INE5403 - Fundamentos de Matemática Discreta para a Computação

- 4) Relações
 - 4.1) Relações e Dígrafos
 - 4.2) Caminhos em Relações e Dígrafos
 - 4.3) Propriedades de Relações
 - 4.4) Relações de Equivalência
 - 4.5) Manipulação e Fecho de Relações

Propriedades de relações

• Em muitas aplicações da computação aparecem relações sobre um conjunto A em vez de relações de A em B.

<u>Definição</u>: (Reflexividade)

- Uma relação R sobre um conjunto A é dita <u>reflexiva</u> se (a,a)∈R para todo a∈A, ou seja, se aRa para todo a∈A.
- Uma relação R sobre A é dita <u>irreflexiva</u> se (a,a)∉ R para todo a∈ A.
- Ou seja: R é reflexiva se todo elemento a∈ A está relacionado consigo mesmo e é irreflexiva se nenhum elemento está relacionado consigo mesmo.

Propriedades de relações (reflexividade)

Exemplos:

- a) $\Delta = \{ (a,a) \mid a \in A \}$: a relação de igualdade no conjunto A. Por definição, $(a,a) \in \Delta$, $\forall a \in A$.
- b) $R = \{ (a,b) \in A \times A \mid a \neq b \}$ Irreflexiva pois $(a,a) \notin R$, $\forall a \in A$.
- c) Seja A = $\{1,2,3\}$ e R= $\{(1,1),(1,2)\}$. Então: R não é reflexiva pois $(2,2)\notin R$ R não é irreflexiva pois $(1,1)\in R$

Propriedades de relações (reflexividade)

Exemplo: Quais das relações a seguir são reflexivas?

```
R_1 = \{ (a,b) \mid a \le b \}

R_2 = \{ (a,b) \mid a > b \}

R_3 = \{ (a,b) \mid a = b \text{ ou } a = -b \}

R_4 = \{ (a,b) \mid a = b \}

R_5 = \{ (a,b) \mid a = b+1 \}

R_6 = \{ (a,b) \mid a+b \le 3 \}
```

Resposta:

- R₁: pois a ≤ a para todo inteiro a
- R₃ e R₄
- Para cada um dos outros casos, pode-se encontrar um par da forma (a,a) que não está na relação.

Propriedades de relações (reflexividade)

Caracterização de reflexividade e irreflexividade em termos de matrizes e dígrafos:

1. Matrizes:

- relação R reflexiva \Rightarrow a matriz M_R possui todos os elementos da diagonal principal iguais a 1
- relação R irreflexiva \Rightarrow a matriz M_R possui todos os elementos da diagonal principal iguais a 0

2. Dígrafos:

- relação R reflexiva ⇒ para todos os vértices do dígrafo existem arestas que ligam o vértice a ele mesmo.
- relação R irreflexiva ⇒ para todos os vértices do dígrafo não existem arestas que ligam o vértice a ele mesmo.
- Observe também que se R sobre A é reflexiva, então:
 Dom(R) = Ran(R) = A

Propriedades de relações - simetria

- **Definição** (Simetria): Uma relação R sobre um conjunto A é dita simétrica se sempre que (a,b)∈ R, então também (b,a)∈ R.
 - segue que R sobre A é uma relação <u>não-simétrica</u> se para algum a,b∈ A for verificado que (a,b)∈ R e (b,a)∉ R.
- **Definição** (Assimetria): Uma relação R sobre um conjunto A é dita assimétrica se sempre que (a,b)∈ R, então (b,a)∉ R.
 - uma relação R sobre A é <u>não-assimétrica</u> se para *algum* a,b∈ A for verificado que (a,b)∈ R e (b,a)∈ R.
- **Definição** (Antissimetria): Uma relação R sobre um conjunto A é dita antissimétrica se sempre que (a,b)∈R e (b,a)∈R, então a=b.
 - equivalentemente, se a ≠ b, então (a,b)∉R ou (b,a)∉R
 - uma relação R sobre A é <u>não-antissimétrica</u> se existir a,b∈A com a≠b e tanto (a,b)∈R como (b,a)∈R.

Propriedades de relações

- <u>Lembrete</u>: escrever (a,b) ∈ R é equivalente a escrever aRb, que significa dizer que a está relacionado com b por R.
- Observação: para verificar se estas propriedades são válidas ou não para uma certa relação R, deve-se notar que:
 - 1. Uma propriedade <u>não é válida</u> em geral se puder ser encontrada uma situação onde ela não pode ser verificada.
 - 2. Se não houver situação em que a propriedade *falha*, devese concluir que á propriedade é sempre válida.

Exemplo 1: Seja A=Z (o conjunto dos inteiros) e seja R a relação R={(a,b)∈A×A | a ≥b}. Determine se R é simétrica, assimétrica ou antissimétrica.

Solução:

- simetria: se a≥b, então não é sempre verdade que b≥a (exemplo: 2 ≥ 1 mas 1 < 2) ⇒ R é não-simétrica.
- <u>assimetria</u>: R é não-assimétrica pois se a=2 e b=2 temos aRb e bRa.
- antissimetria: R é antissimétrica pois a≥b e b≥a ⇒ a=b.

Exemplo 2: Seja $A=\{1,2,3,4\}$ e seja a relação: $R=\{(1,2),(2,2),(3,4),(4,1)\}$ Determine se R é simétrica, assimétrica ou antissimétrica.

Solução:

- <u>simetria</u>: R é não-simétrica, pois, por exemplo, 1R2 e 2R1
- <u>assimetria</u>: R é não-assimétrica pois (2,2) ∈ R
- antissimetria: R é antissimétrica pois se a≠b, então ou (a,b)∉R ou (b,a)∉R.

Exemplo 3: Seja $A = Z^+$ (inteiros positivos) e seja $R = \{ (a,b) \in A \times A \mid a \mid b \}$ (a divide b). Determine se R é simétrica, assimétrica ou antissimétrica.

Solução:

- simetria: a|b não implica que b|a, então R é não-simétrica.
- <u>assimetria</u>: se a=b=5, por exemplo, então aRb e bRa. Assim, R é não-assimétrica.
- antissimetria: se a|b e b|a, então a=b, de modo que R é antissimétrica.

Exemplo 4: Quais das relações a seguir são simétricas e quais são antissimétricas?

$$R_1 = \{ (a,b) \mid a \le b \}$$

 $R_2 = \{ (a,b) \mid a > b \}$
 $R_3 = \{ (a,b) \mid a = b \text{ ou } a = -b \}$
 $R_4 = \{ (a,b) \mid a = b \}$
 $R_5 = \{ (a,b) \mid a = b+1 \}$
 $R_6 = \{ (a,b) \mid a+b \le 3 \}$

- R₃ é simétrica: se a=b ou a=-b, então b=a ou b=-a.
- R₄ é simétrica: a=b ⇒ b=a.
- R_6 é simétrica: $a+b \le 3 \Rightarrow b+a \le 3$.
- R_1 é antissimétrica: $a \le b$ e $b \le a \implies b=a$.
- R₂ é antissimétrica: é impossível a>b e b>a.
- R₄ é antissimétrica pela definição.
- R₅ é antissimétrica: é impossível acontecer a=b+1 e b=a+1.

Caracterização de simetria, assimetria e antissimetria através da matriz de relação

<u>Simetria</u>: A matriz M_R=[m_{ij}] de uma relação simétrica satisfaz à propriedade:

$$\begin{array}{l} m_{ij} = 1 \Rightarrow m_{ji} = 1 \\ m_{ii} = 0 \Rightarrow m_{ii} = 0 \end{array}$$

Portanto, neste caso tem-se que $m_{ij}=m_{ji}$, o que significa que R é simétrica se e somente se $M_R=(M_R)^t$.

• **Assimetria**: A matriz M_R=[m_{ii}] de uma relação assimétrica satisfaz:

$$m_{ii}$$
=1 \Rightarrow m_{ii} =0

Logo, se R é assimétrica, segue que m_{ii}=0 para todo i.

 Antissimetria: A matriz M_R=[m_{ij}] de uma relação antissimétrica satisfaz:

Propriedades de relações com matrizes

Exemplo1:

$$\mathbf{M}_{R1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R1} = \begin{bmatrix} 1 & 0 & 1 \\ 0 & 0 & 1 \\ 1 & 1 & 1 \end{bmatrix} \qquad \mathbf{M}_{R2} = \begin{bmatrix} 0 & 1 & 1 & 0 \\ 1 & 1 & 0 & 0 \\ 1 & 0 & 1 & 1 \\ 0 & 0 & 1 & 1 \end{bmatrix} \qquad \mathbf{M}_{R3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R3} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 1 & 0 \\ 0 & 0 & 0 \end{bmatrix}$$

$$\mathbf{M}_{R4} = \begin{bmatrix} 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix} \qquad \mathbf{M}_{R5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix} \qquad \mathbf{M}_{R6} = \begin{bmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R5} = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

$$\mathbf{M}_{R6} = \begin{vmatrix} 0 & 1 & 0 & 1 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \end{vmatrix}$$

Propriedades de relações com matrizes

• Exemplo1 (cont.):

- R1 e R2 são simétricas, pois M_{R1} e M_{R2} são matrizes simétricas.
- R3 é antissimétrica, pois não existe nenhuma simetria fora da diagonal.
- R3 não é assimétrica, pois contém 1's na diagonal principal.
- R4 não é simétrica, nem assimétrica e nem antissimétrica pois:
 - 1. M_{R4} não é simétrica;
 - 2. A presença do nro. 1 no elemento m_{41} viola tanto a propriedade de assimetria quanto a de antissimetria.
- R5 é antissimétrica mas não assimétrica.
- R6 é antissimétrica e não assimétrica.

Propriedades de relações - transitividade

 <u>Definição</u>: Uma relação R sobre um conjunto A é dita transitiva se, sempre que a R b e b R c, então a R c.

- Por outro lado, R sobre A é uma relação *não-transitiva* se existir a, b e c em A tais que a R b e b R c, mas a R c.
 - \rightarrow se tais a, b e c não existirem, então R é *transitiva*.

Propriedades de relações - transitividade

Exemplo1: Seja A=Z+ e R={ (a,b) ∈ A×A | a|b } ("a divide b").
 A relação R é transitiva?

Solução: suponha que a R b e que b R c, de modo que a b e b c. Então a c, o que significa que a R c. Logo, R é transitiva.

- <u>Exemplo2</u>: A relação R={(1,2),(1,3),(4,2)} sobre A={1,2,3,4} é transitiva?
- Solução: como não é possível encontrar elementos a, b e c tais que (a,b)∈R, (b,c)∈R, mas (a,c)∉R, R é transitiva.

Caracterização de relações transitivas por matrizes

Se M_R=[m_{ij}] é a matriz de uma relação transitiva R, então M_R satisfaz à propriedade:

se
$$m_{ij}=1$$
 e $m_{jk}=1$, então $m_{ik}=1$

ou seja, a transitividade de R significa que se $(M_R \otimes M_R)$ tem um 1 em qualquer posição, então M_R deve ter um 1 na mesma posição (o converso pode ser falso), ou seja:

$$M_R \otimes M_R \leq M_R$$

Caracterização de relações transitivas por matrizes

 <u>Exemplo</u>: Mostre que a relação R sobre A={1,2,3} dada abaixo é transitiva:

$$\mathbf{M}_{R} = \begin{bmatrix} 1 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 1 \end{bmatrix}$$

 Solução: Por cálculo direto, M_R⊗M_R=M_R, de modo que R é transitiva.

Propriedades de relações - Exercícios

• <u>Exercício1</u>: Determine se as relações abaixo são reflexivas, irreflexivas, simétricas, assimétricas, antissimétricas ou transitivas:

a)
$$R = \{(1,3),(1,1),(3,1),(1,2),(3,3),(4,4)\}$$

b)
$$R = \{(1,1),(1,2),(2,1),(2,2),(3,3),(3,4),(4,3),(4,4)\}$$

• Respostas:

- a) N, N, N, N, N, N
- b) S, N, S, N, N, S

Propriedades de relações - Exercícios

• <u>Exercício2</u>: Seja A={1,2,3,4,5}. Determine se as relações definidas pelos dígrafos abaixo são reflexivas, irreflexivas, simétricas, assimétricas, antissimétricas ou transitivas.

Resp. (a): N, N, N, N, S, S

Resp. (b): ?