HW3

Sam Olson

Outline

- Q1: g2g
- Q2: g2g
- Q3: part c) ending a bit wonky
- Q4: g2g
- Q5: wonky with \propto usage

1.

Suppose X_1, \ldots, X_n are iid Bernoulli(p), 0 .

a)

Find the information number $I_n(p)$ and make a rough sketch of $I_n(p)$ as a function of $p \in (0,1)$. Given that X_1, \ldots, X_n are i.i.d. Bernoulli(p), the likelihood function is:

$$L(p) = \prod_{i=1}^{n} p^{X_i} (1-p)^{1-X_i}$$

Taking the log-likelihood,

$$log(L(p)) = \sum_{i=1}^{n} [X_i \log p + (1 - X_i) \log(1 - p)]$$

The first derivative is:

$$log(L(p))' = \sum_{i=1}^{n} \left[\frac{X_i}{p} - \frac{1 - X_i}{1 - p} \right] = \sum_{i=1}^{n} \frac{X_i - p}{p(1 - p)}$$

The Fisher information is:

$$I_n(p) = -E \left[log(L((p))'') \right]$$

Computing the second derivative:

$$log(L(p))'' = \sum_{i=1}^{n} \left[-\frac{X_i}{p^2} - \frac{1 - X_i}{(1 - p)^2} \right]$$

Taking expectation:

$$E[log(L(p))''] = \sum_{i=1}^{n} \left[-\frac{E[X_i]}{p^2} - \frac{E[1-X_i]}{(1-p)^2} \right]$$

Given we know the distribution of the random variables, we know $E[X_i] = p$ and $E[1 - X_i] = 1 - p$. This allows us to simplify the expression:

$$E[log(L(p))''] = \sum_{i=1}^{n} \left[-\frac{p}{p^2} - \frac{1-p}{(1-p)^2} \right] = \sum_{i=1}^{n} \left[-\frac{1}{p} - \frac{1}{1-p} \right] = -n \left[\frac{1}{p} + \frac{1}{1-p} \right]$$

Noting linearity of Fisher information:

$$I_n(p) = n \left[\frac{1}{p} + \frac{1}{1-p} \right]$$

Sketch

```
# functional form
fisher_info <- function(p, n) {
    return(n * (1/p + 1/(1 - p)))
}

# setup
p_values <- seq(0.01, 0.99, length.out = 100)
n <- 1
I_values <- fisher_info(p_values, n)

# plot
plot(x = p_values,
    y = I_values,
    type = "l",
    col = "black", lwd = 2,
    xlab = "p", ylab = "Fisher Information",
    main = "Fisher Information for Bernoulli(p)")
abline(v = 0.5, lty = 2, col = "gray")</pre>
```

Fisher Information for Bernoulli(p)

b)

Find the value of $p \in (0,1)$ for which $I_n(p)$ is minimal. (This value of p corresponds to the "hardest" case for estimating p. That is, when data are generated under this value of p from the model, the variance of an UE of p is potentially largest.)

To find the value of p that minimizes the Fisher information $I_n(p)$, we use the functional form of the Fisher Information:

$$I_n(p) = n \left[\frac{1}{p} + \frac{1}{1-p} \right]$$

Differentiating $I_n(p)$ with respect to p, and setting equal to zero:

$$I_n(p)' = n\left[-\frac{1}{p^2} + \frac{1}{(1-p)^2}\right] = -\frac{1}{p^2} + \frac{1}{(1-p)^2} = 0$$

This gives us the expression:

$$\frac{1}{p^2} = \frac{1}{(1-p)^2}$$

Taking square roots:

$$\frac{1}{p} = \frac{1}{1-p} \to p = 1 - p \to p = \frac{1}{2}$$

To ensure this is a maximum, we also check whether the second derivative is positive (since we are minimizing and not maximizing) at $\frac{1}{2}$:

$$I_n(p)' = n \left[\frac{2}{p^3} + \frac{2}{(1-p)^3} \right]$$

$$I_n \left(\frac{1}{2} \right)'' = n \left[\frac{2}{(1/2)^3} + \frac{2}{(1/2)^3} \right] = n \left[\frac{2}{1/8} + \frac{2}{1/8} \right] = n \left[16 + 16 \right] = 32n > 0$$

So this is in fact a minimum, hence the Fisher information is minimized at:

$$p = \frac{1}{2}$$

c)

Show that $\hat{X}_n = \sum_{i=1}^n X_i/n$ is the UMVUE of p.

Note to self: Uniformly Minimum Variance Unbiased Estimator (UMVUE)

We start by checking if \hat{X}_n is an unbiased estimator of p:

$$E[\hat{X}_n] = E\left[\frac{1}{n}\sum_{i=1}^n X_i\right] = \frac{1}{n}\sum_{i=1}^n E[X_i]E[\hat{X}_n] = \frac{1}{n} \cdot np = p$$

$$Bias(\bar{X}_n) = E[\hat{X}_n] - E[X] = p - p = 0$$

So \hat{X}_n is an unbiased estimator of p.

Now as far as the "Uniformly Minimum Variance" part of the question:

Note again the Fisher Information formula we've found:

$$I_n(p) = \frac{np}{p^2} + \frac{n(1-p)}{(1-p)^2} = \frac{n}{p(1-p)}$$

By the definition, the Cramér-Rao Lower Bound, for any unbiased estimator T of p:

$$\operatorname{Var}_p(T) \ge \frac{(\gamma'(p))^2}{I_n(p)}$$

Here, we are estimating $\gamma(p) = p$, so $\gamma'(p) = 1$. Therefore:

$$\operatorname{Var}_p(T) \ge \frac{1^2}{I_n(p)} = \frac{p(1-p)}{n}$$

We compute the variance of $\hat{X}_n = S_n/n$:

$$E[\hat{X}_n] = E\left[\frac{S_n}{n}\right] = \frac{1}{n}E[S_n] = \frac{np}{n} = p$$

$$\operatorname{Var}(\hat{X}_n) = \operatorname{Var}\left(\frac{S_n}{n}\right) = \frac{1}{n^2} \operatorname{Var}(S_n)$$

Since $S_n \sim \text{Binomial}(n, p)$, we know:

$$Var(S_n) = np(1-p)$$

Thus:

$$\operatorname{Var}(\hat{X}_n) = \frac{np(1-p)}{n^2} = \frac{p(1-p)}{n}$$

Comparing with the CRLB:

$$\operatorname{Var}(\hat{X}_n) = \frac{p(1-p)}{n} = \frac{1}{I_n(p)}$$

Since \hat{X}_n attains the bound, it is an efficient estimator.

Since \hat{X}_n is unbiased and attains the CRLB, it is the UMVUE.

2.

Suppose that the random variables Y_1, \ldots, Y_n satisfy

$$Y_i = \beta x_i + \varepsilon_i, \quad i = 1, \dots, n$$

where x_1, \ldots, x_n are fixed constants and $\varepsilon_1, \ldots, \varepsilon_n$ are iid $N(0, \sigma^2)$; here we assume $\sigma^2 > 0$ is known.

a)

Find the MLE of β .

To find the Maximum Likelihood Estimator (MLE) of β , we first write the likelihood function.

Since $Y_i = \beta x_i + \varepsilon_i$ with $\varepsilon_i \sim N(0, \sigma^2)$, we have:

$$Y_i \sim N(\beta x_i, \sigma^2)$$

Thus, the joint density function of Y_1, \ldots, Y_n is:

$$L(\beta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(Y_i - \beta x_i)^2}{2\sigma^2}\right)$$

Taking the log-likelihood:

$$log(L(\beta)) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2}\sum_{i=1}^{n}(Y_i - \beta x_i)^2$$

To find the MLE of β , we take the derivative with respect to β and set to zero:

$$\frac{d}{d\beta}log(L(\beta)) = -\frac{1}{2\sigma^2} \cdot (-2) \sum_{i=1}^n x_i (Y_i - \beta x_i) = \frac{1}{\sigma^2} \sum_{i=1}^n x_i (Y_i - \beta x_i) \to \sum_{i=1}^n x_i Y_i - \beta \sum_{i=1}^n x_i^2 = 0$$

Solving for β , we get our MLE of β as::

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}$$

To ensure this is a maximum, we take the second derivative and see if it is negative:

$$log(L(\beta))'' = -\sum_{i=1}^{n} x_i^2 < 0$$

So this is in fact the maximum.

b)

Find the distribution of the MLE.

From part a), the MLE of β is:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i Y_i}{\sum_{i=1}^{n} x_i^2}$$

To determine the distribution of $\hat{\beta}$, determine its expectation and variance, noting that since $\hat{\beta}$ is a linear combination of the normal random variables ε_i , it follows that $\hat{\beta}$ itself is normally distributed.

That being said, given $Y_i = \beta x_i + \epsilon_i$, we may write:

$$\hat{\beta} = \frac{\sum_{i=1}^{n} x_i (\beta x_i + \varepsilon_i)}{\sum_{i=1}^{n} x_i^2} = \frac{\beta \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} x_i \varepsilon_i}{\sum_{i=1}^{n} x_i^2}$$

Taking the expectation, noting our data is treated as "fixed", we may write:

$$E[\hat{\beta}] = \frac{\beta \sum_{i=1}^{n} x_i^2 + \sum_{i=1}^{n} x_i E[\varepsilon_i]}{\sum_{i=1}^{n} x_i^2} = \frac{\beta \sum_{i=1}^{n} x_i^2}{\sum_{i=1}^{n} x_i^2} = \beta$$

Noting $E[\varepsilon_i] = 0$

Because $E[\hat{\beta}] = \beta$, it has zero bias and $\hat{\beta}$ is an unbiased estimator of β . Not needed for the distribution, but will need this note for later.

Let us then analyze the variance. We start again with definitions:

$$\operatorname{Var}(\hat{\beta}) = \operatorname{Var}(\beta + \frac{\sum_{i=1}^{n} x_{i} \varepsilon_{i}}{\sum_{i=1}^{n} x_{i}^{2}}) = \operatorname{Var}(\beta) + \operatorname{Var}(\frac{\sum_{i=1}^{n} x_{i} \varepsilon_{i}}{\sum_{i=1}^{n} x_{i}^{2}})$$

Simplifying:

$$\operatorname{Var}(\hat{\beta}) = \operatorname{Var}\left(\frac{\sum_{i=1}^{n} x_i \varepsilon_i}{\sum_{i=1}^{n} x_i^2}\right) = \operatorname{Var}\left(\sum_{i=1}^{n} \frac{(x_i^2 \sigma^2)}{(x_i^2)^2}\right) = \frac{\sigma^2}{\sum_{i=1}^{n} x_i^2}$$

We thus conclude:

$$\hat{\beta} \sim N\left(\beta, \frac{\sigma^2}{\sum_{i=1}^n x_i^2}\right)$$

c)

Find the CRLB for estimating β . (Hint: you'll have to work with the joint distribution $f(y_1, \ldots, y_n | \beta)$ directly, since Y_1, \ldots, Y_n are not iid.)

To find the CRLB, we first calculate the Fisher information.

Note the joint density:

$$f(Y_1, \dots, Y_n | \beta) = \prod_{i=1}^n \frac{1}{\sqrt{2\pi\sigma^2}} \exp\left(-\frac{(Y_i - \beta x_i)^2}{2\sigma^2}\right)$$

Taking the log-likelihood:

$$log(L(\beta)) = -\frac{n}{2}\log(2\pi\sigma^2) - \frac{1}{2\sigma^2} \sum_{i=1}^{n} (Y_i - \beta x_i)^2$$

We take the derivative:

$$log(L(\beta))' = -\frac{1}{2\sigma^2} \cdot (-2) \sum_{i=1}^n x_i (Y_i - \beta x_i) = \frac{1}{\sigma^2} \sum_{i=1}^n x_i (Y_i - \beta x_i)$$

The Fisher information is then:

$$I(\beta) = -E[\log(L(\beta))''] = -E\left[-\frac{1}{\sigma^2} \sum_{i=1}^n x_i^2\right] = \frac{1}{\sigma^2} \sum_{i=1}^n x_i^2$$

We then have what we need to calculate the CRLB using the information we've gathered.

The CRLB is:

$$\frac{1}{I(\beta)} = \frac{1}{\frac{1}{\sigma^2} \sum_{i=1}^n x_i^2} = \frac{\sigma^2}{\sum_{i=1}^n x_i^2}$$

d)

Show the MLE is the UMVUE of β .

Now we just need to compare the variance of our MLE of β to the value calculated in part c). To that end: We have already calculated the expectation of $\hat{\beta}_{MLE}$, which is β , so via Bias calculation:

$$Bias(\hat{\beta}_{MLE}) = E[\hat{\beta}_{MLE}] - \beta = \beta - \beta = 0$$

Hence it is unbiased. We then just need to determine if our MLE attains the CRLB. If so, then the MLE is the UMVUE.

Recall the variance of the MLE:

$$\frac{\sigma^2}{\sum_{i=1}^n x_i^2}$$

And the CRLB:

$$\frac{\sigma^2}{\sum_{i=1}^n x_i^2}$$

These are one and the same! So we do indeed satisfy:

$$Var(\hat{\beta}_{MLE}) = CRLB$$

Such that the MLE is the UMVUE.

3.

Suppose X_1, \ldots, X_n are iid normal N(0,1), where $\theta \in \mathbb{R}$. It turns out that $T = (\bar{X}_n)^2 - n^{-1}$ is the UMVUE of $\gamma(\theta) = \theta^2$. (We can show this later in the course; our goal here is to show that the UMVUE can exist without obtaining the CRLB.)

a)

Show T is an UE of $\gamma(\theta)=\theta^2$ and find the variance $\operatorname{Var}_{\theta}(T)$ of T. (Note $Z=\sqrt{n}(\bar{X}_n-\theta)\sim N(0,1)$ and one can write $T=(Z^2/n)+(2\theta Z/\sqrt{n})+\theta^2-n^{-1}$, where $Z^2\sim\chi_1^2,\,E_{\theta}Z^2=1,\,\operatorname{Var}_{\theta}(Z^2)=2$.)

Given:

$$Z = \sqrt{n}(\bar{X}_n - \theta) \sim N(0, 1)$$

we can rewrite T in terms of Z, specifically:

$$T = \frac{Z^2}{n} + \frac{2\theta Z}{\sqrt{n}} + \theta^2 - \frac{1}{n}$$

Taking expectation:

$$E_{\theta}[T] = E_{\theta} \left[\frac{Z^2}{n} + \frac{2\theta Z}{\sqrt{n}} + \theta^2 - \frac{1}{n} \right] = \frac{1}{n} + \frac{2\theta}{\sqrt{n}}(0) + \theta^2 - \frac{1}{n} = \theta^2$$

Thus, T is an unbiased estimator of θ^2 .

We then must calculate the variance of T, to that end, we find $E[T^2]$:

As defined:

$$T^2 = \left(\frac{Z^2}{n} + \frac{2\theta Z}{\sqrt{n}} + \theta^2 - \frac{1}{n}\right)^2 = \frac{Z^4}{n^2} + \frac{4\theta Z^3}{n^{3/2}} + \frac{4\theta^2 Z^2}{n} + \theta^4 + \frac{1}{n^2} + \frac{4\theta^3 Z}{\sqrt{n}} - \frac{2Z^2}{n^2} - \frac{4\theta Z}{n^{3/2}} - \frac{2\theta^2}{n^2}$$

Though that's quite a lot, we can actually simplify it quite a bit when taking expectation, noting the distribution of Z aids in these calculations

(Note: $E_{\theta}[Z] = 0$, $E_{\theta}[Z^2] = 1$, $E_{\theta}[Z^3] = 0$, and $E_{\theta}[Z^4] = \text{Var}(Z^2) + (E_{\theta}[Z^2])^2 = 2 + 1 = 3$.)

Thus,

$$E_{\theta}[T^2] = \frac{3}{n^2} + \frac{4\theta^2}{n} + \theta^4 - \frac{2}{n^2} - \frac{2\theta^2}{n} = \theta^4 + \frac{2\theta^2}{n} + \frac{1}{n^2}$$

Now we can calculate the variance:

$$\operatorname{Var}_{\theta}(T) = \left(\theta^4 + \frac{2\theta^2}{n} + \frac{1}{n^2}\right) - \theta^4 = \frac{2\theta^2}{n} + \frac{1}{n^2}$$

b)

Find the CRLB for an UE of $\gamma(\theta) = \theta^2$.

Since X_1, \ldots, X_n are i.i.d. normal $N(\theta, 1)$, the likelihood function is:

$$L(\theta) = \prod_{i=1}^{n} \frac{1}{\sqrt{2\pi}} \exp\left(-\frac{(X_i - \theta)^2}{2}\right)$$

Taking the log-likelihood:

$$log(L(\theta)) = -\frac{n}{2}\log(2\pi) - \frac{1}{2}\sum_{i=1}^{n}(X_i - \theta)^2$$

Differentiating with respect to θ , and getting expectation to derive the Fisher Information:

$$log(L(\theta))' = \sum_{i=1}^{n} (X_i - \theta) \to I(\theta) = -E[log(L(\theta))'] = -E\left[-\sum_{i=1}^{n} 1\right] = -(-n) = n$$

The CRLB by definition is given by:

$$\frac{(\gamma'(\theta))^2}{I(\theta)}$$

We just need now to calculate the numerator. To that end, note that $\gamma(\theta) = \theta^2$, making its derivative:

$$\gamma'(\theta) = 2\theta$$

Thus the CRLB is:

$$\frac{(\gamma'(\theta))^2}{n} = \frac{(2\theta)^2}{n} = \frac{4\theta^2}{n}$$

c)

Show that $Var_{\theta}(T) > CRLB$ for all values of $\theta \in \mathbb{R}$.

We are now tasked with comparing the variance of the UMVUE $T=(\bar{X}_n)^2-n^{-1}$ with the Cramér-Rao Lower Bound (CRLB) from part b). To that end note our prior results:

From part a):

$$\operatorname{Var}_{\theta}(T) = \frac{2\theta^2}{n} + \frac{1}{n^2}$$

From part b), the CRLB (for any unbiased estimator of θ^2) is:

$$CRLB = \frac{4\theta^2}{n}$$

Comparing these two quantities directly, their difference is given by:

$$Var_{\theta}(T) - CRLB = \left(\frac{2\theta^2}{n} + \frac{1}{n^2}\right) - \frac{4\theta^2}{n} = \frac{2\theta^2}{n} + \frac{1}{n^2} - \frac{4\theta^2}{n} = \frac{-2\theta^2}{n} + \frac{1}{n^2} = \frac{1}{n^2} - \frac{2\theta^2}{n}.$$

To establish whether $Var_{\theta}(T) > CRLB$ for all θ , we analyze the sign of:

$$\frac{1}{n^2} - \frac{2\theta^2}{n}.$$

Since n > 0, we can rewrite the inequality as:

$$\frac{1}{n^2} > \frac{2\theta^2}{n} \quad \Rightarrow \quad \frac{1}{n} > 2\theta^2.$$

Since $\theta^2 \ge 0$, this inequality only holds for sufficiently small $|\theta|$. In particular, if:

$$|\theta| > \frac{1}{\sqrt{2n}},$$

then the right-hand side of the expression exceeds the left-hand side, making the inequality false.

Thus, for sufficiently large $|\theta|$, we have:

$$Var_{\theta}(T) > CRLB.$$

For small $|\theta|$, equality can hold, but in general, for larger magnitudes of θ , the variance of T exceeds the CRLB.

Since there always exists a range of θ values where $Var_{\theta}(T) > CRLB$, we conclude that:

$$Var_{\theta}(T) \ge CRLB, \forall \theta \in \mathbb{R},$$

with strict inequality for sufficiently large $|\theta|$.

4. Casella & Berger 7.58

("better" here refers to MSE as a criterion.)

Let X be an observation from the pdf

$$f(x|\theta) = \left(\frac{\theta}{2}\right)^{|x|} (1-\theta)^{1-|x|}, \quad x = -1, 0, 1; \quad 0 \le \theta \le 1.$$

a)

Find the MLE of θ .

Given that X takes values in $\{-1,0,1\}$, it is discrete, so we note the pmf:

$$f(x|\theta) = \begin{cases} \left(\frac{\theta}{2}\right)^{|x|} (1-\theta)^{1-|x|} & x = -1, 0, 1\\ 0 & \text{otherwise} \end{cases}$$

For a sample X_1, X_2, \dots, X_n , the likelihood function is:

$$L(\theta) = \prod_{i=1}^{n} \left(\frac{\theta}{2}\right)^{|X_i|} (1 - \theta)^{1 - |X_i|}$$

Let $S_n = \sum_{i=1}^n |X_i|$. We may then rewrite the likelihood function as:

$$L(\theta) = \left(\frac{\theta}{2}\right)^{S_n} (1 - \theta)^{n - S_n}$$

Using our log-likelihood technique:

$$log(L(\theta)) = S_n \log \left(\frac{\theta}{2}\right) + (n - S_n) \log(1 - \theta) = S_n \log \theta - S_n \log 2 + (n - S_n) \log(1 - \theta) = S_n \log \theta + (n - S_n) \log(1 - \theta)$$

We find the maximum the typical route, i.e., taking the derivative with respect to θ and setting equal to zero:

$$log(L(\theta))' = \frac{S_n}{\theta} - \frac{n - S_n}{1 - \theta} = 0 \rightarrow \frac{S_n}{\theta} = \frac{n - S_n}{1 - \theta}$$

After some simplifying:

$$S_n(1-\theta) = (n-S_n)\theta \to S_n - S_n\theta = n\theta - S_n\theta \to S_n = n\theta$$

And we arrive at our "MLE" (in quotes because there's our second check to account for):

$$\hat{\theta} = \frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n |X_i|$$

To double check, we take the second derivative (at the MLE) and see if it is negative:

$$log(L(\theta))'' = -\frac{S_n}{\theta^2} - \frac{n - S_n}{(1 - \theta)^2}$$

$$log(L(\hat{\theta}))'' = -\frac{S_n n^2}{S_n^2} - \frac{(n - S_n)n^2}{(n - S_n)^2} = -\frac{n^2}{S_n} - \frac{n^2}{n - S_n} < 0$$

Noting: $S_n > 0$ and $n - S_n > 0$

So yes, this is our maximum and our MLE!

Jetzt zock' ich Fortnite und trink' Cola! Yipee!

b)

Define the estimator T(X) by

$$T(X) = \begin{cases} 2 & \text{if } x = 1\\ 0 & \text{otherwise.} \end{cases}$$

Show that T(X) is an unbiased estimator of θ .

To test for bias, we find the the expectation of T(X):

$$E[T(X)] = \sum_{x \in \{-1,0,1\}} T(x)P(X = x).$$

Using the pmf from part a), each possible outcome/observation of X has its associated probability given by:

$$P(X = 1) = \frac{\theta}{2}, \quad P(X = 0) = 1 - \theta, \quad P(X = -1) = \frac{\theta}{2}$$

So we need to do the more "manual" calculation of expectation:

$$E[T(X)] = 2P(X = 1) + 0P(X = 0) + 0P(X = -1).$$

Since T(X) = 2 when X = 1 and 0 otherwise from the initial definition of T.

Thus, we calculate:

$$E[T(X)] = 2 \cdot \frac{\theta}{2} + 0 + 0 = \theta$$

So, via Bias calculation, we know T(X) is an unbiased estimator of θ because $E[T(X)] = \theta$.

 $\mathbf{c})$

Find a better estimator than T(X) and prove that it is better.

By "better" we are making note of the "hint" to compare MSE, and "better" corresponding to smaller MSE compared to T(X).

By definition, the MSE of the estimator T(X) is:

$$MSE(T) = E[(T(X) - \theta)^2] = E[T^2(X)] - 2\theta E[T(X)] + \theta^2$$

From part b), we know that T(X) is unbiased, so the unknown quantity in the above expression is $E[T^2(X)]$. Solving for that:

$$E[T^2(X)] = \sum_{x \in \{-1,0,1\}} T^2(x) P(X = x) = 2^2 P(X = 1) = 4 \cdot \frac{\theta}{2} = 2\theta$$

Returning to the MSE, our goal is to then find a better (smaller) MSE than T(X), which is:

$$MSE(T) = 2\theta - 2\theta^2 + \theta^2 = \theta - \theta^2 = \theta(1 - \theta)$$

Our first guess will be to use the sample mean, the MLE from part a):

$$\hat{\theta} = \frac{S_n}{n} = \frac{1}{n} \sum_{i=1}^n |X_i|$$

To find the relevant quantities to find its MSE, we start with:

E[|X|]:

$$E[|X|] = 1 \cdot P(X=1) + 0 \cdot P(X=0) + 1 \cdot P(X=-1) = \frac{\theta}{2} + 0 + \frac{\theta}{2} = \theta$$

Next, $E[|X|^2]$:

$$E[|X|^2] = 1^2 \cdot P(X=1) + 0^2 \cdot P(X=0) + 1^2 \cdot P(X=-1) = \frac{\theta}{2} + 0 + \frac{\theta}{2} = \theta$$

So, the variance is:

$$Var(|X|) = E[|X|^2] - (E[|X|])^2 = \theta - \theta^2 \to Var(\hat{\theta}) = \frac{\theta - \theta^2}{n}$$

Since $\hat{\theta}$ is unbiased, i.e.

$$E[\hat{\theta}] = E[\frac{S_n}{n}] = E[\frac{1}{n} \sum_{i=1}^n |X_i|] = \frac{1}{n} E[\sum_{i=1}^n |X_i|] = \frac{n\theta}{n} = \theta$$

The MSE of $\hat{\theta}$ is:

$$MSE(\hat{\theta}) = \frac{\theta - \theta^2}{n}$$

We now comparing the two estimators:

$$MSE(T) = 2\theta - \theta^2$$

$$MSE(\hat{\theta}) = \frac{\theta - \theta^2}{n}$$

Since $n \ge 1$:

$$\frac{\theta - \theta^2}{n} \le \theta - \theta^2$$

And since:

$$\theta - \theta^2 \le 2\theta - \theta^2 \quad \forall \theta \in (0, 1)$$

it follows:

$$MSE(\hat{\theta}) \leq MSE(T)$$

with strict inequality for n > 1. So the MLE $\hat{\theta} = \frac{1}{n} \sum |X_i|$ is a "better" estimator than T(X) because it has a lower Mean Squared Error for all values of θ (while also being unbiased!)

5.

Let X_1, \ldots, X_n be iid Bernoulli $(\theta), \theta \in (0, 1)$. Find the Bayes estimator of θ with respect to the uniform(0, 1) prior under the loss function

$$L(t,\theta) = \frac{(t-\theta)^2}{\theta(1-\theta)}$$

Start by noting the likelihood function for X_1, \ldots, X_n given θ (distribution given) is:

$$L(\theta) = \prod_{i=1}^{n} \theta^{X_i} (1 - \theta)^{1 - X_i}$$

Let $S_n = \sum_{i=1}^n X_i$, which, because X_1, \dots, X_n are iid, are know to follow a Binomial distribution:

$$S_n | \theta \sim \text{Binomial}(n, \theta)$$

Thus, the likelihood function can be rewritten:

$$L(\theta) \propto \theta^{S_n} (1 - \theta)^{n - S_n}$$

Given the prior, $\theta \sim \text{Uniform}(0,1)$, we may calculate the posterior:

$$\pi(\theta|S_n) \propto L(\theta)\pi(\theta) = \theta^{S_n}(1-\theta)^{n-S_n}$$

Since this resembles a Beta distribution, we then may recognize:

$$\theta | S_n \sim \text{Beta}(S_n + 1, n - S_n + 1)$$

The Bayes estimator is the function t^* that minimizes the posterior expected loss, and since the loss function is the squared-error loss function, the optimal Bayes estimator is the posterior mean of θ , i.e.

$$\hat{\theta}_{\text{Bayes}} = E[\theta|S_n]$$

For a Beta distribution Beta(α, β), we know:

$$E[\theta] = \frac{\alpha}{\alpha + \beta}$$

So via substitution, $a = S_n + 1$ and $b = n - S_n + 1$, we have our Bayes estimator:

$$\hat{\theta}_{\text{Bayes}} = \frac{S_n + 1}{n + 2}$$