ESERCIZI SULLE FUNZIONI

- (1) Considerare la funzione $f: \mathbb{N} \to \mathbb{Z}$ definita da f(a) = 3a 1. Determinare gli insiemi $f(\{0,1,2\}), f^{-1}(\{0\}), f^{-1}(\{-2,-1,5\})$. Determinare l'immagine Im(f) della funzione f. Determinare se f è iniettiva o suriettiva.
- (2) Sia $f: \mathbb{Z} \to \mathbb{Z}$ la funzione definita da $f(z) = z^2 1$. Determinare gli insiemi $f(\{0, 1, 2\}), f^{-1}(\{0, 1\}), f^{-1}(\{z \in \mathbb{Z} : z < 0\})$. Determinare se f è iniettiva o suriettiva.
- (3) Considerare la funzione $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z}$ definita da f(a,b) = a b. Determinare f(0,1) e gli insiemi $f(\{(1,1),(2,3)\},\ f^{-1}(2),\ f^{-1}(\{0,1\}),\ f^{-1}(\mathbb{N})$. Determinare se f è iniettiva o suriettiva.
- (4) Considerare la funzione $f: \mathbb{Z} \times \mathbb{Z} \to \mathbb{Z} \times \mathbb{Z}$ definita da f(a,b) = (-b,a). Determinare f(0,1) e gli insiemi $f(\{(1,1),(2,3)\}, f^{-1}(2,-1), f^{-1}(\{(0,1),(1,0)\})$. Determinare se f è iniettiva o suriettiva.
- (5) Sia A l'insieme delle successioni a_0, a_1, a_2, \ldots di numeri naturali ed $f: A \to \mathbb{N}$ la funzione definita da $f(a_0, a_1, a_2, \ldots) = a_0 + a_1$. Determinare $f(1, 2, 3, 4, 4, 4, \ldots)$ ed $f^{-1}(1)$. Determinare se f è iniettiva o suriettiva.
- (6) Sia $f: \mathbb{R} \to \mathbb{R}$ e $g: \mathbb{R} \to \mathbb{R}$, dove \mathbb{R} è l'insieme dei numeri reali, definite da $f(x) = 3x^3$ e g(x) = x + 4. Determinare se le funzioni f, g sono iniettive o suriettive. Determinare le funzioni $f \circ g$ e $g \circ f$.
- (7) Sia \mathbb{N} l'insieme dei numeri naturali, \mathbb{Q} l'insieme dei numeri razionali e $f: \mathbb{N} \to \mathbb{Q}$ la funzione definita da $f(n) = \frac{1}{n+1}$. Determinare se f è iniettiva o suriettiva.
- (8) Sia $\mathbb N$ l'insieme dei numeri naturali, $\mathbb Q$ l'insieme dei numeri razionali e f la funzione $f:\mathbb N\to\mathbb Q$ definita da

$$f(n) = \frac{n}{n+1}.$$

Determinare $f^{-1}(\mathbb{N})$.

Determinare se è suriettiva.

Dimostrare che f è iniettiva (suggerimento: dimostrare che per ogni $n \in \mathbb{N}$ vale f(n) < f(n+1) e dedurne che f è iniettiva).

(9) Sia $f: \mathbb{N} \times \mathbb{N} \to \mathbb{N}$ la funzione definita da

$$f(n,m) = nm$$
.

Determina l'insieme $f^{-1}(k)$ per k=0, k=1, k=5, k=6.

- Per quali numeri naturali k la cardinalità dell'insieme $f^{-1}(k)$ è uguale a 1?

- Per quali numeri naturali kla cardinalità dell'insieme $f^{-1}(k)$ è
- uguale a 2? Per quali numeri naturali k la cardinalità dell'insieme $f^{-1}(k)$ è infinita?