

Machine Learning

Clustering

Unsupervised learning introduction

Learn From unlabelled data!

Supervised learning

Training set:
$$\{(x^{(1)}, y^{(1)}), (x^{(2)}, y^{(2)}), (x^{(3)}, y^{(3)}), \dots, (x^{(m)}, y^{(m)})\}$$

Unsupervised learning

Training set:
$$\{x^{(1)}, x^{(2)}, x^{(3)}, \dots, x^{(m)}\}$$

Applications of clustering

Market segmentation

Organize computing clusters

Astronomical data analysis

Machine Learning

Clustering

K-means algorithm

By far, the most popular and most commonly used algorithm

iterative algorithm

formal statement/steps of K means algorithm

Input:

For now, we just decide certain number for K.

- (K) (number of clusters)
- Training set $\{x^{(1)},x^{(2)},\ldots,x^{(m)}\}$

 $x^{(i)} \in \mathbb{R}^n$ (drop $x_0 = 1$ convention)

cluster assignment step

Randomly initialize K cluster centroids $\mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n$

1st step

```
Repeat {
                                                     a number from 1 to K, which indicates which centroid it is closet to x_i
                            := index (from 1 to K) of cluster centroid closest to x^{(i)} mix | | x^{(i)} - \mu_k ||^2
               for k = 1 to K
                 \rightarrow \mu_k := average (mean) of points assigned to cluster k
move centroid step
                                                                                           we have K-1 clusters
```

K-means for non-separated clusters

S,M,L

One other common application of K means

Height

not well-separated data set we can also apply K-means

Machine Learning

Clustering Optimization objective

K means algorithm also has an optimization objective!

K-means optimization objective

- we keep tracking these two parameters index of cluster (1,2,...,K) to which example $x^{(i)}$ is currently assigned ke {1,2, ..., k}
- = cluster centroid k ($\mu_k \in \mathbb{R}^n$)
 - = cluster centroid of cluster to which example $x^{(i)}$ has been assigned $x^{(i)} \rightarrow 5$ $x^{(i)} = x^{(i)} = x^{(i)}$

Optimization objective:

$$\rightarrow J(c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K) = \frac{1}{m} \sum_{i=1}^{m} ||x^{(i)} - \mu_{c^{(i)}}||$$

objective!
$$\min_{\substack{\boldsymbol{>} c^{(1)},\ldots,c^{(m)},\\ \boldsymbol{\rightarrow} \mu_1,\ldots,\mu_K}} J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$$

```
Randomly initialize K cluster centroids \mu_1, \mu_2, \ldots, \mu_K \in \mathbb{R}^n

Nitimize J(\omega) with C(\omega) and C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) are C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) and C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega) and C(\omega) are C(\omega) are C(\omega) are C(\omega) are C(\omega) and C(\omega) are C(\omega)
                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                     obvi ous!
   Repeat {
                                                                                       for i = 1 to m
                                                                                                                         c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                                                                                                                                                                                                     closest to x^{(i)}
                                                                            for k = 1 to K
                                                                                                                               \mu_k := average (mean) of points assigned to cluster k
                                                                                                                                                                                        holding c_i
                                                                                                                                                                                                                                                                                                                                                                             with respect to
```


Machine Learning

Clustering

Random initialization

To make K-means avoid local optima

Randomly initialize K cluster centroids $\mu_1, \mu_2, \dots, \mu_K \in \mathbb{R}^n$

```
Repeat {
       for i = 1 to m
           c^{(i)} := \mathsf{index} (from 1 to K ) of cluster centroid
                  closest to x^{(i)}
       for k = 1 to K
           \mu_k := average (mean) of points assigned to cluster k
```

Random initialization

Should have K < m

Randomly pick \underline{K} training examples.

Set μ_1, \dots, μ_K equal to these

K examples.

K-means can end up with different solution depending on your initial conditions

randomly pick two initial centroid

Random initialization

```
→ Run K-means 100 times
For i = 1 to 100 {
              Randomly initialize K-means. Run K-means. Get c^{(1)}, \dots, c^{(m)}, \mu_1, \dots, \mu_K.
              Compute cost function (distortion) J(c^{(1)}, \ldots, c^{(m)}, \mu_1, \ldots, \mu_K)
```

Pick clustering that gave lowest cost $J(c^{(1)},\ldots,c^{(m)},\mu_1,\ldots,\mu_K)$

Machine Learning

Clustering

Choosing the number of clusters

What is the right value of K? So far, the most common way is to choose k by hand!

Choosing the value of K

Elbow method: ——> No high expectation for any particular problem

Choosing the value of K Another way to choose number of clusters

Sometimes, you're running K-means to get clusters to use for some later/downstream purpose. Evaluate K-means based on a metric for how well it performs for that later purpose.

