The Schrödinger, Heisenberg and Interaction Pictures in QFT (FK8017 HT15)

Schrödinger Picture:

- State kets are time-dependent (governed by the Hamiltonian).
- Operators are stationary.
- Base kets are stationary.

Schrödinger Equations of Motion (I)

$$i\frac{\mathrm{d}}{\mathrm{d}t} |\alpha; t\rangle^{\mathrm{S}} = H(t) |\alpha; t\rangle^{\mathrm{S}}$$
$$|\alpha; t\rangle^{\mathrm{S}}|_{t \to t_0} = |\alpha; t_0\rangle^{\mathrm{S}} = |\alpha\rangle^{\mathrm{H}}$$

Time-evolution (unitary) operator:

$$|\alpha;t\rangle^{\mathrm{S}} = \mathcal{U}(t,t_0) |\alpha;t_0\rangle^{\mathrm{S}}$$

Properties of $\mathcal{U}(t,t_0)$:

$$\mathcal{U}(t, t_0)^{\dagger} \mathcal{U}(t, t_0) = \mathbb{1}$$

$$\mathcal{U}(t_2, t_1) = \mathcal{U}(t_1, t_2)^{\dagger}$$

$$\mathcal{U}(t_3, t_2) \mathcal{U}(t_2, t_1) = \mathcal{U}(t_3, t_1)$$

Schrödinger Equations of Motion (II)

$$i\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{U}(t,t_0) = H(t)\,\mathcal{U}(t,t_0)$$

$$\mathcal{U}(t,t_0)|_{t\to t_0} = \mathbb{1}$$

The most general solution to EoM:

$$\mathcal{U}(t, t_0) = T \left\{ \exp\left(-i \int_{t_0}^t dt' H(t')\right) \right\} \quad \boxed{2}$$

Solution when $\partial H/\partial t = 0$:

$$\mathcal{U}(t, t_0) = \exp(-iH(t - t_0))$$

In QFT we use the Heisenberg picture!

Covariance between S.P. and H.P.

For states:

$$|\alpha; t\rangle^{S} = \mathcal{U}(t, t_0) |\alpha\rangle^{H}$$

 $|\alpha; t_0\rangle^{S} = |\alpha\rangle^{H}$

For operators:

$$A^{\mathrm{H}}(t) = \mathcal{U}^{\dagger}(t, t_0) A^{\mathrm{S}} \mathcal{U}(t, t_0)$$

 $A^{\mathrm{H}}(t_0) = A^{\mathrm{S}}$

The last holds also for the Hamiltonian H:

$$H^{\mathrm{H}}(t) = \mathcal{U}^{\dagger}(t, t_0) H^{\mathrm{S}} \mathcal{U}(t, t_0)$$

 $H^{\mathrm{H}}(t_0) = H^{\mathrm{S}}$

Time-evolution operator

 $\mathcal{U}(t,t_0)$

Governed by H(t) using (1)

 $H = H_0 + H_{\rm int}$

 $\mathcal{U}(t,t_0) = \mathcal{U}_0(t,t_0) \; \mathcal{U}_{\mathrm{int}}(t,t_0)$

Interaction

Picture

 $|\alpha;t\rangle$

 $A^{\rm I}(t)$

If
$$\partial H/\partial t = 0$$
 then $H^{\rm H} = H^{\rm S} \equiv H$.

Heisenberg Picture:

- State kets are stationary.
- Operators are time-dependent (governed by the Hamiltonian).
- Base kets are time-dependent (evolve in reverse wrt observables)

Heisenberg Equations of Motion

$$i\frac{\mathrm{d}}{\mathrm{d}t}A^{\mathrm{H}}(t) = \left[A^{\mathrm{H}}(t), H^{\mathrm{H}}(t)\right] + \frac{\partial}{\partial t}A^{\mathrm{H}}(t)$$
$$A^{\mathrm{H}}(t)|_{t \to t_0} = A^{\mathrm{H}}(t_0) = A^{\mathrm{S}}$$

Example of states (in Fock space):

$$|n_{\mathbf{k}}\rangle^{\mathrm{H}} = \frac{1}{\sqrt{n!}} (a^{\dagger}(\mathbf{k}))^{n} |0\rangle^{\mathrm{H}}$$
$$|1_{\mathbf{p},r}\rangle^{\mathrm{H}} = |\mathbf{e}^{-}, \mathbf{p}, r\rangle^{\mathrm{H}} = c_{r}^{\dagger}(\mathbf{p}) |0\rangle^{\mathrm{H}}$$
$$|1_{\mathbf{p}_{1},r_{1}}; \overline{1}_{\mathbf{p}_{2},r_{2}}\rangle^{\mathrm{H}} = |\mathbf{e}^{-}, \mathbf{p}_{1}, r_{1}; \mathbf{e}^{+}, \mathbf{p}_{2}, r_{2}\rangle^{\mathrm{H}}$$

Example of operators:

$$\phi(\mathbf{x})^{\mathrm{S}}, a^{\mathrm{S}}(\mathbf{k}), c_r^{\dagger}(\mathbf{p})$$
$$\phi(\mathbf{x}, t)^{\mathrm{H}} = \mathcal{U}^{\dagger}(t) \phi(\mathbf{x})^{\mathrm{S}} \mathcal{U}$$

$$\phi(\mathbf{x})^{\mathrm{S}}, a^{\mathrm{S}}(\mathbf{k}), c_r^{\dagger}(\mathbf{p})$$

$$\phi(\mathbf{x}, t)^{\mathrm{H}} = \mathcal{U}^{\dagger}(t) \phi(\mathbf{x})^{\mathrm{S}} \mathcal{U}(t)$$

Hesienberg

Picture

 $|\alpha\rangle^{\mathrm{H}} \equiv |\alpha; t_0\rangle^{\mathrm{S}}$

Governed by $H_{\rm int}$

(using S.P.)

$$\phi(\mathbf{x})^{\mathrm{S}}, a^{\mathrm{S}}(\mathbf{k}), c_r^{\dagger}(\mathbf{p})$$

 $\phi(\mathbf{x}, t)^{\mathrm{H}} = \mathcal{U}^{\dagger}(t) \phi(\mathbf{x})^{\mathrm{S}} \mathcal{U}(t)$

 $\mathcal{U}(t) = \exp\left(-\mathrm{i}H^{\mathrm{S}}t\right).$ Using $[H^{\rm S}, a^{\rm S}(\mathbf{k})] = -\omega_{\mathbf{k}} a^{\rm S}(\mathbf{k})$, the EoM becomes.

Example of Heisenberg EoM. Starting from,

 $H^{S} = \sum_{\mathbf{k}} \omega_{\mathbf{k}} \ a^{\dagger S}(\mathbf{k}) \, a^{S}(\mathbf{k}).$

The EoM reads.

where,

 $\phi(\mathbf{x})^{S} = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} \left(a^{S}(\mathbf{k}) e^{i\mathbf{k}\cdot\mathbf{x}} + a^{\dagger S}(\mathbf{k}) e^{-i\mathbf{k}\cdot\mathbf{x}} \right),$

 $\phi(\mathbf{x},t)^{\mathrm{H}} = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} \left(a^{\mathrm{H}}(\mathbf{k},t) e^{i\mathbf{k}\cdot\mathbf{x}} + a^{\dagger \mathrm{H}}(\mathbf{k},t) e^{-i\mathbf{k}\cdot\mathbf{x}} \right)$

 $i\frac{\mathrm{d}}{\mathrm{d}t}a^{\mathrm{H}}(\mathbf{k},t) = \left[a^{\mathrm{H}}(\mathbf{k},t), H^{\mathrm{H}}(t)\right],$

initial cond.: $a^{H}(\mathbf{k}, t = 0) = a^{S}(\mathbf{k})$.

 $a^{\mathrm{H}}(\mathbf{k},t) = \mathcal{U}^{\dagger}(t) \, a^{\mathrm{S}}(\mathbf{k}) \, \mathcal{U}(t),$ $H^{\mathrm{H}}(t) = \mathcal{U}^{\dagger}(t) H^{\mathrm{S}} \mathcal{U}(t),$

$$i\frac{\mathrm{d}}{\mathrm{d}t}a^{\mathrm{H}}(\mathbf{k},t) = \omega_{\mathbf{k}} a^{\mathrm{H}}(\mathbf{k},t),$$

with the solution (note that $H \equiv H^{\rm S} = H^{\rm H}$),

$$a^{\mathrm{H}}(\mathbf{k},t) = a^{\mathrm{H}}(\mathbf{k}) e^{-\mathrm{i}\omega_{\mathbf{k}}t},$$

$$\phi(\mathbf{x},t)^{\mathrm{H}} = \sum_{\mathbf{k}} \frac{1}{\sqrt{2V\omega_{\mathbf{k}}}} \left(a^{\mathrm{S}}(\mathbf{k}) e^{-\mathrm{i}kx} + a^{\dagger \mathrm{S}}(\mathbf{k}) e^{\mathrm{i}kx} \right)$$

Alternatively, we can solve for $\phi(x)$ directly from,

$$i\frac{d}{dt}\phi^{H}(\mathbf{x},t) = [\phi^{H}(\mathbf{x},t), H^{H}(t)],$$

init. cond.: $\phi^{H}(\mathbf{x},t=0) = \phi^{S}(\mathbf{x}),$

using the Baker-Campbell-Hausdorff formula,

$$e^{A} B e^{-A} = B + [A, B] + \frac{1}{2!} [A, [A, B]] + \frac{1}{n!} [A, [A, \dots, [A, B]]] + \dots$$

N.b. There is no physical content in the $\phi(x)$ operator. The physical content is in the algebra $a(\mathbf{k})$, $a^{\dagger}(\mathbf{k})$, and in the Hamiltonian H.

Wick's theorem is a method of expanding the timeordered products in the S-matrix as a sum of normal products. It exploits a similar behaviour of the time-ordering $T\{\}$ and the normal-ordering $N\{\}$ meta operators. Namely, they (i) both treat boson/fermions equally, and (ii) both suppress equal-time (anti)commutation relations.

For two boson operators, the following relation holds:

$$AB = N(AB) + [A^+, B^-]$$

For two fermion operators we have anti-commutator instead. The last object is a c-number and becomes the propagator when time-ordered. Wick's theorem states that, at unequal-times, for any two operators it holds,

$$T \{AB\} = N \{AB\} + \langle 0|AB|0\rangle$$

The last term is the so called **contraction** between the fields. The contractions are always between virtual (offshell) particles and never observed.

Dyson series:

Solution to Schrödinger's EoM for any H(t) where H(t')and H(t'') do not commute at different times $t' \neq t''$.

Rewrite (1) as the integral equation,

$$\int_{t_0}^t dt' \, \mathcal{U}(t', t_0) = -i \int_{t_0}^t dt' \, H(t) \, \mathcal{U}(t', t_0),$$
$$\mathcal{U}(t, t_0) = \mathbb{1} - i \int_{t_0}^t dt_1 \, H(t_1) \, \mathcal{U}(t_1, t_0).$$

Then reqursively expand $\mathcal{U}(t_1, t_0)$ in the integrand,

$$\mathcal{U}(t,t_0) = \mathbb{1} - i \int_{t_0}^t dt_1 \ H(t) \ \mathcal{U}(t_1,t_0) + \dots$$
$$+ (-i)^n \int_{t_0}^t dt_1 \dots \int_{t_0}^{t_{n-1}} dt_n \ H(t_1) \dots H(t_n) + \dots$$

After introducing the time-ordering, we get,

$$\mathcal{U}(t,t_0) = \sum_{n=0}^{\infty} \frac{(-\mathrm{i})^n}{n!} \int_{t_0}^t \mathrm{d}t_1 \dots \int_{t_0}^t \mathrm{d}t_n \, \mathrm{T} \left\{ H(t_1) \dots H(t_n) \right\}$$

or in the condensed form, (2).

The S-matrix, definition:

$$S \equiv \mathcal{U}_{\rm int}(\infty, -\infty)$$

Expansion:

$$S = \sum_{n=0}^{\infty} S^{(n)}$$
, where $S^{(n)}$ is *n*-th order:

$$S^{(n)} = \frac{(-i)^n}{n!} \int_{-\infty}^{\infty} dt_1 \dots \int_{-\infty}^{\infty} dt_n \ T \left\{ H_{\text{int}}^{\text{I}}(t_1) \dots H_{\text{int}}^{\text{I}}(t_n) \right\}$$
$$= \frac{(-i)^n}{n!} \int dx_1 \dots \int dx_n \ T \left\{ \mathcal{H}_{\text{int}}^{\text{I}}(x_1) \dots \mathcal{H}_{\text{int}}^{\text{I}}(x_n) \right\}$$
$$= \frac{i^n}{n!} \int dx_1 \dots \int dx_n \ T \left\{ \mathcal{L}_{\text{int}}^{\text{I}}(x_1) \dots \mathcal{L}_{\text{int}}^{\text{I}}(x_n) \right\}$$

where,

$$\mathcal{L}_{\mathrm{int}}^{\mathrm{I}}(x) := \mathcal{L}_{\mathrm{int}}[\phi^{\mathrm{I}}](x)$$

 $\mathcal{U}_0(t,t_0)$

the properties of the free fields. (The fields $\phi^{\rm I}$ are the solutions to the free-theory EoM for H_0 obtained from \mathcal{L}_0 .)

 $i\frac{\mathrm{d}}{\mathrm{d}t}A^{\mathrm{I}}(t) = \left[A^{\mathrm{I}}(t), \left[H_0^{\mathrm{I}}(t)\right]\right]$

 $A^{\rm I}(t_0) = A^{\rm H}(t_0) = A^{\rm S}$

Schrödinger

Picture

 $|\alpha;t\rangle^{\rm S}$

 $A^{\rm S} = A^{\rm H}(t_0)$

Governed by H_0

(using H.P.)

Heisenberg EoM for $A^{I}(t)$ using H_0

We postulate that the canonical commutation relations are valid also for the interacting field operators with no gradient couplings that modify the conjugate field (i.e., when the interaction Lagrangian \mathcal{L}_{int} does not contain derivatives wrt fields).

At any fixed time, the full-interacting creator and annihilation operators satisfy the same algebra as in the free-theory (due to translation invariance of the Fock space).

Covariance between S.P., I.P. and H.P.

 $|\alpha;t\rangle^{\mathrm{S}} = \mathcal{U}_0(t,t_0) |\alpha;t\rangle^{\mathrm{I}}$

$$|\alpha; t\rangle^{\mathrm{I}} = \mathcal{U}_{\mathrm{int}}(t, t_0) |\alpha\rangle^{\mathrm{H}}$$
$$|\alpha; t\rangle^{\mathrm{S}} = \mathcal{U}_{0}(t, t_0) \mathcal{U}_{\mathrm{int}}(t, t_0) |\alpha\rangle^{\mathrm{H}}$$

 $|\alpha; t_0\rangle^{\mathrm{S}} = |\alpha; t_0\rangle^{\mathrm{I}} = |\alpha\rangle^{\mathrm{H}}$

$$A^{\mathrm{I}}(t) = \mathcal{U}_0^{\dagger}(t, t_0) A^{\mathrm{S}} \mathcal{U}_0(t, t_0)$$
$$A^{\mathrm{H}}(t_0) = A^{\mathrm{I}}(t_0) = A^{\mathrm{S}}$$

$$\begin{split} H_{\text{int}}^{\text{I}}(t) &= \mathcal{U}_{0}^{\dagger}(t,t_{0}) \ H_{\text{int}}^{\text{S}} \ \mathcal{U}_{0}(t,t_{0}) \\ H_{0}^{\text{I}}(t) &= \mathcal{U}_{0}^{\dagger}(t,t_{0}) \ H_{0}^{\text{S}} \ \mathcal{U}_{0}(t,t_{0}) \\ H_{0}^{\text{I}} &= H_{0}^{\text{I}}(t_{0}) = H_{0}^{\text{S}} \end{split}$$

Limit I.P. \rightarrow H.P.

Schrödinger EoM for $|\alpha;t\rangle^{\mathrm{I}}$ using H_{int}

 $i\frac{\mathrm{d}}{\mathrm{d}t}\mathcal{U}_{\mathrm{int}}(t,t_0) = \boxed{H_{\mathrm{int}}(t)}\mathcal{U}_{\mathrm{int}}(t,t_0)$

 $\mathcal{U}_{\rm int}(t,t_0)|_{t\to t_0}=\mathbb{1}$

In the limit,

 $\mathcal{U}_{\mathrm{int}}(t,t_0)$

$$H_{\rm int} \to 0$$

we have,

$$H \to H_0$$
 $|\alpha; t\rangle^{\mathrm{I}} \to |\alpha\rangle^{\mathrm{H}}$ $\mathcal{U}_{\mathrm{int}}(t) \to \mathbb{1}$ $\phi^{\mathrm{I}}(x) \to \phi^{\mathrm{H}}(x)$ $\mathcal{U}(t) \to \mathcal{U}_0(t)$

We can replace "I" by "H" in all the expressions (this is the limit when the full-theory becomes free). This also means that, by introducting $H_{\rm int}$, we have moved the operators from H.P. (solving the free-theory) to I.P.

Overview of representations of the dependence of operators and states in QFT - by M.B.Kocic - Version 1.0.3 (2016-01-11)