронов ядер He^4 массой m=1 г.
- 43. Энергия связи ядра кислорода O^{18} равна 139,8 $M \ni B$, ядра фтора $F^{19} 147,8 \, M \ni B$. Определить, какую минимальную энергию нужно затратить, чтобы оторвать один протон от ядра фтора?
- 44. Какую наименьшую энергию нужно затратить, чтобы разделить:
- а) ядро гелия He⁴ на две одинаковые части;
- б) ядро углерода C^{12} на три одинаковые части?
- 45. Какие ядра образуются из α активного Ra^{226} в результате пяти α распадов и четырех β распадов?
- 46. Сколько α и β распадов испытывает U^{238} , превращаясь, в конечном счете в стабильный Pb^{206} ?
- 47. Какие ядра образуются из тория Th^{232} после четырех α распадов и двух β распадов?
- 48. Найти с помощью табличных значений масс атомов энергию связи:
- а) нейтрона в ядре Ne^{21} ;
- б) α частицы в ядре Ne^{21} .
- 49. Вычислить с помощью табличных значений дефектов масс энергии связи на один нуклон в ядрах ${\rm Li^6},~{\rm Ne^{21}},~{\rm Ar^{40}},~{\rm Cu^{65}},~{\rm Ag^{107}},~{\rm Pb^{208}}$ и ${\rm U^{235}}.$ Построить график зависимости энергии связи на нуклон от массового числа и проанализировать его вид.
- 50. Определить энергию, необходимую для разделения ядра O^{16} на α частицу и ядро C^{12} , если известно, что энергия связи ядер O^{16} , C^{12} и He^4 равны соответственно 127,62; 92,16; 28,30 МэВ.
- 51. Определить энергию, выделяющуюся при образовании двух α частиц в результате синтеза ядер Li⁶ и H², если известно, что энергия связи на один нуклон в ядрах Li⁶, He⁴ и H² равны соответственно 5,33; 7,08; 1,11 MэB.
- 52. Определить энергию связи, приходящуюся на нуклон для изотопов лития ${\rm Li}^6$ и ${\rm Li}^7$, если массы атомов 6,0151 и 7,0160 *а.е.м*.
- 53. Считая, что в одном акте деления ядра U^{235} освобождается энергия $200\,M$ эB, определить энергию, выделяющуюся при сгорании $1\,\kappa z$ изотопа U^{235} и массу каменного угля с теплотворной способностью $7000\,\kappa\kappa an/\kappa z$, эквивалентную в тепловом отношении $1\,\kappa z\,U^{235}$.
- 54. Считая, что в одном акте деления ядра U^{235} освобождается энергия 200~MэB, определить массу изотопа U^{235} , подвергшегося делению при взрыве атомной бомбы с тротиловым эквивалентом $30~\kappa$ иломонн, если тепловой эквивалент тротила равен $1000~\kappa$ кал/кг.
- 55. Определить:
- 1) плотность ядерной материи;
- 2) радиус Земли, если бы она со своей реальной массой $-5,98\cdot10^{24}$ кг, имела бы плотность ядра.

Радиоактивность

- 56. Какая доля начального количества радиоактивного изотопа распадается за время, равное средней продолжительности жизни этого изотопа?
- 57. Какая доля радиоактивных ядер кобальта, период полураспада которых 71,3 суток, распадается за месян?
- 58. Активность некоторого радиоизотопа уменьшается в 2,5 раза за 7 суток. Найти его период полураспада.
- 59. Найти постоянную распада и среднее время жизни радиоактивного Co^{55} , если его активность уменьшается на 4,0% за $60~\mathit{muh}$.
- 60. Препарат U^{238} массы 1,0 г излучает 1,24·10⁴ α частиц в секунду. Найти его период полураспада.

- 61. Определить возраст древних деревянных предметов, если известно, что удельная активность изотопа C^{14} у них составляет 0,75 удельной активности этого же изотопа в только что срубленных деревьях. Период полураспада C^{14} равен 5570 *лет*.
- 62. В урановой руде отношение числа ядер U^{238} к числу ядер Pb^{206} составляет $\eta = 2.8$. Оценить возраст руды, считая, что весь свинец Pb^{206} является конечным продуктом распада уранового ядра. Период полураспада U^{238} равен $4.5 \cdot 10^9$ лет.
- 63. В кровь человека ввели небольшое количество раствора, содержащего радиоизотоп Na^{24} активностью $A_0 = 2,0\cdot 10^3~ Б\kappa$. Активность 1 см³ крови, взятой через t = 5,0 ч после этого, оказалась равной $A' = 0,315~ E\kappa/c M^3$. Определить объем крови человека. Период полураспада натрия Na^{24} равен $15~ \mu acos$.
- 64. Какой активностью будет обладать препарат, содержащий 2 *микрограмма* изотопа Na 24 двое *суток*, если его период полураспада равен 15-ти *часам*.
- 65. Удельная активность препарата, состоящего из активного кобальта Co^{58} и неактивного Co^{59} , составляет $2,2\cdot 10^{12}$ $E\kappa/\epsilon$. Период полураспада Co^{58} равен 71,3 *суток*. Найти отношение массы активного кобальта в этом препарате к массе препарата.
- 66. Ядро урана U^{238} делится на два осколка приблизительно одинаковой массы. Пользуясь кривой зависимости удельной связи от массовых чисел, оценить освободившуюся энергию.
- 67. Период полураспада плутония P^{239} равен 24,1 тысяче *лет*. Определить, какая *доля* атомов препарата плутония распадется за 10 *лет* и на сколько % уменьшится его активность за год.
- 68. Определить число радиоактивных ядер в свежеприготовленном препарате Br^{82} , если известно, что через сутки его активность становится $A = 7.4 \cdot 10^9 \, \text{Бк}$.
- 69. Сколько миллиграммов β активного Sr⁸⁹ следует добавить к m = 1,0 мг неактивного стронция, чтобы удельная активность препарата стала равной $5,07\cdot10^{13}$ $B\kappa/c$.
- 70. За один год начальное количество радиоактивного изотопа уменьшилось в три раза. Во сколько раз оно уменьшится за два года?
- 71. За время t = 8 *суток* распалось $\frac{3}{4}$ начального количества ядер радиоактивного изотопа. Определить период полураспада.
- 72. За время t = 1 сутки активность изотопа уменьшилась от $A_1 = 118 \ \Gamma E \kappa$ до $A_2 = 7,4 \ \Gamma E \kappa$. Определить период полураспада этого нуклида.
- 73. Счетчик Гейгера, установленный вблизи препарата радиоактивного изотопа серебра, регистрирует поток β частиц. При первом измерении поток Φ_1 частиц был равен 87 c^{-1} , а по истечении времени t=1 сутки поток Φ_2 оказался равным 22 c^{-1} . Определить период полураспада изотопа
- 74. Найти массу m_1 урана U^{238} , имеющего такую же активность A, как стронций Sr^{90} массой $m_2 = 1$ мг.
- 75. Период полураспада тория Th^{232} равен $1,4\cdot 10^{10}$ лет. Сколько распадов произойдет в 0,1 мг тория в 1 мин и на сколько процентов уменьшится активность препарата за 1 год?
- 76. Изотоп калия K^{40} радиоактивен с периодом полураспада $4,5\cdot 10^8$ лет. На долю калия приходится 0,35 % веса человека. Вычислить активность калия, находящегося в теле человека, если атомы K^{40} составляют в природе 0,012 % от общего числа атомов калия. Вес человека считать равным $75 \, \kappa z$.

Распределение задач по вариантам

<i>№</i>	Номера задач								
вар.									
1	1	26	40	37	68	61			
2	17	28	49	31	67	76			
3	18	23	45	40	64	71			
4	8	30	48	41	73	59			
5	2	25	36	38	75	60			
6	9	27	38	35	69	62			
7	3	24	39	52	76	64			
8	12	29	43	55	70	69			
9	5	22	41	47	74	75			
10	6	24	53	48	71	63			
11	13	21	54	43	62	66			
12	11	28	37	36	58	73			
13	16	21	44	49	61	67			
14	7	23	42	46	60	65			
15	14	25	50	42	66	74			
16	15	26	51	32	65	58			
17	4	27	52	39	72	57			
18	10	30	35	45	56	70			
19	20	29	33	53	59	68			
20	19	22	34	55	57	72			

