

Compiladores: Prova 3

Nome:

Matrícula: Data:

Observações:

- (a) A prova é individual e sem consulta, sendo vedado o uso de calculadoras e de telefones celulares.
- (b) A interpretação dos comandos das questões faz parte da avaliação.
- (c) A nota da prova será igual a O (zero) caso o estudante consulte algum material durante a prova, ou receba ou ofereça qualquer ajuda a outro estudante durante a prova.
- (d) O gabarito deve ser preenchido com caneta esferográfica azul ou preta. Em uma questão de múltiplas escolhas, múltiplas marcações anularão a referida questão.
- (e) O grampo da prova não deve ser removido. Caso o grampo seja removido, a nota da prova será igual a O (zero).

Parte A. (70 pontos) Assinale a alternativa correta.

- **1.** Uma gramática G é dita ambígua se
 - (X) existe ao menos uma cadeia $w \in \mathcal{L}(G)$ que possui duas ou mais derivações à esquerda distintas.
 - (B) a definição da produção a ser usada em cada passo da derivação de uma cadeia $w \in \mathcal{L}(G)$ depende apenas do símbolo de w que está sendo observado.
 - (C) possui ao menos um não-terminal A tal que $A\Rightarrow A\alpha$ para alguma cadeia de símbolos gramaticais α .
 - (D) possui ao menos um não-terminal A tal que $A \to \alpha A_1 \mid \alpha A_2$ e A_1 e A_2 não possuem prefixo comum.
- **2.** Considere as duas afirmações abaixo, a respeito de diagramas de transição para um analisador sintático.
 - Os rótulos das arestas são tokens ou nãoterminais.
 - II. Cada terminal deve ter um diagrama próprio.

Podemos afirmar que

- (A) ambas afirmações estão corretas
- (B) ambas afirmações estão incorretas
- (X) apenas a afirmação I está correta
- (D) apenas a afirmação II está correta

3. Considere o diagrama de transições abaixo.

Este diagrama corresponde à qual das gramáticas abaixo?

- (A) $A \rightarrow aba \mid ab \mid b$
- (X) $A \rightarrow aba \mid abb \mid b$
- (C) $A \rightarrow aba \mid bba \mid ab \mid bb$
- (D) $A \rightarrow aba \mid abb \mid ba \mid bb$
- 4. Considere as duas afirmações abaixo, onde A é um nãoterminal que rotula um nó N de uma árvore sintática.
 - I. Um atributo de A é dito herdado se ele depende dos atributos de nós que estão no mesmo nível, ou do nó pai, de N na árvore sintática.
 - II. Um atributo de A é dito sintetizado se ele depende apenas dos atributos do nós que descendem diretamente de N.

Podemos afirmar que

- (X) ambas afirmações estão corretas
- (B) ambas afirmações estão incorretas
- (C) apenas a afirmação I está correta
- (D) apenas a afirmação II está correta

5. Considere o diagrama de transições abaixo.

Dadas as cadeias de tokens s=ababb e t=babab, quais delas pertencem a $\mathcal{L}(G)$?

- (A) ambas
- (B) nenhuma
- (X) apenas s
- (D) apenas t

6. Considere a definição dirigida pela sintaxe dada abaixo.

Produção	Regra semântica
$A \to aBA_1$	B.z := 3A.x
	$A.y := (A_1.x + 2B.z)$
$A \rightarrow b$	A.x := b.val

Em relação aos atributos A.x, A.y e B.z, podemos afirmar que:

- (A) são todos sintetizados
- (B) são todos herdados
- (C) um deles é sintetizado, os outros são herdados
- (X) um deles é herdado, os outros são sintetizados

7. Considere o DAG abaixo.

Qual dentre as sequências abaixo constitui uma ordenação topológica para este DAG?

- (A) 1, 3, 2, 4, 5
- (B) 1, 4, 2, 3, 5
- (X) 5, 3, 2, 1, 4
- (D) 5, 4, 2, 1, 3
- **8.** Marque a alternativa que contém uma sequência de chamadas de funções que criam a árvore sintática da expressão 2+3×1.

- (A) $p_1 := criarFolha(num, 3)$ $p_2 := criarFolha(num, 2)$ $p_3 := criarFolha(num, 1)$ $p_4 := criarNo(\times, p_3, p_1)$ $p_5 := criarNo(+, p_2, p_4)$ (X) $p_1 := criarFolha(num, 3)$ $p_2 := criarFolha(num, 2)$
- $p_2 := criarFolha(num, 2)$ $p_3 := criarFolha(num, 1)$ $p_4 := criarNo(×, p_1, p_3)$ $p_5 := criarNo(+, p_2, p_4)$
- (C) $p_1 := \text{criarFolha}(\text{num}, 3)$ $p_2 := \text{criarFolha}(\text{num}, 2)$ $p_3 := \text{criarFolha}(\text{num}, 1)$ $p_4 := \text{criarNo}(\times, p_2, p_3)$ $p_5 := \text{criarNo}(+, p_4, p_1)$
- (D) $p_1 := \text{criarFolha}(\text{num}, 3)$ $p_2 := \text{criarFolha}(\text{num}, 2)$ $p_3 := \text{criarFolha}(\text{num}, 1)$ $p_4 := \text{criarNo}(\times, p_2, p_1)$ $p_5 := \text{criarNo}(+, p_4, p_3)$

9. Considere as definições dirigidas pela sintaxe D_1 e D2 dadas abaixo.

Definição D_1

Produção	Regra semântica	
$A \rightarrow aBC$	B.y := C.z/3	
	C.z := A.x/5	

Definição D_2

Produção	Regra semântica		
$X \to YZw$	Y.b := 3X.a		
	Z.c := 2X.a + 5Y.b		

Podemos afirmar que:

- (A) ambas definições são L-atribuídas
- (${\tt X}$) apenas a definição D_2 é L-atribuída
- (C) apenas a definição D_1 é L-atribuída
- (D) nenhuma das duas definições é L-atribuída
- **10.** Considere as duas afirmações abaixo, que dizem respeito às restrições no cálculo dos atributos.
 - I. Um atributo herdado para um símbolo no lado esquerdo de um produção deve ser computado por uma ação que antecede o símbolo.
 - II. Uma ação não pode referenciar um atributo sintetizado de um símbolo à direita da ação.

Podemos afirmar que

- (A) ambas afirmações estão corretas
- (B) ambas afirmações estão incorretas
- (C) apenas a afirmação l está correta
- (X) apenas a afirmação II está correta

11. Seja G a gramática livre de contexto definida abaixo:

$$A \to Aa \mid Ab \mid cB$$
$$B \to aA \mid ab \mid \epsilon$$

- (a) (5 pontos) Construa uma gramática G_1 , equivalente à G, por meio da remoção da recursão à esquerda de G.
- (b) (10 pontos) Construa uma gramática G_2 , equivalente à G_1 , por meio da aplicação da fatoração à esquerda em G_1 .
- (c) (5 pontos) Determine os conjuntos Primeiro() de todos os não-terminais de G_2 .
- (d) (10 pontos) Determine os conjuntos Seguinte() de todos os não-terminais de G_2 .
- (e) (15 pontos) Construa a tabela sintática de G_2 , que seria usada para a implementação de um analisador sintático não-recursivo para G_2 .
- (f) (5 pontos) A gramática G_2 é LL(1)? Justifique sua resposta.

Solução:

(a) Após a aplicação do algoritmo de remoção de recursão à esquerda obtemos a gramática G_1 :

$$\begin{array}{l} A \rightarrow \, cBA' \\ A' \rightarrow \, aA' \mid bA' \mid \, \epsilon \\ B \rightarrow \, acBA' \mid ab \mid \, \epsilon \end{array}$$

(b) Após a aplicação da fatoração à esquerda em ${\cal G}_1$, obtemos a gramática ${\cal G}_2$:

$$A \rightarrow cBA'$$

$$A' \rightarrow aA' \mid bA' \mid \epsilon$$

$$B \rightarrow aB' \mid \epsilon$$

$$B' \rightarrow cBA' \mid b$$

(c)

$$\begin{split} & \operatorname{Primeiro}(A) = \; \{ \, c \, \} \\ & \operatorname{Primeiro}(A') = \; \{ \, a,b,\epsilon \, \} \\ & \operatorname{Primeiro}(B) = \; \{ \, a,\epsilon \, \} \\ & \operatorname{Primeiro}(B') = \; \{ \, b,c \, \} \end{split}$$

(d)

Seguinte
$$(A) = \{a, b, \$\}$$

Seguinte $(A') = \{a, b, \$\}$
Seguinte $(B) = \{a, b, \$\}$
Seguinte $(B') = \{a, b, \$\}$

(e) Tabela sintática para G_2 :

Não-	Símbolo da entrada			
terminal	a	b	c	\$
A			$A \rightarrow cBA'$	
A'	$A' \to aA'$ $A' \to \epsilon$	$A' \to bA'$ $A' \to \epsilon$		$A' \to \epsilon$
В	$B \to aB'$ $B \to \epsilon$	$B \to \epsilon$		$B \to \epsilon$
B'		$B' \to b$	$B' \to cbA'$	

(f)	(f) A gramática G_2 não é $LL(1)$, porque a tabela sintática M apresentada no item anterior tem duas entradas na posição $M[B,a]$.							