Tema 4 – Álgebra

Praticar – páginas 88 a 93

1.

1.1. 2x + 30

1.2. 2(x + 30)

1.3. 5 + 15x

1.4. 4x - 7

2.

2.1. $1,30 - 12 \rightarrow$ representa a poupança em 1 kg. Então em 20 kg poupa $20 \times (1,30 - 1,20)$

Logo, a opção correta é a [A].

2.2. $x \times (1,30-1,20) = x \times 0,10 = 0,10x = \frac{1}{10}x$

3.

3.1. 5x - 6 - x - 4

 \Leftrightarrow 5x - x = -4 + 6

 \Leftrightarrow 4x = 2

 $\Leftrightarrow 2x = 1$

3.2. 2(x-6) = 3x - 1

 \Leftrightarrow 2x - 12 = 3x - 1

 \Leftrightarrow 2x - 3x = -1 + 12

 \Leftrightarrow -x = 11

4.

4.1. x + 7 = 5

 $\Leftrightarrow x = 5 - 7$

 $\Leftrightarrow x = -2$

 $C.S. = \{-2\}$

4.2. x - 11 = 12

 $\Leftrightarrow x = 12 + 11$

 $\Leftrightarrow x = 23$

 $C.S. = \{23\}$

4.3. 2x - 1 = 2x + 3

 $\Leftrightarrow 2x - 2x = 3 + 1$

 $\Leftrightarrow 0x = 4$

C.S. = { } Equação impossível.

4.4. 3x = 18

 $\Leftrightarrow x = \frac{18}{3}$

 $\Leftrightarrow x = 6$

 $C.S. = \{6\}$

4.5. $\frac{x}{3} = 11$

 $\Leftrightarrow x = 33$

 $C.S. = {33}$

4.6. $\frac{2x-1}{5} = 2$

 $\Leftrightarrow 2x - 1 = 10$

 $\Leftrightarrow 2x = 10 + 1$

 $\Leftrightarrow 2x = 11$

 $\Leftrightarrow x = \frac{11}{2}$

C.S. = $\left\{ \frac{11}{2} \right\}$

4.7. 2(x-5) = -x-4

 \Leftrightarrow 2x - 10 = -x - 4

 \Leftrightarrow 2x + x = -4 + 10

 $\Leftrightarrow 3x = 6$

 $\Leftrightarrow x = \frac{6}{3}$

 $\Leftrightarrow x = 2$

 $C.S. = \{2\}$

4.8. $-(x-1) + 3 = \frac{x}{2}$

 $\Leftrightarrow -\frac{x}{1} + \frac{1}{1} + \frac{3}{1} = \frac{x}{2}$

 \Leftrightarrow -2x + 2 + 6 = x

 \Leftrightarrow -2x - x = -2 - 6

 \Leftrightarrow -3x = -8

 $\Leftrightarrow x = \frac{8}{3}$

 $C.S. = \left\{ \frac{8}{3} \right\}$

4.9. $\frac{3x}{2} - \frac{1}{1} = \frac{x+1}{2}$

 \Leftrightarrow 3x - 2 = x + 1

 \Leftrightarrow 3x - x = 1 + 2

 $\Leftrightarrow 2x = 3$

 $\Leftrightarrow x = \frac{3}{2}$

C.S. = $\left\{ \frac{3}{2} \right\}$

5. [A] $-3 \times (-3) + 4 = 9 + 4 = 13 \neq -13$

[B] $-(-3) + 5 = 3 + 5 = 8 \neq 2$

[C] $2(-3 + 4) = 2 \times 1 = 2$, a afirmação é verdadeira.

[D] $11 + (-3) = 8 \neq 14$

Logo, a opção correta é a [C].

6. Para verificar se 8 é solução de equação, basta substituir *x* por 8 e verificar a veracidade.

$$2(8-1) = \frac{8}{4} - (2 \times 8 - 4)$$

$$\Leftrightarrow$$
 2 × 7 = 2 – (16 – 4)

$$\Leftrightarrow 14 = 2 - (12)$$

$$\Leftrightarrow$$
 14 = -10 Falso

Então, 8 não é solução da equação.

7.
$$u_n = \frac{2n-4}{3}$$

7.1.
$$u_8 = \frac{2 \times 8 - 4}{3} = 4$$

7.2.
$$u_n = 78$$

$$\frac{2n-4}{3} = 78$$

$$\Leftrightarrow 2n-4=234$$

$$\Leftrightarrow 2n = 234 - 4$$

$$\Leftrightarrow 2n = 230$$

$$\Leftrightarrow n = \frac{230}{2}$$

$$\Leftrightarrow n = 115$$

R.: 78 é o termo de ordem 115.

8. Seja x a idade atual da Maria. Assim, x + 5 é a idade da Maria daqui a 5 anos e x - 5 é a idade da Maria há 5 anos.

$$x + 5 = 3(x - 5)$$

$$\Leftrightarrow x + 5 = 3x - 15$$

$$\Leftrightarrow x - 3x = -15 - 5$$

$$\Leftrightarrow$$
 $-2x = -20$

$$\iff x = \frac{-20}{-2}$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

R.: A idade atual da Maria é 10 anos.

- 9. Seja *x* o peso de uma esfera.
- 9.1. Como o peso total é 13 kg, então

$$4 + x + 6 = 13 \iff x = 13 - 4 - 6 \iff x = 3$$

$$C.S. = {3}$$

R.: A esfera pesa 3 kg.

9.2.
$$3x = x + 5 \iff 3x - x = 5$$

$$\Leftrightarrow 2x = 5 \Leftrightarrow x = \frac{5}{2}$$

$$\Leftrightarrow x = 2.5$$

$$C.S. = \{2,5\}$$

R.: Cada esfera pesa 2,5 kg.

9.3.
$$3x + 5 = 18$$

$$\Leftrightarrow$$
 3 $x = 18 - 5$

$$\Leftrightarrow 3x = 13$$

$$\Leftrightarrow x = \frac{13}{3}$$

C.S.: =
$$\frac{13}{3}$$

R.: Cada esfera pesa $\frac{13}{3}$ kg.

10.
$$P_{\text{pentágono}} = 3 \times P_{\text{triângulo}}$$

10.1.
$$5 \times 6 = 3 \times 3x \iff 9x = 30$$

10.2.
$$9x = 30 \iff x = \frac{30}{9} \iff x = \frac{10}{3}$$

$$C.S. = \left\{ \frac{10}{3} \right\}$$

Logo,
$$P = 3 \times \frac{10}{3} = 10$$

R.:
$$P = 10 \text{ cm}$$

11.

11.1. O perímetro é igual à soma de todos os lados do polígono.

Logo,
$$P = x + 2x + 2 + x + 8 + 3x - 1 =$$

$$= x + 2x + x + 3x + 2 + 8 - 1 =$$

$$= 7x + 9$$

11.2. Se
$$x = 3$$

$$P = 7 \times 3 + 9 = 30 \text{ cm}$$

Logo, a opção correta é a [B].

$$7x + 9 = 17,4$$

$$\Leftrightarrow$$
 $7x = 17,4 - 9$

$$\Leftrightarrow 7x = 8.4$$

$$\Leftrightarrow \frac{7}{1}x = \frac{42}{5}$$

$$\Leftrightarrow$$
 35 $x = 42$

$$\Leftrightarrow x = \frac{47}{35}$$

$$\Leftrightarrow x = \frac{6}{5}$$

$$\Leftrightarrow x = 1.2$$

$$C.S. = \{1, 2\}$$

12.
$$f(x) = g(x) \iff 2x + 4 = 6x - 4$$

- 12.1. a) primeiro membro: 2x + 4
- b) incógnita: x
- c) segundo membro: 6x 4

12.2.
$$2 \times 4 + 4 = 6 \times 4 - 4$$

$$\Leftrightarrow$$
 8 + 4 = 24 - 4

$$\Leftrightarrow$$
 12 = 20 Falso

R.: 4 não é solução da equação f(x) = g(x).

12.3.
$$f(x) = g(x)$$

$$2x + 4 = 6x - 4$$

$$\Leftrightarrow$$
 $2x - 6x = -4 - 4$

$$\Leftrightarrow$$
 $-4x = -8$

$$\Leftrightarrow x = \frac{-8}{-4}$$

$$\Leftrightarrow x = 2$$

$$C.S. = \{2\}$$

13. Sejam n, n + 1 e n + 2 três números inteiros consecutivos.

Assim,
$$n + n + 1 + n + 2 = 99$$

$$\Leftrightarrow n + n + n = 99 - 1 - 2$$

$$\Leftrightarrow 3n = 96$$

$$\Leftrightarrow n = \frac{96}{3}$$

$$\Leftrightarrow n = 32$$

$$C.S. = {32}$$

Logo,

$$n = 32$$

$$n + 1 = 33$$

$$n + 2 = 34$$

R.: Os números são 32, 33 e 34.

14.

14.1. Como 40 € é um valor constante e os 15 € é em função do tempo, C = 40 + 15n.

Logo, a opção correta é a [B].

14.2.
$$n = 3$$

$$C = 40 + 15 \times 3 = 40 + 45 = 85$$

R.: O Guilherme pagará 85 €.

$$40 + 15n = 190$$

$$\Leftrightarrow$$
 15n = 190 – 40

$$\Leftrightarrow 15n = 150$$

$$\Leftrightarrow n = \frac{150}{15}$$

$$\Leftrightarrow n = 10$$

$$C.S. = \{10\}$$

R.: A intervenção em casa do André demorou 10 horas.

15.

15.1.
$$2x - 4 = x + 8$$

$$\Leftrightarrow 2x - x = 8 + 4$$

$$\Leftrightarrow x = 12$$

$$C.S. = \{12\}$$

15.2.
$$3x - 11 = -x + 1$$

$$\Leftrightarrow$$
 $3x + x = 1 + 11$

$$\Leftrightarrow 4x = 12$$

$$\Leftrightarrow x = \frac{12}{4}$$

$$\Leftrightarrow x = 3$$

$$C.S. = \{3\}$$

15.3.
$$2x - 5 = 2x - 4$$

$$\Leftrightarrow$$
 $2x - 2x = -4 + 5$

$$\Leftrightarrow 0x = 1$$

Equação impossível. C.S. = {}

15.4.
$$3(x-2) = 3x - 5$$

$$\Leftrightarrow$$
 $3x - 6 = 3x - 5$

$$\Leftrightarrow$$
 $3x - 3x = -5 + 6$

$$\Leftrightarrow 0x = 1$$

Equação impossível. C.S. = {}

15.5.
$$2(x-2) = 4(x-1) - 2x$$

$$\Leftrightarrow$$
 $2x - 4 = 4x - 4 - 2x$

$$\Leftrightarrow$$
 $2x - 4x + 2x = -4 + 4$

$$\Leftrightarrow 0x = 0$$

Equação possível e indeterminada. C.S. = Q

15.6.
$$\frac{x}{2} - \frac{4x}{1} = \frac{6}{1}$$

$$\Leftrightarrow x - 8x = 12$$

$$\Leftrightarrow$$
 $-7x = 12$

$$\Leftrightarrow x = \frac{12}{-7}$$

$$\Leftrightarrow x = -\frac{12}{7}$$

$$C.S. = \left\{ -\frac{12}{7} \right\}$$

15.7.
$$\frac{x+1}{2} = 15$$

$$\Leftrightarrow x + 1 = 30$$

$$\Leftrightarrow x = 30 - 1$$

$$\Leftrightarrow x = 29$$

$$C.S. = \{29\}$$

15.8.
$$4 - \frac{2x - 1}{3} = 10$$
(×2)

$$\Leftrightarrow 12 - 2x + 1 = 30$$

$$\Leftrightarrow$$
 $-2x = 30 - 12 - 1$

$$\Leftrightarrow$$
 $-2x = 17$

$$\Leftrightarrow x = -\frac{17}{2}$$

C.S. =
$$\left\{ -\frac{17}{2} \right\}$$

15.9.
$$2(3-x)-\frac{x}{3}=\frac{x-3}{2}$$

$$\Leftrightarrow 6 - 2x - \frac{x}{3} = \frac{x - 3}{2}$$
(x6) (x6) (x2) (x3)

$$\Leftrightarrow$$
 36 – 12*x* – 2*x* = 3*x* – 9

$$\Leftrightarrow -12x - 2x - 3x = -9 - 36$$

$$\Leftrightarrow$$
 $-17x = -45$

$$\Leftrightarrow x = \frac{45}{17}$$

$$C.S. = \left\{ \frac{45}{17} \right\}$$

15.10.
$$1 - \frac{x-1}{4} = \frac{3(x+1)}{2}$$

$$\Leftrightarrow \frac{1}{1} - \frac{x-1}{4} = \frac{3x+3}{2}$$
(x2)

$$\Leftrightarrow$$
 4 - x + 1 = 6x + 6

$$\Leftrightarrow$$
 $-x - 6x = 6 - 4 - 1$

$$\Leftrightarrow$$
 $-7x = 1$

$$\Leftrightarrow x = -\frac{1}{7}$$

$$C.S. = \left\{ -\frac{1}{7} \right\}$$

16

16.1. Se a imagem é zero, então g(x) = 0.

$$3 - \frac{2}{3}(2 - 3x) = 0$$

$$\Leftrightarrow \frac{3}{1} - \frac{4}{3} + \frac{6}{3}x = 0$$

$$\Leftrightarrow$$
 9 – 4 + 6x

$$\Leftrightarrow$$
 $6x = -9 + 4$

$$\Leftrightarrow$$
 $6x = -5$

$$\Leftrightarrow x = -\frac{5}{6}$$

$$C.S. = \left\{ -\frac{5}{6} \right\}$$

R.: $-\frac{5}{6}$ é o zero da função g.

16.2.
$$f(x) = g(x)$$

$$2(x-3) + \frac{1}{2} = 3 - \frac{2}{3}(2-3x)$$

$$\Leftrightarrow 2 - 6 + \frac{1}{2} = 3 - \frac{4}{3} + \frac{6}{3}x$$

$$(\times 6) (\times 6) (\times 3) (\times 6) (\times 2) (\times 2)$$

$$\Leftrightarrow 12x - 36 + 3 = 18 - 8 + 12x$$

$$\Leftrightarrow$$
 12x - 12x = 18 - 8 + 36 - 3

 $\Leftrightarrow 0x = 43$ Equação impossível.

$$C.S. = \{ \}$$

17. A opção [A] não é correta porque

$$4 \times (-5) - 5 = 5(2 \times (-5) - 13)$$

$$\Leftrightarrow$$
 -20 - 5 = 5(-10 - 13)

$$\Leftrightarrow$$
 -25 = 5 × (-23) Falso

As equações são equivalentes se tiverem o mesmo conjunto-solução.

Resolvendo-as,

•
$$4x - 5 = 5(2x - 13)$$

$$\Leftrightarrow 4x - 5 = 10x - 65$$

$$\Leftrightarrow 4x - 10x = -65 + 5$$

$$\Leftrightarrow$$
 $-6x = -60$

$$\iff x = \frac{-60}{-6}$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

$$\bullet \ \frac{2(x+2)}{3} = 8$$

$$\Leftrightarrow \frac{2x+4}{3} = \frac{8}{1}$$

$$\Leftrightarrow$$
 2x + 4 = 24

$$\Leftrightarrow 2x = 24 - 4$$

$$\Leftrightarrow 2x = 20$$

$$\Leftrightarrow x = \frac{20}{2}$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

Logo, as equações são equivalentes e a opção [B] é a correta

A opção [C] não é a correta porque a equação é possível e determinada, C.S. = {10}

A opção [D] não é a correta porque a equação é possível e determinada, C.S. = {10}

Logo, a opção correta é a [B].

18. Seja x a herança deixada à Teresa.

Assim, x + 50~000 representa a herança deixada à Ana.

$$x + x + 50\ 000 = 200\ 000$$

$$\Leftrightarrow$$
 2x = 200 000 - 50 000

$$\Leftrightarrow$$
 2x = 150 000

$$\Leftrightarrow x = \frac{150\ 000}{2}$$

$$\Leftrightarrow x = 75000$$

Logo, x + 50 000 = 75 000 + 50 000 = 125 000

R.: A herança da Ana foi 125 000€.

19. Como $A = \frac{b \times h}{2}$ e a área é igual a 40 cm², então

$$40 = \frac{b \times 8}{2} \iff b = \frac{80}{8} \iff b = 10 \text{ cm}$$

R.: A base tem 10 cm de comprimento.

20. Seja x o número de rosas vermelhas. Assim, 2x é o número de rosas amarelas. Como existem 36 rosas no total, temos:

$$x + 2x = 36$$

$$\Leftrightarrow$$
 3 $x = 36$

$$\Leftrightarrow x = \frac{36}{3}$$

$$\Leftrightarrow x = 12$$

Logo,
$$2x \times 12 = 24$$

R.: O ramo tem 24 rosas amarelas.

21.
$$\frac{2}{5}$$
 — votaram

$$1 - \frac{2}{5} = \frac{5}{5} - \frac{2}{5} = \frac{3}{5}$$
 — não votaram, que são 81 alunos

$$81: \frac{3}{5} = 81 \times \frac{5}{3} = 135$$
, total de alunos.

R.: A escola do Francisco tem 135 alunos.

22. Como a soma das amplitudes dos ângulos internos de um triângulo é igual a 180°, então

$$4x + 50 + 6x + x + 20 = 180$$

$$\Leftrightarrow$$
 4x + 6x + x = 180 - 50 - 20

$$\Leftrightarrow 11x = 110$$

$$\Leftrightarrow x = \frac{110}{11}$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

Como x = 10, então

•
$$4x + 50 = 4 \times 10 + 50 = 90^{\circ}$$

•
$$6x = 6 \times 10 = 60^{\circ}$$

•
$$x + 20 = 10 + 20 = 30^{\circ}$$

O triângulo [ABC] é retângulo, porque um dos ângulos internos tem 90° de amplitude.

23. 146 - 2 = 144

Como são três autocarros, 144:3=48.

Logo, 48 é o número de alunos de dois autocarros.

$$48 + 2 = 50$$

R.: O autocarro mais cheio transportou 50 alunos.

24.
$$2(x-3) + 1 = k - 5x$$

24.1.
$$k = -2$$

$$2(x-3) + 1 = -2 - 5x$$

$$\Leftrightarrow$$
 $2x - 6 + 1 = -2 - 5x$

$$\Leftrightarrow 2x + 5x = -2 + 6 - 1$$

$$\Leftrightarrow 7x = 3$$

$$\Leftrightarrow x = \frac{3}{7}$$

$$C.S. = \left\{ \frac{3}{7} \right\}$$

24.2.
$$x = 5$$

$$2(5-3) + 1 = k-5 \times 5$$

$$\Leftrightarrow$$
 2 × 2 + 1 = k – 25

$$\Leftrightarrow$$
 $-k = -25 - 4 - 1$

$$\Leftrightarrow$$
 $-k = -30$

$$\Leftrightarrow k = 30$$

25. d = 100 cm

Se um dos quadrados tem mais 20 cm de perímetro, x + x + 20 = 100

$$\Leftrightarrow 2x = 100 - 20$$

$$\Leftrightarrow 2x = 80$$

$$\Leftrightarrow x = \frac{80}{2}$$

$$\Leftrightarrow x = 40$$

$$C.S. = \{10\}$$

Assim, x = 40 cm e x + 20 = 60 cm.

R.: O fio de 100 cm foi dividido em dois fios com 40 cm e 60 cm.

26. Seja x o valor do aluguer de uma loja. Assim, x + 0.2x representa o aluguer da loja mais cara.

$$Logo$$
, $x + x + 0.2x = 35000$

$$\Leftrightarrow$$
 2,2 x = 35 200

$$\Leftrightarrow \frac{22}{10}k = 35\ 200$$

$$\Leftrightarrow$$
 22 x = 352 000

$$\Leftrightarrow x = \frac{352\ 000}{22}$$

$$\Leftrightarrow x = 16000$$

$$C.S. = \{16\ 000\}$$

$$x = 16\ 000$$
 €

$$x + 0.2x = 19200 \in$$

R.: A renda mensal de cada uma das lojas é 16 000 € e 19 200 €.

27.

27.1.
$$3(x-1) + \frac{4x+2}{4} = \frac{x}{2} - (x-4)$$

$$\Leftrightarrow 3x - 3 + \frac{4x + 2}{4} = \frac{x}{2} - x + 4$$
(×4) (×4) (×4)

$$\Leftrightarrow$$
 12x - 12 + 4x + 2 = 2x - 4x + 16

$$\Leftrightarrow$$
 12x + 4x - 2x + 4x = 16 + 12 - 2

$$\Leftrightarrow$$
 18 $x = 26$

$$\Leftrightarrow x = \frac{26}{18}$$

$$\Leftrightarrow x = \frac{13}{9}$$

$$C.S. = \left\{ \frac{13}{9} \right\}$$

27.2.
$$-\frac{3(x-1)}{2} + \frac{x}{3} = 0$$

$$\Leftrightarrow -\frac{3x-3}{2} + \frac{x}{3} = 0$$

$$\Leftrightarrow$$
 $-9x + 9 + 2x = 0$

$$\Leftrightarrow$$
 $-9x + 2x = -9$

$$\Leftrightarrow$$
 $-7x = -9$

$$\Leftrightarrow x = \frac{9}{7}$$

$$C.S. = \left\{ \frac{9}{7} \right\}$$

27.3.
$$4 - \frac{x-2}{5} - \frac{\frac{x-1}{2} + 3}{3} = 0.2$$

$$\Leftrightarrow 4 - \frac{x - 2}{5} - \frac{\frac{x - 1}{2} + \frac{6}{2}}{2} = \frac{2}{10}$$

$$\Leftrightarrow 4 - \frac{x-2}{5} - \frac{x-1+6}{6} = \frac{2}{10}$$
(×30) (×6) (×5) (×3)

$$\Leftrightarrow 120 - 6x + 12 - 5x + 5 - 30 = 6$$

$$\Leftrightarrow$$
 $-6x - 5x = 6 - 120 - 12 - 5 + 30$

$$\Leftrightarrow$$
 $-11x = -101$

$$\Leftrightarrow x = \frac{101}{11}$$

C.S. =
$$\left\{ \frac{101}{11} \right\}$$

27.4.
$$4x - \frac{x - \frac{x}{3} + 2}{3} = -2(-x - 3)$$

$$\Leftrightarrow 4x - \frac{3x - x - 6}{3} = 2x + 6$$

$$\Leftrightarrow 4x - \frac{2x+6}{9} = 2x+6$$
(×9) (×9) (×9)

$$\Leftrightarrow 36x - 2x - 6 = 18x + 54$$

$$\Leftrightarrow 36x - 2x - 18x = 54 + 6$$

$$\Leftrightarrow 16x = 60$$

$$\Leftrightarrow x = \frac{60}{16}$$

$$\Leftrightarrow x = \frac{15}{4}$$

C.S. =
$$\left\{ \frac{15}{4} \right\}$$

28.

28.1. Seja *x* o número de eleitores.

$$\frac{2}{3}x + \frac{1}{6}x + 80 = x$$

28.2.
$$\frac{2}{3}x + \frac{1}{6}x + 80 = x$$
(×6) (×6)

$$\Leftrightarrow$$
 $4x + x + 480 = 6x$

$$\Leftrightarrow$$
 4x + x - 6x = -480

$$\Leftrightarrow$$
 $-x = -480$

$$\Leftrightarrow x = 480$$

$$C.S. = \{480\}$$

Como são 480 eleitores, a lista B recebeu 80 votos

$$\left(\frac{1}{6}x = \frac{1}{6} \times 480 = 80\right).$$

29. Seja *x* o valor que o Pedro recebeu.

$$\frac{x}{2} + \frac{x}{3} + 100 = x$$
(x3) (x2) (x6) (x6)

$$\Leftrightarrow 3x + 2x + 6000 = 6x$$

$$\Leftrightarrow 3x + 2x - 6x = -6000$$

$$\Leftrightarrow$$
 $-x = -6000$

$$\Leftrightarrow x = 6000$$

$$C.S. = \{6000\}$$

Como pagou 23% de imposto, x - 0.23x = 6000.

Assim,
$$0.77x = 6000 \iff x = 7792.21$$

R.: O Pedro recebeu 7792,21 € pela venda dos relógios.

30. Como $f(x) = g(x) \Leftrightarrow f(x) - g(x) = 0$, o conjunto-solução é o mesmo, ou seja, $\{1, 2, 3\}$.

Logo, a opção correta é a [D].

31. Traduzindo o problema por uma equação, temos: x + 42 = (13 + x) + (15 + x)

$$x + 42 = (13 + x) + (13 + x)$$

$$\Leftrightarrow x - x - x = 13 + 15 - 42$$

$$\Leftrightarrow$$
 $-x = -14$

$$\Leftrightarrow x = 14$$

$$C.S. = \{14\}$$

R.: Daqui a 14 anos a idade da mãe será igual à soma das idades dos filhos.

32. Sabemos que f(x) = 3x - 12.

32.1.
$$g(x) = 7 e x = 2$$
.

Então, por exemplo, g(x) = 3x + 1.

32.2. Por exemplo, 3x - 12 = 3x - 1 é uma equação impossível, então g(x) = 3x - 1.

32.3. Por exemplo, x - 12 = 6x - 24 é uma equação possível e determinada. Então, g(x) = 6x - 24.

33. Para que f(x) - g(x) seja igual a zero é necessário que f(x) seja igual a g(x), ou seja,

$$f(x) - g(x) = 0 \iff f(x) = g(x)$$

Como
$$f(2) = g(2) = -2 e f(0) = g(0) = 4$$
, então

$$f(x) - g(x) = 0 \iff x = 0 \lor x = 2$$

$$C.S. = \{0, 2\}$$

34.
$$\frac{x-1}{3}$$
 – $(x-1) = 0$

$$\Leftrightarrow \frac{x-1}{3} - x + 1 = 0$$
(×3) (×3)

$$\Leftrightarrow \frac{x-1}{3} - \frac{3x}{3} + \frac{3}{3} = 0$$

$$\Leftrightarrow x - 1 - 3x + 3 = 0$$

$$\Leftrightarrow x - 3x = 1 - 3$$

$$\Leftrightarrow -2x = -2$$

$$\Leftrightarrow x = 1$$

$$C.S. = \{1\}$$

A afirmação falsa é a da opção [B].

35. Seja x o valor que cada um recebeu. Assim, $\frac{6}{7}x$ é o valor que o João gastou e $\frac{1}{8}x$ é o valor com que o Filipe ficou.

Como o João gastou $\frac{6}{7}x$, então ficou $\frac{1}{7}x$.

$$\frac{1}{8}x + 1 = \frac{1}{7}x$$
(7) (56) (8)

$$\Leftrightarrow$$
 $7x + 56 = 8x$

$$\Leftrightarrow$$
 $7x - 8x = -56$

$$\Leftrightarrow x = 56$$

$$C.S. = \{56\}$$

R.: O avô deu a cada um dos netos 56 €.

36.
$$50 - 10 = 40$$
 cm

$$36.1.40:2=20$$

Cada fita tem (20 + 10) cm = 30 cm de comprimento.

36.2. Como cada fita mede 30 cm 30 + 30 = 60 cm 60 - 56 = 4 cm, sobrepostos.

R.: A zona sobreposta tem 4 cm de comprimento.

Monómios

Praticar – páginas 98 a 103

1.

1.1. Parte numérica: 13

Parte literal: y^3

1.2. Parte numérica: 12

Parte literal: não tem

1.3. Parte numérica: $17k^7$

Parte literal: x^2

1.4. Parte numérica: $\frac{7a^5}{3}$

Parte literal: b^7

2.

2.1.
$$A = 5b \times 5b = 25b^2$$

2.2.
$$A = x^2y \times 2x^2y = 2x^4y^2$$

2.3.
$$A = \frac{5t \times 2t^2y}{2} = 5t^3y$$

3.

3.1. a)
$$A + 2B =$$

$$= 6x3 - 3x + 2(-3x3 + 2x2 - 3x + 1) =$$

= 6x³ - 3x - 6x³ + 4x² - 6x + 2 =

$$=4x^2-9x+2$$

b)
$$B - 2C =$$

$$=-3x^3 + 2x^2 - 3x + 1 - 2(-x^2 + 2x) =$$

$$= -3x^3 + 2x^2 - 3x + 1 + 2x^2 - 4x =$$

$$=-3x^3+4x^2-7x+1$$

c) -B + A =

$$= -(-3x^3 + 2x^2 - 3x + 1) + 6x^3 - 3x =$$

$$= 3x^3 - 2x^2 + 3x - 1 + 6x^3 - 3x =$$

$$= 9x^3 - 2x^2 - 1$$

3.2. O simétrico de *B* é:

$$-B = 3x^3 - 2x^2 + 3x - 1$$

3.3. Se x = -2

$$B = -3 \times (-2)^3 + 2 \times (-2)^2 - 3 \times (-2) + 1 =$$

$$= -3 \times (-8) + 2 \times 4 + 6 + 1 =$$

$$= 24 + 8 + 6 + 1 =$$

= 39

4

4.1.
$$(x + 1)^2 = x^2 + 2x + 1$$

4.2.
$$(x-1)^2 = x^2 - 2x + 1$$

4.3.
$$(x-2)^2 = x^2 - 4x + 4$$

4.4.
$$(x + 2)^2 = x^2 + 4x + 4$$

4.5.
$$(x-3)^2 = x^2 - 6x + 9$$

4.6.
$$(x + 5)^2 = x^2 + 10x + 25$$

4.7.
$$(x + 10)^2 = x^2 + 20x + 100$$

4.8.
$$(x-7)^2 = x^2 - 14x + 49$$

5.1.
$$x^2 - 1$$

5.2.
$$x^2 - 4$$

5.3.
$$x^2 - 25$$

5.4.
$$x^2 - 36$$

5.5.
$$x^2 - 100$$

5.6.
$$x^2 - 121$$

6.1.
$$(x - 5)^2 = x^2 - 10x + 25$$

6.2.
$$(x-7)^2 = x^2 - 14x + 49$$

6.3.
$$(x - 6)(x + 6) = x^2 - 36$$

6.4.
$$(2x-7)(2x+7)=4x^2-49$$

7

7.1.
$$10x - 5 = 2 \times 5 \times x - 5 = 5(2x - 5)$$

7.2.
$$x^2 - 12x = x \times x - 12 \times x = x(x - 12)$$

7.3.
$$y^3 - 7y = y \times y^2 - 7y = y(y^2 - 7)$$

7.4.
$$t^4 - t^5 = t^4 - t \times t^4 = t^4(1 - t)$$

7.5.
$$80abc - 7ab = ab(80c - 7)$$

7.6.
$$5(x-1) - x(x-1) = (x-1)(5-x)$$

8. [A]
$$2(x^2 - 6x + 9) = 2x^2 - 12x + 18$$

[B]
$$2(x-3)^2 = 2(x^2 - 6x + 9) = 2x^2 - 12x + 18$$

[C]
$$2(x-3)(x-3) = 2(x^2-6x+9) = 2x^2-12x+18$$

[D]
$$2(x-3)(x+3) = 2(x^2-9) = 2x^2-18$$

A opção correta é a [D].

9.

9.1.
$$x^2 - 16 = (x - 4)(x + 4)$$

9.2.
$$x^2 - 10x + 25 = (x - 5)^2 = (x - 5)(x - 5)$$

9.3.
$$a^2 - 36 = (a - 6)(a + 6)$$

9.4.
$$100 - x^2 = (10 - x)(10 + x)$$

9.5.
$$t^2 + 6t + 9 = (t + 3)^2 = (t + 3)(t + 3)$$

9.6.
$$4x^2 + 4x + 1 = (2x + 1)^2 = (2x + 1)(2x + 1)$$

10.

10.1.
$$2(x-3) = x^2$$

$$\Leftrightarrow 2x - 6 - x^2 = 0$$

$$\Leftrightarrow$$
 $-x^2 + 2x - 6 = 0$

10.2.
$$(x-5)^2 - 3x = -3$$

$$\Leftrightarrow x^2 - 10x + 25 - 3x + 3 = 0$$

$$\Leftrightarrow x^2 - 13x + 28 = 0$$

10.3.
$$2\left(\frac{x}{3}-2\right)\left(\frac{x}{3}+2\right)=-1$$

$$\Leftrightarrow 2\left(\frac{x^2}{9} - 4\right) + 1 = 0$$

$$\Leftrightarrow \frac{2}{9}x^2 - 8 + 1 = 0$$

$$\Leftrightarrow \frac{2}{9}x^2 - 7 = 0$$

11.

11.1.
$$(x-1)(x-5)=0$$

$$\Leftrightarrow x - 1 = 0 \lor x - 5 = 0$$

$$\Leftrightarrow x = 1 \lor x = 5$$

$$C.S. = \{1, 5\}$$

11.2.
$$(2x-4)(x-1)=0$$

$$\Leftrightarrow$$
 $2x - 4 = 0 \lor x - 1 = 0$

$$\Leftrightarrow$$
 2x = 4 \vee x = 1

$$\Leftrightarrow x = \frac{4}{2} \lor x = 1$$

$$\Leftrightarrow x = 2 \lor x = 1$$

$$C.S. = \{1, 2\}$$

11.3.
$$\left(\frac{x}{2} - 3\right) \left(\frac{x}{5} - 1\right) = 0$$

$$\Leftrightarrow \frac{x}{2} - 3 = 0 \lor \frac{x}{5} - 1 = 0$$

$$\Leftrightarrow \frac{x}{2} = 3 \lor \frac{x}{5} = 1$$

$$\Leftrightarrow x = 6 \lor x = 5$$

$$C.S. = \{5, 6\}$$

11.4.
$$(7x - 6)(2x - 5) = 0$$

$$\Leftrightarrow$$
 $7x - 6 = 0 \lor 2x - 5 = 0$

$$\Leftrightarrow$$
 $7x = 6 \lor 2x = 5$

$$\Leftrightarrow x = \frac{6}{7} \lor x = \frac{5}{2}$$

C.S. =
$$\left\{ \frac{6}{7}, \frac{5}{2} \right\}$$

11.5.
$$-(-5-x)\left(\frac{x}{3}+3\right)=0$$

$$\Leftrightarrow 5 + x = 0 \lor \frac{x}{3} + 3 = 0$$

$$\Leftrightarrow x = -5 \lor \frac{x}{3} = -3$$

$$\Leftrightarrow x = -5 \lor x = -9$$

$$C.S. = \{-9, -5\}$$

11.6.
$$(x + 11)(2x - 5) = 0$$

$$\Leftrightarrow x + 11 = 0 \lor 2x - 5 = 0$$

$$\Leftrightarrow x = -11 \lor 2x = 5$$

$$\Leftrightarrow x = -11 \lor x = \frac{5}{2}$$

C.S. =
$$\left\{-11, \frac{5}{2}\right\}$$

12.

12.1. Substituindo *x* por 0 obtém-se:

$$2 \times 0^2 - 32 = 0 \iff -32 = 0$$
 Falso

Assim, concluímos que 0 não é solução da equação.

12.2.
$$2x^2 - 32 = 2(x^2 - 16) = 2(x - 4)(x + 4) =$$

$$= (2x - 8)(x + 4)$$

12.3.
$$2x^2 - 32 = 0$$

$$\Leftrightarrow$$
 2($x^2 - 16$) = 0

$$\Leftrightarrow$$
 2(x - 4) (x + 4) = 0

$$\Leftrightarrow x - 4 = 0 \lor x + 4 = 0$$

$$\Leftrightarrow x = 4 \lor x = -3$$

$$C.S. = \{-4, 4\}$$

13.
$$A_{\square} = b \times h \in A_{\square} = \ell^2$$

Logo,
$$A_{\Box} = (x - y)(x + 2y) e A_{\Box} = x^2$$
.

Então,
$$A_{\text{amarelo}} = (x - y)(x + 2y) - x^2 =$$

$$= x^2 + 2xy - yx - 2y^2 - x^2 =$$

$$=xy-2y^2$$

14. A equação que traduz o problema é

$$2 \times (x^2 + 5) = 18$$
.

Resolvendo a equação temos:

$$\Leftrightarrow$$
 2 x^2 + 10 = 18

$$\Leftrightarrow 2x^2 = 18 - 10$$

$$\Leftrightarrow x^2 = \frac{8}{2}$$

$$\Leftrightarrow x^2 = 4$$

$$\Leftrightarrow x \pm \sqrt{4}$$

$$\Leftrightarrow x = -2 \lor x = 2$$

$$C.S. = \{-2, 2\}$$

R.: Existem dois números nestas condições, -2 e 2.

15. $x^2 + 100 = 0 \iff x^2 = -100$. Equação impossível C.S. = { }

Logo, a opção correta é a [B].

16. ? × $4kw^2 = 16^2w^2$ ou seja, $\frac{16k^2w^3}{4kw^2} = 4kw$

17.

17.1. Monómios semelhantes são monómios com a mesma parte literal.

Por exemplo, $-3a^2b^3 = \frac{4}{5}a^2b^3$.

17.2.
$$a = -1$$
 e $b = 2$

$$3(-1)^2 \times 2^3 = 3 \times 8 = 24$$

18.

18.1. Por exemplo, -5xy.

18.2. Por exemplo, x + 8.

18.3. Por exemplo, $x^2 + 2x + 1$.

18.4. Por exemplo, $y^3 + 6$.

19.

19.1.
$$2 + (2x - 6)(2x + 6) - (x - 3)^2 =$$

$$= 2 + 4x^2 - 36 - (x^2 - 6x + 9) =$$

$$= 2 + 4x^2 - 36 - x^2 + 6x - 9 =$$

$$= 3x^2 + 6x - 43$$

19.2.
$$(-x + 1)^2 - 3(x - 1)(x + 1) =$$

$$= x^2 - 2x + 1 - 3(x^2 - 1) =$$

$$= x^2 - 2x + 1 - 3x^2 + 3 =$$

$$=-2x^2-2x+4$$

20. Consideremos, por exemplo, os polinómios

$$x^3 - 2x^2 + x + 3 e x^3 - 2x^2 + 4x - 1$$

$$x^3 - 2x^2 + x + 3 - (x^3 - 2x^2 + 4x - 1) =$$

$$= x^3 - x^3 - 2x^2 + 2x^2 + x - 4x + 3 + 1 =$$

$$=-3x + 4$$

Ou seja, a diferença entre os dois polinómios é um polinómio do 1.º grau.

Nota: Basta que a parte numérica dos termos de grau 3 e de grau 2 seja igual nos dois polinómios.

21.
$$P = \frac{b \times h}{2}$$
.

Assim,
$$P = \frac{4x \times (3x+5)}{2} = 2x(2x+5) = 4x^2 + 10x$$

22. A área do setor circular é igual a $\frac{3}{4}$ da área do círculo. Assim,

$$\frac{3}{4} \pi \times r^2 = \pi \times x^2 = \frac{3\pi x^2}{4}$$

Logo, a opção correta é a [D].

23. $V_{\text{paralelepípedo}} = c \times \ell \times h$

Logo,
$$V_{\text{caixa}} = (2x - 4) \times 2x \times x = (2x - 4) \times 2x^2 = 4x^3 - 8x^2$$

24.

24.1.
$$A = b \times h$$

Logo,
$$A = (x + 5) (x - 2) = x^2 - 2x + 5x - 10 =$$

$$= x^2 + 3x - 10$$

24.2.
$$A = 36 \iff x^2 = 36 \iff x = 6$$

O perímetro do retângulo que se obtém é:

$$P = 2(x + 5) + 2(x - 2) =$$

$$= 2x + 10 + 2x - 4 =$$

$$= 4x + 6$$

Para x = 6, temos $P = 4 \times 6 + 6 = 24 + 6 = 30$

R.:
$$P = 30$$
 u.c.

25.1.
$$(2x - 8)(x - 3) = 0$$

$$\Leftrightarrow$$
 $2x - 8 = 0 \lor x - 3 = 0$

$$\Leftrightarrow 2x = 8 \lor x = 3$$

$$\Leftrightarrow x = \frac{8}{2} \lor x = 3$$

$$\Leftrightarrow x = 4 \lor x = 3$$

$$C.S. = \{3, 4\}$$

25.2.
$$9x^2 + 16 = 24x$$

$$\Leftrightarrow 9x^2 - 24x + 16 = 0$$

$$\iff (3x - 4)^2 = 0$$

$$\Leftrightarrow$$
 $(3x-4)(3x-4)=0$

$$\Leftrightarrow 3x - 4 = 0$$

$$\Leftrightarrow$$
 $3x = 4$

$$\Leftrightarrow x = \frac{4}{3}$$

C.S. =
$$\left\{ \frac{4}{3} \right\}$$

25.3.
$$21x^2 = 7x$$

$$\Leftrightarrow$$
 $21x^2 - 7x = 0$

$$\Leftrightarrow 7x(3x-1)=0$$

$$\Leftrightarrow$$
 $7x = 0 \lor 3x - 1 = 0$

$$\Leftrightarrow x = 0 \lor 3x = 1$$

$$\Leftrightarrow x = 0 \lor x = \frac{1}{3}$$

C.S. =
$$\left\{0, \frac{1}{3}\right\}$$

25.4.
$$4x^2 - 36 = 0$$

$$\Leftrightarrow$$
 $(2x - 6)(2x + 6) = 0$

$$\Leftrightarrow 2x - 6 = 0 \lor 2x + 6 = 0$$

$$\Leftrightarrow$$
 2x = 6 \vee 2x = -6

$$\Leftrightarrow x = \frac{6}{2} \lor x = -\frac{6}{2}$$

$$\Leftrightarrow x = 3 \lor x = -3$$

$$C.S. = \{-3, 3\}$$

25.5.
$$7x^2 = 28$$

$$\Leftrightarrow x = \frac{28}{7}$$

$$\Leftrightarrow x^2 = 4$$

$$\Leftrightarrow x = \sqrt{4} \lor x = \sqrt{4}$$

$$\Leftrightarrow x = -2 \lor x = 2$$

$$C.S. = \{-2, 2\}$$

25.6.
$$49 - 9x^2 = 0$$

$$\Leftrightarrow$$
 $-9x^2 = -49$

$$\Leftrightarrow x^2 = \frac{49}{9}$$

$$\iff x = \pm \sqrt{\frac{49}{9}}$$

$$\Leftrightarrow x = -\frac{7}{3} \lor x = \frac{7}{3}$$

C.S. =
$$\left\{ -\frac{7}{3}, \frac{7}{3} \right\}$$

26. Seja x o comprimento do lado de um quadrado e 2x o comprimento do lado de um outro quadrado. Assim,

$$(2x)^2 - x^2 = 27$$

$$\Leftrightarrow 4x^2 - x^2 = 27$$

$$\Leftrightarrow$$
 $3x^2 = 27$

$$\Leftrightarrow x^2 = \frac{27}{3}$$

$$\Leftrightarrow x^2 = 9$$

$$\Leftrightarrow x = \pm 3$$

$$C.S. = \{3\}$$

Como x > 0, então x = 3 cm.

Logo, o quadrado maior tem 6 cm de lado $(2 \times 3 = 6)$, e o seu perímetro é igual a 24 cm $(6 \times 4 = 24)$.

27.
$$A_{[ABCD]} = (x + 3 + x) \times (x + 2 + x + 2) =$$

$$= (2x + 3)(2x + 4) =$$

$$= 4x^2 + 8x + 6x + 12 =$$

$$=4x^2+14x+12$$

$$A_{[BGFE]} = (x + 3) \times (x + 2) =$$

$$= x^2 + 2x + 3x + 6 =$$

$$= x^2 + 5x + 6$$

Logo,
$$A_{\text{verde}} = 4x^2 + 14x + 12 - (x^2 + 5x + 6) =$$

$$= 4x^2 - x^2 + 14x - 5x + 12 - 6 =$$

$$=3x^2+9x+6$$

28.

28.1. Se não tem termo independente,

$$a^2 - 4 = 0 \iff a^2 = 4 \iff a = -2 \lor a = 2$$

$$C.S. = \{-2, 2\}$$

R.:
$$a = -2$$
 ou $a = 2$

28.2. $a - 2 = 0 \iff a = 2$, mas se a = 2 o polinómio não tem termo independente.

R.: Impossível, não existe nenhum valor de *a* nas condições pedidas.

29.

29.1. Por exemplo, $4x^2 - 3x = 3x^4 + 2x + 1$.

29.2. Por exemplo, $3x^4 + 3x^3 + x = 3x^4 + 2x + 5$.

29.3. Por exemplo, $2x^4 + 3x^2 + 7$ e $2x^4 + 3x^2 + 2x$.

30.

30.1. Se *P* é do 2.º grau, então $k - 3 = 0 \iff k = 3$

30.2. Se
$$k = 3$$
 e $k - 2 = 0 \iff k = 2$

Não é possível porque se k = 3 o polinómio é do 2.º grau e se k = 2, o polinómio é do 4.º grau.

31.

31.1.
$$3x^2 \times (x-6) - (x-6) \times 7 = (x-6)(3x^2-7)$$

31.2.
$$4y^2 - 8xy + 4x^2 = (2y - 2x)^2$$

32.

32.1.
$$5(x-3)^2 = 125$$

$$\Leftrightarrow (x-3)^2 = \frac{125}{5}$$

$$\Leftrightarrow$$
 $(x-3)^2 = 25$

$$\Leftrightarrow x-3=-5 \lor x-3=5$$

$$\Leftrightarrow x = -5 + 3 \lor x = 5 + 3$$

$$\Leftrightarrow x = -2 \lor x = 8$$

$$C.S. = \{-2, 8\}$$

32.2.
$$(x-3)^2 - 5(x-3) = 0$$

$$\Leftrightarrow (x-3)(x-3-5) = 0$$

$$\Leftrightarrow x - 3 = 0 \lor x - 8 = 0$$

$$\Leftrightarrow x = 3 \lor x = 8$$

$$C.S. = \{3, 8\}$$

32.3.
$$2(x \cdot 3)^2 = 19 + (x - 1)(x + 1)$$

$$\Leftrightarrow 2(x^2 - 6x + 9) = 19 + x^2 - 1$$

$$\Leftrightarrow 2x^2 - 12x + 18 - 19 - x^2 + 1 = 0$$

$$\Leftrightarrow x^2 - 12x = 0$$

$$\Leftrightarrow x(x-12)=0$$

$$\Leftrightarrow x = 0 \lor x - 12 = 0$$

$$\Leftrightarrow x = 0 \lor x = 12$$

$$C.S. = \{0, 12\}$$

32.4.
$$3x^2 = 24(x-2)$$

$$\Leftrightarrow 3x^2 - 24x + 48 = 0$$

$$\Leftrightarrow 3(x^2 - 8x + 16) = 0$$

$$\Leftrightarrow$$
 3(x - 4)² = 0

$$\Leftrightarrow x - 4 = 0$$

$$\Leftrightarrow x = 4$$

$$C.S. = \{4\}$$

33.
$$(3x - n)^2 = 9x^2 - 42x + n^2 =$$

$$= 2 \times 3 \times x \times (-n) =$$

$$=-6xn$$

$$-42x = -6xn \iff n = \frac{-42x}{-6x} \iff n = 7$$

Logo, a opção correta é a [D].

34.

34.1.
$$x^2 + 3x - 18 =$$

$$=(x^2-3x)+(6x-18)=$$

$$= x(x-3) + 6(x-3) =$$

$$= (x - 3)(x + 6)$$

34.2.
$$x^2 = -3(x - 6)$$

$$\Leftrightarrow x^2 + 3(x - 6) = 0$$

$$\Leftrightarrow x^2 + 3x - 18 = 0$$

$$\Leftrightarrow$$
 $(x-3)(x+6)=0$

$$\Leftrightarrow x - 3 = 0 \lor x + 6 = 0$$

$$\Leftrightarrow x = 3 \lor x = -6$$

$$C.S. = \{-6, 3\}$$

35.

35.1.
$$(ax^2 - 4y)(3bx^3 - 4cz + 4) + 16(y - cyz) =$$

$$= 3abx^5 - 4aczx^2 + 49x^2 - 12bx^3y + 16czy - 16y +$$

$$+16y - 16cyz =$$

$$= 3abx^5 + 4ax^2 - 4aczx^2 - 12bx^3y$$

35.2.
$$ax(3x^2 - 4by + 1) - 3x(aby) + 7ax =$$

$$= 3ax^3 - 4abxy + ax - 3abxy + 7ax =$$

$$= 3ax^3 - 7abyx + 6ax$$

36. Se
$$A = 18x^2$$
 então, como $A_{\triangle} = \frac{b \times h}{2}$,

$$18x^2 = \frac{2x \times h}{2} \iff h = \frac{18x^2 \times 2}{2x} \iff h = 18x$$

37.
$$A_{[ABCD]} - A_{[EFGH]} = g^2 - h^2 = (g - h)(g + h)$$

38

38.1. a) Se
$$t = 0$$
, então $h = -(-0 - 2)^2 + 10$

$$\Leftrightarrow h = -4 + 20$$

$$\Leftrightarrow h = 6 \text{ m}$$

b) Se
$$t = 1$$
, então $h = -(1 - 2)^2 + 10$

$$\Leftrightarrow h = -1 + 10$$

$$\Leftrightarrow h = 9 \text{ m}$$

38.2.
$$h = 0$$

$$-(t-2)^2+10$$

$$\Leftrightarrow -(t-2)^2 = -10$$

$$\Leftrightarrow (t-2)^2 = 10$$

$$\Leftrightarrow t - 2 = -\sqrt{10} \lor t - 2 = \sqrt{10}$$

$$\Leftrightarrow t = -\underbrace{\sqrt{10} - 2}_{\leq 0} \lor t = \sqrt{10} + 2$$

Logo,
$$t \approx 5.2$$
 s.

39.
$$2(x^3 - 25) + 7(x - 5) =$$

= $\sqrt{2}(x - 5)(x + 5) + 7(x - 5) =$
= $(x - 5)(2x + 10 + 7) =$

$$=(x-5)(2x+17)$$

40.

40.1. As dimensões do paralelepípedo II são x - y, y e y, então o volume é igual a

$$V = (x - y) \times y \times y = xy^2 - y^3$$

40.2.
$$V_{III} = (x - y) \times y \ (x - y) = (x - y)^2 \times y =$$

= $(x^2 - 2xy + y^2)y = x^2y - 2xy^2 + y^3$
 $V_{IV} = (x - y) \ (x - y) \times y = (x - y)^2 \times y = \dots =$
= $x^2y - 2xy^2 + y^3$

40.3.
$$V_{\text{cubo}} - V_{\text{I}} - V_{\text{II}} - \underbrace{V_{\text{III}} - V_{\text{IV}}}_{\text{são iguais}} =$$

$$= x^{3} - y^{3} - (xy^{2} - y^{3}) - 2 \times (x^{2}y - 2xy^{2} + y^{3}) =$$

$$= x^{3} - y^{3} - xy^{2} + y^{3} - 2x^{2}y + 4xy^{2} + 2y^{3} =$$

$$= x^{3} - y^{3} + 3xy^{2} + y^{3} - 2x^{2}y - 2y^{3} =$$

$$= x^{3} - y (2x^{2} - 3xy + 2y^{2})$$

41.
$$A = \frac{9}{2}$$

$$\frac{(x-4)\times(x+4)}{2} = \frac{9}{2}$$

$$\iff (x-4)(x+4) = 9$$

$$\Leftrightarrow x^2 - 16 - 9 = 0$$

$$\Leftrightarrow x^2 - 25 = 0$$

$$\Leftrightarrow x - 5)(x + 5) = 0$$

$$\Leftrightarrow x = 5 \lor x = -5$$

$$C.S. = \{-5, 5\}$$

Como x > 0, então x = 5 cm.

O cateto maior mede 9 cm (x + 4 = 5 + 4 = 9).

42. Como
$$A = 900 \text{ cm}^2$$
, então $(a - 30)^2 = 900$

$$\Leftrightarrow (a-30)^2 - 30^2 = 0$$

$$\Leftrightarrow$$
 $(a - 30 - 30)(a - 30 + 30) = 0$

$$\Leftrightarrow a - 60 = 0 \lor a = 0$$

$$\Leftrightarrow a = 60 \lor \underbrace{a = 0}_{a > 0}$$

$$\Leftrightarrow a = 60$$

R.:
$$a = 60 \text{ m}$$

Equações literais. Sistemas de duas equações

Praticar – páginas 106 a 111

1.
$$5x - 3y = -20$$
, se $x = -1$ e $y = 5$
 $5 \times (-1) - 3 \times 5 = -20 \times -5 - 15 = -20 \times -20 = 20$
Verdade

$$(-1, 5)$$
 é solução da equação $5x - 3y = -20$

2.
$$2x - y = 6$$

Por exemplo, (1, –4) é solução de equação:

$$2 \times 1 - \underbrace{(-4)}_{x} = 2 + 4 = 6$$

(2, −2) é solução de equação:

$$2 \times 2 - (-2) = 4 + 2 = 6$$

(-3, -12) é solução de equação:

$$2 \times \underbrace{(-3)}_{x} - \underbrace{(-12)}_{y} = -6 + 12 = 6$$

Logo, (1, -4), (2, -2) e (-3, -12) são soluções de equação 2x - y = 6.

3. Por exemplo, (–5, 1) ↑ ↑

$$2 \times (-5) + 1 = -10 + 1 = 9$$
, então $2x + y = -9$.

4.

4.1.
$$x - 5y - 7 = 0 \iff x = 5y + 7$$

4.2.
$$2x - 8y = 10$$

$$\Leftrightarrow$$
 2x = 8y + 10

$$\Leftrightarrow x = \frac{8y + 10}{2}$$

$$\Leftrightarrow x = 4y + 5$$

4.3.
$$3y = 5x - 11$$

$$\Leftrightarrow$$
 $5x - 11 = 34$

$$\Leftrightarrow$$
 $5x = 3y + 11$

$$\Leftrightarrow x = \frac{3}{5}y + \frac{11}{5}$$

5. Verificar se (2, 4) é solução do sistema é verificar se é solução das duas equações.

$$\begin{cases} 2 \times 2 - 4 \times 4 = 12 \\ \Leftrightarrow \begin{cases} 4 - 16 = 12 \\ \Leftrightarrow \end{cases} \begin{cases} -12 = 12 \text{ Falso} \end{cases}$$

$$2 \times 2 - 4 \times 4 = 2 \qquad \Leftrightarrow \begin{cases} 2 \times 2 - 4 \times 4 = 12 \\ \Leftrightarrow \end{cases}$$

Concluímos que (2, 4) não é solução do sistema porque não é solução de uma das equações.

6. [A] (8,2)

$$\begin{cases} 8-2=7 \\ -2\times8+5\times2=-5 \end{cases} 6=7 \text{ Falso}$$

Logo, (8, 2) não é solução do sistema.

[B] (10, 3)

$$\begin{cases} 10 - 3 = 7 & \text{ } \begin{cases} 7 = 7 & \text{ } \\ -2 \times 10 + 5 \times 3 = -5 \end{cases} \begin{cases} 7 = 7 & \text{ } \\ -20 + 15 = -5 \end{cases} \begin{cases} 7 = 7 & \text{ } \\ -5 = -5 & \text{ } \end{cases}$$

Logo (10, 3) é solução do sistema.

[C] (2, 8)

$$\begin{cases} 2-8=7 \\ \Leftrightarrow \\ -2 \times 2 + 5 \times 8 = -5 \end{cases}$$
 \Leftrightarrow $\begin{cases} -6=7 \text{ Falso} \end{cases}$

Logo, (2, 8) não é solução do sistema.

[D] (3, 10)

$$\begin{cases} 3 - 10 = 7 \\ \Leftrightarrow \\ -2 \times 3 + 5 \times 10 = -5 \end{cases} \leftarrow \begin{cases} -7 = 7 \text{ Falso} \\ - \Rightarrow \\ - \Rightarrow \end{cases}$$

Logo, (3, 10) não é solução do sistema. A opção correta é a [B].

7.

7.1. Forma canónica

$$\begin{cases} x + y = 9 \\ x + y = 15 \end{cases} \Leftrightarrow \begin{cases} x - (15 - x) = 9 \\ y = 15 - x \end{cases} \Leftrightarrow \begin{cases} x + x = 9 + 15 \\ \Rightarrow \end{cases} \begin{cases} 2x = 24 \\ \Rightarrow \end{cases} \begin{cases} x = \frac{24}{2} \\ \Rightarrow \end{cases} \begin{cases} x = 12 \\ y = 3 \end{cases}$$

$$C.S. = \{(12, 3)\}$$

7.2. Forma canónica

$$\begin{cases} x + y = 1 \\ -x + y = 9 \end{cases} \Leftrightarrow \begin{cases} y = 1 - x \\ -x + 1 - x = 9 \end{cases} \Leftrightarrow \begin{cases} -2x = 9 - 1 \\ -2x = 9 - 1 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = \frac{8}{-2} \end{cases} \Leftrightarrow \begin{cases} y = 1 - (-4) \\ x = -4 \end{cases} \Leftrightarrow \begin{cases} x = -4 \end{cases}$$

C.S. = $\{(-4, 5)\}$

7.3. Forma canónica

$$\begin{cases} 2x + y = -10 \\ x + y = -3 \end{cases} \Leftrightarrow \begin{cases} 2x - 3 - x = -10 \\ y = -3 - x \end{cases} \Leftrightarrow \begin{cases} 2x - x = -10 + 3 \\ ----- \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -7 \\ y = -3 - (-7) \end{cases} \Leftrightarrow \begin{cases} x = -7 \\ y = 4 \end{cases}$$

$$C.S. = \{(-7, 4)\}$$

7.4. Forma canónica

$$\begin{cases} 2y - x = 7 \\ -y + x = -1 \end{cases} \Leftrightarrow \begin{cases} -x + 2y = 7 \\ x - y = -1 \end{cases} \Leftrightarrow \begin{cases} -(-1 + y) + 2y = 7 \\ x = -1 + y \end{cases}$$
$$\Leftrightarrow \begin{cases} 1 - y + 2y = 7 \\ \Leftrightarrow \end{cases} \begin{cases} -y + 2y = 7 - 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 6 \\ x = -1 + 6 \end{cases} \Leftrightarrow \begin{cases} y = 6 \\ x = 5 \end{cases}$$

 $C.S. = \{(5, 6)\}$

7.5. Forma canónica

$$\begin{cases} 2x + y = 2 \\ \Leftrightarrow \\ -7y - 3x = -3 \end{cases} \begin{cases} 2x + y = 2 \\ \Rightarrow \\ -3x - 7y = -3 \end{cases} \begin{cases} y = 2 - 2x \\ \Rightarrow \\ -3x - 7(2 - 2x) = -3 \end{cases}$$

$$\Leftrightarrow \begin{cases} -y + 2y = 7 - 1 \\ \Rightarrow \\ -3x + 14x = -3 + 14 \end{cases}$$

$$\Leftrightarrow \begin{cases} -3x + 14x = -3 + 14 \\ \Rightarrow \\ 11x = 11 \end{cases} \Leftrightarrow \begin{cases} x = \frac{11}{11} \\ x = 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 2 - 2 \\ \Rightarrow \\ x = 1 \end{cases}$$

 $C.S. = \{(1, 0)\}\$

7.6. Forma canónica

$$\begin{cases} 4x - 2y = 14 \\ \Leftrightarrow \\ 2y + x = -4 \end{cases} \begin{cases} 2x - y = 7 \\ x + 2y = -4 \end{cases} \Leftrightarrow \begin{cases} 2(-4 - 2y) - y = 7 \\ x = -4 - 2y \end{cases}$$

$$\Leftrightarrow \begin{cases} -8 - 4y - y = 7 \\ \Leftrightarrow \end{cases} \begin{cases} -4y - y = 7 + 8 \\ \Leftrightarrow \end{cases} \begin{cases} -5y = 15 \\ \Leftrightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{15}{-5} \\ \Leftrightarrow \end{cases} \Leftrightarrow \begin{cases} x = -4 - 2 \times (-3) \end{cases} \Leftrightarrow \begin{cases} x = -3 \\ x = 2 \end{cases}$$

C.S. = $\{(2, -3)\}$

8.

8.1. Por exemplo, (0, 4) porque

 $3 \times 0 + 2 \times 4 = 8 \Leftrightarrow 8 = 8$ Verdadeiro

e $4 = 2 \times 0 - 3 \Leftrightarrow 4 = -3$ Falso

8.2. Por exemplo, (3, 3) porque

 $3 = 2 \times 3 - 3 \iff 3 = 3$ Verdadeiro

e $3 \times 3 + 2 \times 3 = 8 \Leftrightarrow 6 + 6 = 8$ Falso

8.3. A solução do sistema é o par ordenado (2, 1). É o ponto de interseção das duas retas.

8.4. Resolvendo o sistema pelo método de substituição,

$$\begin{cases} 3x + 2y = 8 \\ y = 2x - 3 \end{cases} \Leftrightarrow \begin{cases} 3x + 2y = 8 \\ \Leftrightarrow \\ -2x + y = -3 \end{cases} \begin{cases} 3x + 2(-3 + 2x) = 8 \\ y = -3 + 2x \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x - 6 + 4x = 8 \\ \Leftrightarrow \end{cases} \begin{cases} 3x + 4x = 8 + 6 \\ \Leftrightarrow \end{cases} \begin{cases} 7x = 14 \\ \Leftrightarrow \end{cases} \begin{cases} x = 2 \\ y = -3 + 2 \times 2 \end{cases} \Leftrightarrow \begin{cases} x = 2 \\ y = 1 \end{cases}$$

$$C.S. = \{(2, 1)\}$$

9. Como o perímetro é igual a 100 cm,

$$P = 100$$

$$2 \times (2x + y) + 2 \times (3x + 2y) = 10$$

$$\Leftrightarrow 4x + 2y + 6x + 4y = 100$$

$$\Leftrightarrow$$
 10x + 6y = 10

$$\Leftrightarrow$$
 $5x + 3y = 50$

9.1. Se
$$x = 4$$
, $5 \times 4 + 3y = 50$

$$\Leftrightarrow$$
 20 + 3 y = 50

$$\Leftrightarrow$$
 3 $y = 50 - 20$

$$\Leftrightarrow$$
 3 $y = 30$

$$\Leftrightarrow y = \frac{30}{3}$$

$$\Leftrightarrow y = 10$$

9.2. Se
$$y = 5$$
, $5x + 3 \times 5 = 50$

$$\Leftrightarrow$$
 5x + 15 = 50

$$\Leftrightarrow$$
 5x = 50 – 15

$$\Leftrightarrow$$
 $5x = 35$

$$\Leftrightarrow x = \frac{35}{5}$$

$$\Leftrightarrow x = 7$$

Como
$$x = 7 e y = 5$$

$$A = (3x + 2y) \times (2x + y)$$
, ou seja,

$$A = (3 \times 7 + 2 \times 5) \times (2 \times 7 + 5) =$$

$$= (21 + 10) \times (14 + 5) = 31 \times 19 = 589$$

R.: $A = 589 \text{ cm}^2$

10. Para determinar o par ordenado (x, y) basta resolver o sistema pelo método de substituição.

Forma canónica

$$\begin{cases} 2(x-1) = 4 + y \\ -y - x = 1 \end{cases} \Leftrightarrow \begin{cases} 2x - 2 - y = 4 \\ -x - y = 1 \end{cases} \Leftrightarrow \begin{cases} 2x - y = 4 + 2 \\ -x - y = 1 \end{cases} \Leftrightarrow \begin{cases} 2(-y - 1) - y = 6 \\ -x = 1 + y \end{cases} \Leftrightarrow \begin{cases} -3y = 8 \\ -x = -\left(-\frac{8}{3}\right) - 1 \end{cases} \Leftrightarrow \begin{cases} x = \frac{8}{3} - \frac{5}{3} \end{cases}$$

$$\Leftrightarrow \begin{cases} y = -\frac{8}{3} \\ x = \frac{5}{3} \end{cases}$$

$$C.S. = \left\{ \left(\frac{5}{3}, -\frac{8}{3} \right) \right\}$$

10.1. Para
$$x = \frac{5}{3}$$
 e $y = -\frac{8}{3}$, temos

$$2x + 3y = 2 \times \frac{5}{3} + 3 \times \left(-\frac{8}{3}\right) = \frac{10}{3} - \frac{24}{3} = -\frac{14}{3}$$

10.2. Para
$$x = \frac{5}{3}$$
 e $y = -\frac{8}{3}$, temos

$$x - y = \frac{5}{3} - \left(-\frac{8}{3}\right)^2 = \frac{5}{3} - \frac{64}{9} = \frac{15}{9} - \frac{64}{9} = -\frac{49}{9}$$

10.3. Para
$$x = \frac{5}{3}$$
 e $y = -\frac{8}{3}$, temos

$$(x+y)^2 = \left(\frac{5}{3} + \left(-\frac{8}{3}\right)\right)^2 = \left(\frac{5}{3} - \frac{8}{3}\right)^2 =$$

$$= \left(-\frac{3}{3}\right)^2 = (-1)^2 = 1$$

11. *x*: idade do Fernando

y: idade da filha mais velha do Fernando

• x + y = 42

x + 5 – idade do Fernando daqui a 5 anos.

y + 5 – idade da filha mais velha do Fernando dagui a 5 anos

• $x + 5 = 3 \times (y + 5)$

Resolvendo o sistema com as duas equações

$$\begin{cases} x+y=42 & \Leftrightarrow \begin{cases} x+y=42 & \Leftrightarrow \\ x+5=3(y+5) & x+5=3y+15 \end{cases} \Leftrightarrow \begin{cases} y=8 \end{cases}$$

Forma canónica

$$\begin{cases} x + y = 41 \\ x - 3y = 10 \end{cases} \Leftrightarrow \begin{cases} x = 42 - y \\ 42 - y - 3y = 10 \end{cases} \Leftrightarrow \begin{cases} -4y = -32 \\ 4y = -32 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 42 - 8 \\ y = 8 \end{cases} \Leftrightarrow \begin{cases} x = 34 \\ y = 8 \end{cases}$$

 $C.S. = \{(34, 8)\}$

R.: O Fernando tem 34 anos.

12.

12.1. Como as retas são estritamente paralelas, o sistema é impossível.

12.2.
$$x \mid y = -x + 6$$

0 6 \rightarrow -0 + 6 = 6
2 4 \rightarrow -2 + 6 = 4

Logo, a reta contém os pontos (0, 6) e (2, 4).

12.3. a) Por exemplo,

$$\begin{cases} y = -x + 6 \\ \text{porque são retas concorrentes} \\ y = 2x + 1 \end{cases}$$

b) Por exemplo,

$$\begin{cases} y = 2x - 1 \\ y = 2x - 1 \end{cases}$$
 porque são retas coincidentes
$$y = 2x - 1$$

13. Sejam x o preço de cada martelo e y o preço de cada chave inglesa

de cada chave inglesa
$$\begin{cases}
3x + 2y = 29 \\
2x + 3y = 31
\end{cases}
\Rightarrow
\begin{cases}
3x = 29 - 2y \\
2\left(\frac{29 - 2y}{3}\right) + 3y = 31
\end{cases}
\Rightarrow
\begin{cases}
\frac{58}{3} - \frac{4}{3} + 3y = 31
\end{cases}
\Rightarrow
\begin{cases}
\frac{58 - 4y + 9y = 93}{3}
\end{cases}
\Rightarrow
\begin{cases}
x = \frac{29 - 2 \times 7}{3}
\end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{-4y + 9y = 93 - 58} \end{cases} \Leftrightarrow \begin{cases} \frac{1}{y = \frac{35}{5}} \Leftrightarrow \begin{cases} x = \frac{29 - 2 \times 7}{3} \\ y = 7 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{15}{3} \\ & \Leftrightarrow \end{cases} \begin{cases} x = 5 \\ y = 7 \end{cases}$$

Como cada martelo custa 5 € e cada chave inglesa 7 €. 5 martelos custam $5 \times 5 = 25 \in e$ cada chave inglesa 7 €.

Então 5 martelos e chave inglesa fica por 27 + 7 = 32 €

R.: O novo pack custará 32 €.

14.

14.1. Como se trata de um hexágono, n = 6 $S = (6 - 2) \times 180^{\circ} = 720^{\circ}$

14.2. Como
$$x = 1080^{\circ}$$
, $(n - 2) \times 180^{\circ} = 1980^{\circ}$

$$\Leftrightarrow n - 2 = \frac{1980}{180}$$

$$\Leftrightarrow n-2=11$$

$$\Leftrightarrow$$
 $n = 11 + 2$

$$\Leftrightarrow n = 13$$

R.: O polígono tem 13 lados.

14.3. Como se trata de um pentágono, n = 5

$$S = (5 - 2) \times 180 \iff S = 540^{\circ}$$

O pentágono tem cinco ângulos internos então, cada ângulo tem $108^{\circ} (540^{\circ} : 5 = 108^{\circ})$.

14.4.
$$S = (n-2) \times 180^{\circ}$$

$$\Leftrightarrow$$
 $(n-2) \times 180^{\circ} = S$

$$\Leftrightarrow n-2=\frac{S}{180}$$

$$\Leftrightarrow n = \frac{S}{180} + 2$$

15.1. Se
$$x = 3$$
, $y - 2 - \frac{2}{3}x = 4 \iff y - \frac{2}{3} \times 3 = 4$

$$\Leftrightarrow y = 4 + 2$$

$$\Leftrightarrow y = 6$$

Se
$$x = 6$$
, $y - \frac{2}{3}x = 4 \iff y - \frac{2}{3} \times 6 = 4$

$$\Leftrightarrow y = 4 + 4$$

$$\Leftrightarrow y = 8$$

Se, por exemplo, x = 9,

$$y - \frac{2}{3}x = 4 \iff y - \frac{2}{3} \times 9 = 4$$

$$\Leftrightarrow y = 4 + 6$$

$$\Leftrightarrow y = 10$$

Então

x	0	3	6	9
у	4	6	8	10

15.2. Marcar, por exemplo, os pontos (0, 4) e (3, 6) no referencial e traçar a reta que contém esses pontos.

- 15.3. A solução do sistema é (3, 6), ponto onde as duas retas se intersetam.
- **15.4.** Por exemplo, y = -2x. Basta que as duas retas tenham o mesmo declive.

Como as retas são estritamente paralelas, o sistema é impossível.

16. Para que (3, –2) seja solução de um sistema é necessário que seja solução das duas equações.

[A]
$$\begin{cases} 2k + y = 4 \\ x + y = 5 \end{cases} \Leftrightarrow \begin{cases} 2 \times 3 + (-2) = 4 \\ 3 + (-2) = 5 \end{cases} \Leftrightarrow \begin{cases} 6 - 2 = 4 \ \lor \\ 3 - 2 = 5 \ F \end{cases}$$

(3, -2) não é solução da 2.a equação. Logo, não é solução do sistema.

[B]
$$\begin{cases} -x - \frac{y+2}{3} = 3 \\ & \Leftrightarrow \end{cases} \begin{cases} -3 - \frac{-2+2}{3} = 3 \end{cases}$$

Como (3, –2) não é solução da 1.ª equação não é solução do sistema.

[C]
$$\begin{cases} \frac{x}{3} - y = -\frac{3}{2} \\ -(x - 2y) + 1 = -10 \end{cases} \Leftrightarrow \begin{cases} \frac{3}{3} - (-2) = -\frac{3}{2} \\ -(-2) = -\frac{3}{2} \end{cases}$$

$$\Leftrightarrow \begin{cases} 1 + 2 = -\frac{3}{2} \text{ Falso} \\ \underline{\hspace{1cm}}$$

Como (3, –2) não é solução da 1.ª equação não é solução do sistema.

$$[D] \begin{cases} x = 1 - y \\ y = -x + 1 \end{cases} \Leftrightarrow \begin{cases} 3 = 1 - (-2) \\ -2 = -3 + 1 \end{cases} \Leftrightarrow \begin{cases} 3 = 3 \ \lor \\ -2 = -2 \ \lor \end{cases}$$

(3, -2) é solução do sistema, porque é solução das duas equações.

Logo, a opção correta é a [D].

17. (1, −7) e (4, 5) são pontos da reta *r*.

Assim, o declive da reta é:

$$a = \frac{5 - (-7)}{4 - 1} = \frac{12}{3} = 4$$

Substituindo, por exemplo, x = 4 e y = 5, na equação y = ax + b obtemos:

$$5 = 4 \times b \iff b = 16 + 5 \iff b = -11$$

Logo, a = 4 e b = -11

18

18.1. O sistema III, porque está escrito na forma $\begin{cases} ax + bx = c \\ a'x + b'y = c' \end{cases}$

18 2

$$\begin{cases} 2x - \frac{1}{2}(y - 3) = 2 \\ \frac{x}{2} - \frac{y}{3} = -3 \\ (x3) \quad (x2) \quad (x6) \end{cases} \Leftrightarrow \begin{cases} 2x - \frac{1}{2}y + \frac{3}{2} = 2 \\ (x2) \quad (x2) \end{cases}$$

$$\Leftrightarrow \begin{cases} 4x - y = 1 \\ 3x - 2y = -18 \end{cases}$$
(Forma canónica)

18.3. [A] (1, 5)

$$\begin{cases} \frac{1}{5} \times 1 = -1 + 2 \times 5 \\ 1 - 3 \times 5 = 2 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{5} = 9 \text{ Falso} \\ \frac{1}{5} = 9 \text{ Falso} \end{cases}$$

Logo, (1, 5) não é solução do sistema II porque não é solução da 1.ª equação do sistema.

[R] (_1 _1)

$$\begin{cases} \frac{1}{5} \times (-1) = -1 + 2 \times (-1) \\ -1 - 3 \times (-1) = 2 \end{cases} \Leftrightarrow \begin{cases} -\frac{1}{5} = -3 & \text{F} \\ 2 = 2 & \text{V} \end{cases}$$

Logo, (-1, -1) não é solução do sistema II porque não é solução da 1.ª equação do sistema.

[C] (5, 1)

$$\begin{cases} \frac{1}{5} \times 5 = -1 + 2 \times 1 \\ 5 - 3 \times 1 = 2 \end{cases} \Leftrightarrow \begin{cases} 1 = 1 \ \lor \\ 2 = 2 \ \lor \end{cases}$$

Logo, (5, 1) é solução do sistema II porque é solução das duas equações do sistema.

[D] (1, 1)

$$\begin{cases} \frac{1}{5} \times 1 = -1 + 2 \times 1 \\ 1 - 3 \times 1 = 2 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{5} = 1 & \mathsf{F} \\ -2 = 2 & \mathsf{F} \end{cases}$$

Logo, (1, 1) não é solução do sistema porque não é solução das duas equações.

Assim a opção correta é a [C].

18.4. Escrevendo o sistema na forma canónica, obtemos

$$\begin{cases} \frac{1}{5}x = -1 + 2y \\ (\times 5) & (\times 5) \iff \begin{cases} x = -5 + 10y \\ x - 3y = 2 \end{cases} \Leftrightarrow \begin{cases} x - 10y = -5 \\ x - 3y = 2 \end{cases}$$

Resolvendo as duas equações em ordem a y

$$\begin{cases} -10y = -5 - x \\ -3y = 2 - x \end{cases} \Leftrightarrow \begin{cases} y = \frac{-5 - x}{-10} \\ y = \frac{2 - x}{-3} \end{cases} \Leftrightarrow \begin{cases} x = \frac{1}{2} + \frac{x}{10} \\ y = -\frac{2}{3} + \frac{x}{3} \end{cases}$$

Sistema possível e determinado.

$$C.S. = \{(5, 1)\}$$

18.5.

$$\begin{cases} 2x - 5y = 4 \\ -3x + y = -2 \end{cases} \Leftrightarrow \begin{cases} 2x - 5(-2 + 3x) = 4 \\ y = -2 + 3x \end{cases}$$

$$\Leftrightarrow \begin{cases} 2x + 10 - 15x = 4 \\ \Leftrightarrow \end{cases} \begin{cases} 2x - 15x = 4 - 10 \end{cases}$$

$$\Leftrightarrow \begin{cases} -13x = -6 \\ \Leftrightarrow \begin{cases} x = \frac{6}{13} \\ y = -2 + 3 \times \frac{6}{13} \end{cases} \Leftrightarrow \begin{cases} x = \frac{6}{13} \\ y = -2 + \frac{18}{13} \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{\sqrt{13}} & \Leftrightarrow \begin{cases} x = \frac{6}{13} \\ y = -\frac{26}{13} + \frac{18}{13} \end{cases} \end{cases} \Leftrightarrow \begin{cases} x = \frac{6}{13} \\ y = -\frac{8}{13} \end{cases}$$

$$C.S. = \begin{cases} \frac{6}{13}, -\frac{8}{13} \end{cases}$$

19. O sistema I é impossível porque as retas r e s são estritamente paralelas.

O sistema II é possível e indeterminado porque as retas r e s são coincidentes.

Os sistemas III e IV são possíveis e determinados porque as retas *r* e *s* são concorrentes.

20. Sejam *x* o preço de um par de calças e *y* o preço de uma blusa

20.1. x + y – preço de um par de calças e de uma blusa.

$$\begin{cases} x + y = 85 \\ x - 6 = y + 7 \end{cases}$$

20.2. x + y – preço de um par de calças e de uma blusa

$$\begin{cases} x+y=85 \\ x-6=y+7 \end{cases} \Leftrightarrow \begin{cases} x+y=85 \\ x-y=13 \end{cases} \Leftrightarrow \begin{cases} x+y=85 \\ 85-y-y=13 \end{cases}$$

$$\Leftrightarrow \begin{cases} -y - y = 13 - 85 \end{cases} \Leftrightarrow \begin{cases} -2y = -72 \\ -2y = -72 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 85 - 36 \\ y = 36 \end{cases} \Leftrightarrow \begin{cases} x = 49 \\ y = 36 \end{cases}$$

$$C.S. = \{(49, 36)\}$$

R.: As calças custaram 49 € e a blusa 36 €.

21. Seja *x* a idade do João e *y* a idade do Filipe.

21.1. x + 5 representa a idade do João daqui a 5 anos e y + 5 representa a idade do Filipe daqui a 5 anos.

$$\begin{cases} x + y = 42 \\ x + 5 + y + 5 = 52 \end{cases}$$

21.2

$$\begin{cases} x + y = 42 \\ x + y = 52 - 10 \end{cases} \Leftrightarrow \begin{cases} x + y = 42 \\ x + y = 42 \end{cases}$$

Como as equações são equivalentes, o sistema é possível e indeterminado, o que significa que o sistema tem uma infinidade de soluções.

21.3. Por exemplo, (10, 32), (15, 27), (20, 22) e (21, 21).

22. Seja x o número de notas de 20 € e y o número de notas de 100 €.

$$\begin{cases} 20x + 100y = 1000 \\ x + y = 26 \end{cases} \Leftrightarrow \begin{cases} 20(26 - y) + 100y = 1000 \\ x = 26 - y \end{cases}$$
$$\begin{cases} 520 - 20y + 100y = 1000 \end{cases}$$

$$\Leftrightarrow \begin{cases} -20y + 100y = 1000 - 520 \\ \Leftrightarrow \end{cases} \begin{cases} 80y = 4000 - 520 \\ \Leftrightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{480}{80} \\ \\ ---- \end{cases} \Leftrightarrow \begin{cases} y = 6 \\ x = 26 - 6 \end{cases} \Leftrightarrow \begin{cases} y = 6 \\ x = 20 \end{cases}$$

$$C.S. = \{(20, 6)\}$$

O Pedro tem 20 notas de $20 ext{ } ext{€} ext{ } ext{6} ext{ notas de } 100 ext{ } ext{€}.$ Em notas de $20 ext{ } ext{€}, ext{ o Pedro tem } 20 ext{ } ext{€} ext{20} = 400 ext{ } ext{€}, ext{ ou seja, a quantia \'e inferior a } ext{419,99 } ext{€}.$

R.: O Pedro não consegue comprar a bicicleta, apenas com as notas de 20 €.

23. Para determinar as coordenadas de *A* basta resolver o sistema.

$$\begin{cases} y = 4x - 8 \\ y = 3x + 3 \end{cases} \Leftrightarrow \begin{cases} 2x + 3 = 4x - 8 \\ \Leftrightarrow \end{cases} \begin{cases} 2x - 4x = -8 - 3 \\ \Leftrightarrow \end{cases} \begin{cases} -2x = -11 \\ \Leftrightarrow \end{cases} \begin{cases} x = \frac{11}{2} \\ y = 2 \times \frac{11}{2} + 3 \end{cases} \begin{cases} x = 11 + 3 \end{cases} \begin{cases} x = 14 \end{cases}$$

C.S. =
$$\left\{ \left(\frac{11}{2}, 14 \right) \right\}$$

Logo, $A = \left(\frac{11}{2}, 14 \right)$

O ponto B é um ponto do eixo Ox, ou seja, tem de ordenada zero. A abcissa de B é igual à abcissa de A, $\frac{11}{2}$.

Logo, *B* tem coordenadas $\left(\frac{11}{2}, 0\right)$.

$$A_{[OBA]} = \frac{b \times h}{2}$$

$$A_{[OBA]} = \frac{\frac{11}{2} \times 14}{2} = \frac{154}{4} = 38,5 \text{ u.a.}$$

24.

24.1. Como a 1.ª equação, y = ax + 2, tem ordenada na origem 2, corresponde à reta vermelha.

Determinando o declive, o valor de a:

a reta contém por exemplo, o ponto (1, 0), então

$$0 = a \times 1 + 2 \iff a = -2$$

$$y = -2x + 2$$

Os pontos (3, -2) e (6, 0) pertencem à reta de equação bx + cy = d e -4 é a ordenada na origem, então

$$bx + cy = d \iff y = -\frac{b}{c}x + \frac{d}{c} = \frac{d}{c} = -4.$$

Assim,
$$y = -\frac{b}{c}x - 4$$

Utilizando, por exemplo, os pontos (3, -2) e (6, 0), podemos determinar o seu declive.

$$\frac{0-(-2)}{6-3} = \frac{2}{3}$$
, ou seja, $-\frac{b}{c} = \frac{2}{3}$.

Escrevendo a equação $y = \frac{2}{3}x - 4$ na forma bx + cy = d, temos:

$$y = \frac{2}{3}x - 4 \iff -\frac{2}{3}x + 3y = -4 \iff -2x + 3y = -12$$

ou seja, $b = -2$, $c = 3$ e $d = -12$.

R.: a = -2 e, por exemplo, b = -2, c = 3 e d = -12. **24.2.** O sistema é possível e determinado porque as retas são concorrentes. Como as retas se intersetam no ponto de coordenadas (3, -2), a solução do sistema é C.S. = $\{(3, -2)\}$.

24.3. Como a = -2 (por 24.1.), pretendemos representar a reta de equação y = -2x - 2.

24.4. O sistema é impossível porque as retas de equações y = ax + 2 (a vermelho) e y = ax - 2 (alínea 24.3.) são paralelas.

25. [A]
$$-4 \times \frac{1}{2} + (-3) = 5 \iff -2 - 3 = 5 \iff -5 = 5$$
 Falso.

$$\left(\frac{1}{2}, -5\right)$$
 não é solução da equação.

[B]
$$6 \times \frac{1}{2} + (-3) = 2 \iff 3 - 3 = 2$$
 Falso

$$\left(\frac{1}{2}, -5\right)$$
 não é solução da equação.

[C]
$$-2 \times \frac{1}{2} - (-3) = 20 \iff -1 + 3 = 20$$
 Falso

$$\left(\frac{1}{2}, -5\right)$$
 não é solução da equação.

[D]
$$\frac{1}{2} + \frac{(-3)}{2} = -1 \Leftrightarrow -\frac{2}{2} = -1$$
 Verdadeiro

Assim, a outra equação é $x + \frac{y}{2} = -1$ e a opção correta é a [D].

26.
$$A = \pi \times r^2 \iff r^2 = \frac{A}{\pi} \iff r = \sqrt{\frac{A}{\pi}}$$

Logo, a opção correta é a [B].

27

$$\begin{cases} 3x + 2y = 11 \\ \Leftrightarrow \\ 2x - 2 + y = 4 \end{cases} \Rightarrow \begin{cases} 3x + 2y = 11 \\ \Leftrightarrow \\ 2x + y = 6 \end{cases} \Rightarrow \begin{cases} 3x + 2(6 - 2x) = 11 \\ \Leftrightarrow \\ y = 6 - 2x \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 12 - 4x = 11 \\ \Leftrightarrow \\ \end{cases} \Rightarrow \begin{cases} 3x - 4x = 11 - 12 \\ \Leftrightarrow \\ \end{cases} \Rightarrow \begin{cases} -x = -1 \\ \Leftrightarrow \\ \end{cases} \Rightarrow \begin{cases} x = 1 \\ \Leftrightarrow \\ \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1 \\ \end{cases} \end{cases} \end{cases} \Rightarrow \begin{cases} x = 1$$

$$C.S. = \{(1, 4)\}$$

Como (k-2p, k-p) é solução do sistema, temos:

$$\begin{cases} k - 2p = 1 \\ k - p = 4 \end{cases} \Leftrightarrow \begin{cases} k = 1 + 2p \\ 1 + 2p - p = 4 \end{cases} \Leftrightarrow \begin{cases} k = 7 \\ p = 3 \end{cases}$$

Logo, k = 7 e p = 3.

28.

$$\begin{cases} -6x + 3y = 12 \\ -ax + y = b \end{cases}$$

28.1. Por exemplo, a = 1 e b = 2.

28.2. a = 2 e, por exemplo, b = 2.

28.3. Por exemplo, a = 2 e b = 2.

29. Seja *x* o número de adultos e *y* o número de crianças.

$$\begin{cases} x + y = 300 \\ 10x + 3y = 2440 \end{cases} \Leftrightarrow \begin{cases} x = 300 - y \\ 10(300 - y) + 3y = 2440 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3000 - 10y + 3y = 2440 \\ -7y = -560 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 300 - 80 \\ y = 80 \end{cases} \Leftrightarrow \begin{cases} x = 220 \\ y = 80 \end{cases}$$

 $C.S. = \{(220, 80)\}$

R.: Assistiram à peça 80 crianças.

30.

30.1.

$$\begin{cases} 4 - \frac{x+y}{2} = 6 \\ \frac{2x-6}{2} = 2\left(x + \frac{y}{2}\right) - x \end{cases} \Leftrightarrow \begin{cases} \frac{4}{1} - \frac{x+y}{2} = \frac{6}{1} \\ \frac{2x}{2} - \frac{6}{2} = 2x + \frac{2y}{2} - x \end{cases}$$

$$\Leftrightarrow \begin{cases} 8 - x - y = 12 \\ x - 3 = 2x + y - x \end{cases} \Leftrightarrow \begin{cases} -x - y = 12 - 8 \\ x - 2x + x - y = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x - y = 4 \\ 0x - y = 3 \end{cases} \Leftrightarrow \begin{cases} -x - (-3) = 4 \\ y = -3 \end{cases}$$

$$\Leftrightarrow \begin{cases} -x + 3 = 4 \\ -x = 4 - 3 \\ \Rightarrow \begin{cases} -x = 1 \\ -x = 3 \end{cases} \Leftrightarrow \begin{cases} -x = 1 \\ -x = 3 \end{cases}$$

$$C.S. = \{(-1, 3)\}$$

30.2

$$\begin{cases} \frac{3x-1}{3} + y = 2 \\ -\frac{x-1}{3} = 2y - (2x-1) \end{cases} \Leftrightarrow \begin{cases} \frac{3x-1}{3} + \frac{y}{1} = \frac{2}{1} \\ -\frac{x-1}{3} = \frac{2y}{2} - \frac{2x}{2} + \frac{1}{1} \\ (\times 3) & (\times 3) \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x - 1 + 3y = 6 \\ -x + 1 = 6y - 6x + 3 \end{cases} \Leftrightarrow \begin{cases} 3x + 3y = 6 + 1 \\ -x + 6x - 6y = 3 - 1 \end{cases}$$

$$\Leftrightarrow \begin{cases} 3x + 3y = 5 \\ 5x - 6y = 2 \end{cases} \begin{cases} 3x = 5 - 3y \\ \Leftrightarrow \\ 5 \times \left(\frac{5}{3} - y\right) - 6y = 2 \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{3} - \frac{5y}{1} - \frac{6y}{1} = \frac{2}{1} \\ \frac{25}{3} - \frac{5y}{1} - \frac{6y}{1} = \frac{2}{1} \end{cases} \Leftrightarrow \begin{cases} \frac{1}{25 - 15y - 18y} = 6 \end{cases}$$

$$\Leftrightarrow \begin{cases} -33y = -19 \\ -33y = -19 \end{cases} \Leftrightarrow \begin{cases} -\frac{19}{33} \\ y = \frac{19}{33} \end{cases} \Leftrightarrow \begin{cases} x = \frac{5}{3} - \frac{19}{33} \\ (\times 11) \end{cases}$$

$$\Leftrightarrow \begin{cases} x = \frac{55}{33} - \frac{19}{33} \\ (\times 12) \end{cases} \Leftrightarrow \begin{cases} x = \frac{36}{33} \\ (\times 12) \end{cases} \Leftrightarrow \begin{cases} x = \frac{12}{11} \\ y = \frac{19}{33} \end{cases}$$

$$C.S. = \left\{ \left(\frac{12}{11}, \frac{19}{33}\right) \right\}$$

31. Como
$$\frac{x+4y}{3} = x - 2y = 6$$
 podemos escrever

$$\begin{cases} \frac{x+4y}{3} = 6 \\ x-2y = 6 \end{cases} \Leftrightarrow \begin{cases} x+4y = 18 \\ x = 6+2y \end{cases} \Leftrightarrow \begin{cases} 6+2y+4y = 18 \\ ---- \end{cases}$$
$$\Leftrightarrow \begin{cases} 6y = 12 \\ x = 6+2 \times 2 \end{cases} \Leftrightarrow \begin{cases} y = 2 \\ x = 10 \end{cases}$$

C.S. =
$$\{(10, 2)\}$$

R.: $x = 10 \text{ e } y = 2$.

32. Seja
$$\frac{x}{y}$$
 a fração pedida.

$$\begin{cases} \frac{x-6}{y} = \frac{1}{4} \\ \frac{x}{y+2} = \frac{1}{2} \end{cases} \Leftrightarrow \begin{cases} 4x - 24 = y \\ 2x = y + 2 \end{cases} \Leftrightarrow \begin{cases} -2x = 4x - 24 + 2 \\ 2x = 4x - 24 + 2 \end{cases}$$
$$\Leftrightarrow \begin{cases} -2x = -24 + 2 \\ -2x = -22 \end{cases} \Leftrightarrow \begin{cases} 4 \times 11 - 24 = y \\ x = 11 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 20 \\ x = 11 \end{cases}$$

$$C.S. = \{(11, 20)\}$$

R.: A fração é
$$\frac{11}{20}$$

33.
$$x + \frac{y}{2} = 3y - \frac{x}{5} + 2 + 6$$

$$\Leftrightarrow x + \frac{x}{5} + \frac{y}{2} - 3y = 8$$
(x10) (x2) (x5) (x10) (x10)

$$\Leftrightarrow 10x + 2x + 5y - 30y = 80$$

$$\Leftrightarrow 12x - 25y = 80$$

Como a soma dos ângulos internos de um triângulo é igual a 180º e o triângulo é retângulo, ou seja, um dos ângulos tem de amplitude 90º, temos:

$$\begin{cases} x + \frac{y}{2} + 3y - \frac{x}{5} + 2 + 90 = 180^{\circ} \\ 12x - 25y = 80 \\ \Leftrightarrow \begin{cases} x - \frac{x}{5} + \frac{y}{2} + 3 = 88 \\ (\times 10) (\times 2) (\times 5) (\times 10) (\times 10) \\ 12x - 25y = 802 \end{cases}$$

$$\Leftrightarrow \begin{cases} 10x - 2x + 5y + 30y = 880 \\ (\times 10) (\times 2) (\times 5) (\times 10) (\times 10) \Leftrightarrow \end{cases}$$

$$\begin{cases} 8\left(\frac{80 + 25y}{12}\right) + 35y = 880 \\ \Leftrightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{640}{12} + \frac{200}{12}y + 35y = 880 \\ (\times 12) (\times 12) \end{cases}$$

$$\Leftrightarrow \begin{cases} 640 + 200y + 420y = 10560 \\ \Leftrightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} y = 16 \\ x = \frac{80 + 25 \times 16}{12} \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 35y = 880 \\ x = \frac{80 + 25y}{12} \end{cases}$$

$$\Leftrightarrow \begin{cases} 640 + 200y + 420y = 10560 \\ \Rightarrow \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 35y = 880 \\ x = \frac{80 + 25y}{12} \end{cases}$$

$$\Leftrightarrow \begin{cases} x + 35y = 880 \\ x = \frac{80 + 25y}{12} \end{cases}$$

Assim, podemos construir a seguinte tabela:

R.: x = 40 e y = 16

São Tomé e Príncipe.

CAFÉ	Número de quilogramas	Preço do quilograma	Custo total
Colômbia	x kg	35€	35 <i>x</i> €
São Tomé e Príncipe	<i>y</i> kg	25€	25 <i>y</i> €
Mistura	6 kg	32€	192€

Logo, ficamos a saber que x + y = 6 e 35x + 25y = 192.

210 - 35v + 25v = 192

Para determinar $x \in y$ basta resolver o sistema.

$$\begin{cases} x + y = 6 \\ 35x + 25y = 192 \end{cases} \Leftrightarrow \begin{cases} x = 6 - y \\ 35(6 - y) + 25y = 192 \end{cases}$$

$$\Leftrightarrow \begin{cases} -35y + 25y = 192 - 210 \end{cases} \Leftrightarrow \begin{cases} -35y + 25y = 192 - 210 \end{cases} \Leftrightarrow \begin{cases} x = 6 - \frac{9}{5} \\ y = \frac{9}{5} \end{cases} \Leftrightarrow \begin{cases} x = \frac{21}{5} \\ y = \frac{9}{5} \end{cases} \Leftrightarrow \begin{cases} x = 4,2 \\ y = -1,8 \end{cases}$$

C.S. =
$$\{(4,2;1,8)\}$$

R.: A mistura deve conter 4,2 kg de café da Colômbia.

Equações completas do 2.º grau

Praticar – páginas 114 a 119

1.
1.1.
$$x^2 - 4x + 8 = (x^2 - 4x) + 8 =$$

 $= (x^2 - 4x + 4) + 8 - 4 =$
 $= (x - 2)^2 + 4$
1.2. $x^2 + 16x - 5 = (x^2 + 16x) - 5 =$
 $= (x^2 - 16x + 64) - 5 - 64 =$
 $= (x + 8)^2 - 69$

2.
2.1.
$$x^2 - 10x + 12 = (x^2 - 10x) + 12 = (x^2 - 10x + 25) + 12 - 25 = (x - 5)^2 - 13$$

2.2. $x^2 + 8x = (x^2 + 8x + 16) + 16 = (x - 4)^2 - 16$
2.3. $x^2 - 2x + 12 = (x^2 - 2x) + 12 = (x^2 - 2x + 1) + 12 - 1 = (x - 1)^2 + 11$
2.4. $x^2 - x + 15 = (x^2 - x) + 15 = (x^2 -$

$$= \left(x - \frac{1}{2}\right) + \frac{33}{4}$$
3. $2x^2 + 2x - 12 = 0$

$$\Leftrightarrow x^2 + x - 6 = 0$$

$$\Leftrightarrow \left(x^2 - x + \frac{1}{4}\right) - 6 - \frac{1}{4} = 0$$

$$\Leftrightarrow \left(x - \frac{1}{2}\right)^2 = \frac{25}{4}$$

$$\Leftrightarrow x - \frac{1}{2} = \sqrt{\frac{25}{4}} \lor x + \frac{1}{2} = \sqrt{\frac{25}{4}}$$

$$\Leftrightarrow x + \frac{1}{2} = \frac{5}{2} \lor x + \frac{1}{2} = -\frac{5}{2}$$

$$\Leftrightarrow x = \frac{5}{2} - \frac{1}{2} \lor x = -\frac{5}{2} - \frac{1}{2}$$

4. [A] (-2) + (-2) − 1 = 0
$$\Leftrightarrow$$
 −2 + 2 − 1 = 0 \Leftrightarrow −1 = 0 Falso −2 não é solução da equação $x^2 + x - 1 = 0$. [B] (-2)² − 3 × (-2) + 2 = 0 \Leftrightarrow 4 + 6 + 2 = 0 Falso −2 não é solução da equação $x^2 - 3x + 2 = 0$. [C] (-2 + 2) (-2 − 1) = 0 \Leftrightarrow 0 × (-3) = 0 Verdadeiro −2 é solução da equação $(x + 2)(x - 1) = 0$. (1 + 2) (1 − 1) = 0 \Leftrightarrow 3 × 0 = 0 Verdadeiro 1 é solução da equação $(x + 2)(x - 1) = 0$ {−2; 2} é o conjunto-solução da equação. [D] (-2 − 2) (-2 + 1) = 0 − 4 × (-1) = 0 Falso −2 não é solução da equação $(x - 2)(x + 1) = 0$ (1 − 2) (1 + 1) = 0 \Leftrightarrow (-1) × 2 = 0 Falso Assim, 1 não é solução da equação $(x - 2)(x + 1) = 0$.

 $\Leftrightarrow x = \frac{4}{2} \lor x = -\frac{6}{2}$

 $\Leftrightarrow x = 2 \lor x = -3$

5.
5.1.
$$x^2 + 4x + 3 = 0$$

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{4^2 - 4 \times 1 \times 3}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-4 \pm 2}{2}$$

$$\Leftrightarrow x = \frac{-4 \pm 2}{2}$$

$$\Leftrightarrow x = \frac{-4 - 2}{2} \lor x = \frac{-4 + 2}{2}$$

$$\Leftrightarrow x = -\frac{6}{2} \lor x = -\frac{2}{2}$$

$$\Leftrightarrow x = -3 \lor x = -1$$
C.S. = {-3, -1}
5.2. $2k^2 - 50 = 0$

$$\Leftrightarrow 2k^2 = 50$$

$$\Leftrightarrow k^2 = \frac{50}{2}$$

$$\Leftrightarrow k^2 = 25$$

$$\Leftrightarrow k = -\sqrt{25} \lor k = \sqrt{25}$$

$$\Leftrightarrow k = -5 \lor k = 5$$

Logo, a opção correta é a [C].

$$\Leftrightarrow c^2 - 7c + 12 = 0$$

$$\Leftrightarrow c = \frac{-(-7) \pm \sqrt{(-7)^2 - 4 \times 1 \times 12}}{2 \times 1}$$

$$\Leftrightarrow c = \frac{7 \pm \sqrt{49 - 48}}{2}$$

 $C.S. = \{-5, 5\}$

5.3. $c^2 + 12 = 7c$

$$\Leftrightarrow c = \frac{7 \pm 1}{2}$$

$$\Leftrightarrow c = \frac{8}{2} \lor c = \frac{6}{2}$$

$$\Leftrightarrow c = 4 \lor c = 3$$

$$C.S. = \{3, 4\}$$

5.4.
$$(3t + 1)(2t - 1) = 0$$

$$\Leftrightarrow 3t + 1 = 0 \lor 2t - 1 = 0$$

$$\Leftrightarrow$$
 3t = -1 \vee 2t = 1

$$\Leftrightarrow t = -\frac{1}{3} \lor t = \frac{1}{2}$$

C.S. =
$$\left\{-\frac{1}{3}, \frac{1}{2}\right\}$$

5.5.
$$x^2 - 5x - 14 = 0$$

$$\Leftrightarrow x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 1 \times (-14)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{5 \pm \sqrt{25 + 56}}{2}$$

$$\Leftrightarrow x = \frac{5 \pm \sqrt{81}}{2}$$

$$\Leftrightarrow x = \frac{5-9}{2} \lor x = \frac{5+9}{2}$$

$$\iff x = -\frac{4}{2} \lor x = \frac{14}{2}$$

$$\Leftrightarrow x = -2 \lor x = 5$$

$$C.S. = \{-2, 7\}$$

5.6.
$$x^2 - x = 0$$

$$\Leftrightarrow x(x-9)=0$$

$$\Leftrightarrow x = 0 \lor x - 9 = 0$$

$$\Leftrightarrow x = 0 \lor x = 9$$

$$C.S. = \{0, 9\}$$

5.7.
$$2x^2 + 5x - 8 = 0$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \times 2 \times (-7)}}{2 \times 2}$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{25 + 56}}{4}$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{81}}{4}$$

$$\Leftrightarrow x = \frac{-5 - 9}{4} \lor x = \frac{-5 + 9}{4}$$

$$\Leftrightarrow x = -\frac{14}{4} \lor x = \frac{4}{4}$$

$$\Leftrightarrow x = -\frac{7}{2} \lor x = 1$$

C.S. =
$$\left\{-\frac{7}{2}, 1\right\}$$

5.8.
$$a^2 - 8a + 7 = 0$$

$$\Leftrightarrow a = \frac{-(-8) \pm \sqrt{(-8)^2 - 4 \times 1 \times 7}}{2 \times 1}$$

$$\Leftrightarrow a = \frac{8 \pm \sqrt{64 - 28}}{2}$$

$$\Leftrightarrow a = \frac{8 \pm \sqrt{36}}{2}$$

$$\Leftrightarrow a = \frac{8-6}{2} \lor a = \frac{8+6}{2}$$

$$\Leftrightarrow a = \frac{2}{2} \lor a = \frac{14}{2}$$

$$\Leftrightarrow a = 1 \lor a = 7$$

$$C.S. = \{1, 7\}$$

5.9.
$$x(x-1) = 6 - 2x - 4x^2$$

$$\Leftrightarrow x^2 - x - 6 + 2x + 4x^2 = 0$$

$$\Leftrightarrow$$
 $5x^2 - x - 6 = 0$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times 5 \times (-6)}}{2 \times 5}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1 + 121}}{10}$$

$$\Leftrightarrow x = \frac{-1 \pm 11}{10}$$

$$\Leftrightarrow x = -\frac{12}{10} \lor x = \frac{10}{10}$$

$$\Leftrightarrow x = -\frac{6}{5} \lor x = 1$$

C.S. =
$$\left\{ -\frac{6}{5}, 1 \right\}$$

5.10.
$$2(x^2 - 2x) = 16$$

$$\Leftrightarrow x^2 - 2x = 8$$

$$\Leftrightarrow x^2 - 2x - 8 = 0$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{(-2)^2 - 4 \times 1 \times (-8)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{4 + 32}}{2}$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{36}}{2}$$

$$\Leftrightarrow x = \frac{2-6}{2} \lor x = \frac{2+6}{2}$$

$$\Leftrightarrow x = -2 \lor x = 4$$

$$C.S. = \{-2, 4\}$$

6. Para determinar as coordenadas dos pontos *A* e *B*, basta resolver a equação.

$$x^2 = -x + 12$$

$$\Leftrightarrow x^2 + x - 12 = 0$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-12)}}{2 \times 1}$$

$$= \frac{-1 \pm \sqrt{1 + 48}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1 + 48}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{49}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm 7}{2}$$

$$\Leftrightarrow x = \frac{-1 - 7}{2} \lor x = \frac{-1 + 7}{2}$$

$$\Leftrightarrow x = -\frac{8}{2} \lor x = \frac{6}{2}$$

$$\Leftrightarrow x = -4 \lor x = 3$$

$$C.S. = \{-4, 3\}$$

Como a abcissa do ponto A é -4, então a ordenada é 16 ($y = (-4)^2 \Leftrightarrow y = 16$).

A abcissa do ponto B é 3, então $y = 3^2 \iff y = 9$, a ordenada é 9.

7. Para determinar o número de soluções de uma equação do 2.º grau é necessário verificar o sinal do binómio discriminante $\Delta = b^2 - 4ac$.

7.1.
$$x^2 + 4x + 12 = 0$$
, $a = 1$, $b = 4$ e $c = 12$

$$\triangle = 4^2 - 4 \times 1 \times 12$$

$$= 16 - 48$$

$$= -32$$

 \triangle < 0, então a equação $x^2 + 4x + 12 = 0$ é impossível, logo não tem soluções.

7.2.
$$2x^2 - 3x - 8 = 0$$
, $a = 2$, $b = -3$ e $c = -8$

$$\triangle = (-3)^2 - 4 \times 2 \times (-8) =$$

$$= 9 + 64 =$$

$$= 3$$

Como \triangle > 0, então a equação é possível. Logo, tem duas soluções distintas.

7.3.
$$x^2 - \sqrt{24}x + 6 = 0$$
, $a = 1$, $b = -\sqrt{24}$ e $c = 6$.

$$\triangle = (-\sqrt{24})^2 - 4 \times 1 \times 6 =$$

$$= 24 - 24 =$$

$$= 0$$

 \triangle = 0, então a equação é possível e tem apenas uma solução.

8. Duas equações são equivalentes se tiverem o mesmo conjunto solução.

$$x^2 - x - 6 = 0$$

$$\Leftrightarrow x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times (-6)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{1 + \sqrt{1 + 24}}{2}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{25}}{2}$$

$$\Leftrightarrow x = \frac{1 \pm 5}{2}$$

$$\Leftrightarrow x = \frac{1-5}{2} \lor x = \frac{1+5}{2}$$

$$\Leftrightarrow x = -\frac{4}{2} \lor x = \frac{6}{2}$$

$$\Leftrightarrow x = -2 \lor x = 3$$

$$C.S. = \{-2, 3\}$$

[A]
$$x^2 + x - 6 = 0$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-6)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{25}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm 5}{2}$$

$$\Leftrightarrow x = -3 \lor x = 2$$

$$C.S. = \{-3, 2\}$$

 $x^2 + x - 6 = 0$ não é equivalente à equação dada.

[B]
$$x^2 - x + 6 = 0$$

$$\Leftrightarrow x = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times 6}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{1 \pm \sqrt{-23}}{2} \text{ equação impossível. C.S.} = \{ \}$$

 $x^2 - x + 6 = 0$ não é equivalente à equação dada.

$$[C]$$
 $7(x-3)(x+2)=0$

$$\Leftrightarrow x - 3 = 0 \lor x + 2 = 0$$

$$\Leftrightarrow x = 3 \lor x = -2$$

7(x-3)(x+2) = 0 é equivalente à equação dada.

$$D$$
 $2(x + 3)(x - 2) = 0$

$$\Leftrightarrow x + 3 = 0 \lor x - 2 = 0$$

$$\Leftrightarrow x = -3 \lor x = 2$$

$$C.S. = \{-3, 2\}$$

2(x + 3)(x - 2) = 0 é equivalente à equação dada.

Logo, a opção correta é a [C].

9. Verificar se 4 é solução, é substituir o x por 4, $2 \times 4^2 - 7 \times 4 + 3 \Leftrightarrow 2 \times 16 - 28 + 3 = 0 \Leftrightarrow 7 = 0$ Falso. 4 não é solução da equação $2x^2 - 7x + 3 = 0$

10.
$$g(x) = x^2 - 5x + 6$$

Se a imagem é 0, então g(x) = 0.

$$x^2 - 5x + 6 = 0$$

$$\Leftrightarrow x = \frac{-(-5) \pm \sqrt{(-5)^2 - 4 \times 1 \times 6}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{5 \pm \sqrt{25 - 24}}{2}$$

$$\Leftrightarrow x = \frac{5 \pm 1}{2}$$

$$\Leftrightarrow x = \frac{4}{2} \lor x = \frac{6}{2}$$

$$\Leftrightarrow x = 2 \lor x = 3$$

$$C.S. = \{2, 3\}$$

R.: Os objetos 2 e 3 têm imagem 0.

11.
$$x^2 - 6x + k = 0$$

11.1. Se
$$k = 0$$

$$x^2 - 6x = 0$$

$$\Leftrightarrow x(x-6) = 0$$

$$\Leftrightarrow x = 0 \lor x - 6 = 0$$

$$\Leftrightarrow x = 0 \lor x = 6$$

$$C.S. = \{0, 6\}$$

11.2. Se
$$x = 5$$

$$5^2 - 6 \times 5 + k = 0 \iff 25 - 30k = 0 \iff k = 5$$

$$C.S. = \{5\}$$

Substituindo *k* por 5,

$$x^2 - 6x + 5 = 0$$

$$\Leftrightarrow x = \frac{-(-6) \pm \sqrt{(-6)^2 - 4 \times 1 \times 5}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{6 \pm \sqrt{36 - 20}}{2}$$

$$\Leftrightarrow x = \frac{6 \pm 4}{2}$$

$$\Leftrightarrow x = \frac{2}{2} \lor x = \frac{10}{2}$$

$$\Leftrightarrow x = 1 \lor x = 5$$

$$C.S. = \{1, 5\}$$

A outra solução é 1.

12. Seja ℓ a largura do terremo e c o comprimento do terreno

$$\ell = c - 160 \text{ e } A = 8000 \text{ então},$$

$$\begin{cases} \ell = c - 160 \\ c \times \ell = 8000 \end{cases} \Leftrightarrow \begin{cases} \frac{1}{c(c - 160) - 8000} \end{cases}$$

$$\Leftrightarrow \begin{cases} \frac{1}{c^2 - 160c - 8000} = 0 \\ \Leftrightarrow \begin{cases} \frac{160 \pm \sqrt{(160)^2 - 4 \times 1 \times (-8000)}}{2 \times 1} \\ \Leftrightarrow \begin{cases} \frac{160 \pm 240}{2} \end{cases} \Leftrightarrow \begin{cases} \frac{160 \pm 240}{2} \end{cases}$$

R.: O terreno tem 40 metros de largura e 200 metros de comprimento.

13. A área do retângulo é dada por $A = b \times h$ ou seja, $A(2x - 23) \times (x + 6)$.

A área do quadrado é dada por $A = \ell^2$, ou seja, $A = (x - 4)^2$.

Como os dois polígonos têm a mesma área

$$(2x - 23)(x + 6) = (x - 4)^2$$

 $\ell = 200 - 160$

Resolvendo a equação, obtemos

$$2x^2 + 12x - 23x - 138 = x^2 - 8x + 16$$

$$\Leftrightarrow 2x^2 - x^2 + 12x - 23x + 8x - 138 - 16 = 0$$

$$\Leftrightarrow x^2 - 3x - 154 = 0$$

$$\Leftrightarrow x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 1 \times (-154)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{3 \pm \sqrt{625}}{2}$$

$$\Leftrightarrow x = \frac{3-25}{2} \lor x = \frac{3+25}{2}$$

$$\Leftrightarrow x = -11 \lor x = 14$$

Como 2x - 23 > 0, então $x > \frac{23}{2}$. Logo, x = 14.

R.:
$$x = 14$$

14. Recorrendo ao sistema,

$$\begin{cases} x - 3y \\ x \times y = 48 \end{cases} \Leftrightarrow \begin{cases} \overline{} \\ 3y \times y = 48 \end{cases} \Leftrightarrow \begin{cases} \overline{} \\ y^2 = 16 \end{cases}$$
$$\Leftrightarrow \begin{cases} x = 3 \times (-4) \\ y = -4 \end{cases} \Leftrightarrow \begin{cases} x = 3 \times 4 \\ y = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = -12 \\ y = -4 \end{cases} \qquad \qquad \begin{cases} x = 12 \\ y = 4 \end{cases}$$

$$C.S. = \{(-12, -4), (12, 4)\}$$

R.: Como os números são positivos, então são 12 e 4.

15

15.1.
$$2x^2 - 20x + 5 = (2x^2 - 20x) + 5 =$$

= $2(x^2 - \mathbf{10}x) + 5 =$
= $2(x^2 - \mathbf{10}x + \mathbf{25}) + 5 - \mathbf{50} =$
= $2(x - 5)^2 - \mathbf{45}$

15.2.
$$3x^2 + 12x - 1 = (3x^2 + 12x) - 1 =$$

= $3(x^2 - 4x) - 1 =$
= $3(x^2 + 4x + 4) - 1 - 12 =$
= $3(x + 2)^2 - 13$

16.1. $2x^2 + 20x - 1 = (2x^2 + 20) - 1 =$

16

$$= 2(x^{2} + 10) - 1 =$$

$$= 2(x^{2} + 10x + 25) - 1 - 50 =$$

$$= 2(x + 5)^{2} - 51$$

$$16.2. 3x^{2} - 18x + 15 = (3x^{2} - 18x) + 15 =$$

$$= 3(x^{2} - 6x) + 15 =$$

$$= 3(x^{2} - 6x + 9) + 15 - 27 =$$

$$= 3(x - 3)^{2} - 12$$

$$16.3. -x^{2} - 4x - 20 = (-x^{2} - 4x) - 20 =$$

$$= -(x^{2} + 4x) - 20 =$$

$$= -(x^{2} + 4x + 4) - 20 + 4 =$$

$$= -(x + 2)^{2} - 16$$

$$16.4. 4x^{2} - 4x - 17 = (4x^{2} - 4x) - 17 =$$

$$= 4(x^{2} - x) - 17 =$$

$$= 4(x^{2} - x) + \frac{1}{4} - 17 - 1 =$$

$$= 4(x - \frac{1}{2})^{2} - 18$$

17.
17.1.
$$(x-4)^2 = 25$$

 $\Leftrightarrow x = -4 = -\sqrt{25} \lor x - 4 = \sqrt{25}$
 $\Leftrightarrow x - 5 + 4 \lor x = 5 + 4$
 $\Leftrightarrow x = -1 \lor x = 9$
C.S. = $\{-1, 9\}$
17.2. $x^2 + 8x - 9 = 0$
 $\Leftrightarrow x^2 + 8x = 9$
 $\Leftrightarrow x^2 + 8x + 16 = 9 + 16$
 $\Leftrightarrow (x + 4)^2 = 25$
 $\Leftrightarrow x + 4 = -\sqrt{25} \lor x + 4 = \sqrt{25}$

$$\Leftrightarrow x = -5 - 4 \lor x = 5 - 4$$

$$\Leftrightarrow x = -9 \lor x = 1$$
C.S. = \{-9, 1\}
17.3. $x^2 = 4(x + 3)$

$$\Leftrightarrow x^2 = 4x + 12$$

$$\Leftrightarrow x^2 - 4x = 12$$

$$\Leftrightarrow x - 4x + 4 = 12 + 4$$

$$\Leftrightarrow (x - 2)^2 = 16$$

$$\Leftrightarrow x - 2 = -\sqrt{16} \lor x - 2 = \sqrt{16}$$

$$\Leftrightarrow x = -4 + 2 \lor x = 4 + 2$$

$$\Leftrightarrow x = -2 \lor x = 6$$
C.S. = \{-2, 6\}
17.4. $3x^2 - 30x + 75 = 0$

$$\Leftrightarrow 3(x^2 - 10x) + 75 = 0$$

$$\Leftrightarrow 3(x^2 - 10x) + 75 = 0$$

$$\Leftrightarrow (x - 5)^2 = 0$$

$$\Leftrightarrow x - 5 = 0$$

$$\Leftrightarrow x = 5$$
C.S. = \{5\}

18.

18.1.
$$(x + 2)^2 = 3x\left(x + \frac{2}{3}\right)$$
 $\Leftrightarrow x^2 + 4x + 4 = 3x^2 + 2x$
 $\Leftrightarrow x^2 - 3x^2 + 4x - 2x + 4 = 0$
 $\Leftrightarrow -2x^2 + 2x + 4 = 0$
 $\Leftrightarrow x = \frac{-2 \pm \sqrt{(-2)^2 - 4 \times (-2) \times 4}}{2 \times (-2)}$
 $\Leftrightarrow x = \frac{-2 \pm \sqrt{4 + 32}}{-4}$
 $\Leftrightarrow x = \frac{-2 \pm 6}{-4}$

$$\Rightarrow x = \frac{-4}{-4}$$

$$\Leftrightarrow x = \frac{4}{-4} \lor x = \frac{-8}{-4}$$

$$\Leftrightarrow x = -1 \lor x = 2$$
C.S. = {-1, 2}

18.2.
$$\frac{(2x-2)^2}{24} - \frac{4}{12} - \frac{2x}{3} = 1$$

$$\Leftrightarrow 4x^2 - 8x + 4 - 8 - 16x = 24$$

$$\Leftrightarrow 4x^2 - 24x - 28 = 0$$

$$\Leftrightarrow x = \frac{24 \pm \sqrt{(-24)^2 - 4 \times 4 \times (-28)}}{2 \times 4}$$

$$\Leftrightarrow x = \frac{24 \pm \sqrt{1024}}{8}$$

$$\Leftrightarrow x = \frac{24 - 32}{8} \lor x = \frac{24 + 32}{8}$$

$$\Leftrightarrow x = -1 \lor x = 7$$

C.S. =
$$\{-1, 7\}$$

18.3.
$$(x + 3)^2 + 2 = 2x^2 + x + 5$$

$$\Leftrightarrow x^2 + 6x + 9 + 2 - 2x^2 - x - 5 = 0$$

$$\Leftrightarrow$$
 $-x^2 + 5x + 6 = 0$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \times (-1) \times 6}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{-5 \pm \sqrt{25 + 24}}{-2}$$

$$\Leftrightarrow x = \frac{-5 \pm 7}{-2}$$

$$\Leftrightarrow x = \frac{-12}{-2} \lor x = \frac{2}{-2}$$

$$\Leftrightarrow x = 6 \lor x = -1$$

$$C.S. = \{-1, 6\}$$

18.4.
$$2(x-1)(x+1) = 3x$$

$$\Leftrightarrow$$
 2($x^2 - 1$) – 3 $x = 0$

$$\Leftrightarrow 2x^2 - 2 - 3x = 0$$

$$\Leftrightarrow$$
 $2x^2 - 3x - 2 = 0$

$$\Leftrightarrow x = \frac{-(-3) \pm \sqrt{(-3)^2 - 4 \times 2 \times (-2)}}{2 \times 2}$$

$$\Leftrightarrow x = \frac{3 \pm \sqrt{9 + 16}}{4}$$

$$\Leftrightarrow x = \frac{3 \pm 5}{4}$$

$$\Leftrightarrow x = \frac{3-5}{4} \lor x = \frac{3+5}{4}$$

$$\Leftrightarrow x = -\frac{1}{2} \lor x = 2$$

C.S. =
$$\left\{ -\frac{1}{2}, 2 \right\}$$

19. Como o ponto A pertence ao gráfico da função f, para determinar o valor de a basta substituir x e y na expressão f(x) = 2x - 3, pelas coordenadas do ponto A. Ou seja,

$$f(x) = 2x - 3$$

$$y = 2x - 3$$

$$\Leftrightarrow a^2 = 2\left(\frac{a+15}{2}\right) - 3$$

$$\Leftrightarrow a^2 = a + 15 - 3$$

$$\Leftrightarrow a^2 - a - 12 = 0$$

$$\Leftrightarrow a = \frac{-(-1) \pm \sqrt{(-1)^2 - 4 \times 1 \times (-12)}}{2 \times 1}$$

$$\Leftrightarrow a = \frac{1 + \sqrt{1 + 48}}{2}$$

$$\Leftrightarrow a = \frac{1 \pm \sqrt{49}}{2}$$

$$\Leftrightarrow a = \frac{1 \pm 7}{2}$$

$$\Leftrightarrow a = -\frac{6}{2} \lor a = \frac{8}{2}$$

$$\Leftrightarrow a = -3 \lor a = 4$$

$$C.S. = \{-3, 4\}$$

Se
$$a - 3$$
, $A\left(\frac{-3 + 15}{2}$; $(-3)^2\right) = (6,9)$

Se
$$a = 4$$
, $A\left(\frac{4+15}{2}, 4^2\right) = \left(\frac{19}{2}, 16\right)$

20.

20.1. A equação tem uma solução dupla se $\triangle = 0$, então, como $\triangle = b^2 - 4ac$, temos $b^2 - 4ac = 0$.

$$(-1)^2 - 4 \times 2 \times k = 0$$

$$\Leftrightarrow$$
 $-8k = -1$

$$\Leftrightarrow k = \frac{1}{8}$$

C.S. =
$$\left\{ \frac{1}{8} \right\}$$

R.:
$$k > \frac{1}{8}$$

20.2. A equação admite duas soluções distintas se $\triangle > 0$, ou seja,

$$-8k + 1 > 0$$

$$\Leftrightarrow$$
 $-8k > -1$

$$\Leftrightarrow$$
 8 k < 1

$$\Leftrightarrow k < \frac{1}{8}$$

C.S. =
$$\left[-\infty, \frac{1}{8}\right]$$

R.:
$$k \in \left[+\infty, \frac{1}{8} \right]$$

20.3. A equação é impossível se \triangle < 0, ou seja,

$$-8k + 1 < 0$$

$$\Leftrightarrow k = \frac{1}{8}$$

$$C.S. = \left| \frac{1}{8}, +\infty \right|$$

$$R.: k \in \left[\frac{1}{8}, +\infty \right]$$

20.4. Se -5 é solução da equação então

$$2 \times (-5)^2 - (-5) + k = 0$$

$$\Leftrightarrow$$
 2 × 25 + 5 + k = 0

$$\Leftrightarrow k = -55$$

$$C.S. = \{-55\}$$

R.:
$$k = -55$$

21. Como $A_{\text{sombreado}} = A_{[ACEF]} - A_{[BCDG]}$, então

$$A_{[ACEF]} = x \times x = x^2 \text{ cm}^2$$

$$A_{[BCDG]} = 10^2 = 100 \text{ cm}^2$$

$$A_{[ACFF]} - A_{[BCDG]} = x^2 - 100$$

Com a área da região sombreada é igual a 156 cm²,

$$x^2 - 100 = 156$$

$$\Leftrightarrow x^2 = 256$$

$$\Leftrightarrow x = \pm \sqrt{256}$$

$$\Leftrightarrow x = -16 \lor x = 16$$

Como x > 10, então x = 16.

R.:
$$x = 16 \text{ cm}$$

22. Como 4 é solução da equação, basta substituir x por 4.

$$-k \times 4^2 + 4(4+4) = 0$$

$$\Leftrightarrow -16k + 32 = 0$$

$$\Leftrightarrow k=2$$

$$C.S. = \{2\}$$

Substituindo k por 2 na equação $-kx^2 + 4(x + 4) = 0$ obtemos: $-2x^2 + 4x + 16 = 0$

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{4^2 - 4 \times (-2) \times (16)}}{2 \times (-2)}$$

$$\Leftrightarrow x = \frac{-4 \pm \sqrt{144}}{-4}$$

$$\Leftrightarrow x = \frac{-4 - 12}{-4} \lor x = \frac{-4 + 12}{-4}$$

$$\Leftrightarrow x = 4 \lor x = -2$$

$$C.S. = \{-2, 4\}$$

R.: A outra solução é –2.

23.
$$y = x^2$$
 e $y = 2(x + 1)^2 - 7$

Para determinar a abcissa do ponto de interseção das duas parábolas, basta resolver a equação.

$$x^2 = 2(x + 1)^2 - 7$$

$$\Leftrightarrow x^2 = 2(x^2 + 2x + 1) - 7$$

$$\Leftrightarrow x^2 = 2x^2 + 4x + 2 - 7$$

$$\Leftrightarrow x^2 - 2x^2 - 4x - 2 + 7 = 0$$

$$\Leftrightarrow -x^2 - 4x + 5 = 0$$

$$\Leftrightarrow x = \frac{-(-4) \pm \sqrt{(-4)^2 - 4 \times (-1) \times 5}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{4 \pm \sqrt{36}}{-2}$$

$$\Leftrightarrow x = \frac{4 \pm \sqrt{36}}{-2}$$

$$\Leftrightarrow x = \frac{4 \pm 6}{-2}$$

$$\Leftrightarrow x = \frac{-2}{-2} \lor x = \frac{10}{-2}$$

$$\Leftrightarrow x = 1 \lor x = -5$$

$$C.S. = \{-5, 1\}$$

Como a abcissa do ponto A é 1, então a ordenada é $y = 1^2 \iff y = 1$

R.: As coordenadas do ponto *A* são (1, 1).

24. Considerando *x* e *y* as dimensões do terreno e sabendo que o terreno tem 3200 m² de área, obtemos a equação $x \times y = 3200$.

Como foi utilizado 220 metros de rede,

$$2x + y + y - 20 = 220$$

$$\Leftrightarrow$$
 2x + 2y = 240

$$\Leftrightarrow x + y = 120$$

Escrevendo o sistema

$$\begin{cases} x \times y = 3200 \\ x + y = 120 \end{cases}$$

Para obter o valor de x e o valor de y resolvemos o sistema

$$\begin{cases} x \times y = 3200 \\ x + y = 120 \end{cases} \Leftrightarrow \begin{cases} (120 - y) \times y = 3200 \\ x = 120 - y \end{cases}$$

$$\Leftrightarrow \begin{cases} 120y - y^2 = 3200 \\ \Leftrightarrow \end{cases} \begin{cases} y^2 - 120y + 3200 = 0 \\ \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{-(-120) \pm \sqrt{(-120)^2 - 4 \times 1 \times 3200}}{2 \times 1} \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{120 \pm \sqrt{14400 - 12800}}{2} \\ \Leftrightarrow \end{cases} \begin{cases} y = x = \frac{120 \pm 40}{2} \\ \Leftrightarrow \end{cases} \begin{cases} x \times y = 3200 \end{cases} \Leftrightarrow \begin{cases} y = 80 \\ x = 80 \end{cases} \Leftrightarrow \begin{cases} x \times y = 3200 \\ x = 80 \end{cases} \end{cases}$$

R.: As dimensões do terreno são 40 metros de largura e 80 metros de comprimento.

25. A área atual do parque é 700 m², ou seja, $20 \times y = 700$.

O novo parque terá 1000 m² de área, ou seja, $(x + 20) \times (x + y) = 1000$

$$(x + 20) \times (x + y) = 1000$$

Como $20 \times y = 700 \text{ então } y = 35.$

Substituindo o y por 35 na equação

$$(x + 20) \times (x + y) = 1000$$
 obtemos

$$(x + 20) \times (x + 35) = 1000$$

 $\Leftrightarrow x^2 + 35x + 20x + 700 - 1000 = 0$
 $\Leftrightarrow x^2 + 55x - 300 = 0$

$$\Leftrightarrow x = \frac{-55 \pm \sqrt{55^2 - 4 \times 1 \times (-300)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-55 \pm \sqrt{3025 + 1200}}{2}$$

$$\Leftrightarrow x = \frac{-55 \pm \sqrt{4225}}{2}$$

$$\Leftrightarrow x = \frac{-55 \pm 65}{2}$$

$$\Leftrightarrow x = -60 \lor x = 5$$

$$C.S. = \{-60, 5\}$$

Como x > 0 então x = 5.

$$x + 20 = 5 + 20 = 25 e y + x = 35 + 5 = 40$$

R.: As dimensões do novo parque de estacionamento são 25 metros de largura e 40 metros de comprimento.

26. Como $x = -2 \lor x = 5$, então (x + 2)(x - 5) = 0, simplificando a equação temos

$$x^2 - 5x + 2x - 10 = 0 \iff x^2 - 3x - 10 = 0$$

27.

27.1. Substituindo *k* por 2, obtemos $-2x^2 - 2x + 4 = 0$

$$\Leftrightarrow x = \frac{-(-2) \pm \sqrt{(-2)^2 - 4 \times (-2) \times 4}}{2 \times (-2)}$$

$$\Leftrightarrow x = \frac{2 \pm \sqrt{4 + 32}}{-4}$$

$$\Leftrightarrow x = \frac{2 \pm 6}{-4}$$

$$\Leftrightarrow x = \frac{-4}{4} \lor x = \frac{8}{-4}$$

$$\Leftrightarrow x = 1 \lor x = -2$$

$$C.S. = \{-2, 1\}$$

27.2. Uma equação do 2.º grau admite duas soluções distintas se Δ > 0, então

$$b^2 - 4ac = (-k)^2 - 4 \times (-2) \times 4 = k^2 + 32$$

 k^2 + 32 é sempre maior do que zero.

28. Escrevendo o sistema,

$$\begin{cases} x + y = 4 \\ x \times y = 3 \end{cases} \Leftrightarrow \begin{cases} x = 4 - y \\ (4 - y)y = 3 \end{cases} \Leftrightarrow \begin{cases} -1 \\ 4y - y^2 = 3 \end{cases}$$

$$\Leftrightarrow \begin{cases} -y^2 + 4y - 3 = 0 \\ -y^2 + 4y - 3 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{4 \pm \sqrt{4^2 - 4 \times (-1) \times (-3)}}{2 \times (-1)} \\ \Rightarrow \begin{cases} -x = 1 \\ y = \frac{-4 \pm \sqrt{16 - 12}}{-2} \end{cases} \Leftrightarrow \begin{cases} x = 1 \\ y = 3 \end{cases}$$

Obtêm-se os pontos (1, 3) e (3, 1).

Se
$$x = 1$$
 e $y = 3$, $2x - 3y = 2 \times 1 - 3 \times 3 = -7$.

Se
$$x = 3$$
 e $y = 1$, $2x - 3y = 2 \times 3 - 3 \times 1 = 3$.

29. Uma equação do 2.º grau admite duas soluções distintas se $\triangle > 0$, então $(-a)^2 - 4(-1) \times 5 = a^2 + 20$. $a^2 + 20$ é sempre maior do que zero.

30. Como a equação admite duas soluções distintas, $\triangle > 0$, com a = 2, b = 3 e c = -b.

$$\triangle = 3^2 - 4 \times 2 \times (-b) = 9 + 8b$$

Por exemplo, se b = 1, 9 + 8b > 0.

31.
$$(x^2 + 12x + 32)(x^2 - 5) = 0$$

$$\Leftrightarrow x^2 + 12x + 32 = 0 \lor x^2 - 5 = 0$$

$$\Leftrightarrow x = \frac{-12 \pm 1\sqrt{2^2 - 4 \times 1 \times (32)}}{2 \times 1} \lor x^2 = 5$$

$$\Leftrightarrow x = \frac{-12 \pm \sqrt{144 - 128}}{2} \lor x = \pm \sqrt{5}$$

$$\Leftrightarrow x = \frac{-12 \pm \sqrt{16}}{2} \lor x = -\sqrt{5} \lor x = \sqrt{5}$$

$$\Leftrightarrow x = \frac{-12 - 4}{2} \lor x = \frac{-12 + 4}{2} \lor x = -\sqrt{5} \lor x = \sqrt{5}$$

$$\Leftrightarrow x = -8 \lor x = -4 \lor x = -\sqrt{5} \lor x = \sqrt{5}$$

C.S. =
$$\{-8, -4, -\sqrt{5}, \sqrt{5}\}$$

$$-8 \times (-4) \times (-\sqrt{5}) \times \sqrt{5} = -160$$

32. Considerando c o comprimento e ℓ a largura, como o seu comprimento é igual a 200 cm, então $2c + 2\ell = 200$.

Se a área é igual a 2400 cm², $c \times \ell = 2400$.

O sistema que traduz o enunciado é

$$2c + 2c = 200$$

$$c \times \ell = 2400$$

Resolvendo o sistema, obtém-se:

$$\Leftrightarrow \begin{cases} c = \frac{200 - 2\ell}{2} \\ \Leftrightarrow \end{cases} \begin{cases} c = 100 - \ell \end{cases}$$

$$\Leftrightarrow \begin{cases} 100\ell - \ell^2 - 2400 = 0 \end{cases} \Leftrightarrow \begin{cases} -\ell^2 + 100\ell - 2400 = 0 \end{cases}$$

$$\Leftrightarrow \begin{cases} -100 \pm \sqrt{100^2 - 4 \times (-1) \times (-2400)} \\ \ell = \frac{-100 \pm \sqrt{400}}{2 \times (-1)} \end{cases} \Leftrightarrow \begin{cases} -100 \pm 20 \\ \ell = 60 \end{cases} \Leftrightarrow \begin{cases} c = 100 - 40 \end{cases}$$

$$\Leftrightarrow \begin{cases} c = 40 \\ \ell = 60 \end{cases} \Leftrightarrow \begin{cases} c = 60 \\ \ell = 40 \end{cases}$$

R.: As dimensões do retângulo são 40 cm de largura e 60 cm de comprimento.

33

33.1. Os pontos *A* e *B* são os pontos de interseção dos dois gráficos, então:

$$-x^2 + 2 = -x$$

$$\Leftrightarrow -x^2 + x + 2 = 0$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times (-1) \times 2}}{2 \times (-1)}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1+8}}{-2}$$

$$\Leftrightarrow x = \frac{-1 \pm 3}{-2}$$

$$\Leftrightarrow x = -1 \lor x = 2$$

C.S. =
$$\{-1, 2\}$$

As abcissas dos pontos *A* e *B* são respetivamente –1 e 2.

Para determinar as ordenadas, basta substituir o valor de cada uma das abcissas numa das equações, $y_A = -(-1) = 1$, a ordenada de $A \in 1$.

$$y_B = -2 = -2$$
, a ordenada de $B \in -2$.

Logo,
$$A(-1, 1) \in B(2, -2)$$
.

33.2. Os pontos *C* e *D* têm ordenada nula e pertencem ao gráfico de função *f*.

Basta substituir y por zero e determinar as abcissas de C e de D.

$$y = -x^2 + 2 \Leftrightarrow -x^2 + 2 = 0 \Leftrightarrow -x^2 = -2$$

 $\Leftrightarrow x = \pm \sqrt{2} \Leftrightarrow x = -\sqrt{2} \lor x = \sqrt{2}$
C.S. = $\{-\sqrt{2}, \sqrt{2}\}$

As abcissas dos pontos C e D são respetivamente $-\sqrt{2}$ e $\sqrt{2}$.

$$C(-\sqrt{2}, 0)$$
 $D(\sqrt{2}, 0)$

$$A_{[BCD]} = \frac{b \times h}{2}$$

$$A_{[BCD]} = \frac{2 \times \sqrt{2} \times 2}{2} = 2\sqrt{2}$$

R.:
$$A_{[BCD]} = 2\sqrt{2}$$
 u.a.

34.

34.1. A área do quadrado de lado [AP] é igual a $3^2 = 9$ u.a.

$$34.2. \overline{PB} = \overline{AB} - \overline{AP}$$

$$PB = 12 - x$$

Então a área do quadrado de lado [*PB*] é igual a $(12 - x)^2$

$$A = (12 - x)^2$$

34.3. A área do quadrado de lado [*PB*] é igual a $(12 - x)^2$.

A área do quadrado de lado [AP] é igual a x^2 .

Então,
$$(12 - x)^2 = 25 \times x^2$$
.

Para determinar o valor de x basta resolver a equação anterior.

$$144 - 24x + x^2 - 25x^2 = 0$$

$$\Leftrightarrow$$
 $-24x^2 - 24x + 144 = 0$

$$\Leftrightarrow x^2 + x - 6 = 0$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1^2 - 4 \times 1 \times (-6)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{25}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm 5}{2}$$

$$\Leftrightarrow x = -3 \lor x = 2$$

$$C.S. = \{-3, 2\}$$

Como 0 < x < 12, então x = 2.

35

35.1. Recorrendo ao teorema de Pitágoras,

$$h^2 = c_1^2 + c_2^2$$

$$5^2 = 3^2 + \overline{CD}^2$$

$$\Leftrightarrow \overline{CD^2} = 25 - 9$$

$$\Leftrightarrow \overline{CD}^2 = 16$$

$$\Leftrightarrow \overline{CD} = \pm \sqrt{16} \Leftrightarrow \overline{CD} = 4$$

$$\downarrow CD > 0$$

R.: $\overline{CD} = 4$ u.c.

35.2. Como os triângulos são semelhantes, então

$$\frac{h}{4} = \frac{3 - \frac{x}{2}}{3} \iff 3h = 12 - 4\frac{x}{2}$$

$$\Leftrightarrow h = \frac{12 - 2x}{3}$$

$$\Leftrightarrow h = 4 - \frac{2}{3}x$$

35.3.
$$A_{\text{total}} = A_{[ABC]} = \frac{b \times h}{2}$$

$$A_{[ABC]} = \frac{6 \times 4}{2} = \frac{24}{2} = 12$$
 u.a.

A área ocupada pelo preçário é dada por A_{\square} = $b \times h$.

$$x \times h = x \times \left(4 - \frac{2}{3}x\right) = 4x - \frac{2}{3}x^2$$

A área destinada às fotografias é igual à diferença entre a área total e a área do preçário. Então,

$$12 - \left(4x - \frac{2}{3}x^2\right) = \frac{2}{3}x^2 - 4x + 12$$

35.4. Como a expressão de área do preçário é igual a

$$4x - \frac{2}{3}x^2$$
, então $4x - \frac{2}{3}x^2 = 6$

$$\Leftrightarrow -\frac{2}{3}x^2 + 4x - 6 = 0$$

$$\Leftrightarrow -2x^2 + 12x - 18 = 0$$

$$\Leftrightarrow x = \frac{-12 \pm \sqrt{12^2 - 4 \times (-2) \times (-18)}}{2 \times (-2)}$$

$$\Leftrightarrow x = \frac{-12 \pm \sqrt{144 - 144}}{-4}$$

$$\Leftrightarrow x = \frac{12}{4}$$

$$\Leftrightarrow x = 3$$

$$C.S. = \{3\}$$

R.:
$$x = 3$$

36.

36.1. Como a abcissa de A é x e pertence ao gráfico da função $y = 2x^2$, então $A(x, 2x^2)$.

36.2. Os pontos A e B têm a mesma ordenada, então B(0, 18). Como A pertence ao gráfico da função $y = 2x^2$, então $2x^2 = 18 \iff x^2 = 9 \iff x = \pm 3 \iff x = 3 (x > 0)$

Logo, A(3, 9).

$$A_{[AOB]} = \frac{b \times h}{2}$$

$$A_{[AOB]} = \frac{18 \times 9}{2} = 81 \text{ u.a.}$$

36.3. Como *B* tem a mesma ordenada que *A*, então $B(0, 2x^2)$.

Logo,
$$A_{[AOB]} = \frac{x \times 2x^2}{2} = x^3$$

37. A caixa tem 588 cm³ de volume e os quadrados cortados têm 9 cm² de área

 $\sqrt{9}$ = 3 cm, lado do quadrado recortado

x – 6, lado da base da caixa

$$V = 588$$

$$(x-6)(x-6) \times 3 = 588$$

$$\Leftrightarrow$$
 3 × (x^2 – 12 x + 36) – 588 = 0

$$\Leftrightarrow 3x^2 - 36x + 108 - 588 = 0$$

$$\Leftrightarrow 3x^2 - 36x - 480 = 0$$

$$\Leftrightarrow x = \frac{36 \pm \sqrt{(-36)^2 - 4 \times 3 \times (-480)}}{2 \times 3}$$

$$\Leftrightarrow x = \frac{36 \pm \sqrt{1296 + 5760}}{6}$$

$$\Leftrightarrow x = \frac{36 \pm 84}{6}$$

$$\Leftrightarrow x = -8 \lor x = 20$$

$$\Leftrightarrow x = 20 \text{ cm}$$

x > 0

R.: A folha de papel tinha 20 cm de lado.

38.

38.1. Para determinar a altura do 2.º poste, basta substituir x por 30 na expressão $\frac{1}{40}(x-10)^2 + 5$, ou seja,

$$\frac{1}{40} (30 - 10)^2 + 5 = \frac{1}{40} \times 20^2 + 5 = \frac{400}{40} + 5 = 15$$

R.: O 2.º poste tem 15 metros de altura.

38.2. Se o ponto situa-se a 5 metros de altura, basta igualar a expressão $\frac{1}{40}(x-10)^2 + 5$ a 5, e resolver

$$\frac{1}{40}(x-10)^2+5=5$$

$$\Leftrightarrow \frac{1}{40}(x-10)^2 = 0$$

$$\Leftrightarrow (x-10)^2 = 0$$

$$\Leftrightarrow x - 10 = 0$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

R.: O ponto situa-se a 10 metros de distância do 1.º poste.

$$\Leftrightarrow (x-10)^2 = 0$$

$$\Leftrightarrow x - 10 = 0$$

$$\Leftrightarrow x = 10$$

$$C.S. = \{10\}$$

R.: O ponto situa-se a 10 metros de distância do 1.º poste.

Relação de ordem. Intervalos. Inequações

Praticar – páginas 124 a 129

1.

1.1. Se
$$y < 11 \Leftrightarrow y + 4 < 11 + 4 \Leftrightarrow y + 4 < 15$$

1.2. Se
$$y < 11 \iff 2y < 11 \times 2 \iff 2y < 22$$

1.3. Se
$$y < 11 \iff 5y < 11 \times 5 \iff 5y < 55$$

$$\Leftrightarrow$$
 5*y* – 10 < 55 – 10 \Leftrightarrow 5*y* – 10 < 45

2.

2.1.
$$-5 < x < 10$$

$$\Leftrightarrow$$
 $-5 - 3 < x - 3 < 10 - 3$

$$\Leftrightarrow$$
 $-8 < x - 3 < 7$

2.2.
$$-5 < x < 10$$

$$\Leftrightarrow$$
 $-5 \times 2 < 2x < 10 \times 2$

$$\Leftrightarrow$$
 $-10 < 2x < 20$

2.3.
$$-5 < x < 10$$

$$\Leftrightarrow$$
 $-5 \times 4 < 4x < 10 \times 4$

$$\Leftrightarrow$$
 $-20 < 4x < 40$

$$\Leftrightarrow$$
 $-20 - 1 < 4x - 1 < 40 - 1$

$$\Leftrightarrow$$
 -21 < 4*x* - 1 < 39

3

3.1. O perímetro é igual à soma de todos os lados

$$P = 1 + 1 + \sqrt{2} = 2 + \sqrt{2}$$

3.2. Se
$$1,414 < \sqrt{2} < 1,415$$
 então

$$2 + 1,414 < 2 + \sqrt{2} < 2 + 1,415$$

$$\Leftrightarrow$$
 3,414 < 2 + $\sqrt{2}$ < 3,415

4.

4.1.
$$a > b \Leftrightarrow 2 \times a > 2 \times b$$

4.2.
$$a > b \Leftrightarrow -a < -b$$

4.3.
$$a > b \Leftrightarrow 3a > 3b \Leftrightarrow -3a < -3b$$

4.4.
$$a > b \iff a - 3 > b - 3$$

4.5.
$$a > b \Leftrightarrow -a < -b \Leftrightarrow -a + 5 < -b + 5$$

4.6.
$$a > b \iff 3a > 3b \iff 3a - 2 > 3b - 2$$

5.

5.3. [-4, 2[

5.4.]–3, 3[

6

6.1.
$$x > -3 \land x \le 1 \iff -3 < x \le 1$$

R.:
$$]-3$$
, 1] e $-3 < x \le 1$

6.2.
$$x \ge -7 \land x \le -5 \Leftrightarrow -7 \le x \le -5$$

R.:
$$[-7, -5]$$
 e $-7 \le x \le -5$

6.3.]-7, +
$$\infty$$
[e $x > -7$

6.4.]
$$-\infty$$
, 3] e $x \le 3$

6.5.
$$x > -11 \land x \le -3 \Leftrightarrow -11 < x \le -3$$

R.:
$$]-11, -3] e -11 < x \le -3$$

6.6.]
$$-\infty$$
, 700] e $x \le 700$

7.

7.2.

8.
$$C = [-2, \sqrt{10}[, \sqrt{10} \approx 3,16]]$$

8.1. São todos os números inteiros compreendidos entre –2 e 3, ou seja, –2, –1, 0, 1, 2 e 3.

8.2.
$$c = \{x \in \mathbb{R}: -2 \le x \le \sqrt{10}\}$$

9.

9.1. Geometricamente:

Na forma de intervalo: [0, 10]

9.2. Geometricamente:

Na forma de intervalo:]-4, 7[

9.3. Geometricamente:

Na forma de intervalo: [-1, 7]

9.4. Geometricamente:

Na forma de intervalo: [6, 18]

9.5. Geometricamente:

Na forma de intervalo: [-3, 11]

9.6. Geometricamente:

Na forma de intervalo:]-∞, 17]

9.7. Geometricamente:

Na forma de intervalo:]-4, +∞[

9.8. Geometricamente:

Na forma de intervalo: Ø

9.9. Geometricamente:

Na forma de intervalo: {2}

9.10. Geometricamente:

Na forma de intervalo:]-∞, 22]

10.

10.1.
$$2x - 3 \ge 3$$

$$\Leftrightarrow 2x \ge 3 + 3$$

$$\Leftrightarrow 2x \ge 6$$

$$\Leftrightarrow x \ge \frac{6}{2}$$

$$\Leftrightarrow x \ge 3$$

C.S. =
$$[3, +\infty[$$

10.2.
$$5f - 10 < 0$$

$$\Leftrightarrow 5f < 10$$

$$\Leftrightarrow f < \frac{10}{5}$$

$$\Leftrightarrow f < 2$$

C.S. =
$$]-\infty$$
, 2[

10.3.
$$5g + 2 < 14 - g$$

$$\Leftrightarrow$$
 5g + g > 14 - 2

$$\Leftrightarrow$$
 6*g* > 12

$$\Leftrightarrow g > \frac{12}{6}$$

$$\Leftrightarrow g > 2$$

C.S. =
$$]2, +\infty[$$

10.4.
$$4x - 10 \ge 2x + 16$$

$$\Leftrightarrow 4x - 2x \ge 16 + 10$$

$$\Leftrightarrow 2x \ge 26$$

$$\Leftrightarrow x \ge \frac{26}{2}$$

$$\Leftrightarrow x \ge 14$$

C.S. =
$$[13, +\infty[$$

10.5.
$$5x \ge 7x - 8$$

$$\Leftrightarrow$$
 $5x - 7x \ge -8$

$$\Leftrightarrow$$
 $-2x \ge -8$

$$\Leftrightarrow 2x \le 8$$

$$\Leftrightarrow x \le \frac{8}{2}$$

$$\Leftrightarrow x \le 4$$

C.S. =
$$]-\infty$$
, 4]

10.6.
$$x + 5 > 7 + 3x$$

$$\Leftrightarrow x - 3x > 7 - 5$$

$$\Leftrightarrow$$
 $-2x > 2$

$$\Leftrightarrow 2x < -2$$

$$\Leftrightarrow x < -\frac{2}{2}$$

$$\Leftrightarrow x < -1$$

C.S. =
$$]-\infty, -1[$$

$$\Leftrightarrow$$
 3a – 4a < 19 + 2

$$\Leftrightarrow a > -21$$

C.S. =
$$]-21, +\infty[$$

10.8.
$$3a - 1 \ge a + 4$$

$$\Leftrightarrow$$
 3a - a \geq 4 + 1

$$\Leftrightarrow 2a > 5$$

$$\Leftrightarrow a > \frac{5}{2}$$

$$C.S. = \left| \frac{5}{2}, +\infty \right|$$

10.9.
$$-11a - 11 > -7a + 13$$

$$\Leftrightarrow$$
 -11*a* + 7*a* > 13 + 11

$$\Leftrightarrow$$
 $-4a > 24$

$$\Leftrightarrow a < -\frac{24}{4}$$

$$\Leftrightarrow a < -6$$

C.S. =
$$]-\infty, -6[$$

10.10.
$$-3(a-1) < a+2$$

$$\Leftrightarrow$$
 $-3a + 3 < a + 2$

$$\Leftrightarrow$$
 $-3a - a < 2 - 3$

$$\Leftrightarrow$$
 $-4a < -1$

$$\Leftrightarrow 4a > 1$$

$$\Leftrightarrow a > \frac{1}{4}$$

$$C.S. = \left| \frac{1}{4}, +\infty \right|$$

11.

11.1.
$$2(x-6) > -(-x+4)$$

$$\Leftrightarrow 2x-12 > x-4$$

$$\Leftrightarrow$$
 2x - x > -4 + 12

$$\Leftrightarrow x > 8$$

C.S. =
$$]8, +\infty[$$

11.2. 8 não é solução da inequação porque o intervalo do conjunto solução é aberto em 8, logo 8 não é elemento desses conjunto.

11.3. O menor número inteiro é 9, porque é o menor número inteiro maior do que 8.

12.1.
$$2x - 1 \ge 7 \land 2x \le 12$$

$$\Leftrightarrow 2x \ge 7 + 1 \land x \le \frac{12}{2}$$

$$\Leftrightarrow 2x \ge 8 \land x \le 6$$

$$\Leftrightarrow x \ge \frac{8}{2} \land x \le 6$$

$$\Leftrightarrow x \ge 4 \land x \le 6$$

$$[4, +\infty[\cap]-\infty, 6] = [4, 6]$$

$$C.S. = [4, 6]$$

12.2.
$$3(x-5) < -15 \lor 2x \ge x-3$$

$$\Leftrightarrow$$
 $3x - 15 < -15 \lor 2x - x \ge -3$

$$\Leftrightarrow$$
 $3x < -15 + 15 \lor x \ge -3$

$$\Leftrightarrow$$
 $3x < 0 \lor x \ge -3$

$$\Leftrightarrow x < 0 \lor x \ge -3$$

$$]-\infty$$
, $0[\cap]-3$, $+\infty[=]-\infty$, $+\infty[=|\mathbb{R}$

$$C.S. = IR$$

12.3.
$$-2x - 4 < -8 \land 2(x - 3) \le 4$$

$$\Leftrightarrow$$
 $-2x < -8 + 4 \land 2x - 6 \le 4$

$$\Leftrightarrow$$
 $-2x < -4 \land 2x \le 4 + 6$

$$\Leftrightarrow$$
 2*x* < 4 \wedge 2*x* \leq 10

$$\Leftrightarrow x < \frac{4}{2} \land x \le \frac{10}{2}$$

$$\Leftrightarrow x < 2 \land x \le 5$$

$$]-\infty, 2[\cap]-\infty, 5] =]-\infty, 2[$$

C.S. =
$$]-\infty$$
, 2[

13. [A] $\sqrt{2}$ é um número irracional.

[B]
$$-3x > -27 \Leftrightarrow 3x < 27 \Leftrightarrow x < \frac{27}{3} \Leftrightarrow x < 9$$

[C] $\sqrt{13}$ não pertence a *A* porque o intervalo é aberto em $\sqrt{13}$.

[D] $[-1; 4] \cap [2; 7] = [2; 4]$, verdadeira.

Logo, a opção correta é a [D].

14. P = x + x + 2x + 6 + x + 4, simplificando a expressão P = 5x + 10.

Como o perímetro é inferior a 25, P < 25

$$5x + 10 < 25$$

$$\Leftrightarrow$$
 5x < 25 - 10

$$\Leftrightarrow$$
 5*x* < 15

$$\Leftrightarrow x < \frac{15}{5}$$

$$\Leftrightarrow x < 3$$

C.S. = $]-\infty$, 3[, como x > 0, então $x \in]0, 3[$.

15. Se $a \le b$ e $b \le a$, então a = b.

16. [A] $a < a \Leftrightarrow a - a < 0 \Leftrightarrow 0 < 0$ falso

[B] $a \le a \Leftrightarrow a - a \le 0 \Leftrightarrow 0 < 0$, $a \in a$ when $a = a \le 0$ finido

[C] $a > a \Leftrightarrow a - a > 0 \Leftrightarrow 0 > 0$ falso

[D] a > 0, $a \in um número positivo.$

Logo, a opção correta é a [B].

17. [A] $a-3 \le b-3 \Leftrightarrow a \le b$ verdadeiro

[B] $-c \le -d \iff c \ge d$ falsa, porque $c \le d$

[C] $a + c \le b + d$ verdadeiro

[D] $6a \le 6b \Leftrightarrow a \le b$ verdadeiro

Logo, a opção correta é a [B].

18.1.
$$]-\infty, \frac{2}{5}[$$

18.2.]3, 5[

19.

19.1.
$$\{x \in \mathbb{R}: x > 12\} =]$$
12, $+\infty[$

19.2.
$$\{x \in \mathbb{R}: -3 \le x < 17\} =]-3, 17[$$

19.3.
$$\{x \in \mathbb{N}: x < 5\} = \{1, 2, 3, 4\}$$

19.4.
$$\{x \in \mathbb{Z}: -2 < x \le 2\} = \{-1, 0, 1, 2\}$$

- **20.** Por exemplo, $\{x \in \mathbb{R}: x \ge -4 \land x < 7\}$.
- **21.** Por exemplo, $\{x \in \mathbb{R}: x > -6 \lor x < 3\}$.

22.
$$A_{\text{trapézio}} = \frac{B+b}{2} \times h \text{ ou seja}, \frac{2x+1+5x}{2} \times 3,$$

simplificando-a obtemos

$$\frac{7x+1}{2} \times 3 = \frac{21}{2}x + \frac{3}{2}$$

Como a área é inferior a 19, temos:

$$\frac{21}{2}x + \frac{3}{2} < 19$$

$$\Leftrightarrow$$
 21 x + 3 < 38

$$\Leftrightarrow 21x < 38 - 3$$

$$\Leftrightarrow 21x < 35$$

$$\Leftrightarrow x < \frac{35}{21}$$

$$\Leftrightarrow x < \frac{5}{3}$$

$$C.S. = \left] -\infty, \frac{5}{3} \right[$$

Como x > 0, então $x \in \left[0, \frac{5}{3}\right]$.

23.
$$4(-d+6) - 5 = -4d + 24 - 5 = -4d + 19$$

23.1. Um valor não negativo é um valor superior ou igual a zero.

Logo,
$$-4d + 19 \ge 0$$

$$\Leftrightarrow d \leq \frac{19}{4}$$

$$C.S. = \left] -\infty, \frac{19}{4} \right]$$

$$d \in \left[-\infty, \frac{19}{4} \right]$$

23.2. Se o valor da expressão pertence ao intervalo $[-3, +\infty[$, então é superior ou igual a -3. Assim,

$$-4d + 19 \ge -3$$

$$\Leftrightarrow$$
 $-4d \ge -3 - 19$

$$\Leftrightarrow 4d \le 22$$

$$\Leftrightarrow d \leq \frac{22}{4}$$

$$\Leftrightarrow d \leq \frac{11}{2}$$

$$C.S. = \left] -\infty, \frac{11}{2} \right]$$

$$d \in \left[-\infty, \frac{11}{2} \right]$$

23.3. Se a expressão assume um valor positivo, então -4d + 19 > 0.

Se a expressão é menor do que 10 então

-4d + 19 < 10. Então, obtemos a conjunção

$$-4d + 19 > 0 \land -4d + 19 < 10$$

$$\Leftrightarrow$$
 -4*d* > -19 \land -4*d* < 10 - 19

$$\Leftrightarrow d < \frac{19}{4} \land 4d > 9$$

$$\Leftrightarrow d < \frac{19}{4} \land d > \frac{9}{4}$$

$$C.S. = \left[\frac{9}{4}, \frac{19}{4} \right]$$

$$Logo, d \in \left[\frac{9}{4}, \frac{19}{4} \right].$$

24.

24.1. $A \cap B =]-\infty$, $5[\cap [-4, 6[= [-4, 5[$

Logo, a opção correta é a [C].

24.2. a)
$$A \cap \mathbb{R} =]-\infty$$
, $5[\cap \mathbb{R} =$

b)
$$A \cup B =]-\infty$$
, $5[\cup [-4, 6] =]-\infty$, 6]

c)
$$B \cap \mathbb{R}^+ = [-4, 6] \cap \mathbb{R}^+ = [-4, 6]$$

- **25.** [A] $\sqrt{3} \notin [0, \sqrt{3}[$, porque o intervalo é aberto em $\sqrt{3}$.
- [B] $\sqrt{3} \in [\sqrt{2}; 7[$, porque $\sqrt{3} > \sqrt{2} e \sqrt{3} < 7.$
- [C] $\sqrt{3} \notin \{\sqrt{2}, 7\}$
- [D] $\sqrt{3} \notin {\{\sqrt{2} + 1\}}$

Logo, a opção correta é a [B].

26. I.
$$2 - \frac{x-6}{3} \ge -(x-3)$$

$$\Leftrightarrow 2 - \frac{x - 6}{3} \ge -x + 3$$
$$\Leftrightarrow 6 - x + 6 \ge -3x + 9$$

$$\Leftrightarrow$$
 $-x + 3x \ge 9 - 6 - 6$

$$\Leftrightarrow 2x \ge -3$$

$$\Leftrightarrow x \ge -\frac{3}{2}$$

$$C.S. = \left[-\frac{3}{2}, +\infty \right]$$

II.
$$2(-x + 4) < \frac{x}{2} - 1$$

$$\Leftrightarrow$$
 $-2x + 8 < \frac{x}{2} - 1$

$$\Leftrightarrow$$
 $-4x + 16 < x - 2$

$$\Leftrightarrow$$
 $-4x - x < -2 - 16$

$$\Leftrightarrow$$
 $-5x < -18$

$$\Leftrightarrow 5x > 18$$

$$\Leftrightarrow x > \frac{18}{5}$$

$$C.S. = \left| \frac{18}{5}, +\infty \right|$$

III.
$$3 - \frac{x-1}{2} \le -3(2-x) + 1$$

$$\Leftrightarrow 3 - \frac{x-1}{2} \le -6 + 3x + 1$$

$$\Leftrightarrow$$
 6 - x + 1 \le -12 + 6x + 2

$$\Leftrightarrow -x - 6x \le -12 + 2 - 6 - 1$$

$$\Leftrightarrow$$
 $-7x \le -17$

$$\Leftrightarrow 7x \ge 17$$

$$\Leftrightarrow x \ge \frac{17}{7}$$

$$C.S. = \left\lceil \frac{17}{7}, +\infty \right\rceil$$

27. Sendo *x* o número de bilhetes, temos:

$$50 + 2x \le 12x$$

$$\Leftrightarrow$$
 $-12x + 2x \le -50$

$$\Leftrightarrow -10x \le 50$$

$$\Leftrightarrow 10x \ge 50$$

$$\Leftrightarrow x \ge 5$$

C.S. =
$$[5, +\infty[$$

R.: O Filipe terá de assistir a mais de cinco jogos para que compense tornar-se sócio.

28. Seja *x* o peso de cada esfera.

$$3x + 10 < x + 17$$

$$\Leftrightarrow$$
 3 $x - x < 17 - 10$

$$\Leftrightarrow 2x < 7$$

$$\Leftrightarrow x < \frac{7}{2}$$

$$C.S. = \left[-\infty; \frac{7}{2} \right]$$

Cada esfera pesa menos do que 3,5 kg.

Então, k = 3.

Logo, a opção correta é a [C].

29. O perímetro do triângulo é dado pela expressão

$$2x + 2x + 3 + x + 1 = 5x + 4$$

O perímetro do hexágono é dado pela expressão $x \times 6 = 6x$.

Então, 5x + 4 > 6x.

$$\Leftrightarrow$$
 $5x - 6x > -4$

$$\Leftrightarrow$$
 $-x > -4$

$$\Leftrightarrow x < 4$$

C.S. =
$$]-\infty$$
, 4[

Como x > 0 então, $x \in [0, 4[$.

- **30.** [A] A afirmação é verdadeira.
- [B] A afirmação é falsa. Se a < b então $a \neq b$.
- [C] A afirmação é falsa porque $-a < -b \Leftrightarrow a > b$.
- [D] A afirmação é falsa porque

$$-3 + a > -3 + b \Leftrightarrow a > b$$
.

Logo, a opção correta é a [B].

31. Seja x o preço dos sapatos e o y o preço da blusa.

Como os sapatos custam mais $20 \in do que a blusa,$ então x = 20 + y.

A Margarida pretende comprar uns sapatos e uma blusa, sem gastar mais de 200 \in , então $x + y \le 200$. Como x = 20 + y, temos:

$$20 + y + y \le 200$$

$$\Leftrightarrow 2y \le 200 - 20$$

$$\Leftrightarrow 2y \le 180$$

$$\Leftrightarrow y \le \frac{180}{2}$$

$$\Leftrightarrow y \le 90$$

C.S. =
$$]-\infty$$
, 90]

R.: A blusa custará, no máximo, 90 €.

32

32.1. $\{x \in \mathbb{R}: 2x - 4 \ge 12\} \cap [x \in \mathbb{R}: 2(x - 5) - 3 < 7\}$ $2x \ge 12 + 4 \wedge 2x - 10 - 3 < 7$

$$\Leftrightarrow$$
 $2x \ge 16 \land 2x < 7 + 10 + 3$

$$\Leftrightarrow x \ge \frac{16}{2} \land 2x < 20$$

$$\Leftrightarrow x \ge 8 \land x < \frac{20}{2}$$

$$\Leftrightarrow x \ge 8 \land x < 10$$

$$[8, +\infty[\cap]-\infty, 10[= [8, 10[$$

$$C.S. = [8, 10]$$

32.2. $\{x \in \mathbb{Z}: x \ge 11\} \cap [x \in \mathbb{R}: x < 15\}$

$$x \ge 11 \land x < 15$$

 $\Leftrightarrow 11 \le x < 15, x \in \mathbb{Z}$

$$x \in \{11, 12, 13\}$$

32.3. $\{x \in \mathbb{N}: -2(x+3) \ge -14\} \cup \{-3, -2, -1\}$

$$-2x - 6 \ge -14$$

$$\Leftrightarrow$$
 $-2x \ge -14 + 6$

$$\Leftrightarrow$$
 $-2x \ge -8$

$$\Leftrightarrow 2x \le 8$$

$$\Leftrightarrow x \ge \frac{8}{2}$$

$$\Leftrightarrow x \le 4, x \in \mathbb{N}$$

$$\{1, 2, 3, 4\} \cup \{-3, -2, -1\} = \{-3, -2, -1, 1, 2, 3, 4\}$$

$$C.S. = \{-3, -2, -1, 1, 2, 3, 4\}$$

33. Se $Q \in 3.^{\circ}$ Quadrante, então as coordenadas têm valor negativo. Logo,

$$\frac{4(m-1)-5}{3} < 0 \land -m+2 < 0$$

$$\Leftrightarrow \frac{4m-4-5}{3} < 0 \land -m < -2$$

$$\Leftrightarrow$$
 4 $m-9 < 0 \land m > 2$

$$\Leftrightarrow 4m < 9 \land m > 2$$

$$\Leftrightarrow m > \frac{9}{4} \land m > 2$$

$$\Leftrightarrow 2 < m < \frac{9}{4}$$

$$m \in \left[2, \frac{9}{4}\right]$$

34. Se C.S. =
$$\left| -\infty, \frac{7}{2} \right|$$
, então $x < \frac{7}{2}$

$$\Leftrightarrow 2x < 7$$

$$\Leftrightarrow$$
 2(*x* – 6) + **12** < 7

35

$$\begin{cases} \frac{3(x-4)}{7} < 0 \\ \frac{2}{3}(x-2) > -\frac{8}{3} \end{cases} \Leftrightarrow \begin{cases} \frac{3x-12}{7} \le 0 \\ \frac{2}{3}x - \frac{4}{3} > \frac{8}{3} \end{cases} \Leftrightarrow \begin{cases} 3x \le 12 \\ 2x > -8 + 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} x \le \frac{12}{3} \\ 2x > -4 \end{cases} \Leftrightarrow \begin{cases} x \le 4 \\ x > -\frac{4}{2} \end{cases} \Leftrightarrow \begin{cases} x \le 4 \\ x > -2 \end{cases}$$

$$C.S. = \{-1, 0, 1, 2, 3, 4\}$$

36.
$$3\left(x^2 - \frac{4}{3}x\right) = -k \iff 3x^2 - 4x + k = 0$$

A equação é impossível se $b^2 - 4ac < 0$, ou seja,

$$(-4)^2 - 4 \times 3 \times k < 0$$

$$\Leftrightarrow$$
 16 – 12 k < 0

$$\Leftrightarrow$$
 $-12k < -16$

$$\Leftrightarrow$$
 12 $k > 16$

$$\Leftrightarrow k > \frac{16}{12}$$

$$\Leftrightarrow k = \frac{4}{3}$$

$$C.S. = \left| \frac{4}{3}, +\infty \right|$$

$$k \in \left] \frac{4}{3}, +\infty \right[$$

37. 2x + 1, 2x + 3 e 2x + 5 são três números ímpares consecutivos.

$$2x + 1 + 2x + 3 + 2x + 5 > 53$$

$$\Leftrightarrow$$
 6*x* > 53 – 1 – 3 – 5

$$\Leftrightarrow$$
 6x > 44

$$\Leftrightarrow x > \frac{44}{6}$$

$$\Leftrightarrow x > \frac{22}{3}$$

$$C.S. = \left| \frac{22}{3}, +\infty \right|$$

Como $\frac{22}{3} \approx 7$,(3), então os três números são

$$2 \times 8 + 1 = 17$$

$$2 \times 8 + 3 = 19$$

$$2 \times 8 + 5 = 21$$

38.
$$B =]-\sqrt{8}, \pi[$$

$$B \cap \mathbb{N} =]-\sqrt{8}, \pi[\cap \{1, 2, 3, 4, 5, ...\} = \{1, 2, 3\}$$

Os elementos comuns aos dois cojuntos são 1, 2 e 3.

39.

39.1.
$$3t + 27 ≤ 81$$

$$\Leftrightarrow \frac{3t}{3} + \frac{27}{3} \le \frac{81}{3}$$

$$\Leftrightarrow t + 9 \le 27$$

39.2.
$$3t + 27 ≤ 81$$

$$\Leftrightarrow t + 9 \le 27$$

$$\Leftrightarrow t + 9 - 27 \le 0$$

$$\Leftrightarrow t - 18 \le 0$$

$$\Leftrightarrow 5t - 5 \times 18 \le 0$$

(×5)

$$\Leftrightarrow 5t - 90 \le 0$$

40. Começando por resolver a inequação, temos

$$-2(x-3) - 3 < 11$$

$$\Leftrightarrow$$
 $-2x + 8 - 3 < 11$

$$\Leftrightarrow$$
 $-2x < 11 - 8 + 3$

$$\Leftrightarrow$$
 $-2x < 6$

$$\Leftrightarrow 2x > 6$$

$$\Leftrightarrow x > -\frac{6}{2}$$

$$\Leftrightarrow x > -3$$

$$]-3, +\infty[\cap \mathbb{Z}^- = \{-2, -1\}]$$

Logo, há dois números, -2 e -1, que satisfazem a condição -2(x-4)-3<11.

41.1.
$$3x < 3x \iff 3x - 3x < 0 \iff 0 < 0$$

Inequação impossível. C.S. = { }

41.2.
$$x \ge x \iff x - x \ge 0 \iff 0x > 0$$

$$C.S. = IR$$

41.3.
$$5x - 1 < 5x \iff 5x - 5x < 1 \iff 0x < 1$$

$$C.S. = IR$$

42. Como
$$\pi \approx 3,1415...$$

[A]
$$\pi \notin]-\infty$$
; 3,14] porque $\pi > 3,14$.

[B]
$$\pi \in]0; \pi[$$
 porque o intervalo é aberto em π .

[C]
$$\pi \in (3.14; +\infty)$$
, porque $\pi > 3.14$.

[D] $\pi \notin]\pi$; $+\infty[$, porque o intervalo é aberto em π . Logo, a opção correta é a [C].

43.
$$w \ge -\sqrt{3} + 1 \wedge \frac{2}{5}(4 - w) > \frac{8}{5}$$

$$\Leftrightarrow w \ge -\sqrt{3} + 1 \wedge \frac{8}{5} - \frac{2}{5}w > \frac{8}{5}$$

$$\Leftrightarrow w \ge -\sqrt{3} + 1 \land -2w \ge 8 - 8$$

$$\Leftrightarrow w \ge -\sqrt{3} + 1 \land 2w \le 0$$

$$\Leftrightarrow w \ge -\sqrt{3} + 1 \land w \le 0$$

$$w \in [-\sqrt{3} + 1; 0]$$

Como $-\sqrt{3} + 1 \approx -0.73$, então, por exemplo:

$$w = -0.5 = -\frac{1}{2}$$

R.:
$$w = -\frac{1}{2}$$

44. [A]
$$I \cap A = [\sqrt{2} - 1, +\infty[\cap]-1, 4] = [-\sqrt{2}, 4]$$

[B]
$$I \cap A = [\sqrt{2} - 1, 8[\cap] - 1, 4] = [\sqrt{2} - 1, 4]$$

[C]
$$I \cap A = [\sqrt{2} - 1, 4[\cap] - 1, 4] = [\sqrt{2} - 1, 4]$$

[D]
$$I \cap A = [\sqrt{2} - 1, 4[\cap] - 1, 4] = [\sqrt{2} - 1, 4]$$

Logo, a opção correta é a [B].

45. Seja c o comprimento do retângulo e ℓ a largura do retângulo.

Sabemos que $c = 7 + \ell$ e $P = 2\ell + 2c$. Então,

$$P = 2\ell + 2(7 + \ell) =$$

$$= 2\ell + 14 + 2\ell =$$

$$= 4\ell + 14$$

Como $P \ge 54$, temos:

$$4\ell+14\geq 54$$

$$\Leftrightarrow$$
 $4\ell \ge 54 - 14$

$$\Leftrightarrow$$
 $4\ell \ge 40$

$$\Leftrightarrow \ell \ge \frac{40}{4}$$

$$\Leftrightarrow \ell \ge 10$$

$$\ell \in [10, +\infty[$$

A largura tem, no mínimo, 10 cm.

$$c = 7 + \ell \iff c = 7 + 10 \iff c = 17 \text{ cm}$$

R.: As dimensões mínimas do retângulo são 10 cm de largura e 17 cm de comprimento.

46. A média dos três valores é dado pela expressão

$$\frac{8,11+8,42+x}{3} = \frac{1}{3}x+5+5,1$$

Como a média deve ser inferior a 8,6 e superior a 8,3, então:

$$\frac{1}{3}x + 5 + 5,1 > 8,3 \land \frac{1}{3}x + 5,51 < 8,6$$

$$\Leftrightarrow \frac{1}{3}x > 2.79 \wedge \frac{1}{3}x < 3.09$$

$$\Leftrightarrow x > 8,37 \land x < 9,27$$

$$C.S. = [8,37; 9,27]$$

R.: Na última medição o valor de PH poderá estar entre 8,37 e 9,27.

Praticar + - páginas 130 a 136

1

1.1. Como as retas *r* e *s* são paralelas, então têm o mesmo declive.

Sendo r: y = 25 + 10x, então s: y = 10x + b.

A reta s interseta o eixo Oy no ponto (40, 0).

Logo, a ordenada na origem é 40.

$$s: y = 10x + 40$$

1.2. A abcissa do ponto *A* é 2 e *A* é um ponto de reta *r*. Logo,

$$y = 25 + 10 \times 2 \iff y = 25 + 20 \iff y = 45$$

Então, A(2, 45)

1.3. O sistema é impossível porque as retas são estritamente paralelas.

2. Substituindo a por 7 e b por 3 na expressão

$$\frac{2a-3b}{5} + (a+b)^2$$
, obtém-se:

$$\frac{2 \times 7 - 3 \times 3}{5} + (7 + 3)^2 =$$

$$=\frac{14-9}{5}+10^2=$$

$$=\frac{5}{5}+100=$$

$$= 101$$

Logo,
$$7 \Psi 3 = 101$$

3. Resolvendo o sistema

$$\begin{cases} 2x - y = 8 \\ x + y = 5 \end{cases} \Leftrightarrow \begin{cases} 2(5 - y) - y = 8 \\ x = 5 - y \end{cases} \Leftrightarrow \begin{cases} -2y - y = 8 - 10 \\ -3y = -2 \end{cases} \Leftrightarrow \begin{cases} -3y = -2 \\ x = 5 - \frac{2}{3} \end{cases} \Leftrightarrow \begin{cases} x = \frac{15}{3} - \frac{2}{3} \end{cases} \Leftrightarrow \begin{cases} x = \frac{13}{3} \end{cases}$$

$$C.S. = \left\{ \left(\frac{13}{3}, \frac{2}{3}\right) \right\}$$

$$(x, y) = \left(\frac{13}{3}, \frac{2}{3}\right)$$

4. Seja x a quantidade procurada.

Assim, $\frac{1}{3}x$ é terça parte dessa quantidade

$$\frac{x}{1} + \frac{1}{3}x = \frac{400}{1}$$

$$\Leftrightarrow 3x + x = 1200$$

$$\Leftrightarrow$$
 4x = 1200

$$\iff x = \frac{1200}{4}$$

$$\Leftrightarrow x = 300$$

$$C.S. = {300}$$

R.: A quantidade procurada é 300.

5. A opção [A] não é a correta porque $\pi \notin A$, uma vez que $\pi > \sqrt{2}$.

Como $\sqrt{2} \notin A$, as opções [B] e [C] não são corretas.

Logo, a opção correta é a [D].

6. A média dos três números é dada pela expressão

$$\frac{(x+9) + (7x-3) + (2x)}{3} = \frac{x+7x+2x+9-3}{2} =$$

$$= \frac{10x+6}{3} = \frac{10}{3}x+2$$

Como a média é igual a 4x, então

$$\frac{10}{3}x + 2 = 4x$$
(×3) (×3)

$$\Leftrightarrow 10x + 6 = 12x$$

$$\Leftrightarrow$$
 $10x - 12x = -6$

$$\Leftrightarrow$$
 $-2x = -6$

$$\Leftrightarrow x = \frac{-6}{-2}$$

$$\Leftrightarrow x = 3$$

$$C.S. = \{3\}$$

$$x + 9 = 3 + 9 = 12$$

•
$$7x - 3 = 7 \times 3 - 3 = 18$$

•
$$2x = 2 \times 3 = 6$$

R.: Os números são 6, 12 e 18.

7.
$$3 \times f(a) = g(2a)$$

$$3 \times \frac{a^2 + 4}{3} = 2 \times 2a$$

$$\Leftrightarrow a^2 + 4 - 4a = 0$$

$$\Leftrightarrow a^2 - 4a + 4 = 0$$

$$\Leftrightarrow (a-2)^2 = 0$$

$$\Leftrightarrow a = 2$$

C.S. =
$$\{a\}$$

Logo, a opção correta é a [B].

8.

8.1.
$$2(2x-3)=4x-1$$

$$\Leftrightarrow$$
 $4x - 6 = 4x - 1$

$$\Leftrightarrow$$
 $4x - 4x = -1 + 6$

$$\Leftrightarrow 0x = 5$$

$$C.S. = \{ \}$$

Equação impossível.

8.2.
$$1 - \frac{x-6}{3} = -(x-1)$$

$$\Leftrightarrow \frac{1}{1} - \frac{x - 6}{3} = -\frac{x}{1} + \frac{1}{1}$$

$$\underset{(x3)}{(x3)} = \frac{x}{1} + \frac{1}{1}$$

$$\Leftrightarrow$$
 3 - x + 6 = -3x + 3

$$\Leftrightarrow -x + 3x = 3 - 3 - 6$$

$$\Leftrightarrow 2x = -6$$

$$\Leftrightarrow x = \frac{-6}{2}$$

$$\Leftrightarrow x = -3$$

$$C.S. = \{-3\}$$

Equação possível e determinada.

8.3.
$$2(x-3) = \frac{4x-6}{2} - 3$$

$$\Leftrightarrow \frac{2x}{1} - \frac{6}{1} = \frac{4x - 6}{2} - \frac{3}{1}$$

$$\stackrel{(\times 2)}{\underset{(\times 2)}{(\times 2)}} = \frac{3}{2} + \frac{3}{2}$$

$$\Leftrightarrow$$
 4*x* - 12 = 4*x* - 6 - 6

$$\Leftrightarrow$$
 4*x* – 4*x* = –6 – 6 + 12

$$\Leftrightarrow 0x = 0$$

$$C.S. = IR$$

Equação possível e indeterminada.

8.4.
$$2x - 3(x - 4) - \frac{x - 6}{2} = -\frac{2}{3}$$

$$\Leftrightarrow \frac{2x}{1} - \frac{3x}{1} + \frac{12}{1} - \frac{x-6}{2} = -\frac{2}{3}$$
(x2)

$$\Leftrightarrow 12x - 18x + 72 - 3x + 18 = -4$$

$$\Leftrightarrow 12x - 18x - 3x = -4 - 72 - 18$$

$$\Leftrightarrow$$
 $-9x = -94$

$$\Leftrightarrow x = \frac{-94}{-9}$$

$$\Leftrightarrow x = \frac{94}{9}$$

C.S. =
$$\left\{ \frac{94}{9} \right\}$$

Equação possível e determinada.

9.1.
$$2x = 18$$

$$\Leftrightarrow x = \frac{18}{2}$$

$$\Leftrightarrow x = 9$$

$$C.S. = \{9\}$$

9.2.
$$x^2 - 10x + 25 = 0$$

$$\Leftrightarrow (x-5)^2 = 0$$

$$\Leftrightarrow x - 5 = 0$$

$$\Leftrightarrow x = 5$$

$$C.S. = \{5\}$$

10

10.1.
$$P = \overline{AB} + \overline{BC} + \overline{CD} + \overline{DE} + \overline{EF} + \overline{FG} + \overline{GH} + \overline{HA}$$

$$FG = 2x - (x - 4 + x - 4) = 2x - x + 4 - x + 4 = 8$$

$$P = 2x + 4 + x - 4 + 4 + 8 + 4 + x - 4 + 4 = 4x + 16$$

$$4x + 16 = 36$$

$$\Leftrightarrow$$
 4x = 36 - 16

$$\Leftrightarrow$$
 4 $x = 20$

$$\Leftrightarrow x = \frac{20}{4}$$

$$\Leftrightarrow x = 5$$

R.:
$$x = 5$$

10.3.
$$A_{\text{poligono}} = A_{[ABCH]} + A_{[DEFG]}$$

$$A_{[ABCH]} = b \times h$$

$$A_{[ABCH]} = 2x \times 4 = 8x$$

$$A_{[DEFG]} = b \times h$$

$$A_{[DFFG]} = 8 \times 4 = 32$$

Logo,
$$A_{\text{polígono}} = 8x + 32$$

10.4. Se a área do polígono é igual a 80, então

$$8x + 32 = 80$$

$$\Leftrightarrow 8x = 80 - 32$$

$$\Leftrightarrow 8x = 48$$

$$\Leftrightarrow x = \frac{48}{8}$$

$$\Leftrightarrow x = 6$$

R.:
$$x = 6$$

11. Se
$$a = 2$$
, então $3a - 5b^2 = 6$

$$\Leftrightarrow$$
 3 × 2 – 5 b^2 = 6

$$\Leftrightarrow$$
 $-5b^2 = 6 - 6$

$$\Leftrightarrow$$
 $-5b^2 = 0$

$$\Leftrightarrow b^2 = \frac{0}{-5}$$

$$\Leftrightarrow b^2 = 0$$

$$\Leftrightarrow b = 0$$

$$C.S. = \{0\}$$

R.:
$$b = 0$$

12. [A]
$$x^2 - 16 = (x - 4)(x + 4)$$

[B]
$$3x - 9x^2 = 3x(1 - 3x)$$

[C]
$$(x-7)(x+7) = x^2 - 49$$

[D]
$$2x^2 - 8x + 8 = 2(x^2 - 4x + 4) = 2(x - 2)^2$$

Logo, a opção correta é a [D].

13.
$$a^2 + 2ab + b^2 = (a + b)^2$$
.

Como a + b = 3, então $(a + b)^2 = 3^2 = 9$.

14. [A] Se
$$x > y$$
, $ax + ay \neq 0$

[B] Se
$$x = y$$
, $ax + ay \neq 0$

[C] Se
$$x < y$$
, $ax + ay \neq 0$

[D] Se
$$x = -y$$
, $ax + ay = 0$. Substituindo x por $-y$, temos $-ay + ay = 0$

Logo, a opção correta é a [D].

15.
$$A_{\text{trapézio}} = \frac{B+b}{2} \times h$$

$$A_{\text{trapézio}} = \frac{x + 4x - 2}{2} \times 8 = \frac{5x - 2}{2} \times 8 = 20x - 8$$

$$A_{\text{triângulo}} = \frac{b \times h}{2}$$

$$A_{\text{triângulo}} = \frac{(3x+1)\times8}{2} = 12x+4$$

Como os dois polígonos têm a mesma área, basta igualar as duas expressões 20x - 8 = 12x + 4, resolvendo a equação em ordem a x, obtemos

$$20x - 12x = 4 + 8$$

$$\Leftrightarrow 8x = 12$$

$$\Leftrightarrow x = \frac{12}{8}$$

$$\Leftrightarrow x = \frac{3}{2}$$

$$\Leftrightarrow x = 1.5$$

C.S. = $\{1.5\}$
R.: $x = 1.5$ cm

16. $-x \ge -10$. Trocando os sinais de desigualdade obtemos $x \le 10$.

C.S. =
$$]-\infty$$
, 10]

17. A soma dos ângulos internos de um polígono é dada pela expressão $S = (n-2) \times 180^{\circ}$.

Como se trata de um pentágono, n = 5.

Logo,
$$S = (5 - 2) \times 180^{\circ} = 3 \times 180^{\circ} = 540^{\circ}$$

A amplitude de cada ângulo interno é $108^{\rm o}$

$$(540:5=108).$$

Então,
$$x + y + 2 = 108$$
 e

$$3y + x - 22 + x + y + 2 = 180$$
, porque é um ângulo raso.

Resolvendo o sistema com as duas equações

$$\begin{cases} x + y + 2 = 108 \\ 3x + x - 22 + x + y + 2 = 180 \end{cases}$$

$$\Leftrightarrow \begin{cases} x + y = 108 - 2 \\ x + x + 3y + y = 180 + 22 - 2 \end{cases}$$

18. Seja x o número de cachorros "simples" e y o número de cachorros "com tudo".

Como vendeu 25 cachorros, então x + y = 25.

Como faturou 59,5 €, então 2x + 3,5y = 69,5.

Obtém-se o sistema de equações:

$$\begin{cases} x + y = 25 \\ 2x + 3.5y = 69.5 \end{cases} \Leftrightarrow \begin{cases} -\frac{195}{20x + 35y} = 695 \\ 20x + 35y = 695 \end{cases}$$

$$\Leftrightarrow \begin{cases} x = 25 - y \\ 20(25 - y) + 35y = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15y}{20x + 35y} = 695 \\ 15y = 195 \end{cases} \Leftrightarrow \begin{cases} -\frac{195}{15} \\ y = 13 \end{cases} \Leftrightarrow \begin{cases} x = 25 - 13 \\ y = 13 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ 15y = 195 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ 15y = 195 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ 15y = 13 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x + 35y} = 695 \\ -\frac{15}{20x + 35y} = 695 \end{cases} \Leftrightarrow \begin{cases} -\frac{15}{20x$$

R.: O António vendeu 13 cachorros "com tudo".

19.
$$a^2 + 2 \times a \times b + b^2 = 16$$

⇔ $(a + b)^2 = 16$
⇔ $a + b = -\sqrt{16} \lor a + b = \sqrt{16}$
⇔ $a + b = -4 \lor a + b = 4$
⇔ $3(a + b) = -4 \times 3 \lor 3(a + b) = 4 \times 3$
⇔ $3a + 3b = -12 \lor 3a + 3b = 12$
Logo, a opção correta é a [C].

20. Sendo x, y e z os comprimentos dos lados do triângulo escaleno e x < y < z.

$$\frac{z}{x}$$
 = 2; $x + y = z + 2$ e $x + y + z = 24$

Como
$$\frac{Z}{x} = 2 \iff x = 2x$$

Substituindo z por 2x nas expressões

•
$$x + y = z + 2 \iff x + y = 2x + 2$$
 ? $-x + y = 2$

•
$$x + y + z = 24 \Leftrightarrow x + y + 2x = 24 \Leftrightarrow 3x + y = 24$$

Resolvendo o sistema de equações

O comprimento do lado maior é *z*, então

z = 2x ou seja $z = 2 \times 5,5 = 11$

R.: O lado maior tem 11 cm de comprimento.

21.
$$\frac{a}{b} = \frac{x}{1} \iff x = \frac{a}{b}$$

Logo, a opção correta é a [A].

22. Seja x o dinheiro que a Inês recebeu do avô.

Então, $\frac{x}{4}$ representa o que gastou numa mochila e $\frac{x}{3}$ representa o que gastou num *tablet*.

Como sobraram 100 €, temos:

$$x = \frac{x}{4} + \frac{x}{3} + 100$$
(x12) (x3) (x4) (x12)

$$\Leftrightarrow 12x = 3x + 4x + 1200$$

$$\Leftrightarrow 12x - 3x - 4x = 1200$$

$$\Leftrightarrow$$
 5x = 1200

$$\Leftrightarrow x = \frac{1200}{5}$$

$$\Leftrightarrow x = 240$$

$$C.S. = \{240\}$$

R.: A Inês recebeu 240 € do seu avô.

23.

	Idade atual	Idade daqui a x anos
Filipa	18	18 + <i>x</i>
Ana	7	7 + x

$$18 + x = 2 \times (7 + x)$$

$$\Leftrightarrow$$
 18 + x = 14 + 2 x

$$\Leftrightarrow x - 2x = 14 - 18$$

$$\Leftrightarrow$$
 $-x = -4$

$$\Leftrightarrow x = 4$$

$$C.S. = \{4\}$$

R.: Daqui a quatro anos a Filipa terá o dobro da idade da Ana.

24.

24.2.
$$]\sqrt{2}, \pi[\cap A =$$

=
$$]\sqrt{2}$$
, $\pi[\cap]-\infty$, $6[$ =

$$= \sqrt{2}, \pi$$

$$\Leftrightarrow -\frac{2}{1000} x < \frac{4}{100}$$

$$\Leftrightarrow$$
 $-2x < 40$

$$\Leftrightarrow 2x > -40$$

$$\Leftrightarrow x > \frac{40}{2}$$

$$\Leftrightarrow x > -20$$

C.S. =
$$]-20, +\infty[$$

26. Sejam x, x + 1, x + 2 três números inteiros consecutivos.

$$x + x + 1 + x + 2 = (2x + 2) - 6$$

$$\Leftrightarrow 3x + 3 = 2x + 4 - 6$$

$$\Leftrightarrow 3x - 2x = 4 - 6 - 3$$

$$\Leftrightarrow x = -5$$

$$C.S. = \{-5\}$$

$$x = -5$$

$$x + 1 = -4$$

$$x + 2 = -3$$

R.:
$$-5$$
, -4 e -3

27. Como a e b são números naturais, então a > 0 e

$$b > 0$$
 e, portanto, $a + b > 0$, $a \times b > 0$ e $\frac{a}{b} > 0$.

Logo, as opções [A] e [B] são verdadeiras e a opção [C] é falsa.

A opção [D] pode ser verdadeira.

Por exemplo, 1 - 3 < 0.

Logo, a opção correta é a [C].

28. Como o aluguer da caravana custa *D* euros por dia, em 17 dias custa 17*D*.

Como cada quilómetro percorrido custa *K* cêntimos percorrendo, 5300 km, custa 5300*k*, ou seja 53*k* euros.

Assim, no total, pagará 17D + 53K cêntimos.

Logo, a opção correta é a [B].

29. Uma fração equivalente a $\frac{5}{6}$ é do tipo $\frac{5k}{6k'}$, sendo

 $k \neq 0$.

Então, como adicionando 5 ao numerador obtém-se 15,

$$5k + 5 = 15$$

$$\Leftrightarrow$$
 5 $k = 10$

$$\Leftrightarrow k = 2$$

e
$$6 \times 2 - y = 7$$

$$\Leftrightarrow$$
 $-y = 7 - 12$

$$\Leftrightarrow y = 5$$

Logo,
$$\frac{5 \times 2}{6 \times 2} = \frac{10}{12}$$
.

30. A opção [A] é falsa, porque se c > d e a > 0, então $a \times c > a \times d$.

A opção [B] é falsa, porque se a > 0, b > 0, b = a, então $a \times c > b \times d$.

A opção [C] é verdadeira, porque se d < c e b > 0, então $b \times d < b \times d$.

A opção [D] é falsa, porque se c > d e b = a, a > 0, então $b \times c > a \times d$.

Logo, a opção correta é a [C].

31.
$$-3x ≥ 9$$

$$\Leftrightarrow$$
 3 $x < -9$

$$\Leftrightarrow x \le -\frac{9}{3}$$

$$\Leftrightarrow x \le -3$$

Logo, a opção correta é a [D].

32. [A] (2, -8)

$$\begin{cases} 2 \times 2 - (-8) = 4 \\ \frac{2 \times 2 + (-8)}{3} = 2 \times 2 \end{cases} \Leftrightarrow \begin{cases} 4 + 8 = 4 \text{ falso} \\ -\frac{4}{3} = 4 \text{ falso} \end{cases}$$

(2, -8) não é solução do sistema porque não é solução das equações do sistema.

$$\begin{cases} 2 \times (-2) - (-8) = 4 \\ \frac{2 \times (-2) + (-8)}{3} = 2 \times 2 \end{cases}$$
 $\begin{cases} -4 + 8 = 4 \text{ verdadeiro} \\ \frac{-4 - 8}{3} = -4 \text{ verdadeiro} \end{cases}$

(2, -8) é solução do sistema porque é solução das duas equações do sistema.

$$\begin{cases} 2 \times (-2) - 8 = 4 \\ \frac{2 \times (-2) + 8}{3} = 2 \times (-2) \end{cases} \Leftrightarrow \begin{cases} -4 - 8 = 4 \text{ falso} \\ \frac{-4 + 8}{3} = 4 \text{ verdadeiro} \end{cases}$$

(-2, 8) não é solução do sistema porque não é solução das equações do sistema.

[D] (2, 8)

$$\begin{cases} 2 \times 2 - 8 = 4 \\ \frac{2 \times 2 + 8}{3} = 2 \times 2 \end{cases} \Leftrightarrow \begin{cases} 4 - 8 = 4 \text{ falso} \\ \frac{4 + 8}{3} = 4 \text{ verdadeiro} \end{cases}$$

(2, 8) não é solução do sistema porque não é solução de uma das equações do sistema.

Logo, a opção correta é a [B].

33.
$$(x-2)(x+2) + 16 = 7x + 2(x-3)^2$$
 ?
 $\Leftrightarrow x^2 - 4 + 16 = 7x + 2(x^2 - 6x + 9)$
 $\Leftrightarrow x^2 - 4 + 16 = 7x + 2x^2 - 12x + 18$
 $\Leftrightarrow x^2 - 2x^2 - 7x + 12x - 4 + 16 - 18 = 0$
 $\Leftrightarrow -x^2 + 5x - 6 = 0$
 $\Leftrightarrow x = \frac{-5 \pm \sqrt{5^2 - 4 \times (-1) \times (-6)}}{2 \times (-1)}$
 $\Leftrightarrow x = \frac{-5 \pm \sqrt{25 - 24}}{-2}$
 $\Leftrightarrow x = \frac{-5 \pm 1}{-2}$
 $\Leftrightarrow x = \frac{-6}{-2} \lor x = \frac{-4}{-2}$
 $\Leftrightarrow x = 3 \lor x = -2$

 $C.S. = \{2, 3\}$

34. Como foram necessários três autocarros de 50 lugares, significa que foram 150 pessoas ($50 \times 3 = 150$). Seja x o número de alunos e y o número de professores.

$$\begin{cases} x + y = 150 \\ 8x + 15y = 1410 \end{cases} \Leftrightarrow \begin{cases} x = 150 - y \\ 8(150 - y) + 15y = 1410 \end{cases}$$

$$\Leftrightarrow \begin{cases} 1200 - 8y + 15y = 1410 \\ -7y = -210 \end{cases}$$

$$\Leftrightarrow \begin{cases} y = \frac{210}{7} \\ y = 30 \end{cases} \Leftrightarrow \begin{cases} x = 120 \\ y = 30 \end{cases}$$

R.: Acompanharam o grupo 30 professores.

35. [A]
$$]-\infty$$
; 10] \cap [4; $+\infty$ [= [4; 10]

[B]
$$]-\infty$$
; 4] \cap [-10; + ∞ [= [-10, 4]

[C]
$$]-\infty; 10] \cup [4; +\infty[= |R]$$

[D]
$$]-\infty; 4] \cup [-10; +\infty[= \mathbb{R}]$$

Logo, a opção correta é a [B].

36.
$$8x < 17 \Leftrightarrow 16x < 34$$

Logo, a opção correta é a [C].

37.
$$f(x) = \frac{2(x-3)}{3} + 4x$$

Se a imagem é $\frac{5}{3}$ então $f(x) = \frac{5}{3}$

$$\frac{2(x-3)}{3} + 4x = \frac{5}{3}$$

$$\Leftrightarrow \frac{2x-6}{3} + 4x = \frac{5}{3}$$
$$\Leftrightarrow 2x-6+12x=5$$

$$\Leftrightarrow 2x - 6 + 12x = 5$$

$$\Leftrightarrow 2x + 12x = 5 + 6$$

$$\Leftrightarrow 14x = 11$$

$$\Leftrightarrow x = \frac{11}{14}$$

C.S. =
$$\left\{ \frac{11}{14} \right\}$$

R.: O objeto é $\frac{11}{14}$.

38.1. a) Como g é uma função afim, é do tipo y = ax + b. Como A(1, 5) e B(2, 4) pertencem ao seu gráfico, temos:

$$\begin{cases} 5 = 1 \times a + b \\ 4 = 2 \times a + b \end{cases} \Leftrightarrow \begin{cases} a + b = 5 \\ 2a + b = 4 \end{cases} \Leftrightarrow \begin{cases} a = 5 - b \\ 2(5 - b) + b = 4 \end{cases}$$

$$\Leftrightarrow \begin{cases} ---- \\ 10 - 2b + b = 4 \end{cases} \Leftrightarrow \begin{cases} ----- \\ -2b + b = 4 - 10 \end{cases}$$

$$\Leftrightarrow \begin{cases} ----- \\ -b = -6 \end{cases} \Leftrightarrow \begin{cases} a = 5 - 6 \\ b = 6 \end{cases} \Leftrightarrow \begin{cases} a = -1 \\ b = 6 \end{cases}$$

$$(a, b) = (-1, 6)$$

Então, g(x) = -x + 6.

b) Como a função f é uma função quadrática com vértice na origem do referencial, então $f(x) = ax^2$.

Sendo B(2, 4) um ponto do seu gráfico, então

$$4 = a \times 2^2 \iff 4a = 4 \iff a = 1$$

Logo, $f(x) = x^2$.

c)
$$y = -x^2$$

38.2.
$$f(x) = 25$$

$$x^2 = 25$$

$$\Leftrightarrow x = \pm \sqrt{25}$$

$$\Leftrightarrow x = -5 \lor x = 5$$

$$C.S. = \{-5, 5\}$$

R.: Os objetos são -5 e 5.

38.3. Como o ponto *c* é o ponto de interseção dos gráficos das duas funções, basta igualar as funções e determinar o valor de x, ou seja,

$$x^2 = -x + 6$$

$$\Leftrightarrow x^2 + x - 6 = 0$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{1 - 4 \times (-6)}}{2 \times 1}$$

$$\Leftrightarrow x = \frac{-1 \pm \sqrt{25}}{2}$$

$$\Leftrightarrow x = \frac{-1 \pm 5}{2}$$

$$\Leftrightarrow x = -3 \lor x = 2$$

C.S. =
$$\{-3, 2\}$$

Se x = -3, então g(-3) = -(-3) + 6 = 3 + 6 = 9R.: C(-3, 9).

39. $(-x + 5)^2 = (-x)^2 + 2 \times (-x) \times 5 + 5^2 =$ $= x^2 - 10x + 25$

Logo, a opção correta é a [D].

- **40.** [A] 14x 8y é um binómio.
- [B] 2x + 3y é um binómio.
- [C] 4xy é um monómio.
- [D] $\frac{-x+y}{3} = -\frac{x}{3} + \frac{y}{3}$ é um binómio.

Logo, a opção correta é a [C].

41.
$$2x^2 - 8x + 8 = 0$$

$$\Leftrightarrow 2(x^2 - 4x + 4) = 0$$

$$\Leftrightarrow x^2 - 4x + 4 = \frac{0}{2}$$

$$\Leftrightarrow x^2 - 4x + 4 = 0$$

$$\Leftrightarrow (x-2)^2 = 0$$

$$\Leftrightarrow$$
 $(x-2)=0$

$$\Leftrightarrow x = 2$$

$$C.S. = \{2\}$$

42. Seja *x* a idade do Fernando.

Então, x - 1 é a idade da Catarina.

Como a soma das duas idades é 69, temos:

$$x + (x - 1) = 69$$

$$\Leftrightarrow 2x = 70$$

$$\Leftrightarrow x = \frac{70}{2}$$

$$\Leftrightarrow x = 35$$

$$C.S. = {35}$$

$$x - 1 = 35 - 1 = 34$$

R.: A Catarina tem 34 anos.

44

RESOLUÇÕES

43.1.
$$m_{AB} = \frac{10-8}{0-4} = \frac{2}{-4} = -\frac{1}{2}$$

43.2. Se a reta *s* é paralela à reta *AB*, então as retas têm o mesmo declive, ou seja, $-\frac{1}{2}$.

$$s: y = \frac{1}{2}x + b$$

Como a reta AB passa no ponto (0, -3), então tem ordenada na origem -3. Logo, s: $y = -\frac{1}{2}x - 3$.

6. [A]
$$-4(x-7) = 0 \iff -4x + 28 = 0$$

Equação do 1.º grau.

[B]
$$3(x^2 - 4x) = 2 + 3x^2$$

$$\Leftrightarrow 3x^2 - 12x - 2 - 3x^2 = 0$$

$$\Leftrightarrow$$
 $-12x - 2 = 0$

Equação do 2.º grau.

[C]
$$4^2 + 16 = 32$$

Não é uma equação.

[D]
$$x(x-4) = 7 \iff x^2 - 4x - 7 = 0$$

Equação do 2.º grau.

Logo, a opção correta é a [D].