Classification and Logistic Regression

James D. Wilson

MSAN 601: Linear Regression

Plan for this Lecture

- The classification problem
- Why not regression?
- Assessing model accuracy
 - Mean squared error and accuracy
 - Receiver Operating Curves (ROCs)

Reference: ISL Sections 2.2.3; 4.1; 4.2; 4.4.3

The Classification Setting

Data: Consisting of *n* observations $(x_1, y_1), \dots, (x_n, y_n)$ with

- $x_i \in \mathcal{X}$ space of predictors (often $\subseteq \mathbb{R}^p$)
- $y_i \in C$: response or class label
 - Binary classification: $C = \{-1, +1\}$ (or equivalently, $\{0, 1\}$)
 - Multi-class classification: $C = \{0, 1, ..., m\}$

Unlike regression, the observed labels are *categorical* or *qualitative*.

Classification

Goal: Given an unlabeled vector x, assign it to class $c \in C$.

Prediction Rule / Classifier

A prediction rule or classifier is a map

$$\phi: \mathcal{X} \to \mathcal{C}$$

$$\phi(\mathbf{x}) = \mathbf{c} \in \mathcal{C}$$

Regard $\phi(x) = c \in \mathcal{C}$ as a prediction of the class label associated with the predictor x.

Examples

Medical Tests:

- $x \in \mathbb{R}^p$ contains the (numerical) results of p diagnostic tests
- y = illness / condition

Object Recognition:

- $x \in \mathbb{R}^p$ contains the pixel intensities from a satellite image
- y = +1 if image contains a man-made object, y = -1 otherwise

Examples

Automatic Spam Recognition:

- x = vector of features extracted from text of email, e.g.,
 - presence of keywords ("cheap", "cash", "medicine")
 - presence of key phrases ("Dear Sir/Madam")
 - use of words in all-caps ("VIAGRA")
 - point of origin of email
- y = +1 if email is spam, y = -1 otherwise

Examples

Credit Card Default

Figure: The annual incomes and monthly credit card balances of a group of individuals. Orange: defaulted on credit card payments; Blue: did not default.

Key Considerations

- Why not use regression?
- Measuring the loss/error of a prediction
- Assessing the overall performance of a prediction rule
- Identifying the optimal prediction rule

Why Not Use Regression?

Consider a simple example where Doctors are trying to predict the medical condition of a patient. Here,

$$y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

- Regression assumes that there is a meaning behind the *ordering*of y and that a change in levels above suggest the *same* change.
- Typically, however, categorical variables have no natural order and there is no way to quantify a "jump" from one level to another.

Why Not Use Regression?

Consider a simple example where Doctors are trying to predict the medical condition of a patient. Here,

$$y = \begin{cases} 1 & \text{if stroke} \\ 2 & \text{if drug overdose} \\ 3 & \text{if epileptic seizure} \end{cases}$$

- Regression models y directly therefore, estimates will be continuous values in (-∞,∞)
- Prediction rules are often concerned with the probability of each value of y

Measuring the Loss of a Prediction

Let $\phi: \mathcal{X} \to \mathcal{C}$ be a prediction/classification rule of interest

Question: Given a pair (x, y), how do we compare $\phi(x)$ and y? Namely, how do we measure the accuracy of $\phi(x)$?

Common to use the Zero-One Loss Function $\ell(\phi(x), y)$:

$$\ell(\phi(x),y) = \begin{cases} 1 & \text{if } \phi(x) \neq y \\ 0 & \text{if } \phi(x) = y \end{cases}$$

Note: Two types of errors $\phi(x) = 1$, y = 0 and $\phi(x) = 0$, y = 1 given equal weight

Expected Loss

Given: Zero-one loss of prediction rule $\phi: \mathcal{X} \to \mathcal{C}$ given by

$$\ell(\phi(\mathbf{x}),\mathbf{y}) = \mathbb{I}(\phi(\mathbf{x}) \neq \mathbf{y})$$

We typically measure performance of ϕ by its expected loss (risk)

$$R(\phi) = \mathbb{E}[\ell(\phi(x), y)]$$

Important: Note that

$$R(\phi) = \mathbb{E}[\mathbb{I}(\phi(x) \neq y)] = \mathbb{P}(\phi(x) \neq y)$$

is just the probability that ϕ misclassifies a sample.

Measuring Accuracy

Accuracy

The accuracy of a classifier $\phi(x)$ is:

$$1 - R(\phi) = \mathbb{P}(\phi(x) = y)$$

Important Notes:

 In practice, we measure the empirical probability of misclassification over a data set with n observations using:

$$\frac{1}{n}\sum_{i=1}^n \mathbb{I}(y_i \neq \phi(x_i))$$

- If $y \in \{0, 1\}$, the empirical misclassification rate = MSE(ϕ).
- Training and test set evaluations still apply!

Issues with Measuring Accuracy Only

Example:

Paypal claims that its fraud rate is less than 0.5%. Suppose that you are hired to create a classifier that distinguishes fraudulent transactions from non-fraudulent transactions. How might you classify new transactions?

Issues with Measuring Accuracy Only

Example:

Paypal claims that its fraud rate is less than 0.5%. Suppose that you are hired to create a classifier that distinguishes fraudulent transactions from non-fraudulent transactions. How might you classify new transactions?

Let $y_i = -1$ if the transaction is fraudulent and $y_i = +1$ otherwise. A great classifier (perhaps the best) according to MSE / accuracy is choosing $\phi(x_i) = +1$ for all i. Indeed, your MSE would be ~ 0.005 .

Result: You never detect any of the fraudulent transactions!

The above is a typical example of unbalanced data.

Informative Model Assessment

Let $y_i \in \{-1, +1\}$ (binary classification). ϕ = proposed classifier.

• True positives (TP):

$$\sum_{i=1}^n \mathbb{I}(y_i = \phi(x_i) = +1)$$

False positives (FP):

$$\sum_{i=1}^{n} \mathbb{I}(y_i = -1; \phi(x_i) = +1)$$

• True negatives (TN):

$$\sum_{i=1}^n \mathbb{I}(y_i = \phi(x_i) = -1)$$

False negatives (FN):

$$\sum_{i=1}^{n} \mathbb{I}(y_i = +1; \phi(x_i) = -1)$$

Model Assessment Relationships

- Accuracy = $\frac{TP + TN}{n} \in [0, 1]$
- The sensitivity (or recall) of ϕ is:

$$\frac{\mathsf{TP}}{\mathsf{TP}+\mathsf{FN}} = \frac{\mathsf{TP}}{\sum_{i=1}^n \mathbb{I}(y_i = +1)} \in [0,1]$$

• The specificity of ϕ is:

$$\frac{\mathsf{TN}}{\mathsf{TN} + \mathsf{FP}} = \frac{\mathsf{TN}}{\sum_{i=1}^{n} \mathbb{I}(y_i = -1)} \in [0, 1]$$

• The precision of ϕ is:

$$\frac{\mathsf{TP}}{\mathsf{TP} + \mathsf{FP}} = \frac{\mathsf{TP}}{\sum_{i=1}^{n} \mathbb{I}(\phi(x_i) = +1)} \in [0, 1]$$

Model Assessment

To understand the performance of a classifier, we can use a confusion matrix which portrays the FN, TN, FP, TP rates.

		True condition	
	Total population	Condition positive	Condition negative
Predicted condition	Predicted condition positive	True positive	False positive (Type I error)
	Predicted condition negative	False negative (Type II error)	True negative

Figure: From Wikipedia.org

Model Choice

Choice of Model: depends on the context and constraints

Back to the Paypal problem: Suppose there are 100K transactions

$$y_i = +1$$
 $y_i = -1$
 $\phi(x_i) = +1$ 99500 500
 $\phi(x_i) = -1$ 0 0

Summary: TN = FN = 0; TP = 99500; FP = 500

Accuracy = precision = 0.995; sensitivity = 1; specificity = 0

Result: If we are concerned with identifying fraud, we want specificity to be close to 1. In this case, our model performs terribly.

Back to Regression

Setting: *Y* is binary, namely $Y \in \{-1, +1\}$ and fixed predictors $X \in \mathbb{R}^p$

Question: How can we model $\mathbb{P}(Y = +1 \mid X = \mathbf{x})$ as a function of \mathbf{x} ?

Standard Regression setting: We could use a linear model

$$\mathbb{P}(Y = +1 \mid X = \mathbf{x}) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

but...

Back to Regression

...using a linear model provides some values of $\mathbb{P}(Y = +1 \mid X = \mathbf{x})$ outside of 0 to 1!

The Logistic Function

Instead, we can use a different model to ensure $\mathbb{P}(Y = +1 \mid X = \mathbf{x})$ is between 0 and 1:

$$\mathbb{P}(Y = +1 \mid X = \mathbf{x}) = \frac{\exp\left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j\right)}{1 + \exp\left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j\right)}$$

Here, $f(x) = \frac{e^x}{1 + e^x} \in (0, 1)$ is called the logistic function of x.

The Logistic Function

$$f(x) = \frac{e^x}{1 + e^x}$$

Logistic Regression

The model

$$\mathbb{P}(Y = +1 \mid X = \mathbf{x}) = \frac{\exp\left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j\right)}{1 + \exp\left(\beta_0 + \sum_{j=1}^{p} \beta_j x_j\right)}$$

can be rearranged and equivalently stated as:

$$\log \left(\frac{P(Y = +1 \mid X = \mathbf{x})}{1 - P(Y = +1 \mid X = \mathbf{x})} \right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

The above model is called the logistic regression of Y on $X = \mathbf{x}$

Logistic Regression

Model:
$$\log \left(\frac{P(Y = +1 \mid X = \mathbf{x})}{1 - P(Y = +1 \mid X = \mathbf{x})} \right) = \beta_0 + \beta_1 x_1 + \ldots + \beta_p x_p$$

Features:

- log(odds) is known as the logit or log-odds of Y taking value +1.
- The right hand side is linear in x

Logistic Regression: Interpretation

Holding all other variables constant, increasing x_j by one unit changes the log odds of Y = +1 by β_j . Equivalently, increasing x_j by one unit multiplies the odds of Y = +1 by e^{β_j} .

Inference:

- β_j < 0: the odds of Y = +1 is decreased \Rightarrow the probability of Y = +1 is decreased
- $\beta_j > 0$: the odds of Y = +1 is increased \Rightarrow the probability of Y = +1 is increased
- $\beta_j = 0$: no effect on chances of Y = +1

Estimation via Maximum Likelihood

Goal:

- Estimate β_0, \dots, β_p via maximum likelihood
- Estimate $\mathbb{P}(Y = +1 \mid X = \mathbf{x})$ by plugging in the above estimates into the logistic function

Methodology: Identify $\hat{\beta}_0, \dots, \hat{\beta}_p$ that maximizes the likelihood:

$$L(\beta \mid Y = y) = \prod_{i=1}^{n} \mathbb{P}(Y = +1 \mid X = \mathbf{x}_{i})^{y_{i}} \mathbb{P}(Y = 0 \mid X = \mathbf{x}_{i})^{1-y_{i}}$$

Important Fact: The maximum likelihood estimate (MLE) of $\hat{\beta}_j$ has an approximate Gaussian distribution with mean β_j . Therefore, statistical inference can be conducted the same as OLS.

Estimation via Maximum Likelihood

Methodology, continued... Equivalently, we can maximize the log-likelihood of β_0 , $\beta \mid Y = y$, which we can simplify as follows:

$$\ell(\beta_0, \beta \mid Y = y) = \log(L(\beta_0, \beta \mid Y = y))$$

$$= \sum_{i=1}^{n} [y_i \log(\mathbb{P}(Y = +1 \mid X = \mathbf{x}_i))$$

$$+ (1 - y_i) \log(\mathbb{P}(Y = 0 \mid X = \mathbf{x}_i))]$$

$$= \sum_{i=1}^{n} \exp(\beta_0 + \mathbf{x}_i^T \beta) + \sum_{i=1}^{n} [y_i(\beta_0 + \mathbf{x}_i^T \beta)]$$

Estimation via Maximum Likelihood

There is no analytical form for $\hat{\beta}$ that maximizes the log-likelihood (unlike OLS for standard regression). So, we must resort to a computational means using methods like:

- Gradient descent methods for each β_i or
- Fisher scoring algorithm

Once we obtain $\hat{\beta}$, we can calculate:

$$\widehat{\mathbb{P}}(Y = +1 \mid X = \mathbf{x}) = \frac{\exp\left(\widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_j x_j\right)}{1 + \exp\left(\widehat{\beta}_0 + \sum_{j=1}^p \widehat{\beta}_j x_j\right)}$$

Logistic Regression

The binary classifier is defined as

$$\phi(\mathbf{X}) = \operatorname{argmax}_{j} \{ \hat{\mathbb{P}}(\mathbf{Y} = j \mid \mathbf{X} = \mathbf{x}) \}$$

Or, equivalently,

$$\phi(\mathbf{X}) = \operatorname{argmax}_{j} \{ \operatorname{logit} (\hat{\mathbb{P}}(\mathbf{Y} = j \mid \mathbf{X} = \mathbf{x})) \}$$

Hence, the discriminant function is given by

$$\delta_j(\mathbf{x}) = (-1)^{j-1} (\hat{\beta}_0 + \sum_{i=1}^{p} \hat{\beta}_i x_i)$$

Conclusion: Logistic regression gives a linear discriminant!

Summary of Logistic Regression

- Inference-based: β_j describes the multiplicative effect of x_j on the odds of Y = +1
- For binary classification only! (though there are multi-class extensions)
- Provides linear discriminants $\delta_j = \log(\mathbb{P}(Y = j \mid X = \mathbf{x}))$
- Estimates found via maximum likelihood + gradient descent / Fisher scoring algorithms

Classification via Thresholding

Issue: In binary classification settings, we often choose a class using a threshold τ . For example, we choose Y = +1 if

$$P(Y = +1 \mid X = \mathbf{x}) > \tau$$

So far, we've typically used τ = 0.5.

Point: The error rate will change based on the threshold value τ that we choose.

Question: How can we assess the performance of a method based on τ ?

Receiver Operating Characteristics (ROC)

The receiver operating characteristics (ROC) of a binary classifier are the

- true positive rate (sensitivity)
- false positive rate (1 specificity)

for the classifier across a grid of the threshold τ .

The ROC curve plots the comparison of these two quantities across τ .

ROC curve

ROC Curve

The Area Under the Curve (AUC)

The area under the curve (AUC) is the area under the ROC curve.

Features:

- AUC ∈ [0, 1]
- Measures the overall performance of a classifier
- The higher the better.
- We expect a classifier that performs no better than chance to have an AUC of 0.5 on an independent test set.