

#### **Features**

- Split Gate Trench MOSFET technology
- Excellent package for heat dissipation
- High density cell design for low RDS(ON)

# **Product Summery**



| BVDSS | RDSON  | ID   |
|-------|--------|------|
| -60V  | 16.7mΩ | -40A |

## **Applications**

- DC-DC Converters
- Power management functions
- Synchronous-rectification applications

#### PDFN3333-8L Pin Configuration





#### **Absolute Maximum Ratings**

| Symbol                                | Parameter                                                      | Rating     | Units |  |
|---------------------------------------|----------------------------------------------------------------|------------|-------|--|
| V <sub>DS</sub>                       | Drain-Source Voltage                                           | -60        | V     |  |
| V <sub>G</sub> S                      | Gate-Source Voltage                                            | ±20        | V     |  |
| I <sub>D</sub> @T <sub>C</sub> =25°C  | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1,6</sup> | -40        | Α     |  |
| I <sub>D</sub> @T <sub>C</sub> =100°C | Continuous Drain Current, V <sub>GS</sub> @ 10V <sup>1,6</sup> | -25        | Α     |  |
| I <sub>DM</sub>                       | Pulsed Drain Current <sup>2</sup>                              | -150       | Α     |  |
| EAS                                   | Single Pulse Avalanche Energy <sup>3</sup>                     | 200        | mJ    |  |
| las                                   | Avalanche Current                                              |            | Α     |  |
| P <sub>D</sub> @T <sub>C</sub> =25°C  | Total Power Dissipation <sup>4</sup>                           | 114        | W     |  |
| T <sub>STG</sub>                      | Storage Temperature Range                                      | -55 to 150 | °C    |  |
| TJ                                    | Operating Junction Temperature Range                           | -55 to 150 | °C    |  |

#### **Thermal Data**

| Symbol           | Parameter                                        | Тур. | Max. | Unit |
|------------------|--------------------------------------------------|------|------|------|
| R <sub>0JA</sub> | Thermal Resistance Junction-Ambient <sup>1</sup> |      | 60   | °C/W |
| Rejc             | Thermal Resistance Junction-Case <sup>1</sup>    |      | 1.32 | °C/W |



### Electrical Characteristics (T<sub>J</sub>=25 **c**, unless otherwise noted)

| Symbol                              | Parameter                                                                               | Conditions                                                        | Min. | Тур. | Max. | Unit |
|-------------------------------------|-----------------------------------------------------------------------------------------|-------------------------------------------------------------------|------|------|------|------|
| BV <sub>DSS</sub>                   | Drain-Source Breakdown Voltage                                                          | V <sub>GS</sub> =0V , I <sub>D</sub> =-250uA                      | -60  |      |      | V    |
| △BV <sub>DSS</sub> /△T <sub>J</sub> | BV <sub>DSS</sub> Temperature Coefficient                                               | Reference to 250 , I <sub>D</sub> =-1mA                           |      |      |      | V/ C |
| D                                   | Static Drain-Source On-Resistance <sup>2</sup>                                          | V <sub>GS</sub> =-10V , I <sub>D</sub> =-20A                      |      | 16.7 | 21   | mΩ   |
| R <sub>DS(ON)</sub>                 |                                                                                         | $V_{GS}$ =-4.5 $V$ , $I_D$ =-10 $A$                               |      | 22.5 | 28   |      |
| V <sub>GS(th)</sub>                 | Gate Threshold Voltage                                                                  | \\ -\\   - 250\                                                   | -1.3 | -1.8 | -2.3 | V    |
| $\triangle V_{GS(th)}$              | V <sub>GS(th)</sub> Temperature Coefficient                                             | V <sub>GS</sub> =V <sub>DS</sub> , I <sub>D</sub> =-250uA         |      |      |      | mV/C |
|                                     | Drain Source Leakage Current                                                            | V <sub>DS</sub> =-60V , V <sub>GS</sub> =0V , T <sub>J</sub> =250 |      |      | 1    |      |
| IDSS                                | Drain-Source Leakage Current                                                            | V <sub>DS</sub> =-60V , V <sub>GS</sub> =0V , T <sub>J</sub> =550 |      |      | 100  | uA   |
| Igss                                | Gate-Source Leakage Current                                                             | $V_{GS=}\pm20V$ , $V_{DS}=0V$                                     |      |      | ±100 | nA   |
| gfs                                 | Forward Transconductance                                                                | V <sub>DS</sub> =-5V , I <sub>D</sub> =-5A                        |      | 20   |      | S    |
| R <sub>g</sub>                      | Gate Resistance                                                                         | V <sub>DS</sub> =0V , V <sub>GS</sub> =0V , f=1MHz                |      | 8    |      | Ω    |
| Qg                                  | Total Gate Charge (-4.5V)                                                               |                                                                   |      | 22   |      |      |
| Q <sub>gs</sub>                     | Gate-Source Charge V <sub>DS</sub> =-30V , V <sub>GS</sub> =-10V , I <sub>D</sub> =-10A |                                                                   |      | 3.7  |      | nC   |
| Q <sub>gd</sub>                     | Gate-Drain Charge                                                                       |                                                                   |      | 3    |      |      |
| T <sub>d(on)</sub>                  | Turn-On Delay Time                                                                      | V <sub>DD</sub> =-30V , V <sub>GS</sub> =-10V ,                   |      | 15   |      |      |
| Tr                                  | Rise Time                                                                               |                                                                   |      | 17   |      |      |
| T <sub>d(off)</sub>                 | Turn-Off Delay Time                                                                     | R <sub>G</sub> =3Ω, I <sub>D</sub> =-10A                          |      | 40   |      | ns   |
| T <sub>f</sub>                      | Fall Time                                                                               | $R_L=3\Omega$                                                     |      | 45   |      |      |
| C <sub>iss</sub>                    | Input Capacitance                                                                       |                                                                   |      | 1500 |      |      |
| Coss                                | Output Capacitance                                                                      | V <sub>DS</sub> =-30V , V <sub>GS</sub> =0V , f=1MHz              |      | 248  |      | pF   |
| Crss                                | Reverse Transfer Capacitance                                                            |                                                                   |      | 12   |      |      |

#### **Diode Characteristics**

| Symbol          | Parameter                                | Conditions                                                      | Min. | Тур. | Max. | Unit |
|-----------------|------------------------------------------|-----------------------------------------------------------------|------|------|------|------|
| Is              | Continuous Source Current <sup>1,5</sup> | V <sub>G</sub> =V <sub>D</sub> =0V , Force Current              |      |      | -40  | Α    |
| Vsp             | Diode Forward Voltage <sup>2</sup>       | V <sub>GS</sub> =0V , I <sub>S</sub> =-5A , T <sub>J</sub> =250 |      |      | -1.2 | V    |
| t <sub>rr</sub> | Reverse Recovery Time                    | IF=-10A , di/dt=100A/μs ,                                       |      | 60   |      | nS   |
| Q <sub>rr</sub> | Reverse Recovery Charge                  | T <sub>J</sub> =250                                             |      | 105  |      | nC   |

Note: FÉ heÁdataÁsestedÁsyÁsurfaceÁmountedÁsnÁsÁtÁnch²ÁFR-4ÁsoardÁsvithÁzOZÁsopper.

EThe Átata Áested Áby Ápulsed Ábulse Ávidth Á: 300us Á Átuty Ásycle Á: 2%
HThe ÉAS data shows Max. rating. The test condition is VRAMO, VDD=-30V, VGS=-10V, L=1mH
I É he Ápower Átissipation Ás Áimited Áby Át50°C junction Átemperature
Í É he data is theoretically the same as I<sub>DÁ</sub>and I<sub>DMÁ</sub> in real applications Áshould Ábe Áimited Áby Átotal Ápower Átissipation.



#### **Characteristics Curve:**

Typ. output characteristics  $-I_D = f(-V_{DS})$ 



Typ. drain-source on resistance  $R_{\mathrm{DS}(on)}\!\!=\!\!f(\text{-}I_D)$ 



Typ. transfer characteristics  ${}_{\text{-}I_{D}}\!\!=\!f(\text{-}V_{\mathrm{GS}})$ 



**Drain-source on-state resistance**  $R_{DS(on)} = f(T_i)$ ;  $I_D = -10A$ ;  $V_{GS} = -10V$ 





Gate Threshold Voltage  $-V_{TH}=f(T_j)$ ;  $I_D=-250uA$ 



**Drain-source breakdown voltage**  $-V_{BR(DSS)}=f(T_i)$ ;  $I_D=-250uA$ 



**Typ. gate charge**  $V_{GS}$ = $f(Q_{gate})$ ;  $I_D$ =-5A



Typ. Capacitances  $C = f(-V_{DS}); V_{GS} = 0V; f = 1MHz$ 















### Max. transient thermal impedance

$$Z_{thJC} = f(t_p)$$





### **Test Circuit and Waveform:**



**Gate Charge Test Circuit & Waveform** 



**Resistive Switching Test Circuit & Waveforms** 



**Unclamped Inductive Switching Test Circuit & Waveforms** 



# Package Mechanical Data-PDFN3333-8L-Single







Side View

Bottom View



Front View

#### NOTES:

- DIMENSIONING AND TOLERANCING PER ASME Y14.5M,1994.
- 2. ALL DIMNESIONS IN MILLIMETER (ANNGLE IN DEGREE).
- DIMENSIONS D1 AND E1 DO NOT INCLUDE MOLD FLASH PROTRUSIONS OR GATE BURRS.

| DIM. | MILLIMETER |      |      |  |  |
|------|------------|------|------|--|--|
|      | MIN.       | NOM. | MAX. |  |  |
| A    | 0.70       | 0.75 | 0.80 |  |  |
| b    | 0.25       | 0.30 | 0.35 |  |  |
| c    | 0.10       | 0.20 | 0.25 |  |  |
| D    | 3.00       | 3.15 | 3.25 |  |  |
| D1   | 2.95       | 3.05 | 3.15 |  |  |
| D2   | 2.39       | 2.49 | 2.59 |  |  |
| E    | 3.20       | 3.30 | 3.40 |  |  |
| E1   | 2.95       | 3.05 | 3.15 |  |  |
| E2   | 1.70       | 1.80 | 1.90 |  |  |
| e    | 0.65 BSC   |      |      |  |  |
| Н    | 0.30       | 0.40 | 0.50 |  |  |
| L    | 0.25       | 0.40 | 0.50 |  |  |
| a    |            |      | 15°  |  |  |



DIMENSIONS: MILLIMETERS