

PRIMEIRO, UM POUCO SOBRE OS PRODUTOS LÁCTEOS

Antes de entrarmos no assunto dos não-lácteos, precisamos entender o funcionamento dos produtos lácteos.

Assim como a base para a panificação artesanal sem glúten e sem lácteos, está baseada na panificação tradicional milenar, considerando todas as suas técnicas, equipamentos, uso de ingredientes, a produção das delícias não-lácteas, com qualidade, está intrinsicamente baseada na produção de queijos e iogurtes tradicionais.

A HISTÓRIA DOS QUEIJOS

Os egípcios estão entre os primeiros povos que cuidaram do gado. Queijos feitos de leite de vaca, de cabra e de ovelha também foram encontrados em muitas tumbas egípcias. Passagens bíblicas registram o queijo como um dos 'alimentos' da época.

Na Europa, os gregos foram os primeiros a adotá-lo em seus cardápios, feito exclusivamente com leite de cabras e de ovelhas, animais que criavam. Os romanos apreciavam o queijo, do qual fabricavam inúmeras variedades e cujas virtudes conheciam, pois utilizavam-no na alimentação dos soldados e atletas. Na Idade Média, os queijos atingiram um dos pontos mais altos no que se refere à higiene.

Certas ordens religiosas ganharam reputação por causa da qualidade dos seus queijos, devido às rígidas regras de higiene em sua manufatura. Tanto que o nome queijo deriva do termo medieval formatium, ou "queijo colocado na forma".

A partir da Idade Média, a fabricação de queijos finos ficaria restrita aos mosteiros católicos, com novas receitas desenvolvidas por seus monges. Com o advento das feiras e mercados nos séculos XIV e XV, algumas queijarias de regiões remotas ficaram mais visadas.

No século XIX aconteceu o grande boom no consumo do queijo, afinal, a sua produção que era artesanal passou para a ordem industrial. Paralelamente, um fato também encorpou essa virada: a pasteurização. Ao longo do tempo, o queijo evoluiu até os que conhecemos hoje e se tornou um produto de consumo de eleição, com apreciadores espalhados pelos quatro cantos do mundo.

Esse alimento nada mais é do que um derivado do leite concentrado através da coagulação e da eliminação da parte líquida (soro). Esses processos de coagulação e de eliminação do soro se convertem, assim, nas fases que caracterizam a produção de todas as variedades de queijo.

MATURAÇÃO DOS QUEIJOS

Consiste em uma série de processos físicos, bioquímicos e microbiológicos que ocorrem em todos os queijos, exceto aqueles que são consumidos frescos. Estes processos alteram a composição química dos queijos, principalmente no que tange a seu conteúdo em açúcares, proteínas e lipídeos.

O tempo de maturação varia para cada tipo e é neste processo que se desenvolvem as características de cada um deles. A maturação dos queijos é feita, na maioria dos casos, **em câmaras com controle de temperatura e umidade** (quando os queijos são maturados fora da embalagem).

Em síntese a maturação irá promover: desenvolvimento do sabor, desenvolvimento do aroma, desenvolvimento do aspecto (tipo de casca) e formação de textura.

OS MICROORGANISMOS DOS QUEIJOS TRADICIONAIS

Do ponto de vista do crescimento e da resistência ao calor, os micro-organismos de maior importância na indústria de laticínios podem ser agrupados em:

MESÓFILOS: micro-organismos cuja temperatura ótima de crescimento é em torno de 32°C, mas que podem crescer entre 10°C - 45 °C.

PSICOTRÓFICOS: são capazes de crescer sob refrigeração, embora a maioria encontre condições ótimas de crescimento em temperaturas maiores que 20°C. É um grupo importantíssimo em produtos que são conservados sob refrigeração por períodos entre 1-4 semanas.

TERMOFÍLICOS: os micro-organismos deste grupo são capazes de sobreviver às condições de pasteurização.

Dependendo do tipo de queijo utilizam-se culturas mesofílicas – por exemplo, queijos gouda, edam e camembert – ou termofílicas. Essas últimas são utilizadas principalmente na fabricação de queijos cozidos que passam por temperaturas acima de 50°C como, por exemplo, parmesão, emmenthal e gruyère.

Entre os gêneros mais comuns usados como BLI (bactérias lácticas iniciadoras) incluem-se *Lactococcus, Lactobacillus, Streptococcus, Leuconostoc e Enterococcus.*

Para fabricação de queijos podem-se utilizar culturas definidas - um número conhecido de cepas conhecidas - ou culturas mistas nas quais tem-se um número desconhecido de cepas. As culturas mesofílicas utilizadas, definidas ou mistas, são constituídas principalmente de *Lactococcus lactis ssp.* cremoris e *L. lactis ssp. lactis*; já as termofílicas mais comuns são compostas de Streptococcus thermophilus e bacilos lácticos como *Lactobacillus delbrueckii ssp. delbrueckii, Lb. delbrueckii ssp. bulgaricus, Lb. delbrueckii ssp. lactis ou Lb. helveticus.*

IOGURTES CONVENCIONAIS

A composição do iogurte é baseada na composição dos ingredientes envolvidos em seu preparo, principalmente leite (desnatado à integral, combinados ou não com leite em pó), agregando-se as contribuições dos demais ingredientes, como açúcar, aromas, frutas, assim como determinadas modificações nutritivas ocorridas no decorrer do processo de fermentação.

O processo de fermentação afeta alguns componentes lácteos como a lactose, reduzindo-a com consequente formação de ácido lático; aumento do conteúdo de peptídeos e aminoácidos livres (alteração em algumas propriedades da proteína láctea, principalmente a caseína) e modificações no conteúdo de vitaminas.

AS CEPAS MAIS UTILIZADAS PARA FERMENTAÇÃO DE IOGURTES

- 1. Streptococcus salivarus subsp. Thermophilus
- 2. Lactobacillus delbrueckii subsp. Bulgaricus
- 3. L. Acidophilus
- 4. B. Lactis and L. Lactis

As cepas streptococcus salivarus subsp. thermophilus e lactobacillus delbrueckii subsp. Bulgaricus se desenvolvem em simbiose, ou seja, para que uma desenvolva é necessário o desenvolvimento da outra. Portanto para se elaborar o iogurte é indispensável um fermento lático que possua estas duas espécies de bactérias láticas devidamente balanceadas.

O streptococcus salivarius subsp. thermophilus é caracterizado por crescer em uma ampla faixa de temperatura, mínima de 20°C e máximo de 50°C com ótimo de 40°C a 45°C. Classifica-se como um microrganismo termodúrico, ou seja, algumas cepas podem sobreviver a tratamentos a 80°C, porém é muito sensível a inibidores principalmente antibióticos. É uma bactéria láctea do grupo homofermentativo, produzindo até 95% de ácido lático a partir da lactose (açúcar do leite formado por uma molécula de glicose e outra de galactose).

No leite produz 0,7 a 0,8% de ácido lático L (+), podendo algumas cepas chegar a níveis de até 1%. Outros compostos podem também ser produzidos como ácidos voláteis tais como ácido fórmico, ácido acético, ácido propiônico, ácido butírico, ácido isobalérico e ácido capróico, assim como acetoína e pequenas quantidades de acetoaldeído e diacetil.

O Lactobacillus delbrüeckii subsp. bulgaricus é caracterizado por crescer em uma ampla faixa de temperatura, mínima de 22°C e máximo de 52,5°C com ótimo de 40°C à 43°C. Sua resistência a inibidores é ligeiramente superior ao Streptococcus thermophilus. Uma característica importante é o fato de não desenvolver em meios com 2% de cloreto de sódio e em presença de sais biliares, portanto não sobrevivendo às condições do trato gastrointestinal.

O *Lactobacillus bulgaricus* também é uma bactéria láctea de característica homofermentativa, produzindo até 1,7% de ácido lático L (-). Outros compostos podem também ser produzidos como compostos carbônicos, etanol e ácidos voláteis.

A fermentação do leite não esgota seu nível de lactose, pois o próprio ácido lático, resultado da fermentação homofermentativa atua como inibidor natural da própria flora láctea que o originou.

O nível de degradação da lactose irá depender da atividade bacteriana e característica das cepas em resistir à presença de ácido lático (com maior tolerância do *Lactobacillus bulgaricus*). Podemos exemplificar que a fermentação láctea atinge de 10 a 30% o conteúdo de lactose presente, original do leite.

SOBRE A LACTOSE

A lactose representa em torno de 4.7 a 4.9% do peso total do leite de vaca em condições normais. No processo de fermentação que ocorre na elaboração de iogurte, este teor é reduzido em até 30% do total, tornando o iogurte um alimento mais tolerável em relação ao leite pessoas que apresentam o quadro de intolerância a lactose.

Os baixos níveis de galactose e glicose, também presentes no leite, são metabolizados pelo cultivo lácteo (microrganismos envolvidos no processo de fermentação) e transformados em energia. As cepas probióticas se alimentam da lactose para poderem fermentar devidamente. É o substrato principal para seu crescimento.

Como nos produtos não-lácteos não existe a presença da lactose, geralmente na produção industrial é adicionada uma porção de glicose glucose ou dextrose, juntamente com outros substratos, dando assim, uma pequena parte do alimento necessário para crescimento das cepas probióticas.

Em muitos casos se é adicionada a lactose pura, ou seja, nem sempre um produto sem lactose na verdade será totalmente livre de lactose! Por isto vemos pessoas com intolerância a lactose passarem mal ao consumirem por exemplo um iogurte de soja industrial. Nos iogurtes veganos utilizamos o ácido lático extraído a partir da cana-de-açúcar como veremos mais adiante.

AROMA E SABOR DO IOGURTE

A fermentação láctea, pela ação do lactobacillus debrückii subsp. bulgaricus e streptococcus salivarius subsp. Thermophilus, além da produção de ácido lático, dá origem a outros compostos orgânicos, denominados de produtos secundários porém de grande importância na caracterização do iogurte.

O ácido lático contribui para o frescor e sabor ácido do iogurte, enquanto os produtos secundários irão promover o sabor e aroma típico. O acetoaldeído é o principal componente do aroma, intensificando em níveis de 20 a 40 ppm em um pH de 4,0 a 4,4, sendo produzido em maior quantidade que os demais componentes voláteis. Onde se confirma que um iogurte após 48 horas de produzido, possui um melhor aroma e sabor mais caracterizado.

O diacetil é produzido por algumas cepas do *streptococcus thermophilus* e contribui para ressaltar o aroma de iogurte. Além do acetoaldeíno e diacetil temos também a formação de ácidos graxos voláteis que são produzidos em quantidades significativas, a partir da lactose como fonte primária e proteína e gordura como fonte secundária.

Por fim podemos citar a produção de acetona, 2 butamona, álcool e outros compostos que no decorrer do processo de fermentação, contribuem também na formação das características de aroma, pela decomposição da lactose e citratos, presentes no leite.

ENTENDENDO A MANTEIGA CONVENCIONAL

é composta por cerca de 78% de gordura, 18% de água e 4% de sólidos do leite*. Na Europa, a gordura é normalmente ainda maior em proporção com a água. Os sólidos de leite são usados para emulsionar a gordura e água, adicionar sabor e permitir que a manteiga derreta suavemente.

Manteiga real vem do creme de leite. Os glóbulos de gordura do creme são completamente suspenso numa rede de compostos emulsionantes na água. Se agitar o creme de leite, as gorduras de sua rede de emulsão, se encontram e se unem. Assim que juntam elas começam a se solidificar e a água pode ser drenada. O resultado é a manteiga.

*Sólidos de leite são pequenas partículas de alimentos derivados de lacticínios que contêm, caseínas, proteínas de soro de leite, lactose e minerais vestigiais (também chamado o conteúdo de cinzas) dos produtos a partir dos quais eles foram obtidos. Sólidos de leite são adicionados para muitos tipos de alimentos para criar uma textura uniforme e por vezes melhorar a gosto.

Estes sólidos são derivados a partir de leite, queijo, iogurte e outros alimentos contendo lactose, e eles são adicionalmente processados em refinarias e instalações de fabricação.

Na criação da manteiga vegana devemos seguir este tipo de padronização de: 78% de gordura, 18% água e 4% de "sólidos de leite vegetal" (que entrarão aqui as proteínas adicionais).

A FERMENTAÇÃO

Toda a base para o mundo das possibilidades de queijos, manteigas, molhos, iogurtes e qualquer outro derivado não-lácteo é a base dos lácteos tradicionais.

Para fermentação poderemos usar os seguintes probióticos, pastas ou fermentos:

REJUVELAC

Feito de cereais podendo ser: quinoa, arroz integral, trigo sarraceno, painço ou mix deles.

KEFIR

Usamos o kefir de água feito pela fermentação de organismos vivos que se alimentam da glicose do açúcar, portanto o alimento para cultivo do kefir são açúcares não refinados como: mascavo, açúcar de coco e melado de cana.

OBS: o kefir de leite se alimenta da lactose do leite.

KOMBUCHA

É uma colônia ou uma levedura composta de micro-organismos aglomerados em uma massa de celulose parecida com uma panqueca. Quando a "panqueca" é colocada numa vasilha contendo uma mistura do chá e do açúcar, transforma o líquido em uma bebida refrescante levemente borbulhante, doce e azeda com uma fragrância frugal muito saborosa que fornece diversos ácidos e nutrientes, excelentes para a saúde.

MISSÔ

Feito à base de soja, grão de bico ou de arroz, fermentados. Usado geralmente em conjunto com outro probiótico para conferir um sabor mais intenso.

SACHÊ DE PROBIÓTICOS:

Com 100 milhões de UFC (unidades formadoras de colônias) das seguintes cepas: Streptococcus salivarus subsp. Thermophilus; Lactobacillus delbrueckii subsp. Bulgaricus; L. Acidophiluse B. Lactis and L. Lactis.

Um sache de 1 g faz 5 litros de iogurte.

Esta composição só é conseguida em farmácias de manipulação.

Se usa um ou outro, não todos de uma só vez. Para nossas receitas usaremos o rejuvelac ou o kefir de água e para algum queijo adicionaremos o misso para conferir mais sabor.

Agora, um ingrediente indispensável para quase todas as receitas aqui é o **ácido lático** de origem vegetal podendo ser extraído das seguintes fontes: cana-de-açúcar, beterraba, milho, soja, batata, casca do algodão, etc. O mais comum que encontramos no Brasil é o extraído da cana-de-açúcar.

Como as cepas probióticas se alimentam da lactose do leite tradicional para então produzir o ácido lático, aqui teremos que adicionar o ácido lático ao nosso leite vegetal uma vez que não temos a lactose.

Importante ressaltar que o ácido lático deve ser sempre dissolvido em água para depois ser adicionado no leite já aquecido a 90°C. Perceberá neste momento que o seu leite irá engrossar rapidamente e este é o efeito que se espera do ácido lático. Assim que o seu leite vegetal chegar a temperatura de 42°C é o momento de adicionar o probiótico de sua escolha. Mexer e deixar fermentar por 24, 36 ou até 48 horas.

A ESTRUTURA DOS QUEIJOS VEGANOS

A estrutura de um queijo vegano é dada pelo uso dos ingredientes utilizados. Por exemplo, precisamos de gorduras e óleos que mantem um estrutura firme quando resfriados (abaixo de 24°C), como por exemplo o óleo de coco, gordura de palma e gordura palmiste. Sabendo que o sabor de coco interferirá no resultado final das receitas recomendamos o uso do uso de coco sem sabor (neutro). Algumas receitas utilizam até 60% do total (da receita) em óleo de coco.

Outros ingredientes que utilizamos são as algas: ágar-ágar e kappa carragena. Estas duas algas darão estrutura do queijo mesmo em temperatura ambiente desde que não seja acima de 45°C, sendo que a kappa carragena é termo reversível o que dará o efeito do "derretimento" nos queijos enquanto a agar-agar somente a estrutura. No entanto se seu queijo estiver muito ácido a kappa carragena poderá não se solidificar. Sempre ative as algas levando à fervura e cozinhando por uns 2 a 5 minutos caso contrário também não dará estrutura para seu queijo.

Também utilizamos o polvilho doce (fécula de mandioca) ou uma união entre o polvilho doce e o polvilho azedo. Em contato com o fogo formará uma massa viscosa parecida com queijo derretido. Além de dar estrutura, o polvilho azedo conferirá um pouco do sabor de queijo. Sempre que utilizá-lo procure peneira-lo para não formar caroços e sempre no fogo usando um mixer, e utilize na proporção de 3:1 (polvilho doce: polvilho azedo).

Um queijo mais cremoso ou mais firme também é conseguido pela adição das gomas. A goma xantana é "coringa" entre as gomas e poderá ser utilizada em todos os queijos enquanto que a goma guar é a que possui maior viscosidade entre as gomas, dando viscosidade em líquidos em qualquer temperatura. Conseguirá fazer um creme de leite apenas adicionando um pouco de goma guar, azeite, sal e limão.

Outra goma menos conhecida no Brasil é a farinha de semente de alfarroba. É a semente da fava de alfarroba; a casca da alfarroba é moída para fazer o "chocolate" e as suas sementes são utilizadas como espessantes. A farinha de semente de alfarroba é o que confere a consistência de "puxa" dos sorvetes italianos. Sempre é utilizada em conjunto com outras gomas como: xantana, CMC e com a kappa carragena.

A melhor elasticidade para queijos (corte em fatias) é com o uso da kappa carragena e a farinha de semente de alfarroba na proporção de 2:1 enquanto a menor elasticidade ocorre na proporção de 1:4. A kappa carragena e a farinha de semente de alfarroba são dissolvidas em água quente (a partir de 82°C).

Também podemos utilizar um outro ingrediente opcional menos conhecido no Brasil que é o Nutritional Yeast, a Levedura Nutricional (rica em B12) que devido ao perfil de aminoácidos tem alta concentração de proteína. A marca que indico de "levedura nutricional" é comercializada pela Puravida (www.puravida.com.br).

Resumindo, aprendemos que a estrutura dos queijos veganos se consegue com o uso de gorduras saturadas de boa qualidade (como o óleo de coco sem sabor) em união com uma alga e às vezes o uso de polvilho.

Se interromper o processo no meio do caminho não adicionando a alga marinha e nem o óleo de coco, obterá um queijo em pasta, tipo "cream cheese" e até mesmo o tão delicioso requeijão.

Conhecendo-se a estrutura conseguirá fazer qualquer tipo de queijo vegano.

A SABORIZAÇÃO E COLORAÇÃO

A saborização se dará com o uso de alho em pó, cebola em pó, mostarda em pó, páprica defumada e em algumas vezes aroma de fumaça em pó. A cor tradicional do queijo tipo cheddar é obtida pela simples adição de extrato de tomate. Ao aquecer a mistura ela se tornará dourada.

Muitos queijos são também saborizados com ervas, azeitonas, especiarias e azeites. Existem centenas de possibilidades, cria a sua versão.

Um pouco de spirulina espalhada grosseiramente na sua massa de queijo conferirá um tom verde-azulado o que lembrará visualmente um queijo tipo gorgonzola.

Tanto o polvilho doce quanto o polvilho azedo "roubam", ou melhor, disfarçam o sal dos queijos. Perceberá que sempre terá que colocar mais sal usaria normalmente, assim, sempre experiente o seu queijo e veja se falta tanto sal quanto algum outro ingrediente antes de colocar no molde final.

QUALIDADE

A qualidade dos ingredientes é imprescindível para o bom resultado dos seus produtos. Muitos adquirem um ágar-ágar muito mais em conta, porém de baixa qualidade, de tom acinzentado e com sabor residual de "peixe" ou sabor de "mar". Além de não dar estrutura ao seu queijo, afetará a cor e o sabor do seu produto.

O mesmo acontece com a kappa carragena, goma guar, goma xantana, lecitina de soja e a farinha de semente de alfarroba entre outros ingredientes. A qualidade da castanha de caju também interferirá no sabor e textura dos seus queijos. Muitas vezes algumas castanhas mudam de cor quando hidratadas para um amarelo forte e conferem sabor muito adocicado.

Medidas:

Para todas as receitas da apostila, tanto os copos como xícaras são de 200 g/ml.

TABELA DE INGREDIENTES NÃO LÁCTEOS

TIPOS DE GÉIS E ADITIVOS	CÓDIGO	% SOBRE OS INGREDIENTES	SOLUBILIDADE	usos	SINERGIA
Ácido Lático	E270	de 20ml a 100 ml para cada 100 litros dependendo do tipo de produto	Solúvel em água (não utilizar puro)	Adiciona o sabor e aroma de fermentação para os queijos e iogurtes veganos, uma vez que não há a lactose para se alimentar em produtos não-lácteos veganos.	
Óleo de coco sem sabor		Utiliza-se até 60% do total da receita	Insolúvel	Solidifica em temperaturas abaixo de 25 graus. Traz estabilidade às receitas que necessitam de ponto de corte. Sabor neutro em comparação ao óleo de coco natural.	Gomas e lecitinas
Levedura Nutricional (Nutritional Yeast)		de acordo com a receita	Elevada	Confere sabor e aroma leve, que lembra "queijo", às receitas. Rico em vitaminas, em especial a B12 e proteína.	
Missô		de acordo com a receita	Elevada	Participa no processo de fermentação dando um sabor mais acentuado aos queijos (tipo cheddar entre outros).	Pode ser usado no lugar das cepas, do rejuvelac e kefir
Rejuvelac / Kefir		de acordo com a receita	Elevada	Participa no processo de fermentação conferindo um sabor ácido / cítrico aos queijos.	
Cepas Probióticas		de acordo com a receita	Solúvel	Participa no processo de fermentação dando características reais de iogurtes ou queijos.	Streptococcus salivarus subsp. Thermophilus Lactobacillus delbrueckii subsp. Bulgaricus L. Acidophilus B. Lactis and L. Lactis

TABELA DE INGREDIENTES NÃO LÁCTEOS

TIPOS DE GÉIS E ADITIVOS	CÓDIGO	% SOBRE OS INGREDIENTES	SOLUBILIDADE	usos	SINERGIA
Goma Xantana	E415	0,50%	Elevada (água quente, fria e melhor dissolvida em gordura)	É ideal para estabilizar disperssões aquosas, suspensões e emulsões. Insusbistituível para molhos de salada, calda de chocolate e outros molhos que não podem alterar estrutura com a mudança de temperatura.	LBG (termorreversível, congelamento e descongelamento) e se com Guar (aumento da viscosidade)
Goma Guar	E412	0,50%	Elevada (fria e melhor dissolvida em gordura)	Possui a mais alta viscosidade. Proporciona espessamento econômico em um grande número de alimentos. É utilizada com outras gomas em sorvetes.	Xantana (0,50% do total da massa total: 0,25% Xantana + 0,25% Guar); CMC e LBG
LBG Farinha de Semente de Alfarroba (Locust Bean Gun ou Carob Bean Gun)	E410	0.5% a 0.25%	Água a 90°	Utilizada em sorvetes para dar a aparência de puxa. Na panificação dará maciez à massa.	Sempre em conjunto com um das outras gomas: Xantana, guar, CMC, carregenana
Ágar-ágar	E406	de 1% a 2%	Solúvel em água quente	Uso principal é em misturas para massas, nas quais é adicionado pra manutenção da umidade do produto final, sem que se aumente a viscosidade da massa inicial (pelo fato de não ser solúvel em água, em temperatura ambiente).	CMC
Kappa Carragena	E407	De 0,5% a 1% (com leite animal apenas 0,025%)	Solúvel em água quente (de 80 a 90°)	Dá viscosidade e estrutura. Palatilidade aos produtos e adiciona o efeito do derretimento dos queijos.	Goma Xantana (maior sinergia), pectina e LBG
Lecitina de Soja (ou Girassol)	E322	0,3% do peso total	Insolúvel	Une a gordura ao líquido. Utilizada na maioria dos produtos industriais.	

www.flaviopassos.com

Flaria Passas puravida

