Tarea 13

Hecho por

DAVID GÓMEZ

UNIVERSIDAD

Estudiante de Matemáticas
Escuela Colombiana de Ingeniería Julio Garavito
Colombia
9 de noviembre de 2022

Tarea 13

Índice

ección 7.1																							
Punto 1	 	 •	 •	٠	 				٠	•	 •	٠	•	 •	•	 ٠	•	•	•	 •	•	٠	
a	 				 		 																
b	 				 		 																
c	 				 		 																
Punto 2	 				 		 																
a	 				 		 																
b	 				 		 																
c	 				 		 																
Punto 3	 				 		 																
a	 				 		 																
b	 				 		 																
c	 				 		 																
d	 				 		 																
Punto $4 \dots$	 		 		 		 				 									 			

Sección 7.1

Punto 1

$$\mathbf{F} = \{ p_0 \mapsto p_1, p_2 \mapsto true, p_3 \mapsto H(x), p_4 \mapsto p_4 \}$$

a

$$\phi = p_0$$

$$\mathbf{F}[p_0] = p_1$$

b

$$\phi = H(y) = \forall x H(x) \land false$$

$$\mathbf{F}[H(y) = \forall x H(x) \land \mathit{false}] = H(y) = \forall x H(x) \land \mathit{false}$$

C

$$\phi = \forall x \forall y (H(f(x,y)) \lor p_3)$$

$$\mathbf{F}[\forall x \forall y (H(f(x,y)) \lor p_3)] = \forall x \forall y (H(f(x,y)) \lor H(x))$$

Punto 2

 \mathbf{a}

Es libre

b

Es libre

c

Es libre

Punto 3

a

Demostración de ϕ

- (i) Si no hay cuantificadores que afecten globalmente en ϕ , la definición de demostración es exactamente la misma que en DS.
- (ii) Si ϕ es de la forma $\forall x\psi$, entonces una demostración es una secuencia no vacía de proposiciones tales que el último elemento de la secuencia es ψ y los anteriores son axiomas o deducciones de pasos anteriores mediante reglas de inferencia.
- (iii) Si ϕ es de la forma $\exists x \psi$, entonces una demostración es una secuencia no vacía de proposiciones tales que el último elemento de la secuencia es ψ y los anteriores son axiomas, deducciones de pasos anteriores mediante reglas de inferencia o suposiciones.

Tarea 13

b

Derivación

- (i) Si no hay cuantificadores que afecten globalmente en ϕ , la definición de derivación es exactamente la misma que en DS.
- (ii) Si ϕ es de la forma $\forall x(\psi \equiv \tau)$, entonces una derivación es una secuencia finita de proposiciones, en la cual cada elemento es obtenido mediante transitividades de \equiv del elemento anterior.
- (iii) Si ϕ es de la forma $\exists x(\psi \equiv \tau)$, entonces una derivación es una secuencia finita de proposiciones en la cual cada elemento anterior es obtenido mediante transitividades de \equiv del elemento anterior y además se tienen en cuenta suposiciones dadas antes de iniciar la derivación como verdades "locales".

 \mathbf{c}

Derivación de debilitamiento

- (i) Si no hay cuantificadores que afecten globalmente en ϕ , la definición de derivación de debilitamiento es exactamente la misma que en DS.
- (ii) Si ϕ es de la forma $\forall x(\psi \to \tau)$, entonces una derivación es una secuencia finita de proposiciones, en la cual cada elemento es obtenido mediante transitividades de \equiv y al menos una de \to del elemento anterior.
- (iii) Si ϕ es de la forma $\exists x(\psi \to \tau)$, entonces una derivación es una secuencia finita de proposiciones en la cual cada elemento anterior es obtenido mediante transitividades de \equiv y al menos una de \to del elemento anterior y además se tienen en cuenta suposiciones dadas antes de iniciar la derivación como verdades "locales".

 \mathbf{d}

Derivación de fortalecimiento

- (i) Si no hay cuantificadores que afecten globalmente en ϕ , la definición de derivación de fortalecimiento es exactamente la misma que en DS.
- (ii) Si ϕ es de la forma $\forall x(\psi \leftarrow \tau)$, entonces una derivación es una secuencia finita de proposiciones, en la cual cada elemento es obtenido mediante transitividades de \leftarrow del elemento anterior.
- (iii) Si ϕ es de la forma $\exists x(\psi \leftarrow \tau)$, entonces una derivación es una secuencia finita de proposiciones en la cual cada elemento anterior es obtenido mediante transitividades de \equiv y al menos una de \leftarrow del elemento anterior y además se tienen en cuenta suposiciones dadas antes de iniciar la derivación como verdades "locales".

Punto 4

 $Si \vdash_{DS} \phi \text{ entonces } \vdash_{DS(\mathcal{L})} \phi$

Ya que todos los axiomas de DS están contenidos en $DS(\mathcal{L})$, usando la definición de demostración, y puesto que no hay cuantificadores en ningún teorema de DS. Se puede demostrar cualquier teorema de DS usando los axiomas de $DS(\mathcal{L})$.

David Gómez

Sección 7.2