

Fakultät für Physik und Astronomie Prof. Dr. Thorsten Ohl

Manuel Kunkel, Christopher Schwan

11. Übung zur Klassischen Mechanik

8. Januar 2024

Nichtinertialsysteme / Starre Körper

11.1 Geschossene Kugel

Von einem Punkt der Erde mit geographischer Breite $\phi = 45^{\circ}$ wird eine Kugel mit einer Anfangsgeschwiendigkeit $v_0 = 60 \,\mathrm{m/s}$ vertikal nach oben geschossen (der Radius der Erde ist $R = 6.38 \cdot 10^6 \,\mathrm{m}$). Wo landet die Kugel, wenn man die Rotation der Erde $\omega = 7.3 \cdot 10^{-5} \,\mathrm{rad/s}$ berücksichtigt?

Hinweise: Die vertikale und horizontale Richtung seien auf der Erde durch eine Wasserwaage bestimmt worden. Die vertikale Erdbeschleunigung $g = 9.8 \,\mathrm{m/s^2}$ sei während des gesamten Fluges konstant.

Benutzen Sie die folgenden Näherungen:

- Die Bewegung des Teilchens auf der Erde ist vernachlässigbar im Vergleich zu R.
- Die Erdbeschleuningung g ist viel größer als $R\omega^2$ und als $\omega |\dot{\vec{x}}|$.

Können Sie die Gültigkeit dieser Näherungen begründen?

11.2 Atwoodsche Rollmaschine

Eine Hohlwalze (Radius R, Masse m_h , Länge L_h , die Masse sei homogen in der Schale zwischen 0.9R und R verteilt) und eine Vollwalze (Radius R, Masse m_v , Länge L_v , die Masse sei homogen zwischen 0 und R verteilt) seien mittels eines über eine (masselose) Rolle laufenden Faden der Länge l gekoppelt. Beide Walzen rollen ohne Schlupf auf schiefen Ebenen mit Neigungswinkeln $0 \le \alpha_h \le \pi/2$ und $0 \le \alpha_v \le \pi/2$ im homogenen Schwerefeld.

- 1. Berechnen Sie das Trägheitsmoment (d. h. die Diagonalkomponente des Trägheitstensors in Richtung der Symmetrieachse) der Vollwalze und der Hohlwalze. Verwenden Sie dieses für die weitere Aufgabe.
- 2. Geben Sie die Zwangsbedingungen des Systems und geeignete generalisierte Koordinaten an¹.
- 3. Geben Sie eine Lagrangefunktion des Systems an.
- 4. Leiten Sie die Bewegungsgleichungen her.
- 5. Betrachten Sie den Spezialfall $m_h = m_v$, $L_h = L_v$, $\alpha_h = \pi/2$, $\alpha_v = \pi/4$. Lösen Sie die Bewegungsgleichungen mit den Anfangsbedingungen

$$\dot{l}_h(t=0) = \dot{l}_v(t=0) = 0$$
 , $l_h(t=0) = l_v(t=0) = l/2$. (1)

Berechnen Sie die kinetischen und potentiellen Energien beider Walzen als Funktion der Zeit.

¹Ihnen wurden die Längen der Walzen angegeben, welche Sie zur Berechnung der Trägheitsmomente benötigen. Abgesehen von dieser Tatsache können Sie das System als 2-dimensionales System behandeln.

11.3 Trägheitstensor

1. Betrachten Sie sechs Teilchen, zwei mit Massen m_1 , zwei mit Massen m_2 und zwei Massen mit M, die an den Ecken eines Oktaeders mit Kantenlänge a liegen, wie in der Abbildung gezeigt. Das kartesische Bezugssystem habe seinen Ursprung im Schwerpunkt und die Achsen seien parallel und senkrecht zu den Kanten des Quadrats, das durch die Teilchen mit Massen m_1 und m_2 definiert ist (sehe Abbildung).

Für die zwei Fälle $m_2 = m_1$ und $m_2 = 2 m_1$:

- (a) Berechnen Sie den Trägheitstensor Θ des Systems.
- (b) Berechnen Sie die Hauptträgheitsachsen und die Hauptträgheitsmomente (d. h. die Eigenvektoren und Eigenwerte des Trägheitstensors).
- (c) Besitzt das System diskrete Rotationssymmetrien? Was sind die zugehörigen Symmetrieachsen und Rotationswinkel?
- 2. Betrachten Sie jetzt allgemein ein System, das eine diskrete Rotationssymmetrie um eine Achse mit Winkel α besitzt. Wählen Sie ein Bezugssystem mit z-Achse in Richtung der Rotationssachse, die Rotationsmatrix in diesem Bezugssystem sei $R(\alpha)$. Zeigen Sie, dass für $\alpha \neq 0, \pi$ der Trägheitstensor in diesem Bezugssystem diagonal ist und dass die Hauptträgheitsmomente in der x und y Richtung gleich sind.

Hinweis: Da das System rotationssymmetrisch ist, ist der Trägheitstensor invariant unter $R(\alpha)$, das heißt:

$$\Theta'_{ij} \equiv \sum_{k,l=1}^{3} R_{ik}(\alpha) R_{jl}(\alpha) \Theta_{kl} = \Theta_{ij}$$

überzeugen Sie sich davon, dass dies äquivalent ist zu

$$R(\alpha)\Theta = \Theta R(\alpha),$$

und benutzen Sie diese Relation als Bedingung für die Elemente von Θ .