Лабораторная работа №1

Алгоритмы одномерной минимизации функции

Сысоев Александр, Зырянова Мария Верблюжий случай

1 Постановка задания

Необходимо реализовать алгоритмы одномерной минимизации функции:

- метод дихотомии
- метод золотого сечения
- метод Фиббоначи
- метод парабол
- комбинированный метод Брента

2 Исследуемая функция

Необходимо на интервале [0.1; 2.5] найти минимум функции

$$f(x) = 10xln(x) - \frac{x^2}{2}$$

 x_0 – точка локального экстремума f(x), если $f'(x_0) = 0$:

$$f'(x) = 10 + 10ln(x) - x = 0$$

minimize	function	$10 x \log(x) - \frac{x^2}{2}$	
	domain	$0.1 \le x \le 2.5$	

Рис. 1: Нахождение локального минимума при помощи WolframAlpha

$$\min\Bigl\{10\,x\log(x) - \frac{x^2}{2}\, \left|\, 0.1 \le x \le 2.5\right\} \approx -3.74908 \ \, \text{at} \ \, x \approx 0.382212$$

Рис. 2: Найденное решение

Рис. 3: График функции на исследуемом промежутке

3 Метод дихотомии

В данном методе за одну итерацию рассматриваются две точки внутри исследуемого промежутка: $x_1=x-\frac{\epsilon}{2}$ и $x_2=x+\frac{\epsilon}{2}$, где x – середина исследуемого интервала, а сам интервал неопределенности уменьшается примерно в 2 раза.

На каждом этапе функция вычисляется два раза — в каждой из рассматриваемых точек, значения функций сравнивается, и исходя из этого смещаются границы интервала неопределенности.

Исследование проводится при $\epsilon = 0.0001$.

Левая	Правая	Отношение	Точка	Значение с	Значение с
граница	граница	Отношение	ТОЧКа	левой стороны	правой стороны
0.1	2.5	_	1.3	2.56517	2.5663
0.1	1.3	2	0.7	-2.74201	-2.74144
0.1	0.7	2	0.4	-3.74518	-3.74514
0.1	0.4	2	0.25	-3.49678	-3.49719
0.25	0.4	2	0.325	-3.70551	-3.70566
0.325	0.4	2	0.3625	-3.74408	-3.74413
0.3625	0.4	2	0.38125	-3.74907	-3.74907
0.38125	0.4	2	0.39062	-3.74821	-3.74819
0.38125	0.39062	2.001067	0.38594	-3.74891	-3.7489
0.38125	0.38594	1.997868	0.38359	-3.74906	-3.74906
0.38125	0.38359	2.004274	0.38242	-3.74908	-3.74908
0.38125	0.38242	2	0.38184	-3.74908	-3.74908
0.38184	0.38242	2.017241	0.38213	-3.74908	-3.74908
0.38213	0.38242	2	0.38228	-3.74908	-3.74908
0.38213	0.38228	1.933333	0.3822	-3.74908	-3.74908

Метод дихотомии показал, что функция на данном промежутке достигает минимума при значении $x_{min}=0.3822021484375,\, f_{min}=-3.7490810073197856.$ Выполнено 15 итераций.

4 Метод золотого сечения

В данном методе отрезок, на котором рассматривается функция, делится в пропорции золотого сечения: длина всего отрезка относится к длине большей его части также, как длина большей части к меньшей.

За каждую итерацию интервал неопределенности уменьшается в $\frac{\sqrt{5}+1}{2}$ раз, эта величина постоянна. Однако со второй итерации достаточно пересчитывать значение функции только один раз по свойству золотого сечения.

Исследование проводится при $\epsilon = 0.0001$.

Левая	Правая	Отношение	Левая	Значение в	Правая	Значение в
граница	граница	Отношение	точка	левой точке	точка	правой точке
0.1	2.5	_	1.01672	-0.34828	1.58328	6.02178
0.1	1.58328	1.618036	0.66656	-2.92587	_	_
0.1	1.01672	1.618029	0.45016	-3.69429	_	_
0.1	0.66656	1.618046	0.31641	-3.69104	_	_
0.31641	0.66656	1.618049	_	_	0.53282	-3.49645
0.31641	0.53282	1.617994	0.39907	-3.74556	_	_
0.31641	0.45016	1.618019	0.36749	-3.74632	_	_
0.31641	0.39907	1.618074	0.34798	-3.73386	_	_
0.34798	0.39907	1.617929	=	_	0.37955	-3.74899
0.36749	0.39907	1.617796	_	_	0.38701	-3.74879
0.36749	0.38701	1.617828	0.37495	-3.74841	=	_
0.37495	0.38701	1.618574	=	_	0.3824	-3.74908
0.37955	0.38701	1.616622	=	_	0.38416	-3.74903
0.37955	0.38416	1.618221	0.38131	-3.74907	=	_
0.38131	0.38416	1.617544	_	_	0.38307	-3.74907
0.38131	0.38307	1.619318	0.38199	-3.74908	=	_
0.38199	0.38307	1.62963	=	_	0.38266	-3.74908
0.38199	0.38266	1.61194	0.38224	-3.74908	=	_
0.38199	0.3824	1.634146	0.38215	-3.74908	=	-
0.38215	0.3824	1.64	=	-	0.3823	-3.74908
0.38215	0.3823	1.666667	0.38221	-3.74908	-	-

Метод золотого сечения показал, что функция на данном промежутке достигает минимума при значении $x_{min}=0.382224424485476,\ f_{min}=-3.7490810068327103.$ Выполнена 21 итерация.

5 Метод Фибоначчи

Этот метод является улучшением предыдущего, в нем интервал сокращается в непостоянное количество раз.

Левая	Правая	0	Левая	Значение в	Правая	Значение в
граница	граница	Отношение	точка	левой точке	точка	правой точке
0.1	2.5	_	1.01672	-0.34828	1.58328	6.02178
0.1	1.58328	1.618036	0.66656	-2.92587	_	_
0.1	1.01672	1.618029	0.45016	-3.69429	_	_
0.1	0.66656	1.618046	0.31641	-3.69104	_	_
0.31641	0.66656	1.618049	_	_	0.53282	-3.49645
0.31641	0.53282	1.617994	0.39907	-3.74556	_	_
0.31641	0.45016	1.618019	0.36749	-3.74632	_	_
0.31641	0.39907	1.618074	0.34798	-3.73386	_	_
0.34798	0.39907	1.617929	_	_	0.37955	-3.74899
0.36749	0.39907	1.617796	_	_	0.38701	-3.74879
0.36749	0.38701	1.617828	0.37495	-3.74841	_	_
0.37495	0.38701	1.618574	_	_	0.3824	-3.74908
0.37955	0.38701	1.616622	_	_	0.38416	-3.74903
0.37955	0.38416	1.618221	0.38131	-3.74907	_	_
0.38131	0.38416	1.617544	_	_	0.38307	-3.74907
0.38131	0.38307	1.619318	0.38199	-3.74908	_	_
0.38199	0.38307	1.62963	_	_	0.38266	-3.74908
0.38199	0.38266	1.61194	0.38224	-3.74908	=	_
0.38199	0.3824	1.634146	0.38215	-3.74908	_	_
0.38215	0.3824	1.64	_	_	0.38231	-3.74908
0.38215	0.38231	1.5625	0.38221	-3.74908	_	_
0.38215	0.38224	1.777778	0.38218	-3.74908	_	_
0.38215	0.38228	0.692308	_	_	_	_

Функция на данном промежутке достигает минимума при значении $x_{min}=0.382211946017994,$ $f_{min}=-3.7490810086437825.$ Выполнено 22 итерации.

6 Метод парабол

В данном методе функция аппроксимируется квадратичной функцией. Сравнивается минимум аппроксимирующей параболы и точка, лежащая внутри исследуемого промежутка. Исходя из значения в этих точках, можно сдвигать границы отрезка. Значение функции со второй итерации высчитывается один раз, так как второе значение сохраняется со второй итерации.

В отличие от предыдущих методов, у метода парабол суперлинейная скорость сходимости, что влияет на количество итераций. Однако эта скорость гарантируется только в малой окрестности точки минимума.

Изначально за третью точку параболы берется середина исходного промежутка, $\epsilon = 0.0001$.

Левая	Правая	Отношение	Минимум	Значение
граница	граница	Отношение	параболы	минимума
0.1	2.5	_	0.2262186	-3.3877692
0.1	1.3	2.0000000	0.5272175	-3.5139203
0.2262186	1.3	1.1175459	0.403873	-3.7432907
0.2262186	0.5272175	3.5673931	0.3930555	-3.7476161
0.2262186	0.403873	1.6942947	0.3845723	-3.7490111
0.2262186	0.3930555	1.0648388	0.383205	-3.7490686
0.2262186	0.3845723	1.0535712	0.382467	-3.7490802
0.2262186	0.383205	1.0087097	0.3823075	-3.7490809
0.2262186	0.382467	1.0047232	0.3822391	-3.749081
0.2262186	0.3823075	1.0010219	0.3822217	-3.749081
0.2262186	0.3822391	1.0004384	0.3822152	-3.749081
0.2262186	0.3822217	1.0001115	0.3822133	-3.749081
0.2262186	0.3822152	1.0000417	0.3822127	-3.749081
0.2262186	0.3822133	1.0000122	0.3822125	-3.749081
0.2262186	0.3822127	1.0000038	0.3822124	-3.749081
0.2262186	0.3822125	1.0000013	0.3822124	-3.749081
0.2262186	0.3822124	1.0000006	0.3822124	-3.749081
0.2262186	0.3822124	1.0000001	0.3822124	-3.749081
0.3822124	0.3822124	_	_	_

Функция на данном промежутке достигает минимума при значении $x_{min}=0.3822124198393549,$ $f_{min}=-3.749081008646579.$ Выполнено 18 итераций.

7 Комбинированный метод Брента

Этот метод является комбинацией метода парабол и метода золотого сечения. Он пытается решить их проблемы: аппроксимирующая парабола строится с помощью трех наилучших точек (текущий минимум, точка, соответствующая второму снизу значению функции, и предыдущее значение второй точки), а минимум параболы принимается только при определенных условиях, иначе используется метод золотого сечения.

Левая	Правая	Отношение	Текущий	Значение теку-
граница	граница	Отношение	минимум	щего минимума
0.1	2.5	_	1.5832816	6.0217828
0.1	1.5832816	1.618034	0.6665631	0.6665631
0.1	1.2331263	1.309017	0.6665631	0.6665631
0.1	1.0167184	1.236068	0.6665631	0.6665631
0.1	0.6665631	1.618034	0.3164079	0.3164079
0.3164079	0.6665631	1.618034	0.3436571	0.3436571
0.3436571	0.6665631	1.084387	0.3935842	0.3935842
0.3436571	0.3935842	6.46755	0.3815569	0.3815569
0.3815569	0.3935842	4.151148	0.3824052	0.3824052
0.3815569	0.3824052	14.17812	0.3822149	0.3822149
0.3815569	0.3822149	1.28921	0.3822125	0.3822125
0.3815569	0.3822125	1.003661	0.3822124	0.3822124
0.3822124	0.3822125	655.6	0.3822124	0.3822124

Функция на данном промежутке достигает минимума при значении $x_{min}=0.3822124172559498,$ $f_{min}=-3.7490810086465793.$ Выполнено 12 итераций.

8 Сравнение методов

ϵ	$-log\epsilon$	Метод дихотомии	Метод золотого сечения	Метод Фиббоначи	Метод парабол	Метод Брента
0.001	3	24	18	18	19	9
0.0001	4	30	22	23	19	12
0.00001	5	36	27	28	19	12
0.000001	6	44	32	34	19	12
0.0000001	7	50	37	37	19	12
0.00000001	8	56	42	42	19	15
0.00000001	9	64	46	47	23	21
0.0000000001	10	70	51	52	24	31
0.00000000001	11	76	56	57	26	38
0.000000000001	12	84	61	61	26	46
0.0000000000001	13	90	66	66	26	53
0.00000000000001	14	96	70	71	26	62
0.0000000000000001	15	104	75	76	26	71

Сравнение методов

• Как видно из графика, для метода дихотомии требуется наибольшее количество вычислений для каждого ε. На каждой итерации производится два вычисления функции, а длина интервала неопределенности уменьшается примерно в 2 раза. Так, например, в методах золотого сечения и Фибоначчи, интервал сокращается в меньшее количество раз, но в них не требуется дважды высчитывать функцию, что является дорогостоящей операцией.

- Метод золотого сечения и метод Фибоначчи почти одинаковы, для них на первой итерации производится два вычисления, а далее одно. При этом для них почти не различается количество итераций относительного одинакового ε. В сравнении с методом дихотомии, им требуется в 1,3 1,4 раза меньше вычислений функций. В этих методах не требуется вычислять значение функции на границах промежутка, а значит, ими удобно исследовать функции с ассимптотами. Они имеют линейную скорость сходимости, поэтому требуется большее количество итераций, чем для методов параболы и Брента.
- Метод парабол имеет суперлинейную скорость сходимости, поэтому ему требуется меньшее количество итераций. При этом на каждой итерации, кроме первой, высчитывается одно значение значение в минимуме аппроксимирующей параболы. Однако, на первых шагах этот метод нестабилен, интервал неопределенности либо слишком сильно, либо слабо сокращается. Зато достигнув малой окрестности x_{min} , достигается высокая точность, поэтому для разных ϵ требуется одинаковое количество итераций. Также, для вычисления первого минимума параболы требуется посчитать значение функции в крайних точках интервала, что невозможно сделать, если через них проходит ассимптоты функции.
- Метод Брента является комбинацией метода золотого сечения и парабол. В нем компенсируются недостатки этих методов: большое количество итераций золотого сечения и неустойчивость парабол. Как и в предыдущих трех методах, на каждой итерации, помимо первой, высчитывается только одно значение функции. Из графика видно, что удалось по количеству итераций и запросов к функции улучшить метод золотого сечения, однако метод парабол все еще работает лучше.

9 Работа алгоритмов на многомодальных функциях

Была рассмотрена работа алгоритмов на унимодальных функциях — функциях, непрерывных на исследуемом промежутке [a,b] и на которых существует такая точка x_0 , что $f(x_0)$ в полуинтервале $[a,x_0)$ убывает, а в $(x_0,b]$ возрастает. Но на многомодальных функциях, то есть функциях, имеющих несколько локальных минимумов на исследуемом интервале, минимизация данными алгоритмами затрудняется.

Примеры исследования многомодальных функций:

1.
$$x^4-8\cdot x^3+22\cdot x^2-24\cdot x+1$$
 на интервале $[0;5]$
$$\min\{x+\cos(x)\,|\,1\le x\le 10\}\approx 1.5403 \text{ at } x=1$$

$$\min\{x+\cos(x)\,|\,1\le x\le 10\}\approx 1.5708 \text{ at } x\approx 1.57209$$

Рис. 4: Найденное решение

Рис. 5: График функции на исследуемом промежутке

	Количество вычислений	Точка минимума	Значение минимума
Метод дихотомии	32	2.9999542236328125	-7.999999991618495
Метод золотого сечения	23	2.9999910587085203	-7.999999999680227
Метод Фибоначчи	25	3.0000305470985342	-7.999999996267363
Метод парабол	87	2.999999801466867	-7.99999999999858
Комбинированный метод Брента	17	3.0000000233999984	-8.0

В этом примере все пять методов попали в одинаковый локальный минимум. Методу Брента потребовалось меньше всего итераций и вычислений, он оказался наиболее устойчивым. Заметно, что метод парабол перестал быть оптимальным, ему потребовалось наибольшее количество итераций. Это связано со сравнением минимума промежуточной аппроксимирующей параболы и третьей точки, так как есть несколько интервалов, для которых выполняется условие унимодальности.

2. x + cos(x) на интервале [1; 10]

$$\min\{x^4 - 8x^3 + 22x^2 - 24x + 1 \mid 0 \le x \le 5\} = -8 \text{ at } x = 1$$
$$\min\{x^4 - 8x^3 + 22x^2 - 24x + 1 \mid 0 \le x \le 5\} = -8 \text{ at } x = 3$$

Рис. 6: Найденное решение

Рис. 7: График функции на исследуемом промежутке

	Количество	Точка	Значение	
	вычислений	минимума	минимума	
Метод	34	1.0000686645507812	1.5403131899180849	
дихотомии	31	1.0000000010001012	1.0100101000100010	
Метод	24	1.000070225814992	1.540313437365185	
золотого сечения		1.00000.0220011002	1,01001010,000100	
Метод	26	1.0000566374354567	1.5403112836784405	
Фибоначчи	20	1.0000000014554501	1.0400112000104400	
Метод	139	5.5	6.20866977429126	
парабол	109	0.0	0.20000377423120	
Комбинированный метод Брента	56	1.000037734178906	1.5403082874457086	

В этом случае четыре метода попали в одинаковую точку, однако методу Брента потребовалось большее количество вычислений и итераций, чем остальным, кроме парабол. Методам золотого сечения и Фибоначчи все так же требуется примерно одинаковое количество вычислений, как было и для унимодальных функций. Количество вычислений метода парабол значительно отличается от остальных, и он не попал в минимум. Это связано с тем, что один из локальных минимумов находится на конце рассматриваемого интервала. Из-за проблем с методом парабол в этом примере так изменилась устойчивость метода Брента.

$3. \ sin(x)$ на интервале [0;15]

$$\min\{\sin(x) \mid 0 \le x \le 15\} = -1 \text{ at } x \approx 4.7124$$

 $\min\{\sin(x) \mid 0 \le x \le 15\} = -1 \text{ at } x \approx 10.996$

Рис. 8: Найденное решение

Рис. 9: График функции на исследуемом промежутке

	Количество	Точка	Значение
	вычислений	минимума	минимума
Метод	36	4.712390899658203	-0.999999999981581
дихотомии	30	4.712590099050205	-0.9999999999901001
Метод	25	4.712351389414225	-0.999999999934595
золотого сечения	20	4.712551565414225	-0.9999999992934390
Метод	27	4.7124009175873	-0.9999999999287515
Фибоначчи	21	4.7124003175075	-0.9999999999201010
Метод	12	10.995574284025212	-1.0
парабол	12	10.333314204023212	-1.0
Комбинированный	11	4.712388980353899	-1.0
метод Брента	11	4.7120000000000000	-1.0

В этой функции методы дихотомии, золотого сечения, Фибоначчи и Брента попали в левый локальный минимум, а метод парабол в правый. Методу Брента и парабол потребовалось наименьшее количество вычислений.

10 Выводы

В ходе лабораторной работы были исследованы пять методов одномерной оптимизации на унимодальных и многомодальных функциях.

На унимодальных функциях лучше всего показал себя метод парабол, ему требовалось наименьшее количество вычислений, что важно с точки зрения стоимости операции. Однако этот метод оказался самым нестабильным, так как он ведет себя хорошо только в окрестности минимума, а сначала делает неравномерные шаги. Разница между методом золотого сечения и методом Фибоначчи почти не заметна, делается только одно вычисление на каждой итерации. Метод дихотомии действует по такому же принципу, как и эти методы, деля отрезок, но в нем требуется два вычисления на каждом этапе, что не выгодно, но само количество итераций на нем меньше. Комбинация метода золотого сечения и парабол – метод Брента, оказался самым устойчивым, но в нем требуется большее количество итераций, чем в методе парабол.

На многомодальных функциях хуже всего ведет себя метод парабол из-за своей неустойчивости, а лучше всего – метод Брента. Исследование функций с несколькими локальными минимумами/максимумами на промежутке затруднительно с помощью данных методов оптимизации.

Реализация: GitHub.