Seminari 1

Matematičke metode za informatičare

Damir Horvat

FOI, Varaždin

2/17

Oznake

AB ← pravac kroz točke A i B

• \overline{AB} «www-dužina čiji su krajevi točke A i B

• |AB| «www-duljina dužine \overline{AB} (nenegativni realni broj)

Zadatak 1

Točke A, B, C i D su redom vrhovi jednakokračnog trapeza kojemu je duljina kraka jednaka d i kojemu su duljine osnovica |AB| = 2d i |CD| = d.

- a) Nacrtajte vektor $\vec{v} = \frac{1}{2} \overrightarrow{AB} \overrightarrow{CB}$.
- b) Kolika je norma (duljina) vektora \vec{v} ?

Zadatak 2

Točke A, B, C i D su redom vrhovi pravokutnika kojemu su duljine susjednih stranica |AB| = a i |AD| = b.

- a) Nacrtajte vektor $\overrightarrow{AE} = \overrightarrow{AB} \overrightarrow{BC}$.
- b) Kolika je norma vektora \overrightarrow{AE} ?
- c) Nacrtajte vektor $\overrightarrow{AF} = \overrightarrow{AB} \overrightarrow{AC}$.
- d) Kolika je norma vektora \overrightarrow{AF} ?

6 / 17

4 / 17

Rješenje $EB \parallel DC, \mid EB \mid = \mid DC \mid \implies EBCD$ je paralelogram

a)

 $\overrightarrow{BC} = \overrightarrow{ED}$

$$|AD| = |BC| = d$$

 $|AB| = 2d, \quad |CD| = d$

$$|AE| = |BE| = d$$

$$\vec{v} = \frac{1}{2}\overrightarrow{AB} - \overrightarrow{CB} = \frac{1}{2}\overrightarrow{AB} + \overrightarrow{BC} = \overrightarrow{AE} + \overrightarrow{BC} = \overrightarrow{AE} + \overrightarrow{ED} = \overrightarrow{AD}$$

b)
$$|\vec{v}| = d$$

Rješenje

$$\overrightarrow{AE} = \overrightarrow{AB} - \overrightarrow{BC} = \overrightarrow{AB} + \overrightarrow{CB} =$$

$$= \overrightarrow{AB} + \overrightarrow{BE}$$

b)
$$|\overrightarrow{AE}| = \sqrt{a^2 + b^2}$$

$$\overrightarrow{AF} = \overrightarrow{AB} - \overrightarrow{AC} = \overrightarrow{CB}$$

d)
$$|\overrightarrow{AF}| = b$$

Definicija kolinearnih vektora

Za dva vektora iz V^3 kažemo da su kolinearni ako imaju isti smjer. Po dogovoru je nulvektor kolinearan sa svakim vektorom iz V^3 .

Iznimno važna propozicija

Neka su $\vec{a}, \vec{b} \in V^3$ različiti od nulvektora. Tada vrijedi:

 \vec{a} i \vec{b} imaju isti smjer $\Leftrightarrow \exists \lambda \in \mathbb{R}, \ \vec{b} = \lambda \vec{a}$.

U tom je slučaju $\lambda \neq 0$ i vrijedi $\vec{a} = \frac{1}{\lambda} \vec{b}$. Nadalje, takav λ je jedinstven.

8 / 17

9 / 17

Zadatak 4

Dokažite da su polovišta stranica bilo kojeg četverokuta vrhovi paralelograma.

 $\implies \overrightarrow{P_1P_2} = \overrightarrow{P_4P_3} \implies P_1P_2P_3P_4$ je paralelogram

Riešenie

$$|AP_1| = |BP_1|$$
 $|CP_3| = |DP_3|$
 $|BP_2| = |CP_2|$ $|AP_4| = |DP_4|$

$$|AP_{1}| = |BP_{1}| \qquad |CP_{3}| = |DP_{3}| \qquad \overrightarrow{P_{1}P_{2}} = \overrightarrow{P_{1}B} + \overrightarrow{BP_{2}} =$$

$$|BP_{2}| = |CP_{2}| \qquad |AP_{4}| = |DP_{4}| \qquad \qquad = \frac{1}{2}\overrightarrow{AB} + \frac{1}{2}\overrightarrow{BC} =$$

$$P_{3} \qquad \qquad = \frac{1}{2}(\overrightarrow{AB} + \overrightarrow{BC}) = \frac{1}{2}\overrightarrow{AC}$$

$$\overrightarrow{P_4P_3} = \overrightarrow{P_4D} + \overrightarrow{DP_3} =$$

$$= \frac{1}{2}\overrightarrow{AD} + \frac{1}{2}\overrightarrow{DC} =$$

$$= \frac{1}{2}\left(\overrightarrow{AD} + \overrightarrow{DC}\right) = \frac{1}{2}\overrightarrow{AC}$$
10/17

Zadatak 3

Dokažite da je srednjica trokuta paralelna s nasuprotnom stranicom trokuta i da je njezina duljina jednaka polovici duljine te stranice.

Rješenje

Srednjica trokuta je dužina koja spaja polovišta dviju stranica trokuta.

$$\overrightarrow{P_1P_2} = \overrightarrow{P_1C} + \overrightarrow{CP_2} = \frac{1}{2}\overrightarrow{AC} + \frac{1}{2}\overrightarrow{CB} = \frac{1}{2}\left(\overrightarrow{AC} + \overrightarrow{CB}\right) = \frac{1}{2}\overrightarrow{AB}$$

Zbrajanje više vektora

Zadatak 5

Neka su \overrightarrow{AB} i \overrightarrow{CD} bilo koje dužine, a točke S i T redom polovišta tih dužina. Dokažite da je $\overrightarrow{AC} + \overrightarrow{BD} = 2\overrightarrow{ST}$.

Rješenje

1. način www- koristit ćemo ovaj pristup

Kažemo da točka D dijeli dužinu \overline{AB} u omjeru λ ako je $\overrightarrow{AD} = \lambda \overrightarrow{BD}$.

Ako je $\lambda < 0$, točka D se nalazi unutar dužine \overline{AB} .

Ako je $\lambda > 0$, točka D se nalazi izvan dužine \overline{AB} .

2. način

 $\lambda = 0$

Kažemo da točka D dijeli dužinu \overline{AB} u omjeru λ ako je $\overrightarrow{AD} = \lambda \overrightarrow{DB}$.

Ako je $\lambda > 0$, točka D se nalazi unutar dužine \overline{AB} .

Ako je $\lambda < 0$, točka D se nalazi izvan dužine \overline{AB} .

14 / 17

Dijeljenje dužine u zadanom omjeru

$$\frac{|AD|}{|BD|} = \frac{1}{2}$$
 iznutra

$$\frac{|AD|}{|BD|} = \frac{1}{2}$$
 izvana

$$\overrightarrow{AD} = -\frac{1}{2}\overrightarrow{BD}$$

$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{BD}$$

$$\overrightarrow{AD} = \frac{1}{2}\overrightarrow{DB}$$

$$\overrightarrow{AD} = -\frac{1}{2}\overrightarrow{DB}$$

 $\overrightarrow{AD} = \lambda \overrightarrow{BD}$ $\overrightarrow{AD} = 0 \cdot \overrightarrow{BD}$ $\overrightarrow{AD} = 0$ $\overrightarrow{D} = A$ $\overrightarrow{AD} = B\overrightarrow{D}$ $\overrightarrow{AD} = B\overrightarrow{D}$

polovište

13 / 17

Primjer

$$\overrightarrow{AD} = -\frac{2}{5}\overrightarrow{BD}$$

$$A \stackrel{\diamond}{D} E$$

$$\frac{|AD|}{|BD|} = \frac{2}{5}$$
 5 + 2 = 7

$$\overrightarrow{AD} = \frac{2}{5}\overrightarrow{BD}$$

- o-D

$$\frac{|AD|}{|BD|} = \frac{2}{5}$$
 5 - 2 = 3

$$\overrightarrow{AD} = -\frac{5}{2}\overrightarrow{BD}$$

$$A \qquad D \qquad B$$

$$\frac{|AD|}{|BD|} = \frac{5}{2}$$
 5 + 2 = 7

$$\overrightarrow{AD} = \frac{5}{2}\overrightarrow{BD}$$

$$\frac{|AD|}{|BD|} = \frac{5}{2} \quad 5 - 2 = 3$$

