

7th INTERNATIONAL EWI/TWI SEMINAR ON JOINING AEROSPACE MATERIALS

CHARACTERIZATION OF THE ULTRASONIC STIR WELDING (USW) PROCESS

Jeff Ding

Materials and Processes Laboratory
Marshall Space Flight Center
Huntsville, Alabama

AGENDA

- **Process description**
- **Chronology of USW**
- **Current USW system and capabilities**
- **Current process development/test results**
- **Future work**
- **Conclusions**

WHAT IS USW?

- A solid state weld process consisting of an induction coil heating source, a stir rod, and a non-rotating containment plate
- High Power Ultrasonic (HPU) energy integrated into non-rotating containment plate and stir rod
- Independent control of heating, stirring and forging pressure control
 - NASA owned IP - U.S. Patents
 - 7,568,608 “USW Process and Apparatus”
 - 8,393,520 “Pulsed Ultrasonic System”
 - 8,393,523 “Pulsed Ultrasonic Method”

PROCESS DESCRIPTION

FSW:

Both shoulder and pin rotate together
Material is heated by frictional energy & deformational heating around pin
Cannot decouple heating, stirring, forging

USW:

Only the stir rod rotates
Containment plate stationary
Induction coil heats the material
Additional heat is provided by material deformation around the pin
Ultrasonic energy integrated into stir rod and CP
DECOUPLE heating, stirring, forging and
Control each independently

Ultrasonics - Containment

Containment – A-2 steel

Ultrasonics - Spindle

Stir Rod – 350 marage steel

Transducer

Diaphragm
Spring

Booster

Diaphragm
Spring

Spindle
Sonotrode

USW PROCESS CHRONOLOGY

FRICTION REDUCTION

2008 First
Experimentation
at MSFC

Leased EWI twist
drill system

PLUNGE FORCE REDUCTION

USW PROCESS CHRONOLOGY

2009 - Ultrasonic Friction Reduction Test Bed

2010 - High Temperature Tests of Ultrasonic Friction Reduction

- Bridgeport converted into USW Prototype System in 2012

USW SYSTEM CAPABILITIES

- Ability to “pulse” ultrasonic (US) energy on and off and adjust parameters real-time (travel speed, spindle RPM, US amplitude, X and Z axis position, plunge and pin axis force)
- Means to measure draw force.
- Ability to record US power versus time
- Head deflection reduction - two laser height sensors.
- Adding linear encoder to better control tool penetration setting.
- Ultrasonic energy integrated into stir rod and containment plate.
- Maximum 600 RPM.
- Maximum Z force 15,000 pounds.
- Independent control of heating capability via induction technology.

USW PROCESS ATTRIBUTES

- Decreased plunge forces in Z axis
- Decreased frictional forces in X axis
- Decreased shear forces in X axis
- Increased travel rate
- Increased tool life

FIRST WELDS

- Conducted only three weeks ago
- No induction coil pre-heat
- No pulsing of US power
- Aluminum 2219 .250-in

PLUNGE FORCE CHARACTERIZATION

Procedure: Plunged stir rod travelling .25 IPM varying ultrasonic amplitude
High: 1324 lb. Low: 886 lb. Delta: 33% reduction

TEST PANEL 14

Procedure: Plunged stir rod travelling .25 IPM
Travel=4 IPM

No CP/Spindle US
350 RPM

13-1
14-1

$$T_{ult} = 29.07 \text{ ksi}$$
$$T_{yld} = 29.04 \text{ ksi}$$

14-

$$T_{ult} = 40.81 \text{ ksi}$$
$$T_{yld} = 29.42 \text{ ksi}$$

COMPARISON OF 13-1 TO 14-1

13-1
90% Amplitude

14-1
0% Amplitude

TEST PANEL 12

EFFECT OF SPINDLE ULTRASONICS ON WELD NUGGET AT DIFFERENT AMPLITUDES

Containment Plate Ultrasonics 50% Amplitude

Travel = 4 ipm RPM = 350 RPM

L/2

SPU=90%

L/2

SPU=0

TEST PANEL 12

12-1
SPU=90%
CPU=50%

$$T_{ult} = 41.82 \text{ ksi}$$
$$T_{yld} = 28.67 \text{ ksi}$$

12-4
SPU=0
CPU=50%

$$T_{ult} = 44.75 \text{ ksi}$$
$$T_{yld} = 30.82 \text{ ksi}$$

TEST PANEL 13

$T_{ult} = 46.65 \text{ ksi}$
 $T_{yld} = 31.16 \text{ ksi}$

$T_{ult} = 42.40 \text{ ksi}$
 $T_{yld} = 32.49 \text{ ksi}$

$T_{ult} = 45.88 \text{ ksi}$
 $T_{yld} = 33.54 \text{ ksi}$

$T_{ult} = 33.91 \text{ ksi}$
 $T_{yld} = 31.12 \text{ ksi}$

TEST PANELS 12- 14

Panel 13

Panel 14

Panel 12

FUTURE WORK

- Address penetration issue
- Begin induction coil pre-heat
- Characteristics of hot weld versus cold weld
- Pulse ultrasonics on/off
- Determine upper limit of CP amplitude
- Faster travel rates
- Develop parameters for heat resistant alloys

TECHNOLOGY LICENSING OPPORTUNITIES

**Technology Transfer Office
Sammy Nabors – 256-544-5226**