The Sylow Theorems

Daniel Rostovtsev Date: 5 November, 2017

Subset-Stabilizer Lemma

Let U be a subset of G, and G act on $S = \{U \subseteq G\}$ by left multiplication. Then |stab(U)| divides both |U| and |G|. (from Algebra by Michael Artin)

Proof. Consider the subset $U \in S$ and its stabilizer under the group action of G * S, stab(U). The orbit of each $g \in U$ under stab(U) is equal to the right coset stab(U)g. Therefore:

$$|U| = \bigcup_{g \in \operatorname{stab}(U)} \operatorname{stab}(U)g = n|\operatorname{stab}(U)| \text{ for some } n \in \mathbb{Z}^+ \implies |\operatorname{stab}(U)| \text{ divides } |U|$$

Since $|G| = |\operatorname{stab}(U)||\operatorname{orb}(U)|$, $|\operatorname{stab}(U)||$ divides the order of G as well.

p^e -Subset Lemma

Let G be a group, and $|G| = n = p^e m$ such that p does not divide m. Let the set, S, be defined as the following: $S = \{U \subseteq G : |U| = p^e\}$. Then |S| is not divisible by p. (from Algebra by Michael Artin)

Proof. Direct calculation of |S| shows that the order of S cannot be divisible by p.

$$|S| = \binom{n}{p^e} = \frac{(n)(n-1)\cdots(n-k)\cdots(n-p^e+1)}{p^e(p^e-1)\cdots(p^e-k)\cdots(1)}$$

For |S| not to be divisible by p, all (n-k) in the numerator divisible by some p^i must have a corresponding term, (p^e-k) , in the denominator for which p^i is also a multiple. This way, all p in the numerator cancel, proving |S| cannot be divisible by p. Take a term (n-k) in the numerator of N divisible by some p^i . Since (n-k) is divisible by p^i , it follows that $(n-k) \mod p^i \equiv 0$. Since $n=p^e m$, it follows that $(p^e m-k) \mod p^i \equiv 0$. Thus, for $p^e m-k$ to be divisible by p^i , k must be divisible by p^i . So k can be written as $k=p^i l$. Thus $(n-k)=(p^e m+p^i l)=p^i(p^{e-i} m-l)$. There is a unique term in the denominator which also has a factor of p^i . For some (p^e-k') , it must follow that $(p^e-k')=(p^e-p^i l')=p^i(p^{e-i}-l')$. This concludes the proof.

The First Sylow Theorem

Every group G (of order $n = p^e m$) has a Sylow p-subgroup (of order p^e). (from Algebra by Michael Artin)

Proof. Let S be all the subsets of G of order p^e . If a Sylow p-subgroup exists, then some element of S will be a subgroup of G. It will be shown that there always exists a stabilizer of some $U \in S$ that has order p^e , and that stabilizer is, in turn, a p-subgroup.

$$\binom{n}{p^e} = |S| = \sum_{\text{orbits } O} |O|$$

By the p^e -subset lemma, p doesn't divide S, so at least one orbit, $O = \operatorname{orb}(U)$, must not have an order divisible by p. By the orbit stabilizer theorem, $|G| = |\operatorname{stab}(U)||\operatorname{orb}(U)|$. Since $|\operatorname{orb}(U)|$ is not divisible by p, $|\operatorname{stab}(U)| = p^e n$ where n divides m. However, $|\operatorname{stab}(U)|$ must divide $|U| = p^e$, so $|\operatorname{stab}(U)| = p^e$, and the existence of a Sylow p-subgroup has been proven.

The Second Sylow Theorem

- (a) Let H and K be Sylow p-groups in G, then H and K are conjugate.
- (b) Let K be a p-subgroup and H be a Sylow p-subgroup, then $K \leq H'$ where H' is a conjugation of H.

Proof. Consider the set G/H where H is a Sylow p-subgroup. Take the group action G*G/H. Under this action, G/H is transitive. Since for any two cosets aH and bH in G/H, the element $ba^{-1} \in G$ takes aH to bH. There is also at least one coset whose stabilizer is equal to H, namely the identity coset eH - since $\operatorname{stab}(eH) = H$. Since the stabilizers in the same orbit are conjugate, and there is only one orbit in G/H, all the possible stabilizers are conjugate. All stabilizers have order p^e , so some Sylow p-subgroups are conjugate to other Sylow p-subgroups, but it hasn't been shown that all Sylow p-subgroups are conjugate to all other Sylow p-subgroups.

Since H is a Sylow p-subgroup, and, by Lagrange's theorem, $(G:H) = |G|/|H| = p^e m/p^e = m$, it follows that the order of H in G must not divide p. Let K be a p-subgroup of G. Define an action of K on G/H. Since K is a p-subgroup of G and the order of H in G does not divide p, there exists an element $gH \in G/H$ such that $\operatorname{stab}(gH) = K$ by the fixed point theorem. It then must follow that K must be a subgroup of a larger stabilizer of gH in G * G/H - that $K \leq H'$ where H' is some conjugate of H. Thus, since all p-subgroups are contained in conjugates of H, all Sylow p-subgroups are conjugates of eachother.

The Third Sylow Theorem

Let s be the number of Sylow p-subgroups in G. Then s divides m, and $s \equiv 1 \mod p$.

Proof. Applying the normalizer and the orbit-stabilizer theorem will prove that s divides m and that $s \equiv 1 \mod p$.

First, to show that s divides m, consider the group action with conjugation, G * S where S is the set of Sylow p-subgroups of G. By second Sylow theorem, G * S must be transitive, since all Sylow p-subgroups are conjugate. Also, the stabilizer of a Sylow P subgroup is $\{g \in G : gHg^{-1} = H\}$, which, by definition, is also the normalizer of H. By the orbit stabilizer theorem:

$$|S| = |\operatorname{orb}(H)||\operatorname{stab}(H)| \equiv$$

 $m = s|N(H)|$
 $\therefore s|m$

Next, to show that $s \equiv 1 \mod p$, consider the group action with conjugation of H * S, where H is a Sylow p-subgroup. The orbit of H is equal to H, since H is closed under multiplication. Thus $|\operatorname{orb}(H)| = 1$. To show that H is the only Sylow p-subgroup with an orbit of order of 1 in H * S, take the arbitrary Sylow p-subgroup H'. H' has an orbit of order 1 if and only if $\operatorname{stab}(H') = H$, which, by definition, only happens if and only if $H \leq N(H')$. Since $H \leq N(H') \leq G$ and $H' \leq N(H') \leq G$, and $|H| = |H'| = p^e$, both H and H' are Sylow p-subgroups of N(H'). But all H' are normal in N(H'), so H must equal H', and thus H is the only Sylow p-subgroup with an orbit of order 1 in H * S. Since the orbits under H * S partition S, $|S| = s = |\operatorname{orb}(H)| + \sum |\operatorname{orb}(H_i)| = 1 + \sum (\text{multiples of } p)$, because H is the only element to have an orbit of 1. So $s \mod p = 1$.