KIT-Fakultät für Informatik

Prof. Dr.-Ing. Tamim Asfour

Musterlösungen zur Klausur

Robotik I: Einführung in die Robotik

am 11. März 2019, 14:00 – 15:00 Uhr

Name:	Vorname:		Matrikelnur	nmer:
Denavit	Hartenberg		$\frac{\pi}{2}$	
Aufgabe 1 Aufgabe 2 Aufgabe 3			von von	6 Punkten 7 Punkten 8 Punkten
Aufgabe 5 Aufgabe 5 Aufgabe 6			von von	6 Punkten 6 Punkten 7 Punkten
Aufgabe 7			von	5 Punkten
Gesamtpunktzahl:			45 v	on 45 Punkten
		Note:	1,0	

Aufgabe 1 Transformationen

1. Beweis, dass R eine Rotationsmatrix ist:

4 P.

Eine Matrix $R \in \mathbb{R}^{3\times 3}$ ist eine Rotationsmatrix, wenn $R^TR = I$ (Orthogonalität) und det R = 1 gilt.

$$R^{T}R = \begin{pmatrix} \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \\ \frac{1}{\sqrt{2}} & 0 & -\frac{1}{\sqrt{2}} \\ \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix} \cdot \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix} = \begin{pmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{pmatrix} = I.$$

Die Determinante ergibt sich nach der Regel von Sarrus:

$$\det R = 0 + \frac{1}{4} + \frac{1}{4} - 0 + \frac{1}{4} + \frac{1}{4} = 1.$$

2. Inverse Matrix R^{-1} :

1 P.

Aufgrund der Orthogonalität von R gilt:

$$R^{-1} = R^{T} = \begin{pmatrix} \frac{1}{2} & \frac{1}{\sqrt{2}} & \frac{1}{2} \\ -\frac{1}{\sqrt{2}} & 0 & \frac{1}{\sqrt{2}} \\ \frac{1}{2} & -\frac{1}{\sqrt{2}} & \frac{1}{2} \end{pmatrix}.$$

3. Homogene Darstellung:

1 P.

$$\begin{pmatrix} x_2 \\ y_2 \\ z_2 \\ 1 \end{pmatrix} = \begin{pmatrix} 0 & -1 & 0 & 7 \\ 1 & 0 & 0 & -4 \\ 0 & 0 & 1 & 1 \\ 0 & 0 & 0 & 1 \end{pmatrix} \cdot \begin{pmatrix} x_1 \\ y_1 \\ z_1 \\ 1 \end{pmatrix}$$

Aufgabe 2 Kinematik

- 1. Roboter mit zwei Gelenken:
 - (a) Transformationsmatrix $A_{0,2}$:

$$A_{0,2} = A_{0,1} \cdot A_{1,2} = \begin{pmatrix} \cos \theta_1 & 0 & \sin \theta_1 & 50 \cdot \cos \theta_1 \\ \sin \theta_1 & 0 & -\cos \theta_1 & 50 \cdot \sin \theta_1 \\ 0 & 1 & 0 & d_2 \\ 0 & 0 & 0 & 1 \end{pmatrix}$$

(b) DH-Parameter des Roboters:

Gelenk	$ heta_i$ [°]	$d_i \ [mm]$	$a_i~[mm]$	$lpha_i$ [°]
G1	$ heta_1$	0	50	0
G2	0	d_2	0	90

2. Herleitung 3 P.

Bei Vernachlässigung der Reibung muss die Arbeit W unabhängig vom Bezugssystem konstant bleiben und es gilt:

$$\int_{t_1}^{t_2} \dot{\theta}(t)^T \cdot \tau(t) dt = \int_{t_1}^{t_2} \dot{x}(t)^T \cdot F(t) dt$$

Da sie über das gesamte Zeitintervall gilt, folgt (Leistung P konstant):

$$\dot{\theta}(t)^T \cdot \tau(t) = \dot{x}(t)^T \cdot F(t)$$

Wird die bekannte Beziehung $\dot{x}(t) = J_f(\theta(t)) \cdot \dot{\theta}(t)$ eingesetzt, so ergibt sich:

$$\dot{\theta}(t)^T \cdot \tau(t) = (J_f(\theta(t)) \cdot \dot{\theta}(t))^T \cdot F(t)$$

$$\dot{\theta}(t)^T \cdot \tau(t) = \dot{\theta}(t)^T \cdot J_f^T(\theta(t)) \cdot F(t)$$

Umgeformt erhalten wir die bekannte Beziehung:

$$\tau(t) = J_f^T(\theta(t)) \cdot F(t)$$

Aufgabe 3 Dynamik

1. (a) Bewegungsgleichung:

$$\tau = M(q) \cdot \ddot{q} + c(\dot{q}, q) + g(q)$$

(b) 2 P.

Ausdruck	Dimension	Beschreibung
au	$n \text{ (alt. } n \times 1)$	Vektor der generalisierten Kräfte
M(q)	$n \times n$	Massenträgheitsmatrix
$c(\dot{q},q)$	$n \text{ (alt. } n \times 1)$	Vektor der Zentripetal- und Corioliskomponenten
g(q)	$n \text{ (alt. } n \times 1)$	Vektor der Gravitationskomponenten

2. (a) Kinetische und potentielle Energie:

$$E_{kin,1} = \frac{1}{2}m_1v^2 = \frac{1}{2}m_1a_1^2\dot{q}_1^2$$

$$E_{pot,1} = m_1 g h = m_1 g a_1 \sin(q_1)$$

2 P.

2 P.

(b) Lagrange-Funktion (allgemein und eingesetzt für den Roboter):

1 P.

$$L(q, \dot{q}) = E_{kin} - E_{pot}$$

$$L(q_1, \dot{q}_1) = E_{kin,1} - E_{pot,1} = \frac{1}{2}m_1a_1^2\dot{q}_1^2 - m_1ga_1\sin(q_1)$$

(c) Generalisierte Kräfte:

2 P.

$$\frac{\partial L}{\partial \dot{q}_1} = m_1 a_1^2 \dot{q}_1$$

$$\frac{d}{dt} \left(\frac{\partial L}{\partial \dot{q}_1} \right) = m_1 a_1^2 \ddot{q}_1$$

$$\frac{\partial L}{\partial q_1} = -m_1 g a_1 \cos(q_1)$$

$$\tau_1 = m_1 a_1^2 \ddot{q}_1 + m_1 g a_1 \cos(q_1)$$

Aufgabe 4 Bewegungsplanung mit PRM

1. PRM vs. RRT: 2 P.

PRM	RRT
probablilistisch	probablilistisch vollständig
multi-querry	single-querry
Vorberechnung nötig	Keine vorberechnung
Problem bei Änderungen der Kinematischen Kette oder Umgebung	Keine solchen Probleme
Obere Grenze für die Laufzeit existiert	Keine obere Grenze für die Laufzeit
Teile des Graphens können unverbunden sein	Der Graph (Baum) ist immer verbunden

2. Erweiterung der Roadmap um die drei Samples:

2 P.

$$a = (24, 10), b = (13, 1), c = (26, 3)$$

a und b werden in den Graphen aufgenommen.

c wird nicht in den Graphen aufgenommen wg. Kollision mit Hindernis.

a wird mit zwei nächsten Nachbarn verbunden. Der direkte Weg zum dritten Nachbarn ist nicht kollisionsfrei.

3. Expansionsreihenfolge:

Expansion: $B \to C \to E \to D \to G$

Herleitung (nicht in Lösung gefordert):

Aufgabe 5 Greifplanung

1. Greifanalyse vs. Greifsynthese:

2 P.

- (a) Greifanalyse:
 - i. Gegeben: Objekt und ein Griff (als Menge von Kontaktpunkten)
 - ii. Gesucht: Aussagen zur Stabilität des Griffs unter Berücksichtigung von Nebenbedingungen
- (b) Greifsynthese:
 - i. Gegeben: Objekt und eine Menge von Nebenbedingungen
 - ii. Gesucht: Eine Menge von Kontaktpunkten (Griff)
- 2. Kraftgeschlossene Griffe:
 - (a) Bedeutung der Kraftgeschlossenheit:

1 P.

Beliebige externe Kräfte und Momente können durch Kräfte und Momente, die durch die Finger auf das gegriffene Objekt erzeugt werden, ausgeglichen werden. Alternativ (mathematisch):

$$\forall \boldsymbol{e} \in \mathbb{R}^6 : \exists \boldsymbol{c} \in \mathbb{R}^{3m} : G \cdot \boldsymbol{c} + \boldsymbol{e} = \boldsymbol{0}$$

(b) Zwei Qualitätsmaße:

1 P.

- i. V: Volumen des GWS (Grasp Wrench Space)
- ii. ϵ : Radius der größte eingeschlossenen Kugel, Kleinste Distanz vom Ursprung zum Rand des GWS
- iii. GWS enthält Ursprung (Kraftgeschlossenheit, binär)
- 3. Parameter zur Beschreibung eines Griffs:
 - (a) Annäherungsvektor:

1 P.

Beschreibt die Richtung bzw. den Winkel mit dem sich die Hand dem Griffmittelpunkt nähert.

(b) Zwei weitere Parameter:

- i. Griffmittelpunkt auf dem Objekt (für Ausrichtung des TCP)
- ii. Orientierung der Hand, des Handgelenks
- iii. Initiale Fingerkonfiguration (Pre-shape)

Aufgabe 6 Bildverarbeitung

1. Kamerakalibrierung bedeutet die Bestimmung der extrinsischen und intrinsischen Parameter der Kamera

1 P.

3 P.

2.

$$B'_{R} = \begin{pmatrix} 1 & 1 & 1 & 1 \\ 2 & 2 & 2 & 2 \\ 3 & 3 & 3 & 3 \end{pmatrix} * \begin{pmatrix} 1 & 1 \\ 3 & 4 \end{pmatrix} = \begin{pmatrix} 16 & 16 & 16 \\ 25 & 25 & 25 \end{pmatrix}$$

$$B'_{G} = \begin{pmatrix} 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \\ 1 & 2 & 3 & 4 \end{pmatrix} * \begin{pmatrix} 3 & 2 \\ 1 & 2 \end{pmatrix} = \begin{pmatrix} 12 & 20 & 28 \\ 12 & 20 & 28 \end{pmatrix}$$

- 3. ICP
 - (a) Gradient der Fehlerfunktion:

1 P.

Gesucht ist der Gradient der Fehlerfunktion F_T , wenn die Punkte p'_i um ein kleines Delta $d = (x, y, z)^T$ verschoben werden.

$$\nabla F_T(d) = \nabla \left(\frac{1}{3} \sum_{i=0}^3 ||p_i' + d - p_i||^2 \right) = \frac{1}{3} \sum_{i=0}^3 \nabla ||p_i' + d - p_i||^2$$

$$=\frac{1}{3}\sum_{i=0}^{3}\nabla\left|\begin{vmatrix}p'_{i,x}+x-p_{i,x}\\p'_{i,y}+y-p_{i,y}\\p'_{i,z}+z-p_{i,z}\end{vmatrix}\right|^{2}=\frac{1}{3}\sum_{i=0}^{3}2\cdot\left(p'_{i,x}+x-p_{i,x}\\p'_{i,y}+y-p_{i,y}\\p'_{i,z}+z-p_{i,z}\right)=\frac{2}{3}\sum_{i=0}^{3}\left(p'_{i,x}+x-p_{i,x}\\p'_{i,y}+y-p_{i,y}\\p'_{i,z}+z-p_{i,z}\right)$$

Auswertung an $d = (0, 0, 0)^T$:

$$\nabla F_T(0,0,0) = \frac{2}{3} \sum_{i=0}^{3} \begin{pmatrix} p'_{i,x} + 0 - p_{i,x} \\ p'_{i,y} + 0 - p_{i,y} \\ p'_{i,z} + 0 - p_{i,z} \end{pmatrix} = \frac{2}{3} \sum_{i=0}^{3} \begin{pmatrix} p'_{i,x} - p_{i,x} \\ p'_{i,y} - p_{i,y} \\ p'_{i,z} - p_{i,z} \end{pmatrix} = \frac{2}{3} \sum_{i=0}^{3} p'_{i} - p_{i}$$

$$p'_{1,1} = p'_{1,0} - \frac{3}{4} \nabla F_T$$

$$p'_{1,1} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} - \frac{3}{4} \cdot \frac{2}{3} \cdot \begin{pmatrix} (1-0) + (1-1) + (0-1)\\(2-0) + (3-0) + (3-1)\\(1-0) + (2-1) + (1-0) \end{pmatrix}$$

$$p'_{1,1} = \begin{pmatrix} 1\\2\\1 \end{pmatrix} - \frac{1}{2} \begin{pmatrix} 0\\7\\3 \end{pmatrix} = \begin{pmatrix} 1\\-1.5\\-0.5 \end{pmatrix}$$

Symbolisches Planen Aufgabe 7

2 P. 1. Zustandsraum:

Symbol	Beschreibung
S	Endliche Menge an Zuständen bestehend aus Symbolen
A	Endliche Menge an Aktionen bestehend aus Name, Vorbedingungen (pre_A) und Effekten (eff_A)
$c: A \to \mathbb{R}_0^+$	Kostenfunktion
$I \in S$	Initialzustand
$S^G \subseteq S$	Endliche Menge an Zielzuständen

2. Breitensuche:

(a) ClosedList: 1 P. $\mathcal{C} = \{I\}$ (Alternativ kann der Zustand I auch ausgeschrieben werden)

(b) Zustand nach putOn(B, D, A):

1 P. $on(A, table) \wedge$

 $on(B, D) \wedge$

on $(D, C) \wedge$

 $on(C, table) \wedge$

 $clear(A) \wedge$

clear(B)

- (c) Weitere parametrisierte Aktionen:
 - putOn(D, B, C)
 - putOnTable(B, A)
 - putOnTable(D, C)

2 P.