

Announcements/reminders

- Sign-up sheet for homework/worked example
 - Those who signed up for week 1&2, you have 1 week to submit your worked example
- Assignment deadlines should be posted on

Information on course project

- Understanding of varied background and experiences. Can be more research-y or pedagogical.
 - Directly related to on-going research
 - Motivated by a real-world system and apply techniques covered/mentioned in this course
 - Implement a technique described in a paper (and try adding a spin to it)
 - Compare and contrast different techniques and do a trade-off study
 - Okay to combine with other course projects*
- *Needs to connect with topics covered in the course
 - Anti-example: Train an end-to-end controller.
 - But incorporate control-theoretic concepts into the training process to improve controller performance & compare to vanilla E2E controller OK.
- Okay (and encouraged) to use any homework code to help your project.
 - Okay to use open-source code, as long as you properly acknowledge and reference it.
- How to read and write a paper: https://faculty.washington.edu/kymleung/assets/courses/aa598/2024/lecture02.pdf

This week

- Intro to optimization
 - https://uw-ctrl.github.io/lmc-book/lectures/optimization.html
- Control Barrier Functions and Control Lyapunov Functions (connection with Lyapunov Theory from 547)
 - https://uw-ctrl.github.io/lmc-book/lectures/control-certificates.html
 - Summarize Lyapunov theory with slides
 - CBF on board

Stability

Туре	Definition	Notes
Lyapunov Stability	Trajectories stay close to equilibrium if started nearby	No guarantee of convergence
Asymptotic Stability	Trajectories stay close and converge to equilibrium	Includes Lyapunov stability
Exponential Stability	Trajectories converge to equilibrium at an exponential rate	Stronger than asymptotic stability
Local Stability	Stability properties hold near the equilibrium	Common in nonlinear systems
Global Stability	Stability properties hold for all initial conditions	Often harder to prove

Proving stability

- Linear systems: , λ_i eigenvalues of A, for all i
 - $\dot{x} = Ax$: Re(λ_i) < 0
 - $x_{t+1} = Ax_t$: $|\lambda_i| < 1$

• What about nonlinear systems $\dot{x} = f(x)$?

Lyapunov function

Definition (Lyapunov function)

Given a general nonlinear dynamical system $\dot{x}=f(x)$, $x\in\mathcal{X}\subset\mathbb{R}^n$. Without loss of generality, let x=0 be an equilibrium state. Let $V:\mathbb{R}^n\to\mathbb{R}$ be a scalar function that is continuous, and has continuous first derivatives. Then the origin x=0 is Lyapunov stable if:

- V(0) = 0
- $egin{aligned} ullet V(x) &> 0 \, orall x \in \mathcal{X} \setminus \{0\} \ ullet \dot{V}(x) &=
 abla V(x)^T f(x) \leq 0 \, orall x \in \mathcal{X} \end{aligned}$
- Can shift to a non-zero equilibrium point
- Intuitively, *V* is an "energy-like" function
- Intuitively, need the energy to be non-increasing along the trajectory

Lyapunov stability for linear systems

- For linear system, $\dot{x} = Ax$, a quadratic Lyapunov function is usually a good candidate
 - Spring force is a linear in displacement, energy is quadratic in velocity, potential energy is quadratic in displacement
 - $V(x) = x^T P x$, P is positive definite

•
$$\dot{V}(x) = \dot{x}^T P x + x^T P \ \dot{x} \le 0 \implies x^T (A^T P + P A) x \le 0$$

 $\Rightarrow A^T P + P A \text{ is PD}$

Lyapunov stability theory for linear continuous time invariant systems.

Theorem (Lyapunov stability theorem for linear systems)

For a linear system $\dot{x}=Ax$, the origin x=0 is asymptotically stable if and only if for any symmetric positive definite matrix Q, the Lyapunov equation

$$A^T P + P A = -Q$$

has a unique positive definite solution $P \succ 0$, $P^T = P$.

What about discrete time linear systems?

- $x_{t+1} = Ax_t$, • $V(x) = x^T Px$, P is positive definite
- $V(x_{t+1}) V(x_t) \le 0 \dots$

