

Data Mining

Data Mining and Text Mining (UIC 583 @ Politecnico di Milano)

- Why Data Mining?
- What is Data Mining?
- What are the typical tasks?
- What are the primitives?
- What are the typical applications?
- What are the major issues?

Why Data Mining?

Why Data Mining? "Necessity is the mother of invention"

- Explosive Growth of Data
 - Terabytes of available data
 - Data collections and data availability
 - Major sources of abundant data
- Pressing need for the automated analysis of massive data

- □ 1960s:
 - Data collection, database creation, IMS and network DBMS
- □ 1970s:
 - Relational data model, relational DBMS implementation
- □ 1980s:
 - RDBMS, advanced data models (extended-relational, OO, deductive, etc.)
 - Application-oriented DBMS (spatial, scientific, engineering, etc.)
- □ 1990s:
 - Data mining, data warehousing, multimedia databases, and Web databases
- □ 2000s
 - Stream data management and mining
 - Data mining and its applications
 - Web technology (XML, data integration)
 - Global information systems

- In vitro fertilization
 - ► Given: embryos described by 60 features
 - Problem: selection of embryos that will survive
 - Data: historical records of embryos and outcome
- Cow culling
 - ► Given: cows described by 700 features
 - Problem: selection of cows that should be culled
 - ▶ Data: historical records and farmers' decisions

- Customer attrition
 - Given: customer information for the past months
 - Problem: predict who is likely to attrite next month, or estimate customer value
 - Data: historical customer records
- Credit assessment
 - Given: a loan application
 - Problem: predict whether the bank should approve the loan
 - Data: records from other loans

What is Data Mining?

- ☐ The non-trivial process of identifying
 - valid
 - novel
 - potentially useful, and
 - ultimately understandable patterns in data.
- Alternative names,
 - Data Fishing, Data Dredging (1960-)
 - ▶ Data Mining (1990-), used by DB and business
 - Knowledge Discovery in Databases (1989-), used by AI
 - Business Intelligence, Information Harvesting, Information Discovery, Knowledge Extraction, ...
- Currently, Data Mining and Knowledge Discovery are used interchangeably

- ☐ Is it valid?
 - ► The pattern has to be valid with respect to a certainty level (rule true for the 86%)
- ☐ Is it novel?
 - The value k should be previously unknown or obvious
- ☐ Is it useful?
 - ► The pattern should provide information useful to the bank for assessing credit risk
- Is it understandable?

- Build computer programs that sift through databases automatically, seeking regularities or patterns
- ☐ There will be problems
 - Most patterns are banal and uninteresting
 - Most patterns are spurious, inexact, or contingent on accidental coincidences in the particular dataset used
 - Real data is imperfect: Some parts will be garbled, and some will be missing
- □ Algorithms need to be robust enough to cope with imperfect data and to extract regularities that are inexact but useful

Statistics, Machine Learning, and Data Mining

- Statistics:
 - more theory-based, focused on testing hypotheses
- Machine learning
 - more heuristic, focused on building program that learns, more general than Data Mining
- Knowledge Discovery
 - integrates theory and heuristics
 - focus on the entire process of discovery, including data cleaning, learning, integration and visualization
- Data Mining
 - focus on the algorithms to extract patterns from data

Distinctions are blurred!

- Tremendous amount of data
 - High scalability to handle terabytes of data
- High-dimensionality of data
 - Micro-array may have tens of thousands of dimensions
- High complexity of data
 - Data streams and sensor data
 - ▶ Time-series data, temporal data, sequence data
 - Structure data, graphs, social networks and multi-linked data
 - Heterogeneous databases and legacy databases
 - Spatial, spatiotemporal, multimedia, text and Web data
 - Software programs, scientific simulations
- New and sophisticated applications

Knowledge Discovery Process What are the main steps?

- Learning the application domain to extract relevant prior knowledge and goals
- Data selection
- Data cleaning
- Data reduction and transformation
- Mining
 - ► Select the mining approach: classification, regression, association, clustering, etc.
 - Choosing the mining algorithm(s)
 - ▶ Perform mining: search for patterns of interest
- Pattern evaluation and knowledge presentation
 - visualization, transformation, removing redundant patterns, etc.
- Use of discovered knowledge

Knowledge Discovery and Business Intelligence

Integration of Data Mining and Data Warehousing

- Data mining systems, DBMS, Data warehouse systems coupling
 - No coupling, loose-coupling, semi-tight-coupling, tightcoupling
- On-line analytical mining data
 - integration of mining and OLAP technologies
- Interactive mining multi-level knowledge
 - Necessity of mining knowledge and patterns at different levels of abstraction by drilling/rolling, pivoting, slicing/dicing, etc.
- Integration of multiple mining functions
 - Characterized classification, first clustering and then association

Coupling Data Mining with Data bases and Datawarehouses

- No coupling—flat file processing, not recommended
- Loose coupling
 - Fetching data from DB/DW
- Semi-tight coupling—enhanced DM performance
 - Provide efficient implement a few data mining primitives in a DB/DW system, e.g., sorting, indexing, aggregation, histogram analysis, multiway join, precomputation of some stat functions
- Tight coupling—A uniform information processing environment
 - DM is smoothly integrated into a DB/DW system, mining query is optimized based on mining query, indexing, query processing methods, etc.

Architecture of a Typical Knowledge Discovery System

What tasks?

Major Data Mining Tasks

- Classification: predicting an item class
- Clustering: finding clusters in data
- Associations: frequent occurring events...
- Visualization: to facilitate human discovery
- Summarization: describing a group
- Deviation Detection: finding changes
- Estimation: predicting a continuous value
- Link Analysis: finding relationship

- Classification and Prediction
 - ► Finding models (functions) that describe and distinguish classes or concepts
 - ► The goal is to describe the data or to make future prediction
 - ▶ E.g., classify countries based on climate, or classify cars based on gas mileage
 - Presentation: decision-tree, classification rule, neural network
 - Prediction: Predict some unknown numerical values

- Cluster analysis
 - ▶ The class label is unknown
 - Group data to form new classes, e.g., cluster houses to find distribution patterns
 - ► Clustering based on the principle: maximizing the intraclass similarity and minimizing the interclass similarity

- Association Rule Mining
 - ► Finds interesting associations and/or correlation relationships among large set of data items.
 - ▶ E.g., 98% of people who purchase tires and auto accessories also get automotive services done

- Outlier analysis
 - Outlier: a data object that does not comply with the general behavior of the data
 - ▶ It can be considered as noise or exception but is quite useful in fraud detection, rare events analysis
- Trend and evolution analysis
 - ▶ Trend and deviation: regression analysis
 - Sequential pattern mining, periodicity analysis
 - Similarity-based analysis
- Text Mining, Graph Mining, Data Streams
- Other pattern-directed or statistical analyses

Are all the "Discovered" Patterns Interesting?

- Data Mining may generate thousands of patterns, not all of them are interesting.
- Interestingness measures
 - ▶ A pattern is interesting if it is easily understood by humans, valid on new or test data with some degree of certainty, potentially useful, novel, or validates some hypothesis that a user seeks to confirm
- Objective vs. subjective interestingness measures
 - ▶ Objective: based on statistics and structures of patterns, e.g., support, confidence, etc.
 - Subjective: based on user's belief in the data, e.g., unexpectedness, novelty, etc.

Can we find all and only interesting patterns?

- Completeness: Find all the interesting patterns
 - Can a data mining system find all the interesting patterns?
 - Association vs. classification vs. clustering
- Optimization: Search for only interesting patterns:
 - ► Can a data mining system find only the interesting patterns?
 - Approaches
 - First general all the patterns and then filter out the uninteresting ones.
 - Generate only the interesting patterns—mining query optimization

Data Mining tasks

- General functionality
 - Descriptive data mining
 - Predictive data mining
- Different views, different classifications
 - Kinds of data to be mined
 - ► Kinds of knowledge to be discovered
 - Kinds of techniques utilized
 - Kinds of applications adapted

What primitives?

- Task-relevant data
- Type of knowledge to be mined
- Background knowledge
- Pattern interestingness measurements
- Visualization/presentation of discovered patterns

Primitive 1: Task-Relevant Data

- Database or data warehouse name
- Database tables or data warehouse cubes
- Condition for data selection
- Relevant attributes or dimensions
- Data grouping criteria

Primitive 2: Types of Knowledge to Be Mined

- Characterization
- Discrimination
- Association
- Classification/prediction
- Clustering
- Outlier analysis
- Other data mining tasks

Primitive 3: Background Knowledge

- ☐ A typical kind of background knowledge: Concept hierarchies
- Schema hierarchy
 - ► E.g., Street < City < ProvinceOrState < Country
- Set-grouping hierarchy
 - ► E.g., {20-39} = young, {40-59} = middle_aged
- Operation-derived hierarchy
 - email address: hagonzal@cs.uiuc.edu
 - login-name < department < university < country</p>
- Rule-based hierarchy
 - ▶ LowProfitMargin (X) <= Price(X, P1) and Cost (X, P2) and (P1 P2) < \$50</p>

Primitive 4: Pattern Interestingness Measure

- Simplicity
- Certainty
- Utility
- Novelty

Primitive 5: Presentation of Discovered Patterns

- □ Different backgrounds/usages may require different forms of representation
 - E.g., rules, tables, crosstabs, pie/bar chart, etc.
- Concept hierarchy is also important
 - ▶ Discovered knowledge might be more understandable when represented at high level of abstraction
 - Interactive drill up/down, pivoting, slicing and dicing provide different perspectives to data
- □ Different kinds of knowledge require different representation: association, classification, clustering, etc.

What issues?

- Mining methodology
 - Mining different kinds of knowledge from diverse data types, e.g., bio, stream, Web
 - Performance: efficiency, effectiveness, and scalability
 - Pattern evaluation: the interestingness problem
 - Incorporation of background knowledge
 - Handling noise and incomplete data
 - Parallel, distributed and incremental mining methods
 - Integration of the discovered knowledge with existing one: knowledge fusion
- User interaction
 - Data mining query languages and ad-hoc mining
 - Expression and visualization of data mining results
 - Interactive mining of knowledge at multiple levels of abstraction
- Applications and social impacts
 - Domain-specific data mining & invisible data mining
 - Protection of data security, integrity, and privacy

Summary

- □ Data mining: Discovering interesting patterns from large amounts of data
- A natural evolution of database technology, in great demand, with wide applications
- A KDD process includes data cleaning, data integration, data selection, transformation, data mining, pattern evaluation, and knowledge presentation
- Data mining functionalities: characterization, discrimination, association, classification, clustering, outlier and trend analysis, etc.
- Data mining systems and architectures
- Major issues in data mining