Nonlinear supervised learning with kernels

Sylvain Le Corff

- Widely used in machine learning.
- Extend algorithms such as SVMs to define non-linear decision boundaries.

Idea

- Implicitly defining an inner product in a high-dimensional space.
- Replacing the original inner product in the input space with positive definite kernels immediately extends algorithms such as SVMs to a non-linear separation in the input space.

SVM

In practice, linear separation is often not possible.

Implicit lifting to a higher dimensional space

- Use more complex functions to separate the two sets
- ▶ Use a non-linear mapping φ from the input space \mathcal{X} to a higher-dimensional space \mathcal{H} , where linear separation is possible.

3 / 50

Polynomial mapping

The **polynomial** mapping $\varphi : \mathbb{R}^2 \to \mathbb{R}^3$ for $x = (x_1, x_2) \in \mathbb{R}^2$

$$\varphi(x) = (x_1^2, x_2^2, \sqrt{2}x_1x_2)$$

solves the classification problem: label $Y_i = 1$ if the data point is in the circle of radius R.

Note that for $x, \tilde{x} \in \mathbb{R}^2$ we have

$$\langle \varphi(x), \varphi(x') \rangle = x_1^2 \tilde{x}_1^2 + x_2^2 \tilde{x}_2^2 + 2x_1 x_2 \tilde{x}_1 \tilde{x}_2$$

= $\langle x, \tilde{x} \rangle^2$.

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel over \mathcal{X} .

The idea is to define a kernel k such that

$$\forall (x, x') \in \mathcal{X} \times \mathcal{X}, \qquad k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}.$$

- for some mapping $\varphi = \mathcal{X} \to \mathcal{H}$ to a Hilbert space \mathcal{H}
- $ightharpoonup \mathcal{H}$ is called a feature space

Definition (Kernel)

A function $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is called a kernel over \mathcal{X} .

The idea is to define a kernel k such that

$$\forall (x, x') \in \mathcal{X} \times \mathcal{X}, \qquad k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}.$$

- for some mapping $\varphi = \mathcal{X} \to \mathcal{H}$ to a Hilbert space \mathcal{H}
- $ightharpoonup \mathcal{H}$ is called a feature space

Interpretation: k can be interpreted as a similarity measure between elements of the input space \mathcal{X} (or the "raw feature" space).

- Many machine learning algorithms (in particular, linear SVMs) can be expressed only in terms of inner products between vectors
- Computing the explicit mappings $\varphi(x_1), \varphi(x_2)$ and their inner product $\langle \varphi(x_1), \varphi(x_2) \rangle_{\mathcal{H}}$ can be computationally expensive!
- ► Kernel trick: avoid the explicit mapping $\varphi(x)$ by directly computing the inner product $\langle \varphi(x_1), \varphi(x_2) \rangle_{\mathcal{H}}$ via the kernel function $k(x_1, x_2)$

Efficiency:

- \blacktriangleright k is often significantly more efficient to compute than φ and an inner product in \mathcal{H} .
- in several common examples, the computation of k(x,x') can be achieved in $O(\dim \mathcal{X})$ while that of $\langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$ typically requires $O(\dim(\mathcal{H}))$ work, with $\dim(\mathcal{H}) \gg N$.
- ▶ in some cases, $dim(\mathcal{H}) = \infty$.

Flexibility:

- lacktriangle No need to explicitly define or compute a mapping arphi
- The kernel k can be arbitrarily chosen so long as the existence of φ is guaranteed, i.e. k satisfies Mercer's condition

Definition (Symmetry)

We say that a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is symmetric if for all $(x, x') \in \mathcal{X} \times \mathcal{X}$

$$k(x,x')=k(x',x).$$

Definition (Symmetry)

We say that a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is symmetric if for all $(x, x') \in \mathcal{X} \times \mathcal{X}$

$$k(x,x')=k(x',x).$$

Definition (Positive Definite Symmetric (PDS) kernel)

We say that a kernel $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ is Positive Definite Symmetric (PDS) if for any $\{x_1, \dots, x_n\} \subset \mathcal{X}$ the matrix

 $K := (k(x_i, x_j))_{1 \le i, j \le n}$ is symmetric positive semidefinite (SPSD), i.e.

$$K:=(k(x_i,x_j))_{1\leqslant i,j\leqslant n}\succeq 0.$$

Recall that K is SPSD if

- ▶ the eigenvalues of *K* are all non-negative,
- ightharpoonup or, for any vector $u \in \mathbb{R}^n$

$$u^T K u = \sum_{ij} u_i u_j k(x_i, x_j) \geqslant 0$$

(with K symmetric).

For a sample x_1, \ldots, x_n we call $K = [K(x_i, x_j)]_{1 \le i, j \le n}$ the Gram matrix of this sample.

Definition (Hadamard product)

 $A\odot B$ between two matrices A and B (or vectors) with the same dimensions is given by

$$(A \odot B)_{i,j} = A_{i,j} \odot B_{i,j}$$

Theorem

The sum, product, pointwise limit and composition with a power series $\sum_{n\geqslant 0} a_n x^n$ with $a_n\geqslant 0$ for all $n\geqslant 0$ preserves the PDS property.

Proof I 12 / 50

(Sum) Consider two $n \times n$ Gram matrices K, K' of PDS kernels K, K' and take $u \in \mathbb{R}^n$. Observe that

$$u^{\top}(K+K')u=u^{\top}Ku+u^{\top}K'u\geqslant 0$$

So PDS is preserved by the sum and finite sums by reccurence.

Proof II

(Product) Now, to prove that the product $K \odot K'$ is PDS, write $K = MM^{\top}$, where M is the square-root of K (which is SDP) and note that

$$u^{\top}(K \odot K')u = \sum_{1 \leqslant i,j \leqslant n} u_i u_j K_{i,j} K'_{i,j}$$
$$= \sum_{1 \leqslant i,j \leqslant n} \sum_{k=1}^{n} u_i u_j M_{i,k} M_{k,j} K'_{i,j}$$
$$= \sum_{k=1}^{n} z_k^{\top} K' z_k \geqslant 0$$

with $z_k = u \odot M_{\bullet,k}$. This proves that finite products of PDS kernels is PDS.

Proof III

(Pointwise limit) Assume that $K_\ell \to K$ as $\ell \to +\infty$ pointwise, where K_ℓ is a sequence of PDS kernels. It means that any associated sequence of Gram matrices K_ℓ and the its limit K satisfies $K_\ell \to K$ entrywise, so that for any $u \in \mathbb{R}^n$ we have

$$u^{\top} K_{\ell} u \rightarrow u^{\top} K u$$

so $u^{\top} K u \geqslant 0$ since $u^{\top} K_{\ell} u \rightarrow u$ for all ℓ . This proves stability of PDS property under pointwise limit.

(Composition w/ a power series) Now, let K be a kernel such that |K(x,x')| < r for all $x,x' \in \mathcal{X}$ and $\sum_{\ell \geqslant 0} a_\ell x^\ell$ a power series with radius of convergence r. By stability under sum and product, we have that

$$\sum_{\ell=0}^{L} \mathsf{a}_{\ell} \mathsf{K}^{\ell}$$

Proof IV

is PDS, and

$$\lim_{L\to +\infty} \sum_{\ell=0}^L a_\ell K^\ell = \sum_{\ell\geqslant 0} a_\ell K^\ell$$

remains PDS since PDS is kept under pointwise limit. This concludes the proof of the theorem.

Theorem (Cauchy-Schwarz)

The following inequality holds for k, k' two PDS kernels

$$k(x,x')^2 \leqslant k(x,x)k(x',x')$$

for any $x, x' \in \mathcal{X}$.

It is called the Cauchy-Schwarz inequality for PSD kernels.

Proof 17 / 50

Take $x, x' \in \mathcal{X}$ and consider the Gram matrix

$$G = \begin{bmatrix} k(x,x) & k(x,x') \\ k(x',x) & k(x',x') \end{bmatrix}.$$

Since k is PDS, then $G \geq 0$, which entails that

$$0 \leqslant \det G = k(x,x)k(x',x') - k(x,x')^2.$$

Theorem (Reproducing Kernel Hilbert Space (RKHS))

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel. Then, there is a Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ endowed with an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and a mapping $\varphi: \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

and such that the reproducing property holds:

$$h(x) = \langle h, k(x, \cdot) \rangle_{\mathcal{H}}$$

for any $h \in \mathcal{H}$ and $x \in \mathcal{X}$.

Theorem (Reproducing Kernel Hilbert Space (RKHS))

Let $k: \mathcal{X} \times \mathcal{X} \to \mathbb{R}$ be a PDS kernel. Then, there is a Hilbert space $\mathcal{H} \subset \mathbb{R}^{\mathcal{X}}$ endowed with an inner product $\langle \cdot, \cdot \rangle_{\mathcal{H}}$ and a mapping $\varphi: \mathcal{X} \to \mathcal{H}$ such that

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

and such that the reproducing property holds:

$$h(x) = \langle h, k(x, \cdot) \rangle_{\mathcal{H}}$$

for any $h \in \mathcal{H}$ and $x \in \mathcal{X}$.

We say that \mathcal{H} is a reproducting kernel Hilbert space associated to the kernel k.

► Note that

 $\mathsf{RKHS} \Rightarrow \mathsf{Hilbert} \; \mathsf{space}, \qquad \mathsf{BUT} \qquad \mathsf{Hilbert} \; \mathsf{space} \; \Rightarrow \mathsf{RKHS}$

- Note that
 RKHS ⇒ Hilbert space, BUT Hilbert space ⇒ RKHS
- ▶ The Hilbert space \mathcal{H} is called the **features space** associated to k

- Note that
 RKHS ⇒ Hilbert space, BUT Hilbert space ⇒ RKHS
- ▶ The Hilbert space \mathcal{H} is called the **features space** associated to k
- ▶ The corresponding mapping $\varphi : \mathcal{X} \to \mathcal{H}$ is called the **features** mapping

- Note that
 RKHS ⇒ Hilbert space, BUT Hilbert space ⇒ RKHS
- ▶ The Hilbert space \mathcal{H} is called the **features space** associated to k
- ▶ The corresponding mapping $\varphi : \mathcal{X} \to \mathcal{H}$ is called the **features** mapping
- ▶ \mathcal{H} is endowed with an inner product $\langle h, h' \rangle_{\mathcal{H}}$ for $h, h' \in \mathcal{H}$ and a norm $\|h\|_{\mathcal{H}} = \sqrt{\langle h, h \rangle_{\mathcal{H}}}$

- Note that
 RKHS ⇒ Hilbert space, BUT Hilbert space ⇒ RKHS
- ▶ The Hilbert space \mathcal{H} is called the **features space** associated to k
- ▶ The corresponding mapping $\varphi : \mathcal{X} \to \mathcal{H}$ is called the **features** mapping
- ▶ \mathcal{H} is endowed with an inner product $\langle h, h' \rangle_{\mathcal{H}}$ for $h, h' \in \mathcal{H}$ and a norm $\|h\|_{\mathcal{H}} = \sqrt{\langle h, h \rangle_{\mathcal{H}}}$
- ▶ The feature space might not be unique in general

1. any finite-dimensional Hilbert space of functions is a RKHS, with $k(x,x') = \sum_{i=1}^{\dim(\mathcal{H})} e_i(x)e_i(x')$.

- 1. any finite-dimensional Hilbert space of functions is a RKHS, with $k(x,x') = \sum_{i=1}^{\dim(\mathcal{H})} e_i(x)e_i(x')$.
- 2. the space $L^2(\mathbb{R})$ is not a RKHS.

- 1. any finite-dimensional Hilbert space of functions is a RKHS, with $k(x, x') = \sum_{i=1}^{\dim(\mathcal{H})} e_i(x)e_i(x')$.
- 2. the space $L^2(\mathbb{R})$ is not a RKHS.
- 3. the space of $\mathcal{F}=\left\{f:f(0)=0,f\text{ absolutely continuous},f,f'\in L^2(\mathbb{R})\right\}\text{ is a RKHS with }k(x,x')=e^{-|x-x'|}.$

In summary 21 / 50

- Choose a kernel k you think relevant
- ightharpoonup If it's PDS, then there is a mapping φ and a RKHS ${\cal H}$ for it

In summary 21 / 50

- Choose a kernel k you think relevant
- \blacktriangleright If it's PDS, then there is a mapping φ and a RKHS ${\cal H}$ for it
- Feature engineering becomes kernel engineering with kernel methods

In summary 21 / 50

- Choose a kernel k you think relevant
- ▶ If it's PDS, then there is a mapping φ and a RKHS \mathcal{H} for it
- ► Feature engineering becomes kernel engineering with kernel methods
- ► Any linear algorithm based on computing inner products can be extended into a non-linear version by replacing the inner products by a kernel function ~ kernel trick

$$k(x, x') = \langle \varphi(x), \varphi(x') \rangle_{\mathcal{H}}$$

Definition

The **normalized kernel** k' associated to a kernel k is given by

$$k'(x,x') = \frac{k(x,x')}{\sqrt{k(x,x)k(x',x')}}$$

if k(x,x)k(x',x') > 0 and k(x,x') = 0 otherwise.

Theorem

If k is a PDS kernel, its normalized kernel k' is PDS.

Let $x_1, \ldots, x_n \in \mathcal{X}$ and $c \in \mathbb{R}^n$. If $k(x_i, x_i) = 0$ or $k(x_j, x_j) = 0$ then $k(x_i, x_j) = 0$ using Cauchy-Schwarz, so $k'(x_i, x_j) = 0$. So, we can assume $k(x_i, x_i) > 0$ for all $i = 1, \ldots, n$ and write the following:

$$\sum_{1\leqslant i,j\leqslant n} \frac{c_i c_j k(x_i,x_j)}{\sqrt{k(x_i,x_i)k(x_j,x_j)}} = \sum_{1\leqslant i,j\leqslant n} \frac{c_i c_j \langle \varphi(x_i), \varphi(x_j) \rangle}{\|\varphi(x_i)\| \|\varphi(x_j)\|}$$
$$= \left\| \sum_{i=1}^n \frac{c_i \varphi(x_i)}{\|\varphi(x_i)\|} \right\|^2 \geqslant 0$$

which proves the theorem.

A few remarks

Remark

- We have that k(x, x') is the cosine of the angle between $\varphi(x)$ and $\varphi(x')$ if k is a normalized kernel (if none is zero).
- ▶ Once again, k(x, x') is a similarity measure between x and x'

A few remarks

Remark

- We have that k(x, x') is the cosine of the angle between $\varphi(x)$ and $\varphi(x')$ if k is a normalized kernel (if none is zero).
- ▶ Once again, k(x, x') is a similarity measure between x and x'

Remark

If k is a normalized kernel, then

$$\|\varphi(x)\|_{\mathcal{H}} = \langle \varphi(x), \varphi(x) \rangle_{\mathcal{H}} = k(x, x) = 1$$

for any $x \in \mathcal{X}$.

The polynomial kernel.

For c>0 and $q\in\mathbb{N}\setminus\{0\}$ we define the polynomial kernel

$$K(x,x')=(\langle x,x'\rangle+c)^q.$$

It is a PDS kernel,

The polynomial kernel.

For c>0 and $q\in\mathbb{N}\setminus\{0\}$ we define the polynomial kernel

$$K(x,x')=(\langle x,x'\rangle+c)^q.$$

It is a PDS kernel, since it is the power of the PDS kernel $(x,x')\mapsto \langle x,x'\rangle + b$.

The polynomial kernel.

For c>0 and $q\in\mathbb{N}\setminus\{0\}$ we define the polynomial kernel

$$K(x,x')=(\langle x,x'\rangle+c)^q.$$

It is a PDS kernel, since it is the power of the PDS kernel $(x, x') \mapsto \langle x, x' \rangle + b$.

We already computed its mapping $\varphi(x)$: it contains all the monomials of degree less than q of the coordinates of x.

The Gaussian or the Radial Basis Function (RBF) kernel.

For $\gamma > 0$ it is given by

$$k(x, x') = \exp(-\gamma ||x - x'||_2^2)$$

The Gaussian or the Radial Basis Function (RBF) kernel.

For $\gamma >$ 0 it is given by

$$k(x, x') = \exp(-\gamma ||x - x'||_2^2)$$

Proposition

The RBF kernel is a PDS and normalized kernel.

The Gaussian or the Radial Basis Function (RBF) kernel.

For $\gamma >$ 0 it is given by

$$k(x, x') = \exp(-\gamma ||x - x'||_2^2)$$

Proposition

The RBF kernel is a PDS and normalized kernel.

By far, the RBF kernel is the most widely used: uses as a similarity measure the Euclidean norm

Proof 27 / 50

First remark that

$$\exp(-\gamma \|x - x'\|_{2}^{2}) = \frac{\exp(2\gamma \langle x, x' \rangle)}{\exp(\gamma \|x\|^{2}) \exp(\gamma \|x'\|^{2})}$$
$$= \frac{k'(x, x')}{\sqrt{k'(x, x)k'(x', x')}}$$

with $k'(x, x') = \exp(2\gamma \langle x, x' \rangle)$ and that k' is PDS since

$$k'(x,x') = \sum_{n \ge 0} \frac{(2\gamma \langle x, x' \rangle)^n}{n!}$$

namely a series of the PDS kernel $(x, x') \mapsto 2\gamma \langle x, x' \rangle$.

The tanh kernel or the sigmoid kernel.

$$k'(x,x') = \tanh(a\langle x,x'\rangle + c) = \frac{e^{a\langle x,x'\rangle + c} - e^{-a\langle x,x'\rangle - c}}{e^{a\langle x,x'\rangle + c} + e^{-a\langle x,x'\rangle - c}}$$

for a, c > 0. It is again a PDS kernel (same argument as for the RBF kernel).

The tanh kernel or the sigmoid kernel.

$$k'(x,x') = \tanh(a\langle x,x'\rangle + c) = \frac{e^{a\langle x,x'\rangle + c} - e^{-a\langle x,x'\rangle - c}}{e^{a\langle x,x'\rangle + c} + e^{-a\langle x,x'\rangle - c}}$$

for a, c > 0. It is again a PDS kernel (same argument as for the RBF kernel).

Exercise: compute its mapping.

Question

How to use kernels for classification and regression?

Question

How to use kernels for classification and regression?

Recall the linear SVM

Figure: SVM: hard and soft margins

Linear SVM

► Back to the primal problem

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^m s_i$$
s.t. $y_i(\langle x_i, w \rangle + b) \geqslant 1 - s_i$ and $s_i \geqslant 0$ for all $i = 1, \dots, n$

or equivalently

$$\operatorname{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

where $\ell(y, y') = \max(0, 1 - yy') = (1 - yy')_{+}$ is the hinge loss.

► Label prediction given by

$$y = sign(\langle x, w \rangle + b)$$

Linear SVM

► Back to the primal problem

$$\min_{w \in \mathbb{R}^d, b \in \mathbb{R}, s \in \mathbb{R}^n} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n s_i$$
s.t. $y_i(\langle x_i, w \rangle + b) \geqslant 1 - s_i$ and $s_i \geqslant 0$ for all $i = 1, \dots, n$

or equivalently

$$\operatorname{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle x_i, w \rangle + b)$$

where $\ell(y, y') = \max(0, 1 - yy') = (1 - yy')_{+}$ is the hinge loss.

► Label prediction given by

$$y = sign(\langle x, w \rangle + b)$$

Principle

▶ Replace x_i by $\varphi(x_i)$. In the primal this leads to

$$\operatorname{argmin}_{w \in \mathbb{R}^d, b \in \mathbb{R}} \frac{1}{2} \|w\|_2^2 + C \sum_{i=1}^n \ell(y_i, \langle \varphi(x_i), w \rangle + b)$$

Label prediction is given by

$$y = sign(\langle \varphi(x), w \rangle + b)$$

Problem

In the primal, you need to compute $\varphi(x)$!

Linear SVM

Dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to $0 \leqslant \alpha_i \leqslant C$ and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

and the label prediction using dual variables

$$x \mapsto \operatorname{sign}(\langle w, x \rangle + b) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

depends only on the features x_i via their inner products $\langle x_i, x_j \rangle$

Linear SVM 34 / 50

Dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i,j=1}^n \alpha_i \alpha_j y_i y_j \langle x_i, x_j \rangle$$

subject to
$$0 \leqslant \alpha_i \leqslant C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

and the label prediction using dual variables

$$x \mapsto \operatorname{sign}(\langle w, x \rangle + b) = \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i \langle x, x_i \rangle + b\right)$$

Depends only on the features x_i via their inner products $\langle x_i, x_j \rangle$

Remark (Fundamental remark)

The dual problem depends only on the features via their inner products.

Remark (Fundamental remark)

The dual problem depends only on the features via their inner products.

Given some kernel k, let's replace the "raw" inner products $\langle x_i, x_j \rangle$ by the "new" inner products $k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$

Remark (Fundamental remark)

The dual problem depends only on the features via their inner products.

Given some kernel k, let's replace the "raw" inner products $\langle x_i, x_j \rangle$ by the "new" inner products $k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$

The kernel trick

To train the SVM with a kernel, you don't need to know or compute the $\varphi(x_i)$!

Remark (Fundamental remark)

The dual problem depends only on the features via their inner products.

Given some kernel k, let's replace the "raw" inner products $\langle x_i, x_j \rangle$ by the "new" inner products $k(x_i, x_j) = \langle \varphi(x_i), \varphi(x_j) \rangle$

The kernel trick

To train the SVM with a kernel, you don't need to know or compute the $\varphi(x_i)$!

Take-home message: kernel trick

- ► Kernel + SVM = ♡
- ▶ But do it in the dual problem only!

Dual problem

$$\max_{\alpha \in \mathbb{R}^n} \qquad \sum_{i=1}^n \alpha_i - \frac{1}{2} \sum_{i=1}^n \alpha_i \alpha_j y_i y_j k(x_i, x_j)$$

subject to
$$0 \leqslant \alpha_i \leqslant C$$
 and $\sum_{i=1}^n \alpha_i y_i = 0$ for all $i = 1, \dots, n$

Label prediction

The label prediction using dual variables

$$x \mapsto \operatorname{sign}\left(\sum_{i=1}^{n} \alpha_i y_i k(x, x_i) + b\right)$$

with the intercept given by

$$b = y_i - \sum_{j=1}^n \alpha_j y_j k(x_j, x_i)$$

for any i such that $0 < \alpha_i < C$ (support vector) (cf previous lecture)

This proves that the hypothesis solution writes

$$h(x) = \operatorname{sign} \Big(\sum_{i:\alpha_i \neq 0} \alpha_i y_i k(x, x_i) + b \Big),$$

namely a combination of functions $k(x_i, \cdot)$ where x_i are the support vectors.

For the RBF kernel

The decision function is

$$x \mapsto \sum_{i:\alpha_i \neq 0} \alpha_i y_i \exp\left(-\gamma \|x - x_i\|_2^2\right) + b$$

It is a mixture of Gaussian "densities". Let's recall that the x_i with $\alpha_i \neq 0$ are the support vectors

The kernel trick is not only for the SVM!

Theorem ((Kimeldorf & Wahba 1971, Schölkopf et al. 2001))

If k is a PDS kernel and $\mathcal H$ its corresponding RKHS, for any increasing function g and any function $L:\mathbb R^n\to\mathbb R$, the optimization problem

$$\min_{h\in\mathcal{H}}g(\|h\|_{\mathcal{H}})+L(h(x_1),\ldots,h(x_n))$$

admits only solutions of the form

$$h^{\star} = \sum_{i=1}^{n} \alpha_{i} k(x_{i}, \cdot).$$

This theorem is called the representer theorem.

It means that in the case of a penalization increasing with $\|\cdot\|_{\mathcal{H}}$, any optimal solution h^* lives in a finite dimensional vector space of \mathcal{H} , even if \mathcal{H} is infinite-dimensional!

Consider this time a continuous label $y_i \in \mathbb{R}$, features $x_i \in \mathcal{X}$ for i = 1, ..., n and a features mapping $\varphi : \mathcal{X} \to \mathcal{H}$ with PDS kernel k

- ▶ Consider this time a continuous label $y_i \in \mathbb{R}$, features $x_i \in \mathcal{X}$ for i = 1, ..., n and a features mapping $\varphi : \mathcal{X} \to \mathcal{H}$ with PDS kernel k
- Kernel Ridge regression considers the problem

$$\min_{w} \left\{ \sum_{i=1}^{n} \ell(y_i, \langle w, \varphi(x_i) \rangle) + \frac{\lambda}{2} \|w\|_2^2 \right\}$$

where λ is a penalization parameter, and $\ell(y,y')=\frac{1}{2}(y-y')^2$ is the least-squares loss

- Consider this time a continuous label $y_i \in \mathbb{R}$, features $x_i \in \mathcal{X}$ for i = 1, ..., n and a features mapping $\varphi : \mathcal{X} \to \mathcal{H}$ with PDS kernel k
- Kernel Ridge regression considers the problem

$$\min_{w} \left\{ \sum_{i=1}^{n} \ell(y_i, \langle w, \varphi(x_i) \rangle) + \frac{\lambda}{2} \|w\|_2^2 \right\}$$

where λ is a penalization parameter, and $\ell(y,y')=\frac{1}{2}(y-y')^2$ is the least-squares loss

Can be written as

$$\min_{w} F(x)$$
 with $F(w) = ||y - Xw||_{2}^{2} + \lambda ||w||_{2}^{2}$

with X the matrix with rows containing the $\varphi(x_i)$ and $y = [y_1 \cdots y_n] \in \mathbb{R}^n$

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

► This problem is strongly convex, and admits a global minimum iff

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

This problem is strongly convex, and admits a global minimum iff

$$\nabla F(w) = 0$$
 namely $(X^{\top}X + \lambda \mathrm{Id})w = X^{\top}y$

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

This problem is strongly convex, and admits a global minimum iff

$$\nabla F(w) = 0$$
 namely $(X^{\top}X + \lambda \mathrm{Id})w = X^{\top}y$

Note that $X^{\top}X + \lambda \mathrm{Id}$ is always invertible. Thus kernel ridge admits a closed-form solution.

$$\min_{w} \|y - Xw\|_{2}^{2} + \lambda \|w\|_{2}^{2}$$

This problem is strongly convex, and admits a global minimum iff

$$\nabla F(w) = 0$$
 namely $(X^{\top}X + \lambda \mathrm{Id})w = X^{\top}y$

- Note that $X^{\top}X + \lambda \mathrm{Id}$ is always invertible. Thus kernel ridge admits a closed-form solution.
- ▶ Requires to solve a $D \times D$ linear system, where D is the dimension of \mathcal{H}
- ▶ What if D is large ?

Let's use the kernel trick, as we did for SVM

ightharpoonup Representer theorem says that we can find lpha such that

$$h(x) = \langle w, \varphi(x) \rangle = \sum_{i=1}^{n} \alpha_i k(x_i, x) = \sum_{i=1}^{n} \alpha_i \langle \varphi(x_i), \varphi(x) \rangle$$

for any $x \in \mathcal{X}$

▶ This means that

$$w = X^{T} \alpha$$

New trick 44 / 50

Now use this trick

For any matrix X, we have

$$(X^\top X + \lambda \mathrm{Id})^{-1} X^\top = X^\top (XX^\top + \lambda \mathrm{Id})^{-1}$$

This entails

$$w = (X^{\top}X + \lambda \mathrm{Id})^{-1}X^{\top}y = X^{\top}(XX^{\top} + \lambda \mathrm{Id})^{-1}y$$

which gives (note that $(XX^{\top})_{i,j} = \langle \varphi(x_i), \varphi(x_j) \rangle = k(x_i, x_j)$)

$$\alpha = (K + \lambda \mathrm{Id})^{-1} y$$

Note that

$$(X^{\top}X + \lambda \mathrm{Id})X^{\top} = X^{\top}(XX^{\top} + \lambda \mathrm{Id}).$$

Multiplying on the left by $(X^{\top}X + \lambda \mathrm{Id})^{-1}$ leads to

$$X^{\top} = (X^{\top}X + \lambda \operatorname{Id})^{-1}X^{\top}(XX^{\top} + \lambda \operatorname{Id}).$$

and then on the right by $(XX^{\top} + \lambda \mathrm{Id})^{-1}$ concludes with

$$(XX^{\top} + \lambda \operatorname{Id})^{-1}X^{\top} = (X^{\top}X + \lambda \operatorname{Id})^{-1}X^{\top}$$

A cute trick. But let's do it like we did for the SVMs (just to be sure...)

An alternative formulation of

$$\min_{w} \sum_{i=1}^{n} (y_i - \langle w, \varphi(x_i) \rangle)^2 + \lambda \|w\|_2^2$$

is the constrained version, given by

$$\min_{w} \sum_{i=1}^{n} (y_i - \langle w, \varphi(x_i) \rangle)^2 \text{ subject to } ||w||_2^2 \leqslant r^2$$

and also

$$\min_{w} \sum_{i=1}^{n} s_i^2$$
 subject to $\|w\|_2^2 \leqslant r^2$ and $s_i = y_i - \langle w, \varphi(x_i) \rangle$

Then, using the Lagrangian

$$L(w, s, \alpha, \lambda) = \min_{w} \sum_{i=1}^{n} s_i^2 + \min_{w} \sum_{i=1}^{n} \alpha_i (y_i - s_i - \langle w, \varphi(x_i) \rangle)$$
$$+ \lambda (\|w\|_2^2 - r^2)$$

Then, using the Lagrangian

$$L(w, s, \alpha, \lambda) = \min_{w} \sum_{i=1}^{n} s_i^2 + \min_{w} \sum_{i=1}^{n} \alpha_i (y_i - s_i - \langle w, \varphi(x_i) \rangle) + \lambda (\|w\|_2^2 - r^2)$$

KKT conditions

$$\nabla_{w}L = -\sum_{i=1}^{n} \alpha_{i}\varphi(x_{i}) + 2\lambda w \Rightarrow w = \frac{1}{2\lambda} \sum_{i=1}^{n} \alpha_{i}\varphi(x_{i})$$
$$\nabla_{s_{i}}L = 2s_{i} - \alpha_{i} \Rightarrow s_{i} = \alpha_{i}/2$$

and the slackness complementary conditions:

$$\alpha_i(y_i - s_i - \langle w, \varphi(x_i) \rangle) = 0 \text{ and } \lambda(\|w\|_2^2 - r^2) = 0$$

Plugging the expressions of w and s_i in functions of α in L gives after some algebra the dual objective

$$D(\alpha) = -\lambda \sum_{i=1}^{n} \alpha_i^2 + 2 \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{1 \leq i, j \leq n} \alpha_i \alpha_j \langle \varphi(x_i), \varphi(x_j) \rangle - \lambda r^2$$

(where we replaced $2\lambda\alpha_i$ by α_i)

Plugging the expressions of w and s_i in functions of α in L gives after some algebra the dual objective

$$D(\alpha) = -\lambda \sum_{i=1}^{n} \alpha_i^2 + 2 \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{1 \leq i, j \leq n} \alpha_i \alpha_j \langle \varphi(x_i), \varphi(x_j) \rangle - \lambda r^2$$

(where we replaced $2\lambda\alpha_i$ by α_i) which can be written matricially as

$$D(\alpha) = -\lambda \|\alpha\|_{2}^{2} + 2\langle \alpha, y \rangle - \alpha^{T} X X^{T} \alpha$$
$$= 2\langle \alpha, y \rangle - \alpha^{T} (K + \lambda \mathrm{Id}) \alpha$$

Plugging the expressions of w and s_i in functions of α in L gives after some algebra the dual objective

$$D(\alpha) = -\lambda \sum_{i=1}^{n} \alpha_i^2 + 2 \sum_{i=1}^{n} \alpha_i y_i$$
$$- \sum_{1 \leq i, j \leq n} \alpha_i \alpha_j \langle \varphi(x_i), \varphi(x_j) \rangle - \lambda r^2$$

(where we replaced $2\lambda\alpha_i$ by α_i) which can be written matricially as

$$D(\alpha) = -\lambda \|\alpha\|_{2}^{2} + 2\langle \alpha, y \rangle - \alpha^{T} X X^{T} \alpha$$
$$= 2\langle \alpha, y \rangle - \alpha^{T} (K + \lambda Id) \alpha$$

with optimum achieved for

$$\alpha = (K + \lambda \mathrm{Id})^{-1} y$$

what we already got.

► Solving a problem in the dual benefits from the kernel trick

- ► Solving a problem in the dual benefits from the kernel trick
- ► Allows to construct complex non-linear decision functions

- Solving a problem in the dual benefits from the kernel trick
- ► Allows to construct complex non-linear decision functions
- ▶ OK if n is not too large... (if the $n \times n$ Gram matrix K fits in memory)
- Otherwise, stick to the primal! (and forget about kernels...)
- But don't forget about feature engineering (yes, again !)