Changelog - July 19th, 2023

Dane:

- Weather data and soil moisture aggregation
 - Added weeks and months
 - Data exports to CSV too many columns
 - Called from createSet modules as needed
- Datasets and modules to make easy modifications
- Decision tree visualization
- Feature reduction
- RandomForests, SVM, ANNs testing and evaluation
- Documentation

Daniel:

- Continue working on the machine learning models and implementing the autoencoder model (on hold)
- Working on create different datasets for different problem statements/predictions
- Experimenting the ML models on the newly created datasets
- Researched on dimensionality reduction

Dharmit:

- Worked on ML models(KNN, SVM)
- Experimented models on created dataset
- Testing and Hypertuning the models

Joseff

- Created new Ergot table with more attribute to predict: downgrade, quantile bin, arbitrary bin
- Combined daily weather station datasets into one table for easier subsetting
- Created new Ergot previous year data table using severity instead of incidences and using 0.04 threshold
- Researched ML techniques that deal with imbalance data sets
- Contemplated the implications of our data attributes, what we're predicting and what we're using to predict

Understanding the Data

Which features are most useful?

- Inspired the extensive dataset coverage

Module

Curse of Dimensionality

PCA:

- Focuses on variance as opposed to importance
- Not necessarily better
- Creates entirely new attributes...

Gaussian Projection

- Random projection that focuses on distances between samples
- Also creates entirely new attributes...

Feature importance - as per this book:

- Similar to what I was already finding as per model.feature_importances_

```
[SUCCESS] reduced data in dataset: First 15 years aggregated by week [median] | [minMax] | [straified on has ergot]
(364, 22)
8:mean temp 10:min temp 10:max temp 28:max temp 28:max humidex
28:mean humidex 38:max temp 38:mean temp 38:max humidex
38:mean humidex 41:min temp 41:max temp 41:mean temp
41:max dew point temp 41:mean dew point temp
43:min dew point temp 43:mean dew point temp 50:min temp
51:max temp 51:max dew point temp 33:soil moisture max
38:soil moisture max
```

```
[SUCCESS] reduced data in dataset: Data aggregated by month [mean] | [minMax] | [straified on has ergot] (680, 24) 2:min temp 2:max temp 2:max dew point temp 3:max precip 3:mean precip 4:max temp 4:mean temp 5:mean temp 7:mean precip 7:min rel humid 7:mean rel humid 9:max temp 9:max humidex 9:mean humidex 12:mean dew point temp 12:max precip 12:mean precip 6:soil moisture max 7:soil moisture min 8:soil moisture max 8:soil moisture max
```

```
Most relevant features = ['38:max temp', '03-10:max_temp'
'9:max humidex', '41:mean temp', '9:mean humidex',
'9:max_temp', '9:mean_temp', '10-10:max_temp', etc...
```

Summer attributes appeared less than expected.

General trend seemed to favor fall/winter attributes

Most consistent were 38:max_temp, fall/winter soil moistures and dew point temperatures

Model Evaluation

Avg_accuracy: accuracy of stratified k fold cross validation using test data set (Perfect = 100)

- Creates balanced sets as per a selected attribute

R2: approximately how much of the observed variation can be explained by the model's inputs? (Perfect = 1)

Loss: summation of errors in our model (Perfect = 0)

Precision: the ability to classify positive samples in the model (Perfect = 1)

Recall: how many positive samples were correctly classified by the model (Perfect = 1)

F1: harmonic mean of precision and recall (Perfect = 1)

Auc: the ability to distinguish between all the Positive and the Negative class points (Perfect = 1)

neg_mean_squared_error: Mean squared logarithmic summation of errors in our model (Perfect = 0)

10 most relevant attributes

Datasets

Predictors:

Ergot_present_in_q3 (classification) Ergot_present_in_q4 (classification) Sum_severity_in_q3 (classification) Sum_severity_in_q4 (classification) Percnt_true (regression) Sum_severity (regression)

[dataset1] - Exploratory set (seasons, worst years, first 15 years, all data, different data preprocessing)

[dataset2] - Best from dataset1 plus all data aggregated combinations (day, week, month)

- First 15 years aggregated by week [median]|[minMax]|[straified on has_ergot]

[dataset3] - Results from Feature Reduction on dataset2

[dataset4] - Best results from dataset3

- First 15 years aggregated by week [reduced]|[median]|[minMax]|[straified on has_ergot]
 - Years not included used for testing
 - Scores decreased significantly

[dataset5] - Second best results from dataset3

- Moisture data from years with bad ergot aggregated by month [mean]|[minMax]|[straified on has_ergot]
 - Years not included used for testing
 - Scores decreased but overall still consistent scoring

Notable Results

Predictors for ergot presence did not apply well to sum_severity

Using engineered Ergot Features tended to increase performance

Reduces bias?

Random forests best hyperparameters:
- n_estimators = 200/500, max_depth = 10/15

SVM best hyperparameters:

gamma = 0.5, c = 0.75/1, degree = 3

Best results:

[dataset1] All data aggregated by month [mean]|[minMax]|[straified on has_ergot][Ergot_present_in_q4][RandomForests] [n_estimators=200][max_depth=15] avg_accuracy: 0.8782, r2: 0.9249, loss: 2.7075, precision: 1.0, recall: 1.0, f1: 0.84, auc: 0.8763

[dataset1] Moisture data from years with bad ergot aggregated by month [mean]|[minMax]|[straified on has_ergot] [Ergot_present_in_q4][RandomForests][n_estimators=100][max_depth=5] avg_accuracy: 0.8720, r2: 0.92, loss: 2.8835, precision: 0.9884, recall: 0.8673, f1: 0.7500, auc: 0.8263

[dataset5] Moisture data from years with bad ergot aggregated by month [mean]|[minMax]|[straified on has_ergot] [Ergot_present_in_q4][RandomForests][n_estimators=100][max_depth=5] avg_accuracy = 0.7637, r2 = 0.8938, loss = 3.8288, precision = 0.9636, recall = 0.7681, f1 = 0.7327, auc = 0.8011

Dataset creation

Dataset V1: (1064 x 8)

- It contains only has_ergot as an output from ergot table and all weather attributes as inputs from weather table
- Allows to test on multiple months/seasons
- Problem statement: Given a district and its weather attributes -> predict if the district is gonna have ergot or not.

Dataset V2: (1026 x 26)

- It contains only has_ergot as an output from ergot table and all weather attributes, soil moistures, soil data as inputs from weather, soil moisture, soil data table
- Allows to test on multiple months/seasons
- **Problem statement**: Given a district and its weather, soil moisture, soil data attributes -> predict if the district is gonna have ergot or not.

Dataset V3: (154048 x 27)

- It contains only incidence as an output from ergot table and all weather attributes as inputs from weather table
- Allows to test on multiple months/seasons
- **Problem statement**: Given an ergot sample and its attributes (ergot, weather, soil moisture, soil data) -> predict if the given sample is gonna have ergot or not.

Dataset V4: (154048 x 56)

- It created a sellable (severity > 0.4) column as an output all weather, ergot, soil moisture, soil data attributes as inputs from ergot, weather, soil moisture, soil data table
- Allows to test on multiple months/seasons
- **Problem statement**: Given an ergot sample and its attributes (ergot, weather, soil moisture, soil data) -> predict if the given sample can be sold or not based on the severity (in particular, the created column sellable).

Recorded results - MLP

Dataset v1: 500 epoches

- [48, 32, 24, 16, 8, 1] - Accuracy: 0.6917 - Precision: 0.8009
 - Recall: 0.8232
 - F1-Score: 0.8119AUC Score: 0.5830
- [24, 24, 24, 24, 24, 1]
 - Accuracy: 0.6954
 - Precision: 0.8130
 - Recall: 0.8093
 - F1-Score: 0.8111
 - AUC Score: 0.5988
- [32, 16, 32, 16, 8, 1]
 - Accuracy: 0.7443
 - Precision: 0.8075
 - Recall: 0.8976
 - F1-Score: 0.8502
 - AUC Score: 0.5932

Dataset v2: 200 epoches

- [48, 32, 24, 16, 8, 1]
 - Accuracy: 0.7568
 - Precision: 0.8457
 - Recall: 0.8490
 - F1 Score: 0.8473
 - AUC Score: 0.6692
- [24, 24, 24, 24, 24, 1]
 - Accuracy: 0.7743
 - Precision: 0.8287
 - Recall: 0.8950
 - F1 Score: 0.8605
 - AUC Score: 0.6216
- [32, 16, 32, 16, 8, 1]
 - Accuracy: 0.8054
 - Precision: 0.8472
 - Recall: 0.9150
 - F1 Score: 0.8798
 - AUC Score: 0.6567

Notable results - ML

Dataset v1: StratifiedKFold

- Logistic Regression

Accuracy: 0.789F1-Score: 0.88AUC Score: 0.49

- Random Forest

- Accuracy: 0.82- F1-Score: 0.9- AUC Score: 0.52

- Decision Tree

Accuracy: 0.67F1-Score: 0.78AUC Score: 0.60

- Gradient Boosting

- Accuracy: 0.79- F1-Score: 0.87- AUC Score: 0.68

Dataset v2: StratifiedKFold

Logistic Regression

- Accuracy: 0.82- F1-Score: 0.9- AUC Score: 0.52

- Random Forest

- Accuracy: 0.83- F1-Score: 0.91- AUC Score: 0.56

- Decision Tree

- Accuracy: 0.77- F1-Score: 0.86- AUC Score: 0.56

- Gradient Boosting

Accuracy: 0.81F1-Score: 0.89AUC Score: 0.59

Dataset v3: StratifiedKFold

- Logistic Regression

Accuracy: 0.76
 F1-Score: ~
 AUC Score: 0.5

Random Forest

- Accuracy: 0.81 - F1-Score: 0.32 - AUC Score: 0.59

- Decision Tree

Accuracy: 0.83F1-Score: 0.72AUC Score: 0.86

- Gradient Boosting

Accuracy:	0.94
F1-Score:	0.89
AUC Score:	0.94

Notable results - ML

Dataset v1

(KNN)

K value = 27

Accuracy: 0.6525
Precision: 0.9186
Recall: 0.6384
F1 Score: 0.7533
AUC Score: 0.6803

(SVM)

Kernal = poly, C = 1

Accuracy: 0.7887
Precision: 0.8882
Recall: 0.8531
F1 Score: 0.8703
AUC Score: 0.6626

Dataset v2

(KNN)

K value = 23

Accuracy: 0.771
 Precision: 0.9160
 Recall: 0.7692
 F1 Score: 0.8362
 AUC Score: 0.7746

(SVM)

Kernal = rbf, C = 10

Accuracy: 0.8203
Precision: 0.8888
Recall: 0.8717
F1 Score: 0.8802
AUC Score: 0.7658

Dataset v3

(KNN)

K value = 54

Accuracy: 0.6290
Precision: 0.8640
Recall: 0.6319
F1 Score: 0.7299
AUC Score: 0.6249

Kernal = linear, C = 10

Accuracy: 0.7176
Precision: 1.0
Recall: 0.6441
F1 Score: 0.7835
AUC Score: 0.8220

Caveats for current models

- Some use same year ergot data as predictors e.g. neighbor has ergot
- Some are using weather after the wheat is harvested as predictors
- Interpolation models
- Has_ergot

Next model iterations

Ergot sample feat eng

- Downgrade 0.04
- Quantile Bins
- Arbitrary 0.02 0.04 0.08
- Severity
- Incidence

Agg Ergot sample v2

Severity based calculations for previous year data

Temporal data

 Ensure that the temporal data columns we are using for prediction are from before the wheat harvest date

Goals for next 2 weeks

Dane:

- Improve documentation
- Improve data pipeline
- Further model experimentation
 - Focus data test/train split on years instead of stratification (as per Josef)
 - Ensemble split (as per Josef)
 - Aggregate on growing seasons
 - Remove same year ergot features/Copernicus
 - Finish up ANN

Daniel:

- Start documenting and code cleanup
- Clean up model experimentation to focus on the problem statement
- Fix/Added more ergot visualization

Dharmit:

- Some Further Research on Models
- Improve Models
- Start Documentation for the Project

Jay:

- Improve model
- Documentation on model
- More dataset preparation for testing model

Joseff:

- Any requests from stakeholders?
- Multi model ml model
- Ensemble strategy
- XGBoost