3.6). Another way of looking at P_n is given by saying that P_n is the n-th Fourier coefficient of the τ -periodic function $s \to T(s)$. From this it follows that no non-zero $\phi \in E'$ vanishes on all $P_n E$ simultaneously. By the Hahn-Banach theorem we conclude that spann $U_{n \in \mathbf{Z}}$ $P_n E$ is dense in E.

Since $P_n E \subset D(A)$ we obtain from A-I,(3.1) that

$$AP_{n}f = \mu_{n}P_{n}f$$

for every $f \in E$, $n \in \mathbb{Z}$. This and A-I, (3.2) imply

(5.4)
$$T(t) P_n f = \exp(\mu_n t) \cdot P_n f$$

for every $t \geq 0$. Therefore μ_n is an eigenvalue of A and $\exp\left(\mu_n t\right)$ is an eigenvalue of T(t) if and only if $P_n \neq 0$. In that case, $P_n E$ is the corresponding eigenspace and we have the following lemma.

Lemma 5.3. For a τ -periodic semigroup T we take $\mu_n:=2\pi i n/\tau$, $n\in \mathbb{Z}$ and consider

$$P_n := \tau^{-1} \cdot \int_0^{\tau} \exp(-\mu_n s) T(s) ds$$
.

Then the following assertions are equivalent:

- (a) $P_n \neq 0$
- (b) $\mu_n \in P_\sigma(A)$
- (c) $\exp(\mu_n t) \in P_{\sigma}(T(t))$ for every t > 0.

The action of A , resp. T(t) on the subspaces $P_n E$, $n \in \mathbf{Z}$, is determined by (5.3), resp. (5.4). Moreover,

$$P_{m}P_{n}f = \tau^{-1} \cdot \int_{0}^{\tau} \exp(-\mu_{m}s) T(s) P_{n}f ds =$$

$$= \tau^{-1} \cdot \int_{0}^{\tau} \exp((\mu_{n} - \mu_{m})s) P_{n}f ds = 0$$

for $n \neq m$, i.e. the subspaces $P_n E$ are "orthogonal". Since their union is total in E one expects to be able to extend the representations (5.3) and (5.4) of A and T(t). This is possible if

$$\sum_{-\infty}^{+\infty} P_n = Id ,$$

where the series should be summable for the strong operator topology. Unfortunately this is false in general since the family of projections

$$Q_H := \sum_{n \in H} P_n$$
,

where H runs through all finite subsets of ${\mathbb Z}$, may be unbounded (see the example below). Nevertheless the following is true.