

Certificate Number: 5055.02

TEST REPORT

Report No.: SRTC2019-9003(F)-0056

Product Name: Mobile Phone

Model Name: HLTE321E

Applicant: Hisense International Co., Ltd.

Manufacturer: Hisense Communications Co., Ltd.

Specification: FCC Part15B (Certification)

(2019 edition)

FCC ID: 2ADOBHLTE321E

The State Radio_monitoring_center Testing Center (SRTC)

15th Building, No.30 Shixing Street, Shijingshan District,

Beijing, China

Tel: 86-10-57996183 Fax: 86-10-57996388

CONTENTS

1. General information	3
1.1 Notes of the test report	
1.2 Information about the testing laboratory	
1.3 Applicant's details	3
1.4 Manufacturer's details	3
1.5 Application details	4
1.6 Reference specification	∠
1.7 Information of EUT	∠
1.7.1 General information	4
1.7.2EUT details	5
1.7.3 Auxiliary equipment details	5
2.Test information	6
2.1 Summary of the test results	(
2.2 Test result	7
2.2.1Conducted Emissions-FCC Part15.107	7
2.2.2RadiatedEmissions-FCC Part15.109	12
2.3. List of test equipments	20

1. General information

1.1 Notes of the test report

The test report may only be reproduced or published in full. Reproduction or publication of extracts from the report requires the prior written permission of The State Radio_monitoring_center Testing Center (SRTC).

The test results relate only to individual items of the samples which have been tested.

1.2 Information about the testing laboratory

Company: The State Radio_monitoring_center Testing Center (SRTC)

Address: 15th Building, No.30 Shixing Street, Shijingshan District

Testing location: No.80, Zhaojiachang, BeizangCun, Daxing District, Beijing,

China.

City: Beijing
Country or Region: China
Contacted person: Liu Jia

Tel: +86 10 57996183
Fax: +86 10 57996388
Email: liujiaf@srtc.org.cn

1.3 Applicant's details

Company: Hisense International Co., Ltd.

Address: Floor 22, Hisense Tower, 17 Donghai Xi Road, Qingdao,

266071, China

City: Qingdao Country or Region: China

Contacted person: Geng Ruifeng
Tel: +86-532-80877742

Email: gengruifeng@hisense.com

1.4 Manufacturer's details

Company: Hisense Communications Co., Ltd.

Address: No.218 Qianwangang Road, Economic & Technological

Development Zone, Qingdao, China

City: Qingdao Country or Region: China___

Contacted person: Deng Tingting

Tel: +86-532-55753708

Email: dengtingting@hisense.com

1.5 Application details

Date of reception of test sample: 14th December 2019 Date of test: 14th December 2019 to 6th January 2020

1.6 Reference specification

FCC Part 15B, 2019 (Certification)

1.7 Information of EUT

1.7.1 General information

1.7.1 General information		
Name of EUT	Mobile Phone	
Model Name	HLTE321E	
Marketing Name	Hisense H40	
FCC ID	2ADOBHLTE321E	
Equipment Class	Class B	
Antenna Type	Fixed Internal Antenna	
Power Supply	Battery or Charger	
Rated Power Supply Voltage	3.8V	
Extreme Voltage	Minimum: 3.5V Maximum: 4.4V	
Extreme Temperature	Lowest: -10°C	
Extreme Temperature	Highest: +55°C	
HW Version	V1.00	
SW Version	L1702.6.01.01.MX05	

Page number:4 of 20

1.7.2EUT details

Internal Control Number	Product Name	Model Name	IMEI
EUT1	Mobile Phone	HLTE321E	008601601632240
EUT2	Mobile Phone	HLTE321E	008601601632216

Note1: As the information described in section 1.7.2, EUT1 and EUT2 are different on the supplier of PFC. The relevant tests have been performed in order to verify in which combination case would have the worst features, so all the tests shown in this test report with the EUT2.

1.7.3 Auxiliary equipment details

AE (Auxiliary Equipment) 1#: Laptop

Manufacturer	Lenovo
Model Number	E470c
S/N	PF10VBX6
Input Voltage	100V-240V AC

AE (Auxiliary Equipment) 2#: Battery

Туре	Li-Lon
Manufacturer	ZHONGSHAN TIANMAO BATTERY
	CO., LTD.
Model Number	LPN385438
Capacity	4380mAh
Nominal Voltage	3.85V

AE (Auxiliary Equipment) 3#: Charger

<u> </u>	
Manufacturer	SHENZHEN TIANYIN ELECTRONICS CO., LTD.
Model Number	TPA-10120150UU
S/N	1
Input Voltage	100V-240V AC
Frequency	50/60Hz

Page number:5 of 20

AE (Auxiliary Equipment) 4#: Headset

Manufacturer	NEW LEADER INDUSTRY CO.,LTD.
Model Number	NLD-303k-09SH
S/N	1

AE (Auxiliary Equipment) 5#: USB Cable

Manufacturer	SHENZHEN KOAR ELECTRIC CO.,LTD.
Model Number	GET1-2824L10WHR-AC
S/N	1

2. Test information

2.1 Summary of the test results

No. Test case		FCC reference	Verdict
1 Conducted emissions		15.107	Pass
2	Radiated emissions	15.109	Pass

Approved By: Mr. Liu Wei	Checked By: Mr. Guo Yu
Director of the test department	Vice director of the test department
刘巍。	茅庙
Tested by:Mr. Dong Qifeng	I Issued date:
Test engineer	
重多举	2020.01.7

2.2 Test result

2.2.1Conducted Emissions-FCC Part15.107

Ambient condition:

Temperature	Relative humidity	Pressure
23.2°C	41.4%	101.8kPa

Test Setup with laptop:

Test Procedure:

The EUT is placed on a non-metallic table 0.8m above the horizontal metal reference ground plane. The accessories of the EUT are connected with the EUT such as headset etc. The EUT was connected with a laptop via the USB cable and transferred the data by copying large files from laptop to the EUT. The laptop's LAN port is connected with another laptop via cable. And the data transferring between two laptops is maintained.

The AC main power supply of the laptop is connected to LISN and LISN is connected to the reference ground. The test set-up and the test methods are performed according to ANSI C63.4:2014.

Then start the test software EMC32. Sweep the whole frequency band through the range from 150 KHz to 30 MHz with RBW 9kHz, VBW 30kHz. The measurement should be done for both L line and N line. During pre-test, the receiver uses both peak detector and average detector. And the final test, the receiver uses both average detector and Quasi-peak detector.

The data of cable loss has been calibrated in full testing frequency range before the testing.

Test Setup with charger:

Figure 2

Test Procedure:

The EUT is placed on a non-matellic table 0.8m above the horizontal metal reference ground plane. The EUT is connected with LISN via the charger. The LISN is connected to the reference ground. The accessories of the EUT are connected with the EUT such as headset etc. Open the following functions of EUT: Camera, flash lamp, positioning (such as GPS/GLONASS) and video.

The test set-up and the test methods are performed according to ANSI C63.4:2014. Then start the test software EMC32. Sweep the whole frequency band through the range from 150 KHz to 30 MHz with RBW 9kHz, VBW 30kHz. The measurement should be done for both L line and N line. During pre-test, the receiver uses both peak detector and average detector. And the final test, the receiver uses both average detector and Quasi-peak detector.

The data of cable loss has been calibrated in full testing frequency range before the testing.

A "reference path loss" Corr.(dB) is established and the L_{cable}+ATT+VDF is the attenuation of "reference path loss", and including the cable loss, the attenuation of the attenuator, the voltage division factor of AMN.

The measurement results are obtained as described below:

Presult=Pmea+ Corr.(dB)

Sample calculation: $(54.11 \text{ dB}\mu\text{V}) = (24.41 \text{ dB}\mu\text{V}) + (29.7 \text{ dB})$, the corresponding frequency is 0.171949MHz.

Tel: 86-10-57996183 Fax:86-10-57996388

Limit:

Frequency of Emission(MHz)	Limits(dBμV)	
	Quasi-peak	Average
0.15~0.5	66 to 56*	56 to 46*
0.5~5	56	46
5~30	60	50

Note: * Decreases with the logarithm of the frequency

Test result:

Noise Level of the Measuring Instrument

Pic1.Conducted emission L and N Line

Page number:9 of 20

EUT + Charger:

Pic2. Conducted emission L&N Line

Final_Result_AVG

Frequency (MHz)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)	Pmea Average (dBμV)
0.171949	27.48	54.87	27.38	L1	29.7	-2.22
0.479228	33.59	46.35	12.76	L1	29.7	3.89
0.628478	33.70	46.00	12.30	N	29.7	4.00
0.698713	34.61	46.00	11.39	N	29.7	4.91
0.773338	34.74	46.00	11.26	L1	29.7	5.04
1.484471	31.16	46.00	14.84	L1	29.7	1.46

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)	Pmea QuasiPeak (dBµV)
0.171949	54.11	64.87	10.75	L1	29.7	24.41
0.233404	49.01	62.33	13.32	L1	29.7	19.31
0.264132	46.62	61.30	14.68	N	29.7	16.92
0.290471	43.70	60.51	16.81	N	29.7	14.00
0.351926	40.18	58.92	18.73	L1	29.7	10.48
0.413382	36.61	57.58	20.97	L1	29.7	6.91

Page number:10 of 20

EUT + Laptop:

Pic3. Conducted emission L&N Line

Final_Result_AVG

Frequency (MHz)	Average (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)	Pmea Average (dBµV)
4.070007	27.58	46.00	18.42	L1	29.9	-2.32
4.307051	29.63	46.00	16.37	L1	29.9	-0.27
4.324610	27.35	46.00	18.66	N	29.9	-2.55
4.381676	28.68	46.00	17.32	N	29.9	-1.22
4.425574	27.40	46.00	18.60	L1	29.9	-2.5
4.438743	27.30	46.00	18.70	L1	29.9	-2.6

Final_Result_QPK

Frequency (MHz)	QuasiPeak (dBµV)	Limit (dBµV)	Margin (dB)	Line	Corr. (dB)	Pmea QuasiPeak (dBµV)
3.894419	34.95	56.00	21.05	L1	29.9	5.05
4.070007	36.83	56.00	19.17	L1	29.9	6.93
4.078787	37.06	56.00	18.94	L1	29.9	7.16
4.131463	37.68	56.00	18.32	N	29.9	7.78
4.324610	38.75	56.00	17.25	N	29.9	8.85
4.359728	38.47	56.00	17.53	L1	29.9	8.57

Page number:11 of 20

2.2.2RadiatedEmissions-FCC Part15.109

Ambient condition:

Temperature	Relative humidity	Pressure
23.2°C	41.4%	101.8kPa

Test Setup:

Figure 3

Test Procedure:

EUT+Laptop:

The EUT should be placed on a non-metallic table80cm above the ground plane. The receive antennas shall be moved from 1 to 4 meters. The distance between EUT and receive antenna should be 3 meters.

The accessories of the EUT are connected with the EUT such as headset etc. The EUT was connected with a laptop via the USB cable and transferred the data by copying large files from laptop to the EUT.. The test set-up and the test methods are performed according to ANSI C63.4:2014

Then start the test software EMC32. Sweep the whole frequency band through the range from 30MHz to 1GHz, using receive log period antenna HL562.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The EUT is laid in two modes as follow: 1. put the EUT in horizontal direction; 2. put the EUT in vertical direction.

Page number:12 of 20

Tel: 86-10-57996183 Fax:86-10-57996388

The data of cable loss and antenna factor have been calibrated in full testing frequency range before the testing.

EUT+Charger:

The EUT should be placed on a non-metallic table 80cm above the ground plane. The receive antennas shall be moved from 1 to 4 meters. The distance between EUT and receive antenna should be 3 meters.

The EUT should work in idle mode. The accessories of the EUT are connected with the EUT such as headset etc. Open the following functions of EUT: Camera, flash lamp, positioning (such as GPS/GLONASS) and video. The test set-up and the test methods are performed according to ANSI C63.4:2014.

Then start the test software EMC32. Sweep the whole frequency band through the range from 30MHz to 1GHz, using receive log period antenna HL562.

During the test, the height of receive antenna shall be moved from 1 to 4 meters, and the antenna shall be performed under horizontal and vertical polarization. The turn table shall be rotated from 0 to 360 degrees for detecting the maximum of radiated spurious signal level. The measurements shall be repeated with orthogonal polarization of the test antenna. The EUT is laid in two modes as follow: 1. put the EUT in horizontal direction; 2. put the EUT in vertical direction.

The data of cable loss and antenna factor have been calibrated in full testing frequency range before the testing. All test results are performed with max hold at the horizontal and vertical polarity.

RBW=120kHz, VBW=300kHz, when the test frequency: 30MHz<f<1GHz RBW=1MHz, VBW=3MHz, when the test frequency: f>1GHz

A "reference path loss" is established and the A_{Rpl} is the attenuation of "reference path loss", and including the gain of receive antenna, the gain of the preamplifier, the cable loss.

The measurement results are obtained as described below:

Result= Pmea + ARpl

Limit:

Frequency of Emission(MHz)	Limits		
	Detector	Unit (dBµV/m)	
30∼88	Quasi-peak	40	
88~216	Quasi-peak	43.5	
216~960	Quasi-peak	46	
960~1000	Quasi-peak	54	
1000∼5th harmonic of the highest	Average	54	
frequency or 40GHz, whichever is lower	Peak	74	

Tel: 86-10-57996183 Fax:86-10-57996388 Page number:13 of 20

Copyright © SRTC

Test result:

Sample calculation: (19.82 dB μ V/m) = (35.42 dB μ V/m) + (-15.6 dB), the corresponding frequency is 63.343750MHz.

EUT+Laptop

Frequency(MHz)	Result(dB µ V/m)	Limit (dB µ V/m)	ARpl (dB)	Pmea (dB μ V/m)	Polarity
30.65	23.00	40.00	-13.70	36.70	Н
42.45	23.81	40.00	-19.40	43.21	V
49.12	24.40	40.00	-23.60	48.00	V
83.23	21.13	40.00	-23.50	44.63	Н
87.23	23.82	40.00	-23.00	46.82	V
167.98	24.24	43.50	-22.80	47.04	V
192.76	19.03	43.50	-22.40	41.43	V
311.99	24.56	46.00	-17.70	42.26	V
485.86	25.27	46.00	-12.40	37.67	Н
551.98	27.20	46.00	-11.00	38.20	V
907.37	27.71	46.00	-4.70	32.41	V

EUT + charger

Frequency(MHz)	Result(dB µ V/m)	Limit (dB µ V/m)	ARpl (dB)	Pmea(dB μ V/m)	Polarity
31.06	30.12	40.00	-20.8	50.92	V
68.65	29.46	40.00	-21.2	50.66	V
167.27	21.60	43.50	-20.8	42.4	V
178.53	22.82	43.50	-20.2	43.02	H
460.26	22.30	46.00	-10.3	32.6	V
922.86	21.82	46.00	-1.2	23.02	V

Page number:14 of 20

EUT + Laptop: refer to Pic4, Pic5, Pic6, Pic7

CC CLASS 55 50-45-40 // 35-30-25-25-20-15 10 5-30M 50 60 80 100M 200 300 400 500 800 Frequency in Hz

Pic4. Radiated emission(30MHz – 1GHz)

Note: The test data in the graph includes two polarizations: horizontal and vertical

Pic5. Radiated emission (1GHz –6GHz)

Note: The test data in the graph includes two polarizations: horizontal and vertical.

Page number:15 of 20

Pic6.Radiated emission (6GHz –18GHz)

Note: The test data in the graph includes two polarizations: horizontal and vertical.

Pic7. Radiated emission (18GHz -40GHz)

Note: The test data in the graph includes two polarizations: horizontal and vertical.

EUT + charger: refer to Pic8, Pic9, Pic10, Pic11

Pic8. Radiated emission(30MHz – 1GHz)

Note: The test data in the graph includes two polarizations: horizontal and vertical

Pic9. Radiated emission (1GHz –6GHz)

Note: The test data in the graph includes two polarizations: horizontal and vertical

Page number:18 of 20

Pic10. Radiated emission (6GHz –18GHz)

Note: The test data in the graph includes two polarizations: horizontal and vertical.

Pic11. Radiated emission (18GHz –40GHz)

Note: The test data in the graph includes two polarizations: horizontal and vertical.

2.3. List of test equipments

No.	Name/Model	Manufacturer	S/N	Calibration	Calibration
140.	Name/Model	Manufacturer	0/14	Due Date	Date
1	23.18m×16.88m×9.60mS	FRANKONIA		5th Sep.	6th Sep.
	emi-AnechoicChamber	I NAINNOINA		2021	2016
2	ESW EMI test receiver	R&S	101574	20th Aug.	20th Aug.
	ESVV EIVII lest receiver	Ras	101574	2019	2018
3	9.080m×5.255m×3.525m	EDANIZONIA		5th Sep.	6th Sep.
3	Shielding room	FRANKONIA		2021	2016
4	ENV216 AMN	R&S	3560.6550.	20th Aug.	20th Aug.
4	EINV2 10 AIVIIN	Ras	12	2020	2019
5	HF 907 Double-Ridged	Dec	100512	20th Aug.	20th Aug.
5	Waveguide Horn Antenna	R&S	100513	2020	2019
6	PS2000 Turn Table	FRANKONIA			
	F32000 Tuffi Table	I NAINNOINIA			
7	MA260 Antenna Master	FRANKONIA			
,	WAZOO AITICIIIa Wasici	TIVANICONIA			
8	EMC32EMI test software	R&S	V10.20.01		
		1.00	1.0.20.01		
9	VULB9163 Receive	R&S	886	20th Aug.	20th Aug.
	antenna	1100	330	2020	2019

-----END------END------