

PATENT ABSTRACTS OF JAPAN

(11) Publication number:

11-055210

(43) Date of publication of application: 26.02.1999

(51)Int.CI.

H04J 11/00

(21)Application number: 09-211908

(71)Applicant: NIPPON TELEGR & TELEPH CORP

<NTT>

(22)Date of filing:

06.08.1997

(72)Inventor: MATSUMOTO YOICHI TSUBAKI TOSHIMITSU

UMEHIRA MASAHIRO

(54) MULTI-CARRIER SIGNAL TRANSMITTING METHOD AND DEVICE THEREFOR

(57)Abstract:

PROBLEM TO BE SOLVED: To reduce the number of sub-carriers compared at once by dividing all subcarriers which can be selected into plural groups so that inter-sub-carrier frequency intervals become maximum and designating the used sub-carriers for the respective groups at the time of selecting the used sub-carrier. SOLUTION: A designated sub-carrier selection means for respective transmission side groups 21 selects the sub-carriers used for transmitting parallel signals B1 for the respective groups based on designated sub-carrier information signals for respective groups K1, which are fed back from a use sub-carrier designation means for respective groups 91 on a reception side. The subcarriers are grouped so that the frequency interval among the sub-carriers in the respective groups become maximum and the effect of selection transmission is improved. Thus, the sub-carrier signals received for the respective groups are selected from the sub-carrier signal E1 based on the designated sub-carrier

information signal for respective groups K1, which are transmitted to the transmission side from the use sub-carrier designation means for respective groups 91.

LEGAL STATUS

[Date of request for examination]

28.12.1998

Date of sending the examiner's decision of

rejection]

[Kind of final disposal of application other than the examiner's decision of rejection or

application converted registration] [Date of final disposal for application]

[Patent number]

3035512

[Date of registration]

18.02.2000

BEST AVAILABLE COPY

[Number of appeal against examiner's decision of rejection]

[Date of requesting appeal against examiner's decision of rejection]

[Date of extinction of right]

Copyright (C); 1998,2003 Japan Patent Office

(19) 日本國特許庁 (JP) (12) 公開特許公報 (A)

(11)特許出願公閱番号

特開平11-55210

(43)公開日 平成11年(1999)2月26日

(51) Int.Cl.6

識別記号

FΙ

H 0 4 J 11/00

H04J 11/00

Z

審査請求 未請求 請求項の数5 OL (全 6 頁)

(21)出願番号

特顯平9-211908

(71)出願人 000004226

日本電信電話株式会社

(22)出願日 平成9年(1997)8月6日 東京都新宿区西新宿三丁目19番2号

(72)発明者 松本 洋一

東京都新宿区西新宿三丁目19番2号 日本

電信電話株式会社内

(72) 発明者 椿 俊光

東京都新宿区西新宿三丁目19番2号 日本

電信電話株式会社内

(72)発明者 梅比良 正弘

東京都新宿区西新宿三丁目19番2号 日本

量信重新技术会社内

(74)代理人 弁理士 古谷 史旺

(54) 【発明の名称】 マルチキャリア信号伝送方法および装置

(57)【要約】

【課題】 サブキャリア数が増加した場合でもサブキャ リア選択に関わる回路規模の増大を最小限に抑えてサブ キャリアの選択を可能にする。

【解決手段】 選択可能な全サブキャリアをサブキャリ ア間周波数間隔が最大になるように複数のグループに分 割する。そして、使用するサブキャリアを選択する際 に、グループごとに使用するサブキャリアを指定する。

【特許請求の範囲】

【請求項1】 複数のサブキャリアの中から伝送状態の良好なサブキャリアを信号伝送に使用するサブキャリアとして選択するマルチキャリア信号伝送方法において、N波(Nは4以上の整数)のサブキャリアのうち、M波(Mは2以上の整数)ずつ組み合わせたN/M個のグループを生成し、各グループごとにM波からし波(Lは1以上M以下の整数)のサブキャリアを選択することを特徴とするマルチキャリア信号伝送方法。

【請求項2】 請求項1に記載のマルチキャリア信号伝送方法において、

N波のサブキャリアをM波ずつグループ化する際に、各グループ毎にサブキャリア間の周波数間隔が最大になるように組み合わせることを特徴とするマルチキャリア信号伝送方法。

【請求項3】 送信ビット系列をシリアル・パラレル変換するシリアル・パラレル変換手段と、

前記シリアル・パラレル変換手段から出力されるパラレル信号の送信に用いるサブキャリアを、指定サブキャリア情報に基づいて選択する送信側指定サブキャリア選択手段と、

前記送信側指定サブキャリア選択手段から出力されるサブキャリア信号を合成し、送信信号を生成するサブキャリア信号合成・送信手段と、

前記送信信号を受信してサブキャリア信号に分離するマルチキャリア信号受信・分離手段と、

前記マルチキャリア信号受信・分離手段から出力される 各サブキャリア信号から前記指定サブキャリア情報に基 づくサブキャリア信号を選択する受信側指定サブキャリ ア選択手段と、

前記受信側指定サブキャリア選択手段から出力されるサブキャリア信号を検波する検波手段と、

前記検波手段から出力される復調信号を前記送信ビット 系列と同様なシリアル信号に変換するパラレル・シリア ル変換手段と、

前記マルチキャリア信号受信・分離手段から出力される 各サブキャリア信号の品質を測定するサブキャリア信号 品質測定手段と、

前記サブキャリア信号品質測定手段の測定結果に基づいて信号伝送に使用するサブキャリアを指定し、その指定サブキャリア情報を前記送信側指定サブキャリア選択手段および前記受信側指定サブキャリア選択手段に送出する使用サブキャリア指定手段とを備えたマルチキャリア信号伝送装置において、

N波(Nは4以上の整数)のサブキャリアのうち、M波 (Mは2以上の整数) ずつ組み合わせたN/M個のグル ープを生成し、

前記使用サブキャリア指定手段は、前記サブキャリア信号品質測定手段の測定結果に基づいて、M波のサブキャリアからなる各グループ毎にL波(Lは1以上M以下の

整数)のサブキャリアを指定し、グループ毎指定サブキャリア情報として出力する構成であり、

前記送信側指定サブキャリア選択手段は、前記グループ 毎指定サブキャリア情報に基づき、前記N/M個のグル ープ毎にM波からし波ずつ前記パラレル信号の送信に用 いるサブキャリアを選択する構成であり、

前記受信側指定サブキャリア選択手段は、前記グループ 毎指定サブキャリア情報に基づき、前記N/M個のグル ープ毎にM波からし波ずつ受信するサブキャリア信号を 選択する構成であることを特徴とするマルチキャリア信 号伝送装置。

【請求項4】 請求項3に記載のマルチキャリア信号伝 送装置において、

N波のサブキャリアをM波ずつグループ化する際に、各グループ毎にサブキャリア間の周波数間隔が最大になるように組み合わせることを特徴とするマルチキャリア信号伝送装置。

【請求項5】 請求項3または請求項4に記載のマルチキャリア信号伝送装置において、

サブキャリア信号品質測定手段は、各サブキャリア信号 の受信電力を測定する構成であり、

使用サブキャリア指定手段は、前記サブキャリア信号品質測定手段の測定結果に基づいて、M波のサブキャリアからなる各グループ毎に受信電力の大きい順にL波のサブキャリアを指定する構成であることを特徴とするマルチキャリア信号伝送装置。

【発明の詳細な説明】

[0001]

【発明の属する技術分野】本発明は、複数のサブキャリアを用い、狭帯域化した信号に変換して伝送するものであり、特に複数のサブキャリアの中から伝送状態の良好な複数のサブキャリアを選択して用いるサブキャリア信号伝送方法および装置に関する。なお、本発明のサブキャリア信号伝送方法および装置は、特に大容量の多値変調方式に対して有効である。

[0002]

【従来の技術】マルチキャリア信号伝送装置には、複数のサブキャリアの中から伝送状態の良好な複数のサブキャリアを選択して用いるサブキャリア選択方式を適用しているものがある。

【0003】図6は、サブキャリア選択方式を適用した 従来のマルチキャリア信号伝送装置の構成例を示す。図 において、マルチキャリア信号伝送装置は、送信側装置 と受信側装置により構成される。

【0004】送信側装置では、送信ビット系列A2がシリアル・パラレル変換手段10に入力され、ビット組からなるパラレル信号B2に変換されて送信側指定サブキャリア選択手段20に入力される。送信側指定サブキャリア選択手段20では、受信側の使用サブキャリア指定手段90からフィードバックされる指定サブキャリア情

報信号K2に基づき、パラレル信号B2の送信に用いるサブキャリアが選択される。なお、送信側指定サブキャリア選択手段20で選択されなかったサブキャリアは、受信側で品質測定を行うために任意のダミービット系列の送信に用いる。送信側指定サブキャリア選択手段20の出力C2はサブキャリア信号合成・送信手段30に入力され、各サブキャリア信号が合成された送信信号D2となる。

【 O O O 5 】 ここで、サブキャリア信号合成・送信手段 3 Oは、例えばシリアル・パラレル変換回路と、直交周 波数分割多重(O F D M: Orthogonal Frequency Divis ionMultiplexing)を適用した逆離散フーリエ変換(I D F T: Inverse discrete Fourier Transform)回路により実現される(参考文献: S. B. Weinstein et al., "Da ta transmission by frequency-division multiplexing using the discreteFourier transform", IEEE Trans. Commun. Technol., vol. COM-19, pp. 628-634, Oct. 1971)。

【0006】受信側装置では、送信信号D2をマルチキャリア信号受信・分離手段40に入力し、各サブキャリア信号E2に分離する。マルチキャリア信号受信・分離手段40は、OFDMを適用したDFT (discrete Four ier Transform)回路により実現できる。

【0007】サブキャリア信号E2は、受信側指定サブキャリア選択手段50およびサブキャリア信号品質測定手段80に入力される。受信側指定サブキャリア信号品質測定手段50は、使用サブキャリア情報信号K2に基づき、サブキャリア信号E2から受信するサブキャリア信号E2から受信するサブキャリア信号を測定手段80は表すする。また、サブキャリア信号品質測定手段80は各サブキャリアの品質を測定し、その測定結果情報J2を使用サブキャリア指定手段90は、測定結果情報J2に基づいて予め指定す及90は、測定結果情報J2に基づいて予め指定された本数のサブキャリアを信号K2を送信側指定サブキャリア選択手段20および受信側指定サブキャリア選択手段20および受信側指定サブキャリア選択手段50に送出する。

【0008】受信側指定サブキャリア選択手段50から出力されるサブキャリア信号F2は、検波手段60で検波され、復調信号G2としてパラレル・シリアル変換手段70に入力され、送信ビット系列A2と同様なシリアン信号H2に変換される。なお、検波方式には、遅延検波または同期検波を用いることができる。

[0009]

【発明が解決しようとする課題】ところで、従来のマルチキャリア信号伝送装置におけるサブキャリア選択方式では、受信したすべてのサブキャリア信号の品質を測定し、その中から使用するサブキャリアを選択している。そのため、サブキャリア数の増加に伴い、サブキャリア選択のための回路規模が増大し、実現が困難になる場合

があった。一方、消費電力の観点からは回路規模の低減 が要請されている。

【0010】本発明は、サブキャリア数が増加した場合でもサブキャリア選択に関わる回路規模の増大を最小限に抑えることができるマルチキャリア信号伝送方法および装置を提供することを目的とする。

[0011]

【課題を解決するための手段】本発明のマルチキャリア信号伝送方法および装置は、選択可能な全サブキャリアをサブキャリア間周波数間隔が最大になるように複数のグループに分割する。そして、使用するサブキャリアを選択する際に、グループごとに使用するサブキャリアを指定する。このようにグループ化することにより、一度に比較するサブキャリア数を減少させることができる。また、全サブキャリア数が増加した場合でも、グループ数を増加させることにより対応できる。

[0012]

【発明の実施の形態】図1は、本発明のマルチキャリア信号伝送装置の実施形態を示す。図において、送信側装置のシリアル・パラレル変換手段10およびサブキャリア信号合成・送信手段30、受信側装置のマルチキャリア信号受信・分離手段40、検波手段60、パラレル・シリアル変換手段70およびサブキャリア信号品質測定手段80は、図6に示す従来のものと同じである。

【0013】本実施形態では、従来の送信側指定サブキャリア選択手段20に代えて送信側グループ毎指定サブキャリア選択手段21を備え、従来の受信側指定サブキャリア選択手段50に代えて受信側グループ毎指定サブキャリア選択手段51、従来の使用サブキャリア指定手段90に代えてグループ毎使用サブキャリア指定手段91を備えることを特徴とする。

【0014】送信側グループ毎サブキャリア選択手段21は、受信側のグループ毎使用サブキャリア指定手段91からフィードバックされるグループ毎指定サブキャリア情報信号K1に基づき、シリアル・パラレル変換手段10から出力されるパラレル信号B1の送信に用いるサブキャリアを、N/M個のグループごとにし波ずつ選択する。

【〇〇15】ここで、図2に示すように、全サブキャリア数をN、各グループ内のサブキャリア数をMとする。また、各グループのサブキャリア間の周波数間隔が最大になるようにグループ化する。その目的は、移動通信伝搬環境における遅延波(反射波)の遅延量とサブキャリアの周波数間隔との間に図4に示すような相関関係があるので、サブキャリア間の相関が小さくなるようにサブキャリア間の周波数間隔を大きくし、サブキャリアの選択送信による効果を高めるためである。

【0016】受信側グループ毎指定サブキャリア選択手段51は、グループ毎使用サブキャリア指定手段91から送信側に送出したグループ毎指定サブキャリア情報信

号K1に基づき、サブキャリア信号E1からN/M個のグループごとにL波ずつ受信するサブキャリア信号を選択する。

【 O O 1 7】 グループ毎使用サブキャリア指定手段91は、サブキャリア信号品質測定手段80の測定結果情報 J 1 に基づいて、M波のサブキャリアからなる各グループごとにL波のサブキャリアを信号伝送用として指定 し、そのグループ毎指定サブキャリア情報信号K1を送信側グループ毎指定サブキャリア選択手段21および受信側グループ毎指定サブキャリア選択手段51に送出する。

【0018】図3は、グループ毎使用サブキャリア指定手段91および送信側グループ毎サブキャリア選択手段21の動作例を示す。ここでは、全サブキャリア数 Nが12、各グループ内のサブキャリア数 Mが4、グループ数 N/Mが3、グループごとに選択するサブキャリア数 Lが2の場合を示す。図中、カッコ内の表記は(グループ番号、グループ内サブキャリア番号)であり、(1、1)~(3、4)の12のサブキャリアがあり、サブキャリア信号品質測定手段80でそれぞれの受信電力が測定

【0019】グループ毎使用サブキャリア指定手段91は、各グループごとにサブキャリアの受信電力の大きい方から2つのサブキャリアを指定する。ここでは、

(1, 1)、(1, 2)、(2, 2)、(2, 3)、(3, 1)、(3, 3)のサブキャリアが指定される。送信側グループ毎指定サブキャリア選択手段21では、この指定されたサブキャリアを選択してパラレル信号B1の送信に用いる。受信側グループ毎指定サブキャリア選択手段51でも同様に、サブキャリア信号E1から指定されたサブキャリア信号を選択する。

【0020】図5は、本発明のマルチキャリア信号伝送装置におけるセル誤り率のシミュレーション結果の一例を示す。ここでは、全サブキャリア数Nが32、各グループ内のサブキャリア数Mが4、グループ数N/Mが8、グループごとに選択するサブキャリア数Lが2の場合とし、レイリーフェージング通信路におけるセル誤り率を遅延検波を適用した場合について求めたものである。なお、サブキャリア信号品質測定手段では、各サブキャリアの受信電力を測定している。

【0021】図5に示すように、本発明装置を用いることにより、例えばグループを構成する4波のサブキャリア中、電力の大きい2波のサブキャリアを選択する簡単

な回路を用いて、大幅な誤り率特性の改善が得られることがわかる。

[0022]

【発明の効果】以上説明したように、本発明のマルチキャリア信号伝送方法および装置は、使用するサブキャリアを選択する際にグループ化することにより、一度に比較するサブキャリア数を減少させることができ、サブキャリア選択に関わる回路規模を抑制することができる。【0023】また、全サブキャリア数が増加した場合でも、グループ数が増加するようにすれば、サブキャリア選択に関わる回路規模の増大を最小限に抑えることができ、カループにグループ化すれば、グループごとに選択されたサブキャリア間の相関を低く抑えることができ、グループ化に伴う誤り率特性の劣化を最小限に抑えることかでき

【図面の簡単な説明】

【図1】本発明のマルチキャリア信号伝送装置の実施形 態を示すブロック図。

【図2】サブキャリアのグループ化を説明する図。

【図3】グループ毎使用サブキャリア指定手段91および送信側グループ毎サブキャリア選択手段21の動作例を示す図。

【図4】遅延波(反射波)の遅延量とサブキャリアの周 波数間隔の相関関係を示す図。

【図5】本発明のマルチキャリア信号伝送装置における セル誤り率を示す図。

【図6】サブキャリア選択方式を適用した従来のマルチキャリア信号伝送装置の構成例を示すブロック図。

【符号の説明】

- 10 シリアル・パラレル変換手段
- 20 送信側指定サブキャリア選択手段
- 21 送信側グループ毎指定サブキャリア選択手段
- 30 サブキャリア信号合成・送信手段
- 40 マルチキャリア信号受信・分離手段
- 50 受信側指定サブキャリア選択手段
- 51 受信側グループ毎指定サブキャリア選択手段
- 60 検波手段
- 70 パラレル・シリアル変換手段
- 80 サブキャリア信号品質測定手段
- 90 使用サブキャリア指定手段
- 91 グループ毎使用サブキャリア指定手段

【図1】

本発明のマルチキャリア信号伝送装置の実施形骸

【図2】

サブキャリアのグループ化

【図4】

遅延波(反射波)の遅延量とサブキャリアの周波数関隔の相関関係

【図3】

グループ毎使用サプキャリア指定手段9lおよび 送信側グループ毎指定サプキャリア選択手段2lの動作例

【図5】

本発明のマルチキャリア信号伝送装置におけるセル誤り率

【図6】

サプキャリア選択方式を適用した従来のマルチキャリア信号伝送装置の構成例

This Page is Inserted by IFW Indexing and Scanning Operations and is not part of the Official Record

BEST AVAILABLE IMAGES

Defective images within this document are accurate representations of the original documents submitted by the applicant.

Defects in the images include but are not limited to the items checked:

□ BLACK BORDERS
□ IMAGE CUT OFF AT TOP, BOTTOM OR SIDES
□ FADED TEXT OR DRAWING
□ BLURRED OR ILLEGIBLE TEXT OR DRAWING
□ SKEWED/SLANTED IMAGES
□ COLOR OR BLACK AND WHITE PHOTOGRAPHS
□ GRAY SCALE DOCUMENTS
□ LINES OR MARKS ON ORIGINAL DOCUMENT
□ REFERENCE(S) OR EXHIBIT(S) SUBMITTED ARE POOR QUALITY

IMAGES ARE BEST AVAILABLE COPY.

As rescanning these documents will not correct the image problems checked, please do not report these problems to the IFW Image Problem Mailbox.