Galois Theory: GAL #05

Due on Mar 18, 2022 at 11:59pm

 $Prof\ Matyas\ Domokos\ Section\ 7$

Xianzhi

2023

HW05

Exercise 7.2.5

Exercise 7.2.7

Exercise 7.2.8

Problem 1

Exercise 7.2.5 Let $\gamma = \sqrt{2 + \sqrt{2}}$.

- 1. Show that $\mathbb{Q}(\gamma) : \mathbb{Q}$ is normal with cyclic Galois Group.
- 2. Show that $\mathbb{Q}(\gamma, i) = \mathbb{Q}(\phi)$ with $\phi^4 = i$.

Soln:

Part A

Let

$$\sqrt{2+\sqrt{2}} = X \tag{1}$$

$$\sqrt{2} = X^2 - 2 \tag{2}$$

$$2 = (X^2 - 2)^2 = X^4 - 4X^2 + 4 (3)$$

Thus, $\sqrt{2+\sqrt{2}}$ is a root of $X^4-4X^2+2=:f$ Since f is irreducible, by Eisenstein $(p=2), \mathbb{Q}(\gamma)$ is degree 4 over \mathbb{Q} , we could find the roots of f:

$$f = \left(X + \sqrt{2 + \sqrt{2}}\right) \left(X - \sqrt{2 + \sqrt{2}}\right) \left(X + \sqrt{2 - \sqrt{2}}\right) \left(X - \sqrt{2 - \sqrt{2}}\right) \tag{4}$$

Let $\phi \in \Gamma(\mathbb{Q}(\gamma) : \mathbb{Q})$, we know ϕ permutes the roots of f.

If we can find an element ϕ with order strictly greater than 2, then since order of the element need to divide the order of the group, $|\phi|$ must be 4. Since up to isomorphism, group of order 4 is \mathbb{Z}_4 and $\mathbb{Z}_2 \oplus \mathbb{Z}_2$, we know once there exists $|\phi| = 4$, $\Gamma(\mathbb{Q}(\gamma) : \mathbb{Q})$ must be cyclic.

First, we show $\mathbb{Q}(\gamma)$ is splitting field of f that has no multiple roots, which would imply it is normal. since

$$\sqrt{2+\sqrt{2}} = \gamma \in \mathbb{Q}(\gamma) \implies -\sqrt{2+\sqrt{2}} \in \mathbb{Q}(\gamma)$$
 (5)

$$2 + \sqrt{2} = \gamma^2 \in \mathbb{Q}(\gamma) \tag{6}$$

so $\sqrt{2} \in \mathbb{Q}(\gamma)$. Since

$$\sqrt{2+\sqrt{2}}\cdot\sqrt{2-\sqrt{2}} = \sqrt{2} \in \mathbb{Q}(\gamma) \implies \sqrt{2-\sqrt{2}} \in \mathbb{Q}(\gamma) \tag{7}$$

so $-\sqrt{2-\sqrt{2}} \in \mathbb{Q}(\gamma)$.

Thus, all 4 roots of f are in $\mathbb{Q}(\gamma)$. And these roots are all distinct. so

$$\mathbb{Q}\left(\sqrt{2+\sqrt{2}}, -\sqrt{2+\sqrt{2}}, +\sqrt{2-\sqrt{2}}, -\sqrt{2-\sqrt{2}}\right) \subseteq \mathbb{Q}(\gamma) \tag{8}$$

$$\mathbb{Q}\left(\sqrt{2+\sqrt{2}}, -\sqrt{2+\sqrt{2}}, +\sqrt{2-\sqrt{2}}, -\sqrt{2-\sqrt{2}}\right) \supseteq \mathbb{Q}(\gamma) \tag{9}$$

so
$$\mathbb{Q}\left(\sqrt{2+\sqrt{2}}, -\sqrt{2+\sqrt{2}}, +\sqrt{2-\sqrt{2}}, -\sqrt{2-\sqrt{2}}\right) = \mathbb{Q}(\gamma)$$
 (10)

(11)

Thus, $\mathbb{Q}(\gamma)$ is indeed splitting field of f with no multiple roots, so $\mathbb{Q}(\gamma)$: \mathbb{Q} is Galois extension, and is normal extension. Now we find $\phi \in \Gamma(\mathbb{Q}(\gamma) : \mathbb{Q})$ that has order ≥ 3 . Claim:

$$\sqrt{2+\sqrt{2}} \mapsto_{\phi} \sqrt{2-\sqrt{2}} \tag{12}$$

does the job.

Why does such an automorphism exist? Answer: Galois group acts transitively on the roots of a minimal polynomial

Let

$$X_1 = -\sqrt{2 + \sqrt{2}}, \ X_2 = \sqrt{2 + \sqrt{2}}, \ X_3 = -\sqrt{2 - \sqrt{2}}, \ X_4 = \sqrt{2 - \sqrt{2}}$$
 (13)

Hence

$$\phi \circ \phi \left(\sqrt{2 + \sqrt{2}} \right) = \phi \left(\sqrt{2 - \sqrt{2}} \right) \tag{14}$$

$$=\phi\left(\frac{\sqrt{2}}{\sqrt{2+\sqrt{2}}}\right)\tag{15}$$

$$=\frac{\phi(\sqrt{2})}{\phi\left(\sqrt{2+\sqrt{2}}\right)}\tag{16}$$

$$=\frac{-\sqrt{2}}{\sqrt{2-\sqrt{2}}}\tag{17}$$

$$=-\sqrt{2+\sqrt{2}}\tag{18}$$

We also have

$$\phi(2) + \phi(\sqrt{2}) = \phi(2 + \sqrt{2}) \tag{19}$$

$$=\phi\left(\sqrt{2+\sqrt{2}}\cdot\sqrt{2+\sqrt{2}}\right)\tag{20}$$

$$=\phi\left(\sqrt{2+\sqrt{2}}\right)\cdot\phi\left(\sqrt{2+\sqrt{2}}\right)\tag{21}$$

$$= \left(\sqrt{2 - \sqrt{2}}\right) \cdot \left(\sqrt{2 - \sqrt{2}}\right) \tag{22}$$

$$=2-\sqrt{2}\tag{23}$$

so $\phi(2) + \phi(\sqrt{2}) = 2 - \sqrt{2}$, since $\phi(2) = 2$ implies $\phi(\sqrt{2}) = -\sqrt{2}$.

Since ϕ^2 is not identity automorphism, $|\phi| \geq 3$, and we found the desired ϕ .

We can check ϕ indeed permutes X_1, X_2, X_3, X_4 .

$$X_2 \xrightarrow{\phi} X_4 \tag{24}$$

$$\phi(X_1) = \phi(-\sqrt{2+\sqrt{2}}) = -\sqrt{2-\sqrt{2}} = X_3$$
 (25)

$$\phi(X_3) = \phi(-\sqrt{2-\sqrt{2}}) = (-1) \cdot (-\sqrt{2+\sqrt{2}}) = \sqrt{2+\sqrt{2}} = X_2$$
(26)

$$\phi(X_4) = -\sqrt{2 + \sqrt{2}} = X_1 \tag{27}$$

$$\phi: X_1 \to X_3 \to X_2 \to X_4 \to X_1 \tag{28}$$

Part B

Show $\mathbb{Q}(\gamma, i) = \mathbb{Q}(\phi)$ with $\phi^4 = i$.

Use formula

$$\cos(A) = 1 - 2\sin^2\frac{A}{2} \tag{29}$$

$$1 - 2\sin^2(22.5^\circ) = \cos 45^\circ \tag{30}$$

$$\sin^2(22.5^\circ) = \frac{\sqrt{2} - 1}{2\sqrt{2}} \tag{31}$$

$$\sin^2(22.5^\circ) = \frac{\sqrt{2 - \sqrt{2}}}{2} \tag{32}$$

And also,

$$\cos(A) = 2\cos^2\frac{A}{2} - 1\tag{33}$$

$$\cos 45^{\circ} = 2\cos^2 22.5^{\circ} - 1 \tag{34}$$

$$\frac{1}{\sqrt{2}} + 1 = 2\cos^2(22.5^\circ) \tag{35}$$

$$\sqrt{\frac{1+\sqrt{2}}{2\sqrt{2}}} = \cos(22.5^{\circ}) \tag{36}$$

Problem 2

Exercise 7.2.7 Find the degree of

$$\sqrt[5]{81} + 29\sqrt[5]{9} + 17\sqrt[5]{3} - 16$$
 (37)

over \mathbb{Q} .

Soln:

Observe that if we adjoint $\sqrt[5]{3}$ to \mathbb{Q} , then

$$\gamma := (\sqrt[5]{3})^4 + 29(\sqrt[5]{3})^2 + 17\sqrt[5]{3} - 16 \in \mathbb{Q}(\sqrt[5]{3}). \tag{38}$$

since $\sqrt[5]{3}$ is root of $X^5 - 3$, which is irreducible by Eisenstein.

$$m_{\mathbb{Q}}(\sqrt[5]{3}) = X^5 - 3 \tag{39}$$

and $\mathbb{Q}(\sqrt[5]{3})$ is degree 5 extension.

Since $\gamma \in \mathbb{Q}(\sqrt[5]{3})$, we have $[\mathbb{Q}(\gamma) : \mathbb{Q}]$ divides $[\mathbb{Q}(\sqrt[5]{3} : \mathbb{Q})] = 5$ so $\mathbb{Q}(\gamma)$ is either degree 1 or 5.

If it's degree 1, then $\gamma \in \mathbb{Q}$, so there exists $q \in \mathbb{Q}$ such that $\gamma = q$.

$$\left(\sqrt[5]{3}\right)^4 + 29\left(\sqrt[5]{3}\right)^2 + 17\sqrt[5]{3} - 16 - q = 0 \tag{40}$$

Thus, $\sqrt[5]{3}$ is a root of the above polynomial with coefficients in \mathbb{Q} , but this polynomial is degree 4, contradicting the minimal polynomial of $\sqrt[5]{3}$ having degree 5. Thus, $\mathbb{Q}(\gamma)$ is degree 5. so the degree of γ over \mathbb{Q} is 5.

Problem 3

Exercise 7.2.8 Find the degree of $\sqrt[5]{81}$ over $\mathbb{Q}(\sqrt[81]{5})$. **Soln:**

First we show $\mathbb{Q}(\sqrt[5]{81}) = \mathbb{Q}(\sqrt[5]{3})$.

Want to show $\sqrt[5]{81} \in \mathbb{Q}(\sqrt[5]{3})$. Write $\sqrt[5]{81} = (\sqrt[5]{3})^4 \in \mathbb{Q}(\sqrt[5]{3})$. So $\mathbb{Q}(\sqrt[5]{81}) \subset \mathbb{Q}(\sqrt[5]{3})$. Want to show $\sqrt[5]{3} \in \mathbb{Q}(\sqrt[5]{81})$: write $3^{1/5} = \left(3^{4/5}\right)^4 (3^{-1})^3 \in \mathbb{Q}\left(\sqrt[5]{81}\right)$ so $\mathbb{Q}(\sqrt[5]{81}) = \mathbb{Q}(\sqrt[5]{3})$ so $\mathbb{Q}(\sqrt[5]{81}) = \mathbb{Q}(\sqrt[5]{3})$

Since X^5-3 is irreducible by eisenstein, $\mathbb{Q}(\sqrt[5]{3})$ is degree 5 over \mathbb{Q} , so $\mathbb{Q}(\sqrt[5]{81})$ is degree 5 over \mathbb{Q} . $\mathbb{Q}(\sqrt[81]{5})$ is degree 81 over \mathbb{Q} , since $X^{81}-5$ is irreducible by Eisenstein.

By earlier exercise

$$\left[\mathbb{Q}(\sqrt[5]{81}, \sqrt[81]{5}) : \mathbb{Q}\right] \le degm_{\mathbb{Q}}(\sqrt[5]{81}) \cdot degm_{\mathbb{Q}}(\sqrt[81]{5}) = 5 \cdot 81 \tag{41}$$

Also, since $[\mathbb{Q}(\sqrt[5]{81}):\mathbb{Q}] = 5$ and $[\mathbb{Q}(\sqrt[81]{5}:\mathbb{Q}] = 81$ divide $[\mathbb{Q}(\sqrt[5]{81},\sqrt[81]{5}):\mathbb{Q}]$ by Tower law, $[\mathbb{Q}(\sqrt[5]{81},\sqrt[81]{5}):\mathbb{Q}]$ is a multiple of $5\cdot 81$ so its exactly $5\cdot 81$.

Use tower law again,

$$5 \cdot 81 = \left[\mathbb{Q}(\sqrt[5]{81}, \sqrt[81]{5}) : \mathbb{Q}(\sqrt[81]{5}) \right] \cdot \left[\mathbb{Q}(\sqrt[81]{5} : \mathbb{Q}) \right]$$

$$(42)$$

$$= 5 \cdot 81 \tag{43}$$

Thus, $\sqrt[5]{81}$ is degree 5 over $\mathbb{Q}(\sqrt[81]{5})$. And we are done.