Inf2C - Computer Systems Lecture 2 Data Representation

Boris Grot

School of Informatics
University of Edinburgh

Last lecture

- Course overview
 - Piazza: up & running. Use it!
 - Tutorials: start in week 3
 - Labs: drop-in. Start in week 3
- Moore's law
- Types of computer systems
- Computer components
- Computer system stack

Lecture 2: Data Representation

- The way in which data is represented in computer hardware affects
 - complexity of circuits
 - cost
 - speed
 - reliability
- Must consider how to design hardware for
 - Storing data: memory
 - Manipulating data: processing (e.g., adders, multipliers)

Lecture outline

- The bit atomic unit of data
- Representing numbers
 - Integers
 - Floating point
- Representing text

The bit

- Information represented as sequences of symbols
 - Humans use letters, numerals, punctuation, whitespace
 - Computers use just 0s and 1s, *bits*
- Bit an acronym for Binary digiT
- Advantages: easy to do computation, very reliable, simple & reusable circuits
- Disadvantages: little information per bit \rightarrow must use many bits. 512 \equiv 1 0000 0000, 'A' \equiv 0100 0001

Natural numbers representation

 Non-negative (unsigned) integers are very simple to represent in binary

Basic operations

 Addition, subtraction with unsigned binary numbers is easy:

Fixed bit-length arithmetic

- Hardware cannot handle infinitely long bit sequences
- We end up with a few fixed-size data types
 - Byte: always 8 bits
 - Word: the typical unit of data on which a processor operates (32 or 64 bits most common today)
- Overflow happens when a result does not fit
 - Numbers wrap-around when they become too large
 - Arithmetic is modulo 2^N, where N=number of bits

What about negative numbers?

- Sign-magnitude representation:
 - Use 1st bit (MSB) as the sign
 - 1 → negative, 0 → positive $0010 \equiv 2$ $1010 \equiv -2$
- Complicates addition and subtraction
 - The actual operation depends on the sign
- Has positive and negative zero
 - $-0000 \equiv 0 \quad 1000 \equiv -0$

Better way: 2's complement representation

Two's complement: the intuition

- Want: X + (-X) = 0
- Insight: don't need the full sum to be 0
 - Only the bits that can be represented within a computer's fixed width need to be 0
- Approach:
 - Represent the negation of X as 2^{N} -X
 - Then: $X + (-X) = X + (2^{N}-X) = 2^{N}$
 - Recall: largest number represented with N bits: 2^N-1
 - Note that N lowest bits of the sum are all 0!

Two's complement: example

Given:

- 3-bit fixed width (N=3)
- X = 2 (decimal) $\rightarrow 0.1.0$ (binary)

$$2^{N} = 8 \text{ (dec)} \rightarrow 1000 \text{ (bin)}$$

$$-X = 2^{N} - X = 8 - 2 = 6 \text{ (dec)} \rightarrow 110 \text{ (bin)}$$

Check:

$$X + (-X) = 0 \ 1 \ 0 + 1 \ 1 \ 0 = 1 \ 0 \ 0 \$$

Efficiently computing 2's complement

EASY!

"Flip the bits and add 1"

Example:

$$X = 0.1.0 \text{ (bin)} \rightarrow 2 \text{ (dec)}$$

Flip the bits: 101

Add 1: $1\ 1\ 0\ (bin) \rightarrow -X$

The roots of the idea

John von Neumann (died: 1957)

- Co-inventor of the stored program concept
- Proposed 2's complement idea in a 1945 paper
- Also came up with cellular automata, numerical weather forecasting, concept of global warming
- Outside of computing: linear programming, quantum logic, policy of mutually assured destruction, and more!

Patron saint of this class

2's complement details

The MSB is the sign

 \blacksquare A – B = A + (2's complement of B)

 Arithmetic operations do not depend on the operands' signs

■ Range is asymmetric: -2^{n-1} to 2^{n-1} -1

There are two kinds of overflows:

- Positive overflow produces a negative number

- Negative underflow produces a positive number

Converting between data types

• Converting a 2's complement number from a smaller to a larger representation is done by **sign extension**

Example: from byte to short (16 bits):

$$2 = 0 0 0 0 0 1 0 \Rightarrow ???????0000010$$

Shifting

- Shifting: move the bits of a data type left or right
 - Data bits falling off the edge are lost
- For left shifts, 0s fill in the empty bit places
- For right shifts, two options:
 - Fill with 0 (logical shift): for non-numerical data
 - Fill with MSB (arithmetic shift): for 2's complement numbers
- Shift left by n is equivalent to multiplying by 2^n
- Shift right by n is equivalent to dividing by 2^n and rounding towards $-\infty$
- Example $6 = 00000110 >> 2 \rightarrow 00000001 = 1$ $-6 = 11111010 >> 2 \rightarrow 11111110 = -2$

Hexadecimal notation

- Binary numbers (and other binary-encoded information) are too long and tedious for us to use
- Solution: use a more compact encoding
 - Hexadecimal (base 16) is most common
- Hex digits: 0-9 and A-F

$$-A=10_{dec}, B=11, ..., F=15$$

Conversion to/from binary is very easy:

Every 4 bits correspond to 1 hex digit:

$$\underbrace{1\ 1\ 1\ 1\ 0\ 0\ 0}_{F(15)} = 0xF8$$

Real numbers - floating point

- Java's float (32 bits)double (64 bits)
- Binary representation:
 - example 0.75 in base $10 \Rightarrow 0.11$ in base 2

$$(2^{-1} + 2^{-2} = 0.5 + 0.25 = 0.75)$$

Real numbers - floating point

- Java's float (32 bits) double (64 bits)
- Binary representation:
 - example 0.75 in base $10 \Rightarrow 0.11$ in base 2

$$(2^{-1} + 2^{-2} = 0.5 + 0.25 = 0.75)$$

Normalization:

Mantissa (aka significand) exponent
$$0.11 \Rightarrow 1.1 \times 2^{-1}$$
 implicit (always 1)

Why normalize?

Three reasons:

- 1. Simplifies machine representation (don't need to represent the fraction separator)
- 2. Simplifies comparisons
 - Which one is bigger: 0.0000101 or 0.000001?
 - 1.01x2⁻⁵ vs 1.0x2⁻⁶
- 3. Is more compact for very small/large numbers

or can be made more compact (by rounding fraction)

Floating point conversion example #1

Convert the number 25 to floating point with normalization

1)25 in base $10 \Rightarrow 11001$ in base 2

2)11001 to normalized floating point \Rightarrow 1.1001x2⁴

Understand that:

- The number is normalized
- 1.1001 is mantissa (aka significand)
- 4 is exponent
- sign is "+" (implicit here)

IEEE 754 Floating Point standard

- Need a standard to represent and compute with fixed-width floats
- 32 bit representation:

Note: representation does NOT use 2's complement

IEEE 754 Floating Point standard

- Need a standard to represent and compute with fixed-width floats
- 32 bit representation:

• 64 bit representation:

– exponent = 11 bits; mantissa= 52 bits

IEEE 754 Floating Point standard

- Why bias?
 - Avoids the complexity of +/- exponents
 - Simplifies relative ordering of FP numbers

 Note: processors usually have specialized floating point units to perform FP arithmetic

IEEE 754 floating point conversion #2

Example: Convert 23.5 (decimal) to IEEE 754 floating point

Start: 23 in base $10 \Rightarrow 10111$ in base 2

IEEE 754 floating point conversion #2

Example: Convert 23.5 (decimal) to IEEE 754 floating point

Start: 23 in base $10 \Rightarrow 10111$ in base 2

1) 23.5 in base $10 \implies 10111.1$ in base 2

(exp)

- 2) 10111.1 to normalized floating point \Rightarrow 1.01111x2⁴
- 3) S = 0 M = 01111 is mantissa (remember: 1. is implicit) Exp = 4+127 = 131 in base $10 \Rightarrow 1000\ 0011$ in base 2

	0	1	0	0	0	0	0	1	1	0 1	1 1	1	1	0	0	0 0	0 (0 (0 0	0 (0 (0 (0 (0 (0 (0 0	h	1	with	_	Λ-
•	31	30							23	22																0	rac	1	Witi	1	US
	sign		e	xp	on	en	t						1	m	ar	ıti	SS	a (m	1)											

(s)

IEEE 754 Floating Point notation

Exponent	Mantissa	Meaning
0	0	0
1-254	Anything	Floating point number
255	0	Infinity (signed)
255	Non-zero	Not-a-number (NaN)

32-bit representation

Representing characters

- Characters need to be encoded in binary too
- Operations on characters have simpler requirements than on numbers, so the encoding choice is not crucial
- Most common representation is ASCII
 - Each character is held in a byte
 - E.g. '0' is 0x30, 'A' is 0x41, 'a' is 0x61
- Java uses Unicode which can encode characters from many (all?) languages
- E DINE NO.

Representing strings

- Words, sentences, etc. are just strings of characters
- How is the end of a string identified?
 - No common standard exists. Different programming languages use different encodings
 - In C: a special character, encoded as 0x00
 - Also called NULL character
 - In Java: string length is kept with the string itself
 - string is an object and length is one of its member variables

Summary

- Computers use binary representation
- Signed numbers: sign-magnitude vs 2's complement
- Floating point
- Characters and strings

