

Mathematics Methods Year 12 Test 2 2016

Section 1 Calculator Free Exponential Function, Fundamental Theorem

TIME: 33 minutes	DATE: Friday I st April NSTRUCTIONS: Rendard Hems: Pens, pencils, drawin
g templates, eraser	_
2 marks require working to be shown to receive full marks.	Duestions or parts of questions worth more than
	(7 marks)
Jo not simplify.	Determine $\frac{dy}{dx}$ for each of the form
[7]	(a) $y = e^{\sqrt{x}}$
	$(p) \qquad y = \sin(e^{2x})$

 $\lambda = (\cos x) \, \epsilon_{\cos x}$

(8 marks)

The amount A of a drug (in milligrams) in the bloodstream will decline at a rate proportional to the current amount. That is $\frac{dA}{dt} = -\left(\frac{1}{k}\right)A$.

Write down the formula for A(t), the amount of the drug in the bloodstream after t hours, in terms of t, k and the initial amount A_0 .

.6

What proportion of the drug remains in the bloodstream after k hours?

The drug sodium pentobarbitol can be used to tranquilize animals. A dog is tranquilized if its bloodstream contains at least 45 milligrams of the drug for each kilogram of the dog's weight. The elimination time for the drug is 6 hours.

(5) What single dose of this drug should be given in order to tranquilize a 12 kilogram dog for 1 hour?

[٤]

[٤]

2. (10 marks)

(a) Evaluate exactly $\int_0^2 x e^{4-x^2} dx$

[4]

(b) Determine $\int \frac{4e^{2x} + 4x}{(e^{2x} + x^2)^3} dx$

[3]

(c) Determine $\int_{\pi}^{x^2} \left(\frac{d}{dt} e^{e^{-t}} \right) dt$

[3]

8. (5 marks)

A particular rock is dropped into a swimming pool and it sinks vertically to the bottom. Due to water resistance, the rock does not have a constant velocity on the way to the bottom. Its velocity, ν centimetres per second, t seconds after it hits the surface of the water is given by

$$v = 8(2 - e^{-0.8t})$$
 for $0 \le t \le 7$

(a) What is the initial velocity of the rock in the water?

What is the acceleration of the rock after 4 seconds?

c) Terminal velocity is an expression used to describe the velocity that is approached but never exceeded. Determine the terminal velocity reached by the rock in the water. [2]

[1]

[2]

3. (4 marks)

Given
$$y = \frac{3 + e^x}{8}$$

Sugar is being dissolved in a solution at a rate given by $\frac{dS}{dt} = -20e^{-0.1t}$ where S is the amount, in grams, of undissolved sugar after t seconds.

(a) determine $\frac{dy}{dx}$

[7] (a) how much sugar is initially in the solution

(b) how long does it take for half the sugar to dissolve.

(4 marks)

[7]

 $0 \neq \frac{\sqrt{b}}{xb} \text{ why } dx$ (d)

(2 marks)

(a) Determine $\frac{dy}{dx}$ given $y = xe^x$

(b) Hence determine $\int x e^x dx$

Page 2 of 4

[7]

[٤]

[7]

[7]

5. (4 marks)

Given $y = \int_{-3}^{x} \frac{t^2 - 2}{\sqrt{t}} dt$, use the incremental formula $\delta y \approx \frac{dy}{dx} \times \delta x$ to determine the change in y if x changes from 4 to 4.02.

Mathematics Methods Year 12 Test 2 2016

Section 2 Calculator Assumed Exponential Function, Fundamental Theorem

STUDENT'S NAM	E		
DATE : Friday 1 st A	pril TIME	2: 20 minutes	MARKS: 21
INSTRUCTIONS: Standard Items: Special Items:	Pens, pencils, drawing templates, e Three calculators, notes on one side assessment)		notes to be handed in with this
Questions or parts of que	estions worth more than 2 marks requi	re working to be shown to re	eceive full marks.
6. (4 marks)			
Determine the	e value of x for which $\int_{x}^{-1} (1 - x)^{-1}$	$-t^2$) dt has a relative min	nimum. Justify it is a
minimum val	lue.		[4]

Page 4 of 4 Page 1 of 4