LAB # 12

Fall 2020

CSE304L Computer Organization & Architecture Lab

Submitted by: **ASHLEY ALEX JACOB**

Registration No: 18PWCSE1649

Class Section: A

"On my honor, as student of University of Engineering and Technology, I have neither given nor received unauthorized assistance on this academic work."

~	. 1 .	α.	
v	fuident	Signature:	

Submitted to:

Engr. Amaad Khalil

March 18, 2021 (Thursday)

Department of Computer Systems Engineering
University of Engineering and Technology, Peshawar

Lab Tasks:

Task:

Write a Verilog code for Half Adder using Gate Level modeling.

Code:

begin

```
module halfAdder( output s,c,input a,b);
and(c,a,b);
xor(s,a,b);
endmodule
module stimHaldAdd();
wire S,C;
reg A,B;
halfAdder ha(S,C,A,B);
initial
```

```
$display("A B S C");
A=0;
B=0;
#1 $display("%b %b
                    %b %b",A,B,S,C);
A=0;
B=1;
                    %b %b",A,B,S,C);
#1 $display("%b %b
A=1;
B=0;
#1 $display("%b %b %b",A,B,S,C);
A=1;
B=1;
#1 $display("%b %b
                    %b %b",A,B,S,C);
```

end

endmodule


```
vsim ash.stimHaldAdd
# vsim ash.stimHaldAdd
# Loading ash.stimHaldAdd
# Loading ash.halfAdder
#A
    В
          S
              C
              0
# 0
# 0
         1
              0
# 1
    0
              0
#1 1
         0
destroy .wave
```


Task:

Write a Verilog code for Full Adder using Gate Level modeling.

Code:

```
module fullAdder( output s,cOut,input a,b,cIn);
xor(n1,a,b),(s,cIn,n1);
and(n2,n1,cIn),(n3,a,b);
or(cOut,n2,n3);
```

```
endmodule
```

```
module stimFullAdd();
wire S,Cout;
reg A,B,Cin;
fullAdder fa(S,Cout,A,B,Cin);
initial
begin
$display("Cin A B S Cout");
Cin=0;
A=0;
B=0;
#1 $display("%b
                                      %b",Cin,A,B,S,Cout);
                 %b
                        %b
                               %b
Cin=0;
```

```
A=0;
B=1;
#1 $display("%b
                    %b
                                    %b
                                            %b",Cin,A,B,S,Cout);
                            %b
Cin=0;
A=1;
B=0;
#1 $display("%b
                    %b
                            %b
                                    %b
                                            %b",Cin,A,B,S,Cout);
Cin=0;
A=1;
B=1;
#1 $display("%b
                                            %b",Cin,A,B,S,Cout);
                    %b
                            %b
                                    %b
Cin=1;
A=0;
B=0;
#1 $display("%b
                                            %b",Cin,A,B,S,Cout);
                    %b
                            %b
                                    %b
Cin=1;
A=0;
B=1;
```

```
#1 $display("%b
                    %b
                             %b
                                     %b
                                             %b",Cin,A,B,S,Cout);
Cin=1;
A=1;
B=0;
#1 $display("%b
                    %b
                            %b
                                     %b
                                             %b",Cin,A,B,S,Cout);
Cin=1;
A=1;
B=1;
#1 $display("%b
                    %b
                             %b
                                     %b
                                             %b",Cin,A,B,S,Cout);
```

end

endmodule

```
vsim ash.stimFullAdd
# vsim ash.stimFullAdd
# Loading ash.stimFullAdd
# Loading ash.fullAdder
run
#Cin A
#0 0
#0 0
#0 1
#0 1
#1 0
#1 0
#1 1
                B
0
                             Cout
                       0
                              0
                              0
                       1
                0
                              0
                              1
                1
                       0
               0
                      1
                             0
                             1
                1
                0
                      0
                             1
                1
                             1
                       1
VSIM 7>
```


Task:

Write a Verilog code for Half Subtractor using Gate Level modeling.

Code:

```
module halfSubractor(output d,bo,input a,b);
xor(d,a,b);
not(a_,a);
and(bo,a_);
```

```
endmodule
```

```
module stimHSub();
wire D,Bo;
reg A,B;
halfSubractor hs(D,Bo,A,B);
initial
begin
$display("A B D B");
A=0;
B=0;
#1 $display("%b %b %b",A,B,D,Bo);
```

```
A=0;
B=1;
#1 $display("%b %b %b",A,B,D,Bo);
A=1;
B=0;
#1 $display("%b %b %b",A,B,D,Bo);
A=1;
B=1;
#1 $display("%b %b
                     %b %b",A,B,D,Bo);
end
```


endmodule

/SIM 33>

