

Congratulations! You passed!

TO PASS 75% or higher

Keep Learning

GRADE 100%

Practice quiz on Problem Solving

TOTAL POINTS 9

1	lam	givon	tha	follo	wing	2	ioint	nroha	hilitic	٠.
1 •	ıaııı	given	uie	10110	vviiig	<u>ے</u>	JOHL	hione	אטווונופ	:5.

1 / 1 point

 $p(I \text{ am leaving work early, there is a football game that I want to watch this$ afternoon) = .1

p(I am leaving work early, there is not a football game that)I want to watch this afternoon) = .05

p(I am not leaving work early, there is not a football game)that I want to watch this afternoon) = .65

What is the probability that there is a football game that I want to watch this afternoon?

- .3

Correct

Getting the answer is a two-step process. First, recall that the sum of probabilities for a probability distribution must sum to 1. So the "missing" joint distribution

p(I am not leaving work early, there is a football game I want to watch this afternoon) must be 1 - (0.1 + 0.05 + 0.65) = 0.2

By the sum rule, the marginal probability p(there is a football game that I want to watch this afternoon) = the sum of the joint probabilities

P(I am leaving work early, there is a football game that I want to watch this afternoon) + P(I am not leaving work early, there is a football game I want to watch this afternoon) = .1+.2=.3