Geometric Invariant Theory

Guanyu Li

这份材料是我在读 Mumford 的著作 Geometric Invariant Theory 和在 Daniel Halpern-Leistner 课堂上做的笔记,它不是自洽的,也忽略了很多该去讨论的东西,当然也避免不了错误.这份笔记只是基于我自己理解对 GIT/Moduli spaces 理论做的一份综述.有一些名词我也不知道该怎么翻译,就将就着来算了.

1 空间和层

定义. 设 $P: \mathcal{F} \to \mathcal{C}$ 是 \mathcal{C} 上的范畴, 给定 \mathcal{F} 中的态射 $f: A \to B$, 若对任意 \mathcal{F} 中的对象 \mathcal{C} 和态射 $g: \mathcal{C} \to B$, 只要有 \mathcal{C} 中的交换图

$$P(C)$$

$$\tilde{h} \downarrow \qquad P(g)$$

$$P(A) \xrightarrow{P(f)} P(B),$$

都存在唯一 \mathcal{F} 中的态射 $h: C \to A$ 使得 $P(h) = \tilde{h}$, 即

$$\begin{array}{ccc}
C & & & & \\
\downarrow & & & \downarrow & & \\
A & \xrightarrow{f} & B,
\end{array}$$

则称 f 是笛卡尔态射 (cartesian morphism).

定义. 设 $P: \mathcal{F} \to \mathcal{C}$ 是 \mathcal{C} 上的范畴,若对任意 \mathcal{F} 中的对象 A 和 \mathcal{C} 中的态射 $f: X \to P(A)$,都存在 \mathcal{F} 中的 笛卡尔态射 $g: \mathcal{C} \to A$ 使得 P(g) = f

$$C \xrightarrow{g} A$$

$$\downarrow \qquad \qquad \downarrow$$

$$X \xrightarrow{f=P(g)} P(A),$$

则称 \mathcal{F} 是 \mathcal{C} 上的纤维范畴 (fibred category).

例 1. 设 C 是给定的范畴,A 是 C 中的对象,于是我们有 A 上的斜线范畴 C/A 和自然的函子 $P: C/A \to C$. 对任意的 $f_{/A}: B \to D$,由定义 $P(f_{/A}) = f: B \to D$. 给定 C/A 中的对象 $u: B \to A$ 和 $w: D \to A$ 对任意 C 中的交换图

$$\begin{array}{c}
C \\
g \downarrow \qquad h \\
B \xrightarrow{f} D,
\end{array}$$

给出了 \mathcal{C}/A 中的对象 $C \xrightarrow{w \circ h = w \circ f \circ g} D$, 且由于 $w \circ f = u$, $g: C \to B$ 是 \mathcal{C}/A 中的态射,这意味着 \mathcal{C}/A 中的态射都是笛卡尔的.

例 2. 设 C 是给定的范畴,且其中任意的纤维积存在,定义范畴 C^{\rightarrow} 如下,它的对象是 C 中的态射 $f: X \rightarrow A$, 态射 $\alpha = (h,k): f: X \rightarrow A \Rightarrow g: Y \rightarrow B$ 是交换图

$$\begin{array}{ccc}
X & \xrightarrow{f} & A \\
\downarrow h & & \downarrow k \\
Y & \xrightarrow{g} & B.
\end{array}$$

考虑函子 $P: C^{\rightarrow} \rightarrow C$, 它将 C^{\rightarrow} 中对象 $f: X \rightarrow A$ 映到 A, 将态射 $\alpha = (h, k)$ 映到 $k: A \rightarrow B$. 我们要证明 α 是笛卡尔态射当且仅当 X 是 α 的定义交换图的拉回,简称 α 是一个笛卡尔图.

首先我们考虑若 $\alpha = (h, k)$ 是一个笛卡尔态射,由定义如果我们有 C 中的交换图

其中 g

定义. \mathcal{C} 上的纤维范畴 $P: \mathcal{F} \to \mathcal{C}$ 若满足对任意 \mathcal{C} 中的对象 $A, \mathcal{F}(A)$ 都是群胚,即 \mathcal{F} 中被映到 id 的态射都是可逆的,则称 \mathcal{F} 是群胚纤维范畴 (category fibred over groupoid).

定理 1.1 (Yoneda).

定义. Grothendieck 拓扑

定义. 设 \mathcal{D} 上的范畴 $P: \mathcal{F} \to \mathcal{D}$ 是纤维范畴, $G: \mathcal{C} \to \mathcal{D}$ 是函子, 则对象是配对 $(X \in \text{ob } \mathcal{C}, A \in \mathcal{F}(f(X)))$, 态 射 $f: (X, A) \to (Y, B)$ 是满足 $P(f) \in \text{hom}_{\mathcal{D}}(\mathcal{F}(f(X)), \mathcal{F}(f(Y)))$ 的 \mathcal{F} 中的态射 $f: X \to Y$ 的范畴 $G^{-1}(\mathcal{F})$ 被称为 \mathcal{F} 关于 G 的拉回.

$$G^{-1}(\mathcal{F}) \longrightarrow \mathcal{F}$$

$$G^{-1}(P) \downarrow \qquad \qquad \downarrow P$$

$$\mathcal{C} \longrightarrow \mathcal{D}.$$

在上面的定义中,我们没有把纤维范畴的拉回写为"对称"的,这是因为,虽然我们可以证明 $G^{-1}(\mathcal{F})$ 就是范畴的纤维积 $\mathcal{F} \times_{\mathcal{D}} \mathcal{C}$,但是下面的事情说明定义对于纤维性并不对称:

引理 1.1. $G^{-1}(\mathcal{F})$ 是 C 上的纤维范畴.

定义.

例 3. 我们来验证若 $X \in S$ 上的概型,则自然的忘却函子 $P: \mathbf{Sch}_X \to \mathbf{Sch}_S$ 是叠.另一方面,任取

2 几种不同的商 3

2 几种不同的商

接下来我们会一直有如下假定: 给定一个概型 S, 我们考虑范畴 \mathbf{Sch}_S 中的群对象 G/S, 如果作为概型 G 是光滑的,则称 G 是一个 S 上的代数群 (algebraic group).

例 4. 假设 k 是域, $S := \operatorname{Spec} k$, 那么以下是代数群:

- 1. $\mathbb{G}_m := \text{Spec } k[t, t^{-1}].$
- 2. $\mathbb{G}_a := \operatorname{Spec} k[x]$.
- 3. $GL_n := \operatorname{Spec} k[x_{i,j}, \det^{-1}]_{1 < i,j < n}$.

设 G 作用在概型 X 上,T 是另一个概型, $f:T\to X$ 是一个 T 值点,那么我们有映射 $G\times_S T \xrightarrow{\mathrm{id}_G\times f} G\times_S X \xrightarrow{\sigma} X$,进而可以定义

$$\psi_f^G: G \times_S T \to G \times_S T$$

为 $(\sigma \circ (\mathrm{id}_G \times f), p_2)$,简记为 ψ_f . 我们称 ψ_f 的像为 f 的轨道 (orbit) ,记为 o(f). 另一方面, $X \times_S T$ 是 T 上的概型,于是我们自然地有截面

$$(f, \mathrm{id}_T): X \times_S T \to T.$$

我们定义 S(f) 为纤维积

$$S(f) \xrightarrow{\qquad} T$$

$$\downarrow \qquad \qquad \downarrow^{(f, \mathrm{id}_T)}$$

$$G \times_S T \xrightarrow{\psi_f} X \times_S T,$$

这是 G 的子群.

定义. 给定 **Sch**_S 中的群作用 $\sigma: G \times_S X \to X$,若存在 S 上的态射 $\varphi: X \to Y$ 满足

1. 有交换图:

$$G \times_S X \xrightarrow{\sigma} X \qquad \qquad \downarrow^{\varphi} \\ X \xrightarrow{\varphi} Y,$$

2. Y 在上图意义下具有泛性质,即若有 S 上的概型 Z 和态射 $\phi: X \to Z$ 满足图

$$G \times_S X \xrightarrow{\sigma} X$$

$$\downarrow^{p_2} \qquad \qquad \downarrow^{\phi}$$

$$X \xrightarrow{\phi} Z,$$

交换,则存在唯一的态射 $\chi: Y \to Z$ 使得 $\phi = \chi \circ \varphi$,

那么称 $Y \in G$ 作用在 X 上的一个范畴商 (categorical quotient).

换言之, G 作用在 X 上的范畴商是作用映射和投影映射的推出.

定义. 给定 \mathbf{Sch}_S 中的群作用 $\sigma: G \times_S X \to X$,若存在 S 上的态射 $\varphi: X \to Y$ 满足

1. 有交换图:

$$G \times_S X \xrightarrow{\sigma} X$$

$$\downarrow^{p_2} \qquad \qquad \downarrow^{\varphi}$$

$$X \xrightarrow{\varphi} Y,$$

 $2. \varphi$ 是满态射,且

$$\Psi = (\sigma, p_2) : G \times_S X \to X \times_S X$$

的像是 $X \times_{Y} X$,

- 3. φ 是拓扑商, 也就是说, $U \subseteq Y$ 是开集当且仅当 $\varphi^{-1}(U) \subseteq X$ 是开集,
- 4. Y 的结构层 \mathcal{O}_Y 是 $\varphi_*\mathcal{O}_X$ 的包含不变函数的子层,即对于 $f \in \Gamma(U, \varphi_*\mathcal{O}_X) = \Gamma(\varphi^{-1}(U), \mathcal{O}_X)$ 是 $\Gamma(U, \mathcal{O}_Y)$ 的元素当且仅当下图交换

$$G \times_S \varphi^{-1}(U) \xrightarrow{\sigma} \varphi^{-1}(U)$$

$$\downarrow^{p_2} \qquad \qquad \downarrow^F$$

$$\varphi^{-1}(U) \xrightarrow{F} \mathbb{A}^1,$$

其中 F 是 f 对应的态射,

那么称 $Y \in G$ 作用在 X 上的一个几何商 (geometric quotient).

定义. 给定 **Sch**_S 中的群作用 $\sigma: G \times_S X \to X$ 和作用的范畴/几何商 $\varphi: X \to Y$,若对任意 $f: Y' \to Y$,下面的纤维积

$$\begin{array}{ccc} X \times_Y Y' & \longrightarrow & Y' \\ \downarrow^{f'} & & & \downarrow^f \\ X & \stackrel{\varphi}{\longrightarrow} & Y \end{array}$$

都使 f' 是一个范畴/几何商,则称 Y 是万有范畴/几何商 (universal - quotient). 若以上只对平坦 (flat) 的成立,则称 Y 是一致范畴/几何商 (uniform - quotient)

命题 2.1. 设 $\varphi: X \to Y$ 是 G 作用在 X 上的几何商, 那么 $\varphi: X \to Y$ 也是范畴商.

命题 2.2. 设 X,Y 都是 S 上的不可约、正规、Noetherian 概型, $\varphi: X \to Y$ 是有限型的、dominating 态射, Y 中 generic point 的剩余域是特征 0 的,

3 可约 (reductive) 代数群

定义. 设 G 是代数群, 一个 G 的表示 (representation) 就是一个态射 $\rho: G \to GL_n$, 且满足如下交换图

A 附录: 点函子 5

其中 μ 是 G 中的乘法, m 是 GL_n 中的乘法.

假设 G 是线性代数群, $S:=\Gamma(G,\mathcal{O}_X)$,那么群乘法自然诱导了一个环同态 $\hat{\mu}:S\to S\otimes_k S$,单位态射诱导了 $\hat{i}:S\to k$,因此对任意一个 k 向量空间 V,我们可以定义 G 在 V 上的对偶作用为线性空间的同态

$$\hat{\sigma}: V \to S \otimes_k V$$
,

满足

$$\begin{array}{ccc} V & \stackrel{\hat{\sigma}}{-----} S \otimes_k V \\ \downarrow \hat{\sigma} & & \downarrow \hat{\mu} \otimes \mathrm{id}_V \\ S \otimes_k V & \stackrel{\mathrm{id}_S \otimes \hat{\sigma}}{-----} S \otimes_k S \otimes_k V \end{array}$$

和

$$V \xrightarrow{\hat{\sigma}} S \otimes_k V \xrightarrow{\hat{\imath} \otimes \mathrm{id}_V} V$$

定义. 设 G 是代数群, $\hat{\sigma}$ 是 G 在 V 上的对偶作用,若 V 的子空间 W 满足 $\hat{\sigma}(W) \subseteq S \otimes_k W$,则称 W 是 V 的不变子空间 (invariant subspace).

引理 3.1. 设 G 是代数群, $\hat{\sigma}$ 是 G 在 V 上的对偶作用, 那么 V 是自己有限维不变子空间的并 (逆极限).

定义. 设 G 是代数群, 若它的 radical 是一个环 (torus), 那么称 G 是 reductive 的.

定理 3.1. 设 X 是 k 上的仿射概形,G 是可约代数群,且 $\sigma: G \times_k X \to X$ 是 G 在 X 上的作用. 那么作用 存在一致范畴商 (Y,φ) ,且 φ 是 universially submersive,且 Y 是仿射概形. 若 X 还是代数的,那么 Y 也 是 k 上代数的.

A 附录: 点函子

这种观点来自于 Grothendieck.

首先我们证明

定义. 设 $X \in S$ 上的概型,则 X 的一个 T 点是一个态射 $f: T \to X$ 满足交换图

我们考虑如下的例子: $X = \operatorname{Spec} \mathbb{R}[x]/(x^2+1)$,由于 $\mathbb{R}[x]/(x^2+1) \cong \mathbb{C}$ 是个域,故该概形只有一个点,但是如果考虑 $X_{\mathbb{C}} = \operatorname{Spec} \mathbb{C}[x]/(x^2+1) = \operatorname{Spec}(\mathbb{C}[x]/(x+i) \times \mathbb{C}[x]/(x-i))$. 注意到 X 不是一个 \mathbb{R} 点(因为若有环同态 $\varphi: \mathbb{R}[x]/(x^2+1) \to \mathbb{R}$,那么 $\varphi(x) \in \mathbb{R}$ 满足 $0 = \varphi(x^2+1) = \varphi(x)^2+1)$,这很容易理解——在这个点上的层不是 \mathbb{R} . 对于一个概型,即便它是定义在

命题 A.1. 设 (X, \mathcal{O}_X) 是概型,则任取一点 $x \in X$,存在概型 (T, \mathcal{O}_T) 和态射 $f: T \to X$ 满足 x = f(T).

A 附录: 点函子 6

引理 A.1. 任意给定概型 X 和局部环 (R, \mathfrak{m}) , 那么我们有集合的一一对应

{概型间的态射 $f: \operatorname{Spec} R \to X$ } $\rightleftarrows \{X$ 中的点x和局部环的局部同态 $\varphi: \mathcal{O}_{X,x} \to R\}$.

我们考虑复合函子

$$\mathbf{Sch}_S \to \mathrm{Fun}(\mathbf{Sch}_S^{\circ}, \mathbf{Set}) \to \mathrm{Fun}(\mathbf{Ring}, \mathbf{Set}),$$

其中第一个是 Yoneda 嵌入,第二个函子是 Fun(Spec -, **Set**). 第一个函子显然是满忠实的,但第二个函子不是的. 考虑 $hom_{\mathbf{Sch}_S}(\mathrm{Spec}\ -, \mathbb{P}_S^n)$ 和 $hom_{\mathbf{Sch}_S}(\mathrm{Spec}\ -, \mathbb{P}_S^n)$ 两个函子,它们都是映到空集的常值函子(从仿射概型到射影),但他们间有非平凡的态射诱导的自然变换. 问题在于它们的复合是满忠实的