

UNIVERSITY OF SCIENCE, VNU-HCM FACULTY OF ELECTRONICS AND TELECOMMUNICATIONS DEPARTMENT OF TELECOMMUNICATIONS AND NETWORKS

COURSE BASIC COMPUTER NETWORK

Chapter 07

TCP TRANSPORT

Editor: Nguyen Viet Ha. Ph.C

Reference: Peter L Dordal, "An Introduction to Computer Networks," Aug. 20, 2022

March 21, 2023

Lecturer: Nguyen Viet Ha, Ph.D.

Email: nvha@hcmus.edu.vn

1. Transmission Control Protocol

❖TCP is:

>Stream-oriented

- Application can write data in very small or very large amounts and the TCP layer will take care of appropriate packetization.
- >Connection-oriented
 - o Established before the beginning of any data transfer.
- **≻**Reliable
 - Correct order of delivery
 - o Timeout/retransmission mechanism
- ➤ Congestion control
 - o TCP automatically uses the sliding windows algorithm to achieve throughput relatively close to the maximum available.

Transmission Control Protocol

1. Transmission Control Protocol

❖The End-to-End Principle

➤ It states in effect that transport issues are the responsibility of the **endpoints** (not the core network).

Data corruption

• For the first, even though essentially all links on the Internet have link-layer checksums to protect against data corruption, TCP still adds its own checksum.

Congestion

• TCP is today essentially the only layer that addresses congestion management.

3,29

2

TCP Header

2. TCP Header

TCP Segment

❖It is traditional to refer to the data portion of TCP packets (PDU – Packet Data Unit) as segments.

5

Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

6_{/29}

2. TCP Header

TCP Segment

Sequence number (32 bits) - numbering the data, at the byte level.

• The first byte of the current data payload.

Acknowledgement number (32 bits) - Indicates the data that has been received.

The first byte of the <u>next</u> data payload.

Header length (4 bits) - Indicates the length of the TCP segment header.

2. TCP Header

TCP Segment

Reserved (6 bits) - is reserved for the future.

Control bits (6 bits) Includes bit codes, or flags, that
indicate the purpose and
function of the TCP segment.

Window size (16 bits) - Indicates the number of segments that can be accepted at one time.

7...

2. TCP Header

TCP Segment

Checksum (16 bits) - Used for error checking of the segment header and data.

Urgent pointer (16 bits) - Indicates if data is urgent.

guyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

9/29

2. TCP Header

❖PSH:

- ➤ If A sends a series of small packets to B, then B has the option of assembling them into a full-sized I/O buffer before releasing them to the receiving application.
 - However, if A sets the **PSH** bit on each packet, then B should release each packet immediately to the receiving application.

2. TCP Header

 URG
 ACK
 PSH
 RST
 SYN
 FIN

 6 Bits
 0 = OFF
 1 = ON

- SYN for SYNchronize; marks packets that are part of the new-connection handshake
- FIN for FINish; marks packets involved in the connection closing
- RST for ReSeT; indicates various error conditions
- ACK indicates that the header Acknowledgment field is valid; that is, all but the first packet.
- PSH for PuSH; marks "non-full" packets that should be delivered promptly at the far end.
- URG for URGent; part of a now-seldom-used mechanism for highpriority data.

Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

10/29

2. TCP Header

***URG:**

- ➤ In telnet connection, A sent a large amount of data to B. Suddenly, A wishes to abort that processing by sending the interrupt character CNTL-C.
 - Under normal conditions, the application at B would have to finish processing all the pending data before getting to the CNTL-C.
 - O However, if the URG bit is set, and the TCP header's Urgent Pointer field points to the CNTL-C in the current packet, the receiving application then skips ahead in its processing of the arriving data stream until it reaches the urgent data.

3. TCP Connection Establishment

TCP connections are established via an exchange known as the three-way handshake.

lguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VN

14/29

3. TCP Connection Establishment

TCP Connection

Establishment

❖Close the connection: two-way FIN/ACK handshakes.

3. TCP Connection Establishment

Example of a full exchange of packets in a representative connection.

	A sends	B sends		
1	SYN, seq=0			
2		SYN+ACK, seq=0, ack=1 (expecting)		
3	ACK, seq=1, ack=1 (ACK of SYN)			
4	"abc", seq=1, ack=1			
5		ACK, seq=1, ack=4		
6	"defg", seq=4, ack=1			
7		seq=1, ack=8		
8	"foobar", seq=8, ack=1			
9		seq=1, ack=14, "hello"		
10	seq=14, ack=6, "goodbye"			
11,12	seq=21, ack=6, FIN	seq=6, ack=21 ;; ACK of "goodbye",		
		crossing packets		
13		seq=6, ack=22 ;; ACK of FIN		
14		seq=6, ack=22, FIN		
15	seq=22, ack=7 ;; ACK of FIN			
	2 3 4 5 6 7 8 9 10 11,12	1 SYN, seq=0 2 3 ACK, seq=1, ack=1 (ACK of SYN) 4 "abc", seq=1, ack=1 5 6 "defg", seq=4, ack=1 7 8 "foobar", seq=8, ack=1 9 10 seq=14, ack=6, "goodbye" 11,12 seq=21, ack=6, FIN		

15...

3. TCP Connection Establishment

- **❖**Each side chooses its **Initial Sequence Number (ISN)**, and sends that in its initial SYN.
 - All further sequence numbers sent are the ISN chosen by that side plus the relative sequence number.
- ❖It helps with the allocation of a sequence number that does not conflict with other data bytes transmitted over a TCP connection.

3. TCP Connection Establishment

- ❖If B had not been LISTENing at the port to which A sent its SYN, its response would have been RST ("reset"), meaning in this context "connection refused".
- ❖Similarly, if A sent data to B before the SYN packet, the response would have been RST.
- *RST can be sent by either side at any time **to abort** the connection.

4. Path MTU Discovery

- ❖TCP connections are more efficient if they can keep large packets flowing between the endpoints.
- ❖Once upon a time, TCP endpoints included just 512 bytes of data in packet that was not destined for local each to avoid fragmentation.
- ❖TCP endpoints now typically engage in Path MTU Discovery which almost always allows them to send larger packets.
 - ➤ Backbone ISPs are now usually able to carry 1500-byte packets.

Path MTU Discovery

4. Path MTU Discovery

- ❖The IPv4 strategy is to send an initial data packet with the IPv4 DONT_FRAG bit set.
 - >If the ICMP message Frag_Required/DONT_FRAG_Set comes back, or if the packet times out, the sender tries a smaller size.
 - >If the sender receives a TCP ACK for the packet, on the other hand, indicating that it made it through to the other end, it might try a larger size.

4. Path MTU Discovery

- ❖IPv6 has no DONT FRAG bit.
- ❖Path MTU Discovery over IPv6 involves the **periodic** sending of larger packets; if the ICMPv6 message Packet Too Big is received, a smaller packet size must be used.

5. TCP Flow Control

TCP Sliding Windows (are measured in terms of bytes)

- ➤ To improve throughput.
- >In the initial three-way handshake, each side specifies the maximum window size it is willing to accept, in the Window Size field of the TCP header.
 - This 16-bit field can only go to 65,535 Bytes.
 - Window Scale option that can also be negotiated in the opening handshake to increase the Window Size.
 - o The window size included in the TCP header is known as the **Advertised** Window Size.
- >TCP may either transmit a bulk stream of data, using sliding windows fully, or it may send slowly generated interactive data.

TCP Flow Control

5. TCP Flow Control

***TCP Flow Control**

- ➤It is possible for a TCP sender to send data **faster than the receiver** can process it.
 - When this happens, a TCP receiver may reduce the advertised Window Size value of an open connection
 - To inform the sender to switch to a smaller window size.

Nguyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VNU

TCP Timeout and Retransmission

5. TCP Flow Control

Delayed ACKs

- Simply mean that the ACK traffic volume is reduced.
- ➤ Because ACKs are cumulative, one ACK from the receiver can in principle acknowledge multiple data packets from the sender.

- ➤ Default number of delayed ACKs is 2.
- ➤ The maximum ACK delay timeout is 500 *ms*.

 Default is 200 *ms*.

guyen Viet Ha, Ph.D. - Department of Telecommunications and Networks, FETEL, HCMUS, HCM-VN

26

6. TCP Timeout and Retransmission

- When TCP sends a packet containing user data (this excludes ACK-only packets), it sets a timeout.
 - >If that timeout expires before the packet data is acknowledged, it is retransmitted.
 - ➤If the retransmission loss the sender doubles Timeout.
 - ➤ Retrying 5 times as the default.

THANK YOU FOR YOUR ATTENTION

Nguyen Viet Ha, Ph.D.

Department of Telecommunications and Networks Faculty of Electronics and Communications University of Science, Vietnam National University, Ho Chi Minh City Email: nvha@hcmus.edu.vn

VNUHCM			
8			