Rezolvencia

12. prednáška · Matematika (4): Logika pre informatikov

Ján Kľuka, Ján Mazák

Letný semester 2021/2022

Univerzita Komenského v Bratislave Fakulta matematiky, fyziky a informatiky Katedra aplikovanej informatiky

Obsah 12. prednášky

Rezolvencia

Rezolvencia vo výrokovej logike

Prevod do klauzálnej teórie a skolemizácia

Rezolvencia v logike prvého rádu

Rezolvencia

Automatické dokazovanie v logike prvého rádu

Vyplývanie vo výrokovej logike je rozhodnuteľné.

SAT solver vždy skončí a rozhodne splniteľnosť, v najhoršom prípade v čase $O(2^n)$ pre n atómov.

Logika prvého rádu nie je rozhodnuteľná.

- Prvorádovými formulami sa dá opísať fungovanie Turingovho stroja.
- Dá sa nájsť formula, ktorá opisuje, že TS zastaví na každom vstupe.

Existujú však prvorádové automatické dokazovače (Prover9, Vampire).

Nemusia zastaviť, ale ak existuje dôkaz vyplývania, teoreticky ho nájdu.

Ako fungujú automatické dokazovače v logike prvého rádu

Prvé automatické dokazovače využívali prvorádovú verziu DPLL.

Niektoré automatické dokazovače využívajú modifikované tablá.

Väčšina automatických dokazovačov (aj Prover9 a Vampire) je ale založená na rezolvencii:

- špeciálne pravidlo na klauzulách,
- kombinuje výrokové a kvantifikátorové odvodzovanie.

Rezolvenčný dôkaz je lineárny, nevetví sa.

Rezolvencia

Rezolvencia vo výrokovej logike

Tranzitivita implikácie

Vráťme sa k neoznačeným formulám.

Je nasledujúce pravidlo korektné?

$$\frac{(A \to B) \qquad (B \to C)}{(A \to C)}$$

Nahraďme implikácie disjunkciami:

$$\frac{(\neg A \lor B) \qquad (\neg B \lor C)}{(\neg A \lor C)}$$

Rezolvencia

Predchádzajúce pravidlo sa dá zovšeobecniť na ľubovoľné dvojice klauzúl:

Definícia 14.1

Rezolvenčný princíp (rezolvencia, angl. resolution principle) je pravidlo

$$\frac{(K_1 \vee \cdots \vee A \vee \cdots \vee K_m) \quad (L_1 \vee \cdots \vee \neg A \vee \cdots \vee L_n)}{(K_1 \vee \cdots \vee K_m \vee L_1 \vee \cdots \vee L_n)}$$

pre ľubovoľný atóm Aa ľubovoľné literály $K_1, \ldots, K_m, L_1, \ldots, L_n$.

Klauzulu $(K_1 \lor \cdots \lor K_m \lor L_1 \lor \cdots \lor L_n)$ nazývame rezolventou klauzúl $(K_1 \lor \cdots \lor A \lor \cdots \lor K_m)$ a $(L_1 \lor \cdots \lor \neg A \lor \cdots \lor L_n)$.

Tvrdenie 14.2

Rezolvencia je korektné pravidlo.

Špeciálne prípady rezolvencie

Viacero pravidiel sa dá chápať ako špeciálne prípady rezolvencie:

$$\frac{(\neg A \lor B) \quad (\neg B \lor C)}{(\neg A \lor C)} \qquad \frac{(A \to B) \quad (B \to C)}{(A \to C)} \qquad \text{(HS)}$$

$$\frac{(\neg A \lor B) \quad A}{B} \qquad \frac{(A \to B) \quad A}{B} \qquad \text{(MP)}$$

$$\frac{(\neg A \lor B) \quad \neg B}{\neg A} \qquad \frac{(A \to B) \quad \neg B}{\neg A} \qquad \text{(MT)}$$

Pozorovania o rezolvencii

• Rezolvencia s jednotkovou klauzulou skráti druhú klauzulu:

$$\begin{array}{ccc}
\neg B & (A \lor B \lor \neg C) \\
\hline
(A \lor \neg C)
\end{array}$$

Rezolvencia môže odvodiť prázdnu klauzulu:

$$\frac{\neg A \quad A}{\Box}$$

vtedy premisy nie sú súčasne splniteľné

 Nie každý logický dôsledok sa dá odvodiť rezolvenciou: {A, B} ⊨ (A ∨ B)

Častá chyba pri rezolvencii

Niektoré dvojice klauzúl možno rezolvovať na viacerých literáloch:

ale je chyba urobiť to naraz:

Toto nie je inštancia rezolvencie ani korektný úsudok.

Prečo?

Častá chyba pri rezolvencii

Niektoré dvojice klauzúl možno rezolvovať na viacerých literáloch:

ale je chyba urobiť to naraz:

Toto nie je inštancia rezolvencie ani korektný úsudok.

Prečo?

Lebo
$$\{(\neg p \lor q), (p \lor \neg q)\}$$
 je ekvivalentná $p \leftrightarrow q$ a je splniteľná $(v_1 = \{p \mapsto t, q \mapsto t\}, v_2 = \{p \mapsto f, q \mapsto f\})$, ale \square je nesplniteľná.

Rezolvenčné odvodenie a problém

Opakovaním rezolvencie môžeme odvodzovať ďalšie dôsledky:

```
Príklad 14.3
```

Z množiny $S = \{(A \lor B), (\neg A \lor C), (\neg B \lor A), (\neg A \lor \neg C)\}$ odvodíme:

- (1) $(A \vee B)$ predpoklad z S
- (2) $(\neg A \lor C)$ predpoklad z S
- (3) $(\neg B \lor A)$ predpoklad z S
- (4) $(\neg A \lor \neg C)$ predpoklad z S
- (5) $(A \lor A)$ rezolventa (3) a (1)
- (6) $(B \lor C)$ rezolventa (1) a (2)
- (7) $(B \lor \neg C)$ rezolventa (1) a (4)
- (8) $(B \lor B)$ rezolventa (6) a (7)
 - :

Problematické prípady

Odvodeniami v príklade dostaneme iba existujúce alebo nové dvojprvkové klauzuly ($(A \lor A), (B \lor C), (B \lor B), \ldots$) ale žiadnu jednotkovú, lebo rezolventa má m + n - 2 literálov.

 $S=\{(A\vee B),(\neg A\vee C),(\neg B\vee A),(\neg A\vee \neg C)\} \text{ je ale nesplniteľná,}$ mali by sme nejak odvodiť prázdnu klauzulu.

To sa nedá bez odvodenia nejakej jednotkovej klauzuly (napr. A).

Klauzula $(A \lor A)$ je evidentne ekvivalentná s A;

 ${\cal A}$ sa ale z množiny ${\cal S}$ iba rezolvenciou odvodiť nedá.

Potrebujeme ešte *pravidlo idempotencie*:

$$\frac{(K_1 \vee \cdots \vee \mathbf{L} \vee \cdots \vee \mathbf{L} \vee \cdots \vee K_n)}{(K_1 \vee \mathbf{L} \vee \cdots \vee K_n)}$$

Rezolvenčné odvodenie a zamietnutie

Definícia 14.4

Výrokovologické rezolvenčné odvodenie z množiny klauzúl S je každá (aj nekonečná) postupnosť klauzúl $C_1, C_2, \dots, C_n, \dots$, ktorej každý člen C_i je:

- prvkom S alebo
- rezolventou dvoch predchádzajúcich klauzúl C_j a C_k pre j < i a k < i, alebo
- záverom pravidla idempotencie pre nejakú predchádzajúcu klauzulu $C_j,\,j< i.$

Zamietnutím (angl. refutation) množiny klauzúl S je konečné rezolvenčné odvodenie, ktorého posledným prvkom je prázdna klauzula \square .

Rezolvenčné zamientnutie

Príklad 14.5

Nech $S = \{(A \lor B), (\neg A \lor C), (\neg B \lor A), (\neg A \lor \neg C)\}.$

Kombináciou rezolvencie a idempotencie nájdeme zamietnutie S:

- (1) $(A \lor B)$ predpoklad z S
- (2) $(\neg A \lor C)$ predpoklad z S
- (3) $(\neg B \lor A)$ predpoklad z S
- (4) $(\neg A \lor \neg C)$ predpoklad z S
- (5) $(A \lor A)$ rezolventa (3) a (1)
- (6) A idempotencia (5)
- (7) C rezolvencia (6) a (2)
- (8) ¬*C* rezolvencia (6) a (4)
- (9) rezolvencia (7) a (8)

Korektnosť a úplnosť rezolvencie

Množinu klauzúl nazývame aj klauzálna teória.

Veta 14.6 (Korektnosť a úplnosť rezolvencie)

Nech S je množina klauzálna teória.

S je výrokovologicky nesplniteľná vtt existuje zamietnutie S.

Už vieme, že ku každej formule (a teórii) existuje ekvivalentná klauzálna teória (formula v CNF). Výrokovologická splniteľnosť a vyplývanie sa teda dajú rozhodnúť pomocou rezolvencie.

Vyskúšajte si 14.1

Dokážte nesplniteľnosť

$$S = \{(A \lor B \lor \neg C), (\neg A \lor \neg C), (A \lor \neg B), (\neg A \lor C), (A \lor B \lor C)\}.$$

Rezolvencia

Prevod do klauzálnej teórie a skolemizácia

Rezolvencia vs. prvorádové teórie

Výrokovologická rezolvencia pracuje s klauzálnymi teóriami.

Výrokovologickú teóriu ľahko upravíme na klauzálnu — ekvivalentnými úpravami do CNF.

Ale čo s formulami v logike prvého rádu, kde sú spojky zložito skombinované s kvantifikátormi?

Prvorádové klauzuly a klauzálne teórie

Ujasnime si najprv, aký tvar chceme dosiahnuť.

Definícia 14.7

Nech \mathcal{L} je jazyk logiky prvého rádu.

Literál je atomická formula $P(t_1, ..., t_m)$ jazyka \mathcal{L} alebo jej negácia $\neg P(t_1, ..., t_m)$.

Klauzula je všeobecný uzáver disjunkcie literálov, teda uzavretá formula jazyka \mathcal{L} v tvare $\forall x_1 \cdots \forall x_k (L_1 \vee \cdots \vee L_n)$ kde L_1, \ldots, L_n sú literály a x_1, \ldots, x_k sú všetky voľné premenné formuly $L_1 \vee \cdots \vee L_n$. Klauzula môže byť ai jednotková $(\forall \vec{x} \ L_1)$ alebo prázdna (\Box) .

Klauzálna teória je množina klauzúl $\{C_1, \dots, C_n\}$.

Môže byť tvorená aj jedinou klauzulou alebo byť prázdna.

Prvorádová ekvivalencia

Postupovať budeme podobne ako vo výrokovologickom prípade: Postupne odstránime z teórie implikácie, negácie zložených formúl, existenčné kvantifikátory, disjunkcie konjunkcií, vnorené všeobecné kvantifikátory.

Podľa možnosti budeme používať ekvivalentné úpravy v prvorádovom zmysle:

Definícia 14.8 (Prvorádová ekvivalencia)

Množiny formúl S a T sú (prvorádovo) ekvivalentné ($S \Leftrightarrow T$) vtt pre každú štruktúru \mathcal{M} a každé ohodnotenie e platí $\mathcal{M} \models S[e]$ vtt $\mathcal{M} \models T[e]$.

Tvrdenie 14.9 (Ekvivalentná úprava)

Nech X, A, B sú formuly a nech free(A) = free(B).

 $\mathsf{Ak}\ A \Leftrightarrow B, \, \mathsf{tak}\ X \Leftrightarrow X[\ A \mid B\].$

Nahradenie implikácií

Rovnako ako vo výrokovej logike môžeme každú formulu $(A \to B)$ ekvivalentne nahradiť formulou $(\neg A \lor B)$.

$$\forall x (\mathsf{dobr} e(x) \land \mathsf{dieta}(x) \to \exists y (\mathsf{dostane}(x,y) \land \mathsf{darček}(y))) \\ \Leftrightarrow \forall x (\neg(\mathsf{dobr} e(x) \land \mathsf{dieta}(x)) \lor \exists y (\mathsf{dostane}(x,y) \land \mathsf{darček}(y))) \\ \forall x (\neg \mathsf{dobr} e(x) \to \neg \exists y \, \mathsf{dostane}(x,y)) \\ \Leftrightarrow \forall x (\neg \neg \mathsf{dobr} e(x) \lor \neg \exists y \, \mathsf{dostane}(x,y))$$

Konverzia do negačného normálneho tvaru (NNF)

Definícia 14.11

Formula X je v negačnom normálnom tvare (NNF) vtt neobsahuje implikáciu a pre každú jej podformulu $\neg A$ platí, že A je atomická formula.

Formulu bez implikácií do NNF upravíme pomocou

de Morganovych zákonov pre spojky:

$$\neg (A \land B) \Leftrightarrow \neg A \lor \neg B \qquad \qquad \neg (A \lor B) \Leftrightarrow \neg A \land \neg B$$

pravidla dvojitej negácie:

$$\neg \neg A \Leftrightarrow A$$

zovšeobecnení de Morganovych zákonov pre kvantifikátory:

$$\neg \exists x A \Leftrightarrow \forall x \neg A$$
 $\neg \forall x A \Leftrightarrow \exists x \neg A$

Konverzia do NNF

Tyrdenie 14.12

Pre každú formulu X existuje formula Y v NNF taká, že $X \Leftrightarrow Y$.

```
\forall x (\neg(\mathsf{dobr} e(x) \land \mathsf{diefa}(x)) \lor \exists y (\mathsf{dostane}(x,y) \land \mathsf{dar\check{c}ek}(y))) \\ \Leftrightarrow \forall x ((\neg \mathsf{dobr} e(x) \lor \neg \mathsf{diefa}(x)) \lor \exists y (\mathsf{dostane}(x,y) \land \mathsf{dar\check{c}ek}(y))) \\ \forall x (\neg \neg \mathsf{dobr} e(x) \lor \neg \exists y \, \mathsf{dostane}(x,y)) \\ \Leftrightarrow \forall x (\mathsf{dobr} e(x) \lor \forall y \neg \mathsf{dostane}(x,y))
```

Skolemizácia

Skolemizácia (podľa nórskeho logika Thoralfa Skolema) je úprava formuly X v NNF, ktorou nahradíme existenčné kvantifikátory novými konštantami alebo funkčnými symbolmi.

Podobá sa pravidlu δ v tablách, ale aplikuje sa naraz na všetky existenčné kvantifikátory.

Výsledná formula je v novom, rozšírenom jazyku.

Nie je ekvivalentná s pôvodnou, ale je ekvisplniteľná.

Definícia 14.14 (Prvorádová ekvisplniteľnosť)

Množiny formúl S a T sú (prvorádovo) rovnako splniteľné (ekvisplniteľné, equisatisfiable) vtt S má model vtt T má model.

Skolemizácia – skolemovská konštanta

Ľahký prípad (v podstate pravidlo δ):

Vo formule X sa vyskytuje $\exists y\,A$ mimo všetkých oblastí platnosti všeobecných kvantifikátorov.

- Pridáme do jazyka novú, skolemovskú konštantu c (nebola doteraz v jazyku v žiadnej úlohe).
- 2. Každý výskyt podformuly $\exists y \ A \ v \ X \ \text{mimo}$ všetkých oblastí platnosti všeobecných kvantifikátorov nahradíme formulou

$$A\{v \mapsto c\}$$

Konštanta c pomenúva objekt, ktorý existuje podľa $\exists y A$.

Príklad 14.15

```
\exists x (dobré(x) \land dieťa(x))
```

→ dobré(nejaké_dobré_dieťa) ∧ dieťa(nejaké_dobré_dieťa)

Skolemizácia – skolemovská funkcia

Vo formule X sa vyskytuje $\exists y \ A \ v \ oblasti platnosti všeobecných kvantifikátorov premenných <math>x_1, \ldots, x_n$:

$$X = \cdots \forall x_1 (\cdots \forall x_2 (\cdots \forall x_n (\cdots \exists y A \cdots) \cdots) \cdots)$$

- 1. Pridáme do jazyka nový funkčný symbol, skolemovskú funkciu f.
- 2. Každý výskyt $\exists y \ A \ v \ X \ v$ oblasti platnosti kvantifikátorov $\forall x_1, \dots, \forall x_n$ nahradíme formulou

$$A\{y \mapsto f(x_1, x_2, \dots, x_n)\}\$$

Funkcia f pomenúva priradenie objektu y objektom $x_1, ..., x_n$.

$$\forall x (\neg dobr\acute{e}(x) \lor \neg die \emph{\'e}(x) \lor \exists y (dostane(x, y) \land dar \ensuremath{\check{e}}(y)))$$
 $\Rightarrow \forall x (\neg dobr\acute{e}(x) \lor \neg die \emph{\'e}(x) \lor (dostane(x, \ensuremath{\check{d}}ar \ensuremath{\check{e}} e \ensuremath{\check{e}}_p re(x)) \land dar \ensuremath{\check{e}} e \ensuremath{\check{e}}_p re(x))))$

Skolemizácia

Tyrdenie 14.17

Pre každú uzavretú formulu X v jazyku $\mathcal L$ existuje formula Y vo vhodnom rozšírení $\mathcal L'$ jazyka $\mathcal L$ taká, že Y neobsahuje existenčné kvantifikátory a X a Y sú ekvisplniteľné.

Príklad 14.18

$$\exists z \Big(R(z,z) \land \forall x \Big(\neg R(x,z) \lor \exists u (R(x,u) \land R(u,z)) \\ \lor \forall y \ \exists v (\neg R(y,v) \land R(x,v)) \\ \lor \exists v \ \forall w (R(x,v) \land R(v,w)) \Big) \Big)$$

→→ ...?

Konverzia do PNF

Definícia 14.19

Formula X je v prenexnom normálnom tvare (PNF) vtt má tvar $Q_1x_1\ Q_2x_2\cdots Q_nx_n\ A$, kde $Q_i\in\{\forall,\exists\},\ x_i$ je premenná a A je formula bez kvantifikátorov (matica formuly X).

Skolemizovanú formulu v NNF upravíme do PNF opakovanou aplikáciou nasledujúcich transformácií:

• ak x nemá voľný výskyt v B,

$$(\forall x \, A \land B) \Leftrightarrow \forall x \, (A \land B) \qquad (B \land \forall x \, A) \Leftrightarrow \forall x \, (B \land A)$$
$$(\forall x \, A \lor B) \Leftrightarrow \forall x \, (A \lor B) \qquad (B \lor \forall x \, A) \Leftrightarrow \forall x \, (B \lor A)$$

ullet ak sa x má voľný výskyt v B a y je nová premenná,

$$(\forall x \, A \land B) \Leftrightarrow (\forall y \, A\{x \mapsto y\} \land B) \quad (B \land \forall x \, A) \Leftrightarrow (B \land \forall y \, A\{x \mapsto y\})$$
$$(\forall x \, A \lor B) \Leftrightarrow (\forall y \, A\{x \mapsto y\} \lor B) \quad (B \lor \forall x \, A) \Leftrightarrow (B \lor \forall y \, A\{x \mapsto y\})$$

Konverzia do PNF

Tvrdenie 14.20

Pre každú formulu X v NNF bez existenčných kvantifikátorov existuje ekvivalentná formula Y v PNF a NNF.

Príklad 14.21

$$\forall x (\text{dobr} \dot{e}(x) \lor \forall y \neg \text{dostane}(x, y))$$

 $\Leftrightarrow \forall x \forall y (\text{dobr} \dot{e}(x) \lor \neg \text{dostane}(x, y))$

Pozor! Pre ekvivalentnosť prenexovania je nutné, aby boli premenné viazané rôznymi kvantifikátormi rôzne:

$$(\forall x \, A(x) \lor \forall x \, B(x)) \not\approx \forall x \, (A(x) \lor B(x))$$

$$(\forall x \, A(x) \lor \forall x \, B(x)) \Leftrightarrow \forall x \, (A(x) \lor \forall x \, B(x))$$

$$\Leftrightarrow \forall x \, \forall y \, (A(x) \lor B(y))$$

Prenexujte po jednom alebo premenujte premenné (ešte pred skolemizáciou)

Konverzia do CNF

Maticu (najväčšiu podformulu bez kvantifikátorov) formuly v PNF upravíme do CNF pomocou distributívnosti a komutatívnosti disjunkcie:

$$(A \lor (X \land Y)) \Leftrightarrow ((A \lor X) \land (A \lor Y))$$
$$((X \land Y) \lor A) \Leftrightarrow ((X \lor A) \land (Y \lor A))$$

```
 \forall x (\neg \mathsf{dobr} \dot{\mathsf{e}}(x) \lor \neg \mathsf{dieta}(x) \lor \\ (\mathsf{dostane}(x, \mathsf{dar\check{c}ek\_pre}(x)) \land \mathsf{dar\check{c}ek}(\mathsf{dar\check{c}ek\_pre}(x)))) ) \\ \Leftrightarrow \forall x ((\neg \mathsf{dobr} \dot{\mathsf{e}}(x) \lor \neg \mathsf{dieta}(x) \lor \mathsf{dostane}(x, \mathsf{dar\check{c}ek\_pre}(x))) \land \\ (\neg \mathsf{dobr} \dot{\mathsf{e}}(x) \lor \neg \mathsf{dieta}(x) \lor \mathsf{dar\check{c}ek}(\mathsf{dar\check{c}ek\_pre}(x)))))
```

Konverzia do klauzálnej teórie

Formula, ktorej matica je v CNF, je ekvivalentná s konjunkciou klauzúl:

$$\forall x(A \land B) \Leftrightarrow (\forall x A \land \forall x B)$$

a konjunkcia klauzúl je ekvivalentná s ich množinou:

$$\{(\forall x \, A \land \forall x \, B)\} \Leftrightarrow \{\forall x \, A, \forall x \, B\}$$

```
 \{ \forall x ( (\neg dobr\acute{e}(x) \lor \neg die \emph{ta}(x) \lor dostane(x, dar \emph{cek\_pre}(x))) \land \\ (\neg dobr\acute{e}(x) \lor \neg die \emph{ta}(x) \lor dar \emph{cek}(dar \emph{cek\_pre}(x)))) \} 
 \Leftrightarrow \{ (\forall x (\neg dobr\acute{e}(x) \lor \neg die \emph{ta}(x) \lor dostane(x, dar \emph{cek\_pre}(x)))) \land \\ \forall x (\neg dobr\acute{e}(x) \lor \neg die \emph{ta}(x) \lor dar \emph{cek}(dar \emph{cek\_pre}(x)))) \} 
 \Leftrightarrow \{ \forall x (\neg dobr\acute{e}(x) \lor \neg die \emph{ta}(x) \lor dostane(x, dar \emph{cek\_pre}(x))), \\ \forall x (\neg dobr\acute{e}(x) \lor \neg die \emph{ta}(x) \lor dar \emph{cek}(dar \emph{cek\_pre}(x))) \}
```

Konverzia do klauzálnej teórie

Veta 14.24

Ku každej teórii T v jazyku logiky prvého rádu $\mathcal L$

existuje ekvisplniteľná klauzálna teória v nejakom rozšírení \mathcal{L}' jazyka \mathcal{L} o skolemovské konštanty a funkcie.

```
\forall x (\mathsf{dobr} \dot{\mathsf{e}}(x) \land \mathsf{diefa}(x) \rightarrow \exists y (\mathsf{dostane}(x, y) \land \mathsf{dar} \dot{\mathsf{cek}}(y))),
\exists x (\mathsf{dobr} e(x) \land \mathsf{diefa}(x)),
\forall x (\neg \mathsf{dobr} e(x) \rightarrow \neg \exists y \, \mathsf{dostane}(x, y))
   \begin{cases} \forall x_1(\neg \mathsf{dobr} e(x_1) \lor \neg \mathsf{die} \mathsf{ta}(x_1) \lor \mathsf{dostane}(x_1, \mathsf{dar} \mathsf{cek\_pre}(x_1))), \\ \forall x_2(\neg \mathsf{dobr} e(x_2) \lor \neg \mathsf{die} \mathsf{ta}(x_2) \lor \mathsf{dar} \mathsf{cek}(\mathsf{dar} \mathsf{cek\_pre}(x_2))), \end{cases} 
  dobré(nejaké_dobré_dieťa), dieťa(nejaké_dobré_dieťa),
  \forall x_3 \forall y (\mathsf{dobré}(x_3) \lor \neg \mathsf{dostane}(x_3, y))
```

Konverzia do prvorádovej CNF

Dôkaz/algoritmus

 $T_{\rm I}$: Implikácie nahradíme disjunkciami.

 $T_{
m N}$: Negačný normálny tvar (NNF): Presunieme negácie k atómom.

T_V: Premenujeme premenné tak, aby každý kvantifikátor viazal inú premennú ako ostatné kvantifikátory.

 $T_{\rm S}$: Skolemizácia: Existenčné kvantifikátory nahradíme substitúciou nimi viazaných premenných za skolemovské konštanty/aplikácie skolemovských funkcií na príslušné všeobecne kvantifikované premenné.

T_P: Prenexný normálny tvar (PNF): presunieme všeobecné kvantifikátory na začiatok formuly.

 $T_{
m D}$: Konjunktívny normálny tvar (CNF): distribuujeme disjunkcie do konjunkcií.

 $T_{\rm K}$: Odstránime konjunkcie rozdelením konjunktov do samostatne kvantifikovaných klauzúl.

Skolemizácia vytvorí ekvisplniteľnú teóriu, ostatné úpravy sú ekvivalentné.

Rezolvencia

Rezolvencia v logike prvého rádu

Rezolvencia a skrátenie zápisu

Prvorádovou rezolvenciou budeme odvodzovať dôsledky klauzálnych teórií.

Dohoda 14.26

Všeobecné kvantifikátory v zápise klauzúl budeme zanedbávať.

Teda namiesto $\forall x_1 \cdots \forall x_n (L_1 \vee \cdots \vee L_m)$ píšeme iba $L_1 \vee \cdots \vee L_m$.

Úsudky s klauzulami

Príklad 14.27

Každého má niekto rád jeho najlepší kamarát/najlepšia kamarátka (NK):

$$\forall y \, \mathbf{r}(\mathbf{nk}(y), y)$$

Kto má rád Dadu, toho Edo nemá rád:

$$\forall x(\neg r(x,D) \lor \neg r(E,x)),$$

Teda aj Dadu má niekto rád:

 $\neg r(nk(D), D) \vee \neg r(E, nk(D)).$

Ak Dadin NK má rád Dadu, tak ho Edo nemá rád:

orvericiou).

$$\frac{\mathbf{r}(\mathsf{nk}(\mathsf{D}),\mathsf{D})}{\left(\neg \mathbf{r}(\mathsf{nk}(\mathsf{D}),\mathsf{D}) \lor \neg \mathbf{r}(\mathsf{E},\mathsf{nk}(\mathsf{D}))\right)}$$
$$\neg \mathbf{r}(\mathsf{E},\mathsf{nk}(\mathsf{D}))$$

Úsudky s klauzulami

Celý úsudok z príkladu aj s dosadeniami:

Aby sme klauzuly mohli rezolvovať, potrebovali sme substitúciu:

$$\sigma = \{ \mathbf{x} \mapsto \mathbf{nk}(\mathbf{D}), \mathbf{y} \mapsto \mathbf{D} \}$$

Po substitúcii σ majú komplementárne literály rovnaké argumenty predikátu:

$$r(\frac{nk(y)}{y}, y)\sigma = r(nk(D), D)$$
$$\neg r(\frac{x}{y}, \frac{x}{y})\sigma = \neg r(nk(D), D)$$

Definícia 14.28

Nech A, B sú postupnosti symbolov, σ je substitúcia. Substitúcia σ je unifikátorom A a B vtt $A\sigma = B\sigma$.

- $A_1 = r(filantrop, y), B_1 = r(x, D),$ $\sigma_1 = \{x \mapsto filantrop, y \mapsto D\}$
- $A_2 = r(nk(y), y), B_2 = r(x, D),$

Definícia 14.28

Nech A, B sú postupnosti symbolov, σ je substitúcia. Substitúcia σ ie unifikátorom A a B vtt $A\sigma = B\sigma$.

- $A_1 = r(filantrop, y), B_1 = r(x, D),$ $\sigma_1 = \{x \mapsto filantrop, y \mapsto D\}$
- $A_2 = r(nk(y), y), B_2 = r(x, D),$
- $A_2 = r(nk(y), y), B_2 = r(x, D)$ $\sigma_2 = \{x \mapsto nk(D), y \mapsto D\}$
- $A_3 = r(nk(y), y), B_3 = r(E, x),$

Definícia 14.28

Nech A, B sú postupnosti symbolov, σ je substitúcia. Substitúcia σ ie unifikátorom A a B vtt $A\sigma = B\sigma$.

- $A_1 = r(filantrop, y), B_1 = r(x, D),$ $\sigma_1 = \{x \mapsto filantrop, y \mapsto D\}$
- $A_2 = r(nk(y), y), B_2 = r(x, D),$

$$\sigma_2 = \{x \mapsto nk(D), y \mapsto D\}$$

- A₃ = r(nk(y), y), B₃ = r(E, x),
 σ₃ = ??? neexistuje!
- $A_4 = r(nk(y), y), B_4 = r(x, x),$

Definícia 14.28

Nech A, B sú postupnosti symbolov, σ je substitúcia. Substitúcia σ ie unifikátorom A a B vtt $A\sigma = B\sigma$.

•
$$A_1 = r(filantrop, y), B_1 = r(x, D),$$

 $\sigma_1 = \{x \mapsto filantrop, y \mapsto D\}$

•
$$A_2 = r(nk(y), y), B_2 = r(x, D),$$

$$\sigma_2 = \{ \mathbf{x} \mapsto \mathsf{nk}(\mathsf{D}), \mathbf{y} \mapsto \mathsf{D} \}$$

•
$$A_3 = r(nk(y), y), B_3 = r(E, x),$$

 $\sigma_3 = ???$ neexistuje!

•
$$A_4 = r(nk(y), y), B_4 = r(x, x),$$

 $\sigma_4 = ???$ neexistuje!

Skladanie substitúcií, premenovanie premenných

Definícia 14.30

Nech $\sigma=\{x_1\mapsto t_1,\dots,x_n\mapsto t_n\}$ a $\theta=\{y_1\mapsto s_1,\dots,y_m\mapsto s_m\}$ sú substitúcie.

Zložením (kompozíciou) substitúcií σ a θ je substitúcia

$$\begin{split} \sigma\theta &= \{x_1 \mapsto t_1\theta, \dots, x_n \mapsto t_n\theta, y_{i_1} \mapsto s_{i_1}, \dots, y_{i_k} \mapsto s_{i_k}\}, \\ \mathsf{kde}\, \{y_{i_1}, \dots, y_{i_k}\} &= \{y_1, \dots, y_m\} \setminus \{x_1, \dots, x_n\}. \end{split}$$

$$\sigma = \{x \mapsto \mathrm{nk}(y), \ z \mapsto y\}$$

$$\theta = \{y \mapsto \text{filantrop}\}\$$

$$\sigma\theta = \{x \mapsto \mathsf{nk}(\mathsf{filantrop}),$$

$$z \mapsto \mathsf{nk}(\mathsf{filantrop}),$$

 $z \mapsto \mathsf{filantrop}, v \mapsto \mathsf{filantrop}\}$

Definícia 14.32

Nech A,B sú postupnosti symbolov, σ a θ sú substitúcie.

 σ je **všeobecnejšia** ako θ vtt existuje subst. γ taká, že $\theta = \sigma \gamma$. σ je **najvšeobecnejším unifikátorom** A a B vtt

- σ je unifikátorom A a B a zároveň
- pre každý unifikátor θ A a B je σ všeobecnejšia ako θ .

$$A_5 = \mathbf{r}(\mathbf{nk}(\mathbf{x}), \mathbf{y}), B_5 = \mathbf{r}(\mathbf{u}, \mathbf{v})$$

- $\sigma_{51} = \{u \mapsto \text{nk}(D), v \mapsto y, x \mapsto D\}$ $\theta_{51} = \{u \mapsto \text{nk}(D), v \mapsto \text{Biba}, x \mapsto D, y \mapsto \text{Biba}\}$ $\gamma_{51} = \{y \mapsto \text{Biba}\}$
- $\sigma_{52} = \{u \mapsto nk(x), v \mapsto y\}$

$$\theta_{52} = \{ u \mapsto nk(D), v \mapsto y, x \mapsto D \}$$

$$\gamma_{52} = \{ x \mapsto D \}$$

Unifikátory a rezolvencia

$$r(nk(y), y) \sigma$$

$$\frac{(\neg r(x, D) \lor \neg r(E, x)) \sigma}{\neg r(E, x) \sigma}$$

$$\sigma = \{x \mapsto nk(D), y \mapsto D\}$$

$$r(nk(D), D)$$

$$r(nk(D), D) \lor \neg r(E, nk(D))$$

$$\neg r(E, nk(D))$$

Unifikátory a rezolvencia

Príklad 14.35

Rovnaké premenné v klauzulách môžu zabrániť unifikácii literálov:

$$r(nk(x), x)$$
 $\neg r(x, D) \lor \neg r(E, x)$

Klauzuly sú však všeobecne kvantifikované nezávisle od seba. Premenovanie premenných v jednej z nich nezmení jej význam, ale umožní unifikáciu (viď predchádzajúci príklad).

$$r(nk(y), y)$$
 $\neg r(x, D) \lor \neg r(E, x)$

Definícia 14.36

Premenovaním premenných je každá substitúcia

$$\sigma = \{x_1 \mapsto y_1, \dots, x_n \mapsto y_n\}, \, \mathrm{kde} \ y_1, \dots, y_n \ \mathrm{s\'u} \ \mathrm{premenn\'e}.$$

Prvorádová rezolvencia – pravidlá

Definícia 14.37

Nech C a D sú prvorádové klauzuly, nech A a B sú atómy, nech L a K sú literály.

Rezolvencia (angl. resolution) je odvodzovacie pravidlo

Faktorizácia (angl. factoring) je odvodzovacie pravidlo

$$\frac{L \vee K \vee C}{(L \vee C)\sigma} \quad \sigma \text{ je unifikátor } L \text{ a } K.$$

Faktorizácia je zovšeobecnenie idempotencie pri výrokovej rezolvencii.

Rezolvencia postupne

Rezolvenciu

$$\frac{\neg P(x) \lor \neg Q(y, x) \lor R(f(x, y), y) \qquad \neg R(x, c)}{\neg P(x) \lor \neg Q(c, x)}$$

si môžeme predstaviť ako postupný proces:

Rezolvenčné odvodenie a zamietnutie

Definícia 14.38

Nech T je klauzálna teória.

Rezolvenčným odvodením z T je každá (aj nekonečná) postupnosť klauzúl $\mathcal{Z}=(C_1,C_2,\ldots,C_n,\ldots)$, kde každá klauzula $C_i,\,1\leq i\leq n$, je:

- prvkom T, alebo
- odvodená pravidlom rezolvencie z klauzúl C_j a C_k , ktoré sa v \mathcal{Z} nachádzajú pred C_i (teda j, k < i), alebo
- odvodená pravidlom faktorizácie z klauzuly C_j, ktorá sa v Z nachádza pred C_i (teda j < i).

Zamietnutím T (angl. refutation) je každé konečné rezolvenčné odvodenie $\mathcal{Z} = (C_1, C_2, ..., C_n)$, kde $C_n = \square$.

Refutačná korektnosť a úplnosť rezolvencie

Veta 14.39 (Refutačná korektnosť a úplnosť rezolvencie)

Nech T je klauzálna teória.

Potom existuje zamietnutie T vtt T je nesplniteľná.

Príklad 14.40

Dokážme nesplniteľnosť:

$$\begin{cases}
\forall x \, \mathbf{r}(\mathbf{nk}(x), x), \\
\forall x \, \forall y \, \mathbf{r}(x, \mathbf{nk}(y)), \\
\forall x (\neg \mathbf{r}(x, D) \vee \neg \mathbf{r}(E, x))
\end{cases}$$

Rezolvencia a vyplývanie

Pretože každú teóriu môžeme transformovať na ekvisplniteľnú klauzálnu teóriu, dostávame:

Dôsledok 14.41 (Úplnosť rezolvencie)

Nech T je teória, nech X je uzavretá formula.

Nech $T_X' = \{C_1, \dots, C_n\}$ je klauzálna teória ekvisplniteľná s $T \cup \{\neg X\}$.

Potom z T vyplýva X vtt existuje zamietnutie T_X' .