Tanisha Chauhan
21(3184
CS-B

Applied Mathematics - III (CACR3(1)

Mid Semester Test - 3

Answer of Q. No. 3

biven process

 $x(t) = 4\cos(3t + \pi e)$

x is distributed in \$ interval (-π,π)

This If x is uniformally distributed, then density function is given by : $f(\mathcal{H}) = \frac{1}{\pi - (-\pi)}$

f(24) - 1 2 T

To prove that the value above random process is WSS we need two conditions:

- 1. Expectation of x(t) \(\mathbb{E}(x(t))\) should be independent of time 2. Expectation of ((xt) x(t-1)) should be dependent on time

 $E(x(t)) = E(.4\cos(3t+be))$

=) f(21 4 105 (3++21).dze

Tanisha Chauhan 2103184 CS-B

$$= \frac{4}{2\pi} \int (05(3t+34))dx$$

$$= \frac{4}{2\pi} \left[\sin(3t + 3t) \right]_{x}^{x}$$

=
$$\frac{2}{\pi}$$
 [$\sin(3t + \pi \pi) - \sin(3t - \pi)$]

$$= \frac{2}{\pi} \left[2 \left(\cos \left(\frac{3t + x + 3t - x}{2} \right) \right) \sin \left(\frac{3t + x - 3t + x}{2} \right) \right]$$

$$= \frac{4}{x} \left[\cos \left(\frac{6+}{2} \right) \sin \left(\frac{x}{x} \right) \right]$$

$$= \frac{4}{\pi} \left[\frac{\sin(6t-3)}{2} + 2\pi \right] + \sin 3\tau \pi$$

Tanisha Chauhan 21(3184 CS-B

PACE NO.: 03

DATE:

77	11 (of time	T				
Hence,	apove	given	Random	Mocess	îs	WSS	DIO CESS	
					1			
·								
						v		

Tanisha, Chauhan 21(3184 CS-B

Chanham R

PAGE NO.: OY
DATE:

*	Answer of Q. No 1
	Let Pm = Priaportion of male iphone users.
	tom sample
	Pm = 337 = 0.25
	1040
	Pt = Proposition of female iphone users
G.	pf = 52 = 0.22
	202
	Hu ' Doo > Do I pour l'a fond labor l'a
	Ho: Pm > Pf; proportion of male iphone users is greater than of female
	greater than or remate
	H. Pm < fix Dropportion of male inhance was in
	H, i Pm < fr; proportion of male iphone users is less than on equal to that of
	(CS) 11141 ON (404) 10 11141 OF
	i.e. 12/ < 2/0.05 (1.111 < 1.699)
	The proportion of male inhone users is greater than
	The proportion of male iphone users is greater than that of female
	now, for 95% confidence limit
	$Z \leq Z _{0.05}$
	Pm - Pf < 1.645

Tanisha	Chauhan
21	(3184
(S-B

FACE NO.: 05

DATE:

$$Pm - Pf \leq 1.645 \times 0.027$$

 ≤ 0.009

female, i.e

The Los, & is 5%

| Zo.05 | = 1.645

$$Z = \frac{Pm - Pf}{\sqrt{\frac{PfQf}{nf}}}$$

$$\frac{7 = 0.25 - 0.22}{0.22 \times 0.78}$$

$$\frac{232}{232}$$

$$Z = 0.03 - 0.03$$
 $\sqrt{0.00074} - 0.027$

Tanisha (hauhan 2103184 CS-B

PAGE NO.: 06
DATE:

* Answer of Q. No-2

$$N_1 = 274$$
, $X_1 = 3.95$, $X_2 = 4.10$
 $N_2 = 320$, $S_1 = 0.63$, $S_2 = 0.47$

$$SE(\overline{X_1} - \overline{X_2}) = \begin{cases} S_1^2 \\ N_1 \end{cases} + \frac{S_2^2}{N_2}$$

$$= \frac{(0.63)^2}{274} + \frac{(0.47)^2}{320}$$

Now;
$$7 = \overline{x_1} - \overline{x_2}$$

 $S \in (\overline{x_1} - \overline{x_2})$

$$\frac{7 = 3.95 - 4.10}{0.045} = -3.33$$

Tanisha	(hauhan
21	(3184
(S-R

$$Z = -3.33 < -2.33 = Z0.01$$

Hence it falls in rejection region area, Ho is rejected 4 14, is Accepted.

i.e. B's customen are more satisfied than A's customen.

$$\frac{7 = \overline{x}_1 - \overline{x}_2}{SE(\overline{x}_1 - \overline{x}_2)} > \frac{70.02}{SE(\overline{x}_1 - \overline{x}_2)}$$

$$\frac{\overline{\chi}_1 - \overline{\chi}_2}{0.045} > -2.055$$

$$\overline{\chi}_1 - \overline{\chi}_2 \geqslant -2.055 \times 0.045$$

$$\int \overline{X}_1 - \overline{X}_2 \geq 0.0924$$

Tanisha (hauhan 2103184 08-B

Grantar Registeres

PAGE NO.: 08

DATE:

*	Answer	of	Q.	No.	4
---	--------	----	----	-----	---

P =	115	415	0
	9/20	D	11/20
	1/4	3/4	0

=> State S2 is recurrent because from whereever we can go, there is a way of returning to S2