3) a)

$$N_1 = 0$$

$$N_2 = 0.1111111111 \times 2^{1111} = (1 - 2^{-8}) \times 2^{15}$$

 $N_3 = 0.00000001 \times 2^{0000} = 2^{-8}$

$$N_3 = 0.00000001 \times 2^{0000} = 2^{-8}$$

$$N_4 = 0.111111110 \times 2^{1111}$$

 R_1 = Resolución extremo inferior = $N_3 - N_1 = 2^{-8}$

 $R_2 = Resolución \ extremo \ superior = N_2 - N_4 = (0,111111111 - 0,111111110) \ x \ 2^{15} = 2^{-8}.2^{15} = 2^{7}.2^{15} = 2^{15}.2^{15}$

b)

 $N_3 = 0.1000000000000001 \times 2^{1000000000} = (2^{-1} + 2^{-15}) \times 2^{-511}$

 $\begin{array}{l} R_1 = Resolución \ extremo \ inferior = N_3 - N_1 = (0,10000000000001 - 0,100000000000000) \\ = 0,0000000000001 \ x \ 2^{1000000000} = 2^{-15}.2^{-511} \end{array}$

 $N_3 = 0.100000000000001 \times 2^0 = (0.5 + 2^{-15})$

$$R_1 = N_3 - N_1 = 0.5 + 2^{-15} - 0.5 = 2^{-15}$$

$$N_3 = 0.10000000000000001 \times 2^{10000000} = (0.5 + 2^{-16}) \times 2^{-64}$$

$$R_1 = N_3 - N_1 = 2^{-16} \times 2^{-64}$$

$$R_2 = N_2 - N_4 = 2^{-16} \times 2^{+63}$$

e)
$$-5,0625 = 1$$
 101,000100000000 x $2^0 = 1$ 0,101000100000000 x 2^3

$$00011 = 1 0,101000100000000 \times 2^{10011}$$

$$10000$$

10011 Exponente 3 en Exceso

a, b, c y d = mantisa sin signo

0,015625

a)
$$0.015625 = 0.00000100 \times 2^{0} = 0.00000100 \times 2^{0000}$$

Otras alternativas 0,00000010 x $2^1 = 0,00000010$ x 2^{0001} 0,00000001 x $2^2 = 0,00000001$ x 2^{0010}

		_
1111111010	1000000000000000	

c) Exponente BSS, no se puede representar –5.

$$+ \underbrace{\frac{1111011}{1000000}}_{0111011} -5 \text{ en Exceso} + \underbrace{\frac{-5}{64}}_{59}$$

0 0111011 0000000000000

6) $00001111 \ 00000011 + 00001000 \ 00000010 = 15 \times 2^3 + 8 \times 2^2 = 120 + 32 \ 152$

$$011111111 \ 000000000 + 111111100 \ 10000001 = 127 \times 2^{0} + 252 \times 2^{-1} = 127 + 126 = 253$$

 $00000001 \ 00000111 + 00011100 \ 000000000 =$

7) 8,625

a) Mantisa fraccionaria normalizada de 5 bits BSS, exponente Ca2 4 bits.

 $8.625 = 1000.101 \times 2^0 = 0.1000101 \times 2^4$ Mantisa sólo con 5 bits, 0.10001×2^4

$$= (2^{-1} + 2^{-5}) \times 2^4 = 8.5$$

El Nº que le sigue = $(2^{-1} + 2^{-4}) \times 2^4 = 9$.

8,625 no tiene una representación exacta en este sistema. 8,5 está más cerca que 9.

b) Mantisa fraccionaria normalizada de 10 bits BCS, exponente 4 bits Ca2.

$$8.625 = 0 \ 1000.101 \ \text{x} \ 2^0 = 0 \ 0.100010100 \ \text{x} \ 2^4 = 0 \ 0.100010100 \ \text{x} \ 2^{0100} =$$

$$= + (0.5 + 0.03125 + 0.0078125) \times 16 = 8.625$$

0 0100	100010100
--------	-----------

2.5

a)
$$2.5 = 10.1 \times 2^{0} = 0.101 \times 2^{2} = 0.10100 \times 2^{0010} = (2^{-1} + 2^{-3}) \times 4 = 2.5$$

0010	10100
------	-------

b)
$$2.5 = 0 \ 0.101000000 \ \text{x} \ 2^{0010}$$

0.4

- a) $0.4 \times 2 = 0.8$ $0.4 \times 2^{-1} = 0.11001 \times 2^{0}$ corriendo la coma entra un dígito más $0.8 \times 2 = 1.6$ $0.11001 \times 2^{-1} = 0.11001 \times 2^{1111} = 0.390625$
 - $0.6 \times 2 = 1.2$
 - $0.2 \times 2 = 0.4$ El que sigue = $0.11010 \times 2^{-1} = (0.5 + 0.25 + 0.0625) \times 0.5 = 0.40625$
 - $0.4 \times 2 = 0.8$ Esta representación es más cercana a 0.4.
 - $0.8 \times 2 = 1.6$

b) 0,4
$$\longrightarrow$$
 0 0,011001100 x $2^0 = 0$ 0,110011001 x $2^{-1} = (2^{-1} + 2^{-2} + 2^{-5} + 2^{-6} + 2^{-9})$ x 0,5 = = 0,399414062

$$0.6 \times 2 = 1.2$$

$$0.2 \times 2 = 0.4$$
 El que sigue = $(2^{-1} + 2^{-2} + 2^{-5} + 2^{-6} + 2^{-8}) \times 0.5 = 0.400390625$

$$0.4 \times 2 = 0.8$$
 Está más cerca de 0.4 (menor error)

$$0.8 \times 2 = 1.6$$

9) 8,625

a)
$$8.5 < 8.625 < (2^{-1} + 2^{-5})x2^4 = 9$$

$$E_R = E_A/N^\circ$$
 a representar = 0,125/8,625 ~ 0,0145

b) $E_A = 0$ Representación exacta

2,5

a)
$$E_A = 0$$

b)
$$E_A = 0$$

0,4

a)
$$0.390625 < 0.4 < 0.40625$$

$$E_A = 0.4 - 0.390625 = 0.009375$$

 $E_A = 0.40625 - 0.4 = 0.00625$ Menor error

$$E_R = 0.00625/0.4 = 0.015625$$

b)
$$E_A = 0.4 - 0.399414062 = 0.000585938$$
 $E_A = 0.400390625 - 0.4 = 0.000390625$ Menor error

$$E_R = 0,000390625/0,4$$

Error 11)

13)

- 0 11111111 00000100000000000000000 = NAN

14)

0.0625 = 0 $0.0001000000.....00 x <math>2^0 = 0$ $1.00000......000 x <math>2^4 = 0$ $1.000000.....000 x <math>2^{10000011}$

0 10000011 00000000	0000
---------------------	------

	10001110	00111000100000 0000
1 ()	10001110	001110001000000000