Implementation of nonlinear ARX

BEJENARIU Adina FERENŢ Sarah MARIN Călin

Group 30331/1 Data set 20/9

Contents

1.	Introduction	3
2.	Methodology	 5
3.	Tuning results	26
4.	Conclusions	 35

1. Introduction

- What is the purpose of this presentation?
 - o develop a **black-box** model for the given data set, using a nonlinear ARX model

- Why is this considered a black box model?
 - it is obtained only from the experimental data given on the system, everything else about it is entirely unknown.

1. Introduction

- What is a Linear ARX model?
 - \circ A Linear ARX Model is a representation of a dynamic system in discrete time. It uses a generalized notion of transfer functions to express the relationship between the input, u(k), the output y(k), and the noise e(k).

$$y(k) = -a_1y(k-1) - a_2y(k-2) - \dots - a_{na}y(k-na)$$

 $b_1u(k-1) + b_2u(k-2) + \dots + b_{nb}u(k-nb) + e(k)$

- What is a Nonunear AKX model?
 - A **Nonlinear ARX Model** extends the linear ARX models to the nonlinear case. It consists of the model regressors and an output function.

$$y(k) = p(y(k-1), ..., y(k-na), u(k-1), ..., u(k-nb)) + e(k)$$

2. Methodology

$$y = \phi \cdot \theta$$

Regressors' matrix (φ)

For m=2 and $\boldsymbol{n}_{a}=\boldsymbol{n}_{b}=2$

```
y(0)^2
y(1)^2
y(2)^2
                                                            y(0) 0
                                                                              y(0) u(0)
                                                                                                   y(0) 0
                                                                                                                                  0 u(0)
                                                                                                                                                       00
                                                                                                                                                                                    u(0) 0
                                                                                                                                                                     u(1)^2
                                                                                                                                                                                                    u(0)^2 
 u(1)^2
               y(0)
                                                          y(1) y(0)
                                                                              y(1) u(1)
                                                                                                  y(1) u(0)
                                                                                                                   y(0)^{2}
                                                                                                                                y(0) u(1)
                                                                                                                                                    y(0) u(0)
                                                                                                                                                                                   u(1) u(0)
               y(1)
                                                                                                                   y(1)^{2}
                                                                                                                                                                                   u(2) u(1)
                                                          y(2) y(1)
                                                                              y(2) u(2)
                                                                                                  y(2) u(1)
                                                                                                                                y(1) u(2)
                                                                                                                                                    y(1) u(1)
 \left(1 \ y(k-1) \ y(k-2) \ u(k-1) \ u(k-2) \ y(k-1)^2 \ y(k-1) \ y(k-2) \ y(k-1) \ u(k-1) \ u(k-2) \ y(k-2)^2 \ y(k-2) \ u(k-1) \ y(k-2) \ u(k-1)^2 \ u(k-1) \ u(k-2) \ u(k-2)^2 \right) \right)
```

Simplified notation

$$y(k-1)$$

$$y(k-2)$$

$$u(k-1)$$

$$x_1$$

$$x_2$$

$$x_3$$

$$u(k-2)$$

$$x_4$$

Example

Prediction for m = 3

General formula

for each row of the regressors' matrix

Starting point

Append values to the row accumulator

$$\begin{pmatrix} 1 & x_1 & x_2 & x_3 & x_1^2 & x_1 x_2 & x_1 x_3 & x_2^2 & x_2 x_3 & x_3^2 \end{pmatrix}$$

Repeat for combinations specific to m = 3

$$egin{pmatrix} x_1 & x_1 \ x_1 & x_2 \ x_1 & x_3 \ x_2 & x_2 \ x_2 & x_3 \ x_3 & x_3 \end{pmatrix}$$

Append values to the row accumulator

$$\begin{pmatrix} 1 & x_1 & x_2 & x_3 & x_1^2 & x_1 x_2 & x_1 x_3 & x_2^2 & x_2 x_3 & x_3^2 & x_1^3 & x_1^2 x_2 & x_1^2 x_3 & x_1 x_2^2 & x_1 x_2 x_3 & x_1 x_3^2 & x_2^3 & x_2^2 x_3 & x_2 x_3^2 & x_3^3 \end{pmatrix}$$

```
function [y_hat, theta] = prediction(m, na, nb, id, val)
    phi_id = computePhi(id.InputData, id.OutputData, na, nb, m);

theta = phi_id \ id.OutputData;

phi_val = computePhi(val.InputData, val.OutputData, na, nb, m);

y_hat = phi_val * theta;
end
```

Now that we have ϕ , we can do the prediction.

Prediction

Now for the simulation

$$\hat{y}(1) = \begin{pmatrix} 0 & \dots & 0 \end{pmatrix} \cdot \theta$$

$$\hat{y}(2) = \begin{pmatrix} \hat{y}(1) & 0 & \dots & 0 & u(1) & \dots & 0 \end{pmatrix} \cdot \theta$$

$$\hat{y}(3) = \begin{pmatrix} \hat{y}(2) & \hat{y}(1) & 0 & \dots & 0 & u(2) & u(1) & \dots & 0 \end{pmatrix} \cdot \theta$$

The output values are determined incrementally, and is then built using the same algorithm as the prediction

```
function y_hat_sim = simulation(m, na, nb, val, theta)
   y_hat_sim = zeros(length(val.OutputData), 1);
   phi_sim = zeros(length(val.OutputData), height(theta));

phi_sim(1, :) = [1 zeros(1, height(theta) - 1)];
   y_hat_sim(1) = phi_sim(1, :) * theta;
   for k = 2 : length(y_hat_sim)
        phi_sim(k, :) = buildRow(m, buildXMatrix(y_hat_sim, val.InputData, k, na, nb));
        y_hat_sim(k) = phi_sim(k, :) * theta;
   end
end
```

```
function y_hat_sim = simulation(m, na, nb, val, theta)
  y_hat_sim = zeros(length(val.OutputData), 1);
  phi_sim = zeros(length(val.OutputData), height(theta));

phi_sim(1, :) = [1 zeros(1, height(theta) - 1)];
  y_hat_sim(1) = phi_sim(1, :) * theta;

for k = 2 : length(y_hat_sim)
  phi_sim(k, :) = buildRow(m, buildXMatrix(y_hat_sim, val.InputData, k, na, nb));
  y_hat_sim(k) = phi_sim(k, :) * theta;
end
end
```

```
function y_hat_sim = simulation(m, na, nb, val, theta)
  y_hat_sim = zeros(length(val.OutputData), 1);
  phi_sim = zeros(length(val.OutputData), height(theta));

phi_sim(1, :) = [1 zeros(1, height(theta) - 1)];
  y_hat_sim(1) = phi_sim(1, :) * theta;

for k = 2 : length(y_hat_sim)
    phi_sim(k, :) = buildRow(m, buildXMatrix(y_hat_sim, val.InputData, k, na, nb));
    y_hat_sim(k) = phi_sim(k, :) * theta;
end
end
```

Building ϕ_{sim} and y incrementally, using values determined so far

3. Tuning results

After generating all the MSE for each $m \in \{1, 2, 3\}$ and $n_{\rm a} = n_{\rm b} \in \{1, 2, ..., 15\}$, the minimum value of MSE and the corresponding values for m, $n_{\rm a}$, $n_{\rm b}$ and $n_{\rm k}$ are saved.

The MSE taken into consideration is the one computed on the validation data set.

The smallest value of MSE represents the best fit. This is met for $y_{prediction}$ when m=1 and na = nb = 5 and nk = 1 (imposed).

	MSEuri_pre	d_val ×											
33	x <mark>15 doubl</mark> e	-		,		779	git	9	97		6	,	
	1	2	3	4	5	6	7	8	9	10	11	12	13
1	0.0046	1.6596e-04	2.5436e-05	1.5452e-05	1.5126e-05	1.5864e-05	2.1980e-05	1.7692e-05	2.0405e-05	2.2168e-05	2.2694e-05	2.1742e-05	2.127
2	0.0046	1.6659e-04	2.5523e-05	2.2660e-05	2.6622e-05	5.1113e-05	1.2198e-04	1.3180e-04	0.0033	0.8932	357.6132	7.3648e+05	2.6685
3	0.0055	2.9552e-04	8.4118e-05	4.4281e-04	0.0012	0.0028	0.0483	1.1343	558.7302	4.5790e+03	1.3080e+03	609.0453	355
4					20								12

We will only take into consideration the first table (i.e the MSE computed on the validation data set)

It is notable that the values increase drastically after $\boldsymbol{n}_{a}=\boldsymbol{n}_{b}=6$

	MSEuri_pred_	id 🗶											
3	x15 double				_	-	_						
	1	2	3	4	5	6	1	8	9	10	11	12	13
1	3.1551	3.1842	3.1801	3.1804	3.1802	3.1801	3.1799	3.1800	3.1799	3.1800	3.1799	3.1800	3
2	3.1549	3.1838	3.1801	3.1806	3.1808	3.1805	3.1804	3.1779	3.1805	4.1046	360.7542	7.3642e+05	2.6685
3	3.1633	3.1980	3.1749	3.1996	3.1478	3.1566	3.6360	3.0696	558.8713	4.6261e+03	1.3364e+03	628.4665	359

3.1 MSE values for prediction

Smallest prediction MSE

3.1.1 Fitting for prediction

Best fit

$$MSE = 0.000015$$

$$m = 1$$

$$n_a = n_b = 5$$

3.1.1 Fitting for prediction

$$MSE = 0.000015$$

$$m = 1$$

$$n_a = n_b = 4$$

3.1.1 Fitting for prediction

$$MSE = 0.000016$$
 $m = 1$
 $n_a = n_b = 6$

	4	3	2	4	-	6	7	0	q	10	11	10
	1	2	5	4	5	0	1	8	9	10	11	12
1	0.5175	0.2485	0.1799	0.1831	0.1640	0.1613	0.2492	0.2173	0.1984	0.2352	0.2338	0.2502
2	0.5414	0.2411	0.1913	0.4515	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN
3	NaN	NaN	NaN	NaN	NaN	NaN						
4	10.000						0.000.0	12.00			17/2	

We will take into consideration only the first table, the MSE computed on the validation data set. The approximation becomes unstable after m=2 and na=nb greater than 4.

	MSEuri_sim_ic	J X							_			
3:	x15 double	2	3	4	5	6	7	8	9	10	11	12
1	2.8663	3.2608	2.7790	2.9529	2.8411	2.8297	3.0872	2.8440	2.7162	2.6974	2.7177	2.7329
2	2.8498	3.2125	2.8150	2.4275	NaN							
3	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN	NaN

3.2 MSE values for simulation

3.1.1 Fitting for simulation

Bad fit

But the best we've got

$$MSE = 0.161346$$

$$m = 1$$

$$n_a = n_b = 6$$

4. Conclusions

- ullet $y_{prediction}$ is more accurate than $y_{simulation}$
- The simulation error is greater than the one step ahead prediction error
- For $n_a = n_b > 6$, the approximation struggles to find a good fit for prediction and simulation.