Course > Unit 4 Hypothesis testing > Homework 8 > 3. QQ Plots

3. QQ Plots

Consider an iid sample $X_1, X_2, \ldots, X_n \overset{iid}{\sim} \mathbf{P}$ that has been reordered as $X_{(1)} \leq X_{(2)} \leq \ldots \leq X_{(n)}$ where n is very large. In the problems below, we have chosen a different distribution for \mathbf{P} and compared the empirical quantiles to the standard Gaussian quantiles using a QQ plot. Recall that

- the **Laplace distribution** ${
 m Lap}\,(\lambda)$ with parameter $\lambda>0$ is the continuous probability distribution with density $f_\lambda=rac{\lambda}{2}e^{-\lambda|x|}$, and
- the **Cauchy distribution** is the continuous probability distribution with density $g(x) = \frac{1}{\pi} \frac{1}{1+x^2}$.

(These were also introduced in Lecture 12.)

For each plot below, match the QQ plot with the correct distribution for \mathbf{P} . *Hint:* Each possible distribution will be an answer choice exactly once, so you should use the process of elimination.

Hint: You may use computational tools to graph the pdf of the possible distributions of **P**.

Matching a Distribution to a QQ Plot I

1/1 point (graded)

- O Standard normal: $N\left(0,1\right)$
- Cauchy distribution
- Exponential with parameter 1: Exp(1)
- ullet Uniform on the interval $[-\sqrt{3},\sqrt{3}]$: $\mathrm{Unif}\,[-\sqrt{3},\sqrt{3}]$
- $^{ extstyle }$ Laplace distribution with parameter $\sqrt{2}$: $ext{Lap}\left(\sqrt{2}
 ight)$

Solution:

The distribution for this QQ plot is Uniform on the interval $[-\sqrt{3},\sqrt{3}]$: $\mathbf{Unif}[-\sqrt{3},\sqrt{3}]$. Since the support for this distribution is $[-\sqrt{3},\sqrt{3}]$, the empirical quantiles $X_{(1)},X_{(2)},\ldots,X_{(n)}\in[-\sqrt{3},\sqrt{3}]$. Since there is nothing plotted outside of the interval $[-\sqrt{3},\sqrt{3}]$ on the y-axis, we see that the support is restricted to this interval. This implies that the sample was generated from a uniform distribution.

Submit

You have used 1 of 2 attempts

Answers are displayed within the problem

Matching a Distribution to a QQ Plot II

1/1 point (graded)

- Standard normal: N(0,1)
- Cauchy distribution
- ullet Shifted exponential with parameter 2.5: $\operatorname{Exp}\left(2.5\right)+c$ for some c>0
- Output Uniform on the interval $[-\sqrt{3},\sqrt{3}]$: $Unif[-\sqrt{3},\sqrt{3}]$
- \bigcirc Laplace distribution with parameter $\sqrt{2}$: Lap $(\sqrt{2})$

Solution:

The distribution for this QQ plot is **Shifted exponential with parameter 1**: $\mathbf{Exp}(2.5) + c$. Note that the exponential distribution (not shifted by any constant) is supported on $[0,\infty)$. Hence, the QQ plot will not go below the line y=0 if it is shifted by a positive constant c. Moreover, the exponential distribution has **heavier** tails than those of N(0,1), so we expect the QQ plot to be above the line y=x, which is indeed the case here. Further, the sample quantiles in this example do not start near the value 0 and they rather start near the value 10.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Matching a Distribution to a QQ Plot III

1/1 point (graded)

- Standard normal: N(0,1)
- Cauchy distribution
- Exponential with parameter 1: Exp (1)
- Output Uniform on the interval $[-\sqrt{3},\sqrt{3}]$: Unif $[-\sqrt{3},\sqrt{3}]$
- $^{\circ}$ Laplace distribution with parameter $\sqrt{2}$: Lap $(\sqrt{2})$

Solution:

The distribution for this QQ plot is the **Cauchy distribution**. A Cauchy random variable takes values on all of \mathbb{R} . Since the pdf g(x) of the Cauchy distribution decays on the order of $1/x^2$ as $x\to\infty$, we know that its tails should be much heavier than those of a standard normal, whose tails decay exponentially. On the right, we see that the QQ plot displayed lies very far above the line y=x. On the left, we see that the QQ plot displayed lies very far below the line y=x. This indicates that the distribution displayed has much heavier tails than that of a Gaussian, so the Cauchy distribution must be the correct answer.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Matching a Distribution to a QQ Plot IV

1/1 point (graded)

- ullet Standard normal: $N\left(0,1
 ight) ullet$
- Cauchy distribution
- \circ Exponential with parameter 1: Exp (1)
- O Uniform on the interval $[-\sqrt{3},\sqrt{3}]$: $Unif[-\sqrt{3},\sqrt{3}]$
- $^{\circ}$ Laplace distribution with parameter $\sqrt{2}$: Lap $(\sqrt{2})$

Solution:

The distribution for this QQ plot is **Standard Gaussian N** (0,1). Observe that the QQ plot lies very close to the line y=x, so this suggests that the data is distributed as N(0,1). By process of elimination, we conclude that the data must have been generated from a standard Gaussian.

Submit

You have used 1 of 2 attempts

• Answers are displayed within the problem

Matching a Distribution to a QQ Plot V

1/1 point (graded)

Normal Q-Q Plot

- Standard normal: $N\left(0,1\right)$
- Cauchy distribution
- Exponential with parameter 1: Exp (1)
- O Uniform on the interval $[-\sqrt{3}, \sqrt{3}]$: Unif $[-\sqrt{3}, \sqrt{3}]$
- Laplace distribution with parameter $\sqrt{2}$: Lap $(\sqrt{2})$

Solution:

The distribution for this QQ plot is the **Laplace distribution** $\operatorname{Lap}(\sqrt{2})$. A Laplace random variable takes values on all of $\mathbb R$. Since the pdf $f_{\sqrt{2}}$ of the Cauchy distribution decays on the order of $e^{-|x|}$ as $x\to\infty$, we know that its tails should be heavier than those of a standard normal, whose tails decay at the rate e^{-x^2} . On the right, we see that the QQ plot displayed lies above the line y=x. On the left, we see that the QQ plot displayed lies below the line y=x. This indicates that the distribution displayed moderately heavier tails than that of a Gaussian, so by this observation and the process of elimination, the Laplace distribution must be the correct answer.

Submit

You have used 1 of 2 attempts

1 Answers are displayed within the problem

Discussion

Show Discussion

Topic: Unit 4 Hypothesis testing:Homework 8 / 3. QQ Plots