

TechGl4 Praktikum Block 1

Daniel Happ (happ@tkn.tu-berlin.de)

Block 1 | Outline 2 / 12

Outline

1 Organisatorisches

2 Aufgabe 1

Organisatorisches

- Praktikum mit vorwiegend praktischen Aufgaben; im Termin und zu Hause zu lösen
- Jeweils ca. 1 Woche vorab auf ISIS Seite veröffentlicht
- Praktikum aufgeteilt in 8 Blöcke à 2 Termine:
 - Vor jedem Block:
 - Vorbereitungsaufgaben (Sind VORHER zu Hause zu machen!!!)
 - Vertiefungsaufgaben (freiwillig aber dringend empfohlen)
 - Während des 1. Termins:
 - Vorbereitungstest zur Überprüfung der Vorbereitung (einzeln)
 - Vertiefender Theorieteil durch Tutor (20-30min)
 - Praxisaufgaben in Gruppen mit Unterstützung des Tutors
 - Zwischen den Terminen:
 - Aufgaben vervollständigen und EINREICHEN! (3er Gruppen)
 - Während des 2. Termins:
 - weiterführende Praxisaufgaben (Erweiterung/Messung)
 - Rücksprache mit dem Tutor

Block 1 | Aufgabe 1 6 / 12

Aufgabenstellung

Eine Nachricht mit einer Nutzdatenlänge von p=10000 Bits soll von A über B nach C verschickt werden (siehe Grafik). Jede der beiden Verbindungen hat eine Datenrate von r=100 kbps (1 kbps=1000 bits per second) und eine Verzögerung von d=10 ms. Es treten keine weiteren Verzögerungen auf. Zum Versenden muss jedes Paket mit einem Header von h=100 Bits versehen werden.

Block 1 | Aufgabe 1 7 / 12

Aufgabe 1a)

Aufgabe

Wie lange benötigt die Nachricht vom Beginn des Versendens bei A bis sie komplett bei C angekommen ist, wenn sie in einem Paket geschickt wird?

- Verzögerung je Strecke: 2*d*
- Verzögerung um das Paket über einen Hop zu schicken: $\frac{p+h}{r}$
- Gesamtverzögerung: $2d + 2\frac{p+h}{r} = 0,222 \text{ s} = 222 \text{ ms}$

Aufgabe 1b)

Aufgabe

Wie lange benötigt die Nachricht vom Beginn des Versendens bei A bis sie komplett bei C angekommen ist, wenn sie in 5 Paketen geschickt wird? Bitte beachten Sie das Store-and-Forward Prinzip der Paketvermittlung.

- Größe der Pakete mit Header: s = h + p/5 = 2100 bits
- Paket muss vollständig angekommen sein, bevor es weitergeschickt wird.
- Pro Hop wird jedes Packet erneut um den Transmission Delay verzögert.
- $T = 2d + 6\frac{s}{r} = 146 \text{ ms}$

Aufgabe 1c)

Aufgabe

Stellen Sie bitte die **symbolische** Formel für die Gesamtverzögerung T(n) in Abhängigkeit von der Anzahl der Pakete n und mit den Parametern p, h, r und d auf (keine Zahlenwerte!)

- Lösung 1a: $T = 2d + 2\frac{p+h}{r}$
- Lösung 1b: $T = 2d + 6\frac{p/5 + h}{r}$
- Allgemeine Lösung: $T(n) = 2d + (n+1)\frac{p/n+h}{r}$

Block 1 | Aufgabe 1 10 / 12

Aufgabe 1d)

Aufgabe

Begründen Sie bitte **kurz** warum es **nicht** sinnvoll ist, die Nachricht in sehr viele Pakete aufzuteilen!

Zum Payload kommt ein Header fester Größe hinzu.

Aufgabe 1e)

Aufgabe

In wie viele Pakete sollte man die Nachricht im Allgemeinen (symbolisch rechnen) aufteilen, damit die Gesamtverzögerung minimal wird? Welche Paketanzahl ergibt sich daraus für die oben angegebene Nutzdaten- und Header-Länge?

- \blacksquare T(n) muss minimiert werden
- Ableitung von *T*(*n*) muss 0 sein
- T(n) ableiten: $T(n) = 2d + (n+1)\frac{h+p/n}{r}$ $T(n) = 2d + \frac{nh}{r} + \frac{h}{r} + \frac{p}{r} + \frac{p}{nr}$ $\frac{dT(n)}{dn} = \frac{h}{r} - \frac{p}{n^2r} \frac{dT(n)}{dn} = \frac{1}{r}(h - \frac{p}{n^2})$

Fortsetzung Aufgabe 1e)

Aufgabe

In wie viele Pakete sollte man die Nachricht im Allgemeinen (symbolisch rechnen) aufteilen, damit die Gesamtverzögerung minimal wird? Welche Paketanzahl ergibt sich daraus für die oben angegebene Nutzdaten- und Header-Länge?

- $\blacksquare \frac{dT(n)}{dn}$ gleich Null setzen
- $0 = h \frac{p}{n^2}$
- $n = \sqrt{\frac{p}{h}}$
- Lösung für Zahlenwerte: n = 10