Chap II - Inégalités et théorèmes limites

1 Inégalité de Markov

Théorème 1 Soit X une v.a.r. positive admettant une espérance. Alors,

$$\forall t > 0, \quad \mathbb{P}(X \ge t) \le \frac{\mathbb{E}(X)}{t}.$$

2 Inégalité de Bienaymé-Tchebychev

Théorème 2 Soit X une v.a.r. admettant une espérance m et une variance σ^2 . Alors,

$$\forall t > 0, \quad \mathbb{P}(|X - m| \ge t) \le \frac{\sigma^2}{t^2}.$$

3 Loi des grands nombres

Théorème 3 Soit $X_1, ..., X_n$ n v.a.r. définies sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes, de même espérance m et de même variance σ^2 . Pour tout $n \in \mathbb{N}^*$, on note \bar{X}_n la moyenne empirique des v.a. $X_1, ..., X_n$:

$$\bar{X}_n = \frac{1}{n} \sum_{i=1}^n X_i.$$

Alors

$$\forall t > 0, \quad \lim_{n \to \infty} \mathbb{P}(|\bar{X}_n - m| > t) = 0$$

et

$$\lim_{n \to \infty} \mathbb{E}((\bar{X}_n - m)^2) = 0.$$

4 Théorème de la limite centrale

Théorème 4 Soit $X_1, ..., X_n$ n v.a.r. définies sur le même espace $(\Omega, \mathcal{A}, \mathbb{P})$, indépendantes et toutes de même loi d'espérance m et de variance σ^2 . Pour tout $n \in \mathbb{N}^*$, on note

$$S_n = \sum_{i=1}^n X_i, \quad \bar{X}_n = \frac{S_n}{n} \quad et \quad Z_n = \frac{S_n - nm}{\sqrt{n}\sigma} = \sqrt{n} \frac{\bar{X}_n - m}{\sigma}.$$

On note, pour tout n, F_n la fonction de répartition de Z_n et Φ la fonction de répartition de la loi gaussienne centrée réduite. Alors pour tout $t \in \mathbb{R}$,

$$\lim_{n\to\infty} F_n(t) = \Phi(t).$$

L'application du TLC à la loi binomiale donne le théorème de Moivre-Laplace :

Théorème 5 Soit $(S_n)_{n\in\mathbb{N}^*}$ une suite de v.a.r. telles que

$$\forall n \in \mathbb{N}, S_n \sim \mathcal{B}(n, p), \ avec \ 0$$

On note F_n la fonction de répartition de

$$\frac{S_n - np}{\sqrt{np(1-p)}} = \sqrt{n} \frac{\bar{X}_n - p}{\sqrt{p(1-p)}}.$$

Alors pour tout $t \in \mathbb{R}$,

$$\lim_{n\to\infty} F_n(t) = \Phi(t)$$

où Φ est la fonction de répartition de la loi gaussienne centrée réduite.

En pratique, on convient que l'approximation de la loi binomiale par la loi gaussienne est acceptable si $n \gtrsim 30$, $np \gtrsim 5$ et $n(1-p) \gtrsim 5$.

Remarque On peut montrer que la convergence est encore vraie si on remplace au dénominateur le paramètre p par \bar{X}_n : pour tout $t \in \mathbb{R}$,

$$\lim_{n \to \infty} \mathbb{P}\left(\sqrt{n} \frac{\bar{X}_n - p}{\sqrt{\bar{X}_n(1 - \bar{X}_n)}} \le t\right) = \Phi(t).$$