

ROBÓTICA INDUSTRIAL

TRABALHO 4 - CINEMÁTICA DIRETA

1 Transformações geométricas de um processo de manipulação

0

Considere o manipulador RRR ilustrado na Fig. 1. Pretende-se identificar a relação entre o *end-effector* do manipulador e o ponto de contacto com o objeto a agarrar. Considerar: $L_1=4,\ L_2=6,\ L_3=5$ e $L_4=1$; mesa com dimensão $8\times 2\times 1.5$ m; objeto com dimensão $2\times 1\times 1.5$ m.

Fig. 1. Manipulador RRR e restante aparato para operações de pick & place: Referenciais e ângulos de rotação.

a) Construir a cinemática direta do manipulador.

1 – Identificação dos eixos **ž**i de cada junta:

– Começa-se pela identificação de cada um dos eixos \hat{z}_{i} , que vão ser coincidentes com os eixos de rotação de cada junta.

$$\mathbf{d}_{i} = \overline{O_{i}, (z_{i-1} \cap x_{i})} \mid_{z_{i-1}}$$

$$\bullet \quad \theta_i = \angle (x_{i-1}, x_i) \Big|_{z_{i-1}}$$

$$\bullet \quad \alpha_i = \angle (z_{i-1}, z_i) \mid_{x_i}$$

2- Identificação dos parâmetros do elo 1:

- Começou-se pela colocação na base do manipulador de um referencial, tal que \hat{x}_0 e \hat{x}_1 sejam paralelos entre si e \hat{z}_0 seja coincidente com \hat{z}_1 . O eixo \hat{y}_0 obteve-se através da ortogonalidade de \hat{z}_0 e \hat{x}_0 ($\hat{y}_0 = \hat{z}_0 \times \hat{x}_0$).
- Determinaram-se os parâmetros cinemáticos do elo 1 através das fórmulas apresentadas.
 - O eixo \hat{y}_1 obteve-se através da ortogonalidade de \hat{z}_1 e \hat{x}_1 ($\hat{y}_1 = \hat{z}_1 \times \hat{x}_1$).

$$\bullet \quad I_i = \overline{(z_{i-1} \cap x_i), \text{ Oi }} \mid_{x_i}$$

$$\bullet \quad d_i = \overline{O_i, (z_{i-1} \cap x_i)} \mid_{z_{i-1}}$$

$$\bullet \quad \theta_i = \angle (x_{i-1}, x_i) \mid_{z_{i-1}}$$

$$\bullet \quad \alpha_i = \angle (z_{i-1}, z_i) \Big|_{x_i}$$

	\hat{y}_1 \hat{y}_1 \hat{L}_2	. L ₃	 θ_{s}
L_1	Ž ₀ Ž ₁	θ_2	\hat{z}_4
	Ŷ _o		

Elo	θ	α	ι	d
1	0	0	0	L ₁

3- Identificação dos parâmetros do elo 2:

- Tendo já definido \hat{x}_1 , definiu-se \hat{x}_2 de modo a que θ_1 seja o ângulo entre \hat{x}_1 e \hat{x}_2 .
- Determinaram-se os parâmetros cinemáticos do elo 2 através das fórmulas apresentadas.
 - O eixo \hat{y}_2 obteve-se através da ortogonalidade de \hat{z}_2 e \hat{x}_2 (\hat{y}_2 = \hat{z}_2 x \hat{x}_2).

$$\blacksquare \quad I_i = \overline{(z_{i-1} \cap x_i), \ Oi} \mid_{x_i}$$

$$\bullet \quad d_i = \overline{O_i, (z_{i-1} \cap x_i)} \mid_{z_{i-1}}$$

$$\bullet \quad \theta_i = \angle (x_{i-1}, x_i) \mid_{z_{i-1}}$$

$$\bullet \quad \alpha_i = \angle (z_{i-1}, z_i) |_{x_i}$$

Elo	θ	α	ι	d
1	0	0	0	L ₁
2	θ_1	90°	L ₂	0

4- Identificação dos parâmetros do elo 3:

- Tendo já definido \hat{x}_2 , definiu–se \hat{x}_3 de modo a que θ_2 seja o ângulo entre \hat{x}_2 e \hat{x}_3 .
- Determinaram-se os parâmetros cinemáticos do elo 3 através das fórmulas apresentadas.
 - O eixo \hat{y}_3 obteve–se através da ortogonalidade de \hat{z}_3 e \hat{x}_3 (\hat{y}_3 = \hat{z}_3 x \hat{x}_3).

$$\blacksquare \quad I_i = \overline{(z_{i-1} \cap x_i), \ Oi} \mid_{x_i}$$

$$\bullet \quad d_i = \overline{O_i, (z_{i-1} \cap x_i)} \mid_{z_{i-1}}$$

$$\bullet \quad \theta_i = \angle (x_{i-1}, x_i) \mid_{z_{i-1}}$$

$$\bullet \quad \alpha_i = \angle (z_{i-1}, z_i) \Big|_{x_i}$$

Elo	θ	α	ι	d
1	0	0	О	L ₁
2	θ_1	90°	L ₂	0
3	θ_2	0	L_3	0

5- Identificação dos parâmetros do elo 4:

- Como era impossível definir L_4 , independentemente da direção escolhida para \hat{x}_4 , foi necessário criar um referencial auxiliar que definisse θ_3 e que permitisse definir L_4 no elo seguinte.
- Determinaram-se os parâmetros cinemáticos do elo 4 através das fórmulas apresentadas.
 - O eixo \hat{y}_4 obteve-se através da ortogonalidade de \hat{z}_4 e \hat{x}_4 (\hat{y}_4 = \hat{z}_4 x \hat{x}_4).

$$\blacksquare \quad \mathsf{I}_{\mathsf{i}} = \overline{(\mathsf{z}_{\mathsf{i}-1} \cap \mathsf{x}_{\mathsf{i}}), \; \mathsf{Oi} \; \big|_{\mathsf{x}_{\mathsf{i}}}}$$

$$\bullet \quad d_i = \overline{O_i, (z_{i-1} \cap x_i)} \mid_{z_{i-1}}$$

$$\bullet \quad \theta_i = \angle (x_{i-1}, x_i) \Big|_{z_{i-1}}$$

$$\bullet \quad \alpha_i = \angle (z_{i-1}, z_i) \Big|_{x_i}$$

θ_1 \hat{z}_1 \hat{y}_1	L_2 \hat{y}_2	L ₃ y ₃	$\stackrel{L_4}{\longrightarrow}$
 Ž ₀	2 ₂ , ηθ ₂	2 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	\$\hat{\hat{x}_4}\$
y ₀		ŷ ₄ ,	$) \rightarrow \hat{z}_4 $

Elo	θ	α	ι	d
1	0	0	0	L ₁
2	θ_1	90°	L ₂	0
3	θ_2	0	L_3	0
4	θ ₃ +90°	90°	0	0

- 6 Identificação dos parâmetros do elo 5:
 - Com o referencial auxiliar criado, já é possível definir L₄.
- Determinaram-se os parâmetros cinemáticos do elo 5 através das fórmulas apresentadas.
 - O eixo \hat{y}_5 obteve-se através da ortogonalidade de \hat{z}_5 e \hat{x}_5 (\hat{y}_5 = \hat{z}_5 x \hat{x}_5).
 - Obtidos todos os parâmetros cinemáticos para o exercício 🙂

$$I_i = \overline{(z_{i-1} \cap x_i), Oi} \mid_{x_i}$$

$$\bullet \quad d_i = \overline{O_i, (z_{i-1} \cap x_i)} \mid_{z_{i-1}}$$

$$\bullet \quad \theta_i = \angle (x_{i-1}, x_i) \mid_{z_{i-1}}$$

$$\bullet \quad \alpha_i = \angle (z_{i-1}, z_i) \mid_{x_i}$$

Elo	θ	α	ι	d
1	0	0	0	L ₁
2	θ_1	90°	L ₂	0
3	θ_2	0	L_3	0
4	θ ₃ +90°	90°	0	0
5	θ_4	0	0	L ₄