F₊(D->4Pi) from KsPiPi vs 4Pi and KlPiPi vs 4Pi

16/02/2014

Claire Prouve, Chris Thomas, Guy Wilkinson, Sneha Malde

What is $F_{+}(D->4Pi)$?

F₊ is the CP-even fraction of the D->4Pi decay:

$$F_{+}(D->K^{+}K^{-}) = 1$$
 CP even
 $F_{+}(D->K_{s} Pi^{0}) = 0$ CP odd
 $F_{+}(D->2Pi^{+}2Pi^{-}) = [0,1]$ CP mixture

Measure F+ using the quantum correlated D⁰/D⁰ decays at CLEO:

CLEO-c reminder: ee -> Psi(3770) -> D^0D^0 / D^-D^+

- Straight forward measurement of F₊:
 - 1. count 4Pi vs. CP even/ CP odd eigenstates

$$==> M^+ / M^-$$

$$\begin{array}{c} \Psi(3770) \\ 2\text{Pi}^+2\text{Pi}^- & \longrightarrow \\ D_1 & D_2 \end{array} \rightarrow \begin{array}{c} \text{CP -ES} \end{array}$$

2. count the total number of CP even/ CP odd decays in sample $==> S^+/S^-$

Don't care
$$\leftarrow$$
 D_1 D_2 \leftarrow CP -ES

3.
$${\rm N^{+}\,=\,M^{+}\,/S^{+}} \quad ==> \quad F_{+} \equiv \frac{N^{+}}{N^{+}\,+\,N^{-}}$$

Measuring F₊ with K⁰PiPi

F₊ is related to the strong phase difference in the D-decay:

We know the **binned** strong phase difference of D->K_SPIPi and D->K_IPiPi!

(arXiv:1010.2817)

Amplitude weighted cos of strong phase difference

Here is how to get $F_{+}(4Pi)$:

$$M_{i}^{K_{\mathrm{S}}^{0}\pi\pi} = h_{K_{\mathrm{S}}^{0}\pi\pi} (T_{i}^{K_{\mathrm{S}}^{0}\pi\pi} + T_{-i}^{K_{\mathrm{S}}^{0}\pi\pi} - 2c_{i}\sqrt{T_{i}^{K_{\mathrm{S}}^{0}\pi\pi}T_{-i}^{K_{\mathrm{S}}^{0}\pi\pi}} (2F_{+}^{4\pi} - 1))$$

 \rightarrow Select K⁰PiPi vs 4Pi events and count how many signal events there are in each bin! (and then fit the data with the above formula for F₊)

K_sPiPi vs 4Pi

- Fairly boring selection (CLEO is just so clean)
- Fitting the final state particles to the D Mass
- Rejecting K_sPiPi in the 4Pi side using the flight distance significance of a possible Ks formed of two opposite sign pions

K_SPiPi vs 4Pi – peaking bkg

Peaking bkg: K_SPiPi vs K_SPiPi $B_i^{peak} = B_{tot}^{peak} \cdot a_i^{peak}$

- total number of peaking bkg events from generic MC: 18.45 ± 1.13
- distribution of peaking bkg events over bins from data: apply K_sPiPi-Selection cut on 4Pi side to get a K_sPiPi vs K_sPiPi data sample
- Remove bias due to K_s-Selection instead of K_s-Veto with K_sPiPi vs K_sPiPi Signal MC

K_SPiPi vs 4Pi – flat bkg

Total number of bkg events determined extrapolating from the sidebands in data:

$$B_{tot}^{flat} = rac{a_S}{a_D} N_D + \sum_{j=A,B,C} rac{a_S}{a_j} (N_j - rac{a_j}{a_D} N_D)$$

C: continuum bkg

D: pure combinatoric

⇒ 11.64 ± 2.90 flat bkg events in the signal region

Distribute them 'flatly' across the bins

= proportional to the are of the bin

K_SPiPi vs 4Pi – signal yields

$$M_i = (N_i^{meas} - B_i^{peak} - B_i^{flat})$$

Signalpeaking bkgflat bkg

Efficiency corrected signal yields:

stat errors only, (first MC, second data)

bin	MM_i
1	$185.4 \pm 2.4058 \pm 39.054$
2	$119.24 \pm 1.8904 \pm 29.642$
3	$98.618 \pm 2.1205 \pm 25.254$
4	$61.551 \pm 1.1733 \pm 20.21$
5	$333.14 \pm 4.3184 \pm 47.018$
6	$127.08 \pm 2.1409 \pm 28.908$
7	$165.69 \pm 2.895 \pm 34.025$
8	$222.47 \pm 3.2254 \pm 39.089$

K_LPiPi vs 4Pi – peaking bkg

Same strategy as for K₁PiPi vs 4Pi, but more tricky due to more and different bkg.

Peaking Bkg:

Generic MC: Reconstruct K_LPiPi vs 4Pi and see what we get →

Peaking in SW:

- $K_{\scriptscriptstyle \rm L}^0\pi\pi$ vs $K_{\scriptscriptstyle \rm S}^0\pi\pi$: 8% o
- $K_{\rm S}^0 \pi \pi \text{ vs } 4\pi \text{: } 1.9\% \text{ of }$
- $K_{\rm S}^0 \pi \pi \text{ vs } K_{\rm S}^0 \pi \pi : 0.3\%$

K_I PiPi vs 4Pi – peaking bkg

1. Scale the total number of peaking bkg events from generic MC:

$$B_{tot}^{peak}(K_{\rm L}^0\pi\pi \, vs \, K_{\rm S}^0\pi\pi) = 31.24 \pm 1.46$$

$$B_{tot}^{peak}(K_{\rm S}^0\pi\pi\,vs\,4\pi) = 18.45 \pm 0.62$$

2. Get K₁PiPi vs K₅PiPi distribution over bin using data with K_s-Selection on the 4Pi side:

generic MC tells us that the data sample with K_s -Selection contains: $\frac{\bullet K_{\rm L}^0 \pi \pi \text{ vs } 4\pi \text{: } 1.5\%}{\bullet K_{\rm L}^0 \pi \pi \text{ vs } 4\pi \text{: } 1.5\%}$

- → Subtract the flat distribution from the data to get the peaking bkg
- \rightarrow Remove the bias introduced by the K_s-Selection

- $K_L^0 \pi \pi$ vs $K_S^0 \pi \pi$: 92%
- flat events: 5%

3. Get K_sPiPi vs 4Pi distribution over bin using data from KsPiPi vs 4Pi analysis:

→ Take results from K_sPiPi vs 4Pi and reweight according to the bin-dependent efficiency in K₁PiPi vs 4Pi

> The efficiency for reconstructing and selecting K_SPiPi vs 4Pi events as K_LPiPi vs 4Pi events is taken to be the same as that for genuine K_LPiPi vs 4Pi events - under the assumption the K_{S} is 'lost' which should result in the same kinematics of the two decays.

K_LPiPi vs 4Pi – flat+cont bkg

Since for K_LPiPi vs 4Pi only 4 pions are reconstructed, the amount of continuum bkg is considerable.

<u>Use the Powell method to determine the total number of flat and cont. bkg event</u>

- Divide the MissMassSq region into lower sideband, signal region, upper sideband
- Assume that the ratio of events between these regions is correctly modeled by MC: for example $N_{\text{sig}}^{\text{KLPiPivs4Pi}} = MC_{\text{sig}}^{\text{KLPiPivs4Pi}} / MC_{\text{LU}}^{\text{KLPiPivs4Pi}} N_{\text{LU}}^{\text{KLPiPvs4Pi}}$
- Continuum bkg 3 equations with 3 unknowns: $D_i = T_{Si} + T_{Pi} + T_{Ci} + T_{Fi}$ Flat bkg

Raw data yields Signal yields

Solve and get:

 $B^{flat} = 28.42 \pm 10.80 \pm 6.80$ $B^{cont} = 37.15 \pm 10.85 \pm 9.45$

 Distribute 'flatly' over bins, i.e. according to bin area.

K_LPiPi vs 4Pi – signal yield

Preliminary: we are still fiddling around with some yields here...

Efficiency corrected signal yields:

stat errors only, (first MC, second data)

stat errors omy, (mst we, second data		
bin	MM_i	
1	$512.33 \pm 24.16 \pm 54.52$	
2	$204.17 \pm 10.19 \pm 33.69$	
3	$202.33 \pm 10.02 \pm 34.23$	
4	$78.20 \pm 4.89 \pm 20.92$	
5	$164.73 \pm 11.46 \pm 33.18$	
6	$82.38 \pm 6.30 \pm 22.26$	
7	$268.10 \pm 10.49 \pm 36.93$	
8	$277.09 \pm 13.55 \pm 40.47$	

F₊ - from K_SPiPi vs 4Pi

$$\text{Reminder:} \quad M_{i}^{K_{\rm S}^{0}\pi\pi} = h_{K_{\rm S}^{0}\pi\pi} (T_{i}^{K_{\rm S}^{0}\pi\pi} + T_{-i}^{K_{\rm S}^{0}\pi\pi} - 2\,c_{i}\sqrt{T_{i}^{K_{\rm S}^{0}\pi\pi}T_{-i}^{K_{\rm S}^{0}\pi\pi}} \,\,(2F_{+}^{4\pi} - 1))$$

 Just measured External input Want this

In the Fit: Gaussian constrain all input parameters, take into account correlation between

c_i, fit for F₊ and h

Jeremy's tutorial

Thanks to

$$F_{+} = 0.830 \pm 0.071$$

Chi2/ndof = 0.7

F₊ - from K_LPiPi vs 4Pi

$$\text{Reminder:} \quad M_{i}^{K_{\rm L}^{0}\pi\pi} = h_{K_{\rm L}^{0}\pi\pi} (T_{i}^{K_{\rm L}^{0}\pi\pi} + T_{-i}^{K_{\rm L}^{0}\pi\pi} + 2 \, c_{i}' \sqrt{T_{i}^{K_{\rm L}^{0}\pi\pi} T_{-i}^{K_{\rm L}^{0}\pi\pi}} \, (2F_{+}^{4\pi} - 1))$$

$$\text{Just measured} \qquad \text{External input}$$

In the Fit: Gaussian constrain all input parameters, take into account correlation between c_i, fit for F₊ and h

$$F_+ = 0.678 \pm 0.069$$

Chi2/ndof = 0.62

F₊ from simultaneous fit

As I said: more fiddeling has to be done on the K_I PiPi part...

Question 1

When distributing the total number of flat bkg events over the bins no error on the area of the bin is assumed.

 \rightarrow The error on the bkg yield per bin is smaller than sqrt(N_i) Is that a problem? How to fix it?

For the distribution of peaking bkg I only take the error from

distribution in data (multinomial error)

rescaling from MC (ratio of two efficiencies)

→ Does that not introduce the same problem as above?

K_sPiPi vs 4Pi – peaking bkg

Peaking bkg: K_s PiPi vs K_s PiPi $B_i^{peak} = B_{tot}^{peak} \cdot a_i^{peak}$

- total number of peaking bkg events from generic MC: 18.45 ± 1.13
- distribution of peaking bkg events over bins from data:
 apply K_cPiPi-Selection cut on 4Pi side to get a K_cPiPi vs K_cPiPi data sample
- Remove bias due to K_s-Selection instead of K_s-Veto with K_sPiPi vs K_sPiPi Signal MC

Question 2

K_LPiPi vs 4Pi – error on signal yields

Done using a toy study:

1. in the Powell method Poisson/Gauss vary all inputs (MC and data independently)

$$D_{1} - T_{P1} = \frac{m_{S1}}{m_{S2}} T_{S2} + T_{C1} + \frac{m_{F1}}{m_{F3}} T_{F3}$$

$$D_{2} - T_{P2} = T_{S2} + \frac{m_{C2}}{m_{C1}} T_{C1} + \frac{m_{F2}}{m_{F3}} T_{F3}$$

$$D_{3} - T_{P3} = \frac{m_{S1}}{m_{S3}} T_{S2} + \frac{m_{C3}}{m_{C1}} T_{C1} + T_{F3}$$

- 2. Still from within the toy study calculate the flat bkg, cont bkg yields per bin
- 3. Subtract from data yield per bin to get signal yields per bin

The data yield is needed twice: in step 1 and in step 2:

I generate the data yields for each bin (which I am going to use in step 2), and use the sum as input for step 1. → I am using the same data yield in the entire toy. Is that correct?

Summary

- Calculated the K_sPiPi vs 4Pi signal yield per bin
- Almost finished calculating the K_I PiPi vs 4Pi signal yield per bin
- Fitter is fully setup and functional

Still to do:

- Some kinks to iron out in the K₁PiPI vs 4Pi part
- Generate more K₁PiPi vs 4Pi signal MC for the efficiency correction
- Calculate ALL the systematics

Backup

Binned strong phase difference

$$c_i \equiv rac{1}{\sqrt{T_i T_{-i}}} \int_{\mathcal{D}_i} a_{xy} a_{yx} \cos(\delta_{xy} - \delta_{yx}) \, \mathrm{d}x \, \mathrm{d}y$$
 . Amplitude of D going to point x,y in the Dalitz Plot

Backup

Powell method:

$$D_1 - T_{P1} = \frac{m_{S1}}{m_{S2}} T_{S2} + T_{C1} + \frac{m_{F1}}{m_{F3}} T_{F3}$$

$$D_2 - T_{P2} = T_{S2} + \frac{m_{C2}}{m_{C1}} T_{C1} + \frac{m_{F2}}{m_{F3}} T_{F3}$$

$$D_3 - T_{P3} = \frac{m_{S1}}{m_{S3}} T_{S2} + \frac{m_{C3}}{m_{C1}} T_{C1} + T_{F3}$$