Data Representation Notes

Hang Dong

May 5, 2019

Abstract

This document contains the technical steps of using Latent Dirichlet Allocation (LDA) with MALLET¹ for Data Representation of social tags, as a supplementary material of the paper *Knowledge Base Enrichment by Relation Learning from Social Tagging Data*.

1 LDA training using MALLET

The input is a set of documents, each as a "bag of tags" originally from the Academic Social Bookmarking System Bibsonomy². We cleaned the tags by grouping different tag variants and filtering low frequent or non-English tags. The final cleaned "bags of tags" with the compatible MALLET format, are in "bibsonomy_tags_cleaned_tags.txt".

MALLET command-line commands to run LDA:

import file

 $bin\mbox{\sc mallet import-file --input bibsonomy_tags_cleaned_tags.txt --output res-3-new.mallet --keep-sequence} TRUE --token-regex "[\p{L}\p{N}\p{P}]+"$

split file to training and testing/held-out data

 $bin\mbox{\sc mallet -training-file train-new.mallet -testing-file test.mallet -training-portion 0.9}$

train topics

bin\mallet train-topics –input train-new.mallet –num-topics 50 –use-symmetric-alpha true –alpha 50 –beta 0.01 –evaluator-filename evaluator.mallet

evaluate topics

 $bin\mbox{$\backslash$ mallet evaluator.mallet -output-doc-probs doc-probs.txt-output-prob prob.txt}$

get length of documents

 $bin\mbox{-}input\ test-new.mallet\ > test-new-doc-length.txt$

train topics on the whole data

 $bin\mbox{\sc mallet train-topics -input res-3-new.mallet -num-topics 1000-num-threads 4-use-symmetric-alpha true-alpha 50-beta 0.01-evaluator-filename evaluator.mallet-inferencer-filename inferencer.mallet-output-state state.gz-output-topic-keys twords.txt-output-doc-topics pzd.txt-topic-word-weights-file ptz.txt-word-topic-counts-file assign.txt$

The input "bibsonomy_tags_cleaned_tags.txt" and one output "twords.txt" are in the same folder.

2 Data representation from the LDA outputs

Then we derive the p(z), $p(z|C_a)$ and $p(C_a|z)$ from the outputs as in the Section 3.2 of the paper Knowledge Base Enrichment by Relation Learning from Social Tagging Data.

The p(z) is calculated as

$$p(z) = \frac{N_z}{N} \tag{1}$$

, where ${\cal N}_z$ is the number of cleaned tags as signed using the topic z.

The $p(z|C_a)$, where C_a is a cleaned tag, is calculated as

$$p(z|C_a) \propto p(C_a|z) * p(z) \tag{2}$$

The tag vector representation $v(C_a)$ is thus

$$v(C_a) = \{p(\mathbf{z}_i|C_a)\}_{i=1}^{|\mathbf{z}|} \tag{3}$$

¹http://mallet.cs.umass.edu/index.php

²Data version 2015-07-01 from https://www.kde.cs.uni-kassel.de/wp-content/uploads/bibsonomy/

We used Matlab to process the LDA outputs from MALLET. The final p(z), $p(z|C_a)$ and $p(C_a|z)$ are in "pz.mat", "pzt.mat" and "ptz.mat" under the folder "Feature Generation, Hierarchy Generation, Relation-level evaluation" in the GitHub repository³.

 $^{^3 {\}tt https://github.com/acadTags/tag-relation-learning}$