Chapter 5: Process Synchronization

Chapter 5: Process Synchronization

- Background
- The Critical-Section Problem
- Peterson's Solution
- Synchronization Hardware
- Mutex Locks
- Semaphores
- Classic Problems of Synchronization
- Monitors
- Synchronization Examples
- Alternative Approaches

Objectives

- To present the concept of process synchronization.
- To introduce the critical-section problem, whose solutions can be used to ensure the consistency of shared data
- To present both software and hardware solutions of the critical-section problem
- To examine several classical process-synchronization problems
- To explore several tools that are used to solve process synchronization problems

Background

- Processes can execute concurrently
 - May be interrupted at any time, partially completing execution
- Concurrent access to shared data may result in data inconsistency
- Maintaining data consistency requires mechanisms to ensure the orderly execution of cooperating processes
- Illustration of the problem: Suppose that we wanted to provide a solution to the consumer-producer problem that fills all the buffers. We can do so by having an integer counter that keeps track of the number of full buffers. Initially, counter is set to 0. It is incremented by the producer after it produces a new buffer and is decremented by the consumer after it consumes a buffer.

Producer

Consumer

```
while (true) {
    while (counter == 0)
        ; /* do nothing */
    next_consumed = buffer[out];
    out = (out + 1) % BUFFER_SIZE;
    counter--;
    /* consume the item in next consumed */
}
```


Race Condition

counter++ could be implemented as

```
register1 = counter
register1 = register1 + 1
counter = register1
```

counter-- could be implemented as

```
register2 = counter
register2 = register2 - 1
counter = register2
```

Consider this execution interleaving with "count = 5" initially:

```
S0: producer execute register1 = counter {register1 = 5}
S1: producer execute register1 = register1 + 1 {register1 = 6}
S2: consumer execute register2 = counter {register2 = 5}
S3: consumer execute register2 = register2 - 1 {register2 = 4}
S4: producer execute counter = register1 {counter = 6}
S5: consumer execute counter = register2 {counter = 4}
```


Critical Section Problem

- Consider system of n processes $\{p_0, p_1, \dots p_{n-1}\}$
- Each process has critical section segment of code
 - Process may be changing common variables, updating table, writing file, etc
 - When one process in critical section, no other may be in its critical section
- Critical section problem is to design protocol to solve this
- Each process must ask permission to enter critical section in entry section, may follow critical section with exit section, then remainder section

Critical Section

General structure of process P_i

```
entry section

critical section

exit section

remainder section

while (true);
```


Solution to Critical-Section Problem

- 1. Mutual Exclusion If process P_i is executing in its critical section, then no other processes can be executing in their critical sections
- 2. Progress If no process is executing in its critical section and there exist some processes that wish to enter their critical section, then the selection of the processes that will enter the critical section next cannot be postponed indefinitely
- 3. **Bounded Waiting** A bound must exist on the number of times that other processes are allowed to enter their critical sections after a process has made a request to enter its critical section and before that request is granted
 - Assume that each process executes at a nonzero speed
 - No assumption concerning relative speed of the n processes

Critical-Section Handling in OS

Two approaches depending on if kernel is preemptive or nonpreemptive

- Preemptive allows preemption of process when running in kernel mode
- Non-preemptive runs until exits kernel mode, blocks, or voluntarily yields CPU
 - Essentially free of race conditions in kernel mode

Peterson's Solution

- Good algorithmic description of solving the problem
- Two process solution
- Assume that the **load** and **store** machine-language instructions are atomic; that is, cannot be interrupted
- The two processes share two variables:
 - int turn;
 - Boolean flag[2]
- The variable turn indicates whose turn it is to enter the critical section
- The flag array is used to indicate if a process is ready to enter the critical section. flag[i] = true implies that process P_i is ready!

Algorithm for Process Pi

```
do {
    flag[i] = true;
    turn = j;
    while (flag[j] && turn = = j);
        critical section

    flag[i] = false;
        remainder section
} while (true);
```


Peterson's Solution (Cont.)

- Provable that the three CS requirement are met:
 - Mutual exclusion is preserved

```
P<sub>i</sub> enters CS only if:
   either flag[j] = false or turn = i
```

2. Progress requirement is satisfied

If P_i is ready to enter its section and P_j is not, then P_i will enter its section for sure. This is also true for P_i .

3. Bounded-waiting requirement is met

At the end of executing its critical section, \mathbf{P}_{i} will flip its own flag (flag[i] = false;). If \mathbf{P}_{j} was waiting in the while loop, then it will break it and it will enter its critical section.

Synchronization Hardware

- Many systems provide hardware support for implementing the critical section code.
- All solutions below based on idea of locking
 - Protecting critical regions via locks
- Uniprocessors could disable interrupts
 - Currently running code would execute without preemption
 - Generally too inefficient on multiprocessor systems
 - Operating systems using this not broadly scalable
- Modern machines provide special atomic hardware instructions
 - Atomic = non-interruptible
 - Either test memory word and set value
 - Or swap contents of two memory words

Solution to Critical-section Problem Using Locks

test_and_set Instruction

Definition:

```
boolean test_and_set (boolean *target)
{
    boolean rv = *target;
    *target = TRUE;
    return rv:
}
```

- 1. Executed atomically
- 2. Returns the original value of passed parameter
- 3. Set the new value of passed parameter to "TRUE".

Solution using test_and_set()

- Shared Boolean variable lock, initialized to FALSE (i.e., it is NOT locked, you can grab it)
- Solution:

compare_and_swap Instruction

Definition:

```
int compare _and_swap(int *value, int expected, int new_value) {
   int temp = *value;

   if (*value == expected)
        *value = new_value;

   return temp;
}
```

- 1. Executed atomically
- 2. Returns the original value of passed parameter "value"
- 3. Set the variable "value" the value of the passed parameter "new_value" but only if "value" =="expected". That is, the swap takes place only under this condition.

Solution using compare_and_swap

- Shared integer "lock" initialized to 0;
- Solution:

```
do {
    while (compare_and_swap(&lock, 0, 1) != 0)
    ; /* do nothing */
    /* critical section */
lock = 0;
    /* remainder section */
} while (true);
```


Bounded-waiting Mutual Exclusion with test_and_set

```
do {
  waiting[i] = true;
  kev = true;
   while (waiting[i] && key)
      key = test and set(&lock);
   waiting[i] = false;
   /* critical section */
   j = (i + 1) % n;
  while ((j != i) && !waiting[j])
      j = (j + 1) \% n;
   if (j == i)
      lock = false:
   else
      waiting[j] = false;
   /* remainder section */
} while (true);
```

I am waiting, the lock is locked

Haha, not waitng any more, in my CS

Searching for another process to end its waiting (circular waiting ensures fairness/bounded waiting

In case no one is waiting except me.
This will enable me to get in
my CS again

Mutex Locks

- Previous solutions are complicated and generally inaccessible to application programmers
- OS designers build software tools to solve critical section problem
- Simplest is mutex lock
- Protect a critical section by first acquire() a lock then release() the lock
 - Boolean variable indicating if lock is available or not
- Calls to acquire() and release() must be atomic
 - Usually implemented via hardware atomic instructions
- But this solution requires busy waiting
 - This lock therefore called a spinlock

acquire() and release()

```
acquire() {
     while (!available)
         ; /* busy wait */
      available = false;;
   release() {
     available = true;
  do {
   acquire lock
      critical section
   release lock
    remainder section
} while (true);
```


Semaphore

- Synchronization tool that provides more sophisticated ways (than Mutex locks) for process to synchronize their activities.
- Semaphore **S** integer variable
- Can only be accessed via two indivisible (atomic) operations
 - wait() and signal()Originally called P() and V()
- Definition of the wait() operation

```
wait(S) {
    while (S <= 0)
        ; // busy wait
    S--;
}</pre>
```

Definition of the signal() operation

```
signal(S) {
   S++;
```


Semaphore Usage

- Counting semaphore integer value can range over an unrestricted domain
- Binary semaphore integer value can range only between 0 and 1
 - Same as a mutex lock
- Can solve various synchronization problems
- Consider P₁ and P₂ that require S₁ to happen before S₂
 Create a semaphore "synch" initialized to 0

```
P1:
    S<sub>1</sub>;
    signal(synch);
P2:
    wait(synch);
    S<sub>2</sub>;
```

Can implement a counting semaphore S as a binary semaphore

Semaphore Implementation

- Must guarantee that no two processes can execute the wait() and signal() on the same semaphore at the same time
- Thus, the implementation becomes the critical section problem where the wait and signal code are placed in the critical section
 - Could now have busy waiting in critical section implementation
 - But implementation code is short
 - Little busy waiting if critical section rarely occupied
- Note that applications may spend lots of time in critical sections and therefore this is not a good solution

Semaphore Implementation with no Busy waiting

- With each semaphore there is an associated waiting queue
- Each entry in a waiting queue has two data items:
 - value (of type integer)
 - pointer to next record in the list
- Two operations:
 - block place the process invoking the operation on the appropriate waiting queue
 - wakeup remove one of processes in the waiting queue and place it in the ready queue

```
typedef struct{
  int value;
  struct process *list;
} semaphore;
```


Implementation with no Busy waiting (Cont.)

```
wait(semaphore *S) {
   S->value--;
   if (S->value < 0) {
      add this process to S->list;
      block();
signal(semaphore *S) {
   S->value++;
   if (S->value <= 0) {
      remove a process P from S->list;
      wakeup(P);
```


Deadlock and Starvation

- Deadlock two or more processes are waiting indefinitely for an event that can be caused by only one of the waiting processes
- Let S and Q be two semaphores initialized to 1

```
P_0 P_1 wait(S); wait(Q); wait(Q); wait(S); ... signal(S); signal(Q); signal(S);
```

- Starvation indefinite blocking
 - A process may never be removed from the semaphore queue in which it is suspended
- Priority Inversion Scheduling problem when lower-priority process holds a lock needed by higher-priority process
 - Solved via priority-inheritance protocol

Classical Problems of Synchronization

- Classical problems used to test newly-proposed synchronization schemes
 - Bounded-Buffer Problem
 - Readers and Writers Problem
 - Dining-Philosophers Problem

Bounded-Buffer Problem

- **n** buffers, each can hold one item
- Semaphore mutex initialized to the value 1
- Semaphore full initialized to the value 0
- Semaphore empty initialized to the value n

Bounded Buffer Problem (Cont.)

The structure of the producer process

```
do {
      /* produce an item in next produced */
   wait(empty);
   wait(mutex);
      /* add next produced to the buffer */
   signal(mutex);
   signal(full);
} while (true);
```


Bounded Buffer Problem (Cont.)

The structure of the consumer process

```
Do {
   wait(full);
   wait(mutex);
    /* remove an item from buffer to next consumed */
    signal(mutex);
    signal(empty);
    /* consume the item in next consumed */
} while (true);
```


Readers-Writers Problem

- A data set is shared among a number of concurrent processes
 - Readers only read the data set; they do not perform any updates
 - Writers can both read and write
- Problem allow multiple readers to read at the same time
 - Only one single writer can access the shared data at the same time
- Several variations of how readers and writers are considered all involve some form of priorities
- Shared Data
 - Data set
 - Semaphore rw_mutex initialized to 1 (necessary for the writer to update the data set. However, the reader can gain it to prevent the writer from writing while there is a reader.
 - Semaphore mutex initialized to 1 (necessary for the reader to update the read_count variable
 - Integer read_count initialized to 0 (indicate the number of readers)

Readers-Writers Problem (Cont.)

■ The structure of a writer process

Readers-Writers Problem (Cont.)

The structure of a reader process

```
do {
        wait(mutex);
        read count++;
                                    Only the first reader blocks writers
        if (read count == 1)
                                   If readers are in
            wait(rw mutex);
        signal(mutex);
        /* reading is performed */
        wait(mutex);
        read count --:
                                     Only the last reader unblocks writers
        if (read count == 0)
                                     If no more readers in
            signal(rw mutex);
        signal(mutex);
} while (true);
```


Readers-Writers Problem Variations

- First variation no reader kept waiting unless writer has permission to use shared object
- Second variation once writer is ready, it performs the write ASAP
- Both may have starvation leading to even more variations
- Problem is solved on some systems by kernel providing reader-writer locks

Dining-Philosophers Problem

- Philosophers spend their lives alternating thinking and eating
- Don't interact with their neighbors, occasionally try to pick up 2 chopsticks (one at a time) to eat from bowl
 - Need both to eat, then release both when done
- In the case of 5 philosophers
 - Shared data
 - Bowl of rice (data set)
 - Semaphore chopstick [5] initialized to 1

Dining-Philosophers Problem Algorithm

The structure of Philosopher i:

```
do {
    wait (chopstick[i] );
    wait (chopStick[ (i + 1) % 5] );
                // eat
    signal (chopstick[i] );
     signal (chopstick[ (i + 1) % 5] );
                     think
} while (TRUE);
```

What is the problem with this algorithm?

Dining-Philosophers Problem Algorithm (Cont.)

Deadlock handling

- Allow at most 4 philosophers to be sitting simultaneously at the table.
- Allow a philosopher to pick up the forks only if both are available (picking must be done in a critical section.
- Use an asymmetric solution -- an odd-numbered philosopher picks up first the left chopstick and then the right chopstick. Even-numbered philosopher picks up first the right chopstick and then the left chopstick.

Problems with Semaphores

- Incorrect use of semaphore operations:
 - signal (mutex) wait (mutex)
 - wait (mutex) ... wait (mutex)
 - Omitting of wait (mutex) or signal (mutex) (or both)
- Deadlock and starvation are possible.

Monitors

- A high-level abstraction that provides a convenient and effective mechanism for process synchronization
- Abstract data type, internal variables only accessible by code within the procedure
- Only one process may be active within the monitor at a time
- But not powerful enough to model some synchronization schemes

```
monitor monitor-name
{
    // shared variable declarations
    procedure P1 (...) { ..... }

    procedure Pn (...) { ......}

    Initialization code (...) { ... }
}
```


Schematic view of a Monitor

Condition Variables

- condition x, y;
- Two operations are allowed on a condition variable:
 - x.wait() a process that invokes the operation is suspended until x.signal()
 - x.signal() resumes one of processes (if any) that invoked x.wait()
 - If no x.wait() on the variable, then it has no effect on the variable

Monitor with Condition Variables

Condition Variables Choices

- If process P invokes x.signal(), and process Q is suspended in x.wait(), what should happen next?
 - Both Q and P cannot execute in paralel. If Q is resumed, then P must wait
- Options include
 - Signal and wait P waits until Q either leaves the monitor or it waits for another condition
 - Signal and continue Q waits until P either leaves the monitor or it waits for another condition
 - Both have pros and cons language implementer can decide
 - Monitors implemented in Concurrent Pascal compromise
 - P executing signal immediately leaves the monitor, Q is resumed
 - Implemented in other languages including Mesa, C#, Java

Monitor Solution to Dining Philosophers

```
monitor DiningPhilosophers
  enum { THINKING; HUNGRY, EATING) state [5];
  condition self [5];
  void pickup (int i) {
          state[i] = HUNGRY;
          test(i);
          if (state[i] != EATING) self[i].wait;
   void putdown (int i) {
          state[i] = THINKING;
                   // test left and right neighbors
           test((i + 4) % 5);
           test((i + 1) % 5);
```


Solution to Dining Philosophers (Cont.)

```
void test (int i) {
        if ((state[(i + 4) % 5] != EATING) &&
        (state[i] == HUNGRY) &&
        (state[(i + 1) % 5] != EATING)) {
             state[i] = EATING;
        self[i].signal ();
    initialization code() {
       for (int i = 0; i < 5; i++)
       state[i] = THINKING;
```


Solution to Dining Philosophers (Cont.)

Each philosopher *i* invokes the operations **pickup()** and putdown() in the following sequence:

```
DiningPhilosophers.pickup(i);
```

EAT

DiningPhilosophers.putdown(i);

No deadlock, but starvation is possible

JAVA MONITORS

Java provides a monitor-like concurrency mechanism for thread synchronization. Every object in Java has associated with it a single lock. When a method is declared to be synchronized, calling the method requires owning the lock for the object. We declare a synchronized method by placing the synchronized keyword in the method definition. The following defines safeMethod() as synchronized, for example:

```
public class SimpleClass {
    . . .
    public synchronized void safeMethod() {
        . . .
        /* Implementation of safeMethod() */
        . . .
    }
}
```

Next, we create an object instance of SimpleClass, such as the following:

```
SimpleClass sc = new SimpleClass();
```

Invoking sc.safeMethod() method requires owning the lock on the object instance sc. If the lock is already owned by another thread, the thread calling the synchronized method blocks and is placed in the entry set for the object's lock. The entry set represents the set of threads waiting for the lock to become available. If the lock is available when a synchronized method is called, the calling thread becomes the owner of the object's lock and can enter the method. The lock is released when the thread exits the method. A thread from the entry set is then selected as the new owner of the lock.

Java also provides wait() and notify() methods, which are similar in function to the wait() and signal() statements for a monitor. The Java API provides support for semaphores, condition variables, and mutex locks (among other concurrency mechanisms) in the java.util.concurrent

Linux Synchronization

- Linux:
 - Prior to kernel Version 2.6, disables interrupts to implement short critical sections
 - Version 2.6 and later, fully preemptive
- Linux provides:
 - Semaphores
 - spinlocks
 - reader-writer versions of both
 - atomic integers
 - all math operations using atomic integers are performed without interruption.

```
atomic_t counter;
int value;

atomic_set(&counter,5); /* counter = 5 */
atomic_add(10, &counter); /* counter = counter + 10 */
atomic_sub(4, &counter); /* counter = counter - 4 */
atomic_inc(&counter); /* counter = counter + 1 */
value = atomic_read(&counter); /* value = 12 */
```


Linux Synchronization

- Mutex locks are available in Linux for protecting critical sections within the kernel
 - mutex_lock(), mutex_unlock()
- preempt_disable() and preempt_enable()
 - disabling and enabling kernel preemption.
- Spinlocks—along with enabling and disabling kernel preemption—are used in the kernel only when a lock (or disabling kernel preemption) is held for a short duration. When a lock must be held for a longer period, semaphores or mutex locks are appropriate for use.

single processor	multiple processors
Disable kernel preemption.	Acquire spin lock.
Enable kernel preemption.	Release spin lock.

Pthreads Synchronization

 Pthreads API is OS-independent. It provides mutex locks, condition variable, Semaphores

Mutex

```
#include <pthread.h>
pthread_mutex_t mutex;

/* create the mutex lock */
pthread_mutex_init(&mutex,NULL);

/* acquire the mutex lock */
pthread_mutex_lock(&mutex);

/* critical section */

/* release the mutex lock */
pthread_mutex_unlock(&mutex);
```

Semaphore

```
#include <semaphore.h>
      sem_t sem;
      /* Create the semaphore and initialize it to 1 */
      sem_init(&sem, 0, 1);
The sem_init() function is passed three parameters:
 1. A pointer to the semaphore
  A flag indicating the level of sharing
 3. The semaphore's initial value
      /* acquire the semaphore */
      sem_wait(&sem);
      /* critical section */
      /* release the semaphore */
      sem_post(&sem);
```


Alternative Approaches

- Transactional Memory
- OpenMP
- Functional Programming Languages

Transactional Memory

- The concept of transactional memory originated in database theory
 - A memory transaction is a sequence of read-write operations to memory that are performed atomically.
 - it provides a strategy for process synchronization
 - If all operations in a transaction are completed, the memory transaction is committed.
 - Otherwise, the operations must be aborted and rolled back.
 - Mutex introduces problems such as deadlocks and does not scale well with excessive number of threads.

Mutex

```
void update ()
{
   acquire();
   /* modify shared data */
   release();
}
```

Transactional Memory

```
void update ()
{
   atomic {
     /* modify shared data */
   }
}
```


Transactional Memory

- It can be added to a programming language. In our example, we added the construct atomic{S}
- The transactional memory system—not the developer—is responsible for guaranteeing atomicity.
 - No deadlocks
 - a transactional memory system can identify which statements in atomic blocks can be executed concurrently, such as concurrent read access to a shared variable.

Transactional Memory

- Software transactional memory (STM)
 - Implements transactional memory exclusively in software
 - No special hardware is needed
 - Works by inserting instrumentation code inside transaction blocks
 - inserted by a compiler
- Hardware transactional memory (HTM)
 - uses hardware cache hierarchies and cache coherency protocols to manage and resolve conflicts involving shared data residing in separate processors' caches.
 - requires no special code instrumentation
 - has less overhead than STM
 - However, HTM does require that existing cache hierarchies and cache coherency protocols be modified to support transactional memory.

OpenMP

- OpenMP is a set of compiler directives and API that support parallel programming in a shared memory environment.
- #pragma omp parallel
 - is identified as a parallel region and is performed by a number of threads equal to the number of processing cores in the system.
- The advantage of OpenMP (and similar tools) is that thread creation and management are handled by the OpenMP library and are not the responsibility of application developers.

- The code contained within the #pragma omp critical directive is treated as a critical section and performed atomically.
 - one thread may be active at a time.

OpenMP

The critical-section compiler directive behaves much like a binary semaphore or mutex lock, ensuring that only one thread at a time is active in the critical section.

```
void update(int value)
{
    #pragma omp critical
    {
       counter += value;
    }
}
```


Functional Programming Languages

- Most well-known programming languages—such as C, C++, Java, and C#—are known as imperative (or procedural) languages.
 - used for implementing algorithms that are state-based
 - The flow of the algorithm is crucial to its correct operation
 - state is represented with variables and other data structures
 - mutable, as variables may be assigned different values over time.
- Functional programming languages offer a different paradigm than procedural languages in that they do not maintain state.
 - once a variable has been defined and assigned a value, its value is immutable—it cannot change.
 - they need not be concerned with issues such as race conditions and deadlocks.
- There is increasing interest in functional languages such as Erlang and Scala for their approach in handling data races.

End of Chapter 5

