Curso: **Ciência da Computação** Professora: **Aline Mello**

e-mail: alinemello@unipampa.edu.br

Trabalho 2: Simulador de Memória Cache

1. Enunciado

O trabalho consiste na construção de um simulador de memória cache. O simulador deve receber como parâmetro de entrada um arquivo que contém os endereços das palavras que são lidas por um processador (exemplo no apêndice 1). Os endereços contêm 5 bits e devem ser buscados na memória cache simulada. Se o endereço buscado não estiver contido na memória cache deve ser impresso na tela o cache miss para aquele endereço, e o mesmo deve ser buscado na memória principal e copiado para a cache, senão, deve-se impresso o cache hit. O conteúdo da memória cache deve ser exibido, no mínimo, a cada alteração da mesma, indicando a linha que sofreu a modificação. No final da execução deve ser apresentado o número de leituras realizadas, o número de miss, o número de hits, a taxa de miss e a taxa de hit.

A memória principal deve possuir 32 posições com palavras de 16 bits e ser preenchida com os valores do arquivo "MemoriaPrincipal.txt" (apêndice 2). A memória cache deve possuir 8 posições e deve estar vazia inicialmente.

O trabalho deve ser realizado em grupos, onde cada grupo receberá uma técnica de mapeamento e um algoritmo de substituição (quando houver) para utilizar.

Técnica de Mapeamento	Algoritmo de Substituição
Direto	
Completamente Associativo	Randômico
Completamente Associativo	LFU
Completamente Associativo	LRU
Associativo por Conjuntos 2-way	Randômico
Associativo por Conjuntos 2-way	LFU
Associativo por Conjuntos 2-way	LRU
Associativo por Conjuntos 4-way	Randômico
Associativo por Conjuntos 4-way	LFU
Associativo por Conjuntos 4-way	LRU

2. Grupos

O trabalho deve ser realizado em grupos de no máximo três integrantes. A indicação dos integrantes do grupo deverá ser realizada no Moodle até às 23h59 do dia 30/10/2018. Após essa indicação, o grupo receberá a técnica de mapeamento e algoritmo de substituição a serem utilizados.

3. Entrega

A entrega do trabalho deverá ser realizada também via Moodle até às 23h59 do dia 18/11/2018. O trabalho deve ser entregue em um arquivo compactado, no qual deverão estar o código fonte e um relatório contendo, minimamente, os seguintes aspectos: identificação do grupo, descrição da técnica de mapeamento e algoritmo de substituição utilizados, descrição do simulador desenvolvido com detalhes e os resultados obtidos (número de leituras realizadas, número de miss, número de

Curso: Ciência da Computação

Professora: Aline Mello

e-mail: alinemello@unipampa.edu.br

hits, taxa de miss e taxa de hit) com base no arquivo de entrada exemplo (Leituras.txt, apêndice 1).

4. Avaliação

Esse trabalho vale 10 pontos e tem peso igual a 10% na nota final da disciplina. A nota máxima do trabalho perde 1 ponto a cada dia de atraso na entrega.

Em caso de dúvida entrar em contato por email alinemello@unipampa.edu.br ou pessoalmente na sala 229.

Curso: Ciência da Computação

Professora: Aline Mello

e-mail: alinemello@unipampa.edu.br

Apêndice 1: Exemplo de Arquivo de Entrada

O arquivo de entrada "Leituras.txt" contém os endereços dos quais o processador requisita leitura. Neste exemplo são realizadas 40 leituras.

Curso: Ciência da Computação

Professora: Aline Mello

e-mail: alinemello@unipampa.edu.br

Apêndice 2: Arquivo Memoria Principal.txt

11111111111111111111
111111111111111111
111111111111111111
11111111111101111
11111111111011111
1111111110111111
1111111101111111
1111111011111111
1111111011111111
111111111011111111
1111111110111111
1111111111111111
111111111111111111
111111111111111111111111111111111111111
11111111111111111
111111111111111111111111111111111111111
1111111111111111
1111111110111111
1111111101111111
1111111011111111
1111110111111111
1111101111111111
1111011111111111
1110111111111111
1011111111111111
1101111111111111
1110111111111111
1111011111111111
1111101111111111
1111110111111111
1111111011111111
1111111101111111