



Oliver Welz (ScaDS.AI)







### Worum geht's?

Lokale Sprachmodelle ...und wie ich sie auf meiner (eigenen) Hardware laufen lasse





### Ein LLM ist ein KI-Modell basierend auf der Transformer Architektur, das mit großen Mengen an Text trainiert wird.

→ Ein **Transformer** ist eine von Google entwickelte Deep-Learning-Architektur, die einen Aufmerksamkeits-mechanismus (Attention) integriert. <u>Wiki</u>

#### → Hauptkomponenten:

**Encoder**: Verarbeitet die Eingabesequenz und wandelt sie in eine abstrakte Repräsentation um.

**Decoder:** Nutzt die Encoder-Ausgabe, um die

Zielsequenz zu generieren.

#### → Aufmerksamkeitsmechanismus:

**Self-Attention**: Ermöglicht es dem Modell, unterschiedliche Teile der Eingabesequenz zu gewichten, um kontextrelevante Informationen zu extrahieren.

**Multi-Head Attention**: Erlaubt es, verschiedene Aspekte der Sequenz gleichzeitig zu berücksichtigen, indem mehrere Aufmerksamkeitseinheiten parallel arbeiten.



**Achtung: es wird** <u>technisch</u>... ... wir gehen gleich mal in die *Vollen* 



# Was sind diese LLMs?

...und nun?

#### **Funktionsweise:**

- → **Eingabe**: Ein Text- oder Dateninput (z. B. eine Frage oder ein Satzanfang).
- → **Verarbeitung**: Das Modell berechnet Wahrscheinlichkeiten für mögliche nächste Wörter oder Sätze.
- → Ausgabe: Die wahrscheinlichste Wortfolge wird generiert.

**Datenquellen**: LLMs können mit öffentlichen Internetdaten, Unternehmensinformationen oder spezialisierten Textkorpora trainiert werden.

→ Bspw. "internet-scale Data"



# **©** Beispielhafte Interaktion

... was leitet sich daraus ab?

→ Eingabe: "Was gab es heute zum Mittagessen?"
Mögliche Antworten: "Nudeln", "Reis", "Steak" – basierend auf Wahrscheinlichkeiten aus den Trainingsdaten.

#### Kein echtes Wissen:

LLMs haben keine "Fakten", sondern arbeiten mit statistischen Wahrscheinlichkeiten.

<u>Problem:</u> "Garbage in, Garbage out" – schlechte Trainingsdaten führen zu fehlerhaften oder voreingenommenen Antworten.

Halluzinationen: LLMs können erfundene oder falsche Informationen ausgeben.

#### Bias & ethische Herausforderungen:

Ein *Modell*, das mit voreingenommenen Daten trainiert wird, kann diskriminierende Ergebnisse liefern.

Beispiel: Geschlechtsspezifische Verzerrungen bei LLM-basierten Bewerbungsprozessen.



# Open Source holt auf...

...Welche *open source* Modelle gibt's denn jetzt.

#### ...ein paar Beispiele:

- Meta LLaMA Modelle (llama3.1, llama3.2 vision, llama3.3 ...)
   LLaMA-Huggingface
- Qwen: Alibaba Cloud's general-purpose Al models Qwen-Huggingface
- DeepSeek: V3, R1, etc.
   DeepSeek-Huggingface
- Microsoft: z.B. Phi4-multimodal (Text, Audio, Bild)
   Msft-Huggingface



### Open Source holt auf...

...testen testen & Lizenzen 🚨



#### Testet die Modelle:

https://huggingface.co/spaces

#### Vergleicht sie:

https://huggingface.co/spaces/open-llmleaderboard/open llm leaderboard

Achtet unbedingt auf die Lizenzen!

- → für kommerzielle Nutzung sollte es z.B. unter Apache 2.0 lizensiert sein
- → Meta, Qwen u.a. haben meist ihre eigenen Lizenzen z.B. kommerzielle Lizenz nötig ab
  - → x MAUs
  - → x€ Umsatz ...

Prüft das am besten, bevor ihr ein Modell einsetzen wollt.



# Herausforderungen für den Betrieb lokaler LLMs...

...Hard- & Software 🏋

- Hoher Hardware-Bedarf für große Modelle → Starke GPUs erforderlich.
- Komplexe Einrichtung & Wartung → Technisches Knowhow nötig.
- Skalierung schwieriger als in der Cloud → Begrenzung durch lokale Ressourcen.



# ¶ Gründe & Vorteile lokaler LLMs

#### Datenschutz & Sicherheit

- Keine Cloud-Abhängigkeit → Sensible Daten bleiben im Unternehmen oder auf dem eigenen Gerät.
- Bessere Compliance → Erfüllt strenge Datenschutzrichtlinien (z. B. DSGVO, HIPAA).
- Schutz vor Datenlecks → Kein Risiko, dass Nutzerdaten an externe Anbieter gelangen.

#### **♦** Geschwindigkeit & Verfügbarkeit

- •Schnellere Reaktionszeiten → Keine Latenz durch Internetanfragen an externe Server.
- •Offline-Nutzung → LLMs funktionieren auch ohne Internetverbindung.
- •Unabhängigkeit von Cloud-Ausfällen → Der Betrieb bleibt stabil, auch wenn Cloud-Services ausfallen.



# ¶ Gründe & Vorteile lokaler LLMs

#### **88** Anpassung & Kontrolle

- **Modellanpassung möglich** → Feinabstimmung (Fine-Tuning) mit unternehmenseigenen Daten.
- **Prompt Engineering & Optimierung** → Lokale Steuerung für spezifische Anwendungsfälle.
- Kontrolle über die Modellversion → Keine unerwarteten Updates oder API-Änderungen.

#### 💰 Kostenersparnis? (langfristig)

- Keine API-Kosten → Lizenzen und Abfragen externer APIs können teuer sein.
- **Einmalige Hardware-Investition** → Statt wiederkehrender Cloud-Gebühren.
- Effizienter für regelmäßige Nutzung → Besonders vorteilhaft für Unternehmen mit hohem Anfragevolumen.



### ¶ Gründe & Vorteile lokaler LLMs

- Unternehmensintegration
- Interne Systeme & Software → Direkte Integration in bestehende IT-Strukturen.
- On-Premise-Betrieb für Branchen mit hohen
   Sicherheitsanforderungen → Z. B. Gesundheitswesen,
   Banken, Militär.
- Keine Vendor-Lock-in-Problematik → Unabhängigkeit von spezifischen Cloud-Anbietern.

#### 🚀 Technische Möglichkeiten & Open-Source-Nutzung

- Nutzung optimierter Modelle → Open-Source-LLMs wie Mistral, LLaMA oder Falcon können lokal effizient laufen.
- Hardware-Flexibilität → Betrieb auf GPUs, TPUs oder quantisierten Modellen für CPUs.
- Experimentierfreiheit → Entwickler können Modelle modifizieren und erforschen.



### Goody zum Abschluss 📮



"The moment we stopped understanding AI [AlexNet]"

© Welch Labs auf YouTube



https://www.youtube.com/watch?v=UZDiGooFs54