Structured Streaming-ADVANCED Session 3

Segment - 01 Session Introduction

SESSION OVERVIEW

Segment - 02 Windows

EVENT TIME

- O Time when the record was generated at the source
- O Generally, a column in the source dataset
- O Different from processing time
 - Processing time is when the record arrives at the Spark processing layer
 - WHY?
 - Publishing failures, distributed system lags, network delays etc.

WINDOWS

- O Similar to the Window concept of SQL Window concept
- O Example:
 - A 2-second window

WINDOWS

- Tumbling Window
 - No two Windows overlap
 - Sliding duration = Window duration
- Sliding Window
 - Sliding duration = 1s, Window duration = 2s

Window Functions

- Values computed over a Window
 - Example 1: Record count, Complete mode
 Batch time = 5 mins, Window duration = 10 mins, Sliding interval = 5 mins

Window	Count	Window	Count	Window	Count		Window	Count	
9:55 – 10:05	2	9:55 – 10:05	2	9:55 – 10:05	2		9:55 – 10:05	2	
10:00 – 10:10	2	10:00 - 10:10	3	10:00 – 10:10	4		10:00 – 10:10	5	
		10:05 – 10:15	1	10:05 – 10:15	2		10:05 – 10:15	4	
							10:10 - 10:20	1	
10:02		10:07			10:09		10:12		_
	!		!	!		!	Proc	essing T	ime

Window Functions

Example 1: Record count, Append mode
 Batch time = 5 mins, Window duration = 10 mins, Sliding interval = 5 mins

Window	Count
9:55 – 10:05	2
10:00 - 10:10	2

Window	Count
10:00 - 10:10	1
10:05 – 10:15	1

Window	Count
10:00 -	1
10:10	1
10:05 -	1
10:15	1

Window	Count
10:00 – 10:10	1
10:05 – 10:15	2
10:10 – 10:20	1

Window Functions

Example 1: Record count, Update mode
 Batch time = 5 mins, Window duration = 10 mins, Sliding interval = 5 mins

Window	Count
9:55 – 10:05	2
10:00 - 10:10	2

Window	Count
10:00 - 10:10	3
10:05 – 10:15	1

Window	Count
10:00 –	4
10:10	4
10:05 -	2
10:15	2

Window	Count
10:00 -	5
10:10	٦
10:05 –	4
10:15	4
10:10 -	1
10:20	1

Segment - 03 Coding Lab

Segment - 04 Handling Late Arriving Data

LATE ARRIVING DATA

- O Delay between Event Time and Processing Time
- Example: Marketing Campaign Performance Analytics
 - AdView event + AdClick event within 60 seconds is a good impression, else a bad impression. What happens when AdClick event gets delayed? Is it a good impression or bad impression?
- O Stream processing systems need a way to handle such data
- Why not have all late arriving data handled forever?
 - Streams are unbounded

LATE ARRIVING DATA

Example 1: Record count, Complete mode
 Batch time = 5 mins, Window duration = 10 mins, Sliding interval = 5 mins

Window	Count		Window	Count	Window	Count		Window	Count	
9:55 – 10:05	2		9:55 – 10:05	2	9:55 – 10:05	2		9:55 – 10:05	2	
10:00 – 10:10	2		10:00 - 10:10	3	10:00 – 10:10	4		10:00 – 10:10	5	
			10:05 – 10:15	1	10:05 – 10:15	2		10:05 – 10:15	4	•
								10:10 - 10:20	1	
10:			10:07			10:09		10:12		
		į		į	į		į	Proc	i essing T	ime

WATERMARKS

- O It defines the time period after which Spark will start dropping records of the stream
- It manages late arriving data in a scalable way
- With every incoming batch, Spark checks the max event time it has already received and applies the watermark on that event time

WATERMARKS

- Example 1: Record count, Complete mode
 Batch time = 5 mins, Window duration = 10 mins, Sliding interval = 5 mins
- O Watermark = 5 mins

Window	Count		Window	Count	Window	Count		Window	Count
9:55 – 10:05	2		9:55 – 10:05	2	9:55 – 10:05	2		9:55 – 10:05	2
10:00 - 10:10	2		10:00 – 10:10	3	10:00 – 10:10	4		10:00 – 10:10	5
			10:05 – 10:15	1	10:05 – 10:15	2		10:05 – 10:15	4
				1				10:10 – 10:20	1
								10:03	
10:02	2		10:07			10:09		10:12	
10:04	4							10:08	
Watermark: 9	9:59	į Water	mark: 10	i:02	i Wate	ermark: 1):04	Proc	essing T

WATERMARKS

- Example 2: Marketing Campaign Analytics
 - Watermark: 10 mins
 - Processing system can now handle up to 10 mins of delay in the arrival of events
 - Enough time for Failovers, network lag etc.
 - Actual watermark will depend on the available memory and incoming traffic per minute

Segment - 05 Summary

SUMMARY

- Windows
- O Event time vs. Processing time
- Window functions on Streams
 - Different output modes = Different behavior
- Late arriving data
- Watermarks
- Handling late arriving data