패턴인식 실습 #1

개발환경 구축 & 영상 히스토그램 그리기

안녕하세요 ②

- 김승현
- shkim@smu.ac.kr
- 이캠퍼스 메시지도 받습니다.

Computer Vision & Pattern Recognition

카테그	고리 > Engineering & Computer Science > Computer Visio	on & Pattern Recognition	*		
	발행처		<u>h5-색인</u>	<u>h5-중앙값</u>	
1.	IEEE/CVF Conference on Computer Vision and Pattern Recognition	CVPR	<u>440</u>	689	
2.	IEEE/CVF International Conference on Computer Vision	ICCV	<u>291</u>	484	
3.	European Conference on Computer Vision	ECCV	<u>206</u>	306	
4.	IEEE Transactions on Pattern Analysis and Machine Intelligence	5 Visu	al FeatureHuman	Semi Supervi	ised le
5.	IEEE Transactions on Image Processing	Effic	ient Prior distribution	r Tillage	Adapti
6.	Medical Image Analysis	Semanti Weakly Superv	Aware $V_{\frac{1}{2}}^{1}$	OEO Attention Contractive Learning Core training	Mod
7.	Pattern Recognition	5 % Poi	nt Cloud	ranstorm	le Motio
8.	IEEE/CVF Computer Society Conference on Computer Vision and Patte (CVPRW)		ion Model Segmenta Modeling Pose Es	rning valaset Ne	Generat Vision TOV
9.	IEEE/CVF Winter Conference on Applications of Computer Vision (WAC	(AC	lext Figure Guide	ed 3D Graph Knowledge	Detect
10.	International Journal of Computer Vision	Training consistency	Multi Shot De ReconstructionImpro	ject Det	ecti gmenta

패턴인식 실습 수업 목표

- 1. 배운 전통적 알고리즘에 대해,
 - 수도 코드를 작성할 수 있고
 - 수도 코드를 기반으로 코드를 구현할 수 있도록

2. 딥러닝 적용

• 기존 전통적인 영상처리 기법들과 CNN 기반 모델의 비교 뿐 아니라 CNN 모델의 성능을 올리기 위해 데이터 전처리 관점에서의 영상처리 기법들을 살펴보기

개인 구글 드라이브 폴더 생성 및 링크 공유

Colab 설치 방법

Colab 생성

개인 Drive에 mount 시키기

개인 Drive로 현 위치 이동

이미지 읽기

```
import os
import cv2
import matplotlib.pyplot as plt
from google.colab.patches import cv2_imshow
img = cv2.imread('PATH/TO/IMAGE.jpg')
```

이미지 예시(GRAY)

```
0 255
```

```
[[ 63, 130, 125, 211, 116],
[ 63, 130, 125, 211, 116],
[ 62, 127, 123, 207, 114],
[ 50, 102, 98, 166, 91],
[ 30, 63, 60, 102, 56]]
```


이미지 예시 (RGB)


```
[[[178, 47, 50], [247, 159, 28], [24, 196, 24], [32, 224, 254], [1, 78, 234]], [178, 47, 50], [247, 159, 28], [24, 196, 24], [32, 224, 254], [1, 78, 234]], [175, 46, 49], [240, 156, 27], [23, 193, 23], [30, 220, 249], [1, 77, 230]], [140, 37, 40], [192, 125, 22], [20, 153, 19], [24, 176, 200], [1, 61, 184]], [85, 23, 23], [120, 77, 14], [10, 95, 12], [15, 108, 123], [0, 38, 113]]]
```

이미지 예시 (R, G, B)


```
[[[178, 47, 50], [247, 159, 28], [24, 196, 24], [32, 224, 254], [1, 78, 234]], [178, 47, 50], [247, 159, 28], [24, 196, 24], [32, 224, 254], [1, 78, 234]], [175, 46, 49], [240, 156, 27], [23, 193, 23], [30, 220, 249], [1, 77, 230]], [140, 37, 40], [192, 125, 22], [20, 153, 19], [24, 176, 200], [1, 61, 184]], [85, 23, 23], [120, 77, 14], [10, 95, 12], [15, 108, 123], [0, 38, 113]]]
```

```
[[178, 247, 24, 32, 1],
[178, 247, 24, 32, 1],
[175, 240, 23, 30, 1],
[140, 192, 20, 24, 1],
[85, 120, 10, 15, 0]]
```

이미지 예시 (R, G, B)


```
[[[178, 47, 50], [247, 159, 28], [24, 196, 24], [32, 224, 254], [1, 78, 234]], [178, 47, 50], [247, 159, 28], [24, 196, 24], [32, 224, 254], [1, 78, 234]], [175, 46, 49], [240, 156, 27], [23, 193, 23], [30, 220, 249], [1, 77, 230]], [140, 37, 40], [192, 125, 22], [20, 153, 19], [24, 176, 200], [1, 61, 184]], [85, 23, 23], [120, 77, 14], [10, 95, 12], [15, 108, 123], [0, 38, 113]]]
```

```
[[ 47, 159, 196, 224, 78],
[ 47, 159, 196, 224, 78],
[ 46, 156, 193, 220, 77],
[ 37, 125, 153, 176, 61],
[ 23, 77, 95, 108, 38]]
```

이미지 예시 (R, G, B)


```
[[[178, 47, 50], [247, 159, 28], [24, 196, 24], [32, 224, 254], [1, 78, 234]], [178, 47, 50], [247, 159, 28], [24, 196, 24], [32, 224, 254], [1, 78, 234]], [175, 46, 49], [240, 156, 27], [23, 193, 23], [30, 220, 249], [1, 77, 230]], [140, 37, 40], [192, 125, 22], [20, 153, 19], [24, 176, 200], [1, 61, 184]], [85, 23, 23], [120, 77, 14], [10, 95, 12], [15, 108, 123], [0, 38, 113]]]
```

```
[[50, 28, 24, 254, 234],
[50, 28, 24, 254, 234],
[49, 27, 23, 249, 230],
[40, 22, 19, 200, 184],
[23, 14, 12, 123, 113]]
```

이미지 RGB to GRAY 수식

• Red 채널 ×0.299 + Green 채널 × 0.587 + Blue 채널 × 0.114

```
imggray = 0.114 * img[:,:,0] + 0.587 * img[:,:,1] + 0.299 * img[:,:,2])
cv2_imshow(imggray)
```


이미지 RGB to GRAY 함수

cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)

```
imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
cv2_imshow(imggray)
```

히스토그램 그리기

이미지(2D)를 histogram을 위해 1D로 변환 (1)

```
imggray = cv2.cvtColor(img, cv2.COLOR_BGR2GRAY)
print(imggray.shape)
imggrayflat = imggray.flatten()
print(imggrayflat.shape)
```

수행 결과

(3727, 5962)
(22220374,)

이미지(2D)를 histogram을 위해 1D로 변환 (2)

과제 #01

- <mark>구글 드라이브 공유 링크 및 .ipynb 파일 제출하기</mark>
- 예시 이미지를 RGB 채널에 대해 각각 histogram을 그리기
- 예시 이미지를 Gray 채널로 변환하여 histogram 그리기
 - 수식 방식
 - 함수 방식
 - 두 방식을 histogram에 비교하기