<u>Pirected</u> Sets

(3)
$$\mathcal{N} = Nhd_S \text{ of } X \in X, \qquad \mathcal{U} \leq V \iff \mathcal{U} \geq V.$$

Nets directed set
$$I \longrightarrow X$$
. denoted $(X_{\alpha})_{\alpha \in I}$ or $(X_{\alpha})_{\alpha \in I}$

$$I = N \sim S$$
 sequences

(2)
$$I = P$$
, $f: [a,b] \rightarrow R$, $S_p = \sum_{i=1}^{n} f(x_i) (x_i - x_{i-1})$. $(S_p)_{p \in P}$.

If S is a subset of X aw
$$\langle x_{\kappa} \rangle_{\kappa \in I}$$
 is a net

X a topological space

 $\langle x_{\alpha} \rangle$ converges to $x \in X$ if \forall Nhd S of x, $\langle x_{\alpha} \rangle$ is eventually in S.

X = X is a cluster point of (xx) if Y hhd 5 of x,
 (xx) is frequently in S.

(X, T) top space.

Propl for ACX, TFAE

O x is an accumulation point of A young war, Anuly & p.

② I a net in A' [x] that converges to x

Pf $0 \Rightarrow 2$ Choose I = nbhd base at x, u > v if $u \le v$.

For the mapping $U \mapsto \chi_u$ take χ_u to be any point in $A_n U \{x\}$.

For any $nhd S \ni x$, $\exists T \in I$ with $x \in T \in S$.

daim: (Xu) is eventually in S.

If U>T, so UCT, then UCS and xu∈UCS.

Given a net $\langle x_{\alpha} \rangle \omega / x_{\alpha} \in A \setminus \{x\}$ that converges to x, This means \forall inholds of x, $x_{\alpha} \in S$ for $\alpha \ge \alpha$. (For some α .). So $X_{\alpha} \in S \cap A \setminus \{x\}$. So x is an accumulation pt.

Cor "If a net (Xx) < A converges, then the limit x ∈ A"
means the same thing as "A is closed".

Prop2 X is Hausdorff iff any convergent net has a unique limit.

$$\stackrel{e_{3}}{=}$$
 (#37) $\stackrel{o_{2}}{\longleftarrow}$ not Hausdorff

Pf" \Rightarrow " is clear: if $(x_{\alpha}) \rightarrow x$ then $\forall y \neq x$, choose disjoint open sets $u \ni x$, $v \ni y$. x_{α} is eventually in u, and if $(x_{\alpha}) \rightarrow y$ then x_{α} eventually in $v \mapsto v$ too.

So $\exists x_{\beta} \in u$ and in $v \mapsto v$, but this is a contradiction.

Pinched Set staff

"E" contrapositive. Suppose X is not Hausdorff. so 3 x + y
s.t. if U > x, V > y are nhds then UnV ≠ \omega.

Let
$$I = nbhd$$
 base for x , $J = nbhd$ base for y . Define a net on $I \times J$ s.t. $x_{(u,v)} \in U \cap V$. Then $(x_{u,v}) \xrightarrow{\gamma} x$.

Convergence of Real-valued functions

uniform convergence is in metric sp. w/ If I = sup | fixil.

Point wise convergence ??

$$\frac{\text{Prop3}}{\text{Frop3}} \quad f: X \longrightarrow Y \quad \text{cts} \quad ((X, \tau), (Y, \theta) \text{ top spaces}).$$

$$\iff Y \quad \text{convergent} \quad \text{net} \quad \langle x_A \rangle \longrightarrow X \quad \text{in} \quad X,$$

$$\langle f(x_A) \rangle \longrightarrow \langle f(x_A) \rangle \quad \text{in} \quad Y.$$