

MA2011 - Part II Mechatronics Systems Interfacing

Domenico Campolo

d.campolo@ntu.edu.sg

Nanyang Technological University
School of Mechanical & Aerospace Engineering

Office: N3.2-02-74

Strain gauges

resistance strain gauges force measurements

stress/strain measurements

 strain measurements are important to determine safe loading conditions of mechanical structures

stress/force measurements are typically derived indirectly from

BACKING

ENCAPSULATION

strain/displacement measurements

electrical resistance strain gauges

- thin metal foil
 - typically constantan
- patterned onto plastic backing material
- bonded onto mechanical structures
 - stress is inferred from solid mechanics principles

resistance strain gauges

- what is strain?
 - S:=dL/L quantifies the amount of deformation of a body
 - non-dimensional
 - defined as a relative change (dL/L)
 - typical materials undergo from 'microstrains' 10⁻⁶ (ppm) up to a few %
 - positive (tensile strain) or negative (compression) values
- Poisson's ratio
 - typically v: 0.3 (steel) \rightarrow 0.5 (rubber)

$$\nu := \frac{\text{lateral strain}}{\text{axial strain}}$$

resistance strain gauges

A = wn- differential form

$$\frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \left[\frac{dA}{A}\right]$$

- axial strain $S := \frac{dL}{L}$
- lateral strain

$$\frac{dw}{w} = \frac{dh}{h} = -\nu \frac{dL}{L} = -\nu S$$

$$\frac{dL}{dL} (dw dh)$$

$$\frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \left(\frac{dw}{w} + \frac{dh}{h}\right)$$

resistance strain gauges

$$\frac{dR}{R} = \frac{d\rho}{\rho} + \frac{dL}{L} - \left(\frac{dw}{w} + \frac{dh}{h}\right)$$

$$= \frac{d\rho}{\rho} + (1 + 2\nu)S$$

$$= \left(\frac{d\rho}{\rho} \frac{1}{S} + 1 + 2\nu\right)S$$
piezoresistivity
$$\frac{dR}{R} = \mathcal{G}S$$

	c .
galige	factor:
BUUBC	iactor.

<i>c</i> :—	dR 1 _		$d\rho$ 1 \perp 1	上 211
9.—	$\overline{R} \overline{S}$	$R \overline{\partial S}$	$\frac{\overline{\rho}}{\overline{S}}$	$+1+2\nu$

Material	Gauge Factor
Nickel	-12.6
Manganese	+0.07
Nicrome	+2.0
Constantan	+2.1
Soft Iron	+4.2
Carbon	+20
Platinum	+4.8

$$dR = dR^S := \frac{\partial R}{\partial S} S \quad \begin{tabular}{l} {\bf NOTE:} here we are only considering \\ {\bf changes of resistance due to strain dR=dR^S} \end{tabular}$$

transverse sensitivity

axial strain S^a

- $dR = R_0 G S$
 - the larger R_0 , the larger dR
 - long and thin wires allow larger R₀
 - wires must be aligned with axial strain S^a
 - practically, long wires are assembled in the form of a serpentine
 - end-loops
 - are aligned with the transverse axis
 - made thicker to reduce sensitivity to S^t

transverse

materials

- best materials
 - constantan, ferry alloys
- typical strain ranges
 - S: 1-10⁴ μ S
 - i.e. from 1ppm to 1%
 - $-G^{2}$
 - dR/R is in the same order of magnitude as S
 - challenge: detecting small resistance changes

a numerical example

- dR = R= **G** S
 - $-G^{2}$
 - $-R_0 \sim 100-1,000 \Omega$
 - strain in the order of $10-10^4 \mu S$ (micro-strain)
 - strain is adimensional
 - 1 μ S = 10⁻⁶ (e.g. 1 μ m/m)
- dR = $(100 \Omega) \times 2 \times (100 \mu S) = 0.02 \Omega$
 - transverse sensitivity in the order of 1%
 - how do we sense such small changes?

Wheatstone bridge

bridge equations

$$\begin{cases} \frac{V^{+}}{V_{i}} = \frac{R_{2}}{R_{1} + R_{2}} \\ \frac{V^{-}}{V_{i}} = \frac{R_{4}}{R_{3} + R_{4}} \end{cases}$$

$$\frac{V_o}{V_i} = \frac{R_2}{R_1 + R_2} - \frac{R_4}{R_3 + R_4}$$

bridge balance condition:

$$V_o = 0 \quad \Leftrightarrow \quad R_1 R_4 = R_2 R_3$$

(product of opposite sides)

Wheatstone bridge: 1st order approximation

- bridge sensitivity
 - when $R_1=R_2$ and $R_3=R_4$
 - NOTE: this also implies balance
 - first order approximation
 - acceptable up to few % S
 - NOTE: 1% S = $10^4 \mu$ S

$$\frac{dV_o}{V_i} = \frac{1}{4} \left(\frac{dR_2}{R_2} - \frac{dR_1}{R_1} + \frac{dR_3}{R_3} - \frac{dR_4}{R_4} \right)$$

example: quarter-bridge

- consider
 - $R_1 = R_3 = R_4 = R_0$
 - $-R_G = R_0 + dR$
- bridge output

$$\frac{dV_o}{V_i} = \frac{R_0 + dR}{2R_0 + dR} - \frac{1}{2}$$

Taylor expansion

$$\frac{dV_o}{V_i} = \frac{1}{4} \frac{dR}{R_0} - \frac{1}{4} \frac{dR^2}{R_0^2} + \dots h.o.t. \dots$$

$$\frac{dV_o}{V_i} \simeq \frac{1}{4} \frac{dR}{R_0} = \frac{1}{4} \mathcal{G} S$$

quarter-bridge

2-wire connection

- R_w: long wires resistance
 - as high as few ohms
 - temperature dependent
 - unbalancing effects

• 3-wire connection

- 3rd wire: no current!!!
- balanced bridge
- attenuated gauge factor

temperature compensation

dummy gauges

- mounted in close thermal contact but <u>not bonded</u>
- $-R_1=R_0+dR_1$ (strain gauge)
- $-R_2=R_0+dR_2$ (dummy gauge)

$$\begin{cases} dR_1 = \frac{\partial R_1}{\partial S}S + \frac{\partial R_1}{\partial T}dT \\ dR_2 = \frac{\partial R_2}{\partial T}dT \end{cases} \qquad \frac{\partial R_1}{\partial T}dT = \frac{\partial R_2}{\partial T}dT \end{cases} \text{ technologically similar gauges in thermal contact}$$

$$\frac{dV_o}{V_i} = \frac{1}{4}\left(\frac{dR_1}{R_0} - \frac{dR_2}{R_0}\right) = \frac{1}{4R_0}\left(\frac{\partial R_1}{\partial S}S + \frac{\partial R_1}{\partial T}dT - \frac{\partial R_2}{\partial T}dT\right)$$

$$\frac{dV_o}{V_i} = \frac{1}{4R_0}\left(\frac{\partial R_1}{\partial S}S\right) = \frac{1}{4}\mathcal{G}S$$

temperature compensation

Poisson gauges

- mounted in close thermal contact <u>and bonded</u>
- $-R_1=R_0+dR_1$ (strain gauge)
- $-R_2=R_0+dR_2$ (poisson gauge)

$$\begin{cases} dR_1 = \frac{\partial R_1}{\partial S} S + \frac{\partial R_1}{\partial T} dT \\ dR_2 = -\nu \frac{\partial R_2}{\partial S} S + \frac{\partial R_2}{\partial T} dT \end{cases}$$

$$\frac{dV_o}{V_i} = \frac{1}{4} \left(\frac{dR_1}{R_0} - \frac{dR_2}{R_0} \right) = \frac{1}{4R_0} \left(\frac{\partial R_1}{\partial S} S + \frac{\partial R_1}{\partial T} dT + \nu \frac{\partial R_2}{\partial S} S - \frac{\partial R_2}{\partial T} dT \right)$$

$$\frac{dV_o}{V_i} = \frac{1}{4R_0} \left(\frac{\partial R_1}{\partial S} (1 + \nu) S \right) = \frac{1}{4} \mathcal{G} (1 + \nu) S$$

rmal
$$R_0$$
 R_1 R_2 R_2 R_3 R_4 R_5 R_6 R_6 R_7 R_8 R_9 R_9

half bridge

- two active strain gauges
 - enhancing the sensitivity of the bridge

half-bridge

$$\frac{dV_o}{V_i} = \frac{1}{4} \left(\frac{dR_2}{R_2} - \frac{dR_1}{R_1} + \frac{dR_3}{R_3} - \frac{dR_4}{R_4} \right)$$

$$\frac{dV_o}{V_i} = \frac{1}{4} \left(\frac{dR_3}{R_3} - \frac{dR_4}{R_4} \right) = \frac{1}{2} \mathcal{G} S^b$$

axial loading

$$\frac{dV_o}{V_i} = \frac{1}{4} \left(\frac{dR_2}{R_2} + \frac{dR_3}{R_3} \right) = \frac{1}{2} \mathcal{G} S^a$$

apparent strain: loading condition

- apparent strain is manifested as any change in gauge resistance which is <u>not due</u> to the strain being measured
- for example, combinations of:
 - different mechanical loading

•
$$S_1 = S^a + S^b$$

• $S_2 = S^a - S^b$ axial (Sa) bending (Sb)

apparent strain: thermal effects

resistance changes might be due to a combination of strain and temperature

$$dR = \frac{\partial R}{\partial S}S + \frac{\partial R}{\partial T}dT = \frac{\partial R}{\partial S}\left(S + \left(\frac{\partial R}{\partial S}\right)^{-1}\frac{\partial R}{\partial T}dT\right)$$

- apparent strain due to temperature
 - notation: dR^T is the resistance change solely due to temperature

$$S^{T} := \left(\frac{\partial R}{\partial S}\right)^{-1} \frac{\partial R}{\partial T} dT = \frac{1}{\mathcal{G}} \frac{1}{R} \frac{\partial R}{\partial T} dT = \frac{1}{\mathcal{G}} \frac{dR^{T}}{R}$$

4,000 ppm / K⁻¹ [temperature coefficient]

example: half-bridge (1/2)

 ultimately, sensitivity to loading condition and temperature is determined by the electrical configuration

$$S_{G1} = S^{a} + S^{b} + S^{T}$$

$$R_{G1}$$

$$R_{G2}$$

$$V_{i}$$

$$R_{G1}$$

$$R_{G2}$$

$$R_{G2}$$

$$R_{G2}$$

$$V_{i}$$

$$R_{G2}$$

$$R_{G2}$$

$$R_{G2}$$

$$R_{G2}$$

$$R_{G2}$$

$$R_{G2}$$

$$R_{G3}$$

$$R_{G4}$$

$$R_{G5}$$

$$R_{G6}$$

$$R_{G6}$$

$$R_{G6}$$

$$R_{G6}$$

$$R_{G7}$$

$$R_{G8}$$

$$R_{G9}$$

 $S_{G2} = S^a - S^b + S^{T_1}$ axial strain

- can compensate bending but not temperature!

example: half-bridge (2/2)

 ultimately, sensitivity to loading condition and temperature is determined by the electrical configuration

$$\frac{dV_o}{V_i} = \frac{1}{4}\mathcal{G}\left(-S_1 + S_2\right)$$
$$= \frac{1}{2}\mathcal{G}S^b$$

- sensitive to bending strain
- compensate for axial strain and temperature

example: full-bridge (1/2)

- can sense axial strain
- can compensate for temperature and bending

$$S_{G1} = S^a + S^b + S^T$$

$$S_{G2} = S^a - S^b + S^T$$

$$S_{d1} = S_{d2} = S^T$$

$$S_{d1} = S_{d2} = S^{T}$$

$$\frac{dV_{o}}{V_{i}} = \frac{1}{4}\mathcal{G}\left(S_{G1} - S_{d1} + S_{G2} - S_{d2}\right) = \frac{1}{2}\mathcal{G}S^{a}$$

example: full-bridge (2/2)

- can sense bending strain
 - maximum bridge sensitivity
- can compensate for temperature and axial strain

example: cantilever beams

- longitudinal strain due to
 - axial loading (F_a)
 - L: length
 - t: thickness
 - A: cross-section
 - E: Young's module
 - bending (M, F_{+})
 - area moment of inertia I

$$- I = ab^3 / 12$$

$$- I = \pi r^4 / 4$$

$$-I = \pi (r_{max}^4 - r_{min}^4)/4$$

$$S_b = -\frac{M + F_t(L - x)}{EI} \frac{t}{2}$$

measuring forces:

- you are given 2 identical strain-gauges
 - dR/R = GS

where **G**=2

- where/how would you place them, along the beam, to measure the weight of a mass m and
 - maximize sensitivity?
 - compensate for temperature changes?

bridge balancing

- so far, we assumed that the bridge was balanced when no stress was applied
 - in real life, that's never going to happen...
- reestablish balance by modifying arm resistors
 - $R_1^* R_3 = R_2^* R_4$
- (a) and (c) require
 - very low resistors (non practical)
 - in-series switches/contacts
 - unreliable extra resistance will be added
- (b) and (d) are the most suitable
 - much larger resistors can be used
 - the structure of the bridge in not modified
 - parallel insertion
- (d) is more general (balancing both sides)

