New Lower Bounds for Reachability in Vector Addition Systems Weisigeh Czerwińsk

Wojciech Czerwiński Ismaël Jecker Sławomir Lasota Jérôme Leroux Łukasz Orlikowski

Presentation plan

History and definition of the problem

Presentation plan

- History and definition of the problem
- Main result

Presentation plan

- History and definition of the problem
- Main result
- Techniques

Vector Addition Systems with States

Vector Addition Systems with States

(-1, 1)

(2,-1) (-1,1)

- 1: x += 1
- 2: **loop**
- x -= 1 y += 1
- 4: **loop**
- 6: **loop**
- 7: x -= 1 y += 1
- 8: **loop**

Pushdown Vector Addition Systems with States

VASS extended with stack

Reachability Problem

Given: a Vector Addition System with States (VASS) V, two configurations s and t

Reachability Problem

Given: a Vector Addition System with States (VASS) V, two configurations s and t

Question: is there a run from s to t in V?

Example of run

$$p(1,0,2) \to p(0,1,2) \to q(0,1,2) \to q(2,0,2) \to p(2,0,1)$$

Fast growing functions

$$F_1(n) = 2n$$

Fast growing functions

$$F_1(n) = 2n$$
 $F_2(n) = 2^{n-1}$

Fast growing functions

$$F_1(n) = 2n$$
 $F_2(n) = 2^{n-1}$

$$F_d(n) = F_{d-1}(F_{d-1}(...(F_{d-1}(1))...))$$
 composed n-1 times

• Lipton `76: ExpSpace-hardness

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications
- Leroux, Schmitz `15: cubic-Ackermann upper bound

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications
- Leroux, Schmitz `15: cubic-Ackermann upper bound
- Leroux, Schmitz `19: Ackermann upper bound

- Lipton `76: ExpSpace-hardness
- Mayr `81: decidability
- Kosaraju `82, Lambert `92: simplifications
- Leroux, Schmitz `15: cubic-Ackermann upper bound
- Leroux, Schmitz `19: Ackermann upper bound
- Czerwiński, Lasota, Lazic, Leroux, Mazowiecki `19:
 Tower-hardness

 Leroux and Czerwiński, Orlikowski `21: Two independent proofs of Ackermann-hardness (F_d-hardness in dimension 4d+5 and 6d)

- Leroux and Czerwiński, Orlikowski `21: Two independent proofs of Ackermann-hardness (F_d-hardness in dimension 4d+5 and 6d)
- Lasota follow-up with simpler proof (3d + 2)

- Leroux and Czerwiński, Orlikowski `21: Two independent proofs of Ackermann-hardness (F_d-hardness in dimension 4d+5 and 6d)
- Lasota follow-up with simpler proof (3d + 2)
- For pushdown decidability not known

Our contribution

Theorem:

The Reachability Problem for Vector Addition Systems is F_d -hard in dimension 2d+3

Our contribution

Theorem:

The Reachability Problem for Vector Addition Systems is F_d -hard in dimension 2d+3

Theorem:

The Reachability Problem for Pushdown VASSes is F_d -hard in dimension $\frac{d}{2}+6$.

Our contribution

Theorem:

The Reachability Problem for Vector Addition Systems is F_d -hard in dimension 2d+3

Theorem:

The Reachability Problem for Pushdown VASSes is F_d -hard in dimension $\frac{d}{2} + 6$. First lower bound not inherited from VASS!

Techniques

Minsky machine

counter program with zero-tests and two counters

Minsky machine

- counter program with zero-tests and two counters
- in general reachability problem is undecidable

F_d-zero test reachability problem

Given: a Minsky machine M and two configurations s and t

F_d-zero test reachability problem

Given: a Minsky machine M and two configurations s and t

Question: is there a run from s to t in M which does exactly $F_d(|M|)$ zero tests?

• Let's have a triple (b,2c, 2bc)

- Let's have a triple (b,2c, 2bc)
- Allows for c zero-tests on b-bounded counters

flush(x,y,z):

- 1: **loop**
- 2: x -= 1 y += 1 z -= 1

Let's have triple (b, y, z) = (B, 2C, 2BC)

Zero-test(x):

- 1: **flush**(b, x, z)
- 2: flush(x, b, z)
- 3: y = 2

Let's have triple (b, y, z) = (B, 2C, 2BC)

Zero-test(x):

- 1: **flush**(b, x, z)
- 2: flush(x, b, z)
- 3: y = 2

Invariant (b+x)y=z kept only if x was indeed zero!

• Let's have a triple (a,b, (4^b-1)a)

- Let's have a triple (a,b, (4^b-1)a)
- Allows for b zero-tests on a-bounded counters

Let's have triple $(a, b, c) = (a, b, (4^b-1)a)$

Program Zero(x):

- 1: loop $a \longrightarrow t \quad c \longrightarrow t$
- 2: loop $y \longrightarrow x \quad c \longrightarrow t$
- 3: loop $t \longrightarrow a \quad c \longrightarrow a$
- 4: loop $x \longrightarrow y \quad c \longrightarrow a$
- 5: b −= 1

Let's have triple $(a, b, c) = (a, b, (4^b-1)a)$

Program Zero(x):

```
1: loop a \longrightarrow t \quad c \longrightarrow t
```

2: loop
$$y \longrightarrow x \quad c \longrightarrow t$$

3: loop
$$t \longrightarrow a \quad c \longrightarrow a$$

4: loop
$$x \longrightarrow y \quad c \longrightarrow a$$

Invariant (a+x+y+t)(4^b-1)=c kept only if x was indeed zero!

Let's have triple $(a, b, c) = (a, b, (4^b-1)a)$

Program Zero(x):

- 1: loop $a \longrightarrow t \quad c \longrightarrow t$
- 2: loop $y \longrightarrow x \quad c \longrightarrow t$
- 3: loop $t \longrightarrow a \quad c \longrightarrow a$
- 4: loop $x \longrightarrow y \quad c \longrightarrow a$
- 5: b −= 1

Invariant (a+x+y+t)(4^b-1)=c kept only if x was indeed zero!

You can see this invariant as $(a+x+y+t)4^b=c+a+x+y+t$

• Main challenge: producing such triples

- Main challenge: producing such triples
- Can be done by producing bigger triples from smaller ones

- Main challenge: producing such triples
- Can be done by producing bigger triples from smaller ones
- \bullet We can produce $(M, F_d(M), (4^{F_d(M)}-1)M)$ triple using 2d+4 counters in VASS and $\frac{d}{2}$ +4 in PVASS

F_d-hard VASS/PVASS

• d nested levels of counters

b ₁	C ₁
b ₂	C ₂
	-
b _d	C _d

- d nested levels of counters
- new triple technique allows for one common a for all levels

b ₁	c ₁
b ₂	c ₂
•	•
•	-
•	•
b _d	Cd

	b ₁	C ₁
F _d -hard VASS/PVASS	b ₂	c ₂
 d nested levels of counters 		-
 new triple technique allows for 		-
one common a for all levels	-	-
 b₁, b₂,, b_d have stack structure 	b _d	c _d

F ₁ -hard	VASS/PVASS
. d	***************************************

- d nested levels of counters
- new triple technique allows for one common a for all levels
- b₁, b₂, ..., b_d have stack structure
- odd/even c counters have also stack structure

b ₁	C ₁
b ₂	C ₂
•	•
-	
b_	Ca

u	_	_
 d nested levels of counters 	•	•
 new triple technique allows for 	•	•
one common a for all levels	•	•
 b₁, b₂,, b_d have stack structure 	b _d	C _d
 odd/even c counters have also 	<u> </u>	
stack structure		
 we can store all b counters and half c counters on stack 		

F_d-hard VASS/PVASS

Thank you!