

ISDM (INDEPENDENT SKILL DEVELOPMENT MISSION

OVERVIEW OF 3D MODELING

CHAPTER 1: INTRODUCTION TO 3D MODELING

What is 3D Modeling?

3D modeling is the process of creating three-dimensional objects using specialized software. Unlike 2D images, 3D models have depth, height, and width, allowing them to be rotated and viewed from multiple angles.

Applications of 3D Modeling

3D modeling is widely used in:

- **Film & Animation** CGI (Computer-Generated Imagery) for movies and cartoons.
- Gaming 3D character and environment modeling for video games.
- Architecture & Interior Design Creating realistic building models.
- Medical Industry 3D models for anatomy visualization and surgeries.

 Product Design – Prototyping and designing products before manufacturing.

How 3D Modeling Works

3D models are created using **polygons**, **curves**, **and vertices** to shape objects. A 3D mesh forms the structure of the model, which can be further refined with **texturing**, **lighting**, **and rendering**.

CHAPTER 2: TYPES OF 3D MODELING

1. Polygonal Modeling

- Most common method in animation and gaming.
- Uses vertices, edges, and faces to define shape.
- Example: Characters, props, vehicles in movies/games.

2. NURBS Modeling (Non-Uniform Rational B-Splines)

- Uses mathematical curves instead of polygons.
- Ideal for smooth, curved surfaces.
- Example: Car designs, industrial modeling.

3. Sculpting

- Mimics real-world sculpting with digital clay.
- Used for highly detailed models like character faces.
- Example: ZBrush sculpting for films and games.

4. Procedural Modeling

 Creates objects using algorithms and rules instead of manual editing. Example: Cityscapes and landscapes in large open-world games.

5. Boolean Modeling

- Combines **two or more objects** using addition, subtraction, or intersection.
- Example: Creating holes in objects or combining complex shapes.

CHAPTER 3: COMPONENTS OF A 3D MODEL

1. Vertices, Edges, and Faces

- Vertices (Points): The smallest unit in a 3D model.
- Edges: Lines connecting two vertices.
- Faces: Flat surfaces formed by edges, usually polygons (quads or triangles).

2. Mesh Topology

- Determines how well a 3D model deforms in animation.
- Good topology: Evenly spaced quads for smooth animation.
- Bad topology: Too many triangles or stretched polygons.

3. UV Mapping & Texturing

- UV Mapping: Flattens a 3D model into a 2D texture map.
- **Textures:** Images applied to the surface of a model to add details like **wood**, **metal**, **or skin**.

CHAPTER 4: COMMON 3D MODELING SOFTWARE

1. Blender (Free & Open Source)

- Great for beginners and independent artists.
- Used for animation, sculpting, and rendering.

2. Autodesk Maya (Industry Standard)

- Used in Hollywood films and AAA games.
- Powerful for animation, character rigging, and VFX.

3. 3ds Max (Used in Gaming & Architecture)

- Best for hard-surface modeling (e.g., vehicles, buildings).
- Used in game design, architectural visualization.

4. ZBrush (Best for Sculpting)

- Industry leader for high-detail sculpting.
- Used for characters and creatures in movies & games.

5. Cinema 4D (Motion Graphics)

Common in advertising, branding, and VFX.

CHAPTER 5: 3D MODEL CREATION PROCESS

Step 1: Blocking & Base Mesh Creation

 Rough shape of the model is created using basic geometric shapes (cubes, spheres).

Step 2: Refining the Model

Adding more edge loops and details to define the shape.

Step 3: Sculpting (Optional)

• For organic models, sculpting tools are used for fine details.

Step 4: Retopology

- Cleaning up the **mesh for animation**.
- Converts high-poly models into game-ready versions.

Step 5: UV Unwrapping & Texturing

- Model is flattened for texture mapping.
- Textures, normal maps, bump maps are added for realism.

Step 6: Rigging & Animation (Optional)

Adding a skeleton (rig) to move and animate the model.

Step 7: Rendering & Final Output

Applying lighting, materials, and cameras for the final image.

CHAPTER 6: DIFFERENT 3D MODEL FORMATS

File	Usage
Format	
OBJ	Universal format, used for exchanging 3D models.
FBX	Supports animation, textures, used in games & movies.
STL	Used for 3D printing.
GLTF	Optimized for web and real-time applications.
BLEND	Blender's native file format.
MA/MB	Maya's proprietary format.

CHAPTER 7: EXERCISES FOR PRACTICING 3D MODELING

Exercise 1: Create a Simple 3D Object

Steps:

- Open Blender or Maya.
- 2. Create a **cube** and transform it into a house shape.
- 3. Add a roof, door, and windows.

Exercise 2: Basic Texturing & UV Mapping

★ Steps:

- 1. Load a 3D model (a simple sphere or cube).
- 2. Apply a wood or metal texture.
- 3. Adjust UV mapping for a clean texture application.

Exercise 3: Sculpting a Basic Character

★ Steps:

- 1. Use ZBrush or Blender's sculpt mode.
- 2. Create a basic human face shape.
- 3. Use brush tools to add details like eyes, nose, and lips.

CHAPTER 8: CAREER OPPORTUNITIES IN 3D MODELING

1. 3D Character Artist

Designs characters for games, movies, VR/AR.

2. Environment Artist

• Creates backgrounds and landscapes for games/films.

3. 3D Product Designer

Creates realistic product models for e-commerce & prototyping.

4. Architectural Visualizer

• Designs 3D building models for architects.

5. 3D Printing Specialist

• Prepares models for 3D printing and prototyping.

Freelancing & Business Opportunities

- Sell 3D models on platforms like Sketchfab, TurboSquid.
- Offer custom 3D modeling services on Fiverr, Upwork.
- Start a YouTube channel teaching 3D modeling techniques.

CHAPTER 9: SUMMARY OF 3D MODELING

- ✓ 3D modeling creates three-dimensional objects for games, films, and industries.
- ✓ Polygonal modeling, sculpting, and procedural modeling are the main techniques.
- ✓ Popular software includes Blender, Maya, ZBrush, 3ds Max, and Cinema 4D.
- ✓ Models are created using vertices, edges, faces, and meshes.
- √ The modeling process includes blocking, detailing, texturing, rigging, and rendering.
- ✓ Career paths include gaming, animation, architecture, and 3D printing.

INTRODUCTION TO AUTODESK MAYA & BI FNDFR

CHAPTER 1: UNDERSTANDING 3D MODELING & ANIMATION SOFTWARE

1. What is 3D Modeling & Animation?

3D modeling is the process of **creating three-dimensional digital objects** using specialized software. These objects can be
manipulated, animated, and rendered to produce realistic visuals for **movies, games, architecture, product design, and visual effects**(VFX).

2. Importance of 3D Software in Various Industries

- Film & Animation: Used in blockbuster movies like *Avatar* and *Toy Story*.
- **✓ Gaming Industry: Essential for creating game environments & characters** (e.g., **Fortnite**, **GTA**).
- Architecture & Interior Design: Used for 3D floor plans and visualization.
- ✓ Product Design & Manufacturing: Helps in prototyping and visualization of products.

3. Overview of Autodesk Maya & Blender

Feature	Autodesk Maya	Blender
Best For	Hollywood movies, game development, VFX	Freelancers, independent creators, hobbyists

Animation	Advanced rigging,	Great for indie animation
Tools	character animation	& motion graphics
Ease of Use	Industry-standard but steep learning curve	Beginner-friendly with strong community
		support
Industries	Film, VFX, AAA game	Indie games, animations,
Used In	studios	3D art
Pricing	Paid subscription (\$215/month)	Free & open-source

Fun Fact: Maya has been used in movies like The Lion King (2019), while Blender was used in Next Gen (2018).

CHAPTER 2: GETTING STARTED WITH AUTODESK MAYA

1. Installing & Setting Up Maya

- Download from Autodesk's official website.
- Configure hardware settings for smooth performance.
- Learn the workspace layout (viewport, outliner, channel box, and timeline).

2. Understanding Maya's Interface

- **Viewport:** The main workspace where 3D objects are viewed & manipulated.
- Outliner: Lists all objects in the scene.
- Attribute Editor: Allows modifying properties like position, color, and texture.
- Timeline & Graph Editor: Controls animation sequences & motion curves.

3. Creating Basic 3D Objects

- Steps to Create a 3D Object in Maya:
 - 1. Open Maya and create a New Scene.
 - 2. Use the **Polygon Primitives Menu** to create a **cube**, **sphere**, **or cylinder**.
 - 3. Adjust the object's **scale**, **rotation**, **and position** using the Transform tools.

4. Basic Modeling Techniques in Maya

- **Extrusion:** Adds depth to flat shapes.
- Edge Loops: Helps refine shapes for smooth modeling.
- Subdivision Surfaces: Adds more geometry for better detailing.

CHAPTER 3: GETTING STARTED WITH BLENDER

- Installing & Setting Up Blender
 - Download Blender from Blender.org.
 - Customize the Ullayout based on the project type.
 - Learn the default workspace (Layout, Modeling, Sculpting, Animation, Rendering).

2. Understanding Blender's Interface

- 3D Viewport: The main workspace for object manipulation.
- Outliner: Lists all scene elements (like Maya's Outliner).
- **Properties Panel:** Adjusts material, physics, and render settings.
- Shader Editor: Used for texturing & material creation.

3. Creating Basic 3D Objects in Blender

- Steps to Create a Simple Object in Blender:
 - Open Blender and select New File.
 - 2. Press Shift + A to add a cube, sphere, or cylinder.
 - Use G (Move), R (Rotate), and S (Scale) to transform the object.
- 4. Basic Modeling Techniques in Blender
- ✓ **Subdivision Surface Modifier:** Smoothens objects for high-quality rendering.
- Proportional Editing: Helps modify large portions of a model smoothly.
- Mirror Modifier: Automates symmetrical modeling (great for characters).
- Pro Tip: Use Ctrl+Z to undo mistakes quickly!

CHAPTER 4: MODELING WORKFLOW IN AUTODESK MAYA & BLENDER

- Key Modeling Features in Maya
 - NURBS Modeling: Creates smooth, curved surfaces.
 - Polygonal Modeling: Best for hard-surface modeling (e.g., vehicles, architecture).
 - Retopology Tools: Helps refine models for animation.
- 2. Key Modeling Features in Blender
 - Sculpting Tools: Allows organic modeling like character faces.

- Boolean Operations: Cuts or merges objects for complex shapes.
- Grease Pencil: Used for 2D animation within a 3D space.

Comparison: Maya is best for **precision-based modeling**, while Blender is great for **organic and freeform designs**.

CHAPTER 5: ANIMATION IN MAYA & BLENDER

1. Keyframe Animation in Maya

- Move an object, press S to set a keyframe.
- Adjust motion curves using the Graph Editor.
- Use IK (Inverse Kinematics) for realistic character movement.

2. Keyframe Animation in Blender

- Insert keyframes using I (Insert Keyframe Menu).
- Use Dope Sheet and Graph Editor for smooth motion control.
- Use Auto-Keyframing to capture movements automatically.
- Fun Fact: Blender's Grease Pencil is used for 2D animation inside 3D environments.

CHAPTER 6: RENDERING IN AUTODESK MAYA & BLENDER

Rendering in Maya

- Uses Arnold Renderer for high-quality visuals.
- Allows real-time previews of lighting and materials.
- Adjusts **global illumination settings** for realistic shading.

2. Rendering in Blender

- Uses Cycles (realistic) & Eevee (real-time) render engines.
- Supports **GPU & CPU rendering** for faster processing.
- Uses Compositor & Post-Processing tools for final touch-ups.
- 📌 Tip: Use batch rendering to export multiple frames at once.

CHAPTER 7: HANDS-ON EXERCISES & ASSIGNMENTS

1. Create a Simple 3D Object

Instructions:

- · Open Maya or Blender.
- Create a basic model (chair, house, or simple character).
- Adjust scale, rotation, and position.

2. Animate a Basic Scene

★ Instructions:

- Use keyframes to animate a bouncing ball.
- Experiment with timing & spacing for smooth motion.

3. Apply Textures & Lighting

Instructions:

- Apply a wood texture to a cube.
- Adjust lighting and render a final image.

CHAPTER 8: CAREER OPPORTUNITIES IN 3D MODELING & ANIMATION

- **ab Animator:** Creates character animations for movies & games.
- **Game Designer:** Builds 3D environments & assets for video games.
- VFX Artist: Works on CGI effects in Hollywood films.
- **Architectural Visualizer:** Designs 3D models for real estate.
- Product Designer: Creates 3D prototypes for industries.

Freelance & Business Opportunities

- Sell 3D models on Sketchfab, CGTrader, and TurboSquid.
- Create NFT art and digital collectibles.
- Offer custom 3D modeling services on Fiverr & Upwork.

CHAPTER 9: SUMMARY & FINAL ASSIGNMENT

★ Key Takeaways:

- Maya is great for industry-standard animation, while Blender is free & powerful for all users.
- Both software support modeling, animation, rigging, and rendering.
- Understanding keyframes, texturing, and rendering is essential for 3D artists.
- Career paths include film, games, architecture, and product design.

📌 Final Assignment:

- 1. Model a simple object (chair, house, car) in Maya or Blender.
- 2. Create a 3-second animation of a moving object.

3. Write a 500-word comparison between Maya & Blender.

CREATING BASIC 3D OBJECTS

CHAPTER 1: INTRODUCTION TO 3D MODELING

1. What is 3D Modeling?

3D modeling is the process of creating a **three-dimensional representation** of an object using specialized software. It is widely used in:

- Animation & Film Creating characters, environments, and props.
- ✓ **Gaming Industry** Developing game assets such as weapons, vehicles, and landscapes.
- Architecture & Engineering Designing structures, interiors, and prototypes.
- **✓ Product Design** Creating 3D models for manufacturing and marketing.

2. Importance of 3D Modeling

- Allows Realistic Visualizations Helps in prototyping and animation.
- Speeds Up Design Process Used in simulations and CGI.
- Widely Used in Multiple Industries From film production to product design.
- **Example:** Pixar uses 3D modeling for characters in animated films like *Toy Story* and *Finding Nemo*.

CHAPTER 2: UNDERSTANDING 3D MODELING SOFTWARE

1. Popular 3D Modeling Software

Software	Best Used For	
Blender	Free and open-source, great for animation &	
	game assets.	
Autodesk	Industry-standard for film & TV animation.	
Maya		
Cinema 4D	Ideal for motion graphics & visualization.	
3ds Max	Used in game development and architecture.	
ZBrush	Best for high-detail sculpting.	

Pro Tip: Beginners should start with Blender as it is free and has a large learning community.

2. Basic Tools in 3D Modeling Software

- Viewport Navigation: Rotate, zoom, and pan the 3D workspace.
- Move, Rotate, Scale: Allows transformation of objects.
- Mesh Editing Tools: Includes extrude, bevel, and subdivision.
- Modifiers: Used for deformation and complex modeling effects.

CHAPTER 3: CREATING BASIC 3D OBJECTS (PRIMITIVES)

1. What Are Primitive Shapes?

Primitive shapes are the **basic building blocks** of 3D modeling. Most 3D objects start from one of these shapes:

Shape	Usage
Cube	Used for buildings, crates, and furniture.

Sphere	Used for planets, eyeballs, and rounded objects.
Cylinder	Used for columns, pipes, and barrels.
Cone	Used for funnels, trees, and hats.
Torus	Used for rings, donuts, and wheels.

- **Example:** A car model starts with **cylinders for wheels** and **a cube for the body**.
- 2. How to Create Basic 3D Objects in Blender
- Step 1: Open Blender
 - Launch Blender and select General Workspace.
- Step 2: Add a Primitive Object
 - Press Shift + A → Choose Mesh → Select Cube, Sphere, or Cylinder.
- Step 3: Transform the Object
 - Use G (Move), R (Rotate), and S (Scale) to modify the object.
- Step 4: Edit the Object
 - Switch to Edit Mode (Tab Key) to modify vertices, edges, and faces.
- Step 5: Save & Export the Model
 - Save as .blend file and export as .FBX, .OBJ, or .STL for further use.
- **Pro Tip:** Use **Subdivision Modifier** to make objects smoother.

CHAPTER 4: ESSENTIAL 3D MODELING TECHNIQUES

1. Extrusion (Pulling Out Shapes)

- Used to add depth and complexity to a 3D object.
- Shortcut in Blender: E Key (Extrude).

2. Beveling (Smoothing Edges)

- Adds rounded edges to avoid sharp corners.
- Shortcut in Blender: Ctrl + B (Bevel).

3. Subdivision Surface (Smoothing the Model)

- Increases detail in models for a smoother look.
- Found in Blender's Modifiers Tab.

4. Boolean Operations (Combining Shapes)

- Allows merging or cutting one object from another.
- Shortcut: Add Modifier → Boolean (Union, Difference, Intersect).
- Example: A detailed house model starts with cubes and uses extrude for walls, boolean for doors/windows, and bevel for smooth edges.

CHAPTER 5: APPLYING MATERIALS & TEXTURES

1. What Are Materials & Textures?

Materials define how an object **looks (color, reflectivity, roughness)**, while textures apply **detailed images** to surfaces (wood grain, metal rust, cloth fabric).

2. Basic Material Settings in Blender

- Step 1: Select the object.
- ightharpoonup Step 2: Go to Material Properties ightharpoonup Add New Material.
- Step 3: Adjust Base Color, Roughness, and Metallic Settings.

3. Adding Basic Textures

- Open Shading Editor → Add Image Texture Node.
- Load a JPG/PNG texture file (e.g., brick wall, wood grain).
- Use UV Mapping to correctly place textures on objects.
- ★ Pro Tip: Use PBR Textures (Physically Based Rendering) for realistic results.

CHAPTER 6: SCENE SETUP & RENDERING

1. Adding Lights to a Scene

- Point Light: Emits light from a single source.
- **Spotlight:** Directs light in a cone shape.
- Sun Light: Simulates outdoor sunlight.
- **Pro Tip:** Adjust **light intensity and shadows** for a realistic scene.

2. Camera Setup

- Press o (Zero Key on Numpad) to view through the camera.
- Adjust Focal Length & Depth of Field for cinematic effects.

3. Rendering the Final Image

- Go to Render Properties → Set Engine to Cycles or Eevee.
- Adjust Samples for better quality.
- Click Render Image (F12 Key).

Example: Pixar uses advanced rendering for movies like *Coco*, where light and textures enhance realism.

CHAPTER 7: HANDS-ON EXERCISES & ASSIGNMENTS

1. Create a Simple 3D Object

Instructions:

- Open Blender, Maya, or 3ds Max.
- Add basic primitive shapes (Cube, Sphere, Cylinder).
- Transform and scale them to create a table or simple house model.

2. Experiment with Extrusion & Beveling

Instructions:

- Add a Cube in Blender.
- Use Extrude (E Key) to create walls.
- Apply Bevel (Ctrl + B) to smooth sharp edges.

3. Apply Basic Textures & Render a Scene

★ Instructions:

- Import a wood texture onto a cube (table model).
- Add a **point light** to illuminate the scene.
- Render and save as a **JPEG image**.

CHAPTER 8: CAREER OPPORTUNITIES IN 3D MODELING

- **a 3D Modeler:** Creates assets for games, animation, and films.
- **Game Artist:** Designs characters, environments, and props.
- Architectural Visualizer: Creates 3D models of buildings and interiors.
- VFX Artist: Works in film industry for CGI and effects.

Freelance & Business Opportunities

- Sell 3D assets on TurboSquid or Sketchfab.
- Offer custom 3D modeling services on Fiverr/Upwork.
- Create 3D printable models for sale.

FINAL SUMMARY

★ Key Takeaways:

- Primitive shapes (Cube, Sphere, Cylinder) are the foundation of 3D modeling.
- Basic tools (Extrude, Bevel, Boolean) help in shaping complex models.
- Applying materials & textures enhances realism.
- Scene setup (Lighting & Camera) improves presentation.
- Hands-on exercises involve modeling, texturing, and rendering simple objects.

FINAL ASSIGNMENT

- 1. Create a simple 3D object (table, chair, or house) and render it.
- 2. Write a 500-word report on different 3D modeling techniques.

3. **Analyze a 3D animated film/game scene** and describe the modeling process.

Understanding Meshes & Texturing – Comprehensive Study Material

CHAPTER 1: INTRODUCTION TO MESHES & TEXTURING

1.1 What are Meshes & Texturing?

- A mesh is a collection of vertices, edges, and faces that define the shape of a 3D model.
- **Texturing** is the process of applying **2D images (textures)** onto 3D meshes to give them color, detail, and realism.

1.2 Importance of Meshes & Texturing in 3D Modeling

- ✓ Defines the **structure** of 3D models.
- ✓ Adds realism and detail to objects.
- Essential in animation, gaming, film, and AR/VR applications.
- ✓ Affects rendering performance and memory usage.

1.3 Applications of Meshes & Texturing

- **Video Games:** Creating realistic environments, characters, and objects.
- Movies & CGI: Textured 3D models for animated films and VFX.
- Architecture & Design: Realistic material visualization in 3D renders.
- Virtual Reality & Augmented Reality: High-quality textures for immersive experiences.

CHAPTER 2: UNDERSTANDING MESHES IN 3D MODELING

2.1 What is a Mesh?

A mesh is made up of three primary components:

- Vertices (Points): The smallest element in a 3D model.
- **Edges (Lines):** Connect vertices to form wireframes.
- * Faces (Polygons): Formed by connected edges, usually triangles or quads.

2.2 Types of Mesh Topology

- **Quad-Based Mesh:** Uses four-sided polygons, ideal for animation and subdivision.
- **Triangular Mesh:** Used in real-time engines like game development.
- **N-Gon Mesh:** Polygons with more than four sides, can create issues in modeling.

2.3 Low-Poly vs. High-Poly Meshes

- Low-Poly Mesh: Fewer polygons, optimized for real-time rendering (games, AR/VR).
- High-Poly Mesh: More polygons for detailed sculpting and high-quality rendering.

2.4 Common Issues in Meshes & How to Fix Them

- Non-Manifold Geometry: Faces that don't contribute to the model's shape.
- **X** Overlapping Faces & Edges: Can cause rendering and texturing errors.
- X Inverted Normals: Causes rendering issues by making faces invisible from certain angles.

CHAPTER 3: INTRODUCTION TO TEXTURING

3.1 What is Texturing?

Texturing is the process of mapping 2D images (textures) onto 3D models to give them color, material properties, and realism.

3.2 Types of Textures

- Diffuse (Albedo) Texture: Defines the base color of an object.
- Normal Map: Adds depth and surface detail without increasing mesh complexity.
- Bump Map: Uses grayscale images to simulate depth.
- Specular/Glossiness Map: Controls how light reflects off surfaces.
- Opacity Map: Defines transparency for materials like glass.

3.3 Texture Mapping Techniques

- **UV Mapping:** Unfolding a 3D object into a 2D plane for texture application.
- Projection Mapping: Textures applied based on camera angle.
- **PBR Texturing:** Physically Based Rendering (PBR) for realistic shading.

CHAPTER 4: UNDERSTANDING UV MAPPING

4.1 What is UV Mapping?

UV mapping is the process of **flattening a 3D model** to apply a 2D texture properly.

 U and V Coordinates define the horizontal and vertical placement of textures.

4.2 How UV Unwrapping Works

- The 3D model is **cut into sections** (UV islands).
- These sections are unwrapped onto a 2D plane.

A texture is applied according to the UV layout.

4.3 Common UV Mapping Problems & Solutions

- **X** Stretching & Distortion: Occurs when UVs are not evenly spaced.
- **✓ Solution:** Properly scale and relax UVs.
- X Overlapping UVs: Causes texture glitches where faces share texture space.
- **✓ Solution:** Avoid overlapping areas in UV layouts.

Chapter 5: Texturing Techniques & Tools

5.1 Texturing Workflows

- Hand-Painted Textures: Manually painted in Photoshop,
 Substance Painter, or Krita.
- Procedural Texturing: Generated based on algorithms (Substance Designer).
- Photo-Based Texturing: Uses real-world images to create textures.

5.2 Texture Baking

What is Baking?

- Process of transferring high-poly details to low-poly models using normal maps.
- Helps in optimizing real-time rendering.

Common Baked Textures:

- Normal Maps
- Ambient Occlusion (AO) Maps

Cavity Maps

5.3 Texturing Software & Tools

- Adobe Photoshop: 2D texture creation.
- Substance Painter: PBR-based texture painting.
- Blender: Built-in texture painting and UV mapping.
- 3D Coat: Advanced UV unwrapping and texture painting.

Chapter 6: Case Studies in Meshes & Texturing

6.1 Game Development (Unreal Engine & Unity)

- Low-poly optimized meshes with baked textures for performance.
- Use of normal maps to simulate detail without increasing poly count.

6.2 Film & Animation (Pixar, Disney, DreamWorks)

- High-poly meshes with hand-painted textures for stylized looks.
- Use of PBR materials and photorealistic texturing for cinematic rendering.

6.33D Printing & Product Design

- Meshes must be watertight for 3D printing.
- Textures applied as baked color information rather than realtime shaders.

CHAPTER 7: HANDS-ON PRACTICE & ASSIGNMENTS

Task 1: Creating a Simple Mesh & UV Unwrapping

★ Instructions:

- 1. Create a basic 3D object (cube, sphere) in Blender or Maya.
- 2. **Unwrap UVs** and adjust the layout.
- 3. Apply a **simple checkered texture** to visualize stretching.

Task 2: Painting a Hand-Drawn Texture

Instructions:

- Export UV maps from a 3D model.
- 2. Paint details in **Photoshop or Krita**.
- Apply the texture to the model and render the final look.

Task 3: Baking High-Poly Details into a Low-Poly Model

Instructions:

- Create a high-poly model with intricate details.
- 2. Generate a normal map in Substance Painter.
- 3. Apply the baked texture onto a **low-poly model** and compare results.

CHAPTER 8: CAREER OPPORTUNITIES IN MESH & TEXTURING

8.1 Job Roles

- **a 3D Modeler:** Specializes in creating optimized 3D meshes.
- **Texture Artist:** Focuses on painting and applying textures to 3D objects.
- **Game Artist:** Develops assets for real-time game engines.
- **VFX Artist:** Works on textures for CGI in movies and TV.

8.2 Freelancing & Industry Applications

- Sell 3D assets on marketplaces (Sketchfab, TurboSquid, ArtStation).
- Freelance for game studios & VFX companies.
- Develop textures & shaders for AR/VR projects.

CHAPTER 9: PORTFOLIO & INDUSTRY READINESS

- ★ What to Include in a Mesh & Texture Portfolio?
- ✓ Wireframe views of 3D models.
- ✓ UV layouts and properly unwrapped models.
- ✓ High-resolution hand-painted or procedural textures.
- ✓ Renders showcasing before and after textured models.

SUMMARY OF LEARNING

- ✓ Meshes define the shape, while textures add detail.
- ✓ UV mapping ensures textures apply correctly.
- **✓ PBR materials and baking** improve realism.
- ✓ Game engines & CGI require optimized textures.

ASSIGNMENT

MODEL A 3D HOUSE USING BLENDER/MAYA.

STEP-BY-STEP GUIDE: MODEL A 3D HOUSE USING BLENDER/MAYA

Objective:

This guide will help you create a **basic 3D house model** using **Blender** or **Autodesk Maya**. You will learn how to create walls, windows, doors, roof, and textures to give the house a realistic look.

Step 1: Set Up Your Project

Blender Users:

 \blacksquare Open Blender \rightarrow Delete the default cube.

∑Set the workspace to Modeling Mode.

Switch to **Metric Scale** for real-world dimensions (Scene Properties → Units → Metric).

 \Box Turn on **Reference Images (Front/Side View)** (View \rightarrow Image \rightarrow Reference).

Maya Users:

 \square Open Autodesk Maya \rightarrow Create a new scene.

Det up grid settings for proper proportions.

Change the Viewport to Orthographic View for easier modeling.

? Tip: Use real-world dimensions for accurate proportions (e.g., house height: 3m, door: 2m).

Step 2: Block Out the Basic Structure

- Add a Cube (Blender: Shift + A → Mesh → Cube, Maya:
 Create → Polygon Primitives → Cube).
- Scale it to form the basic house shape (S key in Blender, R key in Maya).
- Use Edit Mode (Blender) / Edge Mode (Maya) to extrude walls upwards.

- Add a Cube and scale it to form the roof base.
- Use the Loop Cut Tool (Ctrl + R in Blender, Multi-Cut Tool in Maya) to create a center line.
- Move the middle points upward to create a triangle for a gable roof.

Create Doors & Windows

- Use Boolean Operations (Difference Mode) to cut out windows and door spaces.
- In Blender: Select the house mesh → Add Boolean Modifier
 → Select the cube (window/door) → Apply.
- In Maya: Use the Boolean Tool (Mesh → Booleans → Difference).
- *Tip:* Keep the geometry **simple** first, and refine it later.

Step 3: Add Details (Windows, Doors, Roof Tiles)

✓ Windows & Doors:

- Add **new cubes** to create window frames and doors.
- Use **Edge Loops & Extrude** to add depth.

 Apply Subdivision Modifier (Blender) or Bevel Tool (Maya) to make smooth edges.

✓ Roof Tiles:

- Add a small cube and use Array Modifier (Blender) or Duplicate Special (Maya) to create multiple tiles.
- Align them across the roof.
- *Tip:* Use **Reference Images** to make realistic window & door proportions.

Step 4: Apply Textures & Materials

★ Steps:

☐Go to Material Mode (Shading Tab in Blender, Hypershade in Maya).

☐Assign different materials for walls, doors, windows, roof.

- pmport textures (wood, bricks, glass) from Texture Websites:
 - Textures.com
 - PolyHaven
 - CCoTextures
 Apply a Normal Map for realistic surface details.
- **Example: A house brick texture for walls, wood texture for doors, reflective material for windows.

Step 5: Add Lighting & Environment

✓ Add a Sky Background

- In Blender: Use HDRI Environment Lighting (World Properties → Add HDRI).
- In Maya: Use Arnold SkyDome Light.

✓ Add Sunlight & Shadows

- Blender: Use Sun Lamp and adjust angle & intensity.
- Maya: Use Directional Light (Arnold Renderer).

✓ Soft Shadows & Global Illumination

- Enable Ambient Occlusion (AO) for soft shadows.
- Use Ray Tracing & Global Illumination for realistic lighting.
- *Tip:* Adjust **light angles** to create a natural morning or evening look.

Step 6: Render the Final Image

- Render Settings:
- ✓ Blender: Cycles or Eevee Renderer → Set Resolution: 1920x1080.
- ✓ Maya: Arnold Renderer → Adjust Sampling for High-Quality Output.
- ✓ Enable Anti-Aliasing for smooth edges.
- ✓ Save the image as PNG or JPEG.
- *Tip:* Use **different camera angles** for better composition.

FINAL ASSIGNMENT: MODEL A 3D HOUSE

📌 Task:

■Block out the base structure (walls, roof, floor).

- Apply materials & realistic textures.
- ☐Set up lighting & environment.
- Render & submit in PNG or JPEG format (1920x1080 px).

FINAL TAKEAWAYS

- Start with a simple blockout, then refine details.
- Use Booleans to create cutouts for doors & windows.
- ✓ Textures and materials make the house more realistic.
- Lighting enhances the 3D model's depth & realism.
- Rendering with proper settings ensures a high-quality final image.