Spark Data Model 2

DataFrames
Working with DataFrames
Spark SQL
Dataset
Spark and Hive
Data Formats

Lesson Objectives 2019-03-12 Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Understand DataFrames and Datasets
- Understand what Spark SQL is and the needs it fulfills
- Learn Spark SQL architecture and API
- Use Spark SQL for querying

Spark Illustrated 2019-03-12 Licensed for personal use only for Fernando K < fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

DataFrames

→ DataFrames
Working with DataFrames
Spark SQL
Dataset
Spark and Hive
Data Formats

Spark Data Model Evolution Licensed for personal use only for Fernando K -fernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Ution

- DataFrame: Distributed collection of data organized into named columns
- Equivalent to relational table or data frame in R/Python
- Can be built from many data sources
 - RDDs, structured data files, Hive tables, external databases
- High-level API: Java/Scala/Python/R
- Can query using DSL and SQL!

	Α	В	С	
1	Name	Gender	Age	
2	John	M	35	
3	Jane	F	40	
4	Mike	M	18	
5	Sue	F	19	
2	Jue			

DataFrames Archite@ dell.com> from Machine Learning at Dell Brazil (QE) @ DataFrames Archite@ Learning at Dell Brazil (QE) @ Licensed for personal use only for Fernando K-efernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Licensed for personal use only for Fernando K-efernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Licensed for personal use only for Fernando K-efernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Licensed for personal use only for Fernando K-efernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Licensed for personal use only for Fernando K-efernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Licensed for personal use only for Fernando K-efernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Licensed for personal use only for fernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Licensed for personal use only for fernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Licensed for personal use only for fernando kruse @ Licensed for personal use only for fernando kruse @ Licensed for personal use only for fernando kruse @ Licensed for personal use only for fernando kruse @ Licensed for personal use only for fernando kruse @ Licensed for personal use only for fernando kruse @ Licensed for personal use only for fernando kruse @ Licensed for fernando k

- Built on RDD
- Uses Catalyst to optimize queries
- API: Java/Python/Scala/R

Source: "Spark SQL: Relational Data Processing in Spark" by Michael Armbrust, et al.

Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

DataFrames vs. RDD098-12

- RDDs have data
- DataFrames also have schemaDataFrame = RDD + schema
- Unified way to load/save data in multiple formats
- Provides high-level operations
 - Count/sum/average
 - Select columns & filter them

Supported Formats 2019-03-12

Built-In

JDBC

External

and more...

Case for Data Frames -03-12 Case for Data Frames -03-12

- High level, simple API
- Supports SQL!
- Supports multiple data formats natively (JSON, Parquet, etc.)
- High performance
 - Catalyst Optimizer
 - Generates optimized code
 - Takes advantage of all the benefits and tweaks
 - Efficient memory usage
 - Uses Tungston engine to efficiently store/access objects in memory

- Generally performs very well-often better than vanilla Spark
- Below, we illustrate the performance of running group-by aggregation on 10 million integer pairs on one machine
- Spark SQL (the DF lines) outperforms their vanilla counterparts

Source: "Spark Data Frames" by Michael Armbrust
Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @

Working with DataFrames

DataFrames

→ Working with DataFrames

Spark SQL

Dataset

Spark and Hive

Data Formats

Creating a DataFrame from JSON (Scala)

```
{"name": "John", "age": 35, "gender": "M", "weight": 200.5 }
{"name": "Jane", "age": 40, "gender": "F", "weight": 150.2}
{"name": "Mike", "age": 18, "gender": "M", "weight": 120}
{"name": "Sue", "age": 19, "gender": "F", "weight": 100}
val peopleDF = spark.read.json("people.json")
peopleDF: org.apache.spark.sql.DataFrame = [age: long, name:
string, gender:string, weight:double]
peopleDF.printSchema
root
 |-- age: long (nullable = true)
 |-- gender: string (nullable = true)
 |-- name: string (nullable = true)
 |-- weight: double (nullable = true)
peopleDF.show
+---+
|age|gender|name|weight|
+---+
 35| M|John| 200.5|
 40| F|Jane| 150.2|
 18| M|Mike| 120.0|
  19| F| Sue| 100.0|
+---+
```

Creating a DataFrame from JSON (Python)

```
{"name": "John", "age": 35, "gender": "M", "weight": 200.5 }
{"name": "Jane", "age": 40, "gender": "F", "weight": 150.2}
{"name": "Mike", "age": 18, "gender": "M", "weight": 120}
{"name": "Sue", "age": 19, "gender": "F", "weight": 100}
peopleDF = spark.read.json("people.json")
// in v1.6 use: val peopleDF = sqlContext.read.json("people.json")
peopleDF: org.apache.spark.sql.DataFrame = [age: long, name: string,
gender:string]
peopleDF.printSchema()
root.
 |-- age: long (nullable = true)
 |-- gender: string (nullable = true)
 |-- name: string (nullable = true)
 |-- weight: double (nullable = true)
peopleDF.show()
+---+
|age|gender|name|weight
+---+
 35| M|John| 200.5|
 40| F|Jane| 150.2|
 18| M|Mike| 120.0
 19| F| Sue| 100.0|
+---+
```

Querying of a DataFirame Using DSL (Scala)

```
// This import is needed to use the $-notation
import spark.implicits.
val df = spark.read.json("people.json")
df.select("name").show()
+---+
Inamel
                              {"name": "John", "age": 35, "gender": "M", "weight": 200.5 }
+---+
                              {"name": "Jane", "age": 40, "gender": "F", "weight": 150.2}
IJohnl
                              {"name": "Mike", "age": 18, "gender": "M", "weight": 120}
| Jane |
                              {"name": "Sue", "age": 19, "gender": "F", "weight": 100}
lMikel
I Suel
+---+
df.filter(df("name")==="John").show() // note equal is ===
df.filter("name == 'John'").show
df.filter($"name" === "John").show
+---+
|age|gender|name|
I 35 | MIJohn I
+---+
df.filter(df("age") >35).show()
df.filter("age>20").show
df.filter($"age" > 20).show
+---+
|age|gender|name|
 35| M|John|
  40| F|Jane|
```

Querying of a DataFrame Using DSL (Python)

```
df = spark.read.json("people.json")
df.select("name").show()
+---+
|name|
                            {"name": "John", "age": 35, "gender": "M", "weight": 200.5 }
| John |
                            {"name": "Jane", "age": 40, "gender": "F", "weight": 150.2}
| Jane |
                            {"name": "Mike", "age": 18, "gender": "M", "weight": 120}
|Mike|
                            {"name": "Sue", "age": 19, "gender": "F", "weight": 100}
| Sue|
df.filter(df("name")=="John").show()
df.filter("name == 'John'").show()
+---+
|age|gender|name|
+---+
| 35| | M|John|
+---+
df.filter(df["age"] >35).show()
df.filter("age>20").show
+---+
|age|gender|name|
 35| M|John|
```

The DataFrame DSL 2019-03-12

- The DataFrame DSL supports many common operations
 - Selecting columns, joining, filtering
 - Aggregation (count, sum, average, etc.)
- A query in the DSL is composed of:
 - An operation or operations
 - Expressions passed as arguments to the operators

Examining a DSL Que 12 Y

- df.filter(df("name")==="John").show()
 - The filter() call is straightforward—it's a regular method
 - An operation that filters rows based on the passed in expression
- df("name") ==="John"
 - df ("name") specifies the column named "name"
 - It's the same as df.apply("name")
 - Scala magic converts df1 ("name") to the call to apply
 - This returns a Column object
 - -"where the value in the name column is equal to John"
 - === (three equal signs) is the equality operator in this DSL, not ==
- df.filter("name == 'John'").show
 - Shorter version

Supported Data Types Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Supported Data Types

Туре	Description	In Scala / Java	In Python
Numeric Types			
ByteType	1-byte signed integer numbers. Range = -128 to 127	Byte	Int or Long
ShortType	2-byte signed integer numbers. Range = -32768 to 32767	Short	Int or Long
IntegerType	4-byte (32 bit) signed integer numbers. Range = -2,147,483,648 (-2 ³¹) to 2,147,483,647 (2 ³¹)	Integer	Int or Long
LongType	8-byte (64 bit) signed integer numbers Range = -2 ⁶³ to 2 ⁶³	Long	Long
FloatType	4-byte (32 bit) single-precision floating point numbers	Float	Float
DoubleType	8-byte (64 bit) double-precision floating point numbers	Double	Float
DecimalType	arbitrary-precision signed decimal numbers	java.math.BigDecimal	decimal.Decimal

Supported Data Types Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Supported Data Types

Туре	Description	In Scala / Java	In Python
StringType	String / text values	String	string
BinaryType	Binary / blob data	Array[Byte]	bytearray
BooleanType	True / False	Boolean	bool
<u>Dates</u>			
DateType	Date with year, month, day.	java.sql.Date	datetime.date
TimestampType	Timestamp with year, month, day, hour, minute, and second.	java.sql.Timestamp	datetime.datetime

Supported Data Types Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Supported Data Types

Туре	Description	In Scala / Java	In Python
Complex Types			
ArrayType	Sequence of elements	scala.collection.Seq	list, tuple, or array
МарТуре	Key → Value pairs	scala.collection.Map	dict
StructType	Random structure with one or more fields Address { street_number, street_name, city, state, zip }	org.apache.spark.sql. Row	list or tuple

Query Optimizer: Caralyst

- Dataframes are also lazily evaluated
 - Catalyst can optimize bunch of instructions together
 - It can combine / short-circuit / re-order operations
- Re-ordering operations
 - For example filter operations can be moved up if possible
 - Cuts down data
- Using schema information optimizer can perform additional optimization
 - It can inspect the logical meaning of operation rather arbitrary functions
- Prefer dataframe operations (filter, map, join ...etc)
 - Optimizer knows how to execute these efficiently
- Optimizer may not be able to optimize arbitrary user functions
- Catalyst is a 'multi phase' optimizer (see below)

Some Optimizations 1921 Predicate Pushdown

- Pushdown is moving filters close to data
- Cuts down amount of data that has to be processed
- Improves performance
- Example: df.filter ("age > 30")

```
{"name": "John", "age": 35, "gender": "M", "weight": 200.5 }
{"name": "Jane", "age": 40, "gender": "F", "weight": 150.2}
{"name": "Mike", "age": 18, "gender": "M", "weight": 120}
{"name": "Sue", "age": 19, "gender": "F", "weight": 100}
```

- Naïve approach:
 - Read all data and filter out records
- Smarter approach
 - Don't even read data that doesn't match the filter
 - We are filtering on 'age', so let's apply the following conditions (age != null) && (age > 30)

Predicate Pushdown 19-13-12 liter (Example)

```
// data
{"name": "John", "age": 35, "gender": "M" }
{"name": "Jane", "age": 40, "gender": "F" }
{"name": "Mike", "age": 18, "gender": "M" }
{"name": "Sue", "age": 19, "gender": "F" }
```


Read all records

```
{"name": "John", "age": 35, "gender": "M" }
{"name": "Jane", "age": 40, "gender": "F" }
{"name": "Mike", "age": 18, "gender": "M" }
{"name": "Sue", "age": 19, "gender": "F" }
```


Filter: age > 30

```
{"name": "John", "age": 35, "gender": "M" }
{"name": "Jane", "age": 40, "gender": "F" }
```

```
// data
{"name": "John", "age": 35, "gender": "M" }
{"name": "Jane", "age": 40, "gender": "F" }
{"name": "Mike", "age": 18, "gender": "M" }
{"name": "Sue", "age": 19, "gender": "F" }
```



```
{"name": "John", "age": 35, "gender": "M" }
{"name": "Jane", "age": 40, "gender": "F" }
```

Query Plans Illustrated Using EXPLAIN

```
> val df2 = df1.filter("age > 30")
df2: org.apache.spark.sql.Dataset[org.apache.spark.sql.Row] = [age: bigint,
gender: string, name: string]
> df2.explain(true)
== Parsed Logical Plan ==
'Filter ('age > 30)
+- Relation[age#231L,gender#232,name#233] json
== Analyzed Logical Plan ==
age: bigint, gender: string, name: string
Filter (age#231L > cast(30 as bigint))
+- Relation[age#231L,gender#232,name#233] json
== Optimized Logical Plan ==
Filter (isnotnull(age#231L) && (age#231L > 30))
+- Relation[age#231L,gender#232,name#233] json
== Physical Plan ==
*Project [age#231L, gender#232, name#233]
+- *Filter (isnotnull(age#231L) && (age#231L > 30))
   +- *FileScan json [age#231L, gender#232, name#233] Batched: false, Format:
JSON, Location: InMemoryFileIndex[file:data/people.json], PartitionFilters:
[], PushedFilters: [IsNotNull(age), GreaterThan(age, 30)], ReadSchema:
struct<age:bigint,gender:string,name:string>
```

- As a final step, Catalyst may generate code for execution plans
- This is done using <u>Janino compiler</u>
- Codegen can really boost performance (sometimes 10x) for some queries!

Overview:

In this lab, we'll create a data frame from a JSON file.

- We'll examine it and do some basic querying on it.

Builds on previous labs: None

Approximate time: 20-30 minutes

Instructions:

4-DataFrame/4.1-DataFrame.md

Spark SQL

DataFrames
Working with DataFrames

Spark SQL
Dataset
Spark and Hive
Data Formats

- Easy: Query using SQL (SQL2003 compliance in Spark v2)
- Performant: Catalyst Optimizer translates SQL into efficient queries
- Built on DataFrames
- Provides external SQL interfaces via JDBC/ODBC and a console

Source: "Spark SQL: Relational Data Processing in Spark" by Michael Armbrust, et al.

Why Spark SQL2 Errando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- Spark API (Scala, Java or Python) is still fairly complex
 - Easier to code than Hadoop/MR, but still a large API
 - Difficult to model some areas via the standard Spark API
- It is hard to do specific optimizations
 - The objects and transformation functions are opaque to Spark
 - So Spark does mainly generalized optimizations
- Many data pipelines require both relational and procedural querying capabilities
 - The lack of SQL capabilities limits Spark
- SQL and relational querying are well known
 - And there is a lot of data in a format to a relational interface

Querying DataFrames Using SQL (Scala)

```
// Step 1: read a DataFrame
val df = spark.read.json("people.json")
// Step 2: Register DF as temporary table
df.createOrReplaceTempView("people")
// in 1.6 use: df.registerTempTable("people")
// Step 3: Query away
spark.sql("select * from people").show()
+---+
lage|gender|name|
                              {"name": "John", "age": 35, "gender": "M", "weight": 200.5 }
+---+
                              {"name": "Jane", "age": 40, "gender": "F", "weight": 150.2}
                              {"name": "Mike", "age": 18, "gender": "M", "weight": 120}
| 35| | M|John|
                              {"name": "Sue", "age": 19, "gender": "F", "weight": 100}
| 40| F|Janel
| 18| M|Mike|
| 19| F| Sue|
spark.sql("select * from people where age > 30").show()
+---+
|age|gender|name|
+---+
| 35| | M|John|
| 40| | F|Jane|
+---+
```

Querying DataFrames Using SQL (Python)

```
// Step 1: read a DataFrame
df = spark.read.json("people.json")
// Step 2: Register DF as temporary table
df.createOrReplaceTempView("people")
// in 1.6 use: df.registerTempTable("people")
// Step 3: Query away
spark.sql("select * from people").show()
+---+
lage|gender|name|
                              {"name": "John", "age": 35, "gender": "M", "weight": 200.5 }
+---+
                              {"name": "Jane", "age": 40, "gender": "F", "weight": 150.2}
                              {"name": "Mike", "age": 18, "gender": "M", "weight": 120}
| 35| | M|John|
                              {"name": "Sue", "age": 19, "gender": "F", "weight": 100}
| 40| F|Janel
| 18| M|Mike|
| 19| F| Sue|
spark.sql("select * from people where age > 30").show()
+---+
|age|gender|name|
+---+
| 35| | M|John|
| 40| | F|Jane|
+---+---+
```

- Temporary View
 - Use createOrReplaceTempView
 - Table is only valid during the scope of current session
- Global Temporary View
 - Can outlast the session that created it
 - Until the end of Spark application
 - Use createGlobalTempView
- Persistent Table
 - Can be saved using Hive metastore
 - Use df.write.saveAsTable command

```
df.createGlobalTempView("people")

// Global temporary view is tied to a system preserved database `global_temp`
spark.sql("SELECT * FROM global_temp.people").show()

spark.newSession().sql("SELECT * FROM global_temp.people").show()

df.saveAsTable("hiveTable")
```

Should I use DataFrames Instead of RDD?

- YES! (whenever possible)
- Dataframes are faster
- Dataframes are easier
- They are applicable to most use cases

Source: "Spark SQL: Relational Data Processing in Spark" by Michael Armbrust, et al.

Overview:

In this lab, we'll work with SQL queries instead of the DSL.

 While you're building your DataFrames, examine some of them using explain(true) to see the query plan for them.

Builds on previous labs: None

Approximate time:20-30 minutes

Instructions:

- Standalone (4.2): 04-DataFrame/4.2-sql.md
- Hadoop Env: 04-DataFrame/4.2H-spark-sql-hadoop.md

Dataset

DataFrames
Working with DataFrames
Spark SQL
→ Dataset
Spark and Hive
Data Formats

- Dataset unifies RDD and DataFrame
- Type:
 - Strongly typed: Dataset[T] (Dataset[Person])
 - Untyped: Dataset [Row]
- DataFrame is an alias for untyped generic object
 - DataFrame = Dataset [Row]
- Dataset API available in Java/Scala
 - Not in Python
 - Since Python is dynamic it can not support strongly typed Dataset operations
 - most features of generic Dataset APIs are available in Python however

- Most common way to create a Dataset is to read a data source (CSV/JSON/Parquet)
- We can also programmatically create a DS
- Convert an existing RDD into a DS

```
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits._

// create programmatically
> val ds = spark.createDataset(List("one","two","three"))
org.apache.spark.sql.Dataset[String] = [value: string]

// read a file
> val df = spark.read.json("people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, gender: string ... 1 more field]

// converting from RDD
> val rdd: RDD[Person] = ??? // assume this RDD and 'Person' class exists
> val dataset: Dataset[Person] = spark.createDataset[Person] (rdd)
```

Dataset Usage 2019-03-12

```
// For implicit conversions like converting RDDs to DataFrames
import spark.implicits.
// create a DataFrame & query
val df = spark.read.json("people.json")
df: org.apache.spark.sql.DataFrame = [age: bigint, gender: string ... 1 more
fieldl
df.filter("age > 20").show
// read CSV directly, infer columns from header
val df2 = spark.read.option("header", "true").csv("data/people2.csv")
df2: org.apache.spark.sql.DataFrame = [name: string, gender: string ... 1 more
fieldl
// load a plain String RDD and query using functional programming
val t = spark.read.textFile("data/twinkle/sample.txt")
t: org.apache.spark.sql.Dataset[String] = [value: string]
t.filter( .contains("twinkle")).collect
Array[String] = Array(twinkle twinkle little star, twinkle twinkle little star)
```

Dataset and Schemand Schemans of the Control of the

- Dataset can "infer" schema from common formats like JSON/Parquet/ORC
- This is convenient but may have performance overhead
- Parquet/ORC formats store schema alongside with data
 - Inferring is very quick!
- For JSON, Spark has to parse the data to figure out the schema
 - Can be expensive on large scale
 - There is an option to "sample" the data

- Starting with Spark v2.0 CSV reader is included
- If header is present, it is used to infer column names
- It will try to infer the schema by going over the data
- In our case it is inferring all columns as 'String'
- We can specify the schema when loading

```
name, gender, age
John, M, 35
Jane, F, 40
Mike, M, 18
Sue, F, 19
```

Specifying Schema 2019-03-12 Scala Scala

```
// This is used to implicitly convert an RDD to a DataFrame.import
spark.implicits.
import org.apache.spark.sql.
import org.apache.spark.sql.types.
// StructField(name: String, dataType: DataType, nullable: Boolean = true,
metadata: Metadata = Metadata.empty)
// both 'DataTypes.IntegerType' and 'IntegerType' will work
val nameField = StructField("name", StringType)
val genderField = StructField("gender", StringType)
val ageField = StructField("age", IntegerType)
val peopleSchema = StructType(Array(nameField, genderField, ageField))
val peopleDF = spark.read.
               option("header", "true").
               schema (peopleSchema).
               csv("data/people2.csv")
peopleDF.printSchema
Root
 |-- name: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- age: integer (nullable = true)
```

Specifying Schema 2019-03-12 (Python)

```
// StructField(name: String, dataType: DataType, nullable: Boolean = true,
metadata: Metadata = Metadata.empty)
// both 'DataTypes.IntegerType' and 'IntegerType' will work
nameField = StructField("name", StringType(), True)
genderField = StructField("gender", StringType(), True)
ageField = StructField("age", IntegerType(), True)
peopleSchema = StructType([nameField, genderField, ageField])
peopleDF = spark.read.
               option("header", "true").
               schema (peopleSchema).
               csv("data/people2.csv")
peopleDF.printSchema()
Root
 |-- name: string (nullable = true)
 |-- gender: string (nullable = true)
 |-- age: integer (nullable = true)
```

Specifying Schema 2019-03-12 Scala Scala

```
// This is used to implicitly convert an RDD to a DataFrame.
import spark.implicits.
import org.apache.spark.sql.
import org.apache.spark.sql.types.
// define schema
final case class Person (
    name: String,
    gender: String,
    age:Integer)
// read as simple text
val p = spark.sparkContext.textFile("data/people.csv")
p: org.apache.spark.rdd.RDD[String]
// turn it into RDD[Person]
val peopleRDD = p.map (line => {
                       val tokens = line.split(",")
                       val name = tokens(0)
                       val gender = tokens(1)
                       val age = tokens(2).toInt
                       new Person (name, gender, age) // return Person
                     })
peopleRDD: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[4]
// convert to Dataset
val peopleDS = peopleRDD.toDS
peopleDS: org.apache.spark.sql.Dataset[Person] = [name: string, gender: string ... 1 more
field1
```

Inter-operating RDD/DataFrame/Dataset (Scala)

```
// This is used to implicitly convert an RDD to a DataFrame.
                                                                                RDD
import spark.implicits.
import org.apache.spark.sql.
import org.apache.spark.sql.types.
> peopleRDD
peopleRDD: org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[4]
                                                                      Dataframe
                                                                                      Dataset
// ==== convert RDD to Dataset
> val peopleDS = peopleRDD.toDS
org.apache.spark.sql.Dataset[Person] = [name: string, gender: string ... 1 more field]
// another approach
> val peopleDS2 = spark.createDataset[Person](peopleRDD)
// === Access RDD in Dataset
> peopleDS.rdd
org.apache.spark.rdd.RDD[Person] = MapPartitionsRDD[47]
// === convert Dataset to DataFrame
> val df2 = peopleDS.toDF
df2: org.apache.spark.sql.DataFrame = [name: string, gender: string ... 1 more field]
// === convert DataFrame to Dataset
> val ds2 = df2.as[Person]
ds2: org.apache.spark.sql.Dataset[Person] = [name: string, gender: string ... 1 more field]
// DataFrame & RDD
> df2.rdd
org.apache.spark.rdd.RDD[org.apache.spark.sql.Row] = MapPartitionsRDD[51]
```


Overview:

Work with Dataset

- Builds on previous labs: None
- Approximate time:20-30 minutes
- Instructions:
 - Standalone (4.3): 04-DataFrame/4.3-dataset.md
 - Hadoop: 04-DataFrame/4.3H-dataset-hadoop.md
- Solution:
 - Spark-solutions/04-DataFrame/4.3-dataset-solution.md

Lab: Caching in SQL 2019-03-12

Overview:

Try caching on Datasets and DataFrames

Approximate time:

20-30 minutes

- Instructions:
 - 04-DataFrame/4.4-caching-2-sql.md
- Solution:

Spark and Hive

DataFrames
Working with DataFrames
Spark SQL
Dataset

→ Spark and Hive

Data Formats

- Spark can load data directly from HDFS (See previous labs)
- Spark can also natively read/write data from Hive tables

Accessing Hive Tables from Spark (V1.6)

```
// hive shell
hive> show tables;
clickstream
```

```
// Spark shell
> sqlContext.tableNames
clickstream
> val t = sqlContext.table("clickstream")
> t.printSchema
'clickstream'schema will be printed
> t.show
'clickstream'data will be shown
> sqlContext.sql("select * from clickstream limit 10").show
> sqlContext.sql("select action, count(*) as total from
clickstream group by action").show
```

Spark Catalog (V2 april Later) Licensed for personal use only for Fernando K < fernando K russe@dell.com> from Machine Learning at Dell Brazil (QE) @ Later)

- Catalog is the interface to work with a metastore
 - Hive/temporary tables
- Package: org.apache.spark.sql.catalog

Package org.apache.spark.sql.catalog

Class Summary	
Class	Description
Catalog	Catalog interface for Spark.
Column	A column in Spark, as returned by listColumns method in Catalog.
Database	A database in Spark, as returned by the listDatabases method defined in Catalog.
Function	A user-defined function in Spark, as returned by listFunctions method in Catalog.
Table	A table in Spark, as returned by the listTables method in Catalog.

Spark Catalog Usage 19-03-12

```
> spark.catalog
org.apache.spark.sql.catalog.Catalog
> spark.catalog.[TAB]
cacheTable
      dropGlobalTempView qetTable listTables
uncacheTableclearCache dropTempView isCached
refreshBvPathcreateExternalTable functionExists listColumns
refreshTablecurrentDatabase getDatabase listDatabases
setCurrentDatabasedatabaseExists qetFunction listFunctions tableExists
> spark.catalog.listDatabases.show(false)
| name | description | locationUri
+----+
|default|Default Hive database|file:/user/hive/warehouse|
+----+
> spark.catalog.listTables.show(false)
+----+
name | database | description | table Type | is Temporary |
 -----
 people | null | TEMPORARY | true
 logs | default | | MANAGED | false
```

Accessing Hive Tables from Spark (V2 later)

```
// hive shell
hive> show tables;
clickstream
```

```
// Spark shell
> spark.catalog.listTables.show
clickstream
> val t = spark.catalog.getTable("clickstream")
org.apache.spark.sql.catalog.Table
> spark.sql("select * from clickstream limit 10").show
+---+
|age|gender|name|
+---+
| 35| M|John|
| 40| F|Jane|
+---+
> spark.sql("select action, count(*) as total from clickstream
group by action").show
```

Spark/Hive/Hadoop 19-03-12 Spark/Hive/Hadoop 19-03-12

- Hive is the data warehouse for Hadoop
- Using Spark, we can directly query Hive tables using SQL!
- No need to re-define tables
- Spark gives faster query times than Hive
 - Much faster than Hive on MapReduce engine
 - Slightly faster than Hive on Tez
- Save data in Hive tables

Spark/Hadoop/Hive 19-03-YARN Spark/Hadoop/Hive 19-03-YARN

Lab: Spark and Hive 2019-03-12

- This lab only for Hadoop environment
- Overview:
 Use Spark SQL to query data from Hive tables
- Builds on previous labs: None
- Approximate time:20-30 minutes
- Instructions:
 - Hadoop Env: 04-DataFrame/4.5H-spark-hive.md

Data Formats

DataFrames
Working with DataFrames
Spark SQL
Dataset
Spark and Hive
→ Data Formats

Row-Based/Column Based Stores

- Row-Based
 - Records are stored together
 - Most RDBMS use this
 - Heavy indexing
 - Great for 'select * ' kind of query (fetching all columns)
- Columnar format:
 - Stores columns physically together (instead of rows)
 - Optimized for fast column-based aggregations select MAX(temp) from sensors;
 - Doesn't work well for 'select * ' queries where all columns are fetched.

- Most common data formats:
 - Text
 - -Binary/Sequence
 - -Avro
 - Parquet
 - -ORC: Optimized Row Columnar

amnachphoto/iStock/Getty Images Plus/Getty Images

VHS vs. Beta

PoppyPixels/iStock/Getty Images Plus/Getty Images

- Usual formats: CSV/JSON
 - CSVtimestamp, ip_address,
 - JSON {"timestamp": 100, "ip_address": "1.2.3.4"}
- Pros:
 - Human-readable
 - Compatible with tools (export/import from DB for example)
- Cons:
 - Not size-efficient to store
 - Not efficient to query
 - Does not support block compression

Data Format: Binary of Sequence

- Binary key-value pairs
- Row-based

- Pros:
 - Well-supported within Hadoop ecosystem
 - Supports block compression
- Cons:
 - Not human-readable
 - Not much support outside Hadoop ecosystem

- Popular serializing format
- Binary
- Row-based
- Schema is stored as part of the data
 - Decoding is easy
 - No need for separate data-dictionaries
- Supports schema evolution or schema versioning
 - Version 1 has two attributes: name, email
 - Version 2 has an extra attribute:
 name, email, phone
 - They can co-exist

Data Format: Parque 12-12

- New hot format
- Came out of Twitter + Cloudera
- Column-based storage
- Binary
- Schema stored with data
- Very efficient for column-based queries

Data Format: Optimized Row Columnar (ORC)

- Evolution of RCFile
- Hybrid row/columnar format
 - -Stores rows
 - -Within rows, data is stored in columnar format
- Can support basic stats (minimum/maximum, etc.) on columns

What Format to Choose? Licensed for personal use only for Fernando K-fernando kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ Property of the Choose Property of the Choos

- Depends on:
 - Workload
 - Other ETL/ingestion systems
- Is "human readability" a big deal?
 - → Text: CSV, JSON
- Speed
 - → Parquet/ORC
- DataFrames natively support
 - -JSON
 - Parquet
 - -Avro
- Parquet/ORC is preferred format currently

Converting Between 19-05-10 ormats

DataFrame API allows easy migration of data formats

```
// loading json data
dfJson = spark.read.json("data.json")

// save as parquet (faster queries)
dfJson.write.parquet("data-parquet/")

// save as ORC (faster queries)
dfJson.write.orc("data-orc/")

// in 1.6, use sqlContext
// df = sqlContext.read.json("/data/data.json")
```


Overview:

In this lab, we'll evaluate JSON and Parquet data formats for DataFrames

- Builds on previous labs: None
- Approximate time: 20-30 minutes
- Instructions: 04-DataFrame/4.6-data-formats.md

Practice Labs End-of-Day

- Do these at the end of day.
 Usually day-2 of Spark class (after dataframe, API sections)
- Students are encouraged to work in pairs.

- Overview:
 - Analyze spark commit log data
- **◆ Builds on previous labs**: 4.1 , 4.2, 4.3
- Approximate time: 20-30 minutes
- Instructions
 - Practice Lab 1
- Solution
 - spark/spark-solutions/practice-labs/practice1-analyzespark-commits-solution.md

- Overview: Analyze clickstream data
- **◆ Builds on previous labs**: 4.1 , 4.2, 4.3
- Approximate time: 20-30 minutes
- Instructions
 - Practice Lab 2

- Solution
 - spark/spark-solutions/practice-labs/practice2-analyzeclickstream-solution.md

Review Questions 2019-03-12 Licensed for personal use only for Fernando K <fernando_kruse@dell.com> from Machine Learning at Dell Brazil (QE) @ 2019-03-12

- True or False? Spark only support text formats.
- What are JSON, Parquet, ORC?
- How is Dataset related to RDD and DataFrame?