

Fig.1
binary plasmid
pPZP2028

GUS gene fragment(Seq.59) or intron of rice aspartate protease gene (Seq.97)

modified pUC19 series

Example of a modified plasmid used for constructing a transgene

** Bold lines indicate multiplecloning sites, having the following restriction sites :
HindIII, SphI, PstI , Sall , XbaI , BamHI , SmaI , KpnI , SacI , EcoRI

Fig.2

A prolamin expression suppression cassette used in a standard antisense method

1) a promoter for expressing a prolamin suppression gene	2) → prolamin gene fragment	3) terminator
prolamin promoter (Seq.47)	13kDa prolamin(Seq.1) prolamin 67bp fragment (Seq.51)	prolamin terminator (Seq. 61) prolamin terminator (Seq. 61)
prolamin promoter (Seq.47)	13kDa prolamin(Seq.1)	GluB1 terminator
GluB1 promoter (Seq.48)	13kDa prolamin(Seq.1)	Nos terminator (Seq. 55)
CaMV3SS promoter (Seq.49)		
		Sac I
		Xba I

RNAi type prolamin expression suppression cassette

1) promoter for expressing prolamin expression suppression gene	2) prolamin fragment	intron (Seq.97)	2) ← prolamin fragment	3) terminator
rice modified polyubiquitin promoter(Seq.58)	13kDa prolamin (Seq.1)		13kDa prolamin (Seq.1)	Nos terminator (Seq.55)
rice modified polyubiquitin promoter(Seq.58)	prolamin 15bp fragment (Seq.52,71)		prolamin 15bp fragment (Seq.52 , 71)	prolamin terminator (Seq.61)
			Xba I	Spe I
				Sac I

The schematic illustration of the structure of prolamin suppression genes indicating exemplary combinations of elements in a expression cassette.

Exemplary SDS-PAGE results of 13kDa prolamin reduced lineage (LP13K)

Fig.3

Fig.4

**R:hygromycin resistance, S:hygromycin sensitive

	a)	b)	c)	d)	e)	f)	g)
variety	Nipponbare	Nipponbare	Nipponbare	Nipponbare	Nipponbare	LGC-1	LGC-1
promoter used for prolamin gene expression suppression	Seq.47 (10kDa prolamin)	Seq.47	Seq.48 (glutelinB1)	Seq.47	Seq.47	Seq.47	Seq.47
Sequences used for suppression	Seq.1	Seq.3	Seq.1	Seq.51	Seq.1	Seq.1	Seq.51
Remark					said a) repeated for three generations		

Fig.5

Fig.6a a-1) a variety having 13 KDa prolamin antisense gene

a-2) a standard variety (Nipponbare)

a-3) a variety having reduced glutelin and increased prolamin (LGC-1)

Fig.6b b-1) a variety having 13 KDa prolamin antisense gene

b-2) a standard variety (Nipponbare)

b-3) a variety having reduced glutelin and increased prolamin (LGC-1)

Fig. 8

Fig.9a

Comparative figure of 13K prolamins

Fig.9b

RM1. NUC	301:GGCTGGTAGCGAACAAATCTCACTACCAGGCCATTAGTAGCGTTCAGGGATTGTGCAGG
RM4. NUC	301:GG-TG--GCGCAACAATCTCACTATCAGGACATTAACATTGTTCAGGCCATAGCGCAGG
RM5. NUC	301:GGCTGGTAGCGAACAAATCTCACTACCAGGCCATTAGTAGCGTTCAGGGATTGTGCAGG
RM7. NUC	301:GGCTGGTAGCACAACAATCTCACTACCAGGCCATTAGTATTGTTCAAGCGATTGTGCAAC
RM9. NUC	301:GGATGATCGCACAAACAGTCTCACTGCCAGGCCATTAGCAGTGTTCAGGCTATTGTGCAGG *** - ** ***** ***** * **** * *** * * ***** ** * *** *
RM1. NUC	361:AACTACAGCTGCAGCAGGTCCGGT-GTCTACTTTGATCAGACTCAAGCTAAGCTCAA
RM4. NUC	361:AGCTACAACCTCCACCGAGTTGGTGATC-TCTACTTTGATCGGAATCTGGCTCAAGCTCAA
RM5. NUC	361:AACTACAGCTGCAGCAGGTCCGGT-GTCTACTTTGATCAGACTCAAGCTAAGCTCAA
RM7. NUC	361:AGCTACAACCTGCACCAATTAGTGGT-GTCTACTTTGATCAGACTCAAGCTAAGCCCAA
RM9. NUC	361:AGCTACGGCTACAACAGTTGCT-AGCGTCACTTCGATCAGAGTCAAGCTAAGCCCAA * **** ** ** * * * ***** * *** ** * * ***** ***
RM1. NUC	421:GCTTTGCTGGCCTTAAACTGCCATCCATATGTGGTATCTATCCTAACTACTACATTGCT
RM4. NUC	421:GCTCTGTTGGCTTTAACGTCCATCTAGATATGGTATCTACCCCTAGGTACTATGGTGCA
RM5. NUC	421:GCTTTGCTGGCCTTAAACTGCCATCCATATGTGGTATCTATCCTAACTACTACATTGCT
RM7. NUC	421:ACTCTGTTGACCTTCAACTGCCATCCATATGTGGTATCTACCCCTAACTACTATAGTGCT
RM9. NUC	421:GCTATGTTGGCCCTAAACATGCCGTCAATATGCCGTATCTACCCAAAGCTACAACACTGCT ** *** ** * * *** **** ** * * * ***** * * *** * ***
RM1. NUC	481:CCGAGGAGCATTCCCACCGTTGGTGTCTGGTACTGAATTGTAATAGTATAATGGTTC
RM4. NUC	481:CCCAGTACCATTAACCAACCTTGGGTGTCTTGTAAATGAGTTAACAGTATAAGTGGTTC
RM5. NUC	481:CCGAGGAGCATTCCCACCGTTGGTGTCTGGTACTGAATTGTAATAGTATAATGGTTC
RM7. NUC	481:CCCAGGAGCATTGCCACTGTTGGTGTCTGGTACTGAATTGTAACAAATATAATAGTTC
RM9. NUC	481:CCCTGTAGCATTCCCACCGTCGGTGTCTGGTATTGAATTGTAAGCTAGTATAAGTAC ** * * **** *** * ** *** *** *** * * * * *** * ***
RM1. NUC	541:AAATGTTAAAATAAGTCATGCATCATCATGCCGTGAC-AGTTGAAACTTGATGTC-ATA
RM4. NUC	541:GGAAGTAAAAATAAGCTCAGATATCAT-ATATGTCACATG-TGAAACTT-TGGGTGATA
RM5. NUC	541:AAATGTTAAAATAAGTCATCCATCATCATGCCGTGAC-AGTTGAAA-AAAAAAA--AAA
RM7. NUC	541:GTATGTTAAAATAAGTCATACATCATCATGTGTGAC-TGTTGAAACTTAGGGTC-ATA
RM9. NUC	541:ACGAGAGAAAATAAGTCATCCATCATCCTGTCGACAAGTTGAAACATCGGGGTGATA * ***** *** * **** * **** * **** * * *
RM1. NUC	601:TAAATCTAAAT-AAA-C-TCGTGC-C-----
RM4. NUC	601:TAAATAGAAAAAAAGTTGTCTTCATATTAA---
RM5. NUC	601:AAA-----
RM7. NUC	601:TAAATCTAAATAATCATCTTAC-CTAAAAAA-
RM9. NUC	601:CAAATCTGAATAAAATGTCATCCAAGTTAAC **

Fig.10

Fig.11

Fig.12

construct	exogenous protein gene expression cassette	prolamin antisense (LP) cassette
-----------	---	----------------------------------

10/539992

Fig. 14
(A)

original variety Introducing gene 6 in Fig. 12

(B)

Fig.15

Fig.17 A) crop plant**B)** rice

Fig 17 Exemplary structure of expected optimal transgene in using a seed as a bioreactor
Ideally, two or more cassettes are on a fundamental vector