# Learning Image Relations with Contrast Association Networks

Yao Lu, Zhirong Yang, Juho Kannala, Samuel Kaski

Aalto University

# Problem



# Stereo Matching



# **Optical Flow**







# Learning Relations

$$z = F(x, y)$$

# Learning Relations

$$z = F(x, y)$$



$$\mathbf{a} = f(\mathbf{x}), \quad \mathbf{h} = R(\mathbf{a}, \mathbf{b}),$$
  
 $\mathbf{b} = f(\mathbf{y}), \quad \mathbf{z} = g(\mathbf{h}),$  (1)

# Learning Relations

$$\mathbf{h} = R(\mathbf{a}, \mathbf{b})$$

**Concatenation Units** 

$$h = [a \ b]$$

Bilinear Units

$$h_k = \sum_{ij} W_{ijk} a_i b_j = \mathbf{a}^T \mathbf{W}_k \mathbf{b},$$

$$\mathbf{a} = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_1 = (2, 3, 4, 5, 1),$$

$$\mathbf{b}_2 = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_3 = (5, 1, 2, 3, 4),$$

$$\mathbf{a} = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_1 = (2, 3, 4, 5, 1),$$

$$\mathbf{b}_2 = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_3 = (5, 1, 2, 3, 4),$$

Unknown  $\mathbf{b}$ , which ones in  $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$  is  $\mathbf{b}$ ?

$$\begin{aligned} \mathbf{a} &= (1,2,3,4,5), \\ \mathbf{b}_1 &= (2,3,4,5,1), \\ \mathbf{b}_2 &= (1,2,3,4,5), \\ \mathbf{b}_3 &= (5,1,2,3,4), \end{aligned}$$

$$\mathbf{a} = (1, 2, 3, 4, 5),$$
  
 $\mathbf{b}_1 = (2, 3, 4, 5, 1),$   
 $\mathbf{b}_2 = (1, 2, 3, 4, 5),$   
 $\mathbf{b}_3 = (5, 1, 2, 3, 4),$ 

$$h_k = \sum_{ii} W_{ijk} a_i b_j = \mathbf{a}^T \mathbf{W}_k \mathbf{b}$$

$$\mathbf{a} = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_1 = (2, 3, 4, 5, 1),$$

$$\mathbf{b}_2 = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_3 = (5, 1, 2, 3, 4),$$

$$h_k = \sum_{ij} W_{ijk} a_i b_j = \mathbf{a}^T \mathbf{W}_k \mathbf{b}$$

$$\underbrace{\begin{bmatrix} 0 & 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}}_{\boldsymbol{W}_1}, \underbrace{\begin{bmatrix} 1 & 0 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}}_{\boldsymbol{W}_2}, \underbrace{\begin{bmatrix} 0 & 1 & 0 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 & 1 \\ 1 & 0 & 0 & 0 & 0 & 0 \end{bmatrix}}_{\boldsymbol{W}_3}$$

$$\mathbf{a} = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_1 = (2, 3, 4, 5, 6),$$

$$\mathbf{b}_2 = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_3 = (0, 1, 2, 3, 4),$$

Unknown  $\mathbf{b}$ , which ones in  $\{\mathbf{b}_1,\mathbf{b}_2,\mathbf{b}_3\}$  is  $\mathbf{b}$ ?

$$\begin{aligned} \mathbf{a} &= (1,2,3,4,5), \\ \mathbf{b}_1 &= (2,3,4,5,6), \\ \mathbf{b}_2 &= (1,2,3,4,5), \\ \mathbf{b}_3 &= (0,1,2,3,4), \end{aligned}$$

$$\mathbf{a} = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_1 = (2, 3, 4, 5, 6),$$

$$\mathbf{b}_2 = (1, 2, 3, 4, 5),$$

$$\mathbf{b}_3 = (0, 1, 2, 3, 4),$$

Unknown **b**, which ones in  $\{\mathbf{b}_1, \mathbf{b}_2, \mathbf{b}_3\}$  is **b**? Shift **a** and compute  $\tilde{\mathbf{a}} \cdot \mathbf{b}!$ 

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

$$\begin{bmatrix} 0 & 0 & 0 & 0 & 0 \\ 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \end{bmatrix}, \begin{bmatrix} 1 & 0 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \end{bmatrix}, \begin{bmatrix} 0 & 1 & 0 & 0 & 0 \\ 0 & 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 0 & 1 \\ 0 & 0 & 0 & 0 & 0 \end{bmatrix}$$

 $\widetilde{\mathsf{w}}$ 

#### Contrast Association Units

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

#### Contrast Association Units

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

#### Competition

$$h_k' = \frac{e^{-h_k}}{\sum_i e^{-h_i}}$$

# Low-rank Approximation

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

# Low-rank Approximation

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \geq 0$$

- 1.  $\mathbf{W}_k = \mathbf{u}_k \mathbf{v}_k^T$
- 2.  $\mathbf{h}^* = \frac{1}{2} \Big[ (\mathbf{V1}) \circ \mathbf{U(a)}^2 + (\mathbf{U1}) \circ \mathbf{V(b)}^2 \Big] (\mathbf{Ua}) \circ (\mathbf{Vb})$
- 3. Pooling over h\*

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \geq 0$$

Projected gradient

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \geq 0$$

- Projected gradient
- ▶ Parametrization  $w(s) = \frac{1}{1 + \exp(-s)}$  or  $w(s) = \log(1 + \exp(s))$

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

- Projected gradient
- ▶ Parametrization  $w(s) = \frac{1}{1 + \exp(-s)}$  or  $w(s) = \log(1 + \exp(s))$
- Multiplicative update

$$\frac{\partial E}{\partial \mathbf{W}} = \nabla^+ - \nabla^-$$

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

- Projected gradient
- ▶ Parametrization  $w(s) = \frac{1}{1 + \exp(-s)}$  or  $w(s) = \log(1 + \exp(s))$
- Multiplicative update

$$\frac{\partial E}{\partial \mathbf{W}} = \nabla^+ - \nabla^-$$

$$\begin{split} \nabla^{+} &= \frac{1}{2} \left( \mathsf{abs} \left( \frac{\partial E}{\partial \mathbf{W}} \right) + \frac{\partial E}{\partial \mathbf{W}} \right) + \epsilon \\ \nabla^{-} &= \frac{1}{2} \left( \mathsf{abs} \left( \frac{\partial E}{\partial \mathbf{W}} \right) - \frac{\partial E}{\partial \mathbf{W}} \right) + \epsilon \end{split}$$

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \geq 0$$

- Projected gradient
- ▶ Parametrization  $w(s) = \frac{1}{1 + \exp(-s)}$  or  $w(s) = \log(1 + \exp(s))$
- Multiplicative update

$$\frac{\partial E}{\partial \mathbf{W}} = \nabla^+ - \nabla^-$$

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

- Projected gradient
- ▶ Parametrization  $w(s) = \frac{1}{1 + \exp(-s)}$  or  $w(s) = \log(1 + \exp(s))$
- Multiplicative update

$$\frac{\partial E}{\partial \mathbf{W}} = \nabla^+ - \nabla^-$$

$$\mathbf{W} \leftarrow \mathbf{W} \circ \left( rac{
abla^-}{
abla^+} 
ight)^\eta$$

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

$$\mathbf{W} \leftarrow \mathbf{W} \circ \left( rac{
abla^-}{
abla^+} 
ight)^\eta$$

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

$$\mathbf{W} \leftarrow \mathbf{W} \circ \left( rac{
abla^-}{
abla^+} 
ight)^\eta$$

$$\frac{\partial E}{\partial \mathbf{W}} = (3, -2)$$
$$= (3 + \epsilon, \epsilon) - (\epsilon, 2 + \epsilon)$$

$$h_k = \sum_{ij} W_{ijk} (a_i - b_j)^2, \quad W_{ijk} \ge 0$$

$$\mathbf{W} \leftarrow \mathbf{W} \circ \left( rac{
abla^-}{
abla^+} 
ight)^\eta$$

$$\frac{\partial E}{\partial \mathbf{W}} = (3, -2)$$
$$= (3 + \epsilon, \epsilon) - (\epsilon, 2 + \epsilon)$$

$$\frac{\nabla^-}{\nabla^+} = (\frac{\epsilon}{3+\epsilon}, \frac{2+\epsilon}{\epsilon})$$

Very sparse solution!

## **Experiments**

 $\mathbf{p}' = \mathbf{H}\mathbf{p}$  with homography matrix

## **Experiments**

 $\mathbf{p}' = \mathbf{H}\mathbf{p}$  with homography matrix



| CTN              | BLN              | CAN              |
|------------------|------------------|------------------|
| Concat           | Bilinear*, 1200  | CAU*, 1200       |
| Linear, 1200     | Sum-Pooling, 300 | Sum-Pooling, 300 |
| PReLU            | $I_2$ Norm       | Softmin          |
| Linear, 300      | Linear, 100      | Linear, 100      |
| PReLU            | PReLU            | PReLU            |
| Linear, 100      | Linear, 100      | Linear, 100      |
| PReLU            | PReLU            | PReLU            |
| Linear, 100      | Linear, $dim(z)$ | Linear, $dim(z)$ |
| PReLU            |                  |                  |
| Linear, $dim(z)$ |                  |                  |

| lask        | CIN   | BLN   | CAN   |  |
|-------------|-------|-------|-------|--|
| Translation | 0.773 | 1.893 | 0.049 |  |
| Rotation    | 9.854 | 5.925 | 3.518 |  |
| Scaling     | 0.018 | 0.025 | 0.017 |  |
| Affine      | 0.014 | 0.020 | 0.010 |  |

Projective **0.030** 0.032 **0.030** 

#### Conclusion

- CNN is a hierarchical template matcher for representing appearance
- Special purpose neurons for representing relations

#### Puzzle



Why we still need hand-crafted features for motion?