Programación Lineal Ejercicio 7 Clase 15

Investigación Operativa UTN FRBA 2021

Docente: Gabriel Boso Curso: I4051 (Palazzo)

Enunciado

La compañía WorldLight produce dos dispositivos para lámparas (productos 1 y 2) que requieren partes de metal y componentes eléctricos.

La administración desea determinar cuántas unidades de cada producto debe fabricar para maximizar la ganancia.

Por cada unidad del producto 1 se requieren 1 unidad de partes de metal y 2 unidades de componentes eléctricos.

Por cada unidad del producto 2 se necesitan 3 unidades de partes de metal y 2 unidades de componentes eléctricos.

La compañía tiene 200 unidades de partes de metal y 300 de componentes eléctricos

Enunciado

Cada unidad del producto 1 da una ganancia de 1 peso y cada unidad del producto 2, hasta 60 unidades, da una ganancia de 2 pesos.

Cualquier exceso de 60 unidades del producto 2 no genera ganancia, por lo que fabricar más de esa cantidad está fuera de consideración.

- 1. Formule un modelo de programación lineal.
- 2. Utilice el método gráfico para resolver este modelo. ¿Cuál es la ganancia total que resulta?

Interpretación

La compañía WorldLight produce dos dispositivos para lámparas (<u>productos 1 y 2</u>) que requieren partes de metal y componentes eléctricos.

La administración desea determinar cuántas unidades de cada producto debe fabricar para maximizar la ganancia.

Función objetivo: Max z = GanUnitProd1 * QProd1 + GanUnitProd2 * QProd2

Abstrayendonos del problema

Max z = c1 * x1 + c2 * x2

Donde:

c1: ganancia unitaria producto 1

x1: cantidad de producto 1 a producir - variable de decisión entera

c2: ganancia unitaria producto 2

x2: cantidad de producto 2 a producir - variable de decisión entera

Interpretación

Por cada unidad del producto 1 se requieren 1 unidad de partes de metal y 2 unidades de componentes eléctricos.

Por cada unidad del producto 2 se necesitan 3 unidades de partes de metal y 2 unidades de componentes eléctricos.

La compañía tiene 200 unidades de partes de metal y 300 de componentes eléctricos

	Producto 1 [x1]	Producto 2 [x2]	Restricción [<= / >= / =]	Limite Recurso [b]
[a1] Metal	1	3	<=	200
[a2] Comp. Eléctricos	2	2	<=	300

Pasando en limpio:

Restricción 1: Metal

Restricción 2: Componentes Eléctricos

Interpretación

Cada unidad del producto 1 da una ganancia de 1 peso y cada unidad del producto 2, hasta 60 unidades, da una ganancia de 2 pesos.

Cualquier exceso de 60 unidades del producto 2 no genera ganancia, por lo que fabricar más de esa cantidad está fuera de consideración.

Restricción 3: Cantidad Máxima de Producto 2

Restricciones Implícitas: # Producción Negativa

$$a41 * x1 + a42 * x2 >= b4$$

 $1 * x1 + 0 * x2 >= 0$
 $a51 * x1 + a52 * x2 >= b5$
 $0 * x1 + 1 * x2 >= 0$

Datos:

$$c1 = 1$$
\$/(unidad x1)
 $c2 = 2$ \$/(unidad x2)

Completo función objetivo:

Max
$$z = c1 * x1 + c2 * x2$$

Max $z = 1 * x1 + 2 * x2$

1. Formule modelo programación lineal

Pasando en limpio lo formulado respondemos la pregunta 1 del ejercicio

Función objetivo:

Max
$$z = 1 * x1 + 2 * x2$$

Restricciones:

	Prod.1 [x1]	Prod.2 [x2]	Restricción [<= / >= / =]	Limite [b]
[a1] Metal	1	3	<=	200
[a2] Comp.Eléc.	2	2	<=	300
[a3] Max.Prod.2	0	1	<=	60
[a4] Prod.1 +	1	0	>=	0
[a5] Prod.2+	0	1	>=	0

Graficamos la restricción marcada en violeta

Función objetivo:

Max
$$z = 1 * x1 + 2 * x2$$

Restricciones:

Graficamos la restricción marcada en violeta

Función objetivo:

Max
$$z = 1 * x1 + 2 * x2$$

Restricciones:

$$1 * x1 + 3 * x2 \le 200$$

 $2 * x1 + 2 * x2 \le 300$
 $0 * x1 + 1 * x2 \le 60$
 $1 * x1 + 0 * x2 >= 0$
 $0 * x1 + 1 * x2 >= 0$

Graficamos la restricción marcada en violeta

Función objetivo:

Max
$$z = 1 * x1 + 2 * x2$$

Restricciones:

$$1 * x1 + 3 * x2 \le 200$$

 $2 * x1 + 2 * x2 \le 300$
 $0 * x1 + 1 * x2 \le 60$
 $1 * x1 + 0 * x2 >= 0$
 $0 * x1 + 1 * x2 >= 0$

Marcamos la zona factible en violeta

Función objetivo:

Max
$$z = 1 * x1 + 2 * x2$$

Restricciones:

Graficamos las trazas de Max z en naranja

Función objetivo:

Max
$$z = 1 * x1 + 2 * x2$$

Restricciones:

Graficamos las trazas de Max z en naranja

Función objetivo:

Max
$$z = 1 * x1 + 2 * x2$$

Calculo punto optimo:

$$x1 + 3 * x2 = 200$$

 $x1 + 3 * (150 - x1) = 200$
 $x1 = 125 \rightarrow x2 = 25$

 $\text{Max } z = 1 * 125 + 2 * 25 \rightarrow \text{Max } z = \175

Gráficos hechos en: http://fooplot.com/