UNIVERSIDAD TECNICA PARTICULAR DE LOJA

NOMBRE: Luis Córdova

TALLER

Dado:

$$f(n) = n^3 + 9n^2 \log(n)$$

 $g(n) = n^3 \log(n)$

• Comprobar si $f(n) \in O(g(n))$

Queremos ver si existe una constante c > 0 y n_0 tal que: $f(n) = n^3 + 9n^2 \log(n) \le c \cdot g(n) = c \cdot n^3 \log(n)$ para todo $n \ge n_0$

Dividimos ambos lados por n^3 log(n): $f(n) / (n^3 \log(n)) = n^3 / (n^3 \log(n)) + 9n^2 \log(n) / (n^3 \log(n))$ $= 1/\log(n) + 9/n$

El límite cuando n tiende a infinito de esta expresión es 0. Por lo tanto, $f(n) \in O(g(n))$.

• Comprobar si $f(n) \in O(n^2)$

Comparamos $f(n) = n^3 + 9n^2 \log(n) \cosh(n) = n^2$:

Sabemos que n^3 \gg n^2 y n^2 log(n) \gg n^2, por lo tanto:

$$\lim_{n\to\infty} f(n)/n^2 = \lim_{n\to\infty} (n + 9 \log(n)) = \infty$$

Entonces, f(n) no está en O(n^2).

• Demostrar si existe relación de pertenencia entre:

$$g(n) = 2^{2n}$$

1. ¿Está $f(n) \in O(g(n))$?

 $f(n)/g(n) = 2^n / 2^{2n} = 1 / 2^n$ $\lim_{n\to\infty} 1 / 2^n = 0$ Entonces, $f(n) \in O(g(n))$

2. ¿Está $g(n) \in O(f(n))$?

 $g(n)/f(n) = 2^{2n} / 2^n = 2^n$ $\lim_{n\to\infty} 2^n = \infty$ Entonces, g(n) no está en O(f(n))