Margot Wagner A53279875 CSE 250A Principles of AI HW 1

Due: 2pm 10/13/20

11 Conditioning on Background Evidence
(a) PRODUCT RULE
From the definition of conditional probability
P(X,Y E) = P(X,Y,E) P(E)
P(X,Y,E) = D(Y,E)P(X Y,E) product rule
$P(Y, \epsilon) = P(E) P(Y E)$ product rule
P(X,Y E) = P(E)P(Y E)P(X Y,E) Subst & simplify
P(x, Y E) = P(x Y, E) P(Y, E)
(b) BAYES' BULE
Starting with the LHS
p(X Y,E) = p(X,Y,E) conditional def
P(YE) P(YE X)P(X) product rule P(Y,E)
= P(Y, E x)P(x)P(E) product rule P(Y IE)
= P(X,Y,E)P(X)P(E) conditional prod da
= P(Y X,E)P(X,E)P(E) product we
= P(Y X,E)P(E)P(X E) product vol
P(x Y,E) : P(Y X,E)P(X E) simplify $P(Y E)$

(c) MARGINALIZATION

Show $P(X|E) = \sum_{i=1}^{n} P(X_i, Y_i = y_i|E)$ $P(X_i, E) = P(E)P(X_i, E)$ $P(X_i, E) = P(E)P(X_i, Y_i = y_i|E)$ $P(X_i, E) = P(E) \sum_{i=1}^{n} P(X_i, Y_i = y_i|E)$ $P(X_i, E) = P(E) \sum_{i=1}^{n} P(X_i, Y_i = y_i|E)$ $P(X_i, E) = P(E) \sum_{i=1}^{n} P(X_i, Y_i = y_i|E)$ $P(X_i, E) = \sum_{i=1}^{n} P(X_i, Y_i = y_i|E)$ $P(X_i, E) = \sum_{i=1}^{n} P(X_i, Y_i = y_i|E)$ $P(X_i, E) = \sum_{i=1}^{n} P(X_i, Y_i = y_i|E)$

```
1.2 Conditional Independence
Looking at the LHS of (2), we can express it using the conditionalized form of Bayes rule derived
    in 11(6)
        P(X|Y,E) = P(Y|X,E)P(X|E)
P(Y|E)
  If (1) is true, we can substitute P(Y|X,E) - P(Y|E):
      P(X|Y,E) = P(X)E)
         P(X|Y, E) = P(XIE)
    Thus (1) inhies (2)
 from the conditionalized version of the product rule proved in 1.1a,
        P(x, Y) E) = P(x | Y, E) P(Y | E)
 IF (2) is true, we can rewrite this as
      P(X, Y ) - P(X ) E) P(Y ) E)
  Thus (2) implies (3)
From the product rule proved in 1.1a
       P(X,Y|E) = P(Y | X,E)P(X |E)
 1F (3) is true, this can be substituted on
the RHS:
   (3) P(X,Y lE)=P(X lE)P(Y lE)
P(Y | X,E)P(X lE)=P(X lE)P(Y lE)
           P(Y | X,E) = P(Y/E)
    Therefore, (3) implès (1)
 We have now proved on the statements are
     equivalent as (1) \rightarrow (2) \rightarrow (3) \rightarrow (1)
```

```
1.3 Creative Writing
(a) Cumulative evi<u>d</u>ence
          P(Z=1)>P(Z=1 | X=1) > P(Z=1 | X=1, Y=1)
         Z: get an "A" in 250A (0: not A; 1: A)
         X: not attending class (0: attend; 1: not attend)
         Y: not doing PAs (0; do HW; 1: don't)
     The probability of getting an A is
higher than the probability of getting
on A given you and not go to
class which is higher than if you both
      did not go to class and did not
(b) Explaining away
               P(x=1/2=1) > P(x=1)
            P(x=1 | Z=1, Y=1) ~ P(x=1 (Z=1)
             X: having a headache
Z: drante last night
Y: drank lots of water
     The probability of headache in general is
less than having a headache if you drank
last night, but having a headache after
drinking is more likely than having
a neadache after dritteing given you
also drank a lot or water.
(c) Conditional independence
         P(Y=1,Z=1) + P(Y=1)P(Z=1)
P(Y-1,Z=1 | X=1) = P(Y=1 | X=1)P(Z=1) X=1)
             Y+2 independent given X (otherwise dependent)
            Y: pet allergies
            2: Scratched furniture
X: cat
         The pet allergies and scratched funniture are directly caused by the cat, but neither has a direct effect on the other.
```


(c)
$$P(c=1|T=0)$$
 $P(C=1|T=0) = P(F=0|C=1)P(C=1)$
 $P(T=0) = \{P(C=c, T=0)\}$
 $P(T=0) = \{P(C=c, T=0)\}$
 $P(T=0) = \{P(C=c, T=0)\}$
 $P(C=0) = \{P(C=c)\}$
 $P(C=0) = \{P(C=0)\}$
 $P(C=$

(a) Maximal entropy

$$\mathcal{L}(x,\lambda) = f(x) - \lambda g(x)$$

(b) Joint entropy

Show that
$$H(X_1, X_2...X_n) = \sum_{i=1}^n H(X_i)$$

$$\mathcal{H}(X_1, X_2, ... X_N) = -\sum_{x_1} \sum_{x_2} P(x_1, x_2... X_N) \log P(x_1, x_2... x_N)$$

= $-\sum_{x_1} \sum_{x_2} P(x_1... x_{n-1}) P(x_n) \log P(x_1... x_{n-1}) P(x_n)$ (indep)

H(X1...Xn-1) + H(Xn)

We can use the same logic to prove complete independence EH(Xi)

let
$$X = g_i \rightarrow -\ln(\frac{g_i}{p_i}) \ge 1 - \frac{g_i}{p_i}$$

$$\xi \sqrt{p_{i}^{2}} + \xi \sqrt{q_{i}^{2}}^{2} = 2 = 2 \xi p_{i} \text{ def * bound}$$

$$\xi p_{i} \ln \left(\frac{p_{i}}{q_{i}}\right) \ge \xi 2p_{i} \left(1 - \sqrt{\frac{q_{i}}{p_{i}}}\right) = 2 \xi p_{i} - \sqrt{p_{i}q_{i}} \text{ inequality}$$

$$= \xi \sqrt{p_{i}^{2}} + \xi \sqrt{q_{i}^{2}} - 2 \xi \sqrt{p_{i}q_{i}}$$

$$= \xi \sqrt{p_{i}^{2}} - \sqrt{q_{i}^{2}}$$

$$= \xi \sqrt{p_{i}^{2}} - \sqrt{q_{i}^{2}}$$

$$\frac{1}{2} \sum_{i} \ln \left(\frac{p_i}{q_i} \right) \ge \frac{1}{2} \left(\sqrt{p_i} - \sqrt{q_i} \right)^2$$

(d) Symmetry Counteressample

For a distribution where

1.8 Compare a Contrast

(a) Yes, belief network I has a conditional dependence of P(Z|X) that is not present in 2. If Y and Z are conditionally independent in belief network I but not 2.

(b) No additional independences

(c) Yes, again in #1, Y and Z are conditionally independent when Conditioned on X. This independence is not present in #3

1.9 Hangman

	word	count	P(W=w)
0	AARON	418	0.000054
1	ABABA	199	0.000028
2	ABACK	64	0.000008
3	ABATE	69	0.000009
4	ABBAS	290	0.000038

(a) Print out 15 most frequent and 14 least frequent 5-letter words.

Compute the prior probabilities $P(w) = COUNT(w)/COUNT_{total}$. As a sanity check, print out the 15 most frequent 5-letter words, as well as the 14 least frequent words.

```
In [3]: top_15 - word_counts.sort_values(by-'P(W-w)', ascending-Palse)
top_15.head(15)
```

Out[3]:

	word	count	P(W=w)
5821	THREE	278077	0.035627
5102	SEVEN	178842	0.023333
1684	EIGHT	165764	0.021626
6403	WOULD	159875	0.020858
18	ABOUT	157448	0.020542
5804	THEIR	145434	0.018974
6320	WHICH	142148	0.018545
73	AFTER	110102	0.014365
1975	FIRST	109957	0.014348
1947	FIFTY	106869	0.013943
4158	OTHER	106052	0.013838
2073	FORTY	94951	0.012388
6457	YEARS	88900	0.011598
5806	THERE	86502	0.011288
5250	SIXTY	73086	0.009535

```
In [4]: last_14 - word_counts.sort_values(by-'P(W-w)')
last_14.head(14)
```

Out[4]:

	word	count	P(W=w)
3554	MAPCO	6	7.827935e-07
712	BOSAK	8	7.827935e-07
895	CAIXA	6	7.827935e-07
4160	OTTIS	8	7.827935e-07
5985	TROUP	6	7.827935e-07
1107	CLEFT	7	9.132590e-07
2041	FOAMY	7	9.132590e-07
977	CCAIR	7	9.132590e-07
5093	SERNA	7	9.132590e-07
6443	YALOM	7	9.132590e-07
5872	T000R	7	9.132590e-07
3978	NIAID	7	9.132590e-07
4266	PAXON	7	9.132590e-07
1842	FABRI	7	9.132590e-07

Do your results make sense?

Yes. The most common words are ones that are often used including numbers. The least common words are very specific and not used in daily speech.

(b) The Best Next Guess

Consider the following stages of the game. For each of the following, indicated the best next guess — namely, the letter l that is most probable to be among the missing letters. Also report the probability $P(L_l = l)$ for some l in 1, 2, 3, 4, 5 | E) for your guess l. Your answers should fill in the last two columns of this table.

correctly guessed	incorrectly guessed	best next guess ℓ	$P(L_i = \ell \text{ for some } i \in \{1, 2, 3, 4, 5\} E)$
	{}	E	0.5394
	{A, I}	E	0.6214
A R	{}	T	0.9816
A R	{E}	0	0.99/3
U	{O, D, L, C}	Т	0.7045
	{E, O}	I	0.6366
DI-	{}	A	0.8207
DI-	{A}	E	0.7521
- U	{A, E, I, O, S}	Y	0.6270

(c)

```
In [22]: def p_e_given_w(correct , incorrect):
             Function to give P(E|W) for each word. Checks if the guessed correct
         ly/incorrectly
             matches with each word.
             correct: list of correct guesses
             incorrect: list of incorrect guesses
             p_e_w: list of probabilities P(E|W) for each word
             # Initialize P(E|W) for each word
             p_e_w = [None]*len(word_counts.index)
             # Compare words to correct/incorrect quesses to determine P(E|W)
             for i in range(len(word counts.index)):
                 for letter, guess in zip(word_counts['word'][i], correct):
                     # P(E|W) = 0 if the word contains a letter that is "incorrec
                     1f letter in incorrect:
                         p_e_w[i] = 0
                         break
                     \# P(E|W) = 0 if the letter is in the guessed spot but the
                     # word doesn't have the same letter in that spot.
                     elif (guess i- None) and (letter i- guess):
                         p_w[i] = 0
                         break
                     # P(E|W) = 0 if a letter has been guessed and is in the word
                     # but not in the same positions as the word in question.
                     elif (letter in correct) and (guess -- None):
                         p_ew[i] = 0
                         break
                     else:
                         p_e_w[i] - 1
             return p e w
```

```
In [31]: def best_guess(correct, incorrect):
             Gives the best next guess 1 and P(L=1|E)
             correct: list of correct guesses in order
             incorrect: list of incorrect guessses
             # Compute P(E/W=w)
             word_counts['P(E|W-w)'] - p_e_given_w(correct, incorrect)
             # Compute P(W=w/E)
             word counts['P(E|W-w)*P(W-w)'] - word counts['P(E|W-w)'] * word coun
         ts['P(W-W)']
             word counts['P(W-w|E)'] - word counts['P(E|W-w)*P(W-w)'] / word coun
         ts['P(E|W-w)*P(W-w)'].sum(axis-0)
             del word counts['P(E|W-w)*P(W-w)']
             # Compute P(L=1|W=W)
             for letter in string.ascii_uppercase:
                 word\_counts['P(L-{}\{|W-w|)'.format(letter)] - p_l\_given\_w(letter)
             # Compute P(L=1|W=w)*P(W=w|E) for each letter and word
             for letter in string.ascii_uppercase:
                 word counts['P(L-{}|W-w)*P(W-w|E)'.format(letter)] - p 1 given w
         (letter) * word counts['P(W-w|E)']
             # Compute P(L=1/E)
             p l e = [None]*len(string.ascii lowercase)
             for letter, i in zip(string.ascii_uppercase, range(len(string.ascii_
                 p l e[i] - word counts['P(L-{}|W-w)*P(W-w|E)'.format(letter)].su
         m(axis=0)
             p_letter_e = pd.DataFrame(p_l_e, columns=['P(L-l|E)'], index=list(st
         ring.ascii uppercase))
             best_guess = p_letter_e.loc[p_letter_e[p_letter_e['P(L-1|E)'] < 0.99
         99999].idxmax()].index.values[0]
             max p l e - p letter e.loc[p letter e[p letter e['P(L-1|E)'] < 0.999
         9999].idxmax()].values[0][0]
             print('For correct guesses', correct, 'and incorrect guesses {}:'.fo
         rmat(incorrect))
             print('Your best next guess is', best guess, 'with a probability P(L
         -{}|E) of'.format(best guess),round(max p 1 e, 4),'\n')
```

```
In [32]: # Check against given solutions
         correct - [None] * 5
         incorrect - ['E', 'O']
         best guess(correct, incorrect)
         correct - ['D', None, None, 'I', None]
         incorrect - []
         best guess(correct, incorrect)
         incorrect - ['A']
         best_guess(correct, incorrect)
         correct - [None, 'U', None, None, None]
         incorrect = ['A', 'E', 'I', 'O', 'S']
         best guess(correct, incorrect)
         For correct guesses [None, None, None, None, None] and incorrect guesse
         8 ['E', 'O']:
         Your best next guess is I with a probability P(L-I|E) of 0.6366
         For correct guesses ['D', None, None, 'I', None] and incorrect guesses
         []:
         Your best next quess is A with a probability P(L-A|E) of 0.8207
```

For correct guesses ['D', None, None, 'I', None] and incorrect guesses

For correct guesses [None, 'U', None, None, None] and incorrect guesses

Your best next guess is E with a probability P(L-E|E) of 0.7521

Your best next quess is Y with a probability P(L-Y|E) of 0.627

['A']:

['A', 'E', 'I', 'O', 'S']:

```
In [33]: # New solutions
         correct - [None] * 5
         incorrect - []
         best guess(correct, incorrect)
         incorrect - ['A','I']
         best guess(correct, incorrect)
         correct - ['A', None, None, None, 'R']
         incorrect - []
         best_guess(correct, incorrect)
         incorrect - ['E']
         best guess(correct, incorrect)
         correct - [None, None, 'U', None, None]
         incorrect - ['O', 'D', 'L', 'C']
         best guess(correct, incorrect)
         For correct guesses [None, None, None, None, None] and incorrect guesse
         Your best next guess is E with a probability P(L-E|E) of 0.5394
         For correct guesses [None, None, None, None, None] and incorrect guesse
         8 ['A', 'I']:
         Your best next guess is E with a probability P(L-E|E) of 0.6214
         For correct quesses ['A', None, None, None, 'R'] and incorrect quesses
         []:
         Your best next quess is T with a probability P(L-T|E) of 0.9816
         For correct quesses ['A', None, None, None, 'R'] and incorrect quesses
         Your best next guess is O with a probability P(L-O|E) of 0.9913
```

For correct guesses [None, None, 'U', None, None] and incorrect guesses

Your best next guess is T with a probability P(L-T|E) of 0.7045

['O', 'D', 'L', 'C']: