11. Phasenübergänge

11.1 Phasen

11.2 Unterschiedliche Phasen im festen Zustand

Ordnungsparameter

Charakterisierung der Phase durch eine Größe, Ordnungsparameter, die sie eindeutig von allen anderen Phasen unterscheidet

Einige Beispiele

Phase	Ordnungsparameter
Flüssigkeit	Dichtedifferenz zum Gas
Kristall	Gittersymmetrie
Überstruktur	Anteil der richtig besetzten Gitterplätze
Ferromagnetische Ordnung	Spontane Magnetisierung
Supraleiter	Energielücke zum normalleitenden Zustand
Supraflüssigkeit	Dichte der suprafluiden Komponente

11.3 Existenzbereiche von Phasen

Unter welchen Bedingungen treten welche Phasen in welchen Stoffen auf?

Ferromagnet Paramagnet

$$S = +1$$

$$S = -1$$

$$E_{ges} = \sum_{i,j} J_{i,j} S_i S_j$$

$$T_c = J/(k_B \tanh(\sqrt{2} - 1))$$

11.4 Materialkonstanten kondensierter Materie

Feldgrößen: Druck P, Temperatur T, elektrisches Feld E, magnetisches Feld B, intensive Größen

Thermodynamisch konjugierte Mengengrößen: Volumen V, Entropie S, elektrisches Dipolmoment m_e , magnetisches Dipolmoment m_m , extensive Größen

Produkt aus Feldgröße und Mengengröße ergibt eine Energie.

Thermodynamisches Potential Φ:

$$\Phi = E + V \cdot P + S \cdot T + m_e \cdot E + m_m \cdot B$$

Statische Materialkonstanten:

$$\chi^{(XY)} = \frac{\partial X}{\partial Y}$$

$$\chi: Mengengre Y: Feldgröße Y: verallgeme$$

X: Mengengröße

χ: verallgemeinerte Suszeptibilität

Intensive Feldgrößen							
	Y	T(K)	$P(N/m^2)$	E (V/m)	B (Vs/m ²)		
	()	Wärmekapazität	Piezokalorischer	Elektrokalorischer	Magnetokalori-		
rößen	S ((J/F	$\chi^{(ST)} = \frac{\partial S}{\partial T}$	$\chi^{(SP)} = \frac{\partial S}{\partial P}$	$\chi^{(SE)} = \frac{\partial S}{\partial E}$	$\chi^{(SB)} = \frac{\partial S}{\partial B}$		
dgi	3)	Wärmeaus-	Kompressibilität	Elektrostriktion	Magnetostriktion		
Extensive Feldgrößen	V (m	$\chi^{(VT)} = \frac{\partial V}{\partial T}$	$\chi^{(VP)} = \frac{\partial V}{\partial P}$	$\chi^{(VE)} = \frac{\partial V}{\partial E}$	$\chi^{(VB)} = \frac{\partial V}{\partial B}$		
Suc	.sm)	Pyroelektrischer	Piezoelektrischer	Elektrische	Magneto-elektri-		
Exte	m _e (Ası	$\chi^{(m_e T)} = \frac{\partial m_e}{\partial T}$	$\chi^{(m_e P)} = \frac{\partial m_e}{\partial P}$	Polarisierbarkeit $\chi^{(m_e E)} = \frac{\partial m_e}{\partial E}$	scher Effekt $\chi^{(m_e B)} = \frac{\partial m_e}{\partial B}$		
	12)	Pyromagneti-	Piezomagneti-	Elektro-magneti-	Magnetisier-		
	√ m	scher Effekt	scher Effekt	scher Effekt	barkeit		
	ղ _m (/	$\chi^{(m_m T)} = \frac{\partial m_m}{\partial T}$	$\chi^{(m_m P)} = \frac{\partial m_m}{\partial P}$	$\chi^{(m_m E)} = \frac{\partial m_m}{\partial E}$	$\chi^{(m_m B)} = \frac{\partial m_m}{\partial R}$		

11.5 Transportkoeffizienten

Materie nicht im thermodynamischen Gleichgewicht

Entstehung von Flüssen (Masse, Energie, Impuls, elektr. Ladung, etc.)

Transportgleichungen: J_X : Fluß (Stromdichte) = $(\partial X/\partial t)/A$ F_Y : treibende Kraft = grad Y $J_X = L_{XY}F_Y$ L_{XY} : Transportkoeffizienten

	Treibende Kraft				
	J_X F_Y	grad T (K/m)	grad P (kg/m ² s ²)	grad c (m ⁻⁴)	grad U (V/m)
ichte)	J_{Q} $(J/m^{2}s)$	Wärme- leitung	Mechanokal- rischer Effekt	Diffusions- Wärme (Dufour)	Peltier- Effekt
Fluß (Stromdichte)	J _m (kg/m ² s)	Thermomech- anischer Effekt	Masse- Transport		
Fluß (J_{N} (m-2s-1)	Soret-Effekt		Diffusion	
	J_{q} (A/m ²)				Elektrizitäts- Leitung

11.6 Flüssigkeiten

Gas

$$E = 0$$
 $E \approx 0$
 $E = 10^{11} \text{ N/m}^2$
 $\eta = 10^{-5} \text{ kg/(ms)}$
 $\eta = 10^{-3} \text{ kg/(ms)}$
 $\eta \rightarrow \infty$
 $K \approx 1 / \text{bar}$
 $K \approx 10^{-9} / \text{bar}$
 $K \approx 10^{-10} / \text{bar}$
 $\tau \approx 10^{-10} \text{ s}$
 $\tau \approx 10^{-8} \text{ s}$
 $\tau \rightarrow \infty \text{ (T=0)}$

Flüssigkeit

$$E \approx 0$$
 $\eta = 10^{-3} \text{ kg/(m}$ $K \approx 10^{-9} \text{ / bar}$ $\tau \approx 10^{-8} \text{ s}$

Festkörper

$$E = 10^{11} \text{ N/m}^2$$

$$\eta \rightarrow \infty$$
bar
$$K \approx 10^{-10} / \text{bar}$$

$$\tau \rightarrow \infty \text{ (T=0)}$$

Atomare Wechselwirkung (Lennard-Jones-Potential):

$$U(r) = 4\varepsilon \left[\left(\frac{\sigma}{r} \right)^{12} - \left(\frac{\sigma}{r} \right)^{6} \right]$$

Anziehender Term (Coulomb-WW) -Abstoßender Term (Pauli-Prinzip)

Beschreibung der Nahordnung durch Korrelationsfunktionen

$$g(r,t) = g_s(r,t) + g_p(r,t)$$

Paarkorrelationsfunktion

Selbstkorrelationsfunktion

Energie:

$$E = \frac{f}{2} N k_B T + \frac{N^2}{2V} \int_{V} U(r) g_p(r) 4\pi r^2 dr$$

Potentielle Energie

Kinetische Energie

Suszeptibilität:

$$C_V = \left(\frac{\partial E}{\partial T}\right)_V = \frac{f}{2} N k_B + \frac{N^2}{2V} \int_V U(r) \left(\frac{\partial g_p}{\partial T}\right) 4\pi r^2 dr$$

<u>Transportkoeffizienten</u>

dynamische Vorgänge ↔ Zeitabhängigkeit der Korrelationsfunktion Brown'sche Bewegung der Atome

Selbstkorrelationsfunktion $g_s(r,t)$

$$g_s(r,t) = \frac{1}{\frac{N}{V} \left(4\pi \cdot D \cdot t\right)^{3/2}} \exp\left(-\frac{r^2}{4D \cdot t}\right)$$

Mittleres Abstandsquadrat:

$$\langle r^2 \rangle = \frac{N}{V} \int_0^\infty r^2 g_s(r,t) 4\pi r^2 dr$$

$$\langle r^2 \rangle = 6D \cdot t$$

Diffusionskoeffizient *D*:

$$D = \frac{1}{6}v^2 \cdot L$$

Paarkorrelationsfunktion einer Flüssigkeit und Nahordnung

Platzwechselfrequenz vEnergieschwelle $\Delta \varepsilon$ Sprungweite L

11.7 Wärmekapazität

Konstantes Volumen *dV*=0:

$$C_V = \left(\frac{dE}{dT}\right)_V$$

Experiment: konstanter Druck *dP*=0: Umrechnung

$$C_P = C_V + 9\alpha_p^2 VT / \kappa_T$$

Verschiedene Beiträge:

$$C^{\text{ges}} = C^{\text{G}} + C^{\text{E}} + C^{\text{P}} = \begin{pmatrix} \frac{\partial E}{\partial T} \end{pmatrix} + \begin{pmatrix} \frac{\partial E}{\partial T} \end{pmatrix} + \begin{pmatrix} \frac{\partial E}{\partial T} \end{pmatrix} + \begin{pmatrix} \frac{\partial E}{\partial T} \end{pmatrix}$$
Phononen kooperativer Anteil Elektronen

Spezifische Wärme von Eisen

11.8 Änderungen der spezifischen Wärme bei Umwandlungen

Kooperative Anteile treten bei Phasenübergängen auf.

Freie Enthalpie:

$$G = H - TS = E - PV - TS$$

$$\left(\frac{\partial G}{\partial T}\right)_{P} = -S; \quad \left(\frac{\partial G}{\partial P}\right)_{T} = -V;$$

$$\left(\frac{\partial^{2} G}{\partial T^{2}}\right)_{P} = -\left(\frac{\partial S}{\partial T}\right)_{P} =$$

$$\frac{1}{T}\left(\frac{\partial H}{\partial T}\right)_{P} = \frac{C_{P}}{T}$$

11.9 Klassifizierung der Phasenübergänge

Klassifizierung nach Phasenübergängen 1. und 2. Art und höherer Ordnung

Beispiele:

1. Art	2. Art
Kristallisation	Ferroelektrizität
Kondensation	Ferromagnetismus
Sublimation	Supraleitung
Martensitische Umwandlung	Superfluidität
Ordnung-Unordnung (A ₃ B)	Ordnung-Unordnung (AB)
Bildung von Domänen	Umwandlungen am kritischen Punkt
(Ferroelektrika, Ferromagnete,	
Flußgitter in Supraleitern 2. Art	

11.10 Phasenübergänge 1. Art

Charakterisierung durch: Keimbildung

Latente Wärme

Hysterese Effekte

Keimbildung:

Bildung von Clustern der Tochterphase 2 in der Mutterphase 1

→ Energiegewinn

Aufbau einer Grenzfläche

→ Energieaufwand

Bei der Übergangstemperatur stehen beide Phasen miteinander im Gleichgewicht

$$T = T_E \rightarrow G^1(P_E, T_E) = G^2(P_E, T_E)$$

Entwicklung der freien Enthalpie um T_E :

$$G^{1}(P_{E}, T_{E}) + dP \frac{\partial G^{1}}{\partial P} + dT \frac{\partial G^{1}}{\partial T} \dots = G^{2}(P_{E}, T_{E}) + dP \frac{\partial G^{2}}{\partial P} + dT \frac{\partial G^{2}}{\partial T} \dots$$

Clausius-Clapeyron

$$\frac{dP}{dT} = \frac{\frac{\partial G^{1}}{\partial T} - \frac{\partial G^{2}}{\partial T}}{\frac{\partial G^{1}}{\partial P} - \frac{\partial G^{2}}{\partial P}} = \frac{S^{1} - S^{2}}{V^{1} - V^{2}}$$

Entropiesprung, Volumensprung

beide Phasen besitzen unterschiedliche Eigenschaften am Übergangspunkt (P_E, T_E)

Phasenübergänge 1. Ordnung

- Sprünge in den extensiven Größen am Phasenübergang
- Behinderung des Anwachsens der Fluktuationen
- Existenz einer Aktivierungsschwelle für die Keimbildung
- Unterkühlung Überhitzung

Beispiel: Verdampfen einer Flüssigkeit

 $V_{Dampf} >> V_{Flüssigkeit}, \Delta V \neq 0, Verdampfungswärme$

Phasenübergänge 1. Ordnung:

Schmelzen eines Festkörpers Kristallisation einer Schmelze Strukturelle Umwandlungen in Festkörpern Aufbau einer Grenzfläche zwischen zwei verschiedenen Phasen erfordert Energie:

- Existenz einer Aktivierungsschwelle zur Keimbildung
- Kompensation durch Erniedrigung der freien Enthalpie

Energiebilanz während der Keimbildung:

$$\Delta G = \frac{4\pi}{3} R^3 \cdot \Delta G_V - 4\pi R^2 \cdot \sigma$$
Volumenterm Grenzflächenterm

$$\Delta G_V = G_2 - G_1 < 0 \ (T < T_E)$$
: Enthalpiegewinn $\sigma > 0$: Energieaufwand durch Grenzfläche

Energieschwelle ΔG^* zur Aktivierung wachstumsfähiger Keime:

$$\Delta G^* = \frac{16\pi \,\sigma^3}{4\Delta G_V}$$

Volumen- und Grenzflächenterm haben unterschiedliche Abhängigkeit vom Keimradius $\longrightarrow \Delta G$ durchläuft ein Maximum bei der Energieschwelle ΔG^* und beim kritischen Keimradius R^* !

Reaktionskinetik, Phasengleichgewicht flüssig-fest

Zufuhr der Schmelzenthalpie kontrolliert das Schmelzen einer Substanz: Geschwindigkeiten der Teilreaktionen: R^M : Schmelzen, R^F : Erstarren

$$R^{M} = N^{S} \cdot A^{M} \cdot G^{M} \cdot v^{S} \cdot exp(-Q^{M}/RT)$$

$$R^F = N^L \cdot A^F \cdot G^F \cdot v^L \cdot exp(-Q^F/RT)$$

 $N^{L,S}$: Anzahl der an der Reaktion beteiligten Atome

 $A^{M,F}$: Akkomodationskoeffizienten

 $G^{M,F}$: Geometriefaktoren

v^{S,L}: Schwingungsfrequenzen

 $Q^{M,F}$: Aktivierungsenergien

R: Gaskonstante

$$\Delta H_f = \Delta S_f \cdot T_E$$

$$T = T_E$$
: $R^F = R^M$

Ebene Grenzfläche:

$$G^M = G^F$$

Metalle:

$$N^S \approx N^L$$
 $v^S \approx v^L$

$$\frac{\Delta H_f}{RT_E} \approx \ln \frac{A^M}{A^F}$$

11.11 Phasenübergänge 2. Art

$$T = T_c \longrightarrow \Delta S = 0, \Delta V = 0$$

 T_c : kritische Temperatur

Beide Phasen besitzen gleiche Eigenschaften am kritischen Punkt.

- Erste Ableitung der freien Enthalpie zeigt keinen Sprung bei T_c , sondern verläuft stetig.
- Extensive Größen beider Phasen am kritischen Punkt werden gleich
- Keine Grenzflächenenergie zwischen beiden Phasen
- Keine Aktivierungsschwelle zur Keimbildung
- Keine latente Wärme

Fluktuationen des Ordnunsgparameters werden bei Annäherung an die kritische Temperatur sehr groß;

Schwankungen durch Brown'sche Wärmebewegung der Atome (Molekühle)

T → T_c: Zunahme der Reichweite und Abnahme der Relaxationszeiten der Fluktuationen, dies gilt bei Annäherung an den kritischen Punkt von hohen und tiefen Temperaturen.

Kritische Fluktuationen

 Reduzierte Temperatur:
 $T_r = |T - T_c|/T_c$ $10^{-5} - 10^{-2}$

 Korrelationslänge:
 ξ (1000 - 10) nm

 Lebensdauer:
 τ $(10^{-10} - 10^{-11})$ s

 $(10^{-10} - 10^{-11})$ s

Helle Quadrate: Spin oben Dunkle Quadrate: Spin unten

Kritische Exponenten

Gleichbeschaffenheit beider Phasen am kritischen Punkt Verhalten thermodynamischer Eigenschaften bei T_c :

$$A(Y) = A_o \left| \frac{Y - Y_c}{Y_c} \right|^z$$
 A: Eigenschaft
 Y: Feldgröße (T,P,B,E)
 Y_c: kritischer Wert der Feldgröße
 7: kritischer Exponent

kritischer Exponent

$$z > 0$$
: $A \rightarrow 0$ für $Y \rightarrow Y_c$

$$z < 0$$
: $A \rightarrow \infty$ für $Y \rightarrow Y_c$

z = 0: logarithmische Divergenz

Deutung durch Renormierungstheorie Nobelpreis 1982: K. G. Wilson

Gültigkeitsbereich:

$$10^{-5} < T_r < 10^{-2}$$

Atomabstand << Korrelationslänge << Probenabmessungen

Experiment:

$$T \ge T_c$$
:
 $\chi \approx (T - T_c)^{-1.41}$
 $\gamma = -1.41$

Theorie:

 $\gamma = -1.39$

Universalität von Phasenübergängen 2. Ordnung Symmetrie des Ordnungsparameters:

Anzahl n seiner wechselwirkenden Komponenten, n: "Spindimension"

n = 1: Ising Modell n = 2: XY - Modell

n = 3: Heisenberg - Modell

Bedingung: kurzreichweitige Kräfte Wechselwirkungsenergie < k_BT Reichweite << Korrelationslänge

<u>Universalität:</u> Gleiche kritische Exponenten für unterschiedliche Phasenübergänge

Beispiele:

z < 0: Kompressibilität eines Flüssigkeits-Gas-Systems, T_c : kritischer Punkt Magnetische Suszeptibilität eines Ferromagneten, T_c : Curie-Temperatur z > 0: Energielücke für Cooper-Paare in supraflüssigem 3 He, T_c : Lambda-Punkt Untergittermagnetisierung des antiferro-Magnetischen NiO, T_c : Néel-Temperatur

Allein die geometrischen Eigenschaften der Fluktuationen bestimmen die makroskopischen Eigenschaften der Materie in der Nähe kritischer Punkte, unabhängig von der Art der Wechselwirkung zwischen den Atomen!