Неделя 17. Вероятность-3

1. Докажите, что вершины полного графа K_n можно раскрасить в два цвета так, что в полученном графе есть не более

$$\binom{n}{t} 2^{1-t}$$

одноцветных подграфов K_t .

- **2.** Докажите, что существует турнир на n вершинах, в котором есть хотя бы $n! \cdot 2^{1-n}$ гамильтоновых путей (простых ориентированных путей, проходящих по всем вершинам).
- **3.** В неориентированном графе (без петель и кратных ребер) $n \geqslant 3$ вершин и nd/2 рёбер (то есть средняя степень вершины равна d), $d \geqslant 1$. Докажите, что существует такое упорядочение вершин графа (v_1, v_2, \ldots, v_n) , в котором каждая вершина встречается ровно один раз и более d из n пар $\{v_1, v_2\}$, $\{v_2, v_3\}, \ldots, \{v_{n-1}, v_n\}, \{v_n, v_1\}$ являются ребрами графа.
- **4.** Пусть f случайная всюду определенная функция из n-элементного множества в 100n-элементное (функция выбирается равновероятно). Докажите, что

$$P[f$$
 — инъекция] $\to 0$ при $n \to \infty$.

5. Докажите, что случайный граф на n вершинах почти наверняка связен. Точная формулировка: исходы — все неориентированные графы без кратных ребер с одним и тем же множеством вершин, в котором n элементов. Все исходы равновозможны. Нужно доказать, что вероятность события «граф несвязный» стремится к нулю при $n \to \infty$.

Симметричная версия локальной леммы Ловаса. Пусть A_1, \ldots, A_n — события, каждое из которых независимо от всех остальных, кроме не больше чем d событий, и $P(A_i) \leqslant \frac{1}{e(d+1)}$. Тогда

$$P\left(\bigcap_{1\leqslant i\leqslant n}\overline{A_i}\right)>0.$$

- **6.** В конечном множестве S выбрано несколько k-элементных подмножеств $(k \geqslant 2)$, так что выполнено хотя бы одно из следующих условий:
 - а) каждое выбранное подмножество пересекается не более чем с $\frac{2^{k-1}}{e}-1$ другими;
 - б) любой элемент из S принадлежит ровно k выбранным подмножествам, $k \geqslant 9$.

Докажите, что можно покрасить элементы S в два цвета, так чтобы каждое из выделенных подмножеств содержало элементы обоих цветов.

- 7^* . Прямоугольная таблица заполнена нулями и единицами. В каждой строке ровно n единиц, всего строк не больше 2^{n-1} . Докажите, что можно так вычеркнуть часть столбцов, чтобы в каждой строке оставшейся таблицы было меньше n единиц, но хотя бы одна единица была.
- 8^* . Каждый коротышка в Цветочном городе составил расписание, отметив в календаре n дней, когда он идет в гости, и k дней, когда он принимает гостей (эти дни не совпадают). При этом известно, что каждый коротышка может сходить к каждому в гости в один из дней (у первого это день, когда он идет в гости, а у второго это день приема гостей). Докажите, что в Цветочном городе живет не больше $\binom{n+k}{n}$ коротышек.
- 9^* . В неориентированном графе (без петель и кратных ребер) n вершин и nd/2 рёбер (то есть средняя степень вершины равна d), $d\geqslant 1$. Докажите, что в графе есть независимое множество размера не меньше n/2d.
- 10*. В неориентированном графе (без петель и кратных ребер) степень каждой вершины не превосходит Δ . Все вершины раскрасили в r цветов, так что вершин каждого цвета оказалось не меньше чем $2e\Delta + 1$. Докажите, что можно выбрать r вершин разных цветов, попарно не соединенных ребрами.

Домашнее задание 17

- 1. Докажите, что ребра полного графа на 2^n вершинах (n > 1) можно раскрасить в два цвета так, чтобы не нашлось полного одноцветного подграфа на 2n вершинах.
- **2.** Выбирается случайная упорядоченная пара n^2 -элементных подмножеств n^3 -элементного множества (каждая пара равновозможна). Верно ли, что вероятность того, что эти множества не пересекаются, стремится к 0 при $n \to \infty$?
- **3.** Докажите, что найдется такой турнир, в котором любые 10 команд проиграли какой-то одной команде (победители разных десяток могут различаться).
- **4.** Рассмотрим 4^{n-1} подмножеств множества $\{1,2,\ldots,N\}$, каждое из которых имеет мощность n>1. Докажите, что числа $1,2,\ldots,N$ можно раскрасить не более чем в 4 цвета так, что ни одно из рассматриваемых подмножеств не является одноцветным.
- 5. По окружности расставлены 11n разноцветных бусин по 11 бусин каждого из n цветов. Докажите, что можно выбрать n бусин разных цветов, никакие две из которых не находятся рядом друг с другом на окружности.