

Protocolo aula de laboratório de Engenharia de Biorreação/ Engenharia Bioquímica

Estudo de transferência de massa gás-líquido em sistemas biológicos

Resumo

Pretende-se neste trabalho que os alunos aprofundem os conhecimentos das aulas teóricas relacionadas com o estudo de transferência de oxigénio em sistemas biológicos. Para o efeito são usados reatores descontínuos com agitação e arejamento contendo uma cultura mista de microrganismos heterotróficos aeróbios.

A variação da concentração de oxigénio é efetuada num respirómetro acoplado ao reator onde é introduzido o elétrodo de oxigénio. A concentração de oxigénio ao longo do ensaio é adquirida diretamente em computador usando um programa específico chamado BioCTR.

Objetivos

Como objetivos específicos pretende-se:

- Determinar o valor de k_La em reatores arejados.
- Operar um bioreactor agitado com arejamento e determinar as taxas de consumo de oxigénio e de crescimento
- Modelar a cinética de crescimento e de consumo de oxigénio.

Plano experimental

- 1 Encha o reator com 500ml de meio de cultura. Ligue a agitação e introduza o elétrodo de oxigénio no reator. Inicie a aquisição de dados no programa Bio CTR.
- 2 Desareje com Azoto o meio de cultura até a concentração de oxigénio ser próxima de zero. Areje o meio com ar e meça o aumento da concentração de oxigénio ao longo do tempo.
- 3 Introduza o elétrodo de oxigénio no respirómetro.
- 4 Adicione ao reator a fonte de carbono e o extrato de levedura.
- 5 Inocule o reator (20%) com uma cultura em crescimento exponencial.
- 6 Ligue a bomba peristáltica e faça recircular o meio através do respirómetro
- 7 Tire uma amostra, meça a densidade ótica (600nm) do meio reacional.
- 8 Após a recolha de cada amostra, pare a bomba de recirculação e meça o consumo de oxigénio durante 2 a 3 minutos.
- 9 Repita os passos 6-8 com intervalos de 15 min.

Montagem Experimental

- Bioreactor
- Banho termostatizado
- Elétrodo de oxigénio
- Respirómetro
- Espectrofotómetro
- Computador
- Meio de cultura
- Inóculo

Meio de cultura (10 litros):

Meio A (8 I)

- KNO₃ 1,63 g
- Na₂HPO₄ 24,4g
- KH₂PO₄ 15,2 g

Meio B (2 I)

- MgSO₄.7H2O 2 g
- (NH₄) SO₄ 5 g
- CaCl₂ 0,5g

Meio C (14,5 ml)

• solução de micronutrientes

Meio D (10 ml)

• solução de micronutrientes

Meio E (100 mL)

KCH₃COO - 9,5 g

Constituição do meio de cultura = 8L meio A + 2L meio B + 14,5 ml meio C + 10 ml meio D

Antes da inoculação junta-se ao meio do reator (500 ml) 5 ml do meio E e 0,5 g de extrato de levedura.

Cálculos

- a. Determine o valor de k_L a e a velocidade de transferência de oxigénio no meio biológico antes da inoculação.
- b. Determine a concentração celular máxima que poderia alcançar no sistema estudado (admita como válida a equação logística). Simule a curva de crescimento e compare com os dados experimentais. Discuta os resultados.
- c. Represente a velocidade específica e volumétrica de consumo de oxigénio em função do tempo. Calcule o coeficiente de rendimento de crescimento (YO₂/X).
- d. Estime o valor de k₁a durante a fase de crescimento celular.
- e. Compare a velocidade máxima de transferência de massa com a velocidade máxima de consumo de oxigénio. Discuta os resultados.
- f. Estime a velocidade de consumo de acetato ao longo do tempo com base na estequiometria de reação de oxidação do acetato.
- g. Estime o rendimento verdadeiro ($Y'_{X/S}$) e o coeficiente de manutenção de acetato e compare com o rendimento observado ($Y_{X/S}$).

Estrutura do relatório

- Resumo
- Introdução (max. 2 páginas)
- Resultados Experimentais
- Discussão
- Conclusões
- Bibliografia
- Anexos

Table 8.1 Solubility of O₂ at 1 atm in water at various temperatures and solutions of salt or acid at 25°C[†]

Temp, °C	Water, O ₂ mmol/L	Temp. °C	Water, O ₂ mmol/L
0	2.18	25	1.26
10	1.70	30	1.16
15	1.54	35	1.09
20	1.38	40	1.03

Aqueous solutions at 25°C

Electrolyte	O_2 , mmol/L		
Electrolyte conc, M	HCl	H ₂ SO ₄	NaCl
0.0	1.26	1.26	1.26
0.5	1.21	1.21	1.07
1.0	1.16	1.12	0.89
2.0	1.12	1.02	0.71

[†] Data from *International Critical Tables*, vol. III, p. 271, McGraw-Hill Book Company, New York, 1928, and F. Todt, *Electrochemische Sauerstoffmessungen*, W. de Guy and Co., Berlin, 1958.

Bailey, J.E.; & Ollis, D.F. "Biochemical Engineering Fundamentals", 2nd edition, MCGraw-Hill.

