Taylor **Howell**

【 (+1) 801 · 300 · 9431 | ■ taylor.athaniel.howell@gmail.com | 🗥 thowell.github.io | 🖸 thowell

Summary_

My research is focused on embodied intelligence and the development of optimization-based tools for simulation, planning, and control for robotic systems. My expertise include: numerical optimization, technical computing, automatic control, and modeling of dynamical systems.

Education

Stanford University Stanford, CA, USA

Ph.D. IN MECHANICAL ENGINEERING Sept. 2017 - Dec. 2022

- · Advisors: Zachary Manchester, Allison Okamura
- Dissertation: Numerical Optimization For Things That Move: Simulation, Planning, and Control

Stanford University Stanford, CA, USA

M.S. IN MECHANICAL ENGINEERING

· Automatic Controls, Robotics

University of Utah Salt Lake City, UT, USA

B.S. IN MECHANICAL ENGINEERING

· Summa Cum Laude

• Capstone Project: Wireless Power for Aerial Robots

May 2013 - Dec. 2016

Sept. 2017 - June. 2019

Research_

Robotic Exploration Lab, Stanford University

Stanford, CA, USA

May 2018 - Dec. 2022

My research is focused on embodied intelligence and developing optimization-based tools for simulation, planning, and control of robotic systems. Currently, I am working on algorithms for fast model-predictive control, solvers for non-convex planning problems, and differentiable physics engines.

Telerobotics Laboratory, University of Utah

Salt Lake City, UT, USA

RESEARCH ASSISTANT

Oct. 2015 - Dec. 2016

I devised and implemented a control scheme to sort swarms of microrobots using rotating uniform magnetic fields for minimally invasive medical applications. This work included: applied physics, simulation, nonlinear optimization, fabrication of a scaled microrobot swarm, and writing C++ code to control a tri-axial Helmholtz-coil system.

Utah Center of Excellence for Biomedical Microfluidics, University of Utah

Salt Lake City, UT, USA

RESEARCH ASSISTANT

Sept. 2014 - Oct. 2015

I designed and built a forty-eight-syringe pump for a medical microfluidic system, developed standard operating procedures for a highthroughput drug screening and cytotoxicity evaluation system, and performed statistical analysis for ovarian-cancer cell experiments.

Experience ____

DeepMind London, United Kingdom

RESEARCH SCIENTIST INTERN

June. 2022 - Sept. 2022

- · MuJoCo robotics simulation team
- Project: MuJoCo MPC

Google Brain

San Francisco, CA, USA (remote)

RESEARCH INTERN

June. 2021 - Sept. 2021

· Project: Planning with differentiable optimization-based dynamics

MAY 15, 2023 TAYLOR HOWELL · CURRICULUM VITAE

Department of Aeronautics and Astronautics, Stanford University

Stanford, CA, USA Apr. 2021 - Jun. 2021

COURSE ASSISTANT - DYNAMICS AND CONTROL OF AIRCRAFT (AA271A)

- · held office hours four times per week
- · graded assignments and exams

Department of Computer Science, University of Utah

Salt Lake City, UT, USA Jun. 2017 - Jul. 2017

INSTRUCTOR - GREAT SUMMER CAMP

- · led a teaching team of three
- taught practical robotics and programming skills to elementary school students using the LEGO Mindstorm platform
- developed projects and challenges for FLL skills, telerobotics, and kinetic-art themed weeks

DesignerDraper, UT, USA

TWISTY PUZZLES Aug. 2007 - Jan. 2011

- designed and built twisty puzzles with selling prices ranging from \$25 \$850
- exhibited my work at the community's premier international event: Dutch Cube Day 2008

Publications _____

Lead / Co-Lead

Predictive Sampling: Real-time Behaviour Synthesis with MuJoCo, T. Howell, N. Gileadi, S. 2022

Tunyasuvunakool, K. Zakka, T. Erez, Y. Tassa. arXiv.

CALIPSO: A Differentiable Solver for Trajectory Optimization with Conic and Complementarity

Constraints, T. Howell, K. Tracy, S. Le Cleac'h. ISRR.

Dojo: A Differentiable Physics Engine for Robotics, T. Howell*, S. Le Cleac'h*, Z. Kolter, M. Schwager, Z.

Manchester. arXiv.

Trajectory Optimization with Optimization-Based Dynamics, T. Howell, S. Le Cleac'h, S. Singh, P.

Florence, Z. Manchester, V. Sindhwani. RAL.

 $\textbf{Fast Contact-Implicit Model-Predictive Control}, S.\ Le\ Cleac'h^*, T.\ Howell^*, M.\ Schwager, Z.\ Manchester.$

arXiv.

Direct Policy Optimization using Deterministic Sampling and Collocation, T. Howell, C. Fu, Z.

Manchester. RAL.

Scalable Cooperative Transport of Cable-Suspended Loads with UAVs using Distributed Trajectory

Optimization, B. Jackson*, T. Howell*, K. Shah, M. Schwager, Z. Manchester. RAL.

ALTRO: A Fast Solver for Constrained Trajectory Optimization, T. Howell*, B. Jackson*, Z. Manchester.

ICRA.

 $\textbf{Sorting Rotating Micromachines By Variations in Their Magnetic Properties,} \ \textbf{T. Howell, B. Osting, J.} \\$

Abbott. Physical Review Applied.

Contributions

RoboPianist: A Benchmark for High-Dimensional Robot Control, K. Zakka, L. Smith, N. Gileadi, T. Howell,

X. B. Peng, S. Singh, Y. Tassa, P. Florence, A. Zeng, P. Abbeel. arXiv.

Differentiable Collision Detection for a Set of Convex Primitives, K. Tracy, T. Howell, Z. Manchester. ICRA.

Differentiable Physics Simulation of Dynamics-Augmented Neural Objects, S. Le Cleac'h, HX Yu, M. Guo,

T. Howell, R. Gao, J. Wu, Z. Manchester, M. Schwager. arXiv.

Use of a highly parallel Microfluidic Flow Cell Array to determine therapeutic drug dose response

curves, J. Arellano, T. Howell, J. Gammon, S. Cho, M. Janat Amsbury, B. Gale. Biomedical Microdevices.

Skills

2022

Programming C/C++, Julia, Python

Computational LTEX, Git, Linux, SNOPT, Ipopt, CVX/Convex.jl, MeshCat, MuJoCo, JAX, Solidworks, VSCode, Arduino

Fabrication Mill, Lathe, Vacuum Forming, Laser Cutting, Mold Making and Casting, Metal Sheet Fabrication

Community Outreach _____

- 2019 **Co-organizer,** of Social Impact Night event at Stanford University to connect social-impact focused students and entrepreneurs
- Mentor, to three summer interns at the Telerobotics Laboratory and developed soft robots with potential as catheter tips that will increase insertion distance deep in the brain and other hard-to-reach locations in the body
- 2015 Science-fair Judge, for local elementary school to provide feedback to students about their projects

Fellowships & Scholarships

Stanford Graduate Fellowship (2017 – 2018) · University of Utah Undergraduate Research Opportunities Program Fellowship (2016) · The Boeing Company Scholarship (2016) · Shirley L. & Kathelyne O. Evans Endowed Scholarship (2016) · Big Ten+ Grad Expo Travel Scholarship (2016) · University of Utah Presidential Scholarship (2013 – 2016)

Coursework _

Convex Optimization · Optimal Control · Nonlinear Control · Advanced Software Development · Engineering Design Optimization · Deep Learning · State Estimation · Principles of Robotic Autonomy · Introduction to Mechatronics · Linear Dynamical Systems · Introduction to Robotics · Machine Learning · Decision Making Under Uncertainty · Control Design Techniques · Advanced Robotic Manipulation · Advanced Feedback Control · Introduction to Optimization · Experimental Robotics · Multi-robot Systems · State Space Control · Design of Experiments · Introduction to Finite Element Method · Programming for Engineers · RL for Stochastic Control in Finance