MA 131 HW#6

Optimization Worksheet

1.) Profit = Revenue - Costs
=
$$np - 1000 - 100n$$

= $n(1000 - \frac{n}{10}) - 1000 - 100n$
= $1000n - \frac{n^2}{10} - 1000 - 100n$

$$Profit = -\frac{n^2}{10} + 900n - 1000$$

n = 10000 - 10 p

10p=10000 - n

 $p = 1000 - \frac{1}{10}$

$$0 = \frac{d}{dn} \operatorname{Profit} = -\frac{n}{5} + 900$$

$$\frac{\wedge}{5}$$
 = 900

$$n = 4500$$

Prof;+
$$(n = 4500) = \frac{-4500^2}{10} + 900.4500 - 1000 = 2,024,000$$

$$Profit(n=10000) = \frac{-10000^2}{10} + 900.10000 - 1000 = -1,001,000$$

2.)
$$R = np = (200 - 1.5p)p = 200p - 1.5p^2$$

We know $0 \le n \le 100$

If $n = 0$, $p = \frac{200}{1.5} \approx 133.33$

The $n = 100$, $p = \frac{100}{1.5} \approx 66.66$

So p is between 66.66 and 133.33
 $O = R' = 200 - 3p$
 $3p = 200$
 $p = \frac{200}{3} \approx 66.66$

Max Revenue occurs at $p = 66.66$ or 133.33

Max Revenue occurs at p = 66.66 or 133.33 $R(p = 66.66) \approx 6666 $R(p = 133.33) \approx 0.66

Revenue is maximized by setting price to \$66.66/night, at which point R = \$6666

$$V = L ength \times Width \times H eight$$

$$= (12-2x)(8-2x) \times$$

$$= (96-16x-24x+4x^{2}) \times$$

$$= (96-40x+4x^{2}) \times$$

$$V = 96x-40x^{2}+4x^{3}$$

$$O = V' = 96-80 \times +12 \times 2$$

$$= 4(24-20 \times +3 \times 2)$$

$$O = 24-20 \times +3 \times 2$$

$$\times = 20 \pm \sqrt{400-4.3.24}$$

$$6$$

$$X = 1.56$$
 or $X = 5.09$

We know $X \ge 0$ and $X \le 4$ (since $2X \le 8$)

 $V(0) = 0$
 $V(1.56) = 67.6$
 $V(4) = 0$

To get max volume, cut squares of side length 1.56. Max Volume ≈67.6

8.) You should arrange the fence like this

A = LW
$$\leftarrow$$
 Objective Eq
4L + 3W = 100 \leftarrow Constraint Eq
3W = 100 - 4L
W = $\frac{100 - 4L}{3}$ \leftarrow Plug this into Obj Eq

$$A = L \left(\frac{100 - 4L}{3} \right) = \frac{100}{3} L - \frac{4}{3} L^{2}$$

$$O = A' = \frac{100}{3} - \frac{8}{3} L$$

$$\frac{8L}{3} = \frac{100}{3}$$

$$L = \frac{300}{24} = 12.5 \leftarrow Critical Point$$

$$A(L=0) = 0$$

$$A(L=12.5) = \frac{100}{3}12.5 - \frac{4}{3}12.5^{2} \approx 208.33$$

$$A(L=25) = 0$$

This max is attained by setting L = 12,5,

$$W = \frac{100 - 4.12.5}{3} = \frac{50}{3}$$

Section 2.5

Constraint: 6x + 2(x+2y) = 320

b.)
$$6x + 2x + 4y = 320$$

 $8x + 4y = 320$
 $4y = 320 - 8x$
 $y = 80 - 2x$

$$A = \times (80 - 2x) - 80x - 2x^2$$

$$x = 20$$

We know
$$0 \le x \le \frac{320}{8} = 40$$

$$A(x=0)=0$$

$$A(x=20) = 80.20 - 2.20^2 = 800$$

$$A(x=40) = 0$$
 Since $y=80-2.40=0$

Optimal
$$x = 20$$
Optimal $y = 40$
Optimal $A = 800$

$$A = LW$$

 $300 = 2L + 2W$
 $300 - 2L = 2W$
 $Plvg = 150 - L = W$

$$A = L(150 - L) = 150L - L^{2}$$

$$O = A' = 150 - 2L$$

$$2L = 150$$

$$L = 75$$

$$A(L=0) = 0$$

$$A(L=75) = 150 \cdot 75 - 75^{2} = 5625$$

$$A(L=150) = 0$$

Optimal
$$L = 75$$

Optimal $W = 150 - 75 = 75$

Optimal $A = 5625$

Section 2.7

9.) Profits = Revenue - Costs
=
$$\times (256 - 50x) - 182 - 56x$$

= $-50x^2 + 256x - 182 - 56x$
= $-50x^2 + 200x - 182$

$$0 = \frac{d}{dx} \text{ Profits} = -100 \times +200$$

$$100 \times = 200$$

$$\times = 2$$

Profits
$$(x=0) = -182$$

Profits $(x=2) = -50.4 + 200.2 - 182$
 $= -200 + 400 + 182 = 382$

Profit is maximized at 382 by setting x=2

$$2.) y' = (-3x^{2})(\frac{x}{2} - 1) + (-x^{3} + 2)(\frac{1}{2})$$

$$= -\frac{3}{2}x^{3} + 3x^{2} - \frac{x^{3}}{2} + 1$$

$$= -2x^{3} + 3x^{2} + 1$$

3.)
$$y' = (8x^3 - 1)(-x^5 + 1) + (2x^4 - x + 1)(-5x^4)$$

 $= -8x^3 + x^5 + 8x^3 - 1 - 10x^8 + 5x^5 - 5x^4$
 $= -18x^8 + 6x^5 - 5x^4 + 8x^3 - 1$

8.)
$$y' = 4 \left[(-2x^3 + x)(6x - 3) \right]^3 \frac{d}{dx} \left[(-2x^3 + x)(6x - 3) \right]$$

$$= 4 \left[(-2x^3 + x)(6x - 3) \right]^3 \left((-6x^2 + 1)(6x - 3) + (-2x^3 + x)(6) \right)$$

11.)
$$y' = \frac{x+1-(x-1)}{(x+1)^2} = \frac{2}{(x+1)^2}$$

12.)
$$y = (x^2 + x + 7)^{-1}$$

 $y' = (-1)(x^2 + x + 7)^{-2}(2x+1) = -\frac{2x+1}{(x^2+x+7)^2}$

$$|3.) y' = \frac{(x^2 + 1)(2x) - (x^2 - 1)(2x)}{(x^2 + 1)^2}$$

$$= \frac{2x^3 + 2x - 2x^3 + 2x}{(x^2 + 1)^2}$$

$$=\frac{4\times}{\left(\chi^2+1\right)^2}$$

18.)
$$y' = \frac{(cx+d)a - (ax+b)c}{(cx+d)^2} = \frac{ad-bc}{(cx+d)^2}$$

$$y' = \frac{(x^2 + 1)^2 a x - x^2 \cdot 2(x^2 + 1) a x}{(x^2 + 1)^4}$$