

Data Encryption Standard (DES)

The **Data Encryption Standard (DES)** is a symmetric-key block cipher published by the **National Institute of Standards and Technology (NIST).**

In 1973, NIST published a request for proposals for a national symmetric-key cryptosystem.

A proposal from IBM, a modification of a project called Lucifer, was accepted as DES.

DES was published in the Federal Register in March 1975 as a draft of the

Federal Information Processing Standard (FIPS).

DES is a block cipher, as shown

Encryption and decryption with DES

At the encryption site, DES takes a 64-bit plaintext and creates a 64-bit ciphertext; at the decryption site, DES takes a 64-bit ciphertext and creates a 64-bit block of plaintext. The same 56-bit cipher key is used for both encryption and decryption.

DES STRUCTURE

The encryption process is made of two permutations (P-boxes), which we call initial and final permutations, and sixteen Feistel rounds.

Each round uses a different 48-bit round key generated from the cipher key according to a predefined algorithm

General structure of DES

Initial and Final Permutations

Figure shows the initial and final permutations (P-boxes).

Each of these permutations takes a 64-bit input and permutes them according to a predefined rule. These permutations are keyless

straight permutations that are

the inverse of each other.

Initial and final permutation steps in DES

Initial and final permutation tables

Initial Permutation	Final Permutation
58 50 42 34 26 18 10 02	40 08 48 16 56 24 64 32
60 52 44 36 28 20 12 04	39 07 47 15 55 23 63 31
62 54 46 38 30 22 14 06	38 06 46 14 54 22 62 30
64 56 48 40 32 24 16 08	37 05 45 13 53 21 61 29
57 49 41 33 25 17 09 01	36 04 44 12 52 20 60 28
59 51 43 35 27 19 11 03	35 03 43 11 51 19 59 27
61 53 45 37 29 21 13 05	34 02 42 10 50 18 58 26
63 55 47 39 31 23 15 07	33 01 41 09 49 17 57 25

The permutation rules for these
P-boxes are shown in Table
Each side of the table can be thought
of as a 64-element array.
as with any permutation table
the value of each element defines
the input port number, and the order (index)
of the element defines the output port number.

Rounds

DES uses 16 rounds. Each round of DES is a Feistel cipher,

A round in DES (encryption site)

DES Function

The heart of DES is the DES function. The DES function applies a 48-bit key to the rightmost 32 bits (R_{I-1}) to produce a 32-bit output. This function is made up of four sections: an expansion D-box, a whitener (that adds key), a group of S-boxes, and a straight D-box

Expansion permutation

Expansion D-box table

32	01	02	03	04	05
04	05	06	07	08	09
08	09	10	11	12	13
12	13	14	15	16	17
16	17	18	19	20	21
20	21	22	23	24	25
24	25	26	27	28	29
28	29	31	31	32	01

Whitener (XOR) After the expansion permutation, DES uses the XOR operation on the expanded right section and the round key. Note that both the right section and the key are 48-bits in length. Also note that the round key is used only in this operation.

S-Boxes The S-boxes do the real mixing (confusion). DES uses 8 S-boxes, each with a 6-bit input and a 4-bit output.

S-box rule

