Volker Heinrichs, each. Application No.: 09/685189

Page 2

21

polypeptides, and nucleotide sequences that encode related fusion polypeptides or proteins, or functional equivalents thereof, are collectively referred to herein as "interferon-alpha homologues," "interferon homologue nucleic acids," "IFN-alpha homologues," "IFN homologues," "IFN nucleic acids," "interferon homologues," "interferon nucleic acids," "recombinant interferon-alpha nucleic acids," "nucleic acids of the invention," "polynucleotides of the invention," or "nucleotides of the invention."

Concluded

Page 59, line 9 through Page 60, line 8.

a2

Mutagenesis methods of generating diversity include, for example, recombination (PCT/US98/05223; Publ. No. WO98/42727); site-directed mutagenesis (Ling et al. (1997) "Approaches to DNA mutagenesis: an overview," Anal. Biochem. 254(2):157-178; Dale et al. (1996) "Oligonucleotide-directed random mutagenesis using the phosphorothioate method," Methods Mol. Biol. 57:369-374; Smith (1985) "In vitro mutagenesis," Ann. Rev. Genet. 19:423-462; Botstein & Shortle (1985) "Strategies and applications of in vitro mutagenesis," Science 229:1193-1201; Carter (1986) "Site-directed mutagenesis," Biochem. J. 237:1-7; and Kunkel (1987) "The efficiency of oligonucleotide directed mutagenesis," in Nucleic Acids & Molecular Biology (Eckstein, F. and Lilley, D.M.J. eds., Springer Verlag, Berlin)); mutagenesis using uracil containing templates (Kunkel (1985) "Rapid and efficient site-specific mutagenesis without phenotypic selection," Proc. Nat'l Acad. Sci. USA 82:488-492; Kunkel et al. (1987) "Rapid and efficient site-specific mutagenesis without phenotypic selection," Methods in Enzymol. 154, 367-382; and Bass et al. (1988) "Mutant Trp repressors with new DNA-binding specificities," Science 242:240-245); oligonucleotide-directed mutagenesis (Methods in Enzymol.100:468-500 (1983); Methods in Enzymol. 154:329-350 (1987); Zoller & Smith (1982) "Oligonucleotidedirected mutagenesis using M13-derived vectors: an efficient and general procedure for the production of point mutations in any DNA fragment," Nucleic Acids Res. 10:6487-6500; Zoller & Smith (1983) "Oligonucleotide-directed mutagenesis of DNA fragments cloned into M13 vectors," Methods in Enzymol. 100:468-500; and Zoller & Smith (1987) "Oligonucleotidedirected mutagenesis: a simple method using two oligonucleotide primers and a single-stranded DNA template," Methods in Enzymol. 154:329-350); phosphorothioate-modified DNA mutagenesis (Taylor et al. (1985) "The use of phosphorothioate-modified DNA in restriction

Volker Heinrichs, et al. Application No.: 09/685189

Page 3

a.2.

enzyme reactions to prepare nicked DNA," Nucl. Acids Res. 13:8749-8764; Taylor et al. (1985) "The rapid generation of oligonucleotide-directed mutations at high frequency using phosphorothioate-modified DNA," Nucl. Acids Res. 13:8765-8787 (1985); Nakamaye & Eckstein (1986) "Inhibition of restriction endonuclease Nci I cleavage by phosphorothioate groups and its application to oligonucleotide-directed mutagenesis," Nucl. Acids Res. 14:9679-9698; Sayers et al. (1988) "Y-T Exonucleases in phosphorothioate-based oligonucleotidedirected mutagenesis," Nucl. Acids Res. 16:791-802; and Sayers et al. (1988) "Strand specific cleavage of phosphorothioate-containing DNA by reaction with restriction endonucleases in the presence of ethidium bromide," Nucl. Acids Res. 16:803-814); mutagenesis using gapped duplex DNA (Kramer et al. (1984) "The gapped duplex DNA approach to oligonucleotide-directed mutation construction," Nucl. Acids Res. 12:9441-9456; Kramer & Fritz (1987) "Oligonucleotide-directed construction of mutations via gapped duplex DNA," Methods in Enzymol. 154:350-367; Kramer et al. (1988) "Improved enzymatic in vitro reactions in the gapped duplex DNA approach to oligonucleotide-directed construction of mutations," Nucl. Acids Res. 16:7207; and Fritz et al. (1988) "Oligonucleotide-directed construction of mutations: a gapped duplex DNA procedure without enzymatic reactions in vitro," Nucl. Acids Res. 16:6987-6999).

Additional suitable methods include point mismatch repair (Kramer et al. (1984) "Point Mismatch Repair," Cell 38:879-887), mutagenesis using repair-deficient host strains (Carter et al. (1985) "Improved oligonucleotide site-directed mutagenesis using M13 vectors," Nucl. Acids Res. 13:4431-4443; and Carter (1987) "Improved oligonucleotide-directed mutagenesis using M13 vectors," Methods in Enzymol. 154:382-403), deletion mutagenesis (Eghtedarzadeh & Henikoff (1986) "Use of oligonucleotides to generate large deletions," Nucl. Acids Res. 14:5115), restriction-selection and restriction-selection and restriction-purification (Wells et al. (1986) "Importance of hydrogen-bond formation in stabilizing the transition state of subtilisin," Phil. Trans. R. Soc. Lond. A 317:415-423), mutagenesis by total gene synthesis (Nambiar et al. (1984) "Total synthesis and cloning of a gene coding for the ribonuclease S protein," Science 223:1299-1301; Sakamar and Khorana (1988) "Total synthesis and expression of a gene for the a-subunit of bovine rod outer segment guanine nucleotide-binding protein (transducing)," Nucl. Acids Res. 14:6361-6372; Wells et al. (1985) "Cassette mutagenesis: an