	Name:
	Vorname:
Biol 🖵	Studiengang:
Pharm 🖵	
BWS □	

Basisprüfung Winter 2008 Lösungen

Organische Chemie I+II

für Studiengänge
Biologie (Biologische Richtung)
Pharmazeutische Wissenschaften
Bewegungswissenschaften und Sport
Prüfungsdauer: 3 Stunden

Unleserliche Angaben werden nicht bewertet! Bitte auch allfällige Zusatzblätter mit Namen anschreiben.

Bitte freilassen:

Teil OC I	Punkte (max 50)		Teil OCII	Punkte (max 50)
Aufgabe 1	9.5		Aufgabe 6	15
Aufgabe 2	5.5		Aufgabe 7	15
Aufgabe 3	12.5		Aufgabe 8	10
Aufgabe 4	16.5		Aufgabe 9	10
Aufgabe 5	6			
Total OC I	50		Total OC II	50
Note OC I	6		Note OC II	6
Note OC			6	

1. Aufgabe (9.5 Pkt)

Zeichnen Sie die Strukturformeln (inkl. Stereochemie) von:

2. Aufgabe (5 1/2 Pkt)

a) 2 Pkt. Tragen Sie in den folgenden Lewisformeln die fehlenden Formalladungen ein: b) 1 1/2 Pkt. Zeichnen Sie mindestens je eine weitere möglichst gute Grenzstruktur der untenstehenden Verbindungen c) 2 Pkt. Geben Sie die Bindungsgeometrie und Hybridisierung an den nummerierten Atomen an. Bindungsgeometrie Hybridisierung linear sp + 2p 1 $sp^2 + p$ gewinkelt 2 NH trigonal pyramidal sp³ 3 trigonal planar $sp^2 + p$ 4 Punkte Aufgabe 2

3. Aufgabe (12.5 Pkt)

a) 2 1/2 Pkt Liegt bei den folgen Wenn ja, um welche Art von Isor	den Strukturen Isomerie vor ? merie handelt es sich?		
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
ОН	ОН	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
HO	OH	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
CI	CI	Nicht Isomere Konstitutionsisomere Diastereoisomere Enantiomere identisch	
		Übertrag Aufgabe 3	

Aufgabe 3 (Fortsetzung)

b) 2 Pkt. Welche der angegebenen Moleküle sind chiral?			
Welches ist die Beziehung zwischen a und d?			
chiral X			
c) 4 1/2 Pkt. Die Fischerprojektion einer Sorbose ist unten angegeben.			
1 _{CH₂OH} HO H HOH ₂ C 5 HOH HOH ₂ C 5 HOH HOH ₂ C 5 HOH HOH HOH HOH HOH HOH HOH HOH HOH HO			
Arabinitol Perspektivformel Enantiomeres			
c1) 1/2 Pkt. Handelt es sich um D- oder L- Arabinitol?			
c2) 1 1/2 Pkt. Zeichnen Sie das in der Fischerprojektion angegebene Molekül als Perspektivformel (Keilstrichformel ergänzen).			
c3) 1/2 Pkt. Zeichnen Sie die Fischerprojektion des zur dargestellten Arabinitol enantiomeren Moleküls (Projektion ergänzen).			
 c4) 1 Pkt. Bezeichnen Sie die absolute Konfiguration für die stereogenen Zentren C2 und C4 im abgebildeten Arabinitol mit CIP Deskriptoren. C2: R X S C4: R X S 			
c5) 1 1/2 Pkt. Wieviele Stereoisomere mit dieser Konstitution gibt es? Antwort: 4 (2 Mesoformen und 1 Enantiomerenpaar			
Übertrag Aufgabe 3			

Aufgabe 3 (Fortsetzung).

4. Aufgabe (16.5 Pkt)

Aufgabe 4 (Fortsetzung).

b) 5 Pkt. Welche der beiden Säure			
Wichtgste Effekte:		ntwortlich? (1-8) einsetzen.	
Elektronegativität des direkt 2. Atomgrösse/Polarisierbark	eit des direkt an d	as Proton gebunden Atoms.	
3. Hybridisierung des durch E 4. σ-Akzeptor = -I Effekt.	peprotonierung en	iserienden ione pairs	
5. π-Akzeptor Effekt (-M).6. π-Donor Effekt (+M).		n	
Solvatation (Wechselwirku Wasserstoffbrücken	ng mit dem Losun	gsmitter).	
<i>c</i>)			
		wichtigster Effekt (1-8)	
OH	SH		
	X	2	
O_2N OH	OH	1	
X		5	
0	0		
CI	ОН		
ĊΙ	CI CI		
		4	
H_N⊕	H-N⊕		
X		3	
0	0		
H H	H H	•	
X		5	
		Übertrag Aufgabe 4	

Aufgabe 4 (Fortsetzung).

c) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle **protoniert**? Zeichnen Sie die konjugate Säure und begründen Sie ihre Antwort.

+ H⁺

Begründung

Protonierung am N mit der Methylgruppe würde die Aromatizität des Imidazolrings aufheben.

Begründung

Bei Protonierung am O bleibt die Resonanzstabilisierung erhalten (vinyloges Amid).

d) 4 Pkt. An welcher Stelle werden die untenstehenden Moleküle deprotoniert? Zeichnen Sie die konjugate Base und begründen Sie ihre Antwort.

$$O = H^{+}$$

Begründung:

Obwohl Ketogruppen stärkere

 π -Akzeptoren sind als Ester (Lacton) Gruppen, spielt dieser Effekt hier nicht, weil eine Enolatbildung am Brückenkopf nicht möglich ist (Bredtsche Regel)

ΗΘ

5. Aufgabe (6 Pkt)

a) 2 Pkt. Wie gross ist die Gleichgewichtskonstante K₂?

1)
$$K_1 = 100$$

2)
$$\kappa_2$$
 COOH $\Delta G^{\circ}(2) = -5.7 \text{ kJ/mol}$

3)
$$\kappa_3$$
 COOH Wie gross ist κ_3 ?

Antwort: $\kappa_3 = 0.1$

b) 2 Pkt. Zeichnen Sie die Konformere von (2S,3S)-2,3-Diiodbutan in der Newman-Projektion. Zeichnen Sie qualitativ ein Energieprofil [E(Θ)] der Rotation um die C(2)-C(3) Bindung (Θ= Diederwinkel C(4)-C(3)-C(2)-C(1), d.h. Θ=0°, wenn die Bindungen C(4)-C(3) und C(2)-C(1) verdeckt stehen). Iod ist etwas doppelt so gross wie Methyl.

c) 2 Pkt. Eine Gleichgewichtsreaktion hat bei 300 K eine Gleichgewichtskonstante von **K**=0.1.

Die Reaktionsenthalpie beträgt $\Delta H_R^{\circ} = -21.3 \text{ kJ/mol.}$

- c1) Wie gross ist die Reaktionsentropie ΔS°_B? Antwort....-90 J/(mol·K)
- c2) Müssen Sie abkühlen oder heizen, damit die Gleichgewichtskonstante etwa bei **K**=1.0 zu liegen kommt? *Antwort:* Abkühlen ☑ Heizen □.
- c3) Schätzen Sie in einer Überschlagsrechnung um wieviel °C man die Temperatur verändern müsste um K=1.0 zu erhalten. Antwort: ∆T ca.. – 63.°C

6. Aufgabe (a-f= je 2.5 Pkt; total 15 Pkt)

7. Aufgabe (a-e=je 3 Pkt; Struktur: 2.5 Pkt, Typ: 0.5 Pkt; total 15 Pkt)

9. Aufgabe (a=4 Pkt,b=2x3 Pkt; total 10Pkt)

a) Formulieren Sie einen detaillierten Mechanismus für folgende Umsetzung!

Wheland-Zwischenstufe

Die Methylgruppe ist aktivierend und o/p-dirigierend aus sterischen Gründen entsteht praktisch nur das *para-*Produkt

Antwort: Friedel-Crafts-Alkylierung

b) Saytzew-Regel: bei einer E1-Eliminierung (z.B. säurakat. Eliminierung) entsteht bevorzugt das thermodynamisch stabilere, höher substituierte Olefin.