UM-SJTU JOINT INSTITUTE

Introduction to Algorithms (VE477)

Homework #6

Prof. Manuel

Xinmiao Yu 518021910792

Nov. 6, 2020

Q1.

1. Denote that $L = l_1, l_2, ..., l_n$ and $R = r_1, r_2, ..., r_n, i, j \leq n$. As the matrix A is defined as

$$a_{i,j} = \begin{cases} X_{i,j}, & (l_i, r_j) \in E, \\ 0, & (l_i, r_j) \notin E \end{cases}$$

and the expression of determinant is

$$Det(A) = \sum_{\pi \in S_n} (-1)^{sgn(\pi)} \prod_{i=1}^n a_{i,\pi(i)},$$

where S_n is the set of all permutations on [n] and $sgn(\pi)$ is the sign of the permutation π .

There is a one to one correspondence between a permutation $\pi \in S$ and a possibly exists perfect matching $\{(l_1, r_{\pi(1)}), (l_2, r_{\pi(2)}), ..., (l_n, r_{\pi(n)})\}$. As for not perfect matching case, $\Pi_{i=1}^n a_{i,\pi(i)}$ will be zero. Then we could denote the set of perfect matchings in G as P, and the determinant could be rewritten as

$$Det(A) = \sum_{\pi \in P} (-1)^{sgn(\pi)} \prod_{i=1}^{n} X_{i,\pi(i)}$$

If G has no perfect matching, then the set $P = \emptyset$. Therefore, the determinant is identically zero.

If the determinant is identically zero, this only happens when the summation of all the term is zero, which is same as $P = \emptyset$ and no perfect matching exist.

So Det(A) is identically zero if and only if G as no perfect matching.

2. Then to detect whether a perfect matching exist is same as if a multivariate polynomial of degree at most n is equivalent to 0. At most n! terms will be in the Det(A).

Assign random weight for each edge $\in E$ such that $w_{ij} \in \{1, 2, ..., 2m\}$, where m = |E|, by the isolating lemma, the minimum weight perfect matching in G will be unique with probability at least 1/2. Set each $X_{i,j} = 2^{w_{ij}}$. Let A_{ij} be the matrix obtained from A by removing the i^{th} row and j^{th} column.

Suppose there is a perfect matching P has a unique minimum weight W. Then with two lemma

- $Det(A) \neq 0$ and the highest power of 2 that divides Det(A) is 2^{W} .
- Edge (i,j) belongs to P if and only if $Det(A_{ij}/2^{W-w_{ij}})$ is odd.

Algorithm 1: randomized algorithm to find a perfect matching

```
Input: graph G = (V, E), V = L \cup R, L \cap R = \emptyset
Output: whether exists a perfect matching

1 Choose n^2 integers from w_{ij} \in \{1, 2, ..., 2m\} randomly

2 Compute Det(A) by Gaussian elimination

3 Compute adj(A) and recover each Det(B_{ij})

4 for each\ edge \in E do

5 | if Det(A_{ij})/2^{W-w_{ij}} is odd then

6 | add the edge to M

7 | end if

8 end for
```

- 3. Time complexity $\mathcal{O}(nlogn)$. If we run the algorithm for k times and output noper fectmatching if and only if all says no, then the error probability is 2^{-k} .
- 4. The deterministic polynomial time algorithm is to reduce this problem to the max-flow problem as discussed in the lecture. It is not useful for parallel algorithms.

Then this algorithm still viewed as useful, as the error probability could be reduced to a rather low level.

Reference: web.stanford.edu/class/msande319/MatchingSpring19/lecture01.pdf

Q2.

The basic idea is to hold two pointers, one fast and one slow.

1. Find the middle one, when even number n of nodes, will return (n/2 + 1)-th node (assume the first one as index 1).

```
Algorithm 2: Find the middle node
   Input: the head of a singly linked list
   Output: the middle node of the list
 1 slow \leftarrow head
 2 fast \leftarrow head
 3 while fast is not None do
       fast \leftarrow fast.next
       if fast is None then
 5
          return slow
 6
       end if
 7
       fast \leftarrow fast.next
 8
       slow \leftarrow slow.next
10 end while
11 return slow
```

2. Detect whether a list contains a cycle.

```
Algorithm 3: Detect cycle
   Input: the head of a singly linked list
   Output: whether exists a cycle
 1 slow \leftarrow head
 2 fast \leftarrow head
 3 while fast and slow not None do
       if fast.next is None then
          return False
 \mathbf{5}
       end if
 6
       fast \leftarrow fast.next.next
       slow \leftarrow slow.next
 8
       if fast == slow then
 9
          return True
10
       end if
11
12 end while
13 return False
```

With the linked list of n nodes, the time complexity is $\mathcal{O}(n)$.

Q3.

- 1. At least n boxes, for each time obtain a coupon not appeared before.
- 2. From the definition of X and X_j , $X = X_1 + ... + X_j + ... + X_n$. The probability of collecting coupon j given that already obtain j-1 coupon is $P_j = \frac{n-(j-1)}{n}$. Therefore, X_j is a geometric distribution with expectation

$$E[X_j] = \frac{1}{P_j} = \frac{n}{n - j + 1}$$

3. To prove $E[X] = \Theta(nlogn)$

$$E[X] = E[X_1] + E[X_1] + \dots + E[X_j] + \dots + E[X_n]$$

$$= \frac{n}{n} + \frac{n}{n-1} + \dots + \frac{n}{n-j+1} + \dots + \frac{n}{1}$$

$$= n \sum_{i=1}^{n} \frac{1}{i} \approx n \int_{1}^{n} \frac{1}{x} dx$$

$$= n \log n$$

4. Find that for any $1 \le i < j \le n$, $E[X_j] > E[X_i]$. So more coupons have already get, more coupons need to buy for collecting a new kind of coupon.