

Representação digital de dados (Parte II)

Áudio:

Um sinal de áudio é uma representação de uma onda sonora que, por sua vez, é uma somatória de sinais:

- Periódicos: senoidais e cosenoidais
- Quase-periódicos (chirp, variação de fase etc.): ressonâncias, reverberações, ecos etc.
- Não periódicos: ruídos (percussão, sopro, fricção etc.)

Representação digital de dados (Parte II)

Áudio:

Arquivo de áudio

- 2 canais (estéreo)
- 44.1 kHz
- 32bit float.

(visualizado no software audacity)

Representação digital de dados (Parte II)

Áudio:

O sinal é amostrado em intervalos regulares de tempo com precisão que pode ser de:

- 8 bits (mono)
- 16 bits (mono ou estéreo)
- 24 bits (mono ou estéreo)
- 32 bits float (mono ou estéreo)

Outras taxas de precisão são possíveis mas mais raramente utilizadas, por exemplo: 12 bits mono MIT/ECG, 32 bits linear (PCM), 16/32 bits fixed point etc..

Representação digital de dados (Parte II)

Áudio:

A taxa de amostragem é registrada em Herz (Hz) mas, na prática é amostras por segundo e a taxa de bits (*bit rate*) em bits/segundo (bps).

Um arquivo de áudio tem um tamanho em Bytes, calculado por:

$$T = S \times \frac{b}{8} \times C \times t$$

Onde,

S = Taxa de amostragem (sample rate)

b = resolução em bits/amostra. (bits per sample)

C = número de canais de áudio (mono, estéreo, quad)

t = tempo em segundos

Representação digital de dados (Parte II)

Áudio:

Formatos:

- PCM (Pulse Code Modulation): RIFF/WAV, AIFF, AU
- Compactados com perda (lossy compression): MP3, OGG Vorbis, WMA
- Compactados sem perda (lossless compression):FLAC, WavPack, WMA

Formato diz respeito ao arquivo que contém os dados de áudio. O processo de codificação e decodificação dos dados de áudio chamase **CODEC**.

Representação digital de dados (Parte II)

Áudio:

Os arquivos de áudio são, normalmente, formados por um cabeçalho e uma seqüência de dados.

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

44 bytes de cabeçalho

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

ChunkID: 4 bytes (big endian) contendo os caracteres ASCII "RIFF" (0x52494646)

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

ChunkSize: 4 bytes (little endian) contendo 36 + Subchunk2Size, ou seja, o tamanho do arquivo em bytes a partir daqui (o tamanho do arquivo menos 8 bytes).

Por exemplo: Um arquivo com 2 kB de dados de áudio tem 2092 bytes (2048 + 44) e o valor do ChunkSize é 2084 (2092 – 8). O valor, em hexadecimal neste caso é 0x00000824. Como a notação é little endian deve aparecer: 0x24080000.

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

Sample Rate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

Format: 4 bytes (big endian) contendo os caracteres "WAVE" (0x57415645).

ChunkID

ChunkSize

Format

Subohunkt ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

O formato Wave tem dois sub-blocos:

Subchunk "fmt"

Subchunk "data"

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

Bits PerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

Subchunk1ID: 4 bytes (big endian) contendo os caracteres "fmt" (0x666d7420).

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

Subchunk1Size: 4 bytes (little endian) contendo o número de bytes deste subchunk, a partir deste número. Para formato PCM, este número é 16 (0x10000000 little endian).

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

AudioFormat: 2 bytes (little endian) contendo "1" para PCM (0x0100). Outros valores indicam algum formato de compressão.

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

Sample Rate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

NumChannels: 2 bytes (little endian) contendo o número de canais. Por exemplo, um arquivo estéreo por "2" (0x0200).

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

SampleRate: 4 bytes (little endian) contendo a taxa de amostragem (8000, 22050, 44100 Hz etc.). Por exemplo, um arquivo com a taxa de amostragem de 22050 = 5622 em hexa (0x22560000 little endian).

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

ByteRate: 4 bytes (little endian) contendo a taxa de bytes.

 $ByteRate = S \times C \times \frac{b}{8}$

Onde S é a taxa de amostragem (sample rate), C é número de canais e b é a resolução em bits (bits por amostra). ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

BlockAlign: 2 bytes (little endian) contendo o número de bytes de cada amostra, incluindo os canais.

 $BlockAlign = C \times \frac{b}{8}$

Onde C é número de canais e b é a resolução em bits (bits por amostra).

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

Sample Rate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

BitsPerSample: 2 bytes (little endian) contendo o número de bits de cada amostra.

8 bits = 0x0800

 $16 \text{ bits} = 0 \times 1000$

24 bits = 0x1800

32 bits = 0x2000

etc.

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

Sample Rate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

Subshunk2ID: 4 bytes (big endian) contendo os caracteres "data" (0x64617461).

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

SampleRate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

Subshunk2Size: 4 bytes (big endian) contendo o numero de bytes dos dados de áudio.

 $Subchunk2Size = N_s \times C \times \frac{b}{8}$

Onde N_s é o número de amostras, C é número de canais e b é a resolução em bits (bits por amostra).

ChunkID

ChunkSize

Format

Subchunk1 ID

Subchunkt Size

AudioFormat

Num Channels

Sample Rate

ByteRate

BlockAlign

BitsPerSample

Subchunk2ID

Subchunk2Size

Representação digital de dados (Parte II)

Áudio: cabeçalho RIFF/Wav

http://ccrma.stanford.edu/courses/422/projects/WaveFormat/

left channel samples

Representação digital de dados (Parte II)

Áudio: arquivos AU

Formato AU desenvolvido pela Sun Microsystems

- Cabeçalho de 6 words de 32bits
- Bloco opcional de informações
- Dados no formato big endian

Suporte a vários tipos de codificações de áudio, mais frequentemente utiliza codec µ-law logarítmico, padrão de som para Unices.

Representação digital de dados (Parte II)

Áudio: arquivos AU

Magic number

Data offset

Data size

Enconding

Sample rate

Nr. channels

Info (optional)

O valor 0x2e736e64 referente aos 4 caracteres ".snd"

Data

Representação digital de dados (Parte II)

Áudio: arquivos AU

Magic number

Data offset

Data size

Enconding

Sample rate

Nr. channels

Info (optional)

Data

O offset para os dados do início do arquivo até o início dos dados "data". O valor mínimo é 0x00000018 (24 decimal), já que o cabeçalho tem 6 words de 32 bits (6 x 4 bytes), sem bloco de informação.

Representação digital de dados (Parte II)

Áudio: arquivos AU

Magic number

Data offset

Data size

Enconding

Sample rate

Nr. channels

Info (optional)

Data

O tamanho do bloco de dados em bytes. Se for desconhecido o valor deste campo deve ser 0xfffffff.

Representação digital de dados (Parte II)

Áudio: arquivos AU

Magic number

Data offset

Data size

Enconding

Sample rate

Nr. channels

Info (optional)

Data

- * 1 = 8-bit G.711 μ -law
- * 2 = 8-bit linear PCM
- * 3 = 16-bit linear PCM
- * 4 = 24-bit linear PCM
- * 5 = 32-bit linear PCM
- * 6 = 32-bit IEEE floating point
- * 7 = 64-bit IEEE floating point
- * 8 = Fragmented sample data
- * 9 = DSP program
- * 10 = 8-bit fixed point
- * 11 = 16-bit fixed point
- * 12 = 24-bit fixed point
- * 13 = 32-bit fixed point
- * 18 = 16-bit linear with emphasis
- * 19 = 16-bit linear compressed
- * 20 = 16-bit linear with emphasis and compression
- * 21 = Music kit DSP commands
- * 23 = 4-bit ISDN u-law compressed
- * 24 = ITU-T G.722 ADPCM
- * 25 = ITU-T G.723 3-bit ADPCM
- * 26 = ITU-T G.723 5-bit ADPCM
- * 27 = 8-bit G.711 A-law

Representação digital de dados (Parte II)

Áudio: arquivos AU

Magic number

Data offset

Data size

Enconding

Sample rate

Nr. channels

Info (optional)

Data

O número de amostras / seg. (p. ex. 8000, 48000, 96000).

Representação digital de dados (Parte II)

Áudio: arquivos AU

Magic number

Data offset

Data size

Enconding

Sample rate

Nr. channels

Info (optional)

Data

O número de canais de áudio

Representação digital de dados (Parte II)

Áudio: arquivos AU

Magic number

Data offset

Data size

Enconding

Sample rate

Nr. channels

Info (optional)

Data

Outras informações (dados opcionais) Deve ser múltiplo não zero de 8 bytes (32 bits) e deve terminar com pelo menos 1 byte de zeros.

Representação digital de dados (Parte II)

Áudio:

OGG audio CODECs

Lossy:

Speex: baixa resolução (8-32 kbits/s/canal)

Vorbis: média a alta resolução (16 a 500 kbits/s/canal)

Lossless:

FLAC: Audio de alta fidelidade.