Fig.1

Fig.2

Fig.3

Fig.4

Ra.0.2 \sim 0.3 μ m Comp. Example 2 Comp. Example 3 Comp. Example (barrel finish) None None None 17% Carbonaceous composite Ra.1.0 μ m Rai 12nm 70% 88 Carbonaceous Ra.0.05 μ m Ra.8nm 80% 2% Comp. Example 1 $Ra.0.05 \mu m$ **Cr or Tin** Ra.50nm None 48% carbonaceous Ra.0.05 μ m composite Ra.10nm Example 65% % indentation depth Ratio of elastic deformation to Protrusion maximum area ratio roughness roughness Coating Surface Surface Torque waveform Pressure:8Kg/cm² Temp: 100°C Property Coating member Base

Fig.5

Fig.7

8