

Mechanics of Materials III: Beam Bending

Dr. Wayne Whiteman Senior Academic Professional and Director of the Office of Student Services Woodruff School of Mechanical Engineering

Module 2 Learning Outcomes

- Define the qualifications for a structure to be treated as beam
- Give examples of beam bending

Mechanics of Materials

ENGINEERING STRUCTURE

EXTERNAL LOADS

Torsional (Twisting)

Axial

INTERNAL FORCES AND MOMENTS

STRAINS

STRESSES

STRUCTURAL PERFORMANCE

deformations/deflections

•yield/fracture

•success/failure?

Beam ≡ member loaded perpendicular to its longitudinal axis

Examples:

"Simply Supported Beam" – pins/rollers at ends

exaggerated shape when loaded

Further classified as:

"Pure bending"
Flexure under constant bending moment
No shear force

"Simply Supported Beam" – pins/rollers at ends

By El. -(Bardo) (Own work) [GFDL (http://www.gnu.org/copyleft/fdl.html) or CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Georgia Tech

Examples:

Cantilever beam

exaggerated shape when loaded

Further classified as:

"Pure bending"
No shear force

Cantilever beam

By High Contrast (Own work) [CC BY 3.0 de (http://creativecommons.org/licenses/by/3.0/de/deed.en)], via Wikimedia Commons

Cantilever beam

Matthew25187 at en.wikipedia [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

Georgia Tech

Examples:

Non-uniform beam bending Continuous beam

Beam bending/flexure with shear force

Georgia Tech

Bridge deck chord structure

By Alethe (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0) or GFDL (http://www.gnu.org/copyleft/fdl.html)], via Wikimedia Commons

Machine workshop

By Cjp24 (Own work) [CC BY-SA 3.0 (http://creativecommons.org/licenses/by-sa/3.0)], via Wikimedia Commons

Georgia Tech

Wooden beams

See page for author [Public domain], via Wikimedia Commons

Georgia Tech

Concrete beams in a barn structure

David Hawgood [CC BY-SA 2.0 (http://creativecommons.org/licenses/by-sa/2.0)], via Wikimedia Commons

We will do theory development based on pure bending. But we will use the results even when shear forces are present.

"Classical Beam Theory"
Often referred to as Euler-Bernoulli beam theory