USN

RV COLLEGE OF ENGINEERING Autonomous Institution affiliated to VTU DEPARTMENT OF MATHEMATICS

I Semester M.Tech (MCE, MCN)

June-2023 Examinations

LINEAR ALGEBRA, PROBABILITY AND QUEUEING THEORY (2022 SCHEME) MODEL QUESTION PAPER

Time: 03 Hours Maximum Marks: 100

Instructions to candidates:

- 1. Each unit consists of two questions of 20 marks each.
- 2. Answer FIVE full questions selecting one from each unit (1 to 5).

UNIT -1

1a	If $f: V_2(\mathbb{R}) \to V_2(\mathbb{R})$ is defined by $f(x, y, z) = (\cos \theta x - \sin \theta y, \sin \theta x + \cos \theta y)$,	04
	show that f is a linear transformation.	
1b	Let \mathbb{R} be the field of real numbers and let \mathbb{P}_3 be the set of all polynomials of degree	06
	at most 3, over the field \mathbb{R} . Prove that \mathbb{P}_3 is a vector space over the field \mathbb{R} .	
1c	Find the bases and dimension of the four fundamental sub spaces of the matrix	10
	$A = \begin{bmatrix} 3 & 4 & 2 & 3 \\ 5 & 0 & 4 & 0 \end{bmatrix}$	
	$A = \begin{bmatrix} 2 & 5 & 2 & 6 \\ 3 & 4 & 2 & 3 \\ 5 & 9 & 4 & 9 \\ 4 & -1 & 2 & -3 \end{bmatrix}.$	
	OR	
2a	Let $H = \{(a-2b, b+2a, 3a, 2b)\}$ where a and b are arbitrary scalars. Show that H	04
	is a subspace of \mathbb{R}^4 .	
2b	Show that the matrices $\begin{bmatrix} 1 & 1 \\ 2 & 4 \end{bmatrix}$, $\begin{bmatrix} 2 & -1 \\ -5 & 2 \end{bmatrix}$, $\begin{bmatrix} 1 & -1 \\ -4 & 0 \end{bmatrix}$, $\begin{bmatrix} 2 & 1 \\ 1 & 6 \end{bmatrix}$ are linearly dependent	06
	in $M_{2\times 2}$. Extract a linearly independent subset. Also find the basis and dimension	
	of the subspace spanned by them.	
2c	Find the Linear transformation $T: \mathbb{R}^3 \to \mathbb{R}^4$, such that	10
	T(1,1,0) = (-1,4,0,1), T(0,1,1) = (-2,0,3,2), T(1,1,1) = (-1,3,2,2). Also find the	
	range space and null space of the Linear transformation.	

UNIT -2

		, , , , , , , , , , , , , , , , , , , ,
3a	Suppose \mathbb{P}_2 is a vector space having the inner product defined by	04
	$ \langle p, q \rangle = p(t_0)q(t_0) + p(t_1)q(t_1) + p(t_2)q(t_2), \text{ where } t_0 = -1, t_1 = 0, t_2 = 1.$	
	Compute the lengths of the vectors $p(t) = 4 + t$ and $q(t) = 5 - 4t^2$.	
3b	Find a least-squares solution of the inconsistent system $Ax = b$, where	06
	$A = \begin{bmatrix} 1 & -2 \\ -1 & 2 \\ 0 & 3 \\ 2 & 5 \end{bmatrix}, b = \begin{bmatrix} 3 \\ 1 \\ -4 \\ 2 \end{bmatrix}.$	
Зс	Obtain the QR factorization of the matrix $A = \begin{bmatrix} 1 & 3 & 5 \\ -1 & -3 & -1 \\ 0 & 2 & 2 \\ 1 & 5 & 2 \end{bmatrix}$.	10
	Obtain the QR factorization of the matrix $A = \begin{bmatrix} -1 & -3 & -1 \\ 0 & 2 & 2 \end{bmatrix}$	
	Obtain the QN factorization of the matrix $A = \begin{bmatrix} 0 & 2 & 2 \\ 1 & 5 & 2 \end{bmatrix}$.	
	$\begin{bmatrix} 1 & 3 & 2 \\ 1 & 5 & 8 \end{bmatrix}$	
	OR	
4a	Find the n^{th} order Fourier approximation to the function $f(t) = t$ on the interval	04
	$[0,2\pi]$.	
4b	Obtain an orthogonal basis for the column space of the matrix	06
	[1 3 5]	
	$A = \begin{bmatrix} 1 & 3 & 3 \\ 1 & 1 & 0 \\ 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}.$	
	$\begin{bmatrix} 1 & 1 & 2 \\ 1 & 2 & 2 \end{bmatrix}$	
10	A simple expressible costs of a company	10
4c	A simple curve that often makes a good model for the variable costs of a company,	10
	as a function of the sales level x , has the form $y = \beta_0 x + \beta_1 x^2 + \beta_3 x^3$. There is no	
	constant term because fixed costs are not included. Find the least-squares curve	
	of the form above to fit the data (1, 1.8), (2, 2.7), (3, 3.4), (4, 3.8), (5, 3.9).	

IINIT _2

	5a	(i) Make a change of variable, $x = Py$, that transforms the quadratic form $x_1^2 + 10x_1x_2 + x_2^2$, into a quadratic form with no cross-product term. Give P and the new	10	
		quadratic form.		
		(ii) Suppose the quadratic form is given by $Q(x) = 5x_1^2 + 6x_2^2 + 7x_3^2 + 4x_1x_2 - 4x_2x_3$.		
		Find the maximum value of $Q(x)$ subject to the constraint $x^Tx = 1$, a unit vector u		
		where this maximum is attained, the maximum of $Q(x)$ subject to the constrains		
		$x^T x = 1$ and $x^T u = 0$.		
	5b	Obtain an SVD of the matrix $A = \begin{bmatrix} 2 & -1 \\ 2 & 2 \end{bmatrix}$.	10	
ſ		OR		
	ба	Diagonalize the matrix $A = \begin{bmatrix} 1 & 2 & 1 \\ 3 & 6 & 3 \\ 4 & 8 & 4 \end{bmatrix}$.	10	
	6b	Given the matrix of observations as: $\begin{bmatrix} 12 & 6 & 9 & 15 & 13 & 5 \\ 19 & 22 & 6 & 3 & 2 & 20 \end{bmatrix}$, convert the matrix to	10	
		mean deviation form, construct the covariance matrix and hence find its principal		
		components. Also determine what percentage of the information is retrieved from		
		the first principal component.		

UNIT -4

7a	The joint probability distribution of two random variables <i>X</i> and <i>Y</i> is defined by the	10
	function $P(X,Y) = \frac{1}{27}(2X + Y)$ where X and Y assume the integer values 0, 1, 2. Find	
	(i) the joint distribution of X and Y , (ii) the marginal distributions of X and Y , (iii)	
	the expected values of X , Y and XY , (iv) $Cov(X,Y)$ and $\rho(X,Y)$.	
7b	Random variables <i>X</i> and <i>Y</i> have the joint PDF $f_{X,Y}(x,y) = \begin{cases} 2, & 0 \le y \le x \le 1 \\ 0, & otherwise \end{cases}$.	06
	(i) For $0 \le x \le 1$, find the conditional PDF $f_{Y X}(y x)$,	
	(ii) For $0 \le y \le 1$, find the conditional PDF $f_{X Y}(x y)$.	
7c	A random variable X has a mean of 4 and variance 2. (i) Using Markov inequality, find $P[X \ge 4]$, (ii) using Chebyshev inequality find $P[X - 4 \ge 2]$.	04
90	OR If the joint probability density function for (x x) is	10
8a	If the joint probability density function for (x, y) is	10
	$f(x,y) = \begin{cases} c(x^2 + y^2), & 0 \le x \le 1, 0 \le y \le 1, c \ge 0 \\ 0, otherwise \end{cases},$	
	determine (i) the value of c , (ii) $P\left(x < \frac{1}{2}, y > \frac{1}{2}\right)$, (iii) $P\left(\frac{1}{4} < x < \frac{3}{4}\right)$, (iv) $P\left(y < \frac{1}{2}\right)$.	
8b	Find the covariance matrix for the two random variables X_1 and X_2 whose joint	06
	probability is represented as follows:	
	$\begin{array}{ c c c c c c c c c c c c c c c c c c c$	
	\mathbf{x}_1	
	-1 0.24 0.06	
	0 0.16 0.14	
	1 0.40 0.00	
8c	Obtain the axes of the constant probability density contours for a bivariate normal	04
	distribution with the covariance matrix $\Sigma = \begin{bmatrix} 0.5 & 0.25 \\ 0.25 & 0.5 \end{bmatrix}$.	

UNIT -5

9a	Arrivals at a telephone booth are considered to be Poisson with an average time of	10
	10 minutes between one arrival and the next. The length of a phone call is	
	assumed to be distributed exponentially with mean 3 minutes.	
	(i) Find an average number of persons waiting in the system.	
	(ii) What is the probability that a person arriving at the booth will have to wait in	
	the queue?	
	(iii) What is the probability that it will take him more than 10 minutes altogether	
	to wait for the phone and complete his call?	
	(iv) The telephone department will install a second booth, when convinced that an	
	arrival has to wait on the average for at least 3 minutes for phone. By how much	
	the flow of arrivals should increase in order to justify a second booth?	

9b	There are three typists in an office. Each typist can type an average of 5 letters	10
	per hour. If letters arrive for being typed at the rate of 15 letters per hour,	
	(i) What fraction of the time all the typists will be busy?	
	(ii) What is the average numbers of letters waiting to be typed?	
	(iii) What is the average time a letter has to spend for waiting and for being typed?	
	(iv) What is the probability that a letter will take longer than 20 minutes waiting	
	to be typed and being typed?	
	OR	
10a	Customers arrive at a one man barber shop according to a Poisson process with a	10
	mean interarrival time of 20 minutes. Customers spend an average of 15 minutes	
	in the barber's chair.	
	(i) What is the expected number of customers in the barber shop in the queue?	
	(ii) What is the probability that a customer will not have to wait for a hair cut?	
	(iii) How much can a customer expect to spend in the barber shop?	
	(iv) Management will put another chair and hire another barber when a	
	customer's average waiting time in the shop exceeds 1.25 hours. How much must	
	the average rate of arrivals increase to warrant a second barber?	
10b	A petrol pump station has 4 pumps. The service time follow the exponential	10
	distribution with a mean of 6 minutes and cars arrive for service in a Poisson	
	process at the rate of 30 cars per hour.	
	(i) What is the probability that an arrival would have to wait in line?	
	(ii) Find the average waiting time, average time spent in the system and the	
	average number of cars in the system.	
	(iv) For what percentage of time would a pump be idle on an average?	