

Álgebra l

Clase metodológica

Festival de la clase, Mayo 2023

Amanda Cordero Lezcano

Christopher Guerra Herrero Tutora: MSc. Celia Tamara González González

Facultad de Matemática y Computación

- 🗸 Disciplina: Matemática Básica
- √ Álgebra I para 1er Año de Licenciatura en Ciencia de la Computación
- √ Tema III: Sistemas de Ecuaciones Lineales
- ✓ Clase práctica: Método de Gauss

- L. Objetivos del ejercicio
- 2. Aspectos metodológicos
- 3. Ubicación del tema dentro del programa de la Asignatura
- 4. Antecedentes y Motivación
- 5. Bibliografía
- 🗘 . Asimilación y nivel de partida
- . Ejercicios
 - Aplicación del método de Gauss
 - Sistemas con parámetros
- 8. Conclusiones

I. Objetivo general

- Establecer correctamente la relación entre el saber matemático y la realidad objetiva, entre el modelo matemático y la realidad modelada
- Desarrollar las habilidades para el trabajo independiente, la constancia y la organización del estudio.
- Potenciar acciones encaminadas al uso de softwares específicos de su campo profesional

II. Aspectos metodológicos Proceso de Enseñanza Aprendizaje

Unidades de la Asignatura

- Números Complejos
- 2 Polinomios
- 3 Sistemas de Ecuaciones Lineales
- 4 Espacios Vectoriales y Subespacios Vectoriales
- 6 Aplicaciones Lineales
- 6 Valores y Vectores Propios

Sistemas de Ecuaciones Lineales Objetivos generales del tema

- Reconocer y diferenciar, teórica y prácticamente, las estructuras algebraicas fundamentales y desarrollen habilidades para el cálculo en las mismas y su aplicación a la resolución de tareas concretas
- Simplificar el trabajo con determinados entes matemáticos al trabajo con matrices, desarrollando habilidades para realizar tal representación del modo que más convenga al probema tratado

Antecedentes y Motivación

Conocimientos previos de Sistemas de Ecuaciones Lineales

Sistemas de Ecuaciones Lineales como matrices

Espacios Vectoriales Aplicaciones Lineales Vectores y Valores Propios Clases Conferencias: 8 Clases Prácticas: 8

Total: 16

Valores Fundamentales de la Carrera

- Desarrollar habilidades para realizar procesos de generalización, abstracción y las formas de pensamiento lógico
- Utilizar los contenidos abordados en el desarrollo computacional de problemas específicos
- Contribuir a que los alumnos puedan establecer correctamente la relación dialéctica entre un modelo matemático y los fenómenos reales que este representa

Sistemas Conocimientos y Habilidades

- Representar matricialmente sistemas lineales y utilizar tal representación para clasificar y resolver sistemas
- Hallar ejemplos en que se verifiquen o no las condiciones que caracterizan a los diferentes conceptos y propiedades abordados en el programa de la asignatura
- Realizar operaciones con matrices

Objetivos de la clase

Aplicar el Método de Gauss para la resolución de Sistemas de Ecuaciones Lineales, y las definiciones asociadas a este concepto en la resoluciónde ejercicios

Métodos y medios

Métodos

- La exposición problemática
- La búsqueda parcial
- La conversación heurística

Medios

- Pizarra
- Dispositivos Móviles
- NumPy, Python

Bibliografía

Básica

- Kurosch, R. Curso de Algebra Superior. Pueblo y Educación 1987
- Solana M. Roldán R. Apuntes para un curso de Algebra Lineal.

Complementaria

- Lipschutz, S. Algebra lineal. Teoría y 600 problemas resueltos, edición revolucionaria
- Faddieev, D. Problemas de Algebra Superior. Pueblo y Educación 1971

Conferencia anterior

La autopreparación para esta clase debió basarse en las notas de clase de las conferencias. Para la resolución de los ejercicios es necesario el conocimiento de la definición y propiedades básicas de la teoría de los Sistemas de Ecuaciones Lineales. Es importante recordar estos temas como introducción a la clase.

Ejercicio 1

Resolver utilizando el método de Gauss:

$$2x + y + z = 3$$

$$x - 2y + 3z = 4$$

$$-2x + z = 1$$

$$\begin{pmatrix} 2 & 1 & 1 & \bullet & 3 \\ 1 & -2 & 3 & \bullet & 4 \\ -2 & 0 & 1 & \bullet & 1 \end{pmatrix} \sim \begin{pmatrix} 2 & 1 & 1 & \bullet & 3 \\ 0 & -3 & -5 & \bullet & -5 \\ 0 & 1 & 2 & \bullet & 4 \end{pmatrix}$$

$$\sim \begin{pmatrix} 2 & 1 & 1 & \bullet & 3 \\ 0 & -3 & -5 & \bullet & -5 \\ 0 & 0 & 1 & \bullet & 7 \end{pmatrix}$$

$$z = 7$$

$$y = 0$$

$$x = -2$$

Ejercicio 2

Qué condiciones deben verificar los parámetros a, b, c para que el sistema:

$$x_1 + 2x_2 - 3x_3 = a$$
$$2x_1 + 6x_2 - 11x_3 = b$$
$$x_1 - 2x_2 + 7x_3 = c$$

posea alguna solución. En tal caso, cuántas soluciones posee.

$$\begin{pmatrix} 1 & 2 & -3 & \bullet & a \\ 2 & 6 & -11 & \bullet & b \\ 1 & -2 & 7 & \bullet & c \end{pmatrix} \sim \begin{pmatrix} 1 & 2 & -3 & \bullet & a \\ 0 & 2 & -5 & \bullet & b - 2a \\ 0 & -4 & 10 & \bullet & c - a \end{pmatrix}$$

$$\sim \left(\begin{array}{ccccc} 1 & 2 & -3 & \bullet & a \\ 0 & 2 & -5 & \bullet & b - 2a \\ 0 & 0 & \bullet & 2b - 5a + c \end{array}\right)$$

$$0x_3 = 2b - 5a + c$$
$$0 = 2b - 5a + c$$

El sistema tendrá solución solo si 2b - 5a + c = 0. En tal caso tendrá infinitas soluciones por ser compatible indeterminado.

Ejercicio 3

Determinar los valores del parámetro k para que el sistema

$$x_1 - 3x_3 = 3$$

$$2x_1 + kx_2 - x_3 = 2$$

$$x_1 + 2x_2 + kx_3 = 1$$

tenga infinitas soluciones

$$\begin{pmatrix} 1 & 0 & -3 & \bullet & 3 \\ 2 & k & -1 & \bullet & 2 \\ 1 & 2 & k & \bullet & 1 \end{pmatrix} \sim \begin{pmatrix} 1 & 0 & -3 & \bullet & 3 \\ 0 & k & 5 & \bullet & -4 \\ 0 & 2 & k + 3 & \bullet & -2 \end{pmatrix}$$
$$\sim \begin{pmatrix} 1 & 0 & -3 & \bullet & 3 \\ 0 & k & 5 & \bullet & -4 \\ 0 & 0 & \frac{-k(k+3)}{2} + 5 & \bullet & k - 4 \end{pmatrix}$$

Note que

$$\frac{-k(k+3)}{2} + 5 = \frac{-k^2 - 3k + 10}{2} = \frac{-(k+5)(k-3)}{2}$$

expresión que se anula si k = -5 o k = 3.

Pero el miembro derecho k-4 solo se anula cuando k=4.

Por tanto el sistema no tendrá infinitas soluciones para ningún valor de \boldsymbol{k}

Ejercicios complementarios

Se socializa un documento digital con mayor cantidad de ejercicios para el estudio individual.

Temas a continuación

En los siguientes encuentros se continuará trabajando el mismo tema. Además, los conocimiento adquiridos serán de provecho para habilidades de las unidades próximas como caracterizar espacios vectoriales o hallar la matriz asociada a una aplicación lineal.

Álgebra l

Clase metodológica

Festival de la clase, Mayo 2023

Amanda Cordero Lezcano

Christopher Guerra Herrero Tutora: MSc. Celia Tamara González González

Facultad de Matemática y Computación

Amanda Cordero Lezcano Christopher Guerra Herrero

Conclusiones