

补码一位乘法 [x]₄₄ = x_zx_z	x ₂ x _n	$[y]_{3b} = y$	$v_s.y_1y_2y_n$
① 所有位都参与运算,结果也。 ② 被乘数和部分积都取双符号		i 为 0 ,乘者	为取 单符号位
			部分积操作
③ 根据 (y,, y,,)来确定操作	0	0	810
④ 移位按照补码移位的规则	0	1 0	加州· 岩椰1位 加山州· 岩椰1位
(5) n+1次操作, n次有移 2*	(2) - 4		pel-elm. energe

iteration	step	Multiplicand	product
0	Initial Values	0010	0000 1101 0
1 1.c:10—Prod=Prod-Mcand 2: shift right Product		0010	1110 1101 0
		0010	1111 0110 1
	1.b:01→Prod=Prod+Mcand	0010	0001 0110 1
2	2: shift right Product	0010	0000 1011 0
2	1.c:10→Prod=Prod-Mcand	0010	1110 1011 0
3	2: shift right Product	0010	1111 0101 1
4	1.d: 11 → no operation	0010	1111 0101 1
	2: shift right Product	0010	1111 1010 1

```
原码一位乘法 [x]_{\bar{m}} = x_s.x_1x_2...x_n \ [y]_{\bar{m}} = y_s.y_1y_2...y_n
```

◎① 被乗数和乗数均取绝对值参与运算。 若作无符号数、符号位为 $x_z \oplus y_z$ 。②从乗数的<mark>最低位、 y_z 开始</mark>判断,若 $y_z=1$, 測部分积加上按乗数 |x| 然后右移一位 若 $y_z=0$ 刺部分积加上0.右移一位 62×12

Step	Action	Multiplicand	Product/Multiplier
0	Initial Vals	110 010	000 000 001 010
1	1sb=0, no op	110 010	000 000 001 010
1	Rshift Product	110 010	000 000 000 101
2	Prod=Prod+Mcand	110 010	110 010 000 101
2	Rshift Mplier	110 010	011 001 000 010
3	1sb=0, no op	110 010	011 001 000 010
3	Rshift Mplier	110 010	001 100 100 001
4	Prod=Prod+Mcand	110 010	111 110 100 001
4	Rshift Mplier	110 010	011 111 010 000
5	1sb=0, no op	110 010	011 111 010 000
	Rshift Mplier	110 010	001 111 101 000
6	1sb=0, no op	110 010	001 111 101 000
	Rshift Molier	110 010	000 111 110 100

② 先用被除数减去除数 |x|-|y| |x|+(-|y|) $|x|+[-|y|]_{\parallel}$ 当令数为正时,商加上1,令数和商左移一位,再减去除数; 当令数为负时,商加上0,令数和商左移一位,再加上除数;

74/21 = 3 remainder 11

Step	Action	Divisor	Remainder/Quotient
0	Initial Vals	010 001	000 000 111 100
	R<<	010 001	000 001 111 000
1	Rem-Rem-D1v	010 001	111 000 111 000
	Rem<0,R+D	010 001	000 001 111 000
2	R<<	010 001	000 011 110 000
	Rem-Rem-D1v	010 001	110 010 110 000
	Rem<0,R+D	010 001	000 011 110 000
	R<<	010 001	000 111 100 000
3	Rem-Rem-D1v	010 001	110 110 110 000
	Rem<0,R+D	010 001	000 111 100 000
4	R<<	010 001	001 111 000 000
	Rem-Rem-D1v	010 001	111 110 000 000
	Rem<0.R+D	010 001	001 111 000 000

滅法用朴明加法实现,商的符号由异或实现。 被餘數 $[x]_{ij}=x_x.x_ix_2...x_n$,除數 $y]_{jj}=y_x.y_i.y_2...y_n$ ① 商的符号 $Q_x=x_x\oplus y_x$ 一商的數值 $Q_x\models \frac{|x_x|}{|y_x|}$

② 先用被除数减去除数 $|x| - |y| = |x| + (-|y|) = |x| + [-|y|]_{\dot{\mathbb{N}}}$

当余数为正时,商加上1,余数和商左移一位,再减去除数; 当余数为负时,商加上0,余数和商左移一位,再加上除数;

74/21 = 3 remainder 1

Step	Action	Divisor	Remainder/Quotient
0	Initial Vals	010 001	000 000 111 100
	R<<	010 001	000 001 111 000
1	Rem-Rem-D1v	010 001	111 000 111 000
	Rem<0,R+D	010 001	000 001 111 000
2	RCC	010 001	000 011 110 000
	Rem-Rem-D1 v	010 001	110 010 110 000
	RemCO.R+D	010 001	000 011 110 000
3	RCC .	010 001	000 111 100 000
	Rem-Rem-D1 v	010 001	110 110 110 000
	Rem<0,R+D	010 001	000 111 100 000
4	RKK	010 001	001 111 010 000
	Rem-Rem-D1 v	010 001	111 110 010 000
	PamcO PAD	010 001	001 111 010 000

```
int fact (int n)
{
    if (n < 1) return (1);
        else return (n * fact(n-1));
}</pre>
```