Datenanalyse auf Basis von KI-Methoden

KI vs Machine Learning vs Deep Learning

Machine Learning

- Überwachtes Lernen (supervised learning)
- Werden mit Hilfe von positiven/negativen
 Beispielen trainiert

Regression: "durchgehende" Ausgabe

 Für jeden Input liefert das Modell einen durchgehenden Wert

Classification: bestimmte Ausgabe

 Für jeden Input liefert das Modell einen von speziellen Werten

Von Merkmal zu Variablen

Merkmal: Isolierte Eigenschaft eines größeren Ganzen, z.B. Intelligenz, Farbe, Einkommen

Ausprägung: Zustand des Merkmals, z.B. IQ =115, Farbe = Rot, Einkommen = hoch

Eine Variable wird definiert, indem den Ausprägungen des Merkmals Zahlen zugeordnet werden.

Diese Zahlen heißen Realisationen oder Werte.

Variablen

Eine diskrete Variable besitzt zumeist endlich viele und feste Werte, die man über Ganzzahlen beschreiben kann:

- Dichtome Variablen haben genau zwei diskrete Werte
- · Polytome Variablen haben mehr als zwei diskrete Werte

Eine stetige (kontinuierliche) Variable kann (unendlich viele) beliebige Werte annehmen, die man über reelle Zahlen beschreibt

R Grundlagen -Pakete-

Pakete sind das Herzstück von R: Sie enthalten Funktionen, die andere Entwickler für uns vorbereitet haben

- > # Ein Paket installieren
- > install.packages("dplyr")

Pakete, die auf CRAN verfügbar sind, können einfach installiert werden

Installierte Pakete müssen, bevor ihre Funktionen genutzt werden können, erst geladen werden

- > # Paket laden
- > library(dplyr)

Python Grundlagen -Bibliotheken-

Bibliotheken sind das Herzstück von Python: Sie enthalten Funktionen, die andere Entwickler für uns vorbereitet haben

- > # Ein Bibliothek installieren
- > pip install pandas

Installierte Bibliotheken müssen, bevor ihre Funktionen genutzt werden können, erst geladen werden

- > # Bibliothek laden
- > import pandas

Daten laden und aufbereiten

CSV-Datei (Comma-separated Values_.csv)

- Standard-Format zum Austausch von strukturierten Daten
- Wie eine Tabelle: Zellen sind durch Trennzeichen getrennt, meistens, (Komma) oder; (Semikolon)

```
lfdn;age;group;outcome
1;18;1;4
2;23;0;4
3;22;1;3
```

Daten in R laden

Legt das Arbeitsverzeichnis auf den Ordner, in dem ihr die Beispieldatensätze abgelegt habt

> setwd("C:/statistik")

Die Funktion read.csv2() ladet die csv-Datei

> df <- read.csv2("statistik.csv", header = TRUE, sep= ";", dec=".")</pre>

Daten in Python laden

Bei PyCharm wird automatisch als Arbeitsverzeichnis der Ordner, in dem ihr die Beispieldatensätze abgelegt habt, identifiziert

Die Funktion read_csv() von pandas ladet die csv-Datei

> import pandas as pd

> df = pd.read_csv("statistik.csv")

Datensatz kennenlernen

- In R
- > str(df)
- > summary(df)
- > head(df)
- > ncol(df)
- > nrow(df)
- In Python
- > df.head()
- > df.info()

Daten aufbereiten

- Daten, die wir sammeln sind selten direkt für die Analyse bereit
- Wir haben fehlende Daten, brauchen neue Variablen, ggf. haben unterschiedliche Mitarbeiter unterschiedlich codiert, usw.
- Datenaufbereitung ist ein wichtiger und notwendiger Schritt in der Datenanalyse

Daten aufbereiten-Rechnen mit Variablen

- In R
- > df\$Angebot <- df\$Price_euros 100
- In Python
- > df['Angebot'] = df['Price_euros'] -100

Daten aufbereiten-Variablen umbenennen

- In R
- > df= rename(df, maxAngebot = Angebot)
- In Python
- > df.rename(columns = {'Angebot':'maxAngebot'}, inplace = True)

Daten aufbereiten-Filtern

- In R
- > Apple=filter(df, Company == "Apple")
- > laptop_unt_1000=filter(df, Price_euros <= 1000)
- In Python
- > is_apple = df['Company']=="Apple"
- > apple = df[is_apple]
- > unt_1000 = df['Price_euros']<= 1000
- > laptop_unt_1000 = df[unt_1000]

Einfache Lineare Regression

Repräsentation der Punktwolke durch eine Gerade der allgemeinen Form:

$$Y = b0 + b1 * X$$

Dabei stehen:

- y für die abhängige Variable,
- x für die unabhängige Variable,
- b0 für den Schnittpunkt der Geraden mit der y-Achse des Koordinatensystems
- *b*1 für die Steigung der Geraden, auch Regressionskoeffizient genannt

Regressionsgerade

- Zur Berechnung der Geraden werden in ein Koordinatensystem die Wertepaare übertragen und eine Punktwolke zeigen.
- Legt man nun rein graphisch irgendeine Gerade hinein, so sind stets Abweichungen der Einzelwerte yi von der Geraden festzustellen.
- Diese Abweichungen werden als Residuen ei bezeichnet.

Darstellung-Regressionsgerade

Regressionsgerade

- Damit das Datenmaterial durch die Regressionsgerade möglichst gut repräsentiert wird, muss die Abweichung der Einzelwerte yi von der Geraden minimiert werden.
- Ein Kriterium für die beste Anpassung der Regressionsgerade an die Beobachtungen muss gefunden werden.
- Methode der kleinsten Quadrate vorgestellt werden, die die Quadratsumme der Residuen minimiert.

Methode der kleinsten Quadrate

• Die Regressionsgerade ist diejenige Gerade, die die Summe der quadrierten Residuen (Abweichungen, Vorhersagefehler) minimiert.

Es gilt:

$$\mathbf{e}_i = \mathbf{y}_i - \hat{\mathbf{y}}_i$$

$$\mathbf{e}_i = \mathbf{y}_i - (\mathbf{b}_0 + \mathbf{b}_1 \cdot \mathbf{x}_i)$$

$$e_i^2 = [y - (b_0 + b_1 \cdot x_i)]^2$$

Gefordert ist:

$$\sum_{i=1}^{n} e_{i}^{2} = \sum_{i=1}^{n} [y - (b_{0} + b_{1} \cdot x_{i})]^{2} \rightarrow Min$$

Methode der kleinsten Quadrate

$$b_0 = \overline{y} - b_1 \cdot \overline{x}$$

$$b_{1} = \frac{\sum_{i=1}^{n} (x_{i} - \overline{x}) \cdot (y_{i} - \overline{y})}{\sum_{i=1}^{n} (x_{j} - \overline{x})^{2}} = \frac{\sum_{j=1}^{n} x_{i} y_{i} - \left(\sum_{i=1}^{n} x_{i} \cdot \sum_{i=1}^{n} y_{i}\right) / n}{\sum_{i=1}^{n} x_{i}^{2} - \left(\sum_{i=1}^{n} x_{i}\right)^{2} / n}$$

$$b_1 = \frac{Summe \ der \ Abweichungsprodukte_{xy}}{Summe \ der \ Abweichungsquadrate_{xy}} = \frac{SP_{xy}}{SQ_{xy}}$$

Beispiel

	Koeffizienten	Standardfehler	t-Statistik	P-Wert
Schnittpunkt	9,4618	4,8596	1,9471	0,0926
X Variable 1	5,9937	1,5630	3,8347	0,0064

Die Regressionsgerade lautet damit:

$$\hat{y} = b_0 + b_1 \cdot x = 9,4618 + 5,9937 \cdot x$$

In Worten: Ändert sich die Einflussgröße x um eine Einheit, so ändert sich die Zielgröße y um 5,9937 Einheiten. Ist die Einflussgröße = 0, so beträgt der Wert der Zielgröße = 9,4618.

Anpassungsgüte

Den Anteil der durch die Regression erklärten Streuung an der Gesamtstreuung bezeichnet als **Bestimmtheitsmaß** r^2 :

$$r^{2} = \frac{SQ_{Reg}}{SQ_{Ges}} = \frac{b_{1} \cdot \left[\sum_{i=1}^{n} (x_{i} - \overline{x}) \cdot (y_{i} - \overline{y}) \right]}{\sum_{i=1}^{n} (y_{i} - \overline{y})^{2}} = b_{1} \cdot \frac{SP_{xy}}{SQ_{xy}} = b_{1}^{2} \cdot \frac{SQ_{x}}{SQ_{y}}$$

Für das obige Beispiel folgt:

$$r^2 = \frac{5,9937 \cdot 105,2222}{930,8889} = 0,6775$$

Logistische Regression

Die (binär) logistische Regressionsanalyse testet, ob ein Zusammenhang zwischen mehreren unabhängigen und einer binären abhängigen Variable besteht.

Logistische Regression - Modelgüte

Um zu beurteilen, wie gut ein logistisches Regressionsmodell zu einem Datensatz passt, können wir die folgenden zwei Metriken betrachten:

- Sensitivität: Die Wahrscheinlichkeit, dass das Modell ein positives Ergebnis für eine Beobachtung vorhersagt, wenn das Ergebnis tatsächlich positiv ist.
- **Spezifität**: Die Wahrscheinlichkeit, dass das Modell ein negatives Ergebnis für eine Beobachtung vorhersagt, wenn das Ergebnis tatsächlich negativ ist.

Eine einfache Möglichkeit, diese beiden Metriken zu visualisieren, besteht darin, eine **ROC-Kurve** zu erstellen.

Logistische Regression – ROC-Kurve

ROC-Kurve ist ein Diagramm, das die Sensitivität und Spezifität eines logistischen Regressionsmodells anzeigt.

Diagonal segments are produced by ties.

Vielen Dank Für Jhre Aufmerksamkeit!