

contents • Evolution of Big data • sources of Big Data • What is Big Data? • Characteristic of Big Data(5 Vs) • Tools used in Big Data • Introduction to Big Data analytics • Big Data analytics goals • Applications/use cases of Big Data analytics • Challenges of Big Data • How Hadoop solves the Big Data problem

Evolution of Big Data • The Model of Generating/Consuming Data has Changed Old Model: Few companies are generating data, all others are consuming data New Model: all of us are generating data, and all of us are consuming data

3

Unit of Data size	Exact size	Approximate Size	Examples	
KB (kilobyte)	2 ¹⁰ or 1024 bytes	(10 ³ or one thousand) bytes	A typical joke =1KB	
MB(megabyte)	2 20 bytes	(10 ⁶ or one million) bytes	Complete work of Shakespeare =5MB	
GB (gigabyte)	2 30 bytes	(109 or one billion) bytes	Ten yards of books on a shelf = 1GB	
TB (terabyte)	2 40 bytes	(10 ¹² or one trillion) bytes	All the X-rays for a large hospital =1TB Tweets; created daily =121TB;	
PB (peta byte)	2 ⁵⁰ bytes	(10 ¹⁵ or one quadrillion) bytes	All U.S. academic research libraries = 2PB Data processed in a day by Google =24PB	B I G
EB (exa byte)	2 60 bytes	(10 ¹⁸ or one Quintillion) bytes	Total global data created in 2006 = 161EB	D A
ZB (zetta byte)	2 70 bytes	(10 ²¹ or one Sextillion) bytes	Total amount of global data created in 2012 = 2.7 ZB and expected 44 ZB by 2020	T A
YB (yotta byte)	2 80 bytes	(10 ²⁴ or one Septillion) bytes		

Petabyte era 1 PB = 100000000000000B = 1015bytes = 1000terabytes 1000 PB = 1 exabyte (EB) AT&T transferred about 197 PB of data thorough its network each data (2018) G processed about 24 petabytes daily (2009) In fact, we can say that we have already entered the exabyte

5 6

11 12

15 16

17 18

21 22

23 24

33 34

35 36

39

41 42

45 46

47 48

57

Big Data in Industry 4.0

• III Role in Industry 4.0

✓ Smart factories optimize production with sensor data.

✓ Predictive maintenance prevents failures & downtime.

✓ Real-time data enables automated decision-making.

• Key Benefits

☑ Increased production efficiency
☑ Reduced operational costs
☑ Enhanced automation & real-time insights

59 60

Cases of Big Data in Industry4.0 Warehouse Optimization Sensors & portable devices detect errors, perform quality checks, and optimize workflows. Bottleneck Elimination Identifies performance issues and suggests improvements at no extra cost. Predictive Demand Uses internal & external analysis for better forecasting and product optimization. Predictive Maintenance Sensors detect failure patterns and send alerts before breakdowns occur.

How Businesses Use Big Data Analytics

| Industry 4.0 Applications |
| Supply Chain Optimization – Identifies patterns to improve logistics. |
| Predictive Maintenance – Cuts downtime by 25% with AI-driven monitoring. |
| Production Management Automation – Uses historical & real-time data for self-adjusting processes.

| Smart Factory Technologies |
| Self-Service Systems – Real-time analytics for decision-making (e.g., Intel's smart factory). |
| Automated Production – Robots & actuators adjust equipment settings autonomously. |
| Faster Fault Detection – Reduces reaction time from 4 hours to 30 seconds. |

61 62

Other Benefits: Improved security, load optimization, supply chain management, and non-conformity analysis.