

ECE 445: Virtual Reality Gloves

Electrical & Computer Engineering

Final Presentation for Senior Design at Illinois ECE Team 58: Ashton Billings, Hamza Lutfi, Aditya Nebhrajani

May 6, 2025

Agenda

Motivation

Inspiration

Our Solution

Hardware Design

Software Design

Debug Diaries

Conclusion

Motivation: Why do VR Gloves Matter?

- Hand/finger tracking is a general HCI problem.
- **Teleoperation:** surgeries, bomb disposal, deep-sea repair, space operations.
- Accessibility tech: neural intent decoding vs. finger tracking, ASL, etc.
- Education/training: for fine motor skills: medical, musical, lab equipment.
- Want it cheap and accessible.

Inspiration: Lucid Gloves Open Source Project

- V3: Potentiometers, badge reels (low res, range limited).
- V5: Hall effect sensors, 3D printed finger rails, haptics (high res, but needs precision 3D printing).
- Ashton worked on both V3 and V5!
- Idea: combine best of both versions.

Our Solution: Final Result

Final VR glove

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING GRAINGER ENGINEERING

Our Solution: Block Diagram

High-level block diagram of our design

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING — GRAINGER ENGINEERING

Hardware Design

Finger module, 3D parts, PCBs, Power

Hardware Design: Finger Module

- **Motivation:** minimize 3D printed parts (tolerance).
- How it was built: reused badge reel housing to hold hall sensors, servo motors.

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING — GRAINGER ENGINEERING

Hardware Design: Other 3D Parts

Hand mount, battery/board mount, finger attachments, glove

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING

Hardware Design: PCBs

Main board (left), hall breakout board (right, 12.5mm x 17mm)

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING GRAINGER ENGINEERING

Hardware Design: Power

- Battery: 7.4V Li-ion Battery 2000mAh 2S Rechargeable.
- Linear Regulators: LM2596S-5.0 (7.4V to 5V), AMS1117-3.3 SOT-223 (5V to 3.3V).

Component	Quantity	Est. Current per Unit (mA)	Total Current (mA)
ESP32-S3 WROOM	1	~150 mA (WiFi active)	150
Hall Effect Sensors	10	~5 mA each	50
Servos (small hobby)	5	~300 mA each (peak)	1500
Joystick	1	~10 mA	10
Regulators + LEDs	-	~40 mA (combined overhead)	40
Total (average)			1750 mA

TO263-5L

Software Design

Firmware, Bluetooth Bridge, Unity

ELECTRICAL & COMPUTER ENGINEERING

GRAINGER ENGINEERING

Software Design: Firmware

- Hall effect sensors are perpendicular.
- Phase of (x, y) voltage components provides finger measurement.
- Firmware handles phase wrapping.
- Sensor noise is low-pass filtered.
- Joystick buttons are debounced.
- Firmware serializes data for transmission.

Software Design: Bluetooth Bridge

- Goal: drop-in BLE replacement for serial stack.
- Want to avoid rewriting Unity C# code for async BLE support.
- Solution: Shim ESP32 C++ firmware library, Python bridge.
- Unity thinks it's talking to serial.

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING — GRAINGER ENGINEERING

Software Design: Unity

- Unity + XR Interaction Toolkit: Allows usage of Meta Quest and hand tracking.
- **Sensor data:** read serialized struct in via serial port, use data to animate virtual hands.
- **Virtual scene:** add colliders, rigid bodies for hands to interact with.
- Servo data: Colliders provide ability to send haptic data to glove via serial port.

ELECTRICAL & COMPUTER ENGINEERING — GRAINGER ENGINEERING GRAINGER ENGINEERING

Conclusion

Debug Diaries, Accomplishments, Future Work

Conclusion: Debug Diaries

- Reverse Polarity LED: PCB soldering issue during bringup.
- Hall-Effect Module: Wrong KiCAD symbol for hall effect sensors.
- **USB-C PCB Debug:** Differential signalling (D+/D-) impedance and length matching issue.
- 3D Printer Tolerance: Many many design iterations.
- Animations: How to animate hands? Use custom hands? Animations or key frames.

Conclusion: Accomplishments

- Low latency finger tracking.
- Low latency hand tracking.
- VR headset deployable virtual scene.
- Interactive virtual hands within virtual scene.
- Wireless (BLE) capability.
- Allows for haptic capability with further dev work.

Conclusion: R&V Table

#	Requirement	Verification
1	Battery must regulate 7.4V LiPo down to 5V and 3.3V with minimal ripple (±5% tolerance).	Measure output voltages with oscilloscope under idle and load conditions (servos moving, sensors reading). Confirm $5.00V \pm 0.25V$ and $3.30V \pm 0.15V$.
2	Dual Hall Effect sensors must produce independent voltage sig- nals that correlate to finger flex- ion angles (±5° accuracy).	Move finger known angles using a protractor. Capture sensor outputs. Fit voltage vector to angle mapping. Confirm measured vs expected flexion within ±5°.
3	ESP32 must be successfully communicated with over a programming/debugging interface and respond to commands.	Program ESP32 to blink its onboard LED using a test script. Observe LED blinking to confirm that the ESP32 is powered, programmable, and responding to communication.
4	Servos must provide sufficient torque to lock the user's fingers in place, enabling realistic haptic feedback during interaction with virtual objects.	Apply external force to a locked finger and confirm that the servos can hold position against a small ap- plied force, simulating physical contact in virtual en- vironments.
5	ESP32 must maintain Bluetooth BLE connection and transmit flexion data.	Set up terminal and confirm reception of updated flexion data.
6	Multithreaded BLE-to-Virtual Serial Bridge must correctly translate BLE packets into COM port-readable data with latency less than 50 ms.	Send known pattern over BLE. Capture it on PC COM port. Measure time between send and receive. Confirm latency 50 ms.

Conclusion: Future Work

- Finish haptics.
- Onboard position tracking via IMU + sensor fusion.
- Splay tracking.
- Compatibility with SteamVR.
- Refine firmware (phase wrapping issue, angle resolution, calibration steps).
- Refine hardware (better PCB, battery choice, MCU choice).
- Refine software (complex test scene, fix movement, fix collider interactions).

Questions?

Thanks for listening!

