ST 501 R Project

Jimmy Hickey, Shaleni Kovach, Meredith Saunders, Stephanie Stewart July 21, 2019

Contents

Part I -	Part I - Convergence in Probability															1	2											
1																											2	2
	a.																										2	2

Part I - Convergence in Probability

1.

Consider the "double exponential" or Laplace Distribution. A RV $Y \sim Laplace(\mu,b)$ has the PDF given by

$$f_Y(y) = \frac{1}{2b}e^{-\left(\frac{|y-\mu|}{b}\right)}$$

for
$$-\infty < y < \infty$$
, $-\infty < \mu < \infty$, and $b > 0$.

We will consider having a random sample of Laplave RVs with $\mu=0$ and b=5. We'll look at the limiting behavior of $L=\frac{1}{n}\sum_{i=1}^n Y_i^2$ using simulation.

a.