TEA013 Matemática Aplicada II
Curso de Engenharia Ambiental
Departamento de Engenharia Ambiental, UFPR
P04A, 10 fev 2023

Declaro que segui o código de ética do Curso de Engenharia Ambiental ao realizar esta prova

NOME: GABARITO Assinatura: _____

AO REALIZAR ESTA PROVA, VOCÊ DEVE JUSTIFICAR TODAS AS PASSAGENS. EVITE "PULAR" PARTES IMPORTANTES DO DESENVOLVIMENTO DE CADA QUESTÃO. JUSTIFIQUE CADA PASSO IMPORTANTE. SIMPLIFIQUE AO MÁXIMO SUAS RESPOSTAS.

ATENÇÃO PARA A NOTAÇÃO VETORIAL E TENSORIAL! VETORES MANUSCRITOS DEVEM SER ESCRITOS COMO v; TENSORES DE ORDEM 2 COMO \underline{A} .

1 [25] Se

$$\widehat{g}(k) = \begin{cases} \frac{1}{2\pi} & |k| \le k_0, \\ 0 & |k| > k_0, \end{cases}$$

calcule g(x), onde $g(x) \leftrightarrow \widehat{g}(k)$ são um par de transformadas direta e inversa de Fourier.

SOLUÇÃO DA QUESTÃO:

Prof. Nelson Luís Dias

$$g(x) = \int_{k=-\infty}^{+\infty} \widehat{g}(k) e^{+ikx} dk$$

$$= \int_{-k_0}^{+k_0} \frac{1}{2\pi} e^{+ikx} dk$$

$$= \frac{1}{2\pi i x} \int_{-ik_0 x}^{+ik_0 x} e^{+ikx} d(ikx)$$

$$= \frac{1}{2\pi i x} \left[e^{ik_0 x} - e^{-ik_0 x} \right]$$

$$= \frac{1}{2\pi i x} \left[(\cos(k_0 x) + i \sin(k_0 x)) - (\cos(k_0 x) - i \sin(k_0 x)) \right]$$

$$= \frac{2i}{2\pi i x} \sin(k_0 x) = \frac{\sin(k_0 x)}{\pi x} \blacksquare$$

 $\mathbf{2}$ [25] Se L é um operador linear, define-se seu operador adjunto $L^{\#}$ por

$$\langle L^{\#} \cdot x, y \rangle \equiv \langle x, L \cdot y \rangle, \quad \forall x, y \in \mathbb{V},$$

onde $\mathbb V$ é um espaço vetorial. Calcule $(\alpha L)^\#$ em função de α e de $L^\#$, onde $\alpha \in \mathbb C$.

SOLUÇÃO DA QUESTÃO:

$$\langle (\alpha L)^{\#} \cdot x, y \rangle = \langle x, \alpha L \cdot y \rangle$$

$$= \alpha \langle x, L \cdot y \rangle$$

$$= \alpha \langle L^{\#} \cdot x, y \rangle$$

$$= \langle (\alpha^* L^{\#}) \cdot x, y \rangle,$$

donde

$$(\alpha \mathbf{L})^{\#} = \alpha^* L^{\#} \blacksquare$$

$$y'' + \lambda y = 0,$$

$$y'(0) = 0,$$

$$y(1) = 0,$$

obtenha todos os autovalores λ .

SOLUÇÃO DA QUESTÃO:

Estudamos os sinais de λ :

Caso I: $\lambda = -k^2 < 0$:

$$y'' - k^2 y = 0,$$

 $r^2 - k^2 = 0,$
 $r = \pm k,$
 $y(x) = A \cosh(kx) + B \operatorname{senh}(kx),$
 $y'(x) = k [A \operatorname{senh}(x) + B \cosh(kx)],$
 $y'(0) = kB = 0,$
 $y(1) = A \cosh(k) + B \operatorname{senh}(k) = 0.$

Portanto, B=0, A=0 e $\lambda < 0$ não pode ser autovalor.

Caso II: $\lambda = 0$:

$$y'' = 0,$$

 $y(x) = Ax + B,$
 $y'(x) = A,$
 $y'(0) = A = 0,$
 $y(1) = A + B = 0$

Portanto, A = 0, B = 0, e $\lambda = 0$ não pode ser autovalor. Caso III: $\lambda = k^2 > 0$:

$$y'' + k^{2}y = 0,$$

$$r^{2} + k^{2} = 0,$$

$$r^{2} = -k^{2},$$

$$r = \pm i,$$

$$y(x) = A\cos(kx) + B\sin(kx),$$

$$y'(x) = k [-A\sin(kx) + B\cos(kx)],$$

$$y'(0) = kB = 0,$$

$$y(1) = A\cos(k) + B\sin(k) = 0;$$

Portanto, B = 0 e devemos ter

$$A\cos(k) = 0,$$

$$\cos(k) = 0,$$

$$k_n = \frac{\pi}{2} + n\pi, \qquad n = 0, 1, 2, \dots$$

$$\lambda_n = \left[\frac{\pi}{2} + n\pi\right]^2, \qquad n = 0, 1, 2, \dots \blacksquare$$

4 [25] Encontre $\phi(x, y)$ pelo método das características:

$$\frac{\partial \phi}{\partial x} + y \frac{\partial \phi}{\partial y} = 0, \qquad \phi(0, y) = g(y).$$

SOLUÇÃO DA QUESTÃO:

Faça x = X(s) e y = Y(x):

$$\phi(x,y) = \phi(X(s), Y(s)) = F(s);$$

$$\frac{dF}{ds} = \frac{\partial \phi}{\partial x} \frac{dX}{ds} + \frac{\partial \phi}{\partial y} \frac{dY}{ds} = 0;$$

$$\frac{dX}{ds} = 1 \implies X(s) = X(0) + s,$$

$$\frac{dY}{ds} = y = Y(s) \implies$$

$$Y(s) = Y(0)e^{s},$$

$$Y(0) = Y(s)e^{-s}.$$

Mas

$$\frac{dF}{ds} = 0 \implies F(s) = F(0) = \phi(X(0), Y(0)) = \phi(0, Y(0)) = g(Y(0)).$$

$$\phi(x, y) = F(s) = g(Y(0)) = g(Y(s)e^{-s}) = g(ye^{-x}) \blacksquare$$