Решение QUBO при помощи SPVAR

Ральников Павел Андреевич, студент 2 курса СП Руководитель — Лежнев Константин Эдуардович, ГПН ИТО Куратор — Грошев Максим Эдуардович, СПбГУ, ПИЯФ, АЦТП

Задача QUBO

- Задана матрица коэффициентов $Q \in \mathbb{R}^{N imes N}$
- Нужно найти $x \in \{0,1\}^N$, минимизирующий функционал x^TQx (то есть сумму $\sum_{i,j} x_i x_j Q_{ij}$)
- QUBO легко сопоставляется с задачей Изинга: даны $h \in \mathbb{R}^N$, $J \in \mathbb{R}^{N \times N}$ нужно найти $s \in \{-1,1\}^N$, минимизирующий $H(s) = \sum_i h_i s_i + \sum_{i,j} J_{ij} s_i s_j$. H(s) называется энергией решения s.
- Классический вариант решения метод отжига

Мотивация

Компания D-Wave сделала «квантовый отжигатель», который позволяет эффективно решать задачи Изинга и QUBO

SPVAR

Ссылка на исходную статью: https://arxiv.org/abs/1606.07797

- Метод, позволяющий снизить количество переменных в задаче Изинга и улучшить качество получаемых решений.
- Общая схема алгоритма: получаем от квантового отжигателя (sampler далее) набор решений (сэмпл), считаем по ним статистику и выдаем множество переменных, которые нужно зафиксировать.

Псевдокод SPVAR

Input: модель Изинга (h, J), sample_size, sampler, fixing_threshold, elite_threshold

Через sampler генерируем сэпмл размера sample_size

Сортируем решения по возрастанию энергии

Оставляем первые elite_threshold процентов решений

Для каждой переменной находим среднее абсолютное значение во всех оставшихся решениях

Фиксируем те переменные, у которых среднее абсолютное значение превышает fixing_threshold

Обновляем h и J

return h, J, сопоставление фиксированных переменных с их значениями

Схема тестирования

- Фиксируем общее количество решений (total_num_anneals) и sample_size
- Сравниваем:
 - Лучшее total_num_anneals решений на исходной задаче
 - Лучшее из (total_num_anneals sample_size) решений задачи, которую построил SPVAR с параметром sample_size

Maxcut

Причина плохих результатов

Knapsack

Логистические задачи

Ссылка на Github

