Line Spectrum Estimation - Methods

V. Rajbabu rajbabu@ee.iitb.ac.in

Department of Electrical Engineering Indian Institute of Technology Bombay

17 September 2012

 x(n) is assumed to be a sum of p complex exponentials (uniformly distributed phase) in white noise and p is known

$$x(n) = \sum_{i=1}^{p} A_i e^{jn\omega_i} + w(n).$$

Corresponding autocorrelation coefficients are

$$r_{x}(k) = \sum_{i=1}^{p} P_{i}e^{jk\omega_{i}} + \sigma_{w}^{2}\delta(k), \quad k = 0, \ldots, M-1,$$

where $P_i = |A_i|^2$ is the power in the *i*-th component

• Corresponding autocorrelation matrix \mathbf{R}_x $((p+1)\times(p+1))$ is either known or can be estimated

$$\mathbf{R}_{x} = \mathbf{R}_{\text{sig}} + \mathbf{R}_{\text{noise}} = \sum_{i=1}^{p} P_{i} \mathbf{e}_{i} \mathbf{e}_{i}^{H} + \sigma_{w}^{2} \mathbf{I},$$

- Dimension of noise subspace is one and is spanned by the eigenvector \mathbf{v}_{min} corresponding to λ_{min}
- From orthogonality of signal subspace and noise eigenvector space

$$\mathbf{e}_{i}^{H}\mathbf{v}_{min} = \sum_{k=0}^{p} v_{min}(k)e^{-jk\omega} = 0; \qquad i = 1, \dots, p.$$

where

$$\mathbf{e}_i = \left[1, e^{j\omega_i}, e^{j2\omega_i}, \dots, e^{jp\omega_i}
ight]^T$$

DTFT of the noise vector

$$V_{min}(e^{j\omega}) = \sum_{k=0}^{p} v_{min}(k)e^{-jk\omega}$$

- This being zero at each of the complex exponential frequencies ω_i , i = 1, ..., p.
- Can be considered as an eigenfilter that has p zeros on the unit circle

$$V_{min}(z) = \sum_{k=0}^{p} v_{min}(k) z^{-k} = \prod_{k=1}^{p} \left(1 - e^{j\omega_k} z^{-1} \right).$$

and the roots of this provide the frequencies of the complex exponentials

 An alternative approach is to search for peak locations of the frequency estimation function ("pseudospectrum")

$$\hat{P}_{PHD}(e^{i\omega}) = rac{1}{\left|\mathbf{e}^H\mathbf{v}_{min}
ight|^2}.$$

- Having ω_i need to estimate corresponding power P_i
- Eigenvectors of \mathbf{R}_x are normalized, i.e., $\mathbf{v}_i^H \mathbf{v}_i = 1$
- For $i = 1, \dots, p$, we have

$$\mathbf{R}_{x}\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}$$
$$\mathbf{v}_{i}^{H}\mathbf{R}_{x}\mathbf{v}_{i} = \lambda_{i}\mathbf{v}_{i}^{H}\mathbf{v}_{i} = \lambda_{i}.$$

• Using the signal and noise decomposition of \mathbf{R}_{x} , we have

$$\mathbf{v}_{i}^{H}\mathbf{R}_{x}\mathbf{v}_{i} = \mathbf{v}_{i}^{H}\left\{\sum_{k=1}^{p}P_{k}\mathbf{e}_{k}\mathbf{e}_{k}^{H} + \sigma_{w}^{2}\mathbf{I},\right\}\mathbf{v}_{i},$$

which

$$\implies \sum_{k=1}^{p} P_{k} \left| \mathbf{e}_{k}^{H} \mathbf{v}_{i} \right|^{2} = \lambda_{i} - \sigma_{w}^{2}, \qquad i = 1, \dots, p.$$

• We have $|\mathbf{e}_k^H \mathbf{v}_i|^2$ corresponding to the squared magnitude of the DTFT of the signal subspace eigenvector \mathbf{v}_i evaluated at frequency ω_k ,

$$\left|\mathbf{e}_{k}^{H}\mathbf{v}_{i}\right|^{2}=\left|V_{i}(e^{j\omega_{k}})\right|^{2}.$$

Using this we have

$$\sum_{k=1}^{p} P_k \left| V_i(e^{j\omega_k}) \right|^2 = \lambda_i - \sigma_w^2, \qquad i = 1, \dots, p.$$

 Which can be solved for powers P_k using p linear equations, as shown in matrix form

$$\begin{bmatrix} \left| V_1(e^{j\omega_1}) \right|^2 & \left| V_1(e^{j\omega_2}) \right|^2 & \cdots & \left| V_1(e^{j\omega_p}) \right|^2 \\ \vdots & \vdots & \vdots & \vdots \\ \left| V_p(e^{j\omega_1}) \right|^2 & \left| V_p(e^{j\omega_2}) \right|^2 & \cdots & \left| V_p(e^{j\omega_p}) \right|^2 \end{bmatrix} \begin{bmatrix} P_1 \\ \vdots \\ P_p \end{bmatrix} = \begin{bmatrix} \lambda_1 - \sigma_w^2 \\ \vdots \\ \lambda_p - \sigma_w^2 \end{bmatrix}.$$

- Improvement over PHD for frequency estimation
- In PHD projection of signal vectors onto a single noise eigenvector
- MUSIC projection of signal vectors onto the entire noise subspace
- Signal x(n) is a mixture of p complex exponentials in white noise with variance σ²_w and has a M × M autocorrelation matrix R_x with M > p + 1
 - in contrast to PHD where M = p + 1

- We can divide the eigenvectors of R_x into two groups;
 - p signal EVecs corresponding to p largest EVals
 - M-p noise EVecs that have an EVals of σ_w^2
- M-p smallest EVals are approximately equal to σ_w^2

$$\hat{\sigma}_w^2 = \frac{1}{M-p} \sum_{k=p+1}^M \lambda_k.$$

 Taking the DTFT of the noise subspace eigenvectors, the eigenfilters can be obtained as

$$V_i(z) = \sum_{k=0}^{M-1} v_i(k)z^{-k}, \qquad i = p+1, \ldots, M.$$

- Has M-1 roots with p of them lying on the unit circle
- The location of those on the unit circle correspond to the frequencies of the complex exponentials.
- The pseudospectrum (eigen spectrum) of the signal

$$\left|V_i(e^{j\omega})\right|^2 = \frac{1}{\left|\sum_i^{M-1} v_i(k)e^{-jk\omega}\right|^2},\tag{1}$$

has peaks at the ω_i corresponding to the complex exponentials.

Uses only one of the noise eigenvectors v_i.

- Issues with using single noise eigenvector
 - M p 1 zeros corresponding to noise might lie close to unit circle
 - p zeros corrsponding to signal might not lie exactly on unit circle
- This leads to spurious peaks
- Spurious peaks can be reduced by averaging

$$\hat{P}_{MU}(e^{j\omega}) = rac{1}{\sum_{i=p+1}^{M} \left| \mathbf{e}^H \mathbf{v}_i
ight|^2}.$$

- Location of the *p* largest peaks in $\hat{P}_{MU}(e^{j\omega})$ correspond to the frequencies of the complex exponentials
- Corresponding power P_i can be estimated as in PHD method

Alternate view

Consider the projection matrix on to the noise space

$$\mathbf{P}_{\mathsf{noise}} = \mathbf{V}_{\mathsf{noise}} \mathbf{V}_{\mathsf{noise}}^H$$

The denominator term can be considered as

$$\mathbf{e}^H \mathbf{P}_{\mathsf{noise}} \mathbf{e} = \mathbf{e}^H \mathbf{V}_{\mathsf{noise}} \mathbf{V}_{\mathsf{noise}}^H \mathbf{e}$$

- This goes to zero for e_i that are orthogonal to the noise subspace
- The MUSIC pseudospectrum can be represented as

$$\hat{P}_{MU}(e^{j\omega}) = \frac{1}{\mathbf{e}^H \mathbf{V}_{\text{noise}} \mathbf{V}_{\text{noise}}^H \mathbf{e}}.$$

Root MUSIC

 Obtain the roos of an equivalent polynomial (corresponding to the MUSIC method)

$$D(z) = \sum_{i=p+1}^{M} V_i(z) V_i^*(1/z^*),$$

 p roots that are closest to the unit circle correspond to the complex exponentials

Eigenvector Method

Similar to MUSIC, differs only by a constant

$$\hat{P}_{EV}(e^{j\omega}) = \frac{\sigma_w^2}{\sum_{i=p+1}^M \left| \mathbf{e}^H \mathbf{v}_i \right|^2} = \frac{1}{\frac{1}{\lambda_i} \sum_{i=p+1}^M \left| \mathbf{e}^H \mathbf{v}_i \right|^2},$$

where $\lambda_i = \sigma_w^2$ are the eigenvalues corresponding to the eigenvectors \mathbf{v}_i , $i = p + 1, \dots, M$

• Differs from MUSIC: in practise the estimated small λ_i s all need not be equal

- Choose a single noise vector a with minimum norm to define the pseduospectrum
- Compare to PHD or MUSIC
 - PHD uses single noise eigenvector
 - MUSIC uses all noise eigenvectors

Motivation for choice of a

- a lies in the noise subspace ensures p roots of A(z) lie on the unit circle
- **a** has minimum norm ensures that spurious roots of A(z) lie inside the unit circle, i.e., $|z_k| < 1$. i.e., A(z) is a minimum-phase polynomial. Further these roots are approximately uniformly distributed around the unit-circle in sectors where the signal roots are not present
- the first element of a is unity to ensure that the minimum norm solution is not the zero vector

The pseudospectrum is defined as

$$\hat{P}_{MN}(e^{j\omega}) = rac{1}{\left|\mathbf{e}^H\mathbf{a}
ight|^2}.$$

where \mathbf{a} is constrained to lie in the noise subspace and \mathbf{e} is a complex exponential

- The peak locations of this function correspond to the frequencies of the complex exponentials
- Considering the z-domain polynomial corresponding to a

$$A(z) = \sum_{k=0}^{M-1} a(k) z^{-k} = \underbrace{\prod_{k=1}^{p} \left(1 - e^{j\omega_k} z^{-1}\right)}_{\text{roots on unit-circle}} \underbrace{\prod_{k=p+1}^{M-1} \left(1 - z_k z^{-1}\right)}_{\text{roots not on unit-circle}}$$

 Goal: determine the noise subspace vector a that minimizes the effect of the spurious zeros

- The noise subspace vector a can be obtained by imposing three constraints
 - C1 a lies in the noise subspace
 - C2 **a** has minimum norm
 - C3 First element of a is unity
- C1 can be expressed using the noise projection matrix,
 P_n = V_{noise}V^H_{noise}, which projects an arbitrary vector y onto the noise subspace

$$\mathbf{a} = \mathbf{P}_{\mathbf{n}} \mathbf{y}$$
.

C3 can be represented using

$$\mathbf{a}^H\mathbf{u}_1=\mathbf{1}$$

where
$$\mathbf{u}_1 = [1, 0, \cdots, 0]^T$$
.

Combining C1 and C3, we have

$$\mathbf{y}^H(\mathbf{P}_n^H\mathbf{u}_1)=1.$$

Objective is to minimize norm of a

$$\|\mathbf{a}\|^2 = \|\mathbf{P}_n \mathbf{y}\|^2$$

= $\mathbf{y}^H \left(\mathbf{P}_n^H \mathbf{P}_n\right) \mathbf{y}$
= $\mathbf{y}^H \mathbf{P}_n \mathbf{y}$ (: \mathbf{P}_n is Hermitian, idempotent, $\mathbf{P}_n^2 = \mathbf{P}_n$).

 Minimizing the norm of a can be formulated as a constrained optimization problem

$$\min \mathbf{y}^H \mathbf{P}_n \mathbf{y}$$
 subject to $\mathbf{y}^H \left(\mathbf{P}_n^H \mathbf{u}_1 \right) = 1$.

and the solution y can be used to obtain a

Gradient of a Scalar Quantity

Let Q be a scalar quantity depending on the real vector a.
 The gradient is defined as

$$abla_{\mathbf{a}}\mathcal{Q} \stackrel{\mathsf{def}}{=} egin{bmatrix} rac{\partial \mathcal{Q}}{\partial a_1} \\ rac{\partial \mathcal{Q}}{\partial a_2} \\ \vdots \\ rac{\partial \mathcal{Q}}{\partial a_N} \end{bmatrix}$$

Table: Gradient relation for real vectors and symmetric B

Quantity Q	$\mathbf{a}^T\mathbf{b}$	$\mathbf{b}^T \mathbf{a}$	$\mathbf{a}^T \mathbf{B} \mathbf{a}$
Gradient $\nabla_{\mathbf{a}}\mathcal{Q}$	b	b	2 Ba

Gradient of a Scalar Quantity

• Let Q be a scalar quantity depending on the complex vector $\mathbf{a} = \mathbf{a}_r + j\mathbf{a}_i$. The gradient is defined as

$$\nabla_{\mathbf{a}}\mathcal{Q} \stackrel{\mathsf{def}}{=} \frac{1}{2} (\nabla_{\mathbf{a}_r}\mathcal{Q} - j\nabla_{\mathbf{a}_i}\mathcal{Q})$$

and

$$abla_{\mathbf{a}}^*\mathcal{Q} \stackrel{\mathsf{def}}{=} rac{1}{2} (
abla_{\mathbf{a}_r} \mathcal{Q} + j
abla_{\mathbf{a}_i} \mathcal{Q})$$

Table: Gradient relation for complex vectors and Hermitian B

Quantity $\mathcal Q$	$\mathbf{a}^H\mathbf{b}$	$\mathbf{b}^H\mathbf{a}$	a ^H Ba
Gradient $\nabla_{\mathbf{a}}\mathcal{Q}$	0	b*	(Ba)*
Gradient $\nabla_{\mathbf{a}^*}\mathcal{Q}$	b	0	Ва

• Solution to the constrained optimization problem can be obtained using a Lagrange multiplier λ and minimizing

$$Q(\mathbf{y},\lambda) = \mathbf{y}^H \mathbf{P}_{\mathsf{n}} \mathbf{y} + \lambda (1 - \mathbf{y}^H (\mathbf{P}_{\mathsf{n}}^H \mathbf{u}_1)).$$

• Setting the gradient of $Q(\mathbf{v}, \lambda)$ w.r.t \mathbf{y}^* equal to zero

$$\nabla_{\mathbf{y}^*} Q(\mathbf{y}, \lambda) = \mathbf{P}_n \mathbf{y} - \lambda \left(\mathbf{P}_n^H \mathbf{u}_1 \right) = 0$$

$$\implies \mathbf{y} = \lambda \mathbf{P}_n^{-1} \left(\mathbf{P}_n^H \mathbf{u}_1 \right) = \lambda \mathbf{u}_1.$$

• λ can be obtained by setting $\nabla_{\lambda} Q(\mathbf{y}, \lambda)$ equal to zero

$$1 - \mathbf{y}^H \left(\mathbf{P}_n^H \mathbf{u}_1 \right) = 0 \implies \lambda = \frac{1}{\mathbf{u}_n^H \mathbf{P}_n \mathbf{u}_1}.$$

• Hence the minimum-norm solution is

$$\mathbf{a} = \mathbf{P}_n \mathbf{y} = \lambda \mathbf{P}_n \mathbf{u}_1 = \frac{\mathbf{P}_n \mathbf{u}_1}{\mathbf{u}_1^H \mathbf{P}_n \mathbf{u}_1} = \frac{(\mathbf{V}_n \mathbf{V}_n^H) \mathbf{u}_1}{\mathbf{u}_1^H (\mathbf{V}_n \mathbf{V}_n^H) \mathbf{u}_1}.$$

EStimation of Signal Parameters by Rotational Invariance Technique

- Exploits invariance principle that exists for discrete sequences
- Consider the multiple complex signal model

$$x(n) = \sum_{i=1}^{p} A_i e^{jn\omega_i} + w(n)$$

and considering n = 0, ..., M - 1, we have

$$\mathbf{x} = \sum_{i=1}^{p} A_i \mathbf{e}_i + \mathbf{w},$$

where
$$\mathbf{e}_i = \begin{bmatrix} 1 & e^{j\omega_i} & \cdots & e^{j(M-1)\omega_i} \end{bmatrix}^T$$
.

• Consider x' a translated version of x i.e.,

$$\mathbf{x} = \begin{bmatrix} x(0) & x(1) & \cdots & x(M-1) \end{bmatrix}$$

$$\mathbf{x}' = \begin{bmatrix} x(1) & x(2) & \cdots & x(M) \end{bmatrix}$$

$$\implies \mathbf{x}' = \sum_{i=1}^{p} A_i \mathbf{e}'_i + \mathbf{w}',$$

where

$$\mathbf{e}_i' = egin{bmatrix} e^{j\omega_i} \ e^{j2\omega_i} \ \dots \ e^{j(N)\omega_i} \end{bmatrix} = e^{j\omega_i}\mathbf{e}.$$

 Translational invariance between the two data sets leads to a rotatinal invariance between the two corresponding signal subspaces

The cross-correlation matrix for the vectors x and x' is

$$\mathbf{R}_{\mathbf{x}\mathbf{x}'} = \sum_{i=1}^{\rho} P_i e^{-j\omega_i} \mathbf{e}_i \mathbf{e}_i^H + \sigma_w^2 \mathbf{D}_{-1}$$

or

$$\mathbf{R}_{\mathbf{x}\mathbf{x}'} = \mathbf{E}\mathbf{P}\mathbf{\Phi}^H\mathbf{E}^H + \sigma_W^2\mathbf{D}_{-1}$$

where

$$\mathbf{\Phi} = \begin{bmatrix} e^{j\omega_1} & 0 & \cdots & 0 \\ 0 & e^{j\omega_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & e^{j\omega_p} \end{bmatrix}, \mathbf{D}_{-1} = \begin{bmatrix} 0 & 0 & \cdots & 0 \\ -1 & 0 & \cdots & 0 \\ \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & -1 & 0 \end{bmatrix}$$

Obtaining Φ will give us the required frequencies

ESPRIT begins by forming the matrices

$$\mathbf{R}_{s} \stackrel{\text{def}}{=} \mathbf{R}_{x} - \sigma_{w}^{2} \mathbf{I} = \mathbf{E} \mathbf{P} \mathbf{E}^{H}$$

and

$$\mathbf{R}_{ss'} \stackrel{\text{def}}{=} \mathbf{R}_{xx'} - \sigma_w^2 \mathbf{D}_{-1} = \mathbf{E} \mathbf{P} \mathbf{\Phi}^H \mathbf{E}^H$$

- As in MUSIC σ_w^2 the smallest eigenvalue of \mathbf{R}_x can be computed and used in the subtraction
- The values $e^{j\omega_k}$ are the eigenvalues of the generalized eigenvalue problem

$$\mathbf{R}_{s}\dot{\mathbf{e}}=\dot{\lambda}\mathbf{R}_{ss'}\dot{\mathbf{e}}$$

• To show $e^{j\omega_k}$ are eigenvalues of $\mathbf{R}_s\dot{\mathbf{e}}=\dot{\lambda}\mathbf{R}_{ss'}\dot{\mathbf{e}}$

$$\begin{split} & \mathbf{R}_{\mathcal{S}}\dot{\mathbf{e}} - \dot{\lambda}\mathbf{R}_{\mathcal{S}\mathcal{S}'}\dot{\mathbf{e}} = \mathbf{E}\mathbf{P}(\mathbf{I} - \dot{\lambda}\mathbf{\Phi})\mathbf{E}^H\dot{\mathbf{e}} \\ & = \mathbf{E}\mathbf{P} \begin{bmatrix} 1 - \dot{\lambda}e^{-j\omega_1} & 0 & \cdots & 0 \\ 0 & 1 - \dot{\lambda}e^{-j\omega_2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & 1 - \dot{\lambda}e^{-j\omega_p} \end{bmatrix} \mathbf{E}^H\dot{\mathbf{e}} \end{split}$$

• Since $\dot{\lambda}=e^{j\omega_k}$ reduces the rank of the matrix, they are the generalized eigenvalues

- Let us consider the p complex exponential signal matrix E
- We can form two matrices E₁ and E₂ that are related by a rotation

$$\mathbf{E}_1 = [\mathbf{I}_{M-1} \quad \mathbf{0}]\mathbf{E} \qquad (M-1 \times p)$$

 $\mathbf{E}_2 = [\mathbf{0} \quad \mathbf{I}_{M-1}]\mathbf{E} \qquad (M-1 \times p)$

where I_{N-1} is $(M-1) \times (M-1)$ identity matrix

• We have $\mathbf{E}_2 = \mathbf{E}_1 \mathbf{D}$ where

$$\mathbf{D} = egin{bmatrix} e^{j\omega_1} & 0 & \cdots & 0 \ 0 & e^{j\omega_2} & \cdots & 0 \ dots & dots & \ddots & dots \ 0 & 0 & \cdots & e^{j\omega_p} \end{bmatrix}$$

is a unitary matrix and causes a rotation

Now lets consider the signal eigenvectors V_S and

$$\mathbf{V}_{\mathrm{S1}} = [\mathbf{I}_{M-1} \quad \mathbf{0}] \mathbf{V}_{\mathrm{S}}$$
 and $\mathbf{V}_{\mathrm{S2}} = [\mathbf{I}_{M-1} \quad \mathbf{0}] \mathbf{V}_{\mathrm{S}}$

Using the autocorrelation matrix R_x,

$$\mathbf{R}_{x}\mathbf{V}_{S} = \mathbf{V}_{S} \begin{bmatrix} \lambda_{1} & 0 & \cdots & 0 \\ 0 & \lambda_{2} & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & 0 & \cdots & \lambda_{p} \end{bmatrix} = \mathbf{E}\mathbf{P}\mathbf{E}^{H}\mathbf{V}_{S} + \sigma_{w}^{2}\mathbf{V}_{S}$$

- Accordingly we have, $V_S = \mathbf{E}(\mathbf{P}\mathbf{E}^H\mathbf{V}_S\mathbf{\Lambda}^{-1})$ where $\mathbf{\Lambda} = diag(\lambda_1 \sigma_w^2, \cdots, \lambda_p \sigma_w^2)$
- We have $V_S = EC$, where $C = PE^H V_S \Lambda^{-1}$ is non-singular

- The term $V_S = \textbf{EC}$ indicates the relation between the signal space E and signal eigenvectors V_S
- From the earlier partitioning, and using the above relation we have

$$V_{S2} = E_2 C$$

Using the rotational relation

$$V_{S2} = E_2C = E_1DC = V_{S1}C^{-1}DC = V_{S1}\Phi.$$

 Since V_{S1} and V_{S2} are known, we can solve for Φ using least squares

$$\mathbf{\Phi} = (\mathbf{V}_{S1}^H \mathbf{V}_{S1})^{-1} \mathbf{V}_{S1}^H \mathbf{V}_{S2}$$

• From $C^{-1}DC = \Phi$, it can be seen that **D** and Φ have the same eigen values

- After estimating Φ, it's eigenvalues can be obtained
- These are also the eigenvalues of **D**, and hence $\{\omega_k\}_{k=1}^p$ can be found from

$$arg(\gamma_k)$$

where $\{\gamma_k\}_{k=1}^p$ are eigenvalues of the estimated Φ

- Here Φ is obtained using least squares (LS) approach
- LS solves for ${f X}$ from ${f A}{f X} pprox {f B}$ or

$$\min \|\mathbf{AX} - \mathbf{B}\|^2$$

or

$$\min \|\Delta \mathbf{B}\|^2$$
 subject to $\mathbf{AX} = \mathbf{B} + \Delta \mathbf{B}$

• LS solution $\mathbf{X} = (\mathbf{A}^H \mathbf{A})^{-1} \mathbf{A}^H \mathbf{B} = \mathbf{A}^{\dagger} \mathbf{B}$

ESPRIT Method using Total Least Squares (TLS)

- Total least squares (TLS) error both in A and B
- TLS solves for X from

$$\min \| \mathbf{AX} - \mathbf{B} \|^2$$

or

min
$$\| \Delta \mathbf{A} \Delta \mathbf{B} \|^2$$
 subject to $(\mathbf{A} + \Delta \mathbf{A})\mathbf{X} = \mathbf{B} + \Delta \mathbf{B}$

 This can be solved using Singular Value Decomposition (SVD)

Singular Value Decomposition (SVD)

- SVD provides better numerical precision while computing eigenvalues and eigenvectors
- Uses the data X instead of the autocorrelation matrix R_x

Singular Value Decomposition (SVD)

 SVD theorem states that any K × N matrix X can be decomposed as

$$X = U\Sigma V^H$$

where **U** is the $K \times K$ unitary matrix of *left singular vectors*

$$\mathbf{U} = \begin{bmatrix} \mathbf{u}_1 & \mathbf{u}_2 & \cdots & \mathbf{u}_K \end{bmatrix},$$

where **V** is the $N \times N$ unitary matrix of *right singular vectors*

$$V = \begin{bmatrix} v_1 & v_2 & \cdots & v_N \end{bmatrix}$$

 Σ is the $K \times N$ nonnegative real singular values (K > N)

$$\mathbf{\Sigma} = \begin{bmatrix} \mathbf{S_1} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} \end{bmatrix} \text{ with } \mathbf{S_1} = \begin{bmatrix} \sigma_1 & 0 & \cdots & 0 \\ 0 & \sigma_2 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots \\ 0 & \cdots & \cdots & \sigma_N. \end{bmatrix}$$

Singular Value Decomposition (SVD)

- Left singular vectors \mathbf{u}_k are the eigenvectors of \mathbf{XX}^H
- Right singular vectors \mathbf{v}_k are the eigenvectors of $\mathbf{X}^H\mathbf{X}$
- The singular values of $\mathbf{X}^H\mathbf{X}$ are σ_k^2 the squared singular values of \mathbf{X}
- If K > N, then there are atmost N singular values, i.e.,
 K N singular values are zero
- The pseudoinverse (used in LS) can be defined as

$$\mathbf{X}^\dagger \stackrel{\text{def}}{=} \mathbf{V} \mathbf{\Sigma}^\dagger \mathbf{U}^H$$

where

$$\boldsymbol{\Sigma}^{\dagger} = \begin{bmatrix} \boldsymbol{S}_1^{-1} & \boldsymbol{0} \\ \boldsymbol{0} & \boldsymbol{0} \end{bmatrix}$$

ESPRIT Method using Total Least Squares (TLS)

SVD of matrix in ESPRIT method.

$$\underbrace{\begin{bmatrix} \mathbf{V}_{\text{S1}} & \mathbf{V}_{\text{S2}} \end{bmatrix}}_{M-1 \times 2p} = \underbrace{\begin{bmatrix} \mathbf{U}_1 & \mathbf{U}_2 \end{bmatrix}}_{M-1 \times M-1} \underbrace{\begin{bmatrix} \boldsymbol{\Sigma}_1 & \mathbf{0} \\ \mathbf{0} & \boldsymbol{\Sigma}_2 \end{bmatrix}}_{M-1 \times 2p} \underbrace{\begin{bmatrix} \mathbf{V}_1^H \\ \mathbf{V}_2^H \end{bmatrix}}_{2p \times 2p}$$

• Partitioning V2 as

$$\mathbf{V}_{2}^{H} = \left[\underbrace{\mathbf{V}_{21}^{H}}_{p}\underbrace{\mathbf{V}_{22}^{H}}_{p}\right]$$

The TLS soultion can be obtained as

$$\Phi_{\text{TLS}} = -V_{21}V_{22}^{-1}$$

Principal Components Spectrum Estimation

- Earlier methods made of use of the noise subspace vectors to estimate the complex exponential frequencies
- Here we use the signal subspace vectors to estimate the power spectrum
- From eigendecomposition of \mathbf{R}_x we have

$$\mathbf{R}_{x} = \sum_{i=1}^{M} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{H} = \sum_{i=1}^{p} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{H} + \sum_{i=p+1}^{M} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{H},$$

where the eigenvalues of \mathbf{R}_x have been arranged in decreasing order, $\lambda_1 \geq \lambda_2 \geq \cdots \lambda_M$.

 We can obtain a reduced rank approximation to the signal autocorrelation matrix R_s, by retaining the principal eigenvectors of R_x,

$$\hat{\mathbf{R}}_{s} = \sum_{i=1}^{p} \lambda_{i} \mathbf{v}_{i} \mathbf{v}_{i}^{H}.$$

Principal Components Spectrum Estimation

- We use the reduced rank approximation instead of R_x in other spectral estimators
- Effect of using principal components is to filter out noise components and hence better spectral estimation of signal components
- Using this in Blackman-Tukey estimate

$$\hat{P}_{\mathsf{BT}}(e^{j\omega}) = \sum_{k=-M}^{M} \hat{r}_{\mathsf{X}}(k) w(k) e^{-jk\omega}$$

With Bartlett window, we have

$$\hat{P}_{\mathsf{BT}}(e^{j\omega}) = \frac{1}{M} \sum_{k=-M}^{M} (M - |k|) \, \hat{r}_{x}(k) e^{-jk\omega} = \frac{1}{M} \mathbf{e}^{H} \mathbf{R}_{x} \mathbf{e}.$$

Principal Components Spectrum Estimation

Using Eigendecomposition

$$\hat{P}_{\mathsf{BT}}(e^{j\omega}) = \frac{1}{M} \sum_{i=1}^{M} \left| \mathbf{e}^{H} \mathbf{v}_{i} \right|^{2}.$$

• With principal component approximation for \mathbf{R}_{x} , we have

$$\hat{P}_{\mathsf{PC-BT}}(e^{j\omega}) = \frac{1}{M} \mathbf{e}^H \hat{\mathbf{R}}_{\mathcal{S}} \mathbf{e} = \frac{1}{M} \sum_{i=1}^{p} \left| \mathbf{e}^H \mathbf{v}_i \right|^2.$$

 Similar approximations can be used in other techniques that use the autocorrelation matrix R_x