Propuesta de diseño de una red con servicio VoIP

Esteban Gaviria Zambrano (A00396019)

Santiago Valencia García (A00395902)

Agenda:

Introducción:

-Telefonía análoga: evolución, componentes y funcionamiento. (Diapositivas 3 - 5)
-Telefonía VoIP: componentes. (Diapositiva 6-8)
Contextualización. (Diapositiva 9)
Componentes propuestos. (Diapositiva 10)
Diseño de la red. (Diapositiva 11 - 13)
Cotización. (Diapositiva 14 - 15)
Conclusiones. (Diapositiva 16)

Evolución de la telefonía análoga

1876: Creación del primer teléfono por Alexander Graham Bell.

1891: Almon Strowger inventa la centralita automática, permitiendo conexiones sin operador.

1937: Se introduce el teléfono de disco, permitiendo marcar números directamente.

1963: Se introduce el teléfono de botón (Touch-Tone), reemplazando el disco.

1968: Primer uso comercial de teléfonos inalámbricos en Europa.

1983: Se lanza el sistema AMPS (Advanced Mobile Phone System), el primer estándar de telefonía móvil analógica.

Componentes de la telefonía análoga

Teléfonos: Dispositivos de entrada y salida que permiten a los usuarios hablar y escuchar a través de la red telefónica.

Centrales telefónicas: Equipos que gestionan la conexión entre diferentes líneas telefónicas.

Cableado físico: Infraestructura física que conecta los teléfonos individuales con las centrales telefónicas entre sí.

Funcionamiento de la telefonía análoga

El funcionamiento implicaba la conversión de las señales de voz en señales eléctricas analógicas que viajaban a través de los cables hasta llegar a la central telefónica. Allí, las señales se conmutaban y se enrutan hacia su destino final. En el destino, las señales se convertían nuevamente en sonido audible.

Componentes de hardware de la telefonía IP

Adaptador de Teléfono Analógico (ATA): Permite conectar teléfonos analógicos tradicionales a una red VoIP.

Router: Gestiona el tráfico de datos entre los dispositivos VoIP y la red de Internet.

Gateway VoIP: Conecta redes VoIP con redes telefónicas tradicionales, permitiendo realizar llamadas entre usuarios de VoIP y usuarios de telefonía convencional.

Servidor VoIP: Es un componente central que gestiona las llamadas en una red VoIP, administrando la señalización y el enrutamiento de llamadas.

Teléfono IP: Es un dispositivo similar a un teléfono tradicional, pero diseñado específicamente para trabajar con VoIP.

Componentes de software

Softphone: Es una aplicación de software que permite realizar llamadas telefónicas a través de Internet desde dispositivos como computadoras o smartphones.

Protocolos de la telefonía VolP

(SIP) Session Initiation Protocol: Establecer y finalizar sesiones de comunicación en una red VoIP. Se encarga de la señalización y el control de llamadas.

(IAX) Inter Asterisk eXchange: Se utiliza para la señalización y transporte de voz en redes VoIP.

(RTP) Real-time Transport Protocol: Es utilizado para la transmisión de voz y otros datos en tiempo real a través de Internet.

H.323: Proporciona una arquitectura cliente-servidor para la comunicación entre dispositivos terminales y gateways o gatekeepers con el fin de facilitar las conexiones y gestionar las sesiones de comunicación.

(SCCP) Skinny Call Control Protocol: Se usa para la comunicación entre dispositivos terminales como teléfonos IP y servidores de llamadas.

(IP) Internet Protocol: Se utiliza para transmitir los paquetes de datos de voz entre los dispositivos VoIP a través de Internet o de una red de área local (LAN).

(TCP) Transfer Control Protocol: Se puede utilizar en ciertos aspectos de la señalización y la transmisión de datos en VoIP para garantizar la entrega confiable de los datos.

(UDP) User Datagram Protocol: Es el protocolo más comúnmente utilizado para transmitir los paquetes de voz en tiempo real, ya que ofrece una menor latencia y una transmisión más rápida que TCP.

Contextualización

Empresa llamada EsoTilín S.A. que requiere de la implementación de una red con servicio VoIP, en el que cada empleado tenga acceso a un teléfono IP. La empresa cuenta con:

- 20 empleados en el área de contabilidad y ventas.
- Dos servidores.

Componentes propuestos

Switch Cisco Catalyst 2960

Servidor VoIP

Teléfono IP Grandstream GXP1610

Diseño de la red

Red con topología de estrella, en la que un switch conecta los equipos existentes, y el otro conecta los teléfonos IP.

Se dispone de un servidor adicional para controlar el tráfico de llamadas VoIP y un switch adicional del mismo modelo.

Diseño de la red en Packet Tracer

Cotización

Cantidad de Switches Catalyst 2960 de 24 puertos: 1

Precio por cada uno: \$850.000

Precio total: **\$850.000**

Cantidad de Teléfonos IP Grandstream GXP1610: 20

Precio por cada uno: \$135.003

Precio total: \$2'700.060

Cotización

Marca: Dell

Pagas: \$14,030,900

El Dell PowerEdge R650XS es un servidor en rack de 1U con procesadores Intel Xeon Silver 4310. Ofrece un rendimiento y una flexibilidad excepcionales para una amplia gama de cargas de trabajo, desde aplicaciones empresariales hasta cargas de trabajo de datos y análisis. Modelo: R650XSCOLQ2v1 Cantidad de Servidores Dell PowerEdge R650XS: 1

Precio por cada uno: \$14'030.900

Precio total: **\$14'030.900**

Precio total de los elementos: \$17'580.960

Mano de obra: \$2'637.144

Cotización: \$20'218.104

El proyecto nos brindó una comprensión más profunda del diseño de una red VoIP.

Conclusiones

Exploramos los dispositivos clave necesarios para su funcionamiento.

Aprendimos a seleccionar componentes de red adecuados.

¡Muchas gracias por la atención!

