Kemiske småforsøg

Redigeret af Ole Bostrup

Kender De et sjovt forsøg? Så send en kort beskrivelse til Dansk Kemi, Skelbækgade 4, 1717 København V.

Påvisning af kviksølvdamp

Det er vist efterhånden almindeligt kendt, at kviksølv er et metal med et ret højt damptryk selv ved almindelig stuetemperatur. Luft mættet med Hgdamp ved 20°C indeholder 14 mg Hg pr. m³. Lidt kviksølv bag en 50°C lum radiator kan give op til 140 mg Hg pr. m³

Følgende lille forsøg er imidlertid en mere overbevisende demonstration af kviksølvs høje damptryk end ovenstående tal.

Kviksølvdampe kan gøres synlige

Apparatur: Tyndtlagsplade med fluorescensindikator UV-lampe eller kviksølvdamplampe mørklagt lokale med stinkskab.

Kemikalier: Flad skål med lidt kviksølv.

I stinkskabet anbringes en skål med kviksølv foran en plade med fluorescerende belægning. På den anden side af skålen anbringes en UV-lampe eller en kviksølvdamplampe. Når skålen med kviksølv rystes lidt, ses dampene tydeligt som skygger på pladen, når lyset i lokalet er slukket. Forsøget kan eventuelt også udføres med 50°C varm kviksølv.

For dem, der efter dette forsøg er blevet mere interesserede i kviksølvdampniveauet i deres egne laboratorier eller undervisningslokaler (kviksølvdampe forårsager blandt andet træthed, hovedpine og sløvhed), følger hermed en forholdsvis simpel metode til en semikvantitiativ undersøgelse.

Hg-testpapiret

Teorien bag denne påvisningsmetode er tidligere omtalt i Dansk Kemi nr. 3 i denne rubrik.

Mercuriioner danner cuproiodid en lyserød kompleks-forbindelse, cuprotetraiodomercurat:

 $HgG^2 + 4 CuI \rightarrow Cu_2 [HgI_4] + 2 Cu +$

Den samme kompleksforbindelse dannes af kviksølvdamp og cuproiodid, hvilket muligvis (en bedre forklaring efterlyses!) kan skyldes luftoxidation:

 $\frac{1}{2}$ O₂ + Hg + 4 CuI \rightarrow Cu₂ [HgI₄] + Cu₂O

En semikvantitativ test for kviksølvdampe er derfor at imprægnere filtrerpapirstrimler med en opslemning af CuI og benytte de tørre strimler som indikatorpapir.

Fremstilling af Hg-testpapir

Apparatur: Morter, måleglas, pipetteflaske, filtrerpapir.

Kemikalier: Cuproiodid, CuI.

1 g CuI pulveriseres fint i en morter og opslemmes i ca. 10 ml. vand. Opslemningen opbevares i en pipetteflaske. Filtrerpapir klippes i strimler på 10 gange 0,5 cm. Pipetteflasken omrystes kraftigt, og nogle dråber af opslemningen dryppes på den ene side af filtrerpapirstrimlen, som der-

på lægges til tørre på et stykke filtrerpapir. Efter tørringen kan man se et hvidt lag af CuI på filtrerpapirstrimlen.

CuI kan eventuelt fremstilles på følgende måde:

Oplosning 1: 5g CuSO₄5H₂O oploses i 75 ml. vand.

Opløsning 2: 5 g Na₂SO₃,7 H₂O og 11 g KI opløses i 75 ml vand.

Sammebland lige store rumfang af opløsning 1 og 2. Når bundfaldet har sat sig, vaskes det tre gange med vand og opslemmes derpå i vand.

Afprøvning og brug af Hg-testpapiret

Apparatur: Tre reagensglas med propper, to vandbade bestående af 250 ml bægerglas, termometer, trefod og bunsenbrænder.

Kemikalier: Kviksølv, Hg-testpapir.

I tre reagensglas, 1, 2 og 3, hældes 1 ml kviksølv. I hvert glas anbringes et stykke Hg-testpapir klemt fast mellem glassets side og en prop. Glas 1 anbringes ved stuetemperatur, glas 2 i vandbad ved 50°C og glas 3 i vandbad ved 100°C. De tre forsøg udføres samtidigt, og hastigheden for Hg-Testpapirets farveomslag i de tre glas sammenlignes og sammenholdes med kviksølvs damptrykskurve. Læg nogle stykker Hg-testpapir over revner i borde og gulve samt andre steder i kemilokalerne og lad dem ligge nogle dage under regelmæssigt opsyn. Sværtningstid og -grad af Hgtestpapiret vil givet et indtryk af kviksølvforureningen i kemilaborato-

Lars Engels og Leif Søndergård Petersen

Litteratur: Lars Engels og Leif Sønderberg Petersen: Miljøkemiske problemer. Fysik- og kemilærerforeningens skrifter. Gyldendal 1977.