Scale Alone Does not Improve Mechanistic Interpretability in Vision Models

Roland Simon Zimmermann

Google DeepMind

Verified email at google.com - Homepage

machine learning computer vision representation learning interpretability

Thomas Klein

PhD Student, <u>University of Tübingen</u> Verified email at uni-tuebingen.de Interpretability

Wieland Brendel

machine learning computer vision

Fellow at ELLIS Institut Tübingen, Group Leader, Max Planck Institute for Intelligent Systems
Verified email at tuebingen.mpg.de - <u>Homepage</u>

Nobody really understands me :(

Presenters - Yorguin Jose Mantilla Ramos, Shruti Bibra

IFT6167

The question is...

What is the relation between the size of a model (e.g. scale) and its interpretability?

In other words...

First, What is interpretability?

decision-making descriptions

machine-learning

explanations clarity

interpretability black-box post-hoc

human

deep-learning psychology predictions comprehend

post-hoc insights

models

Ok... so how do you even

measure it?

Isn't it a subjective

property?

Psychophysics

E.g.: Magnitude estimation

Have the subject rate

(e.g., 1-10)

some aspect of a stimulus

(e.g., how bright it appears or how loud it sounds) ..

Still, interpretability seems a hard concept to measure in this way...

So, how can we framework interpretability as a question of perception?

Natural and Synthetic Exemplars

What are the advantages and disadvantages of each?

What was their hypothesis regarding the results?

Scale Might Improve Per-Unit Interpretability

- Models trained on larger datasets align better with human decision-making (measured by error consistency).
 - Possible reason: Larger models may rely on human-aligned, non-spurious features, making their decisions more interpretable.
- Bigger models can dedicate more units to specific features.
 - This reduces feature superposition, making unit activations less ambiguous and easier to interpret.

Enough Context... What exactly was done?

Task

Task (natural)

Task (synthetic)

for all the neurons???

Random Selection Process

- o **84 units** selected per model.
- First, a network layer is chosen from a uniform distribution over layers of interest.
- Then, a **unit is randomly selected** from that layer.
- Why Not Uniform Across All Units?
 - CNNs have more units in later layers, so a simple uniform selection would bias toward them.
 - Instead, layers are sampled first, ensuring better representation across the model.

Layers of Interest

- Convolution & normalization layers.
- Outputs of skip connection blocks.
- o Exclusions:
 - First convolution layers (can be analyzed directly via filters).
 - For GoogLeNet, only last layers of inception blocks are selected.
 - For ViT models, only position-wise feedforward layers are considered.

Amazon Mechanical Turk

Geographic Restrictions

- Participants must be from USA, Canada, UK, Australia, New Zealand, or Ireland.
- Ensures English proficiency and ethical compensation.

Experience & Reliability

- Must have completed ≥ 2,000 approved HITs.
- Approval rate ≥ 99% to ensure quality.
- No repeat participation to prevent learning effects.

Attention & Engagement Filters

- Demo trials: Max 3 attempts allowed.
- Reading time: Must spend ≥ 15 seconds on instructions.
- Catch trials: Must answer ≥ 4 out of 5 correctly.
- Completion time:
 - Too fast: < 135 seconds → excluded.
 - Too slow: > 2,500 seconds → excluded.

Behavioral Consistency

- Participants who select the same query image > 90% of the time are excluded.
- Final Participant Selection
 - 63 unique participants per model pass quality checks.
 - Each participant completes 5 practice trials, 40 real trials, and 5 catch trials.
 - Total dataset: 133,310 trials collected, 76,000 valid trials retained.
 - Compensation: \$15/hour (~\$2.79 per task).

Who participated?

With this setup you can dig into:

- Interpretability vs scale / dataset size.
- Interpretability vs accuracy
- Interpretability vs human-likeness
- Interpretability vs Interpretability Methods (E.g. Natural vs Synthetic)
 - Interpretability vs Task Difficulty (e.g. selecting not the most/least activating examples).
- Interpretability vs Neuron-Unit Location

Results

The 9 models tested and the varied dimensions

Model	Parameter Count	Design Aspect	Comparison Axis
GoogLeNet	6.8M	CNN, Inception modules	Baseline, Smallest Model
ResNet-50	25.6M	CNN, Residual connections	Deeper network
WideResNet-50	68.9M	CNN, Wider architecture	Increased model width
DenseNet-201	20.0M	CNN, Dense connectivity	Increased depth & connections
ViT-B	86M	Vision Transformer (ViT)	Transformer-based architecture
ConvNeXt-B	89M	CNN with modern improvements	Largest model
Clip ResNet-50	25.6M	CNN, Pretrained on LAION- 400M	Large-scale dataset training
Clip ViT-B	86M	Vision Transformer, Pretrained	Large-scale dataset training
Robust ResNet- 50	25.6M	CNN, Adversarial robustness	Tested for robustness & interpretability

Q1. Does scaling models improve interpretability?

Q1. Does scaling models improve interpretability?

NO!

Q1. Does scaling models improve interpretability?

NO!

- 1. Clearly! No improvement
- 2. GoogleNet model performs way better than Vit

Q2. Does higher classification performance or human-like decisions translate to high mechanistic interpretability?

Q2. Does higher classification performance or human-like decisions translate to high mechanistic interpretability?

NO!

Q2. Does higher classification performance or human-like decisions translate to high mechanistic interpretability?

NO!

- 1. As human likeness increase, interpretability decreases (for synthetic)
- 2. No positive relationship

Q3. Is synthetic feature visualization technique helpful?

Q3. Is synthetic feature visualization technique helpful?

NO!

Q3. Is synthetic feature visualization technique helpful?

NO!

- 1. Evidence from the previous graphs!
- 2. Natural exemplars are better for understanding neuron behaviour

Q4. Is any specific layer a stronger predictor of interpretability?

Q4. Is any specific layer a stronger predictor of interpretability?

Somewhat!

Q4. Is any specific layer a stronger predictor of interpretability?

Somewhat!

- 1. Consistent correlation
- 2. ClipResnet and ClipVit more interpretability in later layers

Q5. Does task difficulty affects interpretability?

Q5. Does task difficulty affects interpretability?

Yes!

Q5. Does task difficulty affects interpretability?

Yes!

Interpretability decreases with task difficulty

Disappointing results!!!

But, what did we gain from this study?

IMI - A Dataset to Learn Automated Interpretability Measures

Name	Size
human_responses.zip md5:f886fc48a87baf51f2beb834924c8b62 €	61.9 MB
image_data.zip md5:47c364fd92752d3412f1c08f8cd6d793 ••	1.6 GB

https://zenodo.org/records/8131197

- L. Models need to be explicitly optimized for interpretability
- 2. Enable research on automated interpretability measures
- 130,000 anonymized human responses, each containing a final choice, confidence score, and reaction time
- 4. 76,000 of the responses passed quality checks The dataset also includes the query images and the generated explanations for 767 units across nine different models.

Conclusion

No practically relevant differences...

As our study shows, new model design choices or training objectives are needed to *explici* the mechanistic interpretability of vision models. We expect the data collected in our study

- Results are not surprising?
 - Accuracy/Interpretability trade-off (∃ debates about it).
 - But the paper claim is that there is no relation.
- Is this a true estimation of "interpretability"?
 - Visualizations (Natural and Synthetic) has been criticized (unreliable, misleading) in the literature, including the authors.
 - Feature Visualizations do not sufficiently explain hidden units of Artificial Neural Networks
- Results could benefit from more controlled experiments.
 - E.g. manipulating model and dataset size in a single model and training it. (↑ comp.)

References

- [0] R. S. Zimmermann, T. Klein, and W. Brendel, "Scale Alone Does not Improve Mechanistic Interpretability in Vision Models," 2023, arXiv. doi: 10.48550/ARXIV.2307.05471.
- [1] J. Kaplan et al., "Scaling Laws for Neural Language Models," 2020, arXiv. doi: 10.48550/ARXIV.2001.08361.
- [2] Wolfe, J. M., Kluender, K. R., Levi, D. M., Bartoshuk, L. M., Herz, R. S., Klatzky, R. L., & Lederman, S. J. (2006). Sensation and perception. Sinauer Associates.
- [3] A. Conmy, A. N. Mavor-Parker, A. Lynch, S. Heimersheim, and A. Garriga-Alonso, "Towards Automated Circuit Discovery for Mechanistic Interpretability," 2023, arXiv. doi: 10.48550/ARXIV.2304.14997.
- [4] G. Nanfack, M. Eickenberg, and E. Belilovsky, "From Feature Visualization to Visual Circuits: Effect of Adversarial Model Manipulation," 2024, arXiv. doi: 10.48550/ARXIV.2406.01365.
- [5] Z. Liu, E. Gan, and M. Tegmark, "Seeing is Believing: Brain-Inspired Modular Training for Mechanistic Interpretability," 2023, arXiv. doi: 10.48550/ARXIV.2305.08746.

Thank you!

