LECTURE

7

RIEMANN INTEGRALS. IMPROPER INTEGRALS

Riemann integrals

In what follows we assume that $a, b \in \mathbb{R}$, a < b.

Definition 7.1 A partition of [a,b] is a finite ordered set $P=(x_0,x_1,\ldots,x_n)$ of numbers s.t.

$$a = x_0 < x_1 < \ldots < x_{n-1} < x_n = b.$$

By a subinterval of P we mean any interval $[x_{i-1}, x_i]$ with $i \in \{1, ..., n\}$. The norm of P is the length of the largest subinterval of P, i.e.,

$$||P|| := \max \{x_i - x_{i-1} \mid i = 1, n\}.$$

If $\xi := (\xi_1, \dots, \xi_n)$ is an ordered set of real numbers such that

$$\xi_i \in [x_{i-1}, x_i], \ \forall i \in \{1, \dots, n\},\$$

then (P, ξ) is called a tagged partition of [a, b].

Definition 7.2 Let $f:[a,b] \to \mathbb{R}$ be a function. By the Riemann sum of f with respect to a tagged partition (P,ξ) of [a,b], we mean

$$\sigma(f, P, \xi) = \sum_{i=1}^{n} f(\xi_i)(x_i - x_{i-1}).$$

Definition 7.3 A function $f:[a,b] \to \mathbb{R}$ is said to be Riemann integrable on [a,b] if there exists $I \in \mathbb{R}$ satisfying the following condition:

$$\forall \varepsilon > 0, \ \exists \delta > 0 \ \textit{s.t.} \ \ |\sigma(f, P, \xi) - I| < \varepsilon, \forall (P, \xi) \ \textit{tagged partition with} \ \|P\| < \delta.$$

The family of all Riemann integrable functions on [a,b] is denoted by $\Re[a,b]$.

Remark 7.4 (i) If $f \in \mathbb{R}[a,b]$, then $I \in \mathbb{R}$ satisfying the required condition in Definition 7.3 is uniquely determined and called the Riemann integral (or definite integral) of f on [a,b]. We denote

$$\int_{a}^{b} f(x)dx = \int_{a}^{b} f := I.$$

(ii) If
$$f:[a,b] \to \mathbb{R}_+$$
 and $f \in \mathbb{R}[a,b]$, then $\mathcal{A} = \int_a^b f$ is the area of the set

$$(\text{hypo } f) \cap (\mathbb{R} \times \mathbb{R}_+) = \{(x, y) \in \mathbb{R}^2 \mid x \in [a, b], \ 0 \le y \le f(x)\}$$

located under the graph of f above the axis 0x.

- (iii) If $f:[a,b] \to \mathbb{R}$ is continuous, then $f \in \mathcal{R}[a,b]$.
- (iv) If $f:[a,b] \to \mathbb{R}$ is monotone, then $f \in \mathbb{R}[a,b]$.
- (v) If $f \in \Re[a,b]$, then f is bounded.

Theorem 7.5 For any $f, g \in \mathbb{R}[a, b]$ and $\alpha \in \mathbb{R}$ we have:

(i)
$$f + g \in \Re[a, b]$$
 and $\int_{a}^{b} (f + g) = \int_{a}^{b} f + \int_{a}^{b} g$.

(ii)
$$(\alpha f) \in \mathcal{R}[a,b]$$
 and $\int_a^b (\alpha f) = \alpha \int_a^b f$.

- (iii) $(f \cdot g) \in \mathcal{R}[a, b]$.
- (iv) $|f| \in \Re[a,b]$.

(v) If
$$f \leq g$$
, then $\int_a^b f \leq \int_a^b g$.

Theorem 7.6 Let $f:[a,b] \to \mathbb{R}$ and $c \in (a,b)$. Then

$$f \in \mathcal{R}[a,b] \iff f|_{[a,c]} \in \mathcal{R}[a,c] \text{ and } f|_{[c,b]} \in \mathcal{R}[c,b].$$

In this case, $\int_a^b f = \int_a^c f + \int_c^b f$.

Theorem 7.7 (First Fundamental Theorem of Calculus) Let $f \in \mathbb{R}[a,b]$. Define the function $F:[a,b] \to \mathbb{R}$ for all $t \in [a,b]$ by

$$F(t) := \int_{a}^{t} f.$$

Then F is continuous. Moreover, if f is continuous at $c \in [a,b]$, then F is differentiable at c and F'(c) = f(c).

Theorem 7.8 (Second Fundamental Theorem of Calculus) If $f \in \mathbb{R}[a,b]$ and $F : [a,b] \to \mathbb{R}$ is an antiderivative of f (that is, F'(x) = f(x), $\forall x \in [a,b]$), then the Leibniz-Newton Formula holds:

$$\int_{a}^{b} f = F(b) - F(a).$$

Improper integrals

Remark 7.9 Consider the function $f:[0,1)\to\mathbb{R}$,

$$f(x) := \frac{1}{\sqrt{1 - x^2}}.$$

Note that x = 1 is a vertical asymptote of f and hence the question of how one could define the area under the graph of f arises. To this end, let $t \in [0,1)$ and $f|_{[0,t]}$. Then

$$\mathcal{A}_t = \int_0^t \frac{1}{\sqrt{1 - x^2}} dx = \arcsin t$$

is the area under the graph of $f|_{[0,t]}$. One can now define the area under the graph of f as

$$\mathcal{A} = \lim_{\substack{t \to 1 \\ t < 1}} \mathcal{A}_t = \frac{\pi}{2}.$$

In a similar way one treats the problem for the function $f:[1,+\infty)\to\mathbb{R}$,

$$f(x) := \frac{1}{x^2}.$$

For
$$t \in [1, +\infty)$$
, $\mathcal{A}_t = \int_1^t \frac{1}{x^2} dx = 1 - \frac{1}{t}$ and so $\mathcal{A} = \lim_{t \to \infty} \mathcal{A}_t = 1$.

Definition 7.10 Let $f: I \to \mathbb{R}$ be a function defined on an interval $I \subseteq \mathbb{R}$. We say that f is locally Riemann integrable on I if for all $a, b \in I$ with a < b the function $f|_{[a,b]}$ is Riemann integrable on [a,b].

Remark 7.11 (i) If $f \in \mathbb{R}[a,b]$, then f is locally Riemann integrable on [a,b]. (ii) If $f : \mathbb{R} \to \mathbb{R}$ is continuous, then f is locally Riemann integrable on \mathbb{R} .

Definition 7.12 Let $a, b \in \mathbb{R}$ with a < b and let $f : [a, b) \to \mathbb{R}$ be a function, which is locally Riemann integrable on [a, b). If the following limit exists in $\overline{\mathbb{R}}$, then it is called the improper integral of f on [a, b):

$$\int_{a}^{b} f(x)dx := \int_{a}^{b-0} f(x)dx := \lim_{\substack{t \to b \\ t < b}} \int_{a}^{t} f(x)dx.$$

We say that the improper integral $\int_a^{b-0} f(x)dx$ is convergent if it is finite; in this case, f is said to be improperly integrable on [a,b). Otherwise, we say that the improper integral $\int_a^{b-0} f(x)dx$ is divergent.

Definition 7.13 Let $a \in \mathbb{R}$ and let $f : [a, +\infty) \to \mathbb{R}$ be a function, which is locally Riemann integrable on $[a, +\infty)$. If the following limit exists in $\overline{\mathbb{R}}$, then it is called the improper integral of f on $[a, +\infty)$:

$$\int_{a}^{+\infty} f(x)dx := \lim_{t \to +\infty} \int_{a}^{t} f(x)dx.$$

We say that the improper integral $\int_a^{+\infty} f(x)dx$ is convergent if it is finite; in this case, f is said to be improperly integrable on $[a, +\infty)$. Otherwise, we say that the improper integral $\int_a^{+\infty} f(x)dx$ is divergent.

Definition 7.14 Let $a, b \in \mathbb{R}$ with a < b and let $f : (a, \underline{b}] \to \mathbb{R}$ be a function, which is locally Riemann integrable on (a, b]. If the following limit exists in $\overline{\mathbb{R}}$, then it is called the improper integral of f on (a, b]:

$$\int_a^b f(x)dx := \int_{a+0}^b f(x)dx := \lim_{\substack{t \to a \\ t > a}} \int_t^b f(x)dx.$$

We say that the improper integral $\int_{a+0}^{b} f(x)dx$ is convergent if it is finite; in this case, f is said to be improperly integrable on (a,b]. Otherwise, we say that the improper integral $\int_{a+0}^{b} f(x)dx$ is divergent.

Definition 7.15 Let $b \in \mathbb{R}$ and let $f: (-\infty, b] \to \mathbb{R}$ be a function, which is locally Riemann integrable on $(-\infty, b]$. If the following limit exists in $\overline{\mathbb{R}}$, then it is called the improper integral of f on $(-\infty, b]$:

$$\int_{-\infty}^{b} f(x)dx := \lim_{t \to -\infty} \int_{t}^{b} f(x)dx.$$

We say that the improper integral $\int_{-\infty}^{b} f(x)dx$ is convergent if it is finite; in this case, f is said to be improperly integrable on $(-\infty, b]$. Otherwise, we say that the improper integral $\int_{-\infty}^{b} f(x)dx$ is divergent.

Definition 7.16 Let $a, b \in \mathbb{R}$ with a < b and let $f : (a,b) \to \mathbb{R}$ be a function, which is locally Riemann integrable on (a,b). If there exists $c \in (a,b)$ such that both improper integrals $\int_a^c f(x)dx$ and \int_c^b are convergent (i.e., $f|_{(a,c]}$ and $f|_{[c,b)}$ are improperly integrable), then the improper integral of f on (a,b) is defined as:

$$\int_{a}^{b} f(x)dx = \int_{a}^{c} f(x)dx + \int_{c}^{b} f(x)dx$$

Remark 7.17 There exists a close connection between the improper integrals on intervals of type $[a, +\infty)$ and the series of real numbers.

Theorem 7.18 (Cauchy's Integral Test for Convergence of Series) Let $f:[m,+\infty) \to [0,+\infty)$ be a decreasing function, where $m \in \mathbb{N}$. Then the improper integral $\int_{m}^{+\infty} f(x)dx$ is convergent if and only if the series $\sum_{n\geq m} f(n)$ is convergent.

Example 7.19 (The generalized harmonic series) For $\sum_{n\geq 1}\frac{1}{n^{\alpha}}$ with $\alpha>0$, let us define the

function $f:[1,+\infty)\to [0,+\infty),\ f(x)=\frac{1}{x^\alpha}.$ According to the Integral Test we recover the known fact that the generalized harmonic series converges for $\alpha>1$ and diverges for $0<\alpha\leq 1$.

Theorem 7.20 (Comparison Test for Improper Integrals) Let $a \in \mathbb{R}$ and $b \in \mathbb{R} \cup \{+\infty\}$ with a < b and let $f, g : [a, b) \to \mathbb{R}$ be locally Riemann integrable functions, such that

$$\exists c \in [a, b) \ s.t. \ \forall x \in [c, b), \ 0 \le f(x) \le g(x). \tag{7.1}$$

Then the following assertions hold true:

1° If the improper integral $\int_a^b g(x)dx$ is convergent, then the improper integral $\int_a^b f(x)dx$ is convergent. 2° If the improper integral $\int_a^b f(x)dx$ is divergent, then the improper integral $\int_a^b g(x)dx$ g is divergent.

Remark 7.21 If f and g in the above theorem are nonnegative locally Riemann integrable functions on [a,b) satisfying the following condition

$$\exists \alpha, \beta > 0, \exists c \in [a, b) \text{ s.t. } \forall x \in [c, b), \alpha g(x) \leq f(x) \leq \beta g(x),$$

then the improper integrals $\int_a^b f(x)dx$ and $\int_a^b g(x)dx$ have the same nature.

Corollary 7.22 Let $a,b \in \mathbb{R}$ with a < b, $f : [a,b) \to [0,+\infty)$ be a locally Riemann integrable function on [a,b) and $p \in \mathbb{R}$ such that the following limit exists in $\overline{\mathbb{R}}$:

$$L := \lim_{\substack{x \to b \\ x < b}} (b - x)^p f(x).$$

Then the following assertions hold true:

1° If p < 1 and $L < +\infty$, then the improper integral $\int_a^{b-0} f(x)dx$ is convergent.

 2° If $p \geq 1$ and L > 0, then the improper integral $\int_a^{b-0} f(x)dx$ is divergent.

Proof. 1° By definition of L, there exists $c \in [a, b)$ such that

$$\forall x \in [c, b), (b - x)^p f(x) < L + 1.$$

Thus,

$$\forall x \in [c, b), \ 0 \le f(x) < \frac{L+1}{(b-x)^p}.$$

Take $g:[a,b)\to\mathbb{R},\ g(x)=\frac{L+1}{(b-x)^p}$. Since p<1, the improper integral $\int_a^{b-0}g(x)dx$ is convergent.

By Theorem 7.20 (1°) it follows that the improper integral $\int_{a}^{b-0} f(x)dx$ is convergent.

2° Let $r \in (0, L)$. By definition of L, there exists $c \in [a, b]$ such that

$$\forall x \in [c, b), r < (b - x)^p f(x).$$

Thus, we have

$$\forall x \in [c, b), \ 0 < \frac{r}{(b-x)^p} < f(x).$$

Take $h:[a,b)\to\mathbb{R},\ h(x)=\frac{r}{(b-x)^p}$. Since $p\geq 1$, the improper integral $\int_a^{b-0}h(x)dx$ is divergent.

Applying Theorem 7.20 (2°), we conclude that the improper integral $\int_a^{b-0} f(x)dx$ is divergent. \square

Corollary 7.23 Let $a,b \in \mathbb{R}$ with a < b, $f:(a,b] \to [0,+\infty)$ be a locally Riemann integrable function on [a,b) and $p \in \mathbb{R}$ such that the following limit exists in $\overline{\mathbb{R}}$:

$$L := \lim_{\substack{x \to a \\ x > a}} (x - a)^p f(x).$$

Then the following assertions hold true:

- 1° If p < 1 and $L < +\infty$, then the improper integral $\int_{a+0}^{b} f(x)dx$ is convergent.
- 2° If $p \ge 1$ and L > 0, then the improper integral $\int_{a+0}^{b} f(x)dx$ is divergent.

Corollary 7.24 Let $a \in \mathbb{R}$, $f : [a, +\infty) \to [0, +\infty)$ be a locally Riemann integrable function on $[a, +\infty)$ and $p \in \mathbb{R}$ such that the following limit exists in $\overline{\mathbb{R}}$:

$$L := \lim_{x \to \infty} x^p f(x).$$

Then the following assertions hold true:

- 1° If p > 1 and $L < +\infty$, then the improper integral $\int_a^{+\infty} f(x)dx$ is convergent.
- 2° If $p \leq 1$ and L > 0, then the improper integral $\int_{a}^{+\infty} f(x)dx$ is divergent.