Übungsblatt 4 – Cerberus

Aufgabe 1

1)

Eine direkte Rechnung über die Funktion

$$F_j = \sum_{l=0}^{N-1} \Omega_N^{j,l} f_l \tag{1}$$

 mit

$$\Omega_N^{j,l} = (e^{2\pi i \cdot \frac{j}{N}})^l = \left((-1)^{\frac{2j}{N}} \right)^l \tag{2}$$

$$f_l = \sqrt{1+l}$$

$$N = 2^m$$
(3)

$$N = 2^m \tag{4}$$

Die Ergebnisse für m=3 und m=4 befinden sich in Tabelle 1 bzw 2.

Tabelle 1: Ergebnisse für m = 3.

f_i	Direkt	FFT
f_1	$-1.3823 - i \cdot 2.23154$	-
f_2	$-1.1417 - i \cdot 0.96472$	-
f_3	$-1.0898 - i \cdot 0.40413$	-
f_4	$-1.0782 + i \cdot 1.36888e - 15$	-
f_5	$-1.0898 + i \cdot 0.40413$	-
f_6	$-1.1417 + i \cdot 0.96472$	-
f_7	$-1.3823 + i \cdot 2.23154$	-
f_8	$16.306 - i \cdot 1.65924e - 14$	-

$$f = (-1.3823 - i \cdot 2.23154 - 1.1417 - i \cdot 0.96472 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 1.36888e - 15 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 1.36888e - 15 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 1.36888e - 15 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 1.36888e - 15 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 1.36888e - 15 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 1.36888e - 15 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 1.36888e - 15 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 1.36888e - 15 - 1.0898 - i \cdot 0.40413 - 1.0782 + i \cdot 0.40413 - 0.0898 + i \cdot 0.40413 + i \cdot 0.40414 +$$

2)

- a) arrogance and total loss of all senses!
- Für die analytische Lösung der Fouriertransformation von

$$f(x) = \exp\left(-\frac{x^2}{2}\right) \tag{6}$$

Tabelle 2: Ergebnisse für m = 4.

f_i	Direkt	FFT
f_1	$-2.85108 - i \cdot 7.02149$	-
f_2	$-2.01863 - i \cdot 3.57652$	-
f_3	$-1.80909 - i \cdot 2.26138$	-
f_4	$-1.72579 - i \cdot 1.52489$	-
f_5	$-1.68555 - i \cdot 1.02385$	-
f_6	$-1.66461 - i \cdot 0.63639$	-
f_7	$-1.65427 - i \cdot 0.30602$	-
f_8	$-1.65114 + i \cdot 1.71106e - 14$	-
f_9	$-1.65427 + i \cdot 0.30602$	-
f_{10}	$-1.66461 + i \cdot 0.63639$	-
f_{11}	$-1.68555 + i \cdot 1.02385$	-
f_{12}	$-1.72579 + i \cdot 1.52489$	-
f_{13}	$-1.80909 + i \cdot 2.26138$	-
f_{14}	$-2.01863 + i \cdot 3.57652$	-
f_{15}	$-2.85108 + i \cdot 7.02149$	-
f_{16}	$44.4692 - i \cdot 1.23835e - 13$	

Ergibt sich

$$F(k) = \frac{1}{2\pi} \int_{-\infty}^{\infty} \exp\left(-\frac{x^2}{2}\right) \exp(ikx) dx = \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{k^2}{2}\right)$$
 (7)

Der Vergleich zwischen der analytischen und numerischen Lösung für ein Intervall von [-10, 10] befindet sich in Abbildung \ref{log} .

3)

In dieser Teilaufgabe werden die komplexen Fourierkoeffizienten \boldsymbol{c}_n von

$$f(x) = \begin{cases} -1, x \in [-\pi, 0] \\ 1, x \in (0, \pi) \end{cases}$$
 (8)

für m=7 bestimmt. Analytisch ergibt sich c_n durch

$$c_n = \frac{1}{2} \left(a_n + ib_n \right) \tag{9}$$

$$a_n = \frac{2}{L} \int_L f(x) \cdot \cos(2\pi \frac{n}{L}) dx \tag{10}$$

$$b_n = \frac{2}{L} \int_L f(x) \cdot \sin(2\pi \frac{n}{L}) dx \tag{11}$$

Mit Gleichung (8) ergibt sich

$$a_n = 0$$
 für alle n (12)

$$b_n = \frac{1}{n} \cdot \frac{4}{\pi} \text{ für ungerade n} \tag{13}$$

$$a_n = 0$$
 für alle n (12)
$$b_n = \frac{1}{n} \cdot \frac{4}{\pi}$$
 für ungerade n (13)
$$c_n = i \cdot \frac{1}{n} \cdot \frac{4}{\pi}$$
 für ungerade n (14)