Data Science Training

Default of credit card clients Data Set Project

Upload data set

```
In [18]: import pandas as pd
import seaborn as sns
import matplotlib.pyplot as plt
import numpy as np
from sklearn.preprocessing import minmax_scale

In [2]: df = pd.read_csv('/home/gmelao/Desktop/default-of-credit-card-clients.csv')
df.columns = df.iloc[0]
df.drop(0, inplace = True)
df.set_index('ID', inplace = True)
pd.set_option('display.max_columns', 24)
pd.set_option('display.max_rows', 24)
```

Features and types

```
In [3]:
         df.dtypes
Out[3]:
        LIMIT BAL
                                        object
         SEX
                                        object
         EDUCATION
                                        object
         MARRIAGE
                                        object
         AGE
                                        object
         PAY_0
                                        object
         PAY 2
                                        object
         PAY 3
                                        object
         PAY 4
                                        object
         PAY 5
                                        object
         PAY 6
                                        object
         BILL_AMT1
                                        object
         BILL AMT2
                                        object
         BILL_AMT3
                                        object
         BILL_AMT4
                                        object
         BILL AMT5
                                        object
         BILL_AMT6
                                        object
         PAY AMT1
                                        object
         PAY AMT2
                                        object
         PAY AMT3
                                        object
         PAY_AMT4
                                        object
         PAY_AMT5
                                        object
         PAY_AMT6
                                        object
         default payment next month
                                        object
         dtype: object
```

Useful Info

Gender (1 = male; 2 = female)

Education (1 = graduate school; 2 = university; 3 = high school; 4 = others).

Marital status (1 = married; 2 = single; 3 = others).

The measurement scale for the repayment status is: -1 = pay duly; 1 = payment delay for one month; 2 = payment delay for two months; . . .; 8 = payment delay for eight months; 9 = payment delay for nine months and above.

```
df.head()
In [4]:
Out[4]:
             LIMIT_BAL SEX EDUCATION MARRIAGE AGE PAY_0 PAY_2 PAY_3 PAY_4 PAY_5 PAY_6
         ID
          1
                 20000
                           2
                                       2
                                                   1
                                                       24
                                                               2
                                                                      2
                                                                             -1
                                                                                    -1
                                                                                           -2
                                                                                                  -2
          2
                 120000
                           2
                                       2
                                                   2
                                                       26
                                                               -1
                                                                                            0
                                                                                                   2
          3
                 90000
                           2
                                       2
                                                   2
                                                       34
                                                               0
                                                                      0
                                                                             0
                                                                                     0
                                                                                            0
                                                                                                   0
          4
                  50000
                                       2
                                                                                            0
                                                       37
                                                               0
                                                                      0
                                                                             0
                                                                                     0
                                                                                                   0
                                                                                            0
          5
                 50000
                           1
                                       2
                                                   1
                                                       57
                                                               -1
                                                                      0
                                                                             -1
                                                                                     0
                                                                                                   0
In [5]:
         df[['BILL_AMT1', 'PAY_AMT1']].head()
Out[5]:
             BILL_AMT1 PAY_AMT1
         ID
                                 0
          1
                   3913
          2
                   2682
                                 0
          3
                  29239
                              1518
          4
                  46990
                              2000
          5
                   8617
                              2000
In [6]:
         df[['BILL_AMT2', 'PAY_AMT2']].head()
Out[6]:
             BILL_AMT2 PAY_AMT2
         ID
          1
                   3102
                               689
          2
                   1725
                              1000
          3
                  14027
                              1500
```

First data treatment

```
df = df.apply(lambda df: pd.Series(map(float, df)))
 In [7]:
 In [8]:
          df.dtypes
Out[8]:
          LIMIT BAL
                                            float64
          SEX
                                            float64
          EDUCATION
                                            float64
          MARRIAGE
                                            float64
          AGE
                                            float64
          PAY 0
                                            float64
          PAY_2
                                            float64
          PAY_3
                                            float64
          PAY_4
                                            float64
          PAY 5
                                            float64
          PAY_6
                                            float64
          BILL AMT1
                                            float64
          BILL AMT2
                                            float64
          BILL_AMT3
                                            float64
          BILL_AMT4
                                            float64
          BILL_AMT5
                                            float64
          BILL_AMT6
                                            float64
          PAY_AMT1
                                            float64
          PAY AMT2
                                            float64
          PAY AMT3
                                            float64
          PAY AMT4
                                            float64
          PAY_AMT5
                                            float64
          PAY_AMT6
                                            float64
          default payment next month
                                            float64
          dtype: object
          df_no_cats = df.drop(['SEX', 'MARRIAGE', 'EDUCATION', 'default payment next month']
 In [9]:
          df_no_cats.describe()
                      LIMIT_BAL
Out[9]:
                                         AGE
                                                    PAY_0
                                                                  PAY_2
                                                                               PAY_3
                                                                                             PAY_4
                   30000.000000 30000.000000 30000.000000 30000.000000 30000.000000 30000.000000
                                                                                                    300
          count
           mean
                  167484.322667
                                    35.485500
                                                 -0.016700
                                                               -0.133767
                                                                            -0.166200
                                                                                          -0.220667
            std
                  129747.661567
                                    9.217904
                                                  1.123802
                                                               1.197186
                                                                             1.196868
                                                                                          1.169139
            min
                   10000.000000
                                    21.000000
                                                 -2.000000
                                                               -2.000000
                                                                            -2.000000
                                                                                          -2.000000
            25%
                   50000.000000
                                    28.000000
                                                 -1.000000
                                                               -1.000000
                                                                            -1.000000
                                                                                          -1.000000
            50%
                  140000.000000
                                    34.000000
                                                  0.000000
                                                               0.000000
                                                                             0.000000
                                                                                          0.000000
            75%
                  240000.000000
                                    41.000000
                                                  0.000000
                                                               0.000000
                                                                             0.000000
                                                                                          0.000000
            max 1000000.000000
                                    79.000000
                                                  8.000000
                                                                8.000000
                                                                             8.000000
                                                                                          8.000000
          df_cats = df[['SEX', 'MARRIAGE', 'EDUCATION', 'default payment next month']].astype
In [10]:
          df cats.describe()
```

Out[10]:		SEX	MARRIAGE	EDUCATION	default payment next month
	count	30000.0	30000.0	30000.0	30000.0
	unique	2.0	4.0	7.0	2.0
	top	2.0	2.0	2.0	0.0
	freq	18112.0	15964.0	14030.0	23364.0

Data Quality

Uniqueness

Verify if duplicated values exists

```
df2 = df_no_cats.apply(lambda df: df.duplicated(), axis=1)
In [13]:
          df2.sum()
Out[13]:
         LIMIT BAL
                           0
         AGE
                           0
         PAY_0
                           0
         PAY 2
                       23136
         PAY_3
                       25005
         PAY_4
                       26043
         PAY_5
                       26808
         PAY_6
                       27264
                        303
         BILL_AMT1
         BILL_AMT2
                        3022
         BILL_AMT3
                        3718
         BILL_AMT4
                        4314
         BILL_AMT5
                        4790
         BILL_AMT6
                        5300
         PAY AMT1
                        8453
         PAY_AMT2
                       10590
         PAY_AMT3
                       11708
         PAY_AMT4
                       13264
         PAY_AMT5
                       14801
         PAY_AMT6
                       11707
         dtype: int64
         df.groupby('PAY_6').size()
In [62]:
         PAY_6
Out[62]:
          -2.0
                   4895
          -1.0
                   5740
          0.0
                  16286
                   2766
          2.0
          3.0
                    184
          4.0
                     49
          5.0
                     13
          6.0
                     19
          7.0
                     46
          8.0
                      2
         dtype: int64
```

Completeness

Show how many null values in the data set

```
In [14]:
          df.isna().sum()
Out[14]:
         LIMIT_BAL
                                         0
         SEX
                                         0
         EDUCATION
                                         0
         MARRIAGE
                                         0
         AGE
                                         0
         PAY_0
                                         0
         PAY_2
                                         0
         PAY_3
                                         0
         PAY 4
                                         0
         PAY_5
                                         0
         PAY_6
                                         0
         BILL_AMT1
                                         0
         BILL_AMT2
                                         0
         BILL_AMT3
                                         0
         BILL AMT4
                                         0
         BILL_AMT5
                                         0
         BILL_AMT6
                                         0
         PAY_AMT1
                                         0
                                         0
         PAY_AMT2
         PAY_AMT3
                                         0
         PAY AMT4
                                         0
         PAY_AMT5
                                         0
         PAY_AMT6
                                         0
          default payment next month
                                         0
          dtype: int64
```

Boxplot

It's a method for graphically demonstrating the variation groups of numerical data through their quartiles. Boxplot graphs are useful to identify dospersion of data, simetry, outliers and positions.

2

PAY_2

6

8

ò

-2

2

PAY_6

4

6

8

ó

-2


```
In [70]: for c in df_no_cats.columns:
    ax = df_no_cats.boxplot(c)
    if c.startswith('BILL_AMT') or c.startswith('PAY_AMT'):
        ax.set_yscale("log")
        plt.show()
        plt.close()
```


Histograms

This graph will show the frequency distributions, it will be possible to identify if each feature is a Gaussian distribution or not

```
In [67]: for c in df_no_cats.columns:
    ax = sns.histplot(df_no_cats, x=c)
```

```
if c.startswith('BILL_AMT') or c.startswith('PAY_AMT'):
    ax.set_yscale("log")
plt.show()
plt.close()
```


Plotting a diagonal correlation matrix

This diagram will show the correlation of each feature individually

```
In [32]: corr = df_no_cats.corr()
```


In []:

Dummies Variables and Categorical Data

Dummy variables enable us to use a single regression equation to represent multiple groups

In [38]:	pd	<pre>pd.get_dummies(df_cats.drop(['default payment next month'], axis=1)).head()</pre>									
Out[38]:		SEX_1.0	SEX_2.0	MARRIAGE_0.0	MARRIAGE_1.0	MARRIAGE_2.0	MARRIAGE_3.0	EDUCATION_(
	0	0	1	0	1	0	0				
	1	0	1	0	0	1	0				
	2	0	1	0	0	1	0				
	3	0	1	0	1	0	0				
	4	1	0	0	1	0	0				
4								•			

Out[42]:		LIMIT_BAL	AGE	PAY_0	PAY_2	PAY_3	PAY_4	PAY_5	PAY_6	BILL_AMT1	BILL_AMT2	BILL_AN
	0	20000.0	24.0	2.0	2.0	-1.0	-1.0	-2.0	-2.0	3913.0	3102.0	68
	1	120000.0	26.0	-1.0	2.0	0.0	0.0	0.0	2.0	2682.0	1725.0	268
	2	90000.0	34.0	0.0	0.0	0.0	0.0	0.0	0.0	29239.0	14027.0	1355
	3	50000.0	37.0	0.0	0.0	0.0	0.0	0.0	0.0	46990.0	48233.0	4929
	4	50000.0	57.0	-1.0	0.0	-1.0	0.0	0.0	0.0	8617.0	5670.0	3583

5 rows × 33 columns

							,
In [43]:	df2.describe()						
Out[43]:	LIMIT BAL	AGE	PAY 0	PAY 2	PAY 3	PAY 4	

	LIMIT_BAL	AGE	PAY_0	PAY_2	PAY_3	PAY_4	
count	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	30000.000000	300
mean	167484.322667	35.485500	-0.016700	-0.133767	-0.166200	-0.220667	
std	129747.661567	9.217904	1.123802	1.197186	1.196868	1.169139	
min	10000.000000	21.000000	-2.000000	-2.000000	-2.000000	-2.000000	
25%	50000.000000	28.000000	-1.000000	-1.000000	-1.000000	-1.000000	
50%	140000.000000	34.000000	0.000000	0.000000	0.000000	0.000000	
75%	240000.000000	41.000000	0.000000	0.000000	0.000000	0.000000	
max	1000000.000000	79.000000	8.000000	8.000000	8.000000	8.000000	

8 rows × 33 columns

In []: