Lecture 8 – Simple Linear Regression

DSC 40A, Spring 2023

Announcements

- ▶ Discussion is tonight at 7pm or 8pm in FAH 1101.
 - Please attend the section you are enrolled in.
 - Come to work on Groupwork 3, which is due tonight at 11:59pm.
 - ► It's a pretty long groupwork assignment; it's okay if you don't finish, but review the solutions afterwards because they'll help with Homework 3.
- ► Homework 3 is out, due **Tuesday at 11:59pm**.

Agenda

- Recap of Lecture 7.
- Minimizing mean squared error for the linear prediction rule.
- Connection with correlation.

Recap of Lecture 7

Linear prediction rules

- New: Instead of predicting the same future value (e.g. salary) h for everyone, we will now use a **prediction rule** H(x) that uses **features**, i.e. information about individuals, to make predictions.
- We decided to use a **linear** prediction rule, which is of the form $H(x) = w_0 + w_1 x$.

 \triangleright w_0 and w_1 are called parameters.

Finding the best linear prediction rule

- In order to find the best linear prediction rule, we need to pick a loss function and minimize the corresponding empirical risk.
 - We chose squared loss, $(y_i H(x_i))^2$, as our loss function.
- ► The MSE is a function R_{sq} of a function H.

$$R_{sq}(H) = \frac{1}{n} \sum_{i=1}^{n} \left(\underline{y_i} - \underline{H(x_i)} \right)^2$$

▶ But since H is linear, we know $H(x_i) = w_0 + w_1 x_i$.

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Finding the best linear prediction rule

Goal: Find the slope w_1 and intercept w_0^* that minimize the MSE, $R_{sq}(w_0, w_1)$:

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Strategy: To minimize $R(w_0, w_1)$, compute the gradient (vector of partial derivatives), set it equal to zero, and solve.

Minimizing mean squared error for the linear

prediction rule

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

Discussion Question

Choose the expression that equals $\frac{\partial R_{sq}}{\partial w_0}$

a)
$$\frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$

b)
$$-\frac{1}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))$$

c)
$$-\frac{2}{n}\sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i$$

d)
$$-\frac{2}{n}\sum_{i=1}^{n}(y_i-(w_0+w_1x_i))$$

$$R_{sq}(w_{0}, w_{1}) = \frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$\frac{\partial R_{sq}}{\partial w_{0}} = \frac{1}{n} \sum_{i=1}^{n} \frac{dR_{sq}}{dw_{0}} ((y_{i} - (w_{0} + w_{1}x_{i}))^{2})$$

$$= \frac{1}{n} \sum_{i=1}^{n} 2 (y_{i} - (w_{0} + w_{1}x_{i})) \cdot -1$$

$$= -\frac{1}{n} \sum_{i=1}^{n} (y_{i} - (w_{0} + w_{1}x_{i}))^{2}$$

$$R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i))^2$$

$$\frac{\partial R_{sq}}{\partial w_1} = \frac{1}{n} \sum_{i=1}^{n} 2 (y_i - (w_0 + w_1 x_i)) \cdot - \chi_i$$

$$= -\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) \cdot \chi_i$$

Strategy
$$\frac{\partial R_{s_i}}{\partial w_0} = 0$$
 $\frac{\partial R_{s_i}}{\partial w_0} = 0$ $-\frac{2}{n} \sum_{i=1}^{n} (y_i - (w_0 + w_1 x_i)) x_i = 0$

- 1. Solve for w_0 in first equation.
 - The result becomes w_0^* , since it is the "best intercept".
- 2. Plug w_0^* into second equation, solve for w_1 .
 - ▶ The result becomes w_1^* , since it is the "best slope".

Solve for
$$w_1^*$$

$$\frac{1}{\sqrt{2}} \sum_{i=1}^{n} (y_i - (\underline{w}_0 + w_1 x_i)) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - (\underline{y} - w_1 \overline{x}) + w_1 x_i)) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - (\underline{y} - w_1 \overline{x}) + w_1 x_i)) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - (\underline{y} - w_1 \overline{x}) + w_1 x_i)) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i) x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{x} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{y} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{y} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{y} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{y} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{y} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{y} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) + w_1 \overline{y} - w_1 x_i = 0$$

$$\frac{1}{\sqrt{2}} (\underline{y}_i - \underline{y}) +$$

Least squares solutions

We've found that the values w_0^* and w_1^* that minimize the function $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^n (y_i - (w_0 + w_1 x_i))^2$ are

$$w_{1}^{*} = \frac{\sum_{i=1}^{n} (y_{i} - \bar{y}) x_{i}}{\sum_{i=1}^{n} (x_{i} - \bar{x}) x_{i}}$$

$$w_{0}^{*} = \bar{y} - w_{1}^{*} \bar{x}$$

where

$$\bar{x} = \frac{1}{n} \sum_{i=1}^{n} x_i$$
 $\bar{y} = \frac{1}{n} \sum_{i=1}^{n} y_i$

Let's re-write the slope w_1^* to be a bit more symmetric.

Key fact

The **sum of deviations from the mean** for any dataset is 0.

Proof:
$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

$$\sum_{i=1}^{n} (x_i - \bar{x}) = 0 \qquad \sum_{i=1}^{n} (y_i - \bar{y}) = 0$$

Equivalent formula for w₁*

Claim
$$\frac{\sum_{i=1}^{n} (y_i - \bar{y}) x_i}{\sum_{i=1}^{n} (y_i - \bar{y}) x_i} = \frac{\sum_{i=1}^{n} (y_i - \bar{y}) x_i}{\sum_{i=1}^{n} (y_i - \bar{y}) x_i}$$

laim
$$\frac{1}{\sum_{i=1}^{n} (v_i - \bar{v}) x_i} \sum_{i=1}^{n} (x_i - \bar{v}) x_i$$

$$|\bar{y}\rangle x_i$$

$$= \sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})$$

ginal new, more symmetric
$$= \sum_{i=1}^{n} \chi_{i}(y_{i} \cdot \bar{y}) - \sum_{i=1}^{n} \bar{\chi}(y_{i} \cdot \bar{y})$$

al new, more s
$$\sum_{i=1}^{n} \chi_{i}(y_{i} \cdot \overline{y}) = 0$$

$$\frac{\sum_{i=1}^{n} \chi_{i}(y_{i} \cdot \bar{y}) - \sum_{i=1}^{n} \bar{\chi}(y_{i})}{\sum_{i=1}^{n} \chi_{i}(y_{i} \cdot \bar{y})}$$

$$(x;-\overline{x})(y;-\overline{u}) = \sum_{i=1}^{n} x_i$$

Proof:

Least squares solutions

The least squares solutions for the slope w_1^* and intercept w_0^* are:

$$w_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2}$$

$$w_0^* = \bar{y} - w_1 \bar{x}$$

- ▶ We also say that w_0^* and w_1^* are optimal parameters.
- To make predictions about the future, we use the prediction rule

$$H^*(x) = W_0^* + W_1^* x$$

Example

Example

$$\bar{x} =$$

$$W_1^* = \frac{\sum_{i=1}^n (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^n (x_i - \bar{x})^2} =$$

$$w_0^* = \bar{y} - w_1^* \bar{x} =$$

x _i	Уi	$(x_i - \bar{x})$	$(y_i - \bar{y})$	$(x_i - \bar{x})(y_i - \bar{y})$	$(x_i - \bar{x})^2$
3	7				
4	3				
8	2				

Terminology

- x: features.
- y: response variable.
- \triangleright w_0 , w_1 : parameters.
- \triangleright w_0^* , w_1^* : optimal parameters.
 - Optimal because they minimize mean squared error.
- The process of finding the optimal parameters for a given prediction rule and dataset is called "fitting to the data".
- $R_{sq}(w_0, w_1) = \frac{1}{n} \sum_{i=1}^{n} (y_i (w_0 + w_1 x_i))^2$: mean squared error, empirical risk.

Discussion Question

Consider a dataset with just two points, (2, 5) and (4, 15). Suppose we want to fit a linear prediction rule to this dataset by minimizing mean squared error. What are the values of w_0^* and w_1^* that minimize mean squared error?

a)
$$W_0^* = 2, W_1^* = 5$$

b)
$$w_0^* = 3, w_1^* = 10$$

c)
$$w_0^* = -2, w_1^* = 5$$

d)
$$W_0^* = -5$$
, $W_1^* = 5$

Connection with correlation

Patterns in scatter plots

Correlation coefficient

- ▶ In DSC 10, you were introduced to the idea of correlation.
 - It is a measure of the strength of the **linear** association of two variables, x and y.
 - Intuitively, it measures how tightly clustered a scatter plot is around a straight line.
 - ► It ranges between -1 and 1.

Patterns in scatter plots

Definition of correlation coefficient

- The correlation coefficient, r, is defined as the average of the product of x and y, when both are in standard units.
 - Let σ_x be the standard deviation of the x_i 's, and \bar{x} be the mean of the x_i 's.
 - $ightharpoonup x_i$ in standard units is $\frac{x_i \bar{x}}{\sigma_x}$.
 - ► The correlation coefficient is

$$r = \frac{1}{n} \sum_{i=1}^{n} \frac{\left(x_{i} - \bar{x}\right) \left(y_{i} - \bar{y}\right)}{\sigma_{x}}$$
Variance

Another way to express W_1^*

It turns out that w_1^* , the optimal slope for the linear prediction rule, can be written in terms of r!

$$w_1^* = \frac{\sum_{i=1}^{n} (x_i - \bar{x})(y_i - \bar{y})}{\sum_{i=1}^{n} (x_i - \bar{x})^2} = r \frac{\sigma_y}{\sigma_x}$$

- It's not surprising that r is related to w_1^* , since r is a measure of linear association.
- ► Concise way of writing w_0^* and w_1^* :

$$w_1^* = r \frac{\sigma_y}{\sigma_x} \qquad w_0^* = \bar{y} - w_1^* \bar{x}$$

Proof that $w_1^* = r \frac{\sigma_y}{\sigma_x}$

Interpreting the slope

- σ_y and σ_x are always non-negative. As a result, the sign of the slope is determined by the sign of r.
- As the y values get more spread out, σ_y increases and so does the slope.
- As the x values get more spread out, σ_x increases and the slope decreases.

Interpreting the intercept

$$w_0^* = \bar{y} - w_1^* \bar{x}$$

▶ What is $H^*(\bar{x})$?

Discussion Question

We fit a linear prediction rule for salary given years of experience. Then everyone gets a \$5,000 raise. Which of these happens?

- a) slope increases, intercept increases
- b) slope decreases, intercept increases
- c) slope stays same, intercept increases
- d) slope stays same, intercept stays same