MODEL NAPOVEDI ODJEMA ELEKTRIČNE ENERGIJE

Matematika z računalnikom 2023/24

Karolina Šavli Mentorstvo: dr. Blaž Krese in Rok Geršak iz GEN-I

6. junij 2024

Kratek pregled predstavitve

- Podatki in cilj projektne naloge
- Osnovna analiza podatkov
 - Odjem električne energije
 - Povezava med odjemom in temperaturo ter sevanjem
- Napredna analiza podatkov
 - Izbira družine modelov
 - Odstranitev sezonskosti in pridobitev stacionarnosti
 - Identifikacija modela SARIMAX
 - Izbira modela SARIMAX-GARCH
 - Izbiran model
- Testiranje modela
- Zaključek

Predstavitev podatkov

• Podjetje GEN-I je pripravilo tabelo podatkov:

	DateTimeStartUTC	DateTimeStartCET	Odjem ACT	Temperatura ACT	Temperatura FC	Sevanje ACT	Sevanje FC
0	31.10.2021 23:00	1.11.2021 00:00	0.000010	3.60	5.300	0.0	0.0
1	31.10.2021 23:15	1.11.2021 00:15	0.000009	3.60	5.300	0.0	0.0
2	31.10.2021 23:30	1.11.2021 00:30	0.000009	3.60	5.300	0.0	0.0
3	31.10.2021 23:45	1.11.2021 00:45	0.000009	3.60	5.300	0.0	0.0
4	1.11.2021 00:00	1.11.2021 01:00	0.000008	3.45	5.300	0.0	0.0
81691	29.02.2024 21:45	29.02.2024 22:45	0.000012	6.80	7.475	0.0	0.0
81692	29.02.2024 22:00	29.02.2024 23:00	0.000011	6.65	7.300	0.0	0.0
81693	29.02.2024 22:15	29.02.2024 23:15	0.000011	6.50	7.300	0.0	0.0
81694	29.02.2024 22:30	29.02.2024 23:30	0.000010	6.50	7.300	0.0	0.0
81695	29.02.2024 22:45	29.02.2024 23:45	0.000010	6.50	7.300	0.0	0.0

- Obdobje od 1. novembra 2021 do 29. februarja 2024, na 15 minut
- ullet Stolpec Odjem ACT sem pomnožila s 10^6

Predstavitev podatkov

• Podjetje GEN-I je pripravilo tabelo podatkov:

	DateTimeStartUTC	DateTimeStartCET	Odjem ACT	Temperatura ACT	Temperatura FC	Sevanje ACT	Sevanje FC
0	31.10.2021 23:00	1.11.2021 00:00	0.000010	3.60	5.300	0.0	0.0
1	31.10.2021 23:15	1.11.2021 00:15	0.000009	3.60	5.300	0.0	0.0
2	31.10.2021 23:30	1.11.2021 00:30	0.000009	3.60	5.300	0.0	0.0
3	31.10.2021 23:45	1.11.2021 00:45	0.000009	3.60	5.300	0.0	0.0
4	1.11.2021 00:00	1.11.2021 01:00	80000008	3.45	5.300	0.0	0.0
81691	29.02.2024 21:45	29.02.2024 22:45	0.000012	6.80	7.475	0.0	0.0
81692	29.02.2024 22:00	29.02.2024 23:00	0.000011	6.65	7.300	0.0	0.0
81693	29.02.2024 22:15	29.02.2024 23:15	0.000011	6.50	7.300	0.0	0.0
81694	29.02.2024 22:30	29.02.2024 23:30	0.000010	6.50	7.300	0.0	0.0
81695	29.02.2024 22:45	29.02.2024 23:45	0.000010	6.50	7.300	0.0	0.0

- Obdobje od 1. novembra 2021 do 29. februarja 2024, na 15 minut
- ullet Stolpec Odjem ACT sem pomnožila s 10^6
- Cilj projekta: sestaviti model, ki bo kar se da točno napovedal odjem električne energije gospodinjskih odjemalcev za naslenji dan

Odjem električne energije

Slika: Odjem električne energije, 2021-2024

• Odjem je znatno večji jeseni in pozimi

Odjem električne energije na ravni tedna

Slika: Odjem električne energije po urah, drugi teden septembra 2023

- Med tednom: en višek
- Vikend: dva viška
- Sezonskost na dnevni ravni

Povezava med odjemom in temperaturo ter sevanjem

Slika: Povezava med odjemom in temperaturo ter sevanjem, 2021-2024

- \uparrow temperatura \rightarrow odjem \downarrow
- Povezava s sevanjem ni razvidna

6/30

Povezava med odjemom in temperaturo ter sevanjem

Slika: Povezava med odjemom in temperaturo ter sevanjem, 2021-2024

- \uparrow temperatura \rightarrow odjem \downarrow
- Povezava s sevanjem ni razvidna
- Temperaturo in sevanje bomo v model vključili kot eksogeni spremenljivki

Karolina Šavli Model napovedi odjema 6. junij 2024

Izbira družine modelov

ullet Gre za časovno vrsto ightarrow uporaba teorije časovnih vrst

Izbira družine modelov

- Gre za časovno vrsto → uporaba teorije časovnih vrst
- Časovna vrsta odjema: visofrekvenčna, ima sezonsko komponento in njeno povprečje ni konstantno
- Družina modelov ARMA
- Iskali bomo koeficiente v formuli:

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \sum_{i=1}^P \phi_i X_{t-S} + \sum_{i=1}^Q \Theta_i \varepsilon_{t-S} + \sum_{r=1}^R \beta_i Y_{i_t} + \varepsilon_t$$

Izbira družine modelov

- Gre za časovno vrsto → uporaba teorije časovnih vrst
- Časovna vrsta odjema: visofrekvenčna, ima sezonsko komponento in njeno povprečje ni konstantno
- Družina modelov ARMA
- Iskali bomo koeficiente v formuli:

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \sum_{i=1}^P \phi_i X_{t-S} + \sum_{i=1}^Q \Theta_i \varepsilon_{t-S} + \sum_{r=1}^R \beta_i Y_{i_t} + \varepsilon_t$$

• Kako pridemo do te formule?

Model ARMA

- Model ARMA
- ullet Nimamo popolnoma stacioanrnih podatkov o ARIMA

$$X_t = \mu + \sum_{i=1}^{p} \varphi_i X_{t-i} + \sum_{i=1}^{q} \theta_i \varepsilon_{t-i} + \varepsilon_t$$

- Model ARMA
- Nimamo popolnoma stacioanrnih podatkov → ARIMA

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t$$

Imamo sezonsko komponentno → SARIMA

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \sum_{i=1}^P \phi_i X_{t-S} + \sum_{i=1}^Q \Theta_i \varepsilon_{t-S} + \varepsilon_t$$

- Model ARMA
- ullet Nimamo popolnoma stacioanrnih podatkov o ARIMA

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \varepsilon_t$$

Imamo sezonsko komponentno → SARIMA

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \sum_{i=1}^P \phi_i X_{t-S} + \sum_{i=1}^Q \Theta_i \varepsilon_{t-S} + \varepsilon_t$$

Vključitev eksogenih podatkov → SARIMAX

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \sum_{i=1}^P \phi_i X_{t-S} + \sum_{i=1}^Q \Theta_i \varepsilon_{t-S} + \sum_{r=1}^R \beta_i Y_{i_t} + \varepsilon_t$$

Model SARIMAX-GARCH

 Družina modelov ARMA ima težavo predvsem pri napovedih časovnih vrst, ki se jim skozi čas spreminja varianca → povezava z modelom GARCH

Model SARIMAX-GARCH

- Družina modelov ARMA ima težavo predvsem pri napovedih časovnih vrst, ki se jim skozi čas spreminja varianca → povezava z modelom GARCH
- Dobimo model SARIMAX(p,d,q)(P,D,Q)[S]-GARCH(p,q):

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \sum_{i=1}^P \phi_i X_{t-S} + \sum_{i=1}^Q \Theta_i \varepsilon_{t-S} + \sum_{r=1}^R \beta_i Y_{i_t} + \varepsilon_t + \sqrt{\sigma_t} z_t \,,$$

kjer je $\sigma_t^2 = \omega + \sum_{i=1}^{p_G} \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^{q_G} \beta_i \sigma_{t-i}^2$, σ_t^2 je pogojna varianca ob času t, ε_t pa beli šum ob času t in $z_t \sim \text{NEP}(0,1)$.

Originalna časovna vrsta

ullet $W_t \dots$ originalna časovna vrsta odjema električne energije

Slika: Odjem električne energije, 2021-2024

 \bullet Podatki so volatilni \to naredimo logaritmične donose (ang. log $\mathit{returns}$): $Y_t = \ln\left(\frac{W_t}{W_{t-1}}\right)$

Log returns

Slika: Logaritmični donosi odjema električne energije, 2021-2024

ACF in PACF za Log returns

Slika: Vzorčna avtokorelacijska in parcialna avtokorelacija funkcija logaritmičnih donosov

- Časovna vrsta **ni** stacionarna
- \bullet Sezonska komponentna: 96 (ravno en dan) \rightarrow sezonsko diferenciramo

Sezonska diferenciacija

- Podatke sezonsko diferenciramo
- Nova časovna vrsta: $Z_t = Y_t Y_{t-96} = \nabla_{96} Y_t$.

Slika: Časovna vrsta Z_t , 2021-2024

ACF in PACF časovne vrste Z_t

Slika: Vzorčna avtokorelacijska in parcialna avtokorelacija funkcija časovne vrste Z_t

ullet Ponavljanje vzorca o vrsta še kar ni stacionarna o *navadno* diferenciramo

Navadna diferenciacija

• Dobimo časovno vrsto $X_t = Z_t - Z_{t-1} = \nabla Z_t$

Slika: Časovna vrsta X_t , 2021-2024

Karolina Šavli

ACF in PACF časovne vrste X_t

Slika: Vzorčna avtokorelacijska in parcialna avtokorelacija funkcija časovne vrste X_t

• Časovna vrsta je stacionarna

Kaj smo torej naredili z originalno časovno vrsto?

Originalna časovna vrsta \rightarrow Log returns \rightarrow sezonsko diferencirali \rightarrow *Navadno* diferencirali

Kaj smo torej naredili z originalno časovno vrsto?

Originalna časovna vrsta \rightarrow Log returns \rightarrow sezonsko diferencirali \rightarrow *Navadno* diferencirali

Naslednji korak:

S pomočjo ACF in PACF stacionarne časovne vrste X_t določilmo parametre modela SARIMAX

Določitev parametrov modela SARIMAX

SARIMAX(p,d,q)(P,D,Q)[S]

- Enkrat smo sezonsko diferencirali $\rightarrow D = 1$
- Enkrat smo navadno diferencirali $\rightarrow d = 1$
- Perioda je $96 \rightarrow S = 96$

Določitev parametrov modela SARIMAX

SARIMAX(p,d,q)(P,D,Q)[S]

- Enkrat smo sezonsko diferencirali \rightarrow D = 1
- Enkrat smo navadno diferencirali \rightarrow d = 1
- Perioda je $96 \rightarrow S = 96$

Za določitev sezonskih parametrov P in Q gledamo korelacije pri odlogih, ki so večkratniki periode S

SARIMAX(p,1,q)(P,1,Q)[96]

Slika: Vzorčna avtokorelacijska in parcialna avtokorelacija funkcija časovne vrste X_t

- PACF \rightarrow P je vsaj 1
- ACF \rightarrow O = 1

SARIMAX(p,1,q)(P,1,1)[96]

Slika: Vzorčna avtokorelacijska in parcialna avtokorelacija funkcija vrste X_t , odlogi do 100

Za določitev nesezonskih parametrov p in q gledamo ACF in PACF do prve periode (torej do odloga 96)

Večja korelacija pri prvih nekaj urah in v uri tik pred periodo → vključimo prvih nekaj 15-minutnih intervalov

Izbira modela SARIMAX na podlagi vrednosti kriterija AIC

- Eksogeni premenljivki: temperatura in sevanje
- Model sem trenirala na 75 % podatkih

Izbira modela SARIMAX na podlagi vrednosti kriterija AIC

- Eksogeni premenljivki: temperatura in sevanje
- Model sem trenirala na 75 % podatkih
- Vrednosti kriterije AIC za izbrane modele:

Model	AIC
SARIMAX(1,1,0)(0,1,0)[96]	-338588,046
SARIMAX(0,1,1)(0,1,0)[96]	$-346718,\!519$
SARIMAX(1,1,1)(0,1,0)[96]	-346768,583
SARIMAX(2,1,1)(0,1,0)[96]	-347555,507
SARIMAX(3,1,2)(0,1,0)[96]	-347573,394
SARIMAX(4,1,3)(0,1,0)[96]	-278981,698
SARIMAX(5,1,4)(0,1,0)[96]	-345287,413
SARIMAX(5,1,5)(0,1,0)[96]	-345310,105
SARIMAX(4,1,5)(0,1,0)[96]	$-347619,\!304$
SARIMAX(6,1,5)(0,1,0)[96]	-345325,842
SARIMAX(6,1,6)(0,1,0)[96]	-345342,972
SARIMAX(5,1,6)(0,1,0)[96]	-345351,794

Izbira modela SARIMAX-GARCH

- Izbran model: **SARIMAX(4,1,5)(0,1,0)[96]**
- Model GARCH(p,q) konstruiramo na rezidualih izbranega modela

Karolina Šavli

Izbira modela SARIMAX-GARCH

- Izbran model: **SARIMAX**(4,1,5)(0,1,0)[96]
- Model GARCH(p,q) konstruiramo na rezidualih izbranega modela
- Poiskusimo 6 kombinacij parametrov:

SARIMAX-GARCH(p,q)	AIC
(0,0)	-347619,304
(1, 1)	-365754,448
(1, 2)	$-366056,\!218$
(2,1)	$-365434,\!577$
(2, 2)	-365843,673
(1, 3)	$-366134,\!335$
(3,1)	-365252.576

• Izbran model: SARIMAX(4,1,5)(0,1,0)[96]-GARCH(1,3)

SARIMAX(4,1,5)(0,1,0)[96]-GARCH(1,3)

• Spomnimo se:

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \sum_{i=1}^P \phi_i X_{t-S} + \sum_{i=1}^Q \Theta_i \varepsilon_{t-S} + \sum_{r=1}^R \beta_i Y_{i_t} + \varepsilon_t + \sqrt{\sigma_t} z_t,$$

kjer je
$$\sigma_t^2 = \omega + \sum_{i=1}^{p_G} \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^{q_G} \beta_i \sigma_{t-i}^2$$

SARIMAX(4,1,5)(0,1,0)[96]-GARCH(1,3)

Spomnimo se:

$$X_t = \mu + \sum_{i=1}^p \varphi_i X_{t-i} + \sum_{i=1}^q \theta_i \varepsilon_{t-i} + \sum_{i=1}^P \phi_i X_{t-S} + \sum_{i=1}^Q \Theta_i \varepsilon_{t-S} + \sum_{r=1}^R \beta_i Y_{i_t} + \varepsilon_t + \sqrt{\sigma_t} z_t ,$$

kjer je
$$\sigma_t^2 = \omega + \sum_{i=1}^{p_G} \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^{q_G} \beta_i \sigma_{t-i}^2$$

• Vstavimo izbrane parametre:

$$X_{t} = \sum_{i=1}^{4} \varphi_{i} X_{t-i} + \sum_{i=1}^{5} \theta_{i} \varepsilon_{t-i} + 0 + \beta_{1} Y_{1_{t}} + \beta_{2} Y_{2_{t}} + \varepsilon_{t} + \sqrt{\sigma_{t}} z_{t},$$

kjer je $\sigma_t^2 = \omega + \sum_{i=1}^1 \alpha_i \varepsilon_t^2$ $+ \sum_{i=1}^3 \beta_i \sigma_t^2$ $+ \sum_{i=1}^3 \beta_i \sigma_t^2$ spremenljvka temperature Y_{2_t} pa sevanja

Koeficienti modela

$$X_t = \sum_{i=1}^4 \varphi_i X_{t-i} + \sum_{i=1}^5 \theta_i \varepsilon_{t-i} + 0 + \beta_1 Y_{1_t} + \beta_2 Y_{2_t} + \varepsilon_t + \sqrt{\sigma_t} z_t \,,$$

kjer je
$$\sigma_t^2 = \omega + \sum_{i=1}^1 \alpha_i \varepsilon_{t-i}^2 + \sum_{i=1}^3 \beta_i \sigma_{t-i}^2$$

Koeficienti:

- AR del: $\varphi_1 = -0.3686$, $\varphi_2 = -0.4185$, $\varphi_3 = -0.2894$, $\varphi_4 = 0.0486$
- MA del: $\theta_1 = -0.3311, \ \theta_2 = 0.1863, \ \theta_3 = 0.0931, \ \theta_4 = -0.2059, \ \theta_5 = 0.0583$
- sezonskih del: parametrov nimamo, ker sta P in Q enaka 0
- GARCH del: $\alpha_1 = 0.2$, $\beta_1 = 0.2333$, $\beta_2 = 0.2333$, $\beta_3 = 0.2333$
- Eksogene spremenljivke: $\beta_1 = -0.0003$ in $\beta_2 = 3.747 \cdot 10^{-6}$

Testiranje modela

Napaki MAPE in RMSE

Napaki RMSE (ang. *Root-mean-square deviation*) in MAPE (ang. *Mean absolute percentage error*) izračunamo po formulah:

$$RMSE = \sqrt{\frac{1}{96} \sum_{t=1}^{96} (W_t - \hat{W_t})^2} \quad \text{in} \quad MAPE = \frac{1}{96} \sum_{t=1}^{96} \frac{W_t - \hat{W_t}}{W_t} \,,$$

kjer je W_t dejanska vrednost odjema, $\hat{W_t}$ pa napovedana

Napaki MAPE in RMSE za izbrane datume

Datum	RMSE	MAPE
5. avgust 2023	156,600	1,104
24. september 2023	365,372	2,392
16. november 2023	176,901	1,199
30. december 2023	224,123	1,046
7. januar 2024	399,578	1,839
12. februar 2024	248,981	1,287
Povprečje	261,926	1,478

- $\bullet~$ Z vključitvijo še drugih primerov ugotovimo, da RMSE znaša okrog260, MAPE pa1,5~%
- Vključitev eksogenih podatkov prispeva k bolj točni napovedi

Zaključek

- Izbran model: SARIMAX(4,1,5)(0,1,0)[96]-GARCH(1,3)
- Dobre napovedi
- Z bolj zmogljivim računalnikom bi prišli do boljših rezultatov
- Funkcija napoved z SARIMA GARCH

Funkcija napoved_z_SARIMA_GARCH

Funckija napoved_z_SARIMA_GARCH

Kako funkcijo uporabiti?

V funkcijo napoved z_SARIMA_GARCH damo datum v obliki 'yyyy-mm-dd'; npr. napoved z_SARIMA_GARCH('2023-10-10') za napoved dne 10. oktober 2023. Najbolj je smiselno, da je datum iz testnega obdobja, torej med '2023-08-05' in '2024-02-28'. Rezultat se sicer dobi za vsak datum od '2021-10-3' naprej.

Kaj funkcija vrne?

Funkcije izriše prileganje grafa napovedi (po modelu SARIMA(4,1,5)(0,1,0))96]-GARCH(1,3) z upoštevanjem eksogenih podatkov temperature in sevanja) dejanskemu odjemu. Prav tako izpiše napaki RMSE in MAPE. Do napak lahko tudi dostopamo, saj je return funkcije napoved z SARIMA GARCH vo bilki seznama inapovedara prednosti po urah. napaka RMSE. napak MAPEI.

Koliko časa funkcija potrebuje da vrne rezultat?

Okrog 1 minuto.

Primer uporabe napoved_z_SARIMA_GARCH

1. Napoved za 10. oktober 2023:

RMSE: 85.8307826939613 MAPE: 0.7302950497184921