Computational Economics

HW6 – Solutions

Bálint Szőke

March 24, 2016

Exercise 1

CLAIM: If $X \in \mathcal{M}(n \times k)$ with linearly independent columns, then X'X is invertible.

Proof:

First show that the $k \times k$ symmetric matrix $\mathbf{X}'\mathbf{X}$ is positive definite. To this end, let $\mathbf{y} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ and write the quadratic form

$$\mathbf{y}'(\mathbf{X}'\mathbf{X})\mathbf{y} = (\mathbf{X}\mathbf{y})'(\mathbf{X}\mathbf{y}) = \|\mathbf{X}\mathbf{y}\|^2 > 0$$

The strict inequality follows from the fact that $\mathbf{X}\mathbf{y} \neq \mathbf{0}$, because the columns of \mathbf{X} are linearly independent and $\mathbf{y} \neq \mathbf{0}$. The spectrum of a symmetric, positive definite matrix contains only strictly positive eigenvalues, so the determinant (given by the product of the eigenvalues) is nonzero and the matrix $\mathbf{X}'\mathbf{X}$ is invertible.

Exercise 2

CLAIM: Let $\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}'$, where $\mathbf{X} \in \mathcal{M}(n \times k)$ with linearly independent columns. If k = n, then $\mathbf{P} = \mathbf{I}_n$.

Proof:

If **X** is square, the fact that its columns are linearly independent implies that $\operatorname{rank}(\mathbf{X}) = n$ and s both **X** and **X**' are invertible. Then,

$$\mathbf{P} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}' = \mathbf{X}\mathbf{X}^{-1}(\mathbf{X}')^{-1}\mathbf{X}' = \mathbf{I}_n$$

Intuition: The columns of **X** constitute a basis for \mathbb{R}^n , because they are linearly independent and there is n of them (i.e. the dimension of the space). Moreover, since X is square, **P** is an $n \times n$ matrix, hence it projects vectors $\mathbf{y} \in \mathbb{R}^n$ onto \mathbb{R}^n , hence $\mathbf{P}\mathbf{y} = \mathbf{y}$.

Exercise 3

CLAIM: The projection of $\mathbf{y} \in \mathbb{R}^n$ onto span $\{1\}$ is the mean of the elements of \mathbf{y} .

Proof:

Using the formula for the projection matrix associated with the 1 vector, the projection of $\mathbf{y} \in \mathbb{R}^n$ onto span $\{1\}$ is

$$\mathbf{P}\mathbf{y} = \mathbf{1}(\mathbf{1}'\mathbf{1})^{-1}\mathbf{1}'\mathbf{y} = \frac{1}{n}\mathbf{1}\mathbf{1}'\mathbf{y} = \left(\frac{1}{n}\sum_{i=1}^{n}\mathbf{y}_{i}\right)\mathbf{1}$$

Exercise 4

CLAIM: Let $\mathbf{y} \in \mathbb{R}^n$ and $\mathbf{X} \in \mathcal{M}(n \times k)$ with linearly independent columns. Let $S = \operatorname{span}(\mathbf{X})$ and $\hat{\mathbf{u}} = \mathbf{y} - \mathbf{P}\mathbf{y}$. If \mathbf{X} has a constant column, then elements of $\hat{\mathbf{u}}$ sum to 0.

PROOF:

Since $\hat{\mathbf{u}} = \mathbf{y} - \mathbf{P}\mathbf{y}$, where \mathbf{P} is the projection operator onto S, we have $\hat{\mathbf{u}} \perp S$. $\operatorname{col}(\mathbf{X})$ is a basis for S, so it follows that $\hat{\mathbf{u}} \perp \operatorname{col}_i \mathbf{X}$ for every $i = 1, \ldots, k$. If one of the columns is a constant $\alpha \mathbf{1}$ with $\alpha \in \mathbb{R} \setminus \{0\}$, then

$$\hat{\mathbf{u}} \perp \alpha \mathbf{1} \quad \Leftrightarrow \quad \langle \hat{\mathbf{u}}, \alpha \mathbf{1} \rangle = 0 \quad \Leftrightarrow \quad \sum_{i=1}^{n} \hat{\mathbf{u}}_i = 0$$

Exercise 5

CLAIM: If S is a nonempty linear subspace of \mathbb{R}^n , then $S \cap S^{\perp} = \{0\}$.

PROOF:

First, S and S^{\perp} are both linear subspaces of \mathbb{R}^n , hence $\mathbf{0} \in S \cap S^{\perp}$. Suppose now that there is another vector $\mathbf{y} \in \mathbb{R}^n \setminus \{\mathbf{0}\}$ in the intersection of S and S^{\perp} . $\mathbf{y} \in S^{\perp}$ implies $\mathbf{y} \perp S$, so if we add this to $\mathbf{y} \in S$, we arrive at

$$\mathbf{y} \perp \mathbf{y} \quad \Leftrightarrow \quad \langle \mathbf{y}, \mathbf{y} \rangle = 0 \quad \Leftrightarrow \quad \mathbf{y} = \mathbf{0}$$

Contradiction.