Graded for Honest Effort

1.7,3 a) "someone did not get a large bonus" is a negation of "someone get a large bonus", and we can use the quantifier 3 to express someone, we can translate it into logic as

3 x 9 B(x)

b) we use the quantifier of to empress everyone.
We can translate "Everyone got a large
bonus" into logic as

YX BLX

c) we use conjunction to express "even though" and "sum did not get a large bonus" is a negation of "sam got a large bonus".

We can translate of into logic as

7 B L SLM) A T(X)

d) we use the quartifier 3 to express "someone" and "not on the executive team" is a negation of "on the executive team" and finally we use conjunction to express "not on the executive team and received large bonus"

$\exists X (\neg T(X) \land B(X))$

Graded for Honest Effort 1.7.3 e) we use the quantifier of to express "Everyone", and being a executive team member implies he I she got a large bonus $\forall x (T(x) \rightarrow B(x))$ 1,7,7 b) In every row, we can find at least DIX or Max is true therefore True Among all the orallo members, they either missed the deadline or they are a new employee. c) we can find that there exists a x that is both not Dix and Nix for example, Melanie is not Day and Nax, therefore TMR A group member did not miss the deadline and is a new empolyee.

	Graded for Honest Effort
1,7,7	i) We find that Only AI is true on Both 13 (x) and N(x) which means
	False
	Every group member missed the deadline if and only if he is a new employee.
1,8,3	FX (PIX) A C(X))
	Apply negation $\neg \exists x \ L P(x) \land C(x) >$
	ZYX ~ (PUX) \ CUX)> change quantifier to Y
	= YX (7P(X) V - C(X)) change conjunction to
	translate to English
	Every student showed up either without a pencil or without a calculator

Graded	for	Honest	Eff	fort

e) Trunslate to logic

3x (PLX) V C(X))

Apply negation

1 3 x (P(x) v c(x))

= YX - (P(X) V C(X)) change the quantifier to Y

= YX (-P(X) / -C(X)) change disjunction to conjunction

Trunslate to English

Every student showed up without a pencil and without a calculator

f) Trundate to logic

YX (P(X) A C(X))

Apply neggtion

- AX (P(X) (C(X))

3x 7 (P(X) 1 (X)) Change quantifier to 3

3x (>P(x) v - C(x)) change conjunction to disjunction

Translate to English

Some students showed up either without a pencil

or without a calculator.

	Graded for Honest Effort
1,10,3	a) Yx Jy P(x,y), Jx Yy P(x,y)
	y
	V D L L
	X P A B C A F F F B T T C F F T
	VIN > 1 DIO 11 > ~ Colon 1-000 P(1111) and
	Y (X > Y PLX, Y) TS False because P(1, Y) are
	call false, it needs at least one true to
	make the expression true
	3 X Y P (X, Y) is true because P (2, y) are
	CIL True,
1 2 11	
1,104	e) the reciprocal of every positive number less
<u></u>	than one is greater than one
	R(x,y): x is the reciprorcal of y.
γ	
	6(Z) / 2 is greater than one.
	$\forall x \exists y ((R(y,x) \wedge (x \times 70) \wedge (x \times 1)) \rightarrow G(y))$
	TG OLOULA GOOD OLOUGHOUS ON MORELY OF ANOMALO
	IF every real number x that is greater than and
	less than I then there is a real number y
	that is greater than I.

	Graded for Honest Effort
1,60,4	f) there is no smallest number.
· 	
\sim	S (x, y): x is smaller than y,
	3x S(x); x is the smallest number.
	$\forall y \ni x (S(x,y))$
	For every real number y, there is a real number y
	Euler who allow the officers of the control of the
	g Every number other than 0 has a multiplicative inverse
	m (x): x has a multiplicative inverse
	$\forall \chi ((\chi \neq 0) \rightarrow m(\chi))$
	For every real number ox, if x is not zero, it has a multiplicative inverse
	Z = (0 / 1 / 100) (C / 100) (J = 100) (J = 100)

	Graded for Honest Effort	
	b) p: he studied for the test	
1111	g: he passed the test	
		P 9 79 PV 79
	PV 7Q	P G 79 PV79 T F T F F T F
	:, P	FTFF
	The hypothesis are pv 7 q a	nd q SO Ne
	only look at the row when be which to row 1. The condus	
	is true therefore it is	valid
	c) p: Jz is an irrational number	<u> </u>
	q; zJz is an irrational nu	
	$ \begin{array}{cccccccccccccccccccccccccccccccccccc$	P > q
	.'. D	_ F
	- T	
	 - 	
	the hypothesis are p > q	and aso we
	the hypothesis are p > g Only look at row 1 and 3	3, the conclusion
	CAT HOW 3 TS False, therefor	re It is irwalia.

```
Graded for Honest Effort and Feedback Given
1.8.4 b) 7 4 x (7 P(x) -> Q(x))
           = \exists x (\neg P(x) \land \neg Q(x))
        > TYX (TP(X) -> Q(X)) start
          3 x - (-P(x) -> Q(x)) Demorgan's law
                                           Conditional identity
          3x \neg (\neg \neg P(x) \lor Q(x))
                                           Bouble negation law
          \exists x \neg (P(x) \lor Q(x))
                                         Demorgan's law
         \exists x (\neg p(x) \land \neg Q(x))
          in they are logically equivalent
1,9,4
                \exists x \forall y (P(x,y) \rightarrow P(y,x))
      4)
                apply negation
       + \exists x \forall y (P(x,y) \leftrightarrow P(y,x)) Start
        YX JY J (P(X,Y) \rightarrow P(Y,X)) Demorgan's law
        WYX JY J ((P(X,Y) -> P(Y,X)) \(P(Y,X) -> P(X,Y))
                                               conditional identity
        YX JY 7 (GP(X,Y) VP(Y,X)) N(P(Y,X) -> P(X,Y))>
                                                conditional identity
       VX JY 7 ((7P(X,Y) V P(Y,X)) 1 (9 P(Y,X) V P(X,Y)))
                                                conditional identity
       4x3y(¬(¬P(x,y) V P(4,x)) V ¬(¬P(4,x) V P(x,y)))
                                                Demorgan's kyn
       \forall x \ni y \mid (P(x,y) \land \neg P(y,x)) \lor \neg (\neg P(y,x) \lor P(x,y))
                                                Demorgan's kap
       Y X Ə Y ( ( P(X, Y) ) ~ P(Y, X)) V ( P(Y, X) ) ~ ¬ P(X, Y) ))
                                                Demorgan's kap
```

Graded for Honest Effort and Feedback Given

1.10.7 c) There is ut least one new employee who missed the deadline.

We can translate it into logic as

3x (N(x) A D(x))

We use quantifier 3 to express at least one, then we use conjunction to express a person is a new employee and missed the deadline.

d) Sum knows the phone number of everyone who missed the deadline, we can translate it into logic as

$\forall x (D(x) \rightarrow P(x_{1}, x))$

we use quantifier of to express everyone, and we use conditional statement to express that if you missed the deadline then sam knows your phone number.

Graded for Honest Effort and Feedback Given

1.10.7 e) There is a new employee who knows everyone's phone number,

we can translate it into logic as

3 x y y (N(X) A P(X, Y))

we use quantifier of to express a person, and use quantifier of to express everyone. Finally, we use conjunction to express there is a person who is a new employee and knows everyone's phone number.

f) Exactly one new employee missed the decidine we can translate it into logic as

$\exists x ((N(x) \land D(x)) \land \forall y ((x \neq y) \Rightarrow \neg D(y)))$

we use quantifier 3 to express there is one person, and this pason is a new employee and missed the deadline. We use quantifier of to express everyone and if they are the same person on their they didn't miss the deadline which means exactly one person missed the deadline.

Graded for Honest Effort and Feedback Given

- 1.10.10 x = a set of student at a university. y = a set Math class offer at that university. T(x,y) = student x has taken class y.
 - c) Every student has taken at least one class other than Math 101.

YX 99 ((y = Math 101) 1 T(x,y))

We use quantifier of to express every student and of the express at least one class, then we say that this class is not Math IDI and every student has taken this Month class.

d) there is a student who has taken every math class other than Math 101.

> x Y y (y = Math 101) -> T(x,y))

we use quantifier > to empress there is a student and y to express every math class. Then we say that is not math class that is not math lot then there is a student has taken that class.

	Graded for Honest Effort and Feedback Given
(,10,10	f) Sam has taken exactly two math classes.
	$9 \alpha 9 b \forall y (TLSam, \omega) \Lambda T(Sam, b) \Lambda$ $(((\alpha \neq b) \Lambda (\alpha \neq y) \Lambda (b \neq y)) \rightarrow \neg T(Sam, y)))$
	we say that sam has taken class a and b, and if class a and b are not the same class, then sam didn't take any other classes.

	Graded for Honest Effort and Feedback Given
111,4	p: 4 is a prime number (False) q: 5 is a prime number (True)
γ ~	U) Q PQPVQ TTTT TETT FEF
	The conclusion is a false statement and the first now in truth table shows the argument is valid.
	b) q TP q 7P
	The conclusion statement is true and the third row in truth table shows all the hythoese are true but conclusion is false.