Lesson 7 - Profiles and Clustering

Erin M. Buchanan

02/21/2019

Language Topics Discussed

- Memory and semanticity
- Semantic networks (big lead in for Semantic Vector Models)
- Semantic feature models

Memory Types

- ▶ Episodic memory memory for events and episodes, diary
- ► Semantic memory general fact based knowledge, encyclopedia
- Lexicon our mental dictionary

Classic Semantics

- Denotation its core essential meaning
- Conotation all secondary meanings, emotional or evaluative associations
- Polysemy words with multiple meanings, often difficult for models to capture

Classic Semantics Theories

- ▶ Referential theory words mean what they refer to
- Intension abstract specification that determines how a concept is related in meaning to other words
- Extension what the word stands for in the world
- Model theoretic semantics (truth theoretic semantics) logical models of complex meaning

Semantic Networks

- Semantic network concepts are linked because of their frequency (association) but also the links between concepts have meaning.
- ► Collins and Quillian to Collins and Loftus

Collins and Quillian

Collins and Quillian

- Developed to translate between languages
- Natural categories like animals, trees
- Hierarchical Network like biology arrangement
- Link types ISA, HASA
- Used the sentence verification task talked about last week to show hierarchical structure

Issues

- Not all information can be represented that way
- Conjoint frequency how frequently two words co-occur together
- Relatedness effect don't reject all untrue statements equally slowly
 - ▶ A pine is a church is slower than a pine is a flower
- Prototypicality effect we are faster for items that are more typical of a category

Spreading Activation Mode

Collins & Loftus (1975)

Collins and Loftus

- ► Spreading activation model structure become more complex, links between nodes (circles) varied in strength
- Structure is not hierarchical
- Connectionist model things are linked together and priming is based on spreading activation to other concepts.

Semantic Features

- Semantic features smaller units of meaning (markers, attributes)
- ► Break down words into features
- Work well for simple domains
- Semantic primitives represent the meanings of words as combinations of as few features as possible

Semantic Features

- Katz & Fodor Sentence meaning can be built from combining individual word meanings
 - 1st: semantic decomposition breaking down the words into features
 - 2nd: Selection restraints combination of features based on restraints
 - ► Kick you expect to kick something like ball

Behavioral Profiles

- ► Often used in a similar approach as last class, to classify or group instances based on other linguistic variables
- Generally considered for a large set of categorical data, as the data is transformed into proportions
- ► For example, you might take representative sentences and code each one for lexical information
- ▶ This approach is useful for understanding polysemy

Behavioral Profiles

▶ Let's look at the same data from last week, as a larger set

```
library(Rling)
data(caus)
head(caus)
```

```
##
             Cx CrSem CeSem CdEv Neg Coref Poss
    be made toV
                 Anim
                       Anim
                             Soc
                                  No
                                        No
                                             No
  2 be_made_toV Anim
                       Anim
                             Soc No
                                        No
                                             No
  3 be_made_toV Anim
                       \mathtt{Anim}
                             Soc No
                                        No
                                             No
  4 be_made_toV Anim
                       Anim Ment No
                                        No
                                             No
                                 No
  5 be made toV Anim
                       Anim Phys
                                        No
                                             No
  6 be made toV
                 Anim
                       Anim
                             Soc
                                  Nο
                                        Nο
                                             No
```

Behavioral Profiles

- Step 1: Create numeric vectors of proportions from categorical data
- Step 2: Calculate matrix distances between vectors
- ▶ Step 3: Cluster analysis
- Step 4: Interpretation
- Step 5: Validation

Verb Profiles

```
table(caus$Cx)
```

```
##
  be_made_toV
                 cause_toV
                               get_toV
##
            50
                        50
                                    50
                have_Ving
##
     have_Ved
                                make_V
            50
                                    50
##
                        50
```

get_Ved

50

get_'

Verb Profiles

```
##split the data
caus.split = split(caus, caus$Cx)
##remove the splitting variable
caus.split = lapply(caus.split, function(x) x = x[, -1])
##create the vectors
caus.split.bp = lapply(caus.split, bp)
##put back together in one data frame
caus.bp = do.call(rbind, caus.split.bp)
```

Verb Profiles

##

head(caus.bp)

be made toV

cause toV

get_toV

get_Ved

get Ving

be made toV

have V

##

##	get_toV	0.92	2	0.08	0.92	2 (
##	get_Ved	1.00		0.00	1.00	
##	<pre>get_Ving</pre>	0.78		0.22	0.34 (
##	have_V	0.96		0.04	0.88	
##		CdEv.Phys	${\tt CdEv.Soc}$	Neg.No	Neg.Yes	Coref.No (
##	${\tt be_made_toV}$	0.18	0.68	0.94	0.06	1.00
##	cause_toV	0.56	0.30	0.96	0.04	1.00

0.62

0.60

0.80

0.64

0.96

0.24

0.28

0.38

0.14

0.16

0.00

Poss.Yes

CrSem.Anim CrSem.Inanim CeSem.Anim CeSem.Ina

0.90

0.52

0.08

0.02

0.00

0.08

0.96

0.84

1.00

0.96

0.04

0.76

0.92

0.98

1.00

0.92

Distance Measures

- ► The logic behind distances is to measure how similar things are in multidimensional space
- ► The more similar the vector, the closer the distance (i.e., they group together)
- ► Three types (or well three popular types):

- Euclidean
- Manhattan
- Maximum

Distance Measures

cause_toV ## get_toV ## get_Ved ## get Ving ## harra V

```
caus.dist = dist(caus.bp, method = "euclidean")
#change method to maximum or manhattan
caus.dist
```

```
##
            be made toV cause toV get toV get Ved
## cause_toV 1.2721635
## get_toV 0.2078461 1.2003333
## get Ved 0.4214262 1.3508516 0.2856571
```

```
## get_Ving 0.8499412 1.0415373 0.8912912 1.0714476
```

have V 0.1979899 1.2626955 0.1788854 0.3888444 0.89

```
## have Ved 0.5169139 1.3425349 0.3622154 0.2966479 1.15
## have_Ving 1.0221546 0.6811755 0.9282241 1.0252804 1.29
## make V
              0.7605261 0.6105735 0.7238784 0.9117017 0.89
```

```
##
              have_Ved have_Ving
```

ge

Distance Measures

- ▶ A quick note that these can be used on any numeric vectors a large part of semantic vector models relies on using this idea.
- ► The homework will focus on using data that has already been tabulated into continuous data.

Clustering

- Lots of types of clustering, mainly going to focus on hierarchical cluster analysis
- Creates dendograms, much like a conditional inference tree, however:
 - Works from the leaves up
 - Every object is represented in a different leaf, and then the branches of similar objects are merged

Clustering Methods

- Growing from roots to leaves (one big cluster and splitting): divisive clustering
- Growing from leaves to roots (all the leaves and then branch merging): agglomerative clustering
- ▶ Types: complete, single, average, and Ward often people like Ward because it produces compact clusters

Run a Hierarchical Cluster

```
#install.packages("cluster")
library(cluster)
caus.hc = hclust(caus.dist, method = "ward.D2")
```

Plot it

plot(caus.hc, hang = -1)

Cluster Dendrogram

caus.dist hclust (*, "ward.D2")

Interpretation

- Average silhouette width: the average "well formedness" of clusters
 - That means that clusters are internally close and externally far
 - Ranges from zero (no clusters random noise) to one (perfectly clustered)

Interpretation

[1] 0.443276

```
cutree(caus.hc, k = 2)
## be made toV cause toV get toV get Ved
                                                   get '
##
                              make V
##
     have Ved have Ving
##
summary(
  silhouette(
   cutree(caus.hc, k = 2), #first argument is the cutting
   caus.dist) #second argument is the distances
  ) $avg. width
```

So how many should it be?

```
## [1] 0.44327600 0.46841445 0.37479484 0.33006538 0.22732 ## [7] 0.02620324
```

Replot

```
{plot(caus.hc, hang = -1)
rect.hclust(caus.hc, k = 3)}
```

Cluster Dendrogram

- Snake plots can be used to distinguish and visualize the differences between clusters and their members.
- Create difference scores for clusters
- ▶ Plot those differences

```
#save the clusters
clustercut = cutree(caus.hc, k = 2)
cluster1 = caus.bp[ names(clustercut[clustercut == 1]), ]
cluster2 = caus.bp[ names(clustercut[clustercut == 2]), ]
#create the differences
differences = colMeans(cluster1) - colMeans(cluster2)
```

```
##create the plot
plot(sort(differences)*1.2, #make room for names on graph
    1:length(differences), #y axis
    type = "n", #empty plot + labels
    xlab = "Cluster 2 < -- > Cluster 1",
    yaxt = "n", ylab = "")
text(sort(differences),
    1:length(differences)))
```

```
CrSem.Anim
CeSem.Anim
CdEv.Soc
Poss.Yes
Coref.Yes
Neg.Yes
Neg.Yes
Ocref.No
```


Validation of the Solution

► More bootstrapping!

```
## Bootstrap (r = 0.54)... Done.
## Bootstrap (r = 0.69)... Done.
## Bootstrap (r = 0.77)... Done.
## Bootstrap (r = 0.85)... Done.
## Bootstrap (r = 1.0)... Done.
## Bootstrap (r = 1.08)... Done.
## Bootstrap (r = 1.15)... Done.
## Bootstrap (r = 1.23)... Done.
```

Bootstrap (r = 1.38)... Done.

Validation of the Solution

- AU values Approximately Unbiased
- ▶ BP values Bootstrap Probability
- ▶ Different than normal probability, want values close to 100

Plot PVC

plot(caus.pvc, hang = -1)

Cluster dendrogram with AU/BP values (%)

Distance: euclidean Cluster method: ward.D2

Summary

- You learned about semantic models and theories, specifically that we expect the brain to create these clusters of related objects based on something (usually features)
- You learned about how to turn categorical data into proportions to help cluster together related objects
- You learned about distance measures (very important for the next several weeks!)
- You learned about hierarchical clustering to visualize the data
 - Extensions include other analyses we will cover: Principal Components Analysis, Multidimensional Scaling
 - ► As well as other popular clustering methods such as: K-means