Colaborators: None

Answer 1

(a)

- (1) $\{q_0, q_1, q_2, q_3, q_4, q_5\}$
- (2) $\{\epsilon, A, B\}$

(3)

	A	В	ϵ
q_0	Ø	Ø	$\{q_1,q_4\}$
$ q_1 $	$ \{q_1\}$	$\{q_1,q_2\}$	Ø
q_2	$ \{q_3\}$	Ø	Ø
q_3	Ø	Ø	Ø
q_4	$\{q_4\}$	$\{q_5\}$	Ø
q_5	$\{q_4\}$	$\{q_5\}$	Ø

- (4) q_0
- (5) $\{q_3, q_5\}$
- (b) Yes, via $q_0 > \epsilon > q_4 > A > q_4 > A > q_4 > B > q_5$
- (c) Yes, via $q_0 > \epsilon > q_1 > B > q_1 > B > q_1 > B > q_2 > A > q_3$
- (d) No, it needs at least 1 B
- (e) This machines accepts the following language:

$$L = \{xy | x \in \{A, B\}^* \land (y = BA \lor y = B)\}$$

Answer 2

(a)

(i)
$$q_0 - > B - > q_1 - > B - > q_1 - > \epsilon - > q_2 - > A - > q_3$$

(ii)
$$q_0 - > B - > q_1 - > B - > q_1 - > \epsilon - > q_2 - > A - > q_2$$

(iii)
$$q_0 - > B - > q_1 - > \epsilon - > q_2 - > B - > fail$$

(b)
$$L = \{BxA|x \in \{A,B\}^*\}$$

(c)

Answer 3

If we have a language $L=\{xABA|x\in\{A,B\}^*\}\cup\{\epsilon\}$, then we need at least 2 accept states, one for when the Empty String, and another for whenever the String ends with ABA, since we are working with a DFA, we can't have any non-deterministic behaviour, which means we need at least two accept states.

Answer 4

(a)

(b) $L=\{w\in\{0,1\}^*|w \text{ end with }1\}$

(c)

(d) The empty string ϵ

(e)

Answer 5

- (a) The MIX operator when applied to a language A as MIX(A,A) is the same thing as A^* , since it's just joining n amount of strings in A. Since the class of regular languages is closed under A^* , it's also closed under MIX.
- (b) Since $\sum^* = \sum$, we have that $TAIL(A) = \{y \in \sum^* | xy \in A \text{ for some } x \in \sum^* \} \equiv \{y \in \sum | xy \in A \text{ for some } x \in \sum \}$.

Since A is over an alphabet \sum , what we have here is $TAIL(A) = \{y \in \sum | xy \in A \text{ for some } x \in \sum\} = \{z \in A\}$ since if both x and y are in \sum , and the concatenation is in A, all strings in TAIL(A) are in A.

As such, all regular languages are closed under TAIL(A).