Week 1 Physics Notes

plutonium.bmb

August 2024

1 Units and Measurements

1.1 SI Units

- What is a unit?
 - A basic, arbitrary, widely accepted reference standard.
 - Used in conjunction with a number to express the measurement of a physical quantity
 - Types
 - * Fundamental Units (g, kg, ft, lb)
 - * Derived Units (Newton, Velocity, Joule)
 - Set of fundamental and derived units: system of units.
- Systems of units
 - 1. International System of Units
 - From French Système international d'unités. It was also formerly known as the meter-kilogram-second (MKS) system.
 - Developed and recommended by the General Conference on Weights and Measurement in 1971.
 - Expressed in multiple or fractional quantities in powers of 10 (SI Prefixes).
 - 2. Imperial System of Units
 - Also known as British System and foot-pound-second (FPS).
 - 3. centimeter-gram-second (CGS)
- Base SI Units

TD. 1.1.	1	T		1	CIT	• 1
Table	1:	List	$_{\rm OI}$	pase	$\mathcal{D}\mathbf{I}$	units

Length	metre	m
Mass	kilogram	kg
Time	second	s
Electric Current	amprere	A
Temperature	kelvin	K
Amount of substance	mole	mol
Luminous Intensity	candela	cd

• SI prefixes and multipliers

Table 2: List of SI prefixes $(10^{n>1})$

Prefix	Symbol	Base 10
quetta	Q	10^{30}
ronna	R	10^{27}
yotta	Y	10^{24}
zetta	Z	10^{21}
exa	Е	10^{18}
peta	Р	10^{15}
tera	Т	10^{12}
giga	G	10^{9}
mega	M	10^{6}
kilo	k	10^{3}
hecto	h	10^{2}
deca	da	10^{1}

Table 3: List of SI prefixes $(10^{n<1})$ Prefix | Symbol | Base 10

Prefix	Symbol	Base 10
deci	d	10^{-1}
centi	c	10^{-2}
mili	m	10^{-3}
micro	μ	10^{-6}
nano	n	10^{-9}
pico	р	10^{-12}
femto	f	10^{-15}
atto	a	10^{-18}
zepto	Z	10^{-21}
yocto	У	10^{-24}
ronto	r	10^{-27}
quecto	q	10^{-30}

* quart-gallon:

1.2 Conversion Factors

	<u> </u>	
 Distance 	• Area	

 $\frac{1in}{2.54cm}$ * acres
kilometers: * pint-gallon:

 $\begin{array}{cccc}
2.54cm & \underline{1ac} \\
* \text{ feet-meters:} & \underline{4.046m^2} & \underline{8pt} \\
\underline{1ft} & * \text{ hectare-} \\
\underline{0.30m} & \text{ kilometer:} & \underline{1}gal
\end{array}$

0.30m kilometer:

* miles- $\frac{1ha}{10km^2}$ * ounce-gallon (imperial):

kilometers: $10km^2$ (imperial): 1mi • Volume

Imperial * freeze-inches: $\frac{1L}{1dm^3}$ * ton-ft³:

 $\frac{1ft}{12in} * \text{milliters-cc:} \qquad \frac{1ton}{35ft^3}$

* yards-feet: $\frac{1mL}{1cc}$ 1ydImposited Units

- Kitchen Units

 $\frac{1ga}{3ft} - \text{Imperial Units}$

* gallon- * cup-gallon: * miles-yards: liters³:

 $\frac{1mi}{1760yd} \qquad \qquad \frac{1gal}{4.55L} \qquad \qquad \frac{16c}{1gal}$

- * tablespoon-• Mass * ton (metric): ounce (impe-1trial): - Imperial and $\overline{1000kq}$ Metric • Time 8tbsp* kilogramspounds: 5floz• Temperature 1kg- Farenheit-* teaspoon- $\overline{2.2lb}$ Celsius: ounce (im-* ounceperial):
 - erial): * ounce-pounds: $F \deg = (\frac{9}{5}C \deg) + 32$ $\frac{6tsp}{1floz} \qquad \frac{16oz}{1lb} \qquad C \deg = \frac{5}{9}(F \deg 32)$

1.3 Percent Error

• Percent Error Formula

$$\%$$
 error = $\frac{|\text{ actual value} - \text{theoretical value}|}{\text{theoretical value}}$

- Definitions
 - Actual Value
 - * Also known as the experimental value.
 - * It is the value that came up from an experiment's results.
 - Theoretical Value
 - * It is the calculated ideal value of the result if an experiment were to be conducted perfectly in an ideal environment.
 - Percent Error
 - * Determines the margin of error of the actual value from the theoretical value.
 - * This may tell if the experiment was conducted successfully.

1.4 Accuracy vs. Precision

- Definitions
 - Accuracy
 - * degree of conformity of a measure to a standard or a true value (Merriam-Webster Dictionary)
 - Precision
 - * the quality of strictly conforming to a pattern, standard, or convention (Merriam-Webster Dictionary)

• Graphical Explanation

Figure 1: a diagram showing the permutations of accuracy and precision (Hazra, 2017)