

Séries à termes positifs

Soit σ une application de \mathbb{N}^* dans \mathbb{N}^*

- ① On suppose dans cette question que σ est bijective .Déterminer la nature des séries $\sum_{n>1} \frac{1}{\sigma(n)}$ et $\sum_{n>1} \frac{1}{(\sigma(n))^2}$
- ② On suppose dans cette question que σ est injective .Montrer que la série $\sum_{n\geq 1} \frac{\sigma(n)}{n^2}$ est divergente

① @..la série $\sum_{n\geq 1}\frac{1}{\sigma(n)}$ est une série à termes positifs .Si on pose pour $n\in\mathbb{N}^*$, $N=\max\left\{\sigma^{-1}(1),\ldots,\sigma^{-1}(n)\right\}$, alors on a $\sum_{k=1}^n\frac{1}{k}\leq\sum_{k=1}^N\frac{1}{\sigma(k)}$ et comme la série $\sum_{n\geq 1} \frac{1}{n}$ est divergente alors la série $\sum_{n\geq 1} \frac{1}{\sigma(n)}$ diverge \bigcirc .On a pour tout entier naturel non nul n

 $\sum_{k=1}^{n} \frac{1}{\left(\sigma(n)\right)^{2}} \leq \sum_{k=1}^{N} \frac{1}{k^{2}} \leq \frac{\pi^{2}}{6} \ \ \textit{avec} \ \ N = \max\left(\sigma\left(\llbracket 1, n \rrbracket\right)\right)$ Ce qui prouve alors que la série $\sum_{n \geq 1} \frac{1}{\left(\sigma(n)\right)^{2}} \text{ est convergente}$

② Notons pour n non nul $u_n = \frac{\sigma(n)}{n^2}$, alors on a

 $\forall n \in \mathbb{N}^* \text{ , } \sum_{k=n+1}^{2n} u_k \geq \sum_{k=n+1}^{2n} \frac{\sigma(k)}{4n^2} = \frac{1}{4n^2} \left(\sum_{k=n+1}^{2n} \sigma(k) \right) = \frac{1}{4n^2} \left(\sum_{k=1}^{n} \sigma(n+k) \right)$ injective alors les entiers $\sigma(n+1)$... , $\sigma(2n)$ sont distincts deux à deux et sont supérieur ou égal à 1 et par Et comme l'application σ est injective alors les entiers $\sigma(n+1)$..., $\sigma(2n)$ sont distincts deux à deux et sont supérieur ou égal à 1 et par suite on a $\sum_{k=n+1}^{2n} \sigma(k) \ge \sum_{k=1}^{n} k = \frac{n(n+1)}{2}$ et par suite $\sum_{k=n+1}^{2n} u_k \ge \frac{n+1}{8n} \ge \frac{1}{8}$ ce qui entraine alors que la suite des sommes partielles de la série $\sum_{n\ge 1} \frac{\sigma(n)}{n^2}$ n'est pas une suite de Cauchy de l'espace de Banach (\mathbb{R} , |.|) donc la série $\sum_{n\ge 1} \frac{\sigma(n)}{n^2}$ est divergente

Soit $f:[1,+\infty[\to\mathbb{R}^+]$ est une application telle que $x\longmapsto xf(x)$ est minorée . Montrer que la série $\sum_{n\geq 1}f(n)$ est divergente

Soit $m \in \mathbb{R}_+^*$ tel que $\forall x \in [1, +\infty[$, $xf(x) \geq m$.On a pour n entier nature

$$S_{2n} - S_n = \sum_{k=1}^{2n} f(n+k) \ge m \sum_{k=1}^{2n} \frac{1}{n+k} \ge m \frac{n}{2n} = \frac{m}{2} > 0$$

 $S_{2n} - S_n = \sum_{k=1}^{2n} f(n+k) \ge m \sum_{k=1}^{2n} \frac{1}{n+k} \ge m \frac{n}{2n} = \frac{m}{2} > 0$ Ce qui montre alors que la suite $(S_n)_n$ n'est pas de Cauchy et par suite la série $\sum_{n \ge 1} f(n)$ est divergente

?-Exercice :3

On suppose que la série $\sum_{n\geq 1} a_n$ est divergente. Etudier le comportement des séries suivantes

$$\sum_{n \ge 1} \frac{a_n}{1 + a_n} \ , \ \sum_{n \ge 1} \frac{a_n}{n a_n} \ , \ \sum_{n \ge 1} \frac{a_n}{1 + n^2 a_n} \ et \ \sum_{n \ge 1} \frac{a_n}{1 + a_n^2}$$

Solution :3

① \triangle . Si la suite $(a_n)_n$ est majorée par un réel strictement positif \widehat{a}

$$\forall n \in \mathbb{N} , \frac{a_n}{1+a_n} \ge \frac{a_n}{1+M}$$

 $\forall n \in \mathbb{N} \text{ , } \frac{a_n}{1+a_n} \geq \frac{a_n}{1+M}$ Et comme la série $\sum_{n \geq 0} a_n$ diverge alors la série $\sum_{n \geq 1} \frac{a_n}{1+a_n}$ est divergente $\text{S.Si la suite } (a_n)_n \text{ n'est pas maiorée} \text{ alor } n$ $\stackrel{-}{\otimes}$. Si la suite $(a_n)_n$ n'est pas majorée ,alors elle admet une sous suite $(a_{\varphi(n)})_n$ qui diverge vers $+\infty$ et par suite $\lim_{n\to+\infty}\frac{a_{\varphi(n)}}{a_{\varphi(n)}+1}=1$ ce qui montre alors que la série $\sum_{n\geq 0} \frac{a_n}{1+a_n}$ diverge grossièrement

② La série $\sum_{n\geq 0} \frac{a_n}{1+na_n}$ peut converger comme elle peut diverger . En effet

 \circ . Soit $(a_n)_n$ la suite définie par

$$\begin{cases} 1 \ si \ n \ \text{est un carr\'e} \\ \frac{1}{n^2} \ si \ non \end{cases}$$

La suite extraite $(a_{n^2})_n$ tend vers 1 , donc la série $\sum_{n=0}^\infty a_n$ diverge grossièrement .De plus on a

$$\forall n \in \mathbb{N}, \sum_{k=0}^{n} \frac{a_k}{1 + ka_k} < \sum_{k=0}^{n} \frac{1}{1 + k^2} + \sum_{k=0}^{n} \frac{1}{k + k^2} \le 2 \sum_{k=0}^{n} \frac{1}{1 + k^2}$$

Et pars suite la série $\sum_{n>0} \frac{a_n}{1+na_n}$ converge dans ce cas . Si on pose pour n entier naturel non nul $a_n = \frac{1}{n}$, alors $\sum_{n>1} \frac{1}{n}$ est divergente et

 $\forall n \in \mathbb{N}^*$, $\frac{a_n}{1+na_n} = \frac{1}{2n}$ donc la série $\sum_{n \geq 1} \frac{a_n}{1+na_n}$ diverge

3 La convergence de la série en question se déduite de l'inégalité

$$\forall n \in \mathbb{N}^*$$
, $\frac{a_n}{1+n^2a_n} \leq \frac{a_n}{n^2a_n} = \frac{1}{n^2}$

$$\forall n \in \mathbb{N}$$
 , $\frac{a_n}{1+a_n^2} \ge \frac{a_n}{1+M^2}$

4 Si la suite $(a_n)_n$ est majorée par un réel strictement positif M ,alors $\forall n \in \mathbb{N} \text{ , } \frac{a_n}{1+a_n^2} \geq \frac{a_n}{1+M^2}$ Et la série $\sum_{n\geq 0} \frac{a_n}{1+a_n^2}$ est divergente .Mais , si par exemple $a_n=n^2$, alors la série $\sum_{n\geq 1} a_n$ est divergente alors que la série $\sum_{n\geq 1} \frac{a_n}{1+a_n^2}$ est

-`@-Exercice :4

Soient $\sum_{n>1} a_n$ une série divergente de réels strictement positifs et $(S_n)_n$ la suite de ses sommes partielles .

① Montrer que la série $\sum_{n>1} \frac{a_n}{S_n}$ diverge et que la série $\sum_{n>1} \frac{a_n}{S_n^2}$ converge

② Montrer que la série $\sum_{n>1} \frac{a_n}{S_n S_{n-1}^{\beta}}$ converge pour tout $\beta > 0$

③ Prouver que la série $\sum_{n\geq 1} \frac{a_n}{S_n^{\alpha}}$ converge si $\alpha>1$ et diverge si $\alpha\leq 1$

Solution:4

① La suite $(S_n)_n$ est croissante positive car la suite $(a_n)_n$ est une suite de rèels strictement positifs . Soit $(n, p) \in \mathbb{N}^2$, on a

$$\sum_{k=1}^{p} \frac{a_{n+k}}{S_{n+k}} \ge \frac{\sum_{k=n+1}^{n+p} a_k}{S_{n+p}} = \frac{S_{n+p} - S_n}{S_{n+p}}$$

Pour n fixé on a $\lim_{p \to +\infty} \frac{S_{n+p} - S_n}{S_{n+p}} = 1$, donc la suite des sommes partielles de la série $\sum_{n \ge 1} \frac{a_n}{S_n}$ n'est pas une suite de Cauchy et par suite la série $\sum_{n>1} \frac{a_n}{S_n}$ est alors divergente

$$\forall n \in \mathbb{N}^*$$
, $\frac{a_n}{S_n^2} \le \frac{a_n}{S_n S_{n-1}} = \frac{S_n - S_{n-1}}{S_n S_{n-1}} = \frac{1}{S_{n-1}} - \frac{1}{S_n}$

Et par suite on a

$$\sum_{n+1}^{n+p} \frac{a_k}{S_k^2} \le \sum_{k=n+1}^{n+p} \left(\frac{1}{S_{k-1}} - \frac{1}{S_k} \right) = \frac{1}{S_n} - \frac{1}{S_{n+p}} < \frac{1}{S_n}$$

Et comme la suite $(S_n)_n$ diverge vers $+\infty$ alors la suite $\lim_{n\to+\infty}\frac{1}{S_n}=0$ et par suite d'après le critère de Cauchy pour les séries la série $\sum_{n\geq1}\frac{a_n}{S_n^2}$ est convergente

3 On a

$$\forall n \in \mathbb{N}^*, \frac{a_n}{S_n S_{n-1}^{\beta}} = \frac{S_n - S_{n-1}}{S_n S_{n-1}^{\beta}}$$

On suppose que $\beta>0$ et p un entier naturel non nul tel que $\frac{1}{p}<\beta$.Pour n suffisamment grand on a l'inégalité $\frac{a_n}{S_nS_{n-1}^{\beta}}<\frac{a_n}{S_nS_{n-1}^{\beta}}$

$$\frac{a_n}{S_n S_{n-1}^{\beta}} < \frac{a_n}{S_n S_{n-1}^{\frac{1}{p}}}$$

Il suffit alors d'établir la convergence de la série $\sum_{n\geq 1}\left(\frac{a_n}{S_nS_{n-1}^{\frac{1}{p}}}\right)$. On rappelle que $\forall x\in]0,1]$, $\forall p\in \mathbb{N}^*$, $1-x^p\leq p(1-x)$

Alors on en déduit que

$$1 - \frac{S_{n-1}}{S_n} \le p \left(1 - \frac{S_{n-1}^{\frac{1}{p}}}{S_n^{\frac{1}{p}}} \right) , pour \ x = \left(\frac{S_{n-1}}{S_n} \right)^{\frac{1}{p}}$$

ce qui est équivalent à

$$\frac{S_n - S_{n-1}}{S_n S_{n-1}^{\frac{1}{p}}} \le p \left(\frac{1}{S_{n-1}^{\frac{1}{p}}} - \frac{1}{S_n^{\frac{1}{p}}} \right)$$

Et comme la suite $\left(\frac{1}{S_n}\right)_n$ converge alors d'après le critère de Cauchy pour les séries la série $\sum_{n>1} \left(\frac{a_n}{S_n}\right)_n$ est converge et par suite la série

$$\sum_{n\geq 1} \left(\frac{a_n}{S_n S_{n-1}^{\beta}} \right)$$
est convergente

- 4 . Pour $\alpha > 1$. On a alors pour $n \geq 2$, $\frac{a_n}{S_n^{\alpha}} \leq \frac{a_n}{S_n S_{n-1}^{\alpha-1}}$ et d'après la question précédente la série $\sum_{n \geq 1} \left(\frac{a_n}{S_n^{\alpha}}\right)$ est convergente
 - ∞ . Pour $\alpha \le 1$ et pour n suffisamment grand on a $\frac{a_n}{S_n^{\alpha}} \ge \frac{a_n}{S_n}$ ce qui entraine d'après la première question que la série $\sum_{n \ge 1} \left(\frac{a_n}{S_n^{\alpha}}\right)$ est divergente

-\overline{\cappa_-\overline{\cappa_-}}\overline{\cappa_-\overline{\cappa_-\overline{\cappa_-}}}\overline{\cappa_-\overline{\cappa_-\overline{\cappa_-}}}\overline{\cappa_-\overline{\cappa_-\overline{\cappa_-\overline{\cappa_-}}}\overline{\cappa_-\overline{\cappa

Soit $(a_n)_n$ une suite de réels strictement positifs et α un réel distinct de 1

① On suppose dans cette question que

$$\frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$$

- ① Montrer que si $\alpha > 1$ alors la série $\sum_{n \ge 1} a_n$ est convergente
- ② Montrer que si $\alpha < 1$,alors la série $\sum_{n > 1} a_n$ est divergente

② On suppose dans cette question que
$$(a_n)_n$$
 vérifie : $\forall n \in \mathbb{N}^*$, $\frac{a_{n+1}}{a_n} = 1 - \frac{\alpha}{n} + v_n$, avec $\sum_n v_n$ est absolument convergente Montrer que la série $\sum a_n$ converge si $\alpha > 1$ et diverge si $\alpha \leq 1$

Montrer que la série $\sum_{n\geq 1} a_n$ converge si $\alpha>1$ et diverge si $\alpha\leq 1$

Solution :5

- ① On suppose que la suite $(a_n)_n$ vérifie $\frac{a_{n+1}}{a_n} = 1 \frac{\alpha}{n} + o\left(\frac{1}{n}\right)$
 - $\textcircled{1} \text{ On suppose que } \alpha > 1 \text{ .Soit } \gamma \in]1, \alpha[\text{ et } (v_n)_n \text{ la suite définie par } \forall n \in \mathbb{N}^* \text{ , } v_n = \frac{1}{n^\gamma}. \text{ On a } \frac{v_{n+1}}{v_n} = \left(1 + \frac{1}{n}\right)^{-\gamma} = 1 \frac{\gamma}{n} + o\left(\frac{1}{n}\right)^{-\gamma} = 1 \frac{\gamma}{n} + o\left(\frac{1}{n}$ et par suite

$$\frac{a_{n+1}}{a_n} - \frac{v_{n+1}}{v_n} = \frac{\gamma - \alpha}{n} + o\left(\frac{1}{n}\right)$$

Donc $\frac{a_{n+1}}{a_n} - \frac{v_{n+1}}{v_n} \sim \frac{\gamma - \alpha}{n}$ et par suite

$$\exists n_0 \in \mathbb{N}^*$$
 , $\forall n \geq n_0$, $\frac{a_{n+1}}{a_n} \leq \frac{v_{n+1}}{v_n}$

et comme la série de Reimann $\sum_{n\geq 1}\frac{1}{n^{\gamma}}$ est convergente alors d'après le critère de comparaison logarithmique la série $\sum_{n\geq 1}a_n$ est convergente

- ② Dans cette question on suppose que $\alpha < 1$.Soit $\gamma \in]\alpha, 1[$ et $(v_n)_n$ la suite définie par $\forall n \in \mathbb{N}^*$, $v_n = \frac{1}{n^\gamma}$, alors en faisant les mêmes calculs de la question précédente on a $\exists n_0 \in \mathbb{N}^*$, $\forall n \geq n_0$, $\frac{v_{n+1}}{v_n} \leq \frac{a_{n+1}}{a_n}$ et comme la série $\sum_{n \geq 1} \frac{1}{n^\gamma}$ est divergente alors d'après le critère de comparaison logarithmique la série $\sum_{n>1} a_n$ est divergente
- ② On va étudier la suite $u_{n+1}-u_n$ avec $u_n=\ln{(n^{\alpha}a_n)}.$ Soit $n\in\mathbb{N}$, on

On va étudier la suite
$$u_{n+1} - u_n$$
 avec $u_n = \ln(n^{\alpha}a_n)$. Soit $n \in \mathbb{N}$, on a
$$u_{n+1} - u_n = \ln((n+1)^{\alpha}a_n) - \ln(n^{\alpha}a_n) = \alpha \cdot \ln\left(\frac{n+1}{n}\right) + \ln\left(\frac{a_{n+1}}{a_n}\right) = \alpha \ln\left(1 + \frac{1}{n}\right) + \ln\left(1 - \frac{\alpha}{n} + v_n\right)$$
 Comme la série $\sum_{n \geq 0} v_n$ est absolument convergente alors la suite $(v_n)_n$ converge vers 0 et par suite

$$u_{n+1} - u_n = \alpha \left(\frac{1}{n} + O\left(\frac{1}{n^2}\right) \right) + \left(-\frac{\alpha}{n} + v_n + O\left(\left(-\frac{\alpha}{n} + v_n\right)^2\right) \right)$$

On a $\forall n \in \mathbb{N}^*$, $\left(-\frac{\alpha}{n} + v_n^2\right) \leq 2\left(\frac{\alpha^2}{n^2} + v_n^2\right)$ donc $O\left(\left(-\frac{\alpha}{n} + v_n\right)^2\right) = O\left(v_n^2\right) + O\left(\frac{1}{n^2}\right)$ et par suite $u_{n+1} - u_n = v_n + O\left(v_n^2\right) + O\left(\frac{1}{n^2}\right)$. Les

séries $\sum_{n\geq 0} O\left(\frac{1}{n^2}\right)$ et $\sum_{n\geq 0} \left(v_n + O\left(v_n^2\right)\right)$ sont absolument convergente donc la série $\sum_{n\geq 0} \left(u_{n+1} - u_n\right)$ est convergente et cela signifie que la

suite $(u_n)_n$ est convergente vers une limite l et alors la suite $(e^{u_n})_n$ est convergente vers e^l , ce qui donne le résultat

🎅 Exercice :6.Critère de Schloimilch

Ce théorèe est une généralisation du critère de condensation ou de la loupe de Cauchy. Soit $(g_n)_n$ une suite strictement croissante d'entiers naturels non nuls vérifiant :

$$\exists c > 0 , \forall n \ge 1 , g_{n+1} - g_n \le c (g_n - g_{n-1})$$

On considère une suite $(a_n)_n$ décroissante de réels strictement positifs .

① Montrer que les séries

$$\sum_{n\geq 1} a_n \quad et \quad \sum_{n\geq 1} (g_{n+1} - g_n) \, a_{g_n} \text{ ont même nature}$$

② En déduire que les séries suivantes

$$\sum_{n\geq 1}a_n$$
 , $\sum_{n\geq 1}3^na_{3^n}$, $\sum_{n\geq 1}na_{n^2}$ et $\sum_{n\geq 1}n^2a_{n^3}$ sont d mêmes natures

Dans cette exercice on a besoin du lemme suivant vu en sup:

Si $(u_n)_n$ est une suite monotone de réels admettant une suite extraite convergente alors la suite $(u_n)_n$ est convergente

① On pose pour n entier naturel $S_n = \sum_{n=0}^{n} a_n$ et on considère la suite $(v_n)_n$ définie par

$$\begin{cases} v_0 = S_{g_1} \\ \forall n \ge 1 , v_n = \sum_{g_n+1}^{g_{n+1}} \end{cases}$$

Il est clair que $\forall n \geq 1$, $v_n = S_{g_{n+1}} - S_{g_n}$ et par suite si $(V_n)_n$ désigne la somme partielle de la série $\sum_{n \geq 0} v_n$, alors on a $\forall n \in \mathbb{N}$, $V_n = S_{g_{n+1}}$. La suite $(a_n)_n$ est décroissante donc

$$\forall n \in \mathbb{N}^*$$
 , $\forall k \in [g_n+1,g_{n+1}]$, $a_{g_{n+1}} \leq a_k \leq a_{g_n+1} \leq a_{g(n)}$

Et par suite

$$\sum_{k=g_n+1}^{g_{n+1}} a_{g_{n+1}} \leq v_n \leq \sum_{k=g_n+1}^{g_{n+1}} a_{g_n} \text{ ce qui est \'equivalent \`a } (*) : (g_{n+1}-g_n) a_{g_{n+1}} \leq v_n \leq (g_{n+1}-g_n) a_{g_n}$$

 $\sum_{k=g_n+1}^{g_{n+1}} a_{g_{n+1}} \le v_n \le \sum_{k=g_n+1}^{g_{n+1}} a_{g_n} \text{ ce qui est \'equivalent \`a} \quad (*) : (g_{n+1}-g_n)a_{g_{n+1}} \le v_n \le (g_{n+1}-g_n)a_{g_n}$ \$\insertig{\text{:Si la s\'erie}} \sum_{n\geq 0} (g_{n+1}-g_n)a_{g_n} \text{ est convergente alors la s\'erie} \sum_{n\geq 0} v_n \text{ converge c'est à dire que la suite de ses sommes partielles \$(V_n)_n\$ converge to the size of the standard product of the standard produ

, donc la suite $(S_{g_{n+1}})_n$ est convergente .Comme la suite $(S_n)_n$ est une suite croissante admettent une suite extraite $(S_{g_{n+1}})$ alors elle converge et par suite la série $\sum a_n$ est convergente

Supposons que $\sum_{n>0}^{\infty} a_n$ est convergente, donc la suite $(S_{g_{n+1}})_n$ est convergente c'est à dire que la série $\sum_{n>1} v_n$ est convergente, donc d'après (*)

la série $\sum_{n\geq 1} (g_{n+1}-g_n) a_{g_{n+1}}$ converge c'est à dire que la série $\sum_{n\geq 1} (g_n-g_{n-1}) a_{g_n}$ est convergente .Or $\forall n\in\mathbb{N}$, $\frac{1}{c}(g_{n+1}-g_n)\leq (g_n-g_{n-1})$

et comme les a_n sont strictement positifs alors $\forall n \in \mathbb{N}$, $\frac{1}{c}(g_{n+1}-g_n)a_{g_n} \leq (g_n-g_{n-1})a_{g_n}$ ce qui prouve alors la convergence de la série $\sum_{n>0} \left(a_{g_{n+1}} - g_n \right) a_{g_n}$

② On retrouve le critère de condensation de Cauchy , il suffit de prendre $g_n = 2^n$ et pour la série $\sum_{n \ge 0} 3^n a_{3^n}$ prendre $g_n = 3^n$

Pour la série $\sum_{n\geq 0} na_{n^2}$ on prend $g_n=n^2$, il est clair que $(g_n)_n$ est une suite strictement croissante et que

 $\forall n \in \mathbb{N}^* \text{ , } g_{n+1} - g_n = 2n+1 \leq 3(g_n - g_{n-1})$. Donc par application du critère précédent on a $\sum_{n \geq 0} (2n+1)a_{n^2}$ est de même nature que la série $\sum_{n \geq 0} a_n$ et comme $(2n+1)a_{n^2} \sim 2na_{n^2}$ alors la $\sum_{n \geq 0} a_n = 1$ série $\sum_{n>0} na_{n^2}$ est de même nature que la série $\sum_{n>0}^{n=2} a_n$

Pour la série $\sum_{n\geq 0} n^2 a_{n^3}$ il suffit de prendre $g_n = n^3$, il est clair que la suite $(g_n)_n$ est une suite d'entiers naturels strictement croissante et on a

 $\forall n \in \mathbb{N}^* \text{ , } g_{n+1} - g_n = 3n^2 + 3n + 1 \leq 10(g_n - g_{n-1})$ Donc les deux séries $\sum_{n \geq 0} (3n^2 + 3n + 1)a_{n^3}$ et $\sum_{n \geq 0} a_n$ sont de même nature or on a $(3n^2 + 3n + 1)a_{n^3} \sim 3n^2a_{n^3}$ et par suite la série $\sum_{n \geq 0} n^2a_{n^3}$ est $\sum_{n \geq 0} a_n = \sum_{n \geq 0} a_n = \sum_{n \geq 0} a_n$

de même nature que la série $\sum_{n>0} a_n$

Exercice :7

Soient $\sum_{n} a_n$ une série de nombres complexes dont la suite des sommes partielles est bornée et $(b_n)_n$ une suite de nombres complexes telle que $\lim_{n\to+\infty}b_n=0$ et $\sum_{n\geq 1}|b_n-b_{n+1}|$ est convergente .Montrer que la série $\sum_{n\geq 1}a_nb_n^k$ converge pour tout $k\in\mathbb{N}^*$

Notons pour *n* entier naturel $S_n = \sum_{i=1}^n a_i b_i^k$ et $A_n = \sum_{i=1}^n a_i$. On a

$$\forall n \in \mathbb{N}$$
 , $S_n = \sum_{i=1}^n A_i \left(b_i^k - b_{i+1}^k \right) + A_n b_i^k$

 $\forall n \in \mathbb{N} \text{ , } S_n = \sum_{i=1}^n A_i \left(b_i^k - b_{i+1}^k \right) + A_n b_n^k$ La suite $(A_n)_n$ est borneé , donc il existe M > 0 tel que $\forall n \in \mathbb{N}$, $|A_n| \leq M$. La suite $(b_n)_n$ converge vers 0 , donc pour $\varepsilon > 0$, il existe $n_0 \in \mathbb{N}$ tel que $\forall n \geq n_0$, $|b_i| \leq \varepsilon$. Soit $(m,n) \in \mathbb{N}^2$ tel que $m > n \geq n_0$ On a

$$|S_m - S_n| = \sum_{i=n}^m a_i b_i^k = \sum_{i=n}^{m-1} A_i \left(b_i^k - b_{i+1}^k \right) - A_n b_n^k + A_m b_m^k \le \sum_{i=n}^{m-1} |A_i| \left| b_i^k - b_{i+1}^k \right| + |A_n b_n^k| + |a_m b_m^k|$$

$$|S_m - S_n| \le M \left(\sum_{i=n}^{m-1} |b_i - b_{i+1}| \left| \sum_{l=0}^{k-1} b_i^l b_{i+1}^{k-1-l} \right| + |b_n^k| + |b_m^k| \right) \le M \left(\sum_{i=n}^{m-1} |b_i - b_{i+1}| \left(\sum_{l=0}^{k-1} |b_i^l| |b_{i+1}^{k-1-l}| \right) + |b_n^k| + |b_m^k| \right)$$

Et par suite on a

$$|S_m - S_n| \le M \left(k \varepsilon^{k-1} \sum_{i=n}^{m-1} |b_i - b_{i+1}| + 2\varepsilon^k \right)$$

Comme la série $\sum_{n\geq 1} |b_n-b_{n+1}|$ est convergente , alors il existe $n_1\in\mathbb{N}$ tel que $\forall (n,m)\in\mathbb{N}^2$, $m>m\geq n_1$, $|\sum_{i=n}^{m-1}|b_i-b_{i+1}|\leq \varepsilon$ et par suite pour $m > n \ge N = \max(n_0, n_1)$ on $a |S_m - S_n| \le (k+2)M\varepsilon^k$ et donc la convergence de la série $\sum_{n \ge 1} a_n b_n^k$ se déduit du critère de Cauchy pour les séries

Transformation d'Abel et applications

©-Exercice :8

Soient $\sum a_n$ et $\sum v_n$ deux séries telles que $(v_n)_n$ est une suite réelle qui décroît vers 0 et la suite $(A_n)_n$ des sommes partielles de $\sum a_n$ est bornée

$$\forall n \in \mathbb{N}$$
 , $\sum_{k=0}^{n} a_k v_k = A_n v_n + \sum_{k=0}^{n-1} A_k (v_k - v_{k+1})$

- ② En déduire que la série $\sum a_n v_n$ est convergente
- 3 Application
 - 2-1 Montrer que , si $\alpha>0$ et θ un réel qui n'est pas un multiple de 2π , les séries $\sum \frac{\sin n\theta}{n^\alpha} \ \text{et} \ \sum \frac{\cos n\theta}{n^\alpha}$

$$\sum \frac{\sin n\theta}{n^{\alpha}} \text{ et } \sum \frac{\cos n\theta}{n^{\alpha}}$$

2-2 Démontrer le critère de Leibnez pour les séries alternées

① Soit n un entier naturel, on a

$$\sum_{k=0}^{n} a_k v_k = a_0 v_0 + \sum_{k=1}^{n} v_k (A_k - A_{k-1}) = a_0 v_0 + \sum_{k=1}^{n} v_k A_k - \sum_{k=1}^{n} v_k A_{k-1} = a_0 v_0 + \sum_{k=1}^{n} v_k A_k - \sum_{k=0}^{n-1} v_{k+1} A_k$$

$$= a_0 v_0 + \sum_{k=1}^{n-1} A_k (v_k - v_{k+1}) + v_n A_n - v_1 A_0 = v_n A_n + \sum_{k=0}^{n-1} A_k (v_k - v_{k+1})$$

② Soit n un entier naturel, on a

$$\left| \sum_{k=0}^{n} a_k v_k \right| \le |v_n| . |A_n| + \underbrace{\sum_{k=0}^{n-1} |A_k| (v_k - v_{k+1})}_{}$$

La suite $(A_n)_n$ est bornée soit alors M>0 tel que $\forall n\in\mathbb{N}$, $|A_n|\leq M$. La suite $(v_nA_n)_n$ converge vers 0 comme produit de suite bornée et d'une suite convergente vers 0 , ceci d'une part d'autre part on a $\sum_{k=0}^{n-1} |A_k| (v_k - v_{k+1}) \le M \sum_{k=0}^{n-1} (v_k - v_{k+1}) \le M (v_0 - v_n)$ et comme la suite $(v_n)_n$ est convergente alors $\exists M' > 0$, $\forall n \in \mathbb{N}$, $0 \le v_0 - v_n \le M'$ et par suite la suite $\left(\sum_{k=0}^{n-1} |A_k| (v_k - v_{k+1})\right)$ est majorée et comme elle croissante alors ell est convergente, ce qui prouve alors que la suite $\left(\sum_{k=0}^{n} a_k v_k\right)$ est convergente c'est à dire que la série $\sum_{n=0}^{\infty} a_n v_n$ est

③ Il suffit de montrer que la série $\sum_{\alpha>1} \frac{e^{in\theta}}{n^{\alpha}}$ est convergente .Comme $\alpha>0$, alors la suite $\left(\frac{1}{n^{\alpha}}\right)_n$ est décroissante de limite 0 , il reste à montrer que la suite $\left(\sum_{k=1}^n e^{ik\theta}\right)$ est bornée .Soit $n\geq 1$, on a

$$\left| \sum_{k=1}^{n} e^{ik\theta} \right| = \left| e^{i\theta} \left(\frac{1 - e^{in\theta}}{1 - e^{i\theta}} \right) \right| = \left| \frac{\sin\left(\frac{n\theta}{2}\right) e^{i\frac{n+1}{2}\theta}}{\sin\left(\frac{\theta}{2}\right)} \right| \le \frac{1}{\left| \sin\left(\frac{\theta}{2}\right) \right|}$$

ce qui montre alors que la suite $\left(\sum_{k=1}^{n}e^{ik\theta}\right)$ est bornée, on conclut alors que la série $\sum_{n\geq 1}\frac{e^{in\theta}}{n^{\alpha}}$ est convergente et par suite les séries partie réelle et partie imaginaire sont convergente

Produit de Cauchy

Exercice :9.Théorème de Mertens

Soient $\sum_{n\geq 1} a_n$ et $\sum_{n\geq 1} b_n$ deux séries non nulles convergentes dont l'une au moins converge absolument .Montrer que la série produit de Cauchy de ses deux séries est convergente et que

$$\sum_{n=1}^{+\infty} \left(\sum_{k=1}^{n} a_k b_{n-k} \right) = \left(\sum_{n=1}^{+\infty} a_n \right) \left(\sum_{n=1}^{+\infty} b_n \right)$$

On suppose que la série $\sum_{n>0} a_n$ est absolument converge et on note respectivement A_n , B_n et C_n la n^{eme} somme partielle des séries

 $\sum_{n\geq 0} a_n \text{ , } \sum_{n\geq 0} b_n \text{ et } \sum_{n\geq 0} c_n \text{ avec } c_n = \sum_{k=0}^n a_k b_{n-k}. \text{On remarque que } C_n = \sum_{k=0}^n a_k B_{n-k} \text{ si on pose } D_n = B_n + r_n \text{ avec } (r_n)_n \text{ une suite de réels convergente vers } 0 \text{ , alors on a}$

$$\forall n \in \mathbb{N}$$
, $C_n = D_n A_n - (a_0 r^n + a_1 r_{n-1} + \ldots + a_n r_n)$

Pour terminer ,montrons que $\lim_{n\to+\infty}\sum_{k=0}^n a_k r_{n-k}=0$. La suite $(r_n)_n$ tend vers 0 donc elle est bornée par un certain m>0 , on pose $M=\sum_{n=0}^{+\infty}|a_n|>0$

Soit
$$\varepsilon > 0$$
 et $l \in \mathbb{N}$ tel que $\forall n \geq l$, $|r_n| \leq \frac{\varepsilon}{2M}$ et $\sum_{i=l+1}^n |a_i| \leq \frac{\varepsilon}{2m}$

On a

$$|a_0r_n + a_1r_{n-1} + \ldots + a_nr_0| \le \sum_{i=0}^l |a_ir_{n-i}| + \sum_{i=l+1}^n |a_ir_{n-i}| \le M\frac{\varepsilon}{2M} + \frac{\varepsilon}{2m}m = \varepsilon$$

Ce qui prouve alors que la suite $\sum_{k=0}^{n} a_k r_{n-k}$ tend vers 0 donc la suite $(C_n)_n$ converge de limite AB d'ou le résultat

Exercice :10

Soit $\sum_{n>0} a_n$ une série convergente dont la n^{eme} somme partielle est notée A_n . Prouver que la série $\sum_{n>0} A_n x^n$ est convergente pour |x|<1 est que sa

somme est égale à $\left(\frac{1}{1-x}\right)\left(\sum_{n=0}^{+\infty}a_nx^n\right)$

Solution:10

Il suffit de remarquer que la série $\sum_{n\geq 0}A_nx^n$ est la série produit de Cauchy des séries $\sum_{n\geq 0}x^n$ et la série $\sum_{n\geq 0}a_nx^n$. Donc si |x|<1, alors la série $\sum_{n\geq 0}x^n$ est absolument convergente et comme la série $\sum_{n\geq 0}a_nx^n$ est convergente alors d'après l'exercice (5) la série produit de Cauchy est convergente de

somme $\sum_{n=0}^{+\infty} A_n x^n = \left(\frac{1}{1-x}\right) \cdot \left(\sum_{n=0}^{+\infty} a_n x^n\right)$

- Exercice :11

Théorème de Toeplitz de transformation régulière suites en suites '

Soit $(c_{n,k})_{(n\geq 1, \leq k\leq n)}$ une famille de nombre réels vérifiant

 \triangle .La suite $\left(\sum_{k=1}^{n} c_{n,k}\right)$ converge de imite 1

Soit $(a_n)_n$ une suite convergente .Montrer que la suite transformée $(b_n)_n$ définie par $\forall n \in \mathbb{N}$, $b_n = \sum_{k=0}^n c_{n,k} a_k$ est aussi convergente et que sa limite est la même que celle de $(a_n)_n$

*Applications.Théorème de Césaro

① Soit $(a_n)_n$ une suite de réels de limite $a \in \overline{\mathbb{R}}$.Montrer que

$$\lim_{n\to+\infty}\frac{1}{n}\left(a_1+a_2+\ldots,a_n\right)=a$$

② Soient $(a_n)_n$ et $(b_n)_n$ deux suite réelles convergentes de limites respectivement a et b.Montrer que

$$\lim_{n \to +\infty} \frac{1}{n} (a_1 b_n + a_2 b_{n-1} + \dots, a_n b_1) = ab$$

Solution:11

La suite $(a_n)_n$ converge de limite a ,alors pour $\varepsilon>0$ il existe $n_1\in\mathbb{N}$ tel que $\forall n\geq n_1$, $|a_n-a|\leq \frac{\varepsilon}{2\mathbb{C}}$ ceci d'une part d'autre part la suite $(a_n)_n$ est bornée donc il existe D>0 tel que $\forall n\in\mathbb{N}$, $|a_n|\leq D$.Comme $\forall k\in\mathbb{N}^+$, $\lim_{n\to+\infty}c_{n,k}=0$ donc $\forall k\in\mathbb{N}^*$, $\lim_{n\to+\infty}|c_{n,k}|=0$,ce qui entraine alors

que $\lim_{n\to+\infty} \left(\sum_{k=1}^{n-1} |c_{n,k}|\right) = 0$ et par suite il existe un entier naturel n_2 tel que $\forall n \geq n_2$, $\sum_{k=1}^{n_1-1} |c_{n,k}| \leq \frac{\varepsilon}{2D}$

$$\left| b_n - a \sum_{k=1}^n c_{n,k} \right| = \left| \sum_{k=1}^n c_{n,k} \left(a_k - a \right) \right| \le \sum_{k=1}^{n_1 - 1} |c_{n,k}| \cdot |a_k - a| + \sum_{n_1}^n |c_{n,k}| \cdot |a_k - a| \le D \sum_{k=1}^{n-1} |c_{n,k}| + \frac{\varepsilon}{2C} \sum_{k=n_1}^n |c_{n,k}| \le D \frac{\varepsilon}{2D} + C \frac{\varepsilon}{2C} = \varepsilon$$

Ce qui entraine alors que la suite $\left(b_n - a\sum_{k=1}^n c_{n,k}\right)$ converge vers 0 et comme la suite $\left(\sum_{k=1}^n c_{n,k}\right)$ converge de limite 1 alors la suite $(b_n)_n$ converge

de limite *a* ***Applications**

① Le théorème de Césaro pour le cas ou a est un réel se déduit du théorème de Toeplitz en prenant pour $n \in \mathbb{N}^*$ et $k \in [\![1,n]\!]$, $c_{n,k} = \frac{1}{n}$ subset subseSoit $\varepsilon > 0$ et $N \in \mathbb{N}$ tel que $\forall n \geq N$, $a_n \geq \varepsilon$.On a

$$\frac{1}{n}\left(\sum_{k=1}^{n}a_{k}\right) = \frac{1}{n}\left(\sum_{k=1}^{N}a_{k}\right) + \frac{1}{n}\left(\sum_{k=N+1}^{n}a_{k}\right) \ge \frac{1}{n}\left(\sum_{k=1}^{N}a_{k}\right) + \frac{(n-N)\varepsilon}{n} \ge \varepsilon + \frac{A-N\varepsilon}{n}$$

Avec $A = \sum_{k=1}^{N} a_k$

 $\text{Comme}\lim_{n\to +\infty}\frac{A-N\varepsilon}{n}=0 \text{ , alors il existe } N'\in \mathbb{N} \text{ tel que } \forall n\geq N' \text{ , } \frac{A-N\varepsilon}{n}\geq -\frac{\varepsilon}{2} \text{ ce qui entraine alors que } \frac{1}{n}$

$$\forall n \geq \max(N, N') , \frac{1}{n} \left(\sum_{1}^{n} a_k \right) \geq \frac{\varepsilon}{2}$$

D'ou le résultat

■.Le théorème suivant se démontre de la même manière que le cas particulier précédent .

Si $(\alpha_n)_n$ est une suite de réels strictement positifs divergente vers $+\infty$ et $(a_n)_n$ une suite de réels ou complexes de limite $l \in \overline{\mathbb{R}}$, alors la suite

① On applique le théorème de Toeplitz dans le cas ou $b \neq 0$ en prenant pour $n \in \mathbb{N}^*$ et $k \in [1, n]$, $c_{n,k} = \frac{b_{n-1}}{n}$ Dans le cas ou b=0 on applique le théorème de Toeplitz en prenant pou $n \in \mathbb{N}^*$ et $k \in [1,n]$, $c_{n,k} = \frac{nb}{1+b_{n-k+1}}$

- Proposition i Proposition d'Abel -

Montrer que si le produit de Cauchy $\sum_{n\geq 0} c_n$ des deux séries convergentes $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ est convergent alors $\sum_{n=0}^{+\infty} c_n = \left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$

Solution:12

Soient A_n , B_n et C_n les n-èmes somme partielle respectivement des séries $\sum_{n\geq 0} a_n$, $\sum_{n\geq 0} b_n$ et $\sum_{n\geq 0} c_n$. On vérifie facilement que $\forall n\in\mathbb{N}$, $C_n=a_0B_n+a_1B_{n-1}+\ldots+a_nB_0$, ce qui donne alors que $C_0+C_1+\ldots+C_n=A_0B_n+A_1B_{n-1}+\ldots+A_nB_0$. En divisant alors par n+1 on a

 $\frac{C_0 + C_1 + \ldots + C_n}{n+1} = \frac{A_0 B_n + A_1 B_{n-1} + \ldots + A_n B_0}{n+1}$

Donc d'après l'exercice précédent on a C = AB

-\overline{\cappa-Exercice :13

- ① Montrer que si parmi deux séries de réels strictement positifs , une au moins est divergente , alors leur produit de Cauchy est divergent
- ② Le produit de Cauchy de deux séries divergente est -il nécessairement divergente ?

Solution :13

① Soient $\sum_{n\geq 0} a_n \ et \sum_{n\geq 0} b_n$ deux séries à termes dans \mathbb{R}^+_* et $\sum_{n\geq 0} c_n$ la série produit de Cauchy .Supposons par exemple que $\sum_{n\geq 0} b_n$ est divergente .On a

 $\forall n\in\mathbb{N}\text{ , }c_n=a_0b_n+a_1b_{n-1}+\ldots+a_nb_0>a_0b_n$ Et comme la série $\sum_{n\geq 0}b_n$ est divergente alors la série $\sum_{n\geq 1}c_n$ est divergente .

② La réponse est négative ,en effet considérons les deux séries divergentes suivantes $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ définies par

$$\begin{cases} a_0 = 1 \text{ , } \forall n \in \mathbb{N}^* \text{ , } a_n = \left(\frac{3}{2}\right)^n \\ b_0 = 1 \text{ , } \forall n \in \mathbb{N}^* \text{ , } b_n = \left(\frac{3}{2}\right)^{n-1} \left(2^n + \frac{1}{2^{n+1}}\right) \end{cases}$$

On alors

$$\forall n \in \mathbb{N}^*, c_n = a_0 b_n + b_0 a_n + \sum_{k=1}^{n-1} a_k b_{n-k} = \left(\frac{3}{2}\right)^{n-1} \left(2^n + \frac{1}{2^{n+1}}\right) - \left(\frac{3}{2}\right)^n - \left(\frac{3}{2}\right)^{n-1} \left(\sum_{k=1}^{n-1} \left(2^{n-k} + \frac{1}{2^{n-k+1}}\right)\right) = \left(\frac{3}{4}\right)^n$$

Et la série $\sum_{n=0}^{\infty} \left(\frac{3}{4}\right)^n$ est convergente

Exercice :14

Prouver que le produit de Cauchy de deux séries convergentes $\sum_{n\geq 0} a_n$ et $\sum_{n\geq 0} b_n$ converge si, et seulement si

$$\lim_{n \to +\infty} \left(\sum_{n=1}^{n} a_k \left(b_n + b_{n-1} + \ldots + b_{n-k+1} \right) \right) = 0$$

Soient A_n , B_n et C_n les n-èmes somme partielle respectivement des séries $\sum_{n\geq 0} a_n$, $\sum_{n\geq 0} b_n$ et $\sum_{n\geq 0} c_n$. On a

$$\sum_{k=1}^{n} a_k \left(b_n + b_{n-1} + \ldots + b_{n-k+1} \right) = a_1 \left(B_n - B_{n-1} \right) + a_2 \left(B_n - B_{n-2} \right) + \ldots + a_n \left(B_n - B_0 \right) = B_n \left(A_n - a_0 \right) - a_1 B_{n-1} - a_2 B_{n-2} - \ldots - a_n B_0$$

$$\sum_{k=1}^{n} a_k (b_n + b_{n-1} + \ldots + b_{n-k+1}) = B_n A_n - C_n \quad (*)$$

 \odot . Si la série $\sum_{n\to+\infty} c_n$ converge donc d'après le théorème d'Abel cette série à pour somme $\lim_{n\to+\infty} A_n B_n - C_n = 0$ ce qu'il fallait démontrer

 $\text{$\stackrel{\$}{$}$. Supposons que } \lim_{n \to +\infty} \left(\sum_{n=1}^n a_k \left(b_n + b_{n-1} + \ldots + b_{n-k+1} \right) \right) = 0 \text{ , d'après l'égalité } (*) \text{ , la suite } \left(A_n B_n - C_n \right)_n \text{ est convergente vers } 0 \text{ et parallel or established by the parallel or e$ suite la suite $(C_n)_n$ est convergente de limite $\left(\sum_{n=0}^{+\infty} a_n\right) \left(\sum_{n=0}^{+\infty} b_n\right)$ ce qui prouve alors la convergence de la série produit de Cauchy des séries

Soient $(a_n)_n$ et $(b_n)_n$ deux suites positives décroissantes et convergentes vers 0. Démontrer que le produit de Cauchy des séries $\sum_{n\geq 0} (-1)^n a_n$ et $\sum_{n\geq 0} (-1)^n b_n$ converge si, et seulement si

$$\lim_{n \to +\infty} a_n \left(\sum_{k=0}^n b_k \right) = 0 \quad et \quad \lim_{n \to +\infty} b_n \left(\sum_{k=0}^n a_k \right) = 0$$

Solution :15

Soit $\sum_{n\geq 0} c_n$ la série produit de Cauchy des séries $\sum_{n\geq 0} (-1)^n a_n$ et $\sum_{n\geq 0} (-1)^n b_n$. Supposons que la série $\sum_{n\geq 0} c_n$ est convergete alors $\lim_{n\to +\infty} c_n = 0$. On a

$$\forall n \geq 0$$
, $c_n = (-1)^n (a_0 b_n + a_1 b_{n-1} \ldots + a_n b_1)$

 $\forall n \geq 0 \ , \ c_n = (-1)^n \left(a_0b_n + a_1b_{n-1}\ldots + a_nb_1\right)$ Et comme les suites $(a_n)_n$ et $(b_n)_n$ sont décroissantes alors on a

$$\forall n \in \mathbb{N}$$
, $|c_n| \ge a_n (b_0 + \ldots + b_n)$ et $|c_n| \ge b_n (a_0 + \ldots + a_n)$

Ce qui entraine alors que

$$\lim_{n \to \infty} a_n (b_0 + \ldots + b_n) = \lim_{n \to \infty} b_n (a_0 + \ldots + a_n) = 0$$

 $\lim_{n\to +\infty} a_n \left(b_0+\ldots+b_n\right) = \lim_{n\to +\infty} b_n \left(a_0+\ldots+a_n\right) = 0$ \$\int \text{Supposons que} \lim_{n\to +\infty} a_n \left(b_0+\ldots+b_n\right) = \lim_{n\to +\infty} b_n \left(a_0+\ldots+a_n\right) = 0.D'\text{après l'exercice précédent il suffit de montrer que}

$$\lim_{n \to +\infty} \left(\sum_{k=1}^{n} (-1)^k a_k \left((-1)^n b_n + (-1)^{n-1} b_{n-1} + \ldots + (-1)^{n-k+1} b_{n-k+1} \right) \right) = 0$$

Remarquons que

$$\forall n \in \mathbb{N}^* \text{ , } \forall k \in [\![1,n]\!] \text{ , } \left| (-1)^n b_n + (-1)^{n-1} b_{n-1} + \ldots + (-1)^{n-k+1} b_{n-k+1} \right| \leq b_{n-k+1}$$

Et par conséquent on a

$$\sum_{k=1}^{n} \left| (-1)^{k} a_{k} \left((-1)^{n} b_{n} + (-1)^{n-1} b_{n-1} + \ldots + (-1)^{n-k+1} b_{n-k+1} \right) \right| \leq \sum_{k=1}^{n} a_{k} b_{n-k+1}$$

Si on note pour $n \in \mathbb{N}^*$ par $x_n = \sum_{k=1}^n a_k b_{n-k+1}$, alors on a $0 \le x_{2n} \le (a_1 + \ldots + a_n) b_n + (b_1 + \ldots + b_n) a_n$ ce qui montre alors que $\lim_{n \to +\infty} x_{2n} = 0$ et on montre de même que $\lim_{n\to +\infty} x_{2n-1} = 0$ ce qui prouve alors que $\lim_{n\to +\infty} x_n = 0$ d'ou le résultat

Dénombrabilité -Famille sommables

Dénombrabilité

- ${\mathbb O}$ On dit qu'un ensemble non vide E est dénombrable si il est en bijection avec une partie non vide ${\mathbb N}$
- $\ \ \,$ Si $\ \, E$ est un ensemble infini alors $\ \, E$ est dénombrable si il est en bijection avec $\ \, \mathbb{N}$
- ③ Un ensemble E est dénombrable si et seulement si il existe une application injective de E à valeurs dans $\mathbb N$
- 4 L'ensemble E est dénombrable si, et seulement si il existe une suite croissante $(J_n)_n$ de parties finies de E dont la réunion est égale à E
- © Toute partie dénombrable d'un ensemble dénombrable est aussi dénombrable
- Le produit cartésien d'un nombre fini d'ensembles dénombrables est dénombrable
- ① La réunion deux ensembles dénombrables est aussi dénombrable
- & Les ensembles suivants sont dénombrables :&. Les ensembles finis , &N , &.Z et &.Q

- Exercice :16

- ① Montrer qu'une réunion dénombrable d'ensembles dénombrables est aussi dénombrable
- 2 En déduire que l'ensemble des polynômes à coefficients entiers est dénombrable

Solution :16

1 Soit $(E_n)_n$ une famille dénombrable d'ensembles dénombrables , posons $F_0=E_0$ et pour $n\in \mathbb{N}^*$, $F_n=E_n/(E_1\cup\ldots\cup E_{n-1})$, il est clair que les F_n sont deux à deux disjoints et que $\bigcup_{n\in\mathbb{N}} E_n = \bigcup_{n\in\mathbb{N}} F_n$. Désignons par f_n une injection de E_n dans \mathbb{N} et par f l'application de $\bigcup_{n\in\mathbb{N}} F_n$

dans N² définie par

$$\forall x \in \bigcup_{n \in \mathbb{N}} F_n$$
 , $f(x) = (n, f_n(x))$ ou n est l'unique entier tel que $x \in F_n$

Il est facile de vérifier que f est bien définie et qu'elle est injective ce qui montre alors que $\bigcup_{n\in\mathbb{N}} E_n$ est dénombrable

2 Notons pour $d \in \mathbb{N}$ par $\mathbb{Z}_d[X]$ l'anneau des polynômes à coefficients dans \mathbb{Z} . Soit f l'application de $\mathbb{Z}_d[X]$ à valeurs dans \mathbb{Z}^{d+1} définie par

$$\forall P = \sum_{k=0}^{d} a_k X^k$$
, $f(P) = (a_0, \dots, a_d)$

L'application f est clairement injective et comme \mathbb{Z}^{d+1} est dénombrable , alors $\mathbb{Z}_d[X]$ est aussi dénombrable .On conclut alors que $\mathbb{Z}[X]$ est un ensemble dénombrable comme étant réunion dénombrable d'une famille d'ensembles dénombrables à savoir $(\mathbb{Z}_d[X])_d$

🔐 Exercice :17 .R n'est pas dénombrable

- ① Montrer que R n'est dénombrable
- 2 En déduire que l'ensemble des irrationnels n'est pas dénombrable

- ① Il suffit de montrer que [0,1] est non dénombrable .Pour cela on va raisonner par l'absurde en supposant que [0,1] est dénombrable , alors comme [0,1] est infini alors il existe une bijection f de \mathbb{N}^* dans [0,1]. Partageons [0,1] en trois segments de longueurs $\frac{1}{3}$, il est clair que l'un de ses trois intervalles noté I_1 ne contient pas f(1), on partage ensuite I_1 en trois segments de longueurs $\frac{1}{2^2}$, alors l'un de ses trois segment noté I_2 ne contient pas f(2), soit n un entier naturel supérieur à 1 supposons que avoir construit I_1,\ldots,I_n vérifiant $\forall k \in \llbracket 1, n \rrbracket$, $f(k) \notin I_k$, $\delta(I_k) = \frac{1}{3^k}$ et $I_1 \subset I_2 \subset \ldots \subset I_n$. On partage I_n en trois segments de longueurs $\frac{1}{3^{n+1}}$, l'un des ses trois segments noté I_{n+1} ne contient pas f(n+1), ainsi on a construit une suite de segments emboités $(I_n)_n$ de diamètre $\delta(I_n)=\frac{1}{3^n}\to 0$ et vérifiant $\forall n \in \mathbb{N}^*$, $f(n) \notin I_n$. D'après le théorème des segments emboités l'intersection $\bigcap_{n \in \mathbb{N}^*} I_n$ est réduit un point $x \in [0,1]$, soit k l'antécédent de xpar la bijection f , on a f(k)=x et par définition de I_k , on a $f(k)\notin I_k$ et ceci contredit la définition de x . On conclut alors que [0,1] n'est pas
- dénombrable et par suite R n'est pas dénombrable
- Si \mathbb{R}/\mathbb{Q} est dénombrable alors $\mathbb{R}=\mathbb{Q}\cup(\mathbb{R}/\mathbb{Q})$ est aussi dénombrable ce qui est absurde donc \mathbb{R}/\mathbb{Q} n'est pas dénombrable
- Supposons que $\mathbb R$ est un $\mathbb Q$ -espace vectoriel de dimension finie n, donc $\mathbb R$ est isomorphe à $\mathbb Q^n$ (n est non nul car $\mathbb R$ est non nul) or $\mathbb Q^n$ est dénombrable donc R serait dénombrable ce qui est absurde .On conclut alors R est Q-espace de dimension infinie

- Exercice :18

On dit qu'un nombre complexe x est algébrique sur \mathbb{Z} si il existe un polynôme non nul P à coefficients entiers tel que P(x) = 0, Un nombre qui n'est pas algébrique sur $\mathbb Z$ est dit un nombre transcendant.Montrer que l'ensemble des nombres complexes transcendants sur $\mathbb Z$ n'est pas dénombrable

Solution:18

L'ensemble des polynômes non nuls s à coefficients dans $\mathbb Z$ est dénombrables , donc on peut numéroter ses éléments par une suite $(P_k)_{k\in\mathbb N}$. Soit $k \in \mathbb{N}^*$, notons par Z_k l'ensemble des racines complexes du polynômes P_k , il est clair que Z_k est fini et par suite l'ensemble des nombres complexes algébriques sur $\mathbb Z$ qui n'est autre que $\bigcup Z_k$ est dénombrable et comme $\mathbb R$ n'est pas dénombrable alors l'ensemble des complexes non algébriques

c'est à dire transcendant sur Z n'est pas dénombrable .Comme tout complexe algébrique sur Q est algébrique sur Z ,alors l'ensemble des nombres complexes algébriques sur Q est dénombrable

Sommabilité

© Exercice :19

Montrer que la famille $\left(\frac{1}{pq(p+q-1)}\right)_{(p,q)\in(\mathbb{N}^*)^2}$ est sommable et calculer sa somme sachant que $\sum_{n=0}^{+\infty}\frac{1}{n^2}=\frac{\pi^2}{6}$

On a $\forall (p,q) \in (\mathbb{N}*)^2$, $u_{p,q} > 0$, on peut alors appliquer le théorème de Fubini . Soit $p \ge 1$, on a $\frac{1}{pq(p+q-1)} \sim \frac{1}{pq^2}$ ce qui entraine alors que la série $\sum_{q\geq 1} u_{p,q}$ est convergente calculons alors sa somme notée σ_p

$$\odot$$
. On a pour $p=1$ on a $\sigma_1=\sum_{q=1}^{+\infty}\frac{1}{q^2}=\frac{\pi^2}{6}$ et pour $p\geq 2$ on a

$$\sigma_p = \sum_{q=1}^{+\infty} u_{p,q} = \sum_{k=1}^{+\infty} \frac{1}{p(p-1)} \left(\frac{1}{q} - \frac{1}{p+q-1} \right) = \frac{1}{p^2} + \frac{1}{p} \left(\sum_{q=2}^{+\infty} \frac{1}{q(p+q-1)} \right)$$

Soit N > p, on a

$$S_{p,N} = \sum_{q=2}^{N} \frac{1}{q(q+p-1)} = \frac{1}{p-1} \left(\sum_{q=2}^{N} \left(\frac{1}{q} - \frac{1}{p+q-1} \right) \right) = \frac{1}{p-1} \left(\sum_{q=2}^{N} \frac{1}{q} - \sum_{q=p+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p+N-1} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} \right) = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} - \sum_{q=N+1}^{p} \frac{1}{q} - \sum_$$

Donc lorsque N tend vers $+\infty$ on trouve $\sum_{q=2}^{+\infty} \frac{1}{q(p+q-1)} = \frac{1}{p-1} \left(\sum_{q=2}^{p} \frac{1}{q} \right)$, et donc

$$S = \sum_{p=1}^{+\infty} \sigma_p = \sigma_1 + \sum_{p=2}^{+\infty} \left(\frac{1}{p^2} + \frac{1}{p(p-1)} \left(\sum_{q=2}^p \frac{1}{q} \right) \right) = 2\sigma_1 - 1 + \sum_{p=2}^{+\infty} \left(\frac{1}{p(p-1)} \left(\sum_{q=2}^p \frac{1}{q} \right) \right)$$

Le théorème de Fubini permet d' intervertir les sommations , on a alors pour $q \ge 2$ fixé et pour p variant de q à $+\infty$, on obtient alors

$$\sum_{p=2}^{+\infty} \frac{1}{p(p-1)} \left(\sum_{q=2}^{p} \frac{1}{q} \right) = \sum_{q=2}^{+\infty} \frac{1}{q} \left(\sum_{p=q}^{+\infty} \frac{1}{p(p-1)} \right)$$

Or la somme $\sum_{p=q}^{+\infty} \frac{1}{p(p-1)}$ est la somme d'une série télescopique et vaut $\frac{1}{q-1}$, donc $\sum_{p=q}^{+\infty} \frac{1}{p(p-1)} \left(\sum_{q=2}^{p} \frac{1}{q}\right) = \sum_{q=2}^{+\infty} \frac{1}{q(q-1)} = 1$. Finalement

Exercice :20

Soit
$$(p,q)\in\mathbb{N}^2$$
 , on pose $u_{p,q}=\left\{egin{array}{ll} 0 & , \ si \ p=q \\ & & \\ \frac{1}{p^2-q^2} & , \ si \ p\neq q \end{array}\right.$

① Calculer
$$\sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q} \right)$$

② La famille $(u_{p,q})_{p,q}$ est elle sommable ?

① Pour $q\in\mathbb{N}^*$ fixé on a $u_{p,q}\sim \frac{1}{p^2}$ et la série $\sum_{n\geq 1}\frac{1}{p^2}$ converge .

Soit
$$(p,q) \in \mathbb{N} \times \mathbb{N}^*$$
 tel que $p \neq q$, on a $u_{p,q} = \frac{1}{2q} \left(\frac{1}{p-q} - \frac{1}{p+q} \right)$. Soit $N \geq 2q$, on a :
$$S_{N,q} = \sum_{p=0}^N u_{p,q} = \frac{1}{2q} \left(-\sum_{p=0}^{q-1} \frac{1}{q-p} + \sum_{p=0}^{q-1} \frac{1}{p+q} + \sum_{p=q+1}^N \frac{1}{p-q} - \sum_{p=q+1}^N \frac{1}{p+q} \right)$$

En effectuant dans chaque somme le char

$$S_{N,q} = rac{1}{2q} \left(-\sum_{n=1}^q rac{1}{n} + \sum_{n=q}^{2q-1} rac{1}{n} + \sum_{n=1}^{N-q} rac{1}{q} - \sum_{n=2q+1}^{N+q} rac{1}{n}
ight)$$

Tout calcul fait on a $S_{N,q} = -\frac{1}{4q^2} - \frac{1}{2q} \left(\sum_{n=N-q+1}^{N+q} \frac{1}{n} \right)$ et comme $0 \le \sum_{n=N-q+1}^{N+q} \frac{1}{n} \le \frac{2q}{N-q+1}$, la suite $\left(\sum_{n=N-q+1}^{N+q} \frac{1}{n} \right)$ converge de limite

nulle .On déduit que la suite $(S_{N,q})_N$ converge de limite $-\frac{1}{4q^2}$, c'est à dire que $S_q = \sum_{n=0}^{+\infty} u_{p,q} = -\frac{1}{4q^2}$ et on a $S_0 = \sum_{n=1}^{+\infty} \frac{1}{p^2} = \frac{\pi^2}{6}$. Finalement

$$\sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q} \right) = \sum_{p=1}^{+\infty} \frac{1}{p^2} - \sum_{q=1}^{+\infty} -\frac{1}{4q^2} = \frac{3}{4} \left(\sum_{p=1}^{+\infty} \frac{1}{p^2} \right) = \frac{\pi^2}{8}$$

② En permutant les rôles de p et q , on obtier

$$\sum_{q=0}^{+\infty} \left(\sum_{p=0}^{+\infty} u_{p,q}\right) = \sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{q,p}\right) = -\sum_{p=0}^{+\infty} \left(\sum_{q=0}^{+\infty} u_{p,q}\right)$$

-`oralice :21

Montrer que la famille $\left(\frac{1}{(p+q^2)(p+q^2+1)}\right)_{(p,q)\in\mathbb{N}\times\mathbb{N}^*}$ est sommable et calculer sa somme

Solution:21

Notons pour tout $(p,q) \in \mathbb{N} \times \mathbb{N}^*$, $u_{p,q} = \frac{1}{(p+q^2)(p+q^2+1)} > 0$. On a pour q fixé dans \mathbb{N}^* , $u_{p,q} = \frac{1}{p+q^2} - \frac{1}{p+q^2+1}$ on en déduit, par

sommation télescopique , pour $N \in \mathbb{N} : \sum_{n=0}^N u_{p,q} = \frac{1}{q^2} - \frac{1}{N+q^2+1}$ qui converge pour $N \to +\infty$ vers $\frac{1}{q^2}$ ceci montre alors que la série $\sum_{p \geq 0} u_{p,q}$

converge de somme $\sum_{v=0}^{+\infty} u_{p,q} = \frac{1}{q^2}$ et comme la série $\sum_{q>1} \frac{1}{q^2}$ est convergente alors d'après le théorème de Fubini d'interversion de deux sommations

, pour les suites doubles positives la famille $(u_{p,q})_{p\geq 0}$, $_{q\geq 1}$ est sommable et on a .Pour tout $p\in \mathbb{N}$, la série $\sum_{q\geq 1}u_{p,q}$ est convergente

 $\$.La série $\sum_{p>0} \left(\sum_{q=21}^{+\infty} u_{p,q} \right)$ converge

$$\sum_{p=0}^{+\infty} u_{p,q} \begin{pmatrix} \sum_{q=1}^{+\infty} u_{p,q} \end{pmatrix} = \sum_{q=1}^{+\infty} u_{p,q} \begin{pmatrix} \sum_{p=0}^{+\infty} u_{p,q} \end{pmatrix}.$$
 On conclut alors que
$$\sum_{(p,q) \in \mathbb{N} \times \mathbb{N}^*} u_{p,q} = \sum_{q=1}^{+\infty} \frac{1}{q^2} = \frac{\pi^2}{6}.$$