Pattern Recognition Report3 Chapter3

 $\begin{array}{c} {\rm Wu~Bingzhe} \\ {\rm 1200010666} \end{array}$ The school of mathmatical science

October 19, 2015

1 Question1

In my program of this question, function u1.m compute question(a), u2.m for question(b), u3.m for question(c), u4.m for question(d).

1.1 (a)

According to the maximum likelihood estimation on the Gaussian distribution, we can get :

$$\hat{\mu} = \frac{1}{N} \sigma_{k=1} N x_k \tag{1}$$

$$\hat{\Sigma} = \frac{1}{N} \sum_{k=1}^{N} (x_k - \hat{\mu})(x_k - \hat{\mu})^T$$
(2)

In terms of (1) and (2), we could compute the value of the parameters by the program . The results are as follows:

feature	$\hat{\mu}$	$\hat{\sigma}^2$
x_1	-0.0709	0.9062
x_2	-0.6047	4.2007
x_3	-0.9110	4.5419

1.2 (b)

Similar with (1) and (2), we can get the results as follows:

$$\begin{array}{lll} \mu_{12} = (-0.0709, -0.6047)^T & \Sigma_{12} = & \begin{array}{ll} 0.9062 & 0.5678 \\ 0.5678 & 4.2007 \end{array} \\ \mu_{23} = (-0.6047, -0.9110)^T & \Sigma_{23} = & \begin{array}{ll} 4.2007 & 0.7337 \\ 0.7337 & 44.5419 \end{array} \\ \mu_{13} = (-0.0709, -0.9110)^T & \Sigma_{13} = & \begin{array}{ll} 0.9062 & 0.3941 \\ 0.3941 & 4.5419 \end{array} \end{array}$$

1.3 (c)

According to (1) and (2), we get the results as follows:

$$\mu = (-0.0709, -0.6047, -0.9110)^{T}$$

$$\Sigma = \begin{bmatrix} 0.9062 & 0.5678 & -0.9110 \\ 0.5678 & 4.2007 & 0.7337 \\ 0.3941 & 0.7337 & 4.5419 \end{bmatrix}$$

1.4 (d)

The results computed by the program :

$$\mu = (-0.1126, 0.4299, 0.0037)^{T}$$

$$\Sigma = \begin{pmatrix} 0.0539 & 0 & 0 \\ 0 & 0.0460 & 0 \\ 0 & 0 & 0.0073 \end{pmatrix}$$

1.5 (e)

The value of μ_i computed by the first three algorithms are the same. In terms of that the estimate of μ is not affected by other dimensional data. So we have the same results .

Similar ,the forth method's results are the same .

$1.6 \quad (f)$

According to the forms of (2). The results are the same.

2 Question2

- 2.1 (a)
- 2.2 (b)