Calcolo differenziale

Leonardo Ganzaroli

Indice

	Intr	roduzione	1	
1	Richiami			
	1.1	Insiemi numerici	3	
		1.1.1 Intervalli numerici	4	
		1.1.2 Altre definizioni	4	
	1.2	Polinomi	5	
		1.2.1 Operazioni	6	
	1.3	Equazioni e disequazioni	6	
	1.4	Funzioni a variabile reale	7	
	1.1	1.4.1 Segno	8	
2	Limiti			
	2.1	Punti di accumulazione	9	
	2.2	Limite di funzione	9	
	2.3	Asintoti	11	
	2.4	Continuità	11	
	2.5	Successioni numeriche	13	
3	Derivate 14			
	3.1	Derivate di funzione	14	
	3.2	Teoremi	15	
	3.3	Polinomio di Taylor	15	
4	Stu	dio di funzione	16	
	4.1	Esempio	16	

Introduzione

Questi appunti del corso ${\it Calcolo\ differenziale}$ sono stati creati durante la laurea Triennale di informatica all'università "La Sapienza".

1 Richiami

Prima di procedere rivedere la parte di insiemistica e funzioni negli appunti di *Metodi Matematici per l'informatica*.

1.1 Insiemi numerici

Definizione L'insieme dei numeri naturali ${\bf N}$ è definito dagli assiomi di Peano:

- $0 \in \mathbf{N}$
- $n \in \mathbb{N} \Rightarrow succ(n) \in \mathbb{N}$
- $\forall n, m \in \mathbb{N} \ n \neq m \Rightarrow succ(n) \neq succ(m)$
- $\nexists n \in \mathbf{N} \mid 0 = succ(n)$
- $\forall S \subseteq \mathbf{N} \ (0 \in S \land n \in S \Rightarrow succ(n)) \Rightarrow S = \mathbf{N}$

Definizione L'insieme dei numeri primi è:

$$\mathbf{P} = \{ p \in \mathbf{N} - \{1\} \mid \nexists a, b \in \mathbf{N} - \{1, p\} \mid p = ab \}$$

Definizione L'insieme dei numeri interi è:

$$\mathbf{Z} = \mathbf{N} \cup \{-n \mid n \in \mathbf{N} \}$$

Definizione L'insieme dei numeri razionali è:

$$\mathbf{Q} = \{(p,q) \mid p \in \mathbf{Z}, q \in \mathbf{Z} - \{0\}\;\}$$
, un numero razionale è rappresentato come $\frac{p}{q}$

Definizione L'insieme dei numeri reali (\mathbf{R}) è l'insieme di tutti i possibili numeri con sviluppo decimale infinito o meno.

Definizione L'insieme dei numeri complessi è:

$$C = \{a + ib \mid a, b \in \mathbf{R} \} \text{ con } i^2 = -1$$

1.1.1 Intervalli numerici

Per poter indicare un intervallo di valori tra 2 elementi di un insieme numerico si possono usare le seguenti notazioni:

• Intervallo aperto

$$(a,b) \stackrel{\text{def}}{=\!\!\!=\!\!\!=} \{ x \in S \mid a < x < b \}$$

• Intervallo aperto a destra

$$[a,b) \stackrel{\mathrm{def}}{=\!\!\!=\!\!\!=} \{x \in S \mid a \le x < b\}$$

• Intervallo aperto a sinistra

$$(a,b] \stackrel{\text{def}}{=} \{x \in S \mid a < x \le b\}$$

• Intervallo chiuso

$$[a,b] \stackrel{\text{def}}{=} \{x \in S \mid a \le x \le b\}$$

1.1.2 Altre definizioni

Definizione Dato I sottoinsieme di un insieme numerico. I è detto denso se $\forall a, b \in I \ a < b \Rightarrow \exists x \in I \mid a < x < b$.

Definizione Dato I sottoinsieme di un insieme numerico. Il massimo di I è il suo elemento x per cui $\forall y \in I \ x \geq y$.

Definizione Dato I sottoinsieme di un insieme numerico. Il minimo di I è il suo elemento x per cui $\forall y \in I \ x \leq y$.

Definizione Dato I sottoinsieme di un insieme numerico S. Il maggiorante di I è ogni valore $x \in S$ tale che $\forall y \in I \ y \leq x$.

Definizione Dato I sottoinsieme di un insieme numerico S. Il minorante di I è ogni valore $x \in S$ tale che $\forall y \in I \ y \geq x$.

Espandendo questi ultimi 2 concetti definisco:

• Estremo superiore

$$sup(I) = min\{maggioranti di I\}$$

Si dice che I è limitato superiormente da sup(I), nel caso non esista $sup(I) = +\infty$.

• Estremo inferiore

$$in f(I) = max\{minoranti di I\}$$

Si dice che I è limitato inferiormente da inf(I), nel caso non esista $sup(I) = -\infty$.

Dato l'intervallo $(5, +\infty) \subset \mathbf{R}$:

- Minimo e massimo non esistono
- I minoranti sono i numeri ≤ 5, i maggioranti non esistono
- L'estremo inferiore è 5
- L'estremo superiore è $+\infty$

1.2 Polinomi

Definizione Dato un insieme numerico S. Un monomio in S è il prodotto tra una costante $a \in S$ ed una o più potenze $x^{\alpha}y^{\beta} \dots$ con $\alpha, \beta, \dots \geq 0$, il valore più grande tra questi ultimi è detto grado del monomio.

Definizione Dato un insieme numerico S. Un polinomio in S è una somma di monomi in S, il grado del polinomio è il grado più grande tra i monomi.

In generale si può descrivere un polinomio di grado n con coefficienti c_1, c_2, \ldots, c_n e a singola variabile come:

$$p(x) = c_0 + c_1 x + c_2 x^2 + \dots + c_n x^n$$

Definizione Le radici di un polinomio sono l'insieme di valori che se sostituiti alle variabili portano il polinomio a valore nullo.

1.2.1 Operazioni

• Somma

La somma tra $p(x) = a_0 + a_1 x + \ldots + a_n x^n$ e $q(x) = b_0 + b_1 x + \ldots + b_m x^m$ con $m \le n$:

$$(a_0 + b_0) + (a_1 + b_1)x + \ldots + (a_m + b_m)x^m + a_{m+1}x^{m+1} + \ldots + a_nx^n$$

Il grado del risultato è il grado massimo tra i 2 polinomi.

• Prodotto

Il prodotto tra i polinomi visti sopra:

$$a_0b_0 + a_0b_1x + a_0b_2x^2 + \ldots + a_0b_mx^m + \ldots + a_nb_0x^n + a_nb_1x^{n+1} + a_nb_mx^{n+m}$$

Il grado del risultato è la somma dei gradi dei 2 polinomi.

1.3 Equazioni e disequazioni

Definizione Un'equazione è una formula che esprime eguaglianza tra 2 espressioni matematiche con variabili simili.

Esempio:
$$5x + 88y - 3 = 3x^3 - 15y$$

Definizione La legge di annullamento del prodotto afferma che dato un insieme di termini x_1, x_2, \ldots, x_n :

$$x_1 * x_2 * \dots * x_n = 0 \iff$$
 almeno un termine è 0

Definizione Una disequazione è simile ad un'equazione ma = viene sostituito con $<,>,\leq,\geq$.

Esempio:
$$-6x \le 15 + 7x - y$$

Definizione Il cambio del segno permette di passare ad un'altra disequazione equivalente:

$$x \le y \to -x \ge -y$$

Definizione La regola dei segni afferma che:

$$xy > 0 \iff (x, y > 0 \lor x, y < 0)$$

Combinando quest'ultima con la legge di annullamento si ottiene:

$$xy \ge 0 \iff (x, y \ge 0 \lor x, y \le 0)$$

Di conseguenza:

$$xy < 0 \iff ((x > 0 \land y < 0) \lor (x < 0 \land y > 0))$$

Per usare questo principio in modo più semplice è possibile usare il grafico del segno.

Definizione Un sistema di equazioni (o disequazioni) è un insieme di equazioni in cui le variabili devono rispettare tutte le equazioni presenti:

Esempio:
$$\begin{cases} 12x * 9y = 334\\ 3x + 4y = 0 \end{cases}$$

1.4 Funzioni a variabile reale

Definizione Una funzione a variabile reale è una funzione $f: S \subseteq \mathbf{R} \to \mathbf{R}$.

Definizione Una funzione è ben definita se associa ad ogni elemento del dominio un solo elemento del codominio.

Definizione Il campo di esistenza di una funzione è il massimo sottoinsieme $S \subseteq \mathbf{R}$ per cui la funzione è ben definita se S è il dominio.

Definizione Una funzione è pari se $\forall x \in \text{dominio } f(x) = f(-x)$.

Definizione Una funzione è dispari se $\forall x \in \text{dominio} \ f(x) = -f(-x)$.

Definizione Una funzione è periodica se $\exists c \mid \forall x \in \text{dominio} \ f(x) = f(x+c)$.

Definizione Dato I sottoinsieme del dominio. Una funzione è monotona crescente in I se $\forall x_1, x_2 \in I$ $f(x_1) \leq f(x_2)$ con $x_1 < x_2$, se invece $f(x_1) \geq f(x_2)$ è decrescente.

1.4.1 Segno

Trovare il segno di una funzione vuol dire trovare gli intervalli del dominio per cui la funzione ha valore maggiore o minore di 0, ci sono 3 passaggi:

- 1. Trovare il campo di esistenza
- 2. Trovare i valori per cui $f(x) \ge 0$
- 3. Trovare l'intersezione tra il campo e i valori trovati al punto precedente

Considerando $\frac{x^2-1}{2^x-1}$:

- Per evitare lo 0 al denominatore x deve essere diverso da 0, quindi $\mathbf{R} \{0\}$
- Risolvo la disequazione ≥ 0 :

$$-x^2-1 \ge 0 \to x \ge 1 \lor x \le -1$$

$$-2^x - 1 \ge 0 \to x \ge 0$$

Usando il grafico del segno si ottiene:

Quindi la funzione è positiva quando $-1 \le x < 0 \lor x \ge 1$.

2 Limiti

2.1 Punti di accumulazione

Definizione Dati $x_0, \epsilon \in \mathbf{R}$ con $\epsilon > 0$. L'intorno chiuso in x_0 di raggio ϵ ($I_{\epsilon}[x_0]$) è l'intervallo chiuso $[x_0 - \epsilon, x_0 + \epsilon]$, analogamente si definisce quello aperto.

Definizione Dati $I \subseteq \mathbf{R}$ e $x_0 \in I$. x_0 è:

- Punto interno di I se $\exists \epsilon > 0 \mid I_{\epsilon}(x_0) \subset I$
- Punto esterno ad I se $\exists \epsilon > 0 \mid I_{\epsilon}(x_0) \subset I^C$
- Punto di frontiera di I se $\forall \epsilon > 0 \ \exists a \in I, b \in I^C \mid a, b \in I_{\epsilon}(x_0)$

Definizione Dati $I \subset \mathbf{R}$ e $x_0 \in \mathbf{R}$. x_0 è un punto di accumulazione se:

$$\forall \epsilon > 0 \ \exists x \in I - \{x_0\} \mid x \in I_{\epsilon}(x_0)$$

2.2 Limite di funzione

Definizione Il limite di una funzione in un punto di accumulazione esprime la quantità a cui tende il valore della stessa avvicinandosi a quel punto, data la funzione $f:I\to \mathbf{R}$ e $x_o\in I$ si dice:

• Convergenza

$$-x_0$$
 f converge al valore l ($\lim_{x\to x_0} f(x) = l$) se:

$$\forall \epsilon > 0 \ \exists \delta > 0 \ | \ \forall \ x \in I \ 0 < |x - x_0| < \delta \Rightarrow |f(x) - l| < \epsilon$$

 $-+\infty$

f converge al valore l ($\lim_{x\to+\infty} f(x) = l$) se:

$$\forall \epsilon > 0 \ \exists N > 0 \mid \forall x \in I \ x > N \Rightarrow |f(x) - l| < \epsilon$$

− − ∞

f converge al valore l ($\lim_{x\to-\infty} f(x)=l$) se:

$$\forall \; \epsilon > 0 \;\; \exists N > 0 \;|\; \forall \; x \in I \quad x < -N \Rightarrow |f(x) - l| < \epsilon$$

• Divergenza

 $-x_0,+\infty$

f diverge positivamente $(\lim_{x\to x_0} f(x) = +\infty)$ se:

$$\forall N > 0 \ \exists \delta > 0 \mid \forall x \in I \ 0 < |x - x_0| < \delta \Rightarrow f(x) > N$$

 $-x_0,-\infty$

f diverge negativamente $(\lim_{x\to x_0} f(x) = -\infty)$ se:

$$\forall N > 0 \ \exists \delta > 0 \mid \forall x \in I \ 0 < |x - x_0| < \delta \Rightarrow f(x) < -N$$

 $-+\infty,+\infty$

f diverge positivamente $(\lim_{x\to+\infty} f(x) = +\infty)$ se:

$$\forall N > 0 \ \exists S > 0 \mid \forall x \in I \ x > S \Rightarrow f(x) > N$$

Definizione Una funzione f si dice infinito per $x \to *$ se:

$$\lim_{x\to *} f(x) = \pm \infty$$

Si dice invece infinitesimo se il limite è uguale a 0.

Definizione In alcuni casi è necessario trovare il limite del punto x_0 facendo una distinzione tra quello ottenuto arrivando da sinistra e quello da destra, in questo caso si individuano il limite sinistro $(x \to x_0^-)$ e destro $(x \to x_0^+)$.

Teorema 1 (Unicità del limite) Non possono esistere 2 limiti distinti in un punto di accumulazione:

$$\lim_{x \to *} f(x) = l, \lim_{x \to *} f(x) = m \Rightarrow l = m$$

Teorema 2 (Cambio di variabile) Dati i 2 limiti $\lim_{x\to *} f(x) = l$, $\lim_{y\to l} g(y) = m$ si ha:

$$\lim_{x\to *}g(f(x))=\lim_{y\to l}g(y)=m$$

Teorema 3 (Teorema del confronto) Dati $f,g,h:I\to \mathbf{R}\ e\ x_0\in I.$ Se $\exists \delta>0\mid \forall\ x\in I_\delta(x_0)\quad g(x)\leq f(x)\leq h(x)$ si ha:

$$\lim_{x \to x_0} g(x) = \lim_{x \to x_0} h(x) = l \Rightarrow \lim_{x \to x_0} f(x) = l$$

Definizione Due funzioni f, g si dicono simili per $x \to *$ se:

$$\lim_{x \to *} \frac{f(x)}{g(x)} = 1$$

2.3 Asintoti

Definizione Un asintoto verticale di f è una retta $x=x_0$ tale che:

$$\lim_{x \to x_o^{\pm}} f(x) = \pm \infty$$

Definizione Un asintoto orizzontale di f è una retta y=l tale che:

$$\lim_{x \to \pm \infty} f(x) = \pm l$$

Definizione Un asintoto obliquo di f è una retta mx + q tale che:

$$\lim_{x \to \pm \infty} f(x) - (mx + q) = 0$$

2.4 Continuità

Definizione Una funzione è detta continua se:

$$\forall \ x_0$$
punto di accumulazione $\lim_{x \to x_0} f(x) = f(x_0)$

Dalla definizione precedente derivano 3 possibili tipi di discontinuità (limiti sullo stesso punto):

1. Prima specie

I limiti SX/DX sono finiti ma diversi.

2. Seconda specie

Almeno un limite SX/DX non esiste o diverge.

3. Terza specie

Entrambi i limiti sono finiti e uguali ma il valore $f(x_0)$ non coincide con essi.

Teorema 4 (Permanenza del segno) Data una funzione continua f e x_0 suo punto di accumulazione:

•
$$f(x_0) > 0 \Rightarrow \exists \delta > 0 \mid \forall \ x \in I_{\delta}(x_0) \ f(x) > 0$$

•
$$f(x_0) < 0 \Rightarrow \exists \delta > 0 \mid \forall \ x \in I_{\delta}(x_0) \ f(x) < 0$$

Teorema 5 (Esistenza degli zeri) Data una funzione continua $f: I \to \mathbf{R}$ e $a, b \in I$:

$$((f(a) < 0 \land f(b) > 0) \lor (f(a) > 0 \land f(b) < 0) \Rightarrow \exists c \in [a, b] \mid f(c) = 0$$

Teorema 6 (Valori intermedi) Data una funzione continua $f:I\to \mathbf{R}$ e $[a,b]\subseteq I$:

$$\forall x \in [f(a), f(b)] \exists y \in [a, b] \mid x = f(y)$$

Teorema 7 (Weierstrass) Data una funzione continua $f: I \to \mathbf{R}$ e $[a, b] \subseteq I$:

$$\exists x_{min}, x_{max} \in [a, b] \mid \forall \ x \in [a, b] \ f(x_{min}) \le f(x) \le f(x_{max})$$

Con x_{min}, x_{max} detti minimo/massimo relativo.

2.5 Successioni numeriche

Definizione Una successione numerica è una sequenza di valori generata da un pattern.

Data una successione numerica $a_n : \mathbf{N} \to \mathbf{R}$, essa è:

- Limitata superiormente se $\exists M \geq 0 \mid \forall n \in \mathbf{N} \ a_n \leq M$
- Limitata inferiormente se $\exists M \geq 0 \mid \forall n \in \mathbf{N} \ a_n \geq M$
- Limitata se $\exists M \geq 0 \mid \forall n \in \mathbf{N} \mid |a_n| \leq M$
- Crescente se $\forall n \in \mathbb{N} \ a_n \leq a_{n+1}$, strettamente se <
- Decrescente se $\forall n \in \mathbf{N} \ a_n \geq a_{n+1}$, strettamente se >

Definizione Date 2 successioni $a_n: n \to a(n), b_k: k \to b(k)$. Si definisce sottosuccessione di a_n su b_k la composizione:

$$a_{b_k}: k \to a(b(k))$$

Essendo le successioni una restrizione delle funzioni valgono i concetti visti fin'ora riguardo i limiti (chiamati limiti di successione).

Teorema 8 (Bolzano-Weierstrass) Se una successione è limitata esiste almeno una sottosuccessione convergente per $k \to +\infty$.

Teorema 9 (Limiti di sottosuccessioni)

$$\lim_{n \to +\infty} a_n = l \Rightarrow \lim_{k \to +\infty} a_{b_k} = l$$

Teorema 10 (Teorema ponte) Dati $f: I \to \mathbf{R}$, $x_0 \in I$ punto di accumulazione, a_n successione. Vale:

$$\lim_{x \to x_0} f(x) = l \ (o \ \pm \infty)$$

sse:

$$\forall a_n \mid a_n \to x_0 \ (quando \ n \to +\infty)$$

vale anche:

$$\lim_{n \to +\infty} f(a_n) = l \ (o \ \pm \infty)$$

3 Derivate

3.1 Derivate di funzione

Definizione Dati 2 punti $a(x_0, f(x_0)), b(x_1, f(x_1))$. La retta tra i punti è data dalla formula:

$$r(x) = f(x_0) + \frac{f(x_1) - f(x_0)}{x_1 - x_0}(x - x_0)$$

Con la parte blu detta rapporto incrementale.

Definizione Dati $f: I \to \mathbf{R}, x_0 \in I$. f è derivabile in x_0 se esiste il limite finito $\lim_{h\to 0} \frac{f(x_0+h)-f(x_0)}{h}$, inoltre si definisce derivata di f in I:

$$f'(x) \stackrel{\text{def}}{=\!\!\!=} \lim_{h \to 0} \frac{f(x+h) - f(x)}{h}$$

La derivata permette di misurare la crescita/decrescita di una certa funzione spostandosi di pochissimo dal punto considerato, nel caso di funzioni reali essa corrisponde alla retta tangente della funzione nel punto considerato.

Definizione Dati $f: I \to \mathbf{R}$, $[a, b] \subseteq I$ e $x_1, x_2 \in [a, b]$. f si dice:

- Convessa in [a,b] se $\forall x \in [a,b]$ $f(x) \geq f(x_1) + \frac{f(x_2) f(x_1)}{x_2 x_1}(x x_1)$
- Concava in [a,b] se \forall $x \in [a,b]$ $f(x) \leq f(x_1) + \frac{f(x_2) f(x_1)}{x_2 x_1}(x x_1)$

Dati $f:[a,b] \to \mathbf{R} \ \mathrm{e} \ x_0 \in I. \ x_0 \ \mathrm{\grave{e}}$:

- Punto di massimo relativo di f se $\exists \delta > 0 \mid \forall x \in I_{\delta}(x_0) \cap [a, b] \ f(x) \leq f(x_0)$
- Punto di minimo relativo di f se $\exists \delta > 0 \mid \forall x \in I_{\delta}(x_0) \cap [a,b] \ f(x) \geq f(x_0)$
- Punto di massimo assoluto di f se $\forall x \in [a, b]$ $f(x) \leq f(x_0)$
- Punto di minimo assoluto di f se $\forall x \in [a,b]$ $f(x) \geq f(x_0)$
- Punto critico di f se $f'(x_0) = 0$
- Punto di flesso se $\exists (a, x_0), (x_0, b) \subseteq [a, b] \mid \text{ in } (a, x_0) f \text{ è concava e in } (x_0, b) \text{ è convessa (o viceversa)}$

Trovando il segno di una derivata posso trovare 2 caratteristiche della funzione:

- $\bullet\,$ Derivata prima \to Quando il segno è positivo la funzione cresce
- Derivata seconda \rightarrow Quando il segno è positivo la funzione è convessa

3.2 Teoremi

Teorema 11 (Derivabilità e continuità) $Se \ f: I \to \mathbf{R} \ \grave{e} \ derivabile \ in \ I \ allora \ \grave{e} \ continua \ in \ I.$

Teorema 12 (Fermat) Se x_0 è massimo/minimo di f e f è derivabile in x_0 allora $f'(x_0) = 0$.

Teorema 13 (Rolle) Se $f:[a,b] \to \mathbf{R}$ è continua e derivabile in (a,b) allora $f(a) = f(b) \Rightarrow \exists c \in (a,b) \mid f'(c) = 0$.

Teorema 14 (Lagrange) Se $f:[a,b]\to \mathbf{R}$ è continua e derivabile in (a,b) allora $\exists c\in(a,b)\mid f'(c)=\frac{f(b)-f(a)}{b-a}.$

Teorema 15 (Criterio differenziale di monotonia) $Se\ f:[a,b]\to \mathbf{R}\ \grave{e}$ continua e derivabile in $(a,b),\ \forall x\in(a,b)$ si ha:

- $f'(x) \ge 0 \iff f \text{ è monotona crescente in } [a, b]$
- $f'(x) \le 0 \iff f \ e \ monotona \ decrescente \ in [a, b]$

3.3 Polinomio di Taylor

Definizione Dati $f:[a,b] \to \mathbf{R}$ e $x_o \in (a,b)$. Il polinomio di Taylor di ordine n di f centrato in x_0 $(T_n(f,x_0))$ è definito come:

$$\sum_{n=0}^{\infty} \frac{f^{(n)}(x_0)}{n!} (x - x_0)^n$$

Con questo polinomio è possibile approssimare una funzione scrivendola come una serie di termini calcolati partendo dalle derivate della funzione stessa in un punto.

Teorema 16 (Taylor) Dati $f : [a,b] \to \mathbf{R}$ e $x_o \in (a,b)$. Esiste sempre una funzione $R_n(x)$ detta resto infinitesimale per cui:

$$f(x) = T_n(x; x_0) + R_n(x; x_0)$$

4 Studio di funzione

Avendo visto le caratteristiche principali di una funzione è ora possibile analizzarla, bisogna trovare:

- 1. Campo di esistenza
- 2. Parità
- 3. Zeri
- 4. Segno
- 5. Asintoti
- 6. Monotonia
- 7. Convessità
- 8. Minimi/massimi relativi
- 9. Punti di flesso

Trovando queste caratteristiche è anche possibile rappresentare la funzione sul piano.

4.1 Esempio

Studio di $\frac{2x}{x^2-1}$:

- 1. Il campo è $\mathbf{R} \{1, -1\}$
- 2. La funzione è dispari
- 3. L'unico zero è x=0
- 4. La funzione è positiva quando $x > 1 \vee -1 < x \leq 0$
- 5. Facendo i limiti per $\pm \infty, \pm 1$ trovo:
 - $\bullet\,$ 2 asintoti orizzontali convergenti a 0 con $\pm\infty$
 - 2 asintoti verticali divergenti (dx) a $+\infty$ con ± 1
 - 2 asintoti verticali divergenti (sx) a $-\infty$ con ± 1

6. Studiando il segno della derivata prima scopro che la funzione è sempre decrescente

Figura 1: Derivata prima

7. Studiando il segno della derivata seconda scopro che la funzione è convessa tra -1,0 e dopo 1

Figura 2: Derivata seconda

8. Considerando il punto precedente (0,0) è l'unico punto di flesso

Avendo adesso tutte le informazioni si può disegnare il grafico:

Figura 3: $\frac{2x}{x^2-1}$