Statistics. ESIGELEC

Lab Session 2: Probability distributions

Na	ames and surnames					
	Date					
pat wit	hs. The time spent to h mean μ=25 and st	rive at ESIGELEC, a student can choose between two differen arrive at ESIGELEC using path A follows a normal distribution and ard deviation σ =7, whereas the time using path B is normanits measured in minutes). In your answers, specify the F				
fun	ctions you use.					
a)	What is the population in this exercise? [2 points]					
b)	What is/are the ran	dom variable of interest in this exercise? [2 points]				
	he/she choose in or	30, and the student leaves home at 7:45, which path should der to maximise the probability of arriving before class starts? es home at 8:10? [3 points]				
-	_	be chosen if he/she wants to leave home as late as possible, but bability of arriving before the class starts is at least 0.95?				

TASK 2. An inspection procedure must be designed and implemented at the end of a production process, consisting on batches of 30,000 units.

- a) The customer considers unsuitable any batch with 5% or more defective units. A simple inspection plan is designed, so that n units will be picked at random from a given batch; and the batch will be rejected if more than c=4 defective units are observed. Calculate the minimum value for n for which the probability of *accepting* an unsuitable batch is 0.04 at most (this is usually called the *consumer's risk*). [8 points]
- b) The manufacturer considers suitable any batch with at most 1% of defective units. If the inspection plan designed in section (a) was implemented, what would be the probability of *rejecting* a suitable batch? (this is usually called the *producer's risk*) [2 points]

SOLUTION:

TASK 1

a)

POPULATION: All the days in which this student goes to ESIGELEC.

Why? Because we are studying a random variable (see section (b)) that is different each day this student goes to ESIGELEC.

The population is *not* the students of ESIGELEC because we are talking of one particular student, and we are analysing how long it takes him/her to arrive at ESIGELEC <u>each day</u>. We are *not* studying the time to get to ESIGELEC for each student (in one concrete day).

b)

RANDOM VARIABLE(S): Two random variables:

- T_A : The time it takes him/her to get to ESIGELEC using path A.
- $T_{\rm B}$: The time it takes him/her to get to ESIGELEC using path B.

More precisely, $T_A \sim N(\mu_A = 25$, $\sigma_A = 7)$ and $T_B \sim N(\mu_B = 30$, $\sigma_B = 3)$.

c)

			pnorm	pnorm	qnorm
Path	Mean	Std. Dev	45	20	0,95
A	25	7	0.9978626	0.2375253	36.5139754
В	30	3	0.9999997	0.0004290603	34.9345609

The probability of arriving on time if you have 45 minutes is:

```
> pnorm(45,mean=25,sd=7)
[1] 0.9978626
> pnorm(45,mean=30,sd=3)
[1] 0.9999997
```

Choose path B.

The probability of arriving on time if you have 20 minutes is:

```
> pnorm(20, mean=25, sd=7)
[1] 0.2375253
> pnorm(20, mean=30, sd=3)
[1] 0.0004290603
```

Choose path A.

d)

```
> qnorm(0.95,mean=25,sd=7)
[1] 36.51398
> qnorm(0.95,mean=30,sd=3)
[1] 34.93456
```

In path A, if you leave qnorm(0.95, mean=25, sd=7) = 36.51398 minutes before class, you have probability 0.95 of arriving on time to class. For path B, you need to leave qnorm(0.95, mean=30, sd=3) = 34.93456 minutes before class to keep this probability. Choose path B.

TASK 2

a)

Let $X \sim \text{Bi}(n, p)$ be the number of defective units contained in an n-sized random sample from a batch containing a proportion p of defective units.

A batch is considered unsuitable by the customer if p = 0.05 or more. The inspection plan should meet a *consumer's risk* of at most 0.04, which is to say:

$$Pr(accepting | p = 0.05) \le 0.04 \iff Pr(X \le 4 | p = 0.05) \le 0.04.$$

Recall that $Pr(X \le c)$ can be calculated with R using **pbinom(c, size = n, prob = p)**, which is equivalent to **pbinom(c, size = n, prob = p, lower.tail = TRUE)**.

Then, using brute force, we can find out the smallest value of n for which $Pr(X \le 4 \mid p = 0.05) \le 0.04$ holds:

```
> pbinom(4, size = 10, prob = 0.05)
```

[1] 0.9999363

```
> pbinom(4, size = 100, prob = 0.05)
```

[1] 0.4359813

```
> pbinom(4, size = 186, prob = 0.05)
```

[1] 0.04188601

```
> pbinom(4, size = 187, prob = 0.05)
```

[1] 0.04055467

```
> pbinom(4, size = 188, prob = 0.05)
```

[1] 0.03926226

Therefore, n = 188 is the smallest sample size that would meet the *consumer's risk*.

b)

If a simple inspection plan with n = 188 and c = 4 is implemented, what would be the *producer's risk* (i.e., the probability of rejecting a suitable batch)?

According to the text, a batch is considered suitable by the manufacturer if the (real) proportion of defective units in the batch is $p \le 0.01$. Therefore, the probability of the inspection plan rejecting a suitable batch can be expressed as:

$$Pr(X > 4 \mid p = 0.01) = 1 - Pr(X \le 4 \mid p = 0.01).$$

We can calculate this with R:

[1] 0.04162965

or, equivalently:

[1] 0.04162965

Therefore, if we implemented the inspection plan designed in section (a), the probability of rejecting a 'correct' batch would be $0.0416 \equiv 4.16\%$.