

IN AIR

ChatGPT

Transformers

Purpose: Addresses sequence-to-sequence issues with long-range dependencies.

Impact: Integral to NLP, driving advancements like BERT, GPT 2, T5, Chat GPT.

Attention Is All You Need

Ashish Vaswani* Google Brain avaswani@google.com

Noam Shazeer* Google Brain noam@google.com

Niki Parmar* Google Research nikip@google.com Jakob Uszkoreit* Google Research usz@google.com

Llion Jones* Google Research llion@google.com Aidan N. Gomez* † University of Toronto aidan@cs.toronto.edu

Łukasz Kaiser*
Google Brain
lukaszkaiser@google.com

Illia Polosukhin* ‡
illia.polosukhin@gmail.com

Abstract

The dominant sequence transduction models are based on complex recurrent or convolutional neural networks that include an encoder and a decoder. The best performing models also connect the encoder and decoder through an attention mechanism. We propose a new simple network architecture, the Transformer, based solely on attention mechanisms, dispensing with recurrence and convolutions entirely. Experiments on two machine translation tasks show these models to be superior in quality while being more parallelizable and requiring significantly less time to train. Our model achieves 28.4 BLEU on the WMT 2014 Englishto-German translation task, improving over the existing best results, including ensembles, by over 2 BLEU. On the WMT 2014 Englishto-French translation task, our model establishes a new single-model state-of-the-art BLEU score of 41.0 after training for 3.5 days on eight GPUs, a small fraction of the training costs of the best models from the literature.

Recap

Encoder state: solely responsible to transfer information to decoder.

Recap

Encoder - Decoder

Encoder state: solely responsible to transfer information to decoder.

Attention Mechanism

Calculation of alpha increase computation for long documents.

Encoder processes the input sequentially

Architecture

Attention

Encoder-Decoder Attention

Self Attention

Masked Attention

Multi-Head Attention

Output

Encoder - Decoder Attention

Encoder- Decoder Attention

$$\left(C_{i} = \sum \alpha_{ij} h_{i} \right)$$

Uses Dot-Product attention to calculate attention.

Context Vector = Softmax (
$$\frac{Q \cdot K^T}{\sqrt{d^k}}$$
V

Output

Softmax

Dot Product Attention

Dot Product Attention

Dot Product Attention

Query Vector: Importance of Relative Words

Key Vector: Represents Evaluated Word

Value Vector : Contains focussed information

Translate English to German:

"How are you?"

"Wie geht es dir?"

Encoder-Decoder Dot Product Attention

Encoder-Decoder Dot Product Attention

Encoder-Decoder Dot Product Attention

Attention

Encoder-Decoder Attention

Self Attention

Masked Attention

Multi-Head Attention

Output

- The animal didn't cross the street because it was too tired.
- The animal didn't cross the street because it was too crowded.

What does "it" refer to in these sentences?

The animal animal didn't didn't cross cross the the street street because because was was too too crowded crowded

The animal didn't cross the street because it was too wide.

$$C_v = Softmax (Q.K^T)*V$$

$$\sqrt{d^k}$$

Q = Query Vector

K = Key vector

V = Value vector

d^k= dimension of key vector

Architecture

Attention

Encoder-Decoder Attention

Self Attention

Masked Attention

Multi-Head Attention

Output

Masked Attention

√ Analytics Vidhya

Attention

Encoder-Decoder Attention

Self Attention

Masked Attention

Multi-Head Attention

Output

Multi-Head Attention

Architecture

Attention

Encoder-Decoder Attention

Self Attention

Masked Attention

Multi-Head Attention

Output