Assignment#5

Yizheng Zhao

June 13, 2021

Note: Assignment #5, due on 14:00 July 10, contributes to 10% of the total mark of the course.

Q1. Consider the database instance \mathcal{D}_{PGBBW} (PGBBW stands for Pleasant Goat and Big Big Wolf) given by:

```
Sheep(weslie) Sheep(slowy) LazySheep(paddi)
```

Sheep(tibbie) BrownSheep(fitty) Sheep(jonie)

Wolf(wolffy) Wolf(wolnie) Wolf(wilie)

hasFriend(weslie, slowy) hasFriend(tibbie, jonie)

hasEnemy(paddi, wolffy) hasWife(wolffy, wolnie) hasSon(wolnie, wilie)

We query $\mathcal{D}_{\mathsf{PGBBW}}$ under closed world assumption (relational database semantics) and under open world assumption. Recall that under the closed world assumption we consider the interpretation $\mathcal{I} := \mathcal{I}_{\mathcal{D}_{\mathsf{PGBBW}}}$ defined as follows:

- $\Delta^{\mathcal{I}} = \{ \text{weslie}, \text{slowy}, \text{paddi}, \text{tibbie}, \text{fitty}, \text{jonie}, \text{wolffy}, \text{wolnie}, \text{wilie} \}$
- Sheep $^{\mathcal{I}} = \{ \text{weslie, slowy, tibbie, jonie} \}$
- LazySheep $^{\mathcal{I}} = \{ paddi \}$
- BrownSheep $^{\mathcal{I}} = \{\text{fitty}\}$
- $Wolf^{\mathcal{I}} = \{ wolffy, wolnie, wilie \}$
- hasFriend $^{\mathcal{I}} = \{ (weslie, slowy), (tibbie, jonie) \}$
- hasEnemy $^{\mathcal{I}} = \{(paddi, wolffy)\}$
- hasWife $^{\mathcal{I}} = \{ (wolffy, wolnie) \}$
- hasSon $^{\mathcal{I}} = \{ (wolnie, wilie) \}$

Consider the following Boolean queries (in description logic notation).

- (a) Sheep(fitty)
- (b) Sheep(wolnie)
- (c) Sheep(paddi)
- (d) ¬Sheep(paddi)
- (e) (∃hasFriend.⊤)(weslie)
- (f) (∃hasFriend.Sheep)(weslie)
- (g) (∃hasFriend.LazySheep)(weslie)
- (h) (BrownSheep $\sqcap \neg LazySheep$)(fitty)
- (i) (BrownSheep $\sqcap \neg$ Sheep)(fitty)
- (j) Sheep(wilie)
- (k) (∃hasSon.¬Sheep)(wolnie)
- (1) (∃hasEnemy.∃hasWife.Wolf)(paddi)
- Write those Boolean queries in first-order logic (FOL) notation. (Note that for many queries there is no difference between description logic notation and FOL notation).
 - (a) Sheep(fitty)
 - (b) Sheep(wolnie)
 - (c) Sheep(paddi)
 - (d) ¬Sheep(paddi)
 - (e) $\exists y (hasFriend(weslie, y))$
 - (f) $\exists y (hasFriend(weslie, y) \land Sheep(y))$
 - (g) $\exists y (hasFriend(weslie, y) \land LazySheep(y))$
 - (h) BrownSheep(fitty) $\land \neg LazySheep(fitty)$
 - (i) BrownSheep(fitty) $\land \neg$ Sheep(fitty)
 - (j) Sheep(wilie)
 - (k) $\exists y (hasSon(wolnie, y) \land (\neg Sheep(y)))$
 - (1) $\exists z (hasEnemy(paddi, z) \land (\exists y (hasWife(z, y) \land Wolf(y))))$
- Query answering under closed world assumption: check for each Boolean F whether the answer to the query F given by $\mathcal{D}_{\mathsf{PGBBW}}$ is "Yes" or "No". In other words, check whether $\mathcal{I} \models F$ or $\mathcal{I} \models \neg F$.
 - (a) No
 - (b) No
 - (c) No
 - (d) Yes
 - (e) Yes
 - (f) Yes

- (g) No
- (h) Yes
- (i) Yes
- (j) No
- (k) Yes
- (l) Yes
- Query answering under open world assumption: check for each Boolean query F whether the certain answer to F given by \mathcal{D}_{PGBBW} is "Yes", "No", or "Don't know". In other words, check whether $\mathcal{D} \models F$ or $\mathcal{D} \models \neg F$ or neither of these hold.
 - (a) Don't know
 - (b) Don't know
 - (c) Don't know
 - (d) Don't know
 - (e) Yes
 - (f) Yes
 - (g) Don't know
 - (h) Don't know
 - (i) Don't know
 - (j) Don't know
 - (k) Don't know
 - (l) Yes

Consider the following non-Boolean queries F_i :

- (a) $F_1(x) = Wolf(x)$
- (b) $F_2(x) = \neg \mathsf{Sheep}(x)$
- (c) $F_3(x,y) = \mathsf{hasFriend}(x,y)$
- (d) $F_4(x) = \mathsf{Sheep}(x) \land \neg \mathsf{hasFriend}(x,\mathsf{jonie})$

For each query F_i , give

- for closed world assumption: $answer(F_i, \mathcal{D}_{PGBBW})$;
- for open world assumption: **certanswer**(F_i , \mathcal{D}_{PGBBW}).
 - (a) answer $(F_1, \mathcal{D}_{PGBBW}) = \{ wolffy, wolnie, wilie \}$ certanswer $(F_1, \mathcal{D}_{PGBBW}) = \{ wolffy, wolnie, wilie \}$
 - (b) answer $(F_2, \mathcal{D}_{PGBBW}) = \{paddi, fitty, wolffy, wolnie, wilie\}$ certanswer $(F_2, \mathcal{D}_{PGBBW}) = \emptyset$

```
(c) answer(F_3, \mathcal{D}_{\mathsf{PGBBW}}) = \{(\text{weslie}, \text{slowy}), (\text{tibbie}, \text{jonie})\} certanswer(F_3, \mathcal{D}_{\mathsf{PGBBW}}) = \{(\text{weslie}, \text{slowy}), (\text{tibbie}, \text{jonie})\} (d) answer(F_4, \mathcal{D}_{\mathsf{PGBBW}}) = \{(\text{weslie}, \text{slowy}, \text{jonie})\} certanswer(F_4, \mathcal{D}_{\mathsf{PGBBW}}) = \emptyset
```

Q2. Following Q1, consider now the TBox \mathcal{T} given as:

$$\label{eq:lazySheep} \sqsubseteq Sheep$$ LazySheep \sqcap BrownSheep \sqsubseteq \bot Sheep \sqcap Wolf \sqsubseteq \bot \lnot \forall hasFriend.Sheep$$ \exists hasFriend.\lnot Sheep$$ \sqsubseteq \exists hasFriend.$\lnot$$$

Fill out the table below with the answers "Yes", "No" or "Don't know" to the Boolean queries.

Query	Answer for \mathcal{I}	Certain Answer for \mathcal{D}_{PGBBW}	Certain Answer for $(\mathcal{T}, \mathcal{D}_{PGBBW})$
LazySheep(paddi)	Yes	Yes	Yes
LazySheep(fitty)	No	Don't know	No
Sheep(paddi)	No	Don't know	Yes
¬Sheep(paddi)	Yes	Don't know	No
BrownSheep(willie)	No	Don't know	Don't know
Wolf(fitty)	No	Don't know	Don't know
∃hasFriend.⊤(fitty)	No	Don't know	Don't know
∀hasFriend.⊤(wolffy)	Yes	Yes	Yes
∀hasFriend.∃hasFriend.⊤(wolnie)	Yes	Don't know	Yes
∃hasFriend.∀hasFriend.⊤(jonie)	No	Don't know	Yes

Q3. Consider the \mathcal{EL} TBox \mathcal{T} :

FootballPlayer

∃plays_for.Team

BasketballPlayer

∃plays_for.Team

VolleyballPlayer

∃plays_for.Team

Team

∃managed_by.Manager

Manager

Employee

Manager

∃managed_by.Manager

and the ABox A:

FootballPlayer(ronaldo) BasketballPlayer(jordan)
VolleyballPlayer(zhuting) Team(china)
managed_by(china, langping)

```
(1) Compute the interpretation \mathcal{I}_{\mathcal{T},\mathcal{A}} as described in the lecture slides.
     \Delta^{\mathcal{I}_{\mathcal{T},\mathcal{A}}} = \{ronaldo, jordan, zhuting, china, langping,
    d_{FootballPlayer}, d_{BasketballPlayer}, d_{VolleyballPlayer}, d_{Team}, d_{Manager}, d_{Employee}
    Initialize S and R:
    S(ronaldo) = \{FootballPlayer\}
    S(jordan) = \{BasketballPlayer\},\
    S(zhuting) = \{VolleyballPlayer\}
    S(china) = \{Team\}
    S(langping) = \emptyset
    R(managed\_by) = \{(china, langping)\}
    R(plays\_for) = \emptyset
    S(d_{FootballPlayer}) = \{FootballPlayer\}
    S(d_{BasketballPlayer}) = \{BasketballPlayer\}
    S(d_{VolleyballPlayer}) = \{VolleyballPlayer\}
    S(d_{Team}) = \{Team\}
    S(d_{Manager}) = \{Manager\}
    S(d_{Employee}) = \{Employee\}
    index the axioms 1-6
    for axiom 5,we use simple R:
    S(d_{Manager}) = S(d_{Manager}) \cup \{Employee\} = \{Manager, Employee\}
    axioms 1,2,3,4,6 are the same form as A \subseteq \exists r.B, which means the only
    rule we can use is right R(r)
    now since all S have been desided, we have:
    S(d_{FootballPlayer}) = \{FootballPlayer, ronaldo\}, S(d_{BasketballPlayer}) = \{BasketballPlayer, jordan\}
    S(d_{VolleyballPlayer}) = \{VolleyballPlayer, zhuting\}, S(d_{Team}) = \{Team, china\}
    S(d_{Manager}) = \{Manager, Employee\}, S(d_{Employee}) = \{Employee\}
    using rightR rule to the remaining axioms, we have:
     R(plays\_for) = \{(d_{FootballPlayer}, d_{Team}), (d_{BasketballPlayer}, d_{Team}), (d_{VolleyballPlayer}, d_{Team})\}
     (ronaldo, d_{Team}), (jordan, d_{Team}), (zhuting, d_{Team}))
     R(managed\_by) = \{(china, langping), (d_{Manager}, d_{Manager}), (china, d_{Manager}), (d_{Team}, d_{Manager})\}
    finally we have \mathcal{I}^{\mathcal{T},\mathcal{A}} as follows:
    FootballPlayer<sup>I</sup> = {d_{FootballPlayer}, ronaldo}
BasketballPlayer<sup>I</sup> = {d_{BasketballPlayer}, jordan}
    VolleyballPlayer^{\mathcal{I}} = \{d_{VolleyballPlayer}, zhuting\}
    Team^{\mathcal{I}} = \{d_{Team}, china\}
    Manager^{\mathcal{I}} = \{d_{Manager}, d_{Employee}\}
     Employee^{\mathcal{I}} = \{d_{Employee}\}
    plays\_for^{\mathcal{I}} = \{(d_{FootballPlayer}, d_{Team}), (d_{BasketballPlayer}, d_{Team}), (d_{VolleyballPlayer}, d_{Team})\}
    (ronaldo, d_{Team}), (jordan, d_{Team}), (zhuting, d_{Team})
    managed\_by^{\mathcal{I}} = \{(china, langping), (d_{Manager}, d_{Manager}), (china, d_{Manager}), (d_{Team}, d_{Manager})\}
```

- (2) For \mathcal{EL} concept queries, we know that $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ gives the answer "Yes" iff $(\mathcal{T},\mathcal{A})$ gives the certain answer "Yes". Check this for the queries:
 - ∃plays_for.Team(zhuting);
 - ∃managed_by.Manager(zhuting);
 - ∃plays_for.∃managed_by.Manager(zhuting).

 $\exists plays_for.Team(zhuting)$: both of them give Yes $\exists managed_by.Manager(zhuting)$: $\mathcal{I}_{\mathcal{T},\mathcal{A}}$: No; $(\mathcal{T},\mathcal{A})$: Don't know $\exists plays_for.\exists managed_by.Manager(zhuting)$: both of them give Yes

- (3) For more complex queries, $\mathcal{I}_{\mathcal{T},\mathcal{A}}$ can give the answer "Yes" even if $(\mathcal{T},\mathcal{A})$ does not give the certain answer "Yes". Check this for:
 - $-F(x,y) = \exists z.(\mathsf{plays_for}(x,z) \land \mathsf{plays_for}(y,z)).$
 - $-F = \exists x.\mathsf{managed_by}(x, x).$

Answer:

- -F(x,y): $(\mathcal{T},\mathcal{A}) \not\models F(x,y)$, but both jordan and zhuting play for d_{Team} in $\mathcal{I}_{\mathcal{T},\mathcal{A}}$,so $\mathcal{I}_{\mathcal{T},\mathcal{A}} \models F(jordan, zhuting)$
- $-F: (\mathcal{T}, \mathcal{A}) \not\models F$, but $(d_{Manager}, d_{Manager})$ is in $\mathcal{I}_{\mathcal{T}, \mathcal{A}}$, so $\mathcal{I}_{\mathcal{T}, \mathcal{A}} \models F$
- Q4. Let \mathcal{I} be an interpretation and Σ a signature. The Σ -reduct $\mathcal{I}|_{\Sigma}$ of \mathcal{I} is the interpretation obtained from \mathcal{I} by setting:
 - $\Delta^{\mathcal{I}|_{\Sigma}} := \Delta^{\mathcal{I}}$
 - $X^{\mathcal{I}|_{\Sigma}} := X^{\mathcal{I}}$, for all $X \in \Sigma$;
 - $X^{\mathcal{I}|_{\Sigma}}$ is undefined for all $X \notin \Sigma$.

Two interpretations \mathcal{I} and \mathcal{J} coincide on a signature Σ if $\mathcal{I}|_{\Sigma} = \mathcal{J}|_{\Sigma}$.

Definition 1 (Σ -inseparability). Let \mathcal{T}_1 and \mathcal{T}_2 be two TBoxes and Σ a signature. We say that \mathcal{T}_1 and \mathcal{T}_2 are Σ -inseparable, write $\mathcal{T}_1 \equiv_{\Sigma} \mathcal{T}_2$, if $\{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}_1\} = \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}_2\}$.

(1) Consider the following two fragments \mathcal{T}_1 and \mathcal{T}_2 of ontologies that define Cystic_fibrosis_screening. \mathcal{T}_1 consists of the definition:

```
\begin{tabular}{lll} Cystic\_fibrosis\_screening & & Screening $\sqcap$ \\ & & \exists has\_Focus.Cystic\_fibrosis $\sqcap$ \\ & & \exists has\_Intent.Screening\_procedure\_intent \end{tabular}
```

and \mathcal{T}_2 consists of the inclusions:

Cystic_fibrosis_screening
☐ Genetic_testing
☐ Genetic_testing ☐ Molecular_analysis ☐ Screening.

- Check if $\mathcal{T}_1 \equiv \mathcal{T}_2$?

Answer: No

- For $\Sigma = \{ \text{Cystic_fibrosis_screening}, \text{Screening} \}$, check if $\mathcal{T}_1 \equiv_{\Sigma} \mathcal{T}_2 ?$

Answer: Yes

Proof: $\forall \mathcal{I}_1|_{\Sigma} \in \{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}_1\}$, we can assume

 $Cystic_fibrosis_screening^{\mathcal{I}_1} = \{a_1, ..., a_n\}, Screen^{\mathcal{I}_1} = \{a_1, ... a_m\} (m \geq 1)$

now we extand $\mathcal{I}_1|_{\Sigma}$ by setting

Genetic_testing $\mathcal{I}_1 = \{a_1, ..., a_n\}$, $Molecular_analysis^{\mathcal{I}_1} = \{a_1, ..., a_m\}$ now we have a model of \mathcal{T}_2 , so $\forall \mathcal{I}_1|_{\Sigma} \in \{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}_1\}, \mathcal{I}_1|_{\Sigma} \in \{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}_2\}$, which means $\{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}_1\} \subseteq \{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}_2\}$

proving $\{\mathcal{I}|_{\Sigma}|\mathcal{I}\models\mathcal{T}_2\}\subseteq\{\mathcal{I}|_{\Sigma}|\mathcal{I}\models\mathcal{T}_1\}$ is similar.

Let \mathcal{T}_3 consist of the inclusion:

Cystic_fibrosis_screening

□ Screening.

- check if $\mathcal{T}_1 \equiv_{\Sigma} \mathcal{T}_3$?

Answer: Yes

proof process is similar to the above

- check if $\mathcal{T}_2 \equiv_{\Sigma} \mathcal{T}_3$?

Answer: Yes

proof process is similar to the above

(2) Assume that a TBox \mathcal{T}' is a definitorial extension of a TBox \mathcal{T} , i.e., \mathcal{T}' is obtained from \mathcal{T} by adding new concept definitions $A \equiv C$ such that A does neither occur in \mathcal{T} nor on the right-hand side of any of new definitions. For example, suppose that \mathcal{T}_1 from above has been extended with:

 ${\tt Tuberculosis_screening} \ \equiv \ {\tt Bacterial_disease_screening} \ \sqcap$

∃has_Focus.Tuberculosis □

∃has_Intent.Screening_procedure_intent,

where Tuberculosis_screening is a new concept name.

- Show that $\mathcal{T} \equiv_{\Sigma} \mathcal{T}'$ whenever \mathcal{T}' is a definitorial extension of \mathcal{T} , for $\Sigma = \text{sig}(\mathcal{T})$.

Answer: we need to prove that $\{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}\} = \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}'\}$

first of all, because $\Sigma = sig(\mathcal{T})$, we have $\forall \mathcal{I} \models \mathcal{T}, \mathcal{I}|_{\Sigma} = \mathcal{I}$ $\forall \mathcal{I}'|_{\Sigma} \in \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}'\} \rightarrow \mathcal{I}'|_{\Sigma} \models \mathcal{T} \rightarrow \mathcal{I}'|_{\Sigma} \in \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{I}'\}$

 \mathcal{T} , meaning $\{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}\} \supseteq \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}'\}$

now we prove the opposite side

 $\{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}\}$ consists of all the models of \mathcal{T} , so we just extend an

arbitrary model \mathcal{I} of \mathcal{T} , let $A^{\mathcal{I}}(new\ concept\ name) = C^{\mathcal{I}}$, then we get a model \mathcal{I}' of \mathcal{T}' , and $\mathcal{I}'|_{\Sigma} = \mathcal{I} \to \mathcal{I} \in \{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}'\} \to \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}\} \subseteq \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}'\}$ now we have $\{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}\} = \{\mathcal{I}|_{\Sigma} \mid \mathcal{I} \models \mathcal{T}'\}$, i.e. $\mathcal{T} \equiv_{\Sigma} \mathcal{T}'$

– Show that $\Sigma \subseteq \Sigma'$ implies $\equiv_{\Sigma'} \subseteq \equiv_{\Sigma}$, for Σ a signature and Σ' its superset.

Answer: we need to prove: given $\Sigma \subseteq \Sigma'$, then $\mathcal{T}_1 \equiv_{\Sigma'} \mathcal{T}_2 \to \mathcal{T}_1 \equiv_{\Sigma} \mathcal{T}_2$ $\mathcal{T}_1 \equiv_{\Sigma'} \mathcal{T}_2 \to \{\mathcal{I}|_{\Sigma'}|\mathcal{I} \models \mathcal{T}_1\} = \{\mathcal{I}|_{\Sigma'}|\mathcal{I} \models \mathcal{T}_2\}$ $\forall \mathcal{I}|_{\Sigma'}$, we can extend it by adding $X^{\mathcal{I}}(X \in \Sigma' \setminus \Sigma)$, then it becomes $\mathcal{I}|_{\Sigma}$, so we have $\{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}_1\} = \{\mathcal{I}|_{\Sigma}|\mathcal{I} \models \mathcal{T}_2\}$, Q.E.D