Національний технічний університет України «Київський політехнічний інститут імені Ігоря Сікорського» Кафедра конструювання електронно-обчислювальної апаратури

Лабораторна робота з ОТК №7

на тему:

«ДОСЛІДЖЕННЯ ЕЛЕКТРИЧНИХ ХАРАКТЕРИСТИК І ПАРАМЕТРІВ

ОДИНАРНОГО ПОСЛІДОВНОГО КОЛИВАЛЬНОГО КОНТУРУ≫

Виконав Дем'янчук Т. М. студент II-го курсу ФЕЛ

3-ої бригади гр. ДК-12

Дата виконання: 13.12.2022

Перевірив:

доцент Бондаренко В.М.

Київ 2022

ПРОГРАМА РОБОТИ

.ac dec 100 10 0.1GHz

2. Змінюючи частоту вхідної напруги знайдемо резонансну частоту утвореного коливального контуру та порівняємо її з теоретично отриманою, а також отримаємо графік залежності $U(\mathfrak{f})$

Експериментально отримана резонансна частота

Як видно з графіка вище резонансна частота при експериментальному дослідженні становить:

$$f_{rez_ex} \approx 35.6 \ \kappa \Gamma$$
ц = 35600Γ ц

Теоретично отримана резонансна частота

Загальна формула

$$F = \frac{1}{2\pi\sqrt{LC}}$$

$$F = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{10^{-1}\Gamma_{\rm H} \times 2 \times 10^{-10}\Phi}} \approx 35588\Gamma_{\rm H}$$

$$F \approx 35,588$$
к Γ ц = 35588 Γ ц

Порівняймо отримані практично та теоретично резонансні частоти

$$f_{rez_ex} > F$$

$$f_{rez_ex} - F = 35600 - 35588 = 12$$
Гц

Як бачимо, експериментально отримана резонансна частота практично рівна теоретично отриманій, що свідчить про правильність виконаної вище роботи.

3. Під'єднаємо паралельно конденсатору опір навантаження $R_n = 100$ к0м та отримаємо залежність U'(f) після чого зробимо висновки про причини розбіжності між графіками.

Графік при частоті від 1Гц до 1МГц

Дослідимо графік при частоті від 10кГц до 150кГц

Причини розбіжності між графіками

Графіки розбігаються оскільки у нас зявився навантажувальний резистор у зв'язку з чим конденсатор почав заряджатися довший проміжок часу і тепер він не заряжається так швидко до максимального значення ЕРС самоіндукції котушки індуктивності оскільки знову ж таки його постійно розряджає навантажувальний резистор. Тому максимальна напруга яку тепер ми можемо зафіксувати у досліджуваній точці кола відповідає тій, що відображена у віконці зправа схеми, що вище.

4. Від'єднаємо навантажувальний резистор та послідовно конденсатору включимо конденсатор ємністю $C = 500 \pi \Phi$ після чого отримаємо залежність U''(f) та зробимо висновки про причини розбіжності між графіками U(f) та U''(f).

Графік при частоті від 10кГц до 140кГц

Дослідимо графік при частоті від 41кГц до 43кГц

Причини розбіжності між графіками

Оскільки ми додали до нашої схеми ще один конденсатор який включили послідовно з уже наявним одним, то ми тим самим змінили і частоту резонансу нашого контуру, і знання цього факту уже дозволить зробити висновок, що будуть відрізнятися і графіки при різних значеннях ємності кондесатора.

Розрахуємо ємність батареї із двох послідовно включених конденсаторів	$\frac{1}{C} = \frac{1}{200} + \frac{1}{500} \Rightarrow C \approx 142.9\pi\Phi$
Розрахуємо резонансну частоту для утвореного контуру	$F = \frac{1}{2\pi\sqrt{LC}} = \frac{1}{2\pi\sqrt{10^{-1}}\Gamma_{\rm H} \times 142.9 \times 10^{-12}\Phi}$ $\approx 42102\Gamma_{\rm U} = 42.102\kappa\Gamma_{\rm U}$

Теоретичний розрахунок відповідає практичному заміру, що свідчить про правильність проведенних хамірів.

5. Визначимо смугу пропускання і обчислимо параметри досліджуваного послідовного коливального контуру такі, як: добротність, хвильова провідність. 5.1. Визначимо смугу пропускання

Як видно із графіка нижче максимальна напруга у вимірюваній точці схеми досягається при частоті ≈ 35.6 к Γ ц і дорівнює вона ≈ 903 B.

 $\frac{903B}{\sqrt{2}} \approx 638.5B$ – напруга в межах якої будемо визначати смугу пропускання

Із графіка 1: $F_1 = 35.627$ к Γ ц Із графіка 2: $F_2 = 35.552$ к Γ ц

 $F_1 - F_2 = 35.627 - 35.552 = 0,075$ к Γ ц = 75 Γ ц - смуга пропускання

Для інших двох кіл смуга пропускання розраховується аналогічним чином і відповідно дорівнюватиме: 26кГц-для схеми з резистором включеним паралельно до конденсатора

та 0.036к Γ ц-для схеми без резистора, але з вдома послідовного включеними конденсаторами

5.2. Визначимо добротність досліджуваного послідовного контуру

$$\Delta \omega = \frac{\omega_0}{Q} \Longrightarrow Q = \frac{\omega_0}{\Delta \omega} \Longrightarrow Q = \frac{2\pi \times 35.6$$
κΓμ $}{2\pi \times 0.075$ κΓμ $} \approx 2982$

Для інших двох кіл смуга добротність розраховується аналогічним чином і відповідно дорівнюватиме: 1.35 для схеми з резистором включеним паралельно до конденсатора та 11166.(6)-для схеми без резистора, але з вдома послідовного включеними конденсаторами

5.3. Визначимо хвильову провідність досліджуваного послідовного контуру

$$\gamma = \sqrt{\frac{L}{c}} = \sqrt{\frac{100 \times 10^{-3} \, \Gamma_{\rm H}}{200 \times 10^{-12} \, \Phi}} \approx 22360 \left(\frac{\Gamma_{\rm H}}{\Phi}\right)^{\frac{1}{2}}$$
 Для кола з двома послідовно включеними конденсаторами хвилева провідність

Для кола з двома послідовно включеними конденсаторами хвилева провідність становитиме: $26453.5 \left(\frac{\Gamma_{\rm H}}{\Phi}\right)^{\frac{1}{2}}$, а для кола з паралельно включеним резистором до конденсатора хвильова провідність буде та ж сама, що і для кола без цього резистора, оскільки вона залежить лише від індуктивності та ємності.

6. Зробимо висновки

Протягом виконання даної лабораторної роботи, ми дослідили послідовний коливальний контур, а також це й же контур з додатково під'єднаними до нього елементами такими як навантажувальний резистор та додатковий послідовно включений із першим конденсатором конденсатор. Ми виміряли в програмі LTspice частоту резонансу досліджуваного контура (без додаткових елементів) а також згодом обрахували її теоретично, в наслідок чого ми отримали практично ідентичні частоти (тобто похибка дуже мала), що свідчить про правильність наших розрахунків.