МОСКОВСКИЙ ГОСУДАРСТВЕННЫЙ УНИВЕРСИТЕТ ФАКУЛЬТЕТ ВЫЧИСЛИТЕЛЬНОЙ МАТЕМАТИКИ И КИБЕРНЕТИКИ КАФЕДРА СУПЕРКОМПЬЮТЕРОВ И КВАНТОВОЙ ИНФОРМАТИКИ

СИСТЕМЫ И СРЕДСТВА ПАРАЛЛЕЛЬНОГО ПРОГРАММИРОВАНИЯ

ЗАДАНИЕ 2: ПАРАЛЛЕЛЬНЫЙ АЛГОРИТМ ПОИСКА ПРОСТЫХ ЧИСЕЛ В ЗАДАННОМ ДИАПАЗОНЕ С ПОМОЩЬЮ «РЕШЕТА ЭРАТОСФЕНА»

Выполнил: Алёшин Н.А.

Постановка задачи и формат данных.

<u>Задача:</u> реализовать параллельный алгоритм поиска простых чисел в заданном диапазоне с помощью «решета Эратосфена».

<u>Оценить</u>: суммарное время выполнения для всех процессов и максимальное время выполнения среди всех процессов в зависимости от числа процессов. Во время выполнения не включать время ввода/вывода.

<u>Формат командной строки:</u> <первое число из диапазона> <последнее число из диапазона> <имя выходного файла для хранения списка простых чисел в текстовом виде через пробелы>.

Результат выполнения.

Проводились тесты по замеру суммарного времени на поиске простых чисел в диапазоне от 1 до 100000000 для всех процессов и максимального времени выполнения среди всех процессов в зависимости от числа процессов на двух версиях программы: для MPI и pthreads.

Результаты МРІ:

Количество	1	2	4	6	8	10	16	32	64
процессов	1	2	7	U	O	10	10	32	04
Суммарное									
время	2.83	2.85	2.69	2.84	3.10	3.38	4.30	4.48	4.63
выполнения	2.63	2.63	2.09	2.04	3.10	3.36	4.30	4.40	4.03
всех процессов									
Максимальное									
время									
выполнения	2.83	1.43	0.68	0.49	0.39	0.34	0.35	0.25	0.14
среди всех									
процессов									

Результаты pthreads:

Количество	1	2	4	6	8	10	16	32	64
процессов	*	_	•	V	Ŭ	10	10	J 2	0.
Суммарное									
время	1.36	1.42	1.85	2.58	3.30	4.00	5.41	8.47	18.36
выполнения	1.50	1.72	1.65	2.36	3.50	7.00	J. T 1	0.7/	10.50
всех процессов									
Максимальное									
время									
выполнения	1.36	0.70	0.47	0.45	0.41	0.40	0.36	0.33	0.33
среди всех									
процессов									

Выводы.

Исследования показывают, что на MPI при большем количестве процессов суммарное время работы всех процессов остается примерно на одном уровне, а время работы отдельных процессов понижается. Чего нельзя сказать про pthreads.