Outline

- 1) Maximum Likelihood Estimator
- 2) Asymptotic Distribution of MLE
- 3) Consistency of MLE

Maximum Likelihood Estimation

For a generic dominated family $P = \{P_0 : \Theta \in \Theta\}$ with densities P_0 , a simple estimator for Θ is $\widehat{\Theta}_{MLE}(X) = \underset{\Theta \in \Theta}{\operatorname{argmax}} P_{\Theta}(X)$ = $\underset{\Theta \in \widehat{\Theta}}{\operatorname{argmax}} \mathcal{L}(\Theta; X)$

Remark 1: argmax may not exist, be unique, or be computable

Remark 2: doesn't depend on parameterization or base measure, MLE for $g(\theta)$ is $g(\hat{\theta}_{MLE})$

 $E \times \rho_{3}(x) = e^{\gamma' T(x)} - A(\gamma) h(x)$ $L(\gamma; x) = \gamma' T(x) - A(\gamma) + \log h(x)$ $\nabla L(\gamma; x) = T(x) - E_{\gamma} T(x)$ $\Rightarrow \gamma_{MCE} \text{ solves } T = E_{\gamma} T \text{ if such } \gamma \text{ exists}$

Because $\nabla l(\eta; X) = -Var_{\eta}(T)$ is negative definite unless $\eta T = 0$ (in which case param. redundant) \Rightarrow at most 1 solution exists

Let $M = \mu(\eta) = \nabla A(\eta)$, $\eta = \psi'(T)$

Ex
$$X_i$$
 if $e^{\gamma T(x)} - A(\gamma) h(x)$ $\gamma \in \Xi \subseteq \mathbb{R}$
 $\hat{\gamma} = \hat{\gamma}^i(T)$, $\hat{T} = \frac{1}{n} \Xi T(x_i)$

Assume $\gamma \in \Xi^0$. $\hat{\gamma}(\gamma) = \hat{A}(\gamma) = 0$ $\forall \gamma \in \Xi^0$

so γ^i cts, $(\gamma^i)(m) = \frac{1}{\hat{\gamma}(\gamma)} = \frac{1}{\hat{A}(\gamma)}$

Consistency: \hat{T} fix M

Cts in $\hat{\gamma}(\tau) = \hat{\gamma}(\tau) = \hat{\gamma}(\tau)$
 $= \hat{\gamma}(0) \hat{A}(\gamma)$
 $= \hat{\gamma}(0) \hat{A}(\gamma)$

Delta method:

 $\hat{\gamma}(\eta) = \hat{\gamma}(\eta) = \hat{\gamma}(\eta) = \hat{\gamma}(\eta)$
 $= \hat{\gamma}(\eta) = \hat{$

Ex
$$X_1,...,X_n \stackrel{iid}{\sim} Pois(\Theta)$$
, $\eta = log \Theta$
 $\widehat{\eta} = log \overline{X}$, $S_n(\overline{X} - \Theta) \Rightarrow N(O, \Theta)$
 $\overline{J_n}(\widehat{\eta} - \overline{\gamma}) = \overline{J_n}(log \overline{X} - log \Theta)$
 $\Rightarrow N(O, \Theta \cdot \frac{1}{\sigma^2})$ (Dethi method)

 $= N(O, \Theta^{-1})$

But \forall finite n , $\forall O = O$:

 $P_O(\widehat{\eta} = -\infty) = P_O(X_1 = O)^n$
 $= e^{-\Theta n} = O$
 $\Rightarrow \widehat{E}\widehat{\eta} = -\infty$ $\forall cr(\widehat{\eta}) = \infty$

[MLE can have embarrassing finite-sample performance despite being asy. aptimal!]

 P_{rop} : If $P(B_n) \Rightarrow O$, $X_n \Rightarrow X_n$ Z_n arbitrary then $X_n 1_{B_n} + Z_n 1_{B_n} \Rightarrow X$
 $P_{roof} P(||Z_n 1_{B_n}|| > E) \leq P(B_n) \Rightarrow O$ so $Z_n 1_{B_n} = O$

Also $1_{B_n} = 1$, apply $S_n = 1$ and $S_n = 1$.

So $Z_n = 1$ and $Z_n = 1$ are $Z_n = 1$.

Asymptotic Efficiency

The nice behavior of MLE we bound in the exponential family case generalizes to a much broader class of models]

Setting $X_1, \dots, X_n \stackrel{iid}{\sim} \rho_{\Theta}(x)$ $\Theta \in \Theta \subseteq \mathbb{R}^d$ ρ_{Θ} "smooth" in Θ , e.g. Q cts integrable derives (can be relaxed)

Let $l_i(\theta; X_i) = log \rho_{\theta}(X_i)$, $l_n(\theta; X_i) = \frac{2}{5}l_i(\theta; X_i)$ $J_i(\theta) = Var_{\theta}(\nabla l_i(\theta; X_i)) = -\mathbb{E}_{\theta}[\nabla^2 l_i(\theta; X_i)]$ $J_n(\theta) = Var_{\theta}(\nabla l_n(\theta; X_i)) = nJ_i(\theta)$

We say an estimator $\hat{\theta}_n$ is asymptotically efficient if $J_n(\hat{\theta}_n - \theta) \stackrel{P_0}{\Rightarrow} \mathcal{N}(0, J_n(\theta)^{-1})$ (g: $\Theta \rightarrow \mathbb{R}$)

Delta method for differentiable estimand $g(\theta)$

 $J_{n}\left(g(\hat{\theta}_{n})-g(\theta)\right)\stackrel{P_{\theta}}{\Rightarrow}N(0,\nabla g(\theta)^{T}J_{n}(\theta)\nabla g(\theta))$ also achieves CRLB if $\hat{\theta}_{n}$ does; g diff.

Asymptotic Dist. of MLE

Under mild conditions, OMLE is asy. Gaussian, efficient We will be interested in $l(\theta; X)$ as a function of θ Notate "true" value as θ_0 (X~ P_0)

(⊖_o ∈ ⊝°) Derivatives of l_n at θ_o :

 $\nabla L_{1}(\theta_{o};X_{i}) \stackrel{\text{id}}{\sim} (0, J_{1}(\theta_{o}))$

 $\frac{1}{n} \nabla \ell_n(\theta_0; X) = J_n \cdot \frac{1}{n} \Sigma \nabla \ell_n(\theta_0; X_i) \xrightarrow{\beta_0} \mathcal{N}(0, J_n(\theta_0))$

 $\frac{1}{n} \nabla^2 \ell_n(\theta_o; X) \stackrel{f_o}{\to} E_o \vec{\nabla} \ell_n(\theta_o; X_i) = -T_n(\theta_o)$

Proof sketch:

between 0, ô, $0 = \nabla l_n(\hat{\theta}_n; \chi) = \nabla l_n(\theta_o) + \nabla^2 l_n(\tilde{\theta}_n) (\hat{\theta}_n - \theta_o)$

 $\nabla \left(\hat{\theta}_{n} - \theta_{n} \right) = - \left(\frac{1}{n} \nabla^{2} \ell_{n} \left(\tilde{\theta}_{n} \right) \right)^{-1} \stackrel{!}{=} \nabla \ell_{n} (\theta_{n})$

(Want) $\stackrel{P}{\longrightarrow} J(\theta_{\bullet})' \Rightarrow N(0, J(\theta_{\bullet}))$

 $\Rightarrow N(0, 5(0))$

More rigorous proof later, but note we need consistency of On first to even justify Taylor expansion

Asymptotic Picture
$$(d=1)$$

Recall $(l_n(\theta)-l_n(\theta_0))_{\theta\in\Theta}$ is minimal suff.

Quadratic approximation near θ_0 :

 $l(\theta)-l_n(\theta_0)\approx l_n(\theta_0)(\theta-\theta_0)+\frac{1}{2}l_n(\theta_0)(\theta-\theta_0)^2$
 $\approx N(0, nJ_1(\theta_0))$
 $\approx -nJ_1(\theta_0)$

Caussian linear term Deterministic curvature

$$\int_{n}^{n} (\theta_{0}) = score$$

$$\int_{n}^{n} (\theta_{0}) - \int_{n}^{n} (\theta_{0})$$

$$\frac{1}{n} \int_{n}^{n} (\theta_{0}) - \int_{n}^{n} (\theta_{0})$$

$$\frac{1}{n} \int_{n}^{n} (\theta_{0}) - \int_{n}^{n} (\theta_{0})$$

$$\int_{n}^{n} - \theta_{0} = \frac{1}{n} \int_{n}^{n} (\theta_{0}) \int_{n}^{n} \int$$