

PERSONALIZED DATA-TO-TEXT NEURAL GENERATION 27 juin 2023

Ben KABONGO

Stage - M1 DAC - Sorbonne Université

Sommaire

- Rotten Tomatoes movies and critic reviews dataset
- Recommandation
- Analyse des sentiments
- Prompt tuning

Rotten Tomatoes movies and critic reviews dataset

- Deux datasets : films et critiques
- Informations sur des films : identifiant du film, titre, auteurs, acteurs, directeurs, genres, audience, etc.
- Critiques utilisateurs : nom de l'utilisateur, identifiant du film, note (différentes notations et barèmes), contenu, date, etc.

Movies dataset

rotten_tomatoes_link	movie_title	movie_info	critics_consensus	content_rating	genres	directors	authors	actors	original_release_date
m/0814255	Percy Jackson & the Olympians: The Lightning T	Always trouble- prone, the life of teenager Per	Though it may seem like just another Harry Pot	PG	Action & Adventure, Comedy, Drama, Science Fic	Chris Columbus	Craig Titley, Chris Columbus, Rick Riordan	Logan Lerman, Brandon T. Jackson, Alexandra Da	2010-02-12
m/0878835	Please Give	Kate (Catherine Keener) and her husband Alex (Nicole Holofcener's newest might seem slight i	R	Comedy	Nicole Holofcener	Nicole Holofcener	Catherine Keener, Amanda Peet, Oliver Platt, R	2010-04-30

Figure 1 – Exemples de données de films

Critic reviews dataset

rotten_tomatoes_link	critic_name	top_critic	publisher_name	review_type	review_score	review_date	review_content
m/0814255	Andrew L. Urban	False	Urban Cinefile	Fresh	NaN	2010-02-06	A fantasy adventure that fuses Greek mythology
m/0814255	Louise Keller	False	Urban Cinefile	Fresh	NaN	2010-02-06	Uma Thurman as Medusa, the gorgon with a coiff
m/0814255	NaN	False	FILMINK (Australia)	Fresh	NaN	2010-02-09	With a top-notch cast and dazzling special eff
m/0814255	Ben McEachen	False	Sunday Mail (Australia)	Fresh	3.5/5	2010-02-09	Whether audiences will get behind The Lightnin
m/0814255	Ethan Alter	True	Hollywood Reporter	Rotten	NaN	2010-02-10	What's really lacking in The Lightning Thief i

Figure 2 – Exemples de donnnées de critiques

Critic reviews dataset

- 11074 utilisateurs : 1 064 211 critiques
- 2794 utilisateurs avec plus de 30 avis : 1 020 215 critiques

Figure 3 - Distribution des critiques par utilisateur

Recommandation

- Recommandation des films aux utilisateurs, en fonction des notes données dans les critiques
- Normalisation des notes : toutes les notes ramenées sur une notation de 0 à 5 inclu
- **Utilité** : comparaison recommandation et critiques générées par notre futur modèle

Figure 4 – Notes des films par les utilisateurs

Recommandation

- Modèles de filtrage collaboratif :
 - Prédictions du score film/utilisateur
 - Baselines : score moyen, score moyen par film, score moyen par utilisateur
 - Surprise library : BaselineOnly, KNNBasic, SVD (meilleur modèle)
- Métriques :
 - Mean Average Error (MAE) : $\frac{1}{n} \sum_{n=1}^{n} |(x \hat{x})|$
 - Mean Squared Error (MSE) : $\frac{1}{n} \sum_{n=1}^{n} (x \hat{x})^2$
 - Rooted Mean Squared Error (RMSE) : $\sqrt{\frac{1}{n}\sum^{n}(x-\hat{x})^{2}}$

mean_prediction muser_prediction mitem_prediction opt_bl_prediction svd_prediction knn_prediction

metrics						
mae	0.873207	0.813881	0.769587	0.703705	0.596406	0.648000
mse	1.167515	1.019638	0.943279	0.797493	0.597603	0.699307
rmse	1.080516	1.009771	0.971225	0.893025	0.773048	0.836246

Figure 5 – Recommandation - Résultats

Analyse des sentiments

- Analyse des sentiments des critiques des utilisateurs
- Outil : pipeline sentiment-analysis de la librairie transformers
- Utilité : comparaison analyse de sentiments critiques réelles et critiques générées par notre futur modèle.

Figure 6 – Polarité des critiques

Analyse des sentiments

Figure 7 – Wordcloud corpus d'un utilisateur

Analyse des sentiments

Tor Thorsen

Figure 8 – Wordcloud corpus d'un utilisateur par polarité

Prompt tuning

- Tâche : génération de critique étant donné un film et un utilisateur
 - **Description du film**: <movie> <title> *TITRE DU FILM* </title> <info>... </movie>
 - User embedding : Exemples de critiques de l'utilisateur
- Prompt tuning
 - Entrée du modèle : Concaténation de la description du film et des exmples de critiques de l'utilisateur
 - Sortie du modèle : Critique correspondante au film
 - **Vérité terrain** : Critique réelle de l'utilisateur pour le film
- Modèle : T5
- Idées d'analyse : recommandation, analyse des sentiments
- Métriques : BLUE, ROUGE

Prompt tuning : Entrée du modèle

- Exemple = film + utilisateur
- Description du film
- 10 critiques de l'utilisateur

Figure 9 – Prompt tuning - Longueur de l'input

Prompt tuning: Sortie

■ Sortie = critique réelle de l'utilisateur sur le film

Figure 10 - Prompt tuning - Longueur de l'output

Prompt tuning : Paramètres

■ Nombre d'exemples : 1 020 121

■ Apprentissage : 0.7 M

■ Test: 0.15 M

■ Validation: 0.15 M

■ Batch size : 8??

■ Nombre d'époques : 5??