

#3

SEQUENCE LISTING

<110> Genentech, Inc.
Ashkenazi, Avi
Botstein, David
Desnoyers, Luc
Eaton, Dan L.
Ferrara, Napoleone
Filvaroff, Ellen
Fong, Sherman
Gao, Wei-Qiang
Gerber, Hanspeter
Gerritsen, Mary E.
Goddard, A.
Godowski, Paul J.
Grimaldi, Christopher J.
Gurney, Austin L.
Hillan, Kenneth, J.
Kljavin, Ivar J.
Mather, Jennie P.
Pan, James
Paoni, Nicholas F.
Roy, Margaret Ann
Stewart, Timothy A.
Tumas, Daniel
Williams, P. Mickey
Wood, William, I.

<120> Secreted and Transmembrane Polypeptides and Nucleic Acids Encoding the Same

<130> 10466-14

<140> 09/665,350
<141> 2000-09-18

<150> PCT/US00/04414
<151> 2000-02-22

<150> US 60/143,048
<151> 1999-07-07

<150> US 60/145,698
<151> 1999-07-26

<150> US 60/146,222
<151> 1999-07-28

<150> PCT/US99/20594
<151> 1999-09-08

<150> PCT/US99/20944
<151> 1999-09-13

<150> PCT/US99/21090
<151> 1999-09-15

<150> PCT/US99/21547
<151> 1999-09-15

<150> PCT/US99/23089
<151> 1999-10-05

<150> PCT/US99/28214
<151> 1999-11-29

<150> PCT/US99/28313
<151> 1999-11-30

<150> PCT/US99/28564
<151> 1999-12-02

<150> PCT/US99/28565
<151> 1999-12-02

<150> PCT/US99/30095
<151> 1999-12-16

<150> PCT/US99/30911
<151> 1999-12-20

<150> PCT/US99/30999
<151> 1999-12-20
<150> PCT/US00/00219
<151> 2000-01-05

<160> 423

<210> 1
<211> 1825
<212> DNA
<213> Homo sapiens

<400> 1
actgcacctc ggtttatcg attgaattcc ccggggatcc tctagagatc cctcgaccc 60
gaccacgctg tccggccgg agcagcacgg ccgcaggacc tggagctccg gctgcgttctt 120
cccgcaagcgac tacccgcatt ggcctgccc cgccggccgg cgctggggctt cctggcgctt 180
ctgctgtgc tgccgcgcg cgcggaggcc gccaagaagc cgacgcctg ccaccgggtgc 240
ccccgggctgg tggacaagtt taaccagggg atggtgaca ccgcaaagaa gaactttggc 300
ggcgaaaaca cggcttggga ggaaaagacg ctgtccaaat acgagtccag cgagattcgc 360
ctgctggaga tcctggaggg gctgtgegag agcagcgact tcgaatgcaa tcagatgtta 420
gaggcgccagg aggagcacct ggaggcctgg tggctgcagc tgaagagcga atatcctgac 480
ttattcgagt ggtttgtgt gaagacactg aaagtgtgt gctctccagg aacctacgg 540
cccgactgtc tcgcataccca gggcgatcc cagaggccct gcagcgggaa tggccactgc 600
agcggagatg ggagcagaca gggcgacggg tcctgcccgt gccacatggg gtaccaggc 660

ccgctgtgca ctgactgcat ggacggctac ttcagctgc tccggaacga gacccacagc 720
 atctgcacag cctgtgacga gtcctgcaag acgtgctcg gcctgaccaa cagagactgc 780
 ggcgagtgtg aagtggctg ggtgctggac gagggcgcct gtgtggatgt ggacgagtgt 840
 gcggccgagc cgcctccctg cagcgctcg cagtctgt aagaacgccaa cggctcctac 900
 acgtgcaag agtgtgactc cagctgtgt ggctgcacag gggaaaggccc aggaaaactgt 960
 aaagagtgt a tctctggcta cgcgagggag cacggacagt gtgcagatgt ggacgagtgc 1020
 tcactagcag aaaaaacctg tgtgagggaaa aacgaaaact gctacaatac tccagggagc 1080
 tacgtctgtg tgtgtcctga cggcttcgaa gaaacggaag atgcctgtgt gccgccccca 1140
 gaggctgaag ccacagaagg agaaagcccc acacagctgc cctcccgca agacctgtaa 1200
 tgtgccggac ttaccctta aattattca aaggatgtcc cgtggaaaat gtggccctga 1260
 gatatccgtc tccctgactg gacagcggcg gggagaggct gcctgctctc taacggttga 1320
 ttctcatttg tcccttaaac agctgcattt cttgggtgtt cttaaacaga cttgtatatt 1380
 ttgatacagt tctttgtaat aaaattgacc attgttagta atcaggagga aaaaaaaaaaa 1440
 aaaaaaaaaaa aaaggcggc cgcgactcta gagtcgaccc gcagaagctt ggccgcccatt 1500
 gcccaacttg ttatgcag cttataatgg ttacaaataa agcaatagca tcacaaattt 1560
 cacaataaa gcattttt cactgcattt tagttgtgt ttgtccaaac tcatcaatgt 1620
 atcttatcat gtctgatcg ggaattaatt cggcgcagca ccatggcctg aaataaacctc 1680
 tgaaagagga acttggtagt gtaccttctg aggccgaaag aaccagctgt ggaatgtgtg 1740
 tcagtttaggg tgtggaaagt ccccaggctc cccagcaggc agaagtatgc aagcatgcat 1800
 ctcaatttagt cagcaaccca gtttt 1825

<210> 2

<211> 353

<212> PRT

<213> Homo sapiens

<400> 2

Met	Arg	Leu	Pro	Arg	Arg	Ala	Ala	Leu	Gly	Leu	Leu	Pro	Leu	Leu	Leu
1															15

Leu	Leu	Pro	Pro	Ala	Pro	Glu	Ala	Ala	Lys	Lys	Pro	Thr	Pro	Cys	His
									20	25				30	

Arg	Cys	Arg	Gly	Leu	Val	Asp	Lys	Phe	Asn	Gln	Gly	Met	Val	Asp	Thr
									35	40				45	

Ala	Lys	Lys	Asn	Phe	Gly	Gly	Asn	Thr	Ala	Trp	Glu	Glu	Lys	Thr	
									50	55				60	

Leu	Ser	Lys	Tyr	Glu	Ser	Ser	Glu	Ile	Arg	Leu	Leu	Glu	Ile	Leu	Glu
								65		70		75		80	

Gly	Leu	Cys	Glu	Ser	Ser	Asp	Phe	Glu	Cys	Asn	Gln	Met	Leu	Glu	Ala
									85	90				95	

Gln	Glu	Glu	His	Leu	Glu	Ala	Trp	Trp	Leu	Gln	Leu	Lys	Ser	Glu	Tyr
									100	105				110	

Pro	Asp	Leu	Phe	Glu	Trp	Phe	Cys	Val	Lys	Thr	Leu	Lys	Val	Cys	Cys
									115	120				125	

Ser	Pro	Gly	Thr	Tyr	Gly	Pro	Asp	Cys	Leu	Ala	Cys	Gln	Gly	Gly	Ser
									130	135				140	

Gln Arg Pro Cys Ser Gly Asn Gly His Cys Ser Gly Asp Gly Ser Arg
 145 150 155 160

Gln Gly Asp Gly Ser Cys Arg Cys His Met Gly Tyr Gln Gly Pro Leu
 165 170 175

Cys Thr Asp Cys Met Asp Gly Tyr Phe Ser Ser Leu Arg Asn Glu Thr
 180 185 190

His Ser Ile Cys Thr Ala Cys Asp Glu Ser Cys Lys Thr Cys Ser Gly
 195 200 205

Leu Thr Asn Arg Asp Cys Gly Glu Cys Glu Val Gly Trp Val Leu Asp
 210 215 220

Glu Gly Ala Cys Val Asp Val Asp Glu Cys Ala Ala Glu Pro Pro Pro
 225 230 235 240

Cys Ser Ala Ala Gln Phe Cys Lys Asn Ala Asn Gly Ser Tyr Thr Cys
 245 250 255

Glu Glu Cys Asp Ser Ser Cys Val Gly Cys Thr Gly Glu Gly Pro Gly
 260 265 270

Asn Cys Lys Glu Cys Ile Ser Gly Tyr Ala Arg Glu His Gly Gln Cys
 275 280 285

Ala Asp Val Asp Glu Cys Ser Leu Ala Glu Lys Thr Cys Val Arg Lys
 290 295 300

Asn Glu Asn Cys Tyr Asn Thr Pro Gly Ser Tyr Val Cys Val Cys Pro
 305 310 315 320

Asp Gly Phe Glu Glu Thr Glu Asp Ala Cys Val Pro Pro Ala Glu Ala
 325 330 335

Glu Ala Thr Glu Gly Glu Ser Pro Thr Gln Leu Pro Ser Arg Glu Asp
 340 345 350

Let

<210> 3
<211> 2206
<212> DNA
<213> *Homo sapiens*

<400> 3

```

cagggtccaa tgcacccctgg ttcttatcgat tgaattcccc ggggatcctc tagagatccc 60
tcgacccctcg a cccacgcgtc cgccaggccg ggagggcgacg cgccccagccg tctaaacggg 120
aacagccctg gctgagggag ctgcagcgca gcagagttatc tgacggggcc aggttgcgta 180
ggtgccggcac gaggagttt cccggcagcg aggaggtctt gaggcagcatg gcccggagga 240

```

ggccctcccc	tgcgcgcgcg	ctctggctct	ggagcatcct	cctgtgcctg	ctggcaactgc	300
ggcgaggaggc	cggccgcgcg	caggaggaga	gcctgtacct	atggatcgat	gtcacccagg	360
caagagtact	cataggattt	gaagaagata	tcctgtattgt	ttcagagggg	aaaatggcac	420
cttttacaca	tgatttcaga	aaagcgaac	agagaatgcc	agctattctt	gtcaatatcc	480
attccatgaa	tttacctgg	caagctgcag	ggcaggcaga	atacttctat	gaattcctgt	540
ccttgcgttc	cctggataaa	ggcatcatgg	cagatccaac	cgtcaatgtc	cctctgctgg	600
gaacagtgcc	tcacaaggca	tcagttgttc	aagttggtt	cccatgtctt	ggaaaacagg	660
atggggtggc	agcatttgaa	gtggatgtga	ttgttatgaa	ttctgaaggc	aacaccattc	720
tccaaacacc	tcaaaatgt	atcttctta	aaacatgtca	acaagctgag	tgcccaggcg	780
ggtggcgaaa	tggaggctt	tgtatgaaa	gacgcacatcg	cgagtgctt	gatgggttcc	840
acggacatca	ctgtgagaaa	gccctttgt	cccacacatg	tatgaatgtt	ggactttgtg	900
tgactctgg	tttctgcata	tgcacactg	gattctatgg	agtgaactgt	gacaaagcaa	960
actgctcaac	cacccgttt	aatggaggga	cctgtttcta	ccctggaaaa	tgtatttgcc	1020
ctccaggact	agagggagag	cagtgtgaaa	tcagcaaatg	cccacaaccc	tgtcgaaatg	1080
gaggtaaatg	cattggtaaa	agcaaatgt	agtgttccaa	aggttaccag	ggagacactct	1140
gttcaaagcc	tgtctgcgag	cctggctgt	gtgcacatgg	aacctgcacat	gaacccaaca	1200
aatgccaatg	tcaagaaggt	tggcatgaa	gacactgca	taaaaggtac	gaagccagcc	1260
tcatacatgc	cctgaggcc	gcaggccccc	agctcaggca	gcacacgcct	tcacttaaaa	1320
aggccgagga	gcggcgggat	ccacctgaat	ccaattacat	ctggtaact	ccgacatctg	1380
aaacgtttt	agttacacca	agttcatagc	ctttgttaac	ctttcatgtg	ttgaatgttc	1440
aaataatgtt	cattacactt	aagaatactg	gcctgaattt	tattagctt	attataaattc	1500
actgagctga	tatttactct	tccttttaag	ttttctaagt	acgtctgttag	catgtatggta	1560
tagattttct	tgttcagtg	cttggaca	gattttat	tatgtcaatt	gatcagggtt	1620
aaattttcag	tgttagttg	gcagatattt	tcaaaattac	aatgcattt	tgggtctgg	1680
gggcagggg	acatcagaaa	gtttaattt	ggcaaaaatg	cgtaaagtac	aagaatttgg	1740
atggtgcagt	taatgttga	gttacagcat	ttcagattt	attgtcagat	atttagatgt	1800
ttgttacatt	ttaaaaaatt	gctcttaatt	ttttaactct	caataacaata	tattttgacc	1860
ttaccattat	tccagagatt	cagtattaaa	aaaaaaaaaa	ttacactgtg	gtagtgccat	1920
ttaaacaata	taatatattc	taaacacaat	gaaataggga	atataatgtt	tgaacttttt	1980
gcattggctt	gaagcaatat	aatatatgt	aaacaaaaca	cagctttac	ctaataaaaca	2040
ttttataactg	tttgtatgt	taaaataaaag	gtgtgcctt	agtttttgg	aaaaaaaaaa	2100
aaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa	ggggggccgc	gactctagag	tcgacactgca	2160
gaagcttggc	cgcctatggcc	caacttggtt	attgcagtt	ataatg		2206

<210> 4

<211> 379

<212> PRT

<213> Homo sapiens

<400> 4

Met Ala Arg Arg Ser Ala Phe Pro Ala Ala Ala Leu Trp Leu Trp Ser
1 5 10 15

Ile Leu Leu Cys Leu Leu Ala Leu Arg Ala Glu Ala Gly Pro Pro Gln
20 25 30

Glu Glu Ser Leu Tyr Leu Trp Ile Asp Ala His Gln Ala Arg Val Leu
35 40 45

Ile Gly Phe Glu Glu Asp Ile Leu Ile Val Ser Glu Gly Lys Met Ala
50 55 60

Pro Phe Thr His Asp Phe Arg Lys Ala Gln Gln Arg Met Pro Ala Ile

65	70	75	80
Pro Val Asn Ile His Ser Met Asn Phe Thr Trp Gln Ala Ala Gly Gln			
85	90	95	
Ala Glu Tyr Phe Tyr Glu Phe Leu Ser Leu Arg Ser Leu Asp Lys Gly			
100	105	110	
Ile Met Ala Asp Pro Thr Val Asn Val Pro Leu Leu Gly Thr Val Pro			
115	120	125	
His Lys Ala Ser Val Val Gln Val Gly Phe Pro Cys Leu Gly Lys Gln			
130	135	140	
Asp Gly Val Ala Ala Phe Glu Val Asp Val Ile Val Met Asn Ser Glu			
145	150	155	160
Gly Asn Thr Ile Leu Gln Thr Pro Gln Asn Ala Ile Phe Phe Lys Thr			
165	170	175	
Cys Gln Gln Ala Glu Cys Pro Gly Gly Cys Arg Asn Gly Gly Phe Cys			
180	185	190	
Asn Glu Arg Arg Ile Cys Glu Cys Pro Asp Gly Phe His Gly Pro His			
195	200	205	
Cys Glu Lys Ala Leu Cys Thr Pro Arg Cys Met Asn Gly Gly Leu Cys			
210	215	220	
Val Thr Pro Gly Phe Cys Ile Cys Pro Pro Gly Phe Tyr Gly Val Asn			
225	230	235	240
Cys Asp Lys Ala Asn Cys Ser Thr Thr Cys Phe Asn Gly Gly Thr Cys			
245	250	255	
Phe Tyr Pro Gly Lys Cys Ile Cys Pro Pro Gly Leu Glu Gly Glu Gln			
260	265	270	
Cys Glu Ile Ser Lys Cys Pro Gln Pro Cys Arg Asn Gly Gly Lys Cys			
275	280	285	
Ile Gly Lys Ser Lys Cys Lys Cys Ser Lys Gly Tyr Gln Gly Asp Leu			
290	295	300	
Cys Ser Lys Pro Val Cys Glu Pro Gly Cys Gly Ala His Gly Thr Cys			
305	310	315	320
His Glu Pro Asn Lys Cys Gln Cys Gln Glu Gly Trp His Gly Arg His			
325	330	335	
Cys Asn Lys Arg Tyr Glu Ala Ser Leu Ile His Ala Leu Arg Pro Ala			
340	345	350	

Gly Ala Gln Leu Arg Gln His Thr Pro Ser Leu Lys Lys Ala Glu Glu
355 360 365

Arg Arg Asp Pro Pro Glu Ser Asn Tyr Ile Trp
370 375

<210> 5
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 5 45
agggagcacg gacagtgtgc agatgtggac gagtgctcac tagca

<210> 6
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 6 21
agagtgtatc tctggctacg c

<210> 7
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 7 22
taagtccggc acattacagg tc

<210> 8
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 8 49
ccccacgtgt atgaatggtg gactttgtgt gactcctggc ttctgcatac

```

<210> 9
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 9
aaagacgcat ctgcgagtgt cc                                22

<210> 10
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 10
tgctgatttc acactgctct ccc                               23

<210> 11
<211> 2197
<212> DNA
<213> Homo sapiens

<400> 11
cgacgcgtg ggcgtccggc ggtcgagag ccaggaggcg gaggcgcg 60
ggccccagcc cacacctca ccagggccca ggagccacca tggcgatg tccactgggg 120
ctactgtgt tgctgccgt ggtggccac ttggctctgg gtgcccagca gggtcgtggg 180
cgccgggagc tagcacccgg tctgcacctg cggggcatcc gggacgcggg aggccgtac 240
tgccaggagc aggacctgtg ctggcgccgc cgtgccgacg actgtgcctt gccctacctg 300
ggccatct gttactgtga cctcttctgc aaccgcacgg tctccgactg ctgcctgac 360
ttctgggact tctgctctgg cgtgccaccc ccttttcccc cgatccaagg atgtatgcat 420
ggaggtcgta tctatccagt ctgggaacg tactggaca actgttaacgg ttgcacctgc 480
caggagaaca ggcagtggca tggtgatcc agacatgatc aaagccatca accagggcaa 540
ctatggctgg caggctggga accacagcgc cttctggggc atgaccctgg atgagggcat 600
tcgctaccgc ctgggcacca tccgcccata ttctcggtc atgaacatgc atgaaattta 660
tacagtgtg aaccagggg aggtgtttcc cacagcctt gaggcctctg agaagtggcc 720
caacctgatt catgagcctc ttgaccaagg caactgtgca ggctctggg cttctccac 780
agcagctgtg gcatccgatc gtgttcaat ccattctcg ggacacatga cgcctgtcct 840
gtcgccccag aaccgtgtt cttgtgacac ccaccagcag cagggtgtcc ggggtggcg 900
tctcgatggt gcctgggtt tcctcggtc ccgagggtgt gtgtctgacc actgctaccc 960
tttctcgggc cgtgaacgag acgaggctgg ccctgccc ccctgtatga tgcacagccg 1020
agccatgggt cggggcaagc gccaggccac tgcccactgc cccaacagct atgttaataa 1080
caatgacatc taccaggtca cttctgtcta ccgcctcgcc tccaacgaca aggagatcat 1140
gaaggagctg atggagaatg gcccgttcca agccctcatg gaggtgcgtg aggacttctt 1200
cctataacaag ggaggcatct acagccacac gccagtggc cttggggagc cagagagata 1260
ccgcggcat gggaccact cagtcaagat cacaggatgg ggagaggaga cgctgccaga 1320

```

tggaaggacg ctcaaatact ggactgcggc caactcctgg ggcccagcct gggcgagag 1380
 gggccacttc cgcacgtgc gggcgtaa tgagtgcac atcgagagct tcgtgtggg 1440
 cgtctggggc cgctgtggca tggaggacat gggtcatcac tgaggctgcg ggcaccacgc 1500
 ggggtccggc ctgggatcca ggctaagggc cgccgaaaga ggccccaaatg gggcggtgac 1560
 cccagcctcg cccgacagag cccggggcgc aggccggcgc caggccgcta atcccggegc 1620
 gggttccgct gacgcagcgc cccgcctggg agccgcggc aggcgagact ggcggagccc 1680
 ccagacctcc cagtggggac ggggcagggc ctggcctggg aagagcacag ctgcagatcc 1740
 caggcctctg gcgcffffcc tcaagactac caaagccagg acacctaag tctccagccc 1800
 caataccccca ccccaatccc gtattcttt tttttttttt ttagacaggg tcttgctccg 1860
 ttgcccaggt tggagtgcag tggcccatca gggctactg taacctccga ctcctgggtt 1920
 caagtgaccc tcccaccta gcctctcaag tagctggac tacaggtgca ccaccacacc 1980
 tggctaattt ttgtatTTTT tgtaaaagagg ggggtctcac tigtgttgcgg aggctgggtt 2040
 cgaactcctg ggctaaagcg gtccacactgc ctccgcctcc caaagtgcg ggattggagg 2100
 catgagccac tgcacccagc cctgtattct tatttttcag atatttattt ttctttcac 2160
 tgttttaaaa taaaacccaaa gtattgataa aaaaaaa 2197

<210> 12

<211> 164

<212> PRT

<213> Homo sapiens

<400> 12

Met	Trp	Arg	Cys	Pro	Leu	Gly	Leu	Leu	Leu	Leu	Leu	Pro	Leu	Ala	Gly
1				5					10			15			

His	Leu	Ala	Leu	Gly	Ala	Gln	Gln	Gly	Arg	Gly	Arg	Arg	Glu	Leu	Ala
						20			25			30			

Pro	Gly	Leu	His	Leu	Arg	Gly	Ile	Arg	Asp	Ala	Gly	Gly	Arg	Tyr	Cys
							35		40			45			

Gln	Glu	Gln	Asp	Leu	Cys	Cys	Arg	Gly	Arg	Ala	Asp	Asp	Cys	Ala	Leu
							50		55			60			

Pro	Tyr	Leu	Gly	Ala	Ile	Cys	Tyr	Cys	Asp	Leu	Phe	Cys	Asn	Arg	Thr
							65		70			75			80

Val	Ser	Asp	Cys	Cys	Pro	Asp	Phe	Trp	Asp	Phe	Cys	Leu	Gly	Val	Pro
							85		90			95			

Pro	Pro	Phe	Pro	Pro	Ile	Gln	Gly	Cys	Met	His	Gly	Gly	Arg	Ile	Tyr
							100		105			110			

Pro	Val	Leu	Gly	Thr	Tyr	Trp	Asp	Asn	Cys	Asn	Arg	Cys	Thr	Cys	Gln
									115		120		125		

Glu	Asn	Arg	Gln	Trp	His	Gly	Gly	Ser	Arg	His	Asp	Gln	Ser	His	Gln
							130		135			140			

Pro	Gly	Gln	Leu	Trp	Leu	Ala	Gly	Trp	Glu	Pro	Gln	Arg	Leu	Leu	Gly
							145		150			155			160

His Asp Pro Gly

```

<210> 13
<211> 533
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (33)
<223> a, t, c or g

<220>
<221> modified_base
<222> (80)
<223> a, t, c or g

<220>
<221> modified_base
<222> (94)
<223> a, t, c or g

<220>
<221> modified_base
<222> (144)
<223> a, t, c or g

<220>
<221> modified_base
<222> (188)
<223> a, t, c or g

<400> 13
aggctccttg gcccttttc cacagcaagc ttntgcnatc ccgattcggt gtctcaaatc 60
caattcttctt gggacacatn acgcctgtcc ttngccccca gaacctgctg tcttgcacac 120
ccaccagcag caggctgccc gcgnntggcg tctcgatggt gcctgggtggt tcctgcgtcg 180
ccgagggnntg gtgtctgacc actgtctaccc cttctcgggc cgtgaacgag acgaggctgg 240
ccctgcgccc ccctgttatga tgcacagccg agccatgggt cggggcaagc gccaggccac 300
tgcccactgc cccaaacagct atgttaataa caatgacatc taccaggtca ctctgtcta 360
ccgcctcggtc tccaacgaca aggagatcat gaaggagctg atggagaatg gccctgtcca 420
agccctcatg gaggtgcattt aggacttctt cctatacaag ggaggcatct acagccacac 480
gccagtgagc cttgggaggc cagagagata ccggccggcat gggacccact cag      533

<210> 14
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 14

```

ttcgaggcct ctgagaagtg gccc 24
<210> 15
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe 22

<400> 15
ggcggtatct ctctggcctc cc

<210> 16
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 16
ttctccacag cagctgtggc atccgatcgt gtctcaatcc attctctggg 50

<210> 17
<211> 960
<212> DNA
<213> Homo sapiens

<400> 17
gctgcttgcc ctgttcatgg caggcttggc cctgcagcca ggcactgccc tgctgtgcta 60
ctccctgaaa gcccaggta gcaacgagga ctgcctgcag gtggagaact gcacccagct 120
gggggaggcag tgctggaccg cgcgcatccg cgcaagtggc ctccctgaccg tcatacggaa 180
aggctgcagc ttgaactcgc tggatgaactc acaggactac tacgtggca agaagaacat 240
cacgtgcgtg gacaccgact ttgtcaacgc cagccccggc catgccctgc agccggctgc 300
cgccatcatt gcgcgtctcc ctgcactcgg cctgcgtctc tggggaccccg gccagctata 360
ggctctgggg ggccccgctg cagccccacac tgggtgtgtt gccccaggcc tetgtgccc 420
tcctcacaga cctggcccaag tggggactctg tcctgggtcc tgaggcacat cctaacgcaa 480
gtctgaccat gtatgtctgc accccctgtcc cccaccctga ccctcccatg gccctctcca 540
ggactcccac ccggcagatc agctctagtg acacagatcc gcctgcagat ggcctctcca 600
accctctctg ctgtgtttc catggcccaag cattctccac ccttaacccct gtgtcagggc 660
acctcttccc ccaggaagcc ttccctgccc accccatcta tgacttgagc caggtctgg 720
ccgtgggtgtc ccccgaccc agcaggggac aggactcag gagggcccaag taaaggctga 780
gatgaagtgg actgagtaga actggaggac aagagtgcac gtgagttctt gggagtctcc 840
agagatgggg cctggaggcc tggaggaagg ggcaggcct cacattcgtg gggctccctg 900
aatggcagcc tgagcacagc gttaggcctt aataaacacc tgttggataa gccaaaaaaaa 960

<210> 18
<211> 189
<212> PRT
<213> Homo sapiens

<400> 18

Met	Thr	His	Arg	Thr	Thr	Trp	Ala	Arg	Arg	Thr	Ser	Arg	Ala	Val
1				5				10					15	

Thr	Pro	Thr	Cys	Ala	Thr	Pro	Ala	Gly	Pro	Met	Pro	Cys	Ser	Arg	Leu
				20				25					30		

Pro	Pro	Ser	Leu	Arg	Cys	Ser	Leu	His	Ser	Ala	Cys	Cys	Ser	Gly	Asp
				35				40					45		

Pro	Ala	Ser	Tyr	Arg	Leu	Trp	Gly	Ala	Pro	Leu	Gln	Pro	Thr	Leu	Gly
				50			55				60				

Val	Val	Pro	Gln	Ala	Ser	Val	Pro	Leu	Leu	Thr	Asp	Leu	Ala	Gln	Trp
				65			70			75			80		

Glu	Pro	Val	Leu	Val	Pro	Glu	Ala	His	Pro	Asn	Ala	Ser	Leu	Thr	Met
				85				90					95		

Tyr	Val	Cys	Thr	Pro	Val	Pro	His	Pro	Asp	Pro	Pro	Met	Ala	Leu	Ser
				100				105				110			

Arg	Thr	Pro	Thr	Arg	Gln	Ile	Ser	Ser	Ser	Asp	Thr	Asp	Pro	Pro	Ala
				115			120				125				

Asp	Gly	Pro	Ser	Asn	Pro	Leu	Cys	Cys	Cys	Phe	His	Gly	Pro	Ala	Phe
				130			135			140					

Ser	Thr	Leu	Asn	Pro	Val	Leu	Arg	His	Leu	Phe	Pro	Gln	Glu	Ala	Phe
				145			150			155			160		

Pro	Ala	His	Pro	Ile	Tyr	Asp	Leu	Ser	Gln	Val	Trp	Ser	Val	Val	Ser
				165				170			175				

Pro	Ala	Pro	Ser	Arg	Gly	Gln	Ala	Leu	Arg	Arg	Ala	Gln			
				180				185							

<210> 19

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 19

tgctgtgcta ctcctgcaaa gccc

24

<210> 20

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 20

tgcacaaggc ggtgtcacag cacg

24

<210> 21

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 21

agcaacgagg actgcctgca ggtggagaac tgcacccagc tggg

44

<210> 22

<211> 1200

<212> DNA

<213> Homo sapiens

<400> 22

cccacgcgtc cgaacctctc cagcgatggg agccgccccgc ctgctgccc acctcactct 60
 gtgcttacag ctgctgattc tctgctgtca aactcagtac gtgaggggacc agggcgccat 120
 gaccgaccag ctgagcaggc ggcagatccg cgagtaccaa ctctacagca ggaccagtgg 180
 caagcacgtg caggtcaccg gggtcgcat ctccgcccacc gccgaggacg gcaacaagtt 240
 tgccaagctc atatgtggaga cggacacgtt tggcagccgg gttcgcatca aaggggctga 300
 gagtgagaag tacatctgta tgaacaagag gggcaagtc atcgggaagc ccagcgggaa 360
 gagcaaagac tgcgtgttca cggagatcgt gctggagaac aactatacgg cttccagaa 420
 cggccggcac gagggtcggt tcatggcctt cacgceggcag gggcggccccc gccaggcttc 480
 ccgcagccgc cagaaccaggc gcgaggccca cttcatcaag cgcctctacc aaggccagct 540
 gcccttcccc aaccaccccg agaaggagaa gcagttcgag ttgtgggct ccgc(cccac 600
 ccgcggacc aagcgcacac ggcggccccca gcccctcagc tagtctggga ggcaggggc 660
 agcagccccct gggccgcctc cccacccctt tcccttctta atccaaggac tgggctgggg 720
 tggcgggagg ggagcoagat ccccgaggga ggacccttag ggcgcgaag catccgagcc 780
 cccagctggg aaggggcagg ccggtgcccc agggggggct ggcacagtgc ccccttcccc 840
 gacgggtggc aggcctgga gaggaactga gtgtcaccct gatctcaggc caccagcctc 900
 tgccggcctc ccagccggc tcctgaagcc cgctgaaagg tcagcgactg aaggcccttgc 960
 agacaaccgt ctggaggtgg ctgtctcaa aatctgttcc tcggatctcc ctcagttgc 1020
 ccccagcccc caaactcttc ctggctagac tgttaggaagg gacttttgtt tggttgggg 1080
 tttcaggaaa aaagaaaagg agagagagga aaatagaggg ttgtccactc ctcacattcc 1140
 acgaccagg cctgcacccccc acccccaact cccagccccc gaataaaacc atttcctgc 1200

<210> 23

<211> 205

<212> PRT

<213> Homo sapiens

<400> 23
 Met Gly Ala Ala Arg Leu Leu Pro Asn Leu Thr Leu Cys Leu Gln Leu
 1 5 10 15

Leu Ile Leu Cys Cys Gln Thr Gln Tyr Val Arg Asp Gln Gly Ala Met
 20 25 30

Thr Asp Gln Leu Ser Arg Arg Gln Ile Arg Glu Tyr Gln Leu Tyr Ser
 35 40 45

Arg Thr Ser Gly Lys His Val Gln Val Thr Gly Arg Arg Ile Ser Ala
 50 55 60

Thr Ala Glu Asp Gly Asn Lys Phe Ala Lys Leu Ile Val Glu Thr Asp
 65 70 75 80

Thr Phe Gly Ser Arg Val Arg Ile Lys Gly Ala Glu Ser Glu Lys Tyr
 85 90 95

Ile Cys Met Asn Lys Arg Gly Lys Leu Ile Gly Lys Pro Ser Gly Lys
 100 105 110

Ser Lys Asp Cys Val Phe Thr Glu Ile Val Leu Glu Asn Asn Tyr Thr
 115 120 125

Ala Phe Gln Asn Ala Arg His Glu Gly Trp Phe Met Ala Phe Thr Arg
 130 135 140

Gln Gly Arg Pro Arg Gln Ala Ser Arg Ser Arg Gln Asn Gln Arg Glu
 145 150 155 160

Ala His Phe Ile Lys Arg Leu Tyr Gln Gly Gln Leu Pro Phe Pro Asn
 165 170 175

His Ala Glu Lys Gln Lys Gln Phe Glu Phe Val Gly Ser Ala Pro Thr
 180 185 190

Arg Arg Thr Lys Arg Thr Arg Arg Pro Gln Pro Leu Thr
 195 200 205

<210> 24
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 24
 cagtagtga gggaccaggcgccatga

<210> 25

```

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 25
ccgggtaccc gcacgtgctt gcca                                24

<210> 26
<211> 41
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<220>
<221> modified_base
<222> (21)
<223> a, t, c or g

<400> 26
gcggatctgc cgcctgctca nctggtcggt catggcgccc t                                41

<210> 27
<211> 2479
<212> DNA
<213> Homo sapiens

<400> 27
acttgccatc acctgttgcc agtgtggaaa aattctccct gttgaatttt ttgcacatgg 60
aggacagcacaaagaggc aacacaggct gataagacca gagacagcag ggagattatt 120
ttaccatacg ccctcaggac gttccctcta gctggagtcc tgacttcaa cagaacccca 180
tccatgttgc ttgattttgc ttgtttttttt ttctttttcc caccacattt 240
tattttattt ccgtacttca gaaatgggcc tacagaccac aaagtggccc agccatgggg 300
ctttttccctt gaagtcttgg cttatcattt ccctggggct ctactcacag gtgtccaaac 360
tccctggcctg cccttagtgc tgccgcgtcg acaggaactt tgtctactgt aatgagcgaa 420
gttgcacctc agtgcctttt gggatccccgg agggcgtaac cgtactctac ctccacaaca 480
accaaattaa taatgttgg tttcctgcag aactgcacaa ttttgcgtcg gtgcacacgg 540
tctacactgttgc ttggcaaccaa ctggacgaat tccccatgaa ctttcccaag aatgtcagag 600
ttctccattt gcaggaaaaac aatattcaga ccatttcacg ggctgctt gcccagctct 660
tgaagcttgc agagctgcac ctggatgaca actccatatac cacagtgggg gtggaaagacg 720
gggccttcgg ggaggctatt agcctaaat ttttgcgtcg gtcttgcgtcg cacctgagca 780
gtgtgcctgttggcttgc ttggacttgc aagagctgag agtggatgaa aatcgatgg 840
ctgtcatatc cgacatggcc ttccagaatc tcacgagtt ggagcgctt attgtggacg 900
gaaaccccttcc gaccaacaag ggtatcgccg agggcacctt cagccatctc accaagctca 960
agaattttcaattgtacgt aatttcgtgttcccacccctcc tcccgatctc ccaggtacgc 1020
atctgatcag gctcttgc caggacaacc agataaaacca cattcccttg acagccctct 1080
caaatctgcg taagctggaa cggctggata tatccaacaa ccaactgcgg atgctgactc 1140

```

aagggtttt tgataatctc tccaaacctga agcagctcac tgctcggaat aacccttggt 1200
 tttgtgactg cagtattaaa tgggtcacag aatggctcaa atatatccct tcacatctca 1260
 acgtgcgggg ttcatgtgc caaggtcctg aacaagtccg ggggatggcc gtcaggaaat 1320
 taaatatgaa tctttgtcc tgcacca cgacccccgg cctgcctctc ttcacccca 1380
 ccccaagtac agcttctccg accactcagc ctcccacccct ctctattcca aacccttagca 1440
 gaagctacac gcctccaact cctaccacat cgaaacttcc cacgattcct gactggatg 1500
 gcagagaaag agtgacccca cctattctg aacggatcca gctctctatc cattttgtga 1560
 atgatacttc cattcaagtc agctggctct ctctcttac cgtgatggca tacaaactca 1620
 catgggtgaa aatgggccac agtttagtag ggggcatcgt tcaggagcgc atagtcagcg 1680
 gtgagaagca acacctgagc ctggtaact tagagccccg atccacctat cggatttgtt 1740
 tagtgccact ggatgtttt aactaccgcg cggtagaaga caccatttg tcagaggcca 1800
 ccacccatgc ctcctatctg aacaacggca gcaacacagc gtcagccat gagcagacga 1860
 cgtcccacag catggctcc cccttctgc tggcggcgtt gatcgggggc gcggtgatat 1920
 ttgtgctggt ggtctgctc agcgttttt gctggcatat gcacaaaaag gggcgttaca 1980
 cctcccgagaa gtgaaatac aaccggggcc ggcggaaaga tgattattgc gaggcaggca 2040
 ccaagaagga caactccatc ctggagatga cagaaaccag tttcagatc gtctcctaa 2100
 ataacgatca actcctaaa ggagattca gactgcagcc catttacacc ccaaattggg 2160
 gcattaatta cacagactgc catatccccca acaacatgcg atactgcaac agcagcgtgc 2220
 cagacctgga gcactgccc acgtgacaggc cagaggccca gogtttatcaa ggcggacaat 2280
 tagactctt agaacacact cgtgtgtcataaagaca cgcagattac atttgataaa 2340
 tgttacacag atgcatttgatcatttaat ttatacgggt tactatataa 2400
 tgggatttaa aaaaagtgtatcattttcta tttcaagtta attacaaaca gttttgtaac 2460
 tctttgttt ttaaatctt 2479

<210> 28
 <211> 660
 <212> PRT
 <213> Homo sapiens

<400> 28
 Met Gly Leu Gln Thr Thr Lys Trp Pro Ser His Gly Ala Phe Phe Leu
 1 5 10 15
 Lys Ser Trp Leu Ile Ile Ser Leu Gly Leu Tyr Ser Gln Val Ser Lys
 20 25 30
 Leu Leu Ala Cys Pro Ser Val Cys Arg Cys Asp Arg Asn Phe Val Tyr
 35 40 45
 Cys Asn Glu Arg Ser Leu Thr Ser Val Pro Leu Gly Ile Pro Glu Gly
 50 55 60
 Val Thr Val Leu Tyr Leu His Asn Asn Gln Ile Asn Asn Ala Gly Phe
 65 70 75 80
 Pro Ala Glu Leu His Asn Val Gln Ser Val His Thr Val Tyr Leu Tyr
 85 90 95
 Gly Asn Gln Leu Asp Glu Phe Pro Met Asn Leu Pro Lys Asn Val Arg
 100 105 110
 Val Leu His Leu Gln Glu Asn Asn Ile Gln Thr Ile Ser Arg Ala Ala
 115 120 125

Leu Ala Gln Leu Leu Lys Leu Glu Glu Leu His Leu Asp Asp Asn Ser
 130 135 140
 Ile Ser Thr Val Gly Val Glu Asp Gly Ala Phe Arg Glu Ala Ile Ser
 145 150 155 160
 Leu Lys Leu Leu Phe Leu Ser Lys Asn His Leu Ser Ser Val Pro Val
 165 170 175
 Gly Leu Pro Val Asp Leu Gln Glu Leu Arg Val Asp Glu Asn Arg Ile
 180 185 190
 Ala Val Ile Ser Asp Met Ala Phe Gln Asn Leu Thr Ser Leu Glu Arg
 195 200 205
 Leu Ile Val Asp Gly Asn Leu Leu Thr Asn Lys Gly Ile Ala Glu Gly
 210 215 220
 Thr Phe Ser His Leu Thr Lys Leu Lys Glu Phe Ser Ile Val Arg Asn
 225 230 235 240
 Ser Leu Ser His Pro Pro Pro Asp Leu Pro Gly Thr His Leu Ile Arg
 245 250 255
 Leu Tyr Leu Gln Asp Asn Gln Ile Asn His Ile Pro Leu Thr Ala Phe
 260 265 270
 Ser Asn Leu Arg Lys Leu Glu Arg Leu Asp Ile Ser Asn Asn Gln Leu
 275 280 285
 Arg Met Leu Thr Gln Gly Val Phe Asp Asn Leu Ser Asn Leu Lys Gln
 290 295 300
 Leu Thr Ala Arg Asn Asn Pro Trp Phe Cys Asp Cys Ser Ile Lys Trp
 305 310 315 320
 Val Thr Glu Trp Leu Lys Tyr Ile Pro Ser Ser Leu Asn Val Arg Gly
 325 330 335
 Phe Met Cys Gln Gly Pro Glu Gln Val Arg Gly Met Ala Val Arg Glu
 340 345 350
 Leu Asn Met Asn Leu Leu Ser Cys Pro Thr Thr Thr Pro Gly Leu Pro
 355 360 365
 Leu Phe Thr Pro Ala Pro Ser Thr Ala Ser Pro Thr Thr Gln Pro Pro
 370 375 380
 Thr Leu Ser Ile Pro Asn Pro Ser Arg Ser Tyr Thr Pro Pro Thr Pro
 385 390 395 400
 Thr Thr Ser Lys Leu Pro Thr Ile Pro Asp Trp Asp Gly Arg Glu Arg

405	410	415
Val Thr Pro Pro Ile Ser Glu Arg Ile Gln Leu Ser Ile His Phe Val		
420	425	430
Asn Asp Thr Ser Ile Gln Val Ser Trp Leu Ser Leu Phe Thr Val Met		
435	440	445
Ala Tyr Lys Leu Thr Trp Val Lys Met Gly His Ser Leu Val Gly Gly		
450	455	460
Ile Val Gln Glu Arg Ile Val Ser Gly Glu Lys Gln His Leu Ser Leu		
465	470	475
Val Asn Leu Glu Pro Arg Ser Thr Tyr Arg Ile Cys Leu Val Pro Leu		
485	490	495
Asp Ala Phe Asn Tyr Arg Ala Val Glu Asp Thr Ile Cys Ser Glu Ala		
500	505	510
Thr Thr His Ala Ser Tyr Leu Asn Asn Gly Ser Asn Thr Ala Ser Ser		
515	520	525
His Glu Gln Thr Thr Ser His Ser Met Gly Ser Pro Phe Leu Leu Ala		
530	535	540
Gly Leu Ile Gly Gly Ala Val Ile Phe Val Leu Val Val Leu Leu Ser		
545	550	555
Val Phe Cys Trp His Met His Lys Lys Gly Arg Tyr Thr Ser Gln Lys		
565	570	575
Trp Lys Tyr Asn Arg Gly Arg Arg Lys Asp Asp Tyr Cys Glu Ala Gly		
580	585	590
Thr Lys Lys Asp Asn Ser Ile Leu Glu Met Thr Glu Thr Ser Phe Gln		
595	600	605
Ile Val Ser Leu Asn Asn Asp Gln Leu Leu Lys Gly Asp Phe Arg Leu		
610	615	620
Gln Pro Ile Tyr Thr Pro Asn Gly Gly Ile Asn Tyr Thr Asp Cys His		
625	630	635
640		
Ile Pro Asn Asn Met Arg Tyr Cys Asn Ser Ser Val Pro Asp Leu Glu		
645	650	655
His Cys His Thr		
660		
<210> 29		
<211> 21		
<212> DNA		

```

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 29
cgggtctacct gtagtggcaac c                                21

<210> 30
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 30
gcaggacaac cagataaaacc ac                                22

<210> 31
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 31
acgcagagatt gagaaggctg tc                                22

<210> 32
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 32
ttcacgggct gctcttgccc agctcttcaa gcttgaagag ctgcac    46

<210> 33
<211> 3449
<212> DNA
<213> Homo sapiens

<400> 33
acttggagca agcggcgccg goggagacag aggcagaggc agaagctggg gctccgtcct 60
cgccctccac gagcgttccc cgaggagac cgccggccctc ggcgaggcga agaggccgac 120

```


ctgtagaaca ctggccatag gaaatgctgt tttttgtac tggactttac cttgatata 3360
 gtatatggat gtatgcataa aatcatagga catatgtaact tgtggaacaa gttggattt 3420
 ttatacaata ttaaaattca ccacttcag 3449

<210> 34
 <211> 915
 <212> PRT
 <213> Homo sapiens

<400> 34
 Met Glu Lys Met Leu Ala Gly Cys Phe Leu Leu Ile Leu Gly Gln Ile
 1 5 10 15
 Val Leu Leu Pro Ala Glu Ala Arg Glu Arg Ser Arg Gly Arg Ser Ile
 20 25 30
 Ser Arg Gly Arg His Ala Arg Thr His Pro Gln Thr Ala Leu Leu Glu
 35 40 45
 Ser Ser Cys Glu Asn Lys Arg Ala Asp Leu Val Phe Ile Ile Asp Ser
 50 55 60
 Ser Arg Ser Val Asn Thr His Asp Tyr Ala Lys Val Lys Glu Phe Ile
 65 70 75 80
 Val Asp Ile Leu Gln Phe Leu Asp Ile Gly Pro Asp Val Thr Arg Val
 85 90 95
 Gly Leu Leu Gln Tyr Gly Ser Thr Val Lys Asn Glu Phe Ser Leu Lys
 100 105 110
 Thr Phe Lys Arg Lys Ser Glu Val Glu Arg Ala Val Lys Arg Met Arg
 115 120 125
 His Leu Ser Thr Gly Thr Met Thr Gly Leu Ala Ile Gln Tyr Ala Leu
 130 135 140
 Asn Ile Ala Phe Ser Glu Ala Glu Gly Ala Arg Pro Leu Arg Glu Asn
 145 150 155 160
 Val Pro Arg Val Ile Met Ile Val Thr Asp Gly Arg Pro Gln Asp Ser
 165 170 175
 Val Ala Glu Val Ala Ala Lys Ala Arg Asp Thr Gly Ile Leu Ile Phe
 180 185 190
 Ala Ile Gly Val Gly Gln Val Asp Phe Asn Thr Leu Lys Ser Ile Gly
 195 200 205
 Ser Glu Pro His Glu Asp His Val Phe Leu Val Ala Asn Phe Ser Gln
 210 215 220
 Ile Glu Thr Leu Thr Ser Val Phe Gln Lys Lys Leu Cys Thr Ala His

225	230	235	240
Met Cys Ser Thr Leu Glu His Asn Cys Ala His Phe Cys Ile Asn Ile			
245	250	255	
Pro Gly Ser Tyr Val Cys Arg Cys Lys Gln Gly Tyr Ile Leu Asn Ser			
260	265	270	
Asp Gln Thr Thr Cys Arg Ile Gln Asp Leu Cys Ala Met Glu Asp His			
275	280	285	
Asn Cys Glu Gln Leu Cys Val Asn Val Pro Gly Ser Phe Val Cys Gln			
290	295	300	
Cys Tyr Ser Gly Tyr Ala Leu Ala Glu Asp Gly Lys Arg Cys Val Ala			
305	310	315	320
Val Asp Tyr Cys Ala Ser Glu Asn His Gly Cys Glu His Glu Cys Val			
325	330	335	
Asn Ala Asp Gly Ser Tyr Leu Cys Gln Cys His Glu Gly Phe Ala Leu			
340	345	350	
Asn Pro Asp Glu Lys Thr Cys Thr Arg Ile Asn Tyr Cys Ala Leu Asn			
355	360	365	
Lys Pro Gly Cys Glu His Glu Cys Val Asn Met Glu Glu Ser Tyr Tyr			
370	375	380	
Cys Arg Cys His Arg Gly Tyr Thr Leu Asp Pro Asn Gly Lys Thr Cys			
385	390	395	400
Ser Arg Val Asp His Cys Ala Gln Gln Asp His Gly Cys Glu Gln Leu			
405	410	415	
Cys Leu Asn Thr Glu Asp Ser Phe Val Cys Gln Cys Ser Glu Gly Phe			
420	425	430	
Leu Ile Asn Glu Asp Leu Lys Thr Cys Ser Arg Val Asp Tyr Cys Leu			
435	440	445	
Leu Ser Asp His Gly Cys Glu Tyr Ser Cys Val Asn Met Asp Arg Ser			
450	455	460	
Phe Ala Cys Gln Cys Pro Glu Gly His Val Leu Arg Ser Asp Gly Lys			
465	470	475	480
Thr Cys Ala Lys Leu Asp Ser Cys Ala Leu Gly Asp His Gly Cys Glu			
485	490	495	
His Ser Cys Val Ser Ser Glu Asp Ser Phe Val Cys Gln Cys Phe Glu			
500	505	510	

Gly Tyr Ile Leu Arg Glu Asp Gly Lys Thr Cys Arg Arg Lys Asp Val
 515 520 525

Cys Gln Ala Ile Asp His Gly Cys Glu His Ile Cys Val Asn Ser Asp
 530 535 540

Asp Ser Tyr Thr Cys Glu Cys Leu Glu Gly Phe Arg Leu Ala Glu Asp
 545 550 555 560

Gly Lys Arg Cys Arg Arg Lys Asp Val Cys Lys Ser Thr His His Gly
 565 570 575

Cys Glu His Ile Cys Val Asn Asn Gly Asn Ser Tyr Ile Cys Lys Cys
 580 585 590

Ser Glu Gly Phe Val Leu Ala Glu Asp Gly Arg Arg Cys Lys Lys Cys
 595 600 605

Thr Glu Gly Pro Ile Asp Leu Val Phe Val Ile Asp Gly Ser Lys Ser
 610 615 620

Leu Gly Glu Glu Asn Phe Glu Val Val Lys Gln Phe Val Thr Gly Ile
 625 630 635 640

Ile Asp Ser Leu Thr Ile Ser Pro Lys Ala Ala Arg Val Gly Leu Leu
 645 650 655

Gln Tyr Ser Thr Gln Val His Thr Glu Phe Thr Leu Arg Asn Phe Asn
 660 665 670

Ser Ala Lys Asp Met Lys Lys Ala Val Ala His Met Lys Tyr Met Gly
 675 680 685

Lys Gly Ser Met Thr Gly Leu Ala Leu Lys His Met Phe Glu Arg Ser
 690 695 700

Phe Thr Gln Gly Glu Gly Ala Arg Pro Leu Ser Thr Arg Val Pro Arg
 705 710 715 720

Ala Ala Ile Val Phe Thr Asp Gly Arg Ala Gln Asp Asp Val Ser Glu
 725 730 735

Trp Ala Ser Lys Ala Lys Ala Asn Gly Ile Thr Met Tyr Ala Val Gly
 740 745 750

Val Gly Lys Ala Ile Glu Glu Leu Gln Glu Ile Ala Ser Glu Pro
 755 760 765

Thr Asn Lys His Leu Phe Tyr Ala Glu Asp Phe Ser Thr Met Asp Glu
 770 775 780

Ile Ser Glu Lys Leu Lys Lys Gly Ile Cys Glu Ala Leu Glu Asp Ser
 785 790 795 800

Asp Gly Arg Gln Asp Ser Pro Ala Gly Glu Leu Pro Lys Thr Val Gln
 805 810 815

 Gln Pro Thr Glu Ser Glu Pro Val Thr Ile Asn Ile Gln Asp Leu Leu
 820 825 830

 Ser Cys Ser Asn Phe Ala Val Gln His Arg Tyr Leu Phe Glu Glu Asp
 835 840 845

 Asn Leu Leu Arg Ser Thr Gln Lys Leu Ser His Ser Thr Lys Pro Ser
 850 855 860

 Gly Ser Pro Leu Glu Glu Lys His Asp Gln Cys Lys Cys Glu Asn Leu
 865 870 875 880

 Ile Met Phe Gln Asn Leu Ala Asn Glu Glu Val Arg Lys Leu Thr Gln
 885 890 895

 Arg Leu Glu Glu Met Thr Gln Arg Met Glu Ala Leu Glu Asn Arg Leu
 900 905 910

 Arg Tyr Arg
 915

 <210> 35
 <211> 23
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 35
 gtgaccctgg ttgtgaatac tcc 23

 <210> 36
 <211> 22
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 36
 acagccatgg tctatacgctt gg 22

 <210> 37
 <211> 45
 <212> DNA
 <213> Artificial Sequence

1	5	10	15
Phe Leu Gly Leu Ser Ala Leu Ala Pro Pro Ser Arg Ala Gln Leu Gln			
20	25	30	
Leu His Leu Pro Ala Asn Arg Leu Gln Ala Val Glu Gly Gly Glu Val			
35	40	45	
Val Leu Pro Ala Trp Tyr Thr Leu His Gly Glu Val Ser Ser Ser Gln			
50	55	60	
Pro Trp Glu Val Pro Phe Val Met Trp Phe Phe Lys Gln Lys Glu Lys			
65	70	75	80
Glu Asp Gln Val Leu Ser Tyr Ile Asn Gly Val Thr Thr Ser Lys Pro			
85	90	95	
Gly Val Ser Leu Val Tyr Ser Met Pro Ser Arg Asn Leu Ser Leu Arg			
100	105	110	
Leu Glu Gly Leu Gln Glu Lys Asp Ser Gly Pro Tyr Ser Cys Ser Val			
115	120	125	
Asn Val Gln Asp Lys Gln Gly Lys Ser Arg Gly His Ser Ile Lys Thr			
130	135	140	
Leu Glu Leu Asn Val Leu Val Pro Pro Ala Pro Pro Ser Cys Arg Leu			
145	150	155	160
Gln Gly Val Pro His Val Gly Ala Asn Val Thr Leu Ser Cys Gln Ser			
165	170	175	
Pro Arg Ser Lys Pro Ala Val Gln Tyr Gln Trp Asp Arg Gln Leu Pro			
180	185	190	
Ser Phe Gln Thr Phe Phe Ala Pro Ala Leu Asp Val Ile Arg Gly Ser			
195	200	205	
Leu Ser Leu Thr Asn Leu Ser Ser Ser Met Ala Gly Val Tyr Val Cys			
210	215	220	
Lys Ala His Asn Glu Val Gly Thr Ala Gln Cys Asn Val Thr Leu Glu			
225	230	235	240
Val Ser Thr Gly Pro Gly Ala Ala Val Val Ala Gly Ala Val Val Gly			
245	250	255	
Thr Leu Val Gly Leu Gly Leu Leu Ala Gly Leu Val Leu Leu Tyr His			
260	265	270	
Arg Arg Gly Lys Ala Leu Glu Glu Pro Ala Asn Asp Ile Lys Glu Asp			
275	280	285	

Ala Ile Ala Pro Arg Thr Leu Pro Trp Pro Lys Ser Ser Asp Thr Ile
290 295 300

Ser Lys Asn Gly Thr Leu Ser Ser Val Thr Ser Ala Arg Ala Leu Arg
305 310 315 320

Pro Pro His Gly Pro Pro Arg Pro Gly Ala Leu Thr Pro Thr Pro Ser
325 330 335

Leu Ser Ser Gln Ala Leu Pro Ser Pro Arg Leu Pro Thr Thr Asp Gly
340 345 350

Ala His Pro Gln Pro Ile Ser Pro Ile Pro Gly Gly Val Ser Ser Ser
355 360 365

Gly Leu Ser Arg Met Gly Ala Val Pro Val Met Val Pro Ala Gln Ser
370 375 380

Gln Ala Gly Ser Leu Val
385 390

<210> 40
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 40
agggtctcca ggagaaaagac tc

<210> 41
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 41
atttgtgggcc ttgcagacat agac

<210> 42
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 42		
ggccacagca tcaaaacctt agaactcaat gtactggttc ctccagctcc		50
<210> 43		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 43		
gtgtgacaca gcgtgggc		18
<210> 44		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 44		
gaccggcagg cttctgcg		18
<210> 45		
<211> 25		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 45		
cagcagcttc agccaccagg agtgg		25
<210> 46		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 46		
ctgagccgtg ggctgcagtc tcgc		24
<210> 47		

<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 47
ccgactacga ctggttcttc atcatgcagg atgacacata tgtgc 45

<210> 48
<211> 2822
<212> DNA
<213> Homo sapiens

<400> 48
cgccaccact gcgccaccg ccaatgaaac gcctcccgct cctagtgggt ttttccactt 60
tgttgaattt ttcctataact caaaaatttgc ccaagacacc ttgtctccca aatgcaaaat 120
gtgaaatacg caatggaaattt gaagcctgct attgcaacat gggattttca gggaaatggtg 180
tcacaatttt tgaagatgtt aatgaatgtt gaaatttaac tcagtcctgt ggcgaaaatg 240
ctaattgcac taacacagaa ggaagttattt attgtatgtt tgcgttccgc ttcagatcca 300
gcagtaacca agacagggtt atcaactaatg atggaaaccgt ctgtatagaa aatgtgaatg 360
caaactgcca tttagataat gtctgtatag ctgc当地atataaact ttaacaaaaaa 420
tcagatccat aaaagaacact gtggcttgc tacaagaagt ctatagaaat tctgtgacag 480
atcttcacc aacagatata attacatata tagaaatattt agctgaatca tcttcattttc 540
taggttacaa gaacaacact atctcagccaa aggacaccct ttctactatca actcttactg 600
aatttgtaaa aaccgtgaat aattttgttc aaagggtatc atttgttagtt tgggacaagt 660
tatctgtgaa tcataaggaga acacatctt caaaaactcat gcacactgtt gaacaagctt 720
ctttaaggat atcccagagc ttccaaaaga ccacagagtt tgatacaat tcaacggata 780
tagctctcaa agttttcttt ttgttattcat ataacatgaa acatattcat cctcatatga 840
atatggatgg agactacata aatatatttc caaaagagaaa agctgcataat gattcaatg 900
gcaatgtgc agttgcattt ttatattata agagtattgg tcctttgc ttcatcatctg 960
acaacttctt attgaaacact caaaaattatg ataattctga agaggaggaa agagtcataat 1020
cttcagtaat ttctactca atgagctcaa acccaccctt attatatgaa cttggaaaaaa 1080
taacatttac attaagtcat cgaaaggctt cagataggtt taggacttca tgggactttt 1140
ggaatttactt acctgatacc atgaatggca gctggcttc agagggtgtt gagctgacat 1200
actcaaatttca gaccacacc tcatggctt gtaatcacct gacacattttt gcaattttca 1260
tgtctctgg tccttccattt ggtttaaag attataatattt tcttacaagg atcaactcaac 1320
taggaataat tatttactt gtttgcattt ccatatgcattt ttttacctt tgggactttt 1380
gtgaaattca aagcaccagg acaacaatttca acaaaaatctt ttgtgttgc ctattttctt 1440
ctgaacttgtt ttttcttgc gggatcaata caaaatacttca taagcttttca tgggactttt 1500
ttggccgact gctacacttcc ttcttttttttgc ctgttttttgc atggatgtgc attgaaggca 1560
tacatcttca tcttgcattt gtttttttgc tctacaacaa gggatttttgc cacaagaattt 1620
tttatatctt tggctatcttca acaacaatttca acaaaaatctt ttgtgttgc ctattttctt 1680
acagatattttca tggcacaacc aaagttatgtt ggcttagcac cggaaaacaaac ttttatttttgc 1740
gttttataagg accagcatgc ctaatcatcc ttgtttaatctt cttggctttt ggagtcatca 1800
tatacaaaat ttttgcatttca actgcagggtt tgaaaccaga agtttagttgc ttttgcatttca 1860
taaggcttgc tgcaagagga gcccgccttcc ttctgttgc tctcggcacc acctggatct 1920
ttgggggttcttccatgttgc cacgcatttgc tggttacagc ttaccttttca acagtcagca 1980
atgtttttca gggatgttca attttttttgc ttctgttgc tttatcttca aagattcaag 2040
aagaatatttca cagattgttca aaaaatgttcc cctgttgc ttgttgc ttggatgttca aggttaaacat 2100
agagaatgttgc ggataatttca aactgcacaa aaataaaaaat tccaagctgtt ggatgacca 2160

tgtataaaaa tgactcatca aattatccaa ttattaacta ctagacaaaa agtattttaa 2220
atcagtttt ctgtttatgc tataggaaact gtagataata aggtaaaatt atgtatcata 2280
tagatatact atgtttttct atgtgaaata gttctgtcaa aaatagtatt gcagatattt 2340
ggaaagtaat tggtttctca ggagtgatat cactgcaccc aaggaaagat tttctttcta 2400
acacgagaag tatatgaatg tcctgaagga aaccactggc ttgatatttc tgtgactcgt 2460
gttgccttg aaactagtcc cctaccacct cggtaatgag ctccattaca gaaagtggaa 2520
cataagagaaa tgaaggggca gaatatcaaa cagtgaaaag ggaatgataa gatgtatTTT 2580
gaatgaactg tttttctgt agactagctg agaaaattgtt gacataaaat aaagaattga 2640
agaaaacacat ttaccattt tgtgaattgt tctgaactta aatgtccact aaaacaactt 2700
agacttctgt ttgctaaatc tggttcttt tctaataattcaaaaaaaaaaa aaaaaggTTT 2760
acctccacaa attgaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 2820
aa 2822

<210> 49

<211> 690

<212> PRT

<213> Homo sapiens

<400> 49

Met Lys Arg Leu Pro Leu Leu Val Val Phe Ser Thr Leu Leu Asn Cys
1 5 10 15

Ser Tyr Thr Gln Asn Cys Thr Lys Thr Pro Cys Leu Pro Asn Ala Lys
20 25 30

Cys Glu Ile Arg Asn Gly Ile Glu Ala Cys Tyr Cys Asn Met Gly Phe
 35 40 45

Ser Gly Asn Gly Val Thr Ile Cys Glu Asp Asp Asn Glu Cys Gly Asn
50 55 60

Leu Thr Gln Ser Cys Gly Glu Asn Ala Asn Cys Thr Asn Thr Glu Gly
65 70 75 80

Ser Tyr Tyr Cys Met Cys Val Pro Gly Phe Arg Ser Ser Ser Asn Gln
85 90 95

Asp Arg Phe Ile Thr Asn Asp Gly Thr Val Cys Ile Glu Asn Val Asn
100 105 110

Ala Asn Cys His Leu Asp Asn Val Cys Ile Ala Ala Asn Ile Asn Lys
115 120 125

Thr Leu Thr Lys Ile Arg Ser Ile Lys Glu Pro Val Ala Leu Leu Gln
 130 135 140

Glu Val Tyr Arg Asn Ser Val Thr Asp Leu Ser Pro Thr Asp Ile Ile
 145 150 155 160

Thr Tyr Ile Glu Ile Leu Ala Glu Ser Ser Ser Leu Leu Gly Tyr Lys
 165 170 175

Asn Asn Thr Ile Ser Ala Lys Asp Thr Leu Ser Asn Ser Thr Leu Thr

180	185	190
Glu Phe Val Lys Thr Val Asn Asn Phe Val Gln Arg Asp Thr Phe Val		
195	200	205
Val Trp Asp Lys Leu Ser Val Asn His Arg Arg Thr His Leu Thr Lys		
210	215	220
Leu Met His Thr Val Glu Gln Ala Thr Leu Arg Ile Ser Gln Ser Phe		
225	230	235
Gln Lys Thr Thr Glu Phe Asp Thr Asn Ser Thr Asp Ile Ala Leu Lys		
245	250	255
Val Phe Phe Phe Asp Ser Tyr Asn Met Lys His Ile His Pro His Met		
260	265	270
Asn Met Asp Gly Asp Tyr Ile Asn Ile Phe Pro Lys Arg Lys Ala Ala		
275	280	285
Tyr Asp Ser Asn Gly Asn Val Ala Val Ala Phe Leu Tyr Tyr Lys Ser		
290	295	300
Ile Gly Pro Leu Leu Ser Ser Ser Asp Asn Phe Leu Leu Lys Pro Gln		
305	310	315
Asn Tyr Asp Asn Ser Glu Glu Glu Arg Val Ile Ser Ser Val Ile		
325	330	335
Ser Val Ser Met Ser Ser Asn Pro Pro Thr Leu Tyr Glu Leu Glu Lys		
340	345	350
Ile Thr Phe Thr Leu Ser His Arg Lys Val Thr Asp Arg Tyr Arg Ser		
355	360	365
Leu Cys Ala Phe Trp Asn Tyr Ser Pro Asp Thr Met Asn Gly Ser Trp		
370	375	380
Ser Ser Glu Gly Cys Glu Leu Thr Tyr Ser Asn Glu Thr His Thr Ser		
385	390	395
Cys Arg Cys Asn His Leu Thr His Phe Ala Ile Leu Met Ser Ser Gly		
405	410	415
Pro Ser Ile Gly Ile Lys Asp Tyr Asn Ile Leu Thr Arg Ile Thr Gln		
420	425	430
Leu Gly Ile Ile Ile Ser Leu Ile Cys Leu Ala Ile Cys Ile Phe Thr		
435	440	445
Phe Trp Phe Phe Ser Glu Ile Gln Ser Thr Arg Thr Thr Ile His Lys		
450	455	460

Asn Leu Cys Cys Ser Leu Phe Leu Ala Glu Leu Val Phe Leu Val Gly
 465 470 475 480
 Ile Asn Thr Asn Thr Asn Lys Leu Phe Cys Ser Ile Ile Ala Gly Leu
 485 490 495
 Leu His Tyr Phe Phe Leu Ala Ala Phe Ala Trp Met Cys Ile Glu Gly
 500 505 510
 Ile His Leu Tyr Leu Ile Val Val Gly Val Ile Tyr Asn Lys Gly Phe
 515 520 525
 Leu His Lys Asn Phe Tyr Ile Phe Gly Tyr Leu Ser Pro Ala Val Val
 530 535 540
 Val Gly Phe Ser Ala Ala Leu Gly Tyr Arg Tyr Tyr Gly Thr Thr Lys
 545 550 555 560
 Val Cys Trp Leu Ser Thr Glu Asn Asn Phe Ile Trp Ser Phe Ile Gly
 565 570 575
 Pro Ala Cys Leu Ile Ile Leu Val Asn Leu Leu Ala Phe Gly Val Ile
 580 585 590
 Ile Tyr Lys Val Phe Arg His Thr Ala Gly Leu Lys Pro Glu Val Ser
 595 600 605
 Cys Phe Glu Asn Ile Arg Ser Cys Ala Arg Gly Ala Leu Ala Leu Leu
 610 615 620
 Phe Leu Leu Gly Thr Thr Trp Ile Phe Gly Val Leu His Val Val His
 625 630 635 640
 Ala Ser Val Val Thr Ala Tyr Leu Phe Thr Val Ser Asn Ala Phe Gln
 645 650 655
 Gly Met Phe Ile Phe Leu Phe Leu Cys Val Leu Ser Arg Lys Ile Gln
 660 665 670
 Glu Glu Tyr Tyr Arg Leu Phe Lys Asn Val Pro Cys Cys Phe Gly Cys
 675 680 685
 Leu Arg
 690
 <210> 50
 <211> 589
 <212> DNA
 <213> Homo sapiens
 <220>
 <221> modified_base
 <222> (61)

<223> a, t, c or g

<400> 50
tggaaacata tcctccctca tatgaatatg gatggagact acataaaatat atttccaaag 60
ngaaaagccg gcataatggat tcaaattggca atgttgcagt tgcatttttta tattataaga 120
gtatttgtcc ctttgcttc atcatctgac aacttcttat taaaacctca aaatttatgat 180
aattctgaag aggaggaaag agtcatatct tcagaattt cagtcataat gagctcaaac 240
ccacccacat tataatgaaact tgaaaaata acaattacat taagtcatcg aaaggtcaca 300
gataggtata ggagtctatg tggcattttg gaataactcac ctgataccat gaatggcagc 360
tggtcttcag aggctgtga gctgacatac tcaaattgaga cccacacaccc atgcogctgt 420
aatcacctga cacatttgc aattttgatg tcctctggc cttccattgg tattaaagat 480
tataatattt ttacaaggat cactcaacta ggaataatta tttcactgat ttgtcttgcc 540
atatgcattt ttaccttctg gttcttcagt gaaattcaaa gcaccagga 589

<210> 51
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 51
ggtaatgagc tccattacag 20

<210> 52
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 52
ggagtagaaaa ggcgcattgg 18

<210> 53
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 53
cacctgatac catgaatggc ag 22

<210> 54
<211> 18
<212> DNA

```

<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 54
cgagctcgaa ttaattcg                                         18

<210> 55
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 55
ggatctcctg agtcagg                                         18

<210> 56
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 56
cctagtttag tgatccttgt aag                                         23

<210> 57
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 57
atgagaccca cacctcatgc cgctgtatac acctgacaca ttttgcatt                                         50

<210> 58
<211> 2137
<212> DNA
<213> Homo sapiens

<400> 58
gctcccaagcc aagaacctcg gggccgctgc gcgggtgggg a ggagttcccc gaaaccggc 60
cgctaaggcga ggcctcctcc tcccgcagat ccgaacggcc tgggcgggt caccggct 120

```

gggacaagaa ggcgcggcct gcctgccccg gccccgggag ggggctgggg ctggggccgg 180
aggcggggtg tgagtgggtg tgtgcggggg gcggaggctt gatgcaatcc cgataagaaa 240
tgctcggtg tcttggcac ctaccgtgg ggcccctaag ggcgtactat ataaggctgc 300
cgccccggag cggcccgccg gtcagagcag gagcgtcg tccaggatct agggccacga 360
ccatcccaa cggcaactca cagccccgca gcgcattcccg gtgcggccccc agcctccgc 420
accccccattcg cggagctgc gccgagagcc ccaggaggt gccatgcgg ggggtgtgt 480
ggtgtccac gtatggatcc tggccggcct ctggctggcc gtggccggg gccccctcgc 540
cttctcgac gcccccccccc acgtcaacta cggctgggc gacccatcc gcctgcggca 600
cctgtacacc tccggcccccc acgggctctc cagctcttc ctgcgcattcc gtggcgcacgg 660
cgtcgtggac tgcgcgggg gccagagcgc gcacagtttt ctggagatca aggcaatcgc 720
tctcgccacc gtggccatca agggcgtgca cagctgcgg tacctctgca tgggcggca 780
cgccaagatc caggggtgtc ttcatgtactc ggaggaagac tgtgtttcg aggaggat 840
ccgccccagat ggctacaatg tgtaccgatc cgagaagcac gcctcccccgg tctccctgag 900
cagtgcaaaa cagccggcage tgtacaagaa cagaggctt ctccactct ctcatttcct 960
gccccatgtc cccatggtcc cagaggagcc tgaggacctc agggggccact tggaatctga 1020
catgttctct tcgccccctgg agaccgacag catggaccca ttgggcttg tcaccggact 1080
ggagggcggtg aggagtccca gctttgagaa gtaactgaga ccatgcccgg gcctcttcac 1140
tgctgccagg ggctgtggta cctgcagcgt gggggacgtg ctctacaag aacagtctg 1200
agtccacgtt ctgttagct ttaggaagaa acatctagaa gttgtacata ttcataggtt 1260
tccattggca gtgcaggtt ctggcaata gacttgtctg atcataacat tgtaagctg 1320
tagcttgcac agctgtgtcc tggggccccca ttctgtccc tcgaggttgc tggacaagct 1380
gctgcactgt ctcagttctg ctgtacaatcc tccatcgatg gggaaactcac ttcccttgg 1440
aaaattctta tgtcaagctg aaattctcta atttttctc atcacttccc caggagcagc 1500
cagaagacag gcagtagttt taatttcagg aacaggtgat ccactctgtaa aacagcagg 1560
taaatttcac tcaaccccat gtgggaattt atctatatct ctacttccag ggaccatttg 1620
cccttccaa atccctccag gccagaactg actggagcag gcatggccca ccaggcttca 1680
ggagtagggg aagcctggag ccccaactcca gcccctggac aacttgagaa ttccccctga 1740
ggccagttct gtcatggatg ctgtcttgag aataacttgc tgcgggttgc tcacctgtt 1800
ccatctccca gcccaccagg cctctgcacca cctccatgc ctccccatgg attggggcct 1860
cccaggcccc ccaccttatg tcaacctgca ctgtgttca aaaaatcagg aaaagaaaaag 1920
atttgaagac cccaaagtctt gtcataact tgctgtgtgg agcagcggg ggaagacacta 1980
gaacccttcc cccagcaattt ggtttccaa catgatattt atgagtaattt tattttgtata 2040
tgtacatctc ttattttctt acattattt tgcccccaaa ttatatttat gtatgtaaat 2100
gaggtttggg ttgtatatta aaatggagtt tgtttgt 2137

<210> 59
<211> 216
<212> PRT
<213> *Homo sapiens*

<400> 59
Met Arg Ser Gly Cys Val Val Val His Val Trp Ile Leu Ala Gly Leu
1 5 10 15

Trp Leu Ala Val Ala Gly Arg Pro Leu Ala Phe Ser Asp Ala Gly Pro
20 25 30

His Val His Tyr Gly Trp Gly Asp Pro Ile Arg Leu Arg His Leu Tyr
35 40 45

Thr Ser Gly Pro His Gly Leu Ser Ser Cys Phe Leu Arg Ile Arg Ala
50 55 60

Asp Gly Val Val Asp Cys Ala Arg Gly Gln Ser Ala His Ser Leu Leu
65 70 75 80

Glu Ile Lys Ala Val Ala Leu Arg Thr Val Ala Ile Lys Gly Val His
85 90 95

Ser Val Arg Tyr Leu Cys Met Gly Ala Asp Gly Lys Met Gln Gly Leu
100 105 110

Leu Gln Tyr Ser Glu Glu Asp Cys Ala Phe Glu Glu Ile Arg Pro
115 120 125

Asp Gly Tyr Asn Val Tyr Arg Ser Glu Lys His Arg Leu Pro Val Ser
130 135 140

Leu Ser Ser Ala Lys Gln Arg Gln Leu Tyr Lys Asn Arg Gly Phe Leu
145 150 155 160

Pro Leu Ser His Phe Leu Pro Met Leu Pro Met Val Pro Glu Glu Pro
165 170 175

Glu Asp Leu Arg Gly His Leu Glu Ser Asp Met Phe Ser Ser Pro Leu
180 185 190

Glu Thr Asp Ser Met Asp Pro Phe Gly Leu Val Thr Gly Leu Glu Ala
195 200 205

Val Arg Ser Pro Ser Phe Glu Lys
210 215

<210> 60
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 60
atccgccccag atggctacaa tgtgtta

<210> 61
<211> 42
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 61
gcctcccggt ctcctgagc agtgccaaac agcggcagtgt ta

Lys Asp Gln Gln Val Val Thr Ala Val Glu Tyr Gln Glu Ala Ile Leu
 35 40 45
 Ala Cys Lys Thr Pro Lys Lys Thr Val Ser Ser Arg Leu Glu Trp Lys
 50 55 60
 Lys Leu Gly Arg Ser Val Ser Phe Val Tyr Tyr Gln Gln Thr Leu Gln
 65 70 75 80
 Gly Asp Phe Lys Asn Arg Ala Glu Met Ile Asp Phe Asn Ile Arg Ile
 85 90 95
 Lys Asn Val Thr Arg Ser Asp Ala Gly Lys Tyr Arg Cys Glu Val Ser
 100 105 110
 Ala Pro Ser Glu Gln Gly Gln Asn Leu Glu Glu Asp Thr Val Thr Leu
 115 120 125
 Glu Val Leu Val Ala Pro Ala Val Pro Ser Cys Glu Val Pro Ser Ser
 130 135 140
 Ala Leu Ser Gly Thr Val Val Glu Leu Arg Cys Gln Asp Lys Glu Gly
 145 150 155 160
 Asn Pro Ala Pro Glu Tyr Thr Trp Phe Lys Asp Gly Ile Arg Leu Leu
 165 170 175
 Glu Asn Pro Arg Leu Gly Ser Gln Ser Thr Asn Ser Ser Tyr Thr Met
 180 185 190
 Asn Thr Lys Thr Gly Thr Leu Gln Phe Asn Thr Val Ser Lys Leu Asp
 195 200 205
 Thr Gly Glu Tyr Ser Cys Glu Ala Arg Asn Ser Val Gly Tyr Arg Arg
 210 215 220
 Cys Pro Gly Lys Arg Met Gln Val Asp Asp Leu Asn Ile Ser Gly Ile
 225 230 235 240
 Ile Ala Ala Val Val Val Val Ala Leu Val Ile Ser Val Cys Gly Leu
 245 250 255
 Gly Val Cys Tyr Ala Gln Arg Lys Gly Tyr Phe Ser Lys Glu Thr Ser
 260 265 270
 Phe Gln Lys Ser Asn Ser Ser Lys Ala Thr Thr Met Ser Glu Asn
 275 280 285
 Val Gln Trp Leu Thr Pro Val Ile Pro Ala Leu Trp Lys Ala Ala Ala
 290 295 300
 Gly Gly Ser Arg Gly Gln Glu Phe

305

310

<210> 65
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 65
atcggttgtga agtttagtgcc cc

22

```
<210> 66
<211> 23
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 66
acctgcgata tccaaacagaa ttg

23

```
<210> 67
<211> 48
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 67
ggaaaggaggat acagtcaactc tggaagtatt agtggctcca gcagttcc

48

<210> 68
<211> 2639
<212> DNA
<213> *Homo sapiens*

<400> 68
gacatggag gtgggcttagc actgaaactg ctttcaaga cgaggaagag gaggagaaaag 60
agaaaagaaga ggaagatgtt gggcaacatt tatttaacat gctccacagc ccggaccctg 120
gcatcatgct gctattcctg caaatactga agaagcatgg gatttaaata tttacttct 180
aaataaaatga attactcaat ctcctatgac catctataca tactccacct tcaaaaaagt 240
catcaatat attatcattaa ggaaatagta accttctt ctc当地atg catgacattt 300
ttggacaatg caattgtggc actggcactt attcagtga agaaaaactt tgtggttcta 360
tggcattcat catttgacaa atgcaagcat ctcccttatac aatcagctcc tattgaactt 420
actagcactg actgtggaat ccttaagggc ccattacatt tctgaagaag aaagctaaga 480
tgaaggacat gccactccga attcatgtgc tacttggcct agctatcact acactagttac 540

aagctgtaga taaaaaagtg gattgtccac ggttatgtac gtgtgaaatc aggccttgg 600
 ttacacccag atccatttat atggaagcat ctacagtgg a ttgtaatgat ttagtgtctt 660
 taactttccc agccagattt ccagctaaca cacagatttct tctcctacag actaacaata 720
 ttgcaaaaat tgaatactcc acagactttc cagtaaacct tactggcctg gatttatctc 780
 aaaacaattt atcttcagtc accaatatta atgtaaaaaa gatgcctcag ctcccttctg 840
 tgtacctaga ggaaaacaaa cttactgaac tgcctgaaaa atgtctgtcc gaactgagca 900
 acttacaaga actctatatt aatcacaact tgcttctac aattcacct ggaggcctta 960
 ttggcctaca taatcttctt cgacttcattc tcaattcaaa tagattgcag atgatcaaca 1020
 gtaagtgggt ttagtgcctt ccaaattctag agattctgat gattggggaa aatccaatta 1080
 tcagaatcaa agacatgaac ttaaggcctc ttatcaatct tcgcagcctg gttatagctg 1140
 gtataaacct cacagaaata coagataacg ccttggttgg actggaaaac ttagaaagca 1200
 tctctttta cgataacagg cttattaaag tacccatgt tgctcttcaa aaagttgtaa 1260
 atctcaaattt tttggatcta aataaaaatc ctattaatag aatacgaagg ggtgatttt 1320
 gcaatatgct acacttaaaa gagttgggg a taaaataat gcctgagctg atttccatcg 1380
 atagtcttgc tttggataac ctggccagatt taagaaaaat agaagctact aacaacccta 1440
 gattgtctta cattcaccccc aatgcatttt tcagactccc caagctggaa tcactcatgc 1500
 tgaacagcaa tgctctcagt gccctgtacc atggtaccat tgagtctctg ccaaaccctca 1560
 aggaaatcag catacacagt aaccccatca ggtgtgactg tgcattccgt tggatgaaca 1620
 tgaacaaaac caacattcga ttcatggagc cagattcaact gtttgcgtg gaccacac 1680
 aattccaagg tcagaatgtt cggcaagtgc atttcaggga catgatggaa atttgcctcc 1740
 ctcttatacg tcctgagagc tttccttcta atctaaatgt agaagctgg agctatgtt 1800
 ccttcactg tagagctact gcagaaccac agcctgaaat ctactggata acaccctctg 1860
 gtcaaaaact cttgcctaat accctgacag acaaggctta tgcattctt gaggaaacac 1920
 tagatataaa tggcgtaact cccaaagaag ggggttata tacttgtata gcaactaacc 1980
 tagttggcgc tgacttgaag tctgttatga tcaaaatggaa tggatcttt ccacaagata 2040
 acaatggctc tttgaatatt aaaataagag atattcaggc caattcagg tttgggtgcct 2100
 ggaaagcaag ttctaaaatt ctcaaatcta gtgtttaatg gacagcctt gtcaagactg 2160
 aaaattctca tgctgcgcaa agtgctcgaa taccatctga tgcattgtata tataatctta 2220
 ctcattctgaa tccatcaact ggtataaaa tttgttatga tattccacc atctatcaga 2280
 aaaacagaaa aaaatgtgt aatgtcacca ccaaagggtt gcaccctgtat caaaaagagt 2340
 atgaaaagaa taataccaca acacttatgg cctgtcttgg aggccttctg gggattattg 2400
 gtgtgatatg tcttattcagc tgcctctctc cagaatgaa ctgtgatggt ggacacagct 2460
 atgtgaggaa ttacttacag aaaccaacct ttgcattagg tgagctttat cctcctctga 2520
 taaatctctg ggaagcagga aaagaaaaaa gtacatcaact gaaagtaaaa gcaactgtta 2580
 tagtttacc aacaaatatg tcctaaaaac caccaaggaa acctactcca aaaatgaac 2639

<210> 69

<211> 708

<212> PRT

<213> Homo sapiens

<400> 69

Met	Lys	Asp	Met	Pro	Leu	Arg	Ile	His	Val	Leu	Leu	Gly	Leu	Ala	Ile
1				5					10				15		

Thr	Thr	Leu	Val	Gln	Ala	Val	Asp	Lys	Lys	Val	Asp	Cys	Pro	Arg	Leu
							20		25			30			

Cys	Thr	Cys	Glu	Ile	Arg	Pro	Trp	Phe	Thr	Pro	Arg	Ser	Ile	Tyr	Met
								35		40		45			

Glu	Ala	Ser	Thr	Val	Asp	Cys	Asn	Asp	Leu	Gly	Leu	Leu	Thr	Phe	Pro
								50		55		60			

Ala Arg Leu Pro Ala Asn Thr Gln Ile Leu Leu Leu Gln Thr Asn Asn
 65 70 75 80

Ile Ala Lys Ile Glu Tyr Ser Thr Asp Phe Pro Val Asn Leu Thr Gly
 85 90 95

Leu Asp Leu Ser Gln Asn Asn Leu Ser Ser Val Thr Asn Ile Asn Val
 100 105 110

Lys Lys Met Pro Gln Leu Leu Ser Val Tyr Leu Glu Glu Asn Lys Leu
 115 120 125

Thr Glu Leu Pro Glu Lys Cys Leu Ser Glu Leu Ser Asn Leu Gln Glu
 130 135 140

Leu Tyr Ile Asn His Asn Leu Leu Ser Thr Ile Ser Pro Gly Ala Phe
 145 150 155 160

Ile Gly Leu His Asn Leu Leu Arg Leu His Leu Asn Ser Asn Arg Leu
 165 170 175

Gln Met Ile Asn Ser Lys Trp Phe Asp Ala Leu Pro Asn Leu Glu Ile
 180 185 190

Leu Met Ile Gly Glu Asn Pro Ile Ile Arg Ile Lys Asp Met Asn Phe
 195 200 205

Lys Pro Leu Ile Asn Leu Arg Ser Leu Val Ile Ala Gly Ile Asn Leu
 210 215 220

Thr Glu Ile Pro Asp Asn Ala Leu Val Gly Leu Glu Asn Leu Glu Ser
 225 230 235 240

Ile Ser Phe Tyr Asp Asn Arg Leu Ile Lys Val Pro His Val Ala Leu
 245 250 255

Gln Lys Val Val Asn Leu Lys Phe Leu Asp Leu Asn Lys Asn Pro Ile
 260 265 270

Asn Arg Ile Arg Arg Gly Asp Phe Ser Asn Met Leu His Leu Lys Glu
 275 280 285

Leu Gly Ile Asn Asn Met Pro Glu Leu Ile Ser Ile Asp Ser Leu Ala
 290 295 300

Val Asp Asn Leu Pro Asp Leu Arg Lys Ile Glu Ala Thr Asn Asn Pro
 305 310 315 320

Arg Leu Ser Tyr Ile His Pro Asn Ala Phe Phe Arg Leu Pro Lys Leu
 325 330 335

Glu Ser Leu Met Leu Asn Ser Asn Ala Leu Ser Ala Leu Tyr His Gly

340	345	350
Thr Ile Glu Ser Leu Pro Asn Leu Lys Glu Ile Ser Ile His Ser Asn		
355	360	365
Pro Ile Arg Cys Asp Cys Val Ile Arg Trp Met Asn Met Asn Lys Thr		
370	375	380
Asn Ile Arg Phe Met Glu Pro Asp Ser Leu Phe Cys Val Asp Pro Pro		
385	390	395
Glu Phe Gln Gly Gln Asn Val Arg Gln Val His Phe Arg Asp Met Met		
405	410	415
Glu Ile Cys Leu Pro Leu Ile Ala Pro Glu Ser Phe Pro Ser Asn Leu		
420	425	430
Asn Val Glu Ala Gly Ser Tyr Val Ser Phe His Cys Arg Ala Thr Ala		
435	440	445
Glu Pro Gln Pro Glu Ile Tyr Trp Ile Thr Pro Ser Gly Gln Lys Leu		
450	455	460
Leu Pro Asn Thr Leu Thr Asp Lys Phe Tyr Val His Ser Glu Gly Thr		
465	470	475
480		
Leu Asp Ile Asn Gly Val Thr Pro Lys Glu Gly Gly Leu Tyr Thr Cys		
485	490	495
Ile Ala Thr Asn Leu Val Gly Ala Asp Leu Lys Ser Val Met Ile Lys		
500	505	510
Val Asp Gly Ser Phe Pro Gln Asp Asn Asn Gly Ser Leu Asn Ile Lys		
515	520	525
Ile Arg Asp Ile Gln Ala Asn Ser Val Leu Val Ser Trp Lys Ala Ser		
530	535	540
Ser Lys Ile Leu Lys Ser Ser Val Lys Trp Thr Ala Phe Val Lys Thr		
545	550	555
560		
Glu Asn Ser His Ala Ala Gln Ser Ala Arg Ile Pro Ser Asp Val Lys		
565	570	575
Val Tyr Asn Leu Thr His Leu Asn Pro Ser Thr Glu Tyr Lys Ile Cys		
580	585	590
Ile Asp Ile Pro Thr Ile Tyr Gln Lys Asn Arg Lys Lys Cys Val Asn		
595	600	605
Val Thr Thr Lys Gly Leu His Pro Asp Gln Lys Glu Tyr Glu Lys Asn		
610	615	620

Asn Thr Thr Thr Leu Met Ala Cys Leu Gly Gly Leu Leu Gly Ile Ile
625 630 635 640

Gly Val Ile Cys Leu Ile Ser Cys Leu Ser Pro Glu Met Asn Cys Asp
645 650 655

Gly Gly His Ser Tyr Val Arg Asn Tyr Leu Gln Lys Pro Thr Phe Ala
660 665 670

Leu Gly Glu Leu Tyr Pro Pro Leu Ile Asn Leu Trp Glu Ala Gly Lys
675 680 685

Glu Lys Ser Thr Ser Leu Lys Val Lys Ala Thr Val Ile Gly Leu Pro
690 695 700

Thr Asn Met Ser
705

<210> 70
<211> 1305
<212> DNA
<213> Homo sapiens

<400> 70
gccccggact ggcgcagggt gcccaagcaa ggaaagaaaat aatgaagaga cacatgtgtt 60
agctgcagcc ttttgaaaaca cgcaagaagg aaatcaatag tgtggacagg gctggAACCT 120
ttaccacgt ttttggagta gatgaggaat gggctcgta ttatgtcgac attccagcat 180
gaatctgtta gacctgttgt taacccgttc cctctccatg tgtctcctcc tacaaggttt 240
tgttcttatg atactgtgt ttcattctgc cagtagtggtt cccaaGGGCT gtctttgttc 300
ttccctctggg ggtttaaatg tcacctgttag caatgcAAAT ctcaaggAAA tacctagaga 360
tcttcctcct gaaacagtct tactgtatct ggactccaat cagatcacat ctattcccaa 420
tggaaattttt aaggacctcc atcaacttag agttctcaac ctgtccaaaa atggcattga 480
gtttatcgat gagcatgcct tcaaaggagt agctgaaacc ttgcagactc tgacttgtc 540
cgacaatcggtt attcaaagtgc tgcacaaaaa tgccctcaat aacctgaagg ccaggGCCAG 600
aattgcAACAC aaccctggc actgcgactg tactctacag caagttctga ggagcatggc 660
gtccaaatcat gagacagccc acaacgtgtt ctgtaaaacg tccgtgttgg atgaacatgc 720
tggcagacca ttcctcaatg ctgccaacga cgctgacctt tgtaacctcc ctaaaaaaaac 780
taccgattat gccatgtgg tcaccatgtt tgggtgggtt actatgtga tctcatatgt 840
ggtatattat gtgaggcaaa atcaggagga tgccccggaga cacctcaat acttgaatc 900
cctgccaAGC aggccagaaga aagcagatga acctgatgtt attagcactg tggatgtg 960
tccaaactga ctgtcattga gaaagaaaaga aagtagtttgcgattgcagt agaaataagt 1020
gttttacttc tcccatccat tgtaaacatt tgaaactttt tatttcgtt tttttgtat 1080
tatgccactg ctgaactttt aacaaacact acaacataaa taattttgat ttaggtgtc 1140
cacccttaa ttgtaccccc gatggatat ttctgagtaa gctactatct gaacatttagt 1200
tagatccatc tcactatatta ataatgaaat ttatTTTTT aatttaaaag caaataaaag 1260
cttaactttt aaccatgggaa aaaaaaaaaaaa aaaaaaaaaaaa aaaca 1305

<210> 71
<211> 259
<212> PRT
<213> Homo sapiens

<400> 71

Met	Asn	Leu	Val	Asp	Leu	Trp	Leu	Thr	Arg	Ser	Leu	Ser	Met	Cys	Leu
1					5				10					15	
Leu	Leu	Gln	Ser	Phe	Val	Leu	Met	Ile	Leu	Cys	Phe	His	Ser	Ala	Ser
					20				25					30	
Met	Cys	Pro	Lys	Gly	Cys	Leu	Cys	Ser	Ser	Ser	Gly	Gly	Leu	Asn	Val
					35			40					45		
Thr	Cys	Ser	Asn	Ala	Asn	Leu	Lys	Glu	Ile	Pro	Arg	Asp	Leu	Pro	Pro
					50			55			60				
Glu	Thr	Val	Leu	Leu	Tyr	Leu	Asp	Ser	Asn	Gln	Ile	Thr	Ser	Ile	Pro
					65			70			75			80	
Asn	Glu	Ile	Phe	Lys	Asp	Leu	His	Gln	Leu	Arg	Val	Leu	Asn	Leu	Ser
					85				90				95		
Lys	Asn	Gly	Ile	Glu	Phe	Ile	Asp	Glu	His	Ala	Phe	Lys	Gly	Val	Ala
					100			105				110			
Glu	Thr	Leu	Gln	Thr	Leu	Asp	Leu	Ser	Asp	Asn	Arg	Ile	Gln	Ser	Val
					115			120			125				
His	Lys	Asn	Ala	Phe	Asn	Asn	Leu	Lys	Ala	Arg	Ala	Arg	Ile	Ala	Asn
					130			135			140				
Asn	Pro	Trp	His	Cys	Asp	Cys	Thr	Leu	Gln	Gln	Val	Leu	Arg	Ser	Met
					145			150			155			160	
Ala	Ser	Asn	His	Glu	Thr	Ala	His	Asn	Val	Ile	Cys	Lys	Thr	Ser	Val
					165				170			175			
Leu	Asp	Glu	His	Ala	Gly	Arg	Pro	Phe	Leu	Asn	Ala	Ala	Asn	Asp	Ala
					180			185			190				
Asp	Leu	Cys	Asn	Leu	Pro	Lys	Lys	Thr	Thr	Asp	Tyr	Ala	Met	Leu	Val
					195			200			205				
Thr	Met	Phe	Gly	Trp	Phe	Thr	Met	Val	Ile	Ser	Tyr	Val	Val	Tyr	Tyr
					210			215			220				
Val	Arg	Gln	Asn	Gln	Glu	Asp	Ala	Arg	Arg	His	Leu	Glu	Tyr	Leu	Lys
					225			230			235			240	
Ser	Leu	Pro	Ser	Arg	Gln	Lys	Lys	Ala	Asp	Glu	Pro	Asp	Asp	Ile	Ser
					245			250			255				
Thr	Val	Val													

<210> 72

<211> 2290

<212> DNA

<213> Homo sapiens

<400> 72

accgagccga gcggaccgaa ggccgcggcc agatcgagg gagcaagagg atgctggcg 60
 gggcgttag gagcatgccc agcccccttc tggcctgctg gcagcccatc ctcctgctgg 120
 tgctgggctc agtgcgttca ggctcgccca cgggctgccc gcccccgtgc gagtgctccg 180
 cccaggaccg cgctgtgtc tgccacccga agtgcttgc ggcagtcccc gagggcatcc 240
 ccaccgagac ggcgcgtgtc gacctaggca agaaccgcat caaaacgctc aaccaggacg 300
 agttcgccag ctccccgcac ctggaggagc tggagctcaa cgagaacatc gtgagcgccg 360
 tggagcccg cgcccttcaac aacctttca acctccggac gctgggtctc cgccagcaacc 420
 gcctgaagct catcccgcta ggctgttca ctggccttag caaacctgacc aagcaggaca 480
 tcagcgagaa caagatcggtt atcctactgg actacatgtt tcaggacgtt tacaacctca 540
 agtcacttggaa ggttggcgac aatgacactcg tctacatctc tcaccgcgc ttcagcgcc 600
 tcaacagcct ggagcagctg acgctggaga aatgcaacatc gacctccatc cccaccgagg 660
 cgctgtccca cctgcacggc ctcatcgatc tgaggctccg gcacctcaac atcaatgcca 720
 tccgggacta ctcccttcaag aggtgttacc gactcaaggt ctggagatc tcccaactggc 780
 cctacttggaa caccatgaca cccaactgccc tctacggctt caacctgacg tccctgtcca 840
 tcacacactg caatctgacc gctgtgccctt acctggccgtt ccgcacccatca gtctatctcc 900
 gcttcctcaa cctctcttac aaccccatca gcaccattga ggctccatgtt tgcatgagc 960
 tgctccggctt gcaggagatc cagctgggtt gcccggcagctt ggcgtgggtt gageccatgt 1020
 cttccgcgg cctcaactac ctgcgcgtgc tcaatgttca tggcaaccatc ctgaccacac 1080
 tggaggaatc agtcttccac tcgggtggca acctggagatc actcatctgt gactccaacc 1140
 cgctggctgtc cgactgttggc ctctgttggg tggtccggcg ccgtggcgctt ctcaacttca 1200
 accggcagca gcccacgtgc gccacggcccg agtttgcata gggcaaggatc ttcaaggact 1260
 tccctgtatgt gctacttggcc aactacttca cctgcgcggcc cgcccgcatc cgggaccgca 1320
 aggcccagca ggtgtttgtt gacgaggggcc acacgggtca gtttgggttgc cggggccatgt 1380
 gcgacccggcc gcccgcacatc ctctggctt caccggaaa gcaacctggtc tcaagccaaga 1440
 gcaatggcg gctcacatgc ttccctgtatgt gcaacgttgc ggtgcgttac gcccaggatc 1500
 aggacaacgg cacgtacactg tgcacatgcgg ccaacgcggg cggcaacgcac tccatgcgg 1560
 cccaccttgcac tttgcgcggc tactcgcccg actggcccca tcaagcccaac aagaccttcg 1620
 ctttcatctc caaccaggccg ggcgaggggag aggccaaacag caccggcgcc actgtgcctt 1680
 tcccttcga catcaagacc ctcatcatcg ccaccatcatc ggcgttcatc tctttctgg 1740
 gctcggttctt ctctgttgcgtt ttctctggag ccggggcaag ggcaacacaa 1800
 agacacaacat cgagatcgatc tatgtgcccc gaaagtcggatc cgcaggatc agtccggccg 1860
 acgegcccccg caagttcaac atgaagatgtatgaggccg gggcggggggg cagggacccc 1920
 cggcgccggc ggcaggggaa gggccctggt cgccacatgc tcaacttccca gtccttccca 1980
 cctctccctt acccttctac acacgttctc ttctccctc ccgcctccgtt cccctgttgc 2040
 ccccccggccag ccctcaccac ctgccttctt tctaccagga cctcagaagg ccagacactgg 2100
 ggaccccccacc tacacagggg cattgacaga ctggagttga aagccgacga accgacacgc 2160
 ggcagagtca ataattcaat aaaaaagttt cgaactttctt ctgttaacttg ggttcaata 2220
 attatggatt tttatgaaaaa ctgaaataa taaaaagaga aaaaaactaa aaaaaaaaaa 2280
 aaaaaaaaaa 2290

<210> 73

<211> 620

<212> PRT

<213> Homo sapiens

<400> 73

Met Gln Val Ser Lys Arg Met Leu Ala Gly Gly Val Arg Ser Met Pro

1

5

10

15

Ser Pro Leu Leu Ala Cys Trp Gln Pro Ile Leu Leu Val Leu Gly
 20 25 30

Ser Val Leu Ser Gly Ser Ala Thr Gly Cys Pro Pro Arg Cys Glu Cys
 35 40 45

Ser Ala Gln Asp Arg Ala Val Leu Cys His Arg Lys Cys Phe Val Ala
 50 55 60

Val Pro Glu Gly Ile Pro Thr Glu Thr Arg Leu Leu Asp Leu Gly Lys
 65 70 75 80

Asn Arg Ile Lys Thr Leu Asn Gln Asp Glu Phe Ala Ser Phe Pro His
 85 90 95

Leu Glu Glu Leu Glu Leu Asn Glu Asn Ile Val Ser Ala Val Glu Pro
 100 105 110

Gly Ala Phe Asn Asn Leu Phe Asn Leu Arg Thr Leu Gly Leu Arg Ser
 115 120 125

Asn Arg Leu Lys Leu Ile Pro Leu Gly Val Phe Thr Gly Leu Ser Asn
 130 135 140

Leu Thr Lys Gln Asp Ile Ser Glu Asn Lys Ile Val Ile Leu Leu Asp
 145 150 155 160

Tyr Met Phe Gln Asp Leu Tyr Asn Leu Lys Ser Leu Glu Val Gly Asp
 165 170 175

Asn Asp Leu Val Tyr Ile Ser His Arg Ala Phe Ser Gly Leu Asn Ser
 180 185 190

Leu Glu Gln Leu Thr Leu Glu Lys Cys Asn Leu Thr Ser Ile Pro Thr
 195 200 205

Glu Ala Leu Ser His Leu His Gly Leu Ile Val Leu Arg Leu Arg His
 210 215 220

Leu Asn Ile Asn Ala Ile Arg Asp Tyr Ser Phe Lys Arg Leu Tyr Arg
 225 230 235 240

Leu Lys Val Leu Glu Ile Ser His Trp Pro Tyr Leu Asp Thr Met Thr
 245 250 255

Pro Asn Cys Leu Tyr Gly Leu Asn Leu Thr Ser Leu Ser Ile Thr His
 260 265 270

Cys Asn Leu Thr Ala Val Pro Tyr Leu Ala Val Arg His Leu Val Tyr
 275 280 285

Leu Arg Phe Leu Asn Leu Ser Tyr Asn Pro Ile Ser Thr Ile Glu Gly
 290 295 300

Ser Met Leu His Glu Leu Leu Arg Leu Gln Glu Ile Gln Leu Val Gly
 305 310 315 320

 Gly Gln Leu Ala Val Val Glu Pro Tyr Ala Phe Arg Gly Leu Asn Tyr
 325 330 335

 Leu Arg Val Leu Asn Val Ser Gly Asn Gln Leu Thr Thr Leu Glu Glu
 340 345 350

 Ser Val Phe His Ser Val Gly Asn Leu Glu Thr Leu Ile Leu Asp Ser
 355 360 365

 Asn Pro Leu Ala Cys Asp Cys Arg Leu Leu Trp Val Phe Arg Arg Arg
 370 375 380

 Trp Arg Leu Asn Phe Asn Arg Gln Gln Pro Thr Cys Ala Thr Pro Glu
 385 390 395 400

 Phe Val Gln Gly Lys Glu Phe Lys Asp Phe Pro Asp Val Leu Leu Pro
 405 410 415

 Asn Tyr Phe Thr Cys Arg Arg Ala Arg Ile Arg Asp Arg Lys Ala Gln
 420 425 430

 Gln Val Phe Val Asp Glu Gly His Thr Val Gln Phe Val Cys Arg Ala
 435 440 445

 Asp Gly Asp Pro Pro Pro Ala Ile Leu Trp Leu Ser Pro Arg Lys His
 450 455 460

 Leu Val Ser Ala Lys Ser Asn Gly Arg Leu Thr Val Phe Pro Asp Gly
 465 470 475 480

 Thr Leu Glu Val Arg Tyr Ala Gln Val Gln Asp Asn Gly Thr Tyr Leu
 485 490 495

 Cys Ile Ala Ala Asn Ala Gly Gly Asn Asp Ser Met Pro Ala His Leu
 500 505 510

 His Val Arg Ser Tyr Ser Pro Asp Trp Pro His Gln Pro Asn Lys Thr
 515 520 525

 Phe Ala Phe Ile Ser Asn Gln Pro Gly Glu Gly Glu Ala Asn Ser Thr
 530 535 540

 Arg Ala Thr Val Pro Phe Pro Phe Asp Ile Lys Thr Leu Ile Ile Ala
 545 550 555 560

 Thr Thr Met Gly Phe Ile Ser Phe Leu Gly Val Val Leu Phe Cys Leu
 565 570 575

 Val Leu Leu Phe Leu Trp Ser Arg Gly Lys Gly Asn Thr Lys His Asn

580	585	590
-----	-----	-----

```

Ile Glu Ile Glu Tyr Val Pro Arg Lys Ser Asp Ala Gly Ile Ser Ser
      595          600          605

Ala Asp Ala Pro Arg Lys Phe Asn Met Lys Met Ile
      610          615          620

<210> 74
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 74
tcacctggag cctttattgg cc                                22

<210> 75
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 75
ataccagcta taaccaggct gcg                                23

<210> 76
<211> 52
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 76
caacagtaag tggtttgatg ctcttccaaa tcttagagatt ctgtatgattg    50
      gg                                52

<210> 77
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

```

<400> 77	
ccatgtgtct cctcctacaa ag	22
<210> 78	
<211> 23	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 78	
ggaaatagat gtgatctgat tgg	23
<210> 79	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 79	
cacctgttagc aatgcaaatc tcaaggaaat acctagagat cttcctcctg	50
<210> 80	
<211> 22	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 80	
agcaaccgcc tgaagctcat cc	22
<210> 81	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 81	
aaggcgcggt gaaagatgt a gacg	24
<210> 82	

<211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 82
 gactacatgt ttcaggacct gtacaacctc aagtcaactgg aggttggcga 50

<210> 83
 <211> 1685
 <212> DNA
 <213> Homo sapiens

<400> 83
 cccacgcgtc cgcaccccg cccccggctc cgaagcggct cgggggcgcc cttecggtca 60
 acatcgtagt ccacccccc cccatccccca gccccccggg attcaggctc gccagcgccc 120
 agccaggagg cccggccgggaa agcgcgatgg gggcccccagc cgcctcgctc ctgctccctgc 180
 tcctgctgtt cgcctgctgc tgggcggccq qccggggccaa cctctcccaag gacgacagcc 240
 agccctggac atctgatgaa acagtggtg gggtggcac cgtggtgctc aagtgc当地 300
 tgaaaatca cgaggactca tccctgcaat ggtctaaccct tgctcagcag actctctact 360
 ttggggagaa gagagccctt cgagataatc gaattcagct ggtaacctt acgccccacg 420
 agctcagcat cagcatcagc aatgtggccc tggcagacga gggcgagttt acctgtcaa 480
 tcttcactat gcctgtcga actgccaatg ccctcgctc tggcttagga attccacaga 540
 agcccatcat cactggttat aaatcttcat tacggaaaa agacacagcc accctaaact 600
 gtcaagtcttcc tgggagcaag cctgcagccc ggctcacctg gagaagggtt gaccaagaac 660
 tccacggaga accaaccgcg atacaggaag atcccaatgg taaaaccttc actgtcagca 720
 gctcggtgac attccagggtt accccgggagg atgatggggc gggcatcgat tgctctgtga 780
 accatgaatc tctaaaggga gctgacagat ccacccctca acgcattgaa gtttatataca 840
 caccaactgc gatgattagg ccagaccctc cccatcctcg tgagggccag aagctgttgc 900
 tacactgtga gggtcgcggc aatccagtc cccagcagta cctatggag aaggaggca 960
 gtgtgccacc cctgaagatg acccaggaga gtgcctgtat ctccctttc ctcaacaaga 1020
 gtgacagtgg cacctacggc tgacagccca ccagcaacat gggcagctac aaggctact 1080
 acaccctcaa tggtaatgac cccagtcgg tggcccttc ctccagcacc taccacgcca 1140
 tcacgtgtgg gatcgtggct ttcattgtct tcctgtgtat catcatgctc atcttccttg 1200
 gcccactttt gatccggcac aaaggaacct acctgacaca tgaggcaaaa ggctccgacg 1260
 atgctccaga cgcggacacg gcatcatca atgcagaagg cgggcagtc gggggggacg 1320
 acaagaagga atatttcatc tagaggcgcc tgcccttc ctgcgcggcc cagggggccct 1380
 gtggggactg ctggggccgt caccaccccg gacttgtaca gagcaaccgc agggccgccc 1440
 ctcccgcttgc ctccccagcc caccacccccc cctgtacaga atgtctgtt tgggtggcggt 1500
 tttgtactcg gtttggaaatg gggagggagg agggccgggg gggggggggg ttgcctcag 1560
 ccccttcgtt ggcttctctg cattttgggtt attatttttt ttgttaacaat cccaaatcaa 1620
 atctgtctcc aggctggaga ggcaggagcc ctggggtgag aaaagcaaaa aacaaacaaa 1680
 aaaca 1685

<210> 84
 <211> 398
 <212> PRT
 <213> Homo sapiens

<400> 84

Met Gly Ala Pro Ala Ala Ser Leu Leu Leu Leu Leu Leu Phe Ala
 1 5 10 15

Cys Cys Trp Ala Pro Gly Gly Ala Asn Leu Ser Gln Asp Asp Ser Gln
 20 25 30

Pro Trp Thr Ser Asp Glu Thr Val Val Ala Gly Gly Thr Val Val Leu
 35 40 45

Lys Cys Gln Val Lys Asp His Glu Asp Ser Ser Leu Gln Trp Ser Asn
 50 55 60

Pro Ala Gln Gln Thr Leu Tyr Phe Gly Glu Lys Arg Ala Leu Arg Asp
 65 70 75 80

Asn Arg Ile Gln Leu Val Thr Ser Thr Pro His Glu Leu Ser Ile Ser
 85 90 95

Ile Ser Asn Val Ala Leu Ala Asp Glu Gly Glu Tyr Thr Cys Ser Ile
 100 105 110

Phe Thr Met Pro Val Arg Thr Ala Lys Ser Leu Val Thr Val Leu Gly
 115 120 125

Ile Pro Gln Lys Pro Ile Ile Thr Gly Tyr Lys Ser Ser Leu Arg Glu
 130 135 140

Lys Asp Thr Ala Thr Leu Asn Cys Gln Ser Ser Gly Ser Lys Pro Ala
 145 150 155 160

Ala Arg Leu Thr Trp Arg Lys Gly Asp Gln Glu Leu His Gly Glu Pro
 165 170 175

Thr Arg Ile Gln Glu Asp Pro Asn Gly Lys Thr Phe Thr Val Ser Ser
 180 185 190

Ser Val Thr Phe Gln Val Thr Arg Glu Asp Asp Gly Ala Ser Ile Val
 195 200 205

Cys Ser Val Asn His Glu Ser Leu Lys Gly Ala Asp Arg Ser Thr Ser
 210 215 220

Gln Arg Ile Glu Val Leu Tyr Thr Pro Thr Ala Met Ile Arg Pro Asp
 225 230 235 240

Pro Pro His Pro Arg Glu Gly Gln Lys Leu Leu Leu His Cys Glu Gly
 245 250 255

Arg Gly Asn Pro Val Pro Gln Gln Tyr Leu Trp Glu Lys Glu Gly Ser
 260 265 270

Val Pro Pro Leu Lys Met Thr Gln Glu Ser Ala Leu Ile Phe Pro Phe
 275 280 285

Leu Asn Lys Ser Asp Ser Gly Thr Tyr Gly Cys Thr Ala Thr Ser Asn
290 295 300

Met Gly Ser Tyr Lys Ala Tyr Tyr Thr Leu Asn Val Asn Asp Pro Ser
305 310 315 320

Pro Val Pro Ser Ser Ser Thr Tyr His Ala Ile Ile Gly Gly Ile
325 330 335

Val Ala Phe Ile Val Phe Leu Leu Ile Met Leu Ile Phe Leu Gly
340 345 350

His Tyr Leu Ile Arg His Lys Gly Thr Tyr Leu Thr His Glu Ala Lys
355 360 365

Gly Ser Asp Asp Ala Pro Asp Ala Asp Thr Ala Ile Ile Asn Ala Glu
370 375 380

Gly Gly Gln Ser Gly Gly Asp Asp Lys Lys Glu Tyr Phe Ile
385 390 395

<210> 85
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 85
gcttaggaatt ccacagaagc cc

<210> 86
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 86
aacctggaaat gtcaccgagc tg

<210> 87
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

```

<400> 87
cctagcacag tgacgaggga cttggc                                26

<210> 88
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 88
aagacacagc caccctaaac tgtcagtctt ctgggagcaa gcctgcagcc      50

<210> 89
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 89
gccctggcag acgagggcga gtacacctgc tcaatcttca ctatgcctgt     50

<210> 90
<211> 2755
<212> DNA
<213> Homo sapiens

<400> 90
gggggttagg gaggaaggaa tccacccca ccccccaaa ccctttctt ctcctttctt 60
ggcttcggac attggagcac taaaatgaact tgaattgtgt ctgtggcgag caggatggtc 120
gctgttaactt tgtatgaga tcggggatga attgctcgct taaaaaatgc tgctttggat 180
tctgttgctg gagacgtctc ttgttttgc cgctggaaac gttacagggg acgtttgcaa 240
agagaagatc tggcctgcata atgagataga aggggaccta caeactgact gtaaaaaaaa 300
ggccttcaca agtctgcage gtttcaactgc cccgacttcc cagttttacc atttatttct 360
gcatggcaat tccctactc gactttccc taatgagttc gctaactttt ataatgcgg 420
tagtttgcac atggaaaaca atggcttgcata tggaaatcgat ccgggggctt ttctggggct 480
gcagctggtg aaaaggctgc acatcaacaa caacaagatc aagtctttc gaaagcagac 540
ttttctgggg ctggacgatc tggaaatatct ccaggctgtat ttaatttat tacgagatat 600
agacccgggg gccttcagg acttgaacaa gctggaggtg ctatgttca atgacaatct 660
catcagcacc ctacctgcata acgtgttcca gtatgtccc atcaccacc tcgaccctcg 720
gggttaacagg ctgaaaacgc tgccctatga ggaggtctt gggcaatcc ctggatttgc 780
ggagatcctg ctagaggata acccttggga ctgcacactgt gatctgctct ccctgaaaaga 840
atggctggaa aacattccca agaatgcctt gatcgccgaa gtggctgtcg aagccccac 900
cagactgcac ggttaaagacc tcaatgaaac caccgaacag gacttggcctt ctggaaatcc 960
ccgagtggat tcttagtctcc cggcgcccccc tgcccaagaa gagacctttg ctccctggacc 1020
cctgccaact cttcaaga caaatggca agaggatcat gccacaccag ggtctgtcc 1080

```

aacaggaggt	acaaagatcc	caggcaactg	gcagatcaaa	atcagaccca	cagcagcgat	1140
agcgcggggt	agctccagga	acaaaccctt	agctaacagt	ttaccctgcc	ctggggctg	1200
cagctgcgac	cacatcccag	ggtcggggtt	aaagatgaac	tgcaacaaca	ggaacgttag	1260
cagttggct	gattgaagc	ccaagctctc	taacgtgcag	gagctttcc	tacgagataa	1320
caagatccac	agcatccgaa	aatcgactt	tgtggattac	aagaacctca	ttctgttgg	1380
tctggcaac	aataacatcg	ctactgtaga	gaacaacact	ttcaagaacc	ttttggacct	1440
caggtggcta	tacatggata	gcaattacct	ggacacgctg	tcccgggaga	aattcgcccc	1500
gtgcggaaaac	ctagagtacc	tgaacgtgga	gtacaacgct	atccagctca	tcctccccgg	1560
cacttcaat	gccatgcccc	aactgaggat	cctcattctc	aacaacaacc	tgctgaggtc	1620
cctgcctgtg	gacgtgttcg	ctggggctctc	getctctaaa	ctcagcctgc	acaacaatta	1680
ttcatgtac	ctccgggtgg	caggggtgct	ggaccagtt	acctccatca	tccagataga	1740
cctccacgga	aaccctgggg	agtgcctctg	cacaatttgt	ccttcaagc	agtgggcaga	1800
acgcttgggt	tccgaagtgc	tgtatgagcga	cctcaagtgt	gagacgcccc	tgaacttctt	1860
tagaaaggat	ttcatgtcc	tctccaatga	cgagatctgc	cctcagctgt	acgctaggat	1920
ctcgccccacg	ttaacttcgc	acagtaaaaaa	cagcactggg	ttggcggaga	ccgggacgc	1980
ctccaactcc	tacctagaca	ccagcaggg	gtccatctcg	gtgtggtcc	ccggactgct	2040
gctgggttt	gtcacctccg	ccttcaccgt	ggtgggcatg	ctcgtgttta	tcctgaggaa	2100
ccgaaagcgg	tccaagagac	gagatgccaa	ctccctccgcg	tccgagatta	attccctaca	2160
gacagtctgt	gactttctc	actggcacaa	tgggcattac	aacgcagatg	gggccccacag	2220
agtgtatgac	tgtggctctc	actcgctctc	agactaagac	cccaacccca	ataggggagg	2280
gcagagggaa	ggcgatacat	ccttccccac	cgcaggcacc	ccggggctg	gaggggctg	2340
tacccaaatc	cccgcccat	cagcctggat	ggcataaagt	agataaataaa	ctgtgagctc	2400
gcacaaccga	aaggcctga	ccccttactt	agctccctcc	ttgaaacaaaa	gagcagactg	2460
tggagagctg	ggagagcgca	gccagctcgc	tctttgctga	gagccccctt	tgacagaaaag	2520
cccagcacga	ccctgctgga	agaactgaca	gtgccctcgc	cctcggcccc	ggggcctgtg	2580
gggttggatg	ccgcggttct	atacatatat	acatatatcc	acatctatat	agagagatag	2640
atatctattt	ttccccctgtg	gattagcccc	gtgatggctc	cctgttgct	acgcagggat	2700
ggcagtgc	acgaaggcat	gaatgtattg	taaataagta	actttgactt	ctgac	2755

<210> 91

<211> 696

<212> PRT

<213> Homo sapiens

<400> 91

Met Leu Leu Trp Ile Leu Leu Leu Glu Thr Ser Leu Cys Phe Ala Ala
1 5 10 15

Gly Asn Val Thr Gly Asp Val Cys Lys Glu Lys Ile Cys Ser Cys Asn
20 25 30

Glu Ile Glu Gly Asp Leu His Val Asp Cys Glu Lys Lys Gly Phe Thr
35 40 45

Ser Leu Gln Arg Phe Thr Ala Pro Thr Ser Gln Phe Tyr His Leu Phe
50 55 60

Leu His Gly Asn Ser Leu Thr Arg Leu Phe Pro Asn Glu Phe Ala Asn
65 70 75 80

Phe Tyr Asn Ala Val Ser Leu His Met Glu Asn Asn Gly Leu His Glu
 85 90 95

Ile Val Pro Gly Ala Phe Leu Gly Leu Gln Leu Val Lys Arg Leu His
 100 105 110
 Ile Asn Asn Asn Lys Ile Lys Ser Phe Arg Lys Gln Thr Phe Leu Gly
 115 120 125
 Leu Asp Asp Leu Glu Tyr Leu Gln Ala Asp Phe Asn Leu Leu Arg Asp
 130 135 140
 Ile Asp Pro Gly Ala Phe Gln Asp Leu Asn Lys Leu Glu Val Leu Ile
 145 150 155 160
 Leu Asn Asp Asn Leu Ile Ser Thr Leu Pro Ala Asn Val Phe Gln Tyr
 165 170 175
 Val Pro Ile Thr His Leu Asp Leu Arg Gly Asn Arg Leu Lys Thr Leu
 180 185 190
 Pro Tyr Glu Glu Val Leu Glu Gln Ile Pro Gly Ile Ala Glu Ile Leu
 195 200 205
 Leu Glu Asp Asn Pro Trp Asp Cys Thr Cys Asp Leu Leu Ser Leu Lys
 210 215 220
 Glu Trp Leu Glu Asn Ile Pro Lys Asn Ala Leu Ile Gly Arg Val Val
 225 230 235 240
 Cys Glu Ala Pro Thr Arg Leu Gln Gly Lys Asp Leu Asn Glu Thr Thr
 245 250 255
 Glu Gln Asp Leu Cys Pro Leu Lys Asn Arg Val Asp Ser Ser Leu Pro
 260 265 270
 Ala Pro Pro Ala Gln Glu Glu Thr Phe Ala Pro Gly Pro Leu Pro Thr
 275 280 285
 Pro Phe Lys Thr Asn Gly Gln Glu Asp His Ala Thr Pro Gly Ser Ala
 290 295 300
 Pro Asn Gly Gly Thr Lys Ile Pro Gly Asn Trp Gln Ile Lys Ile Arg
 305 310 315 320
 Pro Thr Ala Ala Ile Ala Thr Gly Ser Ser Arg Asn Lys Pro Leu Ala
 325 330 335
 Asn Ser Leu Pro Cys Pro Gly Gly Cys Ser Cys Asp His Ile Pro Gly
 340 345 350
 Ser Gly Leu Lys Met Asn Cys Asn Asn Arg Asn Val Ser Ser Leu Ala
 355 360 365
 Asp Leu Lys Pro Lys Leu Ser Asn Val Gln Glu Leu Phe Leu Arg Asp
 370 375 380

Asn Lys Ile His Ser Ile Arg Lys Ser His Phe Val Asp Tyr Lys Asn
 385 390 395 400
 Leu Ile Leu Leu Asp Leu Gly Asn Asn Asn Ile Ala Thr Val Glu Asn
 405 410 415
 Asn Thr Phe Lys Asn Leu Leu Asp Leu Arg Trp Leu Tyr Met Asp Ser
 420 425 430
 Asn Tyr Leu Asp Thr Leu Ser Arg Glu Lys Phe Ala Gly Leu Gln Asn
 435 440 445
 Leu Glu Tyr Leu Asn Val Glu Tyr Asn Ala Ile Gln Leu Ile Leu Pro
 450 455 460
 Gly Thr Phe Asn Ala Met Pro Lys Leu Arg Ile Leu Ile Leu Asn Asn
 465 470 475 480
 Asn Leu Leu Arg Ser Leu Pro Val Asp Val Phe Ala Gly Val Ser Leu
 485 490 495
 Ser Lys Leu Ser Leu His Asn Asn Tyr Phe Met Tyr Leu Pro Val Ala
 500 505 510
 Gly Val Leu Asp Gln Leu Thr Ser Ile Ile Gln Ile Asp Leu His Gly
 515 520 525
 Asn Pro Trp Glu Cys Ser Cys Thr Ile Val Pro Phe Lys Gln Trp Ala
 530 535 540
 Glu Arg Leu Gly Ser Glu Val Leu Met Ser Asp Leu Lys Cys Glu Thr
 545 550 555 560
 Pro Val Asn Phe Phe Arg Lys Asp Phe Met Leu Leu Ser Asn Asp Glu
 565 570 575
 Ile Cys Pro Gln Leu Tyr Ala Arg Ile Ser Pro Thr Leu Thr Ser His
 580 585 590
 Ser Lys Asn Ser Thr Gly Leu Ala Glu Thr Gly Thr His Ser Asn Ser
 595 600 605
 Tyr Leu Asp Thr Ser Arg Val Ser Ile Ser Val Leu Val Pro Gly Leu
 610 615 620
 Leu Leu Val Phe Val Thr Ser Ala Phe Thr Val Val Gly Met Leu Val
 625 630 635 640
 Phe Ile Leu Arg Asn Arg Lys Arg Ser Lys Arg Arg Asp Ala Asn Ser
 645 650 655
 Ser Ala Ser Glu Ile Asn Ser Leu Gln Thr Val Cys Asp Ser Ser Tyr

Trp His Asn Gly Pro Tyr Asn Ala Asp Gly Ala His Arg Val Tyr Asp 675	665	670
Cys Gly Ser His Ser Leu Ser Asp 690 695		
<210> 92		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 92		
gttggatctg ggcaacaata ac		
22		
<210> 93		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 93		
attgttgtgc aggctgagtt taag		
24		
<210> 94		
<211> 45		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 94		
ggtgttatata catggatagc aattacctgg acacgctgtc ccggg		
45		
<210> 95		
<211> 2226		
<212> DNA		
<213> Homo sapiens		
<400> 95		
agtgcactgc gtccccctgtta cccggcgccca gctgtgttcc tgacccccaga ataaactcagg 60		
gctgcaccgg gcctggcagc gctccgcaca catttctgt cgccggcttaa gggaaaactgt 120		
tgcccgctgg gcccgcggggg ggattcttgg cagttgggggg gtccgtcggg agcgagggcg 180		

ggggggaaagg	gagggggaac	cgggttgggg	aagccagctg	tagagggcg	tgaccgcgct	240
ccagacacag	ctctgcgtcc	tcgagcggga	cagatccaag	ttgggagcac	ctctgcgtgc	300
ggggcctcag	agaatgaggc	cggcgttgc	cctgtgcctc	ctctggcagg	cgctctggcc	360
ccccccgggc	ggccggcaac	accccactgc	cgaccgtgt	ggctgtcg	cctccggggc	420
ctgctacagc	ctgcaccacg	ctaccatgaa	ggggcaggcg	gccgaggagg	cctgcatact	480
gcgagggtggg	gcgctcagca	ccgtgcgtgc	gggcgcccag	ctgcgcgtg	tgctcgcgt	540
cctgcgggca	ggcccagggc	ccggaggggg	ctccaaagac	ctgtgttct	gggtcgcaact	600
ggagcgeagg	cgttcccact	geaccctgga	gaacgagct	ttgcggggtt	tctctggct	660
gtcctccgac	cccccgggtc	tcgaaagcga	cacgcgtgcag	tgggtggagg	agccccaaacg	720
ctcctgcacc	gcgcccggat	gcgcggtaact	ccaggccacc	ggtggggctcg	agccccgcagg	780
ctggaaaggag	atgcgatgcc	acctgcgcgc	caacggctac	ctgtgcagaat	accagttga	840
ggtcttgcgt	cctgcggccgc	gccccggggc	cgccctctaacc	tttagctatc	gcccgcctt	900
ccagctgcac	agcggccgtc	tggacttcag	tccacctggg	accgaggtga	gtgcgcctcg	960
ccggggacag	ctcccgatct	cagttaacttg	catcgcggac	gaaatcggcg	ctcgctggga	1020
caaactctcg	ggcgatgtgt	tgtgtccctg	ccccgggagg	tacctccgtg	ctggcaaatg	1080
cgcagagctc	cctaactgccc	tagacgactt	gggaggctt	gcctgcgaat	gtgcgtacggg	1140
cttcgagctg	gggaaggacg	gccgcttctg	tgtgaccagt	ggggaaggac	agccgaccct	1200
tggggggacc	gggtgtccca	ccaggcggcc	gcccggccact	gcaaccagcc	ccgtgcgcga	1260
gagaacatgg	ccaatcaggg	tcgacgagaa	gctgggagag	acaccacttg	tccctgaaca	1320
agacaatca	gtaacatcta	ttccctgagat	tcctcgatgg	ggatcacaga	gcacgatgtc	1380
tacccttcaa	atgtcccttc	aagccgagtc	aaaggccact	atcacccat	cagggagcgt	1440
gatttccaaag	ttaattcta	cgacttcctc	tgccactcct	caggtttcg	actcctcctc	1500
tgccgtggc	tccatatttg	tgagcacagc	agtagtagtg	tttgtgatct	tgaccatgac	1560
agtactgggg	cttgtcaago	tctgcattca	cgaaagcccc	tcttcccaac	caaggaagga	1620
gtctatgggc	ccggccggcc	tggagagtga	tcctgagccc	gctgctttgg	gctccagttc	1680
tgcacattgc	acaaaacaatg	gggtgaaagt	cggggactgt	gatctgcggg	acagagcaga	1740
gggtgccttg	ctggcggagt	cccccttctgg	ctctagtgtat	gcatagggaa	acaggggaca	1800
tgggcactcc	tgtgaacagt	ttttcacttt	tgatgaaacg	gggaaccaag	aggaacttac	1860
tttgttaact	gacaatttct	gcagaaaatcc	cccttcctct	aaattccctt	tactccactg	1920
aggagctaaa	tcagaactgc	acactccctc	cctgtatgata	gaggaagtgg	aagtgcctt	1980
aggatggtga	tactggggga	ccgggttagtg	ctggggagag	atattttctt	atgtttattc	2040
ggagaatttg	gagaagtgtat	tgaactttc	aagacattgg	aaacaaatag	aacacaatat	2100
aatttacatt	aaaaaataat	ttctaccaaa	atggaaagga	aatgttctat	gttggtcagg	2160
ctaggagtat	attggttcga	aatcccaggg	aaaaaaataa	aaataaaaaa	ttaaaggatt	2220
qtqat						2226

<210> 96
<211> 490
<212> PRT
<213> *Homo sapiens*

<400> 96
Met Arg Pro Ala Phe Ala Leu Cys Leu Leu Trp Gln Ala Leu Trp Pro
1 5 10 15

Gly Pro Gly Gly Glu His Pro Thr Ala Asp Arg Ala Gly Cys Ser
20 25 30

Ala Ser Gly Ala Cys Tyr Ser Leu His His Ala Thr Met Lys Arg Gln
35 40 45

Ala Ala Glu Glu Ala Cys Ile Leu Arg Gly Gly Ala Leu Ser Thr Val
50 55 60

Arg Ala Gly Ala Glu Leu Arg Ala Val Leu Ala Leu Leu Arg Ala Gly
 65 70 75 80
 Pro Gly Pro Gly Gly Ser Lys Asp Leu Leu Phe Trp Val Ala Leu
 85 90 95
 Glu Arg Arg Arg Ser His Cys Thr Leu Glu Asn Glu Pro Leu Arg Gly
 100 105 110
 Phe Ser Trp Leu Ser Ser Asp Pro Gly Gly Leu Glu Ser Asp Thr Leu
 115 120 125
 Gln Trp Val Glu Glu Pro Gln Arg Ser Cys Thr Ala Arg Arg Cys Ala
 130 135 140
 Val Leu Gln Ala Thr Gly Gly Val Glu Pro Ala Gly Trp Lys Glu Met
 145 150 155 160
 Arg Cys His Leu Arg Ala Asn Gly Tyr Leu Cys Lys Tyr Gln Phe Glu
 165 170 175
 Val Leu Cys Pro Ala Pro Arg Pro Gly Ala Ala Ser Asn Leu Ser Tyr
 180 185 190
 Arg Ala Pro Phe Gln Leu His Ser Ala Ala Leu Asp Phe Ser Pro Pro
 195 200 205
 Gly Thr Glu Val Ser Ala Leu Cys Arg Gly Gln Leu Pro Ile Ser Val
 210 215 220
 Thr Cys Ile Ala Asp Glu Ile Gly Ala Arg Trp Asp Lys Leu Ser Gly
 225 230 235 240
 Asp Val Leu Cys Pro Cys Pro Gly Arg Tyr Leu Arg Ala Gly Lys Cys
 245 250 255
 Ala Glu Leu Pro Asn Cys Leu Asp Asp Leu Gly Gly Phe Ala Cys Glu
 260 265 270
 Cys Ala Thr Gly Phe Glu Leu Gly Lys Asp Gly Arg Ser Cys Val Thr
 275 280 285
 Ser Gly Glu Gly Gln Pro Thr Leu Gly Gly Thr Gly Val Pro Thr Arg
 290 295 300
 Arg Pro Pro Ala Thr Ala Thr Ser Pro Val Pro Gln Arg Thr Trp Pro
 305 310 315 320
 Ile Arg Val Asp Glu Lys Leu Gly Glu Thr Pro Leu Val Pro Glu Gln
 325 330 335
 Asp Asn Ser Val Thr Ser Ile Pro Glu Ile Pro Arg Trp Gly Ser Gln

340	345	350
Ser Thr Met Ser Thr Leu Gln Met Ser Leu Gln Ala Glu Ser Lys Ala		
355	360	365
Thr Ile Thr Pro Ser Gly Ser Val Ile Ser Lys Phe Asn Ser Thr Thr		
370	375	380
Ser Ser Ala Thr Pro Gln Ala Phe Asp Ser Ser Ala Val Val Phe		
385	390	395
Ile Phe Val Ser Thr Ala Val Val Val Leu Val Ile Leu Thr Met Thr		
405	410	415
Val Leu Gly Leu Val Lys Leu Cys Phe His Glu Ser Pro Ser Ser Gln		
420	425	430
Pro Arg Lys Glu Ser Met Gly Pro Pro Gly Leu Glu Ser Asp Pro Glu		
435	440	445
Pro Ala Ala Leu Gly Ser Ser Ser Ala His Cys Thr Asn Asn Gly Val		
450	455	460
Lys Val Gly Asp Cys Asp Leu Arg Asp Arg Ala Glu Gly Ala Leu Leu		
465	470	475
Ala Glu Ser Pro Leu Gly Ser Ser Asp Ala		
485	490	
<210> 97		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 97		
tggaaggaga tgcgatgcca cctg		24
<210> 98		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 98		
tgaccagtgg ggaaggacag		20

<210> 99		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 99		
acagagcaga gggtgcccttg		20
<210> 100		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 100		
tcagggacaa gtgggtctc tccc		24
<210> 101		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 101		
tcagggagg agtgtgcagt tctg		24
<210> 102		
<211> 50		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 102		
acagctcccg atctcagtta ctgcgcgc ggacgaaatc ggcgctcgct		50
<210> 103		
<211> 2026		
<212> DNA		
<213> Homo sapiens		

<400> 103

ggacgcgctg ggattcagca gtggcctgtg gctgccagag cagtcctca gggaaacta 60
agcgctgagt cagacggcac cataatcgcc tttaaaagtg cctccgcct gccggccg 120
tatcccccg ctacctggc cgccccggg cggtgccgc gtgagaggga ggcgcggg 180
agccgagcgc cggtgtgagc cagcgctgct gccagtgtga gcccgggtg gagcgcgg 240
ggtgcggagg ggctgtgtg ccggcgcgcg cggctgggg tgaaacccc gagcgtctac 300
gctgccatga gggcgcgaa cgcctggcg ccactctgcc tgctgtggc tgccgcacc 360
cagctctcgc ggcagcagtc cccagagaga cctgtttca catgtgtgg cattctact 420
ggagagtcg gatttattgg cagtgaaggt ttctctggag tgtacccctt aaatagcaa 480
tgtacttgg aaatcacagt tccccaaggaa aagtagtgc ttctcaattt ccgattata 540
gacctcgaga gtgacaacct gtgcgcgtat gactttgtgg atgtgtacaa tgccatgcc 600
aatggccagc gcattggcg cttctgtggc actttccggc ctggagccct tggtccagt 660
ggcaacaaga tgatggtca gatgattct gatgccaaca cagctgcaaa tggcttcatg 720
gcccatttcc cgcgtgtga accaaacgaa agaggggatc agtattgtgg aggactcctt 780
gacagaccc tcggctttaaaaacccca aactggccag accgggatta ccctgcagga 840
gtcaacttgc tggtgcacat tgtagccccaa aagaatcagc ttatagaatt aaagttttag 900
aagtttgatg tggagcgaga taactactgc cgatatgatt atgtggctgt gttaatggc 960
ggggaaagtca acgatgttag aagaatttggaa aagtattgtg tgatagtc acctgcgc 1020
attgtgtctg agagaaatga acttcttatt cagttttat cagacttaag tttaactgca 1080
gatgggttta ttgtcacta catattcagg caaaaaaaaac tgcctacaac tacagaacag 1140
cctgtcacca ccacattccc tgtaaccacg gttttaaaac ccaccgtgc cttgtgtcaa 1200
caaaaagtta gacggacggg gactctggag ggcaattatt gttcaagtga ctttgtatta 1260
gccccactg ttatcacaac catcactcgc gatgggagtt tgcacccac agtctcgatc 1320
atcaacatct acaaagaggg aaatttggcg attcagcagg cgggcaagaa catgagtgc 1380
aggctgactg tcgtctgcaa gcaatgcct ctcctcagaa gaggtctaaa ttacattatt 1440
atgggccaag tagtgtaaga tggcgaggc aaaatcatgc caaacagctt tatcatgatg 1500
ttcaagacca agaatcagaa gctcctggat gcctaaaaaa ataagcaatg ttaacagtga 1560
actgtgtcca tttaagctgt attctgcatt tgoccttggaa agatctatgt tctctcagta 1620
aaaaaaaaaa tacttataaa attacatatt ctgaaagagg attccgaaag atgggactgg 1680
ttgactttc acatgatgga ggtatgaggc ctccgagata gctgaggaa gttcttgcc 1740
tgctgtcaga ggacgacta tctgattggaa aacctgccc cttagtgccg tgataggaag 1800
ctaaaagtgt caagcgttga cagcttggaa gcgttattt atacatctt gtaaaaggat 1860
attttagaaat tgagttgtgt gaagatgtca aaaaaagatt tttagaagtgc aatatttata 1920
gtgttattt tttcaccttc aaggccttgc cctgagggtgt tacaatcttgc tcttgcgttt 1980
tctaaatcaa tgcttaataa aatattttt aqaaaaaaa aaaaaaa 2026

<210> 104

<211> 415

<212> PRT

<213> Homo sapiens

<400> 104

Met Arg Gly Ala Asn Ala Trp Ala Pro Leu Cys Leu Leu Leu Ala Ala
1 5 10 15

Ala Thr Gln Leu Ser Arg Gln Gln Ser Pro Glu Arg Pro Val Phe Thr
20 25 30

Cys Gly Gly Ile Leu Thr Gly Glu Ser Gly Phe Ile Gly Ser Glu Gly
35 40 45

Phe Pro Gly Val Tyr Pro Pro Asn Ser Lys Cys Thr Trp Lys Ile Thr
 50 55 60

Val Pro Glu Gly Lys Val Val Val Leu Asn Phe Arg Phe Ile Asp Leu
 65 70 75 80

Glu Ser Asp Asn Leu Cys Arg Tyr Asp Phe Val Asp Val Tyr Asn Gly
 85 90 95

His Ala Asn Gly Gln Arg Ile Gly Arg Phe Cys Gly Thr Phe Arg Pro
 100 105 110

Gly Ala Leu Val Ser Ser Gly Asn Lys Met Met Val Gln Met Ile Ser
 115 120 125

Asp Ala Asn Thr Ala Gly Asn Gly Phe Met Ala Met Phe Ser Ala Ala
 130 135 140

Glu Pro Asn Glu Arg Gly Asp Gln Tyr Cys Gly Gly Leu Leu Asp Arg
 145 150 155 160

Pro Ser Gly Ser Phe Lys Thr Pro Asn Trp Pro Asp Arg Asp Tyr Pro
 165 170 175

Ala Gly Val Thr Cys Val Trp His Ile Val Ala Pro Lys Asn Gln Leu
 180 185 190

Ile Glu Leu Lys Phe Glu Lys Phe Asp Val Glu Arg Asp Asn Tyr Cys
 195 200 205

Arg Tyr Asp Tyr Val Ala Val Phe Asn Gly Gly Glu Val Asn Asp Ala
 210 215 220

Arg Arg Ile Gly Lys Tyr Cys Gly Asp Ser Pro Pro Ala Pro Ile Val
 225 230 235 240

Ser Glu Arg Asn Glu Leu Leu Ile Gln Phe Leu Ser Asp Leu Ser Leu
 245 250 255

Thr Ala Asp Gly Phe Ile Gly His Tyr Ile Phe Arg Pro Lys Lys Leu
 260 265 270

Pro Thr Thr Thr Glu Gln Pro Val Thr Thr Phe Pro Val Thr Thr
 275 280 285

Gly Leu Lys Pro Thr Val Ala Leu Cys Gln Gln Lys Cys Arg Arg Thr
 290 295 300

Gly Thr Leu Glu Gly Asn Tyr Cys Ser Ser Asp Phe Val Leu Ala Gly
 305 310 315 320

Thr Val Ile Thr Thr Ile Thr Arg Asp Gly Ser Leu His Ala Thr Val
 325 330 335

Ser Ile Ile Asn Ile Tyr Lys Glu Gly Asn Leu Ala Ile Gln Gln Ala

340	345	350
-----	-----	-----

Gly Lys Asn Met Ser Ala Arg Leu Thr Val Val Cys Lys Gln Cys Pro
 355 360 365

Leu Leu Arg Arg Gly Leu Asn Tyr Ile Ile Met Gly Gln Val Gly Glu
 370 375 380

Asp Gly Arg Gly Lys Ile Met Pro Asn Ser Phe Ile Met Met Phe Lys
 385 390 395 400

Thr Lys Asn Gln Lys Leu Leu Asp Ala Leu Lys Asn Lys Gln Cys
 405 410 415

<210> 105
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 105
ccgattcata gacctcgaga gt 22

<210> 106
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 106
gtcaaggagt cctccacaat ac 22

<210> 107
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 107
gtgtacaatg gccatgccaa tggccagcgc attggccgct tctgt 45

<210> 108
<211> 1838
<212> DNA

<213> Homo sapiens

<400> 108

cggacgcgtg	ggccggacgcg	tgggcggccc	acggcgtttcg	cgggctgggg	cggtcgcttc	60
ttccttctcc	gtggcctacg	agggtcccc	gcctgggtaa	agatggcccc	atggccccc	120
aagggcctag	tccagctgt	gctctgggc	ctcagcctct	tcctcaacct	cccaggacct	180
atctggctcc	agccctctcc	acctccccag	tcttctcccc	cgccctcagcc	ccatccgtgt	240
catacctgcc	ggggacttgtt	tgacagcttt	aacaaggggc	tggagagaac	catccggac	300
aactttggag	gtgaaaacac	tgcctggag	gaagagaatt	tgtccaaata	caaagacagt	360
gagaccgcgc	tggtagaggt	gctggagggt	gtgtcagca	agtcaactt	cgagtgccac	420
cgcctgtgg	agctgagtga	ggagctgggt	gagagctgg	ggtttcacaa	gcagcaggag	480
gccccggacc	tcttcagtg	gtgtgctca	gattccctga	agctctgtc	ccccgcaggc	540
accttcgggc	cctctgtcct	tccctgtcct	gggggaacag	agaggccctg	cgtggctac	600
gggcagtgtg	aaggagaagg	gacacgaggg	ggcagcgggc	actgtactg	ccaagccggc	660
tacgggggtg	aggcctgtgg	ccagtggtgc	cttggctact	ttgaggcaga	acgcaacgccc	720
agccatctgg	tatgttcggc	ttgttttggc	ccctgtgccc	gatgctcagg	acctgaggaa	780
tcaaactgtt	tgcaatgcaa	gaagggctgg	gcctgtcatc	acctcaagtg	tgttagacatt	840
gatgagtgtg	gcacagaggg	agccaactgt	ggagctgacc	aattctgcgt	gaacactgag	900
ggctccatcg	agtgcgcgaga	ctgtgcacag	gcctgcctag	gctgcattgg	ggcagggcca	960
ggtcgctgt	agaagtgtag	ccctggctat	cagcagggtgg	gctccaagtg	tctcgatgtg	1020
gatgagtgtg	agacagaggt	gtgtccggga	gagaacaagc	agtgtaaaaa	caccgagggc	1080
ggttatcgct	gcatctgtgc	cgagggctac	aagcagatgg	aaggcatctg	tgtgaaggag	1140
cagatccca	agtccagcagg	cttcttctca	gagatgacag	aagacgagtt	ggtggtctg	1200
cagcagatgt	tctttggcat	catcatctgt	gcaactggcca	cgctggctgc	taagggcgac	1260
ttgggtgtca	ccggccatctt	cattggggct	gtggcggcca	tgactgcta	ctgggtgtca	1320
gagcgcagtg	accgtgtgt	ggagggcttc	atcaagggca	gataatcgcg	gccaccacac	1380
gttaggaccc	ctcccaccca	cgctgcccc	agagcttggg	ctggccctct	gctggacact	1440
caggacagct	tggtttattt	ttgagagtgg	ggttaagcacc	cctacctgcc	ttacagagca	1500
gcccaggtac	ccaggccccgg	gcagacaagg	ccctggggt	aaaaaagtgc	cctgaagggtg	1560
gataccatga	gctttcacc	tggcggggac	tggcaggcgtt	cacaatgtgt	gaatttcaaa	1620
agtttttctt	taatggtggc	tgcttagagct	ttggcccttg	cttaggatta	ggtggccttc	1680
acaggggtgg	ggccatcaca	gctccctctt	gcaagctgca	tgctgcagg	tcctgttctg	1740
tgttacccac	atccccacac	ccattgcca	cttattttatt	catctcagga	aataaaagaaa	1800
ggtcttgaa	agtaaaaaaaaa	aaaaaaaaaa	aaaaaaaaaa			1838

<210> 109

<211> 420

<212> PRT

<213> Homo sapiens

<400> 109

Met Ala Pro Trp Pro Pro Lys Gly Leu Val Pro Ala Val Leu Trp Gly
 1 5 10 15

Leu Ser Leu Phe Leu Asn Leu Pro Gly Pro Ile Trp Leu Gln Pro Ser
20 25 30

Pro Pro Pro Gln Ser Ser Pro Pro Pro Gln Pro His Pro Cys His Thr
35 40 45

Cys Arg Gly Leu Val Asp Ser Phe Asn Lys Gly Leu Glu Arg Thr Ile
50 55 60

Arg Asp Asn Phe Gly Gly Asn Thr Ala Trp Glu Glu Glu Asn Leu
 65 70 75 80

Ser Lys Tyr Lys Asp Ser Glu Thr Arg Leu Val Glu Val Leu Glu Gly
 85 90 95

Val Cys Ser Lys Ser Asp Phe Glu Cys His Arg Leu Leu Glu Leu Ser
 100 105 110

Glu Glu Leu Val Glu Ser Trp Trp Phe His Lys Gln Gln Glu Ala Pro
 115 120 125

Asp Leu Phe Gln Trp Leu Cys Ser Asp Ser Leu Lys Leu Cys Cys Pro
 130 135 140

Ala Gly Thr Phe Gly Pro Ser Cys Leu Pro Cys Pro Gly Gly Thr Glu
 145 150 155 160

Arg Pro Cys Gly Gly Tyr Gly Gln Cys Glu Gly Glu Gly Thr Arg Gly
 165 170 175

Gly Ser Gly His Cys Asp Cys Gln Ala Gly Tyr Gly Glu Ala Cys
 180 185 190

Gly Gln Cys Gly Leu Gly Tyr Phe Glu Ala Glu Arg Asn Ala Ser His
 195 200 205

Leu Val Cys Ser Ala Cys Phe Gly Pro Cys Ala Arg Cys Ser Gly Pro
 210 215 220

Glu Glu Ser Asn Cys Leu Gln Cys Lys Gly Trp Ala Leu His His
 225 230 235 240

Leu Lys Cys Val Asp Ile Asp Glu Cys Gly Thr Glu Gly Ala Asn Cys
 245 250 255

Gly Ala Asp Gln Phe Cys Val Asn Thr Glu Gly Ser Tyr Glu Cys Arg
 260 265 270

Asp Cys Ala Lys Ala Cys Leu Gly Cys Met Gly Ala Gly Pro Gly Arg
 275 280 285

Cys Lys Lys Cys Ser Pro Gly Tyr Gln Gln Val Gly Ser Lys Cys Leu
 290 295 300

Asp Val Asp Glu Cys Glu Thr Glu Val Cys Pro Gly Glu Asn Lys Gln
 305 310 315 320

Cys Glu Asn Thr Glu Gly Gly Tyr Arg Cys Ile Cys Ala Glu Gly Tyr
 325 330 335

Lys Gln Met Glu Gly Ile Cys Val Lys Glu Gln Ile Pro Glu Ser Ala
 340 345 350

Gly Phe Ser Glu Met Thr Glu Asp Glu Leu Val Val Leu Gln Gln
355 360 365

Met Phe Phe Gly Ile Ile Cys Ala Leu Ala Thr Leu Ala Ala Lys
370 375 380

Gly Asp Leu Val Phe Thr Ala Ile Phe Ile Gly Ala Val Ala Ala Met
385 390 395 400

Thr Gly Tyr Trp Leu Ser Glu Arg Ser Asp Arg Val Leu Glu Gly Phe
405 410 415

Ile Lys Gly Arg
420

<210> 110
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 110
cctggctatc agcaggtggg ctccaaagtgt ctcgatgtgg atgagtgta 50

<210> 111
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 111
attctgcgtg aacactgagg gc 22

<210> 112
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 112
atctgcttgt agccctcgac ac 22

<210> 113

Glu Glu Leu Val Ile Pro Thr His Val Arg Ala Gln Tyr Val Ala Leu
 50 55 60

Leu Gln Arg Ser His Gly Asp Arg Ser Arg Gly Lys Arg Phe Ser Gln
 65 70 75 80

Ser Phe Arg Glu Val Ala Gly Arg Phe Leu Ala Leu Glu Ala Ser Thr
 85 90 95

His Leu Leu Val Phe Gly Met Glu Gln Arg Leu Pro Pro Asn Ser Glu
 100 105 110

Leu Val Gln Ala Val Leu Arg Leu Phe Gln Glu Pro Val Pro Lys Ala
 115 120 125

Ala Leu His Arg His Gly Arg Leu Ser Pro Arg Ser Ala Arg Ala Arg
 130 135 140

Val Thr Val Glu Trp Leu Arg Val Arg Asp Asp Gly Ser Asn Arg Thr
 145 150 155 160

Ser Leu Ile Asp Ser Arg Leu Val Ser Val His Glu Ser Gly Trp Lys
 165 170 175

Ala Phe Asp Val Thr Glu Ala Val Asn Phe Trp Gln Gln Leu Ser Arg
 180 185 190

Pro Arg Gln Pro Leu Leu Gln Val Ser Val Gln Arg Glu His Leu
 195 200 205

Gly Pro Leu Ala Ser Gly Ala His Lys Leu Val Arg Phe Ala Ser Gln
 210 215 220

Gly Ala Pro Ala Gly Leu Gly Glu Pro Gln Leu Glu Leu His Thr Leu
 225 230 235 240

Asp Leu Gly Asp Tyr Gly Ala Gln Gly Asp Cys Asp Pro Glu Ala Pro
 245 250 255

Met Thr Glu Gly Thr Arg Cys Cys Arg Gln Glu Met Tyr Ile Asp Leu
 260 265 270

Gln Gly Met Lys Trp Ala Glu Asn Trp Val Leu Glu Pro Pro Gly Phe
 275 280 285

Leu Ala Tyr Glu Cys Val Gly Thr Cys Arg Gln Pro Pro Glu Ala Leu
 290 295 300

Ala Phe Lys Trp Pro Phe Leu Gly Pro Arg Gln Cys Ile Ala Ser Glu
 305 310 315 320

Thr Asp Ser Leu Pro Met Ile Val Ser Ile Lys Glu Gly Gly Arg Thr
 325 330 335

Arg Pro Gln Val Val Ser Leu Pro Asn Met Arg Val Gln Lys Cys Ser
 340 345 350

Cys Ala Ser Asp Gly Ala Leu Val Pro Arg Arg Leu Gln Pro
 355 360 365

<210> 115
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 115
 aggactgccca taacttgcct g 21

<210> 116
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 116
 ataggagttg aagcagcgct gc 22

<210> 117
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 117
 tgtgtggaca tagacgagtg ccgctaccgc tactgccagc accgc 45

<210> 118
<211> 1857
<212> DNA
<213> Homo sapiens

<400> 118
 gtctgttccc aggagtccctt cggcggttgtgt tggtcagtg gcctgatcgc gatggggaca 60
 aaggcgcaag tcgagaggaa actgttgtgc ctcttcataat tggcgatccct gttgtgctcc 120
 ctggcattgg gcagtgttac agtgcactct tctgaacctg aagtcaaat tcctgagaat 180

aatcctgtga agttgtccctg tgccctactcg ggcttttctt cttccccgtgt ggagtggaaag 240
tttgaccaag gagacaccac cagactcggt tgctataata acaagatcac agtttcctat 300
gaggaccggg tgaccttctt gccaactgggt atcacctca agtccgtgac acggaaagac 360
actgggacat acacttgtat ggtctctgag gaaggcggca acagctatgg ggaggtaaag 420
gtcaagtcgtca tcgtgttctt gcctccatcc aagcctacag ttaacatccc ctcccttgcc 480
accattgggaccgggcagt gctgacatgc tcagaacaag atggttcccc accttctgaa 540
tacacctgggt tcaaagatgg gatagtgtat cctacgaatc caaaaagcac ccgtgccttc 600
agcaacttccatgtcctt gaatccccaca acaggagac ttggtctttga tccccctgtca 660
gcctctgata ctggagaata cagctgtgag gcacggaaatg ggtatgggac acccatgact 720
tcaaatgtctg tgccatggat agctgtggag cggaatgtgg gggtcatctg ggcagccgtc 780
cttgcataacct tgattctcctt gggaaatcttgc gtttttggca tctggtttgc ctatagccga 840
ggccactttg acagaacaaa gaaaggact tcgagtaaga aggtgatttta cagccagccct 900
agtgcggcgtt gtgaaggaga attcaaacag acctcgatcat tcctgggtgtg agcctggtcg 960
gtccacccgc tatcatctgc atttgccttta otcaggtgtctt accggactct gcccctgtat 1020
gtctgttagtt tcacaggatg ctttattttgt ctcttacacc ccacagggcc ccctacttct 1080
tcggatgtgtt tttaataat gtcagctatg tgccccatcc tccttcatgc cctccctccc 1140
tttcctacca ctgctgagtg gcctggaaact tgtttaaagt gtttattccc catttctttg 1200
agggatcagg aaggaatctt gggtatggca ttgacttccc ttcttaagtag acagaaaaaa 1260
tggcgggggtt cgccaggatc tgcaactcaac tgccccaccc gctggcaggg atcttgaat 1320
aggtatcttgc agcttggttc tgggctctt ccttgcgtac tgacgaccag ggccagctgt 1380
tctagagcgg gaatttagagg cttagagccgc tggaaatgggtt gtttgggtat gacactgggg 1440
tccttccatc tctggggccc actctcttctt gtcttcccat gggaaagtgc actgggatcc 1500
ctctgccttgc tcctcctgaa tacaagctga ctgacattga ctgtgtctgt ggaaaatggg 1560
agcttcttgcgtt gtggagagca tagtaaattt tcagagaact tgaagccaaa aggatttaaa 1620
accgctgtctc taaagaaaaag aaaactggag gctggggcgc a gttggctcaag cctgtatcc 1680
cagaggctga ggcaggcggatc tccacctgagg tcggggatcc gggatcagcc tgaccaacat 1740
ggagaaaaaccct tactggaaat acaaagttag ccaggcatgg tggtgcatgc ctgtgttccc 1800
agctgcttcag gagcctggca acaagagca aactccagct caaaaaaaaaaaaaaaa 1857

<210> 119

<211> 299

<212> PRT

<213> Homo sapiens

<400> 119

Met Gly Thr Lys Ala Gln Val Glu Arg Lys Leu Leu Cys Leu Phe Ile
 1 5 10 15

Leu Ala Ile Leu Leu Cys Ser Leu Ala Leu Gly Ser Val Thr Val His
20 25 30

Ser Ser Glu Pro Glu Val Arg Ile Pro Glu Asn Asn Pro Val Lys Leu
35 40 45

Ser Cys Ala Tyr Ser Gly Phe Ser Ser Pro Arg Val Glu Trp Lys Phe
50 55 60

Asp Gln Gly Asp Thr Thr Arg Leu Val Cys Tyr Asn Asn Lys Ile Thr
65 70 75 80

Ala Ser Tyr Glu Asp Arg Val Thr Phe Leu Pro Thr Gly Ile Thr Phe
85 90 95

Lys Ser Val Thr Arg Glu Asp Thr Gly Thr Tyr Thr Cys Met Val Ser
 100 105 110

Glu Glu Gly Gly Asn Ser Tyr Gly Glu Val Lys Val Lys Leu Ile Val
 115 120 125

Leu Val Pro Pro Ser Lys Pro Thr Val Asn Ile Pro Ser Ser Ala Thr
 130 135 140

Ile Gly Asn Arg Ala Val Leu Thr Cys Ser Glu Gln Asp Gly Ser Pro
 145 150 155 160

Pro Ser Glu Tyr Thr Trp Phe Lys Asp Gly Ile Val Met Pro Thr Asn
 165 170 175

Pro Lys Ser Thr Arg Ala Phe Ser Asn Ser Ser Tyr Val Leu Asn Pro
 180 185 190

Thr Thr Gly Glu Leu Val Phe Asp Pro Leu Ser Ala Ser Asp Thr Gly
 195 200 205

Glu Tyr Ser Cys Glu Ala Arg Asn Gly Tyr Gly Thr Pro Met Thr Ser
 210 215 220

Asn Ala Val Arg Met Glu Ala Val Glu Arg Asn Val Gly Val Ile Val
 225 230 235 240

Ala Ala Val Leu Val Thr Leu Ile Leu Gly Ile Leu Val Phe Gly
 245 250 255

Ile Trp Phe Ala Tyr Ser Arg Gly His Phe Asp Arg Thr Lys Lys Gly
 260 265 270

Thr Ser Ser Lys Lys Val Ile Tyr Ser Gln Pro Ser Ala Arg Ser Glu
 275 280 285

Gly Glu Phe Lys Gln Thr Ser Ser Phe Leu Val
 290 295

<210> 120
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 120
 tcgcggagct gtgttctgtt tccc

<210> 121
 <211> 50

<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 121		
tgatcgcgat gggcacaaag gcgcaggctc gagaggaaac tgggtgtgcct		50
<210> 122		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 122		
acacctggtt caaagatggg		20
<210> 123		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 123		
taggaagagt tgctgaaggc acgg		24
<210> 124		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 124		
ttgccttact caggtgtac		20
<210> 125		
<211> 20		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		

oligonucleotide probe

<400> 125
actcagcagt ggttaggaaag 20

<210> 126
<211> 1210
<212> DNA
<213> Homo sapiens

<400> 126
cagcgcgtgg ccggcgccgc tgtgggaca gcatgagcgg cggttggatg ggcagggttg 60
gagcgtggcg aacaggggct ctgggcctgg cgctgtgtc gtgtctggc ctcggactag 120
gcctggggc cgccgcgac ccgcgttcca ccccgcaccc tgcccaggcc gcaggcccc 180
gtcaggctc gtcccaccc accaagttcc agtgcgcac cagtggctta tgcgtcccc 240
tcacctggcg ctgcgacagg gacttggact gcagegatgg cagcgtatgg gaggagtca 300
ggattgagcc atgtacccag aaagggcaat gcccacccgc ccctggcctc ccctggccct 360
gcacccggcgt cagtgtactgc tctggggaa ctgacaagaa actgcgcac ac 420
tggcctgcct agcaggcgag ctccgttgca cgctgagcga tgactgcatt ccactcacgt 480
ggcgctgcga cggccacccca gactgtcccg actccagcga cgagctggc tggaaaccca 540
atgagatcc cccggaaagg gatgccacaa ccatggggcc ccctgtgacc ctggagagtg 600
tcacctctct caggaatgcc acaaccatgg ggcccccgt gaccctggag agtgcctcc 660
ctgtcgaa tgccacatcc tcctctgccc gagaccagtc tggaaaccca actgcctatg 720
ggtttattgc agtgcgtcg gtgctcgtg caagcctggt caccgcaccc ctcctccctt 780
tgtcctggct ccgagcccgag gagcgcctcc gcccactggg gtactgggt gccatgaagg 840
agtccctgtc gctgtcgaa cagaagaccc cgctgcctg aggacaagca cttggccacca 900
ccgtcactca gcccctggcg tagccggaca ggaggagagc agtgcgtcg atgggtaccc 960
gggcacacca gcccctcgag acctgagttc ttctggccac gtggaaaccc tcacccgagc 1020
tcctgcagaa gtggccctgg agattgggg tccctggaca ctcctatgg agatccgggg 1080
agctaggatg gggAACCTGC cacagccaga actgaggggc tggcccccagg cagctcccg 1140
gggttagaac gcccctgtgc ttaagacact ccctgtgcc ccgtctgagg gtggcgatttta 1200
aagttgttc 1210

<210> 127
<211> 282
<212> PRT
<213> Homo sapiens

<400> 127
Met Ser Gly Gly Trp Met Ala Gln Val Gly Ala Trp Arg Thr Gly Ala
1 5 10 15

Leu Gly Leu Ala Leu Leu Leu Leu Gly Leu Gly Leu Gly Leu Glu
20 25 30

Ala Ala Ala Ser Pro Leu Ser Thr Pro Thr Ser Ala Gln Ala Ala Gly
35 40 45

Pro Ser Ser Gly Ser Cys Pro Pro Thr Lys Phe Gln Cys Arg Thr Ser
50 55 60

Gly Leu Cys Val Pro Leu Thr Trp Arg Cys Asp Arg Asp Leu Asp Cys
65 70 75 80

Ser Asp Gly Ser Asp Glu Glu Glu Cys Arg Ile Glu Pro Cys Thr Gln
 85 90 95

 Lys Gly Gln Cys Pro Pro Pro Pro Gly Leu Pro Cys Pro Cys Thr Gly
 100 105 110

 Val Ser Asp Cys Ser Gly Gly Thr Asp Lys Lys Leu Arg Asn Cys Ser
 115 120 125

 Arg Leu Ala Cys Leu Ala Gly Glu Leu Arg Cys Thr Leu Ser Asp Asp
 130 135 140

 Cys Ile Pro Leu Thr Trp Arg Cys Asp Gly His Pro Asp Cys Pro Asp
 145 150 155 160

 Ser Ser Asp Glu Leu Gly Cys Gly Thr Asn Glu Ile Leu Pro Glu Gly
 165 170 175

 Asp Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val Thr Ser
 180 185 190

 Leu Arg Asn Ala Thr Thr Met Gly Pro Pro Val Thr Leu Glu Ser Val
 195 200 205

 Pro Ser Val Gly Asn Ala Thr Ser Ser Ser Ala Gly Asp Gln Ser Gly
 210 215 220

 Ser Pro Thr Ala Tyr Gly Val Ile Ala Ala Ala Val Leu Ser Ala
 225 230 235 240

 Ser Leu Val Thr Ala Thr Leu Leu Leu Ser Trp Leu Arg Ala Gln
 245 250 255

 Glu Arg Leu Arg Pro Leu Gly Leu Leu Val Ala Met Lys Glu Ser Leu
 260 265 270

 Leu Leu Ser Glu Gln Lys Thr Ser Leu Pro
 275 280

 <210> 128
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

 <400> 128
 aagttccagt gccgcaccag tggc

 <210> 129

```

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 129
ttggttccac agccgagctc gtcg                                24

<210> 130
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 130
gaggaggagt gcaggattga gccatgtacc cagaaaggc aatgccacc      50

<210> 131
<211> 1843
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1837)
<223> a, t, c or g

<400> 131
cccacgcgtc cggctctcgct cgctcgcgca gcggcgccag cagaggtcgc gcacagatgc 60
gggttagact ggcgggggga ggaggcgag gagggaaagga agctgcattgc atgagaccca 120
cagactcttg caagctggat gcctctgtg gatgaaaat gtatcatgga atgaacccga 180
gcaatggaga tggatttcta gagcagcagc agcagcagca gcaacctcgat tccccccaga 240
gactcttggc cgtgatcctg tggtttcagc tggcgctgtg ctccggccct gcacagctca 300
cggcggtt cgatgaccc ttcaaggatgtt ctgaccccgat cattcccgag aatggcttca 360
ggaccccccag cggagggtt ttctttaaag gctctgttagc ccgatttccat tgccaagacg 420
gattcaagct gaagggcgct acaaagagac tggatgttgc gatattttat ggaaccttag 480
gctggatccc aagtgataat tccatctgtg tgcaagaaga ttgcccgtatc cctcaaatcg 540
aagatgctga gattcataaac aagacatata gacatggaga gaagctataatc atcaacttgtc 600
atgaaggatt caagatccgg taccccgacc tacacaatat ggtttcatta tgctcgatg 660
atgaaacgtt gaataatctg cccatctgtc aaggctgcct gagacctcta gcctcttcta 720
atggctatgt aaacatcttctt gagctccaga cctccttccc ggtggggact gtatcttc 780
atcgctgtttt tcccggtt aaacttgcgtt ggtctgcgtt tcttgcgttgc ttacaaaacc 840
ttatctggtc gtccagccca ccccggtgcc ttgctctggat agcccaagtc tgtccactac 900
ctccaaatggt gagtcacggat gatttcgtt gccaccccgat gccttgcgttgc cgctacaacc 960
acggaaactgt ggtggagtt tactgcgtt ctggctacag cctcaccaggc gactacaagt 1020
acatcacctg ccagtatggat gaggatggatcc tttttatca agtctactgc atcaaatcg 1080
agcaaaacgtt gcccagcacc catgagacccc tcctgaccac gtggaaagatt gtggcggttca 1140

```

cggcaaccag tgtgtgtctg gtgtgtgtgc tcgtcatcct gccaggatg ttccagacca 1200
 agttcaaggc ccacttccc cccaggggc ctccccggag ttccagcagt gaccctgact 1260
 ttgtggtgt agacggcgtg cccgtcatgc tcccgctcta tgacgaagct gtgagtgccg 1320
 gcttgagtgc ctttagcccc gggtacatgg cctctgtggg ccaggcgtgc cccttacccg 1380
 tggacgacca gagcccccca gcataccccc gtcagggga cacggacaca ggcccagggg 1440
 agtcagaaac ctgtgacagc gtctcaggct cttctgagct gctccaaagt ctgtattcac 1500
 ctcccaggtg ccaagagagc acccaccctg ctteggacaa ccctgacata attgccagca 1560
 cggcagagga ggtggcatcc accagccca gcatccatca tggccactgg gtgttgc 1620
 taagaaaactg attgattaaa aaatttccca aagtgtcctg aagtgtctct tcaaatacat 1680
 gttgatctgt ggagttgatt ctttccttc tcttggttt agacaaatgt aaacaaagct 1740
 ctgatcctta aaattgttat gctgatagag tggtgaggc tggaaagctt atcaagtcct 1800
 gtttcttctt gacacagact gattaaaaat taaaagnaaa aaa 1843

<210> 132

<211> 490

<212> PRT

<213> Homo sapiens

<400> 132

Met	Tyr	His	Gly	Met	Asn	Pro	Ser	Asn	Gly	Asp	Gly	Phe	Leu	Glu	Gln
1				5				10					15		

Gln	Gln	Gln	Gln	Gln	Pro	Gln	Ser	Pro	Gln	Arg	Leu	Leu	Ala	Val
					20			25				30		

Ile	Leu	Trp	Phe	Gln	Leu	Ala	Leu	Cys	Phe	Gly	Pro	Ala	Gln	Leu	Thr
				35				40				45			

Gly	Gly	Phe	Asp	Asp	Leu	Gln	Val	Cys	Ala	Asp	Pro	Gly	Ile	Pro	Glu
					50			55			60				

Asn	Gly	Phe	Arg	Thr	Pro	Ser	Gly	Gly	Val	Phe	Phe	Glu	Gly	Ser	Val
					65				70		75		80		

Ala	Arg	Phe	His	Cys	Gln	Asp	Gly	Phe	Lys	Leu	Lys	Gly	Ala	Thr	Lys
					85				90			95			

Arg	Leu	Cys	Leu	Lys	His	Phe	Asn	Gly	Thr	Leu	Gly	Trp	Ile	Pro	Ser
					100				105			110			

Asp	Asn	Ser	Ile	Cys	Val	Gln	Glu	Asp	Cys	Arg	Ile	Pro	Gln	Ile	Glu
					115				120			125			

Asp	Ala	Glu	Ile	His	Asn	Lys	Thr	Tyr	Arg	His	Gly	Glu	Lys	Leu	Ile
					130			135			140				

Ile	Thr	Cys	His	Glu	Gly	Phe	Lys	Ile	Arg	Tyr	Pro	Asp	Leu	His	Asn
						145		150			155			160	

Met	Val	Ser	Leu	Cys	Arg	Asp	Asp	Gly	Thr	Trp	Asn	Asn	Leu	Pro	Ile
					165				170			175			

Cys Gln Gly Cys Leu Arg Pro Leu Ala Ser Ser Asn Gly Tyr Val Asn

180	185	190
Ile Ser Glu Leu Gln Thr Ser Phe Pro Val Gly Thr Val Ile Ser Tyr		
195	200	205
Arg Cys Phe Pro Gly Phe Lys Leu Asp Gly Ser Ala Tyr Leu Glu Cys		
210	215	220
Leu Gln Asn Leu Ile Trp Ser Ser Ser Pro Pro Arg Cys Leu Ala Leu		
225	230	235
Glu Ala Gln Val Cys Pro Leu Pro Pro Met Val Ser His Gly Asp Phe		
245	250	255
Val Cys His Pro Arg Pro Cys Glu Arg Tyr Asn His Gly Thr Val Val		
260	265	270
Glu Phe Tyr Cys Asp Pro Gly Tyr Ser Leu Thr Ser Asp Tyr Lys Tyr		
275	280	285
Ile Thr Cys Gln Tyr Gly Glu Trp Phe Pro Ser Tyr Gln Val Tyr Cys		
290	295	300
Ile Lys Ser Glu Gln Thr Trp Pro Ser Thr His Glu Thr Leu Leu Thr		
305	310	315
Thr Trp Lys Ile Val Ala Phe Thr Ala Thr Ser Val Leu Leu Val Leu		
325	330	335
Leu Leu Val Ile Leu Ala Arg Met Phe Gln Thr Lys Phe Lys Ala His		
340	345	350
Phe Pro Pro Arg Gly Pro Pro Arg Ser Ser Ser Ser Asp Pro Asp Phe		
355	360	365
Val Val Val Asp Gly Val Pro Val Met Leu Pro Ser Tyr Asp Glu Ala		
370	375	380
Val Ser Gly Gly Leu Ser Ala Leu Gly Pro Gly Tyr Met Ala Ser Val		
385	390	395
Gly Gln Gly Cys Pro Leu Pro Val Asp Asp Gln Ser Pro Pro Ala Tyr		
405	410	415
Pro Gly Ser Gly Asp Thr Asp Thr Gly Pro Gly Glu Ser Glu Thr Cys		
420	425	430
Asp Ser Val Ser Gly Ser Ser Glu Leu Leu Gln Ser Leu Tyr Ser Pro		
435	440	445
Pro Arg Cys Gln Glu Ser Thr His Pro Ala Ser Asp Asn Pro Asp Ile		
450	455	460

Ile Ala Ser Thr Ala Glu Glu Val Ala Ser Thr Ser Pro Gly Ile His
465 470 475 480

His Ala His Trp Val Leu Phe Leu Arg Asn
485 490

<210> 133
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 133
atctcctatc gctgcttcc cg 23

<210> 134
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 134
agccaggatc gcagtaaaac tcc 23

<210> 135
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 135
atttaaactt gatgggtctg cgtatcttga gtgcttacaa aaccttatct 50

<210> 136
<211> 1815
<212> DNA
<213> Homo sapiens

<400> 136
ccccacgcgtc cgctccgcgc cctccccccc gcctcccggtg cggtcgcgtcg gtggcctaga 60
gtatgtgtcg cccgggttgc agttgtcgcg cacccctctg cccggccagcc cgctccaccc 120
ccgttagcgcgc cgagtgtcg ggggcgcaacc cgagtcgggc catgaggcccg ggaaccgcgc 180
tacaggccgt gctgtgtggc gtgtgtgtgg tggggctgctg ggcggcgacg ggttcgcctgc 240
tgatgtgcctc ggatttggac ctcaqaggag qgcagccagt ctgccccggga qggacacaga 300

ggccttgta	taaagtcat	tactccatg	atacttcgt	aagactgaac	ttttaggaag	360
ccaaaagaac	ctgcaggagg	gatggaggcc	agctagtctg	catcgagtct	gaagatgaac	420
agaaaactgt	agaaaagttc	attgaaaacc	tcttgcatt	tgatggatgc	ttctggattt	480
ggctcaggag	gcgtgaggag	aaacaagca	atagcacagc	ctgccaggac	ctttatgttt	540
ggactgtatgg	cagcatatca	caatttagga	actggatgt	ggatgagccg	tcctcgccca	600
gcgaggctgt	cgtggtcatt	taccatcagc	catcgccacc	cgtggccatc	ggaggcccct	660
acatgttcca	gtggaatgtat	gaccggtgca	acatgaagaa	caatttcatt	tgc当地atatt	720
ctgatgagaa	accaggcgtt	cctttagag	aagctgaagg	tgagaaaca	gagctgacaa	780
cacctgtact	tccagaagaa	acacaggaaag	aagatgc当地	aaaaacattt	aaagaaaagta	840
gagaagctgc	cttgaatctg	gcctacatcc	taatccccag	cattccctt	ctc当地ctcc	900
tttgtggcac	cacagttgtt	tgttgggtt	ggatctgtat	aaaaagaaaa	cgggagcagc	960
cagaccctag	cacaaagaag	caacacacca	tctggccctc	tcctcaccag	ggaaacagcc	1020
cgAACCTAGA	GGTCTACAAAT	GTCATAAGAA	AACAAAGCAG	AGCTGACTTA	GCTGAGACCC	1080
ggccagacct	gaagaatatt	tcattccgag	tgttgggg	agaaggccact	cccgatgaca	1140
tgtcttgta	ctatgacaac	atggctgtat	accatcaga	aagtgggtt	gtgactctgg	1200
tgagcgttga	gagtggattt	gtgaccaatg	acatttatga	gttctccca	gaccaaattgg	1260
ggaggagtaa	ggagtcttgg	tgggtggaaa	atgaaatata	tggttattag	gacatataaa	1320
aaactgaaaac	tgacaacaat	ggaaaagaaa	tgataagcaa	aatccttta	ttttctataa	1380
ggaaaatatac	cagaaggct	atgaacaagc	ttagatcagg	tcctgtggat	gagcatgtgg	1440
tccccacgac	ctctgttgg	accccccacgt	tttggctgtat	tcctttatcc	cagccagtca	1500
tccagctcga	ccttatgaga	aggtacccgt	cccaggctgt	gcacatagta	gagtctcaat	1560
aaatgtcact	tgggtgggtt	tatctaactt	ttaagggaca	gagcttacc	tggcagtgtat	1620
aaagatgggc	tgtggagctt	ggaaaaccac	ctctgttttcc	cttgc当地tat	acagcagcac	1680
atattatcat	acagacagaa	aatccagaat	cttttcaaag	cccacatatg	gtgc当地cagg	1740
ttggcctgt	catcgccaaat	tctcatatct	gttttttca	aagaataaaa	tcaaataaaag	1800
agcaggaaaa	aaaaaa					1815

<210> 137

<211> 382

<212> PRT

<213> Homo sapiens

<400> 137

Met Arg Pro Gly Thr Ala Leu Gln Ala Val Leu Leu Ala Val Leu Leu
1 5 10 15

Val Gly Leu Arg Ala Ala Thr Gly Arg Leu Leu Ser Ala Ser Asp Leu
20 25 30

Asp Leu Arg Gly Gly Gln Pro Val Cys Arg Gly Gly Thr Gln Arg Pro
 35 40 45

Cys Tyr Lys Val Ile Tyr Phe His Asp Thr Ser Arg Arg Leu Asn Phe
50 55 60

Glu Glu Ala Lys Glu Ala Cys Arg Arg Asp Gly Gly Gln Leu Val Ser
65 70 75 80

Ile Glu Ser Glu Asp Glu Gln Lys Leu Ile Glu Lys Phe Ile Glu Asn
85 90 95

Leu Leu Pro Ser Asp Gly Asp Phe Trp Ile Gly Leu Arg Arg Arg Glu
 100 105 110

Glu Lys Gln Ser Asn Ser Thr Ala Cys Gln Asp Leu Tyr Ala Trp Thr
 115 120 125
 Asp Gly Ser Ile Ser Gln Phe Arg Asn Trp Tyr Val Asp Glu Pro Ser
 130 135 140
 Cys Gly Ser Glu Val Cys Val Val Met Tyr His Gln Pro Ser Ala Pro
 145 150 155 160
 Ala Gly Ile Gly Gly Pro Tyr Met Phe Gln Trp Asn Asp Asp Arg Cys
 165 170 175
 Asn Met Lys Asn Asn Phe Ile Cys Lys Tyr Ser Asp Glu Lys Pro Ala
 180 185 190
 Val Pro Ser Arg Glu Ala Glu Gly Glu Glu Thr Glu Leu Thr Thr Pro
 195 200 205
 Val Leu Pro Glu Glu Thr Gln Glu Glu Asp Ala Lys Lys Thr Phe Lys
 210 215 220
 Glu Ser Arg Glu Ala Ala Leu Asn Leu Ala Tyr Ile Leu Ile Pro Ser
 225 230 235 240
 Ile Pro Leu Leu Leu Leu Val Val Thr Thr Val Val Cys Trp Val
 245 250 255
 Trp Ile Cys Arg Lys Arg Lys Arg Glu Gln Pro Asp Pro Ser Thr Lys
 260 265 270
 Lys Gln His Thr Ile Trp Pro Ser Pro His Gln Gly Asn Ser Pro Asp
 275 280 285
 Leu Glu Val Tyr Asn Val Ile Arg Lys Gln Ser Glu Ala Asp Leu Ala
 290 295 300
 Glu Thr Arg Pro Asp Leu Lys Asn Ile Ser Phe Arg Val Cys Ser Gly
 305 310 315 320
 Glu Ala Thr Pro Asp Asp Met Ser Cys Asp Tyr Asp Asn Met Ala Val
 325 330 335
 Asn Pro Ser Glu Ser Gly Phe Val Thr Leu Val Ser Val Glu Ser Gly
 340 345 350
 Phe Val Thr Asn Asp Ile Tyr Glu Phe Ser Pro Asp Gln Met Gly Arg
 355 360 365
 Ser Lys Glu Ser Gly Trp Val Glu Asn Glu Ile Tyr Gly Tyr
 370 375 380

```

<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 138
gttcattgaa aacctttgc catctgatgg tgacttctgg attgggctca      50

<210> 139
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 139
aagccaaaga agcctgcagg aggg      24

<210> 140
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 140
cagtccaagc ataaaggta tggc      24

<210> 141
<211> 1514
<212> DNA
<213> Homo sapiens

<400> 141
ggggtctccc tcagggccgg gaggcacagc ggtccctgct tgctgaaggg ctggatgtac 60
gcatccgcag gttcccgccg acttgggggc gcccgcgtgag ccccgccgcgc cgccagaagac 120
tttgtttgc ctcctgcagc ctcaaccggg agggcagcga ggcctacca ccatgatcac 180
tggtgtgttc agcatgcgt tgggacccc agtgggcgtc ctgacactgc tggcgtactg 240
cctgcaccag cggcggtgg ccctggccga gctgcaggag gccgatggcc agtgtccgg 300
cgaccgcagc ctgtcaagt taaaaatggt gcaggtcggt ttgcacacg gggctcggag 360
tcctctcaag ccgtccccgc tggaggagca ggttagagtgg aaccccccacg tattagaggt 420
cccaccccaa actcagttt attacacagt caccaatcta gctgggtggtc cgaaaccata 480
ttctccttac gactctcaat accatgagac caccctgaag gggggcatgt ttgctggca 540
gctgaccaag gtgggcgtgc agcaaatgtt tgccttggga gagagactga ggaagaacta 600
tgtgaaagac attcccttgc ttccaccaac cttcaacccca caggaggctt ttattcggtc 660
cactaacatt ttccggaaatc tggagtccac ccgttgtttgc ctggctgggc tttccagtg 720

```

tcagaaaagaa ggaccatca tcatccacac tgatgaagca gattcagaag tcttgtatcc 780
 caactaccaa agctgctgga gcctgaggca gagaaccaga ggcggaggc agactgcctc 840
 ttacagcca ggaatctcg aggattgaa aaaggtaag gacaggatgg gcattgacag 900
 tagtgataaa gtggacttct tcatccctcg ggacaacgtg gctgccgagc aggcacacaa 960
 cctcccaagc tgccccatgc tgaagagatt tgcacggatg atcgaacaga gagctgtgga 1020
 cacatccttg tacatactgc ccaaggaaga cagggaaagt ctccagatgg cagtaggccc 1080
 attcctccac atcctagaga gcaacctgct gaaagccatg gactctgcca ctgccccca 1140
 caagatcaga aagctgtatc tctatgcggc tcatgatgtg accttcatac cgctctaata 1200
 gaccctgggg attttgacc acaaatggcc accgttgct gtgacctga ccatggaact 1260
 ttaccagcac ctggaatcta aggagtgggt tgcagtc tattaccacg ggaaggagca 1320
 ggtgccgaga ggttgcctg atggctcg cccgctggac atgttcttga atgccatgtc 1380
 agtttataacc ttaagcccag aaaaatacca tgcactctgc tctcaaactc aggtgatgga 1440
 agttggaaat gaagagtaac tgatttataa aagcaggatg tttgatattt aaaataaaat 1500
 gccttataac aatg 1514

<210> 142

<211> 428

<212> PRT

<213> Homo sapiens

<400> 142

Met	Ile	Thr	Gly	Val	Phe	Ser	Met	Arg	Leu	Trp	Thr	Pro	Val	Gly	Val
1							5				10				15

Leu	Thr	Ser	Leu	Ala	Tyr	Cys	Leu	His	Gln	Arg	Arg	Val	Ala	Leu	Ala
								20				25			30

Glu	Leu	Gln	Glu	Ala	Asp	Gly	Gln	Cys	Pro	Val	Asp	Arg	Ser	Leu	Leu
							35			40			45		

Lys	Leu	Lys	Met	Val	Gln	Val	Val	Phe	Arg	His	Gly	Ala	Arg	Ser	Pro
			50					55				60			

Leu	Lys	Pro	Leu	Pro	Leu	Glu	Glu	Gln	Val	Glu	Trp	Asn	Pro	Gln	Leu
							65			70		75			80

Leu	Glu	Val	Pro	Pro	Gln	Thr	Gln	Phe	Asp	Tyr	Thr	Val	Thr	Asn	Leu
						85				90			95		

Ala	Gly	Gly	Pro	Lys	Pro	Tyr	Ser	Pro	Tyr	Asp	Ser	Gln	Tyr	His	Glu
							100			105			110		

Thr	Thr	Leu	Lys	Gly	Gly	Met	Phe	Ala	Gly	Gln	Leu	Thr	Lys	Val	Gly
						115					120		125		

Met	Gln	Gln	Met	Phe	Ala	Leu	Gly	Glu	Arg	Leu	Arg	Lys	Asn	Tyr	Val
			130					135				140			

Glu	Asp	Ile	Pro	Phe	Leu	Ser	Pro	Thr	Phe	Asn	Pro	Gln	Glu	Val	Phe
			145						150			155			160

Ile	Arg	Ser	Thr	Asn	Ile	Phe	Arg	Asn	Leu	Glu	Ser	Thr	Arg	Cys	Leu
								165			170			175	

Leu Ala Gly Leu Phe Gln Cys Gln Lys Glu Gly Pro Ile Ile Ile His
 180 185 190

 Thr Asp Glu Ala Asp Ser Glu Val Leu Tyr Pro Asn Tyr Gln Ser Cys
 195 200 205

 Trp Ser Leu Arg Gln Arg Thr Arg Gly Arg Arg Gln Thr Ala Ser Leu
 210 215 220

 Gln Pro Gly Ile Ser Glu Asp Leu Lys Lys Val Lys Asp Arg Met Gly
 225 230 235 240

 Ile Asp Ser Ser Asp Lys Val Asp Phe Phe Ile Leu Leu Asp Asn Val
 245 250 255

 Ala Ala Glu Gln Ala His Asn Leu Pro Ser Cys Pro Met Leu Lys Arg
 260 265 270

 Phe Ala Arg Met Ile Glu Gln Arg Ala Val Asp Thr Ser Leu Tyr Ile
 275 280 285

 Leu Pro Lys Glu Asp Arg Glu Ser Leu Gln Met Ala Val Gly Pro Phe
 290 295 300

 Leu His Ile Leu Glu Ser Asn Leu Leu Lys Ala Met Asp Ser Ala Thr
 305 310 315 320

 Ala Pro Asp Lys Ile Arg Lys Leu Tyr Leu Tyr Ala Ala His Asp Val
 325 330 335

 Thr Phe Ile Pro Leu Leu Met Thr Leu Gly Ile Phe Asp His Lys Trp
 340 345 350

 Pro Pro Phe Ala Val Asp Leu Thr Met Glu Leu Tyr Gln His Leu Glu
 355 360 365

 Ser Lys Glu Trp Phe Val Gln Leu Tyr Tyr His Gly Lys Glu Gln Val
 370 375 380

 Pro Arg Gly Cys Pro Asp Gly Leu Cys Pro Leu Asp Met Phe Leu Asn
 385 390 395 400

 Ala Met Ser Val Tyr Thr Leu Ser Pro Glu Lys Tyr His Ala Leu Cys
 405 410 415

 Ser Gln Thr Gln Val Met Glu Val Gly Asn Glu Glu
 420 425

 <210> 143
 <211> 24
 <212> DNA
 <213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 143
ccaaactacca aagctgctgg agcc                                24

<210> 144
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 144
gcagctctat taccacggga agga                                24

<210> 145
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 145
tccttcccgt ggtaatagag ctgc                                24

<210> 146
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 146
ggcagagaac cagaggccgg aggagactgc ctctttacag ccagg      45

<210> 147
<211> 1686
<212> DNA
<213> Homo sapiens

<400> 147
ctcctcttaa catacttgca gctaaaacta aatattgctg cttggggacc tccttctagc 60
cttaaatttc agctcatcac cttcacctgc cttggtcatg gctctgctat tctccttgat 120
ccttgcatt tgcaccagac ctggattcct agcgcttcca tctggagtgc ggctgggtggg 180

```

gggcctccac	cgttgtgaag	ggcggttgg	ggttggAACAG	aaaggccagt	ggggcaccgt	240
gtgtgatgac	ggctggaca	ttaaggacgt	ggctgtgtt	tgccgggagc	tggctgtgg	300
agctgccagc	gaaacccta	gtggtatttt	gtatgagcca	ccagcagaaa	aagagaaaa	360
ggtcctcatc	caatcagtca	gttgcacagg	aacagaagat	acattggctc	agtgtgagca	420
agaagaagtt	tatgattgtt	cacatgtat	agatgctgg	gcatcggtg	agaacccaga	480
gagcttttc	tccccagtc	cagagggtgt	caggctggct	gacggccctg	ggcattgca	540
gggacgcgtg	gaagtgaagc	accagaacca	gtggtatacc	gtgtgccaga	caggctggag	600
cctccgggcc	gcaaagggtgg	tgtgccgca	gctggatgt	gggagggtgt	tactgactca	660
aaaacgcgtc	aacaaggcatg	cctatggccg	aaaacccatc	tggctgagcc	agatgtcatg	720
ctcaggacga	gaagcaaccc	ttcaggattt	cccttctggg	ccttggggga	agaacacctg	780
caaccatgt	gaagacacgt	gggtcgaat	tgaagatccc	tttgacttga	gacttagg	840
aggagacaa	ctctgtctg	ggcacttgg	ggtgtctgcac	aagggttat	gggtctgt	900
ctgtgatgac	aactggggag	aaaaggagga	ccaggtggta	tgcaagcaac	tggctgtgg	960
gaagtccctc	tctccctct	tcagagaccg	gaaatgttat	ggccctgggg	ttggccgcat	1020
ctggctggat	aatgttctt	gctcaggga	ggagcagtcc	ctggagcagt	gccagcacag	1080
attttgggg	ttcacgact	gcacccacca	ggaagatgt	gctgtcatct	gctcaagtgt	1140
ggtgggcattc	atctaattctg	ttgagtgcct	gaatagaaga	aaaacacaga	agaagggagc	1200
atttactgtc	tacatgactg	catggatga	acactgtat	tcttctgccc	ttggactggg	1260
acttataactt	ggtccccctg	attctcaggc	cttcagagtt	ggatcagaac	ttacaacatc	1320
aggcttagtt	ctcaggccat	cagacatagt	tttggactac	atcaccacct	ttccatatgtc	1380
tccacattgc	acacagcaga	ttcccagct	ccataattgt	gtgtatcaac	tacttaaata	1440
cattctcaca	cacacacaca	cacacacaca	cacacacaca	cacacataca	ccatttgc	1500
tgtttctctg	aagaactctg	acaaaataca	gattttggta	ctgaaagaga	ttctagagga	1560
acggaatttt	aaggataaat	tttctgaatt	ggttatgggg	tttctgaaat	tggctctata	1620
atctaattag	atataaaatt	ctggtaactt	tatttacaat	aataaaagata	gcactatgtg	1680
ttcaaa						1686

<210> 148
<211> 347
<212> PRT
<213> *Homo sapiens*

<400> 148
Met Ala Leu Leu Phe Ser Leu Ile Leu Ala Ile Cys Thr Arg Pro Gly
1 5 10 15

Phe Leu Ala Ser Pro Ser Gly Val Arg Leu Val Gly Gly Leu His Arg
20 25 30

Cys Glu Gly Arg Val Glu Val Glu Gln Lys Gly Gln Trp Gly Thr Val
 35 40 45

Cys Asp Asp Gly Trp Asp Ile Lys Asp Val Ala Val Leu Cys Arg Glu
50 55 60

Leu Gly Cys Gly Ala Ala Ser Gly Thr Pro Ser Gly Ile Leu Tyr Glu
65 70 75 80

Pro Pro Ala Glu Lys Glu Gln Lys Val Leu Ile Gln Ser Val Ser Cys
85 90 95

Thr Gly Thr Glu Asp Thr Leu Ala Gln Cys Glu Gln Glu Glu Val Tyr
100 105 110

Asp Cys Ser His Asp Glu Asp Ala Gly Ala Ser Cys Glu Asn Pro Glu
 115 120 125

Ser Ser Phe Ser Pro Val Pro Glu Gly Val Arg Leu Ala Asp Gly Pro
 130 135 140

Gly His Cys Lys Gly Arg Val Glu Val Lys His Gln Asn Gln Trp Tyr
 145 150 155 160

Thr Val Cys Gln Thr Gly Trp Ser Leu Arg Ala Ala Lys Val Val Cys
 165 170 175

Arg Gln Leu Gly Cys Gly Arg Ala Val Leu Thr Gln Lys Arg Cys Asn
 180 185 190

Lys His Ala Tyr Gly Arg Lys Pro Ile Trp Leu Ser Gln Met Ser Cys
 195 200 205

Ser Gly Arg Glu Ala Thr Leu Gln Asp Cys Pro Ser Gly Pro Trp Gly
 210 215 220

Lys Asn Thr Cys Asn His Asp Glu Asp Thr Trp Val Glu Cys Glu Asp
 225 230 235 240

Pro Phe Asp Leu Arg Leu Val Gly Gly Asp Asn Leu Cys Ser Gly Arg
 245 250 255

Leu Glu Val Leu His Lys Gly Val Trp Gly Ser Val Cys Asp Asp Asn
 260 265 270

Trp Gly Glu Lys Glu Asp Gln Val Val Cys Lys Gln Leu Gly Cys Gly
 275 280 285

Lys Ser Leu Ser Pro Ser Phe Arg Asp Arg Lys Cys Tyr Gly Pro Gly
 290 295 300

Val Gly Arg Ile Trp Leu Asp Asn Val Arg Cys Ser Gly Glu Glu Gln
 305 310 315 320

Ser Leu Glu Gln Cys Gln His Arg Phe Trp Gly Phe His Asp Cys Thr
 325 330 335

His Gln Glu Asp Val Ala Val Ile Cys Ser Val
 340 345

<210> 149
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic

oligonucleotide probe

<400> 149	
ttcagctcat caccttcacc tgcc	24
<210> 150	
<211> 24	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 150	
ggctcataca aaataccact aggg	24
<210> 151	
<211> 50	
<212> DNA	
<213> Artificial Sequence	
<220>	
<223> Description of Artificial Sequence: Synthetic	
oligonucleotide probe	
<400> 151	
gggcctccac cgctgtgaag ggcgggtgga ggtggaacag aaaggccagt	50
<210> 152	
<211> 1427	
<212> DNA	
<213> Homo sapiens	
<400> 152	
actgcactcg gttctatcg ttgaattccc cggggatcct cttagagatcc ctgcaccccg 60	
acccacgcgt ccgcggacgc gtgggcggac gcgtggccg gctaccagga agagtctgcc 120	
gaaggtgaag gccatggact tcatcaccc cacagccatc ctgcacctgc tgttcggctg 180	
cctggcgctc ttccggctct tcggctgct gcagtgggtg cgcggaaagg cctacctgcg 240	
aatgtctgtg gtggtgatca caggcgccac ctcagggctg gcaaaagaat gtgcaaaagt 300	
cttctatgct gcgggtgcta aactggtgct ctgtggccgg aatggtgggg ccctagaaga 360	
gctcatcaga gaacttaccg ctctcatgc caccaagggt cagacacacaca agccttactt 420	
ggtgacccctc gacccacag actctggggc catagttgca gcagcagctg agatcctgca 480	
gtgctttggc tatgtcgaca tacttgtcaa caatgtggg atcagctacc gtggtaccat 540	
catggacacc acagtggatg tgacaagag ggtcatggag acaaactact ttggcccaagt 600	
tgtcttaacg aaagcactcc tgcctccat gatcaagagg aggcaaggcc acattgtcgc 660	
catcagcgc atccaggggca agatgagcat tcctttcga tcagcatatg cagccctccaa 720	
gcacgcaacc caggcttct ttgactgtct gcgtggcgag atgaaacagt atgaaattga 780	
ggtgaccgtc atcagccccg gtcacatcca caccaaccc tctgtaaaatg ccatcaccgc 840	
ggatggatct aggtatggag ttatggacac caccacagcc cagggccgaa gcccctgtgga 900	
ggtggcccgag gatgttcttgc ctgctgtggg gaagaagaag aaagatgtga tcctggctg 960	
cttactgcct tccttggctg ttatcttcg aactctggct cctgggctct tcctcagcc 1020	
catggcctcc agggccagaa aagagcggaa atccaagaac tcctagact ctgaccagcc 1080	

agggccaggc cagagaagca gcactcttag gcttgcttac tctacaaggg acagttgcat 1140
 ttgttgagac tttatggag atttgtctca caagtggaa agactgaaga aacacatctc 1200
 gtgcagatct gctggcagag gacaatcaa aacgacaaca agcttccttc cagggtgagg 1260
 gaaaaacactt aaggaataaa tatggagctg gggtttaaca ctaaaaacta gaaataaaca 1320
 tctcaaacag taaaaaaaaaaa aaaaaaggc ggccgcgact ctagagtcga cctgcagaag 1380
 ctggccgcc atggcccaac ttgtttattt cagttataa tggttac 1427

<210> 153

<211> 310

<212> PRT

<213> Homo sapiens

<400> 153

Met	Asp	Phe	Ile	Thr	Ser	Thr	Ala	Ile	Leu	Pro	Leu	Leu	Phe	Gly	Cys
1															15

Leu	Gly	Val	Phe	Gly	Leu	Phe	Arg	Leu	Leu	Gln	Trp	Val	Arg	Gly	Lys
															30
20															
25															

Ala	Tyr	Leu	Arg	Asn	Ala	Val	Val	Val	Ile	Thr	Gly	Ala	Thr	Ser	Gly
35															45

Leu	Gly	Lys	Glu	Cys	Ala	Lys	Val	Phe	Tyr	Ala	Ala	Gly	Ala	Lys	Leu
50															60

Val	Leu	Cys	Gly	Arg	Asn	Gly	Gly	Ala	Leu	Glu	Glu	Leu	Ile	Arg	Glu
65															80

Leu	Thr	Ala	Ser	His	Ala	Thr	Lys	Val	Gln	Thr	His	Lys	Pro	Tyr	Leu
85															95

Val	Thr	Phe	Asp	Leu	Thr	Asp	Ser	Gly	Ala	Ile	Val	Ala	Ala	Ala	
100															110

Glu	Ile	Leu	Gln	Cys	Phe	Gly	Tyr	Val	Asp	Ile	Leu	Val	Asn	Asn	Ala
115															125

Gly	Ile	Ser	Tyr	Arg	Gly	Thr	Ile	Met	Asp	Thr	Thr	Val	Asp	Val	Asp
130															140

Lys	Arg	Val	Met	Glu	Thr	Asn	Tyr	Phe	Gly	Pro	Val	Ala	Leu	Thr	Lys
145															160

Ala	Leu	Leu	Pro	Ser	Met	Ile	Lys	Arg	Arg	Gln	Gly	His	Ile	Val	Ala
165															175

Ile	Ser	Ser	Ile	Gln	Gly	Lys	Met	Ser	Ile	Pro	Phe	Arg	Ser	Ala	Tyr
180															190

Ala	Ala	Ser	Lys	His	Ala	Thr	Gln	Ala	Phe	Phe	Asp	Cys	Leu	Arg	Ala
195															205

Glu Met Glu Gln Tyr Glu Ile Glu Val Thr Val Ile Ser Pro Gly Tyr

210	215	220
Ile His Thr Asn Leu Ser Val Asn Ala Ile Thr Ala Asp Gly Ser Arg		
225	230	235
Tyr Gly Val Met Asp Thr Thr Ala Gln Gly Arg Ser Pro Val Glu		
245	250	255
Val Ala Gln Asp Val Leu Ala Ala Val Gly Lys Lys Lys Asp Val		
260	265	270
Ile Leu Ala Asp Leu Leu Pro Ser Leu Ala Val Tyr Leu Arg Thr Leu		
275	280	285
Ala Pro Gly Leu Phe Phe Ser Leu Met Ala Ser Arg Ala Arg Lys Glu		
290	295	300
Arg Lys Ser Lys Asn Ser		
305	310	

<210> 154
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 154
ggtgctaac tggtgctctg tggc 24

<210> 155
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 155
cagggcaaga tgagcattcc 20

<210> 156
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 156
 tcatactgtt ccatctcgcc acgc

24

<210> 157
 <211> 50
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 157
 aatggtgtggg ccctagaaga gtcatacaga gaactcaccg cttctcatgc

50

<210> 158
 <211> 1771
 <212> DNA
 <213> Homo sapiens

<400> 158
 cccacgcgtc cgctgggttt agatcgagca accctctaaa agcagtttag agtggtaaaa 60
 aaaaaaaaaaa acacaccaaa cgctcgacgc cacaaggatggg atgaaatttc ttctggacat 120
 cctcctgttt ctcccgttac tgatcgcttg ctcccttagag tccttcgtga agcttttat 180
 tcctaagagg agaaaatcg tcacccggcga aatcgctgtt attacaggag ctggcatgg 240
 aattgggaga ctgactgcct atgaatttgc taaaactttaaa agcaagctgg ttctctggga 300
 tataaataag catggactgg agggaaacacgc tgccaaatgc aaggactgg gtgccaaggt 360
 tcataccctt gtggtagact gcagcaacccg agaagatatt tacagcttg ccaaagaaggt 420
 gaaggcagaa attggagatg ttagtatttt agtaaataat gctgggttag tctatacatc 480
 agattttgtt gctacacaag atcctcagat tgaaaagact tttgaagttt atgtacttgc 540
 acattttctgg actacaaaagg catttcttcc tgcaatgacg aagaataacc atggccatcat 600
 tggactgtg gcttcggcag ctggacatgt ctggcccccc ttcttactgg cttactgttc 660
 aagcaagttt gctgtgttg gatttcataa aactttgaca gatgaactgg ctgccttaca 720
 aataacttgg a gtcaaaaacaa catgtctgtg tcctaatttc gtaaacactg gcttcatcaa 780
 aaatccaagt acaagttgg gacccactct ggaaccttag gaaatgttac 840
 gcatgggatt ctgactgagc agaagatgtat ttttattcca tttttatagat ctttttaac 900
 aacatttggaa aggatccctt ctgagcggtt cctggcagtt taaaacacaa aaatcgtgt 960
 taagtttgcgtt gcaatttttgc gatataaaat gaaagcgcac taagcaccta gtttctgaa 1020
 aactgtatccat ccagggttttgc gttgatgtca tctaatacgat ccagaattttt aatgtttgaa 1080
 cttctgtttt ttcttaattt ccccttttgc tcaatatcat ttttgaggct ttggcagtt 1140
 tcattttacta ccacttggc ttttagccaaa agctgattac atatgatata aacagagaaaa 1200
 tacctttaga ggtgacttta agggaaatga agaaaaagaa cccaaatgac tttttaaaaa 1260
 taatttccaa gattattttgt ggctcacctg aaggcttgc aaaatttgc ccataaccgt 1320
 ttatattaaca tatattttta ttttgatttgc cacttaattt ttgtataatt tttttttttt 1380
 tttctgtttt acataaaatc agaaaacttca agctctctaa ataaaatgaa ggactatatc 1440
 tagtggattt tcacaatggaa tatcatgaac tctcaatggg tagtttcat cctaccatc 1500
 gccactctgtt ttccgttgcgat atacctcaca ttccaaatgcc aaacatttct gcacaggaa 1560
 gcttagaggtt gatacacgtt ttgcaagtttgcgat aaaagcatca ctgggatttgcggaggaa 1620
 agagaatgtt cccacaaaatg gcagcaataa taaatggatc acacttaaaa aaaaaaaaaaa 1680
 aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1740
 aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa aaaaaaaaaaa 1771

<210> 159

<211> 300
<212> PRT
<213> *Homo sapiens*

<400> 159
 Met Lys Phe Leu Leu Asp Ile Leu Leu Leu Pro Leu Leu Ile Val
 1 5 10 15

 Cys Ser Leu Glu Ser Phe Val Lys Leu Phe Ile Pro Lys Arg Arg Lys
 20 25 30

 Ser Val Thr Gly Glu Ile Val Leu Ile Thr Gly Ala Gly His Gly Ile
 35 40 45

 Gly Arg Leu Thr Ala Tyr Glu Phe Ala Lys Leu Lys Ser Lys Leu Val
 50 55 60

 Leu Trp Asp Ile Asn Lys His Gly Leu Glu Glu Thr Ala Ala Lys Cys
 65 70 75 80

 Lys Gly Leu Gly Ala Lys Val His Thr Phe Val Val Asp Cys Ser Asn
 85 90 95

 Arg Glu Asp Ile Tyr Ser Ser Ala Lys Lys Val Lys Ala Glu Ile Gly
 100 105 110

 Asp Val Ser Ile Leu Val Asn Asn Ala Gly Val Val Tyr Thr Ser Asp
 115 120 125

 Leu Phe Ala Thr Gln Asp Pro Gln Ile Glu Lys Thr Phe Glu Val Asn
 130 135 140

 Val Leu Ala His Phe Trp Thr Thr Lys Ala Phe Leu Pro Ala Met Thr
 145 150 155 160

 Lys Asn Asn His Gly His Ile Val Thr Val Ala Ser Ala Ala Gly His
 165 170 175

 Val Ser Val Pro Phe Leu Leu Ala Tyr Cys Ser Ser Lys Phe Ala Ala
 180 185 190

 Val Gly Phe His Lys Thr Leu Thr Asp Glu Leu Ala Ala Leu Gln Ile
 195 200 205

 Thr Gly Val Lys Thr Thr Cys Leu Cys Pro Asn Phe Val Asn Thr Gly
 210 215 220

 Phe Ile Lys Asn Pro Ser Thr Ser Leu Gly Pro Thr Leu Glu Pro Glu
 225 230 235 240

 Glu Val Val Asn Arg Leu Met His Gly Ile Leu Thr Glu Gln Lys Met
 245 250 255

```

Ile Phe Ile Pro Ser Ser Ile Ala Phe Leu Thr Thr Leu Glu Arg Ile
260           265           270

Leu Pro Glu Arg Phe Leu Ala Val Leu Lys Arg Lys Ile Ser Val Lys
275           280           285

Phe Asp Ala Val Ile Gly Tyr Lys Met Lys Ala Gln
290           295           300

<210> 160
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 160
ggtgaaggca gaaatggag atg                                23

<210> 161
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 161
atccccatgca tcagcctgtt tacc                                24

<210> 162
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 162
gctgggttag tctatacatc agatttgtt gctacacaag atcctcag      48

<210> 163
<211> 2076
<212> DNA
<213> Homo sapiens

<400> 163
cccacgcgtc cgccggacgcg tgggtcgact agttctagat cgccgagcggc 60
      tcagggagga gcaccgactg cgccgcaccc tgagagatgg ttgggtgccat gtggaaggtg 120

```

attgtttcgc tggcctggt gatgcctggc ccctgtatg ggctgtttcg ctccctatac 180
 agaagtgttt ccatgccacc taagggagac tcaggacagc cattatttct cacccttac 240
 attgaagctg ggaagatcca aaaaggaaga gaatttagtt tggcggccc tttcccagga 300
 ctgaacatga agagttatgc cggttcctc accgtaaata agacttacaa cagcaacctc 360
 ttcttctggc tcttcccgac tcagatacag ccagaagatg ccccaagtatg tctctggcta 420
 cagggtggc cggtggatcc atccatgttt ggactcttg tggaaacatgg gccttatgtt 480
 gtcacaagta acatgacccct gctgtacaga gacttccccct ggaccacaac gctctccatg 540
 ctttacattg acaatccagt gggcacaggc ttcatgttttta ctgtatgatac ccacggatata 600
 gcagtcaatg aggacgatgt agcacggat ttatacagtg cactaattca gttttccag 660
 atatttcctg aatataaaaaa taatgacttt tatgtcaactg gggagtctta tgcaggaaa 720
 tatgtgccag ccattgcaca cctcatccat tccctcaacc ctgtgagaga ggtgaagatc 780
 aacctgaacg gaattgctat tgagatgga tattctgtatc ccgaatcaat tataggggc 840
 tatgcagaat tcctgtacca aattggctt tggatgaga agaaaaaaaaa gtacttccag 900
 aagcagtgc aatgaatgc aaaaaaaaaa agaacacatc aggaagcaga actggttga ggccttgaa 960
 atactggata aactactaga tggcactta acaagtgtatc cttcttactt ccagaatgtt 1020
 acaggatgt ataattacta taacttttttgc cgggtcacgg aacctgagga tcagcttac 1080
 tatgtgaaat tttgtcaact cccagaggtg agacaagcca tccacgtggg gaatcagact 1140
 ttaatgatg gaactatagt tggaaatgtac ttgcgagaag atacagtaca gtcagttaaag 1200
 ccatggtaa ctgaaatcat gaataattat aaggcttctga tctacaatgg ccaactggac 1260
 atcatcgtgg cagctggccct gacagagcgc tccttgcatttgc gcatggactg gaaaggatcc 1320
 caggaataca agaaggcaga aaaaaaaaaa tggaaatgtct taaaatctga cagtgaagtg 1380
 gctggtaaca tccggcaagc gggtgacttc catcagttaa ttattcgagg tggaggacat 1440
 attttaccct atgaccagcc tctgagatgt ttgcacatga ttaatcgatt catttatgga 1500
 aaaggatggg atccttatgt tgataaaact accttccaa aagagaacat cagaggttt 1560
 cattgtgaa aagaaaatcg taaaacaga aaatgtcata ggaataaaaaa aattatctt 1620
 tcatatctgc aagattttt tcatcaataa aaattatctt tggaaacaatg gagctttgt 1680
 ttttgggggg agatgtttac tacaatatttgc acatgagttac atgagtaaga attacattat 1740
 ttaacttaaa ggatgaaagg tatggatgtatgt gacactga gacaagatgt ataaatgaaa 1800
 ttttagggc ttgaatagga agtttaatt tcttctaaga gtaagtggaa agtgcagttg 1860
 taacaaacaa agctgtaca tcttttctg ccaataacag aagtttggca tgccgtgaag 1920
 gtgtttggaa atattattgg ataagaatag ctcaattatc ccaataaat ggtgaagct 1980
 ataatagttt tggggaaaag attctcaaataat gtataaagtc tttagaaacaaa agaattctt 2040
 gaaataaaaaa tattatatat aaaaatgaaaa aaaaaaa 2076

<210> 164
 <211> 476
 <212> PRT
 <213> Homo sapiens

<400> 164
 Met Val Gly Ala Met Trp Lys Val Ile Val Ser Leu Val Leu Leu Met
 1 5 10 15

Pro Gly Pro Cys Asp Gly Leu Phe Arg Ser Leu Tyr Arg Ser Val Ser
 20 25 30

Met Pro Pro Lys Gly Asp Ser Gly Gln Pro Leu Phe Leu Thr Pro Tyr
 35 40 45

Ile Glu Ala Gly Lys Ile Gln Lys Gly Arg Glu Leu Ser Leu Val Gly
 50 55 60

Pro Phe Pro Gly Leu Asn Met Lys Ser Tyr Ala Gly Phe Leu Thr Val

65	70	75	80
Asn Lys Thr Tyr Asn Ser Asn Leu Phe Phe Trp Phe Pro Ala Gln			
85		90	95
Ile Gln Pro Glu Asp Ala Pro Val Val Leu Trp Leu Gln Gly Gly Pro			
100		105	110
Gly Gly Ser Ser Met Phe Gly Leu Phe Val Glu His Gly Pro Tyr Val			
115	120		125
Val Thr Ser Asn Met Thr Leu Arg Asp Arg Asp Phe Pro Trp Thr Thr			
130	135		140
Thr Leu Ser Met Leu Tyr Ile Asp Asn Pro Val Gly Thr Gly Phe Ser			
145	150	155	160
Phe Thr Asp Asp Thr His Gly Tyr Ala Val Asn Glu Asp Asp Val Ala			
165		170	175
Arg Asp Leu Tyr Ser Ala Leu Ile Gln Phe Phe Gln Ile Phe Pro Glu			
180		185	190
Tyr Lys Asn Asn Asp Phe Tyr Val Thr Gly Glu Ser Tyr Ala Gly Lys			
195	200		205
Tyr Val Pro Ala Ile Ala His Leu Ile His Ser Leu Asn Pro Val Arg			
210	215		220
Glu Val Lys Ile Asn Leu Asn Gly Ile Ala Ile Gly Asp Gly Tyr Ser			
225	230	235	240
Asp Pro Glu Ser Ile Ile Gly Gly Tyr Ala Glu Phe Leu Tyr Gln Ile			
245		250	255
Gly Leu Leu Asp Glu Lys Gln Lys Lys Tyr Phe Gln Lys Gln Cys His			
260		265	270
Glu Cys Ile Glu His Ile Arg Lys Gln Asn Trp Phe Glu Ala Phe Glu			
275		280	285
Ile Leu Asp Lys Leu Leu Asp Gly Asp Leu Thr Ser Asp Pro Ser Tyr			
290	295		300
Phe Gln Asn Val Thr Gly Cys Ser Asn Tyr Tyr Asn Phe Leu Arg Cys			
305	310	315	320
Thr Glu Pro Glu Asp Gln Leu Tyr Tyr Val Lys Phe Leu Ser Leu Pro			
325		330	335
Glu Val Arg Gln Ala Ile His Val Gly Asn Gln Thr Phe Asn Asp Gly			
340		345	350

Thr Ile Val Glu Lys Tyr Leu Arg Glu Asp Thr Val Gln Ser Val Lys
 355 360 365

Pro Trp Leu Thr Glu Ile Met Asn Asn Tyr Lys Val Leu Ile Tyr Asn
 370 375 380

Gly Gln Leu Asp Ile Ile Val Ala Ala Ala Leu Thr Glu Arg Ser Leu
 385 390 395 400

Met Gly Met Asp Trp Lys Gly Ser Gln Glu Tyr Lys Lys Ala Glu Lys
 405 410 415

Lys Val Trp Lys Ile Phe Lys Ser Asp Ser Glu Val Ala Gly Tyr Ile
 420 425 430

Arg Gln Ala Gly Asp Phe His Gln Val Ile Ile Arg Gly Gly His
 435 440 445

Ile Leu Pro Tyr Asp Gln Pro Leu Arg Ala Phe Asp Met Ile Asn Arg
 450 455 460

Phe Ile Tyr Gly Lys Gly Trp Asp Pro Tyr Val Gly
 465 470 475

<210> 165
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 165
ttccatgcca cctaaggag actc

24

<210> 166
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 166
tggatgaggt gtgcaatggc tggc

24

<210> 167
<211> 24
<212> DNA
<213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 167
agctctcaga ggctggcat aggg 24

<210> 168
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 168
gtcggccctt tcccaggact gaacatgaag agttatgccg gtttcctcac 50

<210> 169
<211> 2477
<212> DNA
<213> Homo sapiens

<400> 169
cgagggcctt tccggctccg gaatggcaca tgtgggaatc ccagtcttgt tggctacaac 60
attttcacctt ttccataacaa gttctaacag ctgttctaac agcttagtgat caggggttct 120
tcttgcttggaa gaagaaaagggtt ctgaggccag agcaggccac tctcaactcg ggtgaccaggc 180
tccttgcttc tctgtggata acagagcatg agaaaagtgtaa gagatgcagc ggagtggaggt 240
gatggaaatgc taaaatagga aggaattttt tggtcaatat cagactctgg gagcagttga 300
cctggagagc ctgggggagg gcctgcctaa caagcttca aaaaacagga ggcacttcca 360
ctgggcttggg ataaagacgtg ccggtagat agggaaagact gggtttagtc ctaatatcaa 420
atggacttggc tgggtgaact tcaacagccct tttAACCTCT ctgggagatg aaaacgatgg 480
cttaaggggc cagaaaataga gatgtttgtt aaaaataaaat tttaaaaaaaa gcaagtattt 540
tatagcataa aggttagaga cccaaaataga taacaggatt ccctgaacat tcctaagagg 600
gagaaaatgtt gttaaaaata gaaaaaccaa aatgcagaag gaggagactc acagagctaa 660
accaggatgg ggacccttggg tcaggccagc ctctttgtct cteccggaaa ttatTTTGG 720
tctgaccact ctgccttggg ttttgcagaa tcattgtgagg gccaaceggg gaaggtggag 780
cagatgagca cacacaggag ccgtctctc accggccccc ctctcagcat ggaacagagg 840
cagcccttggc cccggggccct ggaggtggac agccgctctg tggtctgtct ctcagtggtc 900
tgggtgtctgc tggccccccc agcagccggc atgcctcaatg tcagcacctt ccactctgag 960
aatcgtgact ggaccttcaa ccacttgacc gtccaccaag ggacgggggc cgtctatgtg 1020
ggggccatca accgggtcta taagctgaca ggcaacctga ccatccaggt ggctcataag 1080
acagggccatca aagaggacaa caagtctcgat taccggccccc tcatctgtca gccctgcagc 1140
gaagtgtctca ccctcaccaaa caatgtcaac aagctgtca tcattgacta ctctgagaac 1200
cgccctgtgg cctgtggaggg cctctaccag ggggtctgca agctgtcgat gctgatgac 1260
ctcttcatcc tgggtggagcc atcccacaag aaggagcact acctgtccag tgcataacaag 1320
acggggcacca tgcgtacgggtt gattgtgcgc tctgagggtg aggatggcaa gctcttcatc 1380
ggcacggctg tggatggaa gcaggattac ttcccgaccc tgcacccggc gaagctgccc 1440
cgagaccctg agtccctcagc catgtctcgat tatgagctac acagcgattt tgcataact 1500
ctcatcaaga tcccttcaga caccctggcc ctggctcccc actttgacat cttctacatc 1560
tacggctttg ctatgtgggg ctttgcctac tttctcactg tccagcccgaa gacccttgag 1620
gggtgtqggca tcaactccqc tggagacccctt ttctacaccc tacgcacatgt gcccgtctgc 1680

```

aaggatgacc	ccaagttcca	ctcatacgta	tccctgcct	tcggctgcac	ccggccccgg	1740
gttgaatacc	gcctcctgca	ggctgcttac	ctggccaagc	ctggggactc	actggcccag	1800
gccttcaata	tcaccagcca	ggacgatgt	cttttgcca	tcttctccaa	agggcagaag	1860
cagtatcacc	acccggccga	tgactctgca	ctgtgtgeet	tccctatccg	ggccatcaac	1920
ttgcagatca	aggagcgcct	gcagtcctgc	taccaggcg	agggcaacct	ggagotcaac	1980
tggctgtgg	ggaaggacgt	ccagtgcacg	aaggcgccctg	tccccatcga	tgataacttc	2040
tgtggactgg	acatcaacca	gcccctggaa	ggctcaactc	cagtggaggg	cctgaccctg	2100
tacaccacca	gcagggaccg	catgacccct	gtggcctct	acgtttacaa	cggctacagc	2160
gtggttttt	tgggactaa	gagtggcaag	ctaaaaaagg	taagagtcta	tgaggtcaga	2220
tgctccaatg	ccattcacct	cctcagcaaa	gagtcctct	tggaaaggtag	ctattggtgg	2280
agatttaact	ataggcaact	ttattttctt	ggggAACAAA	ggtgaaatgg	ggaggtaaaga	2340
aggggttaat	tttgtgactt	agttctagc	tacttcctcc	agccatcagt	cattgggtat	2400
gtaaggaatg	caagcgtatt	tcaatatttc	ccaaacttta	agaaaaaaact	ttaagaaggt	2460
acatctqcaa	aaqcaaa					2477

<210> 170

<211> 552

<212> PRT

<213> Homo sapiens

<400> 170

Met Gly Thr Leu Gly Gln Ala Ser Leu Phe Ala Pro Pro Gly Asn Tyr

1

2
5

10

15

Phe Trp Ser Asp His Ser Ala Leu Cys Phe Ala Glu Ser Cys Glu Gly
 20 25 30

Gln Pro Gly Lys Val Glu Gln Met Ser Thr His Arg Ser Arg Leu Leu
35 40 45

Thr Ala Ala Pro Leu Ser Met Glu Gln Arg Gln Pro Trp Pro Arg Ala
50 55 60

Leu Leu Ala Pro Pro Ala Ala Gly Met Pro Gln Phe Ser Thr Phe His
85 90 95

Ser Glu Asn Arg Asp Trp Thr Phe Asn His Leu Thr Val His Gln Gly
100 105 110

Thr Gly Ala Val Tyr Val Gly Ala Ile Asn Arg Val Tyr Lys Leu Thr
 115 120 125

Gly Asn Leu Thr Ile Gln Val Ala His Lys Thr Gly Pro Glu Glu Asp
130 135 140

Asn Lys Ser Arg Tyr Pro Pro Leu Ile Val Gln Pro Cys Ser Glu Val
145 150 155 160

Leu Thr Leu Thr Asn Asn Val Asn Lys Leu Leu Ile Ile Asp Tyr Ser
165 170 175

Glu Asn Arg Leu Leu Ala Cys Gly Ser Leu Tyr Gln Gly Val Cys Lys
 180 185 190

Leu Leu Arg Leu Asp Asp Leu Phe Ile Leu Val Glu Pro Ser His Lys
 195 200 205

Lys Glu His Tyr Leu Ser Ser Val Asn Lys Thr Gly Thr Met Tyr Gly
 210 215 220

Val Ile Val Arg Ser Glu Gly Glu Asp Gly Lys Leu Phe Ile Gly Thr
 225 230 235 240

Ala Val Asp Gly Lys Gln Asp Tyr Phe Pro Thr Leu Ser Ser Arg Lys
 245 250 255

Leu Pro Arg Asp Pro Glu Ser Ser Ala Met Leu Asp Tyr Glu Leu His
 260 265 270

Ser Asp Phe Val Ser Ser Leu Ile Lys Ile Pro Ser Asp Thr Leu Ala
 275 280 285

Leu Val Ser His Phe Asp Ile Phe Tyr Ile Tyr Gly Phe Ala Ser Gly
 290 295 300

Gly Phe Val Tyr Phe Leu Thr Val Gln Pro Glu Thr Pro Glu Gly Val
 305 310 315 320

Ala Ile Asn Ser Ala Gly Asp Leu Phe Tyr Thr Ser Arg Ile Val Arg
 325 330 335

Leu Cys Lys Asp Asp Pro Lys Phe His Ser Tyr Val Ser Leu Pro Phe
 340 345 350

Gly Cys Thr Arg Ala Gly Val Glu Tyr Arg Leu Leu Gln Ala Ala Tyr
 355 360 365

Leu Ala Lys Pro Gly Asp Ser Leu Ala Gln Ala Phe Asn Ile Thr Ser
 370 375 380

Gln Asp Asp Val Leu Phe Ala Ile Phe Ser Lys Gly Gln Lys Gln Tyr
 385 390 395 400

His His Pro Pro Asp Asp Ser Ala Leu Cys Ala Phe Pro Ile Arg Ala
 405 410 415

Ile Asn Leu Gln Ile Lys Glu Arg Leu Gln Ser Cys Tyr Gln Gly Glu
 420 425 430

Gly Asn Leu Glu Leu Asn Trp Leu Leu Gly Lys Asp Val Gln Cys Thr
 435 440 445

Lys Ala Pro Val Pro Ile Asp Asp Asn Phe Cys Gly Leu Asp Ile Asn

100

450 455 460
Gln Pro Leu Gly Gly Ser Thr Pro Val Glu Gly Leu Thr Leu Tyr Thr
465 470 475 480
Thr Ser Arg Asp Arg Met Thr Ser Val Ala Ser Tyr Val Tyr Asn Gly
485 490 495
Tyr Ser Val Val Phe Val Gly Thr Lys Ser Gly Lys Leu Lys Lys Val
500 505 510
Arg Val Tyr Glu Phe Arg Cys Ser Asn Ala Ile His Leu Leu Ser Lys
515 520 525
Glu Ser Leu Leu Glu Gly Ser Tyr Trp Trp Arg Phe Asn Tyr Arg Gln
530 535 540
Leu Tyr Phe Leu Gly Glu Gln Arg
545 550

<210> 171

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 171

tggaaataccg cctcctgcag

20

<210> 172

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 172

cttctgccct ttggagaaga tggc

24

<210> 173

<211> 43

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

```

<400> 173
ggactcactg gcccaggcct tcaatatcac cagccaggac gat 42

<210> 174
<211> 3106
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (1683)
<223> a, t, c or g

<400> 174
aggctccgc gcgcggctga gtgcggactg gagtggaaac ccgggtcccc gcgcttagag 60
aacacgcgt gaccacgtgg agcctccggc ggaggccggc ccgcacgctg ggactccctgc 120
tgctggctgt ctgggcttc ctgggtctcc gcaggctgga ctggagcacc ctggccctc 180
tgcggctccg ccatcgacag ctgggctgc aggccaaggg ctggaacttc atgctggagg 240
atccacctt ctggatcttc ggggctcca tccactattt ccgtgtgcc agggagtact 300
ggagggaccg cctgctgaag atgaaggcct gtggcttcaa caccctcacc acctatgttc 360
cgtggAACCT gcatgagccaa gaagaggca aatttgactt ctctggaaac ctggacactgg 420
aggcctcgt cctgatggcc gcagagatcg ggctgtgggt gattctgcgt ccaggcccct 480
acatctgcag tgagatggac ctgggggct tgccagctg gctactccaa gaccctggca 540
tgaggctgag gacaacttac aagggttca ccgaagcagt ggacctttat tttgaccacc 600
tcatgtccag ggtgggtccaa ctccagttaca agcgtggggg acctatcatt gccgtgcagg 660
tggagaatga atatggttcc tataataaaag accccgcata catgccctac gtcaagaagg 720
caactggagga ccgtggcatt gtggaaactgc tcctgacttc agacaacaag gatgggctga 780
gcaaggggat tgtccaggaa gtcttggccaa ccatcaactt gcagtcaaca cacgagctgc 840
agctactgac caccttctc ttcaacgtcc aggggactca gcccaagatg gtatggagt 900
actggacggg gtggtttgac tcgtggggag gccctcacaa tatcttggat tcttctgagg 960
tttggaaaac cgtgtctgccc attgtggacg ccggctctc catcaacctc tacatgttcc 1020
acggaggcac caacttggc ttcatgaatg gagccatgca ctccatgac tacaagtcg 1080
atgtcaccag ctatgactat gatgctgtgc tgacagaagc cgccgattac acggccaagt 1140
acatgaagct tcgagacttc ttccgttcca tctcaggcat ccctctccct ccccccacctg 1200
accttcttcc caagatggcgtatgagccct taacgcagt ctgtacatg tctctgtggg 1260
acgcctcaa gtacctgggg gagccaatca agtctgaaaa gcccataac atggagaacc 1320
tgcctgttca tgggggaaat ggacagtctt tcgggtacat tctctatgag accagcatca 1380
ccctgtctgg catccctcgtt ggcacgtgc atgatcgggg gcaggtgttt gtgaacacag 1440
tatccatagg attcttggac tacaagacaa cgaagattgc tgccccctg atccagggtt 1500
acaccgtgtt gaggatctt gttggagaatc gtggggcaggt caactatggg gagaatattg 1560
atgaccagcg caaaggctta attggaaatc tctatctgaa tgattcaccc ctgaaaaact 1620
tcagaatcta tagcctggat atgaagaaga gtttcttca gaggttcggc ctggacaaat 1680
ggngttccct cccagaaaca cccacattac ctgcttctt ctgggttagc ttgtccatca 1740
gctccacgccc ttgtgacacc ttctgttca gtcgggtctgg ggagaagggg gttgtattca 1800
tcaatggccaa gaaccttggaa ctttacttggaa acattggacc ccagaagacg cttaacctcc 1860
cagggtccctg gttgagcagc ggaatcaacc aggtcatgtt ttttggaggag acgtggcg 1920
gcctgtcattt acagttcaag gaaacccccc acctggcag gaaccagtac attaagttag 1980
cggtggcacc ccctcctgtt ggtggcagtg ggagactgcc gcctcttgc gacctgaagc 2040
ctgggtggctg ctggcccttcc ctttacttggaa aaagcatctc ctttacttggg aacctcagg 2100
actgggggctt acagtctgccc ctttacttggaa taagcttgcg gggaaagggtt 2160
ggatggctt gggccctggct ttgttgcgtt gggcccttgc ttttgcgg 2220
aggctgtctca ggggtggggc agctaatttgcg atcgtcccttgcg 2280

```

cagaaaaagt gctgaaacgt gcccttgcac cggacgtcac agccctgcga gcatctgctg 2340
 gactcaggcg tgctcttgc tggttctgg gaggcttgc cacatccctc atggccccat 2400
 ttatccccg aaatcctggg tggtagacca gtgttagaggg tggggaaagggt gtgtctcacc 2460
 tggacttgact ttgttcttcc ttccacaacct tctgagcatt ctttggatt ctggaaaggaa 2520
 ctcggcgtga gaaacatgtg acttcccctt tccctttcca ctcgctgctt cccacagggt 2580
 gacaggctgg gctggagaaa cagaaatctt caccctgcgt ctcccaagt tagcaggtgt 2640
 ctctgggttt cagtgaggag gacatgtgag tcctggcaga agccatggcc catgtctgca 2700
 catccaggaa ggaggacaga aggcccagct cacatgtgag tcctggcaga agccatggcc 2760
 catgtctgca catccaggaa ggaggacaga aggcccagct cacatgtgag tcctggcaga 2820
 agccatggcc catgtctgca catccaggaa ggaggacaga aggcccagct cacatgtgag 2880
 tcctggcaga agccatggcc catgtctgca catccaggaa ggaggacaga aggcccagct 2940
 cagtggcccc cgctccacccccac cccacacgccc cgaacacgag gggcagagca gccccttc 3000
 gaagtgtgtc caagtccgca ttggacctt gttctggggc ccagcccaac acctggctt 3060
 ggctcaactgt cctgagttgc agtaaagcta taaccttgaa tcacaa 3106

<210> 175

<211> 636

<212> PRT

<213> Homo sapiens

<220>

<221> MOD_RES

<222> (539)

<223> Any amino acid

<400> 175

Met	Thr	Thr	Trp	Ser	Leu	Arg	Arg	Arg	Pro	Ala	Arg	Thr	Leu	Gly	Leu
1					5					10				15	

Leu	Leu	Leu	Val	Val	Leu	Gly	Phe	Leu	Val	Leu	Arg	Arg	Leu	Asp	Trp
					20				25				30		

Ser	Thr	Leu	Val	Pro	Leu	Arg	Leu	Arg	His	Arg	Gln	Leu	Gly	Leu	Gln
					35				40			45			

Ala	Lys	Gly	Trp	Asn	Phe	Met	Leu	Glu	Asp	Ser	Thr	Phe	Trp	Ile	Phe
					50		55				60				

Gly	Gly	Ser	Ile	His	Tyr	Phe	Arg	Val	Pro	Arg	Glu	Tyr	Trp	Arg	Asp
					65			70			75			80	

Arg	Leu	Leu	Lys	Met	Lys	Ala	Cys	Gly	Leu	Asn	Thr	Leu	Thr	Thr	Tyr
					85				90				95		

Val	Pro	Trp	Asn	Leu	His	Glu	Pro	Glu	Arg	Gly	Lys	Phe	Asp	Phe	Ser
					100			105			110				

Gly	Asn	Leu	Asp	Leu	Glu	Ala	Phe	Val	Leu	Met	Ala	Ala	Glu	Ile	Gly
					115			120				125			

Leu	Trp	Val	Ile	Leu	Arg	Pro	Gly	Pro	Tyr	Ile	Cys	Ser	Glu	Met	Asp
					130			135			140				

Leu Gly Gly Leu Pro Ser Trp Leu Leu Gln Asp Pro Gly Met Arg Leu
 145 150 155 160
 Arg Thr Thr Tyr Lys Gly Phe Thr Glu Ala Val Asp Leu Tyr Phe Asp
 165 170 175
 His Leu Met Ser Arg Val Val Pro Leu Gln Tyr Lys Arg Gly Gly Pro
 180 185 190
 Ile Ile Ala Val Gln Val Glu Asn Glu Tyr Gly Ser Tyr Asn Lys Asp
 195 200 205
 Pro Ala Tyr Met Pro Tyr Val Lys Lys Ala Leu Glu Asp Arg Gly Ile
 210 215 220
 Val Glu Leu Leu Leu Thr Ser Asp Asn Lys Asp Gly Leu Ser Lys Gly
 225 230 235 240
 Ile Val Gln Gly Val Leu Ala Thr Ile Asn Leu Gln Ser Thr His Glu
 245 250 255
 Leu Gln Leu Leu Thr Thr Phe Leu Phe Asn Val Gln Gly Thr Gln Pro
 260 265 270
 Lys Met Val Met Glu Tyr Trp Thr Gly Trp Phe Asp Ser Trp Gly Gly
 275 280 285
 Pro His Asn Ile Leu Asp Ser Ser Glu Val Leu Lys Thr Val Ser Ala
 290 295 300
 Ile Val Asp Ala Gly Ser Ser Ile Asn Leu Tyr Met Phe His Gly Gly
 305 310 315 320
 Thr Asn Phe Gly Phe Met Asn Gly Ala Met His Phe His Asp Tyr Lys
 325 330 335
 Ser Asp Val Thr Ser Tyr Asp Tyr Asp Ala Val Leu Thr Glu Ala Gly
 340 345 350
 Asp Tyr Thr Ala Lys Tyr Met Lys Leu Arg Asp Phe Phe Gly Ser Ile
 355 360 365
 Ser Gly Ile Pro Leu Pro Pro Pro Asp Leu Leu Pro Lys Met Pro
 370 375 380
 Tyr Glu Pro Leu Thr Pro Val Leu Tyr Leu Ser Leu Trp Asp Ala Leu
 385 390 395 400
 Lys Tyr Leu Gly Glu Pro Ile Lys Ser Glu Lys Pro Ile Asn Met Glu
 405 410 415
 Asn Leu Pro Val Asn Gly Gly Asn Gly Gln Ser Phe Gly Tyr Ile Leu
 420 425 430

Tyr Glu Thr Ser Ile Thr Ser Ser Gly Ile Leu Ser Gly His Val His
 435 440 445

Asp Arg Gly Gln Val Phe Val Asn Thr Val Ser Ile Gly Phe Leu Asp
 450 455 460

Tyr Lys Thr Thr Lys Ile Ala Val Pro Leu Ile Gln Gly Tyr Thr Val
 465 470 475 480

Leu Arg Ile Leu Val Glu Asn Arg Gly Arg Val Asn Tyr Gly Glu Asn
 485 490 495

Ile Asp Asp Gln Arg Lys Gly Leu Ile Gly Asn Leu Tyr Leu Asn Asp
 500 505 510

Ser Pro Leu Lys Asn Phe Arg Ile Tyr Ser Leu Asp Met Lys Lys Ser
 515 520 525

Phe Phe Gln Arg Phe Gly Leu Asp Lys Trp Xaa Ser Leu Pro Glu Thr
 530 535 540

Pro Thr Leu Pro Ala Phe Phe Leu Gly Ser Leu Ser Ile Ser Ser Thr
 545 550 555 560

Pro Cys Asp Thr Phe Leu Lys Leu Glu Gly Trp Glu Lys Gly Val Val
 565 570 575

Phe Ile Asn Gly Gln Asn Leu Gly Arg Tyr Trp Asn Ile Gly Pro Gln
 580 585 590

Lys Thr Leu Tyr Leu Pro Gly Pro Trp Leu Ser Ser Gly Ile Asn Gln
 595 600 605

Val Ile Val Phe Glu Glu Thr Met Ala Gly Pro Ala Leu Gln Phe Thr
 610 615 620

Glu Thr Pro His Leu Gly Arg Asn Gln Tyr Ile Lys
 625 630 635

<210> 176

<211> 2505

<212> DNA

<213> Homo sapiens

<400> 176

ggggacgcgg agctgagagg ctccgggcta gctagggtga ggggtggacg ggtcccagga 60
 ccctggtagag ggttctctac ttggccttcg gtgggggtca agacgcaggc acctacgcca 120
 aaggggagca aagccggct cggcccgagg cccccaggac ctccatctcc caatgttgg 180
 ggaatccgac acgtgacggt ctgtccgccc tctcagacta gaggagcgct gtaaacgcca 240
 tggtctccaa gaagctgtcc tgccctcggt ccctgctgct gccgctcagc ctgacgctac 300
 tgctgccccca ggcagacact cggtcggtcg tagtgatag gggcatgac cggttctcc 360
 tagacggggc cccgtccgc tatgtgtctg gcagcctgca ctactttcgg gtaccgcggg 420

tgctttgggc cgaccggc ttgaagatgc gatggagogg cctcaacgcc atacagttt 480
 atgtgccctg gaactaccac gagccacagc ctggggctta taactttat ggcagccgg 540
 acctcattgc ctttctgaat gaggcagctc tagcAACCT gtggcata ctgagaccag 600
 gacccttacat ctgtcAGAG tgggagatgg ggggtctccc atcctggtt cttcgaaaac 660
 ctgaaattca tctaagaacc tcagatccag acttccttc cgcAGTGGAC tcctggttca 720
 aggtcttgct gcccaagata tatccatggc tttatcacaa tggggcaac atcattagca 780
 ttcaggtgga gaatgaatat ggtagctaca gaggcgttga cttcagctac atgaggcact 840
 tggctggcctt cttccgttca ctgtcAGAG aaaagatctt gctttcacc acagatggc 900
 ctgaaggact caagtgtgc tccctccggg gactctatac cactgttagat tttggccag 960
 ctgacaacat gaccaaaatc ttacccttc ttcggaaagta tgaaccccat gggccattgg 1020
 taaaactctga gtactacaca ggctggctgg attactgggg ccagaatcac tccacacgg 1080
 ctgtgtcAGAG tggtaacccaa ggactagaga acatgtcAA gttgggagcc agtgtgaaca 1140
 tgtacatgtt ccatggaggt accaactttg gatattggaa tggcgttgc tttggccag 1200
 gcttccttcc gattactacc agctatgact atgatgcacc tatactgaa gcaggggacc 1260
 ccacacctaa gcttttgc cttcggatgt tcatcAGAA gttccaggaa gttccttgg 1320
 gacctttacc tccccccggc cccaagatga tgcttggacc tggactctg cacctgggt 1380
 ggcattttact ggcttccta gacttgctt gccccctgg gcccattcat tcaatcttc 1440
 caatgacctt tgaggctgtc aaggcaggacc atggcttcat tggcgttgc acctatatga 1500
 cccataccat ttttggcca acaccattct gggtgcAAA taatggagtc catgaccgt 1560
 cctatgtgat ggtggatggg gtgttccagg gtgttgcgg gggaaatatg agagacaaac 1620
 tatttttgac ggggaaactg ggttccaaac tggatatctt ggtggagaac atggggaggc 1680
 tcagcttgg gtctaacacgc agtgacttca agggcttgc tggcgttgc acctatatga 1740
 aaacaatctt tacccgtgg atgatgttcc ctctgaaaat tgataacctt gtgaagtgg 1800
 ggtttccctt ccagttgcca aaatggccat atctcaacgc tcttcttgc cccacattct 1860
 actccaaaac atttccaatt ttaggctcag ttggggacac atttcttatat ctacctggat 1920
 ggaccaaggg ccaagtctgg atcaatgggt ttaacttggg ccgtactgg acaaagcagg 1980
 ggccacaaca gaccctctac gtggcaagat tcttgcgtt tcttaggggaa gcccctcaaca 2040
 aaattacatt gctggaaacta gaagatgtac ctctccagcc ccaagtccaa ttttgata 2100
 agcctatcct caatagcact agtactttgc acaggacaca tatcaattcc ctttcagctg 2160
 atacactgag tgcctctgaa ccaatggagt taagtggca ctgaaaggta ggccggccat 2220
 ggtggctcat gctgttatac ccagcacttt gggaggctga gacgggtggaa ttacctgggg 2280
 tcaggacttc aagaccagcc tggccaaatc ggtgaaaccc cgtctccact aaaaatacaa 2340
 aaattagccg ggcgtgtatgg tggcacctc taatcccagc tacttggggag gctgaggggc 2400
 ggagaattgc ttgaatccag gaggcagagg ttgcgttgc tggaggttgc accactgcac 2460
 tccagcctgg ctgacagtga gacactccat ctcaaaaaaa aaaaaa 2505

<210> 177
 <211> 654
 <212> PRT
 <213> Homo sapiens

<400> 177
 Met Ala Pro Lys Lys Leu Ser Cys Leu Arg Ser Leu Leu Leu Pro Leu
 1 5 10 15

Ser Leu Thr Leu Leu Leu Pro Gln Ala Asp Thr Arg Ser Phe Val Val
 20 25 30

Asp Arg Gly His Asp Arg Phe Leu Leu Asp Gly Ala Pro Phe Arg Tyr
 35 40 45

Val Ser Gly Ser Leu His Tyr Phe Arg Val Pro Arg Val Leu Trp Ala
 50 55 60

Asp Arg Leu Leu Lys Met Arg Trp Ser Gly Leu Asn Ala Ile Gln Phe
 65 70 75 80
 Tyr Val Pro Trp Asn Tyr His Glu Pro Gln Pro Gly Val Tyr Asn Phe
 85 90 95
 Asn Gly Ser Arg Asp Leu Ile Ala Phe Leu Asn Glu Ala Ala Leu Ala
 100 105 110
 Asn Leu Leu Val Ile Leu Arg Pro Gly Pro Tyr Ile Cys Ala Glu Trp
 115 120 125
 Glu Met Gly Gly Leu Pro Ser Trp Leu Leu Arg Lys Pro Glu Ile His
 130 135 140
 Leu Arg Thr Ser Asp Pro Asp Phe Leu Ala Ala Val Asp Ser Trp Phe
 145 150 155 160
 Lys Val Leu Leu Pro Lys Ile Tyr Pro Trp Leu Tyr His Asn Gly Gly
 165 170 175
 Asn Ile Ile Ser Ile Gln Val Glu Asn Glu Tyr Gly Ser Tyr Arg Ala
 180 185 190
 Cys Asp Phe Ser Tyr Met Arg His Leu Ala Gly Leu Phe Arg Ala Leu
 195 200 205
 Leu Gly Glu Lys Ile Leu Leu Phe Thr Thr Asp Gly Pro Glu Gly Leu
 210 215 220
 Lys Cys Gly Ser Leu Arg Gly Leu Tyr Thr Val Asp Phe Gly Pro
 225 230 235 240
 Ala Asp Asn Met Thr Lys Ile Phe Thr Leu Leu Arg Lys Tyr Glu Pro
 245 250 255
 His Gly Pro Leu Val Asn Ser Glu Tyr Tyr Thr Gly Trp Leu Asp Tyr
 260 265 270
 Trp Gly Gln Asn His Ser Thr Arg Ser Val Ser Ala Val Thr Lys Gly
 275 280 285
 Leu Glu Asn Met Leu Lys Leu Gly Ala Ser Val Asn Met Tyr Met Phe
 290 295 300
 His Gly Gly Thr Asn Phe Gly Tyr Trp Asn Gly Ala Asp Lys Lys Gly
 305 310 315 320
 Arg Phe Leu Pro Ile Thr Thr Ser Tyr Asp Tyr Asp Ala Pro Ile Ser
 325 330 335
 Glu Ala Gly Asp Pro Thr Pro Lys Leu Phe Ala Leu Arg Asp Val Ile

340	345	350
Ser Lys Phe Gln Glu Val Pro Leu Gly Pro Leu Pro Pro Pro Ser Pro		
355	360	365
Lys Met Met Leu Gly Pro Val Thr Leu His Leu Val Gly His Leu Leu		
370	375	380
Ala Phe Leu Asp Leu Leu Cys Pro Arg Gly Pro Ile His Ser Ile Leu		
385	390	395
Pro Met Thr Phe Glu Ala Val Lys Gln Asp His Gly Phe Met Leu Tyr		
405	410	415
Arg Thr Tyr Met Thr His Thr Ile Phe Glu Pro Thr Pro Phe Trp Val		
420	425	430
Pro Asn Asn Gly Val His Asp Arg Ala Tyr Val Met Val Asp Gly Val		
435	440	445
Phe Gln Gly Val Val Glu Arg Asn Met Arg Asp Lys Leu Phe Leu Thr		
450	455	460
Gly Lys Leu Gly Ser Lys Leu Asp Ile Leu Val Glu Asn Met Gly Arg		
465	470	475
Leu Ser Phe Gly Ser Asn Ser Ser Asp Phe Lys Gly Leu Leu Lys Pro		
485	490	495
Pro Ile Leu Gly Gln Thr Ile Leu Thr Gln Trp Met Met Phe Pro Leu		
500	505	510
Lys Ile Asp Asn Leu Val Lys Trp Trp Phe Pro Leu Gln Leu Pro Lys		
515	520	525
Trp Pro Tyr Pro Gln Ala Pro Ser Gly Pro Thr Phe Tyr Ser Lys Thr		
530	535	540
Phe Pro Ile Leu Gly Ser Val Gly Asp Thr Phe Leu Tyr Leu Pro Gly		
545	550	555
Trp Thr Lys Gly Gln Val Trp Ile Asn Gly Phe Asn Leu Gly Arg Tyr		
565	570	575
Trp Thr Lys Gln Gly Pro Gln Gln Thr Leu Tyr Val Pro Arg Phe Leu		
580	585	590
Leu Phe Pro Arg Gly Ala Leu Asn Lys Ile Thr Leu Leu Glu Leu Glu		
595	600	605
Asp Val Pro Leu Gln Pro Gln Val Gln Phe Leu Asp Lys Pro Ile Leu		
610	615	620

Asn Ser Thr Ser Thr Leu His Arg Thr His Ile Asn Ser Leu Ser Ala
 625 630 635 640

Asp Thr Leu Ser Ala Ser Glu Pro Met Glu Leu Ser Gly His
 645 650

<210> 178

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 178

tggctactcc aagaccctgg catg

24

<210> 179

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 179

tggacacaaatc cccttgctca gccc

24

<210> 180

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 180

gggcattcacc gaaggagtgg acctttatgg tgaccacctg atgtccaggg

50

<210> 181

<211> 22

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 181

ccagctatga ctatgatgca cc

22

```

<210> 182
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 182
tggcacccag aatggtgttg gctc                                         24

<210> 183
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 183
cgagatgtca tcagcaagtt ccaggaagtt cctttggac ctttacacctc          50

<210> 184
<211> 1947
<212> DNA
<213> Homo sapiens

<400> 184
gcttgaaca cgtctgcaag cccaaagttt agcatcttat tggttatgag gtatttgagt 60
gcacccacaa tatggcttac atgttggaaa agcttctcat cagttacata tccatttattt 120
gtgtttatgg ctttatctgc ctctacactc tcttctggtt attcaggata cctttgaagg 180
aatattcttt cgaaaaaagtc agagaagaga gcagtttag tgacattcca gatgtcaaaa 240
acgattttgc gttccttctt cacatggtag accagtatga ccagctatat tccaagggtt 300
ttggtgtgtt cttgtcagaa gttagtggaaa ataaacttag ggaaatttagt ttgaaccatg 360
agtggacatt tgaaaaactc aggccgcaca tttcacgcaa cgcccaggac aagcaggagt 420
tgcacatgtt catgtgtcg ggggtgccccg atgctgtctt tgacctcaca gacctggatg 480
tgctaagct tgaactaatt ccagaagcta aaattcctgc taagatttct caaatgacta 540
acctccaaga gctccacccctc tgccactgcc ctgcaaaagt tgaacagact gcttttagct 600
ttcttcgcga tcacttgaga tgccttcacg tgaagttcac tgatgtggct gaaattcctg 660
cctgggtgta tttgtctaaa aacccatcgag agttgtactt aataggcaat ttgaactctg 720
aaaacaataa gatgatagga cttgaatctc tccgagagtt gcggcacctt aagattctcc 780
acgtgaagag caatttgacc aaagtccctt ccaacattac agatgtggct ccacatctta 840
caaagtttagt cattcataat gacggcacta aactcttggt actgaacagc cttaagaaaa 900
tgatgaatgt cgctgagctg gaactccaga actgtgagct agagagaatc ccacatgcta 960
ttttcagcct ctctaattta caggaactgg atttaaagtcaataacatt cgcacaattt 1020
aggaaatcat cagttccag cattaaaac gactgacttg tttaaaatta tggcataaca 1080
aaattgttac tattcctccc tctattaccc atgtcaaaaaa cttggagtc ctttatttct 1140
ctaacacaacaa gctcgaatcc ttaccagtgg cagtatttag tttacagaaa ctcagatgct 1200
tagatgtgag ctacaacaac atttcaatga ttccaataga aataggattt cttcagaacc 1260
tgcagcattt gcatatcact gggAACAAAG tggacattct gccAAACAAAG ttgtttaaat 1320

```

gcataaaagt gaggacttg aatctgggac agaactgcat cacctcaactc ccagagaaaag 1380
 ttggtcagct ctcccagctc actcagctgg agctgaaggg gaactgcttgc 1440
 cagcccgact gggccagttgt cgatgtca agaaaagcgg gtttgttgta gaagatcacc 1500
 ttttgatac cctgcccactc gaagtcaaag aggcatggaa tcaagacata aatattccct 1560
 ttgcaaatgg gatTTAAACT aagataatat atgcacagt atgtgcagga acaacttcct 1620
 agattgcaag tgctcacgta caagttatta caagataatg catttttagga gtagatacat 1680
 cttttaaaat aaaacagaga ggatgcata gaggctgata gaagacataa ctgaatgttc 1740
 aatgtttgtt gggTTTtaag tcattcattt ccaaatttattt ttttttttcc ttttgggaa 1800
 aggaaaggaa aaattataat cactaatctt gtttctttt aaattgtttg taacttggat 1860
 gctgccgcta ctgaatgtt acaaattgct tgccctgctaa agtaaatgtat taaattgaca 1920
 ttttcttact aaaaaaaaaaaaaaaa 1947

<210> 185

<211> 501

<212> PRT

<213> Homo sapiens

<400> 185

Met	Ala	Tyr	Met	Leu	Lys	Lys	Leu	Leu	Ile	Ser	Tyr	Ile	Ser	Ile	Ile
1				5				10					15		

Cys	Val	Tyr	Gly	Phe	Ile	Cys	Leu	Tyr	Thr	Leu	Phe	Trp	Leu	Phe	Arg
					20			25					30		

Ile	Pro	Leu	Lys	Glu	Tyr	Ser	Phe	Glu	Lys	Val	Arg	Glu	Glu	Ser	Ser
					35			40				45			

Phe	Ser	Asp	Ile	Pro	Asp	Val	Lys	Asn	Asp	Phe	Ala	Phe	Leu	Leu	His
					50			55				60			

Met	Val	Asp	Gln	Tyr	Asp	Gln	Leu	Tyr	Ser	Lys	Arg	Phe	Gly	Val	Phe
					65			70			75			80	

Leu	Ser	Glu	Val	Ser	Glu	Asn	Lys	Leu	Arg	Glu	Ile	Ser	Leu	Asn	His
					85				90				95		

Glu	Trp	Thr	Phe	Glu	Lys	Leu	Arg	Gln	His	Ile	Ser	Arg	Asn	Ala	Gln
					100			105				110			

Asp	Lys	Gln	Glu	Leu	His	Leu	Phe	Met	Leu	Ser	Gly	Val	Pro	Asp	Ala
					115			120				125			

Val	Phe	Asp	Leu	Thr	Asp	Leu	Asp	Val	Leu	Lys	Leu	Glu	Leu	Ile	Pro
					130			135				140			

Glu	Ala	Lys	Ile	Pro	Ala	Lys	Ile	Ser	Gln	Met	Thr	Asn	Leu	Gln	Glu
					145			150			155		160		

Leu	His	Leu	Cys	His	Cys	Pro	Ala	Lys	Val	Glu	Gln	Thr	Ala	Phe	Ser
					165			170				175			

Phe	Leu	Arg	Asp	His	Leu	Arg	Cys	Leu	His	Val	Lys	Phe	Thr	Asp	Val
					180			185				190			

Ala Glu Ile Pro Ala Trp Val Tyr Leu Leu Lys Asn Leu Arg Glu Leu
 195 200 205

 Tyr Leu Ile Gly Asn Leu Asn Ser Glu Asn Asn Lys Met Ile Gly Leu
 210 215 220

 Glu Ser Leu Arg Glu Leu Arg His Leu Lys Ile Leu His Val Lys Ser
 225 230 235 240

 Asn Leu Thr Lys Val Pro Ser Asn Ile Thr Asp Val Ala Pro His Leu
 245 250 255

 Thr Lys Leu Val Ile His Asn Asp Gly Thr Lys Leu Leu Val Leu Asn
 260 265 270

 Ser Leu Lys Lys Met Met Asn Val Ala Glu Leu Glu Leu Gln Asn Cys
 275 280 285

 Glu Leu Glu Arg Ile Pro His Ala Ile Phe Ser Leu Ser Asn Leu Gln
 290 295 300

 Glu Leu Asp Leu Lys Ser Asn Asn Ile Arg Thr Ile Glu Glu Ile Ile
 305 310 315 320

 Ser Phe Gln His Leu Lys Arg Leu Thr Cys Leu Lys Leu Trp His Asn
 325 330 335

 Lys Ile Val Thr Ile Pro Pro Ser Ile Thr His Val Lys Asn Leu Glu
 340 345 350

 Ser Leu Tyr Phe Ser Asn Asn Lys Leu Glu Ser Leu Pro Val Ala Val
 355 360 365

 Phe Ser Leu Gln Lys Leu Arg Cys Leu Asp Val Ser Tyr Asn Asn Ile
 370 375 380

 Ser Met Ile Pro Ile Glu Ile Gly Leu Leu Gln Asn Leu Gln His Leu
 385 390 395 400

 His Ile Thr Gly Asn Lys Val Asp Ile Leu Pro Lys Gln Leu Phe Lys
 405 410 415

 Cys Ile Lys Leu Arg Thr Leu Asn Leu Gly Gln Asn Cys Ile Thr Ser
 420 425 430

 Leu Pro Glu Lys Val Gly Gln Leu Ser Gln Leu Thr Gln Leu Glu Leu
 435 440 445

 Lys Gly Asn Cys Leu Asp Arg Leu Pro Ala Gln Leu Gly Gln Cys Arg
 450 455 460

 Met Leu Lys Lys Ser Gly Leu Val Val Glu Asp His Leu Phe Asp Thr

465

470

475

480

Leu Pro Leu Glu Val Lys Glu Ala Leu Asn Gln Asp Ile Asn Ile Pro
485 490 495

Phe Ala Asn Gly Ile
500

```
<210> 186
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 186
cctccctcta ttacccatqt c

21

<210> 187
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 187
gaccaacttt ctctggagt gagg

24

```
<210> 188
<211> 47
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Description of Artificial Sequence: Synthetic
oligonucleotide probe

<400> 188
gtcactttat ttcttctaaca acaaqctcgta atccttacca qtggcaq

47

```
<210> 189  
<211> 2917  
<212> DNA  
<213> Homo sapiens
```

```
<400> 189  
cccacgcgtc cggccttctc tctggacttt gcatttccat tcctttcat tgacaaactg 60  
actttttta ttctttttt tccatcttg ggcagcttg ggatcctagg ccgcctggg 120  
aagacatttq tttttacac acataaqgat ctgtgtttqaq ggtttcttct tcctccccgtq 180
```

acattggcat tgcttagtgg ttgtgtgggg agggagacca cgtgggctca gtgcttgctt 240
gcacttatct gcctaggatc atcgaagtct tttgacctcc atacagtat tatgcctgtc 300
atcgctggg gtatcctggc ggccttgctc ctgctgatag ttgtctgtct ctgtctttac 360
ttcaaaaatac aacaacgcgct aaaagctgca aaggAACCTG aagctgtggc tgaaaaaat 420
cacaaccagg acaagggtgtg gtgggccaag aacagccagg cccaaaccat tgccacggag 480
tcttgtctg ccctgcagtg ctgtgaagga tatagaatgt gtgcagatct tgattccctg 540
ccacccctgt gttgcgacat aaatgaggc ctcgtgatca ggaaaggctc ccttctcaaa 600
gcagagccct gaagacttca atgatgtcaa tgaggccacc tggttgat gtgcaggcac 660
agaagaaaagg cacagctccc catcagttc atggaaaata actcagtgcc tgctggAAC 720
cagctgtgg agatccctac agagagctt cactggggc aacccttcca ggaaggagtt 780
ggggagagag aaccctcaact gtggggatg ctgataaaacc agtcacacag ctgtcttatt 840
ctcacacaaa tctaccctt ggcgtggctgg aactgacgtt tccctggagg tgccagaaaa 900
gctgatgtaa cacagagcct ataaaagctg tcggccctta aggctgccc ggccttgcc 960
aaaatggagc ttgttaagaag gctcatgcca ttgaccctct taattctctc ctgtttggcg 1020
gagctgacaa tggcgaggc tgaaggaat gcaagctgca cagtcagtct aggggggtgcc 1080
aatatggcag agacccacaa agccatgatc ctgcaactca atcccagtga gaactgcacc 1140
tggacaatag aaagaccaga aaacaaaagc atcagaatta tctttccta tgccagctt 1200
gatccagatg gaagctgtga aagtggaaac attaaagtct ttgacgaaac ctccagcaat 1260
gggcctctgc tagggcaagt ctgcagtaaa aacgactatg ttccctgtatt tgaatcatca 1320
tccagtacat tgacgtttca aatagttact gactcagcaa gaattcaaag aactgtctt 1380
gtcttctact acttcttctc tcctaacatc tctattccaa actgtggcg ttacctggat 1440
accttggaaag gatccctcac cagccccaa taccggaaagc cgccatctga gctggcttat 1500
tgtgtgtggc acatacaagt ggagaaagat tacaagataa aactaaactt caaagagatt 1560
ttccttagaaa tagacaaaaca gtgc当地 aatgtttctt gatggatggccatcttcc 1620
accactctg gcctgattgg acaagctgtt ggcgtgtga ctcccccctt cgaatcgatca 1680
tcaaaactctc tgactgtcgt gttgtctaca gattatgcca attcttaccg gggattttct 1740
gcttcctaca cctcaattta tgcagaaaac atcaacacta catctttaac ttgtctttct 1800
gacaggatga gagttattat aagcaaatcc taccttagagg cttttaactc taatggaaat 1860
aacttgcac taaaagaccc aacttgcaga cccaaaattat caaatgttgc ggaattttct 1920
gtccctctta atggatgtgg tacaatcaga aaggttagaag atcagtcata tacttacacc 1980
aatataatca cctttctgc atcctcaact tctgaatgtga tcacccgtca gaaacaactc 2040
cagattattt tgaatgtgtga aatgggacat aattctacag tggagataat atacataaca 2100
gaagatgtatg taatacaaaag tcaaaaatgca ctggggaaat ataacaccag catggctctt 2160
tttgaatcca attcatttga aaagactata cttgaatcac catattatgt ggatttgaac 2220
caaactctt ttgttcaagt tagtctgcac acctcagatc caaatttggg ggtttctt 2280
gataccctgtt gggctctcc cacctctgac tttgcatctc caacccatcgaa cctaatacg 2340
agtggatgtt gtccgagatgt aacttgcata gtttatccct tatttggaca ctatgggaga 2400
ttccagtttta atgcctttaa attcttgcata agttagatgt ctgtgtatct gcaatgtt 2460
gttttgcata gtgatagcag tgaccaccag tctcgctgca atcaagtttgc tgcctccaga 2520
agcaaaacgg acatttcttc atataaaatgg aaaacagatt ccatcatagg acccattcg 2580
ctgaaaaggg atcgaagtgc aagtggcaat tcaggatttgc agcatggaaac acatgcggaa 2640
gaaactccaa accagctttt caacagtgtg catctgtttt cttcatggt tctagctctg 2700
aatgtgtgtt gttgtgttgc aatcacatgt aggcatttttgc taaatcaacg ggcagactac 2760
aaataccaga agctgcagaa ctattacta acaggccaa ccctaaatgtt gacatgtttc 2820
tccaggatgtc caaaggaaat gctacctgtt ggttacatcat attatgttata aatggagaa 2880
ggcctgaaaag tgacacacac ggcctgatgtt aaaaaaaaaaaaaaa 2917

<210> 190

<211> 607

<212> PRT

<213> Homo sapiens

<400> 190

Met Glu Leu Val Arg Arg Leu Met Pro Leu Thr Leu Leu Ile Leu Ser
 1 5 10 15
 Cys Leu Ala Glu Leu Thr Met Ala Glu Ala Glu Gly Asn Ala Ser Cys
 20 25 30
 Thr Val Ser Leu Gly Gly Ala Asn Met Ala Glu Thr His Lys Ala Met
 35 40 45
 Ile Leu Gln Leu Asn Pro Ser Glu Asn Cys Thr Trp Thr Ile Glu Arg
 50 55 60
 Pro Glu Asn Lys Ser Ile Arg Ile Ile Phe Ser Tyr Val Gln Leu Asp
 65 70 75 80
 Pro Asp Gly Ser Cys Glu Ser Glu Asn Ile Lys Val Phe Asp Gly Thr
 85 90 95
 Ser Ser Asn Gly Pro Leu Leu Gly Gln Val Cys Ser Lys Asn Asp Tyr
 100 105 110
 Val Pro Val Phe Glu Ser Ser Ser Thr Leu Thr Phe Gln Ile Val
 115 120 125
 Thr Asp Ser Ala Arg Ile Gln Arg Thr Val Phe Val Phe Tyr Tyr Phe
 130 135 140
 Phe Ser Pro Asn Ile Ser Ile Pro Asn Cys Gly Gly Tyr Leu Asp Thr
 145 150 155 160
 Leu Glu Gly Ser Phe Thr Ser Pro Asn Tyr Pro Lys Pro His Pro Glu
 165 170 175
 Leu Ala Tyr Cys Val Trp His Ile Gln Val Glu Lys Asp Tyr Lys Ile
 180 185 190
 Lys Leu Asn Phe Lys Glu Ile Phe Leu Glu Ile Asp Lys Gln Cys Lys
 195 200 205
 Phe Asp Phe Leu Ala Ile Tyr Asp Gly Pro Ser Thr Asn Ser Gly Leu
 210 215 220
 Ile Gly Gln Val Cys Gly Arg Val Thr Pro Thr Phe Glu Ser Ser Ser
 225 230 235 240
 Asn Ser Leu Thr Val Val Leu Ser Thr Asp Tyr Ala Asn Ser Tyr Arg
 245 250 255
 Gly Phe Ser Ala Ser Tyr Thr Ser Ile Tyr Ala Glu Asn Ile Asn Thr
 260 265 270
 Thr Ser Leu Thr Cys Ser Ser Asp Arg Met Arg Val Ile Ile Ser Lys
 275 280 285

Ser Tyr Leu Glu Ala Phe Asn Ser Asn Gly Asn Asn Leu Gln Leu Lys
 290 295 300

Asp Pro Thr Cys Arg Pro Lys Leu Ser Asn Val Val Glu Phe Ser Val
 305 310 315 320

Pro Leu Asn Gly Cys Gly Thr Ile Arg Lys Val Glu Asp Gln Ser Ile
 325 330 335

Thr Tyr Thr Asn Ile Ile Thr Phe Ser Ala Ser Ser Thr Ser Glu Val
 340 345 350

Ile Thr Arg Gln Lys Gln Leu Gln Ile Ile Val Lys Cys Glu Met Gly
 355 360 365

His Asn Ser Thr Val Glu Ile Ile Tyr Ile Thr Glu Asp Asp Val Ile
 370 375 380

Gln Ser Gln Asn Ala Leu Gly Lys Tyr Asn Thr Ser Met Ala Leu Phe
 385 390 395 400

Glu Ser Asn Ser Phe Glu Lys Thr Ile Leu Glu Ser Pro Tyr Tyr Val
 405 410 415

Asp Leu Asn Gln Thr Leu Phe Val Gln Val Ser Leu His Thr Ser Asp
 420 425 430

Pro Asn Leu Val Val Phe Leu Asp Thr Cys Arg Ala Ser Pro Thr Ser
 435 440 445

Asp Phe Ala Ser Pro Thr Tyr Asp Leu Ile Lys Ser Gly Cys Ser Arg
 450 455 460

Asp Glu Thr Cys Lys Val Tyr Pro Leu Phe Gly His Tyr Gly Arg Phe
 465 470 475 480

Gln Phe Asn Ala Phe Lys Phe Leu Arg Ser Met Ser Ser Val Tyr Leu
 485 490 495

Gln Cys Lys Val Leu Ile Cys Asp Ser Ser Asp His Gln Ser Arg Cys
 500 505 510

Asn Gln Gly Cys Val Ser Arg Ser Lys Arg Asp Ile Ser Ser Tyr Lys
 515 520 525

Trp Lys Thr Asp Ser Ile Ile Gly Pro Ile Arg Leu Lys Arg Asp Arg
 530 535 540

Ser Ala Ser Gly Asn Ser Gly Phe Gln His Glu Thr His Ala Glu Glu
 545 550 555 560

Thr Pro Asn Gln Pro Phe Asn Ser Val His Leu Phe Ser Phe Met Val

565	570	575
Leu Ala Leu Asn Val Val Thr Val Ala Thr Ile Thr Val Arg His Phe 580	585	590
Val Asn Gln Arg Ala Asp Tyr Lys Tyr Gln Lys Leu Gln Asn Tyr 595	600	605
<210> 191		
<211> 21		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 191		
tctctatcc aaactgtggc g		21
<210> 192		
<211> 22		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 192		
tttgatgacg attcgaagg tt		22
<210> 193		
<211> 47		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe		
<400> 193		
ggaaggatcc ttcaccagcc ccaattaccc aaagccgcat cctgagc		47
<210> 194		
<211> 2362		
<212> DNA		
<213> Homo sapiens		
<400> 194		
gacggaagaa cagcgctccc gagggccgcgg gagcctgcag agaggacagc cgccctgcgc cgggacatgc ggccccagga gctccccagg ctgcgttcc cgttgctgtt gttgctgttg ctqctqtcg cgcgcgcqcc qtqccctqcc cacaqcqcca cqcqcttcqa ccccacctqg		60 120 180

gagtcctgg acgcccccca gtcgcgcg tggtttgcacc agggcaagtt cggcatcttc 240
 atccactggg gagtgtttc cgtccccgc ttcggtagcg agtggttctg gtggatttgg 300
 caaaaggaaa agataccgaa gatgtggaa ttatgaaag ataattaccc tcctagttc 360
 aaatatgaag attttggacc actattaca gcaaaatttt ttaatgccaa ccagtggca 420
 gatattttc aggccctgg tgccaaatac attgtcttaa cttccaaaca tcatgaaggc 480
 ttaccttgt gggggtcaga atattcgtgg aactggaatg ccatagatga ggggcccag 540
 agggacattg tcaaggaact ttaggtagcc attagaaca gaactgacct gcttttgg 600
 ctgtactatt cccttttga atggttcat cgccttcc ttgaggatga atccagttca 660
 ttccataagc ggcaattcc agtttctaag acattgccag agctctatga gttagtgaac 720
 aactatcagc ctgaggttct gtggcggat ggtgacggag gaccccgga tcaatactgg 780,
 aacagcacag gcttcttggc ctggatat aatgaaagcc cagttcgggg cacagtagtc 840
 accaatgatc gttggggagc tggtagcato tgtaagcatg gtggcttcta tacctgcagt 900
 gatcggtata acccaggaca tcttttgcac cataatggg aaaactgcac gacaatagac 960
 aaactgtcct ggggctatag gagggaaagct ggaatctctg actatcttac aattgaagaa 1020
 ttggtaagc aacttgtaga gacagttca tggaggaa atcttttgcat gaatatttgg 1080
 cccacactag atggcaccat ttctgttagt tttgaggagc gactgaggca agtgggtcc 1140
 tggctaaaag tcaatggaga agtatttat gaaacctata cctggcgatcc cagaatgac 1200
 actgtcacc cagatgtgtg gtacacatcc aagcctaaag aaaaatttagt ctatgccatt 1260
 tttcttaat gccccacatc aggacagctg ttcttggcc atcccaaagc tattctgggg 1320
 gcaacagagg taaaactact gggccatgga cagccactt actggatttcc tttggagcaa 1380
 aatggcatta tggtagaact gccacagcta accatttcac agatgccgtg taaatgggc 1440
 tggctctag ccctaactaa tggatctaa agtgcagcag agtggctgtat gtcgaagtt 1500
 atgtctaagg ctaggaacta tcaggtgtct ataatttgcata ccatggaga aagcaatgta 1560
 aactggataa gaaaatttatt tggcagttca gccccttccc ttttccac taaattttc 1620
 ttaaatttacc catgtaacca ttttaactct ccagtgcact ttgcattaa agtctttca 1680
 cattgatttgc tttccatgtg tgactcagag gtgagaattt tttcacatta tagtagcaag 1740
 gaatttggggg tattatggac cgaactgaaa attttatgtt gaagccatat cccccatgat 1800
 tatatagtta tgcacactt aatatggggg tttttctgg gaaatgcatt gctagtcaat 1860
 tttttttgt gccaacatca tagagtgtat ttacaaaatc ctagatggca tagctacta 1920
 cacacctaatt gtgtatggta tagactgttgc tccctaggct acagacatatt acagcatgtt 1980
 actgaataact ttaggcaata gtaacagtgg tattttgtata tcgaaacata tggaaacata 2040
 gagaaggtac agtaaaaata ctgtaaaaata aatggtcac ctgtataggc cacttaccac 2100
 gaatggagct tacaggactg gaagttgc tgggtgagtc agtgagtgaa tggaaaggcc 2160
 taggacatta ttgaacactg ccagacgttta taaatactgtt atgcttaggc tacactacat 2220
 ttataaaaaaa aagttttctt ttcttcaatt ataaattaac ataaatgtac tggtaacttta 2280
 caaacgtttt aatttttaaa accttttgg ctctttgttata aacacttta gcttaaaaaca 2340
 taaactcatt gtgcaaatgt aa 2362

<210> 195

<211> 467

<212> PRT

<213> Homo sapiens

<400> 195

Met	Arg	Pro	Gln	Glu	Leu	Pro	Arg	Leu	Ala	Phe	Pro	Leu	Leu	Leu
1														15

Leu	Leu	Leu	Leu	Leu	Pro	Pro	Pro	Pro	Cys	Pro	Ala	His	Ser	Ala	Thr
					20				25				30		

Arg	Phe	Asp	Pro	Thr	Trp	Glu	Ser	Leu	Asp	Ala	Arg	Gln	Leu	Pro	Ala	
														35	40	45

Trp Phe Asp Gln Ala Lys Phe Gly Ile Phe Ile His Trp Gly Val Phe
 50 55 60

Ser Val Pro Ser Phe Gly Ser Glu Trp Phe Trp Trp Tyr Trp Gln Lys
 65 70 75 80

Glu Lys Ile Pro Lys Tyr Val Glu Phe Met Lys Asp Asn Tyr Pro Pro
 85 90 95

Ser Phe Lys Tyr Glu Asp Phe Gly Pro Leu Phe Thr Ala Lys Phe Phe
 100 105 110

Asn Ala Asn Gln Trp Ala Asp Ile Phe Gln Ala Ser Gly Ala Lys Tyr
 115 120 125

Ile Val Leu Thr Ser Lys His His Glu Gly Phe Thr Leu Trp Gly Ser
 130 135 140

Glu Tyr Ser Trp Asn Trp Asn Ala Ile Asp Glu Gly Pro Lys Arg Asp
 145 150 155 160

Ile Val Lys Glu Leu Glu Val Ala Ile Arg Asn Arg Thr Asp Leu Arg
 165 170 175

Phe Gly Leu Tyr Tyr Ser Leu Phe Glu Trp Phe His Pro Leu Phe Leu
 180 185 190

Glu Asp Glu Ser Ser Ser Phe His Lys Arg Gln Phe Pro Val Ser Lys
 195 200 205

Thr Leu Pro Glu Leu Tyr Glu Leu Val Asn Asn Tyr Gln Pro Glu Val
 210 215 220

Leu Trp Ser Asp Gly Asp Gly Gly Ala Pro Asp Gln Tyr Trp Asn Ser
 225 230 235 240

Thr Gly Phe Leu Ala Trp Leu Tyr Asn Glu Ser Pro Val Arg Gly Thr
 245 250 255

Val Val Thr Asn Asp Arg Trp Gly Ala Gly Ser Ile Cys Lys His Gly
 260 265 270

Gly Phe Tyr Thr Cys Ser Asp Arg Tyr Asn Pro Gly His Leu Leu Pro
 275 280 285

His Lys Trp Glu Asn Cys Met Thr Ile Asp Lys Leu Ser Trp Gly Tyr
 290 295 300

Arg Arg Glu Ala Gly Ile Ser Asp Tyr Leu Thr Ile Glu Glu Leu Val
 305 310 315 320

Lys Gln Leu Val Glu Thr Val Ser Cys Gly Gly Asn Leu Leu Met Asn
 325 330 335

Ile Gly Pro Thr Leu Asp Gly Thr Ile Ser Val Val Phe Glu Glu Arg
 340 345 350

Leu Arg Gln Val Gly Ser Trp Leu Lys Val Asn Gly Glu Ala Ile Tyr
 355 360 365

Glu Thr Tyr Thr Trp Arg Ser Gln Asn Asp Thr Val Thr Pro Asp Val
 370 375 380

Trp Tyr Thr Ser Lys Pro Lys Glu Lys Leu Val Tyr Ala Ile Phe Leu
 385 390 395 400

Lys Trp Pro Thr Ser Gly Gln Leu Phe Leu Gly His Pro Lys Ala Ile
 405 410 415

Leu Gly Ala Thr Glu Val Lys Leu Leu Gly His Gly Gln Pro Leu Asn
 420 425 430

Trp Ile Ser Leu Glu Gln Asn Gly Ile Met Val Glu Leu Pro Gln Leu
 435 440 445

Thr Ile His Gln Met Pro Cys Lys Trp Gly Trp Ala Leu Ala Leu Thr
 450 455 460

Asn Val Ile
 465

<210> 196
 <211> 23
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 196
 tggtttgacc aggc当地 gttt cggt 23

<210> 197
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 197
 ggattcatcc tcaaggaaga gctttt 24

<210> 198

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 198
aacttgcagc atcagccact ctgc 24

<210> 199
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 199
ttccgtgccc agttcggta gcgagtggtt ctggtggtat tggca 45

<210> 200
<211> 2372
<212> DNA
<213> Homo sapiens

<400> 200
agcaggaaaa tcggatgtc tcggttatga agtggagcac tgagtgttag cctcaacata 60
gttccagaac tctccatccg gactagtat tgagcatctg cctctcatat caccagtggc 120
catctgaggt gtttccctgg ctctgaaggg gttaggcacga tggccaggtg cttcagcctg 180
gtgttgcctc tcacttccat ctggaccacg aggctcctgg tccaaggctc tttgcgtca 240
gaagagcttt ccattccaggt gtcatgcaga attatggga tcacccttgt gagcaaaaag 300
gcgaaccacgc agctgaattt cacagaagct aaggaggcct gtaggctgt gggactaagt 360
ttggccggca aggaccaagt tgaaacagcc ttgaaagcta gctttgaac ttgcagctat 420
ggctgggttg gagatggatt cgtggtcate tctaggatta gccccaaaccc caagtgtggg 480
aaaaatgggg tgggtgtcct gatggaaag gttccagtga gccgacagtt tgcagcctat 540
tgttacaact catctgatac ttggactaac tcgtgcattc cagaaattat caccacccaa 600
gatcccataat tcaacactca aactgcaaca caaacaacag aatttattgt cagtgacagt 660
acctactcg tggcatcccc ttactctaca atacctgccc ctactactac tcctccctgc 720
ccagcttcca cttctattcc acggagaaaa aaattgattt gtgtcacaga agttttatg 780
gaaaactagca ccattgtctac agaaaactgaa ccatttggtaaaaataaaagc agcattcaag 840
aatgaagctg ctgggtttgg aggtgtcccc acggctctgc tagtgctgc tctcctcttc 900
tttgggtgtg cagctggctt tggattttgc tatgtcaaaa ggtatgtgaa ggccttccct 960
tttacaaaca agaatcagca gaaggaaaatg atcggaaacca aagttagtaaa ggaggagaag 1020
gccaatgata gcaaccctaa tgaggaatca aagaaaaactg ataaaaaaccg agaagagtcc 1080
aagagtccaa gcaaaaactac cgtgcgtac ctggaaagctg aagtttagat gagacagaaaa 1140
tgaggagaca cacctgaggc tgggttctt catgctcctt accctgcggcc agctggggaa 1200
atcaaaaaggc ccaaagaacc aaagaagaaa gtccaccctt ggttcctaacttggaaatcagc 1260
tcaggactgc cattggacta tggagtgcac caaagagaat gccccttcctt ttattgtaaac 1320
cctgtctgga tcctatcctc ctacctccaa agctcccac ggcctttcta gcctggctat 1380
qtcctaataa tatccccactq qqagaaaaqq qtttqcaaa qtcaaaqqac ctaaaacatc 1440

tcatcgtat	ccagtggtaa	aaaggccccc	tggctgtctg	aggcttaggt	ggttgaaaagc	1500
caaggagtca	ctgagaccaa	ggcttctct	actgattccg	cagctcagac	ccttcttca	1560
gctctgaaag	agaaacacgt	atcccacctg	acatgtcctt	ctgagccccg	taagagcaaa	1620
agaatggcag	aaaagttag	ccccgtgaaag	ccatggagat	tctcataact	tgagacctaa	1680
tctctgtaaa	gctaaaataa	agaaatagaa	caaggctgag	gatacgacag	tacactgtca	1740
gcagggactg	taaacacaga	cagggtcaaa	gtgtttctc	tgaacacatt	gagttggaaat	1800
cactgtttag	aacacacaca	cttactttt	ctggctctca	ccactgctga	tattttctct	1860
aggaaatata	cttttacaag	taacaaaaat	aaaaactctt	ataaaattct	atttttatct	1920
gagttacaga	aatgattact	aaggaagatt	actcagtaat	ttgtttaaaa	agtaataaaaa	1980
ttcaacaaac	atttgctgaa	tagctactat	atgtcaagtg	ctgtgcagg	tattacactc	2040
tgtattgaa	tattattcct	caaaaaattg	cacatagtag	aacgctatct	gggaagctat	2100
tttttcagt	tttgatattt	ctagcttatc	tacttccaaa	ctaattttta	ttttgctga	2160
gactaatctt	attcattttc	tctaataatgg	caaccattat	aaccttaatt	tattattaac	2220
atacctaaga	agtacattgt	tacctctata	tacccaaagca	cattttaaaa	gtgcattaa	2280
caaatgtatc	actagccctc	cttttccaa	caagaaggga	ctgagagatg	cagaaatatt	2340
tgtgacaaaaa	aattaaagca	tttagaaaaac	tt			2372

<210> 201

<211> 322

<212> PBT

<213> Artificial sequence

<220>

<223> Synthetic protein

<400> 201

Met	Ala	Arg	Cys	Phe	Ser	Leu	Val	Leu	Leu	Leu	Thr	Ser	Ile	Trp	Thr
1				5						10					15

Thr Arg Leu Leu Val Gln Gly Ser Leu Arg Ala Glu Glu Leu Ser Ile
20 25 30

Gln Val Ser Cys Arg Ile Met Gly Ile Thr Leu Val Ser Lys Lys Ala
35 40 45

Asn Gln Gln Leu Asn Phe Thr Glu Ala Lys Glu Ala Cys Arg Leu Leu
50 55 60

Gly Leu Ser Leu Ala Gly Lys Asp Gln Val Glu Thr Ala Leu Lys Ala
65 70 75 80

Ser Phe Glu Thr Cys Ser Tyr Gly Trp Val Gly Asp Gly Phe Val Val
85 90 95

Ile Ser Arg Ile Ser Pro Asn Pro Lys Cys Gly Lys Asn Gly Val Gly
100 105 110

Val Leu Ile Trp Lys Val Pro Val Ser Arg Gln Phe Ala Ala Tyr Cys
115 120 125

Tyr Asn Ser Ser Asp Thr Trp Thr Asn Ser Cys Ile Pro Glu Ile Ile
 130 135 140

Thr Thr Lys Asp Pro Ile Phe Asn Thr Gln Thr Ala Thr Gln Thr Thr
 145 150 155 160
 Glu Phe Ile Val Ser Asp Ser Thr Tyr Ser Val Ala Ser Pro Tyr Ser
 165 170 175
 Thr Ile Pro Ala Pro Thr Thr Pro Pro Ala Pro Ala Ser Thr Ser
 180 185 190
 Ile Pro Arg Arg Lys Lys Leu Ile Cys Val Thr Glu Val Phe Met Glu
 195 200 205
 Thr Ser Thr Met Ser Thr Glu Thr Glu Pro Phe Val Glu Asn Lys Ala
 210 215 220
 Ala Phe Lys Asn Glu Ala Ala Gly Phe Gly Gly Val Pro Thr Ala Leu
 225 230 235 240
 Leu Val Leu Ala Leu Leu Phe Phe Gly Ala Ala Ala Gly Leu Gly Phe
 245 250 255
 Cys Tyr Val Lys Arg Tyr Val Lys Ala Phe Pro Phe Thr Asn Lys Asn
 260 265 270
 Gln Gln Lys Glu Met Ile Glu Thr Lys Val Val Lys Glu Glu Lys Ala
 275 280 285
 Asn Asp Ser Asn Pro Asn Glu Glu Ser Lys Lys Thr Asp Lys Asn Pro
 290 295 300
 Glu Glu Ser Lys Ser Pro Ser Lys Thr Thr Val Arg Cys Leu Glu Ala
 305 310 315 320
 Glu Val

<210> 202
 <211> 24
 <212> DNA
 <213> Artificial Sequence

 <220>
 <223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 202
 gagctttcca tccaggtgtc atgc 24

 <210> 203
 <211> 22
 <212> DNA
 <213> Artificial Sequence

```

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 203
      gtcagtgaca gtacctactc gg                                22

<210> 204
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 204
      tggagcagga ggagtagtag tagg                                24

<210> 205
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 205
      aggaggcctg taggctgctg ggactaagtt tggccggcaa ggaccaagtt    50

<210> 206
<211> 1620
<212> DNA
<213> Homo sapiens

<220>
<221> modified_base
<222> (973)
<223> a, t, c or g

<220>
<221> modified_base
<222> (977)
<223> a, t, c or g

<220>
<221> modified_base
<222> (996)
<223> a, t, c or g

<220>
<221> modified_base

```

<222> (1003)

<223> a, t, c or g

<400> 206

agatggcggt cttggcacct ctaattgctc tcgtgttattc ggtgccgcga ctttcacgat 60
 ggctcgccca accttactac cttctgtcgg ccctgcctc tgctgcctc ctactcgta 120
 gaaaactgcc gcccgtctgc cacggctctgc ccacccaacg cgaagacggg aaccgcgtg 180
 actttgactg gagagaagtg gagatcctga tgtttcttag tgccattgtg atgatgaaga 240
 acccgagatc catcaactgtg gagcaacata taggcaacat tttcatgtt agtaaagtgg 300
 ccaacacaat tctttcttc cgcttggata ttgcgtatgg cctacttac atcacactct 360
 gcatagtgtt cctgatgacg tgcaaaccgg ccctatatat gggccctgag tatatcaagt 420
 acttcaatga taaaaccatt gatgaggaac tagaacggga caagagggtc acttggattg 480
 tggagttctt tgccaaattgg tctaattgact gccaatcatt tgcccctatc tatgtgacc 540
 tctcccttaa atacaactgt acagggctaa attttggaa ggtggatgtt ggacgctata 600
 ctgatgttag tacgcgtac aaagtgagca catcaccct caccaagcaa ctccctaccc 660
 tgatcctgtt ccaagggtggc aaggaggcaa tgccggccg acagattgac aagaaaggac 720
 ggctgtctc atggacctc tctgaggaga atgtgatccg agaatttaac ttaaatgagc 780
 tataccagcg ggccaagaaa ctatcaaagg ctggagacaa tatccctgag gaggcgcctg 840
 tggcttcaac cccccaccaca gtgtcagatg gggaaaacaa gaaggataaa taagatcctc 900
 actttggcag tgcttcctc cctgtcaatt ccaggctctt tccataacca caagcctgag 960
 gctgcagcct ttnattnatg tttccctt ggctngact ggntggggca gcatgcagct 1020
 tctgattttt aagaggcatc tagggattt tcaggcaccc tacaggaagg cctgccatgc 1080
 tggcccaac tgtttactg gagcaagaaa gagatctcat aggacggagg gggaaatgg 1140
 ttcctccaa gcttgggtca gtgtgttac tgcttatcag ctattcagac atctccatgg 1200
 tttctccatg aaactctgtg gttcatcat tccttcctt tagtgcgtca cagcttggtt 1260
 agacctagat ttaaccctaa ggtaagatgc tgggtatag aacgctaaga attttcccc 1320
 aaggacttt gtttcctt gcccctctgg cttcgttat ggtcttcatt aaaagtataa 1380
 gctaaacttt gtgcgtagtc ctaaggagaa acctttaacc acaaagttt tatcattgaa 1440
 gacaatattt aacaaccccc tattttgtgg ggattgagaa ggggtgaata gaggttgag 1500
 actttccctt gtgtggtagg acttggagga gaaatcccct ggactttcac taaccctctg 1560
 acataactccc cacaccagt tgatggctt ccgtataaaa aagattggaa tttccttttg 1620

<210> 207

<211> 296

<212> PRT

<213> Homo sapiens

<400> 207

Met Ala Val Leu Ala Pro Leu Ile Ala Leu Val Tyr Ser Val Pro Arg

1

5

10

15

Leu Ser Arg Trp Leu Ala Gln Pro Tyr Tyr Leu Leu Ser Ala Leu Leu

20

25

30

Ser Ala Ala Phe Leu Leu Val Arg Lys Leu Pro Pro Leu Cys His Gly

35

40

45

Leu Pro Thr Gln Arg Glu Asp Gly Asn Pro Cys Asp Phe Asp Trp Arg

50

55

60

Glu Val Glu Ile Leu Met Phe Leu Ser Ala Ile Val Met Met Lys Asn

65

70

75

80


```

<210> 209
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 209
tggagacaat atccctgagg                                20

<210> 210
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 210
aacagttggc cacagcatgg cagg                                24

<210> 211
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic
      oligonucleotide probe

<400> 211
ccattgatga ggaactagaa cgggacaaga gggtcacttg gattgtggag      50

<210> 212
<211> 1985
<212> DNA
<213> Homo sapiens

<400> 212
ggacagctcg cggccccca gagctctagc cgtcgaggag ctgcctgggg acgtttgcc 60
tggggcccca gcctggcccgg ggtcacccctg gcatgaggag atgggcctgt tgctccttgt 120
cccatgtctc ctgctggcccg gctcctacgg actgccttc tacaacggct tctactactc 180
caacagcgcc aacgaccaga acctaggcaa cggtcatggc aaagacctcc ttaatggagt 240
gaagctggtg gtggagacac cggaggagac cctgttcacc taccaagggg ccagtgttat 300
cctgcccgtc cgctaccgct acgagccggc cctggcttcc ccggggcgtg tgcgtgtcaa 360
atggtggaaag ctgtcgagaa acggggccccc agagaaggac gtgctggtgg ccatcggct 420
gaggcaccgc tcctttgggg actaccaagg ccgegtgcac ctgeggcagg acaaagagca 480
tgacgtctcg ctggagatcc aggtatctcg gctggaggac tatgggcgtt accgctgtga 540
ggtcattgac gggctggagg atgaaagcgg tctgggtggag ctggagctgc ggggtgtgg 600

```

ctttccttac cagttccccca acggggcgcta ccagttcaac ttccacgagg gccagcaggt 660
 ctgtgcagag caggctgccc tggtgtccct ctttgagcag ctcttcggg cctgggagga 720
 gggcctggac tggtaaacgc cgggctggct gcaggatgct acggtgcaat accccatcat 780
 gttccccgg cagccctgcg gtggccagg cttggcacct ggctgcaaa gctacggccc 840
 cccgcaccgc cgctgcacc gctatgatgt attctgctt cttactgccc tcaaggggcg 900
 ggtgtactac ctggagcacc ctgagaagct gacgctgaca gaggcaaggg aggcctgcca 960
 ggaagatgat gccacgatcg ccaagggtgg acagctctt gccgcctgga agttccatgg 1020
 cctggaccgc tgcgacgtcg gctggctggc agatggcagc gtccgcgtacc ctgtgggtca 1080
 cccgcattct aactgtgggc ccccagagcc tggggtccga agctttggct tccccgaccc 1140
 gcagagccgc ttgtacgggt tttactgcta ccggccagcac taggacctgg ggcctcccc 1200
 tgccgcattc cctcaactggc tggatattt ttgagtgggt cgtttccct tgggggttgg 1260
 agccattttt actgtttttt tacttctcaa tttaaaatttt cttaaacat tttttacta 1320
 tttttgtaa agcaaacaga acccaatgcc tccctttgct cctggatgcc caactccagg 1380
 aatcatgttt gctccctgg gccatttgcg gttttgtggg ctcttgagg gttccccgccc 1440
 atccaggctg gtctccctcc cttaaggagg ttggtgccca gagtgggcgg tggctgtct 1500
 agaatgcgc cggagatccg ggcattggc gcacagtct cctggccct cagctgggg 1560
 gaagaagagg gcctcggggg cctccggagc tgggtttgg gctctctctg cccacctcta 1620
 ctctctgtg aagccgtga ccccaagtctg cccactgagg ggcttagggct ggaagccagt 1680
 tctaggctt caggcgaaat ctgagggaaag gaagaaaactc cctccccgt tccccctccc 1740
 ctctcggtt ccaaagaatct gttttgtgt catttggttc tcctgtttcc ctgtgtggg 1800
 aggggcctc aggtgtgtgt actttggaca ataaatggtg ctatgactgc cttccgc当地 1860
 aaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1920
 aaaaaaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa aaaaaaaaaaaa 1980
 aaaaaa

<210> 213

<211> 360

<212> PRT

<213> Homo sapiens

<400> 213

Met Gly Leu Leu Leu Leu Val Pro Leu Leu Leu Leu Pro Gly Ser Tyr

1

5

10

15

Gly Leu Pro Phe Tyr Asn Gly Phe Tyr Tyr Ser Asn Ser Ala Asn Asp
20 25 30

Gln Asn Leu Gly Asn Gly His Gly Lys Asp Leu Leu Asn Gly Val Lys
 35 40 45

Leu Val Val Glu Thr Pro Glu Glu Thr Leu Phe Thr Tyr Gln Gly Ala
50 55 60

Ser Val Ile Leu Pro Cys Arg Tyr Arg Tyr Glu Pro Ala Leu Val Ser
65 70 75 80

Pro Arg Arg Val Arg Val Lys Trp Trp Lys Leu Ser Glu Asn Gly Ala
85 90 95

Pro Glu Lys Asp Val Leu Val Ala Ile Gly Leu Arg His Arg Ser Phe
 100 105 110

Gly Asp Tyr Gln Gly Arg Val His Leu Arg Gln Asp Lys Glu His Asp

115	120	125
Val Ser Leu Glu Ile Gln Asp Leu Arg Leu Glu Asp Tyr Gly Arg Tyr		
130	135	140
Arg Cys Glu Val Ile Asp Gly Leu Glu Asp Glu Ser Gly Leu Val Glu		
145	150	155
Leu Glu Leu Arg Gly Val Val Phe Pro Tyr Gln Ser Pro Asn Gly Arg		
165	170	175
Tyr Gln Phe Asn Phe His Glu Gly Gln Gln Val Cys Ala Glu Gln Ala		
180	185	190
Ala Val Val Ala Ser Phe Glu Gln Leu Phe Arg Ala Trp Glu Glu Gly		
195	200	205
Leu Asp Trp Cys Asn Ala Gly Trp Leu Gln Asp Ala Thr Val Gln Tyr		
210	215	220
Pro Ile Met Leu Pro Arg Gln Pro Cys Gly Gly Pro Gly Leu Ala Pro		
225	230	235
Gly Val Arg Ser Tyr Gly Pro Arg His Arg Arg Leu His Arg Tyr Asp		
245	250	255
Val Phe Cys Phe Ala Thr Ala Leu Lys Gly Arg Val Tyr Tyr Leu Glu		
260	265	270
His Pro Glu Lys Leu Thr Leu Thr Glu Ala Arg Glu Ala Cys Gln Glu		
275	280	285
Asp Asp Ala Thr Ile Ala Lys Val Gly Gln Leu Phe Ala Ala Trp Lys		
290	295	300
Phe His Gly Leu Asp Arg Cys Asp Ala Gly Trp Leu Ala Asp Gly Ser		
305	310	315
Val Arg Tyr Pro Val Val His Pro Asn Cys Gly Pro Pro Glu		
325	330	335
Pro Gly Val Arg Ser Phe Gly Phe Pro Asp Pro Gln Ser Arg Leu Tyr		
340	345	350
Gly Val Tyr Cys Tyr Arg Gln His		
355	360	
<210> 214		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 214

tgc~~t~~tcgct~~a~~ ctgccctc

18

<210> 215

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 215

ttcc~~c~~tttg~~t~~ ggttggag

18

<210> 216

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 216

agg~~g~~ctggaa gccagttc

18

<210> 217

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 217

agcc~~g~~atgag gaaatg~~c~~

18

<210> 218

<211> 24

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 218

tgtccaaagt acacacacacct gagg

24

<210> 219
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 219
 gatgccacga tcgccaaggt gggacagctc tttgcgcctt ggaag 45

<210> 220
 <211> 1503
 <212> DNA
 <213> Homo sapiens

<400> 220
 ggagagcgga gcgaagctgg ataacagggg accgatgatg tggcgaccat cagttctgct 60
 gtttctgttg ctactgaggg acggggccca gggaaagcca tccccagacg caggccctca 120
 tgcccaagggg agggtgtcacc aggcggccccc cctgagcgac gctccccatg atgacgccc 180
 cggaacttc cagtacgacc atgagggttt cctgggacgg gaagtggcca aggaattcga 240
 ccaactcacc ccagaggaaa gccaggcccg tctggggcggt atcgtggacc gcatggaccg 300
 cgccggggac ggcgacggct ggggtcgct ggccgagctt cgccgctgga tcgcgcacac 360
 gcagcagcgg cacatacggg actcggtgag cgccgcctgg gacacgtacg acacggaccg 420
 cgacggcggt gtgggttggg aggagctgctg caacgcacc tatggccact acgcgcgg 480
 tgaagaattt catgacgtgg aggatgcaga gacctacaaa aagatgctgg ctcgggacga 540
 gccgcgtttc cgggtggccg accaggatgg ggactcgatg gccactcgag aggagctgac 600
 agccttcctg caccggagg agttccctca catgcggac atcgtgattt ctgaaaccct 660
 ggaggacctg gacagaaaca aagatggcta tgtccaggtt gaggagtaca tcgcggatct 720
 gtactcagcc gagcctgggg aggaggagcc ggcgtgggtt cagacggaga ggcagcgtt 780
 cccggacttc cgggatctga acaaggatgg gcacctggat gggagtgggg tggccactg 840
 ggtgctgccc cctgcccagg accagccctt ggtggaaagcc aaccacctgc tgcacgagag 900
 cgacacggac aaggatgggc ggctgagcaa agcggaaatc ctggtaatt ggaacatgtt 960
 tgtgggcagt caggccacca actatggcga ggacctgacc cgccaccacg atgagctgt 1020
 agacccgcgc acctgcacca gcctcagagg cccgcacaaat gaccggagga gggccgctg 1080
 tggtctggcc ccctccctgt ccaggccccgg caggaggcag atgcagtccc aggcatcctc 1140
 ctgccccctgg gctctcaggg accccctggg tccgcttctg tccctgtcac acccccaacc 1200
 ccagggaggg gctgtcatag tcccagagga taagcaatac ctatttctgat ctgagtttcc 1260
 cagcccagac ccaggggaccc ttggcccaa gctcagctt aagaaccggc ccaacccttc 1320
 cagctccaaa tctgaggctc caccacatag actgaaactc ccctggcccc agccctctcc 1380
 tgcctggccct ggccctggac acctccttc tgcctggagg caataaaagc cagcgcggg 1440
 accttgaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 1500
 aaa 1503

<210> 221
 <211> 328
 <212> PRT
 <213> Homo sapiens

<400> 221
 Met Met Trp Arg Pro Ser Val Leu Leu Leu Leu Leu Leu Arg His

1	5	10	15
Gly Ala Gln Gly Lys Pro Ser Pro Asp Ala Gly Pro His Gly Gln Gly			
20	25	30	
Arg Val His Gln Ala Ala Pro Leu Ser Asp Ala Pro His Asp Asp Ala			
35	40	45	
His Gly Asn Phe Gln Tyr Asp His Glu Ala Phe Leu Gly Arg Glu Val			
50	55	60	
Ala Lys Glu Phe Asp Gln Leu Thr Pro Glu Glu Ser Gln Ala Arg Leu			
65	70	75	80
Gly Arg Ile Val Asp Arg Met Asp Arg Ala Gly Asp Gly Asp Gly Trp			
85	90	95	
Val Ser Leu Ala Glu Leu Arg Ala Trp Ile Ala His Thr Gln Gln Arg			
100	105	110	
His Ile Arg Asp Ser Val Ser Ala Ala Trp Asp Thr Tyr Asp Thr Asp			
115	120	125	
Arg Asp Gly Arg Val Gly Trp Glu Glu Leu Arg Asn Ala Thr Tyr Gly			
130	135	140	
His Tyr Ala Pro Gly Glu Glu Phe His Asp Val Glu Asp Ala Glu Thr			
145	150	155	160
Tyr Lys Lys Met Leu Ala Arg Asp Glu Arg Arg Phe Arg Val Ala Asp			
165	170	175	
Gln Asp Gly Asp Ser Met Ala Thr Arg Glu Glu Leu Thr Ala Phe Leu			
180	185	190	
His Pro Glu Glu Phe Pro His Met Arg Asp Ile Val Ile Ala Glu Thr			
195	200	205	
Leu Glu Asp Leu Asp Arg Asn Lys Asp Gly Tyr Val Gln Val Glu Glu			
210	215	220	
Tyr Ile Ala Asp Leu Tyr Ser Ala Glu Pro Gly Glu Glu Glu Pro Ala			
225	230	235	240
Trp Val Gln Thr Glu Arg Gln Gln Phe Arg Asp Phe Arg Asp Leu Asn			
245	250	255	
Lys Asp Gly His Leu Asp Gly Ser Glu Val Gly His Trp Val Leu Pro			
260	265	270	
Pro Ala Gln Asp Gln Pro Leu Val Glu Ala Asn His Leu Leu His Glu			
275	280	285	

Ser Asp Thr Asp Lys Asp Gly Arg Leu Ser Lys Ala Glu Ile Leu Gly
 290 295 300

Asn Trp Asn Met Phe Val Gly Ser Gln Ala Thr Asn Tyr Gly Glu Asp
 305 310 315 320

Leu Thr Arg His His Asp Glu Leu
 325

<210> 222

<211> 20

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 222

cgcaggccct catggccagg

20

<210> 223

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 223

gaaatcctgg gtaattgg

18

<210> 224

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 224

gtgcgcggtg ctcacagctc atc

23

<210> 225

<211> 44

<212> DNA

<213> Artificial Sequence

<220>

<223> Description of Artificial Sequence: Synthetic
 oligonucleotide probe

<400> 225
 cccccctgag cgacgctccc ccatgatgac gcccacggga actt 44

 <210> 226
 <211> 2403
 <212> DNA
 <213> Homo sapiens

 <400> 226
 ggggccttgc cttccgcact cgggcgcagc cgggtggatc tcgagcaggc gcggagcccc 60
 gggcgccggg cgggggtgcg agggatccct gacgcctctg tccctgttcc tttgtcgctc 120
 ccagectgtc tgctcgctt ttggcgcccc cgcctcccg cgtgcgggg ttgcacaccg 180
 atcctgggtc tcgctcgatt tggcgcccgag ggcctccca gacctagagg ggcgctggcc 240
 tggagcagcg ggtcgctgt gtccctcttc ctctgcgcg cgcggggggta tccgaagggt 300
 gcggggtctt gaggaggta cgcgcggggc ctccgcacc ctggccttgc cgcatttctc 360
 cctctctccc aggtgtgagc agcctatcag tcaccatgtc cgcagcctgg atcccgctc 420
 tcggcctcggt tggcgctgt ctgctgcgcg cggggccgc gggcagcggag ggagccgctc 480
 ccattgctat cacatgtttt accagaggct tggacatcag gaaagagaaa gcagatgtcc 540
 tctgcccagg gggctgccctt ctggaggaat tctctgtgtt tggaaacata gtatatgtt 600
 ctgtatcgag catatgtggg gctgctgtcc acaggggagt aatcagcaac tcagggggac 660
 ctgtacgagt ctataggcta cctggcgag aaaactattc cttagttagat gccaatggca 720
 tccagtcata aatgcttttctt agatggctgt ctctttcac agtaactaaa ggcaaaagta 780
 gtacacagga ggccacagga caagcagtgtt ccacagcaca tccaccaaca ggtaaacgac 840
 taaaagaaaac acccgagaag aaaactggca ataaagattt taaagcagac attgcatttc 900
 tgattgtggg aagcttaat attgggcagc gccgatttaa ttacagaag aattttgtt 960
 gaaaagtggc tctaatgtt ggaattggaa cagaaggacc acatgtggc cttgttcaag 1020
 ccagtgaaca tcccaaaaata gaattttact tgaaaaactt tacatcagcc aaagatgttt 1080
 tggggatgggaaatggcat aaaggaagta ggtttcagag gggtaatttcaatacagga aaagccttga 1140
 agcataactgc tcagaaatttccatggcgat atgctggagt aagaaaagggtt atccccaaag 1200
 tgggtgggtt atttattgtt ggttgcctt ctgatgacat cgaggaagca ggcattgtgg 1260
 ccagagagtt tgggtgtcaat gtatttataat tttctgtggc caagccttac cctgaqaac 1320
 tggggatgggatggatggc tcaaggatgtt acatgttttgc acaggctgtt ctgtcgaaat aatggcttct 1380
 tctcttacca catgccaac tgggtggca ccacaaaata ctgaaaggctt ctggatcaga 1440
 agctgtgcac tcatgaacaa atgatgtgc gcaagacctt ttataactca gtgaacattt 1500
 cctttctaat tcatggcttccatggatggc tggatgttgc gagatagcaa tttccgcctt atgcttgc 1560
 ttgttccaa catgccaac acttttggaaatggatggc tggatgttgc gagatagcaa tttccgcctt atgcttgc 1620
 tacagtttac ttatgtatcg cgcacggagt tcaatgttgc tggatgttgc tggatgttgc 1680
 atgtccttagc tggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 1740
 ccatttcctt cactgttgc aatgtgttttgc ggccttataatggatggc tggatgttgc 1800
 tccttagtgc tggatgttgc ggccttataatggatggc tggatgttgc tggatgttgc 1860
 cacatgtgc tggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 1920
 tggatgttgc tggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 1980
 gatttgcac tggatgttgc aatgtgttttgc ggccttataatggatggc tggatgttgc 2040
 agcaataatgc tggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 2100
 atgttgcac tggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 2160
 gtatgtcaac tggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 2220
 aatttgcac tggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 2280
 ctcaggaaatggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 2340
 tggatgttgc tggatgttgc aacatccgtt atgatgttgc tggatgttgc tggatgttgc 2400
 aaaatggatgttgc tggatgttgc tggatgttgc tggatgttgc tggatgttgc 2460

<210> 227

<211> 550
<212> PRT
<213> Homo sapiens

<400> 227

Met	Ser	Ala	Ala	Trp	Ile	Pro	Ala	Leu	Gly	Leu	Gly	Val	Cys	Leu	Leu
1					5				10				15		

Leu Leu Pro Gly Pro Ala Gly Ser Glu Gly Ala Ala Pro Ile Ala Ile

20						25				30					
----	--	--	--	--	--	----	--	--	--	----	--	--	--	--	--

Thr Cys Phe Thr Arg Gly Leu Asp Ile Arg Lys Glu Lys Ala Asp Val

35						40				45					
----	--	--	--	--	--	----	--	--	--	----	--	--	--	--	--

Leu Cys Pro Gly Gly Cys Pro Leu Glu Glu Phe Ser Val Tyr Gly Asn

50					55				60					
----	--	--	--	--	----	--	--	--	----	--	--	--	--	--

Ile Val Tyr Ala Ser Val Ser Ser Ile Cys Gly Ala Ala Val His Arg

65				70			75			80				
----	--	--	--	----	--	--	----	--	--	----	--	--	--	--

Gly Val Ile Ser Asn Ser Gly Gly Pro Val Arg Val Tyr Ser Leu Pro

85				90			95							
----	--	--	--	----	--	--	----	--	--	--	--	--	--	--

Gly Arg Glu Asn Tyr Ser Ser Val Asp Ala Asn Gly Ile Gln Ser Gln

100				105			110							
-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Met Leu Ser Arg Trp Ser Ala Ser Phe Thr Val Thr Lys Gly Lys Ser

115				120			125							
-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Ser Thr Gln Glu Ala Thr Gly Gln Ala Val Ser Thr Ala His Pro Pro

130				135			140							
-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Thr Gly Lys Arg Leu Lys Thr Pro Glu Lys Lys Thr Gly Asn Lys

145				150			155			160				
-----	--	--	--	-----	--	--	-----	--	--	-----	--	--	--	--

Asp Cys Lys Ala Asp Ile Ala Phe Leu Ile Asp Gly Ser Phe Asn Ile

165				170			175							
-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Gly Gln Arg Arg Phe Asn Leu Gln Lys Asn Phe Val Gly Lys Val Ala

180				185			190							
-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Leu Met Leu Gly Ile Gly Thr Glu Gly Pro His Val Gly Leu Val Gln

195				200			205							
-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Ala Ser Glu His Pro Lys Ile Glu Phe Tyr Leu Lys Asn Phe Thr Ser

210				215			220							
-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Ala Lys Asp Val Leu Phe Ala Ile Lys Glu Val Gly Phe Arg Gly Gly

225				230			235			240				
-----	--	--	--	-----	--	--	-----	--	--	-----	--	--	--	--

Asn Ser Asn Thr Gly Lys Ala Leu Lys His Thr Ala Gln Lys Phe Phe

245				250			255							
-----	--	--	--	-----	--	--	-----	--	--	--	--	--	--	--

Thr Val Asp Ala Gly Val Arg Lys Gly Ile Pro Lys Val Val Val Val
 260 265 270

Phe Ile Asp Gly Trp Pro Ser Asp Asp Ile Glu Glu Ala Gly Ile Val
 275 280 285

Ala Arg Glu Phe Gly Val Asn Val Phe Ile Val Ser Val Ala Lys Pro
 290 295 300

Ile Pro Glu Glu Leu Gly Met Val Gln Asp Val Thr Phe Val Asp Lys
 305 310 315 320

Ala Val Cys Arg Asn Asn Gly Phe Phe Ser Tyr His Met Pro Asn Trp
 325 330 335

Phe Gly Thr Thr Lys Tyr Val Lys Pro Leu Val Gln Lys Leu Cys Thr
 340 345 350

His Glu Gln Met Met Cys Ser Lys Thr Cys Tyr Asn Ser Val Asn Ile
 355 360 365

Ala Phe Leu Ile Asp Gly Ser Ser Ser Val Gly Asp Ser Asn Phe Arg
 370 375 380

Leu Met Leu Glu Phe Val Ser Asn Ile Ala Lys Thr Phe Glu Ile Ser
 385 390 395 400

Asp Ile Gly Ala Lys Ile Ala Ala Val Gln Phe Thr Tyr Asp Gln Arg
 405 410 415

Thr Glu Phe Ser Phe Thr Asp Tyr Ser Thr Lys Glu Asn Val Leu Ala
 420 425 430

Val Ile Arg Asn Ile Arg Tyr Met Ser Gly Gly Thr Ala Thr Gly Asp
 435 440 445

Ala Ile Ser Phe Thr Val Arg Asn Val Phe Gly Pro Ile Arg Glu Ser
 450 455 460

Pro Asn Lys Asn Phe Leu Val Ile Val Thr Asp Gly Gln Ser Tyr Asp
 465 470 475 480

Asp Val Gln Gly Pro Ala Ala Ala His Asp Ala Gly Ile Thr Ile
 485 490 495

Phe Ser Val Gly Val Ala Trp Ala Pro Leu Asp Asp Leu Lys Asp Met
 500 505 510

Ala Ser Lys Pro Lys Glu Ser His Ala Phe Phe Thr Arg Glu Phe Thr
 515 520 525

Gly Leu Glu Pro Ile Val Ser Asp Val Ile Arg Gly Ile Cys Arg Asp
 530 535 540

Phe Leu Glu Ser Gln Gln		
545	550	
<210> 228		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 228		
tgtctcgca caccgatc		18
<210> 229		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 229		
ctgctgtcca caggggag		18
<210> 230		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 230		
ctttgaagca tactgctc		18
<210> 231		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Description of Artificial Sequence: Synthetic		
oligonucleotide probe		
<400> 231		
gagatagcaa ttccgcc		18
<210> 232		

<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 232
ttcctcaaga gggcagcc 18

<210> 233
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 233
cttggcacca atgtccgaga ttcc 24

<210> 234
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Description of Artificial Sequence: Synthetic oligonucleotide probe

<400> 234
gctctgagga aggtgacgca cggggcctcc gaacccttgg ccttg 45

<210> 235
<211> 2586
<212> DNA
<213> Homo sapiens

<400> 235
cgccgcgcgc ccgcacccgc ggcccccca ccgcgcgcgt cccgcacatcg cacccgcagc 60
ccggcgccct cccggcgaaa gcgagcagat ccagtcggc cccgcagcga actcggtcca 120
gtcgggggcg cggctcgaaa cgcagacgg agatgcagcg gcttggggcc accctgtgt 180
gcctgtgtgt ggcggggggcg gtcccccacgg ccccccgcgc cgctccgacg ggcaccccg 240
ctccagtcggcc gtcgtcgact acccgcaggaa ggaggccacc ctcaatgaga 300
tgttccgcga ggtttagggaa ctgtatggagg acacgcagca caaatgcgc agcgcgggtgg 360
aagagatggaa ggcagaagaa gctgtgtcta aagcatcatc agaagtgaac ctggcaaact 420
taccccccgg ctatcacaat gagaccaaca cagacacggaa ggttggaaat aataccatcc 480
atgtgcaccc agaaaattcac aagataacca acaaccagac tggacaaatg gtctttcag 540
agacagtat cacaatgtgt ggagacgaa aaggcagaag gagccacgag tgcatcatcg 600
acgaggactg tggggccagg atgtactgcc agtttgcgg cttccagta acctgcccage 660
catgccgggg ccagaggatg ctctgcaccc gggacagtga gtgtgtgg aaccagctgt 720

gtgtctgggg	tcaactgcacc	aaaatggcca	ccaggggcag	caatgggacc	atctgtgaca	780	
accagaggga	ctggccagccg	gggctgtgct	gtgccttcca	gagaggcctg	ctgttccctg	840	
tgtgcacacc	cctgcccgtg	gagggcgagc	tttgcctatga	ccccgcacgc	cggttctgg	900	
acctcatcac	ctgggagcta	gagcctgatg	gagccttgg	ccgatcccct	tgtgccagt	960	
gccttccttg	ccagccccac	agccacagcc	tgggttatgt	gtgcaagccg	acttcgtgg	1020	
ggagccgtga	ccaaagatggg	gagatcctgc	tgcccagaga	ggtccccat	gagtatgaag	1080	
ttggcagctt	catggaggag	gtgcgccagg	agctggagga	cctggagagg	agctgactg	1140	
aagagatggc	gctggggggag	cctgcggctg	ccgcgcgtc	actgctggg	gggaaagaga	1200	
tttagatctg	gaccaggctg	tgggtagatg	tgcataataga	atagctaatt	tatttccccca	1260	
ggtgtgtgt	ttaggcgtgg	gctgaccagg	cttcttccta	catcttc	ccagtaagtt	1320	
tcccctctgg	cttgacagca	tgaggtgtt	tgcatattgtt	cagtc	ccccccaggtct	1380	
ccaggctca	cagtctggt	cttggagag	tcaggcaggg	ttaaactgca	ggagcagttt	1440	
gccaccctg	tccagattat	tggctgc	gcctctacca	gttggcagac	agccgtttgt	1500	
tctacatggc	tttgataatt	gtttgagggg	aggagatgg	aacaatgtgg	agtctccctc	1560	
tgattggtt	tggggaaatg	tggagaag	tgccctgtt	tgcaaacatc	aacctggcaa	1620	
aaatgcaaca	aatgaatttt	ccacgcgtt	cttccatgg	gcata	gtgtgcctt	1680	
cagctgtgc	agatgaaatg	ttctgtt	cctgcattac	atgtgtt	tcatccagca	1740	
gtgttgc	ta	ctgtgccagg	gcagcattt	cata	atccaag	atcaattccc	1800
tctctcagca	cagcctgggg	agggggtcat	tgttctc	gtccatc	aggagatgg	1860	
gctcagagac	tgcaagctgc	ttgccc	cacacagct	gtgaagacca	gagcagttt	1920	
atctggttgt	gactcta	tcagtgc	ctccactacc	ccacacc	gcttgg	1980	
ccaaaagtgc	tcccaaaag	gaaggagaat	gggat	ttgagg	catctgg	2040	
attaagg	tca	cacatcc	taaaagtaaa	ctactgtt	gaacagc	2100	
gttctc	acag	ccgtc	aatgaagaca	atgatatt	gactgtcc	2160	
cttggc	agt	actt	gat	gagcgt	tagca	2220	
cctgc	agaaa	cact	gtat	ataa	atagg	2280	
cacttagc	caact	caatt	gtat	aaat	aaaa	2340	
tgtgt	gaaac	tat	gact	ccac	aaaa	2400	
tgtat	gtttt	gact	gtat	atcc	aaaa	2460	
taaagt	tgca	catg	atgt	ccag	aaaa	2520	
aagt	tgatt	taag	catgt	tctt	aaaa	2580	
aaaaaa	taaaat	gcataa	actgc	aaaa	aaaa	2586	

<210> 236

<211> 350

<212> PRT

<213> Homo sapiens

<400> 236

Met Gln Arg Leu Gly Ala Thr Leu Leu Cys Leu Leu Leu Ala Ala Ala
1 5 10 15

Val Pro Thr Ala Pro Ala Pro Ala Pro Thr Ala Thr Ser Ala Pro Val
20 25 30

Lys Pro Gly Pro Ala Leu Ser Tyr Pro Gln Glu Glu Ala Thr Leu Asn
 35 40 45

Glu Met Phe Arg Glu Val Glu Glu Leu Met Glu Asp Thr Gln His Lys
 50 55 60

Leu Arg Ser Ala Val Glu Glu Met Glu Ala Glu Glu Ala Ala Ala Lys
65 70 75 80

<211> 17		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic oligonucleotide probe		
<400> 237		
ggagctgcac cccttgc		17
<210> 238		
<211> 49		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Oligonucleotide Probe		
<400> 238		
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaaattgg		49
<210> 239		
<211> 24		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Oligonucleotide Probe		
<400> 239		
gcagagcgga gatgcagcgg ctgg		24
<210> 240		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Oligonucleotide Probe		
<400> 240		
ttggcagctt catggagg		18
<210> 241		
<211> 18		
<212> DNA		
<213> Artificial Sequence		
<220>		
<223> Synthetic Oligonucleotide Probe		
<400> 241		
cctggcaaa aatgcaac		18

```

<210> 242
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 242
ctccagctcc tggcgcacct cctc                                24

<210> 243
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 243
ggctctcagc taccgcgcag gagcgaggcc accctcaatg agatg      45

<210> 244
<211> 3679
<212> DNA
<213> Homo Sapien

<400> 244
aaggaggctg ggagggaaaga ggtaagaaag gttagagaac ctacctcaca 50
tctctctggg ctcagaagga ctctgaagat aacaataatt tcagcccatc 100
cactctcctt ccctccaaa cacacatgtg catgtacaca cacacataca 150
cacacataca ctttcctctc cttcactgaa gactcacagt cactcactct 200
gtgagcaggt catagaaaag gacactaaag ccttaaggac aggccctggcc 250
attacctctg cagctccttt ggcttgtga gtcaaaaaac atgggagggg 300
ccaggcacgg tgactcacac ctgtaatccc agcatttgag gagaccgagg 350
tgagcagatc acttgaggtc aggagttcga gaccagcctg gccaacatgg 400
agaaaccccc atctctacta aaaatacaaa aattagccag gagtggtggc 450
aggtgcctgt aatcccagct actcaggtgg ctgagccagg agaatcgctt 500
gaatccagga ggcggaggat gcagtcagct gagtgcaccg ctgcactcca 550
gcctgggtga cagaatgaga ctctgtctca aacaaacaaa cacgggagga 600

```

ggggtagata ctgcttcctc gcaacccctt taactctgca tcctttttt 650
ccaggggctgc ccctgatggg gcctggcaat gactgagcag gcccagcccc 700
agaggacaag gaagagaagg catattgagg agggcaagaa gtgacgcccc 750
gtgtagaatg actgcccctgg gagggtggtt cttggggccc tggcagggtt 800
gctgaccctt accctgcaaa acacaaagag caggactcca gactcttctt 850
gtgaatggtc ccctgccctg cagctccacc atgaggcttc tcgtggcccc 900
actcttgcta gcttgggtgg ctggtgccac tgccactgtg cccgtggta 950
cctggcatgt tccctgcccc cctcagtgtg cctgcacat ccggccctgg 1000
tatacgcccc gctcgtccta ccgcgaggct accactgtgg actgcaatga 1050
cctattcctg acggcagtcc ccccggaact ccccgcaaggc acacagaccc 1100
tgctcctgca gagcaacagc attgtccgtg tggaccagag tgagctggc 1150
tacctggcca atctcacaga gctggacctg tcccagaaca gcttttcgga 1200
tgcccgagac tgtgatttcc atgcctgccc ccagctgctg agcctgcacc 1250
tagaggagaa ccagctgacc cggctggagg accacagctt tgcagggttg 1300
gccagccctac aggaactcta tctcaaccac aaccagctt accgcattgc 1350
ccccaggggcc ttttctggcc ttagcaactt gctggggctg cacctcaact 1400
ccaacccctt gaggggcatt gacagccgct ggtttggaaat gctgcccac 1450
ttggagatac tcatgattgg cggcaacaag gtagatgcca tcctggacat 1500
gaacctccgg cccctggcca acctgcgttag cctggtgcta gcaggcatga 1550
acctgcggga gatctccgac tatgcctgg aggggctgca aaggctggag 1600
agcctctctt tctatgacaa ccagctggcc cgggtggcca ggcggggact 1650
ggaacaggtg cccgggctca agttccctaga cctcaacaag aaccggctcc 1700
agcgggttagg gccgggggac ttggccaaca tgctgcacat taaggagctg 1750
ggactgaaca acatggagga gctggtctcc atcgacaagt ttgcctgggt 1800
gaacctcccc gagctgacca agctggacat caccaataac ccacggctgt 1850
ctttcattcca ccccccggcc ttccaccacc tgccccagat ggagaccctc 1900
atgctcaaca acaacgctt cagtgccctt caccagcaga cggtggagtc 1950

cctgcccAAC ctgcaggagg taggtctcca cggcaACCCC atccgctgtg 2000
 actgtgtcat ccgctggcc aatgccacgg gcaccctgtc ccgttcatc 2050
 gagccgcaat ccaccctgtg tgccggact ccggacctcc agccctccc 2100
 ggtccgtgag gtgcccttc gggagatgac ggaccactgt ttgcccctca 2150
 tctccccacg aagcttcccc ccaaggctcc aggttagccag tggagagagc 2200
 atggtgctgc attgccgggc actggccgaa cccgaACCCG agatctactg 2250
 ggtcactcca gctgggcttc gactgacacc tgccatgca ggcaggaggt 2300
 accgggtgta ccccgagggg accctggagc tgccggagggt gacagcagaa 2350
 gaggcagggc tatacacctg tgtggccca aacctggtgt gggctgacac 2400
 taagacggtt agtgtggttg tggccgtgc tctccctccag ccaggcaggg 2450
 acgaaggaca ggggctggag ctccgggtgc aggagaccca cccctatcac 2500
 atcctgctat cttgggtcac cccacccAAC acagtgtcca ccaacctcac 2550
 ctggtccagt gcctccccc tccggggcca gggggccaca gctctggccc 2600
 gcctgcctcg gggAACCCAC agctacaaca ttaccgcct cttcaggcc 2650
 acggagtact gggcctgcct gcaagtggcc tttgctgatg cccacaccca 2700
 gttggcttgt gtatggcca ggaccaaaga ggccacttct tgccacagag 2750
 ccttagggga tcgtcctggg ctcattgcca tcctggctct cgctgtcctt 2800
 ctccctggcag ctggcttagc ggcccacctt ggcacaggcc aacccaggaa 2850
 gggtgtgggt gggaggcggc ctctccctcc agcctggct ttctgggct 2900
 ggagtgc(cc) ttctgtccgg gttgtgtctg ctccccctgt cctgc(cc) 2950
 aatccaggga ggaagctgcc cagatcctca gaaggggaga cactgttgcc 3000
 accattgtct caaaattctt gaagctcagc ctgttctcag cagtagagaa 3050
 atcacttagga ctactttta cccaaaagaga agcagtctgg gccagatgcc 3100
 ctgccaggaa agggacatgg acccacgtgc ttgaggcctg gcagctggc 3150
 caagacagat ggggcttgtt ggcctgggg gtgcttctgc agccttgaaa 3200
 aagttgc(cc) tacctccttag ggtcacctct gctgcattc tgaggaacat 3250

ctccaaggaa caggagggac tttggctaga gcctcctgcc tccccatctt 3300
ctctctgccc agaggctcct gggcctggct tggctgtccc ctacctgtgt 3350
ccccgggctg caccccttcc tcttctcttt ctctgtacag tctcagttgc 3400
ttgctcttgt gcctcctggg caagggctga aggaggccac tccatctcac 3450
ctcgaaaaaa tgccctcaat gtgggagtga ccccagccag atctgaagga 3500
catttgggag agggatgccc aggaacgcct catctcagca gcctgggctc 3550
ggcattccga agctgacttt ctataggcaa ttttgtacct ttgtggagaa 3600
atgtgtcacc tcccccaacc cgattcactc ttttctcctg ttttgtaaaa 3650
aataaaaaata aataataaca ataaaaaaaa 3679

<210> 245

<211> 713

<212> PRT

<213> Homo Sapien

<400> 245

Met Arg Leu Leu Val Ala Pro Leu Leu Leu Ala Trp Val Ala Gly
1 5 10 15

la Thr Ala Thr Val Pro Val Val Pro Trp His Val Pro Cys Pro
20 25 30

Pro Gln Cys Ala Cys Gln Ile Arg Pro Trp Tyr Thr Pro Arg Ser
35 40 45

Ser Tyr Arg Glu Ala Thr Thr Val Asp Cys Asn Asp Leu Phe Leu
50 55 60

Thr Ala Val Pro Pro Ala Leu Pro Ala Gly Thr Gln Thr Leu Leu
65 70 75

Leu Gln Ser Asn Ser Ile Val Arg Val Asp Gln Ser Glu Leu Gly
80 85 90

Tyr Leu Ala Asn Leu Thr Glu Leu Asp Leu Ser Gln Asn Ser Phe
95 100 105

Ser Asp Ala Arg Asp Cys Asp Phe His Ala Leu Pro Gln Leu Leu
110 115 120

Asn Gln Leu Tyr Arg Ile Ala Pro Arg Ala Phe Ser Gly Leu Ser
 155 160 165
 Asn Leu Leu Arg Leu His Leu Asn Ser Asn Leu Leu Arg Ala Ile
 170 175 180
 Asp Ser Arg Trp Phe Glu Met Leu Pro Asn Leu Glu Ile Leu Met
 185 190 195
 Ile Gly Gly Asn Lys Val Asp Ala Ile Leu Asp Met Asn Phe Arg
 200 205 210
 Pro Leu Ala Asn Leu Arg Ser Leu Val Leu Ala Gly Met Asn Leu
 215 220 225
 Arg Glu Ile Ser Asp Tyr Ala Leu Glu Gly Leu Gln Ser Leu Glu
 230 235 240
 Ser Leu Ser Phe Tyr Asp Asn Gln Leu Ala Arg Val Pro Arg Arg
 245 250 255
 Ala Leu Glu Gln Val Pro Gly Leu Lys Phe Leu Asp Leu Asn Lys
 260 265 270
 Asn Pro Leu Gln Arg Val Gly Pro Gly Asp Phe Ala Asn Met Leu
 275 280 285
 His Leu Lys Glu Leu Gly Leu Asn Asn Met Glu Glu Leu Val Ser
 290 295 300
 Ile Asp Lys Phe Ala Leu Val Asn Leu Pro Glu Leu Thr Lys Leu
 305 310 315
 Asp Ile Thr Asn Asn Pro Arg Leu Ser Phe Ile His Pro Arg Ala
 320 325 330
 Phe His His Leu Pro Gln Met Glu Thr Leu Met Leu Asn Asn Asn
 335 340 345
 Ala Leu Ser Ala Leu His Gln Gln Thr Val Glu Ser Leu Pro Asn
 350 355 360
 Leu Gln Glu Val Gly Leu His Gly Asn Pro Ile Arg Cys Asp Cys
 365 370 375
 Val Ile Arg Trp Ala Asn Ala Thr Gly Thr Arg Val Arg Phe Ile
 380 385 390
 Glu Pro Gln Ser Thr Leu Cys Ala Glu Pro Pro Asp Leu Gln Arg
 395 400 405
 Leu Pro Val Arg Glu Val Pro Phe Arg Glu Met Thr Asp His Cys

410	415	420
Leu Pro Leu Ile Ser Pro Arg Ser Phe Pro Pro Ser Leu Gln Val		
425	430	435
Ala Ser Gly Glu Ser Met Val Leu His Cys Arg Ala Leu Ala Glu		
440	445	450
Pro Glu Pro Glu Ile Tyr Trp Val Thr Pro Ala Gly Leu Arg Leu		
455	460	465
Thr Pro Ala His Ala Gly Arg Arg Tyr Arg Val Tyr Pro Glu Gly		
470	475	480
Thr Leu Glu Leu Arg Arg Val Thr Ala Glu Glu Ala Gly Leu Tyr		
485	490	495
Thr Cys Val Ala Gln Asn Leu Val Gly Ala Asp Thr Lys Thr Val		
500	505	510
Ser Val Val Val Gly Arg Ala Leu Leu Gln Pro Gly Arg Asp Glu		
515	520	525
Gly Gln Gly Leu Glu Leu Arg Val Gln Glu Thr His Pro Tyr His		
530	535	540
Ile Leu Leu Ser Trp Val Thr Pro Pro Asn Thr Val Ser Thr Asn		
545	550	555
Leu Thr Trp Ser Ser Ala Ser Ser Leu Arg Gly Gln Gly Ala Thr		
560	565	570
Ala Leu Ala Arg Leu Pro Arg Gly Thr His Ser Tyr Asn Ile Thr		
575	580	585
Arg Leu Leu Gln Ala Thr Glu Tyr Trp Ala Cys Leu Gln Val Ala		
590	595	600
Phe Ala Asp Ala His Thr Gln Leu Ala Cys Val Trp Ala Arg Thr		
605	610	615
Lys Glu Ala Thr Ser Cys His Arg Ala Leu Gly Asp Arg Pro Gly		
620	625	630
Leu Ile Ala Ile Leu Ala Leu Ala Val Leu Leu Leu Ala Ala Gly		
635	640	645
Leu Ala Ala His Leu Gly Thr Gly Gln Pro Arg Lys Gly Val Gly		
650	655	660
Gly Arg Arg Pro Leu Pro Pro Ala Trp Ala Phe Trp Gly Trp Ser		
665	670	675

Ala Pro Ser Val Arg Val Val Ser Ala Pro Leu Val Leu Pro Trp
 680 685 690
 Asn Pro Gly Arg Lys Leu Pro Arg Ser Ser Glu Gly Glu Thr Leu
 695 700 705
 Leu Pro Pro Leu Ser Gln Asn Ser
 710

<210> 246
 <211> 22
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

<400> 246
 aacaaggtaa gatgccatcc tg 22

<210> 247
 <211> 24
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

<400> 247
 aaacttgcg atggagacca gctc 24

<210> 248
 <211> 45
 <212> DNA
 <213> Artificial Sequence

<220>
 <223> Synthetic Oligonucleotide Probe

<400> 248
 aggggctgca aagcctggag agcctctcct tctatgacaa ccagc 45

<210> 249
 <211> 3401
 <212> DNA
 <213> Homo Sapien

<400> 249
 gcaagccaag gcgctgttg agaagggtgaa gaagttccgg acccatgtgg 50
 aggaggggga cattgtgtac cgcctctaca tgcgccagac catcatcaag 100
 gtgatcaagt tcatcctcat catctgctac accgtctact acgtgcacaa 150

catcaagttc gacgtggact gcaccgtgga cattgagagc ctgacgggct 200
accgcaccta ccgctgtgcc cacccctgg ccacactctt caagatcctg 250
gcgtccttct acatcagcct agtcataatc tacggcctca tctgcatgta 300
cacactgtgg tggatgtac ggcgctccct caagaagtac tcgtttgagt 350
cgatccgtga ggagagcagc tacagcgaca tccccgacgt caagaacgac 400
ttcgccttca tgctgcacct cattgaccaa tacgacccgc tctactccaa 450
gcgcctcgcc gtcttcctgt cgagggtgag tgagaacaag ctgcggcagc 500
tgaacctcaa caacgagtgg acgctggaca agctccggca gcggctcacc 550
aagaacgcgc aggacaagct ggagctgcac ctgttcatgc tcagtggcat 600
ccctgacact gtgttgacc tggtgagct ggaggtcctc aagctggagc 650
tgatccccga cgtgaccatc ccccccagca ttgcccagct cacgggcctc 700
aaggagctgt ggctctacca cacagcggcc aagattgaag cgctgcgcgt 750
ggccttcctg cgcgagaacc tgcggcgct gcacatcaag ttcaccgaca 800
tcaaggagat cccgctgtgg atctatacgcc tgaagacact ggaggagctg 850
cacctgacgg gcaacctgag cgccggagaac aaccgctaca tcgttcatcga 900
cgggctgcgg gagctcaaac gcctcaaggt gctgcggctc aagagcaacc 950
taagcaagct gccacaggtg gtcacagatg tggcggtgca cctgcagaag 1000
ctgtccatca acaatgaggg caccaagctc atcgtcctca acagcctcaa 1050
gaagatggcg aacctgactg agctggagct gatccgctgc gacctggagc 1100
gcatccccca ctccatcttc agcctccaca acctgcagga gattgacctc 1150
aaggacaaca acctcaagac catcgaggag atcatcagct tccagcacct 1200
gcaccgcctc acctgcctta agctgtggta caaccacatc gcctacatcc 1250
ccatccagat cgccaacctc accaacctgg agcgccctca cctgaaccgc 1300
aacaagatcg agaagatccc cacccagctc ttctactgcc gcaagctgcg 1350
ctacctggac ctcagccaca acaacctgac cttccctccct gccgacatcg 1400
gcctcctgca gaacctccag aacctagcca tcacggccaa ccggatcgag 1450

acgctccctc cgagactt ccagtgcggg aagctgcggg ccctgcacct 1500
ggcaacaac gtgctgcagt cactgcctc cagggggc gagctgacca 1550
acctgacgca gatcgagctg cggggcaacc ggctggagtg cctgcctgtg 1600
gagctggcg agtgcccact gctcaagcgc agcggcttgg tggggaggga 1650
ggacctgttc aacacactgc cacccgaggt gaaggagcgg ctgtggagg 1700
ctgacaagga gcaggcctga gcggggccgg cccagcacag caagcagcag 1750
gaccgctgcc cagtcctcag gccccggagg gcagggcttag cttctccctag 1800
aactcccgga cagccaggac agcctcgccg ctgggcagga gcctggggcc 1850
gcttgtagt caggccagag cgagaggaca gtatctgtgg ggctggcccc 1900
ttttctccct ctgagactca cgtccccctag ggcaagtgtct tgtggaggag 1950
agaaggactc aagagcgcag tattggata atcagggtct cctccctgg 2000
ggccagctct gccccagggg ctgagctgcc accagaggctc ctgggaccct 2050
cacttagtt ctggtagttt attttctcc atctcccaacc tccttcatcc 2100
agataactta tacattccca agaaagttca gcccagatgg aagggtttca 2150
ggaaaagggtg ggctgccttt tcccttgc cttattttagc gatgccggccg 2200
ggcatttaac acccacctgg acttcagcag agtggccgg ggcgaaccag 2250
ccatgggacg gtcacccagc agtgccgggc tgggctctgc ggtgcgggtcc 2300
acgggagagc aggccctccag ctggaaaggc caggcctggaa gcttgcctct 2350
tcagtttttgc tggcagttt agttttttgt ttttttttt ttatcaaa 2400
aaacaatttt tttaaaaaaa aagcttggaa aatggatggt ttgggtattta 2450
aaaagaaaaaa aaaaacttaa aaaaaaaaaag acactaacgg ccagtggat 2500
ggagtctcag ggcagggtgg cagttccct tgagcaaagc agccagacgt 2550
tgaactgtgt ttcccttccc tgggcgcagg gtgcagggtg tttccggat 2600
ctgggtgac cttggccctc gagttctatt ttttcctggg gagggaggtt 2650
ttttgttttgc ttttttgggt ttttttgggt ttttttttc ttttcctcc 2700
atgtgtcttgc caggcactc atttctgtgg ctgtcggcca gagggatgt 2750
tctggagctg ccaaggaggg aggagactcg gttggctaa tccccggatg 2800

aacggtgctc cattcgacc tcccctcctc gtgcctgccc tgccctctcca 2850
 cgcacagtgt taaggagcca agaggagcca ctgcggccag actttgttgc 2900
 cccacacctcct gcggcatggg tgggtccagt gccaccgctg gcctccgctg 2950
 cttccatcag ccctgtcgcc acctggtcct tcataaagag cagacactta 3000
 gaggctggtc gggaaatgggg aggtcgcccc tgggaggggca ggcgttgggt 3050
 ccaagccgggt tcccgtccct ggccctgga gtgcacacag cccagtcggc 3100
 acctggtggc tggaaagccaa cctgcttttag atcactcggttcccccacattt 3150
 agaagggtcc ccgccttaga tcaatcacgt ggacactaag gcacgtttta 3200
 gagtctcttg tcttaatgtat tatgtccatc cgtctgtccg tccatttgg 3250
 ttttctgcgt cgtgtcattt gatataatcc tcagaaataa tgcacactag 3300
 cctctgacaa ccatgaagca aaaatccgtt acatgtgggt ctgaacttgt 3350
 agactcggtc acagtatcaa ataaaatcta taacagaaaa aaaaaaaaaa 3400
 a 3401

<210> 250

<211> 546
 <212> PRT
 <213> Homo Sapien

<400> 250

Met	Arg	Gln	Thr	Ile	Ile	Lys	Val	Ile	Ile	Lys	Phe	Ile	Leu	Ile	Ile
1					5					10					15

Cys	Tyr	Thr	Val	Tyr	Tyr	Val	His	Asn	Ile	Lys	Phe	Asp	Val	Asp
					20				25					30

Cys	Thr	Val	Asp	Ile	Glu	Ser	Leu	Thr	Gly	Tyr	Arg	Thr	Tyr	Arg
				35				40						45

Cys	Ala	His	Pro	Leu	Ala	Thr	Leu	Phe	Lys	Ile	Leu	Ala	Ser	Phe
				50				55						60

Tyr	Ile	Ser	Leu	Val	Ile	Phe	Tyr	Gly	Leu	Ile	Cys	Met	Tyr	Thr
				65				70						75

Leu	Trp	Trp	Met	Leu	Arg	Arg	Ser	Leu	Lys	Lys	Tyr	Ser	Phe	Glu
				80				85						90

Ser	Ile	Arg	Glu	Glu	Ser	Ser	Tyr	Ser	Asp	Ile	Pro	Asp	Val	Lys
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

95	100	105
Asn Asp Phe Ala Phe Met Leu His Leu Ile Asp Gln Tyr Asp Pro		
110	115	120
Leu Tyr Ser Lys Arg Phe Ala Val Phe Leu Ser Glu Val Ser Glu		
125	130	135
Asn Lys Leu Arg Gln Leu Asn Leu Asn Asn Glu Trp Thr Leu Asp		
140	145	150
Lys Leu Arg Gln Arg Leu Thr Lys Asn Ala Gln Asp Lys Leu Glu		
155	160	165
Leu His Leu Phe Met Leu Ser Gly Ile Pro Asp Thr Val Phe Asp		
170	175	180
Leu Val Glu Leu Glu Val Leu Lys Leu Glu Leu Ile Pro Asp Val		
185	190	195
Thr Ile Pro Pro Ser Ile Ala Gln Leu Thr Gly Leu Lys Glu Leu		
200	205	210
Trp Leu Tyr His Thr Ala Ala Lys Ile Glu Ala Pro Ala Leu Ala		
215	220	225
Phe Leu Arg Glu Asn Leu Arg Ala Leu His Ile Lys Phe Thr Asp		
230	235	240
Ile Lys Glu Ile Pro Leu Trp Ile Tyr Ser Leu Lys Thr Leu Glu		
245	250	255
Glu Leu His Leu Thr Gly Asn Leu Ser Ala Glu Asn Asn Arg Tyr		
260	265	270
Ile Val Ile Asp Gly Leu Arg Glu Leu Lys Arg Leu Lys Val Leu		
275	280	285
Arg Leu Lys Ser Asn Leu Ser Lys Leu Pro Gln Val Val Thr Asp		
290	295	300
Val Gly Val His Leu Gln Lys Leu Ser Ile Asn Asn Glu Gly Thr		
305	310	315
Lys Leu Ile Val Leu Asn Ser Leu Lys Lys Met Ala Asn Leu Thr		
320	325	330
Glu Leu Glu Leu Ile Arg Cys Asp Leu Glu Arg Ile Pro His Ser		
335	340	345
Ile Phe Ser Leu His Asn Leu Gln Glu Ile Asp Leu Lys Asp Asn		
350	355	360

Asn Leu Lys Thr Ile Glu Glu Ile Ile Ser Phe Gln His Leu His
 365 370 375
 Arg Leu Thr Cys Leu Lys Leu Trp Tyr Asn His Ile Ala Tyr Ile
 380 385 390
 Pro Ile Gln Ile Gly Asn Leu Thr Asn Leu Glu Arg Leu Tyr Leu
 395 400 405
 Asn Arg Asn Lys Ile Glu Lys Ile Pro Thr Gln Leu Phe Tyr Cys
 410 415 420
 Arg Lys Leu Arg Tyr Leu Asp Leu Ser His Asn Asn Leu Thr Phe
 425 430 435
 Leu Pro Ala Asp Ile Gly Leu Leu Gln Asn Leu Gln Asn Leu Ala
 440 445 450
 Ile Thr Ala Asn Arg Ile Glu Thr Leu Pro Pro Glu Leu Phe Gln
 455 460 465
 Cys Arg Lys Leu Arg Ala Leu His Leu Gly Asn Asn Val Leu Gln
 470 475 480
 Ser Leu Pro Ser Arg Val Gly Glu Leu Thr Asn Leu Thr Gln Ile
 485 490 495
 Glu Leu Arg Gly Asn Arg Leu Glu Cys Leu Pro Val Glu Leu Gly
 500 505 510
 Glu Cys Pro Leu Leu Lys Arg Ser Gly Leu Val Val Glu Glu Asp
 515 520 525
 Leu Phe Asn Thr Leu Pro Pro Glu Val Lys Glu Arg Leu Trp Arg
 530 535 540
 Ala Asp Lys Glu Gln Ala
 545
 <210> 251
 <211> 20
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 251
 caacaatgag ggcaccaagc 20
 <210> 252
 <211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 252
gatggctagg ttctggaggt tctg 24

<210> 253
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 253
caacctgcag gagattgacc tcaaggacaa caacctaag accatcg 47

<210> 254
<211> 1650
<212> DNA
<213> Homo Sapien

<400> 254
gcctgttgc gatgctgccg tgcggtaactt gtcatggagc tggactg 50
gcgtctccc gtcccgccgt gttgtctgc gtcgcgcgt ctgctggcc 100
tgaacgcagg agctgtcatt gactggccca cagaggaggg caaggaagta 150
tgggattatg tgacggtccg caaggatgcc tacatgttctt ggtggctcta 200
ttatgccacc aactcctgca agaacttctc agaactgccc ctggcatgt 250
ggttcaggg cggtccaggg gttcttagca ctggatttgg aaacttttag 300
gaaattgggc cccttgacag tggatctaaa ccacgaaaa ccacctggct 350
ccaggctgcc agtctccat ttgtggataa tcccgtggc actgggttca 400
gttatgtgaa tggtagtggt gcctatgccca aggacctggc tatggtggt 450
tcagacatga tggttctcct gaagaccttc ttcagttgcc acaaagaatt 500
ccagacagtt ccatttaca ttttctcaga gtcctatgga ggaaaaatgg 550
cagctggcat tggtagtgg ctttataagg ccattcagcg agggaccatc 600
aagtgcact ttgcgggggt tgccttgggt gattcctgga tctccctgt 650
tgattcggtg ctctcctggg gaccttacct gtacagcatg tctttctcg 700

aagacaaagg tctggcagag gtgtctaagg ttgcagagca agtactgaat 750
 gccgtaaata aggggctcta cagagaggcc acagagctgt gggggaaagc 800
 agaaaatgatc attgaacaga acacagatgg ggtgaacttc tataacatct 850
 taactaaaag cactcccacg tctacaatgg agtcgagtct agaattcaca 900
 cagagccacc tagtttgtct ttgtcagcgc cacgtgagac acctacaacg 950
 agatgcctta agccagctca tgaatggccc catcagaaag aagctcaaaa 1000
 ttattcctga ggatcaatcc tggggaggcc aggctaccaa cgtctttgtg 1050
 aacatggagg aggacttcat gaagccagtc attagcattg tggacgagtt 1100
 gctggaggca gggatcaacg tgacggtgta taatggacag ctggatctca 1150
 tcgtagatac catgggtcag gaggcctggg tgcgaaact gaagtggcca 1200
 gaactgccta aattcagtca gctgaagtgg aaggccctgt acagtgaccc 1250
 taaatcttg gaaacatctg ctttgtcaa gtcctacaag aaccttgctt 1300
 tctactggat tctgaaagct ggtcatatgg ttccttctga ccaaggggac 1350
 atggctctga agatgatgag actggtgact cagcaagaat aggatggatg 1400
 gggctggaga tgagctggtt tggccttggg gcacagagct gagctgaggc 1450
 cgctgaagct gtaggaagcg ccattcttcc ctgtatctaa ctggggctgt 1500
 gatcaagaag gttctgacca gcttctgcag aggataaaat cattgtctct 1550
 ggaggcaatt tggaaattat ttctgcttct taaaaaaacc taagatttt 1600
 taaaaaattg atttgttttgc atcaaaataa aggatgataa tagatattaa 1650

<210> 255

<211> 452

<212> PRT

<213> Homo Sapien

<400> 255

Met	Glu	LLeu	Ala	Leu	Arg	Arg	Ser	Pro	Val	Pro	Arg	Trp	Leu	Leu
1										10			15	

Leu	Leu	Pro	Leu	Leu	Leu	Gly	Leu	Asn	Ala	Gly	Ala	Val	Ile	Asp
												20	25	30

Trp	Pro	Thr	Glu	Glu	Gly	Lys	Glu	Val	Trp	Asp	Tyr	Val	Thr	Val
												35	40	45

Arg Lys Asp Ala Tyr Met Phe Trp Trp Leu Tyr Tyr Ala Thr Asn
 50 55 60

Ser Cys Lys Asn Phe Ser Glu Leu Pro Leu Val Met Trp Leu Gln
 65 70 75

Gly Gly Pro Gly Gly Ser Ser Thr Gly Phe Gly Asn Phe Glu Glu
 80 85 90

Ile Gly Pro Leu Asp Ser Asp Leu Lys Pro Arg Lys Thr Thr Trp
 95 100 105

Leu Gln Ala Ala Ser Leu Leu Phe Val Asp Asn Pro Val Gly Thr
 110 115 120

Gly Phe Ser Tyr Val Asn Gly Ser Gly Ala Tyr Ala Lys Asp Leu
 125 130 135

Ala Met Val Ala Ser Asp Met Met Val Leu Leu Lys Thr Phe Phe
 140 145 150

Ser Cys His Lys Glu Phe Gln Thr Val Pro Phe Tyr Ile Phe Ser
 155 160 165

Glu Ser Tyr Gly Gly Lys Met Ala Ala Gly Ile Gly Leu Glu Leu
 170 175 180

Tyr Lys Ala Ile Gln Arg Gly Thr Ile Lys Cys Asn Phe Ala Gly
 185 190 195

Val Ala Leu Gly Asp Ser Trp Ile Ser Pro Val Asp Ser Val Leu
 200 205 210

Ser Trp Gly Pro Tyr Leu Tyr Ser Met Ser Leu Leu Glu Asp Lys
 215 220 225

Gly Leu Ala Glu Val Ser Lys Val Ala Glu Gln Val Leu Asn Ala
 230 235 240

Val Asn Lys Gly Leu Tyr Arg Glu Ala Thr Glu Leu Trp Gly Lys
 245 250 255

Ala Glu Met Ile Ile Glu Gln Asn Thr Asp Gly Val Asn Phe Tyr
 260 265 270

Asn Ile Leu Thr Lys Ser Thr Pro Thr Ser Thr Met Glu Ser Ser
 275 280 285

Leu Glu Phe Thr Gln Ser His Leu Val Cys Leu Cys Gln Arg His
 290 295 300

Val Arg His Leu Gln Arg Asp Ala Leu Ser Gln Leu Met Asn Gly

305	310	315
Pro Ile Arg Lys Lys Leu Lys Ile Ile Pro Glu Asp Gln Ser Trp		
320	325	330
Gly Gly Gln Ala Thr Asn Val Phe Val Asn Met Glu Glu Asp Phe		
335	340	345
Met Lys Pro Val Ile Ser Ile Val Asp Glu Leu Leu Glu Ala Gly		
350	355	360
Ile Asn Val Thr Val Tyr Asn Gly Gln Leu Asp Leu Ile Val Asp		
365	370	375
Thr Met Gly Gln Glu Ala Trp Val Arg Lys Leu Lys Trp Pro Glu		
380	385	390
Leu Pro Lys Phe Ser Gln Leu Lys Trp Lys Ala Leu Tyr Ser Asp		
395	400	405
Pro Lys Ser Leu Glu Thr Ser Ala Phe Val Lys Ser Tyr Lys Asn		
410	415	420
Leu Ala Phe Tyr Trp Ile Leu Lys Ala Gly His Met Val Pro Ser		
425	430	435
Asp Gln Gly Asp Met Ala Leu Lys Met Met Arg Leu Val Thr Gln		
440	445	450
Gln Glu		
<210> 256		
<211> 1100		
<212> DNA		
<213> Homo Sapien		
<400> 256		
ggccgcggga gaggaggcca tgggcgcgctg ctgctggcgc 50		
tgctgctggc tcgggctgga ctcaggaagc cggagtcgca ggaggcggcg 100		
ccgttatcag gaccatgcgg ccgacgggtc atcacgtcgc gcacgtggg 150		
tggagaggac gccgaactcg ggcgttggcc gtggcagggg agcctgcgcc 200		
tgtggattc ccacgtatgc ggagtgagcc tgctcagcca ccgctggca 250		
ctcacggcgg cgcaactgctt tgaaacctat agtacaccta gtgatccctc 300		
cggtggatg gtccagtttgc ccagctgac ttccatgcca tccttctgga 350		
gcctgcaggc ctactacacc cgttacttcg tatcgaatat ctatctgagc 400		

cctcgctacc tgggaaattc accctatgac attgccttgg tgaagctgtc 450
 tgcacctgtc acctacacta aacacatcca gcccacatgt ctccaggcct 500
 ccacatttga gtttgagaac cgacagact gctgggtgac tggctggggg 550
 tacatcaaag aggtgaggc actgccatct cccccacaccc tccaggaagt 600
 tcagggtcgcc atcataaaca actctatgtg caaccacctc ttccctcaagt 650
 acagtttccg caaggacatc tttggagaca tggtttgtgc tggcaacgcc 700
 caaggcggga aggatgcctg cttcggtgac tcagggtggac cttggccctg 750
 taacaagaat ggactgtggt atcagattgg agtcgtgagc tggggagtgg 800
 gctgtggtcg gccaatcgg cccgggtgtat acaccaatat cagccaccac 850
 tttgagtgga tccagaagct gatggcccag agtggcatgt cccagccaga 900
 cccctcctgg ccactactct tttccctct tctctggct ctccccactcc 950
 tggggccgggt ctgagcctac ctgagcccat gcagcctggg gccactgcca 1000
 agtcaggccc tggttcttctt ctgtcttgg tggtaataaa cacattccag 1050
 ttgatgcctt gcagggcatt cttcaaaaaa aaaaaaaaaa aaaaaaaaaa 1100

<210> 257

<211> 314

<212> PRT

<213> Homo Sapien

<400> 257

Met	Gly	Ala	Arg	Gly	Ala	Leu	Leu	Leu	Ala	Leu	Leu	Ala	Arg
1					5				10			15	

Ala	Gly	Leu	Arg	Lys	Pro	Glu	Ser	Gln	Glu	Ala	Ala	Pro	Leu	Ser
					20				25			30		

Gly	Pro	Cys	Gly	Arg	Arg	Val	Ile	Thr	Ser	Arg	Ile	Val	Gly	Gly
					35				40			45		

Glu	Asp	Ala	Glu	Leu	Gly	Arg	Trp	Pro	Trp	Gln	Gly	Ser	Leu	Arg
					50				55			60		

Leu	Trp	Asp	Ser	His	Val	Cys	Gly	Val	Ser	Leu	Leu	Ser	His	Arg
					65				70			75		

Trp	Ala	Leu	Thr	Ala	Ala	His	Cys	Phe	Glu	Thr	Tyr	Ser	Asp	Leu
						80			85			90		

Ser Asp Pro Ser Gly Trp Met Val Gln Phe Gly Gln Leu Thr Ser
 95 100 105
 Met Pro Ser Phe Trp Ser Leu Gln Ala Tyr Tyr Thr Arg Tyr Phe
 110 115 120
 Val Ser Asn Ile Tyr Leu Ser Pro Arg Tyr Leu Gly Asn Ser Pro
 125 130 135
 Tyr Asp Ile Ala Leu Val Lys Leu Ser Ala Pro Val Thr Tyr Thr
 140 145 150
 Lys His Ile Gln Pro Ile Cys Leu Gln Ala Ser Thr Phe Glu Phe
 155 160 165
 Glu Asn Arg Thr Asp Cys Trp Val Thr Gly Trp Gly Tyr Ile Lys
 170 175 180
 Glu Asp Glu Ala Leu Pro Ser Pro His Thr Leu Gln Glu Val Gln
 185 190 195
 Val Ala Ile Ile Asn Asn Ser Met Cys Asn His Leu Phe Leu Lys
 200 205 210
 Tyr Ser Phe Arg Lys Asp Ile Phe Gly Asp Met Val Cys Ala Gly
 215 220 225
 Asn Ala Gln Gly Gly Lys Asp Ala Cys Phe Gly Asp Ser Gly Gly
 230 235 240
 Pro Leu Ala Cys Asn Lys Asn Gly Leu Trp Tyr Gln Ile Gly Val
 245 250 255
 Val Ser Trp Gly Val Gly Cys Gly Arg Pro Asn Arg Pro Gly Val
 260 265 270
 Tyr Thr Asn Ile Ser His His Phe Glu Trp Ile Gln Lys Leu Met
 275 280 285
 Ala Gln Ser Gly Met Ser Gln Pro Asp Pro Ser Trp Pro Leu Leu
 290 295 300
 Phe Phe Pro Leu Leu Trp Ala Leu Pro Leu Leu Gly Pro Val
 305 310

<210> 258

<211> 2427

<212> DNA

<213> Homo Sapien

<400> 258

cccacgcgtc cgccggacgcg tgggaagggc agaatggac tccaaggctg 50

159

cctcctaggg ctctttgccc tcatcccttc tggcaaatgc agttacagcc 100
cgagccccga ccagccggagg acgctgcccc caggctgggt gtcctgggc 150
cgtgcggacc ctgaggaaga gctgagtctc accttggcc tgagacagca 200
gaatgtggaa agactctcg agctggtgca ggctgtgtcg gatccagct 250
ctccctaata cgaaaatac ctgaccctag agaaatggc tcatctggtg 300
aggccatccc cactgaccct ccacacgggt caaaaatggc tcttggcagc 350
cggagccag aagtgcatt ctgtgatcac acaggacttt ctgacttgct 400
ggctgagcat ccgacaagca gagctgtgc tccctggggc tgagttcat 450
cactatgtgg gaggacctac gggaaacccat ttggactt gtggactt ccccacatcc 500
ctaccagtt tcccccaaca tcatccctga ggcaacgtc tgagcccgag 550
tgacacggtt ctgttaggcct gcatctgggg gtaacccct ctgtgatccg 600
taagcgatac aacttgacct cacaagacgt gggctctggc accagaata 650
acagccaagc ctgtgcccag ttccctggc aacttgcac atcaggcatc 700
ctggctcagt tcatgcgcct cttcggtggc aacttgcac atcaggcatc 750
agtagccctgt tggttggac aacagggccg gggccggcc ggatttgggg 800
ccagttctaga tgtgcagttac ctgtgatgtg ctggtccaa catctccacc 850
tgggttaca gtggccctgg ccggcatgag ggacaggagc cttccctgca 900
gtggctcatgg ctgtcagta atgatgtgg cttcggtggc aacttgcac atcaggcatc 950
tgagctatgg agatgtatgg gactccctca gcagcccta catccaggg 1000
gtcaacaactg agtcatgaa ggctggccgt cttccatgtt gtcataactg 1050
cgccctcaggat gacagtgggg cgggggtttt gtttgtatct ggaagacacc 1100
agttccggcc tacctccctt gctccagcc octatgtcac cacagtggga 1150
ggcacaatctt tccaggaacc tttccatc acaaatgaaa ttgtgtacta 1200
tatcagtgtt ggtggctca gcaatgtttt cccacggcc tcataccagg 1250
aggaagctgt aacgaagttc ctgagctca gccccacccat gcaccatcc 1300
attactca atgccagttt ccgtgcctac ccagatgtgg ctgcactttc 1350
1400

tcatggctac tgggtggtca gcaacagagt gcccattcca tgggtgtccg 1450
 gaacctcgcc ctctactcca gtgtttgggg ggatcctata cttgatcaat 1500
 gagcacagga tccttagtgg ccgcggccct cttggcttc tcaacccaag 1550
 gctctaccag cagcatgggg caggtcttt tgatgtaacc cgtggctgcc 1600
 atgagtcctg tctggatgaa gaggttagagg gccagggttt ctgctctgg 1650
 cctggctggg atcctgtaac aggctgggg acaccaactt cccagcttg 1700
 ctgaagactc tactcaaccc ctgaccctt cctatcagga gagatggctt 1750
 gtccccctgcc ctgaagctgg cagttcagtc ctttattctg ccctgttg 1800
 agccctgctg aaccctcaac tattgactgc tgcagacagc ttatccct 1850
 aaccctgaaa tgctgtgagc ttgacttgac tcccaaccct accatgctcc 1900
 atcataactca ggtctcccta ctcctgcctt agattcctca ataagatgct 1950
 gtaactagca tttttgaat gcctctccct ccgcattctca tctttcttt 2000
 ttcaatcagg cttttccaaa gggttgtata cagactctgt gcactatttc 2050
 acttgatatt cattccccaa ttcaactgcaa ggagacctct actgtcaccc 2100
 ttactctt cctaccctga catccagaaa caatggcctc cagtgcatac 2150
 ttctcaatct ttgcttatg gccttccat catagttgc cactccctct 2200
 ccttacttag cttccaggc ttaacttctc tgactactct tgtcttcctc 2250
 tctcatcaat ttctgcttct tcatggaatg ctgacccctca ttgctccatt 2300
 tggtagatttt tgctcttctc agtttactca ttgtccctg gaacaaatca 2350
 ctgacatctca caaccattac catctacta aataagactt tctatccat 2400
 aatgattgat acctcaaatg taaaaaa 2427

<210> 259
 <211> 556
 <212> PRT
 <213> Homo Sapien

<400> 259
 Met Gly Leu Gln Ala Cys Leu Leu Gly Leu Phe Ala Leu Ile Leu
 1 5 10 15
 Ser Gly Lys Cys Ser Tyr Ser Pro Glu Pro Asp Gln Arg Arg Thr

20	25	30
Leu Pro Pro Gly Trp Val Ser Leu Gly Arg Ala Asp Pro Glu Glu		
35	40	45
Glu Leu Ser Leu Thr Phe Ala Leu Arg Gln Gln Asn Val Glu Arg		
50	55	60
Leu Ser Glu Leu Val Gln Ala Val Ser Asp Pro Ser Ser Pro Gln		
65	70	75
Tyr Gly Lys Tyr Leu Thr Leu Glu Asn Val Ala Asp Leu Val Arg		
80	85	90
Pro Ser Pro Leu Thr Leu His Thr Val Gln Lys Trp Leu Leu Ala		
95	100	105
Ala Gly Ala Gln Lys Cys His Ser Val Ile Thr Gln Asp Phe Leu		
110	115	120
Thr Cys Trp Leu Ser Ile Arg Gln Ala Glu Leu Leu Leu Pro Gly		
125	130	135
Ala Glu Phe His His Tyr Val Gly Gly Pro Thr Glu Thr His Val		
140	145	150
Val Arg Ser Pro His Pro Tyr Gln Leu Pro Gln Ala Leu Ala Pro		
155	160	165
His Val Asp Phe Val Gly Gly Leu His Arg Phe Pro Pro Thr Ser		
170	175	180
Ser Leu Arg Gln Arg Pro Glu Pro Gln Val Thr Gly Thr Val Gly		
185	190	195
Leu His Leu Gly Val Thr Pro Ser Val Ile Arg Lys Arg Tyr Asn		
200	205	210
Leu Thr Ser Gln Asp Val Gly Ser Gly Thr Ser Asn Asn Ser Gln		
215	220	225
Ala Cys Ala Gln Phe Leu Glu Gln Tyr Phe His Asp Ser Asp Leu		
230	235	240
Ala Gln Phe Met Arg Leu Phe Gly Gly Asn Phe Ala His Gln Ala		
245	250	255
Ser Val Ala Arg Val Val Gly Gln Gln Gly Arg Gly Arg Ala Gly		
260	265	270
Ile Glu Ala Ser Leu Asp Val Gln Tyr Leu Met Ser Ala Gly Ala		
275	280	285

Asn Ile Ser Thr Trp Val Tyr Ser Ser Pro Gly Arg His Glu Gly
 290 295 300
 Gln Glu Pro Phe Leu Gln Trp Leu Met Leu Leu Ser Asn Glu Ser
 305 310 315
 Ala Leu Pro His Val His Thr Val Ser Tyr Gly Asp Asp Glu Asp
 320 325 330
 Ser Leu Ser Ser Ala Tyr Ile Gln Arg Val Asn Thr Glu Leu Met
 335 340 345
 Lys Ala Ala Ala Arg Gly Leu Thr Leu Leu Phe Ala Ser Gly Asp
 350 355 360
 Ser Gly Ala Gly Cys Trp Ser Val Ser Gly Arg His Gln Phe Arg
 365 370 375
 Pro Thr Phe Pro Ala Ser Ser Pro Tyr Val Thr Thr Val Gly Gly
 380 385 390
 Thr Ser Phe Gln Glu Pro Phe Leu Ile Thr Asn Glu Ile Val Asp
 395 400 405
 Tyr Ile Ser Gly Gly Phe Ser Asn Val Phe Pro Arg Pro Ser
 410 415 420
 Tyr Gln Glu Glu Ala Val Thr Lys Phe Leu Ser Ser Ser Pro His
 425 430 435
 Leu Pro Pro Ser Ser Tyr Phe Asn Ala Ser Gly Arg Ala Tyr Pro
 440 445 450
 Asp Val Ala Ala Leu Ser Asp Gly Tyr Trp Val Val Ser Asn Arg
 455 460 465
 Val Pro Ile Pro Trp Val Ser Gly Thr Ser Ala Ser Thr Pro Val
 470 475 480
 Phe Gly Gly Ile Leu Ser Leu Ile Asn Glu His Arg Ile Leu Ser
 485 490 495
 Gly Arg Pro Pro Leu Gly Phe Leu Asn Pro Arg Leu Tyr Gln Gln
 500 505 510
 His Gly Ala Gly Leu Phe Asp Val Thr Arg Gly Cys His Glu Ser
 515 520 525
 Cys Leu Asp Glu Glu Val Glu Gly Gln Gly Phe Cys Ser Gly Pro
 530 535 540
 Gly Trp Asp Pro Val Thr Gly Trp Gly Thr Pro Thr Ser Gln Leu
 545 550 555

Cys

<210> 260
 <211> 1638
 <212> DNA
 <213> Homo Sapien

<400> 260
 gccgcgcgct ctctccccgc gcccacacct gtctgagcgg cgca... 50
 cgcggcccgg gcgggatgtct cggcgccggaa cagtgtcg... catggcagg... 100
 attccagg... tcctcttc... tctttt... ctgtctgt... ctgttgg... 150
 agtgagcc... tacagtgc... cctggaaacc cacttgg... gcataacc... 200
 tccctgtcg... cttgcccc... tctacc... attagcc... gccagact... 250
 ggagcc... ccaaatt... agtatctt... tcatgtgg... cccagtgt... 300
 taagg... ccactgccc... cttacga... gcca... tatctgt... 350
 atgaaaacg... ctatgcca... ggcagg... caga... ggtggg... 400
 tacatc... gcagt... agatgg... caacacc... actcagg... 450
 ttca... tctc... agcgg... ttatgg... gacagc... 500
 tcagcatt... tgg... aagg... ttct... actacc... ctca... 550
 gtgaagtt... ccacgg... cacc... ctgg... aga... 600
 cctcacag... gccc... tacacg... aaaa... gtgaa... 650
 cccagaag... tcgag... ttct... ccaag... agatgg... 700
 cgaggg... acgact... ttcag... cccg... tgaa... 750
 gtggatcc... gtgaa... cccat... caagg... atcaagg... 800
 atgccaat... catcg... gattat... atgc... ggaact... 850
 aagccccaca... agagaa... tatga... ggggtg... ctc... 900
 gcagctg... gggggc... ttcactt... tgg... aatgacc... 950
 caggcaattt... ggtgtat... ttctgt... tcaa... gac... 1000
 ttgtctacc... agcaat... tgccc... gggcc... ggtct... 1050
 ctatgtgagg... atgtg... gac... gaag... cgg... 1100

ttggcatttt ttcagggcac cagtgggtgg acatgaatgg ttccccacag 1150
 gatttcaacg tggctgtcag aatcactcct ctcaaataatg cccagattt 1200
 ctattggatt aaaggaaaact acctggattt tagggagggg tgacacagtg 1250
 ttccctcctg gcagcaatta agggtcttca tgttcttatt ttaggagagg 1300
 ccaaattgtt ttttgcatt ggcgtgcaca cgtgtgtgtg tgtgtgtgtg 1350
 tgtgtgtaaag gtgtcttata atctttacc tatttcttac aattgcaaga 1400
 tgactggctt tactatttga aaactggttt gtgtatcata tcatastatca 1450
 tttaaggagt ttgaaggcat acttttgcatt agaaataaaaa aaaatactga 1500
 tttggggcaa tgaggaatat ttgacaatta agttaatctt cacgttttg 1550
 caaactttga tttttatttc atctgaactt gtttcaaaga tttatattaa 1600
 atatttggca tacaagagat atgaaaaaaaaaaaaaaa 1638

<210> 261

<211> 383

<212> PRT

<213> Homo Sapien

<400> 261

Met	Ala	Gly	Ile	Pro	Gly	Leu	Leu	Phe	Leu	Leu	Phe	Phe	Leu	Leu
1						5				10				15

Cys	Ala	Val	Gly	Gln	Val	Ser	Pro	Tyr	Ser	Ala	Pro	Trp	Lys	Pro
						20				25				30

Thr	Trp	Pro	Ala	Tyr	Arg	Leu	Pro	Val	Val	Leu	Pro	Gln	Ser	Thr
						35				40				45

Leu	Asn	Leu	Ala	Lys	Pro	Asp	Phe	Gly	Ala	Glu	Ala	Lys	Leu	Glu
						50			55				60	

Val	Ser	Ser	Ser	Cys	Gly	Pro	Gln	Cys	His	Lys	Gly	Thr	Pro	Leu
						65			70				75	

Pro	Thr	Tyr	Glu	Glu	Ala	Lys	Gln	Tyr	Leu	Ser	Tyr	Glu	Thr	Leu
						80			85				90	

Tyr	Ala	Asn	Gly	Ser	Arg	Thr	Glu	Thr	Gln	Val	Gly	Ile	Tyr	Ile
							95			100				105

Leu	Ser	Ser	Ser	Gly	Asp	Gly	Ala	Gln	His	Arg	Asp	Ser	Gly	Ser
							110		115				120	

Ser Gly Lys Ser Arg Arg Lys Arg Gln Ile Tyr Gly Tyr Asp Ser
 125 130 135
 Arg Phe Ser Ile Phe Gly Lys Asp Phe Leu Leu Asn Tyr Pro Phe
 140 145 150
 Ser Thr Ser Val Lys Leu Ser Thr Gly Cys Thr Gly Thr Leu Val
 155 160 165
 Ala Glu Lys His Val Leu Thr Ala Ala His Cys Ile His Asp Gly
 170 175 180
 Lys Thr Tyr Val Lys Gly Thr Gln Lys Leu Arg Val Gly Phe Leu
 185 190 195
 Lys Pro Lys Phe Lys Asp Gly Gly Arg Gly Ala Asn Asp Ser Thr
 200 205 210
 Ser Ala Met Pro Glu Gln Met Lys Phe Gln Trp Ile Arg Val Lys
 215 220 225
 Arg Thr His Val Pro Lys Gly Trp Ile Lys Gly Asn Ala Asn Asp
 230 235 240
 Ile Gly Met Asp Tyr Asp Tyr Ala Leu Leu Glu Leu Lys Lys Pro
 245 250 255
 His Lys Arg Lys Phe Met Lys Ile Gly Val Ser Pro Pro Ala Lys
 260 265 270
 Gln Leu Pro Gly Gly Arg Ile His Phe Ser Gly Tyr Asp Asn Asp
 275 280 285
 Arg Pro Gly Asn Leu Val Tyr Arg Phe Cys Asp Val Lys Asp Glu
 290 295 300
 Thr Tyr Asp Leu Leu Tyr Gln Gln Cys Asp Ala Gln Pro Gly Ala
 305 310 315
 Ser Gly Ser Gly Val Tyr Val Arg Met Trp Lys Arg Gln Gln Gln
 320 325 330
 Lys Trp Glu Arg Lys Ile Ile Gly Ile Phe Ser Gly His Gln Trp
 335 340 345
 Val Asp Met Asn Gly Ser Pro Gln Asp Phe Asn Val Ala Val Arg
 350 355 360
 Ile Thr Pro Leu Lys Tyr Ala Gln Ile Cys Tyr Trp Ile Lys Gly
 365 370 375
 Asn Tyr Leu Asp Cys Arg Glu Gly
 380

<210> 262
<211> 1378
<212> DNA
<213> Homo Sapien

<400> 262
gcatgcgcct gggctctcg agcctgctgc ctgctcccc gccccaccag 50
ccatggtggt ttctggagcg ccccccagccc tgggtgggg ctgtctcgcc 100
accttcacctt ccctgctgct gctggcgctcg acagccatcc tcaatgcggc 150
caggataacctt gttcccccag cctgtggaa gccccagcag ctgaaccggg 200
ttgtggcgcc cgaggacagc actgacagcg agtggccctg gatcgtgagc 250
atccagaaga atgggaccca ccactgcgca ggttctctgc tcaccagccg 300
ctgggtgatc actgctgccc actgtttcaa ggacaacctg aacaaaccat 350
acctgttctc tgtgctgctg ggggcctggc agctggggaa ccctggctct 400
cggtcccaaga aggtgggtgt tgccctgggtg gagccccacc ctgtgtattc 450
ctggaaggaa ggtgcctgtg cagacattgc cctggtgctgt otcgagcgct 500
ccatacagtt ctcagagcgg gtcctgccc tctgcctacc tgatgcctct 550
atccacactcc ctccaaacac ccactgctgg atctcaggct gggggagcat 600
ccaagatgga gttcccttgc cccaccctca gaccctgcag aagctgaagg 650
ttcctatcat cgactcgaa gtctgcagcc atctgtactg gccccggagca 700
ggacagggac ccatcaactga ggacatgctg tgtccggct acttggaggg 750
ggagcggat gcttgtctgg gcgactccgg gggccccctc atgtgccagg 800
tggacggcgc ctggctgctg gccggcatca tcagctgggg cgagggctgt 850
gccgagcgca acaggccccgg ggtctacatc agcctctctg cgccaccgctc 900
ctgggtggag aagatcgtgc aaggggtgca gctccgcggg cgcgctcagg 950
gggggtggggc cctcaggcgca ccgagccagg gctctggggc cgccgcgcgc 1000
tccttagggcg cagcgggacg cggggctcgat atctgaaagg cggccagatc 1050
cacatctgga tctggatctg cggcggcctc gggcggttcc ccccgccgta 1100
aataggctca tctacactcta cctctggggg cccggacggc tgctgcggaa 1150

aggaaacccc ctccccgacc cgcccgacgg cctcaggccc ccctccaagg 1200
 catcaggccc cgcccaacgg cctcatgtcc cgcgcac 1250
 cccgcccccg ggccccagcg ctttgcata tataaatgtt aatgatttt 1300
 ataggtattt gtaaccctgc ccacatatct tatatttcc tccaatttc 1350
 ataaattatt tattctccaa aaaaaaaaa 1378

<210> 263

<211> 317

<212> PRT

<213> Homo Sapien

<400> 263

Met	Val	Val	Ser	Gly	Ala	Pro	Pro	Ala	Leu	Gly	Gly	Gly	Cys	Leu
1					5					10				15
Gly	Thr	Phe	Thr	Ser	Leu	Leu	Leu	Leu	Ala	Ser	Thr	Ala	Ile	Leu
		20								25				30
Asn	Ala	Ala	Arg	Ile	Pro	Val	Pro	Pro	Ala	Cys	Gly	Lys	Pro	Gln
				35						40				45
Gln	Leu	Asn	Arg	Val	Val	Gly	Gly	Glu	Asp	Ser	Thr	Asp	Ser	Glu
				50				55						60
Trp	Pro	Trp	Ile	Val	Ser	Ile	Gln	Lys	Asn	Gly	Thr	His	His	Cys
				65						70				75
Ala	Gly	Ser	Leu	Leu	Thr	Ser	Arg	Trp	Val	Ile	Thr	Ala	Ala	His
				80					85					90
Cys	Phe	Lys	Asp	Asn	Leu	Asn	Lys	Pro	Tyr	Leu	Phe	Ser	Val	Leu
				95				100						105
Leu	Gly	Ala	Trp	Gln	Leu	Gly	Asn	Pro	Gly	Ser	Arg	Ser	Gln	Lys
				110					115					120
Val	Gly	Val	Ala	Trp	Val	Glu	Pro	His	Pro	Val	Tyr	Ser	Trp	Lys
				125				130						135
Glu	Gly	Ala	Cys	Ala	Asp	Ile	Ala	Leu	Val	Arg	Leu	Glu	Arg	Ser
				140					145					150
Ile	Gln	Phe	Ser	Glu	Arg	Val	Leu	Pro	Ile	Cys	Leu	Pro	Asp	Ala
				155					160					165
Ser	Ile	His	Leu	Pro	Pro	Asn	Thr	His	Cys	Trp	Ile	Ser	Gly	Trp
				170					175					180

Gly Ser Ile Gln Asp Gly Val Pro Leu Pro His Pro Gln Thr Leu
 185 190 195
 Gln Lys Leu Lys Val Pro Ile Ile Asp Ser Glu Val Cys Ser His
 200 205 210
 Leu Tyr Trp Arg Gly Ala Gly Gln Gly Pro Ile Thr Glu Asp Met
 215 220 225
 Leu Cys Ala Gly Tyr Leu Glu Gly Glu Arg Asp Ala Cys Leu Gly
 230 235 240
 Asp Ser Gly Gly Pro Leu Met Cys Gln Val Asp Gly Ala Trp Leu
 245 250 255
 Leu Ala Gly Ile Ile Ser Trp Gly Glu Gly Cys Ala Glu Arg Asn
 260 265 270
 Arg Pro Gly Val Tyr Ile Ser Leu Ser Ala His Arg Ser Trp Val
 275 280 285
 Glu Lys Ile Val Gln Gly Val Gln Leu Arg Gly Arg Ala Gln Gly
 290 295 300
 Gly Gly Ala Leu Arg Ala Pro Ser Gln Gly Ser Gly Ala Ala Ala
 305 310 315
 Arg Ser
 <210> 264
 <211> 24
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 264
 gtccgcaagg atgcctacat gttc 24
 <210> 265
 <211> 19
 <212> DNA
 <213> Artificial Sequence
 <220>
 <223> Synthetic Oligonucleotide Probe
 <400> 265
 gcagaggtgt ctaaggttg 19
 <210> 266
 <211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 266
agctctagac caatgccagc ttcc 24

<210> 267
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 267
gcccccaact cctgcaagaa cttctcagaa ctgcccctgg tcatg 45

<210> 268
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 268
ggggattca ccctatgaca ttgcc 25

<210> 269
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 269
gaatgccttg caagcatcaa ctgg 24

<210> 270
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 270
gcacctgtca cctacactaa acacatccag cccatctgtc tccaggcctc 50

<210> 271
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 271
gcggaagggc agaatggcac tccaaag 26

<210> 272
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 272
cagccctgcc acatgtgc 18

<210> 273
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 273
tactgggtgg tcagcaac 18

<210> 274
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 274
ggcgaagagc agggtgagac cccg 24

<210> 275
<211> 45

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 275
gccctcatcc tctctggcaa atgcagttac agcccgaggc ccgac 45

<210> 276
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 276
gggcaggat tccagggttc c 21

<210> 277
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 277
ggctatgaca gcagggttc 18

<210> 278
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 278
tgacaatgac cgaccagg 18

<210> 279
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 279
gcatcgatt gctggtagag caag 24

<210> 280
<211> 45
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 280
ttacagtgcc ccctggaaac ccacttggcc tgcataaccgc ctccc 45

<210> 281
<211> 34
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 281
cgtctcgagc gtcataaca gttcccttgc ccca 34

<210> 282
<211> 61
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 282
tggaggggga gcgggatgct tgtctggcg actccggggg cccccatg 50
tgccaggtgg a 61

<210> 283
<211> 119
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 283
ccctcagacc ctgcagaagc tgaaggttcc tatcatcgac tcggaagtct 50
gcagccatct gtactggcg ggagcaggac agggacccat cactgaggac 100
atgctgtgtg ccggctact 119

<210> 284
<211> 1875
<212> DNA
<213> Homo Sapien

<400> 284
gacggctggc caccatgcac ggctcctgca gtttcctgat gtttctgctg 50
ccgctactgc tactgctggt ggccaccaca ggccccgttg gagccctcac 100

agatgaggag aaacgttga tggtagact gcacaacctc taccgggccc 150
aggtatcccc gacggcctca gacatgctgc acatgagatg ggacgaggag 200
ctggccgcct tcgccaaggc ctacgcacgg cagtgcgtgt gggccacaa 250
caaggagcgc gggcgccgag gcgagaatct gttcgccatc acagacgagg 300
gcatggacgt gccgctggcc atggaggagt ggcaccacga gcgtgagcac 350
tacaacctca ggcgcgcccac ctgcagccca ggccagatgt gcggccacta 400
cacgcaggtg gtatggcca agacagagag gatcggctgt gttcccact 450
tctgtgagaa gctccagggt gttgaggaga ccaacatcga attactggtg 500
tgcaactatg agcctccggg gaacgtgaag gggaaacggc cctaccagga 550
ggggactccg tgctcccaat gtccctctgg ctaccactgc aagaactccc 600
tctgtgaacc catcggaaagc ccggaaagatg ctcaggattt gccttacctg 650
gtaactgagg ccccatcatt ccggcgact gaagcatcag actctaggaa 700
aatgggtact cttttttccc tagcaacggg gattccggct ttcttgtaa 750
cagaggtctc aggctccctg gcaaccaagg ctctgcctgc tgtggaaacc 800
caggccccaa cttcccttagc aacgaaagac ccgcctcca tggcaacaga 850
ggctccaccc tgcgttaacaa ctgaggtccc ttccattttgcagctcaca 900
gcctgcctc cttggatgag gagccagttt cttcccccata atcgacccat 950
ttccctatcc caaaatcagc agacaaagtg acagacaaaa caaaagtgcc 1000
ctctaggagc ccagagaact ctctggaccc caagatgtcc ctgacagggg 1050
caagggaaact cttcccccattt gcccaggagg aggctgagggc tgaggctgag 1100
ttgcctccctt ccagtgaggt cttggcctca gttttccag cccaggacaa 1150
gccaggtgag ctgcaggcca cactggacca cacggggcac acctcctcca 1200
agtccctgcc caattttttttt aatacctctg ccaccgctaa tgccacgggt 1250
gggcgtgccc tggctctgca gtcgtccttgc ccaggtgcag agggccctga 1300
caagccttagc gttgtgtcag ggctgaactc gggccctggc catgtgtggg 1350
gcctctccat gggactactg ctccctgcctc ctctgggtt ggctggaatc 1400

ttctgaatgg gataccactc aaagggtgaa gaggtcagct gtcctcctgt 1450
 catcttcccc accctgtccc cagcccctaa acaagatact tcttggttaa 1500
 gccctccgg aagggaaagg ctacggggca tgtgcctcat cacaccatcc 1550
 atcctggagg cacaaggcct ggctggctgc gagtcagga ggccgcctga 1600
 ggactgcaca cggggccac acctctcctg cccctccctc ctgagtccctg 1650
 ggggtggag gatttggagg agctcaactgc ctacctggcc tggggctgtc 1700
 tgcccacaca gcatgtgcgc tctccctgag tgcctgtgt a gctggggatg 1750
 gggattccta gggcagatg aaggacaagc cccactggag tggggttctt 1800
 tgagtgggg aggcaaggac gagggaaagg aagtaactcc tgactctcca 1850
 ataaaaaacct gtccaaacctg tgaaa 1875

<210> 285

<211> 463

<212> PRT

<213> Homo Sapien

<400> 285

Met	His	Gly	Ser	Cys	Ser	Phe	Leu	Met	Leu	Leu	Leu	Pro	Leu	Leu
1														15
Leu	Leu	Leu	Val	Ala	Thr	Thr	Gly	Pro	Val	Gly	Ala	Leu	Thr	Asp
			20						25					30
Glu	Glu	Lys	Arg	Leu	Met	Val	Glu	Leu	His	Asn	Leu	Tyr	Arg	Ala
				35					40					45
Gln	Val	Ser	Pro	Thr	Ala	Ser	Asp	Met	Leu	His	Met	Arg	Trp	Asp
					50				55					60
Glu	Glu	Leu	Ala	Ala	Phe	Ala	Lys	Ala	Tyr	Ala	Arg	Gln	Cys	Val
				65					70					75
Trp	Gly	His	Asn	Lys	Glu	Arg	Gly	Arg	Gly	Glu	Asn	Leu	Phe	
				80					85					90
Ala	Ile	Thr	Asp	Glu	Gly	Met	Asp	Val	Pro	Leu	Ala	Met	Glu	Glu
				95					100					105
Trp	His	His	Glu	Arg	Glu	His	Tyr	Asn	Leu	Ser	Ala	Ala	Thr	Cys
				110					115					120
Ser	Pro	Gly	Gln	Met	Cys	Gly	His	Tyr	Thr	Gln	Val	Val	Trp	Ala
				125					130					135

Lys Thr Glu Arg Ile Gly Cys Gly Ser His Phe Cys Glu Lys Leu
 140 145 150
 Gln Gly Val Glu Glu Thr Asn Ile Glu Leu Leu Val Cys Asn Tyr
 155 160 165
 Glu Pro Pro Gly Asn Val Lys Gly Lys Arg Pro Tyr Gln Glu Gly
 170 175 180
 Thr Pro Cys Ser Gln Cys Pro Ser Gly Tyr His Cys Lys Asn Ser
 185 190 195
 Leu Cys Glu Pro Ile Gly Ser Pro Glu Asp Ala Gln Asp Leu Pro
 200 205 210
 Tyr Leu Val Thr Glu Ala Pro Ser Phe Arg Ala Thr Glu Ala Ser
 215 220 225
 Asp Ser Arg Lys Met Gly Thr Pro Ser Ser Leu Ala Thr Gly Ile
 230 235 240
 Pro Ala Phe Leu Val Thr Glu Val Ser Gly Ser Leu Ala Thr Lys
 245 250 255
 Ala Leu Pro Ala Val Glu Thr Gln Ala Pro Thr Ser Leu Ala Thr
 260 265 270
 Lys Asp Pro Pro Ser Met Ala Thr Glu Ala Pro Pro Cys Val Thr
 275 280 285
 Thr Glu Val Pro Ser Ile Leu Ala Ala His Ser Leu Pro Ser Leu
 290 295 300
 Asp Glu Glu Pro Val Thr Phe Pro Lys Ser Thr His Val Pro Ile
 305 310 315
 Pro Lys Ser Ala Asp Lys Val Thr Asp Lys Thr Lys Val Pro Ser
 320 325 330
 Arg Ser Pro Glu Asn Ser Leu Asp Pro Lys Met Ser Leu Thr Gly
 335 340 345
 Ala Arg Glu Leu Leu Pro His Ala Gln Glu Ala Glu Ala Glu
 350 355 360
 Ala Glu Leu Pro Pro Ser Ser Glu Val Leu Ala Ser Val Phe Pro
 365 370 375
 Ala Gln Asp Lys Pro Gly Glu Leu Gln Ala Thr Leu Asp His Thr
 380 385 390
 Gly His Thr Ser Ser Lys Ser Leu Pro Asn Phe Pro Asn Thr Ser
 395 400 405

Ala Thr Ala Asn Ala Thr Gly Gly Arg Ala Leu Ala Leu Gln Ser
410 415 420

Ser Leu Pro Gly Ala Glu Gly Pro Asp Lys Pro Ser Val Val Ser
425 430 435

Gly Leu Asn Ser Gly Pro Gly His Val Trp Gly Pro Leu Leu Gly
440 445 450

Leu Leu Leu Pro Pro Leu Val Leu Ala Gly Ile Phe
455 460

<210> 286
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 286
tcctgcagg tcctgatgc 19

<210> 287
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 287
ctcatattgc acaccagtaa ttcg 24

<210> 288
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 288
atgaggagaa acgtttgatg gtggagctgc acaacctcta ccggg 45

<210> 289
<211> 3662
<212> DNA
<213> Homo Sapien

<400> 289
gtaactgaag tcaggcttt catttggaa gccccctcaa cagaattcgg 50

tcattctcca agttatggtg gacgtacttc tgggttctc cctctgctg 100
 cttttcaca tttagcagacc ggacttaagt cacaacagat tatctttcat 150
 caaggcaagt tccatgagcc accttcaaag cttcgagaa gtgaaaactga 200
 acaacaatga attggagacc attccaaatc tgggaccagt ctggcaaat 250
 attacacttc tctccttggc tggaaacagg attgttggaaa tactccctga 300
 acatctgaaa gagttcagt cccttggaaac tttggacctt agcagcaaca 350
 atatttcaga gctccaaact gcatttccag ccctacagct caaatatctg 400
 tatctcaaca gcaaccgagt cacatcaatg gaacctgggt attttgacaa 450
 tttggccaac acactccttg tggaaaagct gaacaggaac cgaatctcag 500
 ctatcccacc caagatgttt aaactgcccc aactgcaaca tctcgaattt 550
 aaccgaaaca agattaaaaa tgttagatgga ctgacattcc aaggccttgg 600
 tgctctgaag tctctgaaaa tgcaaaagaaa tggagtaacg aaacttatgg 650
 atggagcttt ttgggggctg agcaacatgg aaatttgca gctggaccat 700
 aacaaccta cagagattac caaaggctgg ctttacggct tgctgatgct 750
 gcaggaactt catctcagcc aaaatgccat caacaggatc agccctgatg 800
 cttggaggtt ctgcagaag ctcaatggc tggacctaac tttcaatcac 850
 ttatcaaggt tagatgattc aagcttcattt ggcctaagct tactaaatac 900
 actgcacatt gggaaacaaca gagtcagcta cattgctgat tggccttcc 950
 gggggcttcc cagtttaaag actttggatc tgaagaacaa tggaaatttcc 1000
 tggactattt aagacatgaa tggtgcttcc tctggcttg acaaactgag 1050
 ggcactgata ctccaaggaa atcggatccg ttcttattact aaaaagcct 1100
 tcactggttt ggatgcattt gggatcttag acctgagtga caacgcaatc 1150
 atgtctttac aaggcaatgc attttcacaa atgaagaaac tgcaacaatt 1200
 gcatttaaat acatcaagcc ttttgtcga ttggccagctt aatggctcc 1250
 cacagtgggtt ggcggaaaac aactttcaga gctttgtaaa tgccagttgt 1300
 gcccatttcctc agctgctaaa aggaagaagc attttgctg ttagcccaga 1350

tggcttgtg tgtgatgatt tccccaaacc ccagatcacg gttcagccag 1400
aaacacagtc ggcaataaaa gttccaatt tgagttcat ctgctcagct 1450
gccagcagca gtgattcccc aatgacttt gcttgaaaa aagacaatga 1500
actactgcat gatgctgaaa tggaaaatta tgcacacctc cggggccaaag 1550
gtggcgaggt gatggagtat accaccatcc ttccggctgcg cgaggtggaa 1600
tttgcagtg agggaaata tcagtgtgtc atctccaatc actttggttc 1650
atcctactct gtcaaagcca agcttacagt aaatatgctt ccctcattca 1700
ccaagacccc catggatctc accatccgag ctggggccat ggcacgcttg 1750
gagtgtgctg ctgtggggca cccagccccc cagatgcct ggcagaagga 1800
tggggcaca gacttccag ctgcacggga gagacgcatg catgtgatgc 1850
ccgaggatga cgtgttctt atcgtggatg tgaagataga ggacattggg 1900
gtatacagct gcacagctca gaacagtgca ggaagtattt cagcaaatgc 1950
aactctgact gtccttagaaa caccatcatt tttgcggcca ctgttggacc 2000
gaactgtaac caagggagaa acagccgtcc tacagtgcatt tgctggagga 2050
agccctcccc ctaaactgaa ctggaccaaa gatgatagcc cattgggtt 2100
aaccgagagg cacttttg cagcaggcaa tcagttctg attattgtgg 2150
actcagatgt cagtgtatgc gggaaataca catgtgagat gtctaaccacc 2200
cttggactg agagagggaa cgtgcgcctc agtgtgatcc ccactccaac 2250
ctgcgactcc cctcagatga cagccccatc gttagacgat gacggatggg 2300
ccactgtggg tgctgtatc atagccgtgg tttgctgtgt ggtggccacg 2350
tcactcgtgt gggtggtcat catataccac acaaggcgga ggaatgaaga 2400
ttgcagcatt accaacacag atgagaccaa cttgccagca gatattccta 2450
gttatttgc atctcaggga acgttagctg acaggcagga tgggtacgtg 2500
tcttcagaaaa gtggaagcca ccaccagttt gtcacatctt caggtgctgg 2550
atttttctta ccacaacatg acagtagtgg gacctgcccattt attgacaata 2600
gcagtgaagc tcatgtggaa gctgccacag atctgttcct ttgtccgttt 2650
ttgggatcca caggccctat gtatttgaag ggaaatgtgt atggctcaga 2700

tcctttgaa acatatcata caggttgcag tcctgaccca agaacagtt 2750
 taatggacca ctatgagccc agttacataa agaaaaagga gtgctaccca 2800
 tggtctcatc cttcagaaga atcctgcgaa cggagttca gtaatatatc 2850
 gtggcttca catgtgagga agctacttaa cactagttac tctcacaatg 2900
 aaggacctgg aataaaaat ctgtgtctaa acaagtccctc tttagatttt 2950
 agtgcaaatc cagagccagc gtcgggtgcc tcgagtaatt ctttcatggg 3000
 tacctttgga aaagctctca ggagacctca cctagatgcc tattcaagct 3050
 ttggacagcc atcagattgt cagccaagag cttttatTTT gaaagctcat 3100
 tctccccag acttggactc tgggtcagag gaagatggga aagaaaggac 3150
 agatTTTcag gaagaaaatc acatttgtac cttaaacag actttagaaa 3200
 actacaggac tccaaatTTT cagtcttatg acttggacac atagactgaa 3250
 tgagaccaaa ggaaaagctt aacatactac ctcaagtgaa ctTTTattta 3300
 aaagagagag aatcttatgt ttttaaatg gagttatgaa ttttaaaagg 3350
 ataAAAATgc tttatttata cagatgaacc aaaattacaa aaagttatga 3400
 aaattttat actggaaatg atgctcatat aagaataacct ttttaaacta 3450
 ttttttaact ttgtttatg caaaaaagta tcttacgtaa attaatgata 3500
 taaatcatga ttattttatg tattttata atGCCAGATT tcttttatg 3550
 gaaaatgagt tactaaagca ttttaataa tacctgcctt gtaccatttt 3600
 ttAAATAGAA gttacttcat tatatttgc acattatatt taataAAATg 3650
 tgtcaatttG aa 3662

<210> 290
 <211> 1059
 <212> PRT
 <213> Homo Sapien

<400> 290																
Met	Val	Asp	Val	Leu	Leu	Leu	Phe	Ser	Leu	Cys	Leu	Leu	Phe	His		
1				5				10					15			
Ile Ser Arg Pro Asp Leu Ser His Asn Arg Leu Ser Phe Ile Lys																
20															25	30

Ala Ser Ser Met Ser His Leu Gln Ser Leu Arg Glu Val Lys Leu
 35 40 45
 Asn Asn Asn Glu Leu Glu Thr Ile Pro Asn Leu Gly Pro Val Ser
 50 55 60
 Ala Asn Ile Thr Leu Leu Ser Leu Ala Gly Asn Arg Ile Val Glu
 65 70 75
 Ile Leu Pro Glu His Leu Lys Glu Phe Gln Ser Leu Glu Thr Leu
 80 85 90
 Asp Leu Ser Ser Asn Asn Ile Ser Glu Leu Gln Thr Ala Phe Pro
 95 100 105
 Ala Leu Gln Leu Lys Tyr Leu Tyr Leu Asn Ser Asn Arg Val Thr
 110 115 120
 Ser Met Glu Pro Gly Tyr Phe Asp Asn Leu Ala Asn Thr Leu Leu
 125 130 135
 Val Leu Lys Leu Asn Arg Asn Arg Ile Ser Ala Ile Pro Pro Lys
 140 145 150
 Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn
 155 160 165
 Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala
 170 175 180
 Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met
 185 190 195
 Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu
 200 205 210
 Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly
 215 220 225
 Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn
 230 235 240
 Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu
 245 250 255
 Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser
 260 265 270
 Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn
 275 280 285
 Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser

290	295	300
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
305	310	315
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
320	325	330
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
335	340	345
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
350	355	360
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
365	370	375
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
380	385	390
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
395	400	405
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
410	415	420
Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp		
425	430	435
Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala		
440	445	450
Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser		
455	460	465
Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu		
470	475	480
Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln		
485	490	495
Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu		
500	505	510
Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn		
515	520	525
His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn		
530	535	540
Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg		
545	550	555

Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
 560 565 570

 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
 575 580 585

 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
 590 595 600

 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
 605 610 615

 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
 620 625 630

 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
 635 640 645

 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
 650 655 660

 Gly Gly Ser Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
 665 670 675

 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
 680 685 690

 Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 695 700 705

 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 710 715 720

 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 725 730 735

 Thr Ala Pro Ser Leu Asp Asp Gly Trp Ala Thr Val Gly Val
 740 745 750

 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 755 760 765

 Trp Val Val Ile Ile Tyr His Thr Arg Arg Asn Glu Asp Cys
 770 775 780

 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 785 790 795

 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 800 805 810

Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 815 820 825

 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 830 835 840

 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 845 850 855

 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 860 865 870

 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 875 880 885

 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 890 895 900

 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 905 910 915

 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 920 925 930

 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 935 940 945

 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu
 950 955 960

 Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
 965 970 975

 Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
 980 985 990

 Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
 995 1000 1005

 Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
 1010 1015 1020

 Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
 1025 1030 1035

 His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
 1040 1045 1050

 Asn Phe Gln Ser Tyr Asp Leu Asp Thr
 1055

<210> 291
 <211> 2906

<212> DNA

<213> Homo Sapien

<400> 291

ggggagagga attgaccatg taaaaggaga ctttttttt tggtggtggt 50
ggctgttggg tgccttgcaa aaatgaagga tgcaggacgc agctttctcc 100
tggAACCGAA cgcaatggat aaactgattt tgcaagagag aaggaagaac 150
gaagctttt cttgtgagcc ctggatctta acacaaatgt gtatatgtgc 200
acacagggag cattcaagaa tgaaataaac cagagttaga cccgcggggg 250
ttggtgtgtt ctgacataaa taaataatct taaagcagct gttcccctcc 300
ccaccccca aaaaaaggat gattggaaat gaagaaccga ggattcacaa 350
agaaaaaaagt atgttcattt ttctctataa aggagaaaagt gagccaagga 400
gatatttttgaatgaaaag tttggggctt ttttagtaaa gtaaagaact 450
ggtgtggtgg tgtttcctt tcttttggaa ttccccacaa gaggagagga 500
aattaataat acatctgcaa agaaatttca gagaagaaaa gttgaccgcg 550
gcagattgag gcattgattt ggggagagaa accagcagag cacagttgga 600
tttgtgccta tggtgactaa aattgacgga taattgcagt tggattttc 650
ttcatcaacc tcctttttt taaatttttta ttcctttgg tatcaagatc 700
atgcgttttc tcttggctt aaccacctgg atttccatct ggatgttgc 750
gtgatcagtc tgaaatacaa ctgtttgaat tccagaagga ccaacaccag 800
ataaaattatg aatgttgaac aagatgacct tacatccaca gcagataatg 850
ataggccta ggttaacag ggccttattt gacccctgc ttgtggtgc 900
gctggcttcaacttcttgg tggtggtgg tctggcggt gctcagacct 950
gcccttctgt gtgctcctgc agcaaccagt tcagcaaggt gatttgc 1000
cgaaaaaacc tgcgtgaggt tccggatggc atctccacca acacacggct 1050
gctgaacctc catgagaacc aaatccagat catcaaagt aacagcttca 1100
agcactttagt gcaacttggaa atcctacagt tgagtaggaa ccatatcaga 1150
accattgaaa ttggggcttt caatggtctg gcgaacctca acactctgga 1200
actctttgac aatcgcttta ctaccatccc gaatggagct ttgtataact 1250

tgtctaaact gaaggagctc tggttgcgaa acaacccat taaaagcatc 1300
 ctttcttatg ctttaacag aattccttct ttgcgccgac tagacttagg 1350
 gaaattgaaa agactttcat acatctcaga aggtgcctt gaaggtctgt 1400
 ccaacttgag gtatttgaac ctggccatgt gcaaccctcg ggaaatccct 1450
 aacctcacac cgctcataaa actagatgag ctggatctt ctggaatca 1500
 tttatctgcc atcaggcctg gctttcca gggttttagt cacccatcaa 1550
 aactgtggat gatacagtcc cagattcaag tgattgaacg gaatgcctt 1600
 gacaacccatc agtcactagt ggagatcaac ctggcacaca ataatctaac 1650
 attactgcct catgacctct tcactccctt gcatcatcta gagcggatac 1700
 atttacatca caacccttgg aactgttaact gtgacatact gtggctcagc 1750
 tggtgataa aagacatggc cccctcgaaac acagcttgtt gtgcccggtg 1800
 taacactcct cccaaatctaa aggggaggtt cattggagag ctgcaccaga 1850
 attacttcac atgctatgct ccggtgattt tggagcccc tgcagacctc 1900
 aatgtcaactg aaggcatggc agctgagctg aaatgtcggg cctccacatc 1950
 cctgacatct gtatcttggaa ttactccaaa tggAACAGTC atgacacatg 2000
 gggcgtacaa agtgccgata gctgtgctca gtgatggtaac gttaaatttc 2050
 acaaattgtaa ctgtgcaaga tacaggcatg tacacatgta tggtagttaa 2100
 ttccgttggg aatactactg cttcagccac cctgaatgtt actgcagcaa 2150
 ccactactcc tttctcttac tttcaacccg tcacagttaga gactatggaa 2200
 ccgtctcagg atgaggcactg gaccacagat aacaatgtgg gtcccactcc 2250
 agtggtcgac tgggagacca ccaatgtgac cacctctctc acaccacaga 2300
 gcacaaggc gacagagaaa accttcacca tcccagtgcac tggatataaac 2350
 agtggatcc caggaattga tgaggtcatg aagactacca aaatcatcat 2400
 tgggtgtttt gtggccatca cactcatggc tgcagtgtatc ctggtcattt 2450
 tctacaagat gaggaagcag caccatcgcc aaaaccatca cgccccaaaca 2500
 aggactgttg aaattattaa tgtggatgtt gagattacgg gagacacacc 2550

catggaaagc cacctgcccc tgcctgctat cgagcatgag cacctaaatc 2600
 actataactc atacaaatct cccttcaacc acacaacaac agttaacaca 2650
 ataaattcaa tacacagttc agtgcattgaa ccgttattga tccgaatgaa 2700
 ctctaaagac aatgtacaag agactcaa at ctaaaacatt tacagagtt 2750
 caaaaaacaa acaatcaaaa aaaaagacag tttattaaaa atgacacaaa 2800
 tgactgggct aaatctactg tttcaaaaaa gtgtcttac aaaaaaacaa 2850
 aaaagaaaag aaatttattt attaaaaatt ctattgtat ctaaaggaga 2900
 caaaaa 2906

<210> 292
 <211> 640
 <212> PRT
 <213> Homo Sapien

<400> 292
 Met Leu Asn Lys Met Thr Leu His Pro Gln Gln Ile Met Ile Gly
 1 5 10 15

Pro Arg Phe Asn Arg Ala Leu Phe Asp Pro Leu Leu Val Val Leu	20	25	30
Leu Ala Leu Gln Leu Leu Val Val Ala Gly Leu Val Arg Ala Gln	35	40	45
Thr Cys Pro Ser Val Cys Ser Cys Ser Asn Gln Phe Ser Lys Val	50	55	60
Ile Cys Val Arg Lys Asn Leu Arg Glu Val Pro Asp Gly Ile Ser	65	70	75
Thr Asn Thr Arg Leu Leu Asn Leu His Glu Asn Gln Ile Gln Ile	80	85	90
Ile Lys Val Asn Ser Phe Lys His Leu Arg His Leu Glu Ile Leu	95	100	105
Gln Leu Ser Arg Asn His Ile Arg Thr Ile Glu Ile Gly Ala Phe	110	115	120
Asn Gly Leu Ala Asn Leu Asn Thr Leu Glu Leu Phe Asp Asn Arg	125	130	135
Leu Thr Thr Ile Pro Asn Gly Ala Phe Val Tyr Leu Ser Lys Leu	140	145	150
Lys Glu Leu Trp Leu Arg Asn Asn Pro Ile Glu Ser Ile Pro Ser			

155	160	165
Tyr Ala Phe Asn Arg Ile Pro Ser Leu Arg Arg Leu Asp Leu Gly		
170	175	180
Glu Leu Lys Arg Leu Ser Tyr Ile Ser Glu Gly Ala Phe Glu Gly		
185	190	195
Leu Ser Asn Leu Arg Tyr Leu Asn Leu Ala Met Cys Asn Leu Arg		
200	205	210
Glu Ile Pro Asn Leu Thr Pro Leu Ile Lys Leu Asp Glu Leu Asp		
215	220	225
Leu Ser Gly Asn His Leu Ser Ala Ile Arg Pro Gly Ser Phe Gln		
230	235	240
Gly Leu Met His Leu Gln Lys Leu Trp Met Ile Gln Ser Gln Ile		
245	250	255
Gln Val Ile Glu Arg Asn Ala Phe Asp Asn Leu Gln Ser Leu Val		
260	265	270
Glu Ile Asn Leu Ala His Asn Asn Leu Thr Leu Leu Pro His Asp		
275	280	285
Leu Phe Thr Pro Leu His His Leu Glu Arg Ile His Leu His His		
290	295	300
Asn Pro Trp Asn Cys Asn Cys Asp Ile Leu Trp Leu Ser Trp Trp		
305	310	315
Ile Lys Asp Met Ala Pro Ser Asn Thr Ala Cys Cys Ala Arg Cys		
320	325	330
Asn Thr Pro Pro Asn Leu Lys Gly Arg Tyr Ile Gly Glu Leu Asp		
335	340	345
Gln Asn Tyr Phe Thr Cys Tyr Ala Pro Val Ile Val Glu Pro Pro		
350	355	360
Ala Asp Leu Asn Val Thr Glu Gly Met Ala Ala Glu Leu Lys Cys		
365	370	375
Arg Ala Ser Thr Ser Leu Thr Ser Val Ser Trp Ile Thr Pro Asn		
380	385	390
Gly Thr Val Met Thr His Gly Ala Tyr Lys Val Arg Ile Ala Val		
395	400	405
Leu Ser Asp Gly Thr Leu Asn Phe Thr Asn Val Thr Val Gln Asp		
410	415	420

Thr Gly Met Tyr Thr Cys Met Val Ser Asn Ser Val Gly Asn Thr
 425 430 435
 Thr Ala Ser Ala Thr Leu Asn Val Thr Ala Ala Thr Thr Thr Pro
 440 445 450
 Phe Ser Tyr Phe Ser Thr Val Thr Val Glu Thr Met Glu Pro Ser
 455 460 465
 Gln Asp Glu Ala Arg Thr Thr Asp Asn Asn Val Gly Pro Thr Pro
 470 475 480
 Val Val Asp Trp Glu Thr Thr Asn Val Thr Thr Ser Leu Thr Pro
 485 490 495
 Gln Ser Thr Arg Ser Thr Glu Lys Thr Phe Thr Ile Pro Val Thr
 500 505 510
 Asp Ile Asn Ser Gly Ile Pro Gly Ile Asp Glu Val Met Lys Thr
 515 520 525
 Thr Lys Ile Ile Ile Gly Cys Phe Val Ala Ile Thr Leu Met Ala
 530 535 540
 Ala Val Met Leu Val Ile Phe Tyr Lys Met Arg Lys Gln His His
 545 550 555
 Arg Gln Asn His His Ala Pro Thr Arg Thr Val Glu Ile Ile Asn
 560 565 570
 Val Asp Asp Glu Ile Thr Gly Asp Thr Pro Met Glu Ser His Leu
 575 580 585
 Pro Met Pro Ala Ile Glu His Glu His Leu Asn His Tyr Asn Ser
 590 595 600
 Tyr Lys Ser Pro Phe Asn His Thr Thr Val Asn Thr Ile Asn
 605 610 615
 Ser Ile His Ser Ser Val His Glu Pro Leu Leu Ile Arg Met Asn
 620 625 630
 Ser Lys Asp Asn Val Gln Glu Thr Gln Ile
 635 640

<210> 293

<211> 4053

<212> DNA

<213> Homo Sapien

<400> 293

agccgacgct gctcaagctg caactctgt gcagttggca gttctttcg 50

gttccctcc tgctgttgg gggcatgaaa gggcttcgcc gcccggagta 100
aaagaaggaa ttgaccgggc agcgcgaggg aggagcgcgc acgcgaccgc 150
gagggcgggc gtgcacccctc ggctggaagt ttgtccccggg ccccagcgc 200
gccccggctg ggagcttcgg gtagagacct aggccgctgg accgcgatga 250
gcgcgcgcag cctccgtcg cgccgcgcgg ggttggggct gctgctgtgc 300
cggtgctgg ggccgcgtgg ccggtccgac agcggcggtc gcgggaaact 350
cgggcagccc tctgggttag ccgcgcagcg cccatgcggc actacctgcc 400
gctgcctcgg ggacctgctg gactgcagtc gtaagcggct agcgcgttt 450
cccgagccac tcccgctctg ggtcgctcgg ctggacttaa gtcacaacag 500
attatcttc atcaaggcaa gttccatgag ccaccccaa agccttcgag 550
aagtgaaact gaacaacaat gaattggaga ccattccaaa tctggacca 600
gtctcgccaa atattacact tctctccttg gctggaaaca ggattgttga 650
aatactccct gaacatctga aagagttca gtcccttcaa actttggacc 700
tttagcagcaa caatatttca gagctccaaa ctgcatttcc agccctacag 750
ctcaaatatc tgtatctcaa cagcaaccga gtcacatcaa tggAACCTGG 800
gtattttgac aatttggcca acacactcct tgtgttaaag ctgaacagga 850
accgaatctc agctatccca cccaaagatgt ttaaactgcc ccaactgcaa 900
catctogaat tgaaccgaaa caagattaaa aatgttagatg gactgacatt 950
ccaaaggcctt ggtgctctga agtctctgaa aatgcaaaaga aatggagtaa 1000
cgaaacttat ggatggagct tttgggggc tgagcaacat gggAAATTGG 1050
cagctggacc ataacaacct aacagagatt accaaaggct ggctttacgg 1100
cttgctgatg ctgcaggaac ttcatctcag cccaaatgcc atcaacagga 1150
tcagccctga tgcctggag ttctgccaga agctcagtga gctggaccta 1200
actttcaatc acttatcaag gtttagatgat tcaagcttcc ttggcctaag 1250
cttactaaat acactgcaca ttggaaacaa cagagtcagc tacattgctg 1300
attgtgcctt ccgggggctt tccagttaa agactttgga tctgaagaac 1350

190

aatgaaattt cctggactat tgaagacatg aatggtgctt tctctgggt 1400
tgacaaaactg aggcgactga tactccaagg aaatcgatc cggttctatta 1450
ctaaaaaagc cttcaactggt ttggatgtat tggatgtat agacctgagt 1500
gacaacgcaa tcatagtcttt acaaggcaat gcattttcac aatgaagaa 1550
actgcaacaa ttgcatttaa atacatacaag cttttgtgc gattgccage 1600
taaaatggct cccacagtgg gtggcgaaaa acaactttca gagctttgt 1650
aatgcccattt gtggccatcc tcagtgcta aaaggaagaa gcattttgtc 1700
tggtagccca gatggcttgc tggtgtatga tttccaaaa ccccagatca 1750
cggttcagcc agaaacacag tcggcaataa aagttccaa ttggatgttcc 1800
atctgctcag ctggccagcag cagtgttcc ccaatgactt ttgcttgaa 1850
aaaagacaat gaactactgc atgatgtga aatggaaaat tatgcacacc 1900
tccggggcca aggtggcgag gtgtggagt ataccatc cttcggtg 1950
cgcgagggtgg aatttgcagg tgagggaaa tatcggtgt tcataccaa 2000
tcacttttgtt tcataccctact ctgtcaaaagc caagcttaca gtaaatatgc 2050
ttccctcatt caccaagacc cccatggatc tcaccatccg agctggggcc 2100
atggcacgct tggatgtgc tgctgtggg caccagcccc ccagatagc 2150
ctggcagaag gatggggca cagactccc agtgcacgg gagagacgca 2200
tgcatgtat gccggaggat gacgtgttct ttatcggttgatgtgaagata 2250
gaggacattt gggtatacag ctgcacagct cagaacagtg caggaagtat 2300
ttcagcaaat gcaactctga ctgtcctaga aacaccatca ttttgcggc 2350
cactgttggc cogaactgtat accaaggag aaacagccgt octacagtgc 2400
attgtggag gaaggccctcc ccctaaactg aactggatca aatcgatgc 2450
cccatgttg gtaaccggaa ggcactttt tgcaaggatc aatcgatgc 2500
tgattattgt ggactcgat gtcagtgtat ctggaaaata catgttgat 2550
atgtctaaca cccttggcac tgagagagga aacgtgcgc tcagtgtgat 2600
ccccactcca acctcgact cccctcgat gacagcccc tcgttagacg 2650
atgacggatg ggccactgtg ggtgtcgat tcataccgt gttttgtgt 2700

gtggtggca cgtcactcgt gtgggtggc atcatatacc acacaaggcg 2750
gaggaatgaa gattgcagca ttaccaacac agatgagacc aacttgccag 2800
cagatattcc tagttatgg tcatctcagg gaacgttagc tgacaggcag 2850
gatgggtacg tgtcttcaga aagtggaagc caccaccagt ttgtcacatc 2900
ttcaggtgct ggattttct taccacaaca tgacagtagt gggacctgcc 2950
atattgacaa tagcagtgaa gctgatgtgg aagctgccac agatctgttc 3000
cttgcgttccgt ttttggatc cacaggccct atgtatggta agggaaatgt 3050
gtatggctca gatcctttg aaacatatca tacaggttgc agtcctgacc 3100
caagaacagt ttaatggac cactatgagc ccagttacat aaagaaaaag 3150
gagtgctacc catgttctca tccttcagaa gaatcctgcg aacggagctt 3200
cagtaatata tcgtggcctt cacatgtgag gaagctactt aacactagtt 3250
actctcacaa tgaaggacct ggaatgaaaa atctgtgtct aaacaagtcc 3300
tcttagatt ttagtgcaaa tccagagcca gcgtcggttg cctcgagtaa 3350
ttcttcatg ggtaccttg gaaaagctct caggagacct cacctagatg 3400
cctattcaag ctggacag ccatcagatt gtcagccaag agcctttat 3450
ttgaaagctc attctcccc agacttggac tctgggtcag aggaagatgg 3500
gaaagaaagg acagatttc aggaagaaaa tcacattgt acctttaaac 3550
agactttaga aaactacagg actccaaatt ttcatgttta tgacttggac 3600
acatagactg aatgagacca aaggaaaagc ttaacatact acctaagtg 3650
aacttttatt taaaagagag agaatctt at gtttttaa tggagttatg 3700
aattttaaaa ggataaaaat gctttattta tacagatgaa cccaaattac 3750
aaaaagttat gaaaattttt atactggaa tgatgctcat ataagaatac 3800
ctttttaaac tatttttaa ctggttta tgcaaaaaag tatcttacgt 3850
aaattaatga tataaatcat gattattta tgtattttta taatgccaga 3900
tttctttta tggaaaatga gttactaaag catttaaat aatacctgcc 3950
ttgttaccatt ttttaatag aagttacttc attatattt gcacattata 4000

tttaataaaa tgtgtcaatt tgaaaaaaaaaaaaaaa 4050

aaa 4053

<210> 294

<211> 1119

<212> PRT

<213> Homo Sapien

<400> 294

Met	Ser	Ala	Pro	Ser	Leu	Arg	Ala	Arg	Ala	Ala	Gly	Leu	Gly	Leu
1					5				10					15

Leu	Leu	Cys	Ala	Val	Leu	Gly	Arg	Ala	Gly	Arg	Ser	Asp	Ser	Gly
					20				25					30

Gly	Arg	Gly	Glu	Leu	Gly	Gln	Pro	Ser	Gly	Val	Ala	Ala	Glu	Arg
					35				40					45

Pro	Cys	Pro	Thr	Thr	Cys	Arg	Cys	Leu	Gly	Asp	Leu	Leu	Asp	Cys
								50		55				60

Ser	Arg	Lys	Arg	Leu	Ala	Arg	Leu	Pro	Glu	Pro	Leu	Pro	Ser	Trp
					65				70					75

Val	Ala	Arg	Leu	Asp	Leu	Ser	His	Asn	Arg	Leu	Ser	Phe	Ile	Lys
					80				85					90

Ala	Ser	Ser	Met	Ser	His	Leu	Gln	Ser	Leu	Arg	Glu	Val	Lys	Leu
					95				100					105

Asn	Asn	Asn	Glu	Leu	Glu	Thr	Ile	Pro	Asn	Leu	Gly	Pro	Val	Ser
					110				115					120

Ala	Asn	Ile	Thr	Leu	Leu	Ser	Leu	Ala	Gly	Asn	Arg	Ile	Val	Glu
					125				130					135

Ile	Leu	Pro	Glu	His	Leu	Lys	Glu	Phe	Gln	Ser	Leu	Glu	Thr	Leu
					140				145					150

Asp	Leu	Ser	Ser	Asn	Asn	Ile	Ser	Glu	Leu	Gln	Thr	Ala	Phe	Pro
					155				160					165

Ala	Leu	Gln	Leu	Lys	Tyr	Leu	Tyr	Leu	Asn	Ser	Asn	Arg	Val	Thr
					170				175					180

Ser	Met	Glu	Pro	Gly	Tyr	Phe	Asp	Asn	Leu	Ala	Asn	Thr	Leu	Leu
					185				190					195

Val	Leu	Lys	Leu	Asn	Arg	Asn	Arg	Ile	Ser	Ala	Ile	Pro	Pro	Lys
					200				205					210

Met Phe Lys Leu Pro Gln Leu Gln His Leu Glu Leu Asn Arg Asn

215	220	225
Lys Ile Lys Asn Val Asp Gly Leu Thr Phe Gln Gly Leu Gly Ala		
230	235	240
Leu Lys Ser Leu Lys Met Gln Arg Asn Gly Val Thr Lys Leu Met		
245	250	255
Asp Gly Ala Phe Trp Gly Leu Ser Asn Met Glu Ile Leu Gln Leu		
260	265	270
Asp His Asn Asn Leu Thr Glu Ile Thr Lys Gly Trp Leu Tyr Gly		
275	280	285
Leu Leu Met Leu Gln Glu Leu His Leu Ser Gln Asn Ala Ile Asn		
290	295	300
Arg Ile Ser Pro Asp Ala Trp Glu Phe Cys Gln Lys Leu Ser Glu		
305	310	315
Leu Asp Leu Thr Phe Asn His Leu Ser Arg Leu Asp Asp Ser Ser		
320	325	330
Phe Leu Gly Leu Ser Leu Leu Asn Thr Leu His Ile Gly Asn Asn		
335	340	345
Arg Val Ser Tyr Ile Ala Asp Cys Ala Phe Arg Gly Leu Ser Ser		
350	355	360
Leu Lys Thr Leu Asp Leu Lys Asn Asn Glu Ile Ser Trp Thr Ile		
365	370	375
Glu Asp Met Asn Gly Ala Phe Ser Gly Leu Asp Lys Leu Arg Arg		
380	385	390
Leu Ile Leu Gln Gly Asn Arg Ile Arg Ser Ile Thr Lys Lys Ala		
395	400	405
Phe Thr Gly Leu Asp Ala Leu Glu His Leu Asp Leu Ser Asp Asn		
410	415	420
Ala Ile Met Ser Leu Gln Gly Asn Ala Phe Ser Gln Met Lys Lys		
425	430	435
Leu Gln Gln Leu His Leu Asn Thr Ser Ser Leu Leu Cys Asp Cys		
440	445	450
Gln Leu Lys Trp Leu Pro Gln Trp Val Ala Glu Asn Asn Phe Gln		
455	460	465
Ser Phe Val Asn Ala Ser Cys Ala His Pro Gln Leu Leu Lys Gly		
470	475	480

Arg Ser Ile Phe Ala Val Ser Pro Asp Gly Phe Val Cys Asp Asp
 485 490 495
 Phe Pro Lys Pro Gln Ile Thr Val Gln Pro Glu Thr Gln Ser Ala
 500 505 510
 Ile Lys Gly Ser Asn Leu Ser Phe Ile Cys Ser Ala Ala Ser Ser
 515 520 525
 Ser Asp Ser Pro Met Thr Phe Ala Trp Lys Lys Asp Asn Glu Leu
 530 535 540
 Leu His Asp Ala Glu Met Glu Asn Tyr Ala His Leu Arg Ala Gln
 545 550 555
 Gly Gly Glu Val Met Glu Tyr Thr Thr Ile Leu Arg Leu Arg Glu
 560 565 570
 Val Glu Phe Ala Ser Glu Gly Lys Tyr Gln Cys Val Ile Ser Asn
 575 580 585
 His Phe Gly Ser Ser Tyr Ser Val Lys Ala Lys Leu Thr Val Asn
 590 595 600
 Met Leu Pro Ser Phe Thr Lys Thr Pro Met Asp Leu Thr Ile Arg
 605 610 615
 Ala Gly Ala Met Ala Arg Leu Glu Cys Ala Ala Val Gly His Pro
 620 625 630
 Ala Pro Gln Ile Ala Trp Gln Lys Asp Gly Gly Thr Asp Phe Pro
 635 640 645
 Ala Ala Arg Glu Arg Arg Met His Val Met Pro Glu Asp Asp Val
 650 655 660
 Phe Phe Ile Val Asp Val Lys Ile Glu Asp Ile Gly Val Tyr Ser
 665 670 675
 Cys Thr Ala Gln Asn Ser Ala Gly Ser Ile Ser Ala Asn Ala Thr
 680 685 690
 Leu Thr Val Leu Glu Thr Pro Ser Phe Leu Arg Pro Leu Leu Asp
 695 700 705
 Arg Thr Val Thr Lys Gly Glu Thr Ala Val Leu Gln Cys Ile Ala
 710 715 720
 Gly Gly Ser Pro Pro Pro Lys Leu Asn Trp Thr Lys Asp Asp Ser
 725 730 735
 Pro Leu Val Val Thr Glu Arg His Phe Phe Ala Ala Gly Asn Gln
 740 745 750

Leu Leu Ile Ile Val Asp Ser Asp Val Ser Asp Ala Gly Lys Tyr
 755 760 765
 Thr Cys Glu Met Ser Asn Thr Leu Gly Thr Glu Arg Gly Asn Val
 770 775 780
 Arg Leu Ser Val Ile Pro Thr Pro Thr Cys Asp Ser Pro Gln Met
 785 790 795
 Thr Ala Pro Ser Leu Asp Asp Asp Gly Trp Ala Thr Val Gly Val
 800 805 810
 Val Ile Ile Ala Val Val Cys Cys Val Val Gly Thr Ser Leu Val
 815 820 825
 Trp Val Val Ile Ile Tyr His Thr Arg Arg Arg Asn Glu Asp Cys
 830 835 840
 Ser Ile Thr Asn Thr Asp Glu Thr Asn Leu Pro Ala Asp Ile Pro
 845 850 855
 Ser Tyr Leu Ser Ser Gln Gly Thr Leu Ala Asp Arg Gln Asp Gly
 860 865 870
 Tyr Val Ser Ser Glu Ser Gly Ser His His Gln Phe Val Thr Ser
 875 880 885
 Ser Gly Ala Gly Phe Phe Leu Pro Gln His Asp Ser Ser Gly Thr
 890 895 900
 Cys His Ile Asp Asn Ser Ser Glu Ala Asp Val Glu Ala Ala Thr
 905 910 915
 Asp Leu Phe Leu Cys Pro Phe Leu Gly Ser Thr Gly Pro Met Tyr
 920 925 930
 Leu Lys Gly Asn Val Tyr Gly Ser Asp Pro Phe Glu Thr Tyr His
 935 940 945
 Thr Gly Cys Ser Pro Asp Pro Arg Thr Val Leu Met Asp His Tyr
 950 955 960
 Glu Pro Ser Tyr Ile Lys Lys Lys Glu Cys Tyr Pro Cys Ser His
 965 970 975
 Pro Ser Glu Glu Ser Cys Glu Arg Ser Phe Ser Asn Ile Ser Trp
 980 985 990
 Pro Ser His Val Arg Lys Leu Leu Asn Thr Ser Tyr Ser His Asn
 995 1000 1005
 Glu Gly Pro Gly Met Lys Asn Leu Cys Leu Asn Lys Ser Ser Leu

1010 1015 1020
Asp Phe Ser Ala Asn Pro Glu Pro Ala Ser Val Ala Ser Ser Asn
1025 1030 1035

Ser Phe Met Gly Thr Phe Gly Lys Ala Leu Arg Arg Pro His Leu
1040 1045 1050

Asp Ala Tyr Ser Ser Phe Gly Gln Pro Ser Asp Cys Gln Pro Arg
1055 1060 1065

Ala Phe Tyr Leu Lys Ala His Ser Ser Pro Asp Leu Asp Ser Gly
1070 1075 1080

Ser Glu Glu Asp Gly Lys Glu Arg Thr Asp Phe Gln Glu Glu Asn
1085 1090 1095

His Ile Cys Thr Phe Lys Gln Thr Leu Glu Asn Tyr Arg Thr Pro
1100 1105 1110

Asn Phe Gln Ser Tyr Asp Leu Asp Thr
1115

<210> 295
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 295
ggaaccgaat ctcagcta 18

<210> 296
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 296
cctaaactga actggacca 19

<210> 297
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 297
ggctggagac actgaacct 19

<210> 298
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 298
acagctgcac agctcagaac agtg 24

<210> 299

<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 299
cattcccaagt ataaaaattt tc 22

<210> 300
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 300
gggtcttgggt gaatgagg 18

<210> 301
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 301
gtgcctctcg gttaccacca atgg 24

<210> 302
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 302
gcggccactg ttggaccgaa ctgtAACCAA gggagAAACA gccgtcctac 50

<210> 303
<211> 28
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 303
gccttgaca accttcagtc actagtgg 28

<210> 304
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 304

ccccatgtgt ccatgactgt tccc 24

<210> 305
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 305
tactgcctca tgacctttc actcccttgc atcatcttag agcgg 45

<210> 306
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 306
actccaaggaa aatcgatcc gtcc 24

<210> 307
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 307
ttagcagctg aggatggca caac 24

<210> 308
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 308
actccaagga aatcgatcc gttc 24

<210> 309
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 309
gccttcactg gttggatgc attggagcat ctagacctga gtgacaacgc 50

<210> 310
<211> 3296
<212> DNA
<213> Homo Sapien

<400> 310

caaaacttgc gtcgcggaga gcgcaggct tgacttgaat ggaaggagcc 50
cgagcccccg gaggcgcagct gagactgggg gagcgcgttc ggcctgtggg 100
gcgcgcgtcg gcccggggc gcagcaggaa agggaaagct gtggctgtcc 150
ctgctccacg aggccacact ggtgtgaacc gggagagccc ctgggtggc 200
ccgtcccccta tccctcctt atatagaaac cttccacact ggaaaggcag 250
cggcgaggca ggagggctca tggtgagcaa ggaggccggc tggatctgcag 300
gcgcacagca ttccgagttt acagattttt acagatacca aatggaaaggc 350
gaggaggcag aacagcctgc ctggttccat cagccctggc gcccaggcgc 400

atctgactcg gcacccctg caggcaccat ggcccagagc cgggtgctgc 450
tgctcctgct gctgctgccc ccacagctgc acctgggacc tgtgcttgc 500
gtgagggccc caggatttgg ccgaagtggc ggccacagcc tgagccccga 550
agagaacgaa tttgcggagg aggagccggt gctggtaactg agccctgagg 600
agcccgccgccc tggcccaagcc gcggtcagct gcccccgaga ctgtcctgt 650
tcccaggagg gcgtcgtgga ctgtggcggt attgacctgc gtgagttccc 700
gggggacctg cctgagcaca ccaaccacct atctctgcag aacaaccagc 750
tggaaaagat ctaccctgag gagctctccc ggctgcacccg gctggagaca 800
ctgaacctgc aaaacaaccg cctgacttcc cgagggtc cagagaaggc 850
gtttgagcat ctgaccaacc tcaattacct gtacttggcc aataacaagc 900
tgaccttggc accccgcttc ctgccaaacg ccctgatcag tgtggacttt 950
gctgccaact atctcaccaa gatctatggg ctcacctttg gccagaagcc 1000
aaacttgagg tctgtgtacc tgcacaacaa caagctggca gacgccgggc 1050
tgccggacaa catgtcaac ggctccagca acgtcgaggt cctcatcctg 1100
tccagcaact tcctgcgcca cgtgcccaag cacctgccc ctgcccgtta 1150
caagctgcac ctcaagaaca acaagctgga gaagatcccc ccgggggcct 1200
tcagcgagct gagcagcctg cgcgagctat acctgcagaa caactacctg 1250
actgacgagg gcctggacaa cgagaccttc tggaaagctct ccagcctgg 1300
gtacctggat ctgtccagca acaacctgtc tggggtccca gctgggtgc 1350
cgcgcagcct ggtgtcgctg cacttggaga agaacgcac ccggagcggt 1400
gacgcgaatg tgctgacccc catccgcagc ctggagtacc tgctgctgca 1450
cagcaaccag ctgcgggagc agggcatcca cccactggcc ttccagggcc 1500
tcaagcggtt gcacacggtg cacctgtaca acaacgcgtt ggagcgcgtg 1550
cccagtggcc tgcctcgccg cgtgcgcacc ctcatgatcc tgcacaacca 1600
gatcacagggc attggccgcg aagactttgc caccacctac ttccctggagg 1650
agctcaacct cagctacaac cgcatcacca gcccacaggt gcaccgcgac 1700

gccttccgca agctgcgcct gctgcgcctcg ctggacactgt cgggcaaccg 1750
gctgcacacg ctgccacactg ggctgcctcg aaatgtccat gtgctgaagg 1800
tcaagcgcaa tgagctggct gccttggcac gagggggcgct ggcgggcatg 1850
gctcagctgc gtgagctgta cctcaccaggc aaccgactgc gcagccgagc 1900
cctggggccc cgtgcctggg tggacactgc ccatctgcag ctgctggaca 1950
tcgcccggaa tcagctcaca gagatccccg aggggctccc cgagtcactt 2000
gagtacctgt acctgcagaa caacaagatt agtgccgtgc ccgccaatgc 2050
cttcgactcc acgccaacc tcaagggat ctttcagg tttaacaagc 2100
tggctgtggg ctccgtggg gacagtgcct tccggaggct gaagcacctg 2150
caggtcttgg acattgaagg caacttagag tttggtgaca tttccaagga 2200
ccgtggccgc ttgggaaagg aaaaggagga ggaggaagag gaggaggagg 2250
aggaagagga aacaagatag tgacaaggtg atgcagatgt gacctaggat 2300
gatggaccgc cggactctt tctgcagcac acgcctgtgt gctgtgagcc 2350
ccccactctg ccgtgctcac acagacacac ccagctgcac acatgaggca 2400
tcccacatga cacggctga cacagtctca tatccccacc cttcccacg 2450
gcgtgtccca cggccagaca catgcacaca catcacaccc tcaaacaccc 2500
agctcagcca cacacaacta ccctccaaac caccacagtc tctgtcacac 2550
ccccactacc gctgccacgc cctctgaatc atgcagggaa gggctgccc 2600
ctgccctggc acacacaggc acccattccc tccccctgct gacatgtgta 2650
tgcgtatgca tacacaccac acacacacac atgcacaagt catgtgcgaa 2700
cagccctcca aagcctatgc cacagacagc tcttgccca gccagaatca 2750
gccatagcag ctgcgcgtct gccctgtcca tctgtccgtc cggtccctgg 2800
agaagacaca agggtatcca tgctctgtgg ccaggtgcct gccaccctct 2850
ggaactcaca aaagctggct tttattcctt tcccatccta tggggacagg 2900
agccttcagg actgctggcc tggcctggcc caccctgctc ctccaggtgc 2950
tggcagtca ctctgctaag agtccctccc tgccacgccc tggcaggaca 3000
caggcacttt tccaatgggc aagcccagtg gaggcaggat gggagagccc 3050

cctgggtgct gctggggcct tggggcagga gtgaagcaga ggtgatgggg 3100
ctgggctgag ccagggagga aggacccagc tgcacctagg agacacctt 3150
gttcttcagg cctgtgggg aagttccggg tgccttatt ttttattctt 3200
ttctaaggaa aaaaatgata aaaatctcaa agctgatttt tcttgtata 3250
aaaaaaactaa tataaaagca ttatccctat ccctgcaaaa aaaaaa 3296

<210> 311
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 311
gcattggccg cgagacttg cc 22

<210> 312
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 312
gcggccacgg tccttgaaa tg 22

<210> 313
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 313
tggaggagct caacctcagc tacaaccgca tcaccagccc acagg 45

<210> 314
<211> 3003
<212> DNA
<213> Homo Sapien

<400> 314
gggagggggc tccggcgcc ggcgcgcaga cctgcgtccgg cgcgcgcct 50
cgccgcgtgtc ctccggagc ggcagcagta gcccggcg 50
cgagggtgtgg 100

gggttcctcg agactctcag agggggcgct cccatcgccg cccaccaccc 150
caacctgttc ctgcgcgcgc actgcgcgtgc gccccaggac ccgctgccc 200
acatggattt tctcctggcg ctggtgctgg tatcctcgct ctacctgcag 250
gcggccgcgc agttcgacgg gaggtggccc aggcaaatacg tgtcatcgat 300
tggcctatgt cgttatggtg ggaggattga ctgctgctgg ggctgggctc 350
gccagtcttg gggacagtgt cagcctgtgt gccaaaccacg atgcaaacat 400
ggtaatgtta tcgggc当地 caagtgc当地 tgctcatc当地 gttatgctgg 450
aaaaacctgt aatcaagatc taaatgagtg tggcctgaag cccggccct 500
gtaaacacag gtgc当地gaac acttacggca gctacaagtg ctactgtctc 550
aacggatata tgctcatglocal ggatggttcc tgctcaagtg cc当地gacctg 600
ctccatggca aactgtcagt atggctgtga tttttaaa ggacaaatac 650
ggtgccagtg cccatccccct gc当地ctgc当地 tggctc当地tga tgggaggacc 700
tgttagatg ttgatgaatg tgctacagga agagcctcct gccc当地tagatt 750
taggcaatgt gtcaacactt ttgggagcta catctgc当地 agtcataaag 800
gcttc当地atct catgtatatt ggaggcaaat atcaatgtca tgacatagac 850
gaatgctcac ttggctc当地tga tc当地gtgc当地 agcttgc当地 gatgttataa 900
cgtacgtggg tc当地tacaagt gcaaatgtaa agaaggatac cagggtgatg 950
gactgacttg tgttatatac caaaagttt tgattgaacc ttc当地ggc当地 1000
attcatgtac caaaggaaa tggtaaccatt taaaagggtg acacaggaaa 1050
taataattgg attcctgatg ttggaaagtac ttggctggc当地 cc当地aagacac 1100
catatattcc tc当地tacatt accaacaggc ctacttctaa gccaacaaca 1150
agacctacac caaaggcaac accaattcct actccaccac caccaccacc 1200
cctgccaaca gagctc当地aa cacctctacc acctacaacc cc当地aaaggc 1250
caaccaccgg actgacaact atagcaccag ctgccagtg acctccaggaa 1300
gggattacag ttgacaacag ggtacagaca gaccctcaga aacccagagg 1350
agatgtgttc agtgttctgg tacacagttt taattttgac catggacttt 1400

gtggatggat cagggagaaa gacaatgact tgcactggga accaatcagg 1450
gaccaggcag gtggacaata tctgacagtg tcggcagcca aagccccagg 1500
gggaaaagct gcacgcttgg tgctacacct cggccgcctc atgcattcag 1550
gggacctgtg cctgtcattc aggccacaagg tgacggggct gcactctggc 1600
acactccagg ttttgtgag aaaacacggt gcccacggag cagccctgtg 1650
gggaagaaat ggtggccatg gctggaggca aacacagatc accttgcgag 1700
gggctgacat caagagcga a tacaaaagat gattaaaggg ttggaaaaaa 1750
agatctatga tggaaaatta aaggaactgg gattattgag cctggagaag 1800
agaagactga ggggcaaacc attgatggtt ttcaagtata tgaagggttg 1850
gcacagagag ggtggcgacc agctgttctc catatgcact aagaatagaa 1900
caagagggaaa ctggcttaga cttagtata agggagcatt tcttggcagg 1950
ggccattgtt agaatacttc ataaaaaaaaa aagtgtgaaa atctcagtat 2000
ctctctctct ttctaaaaaa ttagataaaa atttgtctat ttaagatgg 2050
taaagatgtt cttacccaag gaaaagtaac aaattataga atttcccaaa 2100
agatgttttgc atcctactag tagtatgcag tgaaaatctt tagaactaaa 2150
taatttggac aaggcttaat ttaggcattt ccctcttgac ctcctaattgg 2200
agagggatttgc aaagggaaag agcccaccaa atgctgagct cactgaaata 2250
tctctccctt atggcaatcc tagcagtattt aaagaaaaaa ggaaactattt 2300
tattccaaat gagagatgatga tggacagata ttttagtata tcagtaatgt 2350
cctagtgtgg cggtgggtttt caatgtttct tcatggtaaa ggtataagcc 2400
tttcattttgt tcaatggatg atgtttcaga tttttttttt ttaagagat 2450
ccttcaagga acacagttca gagagatttt catcgggtgc attctctctg 2500
cttcgtgtgt gacaagttat cttggctgct gagaagagt gcccgtcccc 2550
acacccggcag acctttcattt cacctcatca gtatgattca gtttcttta 2600
tcaattggac tctccaggt tccacagaac agtaatattt tttgaacaat 2650
aggtacaata gaaggcttc tgcattaa cctggtaaaag gcagggctgg 2700
agggggaaaaa taaatcatta agccttgag taacggcaga atatatggct 2750

gtagatccat tttaatggc tcatttcctt tatggcata taactgcaca 2800
 gctgaagatg aaaggggaaa ataaatgaaa attttacttt tcgatgccaa 2850
 tgatacattg cactaaactg atggaagaag ttatccaaag tactgtataa 2900
 catcttgaaa attatttaat gtttctaaa ataaaaaatg ttagtggttt 2950
 tccaaatggc ctaataaaaa caattatgg taaataaaaa cactgttagt 3000
 aat 3003

<210> 315
 <211> 509
 <212> PRT
 <213> Homo Sapien

<400> 315
 Met Asp Phe Leu Leu Ala Leu Val Leu Val Ser Ser Leu Tyr Leu
 1 5 . 10 15

Gln Ala Ala Ala Glu Phe Asp Gly Arg Trp Pro Arg Gln Ile Val		
20	25	30

Ser Ser Ile Gly Leu Cys Arg Tyr Gly Gly Arg Ile Asp Cys Cys		
35	40	45

Trp Gly Trp Ala Arg Gln Ser Trp Gly Gln Cys Gln Pro Val Cys		
50	55	60

Gln Pro Arg Cys Lys His Gly Glu Cys Ile Gly Pro Asn Lys Cys		
65	70	75

Lys Cys His Pro Gly Tyr Ala Gly Lys Thr Cys Asn Gln Asp Leu		
80	85	90

Asn Glu Cys Gly Leu Lys Pro Arg Pro Cys Lys His Arg Cys Met		
95	100	105

Asn Thr Tyr Gly Ser Tyr Lys Cys Tyr Cys Leu Asn Gly Tyr Met		
110	115	120

Leu Met Pro Asp Gly Ser Cys Ser Ser Ala Leu Thr Cys Ser Met		
125	130	135

Ala Asn Cys Gln Tyr Gly Cys Asp Val Val Lys Gly Gln Ile Arg		
140	145	150

Cys Gln Cys Pro Ser Pro Gly Leu His Leu Ala Pro Asp Gly Arg		
155	160	165

Thr Cys Val Asp Val Asp Glu Cys Ala Thr Gly Arg Ala Ser Cys
 170 175 180

 Pro Arg Phe Arg Gln Cys Val Asn Thr Phe Gly Ser Tyr Ile Cys
 185 190 195

 Lys Cys His Lys Gly Phe Asp Leu Met Tyr Ile Gly Gly Lys Tyr
 200 205 210

 Gln Cys His Asp Ile Asp Glu Cys Ser Leu Gly Gln Tyr Gln Cys
 215 220 225

 Ser Ser Phe Ala Arg Cys Tyr Asn Val Arg Gly Ser Tyr Lys Cys
 230 235 240

 Lys Cys Lys Glu Gly Tyr Gln Gly Asp Gly Leu Thr Cys Val Tyr
 245 250 255

 Ile Pro Lys Val Met Ile Glu Pro Ser Gly Pro Ile His Val Pro
 260 265 270

 Lys Gly Asn Gly Thr Ile Leu Lys Gly Asp Thr Gly Asn Asn Asn
 275 280 285

 Trp Ile Pro Asp Val Gly Ser Thr Trp Trp Pro Pro Lys Thr Pro
 290 295 300

 Tyr Ile Pro Pro Ile Ile Thr Asn Arg Pro Thr Ser Lys Pro Thr
 305 310 315

 Thr Arg Pro Thr Pro Lys Pro Thr Pro Ile Pro Thr Pro Pro Pro
 320 325 330

 Pro Pro Pro Leu Pro Thr Glu Leu Arg Thr Pro Leu Pro Pro Thr
 335 340 345

 Thr Pro Glu Arg Pro Thr Thr Gly Leu Thr Thr Ile Ala Pro Ala
 350 355 360

 Ala Ser Thr Pro Pro Gly Gly Ile Thr Val Asp Asn Arg Val Gln
 365 370 375

 Thr Asp Pro Gln Lys Pro Arg Gly Asp Val Phe Ser Val Leu Val
 380 385 390

 His Ser Cys Asn Phe Asp His Gly Leu Cys Gly Trp Ile Arg Glu
 395 400 405

 Lys Asp Asn Asp Leu His Trp Glu Pro Ile Arg Asp Pro Ala Gly
 410 415 420

 Gly Gln Tyr Leu Thr Val Ser Ala Ala Lys Ala Pro Gly Gly Lys

425	430	435
Ala Ala Arg Leu Val Leu Pro Leu Gly Arg Leu Met His Ser Gly		
440	445	450
Asp Leu Cys Leu Ser Phe Arg His Lys Val Thr Gly Leu His Ser		
455	460	465
Gly Thr Leu Gln Val Phe Val Arg Lys His Gly Ala His Gly Ala		
470	475	480
Ala Leu Trp Gly Arg Asn Gly Gly His Gly Trp Arg Gln Thr Gln		
485	490	495
Ile Thr Leu Arg Gly Ala Asp Ile Lys Ser Glu Ser Gln Arg		
500	505	

<210> 316
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 316
gatggttcct gctcaagtgc cctg 24

<210> 317
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 317
ttgcacttgt aggacccacg tacg 24

<210> 318
<211> 50
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 318
ctgatggag gacctgtgta gatgttgcgt aatgtgctac aggaagagcc 50

<210> 319
<211> 2110
<212> DNA

<213> Homo Sapien

<400> 319

cttctttgaa aaggattatc acctgatcat gttctctctg catttgcggcc 50
tttagattgt gaaatgtggc tcaaggtctt cacaacttcc ctttcctttg 100
caacaggtgc ttgctcgaaaa ctgaagggtga cagtgccatc acacactgtc 150
catggcgtca gaggtcaggg cctctaccta cccgtccact atggcttcca 200
caactccagca tcagacatcc agatcatatg gctatttgag agaccccaca 250
caatgccccaa atacttactg ggctctgtga ataagtctgt gtttcctgac 300
ttggaataacc aacacaagtt caccatgatg ccacccaatg catctctgct 350
tatcaacccaa ctgcagttcc ctgatgaagg caattacatc gtgaaggtca 400
acattcaggg aaatggaact ctatctgcca gtcagaagat acaagtcacg 450
gttgcgtatgc ctgtcacaaa gccagtggtg cagattcatc ctccctctgg 500
ggctgtggag tatgtggggaa acatgaccct gacatgccat gtggaaagggg 550
gcactcggct agcttaccaa tggctaaaaa atgggagacc tgtccacacc 600
agctccaccc actccctttc tccccaaaac aatacccttc atattgctcc 650
agtaaccaag gaagacattt ggaattacag ctgcctggtg aggaaccctg 700
tcagtggaaat ggaaagtgtat atcattatgc ccatcatata ttatggaccc 750
tatggacttc aagtgaattt tgataaaaggg ctaaaaagtag gggaaagtgtt 800
tactgttgcac cttggagagg ccattctatt tgattttct gctgattctc 850
atccccccaa cacctactcc tggatttagga ggactgacaa tactacatat 900
atcattaaggc atgggcctcg ctttagaagtt gcatctgaga aagtagccca 950
gaagacaatg gactatgtgt gctgtgctt caacaacata accggcaggc 1000
aagatgaaac tcatttcaca gttatcatca cttccgtagg actggagaag 1050
cttgcacaga aaggaaaatc attgtcaccc tttagcaagta taactggaaat 1100
atcactattt ttgatttatat ccatgtgtct tctcttccta tggaaaaaat 1150
atcaacccta caaagttata aaacagaaac tagaaggcag gccagaaaca 1200
gaatacagga aagctcaaacc attttcaggc catgaagatg ctctggatga 1250

cttcggaata tatgaatttg ttgctttcc agatgttct ggtgttcca 1300
 ggattccaag caggctgtt ccagcctctg attgtgtatc ggggcaagat 1350
 ttgcacaga cagtgtatga agttattcag cacatccctg cccagcagca 1400
 agaccatcca gagtgaactt tcatgggcta aacagtacat tcgagtgaaa 1450
 ttctgaagaa acatttaag gaaaaacagt ggaaaagtat attaatctgg 1500
 aatcagtgaa gaaaccagga ccaacacctc ttactcatta ttccttaca 1550
 tgcagaatag aggcatttat gcaaattgaa ctgcaggtt ttcagcata 1600
 acacaatgtc ttgtgcaaca gaaaaacatg ttgggaaat attcctcagt 1650
 ggagagtctg tctcatgctg acggggagaa cgaaagtgac aggggttcc 1700
 tcataagtt tgtatgaaat atctctacaa acctcaatta gttctactct 1750
 acactttcac tatcatcaac actgagacta tcctgtctca cctacaaatg 1800
 tggaaactt acattgttcg attttcagc agactttgtt ttattaaatt 1850
 tttatttagt ttaagaatgc taaatttatg tttcaatttt atttccaaat 1900
 ttctatcttg ttatttgtac aacaaagtaa taaggatggt tgcacaaaa 1950
 acaaaaactat gccttcctt tttttcaat caccagtagt atttttgaga 2000
 agacttgta acacttaagg aaatgactat taaagtctta ttttatttt 2050
 tttcaaggaa agatggattc aaataaatta ttctgtttt gctttaaaa 2100
 aaaaaaaaaa 2110

<210> 320
 <211> 450
 <212> PRT
 <213> Homo Sapien

<400> 320
 Met Trp Leu Lys Val Phe Thr Thr Phe Leu Ser Phe Ala Thr Gly
 1 5 10 15
 Ala Cys Ser Gly Leu Lys Val Thr Val Pro Ser His Thr Val His
 20 25 30
 Gly Val Arg Gly Gln Ala Leu Tyr Leu Pro Val His Tyr Gly Phe
 35 40 45
 His Thr Pro Ala Ser Asp Ile Gln Ile Ile Trp Leu Phe Glu Arg
 50 55 60

Pro His Thr Met Pro Lys Tyr Leu Leu Gly Ser Val Asn Lys Ser
 65 70 75

Val Val Pro Asp Leu Glu Tyr Gln His Lys Phe Thr Met Met Pro
 80 85 90

Pro Asn Ala Ser Leu Leu Ile Asn Pro Leu Gln Phe Pro Asp Glu
 95 100 105

Gly Asn Tyr Ile Val Lys Val Asn Ile Gln Gly Asn Gly Thr Leu
 110 115 120

Ser Ala Ser Gln Lys Ile Gln Val Thr Val Asp Asp Pro Val Thr
 125 130 135

Lys Pro Val Val Gln Ile His Pro Pro Ser Gly Ala Val Glu Tyr
 140 145 150

Val Gly Asn Met Thr Leu Thr Cys His Val Glu Gly Gly Thr Arg
 155 160 165

Leu Ala Tyr Gln Trp Leu Lys Asn Gly Arg Pro Val His Thr Ser
 170 175 180

Ser Thr Tyr Ser Phe Ser Pro Gln Asn Asn Thr Leu His Ile Ala
 185 190 195

Pro Val Thr Lys Glu Asp Ile Gly Asn Tyr Ser Cys Leu Val Arg
 200 205 210

Asn Pro Val Ser Glu Met Glu Ser Asp Ile Ile Met Pro Ile Ile
 215 220 225

Tyr Tyr Gly Pro Tyr Gly Leu Gln Val Asn Ser Asp Lys Gly Leu
 230 235 240

Lys Val Gly Glu Val Phe Thr Val Asp Leu Gly Glu Ala Ile Leu
 245 250 255

Phe Asp Cys Ser Ala Asp Ser His Pro Pro Asn Thr Tyr Ser Trp
 260 265 270

Ile Arg Arg Thr Asp Asn Thr Thr Tyr Ile Ile Lys His Gly Pro
 275 280 285

Arg Leu Glu Val Ala Ser Glu Lys Val Ala Gln Lys Thr Met Asp
 290 295 300

Tyr Val Cys Cys Ala Tyr Asn Asn Ile Thr Gly Arg Gln Asp Glu
 305 310 315

Thr His Phe Thr Val Ile Ile Thr Ser Val Gly Leu Glu Lys Leu

320	325	330
Ala Gln Lys Gly Lys Ser Leu Ser Pro Leu Ala Ser Ile Thr Gly		
335	340	345
Ile Ser Leu Phe Leu Ile Ile Ser Met Cys Leu Leu Phe Leu Trp		
350	355	360
Lys Lys Tyr Gln Pro Tyr Lys Val Ile Lys Gln Lys Leu Glu Gly		
365	370	375
Arg Pro Glu Thr Glu Tyr Arg Lys Ala Gln Thr Phe Ser Gly His		
380	385	390
Glu Asp Ala Leu Asp Asp Phe Gly Ile Tyr Glu Phe Val Ala Phe		
395	400	405
Pro Asp Val Ser Gly Val Ser Arg Ile Pro Ser Arg Ser Val Pro		
410	415	420
Ala Ser Asp Cys Val Ser Gly Gln Asp Leu His Ser Thr Val Tyr		
425	430	435
Glu Val Ile Gln His Ile Pro Ala Gln Gln Asp His Pro Glu		
440	445	450

<210> 321
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 321
gatcctgtca caaagccagt ggtgc 25

<210> 322

<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 322
cactgacagg gttcctcacc cagg 24

<210> 323
<211> 45
<212> DNA
<213> Artificial Sequence

acataaaaagc actaggtata caagttgaa atatgattt agcacagtat 1050
gatggtttaa atagttctct aattttgaa aaatcggtcc aagcaataag 1100
atttatgtat atttgtttaa taataaccta tttcaagtct gagtttgaa 1150
aatttacatt tcccaagtat tgcattattt aggtatttaa gaagattt 1200
tttagagaaaa atatttctca tttgatataa ttttctctg tttcaactgtg 1250
tgaaaaaaaag aagatatttc ccataaatgg gaagtttgcc cattgtctca 1300
agaaaatgtgt atttcagtga caatttcgtg gtcttttag aggtatattc 1350
caaaatttcc ttgtatTTT aggtatgca actaataaaa actacattac 1400
attaatttaat tacagtttcc tacacatggt aatacaggat atgctactga 1450
tttaggaagt ttttaagttc atggtattct cttagattcca acaaagttt 1500
atTTTCTCTT gtatTTTCT tacttactat gggttacatt ttttattttt 1550
caaattggat gataatttct tggaaacatt tttatgttt tagtaaacag 1600
tatttttttgc ttgtttcaaa ctgaagttt ctgagagatc catcaaattt 1650
aacaatctgt tgtaatttaa aattttggcc actttttca gattttacat 1700
cattcttgct gaacttcaac ttgaaattgt ttttttttgc ttttggatg 1750
tgaagggtgaa catccctgat tttgtctga tgtggaaaag cttggatt 1800
ttacatttttgc aaaattcaaa gaagcttaat ataaaagttt gcattctact 1850
caggaaaaaaag catcttcttg tatatgtctt aaatgtattt ttgtcctcat 1900
atacagaaaaag ttcttaatttgc attttacagt ctgtaatgct tgatgtttt 1950
aaataataac atttttatatttttaaaag acaaacttca tattatcctg 2000
tgttcttcc tgactggtaa tattgtgtgg gatttcacag gtaaaagtca 2050
gtaggatgga acatttttagt gtatTTTAC tccttaaaga gctagaatac 2100
atagtttca ccttaaaaaga agggggaaaaa tcataaaatac aatgaatcaa 2150
ctgaccatttta cgttagtagac aatttctgtt atgtcccctt ctttcttaggc 2200
tctgttgctg tgtgaatcca ttagatttac agtacgttaa tatacaagtt 2250
ttctttaaag ccctctcatt tagaatttaa aatattgtac cattaaagag 2300
tttggatgtg taacttgc tgccttagaa aaatatccta agcacaaaat 2350

aaacctttctt aaccacttca tttaaagctga aaaaaaaaaaaa aaaaaaaaa 2397
 <210> 325
 <211> 280
 <212> PRT
 <213> Homo Sapien
 <400> 325
 Met Ala Pro Ser Gly Ser Leu Ala Val Pro Leu Ala Val Leu Val
 1 5 10 15
 Leu Leu Leu Trp Gly Ala Pro Trp Thr His Gly Arg Arg Ser Asn
 20 25 30
 Val Arg Val Ile Thr Asp Glu Asn Trp Arg Glu Leu Leu Glu Gly
 35 40 45
 Asp Trp Met Ile Glu Phe Tyr Ala Pro Trp Cys Pro Ala Cys Gln
 50 55 60
 Asn Leu Gln Pro Glu Trp Glu Ser Phe Ala Glu Trp Gly Glu Asp
 65 70 75
 Leu Glu Val Asn Ile Ala Lys Val Asp Val Thr Glu Gln Pro Gly
 80 85 90
 Leu Ser Gly Arg Phe Ile Ile Thr Ala Leu Pro Thr Ile Tyr His
 95 100 105
 Cys Lys Asp Gly Glu Phe Arg Arg Tyr Gln Gly Pro Arg Thr Lys
 110 115 120
 Lys Asp Phe Ile Asn Phe Ile Ser Asp Lys Glu Trp Lys Ser Ile
 125 130 135
 Glu Pro Val Ser Ser Trp Phe Gly Pro Gly Ser Val Leu Met Ser
 140 145 150
 Ser Met Ser Ala Leu Phe Gln Leu Ser Met Trp Ile Arg Thr Cys
 155 160 165
 His Asn Tyr Phe Ile Glu Asp Leu Gly Leu Pro Val Trp Gly Ser
 170 175 180
 Tyr Thr Val Phe Ala Leu Ala Thr Leu Phe Ser Gly Leu Leu Leu
 185 190 195
 Gly Leu Cys Met Ile Phe Val Ala Asp Cys Leu Cys Pro Ser Lys
 200 205 210
 Arg Arg Arg Pro Gln Pro Tyr Pro Tyr Pro Ser Lys Lys Leu Leu

215 220 225
Ser Glu Ser Ala Gln Pro Leu Lys Lys Val Glu Glu Glu Gln Glu
230 235 240
Ala Asp Glu Glu Asp Val Ser Glu Glu Ala Glu Ser Lys Glu
245 250 255
Gly Thr Asn Lys Asp Phe Pro Gln Asn Ala Ile Arg Gln Arg Ser
260 265 270
Leu Gly Pro Ser Leu Ala Thr Asp Lys Ser
275 280

<210> 326
<211> 23
<212> DNA

<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 326
tgagggtggc aagcggcgaa atg 23

<210> 327
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 327
tatgtggatc aggacgtgcc 20

<210> 328
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 328
tgcagggttc agtcttagatt g 21

<210> 329
<211> 25
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 329
ttgaaggaca aaggcaatct gccac 25

<210> 330
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 330
ggagtcttgc agttcccttg gcagtcctgg tgctgttgct ttggg 45

<210> 331
<211> 2168
<212> DNA
<213> Homo Sapien

<400> 331
gcgagtgtcc agctgcggag acccgtgata attcgtaac taattcaaca 50
aacgggaccc ttctgtgtgc cagaaaccgc aagcagttgc taacccagtg 100
ggacaggcgg attggaagag cgggaaggc tcggcccaga gcagtgtgac 150
acttccctct gtgaccatga aactctgggt gtctgcattg ctgatggcct 200
gttttgtgt cctgagctgt gtgcaggccc aattttcac ctctattggg 250
cacatgactg acctgattta tgcagagaaa gagctggtgc agtctctgaa 300
agagtacatc cttgtggagg aagccaagct ttccaagatt aagagctggg 350
ccaacaaaat ggaaggcttg actagcaagt cagctgctga tgctgagggc 400
tacctggctc accctgtgaa tgcctacaaa ctggtaagc ggctaaacac 450
agactggcct gcgctggagg accttgcct gcaggactca gctgcaggtt 500
ttatcgccaa cctctgtg cagcggcagt tcttccccac tgatgaggac 550
gagataggag ctgccaaagc cctgatgaga cttcaggaca catacaggct 600
ggacccagggc acaatttcca gaggggaact tccaggaacc aagtaccagg 650
caatgctgag tgtggatgac tgctttggga tggccgctc ggcctacaat 700
gaaggggact attatcatac ggtgttggg atggagcagg tgctaaagca 750

gcttgatgcc ggggaggagg ccaccacaac caagtcacag gtgctggact 800
acctcagcta tgctgtttc cagttgggtg atctgcaccc tgccctggag 850
ctcacccgcc gcctgcttc ctttgcacca agccacgaac gagctggagg 900
aatctgcgg tactttgagc agttatttggaa ggaagagaga gaaaaaacgt 950
taacaaatca gacagaagct gagctagcaa ccccaagaagg catctatgag 1000
aggcctgtgg actacccgtcc tgagagggat gtttacgaga gcctctgtcg 1050
tggggaggggt gtcaaactga caccggtag acagaagagg cttttctgtta 1100
ggtaccacca tggcaacagg gccccacagc tgctcattgc ccccttcaaa 1150
gaggaggacg agtgggacag cccgcacatc gtcaggtact acgatgtcat 1200
gtctgatgag gaaatcgaga ggatcaagga gatcgaaaa cctaaacttg 1250
cacgagccac cgttcgtgat cccaagacag gagtcctcac tgtcgcccagc 1300
taccgggttt ccaaagctc ctggctagag gaagatgatg accctgttgt 1350
ggcccgagta aatcgccgaa tgcagcatat cacagggtaa acagtaaaga 1400
ctgcagaatt gttacagggtt gcaaattatg gagtgggagg acagtatgaa 1450
ccgcacttcg acttctctag gcgacccccc gacagccggcc tcaaaaacaga 1500
ggggatagg ttagcgacgt ttcttaacta catgagtgtat gttagaagctg 1550
gtgggccac cgtctccct gatctggggg ctgcaatttg gcctaagaag 1600
ggtacagctg tggtctggta caaccttttg cggagccggg aaggtgacta 1650
ccgaacaaga catgctgcct gccctgtgt tggggctgc aagtgggtct 1700
ccaataagtg gttccatgaa cgaggacagg agttcttgag accttggta 1750
tcaacagaag ttgactgaca tcctttctg tcctccct tcctggccct 1800
tcagccccatg tcaacgtgac agacacccctt gtatgttctt ttgtatgttc 1850
ctatcaggct gatTTTggaa gaaatgaatg tttgtctggaa gcagagggag 1900
accatactag ggcgactcct gtgtgactga agtcccagcc cttccattca 1950
gcctgtgcca tccctggccc caaggctagg atcaaagtgg ctgcagcaga 2000
gttagctgtc tagcgcttag caaggtgcct ttgtacctca ggtgttttag 2050
gtgtgagatg tttcagtgaa ccaaagttct gataccttgt ttacatgttt 2100

gttttatgg catttctatc tattgtggct ttacccaaaa ataaaatgtc 2150
 cctaccagaa aaaaaaaaa 2168
 <210> 332
 <211> 533
 <212> PRT
 <213> Homo Sapien
 <400> 332
 Met Lys Leu Trp Val Ser Ala Leu Leu Met Ala Trp Phe Gly Val
 1 5 10 15
 Leu Ser Cys Val Gln Ala Glu Phe Phe Thr Ser Ile Gly His Met
 20 25 30
 Thr Asp Leu Ile Tyr Ala Glu Lys Glu Leu Val Gln Ser Leu Lys
 35 40 45
 Glu Tyr Ile Leu Val Glu Glu Ala Lys Leu Ser Lys Ile Lys Ser
 50 55 60
 Trp Ala Asn Lys Met Glu Ala Leu Thr Ser Lys Ser Ala Ala Asp
 65 70 75
 Ala Glu Gly Tyr Leu Ala His Pro Val Asn Ala Tyr Lys Leu Val
 80 85 90
 Lys Arg Leu Asn Thr Asp Trp Pro Ala Leu Glu Asp Leu Val Leu
 95 100 105
 Gln Asp Ser Ala Ala Gly Phe Ile Ala Asn Leu Ser Val Gln Arg
 110 115 120
 Gln Phe Phe Pro Thr Asp Glu Asp Glu Ile Gly Ala Ala Lys Ala
 125 130 135
 Leu Met Arg Leu Gln Asp Thr Tyr Arg Leu Asp Pro Gly Thr Ile
 140 145 150
 Ser Arg Gly Glu Leu Pro Gly Thr Lys Tyr Gln Ala Met Leu Ser
 155 160 165
 Val Asp Asp Cys Phe Gly Met Gly Arg Ser Ala Tyr Asn Glu Gly
 170 175 180
 Asp Tyr Tyr His Thr Val Leu Trp Met Glu Gln Val Leu Lys Gln
 185 190 195
 Leu Asp Ala Gly Glu Glu Ala Thr Thr Lys Ser Gln Val Leu
 200 205 210

Asp Tyr Leu Ser Tyr Ala Val Phe Gln Leu Gly Asp Leu His Arg
 215 220 225
 Ala Leu Glu Leu Thr Arg Arg Leu Leu Ser Leu Asp Pro Ser His
 230 235 240
 Glu Arg Ala Gly Gly Asn Leu Arg Tyr Phe Glu Gln Leu Leu Glu
 245 250 255
 Glu Glu Arg Glu Lys Thr Leu Thr Asn Gln Thr Glu Ala Glu Leu
 260 265 270
 Ala Thr Pro Glu Gly Ile Tyr Glu Arg Pro Val Asp Tyr Leu Pro
 275 280 285
 Glu Arg Asp Val Tyr Glu Ser Leu Cys Arg Gly Glu Gly Val Lys
 290 295 300
 Leu Thr Pro Arg Arg Gln Lys Arg Leu Phe Cys Arg Tyr His His
 305 310 315
 Gly Asn Arg Ala Pro Gln Leu Leu Ile Ala Pro Phe Lys Glu Glu
 320 325 330
 Asp Glu Trp Asp Ser Pro His Ile Val Arg Tyr Tyr Asp Val Met
 335 340 345
 Ser Asp Glu Glu Ile Glu Arg Ile Lys Glu Ile Ala Lys Pro Lys
 350 355 360
 Leu Ala Arg Ala Thr Val Arg Asp Pro Lys Thr Gly Val Leu Thr
 365 370 375
 Val Ala Ser Tyr Arg Val Ser Lys Ser Ser Trp Leu Glu Glu Asp
 380 385 390
 Asp Asp Pro Val Val Ala Arg Val Asn Arg Arg Met Gln His Ile
 395 400 405
 Thr Gly Leu Thr Val Lys Thr Ala Glu Leu Leu Gln Val Ala Asn
 410 415 420
 Tyr Gly Val Gly Gly Gln Tyr Glu Pro His Phe Asp Phe Ser Arg
 425 430 435
 Arg Pro Phe Asp Ser Gly Leu Lys Thr Glu Gly Asn Arg Leu Ala
 440 445 450
 Thr Phe Leu Asn Tyr Met Ser Asp Val Glu Ala Gly Gly Ala Thr
 455 460 465
 Val Phe Pro Asp Leu Gly Ala Ala Ile Trp Pro Lys Lys Gly Thr
 470 475 480

Ala Val Phe Trp Tyr Asn Leu Leu Arg Ser Gly Glu Gly Asp Tyr
485 490 495

Arg Thr Arg His Ala Ala Cys Pro Val Leu Val Gly Cys Lys Trp
500 505 510

Val Ser Asn Lys Trp Phe His Glu Arg Gly Gln Glu Phe Leu Arg
515 520 525

Pro Cys Gly Ser Thr Glu Val Asp
530

<210> 333
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 333
ccaggcacaa tttccaga 18

<210> 334
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 334
ggacccttct gtgtgccag 19

<210> 335
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 335
ggtctcaaga actcctgtc 19

<210> 336
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 336
acactcagca ttgcctggta ct tg 24

<210> 337
<211> 45
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 337
gggcacatga ctgacacctgat ttatgcagag aaagagctgg tgcag 45

<210> 338
<211> 2789

<212> DNA
<213> Homo Sapien

<400> 338
gcagtattga gtttacttc ctccttttt tagtggaaaga cagaccataa 50
tcccagtgtg agtcaaattt attgtttcat ttattaccgt tttggctggg 100
ggtagttcc gacacccatca cagttgaaga gcaggcagaa ggagttgtga 150
agacaggaca atcttcttgg ggtatgttgtt cctggaaagcc agcgggcctt 200
gctctgtctt tggccattt gacccaggat tctctggta aaactgaaag 250
cctactactg gcctggtgcc catcaatcca ttgatccttgg aggctgtgcc 300
cctggggcac ccacccatggca gggccatcca ccatgcgact gagctccctg 350
ttggctctgc tgccggccagc gttcccttc atcttagggc tgtctctggg 400
gtgcagccctg agcctcctgc gggttccctg gatccagggg gagggagaag 450
atccctgtgt cgaggctgtt ggggagcgag gagggccaca gaatccagat 500
tcgagagctc ggcttagacca aagtgtatgaa gacttcaaac cccggattgt 550
ccccctactac agggacccca acaaggccata caagaagggtt ctcaggactc 600
ggtacatcca gacagagctg ggctccctgt agcgggttgtt ggtggctgtc 650
ctgacacctcc gagctacact gtccacttttgg ccgtggctgt tgaaccgtac 700
ggtggcccat cacttccctc ggttactcta cttcactgggg cagcgggggg 750
ccccggctcc agcaggatg caggtggtgtt ctcatggggta tgagcggccc 800

gcctggctca tgtcagagac cctgcgccac ctccacacac actttggggc 850
cgactacgac tggttttca tcatgcagga tgacacatat gtgcaggccc 900
cccccttggc agcccttgct ggccacactca gcatcaacca agacctgtac 950
ttaggccggg cagaggagtt cattggcgca ggcgagcagg cccgtactg 1000
tcatggggc tttggctacc ttttgtcacg gagtcctctg cttcgtctgc 1050
ggccacatct ggatggctgc cgaggagaca ttctcagtgc ccgtcctgac 1100
gagtggcttg gacgctgcct cattgactct ctggcgctcg gctgtgtctc 1150
acagcaccag gggcagcagt atcgctcatt tgaactggcc aaaaataggg 1200
accctgagaa ggaagggagc tcggcttcc ttagtgcctt cgccgtgcac 1250
cctgtctccg aaggtacct catgtaccgg ctccacaaac gcttcagcgc 1300
tctggagttg gagcgggctt acagtgaaat agaacaactg caggctcaga 1350
tccggaacct gaccgtgctg acccccgaag gggaggcagg gctgagctgg 1400
cccgttgggc tccctgctcc tttcacacca cactctcgct ttgaggtgct 1450
gggctgggac tacttcacag agcagcacac cttctcctgt gcagatgggg 1500
ctcccaagtg cccactacag ggggctagca gggcggacgt gggtgatgcg 1550
ttggagactg ccctggagca gctcaatcg cgctatcagc cccgcctgcg 1600
cttccagaag cagcgactgc tcaacggcta tcggcgcttc gacccagcac 1650
ggggcatgga gtacaccctg gacctgctgt tgaaatgtgt gacacagcgt 1700
gggcaccggc gggccctggc tcgcagggtc agcctgctgc ggccactgag 1750
ccgggtggaa atcctaccta tgccctatgt cactgaggcc acccagtc 1800
agctggtgct gccactcctg gtggctgaag ctgctgcagc cccggcttc 1850
ctcgaggcgt ttgcagccaa tgtcctggag ccacgagaac atgcattgct 1900
caccctgttg ctggtctacg ggccacgaga aggtggccgt ggagctccag 1950
accacattct tggggtaag gctgcagcag cggagttaga gcgacggtac 2000
cctggacga ggctggcctg gctcgctgtg cgagcagagg ccccttccca 2050
ggtgcgactc atggacgtgg tctcgaagaa gcaccctgtg gacactctct 2100

tcttccttac caccgtgtgg acaaggcctg ggccccaaagt cctcaaccgc 2150
 tgtcgcatga atgccatctc tggctggcag gccttcttgc cagtcattt 2200
 ccaggagttc aatcctgccc tgtcaccaca gagatcaccc ccagggcccc 2250
 cgggggtctgg ccctgacccc ccctcccctc ctggtgctga cccctcccg 2300
 ggggctccta taggggggag atttgaccgg caggcttctg cggagggctg 2350
 cttctacaac gctgactacc tggcggcccg agcccgctg gcaggtgaac 2400
 tggcaggcca ggaagaggag gaagccctgg aggggctgga ggtgatggat 2450
 gtttctcc gtttctcagg gctccaccc ttccggcccg tagagccagg 2500
 gctggtgcag aagttctccc tgcgagactg cagccacgg ctcagtgaag 2550
 aactctacca ccgctgccgc ctcagcaacc tggagggctt agggggccgt 2600
 gcccagctgg ctatggctct cttttagcag gagcaggcca atagcactta 2650
 gcccgcctgg gggccctaac ctcattaccc ttcccttgc tgccctagcc 2700
 ccaggaaggg caagccaaga tggtgacag atagagaatt gttgctgtat 2750
 tttttaata tgaaaatgtt attaaacatg tcttctgcc 2789

<210> 339

<211> 772

<212> PRT

<213> Homo Sapien

<400> 339

Met	Arg	Leu	Ser	Ser	Leu	Leu	Ala	Leu	Leu	Arg	Pro	Ala	Leu	Pro
1					5				10				15	

Leu	Ile	Leu	Gly	Leu	Ser	Leu	Gly	Cys	Ser	Leu	Ser	Leu	Leu	Arg
									20			25		30

Val	Ser	Trp	Ile	Gln	Gly	Glu	Gly	Glu	Asp	Pro	Cys	Val	Glu	Ala
									35			40		45

Val	Gly	Glu	Arg	Gly	Gly	Pro	Gln	Asn	Pro	Asp	Ser	Arg	Ala	Arg
						50			55			60		

Leu	Asp	Gln	Ser	Asp	Glu	Asp	Phe	Lys	Pro	Arg	Ile	Val	Pro	Tyr
									65			70		75

Tyr	Arg	Asp	Pro	Asn	Lys	Pro	Tyr	Lys	Lys	Val	Leu	Arg	Thr	Arg
									80			85		90

Tyr	Ile	Gln	Thr	Glu	Leu	Gly	Ser	Arg	Glu	Arg	Leu	Leu	Val	Ala
-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----	-----

95	100	105
Val Leu Thr Ser Arg Ala Thr Leu Ser	Thr Leu Ala Val Ala Val	
110	115	120
Asn Arg Thr Val Ala His His Phe Pro	Arg Leu Leu Tyr Phe Thr	
125	130	135
Gly Gln Arg Gly Ala Arg Ala Pro Ala	Gly Met Gln Val Val Ser	
140	145	150
His Gly Asp Glu Arg Pro Ala Trp Leu	Met Ser Glu Thr Leu Arg	
155	160	165
His Leu His Thr His Phe Gly Ala Asp	Tyr Asp Trp Phe Phe Ile	
170	175	180
Met Gln Asp Asp Thr Tyr Val Gln Ala Pro	Arg Leu Ala Ala Leu	
185	190	195
Ala Gly His Leu Ser Ile Asn Gln Asp	Leu Tyr Leu Gly Arg Ala	
200	205	210
Glu Glu Phe Ile Gly Ala Gly Glu Gln Ala	Arg Tyr Cys His Gly	
215	220	225
Gly Phe Gly Tyr Leu Leu Ser Arg Ser	Leu Leu Leu Arg Leu Arg	
230	235	240
Pro His Leu Asp Gly Cys Arg Gly Asp	Ile Leu Ser Ala Arg Pro	
245	250	255
Asp Glu Trp Leu Gly Arg Cys Leu Ile Asp	Ser Leu Gly Val Gly	
260	265	270
Cys Val Ser Gln His Gln Gly Gln Gln	Tyr Arg Ser Phe Glu Leu	
275	280	285
Ala Lys Asn Arg Asp Pro Glu Lys Glu Gly	Ser Ser Ala Phe Leu	
290	295	300
Ser Ala Phe Ala Val His Pro Val Ser	Glu Gly Thr Leu Met Tyr	
305	310	315
Arg Leu His Lys Arg Phe Ser Ala Leu	Glu Leu Glu Arg Ala Tyr	
320	325	330
Ser Glu Ile Glu Gln Leu Gln Ala Gln	Ile Arg Asn Leu Thr Val	
335	340	345
Leu Thr Pro Glu Gly Glu Ala Gly Leu	Ser Trp Pro Val Gly Leu	
350	355	360

Pro Ala Pro Phe Thr Pro His Ser Arg Phe Glu Val Leu Gly Trp
 365 370 375
 Asp Tyr Phe Thr Glu Gln His Thr Phe Ser Cys Ala Asp Gly Ala
 380 385 390
 Pro Lys Cys Pro Leu Gln Gly Ala Ser Arg Ala Asp Val Gly Asp
 395 400 405
 Ala Leu Glu Thr Ala Leu Glu Gln Leu Asn Arg Arg Tyr Gln Pro
 410 415 420
 Arg Leu Arg Phe Gln Lys Gln Arg Leu Leu Asn Gly Tyr Arg Arg
 425 430 435
 Phe Asp Pro Ala Arg Gly Met Glu Tyr Thr Leu Asp Leu Leu Leu
 440 445 450
 Glu Cys Val Thr Gln Arg Gly His Arg Arg Ala Leu Ala Arg Arg
 455 460 465
 Val Ser Leu Leu Arg Pro Leu Ser Arg Val Glu Ile Leu Pro Met
 470 475 480
 Pro Tyr Val Thr Glu Ala Thr Arg Val Gln Leu Val Leu Pro Leu
 485 490 495
 Leu Val Ala Glu Ala Ala Ala Pro Ala Phe Leu Glu Ala Phe
 500 505 510
 Ala Ala Asn Val Leu Glu Pro Arg Glu His Ala Leu Leu Thr Leu
 515 520 525
 Leu Leu Val Tyr Gly Pro Arg Glu Gly Gly Arg Gly Ala Pro Asp
 530 535 540
 Pro Phe Leu Gly Val Lys Ala Ala Ala Ala Glu Leu Glu Arg Arg
 545 550 555
 Tyr Pro Gly Thr Arg Leu Ala Trp Leu Ala Val Arg Ala Glu Ala
 560 565 570
 Pro Ser Gln Val Arg Leu Met Asp Val Val Ser Lys Lys His Pro
 575 580 585
 Val Asp Thr Leu Phe Phe Leu Thr Thr Val Trp Thr Arg Pro Gly
 590 595 600
 Pro Glu Val Leu Asn Arg Cys Arg Met Asn Ala Ile Ser Gly Trp
 605 610 615
 Gln Ala Phe Phe Pro Val His Phe Gln Glu Phe Asn Pro Ala Leu
 620 625 630

Ser Pro Gln Arg Ser Pro Pro Gly Pro Pro Gly Ala Gly Pro Asp
 635 640 645
 Pro Pro Ser Pro Pro Gly Ala Asp Pro Ser Arg Gly Ala Pro Ile
 650 655 660
 Gly Gly Arg Phe Asp Arg Gln Ala Ser Ala Glu Gly Cys Phe Tyr
 665 670 675
 Asn Ala Asp Tyr Leu Ala Ala Arg Ala Arg Leu Ala Gly Glu Leu
 680 685 690
 Ala Gly Gln Glu Glu Glu Ala Leu Glu Gly Leu Glu Val Met
 695 700 705
 Asp Val Phe Leu Arg Phe Ser Gly Leu His Leu Phe Arg Ala Val
 710 715 720
 Glu Pro Gly Leu Val Gln Lys Phe Ser Leu Arg Asp Cys Ser Pro
 725 730 735
 Arg Leu Ser Glu Glu Leu Tyr His Arg Cys Arg Leu Ser Asn Leu
 740 745 750
 Glu Gly Leu Gly Gly Arg Ala Gln Leu Ala Met Ala Leu Phe Glu
 755 760 765
 Gln Glu Gln Ala Asn Ser Thr
 770

<210> 340
 <211> 1572
 <212> DNA
 <213> Homo Sapien

<400> 340
 cggagtggtg cgccaacgtg agaggaaacc cgtgcgcggc tgcgcattcc 50
 tgtccccaaag ccgttctaga cgcggggaaaa atgctttctg aaagcagctc 100
 cttttgaag ggtgtatgc ttggaagcat tttctgtgct ttgatcacta 150
 tgctaggaca cattaggatt ggtcatggaa atagaatgca ccaccatgag 200
 catcatcacc tacaagctcc taacaaagaa gatatcttga aaatttcaga 250
 ggatgagcgc atggagctca gtaagagctt tcgagttatac tgtattatcc 300
 ttgtaaaacc caaagatgtg agtctttggg ctgcagtaaa ggagacttgg 350
 accaaacact gtgacaaagc agagttcttc agttctgaaa atgttaaagt 400

gtttgagtca attaatatgg acacaaatga catgtggta atgatgagaa 450
 aagcttacaa atacgcctt gataagtata gagaccaata caactggtc 500
 ttccttgcac gccccactac gtttgctatc attaaaaacc taaaagtattt 550
 tttgttaaaa aaggatccat cacagcctt ctatcttagc cacactataa 600
 aatctggaga ccttgaatat gtgggtatgg aaggaggaat tgtcttaagt 650
 gtagaatcaa tgaaaagact taacagcctt ctcaatatcc cagaaaagtg 700
 tcctgaacag ggagggatga tttggaagat atctgaagat aaacagctag 750
 cagtttgcct gaaatatgct ggagtattt cagaaaatgc agaagatgct 800
 gatggaaaag atgtattna taccaaatct gttggcctt ctattaaaga 850
 ggcaatgact tatcacccca accaggtgt agaaggctgt tgttcagata 900
 tggctgttac tttaatgga ctgactccaa atcagatgca tgtgatgtg 950
 tatggggtat accgccttag ggcatttggg catatttca atgatgcatt 1000
 ggtttctta cctccaaatg gttctgacaa tgactgagaa gtggtagaaa 1050
 agcgtgaata tgatcttgt ataggacgtg tgggtcatt attttagta 1100
 gtaactacat atccaataca gctgtatgtt tcttttctt ttctaattt 1150
 gtggcactgg tataaccaca cattaaagtc agtagtacat tttaaatga 1200
 gggtggtttt ttctttaaaa acacatgaac attgtaaatg tggtggaaag 1250
 aagtgtttta agaataataa ttttgc当地 aaactattaa taaatattat 1300
 atgtgataaa ttctaaatta tgaacattag aaatctgtgg ggcacatatt 1350
 tttgctgatt ggttaaaaaa tttaacagg tctttagcgt tctaagatat 1400
 gcaaatgata tctctagttg tgaatttgc当地 attaaagtaa aacttttagc 1450
 tgtgtgttcc cttaacttct aatactgatt tatgttctaa gcctcccaa 1500
 gttccaatgg atttgccttc tcaaaatgta caactaagca actaaagaaa 1550
 attaaagtga aagttgaaaa at 1572

<210> 341
 <211> 318
 <212> PRT
 <213> Homo Sapien

<400> 341

Met	Leu	Ser	Glu	Ser	Ser	Ser	Phe	Leu	Lys	Gly	Val	Met	Leu	Gly
1				5					10					15
Ser	Ile	Phe	Cys	Ala	Leu	Ile	Thr	Met	Leu	Gly	His	Ile	Arg	Ile
					20				25					30
Gly	His	Gly	Asn	Arg	Met	His	His	His	Glu	His	His	Leu	Gln	
					35				40					45
Ala	Pro	Asn	Lys	Glu	Asp	Ile	Leu	Lys	Ile	Ser	Glu	Asp	Glu	Arg
					50				55					60
Met	Glu	Leu	Ser	Lys	Ser	Phe	Arg	Val	Tyr	Cys	Ile	Ile	Leu	Val
					65				70					75
Lys	Pro	Lys	Asp	Val	Ser	Leu	Trp	Ala	Ala	Val	Lys	Glu	Thr	Trp
					80				85					90
Thr	Lys	His	Cys	Asp	Lys	Ala	Glu	Phe	Phe	Ser	Ser	Glu	Asn	Val
					95				100					105
Lys	Val	Phe	Glu	Ser	Ile	Asn	Met	Asp	Thr	Asn	Asp	Met	Trp	Leu
					110				115					120
Met	Met	Arg	Lys	Ala	Tyr	Lys	Tyr	Ala	Phe	Asp	Lys	Tyr	Arg	Asp
					125				130					135
Gln	Tyr	Asn	Trp	Phe	Phe	Leu	Ala	Arg	Pro	Thr	Thr	Phe	Ala	Ile
					140				145					150
Ile	Glu	Asn	Leu	Lys	Tyr	Phe	Leu	Leu	Lys	Lys	Asp	Pro	Ser	Gln
					155				160					165
Pro	Phe	Tyr	Leu	Gly	His	Thr	Ile	Lys	Ser	Gly	Asp	Leu	Glu	Tyr
					170				175					180
Val	Gly	Met	Glu	Gly	Gly	Ile	Val	Leu	Ser	Val	Glu	Ser	Met	Lys
					185				190					195
Arg	Leu	Asn	Ser	Leu	Leu	Asn	Ile	Pro	Glu	Lys	Cys	Pro	Glu	Gln
					200				205					210
Gly	Gly	Met	Ile	Trp	Lys	Ile	Ser	Glu	Asp	Lys	Gln	Leu	Ala	Val
					215				220					225
Cys	Leu	Lys	Tyr	Ala	Gly	Val	Phe	Ala	Glu	Asn	Ala	Glu	Asp	Ala
					230				235					240
Asp	Gly	Lys	Asp	Val	Phe	Asn	Thr	Lys	Ser	Val	Gly	Leu	Ser	Ile
					245				250					255
Lys	Glu	Ala	Met	Thr	Tyr	His	Pro	Asn	Gln	Val	Val	Glu	Gly	Cys

260 265 270

Cys Ser Asp Met Ala Val Thr Phe Asn Gly Leu Thr Pro Asn Gln
275 280 285

Met His Val Met Met Tyr Gly Val Tyr Arg Leu Arg Ala Phe Gly
290 295 300

His Ile Phe Asn Asp Ala Leu Val Phe Leu Pro Pro Asn Gly Ser
305 310 315

Asp Asn Asp

<210> 342

<211> 23

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 342

tcccccaagcc gttctagacg cgg 23

<210> 343

<211> 18

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 343

ctgggttcttc cttgcacg 18

<210> 344

<211> 28

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 344

gcccaaatgc cctaaggcgg tataacccc 28

<210> 345

<211> 50

<212> DNA

<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 345
gggtgtgatg cttggaagca ttttctgtgc tttgatcact atgctaggac 50

<210> 346
<211> 25
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 346
gggatgcagg tggtgtctca tgggg 25

<210> 347
<211> 18
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 347
ccctcatgta ccggctcc 18

<210> 348
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 348
ggattctaat acgactcaact atagggctca gaaaagcgca acagagaa 48

<210> 349
<211> 47
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 349
ctatgaaatt aaccctcaact aaaggatgt cttccatgcc aaccttc 47

<210> 350
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 350
ggattctaat acgactcaact atagggcggc gatgtccact ggggctac 48

<210> 351
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 351
ctatgaaatt aaccctcaact aaaggacgaa ggaagatggg cggatgg 48

<210> 352
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 352
ggattctaat acgactcaact atagggcacc cacgcgtccg gctgctt 47

<210> 353
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 353
ctatgaaatt aaccctcaact aaaggacgg gggacaccac ggaccaga 48

<210> 354
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 354
ggattctaat acgactcaact atagggcttg ctgcggttt tgttcctg 48

<210> 355
<211> 48

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 355
ctatgaaatt aaccctcact aaagggagct gccgatccca ctggatt 48

<210> 356
<211> 46
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 356
ggattctaat acgactcact atagggcgga tcctggccgg cctctg 46

<210> 357
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 357
ctatgaaatt aaccctcact aaagggagcc cgggcattgtt ctcagtta 48

<210> 358
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 358
ggattctaat acgactcact atagggcgga aagatggcga ggaggag 47

<210> 359
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 359
ctatgaaatt aaccctcact aaagggacca aggccacaaa cgaaaaatc 48

<210> 360
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 360
ggattctaat acgactcaact atagggctgt gcttcattc tgccagta 48

<210> 361
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 361
ctatgaaatt aaccctcaact aaagggaggg tacaattaag gggtggat 48

<210> 362
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 362
ggattctaat acgactcaact atagggcccg cctcgctcct gtccttg 47

<210> 363
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 363
ctatgaaatt aaccctcaact aaagggagga ttgccgcgac ctcacag 48

<210> 364
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 364

ggattctaat acgactcaact atagggcccc tcctgccttc cctgtcc 47
<210> 365
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 365
ctatgaaatt aaccctcaact aaaggagtg gtggccgcga ttatctgc 48

<210> 366
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 366
ggattctaat acgactcaact atagggcgca gcgatggcag cgatgagg 48

<210> 367
<211> 47

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 367
ctatgaaatt aaccctcaact aaaggacag acggggcaga gggagtg 47

<210> 368
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 368
ggattctaat acgactcaact atagggccag gaggcgtgag gagaaac 47

<210> 369
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 369
ctatgaaatt aaccctcaact aaaggaaag acatgtcatc gggagtgg 48

<210> 370
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 370
ggattctaat acgactcaact atagggccgg gtggaggtgg aacagaaa 48

<210> 371
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 371
ctatgaaatt aaccctcaact aaaggacac agacagagcc ccataacgc 48

<210> 372
<211> 47
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 372
ggattctaat acgactcaact atagggccag ggaaatccgg atgtctc 47

<210> 373
<211> 48
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic Oligonucleotide Probe

<400> 373
ctatgaaatt aaccctcaact aaaggagta agggatgcc accgagta 48

<210> 374
<211> 47
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 374
ggattctaat acgactcaact atagggccag ctacccgcag gaggagg 47

<210> 375
<211> 48
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 375
ctatgaaatt aaccctcaact aaagggatcc caggtgatga ggtccaga 48

<210> 376
<211> 997
<212> DNA
<213> Homo Sapien

<400> 376
cccacgcgtc cgatcttacc aacaaaacac tcctgaggag aaagaaaagag 50
agggagggag agaaaaaagag agagagagaa acaaaaaacc aaagagagag 100
aaaaaaatgaa ttcatctaaa tcatctgaaa cacaatgcac agagagagga 150
tgcttctttt cccaaatgtt cttatggact gttgctggga tccccatcct 200
atttctcagt gcctgtttca tcaccagatg tggatgtgaca tttcgcatct 250
ttcaaaccctg tgatgagaaa aagtttcagc tacctgagaa ttccacagag 300
ctctcctgct acaatttatgg atcaggttca gtcaagaatt gttgtccatt 350
gaactggaa tatttcaat ccagctgcta cttctttct actgacaccca 400
tttcctgggc gttaagttta aagaactgct cagccatggg ggctcacctg 450
gtggttatca actcacagga ggagcaggaa ttcctttct acaagaaaacc 500
taaaatgaga gagttttta ttggactgtc agaccaggtt gtcgagggtc 550
agtggcaatg ggtggacggc acaccttga caaagtctct gagttctgg 600
gatgttagggg agcccaacaa catagctacc ctggaggact gtgccaccat 650
gagagactct tcaaacccaa ggcaaaattg gaatgatgta acctgtttcc 700
tcaatttattt tcggatttgt gaaatggtag gaataaatcc tttgaacaaa 750

gaaaaatctc tttaagaaca gaaggcacaa ctc当地gtg taaagaagga 800
 agagcaagaa catggccaca cccaccgccc cacacgagaa atttgcgc 850
 tgaacttcaa aggacttcat aagtatttgt tactctgata caaataaaaa 900
 taagtagttt taaatgttaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 950
 aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa aaaaaaaaaa 997

<210> 377

<211> 219

<212> PRT

<213> Homo Sapien

<400> 377

Met	Asn	Ser	Ser	Lys	Ser	Ser	Glu	Thr	Gln	Cys	Thr	Glu	Arg	Gly
1				5									10	15

Cys	Phe	Ser	Ser	Gln	Met	Phe	Leu	Trp	Thr	Val	Ala	Gly	Ile	Pro
				20					25					30

Ile	Leu	Phe	Leu	Ser	Ala	Cys	Phe	Ile	Thr	Arg	Cys	Val	Val	Thr
				35					40					45

Phe	Arg	Ile	Phe	Gln	Thr	Cys	Asp	Glu	Lys	Lys	Phe	Gln	Leu	Pro
				50					55					60

Glu	Asn	Phe	Thr	Glu	Leu	Ser	Cys	Tyr	Asn	Tyr	Gly	Ser	Gly	Ser
				65					70					75

Val	Lys	Asn	Cys	Cys	Pro	Leu	Asn	Trp	Glu	Tyr	Phe	Gln	Ser	Ser
					80				85					90

Cys	Tyr	Phe	Phe	Ser	Thr	Asp	Thr	Ile	Ser	Trp	Ala	Leu	Ser	Leu
					95				100					105

Lys	Asn	Cys	Ser	Ala	Met	Gly	Ala	His	Leu	Val	Val	Ile	Asn	Ser
					110				115					120

Gln	Glu	Glu	Gln	Glu	Phe	Leu	Ser	Tyr	Lys	Lys	Pro	Lys	Met	Arg
					125				130					135

Glu	Phe	Phe	Ile	Gly	Leu	Ser	Asp	Gln	Val	Val	Glu	Gly	Gln	Trp
					140				145					150

Gln	Trp	Val	Asp	Gly	Thr	Pro	Leu	Thr	Lys	Ser	Leu	Ser	Phe	Trp
					155				160					165

Asp	Val	Gly	Glu	Pro	Asn	Asn	Ile	Ala	Thr	Leu	Glu	Asp	Cys	Ala
					170				175					180

Thr Met Arg Asp Ser Ser Asn Pro Arg Gln Asn Trp Asn Asp Val
185 190 195

Thr Cys Phe Leu Asn Tyr Phe Arg Ile Cys Glu Met Val Gly Ile
200 205 210

Asn Pro Leu Asn Lys Gly Lys Ser Leu
215

<210> 378
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 378
ttcagcttct gggatgttagg g 21

<210> 379
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic Oligonucleotide Probe

<400> 379
tattcctacc atttcacaaa tccg 24

<210> 380
<211> 49
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 380
ggaggactgt gccaccatga gagactcttc aaacccaagg caaaattgg 49

<210> 381
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 381
gcagatttg aggacagcca cctcca 26

<210> 382
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 382
ggccttgcag acaaccgt 18

<210> 383
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 383
cagactgagg gagatccgag a 21

<210> 384
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 384
cagctgccat tccccaaacca 20

<210> 385
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 385
catcaaggcg ctctaccca 18

<210> 386
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 386

cacaaaactcg aactgcttct g 21
<210> 387
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 387
gggccatcac agtcacct 18

<210> 388
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 388
gggatgtggt gaacacagaa ca 22

<210> 389
<211> 22

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 389
tgccagctgc atgctgccag tt 22

<210> 390
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 390
cagaaggatg tcccgtggaa 20

<210> 391
<211> 17
<212> DNA
<213> Artificial Sequence

<220>

```
<223> Synthetic oligonucleotide probe

<400> 391
      gccgctgtcc actgcag 17

<210> 392
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 392
      gacggcatcc tcagggccac a 21

<210> 393
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 393
      atgtcctcca tgcccacgcg 20

<210> 394
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 394
      gagtgcgaca tcgagagctt 20

<210> 395
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 395
      ccgcagcctc agtgtatga 18

<210> 396
<211> 21
<212> DNA
<213> Artificial Sequence
```

<220>
<223> Synthetic oligonucleotide probe

<400> 396
gaagagcaca gctgcagatc c 21

<210> 397
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 397
gaggtgtccct ggcttggta gt 22

<210> 398
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 398
cctctggcgcc ccccactcaa 20

<210> 399
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 399
ccaggagagc tggcgatg 18

<210> 400
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 400
gcaaattcag ggctcactag aga 23

<210> 401
<211> 29

```
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 401
cacagagcat ttgtccatca gcagttcag 29

<210> 402
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 402
ggcagagact tccagtcact ga 22

<210> 403
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 403
gccaagggtg gtgttagata gg 22

<210> 404
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 404
caggccccct tgatctgtac ccca 24

<210> 405
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 405
gggacgtgct tctacaagaa cag 23
```

<210> 406
<211> 26
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 406
caggcttaca atgttatgat cagaca 26

<210> 407
<211> 31
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 407
tattcagagt tttccattgg cagtgcgcgt t 31

<210> 408
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 408
tctacatcg cctctctgcg c 21

<210> 409
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 409
cgatcttcacccaggag cg 23

<210> 410
<211> 18
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 410

gccaggcctc acattcgt 18
<210> 411
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 411
ctccctgaat ggcagcctga gca 23

<210> 412
<211> 24

<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 412
agggttttat taagggccta cgct 24

<210> 413
<211> 19
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 413
cagagcagag ggtgccttg 19

<210> 414
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 414
tggcgagtc ccctcttggc t 21

<210> 415
<211> 22
<212> DNA
<213> Artificial Sequence

<220>

<223> Synthetic oligonucleotide probe

<400> 415
ccctgttcc ctatgcata ct 22

<210> 416
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 416
tcaaccctg acccttcct a 21

<210> 417
<211> 24
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 417
ggcaggggac aagccatctc tcct 24

<210> 418
<211> 20
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 418
gggactgaac tgccagttc 20

<210> 419
<211> 22
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 419
gggccctaac ctcattacct tt 22

<210> 420
<211> 23
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 420
tgtctgcctc agccccagga agg 23

<210> 421
<211> 21
<212> DNA
<213> Artificial Sequence

<220>
<223> Synthetic oligonucleotide probe

<400> 421
tctgtccacc atcttgccctt g 21

<210> 422
<211> 3554
<212> DNA
<213> Homo Sapien

<400> 422
gggactacaa gccgcgcgcg cgtgccgctg gcccctcagc aaccctcgac 50
atggcgctga ggcggccacc gcgactccgg ctctgcgctc ggctgcctga 100
cttcttcctg ctgctgcttt tcaggggctg cctgataggg gctgtaaatc 150
tcaaatccag caatcgaacc ccagtggta aggaatttga aagtgtggaa 200
ctgtcttgca tcattacgga ttgcgcagaca agtgacccca ggatcgagtg 250
gaagaaaatt caagatgaac aaaccacata tgtgttttt gacaacaaaa 300
ttcagggaga cttggcggt cgtgcagaaa tactggggaa gacatccctg 350
aagatctgga atgtgacacg gagagactca gcccattatc gctgtgaggt 400
cgttgctcga aatgaccgca aggaaattga tgagattgtg atcgagttaa 450
ctgtcaagt gaagccagtg acccctgtct gtagagtgcc gaaggctgta 500
ccagtaggca agatggcaac actgcactgc caggagagtg agggccaccc 550
ccggcctcac tacagctggc atcgcaatga tgtaccactg cccacggatt 600
ccagagccaa tcccagattt cgcaattctt ctttccactt aaactctgaa 650
acaggcactt tggtgttcac tgctgttcac aaggacgact ctgggcagta 700
ctactgcatt gttccaatg acgcaggctc agccaggtgt gaggagcagg 750

agatggaagt ctatgacctg aacattggcg gaattattgg gggggttctg 800
gttgccttg ctgtactggc cctgatcacg ttggcatct gctgtgcata 850
cagacgtggc tacttcatca acaataaaaca ggatggagaa agttacaaga 900
acccaggaa accagatgga gttaactaca tccgcactga cgaggaggc 950
gacttcagac acaagtcatc gtttgtatc tgagacccgc ggtgtggctg 1000
agagcgcaca gagcgcacgt gcacataacct ctgcttagaaa ctccgtcaa 1050
ggcagcgaga gctgatgcac tcggacagag ctagacactc attcagaagc 1100
tttcgtttt ggccaaagtt gaccactact cttcttactc taacaagcca 1150
catgaataga agaattttcc tcaagatgga cccggtaaat ataaccacaa 1200
ggaagcgaaa ctgggtgcgt tcactgagtt gggttcctaa tctgtttctg 1250
gcctgattcc cgcatgagta ttagggtgat cttaaagagt ttgctcacgt 1300
aaacgcccgt gctggccct gtgaagccag catgttcacc actggtcgtt 1350
cagcagccac gacagcacca tgtgagatgg cgaggtggct ggacagcacc 1400
agcagcgcac cccggcggga acccagaaaa ggcttcttac acagcagcct 1450
tacttcatcg gcccacagac accaccgcag tttcttctta aaggctctgc 1500
tgatcggtgt tgcaagtgtcc attgtggaga agcttttgg atcagcattt 1550
tgaaaaaca accaaaatca ggaaggtaaa ttgggtgctg gaagagggat 1600
cttgctgag gaaccctgct tgtccaacag ggtgtcagga ttaaggaaa 1650
acttcgtct taggctaagt ctgaaatggt actgaaatat gctttctat 1700
gggtcttggatt tattttataa aattttacat ctaaattttt gctaaggatg 1750
tattttgatt attgaaaaga aaatttctat ttaaactgta aatatattgt 1800
catacaatgt taaataacct attttttaa aaaagttcaa cttaaaggtag 1850
aagttccaag ctactagtgt taaattggaa aatatacaata attaagagta 1900
ttttacccaa ggaatcctct catggaagtt tactgtgatg ttcctttct 1950
cacacaagtt ttagccttt tcacaaggaa actcatactg tctacacatc 2000
agaccatagt tgcttaggaa acctttaaaa attccagtttta agcaatgtt 2050

aaatcagttt gcatctttc aaaagaaaacc tctcagggtta gctttgaact 2100
gcctcttcct gagatgacta ggacagtctg tacccagagg ccacccagaa 2150
gccctcagat gtacatacac agatgccagt cagctcctgg gtttgcgc 2200
ggcgcccccg ctctagctca ctgttgcctc gctgtctgcc aggaggccct 2250
gccatccttg ggccctggca gtggctgtgt cccagtgagc tttactca 2300
tggcccttgc ttcatccagc acagctctca ggtgggact gcagggacac 2350
tgggtcttc catgtacgt cccagctttg ggctcctgtt acagacctct 2400
ttttggttat ggatggctca caaaataggg ccccaatgc tattttttt 2450
tttaagttt gttaatttat ttgttaagat tgtctaaggc caaaggcaat 2500
tgcgaaatca agtctgtcaa gtacaataac atttttaaaa gaaaatggat 2550
cccactgttc ctcttgc 2600
gtgcatttc aaaacaaacc atgatggagt ggccggcagt ccagccttt 2650
aaagaacg 2700
t 2750
atccgcccga gacactgctc ccatttgtgg gggacatta gcaacatcac 2800
tcagaaggc 2850
ccgtgctgg actcaggact gaagtgtgt aaagcaagga gctgctgaga 2900
aggagcactc cactgtgtgc ctggagaatg gctctacta ctcacctgt 2950
cttcagctt ccagtgtctt gggttttta tacttgaca gcttttttt 3000
aattgcatac atgagactgt gttgactttt ttttagttatg tgaaacactt 3050
tgccgcaggc cgccctggcag aggcaggaaa tgctccagca gtggctcagt 3100
gctccctgggt gtctgctgca tggcatcctg gatgcttagc atgcaagtcc 3150
cctccatcat tgccaccttg gtagagaggg atggctcccc accctcagcg 3200
ttggggattc acgctccagc ctccttctt gttgtcatag tgataggta 3250
gccttattgc cccctttct tataccctaa aaccttctac actagtgc 3300
tgggaaccag gtctgaaaaa gtagagagaa gtgaaagtag agtctggaa 3350
gtagctgcct ataactgaga ctagacggaa aaggaatact cgtgtat 3400

aagatatgaa tgtgactcaa gactcgaggc cgatacgagg ctgtgattct 3450
 gcctttggat ggatgttgct gtacacagat gctacagact tgtactaaca 3500
 caccgtaatt tggcatttgt ttaacctcat ttataaaaagc ttcaaaaaaa 3550
 ccca 3554

<210> 423
 <211> 310
 <212> PRT
 <213> Homo Sapien

<400> 423
 Met Ala Leu Arg Arg Pro Pro Arg Leu Arg Leu Cys Ala Arg Leu
 1 5 10 15

Pro	Asp	Phe	Phe	Leu	Leu	Leu	Phe	Arg	Gly	Cys	Leu	Ile	Gly
				20				25				30	

Ala	Val	Asn	Leu	Lys	Ser	Ser	Asn	Arg	Thr	Pro	Val	Val	Gln	Glu
				35				40				45		

Phe	Glu	Ser	Val	Glu	Leu	Ser	Cys	Ile	Ile	Thr	Asp	Ser	Gln	Thr
				50				55				60		

Ser	Asp	Pro	Arg	Ile	Glu	Trp	Lys	Ile	Gln	Asp	Glu	Gln	Thr
				65				70				75	

Thr	Tyr	Val	Phe	Phe	Asp	Asn	Lys	Ile	Gln	Gly	Asp	Leu	Ala	Gly
				80				85				90		

Arg	Ala	Glu	Ile	Leu	Gly	Lys	Thr	Ser	Leu	Lys	Ile	Trp	Asn	Val
				95					100			105		

Thr	Arg	Arg	Asp	Ser	Ala	Leu	Tyr	Arg	Cys	Glu	Val	Val	Ala	Arg
				110				115				120		

Asn	Asp	Arg	Lys	Glu	Ile	Asp	Glu	Ile	Val	Ile	Glu	Leu	Thr	Val
				125				130				135		

Gln	Val	Lys	Pro	Val	Thr	Pro	Val	Cys	Arg	Val	Pro	Lys	Ala	Val
				140				145				150		

Pro	Val	Gly	Lys	Met	Ala	Thr	Leu	His	Cys	Gln	Glu	Ser	Gly
				155				160				165	

His	Pro	Arg	Pro	His	Tyr	Ser	Trp	Tyr	Arg	Asn	Asp	Val	Pro	Leu
				170				175				180		

Pro	Thr	Asp	Ser	Arg	Ala	Asn	Pro	Arg	Phe	Arg	Asn	Ser	Ser	Phe
				185				190				195		

His Leu Asn Ser Glu Thr Gly Thr Leu Val Phe Thr Ala Val His
200 205 210

Lys Asp Asp Ser Gly Gln Tyr Tyr Cys Ile Ala Ser Asn Asp Ala
215 220 225

Gly Ser Ala Arg Cys Glu Glu Gln Glu Met Glu Val Tyr Asp Leu
230 235 240

Asn Ile Gly Gly Ile Ile Gly Gly Val Leu Val Val Leu Ala Val
245 250 255

Leu Ala Leu Ile Thr Leu Gly Ile Cys Cys Ala Tyr Arg Arg Gly
260 265 270

Tyr Phe Ile Asn Asn Lys Gln Asp Gly Glu Ser Tyr Lys Asn Pro
275 280 285

Gly Lys Pro Asp Gly Val Asn Tyr Ile Arg Thr Asp Glu Glu Gly
290 295 300

Asp Phe Arg His Lys Ser Ser Phe Val Ile
305 310