

Ondes électromagnétiques dans le vide

Physicien allemand (oncle de Gustav Hertz, lauréat du prix Nobel de physique en 1925) né à Hambourg et mort à Bonn, Heinrich Rudolph Hertz, après des études d'ingénieur, abandonne cette branche pour la physique, qu'il étudie à Berlin sous la direction de Hermann von Helmholtz.

Nommé privatdozent à Kiel (1883), Hertz y commence l'étude de la théorie de Maxwell et, devenu professeur à l'École polytechnique de Karlsruhe, il démontre alors expérimentalement l'existence des ondes électromagnétiques.

HEINRICH RUDOLPH HERTZ (1857-1894)

PLAN DU CHAPITRE

]	I Eq	uation de D'Alembert 1D (EDA 1D)	3
	I.1	Une vielle conaissance de MPSI : l'onde transverse sur une corde vibrante	3
		a - Modélisation et équation dynamique	3
		b - La clé de la propagation : le couplage!	5
	I.2	Ondes transverse et longitudinale dans un câble coaxial	6
		a - Modèle à constantes réparties - équations couplées	6
		b - Equation de propagation	8
	I.3	Solution de l'EDA 1D	8
		a - Rappel : groupement de variables spatio-temporel 1D	8
		b - Solution générale de l'EDA 1D : superposition d'ondes progressives	9
]	II Eq	uation de d'Alembert 3D des ondes électromagnétiques dans le vide 1	10
	II.1	Rappels	10

	11.2	Solutions en ondes planes progressives	10
		a - Définition de l'onde plane	10
		b - Ecriture de l'EDA pour une onde plane d'axe de propagation connu -solutions	11
	II.3	Solution en ondes planes progressives harmoniques (OPPH) - intérêt	12
		a - Définition et caractéristique	12
		b - Caractère non réaliste de l'OPPH - intérêt du modèle	13
		c - Spectre électromagnétique	14
III	Etuc	de détaillée des OPPH	14
	III.1	Vitesse de phase	14
	III.2	Caractère non "dispersif" du vide	15
	III.3	Structure des OPPH	16
		a - Préliminaire : opérateurs différentiels en notation complexe	16
		b - Transversalité - relations de structure	17
	III.4	Polarisation des OPPH	17
		a - Définition	18
		b - Etude générale	18
		c - Intérêt des polarisations rectiligne et circulaire	20
IV	Ener	rgétique des ondes électromagnétiques	20
	IV.1	Vecteur de Poynting d'une OPPH	20
	IV.2	Densité volumique d'énergie d'une OPPH	21
	IV.3	Vitesse de transport de l'énergie d'une OEM	22
	IV.4	Retour sur la notation complexe : calcul des valeurs moyennes de grandeurs énergétiques	22
	IV.5	Retour sur la polarisation : polarisation par dichroïsme (Polaroïd) et loi de Malus	
		(utile pour TP)	23

