Exercício 7. Diga quais das proposições compostas abaixo são tautologias, quais são contradições e quais são contingências, e prove sua resposta mostrando a tabela verdade completa de cada proposição. (4º P - deve ser entregue, por e-mail, com um arquivo "escaneado" da solução manuscrita de cada um dos itens abaixo).

i.
$$\neg(p \lor \neg p) \lor (q \lor \neg q)$$

$$\begin{array}{c|cccc}
p & q & \neg (p \lor \neg p) \lor q \lor \neg q \\
T & T & T \\
T & F & T \\
F & F & T
\end{array}$$

Portanto, como demonstra a tabela verdade, a proposição é uma tautologia.

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

iii.	(p –	→ q	\rightarrow	$(p \land r \to q)$
		р	q	r	$(p \rightarrow q) \rightarrow (p \land r \rightarrow q)$
		Т	Т	Т	Т
		Т	Т	F	Т
		Т	F	Т	т
		Т	F	F	Т
		F	Т	Т	Т
		F	Т	F	Т
		F	F	Т	Т
		F	F	F	Т

Portanto, como demonstra a tabela verdade, a proposição é uma tautologia.

iv.
$$\neg ((p \rightarrow q) \rightarrow (q \land r \rightarrow q \land r))$$

iv.	¬((p -	→ q	$(q \land r \to q \land r))$
	р	q	r	$\neg((p \to q) \to (q \land r \to q \land r))$
	Т	Т	Т	F
	Т	Т	F	F
	Т	F	Т	F
	Т	F	F	F
	F	Т	Т	F
	F	Т	F	F
	F	F	Т	F
	F	F	F	F

Portanto, como demonstra a tabela verdade, a proposição é uma contradição.

 $v. (p \leftrightarrow q) \land p \rightarrow q$

р	q	$(p \leftrightarrow q) \land p \rightarrow q$
T	T	T
T	F	T
F	T	T

Portanto, como demonstra a tabela verdade, a proposição é uma tautologia.

vi.
$$\neg((p \leftrightarrow p \land \neg p) \leftrightarrow \neg p)$$

р	$\neg((p \leftrightarrow p \land \neg p) \leftrightarrow \neg p)$
Т	F
F	F

Portanto, como demonstra a tabela verdade, a proposição é uma contradição.

vii. $p \leftrightarrow p$

p p↔p	1	,	Р
		р	р↔р
T T		T F	T

Portanto, como demonstra a tabela verdade, a proposição é uma tautologia.

viii. $\neg p \leftrightarrow p$

ıb ,	/ P
р	¬р↔р
Т	F
l F	F

Portanto, como demonstra a tabela verdade, a proposição é uma contradição.

ix

١.	¬(b ∧ ¬b)							
	р	¬(p V ¬p)						
	Т	F						
	F	F						

Portanto, como demonstra a tabela verdade, a proposição é uma contradição.

 $x. p \rightarrow (q \rightarrow r)$

р	q	r	$p \rightarrow (q \rightarrow r)$
Т	Т	Т	Т
T	Т	F	F
T	F	Т	Т
T	F	F	Т
F	Т	Т	Т
F	Т	F	Т
F	F	Т	Т
F	F	F	Т

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

xi.
$$p \rightarrow (q \rightarrow p)$$

$$\begin{array}{c|cccc} p & q & p \rightarrow (q \rightarrow p) \\ \hline p & q & p \rightarrow (q \rightarrow p) \\ \hline T & T & T \\ T & F & T \\ F & T & T \\ F & F & T \end{array}$$

Portanto, como demonstra a tabela verdade, a proposição é uma tautologia.

xii.
$$(p \rightarrow q) \rightarrow p$$
 $p \quad q \quad (p \rightarrow q) \rightarrow p$
 $T \quad T \quad T$
 $T \quad F \quad T$
 $F \quad T \quad F$
 $F \quad F \quad F$

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

xiv.
$$(p \rightarrow r) \rightarrow q \land s \rightarrow \neg q \land p \rightarrow r$$

р	r	q	s	$(p \rightarrow r) \rightarrow q \wedge s \rightarrow \neg q \wedge p \rightarrow r$
Т	Т	Т	Т	Т
Т	Т	Т	F	Т
Т	Т	F	Т	Т
Т	Т	F	F	Т
Т	F	Т	Т	Т
Т	F	Т	F	Т
Т	F	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	Т	F	Т
F	Т	F	Т	Т
F	Т	F	F	Т
F	F	Т	Т	Т
F	F	Т	F	F
F	F	F	Т	F
F	F	F	F	F

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

xvii.
$$\neg(\neg((p \rightarrow r) \rightarrow q \land s \rightarrow \neg q \land p \rightarrow r))$$

р	r	q	s	$\neg(\neg((p \rightarrow r) \rightarrow q \land s \rightarrow \neg q \land p \rightarrow r))$
Т	Т	Т	Т	Т
Т	Т	Т	F	Т
Ι Τ	Т	F	Т	Т
Τ .	Т	F	F	Т
Τ .	F	Т	Т	Т
Ι Τ	F	Т	F	Т
Τ .	F	F	Т	F
Т	F	F	F	F
F	Т	Т	Т	Т
F	Т	Т	F	Т
F	Т	F	Т	Т
F	Т	F	F	Т
F	F	Т	Т	Т
F	F	Т	F	F
F	F	F	Т	F
F	F	F	F	F

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

Portanto, como demonstra a tabela verdade, a proposição é uma contingência.

xix.	¬(1	$ ho \rightarrow$	(q -	$\rightarrow r)) \land (p \rightarrow (q \rightarrow r))$
	р	q	r	$\neg (p \to (q \to r)) \land (p \to (q \to r))$
	Т	Т	Т	F
	Т	Т	F	F
	Т	F	Т	F
	Т	F	F	F
	F	Т	Т	F
	F	Т	F	F
	F	F	Т	F
	F	F	F	F

Portanto, como demonstra a tabela verdade, a proposição é uma contradição.

$$xx. \neg (p \rightarrow (q \rightarrow r)) \lor (p \rightarrow (q \rightarrow r))$$

р	q	r	$\neg (p \rightarrow (q \rightarrow r)) \ V \ (p \rightarrow (q \rightarrow r))$
Т	Т	Т	Т
T	Т	F	Т
T	F	Т	Т
T	F	F	Т
F	Т	Т	Т
F	Т	F	Т
F	F	Т	Т
F	F	F	Т

Portanto, como demonstra a tabela verdade, a proposição é uma tautologia.

Na aula de hoje iremos realizar uma atividade pedagógica de pesquisa. O objetivo é despertar no aluno o senso crítico e a capacidade de buscar informações, compreender sobre o tema básico a ser abordado, e construir uma visão crítica sobre a teoria estudada. Para isso, será necessário que os alunos busquem informações em livros ou em documentos disponíveis na Web para se apropriarem do conhecimento básico sobre implicação lógica e equivalência lógica, e na sequência expressem a visão pessoal sobre o tema respondendo às questões propostas. Assim, a atividade se divide em três etapas básicas: i) **pesquisa e leitura** sobre os temas propostos; ii) **produção de texto** e, finalmente iii) **resposta às questões**.

- i) Descrição da etapa de **pesquisa e leitura**: a etapa de **pesquisa e leitura** deve ser realizada individualmente, e o aluno deverá buscar (em livros ou na internet) material sobre **lógica proposicional** e realizar uma leitura crítica para entender o que é **implicação lógica** e o que é **equivalência lógica** (ambos os conceitos devem ser considerados apenas dentro da lógica proposicional).
- ii) Descrição da etapa de **produção de texto**: nesta etapa o aluno deverá produzir um resumo de uma página descrevendo o que ele entendeu sobre a **implicação lógica** (na lógica proposicional) e um resumo, também de uma página, descrevendo o que ele entendeu sobre a **equivalência lógica** (na lógica proposicional). Os textos devem manuscritos (de próprio punho).
- iii) Descrição da etapa de **resposta às questões**: nesta etapa o aluno deverá utilizar o conhecimento adquirido nas etapas anteriores e responder às questões abaixo. As questões devem ser respondidas em papel e de forma manuscrita (de próprio punho). É importante que as respostas representem a visão crítica e pessoal do aluno.
- Questão 1) Descreva quais são, na sua opinião, as duas maiores diferenças entre **implicação lógica** e **equivalência lógica**.
- Questão 2) Descreva quais são, na sua opinião, as duas maiores semelhanças entre **implicação lógica** e **equivalência lógica**.
- Questão 3) Descreva quais são, na sua opinião, as situações onde a **implicação lógica** e a **equivalência lógica** podem úteis. Dê exemplos.
- Questão 4) Mostre, através da tabela verdade, se as propriedades reflexiva e transitiva são válidas para a **implicação lógica** e a **equivalência lógica**.

Esta atividade deve ser entregue no início da próxima aula, mas apenas poderão entregar a atividade os alunos que tiverem presença na aula de hoje!

1.5 - Implicação e Equivalência

A implicação lógica e a equivalência lógica são muito importantes no estudo da lógica proposicional. Tanto a implicação quanto a equivalência podem ser muito úteis no estudo do cálculo proposicional e na álgebra das proposições. Nesta seção 1.5 veremos o que são as implicações (ou consequências) e as equivalências e como ambas podem ser úteis na sequência dos nosso estudos sobre a lógica das proposições.

1.5.1 Implicação Lógica

Uma proposição P(p, q, ...) implica em Q(r, s, ...) se Q é verdadeira sempre que P também é verdadeira.

Assim, pode-se dizer que toda proposição implica em uma tautologia, e uma contradição implica logicamente uma outra contradição.

A notação é dada por:

$$P \Rightarrow Q$$

Para a implicação são válidas as seguintes propriedades:

- Reflexiva (R): $P \Rightarrow P$

- Transitiva(T): Se $P \Rightarrow Q$ e $Q \Rightarrow R$, Então $P \Rightarrow R$.

Exemplos:

- 1) Monte as tabelas verdade das seguintes proposições:
 - a) $p \wedge q$
 - b) $p \vee q$
 - c) $p \leftrightarrow q$

Responda Verdadeiro (V) ou Falso(F):

$$i) (p \land q) \Rightarrow (p \lor q) (V)$$

ii)
$$(p \land q) \Rightarrow (p \leftrightarrow q) (V)$$

iii)
$$p \Rightarrow (p \lor q) (V)$$

iv)
$$(p \leftrightarrow q) \Rightarrow p (F)$$

$$v) (p \leftrightarrow q) \Rightarrow (p \land q) (F)$$

vi)
$$p \Rightarrow p \lor q$$
 (V) (Regra da adição)

vii)
$$p \Rightarrow p \land q (F)$$

viii)
$$q \Rightarrow p \lor q$$
 (V) (Regra da adição)

ix)
$$(p \lor q) \Rightarrow p (F)$$

- x) $(p \land q) \Rightarrow p$ (V) (Regra da simplificação)
- xi) $(p \land q) \Rightarrow q$ (V) (Regra da simplificação)
- 2) Responda Verdadeiro (V) ou Falso(F) e prove sua resposta.
- a) $(p \lor q) \land \neg p \Rightarrow q$ (V) (Silogismo disjuntivo)
- b) $(p \lor q) \land \neg p \Rightarrow p (F)$
- c) $(p \lor q) \land \neg q \Rightarrow p$ (V) (Silogismo disjuntivo)
- d) $(p \rightarrow q) \land p \Rightarrow q$ (V) (Modus Ponens)
- e) $(p \rightarrow q) \land \neg q \Rightarrow \neg p$ (V) (Modus Tollens)
- $f) \neg p \Rightarrow (p \rightarrow q) (V)$

Teorema: $P \Rightarrow Q$ sse a condicional $P \rightarrow Q$ é uma tautologia.

Exemplo:

$$((p \leftrightarrow q) ^p) \rightarrow p)$$
 é tautologia, então $((p \leftrightarrow q) ^p) \Rightarrow p)$ é válida

Pergunta: Existe alguma condicional que não é tautológica e assim não indica uma implicação? Prove sua resposta.

1.5.2 Equivalência Lógica

Uma proposição P(p, q, ...) é logicamente equivalente a uma outra Q (r, s, ...) se as tabelas verdade de P e Q são idênticas.

A notação é dada por:

$$P \Leftrightarrow Q$$

Assim, todas as tautologias são equivalentes e todas as contradições também o são.

Para equivalências lógicas valem as seguintes propriedades:

- a) Reflexiva (R): $P \Leftrightarrow P$
- b) Simétrica (S):: Se $P \Leftrightarrow Q$ então $Q \Leftrightarrow P$
- c) Transitiva(T): Se $P \Leftrightarrow Q$ e $Q \Leftrightarrow R$, então $P \Leftrightarrow R$.

Exemplos:

- 1) Monte as tabelas verdade das seguintes proposições:
 - a) ¬¬p
 - b) $\neg p \rightarrow p$
 - c) $p \rightarrow q$
 - d) $p \rightarrow p \wedge q$
 - e) $\neg p \lor q$

Com base nas tabelas, responda Verdadeiro (V) ou Falso (F):

$$i) \neg \neg p \Leftrightarrow \neg p \rightarrow p \ (V)$$

ii)
$$\neg p \rightarrow p \Leftrightarrow p \land q (F)$$

- iii) $\neg\neg p \Leftrightarrow p$ (V) (regra da dupla negação)
- iv) p \rightarrow p $^{\wedge}$ q \Leftrightarrow p \rightarrow q (V) (Regra da absorção)
- $v) p \wedge q \Leftrightarrow \neg p \vee q$
- 2) Responda Verdadeiro (V) ou Falso(F) e prove sua resposta
 - a) $p \rightarrow q \Leftrightarrow \neg p \lor q (V)$
 - b) $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \land (q \rightarrow p) (V)$
 - c) $p \leftrightarrow q \Leftrightarrow (p \rightarrow q) \lor (q \rightarrow p)$ (F)
 - d) $p \leftrightarrow q \Leftrightarrow (p \land q) \lor (\neg p \land \neg q)$

Teorema: $P \Leftrightarrow Q$ sse a bicondicional $P \leftrightarrow Q$ é uma tautologia.

Exemplo: p $^{\wedge}$ q \rightarrow r \Leftrightarrow p \rightarrow (q \rightarrow r) (Regra da Exportação-Importação)

Exercício: Encontre um exemplo onde a bicondicional não é tautológica.

1.6 - Proposições associadas a uma Condicional

Dada:

 $p \rightarrow q$ (direta)

- 1- Recíproca: $q \rightarrow p$
- 2- Contrária $\neg p \rightarrow \neg q$
- 3- Contrapositiva: $\neg q \rightarrow \neg p$

Verifique (através da tabela verdade) as equivalências das proposições associadas.

Exercício 8. Determine:

- a) a contrária da contrapositiva de p →
 q;
- b) a contrária da contrapositiva de ¬p
 → q;
- c) a recíproca da contrapositiva da contrapositiva de: $p \rightarrow \neg q$, $\neg p \rightarrow \neg q$ e $p \rightarrow q$;

d) a contrapositiva da contrária da contrapositiva de $p \rightarrow q$, $\neg p \rightarrow q$, $p \rightarrow \neg q$;

Exercício 9. Sejam p: Bia é bióloga.

q: Bia ainda é estudante.

Mostre em linguagem corrente:

- a) a recíproca da contrária de p
 →¬q;
- b) a contrapositiva da recíproca de $q \rightarrow p$;
- c) a contrária da contrapositiva de p
 → q.

1.7 - Negação de 2 proposições - conectivos de Scheffer

1.7.1 Negação conjunta de 2 proposições

É a aplicação da negação nas 2 proposições de uma conjunção (¬p ^ ¬q). É dada por:

$$p \downarrow q \Leftrightarrow \neg p \land \neg q$$

Verificar como é a tabela verdade

1.7.2 Negação Disjunta de 2 proposições
É a aplicação da negação nas 2 proposições de uma disjunção (¬p ∨ ¬q). É dada por:

$$p \uparrow q \Leftrightarrow \neg p \vee \neg q$$

Verificar como é a tabela verdade:

Obs.: os símbolos ↑ e ↓ são chamados conectivos de Scheffer.