

Segundo Teste da Avaliação Discreta Análise Matemática I

Duração: 1h30m 12 de novembro de 2013

Т		
2		
3		
4	a)	
	b)	
	c)	
	d)	
	e)	
	f)	

Nome:	
Número:	Classificação:

Notas importantes: 1. Os resultados usados devem ser enunciados com precisão. O rigor das deduções e o cuidado prestado à sua redação são elementos importantes para a apreciação da qualidade das respostas.

- 2. Não é permitido usar máquinas de calcular, consultar apontamentos ou quaisquer outros elementos.
- 3. Não é permitido se ausentar da sala sem antes dar o seu teste por concluído e o entregar ao docente.
- 4. Qualquer tentativa de fraude implica (entre outras consequências) a classificação de zero.
- 5. Se tiver dúvidas na interpretação das questões, explicite-as na prova.
- 6. A cotação de cada pergunta está indicada entre parêntesis retos.

1. [2.5] Seja $f: D \subset \mathbb{R} \to \mathbb{R}$ e x_0 um elemento do interior de D. Demonstre que se f é diferenciável no ponto x_0 , então f é contínua em x_0 .

> Pode usar o verso das páginas para continuar as suas respostas, caso seja necessário.

2. [2.5] Enuncie o *Teorema da Regra de Derivação da Função Inversa* e use este teorema para deduzir a seguinte fórmula da derivada da função inversa da tangente:

$$(\text{arc tg }(x))' = \frac{1}{1+x^2}.$$

3. [2.5] Enuncie e demonstre o Teorema de Lagrange.

4. [12.5] Calcule os seguintes integrais e primitivas:

(a)
$$\int_{-1}^{1} x \sqrt{x^2 + 444} \, dx$$

(b)
$$\int_{\pi}^{2\pi} x \sin(x - \pi) dx$$

(c)
$$\int_{-\pi}^{\pi} |\sin x| \ dx$$

$$(d) \int_0^{+\infty} e^{-x} \, dx$$

(e)
$$\int \frac{5x}{(x+2)(x+3)} dx$$

$$(f) \int \frac{x^3}{\sqrt{4-x^2}} \, dx$$