

CS2003: Internet and The Web Basic Internet Protocol Architecture

How do we arrange communication?

- Why do we need different network devices?
- Does every application need to worry about how to transmit on fibre / copper / radio?
 - How do we deal with different physical media?
- Are there common services that could be abstracted and provisioned for the benefit of multiple applications?

Application example: Payroll (1)

Payroll:

- Fluff International Ltd (suppliers of quality fluff).
- Sites in Edinburgh, Tokyo and New York.
- Payroll managed centrally (Edinburgh) and distributed to other offices.
- Compare process of:
 - "Traditional" paper-based approach.
 - "Map" to an electronic approach.

Application example: Payroll (2)

Application example: Payroll (3)

Layered architecture

- Application-layer information:
 - format of information, application-level messages.
- End-to-end service interface to communication:
 - well-defined, end-to-end, transparent communication.
- Network service:
 - "common" courier service.
- Link service:
 - each mode of transmission has its own envelope.
- Physical transmission on individual links.

OSI protocol reference model

Protocol Reference Models

OSI, IEEE & Internet protocol examples

DNS	Domain Name Service	POP	Post Office Protocol
HTTP	HyperText Transfer Protocol	QUIC	Quick UDP Internet Connections
SFTP	Secure File Transfer Protocol	SMTP	Simple Mail Transfer Protocol
IP	Internet Protocol	SNMP	Simple Network Management Protocol
IEEE	Institute of Electrical and Electronic Engineers	SSH	Secure Shell
LLC	Logical Link Control	TCP	Transmission Control Protocol
MAC	Medium Access Control	TLS	Transport Layer Security (aka SSL)
NFS	Network File System	UDP	User Datagram Protocol
OSI	Open Systems Interconnection	XDR	eXternal Data Representation

IP as the "waist" of the hourglass

HTTP, SMTP, IMAP, SSH, SFTP, ... TCP, UDP **IP** Ethernet, ATM, ... Fibre, Wireless, Cat5, ...

IP is independent of sub-network technology.

IP is the common layer for internetworking

Need to "map" IP onto sub-network technology.

Equipment and layers: internetworking University of St Andrews

Multi-network router

Internet Protocol (IP)								
Link	LLC	LL	С	LLC	LLC	LLC	LLC	Link
	MAC	MA	С	MAC	MAC	MAC	MAC	
Ph	Ph	Pł	1	Ph	Ph	Ph	Ph	Ph
DSL	WiFi (802.11)		Ethernet ports (IEEE 802.3) LAN (can be set up as a switch)				thernet (802.3)	3G/4G

Internetworking.

Example configuration shown.
Other configurations possible, e.g.:

- WiFi bridged to Ethernet.
- ISP via DSL.
- ISP via 3G/4G.
- ISP via additional ethernet port.
- (Software configurable.)

Home gateway can also run various other functions and applications, e.g.:

- DHCP
- DNS
- NAT
- Firewall
- Web server

protocol (1)

protocol noun

pro·to·col | \ 'prō-tə-ˌkol -ˌkol, -ˌkal, -kəl\

Definition of protocol

1: an original draft, minute, or record of a document or transaction

2 a : a preliminary memorandum often formulated and signed by <u>diplomatic</u> negotiators as a basis for a final convention or treaty

b: the records or minutes of a diplomatic conference or congress that show officially the agreements arrived at by the negotiators

3 a : a code prescribing strict adherence to correct <u>etiquette</u> and <u>precedence</u> (as in diplomatic exchange and in the military services) a breach of protocol

b: a set of conventions governing the treatment and especially the formatting of data in an electronic communications system network protocols

c: convention sense 3a,b

4: a detailed plan of a scientific or medical experiment, treatment, or procedure source - http://www.m-w.com/dictionary/protocol

protocol (2)

- Definitions of message formats:
 - data structures.
 - application programming interface (API).
 - messages for data, signalling & management.
- A set of rules:
 - algorithm.
 - finite state machine (FSM).
- Error handling:
 - part of the FSM, API, special messages.

Simple example : phone call (1)

	User A	Network	User B
01	pick up phone →	← dial-tone	
02	dial number →	parse/check number & route the call →	
03		← ringing →	(→ phone rings)
04		← connect call →	← pick up phone
05	talk/listen	(data between user A and User B)	talk/listen
06	hang-up →		← hang-up
07		tear-down call	

set-up (allocate network esources)

data transfer

release (network resources)

The arrows " \rightarrow " and " \leftarrow " indicate **signalling** to/from the network service.

At step 05, a high-layer protocol is used which is **transparent** to this layer.

Note that the protocol described above is **connection oriented**.

Simple example : phone call (2)

- Addressing:
 - location (topology)
 - identity (uniqueness)
- Phone number structure:
 - country code
 - city code
 - "exchange" number
 - port number on exchange
 - hierarchical, with respect to topology: routing information aggregation

Encapsulation (1)

- When we send data / information across the network, it needs to have additional information:
 - An address for destination (and a source).
 - Information about message ordering.
 - Information about message formatting, e.g. document.
 - (plus other information, e.g. protocol, size, error control)
- For example, Fluff Intl Ltd using the courier service:
 - The address of a recipient, and a sender's address.
 - Envelopes marked as 1/3, for example.
 - Labelling to indicate it is for "payroll".

University of St Andrews

Encapsulation (2)

- Message format:
 - Header (possible a Trailer) + Payload / Body.
- Header allows protocol to operate, e.g.:
 - Address.
 - Message numbering.
 - Message type.
 - (also possibly a Trailer).
- Payload / Body is the data from the layer above:
 - What is carried by that layer.

University of St Andrews

Encapsulation (3)

- Message:
 - Well-defined data-structure as part of a protocol.
 - Header (possibly a trailer).
 - Payload / Body.
- Header (trailer): protocol control information.

Encapsulation (4)

Message format: terminology

- XPDU: X protocol data unit, e.g. APDU is application data unit (application message).
- segment: TCP (segment is part of a stream / flow)
- datagram: UDP and IP (self-contained, e.g. has addressing)
- frame: link layer (often has trailer as well as header)
- packet: general term, context specific.

Summary

- Layered architecture, each layer:
 - Has a specific purpose.
 - Provides a service to the layer above.
 - Has a function that depends on one or more protocols.

Protocols:

- Data structures plus algorithm / rules for operation.
- Connectionless (CL) or connection-oriented (CO).
- Addressing (much more to come on this).