Università degli Studi di Firenze

Dipartimento di Ingegneria dell'Informazione Tesi di Laurea Triennale in Ingegneria Informatica

Progettazione e sviluppo di un componente software per la derivazione di modelli di Petri preemptive da specifiche timeline

Candidato Kevin Maggi

Relatore

Prof. Enrico Vicario

Correlatori

Prof. Laura Carnevali

Prof. Fulvio Patara

Dott. Leonardo Scommegna

Anno Accademico 2019/2020

Concetti chiave: modellazione di tasksets real-time, derivazione di un modello formale di taskset da una specifica semi-formale

Contesto

Contesto: Sviluppo di componenti software real-time

Motivazioni: Verifica e validazione di un taskset in sistemi RT

Strumenti: Modello formale \rightarrow PTPN

Specifica semi-formale \rightarrow timeline Software \rightarrow libreria Sirio¹ e tool Oris²

Tematica: Traduzione di specifici tasksets in forma di

timeline in modelli PTPN³

¹www.oris-tool.org/sirio

²www.oris-tool.org

³ "Casting Preemptive Time Petri Nets in the Development Life Cycle of Real-Time Software", G. Bucci, L. Grassi, E. Vicario, 2007

Obiettivi

Introduzione 00000

Obiettivi:

- Specifica di un modello di dominio per le timelines
- Definizione e sviluppo di un algoritmo di traduzione⁴ integrato nella libreria Sirio
- Progettazione e sviluppo di un componente per l'esportazione delle PN dal dominio Sirio al tool grafico Oris

⁴ "Putting Preemptive Time Petri Nets to Work in a V-Model SW Life Cycle", Carnevali, Ridi, Vicario, 2011

Struttura dei tasksets

Tasks:

- periodici, sporadici o jittering
- con o senza offset

Chunks:

- con tempi di esecuzione non deterministici
- con *risorse* assegnate con *priorità statica*
- sincronizzati con:
 - Mailbox
 - Mutex → priority ceiling

Timelines & Preemptive Time Petri Nets

Timelines: Specifica semi-formale che colma il gap rispetto alle pratiche industriali consolidate.

PTPN: Metodo formale che estende le TPN a cui viene aggiunto un meccanismo di assegnazione delle risorse.

PTPN

$$PTPN = \langle P; T; A^+; A^-; M; FI^s; Res; Req; Prio \rangle$$

- $\langle P; T; A^+; A^-; M; FI^s \rangle \rightarrow \mathsf{TPN}$
- Res → insieme di risorse
- $Req \rightarrow$ associa ciascuna transizione a un sottoinsieme di Res
- $Prio \rightarrow assegna$ a ciascuna transizione una priorità

Introduzione 00000

Esempio di taskset in forma di timeline e in forma di modello PTPN:

Task - rilascio jobs

Introduzione ○○○○

senza offset

con offset

- Chunk esecuzione
- Mutex boost e wait
- Mailbox invio e ricezione di messaggi

Task - rilascio jobs

Introduzione

• Chunk - esecuzione

- Mutex boost e wait
- Mailbox invio e ricezione di messaggi

Introduzione 00000

- Mutex boost e wait

• Mailbox - invio e ricezione di messaggi

Introduzione 00000

- Mailbox invio e ricezione di messaggi

- Gestione delle timelines
 - definizione per via programmatica (API) \rightarrow non adatto al contesto d'uso X
 - definizione tramite interfaccia (GUI) ightarrow soluzione ideale, ma esula dal progetto ${\it X}$
 - formato file esterno → XML si integra in Java con JAXB ✓ → definizione di uno schema XML
- 2 Traduzione delle timelines
 - Progettazione dell'algoritmo di traduzione
- Esportazione delle PN in formato XPN
 - Definizione di uno schema XMI
 - Generazione delle coordinate grafiche

⁵formato derivato dall'XML usato dal tool Oris

- Gestione delle timelines
 - Definizione di uno schema XML
- 2 Traduzione delle timelines
 - Progettazione dell'algoritmo di traduzione
- 3 Esportazione delle PN in formato XPN⁵
 - Definizione di uno schema XML
 - Generazione delle coordinate grafiche

⁵formato derivato dall'XML usato dal tool Oris

- Gestione delle timelines
 - Definizione di uno schema XML
- 2 Traduzione delle timelines
 - Progettazione dell'algoritmo di traduzione
- 3 Esportazione delle PN in formato XPN⁵
 - Definizione di uno schema XML
 - Generazione delle coordinate grafiche

⁵formato derivato dall'XML usato dal tool Oris

- Gestione delle timelines
 - Definizione di uno schema XML
- 2 Traduzione delle timelines
 - Progettazione dell'algoritmo di traduzione
- 3 Esportazione delle PN in formato XPN⁵
 - Definizione di uno schema XML
 - Generazione delle coordinate grafiche

⁵formato derivato dall'XML usato dal tool Oris

Casi d'uso

Timeline: modello di dominio

Timeline: schema

```
<timeline>
      <resources>
        <resource ID="NAME" />
5
      </resources>
      <semaphores>
         <semaphore ID="NAME" />
      </semaphores>
10
       <mailhoxes>
        <mailbox ID="NAME" />
      </mailboxes>
      <taskset>
15
         <task ID="NAME" type="TYPE" intertime="VALUE" offset="VALUE">
           <chunk BCET="VALUE" WCET="VALUE" ID="NAME">
             <allocations>
               <allocation resource="REFERENCE" priority="VALUE" />
20
             </allocations>
             <synchronizations>
               <synchronization use="REFERENCE" ID="VALUE" />
             </synchronizations>
25
           </chunk>
         </task>
      </taskset>
30
     </timeline>
```

Algoritmo timeline2ptpn

```
function TIMELINE2PTPN(timeline)
  ptpn \leftarrow new PTPN()
  for each r in timeline resources do
                                                                                         adding resources
  for each s in timeline.semaphores do
                                                                                       adding semaphores
  for each m in timeline.mailboxes do
                                                                                        adding mailboxes
  for each task in timeline taskset do
                                                                                             adding tasks
    switch on task.type
    if task.offset \neq 0
    for each chunk in task chunks do
                                                                                           > adding chunks
      for each element in chunk.synchronizations do
                                                                             adding synchonization blocks
        switch on element's type
           case semaphore
             if chunk.priorities < semaphore.ceilings for some resource
                                                                                   check if boost needed
             else
           case incoming message
           case outgoing message
  return ptpn
```

XNP: modello di dominio

XPN: transizione preemptive

```
<tpn-editor>
   <tpn-entities>
    <resource uuid="0...0">
    <features/>
5
    properties>
     cproperty id="0.default.name" name="res"/>
    </properties>
    </resource>
    <transition x="X" y="Y" rotation-angle="VALUE" uuid="1...1">
10
     <features>
     <feature id="transition.timed"/>
     <feature id="transition.preemptive"/>
     </features>
    properties>
15
     20
     </properties>
   </transition>
   </tpn-entities>
```

Class Diagram

Timeline

Vediamo come esempio un taskset con:

- cinque task (quattro periodici e uno sporadico)
- due mutex
- una mailbox

e una sua variante con offset al task Tsk3

XML

10

15

20

25

```
<timeline xmlns="http://www.oris-tool.org" xmlns:xsi="http://www.w3.org/2001/</pre>
     XMLSchema-instance" xsi:schemaLocation="http://www.oris-tool.org timeline.xsd">
  <resources>
    <resource ID="cpu" />
  </resources>
  <semaphores>
    <semaphore ID="mux1" />
    <semaphore ID="mux2" />
  </semaphores>
  <mailboxes>
    <mailbox TD="mbx" />
  </mailboxes>
  <taskset>
    <task ID="Tsk1" type="periodic" intertime="40.0">
      <chunk BCET="5 0" WCET="10 0" TD="c11">
        <allocations>
          <allocation resource="cpu" priority="1" />
        </allocations>
        <synchronizations>
          <svnchronization use="receive" ID="mbx"/>
        </synchronizations>
      </chink>
    </task>
  </taskset>
</timeline>
```

PTPN

PTPN risultante della variante senza offset:

PTPN

PTPN risultante della variante con offset:

Conclusioni

Risultati:

- Generazione PTPN da timeline \rightarrow strumento di supporto per lo sviluppo di sistemi RT
- Esportazione PN \rightarrow interoperabilità tra Oris e Sirio

Ulteriori sviluppi:

- Generazione PTPN da timeline \rightarrow automatizzazione del processo di scrittura del codice RT a partire dai modelli PTPN
- ullet Esportazione PN ightarrow algoritmo di sbroglio

Grazie per l'attenzione

Candidato Kevin Maggi Relatore

Prof. Enrico Vicario

Correlatori

Prof. Laura Carnevali Prof. Fulvio Patara

Dott. Leonardo Scommegna