16. Numerical integration

Summary of the previous lecture

- Interpolation
- \blacksquare Find a function f(x) passing through points (x_i,y_i)
- Lagrange interpolation
- Barycentric Lagrange interpolation

Goals for today

- Numerical integration ("quadrature")
- Approximating integrals
- Error analysis
- Conditioning

Need for numerical integration

lacksquare For a function f we often need to find definite integrals:

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b f$$

Need for numerical integration

lacksquare For a function f we often need to find definite integrals:

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b f$$

- Definite integrals are more difficult than derivatives
- In general there is no analytical solution, e.g. the error function

$$\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, \mathrm{d}t$$

Need for numerical integration

lacksquare For a function f we often need to find definite integrals:

$$\int_a^b f(x) \, \mathrm{d}x = \int_a^b f$$

- Definite integrals are more difficult than derivatives
- In general there is no analytical solution, e.g. the error function

$$\operatorname{erf}(x) := \frac{2}{\sqrt{\pi}} \int_0^x e^{-t^2} \, \mathrm{d}t$$

Hence numerical integration is of paramount importance

Numerical integration problem

- The numerical integration problem:
- \blacksquare Given an input function f $\mathit{Calculate}\ I_{a,b}(f) := \int_a^b f(x) \, \mathrm{d}x$

Numerical integration problem

- The numerical integration problem:
- \blacksquare Given an input function f $\mathit{Calculate}\ I_{a,b}(f) := \int_a^b f(x) \, \mathrm{d} x$

 \blacksquare The problem is $\mathcal{Y}=\Phi(\mathcal{X})$ with

$$\mathcal{X} = f; \quad \Phi = \int; \quad \mathcal{Y} = \int f$$

Collaboration I

Simplest versions of numerical integration

- 1 What does $\int_a^b f$ represent geometrically?
- What is the simplest approximation you could take?
- 3 How could you improve on that approximation?

Simplest case

■ What is the simplest approximation of f?

Simplest case

- What is the simplest approximation of f?
- lacktriangle Approximate f using **rectangles** rectangular rule
- As in Riemann integration

Simplest case

- What is the simplest approximation of f?
- \blacksquare Approximate f using **rectangles** rectangular rule
- As in Riemann integration
- \blacksquare Split [a,b] into N intervals (or **panels**) of length $h=\frac{b-a}{N}$
- $\blacksquare \text{ Take nodes } x_k := a + k \, h \qquad \text{(with } x_0 = a \text{ and } x_N = b \text{)}$

Rectangular rule II

- lacktriangle Approximate f by a piecewise-constant function p
- lacktriangle Choose value of p for each subinterval X_k

Rectangular rule II

- lacktriangle Approximate f by a piecewise-constant function p
- lacksquare Choose value of p for each subinterval X_k
- \blacksquare e.g. $p(x) = f(x_k)$ for $x \in X_k := [x_k, x_{k+1})$

Rectangular rule II

- lacktriangle Approximate f by a piecewise-constant function p
- $\hfill\blacksquare$ Choose value of p for each subinterval X_k
- \blacksquare e.g. $p(x) = f(x_k)$ for $x \in X_k := [x_k, x_{k+1})$
- \blacksquare So $p(x) = \sum_k f(x_k) \, \mathbb{1}_{X_k}(x)$
- lacksquare Where $\mathbb{1}_{X_k}$ is indicator function of set
 - = 1 if $x \in X_k$ and 0 if not

Rectangular rule III

- \blacksquare Area A_k of kth rectangle is $hf(x_k)$
- \blacksquare So $I(f) \simeq A(f,h) := h \sum_k f(x_k)$

Rectangular rule III

- lacksquare Area A_k of kth rectangle is $hf(x_k)$
- \blacksquare So $I(f) \simeq A(f,h) := h \sum_k f(x_k)$
- $\blacksquare \text{ Weights } w_k = h \text{ except } w_N = 0$

Collaboration II

How good is the rectangular rule?

Suppose we approximate I(f) with A(f,h), approximating f with a piecewise constant function.

- 1 How can we measure how good the approximation is?
- Which mathematical tool could you use to find how this varies?
- What do you obtain?

- How good is the rectangular rule?
- We want to calculate the error

$$E(h) := |A(f,h) - I(f)|$$

as a function of h, as $h \to 0$

- How good is the rectangular rule?
- We want to calculate the error

$$E(h) := |A(f,h) - I(f)|$$

as a function of h, as $h \to 0$

 $\hfill\blacksquare$ For small h the function is nearly constant in each X_k

- How good is the rectangular rule?
- We want to calculate the error

$$E(h) := |A(f,h) - I(f)|$$

as a function of h, as $h \to 0$

- lacksquare For small h the function is nearly constant in each X_k
- Then it makes sense to model the function using a **Taylor** expansion around an end-point:

$$f(x) = f(x_k) + (x-x_k)\,f'(\xi_k) \quad \text{for } x \in X_k$$

 $\qquad \qquad f(x) = f(x_k) + (x - x_k) \, f'(\xi_k) \text{ for } x, \xi_k \in X_k$

- $\qquad \qquad \mathbf{f}(x) = f(x_k) + (x x_k) \, f'(\xi_k) \text{ for } x, \xi_k \in X_k$
- \blacksquare Suppose |f'| is bounded in X_k by M_k
- Then for $x \in X_k$ we have:

$$|f(x)-p(x)|=|f(x)-f(x_k)|$$

- $\qquad \qquad \mathbf{f}(x) = f(x_k) + (x x_k) \, f'(\xi_k) \text{ for } x, \xi_k \in X_k$
- $\hfill\blacksquare$ Suppose |f'| is bounded in X_k by M_k
- Then for $x \in X_k$ we have:

$$\begin{split} |f(x)-p(x)| &= |f(x)-f(x_k)| \\ &= |(x-x_k)\,f'(\xi_k)| \end{split}$$

- $\qquad \qquad \mathbf{f}(x) = f(x_k) + (x x_k) \, f'(\xi_k) \text{ for } x, \xi_k \in X_k$
- $\hfill \blacksquare$ Suppose |f'| is bounded in X_k by M_k
- Then for $x \in X_k$ we have:

$$\begin{split} |f(x)-p(x)| &= |f(x)-f(x_k)| \\ &= |(x-x_k)\,f'(\xi_k)| \\ &\leq M_k h \end{split}$$

- $\qquad \text{Thus} \quad |f(x) p(x)| \leq Mh \text{ for } x \text{ in } X_k$
- \blacksquare So $E_k:=|\int_{X_k}(f-p)|\leq \int_{X_k}Mh\leq Mh^2$

- $\qquad \text{Thus} \quad |f(x) p(x)| \leq Mh \text{ for } x \text{ in } X_k$
- \blacksquare So $E_k:=|\int_{X_h}(f-p)|\leq \int_{X_h}Mh\leq Mh^2$
- We have $N \sim 1/h$ subintervals
- \blacksquare So global error in integral is $E(f,h) = \sum_k E_k$

$$E(f,h) = \int_{a}^{b} [f(x) - p(x)] = \mathcal{O}(h)$$

Collaboration III

- How can we get a better method?
- 2 How small an error do you expect?
- 3 Is there a way of minimising the error even more?

■ How can we improve this, i.e. reduce the error?

- How can we improve this, i.e. reduce the error?
- We need to use a better approximation!

- How can we improve this, i.e. reduce the error?
- We need to use a better approximation!
- Try modelling the function with a piecewise-linear function instead of piecewise-constant

- How can we improve this, i.e. reduce the error?
- We need to use a better approximation!
- Try modelling the function with a piecewise-linear function instead of piecewise-constant
- Interpolate using Lagrange cardinal polynomials:

- How can we improve this, i.e. reduce the error?
- We need to use a better approximation!
- Try modelling the function with a piecewise-linear function instead of piecewise-constant
- Interpolate using Lagrange cardinal polynomials:

$$p_1(x) = \frac{x-b}{a-b}f(a) + \frac{x-a}{b-a}f(b)$$

Trapezium rule

 $\begin{tabular}{|c|c|c|c|c|} \hline & Now integrate p_1: \\ \hline \end{tabular}$

Trapezium rule

- Now integrate p_1 :
- $\blacksquare \int_a^b p_1(x) \, dx = f(a) \int \ell_0 + f(b) \int \ell_1$

Trapezium rule

- Now integrate p_1 :
- \blacksquare We get $\int_a^b p_1(x)\,dx = \frac{1}{2}(b-a)\left[f(a)+f(b)\right]$

Trapezium rule

- Now integrate p_1 :
- \blacksquare We get $\int_a^b p_1(x)\,dx = \frac{1}{2}(b-a)\left[f(a)+f(b)\right]$
- lacksquare A_k is now the area of a **trapezium**:

$$A_k = \frac{h}{2} [f(x_k) + f(x_{k+1})]$$

The total area is then

$$A(h) = h[\tfrac{1}{2}f(a) + f(x_1) + \dots + f(x_{k-1}) + \tfrac{1}{2}f(b)]$$

- $\hfill\blacksquare$ We need to evaluate the function f at nodes x_k

- $\hfill\blacksquare$ We need to evaluate the function f at nodes x_k
- $\blacksquare \ a = x_0 < x_1 < \dots < x_n = b$
- In general we want an approximation like

$$\int_a^b f(x) \simeq \sum_k w_k \, f(x_k)$$

lacktriangle The formula should work for "any" f

- $\hfill\blacksquare$ We need to evaluate the function f at nodes x_k
- $\blacksquare \ a = x_0 < x_1 < \dots < x_n = b$
- In general we want an approximation like

$$\int_a^b f(x) \simeq \sum_k w_k \, f(x_k)$$

- lacktriangle The formula should work for "any" f
- lacksquare So the **weights** w_k should be **independent** of f

- lacktriangle We need to evaluate the function f at **nodes** x_k
- $\blacksquare \ a = x_0 < x_1 < \dots < x_n = b$
- In general we want an approximation like

$$\int_a^b f(x) \simeq \sum_k w_k f(x_k)$$

- lacktriangle The formula should work for "any" f
- lacksquare So the **weights** w_k should be **independent** of f
- Nodes may be given, or we may choose nodes and weights

- lacktriangle We need to evaluate the function f at **nodes** x_k
- $\blacksquare \ a = x_0 < x_1 < \dots < x_n = b$
- In general we want an approximation like

$$\int_a^b f(x) \simeq \sum_k w_k f(x_k)$$

- \blacksquare The formula should work for "any" f
- lacksquare So the **weights** w_k should be **independent** of f
- Nodes may be given, or we may choose nodes and weights
- Note: ∫ and this approximation are both linear operators

■ Rectangular and trapezium rules: interpolate then integrate

- Rectangular and trapezium rules: *interpolate* then *integrate*
- Generalise: **Newton–Cotes** rules (equally-spaced nodes)

- Rectangular and trapezium rules: interpolate then integrate
- Generalise: Newton-Cotes rules (equally-spaced nodes)
- \blacksquare Error when interpolate f by a degree-n polynomial \boldsymbol{p}_n is

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \pi_n(x)$$

where
$$\pi_n(x) := \prod_{k=0}^n (x - x_k)$$
 - degree $n+1$

- Rectangular and trapezium rules: *interpolate* then *integrate*
- Generalise: **Newton–Cotes** rules (equally-spaced nodes)
- \blacksquare Error when interpolate f by a degree-n polynomial \boldsymbol{p}_n is

$$f(x) = p_n(x) + \frac{f^{(n+1)}(\xi(x))}{(n+1)!} \pi_n(x)$$

where
$$\pi_n(x) := \prod_{k=0}^n (x-x_k)$$
 — degree $n+1$

■ Note that the interpolation error = 0 at each node!

Error for Newton-Cotes rules

- Integrating the interpolant gives
- $|\int f \int p_n| \le \frac{M_{n+1}}{(n+1)!} \int |\pi_n|$

where ${\cal M}_{n+1}$ is a bound for $|f^{(n+1)}|$ on [a,b]

Error for Newton-Cotes rules

- Integrating the interpolant gives
- $$\label{eq:definition} \begin{split} & \| \int f \int p_n | \leq \frac{M_{n+1}}{(n+1)!} \int |\pi_n| \\ & \text{ where } M_{n+1} \text{ is a bound for } |f^{(n+1)}| \text{ on } [a,b] \end{split}$$
- \blacksquare Since π_n is of degree n+1 , integrating it gives $\mathcal{O}(h^{n+2})$
- lacksquare So global error is $\mathcal{O}(h^{n+1})$

Error for Newton-Cotes rules

- Integrating the interpolant gives
- $|\int f-\int p_n|\leq \tfrac{M_{n+1}}{(n+1)!}\int |\pi_n|$ where M_{n+1} is a bound for $|f^{(n+1)}|$ on [a,b]
- \blacksquare Since π_n is of degree n+1 , integrating it gives $\mathcal{O}(h^{n+2})$
- So global error is $\mathcal{O}(h^{n+1})$
- **E**.g. trapezium rule has error $\mathcal{O}(h^2)$

Conditioning of numerical integration

- What is the condition number of the integration problem?
- Input: f; output: $I(f) = \int_a^b f$

Conditioning of numerical integration

- What is the condition number of the integration problem?
- Input: f; output: $I(f) = \int_a^b f$
- lacksquare Perturb the input function f by function Δf
- lacktriangle Then the output perturbation ΔI is

$$\Delta I = I(f + \Delta f) - I(f)$$

Conditioning of numerical integration

- What is the condition number of the integration problem?
- Input: f; output: $I(f) = \int_a^b f$
- lacksquare Perturb the input function f by function Δf
- lacktriangle Then the output perturbation ΔI is

$$\Delta I = I(f + \Delta f) - I(f)$$

lacksquare So $\Delta I = I(\Delta f)$

Conditioning II

- We have $\Delta I = I(\Delta f)$
- So

$$|\Delta I| = \left| \int \Delta f \right| \le \int |\Delta f| =: \|\Delta f\|_1$$

The relative error is then

$$\left|\frac{\Delta I}{I}\right| \le \frac{\|\Delta f\|_1}{|I|}$$

Conditioning III

■ So the relative condition number is

$$\kappa = \frac{|\Delta I|/|I|}{\|\Delta f\|/\|f\|} = \frac{\|f\|_1}{|I|}$$

Hence

$$\kappa = \frac{\int_{a}^{b} |f(x)| dx}{\left| \int_{a}^{b} f(x) dx \right|}$$

Conditioning III

■ So the relative condition number is

$$\kappa = \frac{|\Delta I|/|I|}{\|\Delta f\|/\|f\|} = \frac{\|f\|_1}{|I|}$$

Hence

$$\kappa = \frac{\int_a^b |f(x)| \, dx}{\left| \int_a^b f(x) \, dx \right|}$$

- \blacksquare We see that this is ill-conditioned when |f| is large but $\int f$ is small
- I.e. when we integrate a highly-oscillatory function

So far we have always taken equally-spaced nodes

- So far we have always taken equally-spaced nodes
- Why? If we have the choice of where to choose the nodes, we may be able to do better!

- So far we have always taken equally-spaced nodes
- Why? If we have the choice of where to choose the nodes, we may be able to do better!

Idea of adaptivity: Choose new nodes where it makes sense to do so

- So far we have always taken equally-spaced nodes
- Why? If we have the choice of where to choose the nodes, we may be able to do better!

- Idea of adaptivity: Choose new nodes where it makes sense to do so
- I.e. where the function "behaves more badly"

Higher dimensions

■ The problem of integrating e.g. $f: \mathbb{R}^2 \to \mathbb{R}$ is sometimes called **cubature**

Higher dimensions

- The problem of integrating e.g. $f: \mathbb{R}^2 \to \mathbb{R}$ is sometimes called **cubature**
- It is much more complicated than the 1D problem

Higher dimensions

- The problem of integrating e.g. $f: \mathbb{R}^2 \to \mathbb{R}$ is sometimes called **cubature**
- It is much more complicated than the 1D problem
- There are many more ways of dividing up 2D space

■ Integrate a *complex*-valued function along a *curve* in \mathbb{C} :

$$\int_C f(z)\,\mathrm{d}z$$

■ Integrate a *complex*-valued function along a *curve* in \mathbb{C} :

$$\int_C f(z)\,\mathrm{d}z$$

lacksquare Parametrise by a function $t\mapsto \gamma(t)$ with image C

Integrate a *complex*-valued function along a *curve* in \mathbb{C} :

$$\int_C f(z)\,\mathrm{d}z$$

- **Parametrise** by a function $t \mapsto \gamma(t)$ with *image* C
- We define

$$\int_C f(z)\,\mathrm{d}z := \int_{t=0}^1 f(\gamma(t))\,\gamma'(t)\,\mathrm{d}t$$

Integrate a *complex*-valued function along a *curve* in \mathbb{C} :

$$\int_C f(z)\,\mathrm{d}z$$

- **Parametrise** by a function $t\mapsto \gamma(t)$ with *image* C
- We define

$$\int_C f(z) \, \mathrm{d}z := \int_{t=0}^1 f(\gamma(t)) \, \gamma'(t) \, \mathrm{d}t$$

- We can then carry out this integration numerically!
- Note that the result is independent of the parametrisation

 \blacksquare Split up $f(\gamma(t))\gamma'(t)$ into its real and imaginary parts

- \blacksquare Split up $f(\gamma(t))\gamma'(t)$ into its real and imaginary parts
- Integrate separately now 1D integrals

- \blacksquare Split up $f(\gamma(t))\gamma'(t)$ into its real and imaginary parts
- Integrate separately now 1D integrals
- Closed curves are a particular case of importance in complex analysis
- $\blacksquare \text{ e.g. } \gamma(t) = \exp(2\pi i t)$

- \blacksquare Split up $f(\gamma(t))\gamma'(t)$ into its real and imaginary parts
- Integrate separately now 1D integrals
- Closed curves are a particular case of importance in complex analysis
- lacksquare e.g. $\gamma(t) = \exp(2\pi i t)$

It turns out that the trapezium rule is surprisingly good for periodic functions like this

Summary

- Numerical integration approximates definite integral
- Interpolate then integrate
- \blacksquare Degree n polynomial leads to $\mathcal{O}(h^{n+1})$ error