Podstawy uczenia maszynowego

Raport 2 - Łukasz Sochacki

1. Przygotowane zbiory danych

Eksperymenty zostały przeprowadzone z wykorzystaniem trzech podzbiorów danych zawierających po 20 zdjęć o rozdzielczości **1280 x 720px** oraz **1920 x 1080px**. Jako dane zostały wykorzystane modele broni z gry Destiny 2 z rozróżnieniem ich na trzy kategorie karabinów: **automatyczne, pulsacyjne oraz zwiadowcze**.

Wykorzystane zdjęcia oraz otrzymane rezultaty w niektórych podpunktach zostały zamieszczone również na GitHubie pod podanym linkiem: https://github.com/Szadusik/Machine-Learning-Basics/tree/main/Lab2

Następnie zdjęcia zostały poddane obróbce w następujący sposób :

- Redukcja wszystkich fotografii do rozmiaru 150 x 150px w celu przyspieszenia obliczeń
- Konwersja do skali szarości
- Konwersja zdjęć na wektory Numpy w celu wykonania na nich PCA

2. Macierze kowariancji

Uzyskane macierze kowariancji przed i po transformacji PCA zostały zapisane w folderze **CovarianceMatrices**. Można było zauważyć, że macierze kowariancji przed transformacją oraz po transformacji miały takie same rozmiary, ale wartości liczbowe w macierzy po transformacji zostały znacznie zwiększone/ zmniejszone w porównaniu z macierzą przed procesem (co za tym idzie wariancje poszczególnych cech po transformacji zostały znacznie zwiększone).

Poniżej znajdują się wykresy w postaci map termicznych dla macierzy kowariancji przed i po transformacji PCA dla zbioru obserwacji. Można zaobserwować, że układ wartości na mapach termicznych jest taki sam w obu przypadkach, ale wartości uległy zmianom (nastąpiła maksymalizacja wartości wariancji dla poszczególnych cech). Dzięki temu widzimy, że transformacja PCA przyniosła pozytywne rezultaty.

3. Wariancje

Następnie zostały przeanalizowane poszczególne wariancję danych cech dla poszczególnych zbiorów przed i po transformacji PCA. Rezultaty zostały przedstawione w formie wykresu. Można zauważyć, że transformacja PCA znacznie zwiększyła wartości wariancji dla poszczególnych cech.

Rozkład wariancji dla wszystkich obserwacji z uwzględnieniem dla jakiej cechy dana wariancja została zarejestrowana:

4. Średnie zdjęcie

Poniżej znajduje się średnie zdjęcie osiągnięte podczas przeprowadzenia eksperymentu. Wygląda ono następująco.

5. Nowe wektory bazowe

W celu przedstawienia wektorów bazowych w przejrzysty sposób zostały one przetransformowane w fotografię za pomocą techniki wykorzystanej w powyższym podpunkcie. Otrzymane wyniki (wektory bazowe) znajdują się w folderach **BasicComponents**. Poniżej znajdują się kilka z uzyskanych wektorów bazowych

Przykładowe wektory bazowe dla zbiorów fotografii zamienione w fotografie:

6. Redukcja wymiarowości

Kolejny eksperyment polegał na zredukowaniu wszystkich cech obserwacji do zera oprócz pewnej wybranej ilości. Dla wszystkich podzbiorów fotografii redukcja została wykonana do 3,9 i 27 cech. Poniżej znajduje się kilka sztuk zdjęcia po redukcji dla każdego podzbioru fotografii.

Wszystkie fotografie powstałe podczas doświadczenia można znaleźć w folderze **ReducedImages**. Nazwa podfolderów wskazuje ile cech zostało pozostawionych nietkniętych w naszych obserwacjach. Poniżej znajdują się przykładowe zdjęcia po odpowiednich modyfikacjach ich cech.

Rezultat dla przykładowej fotografii pewnego karabinu automatycznego po redukcji do 3,9,27 cech zestawione z oryginalnym przerobionym zdjęciem:

Rezultat dla przykładowej fotografii pewnego karabinu pulsacyjnego po redukcji do 3,9,27 cech zestawione z oryginalnym przerobionym zdjęciem:

Rezultat dla przykładowej fotografii pewnego karabinu zwiadowczego po redukcji do 3,9,27 cech zestawione z oryginalnym przerobionym zdjęciem:

7. Rzutowanie na płaszczyznę 2D

Jako ostatnie doświadczenie zostało wykonane rzutowanie naszych obserwacji na płaszczyznę 2D. W tym celu została użyta redukcja wymiarów za pomocą metody dostępnej z PCA. Tak oto prezentują się nasze obserwacje na płaszczyźnie 2D po zastosowaniu redukcji do dwóch najważniejszych wymiarów.

