MATH 644

PROBLEM SET

Contents

Chapter 1	:
Chapter 2	4

Created by: Pierre-Olivier Parisé Fall 2022

Chapter 1

PROBLEM 1. Prove the parallelogram equality:

$$|z + w|^2 + |z - w|^2 = 2(|z|^2 + |w|^2).$$

PROBLEM 2. Let w be a non-zero complex number and let $n \ge 1$ be a positive integer. Using the polar coordinates, find n solutions to $z^n = w$.

PROBLEM 3. Let z be a non-zero complex number. Show that 0, z, iz, and iz+z are the vertices of a square.

PROBLEM 4. Prove that there is no complex number z so that

$$|z| - z = i$$
.

PROBLEM 5. Find all complex numbers z satisfying the equation

$$4z - 3\overline{z} = \frac{1 - 18i}{2 - i}.$$

PROBLEM 6. Suppose that f is a continuous complex-valued function on a real interval [a, b]. Let

$$A = \frac{1}{b-a} \int_a^b f(x) \, dx.$$

- a) Show that if $|f(x)| \leq |A|$ for all $x \in [a, b]$, then $f \equiv A$.
- **b)** Show that if $|A| = \frac{1}{b-a} \int_a^b |f(x)| dx$, then arg f is constant modulo 2π on $\{z : f(z) \neq 0\}$.

PROBLEM 7. Describe geometrically the following subsets:

a) Re $z = \operatorname{Im} z$.

c) Im z > 0.

b) Re z > 0.

d) $\frac{\pi}{6} < \arg z < \frac{\pi}{4}$.

PROBLEM 8. Let $\mathbb{T} := \{z \in \mathbb{C} : |z| = 1\}$. Prove that \mathbb{T} equipped with the complex multiplication is a commutative group.

PROBLEM 9. Suppose that $\lim_{n\to\infty} w_n = w$. Is it true then that also

$$\lim_{n\to\infty}\arg w_n=\arg w?$$

PROBLEM 10. Let $\{z_n\}$ be a sequence of complex numbers such that $\sum_{n=0}^{\infty} z_n$ converges and there is a ϕ such that $|\arg z_n| \le \phi < \frac{\pi}{2}$ for any $n \ge 0$. Show that the series $\sum_{n=0}^{\infty} z_n$ is absolutely convergent.

PROBLEM 11. Let \mathbb{C}^* be the extended plane, let \mathbb{S}^2 be the sphere $\{(X,Y,Z): X^2+Y^2+Z^2=1\}$ and let $\pi:\mathbb{C}^*\to\mathbb{S}^2$ be the stereographic projection with $\pi(\infty)=(0,0,1)$.

- a) Show that straight lines in \mathbb{C} correspond exactly to circles on \mathbb{S}^2 passing through (0,0,1).
- **b)** Show that if $z \neq \infty$, then

$$\chi(z,\infty) = \frac{2}{\sqrt{1+|z|^2}}.$$

c) Using the explicit formula of χ in terms of z and w, show that, for any $z, w \in \mathbb{C}^*$,

$$0 \le \chi(z, w) \le 2.$$

Chapter 2

PROBLEM 12. For what values of z is

$$\sum_{n=0}^{\infty} \left(\frac{z}{1+z} \right)^n$$

convergent? Draw a picture of the region.

PROBLEM 13. Suppose that $\sum_{n\geq 0} a_n (z-z_0)^n$ is a formal power series. Suppose that

$$R := \lim_{n \to \infty} \left| \frac{a_{n+1}}{a_n} \right|$$

exists and is finite.

- a) Show that the power series converges in $\{z : |z z_0| < R\}$.
- **b)** Show that the power series diverges in $\{z: |z-z_0| > R\}$.

PROBLEM 14. Prove the following assertions.

- a) If f and g are analytic at z_0 , then $(f+g)'(z_0) = f'(z_0) + g'(z_0)$ (Sum rule of differentiation for analytic functions).
- **b)** If f and g are analytic at z_0 , then $(fg)'(z_0) = f'(z_0)g(z_0) + f(z_0)g'(z_0)$ (Product Rule of differentiation for analytic functions).
- c) If f and g are analytic at z_0 with $g(z_0) \neq 0$, then $(fg)'(z_0) = \frac{f'(z_0)g(z_0) f(z_0)g'(z_0)}{(g(z_0))^2}$ (Quotient rule of differentiation for analytic functions).
- d) If f is analytic at z_0 and g is analytic at $f(z_0)$, then $(g \circ f)'(z_0) = g'(f(z_0))f'(z_0)$ (Chain Rule of differentiation for analytic functions).

Find the derivative of $(z-a)^{-n}$, where n is a positive integer and $a \in \mathbb{C}$.

PROBLEM 15. Define $e^z = \exp(z) := \sum_{n \ge 0} \frac{z^n}{n!}$.

- a) Show that this series converges for all $z \in \mathbb{C}$.
- **b)** Show that $e^z e^w = e^{z+w}$ (using the power series definition).
- c) Show that $|e^z| = e^{\operatorname{Re} z}$ and $\arg e^z = \operatorname{Im} z$.
- d) Show that $\frac{d}{dz}e^z = e^z$.
- e) Compute the integral

$$\int e^{nt} \cos(mt) \, dt.$$

[Hint: Rewrite cos(mt) as a complex exponential.]

f) Show that, for any non-zero integer n,

$$\int_0^{2\pi} e^{int} \, dt = 0.$$

PROBLEM 16. Suppose $\sum_{j=0}^{\infty} |a_j|^2 < \infty$.

- a) Show that $f(z) = \sum_{j=0}^{\infty} a_j z^j$ is analytic in $\{z : |z| < 1\}$.
- **b)** Compute (with a proof) the following quantity:

$$\lim_{r \to 1^-} \int_0^{2\pi} |f(re^{i\theta})|^2 \, \frac{d\theta}{2\pi}.$$

PROBLEM 17. Suppose f has a power series expansion at 0 which converges in all of \mathbb{C} . Suppose also that $\int_{\mathbb{C}} |f(x+iy)| dxdy < \infty$. Prove that $f \equiv 0$.

PROBLEM 18. Suppose f is analytic in a connected open set U such that, for each $z \in U$, there exists an n (depending on z) such that $f^{(n)}(z) = 0$. Prove that f is a polynomial.

PROBLEM 19. Let f be analytic in a region U containing the point z = 0. Suppose $|f(1/n)| < e^{-n}$ for $n \ge n_0$, for some integer $n_0 \ge 0$. Prove $f \equiv 0$.

PROBLEM 20. Suppose that $f(z) = az^3 + bz^2 + cz + d$. In addition, suppose that for each $z, w \in \mathbb{C}$ there exists a point ζ on the line segment between z and w with

$$\frac{f(z) - f(w)}{z - w} = f'(\zeta).$$

Show that a = 0.

PROBLEM 21. [Hard] Let $f(z) = \sum_{n=0}^{\infty} a_n z^n$ have radius of convergence 1 and suppose that $a_n \geq 0$ for all n. Prove that z = 1 is a singular point of f. That is, there is no function g analytic in a ball B containing z = 1 such that f = g on $B \cap D$.