Relatório de Análise de Algoritmos de Ordenação

Alunos: Bruno Santos, Salion De Conto e Vinicius Avellar

Este relatório apresenta uma análise de desempenho dos algoritmos de ordenação Bubble Sort, Insertion Sort e Quick Sort aplicados a três tipos de conjuntos de dados: aleatório, ordenado crescente e ordenado decrescente. Cada um dos conjuntos com três tamanhos: 100, 1000 e 10000. Os tempos de execução são em milissegundos (ms) para mostrar o comportamento comparativo entre os algoritmos.

Resultados de Tempo de Execução

Tipo de Conjunto de Dados	Bubble Sort	Insertion Sort	Quick Sort
Aleatório(100)	1152700 ms	60700 ms	41800 ms
Crescente(100)	4000 ms	46400 ms	19600 ms
Decrescente(100)	12300 ms	5300 ms	37800 ms
Aleatório(1000)	6834900 ms	2879000 ms	394400 ms
Crescente(1000)	167800 ms	46900 ms	653900 ms
Decrescente(1000)	1175100 ms	303800 ms	615200 ms
Aleatório(10000)	86261500 ms	31969900 ms	976700 ms
Crescente(10000)	16243300 ms	62600 ms	88738300 ms
Decrescente(10000)	91979200 ms	28692900 ms	49218500 ms

Como ilustrado, o Quick Sort, geralmente, apresenta o menor tempo de execução no conjunto de dados Aleatórios. O Insertion Sort é mais bem executado em conjuntos decrescentes. O Bubble Sort tende a aumentar o tempo de execução em conjuntos de dados não ordenados, sendo mais bem

executado nos conjuntos crescentes. Estes resultados exemplificam as diferenças gerais de eficiência esperadas entre os algoritmos em diferentes situações.