OpAmp

Amplificador Operacional:

- Entradas, saídas, alimentações.
- Modelos.
- Realimentação e Curto-Circuito Virtual.
- Amplificador Inversor e Não Inversor.
- Amplificador Somador e de Diferença.
- Integrador e Diferenciador.
- Comparadores.

Amplificador Operacional

24 transistores

12 resistências

1 condensador

Amplificador Operacional (2)

Saída

Entradas: Inversora (-) e Não Inversora (+)

Oposição de fase entre vo e v-

Saída em fase com a entrada v+

Alimentação dc: muitas vezes 2 tensões simétricas ± V

Tensão de entrada diferencial

$$v_{id} = v_1 - v_2$$

Tensão de entrada de modo comum

$$v_{icm} = \frac{1}{2}(v_1 + v_2)$$

OpAmp: modelos

Ganho diferencial em malha aberta:

$$v_o = A_{\rm OL} v_{id}$$

Ganho modo comum:

$$v_o = A_{\rm CM} v_{icm}$$

OpAmp	Real	Ideal
$A_{ m OL}$	Ex: 10 ⁵	∞
$A_{ m CM}$	<< 1	0
i+ i-	μA, nA, pA	0
Rin	Ex: 10MΩ	∞
Ro	Ex: 50Ω	0

Modelo Ideal:

OpAmp: modelos (2)

Modelo Real simplificado:

Nota: na figura da direita atentar na limitação imposta pelas alimentações à excursão do sinal de saída: $V_{EE} < V_O < V_{CC}$

Exemplo com alimentações de \pm 15V: - 14.2V < v_o < 13.8V

Realimentação negativa e positiva

Realimentação negativa

- \rightarrow R_2 liga a saída à entrada inversora.
- \rightarrow v_0 e v_{in} estão em oposição de fase.
- ightharpoonup uma parte de \mathcal{V}_0 , através de \mathcal{R}_2 , vai subtrair-se a \mathcal{V}_{in} , diminuindo \mathcal{V}_{x} .
- \rightarrow AOL --> ∞ ; v_X --> 0

Curto-Circuito Virtual

Realimentação positiva

- **→** R₂ liga a saída à entrada não inversora.
- \rightarrow v_0 e v_{in} estão em fase.
- ightharpoonup uma parte de V_0 , através de R_2 , vai adicionar-se a V_{in} , aumentando V_X .
- \rightarrow AOL --> ∞ ; \mathcal{V}_{X} --> ∞

Na prática o OpAmp satura positiva ou negativamente

Amplificador Inversor

Ganho em malha fechada

$$v+=v-=0$$

$$i+=0=i-$$

$$i_1 = \frac{v_{\rm in}}{R_1} \qquad i_2 = i_1$$

$$i_2 = \frac{v_{\text{in}}}{R_1}$$

$$v_o + R_2 i_2 = 0$$

$$A_{\nu} = \frac{v_o}{v_{\rm in}} = -\frac{R_2}{R_1}$$

$$v_o = -\frac{R_2}{R_1} v_{\rm in}$$

$$Z_{\rm in} = \frac{v_{\rm in}}{i_1} = R_1$$

Como v_o é independente de R_L : $Z_O = 0 \Omega$

 A_{ν} < 0 significa inversão da fase

Amplificador Não-Inversor

$$i + = 0 = i -$$

Curto-circuito virtual:

$$v-=v+=v_1=v_I$$

$$i_2 = i_1$$

$$i_1 = -\frac{v_1}{R_1} = -\frac{v_I}{R_1}$$

$$i_2 = \frac{v_1 - v_O}{R_2} = \frac{v_I - v_O}{R_2}$$

$$-\frac{v_I}{R_1} = \frac{v_I - v_O}{R_2}$$

$$A_v = \frac{v_O}{v_I} = 1 + \frac{R_2}{R_1}$$

$$Z_{in} = \infty \Omega$$

Como v_o é independente de R_L : $Z_O = 0 \Omega$

 $A_{\nu} > 0$: entrada e saída em fase. Aliás $A_{\nu} \ge 1$

Seguidor de tensão:

$$R_1 = \infty$$
 e/ou $R_2 = 0$:

$$A_{v} = 1$$

Amplificador Somador

$$i + = 0 = i -$$

Curto-circuito virtual:

$$v - = v + = 0$$

$$i_1 = v_1 / R_1$$
 $i_F = v_1 / R_1 + v_2 / R_2 + v_3 / R_3$

$$i_2 = v_2 / R_2$$

$$i_3 = v_3 / R_3$$
 $v_o = -R_F (v_1 / R_1 + v_2 / R_2 + v_3 / R_3)$

Caso particular: $R_1 = R_2 = ... = R_N = R$

$$v_o = -(v_1 + v_2 + \ldots + v_N) R_F / R$$

Amplificador de Diferença

$$i + = 0 = i -$$

Curto-circuito virtual: v- = v+

Apliquemos sobreposição

$$i + = 0 \longrightarrow v_{2b} = \frac{R_4}{R_3 + R_4} v_{I2}$$

Amp. Não Inversor:

$$v_{O2} = \left(1 + \frac{R_2}{R_1}\right) v_{2b}$$

$$i+=0 --> v_{2a}=0$$
 Amp. Inversor

$$v_{O1} = -\frac{R_2}{R_1} v_{I1}$$

$$v_{O1} = -\frac{R_2}{R_1}v_{I1} \qquad v_{O2} = \left(1 + \frac{R_2}{R_1}\right)\left(\frac{R_4}{R_3 + R_4}\right)v_{I2} = (1 + R_2/R_1)\left(\frac{R_4/R_3}{1 + R_4/R_3}\right)v_{I2}$$

Amplificador de Diferença (2)

$$v_{O1} = -\frac{R_2}{R_1} v_{I1}$$

2)
$$v_{O2} = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{R_4}{R_3 + R_4}\right) v_{I2} = (1 + R_2/R_1) \left(\frac{R_4/R_3}{1 + R_4/R_3}\right) v_{I2}$$

$$v_O = v_{O1} + v_{O2} = \left(1 + \frac{R_2}{R_1}\right) \left(\frac{\frac{R_4}{R_3}}{1 + \frac{R_4}{R_3}}\right) v_{I2} - \left(\frac{R_2}{R_1}\right) v_{I1}$$

$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$

Caso particular:
$$\frac{R_4}{R_3} = \frac{R_2}{R_1}$$
 $v_O = \frac{R_2}{R_1} (v_{I2} - v_{I1})$

Integrador

INTEGRADOR

$$v_o = v_C$$
 ; $i = v_I/R_1$

$$v_c(t) = \frac{1}{C} \int_{t_0}^{t} i_c dt + v_c(t_0)$$

$$v_O = V_C - \frac{1}{R_1 C_2} \int_O^t v_I(t) dt$$

Nota: se v_I for contínua, v_o será uma rampa que acabará por saturar o OpAmp

DIFERENCIADOR

$$v_o = -R_2 i$$
; $v_I = v_C$

$$i_c = C \frac{dv_c}{dt}$$

$$v_O(t) = -R_2 C_1 \frac{dv_I(t)}{dt}$$

Comparador

Quando a amplitude é muito elevada o sinal de saída é limitado pelas tensões de alimentação: V_{CC} para excursões positivas; V_{EE} para negativas.

OpAmp em malha aberta:

Saturação:
$$V_H \le V_{CC}$$
 $V_L \ge V_{EE}$

$$-\delta < (v_2 - v_1) < +\delta$$

$$V_H - V_L = 10V$$
 $A_{\rm OL} = 100000$

$$2\delta = 10/10^5 = 10^{-4} \text{ V} = 0.1 \text{ mV}$$

Comparador (2)

Comparador não inversor

$$V_I > V_{REF} \rightarrow V_o = V_H$$

$$V_I < V_{REF} \longrightarrow V_O = V_L$$

Comparador inversor

$$V_I > V_{REF} \longrightarrow V_O = V_L$$

$$V_I < V_{REF} \rightarrow V_O = V_H$$

Outros comparadores em malha aberta

Comparador não inversor

Nota: R1//R2 é uma correcção dos efeitos das correntes de *bias*

Comparador inversor

Por sobreposição:

$$v_{+} = \left(\frac{R_{2}}{R_{1} + R_{2}}\right) V_{\text{REF}} + \left(\frac{R_{1}}{R_{1} + R_{2}}\right) v_{I}$$

A tensão de *crossover* obtem-se quando $V_+ = 0$

$$R_2 V_{REF} + R_1 v_I = 0$$

$$v_I = -\frac{R_2}{R_1} V_{\text{REF}}$$

Comparador com histerese

Realimentação Positiva

Schmitt Trigger Inversor

Assumir $V_H = |V_L|$

$$v_+ = \left(\frac{R_1}{R_1 + R_2}\right) v_O$$

$$V_{TH} = \left(\frac{R_1}{R_1 + R_2}\right) V_H$$

$$V_{TL} = \left(\frac{R_1}{R_1 + R_2}\right) V_L$$

Histerese = V_{TH} - V_{TL}

Comparador com histerese (2)

Schmitt Trigger Não Inversor

Realimentação Positiva

Assumir $V_H = |V_L|$ e aplicar sobreposição

Histerese = V_{TH} - V_{TL}

Acrescentando V_{REF} :

Schmitt Trigger Não Inversor

tensão de switching

$$V_S = \left(1 + \frac{R_1}{R_2}\right) V_{\text{REF}}$$

Schmitt Trigger Inversor

$$V_S = \left(\frac{R_2}{R_1 + R_2}\right) V_{\text{REF}}$$

Gerador de onda quadrada e triangular

Schmitt Trigger Não Inversor com limitação, no caso frequente das tensões de saturação serem assimétricas

Nota: R limita Imáx nos zeners

Gerador de Sinais

Juntando um Schmitt Trigger com um Integrador ...

 V_{off} regula o offset ; $V_{\text{off}} = 0 \longrightarrow V_T \text{ med} = 0$

 $V_{\rm S}$ regula a simetria/duty-cycle; $V_{\rm S}$ = 0 --> ∂ = 50%

A relação R_2/R_1 regula a amplitude de $V_{
m T}$

A frequência depende de R e C, mas também de vários outros factores.