

DataBird

Culture tech et data

Pourquoi de nouvelles infrastructures data ont-elles émergé ? (3)

<u>4 V's</u>

Volume

Velocity

Variety

Veracity

Rapide coup d'oeil aux infrastructures modernes

Today's agenda: A modern data architecture.

- 3 grandes sources de données 🔨
 - Données internes à une entreprise
 - Donnée liées au évènements
 - D'une utilisation d'un site internet
 - D'une utilisation d'un produit
 - Données externes
 - Web Scraping
 - Les APIs de logiciels (salesforce, SAP, hubspot, mailing, ...)
- Extract Transform Load data 🤎
 - Zapier / DBT / Spark / Stitch & Talend / Fivetran / ...
- 3. Stocker les data
 - On premises
 - On clouds
 - Data lakes
 - Data warehouses: Redshift / BigQuery / Snowflake / ...
- Analytics & Dashboarding 🧐
 - Data Science platform: Datalku / Amazon SageMaker / Azure / ...
 - Dashboarding: Looker / Google DataStudio / Tableau / Power BI / ...

1.0 L'origine des données

1.1 Data source : Les données internes

Les données internes à une entreprise stockées dans un base de données relationnelle (compte clients / stock / prix / RH / finance)

- Une base de données (OLTP) conçue pour utiliser un modèle relationnel
 - Le but étant de faciliter les opérations SQL "INSERT UPDATE DELETE"
 - Les données y sont normalisées : pour éviter les doublons et redondances, mise en place de contraintes pour éviter les valeurs aberrantes.

1.1 Data source : Données internes

Qui crée ces bases de données ? Développeur Back-end vs Front-end

1.2 Data source: Event data

Depuis son site web via des balises GTM par exemple ou sur un mobile via segment

de visiteurs

de pages consultées

. .

1.3.1 Data source : Données externes - web scraping

A quoi sert le Web Scraping?

→ Récupérer automatiquement de l'information depuis des pages web avec un script qui va imiter un comportement humain.

Si Uber veut lancer un nouveau service de covoiturage : comment analyser les prix de la concurrence ?

Si Uber veut trouver le trajet le plus court d'un point A à un point B.

Comment faire cela rapidement?

Qu'est-ce qu'une API?

Une API (application programming interface) est un moyen de communication

Qu'est-ce qu'une API?

Traduit

Prend les data

Qu'est-ce qu'une API?

Répond

Moi Mon programme L'API Serveur Base de données

DataBird Script Pyhon API Maps Back-end Results

Utiliser une API: focus sur les APIs "REST"

- 1. Séparation client serveur

 - Peu importe comment les deux sont codés, ils peuvent communiquer
- 2. Système en couches
 - Un client se connectant à un serveur ne sait pas ce qu'il se trouve derrière l'API
 - Positif pour la propriété intellectuelle, la sécurité et le contrôle des émissions
- 3. Scalable
 - Les requêtes doivent être très précises et rédigés strictement indépendamment du client et du serveur

Les méthodes principales pour requêter une API

Methods	API verb in HTTP
CREATE	POST
READ	GET
UPDATE	PUT
DELETE	DELETE

- Quelles méthodes utiliser pour récupérer les tweets? Toutes les méthodes seront-elles disponibles?
- Dans quel format seront envoyées les données ?

Exemple d'une requête API avec Postman

https://www.pappers.fr/

https://www.postman.com/

→ https://api.pappers.fr/v2/recherche?api_token=d6ef957beb40690c8884e6cae24967d71068f7dbbb36bfcd&par_page=2

GET ~

Chemin vers l'API

Clef d'accès

Paramètres

Exemple d'une requête API avec Postman

Logiciels tiers : lesquels ? Pour quelles données ?

2.0 Software ETL

2. Extract - Load - Transform data 🤎

- → Anciennement ETL avec Spark.
- → Aujourd'hui changement de paradigme, on transforme les données à la fin.
 - → Possible grâce à la diminution des coûts de stockage.
- → Plus de stabilité et plus résilient au changement.

Logiciels d'ETL nouvelle génération

- Talend & Stitch : Software qui connecte des APIs entre elles pour centraliser la donnée
- Fivetran : Même chose que précédemment avec quelques transformations SQL possibles

2. Extract - Load - Transform data 💚

- DBT : Des transformations SQL au sein du Data Warehouse
- → Souvent combiné avec les connecteurs mentionnés la slide précédente

3.0 Stockage

3.0 Stocker ses donénes : version cheap

Base de données très simple

	А	В	С
1	Name	first name	email
2	Miny	Alexandre	alexandre@data-bird.co
3	Grignola	Antoine	Antoine@data-bird.co
4			
5			
6			
7			

<u>Insipiré de SQL : Créer des relations entre tables</u>

3.1 Stocker des données sur ses serveurs

Pourquoi avoir ses propres serveurs?

- 1. Brèche de sécurité ?
- 2. Réglementation données sensibles ?
- 3. Visibilité où sont mes données?
- 4. Accessibilité et latence Ai-je un accès rapide?
- 5. Confiance Quelle configuration?

3.2 Stocker ses données sur les services cloud

Pourquoi avoir ses données sur le cloud?

- 1. Flexible et scalable
- 2. Facilité d'utilisation
- 3. Moins coûteux à gérer (réplication, sécurité)
- 4. Cryptage outsourcé
- 5. Mise à jour des logiciels de gestion

3.2 Stocker ses données sur le cloud : data lakes

Les data lakes sont tels des dépôts centralisés pour stocker toutes les données structurées ou non.

Exemples de data lake : HDFS, Hive, MongoDB, Cassandra, ElasticSearch

3.2 Stocker ses données sur le cloud : data warehouses

Les data warehouses sont des base de données sur lesquelles on effectue des analyses. On requête les data warehouse avec du SQL.

- → Un système de stockage + super calculateur
- → Principaux data warehouses : BigQuery / Redshift / Azure / Snowflake
 - Les Data warehouses facilitent le SELECT en SQL

 - Base de données OLAP online analytical processing databases
 - Les bases OLTP (comme celles pour le stockage des donnée de l'entreprise) sont trop lentes pour accéder aux données

3.3 Airflow en chef d'orchestre

Airflow permet d'organiser et lancer automatiquement les scripts selon les dépendances existantes.

4.0 BI & DataScience software

4.1 Analytics & Dashboarding : plateformes DS

Les plateformes permettent de faciliter le travail des data scientists & analysts

- Alteryx : dashboarding & no-code self-service data analytics platform
- Knime: similar to alteryx but with a open-source version
- Datalku DSS: replaces existing tools rather than to integrate with them.
- DataBricks : Spark platform + workflow orchestration
- DataRobot : Automated ML → automatically finds a good model
- Sagemaker : All-in-one tool → Infra + automated ML + platform

4.2 Analytics & Dashboarding: Dashboards

L'intérêt d'un dashboard est qu'il se connecte au cloud et donc se met à jour automatiquement avec de nouvelles données.

: appartient à Google et est très complet.

Data Studio: appartient à Google et est intégré pour les données marketing.

+ a b l e a v : très intuitif avec une logique de "drag & drop"

 \rightarrow Mais encore : Chartio / Mode / Metabase / Sisense / Qlick view / Periscope / ...

5. Un marché ultra dynamique

Data warehouses are moving to the cloud with increased flexibility, scale, On Prem → Cloud Data > snowflake Warehouse and ease of use—allowing any company to be a data company Data lakes and related systems are becoming more performant and reliable, adding Hadoop → Next-gen presto.... *⊜* databricks Data Lakes RDBMS-like features including ACID transactions and interactive SQL queries Brittle ETL processes (extract-transform-load) are being replaced with more ETL → ELT N Fivetran K dbt flexible and consistent ELT pipelines (extract-load-transform) Workflow → Dataflow Data flow automation systems are helping to orchestrate thousands of data PREFECT 9 Manager Automation pipelines with a cleaner abstraction and modern executor integrations Reporting, dashboarding, and automated analysis tools are becoming more Analyst → Self-serve & Looker OO Superset available to non-technical users. **Teams** Insights Data security and privacy measures (e.g., access controls) are becoming Endpoint → Global Data centralized on the data platform as use of data is increasingly regulated and Collibra PRIVAGERA Protection Governance user endpoints are harder to protect

