Optimisation Discrete

David Wiedemann

Wl	nat is optimization?
1.1	New lagrange multipliers

1 What is optimization?

Given $f: X \to \mathbb{R}$ find

$$\max \{f(x) : x \in S\}$$
 where $S \subset \mathbb{R}^n$

f is called the objective function and S the feasible region.

The answer will be a point $x_0 \in S$ such that $f(x_0) \ge f(x)$ for all other $x \in S$.

A solution is anything you can plug into f.

A feasible solution is something in S and the x_0 would be called an optimal solution.

We consider feasible regions described by intersection of equalities and inequalities.

A constraint is "active" or "tight" if f satisfies it with equality.

1.1 New lagrange multipliers

We should try to satisfy $\nabla f = \sum_i \lambda_i \nabla g_i$ where $\lambda_i = 0$ whenever g_i is not active. Feasible regions split into nice ones and not so nice ones.

A region S is convex if $\forall x, y \in S$ and all $\lambda \in [0,1]$, then $\lambda x + (1-\lambda)y \in S$