비전하 실험 보고서

서울대학교 전기정보공학부 2018-12432 박정현* (Dated: September 12, 2023)

본 실험에서는 물질의 특성에 따른 전기전도도를 확인하고, 여러가지의 금속에 대한 전기화학적 서열을 확인한다. 또한 다니엘 전지를 제작한 후 농도에 따른 기전력을 측정해 네른스트 식을 검증하고 이해한다. 화학전지를 이용해 염의 용해도곱 상수를 직접 계산하여 화학전지와 용해도곱상수에 대한 이해도를 높인다.

I. INTROUDCTION

II. THERMONIC EMISSION

금속에 충분한 열이 가해져 온도가 높아지면 전자가 방출되게 된다. 이러한 현상을 thermonic emission이라고 하며이 때 방출되는 전류는 금속의 conduction band로부터 금속의 일함수를 넘어 자유전자가 되어 나타나는 전류이다. 이러한 전류는 페르미 분포를 따르는 전자중 충분한 에너지를 가지고 있는 전자가 넘어가는 전류와 터널링 현상을 통해 넘어가는 전류 두 종류가 있으며 아래와 같이 나타난다.[1] 여기서 A는 Richard 상수이며 T는 온도, 그리고 φ 는 일함수에 해당한다. 충분히 높은 전압에서 가열된 금속의 온도가 높아짐에 따라 방출되는 전류 값이 증가함을 알 수 있다.

$$J = AT^2 \exp\left(-\frac{-\varphi}{kT}\right) \tag{1}$$

III. HELMHOLTZ COIL

반지름 R을 가지는 코일이 중심으로부터 x의 거리에 만드는 자기장은 아래와 같다.

$$B_z = \frac{\mu_0}{2} \frac{R^2 I}{\left(x^2 + R^2\right)^{\frac{3}{2}}} \tag{2}$$

쿨롱 게이지에서 원형코일을 포함한 xy평면에서의 vector potential \vec{A} 는 아래와 같다. 단, $\rho=r/R$ 이며 r은 중심으로부터 벗어난 거리이다.

$$\vec{A}(\vec{r}) = \frac{\mu_0}{4\pi} \int \frac{\vec{J}(\vec{r'})}{2} d^3 \vec{r'}$$
 (3)

$$= \frac{\mu_0}{4\pi R} \int \frac{\vec{J}(\vec{r'})}{\sqrt{1 + \rho^2 - 2\rho\cos\theta}} d^3 \vec{r'} \tag{4}$$

$$= \frac{\mu_0}{4\pi R} \sum_{l} \int \vec{J}(\vec{r'}) \rho^l P_l(\cos \theta) d^3 \vec{r'}$$
 (5)

$$= \hat{\varphi} \frac{\mu_0 I}{8\pi^2 R} \sum_{l} \int_0^{2\pi} \rho^l P_l(\cos \theta) \cos \theta d\theta \qquad (6)$$

$$= \hat{\varphi} \frac{\mu_0 I}{8\pi^2 R} \sum_{l} \int_0^{2\pi} \rho^l \frac{d}{d\theta} P_l(\cos \theta) \sin \theta d\theta \qquad (7)$$

$$=\hat{\varphi}\frac{\mu_0 I}{8\pi^2 R} \sum_{l} \int_0^{2\pi} \rho^l P_l^1(\cos\theta) \sin\theta d\theta \qquad (8)$$

$$= \hat{\varphi} \frac{\mu_0 I}{8\pi^2 R} \sum_{l=1}^{1} \rho^l P_l^1(z) dz$$
 (9)

IV. REFERENCE

[1] Semiconductor SZE

^{*} alexist@snu.ac.kr