Paths. Connectivity. Euler and Hamilton Paths. Planar graphs.

Path

Def. A *path* from *s* to *t* is a sequence of edges

$${x_0, x_1}, {x_1, x_2}, \dots {x_{n-1}, x_n},$$

where $x_0 = s$, and $x_n = t$.

Def. The *length* of a path is the number of edges in it.

$$\{E,A\}$$
 $\{A,B\}$ $\{B,D\}$ $\{D,A\}$ $\{A,B\}$ $\{B,C\}$ $\{C,F\}$

Paths and Cycles

Connectivity
Euler paths
Hamilton paths
Planar graphs

Simple path. Cycle

Paths and Cycles
Connectivity

Euler paths
Hamilton paths

Planar graphs

Def. A *simple path* is a path that does not contain the same edge more than once.

Def. A path is called a *cycle* (or *circuit*) if its first and last vertices are the same, and its length is greater than 0.

Def. A *simple sycle* is a cycle that does not contain the same edge more than once.

Paths and cycles in directed graphs?

Paths and Cycles

Connectivity

Euler paths

Hamilton paths

Planar graphs

There are similar definitions for paths and cycles in directed graphs.

Connected graph

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Def. An undirected graph is called *connected* if there is a path between every pair of distinct vertices of the graph.

Connected compoments

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Def. A *connected component* of a graph *G* is a connected subgraph of *G* that is not a proper subgraph of another connected subgraph of *G*.

(So, a connected component is a maximal connected subgraph)

Question: How many connected components is in the graph?

Vertex cut

Def. A *vertex cut* V' is a subset of vertices, such that the graph becomes disconnected, if V' and their incident edges are removed.

Paths and Cycles

Connectivity
Euler paths

Hamilton paths

Vertex cut

Paths and Cycles
Connectivity
Euler paths
Hamilton paths

Planar graphs

Def. A *vertex cut* V' is a subset of vertices, such that the graph becomes disconnected, if V' and their incident edges are removed.

Example: $V' = \{E\}$.

This is one of three minimum vertex cuts in this graph. Can you find the other two?

Vertex cut

Def. A *vertex cut* V' is a subset of vertices, such that the graph becomes disconnected, if V' and their incident edges are removed.

Find a vertex cut.

Paths and Cycles
Connectivity

Euler paths

Hamilton paths

Edge cut

Connectivity
Euler paths
Hamilton paths

Planar graphs

Paths and Cycles

Def. An *edge cut* E' is a subset of edges, such that the graph becomes disconnected, if the edges E' are removed.

Edge cut

Connectivity
Euler paths
Hamilton paths

Paths and Cycles

Planar graphs

Def. An *edge cut* E' is a subset of edges, such that the graph becomes disconnected, if the edges E' are removed.

Distance and diameter

Paths and Cycles
Connectivity
Euler paths
Hamilton paths

Planar graphs

Def. The *distance* between two vertices in a graph is the length of the shortest path between them.

$$distance(A, H) = 3$$

Def. The *diameter* of a graph is the distance between the two vertices that are farthest apart.

$$diameter = 3$$

Euler path and cycle

Paths and Cycles Connectivity Euler paths Hamilton paths Planar graphs

Def. An *Euler cycle* in a graph *G* is a simple cycle containing every edge of *G*.

Similarly, an *Euler path* in *G* is a simple path containing every edge of *G*.

(In a simple path (or cycle), edges are not repeated)

Euler cycle

Walk across all the bridges once. And get back to the original location.

Paths and Cycles
Connectivity

Euler paths

Hamilton paths

Euler cycle

Walk across all the bridges once. And get back to the original location.

What if we build two new bridges?

Paths and Cycles Connectivity

Euler paths

Hamilton paths

Observation

Let's say that we cross a bridge to the vertex A.

What is the condition to continue walking?

Paths and Cycles

Connectivity

Euler paths

Hamilton paths

Observation

Paths and Cycles
Connectivity
Euler paths
Hamilton paths

Planar graphs

Pianar graph

Let's say that we cross a bridge to the vertex A.

What is the condition to continue walking?

There should be at *least one more bridge* at the vertex *A*.

Observation

Paths and Cycles

Connectivity

Euler paths

Hamilton paths

Planar graphs

When we enter a vertex and then leave it, we use two bridges.

So, every time we visit a vertex, two bridges are gone.

Finding an Euler cycle

Paths and Cycles
Connectivity
Euler paths
Hamilton paths

Planar graphs

If we visit a vertex, we use two bridges.

If there is an even number of bridges at the vertex *A*, then after our visit, there is still an even number of bridges.

If a vertex has only one bridge, it can be only the final point in the path.

Necessary and sufficient condition for Euler cycles

Paths and Cycles Connectivity

Euler paths

Hamilton paths

Theorem. A connected multigraph with at least two vertices has an *Euler cycle* if and only if each of its vertices has *even degree*.

Necessary and sufficient condition for Euler cycles

Theorem. A connected multigraph with at least two vertices has an *Euler cycle* if and only if each of its vertices has *even degree*.

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Constructing an Eulerian cycle takes linear time in the number of edges! This is efficient.

Euler path

Theorem. A connected multigraph has an *Euler path* but not an Euler cycle if and only if it has *exactly two vertices of odd degree*.

Paths and Cycles Connectivity

Euler paths

Hamilton paths

Icosian Puzzle

Connectivity
Euler paths
Hamilton paths
Planar graphs

Paths and Cycles

A puzzle invented in 1857 by Sir William Rowan Hamilton:

The task is to travel along the edges of a dodecahedron, visit each of 20 vertices exactly once, and end back at the first vertex.

Icosian Puzzle

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

A puzzle invented in 1857 by Sir William Rowan Hamilton:

The task is to travel along the edges of a dodecahedron, visit each of 20 vertices exactly once, and end back at the first vertex.

Icosian Puzzle

Paths and Cycles Connectivity Euler paths Hamilton paths Planar graphs

A puzzle invented in 1857 by Sir William Rowan Hamilton:

The task is to travel along the edges of a dodecahedron, visit each of 20 vertices exactly once, and end back at the first vertex.

Hamilton path

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Def. A simple path in a graph *G* that passes through every vertex exactly once is called a *Hamilton path*.

And a simple cycle in a graph *G* that passes through every vertex exactly once is called a *Hamilton cycle*.

Sufficient conditions for a cycle

Theorem (Dirac's theorem). If G is a simple graph with n vertices with $n \ge 3$ such that

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

the degree of every vertex in G is at least n/2,

then *G* has a Hamilton cycle.

Theorem (Ore's theorem). If G is a simple graph with n vertices with $n \ge 3$ such that

$$\deg(u) + \deg(v) \ge n$$

for every pair of *nonadjacent* vertices u and v in G, then G has a Hamilton cycle.

Algorithm for finding a cycle?

Paths and Cycles
Connectivity

Euler paths

Hamilton paths

Planar graphs

The best algorithms known for finding a Hamilton cycle in a graph or determining that no such cycle exists have *exponential worst-case time* complexity in the number of vertices of the graph.

In fact, this is an NP-complete problem.

More Hamilton cycles

The famous Traveling Salesperson Problem (TSP):

Find the shortest route a traveling salesperson should take to visit a given set of cities.

It reduces to finding a Hamilton cycle on a complete graph such that the total weight of the path is the smallest.

Paths and Cycles Connectivity Euler paths Hamilton paths Planar graphs

Question: Is it possible to join these houses and utilities so that none of the connections cross?

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Question: Is it possible to join these houses and utilities so that none of the connections cross?

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

This is a complete bipartite graph, denoted by $K_{3,3}$.

Def. A graph is called *planar* if it can be drawn in the plane without any edges crossing.

Complete graph K_4 is planar:

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Def. A graph is called *planar* if it can be drawn in the plane without any edges crossing.

3-dimensional hypercube graph, Q_3 , is planar:

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Euler formula

A drawing of a planar graph divides the plane into *faces*, regions bounded by edges of the graph.

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Theorem (Euler formula). Let G be a connected planar simple graph with e edges and v vertices. Let r be the number of faces in a planar representation of G. Then

$$v - e + f = 2.$$

Paths and Cycles
Connectivity
Euler paths
Hamilton paths
Planar graphs

Theorem (Kuratowski). A graph is planar if and only if it does not contain a subdivision of $K_{3,3}$ or K_5 .

What is a *subdivision*? Inserting a new vertex into an existing edge of a graph is called subdividing the edge, and one or more subdivisions of edges create a subdivision of the original graph.

