1)
$$T(n) = 3T(n/9) + \sqrt{n}$$

 $a = 3$, $b = 9$, $f(n) = \sqrt{n}$
 $log 3/log 9 = 1.585/3.17 = 1/2$
 $n^{1/2} = \Theta(n^{log 3/log 9}) \rightarrow Case 2 applies$
 $T(n) = \Theta(n^{log 3/log 9} log n) = \Theta(n^{1/2} log n) = \Theta(\sqrt{n} log n)$

2)
$$T(n) = 4T(n/2) + n^3$$
 $a = 4$, $b = 2$, $f(n) = n^3$
 $\log \frac{4}{\log 2} = \frac{2}{1} = 2$
 $\int_{1}^{3} = \Omega(n^{2+\epsilon}) \rightarrow Case \ 3 \ could \ apply$
 $4f(\frac{n}{2}) \stackrel{?}{=} c f(n) \rightarrow 4(\frac{n}{2})^3 \stackrel{?}{=} cn^3 \rightarrow holdr \ for \ c = \frac{1}{2}$

Case 3 applies.

 $T(n) = \theta(n^3)$

3)
$$T(n) = 5T(n/4) + n \log n$$
 $\alpha = 5$, $b = 4$, $f(n) = n \log n$
 $\log 5/\log 4 = 2.322/2 = 1.161$
 $n \log n = \Omega(n^{1.161+\epsilon}) \rightarrow case 3$ could apply

 $5f(4) \stackrel{?}{=} cf(n) \rightarrow 5(f(\log(4))) \stackrel{?}{=} ch(\log n \rightarrow \frac{5}{4}n(\log n - \log 4)) \stackrel{?}{=} ch(\log n \rightarrow \frac{5}{4}n(\log n - 2)) \stackrel{?}{=} ch(\log n \rightarrow \frac{5}{4}n(\log n - 2))$

T(n)= O(n log n)