Logique du premier ordre (HAI504I)

Licence 3 Département Informatique Faculté des Sciences de Montpellier

TD complétude

Exercice A

Un langage du premier ordre est composé de E un symbole de prédicat binaire (noté au milieu, E comme Egalité), et s une lettre de fonction, et de 0 une constante. On considère l'interprétation suivante :

Domaine: $N \times N = \{(n,p) | n \in N, p \in N\}$. $I(\emptyset) = (0,0)$ $I(\mathsf{s})(n,p) = (n,p+1)$ $I(\mathsf{E}) = \{((n,p),(n',p))\} \subset (N \times N) \times (N \times N)$

Question A(a) Montrer que I est un modèle de

 $s_0 : \forall x. \ \neg(s(x) \ \mathsf{E} \ \emptyset)$ $s_j : \forall x, y. \ s(x) \ \mathsf{E} \ s(y) \Rightarrow x \ \mathsf{E} \ y$ $s_i : \forall x. \neg(x \ \mathsf{E} \ \emptyset) \Rightarrow \exists z. \ x \ \mathsf{E} \ s(z)$

Question A(b) Montrer que I(E) est une relation d'équivalence. Quelles sont ses classes d'équivalence? Quelle est la classe de (n, p)?

Question A(c) Montrer que I satisfait les axiomes de l'égalité (réflexive, symétrique et transitive; préservée par les symboles de fonctions et par les prédicats, cf. transparents).

Question A(d) Quel est le modèle quotient dans lequel E est interprété par l'égalité? Les axiomes s_0, s_j, s_i sont ils vérifiés? Est-ce une simple coïncidence?

Exercice B

On considère le langage contenant un prédicat binaire \leq et l'égalité. On considère les interprétations suivantes : (N, \leq) , (Z, \leq) , (Q, \leq) , (R, \leq) où \leq est interprété par \leq (et l'égalité par l'égalité). On note les la théorie suivante ThOrd qui dit que \leq est une relation d'ordre (non stricte).

A la fin de l'exercice, seule la validité du calcul des séquents est nécessaire.

Question B(a) Ecrire les trois propriétés que doit satisfaire une relation d'ordre (réflexivité, antisymétrie, transitivité).

Question B(b) Justifiez que ces interprétations satisfont toutes les quatres les axiomes de l'ordre ThOrd.

Question B(c) Donner deux formules de la logique du premier ordre :

- $Q_{1\neg 2}$ vraie dans $I_1:(\mathbb{N},\leq)$ et pas dans $I_2:(\mathbb{Z},\leq)$
- $Q_{2\neg 1}$ vraie dans $I_2:(\mathbb{Z},\leq)$ et pas dans $I_1:(\mathbb{N},\leq)$

Question B(d) Donner deux formules de la logique du premier ordre :

- $Q_{1\neg 2}$ vraie dans $I_1:(\mathbb{Z},\leq)$ et pas dans $I_2:(\mathbb{Q},\leq)$
- $Q_{2\neg 1}$ vraie dans $I_2:(\mathbb{Q},\leq)$ et pas dans $I_1:(\mathbb{Z},\leq)$

Question B(e) Donner une propriété Q_{2-1} vraie dans $I_2:(\mathbb{R},\leq)$ et pas dans $I_1:(\mathbb{Q},\leq)$; cette propriété correspond elle à une formule de la logique du premier ordre?

Question B(f) La théorie ThOrd est elle cohérente ? (Il n'existe pas de formule G telle que ThOrd dérive à la fois G et $\neg G$).

Question B(g) La théorie ThOrd est elle complète ? (ThOrd dérive G ou $\neg G$ pour toute formule G).

Exercice C

Un séquent du calcul propositionnel LK_0

$$H_1,\ldots,H_n\vdash C_1,\ldots,C_n$$

(les H_i sont appelées hypothèses du séquent et les C_j les conclusions du séquent, ce sont des formules propositionnelles) est vrai pour une interprétation I si et seulement si la formule

$$(H_1 \wedge \cdots \wedge H_n) \Rightarrow (C_1 \vee \cdots \vee C_p)$$

est vraie pour l'interpretation I.

On reprend le premier cours sur le calcul des séquents propositionnel :

Question C(a) Montrer que les axiomes du calcul propositionnel LK_0 sont vrais pour toute interprétation.

Question C(b) Montrer que les règles du calcul propositionnel LK_0 sont correctes (on dit aussi "valides"): si le(s) séquent(s) prémisse(s) de la règle(s) sont vrais pour I alors le séquent conclusion est vrai pour I. Ne traitez que quelques règles.

Question C(c) Montrez que les règles du calcul propositionnel LK_0 sont réversibles (si le séquent conclusion est vrai pour I alors le(s) séquent(s) prémisse(s) de la règle(s) sont vrais pour I). Ne traitez que quelques règles.

Question C(d) En déduire que LK_0 est complet pour la logique propositionnelle $(H_1, \ldots, H_n \vdash C_1, \ldots, C_p)$ démontrable ssi $H_1, \ldots, H_n \vdash C_1, \ldots, C_p$ est vrai dans toute interprétation I).

Question C(e) En déduire qu'une formule A est universellement valide si et seulement si LK_0 démontre $\vdash A$.

Exercice D

Un séquent du calcul des prédicats

$$H_1,\ldots,H_n\vdash C_1,\ldots,C_p$$

(les H_i sont appelées hypothèses du séquent et les C_j les conclusions du séquent, ce sont des formules logiques du premier ordre) est vrai pour une interprétation I et une assignation ρ si et seulement si la formule

$$(H_1 \wedge \cdots \wedge H_n) \Rightarrow (C_1 \vee \cdots \vee C_n)$$

est vraie pour l'interprétation I et l'assignation ρ . On rappelle qu'une assignation associe à chaque variable libre du séquent un élément du domaine d'interprétation (le même élément pour chaque occurence de la variable libre, qu'elle soit à gauche ou à droite de \vdash).

Question D(a) Montrez que les axiomes de LK sont vrais pour toute interprétation et pour toute assignation.

Question D(b) Montrez que les règles de LK sont correctes. Si le(s) séquent(s) prémisse(s) de la règle(s) sont vrais pour l'interprétation I et l'assignation ρ de leurs variables libres alors le séquent conclusion est vrai pour I et pour l'assignation ρ des variables libres des séquents prémisses alors le séquent conclusion est vrai pour I et ρ . Remarque : une fois fixé l'interprétation I et l'assignation ρ chaque formule est vraie ou fausse, et on peut réutiliser l'exercice précédent. Ne traiter que les règles des quantificateurs.

Question D(c) Montrer que la règle \exists_d n'est pas réversible au sens où elle peut conduire d'une formule fausse pour une interprétation I et une assignation ρ à une formule vraie pour la même interprétation et la même assignation.

Exercice E

Dans le système à la Hilbert propositionnel avec uniquement les axiomes S et K et la règle du modus ponens montrez que

Question E(a) $A \Rightarrow A$

Question E(b) si une démonstration contient les lignes $A \Rightarrow B$ et $B \Rightarrow C$ on peut la prolonger par la ligne $A \Rightarrow C$, en utilisant seulement les axiomes $S: (p \Rightarrow q \Rightarrow r) \Rightarrow (p \Rightarrow q) \Rightarrow (p \Rightarrow r)$ et $K: p \Rightarrow q \Rightarrow p$.

Exercice F

Pour le calcul des prédicats, les axiomes des déductions à la Hilbert sont des suite de formules du premier ordre, numérotées, ou tout ligne est soit un axiome soit obtenu à partir des lignes précédentes par une règles.

Les axiomes sont :

- les formules de la théorie Θ considérée(une théorie est un ensemble pas forcément fini de formules closes)
- toutes les tautologies propositionnelles instanciées par l'importe quelles formules de la logique du premier ordre (qui sont elles-mêmes dérivables à partir d'un nombre fini d'axiomes propositionnels cf. transparents)
- les axiomes des quantificateurs
 - une formule de la forme $(\exists x.G) \Rightarrow (\neg \forall x. \neg G)$ ou de $(\neg \forall x. \neg G) \Rightarrow (\exists x.G)$
 - une formule de la forme $(\forall x.H \Rightarrow G) \rightarrow (H \Rightarrow \forall x.G)$ sans x dans H
 - une formule de la forme $(\forall x.G(x)) \Rightarrow G(t/x)$ les variables du terme t ne doivent pas être quantifiées par un quantificateur de G.

Les règles de déduction sont :

- le modus ponens : si une ligne de la déduction est de la forme $A \Rightarrow B$ et une autre ligne de la forme A, alors on peut prolonger la déduction par la ligne B
- la généralisation : si une ligne est A on peut prolonger la déduction par la ligne $\forall x.A.$

Nous avons vu le lemme de la déduction : si la théorie $\Theta \cup \{G\}$ permet de dériver H, alors la théorie Θ permet de dériver $G \Rightarrow H$.

Question F(a) Montrer qu'il existe une déduction à la Hilbert de $A[t] \Rightarrow \exists x. A[x]$

Question F(b) Montrer que s'il existe une déduction à la Hilbert de la formule $A \Rightarrow B$, alors il en existe une de $(\forall x. A) \Rightarrow (\forall x. B)$.

Question F(c) Montrer que $(\exists x. \forall y. P(x,y)) \Rightarrow \forall y. \exists x. P(x,y)$. On remarquera que les preuves à la Hilbert sont plus difficiles à trouver que celles du calculs des séquents (sans coupure).

Exercice G
Montrer que si une déduction à la Hilbert utilisant les axiomes T_1, \ldots, T_n (en nombre fini) d'une théorie Th démontre la formule G alors le calcul des séquents démontre $T_1, \ldots, T_n \vdash G$. On utilisera la complétude du cacul des séquents pour la logique propositionnelle.
Exercice H
Montrer que si le calcul des séquents démontre $T_1, \ldots, T_n \vdash G$ (la disjonction des conclusions du séquents) alors il existe une déduction à la Hilbert de G dans la théorie contenant les clôtures universelles de T_1, \ldots, T_n . C'est très fastidieux. On justifiera la dérivabilité des axiomes du calcul des séquents, l'affaiblissement et la contraction. On vérifiera quelques règles.
Exercice I

Montrez qu'une théorie qui n'a qu'un modèle (à isomorphisme près) est complète.