- c) refluxing said organic solvent to produce a carbohydrate alkylthiosulfonate.
- 3. The method of Claim 2, wherein said phase transfer catalyst comprises a quaternary ammonium salt.
- 4. The method of Claim 3, wherein said quaternary ammonium salt is tetrabutylammonium iodide.
- 5. The method of Claim 2, wherein said organic solvent comprises a non-polar organic solvent.
- 6. The method of Claim 5, wherein said non-polar organic solvent comprises toluene.
- 7. The method of Claim 2, wherein said alkylthiosulfonate is methanethiosulfonate.
 - 8. The method of Claim 7, wherein said methanethiosulfonate is a salt.
- 9. The method of Claim 2, wherein said carbohydrate comprises a monosaccharide.
- 10. The method of Claim 9, wherein said monosaccharide is selected from the group consisting of galactose, glucose and mannose.
- 11. The method of Claim 2, wherein said carbohydrate alkylthiosulfonate is a β -anomer.
- 12. The method of Claim 2, wherein said carbohydrate alkylthiosulfonate is an α -anomer.
 - 13. A composition of matter having the structure:

14. A composition of matter having the structure:

15. A composition of matter having the structure:

16. A glycodendrimer reagent composition having the structure:

$$H_3CO_2SS-(CH_2)_a$$
 N
 $(CH_2)_b$
 N
 $(CH_2)_c$
 N
 $(CH_2)_c$
 N
 $(CH_2)_d$
 $(CH_2)_d$

wherein a, b, c, and d are individually the same or different and are independently selected from the group consisting of integers from 0 to 10, wherein X = SR or R, and wherein R is a monosaccharide selected from the group consisting of galactose, glucose, mannose and lactose.

- 17. The composition of Claim 16, wherein said monosaccharide is galactose.
- 18. The composition of Claim 16, wherein said monosaccharide is glucose.
- 19. The composition of Claim 16, wherein said monosaccharide is mannose.

20. The composition of Claim 16, wherein X is

21. The composition of Claim 16, wherein X is

- 22. The composition of Claim 20, wherein a = 1, b = 0, c = 1, and d = 1.
- 23. The composition of Claim 21, wherein a = 1, b = 0, c = 1, and d = 1.
- The composition of Claim 16, wherein a = 3, b = 0, c = 1, d = 1, X is R,

and R is

- 27. A method for inhibiting adhesin or lectin activity, comprising the steps of:
- a) providing a modified protease, said modified protease having a thiol side chain comprising a carbohydrate moiety;
- b) contacting said modified protease with a composition having an adhesin or lectin activity; and
- c) incubating said modified protease with said composition such that the adhesin or lectin activity of said composition is inhibited.
- 28. The method of Claim 27, wherein said modified protease is a modified serine protease.
- 29. The method of Claim 28, wherein said modified serine protease is a modified subtilisin.
- 30. The method of Claim 29, wherein said modified subtilisin is a modified *Bacillus lentus* subtilisin.
- 31. The method of Claim 28, wherein said modified subtilisin is a modified *Bacillus amyloliquefaciens* subtilisin.
- 32. The method of Claim 27, wherein said carbohydrate moiety comprises a monosaccharide.
- 33. The method of Claim 32, wherein said monosaccharide is selected from the group consisting of glucose, mannose, and galactose.
- 34. The method of Claim 27, wherein said thiol side chain is selected from the group consisting of -S- β -Glc, -Et- β -Gal, -S-Et- β -Glc, -S-Et- α -Glc, -S-Et- α -Glc, -S-Et- α -Glc(Ac), -S- β -Glc(Ac), -S- β -Glc(Ac), -S- β -Glc(Ac), -S- β -Glc(Ac), -S-Et- α -Glc(Ac), -S-Et- α -Glc(Ac), -S-Et- α -Glc(Ac), -S-Et- α -Glc(Ac), -S-Et- β -Glc(Ac), -S-Et- β -Glc(Ac), -S-Et- β -Glc(Ac), -S-Et- α -Man(Ac), -S-Et- α -Man(Ac), -S-Et- α -Man(Ac), -S-Et- β -Gal(Ac), -S- β -Man(Ac), -S- β -Man(Ac), -S- β -Man(Ac), -S- β -Man(Ac), -S- α -Man(Ac), -S-
- 35 The method of Claim 27, wherein said composition comprises an adhesin or lectin from a bacteria.

- 36. The method of Claim 35, wherein said bacteria are A. naeslundii.
- 37. The method of Claim 30, wherein said modified *Bacillus lentus* subtilisin is S156C-SS-ethyl-2-(ß-D-galactopyranose).
- 38. The method of Claim 37, wherein said composition comprises an adhesin or lectin from a bacteria.
 - 39. The method of Claim 38, wherein said bacteria are A. naeslundii.
- 40. The method of Claim 27, wherein said carbohydrate moiety is a dendrimer moiety.
- 41. The method of Claim 40, wherein said modified protease is a modified serine protease.
- 42. The method of Claim 41, wherein said modified serine protease is a modified subtilisin.
- 43. The method of Claim 42, wherein said modified subtilisin is a modified *Bacillus lentus* subtilisin.
- 44. The method of Claim 41, wherein said modified subtilisin is a modified *Bacillus amyloliquefaciens* subtilisin.
- 45. The method of Claim 40, wherein said dendrimer moiety comprises mesitylene.
- 46. The method of Claim 43, wherein said modified *Bacillus lentus* subtilisin is S156C-mes(SS-\mathbb{G}-Gal)₂.
- 47. The method of Claim 46, wherein said composition comprises an adhesin or lectin from a bacteria.
 - 48. The method of Claim 47, wherein said bacteria are *A. naeslundii*.

LIST OF PENDING CLAIMS

- 1. A chemically modified mutant protein, said mutant protein comprising a cysteine residue substituted for a residue other than cysteine in a precursor protein, the substituted cysteine residue being subsequently modified by reacting said cysteine residue with a glycosylated thiosulfonate.
- 2. A method for producing a carbohydrate alkylthiosulfonate, comprising the steps of:
- a) providing a carbohydrate, an alkylthiosulfonate, and a phase transfer catalyst;
- b) reacting said carbohydrate and said alkylthiosulfonate in an organic solvent in the presence of said phase transfer catalyst; and
- c) refluxing said organic solvent to produce a carbohydrate alkylthiosulfonate.
- 3. The method of Claim 2, wherein said phase transfer catalyst comprises a quaternary ammonium salt.
- 4. The method of Claim 3, wherein said quaternary ammonium salt is tetrabutylammonium iodide.
- 5. The method of Claim 2, wherein said organic solvent comprises a non-polar organic solvent.
- 6. The method of Claim 5, wherein said non-polar organic solvent comprises toluene.
- 7. The method of Claim 2, wherein said alkylthiosulfonate is methanethiosulfonate.
 - 8. The method of Claim 7, wherein said methanethiosulfonate is a salt.
- 9. The method of Claim 2, wherein said carbohydrate comprises a monosaccharide.
- 10. The method of Claim 9, wherein said monosaccharide is selected from the group consisting of galactose, glucose and mannose.
- 11. The method of Claim 2, wherein said carbohydrate alkylthiosulfonate is a β-anomer.

- 12. The method of Claim 2, wherein said carbohydrate alkylthiosulfonate is an α -anomer.
 - 13. A composition of matter having the structure:

14. A composition of matter having the structure:

15. A composition of matter having the structure:

$$H_3CO_2SS-(CH_2)_a$$
 N
 $(CH_2)_b$
 N
 $(CH_2)_c$
 N
 $(CH_2)_d$
 $S-X$
 $(CH_2)_c$
 N
 $(CH_2)_d$
 $(CH_2)_d$
 $(CH_2)_d$
 $(CH_2)_d$
 $(CH_2)_d$
 $(CH_2)_d$

wherein a, b, c, and d are individually the same or different and are independently selected from the group consisting of integers from 0 to 10, wherein X = SR or R, and wherein R is a monosaccharide selected from the group consisting of galactose, glucose, mannose and lactose.

- 17. The composition of Claim 16, wherein said monosaccharide is galactose.
- 18. The composition of Claim 16, wherein said monosaccharide is glucose.
- 19. The composition of Claim 16, wherein said monosaccharide is mannose.
- 20. The composition of Claim 16, wherein X is

21. The composition of Claim 16, wherein X is

- 22. The composition of Claim 20, wherein a = 1, b = 0, c = 1, and d = 1.
- 23. The composition of Claim 21, wherein a = 1, b = 0, c = 1, and d = 1.
- 24. The composition of Claim 16, wherein a = 3, b =0, c = 1, d = 1, X is R, and R is

25. A glycodendrimer reagent composition having the structure:

$$H_3CO_2SS$$
 H_3CO_2SS
 H_0
 $H_$

- 27. A method for inhibiting adhesin or lectin activity, comprising the steps of:
- a) providing a modified protease, said modified protease having a thiol side chain comprising a carbohydrate moiety;
- b) contacting said modified protease with a composition having an adhesin or lectin activity; and
- c) incubating said modified protease with said composition such that the adhesin or lectin activity of said composition is inhibited.
- 28. The method of Claim 27, wherein said modified protease is a modified serine protease.
- 29. The method of Claim 28, wherein said modified serine protease is a modified subtilisin.
- 30. The method of Claim 29, wherein said modified subtilisin is a modified *Bacillus lentus* subtilisin.
- 31. The method of Claim 28, wherein said modified subtilisin is a modified *Bacillus amyloliquefaciens* subtilisin.
- 32. The method of Claim 27, wherein said carbohydrate moiety comprises a monosaccharide.
- 33. The method of Claim 32, wherein said monosaccharide is selected from the group consisting of glucose, mannose, and galactose.

- 34. The method of Claim 27, wherein said thiol side chain is selected from the group consisting of -S- β -Glc, -Et- β -Gal, -S-Et- β -Glc, -S-Et- α -Glc,-S-Et- α -Man, -S-Et-Lac, -S- β -Glc(Ac), -S- β -Glc(Ac)₂, -S- β -Glc(Ac)₃, -S- β -Glc(Ac)₄, -S-Et- α -Glc(Ac), -S-Et- α -Glc(Ac)₂, -S-Et- α -Glc(Ac)₃, -S-Et- α -Glc(Ac)₄, -S-Et- β -Glc(Ac), -S-Et- β -Glc(Ac)₂, -S-Et- β -Glc(Ac)₃, -S-Et- β -Glc(Ac)₄, -S-Et- α -Man(Ac), -S-Et- α -Man(Ac)₂, -S-Et- α -Man(Ac)₃, -S-Et- α -Man(Ac)₄, -S-Et- α -Gal(Ac), -S-Et-Lac(Ac)₅, -S-Et-Lac(Ac)₆, -S-Et-Lac(Ac)₇, -S- β -Gal, -S- β -Gal(Ac), -S- β -Gal(Ac), -S- β -Gal(Ac)₃, -S- β -Gal(Ac)₄, -S- β -Man(Ac), -S- β -Man(Ac), -S- β -Man(Ac), -S- α -Man(Ac)₃, and -S- α -Man(Ac)₄.
- 35 The method of Claim 27, wherein said composition comprises an adhesin or lectin from a bacteria.
 - 36. The method of Claim 35, wherein said bacteria are A. naeslundii.
- 37. The method of Claim 30, wherein said modified *Bacillus lentus* subtilisin is S156C-SS-ethyl-2-(β-D-galactopyranose).
- 38. The method of Claim 37, wherein said composition comprises an adhesin or lectin from a bacteria.
 - 39. The method of Claim 38, wherein said bacteria are A. naeslundii.
- 40. The method of Claim 27, wherein said carbohydrate moiety is a dendrimer moiety.
- 41. The method of Claim 40, wherein said modified protease is a modified serine protease.
- 42. The method of Claim 41, wherein said modified serine protease is a modified subtilisin.
- 43. The method of Claim 42, wherein said modified subtilisin is a modified *Bacillus lentus* subtilisin.
- 44. The method of Claim 41, wherein said modified subtilisin is a modified *Bacillus amyloliquefaciens* subtilisin.
- 45. The method of Claim 40, wherein said dendrimer moiety comprises mesitylene.

- 46. The method of Claim 43, wherein said modified *Bacillus lentus* subtilisin is S156C-mes(SS-β-Gal)₂.
- 47. The method of Claim 46, wherein said composition comprises an adhesin or lectin from a bacteria.
 - 48. The method of Claim 47, wherein said bacteria are A. naeslundii.