1) Uploading the data in R studio and viewing it

- > data_file <- "/My System/simpledata.csv"
- > sample_data <- read.csv(data_file)
- > View(sample_data)

O - O			Go to file/
Week6.R × sample_data ×			
^	x	Y \$\pi\$	
1	151	63	
2	174	81	
3	138	56	
4	186	91	
5	128	47	
6	136	57	
7	179	76	
8	163	72	
9	152	62	
10	131	48	
11	153	65	
12	177	84	
13	148	59	
14	189	93	
15	138	49	
16	146	55	
17	199	79	
Showing 1 to 18 of 20 entries, 2 total columns			

2) Summary of the dataset

```
> summary(sample data)
```

Output:

3) Structure of the dataset

```
> str(sample_data)
```

```
> str(sample_data)
'data.frame': 20 obs. of 2 variables:
$ X: int 151 174 138 186 128 136 179 163 152 131 ...
$ Y: int 63 81 56 91 47 57 76 72 62 48 ...
```

4) Scatterplot

```
> plot(sample_data$X, sample_data$Y, main = "Scatterplot b/w X and Y", xlab = "X",
ylab = "Y")
```


Scatterplot b/w X and Y

5) Simple Linear regression and it's summary

- > simple_reg <- lm(sample_data\$Y ~ sample_data\$X, data = sample_data)
- > summary(simple_reg)

```
> simple_reg <- lm(sample_data$Y ~ sample_data$X, data = sample_data)</pre>
> summary(simple_reg)
Call:
lm(formula = sample_data$Y ~ sample_data$X, data = sample_data)
Residuals:
                   Median
    Min
              1Q
                                3Q
                                        Max
-14.1573 -1.7267
                   0.7701
                            2.6045
                                     6.2102
Coefficients:
              Estimate Std. Error t value Pr(>|t|)
(Intercept) -33.55669 8.25032 -4.067 0.000723 ***
sample_data$X 0.63675
                          0.05213 12.215 3.79e-10 ***
Signif. codes: 0 '***' 0.001 '**' 0.01 '*' 0.05 '.' 0.1 ' '1
Residual standard error: 4.846 on 18 degrees of freedom
Multiple R-squared: 0.8924, Adjusted R-squared: 0.8864
F-statistic: 149.2 on 1 and 18 DF, p-value: 3.788e-10
```

6) Intercept

```
> intercept = simple_reg$coefficients[1]
> intercept
```

```
> intercept = simple_reg$coefficients[1]
> intercept
(Intercept)
   -33.55669
```

7) Slope

```
> slope <- simple_reg$coefficients[2]
> slope
```

```
> slope <- simple_reg$coefficients[2]
> slope
sample_data$X
    0.6367539
> |
```

8) Linear equation, by putting value of X we can get the value of Y

```
>X <- 151
> Y <- intercept + slope*X
> Y

> X <- 151
> Y <- intercept + slope*X
> Y
(Intercept)
    62.59315
```

9) Correlation

```
> cor(sample_data$X, sample_data$Y)
> cor(sample_data$X, sample_data$Y)
[1] 0.944644
>
```