Домашнее задание 3

(1) (a) $2^{23542} = 2^{23541}2 = 8^{7847}2$ $8^{7847}2 \equiv (1)^{7847}2 \equiv 2 \mod 7$ Ответ: 2.

(b) $(13,17) = 1 \Rightarrow 13^{2^{2009} \equiv 13^{(2^{(2009 \mod \varphi(\varphi(17))})} \mod \varphi(17)} \mod 17$ $\varphi(\varphi(17)) = 8,2009 \mod 8 = 1$

 $13^2 \equiv (-4)^2 \equiv 16 \mod 17$

Ответ:16.

- (c) $(4,49) = 1 \Rightarrow$ аналогично пункту $1: \varphi(\varphi(\varphi(49))) = \varphi(\varphi(42)) = \varphi(12) = \varphi(3)\varphi(4) = 4$ 2009 $mod\ 4 = 1,2009\ mod\ 12 = 5,37^5 \equiv (-5)^5 \equiv (-125)25 \equiv 25\ mod\ 42$ $4^{25} \equiv 64^8 \cdot 4 \equiv 15^8 \cdot 4 \equiv 225^4 \cdot 4 \equiv 29^4 \cdot 4 \equiv (-20)^4 \cdot 4 \equiv (400^2) \cdot 4 \equiv 8^2 \cdot 4 \equiv 11\ mod\ 49$ Ответ:11
- (2) $a^n \equiv 1 \mod m, a^k \equiv 1 \mod m, (a,m) = 1$, доказать, что $a^{(n,k)} \equiv 1 \mod m$, причем $Ord_m|(n,k)$ Д-во: $a^n \equiv 1 \mod m, a^k \equiv 1 \mod m \Rightarrow Ord_m(a)|n, Ord_m(a)|k \Rightarrow n = ord \cdot l_1, k = ord \cdot l_2, \ l_1, l_2 \in Z \Rightarrow Ord_m(a)|(n,k) \Rightarrow a^{(n,k)} \equiv 1 \mod m$. Что и требовалось доказать.
- $(3) 1) \Rightarrow :$

Пусть все p_i различны, $(p_1^{k_1}...p_n^{k_n})=1$ и $(a_1,...,a_n)^l=e$, тогда $a_i^l=e$ и $l=\mathrm{HOK}(p_i^{k_i})\Rightarrow |G_m|=l$. Действительно, очевидно, что прямое произведение $C_{p_1^{k_1}}\times C_{p_2^{k_2}}\times...\times C_{p_n^{k_n}}\stackrel{\simeq}{=} C_{p_1^{k_1}p_2^{k_2}...p_n^{k_n}}$, порождающий элемент: $(a_1,a_2,...,a_n)$, где a_i : порождающий элемент в группе $C_{p_i^{k_i}}$.

В обратную сторону:2) ←

Группа циклическая, докажем, что все p_i различны.

Пусть $(p_i^{k_i}, p_j^{k_j}) = p > 1$, тогда $\text{HOK}(p_1^{k_1}...p_i^{k_i}...p_j^{k_j}...p_n^{k_n}) < |C_m|$, то есть в группе $C_{p_1^{k_1}} \times C_{p_2^{k_2}} \times ... \times C_{p_n^{k_n}}$ не будет элемента порядка $m = (p_1^{k_1}...p_n^{k_n}) = |C_{p_1^{k_1}p_2^{k_2}...p_n^{k_n}}|$. Следовательно, группа не будет являться циклической. Что и требовалось доказать.

(4) Доказать, что пересечение подгрупп взаимопростых порядков тривиально (содержит только е). Π - во:

Пусть $|H_1|=m, |H_2|=n, (n,m)=1.$ Предположим, что $H_1\cap H_2$ не тривиально, т.е $\exists \ h\neq e\hookrightarrow H_1\cap H_2$ Тогда $h\cdot h\in H_1\cap H_2.$ Так как подгруппы конечные: $\exists k\in Z\hookrightarrow h^k=e.$ Но $H_1\cap H_2< H_1$ и $H_1\cap H_2< H_2$, а так как порядок подгруппы делит порядок группы:k|m,k|n.Противоречие, так как по условию (m,n)=1.Из этого следует, что $H_1\cap H_2$ содержит только e.

(5) Может ли в коммутативной группе быть 14 решений уравнения $x^{12} = e$?

Покажем, что все решения уравнения составляют подгруппу $(H=(a|a^{12}=e))$:

- 1) $a^{12}b^{12} = e = a...a \cdot b...b =$ (по св-ву коммутативности) $= (ab)^{12} \Rightarrow$ множество решений замкнуто относительно групповой операции.
- 2) $(a \cdot a^{-1})^1 2 = e = a^{12} \cdot (a^{-1})^{12} = e = (a^{-1})^{12} \Rightarrow \forall \ a \in H \exists \ a^{-1} \in H \hookrightarrow a^{-1} a = aa^{-1} = e$
- 3)Очевидно, что ассоциативность выполняется.

Следовательно, H - подгруппа коммутативной группы, то есть H также является подгруппой.По теореме о конечнопорожденных абелевых группах любая абелева группа может быть представлена как прямое произведение простых циклических групп: $H_14 \cong C_2 \times C_7$. В группе есть элементы порядка 1, 2, 7, 14. Но (12,7)=1, следовательно получаем противоречие, то есть в коммутативной группе не может быть 14 решений данного уравнения.

- (6) (a) $C_{100} \times C_{10} \times C_1 \widetilde{=} C_{25} \times C_4 \times C_2 \times C_5$ $C_{50} \times C_{20} \widetilde{=} C_{25} \times C_2 \times C_4 \times C_5$ Из разложений видно, что группы изоморфны.
 - (b) $C_6 \times C_{18} \times C_{100} \times C_{36} \times C_{40} \stackrel{\sim}{=} C_3 \times C_2 \times C_9 \times C_2 \times C_{25} \times C_4 \times C_9 \times C_4 \times C_8 \times C_5$ $C_{60} \times C_{36} \times C_{36} \times C_{200} \stackrel{\sim}{=} C_8 \times C_{25} \times C_9 \times C_4 \times C_4 \times C_9 \times C_4 \times C_3 \times C_5 \times C_4$ Из разложений видно, что группы не изоморфны. Ответ:а) да, b) нет.
- (7) (а) Пусть G абелева группа, докажем, что любая ее подгруппа нормальная. Пусть H < G.H нормальная подгруппа, если $\forall \ a \in G \hookrightarrow Ha = aH$. Очевидно, что $\forall a \in G, h \in H \hookrightarrow ah = ha$, так как h тоже лежит в группе G. То есть левый и правый смежные классы по подгруппе H совпадают, следовательно, она нормальная.
 - (b) Индекс группы G по подгруппе H равен 2. Следовательно, группа разбивается на 2 левых смежных класса :H и $xH,x\in G$.С другой стороны, группа по подгруппе H разбивается тоже на 2 смежных класса:H и Hx. В обоих случаях, все элементы группы разбиваются на 2 класса: элементы подгруппы H и все остальные. Из сделенного вывода, следует, что xH=Hx. То есть подгруппа индекса 2 всегда нормальная.

(8) (а) Перестановки делятся на 2 класса: четные и нечетные. Докажем, что количесвто четных перестановок в группе S_n равно количеству нечетных. $(|A_n| = |S_n/A_n|)$ Для этого построим взаимооднозначное соответствие между множествами. Построим следующее отображение $\varphi: A_n \to S_n/A_n$. Пусть $\pi^+ \in A_n, \varphi(\pi^+) = \pi^+ \cdot \alpha, \alpha$ - транспозиция. Так как любая транспозиция меняет четность перестановки, тогда $\pi^+ \cdot \alpha = \pi^-, \pi^- \in S_n/A_n$. Тогда $\forall \pi^+ \in A_n \exists \pi^- \hookrightarrow \varphi(\pi^+) = \pi^+ \cdot \alpha = \pi^-$. Также справедливо обратное: домножем выражение на обратную транспозицию: $pi^+ \cdot \alpha \cdot \alpha^{-1} = \pi^+ = \pi^- \cdot \alpha^{-1} \Rightarrow \forall \pi^- \in S_n/A_n \exists \pi^+ \in A_n \hookrightarrow pi^- = \varphi(\pi^+)$. Построили биекцию, следовательно множества равномощны. $|S_n| = n!$, тогда $|A_n| = \frac{n!}{2}$. Левые смежные классы по этой подгруппе: $x \cdot A_n = (x \cdot \pi | x \in S_n/A_n, \pi \in A_n) \Rightarrow 2$ смежных класса: класс четных

перестановок (сама подгруппа) и класс нечетных.

- (b) Четность перестановки определяется количеством транспозиций, на которые может быть разложена данная перестановка. (четное число транспозиций четная, нечетное нечестная). Из этого можно сделать вывод, что композиция любых нечетных и четных перестановок будет нечетной перестановкой, так как $(l+k) \equiv 1 \mod 2, l$ число транспозиций в разложении четной перестановки, k в разложении нечетной перестановки. Получается, индекс группы S_n по подгруппе A_n равен 2, потому что группа разбивается на 2 класса: четные перестановки (сама подгруппа A_n) и нечетные перестановки. В пункте 7) доказано, что любая подгруппа индекса 2 всегда нормальная. Что и требовалось доказать.
- (9) (a) Z < (R, +)

Очевидно, что подгруппа нормальная, так как групп действительных чисел по сложению коммутативнаб то есть: $\forall a \in R \hookrightarrow a + Z = Z + a$.

- Фактор-группа группа, составленная из классов смежности по данной подгруппе. Каждому классу смежности мы можем поставить в соответвие число $z \in T, T = (z||z|=1)$. То есть можем построить следующую биекцию: $f: R/Z \to T, f(r+Z) = \cos 2\pi r + i \sin 2\pi r$. Фактор-группа действительных чисел по сложению по подгруппе елых чисел изоморфна мультипликативной группе комплексных чисел, модуль которых равен 1.
- (b) Очевидно, что группа нормальная, так как операция сложения коммутативна. Каждому вектору ставим в соответствие пару чисел х и у координаты по осям Ох и Оу соответственно. Тогда для векторов параллельных оси $Ox:(x',0),x'\in R$. Смежные классы по данной подгруппе: $(x_0,y_0)+h=h+(x_0,y_0)=(x_0+x,y_0)$. То есть к одному смежному классу принадлежат векторы, координаты которых по оси х совпадают, а по оси Оу принимают все действительные значения. Тогда каждому классу смежности можем поставить в соответствие действительное число y_0 . Таким образом мы получили взаимооднозначное соответствие между фактор-группой $(R^2;+)$ по подгруппе векторов, параллельных оси Ох и группой (R,+), которое сохраняет операцию: $\varphi(x+x_0,y_0)=y_0, \varphi((x_0,y_0)+(x,0))=\varphi(x_0,y_0)+\varphi(x,0)=y_0=\varphi(x+x_0,y_0)$
- (c) $R < (C/0, \cdot)$

Очевидно, что подгруппа нормальная, так как группа (C/0,*) коммутативная: $\forall a+bi, c+di \in C \hookrightarrow (a+bi)(c+di) = (c+di)(a+bi)$. Смежные классы по данной подгруппе: $xH = xh|h \in R$. Представим комплексные числа на комплексной плоскости: $|c|(\cos\varphi+\sin\varphi\cdot i)$. При домножении на действительное число h, угол поворота не меняется, меняет модуль числа в h раз. Получается, к одному классу смежности относятся векторы с одинаковым углом наклона, проходящие через начала координат, модули которых принимают все действительные значения. Тогда каждому смежному классу можем поставить в соответствие комплексное число, модуль которго равен 1, а угол равен углу комплексных чисел, принадлежащих данному классу смежности, то есть:

- $f: (c/0,\cdot)/R \to T, c = |c|(\cos \varphi + i \sin \varphi), f(c \cdot R) = \cos \varphi + i \sin \varphi$. Данное отображение сохраняет операцию: $f((c \cdot r_1) \cdot (c \cdot r_2)) = \cos(\varphi_1 + \varphi_2) + i \sin(\varphi_1 + \varphi_2) = (\cos \varphi_1 + i \sin \varphi_1)(\cos \varphi_2 + i \sin \varphi_2) = f(c \cdot r_1) \cdot f(c \cdot r_2)$. Получаем, что фактор-группа $(C/0,\cdot)/R$ изоморфна мультипликативной группе комплексных чисел, модуль которых равен 1.
- (d) Аддитивная группа действительнозначных функций $f:[0,1]\to R$ по подгруппе функций, таких, что f(0)=f(1)=0. Подгруппа нормальная, так как группа коммутативна: $\forall f_1,f_2\in G\hookrightarrow f_1+f_2=f_2+f_1$ $f+F=F+f,f\in G,F< G$, тогда в точках 0 и 1:f+0=f, то есть значению функции в данной точке. Следовательно, можем построить следующую биекцию: $\varphi(f(0)+F(0))=f(0),\varphi(f(1)+F(1))=f(1)$, тогда каждому смежному классу данной группы по подгруппе F ставим в соответсвие пару точек (f(0),f(1)) значения функции в данной точке. $\varphi((f_1(0)+F(0))+(f_2(0)+F(0))=\varphi(f_1(0))+\varphi(f_2(0))=f_1(0)+f_2(0)$ эотображение сохраняет операцию. Фактор-группа изоморфна группе $(R^2,+)$.
- (10) (а) Каждая перестановка может быть представлена в виде произведения простых (непересекающихся) циклов. Пусть есть перестановка $\pi = (i_1...i_l)$. Очевидно, что порядок $Ord(\pi) = l$. Тогда очевидно, что порядок перестановки, состоящей из нескольких простых циклов, равен НОК длины этих циклов. Действительно, НОК длины циклов наименьшее необходимое количество композиций перестановки с собой, дающее тривиальную перестановку. Что и требовалось доказать.

- (b) $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 2 & 1 & 3 & 6 & 4 & 7 & 5 & 10 & 8 & 9 \end{pmatrix} = (1 \ 2)(3)(6 \ 7 \ 5 \ 4)(8 \ 10 \ 9)$ НОК $(2,4,3) = 12 \Rightarrow Ord(\pi) = 12$ Четность: $(10-4) \equiv 0 \mod 2 \Rightarrow$ перестановка четная.
- (c) $i \in [0, n-1] \Rightarrow i < n \Rightarrow (i+k) \mod n = i + (k \mod n)$
 - То есть в результате перестановки каждый элемент сдвинется на равное количство мест.Пусть $k=zn+s, z, s\in Z, n>s>0$, тогда перестановку можно представить в виде $(1...n)^k \mod n=(1...n)^s=(1...n)^{zn+s}=(1...n)^k$.
 - Очевидно, что порядок такой перестановки: $Ord(\pi) = (n, k \ mod \ n)$, исходя из алгоритма Евклида: $(n, k \ mod \ n) = (k, n) \Rightarrow Ord(\pi) = \frac{n}{(k, n)}$. Такую перестановку можно представить как композицию $k \ mod \ n$ циклов длины n. Каждый из циклов можно представить в виде (n-1) транспозиции. Получаем $k \ mod \ n \cdot (n-1)$ транспозицию. Если n нечетное, то перестановка четная. Если n четное, $k \equiv zn + s \equiv s \ mod \ 2 \Rightarrow k \ mod \ n$ и k дают одинаковые остатки при делении на 2, если n четное. В результате получаем:если n нечетное перестановка четная, если n четное, при четном k перестановка четная, при нечетном нечетная.
- (11) (а) $Ord(\pi) = 8 \Rightarrow HOK$ длины простых циклов, на которые расскладывется перестановка = 8. Но минимальное количество элементов, необходимых для того, чтобы HOK был равен 8 это 8. А элементов всего $5 \Rightarrow$ в группе нет элемента порядка 8.
 - (b) $Ord(\pi) = 60 \Rightarrow HOK = 60$. Минимальное количество элементов, необходимых, чтобы HOK = 60 это 12 (простые циклы длины 3, 4, 5; 3 + 4 + 5 = 12, но в перестановке может быть только 11 элементов. Ответ: нет.
- (12) (а) Любую перестановку можно разложить на простые циклы, а любой цикл на транспозиции. Следовательно, любую перестановку можно представить в виде композиции транспозиций, поэтому перестановка S_n порождается множеством транспозиций $(1,i), i \in [1,n]$
 - (b) $(i,j,k) = (i,k)(i,j) \Rightarrow$ любой цикл вида (i,j,k) раскладывается в четное число транспозиций. А так как в разложении четной перестановки по транспозициям транспозиций четное число, то объеденив 2 транспозиции, получаем цикл длины 3. Следовательно, множество четных перестановок A_n порождается множеством циклов вида (i,j,k).
- (13) Порождают ли перестановки порядка p группу S_p ?
 Порядок перестановки $p \Rightarrow \text{HOK}$ длин простых пиклов.
 - Порядок перестановки $p \Rightarrow \text{HOK}$ длин простых циклов, на которые раскладывается перестановка р. Но так как p простое такие перестановки будут состоять только из цикла длины p.Каждый тако цикл можно представить в виде (p-1) транспозиции.2|(p-1). То есть из циклов длины p мы получим только четные перестановки, следовательно множество перестановок порядка p на порождает группу перестановок S_p .