Name	Student ID number
Lecturer	Recitation Instructo

Instructions:

- 1. This package contains 12 problems, for a total of 100 points.
- 2. Please supply all information requested above and on the mark–sense sheet.
- 3. Work only in the space provided, or on the backside of the pages. Mark your answers clearly.
- 4. No books, notes, or calculators, please.

$$\cos x = \sum_{n=0}^{\infty} (-1)^n \frac{x^{2n}}{(2n)!}$$
$$(1+x)^k = \sum_{n=0}^{\infty} \binom{k}{n} x^n$$

(12 pts) 1. The interval of convergence of the power series $\sum_{n=1}^{\infty} \frac{(2x-5)^n}{n3^n}$ is:

- A. (∞, ∞)
- B. (-3,3)
- C. [1,4)
- D. (1,4)
- E. [-3,3)

(4 pts) 2. Let $a_n = \frac{3n^3 - 4n^2 + 5}{6n^5 - 2n + 7}$ and $b_n = \frac{1}{n^3}$. Then the limit comparison test with $\sum_{n=1}^{\infty} b_n$ shows that $\sum_{n=1}^{\infty} a_n$ converges.

- A. True
- B. False

(10 pts) 3. The series $\sum_{n=0}^{\infty} n^2 e^{-n^3}$ is:

- A. Divergent by comparison with $\sum_{n=1}^{\infty} \frac{1}{n}$
- B. Divergent by comparison with $\sum_{n=1}^{\infty} \frac{\ln n}{n^2}$
- C. Divergent by the integral test
- D.Convergent by the integral test
- E. Convergent by comparison with $\sum_{n=0}^{\infty} e^{-n^2}$

(6 pts) 4. The series $\sum_{n=1}^{\infty} \frac{(-1)^n}{3+2n}$ is:

- A. Divergent
- B. Absolutely convergent
- C. Conditionally convergent
- (6 pts) 5. If we wish to approximate $s = \sum_{n=0}^{\infty} \frac{(-1)^n}{n^3}$ by a partial sum s_k to within 10^{-6} , the error estimates say we must choose k to be at least:
 - A. 20
 - B. 10
 - C. 100
 - D. 75
 - E. 50

- (12 pts) 6. Which of the following series converge?
 - $I. \sum_{n=0}^{\infty} \frac{3^{2n}}{(\ln n)^n}$
 - II. $\sum_{n=1}^{\infty} (-1)^n \frac{n+1}{2n-3}$
 - III. $\sum_{n=0}^{\infty} \frac{4^{2n}(x+2)^{2n}}{\sqrt{n+1}}$, for $\frac{3}{2} < x < \frac{5}{2}$

- A. I only
- B. I and II
- C. I and III
- D. III only
- E. None of the series converges

(8 pts) 7. Find the power series expansion for the function $\frac{d}{dx} \left(\frac{1}{1+x^2} \right)$.

$$A. \sum_{n=1}^{\infty} nx^{n-1}$$

B.
$$\sum_{n=1}^{\infty} (-1)^n nx^{n-1}$$

C.
$$\sum_{n=1}^{\infty} 2nx^{2n-1}$$

D.
$$\sum_{n=1}^{\infty} (-1)^n 2nx^{2n-1}$$

E.
$$\sum_{n=1}^{\infty} (-1)^n (2n+1)x^{2n+1}$$

(8 pts) 8. Represent $\int_0^1 \cos(x^2) dx$ as an infinite series.

A.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!}$$

B.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n+1)!}$$

C.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(4n)!}$$

D.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(4n+1)!}$$

E.
$$\sum_{n=0}^{\infty} (-1)^n \frac{1}{(2n)!(4n+1)}$$

(8 pts) 9. If $\ln(x)$ is expanded as a power series of the form $\sum_{n=0}^{\infty} c_n(x-3)^n$, then $c_3 =$

- A. $\frac{1}{6}$
- B. $\frac{1}{24}$
- C. $-\frac{1}{18}$
- D. $\frac{1}{54}$
- E. $\frac{1}{81}$

(8 pts) 10. Find the first three terms of the Maclaurin series of $f(x) = \sqrt[3]{8 + 4x}$.

- A. $2 + \frac{x}{3} \frac{1}{9}x^2$
- B. $2 + \frac{x}{3} \frac{1}{18}x^2$
- C. $2 + \frac{2x}{3} \frac{2}{9}x^2$
- D. $1 + \frac{x}{3} \frac{1}{9}x^2$
- E. $1 + \frac{2x}{3} \frac{2}{9}x^2$

(8 pts) 11. Find the slope of the tangent line to the curve parametrized by $x=te^t, y=t\ln(t),$ at t=1.

- A. e
- B. 2e
- C. $\frac{1}{e}$
- $\mathrm{D.} \ \ \frac{1}{2e}$
- E. 1

(10 pts) 12. Find the length of the curve $x=3t^2,\,y=2t^3,\,0\leq t\leq 1.$

- A. $2(2\sqrt{2}-1)$
- B. $4(2\sqrt{2}-1)$
- C. $2\sqrt{2} 1$
- D. $3(2\sqrt{2}-1)$
- E. $6(2\sqrt{2}-1)$