COPRIME

CONTINUE PROOF OF EXISTENCE

We have constructed e_p for each prime number p so that $p^{e_p} \mid n$ and have seen that what remains to show is

$$\prod_{p \text{ is prime}} p^{e_p} \mid n.$$

CONTINUE PROOF OF EXISTENCE

We have constructed e_p for each prime number p so that $p^{e_p} \mid n$ and have seen that what remains to show is

$$\prod_{p \text{ is prime}} p^{e_p} \mid n.$$

For this, we need a lemma:

Lemma 2.2.4

Let a, b, n be integers. If $a \mid n, b \mid n$, and gcd(a, b) = 1, then $ab \mid n$.

Proof. Since $a \mid n, b \mid n$, by the defining property of the least common multiple, $lcm(a, b) \mid n$. We have lcm(a, b) = ab since gcd(a, b) = 1.

COPRIME

Definition 2.2.5

Two integers a, b are called *coprime* if gcd(a, b) = 1.

Think this as analogy of being orthogonal.

Example 2.2.6

Two distinct primes p, q are coprime.

Proof. Indeed, since the divisors of p are 1, p, while the divisors of q are 1, q, the only common divisor of p, q is 1.

Lemma 2.2.7

Let a, b, c be integers. If a, b are coprime and a, c are coprime, then a, bc are coprime.

Think this as analogy of "if $a \perp b$ and $a \perp c$, then $a \perp b + c$ ".

Proof. Suppose $\gcd(a,bc)=g$. Let p be the smallest divisor of g other than 1. Then p has to be a prime number, otherwise it will have another divisor d>1, which is also a divisor of g by the transitivity, but this contradicts to the minimality of p. Now, since $p\mid bc$, by the fundamental property of prime, we have either $p\mid b$ or $p\mid c$. But we also have $p\mid a$. Hence, p is a common divisor of either a,b or a,c, which contradicts to $\gcd(a,b)=1$ and $\gcd(a,c)=1$.

BACK TO PROOF OF EXISTENCE

We need to show

$$\prod_{p \text{ is prime}} p^{e_p} \mid n.$$

Let p_1, \dots, p_s be all the prime divisors of n. By example 2.2.6, any two of p_1, \dots, p_s are coprime to each other. Apply lemma 2.2.7 to them, we see that any two of $p_1^{e_{p_1}}, \dots, p_s^{e_{p_s}}$ are coprime to each other.

By lemma 2.2.4, $p_1^{e_{p_1}}p_2^{e_{p_2}}\mid n$ and by lemma 2.2.7, $p_1^{e_{p_1}}p_2^{e_{p_2}}$ is coprime to $p_3^{e_{p_3}}$. Repeat this, we see that $p_1^{e_{p_1}}\cdots p_s^{e_{p_s}}\mid n$.