WHAT IS CLAIMED IS:

- 1. A facing material comprising a flame resistive fiber and a filler, wherein a waterproofing layer is formed by impregnating said flame resistive fiber with said filler, a flame resistive layer is made of said flame resistive fiber not impregnated with the filler, and said flame resistive layer is located in a surface of said facing material.
- 2. The facing material according to claim 1, wherein said filler is a thermoplastic resin.
 - 3. The facing material according to claim 1, wherein said waterproofing layer and said flame resistive layer are flexible.
 - 4. The facing material according to claim 1, wherein a water-absorption preventing layer is provided on a surface of said flame resistive layer.

20

15

5

5. The facing material according to claim 4, wherein said water-absorption preventing layer is provided at least in a peripheral portion of the surface of said flame resistive layer.

25

6. The facing material according to claim 4, wherein when partially overlapping a plurality of said

10

15

20

facing material, an area of said water-absorption preventing layer is equal to or smaller than of an area of an unexposed region, where the unexposed region is a region of the surface of said facing material exposed to outside and an exposed region is a region of the surface said facing material not exposed to outside.

- 7. The facing material according to claim 6, wherein said water-absorption preventing layer is provided in an overlapped region of the surface of said flame resistive layer.
- 8. The facing material according to claim 6, wherein said water-absorption preventing layer is provided in a position distant from said unexposed region viewing from a surface side of said water-absorption preventing layer.
- 9. The facing material according to claim 4, wherein said water-absorption preventing layer is formed by impregnating the filler in said flame resistive layer.
- 10. The facing material according to claim 6, wherein said unexposed region has a fixing assistant means.

- 11. The facing material according to claim 10, wherein said fixing assistant means is a metal plate or a metal foil.
- 12. The facing material according to claim 6, wherein at least a part of the surface of said waterproofing layer side in said unexposed region has an adhesion means.
- 13. The facing material according to claim 6, wherein at least a part of the surface of said flame resistive layer side in said unexposed region has an adhesion means.
- 14. The facing material according to claim 1, wherein the surface of said water proofing layer side has a surface protective layer.
- 15. The facing material according to claim 14, wherein said surface protective layer has a surface protective film.
 - 16. The facing material according to claim 14, wherein said surface protective layer has a metal plate or metal foil.
 - 17. The facing material according to claim 16,

20

25

wherein said metal plate or said metal foil is sealed with the filler.

- 18. The facing material according to claim 6, wherein the surface protective layer is provided in a region other than at least a part of said unexposed region.
- 19. The facing material according to claim 6,

 10 wherein at least a part of the surface of said

 waterproofing layer side in said unexposed region has

 irregularities.
- 20. The facing material according to claim 4, wherein said water-absorption preventing layer has irregularities.
 - 21. A method of storing a facing material according to claim 1, comprising storing the facing material in a state of winding it in a longitudinal direction when it is transported or kept.
 - 22. A method of storing a facing material according to claim 1, comprising storing the facing material in a state of stacking it in the same direction when it is transported and kept.

- 23. A manufacturing apparatus for the facing material according to claim 1, comprising a degassing means and a heating means, wherein a stacked body comprising a covering means made of flame resistive fibers and a sheet member of a thermoplastic resin is heated while degassing a space between the covering means and the sheet member to closely fix each other.
- 24. A manufacturing apparatus for the facing material according to claim 1, comprising a pressing means and a heating means, wherein a stacked body comprising a covering means made of flame resistive fibers and a thermoplastic resin is heated and pressed to closely contact each other.

10

5

25. A manufacturing method for the facing material according to claim 1, comprising stacking a covering means made of flame resistive fibers and a sheet member of a thermoplastic resin and heating them while degassing a space between the covering means and the sheet member to closely contact and fix each other.

25

20

26. A manufacturing method for the facing material according to claim 1, comprising arranging a covering means made of flame resistive fibers and a thermoplastic resin, heating, and pressing them to closely contact and fix each other.

10

- 27. A method for installing a facing material, comprising fixing the facing material to a roof substrate or an external wall by a fixing member, wherein said facing material is a facing material according to claim 1.
- 28. A construction comprising a facing material fixed to a roof substrate or an external wall by a fixing member, wherein said facing material is a facing material according to claim 1.
 - 29. A photovoltaic power-generating apparatus, comprising a solar cell module and a facing material according to claim 1, wherein the facing material is installed in a portion not provided with the solar cell module on a plane in which the solar cell module is installed.
- 20 element and a covering means arranged on a non-lightreceiving face side of the photovoltaic element and
 composed of the flame resistive fiber, wherein in the
 solar cell module, the surface of the non-lightreceiving face side of said solar cell module has said
 flame resistive layer and the surface of the flame
 resistive layer has the water-absorption preventing
 layer.

31. The solar cell module according to claim 30, wherein a water-absorption preventing layer is provided at least in a peripheral part of the surface of the flame resistive layer.

5

32. The solar cell module according to claim 30, wherein when a plurality of solar cell modules are partially overlapped, an area of said water-absorption preventing layer is equal to or smaller than an unexposed region, where the unexposed region is a region of the surface of said solar cell module not exposed to outside and an exposed region is a region of the surface of said solar cell module exposed to outside.

15

10

33. The solar cell module according to claim 30, wherein said water-absorption preventing layer is provided in the overlapped part of the surface of said flame resistive layer.

20

34. The solar cell module according to claim 30, wherein said water-absorption preventing layer is provided in a position distant from said unexposed region viewing from the light-receiving face side.

25

35. The solar cell module according to claim 30, wherein said water-absorption preventing layer is

formed by impregnating the filler in the flame resistive fiber.

- 36. The solar cell module according to claim 30, wherein said covering means is adhered to the non-light-receiving face side of the photovoltaic element by the filler and has a layer formed by impregnating said flame resistive layer with the filler.
- 37. The solar cell module according to claim 30, wherein the surface of the light-receiving face side of the photovoltaic element has a surface member.
- 38. The solar cell module according to claim 37, wherein said surface member has a surface protection film.
- 39. The solar cell module according to claim 37, wherein a part of said unexposed region has no surface member.
 - 40. The solar cell module according to claim 30, wherein said unexposed region has a fixing assistant means.

25

5

41. The solar cell module according to claim 40, wherein said fixing assistant means is a metal plate or

metal foil.

- 42. The solar cell module according to claim 30, wherein at least a part of the light-receiving face side of said unexposed region has irregularities.
- 43. The solar cell module according to claim 30, wherein said water-absorption preventing layer has irregularities.

10

5

44. The solar cell module according to claim 32, wherein at least a part of an overlapped region has an adhesion means.

15

45. The solar cell module according to claim 32, wherein at least a part of the light-receiving face side of said unexposed region or the non-light-receiving face side of said exposed region has an adhesion means.

- 46. The solar cell module according to claim 30, wherein said photovoltaic element is flexible.
- 47. The solar cell module according to claim 30, wherein said photovoltaic element is a photovoltaic element of amorphous silicon formed on a stainless steel substrate.

10

- 48. The solar cell module, according to claim 30, further comprising an electric output line for taking out an output of said photovoltaic element to outside of said solar cell module, wherein the electric output line is take out from a side part or a light-receiving face side of said solar cell module.
- 49. The solar cell module according to claim 32, wherein the solar cell module has an insulating layer between said photovoltaic element and the covering means in a region other than at least a part of said unexposed region.
- 50. A method for storing the solar cell module according to claim 30, comprising storing the solar cell module in a state of winding the module in the length direction when it is transported or kept.
- 51. A method for storing a solar cell module

 20 according to claim 30, comprising storing the solar

 cell module in the state of stacking the module in the

 same direction when the module is transported or kept.
- 52. A manufacturing method for a solar cell
 module comprising a photovoltaic element and a covering
 means arranged in a non-light-receiving face side of
 the photovoltaic element and composed of a flame

10

15

20

25

resistive fiber, which comprises providing a flame resistive layer on a surface of a non-light-receiving face side of said solar cell module, and providing a water-absorption preventing layer on surface of the flame resistive layer.

- 53. The manufacturing method for the solar cell module, according to claim 52, wherein said waterabsorption preventing layer is provided at least in a peripheral part of the surface of said flame resistive layer.
- 54. The manufacturing method for the solar cell module, according to claim 52, wherein when a plurality of solar cell modules are partially overlapped, an area of said water-absorption preventing layer is equal to or smaller than said unexposed region, where the unexposed region is a region of the surface said solar cell module not exposed to outside and an exposed region is a region of the surface of said solar cell module exposed to outside.
- 55. The manufacturing method for the solar cell module, according to claim 54, wherein said waterabsorption preventing layer is provided in the overlapped part of the surface of said flame resistive layer.

10

15

20

- 56. The manufacturing method for the solar cell module, according to claim 54, wherein said waterabsorption preventing layer is provided in a position distant from said unexposed region in viewing from a light-receiving face side of the photovoltaic element.
- 57. The manufacturing method for the solar cell module, according to claim 52, wherein said waterabsorption preventing layer is formed by impregnating the flame resistive fiber with the filler.
- 58. The manufacturing method for the solar cell module, according to claim 52, wherein said covering means is adhered to the non-light-receiving face side of the photovoltaic element with the filler and the covering means has a layer impregnated with the filler.
- 59. The manufacturing method for the solar cell module, according to claim 52, wherein the surface of the light-receiving face side of the photovoltaic element has a surface member.
- 60. The manufacturing method for the solar cell module, according to claim 52, wherein said surface member has a surface protection film.
 - 61. The manufacturing method for the solar cell

module, according to claim 52, wherein a part of said unexposed region has no surface member.

- 62. The manufacturing method for the solar cell module, according to claim 54, wherein a fixing assistant means is provided in said unexposed region.
- 63. The manufacturing method for the solar cell module, according to claim 62, wherein said fixing assistant means is a metal plate or metal foil.
- 64. The manufacturing method for the solar cell module, according to claim 54, wherein at least a part of the light-receiving face side of said unexposed region has irregularities.
- 65. The manufacturing method for the solar cell module, according to claim 54, wherein said water-absorption preventing layer has irregularities.

20

5

10

15

66. The manufacturing method for the solar cell module, according to claim 54, wherein an adhesion means is provided in at least a part of the overlapped region.

25

67. The manufacturing method for the solar cell module, according to claim 54, wherein an adhesion

means is provided in at least a part of the lightreceiving face side of said unexposed region or at
least of the non-light-receiving face side of said
exposed region.

5

68. The manufacturing method for the solar cell module, according to claim 52, wherein said photovoltaic element is flexible.

10

69. The manufacturing method for the solar cell module, according to claim 52, wherein said photovoltaic element is an amorphous silicon photovoltaic element formed on a stainless steel substrate.

15

70. The manufacturing method for the solar cell module, according to claim 52, wherein said solar cell module has an electric output line for taking out an output of said photovoltaic element to outside of said solar cell module, and the electric output line is taken out from a side part of said solar cell module.

25

20

71. The manufacturing method for the solar cell module, according to claim 52, wherein an insulating layer is provided between said photovoltaic element and the covering means in a region other than at least a part of said unexposed region.

72. The manufacturing method for the solar cell module, according to claim 52, wherein a first sheet member of a thermoplastic resin, the covering means made of the flame resistive fiber, a second sheet member of a thermoplastic resin, and the photovoltaic element are stacked to form a stacked body and said stacked body is heated while degassing to closely contact and fix it.

module, according to claim 52, wherein a first sheet member of a thermoplastic resin, the covering means made of the flame resistive fiber, another sheet member of a thermoplastic resin, and the photovoltaic element are stacked to form a stacked body and said stacked body is heated and pressed to closely contact and fix it.

for manufacturing the solar cell module according to claim 30 by the manufacturing method according to claim 52.

75. An installing method for a solar cell module,

25 comprising fixing the solar cell module to a roof

substrate or an external wall by a fixing member,

wherein said solar cell module is the solar cell module

according to claim 30.

- 76. A construction comprising a solar cell module, in which the solar cell module is fixed to a trestle, a roof substrate, or an external wall by a fixing member, wherein said solar cell module is the solar cell module according to claim 30.
- 77. A photovoltaic power-generating apparatus

 10 comprising the solar cell module according to claim 30 and a power conversion apparatus.
 - 78. A solar cell module comprising a photovoltaic element sealed with a filler, wherein a covering means comprising a layer made of a flame resistive fiber having flame resistive performance is provided on a non-light-receiving face side of said photovoltaic element.
- 79. The solar cell module according to claim 78, wherein said covering means is adhered to the non-light-receiving face side of said photovoltaic element with a filler and has a layer formed by impregnating a filler in the covering means.

25

15

5

80. The solar cell module according to claim 78, wherein said covering means is a carbon fiber.

- 81. The solar cell module according to claim 78, wherein said covering means is a mesh.
- 82. The solar cell module according to claim 78, wherein said covering means is a flame resistive fiber obtained from a special acrylic fiber.
 - 83. The solar cell module according to claim 78, wherein said covering means is a felt textile.

5

84. The solar cell module according to claim 78, wherein an insulation film is put between said covering means and said photovoltaic element.

15

85. The solar cell module according to claim 78, wherein said photovoltaic element and an enclosure of the light-receiving face side of said photovoltaic element are flexible.

20

86. The solar cell module according to claim 78, wherein said photovoltaic element is an amorphous silicon photovoltaic element formed on a stainless steel substrate.

25

87. A manufacturing method for solar cell module, comprising stacking a covering means composed of a flame resistive fiber, a sheet member of a

thermoplastic resin, and a photovoltaic element and heating while degassing portions between the covering means and the sheet member of the thermoplastic resin and between the sheet member of the thermoplastic resin and the photovoltaic element to closely contact each other and fix them.

88. A manufacturing method for solar cell module, comprising applying either one of an adhesive material or a sticky material to a covering means composed of a flame resistive fiber, stacking the applied covering means and a photovoltaic element, and pressing a portion between the covering means and the photovoltaic element to closely contact each other and fix them.

15

20

10

5

89. A manufacturing apparatus for solar cell module, comprising a degassing means and a heating means, wherein a covering means composed of a flame resistive fiber, a sheet member of a thermoplastic resin, and a photovoltaic element are stacked and heated while degassing portions between the covering means and the sheet member of the thermoplastic resin and between the sheet member of the thermoplastic resin and the photovoltaic element.

25

90. A manufacturing apparatus for solar cell module, comprising means of applying at least one of an

adhesive material or a sticky material, a covering means composed of a flame resistive fiber and a heating means, wherein the photovoltaic element and the covering means are stacked, and a portion between the covering means and the photovoltaic element is pressed to closely contact each other and fix them.

- 91. The installing method for solar cell module, comprising fixing the solar cell module according to claim 78 to a trestle, a roof substrate, or an external wall with a fixing member.
- 92. A construction comprising the solar cell module according to claim 78 fixed to a roof substrate or an external wall with a fixing member.
- 93. A photovoltaic power-generating apparatus comprising the solar cell module according to claim 78 and a power conversion apparatus.

20

5

10

15

94. The solar cell module according to claim 78, wherein a weight of said flame resistive fiber is equal to or more than 100 g/m^2 .