Versuch 1-2 (MWG) Massenwirkungsgesetz

PRAKTISCHE EINFÜHRUNG IN DIE CHEMIE

VERSUCHTSTAG: 24.05.2017

1 Theorieteil

1.1 Grundlagen

Eine der wichtigsten Grundlagen der Chemie ist, dass jede Reaktion prinzipiell in *beide* Richtungen, also von den Edukten zu den Produkten, als auch andersherum, ablaufen kann. Somit gibt es zu jeder Reaktion ein bestimmtes Gleichgewicht, das, wenn eingetreten, gewissermaßen den Stillstand dieses vor- und rückwärts laufenden Prozesses darstellt. Dieses Gleichgewicht lässt sich mittels der *Gleichgewichtskonstante* K_S angeben, die aus dem Verhältnis der Produkte jeweils der Konzentrationen der Produkte und der der Edukte hervorgeht. Für eine beispielhafte Reaktion

$$aA + bB \rightleftharpoons cC + dD$$
 (1a)

gilt für die Gleichgewichtskonstante:

$$K_{S} = \frac{[\mathbf{C}]^{c} \cdot [\mathbf{D}]^{d}}{[\mathbf{A}]^{a} \cdot [\mathbf{B}]^{b}}$$
 (1b)

Wobei die eckigen Klammern für die Konzentration des Stoffes stehen. Liegen die an der Reaktion beiteiligten Stoffe im gaßförmigen Zustand vor, lässt sich anstelle der Konzentration c der Partialdruck verwenden, der über das ideale Gasgesetz $p \cdot V = n \cdot R \cdot T$ mit $c = \frac{p}{R \cdot T}$ angeben.

1.2 Freie Reaktionsenthalpie und Temperaturabhängigkeit der Gleichgewichtskonstante

Die freie Reaktionsenthalpie $\Delta_r G$, die mit der Reaktionsenthalpie ΔH im Zusammenhang: $\Delta G = \Delta H - T \Delta S$ steht, gibt Aufschluss darüber, ob eine Reaktion freiwillig oder nur unter Zwang abläuft und lässt sich hier über:

$$\Delta_r G = \Delta_r G^0 + R \cdot T \cdot \ln K \tag{2}$$

angeben. Es lassen sich drei Fälle unterscheiden.

- 1. $\Delta G < 0$: Reaktion läuft freiwillig, unter Abgabe von Nutzarbeit ab
- 2. $\Delta G = 0$: Das System befindet sich im Gleichgewicht.
- 3. $\Delta G > 0$: Reaktion läuft nicht freiwillig, sondern nur unter Zuführung von Energie ab

Für den Fall $\Delta G = 0$ gilt folglich:

$$\ln K = -\frac{\Delta_r G^0}{R \cdot T} \tag{3}$$

Leitet man nun Gleichung 3 nach der Termperatur ab, erhält man mit Hilfe der Gibbs-Helmholtz-Gleichung: $\frac{\partial}{\partial T}(\frac{G}{T}) = -\frac{H}{T^2}$ die folgende Temperaturabhängigkeit:

$$\frac{1}{K} \cdot \frac{dK}{dT} = \frac{d \ln K}{dT} = \frac{\Delta_r H^0}{R \cdot T^2} \tag{4}$$

Diese Gleichung 4 ist die sogennante Van-'t-Hoff-Gleichung. Nach Integration der selbigen ergibt sich:

$$\ln K = -\frac{\Delta_r H^0}{R} \cdot \frac{1}{T} + c \tag{5}$$

1.3 Ammoniaksynthese

Die Darstellung von Ammoniak durch H2 und N2 mit Hilfe eines Katalysators lässt sich mit:

$$\frac{1}{2}N_2 + \frac{3}{2}H_2 \Longrightarrow NH_3 \tag{6}$$

beschreiben.

Wie in 1.1 erwähnt, lässt sich die Gleichgweichtskonstante auch unter Benutzung der Partialdrücke der an Gase angeben (mit p_0 als dem Standarddruck):

$$K_p = \frac{\left[\frac{p_{\rm NH_3}}{p_0}\right]}{\left[\frac{p_{\rm N_2}}{p_0}\right]^{\frac{1}{2}} \cdot \left[\frac{p_{\rm H_2}}{p_0}\right]^{\frac{3}{2}}} \tag{7}$$

Um dieses K_p bestimmen zu können, geht man folgende Überlegung ein: Die Stoffmengen der ausströmenden Gase $n_{\rm H_2}$ und $n_{\rm N_2}$, die nicht zu NH₃ reagiert sind, lassen sich aus der Differenz der Stoffmenge eingeströmten Gase n_{0,H_2} und n_{0,N_2} und der des entstandenen n_{NH_3} bestimmen:

$$n_{\rm H_2} = n_{\rm 0,H_2} - \frac{3}{2} n_{\rm NH_3} \tag{8a}$$

$$n_{\rm N_2} = n_{\rm 0,N_2} - \frac{1}{2} n_{\rm NH_3} \tag{8b}$$

Die Summe der Stoffmengen der ausströmenden Gase muss der Gesamtstoffmenge entsprechen, also $n_{ges} = n_{\rm H_2} + n_{\rm N_2} + n_{
m NH_3} = n_{
m 0,H_2} + n_{
m 0,N_2} - n_{
m NH_3}.$ Da nun $n_{
m NH_3} << n_{
m 0,H_2}, n_{
m 0,N_2}$ in diesem Versuch, kann für die Gesamtstoffmenge:

$$n_{ges} \cong n_{0,H_2} + n_{0,N_2} \tag{9}$$

in guter Näherung angenommen werden. Unter Ausnutzung des idealen Gasgesetztes $p \cdot V = n \cdot R \cdot T$ und der Strömungsgeschwindigkeit $\dot{V} = \frac{V}{t}$, die den Volumenstrom angibt, können die Stoffmengen wie folgt ausgedrückt werden:

$$n_{0,H_2} = \frac{p_0 \cdot \dot{V}_{H_2} \cdot t}{R \cdot T} \tag{10a}$$

$$n_{0,N_2} = \frac{p_0 \cdot \dot{V}_{N_2} \cdot t}{R \cdot T} \tag{10b}$$

Woraus sich mit Gleichung 9

$$n_{ges} = \frac{p_0 \cdot (\dot{V}_{H_2} + \dot{V}_{N_2}) \cdot t}{R \cdot T}$$
 (10c)

ergibt. Mit dem Daltonschem Gesetz ist der Partialdruck eines Stoffes das Verhältnis der Stoffmenge dieses Stoffes zur Gesamtstoffmenge multipliziert mit dem Gesamtdruck. Also hier:

$$p_{\rm H_2} = \frac{n_{\rm H_2}}{n_{\rm ges}} \cdot p = \frac{\dot{V}_{\rm H_2}}{\dot{V}_{\rm N_2} + \dot{V}_{\rm H_2}} \cdot p \tag{11a}$$

$$p_{N_2} = \frac{n_{N_2}}{n_{ges}} \cdot p = \frac{\dot{V}_{N_2}}{\dot{V}_{N_2} + \dot{V}_{H_2}} \cdot p \tag{11b}$$

$$p_{\rm NH_3} = \frac{n_{\rm NH_3}}{n_{\rm ges}} \cdot p \tag{11c}$$

Dabei folgt aus Gleichung 10c und 11c

$$p_{\text{NH}_3} = n_{\text{NH}_3} \cdot \frac{R \cdot T}{p_0 \cdot (\dot{V}_{\text{N}_2} + \dot{V}_{\text{H}_2})} \cdot p \tag{11d}$$

Gleichungen 11a, 11b und 11c in Gleichung 7 eingesetz, ergibt:

$$K_{p} = \frac{n_{\text{NH}_{3}} \cdot \frac{R \cdot T}{p_{0} \cdot (\dot{V}_{N_{2}} + \cdot V_{H_{2}})} \cdot p}{\left[\frac{\dot{V}_{H_{2}}}{\dot{V}_{N_{2}} + \dot{V}_{H_{2}}} \cdot p\right]^{\frac{3}{2}} \cdot \left[\frac{\dot{V}_{N_{2}}}{\dot{V}_{N_{2}} + \dot{V}_{H_{2}}} \cdot p\right]^{\frac{1}{2}}} = \frac{24,377 \frac{1}{\text{mol}} \cdot n_{\text{NH}_{3}} \cdot (\dot{V}_{H_{2}} + \dot{V}_{N_{2}})}{\dot{V}_{N_{2}}^{\frac{1}{2}} \cdot \dot{V}_{H_{2}}^{\frac{3}{2}} \cdot t \cdot p} \cdot p_{0}$$

$$(12)$$

2 Versuche

2.1 Bestimmung der Gleichgewichtskonstanten K_p der Ammoniaksynthese in Abhängigkeit der Temperatur

2.1.1 Aufgabenstellung

Es sollen jeweils 4 Zeitmessungen bei 4 verschiedenen Temperaturen (zwischen 500°C und 700°C) genommen werden mit unterschiedlichen Gasgeschwindigkeiten. Daraus soll dann die Gleichgewichtskonstante K_p und die Standardbildungsenthalpie bestimmt werden.

2.1.2 Versuchsaufbau

Abbildung 1: Schematischer Aufbau der Apparatur zur Ammoniaksynthese. Quelle: Skript S. 28

2.1.3 Versuchsdurchführung

Zu erst wurde der Ofen auf 500° C vorgeheizt und die Zuleitung für Stickstoff und Wasserstoff geöffnet sowie der Umgebungsdruck abgelesen. Anschließend wurden zu 50 ml einer $5\cdot10^{-4}$ N (2,5· 10^{-4} M) H_2SO_4 -Lösung 5 Tropfen einer Methylrot-Lösung zugegeben (im Erlenmyerkolben). Danach wurde so lange eine NAOH-Lösung dazu gegeben bis ein Umschlag von rot nach zitronengelb stattgefunden hat. Dies dient

Abbildung 2: Messwerte

T in K	Messung	$\dot{V}_{\rm N_2}$ in $\left[\frac{\rm Nl}{\rm h}\right]$	$\dot{V}_{\rm H_2}$ in $\left[\frac{\rm Nl}{\rm h}\right]$	t in [s]
773,15	1	3,707	11,361	111
	2	10,325	30,455	41
	3	15,518	45,174	34
	4	22,073	65,948	25
843,15	1	3,707	11,361	156
	2	10,325	30,455	68
	3	15,518	45,174	47
	4	22,073	65,948	33
913,15	1	3,707	11,361	257
	2	10,325	30,455	113
	3	15,518	45,174	82
	4	22,073	65,948	59
973,15	1	3,707	11,361	420
	2	10,325	30,455	189
	3	15,518	45,174	130
	4	22,073	65,948	98

später beim eigentlichen Versuch zum Vergleich. Bei dem eigentlichen Versuch wurden 4 verschiedene Temperaturen gewählt (hier: 500,570,640 und 700°C). Zusätzlich wurde jedes mal ein Erlenmeyerkolben bereitgestellt, gemischt mit 50 ml Schwefelsäure und 5 Tropfen Methylrot plus einen Rührfisch. Diese Mischung wurde beim Gaseinleitungsrohr befestigt durch welches später das entstandene Gas in die Lösung gebracht wurde. Bei jeder Temperatur wurden jeweils 4 Messungen gemacht in welchen jedes mal die Strömungsgeschwindigkeit verändert wurde. Sobald der 3-Wege-Hahn zum Erlenmeyerkolben geöffnet wurde, wurde die Zeit genommen bis ein Farbumschlag sichtbar wurde.

2.1.4 Auswertung

Reaktionsgleichung: $\frac{1}{2}$ N $_2$ + $\frac{3}{2}$ H $_2$ \Longrightarrow NH $_3$ Messwerte: Berechnung der Gleichgewichtskonstanten K_p mit

$$K_p = \frac{R \cdot T_0 \cdot p_0 \cdot n_{NH_3} \cdot (\dot{V}_{N_2} + \dot{V}_{H_2})}{\dot{V}_{N_2}^{1/2} + \dot{V}_{H_2}^{3/2} \cdot t \cdot p}$$
(13)

ergibt für die erste Messung:

$$K_p = \frac{24,337 \frac{1 \cdot \text{bar}}{\text{mol}} \cdot 2,5 \cdot 10^{-5} \text{ mol} \cdot \left(\left(\frac{3,707}{3600} \right) + \left(\frac{11,361}{3600} \right) \right) \frac{\text{NI}}{\text{s}}}{\left(\frac{3,707}{3600} \frac{\text{NI}}{\text{s}} \right)^{1/2} + \left(\frac{11,361}{3600} \frac{\text{NI}}{\text{s}} \right)^{3/2} \cdot 111 \text{ s} \cdot 0,968 \text{ bar}} = 0,00215 = 2,15 \cdot 10^{-3}.$$
 (14)

Es wurde mit R = 0,08319 $\frac{\text{l-bar}}{\text{mol-K}}$, $T_0 = 293,15$ K, $p_0 = 1$ bar und dem gemessenen Umgebungsdruck von p = 1,018 bar - 0,05 bar = 0,968 bar gerechnet.

Mittelt man nun jeweils die vier errechneten K_p , bzw $\ln K_p$ für eine Temperatur und plottet diese gemittelten $\ln K_p$ über die jeweils entsprechende reziproke Temperatur erhält man Abbildung 2.1.4 mit einer gefitteten y Kurve, die der Gleichung 5 mit Steigung $-\frac{\Delta_r H^0}{R} = 5219,6804$ entspricht. Daraus errechnet sich eine Reaktionsenthalpie $\Delta_r H^0 = -R \cdot 5219,6804 = -43398,8229 \frac{J}{\text{mol}}$. Die Reaktionenthalpie zur Reaktionsgleichung $N_2 + 3 H_2 \Longrightarrow 2 \text{ NH}_3$ beträgt nach Literaturangaben $\Delta_r H_2 \to -92,28 \text{ kJ}$. Daraus folgt eine Reaktionsenthalpie $\Delta H_{\mathrm{NH_3}} = \frac{1}{2}\Delta H_{\mathrm{2NH_3}} = -46,14 \text{ kJ}$ für die Reaktion $\frac{1}{2}\,\mathrm{N_2} + \frac{3}{2}\,\mathrm{H_2} \Longrightarrow \mathrm{NH_3}$. Die Abweichung von diesem Wert und dem gemessenen liegt bei etwa 5,94%.

https://de.wikipedia.org/wiki/Haber-Bosch-Verfahren#Synthesebedingungen

Abbildung 3: Gleichgewichtskonstante K_p und $\ln K_p$

T in K	Messung 1		Messung 2		Messung 3		Messung 4	
	K_p	$ln K_p$	K_p	$ln K_p$	K_p	$ln K_p$	K_p	$\ln K_p$
773,15	$4,173 \cdot 10^{-3}$	-5,479	l '	,	,	-5,689	$3,171 \cdot 10^{-3}$	-5,754
843,15	$2,969 \cdot 10^{-3}$	-5,819	$2,517 \cdot 10^{-3}$	-5,985	$2,447 \cdot 10^{-3}$	-6,013	$2,403 \cdot 10^{-3}$	-6,031
913,15	$1,802 \cdot 10^{-3}$	-6,319	$1,515 \cdot 10^{-3}$	-6,493	$1,403 \cdot 10^{-3}$	-6,569	$1,344 \cdot 10^{-3}$	-6,612
973,15	$1,103 \cdot 10^{-3}$	-6,810	$9,055 \cdot 10^{-4}$	-7,007	$8,847 \cdot 10^{-4}$	-7,03	$8,090 \cdot 10^{-4}$	-7,120

Abbildung 4: $\ln K_p$ über $\frac{1}{T}$

3 Literatur

- (1) *Praktische Einführung in die Chemie für Studierende der Fachrichtungen Technische Biologie und Physik.* Praktikumsskript, Universität Stuttgart, SoSe 2017.
- (2) Prof. Dr. D. Gudat. "Einführung in die Chemie für Naturwissenschaftler". Vorlesungsskript
- (3) Das Basiswissen der Chemie. Charles E. Mortimer, Ulrich Müller. 12. Auflage