Phil Pützstück, 377247 Benedikt Gerlach, 376944 Sebastian Hackenberg, 377550

Hausaufgabe 10

Aufgabe 5

Sei ein PDA $\mathcal{A} := (Q, \Sigma, \Gamma, \Delta, q_0, Z_0)$, der mit leerem Stapel akzeptiert gegeben. Wir zeigen, dass der PDA $\mathcal{A}' := (Q', \Sigma, \Gamma, \Delta', q_0, Z_0, F)$, die gleiche Sprache akzeptiert, wobei

$$Q' := Q \cup \{f\} \qquad F' := \{f\} \qquad \Delta' := \Delta \cup \{(q, \varepsilon, \varepsilon, f, \varepsilon) \mid q \in Q\}$$

Wir zeigen zuerst $L(A) \subseteq L(A')$.

Sei also $w \in L(\mathcal{A})$, d.h. es gibt einen Lauf $(\kappa_0, \dots, \kappa_n)$ über w auf \mathcal{A} mit $\kappa_n = (q, \varepsilon, \varepsilon)$ für ein $q \in Q$. Folglich gibt es einen Lauf $(\kappa_0, \dots, \kappa_n, \kappa_{n+1})$ über w auf \mathcal{A}' , sodass $\kappa_{n+1} = (f, \varepsilon, \varepsilon)$, da wir die gleichen Transitionen wie in \mathcal{A} verwenden können und schließlich von q aus die Transition $(q, \varepsilon, \varepsilon, f, \varepsilon) \in \Delta'$ wodurch wir im Zustand f enden und den beschriebenen Lauf bekommen. Folglich gilt $w \in L(\mathcal{A}')$.

Wir zeigen nun $L(\mathcal{A}') \subseteq L(\mathcal{A})$.

Sei also, $w \in L(\mathcal{A}')$, d.h. es gibt einen Lauf $(\kappa_0, \dots, \kappa_n, \kappa_{n+1})$ über w auf \mathcal{A}' mit $\kappa_{n+1} = (q, \gamma, \varepsilon)$ mit $q \in F$ und $\gamma \in \Gamma^*$. Da $F = \{f\}$ folgt q = f. Weiter ist für $q \in Q, \sigma \in \Sigma, Z \in \Gamma, \gamma \in \Gamma^*$

$$(q, \sigma, Z, f, \gamma) \in \Delta' \implies \sigma = Z = \gamma = \varepsilon$$

nach Konstruktion von Δ' . Folglich muss $\kappa_n = (q, \varepsilon, \varepsilon)$ und $\kappa_{n+1} = (f, \varepsilon, \varepsilon)$. Da wir ausser den Transitionen zu f aber keine anderen Hinzugefügt haben, folgt, dass der Lauf $(\kappa_0, \dots, \kappa_n)$ über w auch auf A existiert. Da dieser aber durch $\kappa_n = (q, \varepsilon, \varepsilon)$ beendet ist, also mit leerem Stapel aufhört und A eben genau dann akzeptiert, folgt also auch $w \in L(A)$.

Insgesmat haben wir L(A) = L(A').

Aufgabe 6

a) Der gesuchte PDA akzeptiert mit leerem Stapel:

b) Linksableitung in \mathcal{G} :

$$S \rightarrow ZR \rightarrow EXR \rightarrow 1XR \rightarrow 10R \rightarrow 10KX \rightarrow 10, X \rightarrow 10, XX$$

$$\rightarrow 10, 1X \rightarrow 10, 1XX \rightarrow 10, 10X \rightarrow 10, 101$$

Lauf auf $\mathcal{A}_{\mathcal{G}}$:

$$(q_0, S, 10, 101) \to (q_0, ZR, 10, 101) \to (q_0, EXR, 10, 101) \to (q_0, XR, 0, 101)$$

$$\to (q_0, R, 101) \to (q_0, KX, 101) \to (q_0, X, 101) \to (q_0, XX, 101) \to (q_0, XX, 101)$$

$$\to (q_0, XX, 01) \to (q_0, X, 1) \to (q_0, \varepsilon, \varepsilon)$$

Aufgabe 7

Die (vereinfachte) gesuchte Grammatik hat folgende Produktionsregeln (mit Startregel S):

$$\begin{split} S &\to [qZq] \mid [qZr] \\ [qZq] &\to \varepsilon \qquad [qXq] \to a \qquad [rXq] \to a \\ [qZr] &\to b[rXq][qZq][qZr] \\ [qZq] &\to b[rXq][qZq][qZq] \\ [rXr] &\to b[rXr][rXr] \\ [rXq] &\to b[rXq][qXq] \mid b[rXr][rXq] \end{split}$$