Recommender Systems: Content-based Systems & Collaborative Filtering

Mining of Massive Datasets
Jure Leskovec, Anand Rajaraman, Jeff Ullman
Stanford University

http://www.mmds.org

Example: Recommender Systems

Customer X

- Buys Metallica CD
- Buys Megadeth CD

Customer Y

- Does search on Metallica
- Recommender system suggests Megadeth from data collected about customer X

Recommendations

From Scarcity to Abundance

- Shelf space is a scarce commodity for traditional retailers
 - Also: TV networks, movie theaters,...
- Web enables near-zero-cost dissemination of information about products
 - From scarcity to abundance
- More choice necessitates better filters
 - Recommendation engines
 - How Into Thin Air made Touching the Void a bestseller: http://www.wired.com/wired/archive/12.10/tail.html

Types of Recommendations

- Editorial and hand curated
 - List of favorites
 - Lists of "essential" items
- Simple aggregates
 - Top 10, Most Popular, Recent Uploads
- Tailored to individual users
 - Amazon, Netflix, ...

Formal Model

- X = set of Customers
- S = set of Items
- **Utility function** $u: X \times S \rightarrow R$
 - R = set of ratings
 - R is a totally ordered set
 - e.g., 0-5 stars, real number in [0,1]

Utility Matrix

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.2	
Bob		0.5		0.3
Carol	0.2		1	
David				0.4

Key Problems

- (1) Gathering "known" ratings for matrix
 - How to collect the data in the utility matrix
- (2) Extrapolate unknown ratings from the known ones
 - Mainly interested in high unknown ratings
 - We are not interested in knowing what you don't like but what you like
- (3) Evaluating extrapolation methods
 - How to measure success/performance of recommendation methods

(1) Gathering Ratings

Explicit

- Ask people to rate items
- Doesn't work well in practice people can't be bothered

Implicit

- Learn ratings from user actions
 - E.g., purchase implies high rating
- What about low ratings?

(2) Extrapolating Utilities

- Key problem: Utility matrix U is sparse
 - Most people have not rated most items
 - Cold start:
 - New items have no ratings
 - New users have no history
- Three approaches to recommender systems:
 - 1) Content-based
 - 2) Collaborative
 - 3) Latent factor based

Content-based Recommender Systems

Content-based Recommendations

 Main idea: Recommend items to customer x similar to previous items rated highly by x

Example:

- Movie recommendations
 - Recommend movies with same actor(s), director, genre, ...
- Websites, blogs, news
 - Recommend other sites with "similar" content

Plan of Action

Item Profiles

- For each item, create an item profile
- Profile is a set (vector) of features
 - Movies: author, title, actor, director,...
 - Text: Set of "important" words in document
- How to pick important features?
 - Usual heuristic from text mining is TF-IDF (Term frequency * Inverse Doc Frequency)
 - Term ... Feature
 - Document ... Item

Sidenote: TF-IDF

 f_{ij} = frequency of term (feature) i in doc (item) j

$$TF_{ij} = \frac{f_{ij}}{\max_k f_{kj}}$$

Note: we normalize TF to discount for "longer" documents

 n_i = number of docs that mention term i

N = total number of docs

$$IDF_i = \log \frac{N}{n_i}$$

TF-IDF score: $w_{ij} = TF_{ij} \times IDF_i$

Doc profile = set of words with highest TF-IDF
scores, together with their scores

User Profiles and Prediction

User profile possibilities:

- Weighted average of rated item profiles
- Variation: weight by difference from average rating for item
- • •

Prediction heuristic:

Given user profile x and item profile i, estimate

$$u(\mathbf{x}, \mathbf{i}) = \cos(\mathbf{x}, \mathbf{i}) = \frac{x \cdot \mathbf{i}}{||x|| \cdot ||\mathbf{i}||}$$

Pros: Content-based Approach

- +: No need for data on other users
 - No cold-start or sparsity problems
- +: Able to recommend to users with unique tastes
- +: Able to recommend new & unpopular items
 - No first-rater problem
- +: Able to provide explanations
 - Can provide explanations of recommended items by listing content-features that caused an item to be recommended

Cons: Content-based Approach

- -: Finding the appropriate features is hard
 - E.g., images, movies, music
- -: Recommendations for new users
 - How to build a user profile?
- -: Overspecialization
 - Never recommends items outside user's content profile
 - People might have multiple interests
 - Unable to exploit quality judgments of other users

Collaborative Filtering

Harnessing quality judgments of other users

Collaborative Filtering

- Consider user x
- Find set N of other users whose ratings are "similar" to x's ratings
- Estimate x's ratings based on ratings of users in N

Finding "Similar" Users $r_y = [*, _, **, **, _]$

$$r_x = [*, _, _, *, ***]$$
 $r_y = [*, _, **, **, _]$

- Let r_x be the vector of user x's ratings
- Jaccard similarity measure
 - Problem: Ignores the value of the rating
- r_x , r_v as sets: $r_x = \{1, 4, 5\}$ $r_v = \{1, 3, 4\}$

- Cosine similarity measure
 - $= sim(\boldsymbol{x}, \, \boldsymbol{y}) = cos(\boldsymbol{r}_{\boldsymbol{x}}, \, \boldsymbol{r}_{\boldsymbol{y}}) = \frac{r_{\boldsymbol{x}} \cdot r_{\boldsymbol{y}}}{||r_{\boldsymbol{x}}|| \cdot ||r_{\boldsymbol{y}}||}$

- r_x , r_v as points: $r_x = \{1, 0, 0, 1, 3\}$ $r_v = \{1, 0, 2, 2, 0\}$
- Problem: Treats missing ratings as "negative"
- Pearson correlation coefficient
 - S_{xy} = items rated by both users x and y

$$sim(x,y) = \frac{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x}) (r_{ys} - \overline{r_y})}{\sqrt{\sum_{s \in S_{xy}} (r_{xs} - \overline{r_x})^2} \sqrt{\sum_{s \in S_{xy}} (r_{ys} - \overline{r_y})^2}}$$

rating of x, y

Similarity Metric

Cosine sim:
$$sim(x,y) = \frac{\sum_{i} r_{xi} \cdot r_{yi}}{\sqrt{\sum_{i} r_{xi}^{2}} \cdot \sqrt{\sum_{i} r_{yi}^{2}}}$$

	HP1	HP2	HP3	TW	SW1	SW2	SW3
A	4			5	1		
B	5	5	4				
C				2	4	5	
D		3					3

- Intuitively we want: sim(A, B) > sim(A, C)
- Jaccard similarity: 1/5 < 2/4</p>
- Cosine similarity: 0.386 > 0.322
 - Considers missing ratings as "negative"
 - Solution: subtract the (row) mean

	HP1	HP2	HP3	TW	SW1	SW2	SW3
\overline{A}	2/3			5/3	-7/3		
B	1/3	1/3	-2/3				
$A \\ B \\ C$	183			-5/3	1/3	4/3	
D		0		20	8	= 1/10	0

sim A,B vs. A,C: 0.092 > -0.559

Notice cosine sim. is correlation when data is centered at 0

Rating Predictions

From similarity metric to recommendations:

- Let r_x be the vector of user x's ratings
- Let N be the set of k users most similar to x who have rated item i
- Prediction for item s of user x:

$$r_{xi} = \frac{1}{k} \sum_{y \in N} r_{yi}$$
 Shorthand:
$$s_{xy} = sim(x, y)$$

$$r_{xi} = \frac{\sum_{y \in N} s_{xy} \cdot r_{yi}}{\sum_{y \in N} s_{xy}}$$

- Other options?
- Many other tricks possible...

Item-Item Collaborative Filtering

- So far: User-user collaborative filtering
- Another view: Item-item
 - For item i, find other similar items
 - Estimate rating for item *i* based on ratings for similar items
 - Can use same similarity metrics and prediction functions as in user-user model

$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

s_{ij}... similarity of items *i* and *j*r_{xj}...rating of user *u* on item *j*N(i;x)... set items rated by x similar to i

							user	S					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3			5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	
	- unknown rating - rating between 1 to 5										 5		

							user	5					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	3	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	6	1		3		3			2			4	

LICORC

- estimate rating of movie 1 by user 5

		1	2	3	4	5	6	7	8	9	10	11	12	;
	1	1		3		?	5			5		4		
	2			5	4			4			2	1	3	
ovies	<u>3</u>	2	4		1	2		3		4	3	5		
Ē	4		2	4		5			4			2		

2

4

3

users

Neighbor selection:

4

3

5

<u>6</u>

Identify movies similar to movie 1, rated by user 5

3

Here we use Pearson correlation as similarity:

1) Subtract mean rating m_i from each movie i $m_1 = (1+3+5+5+4)/5 = 3.6$ row 1: [-2.6, 0, -0.6, 0, 0, 1.4, 0, 0, 1.4, 0, 0.4, 0]

2

4

5

2) Compute cosine similarities between rows

sim(1,m)

1.00

-0.18

<u>0.41</u>

-0.10

-0.31

0.59

							user	S					
		1	2	3	4	5	6	7	8	9	10	11	12
	1	1		3		?	5			5		4	
	2			5	4			4			2	1	3
movies	<u>3</u>	2	4		1	2		3		4	3	5	
Ε	4		2	4		5			4			2	
	5			4	3	4	2					2	5
	<u>6</u>	1		3		3			2			4	

Compute similarity weights:

$$s_{1,3}$$
=0.41, $s_{1,6}$ =0.59

sim(1,m)

1.00

-0.18

0.41

-0.10

-0.31

0.59

	1	2	3	4	5	6	7	8	9	10	11	12
1	1		3		2.6	5			5		4	
2			5	4			4			2	1	3
<u>3</u>	2	4		1	2		3		4	3	5	
4		2	4		5			4			2	
5			4	3	4	2					2	5
<u>6</u>	1		3		3			2			4	

Predict by taking weighted average:

$$r_{1.5} = (0.41^2 + 0.59^3) / (0.41 + 0.59) = 2.6$$

$$r_{ix} = \frac{\sum_{j \in N(i;x)} s_{ij} \cdot r_{jx}}{\sum s_{ij}}$$

CF: Common Practice

Before:
$$r_{xi} = \frac{\sum_{j \in N(i;x)} s_{ij} r_{xj}}{\sum_{j \in N(i;x)} s_{ij}}$$

- Define similarity s_{ii} of items i and j
- Select k nearest neighbors N(i; x)
 - Items most similar to i, that were rated by x
- Estimate rating r_{xi} as the weighted average:

$$r_{xi} = b_{xi} + \frac{\sum_{j \in N(i;x)} s_{ij} \cdot (r_{xj} - b_{xj})}{\sum_{j \in N(i;x)} s_{ij}}$$

baseline estimate for r_{xi}

$$b_{xi} = \mu + b_x + b_i$$

• μ = overall mean movie rating

• b_x = rating deviation of user x= $(avg. rating of user x) - \mu$

 b_i = rating deviation of movie i

Item-Item vs. User-User

	Avatar	LOTR	Matrix	Pirates
Alice	1		0.8	
Bob		0.5		0.3
Carol	0.9		1	0.8
David			1	0.4

- In practice, it has been observed that <u>item-item</u> often works better than user-user
- Why? Items are simpler, users have multiple tastes

Pros/Cons of Collaborative Filtering

+ Works for any kind of item

- No feature selection needed
- Cold Start:
 - Need enough users in the system to find a match
- Sparsity:
 - The user/ratings matrix is sparse
 - Hard to find users that have rated the same items
- First rater:
 - Cannot recommend an item that has not been previously rated
 - New items, Esoteric items
- Popularity bias:
 - Cannot recommend items to someone with unique taste
 - Tends to recommend popular items

Hybrid Methods

- Implement two or more different recommenders and combine predictions
 - Perhaps using a linear model
- Add content-based methods to collaborative filtering
 - Item profiles for new item problem
 - Demographics to deal with new user problem

Evaluation & Practical Tips

- Evaluation
- Error metrics

Evaluation

Evaluation

Evaluating Predictions

- Compare predictions with known ratings
 - Root-mean-square error (RMSE)
 - $-\sqrt{\sum_{xi}(r_{xi}-r_{xi}^*)^2}$ where r_{xi} is predicted, r_{xi}^* is the true rating of x on i
 - Precision at top 10:
 - % of those in top 10
 - Rank Correlation:
 - Spearman's correlation between system's and user's complete rankings
- Another approach: 0/1 model
 - Coverage:
 - Number of items/users for which system can make predictions
 - Precision:
 - Accuracy of predictions
 - Receiver operating characteristic (ROC)
 - Tradeoff curve between false positives and false negatives

Problems with Error Measures

- Narrow focus on accuracy sometimes misses the point
 - Prediction Diversity
 - Prediction Context
 - Order of predictions
- In practice, we care only to predict high ratings:
 - RMSE might penalize a method that does well for high ratings and badly for others

The Netflix Prize

Training data

- 100 million ratings, 480,000 users, 17,770 movies
- 6 years of data: 2000-2005
- Test data
 - Last few ratings of each user (2.8 million)
 - Evaluation criterion: Root Mean Square Error (RMSE) =

$$\frac{1}{|R|} \sqrt{\sum_{(i,x) \in R} (\hat{r}_{xi} - r_{xi})^2}$$

- Netflix's system RMSE: 0.9514
- Competition
 - 2,700+ teams
 - \$1 million prize for 10% improvement on Netflix

The Netflix Utility Matrix R

Matrix R

17,700 movies

480,000 users

•					
1	3	4			
	3	5			5 5
		3	5		5
		3			
		3			
2			2		2
				5	
	2	1			1
	3			3	
1					

Utility Matrix R: Evaluation

BellKor Recommender System

The winner of the Netflix Challenge!

Multi-scale modeling of the data:

Combine top level, "regional" modeling of the data, with a refined, local view:

Global:

Overall deviations of users/movies

- Factorization:
 - Addressing "regional" effects
- Collaborative filtering:
 - Extract local patterns

Global effects

Modeling Local & Global Effects

Global:

- Mean movie rating: 3.7 stars
- The Sixth Sense is 0.5 stars above avg.
- Joe rates 0.2 stars below avg.
 - ⇒ Baseline estimation:

Joe will rate The Sixth Sense 4 stars

- Local neighborhood (CF/NN):
 - Joe didn't like related movie Signs
 - ⇒ Final estimate:
 Joe will rate The Sixth Sense 3.8 stars

Latent Factor Models (e.g., SVD)

SVD: $A = U \Sigma V^T$

"SVD" on Netflix data: R ≈ Q · P^T

- For now let's assume we can approximate the rating matrix R as a product of "thin" $Q \cdot P^T$
 - R has missing entries but let's ignore that for now!
 - Basically, we will want the reconstruction error to be small on known ratings and we don't care about the values on the missing ones

Ratings as Products of Factors

How to estimate the missing rating of user x for item i?

\hat{r}_{x}	$_{i} =$	q_i	$\cdot p_x$
=	\sum	q_{if}	p_{xf}
	f $q_i =$	row i	of Q
			on \mathbf{x} of \mathbf{P}^{T}

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

factors

users

rs	1.1	2	.3	.5	-2	5	.8	4	.3	1.4	2.4	9
	8	.7	.5	1.4	.3	-1	1.4	2.9	7	1.2	1	1.3
fa	2.1	4	.6	1.7	2.4	.9	3	.4	.8	.7	6	.1

PT

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

\hat{r}_{x}	_i =	q_i	· ¼	$\mathbf{o}_{\mathbf{x}}$
=	\sum	q_{ij}	.	p_{xf}
		row i		
	$p_x =$	colun=	าท x	of P T

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

factors

users .3 .5 -.5 .3 -.2 -2 -.4 .7 .5 1.4 1.4 2.9 -.7 -1 -.4 1.7 2.4 -.3 PT

G

2.4

-.1

-.6

-.9

1.3

.1

1.4

1.2

Ratings as Products of Factors

■ How to estimate the missing rating of user x for item i?

\hat{r}_{x}	:i =	q_i	$\cdot p_x$	
=		q_{if}	$\cdot p_{x}$	c f
		row <i>i</i> (
	p_x =	= colun	nn x of F	ÞΤ

	.1	4	.2
(0	5	.6	.5
items	2	.3	.5
ite	1.1	2.1	.3
	7	2.1	-2
	-1	.7	.3

users .3 .5 -.5 -.2 .3 -2 -.4 .7 .5 1.4 1.4 2.9 -.7 -1 -.4 1.7 2.4 -.3 PT

f factors

6

2.4

-.1

-.6

-.9

1.3

.1

1.4

1.2

Recap: SVD

Remember SVD:

- A: Input data matrix
- U: Left singular vecs
- V: Right singular vecs
- Σ: Singular values

So in our case:

"SVD" on Netflix data: $R \approx Q \cdot P^T$

$$A = R$$
, $Q = U$, $P^{T} = \sum V^{T}$

$$\hat{\boldsymbol{r}}_{xi} = \boldsymbol{q}_i \cdot \boldsymbol{p}_x$$