Temas 3 y 4: Conjuntos, funciones y relaciones. Tercera parte

David de Frutos Escrig versión original elaborada por María Inés Fernández Camacho

MATEMÁTICA DISCRETA Y LÓGICA MATEMÁTICA (Ingeniería Informática - Ciencias Matemáticas) UCM Curso 18/19 Funciones (1

Las funciones son un tipo especial de relaciones en las que a cada elemento de una cierta colección se le pone en correspondencia con un **único** objeto de la misma u otra colección. al que se conoce como su imagen. El hecho de que la imagen de cada objeto sea única es esencial.

DEF:

Una relación n+1-ádica $f \subseteq A_1 \times A_2 \times \cdots \times A_n \times B$ es una función parcial (n-ádica, n-aria o de n argumentos) de $A_1 \times A_2 \times \cdots \times A_n$ en B, si para todo $(x_1, \cdots, x_n) \in dom(f)$ existe un único $y \in B$ tal que $(x_1, \cdots, x_n, y) \in f$. En tal caso se dice que $f(x_1, \cdots, x_n)$ está definido, se escribe $f(x_1, \cdots, x_n) = y$, y se llama imagen o valor de f en (x_1, \cdots, x_n) , al valor en cuestión y.

Ej: $\mathcal{R} \subseteq \mathbb{Z} \times \mathbb{Z}$ $x\mathcal{R}y \equiv_{def} y = x^2$ es una función. $dom(\mathcal{R}) = \mathbb{Z}$, y para cada $x \in dom(\mathcal{R})$ $\exists ! y \in \mathbb{Z}$ tal que $x\mathcal{R}y$, a saber el valor (único) de x^2 .

En cambio, $\mathcal{S}=\mathcal{R}^{-1}$ **no** es una función: $dom(\mathcal{S})=ran(\mathcal{R})$ es el conjunto de los enteros que son cuadrados perfectos, pero para todo cuadrado perfecto $x\neq 0$, existen dos $y\in \mathbb{Z}$ tales que $x\mathcal{S}y$, a saber \sqrt{x} y $-\sqrt{x}$.

DEF:

Dada una función parcial f de $A_1 \times A_2 \times \cdots \times A_n$ en B

- El dominio de f es $dom(f) = \{(x_1, \dots, x_n) \in A_1 \times A_2 \times \dots \times A_n / f(x_1, \dots, x_n) \text{ está definida} \}$
- El rango de f es

$$ran(f) = \{f(x_1, \cdots, x_n) \in B / (x_1, \cdots, x_n) \in dom(f)\}$$

Funciones (3)

DEF:

- Se dice que f es una función total de X en Y, y se escribe f : X → Y, si dom(f) = X y ran(f) ⊆ Y.
 (X → Y) denota el conjunto de todas las funciones totales de X en Y.
- Cuando no sepamos si f es total, diremos que es una función parcial de X en Y, y escribiremos f : X → Y,
 (X → Y) denota el conjunto de todas las funciones parciales de X en Y.

Obs: Las funciones totales son un caso particular de las parciales.

Ejs:

- ② $d: \mathbb{R}^4 \to \mathbb{R}$, $d(x_1, y_1, x_2, y_2) = \sqrt{(x_1 x_2)^2 + (y_1 y_2)^2}$ distancia entre los puntos del plano (x_1, y_1) y (x_2, y_2) , $dom(d) = \mathbb{R}^4$.

Dada una función parcial f de $A_1 \times A_2 \times \cdots \times A_n$ en B

- Si n = 2, f se llama función binaria. Si n = 1, f se llama función unaria.
- Si $A_i = B \quad \forall i \ (1 \le i \le n)$, se dice que f es una operación n-ádica sobre B o que es una función interna de B.

Ejs:

- $\mathbf{0} + : \mathbb{R}^2 \to \mathbb{R}$ operación binaria e interna sobre \mathbb{R} .
- ② Dado un universo \mathcal{U} , la unión de conjuntos $\cup : \wp(\mathcal{U}) \times \wp(\mathcal{U}) \to \wp(\mathcal{U})$ es una operación binaria e interna sobre $\wp(\mathcal{U})$.

FUNCIONES

Ley de igualdad entre funciones

LEY DE IGUALDAD ENTRE FUNCIONES

Dadas dos funciones f y g:

$$f = g \iff (dom(f) = dom(g)) \land (\forall x \in dom(f) \ [f(x) = g(x)])$$

Es decir, ambas están definidas sobre el mismo dominio y a cada objeto de su dominio le asignan la misma imagen, con independencia de cómo hayan sido definidas.

Ejs:

- $f, g: \mathbb{R} \to \mathbb{R}$, $f(x) = x^2 4$, g(x) = (x+2)(x-2). f y g son funciones iguales.
- ② $f, g : \mathbb{R} \to \mathbb{R}$, f(x) = x 2, $g(x) = \frac{x^2 4}{x + 2}$. $f \text{ y } g \text{ son funciones distintas: } dom(f) = \mathbb{R} \neq \mathbb{R} \setminus \{-2\} = dom(g)$.

FUNCIONES

Funciones especiales

FUNCIONES ESPECIALES

- Se llama función identidad sobre un conjunto A a la relación idA de identidad sobre A.
 - Si $A \subseteq B$, id_A vista como relación en $A \times B$ se dice que actúa como aplicación de inclusión o inmersión de A en B.
- ② La relación vacía ϕ (conjunto vacío de pares ordenados) cumple:
 - $\bullet \quad \phi: \phi \to B, \quad dom(\phi) = \phi$

 - Si $A \neq \phi$, $\phi : A \rightarrow \phi$ $(\phi \subseteq A \times \phi, dom(\phi) = ran(\phi) = \phi)$ En este caso no existe ninguna $f : A \rightarrow \phi$

RESTRICCIÓN DE UNA FUNCIÓN

DEF:

Siendo f una función y A un conjunto tal que $A \subseteq dom(f)$, la restricción de f a A es la función g con dom(g) = A y g(x) = f(x) $\forall x \in A$.

Notación: $g = f \mid A$, o bien $g = f \mid_A$.

Ej.:
$$f, g : \mathbb{R} - \to \mathbb{R}$$
, $f(x) = x - 2$, $g(x) = \frac{x^2 - 4}{x + 2}$.
 $f|_{\mathbb{R} \setminus \{-2\}} = g|_{\mathbb{R} \setminus \{-2\}}$, con $f|_{\mathbb{R} \setminus \{-2\}}, g|_{\mathbb{R} \setminus \{-2\}} : \mathbb{R} \setminus \{-2\} - \to \mathbb{R}$.

◆□▶ ◆□▶ ◆≣▶ ■ り९♡

Siendo $f:A \to B$, $g:B \to C$, su composición, que denotamos por $f\circ g$, es la función $f\circ g:A \to C$, definida por:

- $\bullet \ dom(f \circ g) = \{x \in dom(f) \ / \ f(x) \in dom(g)\}$
- $\forall x \in dom(f \circ g)$ $f \circ g(x) = g(f(x))$
- $ran(f \circ g) = ran(g \mid_{ran(f) \cap dom(g)})$

Prop. Dadas las funciones $f: A \longrightarrow B$, $g: B \longrightarrow C$ y $h: C \longrightarrow D$, se tiene:

- ② $id_A \circ f = f \circ id_B = f$ (Las funciones identidad son elementos neutros respecto a \circ)

- ◆ロ → ◆部 → ◆注 → ◆注 → ~ 注 · かへぐ

Ej.
$$f, g, h : \mathbb{R} \to \mathbb{R}, \ f(x) = x - 2, \ g(x) = 2 \cdot x, \ h(x) = x^2$$

$$f \circ g(x) = g(f(x)) = g(x-2) = 2 \cdot (x-2) = 2 \cdot x - 4$$

 $g \circ f(x) = f(g(x)) = f(2 \cdot x) = 2 \cdot x - 2$ (La composición de funciones no es conmutativa)

$$g \circ h(x) = h(g(x)) = h(2 \cdot x) = (2 \cdot x)^2 = 4 \cdot x^2$$

$$(f \circ g) \circ h(x) = h(2 \cdot x - 4) = (2 \cdot x - 4)^2 = 4 \cdot x^2 + 16 - 16 \cdot x$$

$$f \circ (g \circ h)(x) = g \circ h(x - 2) = 4 \cdot (x - 2)^2 = 4 \cdot x^2 + 16 - 16 \cdot x$$

4□ > 4□ > 4 = > 4 = > = 90

La inversa de una función parcial f de A en B, si existe, se denota por f^{-1} y es la función parcial de B en A tal que $f^{-1}(y) = x$ si y sólo si f(x) = y.

Obs.: Sólo existirá tal función inversa si para cada $y \in ran(f)$ existe un único $x \in A$ tal que f(x) = y.

Ej.:
$$f: \mathbb{R} \to \mathbb{R}$$
, $f(x) = x - 2$
 $f^{-1}: \mathbb{R} \to \mathbb{R}$, $f^{-1}(y) = y + 2$

FUNCIONES

Imágenes de un conjunto mediante una función

DEF:

Dada una función parcial f de A en B, definimos la imagen de un conjunto $S \subseteq A$ mediante la función f, como el conjunto $f(S) = \{f(x) \in B | x \in dom(f) \cap S\}$; y la imagen inversa de un conjunto $T \subseteq B$ mediante la función f como el conjunto $f^{-1}(T) = \{x \in dom(f) | f(x) \in T\}$.

Ej.
$$f: \mathbb{R} \to \mathbb{R}, f(x) = x - 2, S = \{0, 2, 4\}$$

 $f(S) = \{-2, 0, 2\}$
 $f^{-1}(S) = \{2, 4, 6\}$

Dada una función parcial f de A en B, decimos que es

- inyectiva si para todo $x, y \in dom(f)$, si $x \neq y$, entonces $f(x) \neq f(y)$, o lo que es lo mismo, si f(x) = f(y) entonces x = y.
- sobreyectiva o suprayectiva si ran(f) = B, es decir, si para cada $y \in B$ existe algún $x \in A$ tal que f(x) = y.
- biyectiva si y sólo si es total, inyectiva y suprayectiva.

Prop.: f es inyectiva si y sólo si existe su inversa f^{-1} .

Ejs.

1) $f: \mathbb{Z} \to \mathbb{N}$, $f(x) = x^2$.

No es inyectiva: f(-1) = f(1) = 1 y por tanto, tampoco es biyectiva.

No es suprayectiva: $\not\exists y \in \mathbb{Z}$ tal que $y^2 = 2$.

2) *id*_N es biyectiva.

3)
$$f: \mathbb{N} \to \mathbb{Z}$$
,

$$f(n) = \begin{cases} \frac{n}{2} & \text{si} & n \text{ es par} \\ \frac{1-n}{2} & \text{si} & n \text{ es impar} \end{cases}$$

Es suprayectiva pero no inyectiva, luego no es biyectiva:

No es inyectiva: f(0) = f(1) = 0.

Es sobreyectiva: $\forall z \in \mathbb{Z}, \exists n \in \mathbb{N}$ tal que f(n) = z.

Para $z \in \mathbb{Z}$ distinguimos dos casos:

• Si $z \ge 0$, entoces n = 2z es un número par perteneciente a $\mathbb N$ tal que

$$f(n)=f(2z)=\frac{2z}{2}=z.$$

• Si z < 0, entonces -2z > 0 y n = -2z + 1 es un número impar perteneciente a $\mathbb N$ tal que

$$f(n) = f(-2z+1) = \frac{1-(-2z+1)}{2} = z.$$

(4)

Prop.

- **1** Si $f: A \to B$ es biyectiva, entonces $f^{-1}: B \to A$ también es biyectiva.
- ② Sean $f: A \rightarrow B, g: B \rightarrow C$
 - lacktriangledown Si f y g son inyectivas entonces $f\circ g$ es inyectiva
 - 2 Si f y g son sobreyectivas entonces $f \circ g$ es sobreyectiva
 - **3** Si f y g son biyectivas entonces $f \circ g$ es biyectiva

Dem de 1.:

- $f:A \to B$ biyectiva $\Rightarrow f$ inyectiva $\Rightarrow f^{-1}$ función.
- $f:A \to B$ biyectiva $\Rightarrow f$ sobreyectiva $\Rightarrow dom(f^{-1}) = ran(f) = B \Rightarrow f^{-1}$ total
- f^{-1} función total $\Rightarrow \forall y \in B, \exists ! x \in A/f^{-1}(y) = x \Rightarrow f^{-1}: B \to A$ inyectiva ya que $(f^{-1}(y) = f^{-1}(z) = x) \Rightarrow (y = z = f(x))$, por ser f función
- f^{-1} es sobreyectiva: $x \in A \Rightarrow \exists y \in B \text{ tal que } y = f(x) \qquad (dom(f) = A, \text{ por ser } f \text{ total})$ $\Rightarrow \exists y \in B \text{ tal que } f^{-1}(y) = x.$

(1)

DEF:

Dado un conjunto C se llaman:

- sucesiones de elementos de C a las funciones con perfil $s: \mathbb{N} \longrightarrow C$ y se suele escribir s_i en lugar de s(i), para denotar la imagen de i por s.
- sucesiones finitas de elementos de C de longitud n a las funciones con perfil $s: \mathbf{n} \longrightarrow C$ donde $\mathbf{n} = \{0, 1, 2, \cdots, n-1\}$. (En particular, $\mathbf{0} = \phi$).

Dado un alfabeto A, que simplemente es un conjunto cualquiera, a cuyos elementos en este contexto se les suele llamar símbolos, definimos:

- A* = {sucesiones finitas de elementos de A de cualesquiera longitudes}.
 A los elementos de A* se les llama palabras sobre el alfabeto A.
 Cada palabra u ∈ A* es una sucesión finita u = ⟨u₀, u₁, ···, u_{n-1}⟩ de una cierta longitud n y habitualmente se escribe u = u₀u₁ ··· u_{n-1}.
 Si la longitud es 0 tenemos la palabra vacía que denotamos por ε y se corresponde con la única función ε: 0 → A.
- $A^+ = A^* \setminus \{\epsilon\}$ (conjunto de todas las palabras no vacías sobre el alfabeto A)