Lemma 7.5. Sei d_A^i : $C^i(G,A) \rightarrow C^{i*}(G,A)$ des übliche Differential:

Dann gill: d_A^i ($C^i_{cts}(G,A)$) $\subseteq C^{i*1}_{cts}(G,A)$, d.h. ($C^*_{cts}(G,A)$, d_A^i)

ist ein Komplexe.

+ ist stehy, g'-: A -> A stehy, Gx6->6 stehy.

12.06.18

Proposition 1.6. $0 \rightarrow A \xrightarrow{\sim} B \xrightarrow{\beta} C \rightarrow 0$ kurze exalte Segunt von diskreten G-Moduln, so ist $0 \rightarrow C_{cts}(G,A) \xrightarrow{cus} C_{cts}(G,B) \xrightarrow{cits} C_{cts}(G,C) \rightarrow 0$ eine exalte Seguenz in $Ch^{\circ}(Z)$.

Beweis.

Now surjektivität, Rest übung. Sei dazu $s: C \rightarrow B$ ein mengentheoretischer Schmitt. Dieser ist skelig, da C die diskrele Topologie hväjt. Ist mun $f \in C_{cts}^i(G,C)$, so ist sof $\in C_{cts}^i(G,B)$ und $C^i(B)(S \circ f) = f$.

Def. 7.7. Hits (G,A) := Hi (Cits (G,A)) heißt stehige Kohomologigruppe zu G mit Kontizionten in A.

Satz 7.8. Unter den Voranssetzungen zu 1.6.: erhalten eine lange ex. Kohomologiesegnenz $0 \rightarrow H_{cts}^{o}(G,A) \rightarrow H_{cts}^{o}(G,B) \rightarrow H_{cts}^{o}(G,C) \xrightarrow{S^{o}} H_{cts}^{1}(G,A) \rightarrow \dots$

und en Morphismen kurser exakter Sequenzen von diskreten G-Modalh erhält man induz. Morphismen der entsprechenden langen exakten Sequenzen.

Berrais. Mar nach 7.6.

30p. 7.9. G eine pro-p-Gruppe. $\overline{\Phi}(G) = \langle [G,G],G^P \rangle$ $H_{cls}^{1}(G,F_{p}) = Hom_{cls}(G,F_{p}) = Hom_{cls}($

Proposition 7.10. Sei G pre-endlich! Sei Ul eine Umgeburgsbarris von e E G bestehend aus efferen Normalteilern. Dann jilt:

Beneis. Inflationsabbilding ist out Kokeltenniveau definiert. Zeige also: $C_{cts}^{i}(G,A) = \lim_{u \in \mathcal{U}} C^{i}(G_{u},A^{u})$

"=": Klar

"=": Sei f: G -A stetig. im(f) ist endlich (kpt, + diskret)

kpt.

proceedlich A = lim All

=> Bue U: imf = Au.

Vac A: f'({a}) = G! auch object/ossen, also kompaket, d.h. endliche Vereinigung

Vax... xV; mit V; = G (keine Undergruppe)

=7] Ua e VI: alle bekeiligten Vax.-xVi Vereinigung von translaten

(ga,-,gi). Ua sind!

Wähle $u' \in U$: $u' \in U$, $u' \in U$ $u' \in U$ $u' \in U$ $u' \in U$.

ven $(u')^i$, in $f \in A^{u'}$.

dh. f \(\mathcal{C}^{\mathcal{i}}(G/\mu), A^{\mathcal{i}}). \) \(\text{H}^{\mathcal{i}}(\limin) = \limin \text{H}^{\mathcal{i}} \text{H}^{\mathcal{i}}. \) \\ \text{filbreste Glimsten sind enablet} \)

```
Hets als derivierte Funktorkohomologie.
```

(Referenz: S. Shatz: Profinte Groups, Arithmetic & Geometry, II. 1+2+3)
Sei G eine proendliche Gruppe, 29 wie in 7.40.

Mod : Kategorie diskreter G-Malulu.

(b) For A & Mode definiere Ad = U Au

(c) Für H = G aby. UG und A = Mod d definere ct-Colod A := {f:G->A stehy | VheH: f(hy) = hf(g)}

> mit G-Operation (gf)g' := f(g'g)

Benerking. It & G effence Untergruppe -> ct-Colud & A = Colud & A.

Lemma. (4)

Mod sist abelsche Kategorie

A -> Ad definiert Funkter Mode -> Mode (rechtsadjungtert zu Mode -> Mode)

ct-Colud : Mad -> Mad ist Funkler (c)

(d)

I = Mode Injektiv => Id injektiv in Mode.

I = Mode Injektiv => ct-Colond = I = Mode injektiv.

Koroller. Mode hat ganizened vicle hijcktive.

Satz. (Shapiro) H≤G abjeschlossen, A∈ Mody . Dam:

Hets (H,A) - Hets (G, et-Colod + A) (funktorial in A)

Instandure: Hcts (G, cts-Colude A) = O Viz1, A & Modz.

Korollar. (Hits (G, A)) (als S-Funkler) ist isomorph zur derivierten Funkler kohomologie Zu F: Mod G -> Ab, A -> A6

Gy sind 2 S-Funktoren mit einer gemeinsamen Henze von azyklischen Objekken und einer Behreis. dus Korolleurs. der S-Funktoren (der derivierte...) ist universell = 5-Funktoren sind isomerph

Alternativ:

Sei
$$\widetilde{H}^{i}(G,A) := (R^{i}F)(A)$$
. Dam: $\widetilde{H}^{o}(G,A) = A^{G} = H_{cts}(G,A) = \lim_{u \in \mathcal{U}} H^{o}(G_{G,A}u)$

Ut $\mathcal{U} = \mathcal{U} = \mathcal{U}$

Ust $\mathcal{U} = \mathcal{U} = \mathcal{U}$

Ist min $0 \to A \to ct$ -(olude $A \to A'' \to 0$ gegeben, so exhalt mon wyen

$$H^{i}_{cts}(G, ct\text{-Colud} G A') = 0 = \widetilde{H}^{i}(G, ct\text{-Colud} G A')$$

Set $\mathcal{U} = \mathcal{U}$

Use \mathcal{U}

(i = 1!)

(A CA A' injektiv Einhillende als Z-Mahel)

Def. 7.11. G, G' proendlich, $A \in Mod_{G}$, $A' \in Mod_{G}$, $A' \in Mod_{G}$, $(p:G' \neg G, \lambda: A \neg A')$ heißen (kohomologisch) kompahibles Pacar :<=> p ist stetiger Gruppenhomomorphismus, $\lambda: A \rightarrow A' \ge -Modulhom$, s.d. $\forall g' \in G' \forall \alpha \in A : \lambda(p(g'), \alpha) = g'\lambda(\alpha)$

Zu einem salchen Paar erhalt men (His G, A) His (G', A')) ie Z Bernerkuy. 7.12.

- (a) Erhalten Inf, Res, Konjugahun in topal. Kontext für diskrete G-Moduln
 - (b) Die Abb'en Inf. Res., Kong. ergeben sich absch als direkte Zimiten der entspr. Abb.
 - (1) 1st H = 6 offene UG., so I Korestrikhan wie üblich.
 - (d) Infl. Restr. Segume gilt auch für N & G aby, Normalterler.

Proposition 7.13. G proendlah, N=6 aby Normalteiler, AcMalG and Hi (N,A)=0 j=1...i-1

Dann ist: $0 \longrightarrow H_{cls}^{i}(G_{N}, A^{N}) \longrightarrow H_{cls}^{i}(G_{i}A) \longrightarrow H_{cls}^{i}(N_{i}A)$ exakt.

Def. 7.14.
$$H^{i}(L/K,A) := H^{i}_{cts}(Gal(L/K),A)$$
(falls $L=K^{sep}$: $H^{i}(K,A) := H^{i}(L/K,A)$)

Berreis.

Für $E \mid K$ endlich galvisseh. Sei $O \neq f \in 2^{1}(E \mid K, E^{\times})$ Dedekind unabh. von Charakteren => $G : E^{\times} \rightarrow E^{\times}$, $G \in Gal(E \mid K)$ sind E - l.u.

$$= \sum_{G \in Gal(EIK)} f(G) \cdot G \neq 0 \quad (in \ E[Gal(EIK)])$$

$$Abb \cdot E^{\times} \rightarrow E \quad \text{with } \alpha \in E^{\times} \text{ s.d. } 2 = \sum_{G \in Gal(EIK)} f(G) \cdot G(\alpha) \neq 0.$$

Num: Fir
$$\tau \in Gal(E/K)$$
: $\tau'(z) = \sum_{G \in Gal(E/K)} \tau'(G(G)) = \sum_{G \in G} f(\tau'G) = \sum_{G \in G} f(\tau'G)$

$$\left(f(\tau'G) = \tau'f(G) \cdot f(\tau'G)\right) = \sum_{G \in G} f(G) \cdot f(\tau'G)$$

$$Z=7 \quad f(7^{-1}) = \frac{2}{7^{-1}(2)} \quad dh. \quad f=\partial z \quad \Rightarrow f \in B^{-1}(-)$$