Certification of Matrix Interpretations in Coq

Adam Koprowski (joint work with Hans Zantema)

Eindhoven University of Technology Department of Mathematics and Computer Science

> 11 May 2007 CoLoR workshop

- 1 CoLoR
 - Motivation
- Pormalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- 3 CoLoF
 - Overview
 - Proof format

- 1 CoLoR
 - Motivation
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- CoLoF
 - Overview
 - Proof format

- CoLoR
 - Motivation
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- CoLoR
 - Overview
 - Proof format

- 1 CoLoR
 - Motivation
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- 3 CoLoR
 - Overview
 - Proof format

- 1 CoLoR
 - Motivation
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- CoLoR
 - Overview
 - Proof format

- CoLoR
 - Motivation
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- CoLoR
 - Overview
 - Proof format

- CoLoR
 - Motivation
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- CoLoR
 - Overview
 - Proof format

- 1 CoLoR
 - Motivation
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- CoLoR
 - Overview
 - Proof format

- CoLoR
 - Motivation
- 2 Formalization of matrix interpretations
- 3 CoLoR

- Enhanced trust in tools' results.
- Common proof format all tools speaking the same language!
 - common tools (proof presentation, manipulation, ...),
 - easier integration of the tools [Waldmann].
 - categories for single technique in the competition [Middeldorp],

- Enhanced trust in tools' results.
- Common proof format all tools speaking the same language!
 - common tools (proof presentation, manipulation, ...)
 - easier integration of the tools [Waldmann],
 - categories for single technique in the competition [Middeldorp],

- Enhanced trust in tools' results.
- Common proof format all tools speaking the same language!
 - common tools (proof presentation, manipulation, ...),
 - easier integration of the tools [Waldmann],
 - categories for single technique in the competition [Middeldorp],

- Enhanced trust in tools' results.
- Common proof format all tools speaking the same language!
 - common tools (proof presentation, manipulation, ...),
 - easier integration of the tools [Waldmann],
 - categories for single technique in the competition [Middeldorp],

- Enhanced trust in tools' results.
- Common proof format all tools speaking the same language!
 - common tools (proof presentation, manipulation, ...),
 - easier integration of the tools [Waldmann],
 - categories for single technique in the competition [Middeldorp],

- 1 CoLoF
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- 3 CoLoR

z086.trs

$$a(a(x)) \rightarrow c(b(x)), \quad b(b(x)) \rightarrow c(a(x)), \quad c(c(x)) \rightarrow b(a(x))$$

Matrix interpretation for z086.trs

$$a(x) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$b(x) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$c(x) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

z086.trs

$$a(a(x)) \rightarrow c(b(x)), \quad b(b(x)) \rightarrow c(a(x)), \quad c(c(x)) \rightarrow b(a(x))$$

Matrix interpretation for z086.trs

$$a(x) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$b(x) = \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

$$c(x) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 0 \end{bmatrix}$$

Termination proof for z086.trs

$$a(a(x)) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$c(b(x)) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 0 & 1 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \end{bmatrix} x + \begin{bmatrix} 0 \\ 1 \\ 0 \\ 1 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Introduction to matrix interpretations Monotone algebras

Monotone algebras
Matrices

Matrix interpretation Practicalities

Termination proof for z086.trs

$$a(a(x)) = \begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \end{bmatrix} \left(\begin{bmatrix} 1 & 0 & 0 & 1 \\ 0 & 1 & 0 & 2 \\ 0 & 1 & 0 & 2 \end{bmatrix} x + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 2 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 1 \\ 0 & 2 & 0 & 1 \\ 0 & 0 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 2 \\ 0 \end{bmatrix}$$

$$c(b(x)) = \begin{bmatrix} 1 & 0 & 0 & 2 \\ 0 & 1 & 0 & 2 \\ 0 & 0 & 0 & 0 \end{bmatrix} \left(\begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix} \right) + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 2 & 0 & 1 \end{bmatrix} x + \begin{bmatrix} 0 \\ 0 \\ 1 \\ 0 \end{bmatrix}$$

Introduction to matrix interpretations
Monotone algebras
Matrices
Matrix interpretations
Practicalities

- 1 CoLoF
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- 3 CoLoR

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \rightarrow A$ is *monotone* with respect to a binary relation \triangleright on A if

$$a_i \triangleright a_i' \implies [f](a_1,\ldots,a_i,\ldots a_n) \triangleright [f](a_1,\ldots,a_i',\ldots,a_n).$$

Definition

Given a relation \triangleright on A we define its extension to a relation on terms as:

$$s \rhd_{\mathcal{T}} t \equiv \forall \alpha : \mathcal{X} \to A, [s, \alpha] \rhd [t, \alpha]$$

Definition (Monotonicity)

An operation $[f]: A \times \cdots \times A \rightarrow A$ is *monotone* with respect to a binary relation \triangleright on A if

$$a_i \triangleright a_i' \implies [f](a_1,\ldots,a_i,\ldots a_n) \triangleright [f](a_1,\ldots,a_i',\ldots,a_n).$$

Definition

Given a relation \triangleright on A we define its extension to a relation on terms as:

$$s \rhd_{\mathcal{T}} t \equiv \forall \alpha : \mathcal{X} \to \mathcal{A}, [s, \alpha] \rhd [t, \alpha]$$

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations >, \gtrsim on A such that

- > is well-founded;
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

Definition (An *extended monotone* Σ*-algebra*

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations >, \gtrsim on A such that

- > is well-founded;
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

Definition (An extended monotone Σ-algebra)

A weakly monotone Σ -algebra $(A,[\cdot],>,\gtrsim)$ is a Σ -algebra $(A,[\cdot])$ equipped with two binary relations $>,\gtrsim$ on A such that

- > is well-founded;
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

Definition (An *extended monotone* Σ -algebra)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations >, \gtrsim on A such that

- > is well-founded;
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

Definition (An extended monotone Σ-algebra)

Introduction to matrix interpretations
Monotone algebras
Matrices
Matrix interpretations
Practicalities

Definition (A weakly monotone Σ -algebra)

A weakly monotone Σ -algebra $(A, [\cdot], >, \gtrsim)$ is a Σ -algebra $(A, [\cdot])$ equipped with two binary relations >, \gtrsim on A such that

- > is well-founded;
- $\bullet > \cdot \gtrsim \subseteq >;$
- for every $f \in \Sigma$ the operation [f] is monotone with respect to \gtrsim .

Definition (An *extended monotone* Σ -algebra)

Introduction to matrix interpretations
Monotone algebras
Matrices
Matrix interpretations
Practicalities

Theorem

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

ullet $\ell \gtrsim_{\mathcal{I}} r$ for every rule $\ell
ightarrow r$ in $R \cup S$ and

 $ullet \ell >_{\mathcal{T}} r$ for every rule $\ell o r$ in R' ,

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

ullet $\ell \gtrsim_{\mathcal{I}} r$ for every rule $\ell \to r$ in $R \cup S$ and

 $ullet \ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in R'

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

ullet $\ell \gtrsim_{\mathcal{I}} r$ for every rule $\ell \to r$ in $R \cup S$ and

 $ullet \ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in R'

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in R',

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in R',

Let R, R', S, S' be TRSs over a signature Σ , $(A, [\cdot], >, \gtrsim)$ be an extended monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R' \cup S'$

Then SN(R/S) implies $SN(R \cup R' / S \cup S')$.

Theorem

Let R, R', S, S' be TRSs over a signature Σ , let $(A, [\cdot], >, \gtrsim)$ be a weakly monotone Σ -algebra such that:

- $\ell \gtrsim_{\mathcal{T}} r$ for every rule $\ell \to r$ in $R \cup S$ and
- $\ell >_{\mathcal{T}} r$ for every rule $\ell \to r$ in R',

Monotone algebras are formalized as a functor.

- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ must be decidable.
- More precisely the requirement is to provide a relation >>, such that
 - \gg \subset $>_{\tau}$ and
 - >> is decidable
 - similarly for ≥.
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: >_T and ≥_T must be decidable.
- More precisely the requirement is to provide a relation >>>, such that
 - $\rightarrow > \subset >_{\tau}$ and
 - >> is decidable
 - similarly for
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: >_T and >_T must be decidable.
- More precisely the requirement is to provide a relation >>, such that
 - $\gg \subset >_{\mathcal{T}}$ and
 - >> is decidable
 - similarly for \(\geq \).
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: >_T and >_T must be decidable.
- More precisely the requirement is to provide a relation >>>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and
 - >> is decidable
 - similarly for \geq .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: >_T and ≥_T must be decidable.
- More precisely the requirement is to provide a relation >>>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and
 - → sis decidable
 - similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: >_T and ≥_T must be decidable.
- More precisely the requirement is to provide a relation >>>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and

 - \bullet similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

- Monotone algebras are formalized as a functor.
- Apart for the aforementioned requirements there is one additional required to deal with concrete examples: >_T and >_T must be decidable.
- More precisely the requirement is to provide a relation >>>, such that
 - $\gg \subseteq >_{\mathcal{T}}$ and

 - ullet similarly for \gtrsim .
- The structure returned by the functor contains all the machinery required to prove (relative)-(top)-termination in Coq.

Outline

- 1 CoLoF
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- 3 CoLoR

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients R and providing a structure of matrices of arbitrary sizes with coefficients in R and
- a number of basic operations over matrices such as:

$$[\cdot], \quad M_{i,j}, \quad M+N, \quad M*N, \quad M^T, \ \dots$$

- and a number of basic properties such as:
 - M + N = N + M.
 - M*(N*P) = (M*N)*P
 - monotonicity of *
 - 0 ...

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients $\mathcal R$ and providing a structure of matrices of arbitrary sizes with coefficients in $\mathcal R$ and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M
 - M*(N*P) = (M*N)*P
 - monotonicity of *
 -

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients $\mathcal R$ and providing a structure of matrices of arbitrary sizes with coefficients in $\mathcal R$ and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M * (N * P) = (M * N) * P
 - monotonicity of *
 -

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients $\mathcal R$ and providing a structure of matrices of arbitrary sizes with coefficients in $\mathcal R$ and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M*(N*P) = (M*N)*P
 - monotonicity of *
 - . . .

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients $\mathcal R$ and providing a structure of matrices of arbitrary sizes with coefficients in $\mathcal R$ and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M * (N * P) = (M * N) * P
 - monotonicity of *
 -

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients R and providing a structure of matrices of arbitrary sizes with coefficients in R and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M*(N*P) = (M*N)*P
 - monotonicity of *
 - . . .

- Matrices are formalized as a functor taking as an argument the semi-ring of coefficients $\mathcal R$ and providing a structure of matrices of arbitrary sizes with coefficients in $\mathcal R$ and
- a number of basic operations over matrices such as:

$$[\cdot], M_{i,j}, M+N, M*N, M^T, \dots$$

- and a number of basic properties such as:
 - M + N = N + M,
 - M*(N*P) = (M*N)*P
 - monotonicity of *
 - ...

Outline

- 1 CoLoF
- Formalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- 3 CoLoR

- \bullet $A=\mathbb{Z}$,
- $\bullet > = >_{\mathbb{Z}}, \geq = \geq_{\mathbb{Z}},$
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

- \bullet $A = \mathbb{Z}$,
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

- \bullet $A = \mathbb{Z}$,
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

- \bullet $A = \mathbb{Z}$,
- \bullet > = > \mathbb{Z} , \gtrsim = \geq \mathbb{Z} ,
- interpretations represented by polynomials $[f(x_1,...,x_n)] = P_{\mathbb{Z}}(x_1,...,x_n),$
- >_T not decidable (positiveness of polynomial) heuristics required.

- fix a dimension d,
- \bullet $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1,\ldots,u_d) > (v_1,\ldots,v_d)$ iff $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.

- fix a dimension d,
- \bullet $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1,\ldots,u_d) > (v_1,\ldots,v_d)$ iff $(u_1,\ldots,u_d) \gtrsim (v_1,\ldots,v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, \ldots, u_d) > (v_1, \ldots, v_d)$ iff $(u_1, \ldots, u_d) \gtrsim (v_1, \ldots, v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^d$,
- >_T and ≳_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $(u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d)$ iff $\forall i,u_i\geq_{\mathbb{N}} v_i$,
- $(u_1, ..., u_d) > (v_1, ..., v_d)$ iff $(u_1, ..., u_d) \gtrsim (v_1, ..., v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^d$,
- >_T and ≥_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $\bullet \ (u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d) \text{ iff } \forall i,u_i\geq_{\mathbb{N}} v_i,$
- $(u_1, ..., u_d) > (v_1, ..., v_d)$ iff $(u_1, ..., u_d) \gtrsim (v_1, ..., v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_4, x_5)] M_4 x_4 + \dots + M_5$

$$[f(x_1,\ldots,x_n)] = M_1x_1 + \ldots + M_nx_n + v$$

where $M_i \in \mathbb{N}^{d \times d}$, $v \in \mathbb{N}^d$,

• $>_{\mathcal{T}}$ and $\gtrsim_{\mathcal{T}}$ are decidable in this case but thanks to introducing \gg we do not need to prove completeness of their characterization.

- fix a dimension d,
- $A = \mathbb{N}^d$,
- $\bullet \ (u_1,\ldots,u_d)\gtrsim (v_1,\ldots,v_d) \text{ iff } \forall i,u_i\geq_{\mathbb{N}} v_i,$
- $(u_1, ..., u_d) > (v_1, ..., v_d)$ iff $(u_1, ..., u_d) \gtrsim (v_1, ..., v_d) \wedge u_1 >_{\mathbb{N}} v_1$,
- interpretations represented as: $[f(x_1,...,x_n)] = M_1x_1 + ... + M_nx_n + v$ where $M_i \in \mathbb{N}^{d \times d}, v \in \mathbb{N}^d$,
- >_T and ≥_T are decidable in this case but thanks to introducing ≫ we do not need to prove completeness of their characterization.

Outline

- 1 CoLoR
- Pormalization of matrix interpretations
 - Introduction to matrix interpretations
 - Monotone algebras
 - Matrices
 - Matrix interpretations
 - Practicalities
- 3 CoLoR

Monotone algebras:	351
Matrices:	642
Matrix interpretations:	673
 Polynomial interpretations in MA setting: 	116

•	Monotone algebras:	351
•	Matrices:	642
	Matrix interpretations:	673
	Polynomial interpretations in MA setting:	116

•	Monotone algebras:	351
•	Matrices:	642
•	Matrix interpretations:	673
	Polynomial interpretations in MA setting:	116

•	Monotone algebras:	351
•	Matrices:	642
•	Matrix interpretations:	673
•	Polynomial interpretations in MA setting:	116

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:
matrix interpretations:
polynomial and matrix interpretations:
237
polynomial and matrix interpretations:

Verification time: AVG: 5sec. MAX: 75sec
 Certificate size: AVG: 25kB. MAX: 437kB
 Proof steps: AVG: 5 MAX: 29

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:

167

matrix interpretations:

237

• polynomial and matrix interpretations:

75

Verification time: AVG: 5sec.
 Certificate size: AVG: 25kB.

AX: 75sec.

Proof steps:

AVG: 5

ЛАХ: 29

4□ > 4□ > 4 = > 4 = > = 90

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:	167
matrix interpretations:	237

polynomial and matrix interpretations: 275

 Certificate size: AVG: 25kB. Proof steps: AVG: 5

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:	167
---	-----

- matrix interpretations: 237
- polynomial and matrix interpretations:275
 - Verification time: AVG: 5sec. MAX: 75sec.
 Certificate size: AVG: 25kB. MAX: 437kB
 - Proof steps: AVG: 5 MAX: 29

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:

• matrix interpretations: 237

polynomial and matrix interpretations:275

Verification time: AVG: 5sec. MAX: 75sec.
 Certificate size: AVG: 25kB. MAX: 437kB

• Proof steps: AVG: 5 MAX: 29

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

• polynomial interpretations: 167

• matrix interpretations: 237

polynomial and matrix interpretations:275

Verification time: AVG: 5sec. MAX: 75sec.Certificate size: AVG: 25kB. MAX: 437kB

Proof steps: AVG: 5 MAX: 29

Evaluation of TPA + Rainbow on TPDB 3.2 (864 TRSs):

polynomial interpretations:

matrix interpretations:

polynomial and matrix interpretations: 275

Verification time: AVG: 5sec. MAX: 75sec.
 Certificate size: AVG: 25kB. MAX: 437kB
 Proof steps: AVG: 5 MAX: 29

"demo"

Outline

- 1 CoLoR
- 2 Formalization of matrix interpretations
- CoLoR
 - Overview
 - Proof format

Termination criteria:

- matrix interpretations [Koprowski, Zantema]
- dependency graph cycles [Blanqui]
- higher-order recursive path ordering [Koprowski]
- recursive path ordering [Coupet-Grimal, Delobel]
- multiset ordering [Koprowski]
- polynomial interpretations [Hinderer]

Transformation techniques:

- dependency pairs [Blanqui]
- rule elimination [Blanqui]
- arguments filtering [Blanqui]
- conversion from algebraic to varyadic terms [Blanqui]

Termination criteria:

- matrix interpretations [Koprowski, Zantema]
- dependency graph cycles [Blanqui]
- higher-order recursive path ordering [Koprowski]
- recursive path ordering [Coupet-Grimal, Delobel]
- multiset ordering [Koprowski]
- polynomial interpretations [Hinderer]

Transformation techniques:

- dependency pairs [Blanqui]
- rule elimination [Blanqui]
- arguments filtering [Blanqui]
- conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- Termination criteria:
 - matrix interpretations [Koprowski, Zantema]
 - dependency graph cycles [Blanqui]
 - higher-order recursive path ordering [Koprowski]
 - recursive path ordering [Coupet-Grimal, Delobel]
 - multiset ordering [Koprowski]
 - polynomial interpretations [Hinderer]
- Transformation techniques:
 - dependency pairs [Blanqui]
 - rule elimination [Blanqui]
 - arguments filtering [Blanqui]
 - conversion from algebraic to varyadic terms [Blanqui]

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski]
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski]
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski]
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski]
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- matrices [Koprowski]
- simply typed lambda-terms [Koprowski]
- finite multisets [Koprowski]
- varyadic terms [Blanqui]
- algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
- integer polynomials with multiple variables [Hinderer]
- vectors [Hinderer, Blanqui]
- lists, relations, etc.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc

- General libraries:
 - matrices [Koprowski]
 - simply typed lambda-terms [Koprowski]
 - finite multisets [Koprowski]
 - varyadic terms [Blanqui]
 - algebraic terms with symbols of fixed arity [Hinderer, Blanqui]
 - integer polynomials with multiple variables [Hinderer]
 - vectors [Hinderer, Blanqui]
 - lists, relations, etc.

Lines of code

Data-types	11.990	28.69%
7.1		
Terms	18.474	44.21%
Math	4.007	9.59%
Term. techniques	7.312	17.49%
Total	41.783	100.00%

Coq constructs

Inductive definitions	38
Fixpoint definitions	115
Definitions	554
Lemmas	2.160

Lines of code

Data-types	11.990	28.69%
Terms	18.474	44.21%
Math	4.007	9.59%
Term. techniques	7.312	17.49%
Total	41.783	100.00%

Coq constructs

Inductive definitions	38
Fixpoint definitions	115
Definitions	554
Lemmas	2.160

Outline

- 1 CoLoR
- 2 Formalization of matrix interpretations
- CoLoR
 - Overview
 - Proof format

```
type vector = int list
type matrix = vector list
type monom = int list
type polynom = (int * monom) list
type poly_int = polynom FMap.t
type mi_fun = { mi_const: vector; mi_args: matrix list }
type matrix_int = { mi_dim: int; mi_int: mi_fun FMap.t }
type red ord =
  | PolyInt of poly int
  | MatrixInt of matrix int
type proof =
  MannaNess of red ord * proof
   Trivial
```