Orthogonal vectors and subspaces

Gilbert Strang

September 23, 2017

Orthoganality of the Four Subspaces

Definition 1 (Orthogonal subspaces). Subspace S is said to be *orthogonal* to a subspace T, if every vector in S is orthogonal to every vector in T.

Remark 1. Every vector x in the *nullspace* of A is perpendicular to every row of A. The *nullspace* N(A) and the *row space* $C(A^T)$ are orthogonal subspaces of R^n .

Remark 2. Every vector y in the nullspace of A^T is perpendicular to every column of A. The nullspace $N(A^T)$ and the column space C(A) are orthogonal subspaces of R^m .

Orthogonal Complements

Definition 2 (Orthogonal complement). The *orthogonal complement* of a subspace V contains every vector that is perpendicular to V. This orthogonal subspace is denoted by V^{\perp} .

Theorem 1 (Fundamental Theorem of Linear Algebra). N(A) is the orthogonal complement of the row space $C(A^T)$ (in R^n). $N(A^T)$ is the orthogonal complement of the column space C(A) (in R^m).