CHEMISTRY TOMO V

2nd

ASESORIA

1

Indica la verdad (V) o falsedad (F) de las proposiciones:

- a. Mendeléiev predice la existencia de nuevos elementos
- b. Lothar Meyer hizo su clasificación principalmente en base sus propiedades físicas.
- c. Meyer y Mendeléiev relacionaron las propiedades de los elementos con sus números atómicos (F)

RESOLUCIÓN

Al igual que Meyer, un año antes el Ruso Mendeleiev ya había publicado su trabajo donde ordenó a los 63 elementos descubiertos al orden creciente de sus PESOS ATÓMICOS

La tabla de Mendeleiev se basó principalmente en las Propiedades Químicas y predijo la existencia de nuevos elementos

2 Relacionar:

- I. Establece la ley periódica de los elementos químicos en función de su carga nuclear.
- a)Grupos o familia
- II. Propiedades físicas diferentes pero propiedades químicas similares
- b)Jeffreys Moseley
- III. Contienen los elementos representativos que terminan su configuración electrónica en s o p
- c) Grupo A

RESOLUCIÓN

GRUPOS

REPRESENTATIVOS

Moseley descubre la ley natural de los elementos químicos

Estos elementos tienen propiedades químicas similares. Elementos terminan su configuración electrónica en "s" o "p"

¿A qué familia corresponde la configuración electrónica: 1s²2s²2p⁶3s²3p⁴?

Si la C. E. termina en "s" O "p"

GRUPO = (# e- de valencia) A

1s² 2s² 2p⁶ 3s² 3p⁴

Periodo: 3 Grupo: VIA

mayor nivel

Anfígeno o Calcógeno

- 4 Complete el texto.
 - I) Son gases monoatómicos GASES NOBLES
 - II) A temperaturas relativamente altas, son buenos conductores eléctricos METALOIDES
 - III) Al combinarse con los átomos de otros elementos, tienden a ceder sus electrones

METALES

Los metaloides tienen conductividad eléctrica baja sin embargo, a temperaturas relativamente altas si son buenos conductores eléctricos Los metales presentan brillo metálico y se oxidan

GASES nobles son monoatómicos y estables también conocidos como gases inertes.

Si un elemento tiene 6e- en la capa 'M'. Hallar el gru po y periodo

RESOLUCIÓN

CAPA M ES EQUIVALENTE AL NIVEL 3

1s² 2s² 2p⁶ 3s² 3p⁴

Periodo: 3 Grupo: VIA

mayor nivel

Anfígeno o Calcógeno

Relacione correctamente:

- I. Oxida con facilidad
- II. Metal liquido a 25°C
- III. Metaloide
- IV. Gas inerte

RESOLUCIÓN

a) Mercurio

- b) Metales
- c) Silicio
- d) Neón

LOS METALOIDES SON 8 ELEMENTOS (B, Si, Ge, As, Sb, Te, Po, At).

LOS GASES NOBLES EN CONDICIONES NORMALES DE TEMPERATURA NO REACCIONAN

LOS METALES AL COMBINARSE CON LOS ÁTOMOS DE OTROS ELEMENTOS, TIENDEN A CEDER SUS ELECTRONES (SE OXIDAN)

- 7
- Respecto al elemento con Z = 26 se cumple que:
- a. Pertenece al periodo 3
- b. Tiene 13 electrones en el subnivel "d"
- c. Pertenece a la grupo VIIIB
- d. Es un elemento representativo

RESOLUCIÓN

Si la configuración electrónica termina en "d"

RECORDAR

```
ns^{\underline{Y}}(n-1)d^{X}
Periodo: \uparrow n
Grupo: (\gamma + x) B
```

Si
$$Y + x = 8$$
, 9, 10 \rightarrow Grupo VIII B (8), (9), (10)
Si $Y + x = 11$ \rightarrow Grupo I B (11)
Si $Y + x = 12$ \rightarrow Grupo II B (12)

Periodo: 4 Grupo: VIIIB

mayor nivel

Determine el periodo y grupo de un elemento que tiene 6 electrones en el nivel 4.

RESOLUCIÓN

ZX: 1s²2s²2p⁶3s²3p⁶4²3d¹⁰4p⁴

Si la configuración electrónica termina en "s" o "p"

Nivel 4

Nivel 4

GRUPO = (# e- de valencia) A

Periodo: 4

Grupo: VIA

El plutonio es un elemento transuránido radiactivo con el símbolo químico Pu y el número atómico 94. Hallar su grupo

RESOLUCIÓN

Si la configuración electrónica termina en f = IIIB

Periodo: 7

Grupo: IIIB

¿En cuál de los siguientes grupos hay un elemento extraño?

II. S – Se – Tc – O

III. Au – Ag – Cu

IV. Be - Mg - Ca

1	1 H Hidrógeno 1,008		(3)	5 (4	1 5		N .52	5		1 53	5.5 1 0	170	5.57	(F) (F) (S)	0.055	2.5	53	2 He Helio 4,0026
2	3 Li Litio 6,94	Be Berilio 9.0121											5 B Boro 10,81	Carbono	14.007	8 O Oxigeno 15,999	9 F Flúor 18,998	10 Ne Neón 20,1797
3	11 Na Sodio 22,989	Mg Magnesio 24,305											13 AI Aluminio 26,981	14 Si Silicio 28,085	15 P Fósforo 30,973	16 S Azufre 32,08	17 CI Cloro 35,45	18 Ar Argón 39,948
•	19 K Potasio 39,0983	20 Ca Calcio 40,078		71 Titanio 47,867	23 V Vanadio 50,9415	24 Cr Cromo 51,9961	Mn Manganesc 54,938	26 Fe Hierro 55,845	27 Co Cobalto 58,933	28 Ni Niquel 58,6934	Cu	30 Zn Cinc 65,38	31 Ga Galio 69,723	32 Ge Germanio 72,63	33 As Arsénico 74,921	34 Se Selenio 78,971	Br Bromo 79,904	36 Kr Kriptón 83,798
5	37 Rb Rubidio 85,4678	38 Sr Estroncio 87,62	39 Y Itrio 88,905	40 Zr Circonio 91,224	41 Nb Niobio 92,906	Mo Molibdeno 95,95	Tc Tecnecio (98)	Rutenio 101,07	45 Rh Rodio 102,90	Paladio 106,42	47 Ag Plata 107,86	48 Cd Cadmio 112,414	49 In Indio 114,818	50 Sn Estaño 118,710	Sb Antimonio 121,760	52 Te Telurio 127,60	53 Yodo 126,90	54 Xe Xenón 131,293
6	55 Cs Cesio 132,90	56 Ba Bario 137,327	57–71	72 Hf Hafnio 178,49	73 Ta Tantalio 180.94	74 W Wofframio 183,84	75 Re Renio 186,207	76 Os Osmio 190,23	77 r ridio 192,217	78 Pt Platino 195,084	Au	Hg Mercurio 200,59	81 TI Talio 204,38	82 Pb Plomo 207.2	83 Bi Bismuto 208,98	Po Polonio (209)	At	86 Rn Radón (222)
7	87 Fr Francio (223)	88 Ra Radio (226)	89–103	104 Rf Rutherfordic (267)	105 Db	106 Sg Seaborgio (271)	107 Bh Bohrio (272)	108 Hs Hassio (270)	109 Mt Meitnerio (276)	110 Ds Damstadio (281)	111 Rg Roentgenio (280)	112 Cn	113 Nh	114 FI Flerovio (289)	115 Mc Moscovium (288)	116 Lv Livermorio (293)	117 Ts	118 Og Oganessor (294)