UNIVERSIDADE SÃO JUDAS TADEU

Natan Fernandes Araujo Ibiapina - 821225920 Gabriela Alves Rodrigues - 82311687 Graziele Cristina Matsuzaki - 824127569 Henryk Bagdanovicius Roza - 823135401

MODELOS, MÉTODOS E TÉCNICAS DE ENGENHARIA DE SOFTWARE PROJETO A3 - GESTÃO DE FUNCIONÁRIOS

São Paulo

2025

SUMÁRIO

1. INTRODUÇÃO	3
2. CONTEXTUALIZAÇÃO DO PROJETO	3
2.1. O CLIENTE	3
2.1.1. NECESSIDADES DA EMPRESA	3
2.1.2. ELICITAÇÃO DE REQUISITOS	4
3. REQUISITOS FUNCIONAIS	5
4. REQUISITOS NÃO FUNCIONAIS	6
5. PRIMEIRA VERSÃO DO BACKLOG DE TAREFAS	8
6. ESPECIFICAÇÃO DE CASOS DE USO	10
6.2. DIAGRAMA DE CASO DE USO	16
7. GESTÃO E PROCESSO DE DESENVOLVIMENTO	17
7.1. SPRINTS	18
8. MATRIZ DE RASTREABILIDADE	21
9. DESIGN E ARQUITETURA DO SISTEMA	23
9.1. ARQUITETURA DO SISTEMA	23
9.2. CAMADAS DO SISTEMA	23
9.3. EXEMPLO DE UM FLUXO DE REQUISIÇÃO PADRÃO MVC	24
10. PRINCIPAIS TECNOLOGIAS UTILIZADAS	25
11. DEVOPS E DEPLOY	26
11.1 REPOSITÓRIO E ESTRUTURA DE PASTAS	26
11.2 IMPLEMENTAÇÃO CI/CD	27
11.2.1 FUNCIONALIDADES DA PIPELINE CI/CD	27
12. PROTOTIPAGEM	28
13. CONCLUSÃO	29

1. INTRODUÇÃO

Este documento tem como objetivo apresentar a documentação do Projeto A3 da UC Modelos, Métodos e Técnicas de Engenharia de Software, sendo uma especificação técnica de um sistema de gestão de colaboradores de empresas. A proposta é simular o desenvolvimento de um sistema web, que será criado como solução para a necessidade de uma corporação hipotética, abordando práticas de engenharia de software, metodologias ágeis como SCRUM, requisitos funcionais e não funcionais, caso de uso e considerando aspectos como qualidade, desempenho, usabilidade, entre outros.

2. CONTEXTUALIZAÇÃO DO PROJETO

O projeto simula o desenvolvimento de um sistema de gestão de colaboradores, com funcionalidades como cadastro, edição, exclusão, consulta dos funcionários da empresa. O sistema também é responsável pelo controle frequência dos funcionários, com a funcionalidade de registro de entrada, saída, almoço e retorno, além da visualização de calendários de dias úteis e feriados.

A aplicação é um software a ser construído na arquitetura MVC utilizando .NET (Framework C#), Entity Framework para a consistência de dados e SQL Server como banco de dados.

2.1. O CLIENTE

A TecnoLogix Soluções Ltda. é uma empresa brasileira de médio porte, atuante no setor de Tecnologia da Informação, com sede em São Paulo e algumas de suas equipes remotas atuando pelo país inteiro. Conta com um quadro de aproximadamente 150 colaboradores.

2.1.1. NECESSIDADES DA EMPRESA

Através de análises, reuniões e técnicas de elicitação de requisitos foram entendidas e identificadas as principais necessidades e expectativas do cliente com o software a ser desenvolvido. Foram levantadas as seguintes necessidades:

 Gestão de dados dos funcionários: A corporação necessita de um sistema que permita aos administradores cadastrarem e consultar informações detalhadas dos colaboradores, como dados pessoais e administrativos, visando maior controle interno.

- Controle de frequência e jornada de trabalho: A empresa tem uma jornada de trabalho flexível, com equipes remotas em todo país. Para manter a organização, é necessário
- Consulta de horários, folgas e férias: Os colaboradores devem poder acessar com facilidade seus registros de frequência, escalas de trabalho, períodos de folga e férias, promovendo autonomia e redução da carga sobre o RH.
- Funcionalidades para gestores: Os gestores precisam de ferramentas para consultar os dados dos funcionários sob sua supervisão, aprovar ajustes de frequência, acompanhar relatórios de jornada e desempenho, facilitando a tomada de decisões e o planejamento de equipes.

2.1.2. ELICITAÇÃO DE REQUISITOS

Para o processo de elicitação de requisitos, foram aplicadas práticas baseadas em técnicas clássicas de elicitação:

• Análise de Cenário

Foi criado um cenário de estrutura organizacional para a empresa
TecnoLogix. Esse cenário serviu como base para simular as dores,
necessidades e principais desafios enfrentados na gestão da corporação.

• Entrevista Simulada

 Em simulação, foram feitas entrevistas e reuniões que, através de perguntas e repostas, foi possível extrair os principais requisitos funcionais e não funcionais relevantes para o sistema a ser desenvolvido.

Dessa forma, foi possível definir um conjunto de requisitos funcionais, como: cadastro, edição, exclusão e consulta de colaboradores, envio e visualização de comunicados e registro de frequência. Também foi identificado uma base de requisitos não funcionais, cobrindo principalmente aspectos de segurança, desempenho, usabilidade, disponibilidade, confiabilidade e compatibilidade.

3. REQUISITOS FUNCIONAIS

ID	Requisito Funcional	Descrição
RF001	Cadastro de colaboradores	O sistema deve permitir que gestores cadastrem novos colaboradores, preenchendo dados obrigatórios como CPF, Nome, cargo, e-mail.
RF002	Edição dos dados dos colaboradores	O sistema deve permitir que gestores editem os dados de colaboradores que estejam previamente cadastrados no sistema.
RF003	Exclusão ou Inativação de colaboradores	O sistema deve permitir que os gestores inativem ou excluam permanentemente um colaborador do sistema.
RF004	Consulta de colaboradores	O sistema deve permitir que os usuários visualizem informações básicas dos colaboradores cadastrados no sistema.
RF005	Login de Usuários	O sistema deve permitir que usuários acessem o sistema através da autenticação de suas credenciais cadastradas no sistema.
RF006	Controle de acessos e permissões	O sistema deve restringir suas funcionalidades de acordo com o nível de permissão do perfil do usuário (Gestor ou funcionário).
RF007	Registro de frequência	O sistema deve permitir que colaboradores registrem sua frequência, sendo horário de entrada e saída.
RF008	Consulta de calendário	O sistema deve permitir que colaboradores consulte um calendário com seus horários e dias úteis no mês, além de feriados previstos e período de férias.
RF009	Envio de comunicados	O sistema deve permitir que gestores enviem comunicados para os colaboradores da empresa.
RF010	Visualização de comunicados	O sistema deve permitir que colaboradores visualizem os comunicados enviados pela gestão.

4. REQUISITOS NÃO FUNCIONAIS

ID	Requisito não funcional	Tipo	Descrição
RNF001	Navegadores WEB	Compatibilidade	O sistema deve poder ser acessado através dos principais navegadores WEB modernos.
RNF002	Suporte a dispositivos móveis	Compatibilidade	O sistema deve poder ser acessado por dispositivos móveis via navegador;
RNF003	Suporte a sistemas operacionais	Compatibilidade	O sistema deve ser acessível através dos principais sistemas operacionais (Windows, Linux, Android, Ios) via navegador.
RNF004	Autenticação obrigatória	Segurança	Todos os usuários devem se autenticar com suas credenciais antes de acessar o sistema.
RNF005	Dados protegidos	Segurança	Os dados dos usuários devem ser protegidos e acessados somente com autorização.
RNF006	Senhas Criptografadas	Segurança	As senhas devem ser armazenadas no banco de dados utilizando criptografias.
RNF007	Fácil utilização	Usabilidade	O sistema deve ser intuitivo e de fácil navegação até mesmo para usuários iniciantes.
RNF008	Interface Acessível	Usabilidade	A interface deve seguir boas práticas de acessibilidade.
RNF009	Interface responsiva	Usabilidade	À interface do sistema deve ser responsiva, e se adequar a diferentes dispositivos móveis.
RNF010	Mensagens intuitivas	Usabilidade	O sistema deve apresentar mensagens claras de validação, erro, sucesso, confirmação, cancelamento entre outros.

RNF011	Disponibilidade mínima	Disponibilidade	O sistema deve estar disponível 99% do tempo durante dias úteis e fora de períodos de manutenção.
RNF012	Recuperação do sistema	Disponibilidade	Em caso de falhas críticas, o sistema deve ser recuperado em até 3 horas.
RNF013	Backup diário	Confiabilidade	O sistema deve realizar backup dos dados pelo menos uma vez ao dia.
RNF014	Análise de Logs	Confiabilidade	A aplicação deve registrar falhas em arquivos de log para análise posterior.
RNF015	Código limpo e bem documentado	Manutenibilidade	O código do sistema deve ser modular, limpo e comentado.
RNF016	Documentação atualizada	Manutenibilidade	O sistema deve possuir uma documentação clara, completa e atualizada.
RNF017	Versionamento	Manutenibilidade	O código e a documentação devem ser ter controle de versionamento através do GitHub.
RNF018	Padrão Arquitetural	Manutenibilidade	O projeto/código deve seguir o padrão arquitetural MVC.
RNF019	Escalabilidade	Desempenho	O sistema deve suportar ao menos 100 usuários simultâneos sem perda significativa de desempenho.
RNF020	Performance de carregamento	Desempenho	As páginas do sistema e pequenas requisições ao banco de dados devem ser carregados em até no máximo 023 segundos.

5. PRIMEIRA VERSÃO DO BACKLOG DE TAREFAS

ID	Funcionalidade	Descrição Resumida	Prioridade
1	Cadastro de colaboradores	Permite o cadastro de novos colaboradores no sistema.	Alta
2	Edição de colaboradores	Permite a alteração dos dados dos colaboradores cadastrados.	Alta
3	Inativação/Exclusão de colaboradores	Gerencia o ciclo de vida dos colaboradores, incluindo a inativação ou exclusão.	Alta
4	Consulta de colaboradores	Permite visualizar a lista de colaboradores cadastrados.	Alta
5	Login de usuários	Permite que usuários façam login no sistema de forma segura.	Alta
6	Controle de acessos e permissões	Gerencia os perfis de acesso dos usuários no sistema.	Alta
7	Registro de frequência	Permite o registro de horários de entrada, saída e pausas dos colaboradores.	Média
8	Consulta de calendário	Apresenta um calendário com feriados e períodos de férias.	Média
9	Envio e visualização de comunicados	Permite à gestão enviar comunicados internos para os colaboradores.	Média
10	Visualização de comunicados	Permite aos colaboradores visualizar comunicados enviados.	Média

11	Navegadores WEB	Compatibilidade do sistema com os principais navegadores modernos.	Alta
12	Suporte a dispositivos móveis	Garantia de funcionamento do sistema em dispositivos móveis.	Alta
13	Suporte a sistemas operacionais	Compatibilidade do sistema com diferentes sistemas operacionais.	Alta
14	Autenticação obrigatória	Exige autenticação para acessar as funcionalidades do sistema.	Alta
15	Dados protegidos	Assegura a integridade e a proteção das informações dos usuários.	Alta
16	Senhas criptografadas	Armazena as senhas dos usuários de forma criptografada.	Alta
17	Fácil utilização	Interface desenvolvida com foco na experiência do usuário.	Média
18	Interface acessível	Sistema com acessibilidade para diferentes públicos.	Média
19	Interface responsiva	Adaptação do layout para diferentes tamanhos de tela.	Alta
20	Mensagens intuitivas	Mensagens claras e informativas para facilitar o uso.	Alta

6. ESPECIFICAÇÃO DE CASOS DE USO

6.1.1. Caso de uso 1: Cadastrar colaborador

Ator: Gestor.

Pré-Condição: O ator deve estar autenticado em um perfil com permissão de cadastro.

Pós condição: O novo colaborador deve ser cadastrado no banco de dados do sistema com suas devidas permissões.

Fluxo principal:

- 1. O ator seleciona "Cadastrar Colaborador".
- 2. O sistema exibe um formulário para preenchimento de dados do formulário.
- 3. O ator preenche os dados obrigatórios.
- 4. O ator confirma a operação.
- 5. O sistema valida os dados.
- 6. O sistema cadastra os dados do usuário no banco de dados do sistema.

Fluxos alternativos:

- 3a. Se o usuário não preencheu os dados obrigatórios:
 - 1. O sistema solicita o preenchimento dos dados faltantes.
- 5a. Se os dados foram preenchidos de forma incorreta (erro de validação):
 - 1. O sistema impede o cadastro no banco de dados e informa o preenchimento incorreto dos dados.
- 5b. Se existirem dados únicos já cadastrados no sistema (como CPF duplicado)
 - 1. O sistema impede o cadastro no banco de dados e informa a existência de dados duplicados.

6.1.2. Caso de uso 2: Editar dados de Colaborador

Ator: Gestor.

Pré-Condições: O ator deve estar autenticado em um perfil com permissão para edição e o colaborador alvo da edição deve estar cadastrado no banco de dados.

Pós-Condição: Os dados do colaborador são atualizados no banco de dados.

Fluxo principal:

- 1. O ator acessa a lista de colaboradores.
- 2. O ator seleciona o colaborador desejado.
- 3. O sistema exibe os dados atuais.
- 4. O ator edita os campos desejados.
- 5. O ator confirma a operação.
- 6. O sistema valida os dados.
- 7. O sistema pede confirmação para a edição dos dados.
- 8. O ator confirma.
- 9. O sistema atualiza o cadastro.

Fluxos alternativos:

- 6a. Se os dados foram preenchidos de forma incorreta (erro de validação):
 - 1. O sistema impede o cadastro no banco de dados e informa o preenchimento incorreto dos dados.
- 6b. Se existirem dados únicos já cadastrados no sistema (como CPF)
 - 1. O sistema impede o cadastro no banco de dados e informa a existência de dados duplicados.
- 8a. Se o ator cancela a operação:
 - 1. O sistema retorna à tela anterior sem realizar as alterações.

6.1.3. Caso de uso 3: Excluir Funcionário

Ator: Gestor.

Pré-Condições: O Ator Administrador deve estar autenticado em um perfil com permissão para edição e o colaborador alvo deve estar cadastrado no banco de dados.

Pós-Condição: O colaborador é inativado ou removido permanentemente do sistema.

Fluxo principal:

- 1. O ator acessa a lista de colaboradores.
- 2. O ator seleciona o colaborador a ser excluído.
- 3. O sistema apresenta duas opções: Inativar funcionário ou excluir permanentemente.
- 4. O ator escolhe a opção desejada.
- 5. O sistema pede confirmação.
- 6. O ator confirma.

O sistema exclui permanentemente ou inativa o funcionário.

Fluxos alternativos:

5a. Se o ator cancela a operação:

1. O sistema retorna à tela anterior sem realizar a exclusão/inativação.

6.1.4. Caso de uso 4: Enviar comunicados aos colaboradores

Ator: Gestor.

Pré-Condições: O Ator gestor deve estar autenticado em um perfil com permissão para envio de comunicados.

Pós-Condição: O comunicado enviado aos destinatários.

Fluxo principal:

- 1. O ator acessa a área de comunicados.
- 2. O ator seleciona "novo comunicado"
- 3. O sistema exibe um formulário de criação do comunicado.
- 4. O ator preenche título, mensagem e destinatários.
- 5. O ator confirma o envio.

6. O sistema envia o comunicado aos destinatários

Fluxos alternativos:

- 4a. Se um campo estiver em branco
 - 1. O sistema impede o envio do comunicado e informa os campos em branco.

6.1.5. Caso de uso 5: Consultar Funcionário

Ator: Todos os usuários.

Pré-Condições: O usuário deve estar autenticado.

Pós-Condição: Os dados do funcionário são exibidos.

Fluxo principal:

- 1. O ator acessa a lista de funcionários.
- 2. O ator seleciona um funcionário.
- 3. O sistema exibe os resultados com dados básicos do funcionário selecionado.

6.1.6. Caso de uso 6: Login

Ator: Todos os usuários.

Pré-Condições: O usuário deve já estar cadastrado no sistema.

Pós-Condição: O usuário é autenticado e acessa o sistema com suas devidas permissões.

Fluxo principal:

- 1. O ator acessa a tela de login.
- 2. O ator insere e-mail e senha.
- 3. O sistema valida as credenciais.
- 4. O sistema redireciona o usuário para o sistema com funcionalidades de acordo com suas permissões.

Fluxos alternativos:

3a. Se o e-mail ou senha estão incorretos:

1. O sistema informa que há dados preenchidos incorretamente e permanece na página de login.

6.1.7. Caso de uso 7: Registrar frequência

Ator: colaborador.

Pré-condição: O colaborador está autenticado e tem cadastro ativo.

Pós-condição: O registro de frequência é salvo no sistema.

Fluxo principal:

1. O ator acessa a área de frequência.

- 2. O ator identifica o tipo de frequência a registrar (entrada, saída, almoço e retorno)
- 3. O ator registra o tipo de frequência.

4. O sistema registra o horário atual com o tipo de frequência correspondente.

6.1.8. Caso de uso 8: Consultar dias úteis do mês

Ator: colaborador.

Pré-condição: O colaborador está autenticado e tem cadastro ativo.

Pós-condição: O sistema exibe um calendário de horários e dia úteis no mês.

Fluxo principal:

- 1. O funcionário acessa a área de Calendário de Dias Úteis.
- 2. Seleciona o mês desejado.
- 3. O sistema exibe um calendário destacando:
 - Horário de entrada, saída e almoço
 - Dias úteis.
 - Finais de semana.
 - Feriados nacionais/regionais.

• Período de férias do funcionário

6.1.9. Caso de uso 9: Visualizar comunicados da gestão

Ator: colaborador.

Pré-condição: O colaborador está autenticado e tem cadastro ativo.

Pós-condição: O colaborador visualiza o comunicado enviado pela gestão.

Fluxo principal:

1. O funcionário acessa a área de comunicados.

- 2. O sistema exibe a lista de comunicados enviados.
- 3. O funcionário seleciona uma das notificações.
- 4. O sistema exibe o comunicado e a hora em que foi recebido.

Fluxos alternativos:

3a. Se não houver novos comunicados enviados:

1. O sistema informa que não há novos comunicados.

6.2. DIAGRAMA DE CASO DE USO

7. GESTÃO E PROCESSO DE DESENVOLVIMENTO

O projeto está sendo conduzido com base no modelo iterativo e incremental, o que permite desenvolver a aplicação de forma progressiva, realizando entregas parciais ao longo do tempo. Essa abordagem facilita a adaptação do projeto conforme surgem novas necessidades ou ajustes identificados durante o desenvolvimento.

Para a gestão das atividades, está sendo utilizada a metodologia ágil Scrum, com sprints curtas (semanais), definição de backlog, e realização de reuniões de planejamento e acompanhamento diárias. Essa organização tem contribuído para uma melhor divisão de tarefas, acompanhamento constante do andamento e colaboração entre os membros da equipe.

- Modelo iterativo e incremental como base para o desenvolvimento da aplicação.
- Aplicação prática da abordagem ágil Scrum, com uso de sprints, backlog e reuniões periódicas de alinhamento.

Principais referências utilizadas para embasar o processo adotado:

- Scrum Guide (2020) Ken Schwaber e Jeff Sutherland
- Engenharia de Software Ian Sommerville
- Engenharia de Software Roger S. Pressman

Scrum Master: Natan Fernandes **Product Owner:** Gabriela Alves

Desenvolvedores: Graziele Cristina Matsuzaki, Henryk Bagdanovicius Roza

O projeto foi dividido em cinco sprints, cada uma com escopo claramente definido e entregas incrementais, de acordo com os princípios da metodologia Scrum. A seguir, descrevem-se os objetivos, requisitos abordados e resultados obtidos em cada ciclo de desenvolvimento.

7.1. SPRINTS

Sprint 1 – Fundamentos e Autenticação

Esta sprint teve como objetivo estabelecer a base do sistema com foco na segurança de acesso e estruturação dos perfis de usuário. Foram implementadas as funcionalidades de autenticação e controle de permissões, bem como os ajustes de compatibilidade e responsividade da interface.

Requisitos contemplados:

- RF005 Login de usuários
- RF006 Controle de acessos e permissões
- RNF004 Autenticação obrigatória
- RNF006 Senhas criptografadas
- RNF001 Navegadores WEB
- RNF009 Interface responsiva

Principais entregas:

- Módulo de login funcional com criptografía de senhas;
- Controle de acesso conforme o perfil do usuário;
- Compatibilidade testada com navegadores modernos;
- Interface adaptada para diferentes tamanhos de tela.

Sprint 2 – Gestão de Colaboradores

O foco da segunda sprint foi a implementação das funcionalidades essenciais relacionadas à gestão de colaboradores, incluindo cadastro, edição e consulta. Também foram introduzidas melhorias relacionadas à usabilidade, validações de dados e segurança das informações manipuladas.

Requisitos contemplados:

- RF001 Cadastro de colaboradores
- RF002 Edição de dados de colaboradores
- RF004 Consulta de colaboradores
- RNF007 Fácil utilização
- RNF010 Mensagens intuitivas
- RNF005 Dados protegidos

Principais entregas:

- Formulário completo de cadastro com validações;
- Tela de edição com campos dinâmicos e regras de negócios;
- Listagem de colaboradores com filtros e visualização organizada;
- Mensagens claras de sucesso, erro e confirmação;
- Proteção e integridade dos dados implementada no backend.

Sprint 3 – Controle e Ciclo de Vida

A terceira sprint foi dedicada à implementação do gerenciamento do ciclo de vida dos colaboradores, incluindo a possibilidade de inativação ou exclusão de registros. Além disso, foram realizados testes de compatibilidade com diferentes dispositivos e sistemas operacionais, visando acessibilidade ampla.

Requisitos contemplados:

- RF003 Inativação/Exclusão de colaboradores
- RNF002 Suporte a dispositivos móveis
- RNF003 Suporte a sistemas operacionais
- RNF008 Interface acessível

Principais entregas:

- Funcionalidade de inativação com confirmação do usuário;
- Remoção lógica ou física com registro de auditoria;
- Testes de interface em Android, iOS, Windows e Linux;
- Interface revisada para atender critérios de acessibilidade.

Sprint 4 – Frequência e Calendário

A quarta sprint abordou funcionalidades operacionais de rotina dos colaboradores. Foi desenvolvido o módulo de controle de frequência (entrada, saída e pausas) e o calendário com visualização de feriados, dias úteis e períodos de férias. A responsividade foi validada em cenários reais.

Requisitos contemplados:

- RF007 Registro de frequência
- RF008 Consulta de calendário
- RNF007 Fácil utilização (complementar)
- RNF009 Interface responsiva (validação em cenário prático)

Principais entregas:

- Registro de horários com controle por dia e usuário;
- Integração de calendário com dados do colaborador;
- Testes de usabilidade com feedback de usuários-teste:
- Confirmação de responsividade em tablets e smartphones.

Sprint 5 – Comunicação Interna

A última sprint teve como foco o desenvolvimento da comunicação institucional entre gestão e colaboradores. Foram implementadas as funcionalidades de envio e leitura de comunicados, com reforço nas mensagens intuitivas e proteção final dos dados.

Requisitos contemplados:

- RF009 Envio de comunicados
- RF010 Visualização de comunicados
- RNF010 Mensagens intuitivas (validação completa)
- RNF005 Dados protegidos (verificação final)

Principais entregas:

- Editor de comunicados com campos de título, descrição e data;
- Tela de leitura com marcação de visualização;
- Verificação final das mensagens exibidas ao usuário;
- Proteção de dados reforçada para evitar acessos indevidos.

8. MATRIZ DE RASTREABILIDADE

Para assegurar a entrega de um produto de alta qualidade e totalmente alinhado aos objetivos do projeto, foi elaborada a Matriz de Rastreabilidade. Esta ferramenta serve como um mapa de referência que conecta a origem de cada requisito com sua implementação e validação final, garantindo que nenhuma funcionalidade solicitada seja omitida ou mal interpretada durante o ciclo de desenvolvimento.

Neste projeto, a matriz cria uma ligação bidirecional entre os Requisitos Funcionais (RF) e Não Funcionais (RNF) levantados, os Casos de Uso que detalham a interação do usuário com o sistema e as Sprints em que foram desenvolvidos, conforme a metodologia Scrum adotada.

A utilização desta matriz oferece os seguintes benefícios:

- Visibilidade Completa: Permite que o Product Owner, o Scrum Master e os desenvolvedores visualizem o progresso e a cobertura de cada requisito de forma clara e objetiva.
- Gestão de Mudanças: Facilita a análise de impacto, pois ao alterar um requisito, é possível identificar rapidamente todos os artefatos de desenvolvimento e teste associados.
- Garantia de Qualidade: Assegura que para cada requisito funcional existe um caso de uso correspondente e uma entrega planejada, e que todos foram contemplados ao longo das Sprints do projeto.
- A tabela a seguir apresenta a matriz de rastreabilidade do sistema de Gestão de Funcionários.

ID do	Descrição do Requisito	Caso de Uso	Sprint de
Requisito	Descrição do Requisito	Correspondente	Implementação

RF001	Cadastro de colaboradores.	UC01: Cadastrar colaborador.	Sprint 2
RF002	Edição dos dados dos colaboradores.	UC02: Editar dados de Colaborador.	Sprint 2
RF003	Exclusão ou Inativação de colaboradores.	UC03: Excluir Funcionário.	Sprint 3
RF004	Consulta de colaboradores.	UC05: Consultar Funcionário.	Sprint 2
RF005	Login de Usuários.	UC06: Login.	Sprint 1
RF006	Controle de acessos e permissões.	UC06: Login (Pós-condição).	Sprint 1
RF007	Registro de frequência.	UC07: Registrar frequência.	Sprint 4
RF008	Consulta de calendário.	UC08: Consultar dias úteis do mês.	Sprint 4
RF009	Envio de comunicados.	UC04: Enviar comunicados aos colaboradores.	Sprint 5
RF010	Visualização de comunicados.	UC09: Visualizar comunicados da gestão.	Sprint 5
RNF001	Compatibilidade com Navegadores WEB.	N/A (Aplicável a todas as interfaces)	Sprint 1
RNF002	Suporte a dispositivos móveis.	N/A (Aplicável a todas as interfaces)	Sprint 3
RNF003	Suporte a sistemas operacionais.	N/A (Aplicável a todas as interfaces)	Sprint 3
RNF004	Autenticação obrigatória.	UC06: Login.	Sprint 1
RNF005	Dados protegidos.	N/A (Aplicável a todas as funcionalidades)	Sprint 2 e Sprint 5
RNF006	Senhas Criptografadas.	UC06: Login.	Sprint 1
RNF007	Fácil utilização.	N/A (Aplicável a todas as interfaces)	Sprint 2 e Sprint 4
RNF008	Interface Acessível.	N/A (Aplicável a todas as interfaces)	Sprint 3
RNF009	Interface responsiva.	N/A (Aplicável a todas as interfaces)	Sprint 1 e Sprint 4
RNF010	Mensagens intuitivas.	N/A (Aplicável a todas as interfaces)	Sprint 2 e Sprint 5

9. DESIGN E ARQUITETURA DO SISTEMA

9.1. ARQUITETURA DO SISTEMA

O sistema será estruturado utilizando o padrão MVC (Model-View-Controller) que separa as responsabilidades do sistema em três camadas principais:

- Model: Apresenta a lógica do sistema, regras de negócio e acesso aos dados.
- View: É a camada responsável pela interface interativa para o usuário (UI).
- Controller: Intermedia a comunicação entre Model e View.

O MVC tem como objetivo separar a lógica de negócios, a interface de usuário e o controle das requisições, promovendo organização, reutilização de código e facilidade na manutenção do sistema. É uma arquitetura robusta que tem como vantagens:

- Facilidade de manutenção e testes: Como cada camada é independente, modificar uma parte do sistema não causará impactos diretos à outros módulos, facilitando testes unitários e manutenção futura.
- Escalabilidade: O uso de MVC facilita a evolução do sistema, permitindo a adição de novas funcionalidades de forma organizada e modular, por conta da idepêndencia das camadas.
- Alinhamento com as tecnologias escolhidas: O projeto será desenvolvido utilizando o framework .NET (C#), que oferece suporte nativo ao padrão MVC, tornando seu desenvolvimento mais eficiente.

9.2. CAMADAS DO SISTEMA

9.2.1. **MODEL**

Responsável por representar as entidades do sistema, sua lógica e regras de negócio. Também interage com a base de dados. Exemplos de algumas entidades do sistema:

- Colaborador
- Gestor (Herança de colaborador)
- Comunicados

Entre suas principais responsabilidades, a validação de dados (validar campos como CPF e campos obrigatórios), estruturar a lógica das regras de negócio e interações com o banco de dados.

9.2.2. VIEW

Responsável por apresentar a interface (UI) ao usuário. Sua principal responsabilidade é a renderização das páginas dinâmicas do sistema (Formulários, comunicados, calendários) com interfaces distintas de acordo com a lógica do sistema e nível de acesso do usuário, através de tecnologias como HTML, CSS, JAVASCRIPT e outros frameworks e bibliotecas front-end.

9.2.3. CONTROLLER

Responsável por tratar as ações do usuário, assim como as requisições HTTP para retornar a resposta adequada para que a view seja exibida ao usuário de forma correta e dinâmica. Também realiza autenticações, além de acionar as regras de negócio no sistema e intermediar a comunicação entre as Views e as Models. Alguns exemplos de

- ColaboradorController
- FrequênciaController
- ComunicadoController
- CalendarioController

9.3. EXEMPLO DE UM FLUXO DE REQUISIÇÃO PADRÃO MVC

- 1. O usuário preenche um formulário e clica em "Cadastrar".
- 2. A View envia os dados via HTTP para o Controller responsável.
- 3. O Controller valida permissões e repassa os dados para validação.
- 4. Após validação, os dados são enviados ao banco de dados.
- 5. O Controller redireciona para uma nova View (mensagem de sucesso ou erro).
- 6. A View exibe o resultado da operação ao usuário.

10. PRINCIPAIS TECNOLOGIAS UTILIZADAS

.NET 8, ASP.NET CORE Com Razor Pages

Plataforma de desenvolvimento da Microsoft para construção de aplicações de diversos tipos, no caso do projeto, será utilizada como base para a aplicação WEB, fornecendo recursos necessários para seu desenvolvimento, ASP.NET Core com Razor Pages (Páginas (Views) dinâmicas desenvolvidas com C# e HTML unificados).

Entity Framework Core

Framework de ORM (Object-Relational Mapping), tem o intuito de facilitar a comunicação entre a aplicação e o banco de dados, no caso de consultas, cadastros entre outros.

Bootstrap

Framework CSS para facilitar e unificar o desenvolvimento de páginas WEB com design limpo e responsivo.

SQL Server

Gerenciador de banco de dados relacionais da Microsoft, será utilizado para o armazenamento de dados do sistema, como os dados dos colaboradores cadastrados no sistema.

Git e GitHub

Tecnologia para a hospedagem e versionamento do código fonte do projeto.

Gitlab CI/CD

Integração e entrega contínua CI/CD para a automatização dos processos de build, teste e deploy do sistema quando forem detectadas alterações no repositório principal do sistema.

11. DEVOPS E DEPLOY

11.1 REPOSITÓRIO E ESTRUTURA DE PASTAS

TECNOLOGIX GESTAO

• /Controllers

- o FuncionariosController.cs
- o FrequenciaController.cs
- o ComunicadosController.cs
- o LoginController.cs

/Models

- Funcionario.cs
- o RegistroFrequencia.cs
- o Comunicado.cs
- Usuario.cs

• /Views

- Index.cshtml
- o CreateFuncionario.cshtml
- o UpdateFuncionario.cshtml
- o DeleteFuncionario.cshtml
- o RegistrarFrequencia.cshtml
- o Comunicados.cshtml
- /Wwwroot (Arquivos estáticos, CSS, JavaScript e imagens)
 - /css
 - /js
 - /img
- /Data (Contexto de banco de dados)
 - o DbContext.cs
- /Services
- /Workflows
 - o ci-cd.yml (Pipeline de CI/CD com GitLab)
- /Docs

.gitignore

appsettings.json

Program.cs

Startup.cs

README.md

TECNOLOGIX GESTAO.sln

11.2 IMPLEMENTAÇÃO CI/CD

A integração contínua (CI) e o deploy contínuo (CD) são práticas de DevOps que automatizam o processo de compilar, testar e publicar o software.

11.2.1 FUNCIONALIDADES DA PIPELINE CI/CD

Integração Contínua (CI)

Quando um novo código é enviado para o repositório, é esperado que a pipeline execute as seguintes etapas:

- Build do projeto
- Execução de testes
- Validação do código

Deploy Contínuo (CD)

Após validado e toda essa etapa de CI aprovada, a aplicação é preparada para realizar automaticamente o Deploy, com a publicação da aplicação.

12. PROTOTIPAGEM

Para garantir uma experiência de usuário (UX) alinhada aos requisitos de usabilidade e acessibilidade do projeto, a interface do sistema foi idealizada e validada através de protótipos de alta fidelidade desenvolvidos na plataforma Figma. Essa abordagem permitiu a visualização e o teste dos fluxos de navegação e da disposição dos elementos visuais antes da fase de codificação. O uso do Figma foi essencial para refinar o design e assegurar que a implementação final fosse intuitiva e responsiva, servindo como um guia claro para a equipe de desenvolvimento.

LOGIN
Email
Senha
Entrar
Esqueci a senha
Funcionário Administrador

Prototipagem -Tela de login

Prototipagem – Menu Principal

Link da prototipagem:

https://www.figma.com/proto/d7eZC0x6ZJCeZokFdYXJP4/Sistema-de-Gerenciamento?node-id=0-1&t=jbj1Tmi7O3is4fSp-1

13. CONCLUSÃO

O projeto A3 desenvolvido esse semestre teve como objetivo simular a elaboração da especificação técnica de um sistema web para gestão de colaboradores, proposto para atender às necessidades da empresa fictícia TecnoLogix Soluções Ltda. Através da definição dos requisitos funcionais e não funcionais, arquitetura baseada no padrão MVC com .NET, planejamento de backlog e sprints ágeis e estratégias de DevOps, foi possível estruturar uma possível solução teórica coerente com as necessidades da organização.

Mesmo sendo um projeto teórico (com empresa e software hipotéticos), todas as decisões foram tomadas com base em possíveis cenários das necessidades de uma empresa no perfil criado, analisando e considerando aspectos de gestão, qualidade e engenharia de software.