Logik I Übungsblatt 4

Aufgabe 1. Sei $\mathcal{L} = \mathcal{L}_{ring}$.

- a) Zeigen Sie, dass die Klasse aller endlichen Körper nicht axiomatisierbar ist; das heißt, es gibt keine \mathcal{L} -Theorie T sodass eine \mathcal{L} -Struktur \mathcal{A} genau dann ein endlicher Körper ist, wenn $\mathcal{A} \models T$.
- b) Seien φ eine \mathcal{L} -Aussage und für jede Primzahl p ein Körper K_p mit $\operatorname{char}(K_p) = p$ und $K_p \models \varphi$. Zeigen Sie, dann es ein Körper K gibt, mit $\operatorname{char}(K) = 0$ und $K \models \varphi$.

Sei $\mathcal{L} = \{<\}$ für ein zweistelliges Relationssymbol <. Eine \mathcal{L} -Struktur $\mathcal{A} = (A, <^{\mathcal{A}})$ heißt lineare Ordnung wenn $\mathcal{A} \vDash \forall x \forall y \, (x < y \lor x = y \lor y < x)$.

 \mathcal{A} heißt Wohlordnung wenn es für jede nichtleere Teilmenge X von A ein $a \in X$ gibt, so dass $a <^{\mathcal{A}} b$ für alle $b \in X \setminus \{a\}$ gilt.

Aufgabe 2.

- a) Zeigen Sie, dass eine lineare Ordnung $\mathcal{A} = (A, <^{\mathcal{A}})$ genau dann eine Wohlordnung ist, wenn es keine Folge $(a_n)_{n \in \mathbb{N}}$ gibt, so dass $a_{i+1} <^{\mathcal{A}} a_i$ gilt für alle $i \in \mathbb{N}$.
- b) Ist die Klasse aller Wohlordnungen axiomatisierbar?

Sei \mathcal{L} eine Sprache und seien \mathcal{A} , \mathcal{B} \mathcal{L} -Strukturen. Dann ist \mathcal{A} eine elementare Substruktur von \mathcal{B} , kurz $\mathcal{A} \preceq \mathcal{B}$, wenn \mathcal{A} eine Substruktur von \mathcal{B} ist und für alle \mathcal{L} -Formeln φ und Belegungen $\beta \in A$ gilt: $\mathcal{A} \models \varphi[\beta] \Leftrightarrow \mathcal{B} \models \varphi[\beta]$.

Aufgabe 3. Sei \mathcal{L} abzählbar. Zeigen Sie, dass jede unendliche \mathcal{L} -Struktur eine abzählbare elementare Substruktur hat.

Hinweis: Konstruieren Sie eine abzählbare Menge $B_0 \subseteq B$, die für jede \mathcal{L} -Formel $\varphi(x,y)$ und jedes Tupel a aus B_0 ein b mit $\mathcal{B} \models \varphi(a,b)$ enthält, falls es ein solches b gibt.

Aufgabe 4. Sei $\mathcal{R} = (\mathbb{R}, 0, <)$.

- a) Zeigen Sie mit Kompaktheit, dass $Th(\mathcal{R})$ ein Modell hat, das nicht archimedisch ist.
- b)* Zeigen Sie, dass jede echte elementare Oberstruktur $\mathcal{R}^* \succ \mathcal{R}$ nicht archimedisch ist.

Abgabe bis Donnerstag, den 02.05, 10:00 Uhr, in Briefkasten 177.

Die Ubungsblätter sollen zu zweit bearbeitet und abgegeben werden.

Web-Seite: https://www.uni-muenster.de/IVV5WS/WebHop/user/bboisson/de/L1/