

APEX INSTITUTE OF TECHNOLOGY

DEPARTMENT OF COMPUTER SCIENCE & ENGINEERING

MACHINE LEARNING (21CSH-286) Faculty: Prof. (Dr.) Vineet Mehan (E13038)

Lecture - 5 **Encoding Categorical Data** DISCOVER . LEARN . EMPOWER

COURSE OBJECTIVES

- 1. Understand and apply various data handling and visualization techniques.
- 2. Understand about some basic learning algorithms and techniques and their applications, as well as general questions related to analysing and handling large data sets.
- 3. To develop skills of supervised and unsupervised learning techniques and implementation of these to solve real life problems.
- 4. To develop basic knowledge on the machine techniques to build an intellectual machine for making decisions behalf of humans.
- 5. To develop skills for selecting suitable model parameters and apply them for designing optimized machine learning applications.

On completion of this course, the students shall be able to:-

Understand machine learning techniques and computing environment that are suitable for the applications under consideration.

CU DARKMAN	Unit-1 Syllabus			
	Unit-1	Introduction to Machine Learning		
	Introduction to	Definition of Machine Learning, Working principles of Machine		
	Machine Learning	Learning; Classification of Machine Learning algorithms: Supervised		
		Learning, Unsupervised Learning, Reinforcement Learning, Semi-		
		Supervised Learning; Applications of Machine Learning.		
	Data Pre-	Data Sourcing and Cleaning, Handling Missing data, Encoding		
	Processing and	Categorical data, Feature Scaling, Handling Time Series data; Feature		
	Feature	Selection techniques, Data Transformation, Normalization,		
	Extraction	Dimensionality reduction		
	Data Visualization	Data Frame Basics, Different types of analysis, Different types of		
		plots, Plotting fundamentals using Matplotlib, Plotting Data		
		Distributions using Seaborn.		

SUGGESTIVE READINGS

- TEXT BOOKS:
- There is no single textbook covering the material presented in this correcommended for further reading in connection with the material presented:
 T1: Tom.M.Mitchell, "Machine Learning, McGraw Hill International Edition".
- T2: Ethern Alpaydin," Introduction to Machine Learning. Eastern Economy Edition, Prentice Hall of India, 2005."
- T3: Andreas C. Miller, Sarah Guido, Introduction to Machine Learning with Python, O'REILLY (2001).
- REFERENCE BOOKS:
- · R1 Sebastian Raschka, Vahid Mirjalili, Python Machine Learning, (2014)
- R2 Richard O. Duda, Peter E. Hart, David G. Stork, "Pattern Classification, Wiley, 2nd Edition".
 R3 Christopher Bishop, "Pattern Recognition and Machine Learning, illustrated Edition, Springer, 2006".

- Categorical Data
- Encoding
- Categorical Encoding
- Types of Categorical Encoding
- Label Encoding
- One-Hot Encoding
- · Ordinal Encoding

Categorical Data

- · Examples:
- The city where a person lives: Delhi, Mumbai, Ahmedabad, Bangalore,
- The department a person works in: Finance, Human resources, IT,
- The highest degree a person has: High school, Diploma, Bachelors,
- The grades of a student: A+, A, B+, B, B- etc.

Categorical Data

- Data that is represented as 'strings' or 'categories' and are finite in number is called Categorical Data.
- When your data has categories represented by strings, it will be difficult to use them to train machine learning models.
- · Why?
- Machine learning models often accepts numeric data.

Categorical Data

- How to train a ML model for Categorical Data?
- Transform it.
- · How to transform?
- Transform it using Encoding.

Encoding

- Encoding means to convert data into a particular form.
- Encoding Categorical data is a technique to convert categorical entry in a dataset to a numerical data.
- · Various types of encoding are:
- 1. Label Encoding
- 2. One-hot Encoding
- 3. Ordinal Encoding

1. Label Encoding

- In Label Encoding, we need to replace the categorical value using a numerical value.
- Ranging → 0-the total number of classes minus one.
- For instance, if the value of the categorical variable has six different classes, we will use 0, 1, 2, 3, 4, and 5.

1. Label Encoding

State	Confirmed	Deaths	Recovered
Maharashtra	284281	11194	158140
Tamil Nadu	156369	2236	107416
Delhi	118645	3545	97693
Karnataka	51422	2089	19729
Gujarat	45481	2089	32103
Uttar Pradesh	43441	1046	26675

Covid-19 cases in India across states

