# DeepONets

## Universal Approximation Theorem for Neural networks

- Neural Networks can approximate any continuous function, nonlinear continuous functional, or nonlinear operator
  - Functional function to reals mapping
  - Operator function to function mapping



## What is the UAT Saying?

- Does not say how operators can be learned effectively only proves that it can be done
- I.E. CNNs vs. FNNs for image classification, RNNs vs. FNNs for time series data, etc.
  - Different architectures can be more efficient than simple FNNs
- UAT only concerned with approximation error
  - Optimization error? How easy is it to train?
  - Generalization error? How well does it generalize?
- Thus, though UAT says that a Feedforward Neural Network <u>CAN</u> learn an operator, it doesn't guarantee efficient learning or good generalization

## An Approach - DeepONet

- Keep the problem very general
  - Weakest possible constraints on training data consistent sensor locations for input functions in the training dataset
- An approach for more accurate, efficient learning of operators
  - Goal: achieve smaller error than baseline FNNs
- Working for a wide class of ODEs and PDEs
- Learn an operator G mapping u -> G(u)
  - o Input: u, y

### Training Data - u spaces

- Sample u from different function spaces
  - Gauss Random Field (GRF)
  - Orthogonal (Chebyshev) Polynomials
- Solve sampled functions via numerical methods (operation)
  - o RK4, RK5 for ODE
  - 2nd order finite difference for PDE
- Generate data triplet
  - $\circ$  (u, y, G(u)(y))

## Representing Functions

- Discrete representation
  - Sufficient points at which function is evaluated
  - "Sensor" locations
- Sensors:  $x_1, x_2, \dots, x_m$
- Function Representation:  $[u(x_1), u(x_2), ..., u(x_m)]$

## DeepONet Architecture

Employ an architecture based on UAT

**Theorem 1** (Universal Approximation Theorem for Operator). Suppose that  $\sigma$  is a continuous non-polynomial function, X is a Banach Space,  $K_1 \subset X$ ,  $K_2 \subset \mathbb{R}^d$  are two compact sets in X and  $\mathbb{R}^d$ , respectively, V is a compact set in  $C(K_1)$ , G is a nonlinear continuous operator, which maps V into  $C(K_2)$ . Then for any  $\epsilon > 0$ , there are positive integers n, p, m, constants  $c_i^k$ ,  $\xi_{ij}^k$ ,  $\theta_i^k$ ,  $\zeta_k \in \mathbb{R}$ ,  $w_k \in \mathbb{R}^d$ ,  $x_j \in K_1$ ,  $i = 1, \ldots, n$ ,  $k = 1, \ldots, p$ ,  $j = 1, \ldots, m$ , such that

$$G(u)(y) - \sum_{k=1}^{p} \sum_{i=1}^{n} c_i^k \sigma \left( \sum_{j=1}^{m} \xi_{ij}^k u(x_j) + \theta_i^k \right) \underbrace{\sigma(w_k \cdot y + \zeta_k)}_{trunk} < \epsilon$$
 (1)

holds for all  $u \in V$  and  $y \in K_2$ .

#### **Architecture Visualization**





#### **Architecture Discussion**

- The architecture of trunk and branch networks is malleable
  - Paper demonstrates FNNs
  - Other subnetworks may improve accuracy
- Embedding prior knowledge = better generalization
  - Inductive bias alter network architecture to embed physics knowledge
  - o Independent u and y establish understanding of physical laws expressed by functions
  - Output G(u)(y) is a function of y that is "conditioned" on u

## Experiments - Linear ODE

A 1D dynamic system is described by

$$\frac{ds(x)}{dx} = g(s(x), u(x), x), \quad x \in [0, 1],$$

with an initial condition s(0) = 0. Our goal is to predict s(x) over the whole domain [0, 1] for any u(x).

- Generate Training Data Sufficient Sensor locations\*
- Sufficient Training for convergence
- Learn the antiderivative operator
- Baseline FNNs grid search optimal hyperparameters and experiment for best depth
- Train DeepONets on the same data

## **Experiments - Linear ODE Results**



## **SNN** Proposal

- Use SNNs as branch and trunk networks within the DeepONet
- Assess performance of SNN-DeepONet against FNN-DeepONet and Baseline FNNs
  - Reproducibility enabled by detail in paper and DeepXDE library

## Additional

u space

Case

|       | 5               |     | III III III III III III III III III II |         | The second second second |              |
|-------|-----------------|-----|----------------------------------------|---------|--------------------------|--------------|
| 4.1.1 | GRF $(l = 0.2)$ | 100 | 10000                                  | 100000  | 50000                    |              |
| 4.1.2 | GRF $(l = 0.2)$ | 100 | 10000                                  | 100000  | 100000                   |              |
| 4.2   | GRF $(l = 0.2)$ | 100 | 10000                                  | 100000  | 100000                   | k = 1, T = 1 |
| 4.3   | GRF $(l = 0.2)$ | 100 |                                        | 1000000 | 500000                   | -59          |
|       | ·               |     |                                        |         |                          |              |
|       |                 |     |                                        |         |                          |              |

# Test

# Iterations

Other parameters

# Training

# Sensors m

#### Sources

- "DeepONet: Learning nonlinear operators for identifying differential equations based on the universal approximation theorem of operators" (Lu et al.) <a href="https://arxiv.org/abs/1910.03193">https://arxiv.org/abs/1910.03193</a>