COMP 527 Crib Sheet	Case: $y: B \in (\Gamma, x: A, \Gamma')$ $x \neq y$		<u>a:τ</u> a	5 Type Uniqueness
by Julian Lore Side 1 of 1	$1, x: A, 1 \vdash y: B$	$\begin{array}{ccc} fst \ M \Longrightarrow fst \ M' & snd \ M \Longrightarrow snd \ M' \\ M \Longrightarrow M' & M \Longrightarrow M' \end{array}$	$ \begin{array}{ccc} \mathcal{D} \\ A(a) & \varepsilon & \Longrightarrow & [t/a]\mathcal{D} \end{array} $	If $\mathcal{D} :: \Gamma \vdash M : A$ and $\mathcal{E} :: \Gamma \vdash M : B$
1 Natural Deduction	$y: B \in (\Gamma, \Gamma')$	$ \begin{array}{ccc} \lambda x : A.M \implies \lambda x : A.M' & M N \implies M' N \\ N \implies N' & M \implies M' \end{array} $		then $A = B$.
	Γ , $\Gamma' \vdash y : B$ by variable Substitution lemma on terms: Re-	$M N \Longrightarrow M N'$ $inl^B M \Longrightarrow inl^B M'$	$A(t)$ $\forall E$	Pf by induction on typing derivation \mathcal{D} .
Rules: $\overline{\Gamma \vdash () : T} \stackrel{T}{} I$	place any occurrence of x with N	$\frac{M \Rightarrow M'}{inr^A M \Rightarrow inr^A M'}$ Case congru-	\mathcal{E}_1 \mathcal{E}_2 $\overline{A(a)}$ \mathbf{u} $\overline{a:\tau}$	\mathcal{D}'
$1 \vdash M : A \qquad 1 \vdash N : B $	Substitution lemma on judge-	ence rules omitted	$\frac{A(t) t:\tau}{\exists x:\tau A(x)} \exists 1 \qquad C \exists E^{u,a} \Rightarrow [\mathcal{E}_1/u]([t/a]\mathcal{D})$	Case: $\mathcal{D} = \underline{x : A \in \Gamma} u$
$1 \vdash \langle M, N \rangle : A \land B$	ments: Replace assump $N : A$ with		Completeness:	$M = x$ is a variable. $\mathcal{E} :: \Gamma \vdash x : B$
$\frac{\Gamma \vdash M : A \land B}{\Gamma \vdash fst \ M : A} \land E_l \frac{\Gamma \vdash M : A \land B}{\Gamma \vdash snd \ M : B} \land E_r$	proof \mathcal{E} establishing $N: A$		Completeness. \mathcal{D}	by assumption. Inversion on \mathcal{E} :
$\Gamma \dots \Lambda + M \cdot P$	2 Reduction Rules	3 Soundness and Completeness	\mathcal{D} $\forall x : \tau.A(x)$ $\overline{a : \tau}$	c ¹
$ \frac{\Gamma, u : A \vdash M : B}{\Gamma \vdash \lambda u : A \land B} \supset \Gamma^{u} $ $ \frac{\Gamma \vdash M : A \supset B}{\Gamma \vdash M : A \supset B} \qquad \Gamma \vdash N : A $ $ \supset E $	$M \implies M'$ means M reduces to		$\forall x : \tau.A(x) \implies \frac{\forall x : t.A(x)}{A(a)} \forall E$	$\mathcal{E} = \frac{x : B \in \Gamma}{\Gamma \vdash x : B} \mathbf{u}$
$\Gamma \vdash M \ N : B$ $\supset E$	M'	Rules should not allow us to de-		
$\neg A \equiv A \supset \bot \frac{\Gamma \vdash M : \bot}{\Gamma \vdash abort^C M : C} \perp E$		duce new truths (soundness,	\mathcal{D} \rightarrow \mathcal{D} $A(a)$ $a:\tau$	$+ av + \Gamma$ so $A = D$
$\Gamma \vdash abort^{\subset} M : C$	\mathcal{D}_1 \mathcal{D}_2	introduce connective and imme-	$\exists x : \tau. A(x) \implies \exists x : \tau. A(x) \qquad \exists x : \tau. A(x) \qquad \exists x : \tau. A(x)$	n,u D
$\frac{\Gamma \vdash M : A}{\Gamma \vdash int^{IA} \ M : A \lor B} \lor \mathbf{I}_{l} \qquad \frac{\Gamma \vdash M : B}{\Gamma \vdash inr^{B} \ M : A \lor B} \lor \mathbf{I}_{r}$	$\frac{M:A N:B}{\langle M,N\rangle:A\wedge B} \wedge I \implies M:A \text{ true}$ $fst \langle M,N\rangle:A \wedge E_l$	diately eliminate it, should be		$\underline{\text{Casc.}} \ \mathcal{D} = 1, \lambda . A \vdash M . D_1$
$\Gamma \vdash M : A \lor B$ $\Gamma, u : A \vdash N_l : C$ $\Gamma, v : B \vdash N_r : C$	$\langle M, N \rangle : A \wedge B$ $\wedge E_l$ $M : A true$	able to erase this detour, other-	4 Translating Systems	$\overline{\Gamma \vdash \lambda x : A'.M' : A' \supset B_1}$ $M = \lambda x : A'.M' \text{ and } A = A' \supset B_1.$
$\Gamma \vdash case \ M \ of \ inl^A \ u \to N_l \mid inr^B \ v \to N_r : C$ $\underline{x : A \in \Gamma} U \qquad \qquad \Gamma, a : \tau \vdash M : A(a) \text{ true}$	$ \begin{array}{c} fst\langle M,N\rangle:A\\ fst\langle M,N\rangle \Longrightarrow M \end{array} $	wise elim rules too strong) and	i irunstating systems	$\mathcal{E} :: \Gamma \vdash \lambda x : A'.M' : B \text{ by}$
Track A T D. 1 M M M M M	$snd\langle M,N\rangle \Longrightarrow N$	should be strong enough to obtain all information contained in a	$\frac{}{u:A}$ u	assumption. Inversion gives:
$\frac{\Gamma \vdash X : A \qquad \Gamma \vdash \lambda a : \tau.M : \forall x : \tau.A(x) \text{ true}}{\Gamma \vdash M : \forall x : \tau.A(x) \text{ true}} \frac{\Gamma \vdash t : \tau}{\forall E} \forall E$	$(\lambda x : A.M)N \Longrightarrow [N/x]M$	connective (completeness, elim		ε'
$I \vdash M \vdash A(t) \vdash T \cap A(t)$	case (inl ^A M) of inl ^A $x \rightarrow N_1$	connective s.t. it retains enough	Translate :	$\mathcal{E} = \frac{\Gamma, x : A' \vdash M' : B_2}{\Gamma}$
$\frac{\Gamma \vdash M : A(t) \text{ true}}{\Gamma \vdash A(t) \text{ true}} \frac{\Gamma \vdash t : \tau}{\Gamma \vdash (M, t) : \exists x : \tau. A(x) \text{ true}} \exists I$	$inr^B \stackrel{\vee}{V} \rightarrow N_r \Longrightarrow [M/x]N_l$	info to reintroduce, otherwise	$\frac{N:A M:C}{\text{let } u=N \text{ in } M:C} \text{ let}^u$ with normal ND.	$\Gamma \vdash \lambda x : A'.M' : A' \supset B_2$ So $B = A' \supset B_2$. IH on \mathcal{D}' and \mathcal{E}' ,
$\frac{\Gamma \vdash \langle M, t \rangle \cdot \exists X \cdot \tau \cdot A(x) \text{ true}}{\Gamma \vdash M : \exists X : \tau \cdot A(x) \text{ true}} \qquad \Gamma, a : \tau, w : A(a) \vdash N : C \text{ true}}{\Gamma \vdash let \langle u, a \rangle = M \text{ in } N : C \text{ true}} \exists E^{w,a}$, , ,	elim rules too weak).	WITH HOTHIAI ND.	get $B_1 = B_2'$. So $A = A' \supset B_1 = A' \supset$
$ \frac{\Gamma \vdash let \langle u, a \rangle = M \text{ in } N : C \text{ true}}{\text{Context } \Gamma ::= \cdot \mid \Gamma, u : A} $	$inr^B y \to N_r \Longrightarrow [M/y]N_r$	Examples	For common part of lang, we just	$B_2 = B$
	$(\lambda a: \tau.M)t \Longrightarrow [t/a]M$	Conjunction: Soundness \mathcal{D} \mathcal{E}	recursively translate subterms. $x^- = x$	\mathcal{D}_1 \mathcal{D}_2
Weakening Extra assumps		D C $A true B true D$	$\langle E_1, E_2 \rangle^- = \langle E_1, E_2^- \rangle$	<u>Case</u> : $\mathcal{D} = \Gamma \vdash M' : A_1 \supset B_1 \qquad \Gamma \vdash N : A_1$
don't matter. If $\Gamma, \Gamma' \vdash A$ then	[M/u][t/a]M	$\frac{A \text{ true}}{A \land B \text{ true}} \xrightarrow{A \land B \text{ true}} \land E_{l} \Rightarrow A \text{ true}$	$(fst E_1)^- = fst E_1^2$	$\Gamma \vdash M' \ N : B_1$
$\Gamma, u: B, \Gamma' \vdash A$	Subject reduction If $M \implies M'$	$\frac{A \wedge \mathcal{B} \text{ true}}{A \text{ true}} \wedge \mathbb{E}_l$	***	$M = M' N$ and $A = B_1$. Inversion:
Exchange Order of hypothe-		$\frac{A \text{ true}}{A \land B \text{ true}} \xrightarrow{B \text{ true}} \land I \implies \underset{B \text{ true}}{\mathcal{E}} \land \text{ true}$	(No need to translate contexts!)	\mathcal{E}_1 \mathcal{E}_2
tical assumps doesn't matter.		$\frac{A \land B \text{ true}}{B \text{ true}} \land E_r \qquad B \text{ true}$	For let: (let $u = E_1$ in E_2) ⁻ =	$\mathcal{E} = \frac{\Gamma \vdash M' : A_2 \supset B_2 \qquad \Gamma \vdash N : A_2}{\Gamma \vdash M' N : B_2}$
If $\Gamma, x : B_1, y : B_2, \Gamma' \vdash A$ then $\Gamma, y : B_2, x : B_1, \Gamma' \vdash A$		Completeness:	$[u/E_1^-]E_2^-$	$B = B_2$. By IH on \mathcal{D}_1 and \mathcal{E}_1 , get
Contraction Assump can be	congruence rules too, just ge-	\mathcal{D} \mathcal{D}	Now we prove that translation	$A_1 \supset B_1 = A_2 \supset B_2$. By injectivity
used as often as we like. If	neralize)	$ \frac{\mathcal{D}}{A \wedge B \text{ true}} \implies \frac{A \wedge B \text{ true}}{A \text{ true}} \wedge E_l \qquad \frac{A \wedge B \text{ true}}{B \text{ true}} \wedge 1 $	preserves provability. E_r If $\mathcal{D} :: \Gamma \vdash E : A$ then there exists $\mathcal{D}' :: \Gamma \vdash M : A$ where $M = E^-$	of \supset constructor, get $A_1 = A_2$ and
$\Gamma, x : B, y : B, \Gamma' \vdash A $ then	Case: $f st \langle M, N \rangle \Longrightarrow M$	$\frac{A \wedge B \text{ true}}{A \wedge B \text{ true}} \wedge 1$	$\mathcal{D}' :: \Gamma \vdash M : A \text{ where } M = E^-$	$A = B_1 = B_2 = B.$
$\Gamma, x : B, \Gamma' \vdash A$	$\Gamma \vdash fst \langle M, N \rangle : A \text{ by assumption}$ $\Gamma \vdash \langle M, N \rangle : A \land B \text{ inversion on } \land$	$\underbrace{\text{Implication:}}_{A \text{ true}} \text{ u}$ Soundness	Pf by structural induction on typ-	Case: $\mathcal{D} = \Gamma \vdash M' : A_1$
Substitution: $[N/\kappa]_{N} = N$	P ' '	A true : \mathcal{E}	ing deriv \mathcal{D}	$\frac{\Gamma \vdash inl^{B'}M' : A_1 \lor B'}{\Gamma \vdash inl^{B'}M' : A_1 \lor B'}$
[N/x]M = M', [N/x]x = N. Replace the "free" occurrence of x in	$\Gamma \vdash M : A \text{ by inversion of } \land I$	A tours	<u>Case:</u> $\mathcal{D} = \frac{x : A \in \Gamma}{\Gamma + x : A}$	$M = inl^{B'}N'$ and $A = A_1 \vee B'$. In-
M with N .	$\underline{\text{Case:}} \ (\lambda x : A.M)N \implies [N/x]M$	B true \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E} \mathcal{E}	Show $\Gamma \vdash x^- : A$. But by definition	\mathcal{E}'
Substitution thm : If $\Gamma, x : A, \Gamma' \vdash$	$\Gamma \vdash (\lambda x : A.M)N : B$ by assumption	$\frac{A \supset B \text{ true}}{B \text{ true}} \supset I^{**} \qquad A \text{ true}$	of \cdot , all we need is $\Gamma \vdash x : A$. But that is just \mathcal{D} . (this is why not	version: $\mathcal{E} = \Gamma \vdash M' : A_2$
$M : B \text{ and } \Gamma \vdash N : A \text{ then}$	$\Gamma \vdash \lambda x : A.M : A \supset B, \Gamma \vdash N : A$ by	Completeness	translating contexts here is good)	$\Gamma \vdash inl^{B'}M' : A_2 \lor B'$
$\Gamma, \Gamma' \vdash [N/x]M : B$. Pf by structural induction on	inversion on \supset E Γ , $x : A \vdash M : B$ by inversion on \supset I	α	\mathcal{D}'	$B = A_2 \vee B'$. By IH on \mathcal{D}' and \mathcal{E}' ,
$\Gamma, x : A, \Gamma' \vdash M : B$	$\Gamma \vdash [N/x]M : B$ by substituti-	$\begin{array}{ccc} \alpha & \longrightarrow & A \supset B \text{ true} & \overline{A \text{ true}} & u \\ A \supset B \text{ true} & \longrightarrow & \underline{B \text{ true}} & \supset \underline{I}^u \end{array} \supset E$	E <u>Case</u> : $\Gamma \vdash E : A \land B$	$A_1 = A_2$ so $A = A_1 \lor B' = A_2 \lor B' = B$ Case: for \lor elim, only need to use
\mathcal{D}'	on lemma (on above line and	$A \supset B$ true	IH on \mathcal{D}' , get $\mathcal{E}' :: \Gamma \vdash M : A \land B$	$\overline{\text{IH}}$ on N_l or N_r to get equality of
Case: $\Gamma, x : A, \Gamma' \vdash M : C \land D \land E_l$	$\Gamma \vdash N : A)$	— 11 — V	where $M = E^-$. Then:	deduced term.
$1, x : A, 1 \vdash f st M : C$	Case: $\frac{M \Longrightarrow M'}{1 + M}$	Λ C T $[\mathcal{D}/\mu]$	$_{\mathcal{E}}$ \mathcal{E}'	6 Misc
$\Gamma, \Gamma' \vdash [N/x]M : C \land D \text{ by IH}$	$\frac{\text{Case.}}{\Gamma \vdash \lambda x : A.M : A \supset B \text{ by assumpti-}}$	$A \vee B \vee I_l \qquad C \qquad C \vee F^{u,v} \longrightarrow C \text{ true}$	$ \begin{array}{c} e & \underline{\Gamma \vdash M : A \land B} \\ \Gamma \vdash fst M : A \end{array} $	Defining proof terms for a new ty-
$\Gamma, \Gamma' \vdash fst ([N/x]M) : C \text{ by } \land E_l$ $\Gamma, \Gamma' \vdash [N/x](fst M) : C \text{ by definiti-}$	on	— u — v	\mathcal{D}_1 \mathcal{D}_2	pe: they should be distinct from
on of substitution	Γ , $x : A \vdash M : B$ by inversion on $\supset I$	\mathcal{E} \mathcal{E} \mathcal{E} $[\mathcal{D}/v]$	\mathcal{F} <u>Case:</u> $\Gamma \vdash E_1 : C$ $\Gamma, u : C \vdash E_2 : A$	other terms in the language so you
Case: $\frac{x: A \in (\Gamma, x: A, \Gamma')}{\sum_{i=1}^{n} A_i \sum_{i=1}^{n} A_$	$\Gamma, x : A \vdash M' : B \text{ by IH}$	$A \vee B \vee 1_r$ C C $C \vee E^{u,v}$ C tru	$\Gamma \vdash let \ u = E_1 \ in \ E_2 : A$	can't distinguish which rules correspond to which terms.
$1, x: A, 1 \vdash x: A$	$\Gamma \vdash \lambda x : A.M' : A \supset B \text{ by } \supset I$	Completeness	IH on \mathcal{D}_1 , get $\mathcal{E}_1 :: \Gamma \vdash M_1 : C$ and	When proving with many cases,
$\Gamma \vdash N : A$ by assumption	Congruence Rules		IH on \mathcal{D}_2 , get $\mathcal{E}_2 :: \Gamma, u : C \vdash M_2 : A$	show representative cases, i.e. all
$\Gamma, \Gamma' \vdash N : A$ by weakening	Get a congruence rule for every subterm of proof terms	$ \begin{array}{cccc} \mathcal{D} & \xrightarrow{\mathcal{D}} & & \overline{A \text{ true}} & \mathbf{u} & & \overline{B \text{ true}} & \mathbf{v} \mathbf{I}_{I} \\ A \lor B & & \overline{A \lor B} & & \overline{A \lor B} & \mathbf{v} \mathbf{I}_{I} \end{array} $	where $M_i = E_i^-$. Substitution lemma on E_i and E_i^- get	cases where something interesting
$\Gamma, \Gamma' \vdash [N/x]x : A$ by substitution definition	34 . 34	Soundness: quantifiers $A \vee B$	on lemma on \mathcal{E}_1 and \mathcal{E}_2 , get $\mathcal{E} \cdot \Gamma \vdash [M_1/\mu]M_2 : A$	happens and one of each kind of "boring" case
uemmilli	$\frac{M \Longrightarrow M}{\langle M \text{ NI} \rangle \longrightarrow \langle M' \text{ NI} \rangle} = \frac{N \Longrightarrow N}{\langle M \text{ NI} \rangle \longrightarrow \langle M \text{ NI}' \rangle}$	Jounaness, quantiners	$\mathcal{E} :: \Gamma \vdash [M_1/u]M_2 : A.$	"boring" case.