Banker's Algorithm

- Assume we have the following resources:
 - 5 tape drives
 - 2 graphic displays
 - 4 printers
 - 3 disks

We can create a vector representing our total resources: Total = (5, 2, 4, 3).

- Consider we have already allocated these resources among four processes as demonstrated by the following matrix named **Allocation**.

Process	Tape drive	Graphic Dis	Printers	Disk	
А	2	0	1	1	
В	0	1	0	0	
С	1	0	0 1		
D	1	1	0	1	

- The vector representing the allocated resources is the sum of these columns: Allocated = (4, 2, 2, 3).
- We also need a matrix to show the number of each resource still needed for each process; we call this matrix **Need**.

Process	Tape drive	Graphic Dis	Printers	Disk	
А	1	1	0	0	
В	0	1	1	2	
С	3	1	0	0	
D	0	0	1	0	

- The vector representing the available resources will be the sum of these columns subtracted from the Allocated vector: **Available = (1, 0, 2, 0)**.

The algorithm:

- 1. Find a row in the **Need** matrix which is less than the **Available** vector. If such a row exists, then the process represented by that row may complete with those additional resources. If no such row exists, eventual deadlock is possible.
- 2. You want to double check that granting these resources to the process for the chosen row will result in a safe state. Looking ahead, pretend that that process has acquired all its needed resources, executed, terminated, and returned resources to the **Available** vector. Now the value of the **Available** vector should be greater than or equal to the value it was previously.
- 3. Repeat steps 1 and 2 until all the processes have successfully reached pretended termination (this implies that the initial state was safe); or deadlock is reached (this implies the initial state was unsafe).

Please follow the following iterations:

Iteration 1:

- Examine the **Need** matrix. The only row that is less than the **Available** vector is the one for Process D.

Need(Process D) =
$$(0, 0, 1, 0) < (1, 0, 2, 0) = Available$$

- If we assume that Process D completes, it will turn over its currently allocated resources, incrementing the **Available** vector.

```
(1, 0, 2, 0) Current value of Available
+ (1, 1, 0, 1) Allocation (Process D)
(2, 1, 2, 1) Updated value of Available
```

Iteration 2:

 Examine the Need matrix, ignoring the row for Process D. The only row that is less than the Available vector is the one for Process A.

Need(Process A) =
$$(1, 1, 0, 0) < (2, 1, 2, 1) =$$
 Available

- If we assume that Process A completes, it will turn over its currently allocated resources, incrementing the Available vector.

```
(2, 1, 2, 1) Current value of Available
+ (2, 0, 1, 1) Allocation (Process A)

(4, 1, 3, 2) Updated value of Available
```

Iteration 3:

Examine the **Need** matrix without the row for Process D and Process A. The only row that is less than the Available vector is the one for Process B.

Need(Process B) =
$$(0, 1, 1, 2) < (4, 1, 3, 2) =$$
 Available

- If we assume that Process B completes, it will turn over its currently allocated resources, incrementing the Available vector.

```
(4, 1, 3, 2) Current value of Available
+ (0, 1, 0, 0) Allocation (Process B)
```

(4, 2, 3, 2) Updated value of **Available**

Iteration 4:

- Examine the **Need** matrix without the rows for Process A, Process B, and Process D. The only row left is the one for Process C, and it is less than the **Available** vector.

Need(Process C) =
$$(3, 1, 0, 0) < (4, 2, 3, 2) = Available$$

- If we assume that Process C completes, it will turn over its currently allocated resources, incrementing the **Available** vector.

Notice that the final value of the Available vector is the same as the original Total vector, showing the total number of all resources:

Total =
$$(5, 2, 4, 2) < (5, 2, 4, 2) = Available$$

This means that the initial state represented by the Allocation and Need matrices is a safe state. The safe sequence that assures this safe state is <D, A, B, C>.

Problem: Find the safe sequence for the following allocation

	Allocation				Max			Available				
	Α	В	С	D	Α	В	С	D	Α	В	С	D
P ₀	0	1	1	0	0	2	1	0	1	5	2	0
P ₁	1	2	3	1	1	6	5	2				
P ₂	1	3	6	5	2	3	6	6				
P ₃	0	6	3	2	0	6	5	2				
P ₄	0	0	1	4	0	6	5	6				