Data Mining (W4240 Section 001) A Priori

Giovanni Motta

Columbia University, Department of Statistics

December 7, 2015

Outline

Conceptual Review and Setup

Association Rules

Probabilistic Association Rules

The A Priori Algorithm

A Priori in R

Outline

Conceptual Review and Setup

Association Rules

Probabilistic Association Rules

The A Priori Algorithm

A Priori in R

Shopping Histories

Let's look at some data sets. What questions can these answer?

Order Date	Item	Price
August 31, 2012	Girl Genius Omnibus Volume One: Agatha Awakens	\$8.97
August 25, 2012	Ito En Oi Ocha Japanese Green Tea, 16.9-Ounce Bottles (12 Pack)	\$19.92
August 24, 2012	R in a Nutshell: A Quick Desktop Reference	\$33.90
August 21, 2012	Creative HS-800 Fatal1ty Gaming Headset	\$3225
August 21, 2012	Ensign Peak Everyday Duffel Bag, Gray	\$10.59
August 16, 2012	Lucky Peach Issue 4	\$7.79
July 25, 2012	Ito En Oi Ocha Japanese Green Tea, 16.9-Ounce Bottles (12 Pack)	\$19.92
July 25, 2012	Feliway – Refil, 48 ml	\$19.68
July 23, 2012	DRINKWELL Original Filters 12 pack	\$16.95

User Ratings

VeggieTales: Lions, Shepherds and Queens	Not Interested
Bio-Dome	A なななな Not Interested
Revenge of the Pink Panther	숙소소소소 Not Interested
Joe Versus the Volcano	☆☆☆☆☆ Not Interested
Sky Captain and the World of Tomorrow	☆☆☆☆☆ Not Interested
Roman Holiday	☆☆☆☆☆ Not Interested
Porky's	A A ななな Not Interested
Signs	☆☆☆☆☆ Not Interested
Men in Black II	なななな Not Interested

Document Collections

Homer, Odyssey

Agamemnon Search
("Agamemnon", "Hom. Od. 9.1", "denarius")
[advanced search] (view abbreviations)

Images

Supervised vs. Unsupervised Learning

So far, we have focused (mostly) on supervised learning

- data have labels (category, response value)
- ▶ use <u>training data to predict new labels</u>

We also considered unsupervised learning:

- want to learn a feature of the data that is not labeled
- examples: clustering, document topics, associations, low dimensional structure

Supervised vs. Unsupervised Learning

Data	Supervised	Unsupervised
Documents	Ham or spam?	What is it about?
Pictures	Does it include a cat?	Which pictures are similar?
Real-valued	What is the response?	Is there a smaller representation?
Categorical	Which response category?	Association rules?
Tweets	About Obama?	Is it trending?
Others?	???	???

Unsupervised Learning

We have studied 2 areas in unsupervised learning:

- clustering
- dimension reduction

Today we add a 3rd:

association rules

Clustering

Dimension Reduction

Dimension Reduction

Outline

Conceptual Review and Setup

Association Rules

Probabilistic Association Rules

The A Priori Algorithm

A Priori in F

Have a basket of items:

Important terminology for today: itemset = a set of items

Have a basket of items:

Key data mining question: If I have itemset a, will I also have itemset b, denoted $a \rightarrow b$?

- \blacktriangleright itemsets are collections of items, indexed by $\{2,3,5\}$
- can create itemsets through unions of other itemsets:

$$\{1,3\} = \{1\} \cup \{3\}$$

Important question for:

- recommender systems
- medical diagnostics
- store layouts
- marketing

Have a basket of items:

So what makes a good rule?

Outline

Conceptual Review and Setup

Association Rules

Probabilistic Association Rules

The A Priori Algorithm

A Priori in F

We are going to use probability based rules:

$$P(b \mid a) = p$$

Use rule support and confidence:

- ► <u>Support</u> of an itemset: <u>the number of transactions containing</u> <u>an itemset</u>, Supp(a)
- Confidence of a rule:

$$\operatorname{Conf}(a \to b) = \frac{\operatorname{Supp}(a \to b)}{\operatorname{Supp}(a)} = \frac{\# \text{ times } a \text{ and } b \text{ are purchased}}{\# \text{ times } a \text{ is purchased}}$$
$$= \hat{P}(b \mid a)$$

So what makes a good rule?

▶ *It should be common*: set a minimum level of support 观测到的a∩b的数量要大于这个临界值

$$\operatorname{Supp}(a \cup b) \ge \theta$$

▶ It should be right: set a minimum level for probability

$$Conf(a \to b) \ge minconf$$

These conditions lead to strong rules.

Outline

Conceptual Review and Setup

Association Rules

Probabilistic Association Rules

The A Priori Algorithm

A Priori in F

We will use the A Priori algorithm to find sets and make strong rules

► A Priori finds all frequent itemsets and their support

{1}	5
{2}	6
$\{1, 2\}$	4

Use the list of frequent itemsets from A Priori to get strong rules

$\{1\} \to \{2\}$	4/5
$\{2\} \to \{1\}$	4/6

A Priori finds frequent itemsets through a method similar to tree construction

- ightharpoonup search over all single items; retain in list if support is at least heta
- do until no further itemsets can be made:
 - ► Create candidate itemsets: for each pair of itemsets in list for itemsets with k items, combine if they share k 1 items
 - Prune: retain if candidate has support at least θ to make list of itemsets with k+1 items
 - stop if list for k+1 items is empty

Note: this is how we build itemsets. Then:

- ▶ Derive candidate rules according to $\hat{P}(b \mid a)$
- Prune all candidate rules with $\hat{P}(b \mid a) < \mathtt{minconf}$

Example: Start with transaction records

Records
1, 3, 4
2, 3, 4
1, 2, 3, 5
1, 4, 5
1, 2, 4
2, 3, 4, 5
2, 4, 5
2, 3, 4

Parameters:

- Minimum support: $\theta = 3$
- ▶ Minimum confidence: minconf = .75

Example: make a list of 1-item sets along with counts (candidate list)

Table: Transactions

Records	
1, 3, 4	
2, 3, 4	
1, 2, 3, 5	
1, 4, 5	
1, 2, 4	
2, 3, 4, 5	
2, 4, 5	
2, 3, 4	

Itemset	Support
{1}	4
{2}	6
{3}	5
{4}	7
{5}	4

Example: remove from the candidate list those with support less than $\boldsymbol{\theta}$

Table: Itemsets for k = 1

Itemset	Support
{1 }	4
$\{{f 2}\}$	6
$\{3\}$	5
$\{4\}$	7
{5 }	4

Example: now generate candidates for 2 item sets

Table: Itemsets for k=1

Itemset	Support
{1 }	4
$\{{f 2}\}$	6
$\{3\}$	5
$\{4\}$	7
$\{5\}$	4

Itemset	Support
$\{1, 2\}$	2
$\{1, 3\}$	2
$\{1, 4\}$	3
$\{1, 5\}$	2
$\{2, 3\}$	4
$\{2, 4\}$	5
$\{2, 5\}$	3
$\{3, 4\}$	4
$\{3, 5\}$	2
$\{4, 5\}$	3

Example: remove from the candidate list those with support less than $\boldsymbol{\theta}$

Table: Itemsets for k=2

Itemset	Support
$\{1, 4\}$	3
$\{{f 2},{f 3}\}$	4
$\{{f 2},{f 4}\}$	5
$\{{f 2},{f 5}\}$	3
$\{{f 3},{f 4}\}$	4
$\{{f 4},{f 5}\}$	3

Example: now generate candidates for 3 item sets

Table: Itemsets for k=2

Itemset	Support
$\{1, 4\}$	3
$\{{f 2},{f 3}\}$	4
$\{{f 2},{f 4}\}$	5
$\{{f 2},{f 5}\}$	3
$\{{f 3},{f 4}\}$	4
$\{{f 4},{f 5}\}$	3

Itemset	Support
$\{2, 3, 4\}$	3
$\{2, 4, 5\}$	2

- ▶ can't combine $\{1,4\}$ and $\{2,4\}$ because $\mathrm{Supp}(\{1,2\})<\theta$
- \blacktriangleright same with $\{1,4\}$ and $\{3,4\},$ $\{1,4\}$ and $\{4,5\},$ $\{3,4\}$ and $\{4,5\}$

Example: remove from the candidate list those with support less than $\boldsymbol{\theta}$

Table: Itemsets for k=3

Itemset	Support
$\{{f 2},{f 3},{f 4}\}$	3

Example: full itemset list generated by A Priori

Table: Itemsets

Itemset	Support
{1}	4
$\{{f 2}\}$	6
$\{{f 3}\}$	5
$\{\mathbf 4\}$	7
$\{5\}$	4
$\{{f 1, 4}\}$	3
$\{{f 2},{f 3}\}$	4
$\{{f 2},{f 4}\}$	5
$\{{f 2},{f 5}\}$	3
$\{{f 3},{f 4}\}$	4
$\{{f 4},{f 5}\}$	3
$\{{f 2},{f 3},{f 4}\}$	3

A Priori: Make Rules

Example: A Priori only makes a list of itemsets along with their support. We use this to candidate rules

Table: Itemsets

Itemset	Support
{1}	4
(2)	6
{3 }	5
$\{4\}$	7
$\{5\}$	4
$\{{f 1},{f 4}\}$	3
$\{2,3\}$	4
$\{2,4\}$	5
$\{2,5\}$	3
$\{{f 3},{f 4}\}$	4
$\{{f 4},{f 5}\}$	3
$\{{f 2},{f 3},{f 4}\}$	3

#{1,4}/#{1}=3/4

Table: Candidate Rules

Rule	Confidence	Rule	Confidence
$1 \rightarrow 4$	<u>3/4</u>	$2 \rightarrow 3$	4/6
$2 \rightarrow 4$	5/6	$2 \rightarrow 5$	3/6
$3 \rightarrow 2$	4/5	$3 \rightarrow 4$	4/5
$4 \rightarrow 1$	3/7	$4 \rightarrow 2$	5/7
$4 \rightarrow 3$	4/7	$4 \rightarrow 5$	3/7
$5 \rightarrow 2$	3/4	$5 \rightarrow 4$	3/4
$2,3 \rightarrow 4$	3/4	$2, 4 \rightarrow 3$	3/5
$3,4 \rightarrow 2$	3/4	$2 \rightarrow 3, 4$	3/6
$3 \rightarrow 2, 4$	3/5	$4 \rightarrow 2, 3$	3/7

A Priori: Make Rules

Example: use minimum confidence to prune rules, keeping rules with $minconf \geq 0.75$

Table: Transactions

Records	
1, 3, 4	
2, 3, 4	
1, 2, 3, 5	
1, 4, 5	
1, 2, 4	
2, 3, 4, 5	
2, 4, 5	
2, 3, 4	

Table: Mined Rules

Rule	Confidence
$1 \rightarrow 4$	3/4
$2 \rightarrow 4$	5/6
$3 \rightarrow 2$	4/5
$3 \rightarrow 4$	4/5
$5 \rightarrow 2$	3/4
$5 \rightarrow 4$	3/4
$2,3 \rightarrow 4$	3/4
$3,4 \rightarrow 2$	3/4

The Apriori Algorithm -- Example

How do we choose rules?

order by confidence

$$Conf(a \to b) = \hat{P}(b \mid a) = \frac{\operatorname{Supp}(a \cup b)}{\operatorname{Supp}(b)}$$

▶ order by *lift*

$$\text{Lift 越大越好} \quad \text{Lift}(a \to b) = \frac{\hat{P}(b \,|\, a)}{\hat{P}(b)} = \frac{\text{Supp}(b)}{1 - \frac{\text{Supp}(a \cup b)}{\text{Supp}(a)}}$$

Lift (from Wikipedia)

- Lift is a measure of the performance of a targeting model (association rule) at predicting or classifying cases as having an enhanced response (with respect to the population as a whole), measured against a random choice targeting model.
- ▶ A targeting model is doing a good job if the response within the target is better than the average for the population as a whole (#{j|i1,i2,i3}/#{i1,i2,i3})/(#{j}/#{totoal})

$$\mathsf{Lift} = \frac{\mathsf{target} \ \mathsf{response}}{\mathsf{average} \ \mathsf{response}}$$

► Example: a population has an average response rate of 5%, but a certain model (or rule) has identified a segment with a response rate of 20%. Then that segment would have a lift of $4.0 = \frac{0.2}{0.05}$.

Comments:

- Association rules are a conceptual class of algorithms (like clustering)
- ▶ A Priori is one of the most popular Association rule algorithms
- (note: A Priori can be seen as a breadth-first search algorithm)

Comments:

- Association rules are a conceptual class of algorithms (like clustering)
- ▶ A Priori is one of the most popular Association rule algorithms
- (note: A Priori can be seen as a breadth-first search algorithm)

Questions:

Supervised

- what types of questions does this answer? (<u>Classification</u>? Regression? Groupings?)
- will it tell me the list of items that imply a?
- what if we have continuous fields?
- how many computations does it need to do?
- how many rules can it generate?

Outline

Conceptual Review and Setup

Association Rules

Probabilistic Association Rules

The A Priori Algorithm

A Priori in R

To implement this in R, use the package arules:

Summary:

- mine association rules from item basket data
- ▶ A Priori uses a tree construction like algorithm to create itemsets with large support
- then use the itemsets and support to create rules
- A Priori can produce a huge number of itemsets—bad for making rules

Final-esque question

Table: Transactions

Records	
1,3	
2	
1, 2, 3	
3	
1, 2, 3	
2	
2	
3	

Use a priori to make a set of rules with support \geq 30% and confidence \geq 0.6.