2021

B11901027 王仁軒

Motivation & Background

- ML computing is data-centric
 - □ Energy in Traditional Von Neumann structure is mainly consumed by memory accesses
 - Computation in memory tackles this problem
- CIM structures focus on analog approach more
 - □ Analog designs lack accuracy (SNR $\propto \frac{1}{\sqrt{\text{Bit}}}$)
 - □Using digital structures can guarantee accuracy, also good for operations such as batch-norm, pooling

Features

- High bit-flexibility
 - □Programmable bit-widths, signed/unsigned, and weights with 4, 8, 12, 16 bit widths...
- Parallel MAC operations, with high energy/area efficiency
- Allows simultaneous MAC and write operations
 - □Time is wasted when updating weights

2 Mode: SRAM & CIM

□SRAM: update weight

□CIM : MAC operation, support 256×64 multiplication

IN_B<2>

IN_B<3>

2 Mode: SRAM & CIM

□SRAM: update weight

□CIM : MAC operation , support 256×64 multiplication

Require 5 cycles for4-bit input activation

- Dynamic voltage scaling
 - □0.8V for weight updating
 - □0.68V for MAC operation
 - □Better NM and less dynamic power

- Interleaved 28T & 14T Adder
 - □Lower dynamic power

- Update weight and perform MAC simultaneously □When input = 0, Update weight
- Flexible bit width

□Separate 16 bit into 4b signed And 3×4b unsigned

Result

- 89TOPS/W under 0.72V for a sparse pattern □(18% input toggle rate, 50% 1s for weights)
- 52TOPS/W for a dense pattern □(50% input toggle rate, 50% 1s for weights)
- 3.3TOPS from 0.72V at 25°C
 - □TOPS/W and TOPS/area improving by 2.8x and 19x under 5nm process compared to 22nm design

Conclusion

- Full precision
 - □ Digital adder tree structure with 256×64 bit sram array
- Low power
 - Dynamic voltage scaling (lower VDD for MAC)
 - □ Half of the 28T adders are replaced by 14T adders
- Highly programmable
 - □Support different input bit-width and weight bit-width
 - Requires extra adder for sign extension and control blocks

Motivation & Background

- Accuracy and scale of analog approach is limited
 - ■MOS PVT variation
 - ■ADC output range under dynamic voltage scaling
 - □Truncation and gain error of ADC
 - □Nonlinear Id due to drain-induced-barrier-lowering for current-based approach (lower Vt for short channel)
 - ■Smaller caps with technology-scaling for cap-approach
 - □Analog components are not good for testing

Motivation & Background

- Digital approach achieves better performance
 - $\square > 1.3 \times$ power efficiency
 - □ >1.4× performance/area efficiency

Features

- Allows simultaneous MAC and write operations

 □ Time is wasted when updating weights
- Small area
- Low power
- Flexible bit width
 - □4b, 8b, ... weight and input

- 64 MAC arrays with 64kb of 12T sram cell
- 64 banks, each bank contains 4b×4b
- MAC operation requires 5 clock cycles

- Read operations reads data from the cell to NOUT
- Accumulator/Adder does sign extension if needed
 - □Can support 8b data or more

■ Inverse FA

- □12.5% smaller area, 15 % less total MAC power
- $\square FA(\overline{A}, \overline{B}, \overline{Cin}) = (\overline{S}, \overline{Cout})$

- Place adder closer to sram cell
 - ■Easier for routing
 - □Shorter wire
- Merge 12T sram with logic part
 - ■No dummy space for transition region between sram/add
 - □Space can be less than 6T sram design

- Interleaved write WL
 - □ Easier for routing in x-direction
- Shared Read WL
 - ■Easier for routing in y-direction/

- No RBL precharge
 - □CMOS output of 12 T sram does not need precharge
 - □Saves power

- Update weight when MAC is not using the cell
 - □Time of updating can be faster than MAC if faster clock for write operation is used

Result

- Area: 12208 µm2
 - □3× smaller than using a similar digital architecture
- Vmin: 0.5V at -40° C with a 95% yield.
- Fmax: 0.36, 0.96, 1.44GHz at 0.5, 0.7, 0.9V

Result

- TOPS/W vs TOPS/mm2 chart:
 - \square VDD = 0.5 V ~ 0.9V
 - □253.5, 205.0 and 155.2TOPS/W with 10, 25 and 50% input bit sparsity under 0.5 V

Conclusion

- Allows simultaneous MAC and write operations
 - □Update weight while not used for MAC
 - ■Use a faster clock for updating
- Small area
 - □12T sram is better than 6T sram
 - □Inversed FA
 - □Shared WL/ interleaved WL
- Low power
 - □12T sram does not need BL precharge
 - □Inversed FA
- Flexible bit width
 - □Additional shift and add control