CSCE 222: Discrete Structures for Computing Section 503 Fall 2016

Joseph Martinsen

October 9, 2016

Problem Set 6

Due: 9 October 2016 (Sunday) before 11:59 p.m. on eCampus (ecampus.tamu.edu). You must show your work in order to recieve credit.

Problem 1. (25 points)

- 1. Show that $\sum_{j=1}^{n} (a_j a_{j-1}) = a_n a_0$, where a_0, a_1, \ldots, a_n is a sequence of real numbers. This type of sum is called **telescoping**.
- 2. Sum both sides of the identity $k^2 (k-1)^2 = 2k-1$ from k=1 to k=n and use the previous step to find:
 - a. a formula for $\sum_{k=1}^{n} (2k-1)$.
 - b. a formula for $\sum_{k=1}^{n} k$.
- 3. Use the technique given in step 1, together with the results of step 2, to derive the formula for $\sum_{k=1}^{n} k^2$. Hint: take $a_k = k^3$ in the telescoping sum in step 1.

Solution.

1.

$$\sum_{j=1}^{n} (a_j - a_{j-1}) = a_1 - a_0 + a_2 - a_1 + a_3 - a_2 + a_4 - a_3 \dots + a_n - a_{n-1} + a_{n-1} - a_{n-2} + a_{n-2} - a_{n-3}$$

$$= 91 - a_0 + 92 - 91 + 93 - 92 + 94 - 93 \dots + a_n - a_{n-1} + a_{n-1} - a_{n-2} + a_{n-2} - a_{n-3}$$

$$= a_n - a_0$$

2.

$$\sum_{k=1}^{n} (2k-1) = \sum_{k=1}^{n} k^{2} - (k-1)^{2}$$
Let $a_{k} = k^{2}$

$$= \sum_{k=1}^{n} a_{k} - (a_{k} - 1)^{2}$$

$$= n^{2}$$

$$\sum_{k=1}^{n} (2k-1) = n^{2}$$

$$\sum_{k=1}^{n} 2k - \sum_{k=1}^{n} 1 = n^{2}$$

$$2 \sum_{k=1}^{n} k - n = n^{2}$$

$$2 \sum_{k=1}^{n} k = n^{2} + n$$

$$\sum_{k=1}^{n} k = \frac{n^{2} + n}{2}$$

$$\sum_{k=1}^{n} (2k-1) = \frac{n(n+1)}{2}$$

3.

Let
$$a^k = k^3$$
 so,
 $a_k - a_{k-1} = k^3 - (k-1)^3$
 $k^3 - (k-1)^3 = k^3 - (k^3 - 1 - 3k^2 + 3k)$
 $= 1 + 3k^2 - 3k$
 $k^2 = \frac{k^3 - (k-1)^3 + 3k - 1}{3}$
 $\sum_{k=1}^n k^2 = \frac{1}{3} \sum_{k=1}^n k^3 - (k-1)^3 + 3k - 1$
 $= \frac{1}{3} (\sum_{k=1}^n k^3 - (k-1)^3 + \sum_{k=1}^n 3k - \sum_{k=1}^n 1)$
 $\sum_{k=1}^n k^2 = n^3 - 0 + 3\frac{n(n+1)}{2} - n$
 $\sum_{k=1}^n k^2 = \frac{n(n+1)(2n+1)}{6}$

Problem 2. (25 points)

Solve the recurrence relation:

1.
$$A_n = 2 \cdot A_{n-1} + 3$$
, where $A_0 = 1$

2.
$$A_n = A_{n-1} + 4n - 2$$
, where $A_0 = 1$

Solution.

1.

$$A_n = 2 \cdot A_{n-1} + 3, \text{ where } A_0 = 1$$

$$A_n = 2A_{n-1} + 3$$

$$A_{n-1} = 2A_{n-2} + 3$$

$$A_{n-2} = 2A_{n-3} + 3$$

$$A_n = 2(2(2A_{n-3} + 3) + 3) + 3$$

$$A_n = 2^3 A_{n-3} + 3(3)$$

$$A_n = 2^n A_0 + 3n \text{ Since } A_0 = 1$$

$$A_n = 2^n + 3n$$

2.

$$A_n = A_{n-1} + 4n - 2$$
, where $A_0 = 1$

Problem 3. (25 points)

Let $V = \{S, A, B, a, b\}$ and $T = \{a, b\}$. Find the language generated by the grammar (V, T, S, P) when the set P of production rules consists of

- 1. $S \to AB$, $A \to ab$, $B \to bb$.
- 2. $S \to AB$, $S \to aA$, $A \to a$, $B \to ba$.
- 3. $S \to AB$, $S \to AA$, $A \to aB$, $A \to ab$, $B \to b$.
- 4. $S \to AA$, $S \to B$, $A \to aaA$, $A \to aa$, $B \to bB$, $B \to b$.
- 5. $S \to AB$, $A \to aAb$, $B \to bBa$, $A \to \lambda$, $B \to \lambda$.

Solution.

1. $S \to AB$, $A \to ab$, $B \to bb$.

From S we get AB

From A we now have abB

From B we now have aabb

 \therefore the language is $\{aabb\}$

2. $S \to AB$, $S \to aA$, $A \to a$, $B \to ba$.

From S we get AB

From A we now have aB

From B we now have $\{aba\}$

Also, from S we get aA

From A we now have $\{aa\}$

 \therefore the language is $\{aba, aa\}$

3. $S \to AB$, $S \to AA$, $A \to aB$, $A \to ab$, $B \to b$. From S we get AB

From A we now have aBB

Using B twice we get abb

From S we get AA

From A we now have aBaB

Using B twice we get abab

 \therefore the language is $\{abb, abab\}$

4. $S \to AA$, $S \to B$, $A \to aaA$, $A \to aa$, $B \to bB$, $B \to b$.

From S we get AA

From both A's we forms of A such that aaaa or aaaaaa or aaaaaaa or aaaaaaaa, strings of even a's with minimum size of 4

Using $S \to B$ to dervive B we get forms of b, bb, bbb, such that it results in strings of b greater than 1 \therefore the language is $\{a \cdot 2^n \mid n \geq 2\} \cup \{b^2 \mid n \geq 1\}$

5. $S \to AB$, $A \to aAb$, $B \to bBa$, $A \to \lambda$, $B \to \lambda$ From S we get AB

From A we get aBa all the way to $ababababab \dots AB$ until λ depending on x number of repetitions From B we get abbaAB all the way to $abababababab \dots AB$ until λ depending on y number of repetitions \therefore the language is of the form $\{a^{x+y}b^{x+y} \mid x \geq 0, y \geq 0\}$

Problem 4. (25 points)

Find a phrase-structure grammar for each of these languages.

- 1. the set consisting of the bitstrings 00, 11, and 010.
- 2. the set of bitstrings that start with 10 and end with one or more 1s.
- 3. the set of bitstrings consisting of an odd number of 0s followed by a final 1.
- 4. the set of bitstrings that have neither two consecutive 0s nor two consecutive 1s.

Solution.

Let $V = \{S, A, B, a, b\}$ and $T = \{a, b\}$. Find the language generated by the grammar (V, T, S, P) when the set P of production rules consists of

- 1. the set consisting of the bitstrings 00, 11, and 010. With $L = \{00, 11, 010\}$ The phrase structure gammer of this language is $G = \{V, T, S, P\}$ The Vocabulary $(V) = \{0, 1, S\}$ and the terminal symbols are $T = \{0, 1\}$ The productions are $S \to 00, S \to 11$, and $S \to 010$
- 2. the set of bitstrings that start with 10 and end with one or more 1s. The language $L = \{a : a \text{ is a bit string that starts with 10 and end with one or more 1s}\}$ The phrase structure gammer of this language is $G = \{V, T, S, P\}$ The Vocabulary $(V) = \{0, 1, S, A, B\}$ and the terminal symbols are $T = \{0, 1\}$ The productions are $S \to 10AB$, $A \to AA$, $A \to 1$, $A \to 0$, $B \to BB$, $B \to 1$
- 3. the set of bitstrings consisting of an odd number of 0s followed by a final 1. The language $L = \{a: a \text{ is a bit string of odd number of 0s followed by a final 1} \}$ The phrase structure gammer of this language is $G = \{V, T, S, P\}$ The Vocabulary $(V) = \{0, 1, S, A, B, C\}$ and the terminal symbols are $T = \{0, 1\}$ The productions are $S \to A1, A \to \lambda, A \to BBC, A \to BCB, A \to CBB, B \to CB, B \to BC, B \to 1, C \to 0$
- 4. the set of bitstrings that have neither two consecutive 0s nor two consecutive 1s. The language $L = \{a: a \text{ is a bit string that has neither two consecutive 0s nore two consecutive 1s}$ The phrase structure gammer of this language is $G = \{V, T, S, P\}$ The Vocabulary $(V) = \{0, 1, S, A, B\}$ and the terminal symbols are $T = \{0, 1\}$ The productions are $S \to A, A \to AA, A \to 01, A \to \lambda, S \to B, B \to BB, B \to 10, B \to \lambda$

Aggie Honor Statement: On my honor as an Aggie, I have neither given nor received any unauthorized aid on any portion of the academic work included in this assignment.

Checklist: Did you...

- 1. abide by the Aggie Honor Code?
- 2. solve all problems?
- 3. start a new page for each problem?
- 4. show your work clearly?
- 5. type your solution?
- 6. submit a PDF to eCampus?