See discussions, stats, and author profiles for this publication at: https://www.researchgate.net/publication/245842016

DE''s selection rule for multiobjective optimization

Article · January 2001		
CITATIONS	READS	
35	108	
1 author:		

SEE PROFILE

Lappeenranta University of Technology Department of Information Technology Laboratory of Information Processing **DE's Selection Rule for Multiobjective Optimization** Jouni Lampinen Lappeenranta 2001

Symbols and Abbreviations

X	Individual vector, member of the current population.
U	Trial vector.
i	Index referring to an individual vector into population.
G	Generation index, current generation.
f, f_k	Objective function to be minimized.
1	The number of objective functions.
k	Index pointing to an individual objective function.
g, g_j	Constraint function
m	The number of constraint functions
j	Index pointing to an individual constraint function

DE's original selection scheme

The population for the next generation, P_{G+1} , is selected from the current population, P_G , and the child population, according to the following rule:

$$X_{i,G+1} = \begin{cases} U_{i,G+1} & \text{if} \quad f(U_{i,G+1}) \le f(X_{i,G}) \\ X_{i,G} & \text{otherwise} \end{cases}.$$

Multiobjective selection scheme

Multiobjective selection scheme can be implemented on the basis of the Pareto optimization concept:

$$X_{i,G+1} = \begin{cases} U_{i,G+1} & \text{if } \forall k \in \{1,...,l\} \colon f_k(U_{i,G+1}) \leq f_k(X_{i,G}) \\ X_{i,G} & \text{otherwise} \end{cases},$$

where a trial vector will be selected if it is weakly effective in comparison with the corresponding current population member.

The constraint functions can be handled with the following selection rule:

$$X_{i,G+1} = \begin{cases} U_{i,G+1} & \text{if } \begin{cases} \left(\!\! \left(\forall j \in \{1, \ldots, m\} \colon g_j(U_{i,G+1}) \leq 0 \land g_j(X_{i,G}) \leq 0 \right) \land \left(\forall k \in \{1, \ldots, l\} \colon f_k(U_{i,G+1}) \leq f_k(X_{i,G}) \right) \right) \\ \vee \left(\!\! \left(\forall j \in \{1, \ldots, m\} \colon g_j(U_{i,G+1}) \leq 0 \right) \land \left(\exists j \in \{1, \ldots, m\} \colon g_j(X_{i,G}) > 0 \right) \right) \\ \vee \left(\!\! \left(\exists j \in \{1, \ldots, m\} \colon g_j(U_{i,G+1}) > 0 \right) \land \left(\forall j \in \{1, \ldots, m\} \colon \max \left(g_j(U_{i,G+1}) , 0 \right) \leq \max \left(g_j(X_{i,G}) , 0 \right) \right) \right) \\ X_{i,G} & \text{otherwise} \end{cases}$$

Start comparing vectors $U_{i,G+1}$ and $X_{i,G}$ 1) Objective and constraint function values for $X_{i,G}$ are kept stored in the program 1) Evaluate j:th constrain function, $g_j(U_{i,G+1})$. variables in order to avoid unnecessary 2) 2) After finding $U_{i,G+1}$ violating any of the constraints more than X_{iG} , U_{iG+1} j = j + 1can be rejected immediately, without Does $U_{i,G+1}$ violate evaluating the remaining constraint function values at all. more than XiG YES Last constraint? YES 3) 3) If the current population member, $X_{i,G}$, satisfies all the constraints, trial $U_{i,G+1}$ is also feasible here, since it does not violate any of the constraints more than $X_{i,G}$. Does $X_{i,G}$ satisfy YES k = 14) Objective functions needs to be evaluated Evaluate k:th objective for the trial $U_{i,G+1}$ only in case that both $U_{i,G+1}$ and $X_{i,G}$ have been found feasible. function, $f_k(U_{i,G+1})$ $f_k(X_{i,G})$ NO 5) Constraint function values for the trial Select vector $X_{i,G}$, YES Select vector U_{i,G+1} $U_{i,G+1}$ will be stored in the program the current population variables. The objective function value is computed and stored only in case that $U_{i,G+1}$ is a feasible solution. For an the trial vector in feasible $U_{i,G+1}$ the objective function value is not computed, since it is not needed later on for the comparisons either in case of an infeasible $U_{i,G+1}$ or $X_{i,G}$. See note 3).