第六章 数据库设计

课前回顾

1. 创建存储过程的语法

CREATE PROCEDURE 存储过程的名称(IN|OUT 参数名1 参数类型1,...,IN|OUT 参数名n 参数类型n)
BEGIN

END

2. 创建函数的语法

CREATE FUNCTION 存储过程的名称(参数名1 参数类型1,..., 参数名n 参数类型n) RETURNS 数据类型 -- 函数类型

DETERMINISTIC | NO SQL | READ SQL DATA | CONTAINS SQL BEGIN

RETURN 结果;

END

3. 创建触发器的语法

CREATE TRIGGER 触发器名称 BEFORE|AFTER INSERT|UPDATE|DELETE ON 表名 FOR EACH ROW BEGIN

END

4. 创建视图的语法

CREATE OR REPLACE VIEW 视图名称 AS SELECT 语句;

章节内容

• 数据库设计

重点

● ER图

重点

• 数据库模型图

重点

• 数据库三大范式

重点

章节目标

- 掌握数据库设计
- 掌握ER图绘制
- 掌握数据库模型图绘制
- 掌握数据库三大范式

第一节 设计数据库

1. 什么是实体?

实体就是软件开发过程中所涉及到的事物,通常都是一类数据对象的个体。

2. 什么是数据库设计?

数据库设计就是将实体与实体之间的关系进行规划和结构化的过程

3. 为什么要对数据库进行设计?

当存储的数据比较少的时候,当然不需要对数据库进行设计。但是,当对数据的需求量越来越大时,对数据库的设计就很有必要性了!如果数据库的设计不当,会造成数据冗余、修改复杂、操作数据异常等问题。而好的数据库设计,则可以减少不必要的数据冗余,通过合理的数据规划提高系统的性能

4. 如何设计数据库

收集信息

在确定客户要做什么之后,收集一切相关的信息,尽量不遗漏任何信息

标识实体

实体一般是名词,每个实体只描述一件事情,不能重复出现含义相同的实体

标识实体的详细属性

I标识每个实体需要存储的详细信息

标识实体之间的关系

理清实体与实体之间的关系

第二节 ER图

1. 什么是ER图

ER = Entity Relational (实体关系)

ER图就是实体关系图

2. 如何绘制ER图

示例

第三节 数据库模型图

1. 什么是关系模式

实体关系的描述称为关系模式,关系模式通常使用二维表的形式表示

示例

学生 (学号, 姓名, 性别, 年龄, 所属班级)

班级 (班级编号, 班级名称)

2. 关系模式转为数据库模型图

将关系模式使用Navicat工具转换为数据库模型图,转换步骤如下:

- 将各实体转换为对应的表,将各属性转换为各表对应的列
- 标识每个表的主键列
- 在表之间建立主外键,体现实体

示例

第四节 数据库三大范式

1. 第一范式

第一范式是最基本的范式,确保每列保持原子性,也就是每列不可再分。

示例

address
四川省成都市
陕西省西安市
广东省广州市
甘肃省兰州市

province	city
四川省	成都市
陕西省	西安市
广东省	广州市
甘肃省	兰州市

2. 第二范式

第二范式是在第一范式的基础上,每张表的属性完全依赖于主键,也就是每张表只描述一件事情 示例

学生表					
id	name	sex	age	class	
1	张华	男	20	计科1班	
2	金凤	女	22	计科2班	
3	李刚	男	21	软工1班	
4	龙强	男	24	软工2班	

班级表			
id	name		
1	计科1班		
2	计科2班		
3	软工1班		
4	软工2班		

学生表				
id	name	sex	age	class_id
1	张华	男	20	1
2	金凤	女	22	2
3	李刚	男	21	3
4	龙强	男	24	4

3. 第三范式

第三范式是在第二范式的基础上,确保每列都直接依赖于主键,而不是间接依赖于主键,也就是不能存在传递依赖。比如A依赖于B,B依赖于C,这样A间接依赖于C。

示例

学生表					
id	name	sex	age	major	tuition
1	张华	男	20	计算机专业	8000
2	金凤	女	22	软件工程专业	9000
3	李刚	男	21	电子商务专业	7000
4	龙强	男	24	临床医学专业	16000

专业表				
id	name	tuition		
1	计算机专业	8000		
2	软件工程专业	9000		
3	电子商务专业	7000		
4	临床医学专业	16000		

学生表					
id	name	sex	age	major_id	
1	张华	男	20	1	
2	金凤	女	22	2	
3	李刚	男	21	3	
4	龙强	男	24	4	

练习

假设某建筑公司要设计一个数据库。公司的业务规则概括说明如下:

- 公司承担多个工程项目,每一项工程有:工程号、工程名称、施工人员等
- 公司有多名职工,每一名职工有:职工号、姓名、性别、职务(工程师、技术员)等
- 公司按照工时和小时工资率支付工资,小时工资率由职工的职务决定(例如,技术员的小时工资率与工程师不同)

分析

- 1. 找出实体(工程、员工、职务、工时)
- 2. 找出实体关系
- 3. 绘制ER图,然后将ER图转换为数据库模型图
- 4. 使用三大范式规范数据库设计

注意: 在实际开发过程中, 为了满足性能的需要, 数据库的设计可能会打破数据库三大范式的约束。

以空间换时间: 当数据库中存储的数据越来越多时,查询效率下降,为了提升了查询效率,可能会在表中增加新的字段,此时,数据库的设计就不再满足三大范式。