Полуалгебраичные системы доказательств

Все системы доказательств оперируют с многочленами. Формула в киф записыается так: Для каждого клоза, содержащего переменные x_i и отрицания y_i , берется уравнение $(1-x_1)st$ $(1-x_2)*\cdots*(1-x_n)*y_1*y_2*\cdots*y_m=0$, так как переменные еа самом деле 0 или 1, fr;t добавляются уравнения x * x = x для всех переменных. Мы будем не доказывать наличие выполняющего набора, а добавлять ее отрицание в систему и доказывать противоречивость системы.

Системы доказательств

 $\mathbf{Nullstellensatz}(\mathbf{NS})$ - Изначально у нас есть система уравнений $f_i=0$, доказательство противоречивости -набор $g_i: \sum f_i * g_i = 1$, такие по тореме Гильберта о нулях существуют над алг. замкнутым полем.

Polynomial calculus (PC) - вывод док-ва в Nullstellensatz: из уравнения p=0,q=0 выводится p+q=0, из p=0 выводится pq=0. Доказательство противоречивости - вывод 1=0.

 $\mathbf{Pozitivestellensatz}(\mathbf{PSZ})$ - многочлены над R, есть система уравнений $f_i=0$, доказа-

тельство противоречивости - набор $g_i, h_i: g_i: \sum f_i * g_i = 1 + \sum h_i^2$.

Positivestellensatz calculus (PSZC) - вывод док-ва в Positivestellensatz, правила вывода те же, что и в PC, а док-во противоречивости - набор многочленов h_i и вывод $0 = +\sum h_i^2$ из правил вывода.

Lovasz-Schreier calculus (LS) - манипулируем не с равенствами, а с неравенствами, из $f_1 \geq 0, f_2 \geq 0, \ldots, f_n \geq 0$ выводится $\sum a_i f_i \geq 0$, где $a_i \geq 0$ - константы. Также из $f \geq 0$ следует $fx \geq 0, f(1-x) \geq 0$ для переменной х. Аксиомы - $x^2 - x \geq 0, x - x^2 \geq 0$ для всех переменных х. Вывод противоречия - вывод $-1 \ge 0$.

 LS_{+} - то же, но еще есть аксиома $l^{2} \geq 0$ для любого полинома l.

Булева степень многочлена - степень многочлена, взятого по модулю $x_i^2 - x_i$ для всех переменных в нем. Булева степень доказательства - максимальная из булевых степеней многочлена в процессе.

Мы доказываем несуществование решения задачи о рюкзаке (доказываем несуществование x_i , таких что $f = x_1 + x_2 + \ldots + x_n = m))$ при нецелом m, то есть добавляем f в систему и доказываем противоречивость. Пусть A(m) - ступенчатая функция, равная 0 вне [0, n], 2k+4на [k, k+1] и [n-k-1, n-k].

Th: Булева степень любого док-ва неразрешимости задачи о рюкзаке в PC не менее $\frac{(n-1)}{2}$, в PSCZ - не менее $min(\frac{n-1}{2}, A(m))$.

Th: Размер любого доказательства неразрешимости задачи о рюкзаке при $m = \frac{2n+1}{4}$ в NS и PSZ экспоненциален.

Статические доказательства

NS - статическая версия PC, PSZ - статическая версия PSZC.

Static LS: - пусть есть система неравенств $s_i \geq 0$. Доказательство ее противоречивости набор многочленов $w_{i,j}$, каждый из которых - произведение мономов $x_i, (1-x_i)$ и констант $a_{i,j} \geq 0$, такой что $\sum s_i \sum a_{i,j} w_{i,j} = -1$.

Static LS_+ : - пусть есть система неравенств $s_i \geq 0$. Доказательство ее противоречивости набор многочленов $w_{i,j}$, каждый из которых - произведение мономов $x_i, (1-x_i)$ или квадрат другого многочлена и констант $a_{i,j} \geq 0$, такой что $\sum s_i \sum a_{i,j} w_{i,j} = -1$.

Th: при $m=rac{2*n+1}{4}$ размер любого док-ва рюкзака в $Static\ LS$, $Static\ LS_+$ экспоненциален