since $\underline{\mathcal{F}}\underline{\mathbf{f}}[n] = 0$ if $n \in I'$. This will be 0 for all $\underline{\mathbf{f}} \in \mathbb{B}^I$ if and only if $\underline{\mathcal{F}}\underline{\mathbf{g}}[n] = 0$ for all $n \in I$. This says that g must be in $\mathbb{B}^{I'}$. Sybolically,

$$(\mathbb{B}^I)^{\perp} = \mathbb{B}^{I'}$$
.

For the second question, to show that $K\underline{f} = \underline{h} * \underline{f}$ defines the orthogonal projection onto \mathbb{B}^I we have to do several things. First, if \underline{f} is any signal we have to show that $\underline{h} * \underline{f} \in \mathbb{B}^I$. For this, for any m the convolution theorem and the definition of \underline{h} gives

$$\begin{split} \underline{\mathcal{F}}(\underline{\mathbf{h}} * \underline{\mathbf{f}})[m] &= (\underline{\mathcal{F}} \, \underline{\mathbf{h}}[m]) (\underline{\mathcal{F}} \, \underline{\mathbf{f}}[m]) \\ &= \begin{cases} \underline{\mathcal{F}} \, \underline{\mathbf{f}}[m], & m \in I \\ 0, & m \in I' \end{cases} \end{split}$$

Thus $\underline{\mathbf{f}} * \underline{\mathbf{h}}$ is supported on I, i.e., $\underline{\mathbf{h}} * \underline{\mathbf{f}} \in \mathbb{B}^I$.

Second, if $\underline{\mathbf{f}}$ is already in \mathbb{B}^I we should have $\underline{\mathbf{h}} * \underline{\mathbf{f}} = \underline{\mathbf{f}}$. But if $\underline{\mathbf{f}} \in \mathbb{B}^I$ then already $\underline{\mathcal{F}}\underline{\mathbf{f}}[m] = 0$ for $m \in I$ and so by the definition of $\underline{\mathbf{h}}$,

$$(\underline{\mathcal{F}}\underline{h})(\underline{\mathcal{F}}\underline{f}) = \underline{f}.$$

Taking the inverse DFT gives

$$\underline{\mathbf{h}} * \underline{\mathbf{f}} = \underline{\mathbf{f}}.$$

As an aside, another way to do this part of the problem is to observe that

$$(\underline{\mathcal{F}}\underline{\mathbf{h}})(\underline{\mathcal{F}}\underline{\mathbf{h}}) = \underline{\mathcal{F}}\underline{\mathbf{h}},$$

hence

$$\underline{\mathbf{h}} * \underline{\mathbf{h}} = \underline{\mathbf{h}}.$$

Thus for any signal \underline{f} ,

$$K^{2}\underline{\mathbf{f}} = K(K(\underline{\mathbf{f}})) = \underline{\mathbf{h}} * (\underline{\mathbf{h}} * \underline{\mathbf{f}}) = (\underline{\mathbf{h}} * \underline{\mathbf{h}}) * \underline{\mathbf{f}} = \underline{\mathbf{h}} * \underline{\mathbf{f}} = K\underline{\mathbf{f}},$$

that is

$$K^2 = K$$

which is the definition of a projection.

Why is this an orthogonal projection? If \underline{f} is in $\mathcal{B}^{I'}$, the orthogonal complement of \mathbb{B}^I , then $\underline{\mathcal{F}}\underline{f}[m] = 0$ for $m \in I$, hence, by definition of \underline{h} ,

$$(\underline{\mathcal{F}}\underline{\mathbf{h}})(\underline{\mathcal{F}}\underline{\mathbf{f}}) = 0,$$

whence

$$K\underline{\mathbf{f}} = \underline{\mathbf{h}} * \underline{\mathbf{f}} = 0.$$