Introduction to Credit scorecards

Github: https://github.com/Py4Econmn/credit_scorecard_toy.git

Sugarkhuu Radnaa

Py4Econ in Ulaanbaatar py4econ@gmail.com

Binning, WOE and IV

$$WOE_i = In(rac{\% ext{ of Non-Events}_i}{\% ext{ of Events}_i})$$

$$IV = \sum_{i}^{bins} (\% ext{ of Non-Events - } \% ext{ of Events}) ext{ $\times WOE_i$ }$$

Range	Bins	Non events	Events	% of Non-Events	% of Events	WOE	IV
0-50	1	197	20	5.4%	5.9%	-0.0952	0.0005
51-100	2	450	34	12.3%	10.1%	0.2002	0.0045
101-150	3	492	39	13.4%	11.5%	0.1522	0.0029
151-200	4	597	51	16.3%	15.1%	0.0774	0.0009
201-250	5	609	54	16.6%	16.0%	0.0401	0.0003
251-300	6	582	55	15.9%	16.3%	-0.0236	0.0001
301-350	7	386	41	10.5%	12.1%	-0.1405	0.0022
351-400	8	165	23	4.5%	6.8%	-0.4123	0.0095
>401	9	184	21	5.0%	6.2%	-0.2123	0.0025
	Total	3662	338				0.0234

Score

$$\begin{aligned} \textit{Score_points}_i &= \frac{\textit{OFFSET}}{n} - \textit{Factor} \times (\textit{WOE}_i \times \beta_i + \frac{\beta_0}{n}) \\ \textit{Score} &= \sum_{i=1}^n \textit{Score_points}_i \\ &= \sum_{i=1}^n (\frac{\textit{OFFSET}}{n} - \textit{Factor} \times (\textit{WOE}_i \times \beta_i + \frac{\beta_0}{n})) \end{aligned}$$

 $OFFSET = TargetScore + Factor \times In(TargetOdds), Factor = \frac{PDO}{In(2)}, \\ TargetOdds - Odds ratio to use as the scaling center, TargetScore - Score when the odds ratio is at the TargetOdds, PDO - Points to double the odds (points needed to double the odds), n - number of independent variables (excluding the intercept <math>\beta_0$)

Thank you!