Table 9.4.1: Total displacements* of node 17 (at the free end) in a cantilevered plate under uniform load; obtained with the $updated\ Lagrangian\ formulation\ (5Q8)$.

	3	× 3 Gauss	s rule for	K	2×2 Gauss rule for K			
$f_0 = q_0 h$	x	-y	-u	-v	x	-y	-u	-v
50	9.9787 10.0000	$0.1145 \\ 0.1164$	0.0213 0.0000	$0.6145 \\ 0.6164$	9.9786 10.0000	0.1163 0.1181	0.0214 0.0000	0.6163 0.6181
100	9.9159 9.9690	$0.7181 \\ 0.2686$	$0.0841 \\ 0.0310$	$\begin{array}{c} 1.2181 \\ 0.7686 \end{array}$	9.9155 9.9689	$0.7225 \\ 0.2707$	$0.0845 \\ 0.0311$	$\begin{array}{c} 1.2225 \\ 0.7707 \end{array}$
150	9.8152 9.8901	1.3010 1.1644	$0.1848 \\ 0.1099$	1.8010 1.6644	9.8138 9.8896	1.3091 1.1698	$0.1862 \\ 0.1104$	1.8091 1.6698
200	9.6816 9.8272	$1.8554 \\ 1.2658$	$0.3184 \\ 0.1728$	2.3554 1.7658	9.6785 9.8264	$1.8688 \\ 1.2719$	$0.3215 \\ 0.1736$	2.3688 1.7719
250	9.5212 9.6208	2.3758 2.2693	$0.4788 \\ 0.3792$	2.8758 2.7693	9.5152 9.6183	2.3960 2.2818	$0.4848 \\ 0.3817$	2.8960 2.7818
300	9.3402 9.5421	2.8593 2.3359	$0.6598 \\ 0.4579$	3.3593 2.8359	$9.3300 \\ 9.5387$	2.8874 2.3493	$0.6699 \\ 0.4613$	3.3874 2.8493
350	9.1444 9.2429	$3.3046 \\ 3.2102$	$0.8556 \\ 0.7571$	$3.8046 \\ 3.7102$	9.1288 9.2347	$3.3417 \\ 3.2350$	$0.8712 \\ 0.7653$	3.8417 3.7350
400	8.9391 9.1659	$3.7125 \\ 3.2796$	1.0609 0.8341	$4.2125 \\ 3.7796$	8.9167 9.1561	3.7587 3.3051	1.0833 0.8439	4.2587 3.8051
450	8.7284 8.8026	4.0846 4.0388	1.2716 1.1974	$4.5846 \\ 4.5388$	$8.6984 \\ 8.7828$	$4.1398 \\ 4.0812$	$1.3016 \\ 1.2172$	$4.6398 \\ 4.5812$
500	8.5160 8.7266	$4.4229 \\ 4.1054$	$1.4840 \\ 1.2734$	$4.9229 \\ 4.6054$	8.4776 8.7046	4.4871 4.1480	$1.5224 \\ 1.2954$	4.9871 4.6480
550	8.3046 8.3545	$4.7302 \\ 4.7083$	1.6954 1.6455	5.2302 5.2083	8.2571 8.3179	4.8028 4.7692	$1.7429 \\ 1.6821$	5.3028 5.2692
600	8.0962 8.2768	5.0093 4.7839	$1.9038 \\ 1.7232$	5.5093 5.2839	8.0392 8.2380	5.0897 4.8448	1.9608 1.7620	5.5897 5.3448
650	7.8922 7.9257	5.2628 5.2508	2.1078 2.0743	5.7628 5.7508	7.8270 7.8691	5.3480 5.3291	2.1730 2.1309	5.8480 5.8291
700	7.6937 7.8407	5.4933 5.3368	2.3063 2.1593	5.9933 5.8368	7.6195 7.7820	5.5843 5.4146	2.3805 2.2180	6.0843 5.9146
750	7.5013 7.5280	5.7031 5.6913	2.4987 2.4720	6.2031 6.1913	7.4180 7.4510	5.7995 5.7835	2.5820 2.5490	6.2995 6.2835
800	7.3171 7.4303	5.8922 5.7881	2.6829 2.5697	6.3922 6.2881	7.2233 7.3514	5.9956 5.8796	2.7767 2.6486	6.4956 6.3796
850	7.1384 7.1618	6.0668 6.0550	2.8616 2.8382	6.5668 6.5550	7.0356 7.0657	$6.1746 \\ 6.1576$	2.9644 2.9343	$6.6746 \\ 6.657$
900	6.9664 7.0488	6.2268 6.1600	3.0336 2.9512	6.7268 6.6600	6.8550 6.9505	6.3383 6.2621	3.1450 3.0495	6.8383 6.7621

^{*}The first row corresponds to solution with iteration and the second row corresponds to the solution with no iteration.

Table 9.4.2: Stresses* $(\times 10^{-5})$ evaluated at the left-most Gauss point nearest to the top of element 1 in a cantilevered plate under uniform load; obtained with the *updated Lagrangian formulation* and 5Q8 mesh (X=0.42265 and Y=0.788675).

			Cauchy stress components			Piola–Kirchhoff stress components			
$f_0 = q_0 h$	x	y	$\bar{\sigma}_{xx}$	$ar{\sigma}_{yy}$	$-\bar{\sigma}_{xy}$	\bar{S}_{XX}	\bar{S}_{YY}	$-\bar{S}_{XY}$	
50	0.4253 0.4254	0.7861 0.7860	0.7776 0.7929	0.1819 0.1840	0.0539 0.0545	0.7885 0.8042	0.1840 0.1862	0.0487 0.0491	
100	$0.4280 \\ 0.4282$	$0.7835 \\ 0.7833$	$1.5457 \\ 1.5779$	$0.3578 \\ 0.3584$	$0.1198 \\ 0.1220$	$1.5894 \\ 1.6236$	$0.3661 \\ 0.3670$	0.0994 0.1004	
150	$0.4308 \\ 0.4310$	$0.7810 \\ 0.7806$	2.2962 2.3476	$0.5268 \\ 0.5225$	$0.1975 \\ 0.2022$	2.3950 2.4514	$0.5448 \\ 0.5416$	$0.1521 \\ 0.1540$	
200	0.4335 0.4339	$0.7783 \\ 0.7779$	3.0226 3.0961	$0.6880 \\ 0.6761$	$0.2861 \\ 0.2943$	$3.1978 \\ 3.2812$	$0.7191 \\ 0.7093$	$0.2070 \\ 0.2097$	
250	$0.4362 \\ 0.4367$	$0.7757 \\ 0.7752$	$3.7200 \\ 3.8185$	$0.8411 \\ 0.8193$	$0.3845 \\ 0.3970$	3.9918 4.1075	$0.8880 \\ 0.8700$	$0.2640 \\ 0.2671$	
300	0.4389 0.4396	$0.7731 \\ 0.7724$	$4.3854 \\ 4.5117$	$0.9863 \\ 0.9527$	$0.4915 \\ 0.5092$	$4.7721 \\ 4.9255$	$1.0509 \\ 1.0232$	$0.3230 \\ 0.3261$	
350	$0.4415 \\ 0.4424$	$0.7706 \\ 0.7697$	5.0172 5.1731	$1.1237 \\ 1.0766$	0.6057 0.6293	5.5354 5.7310	1.2076 1.1693	$0.3838 \\ 0.3864$	
400	$0.4441 \\ 0.4452$	$0.7680 \\ 0.7670$	5.6151 5.8027	$1.2537 \\ 1.1921$	$0.7258 \\ 0.7562$	6.2795 6.5221	1.3579 1.3086	$0.4461 \\ 0.4476$	
450	$0.4466 \\ 0.4478$	$0.7655 \\ 0.7643$	6.1793 6.400	1.3767 1.3000	0.8507 0.8886	7.0025 7.2971	1.5018 1.4414	$0.5098 \\ 0.5096$	
500	$0.4491 \\ 0.4505$	$0.7630 \\ 0.7617$	6.7118 6.9668	1.4933 1.4004	0.9793 1.0254	7.7050 8.0548	1.6396 1.5682	$0.5746 \\ 0.5721$	
550	$0.4514 \\ 0.4531$	$0.7605 \\ 0.7590$	7.2141 7.5032	1.6040 1.4948	1.1108 1.1658	8.3870 8.7948	1.7716 1.6894	$0.6402 \\ 0.6349$	
600	$0.4536 \\ 0.4556$	$0.7580 \\ 0.7564$	7.6879 8.0111	1.7093 1.5836	1.2444 1.3088	9.0489 9.5172	1.8981 1.8055	$0.7064 \\ 0.6978$	
650	$0.4558 \\ 0.4580$	$0.7556 \\ 0.7540$	8.1352 8.4794	1.8096 1.6631	1.3795 1.4502	9.6916 10.2038	2.0193 1.9118	$0.7731 \\ 0.7597$	
700	0.4579 0.4603	0.7532 0.7514	8.5579 8.9337	1.9055 1.7422	1.5157 1.5961	10.3161 10.8897	2.1356 2.0184	0.8402 0.8225	
750	$0.4600 \\ 0.4626$	0.7508 0.7489	8.9577 9.3650	1.9973 1.8176	1.6525 1.7431	10.9233 11.5602	2.2474 2.1212	0.9074 0.8851	
800	0.4619 0.4649	0.7486 0.7464	9.3272 9.7742	2.0817 1.8897	1.7862 1.8907	11.4997 12.2153	2.3511 2.2205	0.9736 0.9474	
850	0.4638 0.4670	0.7463 0.7440	9.6857 10.1628	2.1660 1.9588	1.9230 2.0385	12.0742 12.8557	2.4544 2.3166	1.0408 1.0094	
900	0.4657 0.4692	0.7440 0.7416	10.0265 10.5321	2.2473 2.0253	2.0598 2.1864	12.6351 13.4821	2.5542 2.4097	1.1080 1.0710	

^{*}The first row corresponds to the 3×3 Gauss rule for the evaluation of **K** and the second row corresponds to the 2×2 Gauss rule for the evaluation of **K**.

Fig. 9.4.2: Node 17 displacements -v and -u versus load $f_0 = q_0 h$ (obtained with the UL formulation).

Fig. 9.4.3: Stresses versus load $f_0 = q_0 h$ (obtained with the UL formulation).

The mesh of five nine-node quadratic elements also gives almost identical results for displacements (u, v) and stresses $(\sigma_{xx}, \sigma_{xy})$, as can be seen from Table 9.4.3. The stiffness coefficients were computed using the 3×3 Gauss rule while stresses were calculated at the 2×2 Gauss point locations.

Table 9.4.3: Total displacements of node 22 and stresses* $(\times 10^{-5})$ in a cantilevered plate under uniform load; obtained with the *updated Lagrangian formulation* and the mesh of 5Q9 elements $(3 \times 3 \text{ Gauss rule for } \mathbf{K} \text{ and } 2 \times 2 \text{ Gauss rule for stresses})$.

$f_0 = q_0 h$	x	-y	u	v	x	y	σ_{xx}	$-\sigma_{xy}$
50	9.9782	0.1218	0.0218	0.6218	0.4254	0.7860	0.7759	0.0549
					0.4226	0.7887	0.7877	0.0485
100	9.9142	0.7323	0.0858	1.2323	0.4282	0.7833	1.5429	0.1239
					0.4226	0.7887	1.5904	0.0986
150	9.8115	1.3214	0.1885	1.8214	0.4311	0.7806	2.2924	0.2065
					0.4226	0.7887	2.3997	0.1504
200	9.6754	1.8810	0.3246	2.3810	0.4340	0.7780	3.0175	0.3018
					0.4226	0.7887	3.2081	0.2041
250	9.5123	2.4057	0.4877	2.9057	0.4368	0.7753	3.7131	0.4084
					0.4226	0.7887	4.0087	0.2597
300	9.3286	2.8923	0.6714	3.3923	0.4396	0.7726	4.3758	0.5249
					0.4226	0.7887	4.7966	0.3171
350	9.1301	3.3400	0.8699	3.8400	0.4424	0.7699	5.0042	0.6497
					0.4226	0.7887	5.5681	0.3764
400	8.9224	3.7494	1.0776	4.2494	0.4450	0.7673	5.5980	0.7814
					0.4226	0.7887	6.3207	0.4372
450	8.7095	4.1224	1.2905	4.6224	0.4476	0.7646	6.1572	0.9185
					0.4226	0.7887	7.0524	0.4994
500	8.4953	4.4611	1.5047	4.9611	0.4501	0.7621	6.6840	1.0600
					0.4226	0.7887	7.7638	0.5628
550	8.2823	4.7684	1.7177	5.2684	0.4525	0.7595	7.1800	1.2047
					0.4226	0.7887	8.4548	0.6272
600	8.0725	5.0472	1.9275	5.5472	0.4549	0.7570	7.6470	1.3521
					0.4226	0.7887	9.1257	0.6925
650	7.8675	5.3002	2.1325	5.8002	0.4572	0.7545	8.0870	1.5012
					0.4226	0.7887	9.7774	0.7586
700	7.6681	5.5301	2.3319	6.0301	0.4594	0.7520	8.5019	1.6517
					0.4226	0.7887	10.4110	0.8252
750	7.4750	5.7392	2.5250	6.2392	0.4615	0.7496	8.8936	1.8030
					0.4226	0.7887	11.0270	0.8923
800	7.2886	5.9299	2.7114	6.4299	0.4635	0.7472	9.2638	1.9547
					0.4226	0.7887	11.6270	0.9598
850	7.1114	6.1013	2.8886	6.6013	0.4655	0.7449	9.6050	2.1020
					0.4226	0.7887	12.1960	1.0260
900	6.9392	6.2604	3.0608	6.7604	0.4674	0.7426	9.9366	2.2534
					0.4226	0.7887	12.7650	1.0939
950	6.7738	6.4064	3.2262	6.9064	0.4693	0.7403	10.2510	2.4048
					0.4226	0.7887	13.3220	1.1620
1,000	6.6150	6.5407	3.3850	7.0407	0.4711	0.7380	10.5510	2.5558
					0.4226	0.7887	13.8660	1.2303
1,050	6.4627	6.6644	3.5373	7.1644	0.4728	0.7357	10.8350	2.7064
					0.4226	0.7887	14.3990	1.2986
1,100	6.3167	6.7787	3.6833	7.2787	0.4745	0.7334	11.1060	2.8564
					0.4226	0.7887	14.9210	1.3669

^{*}The second row corresponds to the second Piola–Kirchhoff stress components.

Table 9.4.4 contains the displacements and stresses obtained with the total Lagrangian formulation and 5Q8 and 5Q9 meshes. The results are not in close agreement with those obtained with the updated Lagrangian formulation because the material properties are not updated.

Table 9.4.4: Total displacements and stresses* in a cantilevered plate under uniform load (total Lagrangian formulation is used; X=0.422650 and Y=0.788675).

$f_0 = q_0 h$	u	v	x	y	σ_{xx}	$-\sigma_{xy}$	S_{XX}	$-S_{XY}$
50	$0.0216 \\ 0.0221$	0.6144 0.6218	0.4253 0.4254	$0.7861 \\ 0.7860$	$0.7631 \\ 0.7598$	0.0534 0.0544	$0.7736 \\ 0.7711$	0.0484 0.0482
100	0.0853 0.0871	$1.2177 \\ 1.2320$	$0.4278 \\ 0.4280$	$0.7836 \\ 0.7834$	1.489 1.4801	$0.1176 \\ 0.1216$	1.5299 1.5243	0.0979 0.0971
150	$0.1874 \\ 0.1912$	1.7997 1.8203	$0.4303 \\ 0.4306$	$0.7810 \\ 0.7807$	2.1729 2.1557	$0.1916 \\ 0.2006$	2.2619 2.2521	$0.1487 \\ 0.1470$
200	$0.3225 \\ 0.3290$	2.3524 2.3786	$0.4327 \\ 0.4331$	$0.7784 \\ 0.7780$	2.8113 2.7837	$0.2744 \\ 0.2900$	2.9642 2.9493	$0.2009 \\ 0.1980$
250	$0.4846 \\ 0.4940$	2.8706 2.9013	$0.4350 \\ 0.4355$	$0.7759 \\ 0.7754$	3.4033 3.3630	$0.3646 \\ 0.3884$	3.6333 3.6121	$0.2545 \\ 0.2502$
300	$0.6671 \\ 0.6795$	$3.3510 \\ 3.3854$	$0.4372 \\ 0.4380$	$0.7734 \\ 0.7727$	3.9494 3.8945	$0.4610 \\ 0.4943$	$4.2672 \\ 4.2387$	0.3094 0.3036
350	$0.8641 \\ 0.8795$	3.7927 3.8300	$0.4393 \\ 0.4400$	$0.7709 \\ 0.7702$	$4.4512 \\ 4.3802$	$0.5622 \\ 0.6062$	$4.8656 \\ 4.8287$	$0.3656 \\ 0.3581$
400	1.0702 1.0886	$4.1965 \\ 4.2358$	0.4413 0.4420	0.7684 0.7676	$4.9113 \\ 4.8229$	0.6672 0.7228	5.4290 5.3830	$0.4228 \\ 0.4136$
450	1.2812 1.3023	4.5640 4.6048	$0.4432 \\ 0.4439$	$0.7660 \\ 0.7651$	5.3328 5.2259	$0.7750 \\ 0.8430$	5.9588 5.9032	$0.4809 \\ 0.4701$
500	1.4936 1.5171	4.8977 4.9394	$0.4450 \\ 0.4457$	$0.7636 \\ 0.7626$	5.7187 5.5925	0.8847 0.9657	$6.4570 \\ 6.3911$	$0.5398 \\ 0.5274$
550	1.7045 1.7302	5.2003 5.2426	$0.4466 \\ 0.4474$	0.7613 0.7602	6.0721 5.9260	0.9957 1.0902	6.9256 6.8491	0.5994 0.5853
600	1.9122 1.9398	$5.4746 \\ 5.5171$	$0.4482 \\ 0.4490$	$0.7590 \\ 0.7578$	6.3962 6.2297	1.1075 1.2159	7.3668 7.2794	0.6594 0.6438
650	2.1150 2.1444	5.7234 5.7659	$0.4497 \\ 0.4505$	$0.7567 \\ 0.7555$	6.6935 6.5064	1.2197 1.3423	7.7827 7.6842	$0.7198 \\ 0.7027$
700	2.3121 2.343	5.9493 5.9916	$0.4511 \\ 0.4520$	$0.7545 \\ 0.7532$	6.9667 6.7587	1.3318 1.4690	$8.1754 \\ 8.0656$	$0.7805 \\ 0.7620$
750	2.5028 2.5350	$6.1547 \\ 6.1967$	$0.4524 \\ 0.4533$	0.7523 0.7509	7.2180 6.9890	$1.4438 \\ 1.5956$	$8.5467 \\ 8.4257$	0.8414 0.8216
800	2.6868 2.7201	6.3418 6.3833	$0.4536 \\ 0.4546$	$0.7501 \\ 0.7487$	7.4494 7.1993	$1.5554 \\ 1.7220$	$8.8985 \\ 8.7662$	$0.9025 \\ 0.8814$
850	2.8654 2.8997	6.5138 6.5548	$0.4548 \\ 0.4557$	$0.7480 \\ 0.7465$	7.6637 7.3924	1.6666 1.8483	9.2337 9.0900	$0.9637 \\ 0.9415$
900	$3.0353 \\ 3.0704$	6.6697 6.7101	$0.4559 \\ 0.4569$	$0.7459 \\ 0.7444$	$7.8606 \\ 7.5682$	$1.7769 \\ 1.9736$	9.5508 9.3960	1.0248 1.0016

^{*}The first row corresponds to the mesh of five 5Q8 elements and the second row corresponds to the mesh of 5Q9 elements.