ISSN 0132-4624 ISSN 0024-0850

ВЕСТНИК' 95 САНКТ-ПЕТЕРБУРГСКОГО УНИВЕРСИТЕТА

серия 1

выпуск 2

ЗАДАЧА ПОИСКА НА ДЕРЕВЬЯХ

В настоящей работе рассматривается следующая задача поиска. Пусть граф Γ определяется множеством вершин $V\Gamma$, множеством ребер $E\Gamma$ и отношением инцидентности, которое каждому ребру сопоставляет две вершины, называемые его концами.

Будем говорить, что Γ — топологический граф, если вершины Γ суть точки в \mathbb{R}^3 , а ребра— непересекающиеся конечнозвенные ломаные с концами в соответствующих вершинах, замкнутые в \mathbb{R}^3 . На протяжении всей статьи будут рассматриваться только связные графы.

Рассмотрим следующую задачу поиска: на связном топологическом графе Γ находится n преследователей P_1, \ldots, P_n и убегающий E. Предполагается, что преследователи и убегающий обладают в \mathbb{R}^3 (граф вложен в \mathbb{R}^3) простыми движениями:

$$(P_i): \quad \dot{x}_i = u_i, \quad ||u_i|| \leqslant u, \quad i \in \overline{1, n},$$

$$(E): \dot{y} = u_0, \quad ||u_0|| \leqslant v,$$

причем Γ является для игроков фазовым ограничением. Допустимыми управлениями игроков являются кусочно-постоянные функции, заданные на произвольных промежутках [0,T]. Таким образом, допустимыми траекториями будут кусочно-аффинные вектор-функции со значениями в Γ .

Убегающий E считается пойманным преследователем P_i в момент $t \in [0,T]$, если $x_i(t)=y(t)$. Совокупность траекторий преследователей, заданных на промежутке [0,T] называется программой преследователей, заданной на промежутке $[0,\bot]$. Программа n преследователей $\Pi(x_1,\ldots,x_n)$, заданная на [0,T], называется выигрывающей, если для любой траектории убегающего y, заданной на [0,T], существуют $t \in [0,T]$ и $i \in \overline{1,n}$, такие, что $x_i(t)=y(t)$. Будем говорить, что траектория убегающего y(t), $t \in [0,T]$, обеспечивает уклонение от поимки для программы преследователей $\Pi(x_1,\ldots,x_n)$, действующей на [0,T], если $x_i(t) \neq y(t)$, $t \in [0,T]$, $i \in \overline{1,n}$.

Ставится вопрос о нахождении наименьшего натурального числа n, такого, что у n преследователей существует выигрывающая программа, заданная на некотором промежутке [0,T]. Ясно, что эта величина зависит только от графа Γ и отношения $\mu=uv^{-1}$. Эту величину будем обозначать $S_{\mu}(\Gamma)$. Далее, не умаляя общности, мы будем считать константу v равной единице, тогда $\mu=u$.

Такая задача поиска была рассмотрена Н.Н.Петровым (по-видимому, впервые) в работе [1]. Выяснилось, что исчерпывающее исследование поведения $S_{\mu}(\Gamma)$ для всех μ допускают лишь некоторые графы, имеющие сравнительно простую структуру. Хорошо изученным частным случаем этой задачи является случай, когда убегающий может двигаться сколь угодно быстро. Такая задача рассматривалась независимо в работах [2] и [3]. Наименьшее число преследователей, необходимое для успешного завершения поиска на графе Γ , было названо поисковым числом $S(\Gamma)$. Было показано, что в этом случае задача поиска сводится к дискретной задаче. Поисковое число графа тесно связано с различными инвариантами

[©] Ф.В.Фомин, 1995.

(см.[2–4]), возникающими при различных способах нумерации вершин. В настоящей статье доказывается, что на деревьях для $\mu \leqslant 1$ минимальное число преследователей, достаточное для существования выигрывающей программы, совпадает с поисковым числом.

Пусть Γ — топологическое дерево. Введем в Γ метрику. Через $\rho(A,B)$, $A,B\in\Gamma$, обозначим длину кратчайшего пути (по евклидовой норме) в \mathbb{R}^3

с концами A и B, целиком лежащего на Γ .

Для доказательства основного утверждения нам понадобится лемма.

Лемма. Пусть Γ — топологическое дерево, A — висячая вершина Γ , а — ребро, инцидентное A. Рассмотрим на Γ программу π преследователей

$$\Pi(x_1(t),\ldots,x_m(t)), \ t \in [0,T], \qquad \mu = 1,$$

$$x_1(0) = \cdots = x_m(0) = x_1(T) = \cdots = x_m(T) = A.$$

Tогда, если программа Π не является выигрывающей, то для любой точки $C \in a \setminus A$ существует траектория убегающего

$$y(t), t \in [0,T], y(0) = y(T) = C,$$

обеспечивающая уклонение от поимки.

I о казательство. Рассмотрим произвольную точку $C \in a \setminus A$. Определим $\epsilon = \rho(A,C)$. Программа II не является выигрывающей, что означает существование траектории $\hat{y}(t), t \in [0,T]$, обеспечивающей уклонение от встречи с преследователями. Положим y(0) = C. Возможны два случая:

а) Для всех $t \in [0,T/2]$ выполнено неравенство $\rho(\hat{y}(t),C) > t$. Отметим тогда на ломаной $[\hat{y}(T/2),C]$ точку B, лежащую на расстоянии T/2 от C. Покажем, что, переходя с максимальной (т.е. единичной) скоростью из C в B и обратно, убегающий обеспечивает уклонение от встречи с преследователями на промежутке [0,T]. Если $B \notin [A,C)$, то для всех $t \in [0,T/2]$ справедливо тождество $\rho(y(t),C) = \rho(y(t),A) - \epsilon = t$, и в момент времени $t' \leqslant T/2$ преследователь может встретить убегающего, только пройдя за время t' расстояние $t' + \epsilon$, что противоречит условию $\mu = 1$. При переходе убегающего из B в C преследователь также не может встретить убегающего, так как для всех $t \in [T/2,T]$ выполняется равенство $\rho(y(t),C) = \rho(y(t),A) - \epsilon = T - t$, и если преследователь встречает убегающего, то он не успевает попасть к моменту времени T в вершину A.

Если $B \in [A,C)$, то очевидно, что $\hat{y}(t) \in [A,y(t)]$ для всех $t \in [0,T]$, и если в какой-то момент времени $t' \leqslant T$ убегающий встречает преследователя (преследователь проходит из A в y(t')), то траектория $\hat{y}(t)$ не обеспечивает

уклонение от встречи с преследователями.

b) Если найдется момент времени $\hat{t} \in [0,T/2]$, такой, что $\rho(\hat{y}(\hat{t}),C) \leqslant \hat{t}$, то существует момент времени $t_* = \min\{t \in [0,T/2]: \rho(\hat{y}(t),C) = t\}$. Нетрудно убедиться (так же, как и в пункте a)), что при переходе из C в $\hat{y}(t_*)$ с максимальной (единичной) скоростью убегающий обеспечит уклонение на $[0,t_*]$. Если условие $\rho(\hat{y}(t),C) \leqslant T-t$ верно для всех $t \in [t_*,T]$, то для t=T неравенство превращается в равенство $\rho(\hat{y}(T),C)=0$, и, положив $y(t)=\hat{y}(t),\ t\in [t_*,T]$, мы получаем искомую траекторию.

Если же существует такой момент времени $t' \in [t_*, T]$, что $\rho(\hat{y}(t'), C) > T - t'$, то, учитывая $\rho(\hat{y}(t_*, C)) = t_* \leqslant T - t_*$, мы делаем вывод, что в некоторый момент $t^* \in [t_*, T]$ выполняется равенство $\rho(\hat{y}(t_*, C) = T - t_*)$. Определим тогда действия убегающего следующим образом: $y(t) = \hat{y}(t)$,

 $t \in [t_*, t^*]$, а с момента t^* по T убегающий переходит с максимальной скоростью из $y(t^*)$ в C. Ло момента t^* уклонение убегающего от встречи с преследователями очевидно, а если в какой-то момент времени $t' > t^*$ убегающий встречает преследователя, то преследователь не успевает пройти путь длины $T-t'+\epsilon$ за время T-t' и, следовательно, не попадает к моменту T в A.

Тем самым показано существование искомой траектории $y(t),\,t\in[0,T],$

и лемма доказана.

Теорема. Если $\Gamma - \partial epeso$, то $S_{\mu}(\Gamma) = S(\Gamma)$ для всех $\mu \leqslant 1$.

 Π о казательство. Из определения поискового числа и постановки задачи поиска с ограничением на скорость следует, что для всех $\mu>0$ выполнено неравенство $S_{\mu}(\Gamma)\leqslant S(\Gamma)$. Нетрудно убедиться и в истинности следующего утверждения: неравенство $\mu<\mu'$ влечет неравенство $S_{\mu'}(\Gamma)\leqslant S_{\mu}(\Gamma)$, а потому для доказательства теоремы достаточно доказать, что на любом топологическом дереве $\Gamma,S(\Gamma)\geqslant m$, не существует выигрывающей программы m-1 преследователей для $\mu=1$. Для m=2 утверждение очевидно (если $S_{\mu}(\Gamma)=1$, то дерево Γ гомеоморфно отрезку, и $S(\Gamma)=1$).

Пусть утверждение верно для всех $k\leqslant m$. Покажем тогда, что на любом топологическом дереве Γ , $S(\Gamma)\geqslant m+1$, m преследователей при $\mu=1$ не

смогут осуществить поимку.

Предположим противное: существуют топологическое дерево $\Gamma, S(\Gamma) \geqslant m+1$, и выигрывающая программа m преследователей $\Pi(x_1(t), \ldots, x_m(t))$,

 $t \in [0,T]$, для $\mu=1$ действующая на топологическом дереве Γ .

Из свойств поискового числа [2,6] следует, что у дерева Γ существует такая вершина A, что в Γ найдется по крайней мере три подграфа \mathfrak{G}_1 , \mathfrak{G}_2 , \mathfrak{G}_3 , причем поисковое число каждого не меньше m и $\mathfrak{G}_1 \cap \mathfrak{G}_2 = \mathfrak{G}_3 \cap \mathfrak{G}_1 = \mathfrak{G}_2 \cap \mathfrak{G}_3 = A$. Обозначим через a_1, a_2, a_3 ребра деревьев \mathfrak{G}_1 , \mathfrak{G}_2 , \mathfrak{G}_3 , инцидентные A. Через l обозначим $\min\{|a_1|, |a_2|, |a_3|\}$, где $|a_i|$ — длина ребра a_i . На ребрах a_1, a_2, a_3 отметим на расстоянии l/2 от вершины A точки A_1, A_2, A_3 . Топологические деревья, получаемые при удалении из множеств \mathfrak{G}_1 , \mathfrak{G}_2 , \mathfrak{G}_3 , множеств (A_1, A_1) , (A_2, A_1) , (A_3, A_1) обозначим через Γ_1 , Γ_2 , Γ_3 . Не умаляя общности, будем считать, что $x_1(t) = \cdots = x_m(t) = A_1$, $t \in [0, l] \cup [T - l, T]$. Для каждого $i \in \overline{1,3}$ рассмотрим временные промежутки $\theta_i = \{t \in [0, T]$: в момент времени t на Γ_i находится m преследователей t.

Пусть Θ_i — объединение компонент связности множества θ_i , по мере не меньших l. Покажем, что каждое из множеств Θ_i , $i \in \overline{1,3}$, не пусто. Предположим, что какое-то из множеств $\Theta_i = \varnothing$. Пусть B_i — вершина ребра a_i , смежная вершине A. На множестве $\Gamma_i \setminus [A_i, B_i)$ не может находиться одновременно m преследователей ($\rho(A_i, B_i) \geqslant \frac{l}{2}$, и если на $\Gamma_i \setminus [A_i, B_i)$ в момент времени t находится m преследователей, то это означает, что на

протяжении $[t-\frac{1}{2},t+\frac{1}{2}]$ m преследователей находились на Γ_i).

Траектории игроков кусочно-аффинные, поэтому существует точка $C_i \in [A_i, B_i)$, такая, что на множестве $R_i = \Gamma_i \setminus [A_i, C_i)$ не может одновременно находиться m преследователей. Множество R_i является топологическим деревом, изоморфным дереву Γ_i . Известно (см.[1,7]), что поисковые числа изоморфных графов совпадают, откуда $S(R_i) = S(\Gamma_i) \geqslant m$, и по индукционному предположению m-1 преследователей не смогут осуществить на R_i поимку. Поэтому, если множество Θ_i пусто, то программа $\Pi(x_1(t),\ldots,x_m(t)),\ t\in [0,T]$, не является выигрывающей (убегающий может уклониться от встречи, даже не покидая R_i).

Из кусочно-аффинности траекторий игроков также вытекает существование конечного разбиения отрезка

$$[0,T]: 0 = t_1^- < t_1^+ < t_2^- \cdots < t_k^- < t_k^+ = t_{k+1}^- = t_{k+1}^+ = T,$$

причем

$$\bigcup_{i=1}^3 \Theta_i = \bigcup_{j=1}^k [t_j^-, t_j^+].$$

Для каждого $j\in\overline{2,k}$ на протяжении $[t_j^-,t_j^+]$ все преследователи находятся на одном из деревьев $\Gamma_i,\,i\in\overline{1,3},\,$ и на оставшихся двух деревьях Γ_i нет ни одного преследователя. По крайней мере на одном из этих деревьев и на протяжении $[t_{j-1}^-,t_{j-1}^+]$ не было преследователей.

Определение. Точку A_2 будем называть особой в момент времени t_1^- и обозначать через $A(t_1^-)$. Для $j\in\overline{2,k}$ точку $A_i\in\Gamma_i$ будем называть особой в момент времени t_j^- и обозначать через $A(t_j^-)$, если на протяжении $[t_{j-1}^-,t_{j-1}^+]\cup[t_j^-,t_j^+]$ на Γ_i нет преследователей.

Докажем существование траектории убегающего, обеспечивающей уклонение от встречи с преследователями. Учитывая предположение о начальном и конечном местонахождении преследователей, нетрудно убедиться, что для доказательства существования такой траектории достаточно показать истинность двух утверждений:

- а) Если игрок E в момент времени t_j^- , $j \in \overline{1,k}$, находится в точке $A(t_j^-)$ особой в момент времени t_j^- , то к моменту времени t_j^+ он может перейти в точку $A(t_{j+1}^-)$ особую в момент времени t_{j+1}^- , не встретив преследователей.
- b) Если игрок E в момент времени $t_j^+, j \in \overline{1,k}$, находится в точке $A(t_{j+1}^-)$, то он может действовать, обеспечивая уклонение от встречи с преследователями таким образом, чтобы к моменту t_{j+1}^- опять находиться в точке $A(t_{j+1}^-)$.
- а) На протяжении $[t_j^-,t_j^+]$ все преследователи находятся на одном из деревьев Γ_i , для определенности на Γ_1 . Тогда в моменты времени t_j^- и t_{j+1}^- особыми точками могут быть точки A_2 и A_3 , а точка A_1 особой в эти моменты времени быть не может. Пусть в момент времени t_j^- убегающий находится в точке A_2 , а перейти он должен к моменту времени t_j^+ в A_3 . Точки A_2 , A_3 расположены на расстоянии $\frac{l}{2}$ от вершины A, на протяжении $[t_j^-,t_j^+)$ на множестве $[A_2,A]\cup [A_3,A]$ нет преследователей, а потому убегающий, двигаясь со скоростью $\frac{\rho(A_2,A_3)}{t_j^+-t_j^-}\leqslant 1$, может перейти из A_2 в A_3 , не встретив ни одного из преследователей.

b) Доказательство второго пункта вытекает из леммы. Действительно, пусть в момент времени t_j^+ игрок E находится в точке $A(t_{j+1}^-)$. Для определенности будем считать $A_i(t_{j+1}^-) = A_3$.

Пусть B_3 —вершина дерева Γ_3 , смежная висячей вершине A_3 . Из свойств промежутков Θ_i и неравенства $\rho(B_3,A_3)\geqslant \frac{l}{2}$ следует, что на протяжении $[t_j^+,t_{j+1}^-]$ m преследователей не могут одновременно находиться на множестве $\Gamma_3\setminus [A_3,B_3)$. Траектории игроков кусочно-аффинные, а потому существует точка $C_3\in [A_3,B_3)$, такая, что на топологическом дереве $R_3=\Gamma_3\setminus [A_3,C_3)$ может одновременно находиться не более m-1 преследователей.

Дерево R_3 изоморфно дереву Γ_3 , и мы можем заключить, что $S(R_3) = S(\Gamma_3) \geqslant m$. По индукционному предположению m-1 преследователей не могут осуществить поимку на дереве с поисковым числом $\geqslant m$, а значит, существует траектория убегающего $\hat{y}(t) \in R_3 \subset \mathfrak{G}_3, \ t \in [t_j^+, t_{j+1}^-],$ обеспечивающая уклонение от встречи с преследователями для программы $\Pi(x_1(t), \ldots, x_m(t)), \ t \in [t_j^+, t_{j+1}^-].$

Рассмотрим программу $\Pi^*(x_1^*(t),\ldots,x_m^*(t)),\ t\in[t_j^+,t_{j+1}^-],$ определяемую следующим образом: $x_i^*(t)=x_i(t),$ если $x_i(t)\in\mathfrak{G}_3,$ и $x_i^*(t)=A$ в противном случае. Очевидно, что траектория убегающего $\hat{y}(t)$ обеспечивает уклонение от встречи с преследователями и для программы $\Pi^*,$ т.е. программа Π^* не является выигрывающей. В моменты времени t_j^+ и t_{j+1}^- в программе Π на множестве \mathfrak{G}_3 нет преследователей, а следовательно, $\Pi^*(t_j^+)=\Pi^*(t_{j+1}^-)=A.$

Точка $A_3 \in (A,B_3]$, и из леммы следует существование такой траектории $y(t) \in \mathfrak{G}_3, \, t \in [t_j^+,t_{j+1}^-]$, обеспечивающей уклонение для программы Π^* , что $y(t_j^+) = y(t_{j+1}^-) = A_3$. Траектории преследователей в программах Π и Π^* на множестве \mathfrak{G}_3 совпадают, а потому траектория y(t) обеспечивает убегающему уклонение от встречи с преследователями и для программы Π на временном промежутке $t \in [t_j^+, t_{j+1}^-]$.

Мы доказали существование траектории, обеспечивающей уклонение для выигрывающей программы $\Pi(x_1(t),\ldots,x_m(t)),\ t\in[0,T]$. Указанное противоречие доказывает теорему.

Отметим, что при $\mu > 1$ не для всякого топологического дерева Γ выполняется равенство $S_{\mu}(\Gamma) = S(\Gamma)$. Например, для любого $\mu > 1$ можно указать такое топологическое дерево Γ , что $S_{\mu}(\Gamma) = S(\Gamma) - 1$. Доказательство этого факта автор предполагает опубликовать.

С другой стороны, если граф не является деревом, то и для $\mu\leqslant 1$ минимальное число преследователей, необходимое для успешного завершения поиска в задаче с ограничением на скорость, может отличаться от поискового числа. В качестве примера, подтверждающего это утверждение, рассмотрим θ -граф, т.е. граф с пятью вершинами, две из которых, A и B, степени три, а остальные, C, D и E, степени два, причем каждая вершина степени три смежна только вершинам степени два. Известно (см. [6]), что поисковое число θ -графа равно трем.

 Π р и м е р. — Для каждого $\mu>0$ существует топологический граф Γ , изоморфный θ -графу, на котором существует выигрывающая программа двух преследователей.

C х ема доказательства. Для каждого $\mu > 0$ введем в рассмотрение топологический граф Γ , изоморфный θ -графу, для длин ребер которого выполнены равенства

$$|A, C| = |C, B| = |A, D| = |D, B| = \frac{|A, E|}{2}\mu = \frac{|E, B|}{4}\mu,$$

где через |X,Y| обозначена длина ребра с вершинами X и Y.

Рассмотрим следующую программу двух преследователей: в начальный момент времени t_0 преследователи располагаются в вершине A. Далее действия игрока P_1 определяются маршрутом:

$$(P_1): A \to E \to B \to D \to A \to C \to B \to C \to A \to E \to B,$$

где стрелка означает переход игрока с максимальной скоростью из вершины в вершину. Игрок P_2 дожидается первого возвращения игрока P_1 в

вершину A (т.е. стоит до момента времени $t_1=(|A,E|+|E,B|+|B,D|+$ $|D,A|)\mu^{-1}$ в вершине A), после чего переходит по маршруту:

$$(P_2):A\to D\to B$$

и остается в вершине B до окончания действия программы.

Нетрудно убедиться, что указанная программа является выигрываю-

SUMMARY

F. V. Fomin. Search problem in trees.

The graph-searching problem with restriction on velocity is considered. This problem is compared with another search game, represented by T.D. Parsons and N.N. Petrov.

ЛИТЕРАТУРА

- 1. Петров Н. Н.// Диф. уравнения. 1982. Т.18. №5. С. 821-829.
- 2. Петров Н. Н.// Диф. уравнения. 1982. Т. 18. №8. С. 1345-1352.
- 3. Parsons T. D.// Lecture Notes in Math. 1978. Vol. 642. P. 426-447.
- Kirousis L. M., Papadimitriou C. H.// Theor. Computer Sci. 1986. Vol. 47. P. 205-218.
 Makedon F. S., Papadimitriou C. H., Sudborough I. H.// SIAM J. Alg. Discr. Meth. 1983. Vol. 6. №3. P. 117-189.
- 6. Megiddo N., Hakimi S. L., Garey M. R., Johnson D. S., Papadimitriou C. H. // J. of ACM. 1988. Vol. 35. P. 18-44.
- 7. Головач П. А.// Вестн. Ленингр. ун-та. Сер. 1. 1989. Вып. 1 (№1). С. 10-14.

Статья поступила в редакцию 14 июня 1994 г.