

斥势能,H₂+的总能量是_____?

Title/标题	分子轨道		班号
Name/姓名	Student ID/学号	Date/日期	页码
一、实验内容			
(1) 氢分子离子 H	2+		
1. 在"开始"菜单中扫	找到并打开 GaussView 全程序。		
2. 在菜单 File Open.	中打开输入文件 H ₂ +.gjf, 弹出分子:	结构窗口。在窗口中按住鼠标左	键旋转鼠标, 可以旋转分
子, 按住右键拖动,	放大缩小分子。记录下分子结构窗口	1左下角显示的原子数	_、电子数和电荷
数。			
3. 单击主窗口中表示	示"查询成键信息"的工具图标。4,然	后依次点击结构窗口中两个原子	子。鼠标移开后,记录分子
结构窗口左下角显	k示的键长(单位为 Å)	。两个氢原子核在此	距离下的静电排斥势能
是。			
计算步骤为:			
4. 将此分子结构提为	で Gaussian 程序计算分子轨道和能量	。单击 Calculate Gaussian Calcula	tion Setup, 弹出 Gaussian
计算对话框,点击 S	ubmit 按扭提交计算任务。		
5. 在计算过程中依然	欠点击 Submit 按钮、OK 按钮、是按	钮。	
6. Gaussian 程序的计	算结果包括一个文本文件(.log)和	一个数据文件(.chk)。请注意 F	I2+.chk 及 H2+.log 两个输
出文件的存储路径!	在上述对话框中选择 H2+.log 打开计	计算结果文件 H2+.log,弹出一个	新的分子结构窗口。在菜
单 Results View File.	中查看文本形式的结果文件。在记	事本的 View Word Wrap 选项下	选择 No wrap 选项,方便
查看大段文本。			
7. 找到文本中包含]	Molecular Orbital 字样的部分,该部分	分详细地记录了分子轨道的信息	•
Alpha Molecular Or	bital Coefficients		
	1 2		
	(SGG)O (SGU)-—V		
EIGENVALUES	S1.08168 -0.19326		
11 H 1S	0.58489 0.96364		
22 H 1S	0.58489 -0.96364		
8. 以上结果显示 H ₂	†的 σgls 成键轨道能量的计算值为-1.0	08168 Hartree。此能量加上第 3	步中得到的原子核静电排

计算过程:		
9. H ₂ +的键能是指以下反应式右边的能量减去	左边的能量	
$H_2^+ \longrightarrow H + H^+$ $\Delta E = E(H) + E(H^+) - E(H^+)$	$E(H_2^+)$	
其中真空中的 H 原子基态能量 E(H)定义为一	0.5 Hartree = -1 Ry	y,真空中孤立的 H+没有静电势能。根据第 8、9 步
中得到的数值并忽略振动能量, H_2 ⁺ 的键能计	算值是	o
计算过程:		
(2) N ₂ 分子		
1. 在菜单 File Open中打开输入文件 N2.	gjf,弹出分子结构	构窗口。记录下分子结构窗口左下角显示的原子
数、电子数、	电荷数	_,使用 <mark>ᆃ</mark> 工具查看并记录 N≡N 键长。
2. 单击 Calculate Gaussian将此分子结构提为	交 Gaussian 程序计	算分子轨道和能量。
3. 查看计算结果文件 N2.log, 找到文本中包	含 Molecular Orbita	al 字样的部分。每个 N 原子提供了哪些原子轨道参
与成键,一共组合成多少个分子轨道?这其	丰中有多少个分子	·轨道上已经填充了电子? 文本形式的对称性符号
(SGG、SGU、PIG 或 PIU)分别对应于字母	母形式的对称性符 !	号 $(\sigma_g, \sigma_u, \pi_g$ 或 $\pi_u)$ 。
4. 在菜单 File Open中打开数据文件 N2.chk	a。单击 Edit MOs	或使用 🎖 工具查看分子轨道的图形化显示。
在 Visualize 选项卡的 Add Type 下拉列表框设	೬择 All 选项,并将	将 Isovalue 的值从默认值 0.02 改成 0.005, 然后点击
Update按钮计算所有分子轨道的等值面。约	I.色的等值面相位为	为"+",绿色的等值面相位为"-"。
5. 在分子轨道图形窗口中右键单击,选择"D	isplay Format",	在弹出的对话窗口中选择 Surface Transparent,并点
击 OK 按钮返回,使分子轨道等值面变为半边	透明。	
分子轨道图形窗口右侧显示了所有分子轨道。	的序号、电子填充	:状态和能量,依次点击灰色的小方框观察每一个分
子轨道的形状。注意这些分子轨道与 OGC 教	效材图 6.17(a)是对	应的。怎样判断每个分子轨道是成键轨道还是反键
轨道?		
<u>答:</u>		_
SIG	GNATURE/签字	DATE/日期

Title/标题	实验十一 分子轨道			_号
Name/姓名_	Student ID/学号_	Date/日期	页码	

6. 如果把这些分子轨道分成三类: (i)能量高于零; (ii)能量稍低于零; (iii)能量比(ii)中的能量至少低一个数量级,每类各包括哪些分子轨道? 每个分子轨道有几个节平面,其中几个垂直于 N=N 键轴,几个包含 N=N 键轴? 如果分子轨道中没有包含键轴的节平面,称为 σ 键; 有 1 个包含键轴的节平面,称为 π 键; 有 2 个包含键轴的节平面,称为 δ 键。结合 N2.log 文件,完成表格:

秋 目 世 国	/白 口	总节平	垂直于N≡N键	包含N≡N键轴	N2.log文件中	轨道名称
能量范围	编号	面个数	轴节平面个数	节平面个数	对称性符号	(*可不标)
	10				SGU	σ_u^*
	9					
	8					
	7					
	6					
	5					
	4					
	3					
	2					
	1					

(3) O2分子

1. 在菜单 File Open	中打开输入文件 O2.gjf,	重复(2) N ₂ 分子口	中的 1 至 6 步,并完成下表 :	
原子数	、电子数	和电荷数		
每个 O 原子提供了			个原子轨道参与成键,一共组合成了_	个分
子轨道。其中	个分子轨道上埴充了由子			

张县 英国	编号	总节平	垂直于O=O键	包含O=O键轴	O2.log文件中	轨道名称
能量范围		面个数	轴节平面个数	节平面个数	对称性符号	(需标*,若有)
	10				SGU	σ_u^*
	9					
	8					
	7					
	6					
	5					
	4					
	3					
	2					
	1					

- 2. 回到 O2.log 文件, 查看 Molecular Orbital Coefficients 部分的分子轨道组合系数。对于每个分子轨道:
- (i) 在图形显示窗口找到对应的分子轨道图形,查看是否有垂直于 O=O 键轴并且位于两个 O 原子之间的节平面,据此判断分子轨道是成键轨道(无额外标记)还是反键轨道(右上角加*号)。(见上表)
- (ii) 查看各个原子轨道的组合系数,忽略绝对值小于 0.1 的系数,找到最大系数对应的原子轨道符号作为分子轨道的下标。

例如两个能量最低的分子轨道符号是 σ_{g1s} 和 σ_{u1s}^* ,分别按照以下的方程由两个 1s 原子轨道组合而成:

 $\sigma_{a1s} \approx 0.70371 \, (1s^{\rm A}) + 0.70371 \, (1s^{\rm B}); \quad \ \sigma_{u1s}^* \approx 0.70301 \, (1s^{\rm A}) - 0.70301 \, (1s^{\rm B})$

以此类推并对照 OGC 教材图 6.17(b),写出序号为 3、5、7、9 的分子轨道的符号和线性组合方程式。(见下表)

3. 根据线性组合方程式,序号9的分子轨道由原子轨道组合的方式可如教材6.15(b)(第八版见6.16(b))表示。

注意两个原子轨道 $+2p_{v}^{A}$ 和 $-2p_{v}^{B}$ 的正负符号与线性组合方程式中的系数符号、以及与图中原子轨道波函数的相

位(红色为正,蓝色为负)是一致的。以此类推,分别画出序号为3、5、7的三个分子轨道是怎样由不同的原子轨道、按照不同的波函数相位组合而成的(组合系数之间的相对大小可以不必表示出来)。

7.20 以然不同的成苗或相应独自而从的《独自苏致之间的相对》(7.30年至农外出水/)。						
轨道符号及线性组合方程式	轨道组合示意图					
-						

9		
4. 在 O ₂	2 的分子轨道中,有几对是能量简并的(能量相差乃	万分之一以内可认为是简并的)? 直观地解释为什么会
出现能量	量简并的分子轨道:	
(4) N ₂	与 O ₂ 的比较	
1. 根据:	分子轨道中电子的排布方式,解释为什么 O2 是顺磁	性的,而 N₂ 是反磁性的。
	-	
 2. 在 N ₂	与 O ₂ 中,各有几个电子占据了成键轨道和反键轨道	道? 计算 N ₂ 和 O ₂ 的键级:
, - , , , , ,		
3. 键长	七较: N ₂	
4. 比较	$N_2 = O_2$ 的各个分子轨道能量由低向高的不同排列。	方式。