1. The probability density function of a random variable *X* is

X	0	1	2	3	4	5	6
P(X)	k	3k	5k	7k	9k	11k	13k

Find P(X < 4); $P(X \ge 5)$; $P(3 < X \le 6)$. What will be the minimum value of k so that

$$\leq P(X) = 1 \Rightarrow K+3K+5K+7K+9K+11K+13K=1$$

$$49K = 1 \Rightarrow K = \frac{1}{49}$$

$$50, P(X<4) = K+3K+5K+7K = 16K = \frac{16}{10}$$

$$P(X>5)=11K+13K=24K=\frac{24}{49}$$

$$P(3 < X < 6) = 9K + 11K + 13K = 33K = \frac{33}{49}$$

And,
$$P(X \le 2) = K + 3K + 5K = 9K$$

$$P(X \le 2) > 0.3$$

$$9K > 0.3$$

$$K > 0.3$$

$$K > \frac{1}{30}$$

2. A coin is tossed three times. Let X denote the number of heads showing up. Find the distribution of X. Also, find its mean and variance.

0 Heads
$$\Rightarrow$$
 $\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$

$$\begin{array}{c} 1 \text{ Head} \Rightarrow \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) + \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) + \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \\ + \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2} \right) \end{array}$$

2 Heads
$$\Rightarrow$$
 $\left(\frac{1}{2} \times \frac{1}{1} \times \frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right) + \left(\frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}\right)$
H H T H T H H

3 Heads
$$\Rightarrow \frac{1}{2} \times \frac{1}{2} \times \frac{1}{2}$$
H H H

×	0	l	2	3
P(x)	70	3/8	3/8	1/8

$$\mu = \leq x_i P_i = \frac{3}{2}$$

$$\mu = \sum x_i P_i = \frac{3}{2}$$
 (Use Calculator)
 $For 991-CW \Rightarrow Statistics > 2 Variable$

$$5^{2} = 2 x_{i}^{2} P_{i} - \mu^{2}$$

$$= 3 - \frac{9}{4} - \frac{3}{4}$$