AMENDMENTS TO THE CLAIMS

This listing of claims will replace all prior versions, and listings, of claims in the application:

Listing of Claims:

3

4

before.

1 1. (Currently amended) A method for facilitating instant failover during 2 packet routing by employing a flooding protocol to send packets between a source 3 and a destination, the method comprising: 4 receiving a packet containing data at an intermediate node located between 5 the source and the destination, wherein the packet is a data packet that is enroute 6 from the source to the destination; 7 wherein the packet is received from a first neighboring node; determining whether the packet has been seen before at the intermediate 8 9 node; and 10 if the packet has not been seen before, forwarding the packet to neighboring nodes of the intermediate node. 11 1 2. (Original) The method of claim 1, wherein forwarding the packet to neighboring needs involves forwarding the packet to all neighboring nodes except 2 3 the first neighboring node from which the packet was received. 1 3. (Original) The method of claim 1, wherein determining whether the packet has been seen before involves examining a sequence number, S_R , contained 2

within the packet to determine whether the sequence number has been seen

1	4. (Original) The method of claim 3, wherein the sequence number
2	includes one of:
3	a sequence number inserted into a payload of the packet;
4	a sequence number located within an Internet Protocol (IP) header of the
5	packet; and
5	a sequence number located within a layer 4 header of the packet.
1	5. (Original) The method of claim 3, wherein examining the sequence
2	number involves looking up a highest received sequence number, S_H , stored at the
3	intermediate node based upon the source of the packet.
1	6. (Original) The method of claim 3, wherein examining the sequence
2	number involves looking up a highest received sequence number, S_H , stored at the
3	intermediate node based upon the source and the destination of the packet.
1	7. (Original) The method of claim 3, wherein determining whether the
2	packet has been seen before involves examining a record, R, indicating which of N
3	possible sequence numbers preceding a highest received sequence number, S_H ,
4	have been seen before.
1	8. (Original) The method of claim 3, wherein determining whether the
2	packet has been seen before involves:
3	looking up a highest received sequence number, S_H ;
4	if $S_R > S_H$,
5	overwriting S_H with S_R ,
6	updating a record, R , indicating which of N possible
7	sequence numbers preceding S_H have been seen before, and
R	forwarding the packet to the neighboring nodes;

9	if $S_H - N > S_R$, discarding the packet; and
10	if $S_H \ge S_R \ge S_H - N$, then
11	if R indicates that S_R has been seen before, discarding the
12	packet, and
13	if R indicates the packet has not been seen before,
14	updating R to indicate that S_R has been seen,
15	and
16	forwarding the packet to the neighboring
17	nodes.
1	9. (Original) The method of claim 8, wherein the record, R , is a bit vector
2	of size N.
1	10. (Currently amended) A computer-readable storage medium storing
2	instructions that when executed by a computer cause the computer to perform a
3	method for facilitating instant failover during packet routing by employing a
4	flooding protocol to send packets between a source and a destination, the method
5	comprising:
6	receiving a packet containing data at an intermediate node located between
7	the source and the destination, wherein the packet is a data packet that is enroute
8	from the source to the destination;
9	wherein the packet is received from a first neighboring node;
10	determining whether the packet has been seen before at the intermediate
11	node; and
12	if the packet has not been seen before, forwarding the packet to
13	neighboring nodes of the intermediate node.

1	11. (Original) The computer-readable storage medium of claim 10,
2	wherein forwarding the packet to neighboring needs involves forwarding the
3	packet to all neighboring nodes except the first neighboring node from which the
4	packet was received.
1	12. (Original) The computer-readable storage medium of claim 10,
2	wherein determining whether the packet has been seen before involves examining
3	a sequence number, S_R , contained within the packet to determine whether the
4	sequence number has been seen before.
1	13. (Original) The computer-readable storage medium of claim 12,
2	wherein the sequence number includes one of:
3	a sequence number inserted into a payload of the packet;
4	a sequence number located within an Internet Protocol (IP) header of the
5	packet; and
6	a sequence number located within a layer 4 header of the packet.
1	14. (Original) The computer-readable storage medium of claim 12,
2	wherein examining the sequence number involves looking up a highest received
3	sequence number, S_H , stored at the intermediate node based upon the source of the
4	packet.
1	15. (Original) The computer-readable storage medium of claim 12,
2	wherein examining the sequence number involves looking up a highest received

sequence number, S_H , stored at the intermediate node based upon the source and

the destination of the packet.

3

4

I	16. (Original) The computer-readable storage medium of claim 12,
2	wherein determining whether the packet has been seen before involves examining
3	a record, R , indicating which of N possible sequence numbers preceding a highest
4	received sequence number, S_H , have been seen before.
1	17. (Original) The computer-readable storage medium of claim 12,
2	wherein determining whether the packet has been seen before involves:
3	looking up a highest received sequence number, S_H ;
4	if $S_R > S_H$,
5	overwriting S_H with S_R ,
6	updating a record, R , indicating which of N possible
7	sequence numbers preceding S_H have been seen before, and
8	forwarding the packet to the neighboring nodes;
9	if $S_H - N > S_R$, discarding the packet; and
10	if $S_H \ge S_R \ge S_H - N$, then
11	if R indicates that S_R has been seen before, discarding the
12	packet, and
13	if R indicates the packet has not been seen before,
14	updating R to indicate that S_R has been seen,
15	and
16	forwarding the packet to the neighboring
17	nodes.
1	18. (Original) The computer-readable storage medium of claim 17,
2	wherein the record P is a hit vector of size N

1	19. (Currently amended) An apparatus that facilitates instant failover
2	during packet routing by employing a flooding protocol to send packets between a
3	source and a destination, the apparatus comprising:
4	a receiving mechanism that is configured to receive a packet containing
5	data at an intermediate node located between the source and the destination.
6	wherein the packet is a data packet that is enroute from the source to the
7	destination;
8	wherein the packet is received from a first neighboring node;
9	a determination mechanism that is configured to determine whether the
10	packet has been seen before at the intermediate node; and
11	a forwarding mechanism that is configured to forward the packet to
12	neighboring nodes of the intermediate node if the packet has not been seen before.
1	20. (Original) The apparatus of claim 19, wherein the forwarding
2	mechanism is configured to forward the packet to all neighboring nodes except
3	the first neighboring node from which the packet was received.
1	21. (Original) The apparatus of claim 19, wherein the determination
2	mechanism is configured to examine a sequence number, S_R , contained within the
3	packet to determine whether the sequence number has been seen before.
1	22. (Original) The apparatus of claim 21, wherein the sequence number
2	includes one of:
3	a sequence number inserted into a payload of the packet;
4	a sequence number located within an Internet Protocol (IP) header of the
5	packet; and
6	a sequence number located within a layer 4 header of the packet.

1	23. (Original) The apparatus of claim 21, wherein the determination
2	mechanism is configured to look up a highest received sequence number, S_H ,
3	stored at the intermediate node based upon the source of the packet.
1	24. (Original) The apparatus of claim 21, wherein the determination
2	mechanism is configured to look up a highest received sequence number, S_H ,
3	stored at the intermediate node based upon the source and the destination of the
4	packet.
1	25. (Original) The apparatus of claim 21, wherein the determination
2	mechanism is configured to examine a record, R , indicating which of N possible
3	sequence numbers preceding a highest received sequence number, S_H , have been
4	seen before.
1	26. (Original) The apparatus of claim 21, wherein the determination
2	mechanism is configured to:
3	look up a highest received sequence number, S_H ;
4	if $S_R > S_H$, to
5	overwrite S_H with S_R ,
6	update a record, R , indicating which of N possible sequence
7	numbers preceding S_H have been seen before, and to
8	forward the packet to the neighboring nodes;
9	if $S_H - N > S_R$, to discard the packet; and
10	if $S_H \geq S_R \geq S_H$ -N, to

discard the packet, if R indicates that S_R has been seen

before, and to

11

12

13	update R to indicate that S_R has been seen, and to forward
14	the packet to the neighboring nodes, if R indicates the packet has
15	not been seen before.
1	27. (Original) The apparatus of claim 26, wherein the record, R, is a bit
2	vector of size N.