AP Calculus In-Class Three – Differentiation 2.1 Definition of Derivative; 2.2 Differentiation Rules

1. Find
$$\frac{dy}{dx}$$

(a)
$$y = \frac{2-x}{3x+1}$$

$$(b) \quad y = 2\sqrt{x} - \frac{1}{2\sqrt{x}}$$

(c)
$$y = \sqrt{x^2 + 2x - 1}$$

(d)
$$y = \frac{e^x - e^{-x}}{e^x + e^{-x}}$$

(e)
$$y = \ln\left(\sqrt{x^2 + 1}\right)$$

$$(f) \quad y = \frac{1}{2\sin 2x}$$

(g)
$$y = x \ln^3 x$$

(h)
$$y = \frac{1+x^2}{1-x^2}$$

(i)
$$y = x^{x^x}$$

2. Find limits.

(a)
$$\lim_{h\to 0} \frac{(1+h)^6-1}{h}$$

(b)
$$\lim_{x \to 0} \frac{\sin 2x}{x}$$

(c)
$$\lim_{x \to 0} \frac{\sec x - \cos x}{x^2}$$

3. The table below shows some points on a function f that is both continuous and differentiable on the closed interval [2, 10].

 anterentiable on the crossed filter at [2, 10].						
X	2	4	6	8	10	
f(x)	30	25	20	25	30	

Which must be true?

(A)
$$f(x) > 0$$
 for $2 < x < 10$

(B)
$$f'(6) = 0$$

(C)
$$f'(8) > 0$$

- (D) The maximum value of f on the interval [2, 10] is 30.
- (E) For some value of x on the interval [2, 10] f'(x) = 0.
- 4. Let $f(x) = 3^x x^3$. Find the *x*-coordinates of the point where the tangent to the curve is parallel to the secant through (0, 1) and (3, 0).