1: Use a Venn diagram to illustrate the relationship $B\subseteq A$ and $C\subseteq B$.

2: Let $A = \{a, b\}$ and $B = \{w, x, y, z\}$.

- (a) Find $A \times B$.
- **(b)** Find $B \times A$.

3: Let $A = \{a, b, c, d, e, f\}$ and $B = \{a, b, c, d, e, f, g, h\}$.

- (a) Find $A \cup B$
- **(b)** Find $A \cap B$
- (c) Find A B
- (d) Find B A

4: Can you conclude that A = B if A, B, and C are sets such that

- (a) $A \cup C = B \cup C$
- **(b)** $A \cap C = B \cap C$
- (c) $A \cup C = B \cup C$ and $A \cap C = B \cap C$

5: Find $\bigcup_{i=1}^{\infty} A_i$ and $\bigcap_{i=1}^{\infty} A_i$ if for every positive integer i

(a)
$$A_i = \{i, i+1, i+2, \dots\}$$

(b)
$$A_i = \{0, i+1\}$$

- (c) $A_i = (0, i + 1)$, that is the set of real numbers x with 0 < x < i + 1.
- (d) $A_i = (i+1, \infty)$, that is the set of real numbers x with x > i+1.

6: Determine whether f is a function from $\mathbb Z$ to $\mathbb R$ if

(a)
$$f(n) = \pm n$$

(b)
$$f(n) = \sqrt{n^2 + 1}$$

(c)
$$f(n) = 1/(n^2 - 1.21)$$

7: Find the domain and range of these functions.

- (a) The function that assigns to each pair of nonnegative integers the first integer of the pair.
- (b) The function that assigns to each nonnegative integer its largest decimal digit.
- (c) The function that assigns to a bit string the number of ones minus the number of zeroes in the string.
- (d) The function that assigns to each nonnegative integer the largest integer not exceeding the square root of the integer.
- (e) The function that assigns to a bit string the longest string of ones in the string.

8: Determine whether each of these functions from $\mathbb Z$ to $\mathbb Z$ is one-to-one.

- (a) f(n) = n 1
- **(b)** $f(n) = n^2 1$
- (c) $f(n) = n^3$

9: Which functions in the previous question are onto?

- (a) f(n) = n 1
- **(b)** $f(n) = n^2 1$
- (c) $f(n) = n^3$

10: Suppose that g is a function from A to B and f is a function from B to C.

- (a) If f and g are one-to-one functions, is $f \circ g$ also one-to-one?
- (b) If f and g are onto functions, is $f \circ g$ is also onto?