$R_scripts_AMRIWA_metagenomes$

Melina Markkanen

27/1/2022

Contents

Set working directory	. 2
Load required libraries	. 2
Load data	3
metadata	. 3
Metaxa2 results	. 3
rpoB	. 4
Metaphlan3 results	. 5
ResFinder results	. 6
MGE results	. 8
Correlation between SSU & rpoB counts	9
Modelling ARG abundance	10
Gather data into data frame	. 10
Draw maps	. 10
Data exploration using library HighstatLabv13	. 11
Plot model (ARGs)	. 12
Plot model (MGEs)	. 12
Plot model (intI1)	. 13
Plot figures in grids	. 14
Plot models by hospitals / hospital sections (ARGs)	. 14
Ordinations	15
ARGs (ResFinder)	. 15
Taxa (Metaphlan3)	. 15
MGEs	. 16
Plot ordinations in figure panel	16
$\mathrm{DESeq2}$	17
ARGs	. 17
Taxa (Metaphlan3), Species, Benin-Finland	. 20
Taxa (Metaphlan3), Genus, Benin-Finland	. 21
Taxa (Metaphlan3), Species, Burkina Faso-Finland	. 22

 $Taxa \; (Metaphlan3), \; Genus, \; Burkina \; Faso-Finland \qquad \dots \qquad \qquad 22$

Heatmap for clinically relevant taxa	23
15 most abundant ARGs in HWWs from each country	24
Most abundant ARGs in other than HWW samples	25
Interesting ARGs	25
MCR	25
Carbapenemases	26
15 most abundant taxa	29
Correlation between MGE/intI1 & all ARGs	30
Save correlation data for intI & qacEdelta and all ARGs	30
$Figures \ for \ correlations \ for \ differentially \ abundant \ ARGs \ across \ countries \ (from \ DESeq2) \ \& \ int I1/qac Edelta \ . \ . \ . \ . \ . \ . \ . \ . \ . \ $	32
"Core" resistome and unique ARGs	35
Set working directory	

setwd("~/Desktop/Git/AMRIWA/RFiles")

Load required libraries

library(Hmisc)

```
library(phyloseq)
library(stringr)
library(vegan)
library(RColorBrewer)
library(ggplot2)
library(knitr)
library(ggpubr)
library(pheatmap)
library(MASS)
library(gplots)
library(grid)
library(cowplot)
library(DESeq2)
library(multcomp)
library(ggrepel)
library(ggcorrplot)
library(dplyr)
library(VennDiagram)
library(psych)
library(usefun)
library(patchwork)
library(sf)
library(rnaturalearth)
library(rnaturalearthdata)
library(ggspatial)
library(rgeos)
library(maps)
```

Load data

metadata

```
metadata <- read.table("metadata.txt", sep = "\t", header = T, row.names = 1, fill = 1,
    dec = ".", na.strings = "NA")

metadata$DNA_ng_µl <- as.numeric(gsub(",", ".", gsub("\\.", "", metadata$DNA_ng_µl)))
metadata$A260_280 <- as.numeric(gsub(",", ".", gsub("\\.", "", metadata$A260_280)))
metadata$M_Seqs_trimmed <- as.numeric(gsub(",", ".", gsub("\\.", "", metadata$M_Seqs_trimmed)))
metadata$lat <- as.numeric(gsub(",", ".", gsub("\\.", "", metadata$lat)))
metadata$long <- as.numeric(gsub(",", ".", gsub("\\.", "", metadata$long)))</pre>
```

metaxa_genus <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/metaxa_genus.txt")

Metaxa2 results

```
# Create OTU table
OTU_metaxa <- metaxa_genus[, -1]
# Match sample ID order with metadata file
match <- match(rownames(metadata), colnames(OTU_metaxa))</pre>
OTU_metaxa <- OTU_metaxa[, match]</pre>
all(colnames(OTU_metaxa) == rownames(metadata))
# Create tax table
tax_table_metaxa <- data.frame(str_split_fixed(data.frame(metaxa_genus)[, 1], ";",</pre>
    6))
colnames(tax_table_metaxa) <- c("Domain", "Phylum", "Class", "Order", "Family", "Genus")</pre>
# Check if samples are in order
identical(rownames(metadata), colnames(OTU_metaxa))
# Combine into phyloseq object
metaxa_PHY <- phyloseq(otu_table(OTU_metaxa, taxa_are_rows = TRUE), tax_table(as.matrix(tax_table_metaxa)),</pre>
    sample_data(metadata))
# Exclude taxa 'Unknown', 'Unclassified', 'Eukaryota', 'Mitochondria',
# 'Archaea', 'Chloroplast'
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Unknown"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Unclassified"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Eukaryota"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Mitochondria"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Archaea"))</pre>
metaxa_PHY <- subset_taxa(metaxa_PHY, !Domain %in% c("Chloroplast"))</pre>
# Add SSU counts to metadata
metadata$SSU_counts <- sample_sums(metaxa_PHY)</pre>
## Exclude biological / technical replicates
metaxa_PHY <- subset_samples(metaxa_PHY, alias != "BH31" & alias != "BH33" & alias !=
    "BH34B" & alias != "BH10" & alias != "BFH38B" & alias != "FH8" & alias != "BH45" &
    alias != "BH59" & alias != "BH62")
# Create phyloseg object with only HWW samples
metaxa_PHY_stat <- subset_samples(metaxa_PHY, category == "WA hospital effluent" |</pre>
    category == "North Eu hospital effluent")
# Create phyloseq objects (x 3) with equal group sizes for the statistical
# testing
alias = data.frame(metaxa_PHY_stat@sam_data[["alias"]])
colnames(alias) = "sample"
BH <- data.frame(alias[grepl("BH.", alias$sample), ])</pre>
colnames(BH) <- c("sample")</pre>
## Include 8 random samples per country
```

```
random BH 1 <- sample n(BH, 8)
random_BH_3 <- sample_n(BH, 8)</pre>
random BH 3 <- sample n(BH, 8)
# Create phyloseq objects (x 3) with equal group sizes for the statistical
# testing
alias = data.frame(metaxa PHY stat@sam data[["alias"]])
colnames(alias) = "sample"
BFH <- data.frame(alias[grepl("BFH.", alias$sample), ])</pre>
colnames(BFH) <- c("sample")</pre>
## Include 8 random samples per country
colnames(BFH) <- c("sample")</pre>
random_BFH_1 <- sample_n(BFH, 8)
random_BFH_3 <- sample_n(BFH, 8)</pre>
random_BFH_3 <- sample_n(BFH, 8)</pre>
# Sample set 1
metaxa PHY stat equal1 <- subset samples(metaxa PHY, alias == paste(random BFH 1$sample[1]) |</pre>
    alias == paste(random_BFH_1$sample[2]) | alias == paste(random_BFH_1$sample[3]) |
    alias == paste(random_BFH_1$sample[4]) | alias == paste(random_BFH_1$sample[5]) |
    alias == paste(random_BFH_1$sample[6]) | alias == paste(random_BFH_1$sample[7]) |
    alias == paste(random_BFH_1$sample[8]) | alias == paste(random_BH_1$sample[1]) |
    alias == paste(random_BH_1$sample[2]) | alias == paste(random_BH_1$sample[3]) |
    alias == paste(random_BH_1$sample[4]) | alias == paste(random_BH_1$sample[5]) |
    alias == paste(random_BH_1$sample[6]) | alias == paste(random_BH_1$sample[7]) |
    alias == paste(random_BH_1$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
# Sample set 2
metaxa_PHY_stat_equal2 <- subset_samples(metaxa_PHY, alias == paste(random_BFH_3$sample[1]) |</pre>
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
    alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
    alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
    alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
# Sample set 3
metaxa_PHY_stat_equal3 <- subset_samples(metaxa_PHY, alias == paste(random_BFH_3$sample[1]) |</pre>
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
    alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
    alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
    alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
```

rpoB

```
# to metadata
match <- match(rownames(metadata), rownames(HMM_RESULT_TABLE))
rpoB_counts <- HMM_RESULT_TABLE[match, ]
metadata$rpoB_counts <- rpoB_counts$SUM

# Only R1 reads Reorder samples to match metadata
match <- match(rownames(metadata), rownames(HMM_RESULT_TABLE))
R1_rpoB_counts <- HMM_RESULT_TABLE[match, ]
metadata$R1_rpoB_counts <- rpoB_counts$R1</pre>
```

Metaphlan3 results

```
OTU_metaphlan <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/mod_merged_abundance_table_species.txt"
   header = T)
# Match sample order
tax_table_metaphlan <- read.table("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/tax_table_metaphlan",
    quote = "\"", comment.char = "")
identical(tax_table_metaphlan$V1, OTU_metaphlan$clade_name)
tax_table_metaphlan <- read.csv("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/tax_table_metaphlan",
    header = FALSE, sep = ";")
colnames(tax_table_metaphlan) <- c("Kingdom", "Phylum", "Class", "Order", "Family",</pre>
    "Genus", "Species")
# Remove '__'
tax_table_metaphlan <- apply(tax_table_metaphlan, 2, function(y) (gsub(".__", "",
    y)))
match <- match(rownames(metadata), colnames(OTU_metaphlan))</pre>
OTU_metaphlan <- OTU_metaphlan[, match]</pre>
all(rownames(metadata) == colnames(OTU_metaphlan))
# Combine into phyloseq object
metaphlan_PHY <- phyloseq(otu_table(OTU_metaphlan, taxa_are_rows = TRUE), tax_table(as.matrix(tax_table_metaphlan));
    sample_data(metadata))
# Check that sums are ~100 sample_sums(metaphlan_PHY)
# Exclude Viruses, Eukaryota & Archaea
metaphlan_PHY <- subset_taxa(metaphlan_PHY, Kingdom != "Viruses" & Kingdom != "Eukaryota" &
    Kingdom != "Archaea")
## Exclude biological / technical replicates
metaphlan_PHY <- subset_samples(metaphlan_PHY, alias != "BH31" & alias != "BH33" &
    alias != "BH34B" & alias != "BH10" & alias != "BFH38B" & alias != "FH8" & alias !=
    "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseq object with only HWW samples
metaphlan_PHY_stat <- subset_samples(metaphlan_PHY, category == "WA hospital effluent" |
    category == "North Eu hospital effluent")
# Create phyloseq objects (x 3) with equal group sizes for the statistical
# testing Sample set 1
metaphlan_PHY_stat_equal1 <- subset_samples(metaphlan_PHY, alias == paste(random_BFH_1$sample[1]) |
    alias == paste(random_BFH_1$sample[2]) | alias == paste(random_BFH_1$sample[3]) |
    alias == paste(random_BFH_1$sample[4]) | alias == paste(random_BFH_1$sample[5]) |
    alias == paste(random_BFH_1$sample[6]) | alias == paste(random_BFH_1$sample[7]) |
    alias == paste(random_BFH_1$sample[8]) | alias == paste(random_BH_1$sample[1]) |
    alias == paste(random_BH_1$sample[2]) | alias == paste(random_BH_1$sample[3]) |
    alias == paste(random_BH_1$sample[4]) | alias == paste(random_BH_1$sample[5]) |
    alias == paste(random_BH_1$sample[6]) | alias == paste(random_BH_1$sample[7]) |
    alias == paste(random_BH_1$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
```

```
"FH9")
# Sample set 2
metaphlan_PHY_stat_equal2 <- subset_samples(metaphlan_PHY, alias == paste(random_BFH_3$sample[1]) |
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
    alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
    alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
    alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
# Sample set 3
metaphlan_PHY_stat_equal3 <- subset_samples(metaphlan_PHY, alias == paste(random_BFH_3$sample[1]) |
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
    alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
    alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
    alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
```

ResFinder results

```
row.names = 1))
# Reorder to match metadata
match <- match(rownames(metadata), colnames(OTU_resfinder))</pre>
OTU_resfinder <- OTU_resfinder[, match]</pre>
all(colnames(OTU_resfinder) == rownames(metadata))
# Tax_table
clusters_tax_table_resfinder <- read.csv("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/clusters_tax_table.txt",
    header = FALSE, sep = ";")
colnames(clusters_tax_table_resfinder) <- c("Gene", "Cluster_name", "Class")</pre>
# Reorder columns
col_order <- c("Class", "Cluster_name", "Gene")</pre>
clusters_tax_table_resfinder <- clusters_tax_table_resfinder[, col_order]</pre>
# Reorder tax_table to match
match <- match(rownames(OTU_resfinder), clusters_tax_table_resfinder$Gene)</pre>
clusters_tax_table_resfinder <- clusters_tax_table_resfinder[match, ]</pre>
all(rownames(OTU_resfinder) == clusters_tax_table_resfinder$Gene)
# Divide by ARG gene lengths
resfinder_lengths <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/resfinder_lengths.txt",
    header = FALSE, comment.char = "#")
all(rownames(clusters_tax_table_resfinder$Gene) == resfinder_lengths$V1)
OTU_resfinder_length_norm <- OTU_resfinder/resfinder_lengths[, 2]
# Normalization with Metaxa2 SSU counts
OTU_resfinder_length_SSU_norm <- t(t(OTU_resfinder_length_norm)/metadata$SSU_counts) *
all(rownames(metadata) == colnames(OTU_resfinder_length_SSU_norm))
identical((OTU_resfinder_length_norm[3, 5]/metadata$SSU_counts[5]) * 1540, OTU_resfinder_length_SSU_norm[3,
```

OTU resfinder <- as.matrix(read.table("ARG genemat.txt", header = T, check.names = F,

```
all(rownames(OTU_resfinder_length_norm) == clusters_tax_table_resfinder$Gene)
# Hide rownames
dim(OTU resfinder length SSU norm)
rownames(OTU_resfinder_length_SSU_norm) <- c(1:3104)</pre>
dim(clusters_tax_table_resfinder)
rownames(clusters_tax_table_resfinder) <- c(1:3104)</pre>
# Combine to phyloseq object
resfinder_PHY <- phyloseq(otu_table(OTU_resfinder_length_SSU_norm, taxa_are_rows = TRUE),
    sample_data(metadata), tax_table(as.matrix(clusters_tax_table_resfinder)))
## Exclude biological / technical replicates
resfinder_PHY <- subset_samples(resfinder_PHY, alias != "BH31" & alias != "BH33" &
    alias != "BH34B" & alias != "BH10" & alias != "BFH38B" & alias != "FH8" & alias !=
    "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseg object with only hospital WW samples sequenced here
resfinder_PHY_stat <- subset_samples(resfinder_PHY, category == "WA hospital effluent" |
    category == "North Eu hospital effluent")
# Create phyloseq objects (x 3) with equal group sizes for the statistical
# testing Sample set 1
resfinder_PHY_stat_equal1 <- subset_samples(resfinder_PHY, alias == paste(random_BFH_1$sample[1]) |
    alias == paste(random_BFH_1$sample[2]) | alias == paste(random_BFH_1$sample[3]) |
    alias == paste(random_BFH_1$sample[4]) | alias == paste(random_BFH_1$sample[5]) |
    alias == paste(random_BFH_1$sample[6]) | alias == paste(random_BFH_1$sample[7]) |
    alias == paste(random_BFH_1$sample[8]) | alias == paste(random_BH_1$sample[1]) |
    alias == paste(random_BH_1$sample[2]) | alias == paste(random_BH_1$sample[3]) |
    alias == paste(random_BH_1$sample[4]) | alias == paste(random_BH_1$sample[5]) |
    alias == paste(random_BH_1$sample[6]) | alias == paste(random_BH_1$sample[7]) |
    alias == paste(random_BH_1$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
# Sample set 2
resfinder_PHY_stat_equal2 <- subset_samples(resfinder_PHY, alias == paste(random_BFH_3$sample[1]) |
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
    alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
    alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
    alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
# Sample set 3
resfinder_PHY_stat_equal3 <- subset_samples(resfinder_PHY, alias == paste(random_BFH_3$sample[1]) |
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random BFH 3$sample[4]) | alias == paste(random BFH 3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
    alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
    alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
    alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
```

```
OTU MGE <- as.matrix(read.table("cp MGE genemat.txt", header = T, check.names = F,
   row.names = 1))
# Reorder to match metadata
match <- match(rownames(metadata), colnames(OTU MGE))</pre>
OTU_MGE <- OTU_MGE[, match]
all(colnames(OTU_MGE) == rownames(metadata))
# Tax table
MGE_tax_table_trim <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/MGE_tax_table_trim.txt",
   header = FALSE)
colnames(MGE_tax_table_trim) <- c("Gene", "Element", "Class")</pre>
# Reorder tax_table to match
match <- match(rownames(OTU_MGE), MGE_tax_table_trim$Gene)</pre>
MGE_tax_table_trim <- MGE_tax_table_trim[match, ]</pre>
all(rownames(OTU_MGE) == MGE_tax_table_trim$Gene)
# Normalization to MGE lengths
MGE_lengths <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/MGE_lengths.txt",
   header = FALSE, comment.char = "#", check.names = F)
match <- match(rownames(OTU_MGE), MGE_lengths$V1)</pre>
MGE_lengths <- MGE_lengths[match, ]</pre>
all(rownames(MGE_tax_table_trim$Gene) == MGE_lengths$V1)
OTU_MGE_length_norm <- OTU_MGE/MGE_lengths[, 2]
# Normalization with Metaxa2 SSU counts
OTU_MGE_length_SSU_norm <- t(t(OTU_MGE_length_norm)/metadata$SSU_counts) * 1540
all(rownames(metadata) == colnames(OTU_MGE_length_SSU_norm))
all(rownames(OTU_MGE_length_SSU_norm) == MGE_tax_table_trim$Gene)
# Hide rownames
dim(OTU_MGE_length_SSU_norm)
rownames(OTU_MGE_length_SSU_norm) <- c(1:2709)</pre>
dim(MGE_tax_table_trim)
rownames(MGE_tax_table_trim) <- c(1:2709)</pre>
# Combine to phyloseg object
MGE_PHY <- phyloseq(otu_table(OTU_MGE_length_SSU_norm, taxa_are_rows = TRUE), sample_data(metadata),
    tax_table(as.matrix(MGE_tax_table_trim)))
## Exclude biological / technical replicates
MGE_PHY <- subset_samples(MGE_PHY, alias != "BH31" & alias != "BH33" & alias != "BH34B" &
    alias != "BH10" & alias != "BFH38B" & alias != "FH8" & alias != "BH45" & alias !=
    "BH59" & alias != "BH62")
# Create phyloseq object with only hospital WW samples sequenced here
MGE_PHY_stat <- subset_samples(MGE_PHY, category == "WA hospital effluent" | category ==
    "North Eu hospital effluent")
# Create phyloseq object with equal group for the statistical analysis Sample
MGE_PHY_stat_equal1 <- subset_samples(MGE_PHY, alias == paste(random_BFH_1$sample[1]) |
    alias == paste(random_BFH_1$sample[2]) | alias == paste(random_BFH_1$sample[3]) |
    alias == paste(random_BFH_1$sample[4]) | alias == paste(random_BFH_1$sample[5]) |
    alias == paste(random_BFH_1$sample[6]) | alias == paste(random_BFH_1$sample[7]) |
    alias == paste(random_BFH_1$sample[8]) | alias == paste(random_BH_1$sample[1]) |
    alias == paste(random_BH_1$sample[2]) | alias == paste(random_BH_1$sample[3]) |
    alias == paste(random_BH_1$sample[4]) | alias == paste(random_BH_1$sample[5]) |
    alias == paste(random_BH_1$sample[6]) | alias == paste(random_BH_1$sample[7]) |
    alias == paste(random_BH_1$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
```

```
"FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
# Sample set 2
MGE_PHY_stat_equal2 <- subset_samples(MGE_PHY, alias == paste(random_BFH_3$sample[1]) |
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
    alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
    alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
    alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
# Sample set 3
MGE_PHY_stat_equal3 <- subset_samples(MGE_PHY, alias == paste(random_BFH_3$sample[1]) |
    alias == paste(random_BFH_3$sample[2]) | alias == paste(random_BFH_3$sample[3]) |
    alias == paste(random_BFH_3$sample[4]) | alias == paste(random_BFH_3$sample[5]) |
    alias == paste(random_BFH_3$sample[6]) | alias == paste(random_BFH_3$sample[7]) |
    alias == paste(random_BFH_3$sample[8]) | alias == paste(random_BH_3$sample[1]) |
    alias == paste(random_BH_3$sample[2]) | alias == paste(random_BH_3$sample[3]) |
    alias == paste(random_BH_3$sample[4]) | alias == paste(random_BH_3$sample[5]) |
    alias == paste(random_BH_3$sample[6]) | alias == paste(random_BH_3$sample[7]) |
    alias == paste(random_BH_3$sample[8]) | alias == "FH1" | alias == "FH2" | alias ==
    "FH3" | alias == "FH4" | alias == "FH5" | alias == "FH6" | alias == "FH7" | alias ==
    "FH9")
# Get class 1 integrons
MGE_PHY_int <- tax_glom(MGE_PHY, taxrank = "Class")</pre>
MGE_PHY_int <- subset_taxa(MGE_PHY_int, Class == "intI1")</pre>
MGE_PHY_int_stat <- tax_glom(MGE_PHY_stat, taxrank = "Class")</pre>
MGE_PHY_int_stat <- subset_taxa(MGE_PHY_int_stat, Class == "intI1")
MGE PHY qac stat <- tax glom(MGE PHY stat, taxrank = "Class")
MGE_PHY_qac_stat <- subset_taxa(MGE_PHY_qac_stat, Class == "qacEdelta")
```

Correlation between SSU & rpoB counts

```
SSU_counts <- data.frame(sample_data(resfinder_PHY_stat)$SSU_counts)</pre>
R1_rpoB_counts <- data.frame(sample_data(resfinder_PHY_stat)$R1_rpoB_counts)
bacterial_counts <- cbind(SSU_counts, R1_rpoB_counts)</pre>
colnames(bacterial_counts) <- c("SSU_counts", "R1_rpoB_counts")</pre>
p <- ggplot(bacterial_counts, aes(x = SSU_counts, y = R1_rpoB_counts)) + geom_point(size = 7,
    shape = 19, color = "#3110D2") + geom_smooth(method = "lm", se = TRUE, fullrange = FALSE,
    level = 0.95, color = "#FB2A38", fill = "#8A91F8") + theme_bw() + theme(axis.title = element_text(size = 30,
    family = "Times"), axis.text = element_text(size = 32, family = "Times"), plot.title = element_text(size = 36,
    family = "Times"), plot.subtitle = element_text(size = 28, family = "Times")) +
    xlab("16s rRNA counts") + ylab("R1 rpoB counts") + labs(title = "Correlation of 16s rRNA and rpoB counts",
    subtitle = "Hospital WWs in Benin (25), BF (34) and Finland (8)")
cor <- p + stat_cor(method = "pearson", label.x = 1e+05, label.y = 1000, )</pre>
correl <- corr.test(SSU_counts, R1_rpoB_counts, use = "pairwise", method = "pearson",</pre>
    adjust = "fdr", alpha = 0.05, ci = TRUE)
r <- data.frame(correl$r)</pre>
p <- data.frame(correl$p)</pre>
p.ad <- data.frame(correl$p.adj)</pre>
```

```
# ggsave(filename = 'SSU_rpoB_cor_new.png', width = 16, height = 13, dpi = 300,
# units = 'in', device='png', scale = 1)
```

Modelling ARG abundance

Gather data into data frame

Draw maps

```
# Plot maps for sample sites in Benin and Burkina Faso
world <- ne_countries(scale = "medium", returnclass = "sf")</pre>
class(world)
gps0 <- metadata[!duplicated(metadata[, c("lat", "long")]), ]</pre>
gps0 <- gps0[, c("country", "lat", "long", "hospital")]</pre>
gps0 <- subset(gps0, country == "Benin" | country == "Burkina Faso")</pre>
gps <- data.frame("Burkina Faso", "12.500000", "-1.666670", "H")</pre>
rownames(gps) <- "BFH13_S131"</pre>
colnames(gps) <- c("country", "lat", "long", "hospital")</pre>
gps <- rbind(gps0, gps)</pre>
# Add important cities
gps_labels <- data.frame(country = c("country_name", "Benin", "Benin", "country_name",</pre>
    "Burkina Faso", "Burkina Faso", "ocean"), lat = c("10.544904033009432", "6.3676953",
    "9.3400159", "13.740788326149952", "12.3681873", "11.1757783", "4.944956754100344"),
    long = c("2.3165032566686428", "2.4252507", "2.6278258", "-1.0794179365270806",
        "-1.5270944", "-4.2957591", "2.376996878456601"), hospital = c("nd", "nd",
        "nd", "nd", "nd", "nd"))
rownames(gps_labels) <- c("Benin", "Cotonou", "Parakou", "Burkina Faso", "Ouagadougou",
    "Bobo Dioulasso", "Gulf of Guinea")
gps_data <- rbind(gps, gps_labels)</pre>
gps_data$Label <- c("nd", "nd", "Benin",</pre>
    "Cotonou", "Parakou", "Burkina Faso", "Ouagadougou", "Bobo Dioulasso", "Gulf of Guinea")
gps_data$lat <- as.numeric(gps_data$lat)</pre>
gps_data$long <- as.numeric(gps_data$long)</pre>
# Add sampling sites
p_map1 <- ggplot(data = world) + geom_sf() + borders("world", colour = "black", fill = "wheat1") +</pre>
    theme(panel.background = element_rect(fill = "azure1", colour = "azure1")) +
    geom_point(data = subset(gps_data, Label == "nd"), aes(x = long, y = lat), size = 4,
        shape = 16, color = "#B2182B") + geom_text_repel(data = subset(gps_data,
    Label == "nd"), mapping = aes(x = long, y = lat, label = hospital, family = "Times"),
```

```
size = 11, point.padding = 1e-06) + coord sf(ylim = c(4.5, 14.75), xlim = c(-6, 14.75)
   3.95), expand = T) + theme(axis.text = element_text(family = "Times", size = 16),
    axis.title = element_blank()) + annotation_scale(location = "bl", width_hint = 0.2,
   height = unit(0.3, "cm"))
# Add countries
p_map2 <- p_map1 + geom_point(data = subset(gps_data, Label == "Benin" | Label ==
    "Burkina Faso" | Label == "Gulf of Guinea"), aes(x = long, y = lat), size = 0,
    shape = 16, color = "black") + geom_text_repel(data = subset(gps_data, Label ==
    "Benin" | Label == "Burkina Faso" | Label == "Gulf of Guinea"), aes(x = long,
    y = lat, label = Label), color = "#4C4B49", size = 16, family = "Times")
# Add cities
p_map3 <- p_map2 + geom_point(data = subset(gps_data, Label == "Porto Novo" | Label ==</pre>
    "Cotonou" | Label == "Parakou" | Label == "Ouagadougou" | Label == "Bobo Dioulasso"),
    aes(x = long, y = lat), size = 5, shape = 9, color = "black") + geom_label_repel(data = subset(gps_data,
    Label == "Porto Novo" | Label == "Cotonou" | Label == "Parakou" | Label == "Ouagadougou" |
        Label == "Bobo Dioulasso"), aes(x = long, y = lat, label = Label), color = "black",
   size = 8, family = "Times", box.padding = 1.75)
# Save with or without the city labels p_map2 ggsave(filename =
\# 'p_map_notext.png', width = 16, height = 13, dpi = 300, units = 'in',
# device='png', scale = 1) p_map3 ggsave(filename = 'p_map.png', width = 16,
# height = 13, dpi = 300, units = 'in', device='png', scale = 1)
# Plot maps for sample sites in Finland
gps <- metadata[!duplicated(metadata[, c("lat", "long")]), ]</pre>
gps <- gps[, c("country", "lat", "long")]</pre>
gps_Fin <- subset(gps, country == "Finland")</pre>
Fin_map <- ggplot(data = world) + geom_sf() + borders("world", colour = "black",
    fill = "wheat1") + theme(panel.background = element_rect(fill = "azure1", colour = "azure1")) +
    geom_point(data = subset(gps_Fin), aes(x = long, y = lat), size = 4, shape = 16,
        color = "#B2182B") + coord_sf(ylim = c(60, 67), xlim = c(18, 33), expand = T) +
    theme(axis.text = element_text(family = "Times", size = 16), axis.title = element_blank()) +
    annotation_scale(location = "bl", width_hint = 0.1)
Fin_map <- Fin_map + theme(plot.margin = ggplot2::margin(0, 0, 0, 0, "cm"))
```

Data exploration using library HighstatLabv13

Number of zeros in the response variable 100 * sum(df\$ARG_SUM == 0) /

```
# nrow(df)

# Number of observations per level of a categorical covariate table(df$country)
# table(df$hospital) Only < 3 samples in some hospital groups. Let's not
# include that as a covariate.

# Let's fit a model with Gamma distribution with a log link. MO <- glm(ARG_SUM)
# ~ country, data = df, family='Gamma'(link='log'))

# MODEL VALIDATION Homogeneity Plot residuals vs fitted values F1 <- fitted(MO)
# E1 <- resid(MO, type = 'pearson') par(mfrow = c(1,1), cex.lab = 1.5, mar =
# c(5,5,2,2)) plot(x = F1, y = E1, xlab = 'Fitted values', ylab = 'Pearson
# residuals') abline(h = 0, lty = 2) No patterns, we are good.

# boxplot(E1 ~ country, data = df, ylab = 'Residuals') abline(h = 0) Looks
# good.

# Influential observations par(mfrow = c(1, 1)) plot(cooks.distance(MO), type =
# 'h', ylim = c(0, 1)) abline(h = 1) There are no influental observations</pre>
```

```
# Normality par(cex.lab = 1.5, mar = c(5,5,2,2)) E1 <- resid(MO) hist(E1,
# breaks = 15, xlab = 'Residuals', main = '')

# Independence due to model misfit df$E1 <- E1 MySel <- c('SSU_counts',
# 'intI1_SUM', 'country') MyMultipanel.ggp2(Z = df, varx = MySel, vary = 'E1',
# ylab = 'Residuals', addSmoother = TRUE, addRegressionLine = FALSE,
# addHorizontalLine = TRUE) Some / No clear non-linear patterns in these
# graphs.

# Check for spatial dependency MyCex <- 3 * abs(E1) / max(E1) MyCol <-
# ifelse(E1 > 0, 'red', 'blue') xyplot(long ~ lat, data = df, cex = MyCex, col
# = MyCol) In general, that no sig. spatial dependency can be detected.
```

Plot model (ARGs)

```
MO <- glm(ARG_SUM ~ country, data = df, family = Gamma(link = "log"))
summary(M0)
cols <- get_palette(c("#B2182B", "#44AA99", "#2585E7"), 3)</pre>
glht.MO <- glht(MO, mcp(country = "Tukey"))</pre>
summary(glht(glht.MO))
# Add the p values obtained above
pvalues <- tibble::tribble(~group1, ~group2, ~p, "Benin", "Burkina Faso", 0.001,
    "Benin", "Finland", 0.001, "Burkina Faso", "Finland", 0.0105)
pvalues
dfA <- cbind(df, Mean = predict(MO, newdata = df, type = "response"), SE = predict(MO,
   newdata = df, type = "response", se.fit = T)$se.fit)
resfinder_MO <- ggplot(dfA, aes(x = country, y = Mean)) + scale_color_manual(values = cols) +
    geom_line() + geom_jitter(data = dfA, aes(x = country, y = ARG_SUM, color = country),
    size = 7.5, alpha = 1, width = 0.3) + geom_errorbar(aes(ymin = Mean - SE, ymax = Mean +
    SE), width = 0.5, lwd = 0.75) + geom_point(size = 0.9) + theme_linedraw() + theme(axis.text.x = element_text(ang
    size = 18, family = "Times", face = "bold"), axis.title.x = element_blank(),
    axis.text.y = element_text(size = 16, family = "Times"), axis.title.y = element_text(size = 16,
        family = "Times"), legend.position = "none", plot.title = element_text(size = 18,
        family = "Times", face = "bold")) + labs(y = "Normalized to 16S rRNA", x = "") +
    guides(color = "none", alpha = "none") + labs(title = "Relative sum abundance of ARGs")
ARG_sum <- resfinder_MO + stat_pvalue_manual(pvalues, label = "p", y.position = 2.3,
   step.increase = 0.05, tip.length = 0.01, size = 5)
# ARG sum
# ggsave(filename = 'resfinder_sum_MO.png', width = 16, height = 13, dpi = 300,
# units = 'in', device='png', scale = 1)
```

Plot model (MGEs)

M1 <- glm(MGE_SUM ~ country, data = df, family = Gamma(link = "log"))

```
dfA <- cbind(df, Mean = predict(M1, newdata = df, type = "response"), SE = predict(M1,
   newdata = df, type = "response", se.fit = T)$se.fit)
cols <- get_palette(c("#B2182B", "#44AA99", "#2585E7"), 3)</pre>
MGE_M1 \leftarrow ggplot(dfA, aes(x = country, y = Mean)) + scale_color_manual(values = cols) +
    geom_line() + geom_jitter(data = dfA, aes(x = country, y = MGE_SUM, color = country),
    size = 7.5, alpha = 1, width = 0.3) + geom_errorbar(aes(ymin = Mean - SE, ymax = Mean +
    SE), width = 0.5, lwd = 0.75) + geom_point(size = 0.9) + theme_linedraw() + theme(axis.text.x = element_text(ang
    size = 18, family = "Times", face = "bold"), axis.title.x = element_blank(),
    axis.text.y = element_text(size = 16, family = "Times"), axis.title.y = element_blank(),
   legend.position = "none", plot.title = element_text(size = 18, family = "Times",
        face = "bold")) + labs(y = "Normalized to 16S rRNA", x = "") + guides(color = "none",
    alpha = "none") + labs(title = "Relative sum abundance of MGEs")
MGE_sum <- MGE_M1 + stat_pvalue_manual(pvalues, label = "p", y.position = 7, step.increase = 0.05,
   tip.length = 0.01, size = 5)
# MGE sum
\# qqsave(filename = 'MGE_sum_M1_new.pnq', width = 16, height = 13, dpi = 300,
# units = 'in', device='png', scale = 1)
```

Plot model (intI1)

M2 <- glm(intI1_SUM ~ country, data = df, family = Gamma(link = "log"))

```
summary(M2)
glht.M2 <- glht(M2, mcp(country = "Tukey"))</pre>
summary(glht(glht.M2))
# Add the p values obtained above
pvalues <- tibble::tribble(~group1, ~group2, ~p, "Benin", "Burkina Faso", 0.013,
    "Benin", "Finland", 0.001, "Burkina Faso", "Finland", 0.001)
pvalues
dfA <- cbind(df, Mean = predict(M2, newdata = df, type = "response"), SE = predict(M2,
   newdata = df, type = "response", se.fit = T)$se.fit)
cols <- get_palette(c("#B2182B", "#44AA99", "#2585E7"), 3)</pre>
intI1_M2 \leftarrow ggplot(dfA, aes(x = country, y = Mean)) + scale_color_manual(values = cols) +
    geom line() + geom jitter(data = dfA, aes(x = country, y = intI1 SUM, color = country),
    size = 7.5, alpha = 1, width = 0.3) + geom_errorbar(aes(ymin = Mean - SE, ymax = Mean +
    SE), width = 0.5, lwd = 0.75) + geom_point(size = 0.9) + theme_linedraw() + theme(axis.text.x = element_text(ang
   size = 18, family = "Times", face = "bold"), axis.title.x = element_blank(),
   axis.text.y = element_text(size = 16, family = "Times"), axis.title.y = element_blank(),
   legend.position = "none", plot.title = element_text(size = 18, family = "Times",
        face = "bold")) + labs(y = "Normalized to 16S rRNA", x = "") + guides(color = "none",
    alpha = "none") + labs(title = "Relative sum abundance of intI1")
intI1_sum <- intI1_M2 + stat_pvalue_manual(pvalues, label = "p", y.position = 1.05,
    step.increase = 0.05, tip.length = 0.01, size = 5)
# intI1_sum
# ggsave(filename = 'intI1_sum_M2_new.png', width = 16, height = 13, dpi = 300,
# units = 'in', device='png', scale = 1)
```

Plot figures in grids

Benin

```
design <- "
###
ABC
###
"

# ARG_sum + MGE_sum + intI1_sum + plot_layout(design = design) +
# plot_annotation(tag_levels = c('A', 'B', 'C')) & theme(plot.tag =
# element_text(size = 24, family = 'Times'))

# ggsave(filename = 'sums_grid.png', width = 16, height = 13, dpi = 300, units
# = 'in', device='png', scale = 1)</pre>
```

Plot models by hospitals / hospital sections (ARGs)

```
resfinder_PHY_stat_Ben <- subset_samples(resfinder_PHY_stat, country == "Benin")</pre>
df <- data.frame(ARG_SUM = sample_sums(resfinder_PHY_stat_Ben), hospital = as.factor(sample_data(resfinder_PHY_stat_Ben))
# Fit model
M3 <- glm(ARG_SUM ~ hospital, data = df, family = Gamma(link = "log"))
summary (M3)
glht.M3 <- glht(M3, mcp(hospital = "Tukey"))</pre>
summary(glht(glht.M3))
# BF
resfinder_PHY_stat_BF <- subset_samples(resfinder_PHY_stat, country == "Burkina Faso")</pre>
df <- data.frame(ARG_SUM = sample_sums(resfinder_PHY_stat_BF), hospital = as.factor(sample_data(resfinder_PHY_stat_BF)
# Fit model
M3 <- glm(ARG_SUM ~ hospital, data = df, family = Gamma(link = "log"))
summary (M3)
glht.M3 <- glht(M3, mcp(hospital = "Tukey"))</pre>
summary(glht(glht.M3))
# Finland
resfinder_PHY_stat_Fin <- subset_samples(resfinder_PHY_stat, country == "Finland")</pre>
df <- data.frame(ARG_SUM = sample_sums(resfinder_PHY_stat_Fin), hospital = as.factor(sample_data(resfinder_PHY_stat_Fin))
# Fit model
M3 <- glm(ARG_SUM ~ hospital, data = df, family = Gamma(link = "log"))
summary (M3)
glht.M3 <- glht(M3, mcp(hospital = "Tukey"))</pre>
summary(glht(glht.M3))
# Hospital section
df <- data.frame(ARG_SUM = sample_sums(resfinder_PHY_stat), hospital_section = as.factor(sample_data(resfinder_PHY_stat))
# Fit model
M4 <- glm(ARG_SUM ~ hospital_section, data = df, family = Gamma(link = "log"))
summary (M4)
glht.M4 <- glht(M4, mcp(hospital_section = "Tukey"))</pre>
summary(glht(glht.M4))
```

Ordinations

ARGs (ResFinder)

```
resfinder_PHY_ord <- ordinate(resfinder_PHY_stat, method = "PCoA", distance = "horn")
p_ord <- plot_ordination(resfinder_PHY_stat, resfinder_PHY_ord, color = "country")</pre>
resfinder.p_ord <- p_ord + scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
    geom_point(size = 3.5) + stat_ellipse(level = 0.9, linetype = 1) + geom_text_repel(mapping = aes(label = alias);
    size = 4, family = "Times", hjust = 1.2, vjust = 0.3) + theme_minimal() + labs(title = "Resistome",
    subtitle = "Hospital WWs in Benin, Burkina Faso and Finland") + theme(plot.title = element_text(size = 36,
    family = "Times", face = "bold"), plot.subtitle = element_text(size = 20, family = "Times"),
    legend.text = element_text(size = 18, family = "Times"), legend.title = element_blank(),
   axis.title = element_text(size = 36, family = "Times"), axis.text = element_text(size = 18,
        family = "Times")) + guides(fill = guide_legend(override.aes = list(linetype = 0)),
    color = guide_legend(override.aes = list(linetype = 0, size = 5)))
# leg_ord <- get_legend(resfinder.p_ord)</pre>
# Convert to a ggplot and print as_ggplot(leg_ord)
# Save qqsave(filename = 'ord_resfinder_new.pnq', width = 16, height = 13, dpi
# = 300, units = 'in', device='pnq', scale = 1)
# Test significance using pair-wise adonis resfinder_temp <-</pre>
\# subset_samples(resfinder_PHY_stat_equal1, (country == 'Benin' | country ==
# 'Finland')) resfinder_dist <- veqdist(t(otu_table(resfinder_temp)), dist =</pre>
# 'horn') adonis(resfinder dist ~ country, data =
# data.frame(sample_data(resfinder_temp), permutations = 9999))
# resfinder_temp <- subset_samples(resfinder_PHY_stat_equal1, (country ==
# 'Benin' | country == 'Burkina Faso')) resfinder_dist <-</pre>
# vegdist(t(otu_table(resfinder_temp)), dist = 'horn') adonis(resfinder_dist ~
# country, data = data.frame(sample_data(resfinder_temp), permutations = 9999))
# resfinder_temp <- subset_samples(resfinder_PHY_stat_equal1, (country ==</pre>
# 'Burkina Faso' | country == 'Finland')) resfinder_dist <-
# vegdist(t(otu_table(resfinder_temp)), dist = 'horn') adonis(resfinder_dist ~
```

Taxa (Metaphlan3)

```
PHY = transform_sample_counts(metaphlan_PHY_stat, function(x) 1e+06 * x/sum(x))
metaphlan_PHY_ord <- ordinate(PHY, method = "PCoA", distance = "horn")</pre>
p_ord <- plot_ordination(PHY, metaphlan_PHY_ord, color = "country")</pre>
metaphlan.p_ord <- p_ord + scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +</pre>
    geom_point(size = 3.5) + stat_ellipse(level = 0.9, linetype = 1) + geom_text_repel(mapping = aes(label = alias),
    size = 4, family = "Times", hjust = 1.2, vjust = 0.3) + theme_minimal() + labs(title = "Taxonomical composition"
    subtitle = "Hospital WWs in Benin, Burkina Faso and Finland") + theme(plot.title = element_text(size = 36,
    family = "Times", face = "bold"), plot.subtitle = element_text(size = 20, family = "Times"),
    legend.text = element_text(size = 50, family = "Times"), legend.title = element_blank(),
    axis.title = element_text(size = 36, family = "Times"), axis.text = element_text(size = 18,
        family = "Times")) + guides(fill = guide_legend(override.aes = list(linetype = 0)),
    color = guide_legend(override.aes = list(linetype = 0, size = 5)))
\# Save ggsave(filename = 'ord_metaphlan_new.png', width = 16, height = 13, dpi
# = 300, units = 'in', device='pnq', scale = 1)
# Test significance using pair-wise adonis metaphlan_temp <-</pre>
# subset_samples(metaphlan_PHY_stat_equal1, (country == 'Benin' | country ==
\# 'Finland')) metaphlan\_dist \leftarrow vegdist(t(otu\_table(metaphlan\_temp)), dist =
```

country, data = data.frame(sample_data(resfinder_temp), permutations = 9999))

```
# 'horn') adonis(metaphlan_dist ~ country, data =
# data.frame(sample_data(metaphlan_temp), permutations = 9999))

# metaphlan_temp <- subset_samples(metaphlan_PHY_stat_equal1, (country ==
# 'Benin' | country == 'Burkina Faso')) metaphlan_dist <-
# vegdist(t(otu_table(metaphlan_temp)), dist = 'horn') adonis(metaphlan_dist ~
# country, data = data.frame(sample_data(metaphlan_temp), permutations = 9999))

# metaphlan_temp <- subset_samples(metaphlan_PHY_stat_equal1, (country ==
# 'Burkina Faso' | country == 'Finland')) metaphlan_dist <-
# vegdist(t(otu_table(metaphlan_temp)), dist = 'horn') adonis(metaphlan_dist ~
# country, data = data.frame(sample_data(metaphlan_temp), permutations = 9999))</pre>
```

MGEs

```
MGE_PHY_ord <- ordinate(MGE_PHY_stat, method = "PCoA", distance = "horn")
p_ord <- plot_ordination(MGE_PHY_stat, MGE_PHY_ord, color = "country")</pre>
MGE.p_ord <- p_ord + scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
    geom_point(size = 3.5) + stat_ellipse(level = 0.9, linetype = 1) + geom_text_repel(mapping = aes(label = alias);
    size = 4, family = "Times", hjust = 1.2, vjust = 0.3) + theme_minimal() + labs(title = "Mobilome",
    subtitle = "Hospital WWs in Benin, Burkina Faso and Finland") + theme(plot.title = element_text(size = 36,
    family = "Times", face = "bold"), plot.subtitle = element_text(size = 20, family = "Times"),
   legend.text = element_text(size = 50, family = "Times"), legend.title = element_blank(),
   axis.title = element_text(size = 36, family = "Times"), axis.text = element_text(size = 18,
        family = "Times")) + guides(fill = guide_legend(override.aes = list(linetype = 0)),
    color = guide_legend(override.aes = list(linetype = 0, size = 5)))
# Save ggsave(filename = 'ord_mge_new.png', width = 16, height = 13, dpi = 300,
# units = 'in', device='png', scale = 1)
# Test significance using pair-wise adonis MGE temp <-
# subset_samples(MGE_PHY_stat_equal1, (country == 'Benin' | country ==
# 'Finland')) MGE_dist <- vegdist(t(otu_table(MGE_temp)), dist = 'horn')</pre>
# adonis(MGE_dist ~ country, data = data.frame(sample_data(MGE_temp),
# permutations = 9999))
# MGE_temp <- subset_samples(MGE_PHY_stat_equal1, (country == 'Benin' | country
# == 'Burkina Faso')) MGE_dist <- veqdist(t(otu_table(MGE_temp)), dist =
# 'horn') adonis(MGE_dist ~ country, data = data.frame(sample_data(MGE_temp),
# permutations = 9999))
# MGE_temp <- subset_samples(MGE_PHY_stat_equal1, (country == 'Burkina Faso' |
\# country == 'Finland')) MGE_dist <- vegdist(t(otu_table(MGE_temp)), dist =
# 'horn') adonis(MGE_dist ~ country, data = data.frame(sample_data(MGE_temp),
\# permutations = 9999))
```

Plot ordinations in figure panel

```
resfinder_PHY_ord <- ordinate(resfinder_PHY_stat, method = "PCoA", distance = "horn")
p_ord <- plot_ordination(resfinder_PHY_stat, resfinder_PHY_ord, color = "country")
arg <- p_ord + scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
    geom_point(size = 2) + stat_ellipse(level = 0.9, linetype = 1) + geom_text_repel(mapping = aes(label = hospital)
    size = 4, family = "Times", hjust = 1.2) + theme_minimal() + labs(title = "Resistome") +
    theme(plot.title = element_text(size = 20, family = "Times", face = "bold"),
        legend.position = "none", axis.title = element_text(size = 18, family = "Times"),
        axis.text = element_text(size = 18, family = "Times")) + theme(plot.margin = unit(c(0.1,
        0.1, 0.1, 1), "cm")) + coord_fixed() + guides(fill = guide_legend(override.aes = list(linetype = 0)),
    color = guide_legend(override.aes = list(linetype = 0, size = 5)))</pre>
```

```
# Data into counts
PHY = transform_sample_counts(metaphlan_PHY_stat, function(x) 1e+06 * x/sum(x))
metaphlan_PHY_ord <- ordinate(PHY, method = "PCoA", distance = "horn")</pre>
p_ord <- plot_ordination(PHY, metaphlan_PHY_ord, color = "country")</pre>
mp <- p_ord + scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) + geom_point(size = 2) +
    stat_ellipse(level = 0.9, linetype = 1) + geom_text_repel(mapping = aes(label = hospital),
    size = 4, family = "Times", hjust = 1.2) + theme_minimal() + labs(title = "Taxonomical composition") +
    theme(plot.title = element_text(size = 20, family = "Times", face = "bold", hjust = 0.5),
        legend.position = "none", axis.title = element_text(size = 18, family = "Times"),
        axis.text = element_text(size = 18, family = "Times")) + theme(plot.margin = unit(c(0.1,
   0.1, 0.1, 0.1), "cm")) + coord_fixed() + guides(fill = guide_legend(override.aes = list(linetype = 0)),
    color = guide_legend(override.aes = list(linetype = 0, size = 5)))
MGE_PHY_ord <- ordinate(MGE_PHY_stat, method = "PCoA", distance = "horn")
p_ord <- plot_ordination(MGE_PHY_stat, MGE_PHY_ord, color = "country")</pre>
mge <- p_ord + scale_color_manual(values = c("#B2182B", "#72D39D", "#2585E7")) +
    geom_point(size = 2) + stat_ellipse(level = 0.9, linetype = 1) + geom_text_repel(mapping = aes(label = hospital)
    size = 4, family = "Times", hjust = 1.2) + theme_minimal() + labs(title = "Mobilome") +
    theme(plot.title = element_text(size = 20, family = "Times", face = "bold", hjust = 0.5),
       legend.position = "none", axis.title = element_text(size = 18, family = "Times"),
        axis.text = element_text(size = 18, family = "Times")) + theme(plot.margin = unit(c(0.1,
   0.1, 0.1, 0.1), "cm")) + coord_fixed() + guides(fill = guide_legend(override.aes = list(linetype = 0)),
    color = guide_legend(override.aes = list(linetype = 0, size = 5)))
p <- arg + mp + mge + plot_layout(nrow = 2) + plot_annotation(tag_levels = list(c("A",
    "B", "C"))) & theme(plot.tag = element_text(size = 24, family = "Times"), plot.tag.position = c(0,
    1))
\# p_{leq} 
# 0)
# Save ggsave(filename = 'ord_patch_supp.png', width = 16, height = 13, dpi =
# 300, units = 'in', device='png', scale = 1)
```

DESeq2

ARGs

Finland-Benin

```
row.names = 1))
# Reorder to match metadata
match <- match(rownames(metadata), colnames(OTU_resfinder))</pre>
OTU_resfinder <- OTU_resfinder[, match]
all(colnames(OTU_resfinder) == rownames(metadata))
# Tax_table
clusters_tax_table_resfinder <- read.csv("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/clusters_tax_table.txt",
    header = FALSE, sep = ";")
colnames(clusters tax table resfinder) <- c("Gene", "Cluster name", "Class")</pre>
# Reorder columns
col_order <- c("Class", "Cluster_name", "Gene")</pre>
clusters_tax_table_resfinder <- clusters_tax_table_resfinder[, col_order]</pre>
# Reorder tax_table to match
match <- match(rownames(OTU_resfinder), clusters_tax_table_resfinder$Gene)</pre>
clusters_tax_table_resfinder <- clusters_tax_table_resfinder[match, ]</pre>
all(rownames(OTU_resfinder) == clusters_tax_table_resfinder$Gene)
```

OTU_resfinder <- as.matrix(read.table("ARG_genemat.txt", header = T, check.names = F,

```
# Divide by ARG gene lengths
resfinder_lengths <- read.delim("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/resfinder_lengths.txt",
    header = FALSE, comment.char = "#")
all(rownames(clusters_tax_table_resfinder$Gene) == resfinder_lengths$V1)
OTU_resfinder_length_norm <- OTU_resfinder/resfinder_lengths[, 2]
# Normalization with Metaxa2 SSU counts
deseq_OTU_resfinder <- t(t(OTU_resfinder_length_norm)/metadata$SSU_counts) * 1540
all(rownames(metadata) == colnames(deseq_OTU_resfinder))
identical(OTU_resfinder_length_norm[2025, 5]/metadata$SSU_counts[5], deseq_OTU_resfinder[2025,
all(rownames(OTU_resfinder_length_norm) == clusters_tax_table_resfinder$Gene)
# Deseq
deseq_OTU <- deseq_OTU_resfinder[, ] * 10^5 + 1</pre>
# Hide rownames
dim(deseq OTU)
rownames(deseq_OTU) <- c(1:3104)
dim(clusters_tax_table_resfinder)
rownames(clusters_tax_table_resfinder) <- c(1:3104)</pre>
resfinder_deseq <- phyloseq(otu_table(deseq_OTU, taxa_are_rows = T), sample_data(metadata),
    tax_table(as.matrix(clusters_tax_table_resfinder)))
## Exclude biological / technical replicates
resfinder_deseq <- subset_samples(resfinder_deseq, alias != "BH31" & alias != "BH33" &
    alias != "BH34B" & alias != "BH10" & alias != "BFH38B" & alias != "FH8" & alias !=
    "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseq object with only hospital WW samples sequenced here
resfinder_deseq_stat <- subset_samples(resfinder_deseq, category == "WA hospital effluent" |
    category == "North Eu hospital effluent")
# Take pair wise comparisons
deseq_PHY = subset_samples(resfinder_deseq_stat, country == "Benin" | country ==
    "Finland")
# hist(log10(apply(otu_table(deseq_PHY), 1, var)), xlab = 'log10(variance)')
# Let's set a threashold for the variance
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Benin", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
res = res[order(res$padj, na.last = NA), ]
alpha = 0.05
sigtab_resfinder = res[which(res$padj < alpha), ]</pre>
sigtab_resfinder = cbind(as(sigtab_resfinder, "data.frame"), as(tax_table(deseq_PHY)[rownames(sigtab_resfinder),
    ], "matrix"))
otu_table(deseq_PHY)[otu_table(deseq_PHY) == 1] <- 0</pre>
otu_table(deseq_PHY)[otu_table(deseq_PHY) > 0] <- 1</pre>
n <- rowSums(otu_table(deseq_PHY))</pre>
```

```
sigtab_resfinder = merge(sigtab_resfinder, as.data.frame(n), by = 0)

sorted_sigtab <- sigtab_resfinder[order(-sigtab_resfinder$log2FoldChange), ]

# write.table(sorted_sigtab,

# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/DESeq2_Ben_Fin.txt',

# row.names=T, sep = '\t', col.names = T)

Fin_Ben <- subset(sorted_sigtab, log2FoldChange >= 0)

Ben_Fin <- subset(sorted_sigtab, log2FoldChange <= 0)

Ben_Fin <- Ben_Fin[order(Ben_Fin$log2FoldChange), ]</pre>
```

Burkina Faso-Finland

```
# Take pair wise comparisons
deseq_PHY = subset_samples(resfinder_deseq_stat, country == "Burkina Faso" | country ==
    "Finland")
 \#\ hist(log10(apply(otu\_table(deseq\_PHY),\ 1,\ var)),\ xlab = 'log10(variance)') 
# Let's set a threashold for the variance
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Burkina Faso", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
# resultsNames(dds)
res = res[order(res$padj, na.last = NA), ]
alpha = 0.05
sigtab_resfinder = res[which(res$padj < alpha), ]</pre>
sigtab_resfinder = cbind(as(sigtab_resfinder, "data.frame"), as(tax_table(deseq_PHY)[rownames(sigtab_resfinder),
    ], "matrix"))
otu_table(deseq_PHY)[otu_table(deseq_PHY) == 1] <- 0</pre>
otu_table(deseq_PHY)[otu_table(deseq_PHY) > 0] <- 1</pre>
n <- rowSums(otu_table(deseq_PHY))</pre>
sigtab_resfinder = merge(sigtab_resfinder, as.data.frame(n), by = 0)
sorted_sigtab <- sigtab_resfinder[order(-sigtab_resfinder$log2FoldChange), ]</pre>
# Save BF write.table(sorted_sigtab,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/DESeq2_BF_Fin.txt',
# row.names=T, sep = ' \setminus t', col.names = T)
Fin_BF <- subset(sorted_sigtab, log2FoldChange >= 0)
BF_Fin <- subset(sorted_sigtab, log2FoldChange <= 0)</pre>
BF_Fin <- BF_Fin[order(BF_Fin$log2FoldChange), ]</pre>
# head(Fin_BF) head(BF_Fin)
```

```
OTU metaphlan <- read.delim("~/Documents/Metagenomes AMRIWA/R/AMRIWA/RFiles/mod merged abundance table species.txt"
   header = T)
# Match sample order
tax_table_metaphlan <- read.table("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/tax_table_metaphlan",
    quote = "\"", comment.char = "")
identical(tax_table_metaphlan$V1, OTU_metaphlan$clade_name)
tax_table_metaphlan <- read.csv("~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/tax_table_metaphlan",
   header = FALSE, sep = ";")
colnames(tax_table_metaphlan) <- c("Kingdom", "Phylum", "Class", "Order", "Family",</pre>
    "Genus", "Species")
# Remove '__
tax_table_metaphlan <- apply(tax_table_metaphlan, 2, function(y) (gsub(".__", "",
    y)))
match <- match(rownames(metadata), colnames(OTU_metaphlan))</pre>
OTU_metaphlan <- OTU_metaphlan[, match]
all(rownames(metadata) == colnames(OTU_metaphlan))
OTU_metaphlan_deseq = OTU_metaphlan
# Multiply with SSU counts from Metaxa2
vec <- as.vector(metadata$SSU_counts)</pre>
deseq_OTU <- mapply(FUN = `*`, as.data.frame(OTU_metaphlan_deseq), vec)</pre>
metaphlan_deseq <- phyloseq(otu_table(deseq_OTU, taxa_are_rows = T), sample_data(metadata),
    tax_table(as.matrix(tax_table_metaphlan)))
## Exclude biological / technical replicates
metaphlan_deseq_stat <- subset_samples(metaphlan_deseq, alias != "BH31" & alias !=
    "BH33" & alias != "BH34B" & alias != "BH10" & alias != "BFH38B" & alias != "FH8" &
    alias != "BH45" & alias != "BH59" & alias != "BH62")
# Create phyloseq object with only hospital WW samples sequenced here
metaphlan_deseq_stat <- subset_samples(metaphlan_deseq_stat, category == "WA hospital effluent" |</pre>
    category == "North Eu hospital effluent")
metaphlan_deseq_stat <- prune_taxa(taxa_sums(metaphlan_deseq_stat) > 0, metaphlan_deseq_stat)
# Take pair wise comparisons
deseq_PHY = subset_samples(metaphlan_deseq_stat, country == "Benin" | country ==
    "Finland")
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Benin", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
# resultsNames(dds)
res = res[order(res$padj, na.last = NA), ]
alpha = 0.05
sigtab_metaphlan = res[which(res$padj < alpha), ]</pre>
```

Taxa (Metaphlan3), Genus, Benin-Finland

Take pair wise comparisons

```
deseq_PHY = subset_samples(metaphlan_deseq_stat, country == "Benin" | country ==
    "Finland")
# Get genus
deseq_PHY <- tax_glom(deseq_PHY, taxrank = "Genus")</pre>
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Benin", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
# resultsNames(dds)
res = res[order(res$padj, na.last = NA), ]
alpha = 0.05
sigtab_metaphlan = res[which(res$padj < alpha), ]</pre>
sigtab_metaphlan = cbind(as(sigtab_metaphlan, "data.frame"), as(tax_table(deseq_PHY)[rownames(sigtab_metaphlan),
    ], "matrix"))
otu_table(deseq_PHY)[otu_table(deseq_PHY) == 1] <- 0</pre>
otu_table(deseq_PHY)[otu_table(deseq_PHY) > 0] <- 1</pre>
n <- rowSums(otu_table(deseq_PHY))</pre>
sigtab_metaphlan = merge(sigtab_metaphlan, as.data.frame(n), by = 0)
sorted_metaphlan_sigtable <- sigtab_metaphlan[order(-sigtab_metaphlan$log2FoldChange),</pre>
# head(sorted metaphlan sigtable) write.table(sorted metaphlan sigtable,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/metaphlan3_DESeq2_Ben_Fin_g.txt',
# row.names=T, sep = ' \setminus t', col.names = T)
```

Taxa (Metaphlan3), Species, Burkina Faso-Finland

```
# Take pair wise comparisons
deseq_PHY = subset_samples(metaphlan_deseq_stat, country == "Burkina Faso" | country ==
    "Finland")
varianceThreshold = 50
keepOTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY
dds = phyloseq_to_deseq2(deseq_PHY, ~country)
dds$category <- relevel(dds$country, "Burkina Faso", "Finland")</pre>
dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)
res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
# resultsNames(dds)
res = res[order(res$padj, na.last = NA), ]
alpha = 0.05
sigtab_metaphlan = res[which(res$padj < alpha), ]</pre>
sigtab_metaphlan = cbind(as(sigtab_metaphlan, "data.frame"), as(tax_table(deseq_PHY)[rownames(sigtab_metaphlan),
    ], "matrix"))
otu_table(deseq_PHY)[otu_table(deseq_PHY) == 1] <- 0</pre>
otu_table(deseq_PHY)[otu_table(deseq_PHY) > 0] <- 1</pre>
n <- rowSums(otu_table(deseq_PHY))</pre>
sigtab_metaphlan = merge(sigtab_metaphlan, as.data.frame(n), by = 0)
sorted_sigtab <- sigtab_metaphlan[order(-sigtab_metaphlan$log2FoldChange), ]</pre>
# head(sorted_sigtab) write.table(sorted_sigtab,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/metaphlan3_DESeq2_BF_Fin_s.txt',
# row.names=T, sep = ' \setminus t', col.names = T)
```

Taxa (Metaphlan3), Genus, Burkina Faso-Finland

```
# Take pair wise comparisons
deseq_PHY = subset_samples(metaphlan_deseq_stat, country == "Burkina Faso" | country ==
    "Finland")

# Get genus
deseq_PHY <- tax_glom(deseq_PHY, taxrank = "Genus")

varianceThreshold = 50
keepDTUs = apply(otu_table(deseq_PHY), 1, var) > varianceThreshold
deseq_PHY = prune_taxa(keepOTUs, deseq_PHY)
deseq_PHY

dds = phyloseq_to_deseq2(deseq_PHY, ~country)

dds$category <- relevel(dds$country, "Burkina Faso", "Finland")

dds = DESeq(dds, fitType = "mean", test = "Wald", betaPrior = FALSE)

res = results(dds, cooksCutoff = FALSE, alpha = 0.05)
# resultsNames(dds)</pre>
```

Heatmap for clinically relevant taxa

metaphlan_PHY_Species <- tax_glom(metaphlan_PHY_stat, taxrank = "Species")</pre>

```
# ESKAPEEc and other relevant taxa
selected <- subset_taxa(metaphlan_PHY_Species, Species == "Acinetobacter_baumannii" |</pre>
    Species == "Acinetobacter_nosocomialis" | Species == "Acinetobacter_bouvetii" |
    Species == "Acinetobacter_johnsonii" | Species == "Acinetobacter_radioresistens" |
    Species == "Acinetobacter_lwoffii" | Species == "Acinetobacter_calcoaceticus" |
    Species == "Acinetobacter_haemolyticus" | Species == "Acinetobacter_bereziniae" |
    Species == "Acinetobacter_venetianus" | Species == "Acinetobacter_calcoaceticus" |
    Species == "Acinetobacter_pittii" | Species == "Acinetobacter_guillouiae" | Species ==
    "Acinetobacter_schindleri" | Species == "Acinetobacter_bereziniae" | Species ==
    "Acinetobacter_kyonggiensis" | Species == "Enterobacter_cloacae_complex" | Species ==
    "Enterococcus_faecium" | Species == "Klebsiella_pneumoniae" | Species == "Staphylococcus_aureus" |
    Species == "Pseudomonas_aeruginosa_group" | Species == "Escherichia_coli")
# Filter out low abundance taxa
selected <- subset_taxa(selected, taxa_sums(selected) != 0)</pre>
# OTU matrix
heat_OTU = as(otu_table(selected), "matrix")
# Coerce to data.frame
heat.df = as.data.frame(heat_OTU)
# Tax table matrix
heat_tax = as(tax_table(selected), "matrix")
# Swap colnames
match <- match(rownames(heat.df), rownames(heat_tax))</pre>
temp <- heat_tax[match, ]</pre>
all(rownames(temp) == rownames(heat_OTU))
all(rownames(temp) == rownames(heat_tax))
rownames(heat.df) <- temp[, 7]</pre>
new_df <- heat.df[order(row.names(heat.df)), ]</pre>
new_tax = heat_tax
rownames(new_tax) <- paste(selected@tax_table[, 7])</pre>
new_tax[order(row.names(new_tax)), ]
```

```
# Col annotation
country <- as.matrix(sample data(selected)[["country"]])</pre>
country <- as.factor(country)</pre>
country <- data.frame(country)</pre>
colnames(country) <- c("country")</pre>
rownames(country) <- as.matrix(colnames(otu_table(selected)))</pre>
country$country <- gsub(" ", "_", country$country)</pre>
ann_colors <- list(country = c(Benin = "#B2182B", Burkina_Faso = "#44AA99", Finland = "#2166AC"))
colnames(new_df) <- gsub(pattern = "_[A-Z].*", replacement = "_", colnames(new_df))</pre>
rownames(new_df) <- gsub(patter = "_", replacement = " ", rownames(new_df))
## Plot log
newnames <- lapply(rownames(new_df), function(x) bquote(italic(.(x))))</pre>
\# Plot heat <- pheatmap(sqrt(new_df), cluster_rows = F, cluster_cols = T,
# border_color = 'grey', colorRampPalette(brewer.pal(9, 'Blues'))(100), main =
# 'Relative abundance of clinically relevant species\n (Metaphlan3, square root
# transformed)', angle_col = 90, legend = TRUE, fontsize_row = 11, labels_row =
# as.expression(newnames), filename = 'eskape_heat.png', annotation_col =
# country, clustering_distance_cols = 'euclidean', show_colnames = T, cellwidth
\# = 13, cellheight = 26, gaps_row = rep(c(12)), annotation_colors = ann_colors)
```

15 most abundant ARGs in HWWs from each country

Benin

```
resfinder_PHY_stat_Ben <- subset_samples(resfinder_PHY_stat, country == "Benin")</pre>
resfinder_PHY_stat_Ben_abun <- tax_glom(resfinder_PHY_stat_Ben, taxrank = "Gene")
# Take 15 most abundant
resfinder_PHY_stat_Ben_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_stat_Ben_abun),</pre>
    TRUE)[1:15]), resfinder_PHY_stat_Ben_abun)
resfinder_PHY_stat_BF <- subset_samples(resfinder_PHY_stat, country == "Burkina Faso")
resfinder_PHY_stat_BF_abun <- tax_glom(resfinder_PHY_stat_BF, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_stat_BF_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_stat_BF_abun),
    TRUE)[1:15]), resfinder_PHY_stat_BF_abun)
# Finland
resfinder_PHY_stat_Fin <- subset_samples(resfinder_PHY_stat, country == "Finland")
resfinder_PHY_stat_Fin_abun <- tax_glom(resfinder_PHY_stat_Fin, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_stat_Fin_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_stat_Fin_abun),</pre>
    TRUE)[1:15]), resfinder_PHY_stat_Fin_abun)
# Create dataframe
Benin <- data.frame(resfinder_PHY_stat_Ben_abun@tax_table)$Gene</pre>
BF <- data.frame(resfinder_PHY_stat_BF_abun@tax_table)$Gene</pre>
Finland <- data.frame(resfinder_PHY_stat_Fin_abun@tax_table)$Gene
top_ARGs <- data.frame(Benin, BF, Finland)</pre>
```

Most abundant ARGs in other than HWW samples

```
## Sample sums feces
resfinder_PHY_feces <- subset_samples(resfinder_PHY, alias == "BH20" | alias == "BH22" |
    alias == "BH24" | alias == "BH25")
resfinder_PHY_feces <- tax_glom(resfinder_PHY_feces, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_feces_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_feces),
    TRUE)[1:15]), resfinder_PHY_feces)
resfinder_PHY_feces_abun@tax_table
# drinking
resfinder_PHY_ben_drink <- subset_samples(resfinder_PHY, alias == "BSE100" | alias ==</pre>
    "BSE74" | alias == "BSE79" | alias == "BSE93" | alias == "BH11")
resfinder_PHY_ben_drink <- subset_taxa(resfinder_PHY_ben_drink, taxa_sums(resfinder_PHY_ben_drink) !=
resfinder_PHY_ben_drink <- tax_glom(resfinder_PHY_ben_drink, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_ben_drink_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_ben_drink),
    TRUE)[1:15]), resfinder_PHY_ben_drink)
resfinder_PHY_ben_drink_abun@tax_table
# other, Benin
resfinder_PHY_ben_other <- subset_samples(resfinder_PHY, alias == "BH13" | alias ==
    "BH14" | alias == "BH32" | alias == "BH52")
resfinder_PHY_ben_other <- subset_taxa(resfinder_PHY_ben_other, taxa_sums(resfinder_PHY_ben_other) !=
resfinder_PHY_ben_other <- tax_glom(resfinder_PHY_ben_other, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_ben_other_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_ben_other),</pre>
    TRUE)[1:15]), resfinder_PHY_ben_other)
resfinder_PHY_ben_other_abun@tax_table
# other, BF
resfinder_PHY_BF_other <- subset_samples(resfinder_PHY, alias == "BFH27" | alias ==</pre>
    "BFH42" | alias == "BFH26")
resfinder_PHY_BF_other <- subset_taxa(resfinder_PHY_BF_other, taxa_sums(resfinder_PHY_BF_other) !=
resfinder_PHY_BF_other <- tax_glom(resfinder_PHY_BF_other, taxrank = "Gene")</pre>
# Take 15 most abundant
resfinder_PHY_BF_other_abun <- prune_taxa(names(sort(taxa_sums(resfinder_PHY_BF_other),
    TRUE) [1:15]), resfinder_PHY_BF_other)
```

Interesting ARGs

resfinder_PHY_BF_other_abun@tax_table

MCR

```
# Save sums
resfinder_PHY_mcr <- subset_taxa(resfinder_PHY_stat, Class == "Polymyxin")
resfinder_PHY_mcr <- tax_glom(resfinder_PHY_mcr, taxrank = "Cluster_name")
name <- data.frame(unique(resfinder_PHY_mcr@tax_table))

resfinder_PHY_mcr_1 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-1.11_1_clust")
mcr <- data.frame(sample_sums(resfinder_PHY_mcr_1))
resfinder_PHY_mcr_2 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-2.1_1_clust")
mcr$"mcr-2.1_1_clust" <- data.frame(sample_sums(resfinder_PHY_mcr_2))
resfinder_PHY_mcr_3.1 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-3.1_1_clust")
mcr$"mcr-3.1_1_clust" <- data.frame(sample_sums(resfinder_PHY_mcr_3.1))
resfinder_PHY_mcr_3.17 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-3.17_1")</pre>
```

```
mcr$"mcr-3.17_1" <- data.frame(sample_sums(resfinder_PHY_mcr_3.17))
resfinder_PHY_mcr_4 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-4.1_1_clust")
mcr$"mcr-4.1_1_clust" <- data.frame(sample_sums(resfinder_PHY_mcr_4))
resfinder_PHY_mcr_5 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-5.1_1_clust")
mcr$"mcr-5.1_1_clust" <- data.frame(sample_sums(resfinder_PHY_mcr_5))
resfinder_PHY_mcr_6 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-6.1_1")
mcr$"mcr-6.1_1" <- data.frame(sample_sums(resfinder_PHY_mcr_6))
resfinder_PHY_mcr_7 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-7.1_1")
mcr$"mcr-7.1_1" <- data.frame(sample_sums(resfinder_PHY_mcr_7))
resfinder_PHY_mcr_8 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-8_1")
mcr$"mcr-8_1" <- data.frame(sample_sums(resfinder_PHY_mcr_8))
resfinder_PHY_mcr_9 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-9_1")
mcr$"mcr-9_1" <- data.frame(sample_sums(resfinder_PHY_mcr_9))
resfinder_PHY_mcr_10 <- subset_taxa(resfinder_PHY_mcr, Cluster_name == "mcr-10_1")
mcr$"mcr-10_1" <- data.frame(sample_sums(resfinder_PHY_mcr_10))</pre>
```

Carbapenemases

```
resfinder_PHY_Cluster_1 <- subset_taxa(resfinder_PHY_stat, Cluster_name == "blaKPC-34_1_clust"|
         Cluster_name == "blaNDM-18_1_clust" | Cluster_name == "blaVIM-48_1_clust" |
         Cluster_name == "blaIMP-1_1_clust" | Cluster_name == "blaOXA-397_1_clust")
resfinder_PHY_Cluster_3 <- subset_taxa(resfinder_PHY_stat, Gene == "blaGES-2_1_AF326355" |
    Gene == "blaGES-4_1_AB116723" | Gene == "blaGES-5_1_DQ236171" |
    Gene == "blaGES-6_1_AY494718" | Gene == "blaGES-14_1_GU207844" |
    Gene == "blaGES-16_1_HM173356" | Gene == "blaGES-18_1_JQ028729"|
    Gene == "blaGES-20_1_JN596280" | Gene == "blaOXA-48_1_AY236073" |
    Gene == "bla0XA-162_1_GU197550" | Gene == "bla0XA-181_1_CM004561" |
    Gene == "blaOXA-199_1_JN704570" | Gene == "blaOXA-204_1_KP027885" |
    Gene == "bla0XA-232 1 JX423831" | Gene == "bla0XA-244 1 KP659189" |
    Gene == "bla0XA-245 1 JX438001" | Gene == "bla0XA-247 1 JX893517" |
    \texttt{Gene} \ == \ "bla0XA-247\_1\_JX893517" \ | \ \texttt{Gene} \ == \ "bla0XA-514\_1\_KU866382" \ | \ 
    Gene == "bla0XA-515_1_KU866383" | Gene == "bla0XA-517_1_KU878974") # bla0XA-48-like
resfinder_PHY_Cluster <- merge_phyloseq(resfinder_PHY_Cluster_1, resfinder_PHY_Cluster_3)
cols <- get_palette(c("#332288", "#117733", "#52BFAD", "#88CCEE", "#DDCC77", "#FDA4B3",
                     "#F22D3D", "#882255", "#5F5E98", "#E4C960", "#FD8FD9"), 11)
"J", "J",
                "K", "K",
                                "K", "L", "L",
    "D",
         "D",
rfc <- plot_bar(resfinder_PHY_Cluster, fill = "Cluster_name")</pre>
rfc_plot <- rfc + geom_bar(stat="identity", color = NA, size = 0) + scale_fill_manual(values = cols,</pre>
  labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Hospital wastewaters") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_Cluster)))),
  labels=hospital, expression(bar("x"))) + theme_minimal() +
  theme(axis.text.x = element_text(size = 19, family = "Times", angle = 0, hjust = 0.6, vjust = 1),
  axis.text.y = element_text(size = 16, family = "Times", angle = 0),
  axis.title.y = element_blank(), axis.title.x = element_blank(),
  #legend.text = element_text(size = 14, family = "Times", face = "italic"), # run first with these
  #legend.title = element_blank(),
                                                                             # to get the legend
  #legend.key = element_rect(size = 1, color = "white"),
  \#legend.key.size = unit(0.5, "cm"),
  \#legend.spacing.y = unit(2, "char"),
  legend.position = "none",
                                                                           # then with this
```

```
panel.background = element rect(fill = "#FFFDF9"),
  panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
  plot.title = element_text(size = 26, family = "Times", face = "bold")) +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
  breaks=seq(0, 0.1, 0.05)) + facet_grid(~country, scales = "free", space = "free") +
  theme(strip.text.x= element_text(size = 16,
  family = "Times", hjust = 0, vjust = 0.5, angle = 0, face = "bold"),
  strip.background = element_rect(colour = "white")) + guides(fill=guide_legend(ncol=1))
# Save legend
leg <- get_legend(rfc_plot)</pre>
# Convert to a ggplot and print
#as_ggplot(leg)
# Other than HWW
resfinder_PHY_Cluster_1 <- subset_taxa(resfinder_PHY, Cluster_name == "blaKPC-34_1_clust" |
    Cluster_name == "blaNDM-18_1_clust" | Cluster_name == "blaVIM-48_1_clust" |
    Cluster_name == "blaIMP-1_1_clust" | Cluster_name == "blaOXA-397_1_clust")
resfinder_PHY_Cluster_3 <- subset_taxa(resfinder_PHY, Gene == "blaGES-2_1_AF326355" |
    Gene == "blaGES-4_1_AB116723" | Gene == "blaGES-5_1_DQ236171" |
    Gene == "blaGES-6_1_AY494718" | Gene == "blaGES-14_1_GU207844" |
    Gene == "blaGES-16_1_HM173356" | Gene == "blaGES-18_1_JQ028729" |
    Gene == "blaGES-20_1_JN596280" | Gene == "blaOXA-48_1_AY236073" |
    Gene == "blaOXA-162_1_GU197550" | Gene == "blaOXA-181_1_CM004561" |
    Gene == "bla0XA-199_1_JN704570" | Gene == "bla0XA-204_1_KP027885" |
    Gene == "bla0XA-232_1_JX423831" | Gene == "bla0XA-244_1_KP659189" |
    Gene == "bla0XA-245_1_JX438001" | Gene == "bla0XA-247_1_JX893517" |
    Gene == "bla0XA-247_1_JX893517" | Gene == "bla0XA-514_1_KU866382" |
    Gene == "blaOXA-515_1_KU866383" | Gene == "blaOXA-517_1_KU878974") # blaOXA-48-like
resfinder_PHY_Cluster <- merge_phyloseq(resfinder_PHY_Cluster_1, resfinder_PHY_Cluster_3)
## Benin
# Feces
resfinder_PHY_feces <- subset_samples(resfinder_PHY_Cluster, alias == "BH20" | alias == "BH22" |
                                        alias == "BH24" | alias == "BH25")
df <- sample_sums(resfinder_PHY_feces)</pre>
names <- paste(resfinder_PHY_feces@sam_data$alias)</pre>
rfc <- plot_bar(resfinder_PHY_feces, fill = "Cluster_name")</pre>
rfc_plot1 <- rfc + geom_bar(stat="identity", color = NA, size = 0) +</pre>
  ggtitle("Benin") + scale_fill_manual(values = cols,
  labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Benin") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_feces)))),
  labels=names, expression(bar("x"))) + theme_minimal() +
  theme(axis.text.x = element_text(size = 20, family = "Times", angle = 0, face = "bold"),
  axis.text.y = element_text(size = 16, family = "Times", angle = 0),
  axis.title.y = element_text(size = 24, family = "Times"),
  axis.title.x = element_blank(), legend.position = "none",
  panel.background = element_rect(fill = "#FFFDF9"),
  panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
  plot.title = element_text(size = 16, family = "Times", face = "bold")) +
  scale_y_continuous(limits = c(0, 0.002), labels = scales::number_format(accuracy = 0.001),
  breaks = seq(0, 0.002, by = 0.001)) + facet_grid(~plot_name,
  scales = "free", space = "free", labeller = label_wrap_gen(width = 30, multi_line = TRUE)) +
  theme(strip.text.x= element_text(size = 14, family = "Times", hjust = 0, vjust = 0.5, angle = 0),
  strip.background = element_rect(colour = "white")) + guides(fill=guide_legend(ncol=1))
# Drinking
resfinder_PHY_ben_drink <- subset_samples(resfinder_PHY_Cluster, alias == "BSE100" |
                                            alias == "BSE74" | alias == "BSE79"|
```

```
alias == "BSE93" | alias == "BH11")
df <- sample_sums(resfinder_PHY_ben_drink)</pre>
names <- paste(resfinder_PHY_ben_drink@sam_data$alias)</pre>
rfc <- plot_bar(resfinder_PHY_ben_drink, fill = "Cluster_name")</pre>
rfc_plot2 <- rfc + geom_bar(stat="identity", color = NA, size = 0) +
  scale_fill_manual(values = cols,
  labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Benin") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_ben_drink)))),
  labels=names, expression(bar("x"))) + theme_minimal() + theme(axis.text.x = element_text(size = 20,
  family = "Times", angle = 0, face = "bold"),
  axis.text.y = element_text(size = 16, family = "Times", angle = 0),
  axis.title.x = element_blank(), axis.title.y = element_blank(),
  legend.position = "none", panel.background = element_rect(fill = "#FFFDF9"),
  panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
  plot.title = element_text(size = 16, family = "Times", face = "bold")) +
  scale_y_continuous(limits = c(0, 0.002), labels = scales::number_format(accuracy = 0.001),
  breaks = seq(0, 0.002, by = 0.001)) + facet_grid(~plot_name, scales = "free", space = "free",
  labeller = label_wrap_gen(width = 20, multi_line = TRUE)) + theme(strip.text.x= element_text(size = 14,
  family = "Times", hjust = 0, vjust = 0.5, angle = 0), strip.background = element_rect(colour = "white")) +
  guides(fill=guide_legend(ncol=1))
# other
resfinder_PHY_ben_other <- subset_samples(resfinder_PHY_Cluster,</pre>
                                          alias == "BH13" | alias == "BH52") alias == "BH52")
df <- sample_sums(resfinder_PHY_ben_other)</pre>
names <- paste(resfinder_PHY_ben_other@sam_data$alias)</pre>
rfc <- plot_bar(resfinder_PHY_ben_other, fill = "Cluster_name")</pre>
rfc_plot3 <- rfc + geom_bar(stat="identity", color = NA, size = 0) + scale_fill_manual(values = cols,
  labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Benin") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_ben_other)))),
  labels=names, expression(bar("x"))) + theme_minimal() + theme(axis.text.x = element_text(size = 20,
  family = "Times", angle = 0, face = "bold"),
  axis.text.y = element_text(size = 16, family = "Times", angle = 0),
  axis.title.y = element_blank(), axis.title.x = element_blank(),
  legend.position = "none", panel.background = element_rect(fill = "#FFFDF9"),
  panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
  plot.title = element_text(size = 16, family = "Times", face = "bold")) +
  scale_y_continuous(limits = c(0, 0.01), labels = scales::number_format(accuracy = 0.001),
  breaks = seq(0, 0.01, by = 0.005)) + facet_grid(~plot_name, scales = "free", space = "free",
  labeller = label_wrap_gen(width = 20, multi_line = TRUE)) +
  theme(strip.text.x= element_text(size = 14, family = "Times", hjust = 0, vjust = 0.5, angle = 0),
  strip.background = element_rect(colour = "white")) + guides(fill=guide_legend(ncol=1))
## Burkina Faso
# other
resfinder_PHY_BF_other <- subset_samples(resfinder_PHY_Cluster,</pre>
                                         alias == "BFH27" | alias == "BFH42" | alias == "BFH26")
df <- sample_sums(resfinder_PHY_BF_other)</pre>
names <- paste(resfinder_PHY_BF_other@sam_data$alias)</pre>
rfc <- plot_bar(resfinder_PHY_BF_other, fill = "Cluster_name")</pre>
rfc_plot4 <- rfc + geom_bar(stat="identity", size = 0, color = NA) + scale_fill_manual(values = cols,
  labels = c("blaGES", "blaIMP", "blaKPC", "blaNDM", "blaOXA-48", "blaOXA-58", "blaVIM")) +
  labs(y = expression(atop(bold("ARGs/16S rRNA")))) + ggtitle("Burkina Faso") +
  scale_x_discrete(breaks=levels(factor(rownames(sample_data(resfinder_PHY_BF_other)))),
  labels=names, expression(bar("x"))) + theme_minimal() + theme(axis.text.x = element_text(size = 20,
  family = "Times", angle = 0, face = "bold"),
```

```
axis.text.y = element text(size = 16, family = "Times", angle = 0),
  axis.title.y = element_blank(), axis.title.x = element_blank(),
  legend.position = "none", panel.background = element_rect(fill = "#FFFDF9"),
  panel.grid.minor = element_blank(), panel.grid.major = element_blank(),
  plot.title = element_text(size = 16, family = "Times", face = "bold")) +
  scale_y_continuous(labels = scales::number_format(accuracy = 0.01),
  breaks=seq(0, 0.02, 0.01)) + facet_grid(~plot_name, scales = "free", space = "free",
  labeller = label_wrap_gen(width = 25, multi_line = TRUE)) + theme(strip.text.x= element_text(size = 11,
  family = "Times", hjust = 0, vjust = 0.5, angle = 0), strip.background = element_rect(colour = "white")) +
  guides(fill=guide_legend(ncol=1))
layout <- "
AAAAA
AAAAA
AAAAA
BBBCCC
DDDEE#
p <- rfc_plot + rfc_plot1 + rfc_plot2 + rfc_plot3 + rfc_plot4 +
  plot_layout(design = layout) + plot_annotation(tag_levels = list(c("A", "B"))) &
  theme(plot.tag = element_text(size = 24, family = "Times"))
p_leg <- p + inset_element(leg, left = 1.65, bottom = 1, right = 1, top = 0)
#ggsave(filename = "carbapenemases_grid.png",
        width = 16, height = 13, dpi = 300, units = "in", device='png', scale = 1)
```

15 most abundant taxa

15 most abundant taxa in hospital WW in each country

metaphlan_PHY_Ben <- subset_samples(metaphlan_PHY_stat, country == "Benin")

```
metaphlan PHY BF <- subset samples(metaphlan PHY stat, country == "Burkina Faso")
metaphlan_PHY_Fin <- subset_samples(metaphlan_PHY_stat, country == "Finland")
# At genus level
metaphlan_PHY_Genus <- tax_glom(metaphlan_PHY_Ben, taxrank = "Genus")</pre>
metaphlan_PHY_Genus_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Genus),</pre>
    TRUE)[1:15]), metaphlan_PHY_Genus)
# tax_table(metaphlan_PHY_Genus_abund) At species level
metaphlan_PHY_Species <- tax_glom(metaphlan_PHY_Ben, taxrank = "Species")</pre>
metaphlan_PHY_Species_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Species),</pre>
    TRUE)[1:15]), metaphlan_PHY_Species)
# tax_table(metaphlan_PHY_Species_abund)
# At genus level
metaphlan_PHY_Genus <- tax_glom(metaphlan_PHY_BF, taxrank = "Genus")</pre>
metaphlan_PHY_Genus_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Genus),</pre>
    TRUE)[1:15]), metaphlan_PHY_Genus)
# tax_table(metaphlan_PHY_Genus_abund) At species level
metaphlan_PHY_Species <- tax_glom(metaphlan_PHY_BF, taxrank = "Species")</pre>
metaphlan_PHY_Species_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Species),</pre>
    TRUE)[1:15]), metaphlan_PHY_Species)
# tax_table(metaphlan_PHY_Species_abund)
# At genus level
metaphlan_PHY_Genus <- tax_glom(metaphlan_PHY_Fin, taxrank = "Genus")</pre>
metaphlan_PHY_Genus_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Genus),</pre>
    TRUE)[1:15]), metaphlan_PHY_Genus)
\# tax_table(metaphlan_PHY_Genus_abund) At species level
metaphlan_PHY_Species <- tax_glom(metaphlan_PHY_Fin, taxrank = "Species")</pre>
metaphlan_PHY_Species_abund <- prune_taxa(names(sort(taxa_sums(metaphlan_PHY_Species),</pre>
```

```
TRUE)[1:15]), metaphlan_PHY_Species)
# tax_table(metaphlan_PHY_Species_abund)
```

Correlation between MGE/intI1 & all ARGs

```
ARG_relative_sum <- data.frame(sample_sums(resfinder_PHY_stat))</pre>
MGE_relative_sum <- data.frame(sample_sums(MGE_PHY_stat))</pre>
intI1_relative_sum <- data.frame(sample_sums(MGE_PHY_int_stat))</pre>
all(rownames(ARG_relative_sum) == rownames(MGE_relative_sum))
all(rownames(ARG_relative_sum) == rownames(intI1_relative_sum))
## MGEs Join data
mge_res <- cbind(ARG_relative_sum, MGE_relative_sum)</pre>
colnames(mge_res) <- c("ARGs", "MGEs")</pre>
# Plot
cor <- ggplot(mge_res, aes(x = ARGs, y = MGEs)) + geom_point(size = 7, shape = 19,
    color = "#3110D2") + geom_smooth(method = "lm", se = TRUE, fullrange = FALSE,
    level = 0.95, color = "#FB2A38", fill = "#8A91F8") + theme_bw() + theme(axis.title = element_text(size = 30,
    family = "Times"), axis.text = element_text(size = 28, family = "Times"), plot.title = element_text(size = 36,
    family = "Times"), plot.subtitle = element_text(size = 28, family = "Times")) +
    xlab("ARG") + ylab("MGEs") + labs(title = "Correlation of relative sums of ARGs and MGEs",
cor2 <- cor + stat_cor(method = "pearson", label.x = 2, label.y = 1.5)</pre>
# qqsave(filename = 'ARG_MGE_cor_new.pnq', width = 16, height = 13, dpi = 300,
# units = 'in', device='pnq', scale = 1)
## Intl1 Join data
intl_res <- cbind(ARG_relative_sum, intI1_relative_sum)</pre>
colnames(intl_res) <- c("ARGs", "intI1")</pre>
# Plot
cor <- ggplot(intl_res, aes(x = ARGs, y = intI1)) + geom_point(size = 7, shape = 19,</pre>
    color = "#3110D2") + geom_smooth(method = "lm", se = TRUE, fullrange = FALSE,
    level = 0.95, color = "#FB2A38", fill = "#8A91F8") + theme_bw() + theme(axis.title = element_text(size = 30,
    family = "Times"), axis.text = element_text(size = 28, family = "Times"), plot.title = element_text(size = 36,
    family = "Times"), plot.subtitle = element_text(size = 28, family = "Times")) +
    xlab("ARG") + ylab("intI1") + labs(title = "Correlation of relative sums of ARGs and Int1",
    subtitle = "Hospital WWs in Benin, Burkina Faso and Finland")
cor2 <- cor + stat_cor(method = "pearson", label.x = 1, label.y = 1.5)</pre>
\# ggsave(filename = 'ARG_intl1_cor_new.png', width = 16, height = 13, dpi =
# 300, units = 'in', device='png', scale = 1)
```

Save correlation data for intI & qacEdelta and all ARGs

```
# intI1
tax <- data.frame(clusters_tax_table_resfinder)
tax$n <- rownames(tax)
tax$sp <- rep("sp", times = 3104)
rownames(tax) <- paste(tax$sp, tax$n, sep = "")
tax <- tax[c(-4, -5)]

args <- resfinder_PHY_stat
int <- MGE_PHY_int_stat

arg_matrix <- as.data.frame(otu_table(args))
arg_matrix$n <- rownames(arg_matrix)</pre>
```

```
arg matrix$sp <- rep("sp", times = 3104)
rownames(arg_matrix) <- paste(arg_matrix$sp, arg_matrix$n, sep = "")
arg_matrix <- arg_matrix[c(-68, -69)]</pre>
arg_matrix <- arg_matrix[which(rowSums(arg_matrix) > 0), ]
match <- match(rownames(arg matrix), rownames(tax))</pre>
arg_tax <- tax[match, ]</pre>
rownames(arg_matrix) <- arg_tax$Gene</pre>
int_matrix <- data.frame(sample_sums(otu_table(int)))</pre>
arg_matrix <- t(arg_matrix)</pre>
correl <- corr.test(arg_matrix, int_matrix, use = "pairwise", method = "pearson",</pre>
    adjust = "fdr", alpha = 0.05, ci = TRUE)
r <- data.frame(correl$r)
p <- data.frame(correl$p)</pre>
p.ad <- data.frame(correl$p.adj)</pre>
cor_data <- data.frame(r, p, p.ad)</pre>
cor_data$Gene <- rownames(cor_data)</pre>
colnames(cor_data) <- c("r", "p", "p.ad", "Gene")</pre>
cor_data_filt <- cor_data[which(cor_data$p < 0.05), ]</pre>
pos_all <- cor_data_filt[which(cor_data_filt$r > 0), ]
neg_all <- cor_data_filt[which(cor_data_filt$r < 0), ]</pre>
# write.table(pos_all,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/pos_all.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
# write.table(neg_all,
# '~/Documents/Metagenomes AMRIWA/R/AMRIWA/RFiles/neg all.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
# qacEdelta
tax <- data.frame(clusters_tax_table_resfinder)</pre>
tax$n <- rownames(tax)</pre>
tax$sp \leftarrow rep("sp", times = 3104)
rownames(tax) <- paste(tax$sp, tax$n, sep = "")</pre>
tax < -tax[c(-4, -5)]
args <- resfinder_PHY_stat</pre>
qac <- MGE_PHY_qac_stat</pre>
arg_matrix <- as.data.frame(otu_table(args))</pre>
arg_matrix$n <- rownames(arg_matrix)</pre>
arg_matrix$sp <- rep("sp", times = 3104)</pre>
rownames(arg_matrix) <- paste(arg_matrix$sp, arg_matrix$n, sep = "")
arg_matrix <- arg_matrix[c(-68, -69)]</pre>
arg_matrix <- arg_matrix[which(rowSums(arg_matrix) > 0), ]
match <- match(rownames(arg_matrix), rownames(tax))</pre>
arg_tax <- tax[match, ]</pre>
rownames(arg_matrix) <- arg_tax$Gene</pre>
qac_matrix <- data.frame(sample_sums(otu_table(qac)))</pre>
arg_matrix <- t(arg_matrix)</pre>
```

```
correl <- corr.test(arg matrix, qac matrix, use = "pairwise", method = "pearson",</pre>
               adjust = "fdr", alpha = 0.05, ci = TRUE)
r <- data.frame(correl$r)</pre>
p <- data.frame(correl$p)</pre>
p.ad <- data.frame(correl$p.adj)</pre>
cor_data <- data.frame(r, p, p.ad)</pre>
cor_data$Gene <- rownames(cor_data)</pre>
colnames(cor_data) <- c("r", "p", "p.ad", "Gene")</pre>
cor_data_filt <- cor_data[which(cor_data$p < 0.05), ]</pre>
pos_all <- cor_data_filt[which(cor_data_filt$r > 0), ]
neg_all <- cor_data_filt[which(cor_data_filt$r < 0), ]</pre>
# write.table(pos all,
 \verb| # '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/pos_all.txt', row.names=F, | AMRIWA/R/AMRIWA/RFiles/pos_all.txt', row.names=F, | AMRIWA/R/AMRIWA/RFiles/pos_all.txt', row.names=F, | AMRIWA/RFiles/pos_all.txt', row.names=F, | AMRIWA/R
\# sep = ' \setminus t', col.names = T)
# write.table(neg_all,
 \# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/neg_all.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
```

Figures for correlations for differentially abundant ARGs across countries (from DESeq2) & intI1/qacEdelta

intI1 <- data.frame(sample_sums(MGE_PHY_int_stat))</pre>

```
colnames(intI1) <- c("intI1")</pre>
qacEdelta <- data.frame(sample_sums(MGE_PHY_qac_stat))</pre>
colnames(qacEdelta) <- c("qacEdelta")</pre>
# DESeq2: Fin-Ben Benin
BenFin20 <- Ben Fin[1:20, ]
pattern_Ben_Fin <- as.matrix(BenFin20$Row.names)</pre>
args <- data.frame(otu table(resfinder PHY stat))</pre>
arg_data <- args[pattern_Ben_Fin, ]</pre>
all(rownames(arg_data) == BenFin20$Row.names)
rownames(arg_data) <- BenFin20$Gene
# shorten gene names
rownames(arg_data) <- gsub(pattern = "_[A-Z].*", replacement = "", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "-", replacement = "_", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "\\(", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\)", replacement = "_", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "\\", replacement = "", rownames(arg_data))</pre>
rownames(arg_data) <- c("lnu_F_3", "qnrVC4", "qnrVC5", "aac_6_IIc", "blaCARB_2",</pre>
    "ant_2_Ia_6", "blaOXA_129", "dfrA22", "blaVEB_1_3", "blaAER_1", "ant_2_Ia_10",
    "aph_2_Id", "blaVEB_1_1", "catQ_1", "blaVEB_5", "blaCARB_11", "blaCARB_1", "sul3_2",
    "dfrA15", "cmlA1")
arg_data = t(arg_data)
df <- data.frame(arg_data, intI1, qacEdelta)</pre>
par(family = "Times New Roman", cex = 1.5)
cor <- rcorr(as.matrix(df))</pre>
M <- cor$r
p_mat <- cor$P</pre>
```

```
M1 \leftarrow M[, -c(1:20)]
M1 \leftarrow M1[-c(21:22),]
p_mat1 <- p_mat[, -c(1:20)]</pre>
p_mat1 <- p_mat1[-c(21:22), ]</pre>
# Finland
FinBen20 <- Fin_Ben[1:20, ]</pre>
pattern_Fin_Ben <- as.matrix(FinBen20$Row.names)</pre>
args <- data.frame(otu_table(resfinder_PHY_stat))</pre>
arg_data <- args[pattern_Fin_Ben, ]</pre>
all(rownames(arg_data) == FinBen20$Row.names)
rownames(arg_data) <- FinBen20$Gene
# shorten gene names
rownames(arg_data) <- gsub(pattern = "_[A-Z].*", replacement = "", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "-", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\(", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\)", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\", replacement = "", rownames(arg_data))
rownames(arg_data) <- c("bla0XA_211", "bla0XA_299", "bla0XA_212", "bla0XA_334", "aac_6_Ig",
    "blaOXA_373", "blaOXA_296", "blaOXA_333", "blaOXA_309", "blaOXA_427", "dfrA3",
    "VanHOX_1", "blaOXA_281", "blaOXA_280", "cphA1", "VanHAX_1", "cphA2", "blaMOX_3",
    "VanHBX_1", "tet_39")
arg_data = t(arg_data)
df <- data.frame(arg_data, intI1, qacEdelta)</pre>
par(family = "Times New Roman", cex = 1.5)
cor <- rcorr(as.matrix(df))</pre>
M <- cor$r
p_mat <- cor$P</pre>
M2 \leftarrow M[, -c(1:20)]
M2 \leftarrow M2[-c(21:22),]
p_mat2 <- p_mat[, -c(1:20)]</pre>
p_mat2 \leftarrow p_mat2[-c(21:22),]
# DESeq2: Fin-BF BF
BFFin20 <- BF_Fin[1:20, ]</pre>
pattern_BF_Fin <- as.matrix(BFFin20$Row.names)</pre>
args <- data.frame(otu_table(resfinder_PHY_stat))</pre>
arg_data <- args[pattern_BF_Fin, ]</pre>
all(rownames(arg_data) == BFFin20$Row.names)
rownames(arg_data) <- BFFin20$Gene
# shorten gene names
rownames(arg_data) <- gsub(pattern = "_[A-Z].*", replacement = "", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "-", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\(", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\)", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\", replacement = "", rownames(arg_data))
rownames(arg_data) <- c("dfrB5", "blaCMY_4", "sul4", "dfrA15_2", "blaOXA_46", "blaOXA_101",
    "dfrA15_1", "blaOXA_7", "qnrVC1", "lnu_F_3", "nimA_1", "blaVIM_5", "dfrA15_4",
    "blaOXA_56", "catQ_1", "blaVIM_38", "blaCMY_130", "blaCMY_59", "qnrVC4", "blaVIM_25")
arg_data = t(arg_data)
df <- data.frame(arg_data, intI1, qacEdelta)</pre>
cor <- rcorr(as.matrix(df))</pre>
M <- cor$r
```

```
p mat <- cor$P
M3 \leftarrow M[, -c(1:20)]
M3 \leftarrow M3[-c(21:22),]
p_mat3 <- p_mat[, -c(1:20)]</pre>
p_mat3 \leftarrow p_mat3[-c(21:22),]
# Finland
FinBF20 <- Fin_BF[1:20, ]</pre>
pattern_Fin_BF <- as.matrix(FinBF20$Row.names)</pre>
args <- data.frame(otu_table(resfinder_PHY_stat))</pre>
arg_data <- args[pattern_Fin_BF, ]</pre>
all(rownames(arg_data) == FinBF20$Row.names)
rownames(arg_data) <- FinBF20$Gene</pre>
# shorten gene names
rownames(arg_data) <- gsub(pattern = "_[A-Z].*", replacement = "", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "-", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\(", replacement = "_", rownames(arg_data))</pre>
rownames(arg_data) <- gsub(pattern = "\\)", replacement = "_", rownames(arg_data))
rownames(arg_data) <- gsub(pattern = "\\'", replacement = "", rownames(arg_data))</pre>
rownames(arg_data) <- c("bla0XA_299", "bla0XA_334", "bla0XA_296", "bla0XA_333", "bla0XA_211",
    "aac_6_Ig", "blaOXA_281", "blaOXA_373", "blaOXA_212", "blaOXA_309", "VanHOX_1",
    "VanHAX_2", "VanHBX_1", "blaOXA_275", "aadA11", "VanHAX_1", "qnrB21", "VanC4XY_1",
    "mef_A_3", "cphA2")
arg_data = t(arg_data)
df <- data.frame(arg_data, intI1, qacEdelta)</pre>
cor <- rcorr(as.matrix(df))</pre>
M <- cor$r
p_mat <- cor$P</pre>
M4 \leftarrow M[, -c(1:20)]
M4 \leftarrow M4[-c(21:22),]
p_mat4 <- p_mat[, -c(1:20)]</pre>
p_mat4 \leftarrow p_mat4[-c(21:22),]
# Plot with ggcorrplot For the legend
p_mat1[is.na(p_mat1)] = 0
p_mat2[is.na(p_mat2)] = 0
p_mat3[is.na(p_mat3)] = 0
p_mat4[is.na(p_mat4)] = 0
m0 <- ggcorrplot(M1, p.mat = p_mat1, type = "full", insig = "blank", method = "square",</pre>
    ggtheme = ggplot2::theme_classic() + theme(axis.text = element_text(face = "italic",
        family = "Times", size = 9, angle = 20), plot.title = element_text(size = 9,
        face = "bold", family = "Times"), legend.title = element_blank(), legend.text = element_text(family = "Times")
        size = 20), legend.key.size = unit(1.4, "cm")))
title1 <- ggdraw() + draw_label("Differentially abundant ARGs in HWWs from Benin vs. Finland",
    fontface = "bold", x = 0.32, hjust = 0.1, y = 0.35, fontfamily = "Times", size = 24)
title2 <- ggdraw() + draw_label("Differentially abundant ARGs in HWWs from Burkina Faso vs. Finland",
    fontface = "bold", x = 0.32, hjust = 0.1, y = 0.35, fontfamily = "Times", size = 24)
m1 <- ggcorrplot(M1, p.mat = p_mat1, type = "full", insig = "blank", method = "square",
    ggtheme = ggplot2::theme_classic() + theme(axis.text = element_text(face = "italic",
        family = "Times"), legend.position = "none", plot.margin = unit(c(0, 0, 0,
        0), "cm"), axis.text.y.left = element_text(angle = 0, face = "bold.italic",
        size = 20), axis.text.x.bottom = element_text(size = 16, angle = 35, face = "italic"),
        plot.title = element_text(size = 24, family = "Times"))) + ggtitle("Benin")
m2 <- ggcorrplot(M2, p.mat = p_mat2, type = "full", insig = "blank", method = "square",</pre>
    ggtheme = ggplot2::theme_classic() + theme(axis.text = element_text(face = "italic",
```

```
family = "Times"), legend.position = "none", plot.margin = unit(c(0, 0, 0,
        0), "cm"), axis.text.y.left = element_text(angle = 0, face = "bold.italic",
        size = 20), axis.text.x.bottom = element_text(size = 16, angle = 35, face = "italic"),
        plot.title = element_text(size = 24, family = "Times"))) + ggtitle("Finland")
m3 <- ggcorrplot(M3, p.mat = p_mat3, type = "full", insig = "blank", method = "square",
    ggtheme = ggplot2::theme_classic() + theme(axis.text = element_text(face = "italic",
        family = "Times"), legend.position = "none", plot.margin = unit(c(0, 0, 0,
        0), "cm"), axis.text.y.left = element_text(angle = 0, face = "bold.italic",
        size = 20), axis.text.x.bottom = element_text(size = 16, angle = 35, face = "italic"),
        plot.title = element_text(size = 24, family = "Times"))) + ggtitle("Burkina Faso")
m4 <- ggcorrplot(M4, p.mat = p_mat4, type = "full", insig = "blank", method = "square",
    ggtheme = ggplot2::theme_classic() + theme(axis.text = element_text(face = "italic",
        family = "Times"), legend.position = "none", plot.margin = unit(c(0, 0, 0,
        0), "cm"), axis.text.y.left = element_text(angle = 0, face = "bold.italic",
        size = 20), axis.text.x.bottom = element_text(size = 16, angle = 35, face = "italic"),
        plot.title = element_text(size = 24, family = "Times"))) + ggtitle("Finland")
# Extract the legend from one of the plots legend <- get_legend(m0)
# Some inception with cowplot...
A \leftarrow plot_grid(title1, m1, m2, NULL, ncol = 1, rel_heights = c(0.5, 1, 1, 0.1))
B \leftarrow plot_grid(NULL, title2, m3, m4, ncol = 1, rel_heights = c(0.1, 0.5, 1, 1))
AB <- plot_grid(A, B, ncol = 1)
\# ggsave(filename = 'ARGs_corr_deseq.png', width = 16, height = 13, dpi = 300,
# units = 'in', device='pnq', scale = 1)
```

"Core" resistome and unique ARGs

```
Ben_temp <- otu_table(subset_samples(resfinder_PHY_stat, country %in% c("Benin")))[rowSums(otu_table(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_samples(subset_sam
         country %in% c("Benin")))) > 0]
nrow(Ben_temp) # 1738
BF_temp <- otu_table(subset_samples(resfinder_PHY_stat, country %in% c("Burkina Faso")))[rowSums(otu_table(subset_samples(resfinder_PHY_stat, country %in% c("Burkina Faso")))[rowSums(otu_table(subset_samples(resfinder_PHY_stat, country %in% c("Burkina Faso")))]
         country %in% c("Burkina Faso")))) > 0]
nrow(BF temp) # 2131
Fin_temp <- otu_table(subset_samples(resfinder_PHY_stat, country %in% c("Finland")))[rowSums(otu_table(subset_samples
         country %in% c("Finland")))) > 0]
nrow(Fin_temp) # 1555
length(intersect(row.names(Ben_temp), (row.names(BF_temp)))) # 1664
length(intersect(row.names(BF_temp), (row.names(Fin_temp)))) # 1414
length(intersect(row.names(Ben_temp), (row.names(Fin_temp)))) # 1295
\# grid.newpage() ven.p <- draw.triple.venn(area1 = nrow(Ben_temp), area2 =
# nrow(BF_temp), area3 = nrow(Fin_temp), n12 =
\# length(intersect(row.names(Ben_temp), (row.names(BF_temp)))), n23 =
# length(intersect(row.names(BF_temp), (row.names(Fin_temp)))), n13 =
\# length(intersect(row.names(Ben_temp), (row.names(Fin_temp)))), n123 =
# length(intersect(intersect(row.names(Ben_temp)), (row.names(BF_temp))),
# row.names(Fin_temp))), fontfamily = 'Times', category = c('Benin', 'Burkina
# Faso', 'Finland'), lty = 'blank', fill = c('#B2182B', '#44AA99', '#2166AC'),
\# alpha = 0.75, cex = 4.5, cat.cex = 6, rotation.degree = 0, label.col =
\# 'white', cat.dist = 0.05, filename = 'Venn_diagram.png', output=TRUE,
# imagetype='png', margin = 0.08) grid.draw(ven.p)
# And which ARGs are those?
tax <- data.frame(clusters_tax_table_resfinder)</pre>
```

```
tax$n <- rep(1:3104, each = 1)
colnames(tax) <- c("Class", "Cluster_name", "Gene", "n")</pre>
rownames(tax) <- paste(tax$n, sep = "")</pre>
tax \leftarrow tax[c(-4)]
match <- match(rownames(Ben_temp), rownames(tax))</pre>
Ben names <- tax[match, ]</pre>
match <- match(rownames(BF_temp), rownames(tax))</pre>
BF_names <- tax[match, ]</pre>
match <- match(rownames(Fin_temp), rownames(tax))</pre>
Fin_names <- tax[match, ]</pre>
# write.table(Ben_names,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/counts_Ben.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
# write.table(BF names,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/counts_BF.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
# write.table(Fin_names,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/counts_Fin.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
# What about the unique ARGs? Core
counts <- data.frame(otu_table(resfinder_PHY_stat))</pre>
counts[counts > 0] <- 1</pre>
core <- counts[rowSums(counts) == 67, ]</pre>
tax <- data.frame(clusters_tax_table_resfinder)</pre>
tax$n \leftarrow rep(1:3104, each = 1)
colnames(tax) <- c("Class", "Cluster_name", "Gene", "n")</pre>
rownames(tax) <- paste(tax$n, sep = "")</pre>
tax \leftarrow tax[c(-4)]
match <- match(rownames(core), rownames(tax))</pre>
core_names <- tax[match, ]</pre>
# write.table(core_names,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/core_names.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
# Unique for Benin
temp1 <- intersect(row.names(Ben_temp), row.names(Fin_temp))</pre>
temp2 <- intersect(row.names(Ben_temp), row.names(BF_temp))</pre>
temp <- c(temp1, temp2)</pre>
temp <- data.frame(temp)</pre>
temp <- data.frame(unique(temp))</pre>
rownames(temp) <- temp$temp</pre>
unique_Ben <- data.frame(names = outersect(rownames(temp), rownames(Ben_temp)))</pre>
rownames(unique_Ben) <- unique_Ben$names
match <- match(rownames(unique_Ben), rownames(tax))</pre>
unique_Ben <- tax[match, ]</pre>
# write.table(unique_Ben,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/unique_Ben.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
# Unique for Burkina Faso
temp1 <- intersect(row.names(BF_temp), row.names(Fin_temp))</pre>
```

```
temp2 <- intersect(row.names(BF_temp), row.names(Ben_temp))</pre>
temp <- c(temp1, temp2)</pre>
temp <- data.frame(temp)</pre>
temp <- data.frame(unique(temp))</pre>
rownames(temp) <- temp$temp</pre>
unique BF <- data.frame(names = outersect(rownames(temp), rownames(BF temp)))
rownames(unique_BF) <- unique_BF$names</pre>
match <- match(rownames(unique_BF), rownames(tax))</pre>
unique_BF <- tax[match, ]</pre>
# write.table(unique_BF,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/unique_BF.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
# Unique for Finland
temp1 <- intersect(row.names(Fin_temp), row.names(BF_temp))</pre>
temp2 <- intersect(row.names(Fin_temp), row.names(Ben_temp))</pre>
temp <- c(temp1, temp2)
temp <- data.frame(temp)</pre>
temp <- data.frame(unique(temp))</pre>
rownames(temp) <- temp$temp</pre>
unique_Fin <- data.frame(names = outersect(rownames(temp), rownames(Fin_temp)))</pre>
rownames(unique_Fin) <- unique_Fin$names</pre>
match <- match(rownames(unique_Fin), rownames(tax))</pre>
unique_Fin <- tax[match, ]</pre>
# write.table(unique_Fin,
# '~/Documents/Metagenomes_AMRIWA/R/AMRIWA/RFiles/unique_Fin.txt', row.names=F,
\# sep = ' \setminus t', col.names = T)
```