ETH zürich

Einfache elektrische Netzwerke (2/2)

Manfred Albach, «Elektrotechnik», Kapitel 3

227-0001-00L «Netzwerke und Schaltungen 1»

Informationen und Ankündigungen

- Übungsstunden am Donnerstag sind als Arbeits- und Übungsumgebung in kleineren Gruppen gedacht
 - Bitte gehen Sie ausschliesslich in die Übungsgruppe, für die Sie eingeschrieben sind.
 - Wir werden Legikontrolle durchführen, da dies nicht gut eingehalten wird.
 - Study-Center ist ebenfalls ideal f
 ür individuelle Unterst
 ützung
- Nächste Woche findet Vorführung der elektrostatischen Generatoren statt
 - Bitte melden Sie sich noch bei Pit welche Gruppe definitiv vorführen möchte.
 - Präsentation und Vorführung
 - 5 min max!!
 - Erklärung des Funktionsprinzips (mit Theorie aus Vorlesung)

Woche 6

- Reale Spannungs- und Stromquellen
- Ersatzspannungs- und –stromquellen
- Leistungsanpassung
- Stern-Dreieck-Umwandlung
- Überlagerungsverfahren
- Analyse Umfangreicher Netzwerke (Vollständiger Baum, Auftrennen der Maschen
- (Ausblick auf NuS-2) Maschenstrom- und Knotenpotentialverfahren

Lernziele - Einfache elektrische Netzwerke (2/2)

Nach dieser Woche (Lesen im Buch, Vorlesungsstunde, Übungsstunde sowie dem <u>eigenständigen</u> Lösen von Übungsaufgaben) werden Sie in der Lage sein:

- Spannungs- und Stromquellen ineinander umzurechnen,
- die Verbraucherleistung bei vorgegebener Quelle zu maximieren,
- Wirkungsgradberechnungen durchzuführen sowie
- umfangreiche Gleichstromnetzwerke mit unterschiedlichen Methoden zu analysieren.

Welche der Schaltungen a) - d) führen **nicht** zu einem Widerspruch? (Mehrfachnennung möglich).

1 - Strom- und Spannungsquellen

Welche der Schaltungen a) - d) führen **nicht** zu einem Widerspruch? (Mehrfachnennung möglich).

Überblick – Strom- und Spannungsquellen

	ideale	Reale
Spannungsquelle	 Ausgangsspannung unabhängig vom angeschlossenen Netzwerk Ausgangsstrom hängt vom angeschlossenen Netzwerk ab 	
Stromquelle		

Überblick

	ideale	Reale
Spannungsquelle	 Ausgangsspannung unabhängig vom angeschlossenen Netzwerk Ausgangsstrom hängt vom angeschlossenen Netzwerk ab 	
Stromquelle	 Ausgangsstrom unabhängig vom angeschlossenen Netzwerk Ausgangsspannung hängt vom angeschlossenen Netzwerk ab 	

Überblick

	ideale	Reale
Spannungsquelle	 Ausgangsspannung unabhängig vom angeschlossenen Netzwerk Ausgangsstrom hängt vom angeschlossenen Netzwerk ab 	 Innenwiderstand R_i in Reihe zu idealer Quellenspannung U₀ Leerlaufspannung U_L (= Quellenspannung) Kurzschlussstrom I_K = U₀/R_i
Stromquelle	 Ausgangsstrom unabhängig vom angeschlossenen Netzwerk Ausgangsspannung hängt vom angeschlossenen Netzwerk ab 	

Überblick

	ideale	Reale
Spannungsquelle	 Ausgangsspannung unabhängig vom angeschlossenen Netzwerk 	• Innenwiderstand R_i in Reihe zu idealer Quellenspannung U_0
	 Ausgangsstrom hängt vom angeschlossenen Netzwerk ab 	• Leerlaufspannung $U_{\rm L}$ (= Quellenspannung) • Kurzschlussstrom $I_{\rm K} = U_0/R_{\rm i}$
Stromquelle	 Ausgangsstrom unabhängig vom angeschlossenen Netzwerk Ausgangsspannung hängt vom angeschlossenen Netzwerk ab 	 Innenwiderstand R_i parallel zu idealem Quellenstrom I₀ Kurzschlusstrom I_K (= Quellenstrom I₀) Leerlaufspannung U₀ = I₀ · R_i

ETH zürich

Bezüglich Klemmenverhalten: Spannungs- und Stromquelle können ineinander umgerechnet werden.

- äquivalent, wenn gleiche Leerlaufspannung und gleicher Kurzschlussstrom
- gegeben, wenn $U_0 = I_0 \cdot R_i$

ABER: internes Quellenverhalten komplett anders!

Abbildung 3.29: Äquivalente Quellen

ETH zürich

Quelle 1 (Netzteil)

Quelle 2 (Akku)

Last (Bildschirm, Prozessor, ...)

Abbildung 3.30: Parallel geschaltete Spannungsquellen

Rechenbeispiel

Abbildung 3.30: Parallel geschaltete Spannungsquellen

Ladebetrieb: S1 geschlossen, S2 geöffnet, das Netzgerät lädt den Akku.

Akku: S1 ist geöffnet, S2 geschlossen, der Akku speist den Verbraucher.

Pufferbetrieb: beide Schalter S1 und S2 sind geschlossen, das Netzgerät speist den Verbraucher und lädt den Akku.

Abbildung 4: Netzwerk aus zwei Spannungsquellen

Aufgabe 4 Prüfung Januar 2020

THzürich

$$BSP: U_{N0} = 17.8V$$
 $U_{R0} = 11.8V$
 $R: = 152$
 $R = 2052$
 $I_{1} = 0.8A$
 $I_{2} = -0.7B$

Akkubetrieb

Knoten regel:
$$I_2 = I$$

Maschen regel: $U_{20} - I_0R - R_i I_2 = 0$
 $U_{20} = I(R_i + R)$
 $I = \frac{U_{20}}{R_i + R}$

2 - Leistung in Schaltung mit Glühbirnen (3)

Zwei Glühbirnen A und B werden in Reihe an eine Gleichspannungsquelle angeschlossen. Anschließend wird ein Draht über Glühbirne B hinweg verbunden. Nach Anlegen der Drahtverbindung ...

- nimmt die Helligkeit der Glühbirne A zu.
- ändert sich Helligkeit der Glühbirne A nicht.
- nimmt die Helligkeit der Glühbirne A ab.
- geht die Glühbirne A aus.

Experiment

Ohne Kurzschluss von Glühbirne B

Mit Kurzschluss von Glühbirne B

Richtige Antwort: a)

ETH zürich

3 - Leistung in Schaltung mit Glühbirnen 12 V Zwei Glühbirnen A und B werden parallel an eine Gleichspannungsquelle angeschlossen. Anschließend wird Glühbirne A mit einem Schalter von der Spannungsquelle getrennt. Nach öffnen des Schalters ... nimmt die Helligkeit der Glühbirne B zu. ändert sich Helligkeit der Glühbirne B nicht. nimmt die Helligkeit der Glühbirne B ab. geht die Glühbirne B aus.

Experiment

Geschlossener Schalter

Offener Schalter

Richtige Antwort: b)

Konzept - Maximalwertberechnung

Für den zu maximierenden Wert (Zielfunktion) muss es in Bezug auf die Variable (mindestens) zwei konkurrenzierende Prozesse geben:

- a) mit Vergrösserung der Variablen wird der erste Prozess grösser, der zweite kleiner.
- b) mit Verkleinerung der Variablen wir der erste Prozess kleiner, der zweite grösser.

Wie gross ist die maximal von der Quelle an den Klemmen zur Verfügung gestellte Leistung?

Zielfunktion: Leistung P = UI.

Abbildung 3.31: Berechnung der maximalen Ausgangsleistung

Leistungsanpassung und Wirkungsgrad

Abbildung 3.33: Von der Quelle abgegebene und vom Verbraucher aufgenommene Leistung

Effiziente elektrische Energieübertragung

Nutzleistung der Verbraucher ist gegeben.

Verlustleistung an «Spannungsquelle» minimieren. (also an Innenwiderstand Generator und Übertragungsleitung)

 $P_{\text{Verlust}} = R_{i}I^{2} \rightarrow \text{Strom möglichst klein} \rightarrow \text{Spannung möglichst hoch.}$

Struktur «Netzwerkanalyse»

(behalten Sie den Überblick trotz der vielen Details!)

Netzwerk: elektrische Schaltung mit mindestens einer Stromverzeigung

- Gleichstrom und –spannung,
- > Elemente mit linearem Zusammenhang zwischen Strom und Spannung

Netzwerke mit nicht-linearen Elementen werden numerisch in der Regel iterativ gelöst

Verfahren zur

- · Berechnung Netzwerke mit einer Quelle.
- Berechnung Netzwerke mit mehreren Quellen:
 - Überlagerungsprinzip
- «automatisierte» Berechnung «komplizierterer» Netzwerke:
 - Aufstellen und Lösen der Knoten- und Maschengleichungen
 - Knotenpotentialverfahren ___ Reduktion des Rechenaufwandes

Berechnung Netzwerke mit einer Quelle

- 1. Zusammenfassen aller Widerstände mit Regeln der
 - a. Reihenschaltung
 - b. Parallelschaltung
 - c. Stern-Dreiecks-Umwandlung

Bild 2.18 Beispiel eines einfachen Netzwerkes. a) Tatsächliche Schaltung, b) und c) elektrisch gleichwertige Ersatzschaltungen

Berechnung Netzwerke mit einer Quelle

- 1. Zusammenfassen aller Widerstände
- 2. Berechnung I_1 mit Ohm'schen Gesetz
- 3. Berechnung der anderen Grössen durch schrittweise Rückführung
 - *U*₂₃
 - I_2 und I_3

Bild 2.18 Beispiel eines einfachen Netzwerkes. a) Tatsächliche Schaltung, b) und c) elektrisch gleichwertige Ersatzschaltungen

20.10.2025

Berechnung Netzwerke mit mehreren Quellen

I. Überlagerungsprinzip

Lesekontrollfrage 1

b)

Überlagerungsprinzip

Teillösungen

- Effekt aller Strom- und Spannungsquellen einzeln betrachten.
- Andere Quellen müssen dabei «Null gesetzt werden»
 - Andere Stromquellen dürfen keinen weiteren Beitrag liefern → Leerlauf im Zweig
 - Andere Spannungsquellen dürfen keinen weiteren Beitrag liefern → Kurzschluss

Wegen quadratischem Zusammenhang zwischen Strom und Leistung dürfen nicht die Teilleistungen über Widerstand addiert werden.

Berechnung «komplizierterer» Netzwerke

II. Aufstellen der Maschen- und Knotengleichungen

$$I = I_1 + I_2$$

Berechnung «komplizierterer» Netzwerke

II. Aufstellen der Maschen- und Knotengleichungen

$$I = I_1 + I_2$$

 $R_i I_1 + RI - U_{10} = 0$

Berechnung «komplizierterer» Netzwerke

II. Aufstellen der Maschen- und Knotengleichungen

$$I = I_1 + I_2$$

$$R_i I_1 + RI - U_{10} = 0$$

$$R_i I_2 + RI - U_{20} = 0$$

5 - Netzwerkgleichungen

Mit welcher der folgenden Matrizengleichungen lässt sich das gezeichnete Netzwerk korrekt lösen? Wählen Sie eine oder mehrere Antworten.

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ R_1 & 0 & 0 & R_4 & 0 \\ 0 & 0 & R_3 & -R_4 & R_5 \\ 0 & R_2 & 0 & 0 & R_5 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ U_1 \\ 0 \\ U_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & -1 & 0 & 1 & 1 \\ R_1 & 0 & 0 & R_4 & 0 \\ 0 & 0 & R_3 & -R_4 & R_5 \\ 0 & R_2 & 0 & 0 & R_5 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ U_5 \\ 0 \\ U_5 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ R_1 & 0 & 0 & R_4 & 0 \\ R_1 & 0 & R_3 & 0 & R_5 \\ 0 & R_2 & 0 & 0 & R_5 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ U_1 \\ U_1 \\ U_2 \end{bmatrix}$$

5 - Netzwerkgleichungen

Mit welcher der folgenden Matrizengleichungen lässt sich das gezeichnete Netzwerk korrekt lösen? Wählen Sie eine oder mehrere Antworten.

Drei Knotengleichungen

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ 0 & -1 & 0 & 1 & 1 \\ R_1 & 0 & 0 & R_4 & 0 \\ 0 & R_2 & 0 & 0 & R_5 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ 0 \\ U_1 \\ U_2 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ R_1 & 0 & 0 & R_4 & 0 \\ 0 & 0 & R_3 & -R_4 & R_5 \\ 0 & R_2 & 0 & 0 & R_5 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ U_1 \\ 0 \\ U_2 \end{bmatrix}$$

Zwei redundante Maschengleichungen (R₂ und U₂ nicht enthalten)

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ R_1 & 0 & 0 & R_4 & 0 \\ 0 & 0 & R_3 & -R_4 & R_5 \\ R_1 & 0 & R_3 & 0 & R_5 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ U_1 \\ 0 \\ U_1 \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 & -1 & -1 & 0 \\ 0 & 1 & 1 & 0 & -1 \\ R_1 & 0 & 0 & R_4 & 0 \\ R_1 & 0 & R_3 & 0 & R_5 \\ 0 & R_2 & 0 & 0 & R_5 \end{bmatrix} \cdot \begin{bmatrix} I_1 \\ I_2 \\ I_3 \\ I_4 \\ I_5 \end{bmatrix} = \begin{bmatrix} 0 \\ 0 \\ U_1 \\ U_1 \\ U_2 \end{bmatrix}$$

Definition «Zweig»:

Beliebig zusammengesetzter Zweipol, der zwischen zwei Knoten eines Netzwerks liegt.

Beispiel hat 6 Zweige

Abbildung 3.6: Einfaches Netzwerk

Die Anzahl unbekannter Ströme und Spannungen kann in jedem Zweig auf eine Unbekannte reduziert werden.

- → z Zweige → z Unbekannte!
- Aufstellen der Knoten- und Maschengleichungen

Abbildung 3.44: Netzwerkgraph

- 1. Schritt: Darstellung des Netzwerkgraphen (ohne Komponenten)
- 2. Schritt: Festlegung der Zählrichtungen
- **3. Schritt:** Aufstellung der (*k*-1) Knotengleichungen

$$K_1: I_0 - I_1 - I_4 = 0$$
 $K_2: I_1 - I_3 - I_5 = 0$
 $K_3: -I_2 + I_3 + I_4 = 0$

4. Schritt: Aufstellung der Maschengleichungen (es braucht noch m=z-(k-1) Maschengleichungen)

Aufstellen der Maschengleichung

1. Variante: Vollständiger Baum

Abbildung 3.46: Aufstellung der Maschengleichungen beim vollständigen Baum

4. Schritt: Aufstellung der Maschengleichungen (1. Methode, vollständiger Baum)

Aufstellen der Maschengleichung

2. Variante: Auftrennung der Maschen

Abbildung 3.47: Auftrennung der Maschen

4. Schritt: Aufstellung der Maschengleichungen (2. Methode, Auftrennung der Maschen)

Ausblick

In der Praxis:

- benötigt man nicht immer alle Ströme und Spannungen
- Gleichungen mit dem Computer aufstellen
- möglichst kleine Matrixgleichungen lösen
- \rightarrow Anzahl Knoten- und Maschengleichungen = Anzahl Zweige Rechenaufwand: $\sim \mathcal{O}(n^3)$
- → «formalisiertes» Aufstellen der Gleichungen und Reduktion der Anzahl Gleichungen
 - Knotenpotentialverfahren (wird in erweiterter Form in Spice genutzt)
 - Maschenstromverfahren

Ausführlich in NuS-2 (Wechselstrom, alle Komponenten, ...)

Zum Ausprobieren (asc-file auf moodle)

Abbildung 3.6: Einfaches Netzwerk

Ausblick Woche 7: «Zwischenwoche»

- kein neuer Fachinhalt
- Vorlesung (mit Vorführung elektrostatischer Generatoren) und Übung finden statt
- Zum Wiederholen des Stoffes und der Übungen Kap 1-3 nutzen.
- Lesekontrollfragen = Feedbackfragen (Bonuspunkte)

