21/01/25

AIM: To implement linear regression on a time series data.

IMPLEMENTATION:

import pandas as pd

from sklearn.model_selection import train_test_split

from sklearn.linear_model import LinearRegression

import matplotlib.pyplot as plt

Load the dataset

file_path = "Electric_Production.csv"

df = pd.read_csv(file_path)

Convert DATE to a numerical format

df["DATE"] = pd.to_datetime(df["DATE"])

df["DATE_ORDINAL"] = df["DATE"].map(pd.Timestamp.toordinal)

Define features (X) and target variable (Y)

 $X = df[["DATE_ORDINAL"]]$

y = df["IPG2211A2N"]

Split data into training and testing sets

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2, random_state=42)

Train the linear regression model

```
model = LinearRegression()
model.fit(X_train, y_train)
```

Model coefficients

```
print(f"Slope: {model.coef_[0]}")
print(f"Intercept: {model.intercept_}")
```

Make predictions

```
y_pred = model.predict(X_test)
```

Plot the regression line

```
plt.scatter(X_test, y_test, color='blue', label='Actual Data')

plt.plot(X_test, y_pred, color='red', linewidth=2, label='Regression Line')

plt.xlabel("Date (Ordinal)")

plt.ylabel("Electric Production")

plt.title("Simple Linear Regression on Electric Production Data")

plt.legend()

plt.show()
```

OUTPUT:

 \boldsymbol{RESULT} : Thus linear regression has been implemented on a time series data.