Esercizio 2.1 Determinare analiticamente gli zeri del polinomio

$$P(x) = x^3 - 4x^2 + 5x - 2$$

e la loro molteplicità. Dire perché il metodo di bisezione è utilizzabile per approssimarne uno a partire dall'intervallo di confidenza [a,b] = [0,3]. A quale zero di P potrà tendere la successione generata dal metodo di bisezione a partire da tale intervallo? Costruire una tabella in cui si riportano il numero di iterazioni e di valutazioni di P richieste per valori decrescenti della tolleranza tolx.

Soluzione: Prendiamo in considerazione il nostro polinomio e vediamo subito che un suo zero è 1, infatti: con $\hat{x} = 1$:

$$P(1) = 1^3 - 4 * 1^2 + 5 * 1 - 2 =$$

$$= 1 - 4 + 5 - 2 = 0$$

A questo punto controlliamo la sua molteplicità:

$$P'(x) = 3x^{2} - 8x + 5$$

$$P'(1) = 3 - 8 + 5 = 0$$

$$P''(x) = 6x - 8$$

$$P''(1) = 6 - 8 = -2$$

La molteplicità è 2 poiché la derivata seconda è la prima derivata in ordine che non viene annullata.

Un'altro suo zero è 2: con $\hat{x} = 2$:

$$P(2) = 8 - 16 + 10 - 2 = 0$$
$$P'(2) = 12 - 16 + 5 = 1$$

In questo caso la molteplicità è 1.

Il metodo di bisezione è utilizzabile nell'intervallo di confidenza [0,3] in quanto P(a)P(b) < 0, precisando che in tale intervallo P tenderà a 2:

$$P(0) = 0 - 0 + 0 - 2 = -2$$

$$P(3) = 27 - 36 + 15 - 2 = 4$$

$$-2 * 4 < 0$$

Di seguito i risultati dell'esecuzione del metodo di bisezione utilizzando come intervallo di confidenza [0,3]:

D(x)	$= x^3 - 4x^2 + 5x - 2,$	$I = \begin{bmatrix} 0 & 2 \end{bmatrix}$	
I(x)	<u> </u>	I = [0, 3]	
$\tilde{x} \approx 2.0$			
tol_x	Approssimazione	Iterazioni	
10^{-1}	$\tilde{x} = 2.0625000000000000$	i = 3	
10^{-2}	$\tilde{x} = 1.9921875000000000$	i = 6	
10^{-3}	$\tilde{x} = 2.000976562500000$	i = 9	
10^{-4}	$\tilde{x} = 2.000061035156250$	i = 13	
10^{-5}	$\tilde{x} = 1.999992370605469$	i = 16	
10^{-6}	$\tilde{x} = 2.000000953674316$	i = 19	
10^{-7}	$\tilde{x} = 2.000000059604645$	i = 23	
10^{-8}	$\tilde{x} = 1.99999992549419$	i = 26	
10^{-9}	$\tilde{x} = 2.000000000931323$	i = 29	
10^{-10}	$\tilde{x} = 2.00000000058208$	i = 33	
10^{-11}	$\tilde{x} = 1.99999999992724$	i = 36	
10^{-12}	$\tilde{x} = 2.000000000000909$	i = 39	
10^{-13}	$\tilde{x} = 2.00000000000057$	i = 43	
10^{-14}	$\tilde{x} = 1.99999999999999$	i = 46	
10^{-15}	$\tilde{x} = 2.00000000000000000000000000000000000$	i = 49	

Notiamo come dopo 49 iterazioni otteniamo il risultato con tolleranza pari a 10^{-15} .

Esercizio 2.2 Completare la tabella precedente riportando anche il numero di iterazioni e di valutazioni di P richieste dal metodo di Newton, dal metodo delle corde e dal metodo delle secanti (con secondo termine della successione ottenuto con Newton) a partire dal punto $x_0 = 3$. Commentare i risultati riportati in tabella. E' possibile utilizzare $x_0 = 5/3$ come punto di innesco?

Soluzione:

	$P(x) = x^3 - 4x^2 + 5x - 2, x_0 = 3$			
$\tilde{x} \approx 2.0$				
tol_x	Newton	Corde	Secanti	
10^{-1}	$\tilde{x} = 2.00435, i = 4$	x = 2.35938, i = 3	x = 2.05016, i = 4	
10^{-2}	$\tilde{x} = 2.00004, i = 5$	x = 2.06432, i = 13	x = 2.00099, i = 6	
10^{-3}	$\tilde{x} = 2.00000, i = 6$	x = 2.00767, i = 29	x = 2.00002, i = 7	
10^{-4}	$\tilde{x} = 2.00000, i = 6$	x = 2.00078, i = 47	x = 2.00000, i = 8	
10^{-5}	$\tilde{x} = 2.00000, i = 7$	x = 2.00007, i = 66	x = 2.00000, i = 9	
10^{-6}	$\tilde{x} = 2.00000, i = 7$	x = 2.00001, i = 84	x = 2.00000, i = 9	
10^{-7}	$\tilde{x} = 2.00000, i = 7$	x = 2.00000, i = 102	x = 2.00000, i = 9	
10^{-8}	$\tilde{x} = 2.00000, i = 7$	x = 2.00000, i = 120	x = 2.00000, i = 10	
10^{-9}	$\tilde{x} = 2.00000, i = 8$	x = 2.00000, i = 139	x = 2.00000, i = 10	
10^{-10}	$\tilde{x} = 2.00000, i = 8$	x = 2.00000, i = 157	x = 2.00000, i = 10	
10^{-11}	$\tilde{x} = 2.00000, i = 8$	x = 2.00000, i = 175	x = 2.00000, i = 10	
10^{-12}	$\tilde{x} = 2.00000, i = 8$	x = 2.00000, i = 193	x = 2.00000, i = 11	
10^{-13}	$\tilde{x} = 2.00000, i = 8$	x = 2.00000, i = 211	x = 2.00000, i = 11	
10^{-14}	$\tilde{x} = 2.00000, i = 8$	x = 2.00000, i = 230	x = 2.00000, i = 11	
10^{-15}	$\tilde{x} = 2.00000, i = 8$	x = 2.00000, i = 247	x = 2.00000, i = 11	

Possiamo notare come il metodo più efficiente è quello di Newton, mentre il metodo meno efficiente è quello delle corde.

No non è possibile utilizzare $x_0 = 5/3$ come punto di innesco in quanto 5/3 è uno zero della derivata prima.

Esercizio 2.3 Costruire una seconda tabella analoga alla precedente relativa ai metodi di Newton, di Newton modificato e di accelerazione di Aitken applicati alla funzione polinomiale P a partire dal punto di innesco $x_0 = 0$. Commentare i risultati riportati in tabella.

Soluzione: Avendo valutato precedentemente che la molteplicità di P è 2 applichiamo il metodo di Newton modificaton con coefficente del termine di correzione m=2:

$P(x) = x^3 - 4x^2 + 5x - 2, x_0 = 0$				
$\tilde{x} \approx 1.0$				
tol_x	Newton	Newton modificato	Aitken	
10^{-1}	$\tilde{x} = 0.89599, i = 4$	x = 0.99607, i = 3	x = 1.00056, i = 3	
10^{-2}	$\tilde{x} = 0.99289, i = 8$	x = 0.99999, i = 4	x = 1.00000, i = 4	
10^{-3}	$\tilde{x} = 0.99911, i = 11$	x = 1.00000, i = 5	x = 1.00000, i = 4	
10^{-4}	$\tilde{x} = 0.99994, i = 15$	x = 1.00000, i = 5	x = 1.00000, i = 5	
10^{-5}	$\tilde{x} = 0.99999, i = 18$	x = 1.00000, i = 5	x = 1.00000, i = 5	
10^{-6}	$\tilde{x} = 1.00000, i = 21$	x = 1.00000, i = 6	x = 1.00000, i = 5	
10^{-7}	$\tilde{x} = 1.00000, i = 25$	x = 1.00000, i = 6	x = 1.00000, i = 5	
10^{-8}	$\tilde{x} = 1.00000, i = 29$	x = 1.00000, i = 6	x = 1.00000, i = 6	
10^{-9}	$\tilde{x} = 1.00000, i = 29$	x = 1.00000, i = 6	x = 1.00000, i = 6	
10^{-10}	$\tilde{x} = 1.00000, i = 29$	x = 1.00000, i = 6	x = 1.00000, i = 6	
10^{-11}	$\tilde{x} = 1.00000, i = 29$	x = 1.00000, i = 6	x = 1.00000, i = 6	
10^{-12}	$\tilde{x} = 1.00000, i = 29$	x = 1.00000, i = 6	x = 1.00000, i = 6	
10^{-13}	$\tilde{x} = 1.00000, i = 29$	x = 1.00000, i = 6	x = 1.00000, i = 6	
10^{-14}	$\tilde{x} = 1.00000, i = 29$	x = 1.00000, i = 6	x = 1.00000, i = 6	
10^{-15}	$\tilde{x} = 1.00000, i = 29$	x = 1.00000, i = 6		

Come era prevedibile notiamo che il metodo di Newton converge linearmente. Il metodo di Newton modificato e quello di Aitken performano similmente e notiamo che il costo di discosta di poco. Esercizio 2.4 Definire una procedura iterativa basata sul metodo di Newton per approssimare $\sqrt{\alpha}$, per un assegnato $\alpha > 0$. Costruire una tabella dove si riportano le successive approssimazioni ottenute e i corrispondenti errori assoluti (usare l'approssimazione di Matlab di $\sqrt{\alpha}$ per il calcolo dell'errore) nel caso in cui $\alpha = 5$ partendo da $x_0 = 5$.

Soluzione: Il seguente metodo produrrà la tabella richiesta:

```
alpha = 5;
 1
 2
   x0 = 5;
 3
   Tabella = cell2table(cell(0,3));
 4
   Tabella.Properties.VariableNames = {'i' 'SQRT_a' 'err'};
   [Tabella, sqrt_a] = SQRT_Newton(alpha, x0, 100, 10^-15, Tabella)
       );
 7
   function [T, sqrt_a] = SQRT_Newton(alpha, x0, itmax, tolx, T);
 8
 9
       sqrt_a = (x0 + alpha/x0) / 2;
10
       i = 1;
11
       row = {i, sqrt_a, abs( sqrt(alpha) - sqrt_a )};
12
       T = [T; row];
13
14
       while (i < itmax) && (abs(sqrt_a-x0) > tolx)
15
            x0 = sqrt_a;
16
            i = i+1;
17
            sqrt_a = (x0 + alpha/x0) / 2;
18
            row = {i, sqrt_a, abs( sqrt(alpha) - sqrt_a )};
19
            T = [T; row];
20
       end
21
   end
```

1	2	3
i	SQRT_a	err
1	3	0.7639
2	2.3333	0.0973
3	2.2381	0.0020
4	2.2361	9.1814e-07
5	2.2361	1.8829e-13
6	2.2361	0

Esercizio 2.5 Definire una procedura iterativa basata sul metodo delle secanti sempre per approssimare $\sqrt{\alpha}$, per un assegnato $\alpha > 0$. Completare la tabella precedente aggiungendovi i risultati ottenuti con tale precedura partendo da $x_0 = 5$ e $x_1 = 3$. Commentare i risultati riportati in tabella. Soluzione:

```
x_0 = 5;
              alpha = 5;
              Tabella = cell2table(cell(0,3));
              Tabella.Properties.VariableNames = {'i' 'sqrt_a' 'err'};
              [Tabella, res] = SQRT_secanti(alpha, x_0, 200, 10^(-15),
                            Tabella);
              function [T, sqrt_alpha] = SQRT_secanti(alpha, x0, itmax, tolx,
                                T)
 10
              x1 = (x0 + alpha/x0)/2;
              x = ((x1^2-alpha) * x0-(x0^2-alpha)*x1) / ((x1^2-alpha)-(x0^2-alpha))
                               - alpha));
12
              i = 1;
              row = \{i, x, abs(sqrt(alpha) - x)\}; T = [T; row];
14
              while(i < itmax) && (abs(x-x0)>tolx) x0=x1;
15
                              x1=x;
16
                               i = i+1;
17
                               x = ((x1^2 - alpha) * x0 - (x0^2 - alpha)*x1) / ((x1^2 - alpha) * x1) / ((x1
                                             alpha) - (x0^2 - alpha));
                                row = \{i, x, abs( sqrt(alpha) - x )\}; T = [T; row];
18
19
              end
20
              sqrt_alpha = x;
21
              end
```

2	3
sqrt_a	err
2.5000	0.2639
2.2727	0.0367
2.2381	0.0020
2.2361	1.6475e-05
2.2361	7.4651e-09
2.2361	2.7089e-14
2.2361	4.4409e-16
2.2361	4.4409e-16
2.2361	0
	sqrt_a 2.5000 2.2727 2.2381 2.2361 2.2361 2.2361 2.2361 2.2361

Dal risultato ottenuto possiamo notare come a differenza del metodo di newton il metodo delle secanti converge $\sqrt{\alpha}$ meglio nelle prime iterazioni, ma il metodo di Newton converge poi con più precisione convergendo più velocemente verso il risultato esatto.