Ιόνιο Πανεπιστήμιο – Τμήμα Πληροφορικής Αρχιτεκτονική Υπολογιστών 2016-17

Κρυφές Μνήμες

(οργάνωση, λειτουργία και απόδοση)

http://mixstef.github.io/courses/comparch/

Μ. Στεφανιδάκης

Ιεραρχία Μνήμης

• Ιεραρχία Μνήμης

Για βελτίωση της απόδοσης του συστήματος μνήμης (και του συνολικού υπολογιστικού συστήματος)

οι ρυθμοί μεταφοράς που δίνονται είναι οι θεωρητικά μέγιστοι!

Σκοπός της Ιεραρχίας Μνήμης

• Ιεραρχία Μνήμης

Για να επιτύχει τον σκοπό της η ιεραρχία μνήμης εκμεταλλεύεται την αρχή της τοπικότητας

- Προσέγγιση της ιδανικής μνήμης
 - Ο επεξεργαστής να βλέπει "μνήμη"
 - Με την ταχύτητα του υψηλότερου επιπέδου
 - Και το μέγεθος του χαμηλότερου επιπέδου

0,5-5ns \$4.000-\$10.000/GB

> 50-70ns \$100-\$200/GB

5.000.000-20.000.000 ns \$0,5-\$2/GB CPU

Κρυφή μνήμη (SRAM)

Κύρια μνήμη (DRAM)

Μαγνητικοί δίσκοι

Ιεραρχία μνήμης και τοπικότητα

• Ιεραρχία Μνήμης

"ένα πρόγραμμα εκτελεί το 90% των εντολών του μέσα στο 10% του κώδικά του"

• Χρονική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι
 πολύ πιθανό να προσπελαστεί ξανά στο άμεσο μέλλον
 - Παράδειγμα: οι εντολές ενός βρόχου (loop)
- Εφαρμογή:
 - Δεδομένα εντολές που βρίσκονται ήδη κοντύτερα στον επεξεργαστή (π.χ. στην κρυφή μνήμη) θα προσπελαστούν πολύ γρηγορότερα

Ιεραρχία μνήμης και τοπικότητα

• Ιεραρχία Μνήμης

"ένα πρόγραμμα εκτελεί το 90% των εντολών του μέσα στο 10% του κώδικά του"

• Χωρική Τοπικότητα

- Εάν προσπελαστεί μια θέση μνήμης, είναι πολύ πιθανό να προσπελαστούν και οι γειτονικές θέσεις στο άμεσο μέλλον
 - Εντολές προγραμμάτων
 - Δεδομένα σε πίνακες κλπ

• Εφαρμογή:

- Εάν προσπελαστεί μια θέση μνήμης, μεταφέρονται και οι διπλανές της λέξεις στη μνήμη του υψηλότερου επιπέδου
 - Μεταφορά σε μπλοκ (πολλαπλές λέξεις μνήμης)
- Γρηγορότερη προσπέλαση

Κρυφές μνήμες

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Σημαντικό τμήμα στην ιεραρχία μνήμης
- Εξέλιξη συστημάτων κρυφής μνήμης
 - 1962: οι πρώτες ιεραρχίες μνήμης (Atlas computer)
 - Όχι όμως κρυφή μνήμη
 - 1965: η πρώτη περιγραφή κρυφής μνήμης (Wilkes)
 - Ο πρώτος υπολογιστής με κρυφή μνήμη (IBM 360/85)
 - 1968: η πρώτη χρησιμοποίηση του όρου "cache memory"
 - Στη συνέχεια:
 - Πολλαπλά επίπεδα κρυφής μνήμης (L1, L2, L3)
 - Βελτιωμένες αρχιτεκτονικές κρυφής μνήμης

Απλό μοντέλο ιεραρχίας μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Οι αρχές λειτουργίας της απλής ιεραρχίας μπορούν να επεκταθούν σε πολλαπλά επίπεδα

Αποθήκευση δεδομένων στην Ιεραρχία Μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Αποθήκευση δεδομένων
 - Τα υψηλότερα επίπεδα της ιεραρχίας μνήμης είναι υποσύνολα των χαμηλότερων
 - Όλα τα δεδομένα αποθηκεύονται τελικά στο χαμηλότερο επίπεδο
- Μεταφορά δεδομένων
 - Αντιγραφή από επίπεδο σε επίπεδο
 - Το ελάχιστο σύνολο δεδομένων που μεταφέρεται μεταξύ δύο επιπέδων ονομάζεται μπλοκ
 - Πολλαπλά bytes (πολλές λέξεις μαζί)

Αναζήτηση δεδομένων στην Ιεραρχία Μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Αναζήτηση δεδομένων
 - Ο επεξεργαστής ζητά πάντοτε τα δεδομένα από το κοντινότερο σε αυτόν επίπεδο
 - Τα δεδομένα υπάρχουν στο επίπεδο αυτό: hit
 - Τα δεδομένα δεν βρίσκονται στο επίπεδο αυτό: miss
 - Η αίτηση προωθείται στο επόμενο (χαμηλότερο)
 επίπεδο
 - Όταν βρεθεί, το μπλοκ που περιέχει τα δεδομένα αντιγράφεται στο ανώτερο επίπεδο

Μπλοκ (γραμμές) κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Οι σύγχρονοι επεξεργαστές διαθέτουν κρυφές μνήμες (L1) με μέγεθος μπλοκ έως 64 bytes

- •Για την εκμετάλλευση της τοπικότητας
- •Όταν πρέπει να μεταφερθεί μια λέξη, μεταφέρεται το μπλοκ που την περιέχει
- •Το μέγεθος του μπλοκ είναι καθοριστικό για την απόδοση της ιεραρχίας μνήμης
- •Το σύστημα κύριας μνήμης έχει βελτιστοποιηθεί αρχιτεκτονικά για μεταφορές μπλοκ

Τοποθέτηση ενός μπλοκ

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Η κύρια μνήμη περιέχει πολύ περισσότερα μπλοκ από όσα χωρούν στην κρυφή μνήμη
 - Συνεπώς, στην ίδια θέση της κρυφής μνήμης πρέπει
 να τοποθετηθούν περισσότερα από ένα μπλοκ
 - Σύγκρουση μπλοκ!
- Πώς αποφασίζεται η θέση ενός μπλοκ στην κρυφή μνήμη;
 - Η απλή λύση: άμεση απεικόνιση (direct mapped caches)
 - Κάθε μπλοκ πηγαίνει σε μία μόνο θέση

(αριθμός μπλοκ) mod (θέσεις στην κρυφή μνήμη)

• Υπολογίζεται πολύ εύκολα αν οι θέσεις είναι δύναμη του 2

Άμεση απεικόνιση θέσης μπλοκ

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Παράδειγμα:

Block = 16 bytes Cache = 32 blocks

Ποιο μπλοκ βρίσκεται σε κάθε θέση;

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Είναι η θέση κατειλημμένη από κάποιο μπλοκ; valid bit (V)

Ανάγνωση: Cache Hit

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Σε περίπτωση εύρεσης των δεδομένων στην κρυφή μνήμη, η ΚΜΕ μπορεί να τα λάβει ακόμα και σε 1 κύκλο

Ανάγνωση: Cache Miss

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Miss penalty:

ο χρόνος για την μεταφορά του μπλοκ από κύρια μνήμη και επιστροφή δεδομένων στον επεξεργαστή

Εγγραφή στην κρυφή μνήμη

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Συνοχή δεδομένων:

Πώς επηρεάζουν οι κρυφές μνήμες τη σχεδίαση πολυεπεξεργαστικών συστημάτων;

- Μόνο για δεδομένα
- Write Hit Ενημέρωση κρυφής μνήμης
 - Στη συνέχεια:
 - Είτε ενημερώνω αμέσως την κύρια μνήμη (writethrough)
 - Επιβάρυνση σε κάθε εγγραφή! Δεν χρησιμοποιείται πλέον
 - Είτε μόνο όταν το μπλοκ εκτοπίζεται από την κρυφή μνήμη (write-back)
 - Απαιτείται επιπλέον λογική για τον έλεγχο της σωστής αποθήκευσης των δεδομένων
- Write Miss
 - Πρέπει το μπλοκ να έρθει (ανάγνωση!) πρώτα στην κρυφή μνήμη από την κύρια μνήμη

Τι δημιουργεί cache misses;

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Η πρώτη φορά προσπέλασης ενός μπλοκ
 - Μπλοκ που δεν βρέθηκαν ποτέ μέχρι τώρα στην κρυφή μνήμη
- Λόγω χωρητικότητας της κρυφής μνήμης
 - Η κρυφή μνήμη δεν χωράει όλα τα μπλοκ (ταυτόχρονα)
 - Μπλοκ που τοποθετούνται στην ίδια θέση στην κρυφή μνήμη, συναγωνίζονται για τη θέση αυτή
 - ανάλογα με τη μέθοδο τοποθέτησης
 - ακόμα κι αν άλλο μέρος της κρυφής μνήμης είναι ελεύθερο...

Χαρακτηριστικά απόδοσης κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης

Hit Rate

Ποσοστό προσπελάσεων μνήμης, όπου τα δεδομένα βρίσκονται στην κρυφή μνήμη

Miss Rate

- Ποσοστό προσπελάσεων μνήμης, όπου τα δεδομένα δεν βρίσκονται στην κρυφή μνήμη
 - (1-hit rate)

Hit Time

- Ο χρόνος για την προσπέλαση δεδομένων σε hit
- Miss Penalty
 - Ο χρόνος για την προσπέλαση, μεταφορά και τοποθέτηση των δεδομένων miss από την κύρια στην κρυφή μνήμη και στον επεξεργαστή

Το κόστος των cache misses

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης
- Χαμένοι κύκλοι ρολογιού
 - Σε αναμονή για προσπέλαση κύριας μνήμης

Κύκλοι Αναμονής =

Προσπελάσεις μνήμης * Miss Rate * Miss Penalty

- Είναι απλουστευμένο μοντέλο γιατί:
 - Διαφορετικό Miss Rate ανά κατηγορίες εντολών
 - Διαφορετικό Miss Rate για ανάγνωση-εγγραφή
 - Σύνθετη ανάλυση για εκτέλεση εκτός σειράς
 - Ο επεξεργαστής "κρύβει" την καθυστέρηση εκτελώντας κάτι άλλο: πώς υπολογίζεται το miss penalty τότε;
- Βελτίωση της απόδοσης
 - Μείωση του miss rate
 - Μείωση του miss penalty

Τεχνικές μείωσης miss rate

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης
- Αντιμετώπιση αιτιών που προκαλούν misses
- Αύξηση χωρητικότητας κρυφής μνήμης
 - Αλλά: μια μεγάλη κρυφή μνήμη μπορεί να είναι πιο αργή! (αύξηση hit time)
- Αύξηση του μεγέθους του μπλοκ
 - Προσπάθεια εκμετάλλευσης της τοπικότητας
 - Αλλά: αυξάνει το miss penalty
 - Πιθανόν να αυξάνει τελικά το miss rate, λόγω των λιγότερων μπλοκ στην κρυφή μνήμη
- Ευέλικτες τεχνικές τοποθέτησης των μπλοκ
 - Οστε να παραμένουν περισσότερο στην κρυφή μνήμη

Ευέλικτες τεχνικές τοποθέτησης μπλοκ

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη

Πιθανή η αύξηση του hit time λόγω πολύπλοκου κυκλώματος!

Τεχνικές μείωσης miss penalty

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης

Οι σύγχρονοι επεξεργαστές έχουν τουλάχιστον L1 και L2 cache μέσα στο ίδιο το chip τους

- Μείωση των χρόνων μεταφοράς μπλοκ
- Βελτιστοποιήσεις στην επικοινωνία με την κύρια μνήμη
 - Έτσι ώστε ένα ολόκληρο μπλοκ να μεταφέρεται με τη μικρότερη δυνατή καθυστέρηση (bursts)
- Πολυεπίπεδες ιεραρχίες κρυφής μνήμης
 - Μείωση miss penalty πρώτου επιπέδου (L1)
 - L1: μικρότερο μέγεθος, μεγαλύτερη ταχύτητα
 - Μεγαλύτερο miss rate αλλά miss penalty μικρότερο
 - L2: μεγαλύτερο μέγεθος, μικρότερη ταχύτητα
 - Αργότερη αλλά δεν επηρεάζει hit time επεξεργαστή

Ανάγνωση από κύρια μνήμη

Πολυεπίπεδη οργάνωση κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης

Οι σύγχρονοι επεξεργαστές έχουν ξεχωριστή κρυφή μνήμη L1 για εντολές και δεδομένα. Ποια τα πλεονεκτήματα-μειονεκτήματα;

Τύπος	Μέγεθος	Χρόνος προσπέλασης	Ρυθμός μεταφοράς
L1	έως 64KB	4ns	50GB/s
L2	έως 8ΜΒ	10ns	25GB/s
L3	έως 64MB	20ns	10GB/s

- Παράδειγμα: Pentium4
 - L1 cache: 4 κύκλοι ρολογιού (pipelined: 1)
 - L2 cache: 20 κύκλοι ρολογιού
 - Προσπέλαση στη μνήμη: >100 κύκλοι ρολογιού

Intel "Montecito": Επίπεδα κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης

Intel Montecito:

1,72 δις τρανζίστορ 2 επεξεργαστές Itanium2 1.8GHz @ 100W

Intel "Montecito": Επίπεδα κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση κρυφής μνήμης

Intel Montecito: συνολικά 27MB κρυφή μνήμη μέσα στο chip

Βελτιστοποίηση απόδοσης κρυφής μνήμης

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης
- Αρχιτεκτονικές βελτιώσεις
 - Pipelining
 - Non-blocking εξυπηρέτηση πολλαπλών αιτήσεων
 - Πολλαπλά επίπεδα κρυφής μνήμης στο chip του επεξεργαστή
- Ο ρόλος του λογισμικού (μεταγλωττιστές)
 - Αναδιοργάνωση προγραμμάτων για αύξηση της τοπικότητας (κυρίως στους βρόχους επανάληψης)
 - Prefetching: μετακίνηση δεδομένων στην κρυφή μνήμη πριν αυτά χρειαστούν στον επεξεργαστή!

Η απόδοση της κρυφής μνήμης συνοπτικά

- Ιεραρχία Μνήμης
- Κρυφή Μνήμη
- Απόδοση
 κρυφής μνήμης
- Καθοριστική για τα σύγχρονα υπολογιστικά συστήματα
- Μείωση του miss rate ή του miss penalty
 - Ομως: η συμπεριφορά της ιεραρχίας μνήμης επηρεάζεται από πολλούς παράγοντες!
- Η πραγματική συμπεριφορά
 - Είναι σύνθετη απαιτούνται εξομοιώσεις πριν τη σχεδίαση νέων συστημάτων
 - Είναι διαφορετική ανά εφαρμογή δεν υπάρχει ένα μόνο αντιπροσωπευτικό πρόγραμμα!
 - Είναι διαφορετική ανά υπολογιστικό σύστημα desktop, server ή embedded