

LAB-5

Pengantar Sistem Digital

Semester Ganjil 2022/2023

Petunjuk Pengerjaan:

- Kerjakan semua soal sesuai dengan spesifikasi tiap soal
- Mohon baca setiap spesifikasi soal dengan seksama sebelum bertanya kepada asisten dosen
- Jika ada soal yang membingungkan atau kesalahan pada soal, silakan bertanya kepada salah satu asisten dosen yang sudah stand-by
- Lakukan submisi semua file (sesuai spesifikasi yang ada pada soal) di Scele sebelum Jumat, 4 November 2022 pukul 11:45
- Di luar jam lab PSD (10:10 11:00), Anda dapat mengerjakan lab secara daring atau *take home*. Namun jika ruangan lab setelah jam lab PSD tidak ada yang menggunakan, Anda juga dapat melanjutkan di ruangan lab.
- Jika mengumpulkan telat selama 10 menit < x <= 2 jam, akan dikenakan penalti sebesar 50 poin. Terlebih dari waktu tersebut, lab tidak akan dinilai

Penjelasan Materi

Sequential Circuit Step-by-Step Design Procedure

Step-by-step mendesain sebuah sequential circuit adalah sebagai berikut:

1. Specification

Menjelaskan behaviour sirkuit, gate yang digunakan, flip-flop yang digunakan, dan state assignment yang digunakan

2. Formulation

Membuat state diagram dan state table

3. State assignment

Meng-assign state-state yang ada dari formulation ke dalam bentuk binary. Ada binary, one-hot, gray code state assignment, dan masih banyak lagi

4. Flip-flop input equation determination

Meng-assign flip-flop input ke dalam tabel sesuai dengan flip-flop yang ingin digunakan dan state diagram/tabel yang telah dibuat

5. Output equation determination

Meng-assign output ke dalam tabel sesuai dengan state diagram/tabel yang telah dibuat

6. Optimization

Mengoptimasi output dan flip-flop input equation

7. Technology mapping

Membuat sirkuit di Logisim

8. Verification

Mencoba jalannya sirkuit di Logisim

Contoh Soal

Buatlah sebuah 110 recognizer dengan design procedure! Gunakan D flip-flop pada desain yang dibuat.

Pada soal tersebut, diketahui bahwa kita akan membuat sebuah sequence recognizer. Sequence recognizer adalah sebuah sequential circuit yang menerima 1 input yang dapat berubah seiring waktu. Input tersebut berupa bilangan binary, antara 1 dan 0. Recognizer 110 akan menerima input tersebut dan mengecek apakah dari inputnya terdapat input beriringan '110'. Apabila terdapat input 110, outputnya akan mengeluarkan 1. Jika tidak, outputnya tetap 0.

Contoh:

Dimasukkan input beriringan 00011101000

Karena terdapat 110, yaitu pada 0001**110**1000, maka setelah 110 tersebut, output akan menjadi 1. Pada saat yang lain, outputnya tetap 0.

Step-by-step design:

1. Specification

'110' sequence recognizer dengan D flip-flop

2. Formulation

Membuat state diagram dan state table

State diagram(contoh menggunakan Mealy diagram, boleh juga menggunakan Moore Diagram):

State table(Mealy, menyesuaikan diagram):

Present State	Next	State	Output		
	X = 0	X = 1	X = 0	X = 1	
00	00	01	0	0	
01	00	10	0	0	
10	00	10	1	0	

3. State assignment

Sudah ter-assign 3 state yaitu 00, 01, 10.

4. Flip-flop input equation determination

Membuat lagi state table yang lebih mendetail. Pada table ini, present state dan next state sudah menggunakan state assignment.

Sebelum memasukkan flip-flop input, berikut state table yang sudah menggunakan state assignment:

Present State		Next State				Output	
Y1	Y0	X = 0		X = 1		X = 0	X = 1
0	0	0	0	0	1	0	0
0	1	0	0	1	0	0	0
1	0	0	0	1	0	1	0

Dari tabel di atas, sudah diketahui next state yang didapat dalam bentuk binary. Setelah itu, kita buat tabel baru dengan next state yang menggunakan flip-flop. Present state dan next state sebuah flip-flop dapat dilihat dari excitation table-nya.

Berikut tabel yang sudah dimasukkan flip-flop input-nya:

Present State		Next State (X=0)		Next State (X=1)		Output (Y)	
Y1	Y0	D1	D0	D1	D0	X = 0	X = 1
0	0	0	0	0	1	0	0
0	1	0	0	1	0	0	0
1	0	0	0	1	0	1	0

D1, dan D0 di sini berarti D flip-flop. Jadi, kita akan menggunakan 2 D flip-flop

5. Output equation determination

Membentuk equation yang diperlukan dari tabel yang ada. Untuk kasus ini, diperlukan equation untuk D1, D0, dan output Y.

Dari tabel di atas, anggap Y1, Y0, dan x sebagai input, lalu D1, D0, dan Y sebagai output. Kita perlu mencari persamaan untuk D1, D0, dan Y. Kita bisa menggunakan K-Maps untuk mendapatkan persamaan boolean:

Namun, jika variabelnya terlalu banyak, akan susah menggunakan K-Maps. Selain kmaps, kita juga bisa mendapatkan persamaan dengan menganalisis state table.

- a. Perhatikan D1. D1 akan bernilai 1 jika Y1 = 1, X = 1 atau jika Y1 = 0, X= 1. Jadi D1 = Y1 X + Y0 X
- b. Perhatikan D0. D0 akan bernilai 1 jika Y1 = 0, Y0 = 0, X=1. Jadi D0=Y1' Y2' X
- c. Perhatikan Y. Y akan bernilai 1 jika Y1 = 1, X = 0. Jadi Y= Y1 X'

6. Technology mapping Membuat sirkuit di Logisim

Nomor 1 (100 poin) Sequence Recognizer

Revisi 0 - 26/08/2022

Buatlah '101' dan '001' recognizer di mana output 1 hanya akan dikeluarkan setelah melewati bit terakhir sequence yang diminta. Buatlah circuit tersebut dengan menggunakan D flip-flop.

Contoh, jika sequence input adalah '00101' maka akan ada 2 waktu output bernilai 1, yaitu ketika setelah melewati sub-sequence '001' dan sub-sequence '101'.

Petunjuk pengerjaan:

- Buatlah state diagram Mealy atau Moore (pilih salah satu) berdasarkan kriteria yang diberikan (Media pengerjaan bebas)
- Buatlah state table berdasarkan state diagram dengan menggunakan binary state assignment (Dikerjakan di Microsoft Excel/Google sheet atau sejenisnya)
- Carilah persamaan boolean untuk masing-masing flip-flop/output berdasarkan state table yang sudah dibuat (Dikerjakan di Microsoft Excel/Google sheet atau sejenisnya)
- Buatlah circuit dari persamaan boolean tersebut di logisim

<3 PSD 2022/2023-1

Pengumpulan Submisi

• Kumpulkan semua file jawaban pada satu file .zip dengan format penamaan file (tanda '[' dan ']' tidak perlu ditulis):

LAB5-[kode asdos]-[npm]-[nama].zip

Contoh: LAB5-DY-1806146991-HarnindytoWicaksana.zip

- Circuit logisim dengan format penamaan LAB5-[kode-asdos]-[npm]-[nama].circ
- State Diagram dan State Table dalam bentuk file PDF dengan format penamaan LAB5-[kode-asdos]-[npm]-[nama].pdf

<3 PSD 2022/2023-1

