Exercise 1. Determine the truth values (i.e., T or F) of the following propositions: 19-4=12 if and only if 3 is a prime number. If 1 + 1 = 5, then 1 + 1 = 3. If the moon is a star, then so is the sun. If 5 is a prime number, then the earth is flat. 0 > 1 if and only if 2 > 1. Either Toronto is the capital of Canada or Hamburg is the capital of Germany. prime no 1+1 = S F moon star

6		<u>ا</u>	عابر	, C	α ρ	Ca	۸ د	\bigcup	r	lom		<u>z.</u>	Cap	_ Ge	し.	
					•								•			
E.	ce	ادراته	e (2												
(i		P	0		(p)	Jq										
					\		•									
		P		C	1	P	V(4	P	Φ	ρ'	Vq				
		\ \ T		-	_	\	T	,			(' F		,			
		T		(Τ				t					
		F		- (TF				F					
		7					٢				٢					

 $(q \oplus \omega)$ 900 pn(900) してもしむし T T F F T

 \bigcirc pngpnu (png) (pnu) チャチャナウナウ

$$(p \leftarrow q) \otimes (p \rightarrow q)$$
 $(p \leftarrow q) \otimes (p \rightarrow q)$
 $(p \leftarrow q) \otimes (p \rightarrow q)$
 $(p \rightarrow q)$

Exerce 3

$$\bigcirc (\neg p \rightarrow q) \land (q \rightarrow \neg p)$$

$$= (p \vee q) \cap (\neg q \vee \neg p)$$

$$\equiv (p \rightarrow \neg q) \wedge (\neg q \rightarrow p)$$

$$= (\gamma \rho \vee \gamma q) \cap (q \vee p)$$

$$(\rho \Lambda \gamma(q \Lambda v)) V (\gamma \rho \Lambda (q \Lambda v))$$

ABB

 $= (A N - B) \vee (A N B)$

es (p N (79 V70)) V (7p N9 Nv)) (0 / 19 / (pr 19) V (1ph q 10) · (p @ q) n (p @ v) es ((p N-q) V (-p N a)) N ((p N-u) V (-p Nu)) e) ((p 1 -q) 1 (p 1 >u)) es (79/10/p) (Ja no napap) V ((pn - q) n (-pn v)) Y (ap Na Np Niu) v ((png) n (pnzu)) V (sphano) ((np n q) n (np nu)) $(3) \cdot p \oplus q$ (p 1 79) V (7p 19) · (p/q) n (p/19) es (php) V (qh7p) V (ph7q) V (qh7q)

 $\neg (p \oplus q)$ e> (7p N 7g) V (9 Np) $\rho \in q$ e> (p-)a) n (q-)p) es (7p Vq) N (7q Vp) es (7PM2) V (2PMP) V (4M2) V(q/p)

Exercice 4 a (pn 79 n 70) (Z) $(p \oplus U \oplus q)$ 3 (PNG) V (PNU) V (GNU) E&S · (KVH) · (V & K) · (RDV) · (M -) A) · (A ~ R) · (H -> k) V parle

	. (N													
		l No	rle												
	• W	ev	A	R	\mathcal{D}	rlen	Vo								
			·				\								
	E	6													
_															
							A								
);		5	, 5	\mathcal{L}	\ \	oege	her						
		2													
),							X						
) > <u>-</u>		<u>_</u> ,	J	rc	xelf	w.							
(1)														
(a)			<u></u>	(10		Λ.	_ 1	•					
U)		<)	Je J	1 (_1/(MC	y Cr	2						_
		Q		\		/	IO				0		•		
		4	X				ν)	U 1		U,	Y	90		_	
		Q) ~~		Λ	d) -	30	0	\bigcirc					_
			> · v	•											_

Ex7 conrapositive $\neg \left(\rho \neg q \right)$ = $\gamma \left(\gamma \rho V_{q} \right)$ Ex8

$$((q - \gamma P) N - q) - \gamma P$$

$$= (q \vee P) N - q - \gamma P$$

$$= 7q - \gamma P$$

$$= (q \vee \gamma P) Contract$$

Ex3 $((\neg \rho \land G) - (\neg \Phi G)) \lor (\neg S = \rho)$ $= (\neg (\neg \rho \cap q) \vee (\neg \sigma q) \vee (\neg s = \rho)$ $= (\rho \vee \neg q) \vee ((r \wedge \neg q) \vee (\neg r \wedge q)) \vee (\neg s e \eta)$ = (pV2q) V (rN2q) V (7rNq) V (7s es p) = p/29 V(r/19) V(rr/19) V(rs->p/p->>) $= \rho V \gamma q V (r \Lambda \gamma q) V (\gamma r \Lambda q) V ((s V \beta \Lambda (\gamma \rho \Lambda \gamma s))$ V (snp) V (sns) V (pnp) p V-9 V (r N-9) V (rr Ng) V (s N-p) V (pn-s) rantology (J)

