- 1. Дайте определение:
 - (a) Скалярное произведение **a** и **b**: _____
 - (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$.
 - (a) (a, b) =______
 - (b) если $\{e_1, e_2, e_3\}$ ОНБ, то (a, b) =
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что
 - a) (a, b) = (b, a)

- b) [a, b] = [b, a]
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$ c) $[e_1, e_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. В равнобедренном треугольнике медианы, проведённые к боковым сторонам, перпендикулярны. Найти все углы треугольника.
- 4. Доказать, что для трёх неколлинеарных векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ равенства $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{c}] = [\mathbf{c}, \mathbf{a}]$ выполняются тогда и только тогда, когда $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$

1. Дайте определение:

- (а) Скалярное произведение а и b:
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$

3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что

a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

4. Упростите:

- a) (a b, a + b) =
- b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. В равнобедренном треугольнике медианы, проведённые к боковым сторонам, перпендикулярны. Найти все углы треугольника.
- 4. Найти сумму ортогональных проекций вектора **a** на стороны правильного треугольника:

1.	Лайте	определ	тение
т.	дантс	определ	шис

- (а) Скалярное произведение а и b: _____
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:
 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. Стороны параллелограмма соотносятся как m:n, а угол между ними равен $\alpha.$ Найти угол между диагоналями параллелограмма.
- 4. Доказать, что для трёх неколлинеарных векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ равенства $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{c}] = [\mathbf{c}, \mathbf{a}]$ выполняются тогда и только тогда, когда $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$

1. Дайте определение:

(a)	Скалярное произведение а и b:

2. В базисе
$$\{\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3\}$$
 заданы вектора $\mathbf{a} = \alpha_1 \mathbf{e}_1 + \alpha_2 \mathbf{e}_2 + \alpha_3 \mathbf{e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$.

(a)
$$(a, b) =$$

(b) если
$$\{{f e}_1,{f e}_2,{f e}_3\}$$
 ОНБ, то $({f a},{f b})=$

3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что

a)
$$(a, b) = (b, a)$$

b)
$$[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$$

c)
$$[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) - \mathbf{c} (\mathbf{a}, \mathbf{b})$$
 d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

d)
$$[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$$

4. Упростите:

a)
$$(a - b, a + b) =$$

$$\mathrm{b})\ [\mathbf{a}-\mathbf{b},\mathbf{a}+\mathbf{b}]=$$

5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

a)
$$[{\bf e}_1, {\bf e}_1] =$$

b)
$$[{\bf e}_1,{\bf e}_2] =$$

c)
$$[{\bf e}_1, {\bf e}_3] =$$

$$\mathrm{d})\ [\mathbf{a},\mathbf{b}] =$$

6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).

7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. В равнобедренном треугольнике медианы, проведённые к боковым сторонам, перпендикулярны. Найти все углы треугольника.
- 4. Доказать, что для трёх неколлинеарных векторов \mathbf{a} , \mathbf{b} , \mathbf{c} равенства $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{c}] = [\mathbf{c}, \mathbf{a}]$ выполняются тогда и только тогда, когда $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$
- 5. Найти сумму ортогональных проекций вектора **a** на стороны правильного треугольника.

1.	Лайте	определ	тение
т.	дантс	определ	шис

- (a) Скалярное произведение **a** и **b**: _____
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что
 - a) (a, b) = (b, a)

- $b) [\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. Доказать, что площадь произвольного выпуклого четырехугольника ABCD равна половине модуля векторного произведения [**AC**, **BD**].
- 4. Найти сумму ортогональных проекций вектора **a** на стороны правильного треугольника.

1. Дайте определение:

- (а) Скалярное произведение а и b:
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. Стороны параллелограмма соотносятся как m:n, а угол между ними равен $\alpha.$ Найти угол между диагоналями параллелограмма.
- 4. Доказать, что для трёх неколлинеарных векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ равенства $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{c}] = [\mathbf{c}, \mathbf{a}]$ выполняются тогда и только тогда, когда $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$
- 5. Найти сумму ортогональных проекций вектора ${\bf a}$ на стороны правильного треугольника.

1. Дайте определение:

- (а) Скалярное произведение а и b:
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить [a, [b, c]], если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. Стороны параллелограмма соотносятся как m:n, а угол между ними равен $\alpha.$ Найти угол между диагоналями параллелограмма.
- 4. Найти сумму ортогональных проекций вектора **a** на стороны правильного треугольника.

1.	Лайте	определ	тение
т.	дантс	определ	шис

- (а) Скалярное произведение а и b: _____
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. В равнобедренном треугольнике медианы, проведённые к боковым сторонам, перпендикулярны. Найти все углы треугольника.
- 4. Доказать, что для трёх неколлинеарных векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ равенства $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{c}] = [\mathbf{c}, \mathbf{a}]$ выполняются тогда и только тогда, когда $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$

1	Дайте	опреле	эпение:
Ι.	даите	опреде	гление.

- (а) Скалярное произведение а и b: _____
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c},$ что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

4. Упростите:

- a) (a b, a + b) =
- b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:
 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

$$d) [a, b] =$$

- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

$$AC^2 + BD^2 = BC^2 + AD^2 \iff \mathbf{AB} \perp \mathbf{CD}$$

- 2. Даны векторы $\mathbf{a}(\sqrt{3}\ 3)^T$ и $\mathbf{b}(1\ -1)^T$. Найти все векторы \mathbf{x} , образующие угол в 60° с вектором \mathbf{a} и $(\mathbf{x},\mathbf{b})=1$.
- 3. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве
- 4. Стороны параллелограмма соотносятся как m:n, а угол между ними равен $\alpha.$ Найти угол между диагоналями параллелограмма.

- 1. Дайте определение:
 - (a) Скалярное произведение **a** и **b**: _____
 - (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c}$, что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. Стороны параллелограмма соотносятся как m:n, а угол между ними равен $\alpha.$ Найти угол между диагоналями параллелограмма.
- 4. Найти сумму ортогональных проекций вектора **a** на стороны правильного треугольника.

1	Пайто	опрол	еление:
1.	даите	опред	еление:

- (a) Скалярное произведение **a** и **b**: _____
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c}$, что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}$.
- 3. В равнобедренном треугольнике медианы, проведённые к боковым сторонам, перпендикулярны. Найти все углы треугольника.
- 4. Найти сумму ортогональных проекций вектора **a** на стороны правильного треугольника:

1. Дайте определение:

- (а) Скалярное произведение а и b:
- (b) Векторное произведение **a** и **b**: _____

2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.

- (a) (a, b) =______
- (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$

3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c}$, что

a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

4. Упростите:

- a) (a b, a + b) =
- b) [a b, a + b] =

5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

- a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

d) [a, b] =

6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).

7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

$$AC^2 + BD^2 = BC^2 + AD^2 \iff \mathbf{AB} \perp \mathbf{CD}$$

- 2. Даны векторы $\mathbf{a}(\sqrt{3}\ 3)^T$ и $\mathbf{b}(1\ -1)^T$. Найти все вектора \mathbf{x} , образующие угол в 60° с вектором \mathbf{a} и $(\mathbf{x},\mathbf{b})=1$.
- 3. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве
- 4. В равнобедренном треугольнике медианы, проведённые к боковым сторонам, перпендикулярны. Найти все углы треугольника.

1. Дайте определение:

- (а) Скалярное произведение а и b:
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$

3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c}$, что

a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

4. Упростите:

- a) (a b, a + b) =
- b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. Доказать, что площадь произвольного выпуклого четырехугольника ABCD равна половине модуля векторного произведения [AC, BD].
- 4. Доказать, что для трёх неколлинеарных векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ равенства $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{c}] = [\mathbf{c}, \mathbf{a}]$ выполняются тогда и только тогда, когда $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$
- 5. Найти сумму ортогональных проекций вектора **a** на стороны правильного треугольника.

- 1. Дайте определение:
 - (а) Скалярное произведение а и b:
 - (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c}$, что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Даны векторы $\mathbf{a}(\sqrt{3}\ 3)^T$ и $\mathbf{b}(1\ -1)^T$. Найти все векторы \mathbf{x} , образующие угол в 60° с вектором \mathbf{a} и $(\mathbf{x},\mathbf{b})=1$.
- 3. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве
- 4. Стороны параллелограмма соотносятся как m:n, а угол между ними равен $\alpha.$ Найти угол между диагоналями параллелограмма.

1. Дайте определение:

- (а) Скалярное произведение а и b:
- (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$

3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c}$, что

a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

4. Упростите:

- a) (a b, a + b) =
- b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. В равнобедренном треугольнике медианы, проведённые к боковым сторонам, перпендикулярны. Найти все углы треугольника.
- 4. Доказать, что для трёх неколлинеарных векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ равенства $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{c}] = [\mathbf{c}, \mathbf{a}]$ выполняются тогда и только тогда, когда $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$
- 5. Найти сумму ортогональных проекций вектора **a** на стороны правильного треугольника.

- 1. Дайте определение:
 - (a) Скалярное произведение **a** и **b**: _____
 - (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c}$, что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:
 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Даны векторы $\mathbf{a}(\sqrt{3}\ 3)^T$ и $\mathbf{b}(1\ -1)^T$. Найти все векторы \mathbf{x} , образующие угол в 60° с вектором \mathbf{a} и $(\mathbf{x},\mathbf{b})=1$.
- 3. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 4. Доказать, что площадь произвольного выпуклого четырехугольника ABCD равна половине модуля векторного произведения [**AC**, **BD**].

- 1. Дайте определение:
 - (а) Скалярное произведение а и b:
 - (b) Векторное произведение **a** и **b**: _____
- 2. В базисе $\{e_1, e_2, e_3\}$ заданы вектора $\mathbf{a} = \alpha_1 e_1 + \alpha_2 e_2 + \alpha_3 e_3$ и $\mathbf{b} = \beta_1 e_1 + \beta_2 e_2 + \beta_3 e_3$.
 - (a) (a, b) =______
 - (b) если $\{{f e}_1,{f e}_2,{f e}_3\}$ ОНБ, то $({f a},{f b})=$
- 3. Верно ли $\forall \alpha, \mathbf{a}, \mathbf{b}, \mathbf{c}$, что
 - a) (a, b) = (b, a)

- b) $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{a}]$
- c) $[\mathbf{a}, [\mathbf{b}, \mathbf{c}]] = \mathbf{b} (\mathbf{a}, \mathbf{c}) \mathbf{c} (\mathbf{a}, \mathbf{b})$ d) $[\mathbf{a}, \alpha \mathbf{b}] = -[\alpha \mathbf{a}, \mathbf{b}]$

- 4. Упростите:
 - a) (a b, a + b) =
 - b) [a b, a + b] =
- 5. В правом ОНБ $\{{\bf e}_1,{\bf e}_2,{\bf e}_3\}$ заданы векторы ${\bf a}=\alpha_1{\bf e}_1+\alpha_2{\bf e}_2+\alpha_3{\bf e}_3$ и $\mathbf{b} = \beta_1 \mathbf{e}_1 + \beta_2 \mathbf{e}_2 + \beta_3 \mathbf{e}_3$. Найдите:

 - a) $[e_1, e_1] =$ b) $[e_1, e_2] =$
- c) $[{\bf e}_1, {\bf e}_3] =$

- d) [a, b] =
- 6. Найдите площадь треугольника, построенного на векторах $\mathbf{a} = (3\ 1\ 1)^T$ и $\mathbf{b} =$ $(4\ 1\ 2)^T$ (координаты заданы в ОНБ).
- 7. Найти ортогональную проекцию вектора $\mathbf{a} = (1\ 2\ 3)^T$ на прямую с направляющим вектором $\mathbf{b} = (3\ 0\ 4)^T$ в ОНБ:

Базовые обязательные задания

- 1. Длины базисных векторов \mathbf{e}_1 , \mathbf{e}_2 , \mathbf{e}_3 равны $\sqrt{3}$, 3 и 2 соответственно. Углы между ними равны $\angle(\mathbf{e}_1, \mathbf{e}_2) = 90^\circ$, $\angle(\mathbf{e}_2, \mathbf{e}_3) = 60^\circ$, $\angle(\mathbf{e}_1, \mathbf{e}_3) = 30^\circ$. Вычислите высоты параллелограмма, построенного на векторах, имеющих в этом базисе координаты $\mathbf{a}(-3, 1, 0)^T$ и $\mathbf{b}(1, 0, -2)^T$.
- 2. Выведите формулу Лагранжа двойного векторного произведения.
- 3. Вычислить $[{\bf a}, [{\bf b}, {\bf c}]]$, если

$$\mathbf{a} = \begin{pmatrix} 1 \\ 2 \\ 3 \end{pmatrix}, \quad \mathbf{b} = \begin{pmatrix} 3 \\ 2 \\ 1 \end{pmatrix}, \quad \mathbf{c} = \begin{pmatrix} 1 \\ 1 \\ 1 \end{pmatrix}$$

- 4. Сформулируйте и выведите критерий коллинеарности векторов в пространстве (вы можете пользоваться следующим пока не доказанным свойством: если векторы $\mathbf{e}_1, \mathbf{e}_2, \mathbf{e}_3$ некомпланарны, то и их попарные векторные произведения тоже некомпланарны).
- 5. Используя свойства скалярного произведения, докажите, что у любого параллелограмма сумма квадратов длин диагоналей равна сумме квадратов длин всех его сторон.
- 6. Дан треугольник $\triangle ABC$. Найдите отношение площади S треугольника, составленного из его медиан AA_1, BB_1, CC_1 , к площади S_0 исходного треугольника ABC.

- 7. Объяснить при заданных ${\bf a}$ и p геометрический смысл всех решений уравнения $({\bf x},{\bf a})=p$
 - а) на плоскости
 - b) в пространстве

- 2. Объяснить при заданных ${\bf a}$ и ${\bf b}$ геометрический смысл множества решений уравнения $[{\bf x},{\bf a}]={\bf b}.$
- 3. Стороны параллелограмма соотносятся как m:n, а угол между ними равен $\alpha.$ Найти угол между диагоналями параллелограмма.
- 4. Доказать, что для трёх неколлинеарных векторов $\mathbf{a}, \mathbf{b}, \mathbf{c}$ равенства $[\mathbf{a}, \mathbf{b}] = [\mathbf{b}, \mathbf{c}] = [\mathbf{c}, \mathbf{a}]$ выполняются тогда и только тогда, когда $\mathbf{a} + \mathbf{b} + \mathbf{c} = \mathbf{0}$