University of Lethbridge Department of Mathematics and Computer Science

MATH 1410 - Tutorial #9

Wednesday, March 7

Additional practice: (do not submit).

 $1. \ \,$ Determine the inverse of the following matrices, if possible:

(a)
$$\begin{bmatrix} 4 & -3 \\ -2 & 7 \end{bmatrix}$$

(c)
$$\begin{bmatrix} 2 & -6 \\ -1 & 3 \end{bmatrix}$$

(b)
$$\begin{bmatrix} 1 & 0 & 3 \\ -2 & 1 & 4 \\ 3 & 2 & -2 \end{bmatrix}$$

(d)
$$\begin{bmatrix} 2 & -1 & 4 \\ 0 & 3 & -5 \\ 4 & 1 & 3 \end{bmatrix}$$

1. Let
$$A = \begin{bmatrix} 1 & -1 & 4 \\ -2 & 3 & -5 \\ 1 & 1 & 9 \end{bmatrix}$$
.

(a) Compute A^{-1} .

(b) Solve for
$$X$$
, if $AX + \begin{bmatrix} 2 & -3 \\ -1 & -5 \\ 4 & 2 \end{bmatrix} = \begin{bmatrix} 1 & 0 \\ 4 & -3 \\ -2 & 1 \end{bmatrix}$

2. For each equation given below, explain why A is invertible, and determine an expression (in terms of A) for A^{-1} .

Hint: Recall that A is invertible provided there exists a matrix B such that AB = I, in which case $B = A^{-1}$.

(a)
$$A^5 = I$$

(b)
$$A^4 = 9I$$

(c)
$$A^2 - 5A + 6I = 0$$

3. Show that the matrix $A = \begin{bmatrix} -3 & -3 \\ 10 & 8 \end{bmatrix}$ satisfies the equation $A^2 - 5A + 6I = 0$. Using your result from problem 2(c), determine A^{-1} .

- 4. For each problem below, assume T is a linear transformation from \mathbb{R}^2 to \mathbb{R}^3 .
 - (a) Given vectors $\vec{u}, \vec{v} \in \mathbb{R}^2$ such that $T(\vec{u}) = \begin{bmatrix} 3 \\ -1 \\ 4 \end{bmatrix}$ and $T(\vec{v}) = \begin{bmatrix} -1 \\ 2 \\ 5 \end{bmatrix}$, determine the value of $T(4\vec{u} 3\vec{v})$.

(b) Determine the matrix of T, if $T\left(\begin{bmatrix}1\\0\end{bmatrix}\right) = \begin{bmatrix}1\\-2\\0\end{bmatrix}$ and $T\left(\begin{bmatrix}0\\1\end{bmatrix}\right) = \begin{bmatrix}4\\-1\\2\end{bmatrix}$.

(c) For fun: find the matrix of the transformation T in part(a), if $\vec{u} = \begin{bmatrix} 2 \\ 1 \end{bmatrix}$ and $\vec{v} = \begin{bmatrix} -1 \\ 1 \end{bmatrix}$.

Hint: First determine how to write $\begin{bmatrix} 1 \\ 0 \end{bmatrix}$ and $\begin{bmatrix} 0 \\ 1 \end{bmatrix}$ in terms of \vec{u} and \vec{v} .