Statistical Inference and Multivariate Analysis (MA324)

Lecture SLIDES
Lecture 19

Neyman-Pearson Lemma

Indian Institute of Technology Guwahati

Jan-May 2023

Simple Null Vs. Simple Alternative

Theorem (Neyman-Pearson Lemma)

Let $\theta_0 \neq \theta_1$ be two fixed numbers in Θ . The MP level α test for $H_0: \theta = \theta_0$ against $H_1: \theta = \theta_1$ is given by

$$\psi(\boldsymbol{x}) = \begin{cases} 1 & \text{if } L(\boldsymbol{\theta}_1) > kL(\boldsymbol{\theta}_0) \\ \gamma & \text{if } L(\boldsymbol{\theta}_1) = kL(\boldsymbol{\theta}_0) \\ 0 & \text{if } L(\boldsymbol{\theta}_1) < kL(\boldsymbol{\theta}_0), \end{cases}$$

where $k \geq 0$ and $\gamma \in [0, 1]$ such that $\beta(\theta_0) = E_{\theta_0}(\psi(\boldsymbol{X})) = \alpha$. Here, $L(\cdot)$ is the likelihood function.

Example 1: Let $X_1,\,X_2,\,\ldots,\,X_n\stackrel{i.i.d.}{\sim}N(\mu,\,\sigma^2)$, where σ is known. Let $\mu_0<\mu_1$ be two fixed real numbers. We are interested to test $H_0:\mu=\mu_0$ against $H_1:\mu=\mu_1$. Here, the likelihood function is

$$L(\mu) = \frac{1}{\sigma^n (2\pi)^{\frac{n}{2}}} \exp \left[-\frac{1}{2\sigma^2} \sum_{i=1}^n (x_i - \mu)^2 \right]$$
$$= \frac{1}{\sigma^n (2\pi)^{\frac{n}{2}}} \exp \left[-\frac{1}{2\sigma^2} \left\{ \sum_{i=1}^n x_i^2 - 2n\mu \bar{x} + n\mu^2 \right\} \right].$$

Therefore,

$$\frac{L(\mu_1)}{L(\mu_0)} = \exp\left[\frac{1}{2\sigma^2} \left\{2n\bar{x}\left(\mu_1 - \mu_0\right) + n\left(\mu_0^2 - \mu_1^2\right)\right\}\right].$$

What is the MP level α test?

Remark: Note the way of solving the problem. We try to simplify $\frac{L(\mu_1)}{L(\mu_0)} > k$ so that we can write an equivalent condition on a statistic whose distribution under H_0 is known or can be found. If this **statistic is a continuous random variable**, we will have a **non-randomized test**. Otherwise we may need to consider $\gamma \in (0, 1)$ making the test a randomized one.