第4章 Cortex-Mx MCU [系统]

Application Processors (应用处理器)

-面向移动计算,智能手机,服务器等市场的的高端处理器。这类处理器运行在很高的时钟频率(超过1GHz),支持像Linux,Android,MS Windows和移动操作系统等完整操作系统需要的内存管理单元(MMU)

ARM Cortex

Real-time Processors (实时处理器)

-面向实时应用的高性能处理器系列,例如硬盘控制器, 汽车传动系统和无线通讯的基带控制。实时处理器运行在 比较高的时钟频率(例如200MHz 到 >1GHz),响应延 迟非常低。可支持大量的实时操作系统(RTOS)

Microcontroller Processors (微控制器处理器)

2019年全球Arm芯片的出货量达到<u>64亿颗</u>,其中 Cortex-M处理器的出货量达到惊人的<u>43亿颗</u>,这 主要是因为嵌入式终端智能需求的爆发性增长

Advanced 先进的 以最佳功耗 实现最高性能

应用领域:

汽车

工业 医学 调制解调器 存储

Z 144引脚

Real-Time Microcontrollers 实时的

实时任务处理

应用领域:

汽车

相机

工业

医学

应用领域:

微处理器

最节能的

嵌入式设备

汽车 能源网 医学

智能卡

智能设备

嵌入式

进一步的、 不断的细分

比更高效,性能更高。M33 还支持 TrustZone 安全扩展

ARM的发展(简)

Advanced RISC Machines

X86

项目	ARM7	ARM9	ARM10	ARM11	
流水线	3	5	6	8	
典型频率(MHz)	80	150	260	335	
功耗 (mW/MHz)	0.06	0.19 (+cache)	0.5 (+cache)	0.4 (+cache)	
性能 MIPS**/MHz	0.97	1.1	1.3	1.2	1,400
架构	冯·诺伊曼	哈佛	哈佛	哈佛	1,200
乘法器	8×32	8×32	16×32	16×32	1,000
					800
					600
					200
			Man Bak 175 4		
			SH-TAXX	PL SUX SPARC STARY	1998 1999 2000 2001 2002 2003 2004 2005 2006 2007

MCU主要厂商

Leading MCU Suppliers (\$M)

2016 Rank	Company	2015	2016	% Change	% Marketshare
1	NXP*	1,350	2,914	116%	19%
2	Renesas	2,560	2,458	-4%	16%
3	Microchip**	1,355	2,027	50%	14%
4	Samsung	2,170	1,866	-14%	12%
5	ST	1,514	1,573	4%	10%
6	Infineon	1,060	1,106	4%	7%
7	Texas Instruments	820	835	2%	6%
8	Cypress***	540	622	15%	4%

LPC1000系列: Cortex-M0~M3

LPC2000系列: ARM7

LPC3000系列: ARM9

AM35X,AM37X系列: Cortex-A8

AM17X, AM18X 系列: ARM9

LM3S1000~9000: Cortex-M3

STM32F系列:

STM32L系列:

Cortex-M0~M7

STM32W 系列:」

S3C2410,2440: ARM9

S3C6410: ARM11

M3 MCU

小而更完备的系统,而非一个功能元件(CPU仅是系统内一个组成部分)

实例参考

基于某Mx 内核的MCU

扩展少量外围元件

可构成一定变化、多种类型的、满足现实应用的微处理器系统

M3 的进步

Cortex-M3和ARM7的比较

)	Cortex-M	3和ARM7的比较
比较项目	ARM7	Cortex-M3
架构	ARMv4T(冯诺依曼)	ARMv7-M(哈佛)
DK1*9	指令和数据总线共用,会出现瓶颈	指令和数据总线分开,无瓶颈
指令集	32位ARM指令+16位Thumb指令	Thumb/Thumb-2指令集 16位和32位
旧マ朱	两套指令之间需要进行状态切换	指令可直接混写,无需状态切换
流水线	3级流水线 若出现转移则需要刷新流水	3级流水线+分支预测 出现转移时流水线
/)I[/]\5%	线,损失惨重	无需刷新,几乎无损失
性能	0.95DMIPS/MHz(ARM模式)	1.25DMIPS/MHz
功耗	0.28mW/MHz	0.19mW/MHz
低功耗模式	无	内置睡眠模式
面积	0.62mm2(仅内核)	0.86mm2 (内核+外设)
THE	普通中断IRQ和快速中断FIQ太少,大	不可屏蔽中断NMI+1-240个物理中断
中断	量外设不得不复用中断	每个外设都可以独占一个中断,效率高
中断延迟	24-42个时钟周期,缓慢	12个时钟周期,最快只需6个
中断压栈	软件手工压栈,代码长且效率低	硬件自动压栈,无需代码且效率高
存储器保护	无	8段存储器保护单元(MPU)
内核寄存器	寄存器分为多组、结构复杂、占核面积 多	寄存器不分组(SP除外),结构简单
工作模式	7种工作模式,比较复杂	只有线程模式和处理模式两种,简单
乘除法指令	多周期乘法指令,无除法指令	单周期乘法指令,2-12周期除法指令
/>+8.0c	无访问外设寄存器需分"读-改-写"3步	先进的Bit-band位操作技术,可直接访问
位操作	走	外设寄存器的某个值
系统节拍定	无	内置系统节拍定时器,有利于操作系统移
时		植

M3 MCU资源 (示例)

配备了一定数量存贮MEM资源(RAM, Flash)

配备了常用、基本的IO资源(GPIO、串行类接口、定时器、 模入模出AD/DA等

Peripherals			STM32F103Rx			STMB2F103Vx			STMB2F103Zx			
Flash memory in Kbytes		256	384	512	256	384	512	256	384	512		
SRAM ir	n Kbytes		48	64 ⁽¹⁾		48	64		48 64		4	
FSMC			No			Yes ⁽²⁾			Yes			
	General-purpo	se	4									
Timers	Advanced-cor	ntrol	2									
	Basic		2									
	SPI(I ² S) ⁽³⁾		3(2)									
	I ² C		2									
Comm	USART		5									
Commi	Comm		1									
	CAN		1									
	SDIO		1									
GPIOs		51			80			112				
12-bit ADC Number of channels		3 3 3 16 16 21										
12-bit DAC Number of channels		2 2										
CPU frequency		72 MHz										

冯诺依曼体系——五大功能部分,存贮器 与输入、输出是重要功能部分

传统基于CPU搭建的小规模微处理器系统,需要外围存贮器、IO接口等

MCU可在尺寸空间、可靠性、功耗、 开发周期、综合成本等方面有优势

M3 存贮资源

目前可具备 数百 kB 级 Flash 数十 kB 级 RAM

ARM M系列体系可支持访问、 寻址GB级空间

0xFFFFFFF System Level 0xE0000000 0xDFFFFFF External Device 0xA0000000 0x9FFFFFF 1GB External RAM 0x60000000 0x5FFFFFF 512MB Peripherals 0x40000000 0x3FFFFFF 512MB SRAM 0x20000000 0x1FFFFFFF 512MB Code 0x00000000

时钟相关

时钟相关

(参考)

STM32F10xx时钟系统框图及说明 内置配振荡器 晶体振荡器 PLL可以关闭或 AHB预分频,分频因子共有9种选择 分别为1、2、4、8、16、64、128、256、512 可被关闭 可被关闭或被旁路 倍频x2...x16 共16种选择 HCLK up to 8MHz **HSI RC** 72MHz PCLK1 up to 36MHz OSC_OUT HSE PLLCLK TIM2,3,4 SYSCLK AHB APB1 ➤ TIMxCLK PLL Multiplier Osc Prescaler Prescaler 通用定时器时钟 系统时钟 OSC_IN x1 or x2 up to 72 APB预分频除1 MHz 输出 时乘1否则乘2 内部时钟 PCLK2 up to 72MHz SYSCLK TIM1 APB2 Multiplier TIM1CLK HSI Prescaler 一旦HSE失效 x1 or x2 TIM1时钟 ÷128 MCO HSE 则自动切换至 SYSCLK=HSI PLLCLK **ADCCLK** ADC 48MHz or 72MHz ADC时钟 Prescaler 共有5种选择,分别为 OSC32_IN 32.768KHz RTCCLK 1, 2, 4, 8, 16 LSE RTC时钟 Osc OSC32_OUT USB USBCLK 48MHz 因子共有4种选择, Prescaler USB时钟 分别为2、4、6、8 ÷ 1 or ÷ 1.5 ∾40KHz 内置RC振荡器 IWDGCLK LSI 独立看门狗时钟 可被关闭 RC USB預分频 晶体振荡器 共有2种选择 STM32 释放您的创造力 可被关闭或被旁路 +1 和+1.5

作为包含多个功能部件及不同类型IO接口的系统,需要提供多样选择的时钟发生与倍频、分频。以满足各种应用需要(参考)

总线相关

总线(bus)是系统内各功能部件之间访问、控制的信号线总称

往往有共享性、多根、多组特征。

如数据总线 (Data Bus) 可连接多个部件。 多根常见8、16、32等

总线的主要参数

总线宽度

指总线能同时传送数据的位数。 如32位总线具有32位数据传送能力。

总线频率

指总线的工作速度,频率越高, 速度越快。

总线带宽

指一定时间内总线传送的数据总量,用每秒最大传送数据量来衡量。

MCU 包含了较多类型差异、速度多样的部件 可能存在需要采用不同速度的总线访问 也是基于具体类型及综合性能的考虑

高速总线

总线互联电路

高速设备

AMBA: Advanced Microcontroller Bus Architecture

AMBA是ARM 公司研发的一种总线规范。

> AHB (Advanced High-performance Bus):

用于高性能系统模块的连接,支持突发模式数据传输和数据分割传输;可以有效地连接处理器、片上和片外存储器,支持流水线操作。

> APB (Advanced Peripheral Bus):

用于较低性能外设的简单连接,一般是接在AHB系统总线上的第二级总线。

MCU 系统搭建与扩展可能的选择

如前所示,MCU包含了一定的MEM与IO资源,但实际应用系统往往有各自需求与变化。 尽管目前的MCU有多样的系列与型号,但其定位依然是提供基本资源

MCU首先提供了一定数量、不同类型的串行接口 (SPI、I2C、SCI、USB、CAN...)

其中SPI可扩展很多外围功能部件

具有SPI、I2C接口的芯片在目前有较大的选择范围

以串行方式搭建、扩展,满足实际应用系统的需要,是主要考虑方向

但在一些应用中,与外部设备(功能元件)有大量、快速、频繁的数据传输与访问时以并行总线方式,实现CPU与外围部件(大容量存贮器、快速ADC、LCD部件)等,也是必要的

MCU 可否提供外部总线方式,访问、连接、扩展外部部件 (MEM、IO)

并行外部总线扩展----- FSMC

FSMC(Flexible Static Memory Controller, 灵活静态存储控制器)是一种总线扩展技术。用于外部存储器、外部元件、快速、大量数据传输的系统扩展

- 支持多种<u>静态存储器</u>类型。通过FSMC可以与SRAM、<u>ROM</u>、<u>PSRAM</u>、<u>NOR Flash</u>和NANDFlash <u>存储器</u>的<u>引脚</u>直接相连。
- 支持丰富的存储操作方法。FSMC不仅支持多种数据宽度的异步读/写操作,而且支持对NOR/PSRAM/NAND存储器的同步突发访问方式。
- 支持同时扩展多种存储器。FSMC的映射<u>地址空间</u>中,不同的BANK是独立的,可用于扩展不同类型的存储器。当系统中扩展和使用多个外部存储器时,FSMC会通过总线悬空延迟时间参数的设置,防止各存储器对总线的访问冲突。
- 支持更为广泛的<u>存储器</u>型号。通过对FSMC的时间参数设置,扩大了系统中可用存储器的速度范围, 为用户提供了灵活的<u>存储芯片</u>选择空间。
 - 支持代码从FSMC扩展的外部存储器中直接运行,而不需要首先调入内部SRAM。

灵活、多种的总线类型, 如数据、地址线复用, 可插入等待周期的总线访问形式

其中一种方式 示意

Pin Name 🌻	Signal on Pin	GPIO output	GPIO mode	GPIO Pull-up	Maximum ou
PD0	FSMC_D2	n/a	Alternate Fu	No pull-up an	Very High
PD1	FSMC_D3	n/a	Alternate Fu	No pull-up an	Very High
PD4	FSMC_NOE	n/a	Alternate Fu	No pull-up an	Very High
PD5	FSMC_NWE	n/a	Alternate Fu	No pull-up an	Very High
PD7	FSMC_NE1	n/a	Alternate Fu	No pull-up an	Very High
PD11	FSMC_A16	n/a	Alternate Fu	No pull-up an	Very High
PD14	FSMC_D0	n/a	Alternate Fu	No pull-up an	Very High
PD15	FSMC_D1	n/a	Alternate Fu	No pull-up an	Very High
PE7	FSMC_D4	n/a	Alternate Fu	No pull-up an	Very High
PE8	FSMC_D5	n/a	Alternate Fu	No pull-up an	Very High
PE9	FSMC_D6	n/a	Alternate Fu	No pull-up an	Very High
PE10	FSMC_D7	n/a	Alternate Fu	No pull-up an	Very High

应用中,有时会遇到按"位"操作的应用。

01100101 如读取b2,或对其置1 (set),或置0(clr)

常规做法是按字(节)访问,通过字(节)的 AND \ OR 操作,改变其取值

位应用常见吗?

Without Bit-Band

LDR R0,=0x20000000; Setup address

LDR R1, [R0] ; Read

ORR.W R1, #0x4 ; Modify bit

STR R1, [R0] ; Write back result

With Bit-Band

LDR R0,=0x22000008; Setup address

MOV R1, #1 ; Setup data

STR R1, [R0] ; Write.

无位带

LDR R0,=0x20000000 ; 建立地址

LDR R1, [R0] ; Read

UBFX.W R1,R1, #2, #1 ; 提取bit2

LDR R0,=0x22000008 ; 建立地址

LDR R1, [R0] ; Read

有位带

原子

Cortex-Mx

存储器系统支持"位带"(bit-band)操作,实现对单一比特的原子操作

0x4000_0000 - 0x400F_FFFF (片上外设区中的最低1MB)

0x2000_0000 - 0x200F_FFFF (SRAM 区中的最低1MB)

位带别名区(共32MB)

位带(Bit-band)操作可以使用普通的加载/存储指令来对单一的比特进行读写。可通过"位带别名区"被访问。

```
#define BITBAND(addr, bitnum) ((addr & 0xF0000000)+0x20000000 + ((addr &0xFF FFF)<<5) + (bitnum<<2))

#define MEM_ADDR(addr) *((volatile unsigned long *)(addr))

MEM_ADDR(BITBAND( (u32)&CRCValue, 3 )) = 0x1;

if(MEM_ADDR(BITBAND( (u32)&CRCValue, 23 ))==1)

{
}
```

```
对于IO------例如亮、灭LED
                                                                     /* Configure the interrupt mask */
                                                                     if ((GPIO Init->Mode & GPIO MODE IT) == GPIO MODE IT)
使用STM32库:
                                                                      SET BIT(EXTI->IMR, iocurrent);
                                             //关LED4
         GPIO_ResetBits(GPIOC, GPIO_Pin_4);
                                                                     else
         GPIO SetBits(GPIOC, GPIO Pin 7);
                                             //开LED7
                                                                      CLEAR BIT(EXTI->IMR, iocurrent);
一般读操作:
         STM32_Gpioc_Regs->bsrr.bit.BR4 =1; // 1: 清除对应的ODRy位为0
         STM32_Gpioc_Regs->bsrr.bit.BS7 =1; // 1: 设置对应的ODRy位为1
如果使用位带别名区操作:
         STM32_BB_Gpioc_Regs->BSRR.BR[4] =1; // 1: 清除对应的ODRy位为0
         STM32_BB_Gpioc_Regs->BSRR.BS[7] =1; // 1: 设置对应的ODRy位为1
```