โครงงานเลขที่ วศ.คพ. P805-2/2566

เรื่อง

การประมวลผลภาพสำหรับการวิเคราะห์เสถียรภาพของอีมัลชั่นสำหรับวิศวกรรม ทรัพยากรธรณี

โดย

ธนัญชัย ชัยมณี
 รหัส 630612101
 ยศกร ลิขิตรังสรรค์
 รหัส 630612109
 รหัส 630612177

โครงงานนี้
เป็นส่วนหนึ่งของการศึกษาตามหลักสูตรปริญญาวิศวกรรมศาสตรบัณฑิต
ภาควิชาวิศวกรรมคอมพิวเตอร์
คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่
ปีการศึกษา 2566

PROJECT No. CPE P805-2/2566

Analyzing of Emulsion Stability for Georesources Engineering using Digital Image Processing

Thananchai Chaimanee 630612101 Yodsakorn Likitrungson 630612109

Khachen chaiyo 630612177

A Project Submitted in Partial Fulfillment of Requirements
for the Degree of Bachelor of Engineering
Department of Computer Engineering
Faculty of Engineering
Chiang Mai University
2023

หัวข้อโครงงาน	: การ ประมวล ผล ภาพ สำหรับ การ วิเคราะห์ เสถียรภาพ ขอ งอีมัลชั่น สำหรับ วิศวกรรม ทรัพยากรธรณี
	: Analyzing of Emulsion Stability for Georesources Engineering using
	Digital Image Processing
โดย	: ธนัญชัย ชัยมณี รหัส 630612101
W10	ยศกร ลิขิตรังสรรค์ รหัส 630612109
	คเชนทร์ ไชโย รหัส 630612177
ภาควิชา	: วิศวกรรมคอมพิวเตอร์
	: ผศ.ดร. ณัฐนันท์ พรหมสุข
	: วิศวกรรมศาสตรบัณฑิต
* *	: วิศวกรรมคอมพิวเตอร์
 ปีการศึกษา	
	. 2500
9 9	a र a र a थ d n । भ थ थ थ थ थ व थ ।
	คอมพิวเตอร์ คณะวิศวกรรมศาสตร์ มหาวิทยาลัยเชียงใหม่ ได้อนุมัติให้โครงงานนี้เป็นส่วน
หนงของการศกษา	ตามหลักสูตรปริญญาวิศวกรรมศาสตรบัณฑิต (สาขาวิศวกรรมคอมพิวเตอร์)
	หัวหน้าภาควิชาวิศวกรรมคอมพิวเตอร์
•••••	หัวหน้าภาควิชาวิศวกรรมคอมพิวเตอร์ (รศ.ดร. สันติ พิทักษ์กิจนุกูร)
	(រក.សរ. សេស សហបនាមេដ្តពួរ)
คณะกรรมการสอง	ป <i>ี</i> ดรางวา
LIPR 0 11 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	OPLI 9NA 1 M
	ประธานกรรมการ
	(ผศ.ดร. ณัฐนันท์ พรหมสุข)
	(11111111111111111111111111111111111111
	กรรมการ
	(ผศ.ดร. กำพล วรดิษฐ์)
	กรรมการ
	(ผศ.ดร. สุพฤทธิ์ ตั้งพฤทธิ์กุล)

หัวข้อโครงงาน : การ ประมวล ผล ภาพ สำหรับ การ วิเคราะห์ เสถียรภาพ ขอ งอีมัลชั่น สำหรับ วิศวกรรม

ทรัพยากรธรณี

: Analyzing of Emulsion Stability for Georesources Engineering using

Digital Image Processing

โดย : ธนัญชัย ชัยมณี รหัส 630612101

ยศกร ลิขิตรังสรรค์ รหัส 630612109 คเชนทร์ ไชโย รหัส 630612177

ภาควิชา : วิศวกรรมคอมพิวเตอร์

อาจารย์ที่ปรึกษา : ผศ.ดร. ณัฐนันท์ พรหมสุข ปริญญา : วิศวกรรมศาสตรบัณฑิต

สาขา : วิศวกรรมคอมพิวเตอร์

ปีการศึกษา : 2566

บทคัดย่อ

เขียนบทคัดย่อของโครงงานที่นี่

การเขียนรายงานเป็นส่วนหนึ่งของการทำโครงงานวิศวกรรมคอมพิวเตอร์ เพื่อทบทวนทฤษฎีที่เกี่ยวข้อง อธิบายขั้นตอนวิธีแก้ปัญหาเชิงวิศวกรรม และวิเคราะห์และสรุปผลการทดลองอุปกรณ์และระบบต่างๆ อย่างไรก็ดี การสร้างรูปเล่มรายงานให้ถูกรูปแบบนั้นเป็นขั้นตอนที่ยุ่งยาก แม้ว่าจะมีต้นแบบสำหรับใช้ใน โปรแกรม Microsoft Word แล้วก็ตาม แต่นักศึกษาส่วนใหญ่ยังคงค้นพบว่าการใช้งานมีความซับซ้อน และ เกิดความผิดพลาดในการจัดรูปแบบ กำหนดเลขหัวข้อ และสร้างสารบัญอยู่ ภาควิชาวิศวกรรมคอมพิวเตอร์ จึงได้จัดทำต้นแบบรูปเล่มรายงานโดยใช้ระบบจัดเตรียมเอกสาร LATEX เพื่อช่วยให้นักศึกษาเขียนรายงานได้ อย่างสะดวกและรวดเร็วมากยิ่งขึ้น

สารบัญ

		ัดย่อ	ข
	สารเ	วัญ	P
1	บทน์	ำ	1
		้ ที่มาของโครงงาน	1
	1.2	วัตถุประสงค์ของโครงงาน	2
	1.3	ขอบเขตของโครงงาน	2
		1.3.1 ขอบเขตด้านฮาร์ดแวร์	2
		1.3.2 ขอบเขตด้านซอฟต์แวร์	2
	1.4	ประโยชน์ที่ได้รับ	2
	1.5	เทคโนโลยีและเครื่องมือที่ใช้	2
		1.5.1 เทคโนโลยีด้านฮาร์ดแวร์	2
		1.5.2 เทคโนโลยีด้านซอฟต์แวร์	2
	1.6	แผนการดำเนินงาน	3
	1.7	บทบาทและความรับผิดชอบ	3
	1.8	ผลกระทบด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม	3
2	ทถษ	ฎีที่เกี่ยวข้อง	4
	2.1	Image processing	4
		2.1.1 Canny edge detection	4
	2.2	Active Contour	6
		2.2.1 Active Contour: Snake Model	7
	2.3	ความรู้นอกหลักสูตรซึ่งถูกนำมาใช้หรือบูรณาการในโครงงาน	7
		2.3.1 emulsion	7
3	โครง	าสร้างและขั้นตอนการทำงาน	9
_		โครงสร้างการทดลอง	9
	3.2	ขอบเขตการใช้งานระบบของผู้ใช้	9
		3.2.1 อาจารย์ ครู	9
		3.2.2 บุคคลทั่วไปที่สนใจการทดลอง	9
		3.2.3 นักเรียน นักศึกษา	10
	3.3	การเก็บข้อมูลการทดลอง และ การนับจำนวน	10
4	การเ	ทดลองและผลลัพธ์	11
บร	รณาเ	มกรม	12
-			

บทที่ 1 บทนำ

1.1 ที่มาของโครงงาน

การวิเคราะห์เสถียรภาพของอิมัลชัน เป็นสิ่งสำคัญในวิศวกรรมทรัพยากรธรณี เช่น เป็นที่นิยมในการขุด เจาะน้ำมันและก๊าซธรรมชาติ ความเสถียรของอิมัลชันเหล่านี้ มีผลต่อประสิทธิภาพการขุดเจาะ และความ ปลอดภัยของสิ่งแวดล้อม และการประมวลผลภาพ สามารถใช้เพื่อวิเคราะห์ และตรวจสอบเสถียรภาพของ ระบบทรัพยากรธรณี เช่น ป่าไม้, ทรัพยากรน้ำ, หรือ อื่น ๆ ที่เป็นที่สำคัญในวิศวกรรมทรัพยากรธรณี

การตรวจสอบสภาพแวดล้อม: การประมวลผลภาพสามารถใช้เพื่อตรวจสอบสภาพแวดล้อมของ ทรัพยากรธรณี เช่น การตรวจสอบป่าไม้เพื่อความหนาแน่นของต้นไม้, การตรวจสอบคุณภาพน้ำในลำแม่น้ำ, หรือการตรวจสอบการเปลี่ยนแปลงของทัพพีที่ใช้ในวิศวกรรมทรัพยากรธรณี

การควบคุมการใช้ทรัพยากร: การประมวลผลภาพช่วยในการควบคุมการใช้ทรัพยากรธรณีโดยการตรวจ สอบปริมาณทรัพยากรที่ถูกใช้, เช่น การวิเคราะห์การใช้น้ำในเขตการเกษตรหรือการตรวจสอบการใช้พื้นที่ใน การทำเหมืองแร่

การตรวจสอบการเปลี่ยนแปลง: การนำเข้าข้อมูลทางภูมิศาสตร์ และประมวลผลภาพช่วยในการตรวจ สอบการเปลี่ยนแปลงของทรัพยากรธรณีตลอดเวลา เช่น การตรวจสอบการเติบโตของเมือง หรือการตรวจ สอบการเปลี่ยนแปลงในพื้นที่ที่เป็นที่นิยมในการท่องเที่ยว

การควบคุมการปล่อยก๊าซ: การใช้การประมวลผลภาพเพื่อวิเคราะห์การปล่อยก๊าซคาร์บอน หรือสาร มลพิษในทรัพยากรธรณี, เช่น การตรวจสอบการปล่อยก๊าซคาร์บอนจากพื้นที่ที่มีการผลิตหรือการใช้เชื้อเพลิง การประมวลผลภาพที่ใช้ในวิศวกรรมทรัพยากรธรณี มีความสามารถที่จะช่วยในการวิเคราะห์ข้อมูลทาง ภูมิศาสตร์และสร้างข้อมูลที่มีประสิทธิภาพเพื่อการบริหารจัดการทรัพยากรธรณีอย่างเป็นระบบ

ปัญหาที่พบคือ การวิเคราะห์บางอิมัลชัน ไม่สามารถทำได้ เช่น การวิเคราะห์ความเสถียรภาพของก๊าซ คาร์บอน กลุ่มได้พิจารณาถึงวิธีแก้ไขปัญหานี้ และตกลงในการใช้ความรู้ที่มีสะสมและเรียนมาในการประยุกต์ ใช้ในการวิเคราะห์ก๊าซคาร์บอน โดยกลุ่มเราจะใช้การประมวลผลภาพ ดังต่อไปนี้ เข้ามาช่วยในการวิเคราะห์ ความเสถียรภาพของก๊าซคาร์บอน

- 1. การจำแนกก๊าซคาร์บอน: ใช้เทคนิคการประมวลผลภาพที่สามารถจำแนกก๊าซคาร์บอนในภาพได้ โดยอาจใช้วิธี Canny edge detection เพื่อระบุและจำแนกก๊าซต่างๆ จากภาพ
- 2. การนับจำนวนก๊าซคาร์บอน: ใช้เทคนิคการประมวลผลภาพที่สามารถนับจำนวนก๊าซคาร์บอนในรูป ภาพได้ โดยอาจใช้ Active Contour : Snake Model เพื่อประมาณการจำนวนก๊าซ
- 3. การวิเคราะห์รูปร่างของก๊าซคาร์บอน: หากปัญหาคือ การวิเคราะห์รูปร่างของก๊าซคาร์บอนที่มีลักษณะ แตกต่างกัน ทีมวิจัยอาจต้องพัฒนาวิธีการที่สามารถจำแนกและวิเคราะห์รูปร่างที่แตกต่างของก๊าซ

เพื่อช่วยในการจำแนกและนับจำนวนก๊าซคาร์บอนที่มีรูปร่างต่างๆ ว่ามีจำนวนเท่าไหร่ โดยไม่ว่ารูปทรง ของก๊าซคาร์บอนจะเป็นอย่างไร

1.2 วัตถุประสงค์ของโครงงาน

ศึกษาความเสถียรภาพของก๊าซคาร์บอนไดออกไซด์โดยใช้การประมวลผลภาพ (Image processing) เพื่อช่วยในการแยกแยะและนับจำนวนของคาร์บอนในการทดลองในห้องปฏิบัติการ

1.3 ขอบเขตของโครงงาน

- การทดลองจะทดลองโดยก๊าซคาร์บอน
- ใช้การประมวลผลภาพในการนับจำนวนคาร์บอนในการทดลอง

1.3.1 ขอบเขตด้านฮาร์ดแวร์

ผู้ทดลอง สามารถใช้การวิเคราะห์อีมัลชั่น ผ่านคอมพิวเตอร์

1.3.2 ขอบเขตด้านซอฟต์แวร์

ระบบการวิเคราะห์อี่มัลชั่นใช้งานผ่านเครื่องคอมพิวเตอร์

1.4 ประโยชน์ที่ได้รับ

- สามารถแยกก๊าซคาร์บอนและนับจำนวนคาร์บอนในการทดลองอีมัลชั่น
- ลดเวลาในการนั่งนับจำนวนก๊าซคาร์บอนในการทดลอง

1.5 เทคโนโลยีและเครื่องมือที่ใช้

1.5.1 เทคโนโลยีด้านฮาร์ดแวร์

- Laptop computer ใช้ในการพัฒนาและทดสอบโค้ตในการนับจำนวนคาร์บอน
- Smartphone ใช้ในเก็บบันทึกข้อมูลจำนวนก๊าซคาร์บนอจากการทดลอง

1.5.2 เทคโนโลยีด้านซอฟต์แวร์

- Virtual Studio Code ใช้ในการพัฒนาโค้ตในการนับจำนวนคาร์บอน
- Pycharm ใช้ในการพัฒนาโค้ตในการนับจำนวนคาร์บอน
- Github ใช้ในการนำโค้ตที่เขียน pull ลงไป

1.6 แผนการดำเนินงาน

ขั้นตอนการดำเนินงาน	ต.ค. 2563	พ.ย. 2563	ธ.ค. 2563	ı	ก.พ. 2564	มี.ค. 2564
พูดคุยภายในกลุ่มเกี่ยวกับโครงงาน						
ศึกษาเกี่ยวกับอีมัลชั่น,การประมวลผลภาพ, Candy edge detection						
และ Active Contour : Snake Model						
จัดทำสไลด์นำเสนอ						
ตรวจทานและแก้ไขข้อผิดพลำด						
นำเสนอรอบที่ 1						
นำเสนอรอบที่ 2						

1.7 บทบาทและความรับผิดชอบ

หน้าที่ในการทำโครงงาน

- แบ่งงาน และการนัดพูดคุยกันภายในกลุ่ม หรือนัดปรึกษาพูดคุยกับอาจารย์ที่ปรึกษา คนที่รับทำหน้าที่ คือ นายยศกร ลิขิตรังสรรค์
- ศึกษาหาความรู้เกี่ยวกับการเกิดอีมัลชั่น การประมวลภาพ วิธีการเขียนโค้ต คนที่รับทำหน้าที่ คือ นาย ยศกร ลิขิตรังสรรค์ , นายธนัญชัย ชัยมณี
- ศึกษาวิธีการนับจำนวนคาร์บอน ในรูปทรงต่างๆ คนที่รับทำหน้าที่คือ นายคเชนทร์ ไชโย
- เขียนโค้ตการประมวลผลภาพ การนับจำนวนคาร์บอน ที่มีรูปทรงต่างๆ คนที่รับทำหน้าที่คือ ช่วยกัน เขียนโค้ต
- การทดลองการเกิดอีมัลชั่นของก๊าซคาร์บอน คนที่รับทำหน้าที่คือ ช่วยกันทำการทดลองโดยการสลับ การเฝ้าการเกิดปฏิกิริยา

1.8 ผลกระทบด้านสังคม สุขภาพ ความปลอดภัย กฎหมาย และวัฒนธรรม

ผู้จัดทำมองว่า การที่โครงงานมีวัตถุประสงค์ที่จะวิเคราะห์ความเสถียรภาพของอีมัลชั่น จะช่วยยกระดับ การทดลองทางภาคธรณีได้ แต่ในขณะเดียวกัน การวิเคราะห์นี้เกิดผลกระทบต่อการทดลองความปลอดภัย แก่ผู้ทดลองหาความเสถียรภาพอีมัลชั่นที่เป็นอันตรายต่อผู้ทดลองที่ต้องการนับจำนวนคาร์บอนกับก๊าซอื่นๆ เพราะก๊าซคาร์บอนทำปฏิกิริยากับการบางชนิดก็เป็นอันตรายอย่างร้ายแรง

บทที่ 2 ทฤษฎีที่เกี่ยวข้อง

2.1 Image processing

คือกระบวนการที่ใช้คอมพิวเตอร์เพื่อแก้ไข ปรับปรุง หรือแปลงภาพดิจิตัลให้มีความเหมาะสมสำหรับการใช้ งานต่าง ๆ โดยมักใช้เทคโนโลยีและอัลกอริทึมต่าง ๆ เพื่อประมวลผลภาพ เช่น การเพิ่มความคมชัด การปรับ แสงและเงา การตรวจจับวัตถุ การลบสิ่งกีดขวาง หรือการแยกสี

2.1.1 Canny edge detection

เป็นเทคนิคหนึ่งในการตรวจจับขอบ (edge detection) ในภาพดิจิตัล ซึ่งถูกพัฒนาโดย John F. Canny ในปี 1986 ซึ่งเป็นหนึ่งในเทคนิคที่ได้รับการยอมรับอย่างแพร่หลายในการประมวลผลภาพ

รูปที่ 2.1: หลักการทำงานของ Canny edge detection

ขั้นตอนหลักในการทำ Canny edge detection มีดังนี้:

- Gaussian Filter: เพื่อลด noise ไปจากภาพ ทำให้ไม่เกิดขอบภาพที่ไม่ต้องการ
- Prewitt หรือ Sobel edge detector: หา Edge strength และ Edge orientation
- Edge orientation Substituted: เปลี่ยนค่า orientation ของ edge ให้อยู่ในช่วงที่สามารถระบุพิกัด เป็นตำแหน่งของ pixel รอบๆได้

รูปที่ 2.2: Edge orientation Substituted

• Non-maximum Suppression

รูปที่ 2.3: Non-maximum Suppression

- Double threshold: เลือกค่าช่วง Edge strength ที่ต้องการแสดงไว้ และค่าที่ต่ำกว่าขอบเขตที่ระบุ ให้ค่า pixel นั้น = 0
- Hysteresis: แยกขอบออกเป็นส่วนๆ แบ่งตามตำแหน่งที่เชื่อต่อกันและความเข้ม ขอบที่มีความเข้ม อ่อนจะไม่เชื่อมต่อกับขอบส่วนที่มีความเข้มสูง เราจะกำจัดส่วนนั้นทิ้งไป

รูปที่ 2.4: Hysteresis

2.2 Active Contour

เป็นเครื่องมือที่ใช้ในการตรวจจับและวาดเส้นขอบ (contour) ของวัตถุในภาพดิจิตอล โดยทั่วไปมักใช้ในการ วาดเส้นขอบของวัตถุที่มีรูปร่างที่ไม่เป็นระเบียบหรือมีรูปร่างที่ซับซ้อน เช่น เครื่องตรวจจับเส้นขอบของลูก-บอลในภาพถ่าย หรือการตรวจจับขอบของเซลล์ที่มีรูปทรงเป็นรูปเป็นระเบียบในภาพทางการแพทย์

รูปที่ 2.5: หลักการทำงาน ของActive Contour

2.2.1 Active Contour: Snake Model

เป็นโมเดลที่ใช้ใน Computer Vision สำหรับการวาดเส้นรอบวัตถุในภาพ 2 มิติ โมเดลนี้ถูกพัฒนาโดย Michael Kass, Andrew Witkin และ Demetri Terzopoulos ในปี 1987 โมเดล Snake เปรียบเสมือน เส้นยางยืดหยุ่นที่ถูกดึงดูดไปยังขอบของวัตถุในภาพ โมเดลจะใช้พลังงานสองประเภทในการดึงดูดเส้นยางไป ยังขอบวัตถุ:

- พลังงานภายใน: ควบคุมความโค้งและความเรียบของเส้นยาง
- พลังงานภายนอก: ดึงดูดเส้นยางไปยังขอบของวัตถุในภาพ

ในการนับรูปทรงต่างๆในภาพเราจะใช้ Snake Model ในการทำงานดังนี้:

- 1. กำหนดเส้นโค้งเริ่มต้น: เส้นโค้งเริ่มต้นสามารถกำหนดแบบสุ่ม หรือใช้ข้อมูลจากภาพ เช่น ขอบภาพ
- 2. คำนวณพลังงาน: พลังงานจะถูกคำนวณจาก 3 องค์ประกอบ:
 - พลังงานภายใน: วัดความเรียบของเส้นโค้ง
 - พลังงานภาพ: วัดความสอดคล้องของเส้นโค้งกับภาพ
 - พลังงานการเชื่อมต่อ: วัดความเชื่อมต่อของเส้นโค้ง
- 3. ปรับรูปร่างเส้นโค้ง: เส้นโค้งจะปรับรูปร่างของตัวเองเพื่อลดพลังงานรวม
- 4. ทำซ้ำขั้นตอน 2 และ 3: ทำซ้ำจนกว่าเส้นโค้งจะลู่เข้า
- การนับรูปทรง:

หลังจากเส้นโค้งลู่เข้าแล้ว จำนวนรูปทรงสามารถนับได้โดยการนับจำนวนเส้นโค้งที่แยกจากกัน

2.3 ความรู้นอกหลักสูตรซึ่งถูกนำมาใช้หรือบูรณาการในโครงงาน

2.3.1 emulsion

ระบบคอลลอยด์ (emulsion) ที่ประกอบด้วยเหลวตั้งแต่ 2 ชนิดขึ้นไป ซึ่งปกติไม่ผสมเป็นเนื้อเดียวกัน เช่น น้ำกับน้ำมัน ผสมรวมเป็นเนื้อเดียวกันได้โดยไม่แยกชั้น โดยของเหลวส่วนหนึ่งแตกตัวเป็นหยดเล็กๆ เรียกว่า วัฏภาคภายใน หรือส่วนที่กระจายตัว (internal or dispersed phase) ซึ่งจะกระจายตัวแทรกอยู่ในของเหลว อีกชนิดหนึ่ง เรียกว่า วัฏภาคภายนอก (external or continuous phase) ส่วนที่ต่อเนื่อง

อิมัลชันแบ่งเป็น 2 ประเภทหลัก คือ

• อิมัลชันชนิดน้ำมันในน้ำ (oil-in-water emulsion, O/W) มีน้ำมันเป็นวัฏภาคภายใน และน้ำเป็นวัฏ ภาคภายนอก เช่น น้ำนม (milk) ข้อสังเกตุ หรือวิธีทดสอบอิมัลชันประเภทนี้คือ สามารถทำให้เจือจาง ได้ด้วยการเติมน้ำ มีค่าการนำไฟฟ้า (electrical conductivity) สูงกว่า ผสมได้กับสีชนิดที่ละลายน้ำ (water soluble dye)

รูปที่ 2.6: หลักการทำงานของ Active Contour : Snake Model

• อิมัลชันชนิดน้ำในน้ำมัน (water-in-oil emulsion, W/O) มีน้ำเป็นวัฏภาคภายใน และน้ำมันเป็นวัฏ ภาคภายนอก เช่น เนย (butter) มายองเนส (mayonnaise) น้ำสลัด (salad dressing) ไส้กรอก (sausage) ข้อสังเกตุ หรือวิธีทดสอบอิมัลชันประเภทนี้คือ สามารถทำให้เจือจางได้ด้วยการเติมน้ำมัน มีค่าการนำไฟฟ้า (electrical conductivity) ต่ำกว่า ผสมได้กับสีชนิดที่ละลายน้ำมัน (oil soluble dye)

รูปที่ 2.7: emulsion

บทที่ 3 โครงสร้างและขั้นตอนการทำงาน

3.1 โครงสร้างการทดลอง

หลังจากกำหนดขอบเขตและหัวข้อโครงงาน และใช้แนวคิดการทดลองตามที่กลุ่มเราได้ว่าแผนกันโดยการขั้น ตอนดังรูป ที่ 3.1

รูปที่ 3.1:

3.2 ขอบเขตการใช้งานระบบของผู้ใช้

ระบบจะแบ่งผู้ใช้ออกเป็น 3 กลุ่มหลักๆ ได้แก่

- 1. อาจารย์ ครู
- 2. บุคคลทั่วไปที่สนใจการทดลอง
- 3. นักเรียน นักศึกษา

3.2.1 อาจารย์ ครู

โปรแกรมเราเหมาะสมสำหรับอาจารย์ หรือคุณครูที่กำลังสอนเกี่ยวกับการเกิดปฏิกิริยาอีมัลชั่นของก๊าซ คาร์บอน เพื่อจะแสดงจำนวนก๊าซคาร์บอนให้การทดลอง

3.2.2 บุคคลทั่วไปที่สนใจการทดลอง

บุคคลทั่วไปที่สนใจการทดลอง ที่สนใจในการทดลองหรือชอบความท้าทายในการทดลองเกี่ยวกับการผสม ก๊าซคาร์บอนกับก๊าซต่างๆ ในปฏิกิริยาอีมัลชั่น โดยสามารถนับจำนวนคาร์บอนที่มีรูปทรงต่างๆ จากโปรแกรม ที่เราจะได้พัฒนาขึ้นมา

3.2.3 นักเรียน นักศึกษา

นักเรียน นักศึกษา ที่กำลังเรียนรู้เกี่ยวกับการเกิดอีมัลชั่นได้ โดยการผสมก๊าซคาร์บอนกับก๊าซต่างแล้วนับ จำนวนคาร์บอนที่เกิดขึ้นมาบันทึกเป็นกราฟทดลองได้ เช่นการทดลอง ก๊าซคาร์บอนกับก๊าซไนโตรเจน

ซึ่งขอบเขตการใช้งานระบบของผู้ใช้ อาจจะมีเพิ่มในภายหลัง ถ้ากลุ่มเราสามารถพัฒนาให้นับจำนวนก๊าซ ชนิดอื่นได้

3.3 การเก็บข้อมูลการทดลอง และ การนับจำนวน

หลังจากเราได้ทำการทดลองเสร็จแล้ว เราจะเก็บข้อมูลและนับจำนวนคาร์บอน ไม่ว่ารูปทรงจะเป็นอย่างไร ที่เราทดลองได้ ดังรูปตัวอย่างที่ 3.3

รูปที่ 3.2:

บทที่ 4

การทดลองและผลลัพธ์

การประเมินระบบของโครงงาน เพื่อวัดความสามารถและประเมินประสิทธิภาพของระบบ แบ่งออกเป็น 3 ส่วนหลักๆ ดังนี้

A. การประเมินและวัดผลกระบวนการนับจำนวนของฟองก๊าชคาร์บอนไดออกไซด์ที่เกิดขึ้น: ในส่วนนี้ เราจะใช้เทคโนโลยีการประมวลผลภาพเพื่อตรวจสอบและนับจำนวนของฟองก๊าชคาร์บอนไดออกไซด์ในพื้น ที่ที่สนใจ โดยใช้การวิเคราะห์ภาพเพื่อตรวจจับฟองก๊าช และนับจำนวนฟองก๊าชที่พบในภาพต่อหน่วยพื้นที่ เทคโนโลยีการประมวลผลภาพช่วยให้สามารถทำงานได้อย่างรวดเร็วและแม่นยำ

B. การประเมินและวัดผลความสามารถในการระบุขนาดของฟองก๊าชคาร์บอนไดออกไซด์ที่เกิดขึ้น: ในขั้นตอนนี้ เราจะใช้เทคโนโลยีการประมวลผลภาพเพื่อวัดและระบุขนาดของฟองก๊าชคาร์บอนไดออกไซด์ ที่ตรวจจับได้ โดยการวัดเส้นผ่านศูนย์กลางของฟองก๊าชเพื่อกำหนดขนาดของฟองก๊าชได้อย่างที่ถูกต้องและ แม่นยำ

C. การประเมินและระบุจำนวนประชากรของฟองก๊าชคาร์บอนไดออกไซด์ในพื้นที่: ในส่วนนี้ เราจะใช้ เทคโนโลยีการประมวลผลภาพเพื่อประเมินและระบุจำนวนของฟองก๊าชคาร์บอนไดออกไซด์ในพื้นที่ที่สนใจ โดยการนับจำนวนฟองก๊าชคาร์บอนไดออกไซด์ทั้งหมดในพื้นที่และประเมินประชากรของฟองก๊าชคาร์บอน ไดออกไซด์ในพื้นที่นั้น

บรรณานุกรม