10.6 PAYOFF CHARTS FOR LONG STRADDLE

For instance, a person buys a lot size of 100 shares of XYZ at the money call option and put option at a Strike price of ₹400.

The premium for call = ₹19.

The premium for put = ₹21.

The total premium = ₹40 (₹19 + ₹21) x 100 (lot size) = ₹4000 (Maximum Loss).

Therefore, the break-even range = ₹360 (₹400 - ₹40) to ₹440 (₹400 + ₹40).

The following is the graphical representation of a Long Straddle Option. The X-axis shows Profit or Loss. The Y-axis shows Stock Price at expiration.

Let us assume different price Scenarios:

MARKET PRICE ON EXPIRY	NET PROFIT/ LOSS	EXPLANATION
₹500	Call Payoff = ₹500 - ₹400 = ₹100 Profit from Call = ₹100 x 100 = ₹10,000 Net profit = Call profit -Total Premium = ₹10,000 - ₹4000 = ₹6000	The call option is exercised. Put Option is not exercised here. The call would give a payoff of ₹100, profit of ₹10,000 and net profit will be ₹6000.
₹300	Put Payoff = ₹400 - ₹300 = ₹100 Profit from Put = ₹100 x 100 = ₹10,000 Net profit = Put profit -Total Premium = ₹10,000 - ₹4000 = ₹6000	The call option is not exercised. However, the put is exercised. The put would give a payoff of ₹100, profit of ₹10,000 and net profit will be ₹6000.
₹420	Call Payoff = ₹420 - ₹400 = ₹20 Profit from Call = ₹20 x 100 = ₹2000 Net Loss = Call profit - Total Premium = ₹2000 - ₹4000 = (₹2000)	The call option is exercised. However, the put is not exercised. The call would give a payoff of ₹20, profit of ₹2000. So the total loss incurred here is ₹2000 after the payout from call option.

As we can see from the payoff charts as well, the maximum losses are at the strike price of both the options. As we move in either direction, the losses begin to reduce and after the break-even point, we move into profits.

10.7 PAYOFF CHARTS FOR SHORT STRADDLE

Explainer Video

For instance, a person sells a lot size of 100 shares of XYZ at the money call option and put option at a Strike price of ₹400.

The premium for call = ₹19.

The premium for put = ₹21.

The total premium = ₹40 (₹19 + ₹21) x 100 (lot size) = ₹4000 (Maximum Profit)

Therefore, the limited profit range = ₹360 (₹400 - ₹40) to ₹440 (₹400 + ₹40).

The following is the graphical representation of a Long Straddle Option. The X-axis shows Profit or Loss. The Y-axis shows Stock Price at expiration.

Let us assume different price Scenarios:

zet de desame amerent price occinatios.			
MARKET PRICE ON EXPIRY	NET PROFIT/ LOSS	EXPLANATION	
₹500	Call Payoff = ₹500 - ₹400 = ₹100	The call option is exercised. Put Option is not	
	Loss from Call = ₹100 x 100 = ₹10,000	exercised here.The call would take an obligated a payoff of ₹100 , loss of	
	Net Loss = Call Loss -Total Premiu = ₹10,000 - ₹4000 = ₹6000	m ₹10,000 and net loss will be ₹6000.	
₹300	Put Payoff = ₹400 – ₹300 = ₹100	The call option is not exercised. However, the put is	
	Loss from Put = ₹100 x 100 = ₹10,000	exercised. The put would take an obligated payoff of ₹100, Loss of	
	Net Loss = Put Loss -Total Premiui = ₹10,000 - ₹4000 = ₹6000	m ₹10,000 and net loss will be ₹6000.	
₹420	Call Payoff = ₹420 – ₹400 = ₹20	The call option is exercised. However, the put is not	
	Loss from Call = ₹20 x 100 = ₹2000	exercised. The call would take an obligated payoff	
	Net Profit = Call loss -Total Premiu = ₹2000 - ₹4000 = ₹2000	payout would be ₹2000.	
		The net profit would be reduced to ₹2000 after the payoff.	

As we can see, the maximum profits are the strike price. As we move in either direction, the profits start to decrease. Outside the range of break-even points, the profits turn into losses and we have potential for unlimited losses as we are selling options.