CS4004/CS4504: FORMAL VERIFICATION

Lecture 3: Propositional Logic

Vasileios Koutavas

School of Computer Science and Statistics Trinity College Dublin

Definition

A is satisfiable when it has a model which makes it true.

A is falsifiable when it has a model which makes it false.

A is valid or a tautology when all models make it true.

A is invalid or a contradiction when all models make it false.

Definition

A is satisfiable when it has a model which makes it true.

A is falsifiable when it has a model which makes it false.

A is valid or a tautology when all models make it true.

A is invalid or a contradiction when all models make it false.

Q: which of the above are properties of

$$(p \to \neg q) \to (q \vee \neg p)$$

Definition

A is satisfiable when it has a model which makes it true.

A is falsifiable when it has a model which makes it false.

A is valid or a tautology when all models make it true.

A is invalid or a contradiction when all models make it false.

Q: which of the above are properties of

$$(p \rightarrow \neg q) \rightarrow (q \vee \neg p)$$

Q: show that if $A_1 \wedge (A_2 \wedge A_3)$ is satisfiable then $(A_1 \wedge A_2) \wedge A_3$ is satisfiable.

Definition

A is satisfiable when it has a model which makes it true.

A is falsifiable when it has a model which makes it false.

A is valid or a tautology when all models make it true.

A is invalid or a contradiction when all models make it false.

Q: which of the above are properties of

$$(p \rightarrow \neg q) \rightarrow (q \lor \neg p)$$

Q: show that if $A_1 \wedge (A_2 \wedge A_3)$ is satisfiable then $(A_1 \wedge A_2) \wedge A_3$ is satisfiable.

Q: Let $(A_1 \wedge A_2) \rightarrow A_3$ be valid. Is it necessary that A_3 is satisfiable?

REASONING

Our goal is to use the logic to derive logical conclusions from logical premises (assumptions).

Two ways to do this:

→ Syntactic reasoning: using syntactic axioms and derivation rules. The preferred way because it's easier. We'll see this in the next lecture.

REASONING

Our goal is to use the logic to derive logical conclusions from logical premises (assumptions).

Two ways to do this:

- → Syntactic reasoning: using syntactic axioms and derivation rules. The preferred way because it's easier. We'll see this in the next lecture.
- → Semantic reasoning: using the truth values. We already did this in the associativity questions.

SEMANTIC REASONING

Definition

We write $A_1, \ldots, A_n \models B$ to mean that any valuation giving to all A_1, \ldots, A_n the value T also gives B the value T.

This is called semantic entailment.

We call $A_1, ..., A_n$ the premises or antecedents. We call B the conclusion or consequent.

We assume that any valuation makes the empty premises T.

We will write $A \equiv B$ when $A \models B$ and $B \models A$. This is called semantic equivalence.

SEMANTIC REASONING

Definition

We write $A_1, \ldots, A_n \models B$ to mean that any valuation giving to all A_1, \ldots, A_n the value T also gives B the value T.

This is called semantic entailment.

We call $A_1, ..., A_n$ the premises or antecedents. We call B the conclusion or consequent.

We assume that any valuation makes the empty premises T.

We will write $A \equiv B$ when $A \models B$ and $B \models A$. This is called semantic equivalence.

Q: show that $p \rightarrow q \models \neg q \rightarrow \neg p$

Q: show that $\neg(p \land q) \equiv \neg p \lor \neg q$ and $\neg(p \lor q) \equiv \neg p \land \neg q$ (De Morgan laws)

Q: show that $A \rightarrow B \equiv \neg A \lor B$

SEMANTIC REASONING

Explain the following

Lemma

A is valid if and only if \models A.

Lemma

A is invalid if and only if $\models \neg A$.

DIVERSION: NOTATION

We will write¹

(something) iff (something else)

To mean

If (something) is true then (something else) is true, and
If (something else) is true then (something) is true

¹We are using a meta-logic to state and prove our lemmas about Propositional Logic. Leibniz would not approve! But we have no other choice...

PROPERTIES OF SEMANTIC ENTAILMENT

Prove the following using the semantics

Lemma

$$\models A \rightarrow B \text{ iff } A \models B.$$

Lemma

$$A_1 \wedge A_2 \models B \text{ iff } A_1, A_2 \models B.$$

Lemma

$$A \models B_1 \lor B_2 \text{ iff } A \models B_1 \text{ or } A \models B_2.$$

Example: check if the following holds:
$$(p \rightarrow (q \lor r))$$
, $(q \rightarrow r)$, $p \models \neg r \rightarrow s$

There are 4 atomic propositions. How many lines in the truth table?

Example: check if the following holds:
$$(p \rightarrow (q \lor r))$$
, $(q \rightarrow r)$, $p \models \neg r \rightarrow s$

There are 4 atomic propositions. How many lines in the truth table? $2^4 = 16$ lines!

In general, the truth table necessary for checking $A_1, ..., A_n \models B$ has 2^N lines, where N is the number of atomic propositions.

→ Brute force algorithm for checking validity is exponential.

Example: check if the following holds:
$$(p \rightarrow (q \lor r))$$
, $(q \rightarrow r)$, $p \models \neg r \rightarrow s$

There are 4 atomic propositions. How many lines in the truth table? $2^4 = 16$ lines!

In general, the truth table necessary for checking $A_1, ..., A_n \models B$ has 2^N lines, where N is the number of atomic propositions.

→ Brute force algorithm for checking validity is exponential.

We can do better!

Indirect proof:

- 1. assume entailment is falsifiable
- 2. check if that's possible

Falsifiable iff there is a valuation making **all premises** T and the conclusion F.

Example: check if the following entailment holds:

$$(p \rightarrow (q \lor r))$$
 , $(q \rightarrow s)$, $p \models \neg r \rightarrow s$

Indirect proof:

- 1. assume entailment is falsifiable
- 2. check if that's possible

Falsifiable iff there is a valuation making **all premises** T and the conclusion F.

- → Put a T under the main operator (remember syntax trees?) of each premise and a F under the main operator of the conclusion
- → Propagate the truth values.
- → Duplicate lines when multiple choices exist.

Example: check if the following entailment holds:

Indirect proof:

- 1. assume entailment is falsifiable
- 2. check if that's possible

Falsifiable iff there is a valuation making **all premises** T and the conclusion F.

- → Put a T under the main operator (remember syntax trees?) of each premise and a F under the main operator of the conclusion
- → Propagate the truth values.
- → Duplicate lines when multiple choices exist.

Example: check if the following entailment holds:

$$(p \rightarrow (q \lor r))$$
 , $(q \rightarrow s)$, $p \models \neg r \rightarrow s$

TT TF TFT TFF

Indirect proof:

- 1. assume entailment is falsifiable
- 2. check if that's possible

Falsifiable iff there is a valuation making **all premises** T and the conclusion F.

- → Put a T under the main operator (remember syntax trees?) of each premise and a F under the main operator of the conclusion
- → Propagate the truth values.
- → Duplicate lines when multiple choices exist.

Example: check if the following entailment holds:

$$(p \rightarrow (q \lor r))$$
 , $(q \rightarrow s)$, $p \models \neg r \rightarrow s$

TTTTF FTF T TFF I

Contradiction: q has to be both T and F. Therefore the above is not falsifiable. Therefore the entailment holds.

Check the following:
$$(\neg p \rightarrow q)$$
 , $(q \rightarrow p)$, $(p \rightarrow \neg q) \models p \land \neg q$

Check the following:

$$(\neg p \rightarrow q)$$
 , $(q \rightarrow p)$, $(p \rightarrow \neg q) \models p \land \neg q$
F T T F F T F F T
T T T T T F F F T F F F

Check the following:

Contradiction in all cases (q must have both T and F value). Therefore not falisfiable. Therefore valid!

Check whether the following are valid:

- 1. $p \rightarrow q \rightarrow r \models p \rightarrow r \rightarrow q$
- 2. $p \rightarrow q \rightarrow r \models q \rightarrow p \rightarrow r$
- 3. $((p \rightarrow q) \rightarrow s), (r \rightarrow q), p \models q \land (r \rightarrow s)$