• How is a **Markov decision process** defined? $(5, A, T, R, \gamma)$

$$(S,A,T,R,\gamma)^{dis}$$

- How is a **Markov decision process** defined?
- What is a **policy**?

- How is a **Markov decision process** defined?
- What is a **policy**?
- How do we **evaluate** policies?

Guiding Questions

Guiding Questions

- How do we reason about the **future consequences** of actions in an MDP?
- What are the basic **algorithms for solving MDPs**?

Value-Based Policy Evaluation

Want
$$U(\pi)$$

Bellman Expectation

Equation (1)

$$U^{\pi}(s) = E \left[\sum_{t=0}^{\infty} y^{t} R(s_{t}, \pi(s_{t})) \right] + E \left[\sum_{t=1}^{\infty} y^{t} R(s_{t}, \pi(s_{t})) \right] + E \left[\sum_{t=1}$$

$$(F_{\gamma}T)U^{\pi} = R^{\pi}$$

$$U^{\pi} = (I - \gamma T^{\pi})^{-1}R^{\pi}$$

$$U(\pi) = \sum_{s} b(s) U^{n}(s) \qquad \overline{b_{t}} = b(s)$$

$$\overline{U^{\pi} \cdot b}$$

 $\overline{U}_{i}^{\pi}=U^{\pi}(i)$

 $\bar{T}_{i,j}^{\pi} = T(j|i,\pi(i))$

 $\mathbb{R}^n = R(i, \pi(i))$

For this lecture, => is same as ->> (distinguishes from Bayes Net)

1

Dynamic Programming and Value Backup

Dynamic Programming and Value Backup

Bellman Backup

 $U^*(s) \leftarrow 0$ for all terminal states

Repeat until all $V^*(s)$ calculated

find π^* , V^* for states where V^* is known for all successor states

Only works if there are no cycles?

Bellman's Principle of Optimality: Every subpolicy in an optimal policy is locally optimal

$$U^*(s) = \max_{x \in A} U^*(s)$$
 = optimal function $\mathcal{X}^*(s) = \max_{\alpha \in A} (R(s, \alpha) + \gamma \in [U^*(s)])$

5	U*(9)	a	Q*(4,a)
45	0		
6	0		
2	9 /	1/4	+9 + y O
3	10		+10+y0 +5+y0
	10		0, +y(0.2 yte) + 0.8 v (3)
	1		$= b \qquad (0*(3))$

Boulder

<u>Algorithm: Policy Iteration</u>

<u>Algorithm: Policy Iteration</u>

Given: MDP (S, A, R, T, γ, b)

1. initialize π , π' (differently)

<u>Algorithm: Policy Iteration</u>

- 1. initialize π , π' (differently)
- 2. while $\pi \neq \pi'$

<u>Algorithm: Policy Iteration</u>

- 1. initialize π , π' (differently)
- 2. while $\pi \neq \pi'$
- 3. $\pi \leftarrow \pi'$

<u>Algorithm: Policy Iteration</u>

- 1. initialize π , π' (differently)
- 2. while $\pi \neq \pi'$
- 3. $\pi \leftarrow \pi'$
- 4. $U^{\pi} \leftarrow (I \gamma T^{\pi})^{-1} R^{\pi}$

$$\pi'(s) = \underset{\alpha}{\operatorname{angmax}} \left(R(s, \alpha) + \gamma E[U^{\pi}(s)] \right)$$

<u>Algorithm: Policy Iteration</u>

- 1. initialize π , π' (differently)
- 2. while $\pi \neq \pi'$
- 3. $\pi \leftarrow \pi'$
- 4. $U^{\pi} \leftarrow (I \gamma T^{\pi})^{-1} R^{\pi}$
- 5. $\pi'(s) \leftarrow \operatorname*{argmax}_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) U^{\pi}(s') \right) \quad orall s \in S$

<u>Algorithm: Policy Iteration</u>

Given: MDP (S, A, R, T, γ, b)

- 1. initialize π , π' (differently)
- 2. while $\pi \neq \pi'$

3.
$$\pi \leftarrow \pi'$$

4. $U^\pi \leftarrow (I - \gamma T^\pi)^{-1} R^\pi$

5.
$$\pi'(s) \leftarrow \operatorname*{argmax}_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) U^{\pi}(s') \right) \quad \forall s \in S$$
6. $\operatorname{return} \pi$

1. Policy Evaluation

<u>Algorithm: Value Iteration</u>

<u>Algorithm: Value Iteration</u>

Given: MDP (S, A, R, T, γ, b) , tolerance ϵ

1. initialize U, U' (differently)

<u>Algorithm: Value Iteration</u>

- 1. initialize U, U' (differently)
- 2. while $\|U U'\|_{\infty} < \epsilon$

<u>Algorithm: Value Iteration</u>

- 1. initialize U, U' (differently)
- 2. while $||U U'||_{\infty} < \epsilon$
- 3. $U \leftarrow U'$

<u>Algorithm: Value Iteration</u>

- 1. initialize U, U' (differently)
- 2. while $||U U'||_{\infty} < \epsilon$
- 3. $U \leftarrow U'$
- 4. $U'(s) \leftarrow \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) U^{\bullet}(s') \right) \quad orall s \in S$

<u>Algorithm: Value Iteration</u>

- 1. initialize U, U' (differently)
- 2. while $||U U'||_{\infty} < \epsilon$
- 3. $U \leftarrow U'$
- 4. $U'(s) \leftarrow \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) U^{\pi}(s') \right) \quad orall s \in S$
- 5. return U'

<u>Algorithm: Value Iteration</u>

Given: MDP (S, A, R, T, γ, b) , tolerance ϵ

- 1. initialize U, U' (differently)
- 2. while $||U U'||_{\infty} < \epsilon$
- 3. $U \leftarrow U'$
- 4. $U'(s) \leftarrow \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) U^{\pi}(s') \right) \quad orall s \in S$
- 5. return U'

near

• Returned U' will be U^* !

<u>Algorithm: Value Iteration</u>

Given: MDP (S, A, R, T, γ, b) , tolerance ϵ

- 1. initialize U, U' (differently)
- 2. while $||U-U'||_{\infty}<\epsilon$

3. $U \leftarrow U'$ Immediate Revard

Future Value

- 4. $U'(s) \leftarrow \max_{a \in A} \left(R(s,a) + \gamma \sum_{s' \in S} T(s'|s,a) U^{\pi}(s') \right) \quad orall s \in S$
- 5. return U'

- Returned U' will be U^* !
- π^* is easy to extract: $\pi^*(s) = \arg\max(R(s,a) + \gamma E[U^*(s)])$

Bellman's Equations

Policy Evaluation (Linear)

$$U^{\pi}(s) = R(s, \pi(s)) + \gamma = \int_{s' \sim T(s, \pi(s))} U^{\pi}(s')$$

$$U^*(s) = \max_{a} \left(R(s,a) + \gamma E \left[U^*(s') \right] \right)$$

$$U'(s) = B[U](s) = \max_{a} (R(s,a) + \gamma E[U(s')])$$
 Bellman Operator

Guiding Questions

Guiding Questions

- How do we reason about the **future consequences** of actions in an MDP?