Lecture 11:

Convolution and Image Classification & Segmentation

Markus Hohle

University California, Berkeley

Bayesian Data Analysis and Machine Learning for Physical Sciences

Berkeley Bayesian Data Analysis and Machine Learning for Physical Sciences

Course Map	Module 1	Maximum Entropy and Information, Bayes Theorem
	Module 2	Naive Bayes, Bayesian Parameter Estimation, MAP
	Module 3	MLE, Lin Regression
	Module 4	Model selection I: Comparing Distributions
	Module 5	Model Selection II: Bayesian Signal Detection
	Module 6	Variational Bayes, Expectation Maximization
	Module 7	Hidden Markov Models, Stochastic Processes
	Module 8	Monte Carlo Methods
	Module 9	Machine Learning Overview, Supervised Methods & Unsupervised Methods
	Module 10	ANN: Perceptron, Backpropagation, SGD
	Module 11	Convolution and Image Classification and Segmentation
	Module 12	RNNs and LSTMs
	Module 13	RNNs and LSTMs + CNNs
	Module 14	Transformer and LLMs
	Module 15	Graphs & GNNs

<u>Outline</u>

The Problem

Convolution

CNN Architectures

Data Preparation & Training

Example

- LeNet numpy only
- LeNet TensorFlow
- sequences as images
- segmentation

Outline

The Problem

part I

Convolution

CNN Architectures

Data Preparation & Training

Example

part II

- LeNet numpy only
- LeNet TensorFlow
- sequences as images
- segmentation

<u>Outline</u>

The Problem

Convolution

CNN Architectures

Data Preparation & Training

Example

- LeNet numpy only
- LeNet TensorFlow
- sequences as images
- segmentation

so far:

now:

so far: now:

data features

[[5.1 3.5 1.4 0.2]
[4.9 3. 1.4 0.2]
[4.7 3.2 1.3 0.2]
[4.6 3.1 1.5 0.2]
[5. 3.6 1.4 0.2]
[5.4 3.9 1.7 0.4]
[4.6 3.4 1.4 0.3]
[5. 3.4 1.5 0.2]

row = data point

matrix = data point

image curtesy: Mathworks

1) classification: between different images

different pixel within images aka 2) segmentation

see here

Berkeley Convolution and Image Classification & Segmentation

segmentation for classification

motif finding / sequence analysis

one – hot encoded NT or AA sequences can be interpreted as b/w images!

3) regression:

turning images the right way

4) generation

source: TopviewAl

before we had CNNs: k-means for segmentation & classification:

```
rows, cols, channels = Image.shape
x_flat = Image.reshape(rows * cols, channels)

kmeans = KMeans(n_clusters = k)
pxl_labels = kmeans.fit_predict(x_flat)
colors = kmeans.cluster_centers_

turning image into table
(spatial information is lost!)

- labels are assigned according to cluster in color space (RGB, HSV etc)
```

cluster means are mean colors

see KMeansSegmentation.py

K = KMeansSegmentation()

The Problem

task: find a way to keep both: color and spatial information and link the image to our ANN

task: find a way to keep both: color and spatial information and link the image to our ANN

input: image, aka numerical matrix our ANN

→ classification

task: find a way to keep both: color and spatial information and link the image to our ANN

input: image, aka numerical matrix

our ANN

segmented image

<u>Outline</u>

The Problem

Convolution

CNN Architectures

Data Preparation & Training

Example

- LeNet numpy only
- LeNet TensorFlow
- sequences as images
- segmentation

Convolution

goal:

- maintaining the spatial information
- learning which features are important

- → convolution
- → training the convolution filter

$$(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\zeta) \mathbf{g}(\mathbf{x} - \zeta) \, d\zeta$$

image **f** and filter **g**

image

filter (aka kernel)

- 1) multiplying matrix values pixelwise
- 2) summing up products
- 3) \rightarrow value for new matrix

Convolution

goal:

- maintaining the spatial information
- learning which features are important

- → convolution
- → training the convolution filter

$$(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\zeta) g(x - \zeta) d\zeta$$

image $m{f}$ and filter $m{g}$

image

filter (aka kernel)

different techniques:

padding = 2; stride length = 1

padding = 0; stride length = 3

N: number of rows/columns

$$N_{out} = \frac{\left(N_{in} - N_{filt} + 2 * padding\right)}{stride\ length} + 1$$

Convolution

goal:

- maintaining the spatial information
- learning which features are important

- → convolution
- → training the convolution filter

$$(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\zeta) g(x - \zeta) d\zeta$$

image \boldsymbol{f} and filter \boldsymbol{g}

image

filter (aka kernel)

N: number of rows/columns

$$N_{out} = \frac{\left(N_{in} - N_{filt} + 2 * padding\right)}{stride\ length} + 1$$

filters:

DOI:10.1016/j.actbio.2017.09.025

see Convolution.ipynb for visualizing the impact of different convolution filter on the image

image

filter

200

Berkeley Convolution and Image Classification & Segmentation

Convolution

see Convolution.ipynb for visualizing the impact of different convolution filter on the image


```
def ConvSelfMade(*Image, K, padding = 0, stride = 1):
...
```

```
0 12 34 56 7
                                                                                  stride = 1
for c in range(numChans):# loop over channels
       for y in range(yOutput):# loop over y axis of output
           for x in range(xOutput):# loop over x axis of output
               # finding corners of the current "slice"
               y start = y*stride
                                                                                  stride = 2
               y_end = y*stride + yK
               x start = x*stride
               x = x + stride + xK
               #selecting the current part of the image
               current slice = imagePadded[x start:x end,\
                                y start:y end, c]
                                                                    0 12 3 4 5 6 7
                                                                                  stride = 3
               #the actual convolution part
                             = np.multiply(current slice, K)
               output[x,y,c] = np.sum(s)
```

Convolution

CNN:

- kernel act like **neurons with weights**
- start with random values for all kernels
- → the ANN learns the filter values
- → that's how the ANN learns which features are important

$$(f * g)(x) \coloneqq \int_{\mathbb{R}^n} f(\zeta) g(x - \zeta) d\zeta$$

$$net = \sum_{i} I_i \cdot w_i + b$$

inputs are pixel values

kernel weights

$$\sum_{i} I_{i} \mathbf{w_{i}} + \mathbf{b}$$

can be interpreted as a neuron!

i. e. a filter of shape NxN has $N^2 + 1$ learnables (N^2 weights + bias)

<u>Outline</u>

The Problem

Convolution

CNN Architectures

Data Preparation & Training

Example

- LeNet numpy only
- LeNet TensorFlow
- Segmentation

classification pooling:

there are three different main pooling methods

→ average pool: blurs the image, reduces edges

(not what we want here)

→ max pool: reduces dark background (those pixel

values are usually low) and enhances

brighter foreground objects (exactly what we need here)

→ min pool: does the opposite of max pool

CNN Architectures

classification

convolution process down-samples the image

- network focuses on important features
- reduces computational cost

classification

sequential CNNs \longrightarrow \longrightarrow \longrightarrow ...

Residual**Net**

Inception Net

many others...

common pretrained classification CNNs

Network	Depth	Size	Parameters (Millions)	rel computation time	Image Input Size
nasnetlarge	*	360 MB	88,9	45	331-by-331
darknet19	19	72.5 MB	21	5,5	256-by-256
densenet201	201	77 MB	20	22	224-by-224
resnet50	50	96 MB	25,6	3,5	224-by-224
resnet101	101	167 MB	44,6	5	224-by-224
inceptionv3	48	89 MB	23,9	8	299-by-299
resnet18	18	44 MB	11,7	1,8	224-by-224
xception	71	85 MB	22,9	12	299-by-299
darknet53	53	145 MB	41	10	256-by-256
inceptionresnetv2	164	209 MB	55,9	14	299-by-299
shufflenet	50	6.3 MB	1,4	1,5	224-by-224
googlenet	22	27 MB	7	2	224-by-224
mobilenetv2	53	13 MB	3,5	4	224-by-224
alexnet	8	227 MB	61	1,2	227-by-227
nasnetmobile	*	20 MB	5,3	5	224-by-224
squeezenet	18	4.6 MB	1,24	1	227-by-227
vgg16	16	515 MB	138	6,5	224-by-224
vgg19	19	535 MB	144	8,5	224-by-224

segmentation

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

1) down-sampling as before (= encoder)

segmentation

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

- 1) down-sampling as before (= encoder)
- 2) down to bottle neck

segmentation

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

- 1) down-sampling as before (= encoder)
- 2) down to bottle neck
- 3) up-sampling (= **decoder**; how: see later) in order to generate output image of the same size as input image, where number of channels = number of pixel classes

segmentation

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

- 1) down-sampling as before (= encoder)
- 2) down to bottle neck
- 3) up-sampling (= **decoder**; how: see later) in order to generate output image of the same size as input image, where number of channels = number of pixel classes
- 4) softmax, in order to turn output of last layer into probabilities

segmentation

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

- 1) down-sampling as before (= encoder)
- 2) down to bottle neck
- 3) up-sampling (= **decoder**; how: see later) in order to generate output image of the same size as input image, where number of channels = number of pixel classes
- 4) softmax, in order to turn output of last layer into probabilities
- 5) generates segmentation mask from highest probabilities
 - = (arbitrary) colors are class labels and correspond to pixel class

segmentation

Vijay Badrinarayanan et. al 2017 "SegNet: A Deep Convolutional Encoder-Decoder Architecture for Image Segmentation"

depending on the architecture, the decoder has different learning mechanisms

- standard: up-sampling = inverse convolution: weights and biases are learnables
- U-Net: skips connections and concatenates decoder layer with corresponding encoder layer information
- transformer encoder: use attention (see later)

segmentation

U-net segmentation CNN

https://towardsdatascience.com/u-net-explained-understanding-its-image-segmentation-architecture-56e4842e313a

segmentation

common pretrained segmentation CNNs

note: the input size is usually 5 – 10 times larger than compared to a classification CNN!

Туре	Names		
VGG	'vgg16' 'vgg19'		
ResNet	'resnet18' 'resnet34' 'resnet50' 'resnet101' 'resnet152'		
SE-ResNet	'seresnet18' 'seresnet34' 'seresnet50' 'seresnet101' 'seresnet152'		
ResNeXt	'resnext50' 'resnext101'		
SE- ResNeXt	'seresnext50' 'seresnext101'		
SENet154	'senet154'		
DenseNet	'densenet121' 'densenet169' 'densenet201'		
Inception	'inceptionv3' 'inceptionresnetv2'		
MobileNet	'mobilenet' 'mobilenetv2'		
EfficientNet	'efficientnetb0' 'efficientnetb1' 'efficientnetb2' 'efficientnetb3' 'efficientnetb4' 'efficientnetb5' efficientnetb6' efficientnetb7'		

<u>Outline</u>

The Problem

Convolution

CNN Architectures

Data Preparation & Training

Example

- LeNet numpy only
- LeNet TensorFlow
- sequences as images
- segmentation

data acquisition

- 1) classes should be well balanced
- 2) dataset should be diverse

example Cryo-EM:

all grids (Cu, Au, ...)
all cameras
all grid manufacturers
all resolutions

3) augmentation: blurred, skewed, fragmented, stretched, turned etc

tip: write your own augmentation routine!

data labeling

be as accurate as possible!

micrograph Cryo-EM image

- → good, medium and bad based on ice crystals
- → Undergrad, Grad, PostDoc, Senior Scientist

data preprocessing

scaling:

Image Input Size

331-by-331

256-by-256

224-by-224

224-by-224

All images have to be scaled to the input size of the CNN!

normalization:

images can be

- logical (values are zero or one)
- gray scale (2D) → adding two more "color channels"
- 8bit (range 255), 16bit (range 512) etc

training

normalization: complex CNNs have many layers for normalization/re-centering/re-scaling

→ batch normalization

the training set is huge

- → loading only a few images at the time (batches)
- → the larger the batch, the better
- > run only a few iterations per batch (avoiding local minima)
- → check training loss vs evaluation loss

training

check out:

Training MLP

Training CNN 2D

Training CNN 3D

End of Part I

