Práctica 7 de álgebra 1

Comunidad algebraica

last update: 25/06/2024

Definiciones y fórmulas útiles

• Operaciones:

+: Sean
$$f, g \in \mathbb{K}[X]$$
 con $f = \sum_{i=0}^{n} a_i X^i$ y $g = \sum_{i=0}^{n} b_i X^i$

$$\Rightarrow f + g = \sum_{i=0}^{n} (a_i + b_i) X^i \in \mathbb{K}[X]$$

$$\cdot : \text{ Sean } f, g \in \mathbb{K}[X] \text{ con } f = \sum_{i=0}^{n} a_i X^i \text{ y } g = \sum_{j=0}^{m} b_j X^j$$

$$\Rightarrow f \cdot g = \sum_{k=0}^{n+m} (\sum_{i+j=k} a_i \cdot b_j) X^k \in \mathbb{K}[X]$$

- $(\mathbb{K}[X], +, \cdot)$ es un anillo conmutativo $\to f \cdot (g+h) = f \cdot g + f \cdot h, \ \forall f, g, h \in \mathbb{K}[X]$
- Algoritmo de división: $f, g \in \mathbb{K}[X]$ no nulos, existen únicos q y $R \in \mathbb{K}[X]$ tal que $f = q \cdot g + R$ con gr(R) < gr(f) o R = 0
- α es raíz de $f \iff X \alpha \mid f \iff f = q \cdot (X \alpha)$
- $M\'{a}ximo\ com\'{u}n\ divisor$: Polinomio mónico de mayor grado que divide a ambos polinomios en $\mathbb{K}[X]$ y vale el algoritmo de Euclides.

$$-(f:g) | f y (f:g) | g$$

$$-f = (f:g) \cdot k_f y g = (f:g) \cdot k_g \operatorname{con} k_f y k_g \operatorname{en} \mathbb{K}[X]$$

- Dos polinomios son coprimos si $(f:g)=1 \iff f \neq g$
- Raíces múltiples: $f \in \mathbb{K}[x], \alpha \in \mathbb{K}$ es raíz de f de multiplicidad $m \in \mathbb{N}_0$ si $(X \alpha)^m \mid f$ y $(X \alpha)^{m+1} \not\mid f$. O sea, $f = (X \alpha)^m \cdot \underbrace{q(\alpha)}_{\neq 0}$
 - Una raíz simple de f cumplirá que $(x \alpha) \mid f$, pero $(x \alpha)^2 \not\mid f$
- Vale que α es raíz múltiple de $f\iff f(\alpha)=0$ y $f'(\alpha)=0\iff \alpha$ es raíz de $(f:f'),\,X-\alpha\,|\,(f:f')$

$$- \ \mathrm{mult}(\alpha,f) = m \iff f(\alpha) = 0 \ \mathrm{y} \ \mathrm{mult}(()\alpha;f') = m-1$$

$$- \operatorname{mult}(\alpha; f) = m \iff \begin{cases} \operatorname{mult}(\alpha; f) \ge m & \begin{cases} f(\alpha) = 0 \\ \vdots \\ f^{(m-1)(\alpha) = 0} \end{cases} \\ \operatorname{mult}(\alpha; f) = m & \begin{cases} f^{m}(\alpha) \ne 0 \end{cases} \end{cases}$$

Ejercicios de clase o parciales:

Ejercicios de la guía:

Calcular el grado y el coeficiente principal de los siguientes polinomios en $\mathbb{Q}[X]$:

i)
$$(4X^6 - 2X^5 + 3X^2 - 2X + 7)^{77}$$
,

ii)
$$(-3X^7 + 5X^3 + X^2 - X + 5)^4 - (6X^4 + 2X^3 + X - 2)^7$$
,

iii)
$$(-3X^5 + X^4 - X + 5)^4 - 81X^{20} + 19X^{19}$$
,

- i) coeficiente principal: 4⁷⁷ $grado: 6 \cdot 77$
- ii) coeficiente principal: $(-3)^4 6^7 = -279.855$ grado: 28

coeficiente principal: $(\underbrace{-3X^5 + X^4 - X + 5}_f)^4 + \underbrace{-81X^{20} + 19X^{19}}_g$ Cuando sumo me queda: $\operatorname{cp}(f^4) - \operatorname{cp}(g) = (-3)^4 - 81 = 0 \Rightarrow gr(f^4 + g) < 20 \rightarrow \operatorname{Calculo} \operatorname{el} \operatorname{cp}(f^4 + g) \operatorname{con} \operatorname{gr}(f^4 + g) = 19.$

Laburo
$$a \ f$$
:
$$\begin{cases}
\frac{\text{para usar}}{\text{fórmula de } f \cdot g} \left(-3X^5 + X^4 - X + 5\right)^4 = \left(-3X^5 + 1X^4 - X + 5\right)^2 \cdot \left(-3X^5 + X^4 - X + 5\right)^2 \\
f^2 \cdot f^2 = \sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j\right) X^k \text{ con } a_i \text{ y } b_i \text{ los coeficientes de } f^2 \text{ y el otro } f^2 \text{ respectivamente}
\end{cases}$$

$$\sum_{k=0}^{20} \left(\sum_{i+j=k} a_i \cdot b_j\right) X^k \xrightarrow{\text{me interesa solo} \text{ el término con } k = 19} \sum_{i+j=19} a_i b_j X^{19} \stackrel{\bigstar}{=} a_9 \cdot b_{10} + a_{10} \cdot b_9 \stackrel{\bigstar}{=} 2 \cdot a_9 \cdot b_{10}$$

$$\sum_{k=0} \left(\sum_{i+j=k} a_i \cdot b_j \right) X^k \xrightarrow{\text{intermeters a solo}} \sum_{i+j=19} a_i b_j X^{19} = a_9 \cdot b_{10} + a_{10} \cdot b_9 = 2 \cdot a_9 \cdot b_9$$

$$\left(\xrightarrow{b_{10} \text{ sale a}} b_{10} = (-3)^2 = 9 \right)$$

$$\begin{cases} \sum_{k=0}^{\infty} \left\langle \begin{array}{c} i+j=k \\ i+j=k \\ \end{array} \right\rangle & \text{el término con } k=19 \\ i+j=19 \\ \end{cases} & \text{el término con } k=19 \\ i+j=19 \\ \end{cases} & \text{all } f \neq 10 \\ \end{cases} & \text{el término con } k=19 \\ i+j=19 \\ \end{cases} & \text{all } f \neq 10 \\ \end{cases} & \text{all } f \neq 10 \\ \end{cases} & \text{el término con } k=19 \\ i+j=19 \\ \end{cases} & \text{all } f \neq 10 \\$$

$$\left\{\begin{array}{c} \frac{d_5 \text{ sale a}}{\text{ojfmetro}} d_5 = -3\\ \frac{c_4 \text{ sale a}}{\text{ojfmetro}} c_4 = 1 \end{array}\right\} \rightarrow a_9 = -6$$

★¹: Sabemos que el gr $(f^4) = 20 \Rightarrow \text{gr}(f^2) = 10$. Viendo las posibles combinaciones al multiplicar 2 polinomios de manera tal que los exponentes de las X sumen 19, es decir $X^i \cdot X^j = X^{19}$ con $i, j \leq 10$

solo puede ocurrir cuando los exponentes $\left\{ \begin{array}{l} i=10,\,j=9\\ \forall\\ i=9,\,i=10 \end{array} \right\}$

- \star^2 : porque estoy multiplicando el mismo polinomio, $a_i = b_i$. Pero lo dejo distinto para hacerlos visualmente más genérico.
- \star^3 : Idem \star^1 para el polinomio f

arado.	10
grado:	19

•	TT I
٠,	Hacer
4.	пасет:

3.	Hacer
υ.	TIGOUT.

- 4. Hacer!
- 5. Hacer!
- 6. Hacer!
- 7. Hacer!
- 8. Hacer!

9. Calcular el máximo común divisor entre f y g en $\mathbb{Q}[X]$ y escribirlo como combinación polinomial de f y g siendo:

i)
$$f = X^5 + X^3 - 6X^2 + 2X + 2$$
, $q = X^4 - X^3 - X^2 + 1$,

ii)
$$f = X^6 + X^4 + X^2 + 1$$
, $q = X^3 + X$,

iii)
$$f = 2X^6 - 4X^5 + X^4 + 4X^3 - 6X^2 + 4X + 1, g = X^5 - 2X^4 + 2X^2 - 3X + 1,$$

$$X^{5} + X^{3} - 6X^{2} + 2X + 2 = \left(X^{4} - X^{3} - X^{2} + 1\right) \cdot \left(X + 1\right) + \left(3X^{3} - 5X^{2} + X + 1\right)$$

$$X^{4} - X^{3} - X^{2} + 1 = \left(3X^{3} - 5X^{2} + X + 1\right) \cdot \left(\frac{1}{3}X + \frac{2}{9}\right) + \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right)$$

$$3X^{3} - 5X^{2} + X + 1 = \left(-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9}\right) \cdot \left(-\frac{27}{2}X + \frac{225}{4}\right) + \left(\frac{171}{4}X - \frac{171}{4}\right)$$

$$-\frac{2}{9}X^{2} - \frac{5}{9}X + \frac{7}{9} = \left(\frac{171}{4}X - \frac{171}{4}\right) \cdot \left(-\frac{8}{1539}X - \frac{28}{1539}\right) + 0$$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X-1$

ii)
$$X^6 + X^4 + X^2 + 1 = (X^3 + X) \cdot X^3 + (X^2 + 1)$$

 $X^3 + X = (X^2 + 1) \cdot X + 0$

El MCD será el último resto no nulo y mónico $\rightarrow (f:g) = X^2 + 1$

El MCD escrito como combinación polinomial de f y $g \rightarrow X^2 + 1 = f \cdot 1 + g \cdot (-X^3)$

Haciendo, iii)

$$2X^{6} - 4X^{5} + X^{4} + 4X^{3} - 6X^{2} + 4X + 1 = \left(X^{5} - 2X^{4} + 2X^{2} - 3X + 1\right) \cdot 2X + \left(X^{4} + 2X + 1\right) \times X^{5} - 2X^{4} + 2X^{2} - 3X + 1 = \left(X^{4} + 2X + 1\right) \cdot \left(X - 2\right) + 3 \times \left(\frac{1}{3}X^{4} + \frac{2}{3}X + \frac{1}{3}\right) + 0$$
 El MCD será el último resto no nulo y $m\'onico \rightarrow \boxed{(f:g) = 1}$

El MCD escrito como combinación polinomial de f y $g \rightarrow \boxed{1 = \frac{1}{3}g \cdot (2X^2 - 4X + 1) - \frac{1}{3}f \cdot (X - 2)}$

10. Sea $f \in \mathbb{Q}[X]$ tal que f(1) = -2, f(2) = 1 y f(-1) = 0. Hallar el resto de la división de f por $X^3 - 2X^2 - X + 2.$

$$f(x) = q(x) \cdot \underbrace{x^3 - 2x^2 - x + 2}_{g(x)} + r(x)$$
, con $g(x) = (x - 2) \cdot (x - 1) \cdot (x + 1)$ y $r(x) = a^2 + bx + c$

$$c, \text{ ya que elgr}(r) < \operatorname{gr}(g) \xrightarrow{\operatorname{evaluar}} \begin{cases} f(1) = -2 = q(1) \cdot g(2) + r(1) = -2 \\ f(2) = 1 = q(2) \cdot g(2) + r(2) = 1 \\ f(-1) = 0 = q(-1) \cdot g(-1) + r(-1) = 0 \end{cases} \rightarrow \begin{cases} r(1) = a + b + c = -2 \\ r(2) = 4a + 2b + c = 1 \\ r(-1) = a - b + c = 0 \end{cases} \rightarrow \begin{pmatrix} 1 & 1 & 1 & -2 \\ 4 & 2 & 1 & 1 \\ 1 & -1 & 1 & 0 \end{pmatrix} \rightarrow \begin{cases} r(1) = a + b + c = -2 \\ r(2) = 4a + 2b + c = 1 \end{cases} \rightarrow \begin{pmatrix} 1 & 1 & 1 & -2 \\ 4 & 2 & 1 & 1 \\ 1 & -1 & 1 & 0 \end{cases}$$

$$\begin{pmatrix} 1 & 0 & 0 & \frac{4}{3} \\ 0 & 1 & 0 & -1 \\ 0 & 0 & 1 & -\frac{7}{3} \end{pmatrix} \rightarrow \boxed{r(x) = \frac{4}{3}x^2 - x - \frac{7}{3}}$$

•		
11.	Hacer!	
12.	Hacer!	
13.	Hacer!	
14.	Hacer!	
 15.	Hacer!	
16.	Hacer!	
17.	Hacer!	
18.	Hacer!	
19.	Hacer!	
20.	Hacer!	
<u></u> 21.	Hacer!	
22.	Hacer!	
23.	Hacer!	
24.	Hacer!	
25	Hagarl	

26.	Hacer!	
27 .	Hacer!	
	Hacer!	
	Hacer!	
30.	Hacer!	
31.	Hacer!	
32.	Hacer!	
33.	Hacer!	
34.	Hacer!	
 35.	Hacer!	
 36.	Hacer!	
37.	Hacer!	
38.	Hacer!	
39.	Hacer!	