Homework updates / hints

5/9/2025

Packages (till May 2025)

Analysis:

	Install	documentation	Python version
cobrapy	pip install cobra	https://cobrapy.readthedocs.io/en/latest/	3.8, 3.9, 3.10, 3.11
pipeGEM	pip install pipegem	https://pipegem.readthedocs.io/en/latest/	3.8, 3.9, 3.10, 3.11, 3.12

Plotting:

	Install	documentation	Python version
matplotlib	pip install matplotlib	https://matplotlib.org/	3.10, 3.11, 3.12, 3.13
seaborn	pip install seaborn	https://seaborn.pydata.org/	3.8, 3.9, 3.10, 3.11, 3.12

Data:

	Install	documentation	Python version
pandas	pip install matplotlib	https://matplotlib.org/	3.10, 3.11, 3.12, 3.13

ADP

H+(m)

Steps:

- 1. Create the metabolites
- Create the reactions and connect them to the metabolites (beware of the constraints)
- Create a model and add the reactions to the model
- 4. Perform pFBA

Output:

1. A DataFrame storing the pFBA fluxes

Hint:

 https://colab.research.google.com/drive/1IrYmyCXr61KTQimFn2-JUJontVG 4Nn6V

Steps:

- Perform FVA on the wild model
- 2. Calculate the flux range (max min) of C5
- 3. Knock out each reaction one by one and do step 1 and step 2
- 4. If the range is less than the half of C5's range, record it.

Output:

1. A list of reaction. e.g., [R1, R2, R4, ...]

Hint:

- 1. Use context manager (with model: ...) to restore KO quickly (for step 3) a. https://cobrapy.readthedocs.io/en/0.19.0/deletions.html
- 2. Use rxn.knock_out() to KO reactions

- 1. Create a upper bound list X.
- 2. Iterate the list X and assign the upper bound to the adjusted reaction (C1, C3, or C5).
- 3. For each iteration, perform pFBA, obtain R14's flux, and store the value in a list Y.
- 4. Plot the X and Y in a graph.

Output:

1. Four figures (C1, C3, C1+C3, and C5)

Hint:

1. See the figure on the right

- 1. Download the GSE291717_sysETS_TPM_File
- 2. Convert the value to log2 (TPM + 1) (using numpy)
- 3. Load the textbook model and use it to initiate pipeGEM. Model
- Create a GeneData for each sample (column) and add it to the model (add_gene_data method)
- 5. Find reaction score via model.gene_data[c].rxn_scores and concat them into a data frame.

Output:

1. A DataFrame, a dict of series, or a dict of reaction scores for each model.

Hint:

 https://pipegem.readthedocs.io/en/latest/tutorial/2_data.html#maping-gene-dat a-to-a-pipegem-model

Steps:

- 1. Use GeneData.get_threshold(method='percentile') to get the threshold result
- 2. Summarize Result.exp_th into a Series like:

WT_M9-glycerol-r1	8.688831
WT_M9-glycerol-r2	8.690915
u-ETS-1H_M9-glycerol-r1	8.825239
u-ETS-1H_M9-glycerol-r2	8.923863
u-ETS-2H_M9-glycerol-r1	8.757602

Output:

1. A pandas series

Hint:

 https://pipegem.readthedocs.io/en/latest/tutorial/2_data.html#finding-data-thre sholds

Steps:

- For each sample in the TPM data, use model.integrate_gene_data to perform GIMME.
- 2. Summarize their numbers of reactions, genes, and metabolites, like this:

Output:

1. A pandas dataframe

	n_genes	n_rxns	n_mets
WT_M9-glycerol-r1	92	50	52
WT_M9-glycerol-r2	92	50	52
u-ETS-1H_M9-glycerol-r1	98	52	54
u-ETS-1H_M9-glycerol-r2	98	52	54
u-ETS-2H_M9-glycerol-r1	83	48	50
u-ETS-2H_M9-glycerol-r2	83	48	50

Hint:

- 1. https://pipegem.readthedocs.io/en/latest/tutorial/4_MEM.html#gimme
- 2. https://pipegem.readthedocs.io/en/latest/tutorial/1_basic.html#create-group-object

- 1. If you use pipeGEM, create a pipeGEM. Group specify the treatment groups:
 - a. {'WT': {'wt1': wt1_model, wt2_model},

'succinate': {'suc_1': suc1, 'suc_2_model': suc_2_model}}

- Do sampling and obtain a result obj
- 3. Plot the violin plot using the Result.plot

Output: A Figure like -----

Hint:

- https://pipegem.readthedocs.io/en/latest/tutorial/1_basic.html#create-group-object
- 2. https://pipegem.readthedocs.io/en/latest/tutorial/5_flux_simulation.html#randomized-sampling

Q8
Concept: modify the penalty coefficient of GIMME

- 1. Get WT_M9-glycerol-r1's rxn scores and its p90 threshold (T)
- 2. For each reaction score S, check if it is not None and if it is less than a threshold T. If both conditions are true, compute the square of the difference between T and S, that is (T-S)^2, and store this value in a dictionary (obj_dic).
- 3. Use add_mod_pfba(model.cobra_model, weights=obj_dic) function to add pFBA constraint, the model is a pipeGEM model.
- 4. Minimize the total flux via model.optimize("minimize")
- 5. Compare the GIMME fluxes of the result model with the model you built in Q6

Output: A dataframe ----->

Hint:

add_mod_pfba can be import from pipeGEM.analysis

- Identify candidate reactions for knockout by selecting those with a Reaction Activity Score (rxn_score) below the predefined expression threshold.
- 2. Iteratively attempt single knockouts, starting with the reaction that has the lowest rxn_score.
- 3. After each knockout attempt, test model consistency by verifying whether the model can still produce nonzero flux through the objective reaction.
- 4. Permanently remove the reaction only if this consistency is maintained.
- 5. Compare the pFBA fluxes of the result model with the model you built in Q6

Output: A dataframe ----->

Hint:

 You can use mod.slim_optimize() to test if the flux is non-zero.

	GIMME	new algo
ACALD	NaN	-16.199261
ACALDt	NaN	0.000000
ACKr	0.000000	0.000000
ACONTa	7.803302	0.761227
ACONTB	7.803302	0.761227